Lecture 7: Heaps

Why Heaps?

- Remember from Algorithms and Data Structure course:
 - Array
 - Linear search: O(n)
 - Insertion, deletion: O(n)
 - Linked list:
 - Search: O(n)
 - Insertion, deletion: O(n)
 - Binary search in Array:
 - Search: O(log n)
 - Insert, delete in Array: O(n)
 - Binary search tree
 - Height may be O(n)
 - So, search, insert, delete: O(n)

- Can we do everything (search, insert, delete) in O(log n) time?
 - Yes, by heaps (this lecture), different Height-balanced search trees
 - by Skip list (next lecture)

Heaps

• A *heap* can be seen as a complete binary tree (complete means: last level may be partially complete from left to right.)

The heap property

• A node has the heap property if the value in the node is as large as or larger than the values in its children

- All leaf nodes automatically have the heap property
- A binary tree is a heap if *all* nodes in it have the heap property

siftUp

• Given a node that does not have the heap property, you can give it the heap property by exchanging its value with the value of the larger child

- This is sometimes called sifting up
- Notice that the child may have *lost* the heap property

Heaps

• In practice, heaps are usually implemented as arrays (array may not be sorted):

Heaps

- To represent a complete binary tree as an array:
 - The root node is A[1]
 - Node i is A[i]
 - The parent of node i is A[i/2] (note: integer divide)
 - The left child of node i is A[2i]
 - The right child of node i is A[2i + 1]

Referencing Heap Elements

• So...

```
Parent(i) { return [i/2]; }
Left(i) { return 2*i; }
right(i) { return 2*i + 1; }
```

Heap Property, Height

- Heap property:
 - $Parent \ge left and right$, for all nodes
 - Where is the largest element in a heap stored?
 - **Answer:** in the root.
- *** Important***: This is Max heap. We shall see Min heap at the end.
- **Heap Height:** What is the height of an n-element heap? Why?
 - **Answer:** O(log n), because complete binary tree.

Heap Operations: Heapify() (*** Very Important***)

- **Heapify ()**: *maintain the heap property*
 - If a node violates the heap property, then parent node "goes down" as long as required

Heap Operations: Heapify()

```
Heapify(A, i)
  if (1 \le \text{heap size}(A) \&\& A[1] > A[i])
      largest = 1;
  else largest = i;
  if (r \le heap size(A) \&\& A[r] > A[largest])
      largest = r;
  if (largest != i)
      Swap(A, i, largest);
      Heapify(A, largest);
```

Running time of Heapify()

O(log n)

```
Heapify(A, i)
  if (1 <= heap_size(A) && A[1] > A[i])
      largest = 1;
  else largest = i;
                                                     Total: O(1)
  if (r <= heap size(A) && A[r] > A[largest])
      largest = r;
  if (largest != i)
      Swap(A, i, largest);
      Heapify(A, largest);  How many times? Height = O(log n)
                               Total = O(1)*O(log n) = O(log n)
```

Heap Operations: BuildHeap()

- We can build a heap in a bottom-up manner by running **Heapify()** on successive subarrays
 - For array of length n, all elements in range A[n/2 + 1 ... n] are already heaps, because they have no childer.
 - So, walk backwards through the array from the remaining nodes n/2 to 1, calling **Heapify()** on each node.
 - Order of processing guarantees that the children of node
 i are heaps when i is processed

BuildHeap() Example

Starting array:

BuildHeap(): Pseudo code

```
BuildHeap(A)
{
   heap_size = n;
   for (i = n/2; i >= 1; i--)
        Heapify(A, i);
}
```

BuildHeap(): Running time

Total time: n/2*O(log n) = O(n log n)

Heap Sort

- Step 1: make the unsorted array into a heap by BuildHeap() function.
- Step 2: Swap the root (maximum) with the last unsorted element.
- **Step3**: Reheap by **Heapify()** function.

After BuildHeap()

