$11a_{54} (K11a_{54})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -2.90257 \times 10^{44} u^{68} + 2.07176 \times 10^{44} u^{67} + \dots + 1.04013 \times 10^{45} b - 2.13904 \times 10^{44}, \\ -5.37164 \times 10^{44} u^{68} + 1.14801 \times 10^{45} u^{67} + \dots + 1.04013 \times 10^{45} a - 2.55357 \times 10^{45}, \ u^{69} - u^{68} + \dots + 5u + 1.04013 \times 10^{45} u^{68} + 1.04801 \times 10^{45} u^{68} + \dots + 5u + 1.04013 \times 10^{45} u^{68} + 1.04801 \times 10^{45} u^{68} + \dots + 5u + 1.04013 \times 10^{45} u^{68} + 1.04801 \times 10^{45} u^{68} + \dots + 5u + 1.04013 \times 10^{45} u^{68} + \dots +$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 69 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle -2.90 \times 10^{44} u^{68} + 2.07 \times 10^{44} u^{67} + \cdots + 1.04 \times 10^{45} b - 2.14 \times 10^{44}, \ -5.37 \times 10^{44} u^{68} + 1.15 \times 10^{45} u^{67} + \cdots + 1.04 \times 10^{45} a - 2.55 \times 10^{45}, \ u^{69} - u^{68} + \cdots + 5u + 1 \rangle$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.516440u^{68} - 1.10372u^{67} + \dots - 0.812598u + 2.45506 \\ 0.279059u^{68} - 0.199183u^{67} + \dots - 2.53271u + 0.205651 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.237382u^{68} - 0.904533u^{67} + \dots + 1.72012u + 2.24940 \\ 0.279059u^{68} - 0.199183u^{67} + \dots - 2.53271u + 0.205651 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.842780u^{68} - 2.31989u^{67} + \dots + 2.72044u + 1.93889 \\ 0.303058u^{68} - 0.207469u^{67} + \dots - 1.50616u - 0.583069 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.747601u^{68} - 2.15154u^{67} + \dots + 1.25494u + 1.59403 \\ 0.253468u^{68} - 0.180079u^{67} + \dots - 2.44759u - 0.761967 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{5} + 2u^{3} + u \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.932153u^{68} - 1.40919u^{67} + \dots + 9.77228u + 1.12782 \\ 0.109511u^{68} - 0.0467228u^{67} + \dots + 3.97590u + 0.0969479 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.932153u^{68} - 1.40919u^{67} + \dots + 9.77228u + 1.12782 \\ 0.109511u^{68} - 0.0467228u^{67} + \dots + 3.97590u + 0.0969479 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-5.57648u^{68} + 4.72032u^{67} + \cdots + 8.97518u + 3.36143$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{69} + u^{68} + \dots + 7u - 1$
c_2	$u^{69} + 27u^{68} + \dots + 7u - 1$
<i>c</i> ₃	$u^{69} + 7u^{68} + \dots + u + 1$
c_5, c_6, c_9	$u^{69} + u^{68} + \dots + 5u - 1$
	$u^{69} - u^{68} + \dots - 375u - 103$
c ₈	$u^{69} + u^{68} + \dots + 137u - 119$
c_{10}	$u^{69} - u^{68} + \dots + 12027u - 1217$
c_{11}	$u^{69} + 5u^{68} + \dots - u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{69} + 27y^{68} + \dots + 7y - 1$
c_2	$y^{69} + 31y^{68} + \dots + 611y - 1$
<i>c</i> ₃	$y^{69} - 5y^{68} + \dots + 7y - 1$
c_5, c_6, c_9	$y^{69} + 59y^{68} + \dots - 5y - 1$
	$y^{69} + 83y^{68} + \dots - 603653y - 10609$
