MAC0343: Prova 1

20 de Setembro de 2016

Victor Sena Molero - 8941317

Problema 1

Seja $A \in \mathbb{R}^{m \times n}$ uma matriz. Prove que vale precisamente uma das seguintes alternativas:

i existe $x \in \mathbb{R}^n_+$ tal que Ax = 0 e $x \neq 0$;

ii existe $y \in \mathbb{R}^m$ tal que $A^T y < 0$.

Resposta. Queremos provar que vale exatamente um entre (i) e (ii). Para provar isso, vamos considerar um PL e seu dual.

min
$$c^T x$$

s.a. $Ax = b$
 $x \in \mathbb{R}^n_+$ (1)

$$\max \quad b^T y$$
s.a. $y \in \mathbb{R}^m$

$$A^T y \le c$$
(2)

Vamos provar, primeiro que vale pelo menos um entre (i) e (ii). Assuma, para a matriz A de 1 e 2 que não vale (i), então, no programa 1, x = 0 é o único ponto viável. Temos, então, que para todo $c \in \mathbb{R}^n$, 1 é viável e tem solução ótima min $c^T x = 0$.

Pelo teorema 12 (Dualidade Forte de PL), segue que 2 é viável, portanto, existe $A^Ty \leq c$. Basta escolher c < 0 e temos que $A^Ty < 0$, ou seja, vale (ii).

Agora, vamos provar que vale no máximo 1 entre (i) e (ii). Assuma que vale (i) e (ii), então, existe $y \in \mathbb{R}^m$ tal que $A^Ty < 0$, escolhemos, nos programas 1 e 2, b = 0 e $c = A^Ty$, assim, temos que 2 é viável. Além disso, já que vale (i), existe $0 \neq x \in \mathbb{R}^n_+$.

Pelo teorema 7 (Dualidade Fraca de PL), $c^t x \ge b^T y = 0^T y = 0$, porém, já que c < 0 e $0 \ne x \ge 0$, $c^T x < 0$, uma contradição. Com isso, concluímos que vale exatamente 1 dentre (i) e (ii).

Problema 2

Sejam $X, S \in \mathbb{S}^n$. Prove que $0 \prec S \prec X \Rightarrow 0 \prec X^{-1} \prec S^{-1}$.

Problema 3

Sejam $X, S \in \mathbb{S}^n$. Prove que

i
$$X, S \in \mathbb{S}^n_+ \Longrightarrow X \circ S \succeq 0;$$

ii
$$X, S \in \mathbb{S}^n_{++} \Longrightarrow X \circ S \succ 0;$$

iii
$$X, S \in \mathbb{S}^n_{\perp \perp} \Longrightarrow X \circ S \succeq (X^{-1} \circ S^{-1})^{-1};$$

iv
$$X, S \in \mathbb{S}^n_{\perp \perp} \Longrightarrow X \circ S \succeq (X \circ S)^{-1}$$
.

Problema 4

Seja n um inteiro positivo. Determine o valor ótimo do seguinte programa semidefinido:

$$\max \quad \mathbb{1}^{T} + 4z_{1}$$
s.a. $y \in \mathbb{R}^{n}$,
$$z \in \mathbb{R}^{n+1}$$
,
$$\begin{bmatrix} -y_{j} & -z_{j} \\ -z_{j} & 2z_{j+1} \end{bmatrix} \succeq a, \qquad \forall j \in [n],$$

$$z_{n+1} = \frac{1}{2}$$

Problema 5

Seja $\gamma \in \mathbb{R}_{++}$. Considere o programa semidefinido

$$\max \langle C, X \rangle$$
s.a. $\langle A_i, X \rangle$, $\forall i \in [m]$, (4)
$$x \in \mathbb{S}^n_+,$$

onde n := m := 3,

$$C := e_1 e_2^T + e_2 e_1^T, A_1 := e_2 e_2^T, A_2 := e_1 e_3^T + e_3 e_1^T, A_3 := -C + 2e_3 e_3^T \text{ e } b := 2\gamma e_3$$

Problema 6

Seja $\emptyset \neq K \subseteq \mathbb{E}$ um cone convexo e fechado num espaço euclidiano. Prove que $K^{**} = K$.

