Tadh OG_4285 Tadh_TriadT28937 $gamma_aminobutyric_acid_type_B_receptor_subunit_2$ 10 metacells TrH2 OG_4285 TrH2_TrispH2_006907-RA $gamma_aminobutyric_acid_type_B_receptor_subunit_2$ 10 metacells **Hhon OG_4285** Hhon_g02704.t1 gamma_aminobutyric_acid_type_B_receptor_subunit_2 metacells HoiH23 OG_4285 HoiH23_PIH23_009834-RA $gamma_aminobutyric_acid_type_B_receptor_subunit_2$ 10 $^{-4} + ^{1} +$

Tadh OG_4346 Tadh_TriadT33101 adhesion_G_protein_coupled_receptor_L3 10 --unr-u-tatravuuvuuuvuvuuvuuvuuvuuvuuvuu aataavassassassassassassassa tatravuutta 1999-1999-1999-1999-1999-199 metacells TrH2 OG_4346 TrH2_TrispH2_010091-RA $adhesion_G_protein_coupled_receptor_L3$ metacells Hhon OG_4346 Hhon_g08679.t1 $adhesion_G_protein_coupled_receptor_L3$ metacells HoiH23 OG_4346 HoiH23_PIH23_008121-RA $adhesion_G_protein_coupled_receptor_L3$ 10 metacells

Tadh OG_4710 Tadh_TriadT57728 $trace_amine_associated_receptor_5$ 10 metacells TrH2 OG_4710 TrH2_TrispH2_008455-RA trace_amine_associated_receptor_5 10 metacells Hhon OG_4710 Hhon_g01745.t1 trace_amine_associated_receptor_5 metacells HoiH23 OG_4710 HoiH23_PIH23_010784-RA $trace_amine_associated_receptor_5$ 10 metacells

Tadh OG_4773 Tadh_TriadT59538 $adenosine_A3_receptor, adenosine_A1_receptor$ 10 metacells TrH2 OG_4773 TrH2_TrispH2_010101-RA adenosine_A3_receptor,adenosine_A1_receptor 10 metacells Hhon OG_4773 Hhon_g10394.t1 adenosine_A3_receptor,adenosine_A1_receptor metacells HoiH23 OG_4773 HoiH23_PIH23_006295-RA $adenosine_A3_receptor, adenosine_A1_receptor$

Tadh OG_5178 Tadh_TriadT55994 $adhesion_G_protein_coupled_receptor_D1$ 10 metacells TrH2 OG_5178 TrH2_TrispH2_004358-RA adhesion_G_protein_coupled_receptor_D1 10 metacells **Hhon OG_5178** Hhon_g08000.t1 adhesion_G_protein_coupled_receptor_D1 metacells HoiH23 OG_5178 HoiH23_PIH23_011122-RA $adhesion_G_protein_coupled_receptor_D1$ 10 metacells HoiH23 OG_5178 HoiH23_PIH23_011458-RA adhesion_G_protein_coupled_receptor_D1

Tadh OG_5306 Tadh_TriadT60579 $trace_amine_associated_receptor_1$ metacells TrH2 OG_5306 TrH2_TrispH2_009484-RA trace_amine_associated_receptor_1 $\begin{smallmatrix} 1&4&5&5&5&5&6\\ 1&4&5&5&5&6\\ 1&4&5&5&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6$ metacells **Hhon OG_5306** Hhon_g11626.t1 trace_amine_associated_receptor_1 metacells HoiH23 OG_5306 HoiH23_PIH23_012036-RA trace_amine_associated_receptor_1 10 metacells

Tadh OG_5418 Tadh_TriadT52983 aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2 2 metacells TrH2 OG_5418 TrH2_TrispH2_008289-RA aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_ metacells **Hhon OG_5418** Hhon_g11350.t1 aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_b_receptor_subunit_2,gamma_aminobutyric_acid_type_b_receptor_subunit_2,gamma_aminobutyric_acid_type_b_receptor_subunit_2,gamma_aminobutyric_acid_type_b_receptor_subunit_2,gamma_aminobutyric_acid_type_b_receptor_subunit_3,ga metacells **Hhon OG_5418** Hhon_g05486.t1 aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor metacells HoiH23 OG_5418 HoiH23_PIH23_006171-RA aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_ 2 $\begin{smallmatrix} & +4 \\ & +6$

Tadh OG_5822 Tadh_wf_g4030.t1 Itamate_metabotropic_receptor_7,glutamate_metabotropic_receptor_1,calcium_sensing_re 2 metacells TrH2 OG_5822 TrH2_TrispH2_001749-RA וtamate_metabotropic_receptor_7,glutamate_metabotropic_receptor_1,calcium_sensing_re $\begin{smallmatrix} 1&4&5&5&5&5&6\\ 1&4&5&5&5&6\\ 1&4&5&5&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6$ metacells Hhon OG_5822 Hhon_g05229.t1 itamate_metabotropic_receptor_7,glutamate_metabotropic_receptor_1,calcium_sensing_re metacells HoiH23 OG_5822 HoiH23_PIH23_011778-RA ntamate_metabotropic_receptor_7,glutamate_metabotropic_receptor_1,calcium_sensing_re

 $^{-4} \\ \text{$^{+2}$} \\ \text{$^{+2}$

Tadh OG_6277 Tadh_TriadT23992 $adhesion_G_protein_coupled_receptor_D1$ metacells TrH2 OG_6277 TrH2_TrispH2_004356-RA adhesion_G_protein_coupled_receptor_D1 $\begin{smallmatrix} 1&4&5&5&5&5&6\\ 1&4&5&5&5&6\\ 1&4&5&5&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6$ metacells Hhon OG_6277 Hhon_g08001.t1 adhesion_G_protein_coupled_receptor_D1 metacells HoiH23 OG_6277 HoiH23_PIH23_009889-RA $adhesion_G_protein_coupled_receptor_D1$ metacells

