Apuntes de Lenguajes Formales

Leonardo H. Añez Vladimirovna¹

Universidad Autónoma Gabriél René Moreno, Facultad de Ingeniería en Ciencias de la Computación y Telecomunicaciones, Santa Cruz de la Sierra, Bolivia

4 de julio de 2019

 $^{^{1}}$ Correo Electrónico: toborochi98@outlook.com

Agradecimiento a marmot

Notas del Autor

Estos apuntes fueron realizados durante mis clases en la materia INF319 (Lenguajes Formales), acompañados de referencias de libros, fuentes y código que use a lo largo del curso, en el período I-2019 en la Facultad de Ingeniería en Ciencias de la Computación y Telecomunicaciones.

Para cualquier cambio, observación y/o sugerencia pueden enviarme un mensaje al siguiente correo:

toborochi98@outlook.com

Índice general

1.		liminares Formales	5
	1.1.	Conjuntos	5
		1.1.1. Conjunto Finito e Infinito	5
	1.2.	Preliminares	5
		1.2.1. Alfabeto	5
		1.2.2. Palabra	5
		1.2.3. Notaciones	6
		1.2.4. Cantidad de Ocurrencias	6
		1.2.5. Concatenación	6
		1.2.6. Inversa	7
		1.2.7. Potencia de una Palabra	7
		1.2.8. Principio de Inducción para Σ^*	7
			8
			8
		1.2.11. Módulos	9
		1.2.12. Máquinas	.0
2	A	cómatas 1	•
۷٠		ómatas Autómata Finito Determinístico (AFD)	
	2.1.	2.1.1. Definición	
		2.1.2. Interpretación	
		I .	
		2.1.3. Representación	
	0.0	2.1.4. Configuración	
	2.2.	Autómata Finito no Determinístico (AFN)	
	0.0	2.2.1. Definición	
		Equivalencia entre una AFD y un AFN	
		Propiedades de los Lenguajes Aceptados por AF's	
		Automatas Finitos y Expresiones Regulares	
		Lenguajes no Regulares	
	2.7.	Gramáticas	
		2.7.1. Definición	
		2.7.2. Gramáticas Regulares	
	2.8.	Autómata con Pila	
		2.8.1. Configuración	
		2.8.2. Autómatas con Pila y Gramáticas Libre de Contexto	
	2.9.	Máguinas de Turing	20

ÍNDICE GENERAL

Capítulo 1

Preliminares Formales

1.1. Conjuntos

1.1.1. Conjunto Finito e Infinito

Equivalencia

Dado A y B (conjuntos) los llamamos equivalentes si existe una biyección: $f:A\to B$

Conjunto Finito

Un conjunto A es finito si es equivalente a $\{1, 2, 3, \dots, n\}$ para algún $n \in \mathbb{N}$.

Conjunto Infinito

Un conjunto es infinito si no es finito. Si no es equivalente a $\{1, 2, 3, ..., n\}$ es decir no hay biyección. Sin embargo no todos los conjuntos finitos son equivalentes.

- Conjunto Contablemente Infinito: Se dice que un conjunto es contablemente infinito si es equivalente con N.
- Conjunto Contable: Es contable si es finito o contablemente infinito.
- Conjunto Incontable: Se dice que es incontable si no es contable.

Principio de las Casillas

Si A y B son conjuntos finitos no vacíos y |A| > |B| entonces no existe una función inyectiva de: $A \to B$.

1.2. Preliminares

1.2.1. Alfabeto

Un alfabeto Σ es cualquier conjunto finito no vacío.