Problema 7

Seja $X \in \mathbb{S}^n$. Prove que $X \succ 0 \iff det(X[\{1,\ldots,k\}]) > 0$ para todo $k \in [n]$.

Resposta. Seja $X \in \mathbb{S}^n$, vamos provar a tese sugerida pelo enunciado por indução em n. Se n=1, temos que $X \succ 0 \Leftrightarrow X > 0 \Leftrightarrow det(X) > 0$. Agora tome por hipótese de indução que a tese vale para n-1. Seja, então, $X \in \mathbb{S}^n$. X pode ser decomposto da seguinte maneira:

$$X = \begin{bmatrix} \bar{X}y \\ y^T \alpha \end{bmatrix}.$$

Vamos provar a ida, ou seja, assuma que $X \succ 0$, para todo $h \in \mathbb{R}^n$, $h^T X h > 0$, podemos definir

$$h = \begin{bmatrix} \bar{h} \\ 0 \end{bmatrix},$$

temos que $h^TXh = \bar{h}^T\bar{X}\bar{h} > 0$ para todo $\bar{h} \in \mathbb{R}^{n-1}$, logo, $\bar{X} \succ 0$. Assim, $det(X[\{1,\ldots,k\}]) > 0$ para todo $k \in [n-1]$. Além disso, $det(X) = det(\bar{X})det(\alpha - y^T\bar{X}y)$. Pelo Ex. 18 (Complemento de Schur),

 $\alpha - y^T \bar{X}y > 0$, já que $X \succ 0$. Assim, det(X) > 0. Logo, provamos que $X \succ 0 \Longrightarrow det(X[\{1, \dots, k\}]) > 0$ para todo $k \in [n]$.

Agora precisamos assumir que $det(X[\{1,\ldots,k\}])>0$ e provar que $X\succ 0$. Mais uma vez, usaremos a mesma decomposição que utilizamos na prova da ida. E chegamos, novamente, à fórmula $det(X)=det(\bar{X})det(\alpha-y^T\bar{X}y)$. Sabemos que det(X)>0 e $det(\bar{X})>0$, logo $det(\alpha-y^T\bar{X}y)>0$, porém, $\alpha-y^T\bar{X}y\in\mathbb{R}$, logo, só tem determinante positivo se for positivo, portanto, novamente pelo Ex. 18, $X\succ 0$.

Problema 8

Prove que $int(\mathbb{S}^n_+) = \mathbb{S}^n_{++}$.

Resposta. Primeiro, vamos provar $\mathbb{S}_{++}^n \subseteq \operatorname{int}(\mathbb{S}_+^n)$. Seja $x \in \mathbb{S}_{++}^n$ e $\epsilon = \max_{\substack{u \in \mathbb{B} \\ h^T u h \neq 0}} |\frac{h^T x h}{h^T u h}|$.

Temos que para todo $u \in \mathbb{B}$

$$h^T(x + \epsilon u)h = h^T x h + \epsilon h^T u h,$$

o que nos dá dois casos:

- 1. se $h^T u h \ge 0$, $h^T (x + \epsilon u) h \ge h^T x h > 0$;
- 2. se $h^T uh < 0$, $h^T (x + \epsilon u)h = h^T uh + \epsilon h^T uh \ge h^T xh h^T xh = 0$.

Desta forma, em todos os casos possíveis, $h^T x h \geq 0$, logo, $x \in \mathbb{S}^n_+$.

Agora, vamos provar que int $\mathbb{S}^n_+ \subseteq \mathbb{S}^n_{++}$. Seja $x \in \operatorname{int}(\mathbb{S}^n_+)$. Então existe $\epsilon > 0$ tal que para todo $h \in \mathbb{R}^n$ e $u \in \mathbb{B}$,

$$h^{T}(x + \epsilon u)h \ge 0$$
, portanto
 $h^{T}xh + \epsilon h^{T}uh \ge 0$.

Escolha $u = -I/\sqrt(n)$ e qualquer $h \neq 0$.

$$h^Txh - \frac{\epsilon}{\sqrt{n}} \ge 0,$$

$$h^Txh \ge \frac{\epsilon}{\sqrt{n}} \ge 0, \text{ ou seja}$$

$$x \in \mathbb{S}^n_{++}.$$

Com isso, concluímos que $\operatorname{int}(\mathbb{S}^n_+) = \mathbb{S}^n_{++}$.