INFO 3605 Fundamentals of LAN Technologies Week 03 IPv4 Subnetting

Naresh Seegobin (M.Sc. CompSci, M.Sc. ProjMgmt, CCNA)

naresh.seegobin@sta.uwi.edu

Based on Chapter 4 of Odom, Wendell. *CCENT/CCNA ICND1* 100-105 official cert guide. Indianapolis, IN: Cisco Press, 2016.

Different networks at home

 You may want to have a guest network for your visitors for Internet access only, but don't want them accessing your local computers.

Objectives

- Understand the reasons for subnetting.
- Describe the subnetting process.
- Ability to divide a network into subnetworks.

- Host A is a PC, connected to switch SW1 and assigned to VLAN 1. Which of the following are typically assigned an IP address in the same subnet as host A? (Choose two answers.)
 - a. The local router's WAN interface
 - b. The local router's LAN interface
 - c. All other hosts attached to the same switch
 - d. Other hosts attached to the same switch and also in VLAN 1

- Host A is a PC, connected to switch SW1 and assigned to VLAN 1. Which of the following are typically assigned an IP address in the same subnet as host A? (Choose two answers.)
 - a. The local router's WAN interface
 - b. The local router's LAN interface
 - c. All other hosts attached to the same switch
 - d. Other hosts attached to the same switch and also in VLAN 1

- Why does the formula for the number of hosts per subnet $(2^H 2)$ require the subtraction of two hosts?
 - **a.** To reserve two addresses for redundant default gateways (routers)
 - **b.** To reserve the two addresses required for DHCP operation
 - **c.** To reserve addresses for the subnet ID and default gateway (router)
 - d. To reserve addresses for the subnet broadcast address and subnet ID

- Why does the formula for the number of hosts per subnet $(2^H 2)$ require the subtraction of two hosts?
 - a. To reserve two addresses for redundant default gateways (routers)
 - b. To reserve the two addresses required for DHCP operation
 - c. To reserve addresses for the subnet ID and default gateway (router)
 - d. To reserve addresses for the subnet broadcast address and subnet ID

IP Subnetting

- Subnetting defines methods of further subdividing the IPv4 address space into groups that are smaller than a single IP network.
- IP subnetting is a flexible way to take a single Class A, B or C IP network and further subdivide it into smaller groups of IP addresses.
 - subnet is just shorthand for subdivided network.
- Subnetting allows you to use fewer IP addresses.

IP Subnetting

Example That Uses Five Class B Networks

(naresh.seegobin@sta.uwi.edu)

IP Subnetting – Splitting up a Classful network

- In this case, take a classful B subnet of 150.9.Y.X and split it into 5 separate networks
- Each network will be 254 addresses in size
- We will initially have them listed as:
 - 150.9.1.X
 - 150.9.2.X
 - 150.9.3.X
 - 150.9.4.X
 - 150.9.5.X

Why we cannot use these IP addresses on their own?

- Entering 150.9.1.1 on a device alone,
 - we [the computer] cannot determine which part is the network portion
 - (same value for all hosts on the same network)
 - Or the host portion
 - (different values to ensure each host has a unique IP address)

How do we solve the issue?

The use of subnet masks

- Together with the IP address, the subnet mask can then tell the computer
 - which portion should be the same → hosts on the same network
 - Which portion should be unique → individual hosts
- They take the form of a group of contiguous 1's, then the remainder of contiguous 0's
 - E.g. 11111111111111111111111100000000
 - and its decimal equivalent is 255.255.255.0

So we have a mask, what next?

- Apply this mask by performing a bitwise AND operation to the IP address in bits.
- E.g. 150.9.1.1 \rightarrow 10010110.00001001.00000001.00000001

10010110.00001001.00000001.00000001

AND

11111111.11111111.11111111.00000000

4.004.04.4.0.00004.0004.000004.0000000

10010110.00001001.00000001.00000000

← Result

So we have a mask, what next?

- Convert our result (10010110.00001001.00000001.000000000) back to decimal = 150.9.1.0
- 150.9.1.0 is our Network address.
- Any IP address that's ANDed with 255.255.255.0 and results in 150.9.1.0 means they are on the same network.

- > which means you can communicate with that device directly
 - via ARP request, get the MAC address, send data to that MAC address, etc.

AND operation with another IP address

- What if we want to communicate with another IP address,
- E.g. Host is $150.9.2.1 \rightarrow 10010110.00001001.00000010.0000001$

10010110.00001001.00000010.00000001

AND

11111111.11111111.11111111.00000000

10010110.00001001.00000010.00000000

← Result

Is it the same as our network address?

