Puissance en régime sinusoidal

Table des matières

1		ssance instantanée
	1.1	Expression
	1.2	Aspect graphique
2	Pui	ssance moyenne
	2.1	Définition
	2.2	Puissance moyenne d'un résistor - grandeurs éfficaces
	2.3	Puissance moyenne en régime sinusoidal
}	Puissance en notation complexe	
	3.1	Définition
	3.2	Adaptation d'impédance

Puissance instantanée 1

1.1 Expression

Dans le cadre de la convention recepteur la puissance consommée par un dipôle électrocinétique (D) est définie par :

$$P(t) = u(t).i(t)$$

En régime sinusoidal
$$u(t) = U_m \cos \omega t$$
 et $i(t) = I_m \cos(\omega t + \varphi)$
 $P(t) = U_m I_m \cos \omega t$. $\cos(\omega t + \varphi) = \frac{U_m I_m}{2} [\cos \varphi + \cos(2\omega t + \varphi)]$
Donc la puissance $P(t)$ est une fonction périodique de pulsation $\omega_p = 2\omega$

La période
$$T_p = \frac{2\pi}{\omega_p} = \frac{\pi}{\omega} = \frac{T}{2}$$

1.2 Aspect graphique

Au cours d'une période T le dipôle se comporte réellement :

- Comme un récepteur si P > 0
- \bullet comme un générateur si P<0

2 Puissance moyenne

Définition 2.1

Dans le cas de signaux périodiques (u(t)) et i(t) on définit la puissance moyenne consommée par un dipôle électrocinétique par :

$$P_m = \frac{1}{T} \int_0^T P(t)dt$$
 en watt : w

• Remarque : En régime sinusoidal cette puissance est appelée puissance active .

2.2 Puissance moyenne d'un résistor - grandeurs éfficaces

En régime continu (I=cte) la puissance moyenne consommée par éffet Joule s'écrit $P_m=U.I=R.I^2$

En régime variable la puissance moyenne consommée :

$$P_{m} = \frac{1}{T} \int_{0}^{T} P(t)dt = \frac{1}{T} \int_{0}^{T} Ri^{2}(t)dt$$

• Définition : On appelle intensité éfficace I la valeur de l'intensité du courant continu qui produirait le même effet Joule qu'en régime périodique .

 $P_m = R.I^2$ donc l'intensité éfficace est :

$$I^2 = \frac{1}{T} \int_0^T i^2(t)dt$$

Pour un courant sinusoidal $i(t) = I_m \cos(\omega t + \varphi)$

$$I^2 = \frac{I_m^2}{T} \int_0^T \cos^2(\omega t + \varphi) dt = \frac{I_m^2}{2T} \int_0^T (1 + \cos(2(\omega t + \varphi))) dt \text{ avec } \omega T = 2\pi$$

$$I = \frac{I_m}{\sqrt{2}}$$

• Valeur éfficace d'une tension sinusoidale

Il s'agit de la valeur quadratique moyenne de la tension $u(t) = U_m \cos(\omega t + \varphi)$ sur une période T.

$$U = \frac{U_m}{\sqrt{2}}$$

2.3 Puissance moyenne en régime sinusoidal

$$u(t) = U_m \cos \omega t$$
 et $i(t) = I_m \cos(\omega t + \varphi)$

$$P(t) = u(t).i(t) = \frac{U_m.I_m}{2} [\cos \varphi + \cos(2\omega t + \varphi)]$$

$$P_m = \frac{1}{T} \int_0^T P(t)dt = \frac{U_m I_m}{2} \left[\cos \varphi + \frac{1}{T} \int_0^T \cos(2\omega t + \varphi)dt\right]$$

$$P_m = \frac{U_m \cdot I_m}{2} \cos \varphi$$

avec $U_m = U\sqrt{2}$ et $I_m = I\sqrt{2}$

$$P_m = U.I\cos\varphi$$

- ▶ La puissance moyenne représente la puissance active consommée
- \blacktriangleright Le produit U.I désigne la puissance apparente (V.A) du dipôle

- ightharpoonup cos φ est appelé facteur de puissance
- Exemples
 - ▶ Puissance moyenne d'un condensateur et d'une bobine

Pour un condensateur le courant est en avance de $\frac{\pi}{2}$ par rapport à la tension

Pour une bobine le courant est en retard de $\frac{\pi}{2}$ par rapport à la tension

Donc
$$\cos(\pm \frac{\pi}{2}) = 0$$
 donc $P_m = 0$

Le condensateur et la bobine emmagasinent de l'énergie pendant une alternance et restituent cette énergie lors de l'alternance suivante .

