

Unit V

Nanomaterials and Introduction to carbon nanotubes (theoretical aspects only) (4 hours)

References

- 1. University chemistry, by B. H. Mahan
- 2. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane
- 3. Fundamentals of Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S. Krishnan
- 4. Physical Chemistry, by P. W. Atkins
- **5.** Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore, 5thEdition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

Course Outcomes

The concepts developed in this course will aid in quantification of several concepts in chemistry that have been introduced at the 10+2 levels in schools. Technology is being increasingly based on the electronic, atomic and molecular level modifications.

Quantum theory is more than 100 years old and to understand phenomena at nanometer levels, one has to base the description of all chemical processes at molecular levels. The course will enable the student to:

Analyse microscopic chemistry in terms of atomic and molecular orbitals and intermolecular forces.

Rationalise bulk properties and processes using thermodynamic considerations.

Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques

Rationalise periodic properties such as ionization potential, electronegativity, oxidation states and electronegativity.

List major chemical reactions that are used in the synthesis of molecules.

BEM-C202 ENGINEERING MATHEMATICS II

MM : 100
Time : 3 hrs
L T P

Sessional : 30
ESE : 70
Credit : 4

3 1 0

NOTE: The question paper shall consist of two sections (Sec.-A and Sec.-B). Sec.-A shall contain ten questions of six marks each and student shall be required to attempt five questions Sec.-B shall contain eight descriptive type questions of ten marks each and students shall be required to attempt any four questions. Question shall be uniformly distributed from the entire syllabus. The previous year paper /model paper can be used as a guideline and the following syllabus should be strictly followed while setting the question paper.

UNIT I

Differential Equation : Ordinary differential equations of first order, orthogonal trajectories, linear differential equations with constant coefficients, Euler- Cauchy equations, Equations of the form y'' = f(y). Solution of second order differential equations by change of dependent and independent variables, Method of variation of parameters for second order differential equations. Simple applications.

UNIT II

Partial Differential Equations and its Applications: Introduction of partial differential equations, Linear partial differential equations of II order with constant coefficients and their classifications - parabolic, elliptic and hyperbolic with illustrative examples, Method of separation of variables. Wave and Heat equation up to two-dimensions.

UNIT III

Solution in Series : solution in series of second order linear differential equations, Bessel's and Legendre's equations and their solutions, Properties of Bessel function and Legendre's polynomials, Recurrence relations, Generating functions, Jacobi series, Integral representation of Bessel's functions.

UNIT IV

Fourier Series : Fourier series, Dirichlet's condition and convergence. Half range series, Harmonic analysis.

UNIT V

Statistics : Moments, Moment generating functions. Binomial, Poisson and Normal distributions. Correlation and Regression. Method of least squares and curve fitting - straight line and parabola.

References

- 1. Grewal B.S., Higher Engineering Mathematics, Khanna, New Delhi, 2000
- 2. Kreyszig E., Advanced Engineering Mathematics, John Wiley, New York, 1999
- 3. Prasad C., Advanced Mathematics for Engineers, Prasad Mudranalaya
- 4. Kapur J. N. & Saxena H.C., Mathematical Statistic.

Course Outcomes

Batch 2019-2023 and onwards

The objective of this course is to familiarize the prospective engineers with techniques in differential equations, ordinary and partial differential equations and complex variables. It aims to equip the students to deal with advanced level of mathematics and applications that would be essential for their disciplines.

The students will learn:

- The mathematical tools needed in evaluating differential equations and their usage.
- The effective mathematical tools for the solutions of partial differential equations that model physical processes.
- The tool of Bessel function and Fourier series for learning advanced Engineering Mathematics.
- The basic ideas of statistics including measures of central tendency, correlation and regression.

BCE-C102/BCE-C202 PROGRAMMING FOR PROBLEM SOLVING

MM: 100
Time: 3 hrs
L T P
Credit: 4

NOTE: The question paper shall consist of two sections (Sec.-A and Sec.-B). Sec.-A shall contain ten questions of six marks each and student shall be required to attempt five questions Sec.-B shall contain eight descriptive type questions of ten marks each and students shall be required to attempt any four questions. Question shall be uniformly distributed from the entire syllabus. The previous year paper /model paper can be used as a guideline and the following syllabus should be strictly followed while setting the question paper.

UNIT I

Introduction to Computers: Block diagram of computers, functions of its important components, Memory and I/O devices. Concept of assembler, interpreter, compiler & generation of languages.