• TLDR; No

- 10010110.00001001.0000000<mark>1</mark>.00000000 ← my host network address
- 10010110.00001001.00000010.00000000 ← Destination host network address

- What do we do now?
- Wrap the packet up and send it to our default gateway.

Back to subnetting our 150.9.X.X network

- So, with our 150.9.X.X network, when we split it up, what would be the subnet mask?
- We need a mask of 255.255.255.0
- 150.9.1.X mask of 255.255.255.0.
 - A host of 150.9.1.10 trying to send to a host with IP address of 150.9.2.11 WILL need to go to the default gateway as their network address will not match.
- 150.9.2.X mask of 255.255.255.0
- 150.9.3.X mask of 255.255.255.0
- 150.9.4.X mask of 255.255.255.0
- 150.9.5.X mask of 255.255.255.0

Back to subnetting our 150.9.X.X network

- What if we used a subnet mask of 255.255.0.0 instead?
- When applied to the IP address, an IP with 150.9.X.X will be on the same network → which means no gateway → and the packet never crosses the router/gateway.

• The subnet mask defines your network address and the hosts that belong to a particular network.

Subnetting a Class C (192.168.123.X) network

- Using 192.168.123.1 to 192.168.123.254 for 150 hosts
- Can be divided into 4 subnets
- The number of networks increase but the number of hosts decrease
- The subnet mask 255.255.255.192 gives 4 networks with 62 hosts each
 - Why 62 and not 64?
 - 1 address is for the network the other is the broadcast address for that network

Subnetting

- The first two digits of the last octet become network addresses, so you get the additional networks
 - **00**000000 (0),
 - **01**000000 (64),
 - **10**000000 (128) and
 - **11**000000 (192).
- The last 6 binary digits can be used for host addresses
 - $2^6 = 64$ hosts, actually 62 (1 for network address, 1 for broadcast address)

Subnetting

- So using a subnet mask of 255.255.255.192,
- Your 192.168.123.0 network bbecomes 4 networks:
 - 192.168.123.**0**, -> .00000000
 - 192.168.123.**64**, -> .01000000
 - 192.168.123.**128** and -> .100000000 These are your networks
 - 192.168.123.**192** -> .1100000000
- The corresponding host ranges are:
 - 192.168.123.1-62
 - 192.168.123.65-126
 - 192.168.123.129-190
 - 192.168.123.193-254

Inverse Mask

Take Subnet Mask and apply XOR to 255.255.255.255

XOR

- 255. 255. 255 or

128 64 32 16 8 4 2 1

- 0000000.00000000.00000000.00111111
- 0. 0. This is your Network Size

Subnetting

- And what is your broadcast address for these networks?
- Network Address + Inverse Mask = Broadcast Address
- Host Range = Network Address + 1 to Broadcast Address -1

Network	Host Range	Broadcast Address
192.168.123. 0	192.168.123.1-62	192.168.123. 63
192.168.123. 64	192.168.123.65-126	192.168.123. 127
192.168.123. 128	192.168.123.129-190	192.168.123. 191
192.168.123. 192	192.168.123.193-254	192.168.123. 255

Subnet Example

- Two addresses:
 - 192.168.123.71 and
 - 192.168.123.133.
- If both are using a class C subnet, will they see one another?
- If you use a subnet mask of 255.255.255.192, will they see one another?
- 192.168.123.71 belongs to which network?
- 192.168.123.133 belongs to which network?

Subnet Formula

- Number of subnets = 2ⁿ where n is the number of bits borrowed to make the subnet mask
- Number of hosts = $2^n 2$ where n is the number of bits in your subnet mask

