BUNDESREPUBLIK DEUTSCHLAND

Als Erfinder benannt:

Deutsche Kl.:

45 1, 9/02

(1) (1)	Offenlegu	ıngsschrift	2218 097
2		Aktenzeichen:	P 22 18 097.8
@	-	Anmeldetag:	14. April 1972
43		Offenlegungstag	: 2. November 1972
	Ausstellungspriorität:	.	
30	Unionspriorität		
3	Datum:	16. April 1971	9. Dezember 1971
33	Land:	V. St. v. Amerika	
3)	Aktenzeichen:	134868	208041
<u>\$</u>	Bezeichnung:	Herbizides Mittel und seine	Verwendung
61)	Zusatz zu:	_	·
@	Ausscheidung aus:		
1	Anmelder:	Stauffer Chemical Co., New	York, N.Y. (V. St. A.)
	Vertreter gem. § 16 PatG:	Beil, W., DiplChem. Dr. ju Wolff, H. J., DiplChem. D Rechtsanwälte, 6230 Frank	r. jur.; Beil, H. Chr., Dr. jur.;

Pallos, Ferenc Marcus, Walnut Creek;

Arnekley, Duane Randall, Sunnyvale; Calif. (V. St. A.)

Brokke, Mervin Edward, Moraga;

72

1

RECHTSANWALTE
DR. JUR. DIPL.-CHEM. WALTER BEIL
ALFRED HOEPPENER
DR. JUR. DIFL.-CHEM. H.-J. WOLFF
DR. JUR. HAHS CHR. BEIL

13. April 1972

623 FRANKFURT AM MAIN-HOCHST ADELONSTRASSE 58

Unsere Nr. 17 782

Stauffer Chemical Company New York, N.Y., V.St.A.

Herbizides Mittel und seine Verwendung

Die Erfindung betrifft ein herbizides Mittel, bestehend aus einem herbiziden Wirkstoff und einem Gegenmittel, sowie ein Verfahren zur Verwendung dieses herbiziden Mittels. Das Gegenmittel entspricht der Formel

in der R einen Halogenalkyl-, Halogenalkenyl-, Alkyl-, Alkenyl-, Cycloalkyl- oder einen Cycloalkylalkylrest, ein Halogenatom oder ein Wasserstoffatom, einen Carboalkoxy-, N-Alkenylcarbamylalkyl-, N-Alkenylcarbamyl-, N-Alkyl-N-alkinylcarbamyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkenylcarbamyl- alkoxyalkyl-, N-Alkyl-N-alkinylcarbamylalkoxyalkyl-, Alkin-oxy-, Halogenalkoxy-, Thiocyanatoalkyl-, Alkenylaminoalkyl-, Alkylcarboalkyl-, Cyanoalkyl-, Cyanatoalkyl-, Alkenylaminosulfonoalkyl-, Alkylthioalkyl-, Halogenalkylcarbonyloxyalkyl-, Alkyoxycarboalkyl-, Halogenalkenylcarbonyloxyalkyl-, Hydroxy-halogenalkyloxyalkyl-, Hydroxyalkylcarboalkyoxyalkyl-, Hydroxyalkyl-, Thienyl-, Alkyl-dithiolenyl-, Thienalkyl- oder einen Phenylrest oder einen

durch Halogenatome, Alkyl-, Halogenalkyl-, Alkoxy-, Carbamyloder Nitroreste, Carbonsäurereste und deren Salze oder Halogenalkylcarbamylreste substituierten Phenylrest, einen Phenylalkyl-, Phenylhalogenalkyl- oder einen Phenylalkenylrest oder einen durch Halogenatome, Alkyl- oder Alkoxyreste substituierten Phenylalkenylrest, einen Halogenphenoxy-, Phenylalkoxy-, Phenylalkylcarboxyalkyl-, Phenylcycloalkyl-, Halogenphenylalkenoxy-, Halogenthiophenylalkyl-, Halogenphenoxyalkyl-, Bicycloalkyl-, Alkenylcarbamylpyridinyl-, Alkinylcarbamylpyridinyl-, Dialkenylcarbamylbicycloalkenyl- oder einen Alkinylcarbamylbicycloalkenylrest bedeutet, R, und R, gleich oder verschieden sein und jeweils Alkenyl- oder Halogenalkenylreste, Wasserstoffatome, Alkyl-, Halogenalkyl-, Alkinyl-, Cyanoalkyl-, Hydroxyalkyl-, Hydroxyhalogenalkyl-, Halogenalkylcarboxyalkyl-, Alkylcarboxyalkyl-, Alkoxycarboxyalkyl-, Thioalkylcarboxyalkyl-, Alkoxycarboalkyl-, Alkylcarbamyloxyalkyl-, Amino-, Formyl-, Halogenalkyl-N-alkylamido-, Halogenalkylamido-, Halogenalkylamidoalkyl-, Halogenalkyl-N-alkylamidoalkyl-, Halogenalkylamidoalkenyl-, Alkylimino-, Cycloalkyl-, Alkylcycloalkyl-, Alkoxyalkyl-, Alkylsulfonyloxyalkyl-, Mercaptoalkyl-, Alkylaminoalkyl-, Alkyoxycarboalkenyl-, Halogenalkylcarbonyl-, Alkylcarbonyl-, Alkenylcarbamyloxyalkyl-, Cycloalkylcarbamyloxyalkyl-, Alkoxycarbonyl-, Halogenalkoxycarbonyl-, Halogenphenylcarbamyloxyalkyl-, Cycloalkenyl- oder Phenylreste oder durch Alkylreste, Halogenatome, Halogenalkyl-, Alkoxy-, Halogenalkylamido-, Phthalamido-, Hydroxy-, Alkylcarbamyloxy-, Alkenylcarbamyloxy-, Alkylamido-, Halogenalkylamido- oder Alkylcarboalkenylreste substituierte Phenylreste, Phenylsulfonyloder Phenylalkylreste oder durch Halogenatome, Alkyl-, Dioxyalkylen-,Halogenphenoxyalkylamidoalkylreste substituierte Phenylalkylreste, Alkylthiodiazolyl-, Piperidylalkyl-, Thiazolyl-, Alkylthiazolyl-, Benzothiazolyl-, Halogenbenzothiazolyl-, Furylalkyl-, Pyridyl-, Alkylpyridyl-, Alkyloxazolyl-, Tetrahydrofurylalkyl-, 3-Cyano-, 4,5-Polyalkylen-thienyl-, α-Halogenalkylacetamidophenylalkyl-, a-Halogenalkylacetamidonitrophenylalkyl-, a-Halogenalkylacetamidohalogenphenylalkyl-,

oder Cyanoalkenylreste bedeuten können oder auch R_1 und R_2 zusammen mit dem Stickstoffatom einen Piperidinyl-, Alkylpiperidinyl-, Alkylpiperidinyl-, Alkylpiperidinyl-, Morpholyl-, Alkylmorpholyl-, Azo-bicyclononyl-, Benzoalkylpyrrolidinyl-, Oxazolidyl-, Alkyloxazolidyl-, Perhydrochinolyl- oder Alkylminoalkenylrest bilden können, wobei R_2 kein Wasserstoffatom oder Halogenphenylrest ist, wenn R_1 ein Wasserstoffatom darstellt.

Aus der Vielzahl der handelsüblichen Herbizide haben die Thiolcarbamate als solche oder im Gemisch mit anderen Herbiziden, wie den Triazinen, eine relativ hohe, industrielle Erfolgsquote erreicht. Bei unterschiedlicher Konzentration, die je nach der Resistenz der Unkrautarten schwankt, wirken diese Herbizide auf eine große Zahl derselben sofort toxisch. Einige Beispiele dieser Verbindungen werden in den USA-Patentschriften Nr. 2 913 327, 3 037 853, 3 175 897, 3 185 720, 3 198 786 und 3 582 314 beschrieben. Die Praxis erwies jedoch, daß dic Verwendung dieser Thiolearbamate als Herbizide in Getreidefeldern (crops) bisweilen starke Schädigungen der Getreidepflanzen zur Folge hat. Erfolgt die Verwendung im Boden in den empfohlenen Mengen mit dem Ziel, eine Vielzahl von breitblättrigen Unkrautarten und Gräsern zu bekämpfen, so kommt es zu schweren Mißbildungen und Verkümmerungen der Getreidepflanzen. Dieses anomale Wachstum führt zu Ertragsschmälerungen. Bei früheren Versuchen, dieses Problem zu überwinden, wurde der Getreidesamen vor dem Pflanzen mit bestimmten Gegenmitteln behandelt; vgl. USA-Patentschrift 3 131 509. Diese Gerenmittel waren nicht besonders wirksam.

Es wurde nun gefunden, daß die Pflanzen dadurch vor Schädinungen durch die Thiolearbamate als solche oder im Gemisch mit anderen Verbindungen geschützt und/oder gegen die Wirkstoffe der vorstehend genannten Patentschriften erheblich widerstandsfähiger gemacht werden können, daß man dem Boden eine Verbindung der Formel

$$R-C-N$$
 $R-C-N$
 R_2

in der R, R₁ und R₂ die vorstehend genannten Bedeutungen besitzen, zuführt.

Die Erfindungsgemäßen Verbindungen können durch Vermischen eines geeigneten Säurechlorids mit einem entsprechenden Amin syrthetisiert werden. Gegebenenfalls kann ein Lösungsmittel wie Benzel eingesetzt werden. Die Reaktion wird vorzugsweise bei verminderten Temperaturen durchgeführt. Nach Abschluß der Reaktion wird das Endprodukt auf Raumtemperatur gebracht und kann leicht ebgetrennt werden.

Die nachstehenden Beispiele dienen der Erläuterung der Erfindung.

$$\begin{array}{c} \text{CHCl}_2\text{-CH=CH}_2 \\ \text{CH}_2\text{-CH=CH}_2 \\ \text{CH}_2\text{-CH=CH}_2 \end{array}$$

Es wurde eine Lösung aus 3,7 g (0,025 Mol) Dichloracetylchlorid und 100 ml Methylendichlorid hergestellt, die dann in einem Eisbad auf etwa 5 $^{\circ}$ C abgekühlt wurde. Dann wurden 4,9 g (0,05 Mol) Diallylamin tropfenweise zugesetzt, wobei die Temperatur auf unter etwa 10 $^{\circ}$ C gehalten wurde. Das Gemisch wurde dann etwa 4 Stunden lang bei Raumtemperatur gerührt, zweimal mit Wasser gewaschen, über Magnesiumsulfat getrocknet, filtriert und abgestreift. Die Ausbeute betrug 4,0 g; $n_{\rm D}^{30}$ = 1,4990.

Beispiel 2

$$CHCl_{2}-C-N \xrightarrow{C_{3}H_{7}-n} C_{3}H_{7}-n$$

Es wurde eine Lösung aus 3,7 g (0,025 Mol) Dichloracetylchlorid und 100 ml Methylendichlorid hergestellt, die dann in einem Eisbad auf etwa 10 $^{\circ}$ C abgekühlt wurde. Dann wurden 5,1 g (0,05 Mol) Di-n-propylamin tropfenweise zugesetzt, wobei die Temperatur auf unter etwa 10 $^{\circ}$ C gehalten wurde. Das Gemisch wurde dann über Nacht bei Raumtemperatur gerührt, zweimal mit Wasser gewaschen, über Magnesiumsulfat getrocknet, filtriert und abgestreift. Die Ausbeute betrug 3,6 g; $n_{\rm D}^{30}=1,4778$.

Beispiel 3

$$CHC1_2-C-N$$

$$CH(CH_3)-C = CH$$

Es wurde eine Lösung aus 3,7 g (0,025 Mol) Dichloracetyl-

chlorid und 80 ml Methylendichlorid hergestellt, die dann in einem Eisbad auf etwa 10 °C abgekühlt wurde. Dann wurden 4,2 g (0,05 Mol) N-Methyl-N-1-methyl-3-propinylamin in 20 ml Methylendichlorid tropfenweise zugesetzt, wobei die Temperatur bei etwa 10 °C gehalten wurde. Das Gemisch wurde dann etwa 4 Stunden lang bei Raumtemperatur gerührt, zweimal mit Wasser gewaschen, über Magnesiumsulfat getrocknet, filtriert und abgestreift. Die Ausbeute betrug 2,9 g; n_D = 1,4980.

Beispiel 4

Es wurde eine Lösung aus 100 ml Aceton und 5,05 g (0,1 Mol) Furfurylamin hergestellt und dann unter Zusatz von 7 ml Triäthylamin bei 15 °C gerührt. Diese Lösung wurde dann mit 5,7 g Monochloracetylchlorid versetzt und weitere 15 Minuten gerührt, während 500 ml Wasser zugesetzt wurden. Die Reaktionsmasse wurde filtriert, mit verdünnter Salzsäure in zusätzlichem Wasser gewaschen und dann auf ein konstantes Gewicht getrocknet.

Beispiel 5

Es wurde eine Lösung aus 5,7 g (0,05 Mol) Aminomethylthiazol in 100 ml Benzol und 7 ml Triäthylamin hergestellt. Diese Lösung wurde bei 10 - 15 °C gerührt und dann mit 5,2 ml (0,05 Mol) Dichloracetylchlorid tropfenweise versetzt. Das Reaktionsgemisch wurde 10 Minuten lang bei Raumtemperatur gerührt. Dann wurden 100 ml Wasser zugesetzt, und die Lösung wurde anschließend mit Benzol gewaschen, über Magnesiumsulfat getrocknet und dann zur Entfernung des Lösungsmittels filtriert.

$$CHCl_{2}-C-N \stackrel{H}{\underset{N}{\longrightarrow}} S \stackrel{Br}{\underset{N}{\longrightarrow}} Br$$

Es wurde eine Lösung aus 200 ml Aceton, 17,5 g (0,05 Mol) 2-Amino-6-brombenzothiazol und 7 ml Triäthylamin hergestellt. Die Lösung wurde unter Kühlen bei 15 °C gerührt. Dann wurden langsam 5,2 ml (0,05 Mol) Dichloracetylchlorid zugesetzt. Diese Lösung wurde 10 Minuten lang bei Raumtemperatur gerührt. Der Feststoff wurde abfiltriert, mit Äther und dann mit kaltem Wasser gewaschen und anschließend nochmals filtriert und bei 40 - 50 °C getrocknet.

Beispiel 7

$$n-C_9H_{19}-C-N$$
 $C(CH_3)_2-C=CH$

c,4 g 3-Methyl-3-butinylamin wurden in 50 ml Methylenchlorid aclöst; diese Lösung wurde mit 4,5 g Triäthylamin und anschließend unter Rühren und Kühlen in einem Wasserbad tropfenweise mit 7,6 g Decanoylchlorid versetzt. Nach Abschluß der Renktion wurde das Gemisch mit Wasser gewaschen, getrocknet und das Lösungsmittel abgestreift, wobei 7,1 g des Produktes erhalten wurden.

Beispiel 8

$$\begin{array}{c|c}
CH_2 & CH_2-CH=CH_2 \\
CH_2 & CH=CH_2
\end{array}$$

Es wurde eine Lösung aus 5,9 g Diallylamin in 15 ml Methylenchlorid und 6,5 g Triäthylamin hergestellt. Dann wurden unter

Rühren und Kühlen in einem Wasserbad 6,3 g Cyclopropancarbonylchlorid tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, getrocknet und das Lösungsmittel abgestreift, wobei 8,2 g des Produktes erhalten wurden.

Beispiel ?

Es wurde eine Lösung aus 4,5 g Diallylamin in 15 ml Methylenchlorid und 5,0 g Triäthylamin hergestellt. Dann wurden 7,1 g o-Fluorbenzoylchlorid unter Rühren und Kühlen in einem Wasserbad tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, getrocknet und das Lösungsmittel abgestreift, wobei 8,5 g des Produktes erhalten wurden.

Beispiel 10

Zur Herstellung von N,N-Bis(2-hydroxyäthyl)-dichloracetamid wurden 26,3 g Diäthanolamin in Gegenwart von 25,5 g Triäthylamin in 100 ml Aceton mit 37 g Dichloracetylchlorid umgc-setzt. Dunn wurden 6,5 g N,N-Bis(2-hydroxyäthyl)-dichloracetamid in 50 ml Aceton gelöst und anschließend mit 4 g Methylisocyanat in Gegenwart von Dibutylzinndilaurat und Triäthylamin als Katalysatoren umgesetzt. Das Reaktionspredukt wurde unter Vakuum abgestreift, wobei 8,4 g des Produktes erhalten wurden.

$$CH_2 = CH - CH_2$$
 $N - C - CH_2 - C - N$
 $CH_2 = CH - CH_2$
 $CH_2 = CH - CH_2$
 $CH_2 - CH = CH_2$

7,8 g Diallylamin wurden in 50 ml Methylenchlorid gelöst, wobei 8,5 g Triäthylamin tropfenweise zugesetzt wurden. Dann wurden 5,6 g Malonylchlorid unter Kühlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 7,0 g des Produktes erhalten wurden.

Beispiel 12

$$CH_2 = CH - CH_2$$
 $N - C - CH_2 - CH_2 - C - N$
 $CH_2 - CH = CH_2$
 $CH_2 - CH = CH_2$
 $CH_2 - CH = CH_2$

7,9 g Diallylamin wurden in 50 ml Methylenchlorid gelöst, wobei 8,5 g Triäthylamin tropfenweise zugesetzt wurden. Dann wurden 6,2 g Bernsteinsäurechlorid unter Kühlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 9,7 g des Produktes erhalten wurden.

Beispiel 13

$$CH = C - CH - N - C - CH_2 - CH_2 - CH_2 - CH_3$$

$$CH = C - CH - N - C - CH_2 - CH_2 - CH_3$$

$$CH - C = CH$$

$$CH_3$$

6,7 g N-Mothyl-1-methyl-3-propinylamin wurden in 50 ml Methylenchlorid gelöst, wobei 8,5 g Triäthylamin tropfenweise zugesetzt wurden. Dann wurden 6,2 g Bernsteinsäurechlorid unter Kühlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 7,0 g des Produktes erhalten wurden.

Beispiel 14

1,9 g Diallylamin wurden in 50 ml Methylenchlorid gelöst, wohei 8,5 g Triäthylamin tropfenweise zugesetzt wurden. Dann wurden 8,1 g o-Phthaloylchlorid unter Kühlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 10,9 g des Produktes erhalten wurden.

Peispiel 15

3,3 g N-Methyl-1-methyl-3-propinylamin wurden in 50 ml Methylenchlorid gelöst, wobei 4,5 g Triäthylamin tropfenweise zugesetzt wurden. Dann wurden 9,2 g Diphenylacetyl-chlorid unter Kühlen und Rühren tropfenweise zugesetzt. Hach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 9,9 g des Produktes erhalten wurden.

$$\begin{array}{c}
0 \\
\text{CH}_2 - \text{CH} = \text{CH}_2 \\
\text{CH}_2 - \text{CH} = \text{CH}_2
\end{array}$$

Fithelsäureanhydrid portionsweise unter Rühren zugesetzt wurden. Das Lösungsmittel wurde unter Vakuum abgestreift, wobei 13,0 g des Produktes erhalten wurden.

Budepiel 17

$$C = C - ON = CH^3$$
 $C + OH - C - C = CH$
 CH^3

3,2 g N(1,1-Dimethyl-3-propinyl)0-phthalamidsäure wurden in 50 ml Methanol gelöst und mit 9,6 g Natriummethylat in Form einer 25 %igen Lösung in Methanol unter Rühren und Kühlen portionsweise versetzt. Das Lösungsmittel wurde unter Vakuum absestreift oder entfernt, wobei 9,0 g des Produktes erhalter wurden. Das Zwischenprodukt N(1,1-Dimethyl-3-propinyl)0-phthalamat wurde aus 29,6 g Phthalsäureanhydrid und 16,6 g 3-Amino-3-methylbutin in 150 ml Aceton hergestellt. Das Zwischenprodukt wurde mit Petroläther in Form eines weißen Feststoffes ausgefällt und ohne weitere Reinigung verwandt.

Beispiel 18

$$CHCl_2 - C - N C_2H_5$$

$$C_2H_5$$

Ein 500 ccm-4-Halskolben wurde mit Rührer, Thermometer und Tipftrichter versehen. Dann wurden 7,7 g Diäthylamin (0,105

Mol), 4,0 g Natronlauge und 100 ml Methylenchlorid in den Kolben gefüllt und in einem Trockeneis-Aceton-Bad gekühlt. Dann wurden 14,7 g (0,10 Mol) Dichloracetylchlorid portions-weise zugesetzt. Das Gemisch wurde eine weitere Stunde gerührt und in ein Eisbad getaucht. Es wurde dann einer Phasentrennung unterworfen, und die untere organische Phase wurde mit zwei Portionen von 100 ml verdünnter Salzsäure und zwei Portionen von je 100 ml einer Natriumcarbonatlösung gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum konzentriert, wobei 16,8 g des Produktes erhalten wurden.

Baispiel 19

$$CH_3-C = C-CH_2-O-C-N$$

$$CH_2-CH=CH_2$$

$$CH_2-CH=CH_2$$

50 ml Methylendichlorid wurden mit 4,0 g (0,025 Mol) N,N-Diallylcarbamoylchlorid versetzt. Dann wurden 1,8 g (0,025 Mol) 2-Butin-1-ol zusammen mit 2,6 g Triäthylamin in 10 ml Methylenchlorid tropfenweise zugesetzt. Das Reaktionsprodukt wurde über Nacht bei Raumtemperatur gerührt, zweimal mit Wasser gewaschen und über Magnesiumsulfat getrocknet, wobei 4,0 g des Produktes erhalten wurden.

