$$B(p,q) = \int_{0}^{q} t^{p-1} (1-t)^{q-1} dt$$

$$B(p_{i}q_{i}) = \int_{0}^{\infty} t^{p-1} (1-t)^{q-1} dt = \begin{vmatrix} x = 1-t \\ dx = -dt \end{vmatrix} =$$

B(pm, 9) = B(q, p+1) =
$$\frac{P}{P+q}$$
 B(q, p) = $\frac{P}{P+q}$ B(p, q)

Dowood:

Rachunek prawdopodobieństwa i statystyka

Lista zadań nr 2. Tydzień rozpoczynający się 9. marca

- Niech Σ będzie σ-ciałem zbiorów.
 - (a) Sprawdzić, że $\emptyset \in \Sigma$.
- (b) Zalóżmy, że $A_k \in \Sigma$, dla $k=1,2,3,\ldots$ Wykazać, że $\bigcap A_k \in \Sigma$.
- 2. Niech $\Omega = \{a, b, c\}$.

 - (a) Opisać σ -ciała zbiorów tej przestrzeni zdarzeń. (b) Podać przykład funkcji X,Y takich, że X jest zmienną losową, a Y nie jest zmienną losową.
- 3. Niech $\Omega=\{1,2,3,4,5\}$ oraz $S=\{1,4\}.$ Wyznaczyć najmniejsze $\sigma\text{-ciało}$ zbiorów zawierające S.
- 4. Wyznaczyć dystrybuantę i obliczyć wartość oczekiwaną zmiennej X o rozkładzie

$$x_i$$
 2 3 4 5 p_i 0.2 0.4 0.1 0.3

5. Dystrybuanta F zmiennej losowej X określona jest następująco:

Podać postać funkcji gęstości f(x).

- 6. Niech Xbędzie zmienną losową typu dyskretnego. Udowodnić, że $\mathrm{E}(aX+b)=a\;\mathrm{E}(X)+b.$
- 7. Niech X będzie zmienną losową typu ciąglego. Udowodnić, że E(aX + b) = a E(X) + b.
- 8. 2p. Sprawdzić, że
- ✓ (a) $B(p,q+1) = B(p,q) \frac{q}{p+q}$, (b) B(p,q) = B(p,q+1) + B(p+1,q).
- 9. 2
p. Udowodnić, że $\Gamma(p)$ $\Gamma(q)=\Gamma(p+q)$
B(p,q),gdzie $p,q\in\mathbb{R}^+$ (czyli wszystkie potrzebne całki

DEF. Funkcją beta nazywamy wartość całki

$$B(p,q) = \int_0^1 t^{p-1} (1-t)^{q-1} dt, \ p > 0, \ q > 0.$$

Witold Karczewski

