Compléments de Mathématiques Discrètes: Cours 3.

Michaël Quisquater (Maître de Conférences, UVSQ)

1/36 Michaël Quisquater (Maître de Conférences, UVSQ)

Compléments de Mathématiques Discrètes: Cours 3.

Construction de l'anneau $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$ Caractérisation et calcul de l'inverse Groupe multiplicatif de $(\mathbb{Z}_n,+,\cdot)$ Conclusion

Rappel du cours 2

- Notion de plus grand commun diviseur (pgcd)
- Calcul de pgcd (via la factorisation, algorithme d'Euclide)
- Théorème de Bezout et algorithme d'Euclide étendu
- Construction d'un groupe additif à deux éléments et généralisation?

Addition de classes de congruence modulo n

Rappelons qu'une classe de congruence (modulo *n*) de représentant **a** est définie par:

$$[a+n\mathbb{Z}]=\{x\in\mathbb{Z}\mid x\sim_n a\}.$$

οù

 $x \sim_n y$ si et seulement si x - y est un multiple de n.

Notons l'ensemble des classes de congruence modulo n, $\{[a+n\mathbb{Z}] \mid a \in \mathbb{Z}\}$ par $\mathbb{Z}/n\mathbb{Z}$ ou \mathbb{Z}_n

3/36 Michaël Quisquater (Maître de Conférences, UVSQ)

Compléments de Mathématiques Discrètes: Cours 3.

Construction de l'anneau $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$ Caractérisation et calcul de l'inverse Groupe multiplicatif de $(\mathbb{Z}_n,+,\cdot)$ Conclusion

Groupe additif des classes de congruence modulo nAnneau des classes de congruence modulo n

Addition de classes de congruence modulo n

- On souhaite définir une addition sur les classes d'équivalence $\mathbb{Z}/n\mathbb{Z}$ (comme on l'avait déjà fait sur les classe des nombres pairs et impairs qui ne sont rien d'autre que $\mathbb{Z}/2\mathbb{Z}$).
- Il s'agit d'associer à n'importe quelle paire de classes une troisième classe.
- Afin de bénéficier des propriétés du groupe $(\mathbb{Z}, +)$ nous allons définir cette association au moyen d'opérations dans \mathbb{Z} (au niveau des représentant).

Addition de classes de congruence modulo *n* (suite)

Définition (Addition classe de congruence modulo *n*)

Pour tout $a, b \in \mathbb{Z}$ et tout entier $n \in \mathbb{Z}$, nous définissons le produit des classes de congruence $[a + n\mathbb{Z}]$ et $[b + n\mathbb{Z}]$ par

$$[a+n\mathbb{Z}]+[b+n\mathbb{Z}]=[(a+b)+n\mathbb{Z}].$$

Cette opération est appelée "addition de classes de congruence modulo n".

5/36 Michaël Quisquater (Maître de Conférences, UVSQ)

Compléments de Mathématiques Discrètes: Cours 3.

Construction de l'anneau $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$ Caractérisation et calcul de l'inverse Groupe multiplicatif de $(\mathbb{Z}_n,+,\cdot)$ Conclusion

Groupe additif des classes de congruence modulo nAnneau des classes de congruence modulo n

Anneau des classes de congruence modulo n (suite)

Remarques:

- Notons qu'il faudrait montrer que la définition de cette addition est bien définie et qu'en particulier elle ne dépend pas du choix des représentants des classes.
- 2 Notons que les sommes de n'importe quel nombre de $[a + n\mathbb{Z}]$ avec n'importe quel nombre de $[b + n\mathbb{Z}]$ couvre nécessairement tous les nombres de $[(a + b) + n\mathbb{Z}]$.
- 3 L'addition de classes de congruence modulo *n* est commutative.

Addition de classes de congruence modulo n (suite)

Exemple:

Nous avons
$$[1 + 7\mathbb{Z}] + [365 + 7\mathbb{Z}] = [366 + 7\mathbb{Z}].$$

Aussi,
$$[366 + 7\mathbb{Z}] = [2 + 7\mathbb{Z}]$$
 car $366 = 2 + 52 \cdot 7$.

