Name - Elakala Sai Kumar Phone - +917989089283

Business Case: Target SQL

1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset

I want to use GCP environment (Big Query) to work on this dataset. From the schema I can determine that order table is the main table which is used to establish relation with other tables with the help of primary key etc.,

1.1. Data type of columns in a table

To determine what datatype a column belongs to we have built in analysis in GCP which determines datatype of **each and every column in a table**. Similar to the below screenshot.

1.2. Time period for which the data is given

From the question I can understand that dataset I have has the records from the year **2016 to 2018.**

1.3. Cities and States of customers ordered during the given period

For knowing the cities and state of a customer with in a date time range I have used left join between customers and order table.

2. In-depth Exploration:

One possible way of analysis we can do in this section is with Date-Time analysis

2.1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

I had considered month from order_purchase_timestamp column to analyse the seasonal trend in the dataset with the number of orders customers purchased. In my analysis I can say trend in inclined in the **last quarter of the year for 2017 i.e.,** (9,10,11) months and for 2018 its (5,6,7)months.

2.2 What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

I had considered hour from order_purchase_timestamp column to analyse the times of the day in which number of orders made by customer. In my analysis I can say customers are more interested to place orders from Morning 10:00 A.m. to Night 10:00 P.M.

3. Evolution of E-commerce orders in the Brazil region:

3.1. Get month on month orders by states

To know the month on month order by states I have applied Date time and order by function here and also applied mom calculation to know the difference.

select t.* from (select *, round((((Total/mom)-1)*100),1) as mom_percentage from(select *, lag(Total) over(partition by State order by year,month asc) as mom from (select c.customer_state as State,extract(year from o.order_purchase_timestamp) as Year, extract(month from o.order_purchase_timestamp) as Month, count(o.order_id) as Total from `chrome-copilot-369107.targetsql_1.orders` as o inner join `chrome-copilot-369107.targetsql_1.customers` as c on o.customer_id=c.customer_id where o.order_purchase_timestamp is not null group by State,Year,Month)base1)base2 order by Year,Month,State asc)t where t.mom is not null

3.2. Distribution of customers across the states in Brazil

- 4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
 - 4.1. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) You can use "payment_value" column in payments table

select * , round(((sumTotal-Lag_check)/Lag_check)*100,3) as percentage from (select extract(date from o.order_purchase_timestamp) as Day,extract (YEAR from o.order_purchase_timestamp) as year,extract(month from o.order_purchase_timestamp) as month,price,sum(price) as sumTotal, round(lag(sum(price)) over (order by extract(year from o.order_purchase_timestamp) ASC),0) as Lag_check from `chrome-copilot-369107.targetsql_1.order_items` oi inner join `chrome-copilot-369107.targetsql_1.payments` p on oi.order_id = p.order_id inner join `chrome-copilot-369107.targetsql_1.orders` o on oi.order_id=o.order_id where extract(month from o.order_purchase_timestamp) between 1 and 8 group by price,month,year,order_purchase_timestamp order by order_purchase_timestamp asc)

1. 4.2. Mean & Sum of price and freight value by customer state

```
select customer_state,round(sum(price+freight_value),2) as

Sum_Value,round(avg(price+freight_value),2) as Mean_Value from `chrome-copilot-

369107.targetsql_1.order_items` oi inner join `chrome-copilot-369107.targetsql_1.orders` o on o.order_id

= oi.order_id inner join `chrome-copilot-369107.targetsql_1.customers`c on c.customer_id =

o.customer_id group by c.customer_state
```


5. Analysis on sales, freight and delivery time

5.1. Calculate days between purchasing, delivering and estimated delivery

select order_id,extract(DATE FROM DATETIME(order_purchase_timestamp)) AS

Purchased,extract(DATE FROM DATETIME(order_delivered_customer_date)) AS

Delivered,extract(DATE FROM DATETIME(order_estimated_delivery_date)) AS

Estimated_delivery,DATE_DIFF(order_estimated_delivery_date,order_delivered_customer_date,DAY)

