Университет науки и технологий МИСИС

Направление «09.04.01 ИНФОРМАТИКА И ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА» Профиль «Интеллектуальные программные решения для бизнеса»

Отчет о самостоятельной работе по дисциплине «Программная инженерия (Python)»

Бригада № 2: уппа МИВТ-22-5

Лазаренко Д. М., 1 курс, группа МИВТ-22-5 Маковецкий И. А., 1 курс, группа МИВТ-22-5

Оглавление

1	Обц	цая пост	гановка задачи	3
	1.1	Описа	ние прикладной области и данных	3
	1.2	Основ	ные гипотезы, которые планируется проверить в рамках исследования	4
2	Пре	дварите	ельный анализ собранных данных	4
	2.1	Анали	з особенностей данных: потенциальные ошибки и пропущенные зна-	
		чения	, группы и выбросы	4
		2.1.1	Анализ количественных переменных	4
		2.1.2	Анализ качественных переменных	5
	2.2	Анали	з статистической связи	5
		2.2.1	Графический анализ пары «целевая переменная — качественная	
			объясняющая переменная»	5
		2.2.2	Графический анализ пары «числовая зависимая переменная – чис-	
			ловая независимая переменная»	6
		2.2.3	Анализ статистической взаимосвязи между независимыми пере-	
			менными	6
		2.2.4	Предварительная проверка гипотез	6
3	Про	верка г	ипотез с помощью моделирования	6
	3.1	Постр	оение базовой модели	6
	3.2	Прове	рка гипотез с помощью моделирования	7
	3.3	Оптим	изация итоговой модели, сравнение качества моделей	7
	3.4	Прове	рка прогностических способностей модели	8
	3.5	Диагн	остика регрессионной модели	8
4	Закі	тючени		q

1 Общая постановка задачи

Задачей данного исследования является анализ статистической взаимосвязи между некоторым показателем, который мы будем называть целевой переменной, и множеством других показателей, которые мы будем называть объясняющими переменными. Анализ проводится по следующей схеме:

- 1. На естественном языке формулируется ряд гипотез об указанной взаимосвязи. В состав гипотез входят как простые гипотезы (о направлении связи), так и сложные гипотезы, учитывающие нелинейный характер связи. Рекомендуется формулировать не более трех гипотез, две из которых являются сложными.
- 2. Осуществляется сбор необходимых данных и их предварительный анализ. Выполняется предварительная, качественная, проверка сформулированных гипотез.
- 3. Строится, т. е. специфицируется и оценивается, базовая модель модель множественной линейной регрессии целевой переменной на объясняющие. Анализируются ее свойства. При необходимости корректируется состав объясняющих переменных.
- 4. Выполняется пошаговая корректировка спецификации базовой модели для учета всех возможных комбинаций сформулированных сложных гипотез. Модифицированные модели оцениваются и выполняется проверка соответствующих гипотез. Например, при формулировке двух сложных гипотез строится три модели: для проверки первой, для проверки второй и для одновременной проверки первой и второй гипотез. Результаты проверки могут быть разными для разных комбинаций гипотез.
- 5. На основании стандартных критериев анализируется качество всех построенных моделей, включая базовую, и выбирается наилучшая.

1.1 Описание прикладной области и данных

Выбранная прикладная область — «Уровень предлагаемых зарплат технических специалистов в России на октябрь 2022». ТООО Также необходимо дать описание характеристикам изучаемых объектов и/или явлений — переменным, участвующим в анализе.

Таблица 1: Описание фактов, учтенных в анализе

Nº	Характеристика объекта/явления	Название переменной	Шкала объяснения	Роль: целевая/ объясняющая
1	Заработная плата	salary	0-??? тыс. руб.	Целевая
2	Адрес места работы	coordinates	-90–90 ° φ , -180–180 ° λ	Объясняющая
3				

В анализе обязательно должно присутствовать не менее трех количественных и двух качественных независимых переменных. Зависимая переменная — количественная. Объем выборки по каждой переменной должен быть не менее 200 измерений он должен не менее, чем в 30 раз превышать количество объясняющих переменных. Данные не должны зависеть от времени. Необходимо максимально точно указать источник данных, например, ссылку на массив данных в Интернете. При наличии автоматизации сбора данных, например, самостоятельном парсинге Интернета, необходимо в Приложении (не входит в 20 листов) привести текст программы и привести список источников данных.

