Investigating Object Orientation Effects Across 18 Languages

- Sau-Chin Chen¹, Erin Buchanan², Zoltan Kekecs^{3,66}, Jeremy K. Miller⁴, Anna Szabelska⁵,
- Balazs Aczel³, Pablo Bernabeu^{6,67}, Patrick Forscher^{7,68}, Attila Szuts³, Zahir Vally⁸, Ali H.
- ⁴ Al-Hoorie⁹, Mai Helmy^{10,69}, Caio Santos Alves da Silva¹¹, Luana Oliveira da Silva¹¹, Yago
- Luksevicius de Moraes¹¹, Rafael Ming Chi Santos Hsu¹¹, Anthonieta Looman Mafra¹¹,
- Jaroslava V. Valentova¹¹, Marco Antonio Correa Varella¹¹, Barnaby Dixson¹², Kim
- ⁷ Peters¹², Nik Steffens¹², Omid Ghasemi¹³, Andrew Roberts¹³, Robert M. Ross¹⁴, Ian D.
- Stephen^{13,70}, Marina Milyavskaya¹⁵, Kelly Wang¹⁵, Kaitlyn M. Werner¹⁵, Dawn L.
- ⁹ Holford¹⁶, Miroslav Sirota¹⁶, Thomas Rhys Evans¹⁷, Dermot Lynott¹⁸, Bethany M. Lane¹⁹,
- Danny Riis¹⁹, Glenn P. Williams²⁰, Chrystalle B. Y. Tan²¹, Alicia Foo²², Steve M. J.
- Janssen²², Nwadiogo Chisom Arinze²³, Izuchukwu Lawrence Gabriel Ndukaihe²³, David
- Moreau²⁴, Brianna Jurosic²⁵, Brynna Leach²⁵, Savannah Lewis²⁶, Peter R. Mallik²⁷,
- Kathleen Schmidt²⁵, William J. Chopik²⁸, Leigh Ann Vaughn²⁹, Manyu Li³⁰, Carmel A.
- Levitan³¹, Daniel Storage³², Carlota Batres³³, Janina Enachescu³⁴, Jerome Olsen³⁴, Martin
- Voracek³⁴, Claus Lamm³⁵, Ekaterina Pronizius³⁵, Tilli Ripp³⁶, Jan Philipp Röer³⁶, Roxane
- Schnepper³⁶, Marietta Papadatou-Pastou³⁷, Aviv Mokady³⁸, Niv Reggev³⁸, Priyanka
- Chandel³⁹, Pratibha Kujur³⁹, Babita Pande³⁹, Arti Parganiha³⁹, Noorshama Parveen³⁹,
- Sraddha Pradhan³⁹, Margaret Messiah Singh³⁹, Max Korbmacher⁴⁰, Jonas R. Kunst⁴¹,
- ¹⁹ Christian K. Tamnes⁴¹, Frederike S. Woelfert⁴¹, Kristoffer Klevjer⁴², Sarah E. Martiny⁴²,
- Gerit Pfuhl⁴², Sylwia Adamus⁴³, Krystian Barzykowski⁴³, Katarzyna Filip⁴³, Patrícia
- Arriaga⁴⁴, Vasilije Gvozdenović⁴⁵, Vanja Ković⁴⁵, Tao-tao Gan⁴⁶, Hu Chuan-Peng⁴⁷,

22	Qing-Lan Liu ⁴⁶ , Zhong Chen ⁴⁸ , Fei Gao ⁴⁸ , Lisa Li ⁴⁸ , Jozef Bavoľár ⁴⁹ , Monika Hricová ⁴⁹ ,
23	Pavol Kačmár $^{49},$ Matúš Adamkovič $^{50,71},$ Peter Babinčák $^{51},$ Gabriel Baník $^{51,52},$ Ivan
24	Ropovik ^{52,72} , Danilo Zambrano Ricaurte ⁵³ , Sara Álvarez Solas ⁵⁴ , Harry Manley ^{55,73} , Panita
25	Suavansri ⁵⁵ , Chun-Chia Kung ⁵⁶ , Belemir Çoktok ⁵⁷ , Asil Ali Özdoğru ⁵⁷ , Çağlar Solak ⁵⁸ ,
26	Sinem Söylemez ⁵⁸ , Sami Çoksan ⁵⁹ , İlker Dalgar ⁶⁰ , Mahmoud Elsherif ⁶¹ , Martin Vasilev ⁶² ,
27	Vinka Mlakic ⁶³ , Elisabeth Oberzaucher ⁶⁴ , Stefan Stieger ⁶³ , Selina Volsa ⁶³ , Janis Zickfeld ⁶⁵ ,
28	and & Christopher R. Chartier ²⁵
29	¹ Department of Human Development and Psychology
30	Tzu-Chi University
31	Hualien
32	Taiwan
33	² Harrisburg University of Science and Technology
34	Harrisburg
35	PA
36	USA
37	³ Institute of Psychology
38	ELTE
39	Eotvos Lorand University
40	Budapest
41	Hungary
42	⁴ Department of Psychology
43	Willamette University
44	Salem OR
45	USA
46	⁵ Institute of Cognition and Culture
47	Queen's University Belfast
48	UK

49	⁶ Department of Psychology
50	Lancaster University
51	Lancaster
52	United Kingdom
53	$^7~{ m LIP/PC2S}$
54	Université Grenoble Alpes
55	Grenoble
56	France
57	⁸ Department of Clinical Psychology
58	United Arab Emirates University
59	Al Ain
60	UAE
61	⁹ Independent Researcher
62	¹⁰ Psychology Department
63	College of Education
64	Sultan Qaboos University
65	Muscat
66	Oman
67	¹¹ Department of Experimental Psychology
68	Institute of Psychology
69	University of Sao Paulo
70	Sao Paulo
71	Brazil
72	¹² School of Psychology
73	University of Queensland
74	Brisbane
75	Australia

76	¹³ Department of Psychology
77	Macquarie University
78	Sydney
79	Australia
80	¹⁴ Department of Philosophy
81	Macquarie University
82	Australia
83	¹⁵ Department of Psychology
84	Carleton University
85	Ottawa
86	Canada
87	¹⁶ Department of Psychology
88	University of Essex
89	Colchester
90	UK
91	¹⁷ School of Social
92	Psychological and Behavioural Sciences
93	Coventry University
94	Coventry
95	UK
96	¹⁸ Department of Psychology
97	Maynooth University
98	Maynooth
99	Ireland
100	¹⁹ Division of Psychology
101	School of Social and Health Sciences
102	Abertay University

103	Dundee
104	UK
105	²⁰ School of Psychology
106	Faculty of Health Sciences and Wellbeing
107	University of Sunderland
108	Sunderland
109	UK.
110	²¹ School of Psychology and Vision Sciences
111	University of Leicester
112	Leicester
113	UK
114	²² School of Psychology
115	University of Nottingham Malaysia
116	Selangor
117	Malaysia
118	²³ Department of Psychology
119	Alex Ekwueme Federal University
120	Ndufu-Alike
121	Nigeria
122	²⁴ School of Psychology
123	University of Auckland
124	Auckland
125	${ m NZ}$
126	²⁵ Department of Psychology
127	Ashland University
128	Ashland
129	ОН

130	USA
131	²⁶ Department of Psychology
132	University of Alabama
133	Tuscaloosa
134	AL
135	USA
136	²⁷ Hubbard Decision Research
137	Glen Ellyn
138	IL
139	USA
140	²⁸ Department of Psychology
141	Michigan State University
142	East Lansing
143	MI
144	USA
145	²⁹ Department of Psychology
146	Ithaca College
147	Ithaca
148	NY
149	USA
150	³⁰ Department of Psychology
151	University of Louisiana at Lafayette
152	Lafayette
153	LA
154	USA
155	³¹ Department of Cognitive Science
156	Occidental College

157	Los Angeles
158	USA
159	³² Department of Psychology
160	University of Denver
161	Denver
162	CO
163	USA
164	³³ Department of Psychology
165	Franklin and Marshall College
166	Lancaster
167	PA
168	USA
169	³⁴ Faculty of Psychology
170	University of Vienna
171	Wien
172	Austria
173	³⁵ Department of Cognition
174	Emotion
175	and Methods in Psychology
176	Faculty of Psychology
177	University of Vienna
178	Vienna
179	Austria
180	³⁶ Department of Psychology and Psychotherapy
181	Witten/Herdecke University
182	Germany
183	³⁷ School of Education

184	National and Kapodistrian University of Athens
185	Athens
186	Greece
187	³⁸ Department of Psychology and School of Brain Sciences and Cognition
188	Ben Gurion University
189	Beer Sheba
190	Israel
191	³⁹ School of Studies in Life Science
192	Pt. Ravishankar Shukla University
193	Raipur
194	India
195	40 Department of Health and Functioning
196	Western Norway University of Applied Sciences
197	Bergen
198	Norway
199	⁴¹ Department of Psychology
200	University of Oslo
201	Oslo
202	Norway
203	⁴² Department of Psychology
204	UiT - The Arctic University of Norway
205	$\operatorname{Troms} \emptyset$
206	Norway
207	⁴³ Institute of Psychology
208	Jagiellonian University
209	Krakow
210	Poland

211	⁴⁴ Iscte-University Institute of Lisbon
212	CIS-IUL
213	Portugal
214	$^{\rm 45}$ Laboratory for Neuro cognition and Applied Cognition
215	Faculty of Philosophy
216	University of Belgrade
217	⁴⁶ Department of Psychology
218	Hubei University
219	Wuhan
220	China
221	⁴⁷ School of Psychology
222	Nanjing Normal University
223	Nanjing
224	China
225	⁴⁸ Faculty of Arts and Humanities
226	University of Macau
227	Macau
228	China
229	⁴⁹ Department of Psychology
230	Faculty of Arts
231	Pavol Jozef Šafarik University in Košice
232	Slovakia
233	⁵⁰ Institute of Social Sciences
234	CSPS
235	Slovak Academy of Sciences
236	⁵¹ Institute of Psychology
237	University of Presov

238	Slovakia
239	52 Institute for Research and Development of Education
240	Faculty of Education
241	Charles university
242	Czechia
243	⁵³ Faculty of Psychology
244	Fundación Universitaria Konrad Lorenz
245	Bogotá
246	Colombia
247	⁵⁴ Ecosystem Engineer
248	Universidad Regional Amazónica Ikiam
249	Tena
250	Ecuador
251	⁵⁵ Faculty of Psychology
252	Chulalongkorn University
253	Thailand
254	⁵⁶ Department of Psychology
255	National Cheng Kung University
256	Tainan
257	Taiwan
258	⁵⁷ Department of Psychology
259	Üsküdar University
260	İstanbul
261	Turkey
262	⁵⁸ Department of Psychology
263	Manisa Celal Bayar University
264	Manisa

265	Turkey
266	⁵⁹ Department of Psychology
267	Erzurum Technical University
268	Erzurum
269	Turkey
270	⁶⁰ Department of Psychology
271	Ankara Medipol University
272	Ankara
273	Turkey
274	⁶¹ Department of Vision Sciences
275	University of Leicester
276	United Kingdom
277	⁶² Bournemouth University
278	Talbot Campus
279	Poole
280	$_{ m UK}$
281	63 Department of Psychology and Psychodynamics
282	Karl Landsteiner University of Health Sciences
283	Krems an der Donau
284	Austria
285	⁶⁴ Department of Evolutionary Anthropology
286	University of Vienna
287	Wien
288	Austria
289	⁶⁵ Department of Management Aarhus University
290	Aarhus
291	Denmark

292	⁶⁶ Department of Psychology
293	Lund University
294	Lund
295	Sweden
296	67 Department of Language and Culture
297	UiT The Arctic University of Norway
298	Tromsø
299	Norway
300	⁶⁸ Busara Center for Behavioral Economics
301	Nairobi
302	Kenya
303	⁶⁹ Psychology Department
304	Faculty of Arts
305	Menoufia University
306	Shebin El-Kom
307	Egypt
308	⁷⁰ Department of Psychology
309	Nottingham Trent University
310	Nottingham
311	UK
312	⁷¹ University of Jyväskylä
313	Finland
314	⁷² Faculty of Education
315	University of Presov
316	Slovakia
317	⁷³ Faculty of Behavioral Sciences
318	Education

319	& Languages
320	HELP University Subang 2
321	Malaysia

322 Author Note

323

Funding statement. Matúš Adamkovič was supported by APVV-20-0319; Robert 324 M. Ross was supported by Australian Research Council (grant number: DP180102384) and 325 the John Templeton Foundation (grant ID: 62631); Zoltan Kekecs was supported by János 326 Bolyai Research Scholarship of the Hungarian Academy of Science; Mahmoud Elsherif was 327 supported by Leverhulme Trust; Glenn P. Williams was supported by Leverhulme Trust 328 Research Project Grant (RPG-2016-093); Ivan Ropovik was supported by NPO Systemic 329 Risk Institute (LX22NPO5101); Krystian Barzykowski was supported by National Science 330 Centre, Poland (2019/35/B/HS6/00528); Gabriel Baník was supported by 331 PRIMUS/20/HUM/009; Patrícia Arriaga was supported by Portuguese National Foundation for Science and Technology (FCT UID/PSI/03125/2019); Monika Hricová was supported by VEGA 1/0145/23.

