This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WHAT IS CLAIMED IS:

5

10

15

25

 A planar light source device, comprising: a plurality of light sources emitting different colors of light; and

a light guide plate receiving light from the plurality of light sources at a side face to distribute the light over a surface thereof;

wherein a light emission angle differs among the plurality of light sources.

- 2. A planar light source device according to Claim 1, comprising a refractor mounted on an emission surface of each of the plurality of light sources for changing a direction of light, the refractor having a different shape for the different light sources.
- 3. A planar light source device according to Claim 1, wherein a light emission angle of a light source of the plurality of light sources emitting longer wavelength light is smaller than a light emission angle of a light source of the plurality of light sources emitting shorter wavelength light.

4. A planar light source according to Claim 1,

wherein the plurality of light sources are red, green, and blue light emitting diodes.

5. A liquid crystal display device, comprising:

5

10

15

20

25

a planar light source device according to Claim 1; and

a liquid crystal panel placed above an emission surface of the planar light source, the liquid crystal panel having two substrates with a liquid crystal layer interposed therebetween.

6. A liquid crystal display device according to Claim 5, wherein the different light sources have different light emission angles in order that wavelength dependence of transmittance at a viewing direction in the liquid crystal panel is canceled out by wavelength dependence of luminance at the viewing direction in the planar light source device.

7. A planar light source device, comprising: a plurality of light sources emitting different colors of light;

a light guide plate receiving light from the plurality of light sources at side face to distribute the light over a surface thereof; and

a refractor refracting light from the plurality of light sources with different refraction angles for different colors.

5

8. A planar light source device according to Claim 7, wherein the refractor is formed on a side face of the light guide plate facing the plurality of light sources, the refractor having a different shape for the different light sources.

10

15

9. A planar light source device according to Claim 7, further comprising a prism plate mounted between the plurality of light sources and the light guide plate, wherein the refractor is formed on a side face of the prism plate facing the plurality of light sources, the refractor having a different shape for the different light sources.

20

10. A planar light source device according to Claim 7, wherein a refraction angle of longer wavelength light is smaller than a refraction angle of shorter wavelength light.

25

11. A planar light source according to Claim
7, wherein the plurality of light sources are red,
green, and blue light emitting diodes.

12. A liquid crystal display device, comprising:

a planar light source device according to Claim 7; and

a liquid crystal panel placed above an emission surface of the planar light source, the liquid crystal panel having two substrates with a liquid crystal layer interposed therebetween.

10

15

20

25

5

- 13. A liquid crystal display device according to Claim 12, wherein the different light sources have different light emission angles in order that wavelength dependence of transmittance at a viewing direction in the liquid crystal panel is canceled out by wavelength dependence of luminance at the viewing direction in the planar light source device.
 - 14. A planar light source device, comprising:
 - a light source;
- a light guide plate receiving light from the plurality of light sources at a side face to distribute the light over a surface thereof; and
- a hologram diffracting different light at different angles.

- 15. A planar light source device according to Claim 14, wherein the hologram is placed between the light source and the light guide plate.
- 5 16. A planar light source device according to Claim 14, wherein the hologram is placed above an emission surface of the light guide plate.
- 17. A planar light source device according to

 10 Claim 14, wherein the hologram diffracts longer wavelength light at an angle while diffracts shorter wavelength light at a larger angle than the angle of the longer wavelength light.
- 18. A liquid crystal display device, comprising:
 - a planar light source device according to Claim
 14; and
- a liquid crystal panel placed above an emission surface of the planar light source, the liquid crystal panel having two substrates with a liquid crystal layer interposed therebetween.
- 19. A liquid crystal display device according to Claim 18, wherein the hologram is arranged in order that wavelength dependence of transmittance at a

viewing direction in the liquid crystal panel is canceled out by wavelength dependence of luminance at the viewing direction in the planar light source device.