CUTTING A GRAPH INTO TWO DISSIMILAR HALVES.

by

Paul Erdos(*), Mark Goldberg(**), Janos Pach(*,***), Joel Spencer(***).

ABSTRACT

Given a graph G and a subset S of the vertex set of G, the discrepancy of S is defined as the difference between the actual and expected numbers of the edges in the subgraph induced on S. We show that for every graph with n vertices and e edges, $n < e < \frac{n(n-1)}{4}$, there is an $\frac{n}{2}$ -element subset with the discrepancy of the order of magnitude of \sqrt{ne} . For graphs with fewer than n edges we calculate the asymptotics for the maximum guaranteed discrepancy of an $\frac{n}{2}$ -element subset. We also introduce a new notion called the bipartite discrepancy and discuss related results and open problems.

^(*) Mathematical Institute of the Hungarian Academy of Science, 1364 Budapest, POB 127, HUNGARY;

^(**)Dept. of Comput. Sci., RPI, Troy, N.Y. 12181; the work of this author was supported in part by National Science Foundation under grant DCR-8520872;

^(***)Dept. of Math, State University of New York, Stony Brook, N.Y. 11794;

1. Introduction.

Let G be an arbitrary graph with v(G)=n vertices and e(G)=e edges. For any subset S of the vertex set of G, let the *discrepancy* of S be defined as the difference between the actual and expected numbers of edges in G[S], i.e., in the subgraph of G induced by S. That is, let

$$dis(S)=e(S)-e\frac{\begin{bmatrix} S \\ 2 \end{bmatrix}}{\begin{bmatrix} n \\ 2 \end{bmatrix}}=e(S)-e\frac{|S|(|S|-1)}{n(n-1)},$$

where e(S) is the shorthand form of e(G[S]). The average behavior of dis(S) is studied in [2].

On the problem session of the last South-Eastern Conference on Combinatorics, Boca Raton (1986) the senior author raised the following question. Is it true that for every c>0 there exists a constant $\hat{c}>0$ with the property that any graph G with n vertices and $cn < e < \binom{n}{2} - cn$ edges contains two sets of vertices S and T such that $|S| = T = \frac{n}{2}$ and $|e(S) - e(T)| > \hat{c}n$? Our following result answers this question in the affirmative.

Theorem 1. Let G be a graph with n vertices and e edges, $n < e < \frac{n(n-1)}{4}$, and assume that n is even. Then one can find two subsets S, $T \subset V(G)$ such that $|S| = |T| = \frac{n}{2}$ and

$$|e(S) - e(T)| > \alpha \sqrt{en}$$
,

where α is an absolute constant.

At first glance, one might naively conjecture (as we did) that in the above theorem S and T can be chosen to be disjoint. However, if G is any regular graph and $S \cup T$ is any partition of its vertex set into two equal halves, then e(S) and e(T) are always equal.

The following, slightly weaker assertion is still true.

Theorem 2. For every μ , $0 < \mu < \frac{1}{2}$, there exists a $\nu > 0$ such that in any graph with n vertices and e edges, $n < e < \frac{n(n-1)}{4}$, one can find two disjoint subsets S and T such that $|S| = |T| = |\mu n|$ and

$$|e(S)-e(T)|>v\sqrt{en}$$
.

The proofs of the above theorems rely heavily on a generalization of an old quasi-Ramsey type result of the first and the last named authors [5], [6], [1] (see Section 2) and on the following *Expansion-Retraction Theorem*.

Theorem 3. Let G be a graph with n vertices and assume that |dis(R)| = D for some subset $R \subset V(G)$. Then there exists a subset $S \subset V(G)$ with $|S| = \lfloor \frac{n}{2} \rfloor$ such that

$$|\operatorname{dis}(S)| > (\frac{1}{4} + o(1))D,$$

where the o(1) term goes to 0 as D tend to infinity.

