第六节、函数图形的描绘

- 一、曲线的渐近线
- 二、函数图形的描绘
- 三、小结和思考题
- 四、作业

一、曲线的渐近线

定义. 若曲线C上的点M沿着曲线无限地远离原点时,点M与某一直线L的距离趋于0,则称直线L为曲线C的渐近线.

或"纵坐标差"

例如,双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

有渐近线 $\frac{x}{a} \pm \frac{y}{b} = 0$

但抛物线 $y = x^2$ 无渐近线.

1. 水平与铅直渐近线

若 $\lim_{x \to +\infty} f(x) = b$,则曲线 y = f(x) 有水平渐近线 y = b. (或 $x \to -\infty$)

若 $\lim_{x \to x_0^+} f(x) = \infty$,则曲线 y = f(x) 有垂直渐近线 $x = x_0$. (或 $x \to x_0^-$)

例1. 求曲线 $y = \frac{1}{x-1} + 2$ 的渐近线.

$$\underset{x\to\infty}{\text{#:}} : \lim_{x\to\infty} \left(\frac{1}{x-1} + 2 \right) = 2$$

 $\therefore y = 2$ 为水平渐近线;

2. 斜渐近线

$$\lim_{x\to+\infty}[f(x)-(kx+b)]=0$$

$$\lim_{x \to +\infty} x \left[\frac{f(x)}{x} - k - \frac{b}{x} \right] = 0$$

$$\lim_{x \to +\infty} \left[\frac{f(x)}{x} - k - \frac{b}{x} \right] = 0$$

$$k = \lim_{x \to +\infty} \left[\frac{f(x)}{x} - \frac{b}{x} \right]$$

$$k = \lim_{\substack{x \to +\infty \\ (\stackrel{}{\Longrightarrow} x \to -\infty)}} \frac{f(x)}{x}$$

$$b = \lim_{x \to +\infty} [f(x) - kx]$$

$$(\vec{x} \times \vec{x} \to -\infty)$$

例2. 求曲线 $y = \frac{x^3}{x^2 + 2x - 3}$ 的渐近线.

解: ::
$$y = \frac{x^3}{(x+3)(x-1)}$$
, $\lim_{x \to -3} y = \infty$, (或 $x \to 1$)

y = x - 2

所以有铅直渐近线 x = -3 及 x = 1

又因
$$k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^2}{x^2 + 2x - 3} = 1$$

$$b = \lim_{x \to \infty} [f(x) - x] = \lim_{x \to \infty} \frac{-2x^2 + 3x}{x^2 + 2x - 3} = -2$$

$$\therefore$$
 $y = x - 2$ 为曲线的斜渐近线.

二、函数图形的描绘

步骤:

- 1. 确定函数 y = f(x) 的定义域, 并考察其对称性及周期性;
- 2. 求 f'(x), f''(x), 并求出 f'(x)及 f''(x) 为0和不存在的点;
- 3. 列表判别增减及凹凸区间, 求出极值和拐点;
- 4. 求渐近线;
- 5. 确定某些特殊点, 描绘函数图形.

例3. 描绘 $y = \frac{1}{3}x^3 - x^2 + 2$ 的图形.

解: 1) 定义域为 $(-\infty, +\infty)$, 无对称性及周期性.

2)
$$y' = x^2 - 2x$$
, $y'' = 2x - 2$,
 $\Leftrightarrow y' = 0$, $\Leftrightarrow x = 0$, 2
 $\Leftrightarrow y'' = 0$, $\Leftrightarrow x = 1$

3)	x	$(-\infty,0)$	0	(0,1)	1	(1,2)	2	$(2,+\infty)$
	y'	+	0	_		_	0	+
	<i>y</i> "	_		_	0	+		+
	y		2		4 3		2 3	
	v	 _1 3 (极大	\dot{z}) (拐点	4 <i>/</i> \	极小	· ·)

$$4) \quad \frac{x - 1}{y \mid \frac{2}{3}} \quad 2$$

例4. 描绘方程 $(x-3)^2 + 4y - 4xy = 0$ 的图形.

