Hochschule Worms Fachbereich Informatik Studiengang Angewandte Informatik B.Sc.

Gewährleistung von sicherem digitalem Bezahlen bei einem Click and Buy Automat

Exposé für Wissenschaftliche Schreiben

Bruno Macedo da Silva 676857 Dominic Meyer 676857

Betreuer Michael Derek Werle-Rutter Bearbeitungszeitraum: Wintersemester 2021/2022

Abgabedatum: 8.Februar 2022

Sperrvermerk: Ja/Nein

Inhaltsverzeichnis

1	Einführung	3			
2	Forschungsziele				
3	Stand der Forschung3.1Drahtlose Verbindungen und Sicherheit bei Bezahlungen3.2Anwendung von Smartcards und sicheres Bezahlen	5 6 7			
4	Stand der Technik				
5	5 Forschungsplann				
6	Praktische Relevanz				
Lit	Literaturverzeichnis				
Α	bbildungsverzeichnis				
	Cashless payments via the Deutsche Bundesbank	5 6			

1 Einführung

Seit einigen Jahren entscheiden sich immer mehr Menschen Urlaub auf einem Campingplatz zu machen. Der Gedanke an Menschenmassen und Fallen für Touristen schreckt die Leute von den typischen Touristenzielen ab. Zudem ist der Kontakt zu der Natur für viele ein wichtiger Punkt in einem Urlaub. In den letzten anderthalb Jahren stieg die Anzahl von Campinplatzbesuchern rasant. Die Corona-Pandemie drängte die Leute dazu, Urlaubsmöglichkeiten zu suchen, bei denen das Risiko von einer Infektion niedrig sei und wo genug Abstand gehalten werden könne. Da viele Hotels und andere Ferieneinrichtungen geschlossen waren, blieb vielen Leuten, besonders Familien, nichts anderes übrig, als die Ferien etwas anders zu organisieren und gestalten.

Die traditionelle Idee von Campingplätzen, bei der Jugendliche oder Familien weit entfernt von der Gesellschaft sind, ist heute eine andere. Heute wollen Urlauber auf den Kontakt mit der Natur möglichst nicht verzichten, wodurch Campingplätze immer voller werden. Aus diesem Grund wäre es sinnvoll, die Möglichkeiten zur Grundversorgung zu erweitern, ohne direkt einen neuen Supermarkt bauen zu müssen. In dieser Hinsicht kann die Einrichtung eines Click-and-Buy-Supermarktes, der mit einem Automaten zu vergleichen ist, eine wesentliche Rolle spielen, um einen Campingplatz zu modernisieren, die Möglichkleiten zur Grundversorgung zu erweitern und ihn attraktiver für Reisende zu machen.

Der folgende Artikel beschreibt welche Schritte auf technischer Ebene eingeleitet werden müssen, um solch einen Click and Buy Automat errichten zu können.

2 Forschungsziele

In diesem Artikel soll ein Konzept für ein Click-and-Buy-Supermarkt direkt neben dem Campingplatz entwickelt werden. Solch ein Konzept kann dazu beitragen, dass Campingplätze modernisiert werden und noch mehr Touristen angelockt werden. Bevor das Projekt jedoch umgesetzt werden kann, müssen noch wichtige Dinge beleuchtet werden.

Um diesen elektronischen Supermarkt zu entwickeln, ist es wichtig, die gesamte Umgebung solche einer Maschine zu verstehen: Verfügbarkeit des Netzwerkzugangs, notwendige physische Komponenten, Programmierschnittstellen, verschiede Arten von Softwaretests und der sichere Umgang mit den Ein- und Ausgaben. Wenn all diese Voraussetzungen erfüllt werden, muss am Ende geprüft werden, ob es auch von potenziellen Nutzenden akzeptiert wird.

Wenn es um die Verfügbarkeit des Netzwerkzugangs geht für den Click and Buy Automat, muss zum einen geprüft werden, ob die bereits vorhandenen Leitungen ausreichen, um solch ein Projekt umzusetzen. Zum anderen sollte die Software für das Click and Buy Systems so konzipiert sein, dass diese eine geringe Ausfallquote aufweisen, denn dieser soll rund um die Uhr betriebsbereit sein, um die Verfügbarkeit des Systems nicht zu verletzen [Wendzel, 2018].

Zudem soll das System so entwickelt werden, sodass auch Digital Non-Natives, die Möglicheit haben das System einfach bedienen zu können [Wang et al., 2013]. Die Kunden sollten also nicht von Informationen überladen werden, sondern es sollte einfache Einund Ausgaben geben. Da besonderes alteren Leute sich für solche Urlaubsmöglichkeit entscheiden, spielt die Akzeptanz dieser Leute eine wichtige Rolle für den Erfolg des Konzepts. Deshalb sollten die Bedürfnissen und Einschränkungen diese Altergruppe besonders berücksichtig werden, um ihre Vertrauen zu gewinnen [Lübbecke, 2018]. Die Auswahl der Tests trägt dazu bei, dass die Zufriedenheit und die Akzeptanz gewährleistet wird, sodass jeder potenziellen Endnutzer das System bedienen kann [Sommerville, 2010].

Außerdem spielt die Sicherheit bei den bargeldlosen Zahlungsvorgängen eine große Rolle und sollte deshalb höchste Priorität haben. Verschiedene aktuelle Beispiele von Cyberangriffe zeigen, dass der Umgang mit solchen Daten, kritisch zu sehen ist. Es wird oft von Situationen in den Medien berichtet, bei denen Kunden ihr Geld verloren oder dessen personenbezogenen Daten missbraucht wurden, manchmal sogar von der eigenen Regierung, nur weil das System nicht ausreichend gegen Angriffe entwicklet wurde. In dieser Hinsicht sollte es bei der Entwicklung spezifische und klare Richtlinien berücksichtig werden, so dass der Umgang mit personenbezogenen Daten sicher bleibt [Riebe et al., 2020]. Um diese Vertraulichkeitsverletzung zu vermeiden, spielt die Konziperiung von sicheren bargeldlosen Zahlungsmethoden eine wesentliche Rolle in diesem Artikel. Hier wird hauptsächlich die folgende Frage behanldet: wie kann sicheres Bezahlen in einem Click and Buy Automat gewährleistet werden?

3 Stand der Forschung

Die zunehmende Tendenz in Deutschland von bargeldlose Bezahlung erfordert neuen Umgang mit den eigegebenen Daten. Eine Studie von 2009 der Deutschen Bundesbank zeigte die rasante Anstieg von bargeldlose Bezahlung in der Bundesrepublik seit der Einführung von solcher Zahlungsmethode [Bundesbank, 2009].

Abbildung 1: Cashless payments via the Deutsche Bundesbank

Laut einer Statistik des Handelsforschungsinstituts EHI von 2019 [Seibel, 2019] bezahlen 48,6% der deutschen ihre Waren mit Karte, wohingegen nur noch 46,9% der deutschen den klassischen Weg mit Bargeld gehen. Auch das kontaklose Bezahlen, bei dem bei kleinen Beträgen nicht einmal eine PIN gefordert wird, nimmt immer weiter zu. Doch gerade bei dieser Variante ist es sehr einfach im Namen eines anderen zu bezahlen, was eine Sicherheitsrisiko darstellt.

Immer wenn mit Karte bezahlt wird, gehen die Kunden davon aus, dass die Zahlungsabwicklung sicher ist. Wie sicher ist das bargeldlose Zahlen heutzutage wirklich?

Aus diesem Grund ist Vertraulichkeit die erste und wichtigste Voraussetzung, dass ein solches System erfüllen muss, um neue potenzielle Kunden zu gewinnen. Unter diesem Begriff soll ein System nur auf autorisierte Informationen zugreifen [Wendzel, 2018]. In dieser Hinsicht ist die Entwicklung einer Click and Buy Maschine so zu konzipieren, dass sie einen sicheren Umgang mit den Kundendaten anbietet. Diese Interaktion zwischen Kunde und systemkritischen Mechanismen wurde von [Hassan et al., 2020] so gargestellt:

Abbildung 2: Sicherheitseigenschaften von digitalen Zahlungsmethodne

Außerdem sollen die anderen Schutzziele der IT-Sicherheit: Integrität, Verfügbarkeit und Authentifizierung auch berücksichtg werden, so dass die Systemen einwandfrei funktionieren können. Eine Zahlungsmethode, bei der alle Vorraussetzungen erfüllt werden, kann in der Lage sein, das Vertrauen und die Akzeptanz von den Nutzenden zu bekommen [Hassan et al., 2020].

[Henze et al., 2017] nennt solche Maschinen Cyber-Physical System (CPS), weil sie eine Interaktion zwischen Nutzer und einem oder vielen Systemen darstellt. In dieser Zusammenarbeit spielt der Datenaustausch eine wesentliche Rolle, besonders von der Seite der Nutzenden. Diese Technologie zielt eine günstigere Entwicklung, ohne die Sicherheit zu vernachlässigen. Diese Interaktion findet erfolgereich statt, wenn die genannten Sicherheitszielle erfüllt werden.

Da es um einen dynamischen Sektor geht, wo die Änderungen sehr schnell stattfinden, [Yildirim and Varol, 2019] muss die Technologie stets weiterentwickelt und angepasst werden, um Vertraulichkeitverlust von seitens der Kunden zu vermeiden. Dieser Mangel an Vertraulichkt ist das größte Hindernis, warum viele Kunden sich verweigern, auf diese Zahlungsmethode zuzugreifen.

Ab hier können wir dann versuchen, die Informatien aus den Artikeln zu nehmen, solche die du hier hinzugefügt hast und solche, die ich dir am Fr schickte

3.1 Drahtlose Verbindungen und Sicherheit bei Bezahlungen

Viele digitale Zahlungen finden über WLAN statt, das kann eine großere Risiko darstellen [Yildirim and Varol, 2019], da WLAN-Verbindungen als unsicher als normale Kabelverbindungen gilt. Maßnahmen zu entwickeln, die sich an verschiedenen Systemen anpassen, kosten Zeit und Investitionen von Banken und Sicherheitsfirmen. Für jeden möglichen Angriffe sollen Maßnahmen zur Verfügung gestellt werden, so dass die Integrität des

Kunden geschützt bleibt. Die folgenden Schwachstellen bei digitaler Zahlung wurden von [Yildirim and Varol, 2019] zusammengefasst:

- Erstellung von Dateien in dem Opfersystem mit umfangreichen Privillegen;
- Unzureichende Sicherheit bei der Validierung von Zertifikaten;
- Öffentlichkeit des Quellcodes, sodass das System Opfer von Reverse Engineering gezielt ist.
- Unsicherer Umgang mit Cookies-Einstellungen

[Yildirim and Varol, 2019] schlägt einige Sicherheitsmechanismen vor, die die oben gennanten Schwachstellen bei kabelosen Verbindungen vermindern können. Unter denen wird folgende hervorgehoben:

- Nutzung von modernen kryptographischen Standards für die Validierung von Zertifikaten;
- Erstellung von Loggdatei, sodass jeder Anormalität schnell überprüft werden kann;
- Zwei-Faktor-Authentisierung;
- Digitaler und zufällige geordnete Tastatur;
- Schwierigkeitsgrad bei der Erstellung von Passwörter;
- Besserer Umgang mit der Verwaltung von Cookies;
- Registrierung von Geräten;
- Künstliche Intelligenz (KI) für die Detektion von abnormalen Verhalten;
- Ständig Kontroll gegen Social Engineering.

Da drahtlose Zahlungen bei Campingplätzen eine wesentliche Rolle spielen kann, muss die Sicherheit solcher Zahlungsart gewährleistet werden. Das kann erfolgreich passieren, wenn Banken und andere finanziellen Institutionen sich intensiv mit den verschiedenen Angriffsmöglichkeiten und deren Schutzmaßnahmen beschäftigen.

Zahlungskarte wie Kredit- oder EC-Karte sollen auch Zahlungsoptionen von einem Click and Buy Maschinen zur Verfügung gestellt werden. In Bezug auf diese Modalitäten werden die verschiedenen Aspekten der Sicherheit dieser Zahlungsart unter beschrieben.

3.2 Anwendung von Smartcards und sicheres Bezahlen

Ich habe Teil des Artikels sehr schnell gelesen. Ich denke, wir können dessen Inhalt hier irgendwie zusammenfassen. In diesem Fall sprechen wir dann über verschiedene Sicherheitsrisiken und Gegenmechanismus zuerst für WLAN dann mit Karte usw.