Ejemplo(s)

$$\Sigma_1 = \{Leo, Martha\}$$
 $\Sigma_2 = \{0, 1, 2, 3, \dots, 13\}$
 $\Sigma_3 = \{a, b\}$
 $\Sigma_4 = \{R, G, B, A\}$

1.2.2. Palabra

Una palabra sobre Σ es una sucesión finita de símbolos de Σ . Es decir:

$$(\sigma_1, \sigma_2, \dots, \sigma_n); \sigma \in \Sigma$$
 ó $\sigma_1 \sigma_2 \sigma_3 \dots \sigma_n; \sigma \in \Sigma$

Ejemplo(s)

Sobre Σ_1	$\textbf{Sobre}\Sigma_2$	Sobre Σ_3	$\textbf{Sobre}\Sigma_4$
$w_1 = LeoLeo$	$w_1 = 11111110$	$w_1 = bababababa$	$w_1 = ABGR$
$w_2 = MarthaLeoMartha$	$w_2 = 11235813$	$w_2 = abba$	$w_2 = RRRA$

Denotamos por Σ^* el conjunto de todas las palabras sobre Σ .

Longitud de una Palabra

Sea w una palabra sobre Σ , es decir $w = \sigma_1 \sigma_2 \dots \sigma_n; \sigma \in \Sigma$. La longitud de w es n y se denota por: |w| = n.

Palabra vacía

Es la sucesión vacía de símbolos de Σ y se denota por: $\lambda.$

1.2.3. Notaciones

- $\Sigma^+ = \{ w \in \Sigma^* / |w| > 0 \}$
- $\Sigma^0 = \{ w \in \Sigma^* / |w| = 0 \} = \{ \lambda \}$
- $\bullet \ \Sigma^1 = \{w \in \Sigma^*/|w| = 1\} = \Sigma$

1.2.4. Cantidad de Ocurrencias

Sea $w \in \Sigma^*$, denotamos por $|w|_{\sigma}$ al número de ocurrencias del símbolo σ en la palabra w.

Ejemplo(s)

$$\Sigma = \{a, b\}$$

- $\Sigma^* = \{\lambda, a, b, aa, bb, ab, ba, aaa, \ldots \}$
- $\Sigma_1 = \Sigma = \{a, b\}$

1.2.5. Concatenación

Sea $u, v \in \Sigma^*$ tal que $u = \sigma_1 \sigma_2 \dots \sigma_n, v = \epsilon_1 \epsilon_2 \dots \epsilon_n$. La concatenación de u y v se define por:

$$uv = \sigma_1 \sigma_2 \dots \sigma_n \epsilon_1 \epsilon_2 \dots \epsilon_n$$

Definición de Recurrencia

$$\begin{aligned} | \ | : \Sigma^* \to \mathbb{N} \\ |\lambda| &= 0 \\ |wa| &= |w| + 1 \end{aligned}$$

Ejemplo(s)

$$u = abab$$
$$v = bba$$

$$uv = ababbba$$

 $vu = bbaabab$

Propiedades

- $uv \neq vu$
- (uv)w = u(vw)
- $u\lambda = \lambda u = u$
- |uv| = |u| + |v|
- $|uv|_a = |u|_a + |v|_a$

1.2.6. Inversa

Si $w = \sigma_1, \sigma_2, \dots, \sigma_n \in \Sigma^n$ entonces $w' = \sigma_n, \sigma_{n-1}, \dots, \sigma_1$ se llama inversa o transpuesta de w.

Definición de Recurrencia

$$\begin{aligned} ': \Sigma^* &\to \Sigma^* \\ \begin{cases} \lambda' &= \lambda \\ (wa)' &= aw' \end{cases} \end{aligned}$$

1.2.7. Potencia de una Palabra

$$w^n = \underbrace{ww \dots w}_{n-veces}$$

Definición de Recurrencia

$$': \Sigma^* \to \Sigma^*$$

$$\begin{cases} w^0 = \lambda \\ w^{n+1} = ww^n \end{cases}$$

Propiedades

- $|w^n| = n|w|$
- $w^m w^n = w^{m+n}$
- $(w^n)^m = w^{mn}$
- $\quad \blacksquare \ \lambda^n = \lambda$

1.2.8. Principio de Inducción para Σ^*

Sea L un conjunto de palabras sobre Σ con las propiedades:

- i.) $\lambda \in L$
- ii.) $w \in L \land a \in \Sigma \Rightarrow wa \in L$

Entonces

 $L=\Sigma^*,$ (es decir, todas las palabras sobre Σ están en L.)

