Simulation Results

Justin M. Leach

1 What is contained herein?

We ran a set of simulations inspired by the original SSL paper. Specifically, we generate a training set with N=300 subjects and a test set with N=100 subjects. The design vector \boldsymbol{X} contains 1,000 predictors, which are generated from the multivariate normal distribution with mean zero and unit variance, but with a block correlation structure consisting of 20 blocks of 50 predictors, where within each block the predictors have a 0.90 correlation with each other. A total of 6 of these predictors are given non-zero values, specifically the predictors with indices, 1, 51, 101, 151, 201, 251. We examine 3 effect size scenarios. Each scenario treats one group as a reference, i.e., all its parameters are 0. The second and third groups are given non-zero parameter values at the appropriate indices. The settings are as follows:

- (1) Group 2: $\beta_0 = -0.15$, $\beta = 0.0075$; Group 3: $\beta_0 = -0.5$, $\beta = 0.015$.
- (2) Group 2: $\beta_0 = -0.15$, $\beta = 0.0125$; Group 3: $\beta_0 = -0.5$, $\beta = 0.025$.
- (3) Group 2: $\beta_0 = -0.15$, $\beta = 0.025$; Group 3: $\beta_0 = -0.5$, $\beta = 0.05$.

These scenarios generate imbalanced data, where group 1 is most common, group 2 secondmost common, and group 3 least common.

Table 1: Sample Balance in Scenario 1

	Group_1	Group_2	Group_3
Freq. (Mean)	121.94	103.44	74.62
Freq. (SD)	8.33	8.19	7.29
Percent (Mean)	40.51	34.62	24.87
Percent (SD)	4.80	4.69	4.39

Table 2: Sample Balance in Scenario 2

	Group_1	Group_2	Group_3
Freq. (Mean)	122.23	101.75	76.02
Freq. (SD)	8.34	8.16	7.40
Percent (Mean)	40.62	34.04	25.34
Percent (SD)	4.90	4.65	4.39

Table 3: Sample Balance in Scenario 3

	Group_1	Group_2	Group_3
Freq. (Mean)	123.67	94.82	81.51

	Group_1	Group_2	Group_3
Freq. (SD)	8.47	7.99	7.65
Percent (Mean)	41.08	31.72	27.20
Percent (SD)	4.86	4.67	4.52

The training set is used to perform 5-fold cross validation to select optimal penalty parameters for the elastic net $(\alpha=0.5)$, lasso $(\alpha=1)$, and spike-and-slab elastic net, and spike-and-slab lasso. That is, $\lambda=s_0=s_1$ for the traditional models and a spike scale, s_0 , and slab scale, s_1 , for the spike-and-slab models. For the traditional models, the range of λ is chosen internally by the R package glmnet. A grid of values is preselected for the spike-and-slab models, $s_0=\{0.01,0.02,0.03,\ldots,0.1\}$ and $s_1=\{1,2,3,4\}$, which are then fit with the R package ssnet. We then use the selected penalty parameters to fit the model on the entire training data. This model is then applied to predict the observations in the test data and calculate measures of model fitness.

2 Combining files

As usual, simulation analyses take too long, so we break them up into separate (array) jobs on UAB's Cheaha. The following function puts them back together again.

```
combine files <- function(</pre>
  path = "C:/Users/cotto/Documents/Publications/multinomial models in R/simulations/results/",
  files, # names of files to combine
  rename_sims = TRUE, # When combining files simulation indices repeat, so fix it here
  number_outcomes = 3, #
  outfile = NULL # specify file name to write results to path directory
) {
  fit_time <- NULL
  model_fitness <- NULL
  param_est <- NULL
  for (i in 1:length(files)) {
    results i <- readRDS(
      paste0(path, files[i])
    if (rename sims == TRUE) {
      if (i == 1) {
        sim_num_i <- 1:nrow(results_i$model_fitness)</pre>
      } else {
        sim_num_i <- max(sim_num_i) + 1:nrow(results_i$model_fitness)</pre>
      print(c(min(sim_num_i), max(sim_num_i)))
      # print(length(sim_num_i))
    fit_time <- rbind(</pre>
      fit time,
      results_i$fit_time
```

```
if (rename_sims == TRUE) {
    # print(length(results_i$model_fitness$sim.num))
    results_i$model_fitness$sim.num <- sim_num_i
    cat("Model fitness sim IDs renamed for file ", i, "\n")
  }
  model_fitness <- rbind(</pre>
    model_fitness,
    results i$model fitness
  if (rename_sims == TRUE) {
    results_i$param_est$sim.num <- rep(</pre>
      x = sim_num_i,
      each = number_outcomes
    cat("Parameter sim IDs renamed for file ", i, "\n")
  param_est <- rbind(</pre>
    param_est,
    results_i$param_est
}
out <- list(
 fit_time = apply(fit_time[, 1:3], 2, sum),
 model_fitness = model_fitness,
  param_est = param_est
)
if (is.null(outfile) == FALSE) {
  saveRDS(
    out,
    file = paste0(path, outfile)
}
return(out)
```

