(19)日本国榜許庁(JP)

(12) 特 許 公 報 (B 2)

(11)特許器号

特許第3133766号 (P3133766)

(45)発行日 平成13年2月13日(2001.2.13)

(24) 登録日 平成12年11月24日(2000.11.24)

(51) Int.Cl.7

B02C 1/02

說別配号

FΙ

B02C 1/02

₽

請求項の数5(全 11 頁)

(21) 出題書号	特慮平9-536119	(73)特許福者	99899999
			株式会社小松製作所
(86) (22) 出籍日	平成9年3月27日(1997.3.27)	(72) 発明者	東京都港区赤坂2丁目3番6号 田村 年夫
(88) 国際出願番号	PCT/JP97/01045		神奈川県川崎市川崎区中観3丁目20番1
(87)国際公開書号(87)国際公開日	WO97/36683 平成9年10月9日(1997.10.9)		号 株式会社小松製作所建設ロボット部 内
(6//南欧公园口 套支膜求日	平成10年9月17日(1998.9.17)	(72) 発明者	黒原 基樹
(31) 優先権主要掛号	特顧平8-103914		神奈川県川崎市川崎区中後3丁目20番1
(32) 優先日 (33) 優先權主張国	平成8年3月29日(1996.3.29) 日本(JP)		号 株式会社小松製作所建設ロボット部 内
(33) 1870 18 - 1301 18	DA (JI)	(72) 完明者	有数 良一
•			柳奈川県川崎市川崎区中駅3丁目20番1 号 株式会社小松製作所建設ロボット部
			内
		港查官	黒石 李志
			最終回に続く

(54) 【発明の名称】 ジョークラッシャの出口隙間調整機構

1

(57)【特許的求の範囲】

【請求項1】固定ジョー(3a)と、

前記固定ショー (3a) に対面するスイングショー (3b) と、

的記スイングジョー (36) の背面側に位置するトグルブ ロック (3c) と、

前記固定ショー (3a) を固定し、前記スイングジョー (3b) の上端を補着するクランク軸 (3d) を支承し、かつ前記トグルブロック (3c) の位置を調整自在に固定する基合 (3e) と、

前記スイングショー (3b) の背面に設けた第1当接部 (3b1) に一緒を当接すると共に、前記トグルブロック (3c) の前記スイングショー (3b) 側に設けた第2当接部 (3d) に他環を当接するトグルブレート (3f) と、前記トグルブレート (3f) の両端を前記第1当接部 (3b

1) と前記第2当接部(3d)とで当接すべく、前記スイングジョー(3b)の背面と前記基台(3e)側との間に禁設されて、前記スイングジョー(3b)と前記基台(3e)側とを互いに引き合わせる設力を有するブリテンション部材(3g)とを備え、

前記クランク軸(3d)を回転させて前記スイングジョー(3b)をスイングきせることにより、前記固定ジョー(3a)の上端と前記スイングジョウ(3b)の上端との問から投入された被破砕物(5)を破砕し、前記固定ジョー(3a)の下端と前記スイングジョウ(3b)の下端との間でなる出口隙間(6)から前記被破砕物(5)の破砕粒を排出するに際し、前記トグルブロック(3c)の位置を調整して前記出口隙間(6)を調整し、前記破砕句の粒径を変更自在とするジョークラッシャの出口隙間調整機構において、

(2)

特許3133766

3 前記トグルブロック(3c)は、前記基台(3e)側に、上 面が下り斜面である突出部(3c4)を形成し、

前配基台 (3e) は、前記トグルブロック (3c) 側に、前 記突出部(3c4)に合致する形状を有して前記突出部(3 c4) を挟接可能とするV形開口部(3e2)を形成し、 前記トグルブロック (3c) の下り斜面と、前記基台 (3 e) との間に、出し入れ自在のシム(3j)を有すること を特徴とするジョークラッシャの出口隙間調整機構、

【請求項2】請求の範囲1配載のジョークラッシャの出 口隙間調整機構において、

前記プリテンション部材 (3g) は、前記スイングジョー (3b) の背面と前記トグルブロック(3c)との間に架設 され、かつ前記トグルブロック (3c) の自重に基づく前 記第2当接部 (3c1) 回りのモーメントMoと、前記スイ ングジョ〜 (3b) の背面と前記トグルブロック (3c) と を引き合わせる前記ブリテンション部材 (3q) の張力に 基づく前記第2当接部(3ct)回りのモーメントMsと が、「Mo>0」として「Mo+Me>0」の関係を満足する ように架設されることを特徴とするジョークラッシャの 出口院問講整機構。

【請求項3)請求の範囲2記載のジョークラッシャの出 口酸間調整機構において、

前記 | グルブロック (3c) は、前記シム (3j) を介し て、前記基台 (3e) に対し雌ねじ (3i) によって固定さ れるととを特徴とするジョークラッシャの出口隙間調整 排芯

【韶求項4】證求の範囲1記載のジョークラッシャの出 口隙間餌整機構において、

節記プリテンション部材(3g)は、

前記スイングショー (3b) の背面と前記トグルブロック 30 (3c) との間に架設されて、

前記トグルブロック(3c)と前記基台(3e)との間に架 設される流体圧シリンダ(3k)と、

前記流体圧シリンダ (3k) の圧力回路の内、前記トグル ブロック (3c)を前記基台 (3e) 個へ移動させる側の回 路に設けられるアルキュムレータ (3k5) とを備えると とを特徴とするジョークラッシャの出口原田調整機構。

