BRUTE UDESC

Eliton Machado da Silva, Enzo de Almeida Rodrigues, Eric Grochowicz, João Vitor Frölich, João Marcos de Oliveira e Rafael Granza de Mello

3 de janeiro de 2024

Índice

1	Estr	ruturas de Dados	7
	1.1	Disjoint Set Union	8
		1.1.1 DSU Completo	8
		1.1.2 DSU com Rollback	1(
		1.1.3 DSU Simples	12
		1.1.4 DSU Bipartido	12
	1.2	Operation Queue	13
	1.3	Interval Tree	14
	1.4	Segment Tree	16
	1.5	Operation Stack	3]
	1.6	Fenwick Tree	32
	1.7	LiChao Tree	32
	1.8	KD Fenwick Tree	34
	1.9	Ordered Set	35
	1.10	MergeSort Tree	36
	1.11	Sparse Table	39
		1.11.1 Disjoint Sparse Table	4(
		1.11.2 Sparse Table	4(
2	Gra	fos	43
	2.1	Matching	44
	2.2	Stoer-Wagner	45
	2.3	LCA	46
	2.4	Heavy-Light Decomposition (hld.cpp)	47
	2.5	Kruskal	49
	2.6	Bridge (pontes)	5(
	2.7		5]
		2.7.1 Dijkstra	51
		2.7.2 Shortest Path Fast Algorithm (SPFA)	53

4 ÍNDICE

	2.8	Binary Lifting	54
	2.9	Fluxo	55
	2.10	Inverse Graph	60
	2.11	2-SAT	61
	2.12	Graph Center	62
3	Stri	ησ	65
•	3.1	Aho-Corasick	65
	3.2	Patricia Tree ou Patricia Trie	67
	3.3	Prefix Function	68
	3.4	Hashing	70
	3.5	Trie	71
	3.6	Algoritmo de Manacher	71
	3.7	Lyndon Factorization	72
	3.8	Suffix Array	73
4	Para	adigmas	77
	4.1	Mo	77
	4.2	Exponenciação de Matriz	80
	4.3	Busca Binária Paralela	82
	4.4	Divide and Conquer	83
	4.5	Busca Ternária	86
	4.6	DP de Permutação	87
	4.7	Convex Hull Trick	88
	4.8	All Submask	89
5	Mat	temática	91
	5.1	Soma do floor (n/i)	92
	5.2	Primos	92
	5.3	Numeric Theoric Transformation	94
	5.4	Eliminação Gaussiana	96
	5.5	Máximo divisor comum	98
	5.6	Fatoração	99
	5.7	Teorema do Resto Chinês	101
	5.8	Transformada Rápida de Fourier	102
	5.9	Exponenciação modular rápida	103
	5 10	Tationto do Fulor	104

ÍNDICE	5
5.11 Modular Inverse	 105

6 ÍNDICE

Capítulo 1

Estruturas de Dados

Disjoint Set Union

Estrutura que trata conjuntos.

Operation Queue

Fila que armazena o resultado do operatório dos itens.

Interval Tree

Estrutura que trata intersecções de intervalos.

Segment Tree

Consultas e atualizações em intervalos.

Operation Stack

Pilha que armazena o resultado do operatório dos itens.

Fenwick Tree

Consultas e atualizações de soma em intervalo.

LiChao Tree

Uma árvore de Funções. Retorna o F(x) máximo em um ponto X.

Kd Fenwick Tree

Fenwick Tree em K dimensoes.

Ordered Set

Set com operações de busca por ordem e índice.

MergeSort Tree

Árvore que resolve queries que envolvam ordenação em range.

Sparse Table

Consultas em intervalos com complexidade de tempo O(1).

1.1 Disjoint Set Union

Estrutura que trata conjuntos.

1.1.1 DSU Completo

DSU com capacidade de adicionar e remover vértices.

EXTREMAMENTE PODEROSO!

Funciona de maneira off-line, recebendo as operações e dando as respostas das consultas no retorno da função **solve()**

• Complexidade de tempo: O(Q * log(Q) * log(N)); Onde Q é o número de consultas e N o número de nodos

Roda em 0.6ms para $3*10^5$ queries e nodos com printf e scanf.

Possivelmente aguenta 10^6 em 3s

```
struct full dsu {
 1
 2
        struct change {
 3
             int node, old size;
 4
        };
 5
        struct query {
 6
             int 1, r, u, v, type;
 7
 8
        stack<change> changes;
9
        map<pair<int, int>, vector<query>> edges;
10
        vector <query> queries;
        \verb|vector| < \verb|int| > \verb|parent|, size|;
11
12
        int number of sets, time;
13
14
        full dsu(int n) {
15
             time = 0;
             size.resize(n + 5, 1);
16
17
             number_of_sets = n;
18
             loop(i, 0, n + 5) parent.push back(i);
19
        }
20
21
        int get(int a) {
            return (parent [a] = a ? a : get(parent [a]);
22
23
        bool same(int a, int b) {
24
25
             return get(a) = get(b);
26
        void checkpoint() {
27
             changes . push (\{-2, 0\});
28
29
30
31
        void join(int a, int b) {
32
             a = get(a);
33
             b = get(b);
             if (a == b) {
34
35
                 return;
```

```
36
37
            if (size[a] > size[b]) {
38
                 swap(a, b);
39
            changes.push({a, size[b]});
40
41
            parent[a] = b;
42
            size[b] += size[a];
43
            —number of sets;
44
        }
45
        void rollback() {
46
47
            while (!changes.empty()) {
48
                 auto ch = changes.top();
                 changes.pop();
49
                 if (ch.node == -2) {
50
51
                     break;
52
                 size [parent [ch.node]] = ch.old size;
53
54
                 parent [ch.node] = ch.node;
55
                 ++number of sets;
56
            }
57
        }
58
59
        void ord(int &a, int &b) {
60
             if (a > b) {
61
                 swap(a, b);
62
63
        }
64
        void add(int u, int v) {
65
66
            ord(u, v);
67
             edges[{u, v}].push back({time++, (int)1e9, u, v, 0});
        }
68
69
70
        void remove(int u, int v) {
71
            ord(u, v);
72
             edges[{u, v}].back().r = time++;
        }
73
74
75
        // consulta se dois vertices estao no mesmo grupo
        void question(int u, int v) {
76
77
            ord(u, v);
78
             queries.push back({time, time, u, v, 1});
79
            ++time;
        }
80
81
82
        // consulta a quantidade de grupos distintos
83
        void question() {
            queries.push_back(\{time, time, 0, 0, 1\});
84
85
            ++time;
86
        }
87
88
        vector<int> solve() {
89
             for (auto [p, v] : edges) {
90
                 queries.insert(queries.end(), all(v));
91
             vector < int > vec(time, -1), ans;
92
93
            run(queries, 0, time, vec);
            \quad \textbf{for} \ (\textbf{int} \ i \ : \ vec) \ \{
94
95
                 if (i != −1) {
96
                     ans.push_back(i);
```

```
97
                   }
 98
99
              return ans;
100
         }
101
102
         void run(const vector<query> &qrs, int 1, int r, vector<int> &ans) {
103
              if (l > r) 
104
                   return;
105
106
              checkpoint();
107
              vector < query > qrs aux;
108
              for (auto &q : qrs) {
                   if (!q.type \&\& q.l <= 1 \&\& r <= q.r) {
109
110
                        join (q.u, q.v);
                   \} else if (r < q.l | | l > q.r) {
111
112
                        continue;
113
                   } else {
                        qrs aux.push back(q);
114
115
116
117
              if (1 = r) {
                   for (auto &q : qrs) {
118
119
                        if (q.type \&\& q.1 == 1) {
120
                            ans[1] = number_of_sets; // numero de grupos nesse tempo
121
                            // \operatorname{ans}[1] = \operatorname{same}(q.u, q.v); // \operatorname{se} u e v estao no mesmo grupo
122
123
124
                   rollback();
125
                   return;
126
127
              int m = (1 + r) / 2;
128
              run(qrs_aux, l, m, ans);
129
              run(qrs_aux, m + 1, r, ans);
130
              rollback();
         }
131
132
```

1.1.2 DSU com Rollback

Desfaz as últimas K uniões

• Complexidade de tempo: O(K).

É possivel usar um checkpoint, bastando chamar rollback() para ir até o último checkpoint.

O rollback não altera a complexidade, uma vez que $K \le q$ ueries.

Só funciona sem compressão de caminho

• Complexidade de tempo: O(log(N))

```
1 struct rollback_dsu {
2 struct change {
```

```
3
            int node, old size;
 4
        };
        stack<change> changes;
 5
 6
        vector < int > parent, size;
 7
        int number_of_sets;
 8
9
        rollback_dsu(int n) {
             size.resize(n + 5, 1);
10
            number of sets = n;
11
            for (int i = 0; i < n + 5; ++i) {
12
                 parent.push back(i);
13
14
15
        }
16
17
        int get(int a) {
18
            return (a = parent[a]) ? a : get(parent[a]);
19
        bool same(int a, int b) {
20
21
            return get(a) = get(b);
22
23
        void checkpoint() {
24
            changes.push(\{-2, 0\});
25
26
27
        void join(int a, int b) {
            a = get(a);
28
29
            b = get(b);
30
            if (a == b) {
31
                 changes.push(\{-1, -1\});
32
                 return;
33
34
             if (size[a] > size[b]) 
35
                 swap(a, b);
36
37
             changes.push({a, size[b]});
38
             parent[a] = b;
39
            size[b] += size[a];
            —number of sets;
40
41
        }
42
        void rollback(int qnt = 1 \ll 31) {
43
            for (int i = 0; i < qnt; ++i) {
44
45
                 auto ch = changes.top();
46
                 changes.pop();
                 if (ch.node == -1) {
47
48
                     continue;
49
                 \mathbf{if} \quad (\text{ch.node} = -2) \quad \{
50
                      if (qnt == 1 << 31) {
51
52
                          break;
53
54
                      —i;
55
                     continue;
56
                 size [parent [ch.node]] = ch.old size;
57
                 parent [ch.node] = ch.node;
58
                 ++number of sets;
59
            }
60
61
        }
62
    };
```

1.1.3 DSU Simples

Verifica se dois itens pertencem a um mesmo grupo.

• Complexidade de tempo: O(1) amortizado.

Une grupos.

• Complexidade de tempo: O(1) amortizado.

```
1
    struct DSU {
 2
         vector < int > pa, sz;
3
        DSU(int n) : pa(n + 1), sz(n + 1, 1)  {
 4
             iota (pa. begin (), pa. end (), 0);
 5
 6
         int root(int a) {
 7
             return pa[a] = (a = pa[a] ? a : root(pa[a]));
 8
9
         bool find (int a, int b) {
10
             return root(a) = root(b);
11
12
        void uni(int a, int b) {
13
             int ra = root(a), rb = root(b);
14
             if (ra == rb) {
15
                  return;
16
17
             if (sz[ra] > sz[rb])  {
                  swap(ra, rb);
18
19
             pa[ra] = rb;
20
             sz\left[\,rb\,\right] \; +\!\!=\; sz\left[\,ra\,\right];
21
22
        }
23
    };
```

1.1.4 DSU Bipartido

DSU para grafo bipartido, é possível verificar se uma aresta é possível antes de adicioná-la.

Para todas as operações:

• Complexidade de tempo: O(1) amortizado.

```
1 struct bipartite_dsu {
2    vector < int > parent;
3    vector < int > color;
4    int size;
```

```
5
        bipartite_dsu(int n) {
6
            size = n;
7
            color.resize (n + 5, 0);
            for (int i = 0; i < n + 5; ++i) {
 8
9
                parent.push_back(i);
10
        }
11
12
        pair < int, bool > get(int a) {
13
14
            if (parent[a] == a) {
                return {a, 0};
15
16
            auto val = get(parent[a]);
17
            parent[a] = val.fi;
18
19
            color[a] = (color[a] + val.se) \% 2;
20
            return {parent[a], color[a]};
21
        }
22
        bool same color(int a, int b) {
23
            get(a);
24
25
            get(b);
26
            return color[a] = color[b];
27
28
        bool same_group(int a, int b) {
29
            get(a);
30
            get(b);
31
            return parent[a] == parent[b];
32
33
        bool possible_edge(int a, int b) {
            return !same color(a, b) || !same group(a, b);
34
35
36
37
        void join(int a, int b) {
            auto val a = get(a), val b = get(b);
38
39
            parent[val_a.fi] = val_b.fi;
40
            color[val_a.fi] = (val_a.se + val_b.se + 1) \% 2;
41
        }
42
   };
```

1.2 Operation Queue

Fila que armazena o resultado do operatório dos itens.

- * Complexidade de tempo (Push): O(1)
- * Complexidade de tempo (Pop): O(1)

```
9
       T get() {
10
            if (s1.empty() || s2.empty()) {
11
                return result = s1.empty() ? s2.top().second : s1.top().second;
12
13
            } else {}
                return result = op(s1.top().second, s2.top().second);
14
15
16
        void add(T element) {
17
18
            result = s1.empty() ? element : op(element, s1.top().second);
19
            s1.push({element, result});
20
21
        void remove() {
22
            if (s2.empty())  {
23
                while (!s1.empty())
24
                    T \text{ elem} = s1.top().first;
25
                     s1.pop();
26
                    T result = s2.empty()? elem : op(elem, s2.top().second);
27
                     s2.push({elem, result});
                }
28
29
30
            T remove elem = s2.top().first;
31
            s2.pop();
32
        }
33
   };
```

1.3 Interval Tree

Por Rafael Granza de Mello

Estrutura que trata intersecções de intervalos.

Capaz de retornar todos os intervalos que intersectam [L, R]. L e R inclusos

Contém funções insert(L, R, ID), erase(L, R, ID) , overlaps(L, R) e find(L, R, ID).

É necessário inserir e apagar indicando tanto os limites quanto o ID do intervalo.

• Complexidade de tempo: O(N * log(N)).

Podem ser usadas as operações em Set:

- insert()
- erase()
- upper\ bound()
- etc

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
```

1.3. INTERVAL TREE

```
4
    struct interval {
 5
        long long lo, hi, id;
 6
 7
        bool operator < (const interval &i) const {
             return lo < i.lo || (lo == i.lo && hi < i.hi) ||
 8
                      (lo == i.lo && hi == i.hi && id < i.id);
 9
10
         }
11
    };
    template < class CNI, class NI, class Cmp Fn, class Allocator>
12
    struct intervals node update {
13
         typedef long long metadata type;
14
15
         int sz = 0;
         virtual CNI node_begin() const = 0;
16
         virtual CNI node end() const = 0;
17
18
19
         inline vector < int > overlaps (const long long l, const long long r) {
20
             queue < CNI> q;
             q.push(node begin());
21
22
              vector<int> vec;
23
             while (!q.empty()) {
24
                  CNI it = q.front();
25
                  q.pop();
26
                  if (it = node end()) 
27
                       continue;
28
                  if (r >= (*it) -> lo && l <= (*it) -> hi) {
29
30
                       vec.push back((*it)->id);
31
32
                  CNI l it = it.get l child();
                  long long 1 max = (1 it == node end()) ? -INF : 1 it.get metadata();
33
34
                  \mathbf{if} (1 max >= 1) {
35
                       q.push(l it);
36
                  if ((*it)->lo <= r) {
37
38
                       q.push(it.get_r_child());
39
40
41
             return vec;
42
         }
43
         inline void operator()(NI it, CNI end it) {
44
             const long long l_max = (it.get_l_child() == end_it)
45
                                                ? -INF
46
47
                                               : it.get_l_child().get_metadata();
             const long long r_max = (it.get_r_child() == end_it)
48
49
                                               ? —INF
                                               : it.get_r_child().get_metadata();
50
             const cast<long long &>(it.get_metadata()) =
51
52
                  \max((*it)->hi, \max(l_{\max}, r_{\max}));
         }
53
54
    };
    \mathbf{typedef} \ \mathsf{tree} \negthinspace < \negthinspace \mathsf{interval} \ , \ \mathsf{null\_type} \ , \ \mathsf{less} \negthinspace < \negthinspace \mathsf{interval} \negthinspace > \negthinspace , \ \mathsf{rb\_tree\_tag} \ ,
55
                    intervals node update>
56
57
         interval tree;
```

1.4 Segment Tree

Consultas e atualizações em intervalos.

Seg Tree

Implementação padrão de Seg Tree

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de espaço: 4 *N = O(N)

Seg Tree Lazy

Implementação padrão de Seg Tree com lazy update

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de tempo (Update em intervalo): O(log(N))
- \bullet Complexidade de espaço: 2 *4 *N = O(N)

Sparse Seg Tree

Seg Tree Esparsa:

- Complexidade de tempo (Pré-processamento): O(1)
- \bullet Complexidade de tempo (Consulta em intervalo): $\mathcal{O}(\log(\mathcal{N}))$
- Complexidade de tempo (Update em ponto): O(log(N))

Persistent Seg Tree

Seg Tree Esparsa com histórico de Updates:

- Complexidade de tempo (Pré-processamento): O(N *log(N))
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Para fazer consulta em um tempo específico basta indicar o tempo na query

Seg Tree Beats

Seg Tree que suporta update de maximo e query de soma

• Complexidade de tempo (Pré-processamento): O(N)

- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de tempo (Update em intervalo): O(log(N))
- Complexidade de espaço: 2 *4 *N = O(N)

Seg Tree Beats Max and Sum update

Seg Tree que suporta update de maximo, update de soma e query de soma.

Utiliza uma fila de lazy para diferenciar os updates

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de tempo (Update em intervalo): O(log(N))
- Complexidade de espaço: 2 *4 *N = O(N)

```
1
   \#include <bits/stdc++.h>
 2
   using namespace std;
 3
 4
   #define ll long long
 5
   #define INF 1e9
 6
7
   struct Node {
        int m1 = INF, m2 = INF, cont = 0, lazy = 0;
 8
 9
        11 \text{ soma} = 0;
10
        void set(int v) {
11
12
            m1 = v;
13
            cont = 1;
            soma = v;
14
15
        }
16
        void merge (Node a, Node b) {
17
            m1 = min(a.m1, b.m1);
18
            m2 = INF;
19
20
            if (a.m1 != b.m1) {
21
                m2 = min(m2, max(a.m1, b.m1));
22
            if (a.m2 != m1) {
23
24
                m2 = min(m2, a.m2);
25
26
            if (b.m2 != m1) {
                m2 = min(m2, b.m2);
27
28
29
            cont = (a.m1 = m1 ? a.cont : 0) + (b.m1 = m1 ? b.cont : 0);
30
            soma = a.soma + b.soma;
31
        }
32
33
        void print() {
            printf("\%d \%d \%d \%lld \%d\n", m1, m2, cont, soma, lazy);
34
        }
35
```

```
36
   | };
37
38
   int n, q;
39
   vector < Node > tree;
40
41
   int le(int n) {
42
        return 2 * n + 1;
43
   int ri(int n) {
44
45
        return 2 * n + 2;
46
47
48
   void push(int n, int esq, int dir) {
49
        if (tree[n].lazy \le tree[n].m1) {
50
            return;
51
52
        tree[n].soma += (11)abs(tree[n].m1 - tree[n].lazy) * tree[n].cont;
53
        tree[n].m1 = tree[n].lazy;
54
        if (esq != dir) {
55
             tree[le(n)].lazy = max(tree[le(n)].lazy, tree[n].lazy);
56
             tree[ri(n)]. lazy = max(tree[ri(n)]. lazy, tree[n]. lazy);
57
        tree[n].lazy = 0;
58
59
60
   void build(int n, int esq, int dir, vector<int> &v) {
61
62
        if (esq = dir) {
63
             tree[n].set(v[esq]);
64
        } else {
65
             int mid = (esq + dir) / 2;
66
             build(le(n), esq, mid, v);
67
             build(ri(n), mid + 1, dir, v);
68
             tree[n].merge(tree[le(n)], tree[ri(n)]);
        }
69
70
71
   void build (vector < int > &v) {
72
        build (0, 0, n - 1, v);
73
74
75
    // ai = max(ai, mi) em [1, r]
76
   void update(int n, int esq, int dir, int l, int r, int mi) {
77
        push(n, esq, dir);
78
        if (esq > r || dir < l || mi <= tree[n].m1) {
79
            return;
80
81
        if (1 \le esq \&\& dir \le r \&\& mi < tree[n].m2) {
82
             tree[n].lazy = mi;
83
            push(n, esq, dir);
84
        } else {}
             int mid = (esq + dir) / 2;
85
            update(le(n), esq, mid, l, r, mi);
86
            update(\, r\, i\, (n)\,\,,\,\, mid\,\,+\,\, 1\,,\,\, dir\,\,,\,\, l\,\,,\,\, r\,\,,\,\, mi)\,;
87
88
             tree[n].merge(tree[le(n)], tree[ri(n)]);
        }
89
90
91
   void update(int 1, int r, int mi) {
92
        update(0, 0, n-1, 1, r, mi);
93
94
95
   // soma de [1, r]
   | int query(int n, int esq, int dir, int l, int r) \{
```

