# UNIVERSIDADE FEDERAL DE ALAGOAS CENTRO DE TECNOLOGIA PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA CIVIL

WEVERTON MARQUES DA SILVA

MODELAGEM E DESENVOLVIMENTO DE UMA APLICAÇÃO DE UMA APLICAÇÃO PARA ANÁLISE DUTOS EM VÃO-LIVRE

Maceió-AL

Setembro de 2019

#### WEVERTON MARQUES DA SILVA

# MODELAGEM E DESENVOLVIMENTO DE UMA APLICAÇÃO DE UMA APLICAÇÃO PARA ANÁLISE DUTOS EM VÃO-LIVRE

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Centro de Tecnologia da Universidade Federal de Alagoas.

Orientador: Adeildo Soares Ramos Júnior Coorientador: Eduardo Setton S. da Silveira

Maceió-AL

Setembro de 2019

#### **RESUMO**

| todo. |
|-------|
|-------|

Palavras-chaves: Análise Paramétrica; Assentamento de duto; Dutos Submarinos.

#### **ABSTRACT**

| todo. |
|-------|
|-------|

Keywords: todo.

## LISTA DE ILUSTRAÇÕES

| Figura 2.1 – Esteira de von Kármán                                    | 8  |
|-----------------------------------------------------------------------|----|
| Figura 2.2 – Duto em Vão livre e direções das oscilações              | 9  |
| Figura 2.3 – Curva de modelo de resposta <i>in-line</i>               | .4 |
| Figura 2.4 – Curva de modelo de resposta <i>cross-flow</i>            | .( |
| Figura 3.1 – Modelo de elementos finitos durante o lançamento         | 2] |
| Figura 4.1 – Amostra das principais bibliotecas científicas em Python | 24 |

#### LISTA DE TABELAS

### SUMÁRIO

| 1   | INTRODUÇAO                                          | 7  |
|-----|-----------------------------------------------------|----|
| 1.1 | Objetivos                                           | 7  |
| 2   | VIBRAÇÃO INDUZIDA POR VÓRTICES EM VÃOS LIVRES       | 8  |
| 2.1 | Modelo de resposta in-line                          | 12 |
| 2.2 | Modelo de resposta cross-flow                       | 14 |
| 2.3 | Resposta multi-mode                                 | 16 |
| 3   | MODELAGEM DE ASSENTAMENTO DE DUTOS SUBMARINOS       | 20 |
| 3.1 | Modelagem do sistema de dutos com Elementos Finitos | 20 |
| 4   | MODELAGEM COMPUTACIONAL                             | 22 |
|     | REFERÊNCIAS                                         | 25 |

#### 1 INTRODUÇÃO

Recentemente, as indústrias *offshore* e submarina experimentaram uma revolução técnica no processo de projeto. Métodos avançados e ferramentas de análise permitiram uma abordagem mais sofisticada ao projeto, que aproveita os materiais modernos e os códigos de projeto revisados, que dão suporte aos conceitos de estado limite de projeto e aos métodos de confiabilidade. A nova abordagem é chamada de Projeto Através de Análise (*Design Through Analysis* – DTA), onde o Método dos Elementos Finitos é usado para simular o comportamento global dos dutos, bem como os esforços estruturais locais.

O processo de duas etapas é usado de maneira complementar para determinar os estados limites normativos e otimizar um projeto específico.

Devido a quantidade de fatores envolvidos, a análise requer o uso de métodos numéricos robustos para seu tratamento O Método dos Elementos Finitos (MEF) é amplamente usado nessa tarefa. De modo a representar adequadamente as condições de campo, é necessário modelar desde a etapa de instalação até a operação do duto, assim como considerar efeito de carregamentos dos diferentes valores de pressões internas e externas nas respectivas etapas.

#### 1.1 Objetivos

#### 2 VIBRAÇÃO INDUZIDA POR VÓRTICES EM VÃOS LIVRES

Quando um fluido de baixa viscosidade encontra um obstáculo, forma-se uma camada limite. Esta fina camada de fluido está sujeita aos efeitos das forças viscosas. Nesta camada a velocidade do fluxo varia rapidamente, ficando cada vez mais lenta, formando um escoamento rotacional dentro da camada limite. Para determinadas velocidades de escoamento, a camada limite se desprende do obstáculo, formando uma esteira de vórtices, conhecida como esteira de von Kármán (CURRIE, 2012), conforme visto na Figura 2.1. Como consequência direta do desprendimento de vórtices, surge uma força oscilatória transversal ao fluxo, que age sobre o obstáculo, resultando em oscilações verticais e horizontais (NIELSEN; SØREIDE; KVARME, 2002).



Figura 2.1 – Esteira de Von Kármán. Fonte: (Van den Abeele; BOËL; HILL, 2013).

A frequência do desprendimento de vórtices causado por um fluxo normal ao obstáculo (o duto em vão livre, no caso em questão), é governado pelo número de Strouhal, diâmetro externo e velocidade de fluxo (MØRK et al., 2003). O número de Strouhal pode ser obtido pela expressão  $S_t = (fL)/V$ , onde f é a frequência de vórtices, L é o comprimento característico e V é a velocidade do fluxo. Quando a velocidade do fluxo alcança uma das frequências naturais da estrutura, ela começa a vibrar e estas duas vibrações se correlacionam, causando vibrações de grande amplitude e grande dano (lock-in) (MØRK et al., 2003).