In the case when G has fewer than n edges we have much sharper results. To formulate them we introduce some further notations. For any graph G with n vertices, let

$$d^{+}(G) = max \ dis(S),$$

 $d^{-}(G) = -min \ dis(S),$
 $d(G) = max(d^{+}(G), d^{-}(G)) = max \ | \ dis(S)|,$

where the *max* and *min* are taken over all $\lfloor \frac{n}{2} \rfloor$ - element subsets $S \subset V(G)$. Further, for any c > 0, let

$$\begin{array}{ll} d^+(n\,,c\,) = \min \; \{ d^+(G) : e = cn \rfloor \}, & d^-(n\,,c\,) = \min \; \{ d^-(G) : e = cn \rfloor \}, \\ d(n\,,c\,) = \min \; \{ d(G) : e = cn \rfloor \}. \end{array}$$

Theorem 4.

(*)
$$\lim_{n \to \infty} \frac{d^{-}(n,c)}{n} = \begin{cases} c/4 & \text{if } 0 < c \le 1/2 \\ (2-c)/4 & \text{if } 1/2 < c \le 1. \end{cases}$$

(**)
$$\lim_{n \to \infty} \frac{d^{+}(n,c)}{n} = \begin{cases} 3c/4 & \text{if } 0 < c \le 1/4, \\ (1-c)/4 & \text{if } 1/4 < c \le 1/2, \\ c/4 & \text{if } 1/2 < c \le 1. \end{cases}$$

$$\lim_{n \to \infty} \frac{d(n,c)}{n} = \lim_{n \to \infty} \frac{d^+(n,c)}{n} \quad \text{if } 0 < c \le 1.$$

Note that, in general, $d^+(G)$ and $d^-(G)$ can be essentially different from each other. For example, if G consists of two disjoint cliques of size $\frac{n}{2}$, then $d^+(G) \approx \frac{n^2}{16}$ and $d^-(G) \approx \frac{n}{16}$.

The proofs of Theorems 1-3 and Theorems 4 can be found in Sections 2 and 3, respectively. The last section contains some generalizations, related results and open problems. In particular, we will introduce and discuss a new parameter of a graph called the *bipartite discrepancy*, which depends on the deviance of the most irregular bipartitions.

2. Discrepancy of graphs.

Let G be a graph with n vertices and e edges, and let A and B be two disjoint subsets of V(G). Set

$$dis(A,B) = e(A,B) - e\frac{|A||B|}{n\choose 2},$$

where e(A,B) denotes the number of edges in G running between A and B.

The following theorem is a straightforward generalization of a result in [5], [3].

Theorem 5. For every $\varepsilon > 0$ there exists $\hat{\varepsilon} > 0$ such that any graph G with n vertices and e > n edges contains two disjoint subsets A and B with the property that |A|, $|B| < \varepsilon n$ and

$$|dis(A,B)| > \hat{\epsilon}\sqrt{en}$$
.

Proof. Assume, for simplicity that n is even, $\varepsilon < \frac{1}{16}$, and decompose V(G) into disjoint parts U and V, |U| = |V|. Let A be a randomly chosen $\lfloor \varepsilon n \rfloor$ -element subset of U, and set

$$V(\mathbf{A}) = \{ v \in V : |\operatorname{dis}(v, \mathbf{A})| > 10^{-2} \sqrt{\frac{\varepsilon e}{n}} \}.$$

Then

$$\Pr[\mid dis(v, \mathbf{A})| > 10^{-2} \sqrt{\frac{\epsilon e}{n}}] > \frac{1}{2}.$$

Hence, the expected size of $V(\mathbf{A})$ equals

$$\sum_{v \in V} \Pr[|dis(v, \mathbf{A})| > 10^{-2} \sqrt{\frac{\varepsilon e}{n}}] > \frac{n}{4}.$$

On the other hand

$$\frac{n}{4} < \mathbb{E}[\left|V(\mathbf{A})\right|] \le \frac{n}{2} \Pr[\left|V(\mathbf{A})\right| > \frac{n}{8}] + \frac{n}{8} (1 - \Pr[\left|V(\mathbf{A})\right| > \frac{n}{8}]),$$

implying

$$\mathbf{E}[|V(\mathbf{A})| > \frac{n}{8}] > \frac{1}{3}.$$

Thus, one can choose a specific A and an $|\varepsilon_n|$ -element subset $B \subset V(A)$ such that

$$dis\,(v\,,\!\!A\,)\!\!>\!\!10^{-2}\sqrt{\frac{\varepsilon e}{n}}, \text{ or } dis\,(v\,,\!\!A\,)\!\!<\!\!-10^{-2}\sqrt{\frac{\varepsilon e}{n_{\!\underline{3}}}}, \text{ hold for all } v\!\in\!B\,. \text{ In both cases } A \text{ and } B$$

meet the requirements of the theorem with $\hat{\epsilon} = 10^{-2} \epsilon^{\frac{1}{2}}$. \square

