Start-to-end simulations of THz SASE FEL proof-of-principle experiment at PITZ

M. Krasilnikov, P. Boonpornprasert, F. Stephan, DESY, Zeuthen, Germany

E.A. Schneidmiller, M.V. Yurkov, DESY, Hamburg, Germany

H.-D. Nuhn, SLAC, Menlo Park, California, USA

Photo Injector Test facility at DESY, Zeuthen site (PITZ)

IR/THz SASE source for pump-probe experiments @E-XFEL

PITZ-like accelerator can enable high power, tunable, synchronized IR/THz radiation

European XFEL (~3.4 km)

PITZ-like accelerator based THz source (~20 m)

∰ X-ray F THz

Pump & probe

E.A. Schneydmiller, M.V. Yurkov, (DESY, Hamburg), M. Krasilnikov, F. Stephan, (DESY, Zeuthen), "Tunabale IR/THz source for pump probe experiments at the European XFEL, Contribution to FEL 2012, Nara, Japan, August 2012

- Accelerator based IR/THz source meets requirements for pump-probe experiments (e.g. the same pulse train structure!)
- Construction of radiation shielded area for installing reduced copy of PITZ is possible close to user experiments at E-XFEL
- Prototype of accelerator already exists → PITZ facility at DESY in Zeuthen

e.g. in E-XFEL photon beam line tunnel:

Required beam (~4nC, I_{peak}~200A) already demonstrated at PITZ

→ PITZ can be used for proof of principle and optimization!

SASE FEL based on PITZ accelerator and LCLS-I undulators

LCLS-I undulators (available on loan from SLAC) → under study and negotiations

Some Properties of the LCLS-I undulator

Properties	Details
Туре	planar hybrid (NdFeB)
K-value	3.49 (3.585)
Support diameter / length	30 cm / 3.4 m
Vacuum chamber size	11 mm x 5 mm
Period length	30 mm
Periods / a module	113 periods

Reference: LCLS conceptual design report, SLAC-0593, 2002.

Preliminary conclusions on LCLS-I undulators at PITZ:

- ▶ Not such extremely high performance as for the APPLE-II, but is clearly proper for the proof-of-principle experiment!
- ▶ 4 nC electron beam transport through the vacuum chamber needs efforts, but seems to be feasible.

E-beam with PITZ parameters "ideally" matched into the undulator

$$\lambda_{rad}$$
~100 μ m \rightarrow =**16.7MeV/c**

Start-to-end simulations for proof-of-principle experiment at PITZ

PITZ main tunnel and tunnel annex for the LCLS-I undulator installation

S2E simulations: from photocathode → undulator→ THz SASE FEL

Main challenges:

- 4 nC (200A) x 16.7 MeV/c → SC dominated beam
- ~30 m transport (incl. 1.5 m wall) → LCLS-I undulator in the tunnel annex
- 3D field of the undulator field
- Matching into the undulator (narrow vacuum chamber issue)

Tools:

- **ASTRA**
- **SC-Optimizer**
- **GENESIS 1.3**

Beam Dynamics Simulation Setup

ASTRA

Gun +Solenoids + CDS-booster

Gun:

- Ecath=60MV/m (fixed)
- MMMG

Booster:

- Emax<20MV/m
- Phase=phi2*

Photocathode laser

Photocathode laser:

- FT 21.5ps FWHM
- Ø ≤5mm
- 4nC

NB:

- Core + Halo model for real laser!
- Imperfections (photoemission + asymmetry)

Gun, solenoid, booster parameters

Extremely small emittance is not a goal

phi2* = booster phase for <Pz>=16.7MeV/c

Minimizing correlated energy spread close to the undulator

Booster: MaxE(2)= 12.6MV/mPhi(2)= -24deg

Beam at EMSY1 – "ready" for transport

Z=5.277m from the cathode

PITZ Beam from the cathode \rightarrow tunnel wall

ASTRA input → SC-Optimizer → check with ASTRA

$$GF(Q_1, ..., Q_9) \propto \sqrt{\frac{1}{L} \int_{z_{wall}}^{z_{wall}+d} X_{rms} \cdot Y_{rms} dz}$$

LCLS-I Undulator field

By(0,0,z) field profile measurements done on 02.10.2013 at SLAC for the undulator L143-112000-07 after the final tuning

