CO-2 - Probability Session-10:

Session Topic: Expectation of a Function of a Random Variable

Probability, Statistics and Queueing Theory

(Course code: 21MT2103RA)

CO#2 (Probability)

- Continuous Random Variables: Uniform, Exponential and Normal Random Variables
 - Expectation of a Random Variable : Discrete and Continuous
 Case
 - Expectation of a Function of a Random Variable
 - Higher Order Moments, Variance, Standard Deviation
 - Jointly Distributed Random Variables
 - Joint Distribution Functions, Independent Random Variables

Functions of a Random Variable

If X is a random variable and Y=g(X), then Y itself is a random variable.

Examples of functions of random variable are

aX where a is a constant

X +b where b is a constant

aX + b

 $X^*X = X^2$

 $(X-\mu)^2$

 X^4

Let us learn to compute the expected value of Y, a function of X.

Expectation of a Function of a Discrete Random Variable

Let X be a discrete random variable with PMF $P_X(x)$ and let Y=g(X). Then Y itself is a discrete random variable.

The expectation of a function of X, g(X), is given by the following formula:

$$E[g(X)] = \sum_{x_k \in R_X} g(x_k) P_X(x_k)$$

Expectation of a Function of a Discrete Random Variable: example

Example question:

Let X be a random variable showing the value of the outcome of throwing a fair dice. Compute E[Y] where Y=X*X.

Solution:

The expectation of a function of X, g(X), is given by the following formula:

$$E[g(X)] = \sum_{x_k \in R_X} g(x_k) P_X(x_k)$$

Since all 6 outcomes are equally likely, the PMF of X is $P(x) = \frac{1}{6}$ for x=1,2,3,4,5,6.

So,
$$E[Y] = E[X*X] = \Sigma x*x*P(x)$$

$$= \frac{1}{6} [1x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6]$$

$$= \frac{1}{6} [91]$$

$$= 91/6.$$

Expectation of a Function of a Continuous Random Variable

Let X be a continuous random variable with pdf f(x). Then the expectation of a function of X, g(X), is given by the following

Formula:

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f(x) \, dx.$$

Expectation of a Function of a Continuous Random Variable: example

Let X denote the time a person waits for an elevator to arrive. Compute $E\{X^2\}$ when the pdf of X is given by

$$f(x) = egin{cases} x, & ext{for } 0 \leq x \leq 1 \ 2-x, & ext{for } 1 < x \leq 2 \ 0, & ext{otherwise} \end{cases}$$

We will use the following formula:

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f(x) \, dx.$$

$$egin{align} \mathrm{E}[X^2] &= \int\limits_0^1 \! x^2 \cdot x \, dx + \int\limits_1^2 \! x^2 \cdot (2-x) \, dx \ &= \int\limits_0^1 \! x^3 \, dx + \int\limits_1^2 \! (2x^2 - x^3) \, dx = rac{1}{4} + rac{11}{12} = rac{7}{6}. \end{aligned}$$

Linear property of Expectation

Statement: If a and b are constants, then E[a X + b] = a E[X] + b

Proof: Let g(X) = a X + b where X is a continuous random variable.

$$\mathrm{E}[g(X)] = \int_{-\infty}^{\infty} g(x) \, f_X(x) \; dx.$$

E[a X + b]
$$=\int_{-\infty}^{\infty} (ax+b) f_X(x) dx$$
 $=\int_{-\infty}^{\infty} ax f_X(x) dx + \int_{-\infty}^{\infty} b f_X(x) dx$

$$=a\int_{-\infty}^{\infty}x\,f_X(x)\;dx+b\int_{-\infty}^{\infty}f_X(x)\;dx$$

$$= a E[X] + b$$

Linear property of Expectation

- If a and b are constants, then E[a + b X] = a + b E[X].
- For any random variables X and Y, E[X + Y] = E[X] + E[Y].

The above two properties show that expectation is a linear operator.

FROM DISCRETE TO CONTINUOUS

	Discrete	Continuous
PMF/PDF	$p_X(x) = P(X = x)$	$f_X(x) \neq P(X = x) = 0$
CDF	$F_X(x) = \sum_{t \le x} p_X(t)$	$F_X(x) = \int_{-\infty}^x f_X(t) dt$
Normalization	$\sum_{x} p_X(x) = \overline{1}$	$\int_{-\infty}^{\infty} f_X(x) dx = 1$
Expectation	$\mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$	$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$

References

* Section 3.2, 4.1,4.2 of TS1: Alex Tsun, Probability & Statistics with Applications to Computing (Available at:

http://www.alextsun.com/files/Prob_Stat_for_CS_Book.pdf)

*

https://www.probabilitycourse.com/chapter4/4_1_0_continuous_random_vars_dist_ributions.php

* https://www.probabilitycourse.com/chapter3/3_2_3_functions_random_var.php

* Chapter IX.2 of TP1: William Feller, An Introduction to Probability Theory and Its Applications: Volume 1, Third Edition, 1968 by John Wiley & Sons, Inc.

* Video: