Formale Sprachen und Komplexitätstheorie

WS 2019/20

Robert Elsässer

Eingeschränkte Grammatiken

Definition

- Eine Grammatik heißt kontextsensitiv oder vom Typ Chomsky-1, falls für jede Regel $u \to v$ gilt: $|u| \le |v|$.
- Eine Grammatik heißt kontextfrei oder vom Typ Chomsky-2, falls für jede Regel $u \to v$ gilt: $u \in V$.
- Eine Regel heißt regulär oder vom Typ Chomsky-3, falls alle Regeln der Art $u \rightarrow v$ mit $u \in V$ und:
 - $-v=\varepsilon$
 - $v = a, a \in \Sigma$ oder
 - -v=aw mit $a \in \Sigma$ und $w \in V$

sind.

Kontextfrei vs. regulär

- wir betrachten $L = \{0^n 1^n \mid n \ge 1\}$
- L ist nicht regulär (*Pumping Lemma* für reguläre Sprachen siehe VO "Formale Systeme")
- L ist kontextfrei, Grammatik gegeben z.B. durch

$$1. S \rightarrow 0S1$$

2.
$$S \rightarrow 01$$

Nichtdeterministische Automaten

Definition

Ein nichtdeterministischer endlicher Automat $A = (Q, \Sigma, \delta, q_0, F)$ besteht aus:

- einer endlichen Menge von Eingabesymbolen Σ
- einer endlichen Menge von Zuständen Q
- einer Übergangsfunktion $\delta: Q \times \Sigma \to \mathcal{P}(Q)$
- einem Anfangszustand $q_0 \in Q$
- einer Menge $F \subseteq Q$ von Endzuständen

Kellerautomaten und Stapel

- Kellerautomaten sind nichtdeterministische Automaten mit zusätzlichem Stapel als Speicher
- Kellerautomaten durchlaufen einmal die Eingabe (fast)
- Stapel erlaubt Ablegen, Entfernen und Lesen von Elementen
- es kann nur das zuletzt abgelegte Element gelesen oder entfernt werden (last-in-first-out)

Kellerautomaten

Definition

Ein Kellerautomat (PDA) ist definiert durch ein 6-Tupel $(Q, \Sigma, \Gamma, \delta, q_0, F)$, wobei

- 1. Q eine endliche Menge von Zuständen ist,
- 2. Σ das endliche Eingabealphabet ist,
- 3. Γ das endliche Stapelalphabet ist,
- 4. $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$ die Übergangsfunktion ist,
- 5. $q_0 \in Q$ der Startzustand und $F \subseteq Q$ die Menge der akzeptierenden Zustände ist.

Kellerautomaten – schematische Darstellung

Kellerautomaten

Definition

- Kellerautomaten sind nichtdeterministisch
- $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}, \Gamma_{\varepsilon} = \Gamma \cup \{\varepsilon\}$
- Übergangsfunktion $(q_2, c) \in \delta(q_1, a, b)$, $a, b, c = \varepsilon$ zugelassen
- $a = \varepsilon$: Lesekopf wird nicht bewegt, also Kellerautomaten durchlaufen einmal die Eingabe, dürfen aber dabei anhalten
- $b = \varepsilon$: c wird zusätzlich auf Stapel gelegt (push-Operation)
- $c = \varepsilon$: b wird vom Stapel entfernt (pop-Operation)

Kellerautomaten – graphische Darstellung

§ markiert Boden des Stapels

PDA – Berechnung

 $PDA = (Q, \Sigma, \Gamma, \delta, q_0, F)$. Berechnung bei Eingabe $w \in \Sigma^*$:

- wir schreiben $w = w_1 w_2 \dots w_m$, $w_i \in \Sigma_{\varepsilon}$, um Anhalten zu modellieren
- wendet in jedem Rechenschritt Übergangsfunktion δ an, dabei wird stets das nächste w_i gelesen
- Berechnung endet, falls Ende der Eingabe erreicht wurde oder für gelesenes Tripel (Zustand, Eingabesymbol, Stapelsymbol)
 Wert der Übergangsfunktion = Ø ist.
- Konfiguration ist gegeben durch aktuelle Position i in der Eingabe, den Zustand und den Stapelinhalt

PDA – Berechnung

PDA $K = (Q, \Sigma, \Gamma, \delta, q_0, F)$. Berechnung bei Eingabe $w \in \Sigma^*$:

- Berechnung startet in den Zustand q_0 , mit leerem Stapel und Lesekopf auf w_1
- durchläuft Folge von Konfigurationen
- Berechnung heißt akzeptierend, wenn Ende der Eingabe erreicht wird und letzter Zustand in F liegt
- abbrechende Berechnungen $(\delta(q, a, v) = \emptyset)$ sind **ablehnend**
- w wird von K akzeptiert, falls es eine akzeptierende Berechnung von K bei Eingabe w gibt

PDA – Berechnung

• Folge von Zuständen ist $q_0, q_1, q_1, q_1, q_2, q_2, q_3$

ε

PDA – akzeptierte Sprache

PDA
$$K = (Q, \Sigma, \Gamma, \delta, q_0, F)$$

 $L(K) = \{ w \in \Sigma^* \mid \text{es gibt akzeptierende Berechnung von } K \text{ bei Eingabe } w \}$

PDA für $L_1 = \{0^n 1^n \mid n \ge 1\}$

- 1. Solange das Eingabesymbol eine 0 ist, lege eine 0 auf den Stapel.
- 2. Wird eine 1 gelesen, entferne eine 0 vom Stapel.
- 3. Entferne bei jeder weiteren gelesenen 1 eine 0 vom Stapel, bis entweder das Ende der Eingabe erreicht worden ist, oder eine 0 gelesen wird, oder der Stapel leer ist.
- 4. Akzeptiere, wenn am Ende der Rechnung der Stapel leer ist.

PDA für $L_1 = \{0^n 1^n \mid n \ge 1\}$

PDA für $L_2 = \{ww^R \mid w \in \{0, 1\}^*\}$

- 1. Lege nichtdeterministisch einen Präfix der Eingabe auf den Stapel.
- Überprüfe, ob Rest der Eingabe mit dem Präfix (in der Reihenfolge der Symbole auf dem Stapel) übereinstimmt.
- 3. Akzeptiere, falls dies der Fall ist, sonst lehne ab.

PDA für $L_2 = \{ww^R \mid w \in \{0, 1\}^*\}$

PDAs und kontextfreie Sprachen

Satz

Sei *L* eine kontextfreie Sprache.

Dann gibt es einen PDA K, der L akzeptiert.

Satz

Sei K ein PDA und L = L(K).

Dann ist *L* eine kontextfreie Sprache.