Ich würde so machen:

- 1. Worum es geht, was sind diese Karte
- 2. Sicherheitslücken
- 3. Sicherheitsmechanismen

Ich würde diesen Satz in den nächsten Kapitel verwenden und erweitern mit unseren Recherchen, damit wird die Literatur rechtfertigen können Um das zu bewerkstelligen, ist der aktuelle technische Stand von entscheidener Bedeutung. Ausgehend von dieser Informationen muss das Glasfasernetz eventuell erweitert oder auch neu verlegt werden. Denn das Ziel ist es, technisch gesehen auf dem neusten Stand zu sein, damit das Click and Buy System für die Zukunft abgesichert ist. Außerdem wird durch den Ausbau des Glasfasernetzes die Region insgesamt deutlich attraktiver gemacht, was vielleicht auch Menschen dazu bringt in diese Region zu ziehen. Denn jedem ist klar, dass ein guter Internetausbau essentiell ist, um vielleicht auch mal von zuhause aus zu arbeiten.

$\mathbf{Produkt}$	Produkt 1	Produkt 2	Produkt 3
Eigenschaft 1:	111111111	11111111111111111	111111111111111111111
Eigenschaft 2:	22222222	22222222222222	22222222222222
Eigenschaft 3:	333333333	3333333333333333	3333333333333333
Eigenschaft 4:	44444444	4444444444444444	444444444444444
Eigenschaft 5:	55555555	55555555555555	555555555555555
Eigenschaft 6:	66666666	666666666666666	666666666666666
Eigenschaft 7:	77777777	777777777777777	7777777777777777
Eigenschaft 8:	88888888	88888888888888	8888888888888

4 Stand der Technik

Hier wird später mit Text befüllt.

5 Forschungsplann

Grafische Darstellung des Forschungsvorhabens

Methoden der Datensammlung ==> Besuch einigen Firmen

 ${\bf Methoden\ der\ Datendokumentation} ==> {\bf Aufnahme}$

Methoden der Datenauswertung ==> Vergleich der Daten der Firma (Anzahl Mitarbeiter, Anzahl Server/Pc, Seit wann benutzt es)

Anhang (Fragenkatalog) ==> Seitwann benutzt, was war vorher, was ist jetzt leichter/schwieriger, Kosten

6 Praktische Relevanz

Keine Ahnung.

Mit der erfolgreichen Implementierung des xxxxxxxx können wir folgenden Ziele innerhalb eines Unternehmens erreichen: Meine Liste PUNKT:

- Punkt 1
- Punkt 2
- Punkt 3
- Punkt 4

Literaturverzeichnis

- [Aquilina and Saliba, 2019] Aquilina, Y. and Saliba, M. A. (2019). An automated supermarket checkout system utilizing a scara robot: preliminary prototype development. Procedia Manufacturing, 38:1558–1565. 29th International Conference on Flexible Automation and Intelligent Manufacturing (FAIM 2019), June 24-28, 2019, Limerick, Ireland, Beyond Industry 4.0: Industrial Advances, Engineering Education and Intelligent Manufacturing.
- [Bankar, 2019] Bankar, S. (2019). Automated supermarket run system. *Journal of Advanced Research in Embedded System*, 6(3 and 4). https://thejournalshouse.com/index.php/ADR-Journal-Embedded-Systems/article/view/223.
- [Bremser et al., 2019] Bremser, C., Piller, G., and Rothlauf, F. (2019). How smart cities explore new technologies. In Pankowska, M. and Sandkuhl, K., editors, Perspectives in Business Informatics Research 18th International Conference, BIR 2019, Katowice, Poland, September 23-25, 2019, Proceedings, volume 365 of Lecture Notes in Business Information Processing, pages 1–15. Springer. https://doi.org/10.1007/978-3-030-31143-8_1.
- [Bundesbank, 2009] Bundesbank, D. (2009). Cashless payments in germany and the role of the deutsche bundesbank: Developments and key trends over the past 50 years. Deutsche Bundesbank Eurosystem - Monthly Report.
- [Dijaya et al., 2019] Dijaya, R., Suprayitno, E., and Wicaksono, A. (2019). Integrated point of sales and snack vending machine based on internet of things for self service scale micro enterprises. *Journal of Physics: Conference Series*, 1179:012098. https://www.researchgate.net/publication/335500971_Integrated_Point_of_Sales_and_Snack_Vending_Machine_based_on_Internet_of_Things_for_Self_Service_Scale_Micro_Enterprises/link/5d691eafa6fdcc547d6b582a/download.
- [Dua et al., 2014] Dua, A., Rustagi, C., and Bhardawaj, A. (2014). A novel approach to designing intelligent vending machines. *International Journal in IT and Engineering*, 212212.
- [Dullien, 2018] Dullien, T. (2018). Maschinelles lernen und künstliche intelligenz in der informationssicherheit. *Datenschutz und Datensicherheit DuD*, 42(10):618-622. ht tps://doi.org/10.1007%2Fs11623-018-1012-3.
- [Gomm et al., 1997] Gomm, G. R., Paul, G. R. G., and Paul, S. (1997). Cash alternative transaction system. https://www.freepatentsonline.com/5650761.html.
- [Hassan et al., 2020] Hassan, M. A., Shukur, Z., Hasan, M. K., and Al-Khaleefa, A. S. (2020). A review on electronic payments security. *Symmetry*, 12:22. https://www.researchgate.net/publication/343598898_A_Review_on_Electronic_Payments_Security.

