1.42 Theorem. Let $a, b, n \in \mathbb{Z}$. If $a \mid n, b \mid n$ and (a, b) = 1, then $ab \mid n$.

Proof. Let $a, b, n \in \mathbb{Z}$ be given such that $a \mid n, b \mid n$, and (a, b) = 1. By definition, $a \mid n$ and $b \mid n$ are equivalent to n = as and n = bt, respectively, for some $s, t \in \mathbb{Z}$. By Theorem 1.38, since (a, b) = 1, there exists $x, y \in \mathbb{Z}$ such that ax + by = 1. Multiplying both sides by n,

$$n = n(ax + by)$$
$$= nax + nby.$$

Replacing n in the right hand side,

$$n = bt(ax) + as(by)$$
$$= ab(xt) + ab(sy)$$
$$= ab(xt + sy).$$

By CPI, xt + sy is an integer. Thus, $ab \mid n$.