

<u>Home</u> <u>Gameboard</u> <u>Biology</u> <u>Biochemistry</u> <u>Photosynthesis</u> Photosynthesis Introduction

Photosynthesis Introduction

Part A Photosynthesis definition
Photosynthesis is the process by which energy from is used to produce glucose (and other organic molecules) from water and .
Photosynthesis consists of two main stages. • The stage: water is split into hydrogen ions (protons), electrons, and .
The electrons and protons are used to produce ATP and NADPH. The stage: carbon dioxide goes through a series of reactions to produce
molecules, which can then be used to produce glucose and other organic molecules (e.g. lipids and amino acids). This series of reactions uses the ATP and NADPH produced in the other
Items: triose phosphate oxygen light-dependent carbon dioxide sunlight light-independent
Part B Photosynthesis equation
Complete the equation to give the correct (and balanced) general equation for photosynthesis, with glucose produced as the end product.
$6 + 6 \mathrm{H_2O} \longrightarrow + \mathrm{O_2}$

Part C Stages and locations

Match the stage of photosynthesis to the cell location in the table below.

Stage	Location
Light-dependent stage	
Light-independent stage	
ems: cytoplasm chloroplast thylakoid membrane mitoch	nondrial inner membrane mitochondrial matrix
Chloroplast stroma nucleus	

Created for isaacphysics.org by Lewis Thomson

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}},$ unless stated otherwise.

Home Gameboard Biology Biochemistry Photosynthesis The Light-dependent Stage

The Light-dependent Stage

Part A Lo	ocation					
Where	Where in a cell does the light-dependent stage take place?					
	at the inner membrane of chloroplasts					
	at the thylakoid membrane inside chloroplasts					
	at the inner mitochondrial membrane					
	at the outer mitochondrial membrane					
	at the outer membrane of chloroplasts					
	in the cytoplasm					
	in the chloroplast stroma					
\circ	in the mitochondrial matrix					
Which	cell type is primarily responsible for photosynthesis in a plant? phloem companion cells root epidermal cells leaf epidermal cells xylem parenchyma cells leaf mesophyll cells					

Which of the following processes are part of the light-dependent stage of photosynthesis? photophosphorylation (can be non-cyclic or cyclic) oxidative phosphorylation photolysis of water the Calvin cycle Krebs cycle

Part B

Processes

Part C Reactants and products Which of the following are reactants in the light-dependent stage? Select all that apply. water oxygen ATP ADP NADP⁺ NADPH (reduced NADP) CO_2 triose phosphate Which of the following are **products** in the light-dependent stage? Select all that apply. water oxygen ATP ADP NADP⁺ NADPH (reduced NADP) CO_2 triose phosphate

Created for isaacphysics.org by Lewis Thomson

Gameboard:

STEM SMART Biology Week 32

<u>Home</u> <u>Gameboard</u> <u>Biology</u> <u>Biochemistry</u> <u>Photosynthesis</u> <u>Photophosphorylation</u>

Photophosphorylation

Photophosphorylation is the process by which light energy is used to phosphorylate ADP, producing ATP. The light-dependent stage of photosynthesis is comprised of this process and the photolysis of water.

Photophosphorylation can occur in two different ways: non-cyclic or cyclic.

Part A Non-cyclic photophosphorylation

Both non-cyclic and cyclic photophosphorylation depend on the ability of photosystems (transmembrane complexes of proteins and pigment molecules) to absorb light energy.				
During non-cyclic photophosphorylation, light energy is absorbed by photosystem . Once this energy reaches the reaction centre of the photosystem (a region containing molecules), it excites an electron here to a higher energy level. This electron is then released and passes through a series of proteins embedded in the membrane called an .				
This process releases energy, which is used to actively pump protons (ions) the thylakoid lumen. These protons then move back through ATP synthase, providing the energy needed to produce ATP.				
The electron lost by the photosystem is replaced by				
Items: I oxygen NADP+ NADPH out of II the photolysis of water hydrogen electron transport chain into chlorophyll				
The electron from the is passed on to the reaction centre of photosystem When this photosystem absorbs light energy, this electron is excited back to a higher energy level, and is again released and passed along another electron transport chain. The final electron acceptor of this electron transport chain is, which is reduced to form				
Items:				
I II electron transport chain hydrogen oxygen chlorophyll NADP* NADPH the photolysis of water into out of				

