SIT221: Data Structures and Algorithms

Lecture 9: Tree and Graph Algorithms

Week 8 recording for prac

	Recording Name	Session Name	Date	Duration	
Week 8	Week 8 - prac - recording_1	Week 8 - prac	2/09/2017 4:08 pm	01:09:28	···
Week 7	Week 7 - prac - recording_1	Week 7 - prac	26/08/2017 4:11 pm	00:39:42	···
Week 4	SIT221 - Data Structures And Algorithms - recording_1	SIT221 - Data Structures And Algorith ms	3/08/2017 11:22 am	00:42:34	···
Week 3	SIT221 - Data Structures And Algorithms - recording_1	SIT221 - Data Structures And Algorith ms	27/07/2017 10:55 am	00:40:01	
Week 2	Week 2 - prac - recording_1	Week 2 - prac	20/07/2017 11:01 am	00:31:17	···

Assignment 1 - Issues

- Comments are important
- You need to submit the whole solution
- Don't change things that have been advised not to change
- Compilation error
- Plagiarism
- Sorting with indices should only swap indices
- ▶ Powerset → good to see other ways

What are we up to? 1. Data structures

We have covered the core data structures – can you tell the difference & when to use?

- 1. Vectors
- 2. Linked Lists
- 3. Stacks
- 4. Queues
- 5. Dictionaries
- 6. Trees
- 7. Graphs

What are we up to? 2. Algorithms

- Sorting [selection, insertion, merge, quick, Microsoft]
- Searching [linear, binary, key look up dictionary]
- Basic operations in data structures: insert/add/traverse/delete/etc.
- Breadth first vs Depth first, Shortest Path, Minimum spanning tree.
- Dynamic Programming
- Greedy Algorithms

Graphs & Trees

- Every tree is a ...
- ▶ But not every graph is a ...

Breadth-first Search - BFS

Traversing graph or tree level by level

How to implement it?

- 1. Choose a starting node in a tree, this will be the Root node.
- 2. Enque the node in a queue data structure
- While Queue is not empty
 - 1. Dequeue a node from the queue
 - 2. Mark it as visited avoid cycles/loops
 - 3. Enque all children nodes into the queue

BFD in motion...

Also try this: http://visualgo.net/dfsbfs

Graph traversal - Depth-first Search - DFS

- 1. Choose a starting node in a tree, this will be the Root node.
- 2. Push the node in a stack data structure
- 3. While Stack is not empty
 - 1. Pop a node from the stack
 - 2. Mark it as visited avoid cycles/loops
 - Push all children nodes into the stack

Let's give it a go?

Using our BinarySearchTree

Applications

- Social networks
- Web crawling
- Network broadcast
- Model checking

Shortest path

- What are the possible paths between A & F? which one is the shortest?
 - ▶ Path1: A \rightarrow B \rightarrow D \rightarrow F [cost = 4 + 10 + 11]
 - ▶ Path2: A \rightarrow B \rightarrow C \rightarrow E \rightarrow D \rightarrow F [cost = 4+5+3+4 + 11]
 - ▶ Path3: $A \rightarrow C \rightarrow E \rightarrow D \rightarrow F [cost = 2 + 3 + 4 + 11]$

Input:

source node, destination node

Ouput:

- The min distance from the source node to the destination node
- The list of the nodes on the shortest path

Given a graph G(V,E)

- \forall u, $v \in V$ If u and v are directly connected c(u, v) = weight of (u,v)Else
 - $c(u, v) = \infty$
- $\forall u \in V, c(u, u) = \infty$
- \rightarrow d(u) = the minimal distance from the source node to u.
- pre(u) = preceding of node u on the shortest path from the source node to u.

