Chap2. 머신러닝 프로젝트 처음부터 끝까지

Seolyoung Jeong, Ph.D.

경북대학교 IT 대학

가상의 프로젝트 진행

2.2 큰그림 보기

- 2.2.1 문제정의
- 2.2.2 성능 측정 지표 선택
- 2.2.3 가정 검사

2.3 데이터 가져오기

- 2.3.1 작업 환경 만들기
- 2.3.2 데이터 다운로드
- 2.3.3 데이터 구조 훑어보기
- 2.3.4 테스트 세트 만들기

2.4 데이터 탐색 및 시각화

- 2.4.1 지리적 데이터 시각화
- 2.4.2 상관관계 조사
- 2.4.3 특성 조합으로 실험

2.5 데이터 준비

- 2.5.1 데이터 정제
- 2.5.2 텍스트와 범주형 특성 다루기
- 2.5.3 나만의 변환기
- 2.5.4 특성 스케일링

오이 2.5.5 변환 파이프라인

2.6 모델 선택 및 훈련

- 2.6.1 훈련 세트에서 훈련하고 평가하기
- 2.6.2 교차 검증을 사용한 평가

2.7 모델 세부 튜닝

- 2.7.1 그리드 탐색
- 2.7.2 랜덤 탐색
- 2.7.3 앙상블 방법
- 2.7.4 최상의 모델과 오차 분석
- 2.7.5 테스트 세트로 시스템 평가하기
- ◆ 솔루션 제시
- 2.8 시스템 론칭, 모니터링, 유지보수

2.2 큰그림 보기

◆ 프로젝트 목적

- 캘리포니아 인구조사 데이터를 사용
- 캘리포니아 주택 가격 모델 작성

◆ 캘리포니아 인구조사 데이터

- 캘리포니아 블록 그룹별 (600~3,000명 인구)
- 인구, 중간 소득, 중간 주택 가격 포함

2.2.1 문제 정의 - 비지니스 목적

- 비지니스 목적 파악
 - 시스템 구성, 알고리즘, 측정 지표, 튜닝 시간 결정
- 중간 주택 가격 예측 출력 → 투자 결정 머신러닝 시스템 입력

그림 2-2 부동산 투자를 위한 머신러닝 파이프라인

2.2.1 문제 정의

- ◆ 현재 솔루션?
 - 전문가가 수동으로 추정 (10%이상 오류)
- ◆ 문제 정의
 - 지도/비지도/강화학습?
 - 분류/회귀학습?
 - 배치/온라인학습?
 - 레이블된 샘플 있음 > 지도학습
 - 연속된 값을 예측 → 회귀학습 (여러 특성 : multivariate regression)
 - 오프라인, 비교적 느리고, 크지 않은 데이터 → 배치학습

2.2.2 성능 측정 지표

전형적인 회귀문제 성능 지표

- 평균 제곱근 오차 (Root Mean Square Error : RMSE)
 - 오차가 커질 수록 RMSE 값은 커짐 (예측에 많은 오류가 있음)

RMSE
$$(X, h) = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2}$$

- 평균 절대 오차 (Mean Absolute Error)
 - 이상치로 보이는 경우가 많은 경우 사용

$$MAE(X, h) = \frac{1}{m} \sum_{i=1}^{m} |h(x^{(i)}) - y^{(i)}|$$

- X: 데이터셋에 있는 모든 샘플의 모든 특성값을 포함하는 행렬
- *h* : 시스템의 예측 함수 (가설 : hypothesis)
- m: 데이터셋에 있는 샘플 수
- $y^{(i)}$: 샘플 $\mathbf{x}^{(i)}$ 에 대한 예측값

2.2.2 성능 측정 지표

- ◆ 예측값과 타깃값 사이의 거리를 재는 방법 (norm)
 - Euclidian norm: RMSE
 - Manhattan norm : MAE

$$||v||_k = (|v_0|^k + |v_1|^k + \dots + |v_n|^k)^{\frac{1}{k}}$$

유클리디안 노름 =
$$l_2$$
노름 = $\|v\|_2 = \|v\| = \sqrt{m} \times \text{RMSE}$

맨하탄 노름
$$= l_1$$
노름 $= ||v||_1 = m \times MAE$

- k가 클수록 큰 원소에 치우치며 작은 값은 무시
- RMSE가 MAE보다 이상치에 더 민감
- 이상치가 매우 드물면 RMSE가 잘 맞아 일반적으로 널리 사용 (예: 종 모양 분포의 양 끝단)

표기법

• 어떤 구역의 값

- 경도 -118.29, 위도 33.91
- 주민수 1,416명
- 중간소득 \$38,372
- 중간 주택 가격 \$156,400

$$\boldsymbol{x}^{(1)} = \begin{pmatrix} -118.29 \\ 33.91 \\ 1,416 \\ 38,372 \end{pmatrix} \qquad y^{(1)} = 156,400$$

$$ullet$$
 데이터셋의 모든 샘플 값 $X = \begin{pmatrix} (x^{(1)})^T \\ (x^{(2)})^T \\ \vdots \\ (x^{(1999)})^T \\ (x^{(2000)})^T \end{pmatrix} = \begin{pmatrix} -118.29 & 33.91 & 1,416 & 38,372 \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}$

ullet 하나의 샘플에 대한 예측값 $\hat{y}^{(i)} = h(\boldsymbol{x}^{(i)})$

2.2.3 가정 검사

◆ 지금까지 만든 가정을 나열하고 검사

- 만약, 중간 주택 가격이 아닌 등급(저렴/보통/고가)을 원한다면?
 → 회귀가 아닌, 분류작업이 필요
- ◆ 너무 늦게 문제를 발견하지 않도록 주의...

