

# FIT5201 Data Analysis Algorithms

Week 8 – Document Clustering and Introduction to Neural Networks

### **Document Clustering**

- Given a collection of documents  $\{d_1, d_2, \dots, d_N\}$  we would like to partition them into K clusters.
- Document representation
  - Each document is made of some text
  - bag of word representation of the document
  - We treat a document as a set of words in its text irrespective of their positions
  - Also, we assume the words appearing in our collection of documents come from a dictionary denoted by  ${\mathcal A}$



# Bag of Words

```
(1) John likes to watch movies. Mary likes movies too.
```

(2) John also likes to watch football games.

```
[
    "John",
    "likes",
    "to",
    "watch",
    "movies",
    "Mary",
    "too",
    "also",
    "football",
    "games"
]
```

```
(1) [1, 2, 1, 1, 2, 1, 1, 0, 0, 0]
(2) [1, 1, 1, 1, 0, 0, 0, 1, 1, 1]
```



# Understanding the Model in Alexandria: an example

- d<sub>1</sub>=this one has a little star
- d<sub>2</sub>=this one has a little car
- d<sub>3</sub>=I would not like them here or there
- d<sub>4</sub>=I would not like them anywhere
- d<sub>5</sub>=I do not like green eggs and ham
- Assume we know the clusters beforehand (in reality we don't)
  - K=2 (two clusters from two books)
  - $C_1=(d_1, d_2), C_2=(d_3, d_4, d_5)$
  - $\varphi_1 = 0.4$  (2/5),  $\varphi_2 = 0.6$  (3/5)
  - Dictionary for  $C_1$ =(this, one, has, little, star, car)
  - $\mu_1$ =(2/10, 2/10, 2/10, 2/10, 1/10, 1/10) = (0.2, 0.2, 0.2, 0.2, 0.1, 0.1)
  - Dictionary for  $C_2$ =(I, would, not, like, them, here, there, anywhere, do, green, eggs, ham)
  - $\mu_2$ =(0.15, 0.1, 0.15, 0.15, 0.1, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05)

Quotes from Dr Suess's books One Fish, Two Fish and Green Eggs and Ham



# **Generating Words**

- A ={this, one, has, little, star, car, I, would, not, like, them, here, there, anywhere, do, green, eggs, ham}
- P(this, one, has, little, star) = P(this)P(one)P(has) P(little) P(star)
- $P(d|k) = \prod_{w \in d} P(w|k) = \prod_{w \in \mathcal{A}} P(w|k)^{c(w,d)}$



### **Generative Model**

- For each document d<sub>n</sub>
  - Toss the K-face dice (with the probability parameter  $\varphi$ ) to choose the face k (i.e., the cluster) that the  $n^{th}$  document belongs to
  - For each word placeholder in the document  $d_n$ 
    - > Generate the word by tossing the dice (with the probability parameter  $\mu_k$ ) corresponding to the face k

#### Parameters:

- The clusters proportion  $\varphi = (\varphi_1, \varphi_2, ..., \varphi_K), \varphi_k \ge 0, \sum_{k=1}^K \varphi_k = 1$
- The word proportion  $\mu_k = (\mu_{k,1}, \mu_{k,2}, \dots, \mu_{k,|\mathcal{A}|}), \mu_{k,w} \ge 0, \sum_{w \in \mathcal{A}} \mu_{k,w} = 1$
- These are constraints which allow us to use Lagrange model to learn the parameters

### **Generative Model**

• The probability of generating a document and its cluster (k, d) is

$$p(k,d) = p(k)p(d|k) = \varphi_k \prod_{w \in d} \mu_{k,w} = \varphi_k \prod_{w \in \mathcal{A}} \mu_{k,w}^{c(w,d)}$$

- c(w,d) is the number of occurrences of the word w in the document d
- In practice,
  - The document cluster labels are not given to us

