Maple Cheat Sheet

Based on Maple 12/13 Windows Version

Syntax

- ; Ends a command with a semicolon. e.g. 5+6; plot(x);
- : Suppresses the display of output by ending a command with a colon. Useful for lengthy outputs or loading packages. *e.g.* with(plots): 5000!:
- := Assigns an expression to a variable. e.g. x:=3; x:='x'; unassigns the variable x.
- = Defines mathematical equations. e.g. $y = x^2 + 3*x + 4$;
- % Refers to the last result. n of the % symbols refers to the n^{th} previous result. e.g. %%% gives the third previous presult.
- $f := (x, y, ...) \rightarrow ...$ Defines a function. e.g. $f := (x, y) \rightarrow x^2+y^2$; defines the function $f(x, y) = x^2 + y^2$. f(0,1) evaluates f(0,1).
- $L := [x1, x2, \dots, xn]$ Defines a list (ordered sequence) L of expressions x_1, x_2, \dots, x_n . Refer to the n^{th} list item by L[n]. To extract the contents of a list, use the empty selection operator []. e.g. A := [1,2,3]; A[3]; returns 3. A[] returns 1,2,3.
- $S := \{x1, x2, \dots, xn\}$ Defines a set S of expressions x_1, x_2, \dots, x_n . Use the empty selection operator[] to extract the contents of a set. e.g. $S := \{5,3,3,2,1\};$ S[]; returns 1,2,3,5.

name[expression] Indexed name. e.g. b[1]; A[x,y,z];

?topic Displays help on topic.

#expression Comment (not interpreted as commands).

- All identifiers (variables and functions) are **case sensitive**. *e.g.* **X** is different from **x**. Pi and pi are different!
- In general, a function whose name begins with a capital letter is an inert form of the function who has the same name but begins with lower case. Inert functions are unevaluated and may be manipulated and printed in a prettyprinted format. e.g. Int(x,x); returns $\int x dx$ and is the inert form of int(x,x); which evaluates to $x^2/2$.

Usages and Icons

!!!

Right-click Perform context operation on math expression

! Execute the current line

Execute the entire worksheet

[>] Insert prompt

T Insert text paragraph

Keyboard Shortcuts

Enter	Evaluate and display result on new line
Shift + Enter	Continue on next line without executing
Ctrl + =	Evaluate and display inline (Document Mode)
Ctrl + Space	Complete symbol/command
F5	Toggle Math/Text entry (Document Mode)
	Toggle 2-D/1-D Math entry (Worksheet Mode)
Ctrl + F1	Maple help

Defined Constants

```
Pi \pi \approx 3.14159265... I complex number I=\sqrt{-1} infinity \infty gamma Euler's constant \gamma \approx 0.5772156649... Catalan Catalan's constant \approx 0.915965594... exp(1) e \approx 2.718281828
```

Commands

General

with(package): Loads the specified Maple package.

unassign(var); Deletes a value stored in the given variable.
e.g. unassign('a');

restart; Clears internal memory. The settings of all identifiers are resetted.

unapply(expression, x, y, ...); Returns a functional operator from an expression and variables. e.g. $f := x^2 + y^2$; g:=unapply(f, x, y); returns the functional operator $g := (x,y) \rightarrow x^2 + y^2$; such that g(1, 2) returns 5.

Common Mathematical Operations

x + y - z;	addition and subtraction
x * y;	multiplication
x / y;	division
x^y;	power x^y
<pre>sqrt(x);</pre>	square root \sqrt{x}
<pre>exp(x);</pre>	exponential e^x
ln(x);	natural $\log ln(x)$
log[b](x);	logarithm $log_b(x)$
<pre>surd(x,n);</pre>	real n^{th} root $\sqrt[n]{x}$
sin(x); cos(x); tan(x);	trigonometric functions
<pre>arcsin(x); arccos(x);</pre>	inverse trig functions
<pre>arctan(x);</pre>	

