Probabilistic Programming Languages (PPL)

MPRI 2.40 - 2024/2025

Higher-Order Semantics

Christine Tasson

October, the 3rd

Today's schedule

Semantics, Higher Order and discrete distributions

Syntax of a functional discrete PPL

Discrete Markov Processes and Stochastic Matrices

Probabilistic Coherent Spaces

Practical Session

Modeling

Computing semantics

Semantics, Higher-Order and continuous distribution

Continuous Markov Processes and Kernels

The problem with higher-order (Aumman's Lemma)

Quasi Borel Spaces and ICones

Higher-order PPL with discrete

distributions

Functional language

A Call-by-value probabilistic λ -calculus

Ground types:
$$b := \text{unit} |\text{bool}| \text{int} |b \times b|$$

Types: $t := b \text{ dist} |t \otimes t| t \rightarrow t$

Constants: $c := ()|\text{true}|\text{false}|\text{n}|(c,c)|f(c,...,c) \text{ where } f \text{ is a ground operator}$

Values: $v := \text{Dirac } c|\text{Bernoulli r}|\text{Dice n}|\lambda x.e|\text{fixx.e}$

Terms: $e := v|x|(e,e)|(v)w|\text{if } v : e \text{ else: } e |\text{let } x = \text{Sample } e \text{ in } e$

Contexts: $G := 1|G_0,x : t \text{ where } x \notin G_0$

$G \vdash_{\Bbbk} e : t \mid \mathsf{Type} \; \mathsf{System}$

Deterministic (k = d)

$$G \vdash_d () : unit$$
 $G \vdash_d true : bool$

$$\frac{n \in \mathbb{N}}{G \vdash_{\mathbf{d}} \underline{n} : \mathsf{int}}$$

$$\frac{n \in \mathbb{N}}{G \vdash_{d} n : \text{int}} \qquad \frac{f \in b_{1} \times \dots \times b_{n} \to b'}{G \vdash_{d} f(\vec{c}) : b'}$$

$$\frac{n \in \mathbb{N}}{G \vdash_{d} \mathsf{Dice} \ n : \mathsf{int} \ \mathsf{dist}}$$

$$\frac{r \in \mathbb{R}}{G \vdash_{d} \mathsf{Bernoulli} \ r : \mathsf{bool} \ \mathsf{dist}}$$

$$\frac{G \vdash_{d} c : b}{G \vdash_{d} \mathsf{Dirac}(c) : b \mathsf{ dist}}$$

Deterministic or Probabilistic (k = d **or** k = p**)**

$$\frac{G \vdash_{\mathbf{k}} e_1 : t_1 \qquad G \vdash_{\mathbf{k}} e_2 : t_2}{G \vdash_{\mathbf{k}} (e_1, e_2) : t_1 \times t_2} \qquad \frac{G \vdash_{\mathbf{k}} x : t_1 \vdash_{\mathbf{k}} e : t_2}{G \vdash_{\mathbf{k}} \lambda x.e : t_1 \to t_2}$$

$$\frac{G + [x : t_1] \vdash_k e : t_2}{G \vdash_k \lambda x.e : t_1 \to t_2}$$

$$\frac{G \vdash_{k} e_{1} : t_{1} \qquad G \vdash_{k} e_{2} : t_{2}}{G \vdash_{k} (e_{1}, e_{2}) : t_{1} \times t_{2}} \qquad \frac{G \vdash_{k} e_{1} : t_{1} \vdash_{k} e : t_{2}}{G \vdash_{k} \lambda x.e : t_{1} \rightarrow t_{2}} \qquad \frac{G \vdash_{k} e_{2} : t_{1} \rightarrow t_{2} \qquad G \vdash_{k} e_{1} : t_{1}}{G \vdash_{k} (e_{2})e_{1} : t_{2}} \qquad \frac{G \vdash_{k} e_{1} : t_{1}}{G \vdash_{k} fix x.e : t}$$

$$\frac{G,[x:t]\vdash_{k}e:t}{G\vdash_{k}\text{fix }x.e:t}$$

$$\frac{G \vdash_{\mathbb{k}} e_1 : t_1 \qquad G + [x : t] \vdash_{\mathbb{k}} e_2 : t_2}{G \vdash_{\mathbb{k}} \text{let } x = e_1 \text{ in } e_2 : t_2}$$

$$\frac{G \vdash_{\texttt{d}} e : bool \qquad G \vdash_{\texttt{k}} e_1 : t \qquad G \vdash_{\texttt{k}} e_2 : t}{G \vdash_{\texttt{k}} \text{if } e \text{ then } e_1 \text{ else } e_2 : t}$$

Probabilistic (k = p)

$$G \vdash_{d} e : t$$

$$\frac{G \vdash_{d} e : t}{G \vdash_{p} e : t} \qquad \frac{G \vdash_{d} e : b \text{ dist}}{G \vdash_{p} \text{sample}(e) : b}$$

$$G \vdash_{d} e : bool$$

$$\frac{G \vdash_{p} e : b}{G \vdash_{d} \text{ infer } e : b \text{ dist}}$$

$$\overline{G \vdash_{P} \mathsf{assume}(P) : \mathit{unit}}$$

Operational Semantics (discrete case) Labeled Transition System (LTS)