【請求項5】請求項4記載のジョークラッシャの出口隙 問調整機構において、

前記アキュムレータ (3K5) の内圧を検出し、前配検出 した内圧が第1所定圧まで低下しているとき、低下した ときから所定期間、又は低下したときから第2所定圧に 昇圧するまで、前記アキュムレータ (3k5)を設ける回 路に流体圧を自動供給する制御手段(3k3)を備えるこ とを特徴とするショークラッシャの出口原間調整機構。 【発明の評細な説明】

技術分野

本発明は、破砕粒の粒径を自在に変更するためのジョ ークラッシャの出口隙間調整機構に関する。

背景技術

ジョークラッシャを図17の自走式クラッシャを参照し 説明する。例機は例えばホッパ1と、フィーダ2と、ジ ョークラッシャ3と、ベルトコンベア4等とを有して自 走可能とされている。ホッパ1 に投入されたコンクリー トや岩石等の被破砕物 5 は、フィーダ2 によってジョー クラッシャ3上端の開口部からジョークラッシャ3内に 適量投入されて破砕され、ジョークラッシャ3下端の出 口感聞 8からベルトコンベア4上に排出されて製品とな る。とのジョークラッシャ3の出口隙間調整機構を、図 10 18を参照して詳述する。尚、以下の説明で用いる上下左 右前後や背面等の方向用語は例像から見てのものとす る。また例像は図示左側を前側とする。

ジョークラッシャ3は、固定ジョー3aと、固定ジョー 3aに対面するスイングジョー3bと、スイングジョー3bの 背面側に位置するトグルブロック3cと、固定ジョー3aを 固定し、スイングジョー3bの上端を軸着する偏心したク ランク輸3dを支承し、かつトグルプロック3cの位置を調 整自在に固定する些台3e(例機の機体となる)と、スイ ングジョー36の背面に設けた第1当接部361に一端を当 20 接すると共にトグルブロック3cのスイングジョー3b側に 設けた第2当接都3c1に他端を当接するトグルブレート3 fと、トグルプレート3fの両端を第1当接部3btlと第2当 接部3点とで当接すべく、スイングショー36の背面と基 台3e例との間に架設されてとれらスイングジョー3bと基 台3년則とを互いに引き合わせる幾力を有するブリテンシ ョン部材30と、を有する。

ことで固定ジョー3aとスイングジョー3bとの離間幅 は、上端の開口から下端の出口隙間をに向かって徐々に 狭くなる。従ってクランク輸配を回転させてスイングジ ョー3bをスイングさせると、固定ジョー3aとスイングジ ョー36との間に投入された被破砕物5は破砕され、下降 するに従い細粒化し、出口隙間とから排出される。即ち トグルブロック3cの基台3eへの固設位置を前後方向Xに 調整することにより(即ち、出口隙間のを調整すること により〉、破砕粒の粒径を自在に変更できる。詳しくは

トグルブロック3cは、このトグルブロック3cの上方に 位置して基合3eに固設した第1プラケット3e2に対し、 雄ねじ3hとダブルナット3h1とで吊り下げられる。即 40 ち、第1ブラケット3e2には前後方向Xに長い、上下方 向Zの長孔を有する。雄ねじまはこの長孔を貧通してト グルブロック3c上部に採合される。ダブルナット3h1は 雄ねじ3hの頭部側(第1プラケット3e2の上側)に螺着 され、その下面は第1プラケット302上面に当接し、と れによりトグルブロック3cを第1ブラケット3e2から吊 り下げ、第1プラケット3e2からの(即ち、基台3eから の) トグルプロック3cの脱落を阻止する。またトグルブ ロック3cは、このトグルプロック3cの後方に位置して基 台3eに周設した第2ブラケット3eに対し、雄ねじ3fと、 50 ·シム3jと、ダブルナット3i1とで閲設される。即ち、第

PAGE 14/46 * RCVD AT 9/20/2005 12:51:03 PM [Eastern Daylight Time] * SVR:USPTO-EFXRF-6/28 * DNIS:2738300 * CSID:+1 212 319 5101 * DURATION (mm-ss):11-48

(3)

特許3133786

2 ブラケット3e3には前後方向Xの孔を有する。雄ねじ3 iはこの孔を貫通してトグルブロック3cの役部に螺合さ れる。ダブルナット 計1は建ねじ 計の頭部側(第2ブラ ケット3e3の役割) に螺着され、その前面は第2ブラケ ット3e3の後面に当接し、これによりトグルブロック3c を第2プラケット3e3に(即ち、基台3eに) 固設する。 尚、シム3fはトグルプロック3cと、第2プラケット3e3 との間に希臘自在に挟まれる。従って出口隙間をの調整 は、先ず両ダブルナット3h1、3i1と、両雄ねじ3h、3iと に移動可能とする。そしてトグルブロック3c後部と基台 3eとの間に別途設けた袖圧シリンダ(図示せず)によっ てトグルブロック3cを前後方向Xに移動させ、所定位置 で停止させる。そしてトグルブロック3cと第2プラケッ ト3e3との間に、所定厚さのシム3jを出し入れする。そ して油圧シリンダによってトグルブロック3cを前後方向 Xに移動させてトグルブロック3cが停止したとき、両雄 ねじ3h、3iを所定量だけ締め込んでトグルブロック3cを 完全に固定し、その後、両ダブルナット3h1、3f1を締め る。即ちスイングジョー3bはトグルブロック3cからトグ ルプレート3rを経て設けられているため、シム3iの出し 入れ分だけ前後方向Xに移動し、これにより出口隙間る は調整される。

尚、前述の通り、スイングジョー36の下部背面と基台 3eの下部との間には、トグルブレート3fの両端を第1当 接部361と第2当接部3c1とで当接すべく引き合わせる張 力を予め与えるプリテンション部材300/架設されてい る。従って出口職間よの調整は、ブリテンションを取り 除いた状態で行うのが好ましく、また上記出口陰間 δ の 30 トグルブロックの位置を調整して出口隙間を調整し、破 調整に引き続き、その調整分(即ち、シム3jの出し入れ 分) に対応してプリテンション部材3gのプリテンション も再調整する必要がある。この再調整を行わないと、ス イングショー3bが円滑にスイングしなくなるからであ る。そこでプリテンション部材3gは、スイングジョー3b の下部背面に一端をピン連結されたロッド3g1と、ロッ F3g1の他端に設けたねじ部3g2と、基台3eの下部と前記 ねじ部3g2とに両端を当接するパネ3g3とを有している。 即ち、ジョークラッシャ3の出口隙間 8の調整時には、 ねじ部3位を回してプリテンションを除去し、また調整 後の出口隙間るに応じたプリテンションを再設定すると ととなる.