Numerical Manipulation

- eval(expression); Evaluates the given expression. e.g. a:=b^2; b:=c+1; c:=2; eval(a); returns 9.
- eval(expression, x=value); Evaluates expression at the given point x = value. e.g. eval(x^2+5*x, x=1); evaluates the polynomial $x^2 + 5x$ at x = 1 and returns 6.
- eval(expression, $\{x=value1, y=value2,...\}$); Evaluates expression at the given points x=value1, y=value2,...
- subs(x=value, expression); Substitutes the given value into expression. e.g. subs(x=2,x^2+2*x+1); gives 9. subs(x=0, $\sin(x)/\cos(x)$); returns $\sin(0)/\cos(0)$.
- evalf(expression); Numerically evaluates expression and returns its decimal approximation. e.g. evalf(Pi); returns 3.141592654.
- value(expression); Evaluates the given inert expression. e.g. F:=Sum(i,i=1..5); value(F); evaluates the inert sum $\sum_{i=1}^{5} i$ and returns 15.
- assume(x, domain); Restricts variable x to domain. Examples of domain are positive, negative, posint, integer, real, and complex. e.g. assume(x, 'integer'); forces x to be an integer.
- assume(relation); Enforces the given relational property. e.g. assume(x > 0); restricts x to be positive.
- additionally(x, domain); additionally(relation); Places further restrictions on the given variable. Usages are similar to that for assume. e.g. assume(x, real); additionally(x > 0); forces x to be real as well as positive.
- map(f, expression, arg1, ..., argN); Applies f to each of the operands or elements in expression along with the given arguments arg1,..., argN. e.g. map((x,y)->x+y, [0,1,2], 1); adds one to each element in the given list to produce the result [1,2,3].

Algebra

- simplify(expression); Applies simplification rules to the given expression. e.g.
 simplify(cos(Pi*cos(x)^2+Pi*sin(x)^2)); returns
 -1.
- collect(expression, variable); Combines like terms in expression with respect to the given variable. e.g. collect(a^2*x+b*x+5, x); returns $5 + (a^2 + b)x$.
- normal(expression); Simplifies and normalizes the given rational expression so that the result is of factored normal form, where the numerator and denomator are relatively prime polynomials with integer coefficients. e.g. normal(1/x+x/(x+1)); returns $\frac{x+1+x^2}{x(x+1)}$.

- factor(expression); Factors the given expression of a multivariate polynomial. Does NOT factor integers or integer coefficients in a polynomial. e.g. factor($4*x^2+12*x+8$); returns 4(x+1)(x+2).
- ifactor(expression); Factors an integer or rational number into a product of primes. e.g. ifactor(24/19); returns $\frac{(2)^3(3)}{(19)}$. ifactor(2^10-1); returns (3)(11)(31).
- expand(expression); Distributes the given expression. e.g. expand((x+3)*(x+5)); returns $x^2 + 8x + 15$.
- solve(equations, variables); Solves for the unknown variables in the given equations or inequalities.
- e.g. solve($x^2-25=0$, x); solves the equation $x^2-25=0$ and returns 5,-5.
- e.g. solve($\{x+y+z=6, x-y+2*z=5, 2*x+2*y+z=9\}$, [x, y, z]); solves the system of three equations and returns the solution [[x = 1, y = 2, z = 3]].
- e.g. solve(abs(x+5) > 3, x); solves the inequality |x + 5| > 3 and returns RealRange(Open(-2), infinity), RealRange(-infinity, Open(-8)).
- fsolve(equations, variable, [complex]); Numerically solves for the unknown variable in equations. Use the complex option to find a complex solution. e.g. fsolve(x^2+5*x-4,x); returns -5.701562119,.7015621187.
- $\operatorname{sum}(f, k=m..n)$; Returns the summation $\sum_{k=m}^{n} f(k)$. e.g. $\operatorname{sum}(x^2, x=1..n)$; computes $\sum_{x=1}^{n} x^2$.

Calculus

- limit(f, x=a, dir); Computes the limit of f as x approaches a. a can be any algebraic expression or infinity. Direction dir is optional and is real bidirectional by default (except for ∞ and $-\infty$). Possible values of direction are left, right, real, and complex. e.g. limit(1/exp(x), x=infinity); computes $\lim_{x\to\infty}\frac{1}{e^x}$ and returns 0.
- diff(f, x1, ..., xj); Differentiates f with respect to variables x_1, \ldots, x_j : $\frac{d^j}{dx_j \ldots dx_i} f$. e.g. diff($\sin(x)$, x); takes the first derivative of sin(x). diff(f(x,y),x,y); computes $\frac{\partial^2}{\partial y \partial x} f(x,y)$.
- diff(f, x\$n); Computes the n^{th} derivative of f: $\frac{d^n}{dx^n}f$. e.g. diff(x^4 , x\$2); computes the second derivative of x^4 and returns $12x^2$.
- implicitdiff(eq, x1, ..., xj); Implicitly differentiates eq with respect to variables x_1, \ldots, x_j . The equation eq defines y as a function of x_1, \ldots, x_j implicitly. e.g. f:= y=x^2/z^2; implicitdiff(f, y, x); computes dy/dx and returns $2x/z^2$.

int(f, x); Computes an indefinite integral of f with respect to the variable x. e.g. int($\cos(x)$, x); computes $\int \cos(x) dx$ and returns $\sin(x)$.

int(f, x=a..b); Computes the definite integral of f with respect to the variable x on the interval from a to b. e.g. int(x^2 , x=0..2); computes $\int_0^2 x^2 dx$ and returns 8/3.

