VIDYA PRATISHTHAN'S

Kamalnayan Bajaj Institute of Engineering and Technology, Baramati Department of Artificial Intelligence and Data Science

EN-TERM Examination ACADEMIC YEAR 2021-22

SUBJECT:-FUNDAMENTALS OF DATA STRUCTURES

(c) insertion before the current position

(d) moving to the position immediately following the current position c

Max Marks:-30

Instructions:	

INS	TRUCTIONS.				
	1. Total 30 questions				
	2. Each question carrie	es 1 mark			
;	3. Figures to right indi	cates CO, RBT Level a	nd Marks		
4	4. Use of scientific calc	ulator(non programmak	ole) is allowed		
		, -	,		
		IE COMPUTATIONAL EN			
1.	There is sequence $\{1, [1]\}$	6, 18, 57}, what would	d be the recurrence rela	tion to represent	this CO_4 , L_4
	(a) $a_n = 3a_{n-1} + 3$	(b) $a_n = 3a_{n-1} + 2$	(c) $a_n = 3a_{n-1} + 1$	$(d) a_n = 3a_{n-1}$	$_{1} + 8$
2.	There is a recurrence relation $a_n = 2a_{n-1} - 1$, select the proper solution of the recurrence CO_4 , L_4 [1]				
	(a) $a_n = 2^n - 1$	(b) $a_n = 2^n + 1$	(c) $a_n = 2^{n+1}$	(d) $a_n = 2^n$	
3.	There is a sorted list case	on with binary search to	be applied, what woul	d be the running	time in worst CO_4, L_2 [1]
	(a) $O(n)$	(b) $O(\log n)$	(c) $n \log n$	(d) $\log n^2$	
4.	The index sequential s time	earch algorithm is applie	ed on n elements, what v	would be the worst	t case running CO_4, L_2 [1]
	(a) $O(n)$	(b) $O(n^2)$	(c) $n \log n$	(d) n^3	
5.	There is an unsorted lead to the best case running	list of n elements and Q ing time of it	UICK SORT algorithm t	o be applied on it	t, what would CO_4 , L_2 [1]
	(a) $O(n)$	(b) $O(n^4)$	(c) $n \log n$	(d) n^2	
6.	Out of insertion and s	selection sort which perf	forms better in best case	е	CO_4, L_1 [1]
	(a) selection	(b) Insertion	(c) Quick sort	(d) Shell sort	
7.	Performance of the co	ounting sort depends on			CO_4, L_2 [1]
	(a) Range of the elem	ents	(b) First quartile		
	(c) First Quantile		(d) Deviation of the o	data	
	CO_3 Demonstrate to and process data	USE OF SEQUENTIAL DAT	TA STRUCTURES- ARRAY	y and Linked lis	STS TO STORE
8.	Which of the following	g operations is not effici	ently supported by a si	ngly-linked list?	CO_3, L_2 [1]
	(a) accessing the element in the current position				
	b) insertion after the current position				