Como os dutos são geralmente modelados como cilindros, é importante entender como funciona o comportamento do fluxo de fluido ao redor dessa estrutura. Segundo Sumer e Fredsoe (1995 apud BATCHELOR, 1967), ao estudar vibrações de cilindros em corrente constante, inicia-se o desprendimento de vórtices quando o número de Reynolds,  $R_e = (U \cdot D)/\nu$ , é maior que 40, onde U é a velocidade do fluxo, D é o diâmetro do cilindro e  $\nu$  é a viscosidade cinemáticaciteSumer1995.

O desprendimento de vórtices induz uma variação cíclica de forças no cilindro. Assim, enquanto uma força de sustentação (*lift force*) oscila à mesma frequência do desprendimento de vórtices, a força de arrasto (*drag force*) oscila à duas vezes esta mesma frequência (SUMER; FREDSOE, 1995). Estas forças oscilatórias, os vórtices, podem induzir vibrações na direção ortogonal ao fluxo, *cross-flow* (CF), e na direção do fluxo, *in-line* (IL), denominadas: vibrações

induzidas por vórtices (VIV).

Os diversos dutos submarinos, que tem como objetivo o transporte de fluidos, seja entre o poço e a plataforma, entre plataformas etc., estão sujeitos ao fluxo intermitente de cargas ambientais. Essas cargas, tornam-se um desafio ainda maior quando os dutos, instalados diretamente no irregular leito marinho, encontram-se em vãos livres (FYRILEIV; MØRK, 1998), como ilustrado na Figura 2.2.



Figura 2.2 – Duto em Vão livre e direções das oscilações. Fonte: (Det Norske Veritas, 2017a).

Porém, vãos livres não aparecem apenas quando os dutos são instalados em leito irregular, mas também quando ocorre erosão posterior (*scouring*<sup>1</sup>), devido, por exemplo, a suportes artificiais. Com o duto exposto à ondas e correntes, a parte não apoiada estará suscetível à VIV. Caso a frequência de desprendimento alcance uma das frequências naturais do duto, esse poderá entrar em ressonância. As excitações dinâmicas podem causar danos por fadiga, sendo importante identificar os corretos procedimentos de intervenção, seja no duto ou no leito marinho.

A DNVGL-RP-F105 utiliza uma metodologia baseada em modelos de resposta para avaliar a fadiga causada por VIV em dutos em vão livre. Estes modelos representa relações empíricas entre a velocidade reduzida (Equação 2.17) e a amplitude de resposta adimensional, utilizadas para prever as amplitudes de vibração nas direções *in-line* e *cross-flow* (MØRK et al., 2003; Det Norske Veritas, 2017a). Além desta, a recomendação prática sugere também um método baseado no coeficiente de sustentação e nas curvas do coeficiente de massa adicional como função da amplitude de resposta adimensional e da frequência de vibração adimensional (Det Norske Veritas, 2017a). Como terceira opção, a DNVGL-RP-F105 indica o uso de fluidodinâmica computacional (CFD, na sigla em inglês) para escoamento turbulento ao redor dos dutos para avaliação do VIV.

A DNVGL-RP-F105 considera dois modelos para estimar a resposta dinâmica em um vão livre: Modelo de Resposta (*Response Model* - RM) e Modelo de Força (*Force Model* - FM). A escolha do modelo, segundo Tura et al. (1994), depende: (i) do comportamento dos carregamentos ambientais, isto é, quando há ressonância induzida por vórtice, aplica-se RM; e quando o comportamento do vão livre é afetado por carregamentos periódicos com pouca ou

Erosão do solo marinho causada pela ação de ondas ou correntes. Caracteriza-se pela remoção de sedimentos com formação de cavidades ou canais.

nenhuma amplificação dinâmica, aplica-se FM; (ii) da direção e tipo de fluxo, RM é aplicável na direção *in-line* para corrente contínua e na direção *cross-flow* para qualquer padrão de fluxo; o FM é aplicado na direção *in-line* para carregamentos de onda direto.

A DNVGL-RP-F105 pode ser aplicada para vãos únicos e múltiplos onde um modo de vibração é predominante (*single-mode*). Porém, a combinação de vãos de grande extensão e altas correntes, ou ainda vãos múltiplos, faz com que não apenas os modos fundamentais sejam ativados, mas também diversos outros modos de ordem mais alta (*multi-mode*).

A primeira etapa do cálculo das frequências de vibração dos dutos em vão livre é o cálculo da força axial efetiva,  $S_{eff}$ , e os parâmetros de rigidez do solo  $K_v$ ,  $K_l$  calculados por meio das Equações 2.7 e 2.8, sendo  $K_{v,s}$  um valor tabelado de acordo com o tipo de solo escolhido.

Com o intuito de demonstrar a formulação do modelo de resposta para o caso *single mode* de um duto totalmente restringido, tem-se que a tensão axial efetiva é dada por

$$S_{eff} = H_{eff} - \Delta p_i A_i (1 - 2\nu) - A_s E \Delta T \alpha_E \tag{2.1}$$

onde

 $H_{\it eff}$  tensão efetiva de lançamento

 $\Delta p_i$  diferencial de pressão interna em relação ao lançamento

 $A_i$  área da seção transversal interna do duto de aço

 $\nu$  coeficiente de Poisson

 $A_s$  área da seção transversal externa do duto de aço

E módulo de elasticidade

 $\Delta T$  diferencial de temperatura em relação ao lançamento

 $\alpha_E$  coeficiente de expansão de temperatura

Em seguida, calcula-se a carga crítica de flambagem, definida como

$$P_{cr} = (1 + CSF)C_2\pi^2 EI/L_{eff}^2$$
 (2.2)