Tadh OG_8116 Tadh_TriadT55873 galanin_receptor_2,opioid_receptor_mu_1,histamine_receptor_H2 10 metacells TrH2 OG_8116 TrH2_TrispH2_006682-RA $galanin_receptor_2, opioid_receptor_mu_1, histamine_receptor_H2$ 10 metacells **Hhon OG_8116** Hhon_g00885.t1 $galanin_receptor_2, opioid_receptor_mu_1, histamine_receptor_H2$ metacells **Hhon OG_8116** Hhon_g00887.t1 galanin_receptor_2,opioid_receptor_mu_1,histamine_receptor_H2 10 metacells Hhon OG_8116 Hhon_g11965.t1 $galanin_receptor_2, opioid_receptor_mu_1, histamine_receptor_H2$ $^{-4} + ^{0} +$ metacells HoiH23 OG_8116 HoiH23_PIH23_006799-RA $galanin_receptor_2, opioid_receptor_mu_1, histamine_receptor_H2$ 10 metacells HoiH23 OG_8116 HoiH23_PIH23_006800-RA galanin_receptor_2,opioid_receptor_mu_1,histamine_receptor_H2 $\begin{smallmatrix} & +4 \\ & +6$

Tadh OG_8817 Tadh_TriadT55850 dopamine_receptor_D5 10 metacells TrH2 OG_8817 TrH2_TrispH2_010478-RA dopamine_receptor_D5 10 metacells Hhon OG_8817 Hhon_g00909.t1 dopamine_receptor_D5 metacells HoiH23 OG_8817 HoiH23_PIH23_008079-RA dopamine_receptor_D5 10 metacells

Tadh OG_10734 Tadh_TriadT55876 adhesion_G_protein_coupled_receptor_L3,adhesion_G_protein_coupled_receptor_D1 2 metacells Tadh OG_10734 Tadh_TriadT55875 adhesion_G_protein_coupled_receptor_L3,adhesion_G_protein_coupled_receptor_D1 metacells TrH2 OG_10734 TrH2_TrispH2_006684-RA adhesion_G_protein_coupled_receptor_L3,adhesion_G_protein_coupled_receptor_D1 $\begin{smallmatrix} 1&4&5&5&5&5&6\\ 1&4&5&5&5&6\\ 1&4&5&5&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6$ metacells Hhon OG_10734 Hhon_g00884.t1 adhesion_G_protein_coupled_receptor_L3,adhesion_G_protein_coupled_receptor_D1 $^{-4} + ^{0} +$ metacells HoiH23 OG_10734 HoiH23_PIH23_006801-RA adhesion_G_protein_coupled_receptor_L3,adhesion_G_protein_coupled_receptor_D1 2

Tadh OG_2959 Tadh_TriadT52577 aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor 2 metacells **Tadh OG_2959** Tadh_TriadT52576 aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2. metacells TrH2 OG_2959 TrH2_TrispH2_000233-RA aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2. TrH2 OG_2959 TrH2_TrispH2_011846-RA aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor metacells TrH2 OG_2959 TrH2_TrispH2_011778-RA aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_3,gamma_aminobutyric_acid_type_b_receptor_subunit_3,gamma_aminobutyric_acid_type_b_receptor_subunit_3,gamma_aminobutyric_acid_type_b_receptor_subunit_3,gamma_aminobutyric_acid_type_b_receptor_subunit_3,gamma_aminobutyric_acid_type_b_receptor_subunit_3,gamma_aminobutyric_acid_type_b_receptor_subunit_3,gamma_aminobutyric_acid_type_b_receptor_subunit_3,gamma_aminobutyric_acid_type_b_receptor_subunit_3,gamma_aminobutyric_acid_type_b_receptor_subunit_3,gamma_aminobutyric_acid_type_b_receptor_subunit_3,gamma_aminobutyric_acid_type_b_receptor_subunit_3,gamma_aminobutyric_acid_type_b_receptor_subunit_3,gamma_acid_typ **Hhon OG_2959** Hhon_g05295.t1 aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2. metacells HoiH23 OG_2959 HoiH23_PIH23_000720-RA aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor $\begin{smallmatrix} & +4 \\ & +6$ metacells

Tadh OG_4566 Tadh_TriadT11163 somatostatin_receptor_2 10 metacells TrH2 OG_4566 TrH2_TrispH2_011636-RA somatostatin_receptor_2 metacells Hhon OG_4566 Hhon_g05145.t1 somatostatin_receptor_2 metacells HoiH23 OG_4566 HoiH23_PIH23_011581-RA somatostatin_receptor_2 metacells

Tadh OG_5291 Tadh_TriadT25445 $cubilin, relaxin_family_peptide_receptor_1, LDL_receptor_related_protein_12$ 2 metacells TrH2 OG_5291 TrH2_TrispH2_006124-RA $cubilin, relaxin_family_peptide_receptor_1, LDL_receptor_related_protein_12$ 10 $\begin{smallmatrix} 1&4&5&5&5&5&6\\ 1&4&5&5&5&6\\ 1&4&5&5&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6$ metacells Hhon OG_5291 Hhon_g06376.t1 cubilin,relaxin_family_peptide_receptor_1,LDL_receptor_related_protein_12 -4 + 7055 + 6052 + 60metacells HoiH23 OG_5291 HoiH23_PIH23_008722-RA $cubilin, relaxin_family_peptide_receptor_1, LDL_receptor_related_protein_12$ 10 2 metacells

Tadh OG_5364 Tadh_wf_g9045.t1 gastrin_releasing_peptide_receptor,C_X_C_motif_chemokine_receptor_6 10 metacells TrH2 OG_5364 TrH2_TrispH2_011271-RA $gastrin_releasing_peptide_receptor, C_X_C_motif_chemokine_receptor_6$ 10 metacells $gastrin_releasing_peptide_receptor, C_X_C_motif_chemokine_receptor_6$ Hhon | no data HoiH23 OG_5364 HoiH23_PIH23_011513-RA $gastrin_releasing_peptide_receptor, C_X_C_motif_chemokine_receptor_6$ 10

metaceiis

Hhon OG_5691 Hhon_g10438.t1

HoiH23 | no data

1.0 0.0 1.0

HoiH23 OG_8625 HoiH23_PIH23_006844-RA

Hhon_g00910.t1 _H2,5_hydroxytryptamine_receptor_4,X_C_motif_chemokine_receptor_1,adrenoco

metacells

ф

HoiH23 OG_8816 HoiH23_PIH23_008078-RA

Tadh OG_8828 Tadh_TriadT59002 pyroglutamylated_RFamide_peptide_receptor metacells TrH2 OG_8828 TrH2_TrispH2_006880-RA pyroglutamylated_RFamide_peptide_receptor metacells Hhon OG_8828 Hhon_g02733.t1 pyroglutamylated_RFamide_peptide_receptor $^{-4}{}^{+}$ metacells HoiH23 OG_8828 HoiH23_PIH23_007987-RA pyroglutamylated_RFamide_peptide_receptor metacells

