Seaborn Part 2

Lm Plot

The regplot function performs a simple linear regression model fit and plot whereas the lmplot function combines regplot and FacetGrid.

The FacetGrid class helps in visualizing the distribution of one variable as well as the relationship between multiple variables separately within subsets of your dataset using multiple panels.

It is further important to note that lmplot() is more computationally intensive and is intended as a convenient interface to fit regression models across conditional subsets of a dataset.

```
In [1]: import seaborn as sns
tips = sns.load_dataset("tips")
sns.lmplot(x="total_bill", y="tip", data=tips)
```

Out[1]: <seaborn.axisgrid.FacetGrid at 0x206654af610>


```
In [2]: # col_warp=>numbers of column
# height=>size of the sub graph
```

Out[3]: <seaborn.axisgrid.FacetGrid at 0x206676b89a0>

KDE plot

KDE plot is a Kernel Density Estimate that is used for visualizing the Probability Density of the continuous or non-parametric data variables.we can plot for the univariate or multiple variables altogether.

Out[4]: <Axes: xlabel='sepal_length', ylabel='Density'>

Out[11]: <Axes: xlabel='sepal length', ylabel='sepal width'>

Box Plot

```
Boxplot is also used for detecting the outlier in a data set. The small diamond shape of the box plot is outlier data. horizontal line- min and max

First Quartile or 25%

Median (Second Quartile) or 50%

Third Quartile or 75%
horizontal line of the rectangle shape of the box plot
```

```
In [12]: tips = sns.load_dataset("tips")
sns.boxplot(x="day", y="total_bill", data=tips)
```

Out[12]: <Axes: xlabel='day', ylabel='total_bill'>

Violin Plot

They are essentially a box plot with a kernel density estimate (KDE) overlaid along with the range of the box and reflected to make it look nice. Unlike a box plot, in which all of the plot components correspond to actual data points, the violin plot features a kernel density estimation of the underlying distribution.

```
In [13]: import seaborn as sns
tips = sns.load_dataset("tips")
ax = sns.violinplot(x=tips["total_bill"])
```


Out[14]: <Axes: xlabel='day', ylabel='total_bill'>

Out[15]: <Axes: xlabel='day', ylabel='total_bill'>

Heatmap

A heatmap is a two-dimensional graphical representation of data where the individual values that are contained in a matrix are represented as colours.

In [17]: flights=sns.load_dataset("flights")
 flights = flights.pivot("month", "year", "passengers",)
 print(flights)

year 60	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	19
month												
Jan	112	115	145	171	196	204	242	284	315	340	360	4
17 5 - 1-	440	126	450	400	100	400	222	277	204	24.0	2.42	_
Feb 91	118	126	150	180	196	188	233	277	301	318	342	3
Mar	132	141	178	193	236	235	267	317	356	362	406	4
19												
Apr	129	135	163	181	235	227	269	313	348	348	396	4
61	424	425	470	100	220	224	270	24.0	255	262	420	4
May 72	121	125	172	183	229	234	270	318	355	363	420	4
Jun	135	149	178	218	243	264	315	374	422	435	472	5
35												
Jul	148	170	199	230	264	302	364	413	465	491	548	6
22	4.40	470	100	242	272	202	2.47	405	467	505	550	_
Aug 06	148	170	199	242	272	293	347	405	467	505	559	6
Sep	136	158	184	209	237	259	312	355	404	404	463	5
0 8												
0ct	119	133	162	191	211	229	274	306	347	359	407	4
61	404			470	400	202		074	205	240	260	_
Nov 90	104	114	146	172	180	203	237	271	305	310	362	3
Dec	118	140	166	194	201	229	278	306	336	337	405	4
32		- · •	-	•	-		<i>-</i>					•

C:\Users\heman\AppData\Local\Temp\ipykernel_20552\2606158732.py:2: FutureWarning: In a future version of pandas all arguments of DataFrame.pivot will be keyword-only.