1.2.9. Lenguajes

Un lenguaje sobre Σ es un subconjunto de Σ^*

Operaciones

Recordemos que ya conocemos otras operaciones (Unión, Intersección, Diferencia y Complemento), para esta materia tenemos las siguientes:

■ Concatenación

Sea $A, B \subseteq \Sigma^*$

$$AB = \{ w \in \Sigma^* / w = xy, x \in A, y \in B \}$$

■ Transposición

Sea $A \subseteq \Sigma^*$

$$A' = \{ w' \in \Sigma^* / w \in A \}$$

■ Estrella de Kleene

Sea $A \subseteq \Sigma^*$

$$A^* = \{w \in \Sigma^* / w = w_1 w_2 \dots w_n \text{ para algún } k \in \mathbb{N} \text{ y para algunas } w_1, w_2, \dots, w_k \in A\}$$

1.2.10. Expresiones Regulares

Las expresiones regulares (ER) sobre un alfabeto (Σ) son las palabras sobre el alfabeto $\Sigma \cup \{\}, (\emptyset, \cup, *\}$ tal que cumple lo siguiente:

- 1.) \emptyset y cada símbolo de Σ es una ER.
- **2.)** Si α y β son ER entonces $(\alpha\beta)$ es una ER.
- **3.)** Si α y β son ER entonces $(\alpha \cup \beta)$ es una ER.
- **4.)** Si α es una ER entonces α^* es una ER.
- 5.) Nada mas es una ER a menos que provenga de (1.) a (4.)

Ejemplo(s)

Para $\Sigma = \{a, b\}$ podemos formar:

 $(ba)^* \cup (a \cup b)^*$

Lenguaje Regular

Un lenguaje es regular ssi es generado por una expresión regular.

1.2. PRELIMINARES 9

1.2.11. Módulos

Definición

Un módulo es una tripleta $D = (k, \Sigma, f)$ donde:

- lacktriangle es un conjunto finito no vacío, llamado conjunto de estados
- ullet Es un conjunto finito no vacío, llamado alfabeto
- $f: k \times \Sigma \to k$, llamado función de transición

Interpretación

Un módulo se puede interpretar como un dispositivo que en determinados instantes de tiempo recibe señales (símbolos del alfabeto), que producen cambios en su configuración interna.

$$\sigma \in \Sigma$$
 $s \in k$

Representación

■ Tabla de Transición

k Σ	σ_1	σ_1	 σ_{j}	 σ_m
s_1			÷	
s_2			:	
:			:	
s_i			 s_k	
:				
s_n				

Figura 1.1: $s_k = f(s_i, \sigma_j)$

Grafo

Figura 1.2: ssi: $f(s_i, \sigma) = s_j$

Comportamiento Dinámico

Sea $D = (k, \sigma, f)$ un módulo:

$$t_0$$
 t_1 t_2 \cdots t_k

$$s_0 \xrightarrow{\sigma_0} s_1 \xrightarrow{\sigma_1} s_2 \xrightarrow{\sigma_2} \cdots \xrightarrow{\sigma_{k-1}} s_k$$

Función Estado Terminal

Sea $D=(k,\sigma,f)$ un módulo:

Una función de Estado Terminal del módulo D es una única función:

$$\widehat{f}: k \times \Sigma \to k \text{ tal que } \forall s \in k, w \in \Sigma^*, \sigma \in \Sigma$$

$$\begin{cases} \widehat{f}(s,\lambda) = s \\ \widehat{f}(s,\sigma w) = \widehat{f}\left[f(s,\sigma),w\right] \end{cases}$$

