AMENDMENTS TO THE SPECIFICATION

1.) Please replace paragraph 5 in the specification as filed with the paragraph below:

[0005] Raman fiber lasers can be used, for example, as energy sources. In general, Raman fiber lasers include a pump source coupled to a fiber, such as an optical fiber, having a gain medium with an active material. Energy emitted nom-from the pump source at a certain wavelength λ_p , commonly referred to as the pump energy, is coupled into the fiber. As the pump energy interacts with the active material in the gain medium of the fiber, one or more Raman Stokes transitions can occur within the fiber, resulting in the formation of energy within the fiber at wavelengths corresponding to the Raman Stokes shifts that occur (e.g., λ_{s1} , λ_{s2} , λ_{s3} , λ_{s4} , etc.).

2.) Please replace paragraph 27 in the specification as filed with the paragraph below:

In some embodiments, the invention can provide a Raman fiber laser than that can convert energy entering the Raman fiber laser at a particular wavelength (e.g., a pump wavelength) to energy exiting the Raman fiber laser at a different wavelength (e.g., a desired wavelength) with relatively high efficiency (e.g., an efficiency of: at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%).

3.) Please replace paragraph 58 in the specification as filed with the paragraph below:

[0058] Without wishing to be bound by theory, it is believed that these characteristics of fiber 110 can be explained using the following system of nonlinear differential equations.

$$\frac{dI_{p}^{+}}{dz} = -g_{p}(I_{\lambda_{s1}}^{+} + I_{\lambda_{s1}}^{-}) \times I_{p}^{+} - \alpha_{p}I_{p}^{+} = -\frac{dI_{p}^{-}}{dz}$$

$$\frac{dI_{\lambda_{s1}}^{+}}{dz} = [[-]]g_{1}I_{\lambda_{s1}}^{+} \times (I_{p}^{+} + I_{p}^{-}) - \alpha_{1}I_{\lambda_{s1}}^{+} - g_{1}^{'}I_{\lambda_{s1}}^{+} \times (I_{\lambda_{s1'}}^{+} + I_{\lambda_{s1'}}^{-}) = -\frac{dI_{\lambda_{s1}}^{-}}{dz}$$

$$\frac{dI_{\lambda_{s1'}}^{+}}{dz} = g_{1'}I_{\lambda_{s1'}}^{+} \times (I_{\lambda_{s1}}^{+} + I_{\lambda_{s1}}^{-}) - \alpha_{1'}I_{\lambda_{s1'}}^{+} = -\frac{dI_{\lambda_{s1'}}^{-}}{dz}$$

4.) Please replace paragraph 76 in the specification as filed with the paragraph below:

With this arrangement, as energy at λ_p enters optical fiber 810, the energy propagates through section 130 and[[.]] creates energy at wavelength λ_{s1} . Energy at λ_{s1} then propagates through sections 130 and 140 in the forward direction until it reaches reflector 170 where it is reflected backward through sections 140 and 130. Energy at λ_{s1} then propagates through sections 140 and 130 in the reverse direction until it reaches reflector 160 where it is reflected forward through sections 130 and 140. Energy at λ_{s1} continues to propagate in fiber 810 in the forward and reverse directions between reflectors 160 and 170.

5.) Please replace paragraph 78 in the specification as filed with the paragraph below:

[0078] As energy at λ_{s1} , propagates through section 820 of fiber 610, 810, it creates energy at wavelength λ_{s1} . Energy at wavelength λ_{s1} propagating in section 820 in the reverse direction is reflected by reflector 830 and then propagates through section 820 in the forward direction. Energy at wavelength λ_{s1} propagating through section 820 in the forward direction impinges on reflector 840. Some of the energy at wavelength λ_{s1} impinging on reflector 840 is reflected by reflector 840 and then propagates through section 820 in the reverse direction, and some of the energy at wavelength λ_{s1} impinging on reflector 840 passes through reflector 840 and exits fiber 810.

6.) Please replace paragraph 80 in the specification as filed with the paragraph below:

Fig. 13 shows an embodiment of a Raman fiber laser system 1300 that includes a suppressor 1310 in section 820 of optical fiber 110.810. Suppressor 1310 is designed to suppress the formation of energy at higher order Raman Stokes shifts (e.g., one or more of λ_{s2} , λ_{s3} , λ_{s4} , etc.). Suppressor 1310 can be, for example, an LPG having its resonance frequency at (c/λ_{s2}) , where λ_{s2} , λ_{s3} , λ_{s4} , the presence of suppressor 1310 in section 820 may be desirable, for example, when the power of wave λ_{s1} in section 820 is sufficiently high that the power of wave λ_{s2} , (and/or energy at higher order Raman Stokes shifts for the active material in the gain medium of section 820 of fiber 810) that would form in section 820 in the absence of suppressor 1310 would substantially interfere with the desired performance of the system. System 1300 can optionally include reflector 310, suppressor 410 and/or suppressor 1110.

7.) Please replace paragraph 85 in the specification as filed with the paragraph below:

[0085] Furthermore, while Raman fiber lasers and Raman fiber laser systems have been described in which sections of the optical fiber are spliced together, the invention is not limited in this sense. Generally, the sections of fiber are coupled together so that energy can propagate therebetween. Typically, the sections of fiber are contiguous. For example, in some embodiments, two neighboring sections of the optical fiber can have an interferometric connection. In certain embodiments, two neighboring sections of the optical fiber can be connected by a lens (e.g., a GreenGRIN lens).