- 1. Let **A** and **B** be $m \times n$ and $n \times p$ matrices respectively.
 - (a) Suppose the homogeneous linear system $\mathbf{B}\mathbf{x}=\mathbf{0}$ has infinitely many solutions. How many solutions does the system $\mathbf{A}\mathbf{B}\mathbf{x}=\mathbf{0}$ have?
 - many solutions does the system ABx = 0 have? (b) Suppose Bx = 0 has only the trivial solution. Can we tell how many solutions are
 - (b) Suppose $\mathbf{B}\mathbf{x} = \mathbf{0}$ has only the trivial solution. Can we tell how many solutions are there for $\mathbf{A}\mathbf{B}\mathbf{x} = \mathbf{0}$.
- 1. (a) Infinitely many. Every solution of Bx = 0 is still a solution of

 (b) the Bx = 0 Ax = 0
- (b) No. Let $B = I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, then Bx = 0 $\exists ! (trivial)$ solution.
- But if $A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, then $A_1B_X = 0$ has a unique solution

 if $A_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, then $A_1B_X = 0$ has infinitely many solution
 - if $A_{\Sigma} = \begin{pmatrix} i & 0 \\ 0 & 0 \end{pmatrix}$ then $A_{\Sigma}B_{X} = 0$ has infinitely many solutions

 2. (a) Let $A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$. Find a 4×3 matrix X such that $AX = I_{3}$.
 - Hint: Write $\mathbf{X} = (\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3)$, where \mathbf{x}_i is a 4×1 matrix, for i = 1, 2, 3. (b) Let $\mathbf{B} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$. Find a 3×4 matrix \mathbf{Y} such that $\mathbf{Y}\mathbf{B} = \mathbf{I}_3$.
- (b) Let $\mathbf{B} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Find a 3×4 matrix \mathbf{Y} such that $\mathbf{YB} = \mathbf{I}_3$.
- Solve them simultaneously

 (A I3) $\frac{\text{Yref}}{\text{o}} \begin{pmatrix} 1 & 0 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 &$
 - $\begin{array}{lll}
 \text{(A I_3)} & \xrightarrow{\text{Yref}} & \begin{pmatrix} 1 & 0 & 0 & \frac{1}{2} & 1 & -1 & 1 \\ 0 & 1 & 0 & -1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \\
 \text{general solutions:} & X_1 = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \\
 X_2 = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 &$
 - So one possible $X = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$ $S_{0} \text{ one possible } X = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ $S_{1} \cdot S_{2} \cdot S_{3} \cdot S_{4} \cdot S_{5} \cdot S_{5$
 - (b) Write $Y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, then $YB = I_3 \iff y_1B = \{1, 0, 0\}$ $y_1B = \{0, 1, 0\}$ $y_2B = \{0, 0, 1\}$ $\iff B^T y_1^T = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad B^T y_2^T = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $\Rightarrow \text{transpare}$

Let
$$X = \begin{pmatrix} X_1 \\ 0 \end{pmatrix}$$
 $A_1 = \begin{pmatrix} A_1 & A_2 \end{pmatrix}$ where $A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ $A_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
Then $I_3 = A_3 = A_1 X_1 \implies X_1 = A_1^{-1}$, $X = \begin{pmatrix} A_1^{-1} \\ 0 \end{pmatrix}$

- (i) Reduce the following matrices A to its reduced row-echelon form R.
 - (ii) For each of the elementary row operation, write the corresponding elementary matrix.
 - (iii) Write the matrices **A** in the form $\mathbf{E}_1 \mathbf{E}_2 \dots \mathbf{E}_n \mathbf{R}$ where $\mathbf{E}_1, \mathbf{E}_2, \dots, \mathbf{E}_n$ are elementary matrices and R is the reduced row-echelon form of A.

