Lecture 15: Placement – V

Tsung-Wei (TW) Huang

Department of Electrical and Computer Engineering

University of Utah, Salt Lake City, UT

Happy Halloween!

Recap: Quadratic Placement Formulation

All wire weights = 1 except two highlighted: gate1 to pad and gate1 to gate2

$$\begin{pmatrix}
0 & 1 & 10 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 \\
10 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0
\end{pmatrix}$$

$$A = \begin{pmatrix} 21 & -1 & -10 & 0 & 0 \\ -1 & 4 & -1 & -1 & -1 \\ -10 & -1 & 13 & -1 & 0 \\ 0 & -1 & -1 & 4 & -1 \\ 0 & -1 & 0 & -1 & 3 \end{pmatrix}$$

$$\mathbf{b_x} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 0.5 \end{pmatrix}$$

$$\mathbf{b_y} = \begin{bmatrix} 10 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Recap: Partition-based Placement

- Cannot ignore gates outside region we are re-placing
 - Want gates inside to feel pull from wires to gates outside region
 - Pseudo-pads do this for us

- Pseudo-pads guarantee all gates re-locate inside region
 - Think of wires as 'springs' that each pull gates toward other gates or pads
 - If pads (real & pseudo) are on edges of region – QP keeps gates inside

Recap: Example

5 gates (1,2,3,4,5)

8 wires

3 pads (a,b,c)

2. Initial QP

3. First partition

Sort on X:

Gate order 1 5 4 3 2

Pick: **1 5 4** on left

Recap: Example (cont'd)

4. Propagate gates/pads

Right-side gates: 2,3

Right-side pads: b

Push to cut, using y coordinates

5. 2nd QP input

This is set up for this new smaller placement

6. 2nd QP solved New placement

Recap: Example (cont'd)

7. Left side placed. Now, re-place right-side gates.

8. Propagate gates/pads
This is set up for
next, new smaller
placement

9. 3nd QP input
This is set up for
this new smaller
placement

10. 3nd QP solve

Recap: Example (cont'd)

Repeat: Horizontal partition on left

Focus on top.
Sort gates on Y
Assign gates 1,5 to region.

Propagate gates & pads

Recap: Keep Repeating this Recursion

Recap: Legalization

- Still need to force gates in precise rows for final result
 - QP methods cannot force individual gates into standard cell rows, without overlaps

- Solution step is called: Legalization
 - Many different algorithms. One easy way to do this is by annealing!
 - Do local improvement based on swaps of nearby gates
 - To anneal, set T=HOT to be very small (cold), so don't disrupt QP result

Nonlinear Placement

Mathematical formulation

• d_i denotes the density of bin i

$$\min_{\mathbf{x}, \mathbf{y}} WL(\mathbf{x}, \mathbf{y}),$$
s.t. $d_b(\mathbf{x}, \mathbf{y}) \le t_d, \forall b \in Bins$

Nonlinear placement objective

Lagrangian relaxation

$$\min_{x,y} WL(x,y) + \lambda D(x,y)$$
Wirelength Density

Wirelength Smoothing

- $WL(x, y) = \sum_{e \in E} WL_e(x, y)$
- $HPWL = max|x_i x_j| + max|y_i y_j|$
 - Equivalently $\left(\max_{i} x_{i} \min_{i} x_{i}\right) + \left(\max_{i} y_{i} \min_{i} y_{i}\right)$

- Log-sum-exp (LSE)
 - $LSE(x; \gamma) = \gamma \ln \sum_{i} e^{\frac{x_i}{\gamma}}$
 - $\max\{x_1, \dots, x_n\} < LSE(\mathbf{x}; \gamma) \le \max\{x_1, \dots, x_n\} + \gamma \ln(n)$
 - $LSE(x; \gamma) \approx \max\{x_1, \dots, x_n\}$
 - $-LSE(x; -\gamma) \approx \min\{x_1, \dots, x_n\}$
 - $WL_e(\mathbf{x}, \mathbf{y}; \gamma) = \gamma (\ln \sum_{v_i \in e} e^{\frac{x_i}{\gamma}} + \ln \sum_{v_i \in e} e^{-\frac{x_i}{\gamma}} + \ln \sum_{v_i \in e} e^{\frac{y_i}{\gamma}} + \ln \sum_{v_i \in e} e^{-\frac{y_i}{\gamma}})$

Wirelength Smoothing (cont'd)

Weighted average (WA)

