Abortion Legalization and Crime

Aubhik Mazumdar, Yuan Tian

Introduction

- Problem Statement & Hypothesis
- Datasets
- Techniques

Crime Rates by Year

Facts:

- All rates decline after 1990
- People who born in 1973 are 18 yrs old in 1991
- NY legalized abortion in 1973 (Roe vs Wade case in 1972)

Source: Bureau of Justice Statistics (BJS)

Explanation

In the book "freakonomics" the authors argue that the reason for the decline in crime was:

"Abortion legalization meant that parents who thought they were not fit to raise a child could avoid this. This also reduced the number of children who were neglected thus leading them to a life of crime."

Problem Statement

Research Topic:

To determine how the legalization of Abortion affected crime in the US.

Hypothesis:

legalization of abortion contribute to the reduce of crime rates in the US.

Datasets

- Features:
 - Abortion Rate (Center of Disease Control and Prevention)
 - Dow Jones Index Average (Bloomberg)
 - Incarceration (Bureau of Justice Statistics)
 - Crime rates (Uniform Crime Reporting Statistics + National Crime Victimization Survey)
- Problems:
 - Insufficient data for NYC? ----- Use nationwide data
 - Stationary or Non-stationary? ---- Statistical Tests

Techniques

- 1. Stationary conversion Yuan
- 2. Linear Regression Yuan
- 3. Granger Causality Aubhik
- 4. Counterfactual Analysis Aubhik

Regression Analysis

- Make data stationary
- Evaluate significance

Granger Causality

- Determine direction
- Strength of effect

Counterfactual Analysis

- Semiparametric difference-in-difference analysis
- Determine magnitude of effect

TECHNIQUE 1: Stationary conversion

Statistical Test Result: Trend Stationary - Detrend by differencing method

TECHNIQUE 2: Linear Regression

- Normalization is still needed
- Use MATLAB and SAS

```
>> Model
Model =
Linear regression model:
Estimated Coefficients:
                  Estimate
                                 SE
                                           tStat
                                                      pValue
                                         2.9623e-16
   (Intercept)
                 8.9658e-18
                                                      0.74922
   x1
   x2
                 -0.12443 0.14244 -0.87353 0.3898
                  -0.078681 0.13824 -0.56914 0.5738
Number of observations: 32, Error degrees of freedom: 28
Root Mean Squared Error: 0.171
R-squared: 0.0732, Adjusted R-Squared -0.0261
F-statistic vs. constant model: 0.737, p-value = 0.539
```

TECHNIQUE 2: Linear Regression

A better result in SAS

	An	alysis of V	ariance		
Source	DF	Sum of Squares	1100	F Value	Pr > F
Model	3	24.05390	8.01797	26.89	<.0001
Error	30	8.94610	0.29820		
Corrected Total	33	33.00000			

Root MSE	0.54608	R-Square	0.7289
Dependent Mean	8.88178E-16	Adj R-Sq	0.7018
Coeff Var	6.148314E16		

Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	1.84042E-15	0.09365	0.00	1.0000
ABORTION	1	0.73538	0.33050	2.23	0.0337
DOWJONES	1	-0.62842	0.35702	-1.76	0.0886
INCARCERATION	1	0.64438	0.19372	3.33	0.0023

TECHNIQUE 2: Linear Regression

Conclusion:

We are still not 100% sure about the significance of abortion but it is definitely not insignificant....

Thus, we need to study it further using Causal inference techniques

TECHNIQUE 3: Granger Causality

- Tested the direction for the cause and the effect by using Granger Causality
- Results were not ideal
- Tested for other variables and got similar results

GRANGER CAUSALITY RESULTS FOR ABORTION RATE & CRIME RATE

LAG	F-value(absolute)	P-value
1	11.036	0.0023
2	3.179	0.0575
3	5.061	0.0073
4	4.840	0.0063
5	3.329	0.0264
6	2.121	0.1112
7	3.475	0.0283
8	3.102	0.0557
9	2.708	0.1189
10	2.264	0.2716