Ethical approval statement. Authors who collected data on site and online had
the ethical approval/agreement from their local institutions. The latest status of ethical
approval for all the participating authors is available at the public OSF folder
(https://osf.io/e428p/ "IRB approvals" in Files).

Acknowledgement. We thank the suggestions from the editor and two reviewers on our first and second proposals.

The authors made the following contributions. Sau-Chin Chen: Conceptualization,
Data curation, Formal analysis, Investigation, Methodology, Resources, Software,
Supervision, Validation, Visualization, Writing - original draft, Writing - review & editing;
Erin Buchanan: Formal analysis, Project administration, Resources, Software, Validation,
Writing - review & editing; Zoltan Kekecs: Project administration, Writing - review &
editing; Jeremy K. Miller: Project administration, Resources, Supervision, Writing - review

```
& editing; Anna Szabelska: Project administration, Writing - original draft, Writing -
   review & editing; Balazs Aczel: Investigation, Methodology, Resources, Writing - review &
348
    editing; Pablo Bernabeu: Investigation, Methodology, Visualization, Writing - review &
349
    editing; Patrick Forscher: Methodology, Writing - review & editing; Attila Szuts:
350
   Investigation, Methodology, Resources, Writing - review & editing; Zahir Vally:
351
   Investigation, Resources, Writing - review & editing; Ali H. Al-Hoorie: Investigation,
352
    Resources, Writing - review & editing; Mai Helmy: Investigation, Resources, Writing -
353
   review & editing; Caio Santos Alves da Silva: Investigation, Resources, Writing - review &
354
    editing; Luana Oliveira da Silva: Investigation, Resources, Writing - review & editing; Yago
355
   Luksevicius de Moraes: Investigation, Resources, Writing - review & editing; Rafael Ming
356
    Chi Santos Hsu: Investigation, Resources, Writing - review & editing; Anthonieta Looman
357
   Mafra: Investigation, Resources, Writing - review & editing; Jaroslava V. Valentova:
   Investigation, Resources, Writing - review & editing; Marco Antonio Correa Varella:
359
   Investigation, Resources, Writing - review & editing; Barnaby Dixson: Investigation,
    Writing - review & editing; Kim Peters: Investigation, Writing - review & editing; Nik
361
   Steffens: Investigation, Writing - review & editing; Omid Ghasemi: Investigation, Writing -
362
   review & editing; Andrew Roberts: Investigation, Writing - review & editing; Robert M.
363
   Ross: Investigation, Writing - review & editing; Ian D. Stephen: Investigation, Writing -
364
   review & editing; Marina Milyavskaya: Investigation, Writing - review & editing; Kelly
365
    Wang: Investigation, Writing - review & editing; Kaitlyn M. Werner: Investigation,
366
    Writing - review & editing; Dawn L. Holford: Investigation, Writing - review & editing;
367
    Miroslav Sirota: Investigation, Writing - review & editing; Thomas Rhys Evans:
368
   Investigation, Writing - review & editing; Dermot Lynott: Investigation, Writing - review
360
    & editing; Bethany M. Lane: Investigation, Writing - review & editing; Danny Riis:
370
   Investigation, Writing - review & editing; Glenn P. Williams: Investigation, Writing -
371
   review & editing; Chrystalle B. Y. Tan: Investigation, Writing - review & editing; Alicia
372
   Foo: Investigation, Writing - review & editing; Steve M. J. Janssen: Investigation, Writing
373
```

```
- review & editing; Nwadiogo Chisom Arinze: Investigation, Writing - review & editing;
374
   Izuchukwu Lawrence Gabriel Ndukaihe: Investigation, Writing - review & editing; David
375
   Moreau: Investigation, Writing - review & editing; Brianna Jurosic: Investigation, Writing
376
   - review & editing; Brynna Leach: Investigation, Writing - review & editing; Savannah
377
   Lewis: Investigation, Writing - review & editing; Peter R. Mallik: Investigation, Writing -
378
   review & editing; Kathleen Schmidt: Investigation, Resources, Writing - review & editing;
379
    William J. Chopik: Investigation, Writing - review & editing; Leigh Ann Vaughn:
380
   Investigation, Writing - review & editing; Manyu Li: Investigation, Writing - review &
381
    editing; Carmel A. Levitan: Investigation, Writing - review & editing; Daniel Storage:
382
   Investigation, Writing - review & editing; Carlota Batres: Investigation, Writing - review &
383
   editing; Janina Enachescu: Investigation, Resources, Writing - review & editing; Jerome
384
    Olsen: Investigation, Resources, Writing - review & editing; Martin Voracek: Investigation,
385
   Resources, Writing - review & editing; Claus Lamm: Investigation, Resources, Writing -
   review & editing; Ekaterina Pronizius: Investigation, Writing - review & editing; Tilli
   Ripp: Investigation, Writing - review & editing; Jan Philipp Röer: Investigation, Writing -
388
   review & editing; Roxane Schnepper: Investigation, Writing - review & editing; Marietta
380
   Papadatou-Pastou: Investigation, Resources, Writing - review & editing; Aviv Mokady:
390
   Investigation, Resources, Writing - review & editing; Niv Reggev: Investigation, Resources,
391
    Writing - review & editing; Priyanka Chandel: Investigation, Resources, Writing - review &
392
    editing; Pratibha Kujur: Investigation, Resources, Writing - review & editing; Babita
393
   Pande: Investigation, Resources, Supervision, Writing - review & editing; Arti Parganiha:
394
   Investigation, Resources, Supervision, Writing - review & editing; Noorshama Parveen:
395
   Investigation, Resources, Writing - review & editing; Sraddha Pradhan: Investigation,
396
    Resources, Writing - review & editing; Margaret Messiah Singh: Investigation, Writing -
397
   review & editing; Max Korbmacher: Investigation, Writing - review & editing; Jonas R.
398
    Kunst: Investigation, Resources, Writing - review & editing; Christian K. Tamnes:
390
   Investigation, Resources, Writing - review & editing; Frederike S. Woelfert: Investigation,
```

```
Writing - review & editing; Kristoffer Klevjer: Investigation, Writing - review & editing;
401
   Sarah E. Martiny: Investigation, Writing - review & editing; Gerit Pfuhl: Investigation,
402
    Resources, Writing - review & editing; Sylwia Adamus: Investigation, Resources, Writing -
403
   review & editing; Krystian Barzykowski: Investigation, Resources, Supervision, Writing -
404
    review & editing; Katarzyna Filip: Investigation, Resources, Writing - review & editing;
405
    Patrícia Arriaga: Funding acquisition, Investigation, Resources, Writing - review & editing;
406
    Vasilije Gvozdenović: Investigation, Resources, Writing - review & editing; Vanja Ković:
407
   Investigation, Resources, Writing - review & editing; Tao-tao Gan: Investigation, Writing -
408
    review & editing; Hu Chuan-Peng: Investigation, Writing - review & editing; Qing-Lan
400
   Liu: Investigation, Writing - review & editing; Zhong Chen: Investigation, Writing - review
410
    & editing; Fei Gao: Investigation, Resources, Writing - review & editing; Lisa Li:
411
   Investigation, Resources, Writing - review & editing; Jozef Bavolár: Investigation,
412
   Resources, Writing - review & editing; Monika Hricová: Investigation, Resources, Writing -
413
   review & editing; Pavol Kačmár: Investigation, Resources, Writing - review & editing;
   Matúš Adamkovič: Investigation, Writing - review & editing; Peter Babinčák:
415
   Investigation, Writing - review & editing; Gabriel Baník: Investigation, Writing - review &
416
   editing; Ivan Ropovik: Investigation, Writing - review & editing; Danilo Zambrano
   Ricaurte: Investigation, Resources, Writing - review & editing; Sara Álvarez Solas:
418
   Investigation, Resources, Writing - review & editing; Harry Manley: Investigation,
419
   Resources, Writing - review & editing; Panita Suavansri: Investigation, Resources, Writing
420
   - review & editing; Chun-Chia Kung: Investigation, Resources, Writing - review & editing;
421
    Belemir Çoktok: Investigation, Resources, Writing - review & editing; Asil Ali Özdoğru:
422
   Investigation, Resources, Writing - review & editing; Çağlar Solak: Investigation, Writing -
423
    review & editing; Sinem Söylemez: Investigation, Writing - review & editing; Sami Çoksan:
424
   Investigation, Resources, Writing - review & editing; İlker Dalgar: Resources, Writing -
425
   review & editing; Mahmoud Elsherif: Writing - review & editing; Martin Vasilev: Writing -
426
   review & editing; Vinka Mlakic: Resources, Writing - review & editing; Elisabeth
427
```

- Oberzaucher: Resources, Writing review & editing; Stefan Stieger: Resources, Writing -
- review & editing; Selina Volsa: Resources, Writing review & editing; Janis Zickfeld:
- Resources, Writing review & editing; Christopher R. Chartier: Investigation, Project
- ⁴³¹ administration, Writing review & editing.
- 432 Correspondence concerning this article should be addressed to Sau-Chin Chen,
- No. 67, Jei-Ren St., Hualien City, Taiwan. E-mail: csc2009@mail.tcu.edu.tw

434 Abstract

Mental simulation theories of language comprehension propose that people automatically 435 create mental representations of objects mentioned in sentences. Mental representation is 436 often measured with the sentence-picture verification task, wherein participants first read a 437 sentence that implies the object property (i.e., shape and orientation). Participants then 438 respond to an image of an object by indicating whether it was an object from the sentence 439 or not. Previous studies have shown matching advantages for shape, but findings concerning object orientation have not been robust across languages. This registered report 441 investigated the match advantage of object orientation across 18 languages in nearly 4,000 442 participants. The preregistered analysis revealed no compelling evidence for a match 443 advantage across languages. Additionally, the match advantage was not predicted by mental rotation scores. Overall, the results did not support current mental simulation theories.

Keywords: cross-lingual research, language comprehension, mental rotation, mental simulation

Investigating Object Orientation Effects Across 18 Languages

Mental simulation of object properties is a major topic in conceptual processing 450 research (Ostarek & Huettig, 2019; Scorolli, 2014). Theoretical frameworks of conceptual 451 processing describe the integration of linguistic representations and situated simulation 452 (e.g., reading about bicycles integrates the situation in which bicycles would be used, 453 Barsalou, 2008; Zwaan, 2014a). Proponents of situated cognition contend that perceptual 454 representations can be generated during language processing (Barsalou, 1999; Wilson, 455 2002), as cognition is thought to be an interaction of the body, environment, and 456 processing (Barsalou, 2020). Given this definition of situated cognition, it is important to 457 investigate previously established embodied cognition effects across multiple environments 458 (in this case, languages and cultures), especially as the credibility revolution has indicated 459 that not all published findings are replicable (Vazire, 2018).

One empirical index of situated simulation is the mental simulation effect measured 461 in the sentence-picture verification task (see Figure 1). This task requires participants to 462 read a probe sentence displayed on the screen. On the following screen, participants see a 463 picture of an object and must verify whether the object was mentioned in the probe 464 sentence. Verification response times are used to test the mental simulation effect, which 465 occurs when people are faster to respond to pictures that match the properties implied by 466 the probe sentences. For example, the orientation implied by the sentence Tom hammered 467 the nail into the wall would be matched if the following picture showed a 468 horizontally-oriented nail rather than a vertically-oriented one. The opposite would be true 460 of the sentence Tom hammered the nail into the floor plank. 470

Mental simulation effects have been demonstrated for object shape (Zwaan et al., 2002), color (Connell, 2007), and orientation (Stanfield & Zwaan, 2001). Subsequent replication studies revealed consistent results for shape but inconsistent findings for color and orientation effects (De Koning et al., 2017; Rommers et al., 2013; Zwaan & Pecher,

Figure 1

Procedure of the sentence-picture verification task, with an example of matching orientation.

2012). Existing theoretical frameworks do not provide much guidance regarding the
potential causes for this discrepancy. With the accumulating concerns about the lack of
reproducibility (e.g., Kaschak & Madden, 2021), researchers have found it challenging to
reconcile the theory of mental simulation with the failures to replicate some of the effects
(e.g., Morey et al., 2022). In an empirical discipline like cognitive science, a theory requires
the support of reproducible results.

