L datacamp

Python For Data Science Importing Data Cheat Sheet

Learn Python online at www.DataCamp.com

Importing Data in Python

Most of the time, you'll use either NumPy or pandas to import your data:

```
>>> import numpy as np
>>> import pandas as pd
```

Help

>>> np.info(np.ndarray.dtype) >>> help(pd.read_csv)

Text Files

Plain Text Files

```
>>> filename = 'huck_finn.txt'
>>> file = open(filename, mode='r') #Open the file for reading
>>> text = file.read() #Read a file's contents
>>> print(file.closed) #Check whether file is closed
>>> file.close() #Close file
>>> print(text)
Using the context manager with
>>> with open('huck_finn.txt', 'r') as file:
        print(file.readline()) #Read a single line
        print(file.readline())
        print(file.readline())
```

Table Data: Flat Files

Importing Flat Files with NumPy

```
>>> filename = 'huck_finn.txt'
>>> file = open(filename, mode='r') #Open the file for reading
>>> text = file.read() #Read a file's contents
>>> print(file.closed) #Check whether file is closed
>>> file.close() #Close file
>>> print(text)
```

Files with one data type

```
>>> filename = 'mnist.txt'
>>> data = np.loadtxt(filename,
                     delimiter=',', #String used to separate values
                     skiprows=2, #Skip the first 2 lines
                     usecols=[0,2], #Read the 1st and 3rd column
                     dtype=str) #The type of the resulting array
```

Files with mixed data type

```
>>> filename = 'titanic.csv'
>>> data = np.genfromtxt(filename,
                         names=True, #Look for column header
                         dtype=None)
>>> data_array = np.recfromcsv(filename)
#The default dtype of the np.recfromcsv() function is None
```

Importing Flat Files with Pandas

```
>>> filename = 'winequality-red.csv'
>>> data = pd.read_csv(filename,
                      nrows=5, #Number of rows of file to read
                      header=None, #Row number to use as col names
                      sep='\t', #Delimiter to use
                      comment='#', #Character to split comments
                      na_values=[""]) #String to recognize as NA/NaN
```

Exploring Your Data

NumPy Arrays

```
>>> data_array.dtype #Data type of array elements
>>> data_array.shape #Array dimensions
>>> len(data_array) #Length of array
```

Pandas DataFrames

```
>>> df.head() #Return first DataFrame rows
>>> df.tail() #Return last DataFrame rows
>>> df.index #Describe index
>>> df.columns #Describe DataFrame columns
>>> df.info() #Info on DataFrame
>>> data_array = data.values #Convert a DataFrame to an a NumPy array
```

SAS File

```
>>> from sas7bdat import SAS7BDAT
>>> with SAS7BDAT('urbanpop.sas7bdat') as file:
        df_sas = file.to_data_frame()
```

Stata File

>>> data = pd.read_stata('urbanpop.dta')

Excel Spreadsheets

```
>>> file = 'urbanpop.xlsx'
>>> data = pd.ExcelFile(file)
>>> df_sheet2 = data.parse('1960-1966',
                           names=['Country',
                           'AAM: War(2002)'])
>>> df_sheet1 = data.parse(0,
                           parse_cols=[0],
                           skiprows=[0],
                           names=['Country'])
```

To access the sheet names, use the sheet_names attribute:

>>> data.sheet_names

Relational Databases

```
>>> from sqlalchemy import create_engine
>>> engine = create_engine('sqlite://Northwind.sqlite')
Use the table_names() method to fetch a list of table names:
```

>>> table_names = engine.table_names()

Querying Relational Databases

```
>>> con = engine.connect()
>>> rs = con.execute("SELECT * FROM Orders")
>>> df = pd.DataFrame(rs.fetchall())
>>> df.columns = rs.keys()
>>> con.close()
Using the context manager with
```

```
>>> with engine.connect() as con:
        rs = con.execute("SELECT OrderID FROM Orders")
        df = pd.DataFrame(rs.fetchmany(size=5))
        df.columns = rs.keys()
```

Querying relational databases with pandas

```
>>> df = pd.read_sql_query("SELECT * FROM Orders", engine)
```

Pickled Files

```
>>> import pickle
>>> with open('pickled_fruit.pkl', 'rb') as file:
         pickled_data = pickle.load(file)
```

Matlab Files

```
>>> import scipy.io
>>> filename = 'workspace.mat'
>>> mat = scipy.io.loadmat(filename)
```

HDF5 Files

```
>>> import h5py
>>> filename = 'H-H1_LOSC_4_v1-815411200-4096.hdf5'
>>> data = h5py.File(filename, 'r')
```

Exploring Dictionaries

Querying relational databases with pandas

```
>>> print(mat.keys()) #Print dictionary keys
>>> for key in data.keys(): #Print dictionary keys
       print(key)
quality
strain
>>> pickled_data.values() #Return dictionary values
>>> print(mat.items()) #Returns items in list format of (key, value) tuple pairs
```

Accessing Data Items with Keys

```
>>> for key in data ['meta'].keys() #Explore the HDF5
structure
        print(key)
 Description
 DescriptionURL
 Detector
 Duration
 GPSstart
 Observatory
 UTCstart
#Retrieve the value for a key
>>> print(data['meta']['Description'].value)
```

Navigating Your FileSystem

Magic Commands

```
!ls #List directory contents of files and directories
%cd .. #Change current working directory
%pwd #Return the current working directory path
```

OS Library

```
>>> import os
>>> path = "/usr/tmp"
>>> wd = os.getcwd() #Store the name of current directory in a string
>>> os.listdir(wd) #Output contents of the directory in a list
>>> os.chdir(path) #Change current working directory
>>> os.rename("test1.txt", #Rename a file
             "test2.txt")
>>> os.remove("test1.txt") #Delete an existing file
>>> os.mkdir("newdir") #Create a new directory
```


Learn Data Skills Online at www.DataCamp.com