

Logic Circuit Design

... we have studied...

- Truth Tables
- Logic gates
- Logic algebra
- K-maps

All these are tools ...

Tools

- Truth Tables
- Logic gates
- · Logic algebra
- K-maps

All these are tools ...

Today we will learn

- ·Truth Tables
- Logic gates
- · Logic algebra
- K-maps

 To set-up and implement logic circuit problems (Logic Circuit Design)

4-Questions for a design problem

- 1. What do we need to know for a design problem?
 - Specifications (inputs, outputs, function)
- 2. Can we set-up a truth table?
 - Truth tables determine the function of the problem
- 3. Can we simplify?
 - Use K- maps or logic algebra
- 4. Can we implement the result with a circuit?
 - Use gates

Given a word problem

Algorithm: Logic circuit design

- 1. From the specifications of the problem: Determine the required number of inputs and outputs. Assign a letter symbol to each
- 2. Derive the truth table
- 3. Obtain the Boolean expressions for each output as a function of the input variables
- 4. Simplify all the output equations
- 5. Draw the logic diagram
- 6. Verify the correctness of the design

Algorithm: Logic circuit design

Synthesls

- 1. From the specifications of the problem: Determine the required number of inputs and outputs. Assign a letter symbol to each
- 2. Derive the truth table
- 3. Obtain the Boolean expressions for each output as a function of the input variables
- 4. Simplify all the output equations
- 5. Draw the logic diagram
- 6. Verify the correctness of the design

Implementation

Example: Design problem

Design a digital logic circuit with three inputs and one output. The output of the logic circuit, must be logic one(1)₂ when the binary value of the inputs is less than three(011)₂ and zero(0)₂ otherwise.

1. Inputs/Outputs

- > Inputs = 3
- > Output = 1

Inputs/Outputs/Truth table

- \triangleright Inputs = 3
- > Output = 1

Design a digital logic circuit with three inputs and one output. The output of the logic circuit, must be logic one(1)2 when the binary value of the inputs is less than three(011)2 and zero(0)2 otherwise.

A	В	C	X
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

2. Function - Truth table

Design a digital logic circuit with three inputs and one output. The output of the logic circuit, must be logic one(1)2 when the binary value of the inputs is less than three(011)2 and zero(0)2 otherwise.

A	В	C	X
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Terms of the output expression

3. Output Boolean expression

$$X = ABC + ABC + ABC$$

4. Simplification K-Map

4. Simplification K-Map

$$X = \overline{A} \overline{B} + \overline{A} \overline{C}$$

5. Implementation: Simplified logic circuit

$$X = A' B' + A' C'$$

6. Verification

Logic diagram-VHDL editor

Design: 1-bit Binary Comparator

Compare two binary digits

New Example

Design: 1-bit Comparator

 A 1-bit binary comparator compares the values of two bits and produces the proper result.

$$A, B = 0 \text{ or } 1$$

Design: 1-bit Comparator

 An 1-bit binary comparator compares the values of two bits and produces the proper result.

What is the proper result?

1-bit Comparator

There are three cases:

- 1. The two bits are equal
- 2. One bit has a greater value that the other
- 3. One bit has a smaller value than the other

Inputs/Outputs/Function

- Inputs: ?
- Outputs: ?
- Function: Comparator

Inputs/Outputs/Function

- Inputs: 2
- Outputs: 3
- Function: Comparator

Label the Input/Output

Truth table?

	E	L	G
A B	A = B	A < B	A > B
0 0			
0 1			
1 0			
1 1			

Truth table

	E	L	G
A B	A = B	A < B	A > B
0 0	1		
0 1	0		
1 0	0		
1 1	1		

Truth table

	E	L	G
A B	A = B	A < B	A > B
0 0	1	0	0
0 1	0	1	0
1 0	0	0	1
1 1	1	0	0

We have 3 output equations

	E	L	G
A B	A = B	A < B	A > B
0 0	1	0	0
0 1	0	1	0
1 0	0	0	1
1 1	1	0	0

$$E = A'B' + AB$$

$$L = A'B$$

$$G = AB'$$

1-bit Comparator (Logic Circuit)

E = A'B' + AB

L = A'B

G = AB'

VHDL: Logic circuit

E = A'B' + AB = A XNOR B

G = AB'

L = A'B

VHDL

Not in the Exam

Another design example

Design a BCD-to-7 Segment Display converter

New Example

Input, outputs(s), function?

- BCD
- 7SD (7-Segment-Display)

BCD

BCD = Binary Coded Decimal

	Α	В	С	D
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

7SD

BCD to 7SD converter

0 823456789

Truth Table for BCD-to-Seven-Segment Decoder

BCD Input			S	eve	n-Se	gme	nt D	ecod	der	
Α	В	С	D	а	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
All	othe	er in	outs	0	0	0	0	0	0	0

Simplify

	BCD	Inpu	it	S	eve	n-Se	gme	nt D	ecod	der
Α	В	С	D	а	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
All	othe	er inj	puts	0	0	0	0	0	0	0