Beispiel 20

$$N = C-S-CH_2-C-N$$

$$CH_2-CH=CH_2$$

$$CH_2-CH=CH_2$$

9,7 g (0,1 Mol) Kaliumthiocyanat wurden in 100 ml Aceton gelöst. Dann wurden 8,7 g (0,05 Mol) N,N-Diallylchloracetamid. zusammen mit 10 ml Dimethylformamid bei Raumtemperatur zugesetzt. Das Reaktionsprodukt wurde über Nacht gerührt. Das Reaktionsprodukt wurde teilweise abgestreift. Dann wurde Was-

ser zusammen mit zwei Portionen von 100 ml Äther zugesetzt. Der Äther wurde abgetrennt, getrocknet und abgestreift, wobei 7,2 g des Produktes erhalten wurden.

Beispiel 21

Es wurde eine Lösung von 50 ml Benzol, die 7,4 g (0,05 Mol) Dichloracetylchlorid enthielt, hergestellt. Diese Lösung wurde bei einer Temperatur von 5 - 10 °C mit 3,0 g (0,05 Mol) Cyclopropylamin und 5,2 g Triäthylamin in 2ml Benzol versetzt. Es bildete sich ein Niederschlag, und das Gemisch wurde zwei Stunden bei Raumtemperatur und eine Stunde bei 50 - 55 °C gerührt. Das Produkt wurde wie in den vorstehenden Beispielen aufgearbeitet, wobei 5,7 g des Produktes erhalten wurden.

Beispiel 22

$$\mathsf{CHCl}_2\text{-}\mathsf{C-NH-CH}_2\text{-} \underbrace{\hspace{1cm}}_{\mathsf{O}}^{\mathsf{O}} \mathsf{CH}_2$$

4,7 g (0,032 Mol) Piperonylamin und 1,2 g Natriumhydroxid in 30 ml Methylenchlorid und 12 ml Wasser wurden bei -5° bis 0°C mit 4,4 g (0,03 Mol) Dichloracetylchlorid in 15 ml Methylenchlorid versetzt. Man rührte das Gemisch weitere 10 Minuten bei etwa 0°C und ließ es sich dann unter Rühren auf Raumtemperatur erwärmen. Die Schichten wurden abgetrennt, und die organische Schicht wurde mit verdünnter Salzsäure, einer 10 %igen Natriumcarbonatlösung und mit Wasser gewaschen und getrocknet, wobei 5,9 g des Produktes erhalten wurden.

Eine Lösung von 75 ml Benzol, die 5,7 g m-Chlorcinnamyl-chlorid enthielt, wurde hergestellt. Diese Lösung wurde bei einer Temperatur von 5 - 10 °C mit 3,2 g Diallylamin und 3,3 g Triäthylamin in 2 ml Benzol versetzt. Es bildete sich ein Niederschlag, und das Gemisch wurde zwei Stunden bei Raumtemperatur und eine Stunde bei 55 °C gerührt. Das Produkt wurde gewaschen und aufgearbeitet, wobei 5,8 g des Produktes erhalten wurden.

Beispiel 24

Ein 500 ccm-4-Halskolben wurde mit Rührer, Thermometer und Tropftrichter versehen. Dann wurden 11,9 g 2,4-Dimethylpiperidin, 4,0 g Natronlauge und 100 ml Methylenchloril in den Kolben gefüllt, und das Gemisch wurde in einem Trockencis-Aceton-Bad gekühlt. Dann wurden 14,7 g (0,10 Mol) Dichloracetylchlorid portionsweise zugesetzt. Das Gemisch wurde eine Stunde lang gerührt und in das Eisbad getaucht. Dann wurde es einer Phasentrennung unterworfen, wobei die untere organische Phase mit zwei Portionen von 100 ml verdünnter Salzsäure und zwei Portionen von je 100 ml einer 5 %igen Natriumcarbonatlösung gewaschen, über Magnesiumsulfat getrocknet und in einem Rotationsverdampfer unter einem mit einer Wasserstrahlpumpe erzeugten Vakuum konzentriert wurde. Dabei wurden 10,3 g des Produktes erhalten.

Lin 500 ml-4-Halskolben wurde mit Rührer, Thermometer und Tropftrichter versehen. Dann wurden 14,6 g (0,105 NoI) eiz-trans-Decahydrochinolin und 4,0 g Natronlauge zusammen mit 160 ml Methylenchlorid zugesetzt. Dann wurden 14,7 g. Dichloracetylchlorid portionsweise zugesetzt. Das Reaktions-cumisch wurde aufgearbeitet, wobei es etwa eine Stunde lang gerührt, in ein Eisbad getaucht und dann einer Phasentrennung untervorfen wurde; dann wurde die untere organische Phase mit zwei Fortionen von 100 ml verdünnter Salzsäure und zwei Fortionen von je 100 ml 5 %igem Natriumcarbonat geweschen, über Magnesiumsulfat getrocknet und konzentriert, wobei 22,3 g des Preduktes erhalten wurden.

asispic1 26

Tin 500 ml-4-Halskolben wurde mit Rührer, Thermometer und 'Iropftrichter versehen. Dann wurden 13,6 g (0,104 Mol) 2.3'-Iminobis-propylamin zusammen mit 12,0 g Natronlauge und 150 ml Methylenchlorid zugesetzt. Anschließend wurde das Gemisch in einem Trockeneis-Aceton-Bad gekühlt, und 44,4 g (0,300 Mol) Dichloracetylchlorid wurden portions-weise zugesetzt. Dabei bildete sich ein öliges Produkt, das in Methylenchlorid nicht löslich war; dieses Produkt wurde abgetrennt, mit zwei Portionen von 100 ml verdünnter Selzsäure gewaschen und über Nacht stehen gelassen. Am nächsten Morgen wurde das Produkt mit zwei Portionen von je 100 12 5 bigem Natriumearbonat gewaschen, und das Produkt wurde

in 100 ml Äthanol aufgenommen, über Magnesiumsulfat getrocknet und konzentriert, wobei 21,0 g des Produktes erhalten wurden.

Boispiel 27

The First Soo mi-4-Halskolben wurde mit Rührer, Thermometer und Tropftrichter versehen. Dann wurden 7,5 g (0,0525 Mol) Tetrabydrofurfuryl-n-propylamin, 2,0 g Natronlauge und 100 ml Mathylenchlorid zugesetzt. Anschließend wurden 7,4 g (0,05 Mol) Dichloracetylehlorid portionsweise zugesetzt. Das Gemisch wurde eine weitere Stunde in einem Eisbad gerührt und dann einer Frasentrennung unterworfen; danach wurde die untere organische Fhase mit zwei Portionen von 100 ml versühnter Salzsäure und zwei Portionen von 100 ml einer 5 %igen Mathiumearbonatlösung gewaschen, über Magnesiumsulfat gettricknet und konzentriert, wobei 12,7 g des Produktes erhalten wurden.

Beispiel 28

Das Beispiel 27 werde vollständig wiederholt, mit der Ausnahme, daß 8,9 g Piperidin als Amin verwandt wurden.

beispiel 29

Das Beispiel 28 wurde is w sentlichen vollständig wied mittlt; mit der Ausnahms, das 9,1 g Morpholin als Amin verwandt war den.

3,2 g Benzaldehyd und 7,7 g Dichloracetamid wurden mit 100 ml Benzol und etwa 0,05 g Paratoluolsulfonsäure vereint. Das Gemisch wurde solange unter Rückfluß erhitzt, bis kein Wasser mehr überging. Beim Abkühlen kristallisierte das Produkt aus Benzol, wobei 7,0 g des Produktes erhalten wurden.

Beispiel 31

$$\begin{array}{c|c}
CH_2 & CH_3 \\
CH_2 & C-NH-C-C = CH_3 \\
CH_3 & CH_3
\end{array}$$

2,5 / 3-Amino-3-methylbutin wurden in 50 ml Aceton gelöst, und dann wurden 3,5 g Triäthylamin zugesetzt. Anschließend wurden 6,0 g Adamantan-1-carbonylchlorid unter Rühren und Kühlen tropfenweise zugesetzt. Das Gemisch wurde in Wasser gegossen, und der feste Stoff wurde durch Filtrieren aufgefangen und unter Vakuum getrocknet, wobei 6,5 g des Produktes erhalten wurden.

Beispiel 32

$$N = C - C - NH - C$$

$$CH_{3} \qquad 0$$

$$CH_{3} \qquad 0$$

$$CH_{3} \qquad 0$$

$$CH_{3} \qquad CH_{3} \qquad CH_{3}$$

$$CH_{3} \qquad CH_{3} \qquad CH_{3}$$

5,1 g 2-Cyanoisopropylamin wurden in 50 ml Aceton gelöst,

und dann wurden 6,5 g Triäthylamin zugesetzt. Anschließend wurden 5,3 g Benzol-1,3,5-tricarbonsäurechlorid unter Rühren und Kühlen tropfenweise zugesetzt. Das Gemisch wurde in Wasser gegossen, und das feste Produkt wurde durch Filtrieren aufgefangen und unter Vakuum getrocknet, wobei 7,6 g des Produktes erhalten wurden.

Beispiel 33

6,0 g Diallylamin wurden in 50 ml Methylenchlorid gelöst, und dann wurden 6,5 g Triäthylamin zugesetzt. Anschließend wurden 6,6 g 3,6-Endomethylen-1,2,3,6-tetrahydrophthaloylchlorid unter Rühren und Kühlen tropfenweise zugesetzt.

Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 9,3 g des Produktes erhalten wurden.

$$\begin{array}{c}
 & \text{CH}_2 - \text{CH} = \text{CH}_2 \\
 & \text{CH}_2 - \text{CH} = \text{CH}_2 \\
 & \text{CH}_2 - \text{CH} = \text{CH}_2
\end{array}$$

4,0 g Diellylamin wurden in 50 ml Methylenchlorid gelöst, und dann wurden 4,5 g Triäthylamin zugesetzt. Anschließend wurden 7,2 c trans-2-Phonylcyclopropanearbonylchlorid unter Künlen und Rühren tropfenweisc zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 9,2 g des Froduktes erhalten wurden.

Es wurde eine Lösung aus 4,0 g (0,03 Mol) 2-Methylindolin, 7,0 ml Triäthylamin und 100 ml Methylenchlorid hergestellt. Dann wurden 2,9 ml Dichloracetylchlorid im Verlauf von et einer Minute zugesetzt, wobei die Temperatur durch Kühlung mit Trockeneis unter 0 °C gehalten wurde. Nachdem sich die Lösung auf Raumtemperatur erwärmt hatte, wurde sie eine Stunde lang stehen gelassen; anschließend wurde sie mit Wasser und dann mit verdünnter Salzsäure gewaschen, über Magnesiumsulfat getrocknet und eingedampft, wobei ein Feststoff erhalten wurde, der mit n-Pentan gewaschen wurde. Dabei wurden 5,0 g des Produktes erhalten.

Ein 500 ccm-4-Halskolben wurde mit Rührer, Thermometer und Tropftrichter versehen. Dann wurden 8,9 g Cyclooctyl-n-propylamin, 2,0 g Natronlauge und 100 ml Methylenchlorid in den Kolben gefüllt, und das Gemisch wurde in einem Trockeneis-Aceton-Bad gekühlt. Dann wurden 5,6 g Chloracetylchlorid portionsweise zugesetzt. Das Gemisch wurde etwa eine weitere Stunde gerührt, in das Eisbad getaucht und dann einer Phasentrennung unterworfen. Die untere organische Phase wurde mit zwei Portionen von 100 ml verdünnter Salzsäure und zwei Portionen von 100 ml einer 5 %igen Natriumcarbonatlösung gewaschen, über Magnesiumsulfat getrocknet und konzentriert, wobei 9,5 g des Produktes erhalten wurden.

$$\mathsf{CH}_{2}\mathsf{C1-C-N} \underbrace{\mathsf{C}_{2}\mathsf{H}_{5}}_{\mathsf{CH}_{2}} \mathsf{-CH}_{3}$$

Ein 500 ccm-4-Halskolben wurde mit Rührer, Thermometer und Tropftrichter versehen. Dann wurden 7,8 g (0,0525 Mol) p-Methylbenzyläthylamin, 2,0 g Natronlauge und 100 ml Methylenchlorid in den Kolben gefüllt. Das Gemisch wurde in einem Trockeneis-Aceton-Bad gekühlt. Dann wurden 5,6 g (0,05 Mol) Chloracetylchlorid portionsweise zugesetzt. Das Gemisch wurde etwa eine weitere Stunde gerührt, in das Eisbad getaucht und dann einer Phasentrennung unterworfen, wobei die untere organische Phase mit zwei Portionen von 100 ml verdünnter Salzsäure und anschließend mit zwei Portionen von 100 ml einer 5 %igen Natriumcarbonatlösung gewaschen, über Magnesiumsulfat getrocknet und konzentriert wurde. Dabei wurden 9,5 g des Produktes erhalten.

4,7 g Aminopyridin wurden zusammen mit 100 ml Aceton in ein Reaktionsgefäß gefüllt und bei 10 - 15 °C gerührt.

Dann wurden 7,0 ml Triäthylamin tropfenweise zugesetzt.

Danach wurde das Reaktionsgemisch im Verlauf von fünf
Aceton
Minuten mit 5,25 ml Dichloracetylchlorid in 10 ml/versetzt und bei Raumtemperatur gerührt. Die Feststoffe wurden abfiltriert und mit Aceton gewaschen, wobei 10,0 g des Produktes erhalten wurden.

Beispiel 39

Eine Lösung von 8,1 g (0,05 Mol) 4-Aminophthalimid in 100 ml Dimethylfuran wurde im Verlauf von 5 Minuten bei 0 - 10 °C unter Rühren mit 5,0 g Dichloracetylchlorid versetzt. Dann wurden 7,0 ml Triäthylamin zugesetzt. Die Reaktionsmasse wurde eine halbe Stunde lang bei Raumtemperatur gerührt, und dann wurde ein Liter Wasser zugesetzt. Anschließend wurde sie mit Wasser filtriert und getrocknet, wobei 12,0 g des Produktes erhalten wurden.

$$\begin{array}{c} \begin{array}{c} & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

Zur Herstellung der Verbindung dieses Beispiels wurden 5,4 g N,N-Bis(2-hydroxyäthyl)-dichloracetamid mit 4,3 g Isopropylisocyanat in 50 ml Aceton in Gegenwart von Dibutylzinndilaurat und Triäthylendiamin als Katalysatoren umgesetzt. Dabei wurden 8,2 g des Produktes erhalten.

Beispiel 41

Zur Herstellung der Verbindung dieses Beispiels wurden 3,6 g N,N-Bis(2-hydroxyäthyl)-chloracetamid in Gegenwart von 50 ml Aceton und Dibutylzinndilaurat und Triäthylendiamin als Katalysatoren mit 5,0 g Cyclohexylisocyanat umgesetzt. Die Reaktionsmasse wurde auf Rückflußtemperatur erhitzt und unter Vakuum abgestreift. Dabei wurden 6,9 g des Produktes erhalten.

15 g Aceton und 12,2 g Äthanolamin wurden in 150 ml Benzol vereint und solange unter Rückfluß erhitzt, bis kein weiteres Wasser mehr überging. Bei der Untersuchung der so entstandenen Lösung ergab sich, daß sie 2,2-Dimethyl-1,3-oxazolidin enthielt. Ein Viertel der Benzollösung (0,05 Mol) wurde mit 7,4 g Dichloracetylchlorid und 5,5 g Triäthylamin umgesetzt, mit Wasser gewaschen, getrocknet und unter Vakuum abgestreift, wobei ein leicht dunkelgelber Feststoff erhalten wurde. Ein Teil dieses Feststoffes wurde aus Äther umkristallisiert, wobei ein weißes Produkt erhalten wurde.

Analog hierzu wurden weitere Verbindungen unter Verwendung der entsprechenden Ausgangsmaterialien wie vorstehend aufgeführt hergestellt. In nachstehender Tabelle werden Beispiele erfindungsgemäßer Verbindungen zusammengestellt. Die den Verbindungen zugeordneten Nummern werden im folgenden beibehalten.

	R ₂	-CH2-CH=CH2	-CH2-CH=CH2	-CH2-CH=CH2	-CH2-CH-CH2	-CH2-CH=CH2	-CH2-CH=CH2	-CH2-CH=CH2	-CH2-C=N	ш	-c ₅ E ₇	; ;	ш	щ
Tabelle I: O R-C-N R2	H H	-CH2-CH=CH2	-cH ₂ -CH=CH ₂	-CH ₂ -CH=CH ₂	-ch2-ch=cH2	-ch2-ch=ch2	-CH2-CH=CH2	-CH2-CH=CH2	-CH ₂ -C = N	-CH2-CH-CH2	-c ₃ H ₇	-c(cH ²) ² -c c	-c(cH ₃) ₂ -c: :c	-CH2-CH=CH2
	떠	-сн(сн ₃)вг	-c(cH ₃) ₂ Br	-cc12-cH3	-cc1=cc1 ₂	-CF2-C2F5	-CHC12	-CH2C1	-CHC1 ₂	-cec1 ₂	-chc12	-cucı ₂	-cH2c1	-6613
	Verbindung Nr.	d		٨	4	ī.	9	7	· ,	6	10	11	12	13

	R2	-CH2-CH-CH2		ш	III	-сн(сн ₃)-с— св		$-cH_2 \subset $	-CH2 COH5	z
Tabelle I (Fortsetzung:	R.	-CH2-CH=CH2	-0(CH ₃) ₂ -c == CH	$-c(c_{\rm H_3})_2-c_{\rm I}=c_{\rm H}$	$-c(\alpha_3)_2-c=c\pi$	-cH ₃	-CH ₂ -CH=CH ₂	ш	¤	щ
-	«	-cc1 ₃	-CH2C1	-CEC12	-6613	-chc12	-CHC1 ₂	-CH2C1	-CHC1 ₂	-CH2C1
	Verbindung Nr.	14	15	16	21	18	19	20	21	22

	R2 C2H5		i v	S N	o z	N O	o k
Tabelle I (Fortsetzung):	H.	X i	¤ 1	Ħ	Ħ	ш	tal
Тареј	æ	-CHC1 ₂	-cec1 ₂	-Gec1 ₂	-chc1 ₂	-cec1 ₂	-CHC1 ₂
	Verbindung Mr.	23	24	25	56	27	

	в 2	-сн(сн ₃)-с≡сн	-CH ₂ -CH±CH ₂	$-c(cH_3)_2-c\equiv cH$	-сн ₂ -сн=сн ₂	-CH(CH ₂)-C= CH	$-C(CH_3)_2-C \equiv N$	-CH2+CH=CH2	-он(сн ²)-с - сн	$-c(cH_3)_2-c=cH$	-сн(сн ₃)с - : сн
Tabelle I (Fortsetzung:	H B	-¢H ₃	-c H2-cH=CH2	н 6	-CH2-CH*CH2	-cH ₃ .	#	-CH ₂ -CH=CH ₂	-CH ₂	н	- CH ₃
Tabelle I	æ	д - с-с - о	-C-C-C ₂ H5	-CH ₂ -CH(CH ₃)-CH ₂ -t-C ₄ H ₉	-c(cH ₃) ₂ -c ₃ H ₇	-cH2-t-c4H9	-CH2-t-C4H9	-сн(сн ₃)-с ₃ н ₇	»сн(сн ₂)-с ₃ н ₇	-сн(сн ₃)-с ₃ н ₇	$i-c_3H_7$
	Verbindung Mr.	 	30	31	32	. 23	.34	35	36	37	38

	Tabelle I	Tabelle I (Fortsetzung:	
Ferbindung Nr.	æ	E E	В.
59	-c ₁₃ H ₂₇	CH2-CH=CH2	-CH2CH=CH2
40	-C ₁₁ H ₂₃	CH2-CH=CH2	·-ch2ch=ch2
41 .	-c ₁₁ H ₂₃	щ	$-c(c_{\rm H_3})_2$ -c \equiv ch
42	-c ₉ H ₁₉	-CH2-CH=CH2	-ch-ch-ch2
43	-c ₉ H ₁₉	ш	$-c(cH_3)_2-c = cH$
44	-c(H ₁₃	-CH2-CH-CH2	-CH2-CH+CH3
45	$-c_{6}H_{13}$	-сн ₃	-CH(CH ₃)-C == CH
46	-c6H13	щ	$-c(cH_3)_2-c = cH$
47	-c4H9	н	$-c(cH_3)_2-c \Longrightarrow cH$
48	-C3H7	-CH2-CH=CH2	-ch2-ch=ch2
49	-c ₃ H ₇	-cH ₃	-сн(сн ₃)-с = сн
50.	-c ₅ H ₇	m	$-c(cH_3)_2c \equiv cH$
51	-CH ₃	-cH ₂ -CH-CH ₂	-CH2-CH-CH2

••
50
₫
3
ю
نټ
Φ
Ö
حد
Ħ
ę,
14
\smile
) ⊢l
]e I (
11e I (
elle I (
belle I (
abelle I (

Verbindung Nr.	æ	H ₁	R ₂
. 52	-cH ₃	¨ ¤	$-c(cH_3)_2-c \Longrightarrow cH$
53	-c(cH ₃)-CH ₂	ш	$-c(cH_3)_2-c = cH$
54	-ce-ch-ch ₃	-ch-ch-ch2	-CH2-CH=CH2
55	-сн-сн-сн ₃	#	$-c(c_B)_2-c=c_B$
. 96	-CE-C(CH ₃) ₂	-ch3	-сн(сн ₃)-с == св
57	-CE-C(CH ₃) ₂	¤	-c(cн ₃) ₂ -c — сн
28	-CH-CH-CH-CH-CH ₂	-chchch	-ch2-chach2
59	-CH=CH-CH=CH-CH ₃	121	$c(cH_3)_2^c\equiv cH$
09	CH CH2	-CH2-CH=CH2	-CH2-CH=CH2
61	сн ₂ — сн — с	- CH ₃	-сн(сн ₃)-с == св

R ₂	-сн(сн3)-с ≡ сн	$-c(cH_3)_2-c = cH$	-CH ₂ -CH=CH ₂	-сн(сн ₃)-с <u></u> сн	-он(сн³)-с = сн	$-c(cH_3)_2-c=cH$
R I	-0H	Ħ	-CH ₂ -CH=CH ₂	-CH ₂	-cH ₃	
æ	-cH ₂	-CH2-(S)	CF ₃	$\langle \overline{} \rangle$		€ H
	R ₁ .	S -0H ₂	S -0H ₃	$\begin{pmatrix} S \\ S \\ S \\ CH_2 - CH_2 \end{pmatrix}$ $-CH_2$	$ \begin{array}{c c} & & & & & & & & & \\ & & & & & & & \\ & & & &$	$ \begin{array}{c c} & & & & & & & & & \\ & & & & & & & \\ & & & &$

Verbindung Nr.