GRANGER CAUSALITY RESULTS FOR CRIME RATE & ABORTION RATE

LAG	F-value(absolute)	p-value
1	0.010	0.9181
2	0.067	0.9351
3	1.482	0.2443
4	1.465	0.2481
5	1.038	0.4252
6	2.152	0.1070
7	1.637	0.2160
8	2.753	0.0763
9	1.948	0.2148
10	1.524	0.4025

TECHNIQUE: Counterfactual Analysis

- Semi-parametric difference in differences approach
- Terrible drawing incoming..
- Country-wide data, crimes by age

$$M = \begin{matrix} Before \\ After \end{matrix} \begin{pmatrix} d_{1,1} & d_{1,2} & d_{1,3} & d_{1,4} & d_{1,5} & d_{1,6} \\ d_{2,1} & d_{2,2} & d_{2,3} & d_{2,4} & d_{2,5} & d_{2,6} \end{pmatrix}$$

Fig. 6. Matrix for the initial values

$$\begin{aligned} &\forall i \in [0, 24 - a_1] \\ &difference_{1,i} = \frac{C_{y_2, a_2 + i} - C_{y_1, a_1 + i}}{C_{y_1, a_1 + i}} \\ &difference_{2,i} = \frac{C_{y_4, a_2 + i} - C_{y_3, a_1 + i}}{C_{y_3, a_1 + i}} \end{aligned}$$

Results

MATRIX 1: $y_1 = 1990$

a_1	Before	After	Difference
18	-0.06122298	-0.06549603	0.00427305
19	-0.06043459	-0.07568391	0.01524932
20	-0.05348453	-0.07452501	0.02104047
21	-0.06015527	-0.06952223	0.00936695
22	-0.05343184	-0.06730351	0.01387168
23	-0.06620941	-0.07644202	0.01023261

AVERAGE TREATMENT VALUES

Matrix	Year	TE
1	1990	0.0123
2	1991	-0.0459
3	1992	-0.0288
4	1993	-0.0292
5	1994	-0.0256
6	1995	0.033
Average Treatment Effect		-0.0066

$$delta_j = \frac{\sum_{i}^{len(matrix^j)}(matrix_{0,i}^j - matrix_{1,i}^j)}{len(matrix^j)}$$

average treatment effect (ATE) = mean(delta)

Future Work

- Structural Equation modelling can be applied if we have the right data
- Better counterfactuals may exist
 - o Australia, Russia
- Carry out this experiment in a controlled environment where abortion is still illegal.
- Apply this technique on other laws. Eg. Gun control

What we have learned about Causality?

- Granger Causality is a compass not a navigator
- Counterfactuals are hard to find
- Extremely valuable!

VS Machine Learning?

- Answering why something happens and not just when
- Maybe robots should be taught causality instead of simple pattern matching

"All the impressive achievements of deep learning amount to just curve fitting," - Judea Pearl

"Everything should be made as simple as possible, but not simpler."
- Albert Einstein

CODE AVAILABLE HERE - https://github.com/Det2sial/CausalInference

TABLE I ADF RESULTS FOR ABORTION RATES

	Before	After
Test statistic	1.6780	-4.6622
p-value	0.9981	0.0001
Critical Value (1%)	-3.6461	-3.6535
Critical Value (5%)	-2.9541	-2.9572
Critical Value (10%)	-2.6160	-2.6176

TABLE II
ADF RESULTS FOR DOW JONES INDEX

	Before	After
Test statistic	-0.1516	-2.5718
p-value	0.9440	0.0990
Critical Value (1%)	-3.7377	-3.7377
Critical Value (5%)	-2.9922	-2.9922
Critical Value (10%)	-2.6357	-2.6357

TABLE III
ADF RESULTS FOR INCARCERATION RATES

	Before	After
Test statistic	-2.1849	-2.2808
p-value	0.2117	0.1782
Critical Value (1%)	-3.6535	-3.6535
Critical Value (5%)	-2.9572	-2.9572
Critical Value (10%)	-2.6176	-2.6176

TABLE IV
ADF RESULTS FOR CRIME RATES

	Before	After
Test statistic	-0.9739	-3.4022
p-value	0.7834	0.0109
Critical Value (1%)	-3.6535	-3.7239
Critical Value (5%)	-2.9572	-2.9865
Critical Value (10%)	-2.6176	-2.6328