Miller-Rabin-Test

000

Primzahltest Janik Mabboux - Mathias Begert

Inhalt

- Einleitung
 - Primzahltests
 - Miller-Rabin-Test
- Grundlagen
 - Der kleine fermatsche Satz
 - Ansatz
- Funktionsweise
- Beispiel
- Quellen / Fragen

Einleitung - Primzahltests

- Asymmetrische Verschlüsselungsverfahren (z.B. RSA) verwenden grosse Primzahlen
 - etwa 1000 Stellen in dualer Form

- Miller-Rabin oder auch Miller-Selfridge-Rabin-Test
 - 1974 von John L. Selfridge bereits verwendet
 - 1976 von Gary L. Miller und Michael O. Rabin veröffentlicht
- Probabilistischer Primzahltest (Monte-Carlo-Algorithmus)
- Auch deterministische Variante möglich
- Fehlerwahrscheinlichkeit nach einem Test ist 1/4
- Starke Pseudoprimzahlen

Der kleine fermatsche Satz

$$a^{p-1} \equiv 1 \pmod{p}$$

Wenn p eine Primzahl ist, dann muss dieser Satz für ein beliebiges a gelten.

Dies kann jedoch auch für nicht prime Zahlen zutreffen: Beispiel: p=105 (nicht prim) und a=8

Carmichael-Zahlen

Pierre de Fermat

Ansatz

Beispiel n=105 (nicht prim) und a=8

hier gilt auch $a^{n-1} \equiv 1 \pmod{n}$

Vergleich mit einer echten Primzahl mit verschiedenen "Zeugen" a n=89

Rechts neben einer 1 steht stets eine -1 oder eine weitere 1

	a ^{(n-1)/8}	a ^{(n-1)/4}	a ^{(n-1)/2}	a ⁿ⁻¹
	813	8 ²⁶	8 ⁵²	8104
mod 105	8	64	1	1

	a ^{(n-1)/8}	a ^{(n-1)/4}	a ^{(n-1)/2}	a ⁿ⁻¹
	a ¹¹	a ²²	a ⁴⁴	a ⁸⁸
a=3	37	34	-1	1
a=5	55	-1	1	1
a=2	1	1	1	1

Funktionsweise Algorithmus - Vorbereitung

- 1. Wir definieren n als die zu testende Zahl
- 2. Nun wählen wir die ganzzahligen d (ungerade) und j, so dass gilt:

$$n-1=d\cdot 2^{j}$$

Beispiel für n=13 j = 0, d = 12 j = 1, d = 6 j = 2, d = 3

Funktionsweise Algorithmus - Test

Nun prüft man mit beliebig vielen, beliebig gewählten $a \in \{2,3,...,n-2\}$

ob entweder

$$a^d \equiv 1 \pmod{n}$$

oder für ein r mit $0 \le r < j$

$$a^{d \cdot 2^r} \equiv -1 \pmod{n}$$

gilt.

Beispiel

Nun werden wir den Miller-Rabin-Test anhand eines Beispiels testen.

Beispiel

Fragen?

Quellenverzeichnis

- https://de.wikipedia.org/wiki/Miller-Rabin-Test
- G. Teschl und S. Teschl, Mathematik für Informatiker, Band 1, 4. Auflage, Springer
- http://www.austromath.at/medienvielfalt/materialien/krypto/lernpfad/content/k prim 106.htm
- https://de.wikipedia.org/wiki/Primzahltest
- https://www.youtube.com/watch?v=Tqq6hxxnhEs (Weitz / HAW Hamburg, Der Miller-Rabin-Test)