Nonparametric Methods

- Most of the methods we have studied require distributional assumptions
 (on either joint or marginal distributions)
 - multivariate normal joint distribution (either unstructured or with a special covariance structure)
 - multinomial joint distribution
 - normal, Bernoulli, Poisson, gamma marginal distributions
- The exceptions were:
 - summary statistic approach using nonparametric measures of association
 - randomization model analyses based on CMH statistics

Rationale for Nonparametric Methods

- 1. For continuous responses:
 - a. the assumption of multivariate normality is not always reasonable
 - b. the actual distribution may be unknown

 Thus, the use of standard parametric procedures
 is subject to criticism
- 2. For ordered categorical responses with a large number of possible outcomes:
 - a. general categorical data methods may be inapplicable due to sample size limitations
 - b. assumptions of specific ordinal data models may be inappropriate
- 3. To confirm the results of parametric analyses

Summary Statistic Approach

- Analysis of a univariate function of the repeated measurements using distribution-free methods
- Ghosh et al. (1973) extension based on the use of two or more summary statistics for each subject

Rank Correlation Methods

- Another type of multivariate approach based on summary statistics
- Applicable when ordinal response is measured at multiple time points in several ordered groups
- Rank measures of association between group and response are constructed at each time
- Covariance matrix of these correlated measures of association is then estimated
- Carr, Hafner, and Koch (1989)

Multivariate Generalizations of Univariate
Distribution-Free Methods

(rank-based methods for samples from continuous multivariate distributions)

- Multivariate one-sample tests for complete data
 - Nonparametric analogues of Hotelling's T^2
 - Multivariate generalizations of the sign and Wilcoxon signed rank tests
 - Hettmansperger (1984, chapter 6)
 - Puri and Sen (1971, chapter 4)
- Multivariate multisample tests for complete data
 - Nonparametric analogues of MANOVA
 - Multivariate generalizations of the Kruskal-Wallis and Brown-Mood (1951) median tests
 - Puri and Sen (1971, chapter 5)

Counterparts of Multivariate Normal Methods

- Nonparametric counterparts of Hotelling's T^2 statistic and profile analysis (Bhapkar, 1984)
- Nonparametric analogues of the Potthoff-Roy growth curve model (Sen, 1984)

Randomization Model Approaches

- Cochran-Mantel-Haenszel tests for one-sample repeated measures using rank scores
- Randomization analysis of growth curves Zerbe and Walker (1977), Zerbe (1979)

Two-sample Tests for Incomplete Data

- Wei & Lachin (1984), Wei & Johnson (1985)
- Palesch and Lachin (1994) extension to more than two groups

Rank Transform Methods

- Replace the observations by their ranks and then perform standard parametric analyses
- Inappropriate for many common hypotheses in the repeated measures setting (Akritas, '91, '93)
- Thompson (1991) and Akritas & Arnold (1994) provide valid asymptotic tests for hypotheses of interest in several repeated measures models

Nonparametric Regression Methods

- Approaches based on kernel estimation, weighted local least squares estimation, and smoothing splines
- Müller (1988), Diggle et al. (1994, Chapter 3), Kshirsagar and Smith (1995, Chapter 10)

Multivariate Multisample Nonparametric Tests for Complete Data

- Puri and Sen (1971) considered the problem of testing the equality of s multivariate distributions F_1, \ldots, F_s , where F_h is a t-variate cdf
- When the underlying distributions F_1, \ldots, F_s are multivariate normal, they can differ only in their mean vectors and covariance matrices
- However, for non-normal F_h , differences among distributions may be due to a variety of reasons
- Equality of location vectors and covariance matrices does not imply that $F_1 = \cdots = F_s$
- Puri and Sen assumed that the cdfs F_h had a common unspecified form, but differed in their location (or scale) vectors

