فرع الأجتماع والأقتصاد

وزارة التربية والتعليم العالم المديرية العامة للتربية دائرة الامتحانات

مسابقة في مادة الرياضيات الاسم: المدة: ساعتان الرقم:	عدد المسائل: اربع
---	-------------------

ملاحظة: : يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I-(4 points)

Le bénéfice annuel, depuis l'an 2001, d'un bureau de services (en millions de LL) est donné par le tableau suivant:

Année	2001	2002	2003	2004	2005
Rang de l'année : x _i	1	2	3	4	5
Bénéfice en millions de LL : yi	200	220	250	270	280

- 1) a- Déterminer les coordonnées du point moyen G.
 - b- Construire le nuage de points associé à la série statistique (x_i; y_i) et placer le point G dans un repère orthogonal.
- 2) Ecrire une équation de la droite de régression $D_{y/x}$ de y en x et tracer cette droite dans le repère précédent.
- 3) On suppose que ce modèle reste valable jusqu'en 2015.
 - a- Quel bénéfice ce bureau espère t-il réaliser en 2008 ?
 - b- A partir de quelle année le bénéfice du bureau dépassera t-il, pour la première fois, 400 millions de LL?

II- (4 points)

Dans un magasin il y a 1000 pochettes en cuir parmi lesquelles certaines sont défectueuses.

Ces pochettes sont fabriquées par trois usines α , β et γ selon le tableau suivant :

	Usine α	Usine β	Usine γ
Nombre de pochettes	200	350	450
Pourcentage de pochettes défectueuses	5%	4%	2%

On choisit au hasard une pochette de ces 1000 pochettes et on considère les événements suivants :

- A : « La pochette choisie est fabriquée par l'usine α ».
- B : « La pochette choisie est fabriquée par l'usine β ».
- C: « La pochette choisie est fabriquée par l'usine y ».
- D : « La pochette choisie est défectueuse ».
- 1) a- Prouver que la probabilité P (D \cap A) est égale à $\frac{1}{100}$.
 - b- Calculer les probabilités suivantes : $P(D \cap B)$, $P(D \cap C)$ et P(D).
- 2) Sachant que la pochette choisie n'est pas défectueuse, quelle est la probabilité qu'elle soit fabriquée par l'usine α ?
- 3) La pochette est vendue à 50 000LL si elle est produite par l'usine α , à 60 000LL si elle est produite par l'usine β et à 80 000LL si elle est produite par l'usine γ .
 - Une réduction de 30 % est faite sur le prix de chaque pochette défectueuse.
 - On désigne par X la variable aléatoire égale au prix final d'une pochette choisie au hasard.
 - Trouver les six valeurs de X et déterminer la loi de probabilité de X.

III- (4 points)

Fadi dépose à la banque une somme de 100 millions LL à un taux d'intérêt annuel de 10 % avec capitalisation annuelle. A la fin de chaque année, Fadi retire de son compte une somme de 5 millions de LL.

On note $U_0 = 100$ et U_n la somme en millions de LL dont dispose Fadi à la fin de la nième année après le retrait de 5 millions de LL.

- 1) a- Vérifier que $U_1 = 105$ et calculer U_2 .
 - b- Montrer que la suite (Un) n'est pas géométrique.
 - c- Justifier la relation $U_{n+1} = 1,1U_n 5$.
- 2) On pose pour tout entier naturel n, $V_n = U_n 50$.
 - a- Montrer que la suite (V_n) est une suite géométrique de raison 1,1.
 - b- Calculer V_n en fonction de n et trouver la valeur de U_8 .

IV-(8 points)

A- Soit f la fonction définie sur $[0; +\infty[$ par $f(x)=(x^2+2x)e^{-x}$ et (C) sa courbe

représentative dans un repère orthonormé (O; i , j) .

- 1) a- Vérifier que l'axe des abscisses est une asymptote à (C).
 - b- Calculer $f(\sqrt{2})$ et donner la réponse à 10^{-3} près.
- 2) a- Montrer que $f'(x)=(2-x^2)e^{-x}$ et dresser le tableau de variations de f.
- 3) Tracer la droite (d) et la courbe (C).
- 4) Soit F la fonction définie sur $[0; +\infty[$ par : $F(x) = (-x^2 4x 4)e^{-x}$.
 - a- Montrer que F est une primitive de f.
 - b Calculer l'aire du domaine limité par la courbe (C) , l'axe des abscisses et les droites d'équations x=0 et x=1.

B- Une usine fabrique un détergent liquide. La demande en milliers de litres est donnée par :

- $d(p) = (p+2)e^{-p}$ où p est le prix unitaire (prix d'un litre) en milliers LL. $(1 \le p \le 4)$
- 1) Calculer la demande pour un prix unitaire de 2 000 LL.
- 2) Démontrer que la fonction de revenu est donnée par $f(p)=(p^2+2p)e^{-p}$.
- 3) Pour quel prix unitaire le revenu est il maximum? Déterminer ce maximum.
- 4) a- Déterminer l'élasticité e(p) de la demande par rapport au prix.
 - b- Calculer $e(\sqrt{2})$ et donner à la valeur ainsi trouvée, une interprétation économique.