

정기 예금 가입 여부 예측

AI_02_전혜정

INTRO

이 데이터를 통해 고객이 정기 예금을 가입할 가능성을 예측하고, 이를 통해 마케팅 캠페인의 효율성을 높이는 것 입니다.

마케팅 담당자로서 정기 예금과 관련이 있는 요소들을 파악해보고, 고객의 행동을 이해해보자.

이번 과제의 목표는 **가장 정확한 분류 모델**을 개발하여 **고객이 정기 예금을 가입할지 여부를 예측**하고,

그 모델을 통해 도출한 인사이트를 바탕으로 **비즈니스 전략을 제시**하는 것이다.

데이터 소개

이 데이터는 2008년부터 2010년까지의 은행 마케팅 캠페인 데이터를 포함하고 있습니다.

#	Column	Non-Null Count	Dtype
0	age	41188 non-null	int64
1	job	41188 non-null	object
2	marital	41188 non-null	object
3	education	41188 non-null	object
4	default	41188 non-null	object
5	housing	41188 non-null	object
6	loan	41188 non-null	object
7	contact	41188 non-null	object
8	month	41188 non-null	object
9	day_of_week	41188 non-null	object
10	duration	41188 non-null	int64
11	campaign	41188 non-null	int64
12	pdays	41188 non-null	int64
13	previous	41188 non-null	int64
14	poutcome	41188 non-null	object
15	emp.var.rate	41188 non-null	float64
16	cons.price.idx	41188 non-null	float64
17	cons.conf.idx	41188 non-null	float64
18	euribor3m	41188 non-null	float64
19	nr.employed	41188 non-null	float64
20	у	41188 non-null	object
dtyp	es: float64(5),	int64(5), object	(11)

데이터 형태 : (41188, 21)

데이터 소개

컬럼명	설명
age	나이 (숫자)
job	직업 (범주형)
marital	결혼 여부 (범주형)
education	교육 수준 (범주형)
default	신용 불량 여부 (범주형)
housing	주택 대출 여부 (범주형)
loan	개인 대출 여부 (범주형)
contact	연락 유형 (범주형)
month	마지막 연락 월 (범주형)
day_of_week	마지막 연락 요일 (범주형)

컬럼명	설명
duration	마지막 연락 지속 시간, 초 단위 (숫자)
campaign	캠페인 동안 연락 횟수 (숫자)
pdays	이전 캠페인 후 지난 일수 (숫자)
previous	이전 캠페인 동안 연락 횟수 (숫자)
poutcome	이전 캠페인의 결과 (범주형)
emp.var.rate	고용 변동률 (숫자)
cons.price.idx	소비자 물가지수 (숫자)
cons.conf.idx	소비자 신뢰지수 (숫자)
euribor3m	3개월 유리보 금리 (숫자)
nr.employed	고용자 수 (숫자)
У	정기 예금 가입 여부 (이진: yes=1, no=0)

결측치

data.isna().sum() age 0 job marital education default housing loan contact month day of week duration campaign pdays previous poutcome emp.var.rate cons.price.idx cons.conf.idx euribor3m nr.employed dtype: int64

: 결측치 없음

중복값

```
data.duplicated().sum()
12
data.drop_duplicates(inplace=True)
data.duplicated().sum()
0
```

: 중복값 12개 존재 → 제거

이상치

: 이상치 존재

: 하지만 전체 트리 모델 구 조에는 큰 영향이 없음.

: 이상치에 강인함.

모두 시도해보았으나, 모델의 성능이 비슷하므로 최종 모델에서는 이상치 제 거 하지 않고 모델링 함.