解: 1)
$$y = \frac{(x-3)^2}{4(x-1)}$$
, 定义域为 $(-\infty,1)$, $(1,+\infty)$

2) 求关键点

$$\therefore 2(x-3) + 4y' - 4y - 4xy' = 0$$

$$\therefore y' = \frac{x-3-2y}{2(x-1)} = \frac{(x-3)(x+1)}{4(x-1)^2}$$

$$\therefore 2+4y''-8y'-4xy''=0$$

$$\therefore y'' = \frac{1-4y'}{2(x-1)} = \frac{2}{(x-1)^3}$$

3) 判别曲线形态

x	$(-\infty,-1)$	-1	(-1,1)	1	(1,3)	3	$(3,+\infty)$
y'	+	0	1	无	1	0	+
<i>y</i> "	_		_	定	+		+
y		-2		X	_	0	
(极大)				(极小)			

4) 求渐近线

 $\lim_{x\to 1} y = \infty, \therefore x = 1$ 为铅直渐近线

$$y = \frac{(x-3)^2}{4(x-1)}, \quad y' = \frac{(x-3)(x+1)}{4(x-1)^2}, \quad y'' = \frac{2}{(x-1)^3}$$

又因
$$\lim_{x\to\infty}\frac{y}{x}=\frac{1}{4}$$
,即 $k=\frac{1}{4}$

$$b = \lim_{x \to \infty} (y - \frac{1}{4}x) = \lim_{x \to \infty} \left[\frac{(x - 3)^2}{4(x - 1)} - \frac{1}{4}x \right]$$

$$= \lim_{x \to \infty} \frac{-5x + 9}{4(x - 1)} = -\frac{5}{4}$$

$$\therefore y = \frac{1}{4}x - \frac{5}{4}$$
为斜渐近线

5) 求特殊点
$$x = 0$$
 2 $y = -\frac{9}{4}$ $\frac{1}{4}$

$$y = \frac{(x-3)^2}{4(x-1)}$$

$$y' = \frac{(x-3)(x+1)}{4(x-1)^2}$$

$$y'' = \frac{2}{\left(x-1\right)^3}$$

6) 绘图

$$x$$
 $(-\infty,-1)$
 -1
 $(-1,1)$
 1
 $(1,3)$
 3
 $(3,+\infty)$
 y
 -2
 无
 0

 炭
 $($ 极小 $)$

铅直渐近线
$$x=1$$

斜渐近线
$$y = \frac{1}{4}x - \frac{5}{4}$$

特殊点
$$\begin{array}{c|cccc} x & 0 & 2 \\ \hline y & -\frac{9}{4} & \frac{1}{4} \end{array}$$

例5. 描绘函数
$$y = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$
 的图形.

- 解: 1) 定义域为 $(-\infty, +\infty)$, 图形对称于y轴.
 - 2) 求关键点

$$y' = -\frac{1}{\sqrt{2\pi}} x e^{-\frac{x^2}{2}}, \quad y'' = -\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} (1-x^2)$$

3) 判别曲线形态

\boldsymbol{x}	0	(0,1)	1	$(1, +\infty)$
y'	0	_		_
y"		_	0	+
y	$rac{1}{\sqrt{2\pi}}$		$\frac{1}{\sqrt{2\pi e}}$	
	(极大)		(拐点)	

\boldsymbol{x}	0	(0,1)	1	$(1,+\infty)$	
y'	0	_			
v"		_	0	+	
y	$\frac{1}{\sqrt{2\pi}}$		$\frac{1}{\sqrt{2\pi e}}$		
	(极大) (拐点)				

4) 求渐近线

$$\lim_{x\to\infty}y=0$$

- $\therefore y = 0$ 为水平渐近线
 - 5) 作图

三、内容小结

1. 曲线渐近线的求法

水平渐近线;

垂直渐近线;

斜渐近线

2. 函数图形的描绘 ——— 按作图步骤进行

思考与练习

1. 曲线
$$y = \frac{1 + e^{-x^2}}{1 - e^{-x^2}}$$
 ()

- (A) 没有渐近线;
- (B) 仅有水平渐近线;
- (C) 仅有铅直渐近线;
- (D) 既有水平渐近线又有铅直渐近线.

凸区间是_____,

拐点为 ______, 渐近线 _____.

参考答案

1.
$$D$$
 $\lim_{x \to \infty} \frac{1 + e^{-x^2}}{1 - e^{-x^2}} = 1$; $\lim_{x \to 0} \frac{1 + e^{-x^2}}{1 - e^{-x^2}} = \infty$

$$2.\left(\frac{-1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right),\left(-\infty,\frac{-1}{\sqrt{2}}\right),$$
 及 $\left(\frac{1}{\sqrt{2}},+\infty\right),\left(\pm\frac{1}{\sqrt{2}},1-e^{\frac{-1}{2}}\right),$ $y=1$ 提示:

$$y'' = 2e^{-x^2}(1-2x^2)$$

四、作业

习题3-6: 2, 4, 6