🐚 Ugo Dal Lago, On Probabilistic Lambda-Calculi, in Foundations of Probabilistic Programming, 2020

 $(\lambda x.e)v \rightarrow_d e[v/x]$

Deterministic Reduction

$$\frac{1}{|\text{let } x = v \text{ in } e \to_{d} e[v/x]}$$

$$\overline{\operatorname{fix} x.e \to_{\operatorname{d}} e[\operatorname{fix} x.e/x]}$$

Probabilistic Reduction

$$\frac{e \to_{d} e'}{e \xrightarrow{1} e'} \qquad \frac{e \to_{d} e'}{\text{sample } (e) \xrightarrow{1} \text{sample } (e')}$$

$$\frac{\forall i \in \{1, ..., n\}}{\text{sample (Dice } n)^{\frac{1}{n}} \underline{i}}$$

sample (Bernoulli
$$r$$
) \xrightarrow{r} $\underline{\text{true}}$

sample (Bernoulli
$$r$$
) $\xrightarrow{1-r}$ \underline{false}

sample (Dirac
$$v$$
) $\xrightarrow{1} v$

$$\frac{e \xrightarrow{r} e'}{f(e) \xrightarrow{r} f(e')} \qquad \frac{e_2 \xrightarrow{r} e'_2}{(e_2)e_1 \xrightarrow{r} (e'_2)e_1} \qquad \frac{e_1 \xrightarrow{r} e'_1}{(e_2)e_1 \xrightarrow{r} (e_2)e'_1}$$

$$\frac{e_1 \stackrel{r}{\rightarrow} e_1'}{(e_2)e_1 \stackrel{r}{\rightarrow} (e_2)e_1'}$$

$$\frac{e_1 \xrightarrow{r} e_1'}{\text{let } x = e_1 \text{ in } e_2 \xrightarrow{r} \text{let } x = e_1' \text{ in } e_2}$$

Useful Notions in Probability Theory: Stochastic Matrices

Discrete measures

$$x \in (\mathbb{R}^+)^{|X|}$$
 is a countable distribution if $\sum_{a \in A} x_a = 1$
 $x \in (\mathbb{R}^+)^{|X|}$ is a countable subdistribution if $\sum_{a \in A} x_a \le 1$
 $x \in (\mathbb{R}^+)^{|X|}$ is a countable bounded measure if $\sum_{a \in A} x_a < \infty$

sMat: Objects are $(|X|, \mathcal{P}(X))$ where $\mathcal{P}(X)$ is a set of countable bounded measures over a set |X| and morphisms are stochastic matrices

Stochastic Matrix: $\theta: X \leadsto Y$ is a matrix $sMat(X, Y) \subset (\mathbb{R}^+)^{|X| \times |Y|}$ such that

$$\forall x \in \mathscr{P}(X) \ \forall b \in |Y|, \ \theta(x,b) = \sum_{a \in |X|} \theta_{a,b} x_a \qquad \theta \cdot x \in \mathscr{P}(Y)$$

Composition: $\theta: \mathcal{X} \leadsto \mathcal{Y}$ and $\theta': \mathcal{Y} \leadsto \mathcal{Z}$.

$$\forall x \in \mathcal{P}(X) \ \forall c \in |\mathcal{Z}|, \quad \theta' \circ \theta \ (x,c) = \sum_{a \in |X|} \sum_{b \in |Y|} \theta'_{b,c} \theta_{a,b} x_a = \sum_{b \in |Y|} \theta'(\theta(x,b),c)$$

Operational Semantics (Discrete case)

Stochastic Matrix:

$$\mathbf{Proba}(e,e') = \begin{cases} p & \text{if } e \xrightarrow{p} e' \\ 1 & \text{if } e \text{ does not reduce and } e = e' \\ 0 & \text{otherwise.} \end{cases}$$

Iterated Transition Matrix:

Proba $^k(e,e')$ is the probability that e reduces to e' in at most k steps.

Proba $^{\infty}(e,e')$ when e' does not reduce and is normal, is the probability that e reduces to e' in any number of steps

Higher-order PPL with discrete

distributions

Denotational Semantics of Higher-Order

Goal: Adequacy

Operational Semantics computes for every closed term of ground type $\vdash_p e : b$, the probability of reduction to each potential value $\mathbf{Proba}^{\infty}(e, _) : |b| \to \mathbb{R}^+$.

Denotational Semantics defines $\{\!\!\{\Gamma\vdash_p e:t\}\!\!\}: \{\!\!\{\Gamma\}\!\!\} \leadsto \{\!\!\{t\}\!\!\}$ which is an invariant of probabilistic reduction and such that adequacy holds: for every ground type b,

$$\forall v \in b, \ \left\{ \left[\vdash_{p} e : b \right] \right\}_{v} = \mathbf{Proba}^{\infty}(e, v)$$

7

Model of Linear Logic

SMCC - Symmetric Monoidal Closed Category

Category : \mathscr{C} objects + morphisms, identity and associative composition Symmetric Monoidal : $1, A \otimes B$ + unit, associative and commutative laws

Closed: $A \multimap B, \Lambda, \text{ev} + \text{currying}$ and evaluation are in tightly related, $\frac{A \otimes B \to C}{A \to B \multimap C}$.

