Axioms of Quantum Mechanics

(Underlined terms are linear algebra concepts whose definitions you need to know.)

Axioms, version 1:

- I. The state of a system is a vector, $|\psi\rangle$, in a Hilbert space (a complex vector space with a positive definite inner product), and is normalized: $\langle\psi|\psi\rangle=1$.
- II. An observable (allowed measurement) is a choice of an <u>orthonormal</u> basis, $\{|\phi_n\rangle, n = 1, \ldots, d\}$, of the Hilbert space.
- III. The only possible *outcomes* of measuring this observable are one of the states, $|\phi_n\rangle$, in the orthonormal basis. I denote this outcome by " $|\psi\rangle \Rightarrow |\phi_n\rangle$ ".
- **IV.** The *probability*, of observing a given possible outcome of such a measurement is $\mathcal{P}(|\psi\rangle \Rightarrow |\phi_n\rangle) = |\langle \phi_n | \psi \rangle|^2$.
- **V.** Once we observe the outcome $|\psi\rangle \Rightarrow |\phi_n\rangle$, the state changes as a result of the measurement to $|\psi\rangle \rightarrow |\phi_n\rangle$.
- **VI.** The *time evolution* of the state of a system when it is not being measured is given by $|\psi(t)\rangle = \widehat{U}(t)|\psi(0)\rangle$, where the <u>unitary</u> time evolution <u>operator</u> is given by $\widehat{U}(t) = \exp\{-it\widehat{H}/\hbar\}$ where \widehat{H} is the <u>hermitean</u> energy operator (also known as the Hamiltonian operator).

Axioms, version 2:

- I. The *state* of a system is a <u>vector</u>, $|\psi\rangle$, in a <u>Hilbert space</u> (a complex vector space with a <u>positive definite inner product</u>), and is normalized: $\langle\psi|\psi\rangle=1$.
- II. An observable (allowed measurement) is a choice of a <u>hermitean operator</u>, \widehat{M} . By the <u>spectral theorem</u>, $\widehat{M} = \sum_i \mu_i \widehat{P}_i$, where μ_i are its <u>eigenvalues</u> and \widehat{P}_i are the <u>orthogonal projection operators</u> onto their corresponding <u>eigenspaces</u>.
- III. The only possible *outcomes* of measuring \widehat{M} are one of its eigenvalues. I denote this outcome of this measurement by " $M = \mu_i$ ".
- IV. The *probability* of observing a given possible outcome of such a measurement is $\mathcal{P}(M=\mu_i) = \langle \psi | \widehat{P}_i | \psi \rangle$.
- **V.** Once we observe the outcome $M = \mu_i$, the state changes as a result of the measurement to $|\psi\rangle \to \widehat{P}_i |\psi\rangle / \sqrt{\mathcal{P}(M=\mu_i)}$.
- **VI.** The *time evolution* of the state of a system when it is not being measured is given by $|\psi(t)\rangle = \widehat{U}(t)|\psi(0)\rangle$, where the <u>unitary</u> time evolution operator is given by $\widehat{U}(t) = \exp\{-it\widehat{H}/\hbar\}$ where \widehat{H} is the hermitean energy operator (also known as the Hamiltonian operator).