$adrenoceptor_beta_2, G_protein_coupled_receptor_26, opsin_4$ Tadh | no data TrH2 OG_8924 TrH2_TrispH2_006323-RA adrenoceptor_beta_2,G_protein_coupled_receptor_26,opsin_4 10 metacells Hhon OG_8924 Hhon_g05736.t1 adrenoceptor_beta_2,G_protein_coupled_receptor_26,opsin_4 metacells HoiH23 OG_8924 HoiH23_PIH23_002284-RA adrenoceptor_beta_2,G_protein_coupled_receptor_26,opsin_4 metacells

Tadh OG_9593 Tadh_TriadT59341 $adhesion_G_protein_coupled_receptor_L3$ 10 metacells TrH2 OG_9593 TrH2_TrispH2_010226-RA $adhesion_G_protein_coupled_receptor_L3$ 10 $\begin{smallmatrix} 1&4&5&5&5&5&6\\ 1&4&5&5&5&6\\ 1&4&5&5&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6$ metacells Hhon OG_9593 Hhon_g10898.t1 adhesion_G_protein_coupled_receptor_L3 metacells HoiH23 OG_9593 HoiH23_PIH23_006971-RA $adhesion_G_protein_coupled_receptor_L3$ metacells

Tadh OG_4211 Tadh_wf_g11773.t1 neuropeptide_Y_receptor_Y4_2,G_protein_coupled_receptor_15 metacells Tadh OG_4211 Tadh_wf_g9043.t1 $neuropeptide_Y_receptor_Y4_2, G_protein_coupled_receptor_15$ 10 metacells $neuropeptide_Y_receptor_Y4_2, G_protein_coupled_receptor_15$ TrH2 | no data Hhon OG_4211 Hhon_g10004.t1 neuropeptide_Y_receptor_Y4_2,G_protein_coupled_receptor_15 $^{-4}{}^{+}$ metacells $neuropeptide_Y_receptor_Y4_2, G_protein_coupled_receptor_15$ HoiH23 | no data

Tadh OG_4284 Tadh_TriadT28568 $gamma_aminobutyric_acid_type_B_receptor_subunit_2$ 10 metacells TrH2 OG_4284 TrH2_TrispH2_006906-RA $gamma_aminobutyric_acid_type_B_receptor_subunit_2$ 10 $\begin{smallmatrix} 1&4&5&5&5&5&6\\ 1&4&5&5&5&6\\ 1&4&5&5&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\$ metacells Hhon OG_4284 Hhon_g02705.t1 gamma_aminobutyric_acid_type_B_receptor_subunit_2 metacells HoiH23 OG_4284 HoiH23_PIH23_009833-RA $gamma_aminobutyric_acid_type_B_receptor_subunit_2$ 10 metacells

Tadh OG_4344
Tadh_TriadT17345

adhesion_G_protein_coupled_receptor_D1,adhesion_G_protein_coupled_receptor_L3

metacells

TrH2 OG_4344
TrH2_TrispH2_010093-RA

adhesion_G_protein_coupled_receptor_D1,adhesion_G_protein_coupled_receptor_L3

metacells

adhesion_G_protein_coupled_receptor_D1,adhesion_G_protein_coupled_receptor_L3

Hhon | no data

adhesion_G_protein_coupled_receptor_D1,adhesion_G_protein_coupled_receptor_L3

HoiH23 | no data

Tadh OG_4398 Tadh_TriadT60282 relaxin_family_peptide_receptor_1 metacells TrH2 OG_4398 TrH2_TrispH2_000845-RA relaxin_family_peptide_receptor_1 metacells Hhon OG_4398 Hhon_g08103.t1 relaxin_family_peptide_receptor_1 metacells HoiH23 OG_4398 HoiH23_PIH23_005685-RA relaxin_family_peptide_receptor_1 metacells

Tadh OG_4469 Tadh_wf_g8199.t1 nedin_U_receptor_2,neuropeptide_FF_receptor_2,melanocortin_1_receptor,neuromedin_U_ 2 metacells **Tadh OG_4469** Tadh_wf_g8200.t1 וים מוו_שו_שט בעטט.דו nedin_U_receptor_2,neuropeptide_FF_receptor_2,melanocortin_1_receptor,neuromedin_U_ 10 ¬ metacells TrH2 OG_4469 TrH2_TrispH2_007338-RA nedin_U_receptor_2,neuropeptide_FF_receptor_2,melanocortin_1_receptor,neuromedin_U_ ф metacells TrH2 OG_4469 TrH2_TrispH2_007337-RA nedin_U_receptor_2,neuropeptide_FF_receptor_2,melanocortin_1_receptor,neuromedin_U_ metacells nedin_U_receptor_2,neuropeptide_FF_receptor_2,melanocortin_1_receptor,neuromedin_U_ Hhon | no data nedin_U_receptor_2,neuropeptide_FF_receptor_2,melanocortin_1_receptor,neuromedin_U_ HoiH23 | no data

Tadh OG_4764 Tadh_TriadT59533 histamine_receptor_H2,5_hydroxytryptamine_receptor_2C metacells TrH2 OG_4764 TrH2_TrispH2_010636-RA histamine_receptor_H2,5_hydroxytryptamine_receptor_2C 10 metacells histamine_receptor_H2,5_hydroxytryptamine_receptor_2C Hhon | no data HoiH23 OG_4764 HoiH23_PIH23_006284-RA histamine_receptor_H2,5_hydroxytryptamine_receptor_2C 10 metacells