- [Henze et al., 2017] Henze, M., Hiller, J., Hummen, R., Matzutt, R., Wehrle, K., and Ziegeldorf, J. H. (2017). Network Security and Privacy for Cyber-Physical Systems, chapter 2, pages 25–56. John Wiley & Sons, Ltd. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119226079.ch2.
- [Hiroyuki, 2004] Hiroyuki, U. (2004). Lowering elderly japanese users resistance towards computers by using touchscreen technology. *Universal Access in the Information Society*, 3(3-4):276-288. https://www.proquest.com/scholarly-journals/lowering-elderly-japanese-users-resistance/docview/201543463/se-2?accountid=15921.
- [Iqbal et al., 2012] Iqbal, Q., Whitman, L. E., and Malzahn, D. (2012). Reducing customer wait time at a fast food restaurant on campus. *Journal of Foodservice Business Research*, 15(4):319–334. https://doi.org/10.1080/15378020.2012.706176.
- [Isaac and Zeadally, 2014] Isaac, J. T. and Zeadally, S. (2014). Design, implementation, and performance analysis of a secure payment protocol in a payment gateway centric model. *Computing*, 96:587–611. https://doi.org/10.1007/s00607-013-0306-4.
- [Itako, 2004] Itako, E. (2004). Automatic vending machine and sales method thereof. https://www.freepatentsonline.com/6754559.html.
- [Jadhav et al., 2018] Jadhav, S., Pawar, N., Kharade, N., and Lengare, P. S. (2018). Automatic vending machine. *International Journal of Innovative Science and Research Technology (IJISRT)*, 3:376–378. https://www.ijisrt.com/automatic-vending-machine.
- [Kavitha and ., 2018] Kavitha, D. and ., . (2018). Modern shopping cart with automatic billing system using load sensor. *International Journal of Engineering and Technology*, 7(2.33). https://www.sciencepubco.com/index.php/ijet/article/view/14846.
- [Keller et al., 2017] Keller, J., Gabriele, and Wendzel, S. S. (2017). Ant colony-inspired parallel algorithm to improve cryptographic pseudo random number generators. In *IEEE Symposium on Security and Privacy Workshops*, pages 17–22.
- [Langdon et al., 2013] Langdon, P., Clarkson, J., and Robinson, P. (2013). Designing inclusive interactions. *Universal Access in the Information Society*, 12:233–235. https://doi.org/10.1007/s10209-013-0289-0.
- [Lauzi, 2017] Lauzi, M. (2017). Smart-city: Die stadt der zukunft. VDI Rheingau Regional Magazin, 2:12–18.
- [Lübbecke, 2018] Lübbecke, H. (2018). Akzeptanz und Übernahme von informatikprodukten durch Ältere. Forum InformatikerInnen für Frieden und gesellschaftliche Verantwortung e. V. (FIfF), 4:31-34. https://www.fiff.de/publikationen/fiff-kommunikation/fk-2018/fk-2018-4/fk-2018-4-content/fk-4-18-p31.pdf.