```
97
         push(n, esq, dir);
         if (esq > r \mid \mid dir < l) {
98
99
             return 0;
100
         if (l \le esq \&\& dir \le r) {
101
102
             return tree [n]. soma;
103
104
         int mid = (esq + dir) / 2;
         return query (le (n), esq, mid, l, r) + query (ri (n), mid + 1, dir, l, r);
105
106
    int query(int 1, int r) {
107
108
         return query (0, 0, n-1, 1, r);
109
110
111
    int main() {
112
         cin >> n;
113
         tree.assign(4 * n, Node());
114
```

```
1
   \#include <bits/stdc++.h>
 2
   using namespace std;
 3
4
   \#define ll long long
   #define INF 1e9
5
   #define fi first
 6
7
   #define se second
8
9
   typedef pair<int, int> ii;
10
11
   struct Node {
12
        int m1 = INF, m2 = INF, cont = 0;
13
        11 \text{ soma} = 0;
14
        queue<ii> lazy;
15
16
        void set(int v) {
            m1 = v;
17
18
             cont = 1;
19
             soma = v;
20
21
22
        void merge(Node a, Node b) {
23
            m1 = min(a.m1, b.m1);
24
            m2 = INF;
25
             if (a.m1 != b.m1) {
26
                 m2 = min(m2, max(a.m1, b.m1));
27
28
             if (a.m2 != m1) {
                 m2 = min(m2, a.m2);
29
30
             if (b.m2 != m1) {
31
32
                 m2 = min(m2, b.m2);
33
34
             cont = (a.m1 = m1 ? a.cont : 0) + (b.m1 = m1 ? b.cont : 0);
35
             soma = a.soma + b.soma;
36
        }
37
38
        void print() {
             \texttt{printf("\%d \%d \%d \%lld} \setminus n"\;,\; m1,\; m2,\; cont\;,\; soma)\;;
39
40
41 | };
```

```
42
43
     int n, q;
44
     vector < Node > tree;
45
     int le(int n) {
46
47
          return 2 * n + 1;
48
49
     int ri(int n) {
50
          return 2 * n + 2;
51
52
53
     void push (int n, int esq, int dir) {
54
          while (!tree[n].lazy.empty()) {
55
               ii p = tree[n].lazy.front();
56
               tree | n | . lazy.pop();
57
               int op = p.fi, v = p.se;
58
               if (op = 0) {
59
                    \textbf{if} \hspace{0.1in} (\hspace{0.1em} v \hspace{0.1em} <= \hspace{0.1em} t \hspace{0.1em} r \hspace{0.1em} e \hspace{0.1em} e \hspace{0.1em} [\hspace{0.1em} n \hspace{0.1em}] \hspace{0.1em} . \hspace{0.1em} m1) \hspace{0.1em} \{
60
                         continue;
61
62
                    tree[n].soma += (ll)abs(tree[n].m1 - v) * tree[n].cont;
63
                    tree[n].m1 = v;
                    if (esq != dir) {
64
65
                         tree [le(n)]. lazy. push(\{0, v\});
66
                         tree [ri(n)]. lazy.push(\{0, v\});
67
               } else if (op == 1) {
68
69
                    tree[n].soma += v * (dir - esq + 1);
70
                    tree[n].m1 += v;
71
                    tree[n].m2 += v;
72
                    if (esq != dir) {
73
                         tree [le(n)].lazy.push({1, v});
74
                         tree[ri(n)].lazy.push({1, v});
75
                    }
76
               }
77
          }
78
79
80
     void build (int n, int esq, int dir, vector <int> &v) {
81
          if (esq = dir) {
82
               tree[n].set(v[esq]);
83
          } else {}
               int mid = (esq + dir) / 2;
84
85
               build(le(n), esq, mid, v);
86
               build(ri(n), mid + 1, dir, v);
87
               tree[n].merge(tree[le(n)], tree[ri(n)]);
88
          }
89
90
     void build(vector<int> &v) {
91
          build (0, 0, n - 1, v);
92
93
94
     // ai = max(ai, mi) em [1, r]
95
     void update(int n, int esq, int dir, int l, int r, int mi) {
          push(n, esq, dir);
96
97
          if (esq > r | | dir < l | | mi <= tree[n].m1) {
98
               return;
99
          if (1 \le esq \&\& dir \le r \&\& mi < tree[n].m2) {
100
101
               tree[n].soma += (ll)abs(tree[n].ml - mi) * tree[n].cont;
102
               tree[n].m1 = mi;
```

```
103
              if (esq != dir) {
104
                   tree [le(n)]. lazy. push (\{0, mi\});
                   tree[ri(n)].lazy.push({0, mi});
105
106
107
         } else {
108
              int mid = (esq + dir) / 2;
              update(le(n), esq, mid, l, r, mi);
109
110
              update(ri(n), mid + 1, dir, l, r, mi);
              tree \left[ n \right]. merge \left( \, tree \left[ \, le \left( n \right) \, \right], \ tree \left[ \, ri \left( n \right) \, \right] \right);
111
112
113
114
    void update(int 1, int r, int mi) {
115
         update(0, 0, n - 1, l, r, mi);
116
117
     // soma v em [1, r]
118
119
    void upsoma(int n, int esq, int dir, int l, int r, int v) {
120
         push(n, esq, dir);
121
         if (esq > r | | dir < 1) {
122
              return;
123
124
         if (l \le esq \&\& dir \le r)  {
125
              tree[n].soma += v * (dir - esq + 1);
              tree[n].m1 += v;
126
127
              tree[n].m2 += v;
              if (esq != dir) {
128
129
                   tree [le(n)]. lazy. push(\{1, v\});
130
                   tree [ri(n)]. lazy.push(\{1, v\});
131
         } else {
132
133
              int mid = (esq + dir) / 2;
              upsoma(le(n), esq, mid, l, r, v);
134
              upsoma(ri(n), mid + 1, dir, l, r, v);
135
              tree[n].merge(tree[le(n)], tree[ri(n)]);
136
         }
137
138
    void upsoma(int l, int r, int v) {
139
140
         upsoma(0, 0, n - 1, 1, r, v);
141
     }
142
143
     // soma de [1, r]
144
    int query(int n, int esq, int dir, int l, int r) {
145
         push(n, esq, dir);
146
         if (esq > r \mid | dir < l) {
147
              return 0;
148
         if (l \le esq \&\& dir \le r) {
149
              return tree[n].soma;
150
151
152
         int mid = (esq + dir) / 2;
         return query (le(n), esq, mid, l, r) + query (ri(n), mid + 1, dir, l, r);
153
154
155
    int query(int 1, int r) {
156
         return query (0, 0, n-1, 1, r);
157
158
159
     int main() {
160
         cin >> n;
161
         tree.assign(4 * n, Node());
162
         build(v);
163
    }
```

```
const int SEGMAX = 8e6 + 5; // should be Q * log(DIR-ESQ+1)
1
    \mathbf{const} \ 11 \ \mathrm{ESQ} = 0 \,, \ \mathrm{DIR} = 1 \mathrm{e}9 \,+\, 7;
 2
 3
    struct seg {
 4
 5
          ll tree [SEGMAX];
          int R[SEGMAX], L[SEGMAX], ptr = 2; // 0 is NULL; 1 is First Root
 6
7
          ll op(ll a, ll b) {
 8
               return (a + b) \% MOD;
9
10
          int le(int i) {
11
                if (L[i] = 0) {
12
                     L[i] = ptr++;
13
14
               return L[i];
15
          int ri(int i) {
16
17
                if (R[i] = 0) {
18
                    R[i] = ptr++;
19
20
               return R[i];
21
          ll query(ll l, ll r, int n = 1, ll esq = ESQ, ll dir = DIR) {
22
23
                if (r < esq | | dir < 1) {
24
                     return 0;
25
                if \hspace{0.1cm} (\hspace{0.1cm} l\hspace{0.1cm} <=\hspace{0.1cm} esq \hspace{0.1cm} \& \hspace{0.1cm} dir \hspace{0.1cm} <=\hspace{0.1cm} r\hspace{0.1cm} ) \hspace{0.1cm} \{
26
27
                     return tree[n];
28
29
                11 \quad \text{mid} = (\text{esq} + \text{dir}) / 2;
30
               return op (query (1, r, le(n), esq, mid),
31
                             query(l, r, ri(n), mid + 1, dir));
32
33
          void update(ll x, ll v, int n = 1, ll esq = ESQ, ll dir = DIR) {
34
                if (esq = dir) {
35
                     tree[n] = (tree[n] + v) \% MOD;
36
                } else {}
37
                     11 \quad \text{mid} = (\text{esq} + \text{dir}) / 2;
38
                     \mathbf{if} \ (\mathbf{x} \leq \mathbf{mid}) \ \{
39
                          update(x, v, le(n), esq, mid);
40
                     } else {}
41
                          update(x, v, ri(n), mid + 1, dir);
42
43
                     tree[n] = op(tree[le(n)], tree[ri(n)]);
44
               }
45
          }
46
    };
```

```
const int MAX = 2505;
int n, m, mat[MAX][MAX], tree[4 * MAX][4 * MAX];

int le(int x) {
   return 2 * x + 1;
}
int ri(int x) {
   return 2 * x + 2;
}
```

```
11
12
    void build_y(int nx, int lx, int rx, int ny, int ly, int ry) {
13
        if (ly = ry) {
             if (lx = rx) {
14
15
                 tree[nx][ny] = mat[lx][ly];
16
             } else {}
                 tree[nx][ny] = tree[le(nx)][ny] + tree[ri(nx)][ny];
17
18
19
        } else {
20
             int my = (1y + ry) / 2;
             build\_y\,(\,nx\,,\ lx\,\,,\ rx\,\,,\ le\,(\,ny\,)\,\,,\ ly\,\,,\ my)\,\,;
21
22
             build_y(nx, lx, rx, ri(ny), my + 1, ry);
23
             tree[nx][ny] = tree[nx][le(ny)] + tree[nx][ri(ny)];
24
25
26
    void build_x(int nx, int lx, int rx) {
27
        if (lx != rx) {
28
             int mx = (lx + rx) / 2;
             build x(le(nx), lx, mx);
29
30
             build x(ri(nx), mx + 1, rx);
31
32
        build y(nx, lx, rx, 0, 0, m-1);
33
34
    void build() {
35
        build_x(0, 0, n - 1);
36
37
    void update_y(int nx, int lx, int rx, int ny, int ly, int ry, int x, int y,
38
39
                   int v) {
        if (ly == ry) {
40
41
             if (lx = rx) {
42
                 tree[nx][ny] = v;
43
             } else {
                 tree[nx][ny] = tree[le(nx)][ny] + tree[ri(nx)][ny];
44
45
46
        } else {
47
             \mathbf{int} \ \mathbf{my} = (1\mathbf{y} + \mathbf{ry}) \ / \ 2;
48
             if (y \le my) 
49
                 update_y(nx, lx, rx, le(ny), ly, my, x, y, v);
50
             } else {}
                 update y(nx, lx, rx, ri(ny), my + 1, ry, x, y, v);
51
52
53
             tree[nx][ny] = tree[nx][le(ny)] + tree[nx][ri(ny)];
54
55
56
    void update x(int nx, int lx, int rx, int x, int y, int v) {
57
        if (lx != rx) {
             \mathbf{int} \ \mathbf{mx} = (1\mathbf{x} + \mathbf{rx}) \ / \ 2;
58
             if (x \ll mx) {
59
60
                 update_x(le(nx), lx, mx, x, y, v);
61
             } else {
62
                 update x(ri(nx), mx + 1, rx, x, y, v);
63
64
65
        update y(nx, lx, rx, 0, 0, m-1, x, y, v);
66
    void update(int x, int y, int v) {
67
        update x(0, 0, n - 1, x, y, v);
68
69
70
   int sum_y(int nx, int ny, int ly, int ry, int qly, int qry) {
```

```
72
         if (ry < qly \mid | ly > qry) {
73
              return 0;
74
         if (qly <= ly && ry <= qry) {
75
76
              return tree [nx][ny];
77
78
         \mathbf{int} \ \mathbf{my} = (1\mathbf{y} + \mathbf{ry}) \ / \ 2;
79
         return sum_y(nx, le(ny), ly, my, qly, qry) +
80
                  sum_y(nx, ri(ny), my + 1, ry, qly, qry);
81
    int sum x(int nx, int lx, int rx, int qlx, int qrx, int qly, int qry) {
82
83
         if (rx < qlx \mid | lx > qrx) {
84
              return 0;
85
86
         if (qlx \ll lx \ll rx \ll qrx) 
              return sum y(nx, 0, n-1, qly, qry);
87
88
89
         \mathbf{int} \ \mathbf{mx} = (1\mathbf{x} + \mathbf{rx}) \ / \ 2;
         {\bf return} \;\; sum \;\; x(\; le\; (\; nx\;)\;,\;\; lx\;,\;\; mx,\;\; qlx\;,\;\; qrx\;,\;\; qly\;,\;\; qry\;) \;\; +
90
91
                  sum x(ri(nx), mx + 1, rx, qlx, qrx, qly, qry);
92
93
    int sum(int lx, int rx, int ly, int ry) {
94
         return sum x(0, 0, n-1, lx, rx, ly, ry);
95
    }
```

```
1
   namespace seg {
2
        const int MAX = 2e5 + 5;
3
        int n;
4
        11 \text{ tree} [4 * MAX];
5
        11 merge(11 a, 11 b) {
6
            return a + b;
7
8
        int le(int n) {
9
            return 2 * n + 1;
10
11
        int ri(int n) {
12
            return 2 * n + 2;
13
14
        void build(int n, int esq, int dir, const vector<ll> &v) {
15
            if (esq = dir) {
16
                 tree[n] = v[esq];
17
            } else {}
18
                 int mid = (esq + dir) / 2;
19
                 build(le(n), esq, mid, v);
20
                 build (ri(n), mid + 1, dir, v);
21
                 tree[n] = merge(tree[le(n)], tree[ri(n)]);
22
            }
23
24
        void build (const vector < ll > &v) {
25
            n = v.size();
26
            build (0, 0, n - 1, v);
27
28
        ll query(int n, int esq, int dir, int l, int r) {
29
            if (esq > r | | dir < 1) {
30
                 return 0;
31
32
            if (l \le esq \&\& dir \le r)  {
33
                 return tree[n];
34
35
            int mid = (esq + dir) / 2;
```

```
36
             return merge (query (le (n), esq, mid, l, r),
37
                            query(ri(n), mid + 1, dir, l, r));
38
39
        11 query(int 1, int r) {
             return query (0, 0, n - 1, 1, r);
40
41
        void update(int n, int esq, int dir, int x, ll v) {
42
43
             if (esq > x \mid | dir < x) {
44
                 return;
45
             if (esq = dir) {
46
47
                  tree[n] = v;
             } else {
48
49
                 int mid = (esq + dir) / 2;
50
                  \mathbf{if} \ (\mathbf{x} \leq \mathbf{mid}) \ \{
51
                      update(le(n), esq, mid, x, v);
52
                  } else {}
                      update(ri(n), mid + 1, dir, x, v);
53
54
55
                  tree[n] = merge(tree[le(n)], tree[ri(n)]);
56
             }
57
58
        void update(int x, ll v) {
             update(0, 0, n - 1, x, v);
59
60
61
```

```
namespace seg {
1
2
        const int MAX = 1e5 + 5;
 3
        int n;
 4
        11 \text{ tree} [4 * MAX];
        ll merge(ll a, ll b) {
 5
 6
             return max(a, b);
 7
 8
        int le(int n) {
 9
             return 2 * n + 1;
10
        int ri(int n) {
11
12
             return 2 * n + 2;
13
        void build (int n, int esq, int dir, const vector < ll > &v) {
14
             if (esq = dir) {
15
16
                  tree[n] = v[esq];
             } else {
17
18
                  int mid = (esq + dir) / 2;
                  build\left(\,l\,e\left(\,n\,\right)\,,\ esq\;,\ mid\,,\ v\,\right);
19
20
                  build(ri(n), mid + 1, dir, v);
                  tree[n] = merge(tree[le(n)], tree[ri(n)]);
21
22
             }
23
24
        void build(const vector<ll> &v) {
25
             n = v.size();
26
             build (0, 0, n - 1, v);
27
         // find fist index greater than k in [l, r]
28
29
        ll query(int n, int esq, int dir, int l, int r, ll k) {
             if (esq > r || dir < l) {
30
                  \mathbf{return} \ -1;
31
32
             if (1 \le esq \&\& dir \le r)  {
33
```

```
34
                  if (tree[n] < k) {
35
                       return -1;
36
                  while (esq != dir) {
37
38
                       int mid = (esq + dir) / 2;
39
                       if (tree[le(n)] >= k) {
40
                            n = le(n), dir = mid;
41
                       } else {
42
                            n = ri(n), esq = mid + 1;
43
44
45
                  return esq;
46
47
             int mid = (esq + dir) / 2;
             int res = query(le(n), esq, mid, l, r, k);
48
49
              if (res != -1) {
50
                  return res;
51
52
             return query (ri(n), mid + 1, dir, l, r, k);
53
54
         ll query(int l, int r, ll k) {
55
             \textbf{return} \ \ query (0\,,\ 0\,,\ n\,-\,1\,,\ l\,,\ r\,,\ k)\,;
56
57
         void update(int n, int esq, int dir, int x, ll v) {
58
              if (esq > x \mid | dir < x) {
59
                  return;
60
61
              if (esq = dir) {
62
                  tree[n] = v;
63
              } else {
64
                  int mid = (esq + dir) / 2;
65
                  \mathbf{if} \ (x <= \ \mathrm{mid}\,) \ \{
                       update\left(\,l\,e\,(\,n\,)\;,\;\;esq\;,\;\;mid\,,\;\;x\,,\;\;v\,\right);
66
67
                  } else {
68
                       update(ri(n), mid + 1, dir, x, v);
69
70
                  tree[n] = merge(tree[le(n)], tree[ri(n)]);
71
             }
72
73
         void update(int x, ll v) {
74
             update(0, 0, n - 1, x, v);
75
         }
76
```

```
1
   struct SegTree {
2
        int n;
3
        vector<int> tree;
4
5
        SegTree(int n) : n(n) {
6
            tree.assign(4 * n, 0);
7
        }
8
9
        int le(int n) {
10
            return 2 * n + 1;
11
12
        int ri(int n) {
            return 2 * n + 2;
13
14
15
16
        int query (int n, int esq, int dir, int l, int r) {
```

```
17
             if (esq > r | | dir < 1) {
18
                 return 0;
19
20
             if (1 \le esq \&\& dir \le r)  {
21
                 return tree[n];
22
23
             int mid = (esq + dir) / 2;
24
             return max(query(le(n), esq, mid, l, r),
25
                         query(ri(n), mid + 1, dir, l, r));
26
        int query(int 1, int r) {
27
28
             return query (0, 0, n-1, 1, r);
29
30
        void update(int n, int esq, int dir, int x, int v) {
31
32
             if (esq > x \mid | dir < x) {
33
                 return;
34
35
             if (esq = dir) {
36
                 tree[n] = v;
             } else {
37
38
                 int mid = (esq + dir) / 2;
39
                 \mathbf{if} \ (\mathbf{x} \leq \mathbf{mid}) \ \{
40
                      update(le(n), esq, mid, x, v);
41
                 } else {}
                      update(ri(n), mid + 1, dir, x, v);
42
43
                 tree[n] = max(tree[le(n)], tree[ri(n)]);
44
45
             }
46
47
        void update(int x, int v) {
48
             update(0, 0, n-1, x, v);
49
        }
    };
50
```

```
1
    namespace seg {
 2
         const int MAX = 1e5 + 5;
 3
         struct node {
              ll pref, suff, sum, best;
 4
 5
         };
 6
         node new node(11 v) {
 7
             return node\{v, v, v, v\};
 8
 9
         const node NEUTRAL = \{0, 0, 0, 0\};
10
         node tree [4 * MAX];
11
         node merge (node a, node b) {
12
              11 \text{ pref} = \max(a.\text{pref}, a.\text{sum} + b.\text{pref});
              11 \quad suff = max(b.suff, b.sum + a.suff);
13
14
              11 \text{ sum} = a.\text{sum} + b.\text{sum};
15
             11 best = max(a.suff + b.pref, max(a.best, b.best));
             return node{pref, suff, sum, best};
16
         }
17
18
19
         int n;
20
         int le(int n) {
21
             return 2 * n + 1;
22
23
         int ri(int n) {
24
             return 2 * n + 2;
25
```

```
26
        void build (int n, int esq, int dir, const vector < ll > &v) {
27
             if (esq = dir) {
                  tree[n] = new_node(v[esq]);
28
29
             } else {}
30
                  int mid = (esq + dir) / 2;
31
                  build(le(n), esq, mid, v);
32
                  build(ri(n), mid + 1, dir, v);
33
                  tree[n] = merge(tree[le(n)], tree[ri(n)]);
34
             }
35
36
         void build(const vector<ll> &v) {
37
             n = v.size();
38
             build (0, 0, n - 1, v);
39
40
        node query (int n, int esq, int dir, int l, int r) {
41
             if (esq > r | | dir < 1) {
42
                  return NEUTRAL;
43
             if (1 \le esq \&\& dir \le r) {
44
45
                  return tree[n];
46
47
             int mid = (esq + dir) / 2;
48
             return merge (query (le (n), esq, mid, l, r),
                             query(ri(n), mid + 1, dir, l, r));
49
50
         11 query(int l, int r) {
51
             \textbf{return} \ \operatorname{query} \left( 0 \,, \ 0 \,, \ n \,-\, 1 \,, \ l \,, \ r \, \right) . \, best \,;
52
53
54
        void update(int n, int esq, int dir, int x, ll v) {
55
             if (esq > x \mid | dir < x) {
56
                  return;
57
58
             if (esq = dir) {
59
                  tree[n] = new node(v);
             } else {
60
61
                  int mid = (esq + dir) / 2;
62
                  \mathbf{if} \ (\mathbf{x} \leq \mathbf{mid}) \ \{
63
                       update(le(n), esq, mid, x, v);
64
                  } else {}
65
                       update(ri(n), mid + 1, dir, x, v);
66
67
                  tree[n] = merge(tree[le(n)], tree[ri(n)]);
68
             }
69
70
        void update(int x, ll v) {
71
             update(0, 0, n - 1, x, v);
72
73
```

