The Integration of Thermal and Visual Images for Human Detection Using Deep Learning

GFM M.Sc. Mid-term Defence

Qiao REN

First Supervisor: Dr. Siavash Hosseinyalamdary

Second Supervisor: Dr. Francesco Nex

Nov 21, 2018

Content

- 1. Problem Statement
 - 2. Research Identification
 - 3. Methodology
 - 4. My Progress
 - 5. Intermediate Result
- 6. What to do next

1. Problem Statement

- Main information sources: Visual Images and Thermal Images
- Drawbacks of visual and thermal images
- Sensor fusion: RGBD (RGBT)

Content

- 1. Problem Statement
 - 2. Research Identification
 - 3. Methodology
 - 4. My Progress
 - 5. Intermediate Result
- 6. What to do next

2. Research Identification

- Research Objective
- ► Test: different sensor fusion architectures
- Approach: convolutional neural network (CNN)
- ► Applied in: human detection
- ► Input: thermal and visual images
- Provide: the most accurate architecture

2. Research Identification

Output: bounding box

Blue bounding box: prediction

Red bounding box: annotation (ground truth)

Content

- 1. Problem Statement
 - 2. Research Identification
 - 3. Methodology
 - 4. My Progress
 - 5. Intermediate Result
- 6. What to do next

3. Methodology

legend

a channel in thermal images

a fusion layer (concatenate layer)

a convolutional layer, a fully connected layer (fc), a classification output layer or a regression output layer

a) Early Fusion (Pixel-Level Fusion)

b) Half-way Fusion (Feature-Level Fusion)

3. Methodology-Retinanet

Why choose retinanet?

solve two problems:

Problem 1: class imbalance

► Solution: Focal Loss

- Problem 2: high resolution maps (earlier layers) have low-level features
- ► Solution: feature pyramid network

- Speed vs Accuracy on Coco
 - surpass yolo, SSD, DSSD, R-FCN (Lin,T., Goyal P., Girshick,R, 2018)

Content

- 1. Problem Statement
 - 2. Research Identification
 - 3. Methodology
 - 4. My Progress
 - 5. Intermediate Result
- 6. What to do next

Workflow

Workflow

Data Description

KAIST (Korea Advanced Institute of Science and Technology)

► Image size: 512 pixels * 640 pixels

► Total: 95k colour-thermal pairs

► Total: 1182 annotated pedestrians

Train 50k

Set 00 / Day / Campus / 17,498 images

Set 01 / Day / Road / 8,035 images

Set 02 / Day / Downtown / 7,866 images

Set 03 / Night / Campus / 6,668 images

Set 04 / Night / Road / 7,200 images

Set 05 / Night / Downtown / 2,920 images

Validation: will be extracted

Test 45k

Set 06 / Day / Campus / 12,988 images

Set 07 / Day / Road / 8,141 images

Set 08 / Day / Downtown / 8,050 images

Set 09 / Night / Campus / 3,500 images

Set 10 / Night / Road / 8,902 images

Set 11 / Night / Downtown / 3,560 images

Improved annotation for test: 2250 images

Prepare dataset

Workflow

Workflow

Test Retinanet

- Maunal test
 - Average IOU
 - Precision
 - recall
- Evaluate.py

Workflow

Content

- 1. Problem Statement
 - 2. Research Identification
 - 3. Methodology
 - 4. My Progress
 - 5. Intermediate Result
- 6. What to do next

Backbone of all models:Resnet 50 ImageNet (default)+KaistT/RGB Coco+Kitti+KaistT/RGB (finetune)

	cocokitti	kitti
Pedestrian	0.44	0.34
with average		
precision		
Cyclist with	0.46	0.39
average		
precision		

Classification Loss and Regression Loss

Will include validation loss

KaistT

Blue bounding box: prediction

Red bounding box: annotation (ground truth)

CocoKittiKaistT

KaistRGB

CocoKittiKaistRGB

Precision-Recall Graph when iou_threshold=0.7

Score>=0.5 recall:0.33 precision: 0.56

Score>=0.6 recall: precision:

precision: Score>=0.7 recall:

precision: 0.63 Score>=0.8 recall:0.30

Score>=0.5 recall:0.37 precision: 0.60 Score>=0.6 recall:0.35 precision: 0.64 Score>=0.7 recall:0.33 precision: 0.66 Score>=0.8 recall:0.31 precision: 0.69

recall

0.6

0.8

1.0

0.4

Precision-Recall Graph when iou_threshold=0.7

Score>=0.5 recall:0.31 precision: 0.52

Score>=0.6 recall: precision:

Score>=0.7 recall: precision:

Score>=0.8 recall:0.28 precision: 0.52

Score>=0.5 recall:0.34 precision: 0.59 Score>=0.6 recall:0.33 precision: 0.60 Score>=0.7 recall:0.32 precision: 0.62 Score>=0.8 recall:0.29 precision: 0.64

Average IOU when IOU threshold=0.7

	kaistT	kaistRGB	cocokittikaistT	cocokittikaistRGB
score threshold=0.5	0.693	0.662	0.704	0.692
score threshold=0.8	0.724	0.690	0.739	0.715

Train: set 0-5

Test: set 08/v000 with improved annotation

Half person

Persons are too small

occluded person (able to detect but iou<threshold)

Annotation is imperfect

Content

- 1. Problem Statement
 - 2. Research Identification
 - 3. Methodology
 - 4. My Progress
 - 5. Intermediate Result
- 6. What to do next

Which backbone to choose? Resnet, VGG

I am working on:

VGG original

VGG early

ζc

probabilities

VGG late

What to do next?

- Training:
 - Modify backbone architecture:
 - Firstly vgg, then resnet
 - Firstly early, then late, finally halfway
 - Find out optimal value of hyperparameters
- Validation: take 20% data from set 0-5
- ► Testing:
 - Whole testing dataset
 - Understand why Evaluate.py gives very low mAP
 - Evaluate computational complexity
- report

hyperparameters

- hyperparameters for building up network:
 - ▶ 1) Number of hidden layers and units
 - ▶ 2) Weight initialization
- hyperparameters to train network:
 - ▶ 1)Learning rate: speed vs convergence
 - ▶ 2)Number of epochs: observe validation accuracy
 - ▶ 3)Batch size: speed vs accuracy