2.3.1 작업환경 만들기

◆ 필요한 python package

- numpy, pandas, matplotlib
- jupyter notebook
- scikit-learn
- tensorflow
- •

Anaconda package

• 300개 이상 모듈 포함

◆ Anaconda 설치 후 업데이트 확인 할 것

- Anaconda Prompt
 - > conda update scikit-learn
 - > conda update pnadas

파이썬(Python)이란?

◆ 1991년 귀도 반 로섬(Gudi Van Rossum)이 발

- ◆ 플랫폼 독립적인 인터프리터 언어이며,
- ◆ 객체 지향적, 동적 타이핑 대화형 언어

Gudi Van Rossum

◆ 처음 C언어로 구현되었음

Python Logo

파이썬은 '피톤'이라는 이름으로 알려진, 고대 그리스 신화에 나오는 거대한 뱀의 이름. 피톤은 Python을 고대 그리스어로 읽은 것이며, 영어를 그대로 읽으면 '파이선' 이 됨.

사실, 파이썬이라는 이름은 파이썬을 만든 귀도 반 로섬(Guido van Rossum)이 자신이 좋아하는 영국 코미디 프로인 '몬티 파이선의 날아다니는 서커스(Monty Python's Flying Circus)'에서 따왔다고 함. 물론 여기서의 파이선도 피톤을 의미.

왜 파이썬을 배우는가?

◆ 가장 많이 사용되고 있는 언어 (2016년)

Jupyter Notebook

- 웹브라우저 기반 툴 (http://localhost:8888)
- Python 외에 Ruby, R, JavaScript와 같은 다른 언어도 사용 가능

2.3.2 데이터 다운로드

- ◆ download/datasets/housing/ 폴더에
- ◆ housing.tgz 압축 파일 다운로드
- ◆ 압축해제 → housing.csv 파일

```
import os
import tarfile
from six.moves import urllib

DOWNLOAD_ROOT = "https://raw.githubusercontent.com/ageron/handson-ml/master/"
HOUSING_PATH = os.path.join("datasets", "housing")
HOUSING_URL = DOWNLOAD_ROOT + "datasets/housing/housing.tgz"

def fetch_housing_data(housing_url=HOUSING_URL, housing_path=HOUSING_PATH):
    if not os.path.isdir(housing_path):
        os.makedirs(housing_path)
    tgz_path = os.path.join(housing_path, "housing.tgz")
    urllib.request.urlretrieve(housing_url, tgz_path)
    housing_tgz = tarfile.open(tgz_path)
    housing_tgz.extractall(path=housing_path)
    housing_tgz.close()
```

```
fetch_housing_data()
```


pandas로 csv 파일 읽기

◆ 10개의 특성

```
In [5]: import pandas as pd

def load_housing_data(housing_path=HOUSING_PATH):
    csv_path = os.path.join(housing_path, "housing.csv")
    return pd.read_csv(csv_path)
```

In [6]: housing = load_housing_data()
housing.head()

Out [6]:

:		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean
	0	-122.23	37.88	41.0	880.0	129.0	322.0	126.0	8.3252	452600.0	NEAR
	1	-122.22	37.86	21.0	7099.0	1106.0	2401.0	1138.0	8.3014	358500.0	NEAR
	2	-122.24	37.85	52.0	1467.0	190.0	496.0	177.0	7.2574	352100.0	NEAR
	3	-122.25	37.85	52.0	1274.0	235.0	558.0	219.0	5.6431	341300.0	NEAR
	4	-122.25	37.85	52.0	1627.0	280.0	565.0	259.0	3.8462	342200.0	NEAR

2.3.3 데이터 구조 훑어보기

housing.info()

- 총 20,640개 샘플
- total_bedrooms 특성은 20,433개만 널값이 아님 (207개 비어 있음)
- ocean_proximity 필드 데이터 타입
 - object (문자열), 카테고리 (예: NEAR BAY)

```
In [7]: housing.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):
longitude 20640 non-null float64
latitude 20640 non-null float64
```

housing_median_age 20640 non-null float64 20640 non-null float64 total_rooms 20433 non-null float64 total_bedrooms 20640 non-null float64 population 20640 non-null float64 households 20640 non-null float64 median_income median_house_value 20640 non-null float64 ocean_proximity 20640 non-null object

dtypes: float64(9), object(1)

memory usage: 1.5+ MB

◆ ocean_proximity 필드 내 카테고리 확인

```
Out [8]: <1H OCEAN 9136
INLAND 6551
NEAR OCEAN 2658
NEAR BAY 2290
```

ISLAND 5

Name: ocean_proximity, dtype: int64

◆ 숫자형 특성 요약 정보

housing["ocean_proximity"].value_counts()

In [9]: housing.describe()

C:#Users#snowflower#Anaconda3#lib#site-packages#numpy#lib#function_base.py:3834: RuntimeWarning: Invalid value encountered in percentile RuntimeWarning)

Out [9]:

In [8]:

۱		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_
	count	20640.000000	20640.000000	20640.000000	20640.000000	20433.000000	20640.000000	20640.000000	20640.000000	20640.00
	mean	-119.569704	35.631861	28.639486	2635.763081	537.870553	1425.476744	499.539680	3.870671	206855.8
	std	2.003532	2.135952	12.585558	2181.615252	421.385070	1132.462122	382.329753	1.899822	115395.6
	min	-124.350000	32.540000	1.000000	2.000000	1.000000	3.000000	1.000000	0.499900	14999.00
	25%	-121.800000	33.930000	18.000000	1447.750000	NaN	787.000000	280.000000	2.563400	119600.0
	50%	-118.490000	34.260000	29.000000	2127.000000	NaN	1166.000000	409.000000	3.534800	179700.C
	75%	-118.010000	37.710000	37.000000	3148.000000	NaN	1725.000000	605.000000	4.743250	264725.0
	max	-114.310000	41.950000	52.000000	39320.000000	6445.000000	35682.000000	6082.000000	15.000100	500001.0

matflotlib 히스토그램 그리기

%matplotlib inline
import matplotlib.pyplot as plt
housing.hist(bins=50, figsize=(20,15))
plt.show()

2.3.4 테스트 세트 만들기

- 데이터로부터 테스트 세트 분리
 - 전체 데이터에서 너무 많은 직관을 얻으면 과대적합된 모델이 생성될 가능성이 있음 (data snoopoing 편향)
- ◆ 무작위로 샘플을 선택해서 데이터셋의 20% 정도 분리
- ◆ 프로그램 재실행 시 이전의 데이터셋 불러와야...
 - 이전 세트 저장 후 불러오기
 - 동일한 난수 인덱스 생성하기
- ◆ 데이터셋 업데이트 후에도 적용 가능해야...
- → 식별자를 사용하여 테스트 세트로 결정

scikit-learn 테스트 세트 분리함수

- ◆ 사이킷런 train_test_split() 함수
 - 난수 초기값 지정 가능
 - 동일 인덱스 기반 분리 가능

여러개의 배열을 넣을 수 있습니다 (파이썬 리스트, 넘파이, 판다스 데이터프레임) from sklearn.model selection import train test split train_size도 지정할 수 있습니다

train set, test set = train test split(housing, test size=0.2, random state=42)

test_set.head()

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean_proximit
20046	-119.01	36.06	25.0	1505.0	NaN	1392.0	359.0	1.6812	47700.0	INLANI
3024	-119.46	35.14	30.0	2943.0	NaN	1565.0	584.0	2.5313	45800.0	INLANI
15663	-122.44	37.80	52.0	3830.0	NaN	1310.0	963.0	3.4801	500001.0	NEAR BA
20484	-118.72	34.28	17.0	3051.0	NaN	1705.0	495.0	5.7376	218600.0	<1H OCEAN
9814	-121.93	36.62	34.0	2351.0	NaN	1063.0	428.0	3.7250	278000.0	NEAR OCEAN

샘플링 편향

- ◆ 계층적 샘플링
 - 샘플에서도 전체 비율 유지해야 함
- ◆ 중간 주택 가격 예측 시 중간 소득이 중요
 - 소득 카테고리 특성 중요
 - 중간 소득 히스토그램 : 대부분 \$20,000~\$50,000 일부 \$60,000
 - 계층별로 데이터셋에 충분한 샘플수가 필요

소득 카테고리 "income_cat"

- ◆ 소득 카테고리 개수 제한 : 1.5로 나눔
- ◆ 5이상은 5로 레이블


```
import numpy as np
housing["income_cat"] = np.ceil(housing["median_income"] / 1.5)
housing["income_cat"].where(housing["income_cat"] < 5, 5.0, inplace=True)</pre>
```

```
housing["income_cat"].hist()
```

<matplotlib.axes._subplots.AxesSubplot at 0x678b9d0>

소득 카테고리 기반 계층 샘플링

- ◆ scikit-learn의 StratifiedShuffleSplit
 - StratifiedKFold의 계층 샘플링 + ShuffleSplit의 랜덤 샘플링
 - test_size와 train_size 매개변수 합을 1이하로 지정 가능

2.4 데이터 이해를 위한 탐색과 시각화

- ◆ train_set 복사본 생성 후 사용
 - housing = strat_train_set.copy()
- ◆ 2.4.1 지리적 데이터 시각화
 - 모든 구역 산점도

In [26]: housing.plot(kind="scatter", x="longitude", y="latitude")

Out[26]: <matplotlib.axes._subplots.AxesSubplot at Oxad2f250>

• 데이터 포인트가 밀집된 영역 : alpha option = 0.1

In [27]: housing.plot(kind="scatter", x="longitude", y="latitude", alpha=0.1) Out[27]: matplotlib.axes._subplots.AxesSubplot at Oxad73270> 42 40 latitude 38 36 34 ₃₂ ∟ −126 -122 -124-120-118 -116 -114-112longitude

- 캘리포니아 주택 가격
 - 원의 반지름: 구역의 인구 (s)
 - 색깔: 가격 (c)

```
In [28]: housing.plot(kind="scatter", x="longitude", y="latitude", alpha=0.4,
    s=housing["population"]/100, label="population", figsize=(10,7),
    c="median_house_value", cmap=plt.get_cmap("jet"), colorbar=True, sharex=False
    )
    plt.legend()
```

Out[28]: <matplotlib.legend.Legend at 0xa241dd0>

2.4.2 상관관계 조사

- ◆ 표준 상관계수 (standard correlation coefficient)
 - Pearson's r
 - corr() 함수 이용

```
In [29]: | corr_matrix = housing.corr()
          corr_matrix["median_house_value"].sort_values(ascending=False)
Out[29]: median_house_value
                               1.00000
         median_income
                               0.687160
         total_rooms
                               0.135097
         housing_median_age
                               0.114110
          households:
                               0.064506
         total_bedrooms
                               0.047689
          population
                               -0.026920
          longitude
                               -0.047432
          latitude
                               -0.142724
         Name: median_house_value, dtype: float64
```

