Exercise 6C

Find the equations of the (a) tangent and (b) normal to the following curves at the points given:

1.
$$\frac{x^2}{25} + \frac{y^2}{16} = 1$$
, $P(\frac{5}{2}, 2\sqrt{3})$

2.
$$x^2 + 4y^2 = 1$$
, at $x = \frac{1}{2}$

3.
$$x^2 - 2y^2 = 2$$
, at $x = 2$

4.
$$x = 4\cos\theta$$
, $y = 3\sin\theta$, $\theta = \frac{\pi}{4}$

5.
$$x = 5\sec\theta$$
, $y = 4\tan\theta$, $\theta = \frac{\pi}{4}$

Show that the equation of the normal to the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

(a) at
$$P(x_1, y_1)$$
 is $\frac{x - x_1}{b^2 x_1} = \frac{y - y_1}{a^2 y_1}$

(b) at
$$P(a\cos\theta, b\sin\theta)$$
 is $ax\sin\theta - by\cos\theta = (a^2 - b^2)\sin\theta\cos\theta$.

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 at $P(x_1, y_1)$ is $\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$

and at the point (a $\sec \theta$, b $\tan \theta$) is $\frac{x}{a} \sec \theta - \frac{y}{b} \tan \theta = 1$.

8. Show that the equation of the normal to the hyperbola
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

(a) at
$$P(x_1, y_1)$$
 is $\frac{a^2}{x_1} \cdot x + \frac{b^2}{y_1} \cdot y = a^2 + b^2$

(b) at
$$P(asec\theta, btan\theta)$$
 is $axcos\theta + bycot\theta = a^2 + b^2$.

9. P is any point on the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, with foci S and S', prove that PS + PS' = 2a.

- 10. P(x, y) is any point on the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ with foci S and S', prove that |PS' PS| = 2a.
- 11. Find the equations of the tangent and normal to
 - (a) the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ at x = 1
 - (b) the hyperbola $x^2 y^2 = 4$ at x = 3
- 12. Find the equations of two tangents to the ellipse $16x^2 + 25y^2 = 400$ which are parallel to the line y = x + 2.
- 13. The tangent to the hyperbola $\frac{x^2}{16} \frac{y^2}{9} = 1$ at P(4 $\sqrt{2}$, 3) meets the asymptotes of the hyperbola at A and B. Show that P is the mid-point of AB. Find the length of AB in the exact form.
- 14. Find the equation of the tangent to the curve whose parametric equations are $x = 2\cos\theta$ and $y = 3\sin\theta$ at $\theta = \frac{\pi}{3}$. This tangent meets the x-axis in A and y-axis in B. Find the length AB.
- 15. Show that the equation of the normal to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at $P(a\cos\theta, b\sin\theta)$ is given by $a\sin\theta by\cos\theta = (a^2 b^2)\sin\theta\cos\theta$. The normal at P meets the x-axis at M and N is the foot of the perpendicular PN to the x-axis. Prove that $MN = \frac{b^2\cos\theta}{a}$.
- 16. The tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ at P(a sect, b tant) meets the asymptotes in A and B. Prove that P is the mid-point of AB.
- 17. The chord through the focus S(ae, o) of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, at right angles to the x-axis meets the ellipse at $P(a\cos\theta, b\sin\theta)$. The normal at P passes through the end-point B' of the minor axis, of the ellipse. Prove that:
 - (a) $\cos \theta = e$ and $\sin \theta = \sqrt{1 e^2}$
 - (b) equation of the normal at P is $ax sin \theta by cos \theta = (a^2 b^2) sin \theta cos \theta$
 - (c) $e^4 + e^2 1 = 0$. Hence, find e in the exact form.

- 18. The ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ intersects the x-axis at A and A'. Find the co-ordinates of A and A'. Write down the equations of the tangents at A, A' and P(x₁, y₁). Let the tangents at A and P intersect in Q and those at A' and P at Q'. Prove that the area-AQ, A'Q' is independent of the position of P.
- Show that the condition for the line y = mx + c to be a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $c^2 = a^2m^2 + b^2$. Prove that the pair of tangents from the point P(4, 5) to the ellipse are at right angles to one another.
- 20. Show that the tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at $P(x_1, y_1)$ has equation $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$.

This tangent meets the x-axis at T, $PN \perp x$ -axis, and the normal at P, meets the x-axis at G. Show that $OT \times NG = b^2$, where O is the centre of the ellipse.

- 21. The line y = mx + c is a tangent to the hyperbola $\frac{x^2}{25} \frac{y^2}{16} = 1$. Show that $c^2 = 25m^2 - 16$. The tangents from $P(x_1, y_1)$ to this hyperbola meet at right angles. Prove that the locus of P is the circle $x^2 + y^2 = 9$.
- 22. P(a sec θ , b tan θ) and Q(a sec ϕ , b tan ϕ) are two points on the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, such that $\theta + \phi = 90^\circ$.

Find the co-ordinates of the mid-point R of PQ and hence show that the locus of R is given by $\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{y}{b}.$

- 23. $P(x_1, y_1)$ is a point on the hyperbola $\frac{x^2}{25} \frac{y^2}{16} = 1$. Prove that the equation of the tangent at P is $16xx_1 25yy_1 = 400$
 - (a) Find the co-ordinates of the point G at which this tangent cuts the x-axis.

- (b) Hence prove that $\frac{SP}{S'P} = \frac{SG}{S'G}$ where S and S' are the foci of the hyperbola.
- Show that the normal to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at $P(x_1, y_1)$ is given by $a^2y_1x b^2x_1y = (a^2 b^2)x_1y_1.$
 - (a) This normal meets the x-axis at G. Prove that $GS = e \cdot PS$ and $GS' = e \cdot PS'$, where S and S' are the foci of the hyperbola.
- 25. Write down the equation of the normal at $P(5\cos\theta, 3\sin\theta)$ to the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$.

