МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа радиотехники и компьютерных технологий

Лабораторная работа 2.2.6

Определение энергии активации по температурной зависимости вязкости жидкости

Автор: Григорьев Даниил Б01-407

Долгопрудный 2025

1 Аннотация

Цель работы: измерение скорости падения шариков при разной температуре жидкости; вычисление вязкости жидкости по закону Стокса и расчет энергии активации.

В работе используются: стеклянный цилиндр с исследуемой жидкостью (глицерин); термостат ($\sigma_T = 0.1 \text{ K}$); секундомер ($\sigma_t = 0.6 \text{ сек}$); микроскоп ($\sigma_d = 0.02 \text{ мм}$); мелкие шарики (диаметром 1-2 мм).

2 Теоретическая часть

2.1 Энергия активации

Для того чтобы перейти в новое состояние, молекула жидкости должна преодолеть участки с большой потенциальной энергией, превышающей среднюю тепловую энергию молекул. Для этого тепловая энергия молекул должна — вследствие флуктуации — увеличиться на некоторую величину W, называемую энергией активации. Температурная зависимость вязкости жидкости при достаточно грубых предположениях можно описать формулой

$$\eta = Ae^{W/kT} \tag{1}$$

Из формулы (1) следует, что существует линейная зависимость между величинами $ln\eta$ и 1/T, и энергию активации можно найти по формуле

$$W = k \frac{d(\ln \eta)}{d(1/T)} \tag{2}$$

2.2 Измерение вязкости

По формуле Стокса, если шарик радиусом r и со скоростью v движется в среде с вязкостью η , и при этом не наблюдается турбулентных явлении, тормозящую силу можно найти по формуле (3)

$$F = 6\pi \eta \frac{d}{2}v \tag{3}$$

Для измерения вязкости жидкости рассмотрим свободное падение шарика в жидкости. При медленных скоростях на шарик действуют силы Архимеда и Стокса, выражения для которых мы знаем. Отсюда находим выражения для установившейся скорости шарика и вязкости жидкости

$$v_{\rm ycr} = \frac{2}{9}g\frac{d^2}{4}\frac{\rho - \rho_{\rm x}}{\eta} \tag{4}$$

$$\eta = \frac{2}{9} g \frac{d^2}{4} \frac{\rho - \rho_{\text{**}}}{v_{\text{VCT}}} \tag{5}$$

Как видим, измерив установившуюся скорость шарика и параметры системы можно получить вязкость по формуле (5).

2.3 Экспериментальная установка

Для измерений используется стеклянный цилиндрический сосуд B, наполненный исследуемой жидкостью (глицерин). Диаметр сосуда ≈ 3 см, длина ≈ 25 см. На стенках сосуда нанесены две метки на некотором расстоянии друг от друга. Верхняя метка должна располагаться ниже уровня жидкости с таким расчетом, чтобы скорость шарика к моменту прохождения этой метки успевала установиться. Измеряя расстояние между метками, b время падения определяют установившуюся скорость шарика $v_{\text{уст}}$. Сам сосуд B помещен в рубашку D, омываемую водой из термостата. При работающем термостате температура воды в рубашке D, а потому и температура жидкости 12 равна температуре воды в термостате. Схема прибора (в разрезе) показана на рис. 1.

Рис. 1: Установка для определения коэффициента вязкости жидкости.

3 Ход работы

3.1 Измерение диаметра шариков

Выбираем 10 стальных и 10 стеклянных шариков. Из-за неидеальности формы измерения производим в 2 случайных направлениях при помощи микроскопа и усредняем. Данные измерений приведены в таблице 1. Погрешность измерений $\sigma_d=0.02$ мм. Плотности шариков:

$$ho_{\rm стекло} = (2.5 \pm 0.1) \ г/{
m cm}^3$$
 $ho_{\rm сталь} = (7.8 \pm 0.1) \ г/{
m cm}^3$

$N_{\overline{0}}$	Материал	Диаметр, мм
1	Стекло	2,07
2	Стекло	2,08
5	Стекло	2,07
6	Стекло	2,06
9	Стекло	2,09
10	Стекло	2,11
13	Стекло	2,09
14	Стекло	2,06
17	Стекло	2,09
18	Стекло	2,10

$N_{\overline{0}}$	Материал	Диаметр, мм
3	Сталь	0,85
4	Сталь	0,80
7	Сталь	0,90
8	Сталь	0,85
11	Сталь	0,95
12	Сталь	0,80
15	Сталь	0,75
16	Сталь	0,86
19	Сталь	0,80
20	Сталь	0,95

Таблица 1: Измеренные диаметры шариков

3.2 Измерение установившихся скоростей падения шариков

Будем измерять время прохождения шариком расстояния L (см. рис. 1):

$$L = l_1 + l_2 = (19.8 \pm 0.1) \text{ cm}$$

Измерения производим для 6 значений температуры от 25 до 55 °C. При помощи секундомера измеряем время прохождения шариком участка L ($\sigma_t = 2t_{\rm peakq} \approx 0.6$ с). Усредняем значение, вычисляем

установившуюся скорость шариков в жидкости. По графику на рис. 2 определим плотность глицерина для каждой температуры. По формуле (5) рассчитываем вязкость глицерина ($\sigma_{\rho_{\text{глиц}}} = 0.01 \text{ г/см}^3$). Примем $g = (9.81 \pm 0.01) \text{ м/c}^2$. Результаты представлены в таблице 2.