2.1 B6 BV0075015

```
results_lasso_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5 <- combine_files(
    files = c(
        "results_lasso_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_1.RDS",
        "results_lasso_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_2.RDS",
        "results_lasso_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_3.RDS",
        "results_lasso_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_4.RDS",
        "results_lasso_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_5.RDS"
),
    outfile = "results_lasso_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5.RDS"
)</pre>
```

```
files = c(
    "results_en_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_1.RDS",
    "results_en_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_2.RDS",
    "results en M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5 3.RDS",
    "results_en_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_4.RDS",
    "results en M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5 5.RDS"
  ),
  outfile = "results en M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5.RDS"
results ssl M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5 <- combine files(
  files = c(
    "results_ssl_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_1.RDS",
    "results ssl M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5 2.RDS",
    "results ssl M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5 3.RDS",
    "results_ssl_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_4.RDS",
    "results_ssl_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_5.RDS",
    "results_ssl_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_6.RDS",
    "results_ssl_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_7.RDS",
    "results_ssl_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_8.RDS",
    "results ssl M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5 9.RDS",
    "results_ssl_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_10.RDS"
    "results ssl M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5 11.RDS",
    "results_ssl_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_12.RDS",
    "results ssl M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5 13.RDS",
    "results ssl M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5 14.RDS",
    "results ssl M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5 15.RDS",
    "results ssl M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5 16.RDS",
    "results ssl M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5 17.RDS",
    "results ssl M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5 18.RDS",
    "results ssl M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5 19.RDS",
    "results_ssl_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_20.RDS",
    "results_ssl_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_21.RDS",
    "results_ssl_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_22.RDS",
    "results_ssl_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_23.RDS",
    "results_ssl_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_24.RDS",
    "results ssl M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5 25.RDS"
  ),
  outfile = "results_ssl_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5.RDS"
results_ssen_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5 <- combine_files(
  files = c(
    "results ssen M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5 1.RDS",
    "results ssen M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5 2.RDS",
    "results ssen M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5 3.RDS",
    "results_ssen_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_4.RDS",
    "results_ssen_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_5.RDS",
    "results ssen M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5 6.RDS",
    "results_ssen_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_7.RDS",
    "results_ssen_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_8.RDS",
    "results_ssen_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_9.RDS"
    "results_ssen_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_10.RDS",
```

```
"results_ssen_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_11.RDS",
  "results_ssen_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_12.RDS",
  "results ssen M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5 13.RDS",
  "results ssen M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5 14.RDS",
  "results ssen M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5 15.RDS",
  "results ssen M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5 16.RDS",
  "results ssen M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5 17.RDS",
  "results ssen M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5 18.RDS",
  "results ssen M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5 19.RDS",
  "results_ssen_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_20.RDS",
  "results_ssen_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_21.RDS",
  "results_ssen_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_22.RDS",
  "results_ssen_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_23.RDS",
  "results_ssen_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5_24.RDS",
  "results ssen M5000 X1k B6 BV0075015 NTR300 NTE100 NCV5 25.RDS"
),
outfile = "results_ssen_M5000_X1k_B6_BV0075015_NTR300_NTE100_NCV5.RDS"
```

2.2 B6 BV012025

```
results lasso M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 <- combine files(
  files = c(
    "results_lasso_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_1.RDS",
    "results_lasso_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_2.RDS",
    "results_lasso_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_3.RDS",
    "results_lasso_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_4.RDS",
    "results lasso M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 5.RDS"
  ),
  outfile = "results lasso M5000 X1k B6 BV012025 NTR300 NTE100 NCV5.RDS"
results en M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 <- combine files(
  files = c(
    "results en M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 1.RDS",
    "results en M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 2.RDS",
    "results_en_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_3.RDS",
    "results_en_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_4.RDS",
    "results_en_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_5.RDS"
  ),
  outfile = "results en M5000 X1k B6 BV012025 NTR300 NTE100 NCV5.RDS"
results_ssl_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5 <- combine_files(</pre>
  files = c(
    "results ssl M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 1.RDS",
    "results ssl M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 2.RDS",
    "results ssl M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 3.RDS",
    "results ssl M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 4.RDS",
    "results ssl M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 5.RDS",
    "results ssl M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 6.RDS",
    "results ssl M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 7.RDS",
```

```
"results_ssl_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_8.RDS",
    "results_ssl_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_9.RDS",
    "results ssl M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 10.RDS",
    "results ssl M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 11.RDS",
    "results ssl M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 12.RDS",
    "results ssl M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 13.RDS",
    "results ssl M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 14.RDS",
    "results_ssl_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_15.RDS",
    "results ssl M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 16.RDS",
    "results_ssl_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_17.RDS",
    "results_ssl_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_18.RDS",
    "results_ssl_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_19.RDS",
    "results_ssl_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_20.RDS",
    "results_ssl_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_21.RDS",
    "results_ssl_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_22.RDS",
    "results ssl M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 23.RDS",
    "results_ssl_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_24.RDS",
    "results ssl M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 25.RDS"
  ),
  outfile = "results_ssl_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5.RDS"
)
results_ssen_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5 <- combine_files(
  files = c(
    "results_ssen_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_1.RDS",
    "results ssen M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 2.RDS",
    "results_ssen_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_3.RDS",
    "results_ssen_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_4.RDS",
    "results_ssen_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_5.RDS",
    "results_ssen_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_6.RDS",
    "results_ssen_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_7.RDS",
    "results_ssen_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_8.RDS",
    "results ssen M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 9.RDS",
    "results_ssen_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_10.RDS",
    "results ssen M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 11.RDS",
    "results_ssen_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_12.RDS",
    "results ssen M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 13.RDS",
    "results ssen M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 14.RDS",
    "results ssen M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 15.RDS",
    "results ssen M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 16.RDS",
    "results ssen M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 17.RDS",
    "results ssen M5000 X1k B6 BV012025 NTR300 NTE100 NCV5 18.RDS",
    "results_ssen_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_19.RDS",
    "results_ssen_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_20.RDS",
    "results_ssen_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_21.RDS",
    "results_ssen_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_22.RDS",
    "results_ssen_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_23.RDS",
    "results_ssen_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_24.RDS",
    "results_ssen_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5_25.RDS"
  ),
  outfile = "results_ssen_M5000_X1k_B6_BV012025_NTR300_NTE100_NCV5.RDS"
```

