	Математический анал	мз IIII
Конспе	ект основан на лекциях Константина	Петровича Коха

Оглавление

1	Интеграл			
	1.1	Определение интеграла	2	
	1.2	Предельный переход под знаком интеграла	5	
	1.3	Произведение мер	6	
	1.4	Замена переменных в интеграле	10	

Глава 1

Интеграл

1.1 Определение интеграла

Общий контекст: $\langle X, \mathcal{A}, \mu \rangle$ — пространство с мерой

Определение. Введем обозначение

$$\mathcal{L}^0(X) = \{ f : X \to \overline{\mathbb{R}} \mid f \text{ измерима и п.в. конечна} \}.$$

Определение. Пусть $0 \le f: X \to \overline{\mathbb{R}}$ — ступенчатая функция, то есть

$$f = \sum_{fin} \lambda_k \chi_{E_k}.$$

Причем все E_k измеримы. Интеграл такой функции определим следующим образом:

$$\int_X f \, \mathrm{d}\mu \stackrel{def}{=} \sum_k \lambda_k \mu E_k.$$

Определение. Аналогично определим интеграл по измеримому множеству:

$$\int_{E} f \, \mathrm{d}\mu \stackrel{def}{=} \sum_{k} \lambda_{k} \mu E \cap E_{k}.$$

Теорема 1.1.1. (Свойства интеграла ступенчатой функции)

- Интеграл не зависит от допустимого разбиения.
- $f \leq g \Longrightarrow \int f \, \mathrm{d}\mu \leq \int g \, \mathrm{d}\mu$.

Определение. Пусть $0 \leq f: X \to \overline{\mathbb{R}}$ измерима. Интеграл такой функции определим так:

$$\int_X f \, \mathrm{d}\mu \stackrel{def}{=} \sup_{\substack{0 \le g \le f \\ g \text{ ctvinehy.}}} \int_X g \, \mathrm{d}\mu.$$

Определение. Аналогично определим интеграл по измеримому множеству:

$$\int_{E} f \, \mathrm{d}\mu \stackrel{def}{=} \sup_{\substack{0 \le g \le f \\ g \text{ crynehy.}}} \int_{E} g \, \mathrm{d}\mu.$$

Теорема 1.1.2. (Свойства интеграла измеримой функции)

- Если функция ступенчатая, то интеграл совпадает с интегралом, определенным для ступенчатых функций.
- $0 \le \int f \, \mathrm{d}\mu \le +\infty$.
- $0 \le g \le f$, g ступенчатая, f измеримая, тогда $\int g \,\mathrm{d}\mu \le \int f \,\mathrm{d}\mu$.
- $0 \le g \le f$, f , g измеримы, тогда $\int g \, \mathrm{d}\mu \le \int f \, \mathrm{d}\mu$.

Определение. Пусть f — измеримая функция X, причем хотя бы один из интегралов срезок конечен. Для такой функции определим интеграл:

$$\int_X f \, \mathrm{d}\mu \stackrel{def}{=} \int_X f_+ \, \mathrm{d}\mu - \int_X f_- \, \mathrm{d}\mu.$$

Определение. Определим интеграл по измеримому множеству:

$$\int_E f \, \mathrm{d}\mu \stackrel{def}{=} \int_X f \cdot \chi_E \, \mathrm{d}\mu.$$

Определение. Назовем функцию *суммируемой*, если интегралы её срезок конечны.

Теорема 1.1.3. (Свойства интеграла)

- Измеримая $f \geqslant 0$ \Longrightarrow интеграл совпадает с предыдущим определением.
- f суммируема $\iff \int |f| d\mu < +\infty$.
- Интеграл монотонен по функции, то есть для измеримых f, g верно:

$$f \leq g \Longrightarrow \int_{F} f \, \mathrm{d}\mu \leq \int_{F} g \, \mathrm{d}\mu.$$

- $\int_{E} 1 d\mu = \mu(E), \int_{E} 0 d\mu = 0.$
- Пусть $\mu(E) = 0$, f измерима. Тогда

$$\int_{\mathbb{R}} f \, \mathrm{d}\mu = 0.$$

•
$$\int -f \, d\mu = -\int f \, d\mu$$
, $\forall c > 0$ $\int c \cdot f \, d\mu = c \cdot \int f \, d\mu$.