K-maps

	BCD Input			Seven-Segment Decode						der
A	В	С	D	а	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1

a)	AB 00 01 11 10 00 01 0 1 1 1 1 1 1 1 1 1	a = ДС+ДВD+ ДВС+ВСО
b)	AB 00 01 11 10 00 1 1 0 1 0 1 0 1 1 0 1 0	b = ДБ + ДСД + ДСД+ВСД+ВСД
ɔ)	AB 00 01 11 10 00 1 1 1 1 1 1 1 1 1 1 1 1	с=АС+ А В+АСD+АВС
d)	AB 00 1 0 1 1 10 01 0 1 0 1 1 10 0 0 0 0	d = В С О + А В С + А В
e)	ABCD0 01 11 10 00 1 0 0 1 01 0 0 0 1 11 0 0 0 0	- е=ВСО+ АСО
	ABC00 01 11 10 f) 00 1 0 0 0 01 1 1 0 0 11 0 0 0 11 0 0 0	f = ACD + ABD + ABC + ABC
	AB ^{C0} 00 01 11 10 00 0 0 1 1 01 1 1 0 1 11 0 0 0 0	g = ¼ B C + ¼ C D + ¼ B C + Å B C

Simplified equations

١	BCD	Inpu	it	S	Seven-Segment Decoder					
Α	В	С	D	а	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
All	oth	er inj	puts	0	0	0	0	0	0	0

$$a = \overline{A}C + \overline{A}BD + \overline{B}\overline{C}\overline{D} + A\overline{B}\overline{C}$$

$$b = \overline{A}\overline{B} + \overline{A}\overline{C}\overline{D} + \overline{A}CD + A\overline{B}\overline{C}$$

$$c = \overline{A}B + \overline{A}D + \overline{B}\overline{C}\overline{D} + A\overline{B}\overline{C}$$

$$d = \overline{A}C\overline{D} + \overline{A}\overline{B}C + \overline{B}\overline{C}\overline{D} + A\overline{B}\overline{C} + \overline{A}B\overline{C}D$$

$$e = \overline{A}C\overline{D} + \overline{B}\overline{C}\overline{D}$$

$$f = \overline{A}B\overline{C} + \overline{A}\overline{C}D + \overline{A}B\overline{D} + A\overline{B}\overline{C}$$

$$g = \overline{A}C\overline{D} + \overline{A}\overline{B}C + \overline{A}B\overline{C} + \overline{A}B\overline{C}$$

Implement VHDL

Implement ... using a chip (7446)

 Design a binary logic circuit, to convert a 3-bit binary number to it's 2's complement.

New Example

- Design a binary logic circuit, to convert a 3-bit binary number to it's 2's complement.
 - How many inputs and outputs?
 - -Inputs = 3
 - Outputs = ?
 - Need to set up the truth table.

 Design a binary logic circuit, to convert a 3-bit binary number to it's 2's complement.

Binary	1's complement
ABC	XYZ
000	
001	
010	
011	
100	
101	
110	
111	

 Design a binary logic circuit, to convert a 3-bit binary number to it's 2's complement.

Binary	1's complement	2's complement
ABC	XYZ	
000	111	
001	110	
010	101	
011	100	
100	011	
101	010	
110	001	
111	000	

 Design a binary logic circuit, to convert a 3-bit binary number to it's 2's complement.

Binary	1's complement	2's complement	
ABC	XYZ	XYZW	
000	111	1000	The X=1 is like an overflow
001	110	0111	
010	101	0110	Write the output equations
011	100	0101	SimplifyImplement
100	011	0100	
101	010	0011	
110	001	0010	
111	000	0001	5 minutes

2's Complement + Logic Expressions

Decimal	A	В	С	X	Y	Z	W
0	0	0	0	1			
1	0	0	1		1	1	1
2	0	1	0		1	1	
3	0	1	1		1		1
4	1	0	0		1		
5	1	0	1			1	1
6	1	1	0			1	
7	1	1	1				1

$$X = \overline{A} \overline{B} \overline{C}$$

$$Y = \overline{A} \overline{B} C + \overline{A} B \overline{C} + \overline{A} B C + \overline{A} \overline{B} C$$

$$Z = \overline{A} \overline{B} C + \overline{A} B \overline{C} + \overline{A} \overline{B} C + \overline{A} \overline{B} C$$

$$W = \overline{A} \overline{B} C + \overline{A} B C + \overline{A} \overline{B} C + \overline{A} \overline{B} C$$

$$X = \overline{A} \overline{B} \overline{C}$$

$$Y = \overline{A} \overline{B} C + \overline{A} B \overline{C} + \overline{A} BC + \overline{A} \overline{B} \overline{C}$$

$$Z = \overline{A} \overline{B} C + \overline{A} B \overline{C} + A \overline{B} C + AB \overline{C}$$

$$W = \overline{A} \overline{B} C + \overline{A} B C + AB \overline{C}$$

X		
$AB\C$	0	1
00	1	
01		
11		
10		

$$X = \overline{A} \overline{B} \overline{C}$$

Y		
$AB\C$	0	1
00		1
01	1	1
11		
10	1	

$$Y = \overline{A} B + \overline{A} C + A \overline{B} \overline{C}$$

$$Z = BC + BC$$

$$W = C$$

Solution

$$X = \overline{A} \overline{B} \overline{C}$$

$$Y = \overline{A} B + \overline{A} C + A \overline{B} \overline{C}$$

$$Z = B \overline{C} + \overline{B} C$$

$$W = C$$

