reface	9		xvii		
otatio	on .	3	xxvii		
1.2 The History and Applications of Combinatorics					
ART	I The Basic Tools of Combinatorics		15		
Basi 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		23 25 27 32 34 35 41 47		
	2.10.3 Case 2: Indistinguishable Balls and Distinguishable Cells 2.10.4 Case 3: Distinguishable Balls and Indistinguishable Cells 2.10.5 Case 4: Indistinguishable Balls and Indistinguishable Cells 2.10.6 Examples Multinomial Coefficients 2.11.1 Occupancy Problems with a Specified Distribution		53 54 55 55 56 59 62		
	Wh: 1.1 1.2 Refe ART Basi 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10	1.1 The Three Problems of Combinatorics 1.2 The History and Applications of Combinatorics References for Chapter 1 ART I The Basic Tools of Combinatorics Basic Counting Rules 2.1 The Product Rule 2.2 The Sum Rule 2.3 Permutations 2.4 Complexity of Computation 2.5 r-Permutations 2.6 Subsets 2.7 r-Combinations 2.8 Probability 2.9 Sampling with Replacement 2.10 Occupancy Problems 2.10.1 The Types of Occupancy Problems 2.10.2 Case 1: Distinguishable Balls and Distinguishable Cells 2.10.4 Case 3: Distinguishable Balls and Indistinguishable Cells 2.10.5 Case 4: Indistinguishable Balls and Indistinguishable Cells 2.10.6 Examples 2.11 Multinomial Coefficients 2.11.1 Occupancy Problems with a Specified Distribution 2.11.2 Permutations with Classes of Indistinguishable Objects	What Is Combinatorics? 1.1 The Three Problems of Combinatorics 1.2 The History and Applications of Combinatorics References for Chapter 1 ART I The Basic Tools of Combinatorics Basic Counting Rules 2.1 The Product Rule 2.2 The Sum Rule 2.3 Permutations 2.4 Complexity of Computation 2.5 r-Permutations 2.6 Subsets 2.7 r-Combinations 2.8 Probability 2.9 Sampling with Replacement 2.10 Occupancy Problems 2.10.1 The Types of Occupancy Problems 2.10.2 Case 1: Distinguishable Balls and Distinguishable Cells 2.10.4 Case 3: Distinguishable Balls and Indistinguishable Cells 2.10.5 Case 4: Indistinguishable Balls and Indistinguishable Cells 2.10.6 Examples 2.11 Multinomial Coefficients 2.11.1 Occupancy Problems with a Specified Distribution 2.11.2 Permutations with Classes of Indistinguishable Objects		

viii Contents

	2.13	Permu	tations with Classes of Indistinguishable Objects Revisit	$_{ m ed}$. 68
	2.14	The Bi	nomial Expansion		 . 70
	2.15	Power	in Simple Games		 . 73
		2.15.1	Examples of Simple Games		 . 73
		2.15.2	The Shapley-Shubik Power Index		 . 75
			The U.N. Security Council		
		2.15.4	Bicameral Legislatures		 . 78
		2.15.5	Cost Allocation		 . 79
		2.15.6	Characteristic Functions		 . 80
	2.16	Genera	ating Permutations and Combinations		 . 84
		2.16.1	An Algorithm for Generating Permutations		 . 84
		2.16.2	An Algorithm for Generating Subsets of Sets		 . 86
		2.16.3	An Algorithm for Generating Combinations		 . 88
	2.17	Inversi	on Distance Between Permutations and the Study of		
		Mutati	ons		 . 91
	2.18		Algorithms		
		2.18.1	Asymptotic Analysis		 . 96
		2.18.2	NP-Complete Problems		 . 99
	2.19	Pigeon	hole Principle and Its Generalizations		
			The Simplest Version of the Pigeonhole Principle		 . 101
		2.19.2	Generalizations and Applications of the Pigeonhole		
			Principle		
			Ramsey Numbers		
			Exercises for Chapter 2		
	Refe	rences f	or Chapter 2		 113
,	T 1	.1 4:	A C L TIL		110
3			on to Graph Theory		119
	3.1		mental Concepts		
		3.1.1	Some Examples		
		$3.1.2 \\ 3.1.3$	Definition of Digraph and Graph		
	3.2		Labeled Digraphs and the Isomorphism Problem etedness		
	3.4	3.2.1			
		$\frac{3.2.1}{3.2.2}$	Reaching in Digraphs		
		3.2.2	Joining in Graphs		
		3.2.3 $3.2.4$	Strongly Connected Digraphs and Connected Graphs . Subgraphs		
		$\frac{3.2.4}{3.2.5}$	9 -		
	3.3		Coloring and Its Applications		
	J.J	3.3.1	Coloring and Its Applications		
		$\frac{3.3.1}{3.3.2}$	Some Applications		
		$\frac{3.3.2}{3.3.3}$	Planar Graphs		
		3.3.4	2-Colorable Graphs		
		0.0.4	2-Colorable Graphs		 196

