

Tipos de variáveis e escolha dos testes estatísticos

Ronald Moura

Tipo das variáveis

Dependente

Medida que depende do valor de outra medida variável

Independente

Fator ou condição que se acredita influenciar a variável dependente

Classe das variáveis

Teste de suposições

Testes para variáveis qualitativas nominais

¹Realizar o Teste de Fisher, caso o número de observações em uma casela seja menor que cinco.

Testes para variáveis qualitativas ordinais ou quantitativas sem distribuição normal

²Caso as amostras sejam pareadas, adicionar o argumento **paired = TRUE** na função.

³Realizar testes post-hoc: **dunn_test()**, para Kruskal-Walli e **wilcox_test()** para Friedman.

Testes para variáveis quantitativas com distribuição normal

⁴Adicionar o argumento paired = TRUE a função.

⁵Realizar testes post-hoc: **tukey_hsd().**

⁶Caso as variâncias não sejam homogêneas (vericando através do Teste de Levene (levene_test()), usar-se a função **welch_anova_test()**, seguido do **games_howell_test()**, como teste post-hoc.

Considerações sobre ANOVA

- Considerar remover outliers (ao menos os extremos), caso existam;
- A suposição de esfericidade será verificada automaticamente durante o cálculo do teste ANOVA usando a função R anova_test();
- O teste de Mauchly é usado internamente para avaliar a suposição de esfericidade;
- Ao usar a função get_anova_table() para extrair a tabela ANOVA, a correção de esfericidade Greenhouse-Geisser é aplicada automaticamente a fatores que violam a suposição de esfericidade.

Considerações sobre ANOVA

 Quando se quer verificar se há a interação entre duas, ou até três variáveis discretas independentes na distribuição da variável dependente, deve-se realizar análises do tipo two-way ANOVA ou three-way ANOVA.

Considerações sobre two-way ANOVA

- Caso a interação two-way seja significativa:
 - Realizar uma ANOVA separada entre a variável dependente e a primeira variável categórica, para cada grupo da segunda variável categórica;
 - Aplicando a função group_by() pela segunda variável categórica torna essa tarefa mais fácil;
- Caso se confirme significância nas análises ANOVA separadas, proceder com os testes pos-hoc para cada ANOVA, utilizando a função emmeans_test(), do pacote "emmeans".

Considerações sobre three-way ANOVA

- Caso a interação three-way seja significativa:
 - Realizar uma two-way ANOVA separada entre a variável dependente e as duas primeiras variáveis categóricas, para cada grupo da terceira variável categórica;
 - Aplicando a função group_by() pela terceira variável categórica torna essa tarefa mais fácil;
- Caso se confirme significância nas análises two-way ANOVA separadas:
 - Realizar uma ANOVA separada entre a variável dependente e a primeira variável categórica, para cada grupo da segunda variável categórica;
 - Aplicando a função group_by() pela segunda variável categórica torna essa tarefa mais fácil;
- Caso se confirme significância nas análises ANOVA separadas, proceder com os testes pos-hoc para cada ANOVA, utilizando a função emmeans_test(), do pacote "emmeans".