- 상관관계 범위 : -1 ~ 1
- 1에 가까우면 강한 양의 상관관계
 - 예) 중간 소득이 올라갈 때 주택 가격 증가
- -1에 가까우면 강한 음의 상관관계
 - 예) 위도가 커질수록(북쪽) 주택 가격이 조금씩 감소
- 0에 가까우면 선형적인 상관관계 없음

pandas – scatter matrix 함수

```
In [22]: from pandas, plotting import scatter_matrix
          attributes = ["median_house_value", "median_income", "total_rooms", "housing_median_age"]
          scatter_matrix(housing[attributes], figsize=(12, 8))
         array([[<matplotlib,axes,_subplots,AxesSubplot object at 0x08157690>,
                  amatplotlib.axes,_subplots,AxesSubplot object at 0x0BA31030>,
                  <matplot lib, axes, _subplots, AxesSubplot object at 0x0BA38170>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x0BDD7330>],
                 [<matplotlib,axes,_subplots,AxesSubplot object at 0x0BDDF590>,
                  amatplotlib,axes,_subplots,AxesSubplot object at 0x0BE2B630>,
                  qmatplotlib,axes,_subplots,AxesSubplot object at 0x0BE36C50>,
                  amatplotlib.axes,_subplots,AxesSubplot object at 0x0BE81930>],
                 [⊲matplotlib,axes,_subplots,AxesSubplot object at 0x0BE8AF30⊳,
                  <matplot lib, axes, _subplots, AxesSubplot_object_at_0x0BED6C30>,
                  ¬matplotlib, axes, _subplots, AxesSubplot object at 0x0B⊞6910>,
                  amatplotlib.axes._subplots.AxesSubplot object at 0x0BF2DF30>],
                 [⊲matplotlib,axes,_subplots,AxesSubplot object at 0x0BF3BCF0⊳,
                  amatplotlib.axes._subplots.AxesSubplot object at 0x0BF89250>,
                  amatplotlib.axes,_subplots,AxesSubplot object at 0x0BF91810>.
                  qmatplotlib,axes,_subplots,AxesSubplot object at 0x0BFDD550>]], dtype=object)
           value
               400000
               300000
              200000
           median
              100000
               median_income
                   10
               30000
            total rooms
               20000
               10000
               housing_median_age
                                                                                                                                      20
                                                                median_income
                                                                                                                                housing_median_age
                                                                                                    total rooms
                           median house value
```


중간 소득 vs. 중간 주택 가격

```
housing.plot(kind="scatter", x="median_income", y="median_house_value", alpha=0.1)
In [23]:
Out [23]: <matplotlib.axes,_subplots.AxesSubplot at OxcOe7bdO>
                600000
                500000
                400000
           median_house_value
                300000
                200000
                100000
              -100000
                       -2
                               0
                                       2
                                                                    10
                                                                            12
                                                                                    14
                                                             8
                                                                                           16
                                                  median_income
```


2.4.3 특성 조합

머신러닝 알고리즘 적용 전 확인

- 이상한 데이터 확인 → data refining 필요
- 상관관계 확인
- 여러 특성 조합 시도
 - 예) 방 개수 가구수
 - 예) 방 개수 침대 개수
 - 예) 가구 당 인원 In [24]

```
housing["rooms_per_household"] = housing["total_rooms"]/housing["households"]
housing["bedrooms_per_room"] = housing["total_bedrooms"]/housing["total_rooms"]
housing["population_per_household"]=housing["population"]/housing["households"]

corr_matrix = housing.corr()
corr_matrix["median_house_value"].sort_values(ascending=False)
```

```
Out [24]: median_house_value
                                      1.000000
         median_income
                                      0.687160
                                      0.146285
         rooms_per_household
         total_rooms
                                      0.135097
         housing median age
                                      0.114110
         households.
                                      0.064506
         total bedrooms
                                      -0.047689
         population_per_household
                                     -0.021985
         population
                                     -0.026920
         longitude
                                     -0.047432
          latitude
                                     -0.142724
                                     -0.259984
         bedrooms_per_room
         Name: median_house_value, dtype: float64
```


2.5 머신러닝 알고리즘을 위한 데이터 준비

◆ 데이터 준비 자동화

- 데이터 변화 손쉽게 반복
- 다른 프로젝트에 재사용
- 론칭 후 새 데이터에 적용 시 사용
- 최적의 조합을 찾는데 편리
- ◆ train set 위해 lable 삭제 (axis=1)

2.5.1 데이터 정제

누락된 특성 처리 함수

- 예) total_bedrooms
- 옵션 1: 해당 구역 제거
- 옵션 2: 전체 특성 삭제
- 옵션 3: 어떤 값을 채우기 (0, 평균, 중간값 등)

◆ scikit-learn Imputer 함수

• 누락된 값 처리

scikit-learn

- 일관성 : 추정기(fit함수), 변환기(transform함수), 예측기(predict, score)
- 검사 기능 : 모델 파라미터와 하이퍼파라미터를 공개 변수로 접근
- 클래스 남용 방지 : 기본 데이터 타입으로 numpy 배열 사용
- 조합성: 기존의 구성요소 최대한 재사용 (파이프라인 클래스)
- 합리적인 기본값 : 모든 매개변수에 합리적인 기본값 지정

