CORRIGIÓ:..... REVISÓ:.....

Teóricos				Prácticos				Calificación
1		2		1	2	3	4	

Condición mínima para aprobar con calificación 6(SEIS): 3 (tres) ítems bien resueltos, uno de "T1 o T2" y dos de "P1), P2),P3) o P4)"

- T1. a. Dada una ecuación diferencial ordinaria de orden *n*. Defina solución general y solución particular de la misma.
 - b. Se sabe que $y = Ae^{-3x} + Be^{2x} 3x$ es la solución general de una ecuación diferencial ordinaria, determine dicha ecuación.
- T2. a. Para un campo escalar definido por $g: A \subseteq R^n \to R$ tal que $u = g(x_1, x_2, ..., x_n)$ defina la derivada direccional de g y la derivada parcial de g respecto de la variable x_i con $1 \le i \le n$.
 - b. Para la función definida por $g(x,y) = \begin{cases} \frac{y-y.\cos(x+2y)}{x^2+y^2} & si\ (x,y) \neq (0,0) \\ 0 & si\ (x,y) = (0,0) \end{cases}$ determine la existencia de $\frac{\partial g}{\partial x}(0,0)$.
- P1. Calcule el volumen del sólido limitado por $z^2 \le y \le 2 2x^2 z^2$, $x \ge 0$.
- P2. Calcule la circulación del campo vectorial definido por $\vec{h}(x,y,z) = \left(2z,\frac{z^2}{2},yz\right)$ a través de la curva intersección entre las superficies de ecuaciones: $2z = x^2 + z^2$ y y + z = 2, indicando gráficamente la orientación de la curva.
- P3. Calcule el área de la porción de superficie de ecuación $z=6-x^2-y^2$ limitada por los planos z=2 y z=5.
- P4. Determine $a \in R$ para que $\int_{\gamma^+} \vec{f} \cdot d\vec{s} = 2\pi$ con $\vec{f}(x,y) = (4ay + 2xy, 3x + x^2)$, siendo γ la línea de campo de $\vec{g}(x,y) = (1-y, x)$ que pasa por el punto (1,1).