

MAY 8 1 2003

SEQUENCE LISTING

<110> Pfizer, Inc. and Pfizer Products, Inc.

<120> NUCLEIC ACIDS AND PROTEINS OF THE MYCOPLASMA HYOPNEUMONIAE mhp3
GENE AND USES THEREOF

<130> 3153.00162/PC10555

<140> US 09/676,249

<141> 2000-09-29

<150> US Prov. 60/156,602

<151> 1999-09-29

<160> 42

<170> PatentIn version 3.2

RECEIVED

MAY 08 2003

TECH CENTER 1600/2900

<210> 1
<211> 1692
<212> DNA
<213> Mycoplasma hyopneumoniae

<400> 1
gtttttgaat ataatagaaa atgtaaaata aaaattaatt tattaaaaaa taattgaaag 60
tcatcgtaat taaaacaatt aattaggaga acaactatga aaaaaaagat aaaatgaaat 120
aaatttcttg gcttaggctt agttttccg cttcagcaa tcgcgacaat ctctgccgga 180
tgttggata aagaaacaac taaagaagaa aaatcagccg ataatcaaaa taagcaaatc 240
actgatgtct caaaaatttc aggactagtt aatgaacgaa aatccgaaat tatggccgca 300
aaagctgatg caaacaaaca ttttggcta aatatggcaa ttgttaaccgc tggtggaacg 360
gtaaatgata attcatttaa ccaatcaagt tgagaggcaa ttcaacaact tggcgcttt 420
actggaggtg agattacttc agtagatagt tcaactgctg aacttgaagg aaaatatagc 480
tcacttgcta ataccaacaa aaatgtttga gtactttctg gtttcaaca cggtgatgcfg 540
ttcacaaagat gattaaaaat ccctgaaaat aagcaattat ttactgaaaa aaatattatc 600
atactcgaa ttgactgaac tgatactgaa aatgttaattc caacaggtcg atatattaat 660
ttaacctata aaactgaaga agccggatga cttgcaggat atgcgaatgc ttcccttttg 720
gcaaaaaaaat tcccaagtga tccaactaaa agatcagcaa ttgitatcgg tggtggatt 780
tcgccagctg taactgattt tatcgctggt tatctagccg gaattaaagc ttgaaatcta 840
aaaaattctg ataaaaaaaaac aaagataaca actgataaaa tcgagataaa tcttgggttt 900
gatgttcaag atacttcaac aaaagaaaga cttgaacaaa ttgcttcaaa agataaacct 960

tcaacactat tagctgtcgc tggaccactt actgaaattt tctcgatata aatcgaaac 1020
caaaaatgatc gttatctcat tgggttgac accgaccaat cacttgtta tacaaaaact 1080
aaaaataaat ttccaccc tc aatttgaaa aatttagttt actccgtttt cagcgtttt 1140
agtgatttat atacaaaaa atcaaattca agaaatttag ccggcttga atttggtaaa 1200
aaaagtgcaa ccgttatct tggattaaa gacaggtttgcgatattgc tgatacttct 1260
ttagaaggca atgataaaaaa actcgcaact gaagccattt ctgaagctaa aaaagaattt 1320
gaagaaaaaa ctaagacaat tcctgccgaa gaagttcgta aaactttaga aattccggaa 1380
atgcctgata aacaacctga taagcaacag gaaagcttag acaaactaat taccgatatt 1440
aataaaaatt aagtaagaaa aaataacaat ttttaacat tatatctttt ttttagagatt 1500
aattttcttc taatttagtt taatttaata taaaattata taaaattaaa aaaataaaaaa 1560
atccggacta tttttgtcc ggattttta ttttgtgtt actatttaat ataatgataa 1620
atcaggatta tgcaattgaa tttattcaag tctgaaaaa atttggcagt ttttatgcca 1680
attacaaaaat ag 1692

