Fundamentals of Machine Learning

NETWORK ARCHITECTURES, ATTENTION

Amit K Roy-Chowdhury

Feedforward Networks

Recurrent Neural Networks

Autoencoders

Transformers

Key, Query, Value

Value: $\mathbf{V} \in \mathbb{R}^{m \times v}$ set of m feature vectors

Query: $q \in \mathbb{R}^q$

Keys: $K \in \mathbb{R}^{m \times k}$ set of m keys

Find the query that is most similar to a key and use the corresponding value.

$$Attn(q, (k_1, v_1), \dots, (k_m, v_m)) = Attn(q, (k_{1:m}, v_{1:m})) = \sum_{i=1}^{m} \alpha_i(q, k_{1:m}) v_i$$
$$0 \le \alpha_i(q, k_{1:m}) \le 1 \qquad \sum_i \alpha_i(q, k_{1:m}) = 1$$

Computing Attention Weights

Find the query that is most similar to a key and use the corresponding value.

$$Attn(q, (k_1, v_1), \dots, (k_m, v_m)) = Attn(q, (k_{1:m}, v_{1:m})) = \sum_{i=1}^{m} \alpha_i(q, k_{1:m}) v_i$$

$$0 \le \alpha_i(q, k_{1:m}) \le 1$$

$$\sum_i \alpha_i(q, k_{1:m}) = 1$$

Attention similarity/score: $a(q, k_i) \in \mathbb{R}$

$$\alpha_i(q, k_{1:m}) = \operatorname{softmax}_i([a(q, k_1), \dots, a(q, k_m)]) = \frac{\exp(a(q, k_i))}{\sum_{j=1}^m \exp(a(q, k_j))}$$

Self Attention

$$y_i = \operatorname{Attn}(x_i, (x_1, x_1), \dots, (x_n, x_n))$$

input tokens x_1, \ldots, x_n , where $x_i \in \mathbb{R}^d$

query is x_i , and the keys and values are all the (valid) inputs x_1, \ldots, x_n

Multimodal Models

