

MSc in Aerospace Engineering

Design of an optimization algorithm for in-orbit inspection relative trajectories

Advisor: Prof. Elisa CAPELLO

TAS-I Tutor: Ing. Davide FABRO

Candidate: Luca LAGUARDIA

Thesis Discussion – 25th July 2024

TABLE OF CONTENTS

- 1 Introduction
- 2 Physical Model
- 3 Optimization Strategy
- 4 Simulation Results
- 5 Conclusions and Future Developments

1. INTRODUCTION - IN-ORBIT SERVICING

The term **In-Orbit Servicing (IOS)** refers to the activities aimed at extending the lifespan or enhancing the functionality of spacecraft already in orbit

It provides opportunities for:

- Refueling
- Inspection
- Adjusting orbital paths and reorienting the satellite
- Repairing and upgrading onboard instruments

Rather than de-orbiting or replacing the spacecraft, conducting these tasks in space provides substantial economic and logistical advantages, paving the way for a new era of space utilization

Given the complexity of IOS operations, minimizing propellant consumption plays a critical role

1. INTRODUCTION - THESIS OBJECTIVE

Optimize relative trajectories for IOS missions, focusing on inspection and docking operations between Servicer or Chaser and Target spacecraft

- Develope effective strategies to ensure favorable conditions for visual inspection while minimizing collision risks
- > Seek potential extension of the work to the inspection of celestial bodies such as asteroids

1. INTRODUCTION - THESIS OBJECTIVE

Objective: Given a maximum time-of-fligth t_f and the number of impulses N to be applied, find the trajectory that minimizes the overall ΔV in terms of:

- ΔV associated with each boost
- Δt between each boost
- drag area A_c of the Servicer

while complying with the mission constraints

Cost function: Total mission $\Delta V \rightarrow J = \Delta V_{TOT} = \sum_{i=1}^{N} |\Delta V_i|$

Constraints:

- \rightarrow Max ΔV of each boost
- Mission duration
- > Effective inspection of the Target
- > Safety of the Servicer's trajectories

Constraints on the position and velocity of the Servicer

2. PHYSICAL MODEL

Impulsive model: Sudden increase in velocity ($\|\Delta V\| > 0$) with zero thrust time ($\Delta t_T = 0$)

- **Orbit dynamics:** > Target Local Orbital Frame F_{lo} or Local-Vertical/Local-Horizontal (LVLH) reference frame
 - > Hill's equations of relative motion of two nearby orbiting objects in a circular orbit around a central body in the LVLH frame

$$\ddot{x} - 2\omega \dot{z} = \frac{1}{m_c} F_x$$

$$\ddot{y} + \omega^2 y = \frac{1}{m_c} F_y$$

$$\ddot{z} + 2\omega\dot{x} - 3\omega^2 z = \frac{1}{m_c} F_z$$

2. PHYSICAL MODEL

$$\ddot{x} - 2\omega \dot{z} = \Delta \gamma_D$$

$$\ddot{y} + \omega^2 y = 0$$

$$\ddot{z} + 2\omega\dot{x} - 3\omega^2z = 0$$

Drag force:
$$F_D = -\frac{\rho}{2}V_\chi^2 C_D A \ [N] \rightarrow \gamma_D = \frac{1}{m}F_D \ [m/s^2]$$

Differential drag acceleration:

$$\Delta \gamma_D = \gamma_{D_c} - \gamma_{D_t} = -\frac{\rho}{2} \omega^2 r^2 \frac{1}{C_{B_c}} \left(1 - \frac{C_{B_c}}{C_{B_t}} \right) [m/s^2]$$

Ballistic coefficient:
$$C_{B_c} = \frac{m_c}{C_{D_c} A_c} \left[kg/m^2 \right]$$

Planning efficient and safe trajectories for IOS missions poses a complex challenge due to:

- Non-convexity of the problem
- Need to manage multiple constraints
- No guess solutions available

Adopted optimization strategies:

- Multiple-Shooting method
- Sequential Quadratic Programming (SQP) + Multistart algorithms

