Intro to ML

November 10th, 2021

Logistic Discrimination (logistic regression)

Two classes: Assume log likelihood ratio is linear

$$\log \frac{p(\mathbf{x} \mid C_1)}{p(\mathbf{x} \mid C_2)} = \mathbf{w}^T \mathbf{x} + w_0^o$$

$$\log \operatorname{it}(P(C_1 \mid \mathbf{x})) = \log \frac{P(C_1 \mid \mathbf{x})}{1 - P(C_1 \mid \mathbf{x})} = \log \frac{p(\mathbf{x} \mid C_1)}{p(\mathbf{x} \mid C_2)} + \log \frac{P(C_1)}{P(C_2)}$$

$$= \mathbf{w}^T \mathbf{x} + w_0$$

$$\text{where } w_0 = w_0^o + \log \frac{P(C_1)}{P(C_2)}$$

$$y = \hat{P}(C_1 \mid \mathbf{x}) = \frac{1}{1 + \exp[-(\mathbf{w}^T \mathbf{x} + w_0)]}$$

Training: Two Classes

Model label given x with probability y

$$\mathcal{X} = \left\{ \mathbf{x}^t, r^t \right\}_t \mid r^t \mid \mathbf{x}^t \sim \mathsf{Bernoulli}(y^t)$$

Note the difference to likelihood method

$$y = P(C_1 \mid \mathbf{x}) = \frac{1}{1 + \exp[-(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0)]}$$

Maximize this function label/data condition likelihood based on data we have

$$I(\mathbf{w}, \mathbf{w}_0 \mid \mathcal{X}) = \prod_{t} (\mathbf{y}^t)^{(r^t)} (1 - \mathbf{y}^t)^{(1 - r^t)}$$

$$E = -\log I$$
 Minimize this

$$E(\mathbf{w}, \mathbf{w}_0 \mid \mathcal{X}) = -\sum_{t} r^t \log y^t + (1 - r^t) \log (1 - y^t)$$

What is this? This is a function that we call 'cross entropy'

Training: Gradient-Descent

$$E(\mathbf{w}, \mathbf{w}_{0} \mid \mathcal{X}) = -\sum_{t} r^{t} \log y^{t} + (1 - r^{t}) \log (1 - y^{t})$$

$$If \ y = \operatorname{sigmoid}(a) \quad \frac{dy}{da} = y(1 - y)$$

$$\Delta w_{j} = -\eta \frac{\partial E}{\partial w_{j}} = \eta \sum_{t} \left(\frac{r^{t}}{y^{t}} - \frac{1 - r^{t}}{1 - y^{t}} \right) y^{t} (1 - y^{t}) x_{j}^{t}$$

$$= \eta \sum_{t} (r^{t} - y^{t}) x_{j}^{t}, j = 1, ..., d$$

$$\Delta w_{0} = -\eta \frac{\partial E}{\partial w_{0}} = \eta \sum_{t} (r^{t} - y^{t})$$

Good practice: Z-normalize features

```
For j = 0, \ldots, d
      w_i \leftarrow \text{rand}(-0.01, 0.01)
Repeat
       For j = 0, ..., d
              \Delta w_j \leftarrow 0
       For t = 1, \ldots, N
              o \leftarrow 0
              For j = 0, \ldots, d
                    o \leftarrow o + w_j x_j^t
             y \leftarrow \operatorname{sigmoid}(o)
             \Delta w_i \leftarrow \Delta w_i + (r^t - y)x_i^t
       For j = 0, \ldots, d
              w_i \leftarrow w_i + \eta \Delta w_i
Until convergence
```

Keep initial close to zero

Notes

Gradient does not change anymore then converged

 In this case, we assume log ratio of class density is linear to perform this learning (but we never explicitly estimate p(x|Ci) or P(Ci)

 Training effectively takes data of a class to result in either y<0.5 or y>0.5

1d Example

Keep iteration without stopping, make the sigmoid function harden (quickly takes the sample to close to 0 or 1)

But does not change misclassification rate

Early stopping

CHAPTER 14:

Kernel Machines

Kernel Machines

- Discriminant-based: No need to estimate densities first
- Define the discriminant in terms of support vectors
 - Support vectors: subset of training instances
- The use of kernel functions, application-specific measures of similarity
- Convex optimization problems with a unique solution