2.3 B6 BV025050

```
results_lasso_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5 <- combine_files(
  files = c(
    "results_lasso_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_1.RDS",
    "results lasso M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 2.RDS",
    "results_lasso_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_3.RDS",
    "results_lasso_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_4.RDS";
    "results_lasso_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_5.RDS"
  ),
  outfile = "results_lasso_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5.RDS"
results en M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 <- combine files(
  files = c(
    "results_en_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_1.RDS",
    "results en M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 2.RDS",
    "results en M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 3.RDS",
    "results en M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 4.RDS",
    "results en M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 5.RDS"
  ),
  outfile = "results_en_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5.RDS"
results_ssl_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5 <- combine_files(
  files = c(
    "results_ssl_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_1.RDS",
    "results_ssl_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_2.RDS",
    "results ssl M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 3.RDS",
    "results ssl M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 4.RDS",
    "results ssl M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 5.RDS",
    "results ssl M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 6.RDS",
    "results_ssl_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_7.RDS",
    "results ssl M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 8.RDS",
    "results ssl M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 9.RDS",
    "results ssl M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 10.RDS",
    "results_ssl_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_11.RDS",
    "results_ssl_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_12.RDS",
    "results_ssl_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_13.RDS",
    "results_ssl_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_14.RDS",
    "results_ssl_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_15.RDS",
    "results_ssl_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_16.RDS",
    "results_ssl_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_17.RDS",
    "results_ssl_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_18.RDS",
    "results_ssl_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_19.RDS",
    "results ssl M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 20.RDS",
    "results ssl M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 21.RDS",
    "results ssl M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 22.RDS",
    "results ssl M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 23.RDS",
    "results ssl M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 24.RDS",
    "results ssl M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 25.RDS"
  ),
  outfile = "results ssl M5000 X1k B6 BV025050 NTR300 NTE100 NCV5.RDS"
```

```
results_ssen_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5 <- combine_files(
  files = c(
    "results_ssen_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_1.RDS",
    "results ssen M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 2.RDS",
    "results_ssen_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_3.RDS",
    "results ssen M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 4.RDS",
    "results ssen M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 5.RDS",
    "results ssen M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 6.RDS",
    "results ssen M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 7.RDS",
    "results_ssen_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_8.RDS",
    "results_ssen_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_9.RDS",
    "results_ssen_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_10.RDS",
    "results_ssen_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_11.RDS",
    "results_ssen_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_12.RDS",
    "results_ssen_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_13.RDS",
    "results_ssen_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_14.RDS",
    "results_ssen_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_15.RDS",
    "results_ssen_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_16.RDS",
    "results ssen M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 17.RDS".
    "results_ssen_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_18.RDS",
    "results ssen M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 19.RDS",
    "results_ssen_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5_20.RDS",
    "results ssen M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 21.RDS",
    "results ssen M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 22.RDS",
    "results ssen M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 23.RDS",
    "results ssen M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 24.RDS",
    "results ssen M5000 X1k B6 BV025050 NTR300 NTE100 NCV5 25.RDS"
  ),
  outfile = "results_ssen_M5000_X1k_B6_BV025050_NTR300_NTE100_NCV5.RDS"
```

