CAP6673 - Data Mining and Machine Learning

Data Mining and Machine Learning Assignment 1

Written by:

Christopher Foley Z15092976

Academic Year: Spring 2017

Table of Contents

Academic Year: Spring 2017	1
Assignment 1A: format data files	
Create Data Set 1A (Preditction)	
Create Data Set 2 (Prediction):	
Assignment 1B: Prediction	
Data	
Linear Models	
Linear Models – Greedy	
Linear Models – M5	
Linear Models – No attribute selection	12
Linear Models – Decision Stump	
Data Summary	
Appendix A – WEKA Output	
FIT data – Linear Regression - Greedy	
FIT data – Linear Regression – M5	
FIT data – Linear Regression – None	
FIT Data – Decision Stump	
TEST Data Linear Regression - Greedy	
TEST Data Linear Regression – M5	
TEST Data Linear Regression - None	
TEST Data Decision Stump	

Assignment 1A: format data files

Create Data Set 1A (Prediction)

The original data sets were reformatted to add comments and conform to the arff structure as demonstrated in class the resulting files were as follows:

• TEST.arff (excerpt)

```
% CCCS - TEST data set for Data mining classes
% Author: Christopher Foley
% email: cfoley3@fau.edu
% 09 attributes

@relation TEST

@attribute NUMUORS real
@attribute NUMUANDS real
@attribute TOTOTORS real
@attribute TOTOPANDS real
@attribute VG real
@attribute NLOGIC real
@attribute LOC real
@attribute ELOC real
@attribute FAULTS real
```

@data

6,12,127,45,10,0,641,55,0

5,5,41,12,1,0,407,17,0

23,28,95,66,4,2,241,20,0

• FIT.arff (excerpt):

% CCCS - FIT data set for Data mining classes

% Author: Christopher Foley

% email: cfoley3@fau.edu

% 09 attributes

@relation FIT

@attribute NUMUORS real

@attribute NUMUANDS real

@attribute TOTOTORS real

@attribute TOTOPANDS real

@attribute VG real

@attribute NLOGIC real

@attribute LOC real

@attribute ELOC real

@attribute FAULTS real

```
@data
22,85,203,174,9,0,362,40,0
21,87,186,165,5,0,379,32,0
```

Create Data Set 2 (Prediction):

The data sets used in data set 1 were additionally formatted in CSV and a MACRO was used to add a 10th data field (FaultProne). As per directions modules containing 2 or more FAULTS were classified as fp, all others nfp. The resulting excerpted data files were as follows:

```
TEST2.arff
% CCCS - TEST data set for Data mining classes
% used for prediction
% Author: Christopher Foley
% email: cfoley3@fau.edu
% 10 attributes
@relation TEST
@attribute NUMUORS real
@attribute NUMUANDS real
@attribute TOTOTORS real
@attribute TOTOPANDS real
@attribute VG real
@attribute NLOGIC real
@attribute LOC real
@attribute ELOC real
```

```
@attribute FAULTS real
 @attribute FAULTPRONE {nfp,fp}
 @data
 6,12,127,45,10,0,641,55,0,nfp
 5,5,41,12,1,0,407,17,0,nfp
FIT2.arff
 % CCCS - FIT data set for Data mining classes
 % classification assignment
 % Author: Christopher Foley
 % email: cfoley3@fau.edu
 % 10 attributes
 @relation FIT
 @attribute NUMUORS real
 @attribute NUMUANDS real
 @attribute TOTOTORS real
 @attribute TOTOPANDS real
 @attribute VG real
 @attribute NLOGIC real
 @attribute LOC real
 @attribute ELOC real
```

```
@attribute FAULTS real
@attribute FAULTPRONE {nfp, fp}

@data
22,85,203,174,9,0,362,40,0,nfp
21,87,186,165,5,0,379,32,0,nfp
30,107,405,306,25,0,756,99,0,nfp
```

Assignment 1B: Prediction

Data

The data provided appears to be a subset of the data created by a large command, control and communications system analyzed earlier ¹ Using the author provided references the following product metrics were studied:

Attribute	Description
NUMORS	Number of Unique operators
NUMANDS	Number of Unique operands
TOTOTORS	Total number of operators
TOTOPANDS	Total number of operands
VG	McCabe Complexity Complex
NLOGIC	Number of logical ooperators
LOC	Number of lines of code
ELOC	Executable lines of code

A FIT data set containing 184 instances was used with the WEKA tool to train the model and create initial data. Two basic models were built, a linear regression model and a Decision Stump model.