'y' 컬럼 데이터타입 변환 (object -> int64)

```
<class 'pandas.core.frame.DataFrame'>
Index: 41176 entries, 0 to 41187
Data columns (total 21 columns):
    Column
                    Non-Null Count Dtvpe
0
                    41176 non-null int64
    age
1
    iob
                    41176 non-null
                                    object
    marital
                    41176 non-null
                                    object
    education
                    41176 non-null object
    default
                    41176 non-null object
    housing
                    41176 non-null object
6
    loan
                    41176 non-null object
    contact
                    41176 non-null object
    month
                    41176 non-null object
    day_of_week
                    41176 non-null object
    duration
                    41176 non-null int64
11
    campaign
                    41176 non-null
                                    int64
    pdays
                    41176 non-null
                                   int64
    previous
                    41176 non-null int64
    poutcome
                    41176 non-null object
                    41176 non-null float64
    emp.var.rate
    cons.price.idx
                    41176 non-null float64
17 cons.conf.idx
                    41176 non-null float64
18 euribor3m
                    41176 non-null float64
19 nr.employed
                    41176 non-null float64
20 v
                    41176 non-null object
dtypes: float64(5), int64(5), object(11)
memory usage: 6.9+ MB
```

```
<class 'pandas.core.frame.DataFrame'>
Index: 41176 entries, 0 to 41187
Data columns (total 21 columns):
    Column
                    Non-Null Count Dtvpe
0
                     41176 non-null int64
     age
1
                    41176 non-null
    job
                                    object
    marital
                    41176 non-null
                                    object
                    41176 non-null object
     education
     default
                    41176 non-null object
5
    housing
                    41176 non-null object
                    41176 non-null object
6
     loan
                    41176 non-null object
     contact
8
    month
                    41176 non-null object
9
    day of week
                    41176 non-null object
    duration
                     41176 non-null int64
    campaign
                    41176 non-null int64
    pdays
                    41176 non-null int64
 13 previous
                    41176 non-null int64
    poutcome
                    41176 non-null object
 15 emp.var.rate
                    41176 non-null float64
                    41176 non-null float64
    cons.price.idx
17 cons.conf.idx
                    41176 non-null float64
 18 euribor3m
                     41176 non-null float64
19 nr.employed
                    41176 non-null float64
20
    V
                    41176 non-null int64
dtypes: float64(5), int64(6), object(10)
memory usage: 6.9+ MB
```

처음 데이터를 확인해보니 타깃 변수인 'y' 컬럼이 문자열로 되어 있었다. 하지만 'y'는 예금에 가입했는지 여부를 나타내는 이진 값(0 또는 1)만을 가지므로, 문자열 정보가 전혀 필요하지 않다. 따라서 의미상 더 적합한 int64 타입으로 변환하여, 불필요한 문자열 처리도 피할 수 있고, 모델링 시 타입으로 인한 경고나 오류도 줄일 수 있었다

연락 횟수('campaign')에 따른 정기 예금 가입('y') 확률

- **하강 추세**: 캠페인 횟수가 증가할수록 가입 확률이 감소하는 경향을 보인다. 이는 소비자 피로도나 관심 감소로 인해 반복적인 캠페인이 효과가 줄어드는 것으로 추측된다.
- 최적의 캠페인 횟수: 약 5~10 회의 캠페인에서 가입 확률이 상대적으로 높은 경향을 보인다. 이 범위 내에서 최적의 캠페인 전략을 취할 필요가 있다.
- **신뢰 구간**: 빨간색 음영 영역은 신뢰 구간을 나타내며, 이 구간이 좁아지면서 캠페인 횟수가 많아질수록 데이터의 변동성이 줄어드는 것으로 보인다.

경과일 수('pdays')에 따른 정기 예금 가입('y') 확률

- len(data[data['pdays'] == 999]) >> 39661
 - : 경과일 수가 999일은 지난 날짜라기 보다는 특별한 의미가 있는 듯하여 'pday_999' 컬럼을 생성하고 'pdays'에는 0으로 변경했다.
- 경과일 수가 증가함에 따라 가입 확률이 일반적으로 증가하는 것으로 보인다.
 - : 초기에는 가입 확률이 낮지만, 경과일 수가 10일을 넘어서면서 확률이 상승하는 경향이 있다.
- 비선형 패턴
 - : 가입 확률이 도달하는 특정 값에 따라 시간이 지남에 따라 더 빨리 증가할 수 있음을 시사한다.