The reliability of match advantage effects seems to vary depending on both the 481 object properties and the languages under study. Mental simulation effects for object shape 482 have consistently been found in English (Zwaan et al., 2017; Zwaan & Madden, 2005; 483 Zwaan & Pecher, 2012), Chinese (Li & Shang, 2017), Dutch (De Koning et al., 2017; 484 Engelen et al., 2011; Pecher et al., 2009; Rommers et al., 2013), German (Koster et al., 485 2018), Croatian (Setić & Domijan, 2017), and Japanese (Sato et al., 2013). Object orientation, on the other hand, has produced mixed results across languages: namely, positive evidence in English (Stanfield & Zwaan, 2001; Zwaan & Pecher, 2012) and in 488 Chinese (Chen et al., 2020), and null evidence in Dutch (De Koning et al., 2017; Rommers 489 et al., 2013) and in German as second language (Koster et al., 2018). Among studies on 490

shape and orientation, the effects of object orientation have been smaller than those of object shape (e.g., d = 0.10 vs. 0.17 in Zwaan and Pecher (2012); d = 0.07 vs. 0.27 in De Koning et al. (2017)). To understand the causes for the discrepancies among object properties and languages, it is imperative to consider the cross-linguistic and experimental factors of the sentence-picture verification task.

496 Cross-linguistic, Methodological, and Cognitive Factors

Several factors might contribute to cross-linguistic differences in the match
simulation effect of orientation. First, languages differ in how they encode motion and
placement events in sentences (Newman, 2002; Verkerk, 2014). Second, the potential role
of mental rotation as a confound has been considered (Rommers et al., 2013). We expand
on how linguistic, methodological, and cognitive factors hinder the improvement of
theoretical frameworks below.

Linguistic Factors. The probe sentences used in object orientation studies usually 503 contain several motion events (e.g., The ant walked towards the pot of honey and tried to 504 climb in). Languages encode motion events in different ways, and grammatical differences 505 between lexical encodings could explain different match advantage results. According to 506 Verkerk (2014), Germanic languages (e.g., Dutch, English, and German) generally encode 507 the manner of motion in the verb (e.g., The ant dashed), while conveying the path 508 information through satellite adjuncts (e.g., towards the pot of honey). In contrast, other 509 languages, such as the Romance family (e.g., Portuguese, Spanish), more often encode the 510 path in the verb (e.g., crossing, exiting). Crucially, past research on the match advantage of object orientation is exclusively based on Germanic languages, and yet, there were 512 differences across those languages, with English being the only one that consistently 513 yielded the match advantage. As a minor difference across Germanic languages in this 514 regard, Verkerk (2014) notes that path-only constructions (e.g., The ant went to the feast) 515 are more common in English than in other Germanic languages. 516

Another topic to be considered is the lexical encoding of placement in each 517 language, as the stimuli contain several placement events (e.g., Sara situated the expensive 518 plate on its holder on the shelf). Chen et al. (2020) and Koster et al. (2018) noted that 519 some Germanic languages, such as German and Dutch, often make the orientation of 520 objects more explicit than English. In English, for example, the verb put does not imply 521 orientation in the sentences She put the book on the table and She put the bottle on the 522 table. However, in German and Dutch, speakers preferred the verbs laid or stood in the 523 above sentences. In this case, the verb lay encodes a horizontal orientation, whereas the 524 verb stand encodes a vertical orientation. This distinction extends to verbs indicating 525 existence. As Newman (2002) exemplified, an English speaker would be likely to say 526 There's a lamp in the corner, whereas a Dutch speaker would be more likely to say There 527 'stands' a lamp in the corner. Nonetheless, we cannot conclude that these cross-linguistic 528 differences are affecting the match advantage across languages because the current theories 529 (e.g., Language and Situated Simulation, Barsalou, 2008) have not addressed the potential 530 influence of linguistic aspects such as the lexical encoding of events. 531

Methodological factors. Inconsistent findings on the match advantage of object 532 orientation may be due to variability in task design. For example, studies failing to detect 533 the match advantage may not have required participants to verify the probe sentence after 534 the response to the target picture (see Zwaan, 2014a). Without such a verification, 535 participants might have paid less attention to the meaning of the probe sentences, in which 536 they would have been less likely to form a mental representation of the objects (e.g., Zwaan 537 & van Oostendorp, 1993). In this regard, variability originating from differences in the 538 characteristics of experiments can substantially influence the results (Barsalou, 2019; 539 Kaschak & Madden, 2021).

Cognitive Factors. Since Stanfield and Zwaan (2001) showed a match advantage of object orientation, later studies on this topic have examined the association between the

match advantage and alternative cognitive mechanisms rather than situated simulation. 543 One of these potential mechanisms is spatial cognition, which can be measured with mental 544 rotation tasks. Indeed, studies have suggested that mental rotation tasks offer valid 545 reflections of previous spatial experience (Frick & Möhring, 2013) and of current spatial 546 cognition (Chu & Kita, 2008; Pouw et al., 2014). Some previous studies have drawn on 547 mental rotation to study mental simulation. For instance, De Koning et al. (2017) 548 observed that the effectiveness of mental rotation increased with the size of the depicted 549 object. Chen et al. (2020) examined the implication of this finding for the match 550 advantage of object orientation (Stanfield & Zwaan, 2001), and implemented a 551 picture-picture verification task using the mental rotation paradigm (D. Cohen & Kubovy, 552 1993). In each trial, two pictures appeared on opposite sides of the screen. Participants 553 had to verify whether the pictures represented identical or different objects.

This study not only revealed shorter verification times for matching orientations 555 (i.e., two identical pictures presented in horizontal or vertical orientation) but also 556 replicated the larger effect for larger objects (i.e., pictures of bridges versus pictures of 557 pens). The results were consistent across the three languages investigated: English, Dutch and Chinese. Compared to the results of sentence-picture verification and picture-picture verification, Chen et al. (2020) converted the picture-picture verification times to the mental rotation scores that were the discrepancy of verification times between the identical 561 and different orientations¹. Their analysis showed that mental rotation affected the Dutch 562 participants' sentence-picture verification performance. With the measurement of mental 563 rotation scores, we explore the association of spatial cognition and the effect of orientation 564 in comprehension across the investigated languages. 565

¹ In the pre-registered plan, we used the term "imagery score" but this term was confusing. Therefore, we used "mental rotation scores" instead of "imagery scores" in the final report.

66 Purposes of this study

To scrutinize the discrepancies in findings across languages and cognitive factors, we 567 examined the reproducibility of the object orientation effect in a multi-lab collaboration. 568 Our pre-registered plan aimed at detecting a general match advantage of object orientation 569 across languages and evaluated the magnitude of match advantage in each specific 570 language. Additionally, we examined whether the match advantages were related to the 571 mental rotation index. Thus, this study followed the original methods from (Stanfield & Zwaan, 2001) and addressed two primary questions: (1) How much of the match advantage 573 of object orientation can be obtained within different languages, and (2) How do differences 574 in the mental rotation index affect the match advantage across languages?

576 Method

577 Hypotheses and Design

588

The study design for the sentence-picture and picture-picture verification tasks was 578 mixed, using between-participant (language) and within-participant (match versus mismatch object orientation) independent variables. In the sentence-picture verification task, the match condition reflects a match between the sentence and the picture, whereas in the picture-picture verification it reflects a match in orientation between two pictures. 582 The only dependent variable for both tasks was response time. The time difference 583 between conditions in each task is the measurement of mental simulation effects (for the 584 sentence-picture task) and mental rotation scores (for the picture-picture task). We did not 585 select languages systematically, but instead based on our collaboration recruitment with 586 the Psychological Science Accelerator (PSA, Moshontz et al., 2018). 587

We pre-registered the following hypotheses:

(1) In the sentence-picture verification task, we expected response times to be shorter for matching compared to mismatching orientations within each language. In the picture-picture verification task, we expected shorter response time for identical orientation compared to different orientations. We did not have any specific
hypotheses about the relative size of the object orientation match advantage in
different languages.

(2) Based on the assumption that 'mental rotation is a general cognitive function', we expect equal mental rotation scores across languages, but no association between mental rotation scores and mental simulation effects (see Chen et al., 2020).

598 Participants

595

596

597

The pre-registered power analysis indicated the need to include n = 156 and 620 participants for 80% power for a directional one-sample t-test for a d = 0.20 and 0.10, respectively. A mixed-model simulation suggested that n = 400 participants with 100 items (i.e., 24 planned items nested within at least five languages) would produce 90% power to detect the same effect as that reported in Zwaan and Pecher (2012). The laboratories were allowed to follow a secondary plan: a team collected at least their pre-registered minimum sample size (suggested 100 to 160 participants, most implemented 50), and then determine whether or not to continue data collection via Bayesian sequential analysis (stopping data collection if $BF_{10} = 10$ or $0.10)^2$.

We collected data in 18 languages from 50 laboratories. Each laboratory chose a
maximal sample size and an incremental n for sequential analysis before their data
collection. Because the pre-registered power analysis did not match the final analysis plan,
we additionally completed a sensitivity analysis to ensure the sample size was adequate to
detect small effects, and the results indicated that if the observe orientation difference in
reaction time between the different orientations was overall 2.36 ms or higher, the effect
would be detected as significant. Appendix A summarizes the details of the sensitivity
analysis.

 $^{^2}$ See details of power analysis in the pre-registered plan, pp. 13 - 15. https://psyarxiv.com/t2pjv/

The original sample sizes are presented in Table 1 for the teams that provided raw 616 data to the project. Data collection proceeded in two broad stages: initially we collected 617 data in the laboratory. However, when the global COVID-19 pandemic made this practice 618 impossible to continue, we moved data collection online. In total, 4,248 unique participants 619 completed the present study with 2,843 completing the in-person version and 1,405 620 completing the online version³. The in-person version included 35 research teams and the 621 online version included 19 with 50 total teams across both data collection methods (i.e., 622 some labs completed both in-person and online data collection). Based on 623 recommendations from the research teams (TUR_007, TWN_002), two sets of data were 624 excluded from all analyses due to participants being non-native speakers. Figure 2 provides 625 a flow chart for participant exclusion and inclusion for analyses. All participating 626 laboratories had either ethical approval or institutional evaluation before data collection. All data and analysis scripts are available on the source files 628 (https://codeocean.com/capsule/9287673). Appendix B summarizes the average 629 characteristics by language and laboratory. 630

631 Materials

632

633

634

635

Sentences. 24 critical sentence pairs (48 total sentences) were included in this study following Stanfield and Zwaan (2001). Each pair consisted of versions that differed in their implied orientation of the object embedded in the sentence. For instance, the sentence The librarian put the book back on the table - which implies a horizontal orientation - had a

³ Data for this study was collected together with another unrelated study (Phills et al., 2022) during the same data collection session, with the two studies using different data collection platforms. The demographic data was collected within the platform of the other study during the in-person sessions. Some participants only completed the Phills et al. study and dropped out without completing the present study, and there were also some data entry errors in the demographic data. Thus, the demographic data of some participants who took the present study are missing or unidentifiable (n = 39 cannot be matched to a lab, n = 2,053 were missing gender information, and n = 332 were missing age information). Importantly, this does not affect the integrity of the experimental research data.

Table 1

Demographic and Sample Size Characteristics

Language	SP_{Trials}	PP_{Trials}	SP_N	PP_N	$Demo_N$	$Female_N$	$Male_N$	M_{Age}	SD_{Age}
Arabic	2544	2544	106	106	107	42	12	32.26	18.59
Brazilian Portuguese	1200	1200	50	50	50	36	13	30.80	8.73
English	45189	45312	1884	1888	2055	1360	465	21.71	3.85
German	5616	5616	234	234	248	98	26	22.34	3.40
Greek	2376	2376	99	99	109	0	0	33.86	11.30
Hebrew	3576	3571	149	149	181	0	0	24.25	9.29
Hindi	1896	1896	79	79	86	57	27	21.66	3.46
Magyar	3610	3816	151	159	168	3	1	21.50	2.82
Norwegian	3576	3576	149	149	154	13	9	25.22	6.40
Polish	1368	1368	57	57	146	0	0	23.25	7.96
Portuguese	1488	1464	62	61	55	26	23	30.74	9.09
Serbian	3120	3120	130	130	130	108	21	21.38	4.50
Simple Chinese	2040	2016	85	84	96	0	1	21.92	4.68
Slovak	3881	3599	162	150	325	1	0	21.77	2.33
Spanish	3120	3096	130	129	146	0	0	21.73	3.83
Thai	1200	1152	50	48	50	29	9	21.54	3.81
Traditional Chinese	3600	3600	150	150	186	69	46	20.89	2.44
Turkish	6456	6432	269	268	274	36	14	21.38	4.59

Note. SP = Sentence Picture Verification, PP = Picture Picture Verification. Sample sizes for demographics may be higher than the sample size for the this study, as participants could have only completed the bundled experiment. Additionally, not all entries could be unambigously matched by lab ID, and therefore, demographic sample sizes could also be less than data collected.