1.2 Основные гипотезы, которые планируется проверить в рамках исследования

Здесь необходимо сформулировать три гипотезы о статистической взаимосвязи целевой переменной и объясняющими. Гипотезы могут быть простыми и сложными. Простые гипотезы формулируются как предположения о корреляционной связи (направлении влияния) — «с ростом независимой переменной зависимая переменная растет или уменьшается». Сложная гипотеза содержит предположение о зависимости корреляционной связи от значений некоторых переменных в число которых может входить и рассматриваемая. В частности, это может быть гипотеза об изменении направления корреляционной связи или об изменении ее силы. Например — «до определенного возраста доход возрастает, а после него не меняется или даже снижается». Это гипотеза о существовании «пика карьеры». Или, «с возрастом скорость роста заработной платы для мужчин не равна скорости роста зарплаты для женщин». Это гипотеза о гендерном неравенстве в карьерном росте. В число гипотез должно входить не более одной простой гипотезы.

2 Предварительный анализ собранных данных

2.1 Анализ особенностей данных: потенциальные ошибки и пропущенные значения, группы и выбросы

2.1.1 Анализ количественных переменных

Здесь необходимо построить и проанализировать гистограммы для всех количественных (интервальных и относительных) переменных в анализе. Необходимо охарактеризовать вид распределения по отношению к нормальному распределению — асимметрию, эксцесс, полимодальность. Для этого следует привести график гистограммы совместно с графиком плотности нормального распределения, а также таблицу основных статистик.

Таблица 2: Описание фактов, учтенных в анализе

Статистика	Значение
Среднее	
Медиана	
Стандартное отклонение	
Межквартильный размах	
Верхняя квартиль	
Нижняя квартиль	
Коэффициент асимметрии	
Коэффициент эксцесса	
Количество наблюдений	
Количество пропущенных значений	

Необходимо дать интерпретацию статистических свойств количественных переменных в контексте предметной области. Например, на основании гистограммы и числовых характеристик распределения можно сделать вывод о наличии небольшого количества субъектов федерации с очень большой долей бедного населения. Также, для целевой переменной следует проанализировать наличие выбросов на основании правила «трехсигм». Следует отметить в базе все выбросы и на основании сравнения соответствующих значений объясняющих переменных с их средними или медианными значениями объяснить, почему эти наблюдения могут интерпретироваться как выбросы.

2.1.2 Анализ качественных переменных

Здесь следует привести столбчатые диаграммы, которые отражают количество измерений с разными уровнями для данной переменной.

Необходимо проанализировать степень представленности всех уровней и при необходимости (наличии уровней с долей менее 5 %) произвести укрупнение уровней.

Результат привести на новых диаграммах. Принцип укрупнения пояснить.

2.2 Анализ статистической связи

2.2.1 Графический анализ пары «целевая переменная — качественная объясняющая переменная»

Здесь для каждой пары (количественная зависимая переменная — качественная независимая переменная) необходимо построить категорированную диаграмму Бокса- Уискера (Box-Whisker).

На основании анализа диаграммы следует охарактеризовать связь среднего значения и разброса количественной зависимой переменной с уровнями качественной независимой переменной. Интерпретацию дать в контексте предметной области.

Для формальной проверки гипотезы о наличии статистической связи следует выполнить непараметрический дисперсионный анализ (критерий Крускала-Уоллиса)

2.2.2 Графический анализ пары «числовая зависимая переменная — числовая независимая переменная»

Здесь для каждой пары (количественная зависимая переменная – количественная независимая переменная) необходимо построить диаграммы рассеивания (Scatter plot).

На основании визуального анализа диаграммы следует сделать предположение о наличии и характере статистической взаимосвязи. Интерпретацию результатов дать в контексте предметной области.

Для формальной проверки гипотезы о наличии связи следует подсчитать коэффициенты корреляции Пирсона и Спирмена, а также тау Кендала и привести результаты проверки их значимости.

2.2.3 Анализ статистической взаимосвязи между независимыми переменными

Следует проанализировать силу связи между независимыми переменными, используя инструменты пп. 3.2.1 и 3.2.2. Для анализа силы связи между качественными переменными следует использовать анализ таблиц: необходимо привести таблицу кросс- табуляции, значения статистики хи-квадрат и V-Крамера.

2.2.4 Предварительная проверка гипотез

Здесь необходимо рассказать о результатах проверки гипотез из п.1.3 на основании предварительного анализа данных.

3 Проверка гипотез с помощью моделирования

Данный раздел предполагает проверку прогностических способностей построенной модели. В связи с этим исходную выборку следует случайным образом разделить на обучающую и тестовую в пропорции 80:20. На обучающей выборке будет осуществляться построение моделей, тестовая выборка будет использоваться для проверки прогностических способностей.