2.5.2 텍스트와 범주형 특성 다루기

- ◆ "ocean_proximity" 카테고리 텍스트 → 숫자로 변형
 - 각 카테고리를 다른 정수값으로 매핑 : pandas의 factorize() 함수

```
In [37]: housing_cat = housing["ocean_proximity"]
         housing_cat.head(10)
Out [37]: 17606
                   <1H OCEAN
         18632
                   <1H OCEAN
         14650
                  NEAR OCEAN
         3230
                      INLAND
         3555
                   <1H OCEAN
                      TNLAND
          19480
         8879
                   <1H OCEAN
         13685
                      INLAND
         4937
                   <1H OCEAN
                   <1H OCEAN
         4861
         Name: ocean_proximity, dtype: object
         housing cat encoded, housing categories = housing cat.factorize()
In [38]: L
         housing_cat_encoded[:10]
Out [38]: array([0, 0, 1, 2, 0, 2, 0, 2, 0, 0], dtype=int32)
In [39]: housing categories
Out[39]: Index(['<1H OCEAN', 'NEAR OCEAN', 'INLAND', 'NEAR BAY', 'ISLAND'], dtype='object')
```

one-hot encoding

scikit-learn OneHotEncoder

- ◆ 숫자로 된 범주형 값을 one-hot vector로 변환
- ◆ fit_transform() ← 2차원 배열 (reshape으로 2차원으로 변형)
- ◆ 출력 형태 : SciPy의 sparse matrix
 - '0'이 아닌 원소의 위치만 저장

◆ numpy 배열로 변형 : toarray() 함수

2.5.3 나만의 변환기

◆ scikit-learn은 유용한 변환기를 많이 제공

```
In [48]: from sklearn.base import BaseEstimator, TransformerMixin
         # 컬럼 인덱스
         rooms_ix, bedrooms_ix, population_ix, household_ix = 3, 4, 5, 6
         class CombinedAttributesAdder(BaseEstimator, TransformerMixin):
             def __init__(self, add_bedrooms_per_room = True): # no *aras or **karas
                 self.add_bedrooms_per_room = add_bedrooms_per_room
             def fit(self, X, y=None):
                 return self # nothing else to do
             def transform(self, X, v=None):
                 rooms_per_household = X[:, rooms_ix] / X[:, household_ix]
                 population_per_household = X[:, population_ix] / X[:, household_ix]
                 if self.add bedrooms per room:
                     bedrooms_per_room = X[:, bedrooms_ix] / X[:, rooms_ix]
                     return np.c_[X, rooms_per_household, population_per_household,
                                  bedrooms_per_room]
                 el se
                     return np.c [X, rooms per household, population per household]
         attr_adder = CombinedAttributesAdder(add_bedrooms_per_room=False)
         housing_extra_attribs = attr_adder.transform(housing.values)
```

In [49]: housing_extra_attribs = pd.DataFrame(housing_extra_attribs, columns=list(housing.columns)+["rooms_per_household", "population_per_household"]) housing_extra_attribs.head()

Out [49] :

	k	ongitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	ocean_proximity	rooms_per
()	121.89	37.29	38	1568	351	710	339	2.7042	<1H OCEAN	4.62537
1	1 -1	121.93	37.05	14	679	108	306	113	6.4214	<1H OCEAN	6.00885
2	2 -	117.2	32.77	31	1952	471	936	462	2.8621	NEAR OCEAN	4.22511
3	3 -1	119.61	36.31	25	1847	371	1460	353	1.8839	INLAND	5.23229
4	1 -	118.59	34.23	17	6592	1525	4459	1463	3.0347	<1H OCEAN	4.50581

2.5.4 특성 스케일링(feature scaling)

- ◆ 머신러닝 알고리즘은 입력 숫자 특성들의 scale이 많이 다르면 잘 작동하지 않음
 - 예) 전체 방 개수 범위 6~39,320 / 중간소득범위 0~15
- ◆특성의 범위를 같도록...
 - min-max scaling : 정규화 (normalization)
 - 0~1 범위에 들도록 값 이동 및 스케일 조정
 - 데이터-최소값 / 최대값-최소값
 - scikit-learn MinMaxScaler 변환기
 - 표준화 (standardization)
 - 평균을 뺀 후, 표준편차로 나누어 결과 분포의 분산이 1이 되도록 함
 - scikit-learn StandardScaler 변환기

2.5.5 변환 파이프라인

- ◆ Pipeline 클래스
 - scikit-learn에서 연속된 변환을 순서대로 처리
- ◆ 숫자 특성 처리 파이프라인

```
In [50]: from sklearn.pipeline import Pipeline
         from sklearn.preprocessing import StandardScaler
         num_pipeline = Pipeline([
                 ('imputer', Imputer(strategy="median")),
                 ('attribs_adder', CombinedAttributesAdder()),
                 ('std_scaler', StandardScaler()),
             1)
         housing_num_tr = num_pipeline.fit_transform(housing_num)
In [51]: housing_num_tr
Out [51]: array([[-1.15604281, 0.77194962, 0.74333089, ..., -0.31205452,
                 -0.08649871, 0.15531753],
                [-1.17602483, 0.6596948 , -1.1653172 , ..., 0.21768338,
                 -0.03353391. -0.836289021.
                [ 1.18684903, -1.34218285, 0.18664186, ..., -0.46531516.
                 -0.09240499, 0.4222004],
                [ 1.58648943, -0.72478134, -1.56295222, ..., 0.3469342 ,
                 -0.03055414, -0.52177644],
                [ 0.78221312, -0.85106801, 0.18664186, ..., 0.02499488,
                  0.06150916, -0.30340741],
                [-1.43579109, 0.99645926, 1.85670895, ..., -0.22852947,
                 -0.09586294. 0.1018056711)
```