<210> 2
<211> 451
<212> PRT
<213> Mycoplasma hyopneumoniae

<400> 2

Met Lys Lys Lys Ile Lys Trp Asn Lys Phe Leu Gly Leu Gly Leu Val
1 5 10 15

Phe Pro Leu Ser Ala Ile Ala Thr Ile Ser Ala Gly Cys Trp Asp Lys
20 25 30

Glu Thr Thr Lys Glu Glu Lys Ser Ala Asp Asn Gln Asn Lys Gln Ile
35 40 45

Thr Asp Val Ser Lys Ile Ser Gly Leu Val Asn Glu Arg Lys Ser Glu
50 55 60

Ile Met Ala Ala Lys Ala Asp Ala Asn Lys His Phe Gly Leu Asn Met
65 70 75 80

Ala Ile Val Thr Ala Gly Gly Thr Val Asn Asp Asn Ser Phe Asn Gln
85 90 95

Ser Ser Trp Glu Ala Ile Gln Gln Leu Gly Ala Leu Thr Gly Gly Glu
100 105 110

Ile Thr Ser Val Asp Ser Ser Thr Ala Glu Leu Glu Gly Lys Tyr Ser
115 120 125

Ser Leu Ala Asn Thr Asn Lys Asn Val Trp Val Leu Ser Gly Phe Gln
130 135 140

His Gly Asp Ala Phe Thr Arg Trp Leu Lys Ile Pro Glu Asn Lys Gln
145 150 155 160

Leu Phe Thr Glu Lys Asn Ile Ile Leu Gly Ile Asp Trp Thr Asp
165 170 175

Thr Glu Asn Val Ile Pro Thr Gly Arg Tyr Ile Asn Leu Thr Tyr Lys
180 185 190

Thr Glu Glu Ala Gly Trp Leu Ala Gly Tyr Ala Asn Ala Ser Phe Leu
195 200 205

Ala Lys Lys Phe Pro Ser Asp Pro Thr Lys Arg Ser Ala Ile Val Ile
210 215 220

Gly Gly Gly Ile Ser Pro Ala Val Thr Asp Phe Ile Ala Gly Tyr Leu
225 230 235 240

Ala Gly Ile Lys Ala Trp Asn Leu Lys Asn Ser Asp Lys Lys Thr Lys
245 250 255

Ile Thr Thr Asp Lys Ile Glu Ile Asn Leu Gly Phe Asp Val Gln Asp
260 265 270

Thr Ser Thr Lys Glu Arg Leu Glu Gln Ile Ala Ser Lys Asp Lys Pro
275 280 285

Ser Thr Leu Leu Ala Val Ala Gly Pro Leu Thr Glu Ile Phe Ser Asp
290 295 300

Ile Ile Ala Asn Gln Asn Asp Arg Tyr Leu Ile Gly Val Asp Thr Asp
305 310 315 320

Gln Ser Leu Val Tyr Thr Lys Thr Lys Asn Lys Phe Phe Thr Ser Ile
325 330 335

Leu Lys Asn Leu Gly Tyr Ser Val Phe Ser Val Leu Ser Asp Leu Tyr
340 345 350

Thr Lys Lys Ser Asn Ser Arg Asn Leu Ala Gly Phe Glu Phe Gly Lys
355 360 365

Lys Ser Ala Thr Val Tyr Leu Gly Ile Lys Asp Arg Phe Val Asp Ile
370 375 380

Ala Asp Thr Ser Leu Glu Gly Asn Asp Lys Lys Leu Ala Thr Glu Ala
385 390 395 400

Ile Ser Glu Ala Lys Lys Glu Phe Glu Glu Lys Thr Lys Thr Ile Pro
405 410 415

Ala Glu Glu Val Arg Lys Thr Leu Glu Ile Pro Glu Met Pro Asp Lys
420 425 430

Gln Pro Asp Lys Gln Gln Glu Ser Leu Asp Lys Leu Ile Thr Asp Ile
435 440 445

Asn Lys Asn
450

<210> 3

<211> 1263

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: mhp3 manipulated for in vitro expression