```
namespace seg {
1
2
         const int MAX = 2e5 + 5;
3
         const ll NEUTRAL = 0; // merge(a, neutral) = a
 4
         11 \text{ merge}(11 \text{ a}, 11 \text{ b}) 
 5
              return a + b;
 6
 7
         int sz; // size of the array
8
         11 \operatorname{tree} [4 * MAX], \operatorname{lazy} [4 * MAX];
9
         int le(int n) {
10
              return 2 * n + 1;
11
```

```
int ri(int n) {
12
            \mathbf{return} \ 2 \ * \ n \ + \ 2;
13
14
15
        void push(int n, int esq, int dir) {
16
            if (lazy[n] == 0)  {
17
                return;
18
19
            tree[n] += lazy[n] * (dir - esq + 1);
20
            if (esq != dir) {
21
                 lazy[le(n)] += lazy[n];
                 lazy[ri(n)] += lazy[n];
22
23
            lazy[n] = 0;
24
25
        void build (span < const ll > v, int n, int esq, int dir) {
26
            if (esq = dir) {
27
28
                 tree[n] = v[esq];
29
            } else {
                 int mid = (esq + dir) / 2;
30
31
                 build(v, le(n), esq, mid);
32
                 build(v, ri(n), mid + 1, dir);
33
                 tree[n] = merge(tree[le(n)], tree[ri(n)]);
34
35
36
        void build (span < const ll > v) {
37
            sz = v. size();
38
            build (v, 0, 0, sz - 1);
39
        ll query(int l, int r, int n = 0, int esq = 0, int dir = sz - 1) {
40
41
            push(n, esq, dir);
42
            if (esq > r \mid | dir < 1) {
43
                 return NEUTRAL;
44
            if (l \le esq \&\& dir \le r)  {
45
46
                 return tree[n];
47
48
            int mid = (esq + dir) / 2;
49
            return merge(query(l, r, le(n), esq, mid),
50
                           query(l, r, ri(n), mid + 1, dir));
51
        void update(int 1, int r, 11 v, int n = 0, int eq = 0, int dir = sz - 1) {
52
53
            push(n, esq, dir);
54
            if (esq > r \mid | dir < l) {
55
                 return;
56
57
            if (1 \le esq \&\& dir \le r)  {
58
                 lazy[n] += v;
                 push(n, esq, dir);
59
60
            } else {
61
                 int mid = (esq + dir) / 2;
                 update(1, r, v, le(n), esq, mid);
62
63
                 update(l, r, v, ri(n), mid + 1, dir);
64
                 tree[n] = merge(tree[le(n)], tree[ri(n)]);
65
            }
66
67
```

```
namespace seg {
    const 11 ESQ = 0, DIR = 1e9 + 7;
    struct node {
```

```
4
             11 \ v = 0;
5
             node *l = NULL, *r = NULL;
6
             node() {
7
8
             node(11 v) : v(v) {
9
10
             node(node *l, node *r) : l(l), r(r) {
11
                  v = 1 -> v + r -> v;
12
13
             \mathbf{void} \ \operatorname{apply}\left(\right) \ \{
                  if (1 = NULL) {
14
15
                      l = new node();
16
17
                  if (r == NULL) {
18
                      r = new node();
19
20
             }
21
        };
22
        vector<node *> roots;
23
        void build() {
24
             roots.push_back(new node());
25
26
        void push(node *n, int esq, int dir) {
27
             if (esq != dir) {
28
                  n\rightarrow apply();
29
             }
30
31
         // sum v on x
32
        node *update(node *n, int esq, int dir, int x, int v) {
33
             push(n, esq, dir);
34
             if (esq = dir) 
35
                  \textbf{return new} \ \operatorname{node}(\operatorname{n-\!\!>\!} v \ + \ v) \ ;
36
37
             int mid = (esq + dir) / 2;
             if (x \le mid) {
38
39
                  return new node(update(n->1, esq, mid, x, v), n->r);
40
             } else {
41
                  return new node (n->l, update(n->r, mid + 1, dir, x, v));
42
             }
43
        int update(int root, int pos, int val) {
44
             node *novo = update(roots[root], ESQ, DIR, pos, val);
45
46
             roots.push back(novo);
47
             return roots.size() -1;
48
49
         // sum in [L, R]
         ll query(node *n, int esq, int dir, int l, int r) {
50
51
             push(n, esq, dir);
52
             if (esq > r || dir < 1) {
53
                  return 0;
54
55
             if (1 \le esq \&\& dir \le r) {
56
                  return n\rightarrow v;
57
58
             int mid = (esq + dir) / 2;
             return query (n->l, esq, mid, l, r) + query (n->r, mid + 1, dir, l, r);
59
60
         11 query(int root, int 1, int r) {
61
62
             return query (roots [root], ESQ, DIR, 1, r);
63
64
         // kth min number in [L, R] (l_root can not be 0)
```

1.5. OPERATION STACK 31

```
int kth(node *L, node *R, int esq, int dir, int k) {
65
66
                     push(L, esq, dir);
                     push(R, esq, dir);
67
68
                     if (esq = dir) {
69
                            return esq;
70
71
                     int mid = (esq + dir) / 2;
                     int cont = R -> l -> v - L -> l -> v;
72
                     if (cont >= k) {
73
74
                            return kth(L\rightarrow l, R\rightarrow l, esq, mid, k);
75
                     } else {
                            return kth(L\rightarrow r, R\rightarrow r, mid + 1, dir, k - cont);
76
77
78
79
              int kth(int 1 root, int r root, int k) {
                     \textbf{return} \hspace{0.2cm} kth \hspace{0.05cm} (\hspace{0.1cm} roots \hspace{0.1cm} [\hspace{0.1cm} l\_root \hspace{0.1cm} - \hspace{0.1cm} 1\hspace{0.1cm}] \hspace{0.1cm}, \hspace{0.1cm} roots \hspace{0.1cm} [\hspace{0.1cm} r\_root \hspace{0.1cm}] \hspace{0.1cm}, \hspace{0.1cm} ESQ, \hspace{0.1cm} DIR, \hspace{0.1cm} k) \hspace{0.1cm};
80
81
82
      };
```

1.5 Operation Stack

Pilha que armazena o resultado do operatório dos itens.

- * Complexidade de tempo (Push): O(1)
- * Complexidade de tempo (Pop): O(1)

```
1
   template <typename T> struct op stack {
 2
        stack < pair < T, T >> st;
 3
        T result;
        T op (T a, T b) {
 4
            return a; // TODO: op to compare
 5
 6
            // min(a, b);
 7
            // gcd(a, b);
 8
            // lca(a, b);
 9
10
        T get() {
            return result = st.top().second;
11
12
13
        void add(T element) {
            result = st.empty() ? element : op(element, st.top().second);
14
            st.push({element, result});
15
16
        void remove() {
17
            T removed element = st.top().first;
18
19
            st.pop();
20
        }
   };
```

1.6 Fenwick Tree

Consultas e atualizações de soma em intervalo.

O vetor precisa obrigatoriamente estar indexado em 1.

- * Complexidade de tempo (Pre-processamento): O(N * log(N))
- * Complexidade de tempo (Consulta em intervalo): O(log(N))
- * Complexidade de tempo (Update em ponto): O(log(N))
- * Complexidade de espaço: 2 * N = O(N)

```
struct FenwickTree {
 1
 2
        int n;
3
        vector<int> tree;
        FenwickTree(int n) : n(n) {
 4
 5
             tree.assign(n, 0);
 6
 7
        FenwickTree(vector < int > v) : FenwickTree(v.size()) {
 8
             for (size t i = 1; i < v.size(); i++) {
 9
                  update(i, v[i]);
10
             }
11
        int lsONE(int x) {
12
13
             return x \& (-x);
14
        int query(int x) {
15
16
             int soma = 0;
             for (; x > 0; x = lsONE(x)) {
17
                 soma += tree[x];
18
19
20
             return soma;
21
22
        int query(int 1, int r) {
23
             return query (r) - query (l-1);
24
        void update(int x, int v) {
25
             \mathbf{for} \ (; \ x < n; \ x \leftarrow lsONE(x)) \ \{
26
27
                  tree[x] += v;
28
29
        }
30
    };
```

1.7 LiChao Tree

Uma árvore de Funções. Retorna o F(x) máximo em um ponto X.

Para retornar o minimo deve-se inserir o negativo da função e pegar o negativo do resultado.

Está pronta para usar função linear do tipo F(x) = mx + b.

Funciona para funções com a seguinte propriedade, sejam duas funções f(x) e g(x), uma vez que f(x) ganha/perde de g(x), f(x) vai continuar ganhando/perdendo de g(x),

ou seja f(x) e g(x) se intersectam apenas uma vez.

1.7. LICHAO TREE

- * Complexidade de consulta : O(log(N))
- * Complexidade de update: O(log(N))

LiChao Tree Sparse

O mesmo que a superior, no entanto suporta consultas com $|x| \le 1e18$.

- * Complexidade de consulta : O(log(tamanho do intervalo))
- * Complexidade de update: O(log(tamanho do intervalo))

```
typedef long long ll;
 1
 2
    const 11 MAXN = 1e5 + 5, INF = 1e18 + 9;
 3
 4
 5
    struct Line {
 6
         11 a, b = -INF;
7
         ll operator()(ll x) {
 8
              return a * x + b;
9
10
    } tree [4 * MAXN];
11
12
    int le(int n) {
13
         return 2 * n + 1;
14
    int ri(int n) {
15
16
         return 2 * n + 2;
17
18
    {f void} insert (Line line, {f int} n = 0, {f int} l = 0, {f int} r = MAXN) {
19
20
         int \ mid = (1 + r) / 2;
21
         bool bl = line(l) < tree[n](l);
22
         bool bm = line(mid) < tree[n](mid);
23
         if (!bm) {
24
              swap(tree[n], line);
25
         if (1 == r) {
26
27
              return;
28
         if (bl != bm) {
29
30
              insert (line, le(n), l, mid);
31
32
              insert(line, ri(n), mid + 1, r);
33
34
35
36
    ll query(\mathbf{int} \ \mathbf{x}, \mathbf{int} \ \mathbf{n} = 0, \mathbf{int} \ \mathbf{l} = 0, \mathbf{int} \ \mathbf{r} = \mathbf{MAXN}) {
37
         if (l = r) {
              return tree [n](x);
38
39
         int \ mid = (1 + r) / 2;
40
         if (x < mid) 
41
              return max(tree[n](x), query(x, le(n), l, mid));
42
43
              return \max(\text{tree}[n](x), \text{query}(x, \text{ri}(n), \text{mid} + 1, \text{r}));
44
45
46
```

```
{\bf const} \ \ {\bf 11} \ \ {\bf MAXN} = \ {\bf 1e5} \ + \ {\bf 5} \, , \ \ {\bf INF} \ = \ {\bf 1e18} \ + \ {\bf 9} \, , \ \ {\bf MAXR} = \ {\bf 1e18} \, ;
 4
 5
    struct Line {
 6
         ll \ a, \ b = -INF;
         \_\_int128 operator()(ll x) {
7
8
             return (\_int128)a * x + b;
9
    } tree [4 * MAXN];
10
    int idx = 0, L[4 * MAXN], R[4 * MAXN];
11
12
    int le(int n) {
13
         if (!L[n]) {
14
15
              L[n] = ++idx;
16
17
         return L[n];
18
19
    int ri(int n) {
20
         if (!R[n]) {
21
              R[n] = ++idx;
22
23
         return R[n];
24
25
    {f void} insert (Line line, {f int} n = 0, ll l = -MAXR, ll r = MAXR) {
26
27
         11 \mod = (1 + r) / 2;
28
         bool bl = line(1) < tree[n](1);
         \mathbf{bool} \ bm = \ line(mid) < \ tree[n](mid);
29
30
         if (!bm) {
31
              swap(tree[n], line);
32
33
         if (1 = r) {
34
              return;
35
36
         if (bl != bm) {
37
              insert(line, le(n), l, mid);
38
         } else {}
39
              insert(line, ri(n), mid + 1, r);
40
         }
41
    }
42
     __int128 query(int x, int n=0, ll l=-\!\!M\!A\!X\!R\!, ll r=M\!A\!X\!R\!) {
43
44
         if (1 = r)  {
45
              return tree [n](x);
46
47
         11 \mod = (1 + r) / 2;
48
         if (x < mid) 
49
              return max(tree[n](x), query(x, le(n), l, mid));
50
         } else {
              return max(tree[n](x), query(x, ri(n), mid + 1, r));
51
52
         }
53
```

1.8 KD Fenwick Tree

Fenwick Tree em K dimensoes.

1.9. ORDERED SET 35

```
* Complexidade de update: O(log^k(N)).
```

* Complexidade de query: $O(log^k(N))$.

```
const int MAX = 10;
   11 tree [MAX] [MAX] [MAX] [MAX] [MAX] [MAX]
2
 3
           [MAX]; // insira a quantidade necessaria de dimensoes
 4
5
   int lsONE(int x) {
        return x \& (-x);
 6
7
8
9
    11 query (vector<int> s, int pos) {
10
        11 \text{ sum} = 0;
        while (s[pos] > 0) {
11
12
            if (pos < s.size() - 1)  {
13
                sum += query(s, pos + 1);
            } else {
14
                sum += tree[s[0]][s[1]][s[2]][s[3]][s[4]][s[5]][s[6]][s[7]];
15
16
            s[pos] = lsONE(s[pos]);
17
18
19
        return sum;
20
21
22
   void update(vector<int> s, int pos, int v) {
23
        while (s[pos] < MAX + 1) {
24
            if (pos < s.size() - 1) {
25
                update(s, pos + 1, v);
26
            } else {
                 tree[s[0]][s[1]][s[2]][s[3]][s[4]][s[5]][s[6]][s[7]] += v;
27
28
29
            s[pos] += lsONE(s[pos]);
30
31
        }
32
```

1.9 Ordered Set

Set com operações de busca por ordem e índice.

Pode ser usado como um set normal, a principal diferença são duas novas operações possíveis:

- $find_b y_o r der(x)$: retorna o item na posição x.
- $order_o f_k ey(k)$: retorna o número de elementos menores que k. (o índice de k)

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/trie_policy.hpp>

using namespace __gnu_pbds;
typedef tree<int, null_type, less<int>, rb_tree_tag,
tree_order_statistics_node_update> ordered_set;
```

```
ordered set X;
   X. insert(1);
   X.insert(2);
10
   |X.insert(4);
   X.insert(8);
11
12
   |X. insert (16);
13
    cout \ll X. find by order(1) \ll endl; // 2
14
    cout << *X. find by order (2) << endl; // 4
15
    cout <<*X. find by order (4)<<endl; // 16
16
    cout << (end(X) = X.find by order(6)) << endl; // true
17
19
    cout \ll X.order\_of\_key(-5) \ll endl;
20
    cout << X.order_of_key(1) << endl;
21
    cout \ll X.order\_of\_key(3) \ll endl;
22
    cout \ll X.order of key(4) \ll endl;
23
    cout \ll X.order of key (400) \ll endl; // 5
```

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/trie_policy.hpp>

using namespace __gnu_pbds;

template <typename T>
typedef tree<T, null_type, less<T>, rb_tree_tag,

tree_order_statistics_node_update>
ordered_set;
```

1.10 MergeSort Tree

Árvore que resolve queries que envolvam ordenação em range.

- Complexidade de construção : O(N * log(N))
- Complexidade de consulta : $O(log^2(N))$

MergeSort Tree com Update Pontual

Resolve Queries que envolvam ordenação em Range. (COM UPDATE)

1 segundo para vetores de tamanho $3*10^5$

- Complexidade de construção : $O(N * log^2(N))$
- Complexidade de consulta : $O(log^2(N))$
- Complexidade de update : $O(log^2(N))$

```
#include <ext/pb ds/assoc container.hpp>
 1
 2
    #include <ext/pb ds/tree policy.hpp>
 3
 4
    using namespace __gnu_pbds;
 5
 6
    namespace mergesort {
         typedef tree<ii , null_type , less<ii>>, rb_tree_tag ,
 7
 8
                         tree_order_statistics_node_update>
 9
              ordered set;
10
         const int MAX = 1e5 + 5;
11
12
13
         ordered set mgtree [4 * MAX];
14
         vi values;
15
         int le(int n) {
16
17
              return 2 * n + 1;
18
19
         int ri(int n) {
20
             return 2 * n + 2;
21
22
         ordered set join (ordered set set 1, ordered set set r) {
23
              \mathbf{for} \ (\mathbf{auto} \ \mathbf{v} \ : \ \mathbf{set} \mathbf{\_r}) \ \{
24
25
                   set_l.insert(v);
26
27
             return set 1;
28
         }
29
30
         void build(int n, int esq, int dir) {
31
              if (esq = dir) {
32
                   mgtree[n].insert(ii(values[esq], esq));
33
              } else {
34
                   int mid = (esq + dir) / 2;
                   build\left(\,l\,e\left(\,n\,\right)\,,\ esq\,,\ mid\,\right);
35
36
                   build(ri(n), mid + 1, dir);
37
                   mgtree[n] = join(mgtree[le(n)], mgtree[ri(n)]);
              }
38
39
40
         void build (vi &v) {
41
             n = v.size();
42
              values = v;
43
              build (0, 0, n-1);
44
         }
45
         int less (int n, int esq, int dir, int l, int r, int k) {
46
47
              if (esq > r | | dir < 1) {
48
                  return 0;
49
50
              if (1 \le esq \&\& dir \le r) 
51
                   return mgtree [n]. order_of_key(\{k, -1\});
52
              int mid = (esq + dir) / 2;
53
              {\bf return} \ less \, (\, le \, (n) \; , \; esq \; , \; mid \, , \; \, l \; , \; \, r \; , \; \, k) \; \, + \; \,
54
55
                      less(ri(n), mid + 1, dir, l, r, k);
56
         int less (int l, int r, int k) {
57
58
              return less (0, 0, n-1, 1, r, k);
59
         }
60
```

```
61
                      void update(int n, int esq, int dir, int x, int v) {
 62
                                   \mathbf{if} \ (\operatorname{esq} > x \ || \ \operatorname{dir} < x) \ \{
 63
                                             return;
 64
                                  if (esq = dir) {
 65
 66
                                             mgtree[n].clear(), mgtree[n].insert(ii(v, x));
 67
                                  } else {
 68
                                             int mid = (esq + dir) / 2;
 69
                                              if (x \le mid) 
 70
                                                         update(le(n), esq, mid, x, v);
 71
                                              } else {
 72
                                                         update(ri(n), mid + 1, dir, x, v);
 73
 74
                                             mgtree[n].erase(ii(values[x], x));
 75
                                             mgtree | n | . insert (ii (v, x));
 76
                                  }
 77
                       }
 78
                      void update(int x, int v) {
 79
                                  update(0, 0, n - 1, x, v);
 80
                                   values[x] = v;
 81
 82
                              ordered set debug query(int n, int esq, int dir, int l, int r) {
 83
 84
                                           if (esq > r \mid \mid dir < 1) return ordered set();
 85
                                           if (1 \le esq \&\& dir \le r) return mgtree[n];
                                           int mid = (esq + dir) / 2;
 86
                                           return \ join (debug\_query (le(n), esq, mid, l, r), debug\_query (ri(n), esq, mid, l
 87
 88
                                          mid+1, dir, l, r));
 89
 90
                       // ordered set debug query(int l, int r) {return debug query(0, 0, n-1, l,
 91
                       // r);}
 92
 93
                               int greater (int n, int esq, int dir, int l, int r, int k) {
                                           if (esq > r \mid \mid dir < 1) return 0;
 94
 95
                                           if (1 \le esq \&\& dir \le r) return (r-l+1) - mgtree[n]. order of key(\{k, r\})
 96
                                           1e8); int mid = (esq + dir) / 2; return greater (le(n), esq, mid, l, l)
 97
                                          r, k) + greater(ri(n), mid+1, dir, l, r, k);
 98
 99
                       // int greater(int l, int r, int k) {return greater(0, 0, n-1, l, r, k);}
100
           };
```

```
namespace mergesort {
1
2
        const int MAX = 1e5 + 5;
3
4
5
        vi mgtree [4 * MAX];
6
7
        int le(int n) {
8
            return 2 * n + 1;
9
10
        int ri(int n) {
11
            return 2 * n + 2;
12
        }
13
14
        void build (int n, int esq, int dir, vi &v) {
15
            mgtree[n] = vi(dir - esq + 1, 0);
            if (esq = dir) {
16
17
                mgtree[n][0] = v[esq];
18
            } else {
19
                int mid = (esq + dir) / 2;
```

1.11. SPARSE TABLE 39

```
20
                build(le(n), esq, mid, v);
21
                build(ri(n), mid + 1, dir, v);
                merge (mgtree [le(n)].begin(),
22
23
                       mgtree[le(n)].end(),
24
                       mgtree[ri(n)].begin(),
25
                       mgtree[ri(n)].end(),
26
                       mgtree[n].begin());
27
            }
28
29
        void build(vi &v) {
30
            n = v.size();
31
            build (0, 0, n - 1, v);
32
33
34
        int less (int n, int esq, int dir, int l, int r, int k) {
35
            if (esq > r | | dir < 1) {
36
                return 0;
37
            if (1 \le esq \&\& dir \le r)  {
38
                return lower_bound(mgtree[n].begin(), mgtree[n].end(), k) -
39
40
                        mgtree[n].begin();
41
            int mid = (esq + dir) / 2;
42
43
            return less(le(n), esq, mid, l, r, k) +
44
                    less(ri(n), mid + 1, dir, l, r, k);
45
        int less(int l, int r, int k) {
46
            return less(0, 0, n-1, 1, r, k);
47
48
49
50
           vi debug query(int n, int esq, int dir, int l, int r) {
               if (esq > r \mid \mid dir < 1) return vi();
51
52
               if (1 \le esq \&\& dir \le r) return mgtree[n];
               int mid = (esq + dir) / 2;
53
               auto vl = debug_query(le(n), esq, mid, l, r);
54
55
               auto vr = debug_query(ri(n), mid+1, dir, l, r);
               vi ans = vi(vl.size() + vr.size());
56
               merge(vl.begin(), vl.end(),
57
58
                   vr.begin(), vr.end(),
59
                   ans.begin());
               return ans;
60
61
        // vi debug query(int l, int r) {return debug query(0, 0, n-1, 1, r);}
62
63
   };
```

1.11 Sparse Table

Consultas em intervalos com complexidade de tempo O(1).

1.11.1 Disjoint Sparse Table

Resolve query de range para qualquer operação associativa em O(1).

Pré-processamento em $O(n \log n)$.

