ER DIAGRAMS

ER TO RELATIONAL MAPPING ALGO

OUTLINE

ER-to-Relational Mapping Algorithm

Step 1: Mapping of Regular Entity Types

Step 2: Mapping of Weak Entity Types

Step 3: Mapping of Binary 1:1 Relation Types

Step 4: Mapping of Binary 1:N Relationship Types.

Step 5: Mapping of Binary M:N Relationship Types.

Step 6: Mapping of Multivalued attributes.

Step 7: Mapping of N-ary Relationship Types.

FIG: THE ER CONCEPTUAL SCHEMA DIAGRAM FOR THE COMPANY DATABASE.

Step 1: Mapping of Regular Entity Types.

- For each regular (strong) entity type E in the ER schema, create a relation R that includes all the simple attributes of E.
- Choose one of the key attributes of E as the primary key for R. If the chosen key of E is composite, the set of simple attributes that form it will together form the primary key of R.

Example:

- We create the relations **EMPLOYEE**, **DEPARTMENT**, and **PROJECT** in the relational schema corresponding to the regular entities in the ER diagram.
- SSN, DNUMBER, and PNUMBER are the primary keys for the relations EMPLOYEE, DEPARTMENT, and PROJECT as shown.

Step 1: Mapping of Regular Entity Types.

Entity Relations after step 1.

Step 2: Mapping of Weak Entity Types

- For each weak entity type W in the ER schema with owner entity type E, create a relation R and include all simple attributes (or simple components of composite attributes) of W as attributes of R.
- In addition, include as foreign key attributes of R the primary key attribute(s) of the relation(s) that correspond to the owner entity type(s).
- The primary key of R is the *combination of* the primary key(s) of the owner(s) and the partial key of the weak entity type W, if any.

Example: Create the relation DEPENDENT in this step to correspond to the weak entity type DEPENDENT. Include the primary key SSN of the EMPLOYEE relation as a foreign key attribute of DEPENDENT (renamed to ESSN). The primary key of the DEPENDENT relation is the combination {ESSN, DEPENDENT_NAME} because DEPENDENT_NAME is the partial key of DEPENDENT.

Step 2: Mapping of Weak Entity Types

Additional weak entity relation after step 2

Step 3: Mapping of Binary 1:1 Relation Types

For each binary 1:1 relationship type R in the ER schema, identify the relations S and T that correspond to the entity types participating in R. There are three possible approaches:

(1) **Foreign Key approach:** Choose one of the relations-S, say-and include a foreign key in S the primary key of T. It is better to choose an entity type with *total participation* in R in the role of S.

Example: 1:1 relation MANAGES is mapped by choosing the participating entity type DEPARTMENT to serve in the role of S, because its participation in the MANAGES relationship type is total.

- (2) <u>Merged relation option:</u> An alternate mapping of a 1:1 relationship type is possible by merging the two entity types and the relationship into a single relation. **This may be appropriate when** *both participations* are *total*.
- (3) <u>Cross-reference or relationship relation option:</u> The third alternative is to set up a third relation R for the purpose of cross-referencing the primary keys of the two relations S and T representing the entity types.

Step 3: Mapping of Binary 1:1 Relation Types

(1) <u>Foreign Key approach:</u> Choose one of the relations-S, say-and include a foreign key in S the primary key of T. It is better to choose an entity type with *total participation* in R in the role of S.

Example: 1:1 relation MANAGES is mapped by choosing the participating entity type DEPARTMENT to serve in the role of S, because its participation in the MANAGES relationship type is total.

EMPLOYEE

Fname	Minit	Lname	<u>SSN</u>	Bdate	Address	Sex	Salary
DEPARTMENT							
Dname	Dnumber	MgrSSN					
PROJECT							
Pname	Pnumber	Plocation					
DEPENDENT							
<u>ESSN</u>	Dependent name	_ Sex	Bdate	Relationship			

Step 4: Mapping of Binary 1:N Relationship Types.

- For each regular binary 1:N relationship type R, identify the relation S that represent the participating entity type at the N-side of the relationship type.
- Include as foreign key in S the primary key of the relation T that represents the other entity type participating in R.
- Include any simple attributes of the 1:N relation type as attributes of S.

Example: 1:N relationship types WORKS_FOR, CONTROLS, and SUPERVISION in the figure. For WORKS_FOR we include the primary key DNUMBER of the DEPARTMENT relation as foreign key in the EMPLOYEE relation and call it DNO.

Step 5: Mapping of Binary M:N Relationship Types.

- For each regular binary M:N relationship type R, *create a new relation* S to represent R.
- Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types; *their combination will form the primary key* of S.
- Also include any simple attributes of the M:N relationship type (or simple components of composite attributes) as attributes of S.

Example: The M:N relationship type WORKS_ON from the ER diagram is mapped by creating a relation WORKS_ON in the relational database schema. The primary keys of the PROJECT and EMPLOYEE relations are included as foreign keys in WORKS_ON and renamed PNO and ESSN, respectively.

Attribute HOURS in WORKS_ON represents the HOURS attribute of the relation type. The primary key of the WORKS_ON relation is the combination of the foreign key attributes {ESSN, PNO}.

Step 6: Mapping of Multivalued attributes

- For each multivalued attribute A, create a new relation R. This relation R will include an attribute corresponding to A, plus the primary key attribute K-as a foreign key in R-of the relation that represents the entity type of relationship type that has A as an attribute.
- The primary key of R is the combination of A and K. If the multivalued attribute is composite, we include its simple components.

Example: The relation DEPT_LOCATIONS is created. The attribute DLOCATION represents the multivalued attribute LOCATIONS of DEPARTMENT, while DNUMBER-as foreign key-represents the primary key of the DEPARTMENT relation. The primary key of R is the combination of {DNUMBER, DLOCATION}.

Step 7: Mapping of N-ary Relationship Types.

- For each n-ary relationship type R, where n>2, create a new relationship S to represent R.
- Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types.
- Also include any simple attributes of the n-ary relationship type (or simple components of composite attributes) as attributes of S.

RESULT OF MAPPING THE COMPANY ER SCHEMA INTO A RELATIONAL SCHEMA.