수치형 특성들 간의 상관관계 / 'y'컬럼과의 상관관계

- 'duration'와 'y ' : 두 변수 간의 상관계수는 0.41로, 'duration'이 길어질수록 긍정적인 결과(y)에 대한 예측 가능성이 높아진다는 것을 의미한다.
- 'pdays'와 'y ': 두 변수 간의 **상관계수는 -0.84**로, 'pdays' 값이 작을수록 긍정적인 결과(y)에 더 가까워짐을 나타낸다. 즉, **예전 연락이 짧았던 고객이 재방문의 가능성이 더 높다**는 의미이다.
- 'previous'와 'y ': 상관계수 -0.59로, 이전의 연락 횟수가 많을수록 긍정적인 결과가 낮아짐을 보여준다. 이는 고객이 여러 번 연락을 받았던 경우 결과가 부정적일 수 있음을 나타낸다.
- 'pdays'와 'previous ' : 두 변수 간의 **상관계수 0.49**로, **이전 연락이 많았던 경우 'pdays' 값이 더 높을 수 있음**을 알 수 있다.
- 'emp.var.rate'와 'cons.price.idx ' : 각각 다른 경제 지표로, **양의 상관관계**를 가지며(상관계수 0.78) **서로 긍정적인 영향**을 미칠 수 있음을 알 수 있고, 경제 지표가 안정적일수록 소비자 신뢰도 또한 높아질 가능성이 있다.
- 'campaign'의 상관관계는 상대적으로 낮은 편이며(최대 0.15) 캠페인의 효과가 다른 변수들에 비해 뚜렷하지 않음을 나타낸다.

PI Chart : 컬럼의 카테고리별 비율 / Stack Bar Chart : 예금 가입 여부별 비율

'job' 컬럼

- 소득이 낮거나 불안정한 직업군에서 가입률이 상대적으로 높음 → 예금 상품의 안정성이 어필된 것일 수 있음

PI Chart : 컬럼의 카테고리별 비율 / Stack Bar Chart : 예금 가입 여부별 비율

'contact' 컬럼

- cellular로 연락한 경우 가입률이 더 높음 → 마케팅 채널로 cellular 활용이 효과적일 수 있음.

PI Chart : 컬럼의 카테고리별 비율 / Stack Bar Chart : 예금 가입 여부별 비율

'poutcome' 컬럼

- 과거 마케팅에 성공한 고객에게 재접촉하면 가입 가능성이 높음.

연령대별 예금 가입 여부

```
# 구간과 라벨 설정
bins = [0, 19, 29, 39, 49, 59, 69, 79, 89, 99, float('inf')]
labels = ['10대', '20대', '30대', '40대', '50대', '60대', '70대', '80대', '90대', '100세 이상']

# Categorical dtype으로 age_group 생성
data['grouped_age'] = pd.cut(data['age'], bins=bins, labels=labels)

plt.figure(figsize= (8,5))
sns.barplot(data, x='grouped_age', y='y', errorbar=None, palette='Pastel2')
```


- 10대, 70대, 80대, 90대에서 가입률이 높음 (약 45~52%)
- 젊은 층(10대)과 고령층(70대 이상)에서 예금 상품에 대한 관심이 높음
- → 각 세대에 맞는 마케팅 전략 필요