		3.3.5 Graph-Coloring Variants	59
	3.4	Chromatic Polynomials	72
		3.4.1 Definitions and Examples	72
		3.4.2 Reduction Theorems	75
			79
	3.5	Γ rees	85
		3.5.1 Definition of a Tree and Examples	85
		3.5.2 Properties of Trees	88
		3.5.3 Proof of Theorem 3.15	88
		3.5.4 Spanning Trees	89
		3.5.5 Proof of Theorem 3.16 and a Related Result	92
		3.5.6 Chemical Bonds and the Number of Trees	93
		3.5.7 Phylogenetic Tree Reconstruction	96
	3.6	Applications of Rooted Trees to Searching, Sorting, and	
			02
		3.6.1 Definitions	02
		3.6.2 Search Trees	05
			06
			07
			11
	3.7	Representing a Graph in the Computer	19
	3.8	Ramsey Numbers Revisited	24
	Refe	ences for Chapter 3	28
4	P old	tions 23	2 5
4	4.1		35
	4.1		35
		v	39 40
	4.2	, 0 1	$\frac{40}{47}$
	4.2		41 47
			41 50
		0	52
			92 54
			56
	4.3	0	90 60
	4.5		60
			65
	4 4		70 74
	4.4	0	74
			$\frac{74}{2c}$
	D.C	0	76
	Refe	ences for Chapter 4	82

x Contents

Ρ.	ART	II The	e Counting Problem	285	
5	Ger	reratin	ng Functions and Their Applications	285	
	5.1	Exam	ples of Generating Functions	285	
		5.1.1	Power Series	286	
		5.1.2	Generating Functions		
	5.2	Opera	ating on Generating Functions	297	
	5.3	Applie	cations to Counting	302	
		5.3.1	Sampling Problems		
		5.3.2	A Comment on Occupancy Problems		
	5.4	The E	Binomial Theorem	312	
	5.5				
		Permu	utations	320	
		5.5.1	Definition of Exponential Generating Function	320	
		5.5.2	Applications to Counting Permutations	321	
		5.5.3	Distributions of Distinguishable Balls into Indistinguishable	le	
			Cells	325	
	5.6	Proba	bility Generating Functions	328	
	5.7	The C	Coleman and Banzhaf Power Indices	333	
	$\mathrm{Ref}\epsilon$	erences	for Chapter 5	337	
6	Rec	urren	ce Relations	339	
	6.1	$_{ m Some}$	Examples	339	
		6.1.1	Some Simple Recurrences	339	
		6.1.2	Fibonacci Numbers and Their Applications	346	
		6.1.3	Derangements	350	
		6.1.4	Recurrences Involving More than One Sequence	354	
	6.2	The N	Method of Characteristic Roots	360	
		6.2.1	The Case of Distinct Roots	360	
		6.2.2	Computation of the k th Fibonacci Number	363	
		6.2.3	The Case of Multiple Roots	364	
	6.3	Solvin	ng Recurrences Using Generating Functions		
		6.3.1	The Method	369	
		6.3.2	Derangements	375	
		6.3.3	Simultaneous Equations for Generating Functions	377	
	6.4	$_{ m Some}$	Recurrences Involving Convolutions	382	
		6.4.1	The Number of Simple, Ordered, Rooted Trees	382	
		6.4.2	The Ways to Multiply a Sequence of Numbers in a		
			Computer		
		6.4.3	Secondary Structure in RNA	389	