Comonad

 $!: \mathscr{C} \to \mathscr{C}$ a functor (action on objects and morphisms) counit $\epsilon_A : !A \to A$ and comultiplication $\delta_A : !A \to !!A + \text{diagrams}$.

Monoidal Strength:

natural isomorphisms $!T \xrightarrow{\sim} 1$ and $!(A \times B) \xrightarrow{\sim} !A \otimes !B + \text{coherence diagrams}$

Commutative Comonoid

weakening $w_A: !A \rightarrow 1$ and contraction $c_A: !A \rightarrow !A \otimes !A + \text{coherence diagrams}$

Call-By-Value in models of LL

🌎 Call-by-name, call-by-value, call-by-need, and the Linear Lambda Calculus, Maraist & al.

Interpretation of types

Ground types: $Z^* = !Z$

Function types: $(A \rightarrow B)^* = !(A^* \multimap B^*)$

Types A^* are preceded by !. thus

$$\begin{array}{cccccc} A^* & \stackrel{\delta}{\longrightarrow} & !A^* \\ A^* & \stackrel{c}{\longrightarrow} & A^* \otimes A^* & & A^* \stackrel{w}{\longrightarrow} & 1 \end{array}$$

Contexts: $(A_1, ..., A_n)^* = A_1^* \otimes \cdots \otimes A_n^*$

Interpretation of terms: $G \vdash e : A$ is interpreted as a morphism $e^* : G^* \rightarrow A^*$

Semantics of CBV in LL

Interpretation of terms: $G \vdash e : A$ is interpreted as a morphism $e^* : G^* \rightarrow A^*$

Variable:

$$G,x:t\vdash x:t$$

$$G^* \otimes t^* \xrightarrow{w_{G^*} \otimes \mathrm{id}} 1 \otimes t^* \xrightarrow{\sim} t^*$$

Abstraction

$$\frac{G,x:t_1\vdash e:t_2}{G\vdash \lambda x.e:t_1\to t_2}$$

$$\frac{G^* \otimes t_1^* \xrightarrow{e^*} t_2^*}{G^* \xrightarrow{\Lambda e^*} t_1^* \multimap t_2^*}$$

$$G^* \xrightarrow{\delta} ! G^* \xrightarrow{!\Lambda e^*} ! (t_1^* \multimap t_2^*) = t_1 \to t_2^*$$

Application

$$\frac{G \vdash e_2 : t_1 \to t_2 \qquad G \vdash e_1 : t_1}{G \vdash (e_2)e_1 : t_2}$$

$$G^* \xrightarrow{e_2} ! (t_1^* \multimap t_2^*) \xrightarrow{\epsilon} t_1^* \multimap t_2^* \qquad G^* \xrightarrow{e_1} t_1^*$$

$$G^* \xrightarrow{c} G^* \otimes G^* \multimap (t_1^* \multimap t_2^*) \otimes t_1^* \xrightarrow{ev} t_2^*$$

Probabilistic Coherence Spaces

A model of LL for discrete probability

Vincent Danos, Thomas Ehrhard, On probabilistic coherence spaces, 2011

PCOH

The category of Probabilistic Coherent spaces - Pcoh

Object:
$$(|A|, P(A))$$
 with $|A|$ a set and $P(A) \subset (\mathbb{R}^+)^{|A|}$ such that
$$P(A) = P(A)^{\perp \perp} \text{ where } P^{\perp} = \{x \in (\mathbb{R}^+)^{|A|} \mid \forall x' \in P \ \langle x, x' \rangle = \sum_{a \in |A|} x_a x' a \leq 1\}$$

Bounded covering $\forall a \in |A| \ (\exists x \in P(A), \ x_a \neq 0)$ and $(\exists p \in \mathbb{R}^+, \ \forall x \ x_a < p)$

Examples
$$\llbracket \tau \rrbracket = (|\tau|, P(\tau))$$

$$\begin{aligned} &|\text{unit dist}| = \{*\} & & & & & & & & & & & & & \\ &|\text{int dist}| = \{N & & & & & & & & & & \\ &|\text{int dist}| = \{N & & & & & & & & & \\ &|\text{bool dist}| = \{t, \ f\} & & & & & & & & & & \\ &|\text{bool dist}| = \{t, \ f\} & & & & & & & & & & \\ &|A \times B| = |A| \uplus |B| & & & & & & & & \\ &|A \times B| = |A| \uplus |B| & & & & & & & & \\ &|Bernoulli \ p] = (p, 1-p) & & & & & & & & \\ &|Bernoulli \ p] = (p, 1-p) & & & & & & & & \\ &|Bernoulli \ p] = (p, 1-p) & & & & & & & \\ &|Bernoulli \ p] = (p, 1-p) & & & & & & & \\ &|Bernoulli \ p] = (p, 1-p) & & & & & & \\ &|Bernoulli \ p] = (p, 1-p) & & & & & & \\ &|Bernoulli \ p] = (p, 1-p) & & & & & \\ &|Bernoulli \ p] = (p, 1-p) & & & & & \\ &|Bernoulli \ p] = (p, 1-p) & & & & \\ &|Bernoulli \ p] = (p, 1-p) & & & & \\ &|Bernoulli \ p] = (p, 1-p) & & & & \\ &|Bernoulli \ p] = (p, 1-p) & & & \\ &|Bernoulli \ p] = (p, 1-p) & & & \\ &|Bernoulli \ p] = (p, 1-p) & & & \\ &|Bernoulli \ p] = (p, 1-p) & & \\ &|Bernoulli$$