8

	Tabelle I	Tabelle I (Fortsetzung:	•
Verbindung Nr.	æ	R	R2
18	-CBr ₃	-CH2-CH=CH2	-OH2-CH=CH2
82	-CBr ₃	-OH ₃	-сн(сн ₃)-с сн
83	-cBr ₃	Ħ	-c(cH ₃) ₂ -c CH
94	-dBr ₃	щ	-0(CH ₃) ₂ -C - N
85	-CBr ₃	Щ	-CH2-CH=CH2
98	-ccl=chcl	-CH ₃	но — он (сн э) с — св
87	$-(cH_2)_4$ - cH_2 -Br	-cH2CH=CH2	-CH2CH+GH2
8 0	$-(cH_2)_4-cH_2-Br$	-CH ₃	-CE(CH ₃)-C = CH
68	្នាះ	-CH2-CH=CH2	-CH2-CH=CH2
96		-сн ₃	-сн(сн ₃)-с; сн
	•		

	я2	-сн(сн ₃)-ссн	-CH ₂ CH=CH ₂	-сн(сн ₃)-с - сн	-с(сн ₃) ₂ -с сн	-CH2-CH=CH2	-c(cH ₃) ₂ -c cH	-ch(ch ₃)-c = ch
Tabelle I (Fortsetzung:	L	-0H ₃	-CH ₂ CH=CH ₂	-CH ₃	щ	-сн ₂ -сн - сн ₂	'¤	-CH ₃
	ec		61	10 7 37		~ NO-CH3	№ 0-0H ₃	O CH ₂
	Verbindung Nr.	91		. 93	94	95	. 96	

209845/1180

Jahreney 3 5

BAD ORIGINAL

	H2	-с(сн ³) ² -с сн	-сн(сн ²)-с сн	-ch2-ch=ch2	-сн(сн ₃)-с сн	-сн2-сн=сн2	-с(сн ₃) ₂ -с сн	-CH2-CH=CH2
Tabelle I (Fortsetzung):	R ₁	ш	-cH ₃	-сн ₂ -сн=сн ₂	-сн ₃	-CH ₂ -CH=CH ₂	ш	-CH ₂ -CH=CH ₂
	æ	C-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	n \	A Br	Br			S
	Verbindung Nr.	109	110	111	112	113	114	115

	R ₂	-с(сн ₃) ₂ -с = сн	-с ₂ н ₄ он о	-CH2-CH2-O-C-CHC12	-сн ₂ -сн-0-s0 ₂ -сн ₃	-сн(сн ²)-с — сн	но ст (сн ²) - с сн	$-ce(ce_3)-c = ce$	-с(сн ₃) ₂ -с == сн
Tabelle I (Fortsetzung):	R	ш	-с ₂ н ₄ ов о	-ch2-ch2-0-c-chc1 ₂	-ch2-ch2-0-s02-ch3	-cH ₃	CH ₃	-0H ₃	н
Tabelle	æ	S	-CHG12	-CHC1 ₂	-CHC12	<u>-</u> \	S	-CHBr-CH3	-CHBr-CH ₃
	Verbindung Nr.	116	117	118	911	120	121	122	123

Fortsetzung):	
Tabelle I	

R ₂	-CH ₂ -CH=CH ₂	-сн(сн ²)-с = он	$-c(c_{\mathrm{H}_3})_2-c = c_{\mathrm{H}}$	-с(сн ₃) ₂ -с = св	-CH2-CH=CH2	-сн(сн ²)-с -::сн	$c(cH_3)_2-c\equiv cH$	-ch2-ch2ci	o =	-ch ₂ -ch ₂ -0-c-nh-ch ₃	-CH2-CH-0-C-0-CH3
ᇤ	-CH2-CH=CH2	-CE ₃	ш	ш	-CH2-CH=CH2	€HO÷	描	-CH2-CH2C1	0 =	-сн ₂ -сн ₂ -о-с-ин-сн ₃	-CH2-CH2-C-C-C-CH3
ez l	-ch2-ch2c1	-ch2-ch2c1	-ch2-ch2c1	-CBr(CH ₃) ₂	-ch2	-OH2I	-CH2I	-CHC12		-CHC12	-CHCI ₂
Verbindung Nr.	124	125	126	127	128	129	130	131	•	132	133

Tabelle I (Fortsetzung):	R R ₂	-CHC1 ₂ -CH ₂ -CH ₂ -O-C-C ₂ H ₅ -CH ₂ -O-C-C ₂ H ₅	.s-с ₂ н ₅ -сн ₂ -сн ₂ -о-	$-cH_2$ $-cH_2$ $-cH_2$ $-cH_2$ $-cH_2$	-cH ₂ -CH(CH ₃)-C CH	$-cH_2$ \longrightarrow $=$ $-c(cH_3)_2-c=cH$	-CH ₂	$-cH_2-cH_2$ $-cH_3$ $-cH_3$ $-cH_3$ $-cH_3$
	Verbindung Nr.	134	135 -CI	136 -01	137 - 01	138 - 0	139	140

	R2	-CH ₂ -CH=CH ₂	-сн(сн3)-с ≡сн	-CH2-CH=CH2	но ≡≡ о−([€] но)но−	-c(cH ₃) ₂ -c; ch	-CH ₂ -CH=CH ₂	-сн(сн)-с — сн
Tabelle I (Fortsetzung):	H.	-ch-ch-ch2	-cH ₃	-CH2-CH=CH2	-CH ₃	ш	-сн2-сн-сн2	сн - сн ₃
Tabelle I	es			-CH ₂ -C-N(CH ₂ -CH - CH ₂) ₂	O CH 3 -CH 2-C-N-CH-C === CH CH 5	O - CH ₂ -C-NH-C(CH ₃) ₂ C CH	$-c-N(cH_2-cH=cH_2)_2$	$-c-N(cH_3)-cH(cH_3)-c = CH$
	Verbindung Nr.	141	142	143	144	145	146	147

"我子一个人" 医摩歇氏的

Tabelle I (Fortsetzung):

R ₂	с(сн ₃) ₂ -с · · сн	-CH ₂ -CH=CH ₂	-сн(сн ₃)-с сн	-cH ₂ -cH=cH ₂	-сн(сн³)-с ≡ сн	-cH2-CH=CH2
R	щ	-cH ₂ -cH=cH ₂	-CH ₂	-сн2-сн=сн2	-CH ₂	-ch2-ch=ch2
Nr. B	" $-c-NH-c(cH_3)_2-c = cH$	CH2-CH2-C-W(CH2-CH-CH2)2	онерования в в в в в в в в в в в в в в в в в в в	" -(CH ₂) ₃ -C-N(CH ₂ -CH-CH ₂) ₂	$-(cH_2)_3-c-N(cH_3)-cH(cH_3)-c = cH$	$-(cH_2)_4$ -c-N $(cH_2$ -CH= $cH_2)_2$
erbindung Nr.	148	149	150	151	152	153

	Tabelle I (Fortsetzung)	:	
Verbindung Nr.	H H		·
154	$c_{\rm CH_2}$ = $c_{\rm LCH_3}$ = $c_{\rm CH_3}$ = $c_{\rm LCH_3}$ = $c_{\rm LCH_3}$	1 ₅ -сн(сн ₃)-с == св	-c == cb
155	$-c(cH_3)_2-c-N(cH_3)-cH(cH_3)-c=cH$	$_{1_{3}}^{1_{3}} - cH(CH_{3}) - c = CH$	HO ≡ 0-
156	$c(cH_2-c(cH_3)_2-cH_2-c-NH-c(cH_3)_3-c=cH$	н -с(сн ₃)	-с(сн ₃) ₂ -с — сн
157	O -GH ₂ -O-CH ₂ -C-W(CH ₂ -CH=CH ₂) ₂ -C	-сн ₂ -сн ₄ сн ₂ -сн ₂ -сн ₂ сн ₂	•cH ₂
158	$-cH_2-c-cH_2-c-N(cH_3)-cH(cH_3)-c \Longrightarrow cH$	-сн ²	-сн(сн ₃)-с = сн
159	C=0 V(CH,-CH=CH,),	сн2-сн-сн2 -сн2-сн=сн2	=CH ₂

	R2	но — о-(^є но)но-	-с(св ₃) ₂ -с = сн	-сн(сн ₃)-с == сн	-CH ₂ CH=CE ₂
Tabelle I (Fortsetzung):	R1 - CH ₃		: ::i	£нр-	-CH ₂ CH=CH ₂
	æ	$C = C = CH(CH_3) - C = CH$	0=c (сн ₃) ₂ -с == сн	\	$N(CH_{3})-CH(CH_{3})-C \equiv CH$ $\downarrow \downarrow \downarrow \downarrow$ $0=0$ $\dot{M}(CH_{2}CH-CH_{2})_{2}$
	Verbindung Nr.	160	. 161	162	163

209845/1180

	ж 2	-ch2-ch=ch2	-c(cH ₃) ₂ -c=cH	-CH2-CH=CH2	-с(сн ³) ² -с. сн	-ch ₂ -ch ₂	-сн(сн₂)-с ≕сн
ortsetzung):	E.	-сн ² -сн=сн ²	щ	-CH2-CH=CH2	æ	-сн ₂ -сн=сн ₂	c _H 2-
Tabelle I (Fortsetzung)	0	-c(cH ₅) ₂ -c-N(cH ₂ -CH=CH ₂) ₂	-c(cH ₃) ₂ -c-NH-c(CH ₃) ₂ -c CH	Nos	ON	$\left\langle \begin{array}{cc} \cdot \cdot \\ \cdot \cdot \end{array} - \text{NO}_2 \right\rangle$	-(\ NO ₂
	Verbindung Nr.	164	165	166	167	168	169

Tabelle I (Fortsetzung);

Verbindung Nr.
$$\frac{R}{A}$$

170 $\frac{R_2}{2}$

171 $-CHCI - \frac{1}{2}$

172 $-CHCI - \frac{1}{2}$

174 $-CHCI - \frac{1}{2}$

175 $-CHCI - \frac{1}{2}$

176 $-CHCI - \frac{1}{2}$

177 $-CHCI - \frac{1}{2}$

177 $-CHCI - \frac{1}{2}$

178 $-CHCI - \frac{1}{2}$

179 $-CHCI - \frac{1}{2}$

170 $-CHCI - \frac{1}{2}$

170 $-CHCI - \frac{1}{2}$

171 $-CHCI - \frac{1}{2}$

172 $-CHCI - \frac{1}{2}$

174 $-CHCI - \frac{1}{2}$

175 $-CHCI - \frac{1}{2}$

176 $-CHCI - \frac{1}{2}$

177 $-CHCI - \frac{1}{2}$

177 $-CHCI - \frac{1}{2}$

178 $-CHCI - \frac{1}{2}$

179 $-CHCI - \frac{1}{2}$

170 $-CHCI - \frac{1}{2}$

170 $-CHCI - \frac{1}{2}$

171 $-CHCI - \frac{1}{2}$

171 $-CHCI - \frac{1}{2}$

172 $-CHCI - \frac{1}{2}$

173 $-CHCI - \frac{1}{2}$

174 $-CHCI - \frac{1}{2}$

175 $-CHCI - \frac{1}{2}$

176 $-CHCI - \frac{1}{2}$

177 $-CHCI - \frac{1}{2}$

178 $-CHCI - \frac{1}{2}$

179 $-CHCI - \frac{1}{2}$

170 $-CHCI - \frac{1}{2}$

170 $-CHCI - \frac{1}{2}$

171 $-CHCI - \frac{1}{2}$

172 $-CHCI - \frac{1}{2}$

173 $-CHCI - \frac{1}{2}$

174 $-CHCI - \frac{1}{2}$

175 $-CHCI - \frac{1}{2}$

176 $-CHCI - \frac{1}{2}$

177 $-CHCI - \frac{1}{2}$

178 $-CHCI - \frac{1}{2}$

179 $-CHCI - \frac{1}{2}$

170 $-CHCI - \frac{1}{2}$

170 $-CHCI - \frac{1}{2}$

170 $-CHCI - \frac{1}{2}$

171 $-CHCI - \frac{1}{2}$

171 $-CHCI - \frac{1}{2}$

172 $-CHCI - \frac{1}{2}$

173 $-CHCI - \frac{1}{2}$

174 $-CHCI - \frac{1}{2}$

175 $-CHCI - \frac{1}{2}$

176 $-CHCI - \frac{1}{2}$

177 $-CHCI - \frac{1}{2}$

177 $-CHCI - \frac{1}{2}$

178 $-CHCI - \frac{1}{2}$

179 $-CHCI - \frac{1}{2}$

170 $-CHCI - \frac{1}{2}$

	R ₂	-с(сн ²) ⁵ с св	-с(сн ₃) ₂ с сн	-с(сн ₃) ₂ с - сн	-62 ^H 5 -CH2-CH≖CH2
Tabelle I (Fortsetzung):	R R	щ	H	Ħ	-c ₂ H ₅ i-c ₃ H ₇
Tabel	æ	HO-0=0	0=C-0Na	0=c-o-NH3+c(cH3)-c== CH	-снс1 ₂ -снс1 ₂
	Verbindung Nr.	176	177	178	179

tsetzung):	,
(Fort	
Н	
Tabelle	

erbindung Mr.	æ	. La	R ₂
181	-CHCL2	-c ₃ H ₇	-CH2-CH-CH2
182	-chc1 ₂	n-c ₄ H ₉	-ch-ch-ch ₂
183	-CHC1 ₂	-ch2-ch-ch2	-ch2-ccl-ch2
184	-CHC12	-c ₃ H ₇	-CH2-CC1-CH2
185	-CHC12	i-c4H9	-ch-ch-ch ₂
786	-CHC12	$-cH_2-c(cH_3)=cH_2$	-CH2-CH=CH2
167	-cHC1 ₂	n-C4H9	sec-C4H9
188	-chc1 ₂	n-c4H9	1-c,H9
189	-CHC12	n-C4H9	i-C3H7
190	-CHC1 ₂	i-c4H9	i-c ₃ H ₇
191	-CHC12	1-C4H9	n-C ₂ H ₇
192	-cucı2	88c-C4H9	n-C3H7

	. ^R 2	n-C ₃ H ₇	i-C4H9	/ O' Z	_ 	-NH2	-CH ₂ -CH=CH ₂	$=c\sqrt{N}(cH_3)_2/2$	=c/N(cH ₃) ₂ 7 ₂	-CH2-CH3
Tabelle I (Fortsetzung):	H ₁	п-с4н9	-c2H5		н	-cH ₂	-ch2-ch=ch2	$(0,1)^{\overline{N}}$) <u>N</u> /0=	-CH2-CH=CH2
Tabell	H	-cacı ₂	-CHC1 ₂		-снс1 ₂	-cec1 ₂	C1	-снс1 ₂	-cH ₂ c1	$-0-CH_2-C \Longrightarrow C-CH_3$
	Verbindung Nr.	193	194		195	196	197	198	199	200

Ucorbing Mr	р		·
· IN Sunpuro	ដ	L _H	^R 2
201	-0-c2H4c1	-CH2-CH=CH2	-CH2-CH=CH2
202	-0-CH2-CHC12	-CH ₂ -CH=CH ₂	-ch-ch-ch-
. 503	-0-{\\C1	-ch ₂ -ch=ch ₂	-ch2-ch=ch2
204	$-cH_2-s-c = N$	-ch ₂ -ch=ch ₂	-CH2-CH=CH2
205	-cH ₂ -N(cH ₂ -CH=CH ₂) ₂	-CH ₂ -CH=CH ₂	-cH2-cH=cH2
506	-CHC1 ₂	Ħ	о -и(сн ₃)-с-снс1 ₂
207	-CEC1 ₂	-сн ₃	0 " -N(G-GHG1 ₂) ₂
208	-сн ₂ -с-сн ₃	-CH2-CH=CH2	-cH2cH=CH2

	R2	-ch ₂ ch=ch ₂ -ch ₂ ch=ch ₂	-сн ₂ -сн ₂ -о-с-снс1 ₂	$-c_{\rm H_2}$		\$2 m20	OH 3
Tabelle I (Fortsetzung):	E.	-ch ₂ -ch=ch ₂ -ch ₂ -ch=ch ₂	-c ₂ H ₅	-ch2-ch2-c=N	m	Ħ	щ
	œ	-ch ₂ -c=n -ch ₂ -0-c=n	-CHC1 ₂	-chc1 ₂	-cHc1 ₂	-CEC12	-0HC1 ₂
	Verbindung Nr.	209	211	212	213	214	215

9-7488444 (

	. R2	-CH2-CH=CH2	-CH2-CH=CH2	-CH2-CH=CH2	-ch2-ch=ch2	-сн=сн-сн ₂ -сн ₃	-CH=CH=CH2-CH3	с′, сн ₂ -сн ₃	-сн-сн-сн ₂ -сн ₃
Tabelle I (Fortsetzung):	R ₁	-сн ₂ -сн=сн ₂	-CH2-CH=CH2	-CH2-CH=CH2	\Diamond	-t-c4H9	-c(cн ₃) ₂ -с -сн	-c ₂ H ₅	n-C ₄ H ₉ .
c q	R	-CH=CH-() - CH ₃	-CH=CH-//_F	-CH=0H-	-CHC1 ₂	-CHC1 ₂	-cucı ₂	-chc1 ₂	-CHC1 ₂
	Verbindung Nr.	229	230	231	232	233	234	235	236

209845/1180

Tabelle I (Fortsetzung):

E	7	n-0 ₅ H ₇	$n-c_3H_7$	-CH2-CH=CH2	-CH2-CH=CH2	-N=C(CH ₃) ₂	-CH2-CH*CH2	-CH2-CH=CH2	-c ₂ H ₅
ρ	[.	\Diamond	-c(cH ₃)-cH-CH ₂ -CH ₃	-ch ₂ -ch=ch ₂	-ch2-ch=ch2	-0H ₃	-сн ₂ -сн=сн ₂	-сн ₂ -сн=сн ₂	sec-C4H9
ρ		-GEC1 ₂	-CHC1 ₂	$-c_{\rm H_2}-s_{\rm O_2}-N(c_{\rm H_2}-c_{\rm H_2})$	-cH(S-c ₂ H ₅) ₂	-CHC1 ₂	-CH ₂ -0-C-CHC1 ₂	-CH(0-{-} C1)2	-cec1 ₂
To the first of the second	Vereinaung nr.	237	238	239	240	241	242	243	244

	R2	-c ₂ H ₅	-c ₂ H ₅	-c ₂ H ₅	(S)	S	-CH2-(CH3	sec-C ₅ H ₁₁	sec-C ₅ H ₁₁
Tabelle I (Fortsetzung):	L	t-c4H9	8ec-C ₅ H ₁₁	i-03H7	-CH ₃	-c ₂ H ₅	n-C ₃ H ₇	CH ₃	n-C3H7
	et	-chc1 ₂	-cHC1 ₂	-chc1 ₂	-cHC1 ₂	-CHC1 ₂	-CHC1 ₂	-chc1 ₂	-CHC12
	Verbindung Nr.	245	246	247	248	. 249	250	251	252

: ()	R ₂	n-c ₅ H ₁₁	sec-C ₄ H9	1-C ₂ H ₇	-сн(сн ₃)-сн(сн ₃)-сн ₃	CH ₂	S CH2	S CH3	sec-C4H9
Tabelle 1 (Fortstrung):	RI	-n-C ₃ H ₇	i-C4H9	-cH3-	-cH ₃	-C ₂ H ₅	-c ₂ H ₅	-c ₂ H ₅	-CB ₂
	ч	-cHC12	-GEC1 ₂	CHC12	-chc1 ₂	-chc1 ₂	-CHC1 ₂	-CEC1 ₂	-chc1 ₂
	Verbindung Nr.	253	254	255	256	257	258	259	560