Corollary. For every $\varepsilon > 0$ there exists an $\delta > 0$ with the property that any graph G with n vertices and e > n edges contains an at most $2\varepsilon n$ -element subset $R \subseteq V(G)$ such that

$$|dis(R)| > \delta \sqrt{en}$$
.

Proof. It is sufficient to note that

$$dis(A \cup B) = dis(A) + dis(B) + dis(A,B),$$

hence, if A and B satisfy the conditions in Theorem 5, then the absolute value of the discrepancy of at least one of the sets A, B or $A \cup B$ exceeds $\hat{\epsilon} \frac{\sqrt{en}}{3}$. \square

Next we prove the Expansion-Retraction Theorem stated in the Introduction.

Proof of Theorem 3. Let |R| = m and suppose for convenience that n is even. If $m \ge \frac{n}{2}$, then let S be a randomly chosen $\lfloor \frac{n}{2} \rfloor$ -element subset of R. The expected number of edges in G[S] is

$$\mathbf{E}[e(\mathbf{S})] = e(R) \frac{\binom{n/2}{2}}{\binom{m}{2}} \approx \frac{1}{4} e(R) \left(\frac{n}{m}\right)^{2},$$

implying

$$\mathbb{E}[dis(\mathbf{S})] \approx dis(R)(\frac{n}{2m})^{2}$$

Thus there exists a specific S with $|dis(S)| \ge |dis(R)|/4$.

Now assume $m<\frac{n}{2}$ and denote \overline{R} the complement of R. Let \mathbf{P} be a randomly chosen $\frac{n}{2}$ -element subset of \overline{R} and let \mathbf{Q} be a random set consisting of R and $\frac{n}{2}-m$ randomly chosen vertices of \overline{R} . Denote $E_1=\mathbf{E}[e(\mathbf{P})]$ and $E_2=\mathbf{E}[e(\mathbf{Q})]$. We will establish an upper bound for $min(E_1,E_2)$ in the case of $D\geq 0$ and a lower bound for $max(E_1,E_2)$ in the opposite case.

Clearly,

$$\begin{split} E_1 &\approx \frac{1}{4} e\left(\bar{R}\right) \frac{n^2}{(n-m)^2} = F_1, \\ E_2 &\approx e\left(R\right) + e\left(R, \bar{R}\right) \frac{(n/2) - m}{n - m} + e\left(\bar{R}\right) \frac{((n/2) - m)^2}{(n-m)^2} = F_2. \end{split}$$

Since $\underline{e}(R,\overline{R}) = e - e(R) - e(\overline{R})$, for fixed e and e(R), F_1 and F_2 are linear functions of $x = e(\overline{R})$. Therefore, $min(max(F_1,F_2))$ as well as $max(min(E_1,E_2))$ is achieved if $F_1 = F_2$. Thus,

$$\frac{1}{4}x_0 \left(\frac{n}{n-m}\right)^2 = e(R) + \frac{1}{2}(e-e(R)-x_0))\frac{n-2m}{n-m} + \frac{1}{4}x_0 \left(\frac{n-2m}{n-m}\right)^2,$$

$$x_0 = e(R) + e^{-\frac{n-2m}{n}}.$$

Substituting e(R) for $e(\frac{m}{n})^2 + D$ we get

$$F_1(x_0) = F_2(x_0) = \frac{1}{4}e + \frac{1}{4}D(\frac{n}{n-m})^2.$$

This implies that for some specific $\frac{n}{2}$ -element subset S of the form \mathbf{P} or \mathbf{Q} ,

$$|dis(S)| \ge (\frac{1}{4} + o(1))D$$
.

