Probability Theory Exercise 5

Issued: 2020/11/19 Due: 2020/12/3

- 1. Suppose that the marginal distributions of both X and Y are standard normal distribution N(0,1), and we do not make any other assumptions on the joint distribution of X and Y. Is it possible that the distribution of X + Y is not Gaussian distribution? (We view the zero random variable as a special case of Gaussian distribution, i.e., if a random variable is equal to 0 with probability 1 then we say that it has Gaussian distribution N(0,0).) If your answer is yes, give such an example. If your answer is no, please explain why.
- 2. Let X and Y be i.i.d. random variables with mean 0 and variance 1. Suppose that $(X+Y)/\sqrt{2}$ has the same distribution as X. Find all possible distributions of X that satisfy the above conditions. Prove that the distributions you find are the **only** distributions that satisfy the above conditions.
- 3. Let $(X_1, X_2, \dots, X_{2n-1})$ be a random vector with density function

$$f_{X_1,\dots,X_{2n-1}}(x_1,\dots,x_{2n-1}) = c_n \exp\left(-\frac{1}{2}\left(x_1^2 + \sum_{i=1}^{2n-2}(x_{i+1} - x_i)^2 + x_{2n-1}^2\right)\right),$$

where c_n is the normalizing constant. (Notice that there are 2n square terms, not 2n-1 square terms in the exponent of the density function.) Prove that $(X_1, X_2, \dots, X_{2n-1})$ is a Gaussian random vector and find the value of c_n . Also find the variance $Var(X_n)$. (You only need to find $Var(X_n)$. You don't need to calculate the variance of every X_i .)

- 4. Let X_1, X_2, \ldots be i.i.d. Cauchy random variables with PDF $f(x) = \frac{1}{\pi(1+x^2)}$. Let $S_n = X_1 + X_2 + \cdots + X_n$. (i) Does $\{S_n/n\}_{n=1}^{\infty}$ converge in distribution? Please explain why. If your answer is yes, what is the limit
- distribution?
- (ii) Does $\{S_n/n^2\}_{n=1}^{\infty}$ converge in distribution? Please explain why. If your answer is yes, what is the
- (iii) Does $\{S_n/\sqrt{n}\}_{n=1}^{\infty}$ converge in distribution? Please explain why. If your answer is yes, what is the limit distribution?
- 5. Let X_1, X_2, X_3, \ldots be independent random variables with distribution $P(X_i = i) = P(X_i = -i) = 1/2$ for all i. (Note that the distribution of each X_i is **different**!) Define $S_n = X_1 + X_2 + \cdots + X_n$ for every positive integer n.
- (i) Does $\{S_n/n^2\}_{n=1}^{\infty}$ converge in distribution? Please explain why. If your answer is yes, what is the limit
- (ii) Does $\{S_n/n^{3/2}\}_{n=1}^{\infty}$ converge in distribution? Please explain why. If your answer is yes, what is the limit distribution?
- (iii) For every real number $x \in \mathbb{R}$, find the limit $\lim_{n\to\infty} P\left(\frac{S_n}{n} \le x\right)$.
- 6. Let X_1, X_2, X_3, \ldots be i.i.d. random variables with distribution $P(X_i = 1) = P(X_i = 1/2) = 1/2$ for all i. For all positive integer n, define $Y_n = \prod_{i=1}^n X_i$ and $S_n = \sum_{i=1}^n Y_i$.
- (i) Does $\{S_n\}_{n=1}^{\infty}$ converge almost surely to some limit random variable? Please explain why. If your answer is yes, find the mean and variance of the limit random variable.
- (ii) Now suppose that the distribution of X_i is $P(X_i = 2) = P(X_i = 1/4) = 1/2$ for all i, and the definition of Y_n and S_n remain the same. In this case, does $\{S_n\}_{n=1}^{\infty}$ converge almost surely to some limit random variable? Please explain why.