AGUA EN LOS ALIMENTOS

Un Macrocomponente Esencial

- Junto con carbohidratos, proteínas y lípidos, el agua es fundamental en todos los alimentos.
- Representa un amplio rango del contenido de alimentos, desde 95.2% (pepino) a 2.5% (leche en polvo).
- En productos como sal y azúcar, el contenido de agua es prácticamente nulo.
- La frescura de frutas, verduras y cárnicos se asocia con su alto contenido de agua (mínimo 60%).
- Microorganismos como bacterias, hongos y levaduras también contienen altos porcentajes de agua.

Contenido aproximado en % de agua de algunos alimentos18

Leche entera en polvo	2.5	Papa	79.9
Chicharrón	2.6	Guayaba	80.5
Maíz blanco	10.6	Chabacano	85.0
Frijol negro	12.0	Papaya	87.1
Bolillo	25.0	Zanahoria	0.88
Tortilla	53.8	Brócoli	88.1
Jamón	55.3	Naranja (jugo)	88.5
Masa para tortilla	62.2	Cebolla blanca	88.6
Queso fresco	62.7	Leche	89.2
Carne de cerdo	65.0	Fresa	89.7
Aguacate	69.5	Nopal	90.1
Carne de res	71.6	Chile jalapeño	90.3
Plátano	73.2	Sandía	90.9
Leche evaporada	74.0	Jitomate	92.8
Huevo	74.3	Lechuga romana	94.3
Mojarra	78.7	Pepino	95.2

Su presencia es crucial para la existencia de vida en la Tierra.

Prácticamente no sufre cambios químicos durante su aprovechamiento en el organismo humano.

Desempeña funciones biológicas vitales. Transporta y disuelve sustancias, participa en reacciones enzimáticas, especialmente en la fotosíntesis.

Las células animales y vegetales, así como los microorganismos, sólo se desarrollan si encuentran las condiciones adecuadas en un medio en el que la actividad del agua es fundamental.

- •Las propiedades físicas y químicas del agua se ven afectadas por los componentes de los alimentos y viceversa.
- •La consistencia, textura y características reológicas de los alimentos son influenciadas por la interacción entre el agua y los macrocomponentes. Además, esta interacción afecta la estabilidad química y microbiológica de los alimentos.
- •El agua juega un papel crucial en diversos procesos de conservación alimentaria como concentración, deshidratación, congelamiento, liofilización, salado, azucarado y pasteurización por alta presión.
- •Las propiedades fisicoquímicas del agua en sus diferentes estados (líquido, sólido, vapor) deben considerarse en el diseño de estos sistemas de conservación.

FUENTES DE AGUA PARA EL SER HUMANO

- •El cuerpo humano de un adulto está compuesto por 60-70% de agua, llegando hasta un 75% en recién nacidos.
- •Sirve como disolvente líquido inerte, con un pH neutro, regulando la temperatura corporal y actuando como transporte en la sangre y la linfa.

55%

- •Un adulto necesita al menos 2,500 mL de agua al día, variando según edad, sexo y actividad física, y la pierde continuamente por sudor, orina, espiración y heces. Para tener un adecuado balance se recomienda consumir 1 mL por cada kilocaloría (Kcal).
- •El equilibrio hídrico es crucial para el buen funcionamiento del organismo; la deshidratación puede causar problemas graves si la pérdida de líquidos alcanza el 10% del total.

 Children Infant

PROPIEDADES DEL AGUA

PUENTES DE HIDRÓGENO

- No es un enlace químico, sino una atracción electrostática entre átomos negativos de compuestos polares y un átomo de hidrógeno.
- Los elementos más electronegativos, como el oxígeno, participan en esta atracción, aunque también puede intervenir el nitrógeno y otros.
- Aunque individualmente débil, la gran cantidad de puentes de hidrógeno en las moléculas de agua genera una fuerza significativa.
- La cantidad y longitud de estos puentes de hidrógeno entre moléculas vecinas varían con la temperatura, afectando propiedades como la densidad del agua, que alcanza un máximo a 3.98°C.

Los puentes de hidrógeno no sólo se inducen en el agua, sino en cualquier sustancia que tenga características polares, como las proteínas y los hidratos de carbono, gracias a sus diversos grupos hidrófilos.

PROPIEDADES FÍSICOQUÍMICAS

- •El agua muestra propiedades distintivas debido a su capacidad para formar estructuras tridimensionales mediante puentes de hidrógeno.
- •Comparado con otros hidruros del mismo grupo en la tabla periódica, el agua tiene un punto de ebullición inusualmente alto (100°C, los otros por debajo de 0 °C). El agua tiene puntos de fusión y ebullición superiores.
- •En comparación con otros disolventes orgánicos comunes como metanol, etanol, acetona y cloroformo, el agua tiene un calor de vaporización significativamente mayor (2,260 kJ/g o 539 Kcal/g).
- •La alta capacidad de vaporización del agua permite la extracción eficiente de calor. El proceso opuesto, la condensación, es exotérmico y libera una cantidad similar de calor.
- •El calor latente de fusión del agua (333.7 kJ/g o 79.7 Kcal/g) es necesario para convertir agua líquida en hielo a 0°C.

- Alto calor específico (4.186 J/kg K o 1 cal/g °C a 20°C).
- El agua es menos efectiva que los aceites de cocina como medio de calentamiento debido a su alto calor específico y a su incapacidad para superar los 100°C, necesarios para freír.
- La alta capacidad de absorción de calor del agua la hace eficaz en la regulación de la temperatura corporal y contribuye a la estabilidad térmica de los mares y océanos, actuando como reguladores térmicos del planeta.

El agua es capaz de disolver estos cristales debido a la intensa fuerza que se crea entre su dipolo y los iones de sodio y cloro.

El agua es un buen disolvente debido a su alta constante dieléctrica, D,

El valor D para el agua es muy alto (80 a 20 °C), comparado con el de otros disolventes como metanol, etanol benceno y acetona.

Hidratación del cloruro de sodio (solubilización)

ESTADOS FÍSICOS DEL AGUA

- a: punto triple (0.01,4.5)
- b: evaporación al vacío para fabricar mermeladas (65,470)
- c: ebullición del agua en la Ciudad de México (92.8,585)
- d: ebullición del agua a nivel del mar (100,760)
- e: olla a presión y esterilización industrial (120,1300)
- f: ultrapasteurización de la leche (140, >1 300)
- g-h: ruta de la liofilización

 a) Estructura hexagonal de los cristales de hielo formados mediante puentes de hidrógeno entre moléculas de agua y b) planos paralelos de las moléculas de hielo.

- El hielo tiene mayor conductividad térmica con un valor de 2240 J/m s K (5.3 cal/cm s °C), que es cuatro veces el del agua.
- El hielo flota en el agua, ya que su densidad es de 0.9168 g/cm³ a 0 °C, mientras que la del agua a la misma temperatura es de 0.9998.

EFECTOS DE LOS SOLUTOS EN EL AGUA

La presencia de solutos causa cambios importantes en la estructura del agua.

- Para la misma cantidad de un soluto el de menor peso molecular provocará una reducción mayor del punto de congelación.
- Los solutos alteran el punto de congelamiento del agua debido a que rompen el arreglo tetraédrico de puentes de hidrógeno en el hielo al reducir la energía libre del sistema.
- Los solutos no iónicos tienen un menor efecto que los iónicos.
- El aumento de la temperatura a la que en condiciones normales hierve un líquido es directamente proporcional a la concentración del soluto añadido, e inversamente proporcional a su peso molecular