Binary Mask				Prefix Length	Subnet Mask
11111111	00000000	00000000	00000000	/8	255.0.0.0
11111111	10000000	00000000	00000000	/9	255.128.0.0
11111111	11000000	00000000	00000000	/10	255.192.0.0
11111111	11100000	00000000	00000000	/11	255.224.0.0
11111111	11110000	00000000	00000000	/12	255.240.0.0
11111111	11111000	00000000	00000000	/13	255.248.0.0
11111111	11111100	00000000	00000000	/14	255.252.0.0
11111111	11111110	00000000	00000000	/15	255.254.0.0
11111111	11111111	00000000	00000000	/16	255.255.0.0
11111111	11111111	10000000	00000000	/17	255.255.128.0
11111111	11111111	11000000	00000000	/18	255.255.192.0
11111111	11111111	11100000	00000000	/19	255.255.224.0
11111111	11111111	11110000	00000000	/20	255.255.240.0
11111111	11111111	11111000	00000000	/21	255.255.248.0
11111111	11111111	11111100	00000000	/22	255.255.252.0
11111111	11111111	11111110	00000000	/23	255.255.254.0
11111111	11111111	11111111	00000000	/24	255.255.255.0
11111111	11111111	11111111	10000000	/25	255.255.255.128
11111111	11111111	11111111	11000000	/26	255.255.255.192
11111111	11111111	11111111	11100000	/27	255.255.255.224
11111111	11111111	11111111	11110000	/28	255.255.255.240
11111111	11111111	11111111	11111000	/29	255.255.255.248
11111111	11111111	11111111	11111100	/30	255.255.255.252
11111111	11111111	11111111	11111110	/31	255.255.255.254
11111111	11111111	11111111	1111111 _N	FO 633 Fundamenta	Is o 2.5.5 Te 2.5.5 og 2.5.5 CN2.5 E ectu

http://www.cisco.com/web/about/ac123/ac147/archivedoilssutes/lpj_9-1/ip_addresses.html

Class A Subnet

Network Bits	Subnet Mask	Bits Borrowed	Subnets	Hosts/Subnet
8	255.0.0.0	0	1	16777214
9	255.128.0.0	1	2	8388606
10	255.192.0.0	2	4	4194302
11	255.224.0.0	3	8	2097150
12	255.240.0.0	4	16	1048574
13	255.248.0.0	5	32	524286
14	255.252.0.0	6	64	262142
15	255.254.0.0	7	128	131070
16	255.255.0.0	8	256	65534
17	255.255.128.0	9	512	32766
18	255.255.192.0	10	1024	16382
19	255.255.224.0	11	2048	8190
20	255.255.240.0	12	4096	4094
21	255.255.248.0	13	8192	2046
22	255.255.252.0	14	16384	1022
23	255.255.254.0	15	32768	510
24	255.255.255.0	16	65536	254
25	255.255.255.128	17	131072	126
26	255.255.255.192	18	262144	62
27	255.255.255.224	19	524288	30
28	255.255.255.240	20	1048576	14
Technologies - ICI	ND 1255.255.255.258	21	2097152	6
npści, ivi.śc. Projiv @sta.u 30 edu)	255.255.252	22	4194304	2/

http:///www.tutorialspoint.com/ipv4/ipv43_subpretting.ntmgc

Class B Subnet

Network Bits	Subnet Mask	Bits Borrowed	Subnets	Hosts/Subnet
16	255.255.0.0	0	0	65534
17	255.255.128.0	1	2	32766
18	255.255.192.0	2	4	16382
19	255.255.224.0	3	8	8190
20	255.255.240.0	4	16	4094
21	255.255.248.0	5	32	2046
22	255.255.252.0	6	64	1022
23	255.255.254.0	7	128	510
24	255.255.255.0	8	256	254
25	255.255.255.128	9	512	126
26	255.255.255.192	10	1024	62
27	255.255.255.224	11	2048	30
28	255.255.255.240	12	4096	14
29	255.255.255.248	13	8192	6
05 Fundamentals of LAI	N Teckhologies 2 ENE 2 Lect	ure 14	16384	2

Class C Subnet

Network Bits	Subnet Mask	Bits Borrowed	Subnets	Hosts/Subnet
24	255.255.255.0	0	1	254
25	255.255.255.128	1	2	126
26	255.255.255.192	2	4	62
27	255.255.255.224	3	8	30
28	255.255.255.240	4	16	14
29	255.255.255.248	5	32	6
30	255.255.255.252	6	64	2

