

Segundo Cuatrimestre 2025

Pau Frangi Mahiques, Pablo Pardo Cotos y Diego Rodríguez Cubero $Ciencias\ Matemáticas\ e$ $Ingeniería\ Informática$

¹basado en la apuntes de Jesús Jaramillo

Contents

1	Teo	rema de Stokes. Teorema de la divergencia de Gauss	2
	1.1	Teorema de Stokes	2
	1.2	Geometria del Rotacional	F

1 Teorema de Stokes. Teorema de la divergencia de Gauss

1.1 Teorema de Stokes

Definición 1.1.1 [Rotacional]

Sean $A \subset \mathbb{R}^3$ un conjunto abierto y $\vec{F}: A \to \mathbb{R}^3$ un campo vectorial de clase C^1 . Se define el rotacional de $\vec{F} = (F_1, F_2, F_3)$ como:

$$rot(\vec{F}) = \nabla \times \vec{F} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix} = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}, \frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}, \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right)$$

Observación 1.1.1

En este caso, $rot(\vec{F})$ es un campo vectorial continuo definido en A.

Ejemplo -

Sea $(P,Q): U \to \mathbb{R}^2$ un campo vectorial de clase C^1 definido en un abierto $U \subset \mathbb{R}^2$. Consideramos $A = U \times \mathbb{R}$ y el campo vectorial $\vec{F} = (P,Q,0)$. Entonces el rotacional de \vec{F} es:

$$\nabla \times \vec{F} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & 0 \end{vmatrix} = \left(0, 0, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \qquad \text{"la derivación del toerema de Green"}$$

Teorema 1.1.1 [Teorema de Stokes]

Sea (S, \vec{n}) una superficie orientada y regular a trozos, y sea \vec{F} un campo vectorial de clase C^1 definido en un abierto $U \supset S$. Entonces se cumple la siguiente igualdad:

$$\int_{(S,\vec{n})} rot(\vec{F}) = \int_{\partial S} \vec{F}$$

donde ∂S tiene la orientación inducida por \vec{n} .

Ejemplo

Sea la superficie $S = \{(x, y, z) \in \mathbb{R}^3 : z = x^2 + y^2 \le 4\}$ con la norma exterior \vec{n} y el campo vectorial $\vec{F} = (yz, -xz, z)$. Verificamos el teorema de Stokes.

Tenemos que $\partial S = \{(x, y, z) \in \mathbb{R}^3 : z = x^2 + y^2 = 4\}$, que es una circunferencia de radio 2 en el plano z = 4. Fijémonos que \vec{n} induce la orientación negativa en la curva $C^- = \partial S$.

El rotacional de \vec{F} es:

$$rot(\vec{F}) = \nabla \times \vec{F} = \begin{vmatrix} \vec{e_1} & \vec{e_2} & \vec{e_3} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ yz & -xz & z \end{vmatrix} = (x, y, -2z)$$

Consideramos la parametrización natural $\varphi:D\to S$ de S dada por:

$$\varphi(x,y) = \begin{cases} x = x \\ y = y \\ z = x^2 + y^2 \end{cases}$$
 donde $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$

Entonces la normal a la superficie S es:

$$\vec{N}_{\varphi} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ 1 & 0 & 2x \\ 0 & 1 & 2y \end{vmatrix} = (-2x, -2y, 1)$$

La normal \vec{N}_{φ} apunta hacia arriba en el punto (0,0,0), luego tenemos una normal interior.

• Calculamos el rotacional de \vec{F} en S por medio de la parametrización φ :

$$\int_{(S,\vec{n})} rot(\vec{F}) = -\int_{D} \langle \vec{N}_{\varphi}, rot(\vec{F}) \circ \varphi(x, y) \rangle dxdy = -\int_{D} \langle (-2x, -2y, 1), (x, y, -2(x^{2} + y^{2})) \rangle dxdy$$

$$= \int_{D} 2x^{2} + 2y^{2} + 2x^{2} + 2y^{2} dxdy = \int_{D} 4(x^{2} + y^{2}) dxdy = 4 \int_{\theta=0}^{\theta=2\pi} \int_{r=0}^{r=2} r^{2} \cdot r \, dr \, d\theta$$

$$= 4 \cdot 2\pi \left[\frac{r^{4}}{4} \right]_{r=0}^{r=2} = 4 \cdot 2\pi \cdot 4 = 32\pi$$