Moreover, the signs of dis(S) and dis(R) are identical. Note, also, that the extreme value $\frac{1}{4}$ in Theorem 3 is only achieved if $\frac{|R|}{n}$ is nearly 0 or 1; otherwise the constant can be improved. \Box

Proof of Theorem 1. To obtain S, apply Theorem 3 to the set R constructed in Corollary. Let \mathbf{T} be a randomly chosen $\frac{n}{2}$ -element subset of V(G). Then

$$\mathbf{E}[e(S) - e(\mathbf{T})] = \mathbf{E}[dis(S) - dis(\mathbf{T})] = dis(S),$$

yielding the result. \square

For the proof of Theorem 2 we need the following slightly generalized form of the Expansion-Retraction Theorem.

Theorem 3'. Let G be a graph with n vertices, ε and v positive numbers, $\varepsilon < 1 - v$, and assume that

$$|dis(R)| = D$$

for some subset $R \subset V(G)$ having at most εn elements. Then there exists a subset $S \subset V(G)$ with |S| = vn such that

$$|\operatorname{dis}(S)| \ge (\operatorname{vmin}(v,1-v) + o(1))D,$$

where the o(1) term goes to 0 as D tends to infinity.

Proof of Theorem 2. Divide the vertex set of G into two disjoint equal parts U and V such that $e(G[U]) \ge \frac{e}{4}$. Applying Corollary to the graph G[U] with $\varepsilon = 1 - 2\mu$, we obtain that there exists an at most $(1 - 2\mu)n$ -element subset R of U with $|dis(R)| > \delta \sqrt{\frac{e}{4} \frac{n}{2}}$. By Theorem 3', there is $S \subset U$ with $|S| = \lfloor 2\mu \frac{1}{2}n \rfloor = \lfloor \mu n \rfloor$ and

$$\left| dis(S) \right| > (2\mu \min(2\mu, 1-2\mu) + o(1))\delta \sqrt{\frac{en}{8}} = D',$$

so we can choose another $\lfloor \mu n \rfloor$ -element subset $S' \subset U$, such that

$$\left|\,e\left(S\,\right)-e\left(S^{\,\prime}\right)\,\right|\geq D^{\,\prime}.$$

Then, for any $\lfloor \mu n \rfloor$ -element subset $T \subset V$, either $|e(S) - e(T)| > \frac{1}{2}D'$ or $|e(S') - e(T)| > \frac{1}{2}D'$. \square

2. Sparse graphs.

In this section, we consider graphs with n vertices and cn edges, where $c \le 1$. The following form of Turan's theorem will be used.

Theorem 6. [7] Every graph with n vertices and e edges contains an independent set of size $\geq \frac{n^2}{2e+n}$.

Proof of Theorem 4. If $c \le \frac{1}{2}$, then by Turan's theorem, we can find in G an independent set J of size $\ge \frac{n^2}{2e+n} \ge \frac{n}{2}$. Obviously, $dis(J) = -cn \times (\frac{1}{4} + o(1))$ and thus $d^-(n,c) = n(\frac{c}{4} + o(1))$ for $0 \le c \le \frac{1}{2}$.

To prove the second part of (*), we show that every graph with n vertices and e edges $(\frac{n}{2} \le e \le n)$ contains an independent set J of size $\ge \frac{2n-e}{3}$. Indeed, this is true for n=2 and, due to Turan's theorem, it follows for every graph with n vertices and e=n edges. Let n>2 and e< n. We may assume without loss of generality that G has no isolated vertices. Then G must have a vertex of degree 1. Let w be such a vertex and let z be adjacent to w. We delete z together with all edges incident to it. The remaining graph has an isolated vertex w and a subgraph H with n-2 vertices and $e \le n$ edges. By induction, $e \ge n$ contains an independent set $e \ge n$ of size $e \ge n$. Thus, the independent set $e \ge n$ vertices.

Having constructed J, we expand it to an $\frac{n}{2}$ -element subset S by adding one by one the necessary number of vertices in such a way that each addition brings at most one new edge. Such an expansion certainly exists, since otherwise we would find a subset T such that

 $(1) |T| > \frac{n}{2};$

(2) every $x \in T$ is adjacent to at least two vertices in V-T.