- [Nießner, 2017] Nießner, M. (2017). Innovative Technik im Zahlungsverkehr. Ein kompakter Überblick über traditionelle und moderne Zahlungsverfahren. GRIN Verlag, 1 edition.
- [Opiela and Garey, 2010] Opiela, M. S. and Garey, R. E. (2010). Electronic postal money order method and system. https://www.freepatentsonline.com/7849015.html.
- [Patil et al., 2020] Patil, A. B., Mahajan, G., Phale, V., and Mane, S. (2020). Vending machine with cash and cashless payment support. *International Journal in IT and Engineering*, 07:341–348.
- [Riebe et al., 2020] Riebe, T., Haunschild, J., Divo, F., Lang, M., Roitburd, G., Franken, J., and Reuter, C. (2020). Die vorratsdatenspeicherung in europa. *Datenschutz und Datensicherheit DuD*, 44:316-321. http://www.peasec.de/paper/2020/2020_Riebeetal_VDSinEuropa_DuD.pdf.
- [Rihaczek, 2013] Rihaczek, K. (2013). Datenschutz & computer. Datenschutz und Datensicherheit, 37(9):561. https://doi.org/10.1007/s11623-013-0236-5.
- [Schaeffler, 2008] Schaeffler, J. (2008). Digital Signage: Software, Networks, Advertising, and Displays A Primer for Understanding the Business. Focal Press.
- [Seibel, 2019] Seibel, K. (2019). Die deutsche liebe zum bargeld verblasst wegen nur einer karte. Die Welt. https://www.welt.de/wirtschaft/article193063435/Zahl ungsmittel-Karte-schlaegt-in-Deutschland-erstmals-Bargeld.html.
- [Semenov et al., 2017] Semenov, V. P., Chernokulsky, V. V., and Razmochaeva, N. V. (2017). The cashless payment device for vending machines import substitution in the sphere of vending. In 2017 International Conference Quality Management, Transport and Information Security, Information Technologies (IT QM IS), pages 798–801.
- [Shen et al., 2019] Shen, L., Qiu, C., Wu, X., Han, C., and Hu, L. (2019). Design of removable vending machine and research on the key implementation technology. *The Journal of Engineering*, 2019(13):402-405. https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/joe.2018.9021.
- [Sibanda et al., 2020] Sibanda, V., Munetsi, L., Mpofu, K., Murena, E., and Trimble, J. (2020). Design of a high-tech vending machine. *Procedia CIRP*, 91:678-683. https://www.sciencedirect.com/science/article/pii/S2212827120308829.
- [Sommerville, 2010] Sommerville, I. (2010). Software Engineering. Addison-Wesley, 9 edition.
- [Steffen, 2012] Steffen, A. (2012). Sicherheit smartcard-basierter zugangskontrollsysteme. Master's thesis, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum. https://www.emsec.ruhr-uni-bochum.de/media/attachments/files/2012/04/Master-Arbeit-public.pdf.

- [Wang et al., 2013] Wang, Q. E., Myers, M. D., and Sundaram, D. (2013). Digital natives und digital immigrants. *Wirtschaftsinformatik*, 55(6):409-420. https://link.springer.com/article/10.1007/s11576-013-0390-2#citeas.
- [Wendzel, 2018] Wendzel, S. (2018). IT-Sicherheit für TCP/IP- und IoT-Netzwerke. Springer Vieweg, 1 edition.
- [Wendzel et al., 2021] Wendzel, S., Mazurczyk, W., Caviglione, L., and (Eds.), A. H. (2021). Emerging topics in defending networked systems. *Special Issue at Future Generation Computer Systems (FGCS)*.
- [Wendzel and Plötner, 2007] Wendzel, S. and Plötner, J. (2007). Praxisbuch Netzwerk-Sicherheit: Risikoanalyse, Methoden und Umsetzung; für Unix-Linux und Windows; VPN, WLAN, Intrusion Detection, Disaster Recovery, Kryptologie. Galileo Computing, 2 edition.
- [Wendzel et al., 2017] Wendzel, S., Tonejc, J., Kaur, J., and Kobekova, A. (2017). Cyber Security of Smart Buildings, chapter 16, pages 327–351. John Wiley & Sons, Ltd. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119226079.ch16.
- [Woehe and Kurz, 2021] Woehe, J. M. and Kurz, E. (2021). Krisen in Digitalprojekten erfolgreich managen. Hanser, 1 edition.
- [Yildirim and Varol, 2019] Yildirim, N. and Varol, A. (2019). A research on security vulnerabilities in online and mobile banking systems. In 2019 7th International Symposium on Digital Forensics and Security (ISDFS), pages 1-5. https://asafvarol.com/makaleler/Nilay2019.pdf.