	Refe		Organic Compounds Built Up from Benzene Rings for Chapter 6	
7	The	Princ	ciple of Inclusion and Exclusion	403
	7.1		Principle and Some of Its Applications	
		7.1.1	Some Simple Examples	
		7.1.2	Proof of Theorem 6.1	
		7.1.3	Prime Numbers, Cryptography, and Sieves	
		7.1.4	The Probabilistic Case	
		7.1.5	The Occupancy Problem with Distinguishable Balls and	
			Cells	. 413
		7.1.6	Chromatic Polynomials	. 414
		7.1.7	Derangements	. 417
		7.1.8	Counting Combinations	
		7.1.9	Rook Polynomials	
	7.2	The N	Number of Objects Having Exactly m Properties	. 425
		7.2.1	The Main Result and Its Applications	
		7.2.2	Proofs of Theorems 7.4 and 7.5	
	Refe	rences	for Chapter 7	. 436
8	The	Pólya	a Theory of Counting	439
	8.1	Equiv	ralence Relations	. 439
		8.1.1	Distinct Configurations and Databases	
		8.1.2	Definition of Equivalence Relations	. 440
		8.1.3	Equivalence Classes	
	8.2	$\operatorname{Perm}_{\mathbf{I}}$	utation Groups	
		8.2.1	Definition of a Permutation Group	
		8.2.2	The Equivalence Relation Induced by a Permutation Group	
		8.2.3	Automorphisms of Graphs	
	8.3		side's Lemma	
		8.3.1	Statement of Burnside's Lemma	. 457
		8.3.2	Proof of Burnside's Lemma	
	8.4		act Colorings	
		8.4.1	Definition of a Coloring	
		8.4.2	Equivalent Colorings	
		8.4.3	Graph Colorings Equivalent under Automorphisms	
		8.4.4	The Case of Switching Functions	
	8.5		Cycle Index	
		8.5.1	Permutations as Products of Cycles	
		8.5.2	A Special Case of Pólya's Theorem	. 474
		8.5.3	Graph Colorings Equivalent under Automorphisms	
			Revisited	. 475

xii Contents

		8.5.4	The Case of Switching Functions
		8.5.5	The Cycle Index of a Permutation Group 476
		8.5.6	Proof of Theorem 8.6
	8.6	Pólya	's Theorem
		8.6.1	The Inventory of Colorings
		8.6.2	Computing the Pattern Inventory
		8.6.3	The Case of Switching Functions
		8.6.4	Proof of Pólya's Theorem
	Refe	erences	for Chapter 8
\mathbf{P}_{I}	ART	III TI	ne Existence Problem 489
9	Cor		orial Designs 489
	9.1	Block	Designs
	9.2		Squares
		9.2.1	Some Examples
		9.2.2	Orthogonal Latin Squares
		9.2.3	Existence Results for Orthogonal Families 500
		9.2.4	Proof of Theorem 9.3
		9.2.5	Orthogonal Arrays with Applications to Cryptography 506
	9.3		Fields and Complete Orthogonal Families of Latin Squares 513
		9.3.1	Modular Arithmetic
		9.3.2	Modular Arithmetic and the RSA Cryptosystem 514
		9.3.3	The Finite Fields $GF(p^k)$
		9.3.4	Construction of a Complete Orthogonal Family of $n \times n$ Latin
			Squares if n Is a Power of a Prime
		9.3.5	Justification of the Construction of a Complete Orthogonal
			Family if $n = p^k$
	9.4	Balan	ced Incomplete Block Designs
		9.4.1	(b, v, r, k, λ) -Designs
		9.4.2	Necessary Conditions for the Existence of
			(b, v, r, k, λ) -Designs
		9.4.3	Proof of Fisher's Inequality
		9.4.4	Resolvable Designs
		9.4.5	Steiner Triple Systems
		9.4.6	Symmetric Balanced Incomplete Block Designs 536
		9.4.7	Building New (b, v, r, k, λ) -Designs from Existing Ones 537
		9.4.8	Group Testing and Its Applications
		9.4.9	Steiner Systems and the National Lottery 542
	9.5		Projective Planes
		9.5.1	Basic Properties