# Complete Data

- Documents  $\{d_1, d_2, \dots, d_N\}$
- We use latent variables  $\mathbf{z}_n$  to denote the cluster assignments for  $n^{th}$  document
- $\bullet \quad \mathbf{z}_n = (z_{n1}, z_{n2}, \dots, z_{nK})$

$$- z_{nk} = \begin{cases} 1, & d_n \in \mathcal{C}_k \\ 0, & d_n \notin \mathcal{C}_k \end{cases}$$

- Only one element in  $z_{nk}$  is 1. The rest are zero

# Complete Data

$$p(d_1, z_1, \dots, d_N, z_N) = \prod_{n=1}^{N} \prod_{k=1}^{K} \left( \varphi_k \prod_{w \in \mathcal{A}} \mu_{k, w}^{c(w, d_n)} \right)^{z_{nk}}$$

$$z_{nk} = \begin{cases} 1, & d_n \in \mathcal{C}_k \\ 0, & d_n \notin \mathcal{C}_k \end{cases}$$

- With the constraint that  $\sum_{k=1}^K \varphi_k = 1$  and  $\sum_{w \in \mathcal{A}} \mu_{k,w} = 1$
- Use Lagrange model to solve the parameters
  - Constrained optimization: convert it to unconstrained optimization problems which can be solved either find a solution analytically or use an iterative algorithm to find a solution
  - Lagrange model

### Complete Data

- Use Lagrange model to solve the parameters
  - Constrained optimization: convert it to unconstrained optimization problems which can be solved either finding a solution analytically or using an iterative algorithm to find a solution
  - Lagrange multipliers

maximise 
$$f(x)$$
  
subject to  $g_i(x) = 0$   $i = 1, ..., m$ 

> Equality constraints

$$\mathcal{L}(x,\lambda_1,\ldots,\lambda_m):=f(x)-\lambda_1g_1(x)-\ldots-\lambda_mg_m(x)$$

> The stationary points for f(x) are ensured to be the stationary points for the new function, but not conversely



# Complete Data...

Through the Lagrange multiplier on Maximum Likelihood Function

Mixing components: 
$$\varphi_k = \frac{N_k}{N}$$
 where  $N_k = \sum_{n=1}^{N} z_{nk}$ 

Word proportion parameters: 
$$\mu_{kw} = \frac{\sum_{n=1}^{N} z_{nk} c(w,d_n)}{\sum_{w' \in \mathcal{A}} \sum_{n=1}^{N} z_{nk} c(w',d_n)}$$



# Incomplete Data and EM

$$p(d_1, \dots, d_N) = \prod_{n=1}^{N} p(d_n) = \prod_{n=1}^{N} \sum_{k=1}^{K} \left( \varphi_k \prod_{w \in \mathcal{A}} \mu_{k,w}^{c(w,d_n)} \right)$$

- Hard to derive the analytical solutions
- Resort to EM algorithm



- Training objective: find maximum likelihood solution for models having latent variables.
  - Observed data X, Latent variable Z, set of model parameters  $\theta$
  - Log likelihood function

$$\ln p(X|\theta) = \ln \sum_{Z} p(X, Z|\theta)$$

$$\gamma(z_{nk}) = p(z_n = k | x_n) = \frac{\varphi_k N(x_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \varphi_j N(x_n | \mu_j, \Sigma_j)}$$

- $\gamma(z_{nk})$ : posterior probability once we observed  $x_n$
- $\bullet \quad \sum_{k=1}^K \gamma(z_{nk}) = 1$
- Partial assignment or soft assignment
- $\varphi_k$  prior probability of  $z_n = k$
- We do simultaneously
  - Cluster prediction and parameter estimation
  - Use iterative Expectation Maximisation (EM)