AS DIFFERENCE from `chrome-copilot 369107.targetsql_1.orders` where order_purchase_timestamp is

not null and order_delivered_customer_date is not null and order_estimated_delivery_date is not null

5.2(a)

Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:

select order_id,extract(DATE FROM DATETIME(order_purchase_timestamp)) AS

Order_Purchased,extract(DATE FROM DATETIME(order_delivered_customer_date))

ASOrder_Delivered,date_diff(order_purchase_timestamp,order_delivered_customer_date,Day) as

Time_To_Delivery from `chrome-copilot 369107.targetsql_1.orders`where

order_delivered_customer_date is not null

order by Order_Purchased,Order_Delivered asc limit 100

5.2(b)

diff_estimated_delivery = order_estimated_delivery_dateorder_delivered_customer_date select order_id,extract(DATE FROM DATETIME(order_purchase_timestamp)) AS Order_Purchased, extract(DATE FROM DATETIME(order_delivered_customer_date)) AS Order_Delivered, date_diff(order_estimated_delivery_date,order_delivered_customer_date,Day) as diff_estimated_delivery from `chrome-copilot-369107.targetsql_1.orders` where order_delivered_customer_date is not null order by Order Purchased,Order Delivered asc limit 100

2 e 3 d 4 f	extract(DATE FR late_diff(order from <u>`chrome-co</u>	ROM DATETIME(or _estimated_de: opilot-369107.1	rder_delivered_ livery_date,ord	customer_date der_delivered_d ders` where ord		-
7						_
Quer	y results					
JOB INFORMATION RESULTS			JSON	JSON EXECUTION DETAILS EXEC		N GRAPH PREVIEW
Row	order_id		Order_Purchase	Order_Delivered	diff_estimated_delivery	
1	bfbd0f9bdef8430	02105ad712d	2016-09-15	2016-11-09	-36	
2	cd3b8574c82b42	2fc8129f6d50	2016-10-03	2016-10-14	39	
3	3b697a20d9e427646d925679		2016-10-03	2016-10-26	0	
4	be5bc2f0da14d8071e2d45451		2016-10-03	2016-10-27	10	
5	d207cc272675637bfed0062ed		2016-10-03	2016-10-31	22	
6	ef1b29b591d31d57c0d733746		2016-10-03	2016-11-01	23	
7	a41c8759fbe7aab36ea07e038		2016-10-03	2016-11-03	25	
8	ae8a60e4b03c5a	a4ba9ca0672c	2016-10-03	2016-11-03	27	
9	65d1e226dfaeb8	cdc42f66542	2016-10-03	2016-11-08	16	
10	700074570057-	f1bac7d25336	2016-10-04	2016-10-11	49	

5.3 Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

```
SELECT C.customer state,
AVG(OI.freight_value) AS freight_avg_value,
AVG(BASE1.time_to_delivery) AS avg_time_to_delivery,
AVG(BASE1.diff_estimated_delivery) AS avg_diff_estimated_delivery
FROM `chrome-copilot-369107.targetsql_1.customers`AS C
JOIN
(SELECT *,
TIMESTAMP_DIFF(order_delivered_customer_date,
                                                    order_purchase_timestamp,
                                                                                  DAY)
                                                                                            AS
time_to_delivery,
TIMESTAMP_DIFF(order_estimated_delivery_date,
                                                   order_purchase_timestamp,
                                                                                  DAY)
                                                                                            AS
diff estimated delivery,
FROM `chrome-copilot-369107.targetsql_1.orders`
WHERE order_status = 'delivered') AS BASE1 ON C.customer_id = BASE1.customer_id JOIN
`chrome-copilot-369107.targetsql_1.order_items` AS OI ON BASE1.order_id = OI.order_id
GROUP BY C.customer_state;
```


