

Mining Large Scale Datasets

2023-2024

 $(Adapted\ from\ CS246@Starford.edu;\ http://www.mmds.org)$

Sérgio Matos - aleixomatos@ua.pt

- Data is everywhere
- Data contains knowledge ... and value

Whether it is to improve health/well-being, sell stuff, or win elections :-)

Data Mining = Extract knowledge from data

- Data is everywhere
- Data contains knowledge ... and value

Whether it is to improve health/well-being, sell stuff, or win elections :-)

• Data Mining = Extract ACTIONABLE knowledge from data

Data Mining = Extract actionable knowledge from data

Given lots of data, discover patterns and models that are

- Valid: hold on new data with some certainty
- Useful: should be possible to act on the item
- **Unexpected**: non-obvious to the system
- Understandable: humans should be able to interpret the patterns

Data Mining = Extract actionable knowledge from data

- Descriptive methods
 - Find human-interpretable patterns that describe the data
 - Example: Clustering
- Predictive methods
 - Use some variables to predict unknown or future values of other variables
 - Example: Recommender systems

Data Mining = Extract actionable knowledge from data

Some machine learning... but not only that

To extract knowledge, data needs to be

- Stored
- Managed
- Analysed

To extract knowledge, data needs to be

- Stored
- Managed
- ANALYSED ← Focus of this course

We won't deal (much) with storing/managing We won't cover ethics and privacy... very relevant aspects in DM

This class: MLSD

- Emphasis on algorithms that scale
 - Parallelization often essential
- Focus on
 - Scalability (big data)
 - Algorithms
 - Automation for handling large data
 - Use of computing architectures

This class: MLSD

- Different types of data:
 - High dimensional
 - Graphs
 - Streams of "infinite" data
 - Labeled data
- Different models of computation:
 - MapReduce
 - Streams and online algorithms
 - Single machine in-memory

This class: MLSD

- Solve real-world problems:
 - Recommender systems
 - Market Basket Analysis
 - Spam detection
 - Duplicate document detection
- Learn/apply various "tools":
 - Linear algebra (SVD, Rec. Sys., Communities)
 - Optimization (stochastic gradient descent)
 - Dynamic programming (frequent itemsets)
 - Hashing (LSH, Bloom filters)

Course organization

- Theoretical exposition of algorithms and strategies
- Practical assignments based on Spark/Hadoop
- Python (or Java/Scala) is essential
- Self-study is highly encouraged.

Grading

- 3 practical assignments = 60%
- Final exam = 40%

The final exam will occur during the exam period ('Época normal').

Bibliography

"Mining of massive datasets". Leskovec, Rajaraman, Ullman, 2014. http://www.mmds.org/

"Networks, Crowds, and Markets: Reasoning About a Highly Connected World". Easley, Kleinberg, 2010. http://www.cs.cornell.edu/home/kleinber/networks-book/

"Spark: The Definitive Guide". Chambers, Zaharia, 2018.

"Data Algorithms with Spark". Parsian, 2022.

"Advanced Analytics with PySpark", Tandon et al., 2022.