3 Summary function

The following function automates useful summaries.

```
summary_function_A <- function(
    path = "C:/Users/cotto/Documents/Publications/multinomial models in R/simulations/results/",
    simulations_desired = 5000, # used when calculating total times required for all simulations
    files,
    model_names = c("Lasso", "EN", "SSL"),
    spatial = TRUE, # if true use spatial arguments; otherwise use non-spatial arguments
    # the following are for spatial settings
    im.wh = 32, # image (X) width/height
    nzb.wh = 6, # non-zero parameter area width/height
    row.index = 5, col.index = 5, BO = 0, B.values = 0.01, # as in sim2Dpredictr::beta_builder
    index.type = "ellipse", # as in sim2Dpredictr::beta_builder
    # the following are for non-spatial settings
    p = 1000, # how many predictors?
    b.indices, # indices for non-zero predictors
    print.progress = FALSE #</pre>
```

```
) {
  if (length(files) != length(model_names)) {
    stop("Number of files and number of model names must be equal.")
  # hold fit times
  fit_time_avg <- NULL</pre>
  # hold model fitness summaries
  model_fitness_avg <- NULL</pre>
  model_fitness_med <- NULL</pre>
  model_fitness_sd <- NULL</pre>
  model_fitness_iqr <- NULL</pre>
  # hold raw values for FP & Power
  sfp_out <- NULL
  # hold FP & Power summaries
  sfp avg <- NULL
  sfp_med <- NULL
  sfp_sd <- NULL
  sfp_iqr <- NULL
  # hold inclusion probabilities
  prob_rej <- NULL</pre>
  if (spatial == TRUE) {
    # should match the simulation scenario
  B <- sim2Dpredictr::beta_builder(</pre>
    im.res = c(im.wh, im.wh),
    row.index = row.index, col.index = col.index,
    BO = BO, B. values = B. values,
    index.type = index.type,
    h = nzb.wh, w = nzb.wh
  \# convert to 1 = Non-zero-valued and 0 = zero-valued parameter
  b.binary <- ifelse(B$B[-1] != 0, 1, 0)
  true.pred <- paste0("x", B$Truth.Indices)</pre>
  } else {
    b.binary = rep(0, p)
    b.binary[b.indices] <- 1</pre>
    true.pred <- paste0("x", b.indices)</pre>
  # rej <- list()
  # sfp <- list()
  for (i in 1:length(files)) {
    # load results
    results_i <- readRDS(</pre>
```

```
pasteO(path, files[[i]])
# how many simulations?
M <- length(unique(results_i$param_est$sim.num))</pre>
# How long to fit models
fit_time_avg_i <- dplyr::bind_cols(</pre>
  model = model_names[i],
  sec_per_sim = results_i$fit_time[3] / nrow(results_i$model_fitness),
  hours_required = simulations_desired * results_i\footnote{fit_time[3] / nrow(results_i\footnote{model_fitness) / 60}
fit_time_avg <- dplyr::bind_rows(</pre>
  fit_time_avg,
  fit_time_avg_i
if (print.progress == TRUE) {
  cat("Model fit times for ", model_names[i], " complete \n")
}
# model fitness
model_fitness_avg_i <- dplyr::bind_cols(</pre>
  model = model_names[i],
  purrr::map_df(results_i$model_fitness |> dplyr::select(-sim.num), mean, na.rm = TRUE)
model_fitness_avg <- dplyr::bind_rows(</pre>
  model_fitness_avg,
  model_fitness_avg_i
)
model_fitness_med_i <- dplyr::bind_cols(</pre>
  model = model_names[i],
  purrr::map_df(results_i$model_fitness |> dplyr::select(-sim.num), median, na.rm = TRUE)
model_fitness_med <- dplyr::bind_rows(</pre>
  model_fitness_med,
  model_fitness_med_i
model_fitness_sd_i <- dplyr::bind_cols(</pre>
  model = model_names[i],
  purrr::map_df(results_i$model_fitness |> dplyr::select(-sim.num), sd, na.rm = TRUE)
model_fitness_sd <- dplyr::bind_rows(</pre>
  model_fitness_sd,
  model_fitness_sd_i
model_fitness_iqr_i <- dplyr::bind_cols(</pre>
  model = model_names[i],
  purrr::map_df(results_i$model_fitness |> dplyr::select(-sim.num), IQR, na.rm = TRUE)
model_fitness_iqr <- dplyr::bind_rows(</pre>
  model_fitness_iqr,
  model_fitness_iqr_i
```

```
if (print.progress == TRUE) {
  cat("Model fitness for ", model_names[i], " complete. \n")
}
# obtain estimates from each simulation
# obtain indices for predictors with non-zero estimates
rej_i <- NULL
# Obtain FDP & Power
sfp_i <- NULL
for (m in 1:M) {
  if (!(m %in% results_i$param_est$sim.num)) {
    cat("Simulation ", m, " for model ", model_names[i], "is missing. \n")
  } else {
    # obtain indices for non-zero estimates in results i, simulation m
    # can use outcome == 1 since grouped parameters by predictor
    rej_im <- data.frame(</pre>
      ifelse(
        results_i$param_est |>
          dplyr::filter(outcome == 1, sim.num == m) |>
          dplyr::select(-sim.num, -s0, -s1, -outcome, -x0) != 0,
        1, 0
      )
    )
    if (print.progress == TRUE) {
      cat("Non-zero parameter indices for ", model_names[i], " for sim ", m, " complete. \n")
    # false positive rates & power for results i, simulation m
    sfp_im <- sim2Dpredictr::sample_FP_Power(</pre>
      rejections = as.numeric(rej_im),
      B = b.binary,
      B.incl.BO = FALSE
    sfp_i <- dplyr::bind_rows(</pre>
      sfp_i,
      sfp_im
    rej_im <- dplyr::tibble(rej_im)</pre>
    rej_i <- dplyr::bind_rows(</pre>
      rej_i,
      rej_im
  }
  if (print.progress == TRUE) {
    cat("FP and Power for ", model_names[i], " for sim ", m, " complete. \n")
```

```
\# rej_i \leftarrow data.frame(rej_i)
# print(rej_i[, 1:10])
prob_rej_i <- dplyr::bind_cols(</pre>
  model = model_names[i],
  purrr::map_df(.x = rej_i, .f = mean)
prob_rej <- dplyr::bind_rows(</pre>
  prob_rej,
  prob_rej_i
sfp_avg_i <- dplyr::bind_cols(</pre>
  model = model_names[i],
  purrr::map_df(.x = sfp_i, .f = mean, na.rm = TRUE)
sfp_avg <- dplyr::bind_rows(</pre>
  sfp_avg,
  sfp_avg_i
sfp_med_i <- dplyr::bind_cols(</pre>
  model = model_names[i],
  purrr::map_df(.x = sfp_i, .f = median, na.rm = TRUE)
sfp_med <- dplyr::bind_rows(</pre>
  sfp med,
  sfp_med_i
sfp_sd_i <- dplyr::bind_cols(</pre>
  model = model_names[i],
  purrr::map_df(.x = sfp_i, .f = sd, na.rm = TRUE)
sfp_sd <- dplyr::bind_rows(
  sfp_sd,
  sfp_sd_i
sfp_iqr_i <- dplyr::bind_cols(</pre>
  model = model_names[i],
  purrr::map_df(.x = sfp_i, .f = IQR, na.rm = TRUE)
sfp_iqr <- dplyr::bind_rows(</pre>
  sfp_iqr,
  sfp_iqr_i
sfp_out_i <- cbind(model = model_names[i], sfp_i)</pre>
sfp_out <- dplyr::bind_rows(</pre>
  sfp_out,
  sfp_out_i
)
\# rej[[i]] \leftarrow data.frame(dplyr::bind_cols(model = model_names[i], rej_i))
\# sfp[[i]] \leftarrow dplyr::bind\_cols(model = model\_names[i], sfp_i)
```

```
rownames(fit_time_avg) <- NULL</pre>
  # names(rej) <- model_names</pre>
  # rej_final <- dplyr::bind_rows(rej)</pre>
  # names(sfp) <- model_names</pre>
  # sfp_final <- dplyr::bind_rows(sfp)</pre>
 return(
    list(
      fit_time_avg = data.frame(fit_time_avg),
      model_fitness_avg = data.frame(model_fitness_avg),
      model_fitness_sd = data.frame(model_fitness_sd),
      model_fitness_med = data.frame(model_fitness_med),
      model_fitness_iqr = data.frame(model_fitness_iqr),
      FP_Power_avg = data.frame(sfp_avg),
      FP_Power_sd = data.frame(sfp_sd),
      FP_Power_med = data.frame(sfp_med),
      FP_Power_iqr = data.frame(sfp_iqr),
      Prob_Included = data.frame(prob_rej),
      Raw_out = data.frame(sfp_out)
      # fpr_power = sfp_final,
      # nonzero_est = rej_final
  )
}
```