しかし、上記従来のショークラッシャの出口隙間調整 機構では、出口隙面をの調整時、油圧シリンダ(図示せ ず)の豚動作業の外、手作業による両ダブルナット3h 1 311 両雄ねじ3h、3i及び螺子部3g2を失々回す必要 があり、非常に手数が掛かる。しかもプリテンション部 材3gのバネ3g3のテンションは、スイングジョー3bがス イングしたときでもとれを基台3cへ固定させるためもの であるから、極めて大きな張力(具体的には数トン)と 50 クラッシャの出口陰間調整機構となる。

なる。このような大きな張力を、出口隙間よの調整の都 度、最適値に手作業によって調整することは、作業者に とって極めて辛労作業となる。またその工具も大型化 し、保管等も大変である。さらにまた、大きな工具のた めの広い動作空間もジョークラッシャ3に確保する必要 がある。とのため、例機やジョークラッシャ3のコンバ クト化の妨げとなる。

発明の開示

本発明は、かかる従来技術の問題点を解消するために を檄め、トグルブロック3cを上下方向2及び前後方向X 10 なされたもので、容易に調整できる簡単構造のジョーク ラッシャの出口隙間調整機構の提供を目的とする。

> 本発明に係るジョークラッシャの出口隙間調整機構 は、第1亿、

固定ジョーと、固定ジョーに対面するスイングジョー と、スイングショーの背面側に位置するトグルプロック と、固定ショーを固定し、スイングショーの上端を軸着 するクラング軸を支承し、かつトグルブロックの位置を 調整自在に固定する基合と、スイングショーの背面に設 けた第1当接部に一端を当接すると共に、トグルブロック 込んでトグルブロック3cの基台3eへの固定位置を確保す 20 クのスイングジョー側に設けた第2当接部に他端を当接 するトグルブレートと、トグルプレートの両端を第1当 校初と第2当接部とで当接すべく、スイングジョーの背 面と基台側との間に架設されて、スイングジョーと基台 側とを互いに引き合わせる張力を有するプリテンション 部材とを備え、クランク軸を回転させてスイングジョー をスイングさせることにより、固定ジョーの上端とスイ ングジョウの上端との間から投入された被破砕物を破砕 し、固定ジョーの下端とスイングジョウの下端との間で なる出口隙間から被破砕物の破砕粒を排出するに際し、

砕粒の粒径を変更自在とするジョークラッシャの出□舷 間調整機構において、

トグルブロックは、基台側に、上面が下り斜面である突 出部を形成し、

筆台は、トグルブロック側に、突出部に合致する形状を 有して突出部を挟接可能とするV形開口部を形成し、 トグルブロックの下り斜面と、基台との間に、出し入れ 自在のシムを有することを特徴としている。

かかる第1梯成によれば、基台側に、上面が下り斜面 40 である突出部を有するトグルブロックと、このトグルブ ロック側に、突出部に合致した形状を有してこの突出部 を挟接可能とするV形開口部を有する基台とを備えるた め、スイングジョーの自宝と破砕時の破砕反力とが、ト グルプレートを介してトグルブロックを後方へ押して、 トグルブロックをシム又は基台に当接させる。とのため 従来の雄ねじ(例えば、図18の3h、3i)を用いることな く、トグルブロックの上下方向及び前径方向への移動を 阻止できる。即ち従来の雄ねじの人手による調整作業を 無くするとができ、容易に調整できる悩単構造のジョー

(4)

特許3133766

第2に、第1構成のジョークラッシャの出口隙間調整 機様において、

ブリテンション部材は、スイングジョーの背面とトグル プロックとの間に架設され、かつトグルブロックの自重 に基づく第2当接部回りのモーメントMoと、スイングジ ョーの背面とトグルブロックとを引き合わせるプリテン ション部材の張力に基づく第2当接部回りのモーメント Msとが、「Mo>0」として「Mo+Ms>0」の関係を満足 するように架設されることを特徴としている。

かかる第2権成は第1権成を基礎としている。従って 10 第1 構成の作用効果をそのまま有する。さらに、両モー メントMb、Naが、「Mb>0」として「Mb+Ms>0」の関 係を満足している。このため、トグルブロックの下面は 常時、鑑台のV形開口部の上面に接地する。従ってスイ ングジョーの慎性力によりトグルブロックが振動して も、その振動方向は単純化する。即ち、例えばトグルブ ロックを基台側に固定する各種手段も単純化、かつ小型 化できるようになる。また例えばトグルブロックと基台 との当接面は振動によって磨耗するが、この磨耗も単純 モードとなり、これを見越して例えば表面硬化処理した 20 シムの形状改善が行い易くなる。

