Portfolio Selection Based on Estimated Conditional Mean and Variance from Multivariate GARCH Models

Heino Bohn Nielsen and Anders Rahbek

Recall the Mean-Variance Portfolio Selection

Consider returns $R_t \in \mathbb{R}^p$ with $\mu = E(R_t)$ and $\Omega = E((R - \mu)(R - \mu)')$. The Markowitz analysis finds (i) opportunity set and (ii) optimal choice.

Dynamic Analysis Based on Multivariate GARCH

- The Markowitz analysis is a one-period optimization based on μ and Ω . To form a portfolio at some point in time T, we may use estimates of mean and variance based on historical data. To do so we need a statistical model.
- Assuming i.i.d. data:

$$R_t$$
 is i.i.d. $N(\mu, \Omega)$.

The inputs to the portfolio selection could be the MLEs

$$\hat{\mu} = T^{-1} \sum_{t=1}^{T} R_t$$
 and $\hat{\Omega} = T^{-1} \sum_{t=1}^{T} (R_t - \mu) (R_t - \mu)'$.

• Assuming Multivariate GARCH data:

$$R_t = \mu_t + \epsilon_t$$
, with $\epsilon_t = \Omega_t^{1/2} z_t$ and z_t i.i.d. $(0, I_p)$,

with some chosen specification

$$\mu_{t} = E(R_{t} | \mathcal{F}_{t-1}) = f(\theta, R_{t-1}, R_{t-2}, ...)$$

$$\Omega_{t} = E((R_{t} - \mu_{t})(R_{t} - \mu_{t})' | \mathcal{F}_{t-1}) = g(\theta; R_{t-1}, R_{t-2}, ...).$$

Now the opportunity set typically changes from time to time.

Example: BEKK Model

- Consider the p-dimensional return vector, R_t , t = 1, 2, ..., T.
- A simple BEKK-GARCH model is given by

$$\begin{array}{lcl} R_t & = & \mu + \epsilon_t \\ \epsilon_t & = & \Omega_t^{1/2} z_t, \quad z_t \text{ i.i.d. } N(0, I_p) \\ \Omega_t & = & LL' + A \epsilon_{t-1} \epsilon_{t-1}' A' + B \Omega_{t-1} B', \end{array}$$

with $\mu \in \mathbb{R}^p$, $L \in \mathbb{R}^{p \times p}$ lower triangular, and $A, B \in \mathbb{R}^{p \times p}$ unrestricted.

- Number of parameters in $\theta = (\mu, L, A, B)$ is $p + p(p+1)/2 + 2p^2$.
- ullet Given parameters estimates, $\hat{ heta}$, we can calculate

$$\hat{\mu}_t = \hat{\mu} \quad \text{and} \quad \hat{\Omega}_t = \hat{L}\hat{L}' + \hat{A}(R_{t-1} - \hat{\mu})(R_{t-1} - \hat{\mu})'\hat{A}' + \hat{B}\Omega_{t-1}\hat{B}',$$

and construct portfolio selection based on $\hat{\mu}_t$ and $\hat{\Omega}_t.$

Recursive (Real-Time) Analysis

- In practice, we have to think about the information set for estimation. When forming the portfolio a time T_0 , we only know data up to T_0 .
- To implement a real-time analysis, we therefore
 - **①** Use the sample $t = 1, 2, ..., T_0$, and get estimate, $\hat{\theta}_{T_0}$.
 - **②** Forecast $\mu_{T_0+1|T_0}$ and $\Omega_{T_0+1|T_0}$ and form optimal portfolio weights, ν_{T_0+1} .
 - The portfolio return is given by

$$\bar{R}_{T_0+1} = v'_{T_0+1} R_{T_0+1}$$

- Update the sample to $t = 1, 2, ..., T_0 + 1$ and go to step 1.
- We may compare time series of portfolio returns \bar{R}_{T_0+1} , \bar{R}_{T_0+2} , ... based on different models for returns and different portfolio selection strategies.
- ullet To avoid re-estimation at each point, we may reestimate less frequently. In historical analyses it is also normal to "cheat" and use full-sample estimates $\hat{ heta}_T$ in all sub-periods.

Some Additional Open Issues

- Timing: Often we consider daily closing prices.
 We can form the portfolio weights at the end of day T₀, and look at the return the next day. This is slightly overoptimistic because it is not, in general, possible to buy at the closing price.
- Trading costs are very important in practice. The simple implementation above rebalances portfolios at each point in time, and implies a lot of trading.
- Performance Measures: There is a large literature on the measurement of portfolio performance.
 - High return, low variance, Sharpe ratio, utility, ...