<i>C</i> ₈	$y^{69} + 59y^{68} + \dots - 207093y - 14161$
c_{10}	$y^{69} - 25y^{68} + \dots - 20237733y - 1481089$
c_{11}	$y^{69} + 7y^{68} + \dots - 5y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\int \sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.474255 + 0.934497I		
a = 0.022719 + 0.709370I	1.05725 - 7.83679I	0
b = -0.674946 + 1.055980I		
u = 0.474255 - 0.934497I		
a = 0.022719 - 0.709370I	1.05725 + 7.83679I	0
b = -0.674946 - 1.055980I		
u = -0.544160 + 0.765066I		
a = 0.116423 - 0.432919I	1.57123 - 1.30415I	10.11030 + 4.92987I
b = -0.607578 - 0.720494I		
u = -0.544160 - 0.765066I		
a = 0.116423 + 0.432919I	1.57123 + 1.30415I	10.11030 - 4.92987I
b = -0.607578 + 0.720494I		
u = -0.878362 + 0.307679I		
a = 1.22977 + 0.73621I	3.10224 - 3.65612I	14.6967 + 8.0899I
b = -0.604946 + 0.875247I		
u = -0.878362 - 0.307679I		
a = 1.22977 - 0.73621I	3.10224 + 3.65612I	14.6967 - 8.0899I
b = -0.604946 - 0.875247I		
u = 0.398272 + 0.993300I		
a = 0.482088 - 0.750712I	2.48274 - 2.22918I	0
b = -0.821583 - 0.588202I		
u = 0.398272 - 0.993300I		
a = 0.482088 + 0.750712I	2.48274 + 2.22918I	0
b = -0.821583 + 0.588202I		
u = -0.905812 + 0.191744I		
a = 0.496640 + 0.086483I	3.31253 + 1.10291I	16.0867 + 0.I
b = -0.597458 - 0.808717I		
u = -0.905812 - 0.191744I		
a = 0.496640 - 0.086483I	3.31253 - 1.10291I	16.0867 + 0.I
b = -0.597458 + 0.808717I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.541206 + 0.947022I		
a = 0.800012 + 1.062110I	0.96001 - 6.16584I	0
b = -0.618942 + 0.924861I		
u = -0.541206 - 0.947022I		
a = 0.800012 - 1.062110I	0.96001 + 6.16584I	0
b = -0.618942 - 0.924861I		
u = 0.829619 + 0.237108I		
a = 1.54992 - 0.77867I	3.23009 + 12.46900I	6.85262 - 8.75626I
b = -0.692620 - 1.100100I		
u = 0.829619 - 0.237108I		
a = 1.54992 + 0.77867I	3.23009 - 12.46900I	6.85262 + 8.75626I
b = -0.692620 + 1.100100I		
u = 0.807997 + 0.195414I		
a = 0.482484 - 0.581590I	4.94303 + 6.60072I	9.45233 - 4.66175I
b = -0.899108 + 0.540063I		
u = 0.807997 - 0.195414I		
a = 0.482484 + 0.581590I	4.94303 - 6.60072I	9.45233 + 4.66175I
b = -0.899108 - 0.540063I		
u = 0.213572 + 1.224400I		
a = 0.477570 - 0.495136I	-0.91382 - 1.30908I	0
b = 0.821651 - 1.021950I		
u = 0.213572 - 1.224400I		
a = 0.477570 + 0.495136I	-0.91382 + 1.30908I	0
b = 0.821651 + 1.021950I		
u = 0.098130 + 1.263710I		
a = 0.91347 - 2.06956I	-4.28780 - 2.43362I	0
b = 0.389681 - 1.187680I		
u = 0.098130 - 1.263710I		
a = 0.91347 + 2.06956I	-4.28780 + 2.43362I	0
b = 0.389681 + 1.187680I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.261774 + 1.251380I		
a = 0.711660 + 0.599885I	0.61350 + 1.71624I	0
b = 1.010780 - 0.331574I		
u = 0.261774 - 1.251380I		
a = 0.711660 - 0.599885I	0.61350 - 1.71624I	0
b = 1.010780 + 0.331574I		
u = -0.228426 + 1.276370I		
a = -0.60596 - 1.62424I	-2.50160 - 0.87317I	0
b = 0.551106 + 0.795185I		
u = -0.228426 - 1.276370I		
a = -0.60596 + 1.62424I	-2.50160 + 0.87317I	0
b = 0.551106 - 0.795185I		
u = 0.667506 + 0.220812I		