Tadh OG_4771 Tadh_TriadT59535 $adenosine_A3_receptor, adrenoceptor_alpha_2B$ metacells TrH2 OG_4771 TrH2_TrispH2_012175-RA $adenosine_A3_receptor, adrenoceptor_alpha_2B$ metacells $adenosine_A3_receptor, adrenoceptor_alpha_2B$ Hhon | no data HoiH23 OG_4771 HoiH23_PIH23_006292-RA $adenosine_A3_receptor, adrenoceptor_alpha_2B$ metacells

Tadh OG_4781 Tadh_TriadT29696 $5_hydroxytryptamine_receptor_4$ 10 metacells TrH2 OG_4781 TrH2_TrispH2_010117-RA 5_hydroxytryptamine_receptor_4 $\begin{smallmatrix} 1&4&5&5&5&5&6\\ 1&4&5&5&5&6\\ 1&4&5&5&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\$ metacells Hhon OG_4781 Hhon_g10379.t1 5_hydroxytryptamine_receptor_4 metacells HoiH23 OG_4781 HoiH23_PIH23_006312-RA 5_hydroxytryptamine_receptor_4 10 metacells

Tadh OG_5015 Tadh_TriadT57020 $follicle_stimulating_hormone_receptor, thy roid_stimulating_hormone_receptor$ 2 metacells TrH2 OG_5015 TrH2_TrispH2_004317-RA $follicle_stimulating_hormone_receptor, thy roid_stimulating_hormone_receptor$ 10 metacells TrH2 OG_5015 TrH2_TrispH2_011868-RA $follicle_stimulating_hormone_receptor, thy roid_stimulating_hormone_receptor$ metacells **Hhon OG_5015** Hhon_g06486.t1 follicle_stimulating_hormone_receptor,thyroid_stimulating_hormone_receptor 10 metacells HoiH23 OG_5015 HoiH23_PIH23_003945-RA $follicle_stimulating_hormone_receptor, thy roid_stimulating_hormone_receptor$ 10 2 HoiH23 OG_5015 HoiH23_PIH23_011932-RA $follicle_stimulating_hormone_receptor, thy roid_stimulating_hormone_receptor$

HoiH23 OG_5118 HoiH23_PIH23_007704-RA

Tadh OG_5179 Tadh_TriadT55993 าสนา_ กาสนา ออรรร otein_coupled_receptor_D1,cadherin_EGF_LAG_seven_pass_G_type_receptor_2,mannose 10 ¬ 2 metacells **Tadh OG_5179** Tadh_TriadT55991 otein_coupled_receptor_D1,cadherin_EGF_LAG_seven_pass_G_type_receptor_2,mannose_ TrH2 OG_5179 TrH2_TrispH2_004357-RA otein_coupled_receptor_D1,cadherin_EGF_LAG_seven_pass_G_type_receptor_2,mannose_ $\begin{smallmatrix} 1&4&5&5&5&5&5\\ 2&5&5&5&5&5&5\\ 2&5&5&5&5&5\\ 2&5&5&5&5&5\\ 2&5&5&5&5&5\\ 2&5&5&5&5&5\\ 2&5&5&5&5&5\\ 2&5&5&5&5&5\\ 2&5&5&5&5&$ metacells otein_coupled_receptor_D1,cadherin_EGF_LAG_seven_pass_G_type_receptor_2,mannose Hhon | no data otein_coupled_receptor_D1,cadherin_EGF_LAG_seven_pass_G_type_receptor_2,mannose HoiH23 | no data

Tadh OG_5272 Tadh_TriadT52957 ומטוב_ווומטון | btype_3,somatostatin_receptor_1,gastrin_releasing_peptide_receptor,histamine_receptor | 10 ק 2 metacells TrH2 OG_5272 TrH2_TrispH2_011373-RA ιπε_πιερπε_υτ13/3−ΚΑ btype_3,somatostatin_receptor_1,gastrin_releasing_peptide_receptor,histamine_receptor_l 10 ¬ $\begin{smallmatrix} 1&4&5&5&5&5&6\\ 1&4&5&5&5&6\\ 1&4&5&5&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\$ metacells **Hhon OG_5272** Hhon_g07785.t1 י וווסוו_פטררס.נו | btype_3,somatostatin_receptor_1,gastrin_releasing_peptide_receptor,histamine_receptor | 10 ק $^{-4}{}^{+}$ metacells btype_3,somatostatin_receptor_1,gastrin_releasing_peptide_receptor,histamine_receptor_l HoiH23 | no data

Tadh_of_g9898.t1 tachykinin_receptor_3,5_hydroxytryptamine_receptor_1B metacells TrH2_OG_6125 TrH2_TrispH2_008855=RA tachykinin_receptor_3,5_hydroxytryptamine_receptor_1B metacells tachykinin_receptor_3,5_hydroxytryptamine_receptor_1B tachykinin_receptor_3,5_hydroxytryptamine_receptor_1B tachykinin_receptor_3,5_hydroxytryptamine_receptor_1B Hhon | no data

Tadh OG_6261 Tadh_TriadT58576 $opsin_3, retinal_pigment_epithelium_derived_rhodopsin_homolog$ metacells TrH2 OG_6261 TrH2_TrispH2_006602-RA $opsin_3, retinal_pigment_epit \^helium_derived_rhodopsin_homolog$ 10 $\begin{smallmatrix} 1&4&5&5&5&5&6\\ 1&4&5&5&5&6\\ 1&4&5&5&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\$ metacells $opsin_3, retinal_pigment_epithelium_derived_rhodopsin_homolog$ Hhon | no data HoiH23 OG_6261 HoiH23_PIH23_007628-RA opsin_3,retinal_pigment_epithelium_derived_rhodopsin_homolog

Tadh_wf_g6516.t1 dopamine_receptor_D1 Triangle_dopamine_receptor_D1 Triangle_dopamine_receptor_D1 Triangle_dopamine_receptor_D1 dopamine_receptor_D1 dopamine_receptor_D1 dopamine_receptor_D1 dopamine_receptor_D1 HoiH23 | no data