After creating models with the FIT data, TEST data was then used and the results compared.

Analysis

Review of the data models generated will show that the total number of operands (TOTOPANDS) does not appear to have any affect on the measure of software quality as measured by the number of faults. The greatest indicator appears to be, as expected, the Number of Logical Operators (NLOGIC). This is expected as a logical operator indicates a decision or branch in the software which may be executed incorrectly or in unexpected ways. This conclusion will be demonstrated in the following sections which present the models and their data.

Linear Models

The unformatted FIT models are presented in Appendix A FIT Models and the unformatted test data in Appendix B - Test Models

Linear Models – Greedy

A greedy model will create a model and remove a rule from the rule tree. If the resulting model results in a better model, the rule is removed and the next rule is reviewed. When all rules have been examined, duplicates are removed and the resulting model used. The FIT model produced the following model:

```
FAULTS =

-0.0517 * NUMUORS +

0.0341 * NUMUANDS +

-0.0026 * TOTOTORS +

-0 * TOTOPANDS +

-0.0372 * VG +

0.2118 * NLOGIC +

0.0018 * LOC +

-0.005 * ELOC +

-0.309
```

Of particular note is that the TOTOPANDS attribute is given zero weight indicating that a reasonable model may be built ignoring the total number of operands. Applying the FIT model to

the test data we get:

```
FAULTS =

-0.0482 * NUMUORS +

0.0336 * NUMUANDS +

-0.0021 * TOTOTORS +

-0.0337 * VG +

0.2088 * NLOGIC +

0.0019 * LOC +

-0.3255
```

Again of note the TOTOPANDS attribute is not present indicating that it does not affect the calculations however the TEST data also excludes the ELOC attribute. NLOGIC appears to have a much higher weight than others. Comparing the coefficients we see the following:

Attribute	FIT coefficient	TEST coefficient
NUMORS	-0.0517	-0.0482
NUMANDS	-0.0341	0.0336
TOTOTORS	-0.0026	-0.0021
TOTOPANDS	-0	n/a
VG	-0.0372	-0.0337
NLOGIC	0.2118	0.2088
LOC	0.0018	0.0019
ELOC	0.005	n/a
vertical shiift	-0.0309	-0.3225
Correlation Coefficient	0.7961	0.8314

Note: a value of n/a indicates that the attribute was not used in the final model.

A comparison of the data indicates that the TOTOPANDS (total number of operands) apparently did not affect the outcome and it's appearance in the FIT model is probably due to a value on the interval (-0.00005,0], since values are rounded to 4 decimal places. In both models a correlation > 0.70 indicates a strong positive correlation indicating that the number of faults could be predicted from both models.

Linear Models – M5

A M5 modes combines a decision tree with the possibility of linear regression at each node. The FIT model produced the following model:

```
FAULTS =

-0.0516 * NUMUORS +

0.0341 * NUMUANDS +

-0.0027 * TOTOTORS +

-0.0372 * VG +

0.2119 * NLOGIC +

0.0018 * LOC +

-0.3091
```

Of particular note in this model is that the TOTOPANDS attribute is not used, indicating that again the model may be built ignoring the total number of operands. Applying the FIT model to the test data we get:

```
FAULTS =

-0.0516 * NUMUORS +

0.0341 * NUMUANDS +

-0.0027 * TOTOTORS +

-0.0372 * VG +

0.2119 * NLOGIC +
```

Again of note the TOTOPANDS attribute is not present indicating that it does not affect the calculations. A comparison of the coefficients shows that both models have generated the same coefficients, however the correlation coefficient of the FIT data is 0.7935 and the TEST data is 0.839 both showing strong positive correlations. For completeness we compare the identical coefficients in a table similar to that shown earlier in "Linear Models – Greedy" on pagae 8:

Attribute	FIT coefficient	TEST coefficient
NUMORS	-0.0516	-0.0516
NUMANDS	-0.0341	-0.0341
TOTOTORS	-0.0027	-0.0027
TOTOPANDS	n/a	n/a
VG	-0.0372	-0.0372
NLOGIC	0.2119	0.2119
LOC	0.0018	0.0018
ELOC	0.005	n/a
vertical shiift	-0.3091	-0.3091
Correlation Coefficient	0.7935	0.829

Note: a value of n/a indicates that the attribute was not used in the final model.