第3に、第2構成のジョークラッシャの出口隙間調整 機械化おいて、

トグルブロックは、シムを介して、基台に対し雄ねじに よって固定されることを特徴としている。

かかる第3梯成は第1、第2構成を基礎としている。 従って、第1、第2梯成の作用効果をそのまま有す。即 ち第3構成によれば、鍵ねじの耐破断性が向上し、また シムの形状や強度に対する設計上の設定が容易となる。 従って不度の故障を阻止し易くなる。

第4に、第1 構成のジョークラッシャの出口隙間調整 機様において、

プリテンション部材 (3g) は、スイングショーの背面と トグルブロックとの間に架設されて、トグルブロックと 基台との間に架設される流体圧シリンダと、流体圧シリ ンダの圧力回路の内、トグルブロックを基台側へ移動さ せる側の回路に設けられるアキュムレータとを備えると とを特徴としている。

かかる第4様成は第1構成を基礎としている。従って 第1 構成の効果をそのまま有する。さらに次の効果を奏 40 する。従来のプリテンション部材は、スイングジョーの 下部背面と基台との間に架設してある。このため、出口 隙間の調整の都度、プリテンション部材のプリテンショ ンを綴めたり、また再調整する必要があった。ところが 第4様成によれば、プリテンション部材に触れることな く、ジョークラッシャの出口隙間を調整できる。即ちず リテンション部材の調整が不要となる。即ち、その分の 従来の辛労作業を解消できる。

さらに従来では、ジョークラッシャの出口陰間の調整 時だけに用いた油圧シリンダを、従来の雄ねじ(例え

ば、図18の3i) に替えて用いることができる。即ち第4 構成では、前述の通り、トグルブロックと基台とは、突 出部とV形開口部とで当接する。従ってトグルブロック はそれ以上の後方へ移動できない。ところが、クラッシ +の稼働時、スイングジョーの慣性力によってトグルブ ロックが基台(又はシム)に対してガタ付くことがあ る。即ち第4梯成は、従来、ジョークラッシャの出口隙 間の調整時だけに用いた油圧シリンダを、従来の雄ねじ に替えて、ジョークラッシャの稼働時におけるトグルブ ロックのガタ付き阻止のためにも活用している。しかも 流体圧シリンダであるため、トグルブロックのガタ付き の完全阻止のためのアキュムレータも付設してある。 尚、プリテンション部材はスイングジョーの背面とトグ ルブロックとの間に架設してあるため、流体圧シリンダ の伸縮とは無関係であり、上記第1帯成の効果を減殺す るととがない。

R

第5に、第4構成のジョークラッシャの出口隙間調整 機構において、

アキュムレータの内圧を検出し、検出した内圧が第1所 定圧まで低下しているとき、低下したときから所定期 間、又は低下したときから第2所定圧に昇圧するまで、 アキュムレータを設ける回路に流体圧を自動供給する制 御手段を備えるととを特徴としている。

かかる第5構成は第1、第4構成を基礎としている。 従って、第1、第4構成の作用効果をそのまま有す。さ らに、流体圧シリンダであるために、トグルブロックの ガタ付き完全阻止のためのアキュムレータの特徴を加味 した自動制御が可能となる。即ち第5樽成によれば、ジ ョークラッシャの出口隙間の顕整は、シムの出し入れを 30 除く殆どを自動化したものである。

図面の簡単な説明

図1は本発明の第1実施例に係る狭い出口隙間調整時 の側面図である。

図2は本発明の第1実施例に係る広い出口隙間調整時 の側面図である。

図3は本発明の第1実施例に係るトグルブロック固設 部の平面図である。

図4は本発明の第1 実施例に係るシムの平面図であ る.

図5は本発明の第1実施例に係る油圧回路図である。 図Bは本発明の第1実施例に係る他の曲圧回路図であ

図7は図1のトグルブレートの向きを示す図である。 図8は図2のトグルブレートの向きを示す図である。

図9は本発明の第2実施例に係る側面図である。

図10は本発明の第2実施例に係るトグルブロック固設 郊の平面図である。

図11は本発明の第2実施例に係る単助シンダ縮め時の 側面関である。

図12は本発明の第2 実施例に係る単動シンダ伸び時の 5Ô

(5)

特許3133766

側面図である。

図1.北本発明の第2実施例に係る複動シンダ縮め時の 側面図である。

図14は本発明の第2実施例に係る複動シンダ仲び時の 側面図である。

図15は本発明の第2実施例に係るトグルブロックの側 面図である。

図16は本発明の第2実施例に係るトグルブロックの側 面図である。

図17は従来の自走式クラッシャの側面図である。 図18は従来のジョークラッシャの側面図である。 発明を実施するための最良の形態

本発明の好ましい実施例を以下に詳述する。

第1実施例を図1~図8を参照し説明する。尚、第1 実施例を搭載した例機は、前配図17の自走式クラッシャ とする。従って前記図17、図18と同一部材には同一符号 を付し無複説明を省略する。

図1、図2に示す通り、ジョークラッシャ9は、固定 ジョー3aと、固定ジョー3aに対面するスイングジョー3b と、スイングジョー3bの背面側に位置するトグルブロッ 20 ク3cとを有している。さらに固定ジョー3aを固定し、ス イングジョー3bの上端を軸着するクランク軸3dを支承 し、かつトグルブロック3cの位置を調整自在に固定する 基台3eを有している。さらにスイングジョー3bの背面に 設けた第 I 当接部3b1に一端を当接すると共に、トグル ブロック3cのスイングショー3b間に設けた第2当接部3c 1に他端を当接する、トグルプレート37を有している。 さらにトグルブレート3fの両端を第1当接部3t1と第2 当接部3ctとで当接すべく、スイングジョー3bの背面 と、トグルブロック3cの側面との間に架設した左右方向 30 電磁式切換弁3k2がA2位置になると、油圧シリンダ3kが の左右2本のブリテンション部材34、30を有している。

