

Grundlagenfragebogen WS 16/17

Algorithmen und Datenstrukturen

0. Statistische Daten

(F	Kreuzen Sie in diesem Stat	tistikteil bitte alle	zutreffenden Antworten an.
a) In	welchem Studiengang sind	d Sie eingeschriebe	en?
	A: Bachelor Sozioinformatik		
E	3: Bachelor Wirtschaftsinger	nieurwesen mit Info	rmatik
C	C: Sonstiger, nämlich:		
b) We	elche der folgenden Modul	le haben Sie erfolg	reich abgeschlossen?
ļ	A: Mathematik für Informat Kombinatorik und Analy		Webbasierte Einführung in die Programmierung
E	3: Mathematik für Informat	iker: M :	Objektorientierte Programmierung
	Algebraische Strukturen	N:	Programmierprojekt
(C: Höhere Mathematik 1	0:	Programmieren in Anwendungen
): Höhere Mathematik 2	P:	Programmieren in C
E	: Statistik I		Operations Research
F	: Statistik II		Wirtschaftsinformatik
C	G: Formale Grundlagen der Programmierung		Informationssysteme
F	i: Logik	T:	Kommunikationssysteme
	: Praktische Mathematik: l	Linear und U:	Einführung in die Sozioinformatik
	Netzwerkoptimierung	V:	Spieltheorie
	J: Softwareentwicklung 1	VV:	Web 2.0 Technologien 1
۲	C: Softwareentwicklung 2	X :	Analyse komplexer Netzwerke
c) Ha	aben Sie die A&DS-Modul	prüfung schon ein	mal mitgeschrieben?
1	\: Ja.	B: Nein.	C: keine Angabe.

Es ist (ab hier) für jede (Teil-)Aufgabe genau eine Antwortmöglichkeit anzukreuzen!

1. Aufgabe

- a) Was ist $\frac{2}{3} + \frac{3}{4}$?
- C: $\frac{16}{12}$
- **E**: $\frac{18}{12}$
- **G:** Weiß nicht.

- **A**: $\frac{5}{7}$ **R**. $\frac{15}{2}$
 - **D**: $\frac{17}{12}$
- **F**: 1

- b) Was ist $x^a (x^2y)^b$?

 - **A**: $x^{2ab}y^b$ **D**: $x^{a+b+2}y^b$
- **G**: $2x^ay^b$
- **J:** Kommt auf a und b an.

- **B**: $x^{ab^2}y^b$ **E**: $x^a + x^{2b}y^b$

 $\mathbf{F} \colon (xy)^a$

- **H**: 1 **I**: 42
- **K:** Weiß nicht.

c) Was ist $\log_2(\frac{a^2}{4})$? (a > 0)

C: $x^{a+2b}y^b$

- **A:** $\log_2(a) 2$ **D:** $4\log_2(a) 2$ **G:** $2\log_2(a) 1$ **J:** ∞
- **B**: $2(\log_2(a) 1)$ **E**: $\log_2(\frac{a}{4})$ **H**: $2(\log_2(a) + 1)$
- K: Kommt auf aund b an.

- **C**: $4\log_2(a) 4$ **F**: $2\log_2(a)$
- **l**: 2
- L: Weiß nicht.

2. Aufgabe

Wie viele Möglichkeiten gibt es, aus 10 paarweise unterscheidbaren Objekten eine Teilmenge von (genau) 3 Objekten auszuwählen?

- **A**: 6
- **D**: 30
- **G**: 504
- **J**: 59049

- **B**: 27
- **E**: 120
- **H:** 720
- K: Weiß nicht.

- **C**: 20
- **F**: 240
- **I**: 1000

Was ist die Ausgabe des folgenden Java-Fragments?

Nehmen Sie an, dass jede Klasse bzw. jedes Interface in einer passend benannten Datei gespeichert ist und der Aufruf mit java Main erfolgt.

```
1
    class Main {
      public static void main (String[] a) {
2
3
          int n = 5;
          int[] A = new int[n];
 4
          for (int i = 0; i < A.length; ++i)
 5
             A[i] = i*i;
 6
          System.out.println(m(A));
 7
      }
 8
       int m(int[] a) {
9
          int r = 0;
10
          for (int i = 0; i < a.length; ++i) {
11
             r += a[i];
12
14
          return r;
15
       }
  }
16
```

A: 0	E: 20	I : 729	M: wirft exception
B: 10	F: 30	J: Hello World	N: Verstehe den
C : 14	G : 42	K: m(A)	Code nicht.
D: 15	H: 55	L: keine Ausgabe	O: Weiß nicht.

