Theorem. Let G be any group and let $a \in G$ have order n. Then, for any integer 2.11 and only if k = nq, where q is an integer. (2.11) and only if k = nq, where q is an integer.

Suppose that n is the order of a and, for some integer k, $a^k = e$. By the division proof, there are unique integers a and r such that **Proof.** Supplemental the proof of a and, for som algorithm, there are unique integers q and r such that

$$k = nq + r, \quad 0 \le r < n$$

$$k = nq + r,$$
 $0 \le r < n$
 $e = a^k = (a)^{nq+r} = (a^n)^q \cdot a^r = e \cdot a^r = a^r$ (as $a^n = e$)

).

ules

Since a has order n, therefore, n is the smallest integer for which $a^n = e$ and so r = 0.

Thus k = nq.

Conversely, suppose that

$$k = nq$$
. Then

$$a^k = e^{nq} = (a^n)^q = e^q = e.$$

Example 11. Show that the set

$$S = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$$

is a group under multiplication modulo 8. Find the order of each element of S.

Solution. The Cayley's table for S under multiplication modulo 8 is as given below:

		$\overline{1}$	3	5	7
	<u></u>	<u>ī</u>	3	5	7
	3	3	$\overline{1}$	7	5
	- - - -	5	7	1	3
	7	7	5	-	1
1		,		-	100

For example, here $5 \times 3 = 15$ which gives 7 as remainder after division by 8.

So

$$\overline{5} \times \overline{3} = \overline{7}$$

Similarly.

$$\overline{3} \times \overline{7} = \overline{5}$$

One may observe from the multiplication table that $\overline{1}$ is the identity element in S. The closure law and the existence of inverse of each element can easily be verified from the table.

$$b = aq + r, \ 0 \le r < a.$$

^{1.} The division algorithm states that, for any two integers a and b with a > 0, there are integers q and r such that

E

5

th

For the orders of elements, we see that the order of 1 is 1.

The order of $\overline{3}$ is 2 because $\overline{3} \times \overline{3} = \overline{1}$.

Similarly, the order of each of $\overline{5}$ and $\overline{7}$ is 2.

Example 12. Let G be a group and $a, b \in G$. Show that

- The orders of a and a^{-1} are equal.
- (ii) The orders of a and $b^{-1}ab$ are equal.
- (iii) The orders of ab and ba are equal.

Solution. (i) Let $a \in G$. Suppose the order of a is m so that $d^m = e$.

Now,
$$a^m = e \Leftrightarrow a^{-m} \cdot a^m = a^{-m} \cdot e$$

 $\Leftrightarrow e = (a^{-1})^m$.

So the order of a^{-1} is a divisor k of m.

So the order of
$$a^{-1}$$
 is a divisor k of m .
But $(a^{-1})^k = e$ implies $a^{-k} \cdot a^k = e \cdot a^k = a^k$.
Thus $e = a^k$.

But then m divides k. Thus k = m. So the order of a^{-1} is also m.

Let $a, b \in G$. Suppose, the order of a is m then $a^m = e$. Therefore, (ii) ...

$$a^{m} = e$$
 \Leftrightarrow $b^{-1} a^{m} b = b^{-1} eb$ \Leftrightarrow $(b^{-1} ab)^{m} = e$

Hence the orders of a and b^{-1} ab are equal.

[Here we have used the fact that $(b^{-1} ab)^m = b^{-1} a^m b$ which is proved induction on m as follows.

The result is true for m = 1. Suppose it is true for m = k, i.e., $(b^{-1} ab)^k = b^{-1} a^k b$ Now $(b^{-1}ab)^{k+1} = (b^{-1}ab)^k (b^{-1}ab) = (b^{-1}a^k b) (b^{-1}ab) = b^{-1}a^k e ab = b^{-1}a^{k+1}$ Hence $(b^{-1} ab)^m = b^{-1} a^m b$ for all $m \in N$.

Suppose |ab| = m. (iii)

Now,
$$ab = b^{-1}bab = b^{-1}(ba)b$$
, (Associative Law)

or
$$(ab)^m = e = [b^{-1}(ba)b]^m$$

 $= b^{-1}(ba)^m b$, as in (ii)
or $beb^{-1} = bb^{-1}(ba)^m bb^{-1}$
or $e = (ba)^m$

|ba| = m. Thus

Let G be a group of even order. Prove that there is at least one element Example 13

Solution. Let G be a group of even order. Then the non-identity elements in G will be Solution. Also the inverse of each element of G belongs to G and that $e^{-1} = e$.

There occur pairs each consisting of some non-identity element x and x^{-1} in G such hat $x \neq x^{-1}$. As there are odd number of non-identity element x and x^{-1} in G such that $x \neq x^{-1}$ elements for which $x \neq x^{-1}$, we must have at least one element $a \ (\neq e) \in G$ sich that

$$a = a^{-1}$$

 $aa = aa^{-1}$ But then

 $a^2 = e$ OF

|a| = 2.Hence

Let G be a group and x be an element of odd order in G. Then there Example 14. exists an element y in G such that $v^2 = x$.

