

SCALAR QUANTIZATION

Prof. Pintu Chauhan, Assistant Professor Information Technology Engineering

CHAPTER-6

Scalar Quantization

Lossy Image Compression Techniques

- Scalar Quantization (SQ)
- Vector Quantization (VQ)
- Discrete Cosine Transform (DCT) Compression :
 - JPEG
- Wavelet compressions :
 - SPIHT
 - EBCOT

Lossy Image Compression Techniques

SPIHT

(Set Partition Hierarchy Tree)

Original

32:1 compression

JPEG

Image and the Eye

- Images are meant to be viewed by the human eye.
- The eye is very good at "interpolation," that is, the eye can tolerate some distortion. So lossy compression is not necessarily bad.

Distortion

- Lossy compression: x ≠ x̂
- Measure of distortion is commonly mean squared error (MSE). Assume x has n real components (pixels).

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{x}_i)^2$$

Distortion

Peak Signal to Noise Ratio (PSNR) is the standard way to measure fidelity.

$$PSNR = 10\log_{10}\left(\frac{m^2}{MSE}\right)$$

where m is the maximum value of a pixel possible For gray scale images (8 bit per pixel) m = 255

- PSNR is measured in decibels (dB):
- 0.5 to 1 dB is said to be a perceptible difference.
- Decent images start at about 25-30 dB.
- 35-40 dB might be indistinguishable from the original

PSNR is not everything!

PSNR = 25.8 dB

PSNR = 25.8 dB

Distortion vs. Compression

Quantization Problem

- Real-world signals are continuous!
- Signal representation in computer is discrete with finite precision!
- Higher precision requires larger storage

Scalar Quantization Problem

Problem 1:

- You're given 16-bit integers (0-65545). Unfortunately, you only have space to store 8-bit integers (0-255).
- Come up with a representation of those 16-bit integers that uses only 8 bits!

Problem 2:

- You have a string of those 8-bit integers that use your representation.
- Recreate the 16-bit integers as best you can!

DIGITAL LEARNING CONTENT

Scalar Quantization

Scalar Quantization Strategies

- Build a codebook with a training set, then always encode and decode with that fixed codebook.
 - Most common use of scalar quantization.
- Build a codebook for each image and transmit the codebook with the image.
- Training can be slow.

Distortion from Scalar Quantization

- Let the image be pixels X_1 , X_2 , X_3 , X_T .
- Define index (X) to be the index transmitted on input X.
- Define c(j) to be codeword indexed by j.

$$D = \sum_{i=1}^{T} [X_i - c(index(x_i))]^2$$
 (Distortion)

$$MSE = \frac{D}{T}$$

Uniform Quantization Example

- 512 x 512 image with 8 bits per pixel.
- 8 codewords.

Codebook Index 0 1 2 3 4 5 6 7 Codeword 16 47 79 111 143 175 207 239

Improve Bit Rate

 p_j = the probability that a pixel is coded to index j. Potential average bit rate is entropy.

$$H = \sum_{j=0}^{7} p_j \log_2 \left(\frac{1}{p_j} \right)$$

DIGITAL LEARNING CONTENT

Example

512 x 512 image = 262,144 pixels

index	0	1	2	3	4	5	6	7
input	0-31	32-63	64-95	96-127	128-159	160-191	192-223	224-255
frequency	25,000	95,000	85,000	10,000	10,000	10,000	18,000	9,144

Improve Distortion

 Choose the codeword as a weighted average (the centroid).

Let p_x be the probability that a pixel has value x. Let $[L_j,R_j)$ be the input interval for index j. c(j) is the codeword indexed by j.

$$c(j) = \mathsf{round}\left(\sum_{L_j \le x < R_j} x \cdot p_x\right)$$

All pixels have the same index.

pixel	value uency
frequ	uency

8	9	10	11	12	13	14	15
100	100	100	40	30	20	10	0

New Codeword = round(
$$\frac{8 \cdot 100 + 9 \cdot 100 + 10 \cdot 100 + 11 \cdot 40 + 12 \cdot 30 + 13 \cdot 20 + 14 \cdot 10 + 15 \cdot 0}{400}$$
) = 10

Old Codeword = 11

New Distortion =
$$140 \cdot 1^2 + 130 \cdot 2^2 + 20 \cdot 3^2 + 10 \cdot 4^2 = 10000$$

Old Distortion =
$$130 \cdot 1^2 + 120 \cdot 2^2 + 110 \cdot 3^2 = 16000$$

Extreme Case

Only two codewords are ever used!!

Quantization Example: Mandrill

8 bit quantization

4 bit quantization

3 bit quantization

Quantization Example: Pepper

8 bit quantization

4 bit quantization

3 bit quantization

codewordboundary between codewords

Problem: Given M reconstruction levels, find the boundaries of these construction levels $(b_1, b_2, ... b_M)$ and reconstruction levels $(y_1, y_2, ... y_M)$ to minimize the distortion.