```
1
   struct dst {
2
        const int neutral = 1;
3
   \#define comp(a, b) (a | b)
4
        vector < vector < int >> t;
5
        dst(vector < int > v) {
6
            int n, k, sz = v.size();
7
            for (n = 1, k = 0; n < sz; n <<= 1, k++)
8
9
            t.assign(k, vector < int > (n));
10
            for (int i = 0; i < n; i++) {
                t[0][i] = i < sz ? v[i] : neutral;
11
12
            for (int j = 0, len = 1; j \le k; j++, len \iff 1) {
13
14
                for (int s = len; s < n; s += (len << 1)) {
15
                    t[j][s] = v[s];
16
                    t[j][s-1] = v[s-1];
17
                    for (int i = 1; i < len; i++) {
                         t[j][s+i] = comp(t[j][s+i-1], v[s+i]);
18
                         t[j][s-1-i] = comp(v[s-1-i], t[j][s-i]);
19
                    }
20
                }
21
22
            }
23
        int query(int 1, int r) {
24
25
            if (1 = r)  {
                return t [0][r];
26
27
28
            int i = 31 - builtin clz(l^r);
29
            return comp(t[i][l], t[i][r]);
30
        }
31
   };
```

1.11.2 Sparse Table

Read in [English](README.en.md)

Responde consultas de maneira eficiente em um conjunto de dados estáticos.

Realiza um pré-processamento para diminuir o tempo de cada consulta.

- Complexidade de tempo (Pré-processamento): O(N * log(N))
- Complexidade de tempo (Consulta para operações sem sobreposição amigável): O(N * log(N))
- Complexidade de tempo (Consulta para operações com sobreposição amigável): O(1)
- Complexidade de espaço: O(N * log(N))

Exemplo de operações com sobreposição amigável: max(), min(), gcd(), f(x, y) = x

1.11. SPARSE TABLE 41

```
1
    struct SparseTable {
 2
        int n, e;
 3
        vector<vector<int>>> st;
 4
        SparseTable(vector < int > &v) : n(v.size()), e(floor(log2(n))) 
 5
             st.assign(e + 1, vector < int > (n));
             for (int i = 0; i < n; i++) {
 6
                 st[0][i] = v[i];
 7
 8
9
             for (int i = 1; i \le e; i++) {
10
                 for (int j = 0; j + (1 << i) <= n; j++) {
                      st[i][j] = min(st[i-1][j], st[i-1][j+(1 << (i-1))]);
11
12
                 }
13
             }
14
        // O(log(N)) Query for non overlap friendly operations
15
        int logquery(int l, int r) {
16
17
             int res = 2e9;
             for (int i = e; i >= 0; i---) {
18
19
                 if ((1 << i) <= r - l + 1) {
20
                      res = min(res, st[i][1]);
                      l \ +\!\! = \ 1 \ <\!\!< \ i \ ;
21
22
                 }
23
24
             return res;
25
26
        // O(1) Query for overlab friendly operations
27
        // \exp : \max(), \min(), \gcd(), f(x, y) = x
28
        int query(int 1, int r) {
             // if (l > r) return 2e9;
29
             int i = ilogb(r - l + 1);
30
31
             {\bf return} \ \min(\,st\,[\,i\,][\,l\,]\,,\ st\,[\,i\,][\,r\,-\,(1\,<<\,i\,i\,)\,\,+\,\,1]\,)\,;
32
        }
33
    };
```

Capítulo 2

Grafos

Matching

Algoritmos de Matching em grafos.

Stoer-Wagner minimum cut

Algortimo de Stoer-Wagner para encontrar o corte mínimo de um grafo.

LCA

Algoritmo de Lowest Common Ancestor usando EulerTour e Sparse Table

HLD

Técnica usada para otimizar a execução de operações em árvores.

Kruskal

Algoritimo para encontrar a MST (minimum spanning tree) de um grafo.

Bridge

Algoritmo que acha pontes utilizando uma dfs

Shortest Paths

Algoritmos para encontrar caminhos mínimos em grafos.

Binary Lifting

Usa uma sparse table para calcular o k-ésimo ancestral de u.

Fluxo

Conjunto de algoritmos para calcular o fluxo máximo em redes de fluxo.

Inverse Graph

Algoritmo que encontra as componentes conexas quando se é dado o grafo complemento.

2 SAT

Resolve problema do 2-SAT.

Graph Center

Encontra o centro e o diâmetro de um grafo

2.1 Matching

Algoritmos de Matching em grafos.

Resolve o problema de Matching para uma matriz A[n][m], onde $n \leq m$.

A implementação minimiza os custos, para maximizar basta multiplicar os pesos por -1.

A matriz de entrada precisa ser indexada em 1 !!!

O vetor result guarda os pares do matching.

Complexidade de tempo: $O(n^2 * m)$

```
1
    \mathbf{const} \ 11 \ INF = 1e18 + 18;
2
3
    vector<pair<int, int>> result;
    11 hungarian(int n, int m, vector<vector<int>>> &A) {
5
6
        vector < int > u(n + 1), v(m + 1), p(m + 1), way(m + 1);
7
        for (int i = 1; i <= n; i++) {
8
             p[0] = i;
9
             int j0 = 0;
10
             vector < int > minv(m + 1, INF);
11
             vector < char > used(m + 1, false);
             do {
12
13
                  used[j0] = true;
                  11 i0 = p[j0], delta = INF, j1;
14
15
                  for (int j = 1; j \le m; j++) {
16
                      if (!used[j]) {
17
                           int cur = A[i0][j] - u[i0] - v[j];
18
                           if (cur < minv[j]) 
19
                               \min [j] = cur, way[j] = j0;
20
21
                           if (minv[j] < delta) {
                                delta = minv[j], j1 = j;
22
23
24
                      }
25
26
                  for (int j = 0; j <= m; j++) {
27
                      if (used[j]) {
                           u\,[\,p\,[\,j\,\,]\,] \ +\!= \ delta \;, \; v\,[\,j\,\,] \; -\!= \; delta \;;
28
29
                      } else {
30
                           minv[j] -= delta;
31
32
33
                 j0 = j1;
             } while (p[j0] != 0);
34
35
             do {
36
                  int j1 = way[j0];
37
                 p[j0] = p[j1];
38
                 j0 = j1;
39
             } while (j0);
40
41
        for (int i = 1; i \le m; i++) {
42
             result.emplace back(p[i], i);
43
44
        return -v[0];
45
```

2.2. STOER-WAGNER 45

2.2 Stoer-Wagner

Algortimo de Stoer-Wagner para encontrar o corte mínimo de um grafo.

O algoritmo de Stoer-Wagner é um algoritmo para resolver o problema de corte mínimo em grafos não direcionados com pesos não negativos. A ideia essencial deste algoritmo é encolher o grafo mesclando os vértices mais intensos até que o grafo contenha apenas dois conjuntos de vértices combinados

Complexidade de tempo: $O(V^3)$

```
const int MAXN = 555, INF = 1e9 + 7;
 1
 2
 3
   int n, e, adj [MAXN] [MAXN];
 4
   vector<int> bestCut;
 5
   int mincut() {
 6
 7
        int bestCost = INF;
 8
        vector < int > v[MAXN];
 9
        for (int i = 0; i < n; i++) {
10
            v[i]. assign(1, i);
11
12
        int w[MAXN], sel;
13
        bool exist [MAXN], added [MAXN];
14
        memset(exist, true, sizeof(exist));
        for (int phase = 0; phase < n - 1; phase++) {
15
16
            memset(added, false, sizeof(added));
17
            memset(w, 0, sizeof(w));
            for (int j = 0, prev; j < n - phase; j++) {
18
19
                 sel = -1;
20
                 for (int i = 0; i < n; i++) {
                     if (exist[i] \&\& !added[i] \&\& (sel = -1 || w[i] > w[sel])) 
21
22
                         sel = i;
23
24
                 if (j = n - phase - 1) {
25
                     if (w[sel] < bestCost) {
26
27
                         bestCost = w[sel];
                         bestCut = v[sel];
28
29
30
                     v[prev].insert(v[prev].end(), v[sel].begin(), v[sel].end());
31
                     for (int i = 0; i < n; i++) {
                         adj[prev][i] = adj[i][prev] += adj[sel][i];
32
33
                     exist[sel] = false;
34
35
                 } else {}
36
                     added[sel] = true;
                     for (int i = 0; i < n; i++) {
37
                         w[i] += adj[sel][i];
38
39
40
                     prev = sel;
                }
41
            }
42
43
44
        return bestCost;
45
```

2.3 LCA

Algoritmo de Lowest Common Ancestor usando EulerTour e Sparse Table

Complexidade de tempo:

- O(Nlog(N)) Preprocessing
- O(1) Query LCA

Complexidade de espaço: O(Nlog(N))

```
#include <bits/stdc++.h>
 1
    using namespace std;
 3
   #define INF 1e9
   #define fi first
6
   #define se second
7
8
   typedef pair<int, int> ii;
9
10
    vector < int > tin, tout;
11
    vector < vector < int>> adj;
12
    vector<ii> prof;
13
    vector < vector < ii >> st;
14
15
   int n, timer;
16
17
    void SparseTable(vector<ii> &v) {
18
        int n = v.size();
19
        int e = floor(log2(n));
20
         st.assign(e + 1, vector < ii > (n));
21
         for (int i = 0; i < n; i++) {
             st[0][i] = v[i];
22
23
24
         for (int i = 1; i \le e; i++) {
             \mbox{for (int } j \ = \ 0; \ j \ + \ (1 << \ i ) <= \ n; \ j++) \ \{
25
                  st[i][j] = min(st[i-1][j], st[i-1][j+(1 << (i-1))]);
26
27
         }
28
29
    }
30
    void et_dfs(int u, int p, int h) {
31
         tin[u] = timer++;
32
33
         prof.emplace_back(h, u);
        \quad \textbf{for} \ (\textbf{int} \ v \ : \ \text{adj} \, [\, u \, ]\,) \ \{
34
35
             if (v != p) {
36
                  et dfs(v, u, h + 1);
37
                  prof.emplace back(h, u);
38
39
40
         tout[u] = timer++;
41
42
   | void build (int root = 0) {
43
```

```
44
         tin.assign(n, 0);
45
         tout.assign(n, 0);
         prof.clear();
46
47
         timer = 0;
         et\_dfs\left( \, root \,\, , \,\, root \,\, , \,\, 0 \right);
48
49
         SparseTable(prof);
50
    }
51
    int lca(int u, int v) {
52
53
        int 1 = tout[u], r = tin[v];
         if (l > r) {
54
55
             swap(l, r);
56
         int i = floor(log2(r - l + 1));
57
        return \min(st[i][1], st[i][r - (1 << i) + 1]).se;
58
59
60
61
    int main() {
62
         cin >> n;
63
64
         adj.assign(n, vector < int > (0));
65
         for (int i = 0; i < n - 1; i++) {
66
67
             int a, b;
68
             cin >> a >> b;
             adj[a].push_back(b);
69
70
             adj[b].push back(a);
71
         }
72
73
         build();
74
```

2.4 Heavy-Light Decomposition (hld.cpp)

Técnica usada para otimizar a execução de operações em árvores.

- Pré-Processamento: O(N)
- Range Query/Update: O(Log(N)) * O(Complexidade de query da estrutura)
- Point Query/Update: O(Complexidade de query da estrutura)
- LCA: O(Log(N))
- Subtree Query: O(Complexidade de query da estrutura)
- Complexidade de espaço: O(N)

```
6
             return max(a, b);
 7
         } // how to merge paths
        void dfs_sz(int u, int p = -1) {
 8
             sz[u] = 1;
 9
10
             for (int &v : adj[u]) {
11
                  if (v != p) {
12
                       dfs_sz(v, u);
                       sz[u] += sz[v];
13
                       if (sz[v] > sz[adj[u][0]] || adj[u][0] == p) {
14
15
                            swap(v, adj[u][0]);
16
17
                  }
18
             }
19
20
        void dfs hld(int u, int p = -1) {
21
             pos[u] = t++;
22
             for (int v : adj[u]) {
                  if (v != p) {
23
24
                       pai[v] = u;
                       head[v] = (v = adj[u][0] ? head[u] : v);
25
26
                       dfs hld(v, u);
27
                  }
28
             }
29
30
        void build(int root) {
31
             dfs_sz(root);
32
             t = 0;
33
             pai[root] = root;
34
             head[root] = root;
35
             dfs hld(root);
36
37
         void build(int root, vector<ll> &v) {
38
             build (root);
39
              vector < ll > aux(v.size());
             \mbox{ for } \ (\mbox{ int } \ i \ = \ 0\,; \ \ i \ < \ (\mbox{ int })\,v\,.\,\,siz\,e\,(\,)\;; \ \ i+\!+\!) \ \{
40
41
                  aux[pos[i]] = v[i];
42
43
             seg::build(aux);
44
        void build (int root, vector < i3 > &edges) { // use this if weighted edges
45
             build (root);
46
47
             e = 1;
48
             vector < ll > aux(edges.size() + 1);
49
             for (auto [u, v, w] : edges) {
50
                  if (pos[u] > pos[v]) {
51
                       swap(u, v);
52
                  }
53
                  \operatorname{aux}[\operatorname{pos}[v]] = w;
54
             }
             seg::build(aux);
55
56
57
         11 query(int u, int v) {
58
             if (pos[u] > pos[v]) {
59
                  swap(u, v);
60
61
             if (head[u] = head[v]) {
62
                  return seg :: query(pos[u] + e, pos[v]);
63
              } else {}
                  11 qv = seg :: query(pos[head[v]], pos[v]);
64
65
                  11 qu = query(u, pai[head[v]]);
66
                  return merge (qu, qv);
```

2.5. KRUSKAL 49

```
67
68
69
         void update(int u, int v, ll k) {
70
             if (pos[u] > pos[v]) {
                  swap(u, v);
71
72
             \mathbf{if} \ (\operatorname{head}[\mathtt{u}] = \operatorname{head}[\mathtt{v}]) \ \{
73
74
                  seg::update(pos[u] + e, pos[v], k);
75
             } else {
76
                  seg::update(pos[head[v]], pos[v], k);
                  update(u, pai[head[v]], k);
77
78
79
         int lca(int u, int v) {
80
              if (pos[u] > pos[v]) {
81
82
                  swap(u, v);
83
             return (head[u] = head[v] ? u : lca(u, pai[head[v]]));
84
85
86
         11 query subtree(int u) {
87
             return seg::query(pos[u], pos[u] + sz[u] - 1);
88
         }
89
```

2.5 Kruskal

Algoritimo para encontrar a MST (minimum spanning tree) de um grafo.

Utiliza [DSU](../../Estruturas%20de%20Dados/DSU/dsu.cpp) - (disjoint set union) - para construir MST - (minimum spanning tree)

• Complexidade de tempo (Construção): O(M log N)

```
struct Edge {
 1
        \mathbf{int}\ u\,,\ v\,,\ w;
 2
 3
        bool operator < (Edge const & other) {
 4
             return w < other.w;
 5
        }
 6
    };
 7
 8
    vector < Edge > edges , result ;
 9
    int cost;
10
    struct DSU {
11
12
        vector < int > pa, sz;
13
        DSU(int n) {
14
             sz.assign(n + 5, 1);
             for (int i = 0; i < n + 5; i++) {
15
                  pa.push back(i);
16
17
18
19
        int root(int a) {
             return pa[a] = (a = pa[a] ? a : root(pa[a]));
20
```

CAPÍTULO 2. GRAFOS

```
21
22
        bool find (int a, int b) {
23
            return root(a) = root(b);
24
25
        void uni(int a, int b) {
26
            int ra = root(a), rb = root(b);
27
            if (ra == rb) {
28
                return;
29
            if (sz[ra] > sz[rb])  {
30
31
                swap(ra, rb);
32
33
            pa[ra] = rb;
34
            sz[rb] += sz[ra];
35
        }
36
   };
37
38
   void kruskal(int m, int n) {
39
        DSU dsu(n);
40
        sort(edges.begin(), edges.end());
41
42
43
        for (Edge e : edges) {
44
            if (!dsu.find(e.u, e.v)) {
45
                 cost += e.w;
                 result.push_back(e); // remove if need only cost
46
47
                 dsu.uni(e.u, e.v);
48
            }
49
        }
50
```

2.6 Bridge (pontes)

Algoritmo que acha pontes utilizando uma dfs

Complexidade de tempo: O(N + M)

```
int n;
                                                                                                                                                                                                                                                                                                      // number of nodes
         1
       2
                                    vector < vector < int >> adj; // adjacency list of graph
       3
         4
                                    vector < bool > visited;
                                    vector < int > tin , low;
       6
                                 int timer;
       7
                                  void dfs (int u, int p = -1) {
      8
                                                                             visited[u] = true;
      9
                                                                             \hspace{0.1cm} \hspace
10
                                                                             for (int v : adj[u]) {
11
12
                                                                                                                      if (v = p) {
13
                                                                                                                                                             continue;
14
15
                                                                                                                      if (visited[v]) {
16
                                                                                                                                                             low[u] = min(low[u], tin[v]);
17
                                                                                                                      } else {
18
                                                                                                                                                                dfs(v, u);
19
                                                                                                                                                             low[u] = min(low[u], low[v]);
```

```
20
                 if (low[v] > tin[u]) {
21
                     // edge UV is a bridge
22
                     // do_something(u, v)
23
24
            }
25
        }
26
27
28
    void find_bridges() {
29
        timer = 0;
        visited.assign(n, false);
30
31
        tin.assign(n, -1);
32
        low.assign(n, -1);
33
        for (int i = 0; i < n; ++i) {
            if (!visited[i]) {
34
35
                 dfs(i);
36
        }
37
38
```

2.7 Shortest Paths (caminhos mínimos)

Algoritmos para encontrar caminhos mínimos em grafos.

2.7.1 Dijkstra

Computa o menor caminho entre nós de um grafo.

Dado dois nós u e v, computa o menor caminho de u para v.

Complexidade de tempo: O((E + V) * log(E))

Dado um nó u, computa o menor caminho de u para todos os nós.

Complexidade de tempo: O((E + V) * log(E))

Computa o menor caminho de todos os nós para todos os nós

Complexidade de tempo: O(V * ((E + V) * log(E)))

```
const int MAX = 505, INF = 1e9 + 9;

vector<ii> adj [MAX];
int dist [MAX] [MAX];

void dk(int n) {
```

```
7
         for (int i = 0; i < n; i++) {
8
              for (int j = 0; j < n; j++) {
9
                   dist[i][j] = INF;
10
11
12
         for (int s = 0; s < n; s++) {
13
              priority_queue<ii , vector<ii>>, greater<ii>>> fila;
14
              dist[s][s] = 0;
15
              fila.emplace(dist[s][s], s);
16
              while (!fila.empty()) {
                   auto [d, u] = fila.top();
17
18
                   fila.pop();
                   \mathbf{if} \ (\mathbf{d} \ != \ \mathbf{dist} \, [\, \mathbf{s} \, ] \, [\, \mathbf{u} \, ]) \ \{
19
20
                        continue;
21
22
                   for (auto [w, v] : adj[u]) {
23
                        if (dist[s][v] > d + w) {
24
                             dist[s][v] = d + w;
25
                              fila.emplace(dist[s][v], v);
26
                        }
27
                   }
28
              }
29
         }
30
```