Number System: Decimal, Binary, Octal, and Hexadecimal numbers and their arithmetic (addition, subtraction, multiplication, and division): 1's and 2's complements

UNIT II

Programming in C: History, Introduction to C Programming Languages, Structure of C Programs, Compilation and Execution of C Programs, Debugging techniques, Data Type and sizes, Declarations of variables, Modifiers, Identifiers and keywords, Symbolic Constants, Storage classes(automatic, external, register and static), Enumerations, command line parameters, Macros, The C Preprocessor.

Operators: Unary operators, Arithmetic & Logical operators, Bit wise operators, Assignment operators and expressions, Conditional expressions, Precedence and order of evaluation.

Control Statements: If-else, switch, break, continue, the coma operator, goto statement. **Loops:** while, do-while, for loop.

UNIT III

Arrays: One-dimensional arrays: declaration, initialization and application. Two-dimensional array: declaration, initialization and application, Multidimensional arrays.

Handling of Character Strings: Declaring and initializing string variables, Reading strings, Writing strings, Arithmetic operation on strings, comparison of two strings and string handling functions.

Pointers: Accessing the address of the variable, Declaring and initializing pointers, accessing a variable through its pointer expression, pointer increment and scale factor, pointers and array, pointers and character strings.

UNIT IV

Functions: Need for user defined function, Return value and its type, function calls, No argument and No return values function, Argument and No return values functions, argument and return value functions. Handling of non integer function, Scope and life time of variable in functions.

Recursion: Recursive Definition and processes, recursion in C, example of recursion, Tower oh Hanoi Problem, simulating recursion, Backtracking, recursive algorithms, principles of recursion, tail recursion, removal of recursion.

UNIT V

Structures: Structures definition, giving value to members, structure initialization, array of structures, array within structures, structures within structures and functions, Structure Pointrers.

File Handling: Creating and Deleting a File, Updating File, Copying File, Searching & Sorting in a File.

References:

- 1. Rajaraman V.(3/e), Fundamental of Computers, PHI, New Delhi, 1999
- 2. Sanders, D.H., Computers Today, Mcgraw Hill, 1998
- 3. Kris Jamsa, DOS the complete reference, Tata McGraw Hill
- 4. J.Peek Tim O'reilly & M.Locekides, UNIX POWER TOOLS, BPB Publication
- 5. Yashwant Kanetkar, Let Us C, BPB
- 6. Yashwant Kanetkar, C In Depth, BPB

Course Outcomes

The student will learn

- To formulate simple algorithms for arithmetic and logical problems.
- To translate the algorithms to programs (in C language).
- To test and execute the programs and correct syntax and logical errors.
- To implement conditional branching, iteration and recursion.
- To decompose a problem into functions and synthesize a complete program using divide and conquer approach.
- To use arrays, pointers and structures to formulate algorithms and programs.
- To apply programming to solve matrix addition and multiplication problems and searching and sorting problems.
- To apply programming to solve simple numerical method problems, namely rot finding of function, differentiation of function and simple integration.

BME-C203 BASIC MECHANICAL ENGINEERING

MM : 100
Time : 3 hrs
L T P

Sessional : 30
ESE : 70
Credit : 3

3 0 0

NOTE: The question paper shall consist of two sections (Sec.-A and Sec.-B). Sec.-A shall contain ten questions of six marks each and student shall be required to attempt five questions Sec.-B shall contain eight descriptive type questions of ten marks each and students shall be required to attempt any four questions. Question shall be uniformly distributed from the entire syllabus. The previous year paper /model paper can be used as a guideline and the following syllabus should be strictly followed while setting the question paper.

UNIT I

Thermodynamics I: Introduction to SI units, Definition of thermodynamic system, Surrounding and Universe, Quasi static process, Energy interaction Zeroth law, Concept of temperature First law of thermodynamics, Application to closed and open system, Concept of Enthalpy, steady flow energy equation, Throttling process.

UNIT II

Thermodynamics II: Second law, reversible and irreversible process, Thermal reservoir, heat engines and thermal efficiency, COP of heat pump and refrigerator, Carnot cycle, Claudius inequality, Concept of entropy, Entropy change for ideal gases.

UNIT III

Thermodynamics III: Generation of steam at constant pressure, Properties of steam, Use of property diagram, Process of vapor in closed and open system, Rankine cycle. Stroke clearance ratio, Compression ratio, Definition and calculation of mean effective pressure (no proof) for air standard cycles (Otto and diesel cycles

UNIT IV

Mechanics: Trusses: Plane structure, (Method of Joints and Sections only) Beams: Bending moment and shear force diagram for statically determinate beams.