Finalement,
$$[1 + 7\mathbb{Z}] + [365 + 7\mathbb{Z}] = [2 + 7\mathbb{Z}].$$

7/36 Michaël Quisquater (Maître de Conférences, UVSQ)

Compléments de Mathématiques Discrètes: Cours 3.

Construction de l'anneau $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$ Caractérisation et calcul de l'inverse Groupe multiplicatif de $(\mathbb{Z}_n,+,\cdot)$ Conclusion

Groupe additif des classes de congruence modulo n Anneau des classes de congruence modulo n

Groupe des classes de congruence modulo n

Théorème

 $(\mathbb{Z}/n\mathbb{Z},+)$ forme un groupe commutatif pour l'addition (définie au théorème précédent). L'élément neutre est $[n\mathbb{Z}]$. L'opposé d'une classe $[a+n\mathbb{Z}]$ est $-[a+n\mathbb{Z}]=[-a+n\mathbb{Z}]$.

Groupe des classes de congruence modulo *n* (exemple)

Exemple: Considérons $(\mathbb{Z}/4\mathbb{Z}, +)$.

Il s'agit des classes $[0 + 4\mathbb{Z}]$, $[1 + 4\mathbb{Z}]$, $[2 + 4\mathbb{Z}]$ et $[3 + 4\mathbb{Z}]$.

La table de l'opération d'addition modulo 4 est:

+	0	1	2	3
0	0	1	2	3 3 0
1	1	2	2 2 3	0
<u>2</u> <u>3</u>	<u>2</u> 3	3	0	1
3	3	0	1	2

9/36 Michaël Quisquater (Maître de Conférences, UVSQ)

Compléments de Mathématiques Discrètes: Cours 3.

Construction de l'anneau $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$ Caractérisation et calcul de l'inverse Groupe multiplicatif de $(\mathbb{Z}_n,+,\cdot)$ Conclusion

Groupe additif des classes de congruence modulo n Anneau des classes de congruence modulo n

Anneau des classes de congruence modulo *n* (suite)

But: Construire un anneau de classe de congruence modulo *n*.

Méthode: Ajouter une opération de multiplication au groupe des classes de congruences modulo *n* et vérifier que la structure ainsi construite satifasse bien la définition d'un anneau.

Anneau des classes de congruence modulo n (suite)

Définition (Multiplication de classe de congruence modulo n)

Pour tout $a, b \in \mathbb{Z}$ et tout entier $n \in \mathbb{Z}$, nous définissons le produit des classes de congruence $[a + n\mathbb{Z}]$ et $[b + n\mathbb{Z}]$ par

$$[a+n\mathbb{Z}]\cdot[b+n\mathbb{Z}]=[(a\cdot b)+n\mathbb{Z}].$$

Cette opération est appelée "multiplication de classes de congruence modulo n".

11/36 Michaël Quisquater (Maître de Conférences, UVSQ)

Compléments de Mathématiques Discrètes: Cours 3.

Construction de l'anneau $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$ Caractérisation et calcul de l'inverse Groupe multiplicatif de $(\mathbb{Z}_n,+,\cdot)$ Conclusion

Groupe additif des classes de congruence modulo n Anneau des classes de congruence modulo n

Anneau des classes de congruence modulo n (suite)

Remarques:

- Notons qu'il faudrait montrer que la définition de ce produit soit bien définie et qu'en particulier il ne dépend pas du choix des représentants des classes.
- 2 Notons que les produits de n'importe quel nombre de $[a+n\mathbb{Z}]$ avec n'importe quel nombre de $[b+n\mathbb{Z}]$ ne couvre pas nécessairement tous les nombres de $[(a \cdot b) + n\mathbb{Z}]$.
- Substitution de classes de congruence modulo n est commutative.

Anneau des classes de congruence modulo *n* (suite)

Nous pouvons donc munir l'ensemble des classes de congruence modulo *n* d'une opération d'addition et de multiplication.

Il est possible de montrer le résultat suivant:

Théorème

Soit n un entier. $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ ou encore $(\mathbb{Z}_n, +, \cdot)$ forme un anneau commutatif. Le neutre de l'addition (resp. la multiplication) est la classe de congruences $[n\mathbb{Z}]$ (resp. $[1 + n\mathbb{Z}]$).

