Finding the mjor descriptors of species networks Tanya Strydom $^1;$ Andrew P. Beckerman 1 Abstract: TODO

 ${\bf Keywords:}\ {\bf food\ web,\ structure,\ dimensionality\ reduction}$

- ¹ Blah blah Vermaat et al. (2009)
- $_{2}$ "It is incumbent on network ecologists to establish clearly the independence and uniqueness of the descriptive
- $_{\rm 3}$ $\,$ metrics used." Lau et al. (2017)

Table 1: An informative caption about the different network properties

			Reference (for maths),
			can make footnotes
Label	Definition	"Function"	probs
Basal	Percentage of basal taxa, defined		
	as species who have a		
	vulnerability of zero		
Connectance	L/S^2 , where S is the number of		
	species and L the number of		
	links		
Cannibal	Percentage of species that are		
	cannibals		
ChLen	Mean food chain length,		
	averaged over all species (where		
	a food chain is defined as a		
	continuous path from a 'basal'		
	to a 'top' species)		
ChSD	Standard deviation of ChLen		
ChNum	log number of food chains		
Clust	mean clustering coefficient		TODO
	(probability that two taxa linked		
	to the same taxon are also		
	linked)		
GenSD	Normalized standard deviation		Williams & Martinez
	of generality of a species		(2008)
	standardized by L/S		

			Reference (for maths),
			can make footnotes
Label	Definition	"Function"	probs
Herbivore	Percentage of herbivores plus		
	detritivores (taxa that feed only		
	on basal taxa)		
Intermediate	Percentage of intermediate taxa		
	(with both consumers and		
	resources)		
LinkSD	Normalized standard deviation		
	of links (number of consumers		
	plus resources per taxon)		
Loop	Percentage of taxa in loops		
	(food chains in which a taxon		
	occurs twice)		
L/S	links per species		
MaxSim	Mean of the maximum trophic		TODO
	similarity of each taxon to other		
	taxa, the number of predators		
	and prey shared by a pair of		
	species divided by their total		
	number of predators and prey		
Omnivory	Percentage of omnivores (taxa		
	that feed on ≥ 2 taxa with		
	different trophic levels)		
Path	characteristic path length, the		
	mean shortest food chain length		
	between species pairs		
Richness	Number of nodes in the network		
TL	Prey-weighted trophic level		Williams & Martinez
	averaged across taxa		(2004)

			Reference (for maths),
			can make footnotes
Label	Definition	"Function"	probs
Тор	Percentage of top taxa (taxa		
	without consumers)		
VulSD	Normalized standard deviation		
	of vulnerability of a species		
	standardized by L/S		
Links	The number of links in the		
	network		
Diameter	Diameter can also be measured		Delmas et al. (2019)
	as the average of the distances		
	between each pair of nodes in		
	the network		
ρ	Spectral radius is a a conceptual		Staniczenko et al.
	analog to nestedness (and more		(2013)
	appropriate for unipartite		
	networks). It is defined as the		
	absolute value of the largest real		
	part of the eigenvalues of the		
	undirected adjacency matrix		
Complexity	SVD complexity of a network,	Something about	Strydom et al. (2021)
	defined as the Pielou entropy of	structural v	
	its singular values	behavioural	
		complexity being	
		captured	
Centrality	Centrality is a measure of how	Centrality can help in	
	'influential' a species is, under	quantifying the	
	various definitions of 'influence'	importance of species	
		in a network	
S1	Number of linear chains		Stouffer et al. (2007)
			Milo et al. (2002)

			Reference (for maths),
			can make footnotes
Label	Definition	"Function"	probs
S2	Number of omnivory motifs		Stouffer et al. (2007)
			Milo et al. (2002)
S4	Number of apparent competiti	on	Stouffer et al. (2007)
	motifs		Milo et al. (2002)
S5	Number of direct competition		Stouffer et al. (2007)
	motifs		Milo et al. (2002)
Intervality			TODO Stouffer et al.
			(2006)

Table 2: Here is a table showing the correlation of the different network properties with the first three dimensions of the PCA