	-		Projective Planes, Latin Squares, and (v, k, λ) -Designs	
	Refe	rences f	for Chapter 9	558
10	\mathbf{Cod}	ing Th	leory	561
			nation Transmission	561
			ing and Decoding	
			Correcting Codes	
			Error Correction and Hamming Distance	
			The Hamming Bound	
			The Probability of Error	
			Consensus Decoding and Its Connection to Finding Patterns	011
		10.0.1	in Molecular Sequences	573
	10.4	Linear	Codes	
	10.1		Generator Matrices	
			Error Correction Using Linear Codes	
			Hamming Codes	
	10.5		se of Block Designs to Find Error-Correcting Codes	
	10.5		Hadamard Codes	
			Constructing Hadamard Designs	
			The Richest (n,d) -Codes	
	Refe		Some Applications	
	Tucic.	rences i	of Chapter 10	000
11			Problems in Graph Theory	609
	11.1		-First Search: A Test for Connectedness	
		11.1.1	Depth-First Search	610
		11.1.2	The Computational Complexity of Depth-First Search	612
		11.1.3	A Formal Statement of the Algorithm	612
		11.1.4	Testing for Connectedness of Truly Massive Graphs	613
	11.2	The O	ne-Way Street Problem	616
			Robbins' Theorem	
			A Depth-First Search Algorithm	
			Efficient One-Way Street Assignments	
			Efficient One-Way Street Assignments for Grids	
		11.2.5	Annular Cities and Communications in Interconnection	
			Networks	625
	11.3	Euleria	an Chains and Paths	
			The Königsberg Bridge Problem	
			An Algorithm for Finding an Eulerian Closed Chain	
			Further Results about Eulerian Chains and Paths	
	11 4		ations of Eulerian Chains and Paths	
			The "Chinese Postman" Problem	

xiv Contents

		11.4.2 Computer Graph Plotting	642
		11.4.3 Street Sweeping	642
			645
		11.4.5 A Coding Application	648
		11.4.6 De Bruijn Sequences and Telecommunications	650
	11.5		656
			656
		11.5.2 Sufficient Conditions for the Existence of a Hamiltonian	
			658
		11.5.3 Sufficient Conditions for the Existence of a Hamiltonian Cycle	
			660
	11.6		666
			666
			669
			670
			671
			673
	Refe	rences for Chapter 11	678
		•	
$\mathbf{P}_{\mathbf{A}}$	ART	IV Combinatorial Optimization	683
12			683
		0	683
	12.2	Some Existence Results: Bipartite Matching and Systems of Distinct	
		1	690
		1	690
		v i	692
		V 1	699
	12.4		702
		9	702
			704
	12.5	0	706
			706
			707
			709
	19.6		
		Matching as Many Elements of X as Possible	714
		Matching as Many Elements of X as Possible	716
		Matching as Many Elements of X as Possible	716
		Matching as Many Elements of X as Possible	716 717
	12.7	Matching as Many Elements of X as Possible Maximum-Weight Matching 12.7.1 The "Chinese Postman" Problem Revisited 12.7.2 An Algorithm for the Optimal Assignment Problem (Maximum-Weight Matching)	716 717 718
	12.7	Matching as Many Elements of X as Possible Maximum-Weight Matching 12.7.1 The "Chinese Postman" Problem Revisited 12.7.2 An Algorithm for the Optimal Assignment Problem (Maximum-Weight Matching) Stable Matchings	716 717 718 724
	12.7	Matching as Many Elements of X as Possible Maximum-Weight Matching 12.7.1 The "Chinese Postman" Problem Revisited 12.7.2 An Algorithm for the Optimal Assignment Problem (Maximum-Weight Matching)	716 717 718 724

Contents xv

	12.8.2 Numbers of Stable Matchings	
	12.8.3 Structure of Stable Matchings	
	12.8.4 Stable Marriage Extensions	
$\mathrm{R}\epsilon$	Gerences for Chapter 12	735
13 O ₁	timization Problems for Graphs and Networks	737
13	1 Minimum Spanning Trees	737
	13.1.1 Kruskal's Algorithm	737
	13.1.2 Proof of Theorem 13.1	
	13.1.3 Prim's Algorithm	741
13	2 The Shortest Route Problem	
	13.2.1 The Problem	745
	13.2.2 Dijkstra's Algorithm	748
	13.2.3 Applications to Scheduling Problems	
13	3 Network Flows	757
	13.3.1 The Maximum-Flow Problem	757
	13.3.2 Cuts	760
	13.3.3 A Faulty Max-Flow Algorithm	763
	13.3.4 Augmenting Chains	764
	13.3.5 The Max-Flow Algorithm	
	13.3.6 A Labeling Procedure for Finding Augmenting Chains	770
	13.3.7 Complexity of the Max-Flow Algorithm	
	13.3.8 Matching Revisited	773
	13.3.9 Menger's Theorems	
13	4 Minimum-Cost Flow Problems	785
	13.4.1 Some Examples	785
$R\epsilon$	Gerences for Chapter 13	
Appe	ndix: Answers to Selected Exercises	797
Auth	or Index	833
	ct Index	841