13/36 Michaël Quisquater (Maître de Conférences, UVSQ)

Compléments de Mathématiques Discrètes: Cours 3.

Construction de l'anneau $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$ Caractérisation et calcul de l'inverse Groupe multiplicatif de $(\mathbb{Z}_n,+,\cdot)$ Conclusion

Groupe additif des classes de congruence modulo n Anneau des classes de congruence modulo n

Anneau des classes de congruence modulo *n* (exemple)

Exemple: Considérons le groupe additif $(\mathbb{Z}/4\mathbb{Z}, +)$. Celui-ci se compose des classes $[0 + 4\mathbb{Z}]$, $[1 + 4\mathbb{Z}]$, $[2 + 4\mathbb{Z}]$ et $[3 + 4\mathbb{Z}]$.

Considérons de plus l'opération de multiplication de classes de congruence modulo 4.

La table de l'opération de multiplication modulo 4 est:

×	0	1	2	3
0	0	0	0	0
1	0	1	2	3 2
2	0	2	0	2
3	0	3	2	1

Anneau des classes de congruence modulo n (suite)

Remarque:

- les classes de congruences 0 et 2 n'ont pas d'inverse multiplicatif
- 1 et 3 sont leur propre inverse multiplicatif
- $\mathbb{Z}_4^* = \{\overline{1}, \overline{3}\}$ (A^* dénote l'ensemble des éléments inversible de $(A, +, \cdot)$)

◆ロ → ◆昼 → ◆ 種 → ● ● りゅう

15/36 Michaël Quisquater (Maître de Conférences, UVSQ)

Compléments de Mathématiques Discrètes: Cours 3.

Construction de l'anneau $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$ Caractérisation et calcul de l'inverse Groupe multiplicatif de $(\mathbb{Z}_n,+,\cdot)$ Conclusion

Inversibilité et relative primalité Calcul de l'inverse via Euclide étendu

Caractérisation des classes de congruences inversibles modulo *n*

Comment savoir si une classe est inversible?

Considérons la classe de congruence $[a + n\mathbb{Z}]$. L'inverse de cette classe est une classe $[b + n\mathbb{Z}]$ satisfaisant la relation

$$[a+n\mathbb{Z}]\cdot[b+n\mathbb{Z}]=[1+n\mathbb{Z}]=[b+n\mathbb{Z}]\cdot[a+n\mathbb{Z}].$$

Comme la multiplication modulo *n* est commutative cette double égalité se réduit à

$$[a+n\mathbb{Z}]\cdot[b+n\mathbb{Z}]=[1+n\mathbb{Z}].$$

Par définition de la multiplication,

$$[a+n\mathbb{Z}]\cdot[b+n\mathbb{Z}]=[a\cdot b+n\mathbb{Z}].$$

Compléments de Mathématiques Discrètes: Cours 3.

Caractérisation des classes de congruences inversibles modulo *n* (suite)

Par conséquent, le calcul d'inverse consiste à déterminer un représentant $b \in \mathbb{Z}$ tel $[a \cdot b + n\mathbb{Z}] = [1 + n\mathbb{Z}]$ ou encore

$$[a \cdot b + n\mathbb{Z}] + (-[1 + n\mathbb{Z}]) = [n\mathbb{Z}]$$

c-à-d

$$[(a \cdot b - 1) + n\mathbb{Z}] = [n\mathbb{Z}]$$

En d'autres termes, il faut déterminer $b \in \mathbb{Z}$ de telle façon que $a \cdot b - 1$ soit un multiple de n ou encore $a \cdot b - 1 = -k \cdot n$ pour un certain $k \in \mathbb{Z}$. On en déduit qu'il faut déterminer $b \in \mathbb{Z}$ pour lequel

$$k \cdot n + b \cdot a = 1$$
,

pour un certain $k \in \mathbb{Z}$. \rightarrow relation de Bezout!

17/36 Michaël Quisquater (Maître de Conférences, UVSQ)

Compléments de Mathématiques Discrètes: Cours 3.

