Non-split alternating links bound unique minimal genus Seifert surfaces up to isotopy in the 4-ball

Jaehoon Yoo

Department of Mathematics Sungkyunkwan University Joint work with Seungwon Kim and Maggie Miller

July 27, 2024

Table of Contents

1 Knots & Links

2 Seifert Surface

3 Main Theorem

— Seminar

2019

MIMIC

Sungkyunkwan Universtiy

Abstract

수학 학술 동아리 MIMIC에서 신입 회원을 모집합.

Definition 1. MIMIC is Math Interchange Club.

Theorem 1. 다음 조건을 만족하는 사람은 MIMIC에 지원할 수 있다.

(1) 자유롭고 학술적인 분위기에서 수학을 공부하고 싶은 사람.

(2) 함께 스터디 할 사람이 필요한 사람.

(3) 수학공부에 어려움을 느끼는 사람.

Proof. It suffices to prove in the following steps.

Step 1 매주 화요일 저녁 7시에 정기 세미나.

Step 2 등아리 내 튜터링 및 스터디 자체 운영

Remark.

(1) 개강종회 : 9월 3일 화요일 저녁 6시 31316 (수학과 전공 강의실)

- (2) 회장 이호빈 010-9137-2087
- (3) 종무 박승열 010-2770-4915

Once upon a time

Baire's category Theorem

Question 1. 또한 유리수에서 불면속이고 또한 무리수에서 연속인 방수가 존재하는가? Question 2. 또한 무리수에서 불면속이고 또한 유리수에서 연속인 방수가 존재하는가?

E가 위상공간 XN 부분성합이라고 하자.

Definition 1. $\overline{E} = X \Leftrightarrow \mathfrak{A}, \ E \cup X \Leftrightarrow A \Leftrightarrow \text{ dense set} \Leftrightarrow \mathbb{Z} \Leftrightarrow \mathbb{Q}.$

Definition 4. EV $X^{(q,q)}$ set of first category? $^{(q,q)}U^{(q)}$, EV $X^{(q,q)}$ set of second category? Z. $U^{(q)}$.

Lemma 5. $(X, \rho)^{\gamma}$ complete metric space* $|Z|[E_{\alpha}]^{\gamma}|X^{\alpha}|^{\gamma}$ denne open net* $|\mathcal{Q}|, E_{\alpha}$ % $|X|^{\alpha}|E| X^{\alpha}|^{\gamma}$ denne net* $|\mathcal{Q}|, E_{\alpha}$ $|X|^{\alpha}|E| X^{\alpha}|^{\gamma}$ denne net* $|\mathcal{Q}|$ proof* $|Y|_{X} \in X, Y_{\alpha} > 0$ % $|X|^{\alpha}$.

 $E_i \cap X \cap A$ dense set $0 \boxtimes X$, $x_i \subseteq E_i \cap B_i(x_k) \cap A \cap B \cap A$ $E_i \cap B_i(x_k) \cap A$ open set $0 \boxtimes X$, $\exists e_i > 0$ such that $B_i(x_k) \subseteq E_i \cap B_i(x_k) \cap A \cap A$

$$\begin{split} &\delta_i := \min \left[\frac{\epsilon_1}{2}, 1\right] \Leftrightarrow \Leftrightarrow \lambda. \ E_i \Leftrightarrow X \Leftrightarrow i \text{ dense are } \forall \exists \Xi_i, \ x_j \in E_j \cap B_i(x_1) \cap \exists \exists \exists \exists i \in A_i \in A_i \cap B_i(x_1) \cap \text{ open are } i \exists \Xi_i, \ \exists \epsilon_2 > 0 \text{ such that } B_i(x_1) \cap \subseteq E_i \cap B_i(x_1) \circ i \cap I. \end{split}$$

이러한 과정을 반복하면 점점의 자연수 n의 대하여,
$$B_{i_{n+1}}(x_{n+1}) \subseteq E_{n+1} \cap B_{i_n}(x_n), \ \delta_i := \min\left(\frac{\epsilon_n}{2}, \frac{1}{n}\right)$$

$$\begin{split} &B_{k_m}(x_{n+1}) \subset B_{k_m}(x_{n+1}) \subset B_k(x_n) \text{ old.}, \ m > n \text{old.} \text{ old.}, \ x_n \subset B_k(x_n) \text{ old.} \\ &\delta_n \leq \frac{1}{n} \text{ old.}, \ p(x_m, x_n) < \frac{1}{n} \text{ old.} \text{ old.} \text{ old.} \text{ old.} \text{ old.} \end{split}$$

 $\delta_i \leq \frac{1}{n}$ of $(\mathbf{x}, \mathbf{x}_i) < \frac{1}{n}$ of $(\mathbf{x}, \mathbf{x}_i) < \frac{1}{n}$ of $(\mathbf{x}, \mathbf{x}_i)$ conceptor. Also combined $(\mathbf{x}, \mathbf{x}_i) \in \mathcal{M}$ of $(\mathbf{x$

(a) Freshman can do

1 Inner Product Space

1.1 Vector Space

We use the symbol F to denote either the real number field $\mathbb R$ or the complex number field $\mathbb C.$

1.2 Inner Product Space

Definition 1.1. Let V be a vector space over K. A function from $V \times V$ to F is allced an inner product in V if, for any pair of vectors $x_{i,3} \in V$, the inner product $(x_{i,3}) \mapsto (x_{i,3}) \in F$ satisfies the following conditions.