PCOH and Linear coherent maps is a model of simply typed lambda-calculus

The linear category of Probabilistic Coherence Spaces

Object: (|A|, P(A)) with |A| a set and $P(A) \subset (\mathbb{R}^+)^{|A|}$ set of functions

Morphism: $f:(|A|,P(A)) \rightarrow (|B|,P(B))$ a matrix $(f_{(a,b)})$ indexed by $|A| \times |B|$ such that

$$\forall x \in P(A), f(x) : b \mapsto \sum_{a \in |A|} x(a) f_{a,b} \in P(B)$$

Examples

$$f: \texttt{[bool dist]]} \to \texttt{[bool dist]]} \text{ such that } f = \begin{bmatrix} W \backslash S & \mathrm{T} & \mathrm{F} \\ \mathrm{T} & \begin{bmatrix} 1/5 & 4/5 \\ 3/4 & 1/4 \end{bmatrix} \end{bmatrix}$$

PCOH and Linear coherent maps is a model of Linear Logic

The linear category of Probabilistic Coherence Spaces

Object: (|A|, P(A)) with |A| a set and $P(A) \subset (\mathbb{R}^+)^{|A|}$ set of functions **Morphism:** $f: (|A|, P(A)) \to (|B|, P(B))$ such that $f \cdot P(A) \subseteq P(B)$

Tensor product

$$|X \otimes Y| = |X| \times |Y|$$

$$P(X \otimes Y) = \{x \otimes y \mid x \in P(X), y \in P(Y)\}^{\perp \perp} \quad \text{where } (x \otimes y) : (a, b) \mapsto x(a)y(b)$$

Examples of morphisms in PCOH:

Duplication: $\Delta : [\![b\ dist]\!] \to [\![b \times bdist]\!]$ such that $\Delta(x) = \sum_a x_a \delta_{a,a}$ Marginalization: $proj : [\![b\ dist]\!] \otimes [\![b'\ dist]\!] \to [\![b\ dist]\!]$ such that $proj(x \otimes y) = x$

Exponential

$$|!X| = \mathcal{M}_{fin}(|X|)$$

$$P(!X) = \{x^! \mid x \in P(X)\}^{\perp \perp}$$

where
$$x^!: m \mapsto \prod_{a \in m} x(a)^{m(a)}$$

The cartesian closed category of Probabilistic Coherence spaces

The category of Probabilistic Coherence spaces and analytic maps

Object: (|A|, P(A)) with |A| a set and $P(A) \subset (\mathbb{R}^+)^{|A|}$ set of functions

Morphism: $f:(|A|,P(A)) \rightarrow (|B|,P(B))$ a matrix $(f_{(m,b)})$ indexed by $\mathcal{M}_{fin}(|A|) \times |B|$ such that

$$\forall x \in P(A), f(x) : b \mapsto \sum_{m \in \mathcal{M}_{fin}(|A|)} \prod_{a \in m} x(a)^{m(a)} f_{m,b} \in P(B)$$

Examples

$$\begin{split} &f: \llbracket unit \rrbracket \to \llbracket unit \rrbracket \text{ such that } \forall x \in [0,1], \ f \cdot x = \sum_n f_n x^n \in [0,1] \\ &f: \llbracket bool \rrbracket \to \llbracket unit \rrbracket \text{ such that } f_{(\texttt{true}^n,*)} = 1 \text{ otherwise } f_{m,*} = 0, \text{ then } f \cdot (p,1-p) = \sum_n p^n \text{ and } f \cdot (1,0) = 0. \end{split}$$

PCOH and analytic maps is a CCC (the Kleisli Category of !) CPO enriched.

