Càlcul de probabilitats

Probabilitat (axiomes)	$0 \le P(A)$	$P(\Omega) = 1$	$P(A \cup B) = P(A) + P(B)$ si A i B disjunts
Propietats	$P(\bar{A}) = 1 - P(A)$	$P(\phi) = 0$	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
Probabilitat condicionada i d'una intersecció	$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$	$\frac{B}{B}$ si $P(B) > 0$	$P(A \cap B) = P(B \mid A) \cdot P(A) = P(A \mid B) \cdot P(B)$
Fórmula de Bayes	$P(A \mid B) = \frac{P(B \mid A)}{P(B \mid B)}$	· P(A)	
Fórmula probabilitats totals (A ₁ ,A ₂ ,,A _i ,A _J és una partició del conjunt de resultats)	$P(B) = \sum_{j=1}^{J} P(B \mid A)$	$_{\mathrm{j}})\cdot\mathrm{P}(\mathrm{A}_{\mathrm{j}})$	$P(A_{i} B) = \frac{P(B A_{i}) \cdot P(A_{i})}{\sum_{j=1}^{J} P(B A_{j}) \cdot P(A_{j})}$
Independència	$P(A \cap B) = P(A) F$	P(B) $P(B A) = P(B)$	$P(A \mid B) = P(A)$

Indicadors numèrics de variables aleatòries

Definicions			Propietats		
Esperança	$E(X) = \mu_X = \sum_{\forall k} k p_X(k)$ $E(X) = \mu_X = \int_{-\infty}^{+\infty} x \cdot f_X(x) dx$	(V.A.D.) (V.A.C.)	 E(X+Y) = E(X)+E(Y) E(a+b·X) = a+b·E(X) 		
Variància	$V(X) = \sigma_X^2 = \sum_{\forall k} (k - E(X))^2 p_X(k)$ $V(X) = \sigma_X^2 = \int_{-\infty}^{+\infty} (x - E(X))^2 f_X(x) dx$	(V.A.D.) (V.A.C.)	• $V(X) = E[X - E(X)]^2 = E(X^2) - (E(X))^2$ • $V(a+b\cdot X) = b^2 \cdot V(X)$		
Covariància i correlació	$Cov(X,Y) = \sum_{\forall x} \sum_{\forall y} (x - E(X))(y - E(Y)) p_{XY}(x,y)$ $Cov(X,Y) = \int_{-\infty}^{\infty} (x - E(X))(y - E(Y)) f_{X,Y}(x,y) dxdy$ $\rho_{X,Y} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$	(V.A.D.) (V.A.C.)	 Cov (X, Y) = E (X-E(X)) (Y-E(Y)) = E(XY) - E(X)E(Y) Cov(a·X,b·Y) = a·b·Cov(X, Y) Cov(X,X) = V(X) E(X·Y) = E(X)·E(Y) + Cov(X, Y) E(X·Y) = E(X)·E(Y) (si X i Y són independents) V(X+Y) = V(X) + V(Y) + 2·Cov(X, Y) V(X-Y) = V(X) + V(Y) - 2·Cov(X, Y) V(X±Y) = V(X) + V(Y) (si X i Y són independents) 		

Distribucions de variables discretes i contínues

Distribució	Declaració	Funció de probabilitat o de densitat	Funció distribució $F_X(k) = \sum_{i <= k} P_X(i) \text{o}$ $\int_{-\infty}^k f_X(x) dx$	Esperança E(X)	Variància _{V(X)}
Bernoulli	X~Bern(p)	$P_X(k) = \begin{cases} q & k = 0 \\ p & k = 1 \end{cases}$	$F_{X}(k) = \sum_{i <= k} P_{X}(i)$	p	$p \cdot q$
Binomial R:*binom(k,n,p)	X~B(<i>n</i> , <i>p</i>)	$P_X(k) = \binom{n}{k} p^k \cdot q^{n-k} k = 0,1,,n$	$F_{X}(k) = \sum_{i <= k} P_{X}(i)$	$p \cdot n$	$p \cdot q \cdot n$
Poisson R:*pois(k,λ)	X~P(λ)	$P_X(k) = \frac{\lambda^k \cdot e^{-\lambda}}{k!} k = 0,1,2,$	$F_X(k) = \sum_{i <= k} P_X(i)$	λ	λ
Geomètrica § R: *geom(k,p)	X~Geom(p)	$P_X(k) = p \cdot q^{k-1}, k = 1,2,$	$F_X(k) = 1 - q^k$ (en R pgeom(k-1))	1/p E(X2)=q/p	q/p^2
Binomial Negativa §	X~BN(<i>r</i> , <i>p</i>)	$P_X(k) = {k-1 \choose r-1} p^r \cdot q^{k-r}, \ k \ge r$	$F_X(k) = \sum_{i <= k} P_X(i)$	r/p	q r/p ²
Exponencial R: *exp (x,λ)	X~Exp(λ)	$f_X(x) = \lambda \cdot e^{-\lambda \cdot x} x > 0$	$F_X(x) = 1 - e^{-\lambda \cdot x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Uniforme R:*unif(k,a,b)	X~U(a,b)	$f_X(x) = \frac{1}{b-a} a < x < b$	$F_X(x) = \frac{x - a}{b - a}$	$\frac{(a+b)}{2}$	$(b-a)^2/12$
Normal R:*norm(k,μ,σ)	Χ~Ν(μ,σ)	$f_X(x) = \frac{1}{\sigma\sqrt{2\cdot\pi}} \cdot e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	$F_X(x) = ?$	μ	σ^2

* = d, p, q, r; 0 ; <math>q = 1 - p; n, r enter > 0; a, b, μ real; λ , σ real > 0; "~" segueix exactament; "≈" aproxima § Pel model Geomètric i BN, R implementa com a "nombre de <u>fracassos</u> fins al r-èssim èxit" enlloc del nombre d'<u>intents</u>: per tant k intents correspon a k-r fracassos

Siguin $X1 \sim N(\mu_1, \sigma_1)$ $X2 \sim N(\mu_2, \sigma_2)$ a, b escalars llavors $X=aX1+bX2 \sim N(\mu_X=a\mu_1+b\mu_2, \sigma_X=\sqrt{a^2\sigma_1^2+b^2\sigma_2^2+2\cdot ab\cdot \rho_{X1X2}\cdot \sigma_1\cdot \sigma_2})$ $TCL: X_1,..., X_n$ i.i.d. amb $E(X_i)=\mu$ i $V(X_i)=\sigma^2$ llavors quan n és gran $\frac{\sum_{i=1}^n X_i}{n} = \bar{X}_n \approx N(\mu,\sigma/\sqrt{n}) \qquad \text{(i també } \sum_{i=1}^n X_i \approx N(n\mu,\sigma\sqrt{n}) \text{)}}{\text{(variància } \sigma^2/n, \text{ desviació } \sigma/\sqrt{n})} \qquad \text{(variància } \sigma^2n, \text{ desviació } \sigma/\sqrt{n})$