

Arran Warden

Steady Dimensionless Set-up

We investigate the effect of different pressure distributions on the small-amplitude deformations of a long thin-walled elastic tube. We adopt the physical set up of Whittaker et~al~(1) involving an initially axially uniform elliptical tube undergoing an axial pre-stress \tilde{F} . The tube is deformed by a transmural pressure \tilde{P} (the pressure difference between the inside and outside of the tube). Whittaker et~al~(1) showed that the dominant mechanism that balance the pressure are those of azimuthal bending and axial tension.

We follow Netherwood & Whittaker (2) to include azimuthal variation in the pressure, which is assumed to be even and π -periodic. This corresponds to mirror symmetry in the axis of the cross-section, so we restrict the azimuthal domain to $\tau \in \left(0, \frac{\pi}{2}\right)$. Applications of this model include predicting how veins, arteries and the airways collapse under pressure.

Fig 1: The initial elliptical configuration of a long thin-walled elastic tube under prestress. The tube will undergo deformations about this base-state.

Fig 2: The (τ, z) co-ordinate system. Here τ is measured around the midplane of the tube, and z is aligned with the tubes central axis.

Governing Equations for Area Change

Netherwood and Whittaker (2) showed that the change in cross-sectional area of the tube is given by $\ _{\infty}$

$$A - \bar{A} = \sum_{n=1}^{\infty} A_n ,$$

with each A_n satisfying:

$$\tilde{F} \frac{d^2 A_n}{dz^2} - \lambda_n A_n = \frac{-Q_n t_n}{\bar{A}}$$
 with $A_n = 0$ on $z = 0,1$

an

$$Q_n = -\tanh^2 2\sigma_0 \int_0^{\frac{\pi}{2}} \frac{1}{h} \frac{\partial}{\partial \tau} \left(\frac{\tilde{P}(\tau, z)}{\bar{B}(\tau)} \right) Y_n(\tau) d\tau$$

Here σ_0 is a measure of the ellipticity of the tube and the azimuthal functions $Y_n(\tau)$ and constants t_n are known and were obtained numerically by Netherwood and Whittaker (2) for each n. Once the A_n 's have been determined, the deformations in the tube can be obtained by following the methodology of Netherwood and Whittaker (2).

The problem has been formulated in terms of A_n because for a fluid-conveying tube (e.g., blood vessels and the airways), changes in cross-sectional area displace fluid particles, resulting in fluid-structure interaction.

Analytic Solution for a Cylindrical Tube

For an initially cylindrical tube we showed that imposing a transmural pressure $\tilde{P} = \gamma \cos(2n\tau)$ results in $Q_m = 0$ for all $m \neq n$. This meant we could determine the deformation analytically.

$$\underline{r} = a \begin{pmatrix} \cos \tau \\ \sin \tau \\ \ell z \end{pmatrix} + \frac{2n\epsilon a\gamma}{\lambda_n (1+4n^2)} \left(2n\cos(2n\tau) \begin{pmatrix} \cos \tau \\ \sin \tau \\ 0 \end{pmatrix} - \sin(2n\tau) \begin{pmatrix} -\sin \tau \\ \cos \tau \\ 0 \end{pmatrix} \right) \left(1 - \frac{\cosh\left(\sqrt{\frac{\lambda_n}{\tilde{F}}}\left(z - \frac{1}{2}\right)\right)}{\cosh\left(\sqrt{\frac{\lambda_n}{4\tilde{F}}}\right)} \right)$$

Deformed from the

 $\tilde{P} = 5\cos(2\tau)$

 $\tilde{P} = 150\cos(6\tau)$

 $\tilde{P} = 40\cos(4\tau)$

Fig 4: Cross-sectional deformations of an initially cylindrical tube using $\tilde{P} = \gamma \cos(2n\tau)$, with $\gamma = 5$, 40 and 150 respectively and $\tilde{F} = 1$. Values were chosen to exaggerate the deformation for better visualisation.

We also found forms of transmural pressure resulting in $Q_m=0$ for all $m\neq n$ for an initially elliptical tube, however this needed to be determined numerically, and so were the resulting deformations.

Solution for Elliptical Tube

Key
Undeformed: Deformed from the transmural pressures: $\tilde{P} = 3\cos(2\tau) \qquad \tilde{P} = 6\cos(2\tau) \qquad \tilde{P} = 9\cos(2\tau)$

Fig 3: Cross-sectional deformations induced by azimuthally non-uniform transmural pressure with $\sigma_0=0.3,0.6$ and $\tilde{F}=1$.

Sharp Change in Transmural Pressure

We argued that Q_n is well behaved for pressure distributions with a discontinuous first derivative (i.e. for sharp changes in pressure). This was done by splitting up Q_n and summing over the domain.

As an example, a transmural pressure like in figure 5 squeezes the tube with maximum inward pressure at $\tau=\frac{\pi}{4},\frac{3\pi}{4},\frac{5\pi}{4},\frac{7\pi}{4}$ creating a pinching like scenario.

Fig 5: A pressure distribution containing a sharp change at $\tau = \frac{\pi}{4}$ (left) and the associated cross-sectional deformation (right).

References

(1) R. J. Whittaker, M. Heil, O. E. Jensen and S. L. Waters, A rational derivation of a tube law from shell theory, Q. J. Mech. Appl. Math. 63 (2010) 465–496.

(2) Netherwood and Whittaker (2023) – A New Solution for the Deformations of an Initially Elliptical Elastic-walled Tube. Q. J. Mech. Appl. 10.1093

Acknowledgements

Thanks to Daniel Netherwood, Dr. Richard Purvis along with the UEA MTH and BIO departments.

This project was funded by Wellcome.