Sampling and Inference for Beta Neutral-to-the-Left Models of Sparse Networks

Benjamin Bloem-Reddy, Adam Foster, Emile Mathieu, Yee Whye Teh

Department of Statistics, University of Oxford

Models for sparse networks

Sparsity

Number of edges

Power law degree distribution

Sparsity and power law

Empirical study: Ask Ubuntu

Empirical study: UCI social network

Exchangeable models

A sequence of random variables $X_1, X_2, ...$ is *exchangeable* if for a finite permutation σ ,

$$X_{\sigma(1)}, X_{\sigma(2)}, \dots$$

has the same distribution as the original sequence.

Exchangeable models lead to tractable inference (de Finetti).

dense

Sparse

Vertex exchangeable dense

Sparse

Vertex exchangeable Preferential attachment

Sparse

dense

Vertex exchangeable Edge exchangeable

Pitman Yor

Preferential attachment

Sparse dense Sublinear linear Edge exchangeable Preferential attachment Vertex \
exchangeable Pitman Yor

Beta Neutral-to-the-left Model [4]

New vertex

- 1. Generate arrival times $1 = T_1 < T_2 < T_3 < \dots$ in any way.
- 2. Generate ends of edges sequentially:

Is the next arrival time equal to n + 1? $\mathbb{P}[\to j] \propto \deg_{i,n} - \alpha$

Why a paper on sampling and inference for BNTL models?

Sampling and inference

Why a paper on sampling and inference for BNTL models?

- ► Inference is notoriously difficult for *non-exchangeable* structures
- ► Need to identify *exchangeable substructures* for tractable inference

Exchangeable substructure

Gibbs structure

The joint probability has Gibbs structure

$$P(\operatorname{graph}|T_1,T_2,...) = \prod_{j \in \operatorname{vertices}} P(\operatorname{choose} j \ d_j - 1 \ \operatorname{times} \ \operatorname{out} \ \operatorname{of} \ T - T_j \ \operatorname{trials} \)$$

- $ightharpoonup d_j = \text{degree of vertex } j$
- ightharpoonup T = final time
- ▶ T_j = arrival time of vertex j

Available data

Observation	Unobserved variables		
Entire history	Model variables		
Degrees in arrival order	Model variables, arrival times		
Snapshot	Model variables, arrival times, arrival order		

Gibbs sampler

Variable	Gibbs sampling scheme		
Model variables	Analytic using Gibbs structure		
Arrival times	Update each arrival time separately		
Arrival order	Initialise in descending degree order use M-H with adjacent swap proposal		

Experiments

► Gibbs: parameter recovery

► Gibbs: scalability

▶ Point estimation with massive graphs

Parameter recovery

- ► Small graph
- ▶ Need to learn model variables, arrival times and arrival order

Gen. arrival distn.	Inference model	$ \hat{\alpha} - \alpha^* $	Pred. log-lik.
$\mathcal{PYP}(1.0, 0.75)$	$(au, \mathcal{PYP}(heta, au))$	0.046 ± 0.002	-2637.0 ± 0.1
$\mathcal{PYP}(1.0, 0.75)$	$(\alpha,Geom(eta))$	0.049 ± 0.004	-2660.5 ± 0.7
Geom(0.25)	$(au, \mathcal{PYP}(\theta, au))$	0.086 ± 0.002	-2386.8 ± 0.1
Geom(0.25)	$(\alpha,Geom(eta))$	$\textbf{0.043}\pm\textbf{0.003}$	$\textbf{-2382.6}\pm\textbf{0.2}$

Scalability

- ► Runtime linear in #edges
- ► Most expensive Gibbs update is for arrival times

MLEs for SNAP datasets

- ► SNAP datasets
- ▶ Fit: coupled PYP, uncoupled PYP and $Geom(\beta)$ arrivals

MLEs for SNAP datasets

Ask Ubuntu

 \blacktriangleright Estimates of \mathcal{PYP} parameters vary significantly between coupled and uncoupled

$$\hat{\theta}, \hat{\alpha} = 18080, 0.25$$

- $\hat{\theta}, \hat{\alpha}, \hat{\tau} = -0.99, -2.54, 0.99$
- ► Edge exchangeable models misspecified
- Non-exchangeable BNTL provide better fit

Conclusion

- ▶ BNTL models are *flexible*
- ▶ Inference was challenging due to non-exchangeability

Conclusion

- ▶ BNTL models are flexible
- ▶ Inference was challenging due to non-exchangeability
- ▶ BNTL models are *tractable* due to exchangeable substructure

Thank you

- Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data, June 2014.
- [2] Diana Cai, Trevor Campbell, and Tamara Broderick. Edge-exchangeable graphs and sparsity. In Advances in Neural Information Processing Systems, pages 4249–4257, 2016.
- [3] Harry Crane and Walter Dempsey. Edge exchangeable models for interaction networks. Journal of the American Statistical Association, 2017. In press.
- [4] Benjamin Bloem-Reddy and Peter Orbanz. Preferential attachment and vertex arrival times. arXiv preprint arXiv:1710.02159, 2017.