<400> 3

atgtggata aagaaacaac taaaagaagaa aaatcagccg ataatcaaaa taagcaaatc 60

actgatgtct caaaaatttc aggactagt aatgaacgaa aatccgaaat tatggccgca 120

aaagctgatg caaacaaaca ttttggcta aatatggcaa ttgttaaccgc tggtggaacg 180

gtaaaatgata attcatttaa ccaatcargt tgggaggcaa ttcaacaact tggcgctctt 240

actggagggtg agattacttc agtagatgt tcaactgctg aacttgaagg aaaatatagc 300

tcacttgcta ataccaacaa aaatgtttgg gtactttctg gtttcaaca cggtgatgctg 360

ttcacaagat ggttaaaaat ccctgaaaat aagcaattat ttactgaaaa aaatattatc	420
atactcgaa ttgactggac tgatactgaa aatgttaattc caacaggctcg atatattaat	480
ttaacctata aaactgaaga agccggatgg cttgcaggat atgcgaatgc ttccttttg	540
gcaaaaaaat tcccaagtga tccaactaaa agatcagcaa ttgttatcgg tggtgggatt	600
tcgccagctg taactgattt tatcgctggt tatctagccg gaattaaagc ttggaatcta	660
aaaaattctg ataaaaaaaaac aaagataaca actgataaaa tcgagataaa tcttgggttt	720
gatgttcaag atacttcaac aaaagaaaga cttgaacaaa ttgcttcaaa agataaacct	780
tcaacactat tagctgtcgc tggaccactt actgaaattt tctcgatat aatcgaaac	840
caaaatgatc gttatctcat tgggttgac accgaccaat cacttggta tacaaaaact	900
aaaaataaat tttcacctc aatttgaaa aatttagtt actccgtttt cagcgttctt	960
agtgatttat atacaaaaaa atcaaattca agaaatttag ccggcttga atttgtaaa	1020
aaaagtgcaa ccgttatct tggattaaa gacaggttg tcgatattgc tgatacttct	1080
ttagaaggca atgataaaaa actcgcaact gaagccattt ctgaagctaa aaaagaattt	1140
gaagaaaaaa ctaagacaat tcctgcccga gaagtcgta aaactttaga aattccggaa	1200
atgcctgata aacaacctga taagcaacag gaaagcttag acaaacttaa ttaccgatat	1260
taa	1263

<210> 4
<211> 423
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: mhp3 manipulated for in vitro expression

