Linear Algebra

DEFINITION 3 If $S = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_r\}$ is a nonempty set of vectors in a vector space V, then the subspace W of V that consists of all possible linear combinations of the vectors in S is called the subspace of V generated by S, and we say that the vectors $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_r$ span W. We denote this subspace as

$$W = \operatorname{span}\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_r\}$$
 or $W = \operatorname{span}(S)$

EXAMPLE 12 A Geometric View of Spanning in \mathbb{R}^2 and \mathbb{R}^3

(a) If v is a nonzero vector in \mathbb{R}^2 or \mathbb{R}^3 that has its initial point at the origin, then span $\{v\}$, which is the set of all scalar multiples of v, is the line through the origin determined by v.

(b) If \mathbf{v}_1 and \mathbf{v}_2 are nonzero vectors in R^3 that have their initial points at the origin, then span $\{\mathbf{v}_1, \mathbf{v}_2\}$, which consists of all linear combinations of \mathbf{v}_1 and \mathbf{v}_2 , is the plane through the origin determined by these two vectors.

(b) Span $\{\mathbf{v}_1, \mathbf{v}_2\}$ is the plane through the origin determined by \mathbf{v}_1 and \mathbf{v}_2 .

EXAMPLE 11 The Standard Unit Vectors Span \mathbb{R}^n

The standard unit vectors in \mathbb{R}^n are

$$\mathbf{e}_1 = (1, 0, 0, \dots, 0),$$

 $\mathbf{e}_2 = (0, 1, 0, \dots, 0),$
 $\dots,$
 $\mathbf{e}_n = (0, 0, 0, \dots, 1)$

These vectors span \mathbb{R}^n since every vector $\mathbf{v} = (v_1, v_2, \dots, v_n)$ in \mathbb{R}^n can be expressed as

$$\mathbf{v} = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + \dots + v_n \mathbf{e}_n$$

which is a linear combination of $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$.

Examples:

The vectors $e_1 = (1,0) \& e_2 = (0,1)$ span R^2 , since any vector (a,b) can be expressed as a linear combination of e_1 and e_2 as follows

$$(a,b) = a(1,0) + b(0,1)$$
 $(2,3) = 2(1,0) + 3(0,1)$ $(a,b) = ae_1 + be_2$ $(2,3) = 2e_1 + 3e_2$

EXAMPLE Testing for Spanning

Determine whether the vectors $\mathbf{v}_1 = (1, 1, 2)$, $\mathbf{v}_2 = (1, 0, 1)$, and $\mathbf{v}_3 = (2, 1, 3)$ span the vector space R^3 .

Solution

We must determine whether an arbitrary vector $\mathbf{b} = (b_1, b_2, b_3)$ in \mathbb{R}^3 can be expressed as a linear combination

$$\mathbf{b} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + k_3 \mathbf{v}_3$$

of the vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 . Expressing this equation in terms of components gives

$$(b_1, b_2, b_3) = k_1(1, 1, 2) + k_2(1, 0, 1) + k_3(2, 1, 3)$$

 $(b_1, b_2, b_3) = (k_1 + k_2 + 2k_3, k_1 + k_3, 2k_1 + k_2 + 3k_3)$

or

$$k_1 + k_2 + 2k_3 = b_1$$

 $k_1 + k_3 = b_2$
 $2k_1 + k_2 + 3k_3 = b_3$

Thus, our problem reduces to ascertaining whether this system is consistent for all values of b_1 , b_2 , and b_3 .

One way of doing this is to use parts (e) and (g) of Theorem 2.3.8, which state that

the system is consistent if and only if its coefficient matrix

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 3 \end{bmatrix}$$
 has a nonzero determinant.

But this is *not* the case here since det(A) = 0, so \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 do not span R^3 .

THEOREM 2.3.8 Equivalent Statements

If A is an $n \times n$ matrix, then the following statements are equivalent.

- (a) A is invertible.
- (b) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (c) The reduced row echelon form of A is I_n .
- (d) A can be expressed as a product of elementary matrices.
- (e) $A\mathbf{x} = \mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b} .
- (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every $n \times 1$ matrix \mathbf{b} .
- (g) $\det(A) \neq 0$.

13. Determine whether the following polynomials span P_2 .

$$\mathbf{p}_1 = 1 - x + 2x^2$$
, $\mathbf{p}_2 = 3 + x$, $\mathbf{p}_3 = 5 - x + 4x^2$, $\mathbf{p}_4 = -2 - 2x + 2x^2$

We must examine, whether an arbitrary polynomial p(x) in $P_2(x)$ can be expressed as a linear combination of $p_1(x)$, $p_2(x)$, $p_3(x)$ & $p_4(x)$

$$p(x) = k_1 p_1(x) + k_2 p_2(x) + k_3 p_3(x) + k_4 p_4(x)$$

$$a_2x^2 + a_1x + a_0 = k_1(1 - x + 2x^2) + k_2(3 + x) + k_3(5 - x + 4x^2) + k_4(-2 - 2x + 2x^2)$$

$$a_2x^2 + a_1x + a_0 = (k_1 + 3k_2 + 5k_3 - 2k_4) + (-k_1 + k_2 - k_3 - 2k_4)x + (2k_1 + 4k_3 + 2k_4)x^2$$

Equating the coefficients on both sides, we get

$$k_1 + 3k_2 + 5k_3 - 2k_4 = a_0$$
$$-k_1 + k_2 - k_3 - 2k_4 = a_1$$
$$2k_1 + 4k_3 + 2k_4 = a_2$$

If the above system of equations is consistent for arbitrary a_0 , a_1 & a_2 then any polynomial p(x) in $P_2(x)$ can be expressed as a linear combination of $p_1(x)$, $p_2(x)$, $p_3(x)$ & $p_4(x)$

THEOREM 4.2.4 The solution set of a homogeneous linear system $A\mathbf{x} = \mathbf{0}$ of m equations in n unknowns is a subspace of R^n .