9.	Insertion of a node into pointers?	a doubly linked list re	quires how many change	es to various Next and Prev CO_3, L_3 [1]
	(a) no changes	(b) 1 Next, 1 Prev	(c) 2 Next, 2 Prev	(d) 3 Next, 3 Prev
10.	What operation is supplist?	ported in constant time	by the doubly linked list	, but not by the singly linked CO_3 , L_3 [1]
	(a) Advance	(b) Backup	(c) First	(d) Retrieve
11.	For the linked list imples [1]	ementation of the stack	ϵ , where are the pushes ϵ	and pops performed? CO_3 , L_2
	(b) Push after the last(c) Push after the last	e first element, pop the element, pop the last el element, pop the first element, pop the	lement lement	
12.	For the linked list implementation of the queue, where are the enqueue and dequeues performed? CO_3 , L_2 [1]			
	(b) Enqueue after the l(c) Enqueue after the l	f the first element, dequested ast element, dequeue the ast element, dequeue the first element, dequested.	ne last element ne first element	
13.	. , -	· -		the following statements in a
	-	used to access the top	2 V /	CO_3, L_4 [1]
	(a) S.Element		(b) S.TopOfStack	
	(c) S.TopOfStack.Elem	ent	(d) none of the above	
14.	intermediate node. Yo	our task is to find out	-	unfortunately it points some ted wrongly, with faster and e CO_3 , L_4 [1]
	(a) $O(n)$	(b) $O(n^2)$	(c) $O(n^3)$	(d) $O(\sqrt{2})$
15.	Using the text implement CO_3 , L_4 [1]	entation, if Front and Re	ear have identical values,	what is the size of the queue?
	(a) 0		(b) 1	
	APPROPRIATE DATA ST	TRUCTURES; USE THEM	I IN IMPLEMENTATIONS	t be determined PROGRAM/IMPLEMENT THE OF ABSTRACT DATA TYPES G THE PROBLEM SOLUTION
16.	The data structure req	uired to evaluate a post	fix expression is?	CO_6, L_1 [1]
	(a) Stack	(b) Queue	(c) B-Tree	(d) R-Tree
17.	The result of evaluating separated by ',')is CO_6		5, 4, 6, +, *, 4, 9, 3, /, +, *	(Elements of Expression are
	(a) 550	(b) 600	(c) 700	(d) 350
18.	The result of evaluating separated by ',') is CO_6		+, *, 5, 3, -, /, 4, 2, /, 8, 4	(Elements of Expression are
	(a) 16	(b) 17	(c) 19	(d) 15
19.	precedence on top of the	ne stack), there is a <i>cost</i> and single pop operat	t() function which return	a operator precedence(Higher as the cost. The cost of single what is the amount a cost
	(a) 6	(b) 5	(c) 3	(d) 4

