

香港考試及評核局 2020年香港中學文憑考試

生物 試卷二

本試卷必須用中文作答 一小時完卷 (上午十一時四十五分至下午十二時四十五分)

考生須知

- (一) 本試卷分甲、乙、丙、丁四部。回答任何兩部內全部試題。
- (二) 答案須寫在所提供的 DSE(C) 答題簿內, 每題(非指分題) 必須另起新頁作答。
- (三) 在適當處應以段落形式作答。
- (四) 在適當處應附圖闡明答案。
- (五) 本試卷的附圖未必依比例繪成。

考試结束前不可 將試卷攜難試場

甲部 人體生理學:調節與控制

回答本部分内的**所有**試題。

1(a) 在一項研究中,將兩組人士的血漿抗利尿激素 (ADH) 水平與血漿鈉離子水平進行比較。他們分別是健康人士和患有腦下垂體疾病的病人。下圖顯示他們體內該兩種物質水平的關係:

- (i) 参考上圖,描述這兩組人士血漿 ADH 水平的變化。 (3 分)
- (ii) 根據你在 (a) (i) 的答案,解釋腦下垂體疾病的患者所產生的尿液,在體積 和濃度上如何有別於健康人士所產生的尿液。 (3 分)
- (iii) 解釋健康人士的血漿鈉離子水平的增加,如何引致血漿 ADH 水平的變化。 (3 分)
- (iv) 一些腦下垂體疾病的女患者沒有月經。根據你對腦下垂體功能的認識, 試舉出一項可能的解釋來說明這個現象。 (3 分)

在一項探究中,一名自願者在靜止狀態下吸入含不同二氧化碳濃度的空氣, 然後量度與呼吸相關的參數。結果如下表所示:

吸入空氣內的 二氧化碳濃度(%)	呼吸速率	呼吸的流	
二氧化碳濃度(%)	(\min^{-1})	呼吸的深度	換氣速率
0.04	14	(L)	(L min ⁻¹)
0.80	14	0.5	7.0
1.50	14	0.6	8.4
2.70	14	0.8	11.2
3.50	15	1.2	16.8
4.30	17	1.6	24.0
5.60	24	1.7	28.9
6.50	29	1.7	40.8
		1./	49.3

- (i) 寫出在不同二氧化碳濃度範圍內,主導換氣速率變化的參數。 (2 分)
- (ii) 試提出為什麼在二氧化碳濃度超越 4.3% 後, 呼吸深度保持恆定。 (1 分)
- (iii) 描述二氧化碳濃度增加對該自願者換氣速率的效應。 (1分)
- (iv) 解釋二氧化碳濃度增加如何導致換氣速率變化。 (4分)

乙部 應用生態器

回答本部分内的所有試題 •

- 在沙灘A和B進行一項研究・採売採売到の行動の 100 /
 - 下圖顯示於 5 月 31 日和 10 月 1 日在兩個沙灘採集到的蜆的數量: (i)

描述在兩個沙灘上蜆的密度的變化。

(2 分)

下表顯示在 5 月 31 日和 10 月 1 日,沙灘 A 和沙灘 B 的動物物種的組成 (ii)

,		5月3		10 月	1 [7]
	70 悝	每 1 m³ 沉積物內 個體的數目	個體數目總數 的百分比	3	個體數目總數
V I	物種 1	20	31.3	19	的百分比
	物種 2	15	23.4	16	30.2
機	物種 3	8	12.5	8	25.4
念	物種 4	21	32.8	20	12.7
	物種 1	19	30.6	7	30.7
m	物種 2	16	25.8	- /	20.6
機	物種 3	7	11.3	3	14.7
众	物種 4	20	32.3	21	61.8
			52.5	1	2.9

根據 (a) (i) 和 (a) (ii) 的結果,推斷採蜆對沙岸動物群落的物種多樣性有什 (4 分) (iii) 世界自然基金會香港分會制定蜆類保育尺,作為採蜆時的指引。其中一類蜆的保育尺如下所示:

解釋只採集不能穿過測量圈的蜆如何有助保育蜆的群落。 (3 分)

- 2(b) 正常兩水的 pH 值約為 5.6 · 科學家在 17 世紀首次發現酸關,在當時的工業區、更有兩水的 pH 值低於 2.5 的紀錄。
 - (i) 1986 年進行了一項實驗,研究兩水的酸性對某種地衣的光合作用遊率的效應。把地衣分為3組: A組為對照組,每天以pH 5.6 的兩水樣本噴灑; B 組和 C 組在第 1 天分別以 pH 3.5 和 pH 2.5 的兩水樣本噴灑,然後由第 2 天到第 5 天均以 pH 5.6 的兩水樣本噴灑。

- (I) 比較噴灑不同 pH 的雨水樣本對這種地衣的光合作用速率的效應。 (4 分)
- (2) 下表顕示城市 Y 在雨季中某個月份的天氣情況。根據上述實驗的結果,解釋為什麼在城市 Y 的工業區難以找到這種地衣。 (3 分)

	星期日	星期一	星期二	B #0 -	H ##		` 21)
	I M G	王州	生 别 —	星期三	星期四	星期五	星期六
			,	1 333	2	3	4
	5	6 ***	7	8 1111.	9 '111.	10	
1	12	13 1111	14 '///	15 1711	16	17	18
	9 224	20	21	22 ****	23	24	25
2	6	27 ****	28	29	30		23