(a)
$$\mathbf{A} = \begin{pmatrix} 5 & -2 & 6 & 0 \\ -2 & 1 & 3 & 1 \end{pmatrix}$$
. (b) $\mathbf{A} = \begin{pmatrix} -1 & 3 & -4 \\ 2 & 4 & 1 \\ -4 & 2 & -9 \end{pmatrix}$.

$$A \xrightarrow{R_{1} + \frac{1}{J}R_{1}} \xrightarrow{\frac{1}{J}R_{1}} \xrightarrow{SR_{L}} \xrightarrow{R_{1} + \frac{1}{J}R_{L}} R = \begin{pmatrix} 1 & 0 & 12 & 2 \\ 0 & 1 & 27 & 5 \end{pmatrix} \xrightarrow{\widetilde{E}_{4} \widetilde{E}_{1}} \widetilde{E}_{1} \widetilde{E}_{2} \widetilde{E}_{1} A = R$$

$$\begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\forall = \begin{pmatrix} -\frac{1}{7} & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 0 & \frac{1}{7} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 17 & 7 \end{pmatrix}$$

4. Determine if the following matrices are invertible. If the matrix is invertible, find its inverse.

$$(a) \begin{pmatrix} -1 & 3 \\ 3 & -2 \end{pmatrix}.$$

$$(b) \begin{pmatrix} -1 & 3 & -4 \\ 2 & 4 & 1 \\ -4 & 2 & -9 \end{pmatrix}.$$

$$4. (a) \begin{pmatrix} -1 & 3 & -4 \\ 3 & -2 & 1 \end{pmatrix} \xrightarrow{\gamma r c \uparrow} \begin{pmatrix} 1 & 0 & | \gamma_1 & \gamma_1 \\ 0 & 1 & | \gamma_1 & \gamma_1 \end{pmatrix}$$

$$So \begin{pmatrix} -1 & 3 \\ 3 & -2 \end{pmatrix}^{-1} = \begin{pmatrix} \gamma_1 & \gamma_1 \\ \gamma_1 & \gamma_1 \end{pmatrix}$$

(b)
$$\begin{pmatrix} -1 & 3 & -4 \\ 2 & 4 & 1 \\ -4 & 2 & -9 \end{pmatrix}$$
 Is $\begin{pmatrix} -1 & 3 & -4 & 1 & 0 & 0 \\ 0 & 10 & -7 & 2 & 1 & 0 \\ 0 & 0 & 0 & -2 & 1 & 1 \end{pmatrix}$

5. Write down the conditions so that the matrix $\begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{pmatrix}$ is invertible.

So we need that a = b , b = c . c = a .

Remark: This type of motive is called the Vandermonde matrix.

$$\begin{pmatrix} 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_{n+1} \\ a_1^n & a_2^n & \cdots & a_{n+1}^n \\ \vdots & \vdots & \vdots & \vdots \\ a_1^n & a_2^n & \cdots & a_{n+1}^n \end{pmatrix}$$
 invertible iff all a_0 's are distinct

- (a) Suppose A is a square matrix such that A² = 0. Show that I − A is invertible, with inverse I + A.
 - (b) Suppose $A^3 = 0$. Is I A invertible?
 - (c) A square matrix **A** is said to be *nilpotent* if there is a positive integer n such that $\mathbf{A}^n = \mathbf{0}$. Show that if **A** is nilpotent, then $\mathbf{I} \mathbf{A}$ is invertible.

6. (a)
$$(I-A)(I+A) = I^* + I \cdot A - A \cdot I - A^* = I + A - A - A^* = I$$

(b) Yes. Polynomial
$$I-X^3=(I-X)(I+X+X^2)$$

So $I=I-A^3=(I-A)(I+A+A^2)$

(c) Similarly
$$I - x^n = (I - x) \left(\sum_{i=0}^{n-1} x^i \right)$$

Traphyling $I = I - A^n = (I - A) (I + A + A^n + \cdots + A^{n-1})$

Remark: Try to prove that this matrix is nilpotent with index n-1:

$$N_n := \begin{pmatrix} 0 & 1 & 1 & 1 \\ & 0 & 1 & 1 \\ & & & 0 \end{pmatrix}_{n \times n}$$