• Consideramos la parametrización positiva γ de la curva ∂S dada por:

$$\gamma(t) = \begin{cases} x = 2\cos(t) \\ y = 2\sin(t) \\ z = 4 \end{cases}$$
 donde $t \in [0, 2\pi]$

y calculamos la integral de línea del campo \vec{F} sobre la curva ∂S :

$$\int_{\partial S} \vec{F} = \int_{C^{-}} \vec{F} = -\int_{\gamma} \vec{F} = -\int_{t=0}^{t=2\pi} \langle \vec{F}(\gamma(t)), \gamma'(t) \rangle dt$$

$$= -\int_{t=0}^{t=2\pi} \langle (8\sin(t), -8\cos(t), 4), (-2\sin(t), 2\cos(t), 0) \rangle dt$$

$$= \int_{t=0}^{t=2\pi} 16dt = 16 [t]_{t=0}^{t=2\pi} = 16(2\pi - 0) = 32\pi$$

En efecto, vemos que las integrales coinciden de acorde al teorema de Stokes.

Ejemplo

Sea $S = S_1 \cup S_2$, donde:

$$S_1 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1, \ z \in [0, 2]\}$$
 $S_2 = \{(x, y, z) \in \mathbb{R}^3 : z = 2, \ x^2 + y^2 \le 1\}$

con la norma exterior \vec{n} y el campo vectorial $\vec{F}(x,y,z)=(y,x,z)$. El borde de S es:

$$\partial S = C_0^+ = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1, \ z = 0\}$$

Calculamos el rotacional del campo \vec{F} :

$$rot(\vec{F}) = \nabla \times \vec{F} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & x & z \end{vmatrix} = (0, 0, 1 - 1) = (0, 0, 0)$$

Consideramos la parametrización γ de la curva C_0 dada por:

$$\gamma(t) = \begin{cases} x = \cos(t) \\ y = \sin(t) \\ z = 0 \end{cases}$$
 donde $t \in [0, 2\pi]$

que tiene orientacion positiva. Además, $\gamma'(t) = (-\sin(t), \cos(t), 0)$.

• Calculamos la integral del campo $rot(\vec{F})$ sobre la superficie S:

$$\int_{(S,\vec{n})} rot(\vec{F}) = \int_{(S_1,\vec{n}_1)} \vec{0} = 0$$

• Hacemos la integral de línea del campo \vec{F} sobre la curva C_0^+ :

$$\int_{\partial S} \vec{F} = \int_{C_0^+} \vec{F} = \int_{t=0}^{t=2\pi} \langle (\sin(t), \cos(t), 0), (-\sin(t), \cos(t), 0) \rangle dt$$

$$= \int_{t=0}^{t=2\pi} \cos^2(t) - \sin^2(t) dt = \int_{t=0}^{t=2\pi} \cos(2t) dt = \left[\frac{\sin(2t)}{2} \right]_{t=0}^{t=2\pi} = 0$$

Vemos que el teorema de Stokes se cumple, ya que las integrales son iguales.

Ejemplo

Consideramos el campo vectorial $\vec{F} = (yz, -xz, z)$. Veamos el rotacional de \vec{F} :

$$rot(\vec{F}) = \nabla \times \vec{F} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ yz & -xz & z \end{vmatrix} = (x, y, -2z)$$

Supongamos que tenemos una superficie S cualesquiera cuyo borde ∂S sea la curva C_0^+ del ejemplo anterior. Entonces tenemos que:

$$\int_{(S,\vec{n})} rot(\vec{F}) = \int_{C_0^+} \vec{F} = \int_{C_0^+} \vec{F} = \int_{t=0}^{t=2\pi} \langle (0,0,0), (-\sin(t),\cos(t),0) \rangle dt = 0$$

Observación 1.1.2

Si S es una superficie cerrada, es decir, $\partial S = \emptyset$, entonces se tiene que:

$$\int_{(S,\vec{n})} rot(\vec{F}) = \int_{\partial S} \vec{F} = 0$$

1.2 Geometria del Rotacional

Ejemplo

Sea $F: \overrightarrow{U} \to \mathbb{R}^2$ el campo de velocidades de un fluido en \mathbb{R}^2 . Las trayectorias son curvas $\gamma: I \to U$ con $\gamma'(t) = \overrightarrow{F}(\gamma(t))$.

