

Cap. 7 Coloração (Shading) e Iluminação Global

Engenharia Informática (5385)

- 2º ano, 2º semestre

Revisão sobre Modelos de Iluminação Dependentes da Luz

- Modelos dependentes da luz
 - Ambiente
 - Normais à superfície não são importantes
 - □ Lambert/Difusa
 - Ângulo entre a normal à superfície e o vector director da fonte de luz
 - □ Phong/Especular
 - Normal à superfície, fonte de luz e, ainda, ponto de vista (observador)

Aplicação da Iluminação

- Temos agora um modelo de iluminação directa para <u>um</u> <u>simples ponto</u> na superfície
- Assumindo que a nossa superfície é definida como uma malha de faces poligonais, que pontos devemos nós usar?
 - □ Computar estes modelos para todos os pontos é dispendioso
 - As normais podem n\u00e3o estar explicitamente definidas para todos os pontos
- Há que ter em conta que:
 - A iluminação envolve um processo de cálculo bastante pesado se for aplicado a todos os pontos da superfície dum objecto
 - Há várias soluções possíveis, cada uma das quais tem implicações diferentes na qualidade visual da cena

Modelos de Coloração

- Várias opções:
 - □ Coloração constante (flat shading)
 - □ Coloração de Gouraud (interpolação)
 - ☐ Coloração de Phong (interpolação)
- Novo hardware gráfico faz coloração programável por pixel (per-pixel programmable shading)!

Coloração Constante

- É o método mais simples, pois calcula a iluminação num só ponto de cada polígono.
 - OpenGL usa um dos vértices do polígono
- A intensidade de iluminação (cor) é a mesma para todos os pontos de cada polígono.
- Vantagens:
 - □ Rápido um valor de cor calculado por polígono
- Desvantagens:
 - □ Impreciso
 - Descontinuidades nas fronteiras dos polígonos

A coloração constante será realística para objectos facetados?

NÃO!

- Para fontes de luz pontuais, a direcção à fonte de luz varia para cada ponto da faceta.
- No caso da reflexão especular, a direcção ao observador varia para cada ponto da faceta.

Como tornar a coloração mais suave?

- Pode refinar-se um pouco este tipo de coloração através do cálculo da iluminação de Phong em cada pixel de cada polígono, mas o resultado continua a ser claramente facetado.
- Para obter superfícies visualmente suaves, há que usar *vectores normais* nos vértices dos polígonos
 - normalmente diferentes das normais às faces
 - □ são usados somente para efeitos de coloração
 - Faz pensar numa melhor aproximação à superfície
 real que os polígonos aproximam
- As normais aos vértices podem ser
 - fornecidas com o modelo
 - aproximadas pela média das normais às facetas que partilham cada vértice

Coloração de Gouraud

- Ilumina or colora directamente cada vértice pela utilização da sua posição e da sua normal.
- Faz <u>interpolação linear</u> das cores sobre as faces: primeiro, ao longo das arestas de fronteira; depois $t_3(c_1 + t_2(c_3-c_1)-c_1+t_1(c_2-c_1))$

- Rapidez cálculos incrementais aquando da rasterização
- Maior suavidade de cor- usa 1 normal por vértice partilhado de forma a obter continuidade de cor entre faces

Desvantagens:

- Ainda impreciso. Polígonos parecem bacentos e pouco brilhantes.
- Tende a eliminar a componente especular. Se esta for incluída, será ponderada sobre todo o polígono.
- Mach banding.

Coloração de Gouraud Mach banding

- Artificial nas descontinuidades da intensidade da luz.
- O efeito de Mach banding descreve como a mente humana aumenta o contraste subconscientemente entre duas superfícies com luminâncias diferentes.
- A diferença entre duas cores é mais pronunciada quando elas estão lado-a-lado e a fronteira é suave.
- Isto realça as fronteiras entre cores, mesmo se a diferença de cor é pequena.
- Fronteiras grosseiras são "ponderadas" pelo nosso sistema de visão por forma a fornecer uma variação suave.

