Diskrete Strukturen (WS 2024-25) - Halbserie 4

4.1 [5]

Bitte direkt auf Moodle als Quiz antworten.

 $4.2 ag{1}$

Geben Sie zwei **Relationen** R_1 und R_2 jeweils auf der Menge \mathbb{N} an, sodass

- 1. R_1 reflexiv, symmetrisch, und nicht transitiv ist,
- 2. R_2 symmetrisch, nicht transitiv, und nicht reflexiv ist,

 $4.3 ag{4}$

(Alternives geordnetes Paar) Seien A, B, C, D vier beliebige Objekte. Zeigen Sie dass

$$\Big\{\{\{A\},\emptyset\},\{\{B\}\}\Big\} = \Big\{\{\{C\},\emptyset\},\{\{D\}\}\Big\}$$

genau dann wenn A = C und B = D.

- **4.4** Wir definieren für jedes $n \in \mathbb{N}$ mit n > 0 eine Relation \equiv_n auf der Menge \mathbb{Z} durch $(a,b) \in \equiv_n$ genau dann, wenn n ist ein Teiler von a-b.
 - 1. Zeigen Sie, dass \equiv_n für jedes $n \in \mathbb{N}$ eine **Äquivalenzrelation** ist.
 - 2. Geben Sie für n = 5 alle **Äquivalenzklassen** von \equiv_n an.
- **4.5** Gegeben sei die Menge $M = \{1, 2, 3, 4\}$ und die folgende **Relation** $R \subseteq M \times M$:

$$R:=\{(1,2),(2,3),(3,4),(2,1),(3,2),(4,3)\}.$$

- 1. Geben Sie die **Komposition** R;R an.
- 2. Welche der folgenden **Eigenschaften** besitzt R;R? Beweisen Sie Ihre Antwort.
 - (a) reflexiv
 - (b) antisymmetrisch
 - (c) vollständig

4.6 Gegeben sei die Menge $M = \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ und folgende **Relation** $R \subseteq M \times M$:

$$R = \left\{ \left((n_1, z_1), (n_2, z_2) \right) \in M \times M \mid n_1 \cdot z_2 = n_2 \cdot z_1 \right\}$$

Zeigen Sie, dass R eine Äquivalenz
relation ist.

4.7 Gegeben sei die Menge $M = \{\{1,2\}, (a,b), \emptyset\}$. Geben Sie alle **Zerlegungen** von M an.