Property	PCA 1 (27%)	PCA 2 (24%)	PCA 3 (11%)
richness	0.8	0.46	-0.11
links	0.89	0.14	-0.16
connectance	0.05	-0.9	0.02
diameter	0.81	-0.06	0.14
complexity	-0.28	0.48	0.41
distance	0.41	0.13	-0.03
basal	-0.29	0.38	-0.73
top	-0.24	0.59	0.55
intermediate	0.4	-0.68	0.32
herbivory	-0.29	0.51	0.13
omnivory	0.52	-0.71	0.18
cannibal	0.29	-0.72	-0.19
l_S	0.78	-0.33	-0.18
GenSD	-0.1	0.42	-0.80
VulSD	-0.05	0.76	0.31
TL	0.59	-0.13	0.39
ChLen	0.17	0.45	0.30

Table 2: Here is a table showing the correlation of the different network properties with the first three dimensions of the PCA

Property	PCA 1 (27%)	PCA 2 (24%)	PCA 3 (11%)
ChSD	0.42	0.05	0.15
ChNum	0.19	0.69	0.42
path	0.66	0.09	0.17
LinkSD	0.04	0.63	-0.54
S1	0.82	0.29	0.00
S2	0.84	0.12	-0.06
S4	0.74	0.43	-0.13
S5	0.76	0.39	-0.22
	0.14	-0.82	-0.24
centrality	-0.49	-0.29	0.21
loops	0.45	0.12	0.07

⁴ Source: Article Notebook

[Figure 1 about here.]

[Figure 2 about here.]

⁷ References

- 8 Delmas, E., Besson, M., Brice, M.-H., Burkle, L. A., Riva, G. V. D., Fortin, M.-J., Gravel, D., Guimarães,
- P. R., Hembry, D. H., Newman, E. A., Olesen, J. M., Pires, M. M., Yeakel, J. D., & Poisot, T. (2019).
- Analysing ecological networks of species interactions. *Biological Reviews*, 94(1), 16–36. https://doi.org/10.
- 11 1111/brv.12433
- Lau, M. K., Borrett, S. R., Baiser, B., Gotelli, N. J., & Ellison, A. M. (2017). Ecological network metrics:
- Opportunities for synthesis. Ecosphere, 8(8), e01900. https://doi.org/10.1002/ecs2.1900
- ¹⁴ Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network Motifs: Simple
- Building Blocks of Complex Networks. Science, 298(5594), 824–827. https://doi.org/10.1126/science.298.
- 16 5594.824
- Staniczenko, P. P. A., Kopp, J. C., & Allesina, S. (2013). The ghost of nestedness in ecological networks.
- Nature Communications, 4(1), 1391. https://doi.org/10.1038/ncomms2422

- ¹⁹ Stouffer, D. B., Camacho, J., & Amaral, L. A. N. (2006). A robust measure of food web intervality. *Proceedings*
- of the National Academy of Sciences, 103(50), 19015–19020. https://doi.org/10.1073/pnas.0603844103
- Stouffer, D. B., Camacho, J., Jiang, W., & Nunes Amaral, L. A. (2007). Evidence for the existence of a robust
- pattern of prey selection in food webs. Proceedings of the Royal Society B: Biological Sciences, 274(1621),
- ²³ 1931–1940. https://doi.org/10.1098/rspb.2007.0571
- 24 Strydom, T., Dalla Riva, G. V., & Poisot, T. (2021). SVD Entropy Reveals the High Complexity of Ecological
- Networks. Frontiers in Ecology and Evolution, 9. https://doi.org/10.3389/fevo.2021.623141
- ²⁶ Vermaat, J. E., Dunne, J. A., & Gilbert, A. J. (2009). Major dimensions in food-web structure properties.
- 27 Ecology, 90(1), 278–282. https://doi.org/10.1890/07-0978.1
- Williams, R. J., & Martinez, N. D. (2004). Limits to Trophic Levels and Omnivory in Complex Food Webs:
- 29 Theory and Data. The American Naturalist, 163(3), 458-468. https://doi.org/10.1086/381964
- Williams, R. J., & Martinez, N. D. (2008). Success and its limits among structural models of complex food
- webs. The Journal of Animal Ecology, 77(3), 512–519. https://doi.org/10.1111/j.1365-2656.2008.01362.x

Figure 1: VERMAAT networks only

Figure 2: All networks. Vermaat subset = using only the structural measures from Vermaat