

# VILNIUS UNIVERSITY FACULTY OF MATHEMATICS AND INFORMATICS INSTITUTE OF COMPUTER SCIENCE DEPARTMENT OF COMPUTATIONAL AND DATA MODELING

#### **Bachelors Thesis**

# Implementation of application for visualization of regularities and randomness in data

Done by:

Audrius Baranauskas

signature

Supervisor:

dr. Tadas Meškauskas

## **Contents**

| Keywords                  |                                                              | 3  |
|---------------------------|--------------------------------------------------------------|----|
| Ał                        | bstract                                                      | 4  |
| Santrauka<br>Introduction |                                                              | 5  |
|                           |                                                              | 6  |
| 1                         | Signal processing and Recurrence plot  1.1 Signal processing |    |
| 2                         | Web application development                                  | 8  |
| 3                         | Pirmasis skyrius  3.1 Pirmojo skyriaus poskyris              |    |
| Co                        | onclusions and Recommendations                               | 10 |
| At                        | teities tyrimų planas                                        | 11 |
| Re                        | eferences                                                    | 12 |
| Aį                        | ppendices                                                    | 13 |
| A                         | Pirmojo priedo pavadinimas                                   | 14 |
| В                         | Antrojo priedo pavadinimas                                   | 15 |

## Keywords

Pateikiamas terminų sąrašas (jei reikia)

#### **Abstract**

Santraukos tekstas rašto darbo kalba...

### Santrauka

#### Darbo pavadinimas kita kalba

This is a summary in English...

#### Introduction

Signals can be observer all around us. For example, measuring the time taken between a weight-driven pendulum clock's ticks produces a signal. It does not require a great deal of effor to image how such a signal behaves. We would expect the clock's pendulum to swing back and forth, each time travelling a minutely shorter distance until the pendulum stops completely. Analysis of even a part of such a signal can help us determine the pendulum's position far into future.

Now consider a more complex signal: the rates of a stock market. People have been analyzing this data for decades, grasping to predict its future state. For the scope of this paper, we defined the term signal processing as *the science of analyzing time-varying processes* [1].

In this thesis we analyzed the non-triviality of digital sygnals. Certain signals can be classified as simple (relatively trivial), like the aforementioned clock's pendulum. A more complex (non-trivial) signal would be the rates of a stock exchange.

#### 1 Signal processing and Recurrence plot

#### 1.1 Signal processing

A signal is a function that conveys information about the behaviour of a system or attributes of some phenomenon [2]. For example, measuring the time taken between a weight-driven pendulum clock's ticks produces signal. In turn, for the scope of this paper, we defined the term signal processing as the science of analyzing time-varying processes [1]. By processing a signal we analyzed the non-triviality of a given signal. Analyzing a signal reveals that some signals have properties that can be categorized.

#### 1.2 Signal property categories

We have considered the following categories:

1. Stationary and non stationary signals

2.

Signals have varying properties. Some consist of simple repetitions while others have no apparent patterns. For example, measuring the time taken between a weight-driven pendulum clock's ticks produces a relatively simple (trivial) signal.

## 2 Web application development

This project is aimed at creating a web application allowing one to interact with the recurrence plot algorithm in a user friendly manner. This is an effort to further spread the popularity of this algorithm and help users intuitively grasp how it behaves.

### 3 Pirmasis skyrius

#### 3.1 Pirmojo skyriaus poskyris

Pateikiamas 3.1 poskyrio tekstas. Vienas iš šaltinių [?]. Visas [?] turinys priklauso 3 skyriui.

#### 3.1.1 Pirmojo skyriaus pirmo poskyrio poskyris

Pateikiamas trečio lygio poskyrio tekstas.

$$x = \sum_{i=1}^{N} m_i \tag{3.1}$$

Table 1. Lentelė ...

Sprendimas pristatomas 1 algoritme, o įgyvendinimas -- 1 išeities kode.

#### Algorithm 1. Algoritmas uždavinio sprendimui

Require:

**Ensure:** 

a and b

#### Listing 1. Pagrindinio metodo žingsniai

```
1 public static void main(String args[]) {
2 }
```

## **Conclusions and Recommendations**

Išvados bei rekomendacijos.

## Ateities tyrimų planas

Pristatomi ateities darbai ir/ar jų planas, gairės tolimesniems darbams....

## References

- [1] R.G. Lyons. *Understanding Digital Signal Processing*. Prentice Hall professional technical reference. Prentice Hall/PTR, 2004.
- [2] R. Priemer. *Introductory Signal Processing*. Advanced Series In Electrical And Computer Engineering. World Scientific Publishing Company, 1990.

# **Appendices**

Dokumentą sudaro du priedai: A priede ....

## A Pirmojo priedo pavadinimas

Pirmojo priedo tekstas ...

## B Antrojo priedo pavadinimas

Antrojo priedo tekstas ...