UNIT V

Strength of Materials: Simple stresses and strain, strain energy, stress- strain diagram, elastic constants. Compound stress and strain: state of stress at a point, Simple tension, pure shear, general two dimensional stress system, principal planes, principal stresses and strains, Mohr's stress circle, Poisson's ratio, maximum shear stress

References

- 1 Kumar DS (2/e), Thermal Science and Engineering, S.K.Kataria, New Delhi,2001
- 2 P.K.Nag (2/e), Engineering Thermodynamics, TMH, New Delhi, 2001
- 3 R.Yadav(7/e), Thermal Engineering, Central Publishing House, Allahabad, 2000
- 4 Shames Irving H.(4/e), Engineering Mechanics, PHI, New Delhi, 1994
- 5 Hibler (1/e), Statics and Dynamics, Pearson Education, Singapore, 2000

BEN-A203 ENVIRONMENTAL STUDIES

MM: 100
Time: 3 hrs

L T P

Sessional: 30
ESE: 70
Credit: 0

 $\mathbf{2} \quad \mathbf{0} \quad \mathbf{0}$

NOTE: The question paper shall consist of two sections (Sec.-A and Sec.-B). Sec.-A shall contain ten questions of six marks each and student shall be required to attempt five questions Sec.-B shall contain eight descriptive type questions of ten marks each and students shall be required to attempt any four questions. Question shall be uniformly distributed from the entire syllabus. The previous year paper /model paper can be used as a guideline and the following syllabus should be strictly followed while setting the question paper.

UNIT I

Multidisciplinary Nature of Environmental Studies & Ecosystems: (a) definition, scope and importance of ecology and environment (b) ecological components: (i) abiotic components: soil, water, light and temperature (ii) biotic components & their relationships- symbiosis, commensalisms, parasitism, predation and antibiosis (c) concept of an ecosystem (d) structure and function of an ecosystem (e) producers, consumers and decomposers (f) energy flow in the ecosystem (g) ecological succession (h) food chains, food webs and ecological pyramids (i) introduction, types, characteristic features, structure and function of the following ecosystems: (i) forest ecosystem (ii) grassland ecosystem (iii) desert ecosystem (iv) aquatic ecosystems (pond, river, ocean) (j) Need for public awareness

UNIT II

Natural Resources: (a) forest resources: use and over-exploitation, deforestation, timber extraction, mining; dams and their effects on forest and tribal people (b) water resources: use and over-utilization of surface and ground water, benefits and problems of dams (c) mineral resources: use and exploitation, environmental effects of extracting and using mineral resources (d) energy resources: growing energy needs, renewable and non renewable energy sources, use of alternate energy sources (e) land resources: land as a resource, land degradation, man induced landslides, soil erosion and desertification (f) biodiversity & its conservation: definition- genetic, species and ecosystem diversity, values of biodiversity- consumptive use, productive use, social, ethical, aesthetic and option values (g) India as a mega-diversity nation, hot-spots of biodiversity, threats to biodiversity- habitat loss, poaching of wildlife, man-wildlife conflicts; endangered and endemic species of India, conservation of biodiversity: *in-situ* & *ex-situ* methods (h) bio-geographical classification of India (i) role of an individual in conservation of natural resources (j) equitable use of resources for sustainable lifestyles

UNIT III

Environmental Pollution: (a) Definition, causes, effects and control measures of: air pollution, water pollution, soil pollution, noise pollution, thermal pollution and nuclear hazards (b) solid waste management- causes, effects and control measures of urban and industrial wastes (c) role of an individual in prevention of pollution (d) disaster management: floods, earthquake, drought & landslides

UNIT IV

Social Issues and the Environment: (a) from unsustainable to sustainable development (b) urban problems related to energy (c) rain water harvesting (d) resettlement & rehabilitation of people-problems and concerns (e) environmental ethics- issues and possible solutions (f) wasteland reclamation (g) population growth and family welfare programme (h) environment and human health, human rights, value education (i) HIV/AIDS (j) role of information technology (IT) in environment and human health (k) global environmental issues: global warming, acid rain, ozone layer depletion

UNIT V

Environmental policies and laws: (a) salient features of following acts i. Environment Protection Act 1986 ii. Air (Prevention and Control of Pollution) Act 1981 iii. Water (Prevention and Control of Pollution) Act 1974 iv. Wildlife Protection Act 1972 v. Forest Conservation Act 1980 (b) issues involved in enforcement of environmental legislation (c) public awareness