A comparison of the data indicates that the TOTOPANDS (total number of operands) apparently did not affect the outcome and it's appearance in the FIT model is probably due to a value on the interval (-0.00005,0], since values are rounded to 4 decimal places. In both models a correlation > 0.70 indicates a strong positive correlation indicating that the number of faults could be predicted

from both models.

Linear Models - No attribute selection

With no attributes selected, the FIT model produced the following model:

```
FAULTS =
```

```
-0.0517 * NUMUORS +

0.0341 * NUMUANDS +

-0.0026 * TOTOTORS +

-0 * TOTOPANDS +

-0.0372 * VG +

0.2118 * NLOGIC +

0.0018 * LOC +

-0.005 * ELOC +

-0.309
```

Again, of particular note is that the TOTOPANDS attribute is given -0 weight indicating that its value is on the interval (-0.00005, 0], indicating that a reasonable model may be built ignoring the total number of operands. Applying the FIT model to the test data we get:

```
FAULTS =
-0.0517 * NUMUORS +
0.0341 * NUMUANDS +
-0.0026 * TOTOTORS +
-0 * TOTOPANDS +
-0.0372 * VG +
```

```
0.2118 * NLOGIC +
0.0018 * LOC +
0.005 * ELOC +
-0.309
```

Again of note the TOTOPANDS attribute is not present indicating that it does not affect the calculations. We also observe that both the FIT and TEST have the same coefficients with correlations of 0.7969 and 0.829 respectively, showing however the TEST data also excludes the ELOC attribute. Comparing the coefficients we see the following:

Attribute	FIT coefficient	TEST coefficient
NUMORS	-0.0517	-0.0517
NUMANDS	-0.0341	-0.0341
TOTOTORS	-0.0026	-0.0021
TOTOPANDS	-0	-0
VG	-0.0372	-0.0372
NLOGIC	0.2118	0.2118
LOC	0.0018	0.0018
ELOC	0.005	0.005
vertical shiift	-0.0309	-0.0309
Correlation Coefficient	0.7969	0.829

Note: a value of n/a indicates that the attribute was not used in the final model.

A comparison of the data indicates that the TOTOPANDS (total number of operands) apparently did not affect the outcome and it's appearance in the FIT model is probably due to a value on the interval (-0.00005,0], since values are rounded to 4 decimal places. In both models a correlation >

0.70 indicates a strong positive correlation indicating that the number of faults could be predicted from both models.

Linear Models – Decision Stump

A Decision stump model will attempt to merge and prune the decision tree to one node. The FIT data produced the following model:

Of particular note is that the NLOGIC attribute appears to be the key to the number of faults in the modules. This is expected due to the fact that logical operators indicate decisions which are usually the cause of faults in a program. Applying the FIT model to the test data we get similar results:

A comparison of the WEKA analysis indicated that the larger data set was less reliable with a correlation coefficient of 0.5941. The smaller test data had a correlation of 0.7111 indicating a positive correlation.

Data Summary

The tabular data may be summarized as follows:

Attribute			Linear	Regression			
	G	Greedy		M5		None	
	FIT	TEST	FIT	TEST	FIT	TEST	
NUMORS	-0.0517	-0.0482	-0.0516	-0.0516	-0.0517	-0.0517	
NUMANDS	-0.0341	0.0336	-0.0341	-0.0341	-0.0341	-0.0341	
TOTOTORS	-0.0026	-0.0021	-0.0027	-0.0027	-0.0026	-0.0021	
TOTOPANDS	-0	n/a	n/a	n/a	-0	-0	
VG	-0.0372	-0.0337	-0.0372	-0.0372	-0.0372	-0.0372	
NLOGIC	0.2118	0.2088	0.2119	0.2119	0.2118	0.2118	
LOC	0.0018	0.0019	0.0018	0.0018	0.0018	0.0018	
ELOC	0.005	n/a	0.005	n/a	0.005	0.005	
Vertical Shift	-0.0309	-0.3225	-0.3091	-0.3091	-0.0309	-0.0309	
Correlation	0.7961	0.8314	0.7935	0.829	0.7969	0.829	

,

All Linear algorithms appeared to converge to the same values with reasonably high degrees of correlation. As expected the TOTOPANDS have no affect on the outcome and as shown in the Decision Stump analysis, the number of logical operands (NLOGIC) appear to be the most significant indicator of quality.