◆ pandas의 dataframe 처리하는 변환기 작성

 DataFrameSelector 클래스: 나머지는 버리고, 필요한 특성을 선택하여 데이터프레임을 numpy 배열로 변경 (수치형만 다루는 파이프라인)

```
In [52]: from sklearn.base import BaseEstimator, TransformerMixin
          class DataFrameSelector(BaseEstimator, TransformerMixin):
             def __init__(self, attribute_names):
                 self.attribute_names = attribute_names
             def fit(self, X, y=None):
                 return self.
             def transform(self, X):
                 return X[self.attribute_names].values
In [53]: | num_attribs = list(housing_num)
         cat attribs = ["ocean proximity"]
         num pipeline = Pipeline([
                 ('selector', DataFrameSelector(num_attribs)),
                 ('imputer', Imputer(strategy="median")),
                 ('attribs_adder', CombinedAttributesAdder()),
                 ('std_scaler', StandardScaler()),
             1)
          cat_pipeline = Pipeline([
                 ('selector', DataFrameSelector(cat_attribs)),
                 ('cat_encoder', CategoricalEncoder(encoding="onehot-dense")),
             ])
```


◆ 두 파이프라인 연결

```
In [54]: from sklearn.pipeline import FeatureUnion
         full_pipeline = FeatureUnion(transformer_list=[
                ("num_pipeline", num_pipeline),
                ("cat_pipeline", cat_pipeline),
            ])
In [55]: housing_prepared = full_pipeline.fit_transform(housing)
        housing_prepared
Out [55]: array([[-1.15604281, 0.77194962, 0.74333089, ..., 0.
               [-1.17602483, 0.6596948 , -1.1653172 , ..., 0.
                 0. , 0. ],
               [ 1.18684903, -1.34218285, 0.18664186, ..., 0.
                    , 1,
               [ 1.58648943, -0.72478134, -1.56295222, ..., 0.
                      , 0.
               [ 0.78221312, -0.85106801, 0.18664186, ..., 0.
               [-1.43579109, 0.99645926, 1.85670895, ..., 0.
                 1. , 0.
In [60]: housing_prepared.shape
Out [60]: (16512, 16)
```


2.6 모델 선택과 훈련

◆ 2.6.1 훈련 세트에서 훈련하고 평가하기

◆ 모델선택1) 선형 모델

```
from sklearn.linear_model import LinearRegression
In [56]:
         lin_reg = LinearRegression()
         lin_reg.fit(housing_prepared, housing_labels)
Out [56]:
         LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
In [57]:
         some_data = housing.iloc[:5]
         some labels = housing labels.iloc[:5]
         some_data_prepared = full_pipeline.transform(some_data)
         print("예측: ", lin_reg.predict(some_data_prepared))
In [58]:
         예측: [ 210644.60459286 317768.80697211 210956.43331178
                                                                     59218.98886849
           189747.55849879]
In [59]:
         print("레이블: ", list(some_labels))
         레이블: [286600.0, 340600.0, 196900.0, 46300.0, 254500.0]
```


RMSE 측정

◆ scikit-learn의 mean_square_error() 함수 사용

```
In [61]: from sklearn.metrics import mean_squared_error
    housing_predictions = lin_reg.predict(housing_prepared)
    lin_mse = mean_squared_error(housing_labels, housing_predictions)
    lin_rmse = np.sqrt(lin_mse)
    lin_rmse

Out [61]: 68628.198198489234

In [62]: housing_labels.mean(), housing_labels.std()

Out [62]: (206990.9207243217, 115703.01483031521)

In [63]: lin_reg.score(housing_prepared, housing_labels)

Out [63]: 0.64816248428044276
```

- RMSE 예측 오차 : \$68,628 → 낮을수록 좋음
- score 높을수록 좋음 → 과소적합 (underfitting)
- 모델이 train data에 과소적합된 사례
 - 모델이 너무 단순해서 데이터의 내재된 구조를 학습하지 못할 때
 - 해결방법 1) 파라미터가 더 많은 **강력한 모델** 선택 → 먼저 시도
 - 해결방법 2) 학습 알고리즘에 더 좋은 특성 제공
 - 해결방법 3) 모델 규제 감소 (→ 이 예제에서는 규제 사용 안함)

모델 선택2) 결정 트리 (6장)

DesionTreeRegressor

- 오차 = 0.0
- score = 1.0 → 과대적합 (overfitting)
 - model이 train data에 너무 잘 맞지만, 일반성이 떨어짐

2.6.2 교차 검증을 사용한 평가

- ◆ train set 중 일부를 사용하여 검증에 사용
- scikit-learn cross-validation
 - fold : subset
 - 훈련 세트를 10개의 폴드(서브셋)으로 분할
 - 결정트리모델을 10번 훈련하고 평가 (매번 다른 폴드를 선택해서 평가, 나머지 9개 폴드는 훈련에 사용)
 - 결과) 10개의 평가 점수가 담긴 배열

◆ 결정 트리 검증 결과 □ 🖼 🗎

• 평균 : 71,292

• 표준편차: 3,274

◆ 회귀 모델 검증 결과

• 평균 : 69,052

표준편차 : 2,731

Scores: [68109.06259568 66943.63356662 71594.75323241 68942.80518278 70918.0003004 75081.18897418 70626.41498532 71763.18783985

78783.35316833 70158.1998105]

Mean: 71292.0599656

Standard deviation: 3274.42334379

lin_rmse_scores = np.sqrt(-lin_scores)
display_scores(lin_rmse_scores)