Differential Equations

dsolve(ODE, y(x)); Solves ordinary differential equations for the unknown y(x). ODE can be a single differential equation, or a set or a list of equations.

e.g. ode:=diff(y(x),x\$2)=2*y(x)+1; dsolve(ode, y(x)); solves the differential equation $\frac{d^2}{dx^2}y(x)=2y(x)+1$.

dsolve($\{\mathit{ODE}, \mathit{ICs}\}$, y(x)); Solves ordinary differential equations ODE for y(x) given initial conditions. ICs are initial conditions given in the form y(a)=b, D(y)(c)=d,

e.g. ics := y(0) = 1, (D(y))(0) = 0; dsolve({ode, ics}, y(x);

DEplot(deqns, vars, trange, inits, xrange, yrange);
In the DEtools package. Plots solution curves to a system of differential equations by numerical methods. deqns - list of first order ordinary differential equations or a single differential equation of any order. vars - list of dependent variables. trange - range of the independent variable. inits - list of initial conditions. xrange, yrange - range of the two dependent variables.

e.g. with(DEtools):
 de1:=diff(x(t),t)=-0.5*x(t)*y(t);
 de2:=diff(y(t),t)=0.5*x(t)*y(t);
 DEplot([de1,de2],[x(t),y(t)],t=0..50,
 x=-2..2,y=-2..2,[[x(0)=0.9,y(0)=0]]);

Linear Algebra

Matrix(..); Creates a matrix.

- Matrix(a); square matrix a x a filled with 0's
- Matrix(a, b, c); matrix $a \times b$ filled with c's
- Matrix([[a, b, c],[d, e, f]]); $\rightarrow \left[egin{array}{ccc} a & b & c \\ d & e & f \end{array} \right]$

 $\langle x_1, x_2, \dots, x_j \rangle$ Creates a column vector $\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_j \end{bmatrix}$

Vector[o](..); Creates a vector of orientation o (either row or column). Default orientation is column.

- Vector(a, b); column vector of size a filled with bs
- Vector([a,b,c]); column vector $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$

• Vector[row] ([a,b,c]); row vector $\begin{bmatrix} a & b & c \end{bmatrix}$

Matrix addition, subtraction, multiplication: A + B, A - B, $A \cdot B$

The following commands are in the LinearAlgebra package. Precede commands by with(LinearAlgebra):

CrossProduct(u, v); Computes the cross product of vectors u and v.

 $\begin{tabular}{ll} {\tt DotProduct}(u,\ v); & {\tt Computes the dot product of vectors } u \ {\tt and} \\ v. & \\ \end{tabular}$

Determinant (A); Computes the determinant of matrix A.

Norm(A, p); Computes the p-norm of a matrix or vector A.

Basis(v); Computes the vector or set of vectors that forms a basic for the vector space spanned by v.

Eigenvalues (A); Computes the eigenvalues of matrix A.

Eigenvectors (A); Computes the eigenvectors of matrix A.

MatrixInverse(A); Computes the inverse of square matrix A.

Transpose (A); Computes the transpose of A.

Plots

plot(f, x=xmin..xmax, options); Creates a two-dimensional plot of the real function f(x) over the horizontal range from xmin to xmax. Options are specified in the form option=value (see box below).

- *f* is an expression or function with an independent variable. *e.g.* plot(x^2, x=-5..5);.
- f is represented parametrically: [x(t),y(t),t=t0..t1]. e.g. plot($[\cos(t),\sin(t),t=-2*Pi..2*Pi]$);
- f is a list of functions to be graphed on the same plot: [f1, f2, ..., fn]. e.g. plot([1,x,x^2], x=-2..2); puts the functions y=1, y=x, and $y=x^2$ on the same plot.

implicitplot(eqn, x=xmin..xmax, y=ymin..ymax, options);
 In the plots package. i.e. Must be preceded by
 with(plots): Creates the two-dimensional plot of an
 implicitly defined curve eqn on the specified intervals:
 [xmin,xmax] and [ymin,ymax]. Options are speci fied in the form option=value (see box below). e.g.
 implicitplot(x^2+y^2=1, x=-1..1, y=-1..1);.

inequal(ineqs, x=xmin..xmax, y=xmin..xmax, options);
 In the plots package. Plots regions defined by inequalities
 ineqs in the specified x and y intervals. Options are in the
 form optionsfeasible / optionsopen / optionsclosed
 / optionsexcluded = (optionsList), where optionsList
 is of the format (option=value, option2=value2, ...).
 e.g. inequal({x+y>0, x-y<=1}, x=-3..3, y=-3..3,
 optionsexcluded=(color=blue,thickness=2));</pre>