Solution. For some nonnegative integer m and $x \in G$, let |x| = 2m + 1,

so that we have $x^{2m+1} = e$ (1)

 $x, x^2, \dots, x^m, x^{m+1}, \dots, x^{2m} \in G$ Clearly

 $y = x^{m+1}$. Then Let

 $v^2 = x^{2m+2} = x^{2m+1} x = ex = x$, by (1).

EXERCISE 2.1

- Answer true or false. Justify your answer.
 - A group can have more that one identity element. (i)
 - The null set can be considered to be a group. (ii)
 - (iii) There may be groups in which the cancellation law fails.
 - (iv) Every set of numbers which is group under addition is also a group under multiplication and vice versa.
 - The set R of all real numbers is a group with respect to subtraction.
 - (vi) The set of all nonzero integers is a group with respect to division.

 - (vii) To each element of a group, there does not correspond an inverse element.
 - (viii) To each element of a group, there corresponds only one inverse element.
 - (ix) To each element of a group, there correspond more that one inverse elements.

- 2. Show that in a group G
 - (i) the identity element is unique
 - (ii) the inverse of each element is unique.
- 3. Which of the following sets are groups and why?
 - (i) The set of all positive rational numbers under multiplication.
 - (ii) The set of all complex numbers z such that | z | = 1, under multiple defined for complex numbers.
 - (iii) The set Z of all integers under binary operation o defined by

$$a \circ b = a - b$$
 for all $a, b \in \mathbb{Z}$.

- (iv) The set Q' of all irrational numbers under multiplication.
- (v) $R^+ = \{ x \in R : x > 0 \}$ under multiplication
- (vi) $R = \{ x \in R : x < 0 \}$ under multiplication
- (vii) $E = \{ e^x : x \in R \}$ únder multiplication
- 4. Show that the set $\{\overline{1}, \overline{2}, \overline{4}, \overline{5}, \overline{7}, \overline{8}\}$ under multiplication modulo 9 is a group
- 5. Is (Z, o) a group? where o is defined by $a \circ b = 0$ for all $a, b \in Z$.
- 6. Show that the matrices:

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, C = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

form a group under matrix multiplication.

7. Prove that the set of complex-valued functions I, f, g and h defined on $C \setminus \{0\}$ of nonzero complex numbers by:

$$I(z) = z$$
, $f(z) = -z$, $g(z) = 1/z$, $h(z) = -1/z$, $z \in C \setminus \{0\}$

forms a group under composition of functions $(g \circ f)(z) = g(f(z))$

8. Show that the set

$$G = \{ 2^k : k = 0, \pm 1, \pm 2, \cdots \}$$

is a group under multiplication.

- 9. Show that if a group G is such that $x \cdot x = e$, for all $x \in G$, where e^{isthe} element of G, then G is an abelian group.
- 10. If a group G has three elements, show that it is abelian.
- 11. If every element of a group G is its own inverse, show that G is abelian.

- prove that if every non-identity element of a group G is of order 2, then G is abelian. 12.
- In a group G, let a, b and ab all have order 2. Show that ab = ba. 13.
- Show that a group G is abelian if and only if $(ab)^2 = a^2b^2$ for all $a, b \in G$. 14.
- Suppose that a group G has only one element a of order 2. Show that, for all 15. $x \in G, ax = xa.$
- Let G be a group such that $(ab)^n = a^n b^n$ for three consecutive natural numbers n and all a, b in G. Show that G is abelian. 10.
- If G is an abelian group, show that 17.

$$(ab)^n = a^n b^n$$
 for all $a, b \in G$.

Show that the set $GL_2(R)$ of all 2×2 nonsingular matrices over R is a group 18. under the usual multiplication of matrices.

(This group is called the general linear group of degree 2).

SUBGROUPS

(2.12) **Definition.** Let (G, .) be a group and H be a nonempty subset of G. If H is itself a group with the binary operation of G restricted to H, then H is called a subgroup of G.

(Z, +) is a subgroup of (Q, +) and (Q, +) is a subgroup of (R, +). Example 15.

Example 16. The set of cube roots of unity forms a subgroup of $C \setminus \{0\}$, where $C \setminus \{0\}$ is the group of nonzero complex numbers under multiplication of complex numbers.

Example 17. Every group G has at least two subgroups namely G itself and the identity group { e }. These are called trivial subgroups. Any other subgroup of G is called a nontrivial subgroup of G.

The following theorem establishes an easy criterion for determining whether or not a subset H of a group G is a subgroup of G.

(2.13) Theorem. Let (G, .) be a group. Then a nonempty subset H of G is a subgroup if and only if, for $a, b \in H$, the element $ab^{-1} \in H$.

Proof. Suppose that H is a subgroup of G. Then for all $a, b \in H$, $a, b^{-1} \in H$. Hence $ab^{-1} \in H$ by the closure law in H.

Conversely, suppose that for all $a, b \in H$, $ab^{-1} \in H$.