• Пусть
$$\exists \int_E f \, \mathrm{d}\mu$$
, Тогда

$$\left| \int_{E} f \, \mathrm{d}\mu \right| \leq \int_{E} |f| \, \mathrm{d}\mu.$$

• Пусть f измерима на E, $\mu(E) < +\infty$, $\forall x \in E \ A \leq f(x) \leq B$, тогда

$$A \cdot \mu(E) \le \int_E f \, \mathrm{d}\mu \le B \cdot \mu(E).$$

Лемма 1.1.4. Пусть $A=\bigsqcup_i A_i,\,A,A_i\in\mathcal{A},\,g:X\to\overline{\mathbb{R}},\,g\geqslant 0,$ ступенчата. Тогда

$$\int_A g \, \mathrm{d}\mu = \sum_i \int_{A_i} g \, \mathrm{d}\mu.$$

Теорема 1.1.5. Пусть $A=\bigsqcup_i A_i,\,A,A_i\in\mathcal{A},\,f:X\to\overline{\mathbb{R}},\,f\geqslant 0,$ измерима на A. Тогда

$$\int_A f \, \mathrm{d}\mu = \sum_i \int_{A_i} f \, \mathrm{d}\mu.$$

Следствие 1.1.6. Пусть $f: X \to \overline{\mathbb{R}}, \, f \geqslant 0$, измерима. Зададим отображение:

$$\nu \colon \mathcal{A} \to \overline{\mathbb{R}}_{\geq 0}$$
$$E \mapsto \int_{F} f \, \mathrm{d}\mu$$

Тогда ν – мера.

Лемма 1.1.7. Пусть f суммируема, g измерима, причем f=g при почти всех x. Тогда $\int f \, \mathrm{d}\mu = \int g \, \mathrm{d}\mu$.

1.2 Предельный переход под знаком интеграла

Теорема 1.2.1. (Леви)

Пусть $f_n: X \to \overline{\mathbb{R}}$, измеримы, $\forall n \ 0 \le f_n \le f_{n+1}$ при почти всех $x \in X$. Пусть $f(x) = \lim_{n \to +\infty} f_n(x)$ при почти всех x. Тогда

$$\int_X f \, \mathrm{d}\mu = \lim_{n \to +\infty} \int_X f_n \, \mathrm{d}\mu.$$

Теорема 1.2.2. Пусть $f, g \ge 0$, измеримы на E. Тогда

$$\int_{E} (f+g) d\mu = \int_{E} f d\mu + \int_{E} g d\mu.$$

Следствие 1.2.3. Пусть f, g суммируемы на E. Тогда f+g суммируема, причем

$$\int_{E} (f+g) d\mu = \int_{E} f d\mu + \int_{E} g d\mu.$$

Определение. $\mathcal{L}(X) = \{ f \mid f : X \to \overline{\mathbb{R}}, \int |f| d\mu < +\infty \}$

Лемма 1.2.4. $\mathcal{L}(X)$ – линейное пространство.

Теорема 1.2.5. Пусть $u_n: X \to \mathbb{R}, u_n \ge 0$ почти везде, u_n измеримы на E. Тогда

$$\int_{E} \left(\sum_{n=1}^{+\infty} u_n \right) d\mu = \sum_{n=1}^{+\infty} \int_{E} u_n d\mu.$$

Следствие 1.2.6. Пусть u_n измеримы, причем $\sum_{n=1}^{+\infty} \int_E |u_n| \, \mathrm{d}\mu < +\infty$, тогда ряд $\sum_{n=1}^{+\infty} u_n \, \mathrm{d}\mu$ сходится абсолютно почти везде на E.

Теорема 1.2.7. (Абсолютная непрерывность интеграла) Пусть f — суммируемая функция. Тогда

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall E \in \mathcal{A} : \ \mu(E) < \delta \ \left| \int_{E} f \ d\mu \right| < \varepsilon.$$

Следствие 1.2.8. Пусть $e_n \in \mathcal{A}$, $\mu(e_n) \xrightarrow[n \to +\infty]{} 0$, f – суммируемая функция, тогда

$$\int_{e_n} |f| \, \mathrm{d}\mu \xrightarrow[n \to +\infty]{} 0.$$

1.3 Произведение мер

В этом разделе мы начинаем с того, что по двум пространствам $\langle X, \mathcal{A}, \mu \rangle$, $\langle Y, \mathcal{B}, \nu \rangle$ строим пространство $\langle X \times Y, \mathcal{A} \times \mathcal{B}, \mu \times \nu \rangle$.