Proof Let W be the solution set of the system. The set W is not empty because it contains at least the trivial solution $\mathbf{x} = \mathbf{0}$.

To show that W is a subspace of \mathbb{R}^n , we must show that it is closed under addition and scalar multiplication. To do this, let \mathbf{x}_1 and \mathbf{x}_2 be vectors in W. Since these vectors are solutions of $A\mathbf{x} = \mathbf{0}$, we have

$$A\mathbf{x}_1 = \mathbf{0}$$
 and $A\mathbf{x}_2 = \mathbf{0}$

It follows from these equations and the distributive property of matrix multiplication that

$$A(\mathbf{x}_1 + \mathbf{x}_2) = A\mathbf{x}_1 + A\mathbf{x}_2 = \mathbf{0} + \mathbf{0} = \mathbf{0}$$

so W is closed under addition. Similarly, if k is any scalar then

$$A(k\mathbf{x}_1) = kA\mathbf{x}_1 = k\mathbf{0} = \mathbf{0}$$

so W is also closed under scalar multiplication.

EXAMPLE 16 Solution Spaces of Homogeneous Systems

In each part, solve the system by any method and then give a geometric description of the solution set.

(a)
$$\begin{bmatrix} 1 & -2 & 3 \\ 2 & -4 & 6 \\ 3 & -6 & 9 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 1 & -2 & 3 \\ 2 & -4 & 6 \\ 3 & -6 & 9 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & -2 & 3 \\ -3 & 7 & -8 \\ -2 & 4 & -6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

(c)
$$\begin{bmatrix} 1 & -2 & 3 \\ -3 & 7 & -8 \\ 4 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Solution (b)

The augmented matrix is given by

$$\tilde{A} = \begin{pmatrix} 1 & -2 & 3 & 0 \\ -3 & 7 & -8 & 0 \\ -2 & 4 & -6 & 0 \end{pmatrix} \begin{pmatrix} R_1 & \text{Pivot Row} \\ R_2 \\ R_3 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & -2 & 3 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} R_{2} \xrightarrow{R_{2} + 3R_{1}} Pivot Row \qquad R_{2} = -3 & 7 & -8 & 0$$

$$R_{2} \xrightarrow{R_{2} + 3R_{1}} Pivot Row \qquad 3R_{1} = 3 & -6 & 9 & 0$$

Rewriting as system of equations, we get

$$k_1 - 2k_2 + 3k_3 = 0$$
$$k_2 + k_3 = 0$$

$$R_4 + 3R_1 = 0 \quad 1 \quad 1 \quad 0$$

$$2R_1 = 2 - 4 = 6 = 0$$

$$R_3 + 2R_1 = 0 \quad 0 \quad 0$$

$$k_1 - 2k_2 + 3k_3 = 0$$
 ----- (1)
 $k_2 + k_3 = 0$ ---- (2)

Let $k_3 = t$ (since k_3 is arbitrary), from (1) and (2) we get

$$k_3 = t$$

$$k_2 = -t$$

$$k_1 = -5t$$
(i.e.)
$$\binom{k_1}{k_2} = \binom{-5}{-1}t$$

The solution space of the given homogeneous system (b) is a set of all linear combination of the vector $\begin{pmatrix} -5 \\ -1 \\ 1 \end{pmatrix}$, that is the line passes through the origin that is parallel to the vector $\begin{pmatrix} -5 \\ -1 \\ 1 \end{pmatrix}$.

Solution (a)

The augmented matrix is given by

$$\tilde{A} = \begin{pmatrix} 1 & -2 & 3 & 0 \\ -2 & 4 & -6 & 0 \\ 3 & -6 & 9 & 0 \end{pmatrix} \begin{pmatrix} R_1 & \text{Pivot Row} \\ R_2 & \\ R_3 & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & -2 & 3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{matrix} R_1 \\ R_2 \to R_2 + 2R_1 \\ R_3 \to R_3 - 3R_1 \end{matrix}$$

Rewriting as system of equations, we get

$$k_1 - 2k_2 + 3k_3 = 0$$

$$R_2 = -2 \quad 4 \quad -6 \quad 0$$
 $2R_1 = 2 \quad -4 \quad 6 \quad 0$

$$R_4 + 2R_1 = 0 \quad 0 \quad 0 \quad 0$$

$$R_3 = 3 - 6 9 0$$
 $-3R_1 = -3 6 - 9 0$

$$R_3 - 3R_1 = 0 \quad 0 \quad 0$$

$$k_1 - 2k_2 + 3k_3 = 0$$
 ----- (1)

Let $k_2 = t \& k_3 = s$ (since $k_2 \& k_3$ are arbitrary)

$$k_3 = s$$

$$k_2 = t$$

$$k_1 = 2t - 3s$$

(i.e.)
$$\binom{k_1}{k_2} = \binom{2t - 3s}{t}$$

$$\binom{k_1}{s} \qquad \binom{2t}{s} \qquad \binom{-3}{s}$$

$$\begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} = \begin{pmatrix} 2t \\ t \\ 0 \end{pmatrix} + \begin{pmatrix} -3s \\ 0 \\ s \end{pmatrix}$$

$$\begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} t + \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix} s$$

The solution space of the given homogeneous system (a) is a set of all linear

combination of the vectors $\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ & $\begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix}$, that is the plane passes through the origin

Spanned by the vectors
$$\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} & \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix}$$
.

THANK YOU