- Training objective: find maximum likelihood solution for models having latent variables.
  - Observed data X, Latent variable Z, set of model parameters  $\theta$
  - Log likelihood function

$$\ln p(X|\theta) = \ln \sum_{Z} p(X, Z|\theta)$$

- Algorithm:
  - Choose an initial setting for the parameters  $\theta^{old}$
  - While convergence is not met:
    - > **E Step**: Evaluate  $p(Z|X, \theta^{old})$
    - > **M Step**: Evaluate  $\theta^{new}$  given by

$$\theta^{new} \leftarrow \arg \max_{\theta} \sum_{Z} p(Z|X, \theta^{old}) \ln p(X, Z|\theta)$$

$$Q(\theta, \theta^{old})$$

$$> \theta^{old \leftarrow \theta^{new}}$$



- Is each iteration guaranteed to increase the log likelihood function?
- What's the relationship between the Q function and log likelihood function?





# Incomplete Data and EM

$$p(d_1, \dots, d_N) = \prod_{n=1}^{N} p(d_n) = \prod_{n=1}^{N} \sum_{k=1}^{K} \left( \varphi_k \prod_{w \in \mathcal{A}} \mu_{k,w}^{c(w,d_n)} \right)$$

#### Q function

$$egin{aligned} Q(oldsymbol{ heta}, oldsymbol{ heta}^{ ext{old}}) &:= \sum_{n=1}^{N} \sum_{k=1}^{K} p(z_{n,k} = 1 | d_n, oldsymbol{ heta}^{ ext{old}}) \ln p(z_{n,k} = 1, d_n | oldsymbol{ heta}) \ &= \sum_{n=1}^{N} \sum_{k=1}^{K} p(z_{n,k} = 1 | d_n, oldsymbol{ heta}^{ ext{old}}) \left( \ln arphi_k + \sum_{w \in \mathcal{A}} c(w, d_n) \ln \mu_{k,w} 
ight) \ &= \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{n,k}) \left( \ln arphi_k + \sum_{w \in \mathcal{A}} c(w, d_n) \ln \mu_{k,w} 
ight) \ &\gamma(z_n, k) := p(z_{n,k} = 1 | d_n, oldsymbol{ heta}^{ ext{old}}) \end{aligned}$$

# Incomplete Data and EM

$$\varphi_k = \frac{N_k}{N}$$
 where  $N_k = \sum_{n=1}^{N} \gamma(z_{nk})$ 

$$\mu_{kw} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) c(w, d_n)}{\sum_{w' \in \mathcal{A}} \sum_{n=1}^{N} \gamma(z_{nk}) c(w', d_n)}$$

- $m{\cdot}$  Choose an initial setting for the parameters  $m{ heta}^{
  m old}=(m{arphi}^{
  m old},m{\mu}_1^{
  m old},\ldots,m{\mu}_K^{
  m old})$
- · While the convergence is not met:
  - **E step:** Set  $\forall n, \forall k : \gamma(z_{n,k})$  based on  $\boldsymbol{\theta}^{\text{old}}$
  - $\circ \,\,$  **M Step:** Set  $oldsymbol{ heta}^{ ext{new}}$  based on the above equations
  - $\circ \boldsymbol{\theta}^{\mathrm{old}} \leftarrow \boldsymbol{\theta}^{\mathrm{new}}$

# Other Methods for Document Clustering

- Other methods can be used to encode the documents, e.g., TF-IDF
- Use Euclidian distance to measure the similarity between documents/cluster vectors
- Can use K-Means to cluster the documents into K clusters
  - What we do in the tutorial



# **Neural Networks**



### What is a Neural Network?

### Novelty:

- The key element of this paradigm is the novel structure of the information processing system.
- It is composed of a large number of highly interconnected processing elements (neurons).