Рис. 2: График плотности глицерина в зависимости от температуры.

$N_{\overline{0}}$	Материал	T, K	t, c	$\sigma t, c$	$v_{\rm ycr}$,	$\sigma_{v_{ m ycr}},$	$ ho_{ m ext{\tiny глиц}},$	η ,	σ_{η} ,
					$_{\rm MM}/c$	$_{\rm MM}/c$	Γ/cm^3	мПа∗с	мПа∗с
1	Стекло	293	66.7	0.6	3.0	0.1	1.26	975	70
2	Стекло	293	68.0	0.6	2.9	0.1	1.26	1004	69
3	Сталь	293	72.0	0.6	2.8	0.1	1.26	936	41
4	Сталь	293	76.2	0.6	2.6	0.1	1.26	878	41
5	Стекло	303	39.0	0.6	5.1	0.2	1.26	572	51
6	Стекло	303	39.5	0.6	5.0	0.2	1.26	597	50
7	Сталь	303	42.0	0.6	4.7	0.1	1.26	613	30
8	Сталь	303	44.4	0.6	4.5	0.1	1.26	578	31
9	Стекло	313	18.4	0.6	10.7	0.4	1.25	277	36
10	Стекло	313	16.5	0.7	12.0	0.2	1.25	252	22
11	Сталь	313	20.1	0.6	9.9	0.4	1.25	293	36
12	Сталь	313	23.0	0.6	8.6	0.3	1.25	266	25
13	Стекло	323	13.2	0.6	15.0	0.8	1.25	199	28
14	Стекло	323	12.0	0.6	16.5	0.9	1.25	176	28
15	Сталь	323	15.3	0.6	12.9	0.5	1.25	155	18
16	Сталь	323	12.4	0.6	16.0	0.9	1.25	165	21
17	Стекло	328	7.0	0.6	28.3	1.4	1.25	106	24
18	Стекло	328	7.3	0.6	27.1	1.5	1.25	111	25
19	Сталь	328	9.1	0.6	21.8	0.9	1.25	105	18
20	Сталь	328	7.9	0.6	25.1	1.3	1.25	129	21

Таблица 2: Результаты измерений установившихся скоростей шариков и соответствующих плотностей глицерина

$$\sigma_{t_{\text{cp}}} = \sqrt{\sigma_t^2 + \sigma_{\text{случ}}^2} = \sqrt{\sigma_t^2 + (t - t_{\text{cp}})^2}$$

$$\sigma_{v_{\text{ycr}}} = v_{\text{yct}} \sqrt{\left(\frac{\sigma_l}{l}\right)^2 + \left(\frac{\sigma_{t_{\text{cp}}}}{t_{\text{cp}}}\right)^2}$$

$$\sigma_{\eta} = \eta \sqrt{\left(\frac{\sigma_g}{g}\right)^2 + \left(2\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_{v_{\text{ycr}}}}{v_{\text{ycr}}}\right)^2 + \frac{\sigma_\rho^2 + \sigma_{\rho_{\text{глиц}}}^2}{(\rho - \rho_{\text{глип}})^2}}$$

Средняя относительная погрешность измерений вязкости $\varepsilon_{\eta}=9.5\%$

3.3 Вычисление числа Рейнольдса, оценка времени и пути релаксации. Анализ применимости формулы Стокса

Для каждого из опытов вычислим число Рейнольдса Re (6), оценим время релаксации τ (7) и путь релаксации S (8). Результаты представлены в таблице 3.

$$Re = \frac{d}{2} \frac{v_{\text{уст}} \rho_{\text{глиц}}}{\eta}, \qquad \varepsilon_{Re} = \sqrt{\left(\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_{v_{\text{уст}}}}{v_{\text{уст}}}\right)^2 + \left(\frac{\sigma_{\rho_{\text{глиц}}}}{\rho_{\text{глиц}}}\right)^2 + \left(\frac{\sigma_{\eta}}{\eta}\right)^2}$$
 (6)

$$\tau = \frac{2}{9} \frac{d^2}{4} \frac{\rho}{\eta}, \qquad \varepsilon_{\tau} = \sqrt{\left(2\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_{\rho}}{\rho}\right)^2 + \left(\frac{\sigma_{\eta}}{\eta}\right)^2} \tag{7}$$

$$S = v_{\text{yct}}\tau, \qquad \varepsilon_S = \sqrt{\left(\frac{\sigma_{v_{\text{yct}}}}{v_{\text{yct}}}\right)^2 + \left(\frac{\sigma_{\tau}}{\tau}\right)^2}$$
 (8)