4. Aufgabe

```
Was ist \sum_{i=0}^{n-3} 6(n-i-3)? (n \ge 2)

A: 6(n-3)(n-i-3) D: 3(n-3)(n-2) G: Kommt auf n an.

B: 6(n-2)(n-i-3) E: 6(n-3)(n-4) H: Weiß nicht.

C: 6(n-3)(n-2) F: 3(n-3)(n-4)
```

Was ist die Ausgabe des folgenden Java-Fragments?

Nehmen Sie an, dass jede Klasse bzw. jedes Interface in einer passend benannten Datei gespeichert ist und der Aufruf mit java Main erfolgt.

```
interface I { int m(int p) ; }
   class A implements I {
3
      public int m(int p) { return p/2; }
   }
4
   class B extends A {
5
      public int m(int p) { return 2*super.m(p); }
6
   }
7
   class Main {
8
      public static void main (String[] a) {
9
         I i = new B();
10
         System.out.println(i.m(7));
11
12
13
  }
```

A: -7	E: 6.999998	I : 42	M: wirft exception
B: 3	F: 7	J: Hello World	N: Verstehe den
C : 3.5	G: 7.000001	K : i.m(7)	Code nicht.
D : 6	H : 8	L: keine Ausgabe	O: Weiß nicht.

6. Aufgabe

Wir betrachten folgenden Algorithmus:

```
procedure f(n) {
   if ( n == 1 ) {
     return 1
   }
   else {
     return n * f(n-1)
   }
}
```

Welche Funktion in n berechnet f(n)? (für n, sodass f(n) terminiert)

```
\begin{array}{lll} \textbf{A:} \ \textbf{f}(\textbf{n}) = \log_2(\textbf{n}) & \textbf{E:} \ \textbf{f}(\textbf{n}) = (\textbf{n}+1)! & \textbf{I:} \ \textbf{f}(\textbf{n}) = \textbf{n}^{\textbf{n}} \\ \textbf{B:} \ \textbf{f}(\textbf{n}) = \lceil \log_2(\textbf{n}) \rceil & \textbf{F:} \ \textbf{f}(\textbf{n}) = \textbf{n} & \textbf{J:} \ \textbf{Verstehe den Code} \\ \textbf{C:} \ \textbf{f}(\textbf{n}) = (\textbf{n}-1)! & \textbf{G:} \ \textbf{f}(\textbf{n}) = \textbf{n} \cdot \textbf{f}(\textbf{n}-1) \\ \textbf{D:} \ \textbf{f}(\textbf{n}) = \textbf{n}! & \textbf{H:} \ \textbf{f}(\textbf{n}) = \textbf{n}^{\textbf{n}-1} & \textbf{K:} \ \textbf{Weiß nicht.} \\ \end{array}
```

Speicherinhalt (im Dezimalsystem):

Wir betrachten folgenden Algorithmus:

1	<pre>procedure m(s) {</pre>	
2	x1 = 0	
3	while ($s \ge 0$) {	
4	load(x2, s)	
5	x1 = x1 + x2	
6	x3 = s + 1	
7	load(s, x3)	
8	}	
9	return x1	
10	}	

Hier lädt ein Aufruf der Form load(x,a) den Wert an Adresse a in Register/Variable x.

Was ist das *Ergebnis* des Aufrufs m (77202), wenn zum Zeitpunkt des Aufrufs der Spei-

Adresse	Inhalt
:	
77200	-98208
77201	77213
77202	00017
77203	77207
77204	-00007
77205	-00001
77206	77205
77207	-00005
77208	77214
77209	-54813
77210	15487
77211	-00003
77212	-00001
77213	-77204
77214	00004
77215	77204
77216	-00001
77217	00113
:	

cher wie nebenstehend gefüllt ist?

