Programma del Corso Geometria e Algebra Lineare 2014

Geometria affine

Segmenti orientati e vettori geometrici. Combinazioni lineari e dipendenza lineare. Basi e sistemi di riferimento per la retta, il piano e lo spazio. Coordinate di vettori e punti. Geometria affine di rette e piani: rappresentazione parametrica, rappresentazione algebrica, mutua posizione, fasci di rette, fasci di piani.

Sistemi lineari

Sistemi lineari in forma matriciale. Pivot. Matrici a scala. Metodo di eliminazione di Gauss. Proprietà delle soluzioni. Rango e nucleo di una matrice. Teorema di Rouché-Capelli. Sistemi lineari dipendenti da parametri. Interpretazione geometrica.

Calcolo matriciale

Vettori riga e colonna, matrici. Somma e prodotto per uno scalare. Prodotto tra matrici. Matrice nulla e matrice identità. Proprietà delle operazioni. Matrici trasposte. Matrici quadrate, triangolari, diagonali. Matrici simmetriche e antisimmetriche. Matrici invertibili: definizione, condizioni di esistenza, proprietà. Calcolo dell'inversa con l'algoritmo di Gauss-Jordan. Risoluzione di sistemi lineari determinati. Traccia di una matrice. Definizione di determinante di una matrice e calcolo. Teorema di Binét. Proprietà del determinante. Matrici elementari e loro proprietà. Calcolo del determinante con MEG. Determinante, trasposizione e rango. Formule di Laplace. Matrice aggiunta ed inversa, teorema di Kronecker. Teorema di Cramer.

Spazi vettoriali

Spazi vettoriali: definizione ed esempi. Proprietà degli spazi vettoriali. Prodotto diretto. Sottospazi vettoriali. Esempi. Spazi di polinomi. Combinazioni lineari, generatori, dipendenza lineare. Basi: definizione ed esempi. Proprietà delle basi. Mappa delle coordinate. Spazi di dimensione finita. Dimensione. Costruzione delle basi con gli algoritmi di restrizione e completamento. Cambiamento di base. Spazio delle righe, delle colonne e rango di una matrice. Nucleo e immagine di una matrice. Operazioni sui sottospazi: intersezione, somma e somma diretta di sottospazi. Formula di Grassman.

Applicazioni lineari

Applicazioni lineari: definizione, esempi, proprietà. Nucleo ed immagine di una applicazione. Teorema di rappresentazione, cambiamento di base. Algebra delle applicazioni lineari. Spazio degli omomorfismi ed endomorfismi. Isomorfismi e automorfismi. Esempi. Teorema di isomorfismo. Teorema di nullità più rango.

Autovalori, autovettori e diagonalizzazione

Autovalori e autovettori di applicazioni lineari e di matrici: definizione, esempi, proprietà. Autospazi. Applicazioni diagonalizzabili. Basi di autovettori e primo criterio di diagonalizzabilità. Matrici simili. Determinante e traccia di applicazioni. Polinomio ed equazione caratteristica. Molteplicità algebrica e geometrica. Indipendenza degli autovettori. Condizione sufficiente di diagonalizzabilità. Autovalori regolari e semplici. Secondo criterio di diagonalizzabilità. Invarianti per similitudine. Diagonalizzazione e algebra delle applicazioni lineari. Diagonalizzazione di applicazioni dipendenti da parametri. Diagonalizzazione di polinomi di applicazioni. Teorema di Caley-Hamilton ed inversione di applicazioni.

Forme bilineari e spazi euclidei

Forme bilineari: definizione, esempi e proprietà. Matrici di Gram. Forme simmetriche e antisimmetriche. Forme quadratiche: definizione, esempi, proprietà e segno. Forme bilineari standard. Spazi vettoriali euclidei. Prodotto scalare e norma: definizione ed esempi. Teorema di Pitagora. Proiezioni ortogonali. Disuaguaglianze di Schwarz e triangolare. Angolo tra vettori. Basi ortonormali. Algoritmo di Gram-Schmidt. Complementi ortogonali di sottospazi. Proiezioni ortogonali su sottospazi. Prodotto vettoriale e misto. Isometrie e matrici ortogonali. Interpretazione geometrica delle isometrie. Teorema di Eulero. Applicazioni ortogonalmente diagonalizzabili. Applicazioni simmetriche. Teorema spettrale. Matrici congruenti. Criterio per il segno delle forme quadratiche.

Geometria euclidea

Sistemi di riferimento cartesiani. Geometria euclidea di rette e piani. Prodotto vettoriale. Distanze tra punti, rette e piani, in due e tre dimensioni. Circonferenze e sfere. Sfere e loro intersezioni con rette e piani.

Coniche e quadriche

Vettori isotropi rispetto ad una forma quadratica, cono isotropo e coniche. Coniche in forma canonica e generale. Affinità e rototraslazioni. Invarianti metrici delle coniche. Classificazione e riduzione in forma canonica delle coniche. Fasci di coniche: definizione, esempi, punti base. Coniche degeneri in un fascio. Quadriche in forma matriciale. Invarianti metrici delle quadriche. Classificazione e forma canonica delle quadriche. Quadriche rigate. Piano polare e tangente. Superfici di rotazione. Costruzione di quadriche di rotazione. Coni e cilindri generalizzati. Coni e cilindri sopra rette e coniche. Intersezioni tra piani e quadriche, proiezioni ortogonali di curve. Assi di simmetria.