- (i) $\forall x,y \in V (y,x) = \overline{(x,y)}$
- (ii) $\forall \alpha, \beta \in F \forall x, y, z \in V \ (\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$ (iii) $\forall x \in V \ (x, x) > 0$
- $0 \otimes (x,x) = 0 \iff x = 0$

A vector space on which an inner product is defined is called an inner product space

1.3 The Space C²

For any two functions f and g in the vector space C([a,b]) of complex continuous functions on a real interval [a,b], we defined the inner product

$$\langle f, g \rangle = \int_{\Gamma} f(x)\overline{g}(\overline{x})dx$$
. (1)
from which delieved the definition of the atom:
$$\|f\| = \sqrt{\langle f, f \rangle} = \int_{0}^{\pi} \|f(x)\|^{2}dx.$$
 (2)

It is clear that the inner product (1) satisfies the definition 1.1. As in \mathbb{R}^n , we can also show directly that the Cauchy-Schwarz inequality holds in C([a,b]). For any $f,g\in C([a,b])$, we have

where we assumed that
$$|I| \le \log I$$
 is $|I| = \int_0^1 \frac{|I| |I|}{|I|} - \int_0^1 \frac{|I| |I|}{|I|} + \frac{|I|}{|I|} \frac{|I|}{|I|} \frac{|I|}{|I|} + \frac{|I|}{|I|} \frac{|I|$

we therefore conclude that $||f_{s}(x)|| \leq ||f_{s}(x)|| \leq ||f'(x)||$

(b) Can do if you know L.A.

Before Starting

Seminar

$2023 \sim 2024$

Table of Contents

- 1 Knots & Links
- 2 Seifert Surface

3 Main Theorem

Knots & Links

Links

A link L of m components is a subspace of $S^3 = R^3 \cup \{\infty\}$, that consists of m disjoint, smooth, simple closed curves. A link of one component is a knot.

In this talk, all the links are oriented.

(a) Knot Table

(b) Link Table

Link Diagram

Also the link diagram is the image of a projection $\pi:S^3\to R^2$ with under and over information in each crossing.

Reduced diagram

If the diagram has minimal crossing, it is a reduced diagram.

Figure: Reducing

Alternating Link

Alternating diagram

A link diagram is alternating if the crossings alternate under, over, under, over, as one travels along each component of the link.

Figure: Alternating Diagram

Alternating Link

A link is alternating if it has an alternating diagram.

Non-split Link

Definition

A link diagram D in S^2 is a split diagram if there is a simple closed curve in $S^2 - D$ separating S^2 into two discs each containing part of D. A link is a split link, if it has a split diagram.

Figure: Split diagram

Menasco's result

There is a relation between non-split link and alternating link.

Theorem [Men84]

An alternating link, will be non-split if and only if its alternating diagram is non-split.

Figure: Non-split diagram

Smoothing

After smoothing

Smoothing does not change the alternatingness, non-splittness. If the link diagram D is alternating, non-split and reduced, the smoothed diagram D' is alternating and non-split.

After smoothing

Smoothing does not change the alternatingness, non-splittness. If the link diagram D is alternating, non-split and reduced, the smoothed diagram D' is alternating and non-split.

After smoothing

Smoothing does not change the alternatingness, non-splittness. If the link diagram D is alternating, non-split and reduced, the smoothed diagram D' is alternating and non-split.

Figure: Smoothing does not change the alternatingness.

Table of Contents

1 Knots & Links

- 2 Seifert Surface

Seifert Surface

Definition

A Seifert surface S for a knot or link $L \subset S^3$ is a smooth, compact manifold with $\partial S = L$. Also, it should not have closed manifold component.

Figure: Seifert surfaces of some links

Seifert Algorithm

Every links have a Seifert surface through the Seifert algorithm.

Seifert Algorithm

- 1 For all crossings, smoothing.
- 2 For each components, attaching discs.
- 3 Attach the twisted band in the position of the crossing.

Figure 8 example

Figure: figure 8 knot with orientation

Smoothing

(a) Smoothing

(b) After smoothing

Figure: Smoothing Algorithm

Attaching discs

(a) Attaching discs in a side view

(b) Attaching discs in projections

Figure: Attaching discs

Twisted Bands

Figure: Twisted band

Attaching Twisted Bands

Figure: Attatching Twisted Band

Genus of the Seifert Surface

Euler characteristic

We can use the Euler characteristic argument to check the genus.

$$\chi(S) = \# \text{discs} - \# \text{twisted bands} = 2 - 2g(S) - n$$

where n is the number of the link components.