左右2本の各ブリテンション部材3g、3gは失々、図 1. 図3に詳記する通り、スイングジョッヨbの背面に一 端をピン連結されたロッド3g1と、このロッド3g1の他端 に媒若されたねじ部3g2と、トグルブロック3cの側面 (即ち、左右面の失々)に固設したブラケット3c2と、 このブラケット3c2に国設した前後方向Xの簡部材3c3 と、この簡部材3c3の後面とねじ部3g2の前面とに前後両 端を当接したパネ303とを有している。即ち、ねじ部302 を回すことにより、バネ3g3に対して出口隙間をに応じ たプリテンションを自在に確保できる。

トグルブロック3cは、図1~図3に示す通り、基台3e 側に、上面が下り斜面である突出部3c4(図示する通 り、断面V形の突出部3c4)を備えている。一方、基台3 eは、トグルブロック3cMに、前記突出部3c4に合致した 形状を有してこの突出部3c4を挟接可能とされたV形開 □部3e1を有している。そしてトグルブロック3cの下り 斜面と、基台3eとの間に、図4に示す出入れ自在とされ たシムヨjを有している。

またトグルプロック3cと基台3eとの間には、図2、図 50 ッシャ3の稼働時におけるトグルブロック3cの「ガタ付

3に示す通り、左右2本の油圧シリンダ3kの失々両端が ビン連結されている。 尚、前後ビン連結部のいずれかつ 方は、図示するように(同図では基合36回のピン連結 部)、水平ビンでビン連結され、出口酸間 8 の調整時及 びジョークラッシャ3の稼働時に、油圧シリンダ3成り上 下方向に円滑に揺動できるようにしてある。とれら袖圧 シリンダ3kの袖圧回路は、図5に示す通り、袖圧源3k1

10

と、この油圧源3にから油圧シリンダ3kへの圧油を断続 し、又は切換える電磁式切換弁312と、この電磁式切換 10 弁3k2に切換信号立を与える制御器(制御手段) 3k3と、 との制御器3k3に例機のオペレータが切換信号51を与え

る切換スイッチ3k4とを有している。 電磁式切換弁3k2は、抽圧シリンダ3kのヘッド側に圧

油を送るAI位置と、ボトム側に圧油を送るA2位置と、抽 圧シリンダ3kへの旅路を遮断するAD位置(即ち、中立位 置) とを有する3位置切換弁である。 オペレータが切換スイッチ3k4を81位置にすると、制

御器3k3はこの何号51を受けて電磁式切換弁3k2をA1位置 にする信号SVをこの電磁式切換弁3k2に入力する。一 方、オペレータが切換スイッチ3k4を82位置にすると、 制御器3k3は、この信号S1を受けて電磁式切換弁3k2をA2 位置にする信号なを、との電磁式切換弁362に入力す る。またオペレータが切換スイッチ3k4をBo位置にする と、制御器3k3はこの信号51を受けて電磁式切換弁3k2を Ao位置にする信号SZをとの電磁式切換弁3k2に入力す

電磁式切換弁3k2がA1位置になると、図5に示すよう に、袖圧シリンダ3kが縮んでトグルブロック3cを基台3e (又はシム3fを介して基台3e) に強く接触させる。逆に 伸びてトグルブロック3cを基台3cから離間させる。また 電磁式切換弁3k2がAo位置になると、油圧シリンダ3kの 伸縮が停止してトグルブロック3cも停止させる。

尚、本発明の構成の説明で、「トグルブロックを基合 側へ移動させる側の回路」と記載しているが、これはト グルブロック3cと基台3eとの間に例えばリンク機構を加 設すると、油圧シリンダ3kの伸縮とトグルブロック3cの 移動方向との関係が前記関係と逆となることを加味した ものである。

説明を元に戻す。上記「トグルブロック3cを基台3e側 へ移動させる側の回路(即ち、との第1実施例では油圧 シリンダ3kのヘッド側の回路)」にはアキュムレータ3k 5と、圧力スイッチ3k6とを符している。

アキュムレータ3k5は次のように作用する。油圧シリ ンダ3kを用いると、その内部漏れと、スイングジョー3b のスイング時の個性とによってジョークラッシャ3の稼 働時にトグルブロック3cの突出部3c4が基台3eのV形開 口部3回から周期的に離回しようとする。簡単に言え ば、ガタ付きを起とそうとする。とのようなジョークラ

(6)

特許3133766

き」も、油圧シリンダ3kの圧力回路の内、トグルブロッ ク3cを基台3e側へ移動させる側の回路にアキュムレータ 3k5を設けたことにより、このアキュムレータ3k5の響圧 が抽圧シリンダヨルに作用するため、阻止される。

圧力スイッチ3k6は次のように作用する。ジョークラ ッシャ3が長時間転倒して油圧シリンダ3kの内部漏れが 蓄積すると、アキュムレータ3k5の管圧も漸減する。と のようになると、トグルブロック3cを基台3e側への押す 油圧も漸減し、遂にはトグルブロック3cがガタ付くこと が起きうる。そとで圧力スイッチ3k6は、トグルブロッ ク3cを基台3e側へ移動させる側の回路がアキュムレータ 3k5の最大苔圧(即ち、最大油圧) Pmaxより低い第1所 定圧になったとき、その信号SSを制御器3k3に入力す る。制御器3k3は電磁式切換并3k2がAo位置である場合 で、かつとの信号53を受けたときから(第1例とする) か、又はこの信号53を受けたときから所定期間(第2例 とする)か、又はこの信号53を受けたときから第2所定 圧になるまで(第3例とする)、電磁式切換弁3k2をA1 位置とする信号52を、電磁式切換弁3k2に入力する。即 ちアキュムレータ3k5の書圧を一定に維持するか、又は 例えば最大警圧Preaxまで回復させてトグルブロック3cの ガタ付きを阻止する。ととで、第1所定任<2所定任≤ 最大費圧Pmaxである。詳しくは次の通り。