Feature Engineering

'job' 컬럼 그룹화

```
data['job'].value counts()
job
admin.
                 10419
blue-collar
                  9253
technician
                  6739
                  3967
services
                  2924
management
                  1718
retired
                  1456
entrepreneur
self-employed
                  1421
housemaid
                  1060
unemployed
                  1014
student
                   875
unknown
                   330
Name: count, dtype: int64
```

```
# white_collar(사무직) : admin., management,
# blue_collar(현장직) : blue-collar, services, housemaid
# business(사업 관련 직업) : entrepreneur, self-employed
# technician(기술직) 유지
# special(특수한 경우) : student, retired
# etc(기타) : unemployed, unknown
def categorize_job(job):
    if job in ['admin.','management']:
        return 'white collar'
    elif job in ['blue-collar','service','housemaid']:
        return 'bule collar'
    elif job in ['entrepreneur', 'self-employed']:
        return 'business'
    elif job in ['technician']:
        return 'technician'
    elif job in ['retired','student']:
        return 'special'
    else:
        return 'etc'
data['grouped_job'] = data['job'].apply(categorize_job)
```

```
data.drop('job', axis=1, inplace=True)
data.info()
<class 'pandas.core.frame.DataFrame'>
Index: 41176 entries, 0 to 41187
Data columns (total 20 columns):
     Column
                    Non-Null Count Dtvpe
     age
                    41176 non-null int64
    marital
                    41176 non-null object
    education
                    41176 non-null object
                    41176 non-null object
    housing
     loan
                    41176 non-null object
    contact
                    41176 non-null object
 6
    month
                    41176 non-null object
                    41176 non-null object
    day_of_week
    duration
                    41176 non-null int64
    campaign
                    41176 non-null int64
    pdays
                    41176 non-null int64
 11 previous
                    41176 non-null int64
 12 poutcome
                    41176 non-null object
 13 emp.var.rate
                    41176 non-null float64
 14 cons.price.idx 41176 non-null float64
 15 cons.conf.idx 41176 non-null float64
 16 euribor3m
                    41176 non-null float64
 17 nr.emploved
                    41176 non-null float64
 18 v
                    41176 non-null int64
 19 grouped_job
                    41176 non-null object
dtypes: float64(5), int64(6), object(9)
memory usage: 6.6+ MB
```

데이터 분리

모델 학습에 사용할 컬럼 선택 / 입력 변수, 출력 변수 분리 / Train, Test 데이터 분할

```
df = data[['age','grouped_job','housing', 'loan', 'contact','pdays','campaign', 'previous',
          'poutcome', 'cons.price.idx', 'emp.var.rate', 'euribor3m','nr.employed','y']]
df.info()
<class 'pandas.core.frame.DataFrame'>
Index: 41176 entries, 0 to 41187
Data columns (total 14 columns):
 # Column
                  Non-Null Count Dtype
                   _____
 0 age
                   41176 non-null int64
    grouped_job 41176 non-null object
                  41176 non-null object
 2 housing
                   41176 non-null object
 3 loan
 4 contact
                  41176 non-null object
    pdays
                  41176 non-null int64
 6 campaign 41176 non-null int64
                  41176 non-null int64
    previous
 8 poutcome
                   41176 non-null object
 9 cons.price.idx 41176 non-null float64
 10 emp.var.rate 41176 non-null float64
 11 euribor3m 41176 non-null float64
 12 nr.employed 41176 non-null float64
                   41176 non-null int64
 13 y
dtypes: float64(4), int64(5), object(5)
memory usage: 4.7+ MB
from sklearn.model_selection import train_test_split
X = df.drop(columns=['y'])
y = df['y']
X.shape, y.shape
((41176, 13), (41176,))
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state=42)
X_train.shape, X_test.shape, y_train.shape, y_test.shape
((32940, 13), (8236, 13), (32940,), (8236,))
```

모델 학습에 사용할 컬럼 선택 / 입력 변수, 출력 변수 분리 / Train, Test 데이터 분할

```
df = data[['age','grouped_job','housing', 'loan', 'contact','pdays','campaign', 'previous',
           'poutcome', 'cons.price.idx', 'emp.var.rate', 'euribor3m','nr.employed','y']]
df.info()
<class 'pandas.core.frame.DataFrame'>
Index: 41176 entries, 0 to 41187
Data columns (total 14 columns):
     Column
                    Non-Null Count Dtype
                   41176 non-null int64
     age
     grouped_job 41176 non-null object
     housing
                    41176 non-null object
                    41176 non-null object
     loan
     contact
pdays
                    41176 non-null object
                    41176 non-null int64
    campaign 41176 non-null int64 previous 41176 non-null int64
     previous
               41176 non-null object
 8 poutcome
 9 cons.price.idx 41176 non-null float64
 10 emp.var.rate 41176 non-null float64
 11 euribor3m 41176 non-null float64
 12 nr.employed 41176 non-null float64
 13 y
                    41176 non-null int64
dtypes: float64(4), int64(5), object(5)
memory usage: 4.7+ MB
from sklearn.model_selection import train_test_split
X = df.drop(columns=['y'])
y = df['y']
X.shape, y.shape
((41176, 13), (41176,))
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state=42)
X train.shape, X test.shape, y train.shape, y test.shape
((32940, 13), (8236, 13), (32940,), (8236,))
```