Construction de l'anneau $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$ Caractérisation et calcul de l'inverse Groupe multiplicatif de $(\mathbb{Z}_n,+,\cdot)$ Conclusion

Inversibilité et relative primalité Calcul de l'inverse via Euclide étendu

Caractérisation des classes de congruences inversibles modulo *n* (suite)

Par conséquent, si pgcd(a, n) = 1, on peut calculer les coefficients de Bezout (k et b).

b est un représentant de la classe de congruence inverse de la classe $[a + n\mathbb{Z}]$

D'autre part, si $pgcd(a, n) \neq 1$ cela signifie qu'il existe $k' \in \mathbb{Z}$ (avec k' différent de 1 ou -1) tel que $n = k' \cdot n'$ et $a = k' \cdot a'$. En particulier, cela signifie que $k \cdot n + b \cdot a = k' \cdot (k \cdot n' + b \cdot a')$. Il s'agit donc d'un multiple de k' et cette expression ne peut jamais être égale à 1. On en déduit donc que si $pgcd(a, n) \neq 1$, la classe $[a + n\mathbb{Z}]$ n'est pas inversible. De cette discussion resulte le théorème de caractérisation :

Caractérisation des classes de congruences inversibles modulo *n* (suite)

Théorème

Soit n un naturel supérieur ou égal à 2. $[a + n\mathbb{Z}]$ (avec $a \in \mathbb{Z}$) est inversible pour la multiplication modulo n si et seulement si pgcd(a, n) = 1.

4 □ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ り 9 ○

19/36 Michaël Quisquater (Maître de Conférences, UVSQ)

Compléments de Mathématiques Discrètes: Cours 3.

Construction de l'anneau $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$ Caractérisation et calcul de l'inverse Groupe multiplicatif de $(\mathbb{Z}_n,+,\cdot)$ Conclusion

Inversibilité et relative primalité Calcul de l'inverse via Euclide étendu

Calcul de l'inverse d'une classe de congruence

Donnons à présent un exemple de calcul d'inverse d'une classe de congruence.

Cherchons l'inverse de la classe $\overline{3} \in \mathbb{Z}_{40}$.

La classe $\overline{3}$ est inversible. En effet, pgcd(3, 40) = 1 (voir ci-dessous)

Calculons un représentant de la classe inverse de $\overline{3}$. Pour ce faire, calculons les coefficients de Bezout $a, b \in \mathbb{N}$ tel que $a \cdot 40 + b \cdot 3 = 1$.

L'algorithme d'Euclide étendu donne les valeurs suivantes:

Calcul de l'inverse d'une classe de congruence (suite)

k	0	1	2	3
r_k	40	3	1	0
q_k	-	13	3	-
X_k	1	0	1	-
y _k	0	1	-13	-

Nous déduisons que a = 1 et b = -13.

On vérifie que l'on a bien $3 \cdot (-13) + 1 \cdot 40 = 1$.

Un représentant de la classe inverse de $\overline{3}$ est donc -13.

Le représentant minimal de la classe $\overline{-13}$ de \mathbb{Z}_{40} est 27. En effet, $[-13+40\mathbb{Z}]=[27+40\mathbb{Z}]$. Par conséquent,

$$\overline{3}^{-1} = \overline{-13} = \overline{27}$$
.

21/36 Michaël Quisquater (Maître de Conférences, UVSQ)

Compléments de Mathématiques Discrètes: Cours 3.

Construction de l'anneau $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$ Caractérisation et calcul de l'inverse Groupe multiplicatif de $(\mathbb{Z}_n,+,\cdot)$ Conclusion

Fonction totient d'Euler et nombres d'éléments inversibles Corps commutatif fini Théorème d'Euler et de Fermat

Groupe multiplicatif de $(\mathbb{Z}_n,+,\cdot)$

Critère d'inversibilité: $[a + n\mathbb{Z}]$ est inversible pour la multiplication si son représentant a est relativement premier avec n.

Cela signifie qu'il existe en général des éléments non-inversibles dans $(\mathbb{Z}_n, +, \cdot)$.

Considérons l'ensemble des éléments inversibles (pour la multiplication) de $(\mathbb{Z}_n, +, \cdot)$. Notons cet ensemble \mathbb{Z}_n^* .