<220>
<221> MISC_FEATURE
<222> (1)..(423)
<223> Xaa is any amino acid

<400> 4

Met Trp Asp Lys Glu Thr Thr Lys Glu Glu Lys Ser Ala Asp Asn Gln
1 5 10 15

Asn Lys Gln Ile Thr Asp Val Ser Lys Ile Ser Gly Leu Val Asn Glu
20 25 30

Arg Lys Ser Glu Ile Met Ala Ala Lys Ala Asp Ala Asn Lys His Phe
35 40 45

Gly Leu Asn Met Ala Ile Val Thr Ala Gly Gly Thr Val Asn Asp Asn
50 55 60

Ser Phe Asn Gln Ser Gly Trp Glu Ala Ile Gln Gln Leu Gly Ala Leu
65 70 75 80

Thr Gly Gly Glu Ile Thr Ser Val Asp Ser Ser Thr Ala Glu Leu Glu
85 90 95

Gly Lys Tyr Ser Ser Leu Ala Asn Thr Asn Lys Asn Val Trp Val Leu
100 105 110

Ser Gly Phe Gln His Gly Asp Ala Phe Thr Arg Trp Leu Lys Ile Pro
115 120 125

Glu Asn Lys Gln Leu Phe Thr Glu Lys Asn Ile Ile Ile Leu Gly Ile
130 135 140

Asp Trp Thr Asp Thr Glu Asn Val Ile Pro Thr Gly Arg Tyr Ile Asn
145 150 155 160

Leu Thr Tyr Lys Thr Glu Glu Ala Gly Trp Leu Ala Gly Tyr Ala Asn
165 170 175

Ala Ser Phe Leu Ala Lys Lys Phe Pro Ser Asp Pro Thr Lys Arg Ser
180 185 190

Ala Ile Val Ile Gly Gly Ile Ser Pro Ala Val Thr Asp Phe Ile
195 200 205

Ala Gly Tyr Leu Ala Gly Ile Lys Ala Trp Asn Leu Lys Asn Ser Asp
210 215 220

Lys Lys Thr Lys Ile Thr Asp Lys Ile Glu Ile Asn Leu Gly Phe
225 230 235 240

Asp Val Gln Asp Thr Ser Thr Lys Glu Arg Leu Glu Gln Ile Ala Ser
245 250 255

Lys Asp Lys Pro Ser Thr Leu Leu Ala Val Ala Gly Pro Leu Thr Glu
260 265 270

Ile Phe Ser Asp Ile Ile Ala Asn Gln Asn Asp Arg Tyr Leu Ile Gly
275 280 285

Val Asp Thr Asp Gln Ser Leu Val Tyr Thr Lys Thr Lys Asn Lys Phe
290 295 300

Phe Thr Ser Ile Leu Lys Asn Leu Gly Tyr Ser Val Phe Ser Val Leu
305 310 315 320

Ser Asp Leu Tyr Thr Lys Lys Ser Asn Ser Arg Asn Leu Ala Gly Phe
325 330 335

Glu Phe Gly Lys Lys Ser Ala Thr Val Tyr Leu Gly Ile Lys Asp Arg
340 345 350

Phe Val Asp Ile Ala Asp Thr Ser Leu Glu Gly Asn Asp Lys Lys Leu
355 360 365

Ala Thr Glu Ala Ile Ser Glu Ala Lys Lys Glu Phe Glu Glu Lys Thr
370 375 380

Lys Thr Ile Pro Ala Glu Glu Val Arg Lys Thr Leu Glu Ile Pro Glu
385 390 395 400

Met Pro Asp Lys Gln Pro Asp Lys Gln Gln Glu Ser Leu Asp Lys Leu
405 410 415

Xaa Xaa Xaa Xaa Xaa Xaa Xaa
420

<210> 5
<211> 602
<212> DNA
<213> Mycoplasma hyopneumoniae

<400> 5
atgataatat tttttcagt aaataattgc ttatTTTcag ggATTTtaa tcATCTTGTG 60
aacgcacatc acgtgttggaaa accagaaagt actcaaacat ttttgggtt attagcaagt 120
gagcttatatt ttccTTcaag ttcaGGAGTT gaactatcta ctGAAGTAAT ctcacCTCCA 180

gtaagagcgc caagtgttg aattgcctct caacttgatt gttaaatga attatcattt 240
accgttccac cagcggttac aattgccata tttagccaa aatgttgg ttgcacatcg 300
tttgcggcca taatttcgga tttcggtca ttaacttagtc ctgaaatttt tgagacatca 360
gtgatttgct tattttgatt atcggctgat ttttcttctt tagttgttc tttatccaa 420
catccggcag agattgtcgc gattgctgaa agcggaaaaa ctaagcctaa gccaaagaat 480
ttatccatt ttatctttt ttcatagtt gttctcctaa ttaattgtt taattacgat 540
gactttcaat tatttttaa taaattaatt tttatttac atttctatt atattcaaaa 600
ac 602

