In[1]:= << im_example_quad.m</pre>

Matched Envelope Solution -- IM Method

5-23-2006 by lund on linac

Transport Lattice

Quadrupole
120.
120.
0.5
0.5
0.5
68.147

Lattice Focusing Functions (black = x, red = y)

Beam Properties

Dimensionless Perveance, Q	$5. imes 10^{-4}$
RMS Edge Emittances [m-rad]:	
ϵ_{x}	2.7726×10^{-5}
$arepsilon_{f y}$	2.7726×10^{-5}
Depressed Phase Advances [deg/period]	
x-plane, σ_{x} [deg/period]	24.
y-plane, $\sigma_{\! ext{y}}$ [deg/period]	24.
Tune Depressions:	
$\sigma_{ m x}$ / $\sigma_{ m 0~x}$	0.2
$\sigma_{ m y}$ / $\sigma_{ m 0~y}$	0.2

Matched Solution

Matched Envelope Angles (black = x, red = y)

	x-Horizontal	y-Vertical
Radii, $r_x = 2 \langle x^2 \rangle^{1/2}$, $r_y = 2 \langle y^2 \rangle^{1/2}$:		
Avg (Lattice Period), $\overline{r_x}$, $\overline{r_y}$ [mm]	6.5204	6.5204
Max, $Max[r_x]$, $Max[r_y]$ [mm]	9.3774	9.3774
s-locations of Maxs [mm]	125.	375.
Min, $Min[r_x]$, $Min[r_y]$ [mm]	4.0108	4.0108
s-locations of Mins [mm]	375.	125.
Angles, r_x' , r_y' :		
$ exttt{Max}, exttt{Max}[exttt{r}_{ exttt{x}}], exttt{Max}[exttt{r}_{ exttt{y}}] [exttt{mrad}]$	33.621	33.621
s-locations of Maxs [mm]	62.5	312.5
Min, $Min[r_x]$, $Min[r_y]$ [mrad]	-33.621	-33.621
s-locations of Mins [mm]	187.5	437.5
Matching Conditions:		
Radii, $r_x[0], r_y[0]$ [mm]	6.3559	6.3559
Angles, $r_x'[0], r_y'[0]$ [mrad]	28.617	-28.617

Average Radius Measures:

 $\sqrt{\overline{r_x} \ \overline{r_y}} \quad [mm]$ $(\overline{r_x} + \overline{r_y}) / 2 \quad [mm]$ 6.2547
6.5204

Matched Solution -- Numerical Parameters

Parameterization Case

Specified Fractional Tolerance $1.\times 10^{-6}$ Achieved Fractional Tolerance 9.456×10^{-7}

Iterations Needed 7
CPU Time for Solution [sec] 4.33