Multivariate Multisample Nonparametric Tests for Complete Data

- Puri & Sen considered the general null hypothesis $H_0: F_1(x) = \cdots = F_s(x)$ for all x, where $F \in \Omega$, and Ω is the class of continuous cdfs
- The general alternative hypothesis was that each $F_h \in \Omega$ and not all equal
- Although they considered both translation- and scale-type alternatives, we shall consider the case

$$F_h(x) = F(x + \Delta_h), \quad h = 1, \dots, s$$

• The null hypothesis of interest is

$$H_0: \Delta_1 = \dots = \Delta_s = (0, \dots, 0)'$$

• The alternative is that $\Delta_1 \dots, \Delta_s$ are not all equal

Methodology for Repeated Measures

- Suppose repeated measurements at t time points have been obtained from s groups of subjects
- Let n_h denote the number of subjects in group h and let $n = \sum_{h=1}^{s} n_h$
- Let y_{hij} denote the response at time j from the ith subject in group h, for $h = 1, \ldots, s$, $i = 1, \ldots, n_h$, and $j = 1, \ldots, t$
- Let $F_h(x + \Delta_h)$ denote the cdf in group h, where $x' = (x_1, \dots, x_t)$ and $\Delta_h = (\Delta_{h1}, \dots, \Delta_{ht})'$
- The test of no difference among groups across all time points tests $H_0: \Delta_1 = \cdots = \Delta_s = 0_t$
- The omnibus alternative is that not all groups are the same at all time points

Methodology for Repeated Measures

• The data can be displayed as follows:

		Time Point				
Group	Subject	1		j		t
1	1	y_{111}	• • •	y_{11j}		y_{11t}
	•	•	• •	•	• • •	•
	i	y_{1i1}	• • •	y_{1ij}	• • •	y_{1it}
	•	•	• •	•	• • •	•
	n_1	y_{1n_11}	• • •	y_{1n_1j}	• • •	y_{1n_1t}
h	1	y_{h11}	• • • •	y_{h1j}	• • • •	y_{h1t}
	•	•	• •	•	• • •	•
	\dot{i}	y_{hi1}		y_{hij}		y_{hit}
	•	•	٠.	•	٠.	•
	n_h	y_{hn_h1}	• • •	$y_{hn_h j}$	• • •	y_{hn_ht}
s	1	y_{s11}	• • • •	y_{s1j}	• • • •	y_{s1t}
	•	•	٠.	•	٠.	•
	i	y_{si1}		y_{sij}		y_{sit}
	•	•	• • •	•	• •	•
	n_s	y_{sn_s1}	• • •	y_{sn_sj}	• • •	y_{sn_st}

Rank Permutation Principle

- Rank the t columns of the $n \times t$ data matrix Y (all groups combined) in ascending order
- Let R denote the $n \times t$ matrix of ranks
- Under H_0 , each column of R is a random permutation of the numbers $1, \ldots, n$
- Two such matrices are permutationally

 equivalent if one can be obtained from the
 other by a rearrangement of its rows
- Let R^* denote the matrix that has the same row vectors as R, but is arranged so that its first column is ordered $1, \ldots, n$
- R^* has $(n!)^{t-1}$ possible realizations

Rank Permutation Principle

- The t components of $y_{hi} = (y_{hi1}, \dots, y_{hit})'$ are, in general, stochastically dependent
- Thus, the joint distribution of the elements of R (or R^*) will depend on the unknown distribution F (even when $H_0: F_1 = \cdots = F_s = F$ is true)
- Let \mathcal{R}^* denote the set of all $(n!)^{t-1}$ possible realizations of R^*
- The unconditional distribution of R^* over \mathcal{R}^* depends on F_1, \ldots, F_s
- When $F_1 = \cdots = F_s$, the n random vectors $y_{11}, \dots, y_{1n_1}, y_{21}, \dots, y_{2n_2}, \dots, y_{s1}, \dots, y_{sn_s}$ are independent and identically distributed

Rank Permutation Principle

- The joint distribution of the y_{hi} is invariant under any permutation among themselves
- Thus, the conditional distribution of R over the set of n! possible permutations of the columns of R^* is uniform under $H_0: F_1 = \cdots = F_s = F$, i.e., $\Pr(R = r \mid S(R^*), H_0) = 1/n!$ for all $r \in S(R^*)$
- Puri and Sen define \mathcal{P} as the conditional (permutational) probability measure generated by the n! equally likely possible permutations of the columns of R^*
- They show that any statistic which depends explicitly on R has a completely specified conditional distribution under \mathcal{P}

Permutation Rank Order Tests

- Let R_{ij} denote the (i,j)th element of $R_{(n\times t)}$
- Let $E_{ij} = J(R_{ij}/(n+1))$ for some function J satisfying Puri and Sen's (1971, p. 95) conditions
- Let E denote the $n \times t$ matrix of rank scores
- Let \overline{E}_{hj} denote the average rank score at the jth time point in the hth sample
- Puri and Sen derive a test statistic L which is a weighted sum of s quadratic forms in $\overline{E}_h \overline{E}_.$
- \overline{E}_h is the $t \times 1$ vector of average rank scores from the hth sample
- \overline{E}_{\cdot} is the vector of average rank scores from all samples combined