com

$$CSF = k_c \left(\frac{EI_{conc}}{EI}\right)^{0.75} \tag{2.3}$$

onde

CSF fator de rigidez do concreto

 $C_2$  coeficiente das condições de contorno

EI rigidez à flexão do aço

 $L_{\it eff}$  comprimento efetivo do vão

 $k_c$  constante empírica para a rigidez do concreto

EI conc rigidez à flexão do concreto

A constante empírica  $k_c$  considera a deformação/deslizamento no revestimento anticorrosão e as fraturas no revestimento de concreto. O comprimento efetivo do vão, dado pelo produto do comprimento do vão por um fator de escala, é necessário visto que as condições de contorno nos ombros (*shoulders*) que o duto se apoia estão entre *pinned-pinned* e *fixed-fixed*<sup>2</sup>. Logo, temos que

$$\frac{L_{\text{eff}}}{L} = \begin{cases}
4,73/(-0,066\beta^2 + 1,02\beta + 0,63) & \text{para } \beta \ge 2,7 \\
4,73/(0,036\beta^2 + 0,61\beta + 1) & \text{para } \beta < 2,7
\end{cases}$$
(2.4)

com

$$\beta = \log_{10} \left( \frac{KL^4}{(1 + CSF)EI_{conc}} \right) \tag{2.5}$$

onde L é o comprimento real do vão e K é a rigidez estática ou dinâmica do solo por unidade de comprimento.

Pode-se encontrar o módulo de Young do concreto a partir da expressão

$$E_{conc} = 10000 f_{cn}^{0.3} (2.6)$$

onde  $f_{cn}$  é a resistência de fabricação do concreto.

Os parâmetros de rigidez do solo são calculado com base na DNVGL-RP-F114 (Det Norske Veritas, 2017b). A rigidez dinâmica do solo por metro na direção vertical (*cross-flow*) é dada por

$$K_v = \frac{C_v}{1 - \nu_{soil}} \left(\frac{2}{3} \frac{\rho_s}{\rho} + \frac{1}{3}\right) \sqrt{D}$$
 (2.7)

e a rigidez dinâmica do solo por metro na direção lateral (in-line) por

$$K_l = C_l(1 + \nu_{soil}) \left(\frac{2}{3} \frac{\rho_s}{\rho} + \frac{1}{3}\right) \sqrt{D}$$

$$(2.8)$$

onde

 $C_v$  fator de rigidez dinâmica do solo na direção vertical

 $C_l$  fator de rigidez dinâmica do solo na direção longitudinal

 $\nu_{soil}$  coeficiente de Poisson do solo

 $\rho_s$  massa específica do duto

 $\rho$  massa específica da água deslocada

D diâmetro externo do duto (incluindo revestimento)

Caso não seja um dado advindo das medições, ou estimado analiticamente, é necessário calcular a deflexão estática *mid-span*, que é dada por

$$\delta = C_6 \frac{qL_{eff}^4}{EI(1 + CSF)} \frac{1}{S_{eff}/P_{cr}}$$
 (2.9)

onde  $C_6$  é um coeficiente da condição de contorno e q é o peso submerso.

Valores dos fatores  $C_1$  a  $C_6$  estão dispostos na Tabela 6-1 cite[p. 111]DNV2017, e só devem ser utilizados apenas para cenários *single-span*.

A frequência natural fundamental, a ser definida para as direções *in-line* e *cross-flow*, pode ser aproximada a partir de

$$f_1 \approx C_1 \sqrt{1 + CSF} \sqrt{\frac{EI}{m_e} L_{eff}^4} \left( 1 + \frac{S_{eff}}{P_{cr}} + C_3 \left( \frac{\delta}{D} \right)^2 \right)$$
 (2.10)

onde  $C_1$  e  $C_3$  são coeficientes de condições de contorno e  $m_e$  é a massa efetiva, incluindo a massa estrutural, massa do fluido interno e massa adicional.

Desta forma, o efeito da massa adicional pode ser modelado a partir do coeficiente de massa adicional  $(C_a)$ , que pode ser aplicado para superfícies suaves ou rugosas do duto e deve ser aplicada para frequência natural da água parada, sendo calculado da seguinte forma

$$C_a = \begin{cases} 0.68 + \frac{1.6}{1 + 5(e/D)} & \text{para } e/D < 0.8\\ 1 & \text{para } e/D \ge 0.8 \end{cases}$$
 (2.11)

onde e corresponde ao gap do vão, isto é, a distância entre o duto e o solo marinho.

Além disto, podem-se calcular também a amplitude máxima de tensão para o diâmetro unitário para os modos fundamentais *in-line* (*IL*) e *cross-flow* (*CF*) assim

$$A_{IL/CF,1}^{\text{max}} = 2C_4(1 + CSF) \frac{DEr}{L_{eff}^2}$$
 (2.12)

em que r é uma coordenada radial da seção transversal do duto e  $C_4$  é um coeficiente de condição de contorno.

Por fim, finaliza-se esta etapa com o cálculo do fator de redução para corrente,  $R_C$ , que será aplicado na velocidade de referência, sendo calculado assim

$$R_C(z) = R_c \frac{\ln(z) - \ln(z_0)}{\ln(z_r) - \ln(z_0)}$$
(2.13)

com o fator de referência dado por

$$R_c = \sin(\theta_{rel})$$

onde z é a altura acima do solo,  $z_0$  é o parâmetro de rugosidade,  $z_r$  é a altura de medição de referência e  $\theta_{rel}$  é o ângulo formado entre a corrente e o duto.

