```
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
import pandas as pd
%matplotlib inline
from sklearn.model_selection import *
from sklearn.preprocessing import *
data_frame = pd.read_csv('winequality-red.csv', parse_dates=True)
```

data frame.head()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
	1 7.8	0.88		2.6	0.098		67.0		3.20	0.68	9.8	5
			0.00			25.0						
2	2 7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

data frame.groupby('quality').count().reset index()

	quality	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
0	3	10	10	10	10	10	10	10	10	10	10	10
1	4	53	53	53	53	53	53	53	53	53	53	53
2	5	681	681	681	681	681	681	681	681	681	681	681
3	6	638	638	638	638	638	638	638	638	638	638	638
4	7	199	199	199	199	199	199	199	199	199	199	199
5	8	18	18	18	18	18	18	18	18	18	18	18

```
data_frame['quality'].replace(to_replace={3: 0, 4: 1, 5: 2, 6: 3, 7: 4, 8: 5}, inplace=True)

X = data_frame[['fixed acidity','volatile acidity','citric acid','residual sugar','chlorides',
'free sulfur dioxide','total sulfur dioxide','density','pH','sulphates','alcohol']]

Y = data_frame['quality']

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=24)

s = StandardScaler()

X_train = s.fit_transform(X_train)

X_test = s.transform(X_test)

model = tf.keras.models.Sequential([
    keras.layers.Dense(units=128, input shape=(X train.shape[1],), activation='relu'),
```

https://colab.research.google.com/drive/1OK4AMWoO1ZK86nCHmNf1_AW9oIzET2Gz#printMode=true

```
keras.layers.Dense(units=64, activation='relu'),
 keras.layers.Dense(units=32, activation='relu'),
 keras.layers.Dense(units=6, activation='softmax')
model.compile(loss='sparse categorical crossentropy', optimizer='sgd', metrics=['accuracy'])
model.summary()
```

Model: "sequential 13"

Layer (type)	Output Shape	Param #
dense_45 (Dense)	(None, 128)	1536
dense_46 (Dense)	(None, 64)	8256
dense_47 (Dense)	(None, 32)	2080
dense_48 (Dense)	(None, 6)	198

Total params: 12,070 Trainable params: 12,070 Non-trainable params: 0

h = model.fit(X train, y train, validation data=(X test,y test), epochs=20, batch size=32)

```
Epoch 1/20
40/40 [============] - 1s 7ms/step - loss: 1.6777 - accuracy: 0.3972 - val loss: 1.5256 - val accuracy: 0.4625
Epoch 2/20
Epoch 3/20
40/40 [============] - 0s 3ms/step - loss: 1.2593 - accuracy: 0.5168 - val loss: 1.2221 - val accuracy: 0.4969
Epoch 4/20
40/40 [===========] - 0s 3ms/step - loss: 1.1910 - accuracy: 0.5457 - val loss: 1.1773 - val accuracy: 0.5250
Epoch 5/20
Epoch 6/20
Epoch 7/20
Epoch 8/20
40/40 [============= ] - 0s 3ms/step - loss: 1.0793 - accuracy: 0.5747 - val loss: 1.0914 - val accuracy: 0.5562
Epoch 9/20
40/40 [============] - 0s 3ms/step - loss: 1.0594 - accuracy: 0.5770 - val loss: 1.0774 - val accuracy: 0.5562
40/40 [============= ] - 0s 3ms/step - loss: 1.0409 - accuracy: 0.5817 - val loss: 1.0657 - val accuracy: 0.5625
Epoch 12/20
40/40 [============] - 0s 3ms/step - loss: 1.0102 - accuracy: 0.5848 - val loss: 1.0480 - val accuracy: 0.5781
Epoch 13/20
Epoch 14/20
40/40 [============] - 0s 4ms/step - loss: 0.9866 - accuracy: 0.5989 - val loss: 1.0367 - val accuracy: 0.5844
Epoch 15/20
40/40 [============] - 0s 4ms/step - loss: 0.9771 - accuracy: 0.6091 - val loss: 1.0331 - val accuracy: 0.5844
Epoch 16/20
40/40 [============] - 0s 3ms/step - loss: 0.9675 - accuracy: 0.6106 - val loss: 1.0304 - val accuracy: 0.5844
Epoch 17/20
40/40 [=============] - 0s 5ms/step - loss: 0.9606 - accuracy: 0.6138 - val loss: 1.0279 - val accuracy: 0.5813
40/40 [============] - 0s 4ms/step - loss: 0.9527 - accuracy: 0.6177 - val loss: 1.0264 - val accuracy: 0.5844
Epoch 19/20
```

```
40/40 [========] - 0s 6ms/step - loss: 0.9468 - accuracy: 0.6255 - val_loss: 1.0248 - val_accuracy: 0.5875
Epoch 20/20
40/40 [=======] - 0s 4ms/step - loss: 0.9412 - accuracy: 0.6224 - val_loss: 1.0233 - val_accuracy: 0.5844

plt.plot(h.history['loss'], label='loss')
plt.plot(h.history['val_loss'], label='val_loss')
plt.legend()
plt.show()
```



```
ModelLoss, ModelAccuracy = model.evaluate(X_test, y_test)
```

```
print("Loss")
print(ModelLoss)
print("Accuracy")
print(ModelAccuracy)
```

```
10/10 [============] - 0s 3ms/step - loss: 1.0233 - accuracy: 0.5844 Loss  
1.0233267545700073  
Accuracy  
0.5843750238418579
```

×