# 딥러닝팀

# 1팀

정승민 변석주 이정환 송승현 최용원

# CONTENTS

- 1. 딥러닝
- 2. 퍼셉트론
  - 3. 신경망
- 4. 성능 향상 기법

# 1

# 딥러닝

# 머신러닝 Machine Learning



인간이 다양한 경험을 기반으로 새로운 행동 패턴과 지식을 습득하듯, 컴퓨터가 데이터형태로 얻는 경험에서 <u>스스로</u> 학습하고 지식을 추론하는 것

# 머신러닝 Machine Learning



머신러닝은 지도/비지도와 강화학습으로 나눌 수 있으며, 정확한 결과를 예측하도록 다양한 알고리즘을 통해 학습

## 머신러닝 Machine Learning



머신러닝에서 발전된 형태로 사람이 학습할 <mark>데이터를 입력하지 않아</mark>도 **스스로 학습하고 예측**  1

#### 딥러닝

# 머신러닝의 한계

차원의 저주



비정형 데이터 적용의 한계 고차원 공간에서 성능 하락

# 머신러닝의 한계

차원의 저주



자료의 차원이 높을 때 해결하기 어려운 과제 변수의 수 증가 → 구성 요소의 수 증가 (지수적)

# 머신러닝의 한계

국소 일치성



함수가 작은 영역 안에서는 크게 변하면 안됨

## 머신러닝의 한계

국소 일치성



위 예시에서는 <mark>주기함수</mark> 사용시 해결 가능 But 일반적으로 해결 가능한 방법은 아님

# 머신러닝의 한계

다양체 가설



다양체:국소적으로 유클리드 공간과 닮은 위상공간

고차원을 저차원에서 표현 텍스트, 이미지 데이터에서 두드러짐

## 머신러닝 VS 딥러닝

End-to-end learning

Input







Output

Car Not a car

머신러닝은 Feature Extraction 과정에 따라 결과가 천차만별로 달라짐

#### 머신러닝 VS 딥러닝

End-to-end learning

딥러닝은 Feature Engineering의 중요성이 낮아,

사람이 개입하지 않아도 된다는 강점을 가짐



# 머신러닝 VS 딥러닝

딥러닝 활용 사례

지도학습



얼굴 인식

질병 진단

비지도학습



#### 강화학습



# 2

# 퍼셉트론

# 퍼셉트론

Perceptron



신경망의 최소 단위이자

뉴런을 수학적으로 모델링한 것

## 퍼셉트론

#### Perceptron



뉴런과 같이 다수의 입력에 대해 하나의 출력을 반환

#### 퍼셉트론

#### Perceptron



뉴런과 같이 다수의 입력에 대해 하나의 출력을 반환

Perceptron

$$g_w(x) = \begin{cases} 0\left(\sum_{i=1}^n w_i x_i + b \le \theta\right) \\ 1\left(\sum_{i=1}^n w_i x_i + b \ge \theta\right) \end{cases}$$



가중합을 계산한 후 계단함수를 통해 0 혹은 1의 출력값을 반환

#### 퍼셉트론

동작 알고리즘

$$w_{j+1}$$
: =  $w_j + a(y^{(i)} - g_w(x^{(i)}))x_j^{(i)}$   
 $(x^{(i)}, y^{(i)})$ :  $x$ 와  $y$ 의  $i$ 번째 관측치  
 $x_j^{(i)}$ :  $i$ 번째 관측치  $x$  중  $j$ 번째  $x$   
 $w_j$ :  $x_j$ 와 곱해지는 가중치  
 $y^{(i)} - g_w(x^{(i)})$ : 오차

1.  $x_i$ 를  $g_w(x)$ 에 대입해 예측값 도출

2.  $w_j$  업데이트  $(w_{j+1} =$ 예측값 - 실제  $y^{(i)} + w_j)$ 3. 각 관측치마다 동일 과정 반복

논리 연산과 한계



$$w_1 x_1 + w_2 x_2 - b = 0$$

AND, OR의 논리 문제 해결 가능

# 퍼셉트론

논리 연산과 한계

XOR 문제 해결 불가 선형 모델의 한계



논리 연산과 한계

$$s_1 = w_{11} x_1 + w_{12} x_1 - b = 0$$
  
$$s_2 = w_{21} x_1 + w_{22} x_1 - b = 0$$

2개의 퍼셉트론을 이용해 해결



**퍼셉트론** 논리 연산과 한계

선영 모델의 안계

 $v_1 \, z_1 + v_2 \, z_2 - b = 0$ 



$$s_1 = w_{11} x_1 + w_1$$
해결책  $b$  다층 퍼셉트론 XOR  $s_2 = w_1 x_1 + w_2 x_1 - b = 0$  기존 좌표  $(x_1, x_2)$ 의 변환 :  $z_1 = f(s_1), z_2 = f(s_2)$  XOR 문제 해결선형적인 구분선 작성 가능