			-		I		ı	~	
Nº	материал	T, K	η , м $\Pi a * c$	$Re * 10^{-3}$	σ_{Re}	au, MC	$\sigma_{ au}$, MC	S, mkm	σ_S , MKM
1	Стекло	293	975	4.0	0.5	0.61	0.07	1.81	1.06
2	Стекло	293	1004	3.8	0.6	0.60	0.07	1.74	1.07
3	Сталь	293	936	1.6	0.2	0.33	0.03	0.94	0.03
4	Сталь	293	878	1.5	0.1	0.32	0.03	0.82	0.02
5	Стекло	303	572	11.5	1.2	1.04	0.11	5.28	2.19
6	Стекло	303	597	11.1	1.2	1.10	0.11	5.15	2.20
7	Сталь	303	613	4.3	0.3	0.56	0.04	2.70	1.07
8	Сталь	303	578	4.1	0.3	0.54	0.04	2.42	0.04
9	Стекло	313	277	50.8	3.0	2.19	0.17	23.55	0.62
10	Стекло	313	252	62.9	0.7	2.45	0.06	29.46	1.14
11	Сталь	313	293	18.9	3.3	1.20	0.18	13.86	4.70
12	Сталь	313	266	16.1	0.8	1.04	0.07	8.39	3.23
13	Стекло	323	199	98.7	7.8	2.34	0.28	45.69	16.96
14	Стекло	323	176	120.6	8.1	2.43	0.29	50.99	16.10
15	Сталь	323	155	39.0	1.9	1.11	0.10	20.22	5.58
16	Сталь	323	165	51.7	3.2	1.46	0.14	27.56	10.29
17	Стекло	328	106	348.3	16.1	5.11	0.91	160.55	14.48
18	Стекло	328	111	318.0	16.3	5.16	0.92	149.04	14.61
19	Сталь	328	105	103.1	3.9	2.50	0.15	57.50	1.38
20	Сталь	328	129	115.4	5.5	3.76	0.19	76.49	12.28

Таблица 3: Результаты вычисления Re, τ, S

Итого:

$$\langle \varepsilon_{Re} \rangle = 11.7\%$$

 $\langle \varepsilon_{\tau} \rangle = 10.8\%$
 $\langle \varepsilon_{S} \rangle = 6.2\%$

Как видим, во всех экспериментах число Рейнольдса меньше 1, а путь релаксации пренебрежимо мал. Следовательно формула Стокса применима.

3.4 График зависимости $ln\eta$ от 1/T

По методу наименьших квадратов вычислим угол наклона прямой.

Рис. 3: График зависимости $ln\eta$ от 1/T.

$$k_{\text{\tiny HAKJ}} = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2} = (6570 \pm 160) \text{K}$$

Прямая, полученная по МНК не проходит через 0. Это объясняется тем, что в формуле (1) есть константа A. Коэффициент b прямой соответственно равен lnA.

3.5 Вычисление энергии активации

При помощи формулы (2) рассчитаем энергию активации:

3.6 Оценка погрешностей

Случайная погрешность энергии активации:

$$\sigma_{k_{\text{накл}}} = \frac{1}{\sqrt{24}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - k_{\text{накл}}^2} = 160 K$$

$$\sigma_W^{\text{случ}} = W \frac{\sigma_{k_{\text{накл}}}}{k} = 1.511 \frac{\text{кДж}}{\text{моль}} * 2.4\% = 0.037 \frac{\text{кДж}}{\text{моль}}$$

Приборная погрешность энергии активации:

$$\sigma_W^{ ext{приб}} = W \sqrt{\left(rac{\sigma_T}{T}
ight)^2 + \left(rac{\sigma_\eta}{\eta lnrac{\eta}{A}}
ight)^2} = 0.014 \,\, rac{ ext{кДж}}{ ext{моль}}$$

Полная погрешность энергии активации:

$$\sigma_W = \sqrt{\sigma_W^{\text{приб}^2} + \sigma_W^{\text{случ}^2}} = 0.039 \ \frac{\text{кДж}}{\text{моль}}$$
 $\varepsilon_W = 2.5\%$

4 Вывод

$$W = (1.49 \pm 0.04) \frac{\text{кДж}}{\text{моль}}$$

Измерили скорости падения шариков при разной температуре жидкости, вычислили вязкость жидкости по закону Стокса и рассчитали энергию активации. Заметим, что при $30^{\circ}C$ полученная вязкость глицерина, почти совпадает с табличным значением: табличное значение = 600 мПа * c, у нас же при данной температуре $\eta = 597$ мПа * c.