Data visualization in R

Mikhail Dozmorov

Fall 2016

Why visualize data?

- Four groups
- 11 observations (x, y) per group

Property	Value
Mean of x in each case	9 (exact)
Sample variance of x in each case	11 (exact)
Mean of y in each case	7.50 (to 2 decimal places)
Sample variance of y in each case	4.122 or 4.127 (to 3 decimal places)
Correlation between x and y in each case	0.816 (to 3 decimal places)
Linear regression line in each case	y = 3.00 + 0.500x (to 2 and 3 decimal places, respectively)

https://en.wikipedia.org/wiki/Anscombe%27s_quartet

Why visualize data?

- Four groups
- 11 observations (x, y) per group

https://en.wikipedia.org/wiki/Anscombe%27s_quartet

Mikhail Dozmorov Data visualization in R Fall 2016 3 / 28

R base graphics

- plot() generic x-y plotting
- barplot() bar plots
- boxplot() box-and-whisker plot
- hist() histograms

http://manuals.bioinformatics.ucr.edu/home/R_BioCondManual#TOC-Some-Great-R-Functions

Don't use barplots

Weissgerber T et.al., "Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm", PLOS Biology,2015 http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002128 https://cogtales.wordpress.com/2016/06/06/congratulations-barbarplots/

R base graphics

heatmap() - heatmap

Alternatives:

- qplots::heatmap.2()
- pheatmap::pheatmap()
- NMF::aheatmap()

Other useful plots:

- qqnorm(), qqline(), qqplot() distribution comparison plots
- pairs() pair-wise plot of multivariate data

http://manuals.bioinformatics.ucr.edu/home/R_BioCondManual#TOC-Some-Great-R-Functions

Special plots

- vioplot(): Violin plot, https://cran.r-project.org/web/packages/vioplot/
- PiratePlot(): violin plot enhanced.
 install_github("ndphillips/yarrr"),
 http://nathanieldphillips.com/
- beeswarm(): The Bee Swarm Plot, an Alternative to Stripchart, https: //cran.r-project.org/web/packages/beeswarm/index.html

7 / 28

Mikhail Dozmorov Data visualization in R Fall 2016

Saving plots

Save to PDF

```
pdf("filename.pdf", width = 7, height = 5)
plot(1:10, 1:10)
dev.off()
```

- Other formats: bmp(), jpg(), pdf(), png(), or tiff()
- Learn more ?Devices

R base graphic cheat-sheet

https://github.com/nbrgraphs/mro/blob/master/BaseGraphicsCheatsheet.pdf

			R base Graph	ics cheatsne	et		
SET GRAPHICAL PARAMETERS the following can early be set with per () par ()				ADD TEXT			
				location axis labels xlab =, ylab =		size (magnification factor)	
multiple plots	mfcol = c(nrow,ncol) mfrow = c(nrow,ncol)		oma = c(bottom, left, top, right) default: c(0,0,0,0) lines	subtitle title	sub = main =	all elements axis labels subtitle	cex.lab = cex.sub =
plot margins	mar = c(bottom, left, top, right) default: c(5.1, 4.1, 4.1, 2.1) lines	query x & y limits	par ("usr")	font face	style font = 1 (plain) 2 (bold) 3 (italic)	tick mark labe title	is cex.axis = cex.main =
CREATE A NEW PLOT				4 (bold/tolic)	text direction	las = 1 (horizontal)	
Bar charts bor lobels	barplot(height,) names.arg = horder =	Histograms breakpts	hist(x,) breaks =	font family	family = "serif" "sans" "mono"	justification	adj = 0 .5 1 (left, center, right)
border fill color	col =	Line charts	plot(x type = "l")		ADD TO AN EXISTING PLOT		
horizontal Box plots	boxplot(x,)	line type	"black" 0 lty = "solid" 1 "dashed" 2 "dotted" 3	Add new plot ex barplet([any plot function] (, add = TRUE) (x, add = TRUE)	line style	lines (x,) lty = lwd =
horizontal box labels		line width	lwd =	Axes location	axis (side,) side = 1 2 3 4	Points	col = points (x,)
Dat plats dor labels	<pre>dotchart(x,_) labels =</pre>	Scatterplots symbol	plot(x,) pch =	tick mark:	(bottom, left, top, right) labels =		och = × 0 v = + + + 2 = + 1 + 1 + 1 + 11 11 11
REMOVE ADJUST		location	at =	0000			

Data manipulation

dplyr: data manipulation with R

80% of your work will be data preparation

- getting data (from databases, spreadsheets, flat-files)
- performing exploratory/diagnostic data analysis
- reshaping data
- visualizing data

http://www.gettinggeneticsdone.com/2014/08/do-your-data-janitor-work-like-boss.html

dplyr: data manipulation with R

80% of your work will be data preparation

- Filtering rows (to create a subset)
- Selecting columns of data (i.e., selecting variables)
- Adding new variables
- Sorting
- Aggregating
- Joining

http://www.gettinggeneticsdone.com/2014/08/do-your-data-janitor-work-like-boss.html

Dplyr: A grammar of data manipulation

https://github.com/hadley/dplyr

install.packages("dplyr")