Figure 2

Sample size and exclusions. N = number of unique participants, T = number of trials. The final combined sample was summarized to a median score for each match/mismatch condition, and therefore, includes one summary score per person.

counterpart in the sentence The librarian put the book back on the shelf - which implies a 636 vertical orientation. Another two sets of 24 sentences were included as filler sentences for 637 the task, and each participant received only one set of these two randomized versions. 638 These were not matched to any particular orientation but included a potential object for 639 depiction. For example, After a week the painting arrived by mail, and The flowers that 640 were planted last week had survived the storm were included as filler sentences. Each 641 participant was shown 24 critical sentences and 24 filler sentences in the study. The filler 642 sentences were included to counterbalance the number of yes-no answers to create an even 50% ratio.

Pictures. The study included 24 critical matched pictures that only varied in their 645 orientation (vertical/horizontal) for a total of 48 critical pictures. These pictures were 646 matched to their respective sentences for implied orientation. The librarian put the book back on the table was matched with a horizontally-oriented book, while The librarian put 648 the book back on the shelf was matched with a vertically-oriented book. For 649 counterbalancing, the mismatch between picture orientation and sentence was created, and the book would be shown in the respective opposite orientation (see orientation pairs at https://osf.io/utqxb). Another 48 pictures were included for the fillers which were unrelated to the corresponding sentence. Therefore, the answer to critical pairs was always 653 "yes", while the filler sentence-picture combinations answer was always "no". 654

Picture-Picture Trials. The picture-picture verification task used the same object pictures as the above task. The 24 critical picture pairs were included as match trials and were counterbalanced such as half the time they appeared with the same object and orientation (i.e., the same picture), and half the time with the opposite orientation (i.e., horizontal and vertical). The filler pictures were randomly paired to create mismatch trials. Table 2 shows the counterbalancing and combinations for trials.

Table 2 Trial conditions for the Sentence-Picture and Picture-Picture Verification Task

Condition	Item 1	Item 2	Answer	Number
Sentence-Picture Critical Match	Critical Sentence: Horizontal	Critical Picture: Horizontal	Yes	6
Sentence-Picture Critical Match	Critical Sentence: Vertical	Critical Picture: Vertical	Yes	6
Sentence-Picture Critical Mismatch	Critical Sentence: Horizontal	Critical Picture: Vertical	Yes	6
Sentence-Picture Critical Mismatch	Critical Sentence: Vertical	Critical Picture: Horizontal	Yes	6
Sentence-Picture Filler	Sentence	Picture	No	24
Picture-Picture Critical Match	Critical Picture: Horizontal	Critical Picture: Horizontal	Yes	6
Picture-Picture Critical Match	Critical Picture: Vertical	Critical Picture: Vertical	Yes	6
Picture-Picture Critical Mismatch	Critical Picture: Horizontal	Critical Picture: Vertical	Yes	6
Picture-Picture Critical Mismatch	Critical Picture: Vertical	Critical Picture: Horizontal	Yes	6
Picture-Picture Filler	Picture	Picture	No	24

Procedure

669

671

672

673

Sentence-Picture Task. The sentence-picture verification task was always 662 administered first. This task began with six practice trials. Each trial started with a 663 left-aligned vertically-centered fixation point displayed for 1,000 ms, immediately followed by the probe sentence. The sentence remained on the screen until the participant pressed the space key, acknowledging that they had read the sentence. Then, the object picture (from Zwaan & Pecher, 2012) was presented in the center of the screen until the participant responded, or it disappeared after two seconds. Participants were instructed to verify, as quickly and accurately as possible, whether the object on screen had been mentioned in the probe sentence. Following (Stanfield & Zwaan, 2001), a memory check test was carried out 670 after every three to eight trials to ensure that participants had read each sentence carefully.

As shown in Table 2, the trials for the sentence-picture task were created by counterbalancing the sentence implied orientation (vertical, horizontal) by the pictured object orientation creating a fully-crossed combination between matching sentences and objects. Therefore, each participant only saw one of the four possible combinations 675 (sentence orientation 2 x object orientation 2). For the filler items, sentences and pictures

were randomly assigned in two separate patterns, and these were included with the critical pairs. Stimuli lists were created in Excel, and this information can be found at https://osf.io/utqxb.

Translation of Sentences. The translation of probe sentences followed our

pre-registered plan. Every non-English language coordinator was required to recruit at

least four translators who were fluent in both English and the target language. Every

language coordinator supervised the translators using the Psychological Science Accelerator

guidelines (https://psysciacc.org/translation-process/). In addition, the coordinator and

participating laboratories consulted about each of the following points:

- 1) Four translators could denote the items that are unfamiliar to a particular language based on object familiarity ratings. The two forward translators would suggest alternative probe sentences and object pictures to replace the unfamiliar objects. The two backward translators would evaluate the suggested items.
- 2) Some objects in a particular language have different spellings or pronunciations among countries and geographical zones due to dialect. For example, American speakers tend to write *tire* whereas British speakers tend to write *tyre*. Every coordinator would mark these local translations in the final version of translated materials. Participating laboratories could replace the names to match the local dialect.

Picture-Picture Task. Next, the picture-picture verification task was
administered. In each trial, two objects appeared on either side of the central fixation point
until either the participant indicated that the pictures displayed the same object or two
different objects, or until two seconds elapsed. As shown in Table 2, four possible
combinations of critical orientations could be shown with the picture (same, different) by
orientation (same, different). Each participant only saw one of the critical combinations,

and filler items were randomly paired in two combinations to match. The stimuli lists can
be found at https://osf.io/utqxb.

Software Implementation. The study was executed using OpenSesame software 704 for millisecond timing (Mathôt et al., 2012). After data collection moved online, to minimize the differences between on-site and web-based studies, we converted the original Python code to Javascript and collected the data using OpenSesame through a JATOS 707 server (Lange et al., 2015; Mathôt & March, 2022). We proceeded with the online study 708 from February to June 2021 after the changes in the procedure were approved by the 709 journal editor and reviewers. Following the literature, we did not anticipate any 710 theoretically important differences between the two data collection methods (see 711 Anwyl-Irvine et al., 2020; Bridges et al., 2020; de Leeuw & Motz, 2016). The instructions 712 and experimental scripts are available at the public OSF folder (https://osf.io/e428p/ 713 "Materials" in Files). 714

715 Analysis Plan

720

721

To test hypothesis 1, our first planned analysis⁴ used a random-effects meta-analysis
model that estimated the match advantage across laboratories and languages. The
meta-analysis summarized the median reaction times by match condition to determine the
effect size by laboratory. The following formula was used:

$$d = \frac{Mdn_{Mismatch} - Mdn_{Match}}{\sqrt{MAD_{Mismatch}^2 + MAD_{Match}^2 - 2 \times r \times MAD_{Mismatch} \times MAD_{Match}}} \times \sqrt{2 \times (1 - r)}$$

where d is Cohen's d (Fritz et al., 2012), Mdn is Median, MAD is median absolute deviation, and r is correlation between match and mismatch condition. Meta-analytic

⁴ See the analysis plan in the pre-registered plan, pp. 19 - 20, https://psyarxiv.com/t2pjv/. This plan was changed to a random-effects model to ensure that we did not assume the exact same effect size for each language and lab.

740

effect sizes were computed for those languages that had data from more than one team.

Continuing to test hypothesis 1, next, we ran planned mixed-effects models using 723 each individual response time from the sentence-picture verification task as the dependent 724 variable. In each analysis, we first built a simple linear regression model with a fixed 725 intercept only. Then, we systematically added random intercepts and fixed effects, arriving 726 at the final model. First, the random intercepts were added to the model one-by-one in the 727 following order: participant ID, target, laboratory ID, and finally language. Please see 728 below for decision criteria for determining the final random-effect structure. Then, the 729 fixed effect of matching condition (match vs. mismatch) was added to the model. 730 Language-specific mixed-effects models were conducted in the same way if the 731 meta-analysis showed a significant orientation effect. 732

According to the pre-registration, we planned to test hypothesis 2 by first evaluating
the equality of mental rotation scores across languages using an ANOVA. However, this
plan was updated to use mixed models instead due to the nested structure of the data
(Gelman, 2006). The same analysis plan was used for model building and selection as
described above for the sentence-picture verification task.

To further assess hypothesis 2, the last planned analysis was to use mental rotation scores for the prediction of mental stimulation with an interaction between language and mental rotation scores computed from the picture-picture task to determine if there were differences in prediction of match advantage in the sentence-picture task. Here, we used a mixed-effects model as well to control for the random effect of the data collection lab, and with language, mental rotation score, and their interaction as fixed effect predictors.

Decision criterion for model selection and hypothesis testing. The
inclusion of both random and fixed effects in models was assessed using model comparison
based on the Akaike information criterion (AIC). While this method is less conservative

than alternatives such as the likelihood ratio test (Matuschek et al., 2017), the AIC was
deemed appropriate due to the modest effect sizes that tend to be produced by mental
simulation effects, and the limited sample sizes in the present study (albeit larger samples
than those of most previous studies). Models with lower AIC were preferred over models
with higher AIC, and in cases where the difference in AIC did not reach 2 (Burnham &
Anderson, 1998), the model with fewer parameters was preferred.

p-values for each effect were calculated using the Satterthwaite approximation for degrees of freedom for individual predictor coefficients and meta-analysis (Luke, 2017). p-values were interpreted using the pre-registered α level of .05.

Intra-lab analysis during data collection.

756

Before data collection, each lab decided whether they wanted to apply a sequential 757 analysis (Schönbrodt et al., 2017) or whether they wanted to settle for a fixed sample size. 758 The pre-registered protocol for labs applying sequential analysis established that they 759 could stop data collection upon reaching the pre-registered criterion ($BF_{10} = 10$ or .10), or 760 the maximal sample size. Each laboratory chose a fixed sample size and an incremental n 761 for sequential analysis before their data collection. Two laboratories (HUN_001, 762 TWN_001) stopped data collection at the pre-registered criterion, $BF_{10} = .10$. Fourteen laboratories did not finish the sequential analysis because (1) twelve laboratories were interrupted by the pandemic outbreak; (2) two laboratories (TUR 007E, TWN 002E) 765 recruited English-speaking participants to comply with institutional policies. Lab-based 766 records were reported on a public website as each laboratory completed data collection 767 (details are available in Appendix C). 768

769 Results

Data Screening

As shown in Figure 2, participants' data were deleted listwise from the 771 sentence-picture and picture-picture tasks if they did not perform with at least 70% 772 accuracy. Next, the data were screened for outliers. Our pre-registered plan excluded outliers based on a linear mixed-model analysis for participants in the third quantile of the 774 grand intercept (i.e., participants with the longest average response times). After 775 examining the data from both online and in-person data collection, it became clear that both a minimum response latency and maximum response latency should be employed, as improbable times existed at both ends of the distribution. The minimum response time was set to 160 ms based on Hick's Law (Kvålseth, 2021; Proctor & Schneider, 2018). The 779 maximum response latency was calculated as two times the mean absolute deviation plus 780 the median calculated separately for each participant. Exclusions were performed at the 781 trial level for these outlier response times. 782

To ensure equivalence between data collection methods, we evaluated the response times predicted by the fixed effects of the interaction between match (match vs. mismatch) and data collection source (in-person vs. online). We included random intercepts for participants, lab, language, and random slopes for source by lab and source by language. This analysis showed no difference between data sources: b = 2.41, SE = 2.77, t(73729.28) = 0.87, p = .385. Therefore, the following analyses did not separate in-person and online data. Table 3 provides a summary of the match advantage by language for the sentence-picture verification task.

Although we combined the two data sets in the final data analysis, it is worth
considering that online participants' attention may be easily distracted given the lack of
environmental control and experimenter overview. However, this secondary task revealed
that online participants had a higher percent correct than in-person participants,

795 t(3,214.86) = 35.77, p < .001, $M_{online} = 85.46$ (SD = 14.20) and $M_{in-person} = 67.71$ (SD = 16.26).

797 Hypothesis 1: Meta-Analysis of the Orientation Effect

The planned meta-analysis examined the effect overall and within languages wherein at least two laboratories had collected data (Arabic, English, German, Norway, Simplified Chinese, Traditional Chinese, Slovakian, and Turkey). Figure 3 showed a significant positive orientation effect across German laboratories (b = 16.68, 95% CI [7.75, 25.62]) but did not reveal a significant overall effect (b = 2.05, 95% CI [-2.71, 6.82]). Also, a significant negative orientation effect was found in the Hungarian (b = -20.00, 95% CI [-29.60, -10.40]) and the Serbian laboratory (b = -17.25, 95% CI [-32.26, -2.24]), although in these languages only a single laboratory participated, so no language-specific meta-analysis was conducted.

