Ringe

Sisam Khanal

June 9, 2024

Definition 1. Ring $(R, +, \cdot)$ mit inneren Verknüpffung $+: R \times R \to R$ (der Addition) und $\cdot: R \times R \to R$ (der Multiplikaion heißt Ring, wenn gilt:

- (R, +) ist eine ablesche Gruppe,
- (R, \cdot) ist eine Halbgruppe (ohne Identität)
- a(b+c) = ab + ac und (a+b)c = ac + bc für alle $a, b, c \in R$ (Distributivgesetze).

Definition 2. Einheitengruppe Sei R ein Ring mit 1. Ein Element $a \in R$ heißt invertierbar oder eine Einheit, wenn es ein $b \in R$ gibt mit ba = 1 = ab. Die Einheiten bilden eine Gruppe

$$R^{\times} = \{ a \in R | a \text{ ist invertierbar } \}$$

Beachte, dass R^{\times} kein Teilring ist.

Beispiel

- $\mathbb{Z}^{\times} = \{\pm 1\}$
- $\bullet \ \mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}$

Definition 3. Nullteiler Ein Element $a \neq 0$ eines Ringes R heißt Nullteiler von R genannt, wenn ein $b \neq 0$ in R existiert mit ab = 0 oder ba = 0.

Definition 4. Integritätsringe Ein kommutativer, nullteilerfreier Ring mit 1 heißt Integritätsringe oder Integritätsbereich.

Hiervon folgt für $ab = 0 \implies a = 0$ oder b = 0 und für ac = bc und $c \neq 0 \implies a = b$

Beispiel

- Z ist ein Integritätsring
- Der Teilring $\mathbb{Z}[i] := \{a + ib \mid a, b \in \mathbb{Z}\}$ der ganze Gauß'schen Zahlen ist Integritätsbereich.
- Der Restklassenring $\mathbb{Z}/p\mathbb{Z}$ ist genau dann ein Integritätsring, wenn p prim ist.
- R[X] ist ein Integritätsring. Es gilt weiterhin $R[X]^{\times} = R^{\times}$

Definition 5. Ideale Eine Untergruppe A von (R, +) heißt Ideal von R, wenn gilt:

- $\bullet \ a \in A, r \in R \implies ra \in A : RA \subseteq A$
- $a \in A, r \in R \implies ar \in A : AR \subseteq A$

Gilt nur $RA \subseteq A$ bzw. $AR \subseteq A$ für eine Untergruppe A von (R, +), so nennt man **Links-** bzw. **Rechtsideal**. Wenn ein Ring Links- und Rechtsideal ist, dann ist der Ring **Ideal** von R. Alle Ideale sind Teilring

Beispiel

- $\{0\}$ und R sind die trivialen Ideale des Ringes R.
- Die Ideale von $\mathbb Z$ sind genau die Mengen $n\mathbb Z$ mit $n\in\mathbb N_0$
- Sei $1 \in A$ ein Ideal, dann A = R
- $\left\{ \begin{pmatrix} x & 0 \\ y & 0 \end{pmatrix} \mid x, y \in \mathbb{R} \right\}$ ist ein *Linksideal* aber kein *Rechtsideal*
- $\left\{ \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} \mid x, y \in \mathbb{R} \right\}$ ist Rechtsideal aber kein Linksideal

Theorem 1. Für jede Familie $(A_i)_{i\in I}$ von Idealen A_i von R ist auch $A:=\bigcap_{i\in I}A_i$ ein Ideal von R.

Beispiel

$$(2\mathbb{Z}) \cap (3\mathbb{Z}) \cap (4\mathbb{Z}) = 12\mathbb{Z}$$