# Why Neural Networks

- Highly adoptable for many uses
  - Image recognition
    - > Automatic number plate recognition
  - Voice recognition
    - > Siri, OK Google
  - Handwriting recognition
    - > Post code on envelops
  - Self-driving cars
- More advanced neural networks such as deep learning, convolutional networks are all built on top of the basic neural networks



### Model of a Neuron





### Model of a Neuron...

$$h_{W,b} = f(W^T x) = f\left(\sum_{i=1}^n W_i x_i + b\right)$$

- Activation function
  - Usually use the sigmoid function

$$> \sigma(z) = \frac{1}{1 + e^{-z}}$$

- Other possibilities:
  - $> tanh(z) = \frac{e^z e^{-z}}{e^z + e^{-z}}$ 
    - Rescaled sigmoid function
  - > Rectified linear function
    - $\max(0,x)$
    - Sparse activation





- > What will happen if the activation function is linear function to the inputs?
- Depend on the nature of the data and the assumed distribution of target variables

# Comparison with Perceptron

- Perceptron has a binary output based on threshold
- Neuron has a continuous output (differentiable)
- Perceptron: more suitable for linearly separable data





### **Neural Network**

#### A collection of Neurons connected together



- 1. Input layer: leftmost layer
- 2. Output layer: rightmost layer
- 3. Hidden layer: hidden layer
- 4. Summary: this neural network has 3 input units, 3 hidden units and 1 output unit.



# 3-Layer Neural Network



$$m{ heta} = (m{W}^{(1)}, m{b}^{(1)}, m{W}^{(2)}, m{b}^{(2)})$$

$$egin{align*} egin{align*} a_1^{(2)} &:= fig(W_{11}^{(1)}x_1 + W_{12}^{(1)}x_2 + W_{13}^{(1)}x_3 + b_1^{(1)}ig) \ &a_2^{(2)} &:= fig(W_{21}^{(1)}x_1 + W_{22}^{(1)}x_2 + W_{23}^{(1)}x_3 + b_2^{(1)}ig) \ &a_3^{(2)} &:= fig(W_{31}^{(1)}x_1 + W_{32}^{(1)}x_2 + W_{33}^{(1)}x_3 + b_3^{(1)}ig) \ &h_{m{ heta}}(m{x}) &:= fig(W_{11}^{(2)}a_1^{(2)} + W_{12}^{(2)}a_2^{(2)} + W_{13}^{(2)}a_3^{(2)} + b_1^{(2)}ig) \ &a_3^{(2)} &:= fig(W_{11}^{(2)}a_1^{(2)} + W_{12}^{(2)}a_2^{(2)} + W_{13}^{(2)}a_3^{(2)} + b_1^{(2)}ig) \ &a_3^{(2)} &:= fig(W_{11}^{(2)}a_1^{(2)} + W_{12}^{(2)}a_2^{(2)} + W_{13}^{(2)}a_3^{(2)} + b_1^{(2)}ig) \ &a_3^{(2)} &:= fig(W_{11}^{(2)}a_1^{(2)} + W_{12}^{(2)}a_2^{(2)} + W_{13}^{(2)}a_3^{(2)} + b_1^{(2)}ig) \ &a_3^{(2)} &:= fig(W_{11}^{(2)}a_1^{(2)} + W_{12}^{(2)}a_2^{(2)} + W_{13}^{(2)}a_3^{(2)} + b_1^{(2)}ig) \ &a_3^{(2)} &:= fig(W_{11}^{(2)}a_1^{(2)} + W_{12}^{(2)}a_2^{(2)} + W_{13}^{(2)}a_3^{(2)} + b_1^{(2)}ig) \ &a_3^{(2)} &:= fig(W_{11}^{(2)}a_1^{(2)} + W_{12}^{(2)}a_2^{(2)} + W_{13}^{(2)}a_3^{(2)} + b_1^{(2)}ig) \ &a_3^{(2)} &:= fig(W_{11}^{(2)}a_1^{(2)} + W_{12}^{(2)}a_2^{(2)} + W_{13}^{(2)}a_3^{(2)} + b_1^{(2)}ig) \ &a_3^{(2)} &:= fig(W_{11}^{(2)}a_1^{(2)} + W_{12}^{(2)}a_2^{(2)} + W_{13}^{(2)}a_3^{(2)} + b_1^{(2)}ig) \ &a_3^{(2)} &:= fig(W_{11}^{(2)}a_1^{(2)} + W_{12}^{(2)}a_2^{(2)} + W_{13}^{(2)}a_3^{(2)} + b_1^{(2)}ig) \ &a_3^{(2)} &:= fig(W_{11}^{(2)}a_1^{(2)} + W_{12}^{(2)}a_2^{(2)} + W_{13}^{(2)}a_3^{(2)} + b_1^{(2)}ig) \ &a_3^{(2)} &:= fig(W_{11}^{(2)}a_1^{(2)} + W_{12}^{(2)}a_2^{(2)} + W_{13}^{(2)}a_3^{(2)} + b_1^{(2)}ig) \ &a_3^{(2)} &:= fig(W_{11}^{(2)}a_1^{(2)} + W_{12}^{(2)}a_2^{(2)} + W_{13}^{(2)}a_3^{(2)} + b_1^{(2)}ig) \ &a_3^{(2)} &:= fig(W_{11}^{(2)}a_1^{(2)} + W_{12}^{(2)}a_2^{(2)} + W_{13}^{(2)}a_3^{(2)} + b_1^{(2)}ig) \ &a_3^{(2)} &:= fig(W_{11}^{(2)}a_1^{(2)} + W_{12}^{(2)}a_2^{(2)} + W_$$