 $Z_2$ O  $Z_1$ 

**퍼셉트론** 논리 연산과 한계



$$s_1 \neq w_{11} x_1 + w_1$$
해결책  $b$  다층 퍼셉트론  $\times$  XOR

$$S_2 = W$$
기존 좌표  $(x_1, x_2)$ 의 변환 :  $z_1 = f(s_1), z_2 = f(s_2)$ 

XOR 문제 해결선형적인 구분선 작성 가능

선영 모델의 한계



#### 다층 퍼셉트론

Multi-layer Perceptron



여러 개의 퍼셉트론을 쌓아 올린 형태

심층 순방향 신경망 (deep feedforward [neural] network)

# 다층 퍼셉트론

퍼셉트론을 여러 층에 걸쳐 쌓은 형태



#### 다층 퍼셉트론

1 번째 노드의 연산

- 1. input에 가중치 부여
- 2. 입력과 가중치를 모두 곱해 합산
- 3. 시그모이드 함수에 통과
- 4. 출력값을 다음 노드에 전달
- 5. 2번째 노드에 대해 반복…



#### 다층 퍼셉트론

1 번째 노드의 연산

- 1. input에 가중치 부여
- 2. 입력과 가중치를 모두 곱해 합산
- 3. 시그모이드 함수에 통과
- 4. 출력값을 다음 노드에 전달
- 5. 2번째 노드에 대해 반복…



#### 다층 퍼셉트론

1 번째 노드의 연산

- 1. Input 에 가중치 부여
- 2. 입력과 가중치를 모두 곱해 합산
- 3. 시그모이드 함수에 통과
- 4. 출력값을 다음 노드에 전달
- 5. 2번째 노드에 대해 반복…



#### 다층 퍼셉트론

1 번째 노드의 연산

- 1. input에 가중치 부여
- 2. 입력과 가중치를 모두 곱해 합산
- 3. 시그모이드 함수에 통과
- 4. 출력값을 다음 노드에 전달
- 5. 2번째 노드에 대해 반복…

inputs

$$y_1 = g\left(\sum_{i=1}^4 w_{1i} x_i\right) = g(w_1^T x)$$
 $w_3$ 
 $w_4 = 2 번째 노드의 input$ 

#### 다층 퍼셉트론

2 번째 노드의 연산

- 1. input에 가중치 부여
- 2. 입력과 가중치를 모두 곱해 합산
- 3. 시그모이드 함수에 통과
- 4. 출력값을 다음 노드에 전달
- 5. 2번째 노드에 대해 반복…

1번째 노드의 출력값이 2번째 노드의 입력값으로



**다층 퍼셉트론** 노드의 연산



1. 입력(1 포함)에 가중치 부여 연산 결과 weighted sum
2. 입력과 가중치를 모두 곱해 합산
3. 계단 함수에 통과 최종 출력값 > 임계값 : 1 Σ
4. 출력값을 다음 노드에 최종 출력값 ≤ 임계값 : 0
5. 다음 노드에 대해 반복…

# 3

# 신경망

# 신경망

# 신경망

**Neural Network** 



생물의 뇌에서 일어나는 학습을 본뜬 계산모형

# 신경망

# 순전파

Feedforward Propagation



데이터를 계산하여 입력층부터 출력층까지 전달하는 과정

#### 활성화 함수

**Activation Function** 





가중합이 임계치를 넘었을 때 출력을 반환 함수의 <mark>비선형성</mark> 부과하는 역할

#### 활성화 함수

시그모이드 함수



$$\sigma(x) = \frac{1}{1 + e^{-x}}$$



기초적인 활성화 함수 미분이 가능하여 <mark>역전파</mark> 가능 0과 1 사이의 값을 가짐

#### 활성화 함수

하이퍼볼릭 탄젠트 함수



$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$tanh(x) = 2\sigma(2x) - 1$$