Distance from left edge

banded along edges

flat shading Gouraud shading

floor appears banded

Coloração em OpenGL

- A OpenGL define dois modelos de coloração:
 - □ Controlam como as cores são atribuídas aos pixels
 - Coloração constante: usa uma cor constante em todo o polígono glShadeModel(GL_FLAT)
 - Coloração de Gouraud: interpola as cores entre os vértices (coloração por defeito)

glShadeModel(GL_SMOOTH)

Coloração de Phong

- Coloração de Phong não é o mesmo que iluminação de Phong, embora sejam conceitos às vezes confundidos um com o outro
 - Iluminação de Phong: o modelo empírico que discutimos no capítulo anterior para calcular a iluminação num ponto da superfície dum objecto.
 - Coloração de Phong: interpola linearmente as normais em toda e qualquer faceta, aplicando o modelo de iluminação de Phong em cada pixel

Vantagens:

- □ Obtém-se resultados visualmente muito suaves
- □ Elevada qualidade, especularidades estreitas

Desvantagens:

- Mas é bastante mais dispendioso nos cálculos
- Continua a ser uma aproximação para a maior parte das superfícies

Coloração de Phong

- Interpola linearmente as normais aos vértices
 - Calcula as equações de iluminação em cada pixel
 - □ Pode usar a componente especular
 - Note-se que as normais são usadas para computar as componentes difusa e especular

$$I_{total} = K_A I_A + \sum_{i=1}^{\# lights} I_i (K_D (\vec{N} \cdot \vec{L}_i) + K_S (\vec{V} \cdot \vec{R}_i)^n)$$

Problemas na Coloração

- Silhuetas poligonais continuam presentes
- Distorção em perspectiva
- Interpolação dependente da orientação dos pológonos
- Problemas nos vértices partilhados
- Má média nos vértices

Problemas na Coloração (1)

■ Presença de silhuetas poligonais

Problemas na Coloração (2)

Distorção em perspectiva

- Note-se que a interpolação linear no espaço de ecrã não está alinhada com a interpolação linear no espaço do domínio da cena.
- Particionam-se polígonos grandes em polígonos mais pequenos para reduzir a distorção.

M

Problemas na Coloração (3)

■ Interpolação dependente da orientação dos polígonos

Problemas na Coloração (4)

- Problemas nos vértices partilhados
 - □ Exemplo ao lado:
 - O vértice B é partilhado por dois rectângulos à direita, mas não por aquele à esquerda
 - O primeiro segmento da scanline é interpolada entre DE e AC
 - O segundo segmento da scanline é interpolada entre BC e GH
 - Uma discontinuidade pode surgir

Problemas na Coloração (5)

■ Má média nos vértices

Modelos de Coloração (por Iluminação Directa)

Sumário:

- Coloração Constante
 - □ Computa-se a iluminação de Phong uma só vez para cada polígono
- Coloração de Gouraud
 - Computa-se a iluminação de Phong nos vértices e interpola os valores de iluminação sobre o polígono
- Coloração de Phong
 - Computa-se as médias das normais das faces nos vértices
 - □ Interpola-se as normais sobre a face e faz-se a iluminação de Phong sobre ela

Geração Actual de Coloradores

- O hardware actual permite-nos ir para além do modelo de iluminação estandardizado.
- Os Coloradores de Vértices Programáveis permitem-nos escrever um pequeno programa que determina como é que a cor dum vértice é calculada
 - O nosso programa tem acesso à normal e à posição da superfície, assim como algo mais que lhe queiramos fornecer (como a luz)
 - □ Podemos adicionar, subtrair, calcular produtos internos, etc

Geração Actual de Coloradores (1)

- Só abordámos superficialmente a iluminação de superfícies
 - O modelo comum é claramente inadequado para iluminação precisa,
 mas tem a vantagem de ser rápido e simples
- Tem em conta dois sub-problemas de iluminação
 - □ Para onde vai a luz? Transporte de Luz
 - □ O que acontece nas superfícies? *Modelos de Reflexão*
- Outros algoritmos endereçam o transporte ou a reflexão, ou ambos
 - □ A abordar talvez no mestrado...

Sobrevisão: modelos baseados na iluminação

- Iluminação Directa ou Local
 - □ Tipos de Luz
 - □ Fontes de Luz (emissão)
 - Materiais da superfície dos objectos (reflexão)
- Iluminação Indirecta ou Global
 - □ Sombras
 - □ Refracções

Iluminação Global

- Temos visto duma forma aproximada como é que a luz funciona
- E assim continuaremos...
- Mas daremos agora um passo mais para a frente
- Iluminação global
 - A noção de que um ponto é iluminado por mais luz do que aquela que vem das fontes de luz locais; a iluminação é feita por todos os emissores e reflectores na cena

Sombras (shadows)

