Name:	
4-digit code:	

- Write your name and the last 4 digits of your SSN in the space provided above.
- The test has six (6) pages, including this one.
- Enter your answer in the box(es) provided.
- You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- Credit for each problem is given in parentheses at the right of the problem number.
- No books, notes or calculators may be used on this test.

Page	Max. points	Your points
2	20	
3	20	
4	20	
5	25	
6	15	
Total	100	

Problem 1 (10 pts). Find the area of the region that is enclosed between the curves $y = x^2$ and y = x + 6.

$$A =$$

Problem 2 (10 pts). Find the volume of the solid that is obtained when the region under the curve $y = \sqrt{x}$ over the interval [1, 4] is revolved about the x-axis.

Problem 3 (10 pts). Find the volume of the solid generated when the region enclosed by $y = \sqrt{x}$, y = 2 and x = 0 is revolved about the y-axis.

$$V =$$

Problem 4 (10 pts). Find the arclength of the curve $y = x^{3/2}$ from x = 1 to x = 2.

Problem 5 (10 pts). Find the area of the surface that is generated by revolving the portion of the curve $y = x^3$ between x = 0 and x = 1 about the x-axis.

$$A =$$

Problem 6 (10 pts). Find the average value of the function f(x) = 1/x over the interval [1, e].

Problem 7 (15 pts). Find a positive value of k such that the average value of $f(x) = \frac{1}{\sqrt{k^2 - x^2}}$ over the interval [-k, k] is π .

Exam#1.

You may find the following table useful:									
angle θ	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin(\theta)$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

k =	
κ —	

Problem 8 (10 pts). Evaluate the integral $\int x^2 \sqrt{x-1} dx$.

Problem 9 (15 pts). A spring exerts a force of 4N when stretched 2m beyond its natural length.

(a) How much work was performed in stretching the spring to this length?

$$W =$$

(b) How far beyond its natural length can the spring be stretched with 36J of work?