Separation

Definition: T_1

Let X be a topological space. To say that X is a T_1 -space means that for all distinct $x,y \in X$ there exists $U,V \in \mathscr{T}$ such that $x \in U,y \notin U$ and $x \notin V,y \in V$.

Definition: T_2

Let X be a topological space. To say that X is T_2 -space or Hausdorff means that for all distinct $x,y\in X$ there exists disjoint $U,V\in \mathscr{T}$ such that $x\in U$ and $y\in V$.

Definition: Regular

Let X be a topological space. To say that X is *regular* means that for all $x \in X$ and closed sets $A \subset X$ such that $x \notin A$ there exists disjoint $U, V \in \mathscr{T}$ such that $x \in U$ and $A \subset V$.

To say that X is a T_3 -space means that X is regular and T_1 .

Definition: Normal

Let X be a topological space. To say that X is *regular* means that for all disjoint closed sets $A, B \subset X$ there exists disjoint $U, V \in \mathscr{T}$ such that $A \subset U$ and $B \subset V$.

To say that X is a T_4 -space means that X is normal and T_1 .

Theorem

Let X be a topological space. X is T_1 iff every point in X is a closed set.

Proof. Assume $x, y \in X$ such that $x \neq y$.

 \implies Assume X is T_1 .

So there exists $U \in \mathcal{T}$ such that $x \notin U$ and $y \in U$. This means that $U \cap \{x\} = \emptyset$ and so y is not a limit point of $\{x\}$.

Therefore, $\{x\}$ is closed.

 \iff Assume that every point in X is a closed set.

So x is not a limit point of $\{y\}$ and y is not a limit point of $\{x\}$. This means that there exists $U,V\in \mathscr{T}$ such that $x\in U$ and $U\cap \{y\}=\emptyset$ and likewise $y\in V$ and $V\cap \{x\}=\emptyset$. Hence $x\in U$ but $y\notin U$ and $y\in V$ but $x\notin V$.

Therefore X is T_1 .

Theorem

Let X be a topological space. If X is cofinite then X is T_1 .

Proof. Assume that X is cofinite and assume that $x \in X$. But $X - \{x\}$ is open in the cofinite topology, and so $\{x\}$ is closed. Therefore, by the previous theorem, X is T_1 .

Theorem

 $\mathbb{R}_{\mathsf{std}}$ is T_2 .

Proof. Assume that $a,b\in\mathbb{R}$ such that $a\neq b$ and let $\epsilon=\frac{|b-a|}{3}$. Now let $U=(a-\epsilon,a+\epsilon)\in\mathscr{T}$ and let $V=(b-\epsilon,b+\epsilon)\in\mathscr{T}$. So $a\in U$ and $b\in V$ and $U\cap V=\emptyset$.

Therefore $\mathbb{R}_{\mathsf{std}}$ is T_2 .

Theorem

 \mathbb{R}_{LL} is normal.

Proof. Assume that $A,B \subset \mathbb{R}$ such that A and B are closed and $A \cap B = \emptyset$. This means that $B \subset \mathbb{R} - A \in \mathscr{T}$ and $A \subset \mathbb{R} - B \in \mathscr{T}$. Now assume $a \in A$ and $b \in B$. Then there exists basic open sets $U_a = [a,\epsilon_a) \subset \mathbb{R} - B$ and $V_b = [b,\epsilon_b) \subset \mathbb{R} - A$ and open sets:

$$U = \bigcup_{a \in A} U_a \supset A$$
$$V = \bigcup_{b \in B} V_b \supset B$$

So ABC that $U \cap V \neq \emptyset$. This means that there exists some $U_a \cap V_b \neq \emptyset$, and hence $\max\{a,b\} \in U_a \cap V_b$.

Case 1: $a \in U_a \cap V_b$

Thus $a \in A$ and $a \in V_b \subset \mathbb{R} - A$, a contradiction.

Case 2: $b \in U_a \cap V_b$

Thus $b \in B$ and $b \in V_a \subset \mathbb{R} - B$, a contradiction.

And so $U \cap V = \emptyset$.

Therefore R_{LL} is normal.

Example

Consider \mathbb{R}^2 with the standard topology.

1. Let $p \in \mathbb{R}^2$ and let $A \subset \mathbb{R}^2$ be a closed set such that $p \notin A$. Show that:

$$\inf \{ d(a, p) \mid a \in A \} > 0$$

Since A is closed and $p \notin A$, p is not a limit point of A. Thus, there exists $\epsilon > 0$ such that $B(p,\epsilon) \cap A = \emptyset$ and so for all $a \in A$ the distance from p to a is at least ϵ .