Podemos utilizar os resultados das equações acima para a construção dos modelos de resposta relacionando a velocidade do fluxo com a amplitude de vibração. Pela DNVGL-RP-F105, as vibrações *in-line* e *cross-flow* devem ser consideradas em modelos de resposta separados.

#### 2.1 Modelo de resposta in-line

O parâmetro de estabilidade,  $K_S$ , representa o amortecimento para uma dada forma modal, sendo obtido a partir da equação

$$K_S = \frac{4\pi m_e \zeta_T}{\rho_w D^2} \tag{2.14}$$

em que  $\rho_w$  é a densidade da água e  $\zeta_T$  é a taxa de amortecimento modal total. Aplica-se um fator de segurança ao parâmetro de estabilidade,  $K_{Sd}=K_S/\gamma_k$ , sendo  $\gamma_k$  o fator de segurança no parâmetro de estabilidade.

Em seguida, deve-se calcular os fatores de correção para considerar a turbulência e o ângulo de ataque do fluxo

$$R_{I\theta,1} = 1 - \pi^2 \left(\frac{\pi}{2} - \sqrt{2\theta_{rel}}\right) (I_c - 0, 03) \qquad 0 \le R_{I\theta,1} \le 1$$

$$R_{I\theta,2} = 1 - \frac{I_c - 0, 03}{0, 17} \qquad 0 \le R_{I\theta,2} \le 1$$
(2.15)

onde  $I_c$  é a intensidade de turbulência.

Segundo a DNVGL-RP-F105 o fluxo pode ser dividido em duas zonas: (i) uma zona exterior, distante do solo marinho, onde velocidade de corrente média e a turbulência variam muito pouco na direção horizontal, e (ii) uma zona interior, onde a velocidade de corrente média e a turbulência tem variações consideráveis na direção horizontal. Uma vez que as medições da corrente são realizadas na zona exterior, fora da camada limite, a velocidade de corrente no duto pode ser aproximada a partir da equação

$$U_c = R_c U(z_r) \frac{\ln(e + D/2) - \ln(z_0)}{\ln(z_r) - \ln(z_0)}$$
(2.16)

em que  $U(z_r)$  é a velocidade da corrente na altura de referência.

Uma vez encontrada a velocidade da corrente na zona interior, isto é, próxima do solo, a velocidade reduzida pode ser calculada assim

$$V_R = \frac{U_c + U_w}{f_n D} \tag{2.17}$$

onde  $U_w$  é a velocidade de fluxo induzida por onda e  $f_n$  é a frequência natural de amplitude.

A amplitude de resposta *in-line* depende da (Equação 2.17),  $V_R$ , do parâmetro de estabilidade,  $K_{Sd}$ , da intensidade da turbulência,  $I_c$ , e do ângulo do fluxo,  $\theta_{rel}$ . O modelo de resposta pode então ser construído através do conjunto de equações a seguir

$$\frac{A_{Y,1}}{D} = \max\left(0, 18\left(1 - \frac{K_{Sd}}{1, 2}\right) R_{I\theta, 1}, \frac{A_{Y, 2}}{D}\right)$$
(2.18)

$$\frac{A_{Y,2}}{D} = 0.13 \left( 1 - \frac{K_{Sd}}{1.8} \right) R_{I\theta,2} \tag{2.19}$$

$$V_{R,onset}^{IL} = \begin{cases} \frac{1}{\gamma_{on,IL}} & \text{para} & K_{Sd} < 0, 4 \\ \\ \frac{0,6+K_{Sd}}{\gamma_{on,IL}} & \text{para} & 0, 4 \le K_{Sd} < 1, 6 \\ \\ \frac{2,2}{\gamma_{on,IL}} & \text{para} & K_{Sd} \ge 1, 6 \end{cases}$$
 (2.20)

$$V_{R,end}^{IL} = \begin{cases} 4, 5 - 0, 8K_{Sd} & \text{para } K_{Sd} < 1, 0\\ 3, 7 & \text{para } K_{Sd} \ge 1, 0 \end{cases}$$
 (2.21)

$$V_{R,1}^{IL} = 10 \left(\frac{A_{Y,1}}{D}\right) + V_{R,onset}^{IL}$$
 (2.22)

$$V_{R,2}^{IL} = V_{R,end}^{IL} - 2\left(\frac{A_{Y,2}}{D}\right)$$
 (2.23)

onde  $\gamma_{on,IL}$  é o fator de segurança para velocidade de corrente inicial *in-line* e  $\frac{A_Y}{D}$  é a amplitude *in-line* normalizada. Com esses valores calculados, pode-se construir a curva que relaciona velocidade reduzida e amplitude de vibração para diâmetro unitário, semelhante a Figura 2.3.



Figura 2.3 – Curva de modelo de resposta *in-line*. Fonte: Det Norske Veritas (2017a)

Conforme observado na DNVGL-RP-F105, a resposta de amplitude de um duto vibrando na direção *in-line*, contempla regiões com velocidade de corrente entre 1,0 e 4,5. Temos então que a resposta na direção longitudinal depende dos parâmetros de velocidade de corrente, estabilidade, intensidade de turbulência e do ângulo entre a corrente e o duto. Percebe-se que, à medida em que o parâmetro de estabilidade aumenta, a amplitude de resposta tende à diminuir, uma vez que este é proporcional ao amortecimento do sistema (Equação 2.14).

