USN					
CDI					

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)

IV Semester B. E. Fast Track Examinations July-19

Computer Science and Engineering THEORY OF COMPUTATIONS

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in the first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B.

PART A

1	1.1	Give <i>DFA</i> accepting the language over $\Sigma = \{0,1\}$, the set of all strings that begin with 01.	02
	1.2	For the regular expression $(ab^* + (ab)^*b)$, find an equivalent NFA- ϵ by	
		applying kleen's theorem. Do not attempt to simplify the answer.	02
	1.3	What is the language generated by the <i>CFG</i> with the productions	
		$S \to aS_b bS_a SS \epsilon$	02
	1.4	Define right most derivation. Give right most derivation for the string $abaaba$ in the grammar with the productions: $S \rightarrow aSaSbS aSbSaS bSaSaS \epsilon$	02
	1.5	Define deterministic pushdown automata.	01
	1.6	Give the transition diagram for PDA recognizing the language:	
		$f = \{a^n b^n n \ge 0\}$	02
	1.7	Construct <i>DPDA</i> equivalent to the <i>DFA</i> whose transition table is as below.	
		Here state A is the start state and state C is the final state.	
			0.0
	1.0		02
	1.8	Identify the useless variables in the <i>CFG</i> below:	
	1.0	$S \to A B C, A \to aAa B a, B \to bb bB, C \to aCaa D, D \to baD abD$	02
	1.9	obtain turing machine to accept the language	00
	1 10	$L = \{w w \in \{a, b\}\}^* \text{ and } w \text{ ends with aba}\}$	02
	1.10		01
	1.11		01
	1.12	If L_1 and L_2 are recursively enumerable languages over \sum then $L_1 \cap L_2$ is	
		·	01

PART B

2	a	Define DFA. Give DFA which accepts the following languages over the	
		alphabet $\Sigma = \{a, b\}$	
		i) Strings that do not end with <i>ab</i>	
		ii) Strings that do not contain the substring aa.	08

	b	Consider the <i>NFA</i> pictured as below in Fig 2b, using the subset construction, draw the <i>DFA</i> accepting the same language.	
		6 0 1 5 0 b	
		Fig 2b OR	08
3	a	Define the following; i) $NFA - \in$ ii) language of $NFA - \in$ iii) $\in -closure(q)$, where $q \in Q$ of $NFA - \in$. For the $NFA - \in$ below, compute $\delta * (A, aba)$ and $\delta * (A, aaabbb)$.	
	b	Fig 3a For the <i>DFA</i> below in Fig 3b, use the minimization algorithm to find a minimum state <i>DFA</i> recognizing the same language [by table filling approach].	08
		Fig 3b	08
4	a	Define regular expressions. Give regular expressions which generates the following languages over the alphabet $\Sigma = \{0,1\}$. i) Set of all strings containing a substring 00. ii) Set of all strings without two consecutive zeros.	06
	b	Find the equivalent regular expression for the DFA below. Use kleen's theorem part-II.	
		Fig 4b	10
		OR	

5	a b c	state and prove pumping lemma for regular languages. Using pumping lemma show that the language $L = \{xy x, y \in \{0,1\}^* \text{ and } y \text{ is either } x \text{ or } x^r\}$ is not regular. Let M_1 and M_2 are DFA 's as shown below in fig 5c accepting languages L_1 and L_2 respectively. Draw DFA s accepting the following languages. i) $L_1 \cap L_2$ ii) $L_1 \perp L_2$	06 04 06
6	a	Define <i>CFG</i> and language generated by <i>CFG</i> . Construct <i>CFG</i> to generate the following languages. i) $L_1 = \{a^i b^j c^k k = i + j, i \ge 0, j \ge 0\}$ ii) $L_2 = \{a^i b^j c^k i = j \text{ or } j = k\}$	06
	b	Consider the CFG , G with productions $S \rightarrow aB bA$, $A \rightarrow a aS bAA$,	06
	С	$B \rightarrow b \mid bS \mid aBB$. Obtain <i>LMD</i> , <i>RMD</i> and derivation tree for the string <i>aabbabab</i> . Define ambiguity in <i>CFG</i> . Show that the <i>CFG</i> below is ambiguous.	06
		$S \to aS Sa a$.	04
7	a b	Simplify the following grammar $S \to ABC AB$ $A \to BA BC a \epsilon$ $B \to AC CB b \epsilon$ $C \to BC AB A C$ Given below a CFG G, find a grammar G' in GNF generating $L(G) - \{\epsilon\}$ $S \to AB$	08
		$\begin{array}{c} S \to AB \\ A \to BS a \end{array}$	
		$B \to SA b$	08
8	a b	Define <i>PDA</i> and instantaneous description (<i>ID</i>). Construct <i>PDA</i> to accept set of all palindromes over { <i>a, b</i> }. Show by <i>IDs</i> the string <i>aabaabaa</i> is acceptabled by the <i>PDA</i> . List the steps to convert the given <i>CFG</i> to equivalent <i>PDA</i> by empty stack. Convert the <i>CFG</i> below to its equivalent <i>PDA</i> by empty stack. Show that that	08
		string $a + (a * b)$ is generated by the grammar and the same is accepted by the equivalent PDA . $S \rightarrow S + S S * S s - s (S) a b$	08
		OR	
9	a b	How to find an equivalent <i>CFG</i> from a given <i>PDA</i> . State and prove pumping lemma for <i>CFLs</i> . Show that the language	04
		L ₁ = $\{a^ib^jc^k i < j < k\}$ is not <i>CFL</i> . Prove that CFLs are not closed under intersection and difference.	06 06
	С		

10	а	Define turing machine and the language of turing machine. Design TM to perform the string copy operation. The string is constructed over $\Sigma = \{a, b\}$.						
		Trace the machine for string bab.						
	b	Define unrestricted grammar .Give unrestricted grammar to generate the						
		language $L = \{a^n b^n c^n n \ge 1\}$. Show that the string <i>aabbcc</i> is generated.	04					
	C	Prove that if L is recursive, then L is recursively enumerable also.						
		OR						
11	a	Design turing machine to accept palindrome over						
		$\Sigma = \{a, b\}$. Give the sequence of <i>IDs</i> for the string <i>abba</i> .	08					
	b	Write a note on:						
		i) Multistage turing machine						
		ii) Chomeky hierarchy.	08					