IP Address Breakdown

8+8+8 255.255.255.0 256 Hosts	/25 8+8+8+1 255.255.255.128 128 Hosts	/26 8+8+8+2 255.255.255.192 64 Hosts	8+8+8+3 255.255.255.224 32 Hosts	/28 8+8+8+4 255.255.255.240 16 Hosts	/29 8+8+8+5 255.255.255.248 8 Hosts	/30 8+8+8+6 255.255.255.252 4 Hosts				
				0.45	0-7	0-3 4-7				
				0-15	8-15	8-11 12-15				
					16-23	16-19				
				16-31	24-31	20-23 24-27				
		0-63			24-31	28-31 32-35				
				32-47	32-39	36-39				
			02-47	52-47	40-47	40-43 44-47				
									48-55	48-51
									48-63	40-33
	0-127				56-63	60-63				
	0-127				64-71	64-67 68-71				
				64-79	72-79	72-75				
					12-19	76-79				
							80-87	80-83 84-87		
				80-95	88-95	88-91				
18/09/202		64-127 INFO	3605 Fundamentals of L	AN Technologies - ICND	1 Lecture	92-95				
18/09/202	D	13.1	larezii Seegobiii (ivi.Sc.	CompSci, M.Sc. ProjMgr bin@sta.uwi.edu)	96-103	96-99 100-103				

IP Address Breakdown

/24 8+8+8 255.255.255.0 256 Hosts	/25 8+8+8+1 255.255.255.128 128 Hosts	/26 8+8+8+2 255.255.255.192 64 Hosts	/27 8+8+8+3 255.255.255.224 32 Hosts	/28 8+8+8+4 255.255.255.240 16 Hosts	/29 8+8+8+5 255.255.255.248 8 Hosts	/30 8+8+8+6 255.255.255.252 4 Hosts
				80-95	80-87	80-83 84-87
		64-127		60-95	88-95	88-91 92-95
		04-127		00 444	96-103	96-99 100-103
				96-111	104-111	104-107 108-111
					112-119	112-115 116-119
				112-127	120-127	120-123 124-127
0-255					128-135	128-131 132-135
		128-191		128-143	136-143	136-139 140-143
				144-159	144-151	144-147 148-151
					152-159	152-155 156-159
					16-167	160-163 164-167
		INFO	3605 Fundamentals of L	160-175 AN Technologies - ICND	1 Lectu 168-175	168-171 172-175
18/09/202	8	13.1 M		CompSci_M_Sc_ProjMgr bin@sta.uwi.edu)	176 102	176-179

IP Address Breakdown

/24 8+8+8 255.255.255.0 256 Hosts	/25 8+8+8+1 255.255.255.128 128 Hosts	/26 8+8+8+2 255.255.255.192 64 Hosts	/27 8+8+8+3 255.255.255.224 32 Hosts	/28 8+8+8+4 255.255.255.240 16 Hosts	/29 8+8+8+5 255.255.255.248 8 Hosts	/30 8+8+8+6 255.255.255.252 4 Hosts	
				100-170	168-175	168-171 172-175	
				476 404	176-183	176-179 180-183	
				176-191	184-191	184-187 188-191	
	128-255				192-199	192-195 196-199	
				192-207	200-207	200-203	
					208-215	204-207 208-211	
					208-223		212-215 216-219
		192-255			216-223	220-223	
		.02 200		224 220	224-231	224-227 228-231	
				224-239	232-239	232-235 236-239	
					240-247	240-243	
				240-255		244-247 248-251	
					248-255	252-255	

What do you know now?

- A Class B network needs to be subnetted such that it supports 100 subnets and 100 hosts/subnet. Which of the following answers list a workable combination for the number of network, subnet, and host bits? (Choose two answers.)
 - a. Network = 16, subnet = 7, host = 7
 - b. Network = 16, subnet = 8, host = 8
 - c. Network = 16, subnet = 9, host = 7
 - d. Network = 8, subnet = 7, host = 17

What do you know now?

- A Class B network needs to be subnetted such that it supports 100 subnets and 100 hosts/subnet. Which of the following answers list a workable combination for the number of network, subnet, and host bits? (Choose two answers.)
 - a. Network = 16, subnet = 7, host = 7
 - b. Network = 16, subnet = 8, host = 8
 - c. Network = 16, subnet = 9, host = 7
 - d. Network = 8, subnet = 7, host = 17

Summary

- Key facts about subnets.
- Rules about what places in a network topology need a subnet.
- Location of the network, subnet and host parts of an IPv4 address.

End of Lecture 13.1, Further Reading, References

- Odom, Wendell. *CCENT/CCNA ICND1 100-105 official cert guide*. Indianapolis, IN: Cisco Press, 2016.
- http://www.networkworld.com/article/2260776/lan-wan/chapter-1--network-overview.html
- http://support.microsoft.com/kb/164015
- https://www.apnic.net/ data/assets/pdf file/0020/8147/501302.pd
- http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj 9-1/ip_addresses.html
- http://www.tutorialspoint.com/ipv4/ipv4 subnetting.htm