♦ Notas

•
$$w = \lambda$$

$$\widehat{f}(s,\sigma) = \widehat{f}(s,\sigma\lambda) = \widehat{f}[f(s,\sigma),\lambda] = f(s,\sigma)$$

 $\quad \blacksquare \quad \forall w \in \Sigma^*$

$$f: k \to k$$
 tal que: $f_w(s) = \widehat{f}(s, w)s$

1.2.12. Máquinas

Definición

Una máquina es una quíntupla $M=(k,\Sigma,\Delta,f,g)$ donde:

- lacktriangle es un conjunto finito no vacío, llamado conjunto de estados
- ullet Σ es un conjunto finito no vacío, llamado alfabeto de entrada
- ullet Δ es un conjunto finito no vacío, llamado alfabeto de salida
- $f: k \times \Sigma \to k$, llamado función de transición
- lacksquare $g: k imes \Sigma o \Delta$, llamado función de salida

Interpretación

Una máquina se puede interpretar como un dispositivo que en determinados instantes de tiempo recibe señales (símbolos de entrada) que producen cambios en su configuración interna y emiten señales (símbolos de salida).

Representación

■ Tabla de Transición

k Σ	σ_1	σ_1		σ_{j}	 σ_m
s_1				:	
s_2				÷	
:				÷	
s_i		• • •	• • •	s_k/δ_k	
:					
s_n					

Figura 1.3: $s_k = f(s_i, \sigma_j)$ $g(s_1, \sigma_j) = \delta_k$

Grafo

$$\begin{array}{c|c}
s_i & \sigma/\delta \\
\hline
\end{array}$$

Figura 1.4: ssi: $f(s_i, \sigma) = s_j$ $g(s_i, \sigma) = \delta$

1.2. PRELIMINARES

Comportamiento Dinámico

Sea $M=(k,\Sigma,\Delta,f,g)$ una máquina:

$$t_0$$
 t_1 t_2 \cdots t_k

$$s_0 \xrightarrow{\sigma_0/\delta_0} s_1 \xrightarrow{\sigma_1/\delta_1} s_2 \xrightarrow{\sigma_2/\delta_2} \cdots \xrightarrow{\sigma_{k-1}/\delta_{k-1}} s_k$$

Función Estado Terminal

Sea $M=(k, \Sigma, \Delta, f, g)$ una máquina.

1.) Una función de Estado Terminal de M es la función de estado terminal:

$$\widehat{f}: k \times \Sigma^* \to k$$
 del módulo (k, Σ, f)

2.) Una función palabra de salida de M es una única función:

$$\overline{g}:k\times\Sigma^*\to\Delta^*$$
tal que $\forall s\in k,\sigma\in\Sigma,w\in\Sigma^*$

$$\begin{cases} \overline{g}(s,\lambda) &= \lambda \\ \overline{g}(s,\sigma w) &= g(s,\sigma)\overline{g}\big[f(s,\sigma),w\big] \end{cases}$$

 \diamond Notas

$$\quad \blacksquare \ w = \lambda$$

$$\overline{g}(s,\sigma) = \overline{g}(s,\sigma\lambda) = g(s,\sigma) \underbrace{\overline{g}\big[f(s,\sigma),\lambda\big]}_{\lambda} = g(s,\sigma)\lambda = g(s,\sigma)$$

$$\blacksquare \ \forall s \in k$$

$$q_s: \Sigma^* \to \Delta^*$$
 tal que $q_s(w) = \overline{q}(s, w)$

Capítulo 2

Autómatas

2.1. Autómata Finito Determinístico (AFD)

2.1.1. Definición

Un Autómata Finito Determinístico (AFD) es una quintupla $M=(k,\Sigma,f,s_0,F)$ donde:

- lacktriangle k conjunto finito no vacio, $conjunto \ de \ estados$
- ullet Σ conjunto finito no vacio, Alfabeto
- $f: k \times \Sigma \to k$, Function de transicion
- $s_0 \in k$, Estado inicial
- $F \subseteq k$, Conjunto de estados finales

2.1.2. Intepretación

2.1.3. Representación

2.1.4. Configuración

Sea $M = (k, \Sigma, \delta, s_0, F)$ un AFD.