Лемма 1.3.1. A, B – полукольца, тогда $A \times B$ – полукольцо.

Определение. A, B – полукольца, назовем тогда $A \times B$ полукольцом измеримых прямоугольников. Заведем отображение:

$$m_0: \mathcal{A} \times \mathcal{B} \to \overline{\mathbb{R}}$$

 $A \times B \mapsto \mu(A) \cdot \nu(B)$

Теорема 1.3.2.

- m_0 мера на полукольце $\mathcal{A} \times \mathcal{B}$.
- Если μ , ν σ -конечны, тогда m_0 тоже σ -конечна.

Определение. Мы получили $\langle X \times Y, \mathcal{A} \times \mathcal{B}, m_0 \rangle$ — пространство с мерой на полукольце. Продолжим её, пользуясь теоремой о продолжении, до σ -алгебры, которую будем обозначать $\mathcal{A} \otimes \mathcal{B}$. Результирующее пространство назовем произведением пространство с мерой, а полученную меру — произведением мер.

Теорема 1.3.3. Произведение мер ассоциативно.

Теорема 1.3.4. $\lambda_{m+n} = \lambda_m \times \lambda_n$.

Определение. Пусть $C \subseteq X \times Y$. Тогда *сечением* для произвольного $x \in X$ назовем множество

$$C_x \stackrel{def}{=} \{ y \in Y \mid (x, y) \in C \}.$$

Замечание. Для сечений верны формулы, связанные с операциями над множествами, подобные этой:

$$\left(\bigcup_{\alpha} C_{\alpha}\right)_{x} = \bigcup_{\alpha} (C_{\alpha})_{x}.$$

Теорема 1.3.5. (Принцип Кавальери)

Пусть μ , $\nu - \sigma$ -конечные полные меры, $m = \mu \times \nu$, $C \in \mathcal{A} \otimes \mathcal{B}$, тогда

- При почти всех $x \, C_x \in \mathcal{B}$.
- Отображение $x \mapsto v(C_x)$ измеримо на X.

•
$$m(C) = \int_{X} v(C_x) d\mu$$
.

Следствие 1.3.6. Пусть $C \in A \otimes B$, $p_1(C) \in A$, тогда

$$m(C) = \int_{p_1(C)} \nu(C_x) d\mu.$$

Следствие 1.3.7. Пусть $f:[a,b] \to \mathbb{R}, f \in C$, тогда

$$\int_{a}^{b} f(x) dx = \int_{[a,b]} f d\lambda_{1}.$$

Замечание. Пусть $f \ge 0$, измерима, тогда

$$\lambda_2\Pi\Gamma(f,[a,b]) = \int_{[a,b]} f \,\mathrm{d}\lambda_1.$$

Определение. Пусть $f: X \times Y \to \overline{\mathbb{R}}, \ C \in X \times Y$. Зафиксируем $x \in X$ и определим отображение:

$$f_x : C_x \to \overline{\mathbb{R}}$$

 $y \mapsto f(x, y)$

Аналогично определим $f_{\gamma} \colon C_{\gamma} \to \overline{\mathbb{R}}$ для всех $y \in Y$.

Теорема 1.3.8. (Тонелли)

Пусть $\mu,\ \nu-\sigma$ -конечные полные меры, $m=\mu\times\nu,\ f:X\times Y\to\overline{\mathbb{R}},\ f\geqslant 0,$ измерима по мере m. Тогда

- При почти всех $x f_x$ измерима на Y.
- Отображение $x \mapsto \varphi(x) = \int_{Y} f(x,y) dv = \int_{Y} f_{x} dv$ измеримо на X.

•
$$\int_{X\times Y} f(x,y) dm = \int_X \left(\int_Y f(x,y) dv \right) d\mu.$$

Теорема 1.3.9. (Фубини)

Пусть μ , $\nu-\sigma$ -конечные полные меры, $m=\mu\times\nu$, $f:X\times Y\to\overline{\mathbb{R}}, f\geqslant 0$, **суммируема**. Тогда

- При почти всех $x f_x$ **суммируема** на Y.
- Отображение $x \mapsto \varphi(x) = \int_Y f(x,y) dv = \int_Y f_x dv$ суммируемо на X.