LCLS-I Undulator field

Fourier Analysis

Performing Fourier transformation for $-\frac{L}{2} \le z \le \frac{L}{2}$, where $L = N_U \lambda_U$ is the undulator length:

$$B_{y}(x=0,y=0,z) = \sum_{n=0}^{\infty} \left\{ a_{n} \cos \left(\frac{2\pi nz}{N_{U}\lambda_{U}} \right) + b_{n} \sin \left(\frac{2\pi nz}{N_{U}\lambda_{U}} \right) \right\},$$

where

$$a_n = \frac{2}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} B_y(x=0, y=0, z) \cos\left(\frac{2\pi nz}{N_U \lambda_U}\right) dz,$$

$$a_0 = \frac{1}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} B_y(x = 0, y = 0, z) dz,$$

$$b_n = \frac{2}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} B_y(x=0, y=0, z) \sin\left(\frac{2\pi nz}{N_U \lambda_U}\right) dz.$$

Field integrals of the undulator:

LCLS-I Undulator field

3D field map generation

Vertical and longitudinal components of undulator magnetic field:

$$\begin{split} B_{y}(x,y,z) &= \sum_{n=1}^{N_{h} \cdot N_{U}} \left[\left\{ \tilde{a}_{n} \cos(k_{n}z) + \tilde{b}_{n} \sin(k_{n}z) \right\} \cdot \cosh(k_{n}y) \right], \\ B_{z}(x,y,z) &= \sum_{n=1}^{N_{h} \cdot N_{U}} \left[\left\{ -\tilde{a}_{n} \sin(k_{n}z) + \tilde{b}_{n} \cos(k_{n}z) \right\} \cdot \sinh(k_{n}y) \right], \end{split}$$

where $k_n = \frac{2\pi n}{N_U \lambda_U}$ is the wavenumber of the *n*-th Fourier harmonic.

$$\tilde{b}_n = \frac{2}{N_U \lambda_U} \int_{-\frac{N_U \lambda_U}{2}}^{\frac{N_U \lambda_U}{2}} B_{y,2}(x=0,y=0,z_1) \sin\left(\frac{2\pi n z_1}{N_U \lambda_U}\right) dz,$$

Used as external field map for ASTRA (static magnetic cavity) and for CST Trk/PIC solver

$$N_h = 17$$
; $N_U = 120$

On-axis particle trajectory in the undulator

Reference particle: ASTRA and CST tracking

Beam matching into the undulator

ASTRA simulations with space charge and 3D undulator field map

"Ideal" (Gaussian-FT) beam

 $GF = w_x \cdot GFX + w_x \cdot GFY$ $GFX(X_{rms,0}, Y_{rms,0}, X'_{rms,0}, Y'_{rms,0}) \propto \frac{1}{L} \int_{0}^{L} X_{rms} dz$ $GFY(X_{rms,0}, Y_{rms,0}, X'_{rms,0}, Y'_{rms,0}) \propto \frac{1}{L} \int_{0}^{L} std(Y_{rms}) dz$ GFX/11+GFY/5 Xrms (mr Xcorr (mrad) -1.2 GFX/11+GFY/5 Ycorr (mrad) 0.15 Yrms (mm

New transport / matching

Further "through the wall" + prepare for asymmetric matching into the undulator

Fine matching into the undulator

Starting with "beam at wall of the new tunnel" z=25.587m

Ovad	Z from	from Z from Match		_	Matching M2	
Quad	Quad Z from Z from cathode	T/m	A	T/m	A	
Q(25)	0.3663	25.9533	1.107	~1.6	1.425	~2.1
Q(26)	0.7663	26.3533	-3.277	~-4.8	-3.277	~-4.8
Q(27)	1.1663	26.7533	2.564	~3.8	2.564	~3.8

Electron beam transport for LCLS-I undulator option at PITZ

Matching into the undulator → beam size

NB1: Space charge model is not fully correct for the undulator (dipole field)

Beam at undulator entrance

ASTRA monitors at $z=27.15m \rightarrow input for GENESIS 1.3 simulations$

GENESIS 1.3 Simulations

ASTRA at 27.15m + tuning (scaling) → **GENESIS1.3** Simulations

	·	1	
Parameter	Nominal	Tuned	
	beam	beam	
	(β_y, α_y)	$0.25(\beta_{\rm y}, \alpha_{\rm y})$	
Pulse energy	0.44±0.11	0.60±0.13	
(mJ)			
Peak power	43.0±10.2	58.5±14.3	
(MW)			
Pulse duration	5.6±0.7	5.7±0.7	
(ps)			
Arrival rms time	1.7	1.4	
jitter (ps)			
Centre	106.5	106.8	
wavelength (µm)			
Spectrum FWHM	4.5	4.8	
width (µm)			