#### 2.2 Modelo de resposta cross-flow

Para o modelo de resposta *cross-flow* também é necessário calcular um conjunto de parâmetros. Dessa vez, inicia-se com o cálculo do fator de correção para considerar a proximidade

do duto com o solo

$$\Psi_{proxi,onset} = \begin{cases} \frac{1}{5} \left( 4 + 1, 25 \frac{e}{D} \right) & \text{para } \frac{e}{D} < 0, 8\\ 1 & \text{caso contrário} \end{cases}$$
 (2.24)

Caso o duto esteja localizado próximo ou em trincheiras é necessário levar em consideração o fator de correção específico

$$\Psi_{trench,onset} = 1 + 0.5 \frac{\Delta}{D} \tag{2.25}$$

onde  $\Delta$  é a profundidade da trincheira.

O número de Keulegan-Carpenter é definido como

$$KC = \frac{U_w}{f_w D} \tag{2.26}$$

onde  $f_w = \frac{1}{T_u}$  é o período de cruzamento da frequência de onda.

A razão de velocidade de fluxo de corrente é dada por

$$\alpha = \frac{U_c}{U_c + U_w} \tag{2.27}$$

A partir dessas equações, se pode construir o modelo de resposta *cross-flow* através do conjunto de equações a abaixo

$$\frac{A_{Z,1}}{D} = \begin{cases}
0,9 & \alpha > 0,8 & \frac{f_{n+1,CF}}{f_{n,CF}} < 1,5 \\
0,9+0,5\left(\frac{f_{n+1,CF}}{f_{n,CF}}-1,5\right) & \alpha > 0,8 & 1,5 \le \frac{f_{n+1,CF}}{f_{n,CF}} \le 2,3 \\
1,3 & \alpha > 0,8 & \frac{f_{n+1,CF}}{f_{n,CF}} > 2,3 \\
0,9 & \alpha \le 0,8 & KC > 30 \\
0,7+0,01(KC-10) & \alpha \le 0,8 & 10 \le KC \le 30 \\
0,7 & \alpha \le 0,8 & KC < 10
\end{cases}$$

$$\frac{A_{Z,2}}{D} = \frac{A_{Z,1}}{D} \tag{2.29}$$

$$V_{R,onset}^{CF} = \frac{3 \cdot \Psi_{proxi,onset} \cdot \Psi_{trench,onset}}{\gamma_{on,CF}}$$
 (2.30)

$$V_{R,end}^{CF} = 16$$
 (2.31)

$$V_{R,1}^{CF} = 7 - \frac{7 - V_{R,onset}^{CF}}{1,15} \left( 1, 3 - \frac{A_{Z,1}}{D} \right)$$
 (2.32)

$$V_{R,2}^{CF} = V_{R,end}^{CF} - \frac{7}{1,3} \frac{A_{Z,1}}{D}$$
 (2.33)

Com esses valores calculados, pode-se construir a curva que relaciona velocidade reduzida e amplitude de vibração para diâmetro unitário, semelhante a Figura 2.4.



Figura 2.4 – Curva de modelo de resposta *cross-flow*. Fonte: Det Norske Veritas (2017a)

#### 2.3 Resposta multi-mode

A resposta do vão livre pode ser dada em função de uma coordenada x ao longo da direção longitudinal do duto. Para cada combinação relevante de estado de mar e velocidade de corrente, um número de modos pode ser excitado simultaneamente na mesma direção, dando origem a uma resposta multi-mode. Todavia, o número de modos que responderão e o quanto cada modo contribuirá para o dano por fadiga dependerá da velocidade do fluxo, da posição no eixo x e da competição com outros modos.

A DNVGL-RP-F105 define três diferentes tipos de modos:

**Modos ativos** são os modos que podem ser excitados por VIV. Com base no itém 2.3.3 da DNVGL-RP-F105, os critério para definição de para que um modo *in-line*, com frequência  $f_{IL,j}$ , ou *cross-flow*, com frequência  $f_{CF,j}$ , seja considerado ativo é:

$$f_{IL,j} \leq \frac{U_{\text{extreme}}\gamma_{f,IL}}{V_{R,\text{onset}}^{IL}D}$$

$$f_{CF,j} \leq \frac{U_{\text{extreme}}\gamma_{f,CF}}{2D}$$
(2.34)

sendo  $\gamma_{f,IL}$  e  $\gamma_{f,CF}$  coeficientes de segurança, variando de 1 a 1,3 a depender da classe de segurança e nível de definição do vão livre (item 2.7.2 da DNVGL-RP-F105). Um modo que não passível de ativação pode ser totalmente desconsiderado nas análises em todos os pontos e velocidades de fluxo.

**Modos participantes** são modos ativos que tem amplitude de tensão relevante em um, ou ambos os lados, de um ponto x. Para que um modo j seja considerado participante no vão, é necessário que a seguinte condição (presente no item 4.3.3) seja atendida:

$$|A_{\mathbf{IL/CF},j}(x)| \geq \frac{A_{IL/CF}^{\max}}{10}$$
 para algum  $x \in (x_{\mathrm{start},j}, x_{\mathrm{end},j})$ 

sendo

$$A_{IL/CF,i}(x) = (1 + CSF)D\kappa_i(x)Er$$

onde

CSF fator de rigidez do concreto

 $\kappa_i(x)$  curvatura do modo na posição x

E módulo de elasticidade

r coordenada radial da seção transversal do duto

 $(x_{\text{start},j}, x_{\text{end},j})$  intervalo de influência do modo

Modos contribuintes são modos participantes que deve satisfizer um dos seguintes critérios:

- direção cross-flow:  $(A_Z/D)_j \ge 0, 1(A_Z/D)_{max}$

onde  $(A_Z/D)_j$  é a amplitude VIV normalizada para o j-ésimo modo,  $(A_Z/D)_{max}$  é a amplitude VIV normalizada para o modo *cross-flow* dominante,  $S_{IL,j}^P(x)$  é a amplitude de tensões de reposta preliminar para o j-ésimo modo *in-line* e  $S_{IL}^{max}(x)$  é a amplitude de tensões de resposta associadas ao modo *in-line* dominante.