806 Hypothesis 1: Mixed-Linear Modeling of the Orientation Effect

First, an intercept only model of response times with no random intercepts was 807 computed for comparison purposes AIC = 1008828.79. The model with the random 808 intercept by participants was an improvement over this model, AIC = 971783.32. The 809 addition of a target random intercept improved model fit over the participant intercept 810 only model, AIC = 969506.32. Data collection lab was then added to the model as a 811 random intercept, also showing model improvement, AIC = 969265.28, and the random 812 intercept of language was added last, AIC = 969263.66 which did not show model 813 improvement at least 2 points change. Last, the fixed effect of match advantage was added 814 with approximately the same fit as the three random-intercept model, AIC = 969265.06. 815 This model did not reveal a significant effect of match advantage: b = -0.17, SE = 1.20, 816 t(69830.14) = -0.14, p = .887.817

We conducted an exploratory mixed-effects model on German data as this was the
only language indicating a significant match advantage in the meta-analysis. An
intercept-only model with random effects for participants, target, and lab was used as a

Table 3

Descriptive Summary of Sentence-Picture Verification Task by Language

Language	Accuracy Percent	Mismatching	Matching	Match Advantage
Arabic	90.65	580.25 (167.53)	581.00 (200.89)	-0.75
Brazilian Portuguese	94.87	641.00 (136.40)	654.50 (146.78)	-13.50
English	95.04	576.75 (124.17)	578.75 (127.87)	-2.00
German	96.53	593.00 (106.75)	576.00 (107.12)	17.00
Greek	92.35	753.50 (225.36)	728.50 (230.91)	25.00
Hebrew	96.73	569.50 (98.59)	574.50 (110.45)	-5.00
Hindi	91.32	638.50 (207.19)	662.00 (228.32)	-23.50
Hungarian	96.47	623.00 (111.94)	643.00 (129.73)	-20.00
Norwegian	96.93	592.50 (126.39)	612.00 (136.03)	-19.50
Polish	96.11	601.00 (139.36)	586.00 (108.23)	15.00
Portuguese	95.01	616.50 (144.55)	607.00 (145.29)	9.50
Serbian	94.78	617.75 (158.64)	635.00 (168.28)	-17.25
Simplified Chinese	92.39	655.00 (170.50)	642.50 (158.64)	12.50
Slovak	96.45	610.50 (125.28)	607.25 (117.87)	3.25
Spanish	94.32	663.00 (147.52)	676.00 (154.19)	-13.00
Thai	93.92	652.50 (177.91)	637.75 (130.10)	14.75
Traditional Chinese	94.41	625.00 (139.36)	620.00 (123.06)	5.00
Turkish	95.38	654.50 (146.04)	637.00 (126.02)	17.50

Note. Average accuracy percentage, Median response times and median absolute deviations (in parentheses) per match condition (Mismatching, Matching); Match advantage (difference in response times).

Figure 3

Meta-analysis on match advantage of object orientation for all languages. Diamonds indicate summary estimates, the midpoint of the diamond indicating the point estimate, and the left and right endpoints indicating the lower and upper bounds of the confidence interval of the estimated effect size. The lowermost diamond represents the estimate derived from the whole dataset.

comparison, AIC = 55828.57. The addition of the fixed effect of match showed a small improvement over this random-intercept model, AIC = 55824.52. Whereas the AIC values indicated a significant change, the p-value did not reveal a significant effect of match advantage: b = 4.84, SE = 4.12, t(4085.71) = 1.17, p = .241. All the details of the above fixed effects and random intercepts are summarized in Appendix D.

Hypothesis 2: Mental Rotation Scores

Using the same steps as described for the sentence-picture verification mixed model, 827 we first started with an intercept only model with no random effects for comparison, AIC 828 = 1029362.78. The addition of random intercepts by subject, AIC = 979873.47, by item, 829 AIC = 977037.64, by lab, AIC = 976721.45, and by language, AIC = 976717.46, all 830 subsequently improved model fit. Next, the match effect for object orientation was entered 831 as the fixed effect for mental rotation score, AIC = 973054.93, which showed improvement 832 over the random intercepts model. This model showed a significant effect of object 833 orientation, b = 32.30, SE = 0.53, t(79585.24) = 61.23, p < .001, such that identical 834 orientations were processed faster than rotated orientations. The point estimates of the 835 orientation effect varied between 23.79–40.24, revealing a range of 14 ms across languages. 836 The coefficients of all mixed-effects models are reported in Appendix E, along with all effects presented by language.

839 Hypothesis 2: Prediction of Match Advantage

The last analysis included a mixed effects regression model using the interaction of language and mental rotation scores to predict match advantage in the sentence-picture task. First, an intercept only model was calculated for comparison, AIC = 42678.66, which was improved slightly by adding a random intercept by data collection lab, AIC = 42677.80. The addition of the fixed effects interaction of language and mental rotation score improved the overall model, AIC = 42633.44. English was used as the comparison group for all language comparisons. Neither the mental rotation score nor the interaction of mental rotation score and language were significant, and these results are detailed in

48 Appendix E.

Discussion

This study aimed to test a global object orientation effect and to estimate the 850 magnitude of object orientation effect in each particular language. The findings of our 851 study did not support the existence of the object orientation effect as an outcome of 852 general cognitive function. Our data failed to replicate the effects in English and Chinese, 853 languages in which the effect has been reported previously (Chen et al., 2020; Stanfield & 854 Zwaan, 2001; Zwaan & Pecher, 2012). The only language in which we found an indication 855 of the orientation effect in the predicted direction was German, but this effect was evident 856 only in the meta-analysis and not in the mixed-effects model approach. Mixed-effects 857 models indicated significant mental rotation scores for each language that was consistent 858 with the assumption mental rotation is a general cognitive function. However, the mental 850 rotation score did not predict the object orientation effects nor interact with language. 860 Overall, the failure to replicate the previously reported object orientation effects casts 861 doubt on the existence of the effect as a language-general phenomenon (Kaschak & 862 Madden, 2021). Below, we summarize the lessons and limitations of the methodology and 863 analysis, and discuss theoretical issues related to the orientation effect as an effective probe to investigate the mental simulation process.

866 Methodological Considerations

By examining the failed replications of the object orientation effect in the
English-language labs (see Figure 3), researchers can further identify the possible factors
that may have contributed to the discrepancies between the results of this project and the
original studies. Although our project had a larger sample of English-speaking participants
compared to the original studies (i.e., Stanfield & Zwaan, 2001; Zwaan & Pecher, 2012),
our English-speaking participants came from multiple countries where the participants'
lexical knowledge is not completely consistent with American English. Although we
prepared an alternative version of the stimuli for British English, these two versions of

English stimuli did not cover all English language backgrounds, such as participants from
Malaysia and Africa. Despite the overall non-significant effect in all English-language data,
the meta-analysis indicated three significant positive team-based effects (USA_173,
USA_030 and USA_032, see Figure 3) but also three significant negative effects (USA_33,
USA_20, and GBR_005, see Figure 3). Future cross-linguistic studies should attempt to
balance sample sizes across languages to allow reliable cross-linguistic comparisons.

Regarding the failed replication of Chinese orientation effects, the past study used 881 simpler sentence content compared to this project. Chen et al. (2020) used the probe 882 sentences in which the target objects were the subject of sentences (e.g., The nail was 883 hammered into the wall; bold added to mark the subject noun). The Chinese probe 884 sentences in this project were translated from the English sentences used in Stanfield and 885 Zwaan (2001), in which the target objects are the object of sentences (e.g., The carpenter 886 hammered the nail into the wall; bold added to mark object noun). It is possible that the 887 object orientation effect may be present or stronger when the target objects are the subject 888 of the sentence, rather than the direct object, and future studies could explore this 880 distinction. 890

Lastly, past studies that employed a secondary task among the experimental trials
(Chen et al., 2020; Kaschak & Madden, 2021; Stanfield & Zwaan, 2001) showed a positive
object orientation effect. In our study, the memory check did not increase the likelihood to
detect the mental simulation effects. In addition, we did not find that mental imagery
predicted match advantage, which implies that this strategy to ensure linguistic processing
had limited influence in our study.

Analysis Issues

897

The orientation effects were analyzed using a meta-analytic approach and mixed-effects models. Neither approach revealed an overall effect of object orientation. In the language-by-language analysis, a significant orientation effect was found in the German

language data in the meta-analysis. The mixed model analysis did not confirm this result because the effect in the German data was not significant according to our pre-registered 902 test criteria. There is considerable debate in the statistical community regarding the 903 precision of the p values computed for linear mixed models (Bolker, 2015). One alternative, 904 less-conservative approach to testing the significance of a fixed effect predictor is assessing 905 the difference in the AIC model fit index between a model that contains a fixed effect 906 predictor and one that does not (Matuschek et al., 2017). Using this approach in an 907 exploratory analysis, we found that the effect of orientation in the German language data 908 was not negligible, rendering this result compatible with the result obtained for German in gno the meta-analysis. However, considered in the general context including all the other 910 results, the present exploratory result for German could stem from measurement error 911 (Loken & Gelman, 2017) or from family-wise error (Armstrong, 2014).

When a topic area yields inconsistent or small effects, some researchers have 913 questioned the utility of further research (Brysbaert, 2020; Sala & Gobet, 2017). However, 914 research on embodied cognition should continue with the aim of determining the factors 915 behind the variability of the effects. One of these factors could be the nature of the 916 variables used - for instance, categorical versus continuous. The object orientation design is 917 a factorial, congruency paradigm, based on congruent (matching) and incongruent 918 (mismatching) conditions. Another paradigm of similar characteristics, namely the action 919 sentence compatibility effect, similarly failed to replicate in a large-scale study (Morey et 920 al., 2022). Whereas factorial paradigms require the use of categorical variables, other 921 studies have operationalized sensorimotor information using continuous variables, and observed significant effects (Bernabeu, 2022; Lynott et al., 2020; Petilli et al., 2021). Since 923 continuous variables contain more information, they may afford more statistical power (J. Cohen, 1983). Furthermore, in addition to categorical versus continuous predictors, 925 sensorimotor effects are likely to be moderated by factors influencing participants' 926 attention during experiments (Barsalou, 2019; Noah et al., 2018). Last, and more certainly, 927

sensorimotor effects are moderated by the sample size of studies, and the sample size
needed to study these effects can exceed 1,000 participants (Bernabeu, 2022). Examining
these and other sources of variation is likely to yield the degree of granularity needed for
the present topic.

932 Theoretical Issues

952

953

Scholars interested in mental simulation have investigated whether the human mind 933 processes linguistic content as abstract symbols or as grounded mental representations 934 (Barsalou, 1999, 2008; Zwaan, 2014b). Some of the tasks used to test these theories-such as 935 the sentence-verification task-rely on priming-based logic, whereby a designed sentence generates representations along some dimension (such as orientation) that facilitates or interferes with the processing of the subsequent stimulus (Roelke et al., 2018). Furthermore, embodied cognition theories suggest that the reading of the sentence will 939 activate perceptual experience, thus facilitating a matching object picture and causing interference for a mismatching picture (Kaschak & Madden, 2021; McNamara, 2005). To 941 scrutinize these effects, future studies could augment the sentence-picture verification task 942 to compare the degree of priming based on object orientation with the priming based on 943 other semantic information. The present study constitutes the first large-scale, 944 cross-linguistic approach to the object orientation effect. Cross-linguistic studies are rare in 945 the present topic, and generally in the topic of conceptual/semantic processing. In future 946 studies, the basis for cross-linguistic comparisons in conceptual processing should be 947 expanded, for instance, by studying the lexicosemantic features of the stimuli used, how 948 those differ across languages, and how those differences may influence psycholinguistic 940 processing. For the development of this founding work, the field of linguistic relativity may 950 be useful as a model (e.g., Athanasopoulos, 2023). 951

In addition, further research should compare the size of mental simulation effects with the size of effects that are associated with the symbolic account of conceptual

processing. The symbolic account posits that conceptual processing (i.e., the
comprehension of the meaning of words) is not dependent on modality-specific systems
(e.g., vision, hearing, touch, interoception, motor control, emotion, etc.). So far, some of
these comparisons have supported both accounts. However, in some studies, the effects of
the symbolic account have been larger than those of the embodied account (Bernabeu,
2022; Louwerse et al., 2015), whereas the reverse has been true in other studies
(Fernandino et al., 2022; Tong et al., 2022).