Tadh OG_6309 Tadh_wf_g11837.t1 aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_10 ¬ **Tadh OG_6309** Tadh_TriadT54957 aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_10 ¬ **Tadh OG_6309** Tadh_TriadT54956 aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_ aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor TrH2 | no data **Hhon OG_6309** Hhon_g11451.t1 aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_10 ¬ HoiH23 OG_6309 HoiH23_PIH23_010196-RA aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2. $^{-4} + ^{0} +$ metacells HoiH23 OG_6309 HoiH23_PIH23_001278-RA aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor $\begin{smallmatrix} & +4 \\ & +6$ metacells

Tadh OG_6573 Tadh_wf_g11252.t1 relaxin_family_peptide_receptor_2,somatostatin_receptor_2 10 metacells TrH2 OG_6573 TrH2_TrispH2_010088-RA relaxin_family_peptide_receptor_2,somatostatin_receptor_2 10 metacells **Hhon OG_6573** Hhon_g03252.t1 relaxin_family_peptide_receptor_2,somatostatin_receptor_2 metacells **Hhon OG_6573** Hhon_g11879.t1 relaxin_family_peptide_receptor_2,somatostatin_receptor_2 10 metacells HoiH23 OG_6573 HoiH23_PIH23_007955-RA relaxin_family_peptide_receptor_2,somatostatin_receptor_2 $\begin{smallmatrix} & +4 \\ & +6$ metacells HoiH23 OG_6573 HoiH23_PIH23_007963-RA relaxin_family_peptide_receptor_2,somatostatin_receptor_2 10 metacells HoiH23 OG_6573 HoiH23_PIH23_007965-RA relaxin_family_peptide_receptor_2,somatostatin_receptor_2 metacells HoiH23 OG_6573 HoiH23_PIH23_007966-RA relaxin_family_peptide_receptor_2,somatostatin_receptor_2 metacells

Tadh OG_6771 Tadh_TriadT54041 histamine_receptor_H2,trace_amine_associated_receptor_5 metacells TrH2 OG_6771 TrH2_TrispH2_004773-RA histamine_receptor_H2,trace_amine_associated_receptor_5 10 metacells Hhon OG_6771 Hhon_g02839.t1 histamine_receptor_H2,trace_amine_associated_receptor_5 metacells HoiH23 OG_6771 HoiH23_PIH23_003886-RA histamine_receptor_H2,trace_amine_associated_receptor_5 10

Tadh OG_7398
Tadh_TriadT55500
aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_aci

 $^{-4} \\ \text{$^{+2}$} \\ \text{$^{+2}$

Tadh_GG_7892 Tadh_TriadT55504 somatostatin_receptor_1,galanin_receptor_2 TH2 OG_7892 TrH2_TrispH2_004435-RA somatostatin_receptor_1,galanin_receptor_2 TH0 OG_7892 Hhon OG_7892 Hhon OG_7892 Hhon G_7892 Hhon _g08358.t1 somatostatin_receptor_1,galanin_receptor_2 TH0 OG_7892 Hhon _g08358.t1 somatostatin_receptor_1,galanin_receptor_2

Tadh OG_8004 Tadh_TriadT32924 $opsin_4, neuropeptide_FF_receptor_2, adrenoceptor_alpha_1D$ 10 metacells TrH2 OG_8004 TrH2_TrispH2_008896-RA $opsin_4, neuropeptide_FF_receptor_2, adrenoceptor_alpha_1D$ 10 metacells Hhon OG_8004 Hhon_g10461.t1 opsin_4,neuropeptide_FF_receptor_2,adrenoceptor_alpha_1D metacells HoiH23 OG_8004 HoiH23_PIH23_008051-RA opsin_4,neuropeptide_FF_receptor_2,adrenoceptor_alpha_1D

Tadh OG_8076 Tadh_TriadT56569 adrenoceptor_beta_2 10 metacells TrH2 OG_8076 TrH2_TrispH2_001928-RA adrenoceptor_beta_2 metacells Hhon OG_8076 Hhon_g08843.t1 adrenoceptor_beta_2 metacells HoiH23 OG_8076 HoiH23_PIH23_007501-RA adrenoceptor_beta_2 10 metacells

Tadh OG_8092
Tadh_TriadT57628

A_receptor,neuromedin_U_receptor_2,olfactory_receptor_family_8_subfamily_J_member_

metacells

TrH2 OG_8092
TrH2_TrispH2_009694-RA

A_receptor,neuromedin_U_receptor_2,olfactory_receptor_family_8_subfamily_J_member_

metacells

A_receptor,neuromedin_U_receptor_2,olfactory_receptor_family_8_subfamily_J_member_
Hhon | no data

A_receptor,neuromedin_U_receptor_2,olfactory_receptor_family_8_subfamily_J_member_
HoiH23 | no data

Tadh OG_8517 Tadh_TriadT55138 neuropeptide_Y_receptor_Y2,neuropeptide_Y_receptor_Y1 metacells TrH2 OG_8517 TrH2_TrispH2_010244-RA neuropeptide_Y_receptor_Y2,neuropeptide_Y_receptor_Y1 10 -metacells Hhon OG_8517 Hhon_g07203.t1 neuropeptide_Y_receptor_Y2,neuropeptide_Y_receptor_Y1 metacells neuropeptide_Y_receptor_Y2,neuropeptide_Y_receptor_Y1 HoiH23 | no data

Tadh OG_8969 Tadh_TriadT52553 somatostatin_receptor_2 10 metacells TrH2 OG_8969 TrH2_TrispH2_000210-RA somatostatin_receptor_2 metacells Hhon OG_8969 Hhon_g04502.t1 somatostatin_receptor_2 metacells HoiH23 OG_8969 HoiH23_PIH23_000743-RA somatostatin_receptor_2 metacells