•
$$\int_{X\times Y} f(x,y) dm = \int_X \left(\int_Y f(x,y) dv \right) d\mu.$$

Следствие 1.3.10. Если $p_1(C)$ измеримо, то

$$\int_C f \, \mathrm{d}m = \int_{X \times Y} f \, \chi_C \, \mathrm{d}m = \int_X \left(\int_Y f \, \chi_C \, \mathrm{d}\nu \right) \mathrm{d}\mu = \int_{p_1(C)} \left(\int_{C_X} f \, \mathrm{d}\nu \right) \mathrm{d}\mu.$$

Замечание. Посмотрим на два вида сходимости: по мере и в смысле интеграла:

1.
$$f_n \Longrightarrow f \Longleftrightarrow \mu X(|f_n - f| < \varepsilon) \to 0$$
.

$$2. \int_{X} |f_n - f| \, \mathrm{d}\mu \to 0.$$

Оказывается, верно $2 \Longrightarrow 1$, но без дополнительных требований неверно $1 \Longrightarrow 2$.

Теорема 1.3.11. (Лебега о мажорированной сходимости)

Пусть f_n, f измеримы и почти везде конечны, $f_n \Longrightarrow_{\mu} f$, $\exists g$:

- $\forall n |f_n| \leq g$ при почти всех x.
- *g* суммируема на *X*.

В такой ситуации д называется Мажорантой. Тогда

- f_n , f суммируемы.
- $\bullet \int_{Y} |f_n f| \, \mathrm{d}\mu \to 0.$

Следствие 1.3.12. В условиях предыдущей теоремы верно

$$\int\limits_V f_n \,\mathrm{d}\mu \xrightarrow[n\to+\infty]{} \int\limits_V f \,\mathrm{d}\mu.$$

Теорема 1.3.13. Пусть f_n , f измеримы и почти везде конечны, $f_n \to f$ почти везде, $\exists g$:

- $\forall n |f_n| \leq g$.
- g суммируема на X.

Тогда

• f_n , f суммируемы.

$$\bullet \int_{\mathbb{R}} |f_n - f| \, \mathrm{d}\mu \to 0.$$

Следствие 1.3.14. В условиях предыдущей теоремы верно

$$\int\limits_X f_n \,\mathrm{d}\mu \xrightarrow[n \to +\infty]{} \int\limits_X f \,\mathrm{d}\mu.$$

8

Теорема 1.3.15. (Фату)

Пусть $f_n \geqslant 0, \, f_n$ измеримы, $f_n \to f$ почти везде. Если

$$\exists c > 0 \colon \forall n \int_X f_n \, \mathrm{d}\mu \leq c.$$

TO

$$\int_{V} f \, \mathrm{d}\mu \le c.$$

Следствие 1.3.16. Теорема Фату верна и в случае $f_n \Longrightarrow_{\mu} f$.

Следствие 1.3.17. Пусть $f_n \geqslant 0, \, f_n$ измеримы, тогда

$$\int_X \underline{\lim} f_n \, \mathrm{d}\mu \leq \underline{\lim} \int_X f_n \, \mathrm{d}\mu.$$

1.4 Замена переменных в интеграле

Определение. Отображение $\Phi: X \to Y$ называется *измеримым*, если

$$\forall B \in \mathcal{B} \ \Phi^{-1}(B) \in \mathcal{A}.$$

Иначе говоря, прообраз измеримого множества измерим.

Лемма 1.4.1. $\Phi^{-1}(\mathfrak{B}) - \sigma$ -алгебра.

Определение. При фиксированном измеримом $\Phi: X \to Y$ отображение

$$\nu \colon \mathcal{B} \to \overline{\mathbb{R}}$$
$$B \mapsto \mu(\Phi^{-1}(B))$$

назовем образом меры и при отображении Ф.

Лемма 1.4.2. Образ меры при отображении является мерой.