. *(\$. R2	n-C6 ^H 13	t-C4H9	-сн(сн ₃)-сн(сн ₃)-сн ₃	Ţ	-CH2-(-)- CH3	$-cH_2$ \leftarrow cH_3 cH_3	-0H2 //	CH ₂ CH ₃
Tabelle I (Fortsetzung):	R ₁	-c ₂ H ₅	л-с ₅ н ₇	$n-c_{\mathcal{F}_{\mathcal{I}_{\mathcal{I}_{\mathcal{I}}}}}$	n-C ₂ H ₇	n-C ₃ H ₇	^L 63-ս	л-С ₂ н ₇	-c ₂ H5
	æ	-cHC1 ₂	-CHC1 ₂	-chc1 ₂	-CEC12	-CHC1 ₂	-chc1 ₂	-CHC1 ₂	-cHC1 ₂
· · · · ·	Verbindung Nr.	261	262	263	264	265	566	267	. 568

	R 2			•		
Tabelle I (Fortsetzung):		CH ₂	CH ₂ CH ₃	$\begin{pmatrix} & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & & \\ & & \\ & $	$\bigcap_{CH_3} c_{2H_5}$	OH(0H ₃) ₂
Tabelle I	H.					
	p#	-снс12	-cec1 ₂	-CHC12	-CBC1 ₂	-CEC12
	Verbindung Nr.	269	270	271	272	273

	R ₂			·		
Tabelle I (Fortsetzung):	er H	C ₃ H ₇	CH ₃	CHO.	CH2	C ₂ H ₅
•	æ	-CHC1 ₂	-CHC1 ₂	-cHC1 ₂		-cec1 ₂
	Ferbindung Nr.	274	275	276	277.	278 .

tzung):	R2	л-0 ₅ н ₇		$^{\mathrm{n-C}}6^{\mathrm{H}_{13}}$	-c ₂ H ₄ -0-CH ₃	-c ₂ H ₄ -0-c ₂ H ₅	-CH2-	-CH2-	-CH2-
Tabelle I (Fortsetzung):	T _H	-CH ₂	n-c ₂ H ₇	n-c ₃ H ₇	-c ₂ H ₄ -0-cH ₃	-c ₂ H ₄ -0-c ₂ H ₅	-C ₂ H ₅	n-C ₂ H ₇	1-C3H7
	æ	-CHC12	-chc1 ₂	-CHC12	-cHC1 ₂	- снс1 ₂	-chc1 ₂	-cHC1 ₂	-chc1 ₂
	Verbindung Nr.	296	297	298	299	300	301	302	303

209845/1180

"AME AND STREET

••	. R2				\$		-сн ₂ -сн ₂ он	-CH2-CH2-C N	
Tabelle I (Fortsetzung):	R	-c ₂ H ₅	n-C ₃ H ₇	i-c ₃ H ₇	n-C4H9	6H ⁷ 0-0es	t-C4H9	-cH ₃	\bigcirc
	ж	-CHC1 ₂	-снсл ₂	-chc1 ₂	-chc1 ₂	-chc1 ₂	-снс1 ₂	-chc1 ₂	-CHC12
	Verbindung Nr.	310	311	. 312	515	514	315	316	317

••
Fortsetzung)
Tabelle I

	R2	n-C ₆ H ₁₃	-сн2-сн2он	•	-0H2	-c(c2H2)2-c=N	$-c(c_2H_5)_2-c=N$		\$
<pre>1 (Fortsetzung):</pre>	H.	n~C6H13	-CH ₃ CH ₃	G, CB,	-CH ₂ -CH ₂ -SH	щ	ш	Ħ	щ
Tabelle	ρt	-cec1 ₂	-CHC1 ₂	-chc1 ₂	-ch01 ₂	-chc1 ₂	-cH2c1	-0HC1 ₂	-снс12
	Verbindung Nr.	318	519	320	321	322	323	324	325

R	Ħ	щ	Ħ	Ħ	Ħ
• .					

Tabelle I (Fortsetzung:)

<u>ط</u>	-CHC12	-cH ₂ Cl	-CHC12	-cec1 ₂	-CHC12
rbindung Nr.	326	327	328	329	330

		Tabelle I (Fortsetzung);	• (
Verbindung Nr.	ж 	RJ	H2
331	-сис1 ₂	н	OH ₃
332	-cec1 ₂	щ	-cH ₂ -c(cH ₃)=CH ₂
333	-CH2C1	·¤	-сн ₂ -с(сн ₃)=сн ₂
334	-04012	Ħ	-CH ₂ -CH ₂ -O-CH ₃
335	-снс1,2	ш	-CH2-CH2-
.926.	-cH ₂ Cl	-CH ₃	-CH ₂ -C- CH
337	-cHC1 ₂	-CH ₃	-сн ₂ -с — сн

	 R2	$\langle s \rangle_{2}$	-CH2-CH2-N(C2H5)2	-cH ₂ -cH(0CH ₃) ₂	O -CH ₂ -CH ₂ -NHC-CHC1 ₂	-сн2-сн=сн2-	-CH(NH-C-CHC1 ₂)	-CH(NH-C-CHC1 ₂)	
Tabelle I (Fortsetzung:)	R.	ш	щ	m	ш	-CH ₂ -CH=CH ₂	Ħ	н	
	æ	-chcl2	-cHCl ₂	-CHC1 ₂	-CHC1 ₂	-CH=CH	-CHC1 ₂	-CH01 ₂	
	Verbindung Mr.	338	539	340	341	342	343	344	

209845/1180

Tabelle I (Fortsetzung):

-CH2-CH-CH2 -CH2-CH=CH2 -CH2-CH-CH2 Tabelle I (Fortsetzung): -CH2-CH=CH2 -CH2-CH=CH2 -CH2-CH-CH2 0 "- c-N(CH₂-CH=CH₂)₂ Verbindung Nr. 357 359 360 361

: (8un	R ₂	-0(сн ₃) ₂ -с= сн	-0(cH ₃) ₂ -0=- CH	-CH ₂ -CH=CH ₂	NH-C-CHC12	
Tabelle I (Fortsetzung):	E I	щ	# #	-CH ₂ -CH ₂	#	
	Verbindung Nr. R	362	Но-	$364 \qquad -CHG1_2$ $365 \qquad -CH$ $365 \qquad -CH$	366 -CHC1 ₂	367 -CHC1 ₂
	Verb	K.)		n	÷ .	

209845/1180

Tabelle I (Fortsetzung):

:

: (9m	R2	-CH2-CH(CH3)2	-сн ₂ -сн(сн ₃) ₂	-c(cH ₃) ₃	-c(cH ₃) ₃	-с(сн ₃) ₂ -с == сн	-сн(сн ₃)-с - сн	$-c(cH_3)_2-c \Longrightarrow N$
Tabelle i (roftsetzung):	P _L	-c-cH ₃	-сно	ш	щ	ш	CH ₃	t
	# :	CEC1 ₂	CHC1 ₂	55	-CH=CH	7		
	Verbindung Nr.	368	369	370	371	37.2	373	374

	R ₂	-0(CH ₃) ₂ -0 N	$-c(cH_3)_2 - c \rightleftharpoons N$	$-c(cH_3)_2-c \equiv cH$	-с(сн ₃) ₂ -с = он	-c(cH ₃) ₂ -c == CH	$-c(cH_3)_2-c = N$
Tabelle I (Fortsetzung):	R.	ш,	щ	щ	H .	ш	ᄪ
Tabel	ж	-cH ₂	-0H2-C(OH3)3	-сн(с ₂ н ₅) —	-CH-CH-CH-CH3	-CH=CH (-CH ₃	-CH=CH
	Verbindung Nr.	375	376	377	378	379	380

209845/1180

-CH₂-CH=CH₂ Tabelle I (Fortsetzung): -CH2-CH-CH2 -cH2-0-c-ccl=ccl-ccl=ccl2 ∕— но=но-**EE** Verbindung Nr. 382 381 383 384 386

209845/1180

H ₂	CH2-	-CH ₂ -NH-C-CH ₂ C1	HO (O-C-NH-CH ₂ -CH=CH ₂	。 -0-0-C ₂ 用 ₅
R ₁	Ħ	ш	t tt	μi	Ħ	ш

Tabelle I (Fortsetzung):

R1

Verbindung Nr.

387

388

-CH2C1 -CHC12 -CHC12

390

391 392

Sunz
tset
(Fort
Н
911e
Tab

	я ₂	-c-0-c ₂ H ₄ cl	-с(с _{F3}) ₂ -он	NH-G-CHC12	, marcarogas	-CH2-CH=CH2	-CH2-CH=CH2
Tabelle I (Fortsetzung):	R ₁		щ	퍼 -	я	-сн ₂ -сн=сн ₂	-ch2-ch=ch2
Tabelle	œ	-chc1 ₂	ch ₂	-CHC1 ₂	-chc1 ₂	-cH2-0-c(CHC12)2-0H	-сн ₂ -о-с(снс1 ₂)(сс1 ₃)-он
	Verbindung Nr.	393	394	395	396	597	398

	R2	n-C6 ^H 13		-CH ₂	-cH ₂	-cH ₂	-CH ₂ -C1	-CH ₂ -//
Tabelle I (Fortsetzung):	R	n-C ₆ H ₁₃	-c ₂ H ₅	n-C ₃ H ₇	1-6 ₃ H ₇	-cH ₃	-CH ₂	-c ₂ H ₅
	a	-cH2C1	-сн ⁵ сл	-cH2C1	-cH ₂ C1	-CH2C1	-сн ₂ с1	-cH2Cl
	Verbindung Nr.	405	406	407	408	409	410	411

: (Bu	H.2	CH3	1-C4H9	sec-C ₅ H ₁₁	t-C4H9	sec-C ₄ H ₉	sec-C ₄ H ₉	i-0 ₃ H ₇	i-C ₅ H ₇	i-c ₄ H9	-CH2-CE2-0-CH3
Tabelle I (Fortsetzung):	R ₁	-c ₂ H ₅	n-C ₂ H ₇	n-C ₂ H ₇	n-C ₃ H ₇	i-C4H9	-,c ₂ H ₅	i-C4H9	n-C4H9	n-C4 ^H 9	-сн ₂ -сн ₂ -о-сн ₃
	표	-cH2c1	-ch2c1	-cH2cl	-cH2cl	-cH2c1	-cH ₂ cl	-cH2cl	-cH ₂ c1	-cH2cl	-cH ₂ Cl
	Verbindung Nr.	418	419	420	421	422	423	424	425	426	427

н 2	-сн ₂ -сн ₂ -о-с ₂ н ₅	-n-C ₂ H ₇	-n-C ₃ H ₇	-0H2-	-CH2	Ü
ı	Ю -			9	ì	
• • •		·. ·				•
	сн ₂ -о-с ₂ н ₅	·—				
H ₁	CH2-CH2-	$-\hat{\zeta}$	он 5 — С	-с3н7	-c ₂ H ₇	
1	共	HO	₩.	F.	₽ 1	

	. R2	-0H ₂	-CH2 CH3	-CH2 (CH3	-CH2-(-)- CH3	-0H2
Tabelle I (Fortsetzung):	R	c ₂ H ₅	-C2H5	n-C ₂ H ₇	-c ₂ H ₅	-cH ₃
	et	снгол	CH ₂ Cl	сн ₂ с1	ch ₂ c1	cH ₂ c1
	Verbindung Nr.	434	435 ·	436	437	438

\$ (8	^H 2	-0H2-(T)	. сн ₂ —-′′ сн	-0H ₂	-CH2 () -CH	-CH ₂	n-04 ^H 9
Tabelle I (Fortsetzung):	R	€ _{HD} -	-C2 ^H 5	7 ^н 5 ^{о-п}	-62 ^H 5	-02H5	-cH ₃
	. म्द	-chc1 ₂	-chc1 ₂	-снст	-chc1 ₂	-снс1 ₂	-cHC12
	Verbindung Nr.	439	440	441	442	443	444

	ĥ2	n-C4H9	sec-C4H9	sec-C4H9	$n-c_5H_7$	n-c,H7	t-C4H9	sec-C4H9	sec-C4H9	n-c _{5H11}	n-c ₅ H ₁₁	sec-C _{5H11}
Tabelle I (Fortsetzung):	R	-cH ₂	-cH ₃	-cH ₃	-сн ₃	-cH ₃	-n-C4H9	1-C3H7	1-C3H7	1-C3H7	i-C3H7	1-C3H7
	æ	-cH2cl	-cHC1 ₂	-ch2cl	-chc1 ₂	-он2с1	-chc1 ₂	-CHC1 ₂	-ch ₂ cl	-chc1 ₂	-cH ₂ cl	-cacl ₂
	Verbindung Nr.	445	446	447	448	449	450	. 451	452	.; 453	454	455

Rabelle (Fortsetzung):
H
H
H
H

-CHC12
-CHC12
-CHC12
-CHC12

Verbindung Nr. 456 459 459

; (Su	R2	C2H5	о -с(сн ₃)-сн-с-о-с ₂ н ₅ о	"-NH-C-CHCL ₂	10 -	-C-CHC1 ₂	$-(CH_2)_3-0-CH(CH_3)_2$
Tabelle I (Fortsetzung):	H.	-cH ₂ -0-cH ₃	н		0НО-	-cH2-CH(CH3)2	щ
	æ	-0HC1 ₂	-CHC1 ₂	-CHC1 ₂	-chc1 ₂	-cec1 ₂	-CHC12
	Verbindung Nr.		462	463	464	465	466

••	
ortsetzung)	
ĒΨ	
_	
Н	
Le I	
11e I	
lle I	
elle I	
rabelle I	

	R ₂ C1	-CH2	-c(c ₂ H ₅)(cH ₃) ₂	-CH(CH ₂)	-c(c ₂ H ₅)(oH ₃) ₂	-c ₂ H ₄ -0-cH ₃	-сн ₂ -сн(осн ₃) ₂	$-c(cH_3)_2-c = N$
Tabelle I (Fortsetzung):	R	щ	ш,	щ	ш	Ħ	#	
ŭ	œ	-CHC1 ₂	-CHC1 ₂	-chc1 ₂	-cH2c1	-cH ₂ C1	-cH2cl	-CH-CH
	Verbindung Nr.	467	468	469	470	471	472	473

Fortsetzung):	
Tabelle I	

rbindung Nr.	æ	R	H2
474	" " NH-C-CH ₂ C1	O #	-с(сн ₃) ₂ -с≅сн о
475	-chc1 ₂	$-cH_2-cH_2-0-c-N(cH_3)_2$	-cH ₂ -cH ₂ -0-c-N(cH ₃) ₂
476	- c HC1 ₂	"-CH ₂ -CH ₂ -O-C-NH-C ₂ H ₅	" -ся ₂ -сн ₂ -о-с-ин-с ₂ н ₅
477	-CHC1 ₂	-CH ₂ -CH ₂ -C-C-NH-CH ₂ -CH-CH ₂ O	" - CH ₂ -CH ₂ -C
478	-снс1 ₂	-CH ₂ -CH ₂ -O-C-NH-i-C ₃ H ₇	-CH ₂ -CH ₂ -O-G-NH-i-C ₃ H ₇
479	-снс1 ₂	-ch ₂ -ch ₂ -o-c-nh-c ₄ h ₉	$-cH_2-cH_2-0-c-NH-c_4H_9$
480	-сн ₂ с1	-CH ₂ -CH ₂ -0-C-NH-CH ₃	-ch ₂ -ch ₂ -o-c-nh-ch ₃
481	-ch2c1 -ch	-ch ₂ -ch ₂ -o-c-nh-ch ₂ -ch=ch ₂	-CH ₂ -CH ₂ -O-C-NH-CH ₂ -CH=CH ₂

-сн₂-сн(он)(сн₃)

	R2	-CH2-CH2-O-C-NH	— сн ₂ -сн ₂ -о-с-ин—(-сн ₂ -сн ₂ -он	-сн2-сн2-он
Tabelle I (Fortsetzung:)	R	CH2-CH-O-C-NH CS	о -сн ₂ -сн ₂ -о-с-ин —// \. с1 с1	ш	-GH2-CH2-OH

-сн₂с1

482

Verbindung Nr.

$$-cH_2-cH(OH)(CH_3)$$
 $-cH_2-CH(OH)(CH_3)$ $\rightarrow CH_2-CH(OH)(CH_3)$ $\rightarrow CH_2-CH(OH)(CH_3)$

486 -CHC1₂
487 -CHC1₂
488 -CHC1₂

-CEC12

484

-сн₂сл

483

-CH2C1

Tabelle I (Fortsetzung):

Verbindung Nr.	44	R.	R.2
490	+CH ₂ OH	-c ₂ H ₅	-c ₂ H ₅
491	-cH ₃		-so ₂ -// !!
492	-0H2-S - C1	ш	-сн ₂ -сн(сн ₃) ₂
493	-cH2-SO2-0-CH3	-62 ^H 5	-c ₂ H ₅
494	-c ₃ H ₆ Br	H CH ₃	-s0 ₂ 01
495	-chc1 ₂		
496	-cc1 ₃	-0 ₂ H ₇	-c3H7
497	-cc1 ₃	ن .	

	R2			-CH ₃	-c ₂ H ₄ Br	-c2H4Br	-C2H4Br	-n-C4H9	-1-C ₃ H ₇
Tabelle I (Fortsetzung):	R ₁ CH ₂	CH ₂	CH ₂	-сн _э	ш	Ħ	Lid	-c ₂ H ₅	-1-C ₃ H ₇
	æ	-6613	-cH ₂ Cl	-0013	-0H201	-0013	-chc1 ₂	-chc1 ₂	-chc1 ₂
	Verbindung Nr.	498	499	500	501	502	503	504	505

CTOTO	506 507 508 509	-CHC1 ₂ -CC1 ₃ -CC1 ₃ -CC1 ₃ -CC1 ₃ -	$\frac{R_1}{-n-C_4H_9}$ $-c_2H_5$ $-i-C_3H_7$ $-i-C_4H_9$	$ \begin{array}{c} $
-------	--------------------------	--	---	--

Die erfindungsgemäßen Mittel wurden wie folgt getestet.

Versuch 1: Verwendung im Boden

Kleine Kästen wurden mit lehmigem Felton-Sandboden gefüllt. Herbizid und Herbizid-Gegenmittel wurden getrennt oder zusammen in den Boden eingearbeitet, während dieser in einem 19-Liter-Zementmischer gemischt wurde. Für die getrennte Verwendung von Herbizid und Gegenmittel wurden von jeder Verbindung folgende Vorratslösungen hergestellt: Vorratslösungen des Herbizids wurden durch Verdünnen von etwa 1g eines Wirkstoffkonzentrats mit 100 ml Wasser erhalten. Für das Gegenmittel wurden 700 mg technisches Material mit 100 ml Aceton verdünnt. 1 ml dieser Vorratslösungen entsprach 7 mg Wirkstoff oder 0,112 g/m2, wenn der damit behandelte Boden in die 20,32 x 30,48 x 7,62 cm großen Kästen gefüllt wurde. Nach Behandlung des Bodens mit dem Herbizid und dem Gegenmittel in dem gewünschten Verhältnis wurde die Erde von Zementmischer in die 20,32 x 30,48 x 7,62 cm großen Kästen gebracht, um die Einsaat durchzuführen. Zuvor wurde von jedem Kasten etwa ein halber Liter Boden (1 Pinte) zum späteren Abdecken der Samenkörner weggenommen. Die Erde in den Kästen wurde eingeebnet, und es wurden in jedem Kasten 12,7 mm tiefe Rillen angelegt. Die Samenkörner wurden jeweils in ausreichender Menge für guten Stand ausgesät. Anschließend bedeckte man die Samenkörner mit dem etwa halben Liter Boden, der kurz vor dem Einsäen entnommen wurde.

100

Die Kästen wurden dann auf Bänke bei 21 - 32°C ins Gewächshaus gestellt. Bis zur Auswertung wurden sie so besprengt, daß gutes Pflanzenwachstum sichergestellt war. Die Ertragstoleranz wurde nach 3 bis 6 Wochen ermittelt. Die Ergebnisse sind in der Tabelle II zusammengestellt.

