Семинар 32

Общая информация:

- Если V евклидово или эрмитово пространство, то движением называется оператор $\phi \colon V \to V$ такой, что $(\phi v, \phi u) = (v, u)$ для любых $v, u \in V$.
- Если $v \in V$ произвольный ненулевой вектор, то отображение $\phi_v(u) = u 2\frac{(v,u)}{(v,v)}v$ является отражением относительно подпространства $\langle v \rangle^{\perp}$. То есть подпространство $\langle v \rangle^{\perp}$ остается неподвижным, а вектор v переходит в -v.

Задачи:

- 1. Задачник. §46, задача 46.3.
- 2. В пространстве \mathbb{R}^3 со стандартным скалярным произведением $(x,y)=x^Ty$ найти матрицу какого-нибудь ортогонального оператора (движения), который переводит вектор v_1 в v_2 , где

$$v_1 = \begin{pmatrix} -2\\3\\2 \end{pmatrix}, \ v_2 = \begin{pmatrix} 0\\-1\\4 \end{pmatrix}$$

- 3. Пусть V трехмерное евклидово пространство с базисом e_1, e_2, e_3 и пусть $\phi \colon V \to V$ ортогональный оператор с определителем 1. Показать:
 - (a) $\phi = \phi_1 \phi_2 \phi_3$, где ϕ_1 поворот на угол α_1 вокруг оси e_1 , ϕ_2 поворот на угол α_2 вокруг оси e_2 , ϕ_3 поворот на угол α_3 вокруг оси e_3 .
 - (b) $\phi = \phi_1 \phi_2 \phi_3$, где ϕ_1 и ϕ_3 повороты на углы α_1 и α_3 вокруг оси e_3 соответственно, а ϕ_2 поворот на угол α_2 вокруг оси e_1 .
- 4. Пусть $\phi: V \to V$ движение в эрмитовом или евклидовом пространстве такое, что $\phi = \phi_{v_1} \dots \phi_{v_k}$, где ϕ_{v_i} отражения. Покажите, что $k \geqslant \dim \operatorname{Im}(\phi \operatorname{Id})$.