flights = flights.pivot("month", "year", "passengers")

In [22]: | sns.heatmap(flights,linewidths=.9)

Out[22]: <Axes: xlabel='year', ylabel='month'>


```
car_crashes = sns.load_dataset("car_crashes")
In [25]:
         corr=car_crashes.corr()
         print(corr)
         sns.heatmap(corr,annot=True,linewidths=.5,cmap="YlGnBu")
```

```
total
                          speeding
                                     alcohol
                                              not_distracted
                                                              no_previous
\
total
                1.000000 0.611548
                                   0.852613
                                                    0.827560
                                                                  0.956179
speeding
                0.611548 1.000000 0.669719
                                                    0.588010
                                                                 0.571976
alcohol
                0.852613 0.669719
                                    1.000000
                                                    0.732816
                                                                 0.783520
not_distracted
               0.827560 0.588010
                                   0.732816
                                                    1.000000
                                                                 0.747307
                0.956179 0.571976 0.783520
                                                    0.747307
no_previous
                                                                 1.000000
ins_premium
               -0.199702 -0.077675 -0.170612
                                                   -0.174856
                                                                 -0.156895
ins_losses
               -0.036011 -0.065928 -0.112547
                                                   -0.075970
                                                                 -0.006359
                ins_premium ins_losses
total
                  -0.199702
                              -0.036011
speeding
                  -0.077675
                              -0.065928
alcohol
                  -0.170612
                              -0.112547
not_distracted
                  -0.174856
                              -0.075970
                  -0.156895
                              -0.006359
no_previous
ins_premium
                   1.000000
                               0.623116
                               1.000000
```

C:\Users\heman\AppData\Local\Temp\ipykernel_20552\3320747515.py:2: FutureWa rning: The default value of numeric_only in DataFrame.corr is deprecated. I n a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning. corr=car crashes.corr()

Out[25]: <Axes: >

ins losses

0.623116

Cluster map

Cluster map method plots a matrix dataset as a hierarchically-clustered heatmap. It uses hierarchical clusters to order data by similarity. This reorganizes the data for the rows and columns and displays similar content next to one another for even more depth of understanding the data.

```
In [30]: sns.set_context("poster")
    flights=sns.load_dataset("flights")
    flights = flights.pivot("month", "year", "passengers")
    sns.clustermap(flights,linewidths=.5,cmap="coolwarm")
```

C:\Users\heman\AppData\Local\Temp\ipykernel_20552\4046513125.py:3: FutureWarning: In a future version of pandas all arguments of DataFrame.pivot will be keyword-only.

flights = flights.pivot("month", "year", "passengers")

Out[30]: <seaborn.matrix.ClusterGrid at 0x20677f9dde0>


```
In [43]: sns.set_context("poster")
    flights=sns.load_dataset("flights")
    flights = flights.pivot(index="month",columns= "year", values="passengers")
    sns.clustermap(flights,linewidths=.6,cmap="coolwarm",col_cluster=False)
```

Out[43]: <seaborn.matrix.ClusterGrid at 0x2067f1bce80>

Facetgrid

The advantage of using Facet is, we can input another variable into the plot. The above plot is divided into two plots based on a third variable called 'diet' using the 'col' parameter. We can also one more parameter "row" which can help to add one more variable to our plot

```
In [45]: sns.set_context("notebook")
   tips = sns.load_dataset("tips")
   g = sns.FacetGrid(tips, col="time")
   g.map(sns.scatterplot, "total_bill", "tip")
```

Out[45]: <seaborn.axisgrid.FacetGrid at 0x2067dba9b70>


```
In [46]: g = sns.FacetGrid(tips, col="time", row="sex")
g.map(sns.scatterplot, "total_bill", "tip")
```

Out[46]: <seaborn.axisgrid.FacetGrid at 0x2067f6417e0>

Pair Plot

Pair Plots are a really simple way to visualize relationships between each variable. It produces a matrix of relationships between each variable in your data for an instant examination