Una configuración de M es un elemento de $k \times \Sigma^*$

Relación $\frac{1}{M}$

Sea (q, w) y (q', w') dos configuraciones¹:

Lenguaje Aceptado por M

$$\begin{split} L(M) = & \{w \in \Sigma^*/M \text{ acepta } w\} \\ L(M) = & \{w \in \Sigma^*/(s,w) \left| \frac{*}{M} \left(q,\lambda\right) \land q \in F\} \right. \end{split}$$

2.2. Autómata Finito no Determinístico (AFN)

2.2.1. Definición

Un autómata Finito no Deterministico (AFN) es una quintupla $M = (k, \Sigma, \Delta, s, F)$ donde:

- \bullet k: conjunto finito no vacio
- \bullet Σ : conjunto finito no vacio

 $^{1 | \}underline{}_{M}$ se lee "conduce a" en un paso.

- Δ : es un subconjunto finito de $k \times \Sigma^* \times k$
- $s \in k$
- $F \subseteq k$

2.3. Equivalencia entre una AFD y un AFN

Teorema

Para cada AFN existe un AFD equivalente.

★ Prueba

Sea $M = (k, \Sigma, \Delta, s, F)$ un AFN

i.) Construimos $M' = (k', \Sigma, \Delta', s', F')$ eliminando todas las aristas de M que:

$$(q, u, q') \in \Delta \qquad \land \qquad |u| > 1$$

Si $u = \sigma_1 \sigma_2 \dots \sigma_k, k > 1$ entonces añadimos p_1, p_2, \dots, p_{k-1} estados y las nuevas transiciones:

$$(q, \sigma_1, p_1), (p_1, \sigma_2, p_2), \dots, (p_{k-1}, \sigma_k, q')$$

a Δ para u tal que |u| > 1.

ii.) Construimos $M'' = (k'', \Sigma, \delta'', s'', F'')$ La idea clave es considerar que un AFN en un determinando instante se encuentra en un conjunto de estados:

$$\quad \blacksquare \ k^{\prime\prime} = \Sigma^{k^\prime}$$

•
$$F'' = \{Q \subseteq k'/Q \cap F' \neq \emptyset\}$$

Formalmente:

$$E(q) = \{ p \in k'/(q, \lambda) \mid \frac{*}{M'}(p, \lambda) \}$$

Equivalentemente:

$$E(q) = \{ p \in k'/(q, w) \mid \frac{*}{M'}(p, w) \}$$

Donde:

$$s'' = E(s')$$

• $\forall Q \subseteq k' \land \text{ para cada símbolo } \sigma \in \Sigma$

Ademas:

$$\delta''(Q,\sigma) = \cup \{ E(p) : p \in k' \land (q,\sigma,p) \in \Delta', \exists q \in Q \}$$

Afirmamos que $\forall w \in \Sigma^* \ y \ \forall p, q \in k'$:

$$(q,w) \mathop{\models}^*_{M'}(p,\lambda) \Leftrightarrow (E(q),w) \mathop{\models}^*_{M''}(P,\lambda)$$

p.d.
$$M' \approx M''$$

p.d. $L(M') = L(M'')$

$$\begin{split} w \in L(M') \Leftrightarrow (s',w) & \stackrel{*}{ \bigsqcup_{M'}} (q,\lambda), q \in F' \\ \Leftrightarrow (E(s'),w) & \stackrel{*}{ \bigsqcup_{M''}} (Q,\lambda) \\ \Leftrightarrow (s'',w) & \stackrel{*}{ \bigsqcup_{M''}} (Q,\lambda), Q \in F'' \\ \Leftrightarrow w \in L(M'') \end{split}$$

$$\therefore L(M') = L(M'')$$

2.4. Propiedades de los Lenguajes Aceptados por AF's

Teorema

La clase de Lenguajes aceptados por AF's es cerrada bajo la:

