# Siddhardhan

# **Building Lasso Regression from Scratch in Python**



#### **Lasso Regression**

#### **About Lasso Regression:**

- Supervised Learning Model
- 2. Regression model
- 3. Least Absolute Shrinkage and Selection Operator
- 4. Implements Regularization (L1) to avoid Overfitting







# Regularization

Regularization is used to reduce the overfitting of the model by adding a penalty term  $(\lambda)$  to the model. Lasso Regression uses L1 regularization technique.

The "penalty" term reduces the value of the coefficients or eliminate few coefficients, so that the model has fewer coefficients. As a result, overfitting can be avoided.

 $3^{rd}$  order Polynomial equation :  $y = ax^3 + bx^2 + cx + d$ 

This Process is called as Shrinkage.

LASSO --> Least Absolute Shrinkage and Selection Operator



#### **Lasso Regression**

#### **Cost Function for Lasso Regression :**

$$J = \frac{1}{m} \left[ \sum_{i=1}^{m} (\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)})^2 + \lambda \sum_{j=1}^{n} w_j \right]$$

m --> Total number of Data Points

n --> Total number of input features

y<sup>(i)</sup> --> True Value

 $\hat{y}^{(i)}$  --> Predicted Value

λ --> Penalty Term

w --> Parameter of the model

# **Gradient Descent**



# **Gradient Descent in 3 Dimension**



#### **Gradient Descent**

Gradient Descent is an optimization algorithm used for minimizing the cost function in various machine learning algorithms. It is used for updating the parameters of the learning model.

$$w_2 = w_1 - L^* \frac{dJ}{dw}$$

$$b_2 = b_1 - L^* \frac{dJ}{db}$$

$$b_2 = b_1 - L^* \frac{dJ}{db}$$

w --> weight

b --> bias

L --> Learning Rate

 $\frac{dJ}{dw}$  --> Partial Derivative of cost function with respect to w

 $\frac{aj}{dh}$  --> Partial Derivative of cost function with respect to b

### **Gradients for Lasso Regularization**

if 
$$(w_i > 0)$$
:

$$\frac{dJ}{dw} = \frac{-2}{m} \left[ \left[ \sum_{i=1}^{m} \mathbf{x}_{i} \cdot (\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)}) \right] + \lambda \right]$$

else 
$$(w_j \leq 0)$$
:

$$\frac{dJ}{dw} = \frac{-2}{m} \left[ \left[ \sum_{i=1}^{m} \mathsf{x}_{\mathsf{j}} \cdot \left( \mathsf{y}^{(\mathsf{i})} - \hat{\mathsf{y}}^{(\mathsf{i})} \right) \right] + \lambda \right] \qquad \frac{dJ}{dw} = \frac{-2}{m} \left[ \left[ \sum_{i=1}^{m} \mathsf{x}_{\mathsf{j}} \cdot \left( \mathsf{y}^{(\mathsf{i})} - \hat{\mathsf{y}}^{(\mathsf{i})} \right) \right] - \lambda \right]$$

$$\frac{dJ}{db} = \frac{-2}{m} \left[ \sum_{i=1}^{m} \left( \mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)} \right) \right]$$

$$w_2 = w_1 - L^* \frac{dJ}{dw}$$

$$b_2 = b_1 - L^* \frac{dJ}{dh}$$

$$y = w.x + b$$