- plot3d(f, x=a...b, y=c...d, options); Creates a **three-dimensional** plot of the real function f(x,y) over the horizontal range [a,b] and vertical range [c,d]. Options are specified in the form option=value (see box below).
 - f is an expression or function with two independent variables. e.g. plot3d(sin(x+y), x=-1..1, y=-1..1);
 - f is represented parametrically: [f1(x,y), f2(x,y), f3(x,y)].
 e.g. plot3d([x*sin(x)*cos(y), x*cos(x)*cos(y), x*sin(y)], x=0..2*Pi, y=0..Pi);
 - f is a list of functions to be graphed on the same plot: [f1(x,y), f2(x,y), ..., fn(x,y)]. If there are three functions, use the plotlist option to avoid a parametric plot. e.g. plot3d([sin(x*y),cos(x*y),x+y], x=-1..1, y=-1..1, plotlist); puts the functions z = sin(xy), z = cos(xy), and z = x + y on the same plot.
- implicitplot3d(eqn, x=a..b, y=c..d, z=i..j, options); In the plots package. Creates the three-dimensional plot of an implicitly defined surface eqn on the specified intervals: x = [a,b], y = [c,d] and z = [i,j]. Options are specified in the form option=value (see box below). e.g. implicitplot3d(x^2+y^2+z^2=1, x=-1..1, y=-1..1, z=-1..1);
- contourplot(f, x=a..b, y=c..d, options); In the plots package. Creates a 2-D contour plot of the real function f(x,y) over the horizontal range [a,b] and vertical range [c,d]. Options are specified in the form option=value and can be those used in the plot commands or the following:

Number of contours contours=c
Locations of contours contours=[a, b, c, ...]
Filled contours filledregions=true
Gradation coloring coloring=[color1,color2]

e.g. contourplot(cos(x*y), x=-3..3, y=-3..3, contours=4, filledregions=true, coloring=[red,blue]);

- contourplot3d(f, x=a..b, y=c..d, options); In the plots package. Creates a 3-D contour plot where contours are raised to their appropriate levels. Usages are similar to contourplot.
- spacecurve(curves, t=a..b, options); In the plots package. Creates a curve or a set of curves in 3-D space.
 curves can be a list of points, a list of the x, y, and z
 components, or a set of such lists. Options are similar to
 those in plot3d. e.g. spacecurve({[cos(t),sin(t),t],
 [t,sin(t),cos(t)]},t=0..4*Pi);
- polarplot(r(theta), theta=a...b, options); In the plots package. Creates a plot for r(theta) for theta=a...b in polar coordinates with polar axes. e.g. polarplot(sin(theta), theta=0...2*Pi);

transform(f); In the plottools package. Creates a function that applies the given function f to all points in a plot data structure. Useful for embedding 2-D plots into 3-D ones and transforming coordinate systems. e.g. g:=transform((x,y)->(x,y,-1)); creates a procedure that transforms points with two coordinates (x,y) in a plot to points with three coordinates (x,y,-1).

animate(plotcommand, plotargs, t=a..b, options); In the plots package. Creates a 2-D or 3-D animation on paramter t, ranging from a to b. plotcommand is a Maple command that generates a 2-D or 3-D plot (e.g. plot, plot3d, implicitplot). plotargs is a list of arguments to the plot command. Possible options are those used in the plot command or the following:

Display a trace of n frames trace=n

e.g. animate(plot, [A*sin(x), x=0..10], A=0..2,
frames=50, trace=5);

frames=n

display(L, options); In the plots package. Combines the list L of plot structures into a single plot or animation. options are those used for plot or plot3d.

e.g. with(plots):
 p1:=plot3d(sin(x*y), x=-Pi..Pi, y=-Pi..Pi):
 p2:=plot3d([x+y, sin(x)], x=-Pi..Pi, y=-Pi..Pi):
 display([p1,p2], axes=boxed, title="test plot");

OPTIONS FOR 2D PLOTS

Number of frames

Type of axes axes=boxed/frame/none/normal color of curves color=blue/black/green/red/etc.

Determine input discont=true/false

discontinuities

Draw gridlines gridlines=true/false

Label Axes labels=[x,y]

Scaling scaling=constrained/unconstrained

Line thickness thickness=number
Title title="plot title"

Min/max y values y=ymin..ymax

View window view=[xmin..xmax,ymin..ymax]

Additional Options for 3D Plots Contours contours=number

Coordinate System coords=cartesian/cylindrical/

spherical/etc.

Grid Dimensions grid=[m,n]
Label Axes labels=[x,y,z]

View window view=[xmin..xmax,ymin..ymax,

zmin..zmax]