

School of Electronics

Engineering

WS_2023-24 (CAT-II)

Course Name : Electronic Materials

Faculty Name : Kittur Harish Mallikarjun

Instructions: Answer all the questions

S.		CO	BL	
No	Question			Marks
Q1	Given a rectangular tunnel barrier of height 2 eV and width 2 nm. Consider	CO2	3	2+2+3
	electrons of energy 0.75 eV are incident on the barrier. Calculate:			+3
	i. The propagation constant of the electron wave function before			11,0
	and after the barrier			
	ii. The attenuation constant of the electron wave function in the	C		
	barrier	9.		
	iii. The transmission coefficient of the barrier to the electrons			
0	incident on them.			
.3	iv. Comment on what would happen to each of the above if the			
	height of the barrier is increased to 3 V?			
Q2	Consider a hydrogenic atom with Z =3 (Li ²⁺ ion). Assume a_0 = 0.08 nm.	CO2	3	6+4
	i. Write down the wavefunction of the state with the quantum numbers: $n = 2$, $l = 1$ and $m_l = 1$.			
	ii. Calculate the energy difference between the 2s and the 4p states of the atom.			
Q3	Consider electron in a harmonic potential well of depth 7 eV	CO3	3	5+5
	having a force constant of β = 300 Nm ⁻¹ . Calculate the zero-point		C	
	energy and also the energies of the bound states of the electron	X		
	in the well.	25		
	in the well.			ļ
6	100			
(2)				
3				

	a din			101
Q4	Consider a hypothetical material in which the density of electron	CO2	3	2+3+2
	states in the conduction band is given by $g(E) = 4 \times 10^{23}$ (E-E _C)	X		+3
	cm ⁻³ . Where E _C is the bottom of the conduction band. Assume	25		
	that the Fermi level E_F is 0.2 eV below the conduction band edge	0		
	E _c . At T = 300 K, calculate:			
0	i. the number of electron per unit energy of the band at the			
3	band edge E _C			
	ii. the number of electron per unit energy of the band at the			
	energy $E = 10^{-4} \text{ eV}$ above the E_C			
	iii. the number of electron per unit energy of the band at the			
	energy E = 10^{-3} eV above E _C			
	iv. At what E above E _C do you expect to find the maximum			•
	number of electrons per unit energy of the band, justify.			10
Q5	Consider a chain of $N = 10^3$ atoms of mass $M = 3$ amu, joined end	CO3	3	6+4
	to end. Given that the distance between the atoms is 0.7	V		
	angstrom units and the force constant between the atoms is 9.1	5		
	Nm^{-1} , calculate the group velocity of the q = 2 mode of phonons in	0		
	the lattice. Also calculate the momentum and energy of the			
0	corresponding phonon modes in the chain. Given 1 amu = 1.627 x			
3	10 ⁻²⁷ kg.			