	The minimum number numbers is CO_6 , L_4 [1]	or comparisons requir			
	(a) 145	(b) 164	(c) 146	(d) 147	
21.	The minimum number of arithmetic operations required to evaluate the polynomial $P(X) = X^5 + 4X^3 + 6X + 5$ for a given value of X using only one temporary variable CO_6 , L_4 [1]				
	(a) 6	(b) 7	(c) 8	(d) 9	
22.	Queue is the data struc	cture most suitable for	CO_6, L_2 [1]		
	(a) BFS	(b) DFS	(c) RFS	(d) R-TREE	
23.	In a circular queue both front and rear points to same element, what would be number of elements present into queue CO_6 , L_2 [1]				
	(a) 1	(b) 2	(c) n	(d) k	
24.				ngle push cost 1 rupees and y cost function for operations	
	(a) 2	(b) 4	(c) 6	(d) 1	
25.	What value does function int mystery (int numb		alled with a value of 4?	CO_6, L_2 [1]	
	if (number ;= 1) return 1; else return number * myste	ery(number – 1);			
	(a) 0	(b) 1	(c) 4	(d) 24	
26.	Recursion is memory-in	ntensive because CO_6 , L_2	[1]		
	(a) Recursive functions tend to declare many local variables(b) Previous function calls are still open when the function calls itself and the activation records of these previous calls still occupy space on the call stack				
	these previous calls still (c) Many copies of the	l occupy space on the c function code are creat	all stack		
	these previous calls stil	l occupy space on the c function code are creat	all stack		
27.	these previous calls still (c) Many copies of the (d) It requires large da Linear search is highly	l occupy space on the c function code are creat ta values inefficient compared to	all stack ed binary search when dea		
27.	these previous calls still (c) Many copies of the (d) It requires large da Linear search is highly (a) Small, unsorted arr	l occupy space on the c function code are creat ta values inefficient compared to ays	all stack ed binary search when dea (b) Small, sorted array	'S	
	these previous calls still (c) Many copies of the (d) It requires large da Linear search is highly (a) Small, unsorted arr (c) Large, unsorted arr	l occupy space on the c function code are creat ta values inefficient compared to ays ays	all stack ed binary search when dea (b) Small, sorted array (d) Large, sorted array	rs rs	
	these previous calls still (c) Many copies of the (d) It requires large da Linear search is highly (a) Small, unsorted arr (c) Large, unsorted arr An algorithm that require CO_6 , L_2	l occupy space on the c function code are create ta values inefficient compared to ays ays uires—operations to co [1]	all stack ed binary search when dea (b) Small, sorted array (d) Large, sorted array omplete its task on n da	rs ta elements is said to have a	
	these previous calls still (c) Many copies of the (d) It requires large da Linear search is highly (a) Small, unsorted arr (c) Large, unsorted arr An algorithm that requ	l occupy space on the c function code are creat ta values inefficient compared to ays ays uires—operations to co	all stack ed binary search when dea (b) Small, sorted array (d) Large, sorted array omplete its task on n da	rs rs	
28.	these previous calls still (c) Many copies of the (d) It requires large da Linear search is highly (a) Small, unsorted arr (c) Large, unsorted arr An algorithm that requirear runtime CO_6 , L_2 (a) $n^3 + 9$ On a stack few operators	I occupy space on the confunction code are created to values inefficient compared to any says and the compared to be confused by $3n^2 + 2n + 2$ for to be pushed by profused for the confused of the confused by profused by profused by profused by profused for the confused by profused by profus	all stack ed binary search when dea (b) Small, sorted array (d) Large, sorted array complete its task on n da (c) $3n + 4$ eserving operator precedent	rs ta elements is said to have a	
28.	these previous calls still (c) Many copies of the (d) It requires large da Linear search is highly (a) Small, unsorted arr (c) Large, unsorted arr An algorithm that requirear runtime CO_6 , L_2 (a) $n^3 + 9$ On a stack few operate $\{+,*,/,=\}$, cost of one	I occupy space on the confunction code are created to values inefficient compared to any says and the compared to be confused by $3n^2 + 2n + 2$ for to be pushed by profused for the confused of the confused by profused by profused by profused by profused for the confused by profused by profus	all stack ed binary search when dea (b) Small, sorted array (d) Large, sorted array complete its task on n da (c) $3n + 4$ eserving operator precedent	ta elements is said to have a (d) 100 dence, the list of operators is	
28. 29.	these previous calls still (c) Many copies of the (d) It requires large date Linear search is highly (a) Small, unsorted arr (c) Large, unsorted arr An algorithm that require runtime CO_6 , L_2 (a) $n^3 + 9$ On a stack few operator $\{+, *, /, =\}$, cost of one function CO_6 , L_2 [1] (a) 8 On a stack few operator	I occupy space on the confunction code are created to values inefficient compared to any any surres—operations to conful (b) $3n^2 + 2n + 2$ for to be pushed by present to be pushed by present of the pushed by present	all stack ed binary search when dea (b) Small, sorted array (d) Large, sorted array smplete its task on n da (c) $3n + 4$ esserving operator preces p is -1 what would be to (c) 4 esserving operator precess	ta elements is said to have a (d) 100 dence, the list of operators is he final cost returned by the	
28. 29.	these previous calls still (c) Many copies of the (d) It requires large date Linear search is highly (a) Small, unsorted arr (c) Large, unsorted arr An algorithm that requirear runtime CO_6 , L_2 (a) $n^3 + 9$ On a stack few operate $\{+,*,/,=\}$, cost of one function CO_6 , L_2 [1] (a) 8 On a stack few operate $\{+,*,/,=\}$, cost of one $\{+,*,/,=\}$, cost of one $\{+,*,/,=\}$, cost of one	I occupy space on the confunction code are created to values inefficient compared to any any surres—operations to conful (b) $3n^2 + 2n + 2$ for to be pushed by present to be pushed by present of the pushed by present	all stack ed binary search when dea (b) Small, sorted array (d) Large, sorted array smplete its task on n da (c) $3n + 4$ esserving operator preces p is -1 what would be to (c) 4 esserving operator precess	ta elements is said to have a (d) 100 dence, the list of operators is he final cost returned by the (d) 12 dence, the list of operators is	