```
1
    const int MAX = 1e5 + 5, INF = 1e9 + 9;
2
3
    vector < ii > adj [MAX];
 4
   int dist [MAX];
5
6
   void dk(int s) {
        priority\_queue < ii \;, \; \; vector < ii >, \; \; greater < ii >> \; fila \;;
7
8
         fill (begin (dist), end (dist), INF);
9
         dist[s] = 0;
10
         fila.emplace(dist[s], s);
        while (!fila.empty()) {
11
12
             auto [d, u] = fila.top();
13
             fila.pop();
14
             if (d != dist[u]) {
15
                  continue;
16
17
             for (auto [w, v] : adj[u]) {
18
                  if (dist[v] > d + w)  {
19
                      dist[v] = d + w;
20
                       fila.emplace(dist[v], v);
21
                  }
22
             }
23
        }
24
```

```
const int MAX = 1e5 + 5, INF = 1e9 + 9;

vector < ii > adj [MAX];

int dist [MAX];

int dk(int s, int t) {
    priority_queue < ii, vector < ii >, greater < ii >> fila;
    fill (begin (dist), end (dist), INF);
    dist [s] = 0;
```

```
fila.emplace(dist[s], s);
10
11
          while (!fila.empty()) {
12
               auto [d, u] = fila.top();
13
               fila.pop();
               if (u == t) {
14
15
                    return dist[t];
16
               if (d != dist[u]) {
17
                    continue;
18
19
               \mathbf{for} \ (\mathbf{auto} \ [\mathbf{w}, \ \mathbf{v}] : \mathbf{adj}[\mathbf{u}]) \ \{
20
                    if (dist[v] > d + w)  {
21
22
                          dist[v] = d + w;
23
                          fila.emplace(dist[v], v);
24
25
               }
26
27
         return -1;
28
```

2.7.2 Shortest Path Fast Algorithm (SPFA)

Encontra o caminho mais curto entre um vértice e todos os outros vértices de um grafo.

Detecta ciclos negativos.

Complexidade de tempo: O(|V| * |E|)

```
const int MAX = 1e4 + 4;
 1
 2
    const 11 INF = 1e18 + 18;
 3
    vector < ii > adj [MAX];
 4
    ll dist [MAX];
 5
 6
 7
    void spfa(int s, int n) {
 8
         fill(dist, dist + n, INF);
 9
         vector < int > cnt(n, 0);
10
         vector < bool > inq(n, false);
         queue<int> fila;
11
12
         fila.push(s);
13
         inq[s] = true;
14
         dist[s] = 0;
         while (! fila.empty()) {
15
              int u = fila.front();
16
17
              fila.pop();
              inq[u] = false;
18
              \quad \textbf{for} \ (\textbf{auto} \ [\textbf{w}, \ \textbf{v}] \ : \ \textbf{adj} \, [\textbf{u}]) \ \{
19
                   ll newd = (dist[u] = -INF ? -INF : max(w + dist[u], -INF));
20
21
                   if (newd < dist[v]) 
22
                        dist[v] = newd;
23
                        if (!inq[v]) {
24
                              fila.push(v);
                             inq[v] = true;
25
26
                             \operatorname{cnt}[v]++;
27
                             if (cnt[v] > n) \{ // negative cycle \}
28
                                  dist[v] = -INF;
```

2.8 Binary Lifting

Usa uma sparse table para calcular o k-ésimo ancestral de u.

Pode ser usada com o algoritmo de EulerTour para calcular o LCA.

Complexidade de tempo:

- Pré-processamento: O(N * log(N))
- Consulta do k-ésimo ancestral de u: O(log(N))
- LCA: O(log(N))

Complexidade de espaço: O(Nlog(N))

```
1
   namespace st {
2
        int n, me, timer;
3
        vector < int > tin , tout;
4
        vector < vector < int>> st;
5
        void et_dfs(int u, int p) {
6
            tin[u] = ++timer;
7
            st[u][0] = p;
8
            for (int i = 1; i \le me; i++) {
9
                 st[u][i] = st[st[u][i-1]][i-1];
10
11
            for (int v : adj[u]) {
                 if (v != p) {
12
13
                     et_dfs(v, u);
14
15
16
            tout[u] = ++timer;
17
        }
18
        void build(int _n, int root = 0) {
19
            n = \underline{n};
20
            tin.assign(n, 0);
21
            tout.assign(n, 0);
22
            timer = 0;
23
            me = floor(log2(n));
24
            st.assign(n, vector < int > (me + 1, 0));
25
            et dfs(root, root);
26
27
        bool is ancestor(int u, int v) {
28
            return tin[u] \le tin[v] \&\& tout[u] >= tout[v];
29
30
        int lca(int u, int v) {
31
             if (is ancestor(u, v)) {
```

2.9. FLUXO 55

```
32
                      return u;
33
34
                if (is_ancestor(v, u)) {
35
                      return v;
36
                 \  \  \, \mbox{for} \  \, (\, \mbox{int} \  \  \, i \, = \, me \, ; \  \, i \, > = \, 0 \, ; \  \, i \, - \!\!\! - \!\!\! ) \, \, \, \{ \,
37
38
                      if (!is\_ancestor(st[u][i], v)) {
39
                            u = st[u][i];
40
41
                return st [u][0];
42
43
          int ancestor (int u, int k) { // k—th ancestor of u
44
                for (int i = me; i >= 0; i ---) {
45
                      if ((1 << i) & k) {
46
47
                            u = st[u][i];
48
49
50
                return u;
51
          }
52
```

```
1
   namespace st {
 2
        int n, me;
3
        vector < vector < int >> st;
        void bl_dfs(int u, int p) {
 4
 5
            st[u][0] = p;
            for (int i = 1; i \le me; i++) {
 6
                 st[u][i] = st[st[u][i-1]][i-1];
7
8
9
            for (int v : adj[u]) {
10
                 if (v != p) {
                     bl_dfs(v, u);
11
12
            }
13
14
        void build(int _n, int root = 0) {
15
16
            n = _n;
17
            me = floor(log2(n));
            st.assign(n, vector < int > (me + 1, 0));
18
            bl dfs(root, root);
19
20
        {f int} ancestor ({f int} u, {f int} k) { // k—th ancestor of u
21
22
             for (int i = me; i >= 0; i ---) {
23
                 if ((1 << i) & k) {
24
                     u = st[u][i];
25
26
27
            return u;
        }
28
29
```

2.9 Fluxo

Conjunto de algoritmos para calcular o fluxo máximo em redes de fluxo.

Muito útil para grafos bipartidos e para grafos com muitas arestas

Complexidade de tempo: $O(V^2 * E)$, mas em grafo bipartido a complexidade é $O(\operatorname{sqrt}(V) * E)$

Util para grafos com poucas arestas

Complexidade de tempo: $O(V * E^2)$

Computa o fluxo máximo com custo mínimo

Complexidade de tempo: $O(V^2 * E^2)$

```
const long long INF = 1e18;
1
 2
3
    struct FlowEdge {
 4
         int u, v;
         long long cap, flow = 0;
5
6
         FlowEdge(int u, int v, long long cap) : u(u), v(v), cap(cap) {
 7
         }
8
    };
9
10
    struct EdmondsKarp {
11
         int n, s, t, m = 0, vistoken = 0;
12
         vector < Flow Edge > edges;
13
         vector < vector < int >> adj;
14
         vector < int > visto;
15
16
         EdmondsKarp(int n, int s, int t) : n(n), s(s), t(t) {
17
              adj.resize(n);
18
              visto.resize(n);
19
20
21
         void add edge(int u, int v, long long cap) {
22
              edges.emplace back(u, v, cap);
              edges.emplace back(v, u, 0);
23
              adj[u].push back(m);
24
25
              adj[v].push back(m + 1);
26
              m += 2;
27
         }
28
29
         int bfs() {
              vistoken++;
30
31
              queue<int> fila;
32
              fila.push(s);
33
              vector < int > pego(n, -1);
34
              while (!fila.empty()) {
35
                   int u = fila.front();
36
                   if (u = t) 
37
                        break;
38
39
                   fila.pop();
40
                   visto[u] = vistoken;
                   for (int id : adj[u]) {
41
                        \mathbf{if} \ \left(\, \mathrm{edges}\, [\, \mathrm{id}\, ]\, .\, \mathrm{cap}\, -\, \mathrm{edges}\, [\, \mathrm{id}\, ]\, .\, \mathrm{flow}\, <\, 1\right) \ \left\{\,
42
43
                             continue;
                        }
44
```

2.9. FLUXO 57

```
45
                     int v = edges[id].v;
                     if (visto[v] = -1) {
46
47
                         continue;
48
                     fila.push(v);
49
50
                     pego[v] = id;
                }
51
52
            if (pego[t] = -1) {
53
                return 0;
54
55
            long long f = INF;
56
            for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
57
58
                f = min(f, edges[id].cap - edges[id].flow);
59
60
            for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
61
                edges[id].flow += f;
                edges [id ^1]. flow = f;
62
63
64
            return f;
65
        }
66
        long long flow() {
67
            long long maxflow = 0;
68
69
            while (long long f = bfs()) {
70
                \max flow += f;
71
72
            return maxflow;
73
        }
74
   };
```

```
struct MinCostMaxFlow {
 1
 2
        int n, s, t, m = 0;
 3
        11 \text{ maxflow} = 0, \text{ mincost} = 0;
 4
        vector<FlowEdge> edges;
 5
        vector < vector < int >> adj;
 6
 7
        MinCostMaxFlow(int n, int s, int t) : n(n), s(s), t(t) 
 8
             adj.resize(n);
9
        }
10
        void add_edge(int u, int v, ll cap, ll cost) {
11
12
             edges.emplace_back(u, v, cap, cost);
13
             edges.emplace_back(v, u, 0, -cost);
14
             adj[u].push back(m);
15
             adj[v].push_back(m + 1);
16
            m \, +\!\! = \, 2\,;
        }
17
18
        bool spfa() {
19
20
             vector < int > pego(n, -1);
21
             vector < ll > dis(n, INF);
22
             vector < bool > inq(n, false);
23
             queue < int > fila;
24
             fila.push(s);
25
             dis[s] = 0;
26
             inq[s] = 1;
27
             while (!fila.empty()) {
28
                 int u = fila.front();
29
                 fila.pop();
```

CAPÍTULO 2. GRAFOS

```
30
                inq[u] = false;
31
                 for (int id : adj[u]) {
32
                     if (edges[id].cap - edges[id].flow < 1) {
33
                         continue;
34
35
                     int v = edges[id].v;
36
                     if (dis[v] > dis[u] + edges[id].cost) {
37
                         dis[v] = dis[u] + edges[id].cost;
38
                         pego[v] = id;
39
                         if (!inq[v]) {
40
                              inq[v] = true;
41
                              fila.push(v);
42
43
                     }
44
                }
            }
45
46
47
            if (pego[t] = -1) {
48
                return 0;
49
50
            11 	ext{ f} = INF:
            for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
51
52
                f = min(f, edges[id].cap - edges[id].flow);
53
                mincost += edges[id].cost;
54
            for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
55
56
                 edges[id].flow += f;
57
                 edges[id ^1].flow = f;
58
            }
59
            maxflow += f;
60
            return 1;
61
        }
62
63
        11 flow() {
64
            while (spfa())
65
66
            return maxflow;
        }
67
68
   };
```

```
typedef long long 11;
1
 2
3
    const 11 \text{ INF} = 1e18;
 4
5
    struct FlowEdge {
6
         int u, v;
7
         11 \text{ cap}, \text{ flow} = 0;
8
        FlowEdge(int u, int v, ll cap) : u(u), v(v), cap(cap) {
9
         }
10
    };
11
12
    struct Dinic {
13
         vector < Flow Edge > edges;
14
         vector < vector < int >> adj;
         {\bf int}\ n\,,\ s\,,\ t\,,\ m\,=\,0\,;
15
16
         vector < int > level, ptr;
17
         queue <int> q;
18
19
         Dinic(int n, int s, int t) : n(n), s(s), t(t) 
20
              adj.resize(n);
```

2.9. FLUXO 59

```
21
             level.resize(n);
22
             ptr.resize(n);
23
        }
24
25
        void add_edge(int u, int v, ll cap) {
26
             edges.emplace_back(u, v, cap);
27
             edges.emplace_back(v, u, 0);
28
             adj[u].push back(m);
             adj\left[\,v\,\right].\;push\_back\left(m\,+\,\,1\right)\,;
29
30
            m += 2;
        }
31
32
        \mathbf{bool}\ \mathrm{bfs}\,(\,)\ \{
33
34
             while (!q.empty()) {
35
                 int u = q. front();
36
                 q.pop();
                 37
                      if (edges[id].cap - edges[id].flow < 1) {
38
39
                          continue;
40
41
                      int v = edges[id].v;
                      if (level[v] != -1) {
42
43
                          continue;
44
45
                      level[v] = level[u] + 1;
                      q.push(v);
46
47
48
49
            return level [t] := -1;
        }
50
51
        11 dfs(int u, 11 f) {
52
             if (f = 0) {
53
                 return 0;
54
55
56
             if (u == t) {
                 return f;
57
58
             for (int &cid = ptr[u]; cid < (int)adj[u].size(); cid++) {
59
                 int id = adj[u][cid];
60
                 int v = edges[id].v;
61
                 if (level[u] + 1 != level[v] | |
62
63
                      edges[id].cap - edges[id].flow < 1) {
64
                      continue;
65
66
                 11 tr = dfs(v, min(f, edges[id].cap - edges[id].flow));
                 if (tr = 0) {
67
                      {\bf continue}\,;
68
69
                 edges[id].flow += tr;
70
71
                 edges[id ^1].flow = tr;
72
                 return tr;
73
74
            return 0;
75
        }
76
        11 flow() {
77
78
             11 \text{ maxflow} = 0;
79
             while (true) {
80
                 fill(level.begin(), level.end(), -1);
81
                 level[s] = 0;
```

```
82
                   q.push(s);
83
                   if (! bfs()) {
84
                       break;
85
86
                   fill(ptr.begin(), ptr.end(), 0);
                   \mathbf{while} \ (11 \ f = dfs(s, INF)) \ \{
87
                       maxflow += f;
88
                   }
89
90
91
              return maxflow;
92
93
    };
```

2.10 Inverse Graph

Algoritmo que encontra as componentes conexas quando se é dado o grafo complemento.

Resolve problemas em que se deseja encontrar as componentes conexas quando são dadas as arestas que não pertencem ao grafo

• Complexidade de tempo: $O(N \log N + N \log M)$

```
#include <bits/stdc++.h>
2
   using namespace std;
3
4
   set < int > nodes;
   vector<set<int>> adj;
6
7
   void bfs(int s) {
8
        queue < int > f;
9
        f.push(s);
10
        nodes.erase(s);
11
        set < int > aux;
12
        while (!f.empty()) {
13
            int x = f.front();
14
             f.pop();
             for (int y : nodes) {
15
                 if (adj[x].count(y) == 0) {
16
17
                     aux.insert(y);
18
19
20
            for (int y : aux) {
21
                 f.push(y);
22
                 nodes.erase(y);
23
24
            aux.clear();
25
        }
26
```

2.11. 2-SAT 61

2.11 2-SAT

Resolve problema do 2-SAT.

 \bullet Complexidade de tempo (caso médio): O(N + M)

N é o número de variáveis e M é o número de cláusulas.

A configuração da solução fica guardada no vetor *assignment*.

Em relaçõa ao sinal, tanto faz se 0 liga ou desliga, apenas siga o mesmo padrão.

```
1
   struct sat2 {
 2
        int n;
 3
        vector < vector < int >>> g, gt;
 4
        vector < bool > used;
 5
        vector<int> order, comp;
 6
        vector < bool > assignment;
 7
 8
        // number of variables
 9
        sat2(int n) {
            n \, = \, 2 \ * \ (\_n \, + \, 5) \, ;
10
            g.assign(n, vector < int > ());
11
12
            gt.assign(n, vector<int>());
13
        void add_edge(int v, int u, bool v_sign, bool u_sign) {
14
15
            g[2 * v + v sign].push back(2 * u + !u sign);
16
            g[2 * u + u sign].push back(2 * v + !v sign);
            gt[2 * u + !u_sign].push_back(2 * v + v_sign);
17
            gt [2 * v + !v_sign].push_back(2 * u + u_sign);
18
19
20
        void dfs1(int v) {
21
            used[v] = true;
22
             for (int u : g[v]) {
23
                 if (!used[u]) {
24
                      dfs1(u);
25
26
             order.push back(v);
27
28
29
        void dfs2(int v, int cl) {
30
            comp[v] = cl;
31
             for (int u : gt[v]) {
32
                 if (comp[u] = -1) {
                      dfs2(u, cl);
33
34
35
36
37
        bool solve() {
            order.clear();
38
39
             used.assign(n, false);
             for (int i = 0; i < n; ++i) {
40
                 if (!used[i]) {
41
                      dfs1(i);
42
43
44
45
            comp.assign(n, -1);
46
```

```
47
            for (int i = 0, j = 0; i < n; ++i) {
                 \mathbf{int}\ v=\mathrm{order}[n-i-1];
48
49
                 if (comp[v] = -1) {
50
                      dfs2(v, j++);
51
                 }
52
            }
53
54
             assignment.assign(n / 2, false);
             for (int i = 0; i < n; i += 2) {
55
56
                 if (comp[i] = comp[i + 1]) {
                      return false;
57
58
59
                 assignment[i / 2] = comp[i] > comp[i + 1];
60
61
            return true;
62
        }
63
   };
```

2.12 Graph Center

Encontra o centro e o diâmetro de um grafo

Complexidade de tempo: O(N)

```
1
    const int INF = 1e9 + 9;
2
3
    vector < vector < int >> adj;
 4
5
    struct GraphCenter {
6
        int n, diam = 0;
7
        {\tt vector}{<} {\tt int}{\gt} \ {\tt centros} \ , \ {\tt dist} \ , \ {\tt pai} \ ;
8
        int bfs(int s) {
9
             queue<int> q;
10
             q. push(s);
11
             dist.assign(n + 5, INF);
12
             pai.assign(n + 5, -1);
13
             dist[s] = 0;
14
             int maxidist = 0, maxinode = 0;
15
             while (!q.empty()) {
16
                  int u = q.front();
17
                  q.pop();
18
                  if (dist[u] >= maxidist) {
19
                       maxidist = dist[u], maxinode = u;
20
21
                  for (int v : adj[u]) {
22
                       if (dist[u] + 1 < dist[v]) {
23
                            dist[v] = dist[u] + 1;
24
                            pai[v] = u;
25
                            q.push(v);
26
                       }
27
                  }
28
29
             diam = max(diam, maxidist);
30
             return maxinode;
31
         }
```

2.12. GRAPH CENTER 63

```
32
           GraphCenter(int st = 0) : n(adj.size()) 
33
                 int d1 = bfs(st);
                 int d2 = bfs(d1);
34
35
                 vector < int > path;
                 \mbox{ for } (\mbox{ int } u = d2\,; \ u \ != \ -1; \ u = \mbox{ pai} \, [\,u\,]\,) \ \{
36
37
                       path.push_back(u);
38
39
                 int len = path.size();
40
                 if (len \% 2 == 1) {
                        centros.push_back(path[len / 2]);
41
42
                 } else {
                       \begin{array}{lll} \texttt{centros.push\_back(path[len \ / \ 2]);} \\ \texttt{centros.push\_back(path[len \ / \ 2 \ - \ 1]);} \end{array}
43
44
45
                 }
46
           }
47
     } ;
```

Capítulo 3

String

Aho Corasick

Constrói uma estrutura de dados semelhante a um trie com links adicionais e, em seguida, constrói uma máquina de estados finitos (autômato). Útil para pattern matching de um set de strings em um texto.

Patricia Tree

Estrutura de dados que armazena strings e permite consultas por prefixo.

Prefix Function

Para cada prefixo k de uma dada string s, calcula o maior prefixo que tambem é sufixo de k.

Hashing

Hashing para testar igualdade de duas strings.

Trie

Estrutura que guarda informações indexadas por palavra.

Manacher

Encontra todos os palindromos de uma string.

Lyndon

Strings em decomposição única em subcadeias que são ordenadas lexicograficamente e não podem ser mais reduzidas.

Suffix Array

Estrutura que conterá inteiros que representam os índices iniciais de todos os sufixos ordenados de uma determinada string.

3.1 Aho-Corasick

Constrói uma estrutura de dados semelhante a um trie com links adicionais e, em seguida, constrói uma máquina de estados finitos (autômato). Útil para pattern matching de um set de strings em um texto.

Complexidade de tempo: O(|S|+|T|), onde |S| é o somatório do tamanho das strings e |T| é o tamanho do texto

