

Figure 1

LLP1: R VIEVVQGACRA IRHI PRRIRQGLER I L

SA-5: R VIRVVQRACRA IRHI VRRIRQGLRR I L

LSA- 5: R VIRVVQRACRA IRHI VRRIRQGLRR I LRVV

WLSA5:R WIRVVQRWCRAIRHIWRRIRQGLRRWLRVV

Figure 2

LBU-1 LBU-2 LBU-3 LBU-3.5
LBU-4 WLBU-1 WLBU-2 WLBU-3
 WLBU-4

Figure 3. Killing of *P. aeruginosa* by LL37 & WLLSA-5 in 10 mM PB

Figure 4. Killing of *S. aureus* by LL37 & WLSA-5 in 10 mM PB

Figure 5. Killing of *P. aeruginosa* by LL37 & WLSA-5 in 10 mM PB plus 150 mM NaCl

Figure 6. Killing of *S. aureus* by LL37 & WLSA-5 in 10 mM PB plus 150 mM NaCl

Figure 7. Activity of LSA-5 versus WLSA-5 against *Burkholderia cepacia*

Figure 8. Antibacterial activity of WLSA-5 and the host derived LL37 against 10 different strains of *B. cepacia* representing multiple genomovars.

Figure 9. Selective toxicity of WLSA-5 for *P. aeruginosa* bound to CF human bronchial epithelial cells in culture

Figure 10. *In vitro* killing of *S. aureus* by WLSA-5 in synovial fluid

Figure 11. Dose dependent decrease in bacterial killing
relative to the untreated control

Figure 12. LSA-5/neomycin bacterial killing in rabbit joint model