a = -0.614338 + 0.663614I	-1.87888 + 4.75178I	3.16509 - 7.67915I
b = 0.083389 + 1.231880I		
u = 0.667506 - 0.220812I		
a = -0.614338 - 0.663614I	-1.87888 - 4.75178I	3.16509 + 7.67915I
b = 0.083389 - 1.231880I		
u = -0.259393 + 1.276300I		
a = 0.507456 - 0.058898I	-2.37890 - 3.34092I	0
b = 0.254514 - 0.249135I		
u = -0.259393 - 1.276300I		
a = 0.507456 + 0.058898I	-2.37890 + 3.34092I	0
b = 0.254514 + 0.249135I		
u = 0.696765 + 0.023683I		
a = -0.911462 - 0.318031I	4.38283 + 1.75150I	16.4419 - 3.6342I
b = 0.985003 + 0.485819I		
u = 0.696765 - 0.023683I		
a = -0.911462 + 0.318031I	4.38283 - 1.75150I	16.4419 + 3.6342I
b = 0.985003 - 0.485819I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.274685 + 1.282870I		
a = -0.160254 + 1.132300I	0.32305 + 5.26485I	0
b = 1.013220 + 0.613592I		
u = 0.274685 - 1.282870I		
a = -0.160254 - 1.132300I	0.32305 - 5.26485I	0
b = 1.013220 - 0.613592I		
u = 0.675565 + 0.090170I		
a = -1.56040 + 0.21247I	2.46511 + 4.51237I	11.3986 - 8.8654I
b = 0.741295 + 1.123290I		
u = 0.675565 - 0.090170I		
a = -1.56040 - 0.21247I	2.46511 - 4.51237I	11.3986 + 8.8654I
b = 0.741295 - 1.123290I		
u = -0.167578 + 1.317380I		
a = 0.89036 + 3.40700I	-3.74691 - 0.61271I	0
b = 0.380257 + 0.909412I		
u = -0.167578 - 1.317380I		
a = 0.89036 - 3.40700I	-3.74691 + 0.61271I	0
b = 0.380257 - 0.909412I		
u = -0.241087 + 1.312890I		
a = -3.38443 - 2.06516I	-2.86842 - 5.27183I	0
b = 0.546073 - 0.910104I		
u = -0.241087 - 1.312890I	0.00040 . F.054007	
a = -3.38443 + 2.06516I	-2.86842 + 5.27183I	0
b = 0.546073 + 0.910104I		
u = -0.663268	1.60419	F 90000
a = 0.468971	1.60413	5.38980
b = 0.189635		
u = 0.323648 + 0.563013I	0.01500 1.400507	1 46000 + 0 005055
a = 1.39577 - 1.31325I	-3.31539 - 1.42653I	-1.46022 + 0.90595I
b = -0.017291 - 1.055820I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.323648 - 0.563013I		
a = 1.39577 + 1.31325I	-3.31539 + 1.42653I	-1.46022 - 0.90595I
b = -0.017291 + 1.055820I		
u = 0.275545 + 1.322890I		
a = -1.11206 + 2.21999I	-1.97766 + 7.97069I	0
b = 0.716579 + 1.203070I		
u = 0.275545 - 1.322890I		
a = -1.11206 - 2.21999I	-1.97766 - 7.97069I	0
b = 0.716579 - 1.203070I		
u = -0.616761 + 0.031191I		
a = -4.35476 + 1.75506I	1.37720 - 2.17002I	-20.8441 - 10.9028I
b = 0.540656 - 0.860419I		
u = -0.616761 - 0.031191I		
a = -4.35476 - 1.75506I	1.37720 + 2.17002I	-20.8441 + 10.9028I
b = 0.540656 + 0.860419I		
u = -0.380195 + 1.353450I		
a = -0.173256 - 0.145320I	-1.50104 - 3.50534I	0
b = -0.568825 - 0.669802I		
u = -0.380195 - 1.353450I		
a = -0.173256 + 0.145320I	-1.50104 + 3.50534I	0
b = -0.568825 + 0.669802I		
u = 0.276062 + 1.378580I		
a = -0.90488 + 2.16282I	-6.94265 + 8.21032I	0
b = 0.036581 + 1.312140I		
u = 0.276062 - 1.378580I		
a = -0.90488 - 2.16282I	-6.94265 - 8.21032I	0
b = 0.036581 - 1.312140I		
u = -0.04736 + 1.41955I		
a = -0.293334 - 0.561445I	-5.27570 - 2.79528I	0
b = -0.634036 - 0.280540I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.04736 - 1.41955I		