For false positives and power we need locations of non-zero parameters. While the parameter values change in each of the 3 scenarios examined here, the number of non-zero parameters and the number of total predictors is the same, so b.binary can be reused.

```
# how many parameters?
p <- 1000

# non-zero locations
nzl <- c(1, 51, 101, 151, 201, 251)

bb.ns <- rep(0, p)
bb.ns[nzl] <- 1
tp.ns <- paste0("x", nzl)</pre>
```

3.1 B6_BV0075015 Summary (ALL)

Table 4: Mean Model Fitness: X1k B6 BV0075015

model	s0	s1	deviance avg_ac	c pce	ppv_mac	r o n_macr	of1_macro	oppv_mic	rosn_micro	of1_micro
Lasso	0.1031	0.1031	216.8022 0.5976	0.4024	0.3451	0.3340	0.3353	0.3965	0.3965	0.3965
EN	0.2020	0.2020	$216.7978 \ 0.5977$	0.4023	0.3521	0.3341	0.3389	0.3965	0.3965	0.3965
SSL	0.0243	1.7258	$217.2746 \ 0.5965$	0.4035	0.3414	0.3346	0.3358	0.3948	0.3948	0.3948
SSEN	0.0152	1.6154	$217.2341\ \ 0.5967$	0.4033	0.3412	0.3344	0.3362	0.3950	0.3950	0.3950

Table 5: SD Model Fitness: $X1k_B6_BV0075015$

model	s0	s1	deviance	avg_acc	e pce	ppv_mac	r o n_macr	of1_macro	oppv_mic	rosn_micro	of1_micro
Lasso	0.0144	0.0144	4.5535	0.0342	0.0342	0.1136	0.0184	0.0660	0.0513	0.0513	0.0513
EN	0.0311	0.0311	4.5431	0.0342	0.0342	0.1150	0.0182	0.0665	0.0513	0.0513	0.0513
SSL	0.0181	1.2832	5.0504	0.0345	0.0345	0.1004	0.0217	0.0625	0.0518	0.0518	0.0518
SSEN	0.0074	1.2107	5.0495	0.0344	0.0344	0.0928	0.0208	0.0598	0.0516	0.0516	0.0516

Table 6: Median Model Fitness: $X1k_B6_BV0075015$

model	s0	s1	deviance	avg_ac	c pce	ppv_mac	ren_macı	of1_macro	ppv_microsi	_microf	1_micro
Lasso	0.1052	0.1052	216.7385	0.6	0.4	0.3232	0.3333	0.3301	0.4	0.4	0.4
EN	0.2077	0.2077	216.7407	0.6	0.4	0.3334	0.3333	0.3388	0.4	0.4	0.4
SSL	0.0100	1.0000	217.0349	0.6	0.4	0.3286	0.3333	0.3348	0.4	0.4	0.4
SSEN	0.0100	1.0000	216.9702	0.6	0.4	0.3311	0.3333	0.3333	0.4	0.4	0.4

Table 7: IQR Model Fitness: $X1k_B6_BV0075015$

model	s0	s1	deviance	avg_acc	pce	ppv_macron	_macro	of1_macro	ppv_micros	n_micro	f1_micro
Lasso	0.0180	0.0180	5.5983	0.0467	0.0467	0.1541	0	0.0957	0.07	0.07	0.07
EN	0.0397	0.0397	5.5560	0.0467	0.0467	0.1609	0	0.1013	0.07	0.07	0.07
SSL	0.0300	0.0000	5.9760	0.0467	0.0467	0.1217	0	0.0823	0.07	0.07	0.07
SSEN	0.0100	0.0000	5.9911	0.0467	0.0467	0.1217	0	0.0864	0.07	0.07	0.07

Table 8: Mean False Positive Rates and Power: $X1k_B6_BV0075015$

model	FDP	FWE	Power
Lasso	0.6437	0.6500	0.0090
EN	0.5637	0.5706	0.0143
SSL	0.4052	0.4116	0.0150
SSEN	0.3661	0.3718	0.0211

Table 9: SD False Positive Rates and Power: $X1k_B6_BV0075015$

model	FDP	FWE	Power
Lasso	0.4739	0.4770	0.0406
EN	0.4902	0.4950	0.0518
SSL	0.4854	0.4922	0.0534
SSEN	0.4764	0.4833	0.0676

Table 10: Median False Positive Rates and Power: $X1k_B6_BV0075015$

$\overline{\text{model}}$	FDP	FWE	Power
Lasso	1.0000	1	0
EN	0.9798	1	0
SSL	0.0000	0	0
SSEN	0.0000	0	0

Table 11: IQR False Positive Rates and Power: $X1k_B6_BV0075015$

model	FDP	FWE	Power
Lasso	1	1	0
EN	1	1	0
SSL	1	1	0
SSEN	1	1	0

Table 12: Mean Probability of Inclusion for True Non-zero Paramters

Model	X1	X51	X101	X151	X201	X251
Lasso	0.0100	0.0076	0.0078	0.0098	0.0110	0.0076
EN	0.0176	0.0142	0.0112	0.0132	0.0154	0.0140
SSL	0.0164	0.0148	0.0132	0.0160	0.0162	0.0132
SSEN	0.0218	0.0216	0.0180	0.0212	0.0224	0.0216

Table 13: Probability of Inclusion for Relevant/Irrelevant Parameters: $X1k_B6_BV0075015$