Baseado nos modelos de resposta *single-mode*, podemos calcular as amplitudes do VIV para todos os modos. 2.3 Assim, precisamos calcular VIV *cross-flow* e *in-line* para cada velocidade de corrente, estado de mar e em cada ponto com se os seguintes procedimentos:

- VIV cross-flow
  - 1. Identifica-se todos os modos participantes (single ou multi location)
  - 2. Com o modelo de resposta *cross-flow*:
    - a) Calcula-se a amplitude VIV normalizada para cada modo  $(A_Z/D)_i$
    - b) Identifica-se o modo dominante, isto é,  $(A_Z/D)_{max}$
    - c) Identificam-se os modos fracos  $0, 1(A_Z/D)_{max} \le (A_Z/D)_j \le (A_Z/D)_{max}$
    - d) Desconsidera-se os modos irrelevantes:  $(A_Z/D)_j < 0, 1(A_Z/D)_{max}$
  - 3. Usando o modelo de resposta para baixos valores de Keulegan-Carpenter (low Keulegan Carpenter flow regime LKCR), calcula-se  $(A_Z/D)_j$  para cada modo.
  - 4. Determina-se a resposta de tensão combinada:

$$S_{comb,CF} = \max \left( S_{comb,CF}^{RM} , S_{comb,CF}^{LKCR} \right)$$

5. Determina-se a frequência de contagem de ciclos:

$$f_{cyc,CF} = \begin{cases} f_{cyc,CF}^{LKCR}, & S_{comb,CF}^{RM}(x) < S_{comb,CF}^{LKCR}(x) \\ \\ f_{cyc,CF}^{RM}, & S_{comb,CF}^{RM}(x) \ge S_{comb,CF}^{LKCR}(x) \end{cases}$$

- VIV in-line
  - 1. Identifica-se todos os modos participantes (single ou multi location)
  - 2. Com o modelo de resposta *in-line*:
    - a) Calcula-se a amplitude VIV normalizada para cada modo  $(A_Y/D)_i$
    - b) Identifica-se o modo dominante, isto é, o modo com  $S_{IL}^{max}(x)$
    - c) Identificam-se potenciais modos fracos:  $0, 1S_{IL}^{max}(x) \leq S_{IL,j}^{P}(x) \leq S_{IL}^{max}(x)$
    - d) Desconsideram-se os modos irrelevantes:  $S_{I\!L,j}^P(x) < 0, 1S_{I\!L}^{max}(x)$
  - 3. Reduzir os modos fracos. Para VIV *in-line*, dois modos adjacentes podem competir se suas frequências forem próximas, ou agir de forma independente se estiverem distantes. A DNVGL-RP-F105 define que os modos competem se a razão entre as frequências é menor que 2, isto é,  $\frac{f_{n+1}}{f_n} < 2$ . Em modos adjacentes considera-se que apenas o "vencedor" da competição pode ter máxima amplificação, enquanto a amplificação do modo "perdedor" é reduzida à metade. É interessante ressaltar que modos que não competem não tem redução.
  - 4. Calcular o intervalo de tensões *in-line* excitados pelo modo *cross-flow* dominante  $S_{cross-flow-IL}(x)$ .

Para cada ponto e cada modo, calcula-se o intervalo de tensões induzido por VIV *in-line* para os modos contribuintes:

$$S_{IL,j}^{RM}(x) = S_{IL,j}^{P} \cdot 0, 5^{\beta_{j}(x)}$$

Assume-se que apenas o modo *cross-flow* dominante é capaz de contribuir para o movimento *in-line* induzido pelo modo transversal. Desta forma, o modo *in-line* participante cuja frequência natural é próxima a duas vezes a resposta *cross-flow* dominante é escolhido como candidato a VIV *in-line* induzido por *cross-flow*.

$$|f_{IL,k}^{part} - 2 \cdot f_{cross\text{-flow}-RES,i}|$$

A amplitude de tensões *in-line* excitados pelo modo *cross-flow* dominante é dado por:

$$S_{CF-IL}(x) = 0, 8 \cdot A_{IL,k}(x) \cdot \left(\frac{A_z}{D}\right)_{max} \cdot R_k \cdot \gamma_s$$

- 5. Escolher o maior  $S_{IL}^{RM}(x)$  e  $S_{CF-IL}(x)$  para cada modo;
- 6. Determinar a faixa de resposta de tensão combinada,

$$S_{comb,IL}(x) = \sqrt{\sum_{j=1}^{m_{aig}} (S_{IL,j}(x))^2}$$

e a frequência de contagem de ciclos,

$$f_{cyc,IL}(x) = \sqrt{\sum_{j=1}^{m_{ug}} \left( f_{\text{IL},j}^{con} \cdot \frac{S_{IL,j}(x)}{S_{comb,IL}(x)} \right)^2}$$

#### 3 MODELAGEM DE ASSENTAMENTO DE DUTOS SUBMARINOS

O assentamento de dutos submarinos tem sido o núcleo da engenharia *offshore* por meio século. Vários métodos e técnicas tem sido desenvolvidas e usadas para dutos submarinos (IVIC, 2016). O processo de lançamento de dutos é uma das tarefas mais desafiadoras, mesmo quando a rota ideal já está definida. Modelar a instalação de dutos em um *software* de elementos finitos para uso geral pode ser um trabalho demorado e tedioso, principalmente devido a grandes quantidades de dados da batimetria. Na maioria das vezes, são necessárias técnicas avançadas de *script* para definir o perfil do leito marinho, selecionar a rota ideal do duto e simular o processo de assentamento (Van den Abeele; BOËL; HILL, 2013).