Scores: [66782,73843989 66960,118071 70347,95244419 74739,57052552 68031,13388938 71193,84183426 64969,63056405 68281,61137997

71552.91566558 67665.10082067]

Mean: 69052,4613635

Standard deviation: 2731.6740018

RandomForestRegressor (7장)

Mean: 52579.0753849

Standard deviation: 2087,4053737

- ◆ 무작위로 특성을 선택해서 많은 DesionTree를 생성하고, 그 예측을 평균 냄
 - 앙상블 학습 :
 여러 다른 모델을
 모아서 하나의
 모델을 만드는 것
 - 머신러닝 알고리즘 성능 극대화 방법 중 하나

```
In [71]: from sklearn.ensemble import RandomForestRegressor
         forest_reg = RandomForestRegressor()
          forest_reg.fit(housing_prepared, housing_labels)
Out [71]: RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
                    max_features='auto', max_leaf_nodes=None,
                    min_impurity_decrease=0.0, min_impurity_split=None,
                    min_samples_leaf=1, min_samples_split=2,
                    min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
                    oob_score=False, random_state=None, verbose=0, warm_start=False)
In [72]:
         housing_predictions = forest_reg.predict(housing_prepared)
          forest_mse = mean_squared_error(housing_labels, housing_predictions)
         forest_rmse = np.sqrt(forest_mse)
          forest_rmse
Out [72]: 22534,651251015624
In [73]:
        from sklearn.model_selection import cross_val_score
          forest_scores = cross_val_score(forest_reg, housing_prepared, housing_labels,
                                          scoring="neg_mean_squared_error", cv=10)
         forest_rmse_scores = np.sqrt(-forest_scores)
         display_scores(forest_rmse_scores)
         Scores: [ 53018.62573497 49748.6765257
                                                                    55480.57393783
                                                    51080.6823411
           51220.62786958 55532.7434547
                                           50918.77758198
                                                           50700.22329812
           55377.35557488 52712.46753021]
```


2.7 모델 세부 튜닝

- ◆ 가능성 있는 2~5개 정도의 모델을 선정하여 저장해 두면 편리함
- ◆ 최적의 하이퍼파라미터를 찾아야 함
- → 가장 단순한 방법 → 만족할 만한 하이퍼파라미터 조합을 찾을 때까지 수동으로 조정

2.7.1 그리드 탐색

from sklearn.model selection import GridSearchCV

◆ scikit-learn의 GridSearchCV 사용

- 탐색하고자 하는 하이퍼파라미터와 시도값 지정
- 가능한 모든 하이퍼파라미터 조합에 대해 교차 검증을 사용해 평가

```
param_grid = [
                 {'n_estimators': [3, 10, 30], 'max_features': [2, 4, 6, 8]},
                 {'bootstrap': [False], 'n_estimators': [3, 10], 'max_features': [2, 3, 4]},
          forest_reg = RandomForestRegressor()
         grid_search = GridSearchCV(forest_reg, param_grid, cv=5,
                                     scoring='neg_mean_squared_error',
                                     return_train_score=True)
          grid_search.fit(housing_prepared, housing_labels)
Out [74]: GridSearchCV(cv=5, error score='raise'.
                estimator=RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
                    max_features='auto', max_leaf_nodes=None,
                    min impurity decrease=0.0. min impurity split=None.
                    min_samples_leaf=1, min_samples_split=2,
                    min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
                    oob_score=False, random_state=None, verbose=0, warm_start=False),
                fit_params=None, iid=True, n_jobs=1,
                param_grid=[{'max_features': [2, 4, 6, 8], 'n_estimators': [3, 10, 30]}, {'bootstrap': [False], 'max_features': [2, 3, 4], 'n_estimat
         ors': [3, 10]}],
                pre_dispatch='2*n_iobs', refit=True, return_train_score=True,
                scoring='neg mean squared error', verbose=0)
```


In [74]:

```
In [75]: grid_search.best_params_
Out[75]: {'max_features': 6, 'n_estimators': 30}
In [76]:
         grid_search.best_estimator_
Out [76]: RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
                    max_features=6, max_leaf_nodes=None, min_impurity_decrease=0.0,
                    min_impurity_split=None, min_samples_leaf=1,
                    min_samples_split=2, min_weight_fraction_leaf=0.0.
                    n_estimators=30, n_iobs=1, oob_score=False, random_state=None,
                    verbose=0. warm_start=False)
In [77]: | cyres = grid search.cy results
          for mean score, params in zip(cvres["mean test score"], cvres["params"]):
             print(np.sqrt(-mean score), params)
         64223.2850771 {'max_features': 2, 'n_estimators': 3}
         55407.8687859 {'max features': 2. 'n estimators': 10}
         52932.3550944 {'max_features': 2, 'n_estimators': 30}
         60222.8024295 {'max_features': 4, 'n_estimators': 3}
         52951.7955765 {'max_features': 4, 'n_estimators': 10}
         50280.7716783 {'max_features': 4, 'n_estimators': 30}
         59048.4337212 {'max_features': 6, 'n_estimators': 3}
         52588.478215 {'max_features': 6, 'n_estimators': 10}
         50031.7461754 {'max_features': 6, 'n_estimators': 30}
         58077.5052279 {'max_features': 8, 'n_estimators': 3}
         51545.0350056 {'max_features': 8, 'n_estimators': 10}
         50083.4490232 {'max_features': 8, 'n_estimators': 30}
         63065.7241353 {'bootstrap': False, 'max_features': 2, 'n_estimators': 3}
         54091.1788418 {'bootstrap': False, 'max_features': 2, 'n_estimators': 10}
         59798.9622518 {'bootstrap': False, 'max_features': 3, 'n_estimators': 3}
         52314.2649346 {'bootstrap': False, 'max_features': 3, 'n_estimators': 10}
         59226.5630142 {'bootstrap': False, 'max_features': 4, 'n_estimators': 3}
         51963.370483 {'bootstrap': False, 'max_features': 4, 'n_estimators': 10}
```


