Spontane	ous symmetry breaking
	symmetry in EDM, but symmetry is broken by the solution.
ويرمياه	$\frac{\lambda^{2}}{\lambda^{2}} = 1 \qquad \text{Solution} \qquad \lambda = 1 \qquad \text{or} \qquad \lambda = -1$
e a a a a a a a a a a a a a a a a a a a	lack
	Jymm: x → -x this symm is broken at solution.
	$\chi^2 = 0$ Solution $x = 0$
	$\chi^2 = \gamma \Lambda$
Det	(spontaneous symm breaking)
	· Dynamics (Lagrangian, Hamiltonian, EOMs) invariant under a transf. group G
	· vaccum (ground state, solution of Eaus) only invariant under a subgroup
	· ·
	=> symm group G is spontaneously broken down to H. HCG
real scalar	field with potential $V(\phi) = \mu^2 \phi^2 + \lambda \phi^4 \qquad \lambda > 0$
	$\mathcal{L} = \frac{1}{2}(\partial \phi)^2 - V(\phi) \qquad \text{inv. under} \qquad \phi \rightarrow -\phi$
	· $\mu^2 > 0$
	$\phi \qquad \partial^2 \phi + \frac{\partial V}{\partial \phi}(\phi) = 0$
	(φ) =0
	ground state \$=0 => no sportaneous symm
	, V
	• \(\tau \)
	2 Ground State.
	$\phi_{b} = \frac{ p }{\sqrt{2\lambda}} \sigma_{r} - \frac{ p }{\sqrt{2\lambda}}$
	$-\frac{ r }{\sqrt{2\lambda}} \qquad \frac{ r }{\sqrt{2\lambda}} \qquad \text{Spontaneous symm}$

$$f = \frac{1}{3} \left(\partial_{\mu} \phi_{\mu} \partial_{\nu} \phi_{\mu} + \partial_{\mu} \phi_{\mu} \partial_{\nu} \phi_{\mu} \right) + \frac{\Lambda^{2}}{2} \left((\phi_{\mu})^{2} + (\phi_{\mu})^{2} \right) - \frac{\lambda}{4} \left((\phi_{\mu})^{2} + (\phi_{\mu})^{2} \right)^{2}$$
this is an exposion of f at the ground state $\phi_{\mu} = b_{\mu} = 0$ Λ^{200}

$$R = 4 + C = 0$$

$$R = 4 + C = 0$$

$$R = 0 + \lambda_{1}, \quad \Phi_{2} = \chi_{2}$$

$$R = \frac{1}{2} \left(\partial_{\mu} \chi_{1}, \partial_{\mu} \chi_{1} + \partial_{\mu} \chi_{2}, \partial_{\mu} \chi_{2} \right) - \frac{M^{2}}{2} (\chi_{1})^{2} + \frac{b^{2}}{4} + O(\chi_{1}, \chi_{1})^{2}$$

$$\chi_{1} := \int_{1}^{1} \left(\partial_{\mu} \chi_{1}, \partial_{\mu} \chi_{1} + \partial_{\mu} \chi_{2}, \partial_{\mu} \chi_{2} \right) - \frac{M^{2}}{2} (\chi_{1})^{2} + \frac{b^{2}}{4} + O(\chi_{1}, \chi_{1})^{2}$$

$$\chi_{1} := \int_{1}^{1} \left(\partial_{\mu} \chi_{1}, \partial_{\mu} \chi_{1} + \partial_{\mu} \chi_{2}, \partial_{\mu} \chi_{2} \right) - \frac{M^{2}}{2} (\chi_{1})^{2} + \frac{b^{2}}{4} + O(\chi_{1}, \chi_{1})^{2}$$

$$\chi_{1} := \int_{1}^{1} \left(\partial_{\mu} \chi_{1}, \partial_{\mu} \chi_{1} + \partial_{\mu} \chi_{2}, \partial_{\mu} \chi_{2} \right) - \frac{M^{2}}{2} (\chi_{1})^{2} + \frac{b^{2}}{4} + O(\chi_{1}, \chi_{1})^{2}$$

$$\chi_{1} := \int_{1}^{1} \left(\partial_{\mu} \chi_{1} + \partial_{\mu} \chi_{2} + \partial_{\mu} \chi_{2} \right) - \frac{M^{2}}{2} (\chi_{1})^{2} + \frac{b^{2}}{4} + O(\chi_{1}, \chi_{1})^{2}$$

$$\chi_{2} := \int_{1}^{1} \left(\partial_{\mu} \chi_{1} + \partial_{\mu} \chi_{2} + \partial_{\mu} \chi_{2} \right) - \frac{M^{2}}{2} (\chi_{1})^{2} + \frac{b^{2}}{4} + O(\chi_{1}, \chi_{1})^{2}$$