범주형 데이터 라벨 인코딩하기 (범주형 → 수치형)

```
from sklearn.preprocessing import LabelEncoder
# 범주형 컬럼만 선택
cat cols = df.select dtypes(include='object').columns
cat_cols
Index(['grouped_job', 'housing', 'loan', 'contact', 'poutcome'], dtype='object')
label_encoders = {}
for col in cat cols:
   le = LabelEncoder()
   X_train[col] = le.fit_transform(X_train[col])
   X_test[col] = le.transform(X_test[col])
   label_encoders[col] = le
# 디코딩
for col in cat_cols:
   print(f"{col} 매핑: {dict(zip(label_encoders[col].classes_, label_encoders[col].transform(label_encoders[col].classes_)))}")
grouped_job 매핑: {'bule_collar': 0, 'business': 1, 'etc': 2, 'special': 3, 'technician': 4, 'white_collar': 5}
housing 매핑: {'no': 0, 'unknown': 1, 'yes': 2}
loan 매핑: {'no': 0, 'unknown': 1, 'yes': 2}
contact 매핑: {'cellular': 0, 'telephone': 1}
poutcome 매핑: {'failure': 0, 'nonexistent': 1, 'success': 2}
```

Decision Tree

결정 트리 모델링과 특성 중요도 시각화

		precision	recall	f1-score	support	
	0 1	0.90 0.73	0.99 0.16	0.94 0.26	7265 971	
accu macro weighted		0.81 0.88	0.58 0.89	0.89 0.60 0.86	8236 8236 8236	

- 모델이 하나의 변수(nr.employed)에 **과도하게 의존**.
- euribor3m, emp.var.rate, previous, campaign 등은 거의 쓰이지 않았고, 이들을 **제거해도 성능 변화가 없을 수 있음**.
- **의사결정 트리의 단점**이 드러남.
 - → 하나의 피처에 지나치게 의존해 **분기가 단순**해짐.
- 가장 중요한 feature = **nr.employed(고용된 사람 수)**
 - → (0.8): 모델이 대부분 이 변수 하나만으로 예측.
- 그 다음으로 중요한 변수는 poutcome (**과거 캠페인 결과)**, cons.price.idx(**소비자 물가 지수**)이고, 비중이 0.1 이하로 작음.
- 나머지 변수들은 0에 가깝고, **거의 의사 결정 트리에서 사용 X.**

결정 트리 시각화

Random Forest

랜덤 포레스트 모델링과 특성 중요도 시각화

최적 파라미터: {'class_weight': 'balanced', 'max_depth': 20, 'n_estimators': 150} 최고 교차검증 점수: 0.8847 테스트 정확도: 0.8763 Classification Report: recall f1-score support precision 0.9500 0.9313 7265 0.9132 0.3820 971 0.4646 0.3244 0.8763 8236 accuracy 0.6567 8236 macro avg 0.6889 0.6372

0.8603

weighted avg

0.8763

	param_n_estimators	param_max_depth	mean_test_score	rank_test_score
11	150	20	0.884669	1
12	200	20	0.884214	2
13	250	20	0.884032	3
14	300	20	0.883880	4
10	100	20	0.883637	5

0.8665

8236

Random Forest 모델에서의 특성 중요도

('age')

: 나이가 많고 적음이 예금 가입 여부에 가장 큰 영향을 주는 것으로 보여짐.