Tadh OG_9560 Tadh_TriadT54955 aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor 2 metacells TrH2 OG_9560 TrH2_TrispH2_008779-RA aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2. Hhon OG_9560 Hhon_g11851.t1 aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2. metacells Hhon OG_9560 Hhon_g11450.t1 aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor metacells HoiH23 OG_9560 HoiH23_PIH23_001275-RA הארים בארוב בארוב בארוב אורים בארוב א aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_10 ק 2 $^{-4} + ^{0} +$ HoiH23 OG_9560 HoiH23_PIH23_001277-RA aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_3,gamma_aminobutyric_acid_type_B_receptor_subunit_3,gamma_aminobutyric_acid_type_b_receptor_subunit_3,gamma_aminobutyric_acid_type_b_receptor_subunit_3,gamma_aminobutyric_acid_type_b_receptor_subunit_3,gamma_aminobutyric_acid_type_b_receptor_subunit_3,gamma_aminobutyric_acid_type_b_receptor_subunit_3,gamma_aminobutyric_acid_type_b_receptor_subunit_3,gamma_aminobutyric_acid_type_b_receptor_subunit_3,gamma_aminobutyric_acid_type_b_receptor_subunit_3,gamma_aminobutyric_acid_type_b_receptor_subunit_3,gamma_aminobutyric_acid_type_b_receptor_subunit_3,gamma_aminobutyric_acid_type_b_receptor_subunit_3,gamma_aminobutyric_acid_type_b_receptor_subunit_3,gamma_acid_typ metacells

Tadh OG_9887 Tadh_wf_g5452.t1 neuropeptide_FF_receptor_2 10 metacells TrH2 OG_9887 TrH2_TrispH2_005858-RA neuropeptide_FF_receptor_2 $\begin{smallmatrix} 1&4&5&5&5&5&6\\ 1&4&5&5&5&6\\ 1&4&5&5&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6$ metacells Hhon OG_9887 Hhon_g07577.t1 neuropeptide_FF_receptor_2 metacells HoiH23 OG_9887 HoiH23_PIH23_009295-RA neuropeptide_FF_receptor_2 metacells

Tadh OG_10003
Tadh_TriadT7431

2b_receptor,G_protein_coupled_receptor_161,follicle_stimulating_hormone_receptor,dopar

metacells

TrH2 OG_10003
TrH2_TrispH2_008122-RA

2b_receptor,G_protein_coupled_receptor_161,follicle_stimulating_hormone_receptor,dopar

Provided to the coupled of the

Tadh_TriadT29844 neuropeptide_Y_receptor_Y1,opioid_receptor_mu_1 metacells TrH2_OG_10337 TrH2_TrispH2_008478-RA neuropeptide_Y_receptor_Y1,opioid_receptor_mu_1 metacells metacells neuropeptide_Y_receptor_Y1,opioid_receptor_mu_1 Hhon | no data

Tadh_wf_g10958.t1 dopamine_receptor_D2,G_protein_coupled_receptor_19 TrH2_OG_10495 TrH2_TrispH2_011320_RA dopamine_receptor_D2,G_protein_coupled_receptor_19 dopamine_receptor_D2,G_protein_coupled_receptor_19 dopamine_receptor_D2,G_protein_coupled_receptor_19 Hhon | no data dopamine_receptor_D2,G_protein_coupled_receptor_19 dopamine_receptor_D2,G_protein_coupled_receptor_19 HoiH23 | no data

Tadh OG_10497 Tadh_TriadT61883 neuropeptide_FF_receptor_1 TrH2 OG_10497 TrH2_TrispH2_011323-RA neuropeptide_FF_receptor_1 TrH0 OG_10497 Hhon OG_10497 Hhon g04904.t1 neuropeptide_FF_receptor_1 The proper neuropeptide_FF_receptor_1 The proper neuropeptide_FF_receptor_1 Trh2 OG_10497 TrispH2_011323-RA neuropeptide_FF_receptor_1 Trh2 OG_10497 TrispH2_04904.t1 TrispH2_04904.t1

Hhon_g01896.t1

> HoiH23 OG_515 HoiH23_PIH23_001462-RA

Tadh OG_4343 Tadh_wf_g10929.t1 adhesion_G_protein_coupled_receptor_D1 metacells TrH2 OG_4343 TrH2_TrispH2_010092-RA adhesion_G_protein_coupled_receptor_D1 metacells $adhesion_G_protein_coupled_receptor_D1$ Hhon | no data HoiH23 OG_4343 HoiH23_PIH23_011398-RA adhesion_G_protein_coupled_receptor_D1 metacells

metacells

HoiH23 OG_4470
HoiH23_PIH23_011174-RA
neuromedin_U_receptor_1,neuropeptide_FF_receptor_2,neuromedin_U_receptor_2

metacells

 $^{-4} + ^{0} +$

Tadh OG_4527 Tadh_TriadT58848 prolactin_releasing_hormone_receptor,5_hydroxytryptamine_receptor_4 10 2 metacells TrH2 OG_4527 TrH2_TrispH2_009580-RA prolactin_releasing_hormone_receptor,5_hydroxytryptamine_receptor_4 10 metacells Hhon OG_4527 Hhon_g02298.t1 prolactin_releasing_hormone_receptor,5_hydroxytryptamine_receptor_4 $^{-4}{}^{+}$ metacells HoiH23 OG_4527 HoiH23_PIH23_005557-RA prolactin_releasing_hormone_receptor,5_hydroxytryptamine_receptor_4 10 $^{-4} \\ \text{$^{+2}$} \\ \text{$^{+2}$

Tadh OG_4562 Tadh_wf_g8332.t1 $5_hydroxytryptamine_receptor_1A, neuromedin_U_receptor_2$ metacells TrH2 OG_4562 TrH2_TrispH2_011638-RA ${\bf 5_hydroxytryptamine_receptor_1A, neuromedin_U_receptor_2}$ 10 $\begin{smallmatrix} 1&4&5&5&5&5&6\\ 1&4&5&5&5&6\\ 1&4&5&5&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6$ Hhon OG_4562 Hhon_g05143.t1 $5_hydroxytryptamine_receptor_1A, neuromedin_U_receptor_2$ metacells HoiH23 OG_4562 HoiH23_PIH23_011607-RA ${\bf 5_hydroxytryptamine_receptor_1A, neuromedin_U_receptor_2}$

TrH2 OG_4636 TrH2_TrispH2_003379-RA $gamma_aminobutyric_acid_type_B_receptor_subunit_2$ 10 $\begin{smallmatrix} 1&4&5&5&5&5&6\\ 1&4&5&5&5&6\\ 1&4&5&5&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6$ metacells **Hhon OG_4636** Hhon_g07295.t1 gamma_aminobutyric_acid_type_B_receptor_subunit_2 metacells HoiH23 OG_4636 HoiH23_PIH23_010039-RA $gamma_aminobutyric_acid_type_B_receptor_subunit_2$ 10 metacells

