

UNIVERSIDAD POPULAR AUTÓNOMA DEL ESTADO DE PUEBLA

FACULTAD DE INGENIERÍAS

MEC319-REBÓTICA INDUSTRIAL

"LOS PRIMEROS ROBOTS

CATEDRÁTICO:

Dr. JOSÉ MIGUEL GUTIÉRREZ RAMÍREZ

PRESENTADORES:

LICENCIATURA EN INGENIERÍA MECATRÓNICA

- 5801965 | ALFREDO SERRATO VALLE
- 5802074 KATHIA PAOLA BUSTAMANTE CLIMACO

- 5801988 DENNIS IVÁN PÉREZ MONTIEL
- 5801819 ALDO ÁLVAREZ ZAVALETA
- 5801724 | EDUARDO HUERTA CERVANTES
- 5802023 AXEL ARRIOLA FONSECA

OTOÑO 2021

LOS PRIMEROS ROBOTS

- 1. Doble Péndulo
- a) Diagramas Cinemáticos con sus ejes de coordenadas en cada articulación

b) Tabla de Parámetros de DH

ARTICULACIÓN	θ_i	d_i	a_i	α_i	q_i
1	θ_{1}	0	11	0	θ
2	θ_2	0	12	180°	θ

c) Código en Matlab para crear el robot

```
l1 = 5;
l2 = 10;
t1 = 0;
t2 = 0;
L(1)=Link([t1 0 l1 0 0]);
L(2)=Link([t2 0 l2 pi 0]);
L(1).qlim=[-pi pi];
L(2).qlim=[-pi pi];
Double=SerialLink(L,'name','Doble Pendulo')
Double.teach(q0)
q0=[0 0];
MTH=Double.fkine(q0)
RPY=tr2rpy(MTH,'xyz')
```

d) Gráficas del Robot en al menos una posición distinta al HOME

e) Matriz de Transformación Homogénea de tres posiciones distintas

		$q0 = [0\ 0]$	l	
MTH =				
	1	0	0	15
	0	-1	0	0
	0	0	-1	0
	0	0	0	1

f) Posición y Orientación (RPY) del Efector Final en las tres posiciones previas

2. SCARA

a) Diagramas Cinemáticos con sus ejes de coordenadas en cada articulación

b) Tabla de Parámetros de DH

ARTICULACIÓN	θ_i	d_i	a_i	α_i	q_i
1	θ_1	100	350	0	θ
2	θ_2	0	300	180°	θ
3	0	d_3	0	0	d

c) Código en Matlab para crear el robot

```
E(1)=Link('revolute', 'd', 100, 'a', 350, 'alpha', 0);
E(2)=Link('revolute', 'd', 0, 'a', 300, 'alpha', pi);
E(3)=Link('prismatic', 'theta', 0, 'a', 0, 'alpha', 0);
E(1).qlim=[-pi pi];
E(2).qlim=[-pi pi];
E(3).qlim=[0 100];

q0=[0 0 0];
MTH=Scara.fkine(q0)

Scara=SerialLink(E, 'name', 'Scara')
Scara.teach([q0])

RPY=tr2rpy(MTH, 'xyz')
```

d) Gráficas del Robot en al menos una posición distinta al HOME

e) Matriz de Transformación Homogénea de tres posiciones distintas $\mathbf{q0} = [0\ 0\ 0]$

f) Posición y Orientación (RPY) del Efector Final en las tres posiciones previas

RPY =

0 0 3.1416

RPY =

2.5664 -0.0000 -3.1416

RPY =

-1.7168 0.0000 -3.1416

3. SEIKO

a) Diagramas Cinemáticos con sus ejes de coordenadas en cada articulación

b)

c) Tabla de Parámetros de DH

ARTICULACIÓN	θ_i	d_i	a_i	α_i	q_i
1	θ_1	0	0	0	θ o d
2	90	d_2	0	90°	θ o d
3	0	d_3	0	90°	θ o d

d) Código en Matlab para crear el robot

```
EsR=Revolute('d',0,'a',0,'alpha',0);
EsP=Prismatic('theta',pi/2,'a',0,'alpha',pi/2);
EsP2=Prismatic('theta',0,'a',0,'alpha',pi/2);
EsR.qlim=[-pi pi];
EsP.qlim=[0 50];
EsP2.qlim=[0 50];

q0=[0 0 0];
MTH=Seiko.fkine(q0)

Seiko=SerialLink([EsR EsP EsP2],'name','Seiko')
Seiko.teach([q0])
RPY=tr2rpy(MTH,'xyz')
```

e) Gráficas del Robot en al menos una posición distinta al HOME

f) Matriz de Transformación Homogénea de tres posiciones distintas

$$q0 = [0 \ 0 \ 0]$$

g) Posición y Orientación (RPY) del Efector Final en las tres posiciones previas

Todos los créditos para los gráficos del inciso a) son para el: Dr.José Miguel Gutierrez Ramiréz. y para la alumna Kathia Bustaman	te que copió sus imágenes.