CS C341 / IS C361 Data Structures & Algorithms

DICTIONARY DATA STRUCTURES - HASHING

Bloom Filters

- Motivation
- Implementation
- Analysis
- General Scenario
- Applications.

Las Vegas vs. Monte Carlo Techniques

BLOOM FILTERS - MOTIVATION

- Example Problem: Stemming of words (as part of indexing documents in a search engine)
- Consider this outline for stemming :

```
for each word w
```

```
if (w is an exception word)

Need dictionary
lookup on disk

then return getStem(w,D)

else return apply-simple-rule(w)
```

- Cost for checking exceptions:
 - N * Td where
 N is # words and
 Td is lookup time (on disk)

BLOOM FILTERS - MOTIVATION

• Suppose we can trade-off space for false positives (in lookup): for each word w if (w is in Dm) // in-memory lookup (probabilistic) then { s = getStem(w, Dd) // disk lookup (deterministic) if invalid(s) then return apply-simple-rule(w); else return s; } else { return apply-simple-rule(w); }

- Ocost for checking exceptions:
 - N * Tm + (r + f)*N*Td
 - o r is the proportion of exception words
 - of is false positive rate
 - o Tm is lookup time in memory
 - o Td is lookup time on disk
 - Time Saved: (1 r –f) * (Td Tm) / Td

BLOOM FILTERS - AN IMPLEMENTATION

- Hash table is an array of bits indexed from 0 to m-1.
 - Initialize all bits to 0.
 - insert(k):
 - o Compute $h_1(k)$, $h_2(k)$, ..., $h_d(k)$ where each h_i is a hash function resulting in one of the m addresses.
 - o Set all those addressed locations to 1.
 - find(k):
 - o Compute $h_1(k)$, $h_2(k)$, ..., $h_d(k)$
 - o If all addressed locations are 1 then k is found

Else k is not found

Not necessarily correct!

BLOOM FILTERS - ANALYSIS

- o Consider a table H of size m.
- Assume we use d "good" hash functions.
- After n elements have been inserted, the probability that a specific location is 0 is given by
 - $p = (1 1/m)^{dn} \approx e^{-dn/m}$

- // Why?
- Let q be the proportion of 0 bits after insertion of n elements
 - Then the expected value E(q) = p
- o Claim (w/o proof):
 - With high probability q is close to its mean.
- So, the false positive rate is:
 - $f = (1-q)^d = (1-p)^d = (1 e^{-dn/m})^d$ // Why?

BLOOM FILTERS - SUMMARY

- A Bloom Filter is a probabilistic data structure:
 - If a value is not found then it is definitely not a member
 - If a value is found then it may or may not be a member.
- The error probability can be traded for space.
 - In practice, one can get low error probability with a (small) constant number of bits per element: (1 in our example implementation).
- In general, whenever a large dictionary (or set) has to be stored on disk (or remotely on the network)
 - then a probabilistic data structure can be stored in memory and used as a filter thereby limiting the queries on disk (or over the network).

BLOOM FILTERS - APPLICATIONS

- 1. Dictionaries (for spell-checkers, passwords, etc.)
- 2. Distributed Databases exchange Bloom Filters instead of full lists.
 - A distributed database may split its data onto multiple computers over a network.
 - When a query involving data from multiple data sets is to be executed
 - othen you may need to send an entire table from one computer to another
 - Alternatively one can send a Bloom filter, after which a subset of the data can be queried over the network.

BLOOM FILTERS — APPLICATIONS

[2]

3. Network Caches

- Multiple clients on the network cache data (from the server)
- If a client doesn't find data in its cache it can request another client
 - Since each client has only a subset of data such "forwarding of requests" makes sense only if you know what data is held in another client's cache
 - Instead of exchanging all the data clients can exchange Bloom filters.

BLOOM FILTERS — APPLICATIONS

[3]

- 4. Peer-to-Peer Systems Distributed Hash Tables
 - In a P2P system, when a query (requesting an object) is issued, first the object must be located
 - Notionally, every peer maintains a hashtable (mapping object IDs to peers)
 - As the P2P system gets large maintaining a hashtable in every peer is costly
 Why?
 - An alternative is to maintain a Bloom filter which may result in queries of non-existent objects to remote peers
 - oThis is acceptable because P2P systems use redundant copies and replicated queries.

LAS VEGAS VS. MONTE CARLO

- Quicksort:
 - Randomization for improved performance correctness not altered
- Hashtables (for unordered dictionaries) :
 - Any 1-to-1 mapping will yield a table but a good hash function should yield a "uniformly random" distribution
 - Universal hashing chooses hash function "randomly"
 - Both of the above are "performance" enhancements
- Both of the above are examples of Las Vegas techniques.
- Monte Carlo Techniques
 - e.g. Bloom Filter Randomization yields a probabilistic algorithm i.e. that may not produce correct results always.