<210> 6
<211> 200
<212> PRT
<213> *Mycoplasma hyopneumoniae*

<400> 6

Met Ile Ile Phe Phe Ser Val Asn Asn Cys Leu Phe Ser Gly Ile Phe
1 5 10 15

Asn His Leu Val Asn Ala Ser Pro Cys Trp Lys Pro Glu Ser Thr Gln
20 25 30

Thr Phe Leu Leu Val Leu Ala Ser Glu Leu Tyr Phe Pro Ser Ser Ser
35 40 45

Ala Val Glu Leu Ser Thr Glu Val Ile Ser Pro Pro Val Arg Ala Pro
50 55 60

Ser Cys Trp Ile Ala Ser Gln Leu Asp Trp Leu Asn Glu Leu Ser Phe
65 70 75 80

Thr Val Pro Pro Ala Val Thr Ile Ala Ile Phe Ser Pro Lys Cys Leu
85 90 95

Phe Ala Ser Ala Phe Ala Ala Ile Ile Ser Asp Phe Arg Ser Leu Thr
100 105 110

Ser Pro Glu Ile Phe Glu Thr Ser Val Ile Cys Leu Phe Trp Leu Ser
115 120 125

Ala Asp Phe Ser Ser Leu Val Val Ser Leu Ser Gln His Pro Ala Glu

130

135

140

Ile Val Ala Ile Ala Glu Ser Gly Lys Thr Lys Pro Lys Pro Arg Asn
145 150 155 160

Leu Phe His Phe Ile Phe Phe Ile Val Val Leu Leu Ile Asn Cys
165 170 175

Phe Asn Tyr Asp Asp Phe Gln Leu Phe Phe Asn Lys Leu Ile Phe Ile
180 185 190

Leu His Phe Leu Leu Tyr Ser Lys
195 200

<210> 7
<211> 14
<212> PRT
<213> Mycoplasma hyopneumoniae

<220>
<221> MISC_FEATURE
<222> (1)..(14)
<223> Xaa is any amino acid

<400> 7

Ala Gly Xaa Trp Ala Lys Glu Thr Thr Lys Glu Glu Lys Ser
1 5 10

<210> 8
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 8

Ala Trp Val Thr Ala Asp Gly Thr Val Asn
1 5 10

<210> 9
<211> 21
<212> PRT
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 9

Ala Ile Val Thr Ala Asp Gly Thr Val Asn Asp Asn Lys Pro Asn Gln
1 5 10 15

Trp Val Arg Lys Tyr
20

<210> 10

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<220>

<221> misc_feature

<222> (1)..(30)

<223> n is any nucleotide

<400> 10

tgytgrgcna argaracnac naargargar

30

<210> 11

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 11

tgttgagcwa aagaaaacwac waaagaagaa

30

<210> 12

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> oligonucleotide

<220>

<221> misc_feature

<222> (1)..(27)

<223> n is any nucleotide

<400> 12

tgrgtnacng cngaygggnac ngtnaay

27

<210> 13
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 13
tgagtwacwg cwgatggwac wgtwaat

27

<210> 14
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<220>
<221> misc_feature
<222> (1)..(26)
<223> n is any nucleotide

<400> 14
rttnacngtn ccrtcngcng tnacyc

26

<210> 15
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 15
attcacsgts ccatcsgcsg tsactc

26

<210> 16
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 16
tttgagacat cagtgatttgc

21

<210> 17

<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 17
gaacgaaaat ccgaaattat gg 22

<210> 18
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 18
ctatctactg aagaatctca cc 22

<210> 19
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 19
gtgatgccgt tcacaagatg 20

<210> 20
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 20
cactaagaac gctgaaaacg g 21

<210> 21
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 21
gattacaact gtaaaaatcga g 21

<210> 22
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 22
ggcttcttca gttttataagg 20

<210> 23
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 23
aaactcgcaa ctgaagcc 18

<210> 24
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 24
gaaatgcctg ataaaacaacc 20

<210> 25
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 25
cttcagaaat ggcttcagtt gc 22

<210> 26
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 26	
gctagataac cagcgataaa atcag	25
<210> 27	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide	
<400> 27	
tgcataatcc tgatttatac	19
<210> 28	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide	
<400> 28	
tgaaagtcat cgtaattaaa ac	22
<210> 29	
<211> 34	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide	
<400> 29	
aatcggcata tgtggataaa agaaacaact aaag	34
<210> 30	
<211> 34	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide	
<400> 30	
ggagtaatct agattattaa tatcggtaat taag	34
<210> 31	
<211> 23	
<212> DNA	
<213> Artificial Sequence	

<220>
<223> Oligonucleotide

<400> 31
gttttgaat ataatagaaa atg

23

<210> 32
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide
<400> 32
tttattaaaaa aataattgaa agtcatcg

28

<210> 33
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide
<400> 33
ctatttgtatggcataaa aaactgcc

28

<210> 34
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide
<400> 34
gataaaatgg aataaatttc ttgg

24

<210> 35
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide
<400> 35
cagggtggaa ggcaattcaa c

21

<210> 36

<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 36
caaaaatgtt tgggtacttt ctgg 24

<210> 37
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 37
cacaagatgg ttaaaaatcc c 21

<210> 38
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 38
ggaattgact ggactgatac tg 22

<210> 39
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 39
gccggatggc ttgcaggata tg 22

<210> 40
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 40
taaagcttgg aatctaaaaa attc 24