◆ 2.7.1 그리드 탐색

- 비교적 적은 수의 조합 탐구에 적합
- 가능한 모든 조합을 시도
- 하이퍼파라미터마다 몇 개의 값만 탐색

◆ 2.7.2 랜덤 탐색

- 탐색 공간이 커지면 랜덤 탐색 방식이 유용
- 각 반복마다 하이퍼파라미터에 임의의 수를 대입하여, 지정한 횟수만큼 평가
- 하이퍼파라미터마다 각기 다른 값 탐색
- 단순히 반복 횟수를 조절하는 것만으로 하이퍼파라미터 탐색에 투입할 컴퓨팅 자원 제어 가능

◆ 2.7.3 앙상블 방법

- 단일 모델을 연결하여 모델의 그룹으로 만듬
- 예) 결정 트리의 앙상블 → 랜덤 포레스트
- 7장

2.7.2 랜덤 탐색

64458.2538503 {'max_features': 5, 'n_estimators': 2}

```
from sklearn.model_selection import RandomizedSearchCV
          from scipy.stats import randint
         param_distribs = {
                  'n_estimators': randint(low=1, high=200),
                  'max_features': randint(low=1, high=8),
          forest reg = RandomForestRegressor(random state=42)
         rnd_search = RandomizedSearchCV(forest_reg, param_distributions=param_distribs,
                                         n_iter=10, cv=5, scoring='neg_mean_squared_error',
                                          random_state=42, n_jobs=-1)
         rnd_search.fit(housing_prepared, housing_labels)
Out[80]: RandomizedSearchCV(cv=5, error_score='raise',
                   estimator=RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
                    max_features='auto', max_leaf_nodes=None,
                    min_impurity_decrease=0.0, min_impurity_split=None.
                    min_samples_leaf=1, min_samples_split=2,
                    min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
                    oob score=False, random state=42, verbose=0, warm start=False).
                   fit_params=None, iid=True, n_iter=10, n_jobs=-1,
                   param_distributions={'max_features': <scipy.stats._distn_infrastructure.rv_frozen object at 0x0BEBE110>, 'n_estimators': <scipy.st
         ats, distn infrastructure.rv frozen object at 0x0BEBE6F0>}.
                   pre dispatch='2*n jobs', random state=42, refit=True.
                   return_train_score=True, scoring='neg_mean_squared_error',
                   verbose=0)
In [81]: cvres = rnd_search.cv_results_
          for mean_score, params in zip(cvres["mean_test_score"], cvres["params"]):
             print(np.sqrt(-mean_score), params)
         49147.1524172 {'max_features': 7, 'n_estimators': 180}
         51396.8768969 {'max_features': 5, 'n_estimators': 15}
         50797.0573732 {'max_features': 3, 'n_estimators': 72}
         50840.744514 {'max_features': 5, 'n_estimators': 21}
         49276.1753033 {'max_features': 7, 'n_estimators': 122}
         50775.4633168 {'max_features': 3, 'n_estimators': 75}
         50681.383925 {'max_features': 3, 'n_estimators': 88}
         49612.1525305 {'max_features': 5, 'n_estimators': 100}
         50473.0175142 {'max_features': 3, 'n_estimators': 150}
```

테스트 세트 평가

• 마지막에 한번 수행

- test set → pridector, lable 데이터
- full pipeline 사용하여 데이터 변환
- test set에서 최종 모델 평가

```
In [82]: final_model = grid_search.best_estimator_
    X_test = strat_test_set.drop("median_house_value", axis=1)
    y_test = strat_test_set["median_house_value"].copy()

    X_test_prepared = full_pipeline.transform(X_test)
    final_predictions = final_model.predict(X_test_prepared)
    final_mse = mean_squared_error(y_test, final_predictions)
    final_rmse = np.sqrt(final_mse)

In [83]: final_rmse

Out [83]: 48403.473415816981
```

• 최종 RMSE 오차 확인

2.8 론칭, 모니터링, 시스템 유지보수

- 전처리와 예측을 포함한 파이프라인
 - preparation + linear model

- ◆ 모델 저장
 - 하이퍼파라미터, 모델 파라미터 모두 저장

```
In [85]: my_model = full_pipeline_with_predictor
In [86]: from sklearn.externals import joblib
    joblib.dump(my_model, "my_model.pkl") # DIFF
#...
    my_model_loaded = joblib.load("my_model.pkl") # DIFF
```


◆ 론칭

- 실시간 성능 체크를 위한 모니터링 코드 개발
- 분석가의 성능 평가 (예: 해당 분야의 전문가)
- 입력 데이터 모니터링 코드 개발
- 정기적 훈련을 위한 자동화

Further Chapters...

Part I	Part II
3장 분류	(9장 텐서플로 시작하기)
4장 모델 훈련	10장 인공 신경망 소개
5장 서포트 벡터 머신	11장 심층 신경망 훈련
6장 결정 트리	12장 다중 머신과 장치를 위한 분산 텐서플로
7장 앙상블 학습과 랜덤 포레스트	13장 합성곱 신경망
8장 차원 축소	14장 순환 신경망

Any Questions... Just Ask!