It is a model of PCF = CBN lambda calculus and fixpoints

Results on Probabilistic Coherent Spaces

Ehrhard, Pagani, Tasson, Full Abstraction for Probabilistic PCF, 2015

Compositionality

$$\{\{(e)e_2\}\}_b = \{\{e\}\}\{\{e_2\}\}_b = \sum_m \{\{e\}\}_{m,b} \prod_{a \in m} \{\{e_2\}\}_a^{m(a)}$$

Invariance of the semantics

$$\{ e \} = \sum_{e_2} \mathbf{Proba}(e, e_2) \{ e_2 \}$$

Adequacy Lemma

if
$$\vdash e : \mathtt{nat}$$
, then $\mathsf{Proba}^{\infty}(e, \underline{n}) = \{ e \}_n$

Full Abstraction at ground type nat

$$\{e_1\} = \{e_2\}$$
 if and only if $\mathbf{Proba}^{\infty}(C[e_1], n) \stackrel{\forall C[]}{=} {}^{\forall n} \mathbf{Proba}^{\infty}(C[e_2], n)$

Why you should care or not on Probabilistic Coherence Spaces

- ✓ Interpretation of probabilistic programs of discrete type (int or real) are PCOH maps, with good analytic Properties
 - Probabilistic Stable Functions on Discrete Cones are Power Series. R. Crubille, 2018
- √ Concrete Sandbox for getting intuitions on probabilistic programs
- Non definability: $Pcoh(bool, 1) = \left\{ Q \in (\mathbb{R}^+)^{\mathcal{M}_{fin}(\mathbf{t}, \mathbf{f})} \mid Q_{[\mathbf{t}^n, \mathbf{f}^m]} \leq \frac{(n+m)^{n+m}}{n^n m^m} \right\}$ but the greatest we can get is $\{e\} \leq \frac{(n+m)!}{n!m!}$

fix fun x (*\$\to\$*) if x then if x then f(x) else () else if x then () else f(x)

Why you should care or not on Probabilistic Coherence Spaces

It is not computable and thus cannot be used to implement inference if $\vdash M : \tau$ and $\{\!\!\{ M \}\!\!\} \in P(\tau)$ then \vdash infer $M : \tau$ dist and (infer M) is a subprobability distribution over τ .

(infer
$$M$$
) = $\frac{\{\!\!\{M\}\!\!\}}{\sum_{a \in |\tau|} \{\!\!\{M\}\!\!\}_a}$

Scaling exact inference for discrete probabilistic programs. Holtzen & al. 2020

Practical Session

Modeling & Computing Semantics

Higher-order continuous PPL

From LTS to Stochastic Kernels

Useful Notions in Measure Theory:

Meas:

Objects are Measurable spaces: $\mathscr{X} = (|\mathscr{X}|, \Sigma_{\mathscr{X}})$ $|\mathscr{X}|$ set of outcomes of a probabilistic experience, $\Sigma_{\mathscr{X}} \subseteq \mathscr{P}(|\mathscr{X}|)$ sigma-algebra (closed under countable unions, intersections and complement)

Example: choose uniformly two reals in [0,1]: $|X| = [0,1] \times [0,1]$ with the Sigma-algebra generated by $[a,b] \times [c,d]$

Morphisms are Measurable Function: $f: \mathcal{X} \to \mathcal{Y}$ is a function such that $\forall V \in \Sigma_{\mathcal{Y}}, \ f^{-1}(V) \in \Sigma_{\mathcal{X}}$

Bounded **Measure:** $\mu: \Sigma_{\mathscr{X}} \to \mathbb{R}^+$ sigma-additive, that is

$$\mu(\emptyset) = 0$$
 and $\mu(|X|) < \infty$, $\mu(\sqcup A_i) = \sum_i \mu(A_i)$, $\mu(|X| \setminus A) = \mu(|X|) - \mu(A)$

Tensored Borel Measure: $\beta \otimes \beta([a,b] \times [c,d]) = \beta([a,b]) * \beta([c,d]) = (b-a) * (d-c)$

Pushforward measure $f_*\mu \in \mathsf{Meas}(\mathscr{Y})$: $\mu \in \mathsf{Meas}(\mathscr{X})$, $f \in \mathsf{Meas}(\mathscr{X},\mathscr{Y})$,

Useful Notions in Measure Theory: Stochastic Kernels

sKern: Objects are measurable spaces: \mathscr{X} and morphisms $\mathsf{sKern}(\mathscr{X},\mathscr{Y}) = \mathsf{Meas}(\mathscr{X},\mathsf{Meas}(\mathscr{Y}))$

Stochastic Kernels: $\kappa: \mathscr{X} \leadsto \mathscr{Y}$ is a function: $\kappa: \mathscr{X} \times \Sigma_{\mathscr{Y}} \to \mathbb{R}^+$ such that

 $\forall x \in \mathcal{X}, \ \kappa(x,): \Sigma_{\mathcal{Y}} \to \mathbb{R}^+ \text{ is a measure}$

 $\forall V \in \Sigma_{\mathscr{Y}}, \ \kappa(\underline{\ },V) : \mathscr{X} \to \mathbb{R}^+ \text{ is a measurable function}$

Composition: $\kappa : \mathscr{X} \leadsto \mathscr{Y}$ and $\kappa' : \mathscr{Y} \leadsto \mathscr{Z}$.

$$\forall x \in |\mathcal{X}| \ \forall W \in \Sigma_{\mathcal{Z}}, \quad \kappa' \circ \kappa(x)(W) = \int_{\mathcal{Y}} \kappa'(y, W) \kappa(x, dy)$$

Giry Monad: $\mathscr{G}(\mathscr{X}) = \mathsf{Meas}(\mathscr{X}), \Sigma(\{\mu \in \mathscr{G}(X) \mid \mu(U) < r\}_{\mu \in \mathscr{G}(\mathscr{X}), r \in \mathbb{R}})$:

Unit: Dirac $x \in \text{Meas}(\mathcal{X})$: (Dirac x)(U) = $\delta_{x \in U}$

Bind: if $\mu \in \text{Meas}(\mathcal{X})$, $\kappa \in \text{Meas}(\mathcal{X}, \text{Meas}(\mathcal{Y}))$, then $\mu \blacksquare \kappa(U) = \int_{\mathcal{X}} \kappa(x)(U) \mu(dx)$

Operational Semantics (Continuous case)

Stochastic Kernel: Proba: $\Lambda^{\Gamma\vdash t} \leadsto \Lambda^{\Gamma\vdash t}$ that is $\Lambda^{\Gamma\vdash t} \times \Sigma_{\Lambda^{\Gamma\vdash t}} \to \mathbb{R}^+$

$$\begin{split} & \Lambda^{\Gamma\vdash t} = \{e \mid \Gamma \vdash e:t\} \\ & \Sigma_{\Lambda^{\Gamma\vdash t}} = \{U \text{ measurable, i.e.} \forall n, \forall S, \ \{\vec{r} \text{ s.t. } S\underline{\vec{r}} \in U\} \text{ meas. in } \mathbb{R}^n\} \\ & \text{for all } e \in \Lambda^{\Gamma\vdash t}, \ \mathbf{Proba}(e,_) \text{ is a measure;} \\ & \text{for all } U \in \Sigma_{\Lambda^{\Gamma\vdash t}}, \ \mathbf{Proba}(_,U) \text{ is a measurable function.} \end{split}$$

Iterated Stochastic Kernel:

Proba(e, U)) is the probability to observe U after one reduction step from e.

Proba $^{\infty}(e, U)$ is the probability to observe a normal form in U after any steps.

If $\vdash e$: real, then $\mathsf{Proba}^{\infty}(e,_)$ is the continuous distribution over \mathbb{R} computed by e.

Operational Semantics (Continuous case)

Values:
$$r \mid \text{fun } x \rightarrow e$$

$$\begin{aligned} \mathbf{Proba}(e,U) &= \left\{ \begin{array}{l} \delta_{e'}(U) & \text{if } e \xrightarrow{1} e' \\ \delta_{e}(U) & \text{if } e \text{ does not reduce} \\ 0 & \text{otherwise.} \end{array} \right. \\ \mathbf{Proba}(\mathbf{sample}(\mathbf{Dirac}\ e),U) &= \delta_{e}(U) \\ \mathbf{Proba}(\mathbf{sample}(\mathbf{Bernoulli}\ r),U) &= r\delta_{\underline{\mathbf{true}}}(U) + (1-r)\delta_{\underline{\mathbf{false}}}(U) \\ \mathbf{Proba}(\mathbf{sample}(\mathbf{Uniform}\ r_0\ r_1.),U) &= \int_{\underline{r} \in U} \mathbbm{1}_{[r_0,r_1]}(r)dr \end{aligned}$$

Higher-order continuous PPL

Aumann's Lemma

What category for Higher-Order

Wanted A Symmetric Monodial Closed Category with:

Objects: Meas(\mathbb{R}) is an object and object comes with some measures and integration Morphims $f:t_1\to t_2$ with some measurability such that $f\circ \delta$: can be integrated

Aumann's Lemma $\mathbb{R} \to \mathbb{R}$ cannot be turned into a measurable space such that $ev : \mathbb{R} \otimes (\mathbb{R} \to \mathbb{R}) \to \mathbb{R}$ is measurable, thus **skern** is disqualified.

Solution

Measurability problem

$$\{[\text{let} x = \text{sample } e \text{ in } e_2]\} = \int_{\mathbb{R}} (f \circ \delta)(r) \ \mu(dr)$$

Use a different category including Meas(R) and extending measurability and integration to all types by a logical relation reducing to \mathbb{R} .

What category for Higher-Order

Wanted A Symmetric Monodial Closed Category with:

Objects: Meas(\mathbb{R}) is an object and object comes with some measures and integration Morphims $f:t_1\to t_2$ with some measurability such that $f\circ \delta$: can be integrated

Aumann's Lemma $\mathbb{R} \to \mathbb{R}$ cannot be turned into a measurable space such that $ev : \mathbb{R} \otimes (\mathbb{R} \to \mathbb{R}) \to \mathbb{R}$ is measurable, thus **skern** is disqualified.

Solution

Measurability problem

$$\{[\text{let} x = \text{sample } e \text{in } e_2]\} = \int_{t_1} (f \circ \delta)(r) \ \mu(dr)$$

Use a different category including Meas(R) and extending measurability and integration to all types by a logical relation reducing to \mathbb{R} .

Higher-order continuous PPL

Aumann's Lemma : sKern is symmetric monoidal but not closed

sKern is symmetric monoidal but not closed.

By Contradiction: Assume that evaluation $\forall X, Z, \text{ev}: Z^X \otimes X \to Z$ is measurable for every X, Z.