5.5. Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

```
SELECT C.customer_state, ROUND(AVG(OI.freight_value), 2) AS average_freight_value,FROM

`chrome-copilot-369107.targetsql_1.customers` AS C JOIN

(SELECT*,

FROM `chrome-copilot-369107.targetsql_1.orders`

WHERE order_status = 'delivered') AS BASE1 ON C.customer_id = BASE1.customer_id

JOIN
```

`chrome-copilot-369107.targetsql_1.order_items` AS OI ON BASE1.order_id = OI.order_id GROUP BY C.customer_state

ORDER BY AVG(OI.freight_value) DESC LIMIT 5;

```
JOIN
           FROM <a href="https://chrome-copilot-369107.targetsql_1.orders">chrome-copilot-369107.targetsql_1.orders</a>
WHERE order_status = 'delivered') AS BASE1 ON C.customer_id = BASE1.customer_id
    chrome-copilot-369107.targetsql_1.order_items   AS OI ON BASE1.order_id = OI.order_id
GROUP BY C.customer_state
    ORDER BY AVG(OI.freight_value) DESC LIMIT 5;
Query results
JOB INFORMATION
                        RESULTS
                                                    EXECUTION DETAILS
                                                                               EXECUTION GRAPH PREVIEW
                                        JSON
                                      avg_freight_valu
    customer_state
  1
       ΡВ
                                             43.09
  2
       RR
       RO
                                             41.33
  3
  4
       AC
                                             40.05
```

5.6. Top 5 states with highest/lowest average time to delivery

```
SELECT B.customer_state,
AVG(DATE_DIFF (A.order_delivered_customer_date, A.order_purchase_timestamp, DAY)) as
avg_time_taken_for_delivery
from `chrome-copilot-369107.targetsql_1.orders` as A inner join
`chrome-copilot-369107.targetsql_1.customers`as B ON
A.customer_id = B.customer_id
group by B.customer_state
order by AVG(ABS(DATE_DIFF (A.order_delivered_customer_date, A.order_purchase_timestamp,
DAY))) desc
limit 5
     1 SELECT B.customer_state,
    2 AVG(DATE_DIFF (A.order_delivered_customer_date, A.order_purchase_timestamp, DAY)) as avg_time_taken_for_delivery
    3 from <a href="mailto:chrome-copilot-369107.targetsql_1.orders">chrome-copilot-369107.targetsql_1.orders</a> as A inner join
        <u>`chrome-copilot-369107.targetsql_1.customers`</u>as B ON
    5 A.customer_id = B.customer_id
     6 group by B.customer_state
     7 order by AVG(ABS(DATE_DIFF (A.order_delivered_customer_date, A.order_purchase_timestamp, DAY))) desc
     8 limit 5
    Query results
                                                                        EXECUTION GRAPH PREVIEW
   JOB INFORMATION
                         RESULTS
                                      JSON
                                                 EXECUTION DETAILS
  Row customer_state
                                    avg_time_taken_
     1 RR
                                    28.9756097...
     2 AP
                                    26.7313432...
      3
         AM
                                    25.9862068...
                                    24.0403022
      4 AL
                                    23.3160676..
```

5.7. Top 5 states where delivery is really fast/ not so fast compared to estimated date

```
SELECT B.customer_state,

ABS(AVG(DATE_DIFF (A.order_delivered_customer_date, A.order_purchase_timestamp, DAY))) as total_time_of_delivery,

ABS(AVG(DATE_DIFF (A.order_estimated_delivery_date, A.order_purchase_timestamp, DAY))) as estimated_delivery_time,

AVG(DATE_DIFF (A.order_estimated_delivery_date, A.order_delivered_customer_date,DAY)) as diff_estmtd_and_delivey

FROM `chrome-copilot-369107.targetsql_1.orders` as A inner join

`chrome-copilot-369107.targetsql_1.customers` as B ON
```

6. Payment type analysis:

6.1

Month over Month count of orders for different payment types

Count of orders based on the no. of payment installments

select distinct payment_installments,count(order_id) over(partition by payment_installments order by payment_installments)

as order_count from

(select order_id,payment_installments from `chrome-copilot-369107.targetsql_1.payments`)b1