前記第1例は制御器3k3と、電磁式切換弁3k2と、圧力 スイッチ3k6とでアキュムレータ3k5の回路圧を所定圧 (第1所定圧)以上に抵持する機能を果たす。簡単に言 えば、とれらで一つの滅圧弁となる。滝、第1例では、 油圧シリンダ3kの油湯れが多いとき、電磁式切換弁3k2 が常時作動してしまう。そこでこれを阻止する手段とし て前記第2、第3例を掲げた。先ず第2例の所定期間 は、例えばアキュムレータ3k5が最大警圧Pmaxになるま での期間に設定できる。一方、第3例は、例えば第2所 定圧を最大警圧Preaxに設定できる。尚、この第3例は、 実質的には第2例と同じである。勿論、第2例の所定期 間及び第3例の第2所定圧は他を基準としてもよい。こ れら第2、第3例によれば、電磁式切換弁3k2が第1例 の如く常時作動することがないから、その分、電磁式切 換弁3k2の寿命延長等に寄与でき、またアキュムレータ3 KSの基本的効果(例えば、省エネ化)も達成できる。

は図6のように構成しても構わない。即ち図8に示すよ うに、制御器3k3を廃止する。またアキュムレータ3k5と 圧力スイッチ3k6とを減圧弁3k7に置き換える。但し、減 圧弁3/2の上流側は電磁式切換弁3/2に接続するが、下流 側は油圧シリンダ3kに接続すると共に電磁式切換弁3k2 にも接続する。そして電磁式切換弁3k2を例えば次の2 つの位置、AI位置及びAI位置、を有したものとする。即 ちAI位置は、油圧源3kIからの圧油を油圧シリンダ3kの へっド側(即ち、減圧弁3k7の下流側)へ送るポート と、減圧弁3k7の上流剛に送るボートと、油圧シリンダ3 50 してとのガタ付きを抑制しているのが前配油圧シリンダ

kのボトム側からの戻り抽をドレンするボートとを狩し ている。一方、A2位置は、油圧源3kdからの圧油を油圧 シリンダ3kのボトム側へ送るポートと、油圧シリンダ3k のヘッド側からの戻り油をドレンするポートとを有して いる。尚、ドレンすると言っても、タンクばかりでなく 他の作助回路用の抽器へ回しても構わない。そして切換 スイッチ3k4は、AI位置に対応するBI位置と、A2位置に 対応する82位置との2位置スイッチとし、電磁式切換弁 3k2に対し電気的に接続されている。

上記図6の油圧回路の作用を説明する。オペレータが 切換スイッチ3k4を81位置にすると、電磁式切換弁3k2は AI位置となる。そして油圧シリンダ3kのボトム側の圧油 はドレンするが、ヘッド側には滅圧弁3k7の作用に基づ く規定圧の抽量が流入し、油圧シリンダ3kを縮める。 尚、との状態はジョークラッシャ3の稼働時である。-方、ジェークラッシャ3の出口隙間よを調整するときは (即ち、シム3iを出し入れするときは)、切換スイッチ 3k4を12位置にする。このようにすると、電磁式切換弁3 12はA2位置となる。そして抽圧シリンダ3kのヘッド側の 20 圧油はドレンするが、ボトム側には油圧源3kdからの油 圧が作用し、油圧シリンダ3kを伸ばす。このときトグル ブロック3cは基台3eから離間するから、シム3jの出し入 れが可能となる。

尚、上記各油圧回路例は空圧回路でも構わない。この 場合、油圧源3k1は空圧源3k1と、また油圧シリンダ3kは 空圧シリンダ3kと読替える。

上記第1実施例の効果を説明する。

(1) 第1に、基台3e側に、上面が下り斜面である突出 部3c4を有するトグルブロック3cと、このトグルブロッ 30 ク3c側に、前記突出部3c4に合致した形状を有してこの 突出部3c4を挟接可能とされたV形與口部3e1を有する基 台3eとを有する。とのため、従来の触わじ3h、3iを用い るととなく、トグルブロック3cの上下方向2及び前後方 向Xへの自由移動を阻止できる。また従来の雄ねじsh、 3fの人手による辛労作業も無くすことができる。詳しく に次の通り。

ジョークラッシャ3が停止しているときは、スイング ジョー35の自重に基づくモーメント力が、トグルプレー ト3fを介してトグルブロック3cの突出部3c4を、基台3e 尚、油圧回路は、図5に代えて各種準備できる。例え 40 のV形開口部3e1に押し付ける。一方、ショークラッシ ャ3が稼働しているときは、スイングジョー35の自至に 述づくモーメント力と被破砕物5の破砕力とが、トグル ブレート3fを介してトグルブロック3cの突出部3c4を基 台3eのV形開口部3e1に押し付ける。いずれにせよ、ト グルブロック3cは、上下方向2へも前後方向Xへも移動 できず、固定される。尚、固定されているといっても完 全固定ではなく、スイングジョー3bの揺動に基づく慣性 カによって前記「V形開口部3e1への押し付け力」は周 期的に変化し、従って前記「ガタ付き」が発生する。そ

(7)