A:	-98208
B:	-1

I: 8

J: 9

Y: Verstehe den Code

nicht.

Z: Weiß nicht.

C: 0

D: 1

P: 77202

R: 77204

O: 17

8. Aufgabe

In welchem Intervall liegt der jeweilige Grenzwert?

a) We liest
$$\lim_{x \to \infty} \frac{13x^3 + 7x^2 + x - 100}{x^3 - 1}$$
?

A:
$$(-\infty, -1)$$

D:
$$[0.5, 1]$$

G:
$$(42, \infty)$$

B:
$$[-1,0)$$

E:
$$(1,2]$$

b) We liegt $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$?

A: $(-\infty, -1)$

D: [0.5, 1]

G: $(42, \infty)$

B: [-1,0)

E: (1,2]

H: Weiß nicht.

C: [0, 0.5)

F: (2,42]

c) We liegt $\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}}$?

A: $(-\infty, -1)$

D: [0.5, 1]

G: $(42, \infty)$

B: [-1,0)

E: (1,2]

H: Weiß nicht.

C: [0, 0.5)

F: (2,42]

9. Aufgabe

Was ist $\frac{d}{dz} 3^{\pi \ln(z^2) + 2}$? (z > 0)

A: $\frac{2\pi \ln(3)}{z} + 3^{\pi \ln(z^2) + 2}$

E: $\frac{2\pi \ln(3) \cdot 3^{\pi \ln(z^2)+2}}{z}$

B: $\frac{2\pi \cdot 3^{\pi \ln(z^2) + 2}}{z}$

F: nicht definiert.

C: $3^{\pi \ln(z^2)+2}$

G: ", $\frac{d}{dz}$ " kenne ich nicht.

 $\mathbf{D} \colon \frac{2\pi \ln(3)}{z}$

H: Weiß nicht.

Angenommen, wir wollen die Aussage

$$\forall n \in \mathbb{N}_0 : \sum_{i=1}^n 2^{-i} = 1 - 2^{-n} \tag{*}$$

per vollständiger Induktion beweisen.

a) Für welche Menge von Werten für n müssen wir den Induktionsanfang/Induktionsanker machen?

 A: $\{-1\}$ F: $\{-1,0,1\}$ K: Induktionsanfang hier nicht nötig.

 B: $\{0\}$ G: $\{0,1,2\}$ L: "Induktionsanfang"

 C: $\{1\}$ H: $\{0,-1,-2,...\}$ L: "Induktionsanfang" kenne ich nicht.

 D: $\{2\}$ I: \mathbb{N} M: Weiß nicht.

b) Was ist eine geeignete Formulierung für die *Induktionsvoraussetzung*?

A: Es sei $\sum_{i=1}^{n} 2^{-i} = 1 - 2^{-n}$.

B: Es sei $\forall n \in \mathbb{N}_0 : \sum_{i=1}^n 2^{-i} = 1 - 2^{-n}$.

C: Für $n' \in \mathbb{N}$ beliebig, aber fest gelte $\forall n \leq n' : \sum_{i=1}^{n} 2^{-i} = 1 - 2^{-n}$.

D: Für $n' \in \mathbb{N}_0$ beliebig, aber fest gelte $\forall n \leq n' : \sum_{i=1}^n 2^{-i} = 1 - 2^{-n}$.

E: Für $n' \in \mathbb{N}_0$ beliebig, aber fest gelte $\forall n < n' : \sum_{i=1}^n 2^{-i} = 1 - 2^{-n}$.

F: Die Aussage gelte für alle n.

G: Für $n \in \mathbb{N}_0$ gilt: Aus $\sum_{i=1}^n 2^{-i} = 1 - 2^{-n}$ folgt $\sum_{i=1}^{n+1} 2^{-i} = 1 - 2^{-(n+1)}$.

H: Für $n \in \mathbb{N}$ beliebig, aber fest gilt: Aus $\sum_{i=1}^{n-1} 2^{-i} = 1 - 2^{-(n-1)}$ folgt $\sum_{i=1}^{n} 2^{-i} = 1 - 2^{-n}$.

 $flux{l}$: "Induktionsvoraussetzung" kenne ich nicht.

J: Weiß nicht.