Cyclic photophosphorylation, unlike non-cyclic photophosphorylation, only involves one photosystem (photosystem). Instead of the electron being passed to the electron transport chain that ends in producing the electron is passed to the first electron transport chain that is This electron then returns back to photosystem responsible for producing through this electron transport chain, and so the process can keep cycling without requiring the or photosystem Cyclic photophosphorylation produces ATP but not NADPH, both of which are required for the Therefore, this form of photophosphorylation may be favoured by the cell if the ATP is needed for other processes. Items: Ш NADP⁺ **NADPH ADP ATP** photolysis of water light-independent stage of photosynthesis Part C Non-cyclic vs cyclic Which of the following statements are correct? Select all that apply. Non-cyclic photophosphorylation only involves the production of ATP, whereas cyclic photophosphorylation involves the production of both ATP and NADPH. Non-cyclic photophosphorylation involves the production of both ATP and NADPH, whereas cyclic photophosphorylation only involves the production of ATP. Non-cyclic photophosphorylation involves both photosystem I and photosystem II, whereas cyclic photophosphorylation only involves photosystem I. Non-cyclic photophosphorylation only involves photosystem I, whereas cyclic photophosphorylation involves both photosystem I and photosystem II. Cyclic photophosphorylation requires the photolysis of water, whereas non-cyclic photophosphorylation does not. Non-cyclic photophosphorylation requires the photolysis of water, whereas cyclic photophosphorylation does not.

Created for isaacphysics.org by Lewis Thomson

Part B

Cyclic photophosphorylation

Gameboard:

STEM SMART Biology Week 32

Home Gameboard Biology Biochemistry Photosynthesis Pondweed Bubbles

Pondweed Bubbles

Pondweed, in a solution of sodium hydrogen carbonate, was placed in front of a light source to investigate the relationship between light intensity and the rate of photosynthesis. The number of bubbles of gas produced during a period of two minutes was recorded. The experiment was repeated with the light source at different distances from the pondweed.

The relationship between light intensity and distance (d) from a light source can be described as:

light intensity
$$\propto \frac{1}{d^2}$$

Note that ∞ means "directly proportional to".

Figure 1: The number of bubbles produced by pondweed at different distances from a light source.

Part A Statements

١	Which	of the following statements are correct? Select all that apply.
		The bubbles produced were composed mostly of carbon dioxide
		The bubbles produced were composed mostly of oxygen
		Between $5\mathrm{cm}$ and $10\mathrm{cm}$ the rate of photosynthesis is directly proportional to the distance from the light source.
		Between $5\mathrm{cm}$ and $10\mathrm{cm}$ the rate of photosynthesis is directly proportional to light intensity.
		Between $10\mathrm{cm}$ and $50\mathrm{cm}$ the rate of photosynthesis is directly proportional to the distance from the light source.
		Between $10\mathrm{cm}$ and $50\mathrm{cm}$ the rate of photosynthesis is directly proportional to light intensity .
		Light intensity was the limiting factor for photosynthesis at a distance of $5\mathrm{cm}$ from the pondweed.
		Light intensity was the limiting factor for photosynthesis at a distance of $30\mathrm{cm}$ from the pondweed.
Part B	3 Va	lume of gas
		bbles released by the pondweed went into a capillary tube of water that contained a gas . The capillary tube had a diameter of $2.5\mathrm{mm}$.
I	n one	experiment, the gas bubble expanded in length by $10\mathrm{mm}$ over the course of 2 minutes.
(Calcula	ate the rate of gas production. Give your answer to 2 significant figures.