a = -0.293334 + 0.561445I	-5.27570 + 2.79528I	0
b = -0.634036 + 0.280540I		
u = 0.33764 + 1.38231I		
a = -0.663824 - 0.414973I	-0.04985 + 10.73450I	0
b = -0.939775 + 0.500176I		
u = 0.33764 - 1.38231I		
a = -0.663824 + 0.414973I	-0.04985 - 10.73450I	0
b = -0.939775 - 0.500176I		
u = 0.07786 + 1.42827I		
a = 0.66709 - 2.40876I	-9.60907 - 0.11401I	0
b = -0.194887 - 1.153270I		
u = 0.07786 - 1.42827I		
a = 0.66709 + 2.40876I	-9.60907 + 0.11401I	0
b = -0.194887 + 1.153270I		
u = -0.21019 + 1.41955I		
a = 0.01506 - 1.66109I	-4.90709 - 3.41016I	0
b = -0.155367 - 0.798808I		
u = -0.21019 - 1.41955I		
a = 0.01506 + 1.66109I	-4.90709 + 3.41016I	0
b = -0.155367 + 0.798808I		
u = 0.34352 + 1.40634I		
a = 1.21013 - 2.12096I	-1.9859 + 16.7029I	0
b = -0.691729 - 1.130530I		
u = 0.34352 - 1.40634I		
a = 1.21013 + 2.12096I	-1.9859 - 16.7029I	0
b = -0.691729 + 1.130530I		
u = -0.37055 + 1.42903I		
a = 1.04218 + 1.70770I	-2.38282 - 8.18392I	0
b = -0.591164 + 0.961287I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.37055 - 1.42903I		
a = 1.04218 - 1.70770I	-2.38282 + 8.18392I	0
b = -0.591164 - 0.961287I		
u = -0.03392 + 1.50679I		
a = -0.00525 + 2.05953I	-7.30954 - 7.36946I	0
b = -0.557159 + 1.062340I		
u = -0.03392 - 1.50679I		
a = -0.00525 - 2.05953I	-7.30954 + 7.36946I	0
b = -0.557159 - 1.062340I		
u = -0.370929 + 0.272771I		
a = 1.030350 - 0.760360I	0.572882 - 1.093980I	6.17226 + 6.06480I
b = 0.180375 - 0.359379I		
u = -0.370929 - 0.272771I	_	
a = 1.030350 + 0.760360I	0.572882 + 1.093980I	6.17226 - 6.06480I
b = 0.180375 + 0.359379I		
u = -0.342089 + 0.112981I		
a = 2.59464 + 1.55121I	0.64094 + 1.45108I	5.67805 - 6.58266I
b = 0.476152 + 0.761801I		
u = -0.342089 - 0.112981I	0.01001 1.151007	F 0=00F . 0 F0000F
a = 2.59464 - 1.55121I	0.64094 - 1.45108I	5.67805 + 6.58266I
b = 0.476152 - 0.761801I		
u = -0.062768 + 0.268464I	0.07000 0.779101	0.01744 + 1.004007
a = 1.87391 - 1.74824I	-0.07982 - 2.77352I	2.01744 + 1.22489I
b = 0.545287 - 0.961436I $u = -0.062768 - 0.268464I$		
	0.07000 0.772501	9.01744 1.994907
a = 1.87391 + 1.74824I	-0.07982 + 2.77352I	2.01744 - 1.22489I
b = 0.545287 + 0.961436I		

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{69} + u^{68} + \dots + 7u - 1$
c_2	$u^{69} + 27u^{68} + \dots + 7u - 1$
c_3	$u^{69} + 7u^{68} + \dots + u + 1$
c_5, c_6, c_9	$u^{69} + u^{68} + \dots + 5u - 1$
<i>c</i> ₇	$u^{69} - u^{68} + \dots - 375u - 103$
<i>C</i> ₈	$u^{69} + u^{68} + \dots + 137u - 119$
c_{10}	$u^{69} - u^{68} + \dots + 12027u - 1217$
c_{11}	$u^{69} + 5u^{68} + \dots - u - 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{69} + 27y^{68} + \dots + 7y - 1$
c_2	$y^{69} + 31y^{68} + \dots + 611y - 1$
<i>c</i> ₃	$y^{69} - 5y^{68} + \dots + 7y - 1$
c_5, c_6, c_9	$y^{69} + 59y^{68} + \dots - 5y - 1$
	$y^{69} + 83y^{68} + \dots - 603653y - 10609$
<i>c</i> ₈	$y^{69} + 59y^{68} + \dots - 207093y - 14161$
c_{10}	$y^{69} - 25y^{68} + \dots - 20237733y - 1481089$
c_{11}	$y^{69} + 7y^{68} + \dots - 5y - 1$