- Os termos relativos a sombras dizem-nos que fontes de luz estão obstruídas
 - □ Emite-se raios visuais em direcção a cada fonte de luz L_i
 - \square $S_i = 0$ se o raio é obstruído, $S_i = 1$ no caso contrário

Emissão de Raios Visuais (Ray Casting)

- Traçar raios primários a partir da câmara
 - ☐ Iluminação directa a partir de luzes não obstruídas somente

$$I = I_E + K_A I_A + \sum_{i=1}^{\# lights} [K_D (\vec{N} \cdot \vec{L}) + K_S (\vec{V} \cdot \vec{R})^n] S_i I_i$$

м

Traçagem Recursiva de Raios (Recursive Ray Tracing)

- Também traça raios secundários a partir das superfícies atingidas
 - □ Iluminação global a partir de reflexão simétrica e transparência.

$$I = I_E + K_A I_A + \sum_{i=1}^{\# lights} [K_D (\vec{N} \cdot \vec{L}) + K_S (\vec{V} \cdot \vec{R})^n] S_i I_i + K_S I_R + K_T I_T$$

Traçagem Recursiva de Raios:

sobrevisão

- Raios primários. Emissão dum raio a partir do olho do observador através de cada pixel, e depois a partir do objecto intersectado para as fontes de luz de forma determinar as condições de sombreamento/iluminação
- Raios secundários. Ray tracing também gera raios secundários
 - □ Raios de reflexão e raios de refracção
 - Usa normais à superfície como guia (ângulo de incidência é igual ao ângulo de reflexão)
 - Se outro objecto é atingido, determina-se a luz que ele ilumina recursivamente por ray tracing
- A recursão pára quando:
 - □ Raio falha a intersecção com um objecto
 - A profundidade máxima especificada pelo utilizador é atingida
 - A máquina fica sem memória disponível

м

Reflexão simétrica (mirror reflection)

Traça raio secundário na direcção da reflexão simétrica (mirror reflection)

Radiance for mirror reflection ray

$$I = I_E + K_A I_A + \sum_{i=1}^{\# lights} [K_D(\vec{N} \cdot \vec{L}) + K_S(\vec{V} \cdot \vec{R})^n] S_i I_i + K_S I_R + K_T I_T$$

Transparência

Traça raio secundário na direcção da refracção

□ Calcula a radiância ao longo do raio secundário, incluindo-a no modelo de

iluminação

Radiance for refraction ray

$$I = I_E + K_A I_A + \sum_{i=1}^{\# lights} [K_D(\vec{N} \cdot \vec{L}) + K_S(\vec{V} \cdot \vec{R})^n] S_i I_i + K_S I_R + K_T I_T$$

Transparência

- O coeficiente de transparência é a fracção que é transmitida
 - $\ \square$ K_T = 1 se objecto é translucente, K_T = 0 se objecto é opaco
 - \Box 0 < K_T < 1 se objecto é semi-translucente

$$I = I_E + K_A I_A + \sum_{i=1}^{\# lights} [K_D(\vec{N} \cdot \vec{L}) + K_S(\vec{V} \cdot \vec{R})^n] S_i I_i + (K_S I_R + K_T I_T)$$

Transparência Refractiva

- Para superfícies finas, podemos ignorar a mudança de direcção
 - □ Assume-se que a luz viaja em linha recta através da superfície

Transparência Refractiva

■ Para objectos sólidos, aplica-se a Lei de Snell:

 $\Box \ \eta_r \sin \Theta_r = \eta_i \sin \Theta_i$

$$T = \left(\frac{\eta_i}{\eta_r} \cos \Theta_i - \cos \Theta_r\right) N - \frac{\eta_i}{\eta_r} L$$

Radiosidade

- Ray tracing modela a reflexão especular e transparência refractiva, mas ainda usa uma componente ambiente nos efeitos de luz
- Radiosidade é a taxa à qual a energia é emitida ou reflectida pela superfície
- Pela conservação da energia da luz num volume, estes efeitos de radiosidade podem ser traçados

Sumário

- Sombreamento baseado na Iluminação Directa
 - Emissão de Raios (Ray casting)
 - Usualmente usa-se aproximações analíticas simples para a emissão das fontes de luz e para a reflexão nas superfícies
- Sombreamento baseado na Iluminação Indirecta
 - □ Traçagem recursiva de raios (Recursive ray tracing)
 - Incorpora sombras, reflexões simétricas e refracções
 - ¬ Radiosidade
 - Usa lei da conservação de energia.

