对correlation shift和diversity shift的理解

Part I: 有关correlation shift和diversity shift的定义,和所导出的条件概率不变性思考

Figure 2: Explanatory illustrations for diversity and correlation shift.

总结如下:

	P(X)	P(Y X)
divesity shift (PACS, VLCS):	$P_{tr}(X) eq P_{te}(X)$	$P_{tr}(X) = P_{te}(X)$
correlation shift (CMNIST):	support($P_{tr}(X)$)=support($P_{te}(X)$) (若假设 $P_{tr}(Y)=P_{te}(Y)$,且假设风格与label无关,则 $P_{tr}(Y X)=P_{te}(Y X)$)	$P_{tr}(Y X) eq P_{te}(X)$

Part II: spurious feature Z_2 在实际中如何被估计

做法:训练一个网络专门用于预测样本来自哪个domain。该网络的特征提取器提取出的特征被视为 Z_2