Mètodes de continuació.

Continuació dels zeros d'un sistema no lineal d'equacions

Considerem un sistema d'equacions depenent d'un paràmetre p

$$f(x,p) = 0, \quad x \in \mathcal{U} \subset \mathbb{R}^n, \ p \in [a,b], \ f(x,p) \in \mathbb{R}^n.$$
 (1)

Estem interessats en trobar les seves solucions i com depenen del paràmetre p. Els procediments per fer-ho s'anomenen mètodes de continuació.

Per exemple, si

$$\dot{x} = f(x, p)$$

és un sistema autònom d'equacions diferencials ordinàries (EDOs), el sistema (1) ens proporciona els seus punts d'equilibri.

Suposarem que coneixem una solució inicial de (1), (x^0, p^0) . Podem suposar, a més, que la corba (x, p) està parametritzada per la seva longitud d'arc, s. Es a dir (x, p) = (x(s), p(s)). Recordem que si tenim x = x(p), la relació entre p i s és

$$s = \int_{p^0}^p \sqrt{1 + \|dx/dp\|^2} dp.$$

Això defineix s=s(p), amb $s(p^0)=0$. Com que $ds/dp=\sqrt{1+\|dx/dp\|^2}>0$ podem invertir la funció per tenir p=p(s) i escriure (x(s),p(s))=(x(p(s)),p(s)). Aquesta parametrització permet descriure fàcilment els possibles punts de retrocés.

Volem determinar simultàniament x(s) i p(s) de manera que siguin solució de (1). Ens falta una equació h(x,p)=0 (en molts casos lineal), per completar el sistema que determini una única parella (x,p),

$$f(x,p) = 0,$$

$$h(x,p) = 0.$$

Els mètodes de continuació són normalment del tipus predictor-corrector. Si (x^i,p^i) , $i=0,\cdots,j$ són les solucions prèviament obtingudes sobre la corba (x(s),p(s)), es construeix a partir d'elles una condició inicial (x_0^{j+1},p_0^{j+1}) per a (x^{j+1},p^{j+1}) (predicció), que es refina pel mètode de Newton (correcció).

Cada possible h(x, p) = 0 i cada mètode de fer la predicció determina un mètode de continuació.

El punt inicial (x_0^{j+1}, p_0^{j+1}) es pot predir

- Agafant la darrera solució obtinguda sobre la corba, $(x_0^{j+1},p_0^{j+1})=(x^j,p^j)$.
- Per extrapolació polinomial de les solucions anteriors. Per exemple, si

$$(v_x^j, v_p^j) = \frac{(x^j, p^j) - (x^{j-1}, p^{j-1})}{\|(x^j, p^j) - (x^{j-1}, p^{j-1})\|}$$

podem fer la predicció

$$(x_0^{j+1}, p_0^{j+1}) = (x^j, p^j) + \Delta s_j(v_x^j, v_p^j)$$

(predicció per la secant) amb $\Delta s_j > 0$ un cert increment de s.

ullet Si (v_x^j,v_p^j) és la tangent (unitària) a la corba de solucions al punt (x^j,p^j) podem fer també

$$(x_0^{j+1}, p_0^{j+1}) = (x^j, p^j) + \Delta s_j(v_x^j, v_p^j).$$

Derivant f(x(s), p(s)) = 0 respecte de s tenim

$$D_x f(x(s), p(s)) \frac{dx}{ds} + D_p f(x(s), p(s)) \frac{dp}{ds} = 0, i$$

$$D_x f(x^j, p^j) v_x^j + D_p f(x^j, p^j) v_p^j = 0,$$

amb $\|v_x^j\|^2 + (v_p^j)^2 = 1$. Es pot calcular primer (v_x^j, v_p^j) imposant alguna altra condició lineal, per exemple $\langle (v_x^{j-1}, v_p^{j-1}), (v_x^j, v_p^j) \rangle = 1$ per preservar l'orientació de la corba, i després normalitzar el vector (v_x^j, v_p^j) obtingut. En el primer punt, (x^0, p^0) , podem agafar simplement, $(v_x^0, v_p^0) = (0, \pm 1)$ per començar la continuació incrementant o decrementant el paràmetre.