Permutation Rank Order Tests

- The conditional distribution of L given R^* is the same under H_0 , regardless of F
- Under H_0 , the t(s-1) contrasts $\overline{E}_{hj} \overline{E}_{.j}$ are stochastically small in absolute value
- The test criteria L rejects H_0 if any of these contrasts are numerically too large
- Unless n and t are both small, exact application of the permutation test based on L is difficult
- Puri and Sen (1971) show that the asymptotic null distribution of L is $\chi^2_{t(s-1)}$
- They also note that L is asymptotically equivalent to the LR test based on T^2

Multivariate Multisample Rank Sum Test

- For each sample at each time point, the MMRST compares the difference between the sample average rank and the combined data average rank
- Let r_h denote the average rank vector $(t \times 1)$ from the hth group:

$$r_{hj} = \frac{\sum_{i=1}^{n_h} r_{hij}}{n_h},$$

where r_{hij} is the rank of the jth response from the ith subject in sample h

• Let \overline{r} denote the average rank vector $(t \times 1)$ for the combined samples:

$$\bar{r}_{.j} = \frac{\sum_{h=1}^{s} \sum_{i=1}^{n_h} r_{hij}}{\sum_{h=1}^{s} n_h}$$

Multivariate Multisample Rank Sum Test

• The test statistic is

$$L_{RS} = \sum_{h=1}^{s} n_h (r_h - \overline{r}_.)' V^{-1} (r_h - \overline{r}_.)$$

• The covariance matrix V has elements

$$V_{jl} = \left(\sum_{h=1}^{s} \sum_{i=1}^{n_h} r_{hij} r_{hil} / \sum_{h=1}^{s} n_h\right) - \overline{r}_{.j} \overline{r}_{.l}$$

- L_{RS} tests the hypothesis of no differences in the multivariate response profiles from the s samples
- The asymptotic null distribution of L_{RS} is $\chi^2_{t(s-1)}$
- If t = 1, L_{RS} reduces to the Kruskal-Wallis test
- Schwertman (1982) gives a FORTRAN subroutine for computing the MMRST

Multivariate Multisample Median Test

- The MMMT compares differences between proportions less than or equal to the median to the corresponding combined data proportions
- Let p_h denote the $t \times 1$ vector of proportions from the hth sample which are less than or equal to the median of the combined samples:

$$p_{hj} = \sum_{i=1}^{n_h} x_{hij}/n_h$$
, where

$$x_{hij} = \begin{cases} 1 & \text{if } r_{hij} \le \sum_{h=1}^{s} n_h/2\\ 0 & \text{otherwise} \end{cases}$$

• Let \overline{p} denote the $t \times 1$ vector of proportions from the combined samples that are less than or equal to the combined samples median:

$$\overline{p}_{.j} = \sum_{h=1}^{s} \sum_{i=1}^{n_h} x_{hij} / \sum_{h=1}^{s} n_h$$

Multivariate Multisample Median Test

• The test statistic is

$$L_M = \sum_{h=1}^{s} n_h (p_h - \overline{p}_{.})' V^{-1} (p_h - \overline{p}_{.})$$

• The covariance matrix V has elements

$$V_{jl} = \left(\sum_{h=1}^{s} \sum_{i=1}^{n_h} x_{hij} x_{hil} \middle/ \sum_{h=1}^{s} n_h \right) - \overline{p}_{.j} \overline{p}_{.l}$$

- L_M tests the hypothesis of no differences in the multivariate response profiles from the s samples
- The asymptotic null distribution of L_M is $\chi^2_{t(s-1)}$
- If t = 1, L_M reduces to the Brown-Mood (1951) several-sample median test
- Schwertman (1982) gives a FORTRAN subroutine for computing the MMMT

Example

- Leppik et al. (1987) conducted a clinical trial in 59 epileptic patients
- Patients suffering from simple or complex partial seizures were randomized to receive either the antiepileptic drug progabide (31 patients) or a placebo (28 patients)
- At each of four successive postrandomization visits, the number of seizures occurring during the previous two weeks was reported
- The medical question of interest is whether or not progabide reduces the frequency of epileptic seizures

Reference

Leppik IE, Dreifuss FE, Porter R et al. (1987). A controlled study of progabide in partial seizures: methodology and results. *Neurology* **37**, 963–968.