961 Limitations

This study reflects the challenges to assess the mental simulation of object 962 orientation across languages, especially when dealing with effects that require large sample sizes (see Loken & Gelman, 2017; Vadillo et al., 2016). Our data collection deviated from the pre-registered plan because of the COVID-19 pandemic. Due to the lack of participant 965 monitoring online, and an inspection of the data, we post-hoc used filtering on outliers in 966 terms of participants' response times for both too fast (< 160 ms) and too slow responses 967 (2 MAD beyond the median for each participant individually). After these exclusions, a 968 mixed-effects model confirmed no difference of response times between in-person and online 969 data. Future studies could evaluate how the task environments alter the magnitude of 970 orientation effect. 971

972 Conclusion

Based on the results of this project, we did not find evidence for a general object orientation effect across languages. Our findings on the orientation effects question the theoretical importance of mental simulation in linguistic processing, but they also provide directions for new avenues of investigation. 977 References

- Anwyl-Irvine, A. L., Massonnié, J., Flitton, A., Kirkham, N., & Evershed, J. K. (2020).
- Gorilla in our midst: An online behavioral experiment builder. Behavior Research
- $Methods, 52(1), 388-407. \text{ https://doi.org/} 10.3758/\text{s} 13428-019-01237-x}$
- Armstrong, R. A. (2014). When to use the Bonferroni correction. Ophthalmic and
- Physiological Optics, 34(5), 502–508. https://doi.org/10.1111/opo.12131
- Athanasopoulos, P. (2023). Linguistic relativity (J. Culpeper, Ed.; pp. 469–477).
- Routledge.
- Barsalou, L. W. (2020). Challenges and Opportunities for Grounding Cognition. Journal
- of Cognition, 3(1), 31. https://doi.org/10.5334/joc.116
- Barsalou, L. W. (2019). Establishing generalizable mechanisms. Psychological Inquiry,
- 30(4), 220–230. https://doi.org/10.1080/1047840X.2019.1693857
- Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22,
- 990 577–660. https://doi.org/10.1017/S0140525X99002149
- Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645.
- 992 https://doi.org/10.1146/annurev.psych.59.103006.093639
- Bernabeu, P. (2022). Language and sensorimotor simulation in conceptual processing:
- Multilevel analysis and statistical power. 9487436 B, 216 pages.
- https://doi.org/10.17635/LANCASTER/THESIS/1795
- Bolker, B. M. (2015). Linear and generalized linear mixed models (G. A. Fox, S.
- Negrete-Yankelevich, & V. J. Sosa, Eds.; pp. 309–333). Oxford University Press.
- 998 https://doi.org/10.1093/acprof:oso/9780199672547.003.0014
- Bridges, D., Pitiot, A., MacAskill, M. R., & Peirce, J. W. (2020). The timing mega-study:
- 1000 Comparing a range of experiment generators, both lab-based and online. PeerJ, 8,
- e9414. https://doi.org/10.7717/peerj.9414
- Brysbaert, M. (2020). Power considerations in bilingualism research: Time to step up our
- game. Bilingualism: Language and Cognition, 24(5), 813–818.

- https://doi.org/10.1017/s1366728920000437
- Burnham, K. P., & Anderson, D. R. (1998). Practical Use of the Information-Theoretic
- Approach (pp. 75–117). Springer New York.
- https://doi.org/10.1007/978-1-4757-2917-7 3
- 1008 Chen, S.-C., de Koning, B. B., & Zwaan, R. A. (2020). Does object size matter with regard
- to the mental simulation of object orientation? Experimental Psychology, 67(1), 56–72.
- https://doi.org/10.1027/1618-3169/a000468
- 1011 Chu, M., & Kita, S. (2008). Spontaneous gestures during mental rotation tasks: Insights
- into the microdevelopment of the motor strategy. Journal of Experimental Psychology:
- 1013 General, 137(4), 706–723. https://doi.org/10.1037/a0013157
- Cohen, D., & Kubovy, M. (1993). Mental rotation, mental representation, and flat slopes.
- Cognitive Psychology, 25, 351–382. https://doi.org/10.1006/cogp.1993.1009
- Cohen, J. (1983). The Cost of Dichotomization. Applied Psychological Measurement, 7(3),
- 249–253. https://doi.org/10.1177/014662168300700301
- connell, L. (2007). Representing object colour in language comprehension. Cognition, 102,
- 476–485. https://doi.org/10.1016/j.cognition.2006.02.009
- De Koning, B. B., Wassenburg, S. I., Bos, L. T., & Van der Schoot, M. (2017). Mental
- simulation of four visual object properties: Similarities and differences as assessed by
- the sentence-picture verification task. Journal of Cognitive Psychology, 29(4), 420–432.
- https://doi.org/10.1080/20445911.2017.1281283
- de Leeuw, J. R., & Motz, B. A. (2016). Psychophysics in a Web browser? Comparing
- response times collected with JavaScript and Psychophysics Toolbox in a visual search
- task. Behavior Research Methods, 48(1), 1–12.
- https://doi.org/10.3758/s13428-015-0567-2
- Engelen, J. A. A., Bouwmeester, S., de Bruin, A. B. H., & Zwaan, R. A. (2011). Perceptual
- simulation in developing language comprehension. Journal of Experimental Child
- Psychology, 110(4), 659-675. https://doi.org/10.1016/j.jecp.2011.06.009

- Fernandino, L., Tong, J.-Q., Conant, L. L., Humphries, C. J., & Binder, J. R. (2022).
- Decoding the information structure underlying the neural representation of concepts.
- 1033 Proceedings of the National Academy of Sciences, 119(6), e2108091119.
- https://doi.org/10.1073/pnas.2108091119
- Frick, A., & Möhring, W. (2013). Mental object rotation and motor development in 8- and
- 10-month-old infants. Journal of Experimental Child Psychology, 115(4), 708–720.
- https://doi.org/10.1016/j.jecp.2013.04.001
- Fritz, C. O., Morris, P. E., & Richler, J. J. (2012). Effect size estimates: Current use,
- calculations, and interpretation. Journal of Experimental Psychology: General, 141(1),
- 2-18. https://doi.org/10.1037/a0024338
- Kaschak, M. P., & Madden, J. (2021). Embodiment in the Lab: Theory, Measurement,
- and Reproducibility. In M. D. Robinson & L. E. Thomas (Eds.), Handbook of Embodied
- 1043 Psychology (pp. 619–635). Springer International Publishing.
- https://doi.org/10.1007/978-3-030-78471-3_27
- Koster, D., Cadierno, T., & Chiarandini, M. (2018). Mental simulation of object
- orientation and size: A conceptual replication with second language learners. Journal of
- the European Second Language Association, 2(1). https://doi.org/10.22599/jesla.39
- 1048 Kvålseth, T. O. (2021). Hick's law equivalent for reaction time to individual stimuli.
- British Journal of Mathematical and Statistical Psychology, 74(S1), 275–293.
- https://doi.org/10.1111/bmsp.12232
- Lange, K., Kühn, S., & Filevich, E. (2015). "Just Another Tool for Online Studies"
- 1052 (JATOS): An easy solution for setup and management of web servers supporting online
- studies. PLOS ONE, 10(6), e0130834. https://doi.org/10.1371/journal.pone.0130834
- Li, Y., & Shang, L. (2017). An ERP study on the mental simulation of implied object color
- information during Chinese sentence comprehension. Journal of Psychological Science,
- 40(1), 29–36. https://doi.org/10.16719/j.cnki.1671-6981.20170105
- Loken, E., & Gelman, A. (2017). Measurement error and the replication crisis. Science,

- 355 (6325), 584–585. https://doi.org/10.1126/science.aal3618
- Louwerse, M. M., Hutchinson, S., Tillman, R., & Recchia, G. (2015). Effect size matters:
- the role of language statistics and perceptual simulation in conceptual processing.
- Language, Cognition and Neuroscience, 30(4), 430–447.
- https://doi.org/10.1080/23273798.2014.981552
- Luke, S. G. (2017). Evaluating significance in linear mixed-effects models in R. Behavior
- Research Methods, 49(4), 1494–1502. https://doi.org/10.3758/s13428-016-0809-y
- Lynott, D., Connell, L., Brysbaert, M., Brand, J., & Carney, J. (2020). The Lancaster
- Sensorimotor Norms: multidimensional measures of perceptual and action strength for
- 40,000 English words. Behavior Research Methods, 52(3), 1271-1291.
- https://doi.org/10.3758/s13428-019-01316-z
- Mathôt, S., & March, J. (2022). Conducting linguistic experiments online with
- OpenSesame and OSWeb. Language Learning, 72(4), 1017–1048.
- https://doi.org/10.1111/lang.12509
- Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An open-source, graphical
- experiment builder for the social sciences. Behavior Research Methods, 44(2), 314–324.
- https://doi.org/10.3758/s13428-011-0168-7
- Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., & Bates, D. (2017). Balancing Type I
- error and power in linear mixed models. Journal of Memory and Language, 94,
- 305–315. https://doi.org/10.1016/j.jml.2017.01.001
- ¹⁰⁷⁸ McNamara, T. P. (2005). Semantic Priming: Perspectives From Memory and Word
- 1079 Recognition. Psychology Press.
- Morey, R. D., Kaschak, M. P., Díez-Álamo, A. M., Glenberg, A. M., Zwaan, R. A., Lakens,
- D., Ibáñez, A., García, A., Gianelli, C., Jones, J. L., Madden, J., Alifano, F., Bergen,
- B., Bloxsom, N. G., Bub, D. N., Cai, Z. G., Chartier, C. R., Chatterjee, A., Conwell,
- E., ... Ziv-Crispel, N. (2022). A pre-registered, multi-lab non-replication of the
- action-sentence compatibility effect (ACE). Psychonomic Bulletin & Review, 29(2),

- 1085 613-626. https://doi.org/10.3758/s13423-021-01927-8
- Moshontz, H., Campbell, L., Ebersole, C. R., IJzerman, H., Urry, H. L., Forscher, P. S.,
- Grahe, J. E., McCarthy, R. J., Musser, E. D., Antfolk, J., Castille, C. M., Evans, T. R.,
- Fiedler, S., Flake, J. K., Forero, D. A., Janssen, S. M. J., Keene, J. R., Protzko, J.,
- Aczel, B., ... Chartier, C. R. (2018). The Psychological Science Accelerator:
- Advancing psychology through a distributed collaborative network. Advances in
- Methods and Practices in Psychological Science, 1(4), 501–515.
- https://doi.org/10.1177/2515245918797607
- Newman, J. (2002). 1. A cross-linguistic overview of the posture verbs "Sit," "Stand," and
- "Lie." In J. Newman (Ed.), Typological Studies in Language (Vol. 51, pp. 1–24). John
- Benjamins Publishing Company. https://doi.org/10.1075/tsl.51.02new
- Noah, T., Schul, Y., & Mayo, R. (2018). When both the original study and its failed
- replication are correct: Feeling observed eliminates the facial-feedback effect. Journal of
- 1098 Personality and Social Psychology, 114(5), 657–664.
- https://doi.org/10.1037/pspa0000121
- Ostarek, M., & Huettig, F. (2019). Six Challenges for Embodiment Research. Current
- Directions in Psychological Science, 28(6), 593–599.
- https://doi.org/10.1177/0963721419866441
- Pecher, D., van Dantzig, S., Zwaan, R. A., & Zeelenberg, R. (2009). Language
- comprehenders retain implied shape and orientation of objects. The Quarterly Journal
- of Experimental Psychology, 62(6), 1108–1114.
- https://doi.org/10.1080/17470210802633255
- Petilli, M. A., Günther, F., Vergallito, A., Ciapparelli, M., & Marelli, M. (2021).
- Data-driven computational models reveal perceptual simulation in word processing.
- Journal of Memory and Language, 117, 104194.
- https://doi.org/10.1016/j.jml.2020.104194
- Phills, C., Kekecs, Z., & Chartier, C. (2022). Pre-Registration.

- https://doi.org/10.17605/OSF.IO/4HMGS
- Pouw, W. T. J. L., de Nooijer, J. A., van Gog, T., Zwaan, R. A., & Paas, F. (2014).
- Toward a more embedded/extended perspective on the cognitive function of gestures.
- Frontiers in Psychology, 5. https://doi.org/10.3389/fpsyg.2014.00359
- Proctor, R. W., & Schneider, D. W. (2018). Hick's law for choice reaction time: A review.
- 21117 Quarterly Journal of Experimental Psychology, 71(6), 1281–1299.
- https://doi.org/10.1080/17470218.2017.1322622
- Roelke, A., Franke, N., Biemann, C., Radach, R., Jacobs, A. M., & Hofmann, M. J. (2018).
- A novel co-occurrence-based approach to predict pure associative and semantic priming.
- 1121 Psychonomic Bulletin & Review, 25(4), 1488-1493.
- https://doi.org/10.3758/s13423-018-1453-6
- Rommers, J., Meyer, A. S., & Huettig, F. (2013). Object shape and orientation do not
- routinely influence performance during language processing. Psychological Science,
- 24(11), 2218–2225. https://doi.org/10.1177/0956797613490746
- Sala, G., & Gobet, F. (2017). Does Far Transfer Exist? Negative Evidence From Chess,
- Music, and Working Memory Training. Current Directions in Psychological Science,
- 26(6), 515–520. https://doi.org/10.1177/0963721417712760
- Sato, M., Schafer, A. J., & Bergen, B. K. (2013). One word at a time: Mental
- representations of object shape change incrementally during sentence processing.
- Language and Cognition, 5(04), 345-373. https://doi.org/10.1515/langcog-2013-0022
- Schönbrodt, F. D., Wagenmakers, E.-J., Zehetleitner, M., & Perugini, M. (2017).
- Sequential hypothesis testing with Bayes factors: Efficiently testing mean differences.
- 1134 Psychological Methods, 22(2), 322–339. https://doi.org/10.1037/met0000061
- 1135 Scorolli, C. (2014). Embodiment and language. In L. Shapiro (Ed.), The Routledge
- handbook of embodied cognition (pp. 145–156). Routledge.
- 1137 Šetić, M., & Domijan, D. (2017). Numerical Congruency Effect in the Sentence-Picture
- 1138 Verification Task. Experimental Psychology, 64(3), 159–169.