•
$$WA(\boldsymbol{x}, \boldsymbol{y}; \gamma) = \left(\frac{\sum_{v_i \in e} x_i e^{x_i/\gamma}}{\sum_{v_i \in e} e^{x_i/\gamma}} - \frac{\sum_{v_i \in e} x_i e^{-x_i/\gamma}}{\sum_{v_i \in e} e^{-x_i/\gamma}}\right) + \left(\frac{\sum_{v_i \in e} y_i e^{y_i/\gamma}}{\sum_{v_i \in e} e^{y_i/\gamma}} - \frac{\sum_{v_i \in e} y_i e^{-y_i/\gamma}}{\sum_{v_i \in e} e^{-y_i/\gamma}}\right)$$

• Larger $\gamma \rightarrow$ smoother, but less accurate

Nonlinear Placement

- Chen, Tung-Chieh, et al. "NTUplace: A ratio partitioning based placement algorithm for large-scale mixed-size designs." ISPD 2005
- Chen, Tung-Chieh, et al. "NTUplace3: An analytical placer for large-scale mixed-size designs with preplaced blocks and density constraints." IEEE TCAD 2008.
- Hsu, Meng-Kai, et al. "NTUplace4h: A novel routability-driven placement algorithm for hierarchical mixed-size circuit designs." IEEE TCAD 2014
- Huang, Chau-Chin, et al. "NTUplace4dr: a detailed-routing-driven placer for mixed-size circuit designs with technology and region constraints." IEEE TCAD 2017

Density Penalty

Potential function for standard cells

- $P_x(b,v)$ and $P_y(b,v)$ are the overlap functions between bin b and cell v
- $D_b(\mathbf{x}, \mathbf{y}) = \sum_{v \in V} P_x(b, v) P_y(b, v)$

Non-smooth Non-convex

Bell-shape smoothing

Bell Function Examples

Gaussian function, the probability density function of the normal distribution. This is the archetypal bell shaped function and is
frequently encountered in nature as a consequence of the central limit theorem.

$$f(x) = ae^{-(x-b)^2/(2c^2)}$$

• Fuzzy Logic generalized membership bell-shaped function^{[2][3]}

$$f(x) = rac{1}{1+\left|rac{x-c}{a}
ight|^{2b}}$$

• Hyperbolic secant. This is also the derivative of the Gudermannian function.

$$f(x) = \mathrm{sech}(x) = rac{2}{e^x + e^{-x}}$$

• Witch of Agnesi, the probability density function of the Cauchy distribution. This is also a scaled version of the derivative of the arctangent function.

$$f(x)=\frac{8a^3}{x^2+4a^2}$$

Bump function

$$arphi_b(x) = egin{cases} \exprac{b^2}{x^2-b^2} & |x| < b, \ 0 & |x| \geq b. \end{cases}$$

• Raised cosines type like the raised cosine distribution or the raised-cosine filter

$$f(x;\mu,s) = egin{cases} rac{1}{2s} \left[1 + \cos \Bigl(rac{x-\mu}{s} \pi \Bigr)
ight] & ext{for } \mu-s \leq x \leq \mu+s, \ 0 & ext{otherwise}. \end{cases}$$

- Most of the window functions like the Kaiser window
- The derivative of the logistic function. This is a scaled version of the derivative of the hyperbolic tangent function.

$$f(x)=rac{e^x}{\left(1+e^x
ight)^2}$$

Density Penalty (cont'd)

- Potential function for standard cells
 - $P_x(b,v)$ and $P_v(b,v)$ are the overlap functions between bin b and cell v
 - $D_b(\mathbf{x}, \mathbf{y}) = \sum_{v \in V} P_x(b, v) P_y(b, v)$

Bell-shape smoothing

$$p_x(b,v) = \begin{cases} 1 - ad_x^2, & 0 \le d_x \le \frac{w_v}{2} + w_b \\ b \left(d_x - \frac{w_v}{2} - 2w_b\right)^2, & \frac{w_v}{2} + w_b \le d_x \le \frac{w_v}{2} + 2w_b \\ 0, & \frac{w_v}{2} + 2w_b \le d_x \end{cases}$$

where
$$a = \frac{4}{(w_v + 2w_b)(w_v + 4w_b)}$$

$$b = \frac{2}{w_b(w_v + 4w_b)}$$

Variables dx (dy) is the **absolute** center-to-center distance between cell v and bin b in the x (y) direction

Visualization

$$p_x(b,v) = \begin{cases} 1 - ad_x^2, & 0 \le d_x \le \frac{w_v}{2} + w_b \\ b \left(d_x - \frac{w_v}{2} - 2w_b\right)^2, & \frac{w_v}{2} + w_b \le d_x \le \frac{w_v}{2} + 2w_b \\ 0, & \frac{w_v}{2} + 2w_b \le d_x \end{cases}$$

Density Penalty (cont'd)

- Potential function for standard cells
 - Smoothed potential function

•
$$\widehat{D_b}(\mathbf{x}, \mathbf{y}) = \sum_{v \in V} \widehat{P_x}(b, v) \widehat{P_y}(b, v)$$