-1과 1 사이의 값을 가짐 0 근처에서 벗어나면 미분값이 0으로 수렴 지수함수 계산으로 인해 연산이 느림

#### 활성화 함수

ReLU(Rectified Linear Unit) 함수



은닉층에 주로 사용 기울기 소실 문제 해결

$$f(x) = \max(0, x)$$



Knockout Problem 발생

#### 활성화 함수

Leaky ReLU/ PReLU / Randomized Leaky ReLU



#### Leaky ReLU

Knockout Problem 해결 PReLU는 매개변수 a를 직접 학습



#### Randomized

노드별로 a를 다르게 초기화 과적합 방지

#### 활성화 함수

Leaky ReLU/ PReLU / Randon ed Leaky ReLU



#### Leaky ReLU

Knockout Problem 해결 PReLU는 매개변수 a를 직접 학습

#### Randomized

노드별로 a를 다르게 초기화 과적합 방지

#### 활성화 함수

Leaky ReLU/ PReLU / Randon ed Leaky ReLU



Leaky ReLU

**ELU** Randomized

Knockout Problem 해결 PReLU는 매개변수 a를 직접 학습

노드별로 a를 다르게 초기화 과적합 방지

#### 활성화 함수

ELU 함수



Knockout Problem 해결

음수 영역에서 비선형적

$$f(x) = \begin{cases} x & \text{if } x > 0\\ \alpha(e^x - 1) & \text{if } x \le 0 \end{cases}$$
Default alpha = 1



ReLU와 비슷한 성능을 보임 지수함수로 인한 연산량 증가

#### 활성화 함수

소프트맥스(Softmax) 함수



$$p_{j} = \frac{e^{z_{j}}}{\sum_{k=1}^{K} e^{z_{k}}}$$
 where j is # of input, j = 1, 2, ..., K

 $\subseteq$ 

다중 분류에 사용

반환된 값을 확률처럼 해석 가능

Cross entropy 함수를 사용해 오차 계산 가능

#### 손실 함수

Loss Function





예측 값과 실제 값의 차이를 수치화하는 함수

#### 손실 함수

평균 제곱 오차(Mean Squared Error, MSE)



$$L(\hat{y};\theta) = \frac{1}{2n} \sum_{k=1}^{n} (y_k - \widehat{y_k})^2$$

1 은 미분했을 때 계산의 편의성을 위해서



회귀 문제에서 주로 사용

Convex하기 때문에 언제나 극소에서 최솟값을 가짐

#### 손실 함수

교차 엔트로피 오차(Cross Entropy Loss)



$$L(\hat{y}; \theta) = -\sum_{i=1}^{\text{output}} y_i \log \hat{y}_i$$

 $\square$ 

분류 문제에서 주로 사용

정답과 예측값의 차이가 커질수록 큰 오차 반환

### 역전파

**Back Propagation** 



#### 경사하강법

#### **Gradient Descent**



$$x_{i+1} = x_i - \alpha \frac{\partial f(x)}{\partial x}$$

$$W \leftarrow W - \alpha \left( \frac{\partial L}{\partial w} \right)$$

$$b \leftarrow b - \alpha \left( \frac{\partial L}{\partial b} \right)$$

손실함수 값의 기울기를 통해 가중치 업데이트 손실함수가 최저가 될 때 학습 종료

#### 연쇄법칙

Chain Rule



다수의 층으로 구성된 딥러닝 모델 특성 상 미분의 <mark>연쇄법칙</mark>을 통해 손실함수의 편미분 값 전달

#### 확률적 경사 하강법

Stochastic Gradient Descent

Stochastic Gradient Descent

**Gradient Descent** 



모든 데이터가 아닌 batch 단위로 경사하강법 진행



학습 속도 증가, 최적값에 근사적으로 도달

#### 모멘텀: Momentum





# 관성에 대한 항 $V(t) = m * V(t-1) - \alpha \frac{\partial}{\partial w} Cost(w)$ W(t+1) = W(t) + V(t)

확률적 경사 하강법에 관성의 아이디어 도입



Local minima 해소

#### 다양한 Optimizer





다양한 Optimizer가 존재하며 각 기법마다 장단점 존재

#### Optimizer에서 발생하<del>는</del> 문제

Local Minima



함수에 극소 지점이 여러 개 존재할 때 미분계수가 0인 곳에서 학습 종료

### Optimizer에서 발생하는 문제

Saddle Point



모든 방향으로 기울기가 0이면서 극점이 아닌 점 고차원 함수에서 주로 나타나는 문제

#### Optimizer에서 발생하는 문제

기울기 소실 문제 (Gradient Vanishing Problem)