Measurable spaces X is \mathbb{R} endowed with the σ -algebra $\Sigma_X = \mathcal{P}(X)$ of all subparts and Y is \mathbb{R} endowed with the σ -algebra countable-cocountable generated by countable parts and parts whose complement is countable (closed under countable unions and countable intersections).

Diagonal function:
$$h: \begin{cases} (\mathbb{R} \times \mathbb{R}, \mathscr{P}(\mathbb{R}) \otimes \mathscr{C}(\mathbb{R})) & \to \{0, 1\} \\ (x, y) & \mapsto 1 \text{ if } x = y \\ & \mapsto 0 \text{ otherwise} \end{cases}$$

$$\Lambda(h): (\mathbb{R}, \mathscr{P}(\mathbb{R})) \to (\{0,1\}^{\mathbb{R}}, \Sigma_{2^{Y}})$$
 is **measurable**

 $h = \text{ev} \circ \Lambda(h)$ is **measurable** since it is the composite of measurable functions.

$$\Delta = \{ \big(x, y \big) \in \mathbb{R}^2 \mid x = y \} = h^{-1} \big(1 \big) \text{ is measurable in } \mathscr{P} \big(\mathbb{R} \big) \otimes \mathscr{C} \big(\mathbb{R} \big).$$

sKern is symmetric monoidal but not closed.

By Contradiction: Assume that evaluation $\forall X, Z, \text{ev}: Z^X \otimes X \to Z$ is measurable for every X, Z.

Then
$$\Delta = \{(x,y) \in \mathbb{R}^2 \mid x = y\} = h^{-1}(\{1\})$$
 is **measurable** in $\mathscr{P}(\mathbb{R}) \otimes \mathscr{C}(\mathbb{R})$.

Proposition: Si $W \in \mathcal{P}(\mathbb{R}) \otimes \mathcal{C}(\mathbb{R})$, then, there is $B \subseteq \mathbb{R}$ dénombrable such that

If there is $(x,y) \in W$ such that $y \notin B$, then $\forall z \notin B$, $(x,z) \in W$.

Proof: it is satisfied by all base measurable sets and closed by countable union and countable intersection.

Remark: Δ satisfies this property, let B be countable Since B is countable, there is $(x,x) \in \Delta$ such that $x \notin B$.

Since B is countable, there is $z \notin B$ and $z \neq x$, thus $(x,z) \in \Delta$ and $(x,z) \notin \Delta$.

This is a contraditon

The Measurability Problem

Semantics framework

Type real is interpreted as $[real] = Meas(\mathbb{R})$,

Closed term $\llbracket \vdash e : real \rrbracket$ as a measure μ and

Term $[x : real \vdash e_2 : real]$ as a morphism $f : Meas(\mathbb{R}) \rightarrow \{real\}$.

$$\{[\mathtt{let} \, x = \, \mathtt{sample} \, \, e \, \mathtt{in} \, e_2]\} = \int_{\mathbb{R}} (f \circ \delta)(r) \, \, \mu(dr)$$

The Measurability Problem

Semantics framework

```
Type real is interpreted as [real] = Meas(\mathbb{R}),
```

Closed term $\llbracket \vdash e : real \rrbracket$ as a measure μ and

Term $[x : real \vdash e_2 : real]$ as a morphism $f : Meas(\mathbb{R}) \to \{real\}$.

What if
$$\vdash e: t_1$$
 and $x: t_1 \vdash e_2: t_2$?

$$\{[\mathtt{let} x = \mathtt{sample} \ \mathtt{ein} \ e_2]\} = \int_{t_1} (f \circ \delta)(r) \ \mu(dr)$$

Two CPO-enriched CCC implementing this idea

QBS based on presheaves over Meas

▲ Convenient Category for Higher-Order Probability Theory, Chris Heunen, Ohad Kammar, Sam Staton, Hongseok Yang, LICS2017

A Domain Theory for Statistical Probabilistic Programming Matthijs Vákár, Ohad Kammar, Sam Staton, POPL2019

ICONES based on cones

Thomas Ehrhard, Michele Pagani, Christine Tasson. Measurable Cones and Stable, Measurable Functions POPL 2018.

Normal Ehrhard, Guillaume Geoffroy. Integration in cones. 2023. Techincal report

Semantics of Probabilistic Programming

Quasi Borel Spaces

QBS - Definition

```
Quasi Borel Space X = (|X|, \mathcal{R}(X)) such that
```

Samples: |X| is the sample set

Random elements: $\mathcal{R}(X) \subseteq \mathbb{R} \to |X|$

Constants: if $x \in |X|$, then $\lambda r. x \in \mathcal{R}(X)$

Precomposition: if $\alpha \in \mathcal{R}(X)$ and $\varphi : \mathbb{R} \to \mathbb{R}$ measurable, then $\varphi \circ \alpha \in \mathcal{R}(X)$.

