Теория вероятностей и статистика, МИРЭК, 2023-2024

Дедлайн: решение домашнего задания загружается в виде единого файла, имеющего pdf-формат, в систему SmartLMS в разделе с соответствующим размещенным заданием до 10-го марта включитьельно. При наличии сбоев в работе системы файл необходимо направить на почту mirectvis@gmail.com. Тема письма должна иметь следующий формат: "МИРЭК Фамилия Имя Группа Номер ДЗ", например, "МИРЭК Потанин Богдан 200 ДЗ 3".

Оформление: первый лист задания должен быть титульным и содержать лишь информацию об имени и фамилии, а также о номере группы студента и сдаваемого домашнего задания. Если pdf файл содержит фотографии, то они должны быть разборчивыми и повернуты правильной стороной.

Санкции: домашние задания, не удовлетворяющие требованиям к оформлению, выполненные не самостоятельно или сданные позже срока получают 0 баллов.

Проверка: при оценивании каждого задания проверяется не ответ, а весь ход решения, который должен быть описан подробно и формально, с использованием надлежащих определений, обозначений, теорем и т.д.

Самостоятельность: задания выполняются самостоятельно. С целью проверки самостоятельности выполнения домашнего задания студент может быть вызван на устное собеседование, по результатам которого оценка может быть либо сохранена, либо обнулена.

Домашнее задание №3

Задание №1. Замаскированное распределение (50 баллов)

Имеется выборка $X_1, ..., X_n$, где X_i отражает объем покупок (в тысячах рублей), совершенных i-м клиентом. Функция распределения этой случайной величины имеет вид:

$$F_{X_i}(t) = egin{cases} 0, \ ext{если} \ t < 1 \ 1 - t^{-\lambda}, \ ext{если} \ t \geq 1 \end{cases}$$
 , где $\lambda > 1$

Известно, что $n=100,\ \overline{x}_n=e^{0.1}$ и $\sum_{i=1}^n \ln(x_i)=10,$ где $e\approx 2.718$ — экспонента. Помогите руководству компании изучить поведение клиентов.

- 1. Оцените параметр λ при помощи метода моментов и посчитайте реализацию данной оценки. (10 баллов)
- 2. Оцените параметр λ методом максимального правдоподобия и посчитайте реализацию данной оценки. (10 баллов)
- 3. Оцените асимптотическую дисперсию ММП оценки параметра λ и посчитайте реализацию данной оценки. (10 баллов)
- 4. Найдите реализацию 88% доверительного интервала параметра λ . (10 баллов)
- 5. На уровне значимости $\alpha = 0.2$ протестируйте гипотезу $H_0: E(X_1) = 1.1$ против альтернативы $H_1: E(X_1) \neq 1.1$. (10 баллов)

Задание №2. АВ-тестирование (20 баллов)

У вас заказали исследование, призванное изучить реакцию пользователей на новый дизайн сайта компании. В вашем исследовании независимо друг от друга участвуют 200 индивидов. Они были разделены на две равные группы, первая из которых пользовалась сайтом со старым дизайном, а вторая — с новым. В первой группе дизайн сайта понравился 40 участникам эксперимента, а во второй — 70.

- 1. На уровне значимости $\alpha = 0.01$ протестируйте гипотезу о том, что ровно половине участников эксперимента понравилось пользоваться сайтом, против альтернативы о том, что более, чем половине. (10 баллов)
- 2. Самостоятельно выберите тест, который позволит определить, позволил ли новый дизайн сайта повысить удобство его использования. Рассчитайте p-value данного теста и сделайте вывод. (10 баллов)

Задание №3. Изобретение теста (30 баллов)

Имеется выборка $(X_1,...,X_n)$ из нормального распределения N (μ,μ) , про которое известно, что математическое ожидание совпадает с дисперсией и $\mu > 0$. Тестируется гипотеза $H_0: \mu = 1$ против альтернативы $H_1: \mu \neq 1$.

1. Предложите тестовую статистику T(X) и критическую область \mathcal{T}_{α} , позволяющие тестировать нулевую гиоптезу на уровне значимости α . (5 баллов)

- 2. Рассчитайте мощность вашего теста при $n=25, \, \alpha=0.1$ и $\mu=2$. (5 баллов)
- 3. Проверьте, является ли ваш тест состоятельным. Если ваш тест не является состоятельным, то преобразуйте его таким образом, чтобы он стал состоятельным. (10 баллов)
- 4. С помощью леммы Неймана-Пирсона найдите тестовую статистику равномерно наиболее мощного теста, если n=1 и альтернативная гипотеза сформулирована как $H_1: \mu=2$. Затем рассчитайте p-value данного теста, если $x_1=2$. (5 баллов)
- 5. Проверьте, является ли при n=1 и $H_1: \mu=2$ предложенный вами в первом пункте задачи тест равномерно наиболее мощным. (5 баллов)