Замечание.
$$\nu(B) = \int_{\Phi^{-1}(B)} 1 \,\mathrm{d}\mu$$

Замечание. Если функция $f:Y\to\overline{\mathbb{R}}$ измерима относительно $\mathcal{B},$ то $f\circ\Phi\colon X\to\overline{\mathbb{R}}$ измерима относительно $\mathcal{A}.$

Определение. Пусть $\omega: X \to \overline{\mathbb{R}}$, $\omega \ge 0$, измерима. В этом контексте ω называется весовой функцией. Тогда взвешенным образом меры μ с весом ω называется мера

$$\nu(B) = \int_{\Phi^{-1}(B)} \omega \, \mathrm{d}\mu$$

Теорема 1.4.3. (Об интегрировании по взвешенному образу меры)

Пусть $\Phi \colon X \to Y$ – измеримое отображение, $0 \le \omega \colon X \to \overline{\mathbb{R}}$ – весовая функция, измерима на $X, \ \nu$ – взвешенный образ меры μ с весом ω . Тогда для любой измеримой $f \colon Y \to \overline{\mathbb{R}}$ верно:

- $f \circ \Phi$ измерима на X.
- $\int_{Y} f \, \mathrm{d}\nu = \int_{X} (f \circ \Phi) \, \omega \, \mathrm{d}\mu$

Следствие 1.4.4. Пусть f суммируема на $Y, B \in \mathcal{B}$, тогда в условиях теоремы:

$$\int_{B} f \, \mathrm{d} \nu = \int_{\Phi^{-1}(B)} (f \circ \Phi) \, \omega \, \mathrm{d} \mu.$$

Определение. В ситуации X = Y, $A = \mathcal{B}$, $\Phi = \mathrm{id}$, если $\omega \geqslant 0$ измерима, причем $v(B) = \int\limits_{B} \omega \,\mathrm{d}\mu$, ω называется плотностью меры v относительно меры μ . В таком случае

$$\int_{X} f \, \mathrm{d}\nu = \int_{X} f \, \omega \, \mathrm{d}\mu.$$

Теорема 1.4.5. (Критерий плотности)

Пусть ν – мера на $\mathcal{A},\ \omega\geqslant 0$ измерима, тогда верно, что ω – плотность ν относительно μ тогда и только тогда, когда

$$\forall A \in \mathcal{A} \inf_{A} \omega \cdot \mu(A) \leq \nu(A) \leq \sup_{A} \omega \cdot \mu(A).$$

Лемма 1.4.6. Пусть f, g – суммируемые на X функции, причем

$$\forall A \in \mathcal{A} \int_{A} f \, \mathrm{d}\mu = \int_{A} f \, \mathrm{d}\mu.$$

Тогда f = g почти везде.

Лемма 1.4.7. (Об образе малых кубических ячеек)

Пусть \mathcal{O} открыто, $\Phi \colon \mathcal{O} \subseteq \mathbb{R}^m \to \mathbb{R}^m$, $\mathbf{a} \in \mathcal{O}$, Φ дифференцируемо в \mathbf{a} , $\det \Phi'(\mathbf{a}) \neq 0$, $c > |\det \Phi'(\mathbf{a})| > 0$. Тогда

$$\exists \delta > 0 \ \forall Q - \text{Ky}\delta, Q \subset B(\mathbf{a}, \delta) \ \lambda \Phi(Q) < c \cdot \lambda(Q).$$

Лемма 1.4.8. Пусть $\mathbb O$ открыто, $f: \mathbb O \subseteq \mathbb R^m \to \mathbb R$, $f \in C(\mathbb O)$, $A \in \mathfrak M^m$, $A \subseteq Q$, Q – куб, причем $\mathrm{Cl}(Q) \subseteq \mathbb O$. Тогда

$$\inf_{\substack{A \subset G \\ G \text{ OTKODITO}}} \left(\lambda(G) \cdot \sup_{G} f \right) = \lambda(A) \cdot \sup_{A} f.$$

Теорема 1.4.9. Пусть $\mathbb O$ открыто, $\Phi\colon \mathbb O\subseteq \mathbb R^m\to\mathbb R^m$ – диффеоморфизм, $A\in\mathfrak M^m, A\subseteq \mathbb O$, тогда

$$\lambda\Phi(A) = \int_A |\det \Phi'| \, \mathrm{d}\lambda_m.$$

Теорема 1.4.10. Пусть \mathbb{O} открыто, $\Phi \colon \mathbb{O} \subseteq \mathbb{R}^m \to \mathbb{R}^m$ – диффеоморфизм, $\mathbb{O}^1 = \Phi(\mathbb{O})$, f – измеримая неотрицательная функция, тогда

$$\int_{\Omega^1} f(y) dy = \int_{\Omega} f(\Phi(x)) |\det \Phi'(x)| dx.$$

Замечание. То же верно и в случае, когда f суммируема.