Empirical Example

Consider daily observations, 2012 to 2019, for Carlsberg B, Coloplast B, Demant, and Rockwool B.

Empirical Example

ullet Consider a BEKK model for returns, $R_t \in \mathbb{R}^4$,

$$\begin{aligned} R_t &= \mu + \epsilon_t \\ \epsilon_t &= \Omega_t^{1/2} z_t \\ \Omega_t &= LL' + A \epsilon_{t-1} \epsilon_{t-1}' A' + B \Omega_{t-1} B', \end{aligned}$$

for t = 1, 2, ..., T and with z_t i.i.d. $N_4(0, I_4)$.

- We use the full sample to estimate the parameters, $\hat{\mu}$, \hat{L} , \hat{A} , and \hat{B} .
- For each point, t=1,2,...,T, we use $\hat{\mu}$ and $\hat{\Omega}_t$ to select a portfolio. The weight, v_t , is measurable at time t-1 (and we trade at the closing price).
- The portfolio return is given by

$$\bar{R}_t = v_t' R_t, \quad t = 1, 2, ..., T.$$

Two Random Days

Consider the opportunity set on two random days:

The implied GMV weights are given by

	Carlsberg B	Coloplast B	Demant	Rockwool B
29/7-2013	0.253	0.213	0.292	0.243
5/8-2019	0.476	0.375	-0.051	0.201

Compare Performance

	Global min. var.	Utility optimiz.	Equally weighted
Average return	0.065237	0.079244	0.058272
Standard deviation	0.97864	1.1717	1.0320
Skewness	-0.19563	-0.27737	-0.29419
Kurtosis	4.9364	6.8955	4.8677
Sharpe ratio	0.066661	0.067632	0.056465

Coding

The posted code is somewhat complicated:

- Data handling.
- MLE of preferred model (possibly real-time reestimation).
- Storage of conditional mean and variance.
- Calculation of optimal portfolios.
- Analysis of time series of portfolio returns.

Analysis can be split into parts.

DCC Example

An alternative model is the DCC

$$R_t = \mu + \epsilon_t$$

 $\epsilon_t = \Omega_t^{1/2} z_t$
 $\Omega_t = D_t \Gamma_t D_t$

for t = 1, 2, ..., T and with z_t i.i.d. $N_4(0, I_4)$.

Here

$$D_t = \left(egin{array}{cccc} \sigma_{1t} & 0 & 0 \ 0 & \ddots & 0 \ 0 & 0 & \sigma_{4t} \end{array}
ight),$$

with σ_{it}^2 , i = 1, 2, 3, 4, a univariate ARCH model, e.g.

$$\sigma_{it}^2 = \omega_i + \alpha_i \epsilon_{it-1}^2 + \beta_i \sigma_{it-1}^2.$$

• For the correlations,

$$Q_t = Q(1 - a - b) + a\eta_{t-1}\eta'_{t-1} + bQ_{t-1}.$$

This is not a correlation matrix, and we standardize to get

$$\Gamma_t = Q_t^{*-1} Q_t Q_t^{*-1} = \left(egin{array}{cccc} 1 &
ho_{12t} &
ho_{13t} &
ho_{14t} \
ho_{12t} & 1 &
ho_{23t} &
ho_{24t} \
ho_{13t} &
ho_{23t} & 1 &
ho_{34t} \
ho_{14t} &
ho_{24t} &
ho_{34t} & 1 \end{array}
ight),$$

and

$$Q_t^{*-1} = \left(egin{array}{cccc} \sqrt{q_{11}t} & 0 & 0 & 0 \ 0 & \sqrt{q_{22}t} & 0 & 0 \ 0 & 0 & \sqrt{q_{33}t} & 0 \ 0 & 0 & 0 & \sqrt{q_{44}t} \end{array}
ight).$$

- Observe that a and b are scalars.
 All correlations move with the same speed/sensitivity.
- ullet Q may be estimated as a parameter matrix or fixed (variance targeting).
- The DCC model can be estimated in multiple steps. Consistent but not MLE.

Coding

The posted code is simpler by using the OxMetrics MGARCH package:

- Data handling.
- MLE of preferred model.
- Storage of conditional mean and variance.
- Calculation of optimal portfolio.