Groupe multiplicatif de $(\mathbb{Z}_n, +, \cdot)$ (suite)

 (\mathbb{Z}_n^*,\cdot) est un groupe car

- $\cdot : \mathbb{Z}_n^* \times \mathbb{Z}_n^* \to \mathbb{Z}_n^*$ (le produit d'éléments inversibles est inversible)
- la multiplication des classes de congruence est associative
- $[1 + n\mathbb{Z}] \in \mathbb{Z}_n^*$ ($[1 + n\mathbb{Z}]$ est son propre inverse)
- l'inverse de tout élément inversible est inversible et donc appartient à (\mathbb{Z}_n^*,\cdot)

◆ロ → ◆団 → ◆ 豆 → ◆ 豆 ・ 夕 Q で

23/36 Michaël Quisquater (Maître de Conférences, UVSQ)

Compléments de Mathématiques Discrètes: Cours 3.

Construction de l'anneau $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ Caractérisation et calcul de l'inverse Groupe multiplicatif de $(\overline{\mathbb{Z}}_n,+,\cdot)$ Conclusion

Fonction totient d'Euler et nombres d'éléments inversibles Corps commutatif fini Théorème d'Euler et de Fermat

Cardinalité de (\mathbb{Z}_n^*, \cdot)

Objectif: Calculer le nombre d'éléments de (\mathbb{Z}_n^*, \cdot) .

La cardinalité de $(\mathbb{Z}_n, +, \cdot)$ est n. Les representants minimaux des différentes classes sont les entiers compris entre 0 et n-1. Notons que $\lfloor n\mathbb{Z} \rfloor$ n'a pas d'inverse multiplicatif.

Les classes inversibles sont celles dont les représentants sont relativement premiers avec *n*.

Par conséquent, le nombre de classe inversible pour $n \ge 2$ est la cardinalité de

$$\{k \mid 1 \le k \le n \text{ et } pgcd(k, n) = 1\}.$$

Remarque: cette cardinalité ne dépend que de n. Notons que si n = 0, $\mathbb{Z}_n = \mathbb{Z}$ et si n = 1 $\mathbb{Z}_n = \{0\}$. <ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @

Fonction totient d'Euler

Définissons la fonction totient d'Euler par

$$\Phi: \mathbb{N} \to \mathbb{N}: n \mapsto \Phi(n) = |\{k \mid 1 \le k \le n \text{ et } pgcd(k, n) = 1\}|$$
.

Si $n \ge 2$, Cette fonction représente la cardinalité de \mathbb{Z}_n^* , i.e.

$$\mid \mathbb{Z}_n^* \mid = \Phi(n)$$
.

Comment calculer efficacement $\Phi(n)$?

Par définition, $\Phi(0) = 0$ et $\Phi(1) = 1$.

Evaluons $\phi(p^{\alpha})$ où p est un nombre premier et α un naturel non-nul.

25/36 Michaël Quisquater (Maître de Conférences, UVSQ)

Compléments de Mathématiques Discrètes: Cours 3.

Construction de l'anneau $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$ Caractérisation et calcul de l'inverse Groupe multiplicatif de $(\mathbb{Z}_n,+,\cdot)$ Conclusion

Fonction totient d'Euler et nombres d'éléments inversibles Corps commutatif fini Théorème d'Euler et de Fermat

Evaluation de $\phi(\rho^{\alpha})$

Il s'agit d'évaluer le nombre d'entiers compris entre 1 et p^{α} relativement premiers avec p^{α} . Autrement dit, il s'agit de tous les nombres compris entre 1 et p^{α} à l'exception des multiples de p.

- If y a p^{α} nombres entre 1 et p^{α} et
- If y a $p^{\alpha-1}$ qui sont multiples de p et compris entre 1 et p^{α} .

Nous avons donc que $\Phi(p^{\alpha}) = p^{\alpha} - p^{\alpha-1}$.