References

- 1. Agarwal, K.C. *Environmental Biology*, Nidhi Publ. Ltd., Bikaner.
- 2. Bharucha E. *The Biodiversity of India*, Mapin Publishing Pvt. Ltd., Ahmedabad.
- 3. Clark R.S. Marine Pollution, Clanderson Press Oxford.
- 4. Cunningham, W.P., Cooper, T.H., Gorhani, E. & Hepworth, M.T. *Environmental Encyclopedia*, Jaico Publ. House, Mumabai.
- 5. De A.K. *Environmental Chemistry*, Wiley Eastern Ltd.
- 6. Gleick, H.P. *Water in Crisis*, Pacific Institute for Studies in Dev., Environment & Security. Stockholm Env. Institute Oxford Univ. Press.
- 7. Hawkins R.E. *Encyclopedia of Indian Natural History*, Bombay Natural History Society, Bombay.
- 8. Heywood, V.H & Waston, R.T. Global Biodiversity Assessment, Cambridge Univ. Press.
- 9. Odum, E.P. Fundamentals of Ecology, W.B. Saunders Co. USA.
- 10. Rao M N. & Datta, A.K. Waste water treatment, Oxford & IBH Publ. Co. Pvt. Ltd.
- 11. Sharma B.K. *Environmental Chemistry*, Geol Publ. House, Meerut.
- 12. Trivedi R.K. *Handbook of Environmental Laws, Rules Guidelines, Compliances and Standards*, Vol. I and II, Enviro Media.
- 13. Trivedi R. K. and Goel, P. K. Introduction to air pollution, Techno-Science Publication.
- 14. Wanger K.D. Environmental Management, W.B. Saunders Co. Philadelphia, USA.

Effective from the session 2019-20 BAC-C151/BAC-C251 ENGINEERING CHEMISTRY LAB

MM :50
Time : 2 hrs

L T P
Credit : 1
0 0 2

LIST OF EXPERIMENTS

Choice of 10-12 experiments from the following:

- 1. Determination of surface tension and viscosity.
- 2. Thin layer chromatography.
- 3. Ascending paper chromatography.
- 4. Ion exchange column for removal of hardness of water.
- 5. Determination of turbidity of unknown sample by using turbiditimeter in the range of 0-10 NTU.
- 6. Determination of chloride content of water.
- 7. Colligative properties using freezing point depression.
- 8. Determination of the rate constant of a reaction.
- 9. Determination of cell constant and conductance of solutions.
- 10. Potentiometry determination of redox potentials and emfs.
- 11. Synthesis of a polymer/drug.
- 12. Saponification/acid value of an oil.
- 13. Chemical analysis of a salt (mixture of one acid and one base).
- 14. Titration between potassium permanganate and ferrous ammonium sulphate solutions.
- 15. Lattice structures and packing of spheres.
- 16. Models of potential energy surfaces.
- 17. Chemical oscillations- Iodine clock reaction.
- 18. Determination of the partition coefficient of a substance between two immiscible liquids
- 19. Adsorption of acetic acid by charcoal.
- 20. Use of the capillary viscometers to the demonstrate of the isoelectric point as the pH of minimum viscosity for gelatin sols and/or coagulation of the white part of egg.

Laboratory Outcomes

The chemistry laboratory course will consist of experiments illustrating the principles of chemistry relevant to the study of science and engineering. The students will learn to:

Estimate rate constants of reactions from concentration of reactants/products as a function of time Measure molecular/system properties such as surface tension, viscosity, conductance of solutions, redox potentials, chloride content of water, etc.

Synthesize a small drug molecule and analyze a salt sample.

Batch 2019-2023 and onwards

NOTE

- 1. In practical examination the student shall be required to perform two experiments.
- 2. A teacher shall be assigned 20 students for daily practical work in laboratory.
- 3. No batch for practical class shall consist of more than 20 students.
- 4. The number of students in a batch allotted to an examiner for practical examination shall not exceed 20 students.
- 5. Addition/deletion in above list may be made in accordance with the facilities available with the approval of H.O.D./Dean.

Effective from the session 2019-20 BCE-C151/BCE-C251 PROGRAMMING FOR PROBLEM SOLVING LAB

MM :50
Time : 2 hrs

L T P
Credit : 1
0 0 2

LIST OF EXPERIMENTS

- 1. Practice of all internal and external DOS commands.
- 2. Write simple batch program.
- 3. Giving exposure to windows environment.
- 4. File and program management in windows.
- 5. Practice of all UNIX commands.
- 6. Introduction to text editing and word processing.
- 7. Net surfing.
- 8. Creation and usage of E-mail account.
- 9. Write a program in C to perform different arithmetic operations.
- 10. Write a program in C to greater of two numbers.
- 11. Write a program in C to check whether no. is odd or even.
- 12. Write a program in C to check whether no. is prime or not.
- 13. Write a program in C to print Fibonacci series.
- 14. Write a program in C to print factorial of a no.
- 15. Write a program in C to add two matrices.
- 16. Write a program in C to search a no. in array.

