# Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної

# техніки Кафедра інформатики та програмної

інженерії

Звіт

з лабораторної роботи № 1 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження лінійних алгоритмів»

Варіант 26

| Виконав студент | <u> III-11 Рябов Юрій Ігорович</u>  |
|-----------------|-------------------------------------|
| •               | (шифр, прізвище, ім'я, по батькові) |
|                 |                                     |
|                 |                                     |
| Перевірив       |                                     |
| • •             | ( прізвище, ім'я, по батькові)      |

## Лабараторна робота№1

## Дослідження лінійних алгоритмів

**Мета** – дослідити лінійні програмні специфікації для подання перетворювальних операторів та операторів суперпозиції, набути практичних навичок їх використання під час складання лінійних програмних специфікацій.

## Індивідуальне завдання:

Варіант 26

Трикутник задано довжинами сторін. Знайти довжини бісектрис та радіуси вписаного та описаного кіл.

### Постановка задачі

За допомогою значень сторін трикутника та математичних формул можна визначити довжини його бісектрис та радіусів описаного та вписаного кіл, отже ми маємо усі потрібні початкові дані.

Результатом розв'язку  $\epsilon$  значення довжин бісектрис та радіусів описаного та вписаного кіл трикутника.

# Побудова математичної моделі

Складемо таблицю змінних

| Змінна                | Тип     | Ім'я           | Призначення   |
|-----------------------|---------|----------------|---------------|
| Сторона АВ            | Дійсний | side_AB        | вхідні дані   |
| Сторона АС            | Дійсний | side_AC        | вхідні дані   |
| Сторона ВС            | Дійсний | side_BC        | вхідні дані   |
| Півпериметр           | Дійсний | halfperimeter  | проміжні дані |
| Площа                 | Дійсний | area           | проміжні дані |
| Бісекстиса до АВ      | Дійсний | bisector_to_AB | результат     |
| Бісекстиса до АС      | Дійсний | bisector_to_AC | результат     |
| Бісекстиса до ВС      | Дійсний | bisector_to_BC | результат     |
| Радіус вписаного кола | Дійсний | insrc_radius   | результат     |
| Радіус описаного кола | Дійсний | circum_radius  | результат     |

За допомогою формули l=sqrt(a\*b\*(a+b+c)\*(a+b-c))/(a+b) обчислимо бісектриси трикутника. Обчислимо півпериметр трикутника за формулою

p=(a+b+c)/2, його площу за формулою  $S=\operatorname{sqrt}(p^*(p-a)^*(p-b)^*(p-c))$  і радіуси вписаного та описаного кіл трикутника за допомогою формул r=S/p та  $R=(a^*b^*c)/(4^*S)$  відповідно.

### Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

- Крок 1. Визначимо основні дії
- Крок 2. Деталізуємо формулу обчислення бісектрис трикутника
- Крок 3. Деталізуємо формулу обчислення півпериметру
- Крок 4. Деталізуємо формулу обчислення площі
- Крок 5. Деталізуємо формулу обчислення радіусу описаного кола
- Крок 6. Деталізуємо формулу обчислення радіусу вписаного кола

### Псевдокод

# Крок 1

#### Початок

# Обчислення бісектрис

Обчислення півпериметру

Обчислення площі

Обчислення радіусу описаного кола

Обчислення радіусу вписаного кола

#### Кінець

## Крок 2

#### Початок

 $bisector\_to\_AB := sqrt(side\_AC * side\_BC * (side\_AB + side\_AC + side\_BC) * (side\_AC + side\_BC - side\_AB) / (side\_AC + side\_BC) \\ bisector\_to\_AC := sqrt(side\_AB * side\_BC * (side\_AB + side\_BC) * (side\_AB + side\_BC - side\_AC) / (side\_AB + side\_BC) \\ bisector\_to\_BC := sqrt(side\_AB * side\_AC * (side\_AB + side\_AC + side\_BC) * (side\_AB + side\_AC - side\_BC) / (side\_AB + side\_AC) \\ bisector\_to\_BC := sqrt(side\_AB * side\_AC * (side\_AB + side\_AC + side\_BC) * (side\_AB + side\_AC - side\_BC) / (side\_AB + side\_AC) \\ bisector\_to\_BC := sqrt(side\_AB * side\_AC * (side\_AB + side\_AC + side\_BC) * (side\_AB + side\_AC - side\_BC) / (side\_AB + side\_AC + side\_BC) \\ bisector\_to\_BC := sqrt(side\_AB * side\_AC * (side\_AB + side\_AC + side\_BC) * (side\_AB + side\_BC) / (sid$ 

# Обчислення півпериметру

Обчислення площі

Обчислення радіусу описаного кола

Обчислення радіусу вписаного кола

#### Кінець

# Крок 3

### Початок

 $bisector\_to\_AB := sqrt(side\_AC * side\_BC * (side\_AB + side\_AC + side\_BC) * (side\_AC + side\_BC - side\_AB))/(side\_AC + side\_BC) \\ bisector\_to\_AC := sqrt(side\_AB * side\_BC * (side\_AB + side\_BC) * (side\_AB + side\_BC - side\_AC))/(side\_AB + side\_BC) \\ bisector\_to\_BC := sqrt(side\_AB * side\_AC * (side\_AB + side\_AC + side\_BC) * (side\_AB + side\_AC - side\_BC))/(side\_AB + side\_AC) \\ halfperimeter := (side\_AB + side\_AC + side\_BC)/2$ 

