Problem 1

P	Q	R	$Q ext{ AND } R$	$P ext{ OR } Q$	$P ext{ OR } R$	P OR (Q AND R)	(P OR Q) AND (P OR R)
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	1	0	0	0
0	0	1	0	0	1	0	0
0	0	0	0	0	0	0	0

Problem 2

(a)

(b)要使得上述命题全真,则B必然为F,然后根据上述关系可得

L	Q	В	N
Т	Т	F	F

(c)由填表的过程不难看出使得上述命题全真的情形唯一。

Problem 3

(a)该题即为模拟二进制数和一位的二进制数的加法,两个二进制相加是用XOR运算,进位是用AND运算,所以可得:

$$egin{aligned} c_0 &= b \ s_k = a_k ext{ XOR } c_k, c_k = a_{k-1} ext{ AND } s_{k-1} \end{aligned}$$

(b)利用(a)一位一位相加,把上述过程用下图表示, d_i 表示结果, c_i 表示进位:

由于末位加法不需要考虑进位,所以称为half Adder,具体关系如下图:

所以

$$d_0 = a_0 \text{ XOR } b_0, c_0 = a_0 \text{ AND } b_0$$

其余位数的加法要考虑进位问题,所以称为full Adder,具体关系如下图:

首先a, b做XOR运算,得到临时结果s,然后和之前的进位 c_{in} 再做一次XOR运算,得到最终结果d,然后计算进位 c_{out} ,不难看出之前两次运算如果有一次有进位,那么 $c_{out}=1$,因此 $c_{out}=(c_{in} \text{ AND } s) \text{ OR } (a \text{ AND } b)$

把之前的结果整理归纳可得

$$egin{aligned} d_0 &= a_0 ext{ AND } b_0, c_0 = a_0 ext{ XOR } b_0 \ s_i &= a_i ext{ XOR } b_i, d_i = c_{i-1} ext{ XOR } s_i \ c_i &= (c_{i-1} ext{ AND } s_i) ext{ OR } (a_i ext{ AND } b_i) \end{aligned}$$

(c)从(b)中不难看出每一轮要做5次逻辑运算,结合一开始2次,所以一共要5n+2次

Problem 4

因为这里要考虑语义,母亲的话中明显有"如果写完作业,就能看电视"的含义,由于连续不一定可导,所以数学家的话不能翻译为IFF