Therefore, $\inf \{d(a, p) \mid a \in A\} > \epsilon > 0.$

2. Show that \mathbb{R}^2 with the standard topology is regular.

Assume that $p \in \mathbb{R}^2$ and $A \subset \mathbb{R}^2$ such that $p \notin A$ and A is closed. By (1), there exists some $\epsilon > 0$ such that for all $a \in A$, $d(p,a) > \epsilon$. Let $\delta = \frac{\epsilon}{3}$ and consider $U = B(p,\delta)$ and open set V generated by $\{B(a,\delta_a) \mid a \in A, \delta_a < \delta\}$. Thus, for every point $x \in U$ and $y \in V$, $d(x,y) \geq \delta$ and so $U \cap V = \emptyset$.

Therefore \mathbb{R}^2 is regular.

3. Find two disjoint closed sets $A,B\subset\mathbb{R}^2$ with the standard topology such that:

$$\inf \{ d(a,b) \, | \, a \in A, b \in B \} = 0$$

Any two asymptotic functions in \mathbb{R}^2 will do. So let:

$$A = \{(x,0) \mid x \in [1,\infty)\}$$
$$B = \left\{ \left(x, \frac{1}{x}\right) \mid x \in [1,\infty) \right\}$$

4. Show that \mathbb{R}^2 with the standard topology is normal.

Assume that $A, B \subset \mathbb{R}^2$ such that A and B are closed and $A \cap B = \emptyset$. By (2), for every $a \in A$ there exists $B(a, \epsilon_a)$ such that $B(a, \epsilon_a) \cap B = \emptyset$. Likewise, for every $b \in B$ there

exists $B(b,\epsilon_b)$ such that $B(b,\epsilon_b)\cap A=\emptyset$. So let $\delta_a=\frac{\epsilon_a}{3}$ and let $\delta_b=\frac{\epsilon_b}{3}$ and consider the families of open sets $U_a=B(a,\delta_a)$ and $V_b=B(b,\delta_b)$. Let:

$$U = \bigcup_{a \in A} U_a \supset A$$
$$V = \bigcup_{b \in B} V_b \supset B$$

Now, assume that $a \in A$ and $b \in B$:

$$d(a,b) \ge \max\{\epsilon_a, \epsilon_b\} > \max\{\delta_a, \delta_b\}$$

Thus $U_a \cap V_b = \emptyset$ and hence $U \cap V = \emptyset$.

Therefore R^2 is normal.

Theorem

- 1. A T_2 -space (Hausdorff) is a T_1 -space.
- 2. A T_3 -space (regular and T_1) is a T_2 -space (Hausdorff).
- 3. A T_4 -space (normal and T_1) is a T_3 -space (regular and T_1).

Proof. Let *X* be a topological space.

1. Assume that X is T_2 .

Assume $x, y \in X$ such that $x \neq y$. Since X is T_2 , there exists $U, V \in \mathscr{T}$ such that $x \in U$, $y \in V$, and $U \cap V = \emptyset$. Thus, $x \in U$, $y \notin V$, and $y \in V$.

Therefore X is T_1 .

2. Assume that X is T_3 .

Assume $x, y \in X$ such that $x \neq y$. Since X is T_1 , $\{y\}$ is closed, and since X is T_3 , there exists $U, V \in \mathcal{T}$ such that $x \in U$, $\{y\} \subset V$ ($y \in V$), and $U \cap V = \emptyset$.

Therefore X is T_2 .

3. Assume that X is T_4 .

Assume $x \in X$ and $A \subset X$ such that A is closed and $x \notin A$. Since X is T_1 , $\{x\}$ is closed, and since X is T_4 , there exists $U, V \in \mathscr{T}$ such that $\{x\} \subset U$ and $A \subset V$ and $U \cap V = \emptyset$.

Therefore X is regular and T_1 and hence T_3 .

Theorem

Let X be a topological space. X is regular iff for all $p \in X$ and $U \in \mathcal{U}_p$, there exists $V \in \mathcal{U}_p$ such that $\bar{V} \subset U$.

Proof.

 \implies Assume that X is regular.