This would imply that $|E| \ge 2|T| > n$, which is impossible. Thus, $S \supseteq J$ induces a subgraph with $\le \frac{n}{2} - \frac{2n-e}{3} = \frac{2e-n}{6}$ edges. This proves that both $d^-(G)$ and $d^-(n,c)$ are $\ge \frac{2-c}{12}n + o(n)$. To see that $d^-(n,c) \le \frac{2-c}{12}n + o(n)$, take the union of (1-c)n edges and $\frac{2c-1}{3}$ triangles (all are disjoint).

Next we show (**). If $e \le \frac{n}{4}$, then, evidently, G has a subgraph with $\frac{n}{2}$ -vertices which contains all edges. This yields $d^+(n,c) \approx \frac{3c}{4}n$.

If $e>\frac{n}{4}$, then consider the connected components $G_1,G_2,...,G_r$ of G. Let $e(G_i)=v(G_i)-1+\delta_i$ (i=1,...,r) and let $\delta_1\geq\delta_2\geq...\geq\delta_r$. If k is the smallest i with $\delta_i=0$, then we assume that $v(G_k)\geq v(G_{k+1})\geq \cdots \geq v(G_r)$. Let, also, $H=\bigcup_{i=1}^{r}G_i$ and $s^*=\sum_{i=1}^{r}v(G_i)$.

Obviously, $e(H) \ge s^* - 1$. Therefore, if $s^* \ge \frac{n}{2}$, then

$$d^+(G) \ge \frac{2-c}{4}n + o(n).$$

In the case $s^* \leq \frac{n}{2}$, we add to H some components G_{k+2}, G_{k+3}, \ldots to get a graph, F, with $\frac{n}{2}$ vertices (it is possible that the last component will be only partially included). Clearly, $e(F) \geq \frac{e}{2}$ and thus $d^+(n,c) \geq \frac{c}{4}$. In addition, $e(F) \geq \frac{n}{4}$, otherwise

$$e(F) = \sum_{x \in F} d_F(x) \le \frac{n}{4} - 1$$

would imply that F contains at least two isolated vertices, therefore $e(F)=e^{-\frac{n}{4}}$.

So, if
$$c \ge \frac{1}{4}$$
 then

$$d^{+}(n,c) \ge \begin{cases} \frac{1-c}{4}n + o(n) & \text{if } \frac{1}{4} \le c < \frac{1}{2}, \\ \frac{c}{4}n + o(n) & \text{if } \frac{1}{2} \le c \le 1. \end{cases}$$

To show that this bound is best possible, consider a graph with n vertices and e edges, which consists of p=n-e-1 disjoint paths of length $\lceil \frac{e}{p} \rceil$, and another component, which is a path of length $l=e-p\lceil \frac{e}{p} \rceil$ (in case l>0).

Finally, note that (***) follows from (*) and (**). \square

3. Bipartite discrepancy.

For any graph G with n vertices and e edges, let the bipartite discrepancy of G be defined by

$$bdis(G)=max(\left|dis(S,T)\right|:S\bigcup T=V(G),\left|S\right|=\left\lfloor\frac{n}{2}\right\rfloor,\left|T\right|=\left\lceil\frac{n}{2}\right\rceil).$$

That is, bdis(G) is the maximum deviation of the number of edges running between two complementary halves of V(G) from

$$e^{\left\lfloor \frac{n}{2} \right\rfloor \left\lceil \frac{n}{2} \right\rceil},$$

i.e., from its expected value.

Conjecture 1. For any $0 < \varepsilon < \frac{1}{2}$, there exists a δ such that

$$bdis(G) \ge \delta n^{3/2}$$

holds for every graph G with n vertices and $\frac{1}{2} \binom{n}{2} \le e \le (1-\varepsilon) \binom{n}{2}$ edges.