Modified Box Plots of Seizure Counts

Multivariate Approach

- During each two-week period, there appears to be a slight tendency for seizure counts to be lower in progabide-treated patients than in placebo-treated patients
- The median number of seizures in the progabide group at weeks 2, 4, 6, and 8 is 4, 5, 4, and 4, respectively
- The corresponding medians in the placebo group are 5, 4.5, 5, and 5, respectively
- Using the multivariate multisample rank sum test, the chi-square statistic is 5.47 with 4 df (p=0.24)
- The multivariate multisample median test gives an even less-significant result (chi-square= 3.46, df= 4, p = 0.48)

Two-Sample Nonparametric Tests for Incomplete Repeated Measures

• General methods for comparing two samples of incomplete repeated measures were studied by:

Wei and Lachin (1984, JASA)

Wei and Johnson (1985, Biometrika)

- The methods make no assumptions concerning the distribution of the response variable
- The missing value patterns in the two groups are allowed to be different and both "embedded" and "tail" missing observations can be accommodated
- The missing data mechanism, however, must be independent of the response
- Methods are limited to two-group comparisons

Wei-Lachin Method

- A family of asymptotically distribution-free tests for equality of two multivariate distributions, based on censored data
- Proposed and developed for multivariate censored failure time data
- Natural generalizations of the log-rank test and the Gehan-Wilcoxon test for survival data
- Based on the commonly used random censorship model (Kalbfleisch and Prentice, 1980)
 - censoring vectors for each subject are mutually independent and also independent of the underlying failure time vectors
- The methodology is also applicable to repeated measures with missing observations

Wei-Lachin Method

- Let $y_{hi} = (y_{hi1}, \dots, y_{hit})'$ denote the repeated observations from subject i in group h, for h = 1, 2 and $i = 1, \dots, n_h$
- Apart from a scale factor, the jth component of the W-L vector of test statistics equals

$$T_j = \sum_{i=1}^{n_1} \sum_{i'=1}^{n_2} \delta_{1ij} \delta_{2i'j} \phi(y_{1ij}, y_{2i'j}),$$

where

$$\phi(x,y) = \begin{cases} 1 & \text{if } y > x \\ 0 & \text{if } y = x \\ -1 & \text{if } y < x \end{cases}$$

and δ_{hij} is 1 if y_{hij} is observed, 0 otherwise

• Thus, at each time point j, comparisons between group 1 and group 2 are made for all i, i' for which y_{1ij} and $y_{2i'j}$ are both observed

Wei-Lachin Omnibus Test

- Let $F_h(x_1, ..., x_t)$ denote the multivariate cdf of the repeated observations from group h, for h = 1, 2
- The statistic for testing

$$H_0: F_1(x_1, \dots, x_t) = F_2(x_1, \dots, x_t)$$

against the general alternative that $F_1 \neq F_2$ is $T'\widehat{\Sigma}_T^{-1}T$, where

- $\bullet \ T' = (T_1, \dots, T_t)$
- $\widehat{\Sigma}_T$ is a consistent estimator of Var(T)(Wei and Lachin, 1984, Theorem 1)
- The asymptotic null distribution of this statistic is χ_t^2

Wei-Lachin One-Sided Test

- In many studies, the detection of stochastic ordering of the distributions F_1 and F_2 is of primary interest
- For example, the alternative hypothesis H_1 may be that $F_{2j}(x) \leq F_{1j}(x)$ for each marginal $\operatorname{cdf} F_{hj}, j = 1, \ldots, t$
- In this case, Wei & Lachin propose the statistic

$$z = \frac{e'T}{\sqrt{e'\widehat{\Sigma}_T e}},$$

where e' is the t-component vector (1, ..., 1)

- The asymptotic distribution of z is N(0,1)
- H_0 is rejected when z is equal to a large positive (or large negative) value

Wei-Johnson Method

- ullet A class of two-sample nonparametric tests for incomplete repeated measures based on two-sample U-statistics
- The primary focus is on optimal methods of combining dependent tests

• Motivation:

Suppose a researcher wishes to draw an overall conclusion regarding the superiority of one treatment over another (across time)

