

TFG del Grado en Ingeniería Informática

Sistema de Navegación Semiautónomo en Interiores

Presentado por Mario Bartolomé Manovel en Universidad de Burgos — 31 de enero de 2018

Tutores: Dr. Alejandro Merino Gómez Dr. César Ignacio García Osorio Dr. José Francisco Díez Pastor

D. Dr. Alejandro Merino Gómez, profesor del departamento de Ingeniería Electromecánica, área de Ingeniería de Sistemas y Automática. D. Dr. César Ignacio García Osorio y D. Dr. José Francisco Díez Pastor, profesores del departamento de Ingeniería Civil, área de Lenguajes y Sistemas Informáticos.

Exponen:

Que el alumno D. Mario Bartolomé Manovel, con DNI 71298657Z, ha realizado el Trabajo final de Grado en Ingeniería Informática titulado «Sistema de Navegación Semiautónomo en Interiores».

Y que dicho trabajo ha sido realizado por el alumno bajo la dirección del que suscribe, en virtud de lo cual se autoriza su presentación y defensa.

En Burgos, 31 de enero de 2018

V°. B°. del Tutor: V°. B°. del Tutor: V°. B°. del Tutor:

D. Dr. Alejandro D. Dr. César Ignacio D. Dr. José Francisco Merino Gómez García Osorio Díez Pastor

Resumen

El objetivo del proyecto es diseñar un sistema de navegación semiautónomo en espacios cerrados, destinado a la asistencia en vigilancia de seguridad mediante drones. Dada una estancia, el drone deberá ser capaz de realizar un recorrido por el interior, grabando vídeo que será emitido a un servidor, y transmitiendo su posición dentro del mapa a un responsable de seguridad.

Descriptores

drone, UAV, semi-autónomo, semi-automático, vigilancia, navegación, interior, vídeo, filtro de partículas, campos potenciales, búsqueda de ruta, MSP, raspberry pi

Abstract

The point of this project is to design a semi-autonomous navigation system in enclosed spaces, destined to aid security vigilance using drones. Given an enclosed space, the drone should be able to make its path through it, recording video which will be streamed to a server, and updating its position inside of it to the security guard in charge.

Keywords

drone, UAV, semi-autonomous, semi-automatic, vigilance, navigation, indoor, video, particle filter, potential fields, path searching, MSP, raspberry pi

Índice general

Indice general	II	Ι
Índice de figuras	IV	V
Índice de tablas	v	V
Introducción	-	1
Objetivos del proyecto	ć	3
Conceptos teóricos	ţ	5
3.1. Algoritmia	. ;	5
3.2. Dispositivos Físicos	. (6
3.3. Protocolos	. (9
3.4. Referencias	. (9
3.5. Imágenes	. 10	0
3.6. Listas de items		0
3.7. Tablas	. 1	1
Técnicas y herramientas	1:	3
Aspectos relevantes del desarrollo del proyecto	15	5
Trabajos relacionados	1	7
Conclusiones y Líneas de trabajo futuras	10	a

Índice de figuras

3.1.	Raspberry Pi 3	7
3.2.	Benchmark de lector microSD OC	9
3 3	Autómata para una expresión vacía	10

Índice de tablas

3.1.	Componentes de una Raspberry Pi 3 Model B	6
3.2.	Herramientas y tecnologías utilizadas en cada parte del proyecto.	11

Introducción

En este documento se encuentra toda la información relacionada con el Trabajo de Fin de Grado titulado Sistema de Navegación Semiautónomo en Interiores.

En él se puede encontrar la siguiente información:

- Conceptos teóricos: Ofrecen una base teórica de la que partir, para llevar a cabo el desarrollo completo del proyecto.
- **Técnicas y herramientas**: Se trata de las implementaciones de, ó uso dado a, los distintos conceptos teóricos anteriormente descritos.
- Aspectos relevantes del desarrollo del proyecto: Proporciona información detallada que se ha tenido en cuenta durante las diferentes fases de desarrollo del proyecto.
- Trabajos relacionados: Se trata de una lista, junto con una breve descripción, de los diferentes proyectos, papers o trabajos relacionados con el proyecto llevado a cabo.
- Conclusiones y líneas de trabajo futuras: Detalla una serie de posibles mejoras, modificaciones e incluso derivaciones, que pueden surgir del proyecto realizado.