A simulação do duto projetado em um ambiente tridimensional realista obtido por medições da topografia do fundo marinho, permite que os engenheiros explorem quaisquer oportunidades que o comportamento do mesmo pode oferecer para desenvolver soluções seguras e econômicas. Por exemplo, o projetista pode analisar primeiro o comportamento do duto na batimetria original. Se alguns dos casos de carga resultam em tensões além do limite aceitável, pode-se simular uma modificação do fundo do mar no modelo de elementos finitos. A análise é então executada novamente para confirmar que as modificações levaram à diminuição desejada de tensão ou deformação.

O modelo de elementos finitos pode ser uma ferramenta para analisar o comportamento *in-situ* de um duto. Por comportamento *in-situ* duto entenda-se a resposta do mesmo as cargas ao longo de parte do todo o seu histórico de carregamento (BAI; BAI, 2014), isso pode consistir em vários casos de carga em sequência, por exemplo:

- 1. instalação;
- 2. testes de pressão (enchimento de água e do teste hidrostático);
- 3. operação (enchimento com conteúdo, pressão de projeto e temperatura);
- 4. ciclos de carga/descarga;
- 5. flambagem lateral e vertical (upheaval);
- 6. onda dinâmica e/ou de corrente;
- 7. cargas de impacto.

#### 3.1 Modelagem do sistema de dutos com Elementos Finitos

A modelagem da instalação do duto é o primeiro passo para o estudo do comportamento *in-situ* do duto, e visa reproduzir a configuração indeformada do duto assim que lançado sobre

a leito marinho. Esta configuração serve como ponto de partida para as etapas posteriores da análise. Mais importante do que investigar o comportamento do duto durante a instalação é garantir que a correta representação da tração e ângulo de lançamento de tal modo que consigam gerar forças residuais no duto, oriundas do atrito quando o duto se assenta sobre a batimetria.



Figura 3.1 – Modelo de elementos finitos durante o lançamento. Fonte: (BAI; BAI, 2014)

Por simplicidade, neste trabalho, vamos assumir que o ângulo entre o duto e a horizontal o será nulo, isto é, o duto estará num plano horizontal que desce em direção a superfície batimétrica. Desso modo, o modelo permitirá especificar somente a tração de lançamento. Essa modelagem visa garantir a correta representação do contato entre o duto e a batimetria (forças de contato e ponto onde o duto toca o solo). A Figura 3.1 mostra o duto antes e durante o processo de instalação.

A medida que o duto se assenta é necessário garantir um equilíbrio estável entre o duto e o solo, o que é feito mediante um modelo representativo dessa iteração, no qual deve-se definir o atrito e rigidez do leito marinho. No Abaqus (Simulia, 2018), pode-ser relacionar a penetração e a pressão de resposta do solo por meio de uma curva de rigidez axial, além de usar modelo anisotrópico para o atrito do solo para representar as diferenças entre os atritos nas direções longitudinal e transversal.

#### **4 MODELAGEM COMPUTACIONAL**

Neste capítulo serão apresentados os aspectos para o desenvolvimento da ferramenta, como os pré-requisitos, escolhas das ferramentas, decisões de modelagem, e as práticas adotadas no processo.

O levantamento dos requisitos de um sistema é o elemento que fornece elementos que dever nortear uma série de decisões a serem tomadas no seu desenvolvimento. A ferramenta a ser implementada se propõe:

- A partir de um arquivo de entrada com informações do modelo, criar arquivos de entrada para o Abaqus (.inp) que simulem todo o processo de simulação do comportamento do duto apresentado (Capítulo 3).
- Processar os arquivos de saída do Abaqus (.odb) extraindo os informações relevantes como a configuração deformada, modos de vibração, etc., gerando arquivos em outros formatos de fácil leitura para pós-processamento, tanto por esta ferramenta, quando por outro softwares.
- Pós-processar as as informações gerando gráficos e relatórios relevantes para as tomadas de decisão do usuário quanto ao projeto.

Embora o uso e desenvolvimento de softwares de cunho científico seja uma atividade extremamente importante para pesquisadores, nem sempre são observadas boas práticas são observadas no seu desenvolvimento (HANNAY et al., 2009). Wilson et al. (2014) apresenta um conjunto de boas práticas a serem adotadas no desenvolvimento desse tipo de. A seguir é apresentado o resumo do autor sobre essas práticas:

#### Boas práticas para computação científica

#### 1. Escreva programas para pessoas, não para computadores.

- a) Um programa não deve exigir que seus leitores mantenham mais de um punhado de fatos na memória de uma só vez.
- b) Torne os nomes consistentes, distintos e significativos.
- c) Tornar consistente o estilo e a formatação do código.

#### 2. Deixe o computador fazer o trabalho.

- a) Faça o computador repetir tarefas.
- b) Salve comandos recentes em um arquivo para reutilização.

c) Use uma ferramenta de construção para automatizar fluxos de trabalho.

#### 3. Faça alterações incrementais.

- a) Trabalhe em pequenos passos com feedback frequente e correção de rumo.
- b) Use um sistema de controle de versão.
- c) Coloque tudo o que foi criado manualmente no controle de versão.