The pipe %>% operator

- Pipe output of one command into an input of another command chain commands together
- Think about the "|" operator in Linux
- Read as "then". Take the dataset, then do ...

```
library(dplyr)
library(ggplot2)
data(diamonds)
head(diamonds)
diamonds %>% head
summary(diamonds$price)
diamonds$price %>% summary(object = .)
```

dplyr::filter()

• Filter (select) rows based on the condition of a column

```
diamonds %>% head
df.diamonds_ideal <- filter(diamonds, cut == "Ideal")
df.diamonds_ideal <- diamonds %>% filter(cut == "Ideal")
```

dplyr::select()

• Select columns from the dataset by names

```
df.diamonds_ideal %>% head
select(df.diamonds_ideal, carat, cut, color, price, clarity)
df.diamonds_ideal <- df.diamonds_ideal %>% select(., carat, cut)
```

Mikhail Dozmorov Data visualization in R Fall 2016 16 / 28

dplyr::mutate()

Add columns to your dataset

```
df.diamonds_ideal %>% head
mutate(df.diamonds_ideal, price_per_carat = price/carat)
df.diamonds_ideal <- df.diamonds_ideal %>% mutate(price_per_carat)
```

Mikhail Dozmorov Data visualization in R Fall 2016 17 / 28

dplyr::arrange()

Sort your data by columns

```
df.diamonds_ideal %>% head
arrange(df.diamonds_ideal, price)
df.diamonds_ideal %>% arrange(price, price_per_carat)
```

dplyr::summarize()

Summarize columns by custom summary statistics

```
summarize(df.diamonds_ideal, length = n(), avg_price = mean(printed df.diamonds_ideal %>% summarize(length = n(), avg_price = mean(printed df.diamonds_ideal %)
```

Mikhail Dozmorov Data visualization in R Fall 2016 19 / 28

dplyr::group_by()

• Summarize subsets of columns by custom summary statistics

```
group_by(diamonds, cut) %>% summarize(mean(price))
group_by(diamonds, cut, color) %>% summarize(mean(price))
```

Mikhail Dozmorov Data visualization in R Fall 2016 20 / 28

The power of pipe %>%

• Summarize subsets of columns by custom summary statistics

```
arrange(mutate(arrange(filter(tbl_df(diamonds), cut == "Ideal"
arrange(
    mutate(
    arrange(
        filter(tbl_df(diamonds), cut == "Ideal"),
        price),
    price_per_carat = price/carat),
price_per_carat)
diamonds %>% filter(cut == "Ideal") %>% arrange(price) %>% mutate()
arrange()
arrange
```

ggplot2 - the grammar of graphics

ggplot2 package

http://ggplot2.org/

install.packages("ggplot2")

ggplot2

ggplot2 is a plotting system for R, based on the grammar of graphics, which tries to take the good parts of base and lattice graphics and none of the bad parts. It takes care of many of the fiddly details that make plotting a hassle (like drawing legends) as well as providing a powerful model of graphics that makes it easy to produce complex multi-lavered graphics.

Documentation

ggplot2 documentation is now available at docs.ggplot2.org.

The basics of ggplot2 graphics

- Data mapped to graphical elements
- Add graphical layers and transformations
- Commands are chained with "+" sign

Object		Description
Data Aethetics	aes()	The raw data that you want to plot How to map your data on x, y axis, color, size, shape (aesthetics)
Geometries	geom_	The geometric shapes that will represent the data

data + aesthetic mappings of data to plot coordinates + geometry to represent the data

Examples of ggplot2 graphics

```
diamonds %>% filter(cut == "Good", color == "E") %>%
  ggplot(aes(x = price, y = carat)) +
  geom_point() # aes(size = price) +
```

Try other geoms

```
geom_smooth() # method = lm
geom_line()
geom_boxplot()
geom_bar(stat="identity")
geom_histogram()
```

Fine tuning ggplot2 graphics

Parameter	Description
Facets	facet_Split one plot into multiple plots based on a grouping variable
Scales	scale_Maps between the data ranges and the dimensions of the plot
Visual	theme The overall visual defaults of a plot: background,
Themes	grids, axe, default typeface, sizes, colors, etc.
Statistical	stat Statistical summaries of the data that can be plotted,
transformation	such as quantiles, fitted curves (loess, linear models, etc.), sums etc.
Coordinate	coord_Expressing coordinates in a system other than
systems	Cartesian

Putting it all together

```
diamonds %>%
                            # Start with the 'diamonds' data.
 filter(cut == "Ideal") %>% # Then, filter rows where cut ==
 ggplot(aes(price)) +
                        # Then, plot using applot
 geom_histogram() +
                       # and plot histograms
 facet_wrap(~ color) + # in a 'small multiple' plot, br
 ggtitle("Diamond price distribution per color") +
 labs(x="Price", y="Count") +
 theme(panel.background = element_rect(fill="lightblue")) +
 theme(plot.title = element_text(family="Trebuchet MS", size=
 theme(axis.title.y = element_text(angle=0)) +
 theme(panel.grid.minor = element blank())
```

Other resources

- **Plotly** for R, https://plot.ly/r/
- GoogleVis for R, https://cran.r-project.org/web/packages/googleVis/vignettes/googleVis_examples.html
- ggbio grammar of graphics for genomic data, http://www.tengfei.name/ggbio/