Objetivos del proyecto

Este apartado explica de forma precisa y concisa cuales son los objetivos que se persiguen con la realización del proyecto. Se puede distinguir entre los objetivos marcados por los requisitos del software a construir y los objetivos de carácter técnico que plantea a la hora de llevar a la práctica el proyecto.

Conceptos teóricos

Esta sección auna los diferentes conocimientos teóricos necesarios para la realización del proyecto. A continuación, y en este orden, se explicarán los algoritmos utilizados, protocolos de comunicación y sistemas físicos empleados.

3.1. Algoritmia

Filtros de Partículas

Los Filtros de Partículas son modelos utilizados para tratar de estimar el estado de un sistema que cambia con el tiempo.

Fue definido como bootstrap filter en 1993 por N. Gordon, D. Salmond y A. Smith. Se trata de un método que pretende implementar filtros bayesianos recursivos, haciendo uso del método de Montecarlo, es decir, realiza repetidas medidas del estado para estimar la posición del sistema.

Subsubsecciones

Y subsecciones.

Campos Potenciales

A la hora de lograr una navegación segura en un entorno determinado, es necesario implementar un sistema de evasión de obstáculos.

El algoritmo de Campos Potenciales aporta una manera de evitar colisionar con los diferentes obstáculos existentes.

3.2. Dispositivos Físicos

Raspberry Pi

Una Raspberry Pi es un pequeño ordenador desarrollado en UK por la Raspberry Pi Foundation, con la intención de promover el aprendizaje de informática básica en colegios y países en desarrollo. El modelo base se compone de una única placa de medidas 85mm x 56mm (LxA), y unos 42g de peso.

Concretamente el modelo empleado es una Raspberry Pi 3B, y consta de las siguientes especificaciones:

Componente	Raspberry Pi 3B
CPU	BCM2837
Núcleos	4
Velocidad	$1.2 \mathrm{GHz}$
RAM	1GB
Coms	Ethernet, WiFi, Bluetooth
USB	4 (2.0)
GPIO	40
Consumo máximo	6.7W

Tabla 3.1: Componentes de una Raspberry Pi 3 Model B

Su reducido tamaño y bajo consumo lo hacen ideal para este tipo de proyecto. En este caso se utiliza bajo una distribución GNU/Linux llamada Raspbian¹, basada en Debian. Para tratar de mejorar su rendimiento y reducir al mínimo el consumo, se ha escogido la versión Lite del sistema, es decir, un sistema mínimo sin entorno de escritorio y con la mayor parte de servicios desactivados por defecto.

¹Descargable desde: https://www.raspberrypi.org/downloads/raspbian

Figura 3.1: Raspberry Pi 3.

Una vez descargado el sistema, este ha sido instalado en una micro SD mediante el siguiente procedimiento por consola²:

- diskutil list Permite localizar el dispositivo en el que se encuentra la tarjeta. En nuestro caso /dev/disk4
- diskutil umountDisk /dev/disk4 Permite desmontar el volumen.
- sudo dd if=raspbian-stretch.img of=/dev/rdisk4 bs=1m El comando dd copia la entrada estándar a la salida estándar. Mediante if/of se establece el fichero de entrada/salida. Mediante bs se establece el tamaño de bloque a copiar. Se está utilizando /dev/rdisk4 en lugar de /dev/disk4 debido a la capacidad de OSX de trabajar con dispositivos en bruto, raw, de forma que es posible acceder al dispositivo de forma directa³, sin almacenar en un buffer la lectura del archivo, proporcionando velocidades de escritura/lectura hasta 20 veces más rápidas.