3.1 Построение базовой модели

Базовая модель служит для анализа изменения качества моделирования при учете сформулированных гипотез. В качестве базовой модели следует использовать модель линейной регрессии целевой переменной на все объясняющие. Для базовой модели следует проверить значимость всех объясняющих переменных, а также уровень мульти-коллинеарности (показатель VIF) и наличие гетероскедастичности (критерий Уайта). Исходная базовая модель и результаты ее анализа включается в отчет.

Далее необходимо оптимизировать структуру модели для повышения ее качества и возможного снижения уровня мультиколлинеарности. Для этого следует пошагово удалять незначимые переменные, переоценивая модель после каждого удаления. Необходимо также пошагово удалять переменные, которые демонстрируют высокую взаимосвязь с другими переменными (VIF > 3). Оценку мультиколлинеарности и гетероскедастичности следует выполнять на каждом шаге оптимизации. В отчете следует привести один промежуточный и итоговый вариант, который не содержит незначимых объясняющих переменных и имеет удовлетворительный уровень мультиколлинеарности. Следует привести оценку мультиколлинеарности вошедших в модель переменных и оценку наличия гетероскедастичности. Необходимо также привести оценку качества полученной модели (критерий Akaike, R-sq и adjusted R-sq).

В ходе оптимизации следует оставить в модели объясняющие переменные, которые необходимы для проверки гипотез даже, если они незначимы или имеют высокое значение показателя VIF. Это следует отметить в отчете.

3.2 Проверка гипотез с помощью моделирования

Для проверки выдвинутых в п. 1.2. сложных гипотез выполняется модификация оптимизированной базовой модели поэтапно для каждого сочетания сформулированных гипотез. Сначала модифицируют базовую модель для каждой сложной гипотезы отдельно, далее для всевозможных пар и т.д. Для простых гипотез модификация не требуется. Модифицированные модели оцениваются и выполняется проверка как сложных, так и простых гипотез. Методология проверки каждой гипотезы должна быть описана в отчете в виде ограничений на коэффициенты и пары статистических гипотез. Результаты использования каждой модифицированной модели включаются в отчет.

Модель, которая учитывает все сформулированные гипотезы объявляется итоговой.

3.3 Оптимизация итоговой модели, сравнение качества моделей

Итоговая модель подвергается оптимизации за счет пошагового удаления незначимых переменных. На каждом шаге модель переоценивается. Для финального варианта оценивается качество модели с использованием критерия Akaike и adjusted R-sq. Оптимизированная итоговая модель и результаты ее анализа включаются в отчет.

По результатам работы формируется таблица с перечнем моделей включенных в отчет и оценками их качества — значениями критерия Akaike, R-sq и adjusted R-sq

Таблица 3: Сравнение качества построенных моделей

Номер или критерий	R^2	$Adj \setminus R^2$	Akaike
1		0-10	Целевая
2			
3			

3.4 Проверка прогностических способностей модели

Проверка прогностических способностей осуществляется для всех включенных в отчет моделей. Необходимо подсчитать значения прогнозов для элементов тестовой выборки и построить для них центральные доверительные интервалы на основе нормального распределения для доверительной вероятности 95%. Для результатов следует рассчитать среднеквадратическую погрешность прогнозирования и максимальную абсолютную погрешность прогнозирования, а также эмпирическую оценку доверительной вероятности. Результаты следует представить в виде таблицы

Таблица 4: Сравнение прогностических способностей моделей

Номер или критерий	Среднеквадратичная	Абсолютная	Доверительная
Помер или критерии	погрешность	погрешность	вероятность
1		0-10	Целевая
2			
3			

Таблицу следует прокомментировать, в частности, оценку доверительной вероятности. Результаты, представленные в таблице, следует сопоставить с оценками качества данных моделей.

3.5 Диагностика регрессионной модели

Для оптимизированной базовой модели и для оптимизированной итоговой модели необходимо выполнить поиск:

- точек разбалансировки с помощью hat-value;
- выбросов, с помощью стьюдентизированных остаточных разностей;
- измерений сильно влияющих на оценки коэффициентов, с помощью расстояния Кука.

Необходимо сравнить полученные множества для двух моделей и выделить измерения, которые входят в указанные множества для обоих моделей.

Также, необходимо проанализировать несколько точек (две — три) с аномальными значениями расстояния Кука для оптимизированной итоговой модели. Следует установить, входят ли они в множества точек разбалансировки и выбросов, а также проанализировать, чем это объясняется. Для этого следует сравнить значения объясняющих и целевой переменных сор средними значениями по всей выборке.

4 Заключение

В данном разделе следует перечислить результаты проверки сформулированных гипотез в различных сочетаниях, проверки прогностических способностей моделей и их диагностики.