A univariate one-sided test that combines
the results at individual time points is more
appropriate than an omnibus two-sided test of

$$H_0: F_1(x_1,\ldots,x_t) = F_2(x_1,\ldots,x_t)$$

One-Sample U-Statistics

- Let \mathcal{F} denote a family of cumulative distribution functions
- Let X_1, \ldots, X_n be a random sample from a distribution with cdf $F \in \mathcal{F}$
- Let γ denote a parameter to be estimated
- γ is estimable of degree r for the family \mathcal{F} if r is the smallest sample size for which there exists a function $h(x_1, \ldots, x_r)$ such that

$$E[h(X_1,\ldots,X_r)] = \gamma$$

for every distribution $F \in \mathcal{F}$

• $h(x_1, ..., x_r)$ is a statistic that does not depend on F and is called the *kernel* of the parameter γ

One-Sample U-Statistics

• $h(x_1, \ldots, x_r)$ is assumed to be symmetric in its arguments, that is,

$$h(x_1,\ldots,x_r)=h(x_{\alpha_1},\ldots,x_{\alpha_r})$$

for every permutation $(\alpha_1, \ldots, \alpha_r)$ of the integers $1, \ldots, r$

• A one-sample U-statistic for the estimable parameter γ of degree r is created with the symmetric kernel $h(x_1, \ldots, x_r)$ by forming

$$U(X_1,\ldots,X_n) = \binom{n}{r}^{-1} \sum_{\beta \in B} h(X_{\beta_1},\ldots,X_{\beta_r}),$$

where $B = \{\beta \mid \beta \text{ is one of the } \binom{n}{r} \text{ unordered}$ subsets of r integers chosen without replacement from the set $\{1, \dots, n\}\}$

Example of a One-Sample U-Statistic

- Let \mathcal{F} denote the class of all univariate distributions with finite first moment γ
- Let X_1, \ldots, X_n be a random sample from a distribution with cdf $F \in \mathcal{F}$
- Since $E(X_1) = \gamma$, the mean γ is an estimable parameter of degree 1 for the family \mathcal{F}
- Using the kernel h(x) = x, the *U*-statistic estimator of the mean is

$$U(X_1, \dots, X_n) = {n \choose 1}^{-1} \sum_{i=1}^n h(X_i)$$
$$= \frac{1}{n} \sum_{i=1}^n X_i$$
$$= \overline{X}$$

One-Sample U-Statistic Theorem

- Let X_1, \ldots, X_n be a random sample from a distribution with cdf $F \in \mathcal{F}$
- Let γ be an estimable parameter of degree r with symmetric kernel $h(x_1, \ldots, x_r)$ and let

$$U(X_1, \dots, X_n) = \binom{n}{r}^{-1} \sum_{\beta \in B} h(X_{\beta_1}, \dots, X_{\beta_r})$$

• If $E[h^2(X_1,\ldots,X_r)]<\infty$, and if

$$\zeta_1 = E[h(X_1, \dots, X_r)h(X_1, X_{r+1}, \dots, X_{2r-1})] - \gamma^2$$

is positive, then

$$\sqrt{n}[U(X_1,\ldots,X_n)-\gamma]$$

has a limiting $N(0, r^2\zeta_1)$ distribution

• Hoeffding (1948), Randles and Wolfe (1979)

Two-Sample U-Statistics

- Let X_1, \ldots, X_m and Y_1, \ldots, Y_n be independent random samples from populations with cdf's F(x) and G(y), respectively, from a family of cumulative distribution functions \mathcal{F}
- A parameter γ is estimable of degree (r, s) for distributions (F, G) in a family \mathcal{F} if r and s are the smallest sample sizes for which there exists a function $h(x_1, \ldots, x_r, y_1, \ldots, y_s)$ such that

$$E[h(X_1,\ldots,X_r,Y_1,\ldots,Y_s)] = \gamma$$

for all distributions $(F,G) \in \mathcal{F}$

• $h(x_1, \ldots, x_r, y_1, \ldots, y_s)$ is called the two-sample kernel of the parameter γ