Propriété de la fonction totient d'Euler

Théorème

Soit $\Phi : \mathbb{N} \to \mathbb{N}$ la fonction totient d'Euler. Alors,

- $\Phi(0) = 0$,
- **2** $\Phi(1) = 1$,
- **3** $\Phi(p^{\alpha}) = p^{\alpha} p^{\alpha-1}$ pour tout premier p et tout naturel α non-nul,
- $\Phi(m \cdot n) = \Phi(m) \cdot \Phi(n)$ pour tout naturel m, n relativement premiers.

27/36 Michaël Quisquater (Maître de Conférences, UVSQ)

Compléments de Mathématiques Discrètes: Cours 3.

Construction de l'anneau $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$ Caractérisation et calcul de l'inverse Groupe multiplicatif de $(\mathbb{Z}_n,+,\cdot)$ Conclusion

Fonction totient d'Euler et nombres d'éléments inversibles Corps commutatif fini Théorème d'Euler et de Fermat

Calcul de $\Phi(n)$ pour un natrurel n quelconque

Par le théorème fondamental de l'arithmétique $n = \prod_{i \in I} p_i^{\alpha_i}$ avec p_i des premiers distincts et α_i des naturels strictement positifs.

Observons que $pgcd(p_i^{\alpha_i}, p_i^{\alpha_j}) = 1$ si $i \neq j$.

Par conséquent,

$$\Phi(n) = \Phi(\prod_{i \in I} p_i^{\alpha_i}) = \prod_{i \in I} \Phi(p_i^{\alpha_i}) = \prod_{i \in I} (p_i^{\alpha_i} - p_i^{\alpha_i-1}).$$

Calcul de $\Phi(n)$ pour un natrurel n quelconque (suite)

Corollaire

Soit un nombre naturel non-nul $n \in \mathbb{N}$ dont la factorisation est $n = \prod_{i \in I} p_i^{\alpha_i}$ avec p_i des premiers distincts et α_i des naturels strictement positifs. Alors,

$$\Phi(n) = \prod_{i \in I} (p_i^{\alpha_i} - p_i^{\alpha_i - 1}),$$

En particulier, si $n = p \cdot q$ avec p et q des nombres premiers distincts, nous avons

$$\Phi(n) = (p-1) \cdot (q-1).$$

Remarque: cette formule nécessite de factoriser n.

29/36 Michaël Quisquater (Maître de Conférences, UVSQ)

Compléments de Mathématiques Discrètes: Cours 3.

Construction de l'anneau $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$ Caractérisation et calcul de l'inverse Groupe multiplicatif de $(\mathbb{Z}_n,+,\cdot)$ Conclusion

Fonction totient d'Euler et nombres d'éléments inversibles Corps commutatif fini

Théorème d'Euler et de Fermat

Corps commutatif fini

Nous savons que $(\mathbb{Z}_p, +, \cdot)$ est un anneau commutatif.

Aussi, si p est premier $\Phi(p) = p - 1$. Cela signifie que tous les classes de congruence non-nulles de \mathbb{Z}_p sont inversibles. Par conséquent,

Corollaire

 $(\mathbb{Z}_p,+,\cdot)$ est un corps commutatif si p est premier.

Ce corollaire signifie que $(\mathbb{Z}_p, +, \cdot)$ a une structure algébrique similaire à celles de $(\mathbb{R}, +, \cdot)$ et $(\mathbb{Q}, +, \cdot)$.

Théorème d'Euler et de Fermat

Théorème d'Euler et de Fermat

... ou la vrai raison de l'usage en cryptographie des anneaux de classes de congruence modulo *n*

Cette section nous informe que si on multiplie une classe inversible par elle-même un certain nombre de fois on tombe sur le neutre multiplicatif.

Les deux résultats suivants nous donne une indication sur ce nombre de fois.

31/36 Michaël Quisquater (Maître de Conférences, UVSQ)

Compléments de Mathématiques Discrètes: Cours 3.

Construction de l'anneau $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$ Caractérisation et calcul de l'inverse Groupe multiplicatif de $(\mathbb{Z}_n,+,\cdot)$ Conclusion

Fonction totient d'Euler et nombres d'éléments inversibles Corps commutatif fini

Théorème d'Euler et de Fermat

Théorème d'Euler

Théorème

Soit n un naturel supérieur ou égal à deux. Soit $a \in \mathbb{Z}$ tel que pgcd(a, n) = 1, alors

$$a^{\Phi(n)} = 1 \mod n$$

De façon équivalente, si \overline{a} dénote la classe de congruence $[a+n\mathbb{Z}]$ alors pour tout $\overline{a}\in\mathbb{Z}_n^*$,

$$\overline{a}^{\Phi(n)} = \overline{1}$$
.