Optimal Separating Hyperplane

$$\mathcal{X} = \{\mathbf{x}^t, r^t\}_t \text{ where } r^t = \begin{cases} +1 & \text{if } \mathbf{x}^t \in C_1 \\ -1 & \text{if } \mathbf{x}^t \in C_2 \end{cases}$$

find w and w_0 such that

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}^{\mathsf{t}} + \mathbf{w}_0 \ge +1 \text{ for } r^{\mathsf{t}} = +1$$

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}^{t} + \mathbf{w}_{0} \leq +1 \text{ for } r^{t} = -1$$

which can be rewritten as

$$r^t (\mathbf{w}^T \mathbf{x}^t + \mathbf{w}_0) \ge +1$$

Not simply >0 With some distance

(Cortes and Vapnik, 1995; Vapnik, 1995)

Margin

- Distance from the discriminant to the closest instances on either side
- Distance of x to the hyperplane is $\frac{|\mathbf{W}^T \mathbf{X}^T + \mathbf{W}_0|}{\|\mathbf{w}\|}$
- We require $\frac{r^t(\mathbf{w}^T\mathbf{x}^t + \mathbf{w}_0)}{\|\mathbf{w}\|} \ge \rho, \forall t$ Like to maximize this distance
- For a unique sol'n, fix $\rho || \mathbf{w} || = 1$, and to max margin equal minimize w

$$\min \frac{1}{2} \|\mathbf{w}\|^2$$
 subject to $r^t (\mathbf{w}^T \mathbf{x}^t + \mathbf{w}_0) \ge +1, \forall t$

Margin

$$\min \frac{1}{2} \|\mathbf{w}\|^2 \text{ subject to } r^t (\mathbf{w}^T \mathbf{x}^t + w_0) \ge +1, \forall t$$

$$L_p = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{t=1}^N \alpha^t [r^t (\mathbf{w}^T \mathbf{x}^t + w_0) - 1]$$

$$= \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{t=1}^N \alpha^t r^t (\mathbf{w}^T \mathbf{x}^t + w_0) + \sum_{t=1}^N \alpha^t$$
Use LaGrange multiplier
$$= \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{t=1}^N \alpha^t r^t (\mathbf{w}^T \mathbf{x}^t + w_0) + \sum_{t=1}^N \alpha^t$$

$$\frac{\partial L_p}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{t=1}^{N} \alpha^t r^t \mathbf{x}^t$$
$$\frac{\partial L_p}{\partial \mathbf{w}_0} = 0 \Rightarrow \sum_{t=1}^{N} \alpha^t r^t = 0$$

The reason to rewrite this

- Original complexity depends on d
- Turn the solution into complexity depends on N

$$\begin{split} L_d &= \frac{1}{2} \left(\mathbf{w}^T \mathbf{w} \right) - \mathbf{w}^T \sum_t \alpha^t r^t \mathbf{x}^t - w_0 \sum_t \alpha^t r^t + \sum_t \alpha^t \\ &= -\frac{1}{2} \left(\mathbf{w}^T \mathbf{w} \right) + \sum_t \alpha^t \\ &= -\frac{1}{2} \sum_t \sum_s \alpha^t \alpha^s r^t r^s \left(\mathbf{x}^t \right)^T \mathbf{x}^s + \sum_t \alpha^t \end{split}$$
 Need to solve for alpha subject to $\sum_t \alpha^t r^t = 0$ and $\alpha^t \geq 0, \forall t$

Most α^t are 0 and only a small number have $\alpha^t > 0$;

they are the support vectors they satisfy $r^t(w^Tx^t + w_0) = 1$

These are support vector machines, it only cares those on the boundaries not within the decision regions

testing

- $g(x)=w^{T}x + w_{0}$
- Choose the results according to sign

Soft Margin Hyperplane

Not linearly separable

$$r^t \left(\mathbf{w}^T \mathbf{x}^t + \mathbf{w}_0 \right) \ge 1 - \xi^t$$

Slack variable $0 < \xi^t < 1$ Error in the margin $\xi^t \ge 1$

Lagrange to ensure

positivity of error,

misclassified

- Soft error $\sum_{t} \xi^{t}$
- New primal is

 $L_{p} = \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{t} \xi^{t} - \sum_{t} \alpha^{t} \left[r^{t} \left(\mathbf{w}^{T} \mathbf{x}^{t} + \mathbf{w}_{0} \right) - 1 + \xi^{t} \right] - \sum_{t} \mu^{t} \xi^{t}$