This normal cuts the x-axis and the y-axis at G and H respectively. Show that the locus of the mid-point of GH is another ellipse with the same eccentricity as the first.

Sketch both ellipses on the same co-ordinate axes.

- Show that the gradient of the line joining the points $P(ct_1, \frac{c}{t_1})$ and $Q(ct_2, \frac{c}{t_2})$ on the hyperbola $xy = c^2$ is $\frac{-1}{t_1t_2}$. The points P, Q, R lie on this hyperbola. The line through P perpendicular to QR meets the line through Q perpendicular to PR at M. Prove that M lies on the hyperbola $xy = c^2$.
- 27. Show that the line y = mx + c is a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ if $c^2 = a^2m^2 + b^2$. Hence obtain the quadratic equation satisfied by m, where m is the gradient of the tangent from the external point $P(x_1, y_1)$.

Find the locus of P if the two tangents from P are at right angles.

28. Find the equation of the normal at $P(x_1, y_1)$ to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. PN \perp x-axis, and this normal meets the x-axis at G.

Show that $NG: ON = b^2 : a^2$, where O(o, o).

- 29. Show that the equations of the tangent and the normal to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1 \text{ at } P(a \sec \theta, b \tan \theta) \text{ are respectively:}$
 - (a) bx $\sec \theta$ ay $\tan \theta$ = ab , and
 - (b) by $\sec \theta + ax \tan \theta = (a^2 + b^2) \sec \theta \tan \theta$.

The tangent and the normal cut the y-axis at M and N respectively. Show that the circle on MN as diameter passes through the foci of the hyperbola.

- 30. (a) Show that $ab = 2c^2$ if the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ touches the hyperbola $xy = c^2$.
 - (b) $P(x_1, y_1)$ moves on the line y = mx and $Q(x_2, y_2)$ on the line y = -mx. Find the co-ordinates of R, the mid-point of PQ, in terms of x_1 , x_2 and m. Show that the locus of R is a certain ellipse, if PQ = 2K, where K is a constant.
- 31. Show that for all values of θ , the point $P(4\cos\theta, 3\sin\theta)$ lies on the ellipse and find the equation of this ellipse.
 - (a) Find the equations of the tangents at the points P and Q(-4sin0, $3\cos\theta$)
 - (b) Find the point of the intersection, T, of these tangents and show that as θ varies, the locus of T is the ellipse $9x^2 + 16y^2 = 288$.
- 32. The ordinate at $P(a\sec\theta, b\tan\theta)$ meets the asymptote of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ at Q. The normal at P meets the x-axis at G. Prove that GQ is perpendicular to the asymptote.

(Hint: $ax tan \theta + by sec \theta = (a^2 + b^2) sec \theta tan \theta$ is the equation of the normal.)

Prove that the equation of the tangent to the hyperbola $x^2 - y^2 = c^2$ at $P(x_1, y_1)$ is $xx_1 - yy_1 = c^2$. This tangent meets the lines y = x and y = -x at Q and R respectively. Prove that area of ΔOQR is constant.

- Show that $P(a\cos\theta, a\sin\theta)$ lies on the circle $x^2 + y^2 = a^2$. If $P(\theta)$ and $Q(\phi)$ are two points on the circle $x^2 + y^2 = a^2$, prove that the locus of the mid-point of PQ is the line $y = \sqrt{3}x$ given that $\theta + \phi = \frac{2\pi}{3}$ for all positions of P and Q.
- Simplify $\cos(\theta + \frac{\pi}{2})$ and $\sin(\theta + \frac{\pi}{2})$. Show that if $P(r_1\cos\theta, r_1\sin\theta)$ and $Q[r_2\cos(\theta + \frac{\pi}{2}), r_2\sin(\theta + \frac{\pi}{2})]$ lie on the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, then $\frac{1}{r_1^2} + \frac{1}{r_2^2} = \frac{1}{a^2} \frac{1}{b^2}$, where O is the centre. Deduce that if OP \perp OQ, then $r_1^{-2} + r_2^{-2}$ is independent of the positions of P and Q.
- 36. The normal at $P(a \sec \theta, b \tan \theta)$ to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ meets the X-axis at G, and PN \perp the x-axis. Prove that OG: ON = e^2 , where O is (0, 0).
- 37. $P(x_1, y_1)$ is any point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Find the equation of the tangent at P. A line drawn from the centre O(0, 0) parallel to the tangent at P, meets the ellipse at Q. Prove that area of $\triangle OPQ$ is independent of the position of P. Find the area of $\triangle OPQ$. (Hint: Use the parametric form $x_1 = a\cos\theta$, $y_1 = b\sin\theta$).
- 38. Find the area of largest rectangle that can be inscribed in the ellipse $9x^2 + 25y^2 = 225$.
- 39. A conic is a rectangular hyperbola with eccentricity $\sqrt{2}$, focus (2, 0) and directrix x = 1. Find the equation of this hyperbola. Sketch the hyperbola with its asymptotes.
 - (a) Find the equation of the normal to this hyperbola at a point $P(x_1, y_1) = (a \sec \phi, a \tan \phi)$.
 - (b) This normal meets the x-axis at Q(X, 0) and the y-axis at R(0, Y). Show that the locus of a point M(X, Y) is given by $x^2 - y^2 = 8$, as P varies.
- 40. The tangent at $P(a\cos\theta, b\sin\theta)$ to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ cuts the axes at M and N. Show that M and N are $(a\cos\theta, 0)$ and $(0, b\sec\theta)$ respectively. Find the minimum value of the area of ΔOMN and the corresponding co-ordinates of P.