$$\chi_{2} := \int_{1}^{1} \left(\partial_{\mu} \chi_{1} + \partial_{\mu} \chi_{2} + \partial_{\mu} \chi_{2} \right) - \frac{M^{2}}{2} (\chi_{1})^{2} + \frac{b^{2}}{4} + O(\chi_{1}, \chi_{1})^{2}$$

$$\chi_{1} := \int_{1}^{1} \left(\partial_{\mu} \chi_{1} + \partial_{\mu} \chi_{2} + \partial_{\mu} \chi_{1} \right) - \frac{M^{2}}{2} (\chi_{1})^{2} + \frac{b^{2}}{4} + O(\chi_{1}, \chi_{1})^{2}$$

$$\chi_{1} := \int_{1}^{1} \left(\partial_{\mu} \chi_{1} + \partial_{\mu} \chi_{1} + \partial_{\mu} \chi_{2} \right) - \frac{M^{2}}{2} (\chi_{1})^{2} + \frac{b^{2}}{4} + O(\chi_{1}, \chi_{1})^{2}$$

$$\chi_{1} := \int_{1}^{1} \left(\partial_{\mu} \chi_{1} + \partial_{\mu} \chi_{1} + \partial_{\mu} \chi_{1} \right) - \frac{M^{2}}{4} + O(\chi_{1}, \chi_{1})^{2}$$

$$= \int_{1}^{1} \left(\partial_{\mu} \chi_{1} + \partial_{\mu} \chi_{1} + \partial_{\mu} \chi_{1} \right) - \frac{M^{2}}{4} \left(\partial_{\mu} \chi_{1} + \partial_{\mu} \chi_{1} \right) + \frac{M^{2}}{4} + O(\chi_{1}, \chi_{1})^{2}$$

$$= \int_{1}^{1} \left(\partial_{\mu} \chi_{1} + \partial_{\mu} \chi_{1} + \partial_{\mu} \chi_{1} \right) - \frac{M^{2}}{4} \left(\partial_{\mu} \chi_{1} + \partial_{\mu} \chi_{1} \right) + \frac{M^{2}}{4} + O(\chi_{1}, \chi_{1})^{2}$$

$$= \int_{1}^{1} \left(\partial_{\mu} \chi_{1} + \partial_{\mu} \chi_{1} + \partial_{\mu} \chi_{1} \right) - \frac{M^{2}}{4} \left(\partial_{\mu} \chi_{1} + \partial_{\mu} \chi_{1} \right) + \frac{M^{2}}{4} + O(\chi_{1}, \chi_{1})^{2}$$

$$= \int_{1}^$$

3)	Chiral anomaly.
4)	electro-weak theory (Weinberg - Glashaw - Salam model)
Crolds	store's theorem: V(4) inv. under a symm group G spontaceously broken
	to HCG => ding-dim H wassless scalars
	to HCG => dinG-dimH massless scalars associate to broken direction
• E,	1 17/15
	VEV.
	eparal VCD) around in the num $\Phi_i = V_i + \chi_i$ $V(\phi) = V(V_i) + \frac{3V}{2\Phi_i} \chi_i + \frac{3^2V}{2\Phi_i 3\Phi_j} (v) \chi_i \chi_j$ set to zero $+ O(\chi^3)$ eigenvalue of $\frac{3V}{3\Phi_i 3\Phi_j} (v) \longrightarrow \text{ness of } \chi_i$ all positive Group $G \implies in finitesis and transf. Sa \Phi_i = E^* \times P(T^*) : \Phi_i$
	Set to zero $+D(\chi^3)$
•	eigenvolve of all IVI -> wass of X:
	β φ; β φ; ()
	Color positive
•	invariance of V under $G \Rightarrow \sum_{i,j} \frac{\partial^2 V}{\partial \phi_i \partial \phi_j} (v) \sum_{\epsilon} \phi_i \sum_{\epsilon} \phi_j = 0$
	$\frac{1}{1} \frac{\partial \phi_{1}}{\partial \phi_{2}} \frac{\partial \phi_{1}}{\partial \phi_{2}} \frac{\partial \phi_{1}}{\partial \phi_{2}} \frac{\partial \phi_{2}}{\partial \phi_{2}} = 0$
	G 2H ground stale i'm. under H
	GoH ground state inv. under H. Set; = 0 + 9 E H.
	$\frac{\sum_{i=1}^{n} (i) \sum_{i} \phi_{i} \sum_{i} \phi_{i} = 0$
	;, ; · · · · · · · · · · · · · · · · · ·
	$\frac{\sum_{i,j} \frac{\partial^2 V}{\partial \phi_i \partial \phi_j}(v) \delta_{\Sigma} \phi_i \left \sum_{i} \phi_i \right _{V} = 0}{\int_{S_i \text{ force they are zero}}$
•	G/H Sep; +0 2000 10 Sep; 5ep; =0
	$\Rightarrow \frac{3^2 V}{7 \phi_5^2 \phi_5^2} (v) = 0$ along these directions.
	along these divections.
	=> dim G - dim H zero modes -> massless Goldstone scolors