L'equació h(x,p)=0 corresponent a cada cas dels anteriors pot ser

- $h(x,p)=p-p^{j+1}$ amb $p^{j+1}=p^j+\Delta p^j$ el valor fixat per a p en la següent solució. Aquest mètode rep el nom de continuació respecte del paràmetre.
- $h(x,p)=\langle v_x^j,x-x^j\rangle+v_p^j(p-p^j)=\Delta s_j.$ Llavors h(x,p)=0 és l'equació d'un hiperplà que passa per (x_0^{j+1},p_0^{j+1}) , ja que $(x_0^{j+1},p_0^{j+1})=(x^j,p^j)+\Delta s_j(v_x^j,v_p^j)$ i

$$\langle v_x^j, x_0^{j+1} - x^j \rangle + v_p^j (p_0^{j+1} - p^j) = \langle v_x^j, x^j - x^j \rangle + v_p^j (p^j - p^j) + \Delta s_j (\langle v_x^j, v_x^j \rangle + v_p^j v_p^j) = \Delta s_j,$$

amb vector normal $(h_x^j, h_p^j) = (v_x^j, v_p^j).$

Aquesta condició diu que la projecció del vector $(x-x^j,p-p^j)$ sobre el vector unitari (v_x^j,v_p^j) val Δs_j .

• Igual que l'anterior. En aquest cas el mètode rep el nom de continuació pseudo-longitud d'arc.

Aplicant el mètode de Newton per al sistema

$$f(x,p) = 0,$$
$$h(x,p) = 0,$$

començant amb (x_0, p_0) , tenim (eliminant el superíndex j+1 per simplificar la notació)

$$(x_{k+1}, p_{k+1}) = (x_k, p_k) + (\Delta x_k, \Delta p_k),$$

amb

$$\begin{pmatrix} D_x f(x_k, p_k) & D_p f(x_k, p_k) \\ h_x(x_k, p_k)^\mathsf{T} & h_p(x_k, p_k) \end{pmatrix} \begin{pmatrix} \Delta x_k \\ \Delta p_k \end{pmatrix} = \begin{pmatrix} -f(x_k, p_k) \\ -h(x_k, p_k) \end{pmatrix},$$

essent (h_x, h_p) el vector normal a h(x, p) = 0.

Exemple. Si f(x,y) és una funció en dues variables, les seves corbes de nivell f(x,y)=c es poden calcular per continuació. Volem (x(s),y(s)) tal que f(x(s),y(s))=c. El paper del paràmetre p el fa ara qualsevol de les dues variables. Podem pensar tant en la corba x=x(y) o y=y(x) segons convingui i quan sigui possible.

Solucions estacionàries de l'equació de Kuramoto-Sivashinsky

Com a exemple, considerem l'equació en derivades parcials (EDP) per a u(t,x)

$$u_t + 4u_{xxxx} + \lambda(u_{xx} + uu_x) = 0$$

a l'interval $x\in [0,\pi]$, per a $t\geq 0$, amb condicions de contorn $u(0)=u(\pi)=0$, i amb $\lambda\geq 0$ un paràmetre. Cerquen solucions estacionàries (independents de $t,\,u_t=0$) de la forma $u(x)=\sum_{n=1}^\infty u_n\sin nx$. Si trunquem la serie a n=N, es a dir, si fem $u(x)=\sum_{n=1}^N u_n\sin nx$ i la substituïm a l'equació, s'obté un sistema de N equacions polinòmiques de segon grau per als coeficients $u_n,\,n=1,\cdots,N$. Les branques de solucions d'equilibri que bifurquen de la solució trivial u(x)=0 es poden veure a la figura, que correspon a $N=64,\,0\leq\lambda\leq300$, amb $\|u\|$ la norma euclídia del vector (u_1,\cdots,u_N) . La gran majoria de les solucions són inestables. No es mostren les branques de solucions periòdiques, quasi-periòdiques, etc.