特許3133766

3xやアキュムレータ3k5である。

尚、図1は、ジョークラッシャ3の出口隙間 8を狭く した状態(8=81)を示す。そして図7は、図1に対 応したトグルプレート3fの向き(即ち、V形開口部3el に加わるカベクトル)を示す。一方、図2は、出口隙間 δを広くじた状態(δ=δ2、但し、δ2>δ1)を示 す図である。そして図8は、図2に対応したV形開口部 3点に加わるカベクトルを示す。これら図7、図8に示 すように、出口隙間なを調整すると、力ベクトルはその 強さと方向とが変化する。このため少なくとも、トグル 10 ブロック3cの突出部3c4の上面(即ち、下り斜面)は、 との上面とカベクトルとでなす角 θ が90度を越える角度 としておく必要がある。尚、藝台30やシム3jの摩擦係數 を考慮しないものとする。とのようにしないと、トグル ブロック3cは基台3e上やシム3j上を上向きに滑り、トグ ルプロック3cは芸台3eのV形開口部3eiから外れる。

(2) 第2 に、ブリテンション部材3g、3gをスイングシ ョ〜3bの背面とトグルブロック3cとの間に架設したた め、出口隙間 S の調整時に、ブリテンション部材3g, 3g の再調整が不要となる。即ち、その分の従来の辛労作業 20 を無くすことができる。さらにまたこの結果、従来の油 圧シリンダ(前述の通り、図18において図示せず)を有 効活用できるようになる。詳しくは次の通り。

従来、スイングショー3bの下部背面と基台3eとの間に ブリチンション部材3gを架設した。このため出口隙間 8 の調整の都度、シム3jの増減に伴って架設間隔が増減す る。とのため、架設間隔の増減に応じたプリテンション の再設定が必要があった。ところが上記実施例によれ ば、ブリチンション部材3g、3gをスイングジョー3bの背 **に架設した。このため出口隙間δを調整のためシム3jを** 増減しても、架設間隔が変化しないため、プリテンショ ンの再設定が不要となる。

また従来はジョークラッシャ3の出口隙間8の調整時 だけに用いた油圧シリンダを、従来の鍵ねじ3iに代えて 用いることができる。即ち前述の通り、本実施例では、 基台3個に、上面が下り斜面である突出部3c4を有する トグルブロック3cと、とのトグルブロック3c側に、前記 突出部3c4に合致した形状を有してこの突出部3c4を挟接 可能とされたV形開口部3e1を有する基台3eとを有して いる。とのためトグルブロック3cがシム3fに当接したと さ、それ以上の後方へ移動できない。尚、シム3行が無い 場合は、トグルブロック3cが基合3eに当接したとき、そ れ以上の後方へ移動できない。ところがジョークラッシ +3の稼働時、スイングジョー36の惯性力によってトグ ルブロック3cが基台3e(又はシム3j)に対してガタつく ようになる。即ち従来はジョークラッシャ3の出口隙間 δの調整時だけに用いた油圧シリンダを、この第1実施 例では、単に出口隙間8の調整時だけでなく、従来の雄

ブロック3cのガタ付き阻止にも活用している。しかも油 圧シリンダ3kであるため、自動制御が可能となり、また トグルブロック3cのガタ付きの完全阻止のためにアキュ ムレータ3ks等も使用でき、とのアキュムレータ3k5の省

エネ機能を活用できる。 (3)即ち上記第1実施例によれば、人手を要すことな くジョークラッシャ3の出口隙面δを調整でき、また調 整済みの出口傾向とを自動的に維持できる簡単構造のジ ョークラッシャの出口隙面調整機構となる。

次に、第2実施例を図9~図16を参照し説明する。 尚、上記第1実施例の図1~図8と同一部材には同一符 号を付し罵複説明を省略する。

第2実施例と第1実施例とは次の点で相違する。即ち 図9、図10亿示す通り、第2実施例ではトグルブロック 3cの上面にほぼ近接してブラケット3e5を基台3eに固設 し、またトグルブロック3cを基台3eに対し1本の油圧シ リンダ3kと、左右2組の雄ねじ3i、3i及びこれらに螺着 されたダブルナット3i1、3i1で岩脱自在に連結した点で ある。詳しくは次の通り。

ブラケット3e5は、例えばオーパホール時におけるト グルプロック3cの脱着時、トグルブロック3cが基台3eか ら転倒し脱落し難いように、また作楽し易いように設け た部材である。

油圧シリンダ3kは、図12、図12に示す単助シリンダ3k や図13、図14に示す複動シリンダ3はが必要に応じて適用 される。油圧シリンダ3%は、上配第1実施例と異なり、 出口隙間なの調整時のみ作動させることとした。即ち出 □隙間 δの調整時(つまり、シム3jの出し入れ時). 先 ずダブルナット3i1、3i1を綴める。これによりトグルブ 面と、トグルブロック3cの側面(即ち、左右面)との間 30 ロック3cは基台3eから前袋方向Xに移動自在となる。そ の後、油圧シリンダ3kを伸ばしてトグルブロック3cと基 台3eとの密接状態(図11、図13参照)を離間状態(図1 2、図14参照) とする。そして、シム3寸の挿入完了後、 油圧シリンダ3kを縮めるには次のようにする。袖圧シリ ンダ3kが単動シリンダならば、スイングジョー3bのモー メント力及びダブルナット 3i1、3i1の締込みのいずれか 一方又は両方で行う。また袖圧シリンダ3kが複動シリン ダならば、油圧力によって縮める。

尚、油圧シリンダ3kを伸縮させるとき、トグルブロッ 40 ク3cと基台3eとの左右間での摩擦力のアンバランスによ ってトグルブロック3cが左右方向へ揺動することがあ る。単動シリンダ3kならば、図11、図12に示すように、 単動シリンダ3kがトグルブロック3cに固設していないか ら(正確には固設する必要がないから)、トグルブロッ ク3cが揺動しても単動シリンダ3kが破損することはな い。一方、複動シリンダ3kならば、トグルブロック3ckC 連結することとなる。このため複動シリンダ3kならば、 図13、図14に示すように、トグルブロック3c側を上下方 向2のピンでトグルブロック3cにピン連結してある。と わじ3iに代えてジョークラッシャ3の稼働時でのトグル 50 のためトグルブロック3cの揺動から複動シリンダ3kの破 (8)