values

[0] *70* [1] *60* [2] **12** [3] 40 [4] *30* [5] 6 [6] 10

Heap sort: Swap root element into last place in unsorted array

Heap sort: After swapping root element into its place

Heap sort: After reheaping remaining unsorted elements

values [0] 60

[1] 40

[2] 12

[3] 10

[4] 30

[5] 6

[6] 70

Heap sort: Swap root element into last place in unsorted array

Heap sort: After swapping root element into its place

Heap sort: After reheaping remaining unsorted elements

Heap sort: Swap root element into last place in unsorted array

Heap sort: After swapping root element into its place

Heap sort: After reheaping remaining unsorted elements

values [0] 30 [1] 10 [2] 12 [3] 6 [4] 40 [5] 60 [6] 70

Heap sort: Swap root element into last place in unsorted array

Heap sort: After swapping root element into its place

Heap sort: After reheaping remaining unsorted elements

Heap sort: Swap root element into last place in unsorted array

Heap sort: After swapping root element into its place

Heap sort: After reheaping remaining unsorted elements

values [0] 10 [1] 6 [2] 12 [3] 30 [4] 40 [5] 60 [6] 70

Heap sort: Swap root element into last place in unsorted array

Heap sort: After swapping root element into its place

ALL ELEMENTS ARE SORTED

Heap sort: Another example

Heapsort: Pseudo code

```
Heapsort (A)
     heap size = n;
     BuildHeap(A);
     for (i = n; i >= 2; i--)
          Swap(A[1], A[i]);
          heap size -= 1;
          Heapify(A, 1);
```

Heapsort: Running time

```
Heapsort (A)
       heap_size = n;
       BuildHeap(A); ←
                                            O(n log n)
       for (i = n; i >= 2; i--)
               Swap(A[1], A[i]);
               heap size -= 1; ←
               Heapify(A, 1); \leftarrow

    O(log n)

          Total: O(n \log n) + (n-1)*(O(1) + O(\log n)) = O(n \log n) + O(n \log n) = O(n \log n)
```

Compare with Quicksort

- Heapsort is *always* O(n log n)
- Quicksort is usually O(n log n) but in the worst case slows to O(n²)
- Quicksort is generally faster, but Heapsort has the guaranteed O(n log n) time and can be used in time-critical applications

Using Heaps: Priority Queues

- But the heap data structure is incredibly useful for implementing *priority queues*
- Priority Queue has following operations
 - Maximum() returns the maximum element
 - ExtractMax() removes and returns the maximum element
 - Increasekey(i, new_value) change the value of position i to new higher value (new value)
 - Insert(x) inserts the element x into the queue

Heap Maximum

Heap Extract Maximum

Heap Extract Maximum

- Return the root element
- Delete the root element
- Reheapify

Pseudo code

```
HeapExtractMax()
{
    return A[1];
    heap_size = heap_size-1;
    A[1] = A[heap_size];
    Reheapify();
}
```

Heap Extract Maximum

- Return the root element
- Delete the root element
- Reheapify

Pseudo code

```
HeapExtractMax()
{
    return A[1];
    heap_size = heap_size-1;
    A[1] = A[heap_size];
    Reheapify();
}
```

Heap ExtractMaximum

Pseudo code Return the root element Delete the root element HeapExtractMax() Reheapify return A[1]; heap_size = heap_size-1; *60* $A[1] = A[heap_size]; \nearrow$ Reheapify(); 12 40 12 30 6 3

• Cost: $O(1)+O(1)+O(1)+O(\log n) = O(\log n)$

Priority Queue Operations: IncreaseKey

- -Increase a value to **new value**
- do swapping as long as necessary to maintain the heap property

Pseudo code

```
IncreaseKey(i, new_value)
{
    A[i] = new_value;
    while (i>1 and A[parent(i)] < A[i])
        swap(A[parent(i)], A[i]);
        i = parent(i);
}</pre>
```

Priority Queue Operations: IncreaseKey

• Cost: O(1)+height* $(O(1)+O(1)) = O(\log n)*O(1) = O(\log n)$

- Insert a node with -∞ at the end
- then, increase the node to x by HeapIncrease()
- HeapIncrease() will do the necessary heapify

Pseudo code

```
HeapInsert(x)
{
    hear_size = heap_size+1;
    A[heap_size] = x;
    HeapIncrease(heap_size,x);
}
```

Pseudo code

HeapInsert(x)

- Insert a node with -∞ at the end
- then, increase the node to x by HeapIncrease()
- HeapIncrease() will do the necessary

Example: HeapInsert(65)

Pseudo code

HeapInsert(x)

- Insert a node with -∞ at the end
- then, increase the node to x by HeapIncrease()
- HeapIncrease() will do the necessary heapify

Example: HeapInsert(65)

Pseudo code

HeapInsert(x)

- Insert a node with -∞ at the end
- then, increase the node to x by HeapIncrease()
- HeapIncrease() will do the necessary heapify

Example: HeapInsert(65)

Pseudo code

HeapInsert(x)

- Insert a node with -∞ at the end
- then, increase the node to x by HeapIncrease()
- HeapIncrease() will do the necessary heapify

Min Heap

- Parent <= left, right for all nodes
- All operations similar to Max Heap: Heapify(), BuildHeap(), HeapSort(), HeapMin(), HeapInsert(), HeapExtractMin(), DecreaseKey().