Two-Sample U-Statistics

- The kernel $h(x_1, \ldots, x_r, y_1, \ldots, y_s)$ is assumed to be symmetric separately in its x_i components and in its y_i components
- A two-sample U-statistic for the estimable parameter γ of degree (r, s) is created with the kernel $h(x_1, \ldots, x_r, y_1, \ldots, y_s)$ by forming

$$U(X_1,\ldots,X_m,Y_1,\ldots,Y_n) =$$

$$\left[\binom{m}{r}\binom{n}{s}\right]^{-1} \sum_{\alpha \in A} \sum_{\beta \in B} h(X_{\alpha_1}, \dots, X_{\alpha_r} Y_{\beta_1}, \dots, Y_{\beta_s}),$$

where A (B) is the collection of subsets of r (s) integers chosen without replacement from the integers $\{1, \ldots, m\}$ ($\{1, \ldots, n\}$)

• Note that sample sizes $m \geq r, n \geq s$ are required

Example of a Two-Sample U-Statistic

- Let \mathcal{F} be the class of univariate distributions with finite first moment γ
- Let X_1, \ldots, X_m and Y_1, \ldots, Y_n be independent random samples from distributions with cdfs Fand G, respectively, where $F, G \in \mathcal{F}$
- Since $E(X_1) = \mu_X$ and $E(Y_1) = \mu_Y$, the mean difference $\gamma = \mu_Y \mu_X$ is an estimable parameter of degree (1,1) for the family \mathcal{F}
- Using the kernel h(x,y) = y x, the *U*-statistic estimator of the mean difference is

$$U(X_1, \dots, Y_n) = \left[\binom{m}{1} \binom{n}{1} \right]^{-1} \sum_{i=1}^m \sum_{j=1}^n h(X_i, Y_j)$$
$$= \frac{1}{mn} \sum_{i=1}^m \sum_{j=1}^n (Y_j - X_i) = \overline{Y} - \overline{X}$$

Two-Sample U-Statistic Theorem (r = s = 1)

- Let X_1, \ldots, X_m and Y_1, \ldots, Y_n be independent random samples from distributions with cdfs Fand G, respectively, where $F, G \in \mathcal{F}$
- Let $h(\cdot)$ be a symmetric kernel for an estimable parameter γ of degree (1,1) and let U be the Ustatistic estimator of γ
- Let N = m + n and let $0 < \lambda = \lim_{N \to \infty} \frac{m}{N} < 1$
- Let $\zeta_{1,0} = E[h(X_1, Y_1)h(X_1, Y_2)] \gamma^2$ and let $\zeta_{0,1} = E[h(X_1, Y_1)h(X_2, Y_1)] \gamma^2$
- If $E[h^2(X_1, Y_1)] < \infty$, and if

$$\sigma^2 = \frac{\zeta_{1,0}}{\lambda} + \frac{\zeta_{0,1}}{1-\lambda} > 0,$$

the limiting distribution of $\sqrt{N}(U-\gamma)$ is $N(0,\sigma^2)$

Joint Limiting Distribution of Correlated Two-Sample U-Statistics

- Special case of several two-sample U-statistics, each of degree (1,1)
- Let X_1, \ldots, X_m and Y_1, \ldots, Y_n be independent random samples from distributions with t-variate cdfs F and G, respectively

$$X'_{i} = (X_{i1}, \dots, X_{it}), \quad Y'_{i} = (Y_{j1}, \dots, Y_{jt})$$

• Let U_1, \ldots, U_t be two-sample U-statistics with symmetric kernel h(x, y), where U_k estimates γ_k of degree (1,1) and is given by

$$U_k = (mn)^{-1} \sum_{i=1}^m \sum_{j=1}^n h(X_{ik}, Y_{jk}), \quad k = 1, \dots, t$$

• Let N = m + n and let $\lambda = \lim_{N \to \infty} \frac{m}{N}$

Joint Limiting Distribution of Correlated Two-Sample U-Statistics

• The joint limiting distribution of

$$\sqrt{N}(U_1-\gamma_1),\ldots,\sqrt{N}(U_t-\gamma_t)$$

is t-variate normal with zero mean vector and covariance matrix Σ with elements

$$\sigma_{k,k'} = \frac{\zeta_{1(k,k')}}{\lambda} + \frac{\zeta_{2(k,k')}}{1-\lambda}$$

• The quantities $\zeta_{1(k,k')}$ and $\zeta_{2(k,k')}$ are given by

$$Cov [(h(X_{1k}, Y_{1k}) - \gamma_k), (h(X_{1k'}, Y_{2k'}) - \gamma_{k'})]$$

$$= E[h(X_{1k}, Y_{1k})h(X_{1k'}, Y_{2k'})] - \gamma_k \gamma_{k'}$$

and

$$Cov [(h(X_{1k}, Y_{1k}) - \gamma_k), (h(X_{2k'}, Y_{1k'}) - \gamma_{k'})]$$

$$= E[h(X_{1k}, Y_{1k})h(X_{2k'}, Y_{1k'})] - \gamma_k \gamma_{k'},$$
for $k, k' = 1, ..., t$