### Обчислення площі

# Обчислення радіусу описаного кола

## Обчислення радіусу вписаного кола

#### Кінець

# Крок 4

#### Початок

 $bisector\_to\_AB := sqrt(side\_AC * side\_BC * (side\_AB + side\_AC + side\_BC) * (side\_AC + side\_BC - side\_AB))/(side\_AC + side\_BC) \\ bisector\_to\_AC := sqrt(side\_AB * side\_BC * (side\_AB + side\_BC) * (side\_AB + side\_BC - side\_AC))/(side\_AB + side\_BC) \\ bisector\_to\_BC := sqrt(side\_AB * side\_AC * (side\_AB + side\_AC + side\_BC) * (side\_AB + side\_AC - side\_BC))/(side\_AB + side\_AC) \\ halfperimeter := (side\_AB + side\_AC + side\_BC)/2 \\ area := sqrt(halfperimeter * (halfperimeter - side\_AB) * (halfperimeter - side\_AC) * (halfperimeter - side\_BC))$ 

## Обчислення радіусу описаного кола

# Обчислення радіусу вписаного кола

### Кінепь

# Крок 5

## Початок

```
bisector\_to\_AB := sqrt(side\_AC * side\_BC * (side\_AB + side\_AC + side\_BC) * (side\_AC + side\_BC - side\_AB))/(side\_AC + side\_BC) \\ bisector\_to\_AC := sqrt(side\_AB * side\_BC * (side\_AB + side\_BC) * (side\_AB + side\_BC - side\_AC))/(side\_AB + side\_BC) \\ bisector\_to\_BC := sqrt(side\_AB * side\_AC * (side\_AB + side\_AC + side\_BC) * (side\_AB + side\_AC - side\_BC))/(side\_AB + side\_AC) \\ halfperimeter := (side\_AB + side\_AC + side\_BC)/2 \\ area := sqrt(halfperimeter * (halfperimeter - side\_AB) * (halfperimeter - side\_AC) * (halfperimeter - side\_BC)) \\ circum\_radius := (side\_AB * side\_AC * side\_BC)/(4*area)
```

# Обчислення радіусу вписаного кола

### Кінець

# Крок 6

## Початок

 $bisector\_to\_AB := sqrt(side\_AC * side\_BC * (side\_AB + side\_AC + side\_BC) * (side\_AC + side\_BC - side\_AB))/(side\_AC + side\_BC) \\ bisector\_to\_AC := sqrt(side\_AB * side\_BC * (side\_AB + side\_BC) * (side\_AB + side\_BC - side\_AC))/(side\_AB + side\_BC) \\ bisector\_to\_BC := sqrt(side\_AB * side\_AC * (side\_AB + side\_AC + side\_BC) * (side\_AB + side\_AC - side\_BC))/(side\_AB + side\_AC) \\ halfperimeter := (side\_AB + side\_AC + side\_BC)/2 \\ area := sqrt(halfperimeter * (halfperimeter - side\_AB) * (halfperimeter - side\_AC) * (halfperimeter - side\_BC)) \\ circum\_radius := (side\_AB * side\_AC * side\_BC)/(4*area) \\ insrc\_radius := area/halfperimeter$ 

## Кінець

## Блок-схема

# Крок 1



Крок 2



Крок 3



Крок 4



Крок 5



Крок 6



# Перевірка алгоритму

Hexaй side\_AB=10, side\_AC=15 side\_BC=20, тоді

| Блок | Дія                                                                                                                                                                                                 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Початок                                                                                                                                                                                             |
| 1    | bisector_to_AB:=sqrt(15*20*(10+15+20)*(15+20-10))/(15+20)=16.6<br>bisector_to_AC:=sqrt(10*20*(10+15+20)*(10+20-15))/(10+20)=12.25<br>bisector_to_BC:=sqrt(15*10*(10+15+20)*(15+10-20))/(15+10)=7.35 |
| 2    | halfperimeter:=(10+15+20)/2=22.5                                                                                                                                                                    |
| 3    | area:=sqrt(22.5*(22.5-10)*(22.5-15)*(22.5-20))=72.62                                                                                                                                                |
| 4    | circum_radius:=(10*15*20)/(4*72.62)=10.33                                                                                                                                                           |
| 5    | insrc_radius:=72.62/22.5=3.23                                                                                                                                                                       |
|      | Кінець                                                                                                                                                                                              |

#### Висновок

Отже, ми дослідили лінійні програмні специфікації для подання перетворювальних операторів та операторів суперпозиції, набули практичних

навичок їх використання під час складання лінійних програмних специфікацій, створили алгоритм з розрахунку бісектрис та радіусів вписаного та описаного кіл трикутника за допомогою його сторін.