Assume $p \in X$ and assume $U \in \mathcal{U}_p$. Since U is open, X - U is closed. So, since X is regular, there exists $V, W \in \mathscr{T}$ such that $p \in V, X - U \subset W$, and $V \cap W = \emptyset$. Now, since $X - U \subset W$:

$$X - (X - U) \supset X - W$$

and so $X-W\subset U$. Next, since $V\cap W=\emptyset$, it must be the case that $V\subset X-W$. But since W is open, X-W is closed. Therefore:

$$\bar{V} \subset \overline{X - W} = X - W \subset U$$

 $\iff \text{Assume that } \forall \, p \in X, \forall \, U \in \mathcal{U}_p, \exists \, V \in \mathcal{U}_p, \bar{V} \subset U.$

Assume $p \in X$ and $A \subset X$ such that A is closed and $p \notin A$. This means that p is not a limit point of A and so there exists $U \in \mathcal{U}_p$ such that $U \cap A = \emptyset$. Furthermore, there exists $V \in \mathcal{U}_p$ such that $V \subset \bar{V} \subset U$, and so $\bar{V} \cap A = \emptyset$. This means that $A \subset X - \bar{V}$, with $X - \bar{V}$ open. But $V \cap X - \bar{V} = \emptyset$.

Therefore X is regular.

Theorem

Let X be a topological space. X is normal iff for all closed sets $A \subset X$ and for all $U \in \mathcal{U}_A$ there exists $V \in \mathcal{U}_A$ such that $\bar{V} \subset U$.

Proof.

 \implies Assume that X is normal.

Assume $A \subset X$ and assume $U \in \mathcal{U}_A$. Since U is open, X - U is closed. So, since X is normal, there exists $V, W \in \mathscr{T}$ such that $A \subset V, X - U \subset W$, and $V \cap W = \emptyset$. Now, since $X - U \subset W$:

$$X - (X - U) \supset X - W$$

and so $X-W\subset U$. Next, since $V\cap W=\emptyset$, it must be the case that $V\subset X-W$. But since W is open, X-W is closed. Therefore:

$$\bar{V} \subset \overline{X - W} = X - W \subset U$$

Assume $A,B\subset X$ such that A and B are closed and $A\cap B=\emptyset$. Then $A\subset X-B\in \mathscr{T}$. And so, by assumption, there exists $U\in \mathcal{U}_A$ such that $A\subset U\subset \bar{U}\subset X-B$. This means that $B\subset X-\bar{U}\in \mathscr{T}$. Finally:

$$U\cap (X-\bar{U})=(U\cap X)-(U\cap \bar{U})=U-U=\emptyset$$

Therefore X is normal.

Theorem: The Incredible Shrinking Theorem

Let X be a topological space. X is normal iff for all open sets U,V such that $U\cup V=X$, there exist open sets U',V' such that $\overline{U'}\subset U$ and $\overline{V}\subset V$ and $U'\cap V'=X$.

This theorem can be extended to any family of open sets $\{U_{\alpha}: \alpha \in \lambda\}$ such that:

$$X = \bigcup_{\alpha \in \lambda} U_{\alpha}$$

Example

SPACE	T_1	T_2	REGULAR	NORMAL
R_{std}	√	✓	✓	✓
R_{std}^n	√	✓	✓	✓
indiscrete	X	×	×	×
discrete	√	✓	✓	✓
cofinite	✓	X finite: \checkmark X infinite: \times	X finite: \checkmark X infinite: \times	X finite: \checkmark X infinite: \times
cocountable	✓	X countable: \checkmark X uncountable: \times	X countable: \checkmark X uncountable: \times	X countable: \checkmark X uncountable: \times
R_{LL}	√	✓	✓	✓
R_{+00}	√	×	×	×
LOS	✓	✓	✓	✓

R and \mathbb{R}^n

Since there is a finite distance between points and closed sets (not containing those points), there is always room for enclosing disjoint balls.

indiscrete

Since the only non-empty set is the entire space, there is no separation.

discrete

Since all disjoint subsets are both open and closed, they are self-enclosed.

cofinite/cocountable

First note that all finite sets are closed. Thus, single points can be viewed as closed sets. So assume p and q are distinct points in X. This means that $X-\{p\}$ and $X-\{q\}$ are open. Furthermore, $p\in X-\{q\}$ but $p\notin X-\{p\}$ and $q\in X-\{p\}$ but $q\notin X-\{q\}$. Thus, cofinite/cocountable is T_1 .

Now assume that there exists disjoint $U,V\in \mathscr{T}$. This means that X-U and X-V are finite/countable and since $U\cap V=\emptyset$ it is the case that $X-(U\cap V)=(X-U)\cup (X-V)=X$ and hence X is finite/countable. When X is finite/countable, all subsets are both open and closed, equivalent to the discrete topology, and so cofinite and cocountable are T_2 , regular, and normal. However, if X is infinite/uncountable then open sets will always intersect and so cofinite and countable are neither T_2 , regular, nor normal.