#### 4. Não se repita (ou repita outros).

- a) Todos os dados devem ter uma única representação oficial no sistema.
- b) Modularize o código em vez de copiar e colar.
- c) Reutilize o código em vez de reescrevê-lo.

#### 5. Planeje erros.

- a) Adicione asserções aos programas para verificar seu funcionamento.
- b) Use uma biblioteca de testes unitários pronta para uso.
- c) Transforme erros em casos de teste.
- d) Use um depurador simbólico.

#### 6. Otimize o software somente depois que ele funcionar corretamente.

- a) Use um *profiler* para identificar gargalos.
- b) Escreva o código na linguagem de nível mais alto possível.

#### 7. Documente design e finalidade, não a mecânica.

- a) Documente interfaces e razões, não implementações.
- b) Refatore o código, em vez de explicar como ele funciona.
- c) Incorpore a documentação do software no próprio software.

#### 8. Colabore.

- a) Use revisões de código de pré-merge.
- b) Use a programação em pares ao interar alguém novo e ao lidar com problemas particularmente difíceis.
- c) Use uma ferramenta de acompanhamento de problemas.

Em observância à estas práticas, algumas decisões foram tomadas quanto ao desenvolvimento da ferramenta, e serão apresentadas a seguir.

• Paradigma de programação

O uso de Programação Orientada a Objeto promove um alto índice de reaproveitamento de código, que vai da direção do item 4 apresentado.

• Linguagem de programação

A linguagem adotada será Python<sup>1</sup>. Rao (2018) apresenta algumas das principais vantagens que destaca a linguagem para este tipo de aplicação:

 Disponibilidade de bibliotecas para aplicações cientificas contemplando manipulação de matrizes (Numpy), funções matemáticas (SciPy), manipulação de dados em forma tabular (Pandas), criação de gráficos interativos (Matplotlib e Bokeh);



Figura 4.1 – Amostra das principais bibliotecas científicas em Python.

1 https://www.python.org

#### REFERÊNCIAS

- BAI, Q.; BAI, Y. *Subsea Pipeline Design, Analysis, and Installation*. [S.l.]: Elsevier Inc., 2014. ISBN 978-0-12-386888-6. Citado 2 vezes nas páginas 20 e 21.
- BATCHELOR, G. K. *An Introduction to Fluid Dynamics*. [S.l.]: Cambridge University Press, 1967. (Cambridge Mathematical Library). ISSN 9780521663960. Citado na página 8.
- CURRIE, I. G. Fundamental Mechanics of Fluids. Fourth. [S.l.]: Taylor & Francis, 2012. (Civil and Mechanical Engineering). ISSN 9781439874608. Citado na página 8.
- Det Norske Veritas. *DNV GL-RP-F105 Free Spanning Pipelines 2017*. [S.l.], 2017. Citado 3 vezes nas páginas 9, 14 e 16.
- Det Norske Veritas. *DNV GL-RP-F114 Pipe-Soil Interaction for Submarine Pipelines 2017*. [S.l.], 2017. Citado na página 11.
- FYRILEIV, O.; MØRK, K. Assessment of free spanning pipelines using the DNV guideline. In: *The Eighth International Offshore and Polar Engineering Conference*. Montreal, Canada: International Society of Offshore and Polar Engineers, 1998. Citado na página 9.
- HANNAY, J. E. et al. How do scientists develop and use scientific software? In: 2009 ICSE Workshop on Software Engineering for Computational Science and Engineering. Vancouver, BC, Canada: IEEE, 2009. p. 1–8. ISBN 978-1-4244-3737-5. Citado na página 22.
- IVIC, S. Sensitivity analysis of S-lay pipe-laying configuration. p. 11, ago. 2016. Citado na página 20.
- MØRK, K. et al. Assessment Of Viv Induced Fatigue In Long Free Spanning Pipelines. In: *Proceedings of OMAE 2003*. Cancun, Mexico: International Conference on Offshore Mechanics & Arctic Engineering, 2003. p. 1–7. Citado 2 vezes nas páginas 8 e 9.
- NIELSEN, F. G.; SØREIDE, T. H.; KVARME, S. O. VIV Response of Long Free Spanning Pipelines. In: 21st International Conference on Offshore Mechanics and Arctic Engineering, Volume 1. Oslo, Norway: ASME, 2002. p. 121–129. ISBN 978-0-7918-3611-8. Citado na página 8.
- RAO, V. R. Here's Why You Should Use Python for Scientific Research. 2018. Citado na página 24.
- Simulia. ABAQUS. 2018. Citado na página 21.
- SUMER, B. M.; FREDSOE, J. M. A Review On Vibrations Of Marine Pipelines. *International Journal of Offshore and Polar Engineering*, International Society of Offshore and Polar Engineers, 1995. Citado na página 8.
- TURA, F. et al. Guidelines for free spanning pipelines: The GUDESP project. In: *13th International Conference on Offshore Mechanics and Arctic Engineering*. United States: American Society of Mechanical Engineers, New York, NY (United States), 1994. Citado na página 9.

Referências 26

Van den Abeele, F.; BOËL, F.; HILL, M. Fatigue Analysis of Free Spanning Pipelines Subjected to Vortex Induced Vibrations. In: *Volume 7: CFD and VIV*. Nantes, France: American Society of Mechanical Engineers, 2013. p. V007T08A039. ISBN 978-0-7918-5541-6. Citado 2 vezes nas páginas 8 e 20.

WILSON, G. et al. Best Practices for Scientific Computing. *PLOS Biology*, v. 12, n. 1, p. e1001745, jan. 2014. ISSN 1545-7885. Citado na página 22.