Tadh OG_4712 Tadh_TriadT52633 _amine_associated_receptor_1,5_hydroxytryptamine_receptor_4,5_hydroxytryptamine_rec 2 metacells TrH2 OG_4712 TrH2_TrispH2_007202-RA _amine_associated_receptor_1,5_hydroxytryptamine_receptor_4,5_hydroxytryptamine_rec $\begin{smallmatrix} 1&4&5&5&5&5&6\\ 1&4&5&5&5&6\\ 1&4&5&5&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6$ metacells Hhon OG_4712 Hhon_g06035.t1 _amine_associated_receptor_1,5_hydroxytryptamine_receptor_4,5_hydroxytryptamine_rec ф $^{-4}{}^{+}$ metacells HoiH23 OG_4712

Tadh OG_4780 Tadh_TriadT59551 adrenoceptor_alpha_1A,adrenoceptor_alpha_1B,dopamine_receptor_D1 10 2 -metacells TrH2 OG_4780 TrH2_TrispH2_010116-RA $adrenoceptor_alpha_1A, adrenoceptor_alpha_1B, dopamine_receptor_D1$ 10 metacells Hhon OG_4780 Hhon_g10380.t1 adrenoceptor_alpha_1A,adrenoceptor_alpha_1B,dopamine_receptor_D1 $^{-4}{}^{+}$ metacells HoiH23 OG_4780 HoiH23_PIH23_006311-RA $adrenoceptor_alpha_1A, adrenoceptor_alpha_1B, dopamine_receptor_D1$ 10

Tadh_TriadT58713 5_hydroxytryptamine_receptor_4,adrenoceptor_alpha_1B TrH2_OG_4991 TrH2_TrispH2_006512_RA 5_hydroxytryptamine_receptor_4,adrenoceptor_alpha_1B metacells find of find the f

Tadh OG_5096 Tadh_TriadT15905 $neuropeptide_FF_receptor_1, neuropeptide_FF_receptor_2, tachykinin_receptor_1$ 2 metacells TrH2 OG_5096 TrH2_TrispH2_009523-RA neuropeptide_FF_receptor_1,neuropeptide_FF_receptor_2,tachykinin_receptor_1 metacells **Hhon OG_5096** Hhon_g09718.t1 neuropeptide_FF_receptor_1,neuropeptide_FF_receptor_2,tachykinin_receptor_1 $^{-4}{}^{+}$ metacells HoiH23 OG_5096 HoiH23_PIH23_007263-RA $neuropeptide_FF_receptor_1, neuropeptide_FF_receptor_2, tachykinin_receptor_1$ 2

metacells

 $^{-4} \\ \text{$^{+2}$} \\ \text{$^{+2}$

metacells

HoiH23 | no data

Tadh_TriadT52598 histamine_receptor_H2 TrH2 OG_6292 TrH2_TrispH2_005638_RA histamine_receptor_H2 Thon OG_6292 Hhon_g11284.t1 histamine_receptor_H2 Thistamine_receptor_H2 Thistamine_receptor_H2 Thistamine_receptor_H2

Tadh OG_6574 Tadh_TriadT60310 $follicle_stimulating_hormone_receptor, thy roid_stimulating_hormone_receptor$ 2 metacells TrH2 OG_6574 TrH2_TrispH2_000870-RA $follicle_stimulating_hormone_receptor, thy roid_stimulating_hormone_receptor$ 10 metacells **Hhon OG_6574** Hhon_g11007.t1 $follicle_stimulating_hormone_receptor, thy roid_stimulating_hormone_receptor$ $^{-4} + ^{-} +$ metacells **Hhon OG_6574** Hhon_g11576.t1 follicle_stimulating_hormone_receptor,thyroid_stimulating_hormone_receptor 10 metacells HoiH23 OG_6574 HoiH23_PIH23_005707-RA $follicle_stimulating_hormone_receptor, thy roid_stimulating_hormone_receptor$ 10 2 $\begin{smallmatrix} & +4 \\ & +6$ HoiH23 OG_6574 HoiH23_PIH23_005706-RA $follicle_stimulating_hormone_receptor, thy roid_stimulating_hormone_receptor$ $\begin{smallmatrix} & +4 \\ & +6$

Tadh OG_7353
Tadh_TriadT57435
hyroid_stimulating_hormone_receptor,relaxin_family_peptide_receptor_1,tachykinin_recep

metacells
hyroid_stimulating_hormone_receptor,relaxin_family_peptide_receptor_1,tachykinin_recep
TrH2 | no data

hyroid_stimulating_hormone_receptor,relaxin_family_peptide_receptor_1,tachykinin_recep
Hhon | no data

hyroid_stimulating_hormone_receptor,relaxin_family_peptide_receptor_1,tachykinin_recep
Hhon | no data

Tadh OG_7557 Tadh_TriadT56422 $dopamine_receptor_D5, histamine_receptor_H2, dopamine_receptor_D1$ 10 metacells TrH2 OG_7557 TrH2_TrispH2_001204-RA dopamine_receptor_D5,histamine_receptor_H2,dopamine_receptor_D1 10 metacells Hhon OG_7557 Hhon_g05408.t1 dopamine_receptor_D5,histamine_receptor_H2,dopamine_receptor_D1 metacells HoiH23 OG_7557 HoiH23_PIH23_000277-RA $dopamine_receptor_D5, histamine_receptor_H2, dopamine_receptor_D1$