Remarque: $\Phi(n)$ n'est pas nécessairement le nombre minimal de fois qu'il faut multiplier une classe inversible par elle-même pour tomber sur le neutre. $\Phi(n)$ est un multiple du nombre minimal (à montrer!).

Preuve du théorème d'Euler

Considérons le groupe multiplicatif \mathbb{Z}_n^* . Considérons l'application

$$\Gamma_{\overline{\alpha}}: \mathbb{Z}_n^* \to \mathbb{Z}_n^*: \overline{\mathbf{X}} \mapsto \overline{\alpha} \cdot \overline{\mathbf{X}},$$

où $\overline{\alpha} \in \mathbb{Z}_n^*$.

Cette application est une bijection, en effet l'application inverse est

$$\Gamma_{\overline{\alpha}}^{-1}: \mathbb{Z}_n^* \to \mathbb{Z}_n^*: \overline{\mathbf{x}} \mapsto \overline{\alpha}^{-1} \cdot \overline{\mathbf{x}}$$
.

Notons que le produit des éléments de \mathbb{Z}_n^* est égal au produit des éléments permutés de ce groupe.

◆ロ > ◆ 個 > ◆ 重 > ◆ 重 > り へ で

33/36 Michaël Quisquater (Maître de Conférences, UVSQ)

Compléments de Mathématiques Discrètes: Cours 3.

Construction de l'anneau $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$ Caractérisation et calcul de l'inverse Groupe multiplicatif de $(\mathbb{Z}_n,+,\cdot)$ Conclusion

Fonction totient d'Euler et nombres d'éléments inversibles Corps commutatif fini

Théorème d'Euler et de Fermat

Preuve du théorème d'Euler (suite)

En particulier, nous avons que

$$\prod_{\overline{x}\in\mathbb{Z}_n^*} \overline{x} = \prod_{\overline{x}\in\mathbb{Z}_n^*} \Gamma(\overline{x}) = \prod_{\overline{x}\in\mathbb{Z}_n^*} \overline{\alpha} \cdot \overline{x} = \overline{\alpha}^{|\mathbb{Z}_n^*|} \prod_{\overline{x}\in\mathbb{Z}_n^*} \overline{x} = \overline{\alpha}^{\Phi(n)} \prod_{\overline{x}\in\mathbb{Z}_n^*} \overline{x}.$$

Comme $\prod_{\overline{x} \in \mathbb{Z}_n^*} \overline{x}$ est le produit d'éléments inversibles, cet élément est inversible. On peut donc simplifier l'équation précédente et on obtient:

$$\overline{\alpha}^{\Phi(n)} = \overline{1}$$

Théorème d'Euler et de Fermat

Petit théorème de Fermat

Corollaire

(Petit théorème de Fermat) Soit p un nombre premier. Alors pour tout entier a non multiple de p

$$a^{p-1} = 1 \mod p$$
.

Autrement dit, pour tout élément $\overline{a} \in \mathbb{Z}_p \setminus \overline{0}$ (c'est-à-dire \mathbb{Z}_p^*), nous avons

$$\overline{a}^{p-1} = \overline{1}$$
.

Preuve. Il suffit d'appliquer le théorème d'Euler au naturel n = p où p est premier.

35/36 Michaël Quisquater (Maître de Conférences,UVSQ)

Compléments de Mathématiques Discrètes: Cours 3.

Construction de l'anneau $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$ Caractérisation et calcul de l'inverse Groupe multiplicatif de $(\mathbb{Z}_n,+,\cdot)$

Conclusion

Conclusion

- Classes de congruence, relation d'équivalence
- Groupe additif des classes de congruence modulo n
- Anneau des classes de congruence modulo n
- Caractérisation des classes de congruence inversibles
- Calcul de l'inverse d'une classe de congruence inversible