Model	Relevance	Mean	\overline{SD}
Lasso	Irrelevant	0.0034	0.0014
EN	Irrelevant	0.0057	0.0021
SSL	Irrelevant	0.0061	0.0017
SSEN	Irrelevant	0.0094	0.0025
Lasso	Relevant	0.0090	0.0015
EN	Relevant	0.0143	0.0021
SSL	Relevant	0.0150	0.0015
SSEN	Relevant	0.0211	0.0016

3.2 B6_BV0075015 Summary (Reduced for Manuscript)

Table 14: Mean Model Fitness: $X1k_B6_BV0075015$

model	s0	s1	deviance	FDP	Power
Lasso	0.1031	0.1031	216.8022	0.6437	0.0090
EN	0.2020	0.2020	216.7978	0.5637	0.0143
SSL	0.0243	1.7258	217.2746	0.4052	0.0150
SSEN	0.0152	1.6154	217.2341	0.3661	0.0211

 $\begin{array}{llll} {\it Table \ 15:} & {\it Mean \ Probability \ of \ Inclusion \ for \ True \ Non-zero \ Paramters} \end{array}$

Model	X1	X51	X101	X151	X201	X251
Lasso	0.0100	0.0076	0.0078	0.0098	0.0110	0.0076
EN	0.0176	0.0142	0.0112	0.0132	0.0154	0.0140
SSL	0.0164	0.0148	0.0132	0.0160	0.0162	0.0132
SSEN	0.0218	0.0216	0.0180	0.0212	0.0224	0.0216

3.3 B6_B012025 Summary

Table 16: Mean Model Fitness: X1k_B6_BV012025

model	s0	s1	deviance avg_acc	c pce	ppv_mac	r o n_macr	of1_macro	oppv_mic	rosn_micr	of1_micro
Lasso	0.1001	0.1001	216.7096 0.5998	0.4002	0.3635	0.3381	0.3500	0.3996	0.3996	0.3996
EN	0.1937	0.1937	$216.6557 \ 0.6000$	0.4000	0.3621	0.3386	0.3501	0.4000	0.4000	0.4000
SSL	0.0308	2.0642	$217.2401\ 0.5987$	0.4013	0.3636	0.3406	0.3533	0.3981	0.3981	0.3981
SSEN	0.0180	1.9542	$217.1768 \ 0.5992$	0.4008	0.3673	0.3406	0.3563	0.3987	0.3987	0.3987

Table 17: SD Model Fitness: $X1k_B6_BV012025$

model	s0	s1	deviance	avg_ace	c pce	ppv_mac	r e n_macr	of1_macro	oppv_micr	csn_micro	of1_micro
Lasso	0.0172	0.0172	4.6489	0.0341	0.0341	0.1135	0.0227	0.0665	0.0511	0.0511	0.0511
EN	0.0368	0.0368	4.6383	0.0341	0.0341	0.1122	0.0236	0.0674	0.0512	0.0512	0.0512
SSL	0.0198	1.4328	5.3637	0.0341	0.0341	0.0989	0.0278	0.0620	0.0512	0.0512	0.0512
SSEN	0.0086	1.3963	5.2928	0.0341	0.0341	0.0958	0.0271	0.0606	0.0511	0.0511	0.0511

Table 18: Median Model Fitness: $X1k_B6_BV012025$

model	s0	s1	deviance	avg_acc	pce	ppv_mac	r e n_macr	of1_macrop	pv_microsn_	$_microf1$	_micro
Lasso	0.1029	0.1029	216.6698	0.6	0.4	0.3510	0.3333	0.3471	0.4	0.4	0.4
EN	0.1994	0.1994	216.6339	0.6	0.4	0.3487	0.3333	0.3483	0.4	0.4	0.4
SSL	0.0400	1.0000	216.9986	0.6	0.4	0.3527	0.3333	0.3500	0.4	0.4	0.4
SSEN	0.0200	1.0000	216.9323	0.6	0.4	0.3593	0.3333	0.3552	0.4	0.4	0.4

Table 19: IQR Model Fitness: $X1k_B6_BV012025$

$\underline{\text{model}}$	s0	s1	deviance	avg_ac	c pce	ppv_mac	r e n_macr	of1_macro	oppv_mic	rosn_micro	of1_micro
Lasso	0.0254	0.0254	5.5223	0.0417	0.0417	0.1449	0.0050	0.0932	0.0625	0.0625	0.0625
EN	0.0579	0.0579	5.5248	0.0400	0.0400	0.1497	0.0074	0.0992	0.0600	0.0600	0.0600
SSL	0.0400	3.0000	6.2586	0.0467	0.0467	0.1229	0.0126	0.0865	0.0700	0.0700	0.0700
SSEN	0.0200	3.0000	6.1332	0.0467	0.0467	0.1168	0.0120	0.0858	0.0700	0.0700	0.0700

Table 20: Mean False Positive Rates and Power: $X1k_B6_BV012025$

model	FDP	FWE	Power
Lasso	0.7166	0.7396	0.0338
EN	0.6555	0.6802	0.0557
SSL	0.5435	0.5608	0.0479
SSEN	0.5100	0.5262	0.0697

Table 21: SD False Positive Rates and Power: $X1k_B6_BV012025$

model	FDP	FWE	Power
Lasso	0.4308	0.4389	0.0789
EN	0.4536	0.4664	0.1038
SSL	0.4828	0.4963	0.0984
SSEN	0.4849	0.4994	0.1235

Table 22: Median False Positive Rates and Power: $X1k_B6_BV012025$

model	FDP	FWE	Power
Lasso	1.0000	1	0
EN	0.9565	1	0
SSL	0.9000	1	0
SSEN	0.8889	1	0