		Gegenmittel	ttel		Schädig	Schädigung der Pflanzen in % nach	anzen	
erbizid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Anwendungs- verhältnis g/m ²	Getreide- art	3 Wochen	4 Woohen	6 Wochen	
EPTC	0,672	70	200,0	Mais	0	0	. •	
EPTC	0,672	9	0,014	Mais	0	0	· 0	
EPTC	0,672	9	0,056	Mais	0	0		
EPTC	0,672	9	0,112	Mais	o	0	0	
EPTC	0,672	9	0,224	Mais	0		0	
EPTC	0,672	9	0,560	Mais	0	0	0	
1	. 1	• • <u>•</u>	0,560	Mais	0	0	0	
EPTC	0,672	01	0,014	Mais	20 M	·:		
瓦PTC	0,672	7	0,014	Mais	. 0			
EPTC	0,672	15	0,014	Mais	MOT	.· .		
EPTC	0,672	13	0,014	Mais	W 09	•		
EPTC	0,672	15	0,014	Mais		٠		
EPTC	0,672	91	0,014,	Mais	10 M			
BPTC	0,672	1.8	0,014	Mais	0			
EPTC	0,672	80	0,056	Mais		20 M		
BPTC	0,672	8 0	0,224	Mais	•	0		
EPTC	0,672	7	0,224	Mais		45 M		

Tabelle II (Fortsetzung):

		Gegenmittel	ttel		Schädi	Schädigung der Pflanzen	flanzen
Herbizid	Anwendungs-verhältnis	Verbin- dung Nr.	Anwendungs- verhältnis g/m^2	Getreide- art	3 Wochen	4 Wochen	6 Wochen
EPTC	95560	7	0,448	Mais	0		
EPTC	0,672	1	ı	Mais	94 M	M 76	M 86
S-Athyldiiso- butyl-thio- carbamat	iso- o- 0,896	7	0,224	Mais	15 M		
S-Athyldiiso- butyl-thio- carbamat	iso- o- 0,896	2	. 0,448	Mais	0		
S-Athyldiiso- butyl.thio- carbamat	180- 0,896	•	t	Mais	75 M		
S-2,3,3-7-fri- chlorallyl- disopropyl- thiologrba- mat	ri- 	9	0,448	Aerosen	20 V		
S-2,3,3-Tri- chlorallyl- diisopropyl- thiologros- mat	11- 71- 71- 0,112			Weizen	M 06	·	

				_	102 -					
der Pflanzen nach	6 Wochen		. •						•	
	4 Woohen		0		0	-	9 7 8		. 0	C
Schädigung in %	3 wochen			•		٠				
	Getreide- art		Mais		Mais		Мејз		Mais	ó 'r 'e '≥
Gegenmittel	Anwendungs- verhältnis g/m ²		0,014		0,224		· · · · · · · · · · · · · · · · · · ·	·	0,014	0000
	Verbin- dung Nr.		9		9				۷9	Y
	Anwendungs- verhältnis g/m ²	0,672 +		+ 2/060	0,112	0,672 +	0,112	0,672 +	0,112	0,672 +
	Herbizid	EPIC +	2-Chlor-4-äthyl- amino-6-isopropyl- amino-8-triazin	+	2-Chlor-4-äthyl- amino-6-isopro- pylamino-s-tria- zin	EPTC	2-Chlor-4-äthyl- amino-6-isopro- pyl-amino-s-tri- azin	EPTC +	2-Chlor-4,6-bis- (äthylamino)-s- triazin	EFIC + 2-Chlor-4,6-bis- (äthylamino)-s- triazin

					- 1 03 -			
	Schädigung der Pflanzen in % nach	4 Wochen 6 Wochen		· · · · · · · · · · · · · · · · · · ·	0	₩ 08		0
••	Schädig	3 Jochen						
(Fortsetzung):		Getreide- art		kais	Mais	Kais		พื่อเร
Tabelle II	tel	Anvendungs- verhältnis g/m ²		ı	0,014			0,014
	Gegenmittel	Verbin- dung Nr.			9	. 1		9
		Anwendungs- verhältnis g/m ²	. 0,672 +	0,112	- hyl- 0,112 0.672 +	,112	0,672 +	0,112
		Herbizid	EPTC +	2-Chlor-4,6-bis- (äthylamino)-s- triazin EPTC +	2(4-Chlor-6-äthyl-amino-s-triazin- 2-yl-amino)-2-methyl- propionitril 0, EPTC + 0.	2(4-Chlor-6-äthyl- amino-s-triazin- 2-yl-amino)-2-methyl- propionitril 0	SPTC	2-Chlor-4-cyclo- propylamino-6-iso- propylamino-s- triazin

	<u>පී</u>	Gegenmittel		-	Schädigung in %	ng der Pflanzen 1 % nach
Herbizid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Anwendungs- verhältnis g/m ²	Getreide- art	3 Wochen 4 V	4 Wochen 6 Wochen
BPTC +	0,672 +					
2-Chlor-4-cyclo- propylamino-6-						
isopropylamino-s- triazin	0,112	1	ı	Mais	90 M.	м, ч
EPTC + 2,4-D	0,672 + 0,112	•	0,014	Mais		
EPTC + 2,4-D	9,672	9	0,224	Mais	10 V	Λ
EPTC + 2,4-D	0,672 + 0,112	ı	•	Mais	50 M	¥
S-Propyldipropyl- thioloarbamat + 2-Chlor-4-Ethyl-	0,672 +					
amino-6-isopropyl- amino-8-triazin	0,112	9	0,014	Mais	3 K	
S-Propyldipropyl- thiolcarbamat +	0,672 +			· · ·		
amino-6-isopropyl- amino-s-triazin	0,112	9	0,224	Mais	0	•

6 Wochen Schädigung der Pflanzen in % nach 4 Wochen a 8 % 20 ⊠ B 0 0 3 3 Wochen Tabelle II (Fortsetzung): Getreide-Mais Mais Mais Mais Mais Anwendungsverhältnis 0,014 0,014 0,014 8/m² Gegenmittel Verbindung Nr. 9 Q Q Anwendungsverhältnis 0,336 + 0,672 + 0,672 + 0,672 0,336 0,112 0,224 0,112 0,112 0,112 8/m² amino-6-isopropylamino-6-isopropylamino-6-isopropylmino-6-isopropyl-S-Propyldipropyl-S-Propyldipropyl-S-Propyldipropyl-S-Propyldipropyl-S-Propy.dipropyl-2-Chlor-4,6-bis-2-Chlor-4-sthyl-2-Chlor-4-ëthyl-2-Chlor-4-äthyl-2-Chlor-4-ëthylthiolearbamat + thiologrbamat + amino-s-triazin thiolographenet + amino-s-triazin amino-s-triszin thiologrbemet + amino-s-triazin (athylamino)-sthiologrammat Herbizid triazin ...

Tabelle II (Fortsetzung):

15:0

				- 106 -		•
	Pflanzen	6 wochen				•
	der	4 Wochen	o	M OL	0	M 76
: (Schädigung in % r	3 Wochen				·
(Fortsetzung)		Getreide- art	Mais	Mais	Meis	Mais
Tabelle 11		Anwendungs- verbältnis g/m ²	0,224	1	0,014	. 2°
	Gegenmittel	Verbin- dung Nr.	9	1	
٠	š l	Anwendungs- verhältnis g/m ²	0,072 +	0,672 +	0,672 +	0,672 +
		Herbizid	S_Eropyldipropyl- thiologrammat + 2-Chlor-4,6-bis- (Athylmino)-s- triazin	S-Propyldipropyl- thiologrhamat + 2-Chlor-4,6-bis- (äthylamino)-s- triazin	S-Propyldipropyl- thiologrhamat + 2(4-Chlor-6-äthyl- amino-s-triazin- 2-yl-amino)-2- methylpropionitril	S-Propyldipropyl- thiolcarbamat + 2(4-chlor-6-äthyl- amino-s-triazin-2- yl-amino)-2-methyl propionitril

	Schädigung der Pflanzen in % nach	3 Wochen 4 Wochen 6 Wochen	0	92 M		0	м, чо
(Fortsetzung:		Getreide- art	Mais	Mais	Mais	Mais	Mais
Tabelle II (F	tel	Anmendungs- verhältnis g/m ²	0,014		0,014	0,224	•
2.1	Gegenmittel	Verbin- dung Nr.		1	9	9	
		Anwendungs- verhältnis g/m ²	0,672 +	0,672	0,672 + 0,112	0,672 +	0,672 + 0,112
		Anw Herbizid ver	S-Propyldipropyl- thiolcarbamat + 2-chlor-4-cyclo- propylamino-6-iso- propylamino-s- triazin	S-Propyldipropyl- thiolcarbamat + 2-Chlor-4-cyclo- propylamino-6-iso- propylamino-s- triazin	S-Propyldipropyl- thiolcarbamat + 2,4-D	S-Propyldipropyl- thiolcarbamat + 2,4-D	S-Propyldipropyl- thiolcarbamat + 2,4-D

	ung der Pflanzen in % nach	4 Wochen 6 Wochen	0	o	м 06		0		0		0
, gur	Schädigung in	3 Wochen 4 Wochen	•		·					·	
[(Fortsetzung	,	Getreide- art	Mais	Mais	Mais	· :	Mais		Mais		Wais
Tabelle II	te1	Anwendungs- verhältnis g/m^2	0,014	0,224			0,014		0,224		1
·	Gegenmittel	Verbin- dung Nr.	.0	9			v o		9,		1.
		Anwendungs- verhältnis g/m ²	0,672	0,672	0,672	+ 968*0	0,112	+ 963.0	0,112	+ 968.0	0,112
		Herbizid	S-Propyldipropyl- thiologrbamet	S-Propyldipropyl- thiolcarbamat	S-Propyldipropyl- thiolcarbanat	S-Athyldiisobutyl- thiologrbamat + 2-Chlor-A-sthy'-	amino-6-isopropy.l- amino-s-triazin	S-Athyldiisobutyl- thiologrbemet + 2-Chlor-4-sthyl-	amino-6-isopropyl- amino-s-triazin	S-Athyldiisobutyl- thiolcarbamat +	amino-6-isopropyl- amino-s-triazin

Tabelle II (Fortsetzung):

				-	· 1 0 9 -	•				
	lanzen	6 Wochen								· :
	Schädigung der Pflanzen in % nach	4 Wochen		0		0		0		0
	Schädig	3 Wochen								
se come / s		Getreide- art		Mais		Mais		Mais		Mais
TOTAL TE TENENTS (1801) TENENTS (1801)	lttel	Anwendungs-verhältnis g/π^2		0,014	·	0,224		•		0,014
	Gegenmittel	Verbin- dung Nr.		9		9		ı		9
		Anwendungs- verhältnis E/m ²	+ 968.0	0,112	+ 968*0	0,112	+ 968.0	0,112	+ 968.0	1- 0,112
		Herbizid v	S-Athyldiisobutyl- thioloarbamat + 2-Chlor-4,6-bis-	(ëthylamino)-s- triazin	S-Athyldiisobutyl- thlologramat + 2-Chlor-4,6-bis-	(ëthylemino)-s- triezin	S-Athyldiisobutyl- thiologrhamat + 2-Chlor-4,6-bis-	(ëthylamino)-e- triazin	S-Athyldiisobutyl- thiologramat + 2(4-chlor-6-äthyl-	amino-s-triazin- 2-yl-amino)-2-methyl- propionitril

	•		-	, 320 –		•		-
anzen	6 Wochen			M		<u>.</u>		
ng der Pfl 1 % nach	4 Wochen		20 M	•	0		TO M	0
Schädigu in	3 Wochen					•		
	Getreide- art		Mais		Mais	•	Mais	Mais
ttel	Anwendungs- verhältnis g/m ²		•		0,014		•	0,014
Gegenmi	Verbin- dung Nr.		ŧ		v			9
	Anwendungs- verhältnis g/m	+ 968.0	0,112	+ 968.0	0,112	+ 968 0	0,112	0,896 + 0,112
	Herbizid	S-Athyldiisobutyl- thiologramst + 2(4-Chlor-6-äthyl- smino-s-triezin-	2-yl-amino)-2- methylpropionitril	S-Athyldilsobutyl- thiologrhamst + 2-Chlor-4-cyclo- propylamino-6-iso-	propylamino-e- triazin	S-Athyldilsobutyl- thiologramst + 2-Chlor-4-cyclo-	propyramino-e-rsc- propylamino-a- triazin	S-Athyldilsobutyl- thiolcarbamat + 2,4-D
	Gegenmittel Schädigung der Pflanzen in % nach	Anwendungs- Verbin- Anwendungs- Getreide- 3 Wochen 4 Wochen g/m^2 Nr. g/m^2	Gegenmittel Anwendungs- verhältnis dung verhältnis art isobutyl- bamat + r-6-äthyl- triazin- Gegenmittel Sobbdigung der Pfla in % nach g/m² triazin-	Gegenmittel Gegenmittel Schädigung der Pfla in % nach in % nach in % nach in % nach dung verhältnis art g/m² g/m^2 Nr. g/m^2 g/m^2 isobutyl-bamat + c-6-äthyl-triazin-no)-2- Mais 20 M	Anwendungs- Verbin- Anwendungs- Getreide- 3 Wochen 6 Wochen verhältnis art g/m^2 Nr. g/m^2 0,896 + Mais 20 M	Anwendungs- Anwendungs- Verbin- Anwendungs- Gegenmittel Anwendungs- Getreide- 3 Wochen 4 Wochen 6 Wochen O,896 + O,897	Anwendungs- Verbin- Anwendungs- Getreide- 3 Wochen 4 Wochen 6 Wochen of worksilpris art g/m². O,896 +	Gegenmittel Gegenmittel Gegenmittel Anwendungs- Getreide- Gereide 7 Flanzen In % nach In % nach In % nach In % nach Wochen 4 Wochen 6 Wochen O,896 + O,896 + O,112 Mais O,896 + O,896 + O,896 + O,912 Mais O,912 Mais

		Ta	Tabelle II (For	(Fortsetzung):				
	·	Gegenmittel	tel		Schädigu in	Schädigung der Pflanzen in % nach	lanzen	
Herbizid	Anwendungs-verhältnis g/m	Verbin- dung Nr.	Anwendungs- verhältnis g/m ²	Getreide- art	3 Wochen	4 Wochen	6 Wochen	
S-Äthyldiisobutyl- thiolcarbamat + 2,4-D	0,896 +	9	0,224	Mais		. 0		
S-Athyldiisobutyl- thiolcarbamat + 2,4-D	0,896 + 0,112	•	•	Mais		0		-
S-Athyldiisobutyl- thiolcarbamat	968*0	9	0,014	Mais		0		111
S-Äthyldiisobutyl- thiolcarbamat	968.0	9	0,224	Mais		0	•	- -
S-Äthyldiisobutyl- thiolcarbamat	968.0	1	•	Mais		20 V		
S-2,3,5-Trichlor- allyl-diisopropyl- thiolcarbamat	968,0	9	0,014	Mais		10 V		
S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat	968.0	ı		Mais	·	30 V		
S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat	955.0.	9	0,560	Weizen		70		

Eerbizid S-2,3,3-Trichlor- allyl-disopropyl- thiolcarbamat S-2,3,3-Trichlor- allyl-disopropyl- thiolcarbamat S-2,3,3-Trichlor- allyl-disopropyl- thiolcarbamat C-Ghlor-2',6'-di- thiolcarbamat 2-Ghlor-2',6'-di- äthyl-N-(methoxy- methyl)-accetanilid	Anwendungs-verhältnis g/m ² 0,336 0,336 0,336	Tabel Gegenmittel Verbin- Andung Nr. 6 6 0	wendungs. rhältnis g/m ² 5,560	(Fortsetzung): ss- Getreide- 3 is art 3 Mohrenhirse (Sorghum vulgare Mohrenhirse	Schä Woch	der Toche Toche	Pflanzen n 6 Wochen
athyl-N-(methoxymethyl)-acetanilid S-Athylhexahydro- IH-azepin-l-carbo- thioat S-Athylhexahydro- IH-azepin-l-carbo- thioat	0,336	1 40 1	0,560	Mohrenhirse Reis Reis		0 0 20	

114

- 117 -

			Tabelle II (F	(Fortsetzung):		•	
		Gegenmittel	tel	SS	Schädigung der Pflanzen in % nach	flanzen	•
Herbizid	Anwendungs- verhältnis g/m	Verbin- dung Nr.	Anwendungs- verhältnis g/m ²	Getreide- art 3 Wo	3 Wochen 4 Wochen	6 Wochen	
2-Chlor-W-iso- propylacetanilid	0,336	9	0,560	Weizen	50		
2-Chlor-N-iso- propylacetanilid	95560		ı	Weizen	40		
N,N-Diallyl-2- chloracetamid	0,448	9	0,560	Mohrenhirse	. 50		_
N,N-Diallyl-2- chloracetamid	0,448	ı	ı	Mohrenhirse	70	,	117) -
S-4-chlorbenzyl- diäthylthiol- carbamat	0,672	ı	i	Reis	20		
S-4-chlorbenzyl- diäthylthiol- carbemat	0,672	9	0,560	Reis	30		
S-4-chlorbenzyl- diäthylthiol- carbamat	1,344	1	1	Reis	96		

<u></u>
(Fortsetzung
H
Tabelle

		:		(0				
		Gegenmittel	tel		Schädigung in %		der Pflanzen nach	
Herbizid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Anwendungs- verhältnis g/m ²	Getreide- art	3 Wochen	4 Wochen	6 Wochen	
S-4-Chlorbenzyl- diäthylthiol- carbamat	1,344	9	0,560	Reis		30		
S-4-Chlorbenzyl- diäthylthiol- carbamat	1,344	1	•	Mais		40		
S-4-Chlorbenzyl- diäthylthiol- oarbamat	1,344	9	0,560	Meis	· ·	0	•	- 11
S-Kthylcyclohexyl- äthylthiocarbamat	0,672	9	0,011	Mais			·	! - .
S-Äthylcyclohexyl- ëthylthiocarbemat	0,672	1	1	Mais		M 08		
EPTC = S-Äthyl-N V = Verkümmer	S-Äthyl-N,N-diproj Verkümmerung	,N-dipropylthiocarbamat ung ;	oamat ;	٠				
•—	= MiBbildung;	;; ;			.•			
2)4-n = 4)1	<pre><,4-Dicalorphenoxyessigsaure.</pre>	xyessıgsaı	ıre.		•			

209845/1180

116

Versuch 2: Behandlung des Getreidesaatguts

Kleine Kästen wurden mit lehmigem Felton-Sandboden gefüllt. Zu diesem Zeitpunkt wurde das Herbizid in den Boden eingebracht. Die Erde eines jeden Kastens wurde in einen 19-Liter-Zementmischer gefüllt und darin gemischt, während das Herbizid in Form einer Vorratslösung, die durch Verdünnen von etwa 1 g eines Wirkstoffkonzentrats mit 100 ml Wasser hergestellt worden war, eingearbeitet wurde. Dabei wurde jeweils 1 ml Vorratslösung in einer Vollpipette pro gewünschte 0,112 g Herbizid pro m² in die Erde eingebracht. 1 ml Vorratslösung enthielt 7 mg Herbizid, was bei der Anwendung auf den Boden in den 20,32 x 30,48 x 7,62 cm großen Kästen 0,112 g/m² entsprach. Nach Einarbeitung des Herbizids wurde der Boden in die Kästen zurückgebracht.

Kästen mit durch das Herbizid vorbehandelter Erde und mit unbehandelter Erde standen nun bereit für die Einsaat. Zuvor wurde jedem Kasten etwa ein halber Liter Boden etnommen und zur späteren Verwendung zum Abdecken der Samenkörner neben den Kasten gelegt. Dann ebnete man die Erde ein und legte 12,7 mm tiefe Rillen an. Abwechselnd wurden die Rillen mit behandeltem und mit unbehandeltem Getreidesaatgut eingesät. Bei jedem Versuch wurden 6 oder mehr Samenkörner in jede Reihe gelegt. Im Kasten betrug der Reihenabstand etwa 3,8 cm. Zur Behandlung des Saatguts mit dem Gegenmittel bzw. Saatschutzmittel füllte man 50 mg dafür vorgesehenen Verbindung und 10 g Saat in einen geeigneten Behälter und schüttelte, bis die Körner gleichmäßig damit bedeckt waren. Die Verbindungen (Saatschutz-

MA

mittel) zur Saatgutbehandlung wurden als flüssige Aufschlämmungen und als Pulver- oder Staubgut aufgebracht. Manchmal wurde Aceton verwandt, um pulverisierte oder feste Verbindungen zu lösen, so daß sie wirksamer auf das Saatmaterial aufgebracht werden konnten.

Nach der Einsaat wurden die Kästen mit der kurz zuvor entnommenen und auf die Seite gelegten Erde bedeckt. Sie wurden auf Bänke ins Gewächshaus bei 21 - 32°C gestellt und so besprengt, wie es gutes Pflanzenwachstum erforderte. Die prozentualen Auswertungen der Schädigung erfolgten zwei bis vier Wochen nach den Behandlungen.

Bei jedem Versuch wurde einmal das Herbizid allein, einmal das Herbizid in Verbindung mit dem Saatschutzmittel und schließlich das Saatschutzmittel allein angewandt, um die Phytotoxizität feststellen zu können. Die Ergebnisse dieser Versuche sind in Tabelle III zusammengestellt.