```
1
    const int K = 26;
 2
3
    struct Vertex {
        \mathbf{int} \ \ \mathrm{next} \left[ K \right], \ \ p \ = \ -1, \ \ \mathrm{link} \ = \ -1, \ \ \mathrm{exi} \ = \ -1, \ \ \mathrm{go} \left[ K \right], \ \ \mathrm{cont} \ = \ 0;
 4
 5
        bool term = false;
6
         vector < int > idxs;
7
        char pch;
8
         Vertex(int p = -1, char ch = '$') : p(p), pch(ch) {
9
              fill(begin(next), end(next), -1);
10
              fill(begin(go), end(go), -1);
11
         }
12
    };
13
    vector < Vertex > aho(1);
14
    void add_string(const string &s, int idx) {
15
         int v = 0;
        for (char ch : s) {
16
             int c = ch - 'a';
17
18
             if (aho[v].next[c] = -1) {
19
                  aho[v].next[c] = aho.size();
20
                  aho.emplace back(v, ch);
21
22
             v = aho[v].next[c];
23
24
        aho[v].term = true;
25
        aho[v].idxs.push back(idx);
26
27
    int go(int u, char ch);
28
    int get link(int u) {
29
         if (aho[u].link = -1) {
             if (u = 0 | | aho[u].p = 0)  {
30
                  aho\,[\,u\,]\,.\,lin\,k\ =\ 0\,;
31
32
             } else {}
33
                  aho[u].link = go(get_link(aho[u].p), aho[u].pch);
34
35
36
        return aho[u].link;
37
38
    int go(int u, char ch) {
39
        int c = ch - 'a';
         if (aho[u].go[c] = -1) {
40
             if (aho[u].next[c] != -1) {
41
42
                  aho[u].go[c] = aho[u].next[c];
43
             } else {}
                  aho[u].go[c] = u == 0 ? 0 : go(get_link(u), ch);
44
45
46
47
        return aho[u].go[c];
48
49
    int exi(int u) {
50
         if (aho[u].exi != -1) {
51
             return aho[u].exi;
52
53
         int v = get link(u);
        return aho [u]. exi = (v == 0 \mid | aho[v]. term ? v : exi(v));
54
55
56
    void process (const string &s) {
57
        int st = 0;
58
         for (char c : s) {
59
             st = go(st, c);
```

```
60
            for (int aux = st; aux; aux = exi(aux)) {
61
                aho[aux].cont++;
62
63
        for (int st = 1; st < aho_sz; st++) {
64
65
            if (!aho[st].term) {
                continue;
66
67
            for (int i : aho[st].idxs) {
68
69
                // Do something here
                  / idx i ocurs + aho[st].cont times
70
                h[i] += aho[st].cont;
71
72
73
74
```

3.2 Patricia Tree ou Patricia Trie

Estrutura de dados que armazena strings e permite consultas por prefixo.

Implementação PB-DS, extremamente curta e confusa:

- Criar: patricia_tree pat;
- Inserir: pat.insert("sei la");
- Remover: pat.erase("sei la");
- Verificar existência: pat.find("sei la") != pat.end();
- Pegar palavras que começam com um prefixo: **auto** match = pat.prefix\ range("sei");
- Percorrer *match*: for(auto it = match.first; it != match.second; ++it);
- Pegar menor elemento lexicográfico *maior ou igual* ao prefixo: *pat.lower\ bound("sei");
- Pegar menor elemento lexicográfico *maior* ao prefixo: *pat.upper\ bound("sei");

TODAS AS OPERAÇÕES EM O(|S|)

NÃO ACEITA ELEMENTOS REPETIDOS

3.3 Prefix Function

Para cada prefixo k de uma dada string s, calcula o maior prefixo que tambem é sufixo de k.

Seja n o tamanho do texto e m o tamanho do padrão.

KMP

String matching em O(n + m).

Autômato de KMP

String matching em O(n) com O(m) de pré-processamento.

Prefix Count

Dada uma string s, calcula quantas vezes cada prefixo de s aparece em s com complexidade de tempo de O(n).

```
1
    vector < int > pi(string &s) {
2
        vector < int > p(s.size());
 3
        for (int i = 1, j = 0; i < s.size(); i++) {
 4
             while (j > 0 \&\& s[i] != s[j]) {
                 j = p[j - 1];
 5
 6
 7
             if \ (s[i] = s[j]) \ \{
 8
                 j++;
9
             }
10
             p[i] = j;
11
        }
12
        return p;
13
```

```
1
    vector < int > pi (string &s) {
2
        vector < int > p(s.size());
3
        for (int i = 1, j = 0; i < s.size(); i++) {
            while (j > 0 \&\& s[i] != s[j]) {
4
5
                 j = p[j - 1];
6
7
            if (s[i] = s[j]) {
8
                 j++;
9
10
            p[i] = j;
11
        }
12
        return p;
13
   }
14
   vector < int > kmp(string &s, string t) {
15
16
        t += '$';
        vector < int > p = pi(t), match;
17
18
        for (int i = 0, j = 0; i < s.size(); i++) {
            while (j > 0 \&\& s[i] != t[j]) {
19
20
                 j = p[j - 1];
21
22
            if (s[i] == t[j]) {
23
                 j++;
24
            if (j = t.size() - 1)  {
25
                 match.push\_back(i - j + 1);
26
            }
27
```

```
1
    vector < int > pi(string s)  {
2
         vector < int > p(s.size());
 3
         for (int i = 1, j = 0; i < s.size(); i++) {
             while (j > 0 \&\& s[i] != s[j])  {
 4
                  j = p[j - 1];
 5
 6
 7
             if (s[i] = s[j]) {
 8
                  j++;
9
10
             p[i] = j;
11
12
        return p;
13
14
    vector < int > prefixCount(string s) {
15
         vector < int > p = pi(s + '\#');
16
        int n = s.size();
17
18
         vector < int > cnt(n + 1, 0);
19
         for (int i = 0; i < n; i++) {
20
             cnt [p[i]]++;
21
22
         for (int i = n - 1; i > 0; i ---) {
23
             \operatorname{cnt}[p[i-1]] += \operatorname{cnt}[i];
24
25
         for (int i = 0; i <= n; i++) {
26
             cnt[i]++;
27
28
        return cnt;
29
```

```
1
    struct AutKMP {
 2
         vector < vector < int >> nxt;
 3
 4
         vector<int> pi(string &s) {
              vector < int > p(s.size());
 5
              \mbox{ for } (\mbox{ int } i = 1, \ j = 0; \ i < s.\, size(); \ i+\!\!+\!\!) \ \{
 6
 7
                   while (j > 0 \&\& s[i] != s[j])  {
                       j = p[j - 1];
 8
 9
10
                   if (s[i] = s[j]) {
11
                        j++;
12
13
                  p[i] = j;
14
15
              return p;
16
         }
17
18
         void setString(string s) {
              s \ += \ '\#';
19
              \verb|nxt.assign(s.size(), vector<| \textbf{int}>|(26));
20
21
              vector < int > p = pi(s);
22
              for (int c = 0; c < 26; c++) {
23
                   nxt[0][c] = ('a' + c = s[0]);
24
25
              for (int i = 1; i < s.size(); i++) {
```

```
26
                 for (int c = 0; c < 26; c++) {
                     nxt[i][c] = ('a' + c = s[i]) ? i + 1 : nxt[p[i - 1]][c];
27
28
                 }
            }
29
30
        }
31
32
        vector < int > kmp(string &s, string &t) {
33
            vector < int > match;
            for (int i = 0, j = 0; i < s.size(); i++) {
34
                 j = nxt[j][s[i] - 'a'];
35
36
                 if (j = t.size()) {
37
                     match.push back (i - j + 1);
38
39
            }
40
            return match;
41
42
   } aut;
```

3.4 Hashing

Hashing para testar igualdade de duas strings.

A função *range(i, j)* retorna o hash da substring nesse range.

Pode ser necessário usar pares de hash para evitar colisões.

- * Complexidade de tempo (Construção): O(N)
- * Complexidade de tempo (Consulta de range): O(1)

```
struct hashing {
 1
2
        const long long LIM = 1000006;
3
        long long p, m;
 4
        vector<long long> pw, hsh;
        hashing\left(\textbf{long long } \_p, \textbf{ long long } \_m\right) \ : \ p\left(\_p\right), \ m(\_m) \ \{
 5
 6
             pw.resize(LIM);
 7
             hsh.resize(LIM);
8
             pw[0] = 1;
9
             for (int i = 1; i < LIM; i++) {
10
                 pw[i] = (pw[i - 1] * p) \% m;
11
12
        }
13
        void set_string(string &s) {
             hsh[0] = s[0];
14
             for (int i = 1; i < s.size(); i++) {
15
                  hsh[i] = (hsh[i - 1] * p + s[i]) \% m;
16
17
18
        long long range (int esq, int dir) {
19
20
             long long ans = hsh[dir];
21
             if (esq > 0) {
                  ans = (ans - (hsh[esq - 1] * pw[dir - esq + 1] % m) + m) % m;
22
23
24
             return ans;
25
        }
26 | };
```

3.5. TRIE 71

3.5 Trie

Estrutura que guarda informações indexadas por palavra.

Útil encontrar todos os prefixos inseridos anteriormente de uma palavra específica.

- * Complexidade de tempo (Update): O(|S|)
- * Complexidade de tempo (Consulta de palavra): O(|S|)

```
1
    struct trie {
         \quad \text{map}\!\!<\!\!\mathbf{char}\,, \ \mathbf{int}\!\!> \ \mathrm{trie}\,[100005];
 2
          int value [100005];
 3
 4
          int n nodes = 0;
          void insert(string &s, int v) {
 5
 6
               int id = 0;
 7
               for (char c : s) {
 8
                     if (!trie[id].count(c)) {
                          trie[id][c] = ++n nodes;
 9
10
                     id = trie[id][c];
11
12
               value[id] = v;
13
14
          int get value(string &s) {
15
16
               int id = 0;
               \quad \textbf{for} \ (\textbf{char} \ c \ : \ s\,) \ \{
17
                     if (!trie[id].count(c)) {
18
19
                          return -1;
20
21
                     id = trie[id][c];
22
23
               return value [id];
24
          }
25
    };
```

3.6 Algoritmo de Manacher

Encontra todos os palindromos de uma string.

Dada uma string s de tamanho n, encontra todos os pares (i,j) tal que a substring s

i...j

seja um palindromo.

* Complexidade de tempo: O(N)

```
1
    struct manacher {
 2
          long long n, count;
 3
          vector < int > d1, d2;
 4
          long long solve (string &s) {
 5
               n = s.size(), count = 0;
 6
               solve\_odd(s);
 7
               solve_even(s);
 8
               return count;
 9
10
          void solve odd(string &s) {
               d1. resize(n);
11
               for (int i = 0, l = 0, r = -1; i < n; i++) {
12
                      \begin{tabular}{ll} \bf int & k = (i > r) & ? & 1 & : & min(d1[l + r - i], & r - i + 1); \end{tabular} 
13
                     while (0 \le i - k \&\& i + k \le n \&\& s[i - k] = s[i + k]) {
14
15
16
                     count += d1[i] = k--;
17
                     if (i + k > r) {
18
19
                          1 = i - k;
20
                          r = i + k;
                     }
21
22
               }
23
          void solve even(string &s) {
24
               d2.resize(n);
25
               for (int i = 0, l = 0, r = -1; i < n; i++) {
26
                     int k = (i > r) ? 0 : min(d2[1 + r - i + 1], r - i + 1);
27
                     while (0 \le i - k - 1 \&\& i + k \le n \&\& s[i - k - 1] == s[i + k]) {
28
29
                          k++;
30
31
                     count += d2[i] = k--;
                     \textbf{if} \hspace{0.1in} (\hspace{0.1em} i \hspace{0.1em} + \hspace{0.1em} k \hspace{0.1em} > \hspace{0.1em} r\hspace{0.1em}) \hspace{0.2em} \{
32
33
                          l \; = \; i \; - \; k \; - \; 1;
                          r \;=\; i \;+\; k\,;
34
35
                     }
36
               }
37
          }
38
    } mana;
```

3.7 Lyndon Factorization

Strings em decomposição única em subcadeias que são ordenadas lexicograficamente e não podem ser mais reduzidas.

Duval

Gera a Lyndon Factorization de uma string

* Complexidade de tempo: O(N)

Min Cyclic Shift

Gera a menor rotação circular da string original que pode ser obtida por meio de deslocamentos cíclicos dos caracteres.

* Complexidade de tempo: O(N)

3.8. SUFFIX ARRAY 73

```
string min cyclic shift(string s) {
 1
         s += s;
 2
 3
         int n = s.size();
 4
         int i = 0, ans = 0;
 5
         while (i < n / 2) {
              ans = i;
 6
 7
              int j = i + 1, k = i;
              \mathbf{while} \ (\, j \ < \ n \ \&\& \ s \, [\, k \,] \ <= \ s \, [\, j \,]\,) \ \ \{\,
 8
 9
                    if (s[k] < s[j]) {
10
                        k = i;
                    } else {
11
12
                         k++;
13
14
                    j++;
15
              while (i \le k) {
16
17
                    i += j - k;
18
19
20
         return s.substr(ans, n / 2);
21
```

```
1
     vector<string> duval(string const &s) {
 2
          int n = s.size();
 3
          int i = 0;
 4
          vector < string > factorization;
 5
          \mathbf{while} \ (i < n) \ \{
 6
               \mathbf{int} \quad \mathbf{j} = \mathbf{i} + 1, \quad \mathbf{k} = \mathbf{i};
 7
               while (j < n \&\& s[k] <= s[j]) {
 8
                     if (s[k] < s[j]) {
                          k = i;
 9
                     } else {
10
                          k++;
11
12
13
                    j++;
14
15
               \mathbf{while} (i \leq k) {
                    factorization.push\_back(s.substr(i, j - k));
16
17
                    i += j - k;
18
19
20
         return factorization;
21
```

3.8 Suffix Array

Estrutura que conterá inteiros que representam os índices iniciais de todos os sufixos ordenados de uma determinada string.

Tambem Constroi a tabela LCP(Longest common prefix).

- * Complexidade de tempo (Pré-Processamento): O(|S|*log(|S|))
- * Complexidade de tempo (Contar ocorrencias de S em T): O(|S|*log(|T|))

```
1
    pair<int, int> busca(string &t, int i, pair<int, int> &range) {
2
         int esq = range.first, dir = range.second, L = -1, R = -1;
3
         \mathbf{while} \ (\mathbf{esq} \le \mathbf{dir}) \ \{
             int mid = (esq + dir) / 2;
 4
 5
             if (s[sa[mid] + i] == t[i]) 
6
                  L = mid;
7
8
             \mathbf{if} \ (\mathbf{s} [\mathbf{sa} [\mathbf{mid}] + \mathbf{i}] < \mathbf{t} [\mathbf{i}]) \ 
9
                  esq = mid + 1;
10
             } else {
11
                  dir = mid - 1;
12
13
         }
14
         esq = range.first, dir = range.second;
15
         while (esq \ll dir) {
16
             int mid = (esq + dir) / 2;
17
             if (s[sa[mid] + i] == t[i]) {
                  R = mid;
18
19
20
             if (s[sa[mid] + i] <= t[i]) {
                  esq = mid + 1;
21
22
             } else {
23
                  dir = mid - 1;
24
25
26
        return \{L, R\};
27
28
    // count ocurences of s on t
29
   int busca_string(string &t) {
30
         pair < int, int > range = \{0, n-1\};
31
         for (int i = 0; i < t.size(); i++) {
32
             range = busca(t, i, range);
33
             if (range.first = -1) {
34
                  return 0;
35
36
37
        return range.second - range.first + 1;
38
```

```
const int MAX N = 5e5 + 5;
1
2
3
   struct suffix_array {
4
        string s;
5
        int n, sum, r, ra [MAX N], sa [MAX N], auxra [MAX N], auxsa [MAX N], c [MAX N],
6
             lcp [MAX N];
7
        void counting_sort(int k) {
            memset(c, 0, sizeof(c));
8
9
             for (int i = 0; i < n; i++) {
                 c[(i + k < n) ? ra[i + k] : 0]++;
10
11
12
            for (int i = sum = 0; i < max(256, n); i++) {
13
                 \operatorname{sum} += c[i], c[i] = \operatorname{sum} - c[i];
14
15
             for (int i = 0; i < n; i++) {
16
                 auxsa[c[sa[i] + k < n ? ra[sa[i] + k] : 0]++] = sa[i];
17
18
             for (int i = 0; i < n; i++) {
19
                 sa[i] = auxsa[i];
20
```

3.8. SUFFIX ARRAY 75

```
21
22
       void build_sa() {
23
            for (int k = 1; k < n; k <<= 1) {
                counting_sort(k);
24
25
                counting\_sort(0);
                auxra[sa[0]] = r = 0;
26
                for (int i = 1; i < n; i++) {
27
28
                     auxra[sa[i]] = (ra[sa[i]] = ra[sa[i-1]] &&
29
                                      ra[sa[i] + k] = ra[sa[i - 1] + k])
30
                                         ? r
31
                                         : ++\mathbf{r};
32
33
                for (int i = 0; i < n; i++) {
34
                    ra[i] = auxra[i];
35
                if (ra[sa[n-1]] = n-1) {
36
37
                    break;
                }
38
            }
39
40
41
        void build_lcp() {
            for (int i = 0, k = 0; i < n - 1; i++) {
42
                int j = sa[ra[i] - 1];
43
44
                while (s[i + k] = s[j + k]) {
45
                    k++;
46
47
                lcp[ra[i]] = k;
                if (k) {
48
49
                    k--;
50
            }
51
52
        void set_string(string _s) {
53
            s = _s + '$';
54
55
            n = s.size();
56
            for (int i = 0; i < n; i++) {
57
                ra[i] = s[i], sa[i] = i;
58
59
            build_sa();
            build lcp();
60
            // for (int i = 0; i < n; i++) printf("%2d: %s\n", sa[i], s.c str() +
61
            // sa[i]);
62
63
        int operator[](int i) {
64
65
            return sa[i];
66
        }
   } sa;
67
```

Capítulo 4

Paradigmas

Mo

Resolve Queries Complicadas Offline de forma rápida.

Exponenciação de Matriz

Otimização para DP de prefixo quando o valor atual está em função dos últimos K valores já calculados.

Busca Binaria Paralela

Faz a busca binária para múltiplas consultas quando a busca binária é muito pesada.

Divide and Conquer

Otimização para DP de prefixo quando se pretende separar o vetor em K subgrupos.

Busca Ternaria

Encontra um ponto ótimo em uma função que pode ser separada em duas funções estritamente monotônicas (e.g. parábolas).

DP de Permutacao

Otimização do problema do Caixeiro Viajante

Convex Hull Trick

Otimização de DP onde se mantém as retas que formam um Convex Hull em uma estrutura que permite consultar qual o melhor valor para um determinado x.

All Submasks

Percorre todas as submáscaras de uma máscara.

4.1 Mo

Resolve Queries Complicadas Offline de forma rápida.

É preciso manter uma estrutura que adicione e remova elementos nas extremeidades de um range (tipo janela).

• Complexidade de tempo (Query offline): O(N * sqrt(N))

Mo com Update

Resolve Queries Complicadas Offline de forma rápida.

Permite que existam UPDATES PONTUAIS!

 $\acute{\rm E}$ preciso manter uma estrutura que adicione e remova elementos nas extremidades de um range (tipo janela).

• Complexidade de tempo: $O(Q * N^{(2/3)})$

```
typedef pair<int, int> ii;
1
   int block sz; // Better if 'const';
3
4
   namespace mo {
5
        struct query {
6
            int l, r, idx;
7
            bool operator < (query q) const {
8
                int _l = l / block_sz;
9
                int ql = q.l / block sz;
                return ii(_l, (_l & 1 ? -r : r)) < ii(_ql, (_ql & 1 ? -q.r : q.r));
10
11
12
        };
13
        vector < query > queries;
14
15
        void build(int n) {
16
            block sz = (int) sqrt(n);
17
            // TODO: initialize data structure
18
        inline void add query(int 1, int r) {
19
            queries.push_back({l, r, (int)queries.size()});
20
21
        inline void remove(int idx) {
22
23
            // TODO: remove value at idx from data structure
24
25
        inline void add(int idx) {
            // TODO: add value at idx from data structure
26
27
28
        inline int get answer() {
29
            // TODO: extract the current answer of the data structure
30
            return 0;
31
        }
32
33
        vector < int > run() {
34
            vector < int > answers (queries.size());
35
            sort(queries.begin(), queries.end());
            int L = 0;
36
            int R = -1;
37
38
            for (query q : queries) {
39
                while (L > q.1) {
40
                    add(--L);
41
                while (R < q.r) {
42
43
                    add(++R);
44
45
                while (L < q.1) {
46
                    remove (L++);
47
                while (R > q.r) {
48
```

4.1. MO 79

