Name - Harsh Roll Number - 36 Registration Number - 201800469 Semester - 7th Section - C

Question - Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

- 1. Submit pdf with code and graph.
- 2. Perform the experiment for at least two data sets.
- 3. Analyze with different test cases.

Solution -

ALGORITHM:

- 1. Start.
- 2. Read the Given Data Sample to X and the curve to Y.
- 3. Set the value for Smoothening parameter or Free parameter say τ .
- 4. Set the bias /Point of interest set x0 which is a subset of X.
- 5. Determine the weight matrix using:

$$w(x, x_o) = e^{-\frac{(x - x_o)^2}{2\tau^2}}$$
Determine the value of model term parameter

6. Determine the value of model term parameter β using:

$$\hat{\beta}(x_o) = (X^T W X)^{-1} X^T W y$$

- 7. Prediction = $x0*\beta$.
- 8. Stop.

Code:

1. Dataset used – '10-dataset.csv'

In [6]:	data							
Out[6]:		total_bill	tip	sex	smoker	day	time	size
	0	16.99	1.01	Female	No	Sun	Dinner	2
	1	10.34	1.66	Male	No	Sun	Dinner	3
	2	21.01	3.50	Male	No	Sun	Dinner	3
	3	23.68	3.31	Male	No	Sun	Dinner	2
	4	24.59	3.61	Female	No	Sun	Dinner	4

	239	29.03	5.92	Male	No	Sat	Dinner	3
	240	27.18	2.00	Female	Yes	Sat	Dinner	2
	241	22.67	2.00	Male	Yes	Sat	Dinner	2
	242	17.82	1.75	Male	No	Sat	Dinner	2
	243	18.78	3.00	Female	No	Thur	Dinner	2
		18.78 ows × 7 c			140	mur	Diffiler	

```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
def kernel(point, xmat, k):
  m,n = np.shape(xmat)
  weights = np.mat(np.eye((m)))
  for j in range(m):
    diff = point - X[j]
    weights[j,j] = np.exp(diff*diff.T/(-2.0*k**2))
  return weights
def localWeight(point, xmat, ymat, k):
  wei = kernel(point,xmat,k)
  W = (X.T*(wei*X)).I*(X.T*(wei*ymat.T))
  return W
def localWeightRegression(xmat, ymat, k):
  m,n = np.shape(xmat)
  ypred = np.zeros(m)
  for i in range(m):
    ypred[i] = xmat[i]*localWeight(xmat[i],xmat,ymat,k)
  return ypred
# Load data points.
data = pd.read_csv('10-dataset.csv')
bill = np.array(data.total_bill)
tip = np.array(data.tip)
# Preparing and add 1 in bill.
mbill = np.mat(bill)
mtip = np.mat(tip)
m= np.shape(mbill)[1]
one = np.mat(np.ones(m))
X = np.hstack((one.T,mbill.T))
# Set k=0.5.
ypred = localWeightRegression(X,mtip,0.5)
SortIndex = X[:,1].argsort(0)
xsort = X[SortIndex][:,0]
# Set k=1.
Y_pred = localWeightRegression(X,mtip,1)
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(bill,tip, color='green')
```

```
ax.plot(xsort[:,1],ypred[SortIndex], color = 'red', linewidth=5)
plt.xlabel('Total bill')
plt.ylabel('Tip')
plt.show();
```



```
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(bill,tip, color='blue')
ax.plot(xsort[:,1],ypred1[SortIndex], color = 'yellow', linewidth=5)
plt.xlabel('Total bill')
plt.ylabel('Tip')
plt.show();
```


2. Dataset used – 'Poly_Dataset.csv'

	/_			
In [6]:	data	a		
Out[6]:				
5.5525		Age	Height	
	0	10	138	
	1	11	138	
	2	12	138	
	3	13	139	
	4	14	139	
	66	76	204	
	67	77	205	
	68	78	206	
	69	79	207	
	70	80	208	
	71 r	ows ×	2 colun	nns

```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
def kernel(point, xmat, k):
  m,n = np.shape(xmat)
  weights = np.mat(np.eye((m)))
  for j in range(m):
    diff = point - X[j]
    weights[j,j] = np.exp(diff*diff.T/(-2.0*k**2))
  return weights
def localWeight(point, xmat, ymat, k):
  wei = kernel(point,xmat,k)
  W = (X.T*(wei*X)).I*(X.T*(wei*ymat.T))
  return W
def localWeightRegression(xmat, ymat, k):
  m,n = np.shape(xmat)
  ypred = np.zeros(m)
  for i in range(m):
    ypred[i] = xmat[i]*localWeight(xmat[i],xmat,ymat,k)
  return ypred
```

Load data points.

data = pd.read_csv('Poly_Dataset.csv')

```
Age = np.array(data.Age)
Height = np.array(data.Height)
# Preparing and add 1 in Age.
mAge = np.mat(Age)
```

```
mAge = np.mat(Age)
mHeight = np.mat(Height)

m= np.shape(mAge)[1]
one = np.mat(np.ones(m))
X = np.hstack((one.T,mAge.T))
```

Set k=10.

```
ypred = localWeightRegression(X,mHeight,10)
SortIndex = X[:,1].argsort(0)
xsort = X[SortIndex][:,0]
```

Set k=20.

ypred1 = localWeightRegression(X,mHeight,20)

```
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(Age,Height, color='red')
ax.plot(xsort[:,1],ypred[SortIndex], color = 'yellow', linewidth=5)
plt.xlabel('Age')
plt.ylabel('Height')
plt.show();
```



```
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
```

```
ax.scatter(Age,Height, color='green')
ax.plot(xsort[:,1],ypred1[SortIndex], color = 'yellow', linewidth=5)
plt.xlabel('Age')
plt.ylabel('Height')
plt.show();
```