Wei-Johnson Class of Nonparametric Tests

• For each time point $j = 1, \ldots, t$, let

$$U_j = \frac{\sqrt{N}}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{i'=1}^{n_2} \delta_{1ij} \, \delta_{2i'j} \, \phi(y_{1ij}, y_{2i'j})$$

- $N = n_1 + n_2$ is the total sample size
- y_{hij} is the observation from subject i in group h at time j, for $h=1,2, i=1,\ldots,n_h$, and $j=1,\ldots,t$
- δ_{hij} is 1 if y_{hij} is observed, 0 otherwise
- $\phi(x,y)$ is a kernel function, e.g.,

$$\phi(x,y) = \begin{cases} 1 & \text{if } y > x, \\ 0 & \text{if } y = x, \\ -1 & \text{if } y < x. \end{cases}$$

$$\phi(x,y) = y - x$$

Wei-Johnson Class of Nonparametric Tests

- If $E[\phi^2(y_{1ij}, y_{2i'j}] < \infty$ and $n_1/(n_1 + n_2) \to c$ (0 < c < 1) as $N \to \infty$, then $U = (U_1, \dots, U_t)'$ has an asymptotic null $N(0, \Sigma)$ distribution
- If $E[\phi^4(y_{1ij}, y_{2i'j}] < \infty$, for j = 1, ..., t, the elements of the covariance matrix $\Sigma = (\sigma_{jk})$ can be consistently estimated by

$$\widehat{\sigma}_{jk} = \frac{N}{n_1} \,\widehat{\sigma}_{1jk} + \frac{N}{n_2} \,\widehat{\sigma}_{2jk},$$

where
$$\hat{\sigma}_{1jk} = (n_1 n_2 (n_2 - 1))^{-1} \times$$

$$\sum_{i=1}^{n_1} \sum_{l \neq l'}^{n_2} \delta_{1ij} \delta_{1ik} \delta_{2lj} \delta_{2l'k} \phi(y_{1ij}, y_{2lj}) \phi(y_{1ik}, y_{2l'k})$$

and
$$\widehat{\sigma}_{2jk} = (n_2 n_1 (n_1 - 1))^{-1} \times$$

$$\sum_{l=1}^{n_2} \sum_{i \neq i'}^{n_1} \delta_{1ij} \delta_{1i'k} \delta_{2lj} \delta_{2lk} \phi(y_{1ij}, y_{2lj}) \phi(y_{1i'k}, y_{2lk})$$

Test Statistics

- Let $\widehat{\Sigma}$ denote the estimated covariance matrix of the vector of test statistics U
- Since $U \approx N(0, \widehat{\Sigma})$, the hypothesis $H_0: F_1 = F_2$ can be tested against a general alternative using the statistic

$$Q = U'\widehat{\Sigma}^{-1}U,$$

which is asymptotically χ_t^2

- A univariate one-sided test that combines the results at individual time points can be based on the linear combination $w'U = \sum_{k=1}^{t} w_k U_k$
- Under H_0 , the statistic

$$z = \frac{w'U}{\sqrt{w'\widehat{\Sigma}w}}$$

is asymptotically N(0,1)

Choice of Weights

- The simplest choice is to weight each component equally, i.e. $w'=(1,\ldots,1)$
 - Bloch and Moses (1988, Amer. Statist.) show that the use of equal weights often results in little loss of efficiency
- Another possibility is to weight by the reciprocals of the variances, i.e.,

$$w' = (1/\widehat{\Sigma}_{11}, \dots, 1/\widehat{\Sigma}_{tt})$$

• Under the assumption that the test statistics at the individual time points are estimates of a common effect, the optimal weights are given by

$$w' = (1, \dots, 1)\widehat{\Sigma}^{-1}$$

• This assumption may not be reasonable

- Leppik et al. (1987) conducted a clinical trial in 59 epileptic patients
- Patients suffering from simple or complex partial seizures were randomized to receive either the antiepileptic drug progabide (31 patients) or a placebo (28 patients)
- At each of four successive postrandomization visits, the number of seizures occurring during the previous two weeks was reported
- The medical question of interest is whether or not progabide reduces the frequency of epileptic seizures

Reference

Leppik IE, Dreifuss FE, Porter R et al. (1987). A controlled study of progabide in partial seizures: methodology and results. *Neurology* **37**, 963–968.