		4						1	148	•									
	•	ehandeltes Saatgut der benachbarten he	4 Wochen						0										
		Unbehandeltes in der benach Reibe	2 Wochen						0			30 M	5 M	NO M	5 M	15 14	50 №	5 4	5 V
	n %	Saat-	4 Wochen	60 V, м	40 V, M	60 V, M	70 V, M	30 V, M	0	30 V	0								
iii	Schädigung in %	Behandeltes gut	2 Wochen	20 X	10 V	0	10 V	0	0			10 V	10 V	10 V	100 K	100 K	10 V	100 K	10 V
Tabelle III:	Sch	Getrei- deart		Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais
	tel	Behand- lungsver- hältnis % Gew./Gew.		0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,05	5.0	0,5	0,5	0,5	0,5	0,5	0,5	0,5
•	Gegenmittel	Verbin- dung Nr.		ч	7	8	4	5	9	1.	œ	σ	91	11	12	13	14	15	16
		Anwendungs-verhältnis g/π^2		0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
		Herbizid		EPTC	EPTC	BPTC	EPTC	EPTC	EPTC	BPTC	EPIC	EPTC	FPTC	EPTC	BPTC	BPTC	EPTC	EPTC	EPTC

Tabelle III (Fortsetzung):

		Gegenmittel	tel	621	Schädigungin	in %		
Herbi- zid	Anwendungs- verbältnis	Ver- bindung Nr.	Behand- lungsver- hältnis	Getrei-	Behandeltes gut	ltes Saat-	Unbehandeltes in der benachl Reihe	deltes Saatgut benachbarten
	m /9		% Gew./Gew.	3 10 00 00 00 00 00 00 00 00 00 00 00 00	2 Wochen	4 nochen	2 Wochen	4 Wochen
EPTC	0,672	17	0,5	Mais	20 V	•	35 M	
BPTC	0,672	18	0,5	Mais	0		5 4	
EPTC	0,672	19	0,5	Mais	0		50 M	
EPTC	0,672	20	0,5	Mais	10 V	10 V	30 M	65 м
BPTC	0,672	21	0,5	Mais	0		10 M	55 M
EPTC	0,672	22	0,5	Mais	M 09	70 M	85 M	80 M
EPTC	0,672	23	0,5	Mais	20 M	40 M	85 M	80 M
EPTC	0,672	24	0,5	Meis	10 V	10 V	75 M	M. 08
EPTC	0,672	25	0,5	Mais		30 M	肾 09	60 M
EPTC	0,672	56	0,5	Mais		10 M	83 M	M 08
EPTC	0,672	27	0,5	Mais	70 №	-	м 09	
HPTC	0,672	28	0,5	Mais	30 V, M		л ≤2	
EPTC	0,672	29	0,5	Mais	™ 09		70 M	
EPTC	0,672	30	0,5	Mais	班 09		70 M	
EPTC	0,672	31	0,5	Mais	70 M		80 M	•
EPTC	0,672	32	0,5	Mais	M 09	-	75 M	

- 119 -

Behandeltes Saat- Unbehandeltes Saatgut in der benachbarten 4 Wochen ₩ 80 2 Wochen Reihe **第**08 80 18 85] 2 Wochen 4 Wochen Schädigung in % 50 kg 50 kk gut 50 V, ¤ 9 50 k ¤ 9 ₩ 90 S 2 Getrei-Mais Mais Mais Mais Meis Mais deart % Сем./Сем. lungsverhältnis Behand-0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 Gegenmittel bindung Anwendungs- Ververhältnis 8/m² 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-EPIC BPTC EPTC EPTC EPTO BPTC BPTC BPTC BPTC EPTC EPTC EPTC EPTC EPTC EPTC EPTC EPTC zid

209845/1180

Tabelle III (Fortsetzung:

		Gegenmittel	6 1		Schädigung in %	in %		
Herbî- zid	Anwendungs- verhältnis	Ver- bindung	Behand- lungsver-	Getrei-	Behandel tes gut	Saat-	Unbehandeltes gut in der bes ten Reihe	handeltes Sast- in der benachbar- Reihe
	g/m ^c	. H.	% Gew./Gew.	aeart	2 Wochen	4 Wochen	2 Wochen	4 Wochen
EPTC	0,672	49	6,0	Mais	м 09		70 M	
EPTC	0,672	50	0,5	Mais	M 09		¥ 06	
EPTC	0,672	. 51	0,5	Mais	ж 09		70 M	-
BPTC	0,672	52	0,5	Mais	M. V 09		80 M	,
EPTC	0,672	. 23	5.0	Mais	50 M		70 M	•
EPTC	0,672	54	0,5	Kais	₩ 09		₩ 02	Ÿ
EPTC	0,672	55	N.0	Mais	M 09		80 M	
RPTC	0,672	96	0,5	Mais	東 09		80 M.	
EPTC	0,672	57	0,5	Mais	₩ 09	•	₩ · 69	
EPTC	0,672	58	0,5	Mais	50 №		75 M	
EPTC	0,672	59	0,5	Mais	M. V 09		M 08	
EPTC	0,672	9	0,5	Mais	м с о о о о м		75 M	
EPTC	0,672	6 1	0,5	Mais	M 09		85 M	
EPTC	0,672	62	5,0	Mais	M. V 04	N 09	M 08	™ 07
EPTC	0,672	63	5.0	Mais	M. V 0€	м 09	70 M	70 M
EPTC	0,672	64	6,0	Mais	30 V,™	50 M	65 居	₩ 02

122

Tabelle III (Fortsetzung:

	ʊ	Gegenmittel	e]		Schädigung in %	g in %			
Herbi- zid	Anwendungs- verhältnis «/m²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut	tes Saat-	Unbehandeltes gut in der ber barten Reibe	deltes Sast- der benach- Reihe	
		,			2 Wochen	4 Wochen	181	1551	•
EPTC	0,672	62	ر ار	Meis	M, V 09	70 м	75 k	. W 08	
EPTC	0,672	9	0,5	Mais	20 A		4 O.		
EPTC	0,672	19	0,5	Mais	40 V,M		80 M	•	
EPTC	0,672	99	0,5	Meis	₩ 09		₩ 08		
EPTC	0,672	69	0,5	Mais	20 V,M	50 M	70 k	70 M	
EPTC	0,672	20	5.0	Mais	40 V,M	M. V 0€	₩ 08	80 M	
BPTC	0,672	7.1	0,5	Mais	40 V,M		₩ 08		
EPTC	0,672	72	0,5	Mais	W 09		65 M		
EPTC	0,672	73	٥,5	Mais	№ 09		80 M		
EPTC	0,672	74	0,5	Mais	M 09		₩ 08		
EPTC	0,672	75	0,5	Mais	м. Ф 09		80 M		
SPTC	0,672	92	0,5	Mais	M. V 0€		75 M		
EPTC	0,672	77	0,5	Mais	M 09		75 M		
EPTC	0,672	18	0,5	Kais	м• л 09		75 M		
STAR	0,672	42	0,5	Mais	50 V.M		75 M		
BPTC	0,672	80	0,5	Mais	И 09	₩ 09	м 59	70	
EPTC	0,672	81	0,5	Mais	10 V	20 建	50 M	50 M	
EPTC	0,672	82	0,5	Mais	30 V	30 S	50 M	50 M	

Tabelle III (Fortsetzung):

	8	egenmittel	7		Schädigung in %	ng in %		
Herbi- zid	Anwendungs- verhältnis g/m ²	· Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandel tes gut	tes Sast-	Unbehandeltes gut in der ber barten Reihe	deltes Saat- der benach- Reihe
					2 Woohen	4 Wochen	2 Woohen	4 Wochen
BPTC	0,672	83	0,5	Mais	20 V	20 S	20 M	25 M
BPTC	0,672	84	0,5	Mais	10 V	10 V	15 M	20 M
BPTC	0,672	B Z	0,5	Mais	30 V	10 V	35 M	45 M
BPTC	0,672	96	5,0	Mais	50 V,M		75 M	
BPTC	0,672	87	0,5	Mais	30 V,M		75 M	
EPTC	0,672	88	0,5	Mais	50 V,M		70 M	
EPTC	0,672	. 68	0,5	Meie	₩ 09		₩ 08	
DPTC	0,672	8	0,5	Meis	20 V.M	M, V 0€	80	₩ 08
DEAG	0,672	91	0,5	Mais	40 V,M	٠.	80 M	
BPTC	0,672	95	0,5	Meis	50 V,M		80 M	
BPTC	0,672	93	0,5	Mais	Δ 09	20 V	75 M	75 M
EPTO	0,672	94	5.0	Male	30 V,M		90 M	
EPIC	0,672	95	0,5	Mais	100 K		M 06	:
EPTC	0,672	96	0,5	Meis	30 V.M	÷.	80 M	
EPTC	0,672	76	0,5	Mais	30 ₹		75 м	
			-					

- 127 -

Unbehandeltes Saatgut in der benach-4 Wochen 80 M 80 M 80 K Ħ 8 barten Reihe 2 Wochen 85 M 80 M 96 85. 8 85 9 Behandeltes Sast-4 Woohen 20 V,M Schädigung in % 30 V,M 50 M 30 K 2 Wochen 50 V,M 50 V,M 40 V,M 40 V M M, V 09 30 V, M 30 V,M 40 V,M 30 V,M 50 M Þ 9 9 30 9 Getreideart Mais Behandlungs-% Сем./Сем. verhältnis Gegermittel Verbindung 100 102 105 106 108 109 114 101 103 104 107 112 Inwendungsverhältnis 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-EPTC EPTC zid

125 - 124

		Gegenmittel	ttel	1	Schädign	Schädigung in %			
Herbi-	Anwendungs- verhältnis 8/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behande) gut	Behandeltes Saat- gut	Unbehandeltes gut in der be barten Reihe	ideltes Saat- der benach- Reihe	
					2 Wochen	4 Wochen	2 Wochen	4 Wochen	
EPTC	0,672	115	0,5	Mais	40 V,M		M 06		
EPTC	0,672	911	0,5	Mais	30 V	30 V	75 M	80 M	
EPTC	0,672	לדנ	0,5	Mais	20 V,M	· .	™ 07	٠	
BPTC	0,672	. 118	0,5	Mais	M. V 0€		70 M	•	
EPTC	0,672	119	6,0	Mais	M. V 0€		M 0.2		
RPTC	0,672	120	0,5	Mais	30 ₹		15 函	·	•
SPTC	0,672	121	0,5	Mais	M, V 04	•	75 M		
SPTC	0,672	122	6,0	Mais	五 V V V		.35 M	}	
SPTC	0,672	123	0,5	Mais	20 Φ	20 Λ	10 M	20 M	
RPTC.	0,672	124	0,5	Mais	M, V 0€	•	™ 27		
BPTC	0,672	125	0,5	Mais	40 V.M		到 08		
SPTC	0,672	126	0,5	Mais	и• л оь		80 M		
SPTC	0,672	127	0,5	Mais	₩ 09		BO M		
SPTC	0,672	128	0,5	Mais	50 M		55 M		
EPTC	0,672	129	0,5	Meis	30 V,B	30 V,B	50 M	M 09	

Tabelle III (Fortsetzung):

		Gegenmittel	tel		Schädigung in %	in %		
Herbi- zid	Anwendungs-verhältnis κ/m^2	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut	Saat-	Unbehandeltes Saa gut in der benach barten Reihe	tes Saat- benach- be
					2 Wochen	4 Wochen	2 Wochen	4 Wochen
EPIC	0,672	130	0,5	Mais	30 V	30. V	40 M	M 09
EPTC	0,672	131	0,5	Mais	10 V	0	25 M	55 年
EPIC	0,672	132	0,5	Mais	0	0	45 k	55 k
EPIC	0,672	133	0,5	Mais	40 M		65 k	
EPIC	0,672	134	0,5	Mais	30 V,M		70 M	
EPTC	0,672	135	0,5	Mais	M. V 04		70 M	
BPTC	0,672	136	0,5	Mais	50 V,M		₩ 08	
EPTC	0,672	157	0,5	Mais	30 V,M		85 M	
EPTC	0,672	138	0,5	Mais	30 V,M	-	75 M	
BPTC	0,672	139	0,5	Mais	50 V,M		74 0 8	
BPEC	0,672	140	0,5	Mais	50 V,M		75 M	
BPTC	0,672	141	0,5	Mais	20 V,M	30 V,M	80 M	80 M
BPTC	0,672	142	0,5	Mais	20 V,M	50 M	75 M	70 M
EPTC	0,672	143	0,5	Mais	M, V OL	50 M	85 M	80 M
EPTC	0,672	144	0,5	Mais	50 V,M		85 M	
EPTC	0,672	145	. 5*0	Mais	20 V,M		80 M	٠
EPTC	0,672	146	0,5	Mais	20 V,M	20 V,M	65 M	™ 07

4 Wochen Unbehandeltes Saatgut in der benach-barten Reihe 80 🕱 2 Wochen 65 ¤ Behandeltes Saat-4 Wochen Schädigung in % 40 k Tabelle III (Fortsetzung): 2 Wochen gut N. V 0€ 对 4 06 50 ₹ N 50 V, M 20 V. 30 V.M 10 4 ₹ 90 50 kg ¥ 09 9 20 ဂ္က 40 30 200 Getreideart Mais Mete Mais Mais Mais Mais Mais Maie Mais Mais Mais Mais Mais Mais Mais Mais Mais Behandlungs-% Gew./Gew. verhältnis Gegenmittel Verbindung 158 147 151 152 153 155 156 157 162 163 161 Anwendungs-verhältnis 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672

EPTC EPTC EPTC EPTC EPTC EPTC EPTC EPTC

EPTC EPTC EPTC

Herbizid

EPTC

EPTC

EPTG EPTG

		Gegenmittel	tel		Schädig	Schädigung in %		
Herbi-	Anwendungs- verhältnis «/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut	ltes Saat-	Unbehandeltes Saatgut in der nachbarten Reih	iltes n der be- n Reihe
	- /0				2 Wochen	4 Wochen	2 Wochen	4 Wochen
EPTC	0,672	164	0,5	Mais	м 09		70 M	
EPTC	0,672	165	0,5	Mais	M 09		75 M	
EPTC	0,672	991	0,5	Mais	M, V 04	M 09	75 M	ж 09
EPTC	0,672	167	0,5	Mais	M. V O?		75 运	
EPTC	0,672	168	0,5	Mais	M. V O9		80 M	
EPTC	0,672	169	0,5	Mais	30 A	30 V	80 M	80 k
EPTC	0,672	170	0,5	Mais	Me V 0€		80 M	
EPTC	0,672	171	0,5	Mais	№ 09		75 M	
EPTC	0,672	172	0,5	Mais	40 M		75 M	
EPTC	0,672	173	0,5	Mais	30 V,M	50 M	₩ 08	80 M
EPTC	0,672	174	0,5	Mais	м' л 09		FI 08	
EPTC	0,672	175	0,5	Mais	30 V,M		85 M	
EPTC	0,672	176	0,5	Mais	40 V,M		85 班	
EPTC	0,672	£77	0,5	Mais	30 V,M		85 M	
EPTC	0,672	178	0,5	Mais	M. V 0€		80 M	

Tabelle III (Fortsetzung):

Unbehandeltes Saat- gut in der benach- barten Reibe
Behandeltes Saat- Uni gut gut
-
2 Wochen
art Mais
0,5
179 0°5
8/m ²

Tabelle III (Fortsetzung)	Gegenmittel Schädigung in %	ungs- Verbin- Behandlungs - Behandeltes Saat- Unbehandeltes Saat- tnis dung verhältnis Getrei- gut gut in der benach- Nr. % Gew./Gew.	2 Wochen	195 0,5 Mais 30 V,M 55 M	196 0,5 Mais 100 K	197 0,5 Mais 60 M 75 M	198 0,5 Mais 30 V,M 30 M 75 M 80 M	199 0,5 Mais 50 V,M 80 M	200 0,5 Mais 60 M 80 M	201 0,5 Mais 40 V,M 88 M	202 0,5 Wais 50 M 60 M	203 0,5 Mais 50 M 65 M	204 0,5 Mais 20 V 10 V 55 M 50 M	205 0,5 Mels 30 V, W 65 M	206 0,5 Mais 20 V, M 20 V, M 40 M 55 M	207 0,5 Mais 100 K 55 M	208 0,5 Mais 60 V,M 70 M	
	Gegenmittel	Ė																
		Anwendungs- verhältnis «/m²		0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	1
		Herbi-		ဥ	EPTC	ဥ	ဥ	ည္	ဥ	ဥ	ဥ	ę.	ည	ဥ	ဋ	ဋ	ည	•

Unbehandeltes Saat-gut in der benach-2 Woohen 4 Wochen barten Reibe ဂ္က 10 V, M Behandeltes Saat-4 Wochen 100 K 10 V Sohädigung in 2 Wochen 100 K 100 K 100 K 30 V 50. V 10 · 4 10 V 50 ₹ 10 ¢ 10 V 0 Getrei-% Gew./Gew. deart Mais Mais Mais Mais Mais Mais. Mais Male Mais Mais Mais Mais Mais Mais Mais Mais Behandlungsverhältnis 0,5 0,5 0,5 Gegenmittel Verbindung 216 217 218 219 210 212 213 220 211 Anwendunge-verhältnis 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-zia EPTC EPTC EPTC EPTC EPTC BPTC BPTC EPTC EPTC EPTC EPTC EPTC DPTC DPTC EPIC

Tabelle III (Fortsetzung):

	51	Gegenmittel	9.1	ı	Schädigt	Schädigung in %		
Herbi- zid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut		Unbehand gut in d barten R	Saat- Unbehandeltes Saat- gut in der benach- barten Reihe
					2 Wochen	4 Wochen	2 Wochen	4 Wochen
EPTC	0,672	226	0,5	Mais	20 Φ	10 0	м 56	. 14 08
EPTC	0,672	227	0,5	Mais	20 V	20 Φ	85 M	80 M
EPTC	0,672	228	0,5	Mais	4'0 V,M		93 M	
EPTC	0,672	229	0,5	Mais	40 V,M		м 06	
EPIC	0,672	230	0,5	Mais	40 V,M		95 M	
EPTC	0,672	231	0,5	Mais	40 V,M		88 M	
EPTC	0,672	232	0,5	Mais	0	0	55 M	M 09
EPTC	0,672	233	0,5	Mais	30 V,M		70 M	
EPTC	0,672	234	0,5	Mais	0	10 V	55 M	M 09
BPTC	0,672	.235	0,5	Mais	10 7	10 V	70 M	65 M
EPTC	0,672	236	0,5	Mais	0	0	30 M	45 M
EPTC	0,672	237	0,5	Mais	0	10 V	м 69	65 M
EPTC	0,672	238	0,5	Mais	30 V,M		75 M	
EPTC	0,672	239	0,5	Mais	50 V,M		₩ 08	
EPTC	0,672	. 240	0,5	Mais	0	10 M	25 M	55 M
EPTC	0,672	241	0,5	Mais	0	0	45 M	45 M

abelle III (Fortsetzung):

					-	•													
	deltes Saat- der benach- Reihe	4 Woohen		70 M		-	•											•	
	Unbehandeltes gut in der ber barten Reihe	2 Wochen	50 M	75 M	20 M	. 28 №	8 M	M	™ 0 <i>L</i>	70 M	65 M	. № 02	15 M	M 8	50 M	5 国	15 M	70 M	10 M
g in %	es Saat-	4 Wochen		30 M											··· ·:				
Schädigung in %	Behandeltes gut	2 Wochen	30 V,M	Ne V of	0	10 V	0	10 V	20 V	10 V		ο.		0	5 kg		0	0	o
·į	Getrei-		Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais
tel	Behandlungs- verhältnis		0,5	0,5	0,5	5,0	0,5	. 0,5	6,0	0,5	0,5	0,5	0,5	6,0	0,5	0,5	0,5	0,5	0,5
Gegenmittel	Verbin- dung		242	243	244	245	246	247	248	249	250 .	251	252	253	254	255	256	257	258
	dungs- Itnis. >	8/m_			0,672												0,672		•
	Herbi-	zid	EPTC	EPTC	EPIC	EPTC	EPTC	BPTC	EPTC	EPTC	EPTC	BPTC	EPTC	BPTC	EPIC	BPTC	EPIC	EPTC	EPTC

- 135 -

Unbehandeltes Saat-gut in der benach-2 Wochen 4 Wochen barten Reihe 15 M 35 K 55 区 40 kk 45 M 60 区 15 区 N 67 50 🗷 20 M ω Σ S N Schädigung in Behandeltes Saat-2 Wochen 4 Woohen Tabelle III (Fortsetzung): gut 10 10 0 Getreide-Mais Mais Meis Mais Mais Mais Verbin- Behandlungs-% Gew./Gew. verhältnis 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 O, O Gegenmittel dung Mr. 260 261 262 263 264 265 266 267 268 269 Anwendungsverhältnis 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-**BPTC** EPTC EPTC BPTC EPTC EPIC ELIC EPTC EPTC EPTC EPTC EPTC EPTC BPTC EPIC zid

Tabelle III (Fortsetzung):

		Gegenmittel	ttel		Schädigung in %	
Herbi-	Anwendungs- verhëltnis g/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Sast- gut 2 Wochen 4 Wochen	Unbehandeltes Saatgut in der benachbarten Reihe 2 Wochen 4 Wochen
EPTC	0,672	275	0,5	Mais		₩ 04
EPTC	0,672	276	0,5	Mais	 O	40 M
EPTC	0,672	277	0,5	Mais	10 V	35 M
EPTC	0,672	278	0,5	Mais	0	40 M
EPIC	0,672	279	0,5	Mais	0	33 M
EPTC	0,672	280	0,5	Mais	0	50 k
EPTC	0,672	281	0,5	Mais	0	65 M
EPTC	0,672	282	0,5	Mais	10 B	38 M
EPTC	0,672	283	0,5	Mais	0	M 08
BPTC	0,672	284	0,5	Mais	0	35 M
EPEC	0,672	285	0,5	Mais	0	15 M
EPIC	0,672	. 582	0,5	Mais	10 V	70 M
EPIC	0,672	287	0,5	Mais	10 V	75 M
EPTC	0,672	288	0,5	Mais	10 V	35 萬
EPTC	0,672	289	0,5	Mais	0	35 M
EPTC	0,672	290	0,5	Mais	0	50 M
EPTC	0,672	291	0,5	Mais	0	50 M
			•		_	

Tabelle III (Fortsetzung):

		Gegenmittel	tel		Schädigung in %	R
Herbi-	Anwendungs- verhältnis «/m²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut	Unbehandeltes Saatgut in der be- nachbarten Reihe
	- /8				2 Wochen 4 Wochen	2 Wochen 4 Wochen
	0,672	292	0,5	Mais	0	30 M
EPTC	0,672	293	0,5	Mais	0	55 M
EPTC	0,672	294	0,5	Mais	0	ж 09
EPTC	0,672	295	0,5	Mais	0	25 M
EPTC	0,672	596	0,5	Mais	0	15 点
EPTC	0,672	297	0,5	Mais	0	10 M
EPTC	0,672	298	0,5	Маів	0	5 M
EPTC	0,672	299	0,5	Mais	0	20 M
EPTC	0,672	300	0,5	Mais	0	0
EPTC	0,672	301	0,5	Mais	0	23 M
BPTC	0,672	302	0,5	Mais		25 M
EPTC	0,672	303	0,5	Mais	0	15 M
EPTC	0,672	304	0,5	Mais	0	40 M
EPTC	0,672	305	0,5	Mais	0	35 M
EPTC	0,672	306	0,5	Mais	0	15 M
EPTC	0,672	307	0,5	Mais		15 M