特許3133766

揺を阻止できる。

尚、トグルブロック3cは、雄ねじ3iとダブルナット3i 1とによって基台3eに固設されているもが、ショークラ ッシャ3の稼働時、スイングジョー3bの債性力によっ て、前後方向Xに振動する。またスイングジョー3bの上 下方向 Z の振動は基本的にはトグルプレート 3fの第1当 接部3㎞回りと第2当接部3四回りとの揺動によって吸収 されるのであるが、トグルブロック3cも上下方向2に微 振動する。このため、これら微振動に基づく雄ねじ3iの 示すように、第1年として、雄ねじ35をトグルブロック 3cにピン連結して雄ねじ3iへの振動伝達を軽減し、もっ て耐破断性を高めている。さらに第2策として、回じく 図10kk示すように、鍵ねじ3iの転長を長くして軸力を高 め、もって耐破断性を高めている。そして次に遠べるよ うに、さらなる第3策を有している。

15

図15、図16に示す通り、第2当接部3㎝回りには2つ のモーメントMo、Msが生ずる。モーメントMoは、トグル ブロック3cの自量に基づく第2当接部3c1回りのモーメ 材30の張力に基づく第2当接邸3つ回りのモーメントで ある。尚、とのモーメントMsは、ブリテンション部材3a の張力の軸線Pが第2当接部3clを通過するように、第 2 当接部3c1とプリテンション部材3gとが配置されたと きは、生じないことは明らかである。

ととでプリテンション部材3gのプリチンションを予め 説明しておく。前後方向Xの振動は、トグルブロック3c を基台3eへ押し付ける力(後方向の力)と、トグルブロ ック3cを基台3eから離間させようとする力(前方向の 力)との周期的繰り返しである。ここで後方向の力はト グルブロック3cを基台3eへ押し付ける力であるから、節 的にはトグルブロック3cの突出部3c4が基台3eのV形開 口部3点に完全に挟まれた状態であると見做せる。従っ て後方向の力が雄ねじ刃を破損させる概念はない。とこ ろが、前方向の力はトグルプレート3fやトグルブロック 3c等のマス(即ち「スイングジョー3bを静止させようと するトグルブレート3fやトグルブロック3c等の頃性 力」)を生じさせる力である。そしてプリテンション は、前記マスを確保するだけの力である。別言すれば、 ブリテンションが無ならば、トグルブレート3fはスイン 40 グショー3bの前方向の力の発生時に第1当扱部3b1と第 2 当接部3c1との間から脱落してしまう。 即ちプリテン *

*ションは極めて大きく設定してある。具体的には、例え ばトグルブロック3c自全が0.3トン程度ならば、ブリテ

ンションは例えば2トン、従って、左右2本のブリテン ション部材3gで計4トン程度とされる。

16

説明を元に戻す。そとで本第2実施例では、図15亿示 すように、両モーメントモーメントMo、MSを同方向に設 定した。とれは、図15亿示すように、第2当接部3ctか ら軸線Pまでの最短距離L1を第2当接部3c1の下方に位 置させることで達成できる。このようにすることにより 破断が断念される。そこでこの第2実施例では、図10亿 10 トグルブロック3cの下面は常時、基台3eのV形駒口部3e 1の上面に接地する、つまりトグルプロック3dは上下方 向乙の微振動を受けても上下振動しない。また、前後方 向Xを受けても、V形開口部3etの上面に接地しつつ前 後方向Xに行ろうとするだけであるから、雄ねじ31に対 する繰り返し負荷の方向も単純である。即ち、トグルブ ロック3cを基台3c側に固定する各種手段も単純化、かつ 小型化できるようになる。具体的には、鍵ねじ3iの耐破 断性が単純化され、耐破断性が高まる効果を奏する。ま た例えばトグルブロック3cと基台3eとの当接面は振動に ントである。一方、モーメント%は、ブリテンション部 20 よって磨耗するが、この磨耗も単純モードとなり、これ を見越して例えば表面硬化処理た、シム3jの形状改善を 行い易くなる。

> 即ち上記効果は、モーメントMoの回転方向を「Mo> 0」として、両モーメントMo、Msが「Mo+Ms>0」の関 係で得られる。そしてとのような関係「Mo+Ms>0」 は、図16に示すように、第2当接部3に1から軸線Pまで の最短距離口を第2当接部3四の上方に位置させたとき (即ち「此く0」となるとき) でも遊成できる。

即ち両モーメントMo、Maは、「Mo>0」として「Mo+ 30 Ms>0」の関係を満足するように、プリテンション部材 3gをスイングショー3bの背面とトグルブロック3cとの問 に架設すれば、進わじHの耐破断性を商めることができ る。これが、前配第3策である。尚、との第3策の効果 は、雑ねじ3iに対してのみ効果が有るのではない。例え ば、前記油圧シリンダ3kが上記第1実施例のように、ジ ョークラッシャ3の稼働時に、油圧力でトグルブロック 3cを基台3e側へ付勢するものに対しても有効であること は説明を待たない。

本発明は、簡単な構造で、調整が容易なジョークラッ シャの出口隙間調整機構として有用である。

産業上の利用可能性

【第4図】

(10)

特許3133766

(11)

特許3133766

フロントページの続き

(56)参考文献 特開 昭54-7668 (JP, A)

(58)調査した分野(Int.Cl.'、DB名) B02C 1/02 - 1/10