Appendix A – WEKA Output

=== Run information ===

FAULTS =

FIT data - Linear Regression - Greedy

```
Scheme:
              weka.classifiers.functions.LinearRegression -S 2 -R
1.0E-8 -num-decimal-places 4
Relation:
              FIT
Instances:
              188
Attributes:
              NUMUORS
              NUMUANDS
              TOTOTORS
              TOTOPANDS
              VG
              NLOGIC
              LOC
              ELOC
              FAULTS
            10-fold cross-validation
Test mode:
=== Classifier model (full training set) ===
Linear Regression Model
```

-0.0482 * NUMUORS +

0.0336 * NUMUANDS +

```
-0.0021 * TOTOTORS +
     -0.0337 * VG +
      0.2088 * NLOGIC +
      0.0019 * LOC +
     -0.3255
Time taken to build model: 0.06 seconds
=== Cross-validation ===
=== Summary ===
Correlation coefficient
                                          0.7961
Mean absolute error
                                          1.6939
Root mean squared error
                                          2.8425
Relative absolute error
                                         58.6027 %
Root relative squared error
                                         60.9977 %
Total Number of Instances
                                        188
```

=== Run information ===

FIT data - Linear Regression - M5

Scheme: weka.classifiers.functions.LinearRegression -S 0 -R 1.0E-8 -num-decimal-places 4

Relation: FIT Instances: 188 Attributes: 9 NUMUORS NUMUANDS TOTOTORS TOTOPANDS VG NLOGIC LOC ELOC FAULTS Test mode: 10-fold cross-validation === Classifier model (full training set) === Linear Regression Model FAULTS = -0.0516 * NUMUORS + 0.0341 * NUMUANDS + -0.0027 * TOTOTORS +-0.0372 * VG +0.2119 * NLOGIC +

0.0018 * LOC + 0.005 * ELOC + -0.3091

Time taken to build model: 0.22 seconds

=== Cross-validation ===

=== Summary ===

Correlation coefficient 0.7935

Mean absolute error 1.7017

Root mean squared error 2.8612

Relative absolute error 58.8734 %

Root relative squared error 61.3972 %

Total Number of Instances 188

FIT data - Linear Regression - None

=== Run information ===

Scheme: weka.classifiers.functions.LinearRegression -S 1 -R

1.0E-8 -num-decimal-places 4

Relation: FIT

Instances: 188

Attributes: 9

NUMUORS

```
NUMUANDS
              TOTOTORS
              TOTOPANDS
             VG
             NLOGIC
             LOC
             ELOC
             FAULTS
Test mode: 10-fold cross-validation
=== Classifier model (full training set) ===
Linear Regression Model
FAULTS =
     -0.0517 * NUMUORS +
     0.0341 * NUMUANDS +
     -0.0026 * TOTOTORS +
     -0 * TOTOPANDS +
     -0.0372 * VG +
      0.2118 * NLOGIC +
      0.0018 * LOC +
     0.005 * ELOC +
     -0.309
```

Time taken to build model: 0 seconds

=== Cross-validation ===

=== Summary ===

Correlation coefficient 0.7969

Mean absolute error 1.6902

Root mean squared error 2.8362

Relative absolute error 58.4755 %

Root relative squared error 60.8616 %

Total Number of Instances 188

FIT Data – Decision Stump

=== Run information ===

Scheme: weka.classifiers.trees.DecisionStump

Relation: FIT

Instances: 188

Attributes: 9

NUMUORS

NUMUANDS

TOTOTORS

TOTOPANDS

VG

	NLOGIC	
	LOC	
	ELOC	
	FAULTS	
Test mode:	10-fold cross-validation	
=== Classifie	r model (full training set) ===
Decision Stum	p	
Classificatio	ns	
NLOGIC <= 14.	0: 1.3806818181818181	
NLOGIC > 14.0	: 15.33333333333333	
NLOGIC is mis	sing : 2.271276595744681	
Time taken to	build model: 0.01 seconds	
=== Cross-val	idation ===	
=== Summary =	==	
Correlation c	oefficient	0.5941
Mean absolute	error	2.2173
Root mean squ		3.7905
Relative abso	lute error	76.7091 %

CAP6673 - Data Mining and Machine Learning

Root relative squared error 81.3406 %

Total Number of Instances 188

TEST Data Linear Regression - Greedy

=== Run information ===

Scheme: weka.classifiers.functions.LinearRegression -S 2 -R

1.0E-8 -num-decimal-places 4

Relation: FIT

Instances: 188

Attributes: 9

NUMUORS

NUMUANDS

TOTOTORS

TOTOPANDS

VG

NLOGIC

LOC

ELOC

FAULTS

Test mode: user supplied test set: size unknown (reading

incrementally)