Ejemplo

Sean $U \subset \mathbb{R}^3$ abierto y $\vec{F}: U \to \mathbb{R}^3$ un campo vectorial de clase C^1 .

Consideremos $p \in U$ y r > 0, siendo D_r el circulo de centro p y radio r, con frontera $C_r = \partial D_r$. Sea \vec{u} un vector unitario de \mathbb{R}^3 perpendicular al plano que contiene a D_r , entonces:

$$\langle rot(\vec{F})(p), \vec{u} \rangle = \lim_{r \to 0} \frac{1}{\pi r^2} \int_{C^+} \vec{F}$$

Donde C_r^+ denota a C_r conla orientación comparativa a la de \vec{u} , y donde esta igualdad representa la "circulación por unidad de área" del campo \vec{F} .

Demostración.

$$\int_{C_r^+} \vec{F} = \int_{(D_r, \vec{n})} rot \vec{F} = \int_{D_r} \langle \vec{F}, \vec{u} \rangle = \int_{D_r} \langle rot \vec{F} - rot \vec{F}(p), \vec{u} \rangle + \langle rot \vec{F}(p), \vec{u} \rangle$$

De donde pasamos a:

$$\int_{D_r} \langle rot\vec{F}(p), \vec{u} \rangle_{\text{constante}} = \langle rot\vec{F}(p), \vec{u} \rangle \cdot \text{área}(D_r)$$

Entonces:

$$\forall \epsilon > 0, \quad \exists \delta > 0: \quad 0 < r < \delta \implies \|rot\vec{F}(x, y, z) - rot\vec{F}(p)\| < \epsilon \quad \forall (x, y, z) \in D_r \implies$$

$$\implies \left| \int_{D_r} \langle rot\vec{F} - rot\vec{F}(p), \vec{u} \rangle \right| \leq \int_{D_r} \left| \langle rot\vec{F} - rot\vec{F}(p), \vec{u} \rangle \right| \leq \int_{D_r} \|rot\vec{F} - rot\vec{F}(p)\| \leq \epsilon \cdot \text{área}(D_r)$$

Luego:

$$\left| \frac{1}{\operatorname{área}(D_r)} \int_{C_r^+} \vec{F} - \langle rot\vec{F}(p), \vec{u} \rangle \right| < \epsilon \quad \forall 0 < r < \delta$$

Definición 1.2.1

Sean $A \subset \mathbb{R}^3$ un conjunto abierto y $\vec{F}: A \to \mathbb{R}^3$ un campo vectorial de clase C^1 . Se dice que \vec{F} es irrotacional en A si $rot(\vec{F}) \equiv 0$ en A.

Lema 1.2.1

 $Si \vec{F}$ es un campo de clase C^1 , y es conservativo en $A \implies$ es irrotacional en A.

Demostración. Sea $\varphi: A \to \mathbb{R}$ una función tal que $\vec{F} = \nabla \varphi$, es decir, $\vec{F} = \left(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z}\right)$, entonces φ es declase C^2 en A y, aplicando el teorema de Schwarz, tenemos que:

$$rot(\vec{F}) = \nabla \times \nabla \varphi = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial\varphi}{\partial x} & \frac{\partial\varphi}{\partial y} & \frac{\partial\varphi}{\partial z} \end{vmatrix} = \left(\frac{\partial^2 \varphi}{\partial y \partial z} - \frac{\partial^2 \varphi}{\partial z \partial y}, \frac{\partial^2 \varphi}{\partial z \partial x} - \frac{\partial^2 \varphi}{\partial x \partial z}, \frac{\partial^2 \varphi}{\partial x \partial y} - \frac{\partial^2 \varphi}{\partial y \partial x} \right) = (0, 0, 0)$$

Teorema 1.2.1

Sea $U \subset \mathbb{R}^3$ un abierto conexo, y sea $\vec{F}: U \to \mathbb{R}^3$ un campo vectorial de clase C^1 . Entonces son equivalentes las siguientes afirmaciones:

- 1. \vec{F} es conservativo en U.
- 2. $\int_{\sigma} \vec{F} = 0$, $\forall \sigma$ camino triangular en U.
- 3. \vec{F} es irrotacional en U, es decir, $rot(\vec{F}) \equiv 0$ en U.