- $\succ W_{ij}^l$ : denote the weight associated with the connection between unit j in layer l and unit i in layer l+1
- $\triangleright a_i^{(l)}$ : the output of the  $i^{th}$  neuron in layer l
- $\succ z_i^{(l)}$ : the total weighted sum of inputs to the  $i^{th}$  neuron in layer l

$$z_i^l := \sum_{j=1}^n W_{ij}^{l-1} x_j + b_i^{l-1} \qquad a_i^{(l)} := f(z_i^{(l)}).$$

### **Feedforward Function**

- The inputs are fed forward to generate the output
- Therefore we call these neural networks Feedforward (Neural) Networks (FFN)
- No closed directed cycles
- Ensure that the outputs are deterministic functions of the inputs





# Relationship with Linear regression and classification

Linear regression and classification:

$$y(\mathbf{x}, \mathbf{w}) = f\left(\sum_{j=1}^{M} w_j \phi_j(\mathbf{x})\right)$$

- For classification: f is a nonlinear activation function
- For regression: the identity
- Remember how to introduce the nonlinearities?
- Each basis function in Neural networks is itself a nonlinear function of a linear combination of the inputs from the previous layer, do it recursively.....
- What will happen if the activation function is linear? Linear
- A general class of parametric nonlinear functions (i.e., in terms of the input variables) from a vector of input variables to a vector of output variables



# Neural Networks with Multiple Outputs





# Neural Networks with other possibilities

- Skip layer
- Sparse (not all possible connections within a layer being present)



- The model class corresponding to neural networks can represent almost any function (given some minor conditions) provided the network has a sufficiently large number of hidden units
  - Have been widely studied





- 1. Four functions:
  - ightharpoonup a:  $f(x) = x^2$
  - ightharpoonup b:  $f(x) = \sin(x)$
  - ightharpoonup c: f(x) = |x|
  - ightharpoonup d: f(x) = H(x)
- 2. 50 data points are sampled uniformly in x over the interval (-1,1)
- 3. Use these data points to train a 3-layered neural network having 3 hidden units with 'tanh' activation functions
- 4. Three dashed curves: outputs of the 3 hidden units

- Classification problem
  - Approximate the target decision boundary to any required precision
- Regression problem:
  - Approximate the target function to any precision
- Price:
  - Large number of neurons in the hidden layers
  - Large number of parameters
  - Tend to overfit the training data



- Methods to prevent overfitting
  - Use a large training data
  - Use regularization methods
  - Use deep architecture instead of wide and shallow architecture
    - > Given same number of neurons, deep design performs better
    - Siven same performance, deep architecture needs smaller number of neurons