LLoyd (1957) shows that the solutions y_i and b_i must satisfy the following 2 conditions:

$$Y_{i} = \frac{\int_{b_{j-1}}^{b_{j}} xf(x) dx}{\int_{b_{j-1}}^{b_{j}} f(x) dx}$$

$$b_j = \frac{y_{j+1} + y_j}{2}$$

f(x): Is the probability density function of input x.

Proof: Take derivatives of with respect to y_i and b_i of MSE, setting the result to zero, and solve for y_i and b_i

$$MSE = \sum_{i=1}^{M} \int_{b_{i-1}}^{b_j} (x - y_i)^2 f(x) dx$$

Lloyd's Algorithm

- Lloyd (1957)
- Creates an optimized (but probably not optimal) codebook of size n.
- Let p_x be the probability of pixel value x.
 - Probabilities is either known or might come from a training set.
- Given codewords c(0),c(1),...,c(n-1) and pixel x. Let index(x) be the index of the closest code word to x.
- Expected distortion is

$$D = \sum_{x} P_{x}[X - c(index(x))]^{2}$$

- Goal of the Lloyd algorithm is to find the codewords that minimize distortion.
 - Lloyd finds a local minimum by an iteration process.

Lloyd's Algorithm

Choose a small error tolerance $\varepsilon > 0$.

Choose start codewords c(0),c(1),...,c(n-1).

Compute X(j) := {x : x is a pixel value closest to c(j)}.

Compute distortion D for c(0),c(1),...,c(n-1).

Repeat:

Compute new codewords:

$$c'(j) := round(\sum_{x \in X(j)} x \cdot p_x)$$

Compute $X'(j) = \{x : x \text{ is a pixel value closest to } c'(j)\}.$

Compute distortion D' for c'(0),c'(1),...,c'(n-1).

if $|(D - D')/D| < \varepsilon$ then quit,

else c := c'; X := X', D := D'.

End{repeat}

Initially
$$c(0) = 2$$
 and $c(1) = 5$

$$X(0) = [0,3], X(1) = [4,7]$$

$$D(0) = 140 \cdot 1^2 + 100 \cdot 2^2 = 540$$
; $D(1) = 40 \cdot 1^2 = 40$

$$D = D(0) + D(1) = 580$$

$$c'(0) = round((100 \cdot 0 + 100 \cdot 1 + 100 \cdot 2 + 40 \cdot 3)/340) = 1$$

$$c'(1) = round((30 \cdot 4 + 20 \cdot 5 + 10 \cdot 6 + 0 \cdot 7)/60) = 5$$

DIGITAL LEARNING CONTENT

$$c'(0) = 1; c'(1) = 5$$

$$X'(0) = [0,2]; X'(1) = [3,7]$$

$$D'(0) = 200 \cdot 1^2 = 200$$

$$D'(1) = 40 \cdot 1^2 + 40 \cdot 2^2 = 200$$

$$D' = D'(0) + D'(1) = 400$$

$$|(D-D')/D| = (580-400)/580 = .31$$

$$c := c'; X := X'; D := D'$$

$$c(0) = 1$$
; $c(1) = 5$

$$X(0) = [0,2]; X(1) = [3,7]$$

$$D = 400$$

$$c'(0) = round((100 \cdot 0 + 100 \cdot 1 + 100 \cdot 2)/300) = 1$$

$$c'(1) = round((40 \cdot 3 + 30 \cdot 4 + 20 \cdot 5 + 10 \cdot 6 + 0 \cdot 7)/100) = 4$$

$$c'(0) = 1; c'(1) = 4$$

$$X'(0) = [0,2]; X'(1) = [3,7]$$

$$D'(0) = 200 \cdot 1^2 = 200$$

$$D'(1) = 60 \cdot 1^2 + 10 \cdot 2^2 = 100$$

$$D' = D'(0) + D'(1) = 300$$

$$|(D-D')/D| = (400-300)/400 = .17$$

$$c := c'; X := X'; D := D'$$

$$c(0) = 1; c(1) = 4$$

$$X(0) = [0,2]; X(1) = [3,7]$$

$$D = 300$$

$$c'(0) = round((100 \cdot 0 + 100 \cdot 1 + 100 \cdot 2)/300) = 1$$

$$c'(1) = round((40 \cdot 3 + 30 \cdot 4 + 20 \cdot 5 + 10 \cdot 6 + 0 \cdot 7)/100) = 4$$

$$c'(0) = 1; c'(1) = 4$$

$$X'(0) = [0,2]; X'(1) = [3,7]$$

$$D'(0) = 200 \cdot 1^2 = 200$$

$$D'(1) = 60 \cdot 1^2 + 10 \cdot 2^2 = 100$$

$$D' = D'(0) + D'(1) = 300$$

$$|(D-D')/D| = (300-300)/300 = 0$$

Exit with codeword c(0) = 1 and c(1) = 4.

Scalar Quantization Notes

- Useful for analog to digital conversion.
- With entropy coding, it yields good lossy compression.
- Lloyd algorithm works very well in practice, but can take many iterations.
 - For n codewords should use about 20n size
 - representative training set.
 - Imagine 1024 codewords.

DIGITAL LEARNING CONTENT

Parul[®] University