<210> 41
<211> 457
<212> PRT
<213> Mycoplasma hyorhinis

<400> 41

Met Asn Phe Lys Lys Ser Leu Leu Phe Leu Thr Gly Thr Ile Ser Thr
1 5 10 15

Val Ala Ser Val Ala Thr Phe Val Ser Cys Gly Glu Thr Asp Lys Glu
20 25 30

Gly Lys Ile Ile Arg Ile Phe Asp Asn Ser Phe Val Lys Asp Arg Gln
35 40 45

Ala Glu Ile Glu Lys Ala Lys Asn Phe Asp Phe Asn Thr Val Leu Leu
50 55 60

Thr Ala Gly Gly Thr Val Gln Asp Lys Ser Phe Asn Gln Ser Ile Trp
65 70 75 80

Glu Ala Val Leu Glu His Tyr Asp Gln Ile Glu Lys Thr Thr Asn Leu
85 90 95

Asp Arg Val Ser Gln Glu Thr Asn Asn Gln Ser Glu Leu Ile Gly Lys
100 105 110

Tyr Lys Asn Phe Leu Asn Gly Asn Lys Asn Val Trp Ile Leu Thr Gly
115 120 125

Phe Gln Gln Gly Gln Glu Phe Pro Lys Phe Leu Lys Gln Thr Asp Ser
130 135 140

Asn Gly Lys Lys Tyr Ser Asp Leu Leu Ala Glu Lys Lys Val Ile Ile
145 150 155 160

Val Ala Val Asp Trp Asp Leu Ser Lys Glu Asp Lys Asp Leu Ile Lys
165 170 175

Ala Gly His Phe Ile Ser Leu Leu Tyr Lys Thr Glu Glu Ala Gly Phe
180 185 190

Ile Ala Gly Tyr Ala Ser Ser Lys Phe Leu Ala Tyr Lys Phe Pro Asn
195 200 205

Asp Glu Ala Lys Arg Thr Ile Ala Pro Phe Gly Gly Gly His Gly Ala
210 215 220

Gly Val Thr Asp Phe Ile Ala Gly Phe Leu Ala Gly Ile Ala Lys Tyr
225 230 235 240

Asn Asn Asp Asn Pro Thr Ala Lys Val Thr Ile Ser Asp Asn Asn Ile
245 250 255

Asn Ile Asp Thr Gly Phe Ile Ser Asn Asp Lys Thr Ala Thr Phe Ile
260 265 270

Asn Gly Ile Val Asn Lys Ser Ser Leu Val Leu Pro Val Ala Gly Ser
275 280 285

Leu Thr Ser Ser Val Val Asp Ala Ile Lys Lys Ser Asn Lys Asp Thr
290 295 300

Lys Tyr Leu Ile Gly Val Asp Thr Asp Gln Ser Lys Ile Phe Ser Pro
305 310 315 320

Ala Thr Val Phe Phe Thr Ser Ile Glu Lys His Leu Gly Arg Thr Ile
325 330 335

Tyr Gln Val Leu Thr Asp Ile Trp Leu Lys Lys Glu Asp Ser Lys Phe
340 345 350

Leu Gly Ser Phe Arg Ser Phe Lys Leu Thr Asn Pro Ala Asn Ala Thr
355 360 365

Val Tyr Lys Gly Ile Ser Asp Asp Phe Val Gly Val Ser Asn Ser Thr
370 375 380

Val Ala Asp Ala Asp Lys Val Lys Ala Gln Glu Phe Leu Asn Glu Ala
385 390 395 400

Thr Ala Asp Phe Lys Lys Gln Ile Gln Ala Asn Pro Thr Asn Tyr Lys
405 410 415

Ser Val Leu Gly Ile Pro Thr Met Leu Ile Asn Asp Asn Asp Ala Lys

420

425

430

Asp Asn Glu Lys Ala Ser Leu Phe His Phe Asp Asn Trp Gln Thr Tyr
435 440 445

Trp Ala Phe His Ser Arg Phe Ile Asn
450 455

<210> 42
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Artificial amino acid sequence

<400> 42

Trp Asp Lys Glu
1