

Duration

(Measures)

#Occurrences

Classifying Leitmotifs in Recordings of Operas by Richard Wagner

Michael Krause, Frank Zalkow, Julia Zalkow, Christof Weiß, Meinard Müller

1. Introduction

- **Leitmotifs**: short musical ideas associated with characters, places, items, or feelings Popular in 19th century **opera**, still used in contemporary **movie soundtracks**
- Major example: Richard Wagner's tetralogy *Der Ring des Nibelungen* (four operas, around 15 hours)
- This paper: Classifying leitmotif instances in music recordings

Task: Assigning a given audio excerpt to a class according to the leitmotif being played

2. Leitmotif Classification

Barenboim

16 recorded **performances**

2403 motif **occurrences** in the score, annotated by a musicologist

Our dataset: Based on the *Ring*, annotations publicly available

- Transfer of occurrences to performances (semi-automatically)
- \rightarrow 16 \times 2403 = 38448 instances!

Selection of ten central leitmotifs

- Name ID Score
- Nibelungen

P-Ka Karajan

P-Sa Sawallisch

		P-Ba Barenboim P-Ha Haitink	1991–92 14:54:55 1988–91 14:27:10		
		ID Conductor	Year hh:mm:ss		
Schwert (Sword)	L-Sc			134	1.89 ± 0.55
Geschwisterliebe (Siblings' love)	L-Ge			155	1.31 ± 0.83
Horn (Horn)	L-Ho			172	1.38 ± 1.05
Waberlohe (Swirling blaze)	L-WL			190	1.21 ± 0.39
Waldweben (Forest murmurs)	L-Wa	9:### 		223	1.10 ± 0.30
Ritt (Ride)	L-RT	9:#		228	0.66 ± 0.17
Nibelungenhass (Nibelungs' hate)	L-NH	9:## / 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		237	0.96 ± 0.17
Mime (Mime)	L-Mi			242	0.83 ± 0.25
Ring (Ring)	L-Ri	9:	<u>}</u>	286	1.49 ± 0.65
(Nibelungs)	L-Ni			536	0.96 ± 0.23

P-So	Solti	1958–65	14:36:58
P-We	Weigle	2010–12	14:48:46
P-Bo	Boulez	1980–81	13:44:38
P-Bö	Böhm	1967–71	13:39:28
P-Fu	Furtwängler	1953	15:04:22
P-Ja	Janowski	1980–83	14:08:34
P-Ke	Keilberth/Furtwängler	1952–54	14:19:56
P-Kr	Krauss	1953	14:12:27
P-Le	Levine	1987–89	15:21:52
P-Ne	Neuhold	1993–95	14:04:35
P-Sw	Swarowsky	1968	14:56:34
P-Th	Thielemann	2011	14:31:13
Data Splits			
Two data splits:			
Performance split: Requires Occurrence split: Requires g			nterpretation conditions

Occurrences

(128)

(10)

(10)

512

1290

1967–70

1989

14:58:08

14:06:50

4. Data Splits

- Performances

P-Ba

Batch normalization

Output: Softmax

Dense

Input: **CQT** representations of audio excerpts

6. Results

Output: **Probabilities** per motif

	Calit	Performance			Occurrence			
	Split	Р	R	F	Р	R	F	
	L-Ni	0.94	0.95	0.94	0.67	0.80	0.73	
	L-Ri	0.93	0.92	0.93	0.36	0.41	0.38	
	L-Mi	0.96	0.95	0.96	0.79	0.87	0.83	
	L-NH	0.94	0.92	0.93	0.72	0.20	0.31	
	L-RT	0.95	0.94	0.95	0.57	0.65	0.61	
	L-Wa	0.94	0.98	0.96	0.87	0.80	0.84	
	L-WL	0.98	0.93	0.96	0.25	0.21	0.23	
	L-Ho	0.90	0.89	0.89	0.46	0.57	0.51	
	L-Ge	0.94	0.94	0.94	0.28	0.30	0.29	
	L-Sc	0.91	0.96	0.93	0.52	0.50	0.51	
	Mean	0.94	0.94	0.94	0.55	0.53	0.52	
Strong results when generalizing to unseen performances of the <i>Ring</i> Weaker results for generalizing to unknown motif occurrences								

Test result (mean F) Performance split Occurrence split

Temporal context helpful, especially for occurrence split. Possible explanations:

Next step: **Detecting** leitmotifs in entire performances (no presegmented inputs)

Context encourages learning of relevant musical characteristics of motifs

10

20

Length of input excerpts in seconds

30

Context increases possibility for *overfitting* Further evidence for overfitting: Classifier is able to memorize random labeling of occurrences

0.9

0.7

0.6

Check out the paper and the accompanying website! https://www.audiolabs-erlangen.de/resources/MIR/2020-ISMIR-LeitmotifClassification

Acknowledgments

7. Future Work

(FAU) and Fraunhofer Institut für Integrierte Schaltungen IIS. References

We thank Vlora Arifi-Müller for her assistance in preparing the data. This work was supported by the

Laboratories Erlangen are a joint institution of the Friedrich-Alexander-Universität Erlangen-Nürnberg

German Research Foundation (DFG MU 2686/7-2, MU 2686/11-1). The International Audio

- [1] Frank Zalkow, Christof Weiß, and Meinard Müller, "Exploring tonal-dramatic relationships in Richard Wagner's Ring cycle," in Proceedings of the International Conference on Music Information Retrieval (ISMIR), Suzhou, China, 2017, pp. 642-648.
- [3] Frank Zalkow, Christof Weiß, Thomas Prätzlich, Vlora Arifi-Müller, and Meinard Müller, "A multi-version approach for transferring measure annotations between music recordings," in

[2] Matthew Bribitzer-Stull, *Understanding the Leitmotif*, Cambridge University Press, 2015.

Proceedings of the AES International Conference on Semantic Audio, Erlangen, Germany, 2017, pp. 148–155. [4] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals, "Understanding deep learning requires rethinking generalization," in Proceedings of the International Conference on Learning Representations (ICLR), Toulon, France, 2017.