Una vez realizados estos pasos, se puede insertar la microSD en la Raspberry Pi. Para encenderla basta con utilizar el puerto micro-usb de que dispone. La Raspberry Pi 3 requiere de una fuente de alimentación capaz de proporcionar

²Realizado en OSX, aunque en Linux es muy similar

³Véase man hdiutil, sección DEVICE SPECIAL FILES

2,5A⁴ para funcionar al máximo nivel de estrés para el procesador y alimentar dispositivos USB.

Sin embargo, este no es estrictamente nuestro caso, véase el apartado Modificaciones. Se requiere un dispositivo cuyo consumo sea lo más reducido posible, pero que sea rápido en la ejecución, y que muestre poca latencia en operaciones de IO, que es donde se encuentra el cuello de botella.

Una vez encendida, se accede a ella con el usuario por defecto pi y la contraseña por defecto raspberry. Obviamente ambas han sido cambiadas por motivos de seguridad.

Modificaciones

- Se ha desactivado el puerto HDMI para reducir el consumo en ~30mA:
 Para ello se ha incluido en /etc/rc.local la línea /usr/bin/tvservice -o.
- Se ha overclockeado el lector de microSD a 100MHz, en lugar de los 50MHz por defecto:

Para ello se ha incluido en /boot/config.txt la línea dtparam=sd_overclock=100 . Y que arroja los siguientes resultados en un test:

```
CONFIG:
CLOCK: 100.000 MHz
CORE: 400 MHz, turbo=0
DATA: 512 MB, /root/test.dat

HDPARM:
======

Timing O_DIRECT disk reads: 108 MB in 3.02 seconds = 35.78 MB/sec
Timing O_DIRECT disk reads: 108 MB in 3.02 seconds = 35.72 MB/sec
Timing O_DIRECT disk reads: 108 MB in 3.02 seconds = 35.75 MB/sec
WRITE:
=====

536870912 bytes (537 MB, 512 MiB) copied, 21.7232 s, 24.7 MB/s
536870912 bytes (537 MB, 512 MiB) copied, 20.7831 s, 25.8 MB/s
536870912 bytes (537 MB, 512 MiB) copied, 21.6338 s, 24.8 MB/s

READ:
====

536870912 bytes (537 MB, 512 MiB) copied, 14.3944 s, 37.3 MB/s
536870912 bytes (537 MB, 512 MiB) copied, 14.3944 s, 37.3 MB/s
536870912 bytes (537 MB, 512 MiB) copied, 14.3785 s, 37.3 MB/s
536870912 bytes (537 MB, 512 MiB) copied, 14.3785 s, 37.3 MB/s
536870912 bytes (537 MB, 512 MiB) copied, 14.3785 s, 37.4 MB/s
```

Figura 3.2: Benchmark de lector microSD OC.

⁴Véase https://www.raspberrypi.org/help/faqs/#power

9

3.3. Protocolos

MultiWii Serial Protocol

Conocido como MSP, se trata de un protocolo para la transferencia de información desde, o hacia una controladora de vuelo⁵.

Generalmente es utilizado durante la configuración de la controladora de vuelo, para transmitir y recibir información de ella.

En el caso de este proyecto, se hará uso de este protocolo dado que existe la posibilidad de establecer la recepción de los canales de radio a través de un puerto serie. Es decir, en lugar de utilizar un receptor de radio, se utilizará un puerto serie para obtener la telemetría⁶, y establecer las entradas de los canales de radio.

3.4. Referencias

Las referencias se incluyen en el texto usando cite [?]. Para citar webs, artículos o libros [?].

3.5. Imágenes

Se pueden incluir imágenes con los comandos standard de LATEX, pero esta plantilla dispone de comandos propios como por ejemplo el siguiente:

⁵Una controladora de vuelo es una pequeña placa electrónica que contiene un procesador, una serie de sensores (como acelerómetro, giroscopio, barómetro o magnetómetro) así como entradas y salidas, y que se encarga del control de estabilidad del drone.