Table 23: IQR False Positive Rates and Power: $X1k_B6_BV012025$

model	FDP	FWE	Power
Lasso	1.0000	1	0.0000
EN	1.0000	1	0.1667
SSL	1.0000	1	0.0000
SSEN	0.9828	1	0.1667

Table 24: Mean Probability of Inclusion for True Non-zero Paramters

Model	X1	X51	X101	X151	X201	X251
Lasso	0.0372	0.0328	0.0314	0.0354	0.0314	0.0348
EN	0.0630	0.0548	0.0512	0.0560	0.0532	0.0560
SSL	0.0488	0.0454	0.0454	0.0514	0.0502	0.0464
SSEN	0.0740	0.0662	0.0650	0.0740	0.0706	0.0686

Table 25: Probability of Inclusion for Relevant/Irrelevant Parameters: X1k_B6_BV012025

Model	Relevance	Mean	SD
Lasso	Irrelevant	0.0056	0.0038
EN	Irrelevant	0.0099	0.0067
SSL	Irrelevant	0.0103	0.0044
SSEN	Irrelevant	0.0163	0.0076
Lasso	Relevant	0.0338	0.0024
EN	Relevant	0.0557	0.0040
SSL	Relevant	0.0479	0.0026
SSEN	Relevant	0.0697	0.0038

$3.4 \quad B6_BV012025 \ Summary \ (Reduced \ for \ Manuscript)$

Table 26: Mean Model Fitness: $X1k_B6_BV012025$

model	s0	s1	deviance	FDP	Power
Lasso	0.1001	0.1001	216.7096	0.7166	0.0338
EN	0.1937	0.1937	216.6557	0.6555	0.0557
SSL	0.0308	2.0642	217.2401	0.5435	0.0479
SSEN	0.0180	1.9542	217.1768	0.5100	0.0697

Table 27: Mean Probability of Inclusion for True Non-zero Paramters

Model	X1	X51	X101	X151	X201	X251
Lasso	0.0372	0.0328	0.0314	0.0354	0.0314	0.0348
EN	0.0630	0.0548	0.0512	0.0560	0.0532	0.0560
SSL	0.0488	0.0454	0.0454	0.0514	0.0502	0.0464
SSEN	0.0740	0.0662	0.0650	0.0740	0.0706	0.0686

$3.5 \quad B6_B025050 \ Summary$

Table 28: Mean Model Fitness: $X1k_B6_BV025050$

model	s0	s1	deviance avg_ac	c pce	ppv_mac	r o n_macr	of1_macro	oppv_mic	rosn_micr	of1_micro
Lasso	0.0770	0.0770	210.9040 0.6259	0.3741	0.4224	0.3923	0.4081	0.4389	0.4389	0.4389
EN	0.1445	0.1445	$210.6891\ 0.6268$	0.3732	0.4243	0.3935	0.4094	0.4402	0.4402	0.4402
SSL	0.0553	3.0590	$210.9524\;\; 0.6275$	0.3725	0.4210	0.4030	0.4129	0.4412	0.4412	0.4412
SSEN	0.0301	2.9224	$210.8284\ 0.6278$	0.3722	0.4231	0.4036	0.4145	0.4417	0.4417	0.4417

Table 29: SD Model Fitness: $X1k_B6_BV025050$

model	s0	s1	deviance	avg_ace	e pce	ppv_mac	r o n_macr	of1_macr	oppv_mic	rosn_micr	of1_micro
Lasso	0.0149	0.0149	6.5346	0.0351	0.0351	0.0876	0.0470	0.0591	0.0526	0.0526	0.0526
EN	0.0290	0.0290	6.4617	0.0348	0.0348	0.0882	0.0469	0.0593	0.0521	0.0521	0.0521
SSL	0.0132	1.3769	7.7893	0.0348	0.0348	0.0716	0.0489	0.0550	0.0522	0.0522	0.0522
SSEN	0.0067	1.4355	7.7913	0.0352	0.0352	0.0720	0.0490	0.0552	0.0527	0.0527	0.0527

Table 30: Median Model Fitness: $X1k_B6_BV025050$

model	s0	s1	deviance avg_acc	c pce	ppv_mac	r o n_macr	of1_macro	ppv_micro	n_micro	f1_micro
Lasso	0.0746	0.0746	211.1127 0.6267	0.3733	0.4212	0.3905	0.4091	0.44	0.44	0.44
EN	0.1397	0.1397	$210.8755\ 0.6267$	0.3733	0.4220	0.3914	0.4109	0.44	0.44	0.44
SSL	0.0600	4.0000	$211.0422\ 0.6267$	0.3733	0.4201	0.4019	0.4134	0.44	0.44	0.44
SSEN	0.0300	4.0000	$210.9342\ 0.6267$	0.3733	0.4223	0.4034	0.4155	0.44	0.44	0.44

Table 31: IQR Model Fitness: $X1k_B6_BV025050$

model	s0	s1	deviance	avg_acc	pce	ppv_mac	r e n_macr	of1_macro	ppv_micro	n_micro	f1_micro
Lasso	0.0167	0.0167	8.4828	0.0467	0.0467	0.1064	0.0690	0.0775	0.07	0.07	0.07
EN	0.0318	0.0318	8.4177	0.0467	0.0467	0.1057	0.0686	0.0787	0.07	0.07	0.07
SSL	0.0100	3.0000	9.9019	0.0467	0.0467	0.0899	0.0673	0.0726	0.07	0.07	0.07
SSEN	0.0000	3.0000	10.0360	0.0467	0.0467	0.0886	0.0690	0.0723	0.07	0.07	0.07

Table 32: Mean False Positive Rates and Power: $X1k_B6_BV025050$

model	FDP	FWE	Power
Lasso	0.8917	0.9802	0.2519
EN	0.9067	0.9808	0.3799
SSL	0.9016	0.9616	0.2955
SSEN	0.9139	0.9656	0.4264

