ITM426, Quiz 1, 2024 Fall

Solution and Grading

• ITM 426 Engineering Mathematics 24F
• Sep 20, 2024
• Duration: 60 minutes
• Weights: 20%
• 5 Questions
• Name:
• Student ID:
• E-mail:@seoultech.ac.kr
• Write legibly.
• Justification is necessary unless stated otherwise.

• Partial points are given only sparingly for the most problems because you are expected to 1) carry

out proper sanity check and 2) correct your mistake by doing so.

1	10
2	10
3	10
4	10
5	10
Total	50

#1. We have a matrix $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$ and $E = \begin{bmatrix} -3 \\ 2 & 2 \\ 1 & -1 \end{bmatrix}$. Let us call each row vector of matrix A as (R1), (R2), and (R3). Describe each row of a matrix EA in terms of rows of A. For example, you can write such as "The first row of EA is $-2 \times (R1) + 5 \times (R2)$ ".[10pt]

- 1. The first row of EA is _____
- 2. The second row of EA is _____
- 3. The third row of EA is _____

 $\begin{array}{ll} \textbf{Difficulty:} \ \, \text{Medium} \\ \textbf{Amount of work:} \ \, 20\% \end{array}$

Solution:

 $-3(R1);\,2(R2)+2(R1);-(R3)+(R2)$

#2. Consider a set of k vectors $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_k}$. What does it mean by this set of vectors is linearly independent? Provide a clear definition.[10pt]

Difficulty: Easy

Amount of work: 20 % Suggested answer:

"If any vector cannot be expressed as a linear combination of the other k-1 vectors, then this set of vectors are said to be linearly independent.".

#3. Suppose we have a $n \times n$ matrix A that its determinant of A is zero. Among the following statements, select those are true. [10pt]

- (a) $A\mathbf{x} = \mathbf{b}$ has a unique solution.
- (b) $A\mathbf{x} = \mathbf{b}$ does not have a unique solution.
- (c) A is non-singular.
- (d) A is singular.
- (e) A^{-1} does not exist.
- (f) A^{-1} exists.
- (g) A set of column vectors in A is linearly dependent.
- (h) A set of column vectors in A is linearly independent.

Difficulty: Easy Amount of work: 20 % Suggested answer: (b),(d),(e),(g) #4. What is the value of c that makes the determinant of A to be zero?

$$A = \left[\begin{array}{ccc} c & 0 & 3 \\ 1 & 2 & 2 \\ 0 & -1 & 1 \end{array} \right]$$

The following theorem may be useful.[10pt]

"For a square matrix, its determinant is nonzero if and only if its column vectors are linearly independent."

Difficulty: Medium Amount of work: 20 % Suggested answer:

To have zero determinant, its column vectors must be linearly dependent. Thus, $(c\ 1\ 0)$ must be linear combination of $(0\ 2\ -1)$ and $(3\ 2\ 1)$. Setting $(c\ 1\ 0)=x(0\ 2\ -1)+y(3\ 2\ 1)$ gives x=y=1/4. Thus, c=3/4.

#5. Suppose that $\{x, y, z\}$ is a basis of 3-dimensional vector space. Carefully show that $\{x, x + y, x - y + 2z\}$ is a basis of 3-dimensional vector space as well. [10pt]

Difficulty: Medium-Hard **Amount of work**: 20%

Solution: The proof is very similar to the one to Problem 11 in the prenote.