

有监督学习

黄书剑

- 有监督学习
 - -回归和分类
- 评估方法
- 回归模型
 - -线性回归
- 分类模型
 - -逻辑斯蒂回归
- k近邻

有监督学习

- Supervised learning is the machine learning task of learning a function that maps an input to an output based on example input-output pairs. (监督学习/有指导学习/指导学习)
 - mapping input to output
 - -with input-output pairs
- Input x / \vec{x} , Output y
- Input output pair (x, y)
- Examples (x_i, y_i)

回归问题(回顾)

• 输出是一个实数数值

-如:波特兰房价问题

Living area ($feet^2$)	#bedrooms	Price (1000\$s)	Γ^{X_1}	7 living size
2104	3	400	x_2	lot size
1600	3	330	x_3	# floors
2400	3	369	$x = \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}$	condition
1416	2	232		zip code
3000	4	540		:
:	:	:	:	•
•	•	•	$L x_d$, _

分类问题(回顾)

- 输出是一个离散值(表示类别)
 - -输出是0和1(二类分类)
 - -如:西瓜分类问题

 是
 否

 -表面光滑
 O

 -花纹清晰
 O

 -纹路明显
 O

 -底面发黄
 O

 -…
 …

如何得到预测结果?

- 通过线性模型综合不同输入变量
 - 回归模型可以完成输入到实数值(z)的映射
 - 分类模型可以在回归模型基础上再映射到类别
- 通过查询相似样本得到
 - -相近样本的标记结果也相近(k-近邻)

• k近邻 (k-Nearest Neighbors, k-NN)

- 查询与待预测样本最相近的k个训练样本
- 使用k个样本的投票决策决定分类结果
- -使用k个样本的均值决定回归结果

1-NN的决策情况

5-NN的决策情况

k的选择

- k较小时
 - -决策更为接近数据本身的分布
 - 较容易收到噪音和异常数据的影响
- k较大时
 - -决策边界更为平滑
 - 对数据变化的敏感程度下降
- k为整个训练集时?

关于k-NN的一些简单讨论

- k的选择
- 没有显式学习过程
 - -Lazy Learning
 - -实际运行代价
- 相似判断

什么是相似?

- Input Output Pair (x, y)
 - -样本的相似性表现为输入的相似性
- 对于描述性的特征(类别型categorical: nominal v.s. ordinal)
 - -颜色:红色、黄色、蓝色
 - -大小:很大、一般、较小
 - 纹理:清晰、正常、模糊
- 对于数值型特征
 - -重量、长度

距离度量

• 欧氏距离 (Euclidean distance)

$$d(\mathbf{x},\mathbf{x}') = \sqrt{\sum_{i=1}^n ig(x_i - x_i'ig)^2}$$

• 曼哈顿距离 (Manhattan Distance)

$$d(\mathbf{x},\mathbf{x}') = \sum_{i=1}^n |x_i - x_i'|$$

• 闵可夫斯基距离 (Minkowski Distance)

$$L_p(\mathbf{x}, \ \mathbf{x}') = \left(\sum_{i=1}^n \left|x_i - x_i'
ight|^p
ight)^{1/p}$$

- -p=1时为曼哈顿距离
- -p=2时为欧氏距离
- -p->inf 时

$$\lim_{p o\infty}\Biggl(\sum_{i=1}^n\Bigl|x_i-x_i'\Bigr|^p\Biggr)^{rac{1}{p}}=\max_{i=1}^n\Bigl|x_i-x_i'\Bigr|^p$$

$$\lim_{p o -\infty}\Biggl(\sum_{i=1}^n\Bigl|x_i-x_i'\Bigr|^p\Biggr)^{rac{1}{p}}=\min_{i=1}^n\Bigl|x_i-x_i'\Bigr|^p$$

更复杂的距离度量

• 考虑到不同维度的重要性

$$d(\mathbf{x},\mathbf{x}') = \sqrt{\sum_{i=1}^n w_i ig(x_i - x_i'ig)^2}$$

- 降维/维度约简
- 度量学习

有监督学习的应用

- 根据应用目标确定学习任务
 - -分类、回归
- 对数据进行处理
 - -数值转换、降维
- 观察数据,选择合适的模型
- 分析结果,对现有方案进行改进

练习三:

- 实现一个kNN算法用于分类或者回归
- 跟其他的算法的分类或者回归结果进行比较
- 尝试思考在你的问题中出现的分类错误、回归错误

参考资料

- https://en.wikipedia.org/wiki/Minkowski_distance
- https://en.wikipedia.org/wiki/Euclidean_distance
- https://en.wikipedia.org/wiki/Knearest_neighbors_algorithm