 \mathbb{R}_{LL}

Since R_{LL} is finer than \mathbb{R} , it has the same separation properties.

 \mathbb{R}_{+00}

Any two points can be T_1 separated using the basis elements; however, if one point or closed set contains 0' and the other point or closed set contains 0'' then there is always overlap between the two containing basis elements.

Lexigraphically Ordered Square

Use the alternate definitions. For any point $p \in X$, there exists some containing open set (strip), and it is always possible to use a smaller strip whose closure is contained in the original strip. For any closed set $A \in X$, X - A is an enclosing open set, and likewise, a smaller open set with contained closure is possible.

Theorem

$$X, Y \text{ are } T_2 \implies X \times Y \text{ is } T_2.$$

Proof. Assume that X and Y are T_2 and assume $p_1, p_2 \in X \times Y$ where $p_1 = (x_1, y_1)$ and $p_2 = (x_2, y_2)$. Since X is T_2 , there exists $U_1, U_2 \in \mathscr{T}_X$ such that $x_1 \in U_1$ and $x_2 \in U_2$ and $U_1 \cap U_2 = \emptyset$. Likewise, since Y is T_2 , there exists $V_1, V_2 \in \mathscr{T}_Y$ such that $y_1 \in V_1$ and $y_2 \in V_2$ and $V_1 \cap V_2 = \emptyset$. So $p_1 \in U_1 \times V_1$ and $p_2 \in U_2 \times V_2$. Furthermore, $U_1 \times V_1, U_2 \times V_2 \in \mathscr{T}_{X \times Y}$ and

$$(U_1 \times V_1) \cap (U_2 \times V_2) = (U_1 \cap U_2) \times (V_1 \cap V_2) = \emptyset$$

Therefore $X \times Y$ is T_2 .

Lemma

Let X and Y be topological spaces and let $A \subset X$ and $B \subset Y$:

$$\overline{A \times B} = \overline{A} \times \overline{B}$$

Proof. Assume that $p \in \overline{A \times B}$. This means that for all $U \in \mathscr{T}_{X \times B}$ such that $p \in U$:

$$U \cap (A \times B) \neq \emptyset$$

Now assume $U_1 \in \mathscr{T}_X$ and $U_2 \in T_Y$ such that $p \in U_1 \times U_2 \in \mathscr{T}_{A \times B}$. Then it must be the case that $(U_1 \times U_2) \cap (A \times B) = (U_1 \cap A) \times (U_2 \cap B) \neq \emptyset$. This is only possible if $U_1 \cap A \neq \emptyset$ and $U_2 \cap B \neq \emptyset$.

Therefore $p \in \bar{A} \times \bar{B}$.

Assume that $p \in \bar{A} \times \bar{B}$. This means that for all $U_1 \in \mathscr{T}_X$ and $U_2 \in \mathscr{T}_Y$ such that $p \in U_1 \times U_2$:

$$(U_1 \cap A) \times (U_2 \cap B) \neq \emptyset$$

Now assume $U \in \mathscr{T}_{A \times B}$ such that $p \in U \in \mathscr{T}_{A \times B}$. Then there exists $U_1 \in \mathscr{T}_X$ and $U_2 \in T_Y$ such that $p \in U_1 \times U_2 = U$. So it must be the case that:

$$U \cap (A \times B) = (U_1 \times U_2) \cap (A \times B) = (U_1 \cap A) \times (U_2 \cap B) \neq \emptyset$$

Therefore $p \in \overline{A \times B}$.

Theorem

X, Y are regular $\implies X \times Y$ is regular.

Proof. Assume that X and Y are regular and assume $p \in X \times Y$ and $U \in \mathcal{U}_p$. Then there exists $U_1 \in \mathscr{T}_X$ and $U_2 \in \mathscr{T}_Y$ such that $p \in U_1 \times U_2 \subset U$. Now, since X and Y are regular, there exists $V_1 \in \mathscr{T}_X$ and $V_2 \in \mathscr{T}_Y$ such that $p \in V_1 \times V_2$, $V_1 \subset \overline{V_1} \subset U_1$, and $V_2 \subset \overline{V_2} \subset U_2$. Furthermore, since $\overline{V_1}$ is closed in X and $\overline{V_2}$ is closed in Y, $\overline{V_1} \times \overline{V_2}$ (and hence $\overline{V_1} \times \overline{V_2}$) is closed in $X \times Y$. And so:

$$p \in V_1 \times V_2 \subset \overline{V_1 \times V_2} = \overline{V_1} \times \overline{V_2} \subset U_1 \times U_2$$

Therefore $X \times Y$ is regular.