Demostración.

- $(1) \implies (2)$: Ya esta probado por la caracterización de los campos conservativos.
- (2) \implies (1): Fijamos un punto $P \in U$ y consideramos para cada $x \in U$ la función

$$\varphi(x) = \int_{[P,x]} \vec{F}$$

Veamos que φ es un potencial de \vec{F} . Para ellos, veamos que $F_i = \frac{\partial \varphi}{\partial x_i} \ \forall i = 1, 2, 3$.

$$\lim_{h \to 0} \frac{1}{h} \left(\underbrace{\int_{[P,x+h\vec{e_i}]} \vec{F} - \underbrace{\int_{[P,x]} \vec{F}}_{\varphi(x)}}_{\varphi(x)} \right) = \lim_{h \to 0} \frac{1}{h} \left(\varphi(x+h\vec{e_i}) - \varphi(x) \right)$$

Por (2), tenemos que el triangulo T de vértices P, x y $x + h\vec{e}_i$ es tal que

$$\int_{[P,x]+[x,x+h\vec{e_i}]+[x+h\vec{e_i},P]} \vec{F} = 0$$

Luego se sigue entonces que:

$$\int_{[P,x+h\vec{e_i}]} \vec{F} - \int_{[P,x]} \vec{F} = \int_{[x,x+h\vec{e_i}]} \vec{F}$$

por tanto

$$\frac{1}{h} \int_{[x,x+h\vec{e_i}]} \vec{F} = \frac{1}{h} \int_{t=0}^{t=1} \langle \vec{F}(x+th\vec{e_i}), h\vec{e_i} \rangle dt = \int_{t=0}^{t=1} \vec{F_i}(x+th\vec{e_i}) dt \xrightarrow{h\to 0} \vec{F_i}(x)$$

donde $\gamma(t) = x + th\vec{e_i}$ con $t \in [0, 1]$. Así obtenemos que $(1) \iff (2)$.

• (3) \implies (2): Sea $T \subset U$ un triángulo, y sea $\sigma = \partial T$:

$$\int_{\sigma} \vec{F} = \int_{(T,\vec{n})} rot(\vec{F}) = 0$$

Ejemplo

Es importante que U sea convexo:

Seam $U = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \neq (0, 0)\}$ y $\vec{F} : U \to \mathbb{R}^3$ el campo vectorial dado por:

$$\vec{F}(x,y,z) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}, 0\right) = (P, Q, 0)$$

Asi tenemos el siguiente rotacional

$$rot(\vec{F}) = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & 0 \end{vmatrix} = \left(0, 0, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) = (0, 0, 0)$$

El campo \vec{F} es por tanto irrotacional en U, pero \vec{F} no es conservativo. Consideremos la curva cerrada γ dada por:

$$\gamma(t) = (\cos(t), \sin(t), 0), \quad t \in [0, 2\pi] \implies \int_{\gamma} \vec{F} = \int_{t=0}^{t=2\pi} \langle \vec{F}(\gamma(t)), \gamma'(t) \rangle dt$$

$$= \int_{t=0}^{t=2\pi} \langle \left(\frac{-\sin(t)}{1}, \frac{\cos(t)}{1}, 0\right), (-\sin(t), \cos(t), 0) \rangle dt = \int_{t=0}^{t=2\pi} 1 dt = 2\pi \neq 0$$

Demostrando así que \vec{F} no es conservativo.

Ejemplo

El ejercicio de Nash:

Encontrar $X \subset \mathbb{R}^3$ tal que si denotamos por

$$V = \{ \vec{F} : \mathbb{R}^3 \setminus X \to \mathbb{R}^3 \text{ campo } C^1 \mid rot(\vec{F}) = \vec{0} \}$$

$$W = \{ \vec{F} : \mathbb{R}^3 \setminus X \to \mathbb{R}^3 \text{ campo } C^1 \mid \vec{F} = \nabla g \text{ para algún } g \}$$

obtengamos que $dim(V \setminus W) = 8$.