• The Wei–Lachin vector of test statistics is W' = (-0.4700, -0.0375, -0.2008, -0.3685) with estimated covariance matrix

$$\widehat{\Sigma}_W = \begin{pmatrix} 0.0788 & 0.0529 & 0.0460 & 0.0509 \\ 0.0529 & 0.0804 & 0.0538 & 0.0556 \\ 0.0460 & 0.0538 & 0.0789 & 0.0501 \\ 0.0509 & 0.0556 & 0.0501 & 0.0775 \end{pmatrix}$$

- The Wei–Lachin omnibus test of equality of distributions is $X_W^2 = W' \widehat{\Sigma}_W^{-1} W = 5.66$ with 4 df (p=0.23)
- Using equal weights, the Wei–Johnson univariate statistic

$$\frac{c'U}{\sqrt{c'\widehat{\Sigma}_U c}},$$

with c' = (1, ..., 1), is equal to -1.09

• The two-sided p-value is 0.14

- A clinical trial comparing two treatments for maternal pain relief during labor
- 83 women in labor were randomized to receive an experimental pain medication (43 subjects) or placebo (40 subjects)
- Treatment was initiated when the cervical dilation was 8 cm
- At 30-minute intervals, the amount of pain was self-reported by placing a mark on a 100-mm line (0 = no pain, 100 = very much pain)
- The repeated pain scores are both nonnormal and incomplete
- Seems appropriate to compare treatments using the Wei–Lachin or the Wei–Johnson procedures

.0052

Example

• Based on the data from minutes 30, 60, 90, 120, 150, and 180, the Wei–Lachin vector W' and covariance matrix $\widehat{\Sigma}_W$ are, respectively,

$$\begin{pmatrix} .0794 & .0479 & .0284 & .0178 & .0114 & .0057 \\ .0479 & .0585 & .0316 & .0208 & .0155 & .0064 \\ .0284 & .0316 & .0368 & .0197 & .0111 & .0036 \\ .0178 & .0208 & .0197 & .0265 & .0148 & .0054 \\ .0114 & .0155 & .0111 & .0148 & .0132 & .0057 \\ .0267 & .0064 & .0026 & .0054 & .0057 & .0052 \end{pmatrix}$$

.0054

.0057

• Wei–Johnson U' and covariance matrix $\widehat{\Sigma}_U$:

.0064 .0036

$$\begin{pmatrix} 1.3298 & 0.9268 & .6557 & .4182 & .2429 & .1433 \\ 0.9268 & 1.1120 & .7783 & .5576 & .3625 & .2114 \\ 0.6557 & 0.7783 & .9337 & .7511 & .4985 & .2555 \\ 0.4182 & 0.5576 & .7511 & .7790 & .5016 & .2528 \\ 0.2429 & 0.3625 & .4985 & .5016 & .4189 & .2234 \\ 0.1433 & 0.2114 & .2555 & .2528 & .2234 & .1819 \end{pmatrix}$$

• Standardized statistics at each time point:

	Standardized Statistic	
Time point (minute)	Wei-Lachin	Wei-Johnson
30	-1.40	-1.37
60	-2.49	-2.28
90	-3.94	-3.13
120	-4.47	-3.31
150	-4.33	-3.08
180	-4.11	-2.79

- At each time, pain scores are lower (better) in the experimental group
- Although both methods yield similar conclusions, the Wei–Lachin standardized statistic is larger in absolute value at every time point

• Omnibus chi-square statistics for testing equality of distributions:

•
$$X_W^2 = W' \hat{\Sigma}_W^{-1} W = 30.1$$
 with 6 df, $p < 0.001$

•
$$X_U^2 = U' \hat{\Sigma}_U^{-1} U = 11.9$$
 with 6 df, $p = 0.065$

• Linear combinations:

	Standardized Statistic	
	Wei-Lachin	Wei-Johnson
Equal weights	-3.88	-3.06
Reciprocals of variances	-4.85	-3.28
Optimal	-4.42	-2.11

• With respect to the N(0,1) reference distribution, all statistics indicate a significant difference between the two groups