- Unión
- Concatenación
- Estrella de Kleene
- Complementación
- Intersección

Prueba

Sean $L(M_1)$ y $L(M_2)$ lenguajes aceptados por $M_1=(k_1,\Sigma,\Delta_1,s_1,F_1)$ y $M_1=(k_2,\Sigma,\Delta_2,s_2,F_2)$:

a) Unión

Construimos $M = (k, \Sigma, \Delta, s, F)$ tal que: $L(M) = L(M_1) \cup L(M_2)$

Donde:

- $k = k_1 \cup k_2 \cup \{s\}$ donde s es un nuevo estado (inicial).
- $\Delta = \Delta_1 \cup \Delta_2 \cup \{(s, \lambda, s_1), (s, \lambda, s_2)\}$
- s : nuevo estado añadido
- $F = F_1 \cup F_2$

b) Concatenación

Construimos $M = (k, \Sigma, \Delta, s, F)$ tal que: $L(M) = L(M_1)L(M_2)$

Donde:

- $\bullet \ k = k_1 \cup k_2$
- $\Delta = \Delta_1 \cup \Delta_2 \cup (F_1 \times \{\lambda\} \times \{s_2\})$

- $s = s_1$
- $F = F_2$

c) Estrella de Kleene

Construimos $M = (k, \Sigma, \Delta, s, F)$ tal que: $L(M) = L(M_1)^*$

Donde:

- $k = k_1 \cup \{s'_1\}$ donde s'_1 es un nuevo estado (*inicial y terminal*).
- $\Delta = \Delta_1 \cup (F \times \{\lambda\} \times \{s_1\})$
- $s = s'_1$
- $F = F_1 \cup \{s_1'\}$

d) Complementación

Sea $M=(k,\Sigma,\delta,s,F)$ un $\mathbf{AFD}.$ Donde:

$$\Sigma^* - L(M)$$
 es aceptado por $\overline{M} = (k, \Sigma, \delta, s, k - F)$

e) Intersección

Sea:

$$L_1 \cap L_2 = \overline{L_1 \cap L_2}$$

$$= \overline{L_1} \cup \overline{L_2}$$

$$= \Sigma^* - \underbrace{\left[\left(\Sigma^* - L_1\right) \cup \left(\Sigma^* - L_2\right)\right]}_{3}$$

Notese que en 1, 2, 3, 4 se puede ver que en cada operación al aplicarla se obtiene otro AF que puede ser nuevamente usada en la siguiente operación y así sucesivamente.

Teorema

Existen algoritmos para responder las siguientes preguntas acerca de Automatas Finitos:

- a) Dado un AF M y una palabra w, $w \in L(M)$?
- **b)** Dado un AF M, es $L(M) = \emptyset$?
- c) Dado un AF M, es $L(M) = \Sigma^*$?
- **d)** Dado 2 AF's M_1 y M_2 , es $L(M_1) \subseteq L(M_2)$?
- e) Dado 2 AF's M_1 y M_2 , es $L(M_1) = L(M_2)$?

Prueba

- a) Esto es lo que ya hemos ido haciendo.
- b) Simplemente nos basta analizar si el automata no acepta ninguna palabra.
- c) $M \to L(\bar{M}) = \emptyset$ (Basta realizar el complemento del AF y ver que el lenguaje aceptado sea \emptyset). (b)
- d) $A \subseteq B \Leftrightarrow A \cap B^C = \emptyset$

$$L(M_1) \subseteq L(M_2) \Leftrightarrow L(M_1) \cap [\Sigma^* - L(M_2)] = \emptyset$$

e) Realizamos la doble inclusión:

$$L(M_1) \subseteq L(M_2) \wedge L(M_2) \subseteq L(M_1)$$
 (d)

2.5. Automatas Finitos y Expresiones Regulares

Teorema

Un Lenguaje es regular ssi es aceptado por un Automata Finito.