Recombination: if $\alpha \in \mathcal{R}(X)^{\mathbb{N}}$ and $\mathbb{R} = \uplus A_n$ and A_n measurable,

then $\lambda r.\alpha_n(r)$ (if $r \in A_n$) $\in \mathbb{R}(X)$

Examples

Measurable spaces: if (X,Σ) is a measurable space, then $(X,\operatorname{Meas}(\mathbb{R},X))$ is a QBS

[real]: $(\mathbb{R}, Meas(\mathbb{R}, \mathbb{R}))$

[int]: $(\mathbb{N}, Meas(\mathbb{R}, \mathbb{N}))$

Paths

QBS - Definition

Quasi Borel Space $X = (|X|, \mathcal{R}(X))$ such that

Samples: |X| is the sample set

Random elements: $\mathcal{R}(X) \subseteq \mathbb{R} \to |X|$

Constants: if $x \in |X|$, then $\lambda r.x \in \mathcal{R}(X)$

Precomposition: if $\alpha \in \mathcal{R}(X)$ and $\varphi : \mathbb{R} \to \mathbb{R}$ measurable, then $\varphi \circ \alpha \in \mathcal{R}(X)$.

Recombination: if $\alpha \in \mathcal{R}(X)^{\mathbb{N}}$ and $\mathbb{R} = \bigcup A_n$ and A_n measurable,

then $\lambda r.\alpha_n(r)$ (if $r \in A_n$) $\in \mathbb{R}(X)$

Morphisms: QBS(X, Y)

Function $f:|X| \rightarrow |Y|$ preserving random elements:

If
$$\alpha \in \mathcal{R}(X)$$
, then $f \circ \alpha \in \mathcal{R}(Y)$

notice that $\mathcal{R}(X) = QBS(\mathbb{R}, X)$

Paths

QBS - Properties

QBS is a CCC

Cartesian:

```
\begin{split} |\top| &= \{*\} \text{ and } \mathscr{R}(\top) = \mathsf{Meas}(\mathbb{R}, \{*\}) \\ |X \times Y| &= |X| \times |Y| \text{ and} \\ \mathscr{R}(X \times Y) &= \{\lambda r. (\alpha(r), \beta(r)) \mid \alpha \in \mathscr{R}(X), \beta \in \mathscr{R}(Y)\} \end{split}
```

Closed:

$$|Y^X| = \mathbf{QBS}(X, Y)$$
 and $\mathscr{R}(Y^X) = \{\alpha : \mathbb{R} \to Y^X \mid \lambda(r, x) . \alpha(r)(x) \in \mathbf{QBS}(\mathbb{R} \times X \to Y)\}\$ $ev : Y^X \times X \to Y$ is $ev(f, x) = f(x)$

Limits: Coproducts, Quotients, ... as in Sets

QBS is a conservative extension of Standard Borel Sets

For any (X,Σ) in Meas, $(X,\text{Meas}(\mathbb{R},X))$ is in QBS. If (X_1,Σ_1) and (X_2,Σ_2) are in Meas, then

$$\mathsf{Meas}((X_1,\Sigma_1),(X_2,\Sigma_2)) = \mathsf{QBS}((X_1,\mathsf{Meas}(\mathbb{R},X_1)),(X_2,\mathsf{Meas}(\mathbb{R},X_2)))$$

Interpreting Let in QBS

Measure on a QBS $X = (|X|, \mathcal{R}(X))$

a measure over X is a pair of a measure μ over \mathbb{R}^p and a path $\alpha \in QBS(\mathbb{R}^p, X)$ for any QBS morphism $f: X \to Y$, the pair μ and $f \circ \alpha$ is a measure

up to isomorphisms

Integration let $f \in QBS(X,\mathbb{R})$ and $[\mu,\alpha]$ a measure on X

$$\int_X f(x)[\mu,\alpha](dx) = \int_{\mathbb{R}} f \circ \alpha(r)\mu(dr)$$

Integration in QBS X boils down to intergration in \mathbb{R} .

Example - Linear Regression

```
def model() =
  m = sample(Gaussian(0, 2))
  b = sample(Gaussian(0, 2))
  f = lambda x: m * x + b
  return f
s = sample(infer(model))(4)
 Measure space: \mathbb{R}^2 with borelians Probability \mathbb{P}: m, b \sim \mathcal{N}(0,2) \otimes \mathcal{N}(0,2)
 Random variable: \alpha:(m,b) \mapsto \lambda x.m*x+b
 Distribution: (model) = [\alpha, \mu]
             [\![ \mathrm{sample}(\mathrm{infer}(\mathrm{model}))(4)]\!] = \int_{\mathbb{DR}} f(4)[\alpha,\mu](df)
                                                  = \int_{\mathbb{R}^2} (4 * m + b) \mathcal{N}(0,2) (dm) \mathcal{N}(0,2) (db)
```

Conclusion

Skills and knowledge

Take home

Modeling and Semantics of PPL

Semantics of IMP and pPCF using Markov Processes Inference is **intractable** (even in discrete Bayesian Networks) Heuritics for efficient exact inference (in practical case)

Personal Homework

Quasi-Borel-Spaces and PPL

30% final mark

Date: 14/11/24 by email to christine.tasson@lip6.fr

Next

Build Your Own PPL

Give its semantics

Enrich its inference algorithm

Use static analysis to validate an SVI algorithm