('euribor3m')

: 유럽 기준금리로 경제적 요인이 큰 영향을 끼치는 것으로 보여줌.

('campaign')

: 마케팅 접촉 횟수가 중요 요인인 것 같음.

('grouped_job')

: 직업군에 따른 행동 패턴 차이가 있을 수 있음.

- 개인 특성 (age, job)과 경제적 지표 (euribor3m, nr.employed, emp.var.rate), 그리고 마케팅 전략 (campaign)에 민감하게 반응함.

랜덤 포레스트 내의 1번째 트리

XGBoost

XGBoost 모델링과 특성 중요도 시각화

최적 파라미터: {'max_depth': 3, 'min_child_weight': 5, 'n_estimators': 250, 'reg_alpha': 0.1, 'reg_lambda': 3, 'scale_pos_weigh

t': 7}

최고 교차검증 점수: 0.8477

테스트 정확도: 0.8458

Classification Report:	.assifica	ation F	Report:
------------------------	-----------	---------	---------

	precision	recall	f1-score	support
0 1	0.9430 0.3982	0.8783 0.6025	0.9095 0.4795	7265 971
accuracy macro avg weighted avg	0.6706 0.8787	0.7404 0.8458	0.8458 0.6945 0.8588	8236 8236 8236

$(max_depth = 3)$

: 가장 높은 mean_test_score를 보이며, 특히 n_estimators가 200-300 사이일 때 성능이 좋음.

(최적의 모델 선택)

- max_depth=3과 max_depth=4의 경우가 유리하지만, 복잡도와 안정성을 고려할 때 max_depth=3가 상대적으로 더 좋은 선택으로 보임.

XGBoost모델에서의 특성 중요도

(nr.employed)

- nr.employed **변수 하나만**으로도 **모델 예측의 대부 분을 설명**하고 있음 (0.77)
- 전체 고용 수치(nr.employed)가 고객의 예금 가입 여부와 매우 밀접하게 연관되어 있다는 것을 의미.

(모델의 학습 편향 가능성이 의심됨)

- nr.employed를 제외한 특성들의 중요도가 미미함.

결론

모델	정확도	Precision	Recall	F1-score	평가 요약
Decision Tree	0.89	0.73	0.16	0.26	과적합 의심 실질적 성능이 떨어짐
Random Forest	0.8763	0.4646	0.4646	0.3820	보수적 예측 Precision 우위
XGBoost	0.8458	0.3982	0.6025	0.4795	가장 균형적인 성능 실제 가입자를 잘 포착함

- 1. F1-score가 가장 높아 모델의 전반적 성능이 가장 우수 / 실제 예금 가입자를 최대한 포착하고 싶은 경우
- → XGBoost<mark>가 가장 적합</mark>
- 2. 반대로 예측 정확도와 해석 가능성을 중시하고, FP(False Positive)을 줄이는 게 중요한 경우
- → <mark>Random Forest</mark> 선택 가능
- 3. Decision Tree는 간단한 모델 해석에는 유용할 수 있으나, 성능상 선택 우선순위는 낮음

비즈니스 모델

(특정 연령대에 집중된 마케팅 전략)

- age 변수가 가장 중요한 특성으로 나타남
 - → 나이에 따라 예금 가입 성향이 크게 달라짐.
- 고령층(60세 이상)에게는 안정성과 고정 수익을 강조하는 상품을 제공.
- EX) "안정적 수익의 정기예금", "노후 대비 플랜"
- <u>젊은 층(20~30대)</u>에게는 유연하고 유동성 높은 예금 상품 제공.
 - EX) "단기 수시입출금 혜택", "목돈 모으기 챌린지 예금"

(금리(유럽 기준금리 euribor3m)에 따른 프로모션)

- euribor3m은 경제 상황을 반영하는 변수로, 금리가 높거나 낮을 때가입 여부가 달라짐.
- 금리 <u>상승</u> 시기: 고객이 예금에 관심을 가질 확률이 높음
 → 이 시점에 마케팅 집중.
- EX) "금리 인상 기념, 고금리 특판 예금 한정 출시!"