

Areas of Parallelograms and Triangles Ex 15.3 Q7

Answer:

Given:

ABCD is a trapezium with AB||DC

To prove: Area of $\triangle AOD = Area$ of $\triangle BOC$

Proof:

We know that 'triangles between the same base and between the same parallels have equal area'

Here \triangle ABC and \triangle ABD are between the same base and between the same parallels AB and DC.

Therefore Area (ΔABC) = Area (ΔABD)

 $\Rightarrow ar(\Delta ABC) - ar(\Delta AOB) = ar(\Delta ABD) - ar(\Delta AOB)$

 \Rightarrow ar($\triangle AOD$) = ar($\triangle BOC$)

Hence it is proved that $ar(\Delta AOD) = ar(\Delta BOC)$

Areas of Parallelograms and Triangles Ex 15.3 Q8

Answer:

Given:

(1) ABCD is a parallelogram,

(2) ABFE is a parallelogram

(3) CDEF is a parallelogram

To prove: Area of $\triangle ADE = Area$ of $\triangle BCF$

Proof:

We know that," opposite sides of a parallelogram are equal"

Therefore for

Parallelogram ABCD, AD = BC

Parallelogram ABFE, AE = BF

Parallelogram CDEF, DE = CF.

Thus, in $\triangle ADE$ and $\triangle BCF$, we have

AD = BC

AE = BF

DE = CF

So be SSS criterion we have

 $\triangle ADE \cong \triangle BCF$

This means that $ar(\Delta ADE) = ar(\Delta BCF)$

Hence it is proved that $ar(\Delta ADE) = ar(\Delta BCF)$

******* END *******