Tabelle III (Fortsetzung):

		Gegenmittel	tel		Schädigung in %	%
Herbi- zid	Anvendungs- verhältnis	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat-gut	Unbehandeltes Saatgut in der benachbarten Reibe
	m/9				2 Wochen 4 Wochen	2 Wochen 4 Wochen
EPTC	0,672	308	. 5.0	Mais	0.	XI 60
EPTC	0,672	309	0,5	Mais	0	25 M
EPTC	0,672	310	0,5	Mais	0	45 M
EPTC	0,672	311	0,5	Mais	O-	30 M
EPTC	0,672	312	0,5	Mais		70 M
EPIC	0,672	313	0,5	Mais	0	W 59
EPTC	0,672	314	0,5	Kais	ж. т о€	74 09
EPTC	0,672	315	0,5	Kais	50 M	N OL
EPTC	0,672	316	0,5	Mais	0	
EPTC	0,672	317	.0.5	Kais	0	₹0 2.
EPTC	0,672	318	0,5	Mais	у п° д об	м 09
EPTC	0,672	319	0,5	Mais	30 № Т	м 09
EPTC	0,672	320	0,5	Mais	0	0
EPTC	0,672	321	0,5	Mais	0	65 M
EPTC	0,672	322	0,0	Mais	10 V	л от
EPTC	0,672	323	0,5	Mais	10 V	40 €

Tabelle III (Fortsetzung):

		Gegenmittel	tel	•	Schädigung in %	
Herbi- zid	Anwendungs-verhältnis	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Sast- gut	Unbehandeltes Saatgut in der benachbarten Reihe
	m/9				2 Wochen 4 Wochen	2 Wochen 4 Wochen
EPTC	0,672	324	0,5	Mais	м 09	75 M
EPTC	0,672	325	0,5	Mais	₩ 09	. M 08
EPTC	0,672	326	0,5	Mais	20 Т	ж о2
EPTC	0,672	327	0,5	Mais	30 V₂M	75 M
EPTC	0,672	328	0,85	Mais	ж• д 09	75 M
EPTC	0,672	. 329	0,5	Kais	0	м 09
EPTC	0,672	330	0,5	Keis	30 V,M	ж 59
EPTC	0,672	331	0,5	Mais	10 V	70 M
EPTC	0,672	332	6,0	Mais	0	. 2 K
EPTC	0,672	333	0,5	Kais	0	15 M
DPTC	0,672	534	0,5	Kais	0	23 M
EPTC	0,672	335	0,5	Mais	20 V,B	35 M
EPTC	0,672	336	5.0	Kais	95 V	30 M
EPTC	0,672	337	0,5	Kais	0	5 M
EPIC	0,672	338	0,5	Keis	0	M 09
EPTC	0,672	339	0,5	Mais	30 M	75 M

Tabelle III (Fortsetzung):

	-	Gegenmittel	tel	,	Sohëdigung in %	
Herbi-	- P	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut	Unbehandeltes Saatgut in der be- nachbarten Reihe
	u/89				2 Wochen 4 Wochen	2 Woohen 4 Woohen
EPIC	0,672	340	6,0	Kais		
EPTC	0,672	341	0,5	Mais	0	30 M
EPTC	0,672	342	0,5	Mais	60 M	M 08
EPTO	0,672	343	0,5	Mais	0	45 M
EPIC	0,672	344	0,5	Mais	TO V	75 M
BPTC	0,672	345	0,5	Meis		75 M
EPTC	0,672	346	0,5	Mais	10 V	м 59
EPTC	0,672	547	0,5	Mais	% v o €	80 M
EPTC	0,672	. 348	0,5	Mais	0	м 69
EPTO	0,672	349	0,5	Mais	ж⁴ о9	75 M
EPIC	0,672	350	0,5	Mais	№ 09	80 M
EPTC	0,672	351	0,5	Mais	м. т оэ	₩ 5.2
EPIC	0,672	552	0,5	Mais	м. и 09	₩ 08
EPTC	0,672	353	0,5	Mais	ж. о9	75 M
EPIC	0,672	354	0,5	Mais	50 V,™	80 M
BPTC	0,672	355	6,0	Mais	ж. т. о9	70 M

Tabelle III (Fortsetzung):

		Gegenmittel	tel	ı	Schädigung in %	in %		
Herbi- zid	Anwendungs- verhältnis g/m^2	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut	tes Saat- t Wochen	Unbehandeltes Saatgut in der be nachbarten Reihe	- pg
EPTC	0,672	356	0.5	Mais	a Þ		TO M	
EPTC	0,672	357	0,5	Mais		•		
RPTC	0,672	358.		Mais	30 V			
EPTC	0,672	359	0,5	Mais	30 V,M		75 M	
EPTC	0,672	360	0,5	Mais	M. V OS		70 M	
EPTC	0,672	361	0,5	Mais			75 M	
EPTC	0,672	362	0,5	Mais	30 V		75 M	
EPTC	0,672	363	0,5	Mais	M, V 0€		M 08	
EPTC	0,672	364	0,5	Mais	10 V		55 M	
EPTC	0,672	365	0,5	Mais	50 V,M		65 M	-
EPTC	0,672	995	0,5	Mais	0		65 M	
EPTC	0,672	367	0,5	Mais			75 M	
EPTC	0,672	368	0,5	Mais	0		30 M	
EPTC	0,672	369	0,5	Mais			25 M	
APTC	0,672	370	0,5	Mais	70 B 70	Ħ	80 M 80 M	
EPTC	0,672	371	0,5	Mais		×	85 M 80 M	

141

। (अ	; in %	Saat- Unbehandelt gut in der barten Reil	4 Wochen 2 Wochen 4 Wochen	40 V, M 80 M 80 M	75_M	用 公司	м ов м об м об	M 06	₩ 02		85 M	20 M 90 M 80 M	40 M 85 M 80 M	80 M	м ов м об л об	10 У 10 М 60 М	м 28	30 並 75 班	M 08
(Fortsetzung)	Schädigung	w 1	2 Wochen	30 Т	30 V,™,	₩ 09 ·	50 V,B	₹ 05	40 V,M	80 M	50 M	10 V	30 V	50 国	50 V,B	20 V	M 09	10 V	м 09
Tabelle III	;	Getrei- deart		Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais
Ta	ttel	Behandlungs- verhältnis % Gew./Gew.		0,5	0,5	0,5	0,5	0,5	6,0	0,5	0,5	0,5	0,5	0,5	0,5	6,0	0,5	0,5	6,0
· .	Gegenmittel	Verbin- dung Nr.		372	373.	374	375		377	378	379	380	381	382	383	384	385	386	387
	•	Anwendungs-rbi-verhältnis	= /0	0,672	0,672	0,672	0,672	.0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
		Herbi- zid		EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	БРТС

- 141 -

142

		Gegenmittel	tel		Schädigung in %	% ui %	
Herbi- zid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandel tes gut	tes Saat-	ြည်း မြည်
					Mocnen	4 Wocnen	Wochen 4 Wochen
EPTC	0,672	388	0,5	Mais	100 K		55 M
EPTC	0,672	389	0,5	Mais	10 V	0	75 班
EPTC	0,672	390	0,5	Mais	15 V,M		80 M
EPTC	0,672	391	0,5	Mais	10 V	0	80 M
EPTC	0,672	392	0,5	Mais	м• л 09		75 M
EPTC	0,672	393	0,5	Mais	M 09		80 M
EPTC	0,672	394	0,5	Mais	50 V,M	•	80 M
EPTC	0,672	395	0,5	Mais	10 V	10 M	死 59
EPTC	0,672	396	0,5	Mais	10 V	0	75 M
EPTC	0,672	397	0,5	Mais	10 V	20 M	м 09
EPTC	0,672	398	0,5	Mais	M 09		图
EPTC	0,672	399	0,5	Mais	¥ 09		80 M
EPTC	0,672	400	0,5	Mais	м 09		75. м
EPTC	0,672	401	0,5	Mais	м 09		80 M
EPTC	0,672	402	0,5	Mais	40 V,M		75 M
EPTC	0,672	403	0,5	Mais	M. V 08		Ж 08

	Gegenmittel	:e1	:	Schädigung in %	g in %	- 1
ungs- tnis	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut	es Saat-	Unbehandeltes Saatgut in der be- nachbarten Reihe
•				2 Wochen	4 Wochen	2 Wochen 4 Wochen
	404	0,5	Mais	70 M		. M 08
	405	0,5	Mais	M OL		₩ 08
	406	0,5	Mais	70 M		₩ 08
	407	0,5	Mais			80 M
	408	0,5	Mais	70 м		80 M
	409	0,5	Mais	70 M		80 M
	410	0,5	Mais	70 M	: .	80 M
	411	0,5	Mais	20 14		80 M
	412	0,5	Mais	70 M		80 M
	413	0,5	Mais	70 M		80 M
	414	0,5	Mais	70 区		80 M
	415	0,5	Mais	м о2		80 M
	416	0,5	Mais	70 M	. ~	80 M
·	417	0,5	Mais	м 09		₩ 08
	418	•	Mais	70 ™		₩ 08
	419	5,0	Mais	70 M		80 M
	420	0,5	Mais	70 M		80 M

- 143-

144

Unbehandeltes Saatgut in der benachbarten Reihe 2 Wochen 4 Wochen 4 Wochen Behandeltes Saat-Schädigung in % 2 Wochen M, V OY 70 V,M M, V O7 70 V.M M. V 09 M. V O7 70 M 70 M 20 区 70 M N 02 2 2 Getreideart Mais Verbin- Behandlungs-% Сем./Сем. verhältnis 0,5 0,5 0,5 0,5 0,5 0,5 0,5 Gegenmittel gunp 422 423 426 421 429 432 433 Anwendungsverhältnis 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-EPTC EPTC EPTC

Tabelle III (Fortsetzung):

	ndeltes Saat- der benach- Reihe	Wochen		•					-						· .		
	Unbehandeltes gut in der ber barten Reihe	2 Wochen 4 W	75 M	₩ 08	75 M	65 ™	75 M	™ o7	80 度	65 点	75 M	65 M	80 M	м о2	80 M	80 M	70 M
Schädigung in %	eltes Saat- t	en 4 Wochen				:		-•			,					·	
Schädi	Behandeltes gut	2 Wochen	M, V 0€	Λο V, M	20 V	TO V	30 V	10 V	10 V	TO A	₩ 0 <i>L</i>	20 V	₩ 09	M, V 0ξ	70 ™	Ме ∨ 09	20 ₹
	Getrei-		Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais
te1	Behandlungs- verhältnis % Gew./Gew.		0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Gegenmittel	Verbin- dung Nr.		437	438	439	440	441	442	443	444	445	446	447	448	449	450	451
	Herbi- Anwendungs- zid verhältnis	11/0	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
	Herbi- zid		EPTC	EPTC	EPTC	EPTC	BPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	BPTC	EPTC

- 145 -

146

Unbehandeltes Sastgut in der benachbarten Reihe 2 Wochen 4 Wochen 80 M 国 09 75 区 80 M 70 M 80 M ₩ 80 80 M ₩ 08 ₩ 80 Behandeltes Saat-2 Wochen 4 Wochen Schädigung in % gut M, V oγ 50 V,M м. о9 50 V,M ™, v or M, V 09 40 V, M 30 V,™ 10 V 20 V 70 M 70 区 70 M 20 V Getre1deart Mais Verbin- Behandlungs-% сем./сем. verbältnis 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 Gegenmittel dung 453 454 455 456 458 459 460 462 463 464 465 466 457 461 Anwendungsverhältnis 8/m² 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,673 Herbi-EPTC EPTC EPTC EPTC EPTC EPTC EPTC EPIC EPTC EPTC EPTC EPTC EPTC EPTC EPTC zid

FHN

		Gegenmittel	tel		Schädigung in %	-
Herbi- zíd	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut 2 Wochen 4 Wochen	Unbehandeltes Saat- gut in der benach- barten Reihe 2 Wochen 4 Wochen
EPTC	0,672	467	0,5	Mais	0	75 M
EPTC	0,672	468	0,5	Mais	м 6 о о о о о о о о о о о о о о о о о о	80 M
EPTC	0,672	469	0,5	Mais	10 V	80 M
EPTC	0,672	470	0,5	Mais	₩ 09	75 M
EPTC	0,672	471	0,5	Mais	№ 10 05	65 IK
EPTC	0,672	472	5,0	Mais	20 V,M	25 M
EPTC	0,672	473	0,5	Mais	70 M	M 08
EPTC	0,672	474	.0,5	Mais	. мо2	80 M
EPTC	0,672	475	0,5	Mais	20 V,M	70 M
EPTC	0,672	476	0,5	Mais	10 V	75 M
EPTC	0,672	477	0,5	Mais	30 V M	80 M
EPTC	0,672	478	. 0,5	Mais	20 V,M	80 M
EPTC	0,672	419	0,5	Mais	м. ч. оэ	80 M
EPTC	0,672	480	0,5	Mais	70 V,M	80 M
BPTC	0,672	481	6,0	Mais	. M of	80 M
EPTC	0,672	482	0,5	Mais	№ А 09	80 M

Unbehandeltes Saatgut in der benachbarten Reihe 2 Wochen 4 Wochen 70 M 70 M 75 M ₩ 86 몯 85 80 V,M 40 № 55 M BO ₩ 75 E 80 2 Behandeltes Saat-2 Wochen 4 Wochen W, V 50 V, M 50 V,M 75 V,M Schädigung in 30 V 9 0 gut 70 V,M 40 V M 30 V.ii 50 V,™ ₩ 99 70 区 10 V 50 kg 10 V 10 V 10 V 20 20 Getreideart Mais Anwendungs- Verbin- Behandlungs-% Сеж./Сеж. verhäl tnis 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 Gegenmittel gunp 483 484 486 485 488 489 490 492 496 487 491 493 494 495 497 verhältnis 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-EPTC EPTC EPTC EPTC EPTC EPTC EPIC EPIC EPTC EPTC EPTC EPTC EPTC **EPTC** zid

CHV_

Unbehandeltes Saatbarten Reihe 2 Wochen 4 Wochen gut in der benach-20. 区 图 09 40 M 30 2 97 ₩ 86 89. 区 № 87 50 陸 55 K 30 M 65 M 78 ™ 58 屋 Behandeltes Saat-2 Wochen 4 Wochen 100 K 100 K 100 K Sobädigung in 20 V 20 V 30 V 100 100 gut 20 V,M 40 V,M 100 K 100 K 100 K 100 K 100 K 10 V ₩ 90 10 V 30 V 10 V 10 7 Getreideart Mais Verbin- Behandlungs-dung verhältnis % сем./сем. 0,5 0,5 0,5 0,5 0,5 0,5 0,5 Gegenmittel 500 508 509 499 502 503 505 506 507 511 501 504 Anwendungs-verhältnis 0,672 0,672 0,672 g/m² 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-EPTC EPTC zid

Tabelle III (Fortsetzung):

			Tabelle III (Fortsetzung)	T (rorts	e tzung) :	
		Gegenmittel	tel		Schädigung in %	
Herbizid	Anwendungs- verhältnis	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut	Unbehandeltes Saatgut in der be- nachbarten Reihe
	67 III				2 Wochen 4 Wochen	2 Wochen 4 Wochen 2 Wochen 4 Wochen
EPTC	0,672	ı	•	Mais	M 06	
S-2,3,3-Trichlor- allyl-disopropyl- thiolcarbamat	0,112	9	0,25	Weizen	У 5	·
S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat	. 0,112	9	0,5	Weizen	20 V	
S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat	. 0,112	. 1	. 1	Weizen	м 06	
EPTC +	0,672 +					•
2-Chlor-4-äthyl- amino-6-isopropyl- amino-s-triazin	. 0,112	9	1,0	Mais	0	. 0
EPTC +	0,672 +					
2-Chlor-4-äthyl- amino-6-isopropyl- amino-s-triazin	. 0,112	9	0,01	Mais	0	

Tabelle III (Fortsetzung):

	-	Gegenmittel	tel		Schädigung	1g in %		•
Herbizid	Anwendungs- verhältnis	Verbin- dung		Getrei-	Behandeltes gut	Sag t	Unbehandeltes Saatgut in der b nachbarten Reibe	_ be _
	g/m ²	Nr.	% Gew./Gew.	deart	2 wochen	4 Woohen	2 Wochen 4 Wochen	hen
EPTC +	0,672 +							٠
2-Chlor-4,6-bis (Äthylamino)-s- triazin	0,112	. 9	1,0	Mais		0	0	
+ OLG	0,672 +	•						
2-Chlor-4,6-bis äthylamino)-s- triazin	0,112	9	0,01	Mais	0	o		
EPIIC +	0,672 +			•				
2(4-Chlor-6- äthylamino-s- triazin-2-yl-					•			
<pre>amino/-z-metnyi- propionitril</pre>	0,112	9	1,0	Mais	0	0	0	
EPTC +	0,672 +		•					
2(4-chlor-6- ëthylamino-s-	•		1					
triazin-2-yl- amino)-2-methyl- propionitril	0,112	9	0,01	Mais		0		
	•							

Tabelle III (Fortsetzung):

		Gegenmittel	tel	:	Schädigung in %	in %		
Herbizid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Behandlungs. verhältnis % Gew./Gew.	Getrei-	Behandeltes gut	s Saat-	Saat- Unbehandeltes gut in der ber barten Reihe	deltes Saat- der benach- Reihe
				3	2 Wochen 4 Wochen	Wochen	7 Wochen 4	in the second
EPTC +	0,672 +						Talloon -	"ACTION
2-Chlor-4-cyclo- propylamino-6-iso-	-							
propyramino-s- triazin	0,112	. 49	1,0	Mais	0	C	C	c
EPIC +	0,672 +				,	,)	o
2-Chlor-4-cyclo- propylamino-6-iso- propylamino-s-	į							
triazin	0,112	9	0,01	Mais	0	0		•
EPTC + 2.4-D	0,672 +	٧	r					
EPTC +	0 672 -	D	0.4	Mais	0	0	O	0
2,4-D	0,112	9	0,01	Mais	0	0		·
S-Propyldipro-	. 0 .							
2-Chlor-4-äthyl-	+ 2/06/0 +			,				
amino-6-isopropyl. amino-s-triazin	0,112	v	0,6		c	c	c	C
רייייסיים ביייסיים ביייסיים ביייסיים ביייסיים ביייסיים בייסיים		ı) 1	•	>	o	o
thiolearbanat	0,672	1	ı	Mais	M 06			

Tabelle III (Fortsetzung)

				. –	-	153			• •	
	iltes n der en Reihe	4 Wochen	:	0		. 0		0		0
	Unbehandeltes Saatgut in der benachbarten Re	2 Wochen	·	o [·]		0		0		
Sohädigung in %	ltes Saat- t	n 4 Wochen		0		0	•	0		0
Sohäd18	Behandel tes gut	2 Wochen 4		ò		· o		0		0
i	Getrei- deart	-	·	Mais		Meis	•	Mais		Mais
1	Behandlungs verbältnis % Gew./Gew.			0,01		1,0		0,01		1,0
Gegenmittel	Verbin- dung Nr.			9		9		, v o		• •
ol	Anwendungs-verhältnis g/m^2		0,672 +	0,112	0,672 +	0,112	0,672	0,112	0,672 +	1y1- 0,112
-	Herbizid ve		S-Propyldipropyl- thiolcarbamet + 2-Chlor-4-äthyl-	amino-6-isopropyl- amino-s-triazin	S-Propyldipropyl-, thiolcarbamat + 2-chlor-4.6-bis	(athylamino)-s- triazin	S-Propyldipropyl- thiolcarbamat + 2-Chlor-4,6-bis	(äthylamino)-s- triazin	S-Propyldipropyl- thiologrbamat + 2(4-Chlor-6-äthyl-	emino-s-triazin- 2-yl-amino)-2-methyl- propionitril O
							-			

Tabelle III (Fortsetzung):

			- 77 -		
-	Unbehandeltes Saatgut in der be- nachbarten Reibe 2 Wochen 4 Wochen		0		0
Schädigung in %	Behandeltes Sast- gut 2 Wochen 4 Wochen	0	0	c) 0
Schädi	• •	0	0	c	0
	Getrei- deart	Mais	Mais	<u>/</u> ጀ	Mais
Gegenmittel	Behandlungs- verhältnis % Gew./Gew.	0,01	1,0	0.01	0,1
	Verbin- dung Nr.	9	vo	9	vo
ଧ	Anwendungs- verhältnis g/m^2	0,672 +	0,672 +	0,672 +	0,672 + 0,112
	Herbizid v	S-Propyldipropyl- thiolcarbamat + 2(4-Chlor-6-\text{k}thyl) amino-s-triazin- 2-yl-amino)-2- methylpropioni- tril	S-Propyldipropyl- thiolcarbamat + 2-Chlor-4-cyclo- propylamino-6- isopropylamino- s-triazin	S-Propyldipropylthiolcarbamat + 2-Chlor-4-cyclo-propylamino-6-iso-propylamino-s-triazin	S-Propyldipropyl- thiolcarbamat + 2,4-D

Tabelle III (Fortsetzung);

