PIPELINING

Slides prepared by:
Dr. Zubair Ahmad Shah
Department of Computer Science and Engineering
Islamic University of Science and Technology, Awantipora

Pipelining

- Pipelining is a technique of decomposing a sequential process into suboperations, with each subprocess being executed in a special dedicated segment that operates concurrently with all other segments.
- The result obtained from computation in each segment is transferred to the next segment in the pipeline.
- The final result is obtained when data have passed through all segments.
- The overlapping of computation is made possible by associating a register with each segment in the pipeline.

Example

We want to perform combined multiply and add operations with a stream of numbers:

$$A_i * B_i + C_i$$
 for $i = 1, 2, 3, ..., 7$

$$R1 \leftarrow A_i$$
, $R2 \leftarrow B_i$ Input A_i and B_i

$$R3 \leftarrow R1 * R2$$
, $R4 \leftarrow C_i$ Multiply and input C_i

$$R5 \leftarrow R3 + R4$$

 $R5 \leftarrow R3 + R4$ Add C_i to product

Suboperations performed in each segment of the pipeline

Clock Pulse	Segn	nent 1	Segmen	nt 2	Segment 3		
Number	R 1	R2	R3	R4	R5		
1	A_1	<i>B</i> ₁	_		_		
2	A_2	B_2	$A_1 * B_1$	C_1	_		
3	A_3	B_3	$A_2 * B_2$	C_2	$A_1*B_1+C_1$		
4	A_4	B_4	$A_3 * B_3$	C_3	$A_2*B_2+C_2$		
5	A_5	B_5	$A_4 * B_4$	C_4	$A_3*B_3+C_3$		
6	A_6	B_6	$A_5 * B_5$	C ₅	$A_4*B_4+C_4$		
7	A_7	B_7	$A_6 * B_6$	C_6	$A_5*B_5+C_5$		
8	_	_	$A_7 * B_7$	C_7	$A_6*B_6+C_6$		
9	_	_	_	_	$A_7 * B_7 + C_7$		

Example of pipeline processing.

Content of Registers in Pipeline Example

General Structure of a Pipeline and Space-time Diagram

General structure of a four-segment pipeline

Spacetime diagram for a four-segment pipeline

Space-time diagram shows segment utilization as a function of time.

QUESTION:

- a) A nonpipeline unit takes t_n nsec to process each task. What will be the time taken by it to process n tasks?
- b) A k-segment pipeline has a a clock cycle time of t_p nsec. What will be the time taken by it to process the same n tasks?
- c) What is the speedup of the second system over the first?

SOLUTION:

- a) Total time taken by a nonpipeline unit to process n tasks = $n * t_n$ nsec
- **b**) Segments in the pipe = k
- \Rightarrow First task will complete in k clock cycles.

Each of the remaining (n - 1) tasks will complete in 1 clock cycle

- \Rightarrow The remaining (n 1) tasks will complete in (n 1) clock cycles.
- \Rightarrow Total time taken by the pipeline to complete n tasks = k + (n 1) clock cycles = $(k + n - 1) * t_p$ nsec

c) Speedup =
$$\frac{n * t_n}{(k+n-1) * t_p}$$

Speedup of pipeline processing over equivalent nonpipeline processing = $\frac{n * t_n}{(k+n-1) * t_p}$

As the number of tasks (n) increase,

k + n - 1 approaches the value of n.

$$\Rightarrow$$
 Speedup (S) $= \frac{t_n}{t_p}$

Assuming that the time it takes to process a task is the same in pipeline and nonpipeline circuits,

$$S = \frac{k * t_p}{t_p} = k$$

=> The theoretical maximum speedup that a pipeline can provide = k i.e. number of segments in the pipeline.

Arithmetic Pipeline

- Pipeline arithmetic units are usually found in very high speed computers.
- They are used to implement floating-point operations, multiplication of fixed point numbers and similar computations.

Pipeline for floating-point addition and subtraction.

$$X = 0.9504 \times 10^{3}$$
$$Y = 0.8200 \times 10^{2}$$

The two exponents are subtracted in the first segment to obtain 3 - 2 = 1. The larger exponent 3 is chosen as the exponent of the result. The next segment shifts the mantissa of Y to the right to obtain

$$X = 0.9504 \times 10^3$$
$$Y = 0.0820 \times 10^3$$

This aligns the two mantissas under the same exponent. The addition of the two mantissas in segment 3 produces the sum

$$Z = 1.0324 \times 10^3$$

The sum is adjusted by normalizing the result so that it has a fraction with a nonzero first digit. This is done by shifting the mantissa once to the right and incrementing the exponent by one to obtain the normalized sum.

$$Z = 0.10324 \times 10^4$$

Instruction Pipeline

 Pipeline processing can occur not only in data stream but in the instruction stream as well.

Instruction Cycle:

- 1. Fetch the instruction from memory.
- Decode the instruction.
- 3. Calculate the effective address.
- Fetch the operands from memory.
- Execute the instruction.
- Store the result in the proper place.

Step:		1	2	3	4	5	6	7	8	9	10	11	12	13
Instruction:	1	FI	DA	FO	EX									
	2		FI	DA	FO	EX								
(Branch)	3			FI	DA	FO	EX							
	4				FI	-	-	FI	DA	FO	EX			
	5					-	-	-	FI	DA	FO	EX		
	6									FI	DA	FO	EX	
	7										FI	DA	ю	EX

Timing of instruction pipeline.

Four-segment CPU pipeline.

- For reference see your textbook:
 - Mano, M. Morris. Computer system architecture.
 Prentice-Hall of India, 2003.