Multiple-Shooting Method

• Overall time horizon $[t_0, t_f]$ discretized into N-1 smaller subintervals:

$$t_0 < t_1 < \dots < t_i < \dots < t_N = t_f$$

- State values at the beginning of the subinterval and control variables unknowns to be determined in the optimization
- Dynamics satisfied by integrating the differential equations of motion with a time-marching algorithm, propagating the solution from one time instant to the next

Multiple-Shooting Method

SQP Algorithm (local optimizer)

- Local optimization method designed for solving optimization problems with non-linear objective function and constraints
- Local quadratic approximation of both the objective function and constraints,
 providing an effective balance between accuracy and computational efficiency
- Solution close to an initial guess → Global optimum not necessarily found, especially in the presence of multiple local minima

Multiple-Shooting Method SQP Algorithm (local optimizer)

Multistart Algorithm (global optimizer)

Local optimization algorithm run multiple times from various initial points in the

search space

Broader region of the solution space explored

Increased likelihood of finding a global minimum

Optimization tool developed following a gradual approach:

- Constraints incrementally introduced to increase the complexity of the optimization problem
- Testing and validation of the code at each stage

Optimization tool developed following a gradual approach:

- · Constraints incrementally introduced to increase the complexity of the optimization problem
- Testing and validation of the code at each stage

Mission constraints

- 1. Outer and Inner control boxes
- 2. Inspection points

$$d_r \le d_{observe}$$

$$\frac{\left(S_f - S_0\right) \cdot S_f}{d_r \cdot d_f} \ge \cos\left(\frac{\theta_{max}}{2}\right)$$

$$\frac{\left(S_f - S_0\right) \cdot n}{d_r \cdot d_n} \ge \cos(\theta_{occlusion})$$

Optimization tool developed following a gradual approach:

- Constraints incrementally introduced to increase the complexity of the optimization problem
- Testing and validation of the code at each stage

1. Outer and Inner control boxes

2. Inspection points

Mission constraints

3. Safety Ellipse

Optimization tool developed following a gradual approach:

- · Constraints incrementally introduced to increase the complexity of the optimization problem
- Testing and validation of the code at each stage

Mission constraints

- 1. Outer and Inner control boxes
- 2. Inspection points
- 3. Safety Ellipse
- 4. Return to starting position

$$(X,Y,Z)_{t_f} = (X,Y,Z)_{t_0} [m]$$

$$(V_x, V_y, V_z)_{t_f} = (V_x, V_y, V_z)_{t_0} [m/s]$$

Optimization tool developed following a gradual approach:

- · Constraints incrementally introduced to increase the complexity of the optimization problem
- Testing and validation of the code at each stage

Mission constraints

- 1. Outer and Inner control boxes
- 2. Inspection points
- 3. Safety Ellipse
- 4. Return to starting position
- 5. Docking

$$\frac{\left(S_f - D_0\right) \cdot c}{d_{r,app} \cdot d_c} \ge \cos(\alpha)$$

9/15

V-bar [m]

	Simulation values			Simulatio
N° of impulses	3		N° of impulses	4
Drag area [m²]	9.581808		Drag area [m²]	10.356
Time of flight [s]	17216.989628		Time of flight [s]	17216.98
Total ΔV [m/s]	0.031272		Total ΔV [m/s]	0.046
		Servicer		
-60		Target Outer control box		
-40		Inner control box Burn 40		
		Inspection points		
-20		-20 ~		
0		R-bar [m]		
20		20 -		
40 ~		40 ~		
60		60 ~		
60 40 20 0 -20 -40	-20 -40 -60	60 4	10 20	
-20 -40 -60	60 40 20 0 -20 In	spection with control boxes	0 -20 -40 -60	60 40 20 0

H-bar [m]

V-bar [m]

H-bar [m]

Nº
Drag
Time o
Total ΔV
llipse -50

11/15

	Simulation values
N° of impulses	5
Drag area [m²]	10.079848
Time of flight [s]	46893.868751
Total ΔV [m/s]	0.253824