=== Classifier model (full training set) ===

Linear Regression Model

Total Number of Instances

FAULTS = -0.0482 * NUMUORS +0.0336 * NUMUANDS +-0.0021 * TOTOTORS + -0.0337 * VG +0.2088 * NLOGIC + 0.0019 * LOC +-0.3255 Time taken to build model: 0.01 seconds === Evaluation on test set === Time taken to test model on supplied test set: 0 seconds === Summary === Correlation coefficient 0.8314 Mean absolute error 1.8383 Root mean squared error 3.6895 Relative absolute error 58.6625 % Root relative squared error 62.968 %

94

TEST Data Linear Regression – M5

```
=== Run information ===
              weka.classifiers.functions.LinearRegression -S 0 -R
1.0E-8 -num-decimal-places 4
Relation:
              FIT
Instances:
              188
Attributes:
              NUMUORS
              NUMUANDS
              TOTOTORS
              TOTOPANDS
              VG
              NLOGIC
              LOC
              ELOC
              FAULTS
Test mode:
             user supplied test set: size unknown (reading
incrementally)
=== Classifier model (full training set) ===
Linear Regression Model
FAULTS =
```

```
-0.0516 * NUMUORS +
     0.0341 * NUMUANDS +
     -0.0027 * TOTOTORS +
     -0.0372 * VG +
      0.2119 * NLOGIC +
      0.0018 * LOC +
      0.005 * ELOC +
     -0.3091
Time taken to build model: 0 seconds
=== Evaluation on test set ===
Time taken to test model on supplied test set: 0 seconds
=== Summary ===
Correlation coefficient
                                         0.829
Mean absolute error
                                         1.8376
Root mean squared error
                                         3.7324
Relative absolute error
                                        58.6423 %
Root relative squared error
                                       63.7 %
Total Number of Instances
                                        94
```

FAULTS =

TEST Data Linear Regression - None

=== Run information === Scheme: weka.classifiers.functions.LinearRegression -S 1 -R 1.0E-8 -num-decimal-places 4 Relation: FIT 188 Instances: Attributes: NUMUORS NUMUANDS TOTOTORS TOTOPANDS VG NLOGIC LOC ELOC FAULTS Test mode: user supplied test set: size unknown (reading incrementally) === Classifier model (full training set) === Linear Regression Model

```
-0.0517 * NUMUORS +
     0.0341 * NUMUANDS +
     -0.0026 * TOTOTORS +
     -0 * TOTOPANDS +
    -0.0372 * VG +
     0.2118 * NLOGIC +
     0.0018 * LOC +
     0.005 * ELOC +
     -0.309
Time taken to build model: 0.02 seconds
=== Evaluation on test set ===
Time taken to test model on supplied test set: 0.02 seconds
=== Summary ===
Correlation coefficient
                                        0.829
Mean absolute error
                                        1.8377
Root mean squared error
                                        3.7317
Relative absolute error
                                       58.6426 %
Root relative squared error
                            63.6881 %
Total Number of Instances
                                       94
```

NLOGIC > 14.0 : 15.3333333333333333

TEST Data Decision Stump

=== Run information ===

```
Scheme:
             weka.classifiers.trees.DecisionStump
Relation:
             FIT
Instances:
            188
Attributes:
             9
             NUMUORS
             NUMUANDS
             TOTOTORS
             TOTOPANDS
             VG
             NLOGIC
             LOC
             ELOC
             FAULTS
Test mode:
            user supplied test set: size unknown (reading
incrementally)
=== Classifier model (full training set) ===
Decision Stump
Classifications
NLOGIC <= 14.0 : 1.3806818181818181
```

CAP6673 - Data Mining and Machine Learning

NLOGIC is missing : 2.271276595744681

Time taken to build model: 0.01 seconds

=== Evaluation on test set ===

Time taken to test model on supplied test set: 0 seconds

=== Summary ===

Correlation coefficient	0.7111
Mean absolute error	2.2952
Root mean squared error	4.1928
Relative absolute error	73.2439 %
Root relative squared error	71.5571 %
Total Number of Instances	94

i	T.M. Khoshgoftaar and E.B. Allen, <i>Modeling Software Quality: The</i> Software <i>Measurement Analysis and Reliability Toolkit</i> , copy provided by author T.M. Khoshgoftaar as part of class notes CAP6674: Machine Learning and Data Mining, Florida Atlantic University, Spring 2017.