Conjecture 1'. For any $0 < \varepsilon < \frac{1}{2}$, there exists a $\hat{\delta}$ such that, if G is any graph with n vertices and $\frac{1}{2} \binom{n}{2} \le e \le (1-\varepsilon) \binom{n}{2}$ edges, and $w_1, w_2, ..., w_n$ are any weights assigned to the vertices of G, then one can always find an $\lfloor n/2 \rfloor$ -element subset $S \subset V(G)$ satisfying

$$\left| e(S) - \sum_{i \in S} w_i \right| \ge \hat{\delta} n^{3/2}.$$

Proposition. Conjecture 1' implies Conjecture 1.

Proof. Assume, for simplicity, that n is a multiple of 6, and let T_0 be an arbitrary set of n/3 vertices of G. For any $i \in V(G) - T_0$ set

$$w_i = |\{t \in T_0 : (i,t) \in E(G)\}| - 3 \frac{e(T_0)}{n}.$$

Applying Conjecture 1' to the subgraph of G induced by $V(G)-T_0$, we can find an n/3-element subset $S \subseteq V(G)$, disjoint from T_0 , with

$$|e(S) - \sum_{i \in S} w_i| = |e(S_0) + e(T_0) - e(S_0, T_0)| \ge \hat{\delta}(\frac{2n}{3})^{3/2}.$$

Now split V(G)– S_0 – T_0 arbitrarily into n/6 pairs x_j , y_j , and let \mathbf{S} be a random set which contains S_0 and exactly one vertex from each pair. Further, let \mathbf{T} =V(G)– \mathbf{S} . Then any edge of G with at least one endpoint not in S_0 — T_0 has probability precisely $\frac{1}{2}$ of being in e(S,T), unless it is an edge of the form (x_j,y_j) . Thus

$$\mathbf{E}[e(\mathbf{S})+e(\mathbf{T})-e(\mathbf{S},\mathbf{T})]=e(S_0)+e(T_0,T_0)-\Delta$$
,

where $0<\Delta \le n/12=o(n^{3/2})$. Hence there exist S and T with $|dis(S,T)|=|e(S)+e(T)-e(S,T)|\ge \delta n^{3/2}$. Note that, in the special case when $w_i=\frac{e}{2n}$, the truth of Conjecture 1' follows from [5] or from Corollary in Section $2.\square$

Let c_0 denote the maximal positive c such that a random graph with n vertices and cn edges has a partition of the vertex set into two subsets of sizes $\lfloor \frac{n}{2} \rfloor$ and $\lceil \frac{n}{2} \rceil$ respectively for which the number of edges with endpoints in different parts is o(n). By [4], a random graph with n vertices and cn edges consists of a "giant" component of size $\frac{1-x(c)}{2c}n$ and small components of sizes $O(\ln n)$, where x(c) is the solution satisfying 0 < x(c) < 1 of the equation $x(c)e^{-x(c)} = 2ce^{-2c}$. For $c = \ln 2$, the size of the "giant" component is $\frac{n}{2}$, implying that $c_0 \ge \ln 2$.

Conjecture 2. $c_0 = \ln 2$.

Conjecture 2 would follow from the following

Conjecture 3. For every $\varepsilon > 0$, there is but $o((1+\varepsilon)^n)$ partitions of the vertex set of a random tree T into two subsets of sizes $\lfloor \frac{n}{2} \rfloor$ and $\lceil \frac{n}{2} \rceil$ respectively, for which the number of edges with endpoints in different parts is o(n).

References

- [1] B. Bollobas, Random Graphs, Academic Press, London-New York, 1985.
- [2] D. de Caen, A Note on the Probabilistic approach to Turan's Problem, *Journal of Combinatorial theory*, series B, Vol. 34, No.3, 1983.
- [3] P. Erdos, *The Art of Counting (Selected Writings)*, MIT Press, Cambridge, Mass. London, 1973.
- [4] P. Erdos and A. Renyi, On the Evolution of Random Graphs, *Mat. Kutato Int. Kozl.* **5**, 17-60.
- [5] P. Erdos and J. Spencer, Imbalances in k-colorations, *Networks* 1 (1972), 379-385.
- [6] P. Erdos and J. Spencer, *Probabilistic Methods in Combinatorics*, Academic Press, New York - London and Akademiai Kiado, Budapest, 1974.
- [7] P. Turan, On the Theory of Graphs, Colloq. Math. 3(1954), 19-30.