#### 경사 하강법

$$x_{i+1} = x_i - \alpha \frac{df}{dx}(x_i)$$

$$\frac{df}{dx}(x_i) = \frac{df}{dz} \frac{dz}{dy} \frac{dy}{dx} = 0.2 \times \dots \times 0.8 \approx 0$$

#### Optimizer에서 발생하는 문제

기울기 소실 문제 (Gradient Vanishing Problem)

#### 경사 하강법

$$x_{i+1} = x_i - \alpha \frac{df}{dx}(x_i)$$

$$\frac{df}{dx}(x_i) = \frac{df}{dz}\frac{dz}{dy}\frac{dy}{dx} = 0.2 \times \dots \times 0.8 \approx 0$$





역전파 마지막 노드에서 연쇄법칙으로 인해 기울기가 0에 가까워짐

#### Optimizer에서 발생하는 문제

기울기 소실 문제 (Gradient Vanishing Problem)

#### 시그모이드 함수의 미분값



tanh 함수의 미분값



도함수의 최댓값 0.25 0을 벗어나면 미분값이 0에 수렴 도<mark>함수</mark>의 최댓값 1 시그모이드 함수와 같은 문제 발생

#### Optimizer에서 발생하는 문제

기울기 소실 문제 (Gradient Vanishing Problem)





임계점을 넘었을 때 상대적으로 큰 미분 계수를 가지고 있어 기울기 소실문제 해소 4

성능 향상 기법

#### 가중치 초기화

Weight Initialization





초기값 설정에 따라 수렴 속도 차이 학습 시작 시점의 <mark>가중치 설정</mark>의 중요성

#### 가중치 초기화

Weight Initialization

#### Zero Initialization

파라미터의 가중치 값을 0으로 초기화



역전파로 갱신했을 때 같은 가중치의 값 각 노드 역할의 중복성 Random Initialization

파라미터의 값을 정규분포 혹은 균일분포를 따르는 값으로 설정



시그모이드 활성화 함수 사용 시 기울기 소실 문제 발생

#### 가중치 초기화

Weight Initialization

Zero Initialization

파라미터의 가중치 값을 0으로 초기화



역전파로 갱신했을 때 같은 가중치의 값 각 노드 역할의 중복성

#### Random Initialization

파라미터의 값을 정규분포 혹은 균일분포를 따르는 값으로 설정



시그모이드 활성화 함수 사용 시 기울기 소실 문제 발생

#### 가중치 초기화

Weight Initialization

#### Xavier Initialization

 $\frac{2}{\sqrt{n+m}}$ 을 표준편차로 하는 정규분포로 초기화



n: 이전 은닉층 노드 m: 현재 은닉층 노드



Sigmoid 활성화 함수 사용 시 층의 노드 개수 반영하여 <mark>강건 (robust)</mark>

 $\sqrt{\frac{2}{n}}$ 을 표준편차로 하는

정규분포로 초기화





ReLU 활성화 함수 사용 시 활성값의 분포 치우침 방지

#### ▶ 가중치 초기화

Weight Initialization

 $\frac{2}{\sqrt{n+m}}$ 을 표준편차로 하는

정규분포로 초기화





층의 노드 개수 반영하여 강건 (robust) Sigmoid 활성화 함수 사용 시

#### He Initialization

 $\sqrt{\frac{2}{n}}$ 을 표준편차로 하는

정규분포로 초기화





ReLU 활성화 함수 사용 시 활성값의 분포 치우침 방지

#### 드롭 아웃

Dropout



(a) Standard Neural Net



(b) After applying dropout.

l 일정한 비율의 노드를 <mark>버리고</mark> 학습하는 방법



여러 모델 앙상블한 효과 과적합 방지

#### 배치 정규화

Batch





전체 데이터 셋이 1000개를 10개로 나누면 한 batch당 100개의 데이터!

학습 데이터가 많은 경우 한 번에 계산이 어려워 전체 데이터셋을 batch 단위로 나눔

#### 배치 정규화

**Batch Normalization** 



batch별 데이터를 평균과 분산으로 정규화 예측과정에서는 학습 시 얻은 batch의 <mark>평균</mark> 사용

#### Layer Normalization



feature 차원에서 정규화 진행
Sequence에 강건
Sequential 데이터를 다루는 RNN에 적용

## THANK YOU