Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

КУРСОВАЯ РАБОТА НА ТЕМУ: «Визуализация тел вращения, заданных кривой Безье»

Студент: Нисуев Н.Ф. ИУ7-52Б

Руководитель: Мартынюк Н.Н.

Цели и задачи

Цель: разработка программного обеспечения, которое позволяет пользователю генерировать тела вращения с помощью кривой Безье, выбирать цвет тела вращения, расположение источника света и камеры.

Задачи:

- изучение методов генерации кривой Безье и тел вращения;
- анализ существующих алгоритмов создания кривой Безье и тел вращения;
- выбор подходящих алгоритмов для решения поставленной задачи;
- проектирование архитектуры и графического интерфейса программы;
- реализация структур данных и алгоритмов для работы с кривой Безье и телами вращения;
- описание структуры разрабатываемого ПО;
- написание программы и тестирование;
- исследование производительности программы при работе с телами вращения.

Используемые методы и подходы

- алгоритм де Костельжо;
- метод треугольников;
- z-буфер;
- закраска по Фонгу;
- Модель освещения Ламберта.

Модель освещения Ламберта

$$I = I_0 k_a + I_t k_d \cos \theta, \quad 0 \le \theta \le \frac{\pi}{2}$$

где:

- -I интенсивность отражённого света;
- $-I_{0}$ интенсивность рассеянного света;
- $-k_a$ коэффициент диффузного отражения рассеянного света $(0 \le k_a \le 1);$
- $-I_{t}$ интенсивность точечного источника света;
- k_d коэффициент диффузного отражения для направленного света $(0 \le k_d \le 1);$
- $-\theta$ угол между направлением света и нормалью к поверхности.

Описание объектов сцены

- трехмерная полигональная модель объекта;
- камера;
- источник света.

Алгоритм генерации тела вращения

Алгоритм построения изображения

Схема алгоритма Z-буфера

Выбор языка программирования и среды разработки

Для разработки программного обеспечения был выбран язык С++.

Выбор обусловлен:

- скоростью выполнения;
- опытом работы с ним;
- поддержкой объектно-ориентированной модели разработки.

Для реализации пользовательского интерфейса программного обеспечения выбран фреймворк **QT**.

- содержит в себе средства, позволяющие работать напрямую с пикселями.

Схема классов

Интерфейс программы

Интерфейс программы

Исследование

Технические характеристики используемого оборудования:

- операционная система Windows 11 Home;
- память 16 Гб;
- процессор 12th Gen Intel® Core™ i7-12700H @ 2.30 ГГц.

Цель исследования:

определение зависимости времени генерации тела вращения от количества сегментов и от количества точек на кривой.

Зависимость времени генерации тела вращения от количества точек на кривой

Зависимость времени генерации тела вращения от количества сегментов

Заключение

В результате курсовой работы было разработано программное обеспечение, которое позволяет пользователю генерировать тела вращения с помощью кривой Безье, выбирать цвет тела вращения, расположение источника света и камеры.

В ходе выполнения курсовой работы были решены следующие задачи:

- изучены методы генерации кривой Безье и тел вращения;
- проанализированы существующие алгоритмы создания кривой Безье и тел вращения;
- выбраны подходящие алгоритмы для решения поставленной задачи;
- спроектированы архитектура и графический интерфейс программы;
- реализованы структуры данных и алгоритмы для работы с кривой Безье и телами вращения;
- описаны структуры разрабатываемого ПО;
- написана программы и тестирование;
- исследована производительности программы при работе с телами вращения.