⁶La telemetría es el sistema de medición de magnitudes a distancia; i.e, transmite la información de los diferentes sensores de la controladora de vuelo.

Figura 3.3: Autómata para una expresión vacía

3.6. Listas de items

Existen tres posibilidades:

- primer item.
- segundo item.
- 1. primer item.
- 2. segundo item.

3.7. TABLAS 11

Primer item más información sobre el primer item.

Segundo item más información sobre el segundo item.

3.7. Tablas

Igualmente se pueden usar los comandos específicos de L $\!\!^{A}$ TeXo bien usar alguno de los comandos de la plantilla.

Herramientas	App AngularJS	API REST	BD	Memoria
HTML5	X			
CSS3	X			
BOOTSTRAP	X			
JavaScript	X			
AngularJS	X			
Bower	X			
PHP		X		
Karma + Jasmine	X			
Slim framework		X		
Idiorm		X		
Composer		X		
JSON	X	X		
PhpStorm	X	X		
MySQL			X	
PhpMyAdmin			X	
Git + BitBucket	X	X	X	X
MikT _E X				X
TEXMaker				X
Astah				X
Balsamiq Mockups	X			
VersionOne	X	X	X	X

Tabla 3.2: Herramientas y tecnologías utilizadas en cada parte del proyecto

Técnicas y herramientas

Esta parte de la memoria tiene como objetivo presentar las técnicas metodológicas y las herramientas de desarrollo que se han utilizado para llevar a cabo el proyecto. Si se han estudiado diferentes alternativas de metodologías, herramientas, bibliotecas se puede hacer un resumen de los aspectos más destacados de cada alternativa, incluyendo comparativas entre las distintas opciones y una justificación de las elecciones realizadas. No se pretende que este apartado se convierta en un capítulo de un libro dedicado a cada una de las alternativas, sino comentar los aspectos más destacados de cada opción, con un repaso somero a los fundamentos esenciales y referencias bibliográficas para que el lector pueda ampliar su conocimiento sobre el tema.

Aspectos relevantes del desarrollo del proyecto

Este apartado pretende recoger los aspectos más interesantes del desarrollo del proyecto, comentados por los autores del mismo. Debe incluir desde la exposición del ciclo de vida utilizado, hasta los detalles de mayor relevancia de las fases de análisis, diseño e implementación. Se busca que no sea una mera operación de copiar y pegar diagramas y extractos del código fuente, sino que realmente se justifiquen los caminos de solución que se han tomado, especialmente aquellos que no sean triviales. Puede ser el lugar más adecuado para documentar los aspectos más interesantes del diseño y de la implementación, con un mayor hincapié en aspectos tales como el tipo de arquitectura elegido, los índices de las tablas de la base de datos, normalización y desnormalización, distribución en ficheros3, reglas de negocio dentro de las bases de datos (EDVHV GH GDWRV DFWLYDV), aspectos de desarrollo relacionados con el WWW... Este apartado, debe convertirse en el resumen de la experiencia práctica del proyecto, y por sí mismo justifica que la memoria se convierta en un documento útil, fuente de referencia para los autores, los tutores y futuros alumnos.

Trabajos relacionados

Este apartado sería parecido a un estado del arte de una tesis o tesina. En un trabajo final grado no parece obligada su presencia, aunque se puede dejar a juicio del tutor el incluir un pequeño resumen comentado de los trabajos y proyectos ya realizados en el campo del proyecto en curso.

Conclusiones y Líneas de trabajo futuras

Todo proyecto debe incluir las conclusiones que se derivan de su desarrollo. Éstas pueden ser de diferente índole, dependiendo de la tipología del proyecto, pero normalmente van a estar presentes un conjunto de conclusiones relacionadas con los resultados del proyecto y un conjunto de conclusiones técnicas. Además, resulta muy útil realizar un informe crítico indicando cómo se puede mejorar el proyecto, o cómo se puede continuar trabajando en la línea del proyecto realizado.