```
1
    typedef pair<int, int> ii;
    typedef tuple<int, int, int> iii;
 2
    int block_sz; // Better if 'const';
 3
    vector<int> vec;
 4
 5
    namespace mo {
         struct query {
 6
 7
              int l, r, t, idx;
 8
              bool operator < (query q) const {
                   \begin{array}{lll} \textbf{int} & \_l = 1 \ / \ block\_sz\,;\\ \textbf{int} & \_r = r \ / \ block\_sz\,; \end{array}
 9
10
                   int _ql = q.l / block_sz;
11
                   \mathbf{int} \  \  \, \underline{\phantom{a}} \mathbf{qr} \, = \, \mathbf{q.r} \  \, / \  \  \, \mathbf{block\_sz} \, ;
12
13
                   return iii (_l, (_l & 1 ? -_r : _r), (_r & 1 ? t : -t)) <
                            iii(_ql, (_ql \& 1 ? -_qr : _qr), (_qr \& 1 ? q.t : -q.t));
14
15
16
         };
17
         vector < query > queries;
18
         vector<ii> updates;
19
20
         void build(int n) {
21
              block sz = pow(1.4142 * n, 2.0 / 3);
22
              // TODO: initialize data structure
23
         inline void add query(int 1, int r) {
24
25
              queries.push_back({1, r, (int)updates.size(), (int)queries.size()});
26
27
         inline void add_update(int x, int v) {
28
              updates.push back(\{x, v\});
29
30
         inline void remove(int idx) {
31
              // TODO: remove value at idx from data structure
32
         inline void add(int idx) {
33
34
              // TODO: add value at idx from data structure
35
36
         inline void update(int 1, int r, int t) {
37
              auto &[x, v] = updates[t];
              if (1 \le x \&\& x \le r)  {
38
39
                   remove(x);
40
41
             swap(vec[x], v);
42
              if (1 <= x && x <= r) {
                   add(x);
43
44
              }
45
         inline int get_answer() {
46
              // TODO: extract the current answer from the data structure
47
48
              return 0;
49
50
51
         vector < int > run() {
```

```
52
             vector < int > answers (queries.size());
53
             sort(queries.begin(), queries.end());
54
             int L = 0;
55
             int R = -1;
56
             int T = 0;
57
             for (query q : queries) {
                 \mathbf{while} \ (T < q.t) \ \{
58
                      update(L, R, T++);
59
60
                 while (T > q.t) {
61
                      update(L, R, —T);
62
63
64
                 while (L > q.1) {
65
                      add(--L);
66
67
                 while (R < q.r) {
68
                      add(++R);
69
70
                 while (L < q.1) {
71
                      remove(L++);
72
73
                 while (R > q.r) {
74
                      remove (R--);
75
76
                 answers[q.idx] = get_answer();
77
78
             return answers;
79
        }
80
    };
```

4.2 Exponenciação de Matriz

Otimização para DP de prefixo quando o valor atual está em função dos últimos K valores já calculados.

* Complexidade de tempo: $O(log(n) * k^3)$

É preciso mapear a DP para uma exponenciação de matriz.

•

DP:

$$dp[n] = \sum_{i=1}^{k} c[i] \cdot dp[n-i]$$

Mapeamento:

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ c[k] & c[k-1] & c[k-2] & \dots & c[1] & 0 \end{pmatrix}^n \times \begin{pmatrix} dp[0] \\ dp[1] \\ dp[2] \\ \dots \\ dp[k-1] \end{pmatrix}$$

• –

Exemplo de DP:

$$dp[i] = dp[i-1] + 2 \cdot i^2 + 3 \cdot i + 5$$

Nesses casos é preciso fazer uma linha para manter cada constante e potência do índice.

Mapeamento:

$$\begin{pmatrix} 1 & 5 & 3 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 1 \end{pmatrix}^{n} \times \begin{pmatrix} dp[0] \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{array}{c} \text{mant\'em } dp[i] \\ \text{mant\'em } i \\ 1 \end{pmatrix}$$

Exemplo de DP:

$$dp[n] = c \times \prod_{i=1}^{k} dp[n-i]$$

Nesses casos é preciso trabalhar com o logaritmo e temos o caso padrão:

$$\log(dp[n]) = \log(c) + \sum_{i=1}^{k} \log(dp[n-i])$$

Se a resposta precisar ser inteira, deve-se fatorar a constante e os valores inicias e então fazer uma exponenciação para cada fator primo. Depois é só juntar a resposta no final.

```
ll dp[100];
   mat T;
 2
 3
   #define MOD 1000000007
 4
 5
 6
   mat mult (mat a, mat b) {
 7
        mat res(a.size(), vi(b[0].size()));
 8
        for (int i = 0; i < a.size(); i++) {
 9
            for (int j = 0; j < b[0].size(); j++) {
                for (int k = 0; k < b.size(); k++) {
10
                     res[i][j] += a[i][k] * b[k][j] % MOD;
11
                     res[i][j] %= MOD;
12
13
14
15
16
        return res;
17
18
19
   mat \exp_{mat}(mat b, ll exp)  {
20
        mat res(b.size(), vi(b.size()));
21
        for (int i = 0; i < b.size(); i++) {
22
            res[i][i] = 1;
23
```

```
24
25
        while (exp) {
26
             if (exp & 1) {
27
                 res = mult(res, b);
28
29
             b = mult(b, b);
30
             \exp /= 2;
31
32
        return res;
33
34
    // MUDA MUITO DE ACORDO COM O PROBLEMA
35
36
    // LEIA COMO FAZER O MAPEAMENTO NO README
37
    ll solve(ll exp, ll dim) {
38
        if (exp < dim) 
39
             return dp[exp];
40
        }
41
42
        T. assign (dim, vi (dim));
43
        // TO DO: Preencher a Matriz que vai ser exponenciada
44
        // T[0][1] = 1;
45
        // T[1][0] = 1;
        // T[1][1] = 1;
46
47
48
        mat prod = exp_mod(T, exp);
49
50
        mat vec;
51
        \operatorname{vec.assign}(\dim, \operatorname{vi}(1));
52
        for (int i = 0; i < \dim; i++) {
53
             vec[i][0] = dp[i]; // Valores iniciais
54
55
56
        mat ans = mult(prod, vec);
57
        return ans [0][0];
58
```

4.3 Busca Binária Paralela

Faz a busca binária para múltiplas consultas quando a busca binária é muito pesada.

• Complexidade de tempo: $O((N+Q)\log(N) * O(F))$, onde N é o tamanho do espaço de busca, Q é o número de consultas e O(F), o custo de avaliação da função.

```
1
2
  namespace parallel binary search {
3
      typedef tuple < int, int, long long, long long > query; //{value, id, l, r}
      4
5
      long long ans [1123456];
6
      long long l, r, mid;
7
      int id = 0;
      void set lim search (long long n) {
8
9
         1 = 0;
10
         r = n;
```

```
11
            mid = (1 + r) / 2;
12
        }
13
        void add_query(long long v) {
14
15
            queries[mid].push\_back(\{v, id++, l, r\});
16
17
18
        void advance search(long long v) {
19
            // advance search
20
21
        bool satisfies (long long mid, int v, long long 1, long long r) {
22
23
            // implement the evaluation
24
25
26
        bool get ans() {
27
            // implement the get ans
28
29
30
        void parallel binary search (long long 1, long long r) {
31
32
            bool go = 1;
            while (go) {
33
34
                 go = 0;
35
                 int i = 0; // outra logica se for usar um mapa
                 for (auto &vec : queries) {
36
37
                     advance_search(i++);
38
                     for (auto q : vec) {
39
                          auto [v, id, l, r] = q;
                          if (l > r) {
40
41
                              continue;
                          }
42
43
                          go = 1;
                          // return while satisfies
44
45
                          if (satisfies(i, v, l, r)) {
46
                              ans[i] = get_ans();
                              \mathbf{long} \ \mathbf{long} \ \mathbf{mid} = (i + 1) / 2;
47
                              queries [mid] = query(v, id, l, i - 1);
48
49
                          } else {
                              long long mid = (i + r) / 2;
50
                              queries[mid] = query(v, id, i + 1, r);
51
52
53
                     vec.clear();
54
55
56
            }
57
58
59
     // namespace name
```

4.4 Divide and Conquer

Otimização para DP de prefixo quando se pretende separar o vetor em K subgrupos.

É preciso fazer a função query(i, j) que computa o custo do subgrupo

i, j

.

* Complexidade de tempo: O(n * k * log(n) * O(query))

Divide and Conquer com Query on demand

<!- *Read in [English](README.en.md)* ->

Usado para evitar queries pesadas ou o custo de pré-processamento.

 $\acute{\mathrm{E}}$ preciso fazer as funções da estrutura **janela**, eles adicionam e removem itens um a um como uma janela flutuante.

* Complexidade de tempo: O(n * k * log(n) * O(update da janela))

```
1
   namespace DC {
        vi dp_before, dp_cur;
2
3
        void compute(int 1, int r, int optl, int optr) {
4
             if (l > r) 
5
                 return;
6
7
            int \ mid = (1 + r) >> 1;
             pair < ll, int > best = \{0, -1\}; // \{INF, -1\} se quiser minimizar
8
9
            for (int i = optl; i \le min(mid, optr); i++) {
                 best = max(best,
10
                             \{(i ? dp before[i - 1] : 0) + query(i, mid), \}
11
12
                              i }); // min() se quiser minimizar
13
14
            dp cur[mid] = best.first;
15
            int opt = best.second;
            compute (1, \text{ mid} - 1, \text{ optl}, \text{ opt});
16
17
            compute(mid + 1, r, opt, optr);
18
        }
19
        ll solve(int n, int k) {
20
21
            dp before.assign (n + 5, 0);
22
            dp cur.assign(n + 5, 0);
            for (int i = 0; i < n; i++) {
23
24
                 dp before[i] = query(0, i);
25
             for (int i = 1; i < k; i++) {
26
27
                 compute (0, n - 1, 0, n - 1);
28
                 dp before = dp cur;
29
30
            return dp_before[n-1];
31
        }
32
    };
```

```
1
  namespace DC {
2
       struct range { // eh preciso definir a forma de calcular o range
            vi freq;
3
4
            11 \text{ sum} = 0;
5
           int l = 0, r = -1;
6
           void back_l(int v) { // Mover o 'l' do range para a esquerda
7
                sum += freq[v];
8
                freq[v]++;
```

```
1--;
9
             }
10
             void advance_r(int v) { // Mover o 'r' do range para a direita
11
12
                 sum += freq[v];
13
                 freq[v]++;
14
                 r++;
15
16
             void advance l(int v) { // Mover o 'l' do range para a direita
17
                 freq[v]--;
                 sum = freq[v];
18
                 1++;
19
20
21
             void back_r(int v) { // Mover o 'r' do range para a esquerda
22
                 freq[v]--;
23
                 sum = freq |v|;
                 r--;
24
25
             void clear(int n) { // Limpar range
26
27
28
                 r = -1;
29
                 sum = 0;
30
                 freq.assign(n + 5, 0);
             }
31
32
        } s;
33
34
        vi dp_before, dp_cur;
35
        void compute(int 1, int r, int optl, int optr) {
36
             if (1 > r) {
37
                 return;
38
39
             int mid = (1 + r) >> 1;
             pair < ll, int > best = \{0, -1\}; // \{INF, -1\}  se quiser minimizar
40
41
             \mathbf{while} \ (s.l < optl) \ \{
42
43
                 s.advance l(v[s.l]);
44
             while (s.l > optl) {
45
46
                 s.back l(v[s.l-1]);
47
48
             \mathbf{while} \ (\mathbf{s.r} < \mathbf{mid}) \ \{
                 s.advance_r(v[s.r + 1]);
49
50
51
             \mathbf{while} \ (\mathbf{s.r} > \mathbf{mid}) \ \{
52
                 s.back_r(v[s.r]);
53
54
55
             vi removed;
             for (int i = optl; i \le min(mid, optr); i++) {
56
                  best = min(best,
57
                              \{(i ? dp\_before[i - 1] : 0) + s.sum,
58
                               i }); // min() se quiser minimizar
59
60
                 removed.push_back(v[s.l]);
                 s.advance l(v[s.l]);
61
62
63
             for (int rem : removed) {
                 s.back_l(v[s.l-1]);
64
65
66
67
             dp_{cur}[mid] = best.first;
68
             int opt = best.second;
69
             compute(l, mid - 1, optl, opt);
```

```
70
              compute(mid + 1, r, opt, optr);
71
         }
72
         ll solve(int n, int k) {
73
74
              dp_before.assign(n, 0);
75
              dp_cur.assign(n, 0);
76
              s.clear(n);
77
              for (int i = 0; i < n; i++) {
                   s.advance r(v[i]);
78
                   dp before [i] = s.sum;
79
80
              for (int i = 1; i < k; i++) {
81
82
                   s.clear(n);
                  compute \, (\, 0 \, , \ n \, - \, 1 \, , \ 0 \, , \ n \, - \, 1 \, ) \, ;
83
                   dp before = dp cur;
84
85
86
              return dp_before[n-1];
87
         }
88
    };
```

4.5 Busca Ternária

Encontra um ponto ótimo em uma função que pode ser separada em duas funções estritamente monotônicas (e.g. parábolas).

• Complexidade de tempo: O(log(N) * O(eval)). Onde N é o tamanho do espaço de busca e O(eval) o custo de avaliação da função.

Busca Ternária em Espaço Discreto

Encontra um ponto ótimo em uma função que pode ser separada em duas funções estritamente monotônicas (e.g. parábolas).

Versão para espaços discretos.

• Complexidade de tempo: O(log(N) * O(eval)). Onde N é o tamanho do espaço de busca e O(eval) o custo de avaliação da função.

```
1
2
   double eval (double mid) {
3
        // implement the evaluation
4
5
6
   double ternary search (double 1, double r) {
7
        int k = 100;
        while (k--) {
8
9
            double step = (1 + r) / 3;
10
            double mid 1 = 1 + \text{step};
            double mid^2 = r - step;
11
12
13
            // minimizing. To maximize use >= to compare
14
            if (eval(mid 1) \le eval(mid 2)) {
```

```
1
 2
   long long eval (long long mid) {
 3
       // implement the evaluation
4
5
6
   long long discrete ternary search (long long 1, long long r) {
7
        long long ans = -1;
8
       r--; // to not space r
        while (l \ll r) {
9
            long long mid = (l + r) / 2;
10
11
            // minimizing. To maximize use >= to compare
12
            if (eval(mid) \le eval(mid + 1))
13
14
                ans = mid;
                r = mid - 1;
15
16
            } else {
17
                1 = mid + 1;
18
19
20
       return ans;
21
```

4.6 DP de Permutação

Otimização do problema do Caixeiro Viajante

* Complexidade de tempo: $O(n^2 * 2^n)$

Para rodar a função basta setar a matriz de adjacência 'dist' e chamar solve(0,0,n).

```
// setar para o maximo de itens
 1
   const int \lim = 17;
   long double dist[lim][lim]; // eh preciso dar as distancias de n para n
 2
   long double dp[\lim | [1 \ll \lim ];
 3
 4
   int limMask = (1 \ll lim) - 1; // 2**(maximo de itens) - 1
 5
   long double solve(int atual, int mask, int n) {
6
7
        if (dp[atual][mask] != 0) {
            return dp[atual][mask];
 8
9
        if (mask = (1 << n) - 1)  {
10
            return dp[atual][mask] = 0; // o que fazer quando chega no final
11
12
13
14
       long double res = 1e13; // pode ser maior se precisar
15
        for (int i = 0; i < n; i++) {
16
            if (!(mask & (1 << i))) {
```

4.7 Convex Hull Trick

Otimização de DP onde se mantém as retas que formam um Convex Hull em uma estrutura que permite consultar qual o melhor valor para um determinado x.

Só funciona quando as retas são monotônicas. Caso não forem, usar LiChao Tree para guardar as retas Complexidade de tempo:

- Inserir reta: O(1) amortizado
- Consultar x: O(log(N))
- Consultar x quando x tem crescimento monotônico: O(1)

```
\mathbf{const} \ 11 \ INF = 1e18 + 18;
 1
   bool op(ll a, ll b) {
 2
3
        \mathbf{return} \ \mathbf{a} >= \mathbf{b}; \ // \ \mathbf{either} >= \mathbf{or} <=
 4
5
   struct line {
 6
        11 a, b;
        ll get(ll x)  {
7
8
             return a * x + b;
9
10
        11 intersect(line 1) {
             return (1.b - b + a - 1.a) / (a - 1.a); // rounds up for integer only
11
12
13
    };
14
   deque < pair < line, ll >> fila;
15
   void add line(ll a, ll b) {
        line nova = \{a, b\};
16
        if (!fila.empty() && fila.back().first.a == a && fila.back().first.b == b) {
17
18
             return;
19
20
        while (!fila.empty() &&
21
                op(fila.back().second, nova.intersect(fila.back().first))) {
22
             fila.pop back();
23
24
        11 x = fila.empty() ? -INF : nova.intersect(fila.back().first);
25
        fila.emplace back(nova, x);
26
27
    11 get_binary_search(ll x) {
28
        int esq = 0, dir = fila.size() - 1, r = -1;
29
        while (esq \ll dir) {
```

4.8. ALL SUBMASK 89

```
int mid = (esq + dir) / 2;
30
31
            if (op(x, fila[mid].second)) {
32
                esq = mid + 1;
33
                r = mid;
34
            } else {
                dir = mid - 1;
35
36
37
       return fila[r].first.get(x);
38
39
   // O(1), use only when QUERIES are monotonic!
40
   ll get(ll x) 
41
        while (fila.size() >= 2 \&\& op(x, fila[1].second)) {
42
43
            fila.pop_front();
44
       return fila.front().first.get(x);
45
46
```

4.8 All Submask

Percorre todas as submáscaras de uma máscara.

* Complexidade de tempo: $O(3^N)$

```
1 | int mask;
2 | for (int sub = mask; sub; sub = (sub - 1) & mask) { }
```

Capítulo 5

Matemática

Sum of floor(n div i))

Computa $\sum_{i=1}^{n} \lfloor \frac{n}{i} \rfloor$

Primos

Algortimos relacionados a números primos.

NTT

Computa a multiplicação de polinômios com coeficientes inteiros módulo um número primo.

Eliminação Gaussiana

Método de eliminação gaussiana para resolução de sistemas lineares.

GCD

Algoritmo Euclides para computar o Máximo Divisor Comum (MDC em português; GCD em inglês), e variações.

Fatoração

Algortimos para fatorar um número.

Teorema do Resto Chinês

Algoritmo que resolve o sistema $x \equiv a_i \pmod{m_i}$, onde m_i são primos entre si.

FFT

Algoritmo que computa a transformada rápida de fourier para convolução de polinômios.

Exponenciação Modular Rápida

Computa $(base^{exp})\%mod$.

Totiente de Euler

Código para computar o totiente de Euler.

Inverso Modular

Algoritmos para calcular o inverso modular de um número. O inverso modular de um inteiro a é outro inteiro x tal que $a \cdot x \equiv 1 \pmod{MOD}$

5.1 Soma do floor (n/i)

Computa $\sum_{i=1}^{n} \lfloor \frac{n}{i} \rfloor$

Computa o somatório de n dividido de 1 a n (divisão arredondado pra baixo).

• Complexidade de tempo: O(sqrt(n)).

```
const int MOD = 1e9 + 7;
1
2
3
   long long sumoffloor(long long n) {
        long long answer = 0, i;
5
        for (i = 1; i * i \le n; i++) {
6
            answer += n / i;
7
            answer %= MOD;
8
9
10
        for (int j = 1; n / (j + 1) >= i; j++) {
            answer += (((n / j - n / (j + 1)) \% MOD) * j) \% MOD;
11
12
            answer %= MOD;
13
14
        return answer;
15
```

5.2 Primos

Algortimos relacionados a números primos.

Crivo de Eratóstenes

Computa a primalidade de todos os números até N, quase tão rápido quanto o crivo linear.

• Complexidade de tempo: O(N * log(log(N)))

Demora 1 segundo para LIM igual a $3 * 10^7$.

Miller-Rabin

Teste de primalidade garantido para números menores do que 2^64 .

• Complexidade de tempo: O(log(N))

Teste Ingênuo

Computa a primalidade de um número N.

• Complexidade de tempo: $O(N^{(1/2)})$

5.2. PRIMOS 93

```
1
   vector < bool > sieve (int n) {
2
       vector < bool > is_prime(n + 5, true);
3
       is prime[0] = false;
4
       is prime[1] = false;
5
      long long sq = sqrt(n + 5);
       for (long long i = 2; i \le sq; i++) {
6
7
           if (is_prime[i]) {
8
              9
                  is_prime[j] = false;
10
11
12
13
      return is_prime;
14
```

```
bool is_prime(int n) {
    for (long long d = 2; d * d <= n; d++) {
        if (n % d == 0) {
            return false;
        }
     }
    return true;
}</pre>
```

```
\textbf{long long power}(\textbf{long long base} \,, \,\, \textbf{long long e} \,, \,\, \textbf{long long mod}) \,\,\, \{
 1
 2
        long long result = 1;
         base %= mod;
 3
 4
         while (e) {
             if (e & 1) {
 5
                  result = (__int128) result * base % mod;
 6
 7
 8
             base = (\_int128)base * base \% mod;
 9
             e >>= 1;
10
11
        return result;
12
13
    bool is composite(long long n, long long a, long long d, int s) {
14
15
        long long x = power(a, d, n);
         if (x = 1 \mid | x = n - 1) {
16
17
             return false;
18
19
         for (int r = 1; r < s; r++) {
             x = (\_int128)x * x \% n;
20
21
             if (x = n - 1)  {
                  return false;
22
23
24
25
        return true;
26
27
28
    bool miller_rabin(long long n) {
29
         if (n < 2) {
30
             return false;
31
32
        int r = 0;
33
        \textbf{long long} \ d = n - 1;
34
         while ((d \& 1) = 0) \{
```

```
35
            d >>= 1, ++r;
36
        for (int a : {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}) {
37
38
            if (n = a) {
39
                return true;
40
            if (is_composite(n, a, d, r)) {
41
42
                return false;
43
44
45
        return true;
46
```

5.3 Numeric Theoric Transformation

Computa a multiplicação de polinômios com coeficientes inteiros módulo um número primo.

Computa multiplicação de polinômino; Somente para inteiros.

• Complexidade de tempo: O(N * log(N))

Constantes finais devem ser menor do que 10^9 .

Para constantes entre 10⁹ e 10¹⁸ é necessário codar também [big_convolution](big_convolution.cpp).

