Final Design Project: Multiple Object Tagging

Locating and reaching multiple objects in a given area

ECE2031 Fall 2016

Design Project Motivation

- ECE 2031 includes the sophomore-level team design experience
- You have developed a useful set of tools, including an entire computer within the DE2 board
- Using tools creatively to solve problems is what engineers and computer scientists do

ECE 2031 Project Components

- Propose a solution to a problem:
 - Given an area containing an unknown number of objects, how can the DE2Bot locate and reach as many as possible in a given time?
 - More details later in this presentation
- Implement the proposed design on the DE2Bot
- Demonstrate, present, and document your solution

Technical Communication Aspects

- Your project includes three major UPCP assignments:
 - A proposal outlining what you intend to develop
 - An oral presentation of your design and results
 - A final design report
- You will also maintain a design logbook using forms provided by the UPCP
 - Specific requirements will be detailed on Piazza

ECE2031 DE2Bot Past Projects

- Position/velocity feedback from wheel encoders
- Open-loop velocity control with PWM
- Processing of sonar transducers, and wall-following demonstration
- I²C interface for battery monitoring and audio codec control
- Odometry (position estimation from wheel rotation)
- Audio codec interface and digital sound generation
- Robot Self-test
- "Corral" localization and navigation demonstrations
- Infrared signal detection and "remote control" demonstration
- UART for wireless communication and "warehouse robot" demo
- Implementation of hardware interrupts for SCOMP
- Complex mathematical functions in software (ATAN)
- Explorations of point-to-point movement methods
- This semester: analyzing sonar data to locate objects

Current Project Motivation

- Being able to interpret data about the environment is a central need for a mobile robot
- Several previous projects have used the sonar to:
 - Precisely follow a wall without odometry
 - Interpret the shape of the environment
 - Detect the presence of objects at known locations
- You will be looking at more complex situations
 - Future students will benefit from your findings about what does and does not work with this robot and these sensors
- Locating objects quickly and robustly will be beneficial to your final results

Your Design Task for Fall 2016

- Locate all objects within a prescribed area
 - Area will be unobstructed except for the objects
- 'Tag' each object by touching it and then returning to a 'home' area
 - The tagged object will be manually removed once the robot returns home
 - Only one object may be tagged at any time
- Demo score will be based mostly on the number of objects tagged in the allowed time
 - Specific demo and scoring details are described in a separate document

Design Space (factors that drive design choices)

Locating objects:

- Will you try to fuse data from multiple sensors, or focus on data from only one sensor?
- Will you try to keep track of multiple object locations (i.e. create a map), or only find one at a time?
- If you create a map, will you use an occupancy grid map or other method, and how will you resolve the many design choices and technical hurdles inherent in mapping using sonar sensors?

Movement:

- How will you balance searching for objects with reaching them?
- How will you correct for imperfect motor control and odometry?

Hardware modifications:

Is there anything useful to add to SCOMP or the peripherals?

Background on DE2Bot

- In Summer 2010, older lab robots were gutted, adding a new internal controller board and a connected DE2 on top
- Beginning Fall 2010, each semester a new capability has been added, or a new application has been demonstrated

DE2Bot Hardware Architecture

Project Development

DE2 and FPGA System Architecture

Working with Complex Systems

- When something doesn't work, the robot gets blamed
- It is true equipment CAN fail, but almost all problems are user-related:
 - FPGA design (possibly in bdf, possibly in VHDL)
 - SCOMP code (assembly errors can be elusive)
 - Careless errors (code not compiled, variables not initialized, something not reset)
- Use the robot self-test to identify any hardware problems with a robot, and show this to a TA

Robot Operational Details

- ONE robot per team at a time
- Teams in the current section ALWAYS get a robot
- Power switch is on bottom (directly beneath speaker)
 - When robot has power, DE2 has power, too
- Turn robot off when not in use, to conserve battery
- LEDs indicate hardware status (see manual for details)
- Red and black pushbuttons are not used at this time

DE2Bot I/O Devices

- Your program interacts with the robot using IN and OUT instructions to peripheral devices
- The downloadable
 DE2Bot Manual
 includes detail
 about every I/O
 device

Name	IO Address	IN/OUT	Description	
SWITCHES	0x00	IN	Read DE2 switch	
LEDS	0x01	OUT	Write to DE2 LF	
TIMER	0x02	IN/OUT	Read 10Hz time	
XIO*	0x03	IN	Read PB3-PB1,	
SSEG1	0x04	OUT	Write to left 4-d	
SSEG2	0x05	OUT	Write to right	
LCD	0x06	OUT	Write to LCD (1	
XLEDS	0x07	OUT	Write to DE2 LE	
BEEP	0x0A	OUT	Write 1-7 for be	
CTIMER	0x0C	OUT	Configurable tip	
LPOS*	0x80	IN	Read the curren	
LVEL*	0x82	IN	Read the curren	
LVELCMD*	0x83	OUT	Write the desir	
RPOS*	0x88	IN	Read the curren	
RVEL*	0x8A	IN	Read the curre	
RVELCMD*	0x8B	OUT	Write the desire	
I2C_CMD*	0x90	OUT	Write configurat	
/2C_D^ * A*	0x91	IN/OUT	Read or write d	

