- Choose the true statement in the following four statements on square matrices ().
 - Eigenvectors must be nonzero vectors. (A)
 - Each eigenvalue of A is also an eigenvalue of A^3 (B)
 - (C)Eigenvalues must be nonzero.
 - (D) Two eigenvectors corresponding to the same eigenvalue are always linearly dependent.
 - 2. Let $A = \begin{bmatrix} 4 & 6 & 0 \\ -3 & -5 & 0 \\ -3 & -6 & 1 \end{bmatrix}$. Choose an eigenvector of A corresponding to 1 (

- (A) $\begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix}$ (B) $\begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$ (C) $\begin{bmatrix} -5 \\ 3 \\ 2 \end{bmatrix}$ (D) $\begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$
- 3. Choose the false statement in the following four statements on similar matrices (
- (A) Similar matrices always have exactly the same eigenvalues.
- (B) Similar matrices always have exactly the same eigenvectors.
- (C) If A and B are invertible $n \times n$ matrices, then AB is similar to BA.
- (D) Similar matrices always have exactly the same determinant.
- 4. Let $A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$. The dimensions of $ColA, NulA, ColA^2, NulA^2$ are

- (A) 3, 1, 3, 1 (B) 1, 3, 1, 3 (C) 3, 1, 2, 2 (D) 3, 1, 2, 2

- 5. Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$. Choose a matrix similar to A in the following four matrices
- $\text{(A)} \quad \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \qquad \text{(B)} \quad \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \quad \text{(C)} \quad \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \quad \text{(D)} \quad \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

- 6. The matrix $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & k \end{vmatrix}$ is not invertible. Then $k = \underline{\hspace{1cm}}$.

7. Let
$$A = \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix}$$
 and $u = \begin{bmatrix} 4 \\ k \\ 4 \end{bmatrix}$ be an eigenvector of A . Then $k = _____$.

- 8. Let A be a matrix such that $A\alpha = 4\alpha$, where α is an eigenvector of 4. Then $A^2\alpha = \underline{\hspace{1cm}} \alpha$, $2A^2\alpha = \underline{\hspace{1cm}} \alpha$, and $(A^2 + 2022I)\alpha = \underline{\hspace{1cm}} \alpha$.
- 9. Let the quadratic form $Q(x) = 2x_1^2 + 8x_1x_2 + x_2^2 + 6x_1x_3 + 10x_2x_3 + 2x_3^2$ and the symmetric matrix A satisfy $Q(x) = x^T A x$. Then $A = \underline{\hspace{1cm}}$.
- 10. Let $u = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$ and $v = \begin{bmatrix} 5 \\ 3 \\ 2 \end{bmatrix}$. The inner product $u \cdot v =$ _____, the length ||2u|| =

and the distance $||u-v|| = \underline{\hspace{1cm}}$

$$\Xi. \text{ Let } A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 2 \\ 1 & 2 & 4 \end{bmatrix}.$$

(1)Compute det A. (2) Compute A^{-1} .

III. Let
$$A = \begin{bmatrix} 1 & -3 & 4 & 9 \\ -2 & 6 & -6 & -10 \\ -3 & 9 & -6 & -3 \\ 3 & -9 & 4 & 0 \end{bmatrix}$$
.

- Please give an Echelon form of A. (1)
- Please find bases for the row space RowA, the column space ColA, the (2)null space NulA.
- Please find dimensions of RowA, ColA, NulA. (3)

五. Solve the following the system of linear equations:

$$x_1 + 2x_2 + 3x_3 = 2$$
$$0x_1 - x_2 + 2x_3 = 4$$

$$0x_1 - x_2 + 2x_3 = 4$$
$$x_1 + 2x_2 + 4x_3 = 8$$

- \dot{R} . Let $P_2 = \{f(t): f(t) = a_0 + a_1t + a_2t^2\}$ be the set of all the polynomials of degree at most 2. The sum of two elements of P_2 is defined as the sum of two polynomials. The scalar multiple cf(t) is defined as the multiplication of a real number c and a polynomial f(t).
- (1) Prove that $\{1+t, -t, t^2+1\}$ is a basis of P_2 . (2) Find $a, b, c \in \mathbb{R}$ such that

$$t^2 + 2t + 3 = a(1+t) + b(-t) + c(t^2 + 1) = (1+t, -t, t^2 + 1) \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

 \pm . Let $\alpha_1,\alpha_2,\alpha_3$ be three vectors in a linear space V over R. Vectors $\alpha_1,\alpha_2,\alpha_3$ are linearly independent. Let $\beta_1=2\alpha_1+2\alpha_2$, $\beta_2=\alpha_2+\alpha_3$, and $\beta_3=2\alpha_1+2\alpha_2+2\alpha_3$. Determine if β_1,β_2,β_3 are linearly dependent or linearly independent.

$$\text{Λ. Let $\beta_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\beta_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$, $\beta_3 = \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix}$, $\alpha_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\alpha_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.$$

- (1) Please verify that $\{\beta_1, \beta_2, \beta_3\}$ is a basis of \mathbb{R}^3 and $\{\alpha_1, \alpha_2, \alpha_3\}$ is another basis of \mathbb{R}^3 .
 - (2) Please find a matrix P such that $(\beta_1, \beta_2, \beta_3) = (\alpha_1, \alpha_2, \alpha_3)P$.

(3) Please find
$$a,b,c$$
 such that $u=\begin{bmatrix}1\\2\\4\end{bmatrix}=a\alpha_1+b\alpha_2+c\alpha_3=(\alpha_1,\alpha_2,\alpha_3)\begin{bmatrix}a\\b\\c\end{bmatrix}$.

九. Let
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{bmatrix}$$
.

- (1) Please compute $det(A \lambda I)$ and give all the eigenvalues of A.
- (2) Determine if A is positive definite or not.
- (3) Please give three linearly independent eigenvectors of A. Orthogonally diagonalize the matrix A. Please give the orthonormal matrix Q and a diagonal matrix D such that $A = QDQ^{-1}$.

+. Let $A = I - \frac{2}{\alpha^T \alpha} \alpha \alpha^T$ be a 3×3 matrix, where I is the identity matrix and $\alpha \in \mathbb{R}^3$.

(1) If
$$\alpha = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, compute $\alpha^T \alpha$, $\alpha \alpha^T$, A and verify that $A^T A = I$ (i.e., A)

is a orthonormal matrix).

For any $\alpha \in \mathbb{R}^3$ and $\alpha \neq \mathbf{0}$, prove that $A^T A = I$.