3 October 2022

2.4 Homework: Modeling with algebra, "Do Not Solve!"

1. Do Now: As shown below, two lines intersect making four angles: $\angle 1$, $\angle 2$, $\angle 3$, and $\angle 4$.

- (a) Which angle is opposite $\angle 1?$
- (b) Name an angle that is adjacent to $\angle 4$.
- (c) True or false, $\angle 2$ and $\angle 4$ are vertical angles.
- 2. Answer based on the diagram below.
 - (a) Name an angle that is supplementary to $\angle AOB$:
 - (b) Name an angle that is complementary to $\angle DOE$:

3. Given the situation in the diagram, answer each question. Circle True or False.

- (a) True or False: \overrightarrow{RP} and \overrightarrow{UP} are opposite rays.
- (b) True or False: $\angle TPR$ is supplementary to $\angle TPU$.
- (c) True or False: $\angle RPS$ and $\angle TPS$ are complementary angles.
- (d) True or False: $\angle RPS$ and $\angle TPU$ are vertical angles.

Unit 2: Angles 3 October 2022

- 4. Do Not Solve. Circle the appropriate equation, cite a justification:
 - "definition of bisector"
 - "linear pairs sum to 180°"
 - "vertical \angle s are \cong "
 - "alternate interior \angle s are \cong "

- "corresponding \angle s of \parallel lines are \cong "
- "same-side interior ∠s are supplementary"
- "⊥ rays with complementary ∠s adding to 90°"

(a) \overrightarrow{RPU} with ray \overrightarrow{PS} .

 $\angle RPS \cong \angle SPU \quad m\angle RPS + m\angle SPU = 180^{\circ}$

(b) Given $m \angle R = m \angle U = 65$, and $m \angle UST = 130$. Find $m \angle RSU$.

 $\angle UST \cong \angle RSU \qquad m\angle UST + m\angle RSU = 180$

(c) Given $m \angle 1 = 4x + 6$, $m \angle 2 = 6x - 32$. Find $m \angle 1$.

 $m \angle 1 + m \angle 2 = 180$ $\angle 1 \cong \angle 2$

(d) Given two parallel lines and a transversal, as shown.

 $\angle 4 \cong \angle 5$ $m \angle 3 + m \angle 6 = 180$

(e) Given $\overrightarrow{BA} \perp \overrightarrow{BC}$, $m \angle ABD = 2x - 5$, and $m \angle DBC = x - 10$.

 $\angle ABD \cong \angle DBC \qquad m\angle ABD + m\angle DBC = 90$