Position Control in the DE2Bot

- You can read the (X,Y,θ) estimate from the odometry module, and the cumulative rotation counter of the wheels
- The only things you can control are the velocities of the left and right wheels
- Neither the feedback nor the control are perfect, which you will have to account for if you want your project to be robust

Odometry in the DE2Bot

- The wheel position encoders provide total distance moved by each wheel. They can not keep track of X, Y, and heading of the robot as a whole.
- A separate I/O device (from ECE2031 Summer 2012) added this capability:

```
x_i = x_{i-1} + \Delta U_i \cos \theta_i

y_i = y_{i-1} + \Delta U_i \sin \theta_i

where

\theta_i = heading of robot at instant i,

\Delta U_i = distance travelled in i<sup>th</sup> interval,

x_i, y_i = relative position of the robot's centerpoint

c at instant i.
```

Odometry Coordinate System

- At reset, the front of the robot is defined as the positive X direction, and positive Y is to the robot's left.
- θ increases CCW, as would be the normal convention.
- For as long as you don't reset it, the odometry module will estimate movement relative to the reset position.

Limitations of Odometry

- Errors accumulate as robot moves
- Inaccurate heading (orientation) results in incorrect incrementing of X, Y components

Interpreting Sonar Data

 You already know that sonar sensors aren't perfect, which means you need to test.

Sonar Test Results: Box

Example: flat side of box is easy to see.

Sonar Test Results: Cylinder

Different objects have different responses.

Sonar Test Results: Cylinder Data

Cylinder is more difficult to see.

Sonar Test Results: Filtered Data for Cylinder and Angled Box

• Filtering can help in some cases, but some objects will just be invisible at some angles.

Project Starting Point

- You will have a complete SCOMP
 - Implements all instructions in Table 7.1 of lab manual
 - Implements additional instructions detailed in robot manual
 - Implements a 10-level subroutine call stack
 - Has twice as much program memory (2048 words)
 - Supports hardware interrupts from four sources
- You will have a complete DE2Bot Quartus project
 - Has working interfaces with all DE2 I/O (switches, LEDs, etc.)
 - Has the full complement of robot I/O devices
- You will have example ASM programs
 - An introduction to the robot, for your exercises next week
 - Basic project starting point, including relevant sample code

Project Phases and Key Dates

- Introductory exercises (next week in lab)
 - Focus on understanding DE2Bot and its capabilities
- Turn in proposal on Nov 18th by 3pm
 - That's three weeks from now, and you should be nearly <u>finished</u> by then
- Complete your design by Nov 28th
 - You will not be able to work in the lab after this day
- Final demonstrations Nov 29th to Dec 1st
 - Demonstrate your solution in your section
 - Make a PowerPoint presentation explaining your design
- Turn in final report by the following Tuesday, Dec 6th
 - The course calendar incorrectly says Monday; the design report assignment sheet will show the correct date

Project Schedule

Г	30-Oct	31-Oct	1-Nov	2-Nov	3-Nov	4-Nov	5-Nov
Assignments Due			Lab 8 Res				
Lab Activity	CLOSED	OPEN HRS Project Initial Exercises*			OPEN HRS	CLOSED	
Lecture Topic						Proposals	
ľ	6-Nov	7-Nov	8-Nov	9-Nov	10-Nov	11-Nov	12-Nov
Assignments Due		Logbook Pages*					
Lab Activity	CLOSED	OPEN HRS	OPEN HRS Practical Exercise 2 & Project Work*			OPEN HRS	CLOSED
Lecture Topic						Project Questions	
ľ	13-Nov	14-Nov	15-Nov	16-Nov	17-Nov	18-Nov	19-Nov
Assignments Due		Logbook Pages*				Proposal Due**	
Lab Activity	CLOSED	OPEN HRS				OPEN HRS	CLOSED
Lecture Topic						Oral Presentations	
	20-Nov	21-Nov	22-Nov	23-Nov	24-Nov	25-Nov	26-Nov
Assignments Due		NONE					
Lab Activity	CLOSED	OPEN HRS Fall Break				CLOSED	
Lecture Topic						No Lecture	
ľ	27-Nov	28-Nov	29-Nov	30-Nov	1-Dec	2-Dec	3-Dec
Assignments Due				Logbook Pages'			
Lab Activity	CLOSED	OPEN HRS	Project Demos & Presentations			CLOSED	CLOSED
Lecture Topic						Report Tips	
ľ	4-Dec	5-Dec	6-Dec	7-Dec	8-Dec	9-Dec	10-Dec
Assignments Due			Final Reports				
Lab Activity	CLOSED	CLOSED]			CLOSED	CLOSED
Lecture Topic			(ALL DUE MONDAY)			No Lecture	

Next Week in Lab

- You will have some guided exercises to perform
 - Robot self-test
 - Basic robot movement
 - Associated check-offs count towards your Logbook grade
- If you complete the exercises before your lab period is over, don't waste that extra time
 - You have three lab sessions (including next week) and a handful of open hours to complete this project
 - The lab will be busy in those last few days
 - Robots may have to be rationed
 - Don't count on completing significant work during that time

Clarifications

- Additional announcements and clarifications will be posted on Piazza
 - You are responsible for information posted there
 - Could include changes to rules or assignments
 - Make sure you are monitoring it!
- Use Piazza to ask questions
 - If a general question is asked, everyone can benefit from the answer
 - If your question contains details specific to your design, you can limit the visibility to only instructors.