GENESIS model:

- Only fundamental mode(λ_{II} =3cm) of one undulator
- No waveguide effect (vacuum chamber) included

Conclusions and outlook

Star-to-End simulations for the proof-of-principle experiment for SASE THz FEL at PITZ using LCLS-I undulator

PITZ Setup for THz SASE FEL:

- Gun: 60MV/m, 0deg
- Photocathode laser: Ø5mm, 21.5ps FWHM, 4nC
- CDS booster setup: 12.6MV/m, -24deg → 16.7MeV/c + min dE@~undulator
- Main solenoid: MaxB(1)=-0.21285T (~365A) $\rightarrow \epsilon_{xy}$ (EMSY1)~4 mm mrad
- Transport: 3 quad. triplets → transport through the tunnel wall (1.5m)
- Transport: +1 quad triplet to match into undulator

Undulator field:

- Based on measured profile B_v(z,0,0)
- Treated (improved) profile to minimize field integrals
- 3D field map reconstructed → CST and ASTRA

Tracking beam through the undulator:

- On-axis reference particle: CST Trk ←→ASTRA with 3D field map
- Off-axis reference particle in ASTRA to find initial guess for matching
- 4nC beam by ASTRA (with space charge*) → matching found
- GENESIS simulations with s2e electron beam \rightarrow ~440uJ (up to 600uJ by β_v - α_v -tuning) at λ_{rad} ~100um

- Refine (improve) preliminary optimum solution:
 - Realistic PC laser parameters Ø3-4mm, other temporal profiles, core+halo (using experimental data)
 - Other imperfections (photoemission, asymmetry)
 - Flat beam option?
- Transport with less quads?
- Collimator?
- Scale / re-optimize setup for λ_{rad} =50-60µm

- Undulator error, tolerances
- Implement horizontal gradient

- "Full physics" FEL code?
- Waveguide effects
- Space charge effects
- Wakefields?
- Tolerances on the input beam (imperfections)

Planned installation of LCLS-I undulators in PITZ tunnel annex

To use for proof-of-principle experiments at PITZ

Backup slides

SASE FEL with LCLS-I Undulator at PITZ

Estimations of parameters (theory) for $\lambda_{rad} \approx 100 \mu m$

e-beam

parameter	value
Energy, E_0	16.65 MeV
γ	32.6
$\sigma_{\!E}$	70 keV
< ₀ ×	10.51 mm
< ₀ >	0.2 mm
charge	4 nC
l _{peak}	190 A
$\epsilon_{n,x,y}$	4 mm mrad
β_x	8 m
β_y	0.3 m

FEL radiation

parameter	value
λ_{rad}	105μm
Q	0.43
${ m A_{JJ}}$	0.74
Θ_l	0.11
γ_l	12.0
Γ	5.4 m ⁻¹
$arGamma^{-1}$	0.19 m

Undulator

parameter	value	
$\lambda_{ m u}$	30 mm	
K	3.585	
Vacuum chamber W / H / R _{eff}	11 / 5 / 4.2 mm	

FEL dimensionless

parameter	value	
В	0.052	$B = \frac{2\Gamma\sigma_y^2\omega}{c}$
Ω	5.7	$\Omega = \Gamma R_{eff}^2 \omega / c$
ρ	0.013	$\rho = \frac{\gamma_l^2 \Gamma}{\omega/c}$
$\widehat{\Lambda}_p^2$	0.41	$\rho = \frac{\gamma_l^2 \Gamma}{\omega/c}$ $\widehat{\Lambda}_p^2 = \frac{4c^2}{\left[\theta_l \sigma_r \omega A_{JJ}\right]^2}$
$\widehat{\Lambda}_T^2$	0.11	$\widehat{\Lambda}_T^2 = \frac{\sigma_E^2}{[E_o \rho]^2}$

Reference: Saldin E.L., Schneidmiller E.A., Yurkov M.V. "The physics of free electron lasers" - Berlin et al.: Springer, 2000. pp. 41-48, 258, 280, 415-416