- https://doi.org/10.1027/1618-3169/a000358
- Stanfield, R. A., & Zwaan, R. A. (2001). The effect of implied orientation derived from
- verbal context on picture recognition. Psychological Science, 12(2), 153–156.
- https://doi.org/10.1111/1467-9280.00326
- Tong, J., Binder, J. R., Humphries, C., Mazurchuk, S., Conant, L. L., & Fernandino, L.
- (2022). A Distributed Network for Multimodal Experiential Representation of
- 1145 Concepts. The Journal of Neuroscience, 42(37), 7121–7130.
- https://doi.org/10.1523/JNEUROSCI.1243-21.2022
- Vadillo, M. A., Konstantinidis, E., & Shanks, D. R. (2016). Underpowered samples, false
- negatives, and unconscious learning. Psychonomic Bulletin & Review, 23(1), 87–102.
- https://doi.org/10.3758/s13423-015-0892-6
- Vazire, S. (2018). Implications of the Credibility Revolution for Productivity, Creativity,
- and Progress. Perspectives on Psychological Science, 13(4), 411–417.
- https://doi.org/10.1177/1745691617751884
- Verkerk, A. (2014). The correlation between motion event encoding and path verb lexicon
- size in the indo-european language family. Folia Linquistica, 35(1).
- https://doi.org/10.1515/flih.2014.009
- Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review,
- 9(4), 625–636. https://doi.org/10.3758/BF03196322
- ¹¹⁵⁸ Zwaan, R. A. (2014a). Embodiment and language comprehension: Reframing the
- discussion. Trends in Cognitive Sciences, 18(5), 229–234.
- https://doi.org/10.1016/j.tics.2014.02.008
- ¹¹⁶¹ Zwaan, R. A. (2014b). Replications Should Be Performed With Power and Precision: A
- Response to Rommers, Meyer, and Huettig (2013). Psychological Science, 25(1),
- 305–307. https://doi.org/10.1177/0956797613509634
- Zwaan, R. A., Diane Pecher, Paolacci, G., Bouwmeester, S., Verkoeijen, P., Dijkstra, K., &
- Zeelenberg, R. (2017). Participant Nonnaiveté and the reproducibility of cognitive

- psychology. Psychonomic Bulletin & Review, 1–5.
- https://doi.org/10.3758/s13423-017-1348-y
- ¹¹⁶⁸ Zwaan, R. A., & Madden, C. J. (2005). Embodied sentence comprehension. In D. Pecher
- & R. A. Zwaan (Eds.), Grounding cognition: The role of perception and action in
- memory, language, and thinking (pp. 224–245). Cambridge University Press.
- ¹¹⁷¹ Zwaan, R. A., & Pecher, D. (2012). Revisiting mental simulation in language
- comprehension: Six replication attempts. *PLoS ONE*, 7, e51382.
- https://doi.org/10.1371/journal.pone.0051382
- ¹¹⁷⁴ Zwaan, R. A., Stanfield, R. A., & Yaxley, R. H. (2002). Language comprehenders mentally
- represent the shapes of objects. *Psychological Science*, 13, 168–171.
- https://doi.org/10.1111/1467-9280.00430
- ¹¹⁷⁷ Zwaan, R. A., & van Oostendorp, H. (1993). Do readers construct spatial representations
- in naturalistic story comprehension? Discourse Processes, 16(1-2), 125–143.
- https://doi.org/10.1080/01638539309544832

Appendix A

Sensitivity Analyses

The R codes for the sensitivity analysis on the trial level were written by Erin M.

1181 Buchanan.

1182 Load data and run models

The data for the sensitivity analysis shared the same exclusion criterion for the pre-registered mixed-effects models. The first step is to determine if there is a minimum number of trials required for stable results.

1186 View the Results

1187 b values

These values represent the b values found for each run of 3 up to 12 trials.

1190 *p* values

These values represent the p values found for each run of 7 up to 12 trials.

As we can see, the effect is generally negative until participants were required to
have 7-12 correct trials. When participants accurately answer all 12 trials the effect is
approximately 3 ms. Examination of the *p*-values indicates that no coefficients would have
been considered significant.

1197 Calculate the Sensitivity

Given we used all data points, the smallest detectable effect with our standard error and degrees of freedom would have been:

1200 ## [1] 2.356441

Appendix B

Data Collection Logs

The log website was initiated since the data collection began. The public logs were updated when a laboratory updated their data for the sequential analysis. The link to access the public site is: https://scgeeker.github.io/PSA002_log_site/index.html

If you want to check the sequential analysis result of a laboratory, at first you have to identify the ID and language of this laboratory from "Overview" page. Next you will navigate to the language page under the banner "Tracking Logs". For example, you want to see the result of "GBR_005". Navigate "Tracking Logs -> English". Search the figure by ID "GBR_005".

The source files of the public logs are available in the github repository:

https://github.com/SCgeeker/PSA002_log_site

All the raw data and log files are compressed in the project OSF repository:

https://osf.io/e428p/

The R code to conduct the Bayesian sequential analysis is available at "data_seq_analysis.R". This file can be found at:

https://github.com/SCgeeker/PSA002_log_site

Note 1 USA_067, BRA_004 and POL_004 were unavailable because the teams withdrew.

Note 2 Some mistakes happened between the collaborators' communications and required advanced data wrangling. For example, some AUS_091 participants were assigned to NZL_005. The Rmd file in NZL_005 folder were used to identify the AUS_091 participants' data then move them to AUS_091 folder.

222 Datasets

Complete data can be found online with this manuscript or on each collaborators
OSF page. Please see the Lab_Info.csv on https://osf.io/e428p/.

Flunecy test for the online study

At the beginning of the online study, participants will hear the verbal instruction narrated by a native speaker. The original English transcript is as below:

"In this session you will complete two tasks. The first task is called the sentence
picture verification task. In this task, you will read a sentence. You will then see a picture.
Your job is to verify whether the picture represents an object that was described in the
sentence or not. The second task is the picture verification task. In this task you will see
two pictures on the screen at the same time and determine whether they are the same or
different. Once you have completed both tasks, you will receive a completion code that you
can use to verify your participation in the study."

The fluency test are three multiple choice questions. The question text and the correct answers are as below:

• How many tasks will you run in this session?

A: 1 *B: 2 C: 3

1237

1238

1239

1240

1241

1242

1243

• When will you get the completion code?

A: Before the second task B: After the first task *C: After the second task

• What will you do in the sentence-picture verification task?

A: Confirm two pictures for their objects

*B: Read a sentence and verify a picture C: Judge sentences for their accuracy

44 Distributions of scripts

The instructions and experimental scripts are available at the public OSF folder (https://osf.io/e428p/ "Materials/js" folder in Files). To upload to a jatos server, a script had to be converted to the compatible package. Researchers could do this conversion by "OSWEB" package in OpenSesame. We rent an remote server for the distributions during the data collection period. Any researcher would distribute the scripts on a free jatos server such as MindProbe (https://www.mindprobe.eu/).

Appendix C

Demographic Characteristics by Language

Table C1

Demographic and Sample Size Characteristics by Language Part 1

Language	SP_{Trials}	PP_{Trials}	SP_N	PP_N	$Demo_N$	$Female_N$	$Male_N$	M_{Age}	SD_{Age}
Arabic	1248	1248	52	52	53	0	0	38.00	NaN
Arabic	1296	1296	54	54	54	42	12	26.51	18.59
Brazilian Portuguese	1200	1200	50	50	50	36	13	30.80	8.73
English	2376	2376	99	99	103	46	37	20.14	3.32
English	3840	3840	160	160	160	127	25	26.03	11.55
English	2352	2376	98	99	104	54	40	20.26	3.66
English	1272	1272	53	53	76	57	13	19.96	3.90
English	1200	1200	50	50	51	37	13	20.14	2.46
English	1200	1200	50	50	58	46	11	18.74	1.62
English	720	720	30	30	32	15	11	25.70	9.40
English	1200	1224	50	51	52	38	11	22.56	3.90
English	2400	2400	100	100	109	65	30	20.73	2.00
English	1248	1248	52	52	52	24	22	23.94	11.29
English	7680	7680	320	320	320	244	56	23.21	5.43
English	1248	1272	52	53	71	50	12	18.89	0.95

Note. SP = Sentence Picture Verification, PP = Picture Picture Verification. Sample sizes for demographics may be higher than the sample size for the this study, as participants could have only completed the bundled experiment. Additionally, not all entries could be unambigously matched by lab ID, and therefore, demographic sample sizes could also be less than data collected. Each row represents a single lab.

Table C2

Demographic and Sample Size Characteristics by Lab Part 2

Language	SP_{Trials}	PP_{Trials}	SP_N	PP_N	$Demo_N$	$Female_N$	$Male_N$	M_{Age}	SD_{Age}
English	1536	1536	64	64	102	79	11	19.82	2.42
English	264	264	11	11	12	9	2	20.36	1.91
English	288	288	12	12	12	6	5	21.17	1.19
English	1512	1512	63	63	63	30	23	22.34	11.55
English	7980	8064	333	336	403	258	76	19.63	2.12
English	648	648	27	27	31	20	3	36.00	0.96
English	1209	1224	51	51	51	30	21	19.29	1.51
English	3000	3024	125	126	129	90	25	20.06	1.36
English	1200	1200	50	50	61	35	15	18.86	1.63
English	816	744	34	31	3	0	3	19.67	0.58
German	2400	2400	100	100	114	0	1	20.94	2.56
German	2592	2592	108	108	108	80	22	22.18	4.26
German	624	624	26	26	26	18	3	23.88	3.39
Greek	2376	2376	99	99	109	0	0	33.86	11.30
Hebrew	3576	3571	149	149	181	0	0	24.25	9.29
Hindi	1896	1896	79	79	86	57	27	21.66	3.46
Magyar	3610	3816	151	159	168	3	1	21.50	2.82
Norwegian	504	504	21	21	21	12	8	30.10	8.58
Norwegian	1320	1320	55	55	53	1	1	23.55	6.25
Norwegian	1752	1752	73	73	80	0	0	22.00	4.38

Note. SP = Sentence Picture Verification, PP = Picture Picture Verification. Sample sizes for demographics may be higher than the sample size for the this study, as participants could have only completed the bundled experiment. Additionally, not all entries could be unambigously matched by lab ID, and therefore, demographic sample sizes could also be less than data collected.

Table C3

Demographic and Sample Size Characteristics by Lab Part 3

Language	SP_{Trials}	PP_{Trials}	SP_N	PP_N	$Demo_N$	$Female_N$	$Male_N$	M_{Age}	SD_{Age}
Polish	1368	1368	57	57	146	0	0	23.25	7.96
Portuguese	1488	1464	62	61	55	26	23	30.74	9.09
Serbian	3120	3120	130	130	130	108	21	21.38	4.50
Simple Chinese	1200	1200	50	50	57	0	0	18.66	3.92
Simple Chinese	840	816	35	34	39	0	1	25.17	5.44
Slovak	2419	2400	101	100	103	1	0	21.59	2.51
Slovak	1462	1199	61	50	222	0	0	21.96	2.14
Spanish	1680	1656	70	69	70	0	0	21.36	3.36
Spanish	1440	1440	60	60	76	0	0	22.10	4.30
Thai	1200	1152	50	48	50	29	9	21.54	3.81
Traditional Chinese	1440	1440	60	60	70	45	14	20.73	1.21
Traditional Chinese	2160	2160	90	90	116	24	32	21.04	3.66
Turkish	2184	2184	91	91	93	0	0	20.92	2.93
Turkish	1896	1896	79	79	80	36	14	21.58	8.64
Turkish	2376	2352	99	98	101	0	0	21.63	2.19

Note. SP = Sentence Picture Verification, PP = Picture Picture Verification. Sample sizes for demographics may be higher than the sample size for the this study, as participants could have only completed the bundled experiment. Additionally, not all entries could be unambigously matched by lab ID, and therefore, demographic sample sizes could also be less than data collected.

