Projection matoix P: projection onto a plane n. that lies on the plane Pa= x for any if taking cog(0) . Pa Since PX = X. [NON-XERO] then 0 = 0° hence is dies in column space of P ony vector & in plane is eigenvector if taking co(0): Px = 0 = 0 given 2 +0. then cos(0) = 0 = 0 0 = cos-1(0) = 90° hence it orthogonal to solumn space of P. So h=0 and any a 1' to plane is eigenvector. France is eigenvector.

Prome is eigenvector.

Prome is eigenvector.

[given \$\frac{1}{2}\$]

France of \$P\$

Space of \$P\$ ammay:

0/1	Properties of Symmetric matrices:
	1) the have real eigenvalues.
	1) They have oeal eigenvalues. 2) They have orthogonal eigenvectors
	May 2) Mey have bourgeres
	If A A are eigenvalues of A with
	If 1, 1, one eigenvalues of A with arresponding eigenvectors 2, 2, 2 and 2, 72
	(i.e. eigenvalues of A are distinct),
	then {x, x, } is a linearly independent set
	Proof: Repose (12, + C2×2 =0
	A(C174 + C2X2) = 0
	G(Ax1) + C2(Ax2) -0
	C1(M21) + C2(M2 N2) -0
	GAZ+ + C2 A2 X2 = D
	(-) G 24 + C2 1/2 = 0 * (1/2)
	gines
	4 x1 x1 + G 1/2/2 20.
	(-) 9 /2 x, + 92 /2 20 :
	41/21 - C1/2 21 =0
	$G(\lambda_1 - \lambda_2) \eta_1 = 0$
	Since A + K2 and 21 +0.
	:
	Printady, C2 = 0
	: 84 703 is a fine 1
	Generalizing Hois Mains: The
. 1	diffict. then eigenvectors San no no and