- (ii) 寫出兩種主要的空氣污染物,並描述它們怎樣導致酸兩的形成。(2 分)
- (iii) 寫出酸雨對土壤礦物質的兩種效應。 (2 分)

微生物與人類

丙部

回答本部分內的所有試題。

手足口病是由一種病毒感染所致,病毒是經由接觸受感染者的糞便或分泌物

- 在 20 歲以下的年齡群組中, 手足口病個案的數目如何隨着患者的歲數改 (i) (2 分)
- 就(a)(i)所描述的變化,提出兩項解釋。
- 抗生素能否有效治療手足口病?試加以解釋。 (iii) (2 分)
- 手足口病其中一種症狀是患者的口腔內、手掌和腳掌長出水疱。已知水疱內的液體含大量病毒。以下照片顯示手指上的一些水疱:

参考病毒的生活週期,描述水疱內的大量病毒是如何形成。 (4 分)

(2 分)

3(b) 食物安全中心制定指引,以評估某些即食食品的安全和質素。其中一種評估 方法是估量每1克食物樣本所形成的細菌菌落數目。表1顯示按照該指引而 方法是估量每1克食物樣本所形成的無可樣本的菌落數目。 劃分的食物質素等級。表2顯示由本地食肆收集的壽司樣本的菌落數目。

# 1				
要 1 g 食物樣本的 食物質素等級		建議		
菌落數目	滿意	不會採取任何行動		
<1 000 000	尚可	仍然可供人們進食		
1 000 000 - <10 000 000		考慮找出高菌落數目的原因		
≥ 10 000 000	不滿意			

- (i) 根據食物安全中心的指引,列出食物質素屬不滿意的壽司樣本。 (1 分)
- (ii) 雖然有些壽司樣本的食物質素屬不滿意,但進食這些壽司樣本未必會引致食物中毒或感染。以數算細菌菌落數目作為食物安全的指標,這做法有什麼局限性? (1 分)
- (iii) 提出壽司樣本出現高菌落數目的一個可能原因。 (1 分)
- (iv) 以下流程表顯示對壽司樣本進行需氧細菌菌落計數的主要步驟:

將 50 g 樣本攪碎,以製備 500 mL 的儲備溶液

↓

將儲備溶液連續稀釋 (10⁻¹ 、 10⁻² 、 10⁻³ 、 10⁻⁴)

↓

將每一稀釋溶液散布在營養瓊脂板上

在 30℃下培養 48 小時

製算所形成的細菌菌落數目 → 計算需氧細菌菌落計數

- (1) 應該選擇哪一塊瓊脂板數算所形成的細菌菌落數目?解釋為什麼 其他瓊脂板不適合用作數算。 (3 分)
- (2) 數算所選擇的瓊脂板的細菌菌落數目,再進一步計算每克壽司樣本 所形成的細菌菌落數目。
- (3) 在上述過程中,應採用無菌技術避免污染。描述將溶液散布在瓊脂 板上時所採用的一種無菌技術。解釋所涉及的原理。

丁部 生物工程

回答本部分內的所有試題。

4(a) 纽閱下圖·圖X顯示某段 DNA 内的目標基因·圖 Y顯示一個擁有 4 300 鹼基對 (bp) 的質粒·兩圖亦顯示限制酶 EcoRI、 Pstl 和 HindIII 的限制位置:

- (i) 某學生計劃把目標基因插入質粒,並以抗生素 P 篩選已轉化的细菌。
 - (1) 他應該使用哪種限制酶來進行插入?解釋你的答案。 (3分)
 - (2) 寫出完成插入目標基因過程所需的另一種酶。 (1分)
- (ii) 在完成轉化·篩選和培養的程序後,將由不同菌落獲得的質粒用酶 HindIII 切割,然後進行凝膠電泳,以檢測經切割後質粒的大小。下圖顯示所得 的兩類 DNA 帶:

- (1) 哪條帶(A或B)代表含有目標基因的質粒?解釋你的答案·(3分)
- (2) 解釋為什麼切割後的質粒經凝膠電泳後會出現兩類 DNA帶・(3分)

唐氏綜合症的傳統診斷方法需要收集胎兒的組織。近期,在母親血液內發現4(b) 胎兒癖放至血漿的 DNA 片段。下圖顯示胎兒和其在母體內的相關構造:

- (i) 参考上圖,這些胎兒游離 DNA 來自哪個標註的構造?解釋你的答案。 (2分)
- (ii) 母親血漿內,胎兒游離 DNA 只佔總游離 DNA 很小部分。提出一項技術以加強檢測母親血漿內這極小量的胎兒游離 DNA。解釋你的答案。 (2 分)
- (iii) 現時,透過 DNA 排序技術以及與人類基因圖譜數據庫進行比對,可以得知游離 DNA 上所屬的基因。
 - (1) 科學家建議,比較第21條染色體上的基因和另一條體染色體上的基因在胎兒游離 DNA 內出現的頻率,可以診斷唐氏綜合症。根據你對唐氏綜合症的認識,解釋這方法所涉及的生物學原理。預期的結果會是怎樣?
 - (2) 試提出 DNA 排序所得結果的**兩項**其他應用,並分別解釋其操作原理。 (4 分)

試 卷 完

本試卷所引資料的來源,將於香港考試及評核局稍後出版的〈香港中學文憑考試試題專輯〉內列明。

2020-DSE-BIO 2-11