Adapted with permission from NSAA 2022 Specimen Paper Section 2 Q29 and NSAA 2020 Section 1 Q73

Gameboard:

STEM SMART Biology Week 32

<u>Home</u> <u>Gameboard</u> <u>Biology</u> <u>Biochemistry</u> <u>Photosynthesis</u> Photophosphorylation vs Oxidative Phosphorylation

Photophosphorylation vs Oxidative Phosphorylation

I in the blanks in the table bel	OW.			
	Non-cyclic photophosphorylation	Oxidative phosphorylation		
Part of the process of				
Organelle				
Initial electron donor(s)				
Protons are pumped into the				
Final electron acceptor				
ems: photosynthesis cytoplasm	chloroplasts glucose intermembran	e space matrix stroma		

Ох	xygen
wa	ater
_ N	AD^+
_ N	ADH (reduced NAD)
FA	AD
FA	ADH ₂ (reduced FAD)
N/	ADP ⁺
_ N	ADPH (reduced NADP)
AI	DP
A1	TP
hich of t	the following are reactants in oxidative phosphorylation? Select all that apply.
	the following are reactants in oxidative phosphorylation? Select all that apply.
ox	
ox wa	xygen
wa NA	ater
OX WA	xygen ater AD ⁺
OX WA	xygen ater AD+ ADH (reduced NAD)
OX WA	xygen ater AD+ ADH (reduced NAD)
OX W3 N/ N/ F.F. N/ N/ N/ N/ N/ N/ N/ N	xygen ater AD+ ADH (reduced NAD) ADH ₂ (reduced FAD)
OX W4 N/	xygen ater AD+ ADH (reduced NAD) AD ADH ₂ (reduced FAD) ADP+

Part B

Reactants

Part C	Pro	oducts
١	Which o	of the following are products of non-cyclic photophosphorylation? Select all that apply.
		oxygen
		water
		NAD ⁺
		NADH (reduced NAD)
		FAD
		FADH ₂ (reduced FAD)
		NADP ⁺
		NADPH (reduced NADP)
		ADP
		ATP
١	Which o	of the following are products of oxidative phosphorylation? Select all that apply.
		oxygen
		water
		NAD ⁺
		NADH (reduced NAD)
		FAD
		FADH ₂ (reduced FAD)
		NADP ⁺
		NADPH (reduced NADP)
		ADP
		ATP

Gameboard:

STEM SMART Biology Week 32

Home Gameboard Biology Biochemistry Photosynthesis Light-dependent Labelling

Light-dependent Labelling

Figure 1: The light-dependent stage of photosynthesis. The diagram shows a region of a thylakoid membrane, and the process of non-cyclic photophosphorylation. "A" and "B" label different sides of the membrane. P_i = inorganic phosphate.

Part A Label the diagram

Match the descriptions to the labels in the table below.

Label	Description
Α	
В	
С	
D	
E	
F	
G	

Items:

oxygen	NADH (reduced	NAD) NAD+	ATP	NADPH (red	uced NADP)	photosystem I
photosystem II water inside the thylakoid (thylakoid lumen)						
outside the thylakoid (chloroplast stroma)						

Part B Name the process

In Figure 1, molecule C is split by light energy into hydrogen ions, electrons, and oxygen.

What is the name of this process?

Part	c c	hlorophyll
	Which that a	n letters in Figure 1 label molecules/complexes that contain chlorophyll a molecules? Select all pply. A B C D E F G
Part	D P	Proton pumping
	area d	gure 1, protons (hydrogen ions) are initially transported from an area of low concentration to an of high concentration. is the name given to this kind of transport?
	protor an en	being transported from an area of low concentration to and area of high concentration, the ns then move back to the area of low concentration through a channel protein that also acts as zyme. is the name of this channel protein/enzyme?

Part E Electron movement

What is the name give to a series of protein complexes that electrons move along, releasing energy as they do so? (e.g. between D and E in **Figure 1**)

Adapted with permission from OCR A Level November 1999, Biology, Molecules and Life, Question 7