- ▶ Step 1. $V_T = \{v_{begin}\}, d(v_{begin}) = 0, E_T = \emptyset$
- Step 2. $\forall v \in V \{v_{begin}\}\$ $d(v) = c(v_{begin}, v)$ $pre(v) = v_{begin}$
- ▶ Step 3. If $v_{end} \in V_T$, stop. Otherwise, go to step 4.
- ▶ Step 4. $v^* = argmin\{d(v)\}, v \in V V_T$. $V_T = V_T \cup \{v^*\}, E_T = E_T \cup (pre(v^*), v^*)$
- Step 5. $\forall w \in V V_T$, if $d(w) > d(v^*) + c(v^*, w)$, then $d(w) = d(v^*) + c(v^*, w)$ pre(w) = v*. Go to step 3.

Given a graph, how to find the shortest paths from a source node to all the remaining nodes?

 \rightarrow Replace Step 3 by condition $V_T = V$

Dijkstra's algorithm - Example

Find the shortest paths from A to all other nodes.

	V_{T}	d	pre
Α	X	0	
В		2	Α
С		∞	Α
D		∞	Α
Е		∞	Α
F		1	Α
G		∞	Α
Н		∞	Α

	V _T	d	pre
Α	X	0	
В		2	Α
С		∞	Α
D		4	F
Е		8	Α
F	X	1	Α
G		8	F
Н		∞	Α

	V_{T}	đ	pre
Α	X	0	
В	X	2	Α
С		4	В
D		4	F
Е		6	В
F	X	1	Α
G		8	F
Н		8	Α

-			
	V_{T}	d	pre
Α	X	0	
В	X	2	Α
С	Χ	4	В
D		4	F
Е		6	В
F	X	1	Α
G		8	F
Н		5	С

	V _T	d	pre
Α	X	0	
В	X	2	Α
С	X	4	В
D	X	4	F
Е		6	В
F	X	1	Α
G		8	F
Н		5	С

	V _T	d	pre
Α	X	0	
В	X	2	Α
С	X	4	В
D	X	4	F
Е		6	В
F	X	1	Α
G		8	F
Н	X	5	С

	V _T	d	pre
Α	X	0	
В	X	2	Α
С	X	4	В
D	X	4	F
Е	X	6	В
F	X	1	Α
G		7	E
Н	X	5	С

	V _T	d	pre
Α	X	0	
В	X	2	Α
С	X	4	В
D	X	4	F
Е	X	6	В
F	X	1	Α
G	X	7	E
Н	X	5	С

	V _T	d	pre	B 2 C
Α	X	0		
В	X	2	Α]
С	X	4	В	
D	X	4	F	D E
Е	X	6	В]
F	X	1	Α	
G	X	7	Е	F
Н	X	5	С	

The shortest path from A \rightarrow G: G \leftarrow E \leftarrow B \leftarrow A (7)

- Computational Complexity: O(V²)
- Cannot be used for graphs with negative weights

Applications

- Packet routing in computer networks
- Vehicle routing in traffic networks
- Social networks degree of separation friendship relationships

Minimum spanning tree - MST

- Finding a low-cost tree connecting a set of nodes.
- Minimal total weighting for its edges.
- ▶ A graph with *n* vertices will have a spanning tree with *n*-1 edges.
- Prim's and Kruskal's algorithm

Prim's algorithm

- 1. $T = \emptyset$
- 2. Randomly select a vertex and add this vertex to T.
- 3. If every vertex of G is in T, then stop. Otherwise, go to step 4.
- 4. Find an edge which
 - i) connects a vertex ∈ T to a vertex ∉ T, and
 - ii) has minimal weight.

Add this edge to T and go back to step 2.

Prim's algorithm - Example

Kruskal's algorithm

- $T = (V, E_T) \text{ v\'oi } E_T = \emptyset.$
- If T is connected*, then stop. Otherwise, go to Step 3.
- Select an edge ∉ E_T with minimum weight such that this edge does not create any cycles in T when it is added into T. Go back to Step 2.

^{*}A graph is connected if there always exists routes between any pair of nodes

Kruskal's algorithm - example