Tadh OG_8182 Tadh_TriadT57193 $gamma_aminobutyric_acid_type_B_receptor_subunit_2$ 10 metacells TrH2 OG_8182 TrH2_TrispH2_003275-RA $gamma_aminobutyric_acid_type_B_receptor_subunit_2$ 10 metacells Hhon OG_8182 Hhon_g04629.t1 $gamma_aminobutyric_acid_type_B_receptor_subunit_2$ metacells HoiH23 OG_8182 HoiH23_PIH23_010698-RA $gamma_aminobutyric_acid_type_B_receptor_subunit_2$ 10 $^{-4} \\ \text{$^{+2}$} \\ \text{$^{+2}$ metacells HoiH23 OG_8182 HoiH23_PIH23_005534-RA $gamma_aminobutyric_acid_type_B_receptor_subunit_2$ metacells HoiH23 OG_8182 HoiH23_PIH23_005535-RA $gamma_aminobutyric_acid_type_B_receptor_subunit_2$ 10 metacells HoiH23 OG_8182 HoiH23_PIH23_005536-RA $gamma_aminobutyric_acid_type_B_receptor_subunit_2$ $\begin{smallmatrix} & +4 \\ & +6$ metacells

Tadh OG_8194 Tadh_wf_g11075.t1 ecretagogue_receptor,neuropeptide_FF_receptor_2,hypocretin_receptor_2,sphingosine_1_ 2 metacells TrH2 OG_8194 TrH2_TrispH2_011312-RA ecretagogue_receptor,neuropeptide_FF_receptor_2,hypocretin_receptor_2,sphingosine_1_ Hhon OG_8194 Hhon_g04916.t1 ecretagogue_receptor,neuropeptide_FF_receptor_2,hypocretin_receptor_2,sphingosine_1_ metacells Hhon OG_8194 Hhon_g04911.t1 ecretagogue_receptor,neuropeptide_FF_receptor_2,hypocretin_receptor_2,sphingosine_1_ metacells Hhon OG_8194 Hhon_g04912.t1 ecretagogue_receptor,neuropeptide_FF_receptor_2,hypocretin_receptor_2,sphingosine_1_ ecretagogue_receptor,neuropeptide_FF_receptor_2,hypocretin_receptor_2,sphingosine_1_ HoiH23 | no data

Tadh OG_8651 Tadh_TriadT60482 adrenoceptor_alpha_1A 10 metacells TrH2 OG_8651 TrH2_TrispH2_002993-RA adrenoceptor_alpha_1A metacells Hhon OG_8651 Hhon_g03896.t1 adrenoceptor_alpha_1A metacells HoiH23 OG_8651 HoiH23_PIH23_004882-RA adrenoceptor_alpha_1A 10 metacells

 $^{-4}$

Tadh OG_9034 Tadh_TriadT57081 metacells TrH2 OG_9034 TrH2_TrispH2_002416-RA

Tadh OG_9705 Tadh_TriadT64227 adhesion_G_protein_coupled_receptor_L2,adhesion_G_protein_coupled_receptor_L1 2 -an-a-tat-a-vavvalanyn-aataa-arnpa-arnpa-arnpa-arnpa-arnpa-arnpa-arnpa-arnpa-arnpa-arnpa-arnpa-arnpa-arnpa-arn metacells TrH2 OG_9705 TrH2_TrispH2_010944-RA adhesion_G_protein_coupled_receptor_L2,adhesion_G_protein_coupled_receptor_L1 $\begin{smallmatrix} 1&4&5&5&5&5&5\\1&4&5&5&5&5&$ metacells TrH2 OG_9705 TrH2_TrispH2_007588-RA adhesion_G_protein_coupled_receptor_L2,adhesion_G_protein_coupled_receptor_L1 metacells Hhon OG_9705 Hhon_g09977.t1 adhesion_G_protein_coupled_receptor_L2,adhesion_G_protein_coupled_receptor_L1 metacells HoiH23 OG_9705 HoiH23_PIH23_005603-RA adhesion_G_protein_coupled_receptor_L2,adhesion_G_protein_coupled_receptor_L1 2 ·

Tadh OG_9943 Tadh_TriadT57363 somatostatin_receptor_1,neuropeptide_Y_receptor_Y1,somatostatin_receptor_3 2 metacells TrH2 OG_9943 TrH2_TrispH2_005096-RA $somatostatin_receptor_1, neuropeptide_Y_receptor_Y1, somatostatin_receptor_3$ metacells Hhon OG_9943 Hhon_g11040.t1 $somatostatin_receptor_1, neuropeptide_Y_receptor_Y1, somatostatin_receptor_3$ $^{-4}{}^{+}$ metacells HoiH23 OG_9943 HoiH23_PIH23_001367-RA $somatostatin_receptor_1, neuropeptide_Y_receptor_Y1, somatostatin_receptor_3$ 10 2 $^{-4} \\ \text{$^{+2}$} \\ \text{$^{+2}$ metacells

Tadh OG_10005 Tadh_TriadT59024 $gamma_aminobutyric_acid_type_B_receptor_subunit_2$ 10 metacells TrH2 OG_10005 TrH2_TrispH2_006904-RA $gamma_aminobutyric_acid_type_B_receptor_subunit_2$ 10 -metacells Hhon OG_10005 Hhon_g02707.t1 gamma_aminobutyric_acid_type_B_receptor_subunit_2 metacells HoiH23 OG_10005 HoiH23_PIH23_010901-RA gamma_aminobutyric_acid_type_B_receptor_subunit_2 metacells

Tadh OG_10162 Tadh_TriadT54538 histamine_receptor_H2,adrenoceptor_alpha_1B 10 metacells Tadh OG_10162 Tadh_TriadT34582 histamine_receptor_H2,adrenoceptor_alpha_1B 10 metacells TrH2 OG_10162 TrH2_TrispH2_001269-RA histamine_receptor_H2,adrenoceptor_alpha_1B metacells Hhon OG_10162 Hhon_g05941.t1 histamine_receptor_H2,adrenoceptor_alpha_1B 10 metacells HoiH23 OG_10162 HoiH23_PIH23_000584-RA histamine_receptor_H2,adrenoceptor_alpha_1B

Tadh_OG_10329
Tadh_wf_g4880.t1
neuropeptide_FF_receptor_2,neuropeptides_B_and_W_receptor_2

neuropeptide_FF_receptor_2,neuropeptides_B_and_W_receptor_2
TrH2 | no data

neuropeptide_FF_receptor_2,neuropeptides_B_and_W_receptor_2
Hhon | no data

neuropeptide_FF_receptor_2,neuropeptides_B_and_W_receptor_2
Hhon | no data

