Topic V10

Clock and Frequency

Reading: (Section 1.6)

CPU Clocking

Example:

1 clock period = 250 ps (picoseconds)

1 clock period = 0.25 *ns* (*nano*seconds)

1 clock period = 250 \times 10⁻¹² s (seconds)

clock frequency
 clock rate
number of clock cycles per second

Example: $4.0 \, GHz \, (Giga Hertz)$ $4000 \, MHz \, (Mega Hertz)$ $4.0 \times 10^9 \, Hz$

Frequency

Frequency =
$$\frac{40,000,000,000 \text{ cycles}}{20 \text{ seconds}} = 2 \times 10^9 \frac{\text{cycles}}{\text{seconds}} = 2 \text{ GHz}$$

Frequency: number of clock cycles per seconds

Clock Cycle Time

Clock cycle =
$$\frac{20 \text{ seconds}}{40,000,000,000 \text{ cycles}} = 0.5 \times 10^{-9} \frac{\text{seconds}}{\text{cycle}} = 0.5 \text{ ns}$$

What is the duration of a clock cycle?

Relation Between Clock Cycle Time and Frequency

Frequency =
$$\frac{40,000,000,000 \text{ cycles}}{20 \text{ seconds}}$$

Clock Cycle Time =
$$\frac{20 \text{ seconds}}{40,000,000,000 \text{ cycles}}$$

Clock Cycle Time =
$$\frac{1}{\text{Frequency}}$$

Example

Question 5: The current processor commercialized by $TinyProc\ Inc$ is the TP500 that runs at a 500 MHz frequency (1MHz = 10^6 Hz). The most important application that runs in the TP500

500 MHz Frequency

Clock Cycle Time =
$$\frac{1}{\text{Frequency}} = \frac{1}{500 \times 10^6} = 2 \times 10^{-9} \text{ s} = 2 \text{ ns}$$

Because we Know Algebra...

Clock Cycle Time =
$$\frac{1}{\text{Frequency}}$$

CPU Time= # of CPU Clock Cycles × Clock Cycle Time

fewer clock cycles ⇒ better performance

CPU Time =
$$\frac{\text{# of CPU Clock Cycles}}{\text{Frequency}}$$

faster clock ⇒ better performance

Example

Computer A

Renders explosion in 10 s

Frequency: 2 GHz

What should be the frequency of Computer B?

Clock Rate_B =
$$\frac{\text{#Clock CyclesB}}{\text{CPU TimeB}}$$
 =

Computer B

Goal: render explosion in 6 s

Faster clock but needs 1.2 × # clock

cycles

Example

Computer A

Renders explosion in 10 s

Frequency: 2 GHz

Computer B

Goal: render explosion in 6 s

Faster clock but needs 1.2 × # clock

cycles

What should be the frequency of Computer B?

Clock Rate_B =
$$\frac{\text{\#Clock CyclesB}}{\text{CPU TimeB}} = \frac{1.2 \times \text{\#Clock Cycles}_A}{6 \text{ s}}$$

#Clock Cycles_A = CPU Time_A × Clock Rate_A
=
$$10s \times 2 GHz = 20 \times 10^9$$
 cycles

Clock Rate_B =
$$\frac{1.2 \times 20 \times 10^9}{6 \text{ s}} = \frac{24 \times 10^9 \text{ cycles}}{6 \text{ s}} = 4 \text{ GHz}$$

fewer clock cycles ⇒ better performance

CPU Time =
$$\frac{\text{# of CPU Clock Cycles}}{\text{Frequency}}$$

Recap

faster clock ⇒ better performance

Computer A

Computer B