```
typedef long long 11;
1
 2
   typedef vector<ll> poly;
3
 4
    11 \mod [3] = \{998244353LL, 1004535809LL, 1092616193LL\};
    11 \text{ root} [3] = \{102292LL, 12289LL, 23747LL\};
5
    11 \text{ root } 1[3] = \{116744195LL, 313564925LL, 642907570LL\};
7
    11 \text{ root } pw[3] = \{1LL \ll 23, 1LL \ll 21, 1LL \ll 21\};
8
    ll modInv(ll b, ll m) {
9
10
        11 e = m - 2;
11
        11 \text{ res} = 1;
12
        while (e) {
13
             if (e & 1) {
14
                 res = (res * b) \% m;
15
             }
16
             e /= 2;
             b = (b * b) \% m;
17
18
19
        return res;
20
    }
21
   void ntt(poly &a, bool invert, int id) {
22
23
        11 \ n = (11) a. size(), m = mod[id];
24
        for (ll i = 1, j = 0; i < n; ++i) {
25
             ll bit = n \gg 1;
26
             for (; j >= bit; bit >>= 1) {
27
                  j = bit;
28
29
             j += bit;
```

```
30
              if (i < j) {
31
                   swap(a[i], a[j]);
32
33
34
         for (ll len = 2, wlen; len \langle = n; len \langle = 1 \rangle {
35
              wlen = invert ? root_1[id] : root[id];
36
              for (11 i = len; i < root_pw[id]; i <<= 1) {
37
                   wlen = (wlen * wlen) \% m;
38
39
              for (ll i = 0; i < n; i += len) {
                   11 \ w = 1;
40
                   \mathbf{for} \ (\ 11 \ \ j \ = \ 0 \, ; \ \ j \ < \ len \ \ / \ \ 2 \, ; \ \ j++) \ \ \{
41
                         ll u = a[i + j], v = (a[i + j + len / 2] * w) % m;
42
                        a[i + j] = (u + v) \% m;
43
                        a[i + j + len / 2] = (u - v + m) \% m;
44
45
                        w = (w * wlen) \% m;
46
                   }
              }
47
48
         if (invert) {
49
50
              11 \text{ inv} = \text{modInv}(n, m);
              \mbox{ for } \mbox{ (ll } \mbox{ i } = \mbox{ 0; } \mbox{ i } < \mbox{ n; } \mbox{ i++) } \mbox{ } \{
51
                   a[i] = (a[i] * inv) \% m;
52
53
54
         }
55
56
    poly convolution (poly a, poly b, int id = 0) {
57
         11 n = 1LL, len = (1LL + a.size() + b.size());
58
59
         while (n < len) {
60
              n = 2;
61
62
         a.resize(n);
63
         b.resize(n);
64
         ntt(a, 0, id);
65
         ntt(b, 0, id);
         poly answer(n);
66
67
         for (11 i = 0; i < n; i++) {
68
              answer[i] = (a[i] * b[i]);
69
70
         ntt(answer, 1, id);
71
         return answer;
72
```

```
1
 2
    11 mod mul(11 a, 11 b, 11 m) {
 3
         return (__int128)a * b % m;
 4
    11 \ \text{ext\_gcd}(11 \ a, 11 \ b, 11 \ \&x, 11 \ \&y)  {
 5
 6
          if (!b) {
7
              x = 1;
 8
              y = 0;
 9
               return a;
10
          } else {
11
               11 g = ext_gcd(b, a \% b, y, x);
12
               y = a / b * x;
              \mathbf{return} \ \ \mathbf{g} \, ;
13
14
          }
15
    }
16
```

```
17
    // convolution mod 1,097,572,091,361,755,137
18
    poly big_convolution(poly a, poly b) {
19
        poly r0, r1, answer;
20
        r0 = convolution(a, b, 1);
21
        r1 = convolution(a, b, 2);
22
23
        11 	ext{ s}, 	ext{ r}, 	ext{ p} = \text{mod}[1] * \text{mod}[2];
24
        ext gcd \pmod{1}, mod[2], r, s);
25
26
        answer.resize(r0.size());
27
        for (int i = 0; i < (int) answer. size(); i++) {
28
             answer[i] = (mod_mul((s * mod[2] + p) \% p, r0[i], p) +
29
                            mod_mul((r * mod[1] + p) \% p, r1[i], p) + p) \%
30
31
        }
32
        return answer;
33
```

5.4 Eliminação Gaussiana

Método de eliminação gaussiana para resolução de sistemas lineares.

• Complexidade de tempo: $O(n^3)$.

Dica: Se os valores forem apenas 0 e 1 o algoritmo [gauss mod2](gauss mod2.cpp) é muito mais rápido.

```
1
   const double EPS = 1e-9;
   const int INF = 2; // it doesn't actually have to be infinity or a big number
2
3
   int gauss (vector < vector < double >> a, vector < double > & ans) {
4
5
        int n = (int)a.size();
6
        int m = (int)a[0].size() - 1;
7
8
        vector < int > where (m, -1);
9
        for (int col = 0, row = 0; col < m && row < n; ++col) {
10
            int sel = row;
11
            for (int i = row; i < n; ++i) {
12
                if (abs(a[i][col]) > abs(a[sel][col])) {
13
                     sel = i;
14
15
16
            if (abs(a[sel][col]) < EPS) {
17
                continue;
18
19
            for (int i = col; i \ll m; ++i) {
20
                swap(a[sel][i], a[row][i]);
21
22
            where [col] = row;
23
            for (int i = 0; i < n; ++i) {
24
25
                if (i != row) {
26
                     double c = a[i][col] / a[row][col];
27
                     for (int j = col; j \ll m; ++j) {
```

```
a[i][j] -= a[row][j] * c;
28
29
                   }
30
31
              }
32
             ++row;
33
         }
34
35
         ans. assign (m, 0);
         for (int i = 0; i < m; ++i) {
36
37
              if (where [i] != -1) {
                   ans[i] = a[where[i]][m] / a[where[i]][i];
38
39
40
         for (int i = 0; i < n; ++i) {
41
              double sum = 0;
42
43
              for (int j = 0; j < m; ++j) {
44
                  sum += ans[j] * a[i][j];
45
              if (abs(sum - a[i][m]) > EPS) {
46
47
                   return 0;
48
49
         }
50
         for (int i = 0; i < m; ++i) {
51
              \mathbf{if} \ (\mathrm{where} \left[ \ \mathbf{i} \ \right] \ = \ -1) \ \left\{
52
                   return INF;
53
54
55
56
         return 1;
57
```

```
const int N = 105;
1
   const int INF = 2; // tanto faz
2
3
4
   // n -> numero de equacoes, m -> numero de variaveis
   // a[i][j] para j em [0, m-1] \rightarrow coeficiente da variavel j na iesima equacao
5
   // a[i][j] para j == m -> resultado da equação da iesima linha
7
   // ans -> bitset vazio, que retornara a solucao do sistema (caso exista)
   int gauss (vector < bitset < N> a, int n, int m, bitset < N> & ans) {
8
9
        vector < int > where (m, -1);
10
        for (int col = 0, row = 0; col < m && row < n; col++) {
11
12
            for (int i = row; i < n; i++) {
13
                if (a[i][col]) {
14
                    swap(a[i], a[row]);
                     break;
15
                }
16
17
            if (!a[row][col]) {
18
19
                continue;
20
21
            where [col] = row;
22
23
            for (int i = 0; i < n; i++) {
                if (i != row && a[i][col]) {
24
25
                    a[i] ^= a[row];
26
27
28
            row++;
29
        }
```

```
30
31
         for (int i = 0; i < m; i++) {
32
               if (where [i] != -1) {
33
                    ans[i] = a[where[i]][m] / a[where[i]][i];
34
35
         for (int i = 0; i < n; i++) {
36
37
               int sum = 0;
               for (int j = 0; j < m; j++) {
38
39
                    sum += ans[j] * a[i][j];
40
               if (abs(sum - a[i][m]) > 0) {
41
42
                    return 0; // Sem solucao
43
               }
         }
44
45
         \  \  \, \textbf{for} \  \  \, (\, \textbf{int} \  \  \, i \, = \, 0\,; \  \  \, i \, < \, m; \  \  \, i \, + +) \, \, \, \{ \,
46
               if (where [i] == -1) {
47
                    return INF; // Infinitas solucoes
48
49
50
         return 1; // Unica solucao (retornada no bitset ans)
51
52
```

5.5 Máximo divisor comum

Algoritmo Euclides para computar o Máximo Divisor Comum (MDC em português; GCD em inglês), e variações.

Read in [English](README.en.md)

Algoritmo de Euclides

Computa o Máximo Divisor Comum (MDC em português; GCD em inglês).

• Complexidade de tempo: O(log(n))

Mais demorado que usar a função do compilador C++ __gcd(a,b).

Algoritmo de Euclides Estendido

Algoritmo extendido de euclides que computa o Máximo Divisor Comum e os valores x e y tal que a * x + b * y = gcd(a, b).

• Complexidade de tempo: O(log(n))

```
1 long long gcd(long long a, long long b) {
2 return (b == 0) ? a : gcd(b, a % b);
3 }
```

 $5.6. \ FATORAÇÃO$ 99

```
int extended_gcd(int a, int b, int &x, int &y) {
1
2
       x = 1, y = 0;
3
       int x1 = 0, y1 = 1;
        while (b) {
4
5
            int q = a / b;
            tie(x, x1) = make\_tuple(x1, x - q * x1);
6
7
            tie(y, y1) = make\_tuple(y1, y - q * y1);
8
            tie(a, b) = make\_tuple(b, a - q * b);
9
10
       return a;
11
```

```
extended gcd(ll a, ll b, ll &x, ll &y) {
 1
 2
        if (b = 0)  {
 3
             x = 1;
 4
             y = 0;
 5
             return a;
 6
        } else {
             11 g = \text{extended } \gcd(b, a \% b, y, x);
 7
 8
             y = a / b * x;
 9
             return g;
10
        }
11
```

5.6 Fatoração

Algortimos para fatorar um número.

Fatoração Simples

Fatora um número N.

• Complexidade de tempo: $O(\sqrt{n})$

Crivo Linear

Pré-computa todos os fatores primos até MAX.

Utilizado para fatorar um número N menor que MAX.

- Complexidade de tempo: Pré-processamento O(MAX)
- Complexidade de tempo: Fatoraração O(quantidade de fatores de N)
- Complexidade de espaço: O(MAX)

Fatoração Rápida

Utiliza Pollar-Rho e Miller-Rabin (ver em Primos) para fatorar um número N.

• Complexidade de tempo: $O(N^{1/4} \cdot log(N))$

Pollard-Rho

Descobre um divisor de um número N.

- Complexidade de tempo: $O(N^{1/4} \cdot log(N))$
- Complexidade de espaço: $O(N^{1/2})$

```
vector < int > factorize (int n) {
1
2
        vector < int > factors;
        for (long long d = 2; d * d <= n; d++) {
3
            while (n \% d == 0) {
4
5
                 factors.push back(d);
6
                 n /= d;
7
             }
8
9
        if (n != 1) {
             factors.push\_back(n);
10
11
12
        return factors;
13
```

```
1
   namespace sieve {
2
        const int MAX = 1e4;
3
        int lp[MAX + 1], factor[MAX + 1];
 4
        vector < int > pr;
        void build() {
 5
 6
             \mathbf{for} \ (\mathbf{int} \ i = 2; \ i <= MAX; ++i) \ \{
 7
                  if (lp[i] = 0) {
8
                      lp[i] = i;
9
                      pr.push_back(i);
10
11
                  for (int j = 0; i * pr[j] <= MAX; ++j) {
12
                      lp[i * pr[j]] = pr[j];
                      factor[i * pr[j]] = i;
13
                      if (pr[j] == lp[i]) {
14
15
                           break;
16
17
                  }
             }
18
19
        }
20
        vector<int> factorize(int x) {
             if (x < 2) {
21
22
                 return {};
23
24
             vector < int > v;
25
             for (int lpx = lp[x]; x >= lpx; x = factor[x]) {
                 v.emplace back(lp[x]);
26
27
28
             return v;
29
        }
30
```

```
long long mod_mul(long long a, long long b, long long m) {
   return (__int128)a * b % m;
}
```

```
5
    long long pollard rho(long long n) {
 6
         auto f = [n](long long x) {
 7
              \mathbf{return} \ \operatorname{mod\_mul}(x, \ x, \ n) + 1;
 8
         \textbf{long long } x = 0\,, \ y = 0\,, \ t = 30\,, \ prd = 2\,, \ i = 1\,, \ q\,;
 9
10
         while (t++\% 40 | | \_gcd(prd, n) == 1)  {
              if (x = y) {
11
12
                   x = ++i, y = f(x);
13
14
              if ((q = mod_mul(prd, max(x, y) - min(x, y), n))) 
                   prd = q;
15
16
              x = f(x), y = f(f(y));
17
18
19
         return _{gcd}(prd, n);
20
```

```
1
      usa miller rabin.cpp!! olhar em matematica/primos
2
      usa pollar_rho.cpp!! olhar em matematica/fatoracao
3
   vector < long long > factorize (long long n) {
 4
 5
        if (n = 1) {
 6
            return {};
7
        if (miller rabin(n)) {
 8
 9
            return {n};
10
        long long x = pollard_rho(n);
11
        auto l = factorize(x), r = factorize(n / x);
12
13
        l.insert(l.end(), all(r));
14
        return 1;
15
```

5.7 Teorema do Resto Chinês

Algoritmo que resolve o sistema $x \equiv a_i \pmod{m_i}$, onde m_i são primos entre si.

```
ll extended_gcd(ll a, ll b, ll &x, ll &y) {
 1
 2
        if (b = 0) {
 3
            x = 1;
            y = 0;
 4
            return a;
 5
 6
        } else {
 7
            11 g = extended_gcd(b, a \% b, y, x);
 8
            y = a / b * x;
 9
            return g;
        }
10
11
12
13
    ll crt(vector<ll> rem, vector<ll> mod) {
14
        int n = rem. size();
15
        if (n = 0) {
16
            return 0;
        }
17
```

```
18
           int128 \ ans = rem[0], \ m = mod[0];
19
        for (int i = 1; i < n; i++) {
20
             11 x, y;
21
             11 g = \text{extended } \gcd(\text{mod}[i], m, x, y);
22
             if ((ans - rem[i]) % g != 0) {
                 return -1;
23
24
25
             ans = ans + (int128)1 * (rem[i] - ans) * (m / g) * y;
26
            m = (\_int128) (mod[i] / g) * (m / g) * g;
27
             ans = (ans \% m + m) \% m;
28
29
        return ans;
30
```

5.8 Transformada Rápida de Fourier

Algoritmo que computa a transformada rápida de fourier para convolução de polinômios.

Computa convolução (multiplicação) de polinômios.

- Complexidade de tempo (caso médio): O(N * log(N))
- Complexidade de tempo (considerando alto overhead): $O(n * log^2(n) * log(log(n)))$

Garante que não haja erro de precisão para polinômios com grau até $3*10^5$ e constantes até 10^6 .

```
typedef complex<double> cd;
1
2
   typedef vector < cd > poly;
3
   const double PI = acos(-1);
4
5
   void fft (poly &a, bool invert = 0) {
6
        int n = a.size(), log n = 0;
7
        while ((1 << log_n) < n)  {
8
            log n++;
9
        }
10
11
        for (int i = 1, j = 0; i < n; ++i) {
            int bit = n \gg 1;
12
13
            for (; j >= bit; bit >>= 1) {
14
                j = bit;
15
16
            j += bit;
            if (i < j) {
17
18
                swap(a[i], a[j]);
19
            }
20
        }
21
        double angle = 2 * PI / n * (invert ? -1 : 1);
22
23
        poly root (n / 2);
24
        for (int i = 0; i < n / 2; ++i) {
25
            root[i] = cd(cos(angle * i), sin(angle * i));
26
27
28
        for (long long len = 2; len \leq n; len \leq 1) {
29
            long long step = n / len;
```

```
30
            long long aux = len / 2;
             \mbox{for (long long $i=0$; $i< n$; $i+=len$) } \{
31
                 for (int j = 0; j < aux; ++j) {
32
                     cd\ u = a[i + j],\ v = a[i + j + aux] * root[step * j];
33
34
                     a[i + j] = u + v;
35
                     a[i + j + aux] = u - v;
                 }
36
            }
37
38
        if (invert) {
39
            for (int i = 0; i < n; ++i) {
40
41
                a[i] /= n;
42
        }
43
44
   }
45
46
    vector < long long > convolution (vector < long long > &a, vector < long long > &b) {
        int n = 1, len = a.size() + b.size();
47
        while (n < len) {
48
49
            n <<= 1;
50
        }
        a.resize(n);
51
52
        b.resize(n);
53
        poly fft_a(a.begin(), a.end());
54
        fft(fft_a);
        poly fft_b(b.begin(), b.end());
55
56
        fft (fft b);
57
58
        poly c(n);
59
        for (int i = 0; i < n; ++i) {
60
            c[i] = fft \ a[i] * fft \ b[i];
61
62
        fft(c, 1);
63
64
        vector < long long > res(n);
65
        for (int i = 0; i < n; ++i) {
66
            res[i] =
                 round(c[i].real()); // res = c[i].real(); se for vector de double
67
68
69
        // while(size(res) > 1 && res.back() == 0) res.pop back(); // apenas para
70
        // quando os zeros direita nao importarem
71
        return res;
72
```

5.9 Exponenciação modular rápida

Computa $(base^{exp})\%mod$.

- Complexidade de tempo: O(log(exp)).
- Complexidade de espaço: O(1)

```
11 exp mod(11 base, 11 exp) {
1
2
        11 b = base, res = 1;
3
        while (exp) {
4
            if (exp & 1) {
5
                 res = (res * b) \% MOD;
6
7
            b = (b * b) \% MOD;
8
            \exp /= 2;
9
10
        return res;
11
```

5.10 Totiente de Euler

Código para computar o totiente de Euler.

Totiente de Euler (Phi) para um número

Computa o totiente para um único número N.

• Complexidade de tempo: $O(N^{(1/2)})$

Totiente de Euler (Phi) entre 1 e N

Computa o totiente entre 1 e N.

 \bullet Complexidade de tempo: O(N * log(log(N)))

```
1
    vector<int> phi_1_to_n(int n) {
2
        vector < int > phi(n + 1);
3
        for (int i = 0; i \le n; i++) {
4
            phi[i] = i;
5
6
        for (int i = 2; i \le n; i++) {
7
            if (phi[i] == i) {
8
                 for (int j = i; j \ll n; j += i) {
9
                     phi[j] — phi[j] / i;
10
11
            }
12
13
        return phi;
14
```

```
int phi(int n) {
   int result = n;
   for (int i = 2; i * i <= n; i++) {
      if (n % i == 0) {
        while (n % i == 0) {
            n /= i;
      }
      result -= result / i;
</pre>
```

5.11 Modular Inverse

Algoritmos para calcular o inverso modular de um número. O inverso modular de um inteiro a é outro inteiro x tal que $a \cdot x \equiv 1 \pmod{MOD}$

The modular inverse of an integer a is another integer x such that a * x is congruent to 1 (mod MOD).

Modular Inverse

Calculates the modular inverse of a.

Uses the $[\exp_mod](/Matemática/Exponenciação\%20Modular\%20Rápida/exp_mod.cpp)$ algorithm, thus expects MOD to be prime.

- * Time Complexity: O(log(MOD)).
- * Space Complexity: O(1).

Modular Inverse by Extended GDC

Calculates the modular inverse of a.

Uses the [extended_gcd](/Matemática/GCD/extended_gcd.cpp) algorithm, thus expects MOD to be coprime with a.

Returns -1 if this assumption is broken.

- * Time Complexity: O(log(MOD)).
- * Space Complexity: O(1).

Modular Inverse for 1 to MAX

Calculates the modular inverse for all numbers between 1 and MAX.

expects MOD to be prime.

- * Time Complexity: O(MAX).
- * Space Complexity: O(MAX).

Modular Inverse for all powers

Let b be any integer.

Calculates the modular inverse for all powers of b between b^0 and b^MAX.

Needs you calculate beforehand the modular inverse of b, for 2 it is always (MOD+1)/2.

expects MOD to be coprime with b.

- * Time Complexity: O(MAX).
- * Space Complexity: O(MAX).

```
const ll INVB =
1
2
        (MOD + 1) / 2; // Modular inverse of the base, for 2 it is (MOD+1)/2
3
   11 inv[MAX]; // Modular inverse of b^i
4
   void compute_inv() {
6
7
       inv[0] = 1;
8
       for (int i = 1; i < MAX; i++) {
            inv[i] = inv[i - 1] * INVB \% MOD;
9
10
11
   }
```

```
int inv(int a) {
   int x, y;
   int g = extended_gcd(a, MOD, x, y);
   if (g == 1) {
       return (x % m + m) % m;
   }
   return -1;
}
```