(a) Seifert surface of figure 8 knot with embedding.

(b) Same Seifert surface of figure 8 knot without embedding.

Does not need to minimal Genus

Remark

Definition does not need to have minimal genus.

Figure: Do not need to minimal genus

Genus of Knot

Genus of knot

The genus g(S) of a link L is defined by

$$g(L) = \min\{g(S) : F \text{ is a Seifert surface for } L\}.$$

Also that F is a minimal Seifert surface.

Minimal Seifert Surface

Theorem

Let L be an alternating knot. If S is a Seifert surface for L obtained by applying Seifert's algorithm to an alternating diagram of L, then S is a minimal Seifert surface for L.

Table of Contents

1 Knots & Links

2 Seifert Surface

3 Main Theorem

Motivation

Link

If we push links in S^3 to B^4 , all links are equivalent to the unlinks.

Figure: Two crossings in 4-dimension are equivalent.

Motivation

Link

If we push links in S^3 to B^4 , all links are equivalent to the unlinks.

Figure: Two crossings in 4-dimension are equivalent.

Surface

How about the case for the surfaces in B^4 , in particular fixing boundary in S^3 ?

Livingston's work and questions

In [Liv82], Livingston asked about the case when push the non-isotopic surface in S^3 to B^4 , rel to boundary.

Figure: Charles Livingston

Answer

Trotter's example

There is an example in [Tro75] are not isotopic in S^3 but isotopic in B^4 .

False

In [AFMW24, HKM⁺23], they found the examples not even topologically isotopic.

How many classes?

How many classes that topologically or smoothly isotopic?

Construction in S^3

There is a sequence of minimal genus Seifert surfaces $\Sigma_1 = S_1, S_2, \ldots, S_n = \Sigma_2$ for L such that the interiors of S_i , S_{i+1} are disjoint for each i. [ST88, Kak92]

Euler Characteristic Argument

Let $F = \Sigma_1 \cup_L \Sigma_2$. Since Σ_1 and Σ_2 are minimal Seifert surfaces, i.e. connected which has maximal Euler characteristic, F has a maximal Euler characteristic

$$g(F) = 1 - \chi(\Sigma_i).$$

If g(F) = 0, $\chi(\Sigma_i) = 1$ that Σ_i is a disk that L is an unlink by the Schoenflies theorem. Let using the induction argument in g(F) with the base case 0.

Crossing Tube Lemma

Crossing Tube Lemma [Kin18]

Figure: Crossing Tube Lemma

Band attaching

Figure: Band Attaching

After Surgery

In point of the link, the link L' is still non-split, alternating link. So, we can do this process inductively in all crossings until $g\left(F\right)=0$.

└ Main Theorem

Main Theorem

So, let's think in reverse way. Starting from the unlink, we can make the link L, and following Σ_1 and Σ_2 .

Main Theorem

Any two minimal genus Seifert surfaces for a non-split, alternating link are smoothly isotopic rel. boundary in B^4 .

In summary

In *S*³

For a non-split, alternating link, there are non-isotopic minimal Seifert surfaces in S^3 .

In *B*4

However, when push those surfaces into B^4 , they are isotopic.

Future Open Questions

How about the other link classes? Is there any lower bound or upper bound for the classes?

In summary

In *S*³

For a non-split, alternating link, there are non-isotopic minimal Seifert surfaces in S^3 .

In *B*4

However, when push those surfaces into B^4 , they are isotopic.

Future Open Questions

How about the other link classes? Is there any lower bound or upper bound for the classes?

Thank you for listening!

References I

Menny Aka, Peter Feller, Alison Beth Miller, and Andreas Wieser.

Seifert surfaces in the four-ball and composition of binary quadratic forms, 2024.

ArXiv [math.GT] 2311.17746, Nov. 2023.

Kyle Hayden, Seungwon Kim, Maggie Miller, JungHwan Park, and Isaac Sundberg.

Seifert surfaces in the 4-ball, 2023.

ArXiv [math.GT] 2205.15283, May 2022.

Osamu Kakimizu.

Finding disjoint incompressible spanning surfaces for a link. Hiroshima Math. J., 22(2):225-236, 1992.

References II

Alternating links have representativity 2.

Algebr. Geom. Topol., 18(6):3339–3362, 2018.

Charles Livingston.

Surfaces bounding the unlink.

Michigan Math. J., 29(3):289-298, 1982.

W. Menasco.

Closed incompressible surfaces in alternating knot and link complements.

Topology, 23(1):37-44, 1984.

References III

Martin Scharlemann and Abigail Thompson.

Finding disjoint seifert surfaces.

Bulletin of the London Mathematical Society, 20(1):61–64, 1988.

H. F. Trotter.

Some knots spanned by more than one knotted surface of mininal genus.

In Knots, groups, and 3-manifolds (Papers dedicated to the memory of R. H. Fox), Ann. of Math. Stud., No. 84, pages 51–62. Princeton Univ. Press, Princeton, NJ, 1975.