► Cas de RLC série

$$u = u_R + u_L + u_c$$

$$P_m = P_R + P_L + P_c = P_R = RI^2$$

La seule énergie consommée l'est par effet Joule dans la résistance .

3 Puissance en notation complexe

3.1 Définition

On définit la puissance complexe \underline{P} consommée par le dipôle par

$$\underline{P} = \frac{1}{2}\underline{u}.\underline{i}^*$$

 $\underline{i^*}$ complexe conjugué de \underline{i}

 $\underline{\underline{u}} = U\sqrt{2}\exp{j\omega t} \text{ et } \underline{\underline{i}} = I\sqrt{2}\exp{-j\varphi}\exp{j\omega t} = \underline{I}\sqrt{2}\exp{j\omega t} \ \underline{P} = \underline{U}.\underline{I}^* = U.I\exp{j\varphi}$

$$\underline{P} = UI(\cos\varphi + j\sin\varphi)$$

► la puissance active ou moyenne (w)

$$P_m = Rel(\underline{P})$$

▶ la puissance reactive (V.A)

$$Im(\underline{P}) = p_r$$

3.2 Adaptation d'impédance

Considérons un dipôle D d'impédance $\underline{Z}=R+jX$, alimenté par un générateur de $f.e.m~e(t) = E\sqrt{2}\cos\omega t$ d'impédance interne $\underline{Z}_g = R_g + jX_g$.

La puissance moyenne consommée par un dipôle D est : $P_m=Rel(\underline{Z}).I^2=R.I^2$

$$P_m = Rel(\underline{Z}).I^2 = R.I^2$$

$$P_m = Rel(\underline{Z}).I^2 = R.I^2$$
loi de Poouillet : $\underline{i} = \frac{\underline{e}}{\underline{Z}_g + \underline{Z}} = \frac{\underline{e}}{R_g + R + j(X_g + X)} \Rightarrow I^2 = \frac{E^2}{(R_g + R)^2 + (X_g + X)^2} \Rightarrow P_m = \frac{RE^2}{R}$

$$P_m = \frac{RE^2}{(X_g + X)^2 + (R_g + R)^2}$$

$$P_m = f(R, X)$$

$$P_m$$
 est maximale : $(\frac{\partial P_m}{\partial R})_{Xfixe} = 0$ et $(\frac{\partial P_m}{\partial X})_{Rfixe} = 0$

$$\begin{split} P_m &= f(R,X) \\ P_m \text{ est maximale : } (\frac{\partial P_m}{\partial R})_{Xfixe} = 0 \text{ et } (\frac{\partial P_m}{\partial X})_{Rfixe} = 0 \\ \text{Pour simplifier les calculs on utilise la dérivée logarithmique} \\ \frac{1}{P_m} (\frac{\partial P_m}{\partial X})_R &= (\frac{\partial \ln P_m}{\partial X})_R = -\frac{2(X_g + X)}{(R_g + R)^2 + (X_g + X)^2} = 0 \text{ donc } X = -X_g \\ \frac{1}{P_m} (\frac{\partial P_m}{\partial R})_X &= (\frac{\partial \ln P_m}{\partial R})_X = \frac{1}{R} - \frac{2(R_g + R)}{(R_g + R)^2 + (X_g + X)^2} = \frac{R_g - R}{R(R_g + R)} = 0 \text{ donc } R = R_g \end{split}$$

• Résultat :

 P_m est maximum si

$$\underline{Z} = \underline{Z_g^*} \Rightarrow R = R_g; X = -X_g$$