NOTE

- 1. In practical examination the student shall be required to perform one experiment.
- 2. A teacher shall be assigned 20 students for daily practical work in laboratory.
- 3. No batch for practical class shall consist of more than 20 students.
- 4. The number of students in a batch allotted to an examiner for practical examination shall not exceed 20 students.
- 5. Addition/deletion in above list may be made in accordance with the facilities available with the approval of H.O.D./Dean.

Effective from the session 2019-20 BME-C253 ENGINEERING GRAPHIC AND DESIGN LAB

MM :50
Time : 2 hrs

L T P
Credit : 2
1 0 2

Unit 1: Introduction to Engineering Drawing

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering and dimensioning, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, and Hypocycloid Scales – Plain, Diagonal and Vernier Scales;

Unit 2: Orthographic Projections and Projections of Regular solids

Principles of Orthographic Projections-Conventions – Principal planes, Auxiliary Planes, Introduction to first angle and third angle projection, Projections of Points, projection of linesparallel to both the planes, parallel to one and inclined to other, inclined to both the planes, true length and traces of a line, and lines inclined to both planes, Projections of planes, traces of planes, angles of inclinations of planes, parallel planes.

Unit 3: Sections and Sectional Views of Right Angular Solids and Isometric Projections

Prism, Cylinder, Pyramid, Cone – Auxiliary Views; Development of surfaces of Right Regular Solids - Prism, Pyramid, Cylinder and Cone; Draw the sectional orthographic views of geometrical solids, objects from industry and dwellings (foundation to slab only)

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions;

Unit 4: Overview of Computer Graphics Customization and CAD Drawing

Computer technologies that impact on graphical communication, Demonstrating knowledge of the theory of CAD software (AUTOCAD) [such as: The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), The Command Line (where applicable), The Status Bar, Different methods of zoom as used in AUTOCAD, Select and erase objects.; Isometric Views of lines, Planes, Simple and compound Solids.

Unit 5: AUTOCAD as a tool for design and drawing objects

Setting up and use of Layers, layers to create drawings, Create, edit and use customized layers; Changing line lengths through modifying existing lines (extend/lengthen); orthographic projection techniques; Drawing sectional views of composite right regular geometric solids CAD software(AUTOCAD) modeling of parts and assemblies. Parametric and non-parametric solid, surface, and wireframe models. Part editing and two-dimensional documentation of models. Planar projection theory, including sketching of perspective, isometric, multiview, auxiliary, and section views. Spatial visualization exercises. Dimensioning guidelines, tolerancing techniques;

Electronics & Communication Engineering, Faculty of Engineering & Technology, GKV, Haridwar

Batch 2019-2023 and onwards

dimensioning and scale multi views of dwelling. Use of solid-modeling software for creating associative models at the component and assembly levels; floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc. Appling Colour coding according to building drawing practices; Drawing sectional elevation showing foundation to ceiling; Introduction to Building Information Modelling (BIM).

References

- 1. Bhatt N.D., Panchal V.M. & Ingle P.R., (2014), Engineering Drawing, Charotar Publishing House
- 2. Shah, M.B. & Rana B.C. (2008), Engineering Drawing and Computer Graphics, Pearson Education
- 3. Agrawal B. & Agrawal C. M. (2012), Engineering Graphics, TMH Publication
- 4. Narayana, K.L. & Pannaiah (2008), Text book on Engineering Drawing, Scitech Publishers

NOTE

- 1. In practical examination the student shall be required to perform one experiment.
- 2. A teacher shall be assigned 20 students for daily practical work in laboratory.
- 3. No batch for practical class shall consist of more than 20 students.
- 4. The number of students in a batch allotted to an examiner for practical examination shall not exceed 20 students.
- 5. Addition/deletion in above list may be made in accordance with the facilities available with the approval of H.O.D./Dean.

Course Outcomes

All phases of manufacturing or construction require the conversion of new ideas and design concepts into the basic line language of graphics. Therefore, there are many areas (civil, mechanical, electrical, architectural and industrial) in which the skills of the CAD technicians play major roles in the design and development of new products or construction. Students prepare for actual work situations through practical training in a new state-of-the-art computer designed CAD laboratory using engineering software.

This course is designed to address:

- To prepare you to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- To prepare you to use the techniques, skills, and modern engineering tools necessary for engineering practice

The student will learn:

- Introduction to engineering design and its place in society
- Exposure to the visual aspects of engineering design
- Exposure to engineering graphics standards
- Exposure to solid modelling and computer-aided geometric design
- Exposure to creating working drawings and engineering communication