• $\min_{x,y} WL(x,y) + \lambda D(x,y)$

- Challenges
 - Gradient only has local view
 - Need multi-level bins

Multi-level bins

Density with Fixed Macro

- Potential function for fixed macros
 - Bell-shape smoothing works well for standard cells
 - For fixed macros, P'(x,y) = G(x,y) * P(x,y)

ISPD2005 adaptec2

Exact potential P(x, y)

Bell-shape smoothing

Gaussian smoothing P'(x, y)

Nonlinear Placer – ePlace

- Lu, Jingwei, et al. "<u>ePlace: Electrostatics-based placement using fast fourier transform and Nesterov's method.</u>" ACM TODAES 2015.
- Cheng, Chung-Kuan, et al. "RePlAce: Advancing solution quality and routability validation in global placement." IEEE TCAD 2018.
- Lin, Yibo, et al. "<u>DREAMPlace: Deep learning toolkit-enabled gpu</u> <u>acceleration for modern vlsi placement.</u>" IEEE TCAD 2020. (DAC 2019 <u>Best Paper Award</u>)

ePlace: Electric Potential

• $\min_{x,y} WL(x,y) + \lambda D(x,y)$

Electrostatic System: Physics Effects

- Isolated electrostatic system
 - Balanced distribution
 ⇔ minimum potential energy
- Minimizing the potential energy will spread out cells
- To consider $t_d < 1$
 - s.t. $d_b(x, y) \le t_d, \forall b \in Bins$
 - Insert fillers: dummy cells filling the area
 - $area_{fillers} + area_{cells} = area_{placeable} \times t_d$
 - Fillers have no connections

Poisson's Equation for Electrostatic System

$$\begin{cases} \nabla \cdot \nabla \psi(x, y) = -\rho(x, y), \\ \hat{\mathbf{n}} \cdot \nabla \psi(x, y) = \mathbf{0}, (x, y) \in \partial R, \\ \iint_{R} \rho(x, y) = \iint_{R} \psi(x, y) = 0. \end{cases}$$

Total charge Total energy

> To remove DC component $a_{0,0} = 0$ Zero-frequency component

Solution

$$a_{u,v} = \frac{1}{m^2} \sum_{x=0}^{m-1} \sum_{y=0}^{m-1} \rho(x,y) \cos(w_u x) \cos(w_v y).$$

$$\rho_{DCT}(x,y) = \sum_{u=0}^{m-1} \sum_{v=0}^{m-1} a_{u,v} \cos(w_u x) \cos(w_v y),$$

$$\psi_{DCT}(x,y) = \sum_{u=0}^{m-1} \sum_{v=0}^{m-1} \frac{a_{u,v}}{w_u^2 + w_v^2} \cos(w_u x) \cos(w_v y),$$

$$\begin{cases} \xi_{X_{DSCT}} = \sum_{u} \sum_{v} \frac{a_{u,v} w_{u}}{w_{u}^{2} + w_{v}^{2}} \sin(w_{u}x) \cos(w_{v}y), \\ \xi_{Y_{DCST}} = \sum_{u} \sum_{v} \frac{a_{u,v} w_{v}}{w_{u}^{2} + w_{v}^{2}} \cos(w_{u}x) \sin(w_{v}y). \end{cases}$$

In forms of DCT and DST

Electrical Potential

Gradient Solver

- Conjugate gradient (CG) descent
 - Between steepest descent & Newton method
 - Avoid computation of Hessian

Nesterov's accelerated gradient descent

Source: Lecture by Geoffrey Hinton

Gradient Descent Iterations

Industrial Example

Placement Metrics

Density Map

Potential Map

Field Map

Summary

We have discussed nonlinear placement

- Wirelength smoothing: LSE and WA
- Density potential (NTUplace)
- Electric potential (ePlace)

Open-source tools

- DREAMPlace: https://github.com/limbo018/DREAMPlace
- RePIAce: https://github.com/The-OpenROAD-Project/RePIAce

In-class Presentation: 11/16

Placement research presentation on 11/16 (in class)

- Yibo Lin, Shounak Dhar, Wuxi Li, Haoxing Ren, Brucek Khailany and David Z. Pan, "DREAMPlace: Deep Learning Toolkit-Enabled GPU Acceleration for Modern VLSI Placement", ACM/IEEE Design Automation Conference (DAC), Las Vegas, NV, Jun 2-6, 2019
- Spindler, Peter and Schlichtmann, Ulf and Johannes, Frank M.,
 "Abacus: fast legalization of standard cell circuits with minimal movement," ACM Proceedings of the 2008 International Symposium on Physical Design (ISPD), pp. 47–53, 2008
- Upload your pptx to https://github.com/tsung-wei-huang/ece5960-physical-design/issues/12 before presentation