	•••	•		155		: .
	Unbehandeltes Saetgut in der be- nachbarten neihe 2 Nochen 4 nochen		0		c	
Schädigung in %	ltes Saat-	0	. · · o	0	c	• •
Schädi	Behande gut 2 "oci	0	. 0	0	c	
	Getrei- deart	Mais	Mais	Mais		Mais
1	Behandlungs- verhältnis % Gew./Gew.	0,01	1,0	0,01	Ç	0,01
Gegenmittel	Verbin- dung Mr.	9	. 9	. 9	'	v
geg	Anwendungs- verhältnis g/m²	0,672 +	0,672	0,672	4 968 + 0	•
	Herbizid A	S-Propyldipro- pylthiol- carbamat + 2,4 D	S-Propyldipro- pylthiol- carbamat +	S-Propyldipro- pylthiol- carbamat	S-Athyldiso- butylthiol- carbamat + 2-Chlor-4- äthylamino-6- isopropylamino-8-	S-Athyldiiso- butylthiol- carbamat + 2-Chlor-4- äthylamino-6- isopropylamino- s-triazin

11e III (Fortsetzung):

			- 25 5 - 156		
	Unbehandeltes Saatgut in der be- nachbarten Reihe	0			
Schädigung in %	Behandeltes Saat- Un gut Sa Wochen 4 Wochen	0	0	0	0
	Getrei- deart	Mais	Mais	Mais ·	Mais
1	Behandlungs- verhältnis % Gew./Gew.		0,01	1,0	0,01
Gegenmittel	Verbin- dung Nr.	. 9	9	9	9
	Anwendungs- verhältnis g/m ²	0,896 +	0,896+	0,896 + - - - -	0;896+ -y1- rro- 0,112
	An Herbizid ve	S-Athyldiisobu- tylthiol- carbamat + 2-Chlor-4,6-bis (äthylamino)-s- triazin	S-Äthyldiisobutyl- thiolcarbamat + 2-Chlor-4,6-bis (äthylamino)-s- triazin	S-Athyldiisobutyl- thiolcarbamat + 0,896 + 2(4-Chlor-6-äthyl- amino-s-triazin- 2-yl-amino)-2- methyl-propionitril 0,112	S-Äthyldiisobutyl- thiolcarbamat + 0 2(4-Chlor-6-äthyl- amino-s-triazin-2-yl- amino)-2-methyl-pro-

Tabelle III (Fortsetzung):

	9	Gegenmittel		δl	Schädigung in %	n %		
Herbizid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut	Sast	Unbehandeltes Saatgut in der benachbarten Reihe	altes In der rten
S-Athyldisobutyl- thiolcarbamat + 2-Chlor-4-cyclo-	+ 968.0				2 Wochen	4 Wochen	2 Wochen	4 Wochen
propylamino-6-iso- propylamino-s-tri- azin	0,112	. 9	1,0	Mais	0		0	. 0
S-Athyldiisobutyl- thiol-carbamat + 2-Chlor-4-cyclo-	+ 968.0							• .
propylamino-6-iso- propylamino-s- triazin	0,112	9	0,01	Mais	0			•
S-Athyldiisobutyl thiolcarbamat + 2,4-D	0,896 +	9	1,0	Mais	0	0	.0	0
S-Athyldiisobutyl- thiolcarbamat + 2,4-D	0,896 + 0,112	9	0,01	Mais	0	Ο	· · · · · · · · · · · · · · · · · · ·	
S-Athyldiisobutyl- thiolcarbamat	968.0	9	1,0	Mais	0	0	0	0

Tabelle III (Fortsetzung):

		gl			-	157 -			
	Unbehandeltes Saatgut in der benachbarten	len 4 Wochen	0		0	0			
	Unbehe Saatgu benach	2 Wochen 4	0		.0	0			
Schädigung in %	deltes Saat- gut	2 Wochen 4 Wochen	0		0	0			
Schädig	Behandeltes gut	2 Woche	0		0	0	20 M	30 V	
1	Getrei- deart		Mais		Mais	Mais	Mais	Mais	
	Behandlungs- verhältnis % Gew./Gew.		0,01		1,0	0,01	1	,	· + amaqua
Gegenmittel	Verbin- dung Nr.		9		9	9	ı	1	ronelthi
ତ ା	Anwendungs- Verbinverhältnis dung g/m^2 Nr.		æ		ω	σ	ω	6 0	EPTC = S-Athvl-N.N-dinronylthiocembemet.
	Herbizid	S-Athyldiiso-	butylthiol- carbamat	S-2,3,3-Tri- chlorallyl-di- isopropyl-thiol-	carbamat	S-2,3,3-Trichlor- allyldiisopropyl- thiolearbamat	S-Äthyldiiso- butylthiol - carbamat	S-2,3,5-Trichlor- allyl-diisopro- pyl-thiolcarbamat	EPTC = S-At

= S-Athyl-N,N-dipropylthiocarbamat; = Verkümmerung; EPTC B K K 4

Misbildung;
= Keimbemmung;
= Blattverbrennung (leaf burn).

Die erfindungsgemäß eingesetzten Gegenmittel können in jeder geeigneten Form angewandt werden. So können sie beispielsweise zu emulgierbaren Flüssigkeiten, emulgierbaren Konzentraten, zu einer Flüssigkeit, zu einem benetzbaren Pulver, zu Staubmitteln, zu einem Granulat oder zu einer anderen zweckmäßigen Form verarbeitet werden. Vorzugsweise die Gegenmittel den Thiolcarbamaten beigemischt und vor oder nach dem Einsäen der Saat in den Boden eingearbeitet. Doch kann natürlich auch zuerst das Thiolcarbamat-Herbizid und danach das Gegenmittel in den Boden eingearbeitet werden. Des weiteren kann das Saatgut mit dem Gegenmittel behandelt und im Boden eingesät werden, der entweder bereits mit Herbizid versehen oder nicht damit behandelt wurde und anschließend einer Herbizid-Behandlung unterzogen wird. Durch die Art und Weise, wie das Gegenmittel zugesetzt wird, wird die herbizide Wirksamkeit der Carbamat-Verbindungen nicht beeinträchtigt.

Die Menge des Gegenmittels kann zwischen etwa 0,0001 und etwa 30 GeY- Pro Gew.-Teil Thiolcarbamat-Herbizid schwanken, wird jedoch gewöhnlich exakt danach ermittelt, welches Verhältnis sich im Hinblick auf die wirksamste Quantität als wirtschaftlich erweist.

In den Ansprüchen der vorliegenden Anmeldung soll der Ausdruck "wirksame herbizide Verbindung" die wirksamen Thiolcarbamate als solche oder die Thiolcarbamate umfassen, die
mit anderen wirksamen Verbindungen, wie z.B. den s-Triazinen und der 2,4-Dichlorphenoxyessigsäure oder den wirksamen Acetaniliden und dergl. vermischt sind. Außerdem ist
die wirksame herbizide Verbindung von der als Gegenmittel
eingesetzten Verbindung verschieden.

Die Klassen der vorliegend beschriebenen und erläuterten herbiziden Mittel sind als wirksame, solche Wirkung aufweisende Herbizide charakterisiert. Der Grad dieser herbiziden Wirkung ist bei den spezifischen Verbindungen und Kombinationen spezifischer Verbindungen innerhalb der Klassen unterschiedlich. Der Wirkungsgrad ist auch bei den einzelnen Pflanzensorten, für die eine spezifische herbizide Verbindung oder Kombination verwandt werden kann, bis zu einem gewissen Grade unterschiedlich. Eine spezifische herbizide Verbindung oder Kombination zur Bekämpfung unerwünschter Pflanzensorten läßt sich also leicht auswählen. Erfindungsgemäß läßt sich die Schädigung einer gewünschten Nutzpflanze (crop species) in Gegenwart einer spezifischen herbiziden Verbindung oder Kombination verhindern. Durch die spezifischen, in den Beispielen verwandten Nutzpflanzen sollen die Nutzpflanzen, die mit diesem Verfahren geschützt werden können. nicht beschränkt werden.

Die im erfindungsgemäßen Verfahren verwädten herbiziden Verbindungen sind wirksame Herbizide allgemeiner Art. D.h. die Mittel dieser Klasse weisen gegenüber einem großen Bereich von Phanzensorten eine herbizide Wirksamkeit auf, ohne daß ein Unterschied zwischen erwünschten oder unerwünschten Pflanzensorten gemacht wird. Zur Bekämpfung des Pflanzenwuchses wird eine herbizid wirksame Menge der hier beschriebenen herbiziden Verbindungen auf die Fläche oder dort, wo eine Bekämpfung von Pflanzen erwünscht ist, aufgebracht.

Unter "Herbizid" versteht man vorliegend eine Verbindung,

mit der Pflanzenwachstum bekämpft oder modifiziert wird. Zu solchen Formen der Bekämpfung oder Modifizierung gehören alle Abweichungen von der natürlichen Entwicklung, z.B. Vernichtung, Entwicklungsverzögerung, Entblätterung, Austrocknung, Regulierung, Verkümmerung, Bestockung (tillering), Stimulierung, Zwergwuchs und dergl. Unter "Pflanzen" versteht man keimende Samen, auflaufende Sämlinge und vorhandenen Pflanzenwuchs einschließlich der Wurzeln und der über dem Boden befindlichen Teile.

Die in den Tabellen genannten Herbizide wurden in solchen Mengen verwandt, mit denen der unerwünschte Pflanzen-wuchs wirksam bekämpft wird. Die Mengen liegen innerhalb des vom Hersteller empfohlenen Bereichs. Die Unkrautbekämpfung ist aus diesem Grunde innerhalb der gewünschten Menge in jedem Fall kommerziell annehmbar.

In der vorstehenden Beschreibung der als Gegenmittel eingesetzten Verbindungen gilt folgendes für die verschiedenen Substituentengruppen: Zu den Alkylresten gehören, falls nichts anderes vorgesehen ist, alle gerad- oder verzweigtkettigen Reste mit 1 bis 20 Kohlenstoffatomen, zu den Alkenylresten, falls nichts anderes vorgesehen ist, alle gerad- oder verzweigtkettigen, mindestens eine olefinische Doppelbindung aufweisenden Reste mit 2 bis 20, vorzugsweise 2 bis 12, Kohlenstoffatomen, und zu den Alkinylresten, falls nichts anderes vorgesehen ist, alle gerad- oder verzweigtkettigen, mindestens eine acetylenische Dreifachbindung aufweisenden Reste mit 2 bis 20, vorzugsweise 2 bis 12 Kohlenstoffatomen.

Patentansprüche:

1. Herbizides Mittel, gekennzeichnet durch einen Gehalt an einem herbiziden Wirkstoff und einem Gegenmittel der Formel

in der R einen Halogenalkyl-, Halogenalkenyl-, Alkyl-, Alkenyl-, Cycloalkyl- oder einen Cycloalkylalkylrest, ein Halogenatom oder ein Wasserstoffatom, einen Carboalkoxy-, N-Alkenylcarbamylalkyl-, N-Alkenylcarbamyl-, N-Alkyl-Nalkinylcarbamyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkenylcarbamylalkoxyalkyl-, N-Alkyl-N-alkinylcarbamylalkoxyalkyl-, Alkinoxy-, Halogenalkoxy-, Thiocyanatoalkyl-, Alkenylaminoalkyl-, Alkylcarboalkyl-, Cyanoalkyl-, Cyanatoalkyl-, Alkenylaminosulfonoalkyl-, Alkylthioalkyl-, Halogenalkylcarbonyloxyalkyl-, Alkoxycarboalkyl-, Halogenalkenylcarbonyloxyalkyl-, Hydroxyhalogenalkyloxyalkyl-, Hydroxyalkylcarboalkoxyalkyl-, Hydroxyalkyl-, Alkoxysulfonoalkyl-, Furyl-, Thienyl-, Alkyldithiolenyl-, Thienalkyl- oder einen Phenylrest oder einen durch Halogenatome, Alkyl-, Halogenalkyl-, Alkoxy-, Carbamyl- oder Nitroreste, Carbonsäurereste und deren Salze oder Halogenalkylcarbamylreste substituierten Phenylrest, einen Phenylalkyl-, Phenylhalogenalkyl- oder einen Phenylalkenylrest oder einen durch Halogenatome, Alkyl- oder Alkoxyreste substituierten Phenylalkenylrest, einen Halogenphenoxy-, Phenylalkoxy-, Phenylalkylcarboxyalkyl-, Phenylcycloalkyl-, Halogenphenylalkenoxy-, Halogenthiophenylalkyl-, Halogenphenoxyalkyl-,

> geändert gemäß Eingabe eingegangen am 18.5.72 4 16, 14 209845/1180

Bicycloalkyl-, Alkenylcarbamylpyridinyl-, Alkinylcarbamylpyridinyl-, Dialkenylcarbamylbicycloalkenyl- oder einen Alkinylcarbamylbicycloalkenylrest bedeutet, R, und R, gleich oder verschieden sein und jeweils Alkenyl- oder Halogenalkenylreste, Wasserstoffatome, Alkyl-, Halogenalkyl-, Alkinyl-, Cyanoalkyl-, Hydroxyalkyl-, Hydroxyhalogenalkyl-, Halogenalkylcarboxyalkyl-, Alkylcarboxyalkyl-, Alkoxycarboxyalkyl-, Thioalkylcarboxyalkyl-, Alkoxycarboalkyl-, Alkylcarbamyloxyalkyl-, Amino-, Formyl-, Halogenalkyl-N-alkylamido-, Halogenalkylamido-, Halogenalkylamidoalkyl-, Halogenalkyl-N-alkylamidoalkyl-, Halogenalkylamidoalkenyl-, Alkylimino-, Cycloalkyl-, Alkylcycloalkyl-, Alkoxyalkyl-, Alkylsulfonyloxyalkyl-, Mercaptealkyl-, Alkylaminoalkyl-, Alkoxycarboalkenyl-, Halogenalkylcarbonyl-, Alkylcarbonyl-, Alkenylcarbamyloxyalkyl-, Cycloalkylcarbamyloxyalkyl-, Alkoxycarbonyl-, Halogenalkoxycarbonyl-, Halogenphenylcarbamyloxyalkyl-, Cycloalkenyl- oder Phenylreste oder durch Alkylreste, Halogenatome, Halogenalkyl-, Alkoxy-, Halogenalkylamido-, Phthalamido-, Hydroxy-, Alkylcarbamyloxy-, Alkenylcarbamyloxy-, Alkylamido-, Halogenalkylamido- oder Alkylcarboalkenylreste substituierte Phenylreste, Phenylsulfonyloder Phenylalkylreste oder durch Halogenatome, Alkyl-, Dioxyalkylen- oder Halogenphenoxyalkylamidoalkylreste substituierte Phenylalkylreste, Alkylthiodiazolyl-, Piperidylalkyl-, Thiazolyl-, Alkylthiazolyl-, Benzothiazolyl-, Halogenbenzothiazolyl-, Alkylthiazolyl-, Benzothiazolyl-, Halogenbensothiazolyl-, Furylalkyl-, Pyridyl-, Alkylpyridyl-, Alkyloxazolyl-, Tetrahydrofurylalkyl-, 3-Cyano-4,5-polyalkylen-thienyl-, a-Halogenalkylacetamidophenylalkyl-, a-Halogenalkylacetamidonitrophenylalkyl-, α-Halogenalkylacetamidohalogenphenylalkyl-, oder Cyano-

alkenylreste bedeuten können oder auch R_1 und R_2 zusammen mit dem Stickstoffatom einen Piperidinyl-, Alkylpiperidinyl-, Alkyltetrahydropyridyl-, Morpholyl-, Alkylmorpholyl-, Azobicyclononyl-, Benzoalkylpyrrolidinyl-, Oxazolidyl-, Alkyloxazolidyl-, Perhydrochinolyl- oder Alkylaminoalkenylrest bilden können, wobei R_2 kein Wasserstoffatom oder Halogenphenylrest ist, wenn R_1 ein Wasserstoffatom darstellt.

- 2. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R ein Wasserstoffatom, ein Halogenatom, einen Alkyl-, Halogenalkyl-, Cycloalkyl-, Cycloalkylalkyl-, Alkenyl-, Halogenalkenyl-, Halogenalkoxy-, Alkinoxy-, Hydroxyalkyl-, Alkylthioalkyl- oder einen Hydroxyhalogenalkoxyalkylrest bedeutet und R₁ und R₂ gleich oder verschieden sein und jeweils Wasserstoffatome, Alkyl-, Halogenalkyl-, Alkenyl-, Halogenalkenyl-, Alkinyl-, Hydroxyalkyl-, Hydroxyhalogenalkyl-, Cycloalkyl-, Alkylcycloalkyl-, Alkoxyalkyl- oder Cycloalkenylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn R₁ ein Wasserstoffatom darstellt.
- 3. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R einen Halogenalkylrest bedeutet und R₁ und R₂ zusammen mit dem Stickstoffatom einen Piperidinyl-, Alkylpiperidinyl-, Alkyltetrahydropyridyl-, Morpholyl-, Alkylmorpholyl-, Azabicyclononyl-, Benzoalkylpyrrolidinyl-, Oxazolidyl-, Alkyloxazolidyl-, Perhydrochinolyl oder einen Alkylaminoalkenylrest bilden können.

- 4. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält,
 worin R einen Phenylrest oder einen durch Halogenatome,
 Alkyl-, Halogenalkyl-, Alkoxy- oder Nitroreste, Carbonsäuren und deren Salze oder Carbamyl- oder Halogenalkylcarbamylreste substituierten Phenylrest, einen Phenylalkyl-, Phenylhalogenalkyl- oder einen Phenylalkenylrest
 oder einen durch Halogenatome, Alkyl- oder Alkoxyreste
 substituierten Phenylalkenylrest, einen Halogenphenoxy-,
 Phenylalkoxy-, Phenylalkylcarboxyalkyl-, Phenylcycloalkyl-,
 Halogenphenylalkenoxy-, Halogenthiophenylalkyl- oder einen
 Halogenphenoxyalkylrest bedeutet und R₁ und R₂ gleich oder
 verschieden sein und jeweils Wasserstoffatome, Alkyl-,
 Alkenyl- oder Alkinylreste bedeuten können, wobei R₂ kein
 Wasserstoffatom ist, wenn R₁ ein Wasserstoffatom darstellt.
- 5. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R einen N-Alkenylcarbamylalkyl-, N-Alkenylcarbamyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkenylcarbamylalkoxyalkyl-, N-Alkyl-N-alkinylcarbamylalkoxyalkyl-, Dialkenylcarbamylbicycloalkenyl- oder einen Alkinylcarbamylbicycloalkenylrest bedeutet und R₁ und R₂ gleich oder verschieden sein und jeweils Wasserstoffatome, Alkyl-, Alkenyl- oder Alkinylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn R₁ ein Wasserstoffatom darstellt.
- 6. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin
 R einen Halogenalkylrest oder ein Wasserstoffatom bedeutet
 und R₁ und R₂ gleich oder verschieden sein und jeweils

Alkyl- oder Alkenylreste, Wasserstoffatome, Alkoxyalkyloder Phenylreste oder durch Alkylreste, Halogenatome, Halogenalkyl-, Alkoxy-, Halogenalkylamido-, Pthalamido-, Hydroxy-, Alkylcarbamyloxy-, Alkenylcarbamyloxy-, Alkylamido-, Halogenalkylamido oder Alkylcarboalkenylreste substituierte Phenylreste, Phenylalkamylreste oder durch Halogenatome, Alkyl-, Dioxyalkylen- oder Halogenphenoxy-alkylamidoalkylreste substituierte Phenylalkylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn R₄ ein Wasserstoffatom darstellt.

- 7. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R einen Halogenalkyl-, Alkyl-, Cyanoalkyl-, Thiocyanatoalkyl-, Cyanatoalkyl-, Cycloalkyl-, Bicycloalkyl-, Halogenphenyl-, Phenylalkenyl- oder einen Halogenphenyl-alkenylrest bedeutet und R₁ und R₂ gleich oder verschieden sein und jeweils Cyanoalkylreste, Wasserstoffatome, Alkenyl- oder Alkylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn R₁ ein Wasserstoffatom darstellt.
- 8. Herbizides Mittel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß es als herbiziden Wirkstoff S-Äthyl-N,N-dipropylthiolcarbamat, S-Äthyldiisobutylthiol-carbamat, S-Propyldipropylthiolcarbamat, S-Z,3,3-Trichlor-allyl-diisopropylthiolcarbamat, S-Äthylcyclohexyläthylthio-carbamat, 2-Chlor-2',6'-diäthyl-N-(methoxymethyl)-acet-anilid, S-Äthylhexahydro-1H-azepin-1-carbothioat, 2-Chlor-N-isopropylacetanilid, N,N-Diallyl-2-chloracetamid, S-4-Chlorbenzyldiäthylthiolcarbamat, 2-Chlor-4-äthylamino-6-isopropylamino-s-triazin, 2-Chlor-4,6-bis-(äthylamino)-s-triazin, 2(4-Chlor-6-äthylamino-s-triazin-2-yl-amino)-2-methylpropionitril, 2-Chlor-4-cyclopropylamino-6-isopropyl-

5)1

amino-s-triazin, 2,4-Dichlorphenoxyessigsäure oder deren Gemische enthält.

- 9. Herbizides Mittel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Gegenmittel in einer Menge im Bereich von etwa 0,0001 bis etwa 30 Gew.-Teile pro Gew.-Teil des herbiziden Wirkstoffs vorliegt.
- 10. Verfahren zur Bekämpfung von Unkrautarten, dadurch gekennzeichnet, daß man dem Boden, in dem sich die Unkrautarten befinden, eine herbizid wirksame Menge des herbiziden Mittels nach einem der Ansprüche 1 bis 9 zusetzt.

Filr: Stauffer Chemical Company New York, N.Y., V.St.A.

(Dr.H.J.Wolff)
Rechtsanwalt

9.8