

Distributed System Course

2021-22-GICI41SSD-Distributed System

Academic Year: 2021-2022 Lecturer: SOK Kimheng

Information

Course	Distributed System	48h, 12 Weeks, 4h/week (3 Groups = 96h)
	Week 1	Information, Self-Study Skill, Introduction
General Distributed System	Week 2	Distributed Communication (TCP/IP, Socket, RPC, REST, gRPC, OMQ)
	Week 3	Clock, Timestamp
	Week 4	Fault Tolerance (Two general problem, Byzantine General Problem)
	Week 5	Consensus Algorithm (Paxos, ZooKeeper, Raft)
	Week 6	Quiz
Blockchain	Week 7	Basic Cryptography
	Week 8	Blockchain and Bitcoin (Proof of Work)
	Week 9	Ethereum and Smart Contract (Proof of Stake)
	Week 10	Hyperledger and Self-Sovereign Identity
	Week 11	Security
	Week 12	Final Exam

Distributed System Course

2021-22-GICI41SSD-Distributed System

Week7:

Basic Cryptography

Academic Year: 2021-2022 Lecturer: SOK Kimheng

Agenda

- Definition
- 2 Terminology & Prior Knowledge
- 3 Symmetry Cryptography
- 4 Asymmetry Cryptography
- 5 Others

Definition

Cryptography = Crypto (Secret) + Graphy (Write, Study)

Cryptography is the science of writing or creating secret.

Why do we need to keep our message secret?

- ✓ We have some secret that don't want somebody to know
- ✓ We only want to share the secret with only the people we want to share
- ✓ Some sensitive transaction online such as payment, health information, business, government need to keep secret
- ✓ Even a simple chat messaging, we need private chat

"Our message need to be encrypted"

Terminology

Notation	Description
P, M	Plaintext, Message
СТ	Cipher Text
K, PK, SK, MSK	Key, Public Key, Secret Key, Master Secret Key
ENC	Encryption
DEC	Decryption

Encryption: The process of encoding a message into a cipher text.

Decryption: The process of decoding a cipher text into a message.

Prior Knowledge

Discret Log
$$g, g^x \longrightarrow x$$

CDH $g, g^x, g^y \longrightarrow g^{xy}$

DDH $g, g^x, g^y, g^z \longrightarrow 0 \text{ if } z=xy$
1 otherwise

CDH: Computational Diffie Hellman
DDH: Decisional Diffie Hellman

"RANDOMNESS IS THE KEY"

Prior Knowledge

Discret Log
$$g, g^x \longrightarrow x$$

Ex:

$$g= 5 p=7$$

 $g^{x} \mod p => 5^{x} \mod 7 = 6 find x=?$

There are many possible answers, if p is big the answers are many more. X is chosen to be a secret key.

Symmetry Cryptography

Aka Secret Key Cryptography or Private Key Cryptography

Encryption: CT = Enc (M, K)

Ex: Qb7PY2 = Enc('Hello',123456)

Decryption: M = Dec (CT, K) Ex: Hello = Dec('Qb7PY2',123456)

"Encryption and Decryption Key is the same"

Symmetry Cryptography

Key Size (bits): 128, 256, 512, 1024, 2048,4096,...

Strength: randomness

Algorithm: Caesar Cipher, Vigenère Cipher, Enigma,

DES, AES, RC4, ...

Mode of operation: ECB, CBC, CFB, CTR, GCM, ...

Help: \$ openssl help

Symmetry Cryptography

Advantage and Disadvantage of symmetric cryptography?

- ✓ Secure and Fast computation
- Secret key need to be transferred all the time that create high risk of key compromising
- => Diffie Hellman Key Exchange [1]
- Secret key is leaving the owner of the message to other receiver or at the attacker hand, which means the same key is on the hand of many people

Asymmetry Cryptography

Aka Public Key Cryptography

Asymmetry Cryptography

- ✓ The algorithm that use the two different keys, one
 for encryption and another for decryption.
- ✓ Public Key (PK) is used for encryption and can be share to public, everyone can see it.
- ✓ Secret Key (SK) aka. Private Key is used for decryption and this key need to keep secret only on the owner hand.

Asymmetry Cryptography

Encryption: $CT = Enc (M, PK_B)$

Decryption: $M = Dec (CT, SK_B)$

Asymmetry Cryptography

Key Size (bits): 128, 256, 512, 1024, 2048,4096,...

Strength: randomness

Algorithm: RSA, El Gamal, ECC, Pairing...

2^{\lambda} Best known attack time

Algorithm	Signature Size	λ = 128
RSA	O(λ ³)	2048 bits
EC-DSA	4λ	512 bits
Schnorr	3λ	384 bits
BLS (Ecc,Pairing)	2λ	256 bits

Example 1

 $\mathbf{M} = 656667$, $\mathbf{K} = 171717$

CT = Enc (M,K) = Enc (656667,171717)

CT = 656667 XOR 171717 = 564190

M = Dec (CT, K) = Dec (564190, 171717)

 $\mathbf{M} = 564190 \text{ XOR } 171717 = 656667$

Example 2: RSA

 $M = 23^2 \mod 55 = 12$

```
Security Parameter: p=11, q=5, \varphi(n)=(p-1)(q-1)=40

Public Parameter: n=p*q=55 (p, q are prime numbers)

Keypair: SK=23, PK=7 (Satisfy RSA formula gcd(PK,\varphi(n))=1, SK=PK^{-1} \mod \varphi(n))

M=12

CT=Enc\ (M,PK)=Enc\ (12,7)

CT=12^7 \mod 55=23

M=Dec\ (CT,SK)=Dec\ (23,23)
```

Others

- ➤ Hash Function (MD5, SHA1, SHA256)
- Diffie Hellman Key Exchange
- Joux Protocol
- Digital Signature
- Certification (X.509)
- Encryption
 - > Identity-Based Encryption
 - Attributed-Based Encryption
 - ► Homomorphic Encryption
 - Multi-Authority Attribute-Based Encryption
- Schnorr Protocol
- Pedersen Commitment
- Fiat-Shamir Heuristic
- Camenisch Lysyanskaya (CL) Signature Scheme
- Zero Knowledge Proof (zkSNARK, Bullet Proof,)