Table 33: SD False Positive Rates and Power: $X1k_B6_BV025050$

model	FDP	FWE	Power
Lasso	0.1519	0.1393	0.1894
EN	0.1384	0.1372	0.2158
SSL	0.1867	0.1922	0.1977
SSEN	0.1758	0.1823	0.2211

Table 34: Median False Positive Rates and Power: $X1k_B6_BV025050$

model	FDP	FWE	Power
Lasso	0.9231	1	0.1667
EN	0.9322	1	0.3333
SSL	0.9444	1	0.3333
SSEN	0.9500	1	0.5000

Table 35: IQR False Positive Rates and Power: $X1k_B6_BV025050$

model	FDP	FWE	Power
Lasso	0.0934	0	0.1667
EN	0.0583	0	0.3333
SSL	0.0570	0	0.3333
SSEN	0.0357	0	0.1667

Table 36: Mean Probability of Inclusion for True Non-zero Paramters

Model	X1	X51	X101	X151	X201	X251
Lasso	0.2514	0.2522	0.2492	0.2492	0.2504	0.2588
EN	0.3772	0.3792	0.3800	0.3770	0.3778	0.3880
SSL	0.2922	0.2900	0.2916	0.2964	0.2982	0.3046
SSEN	0.4196	0.4238	0.4292	0.4270	0.4286	0.4302

Table 37: Probability of Inclusion for Relevant/Irrelevant Parameters: $X1k_B6_BV025050$

Model	Relevance	Mean	SD
Lasso	Irrelevant	0.0181	0.0174
EN	Irrelevant	0.0327	0.0347
SSL	Irrelevant	0.0302	0.0184
SSEN	Irrelevant	0.0513	0.0356
Lasso	Relevant	0.2519	0.0036
EN	Relevant	0.3799	0.0042
SSL	Relevant	0.2955	0.0054
SSEN	Relevant	0.4264	0.0040

3.6 B6_BV025050 Summary (Reduced for Manuscript)

Table 38: Mean Model Fitness: $X1k_B6_BV025050$

model	s0	s1	deviance	FDP	Power
Lasso	0.0770	0.0770	210.9040	0.8917	0.2519
EN	0.1445	0.1445	210.6891	0.9067	0.3799
SSL	0.0553	3.0590	210.9524	0.9016	0.2955
SSEN	0.0301	2.9224	210.8284	0.9139	0.4264

 $\begin{array}{lll} {\it Table \ 39:} & {\it Mean \ Probability \ of \ Inclusion \ for \ True \ Non-zero \ Paramters} \end{array}$

Model	X1	X51	X101	X151	X201	X251
Lasso	0.2514	0.2522	0.2492	0.2492	0.2504	0.2588
EN	0.3772	0.3792	0.3800	0.3770	0.3778	0.3880
SSL	0.2922	0.2900	0.2916	0.2964	0.2982	0.3046
SSEN	0.4196	0.4238	0.4292	0.4270	0.4286	0.4302

3.7 Summary (Reduced for Manuscript)

scenario	model	s0	s1	deviance	FDP	Power
Scenario 1	Lasso	0.1031141	0.1031141	216.8022	0.6437452	0.0089667

scenario	model	s0	s1	deviance	FDP	Power
Scenario 1	EN	0.2020326	0.2020326	216.7978	0.5637058	0.0142667
Scenario 1	SSL	0.0242820	1.7258000	217.2746	0.4052290	0.0149667
Scenario 1	SSEN	0.0151680	1.6154000	217.2341	0.3661322	0.0211000
Scenario 2	Lasso	0.1000553	0.1000553	216.7096	0.7166263	0.0338333
Scenario 2	EN	0.1936949	0.1936949	216.6557	0.6555374	0.0557000
Scenario 2	SSL	0.0307700	2.0642000	217.2401	0.5434850	0.0479333
Scenario 2	SSEN	0.0179940	1.9542000	217.1768	0.5099825	0.0697333
Scenario 3	Lasso	0.0770487	0.0770487	210.9040	0.8917342	0.2518667
Scenario 3	EN	0.1445050	0.1445050	210.6891	0.9066802	0.3798667
Scenario 3	SSL	0.0553260	3.0590000	210.9524	0.9015955	0.2955000
Scenario 3	SSEN	0.0301220	2.9224000	210.8284	0.9139263	0.4264000

Scenario	Model	X1	X51	X101	X151	X201	X251
Scenario 1	Lasso	0.0100	0.0076	0.0078	0.0098	0.0110	0.0076
Scenario 1	EN	0.0176	0.0142	0.0112	0.0132	0.0154	0.0140
Scenario 1	SSL	0.0164	0.0148	0.0132	0.0160	0.0162	0.0132
Scenario 1	SSEN	0.0218	0.0216	0.0180	0.0212	0.0224	0.0216
Scenario 2	Lasso	0.0372	0.0328	0.0314	0.0354	0.0314	0.0348
Scenario 2	EN	0.0630	0.0548	0.0512	0.0560	0.0532	0.0560
Scenario 2	SSL	0.0488	0.0454	0.0454	0.0514	0.0502	0.0464
Scenario 2	SSEN	0.0740	0.0662	0.0650	0.0740	0.0706	0.0686
Scenario 3	Lasso	0.2514	0.2522	0.2492	0.2492	0.2504	0.2588
Scenario 3	EN	0.3772	0.3792	0.3800	0.3770	0.3778	0.3880
Scenario 3	SSL	0.2922	0.2900	0.2916	0.2964	0.2982	0.3046
Scenario 3	SSEN	0.4196	0.4238	0.4292	0.4270	0.4286	0.4302

4 Plots

4.1 Inclusion Probabilities

Warning: Using alpha for a discrete variable is not advised.

4.2 FDP

4.3 FWE

4.4 Power