	Simulation values
Nº of impulses	8
Drag area [m²]	9.157002
Time of flight [s]	27562.069162
Total ΔV [m/s]	0.162885

	Simulation values
N° of impulses	10
Drag area [m²]	9.999990
Time of flight [s]	17216.989628
Total ΔV [m/s]	0.254273

	Simulation values
N° of impulses	10
Drag area [m²]	4.000000
Time of flight [s]	3096.243067
Total ΔV [m/s]	0.249194

	Simulation values
N° of impulses	10
Drag area [m²]	9.999999
Time of flight [s]	17216.989628
Total <u>AV</u> [m/s]	0.251019

Docking along -R-barDocking port = [0, 0, -2.5] m

Docking along +R-barDocking port = [0, 0, 2.5] m

		Simulation values
N° of impulses		16
181 1	Burn time [s]	0.000000
l st boost	ΔV [m/s]	[0.000000, 0.032420, 0.000000]
and has a st	Burn time [s]	1173.081731
2 nd boost	ΔV [m/s]	[0.007821, 0.001709, -0.015599]
ord Is a set	Burn time [s]	1908.819190
3 rd boost	ΔV [m/s]	[-0.006354, -0.000324, -0.004771]
4 th boost	Burn time [s]	3150.203717
	ΔV [m/s]	[-0.001442, -0.000267, 0.000405]
•••		
16 th boost	Burn time [s]	28688.203720
	ΔV [m/s]	[0.000000, 0.000000, 0.000000]
Drag area [m²]		9.983421
Mission	Time of flight [s]	28688.203720
	Total ΔV [m/s]	0.078210

Inspection with control boxes and safety ellipse of an ellipsoidal Target

		Simulation values
N° of impulses		5
181 1	Burn time [s]	0.00000
l st boost	ΔV [m/s]	[0.641365, -0.602313, 0.585671]
2 nd boost	Burn time [s]	165.934536
	ΔV [m/s]	[-0.662803, 0.176192, -0.300884]
3 rd boost	Burn time [s]	6850.928934
	ΔV [m/s]	[-0.392839, -0.560084, -0.582511]
4 th boost	Burn time [s]	7372.481582
	ΔV [m/s]	[0.414169, 0.620834, -0.551894]
16 th boost	Burn time [s]	21458.882603
	ΔV [m/s]	[0.605800, -0.605800, -0.605800]
Drag area [m²]		10.820987
Mission	Time of flight [s]	21458.882603
	Total ΔV [m/s]	4.681865

		Simulation values	
N° of impulses		5	
1 st boost	Burn time [s]	0.000000	
	ΔV [m/s]	[0.641365, -0.602313, 0.585671]	
2 nd boost	Burn time [s]	165.934536	
	ΔV [m/s]	[-0.662803, 0.176192, -0.300884]	
3 rd boost	Burn time [s]	6850.928934	
	ΔV [m/s]	[-0.392839, -0.560084, -0.582511]	
4 th boost	Burn time [s]	7372.481582	
	ΔV [m/s]	[0.414169, 0.620834, -0.551894]	
16 th boost	Burn time [s]	21458.882603	
	ΔV [m/s]	[0.605800, -0.605800, -0.605800]	
Drag area [m²]		10.820987	
Mission	Time of flight [s]	21458.882603	
	Total ΔV [m/s]	4.681865	

Inspection with control boxes of an asteroid

5. CONCLUSIONS AND FUTURE DEVELOPMENTS

Conclusions:

- Ability to effectively employ direct methods for optimizing in-orbit inspection trajectories in LEO
- Solid robust framework adaptable to various operational scenarios
- Several approaches introduced that lay the foundation for future, more in-depth studies on IOS missions

Future developments:

- Higher-fidelity dynamics to account for perturbations such as aerodynamic drag using an atmospheric database, Earth's magnetic field (J2 effect), and solar radiation pressure
- **Continuous-thrust model** to improve the accuracy of the Servicer's maneuvers and consequently produce more realistic optimized trajectories

THANKS FOR YOUR ATTENTION