Appendix D

Model Estimates for Mental Simulation

All model estimates are given below for the planned mixed linear model to estimate the matching effect for object orientation in the sentence picture verification task.

Note. Fixed indicates fixed parameters in multilevel models, while "ran_pars" indicates the random intercepts included in the model.

Table D1

Intercept Only Object Orientation Results

Term	Estimate (b)	SE	t	p
(Intercept)	654.71	0.84	775.11	< .001

 $\begin{tabular}{ll} \textbf{Table D2} \\ Subject-Random \ Intercept \ Object \ Orientation \ Results \\ \end{tabular}$

Effect	Group	Term	Estimate (b)	SE	t	df	p
fixed	NA	(Intercept)	654.26	2.69	243.34	3,787.12	< .001
ran_pars	Subject	sd (Intercept)	161.40	NA	NA	NA	
ran_pars	Residual	sdObservation	165.05	NA	NA	NA	

Table D3
Subject and Item-Random Intercept Object Orientation Results

Effect	Group	Term	Estimate (b)	SE	t	df	p
fixed	NA	(Intercept)	655.47	5.16	126.97	84.63	< .001
ran_pars	Subject	sd (Intercept)	161.37	NA	NA	NA	
ran_pars	Target	sd (Intercept)	30.54	NA	NA	NA	
ran_pars	Residual	sdObservation	162.17	NA	NA	NA	

Table D4
Subject, Item, and Lab-Random Intercept Object Orientation Results

Effect	Group	Term	Estimate (b)	SE	t	df	p
fixed	NA	(Intercept)	659.63	9.67	68.24	65.54	< .001
ran_pars	Subject	sd (Intercept)	153.76	NA	NA	NA	
ran_pars	Target	sd (Intercept)	30.56	NA	NA	NA	
ran_pars	PSA_ID	sd (Intercept)	55.76	NA	NA	NA	
ran_pars	Residual	sdObservation	162.17	NA	NA	NA	

Table D5
Subject, Item, Lab, and Language-Random Intercept Object Orientation Results

Effect	Group	Term	Estimate (b)	SE	t	df	p
fixed	NA	(Intercept)	672.75	11.88	56.61	23.94	< .001
ran_pars	Subject	sd (Intercept)	153.78	NA	NA	NA	
ran_pars	Target	sd (Intercept)	30.56	NA	NA	NA	
ran_pars	PSA_ID	sd (Intercept)	48.60	NA	NA	NA	
ran_pars	Language	sd (Intercept)	25.52	NA	NA	NA	
ran_pars	Residual	sdObservation	162.17	NA	NA	NA	

Table D6
Fixed Effects Object Orientation Results

Effect	Group	Term	Estimate (b)	SE	t	df	p
fixed	NA	(Intercept)	659.71	9.68	68.12	66.04	< .001
fixed	NA	MatchN	-0.17	1.20	-0.14	69,830.14	.887
ran_pars	Subject	sd (Intercept)	153.76	NA	NA	NA	
ran_pars	Target	sd (Intercept)	30.56	NA	NA	NA	
ran_pars	PSA_ID	sd (Intercept)	55.76	NA	NA	NA	
ran_pars	Residual	sdObservation	162.17	NA	NA	NA	

Table D7

Random Effects German Object Orientation Results

Effect	Group	Term	Estimate (b)	SE	t	df	p
fixed	NA	(Intercept)	631.96	19.65	32.15	1.74	.002
ran_pars	Subject	sd (Intercept)	129.89	NA	NA	NA	
ran_pars	Target	sd (Intercept)	33.04	NA	NA	NA	
ran_pars	PSA_ID	sd (Intercept)	28.11	NA	NA	NA	
ran_pars	Residual	sdObservation	134.89	NA	NA	NA	

Table D8

Fixed Effects German Object Orientation Results

Effect	Group	Term	Estimate (b)	SE	t	df	p
fixed	NA	(Intercept)	629.52	19.74	31.90	1.77	.002
fixed	NA	MatchN	4.84	4.12	1.17	4,085.71	.241
ran_pars	Subject	sd (Intercept)	129.90	NA	NA	NA	
ran_pars	Target	sd (Intercept)	33.06	NA	NA	NA	
ran_pars	PSA_ID	sd (Intercept)	28.05	NA	NA	NA	
ran_pars	Residual	sdObservation	134.88	NA	NA	NA	

Appendix E

Model Estimates for Mental Rotation

All model estimates are given below for the mixed linear model for the prediction of mental rotation scores by orientation, and the effects of predicting mental simulation effects (object orientation) with the mental rotation scores.

Note. Fixed indicates fixed parameters in multilevel models, while "ran_pars" indicates the random intercepts included in the model.

Table E1

Intercept Only Mental Rotation Results

Term	Estimate (b)	SE	t	p
(Intercept)	589.10	0.40	1,485.40	< .001

 $\begin{tabular}{ll} \textbf{Table E2} \\ Subject-Random \ Intercept \ Mental \ Rotation \ Results \\ \end{tabular}$

Effect	Group	Term	Estimate (b)	SE	t	df	p
fixed	NA	(Intercept)	588.28	1.35	436.44	3,957.55	< .001
ran_pars	Subject	sd (Intercept)	83.04	NA	NA	NA	
ran_pars	Residual	sdObservation	79.04	NA	NA	NA	

Table E3
Subject and Item-Random Intercept Mental Rotation Results

Effect	Group	Term	Estimate (b)	SE	t	df	p
fixed	NA	(Intercept)	589.21	2.70	217.83	79.98	< .001
ran_pars	Subject	sd (Intercept)	82.94	NA	NA	NA	
ran_pars	Picture1	sd (Intercept)	16.26	NA	NA	NA	
ran_pars	Residual	sdObservation	77.56	NA	NA	NA	

Table E4
Subject, Item, and Lab-Random Intercept Mental Rotation Results

Effect	Group	Term	Estimate (b)	SE	t	df	p
fixed	NA	(Intercept)	590.18	5.16	114.34	69.45	< .001
ran_pars	Subject	sd (Intercept)	78.36	NA	NA	NA	
ran_pars	Picture1	sd (Intercept)	16.32	NA	NA	NA	
ran_pars	PSA_ID	sd (Intercept)	30.12	NA	NA	NA	
ran_pars	Residual	sdObservation	77.56	NA	NA	NA	

Table E5
Subject, Item, Lab, and Language-Random Intercept Mental Rotation Results

Effect	Group	Term	Estimate (b)	SE	t	df	p
fixed	NA	(Intercept)	596.71	6.98	85.47	22.17	< .001
ran_pars	Subject	sd (Intercept)	78.37	NA	NA	NA	
ran_pars	Picture1	sd (Intercept)	16.32	NA	NA	NA	
ran_pars	PSA_ID	sd (Intercept)	24.00	NA	NA	NA	
ran_pars	Language	sd (Intercept)	19.29	NA	NA	NA	
ran_pars	Residual	sdObservation	77.56	NA	NA	NA	

Table E6
Fixed Effects Mental Rotation Results

Effect	Group	Term	Estimate (b)	SE	t	df	p
fixed	NA	(Intercept)	581.52	7.02	82.82	22.57	< .001
fixed	NA	IdenticalN	32.30	0.53	61.23	79,585.24	< .001
ran_pars	Subject	sd (Intercept)	78.24	NA	NA	NA	
ran_pars	Picture1	sd (Intercept)	16.89	NA	NA	NA	
ran_pars	PSA_ID	sd (Intercept)	24.01	NA	NA	NA	
ran_pars	Language	sd (Intercept)	19.33	NA	NA	NA	
ran_pars	Residual	sdObservation	75.80	NA	NA	NA	

Table E7

Language Specific Mental Rotation Results

Language	Coefficient (b)	SE
Arabic	28.27	3.36
English	33.02	0.77
German	31.38	1.91
Brazilian Portuguese	23.79	4.85
Simplified Chinese	32.40	3.64
Spanish	40.24	3.75
Greek	30.59	3.67
Hungarian	25.43	2.57
Hindi	35.83	3.86
Hebrew	29.02	2.43
Norwegian	28.12	2.59
Polish	38.74	3.51
Portuguese	34.67	4.05
Serbian	25.93	2.75
Slovak	33.34	2.61
Thai	34.99	4.13
Turkish	37.46	2.29
Traditional Chinese	30.31	2.45

Table E8

Intercept Only Predicting Mental Simulation
Results

Term	Estimate (b)	SE	t	p
(Intercept)	-0.74	1.67	-0.44	.661

Table E9

Lab-Random Intercept Predicting Mental Simulation Results

Effect	Group	Term	Estimate (b)	SE	t	df	p
fixed	NA	(Intercept)	-0.74	1.67	-0.44	3,543.00	.661
ran_pars	PSA_ID	sd (Intercept)	0.00	NA	NA	NA	
ran_pars	Residual	sdObservation	99.67	NA	NA	NA	

Table E10Fixed Effects Interaction Language and Rotation Predicting Mental Simulation Results
Part 1

Effect	Group	Term	Estimate (b)	SE	t	df	p
fixed	NA	(Intercept)	-3.43	3.07	-1.12	3,510.00	.264
fixed	NA	LanguageArabic	16.27	16.34	1.00	3,510.00	.319
fixed	NA	LanguageBrazilian Portuguese	-17.00	16.63	-1.02	3,510.00	.307
fixed	NA	LanguageGerman	20.65	9.17	2.25	3,510.00	.024
fixed	NA	LanguageGreek	7.52	12.58	0.60	3,510.00	.550
fixed	NA	LanguageHindi	1.24	15.39	0.08	3,510.00	.936
fixed	NA	LanguageHungarian	-10.30	10.01	-1.03	3,510.00	.304
fixed	NA	LanguageNorwegian	19.66	10.31	1.91	3,510.00	.057
fixed	NA	LanguagePolish	-5.67	17.87	-0.32	3,510.00	.751
fixed	NA	LanguagePortuguese	-15.90	17.21	-0.92	3,510.00	.356
fixed	NA	LanguageSerbian	-0.48	11.20	-0.04	3,510.00	.966
fixed	NA	LanguageSimplified Chinese	22.70	14.45	1.57	3,510.00	.116
fixed	NA	LanguageSlovak	-0.34	11.58	-0.03	3,510.00	.976
fixed	NA	LanguageSpanish	5.39	11.51	0.47	3,510.00	.640
fixed	NA	LanguageThai	27.53	21.22	1.30	3,510.00	.195
fixed	NA	LanguageTraditional Chinese	-8.24	11.20	-0.74	3,510.00	.462
fixed	NA	LanguageTurkish	10.66	8.57	1.24	3,510.00	.214
fixed	NA	Imagery	0.04	0.05	0.79	3,510.00	.432

Table E11
Fixed Effects Interaction Language and Rotation Predicting Mental Simulation Results Part 2

Effect	Group	Term	Estimate (b)	SE	t	df	p
fixed	NA	LanguageArabic:Imagery	-0.37	0.24	-1.55	3,510.00	.122
fixed	NA	LanguageBrazilian Portuguese:Imagery	0.18	0.29	0.62	3,510.00	.536
fixed	NA	LanguageGerman:Imagery	-0.37	0.19	-1.96	3,510.00	.050
fixed	NA	LanguageGreek:Imagery	-0.07	0.20	-0.36	3,510.00	.718
fixed	NA	LanguageHindi:Imagery	-0.36	0.27	-1.34	3,510.00	.181
fixed	NA	LanguageHungarian:Imagery	0.10	0.22	0.45	3,510.00	.653
fixed	NA	LanguageNorwegian:Imagery	-0.07	0.19	-0.35	3,510.00	.726
fixed	NA	LanguagePolish:Imagery	0.29	0.31	0.91	3,510.00	.363
fixed	NA	LanguagePortuguese:Imagery	-0.05	0.32	-0.15	3,510.00	.884
fixed	NA	LanguageSerbian:Imagery	-0.12	0.22	-0.56	3,510.00	.576
fixed	NA	LanguageSimplified Chinese:Imagery	-0.32	0.24	-1.32	3,510.00	.187
fixed	NA	LanguageSlovak:Imagery	0.12	0.21	0.57	3,510.00	.568
fixed	NA	LanguageSpanish:Imagery	0.05	0.17	0.28	3,510.00	.781
fixed	NA	LanguageThai:Imagery	-0.50	0.38	-1.32	3,510.00	.186
fixed	NA	LanguageTraditional Chinese:Imagery	0.13	0.23	0.59	3,510.00	.556
fixed	NA	LanguageTurkish:Imagery	-0.15	0.14	-1.09	3,510.00	.274
ran_pars	PSA_ID	sd(Intercept)	0.00	NA	NA	NA	
ran_pars	Residual	sdObservation	99.73	NA	NA	NA	