C is a tunable parameter

Trade off between margin maximization and error minimization

Too large -> high penalty for error -> may overfit

Too small -> not enough penalty for error -> may underfit

Hinge Loss

Penalizes instance in the margin

Kernel Trick

Preprocess input x by basis functions

$$z = \varphi(x)$$
 $g(z) = \mathbf{w}^T \mathbf{z}$ $g(x) = \mathbf{w}^T \varphi(x)$

The SVM solution

$$\mathbf{w} = \sum_{t} \alpha^{t} r^{t} \mathbf{z}^{t} = \sum_{t} \alpha^{t} r^{t} \boldsymbol{\varphi}(\mathbf{x}^{t})$$

$$g(\mathbf{x}) = \mathbf{w}^{T} \boldsymbol{\varphi}(\mathbf{x}) = \sum_{t} \alpha^{t} r^{t} \boldsymbol{\varphi}(\mathbf{x}^{t})^{T} \boldsymbol{\varphi}(\mathbf{x})$$

$$g(\mathbf{x}) = \sum_{t} \alpha^{t} r^{t} \boldsymbol{\kappa}(\mathbf{x}^{t}, \mathbf{x})$$
Dot product in z space replace by a kernel machine 19

Polynomial Kernels

Polynomials of degree q:

$$K(\mathbf{x}^t, \mathbf{x}) = (\mathbf{x}^T \mathbf{x}^t + 1)^q$$

$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{y} + 1)^2$$
$$= (x_1 y_1 + x_2 y_2 + 1)^2$$

$$= (x_1y_1 + x_2y_2 + 1)$$

$$= 1 + 2x_1y_1 + 2x_2y_2 + 2x_1x_2y_1y_2 + x_1^2y_1^2 + x_2^2y_2^2$$

$$\phi(\mathbf{x}) = \left[1, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2, x_1^2, x_2^2\right]^T \text{ inner product of } \mathbf{x}$$

$$\phi(\mathbf{x}) = \begin{bmatrix} 1, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2, x_1^2, x_2^2 \end{bmatrix}^T$$

RBF (Gaussian) Kernel

Radial-basis functions:

$$K(\mathbf{x}^t, \mathbf{x}) = \exp \left[-\frac{\|\mathbf{x}^t - \mathbf{x}\|^2}{2s^2} \right]$$

Defining Kernels

- Kernel "engineering"
- Defining good measures of similarity
- String kernels, graph kernels, image kernels, ...
- Kernel can be 'designed'

SVM for Regression

Use a linear model (possibly kernelized)

$$f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \mathbf{x} + \mathbf{w}_{\mathsf{O}}$$

• Use the ϵ -sensitive error function

$$e_{\varepsilon}(r^{t}, f(\mathbf{x}^{t})) = \begin{cases} 0 & \text{if } |r^{t} - f(\mathbf{x}^{t})| < \varepsilon \\ |r^{t} - f(\mathbf{x}^{t})| - \varepsilon & \text{otherwise} \end{cases}$$

$$\min \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{t} \left(\boldsymbol{\xi}_{+}^{t} + \boldsymbol{\xi}_{-}^{t} \right) \quad r^{t} - \left(\mathbf{w}^{T} \mathbf{x} + \boldsymbol{w}_{0} \right) \leq \varepsilon + \boldsymbol{\xi}_{+}^{t}$$

$$\left(\mathbf{w}^{T} \mathbf{x} + \boldsymbol{w}_{0} \right) - r^{t} \leq \varepsilon + \boldsymbol{\xi}_{-}^{t}$$

$$\boldsymbol{\xi}_{+}^{t}, \boldsymbol{\xi}_{-}^{t} \geq 0$$

Kernel Regression

Polynomial kernel

Gaussian kernel