Prueba

i.) Supongamos que la propiedad se cumple para γ tal que $|\gamma| < n$.

Para $|\gamma| = n$

$$L(\gamma) = L(\alpha \cup \beta) = L(\alpha) \cup L(\beta)$$
$$= L(M_1) \cup L(M_2) = L(M)$$

 $\gamma = \alpha \beta$

$$L(\gamma) = L(\alpha\beta) = L(\alpha)L(\beta)$$

= $L(M_1)L(M_2) = L(M)$

$$L(\gamma) = L(\alpha^*) = L(\alpha)^*$$
$$= L(M_1)^* = L(M)$$

ii.) Si un lenguaje es aceptado por un AF entonces es un lenguaje regular.

Prueba

$$R = L(M)$$

Representaremos L(M) como la unión de muchos (pero en número finito) lenguajes simples.

Sea
$$k = \{q_1, q_2, q_3, \dots, q_n\}, s = q_1 \text{ para } i, j = 1, 2, \dots, n; k = 1, 2, \dots, n + 1$$

Definimos R(i, j, k) como el conjunto de todas las palabras que nos llevan de q_i a q_j sin pasar por estados con subíndice k o mayores.

Formalmente

 $R(i,j,k) = \{x \in \Sigma^*/(q_i,x) \mid \frac{*}{M}(q_j,\lambda) \land (q_i,x) \mid \frac{*}{M}(q_l,y) \text{ entonces } l < k \lor (y = \lambda \land l = j) \lor (y = x \land l = i)\}$ Si k = n + 1:²

$$R(i,j,n+1) = \{x \in \Sigma^*/(q_i,x) \left| \begin{array}{c} * \\ \hline M \end{array} (q_j,\lambda) \right\}$$

Esto es:

$$L(M) = \bigcup \{R(1, j, n+1), q_j \in F\}$$

p.d. R(i, j, k) son regulares (inducción) k = 1

$$R(i, j, 1) = \begin{cases} \{\sigma \in \Sigma / \delta(q_i, \sigma) = q_j\}, i \neq j \\ \{\lambda\} \cup \{\sigma \in \Sigma / \delta(q_i, \sigma) = q_j\}, i \neq j \end{cases}$$

Son regulares ya que R(i, j, 1) son **finitos**.

\mathbf{HI}

Para k = 1, 2, ..., n R(i, j, k) son Regulares.

p.d. Para k+1 es decir R(i, j, k+1) es regular:

2.6. Lenguajes no Regulares

2.7. Gramáticas

2.7.1. Definición

Una gramática Libre de Contexto es una cuádrupla $G=(V,\Sigma,R,S)$ donde:

- \blacksquare G es un alfabeto.
- ullet Σ es un subconjunto de V (Conjunto de Símbolos Terminales)
- $S \in (V \Sigma)$ (Símbolo Inicial)
- R es un conjunto finito de $(V \Sigma) \times V^*$ (Reglas)

Notación

Para cada $A \in V - \Sigma$, $w \in \Sigma^*$

Derivación

Lenguaje Generado por G

2.7.2. Gramáticas Regulares

Definición

Una Gramática Libre de Contexto $G = (V, \Sigma, R, S)$ es regular ssi:

$$R \subseteq (V - \Sigma) \times \Sigma^*((V - \Sigma) \cup \{\lambda\})$$

Teorema

Un lenguaje es Regular ssi es generada por una Gramática Regular:

 $^{^2}$ Notese que no es posible llegar a n+1 ya que ktiene n estados

 $Prueba \Rightarrow$

Sea $M = (K, \Sigma, \sigma, s, F)$ construimos $G = (V, \Sigma, R, S)$ donde:

- $\quad \blacksquare \ V = K \cup \Sigma$
- S = s
- $\blacksquare \ R = \{q \to ap : \delta(p, a) = p\} \cup \{q \to \lambda : q \in F\}$

2.8. Autómata con Pila

Definición

Un autómata con Pila es una sextupla:

$$M = (K, \Sigma, \Gamma, \Delta, s, F)$$

donde:

- *k* :
- \blacksquare Σ : Símbolos de Entrada
- Γ : es un conjunto finito no vacío (llamado alfabeto de la Pila).
- $s \in K$
- $F \subseteq K$
- Δ es un subconjunto finito de $(K \times \Sigma^* \times \Gamma^*) \times (K \times \Gamma^*)$ (Relación de Transición)

Significado de una Transición

$$((p, u, \beta), (q, \gamma)) \in \Delta$$

"Estando en p leyendo w pasa al estado q y reemplaza β por γ ."

Empujar a

$$((p, u, \lambda), (q, \alpha)) \in \Delta$$

Sacar de

$$((p, u, \alpha), (q, \lambda)) \in \Delta$$

2.8.1. Configuración

Una configuración es un elemento de:

$$K\times \Sigma^*\times \Gamma^*$$

La relación $\frac{1}{M}$

Para cada $((p, u, \beta), (q, \gamma)) \in \Delta$ y para cada $x \in \Sigma^*, \alpha \in \Gamma^*$ definimos:

$$(p, ux, \beta\alpha) \stackrel{\longleftarrow}{\models} (q, x, \gamma\alpha)$$

Para ilustrar un poco mejor la idea tenemos la siguiente gráfica:

Palabra aceptada por M

Sea $w \in \Sigma^*$:

$$M$$
 acepta $w \Leftrightarrow (s, w, \lambda) \stackrel{*}{\underset{M}{|}} (q, \lambda, \lambda); q \in F$

Lenguaje aceptado por M

$$L(M) = \{ w \in \Sigma^*/(s, w, \lambda) \, \middle| \, \frac{*}{M} \, (q, \lambda, \lambda); q \in F \}$$

2.8.2. Autómatas con Pila y Gramáticas Libre de Contexto

Definición

La clase de lenguajes aceptados por autómatas con pila es exactamente la clase de lenguajes libres de contexto:

Prueba

Sea $G=(V,\Sigma,R,S)$ construimos $M=(K,\Sigma,\Gamma,\Delta,s,F)$ tal que L(M)=L(G) donde:

$$M = (\{p,q\}, \Sigma, V, \Delta, p, \{q\})$$

2.9. Máquinas de Turing

Definición

Una máquina de Turing es una cuadrupla $M = (K, \Sigma, \delta, s)$ donde:

- \bullet K: Conjunto Finito no Vacío , $h \not\in K$
- \bullet Σ : Conjunto Finito no Vacío , $\# \in \Sigma, L, R \not \in \Sigma$
- $s \in K$
- $\sigma: K \times \Sigma \to (K \cup \{h\}) \times (\Sigma \cup \{L, R\})$
- i.) Si $b \in \Sigma$ la máquina reescribe b por a.
- ii.) Si b = L la cabeza lectora se mueve a la izquierda.
- iii.) Si b = R la cabeza lectora se mueve a la derecha.

Si la máquina esta en h se dice que la máquina se detiene.

Teorema

Los siguientes modelos de máquinas de Turing son igualmente poderosos:

- La Máquina de Turing Estándar.
- La Máquina de Turing de varias cabezas.
- La Máquina de Turing de varias pistas.
- La Máquina de Turing de varias cintas.
- La Máquina de Turing Bidimensional.
- Automata con Pila con 2 Pilas
- IBM Mainframe