Fall 2017 Yury Blyakhman

Desk Quant Intro

1. Personal intro

- 2. What do Desk Quant supporting Market Making business do?
 - Salespeople help clients to determine the best strategies for hedging or investment
 - Traders work on price quotes for the products, and manage portfolio risks they take through trading with our customers
 - Quants work with trading on pricing models, risk analysis, hedging strategy as well as marketing on new products

Lecture 1. Introduction to Emerging Markets

Fall 2017 Yury Blyakhman

Agenda for Today

1. Class introduction: syllabus and structure

2. Lecture 1. Introduction to Emerging Markets

Agenda for Today. Class Introduction

- 1. Class introduction: syllabus and structure
 - a) Summary
 - b) Detailed Course Outline
 - c) Class Structure

2. Lecture 1. Introduction to Emerging Markets

Class Introduction

Summary:

- Seven three-hour classes
- Two main topics:
 - Emerging Markets (EM)
 - Inflation
- Particulars:
 - Always start from Economics
 - Turn to derivatives, discuss practical pricing and risk management
 - Follow the details of Linear (Flow) products in Rates and FX
 - Use a lot of EM examples, spend the whole day in Brazil
 - Inflation and special Latin America (LatAm) cases. Real Rates
 - Classic Inflation modelling: 3-Factor, Libor Models

Detailed Course Outline:

- 1. Introduction to Emerging Markets
 - a. Definitions and market' drivers
 - b. Local Markets overview: economics and derivatives' trading
 - c. Emerging Markets as an Asset Class: compare to classic Rates, FX or Credit markets
 - d. EM tradable Indices and their derivatives. Pricing and hedging practices
 - e. Practical overview of Debt Exchange Warrants
- 2. Linear Rates and FX Introduction. Part 1: FX
 - a. Introduction to Interest Rates and FX
 - b. Basic Interest Rates Concepts
 - c. Linear FX Instruments
 - i. FX Spot and Forward
 - Non-Deliverable or Cash Settled FX Forward
 - iii. Forward Starting FX Forward and Convexity Adjustment(s)
 - iv. FX Future and Convexity Adjustment(s)

Detailed Course Outline (continued):

- Linear Rates and FX Introduction. Part 2: Rates
 - a. Fixed Income Instruments and Curves
 - i. Bonds and Asset Swaps
 - ii. Evolution of a Bond market into a Swap market in Emerging Markets
 - iii. Single Currency and Cross Currency Swaps
 - b. Interest Rate (Yield) Curve Bootstrapping
 - i. Calibration
 - ii. Markets and Patterns across Developed and Emerging Markets
 - iii. New Instruments evolution in Emerging Markets
 - c. Differential Discounting
 - i. Multiple CSA Discounting Introduction
 - ii. Special cases of Local Collateral in Emerging Markets

Detailed Course Outline (continued):

4. Brazil

- a. Brazil benchmarks and Day Count Conventions
- b. FX Products. Onshore and Offshore market. FX Convertibility
- c. Linear Interest Rate products
 - i. IR Futures. IR/FX Futures
 - ii. Onshore USD rates and extension to other Currencies
 - iii. CDI Swap and Percentage CDI Swap
- d. Interest Rate options
 - i. CDI Swaption and DI Future Option
 - ii. CDI Cap and IDI Options

Detailed Course Outline (continued):

- 5. Introduction to Inflation
 - a. Economics of Inflation. Inflation measures
 - b. Inflation-Linked products and markets
 - i. Securities
 - ii. Breakeven Inflation
 - iii. Futures and Inflation swaps
 - iv. Inflation-linked derivatives market
 - c. Bootstrapping Inflation curve
 - i. Breakeven and Zero Coupon Swap Inflation curve
 - ii. Mean-reverting process in building the inflation curve and forward inflation pricing
 - d. Inflation seasonality

Detailed Course Outline (continued):

- 6 7. Inflation in Latin America and Classic Inflation Modelling
 - a. The Real Rate Economy: Inflation in Latin America
 - Real Rate Currency
 - ii. Latin America Inflation-Indexed bonds overview
 - iii. A Little Bit of History
 - b. Inflation in Chile: Forwards
 - c. Inflation in Brazil: Inflation-linked Bonds and Swaps
 - d. Inflation in Colombia: Term-on-Term Inflation in Real Rates Economy
 - e. The 3-Factor Jarrow Yildirim model of Inflation
 - i. HJM and Short Rate refresher
 - ii. Detailed JY derivation
 - f. Application of the 3-F inflation model in Colombia
 - g. Pricing of Zero Coupon Inflation Indexed Swap (ZCIIS)
 - h. Pricing of Year-on-Year Inflation Indexed Swap (YYIIS)
 - i. YYIIS pricing with JY model
 - ii. YYIIS pricing with First Market Model
 - iii. YYIIS pricing with Better Market Model

Course Structure

Lectures

- PowerPoint slides available on the class' forum site before the class
- Slides will stay available throughout the semester
- There will be no hard copies

Home works

- All 100% practical covering structures virtually identical to real trades
- Strictly due before the next class submitted to your TA
- Submission format is free
- Each lecture will start with the homework review
- E-copy of solutions will not be available
- Cumulative Home works grade will be worth 20% of the final grade
- In-class final exam

Agenda for Today. Introduction to Emerging Markets

1. Class introduction: syllabus and structure

2. Lecture 1. Introduction to Emerging Markets

- a) Emerging Markets definition, drivers, map
- b) EM Local Markets. Latest Overview
- c) Emerging Markets as an Asset Class. Regional differences
- d) Emerging Markets Indices and Derivatives on them
 - EMBI+ and the EM Contagion effect
 - GBI-EM and Derivatives pricing
- e) Debt Exchange Warrants
 - Pricing model and risk management
 - Parameters estimation

Definitions

Collection of countries with economic similarities

Collection of BRICs:

- BRIC = Brazil, Russia, India, China as in [O'N 2001]
- BRICS = BRIC + South Africa
- BRICET = BRIC + Eastern Europe, Turkey
- BRICM = BRIC + Mexico
- BRICK = BRIC + South Korea

And mortars:

- MIST: Mexico, Indonesia, South Korea, Turkey
- MINT: Mexico, Indonesia, Nigeria, Turkey
- CIVETS: Colombia, Indonesia, Vietnam, Egypt, Turkey, South Africa
- Come up with your acronym?

Emerging Markets Definitions

Definitions (continued)

- Development over last 20 years, forming G20 with 11 EM countries
- Less Economically Developed Countries term used in 1970s
- "Emerging Markets" coined in early 1980s by A. van Agtmael from the World Bank's International Financial Corporation
- No agreed upon definition, but common characteristics are >
- **■** [JPMorgan 2006]:
 - Markets and economies in transition, hence not stable. Countries have begun to open up their markets and "emerge". They have stock and capital markets that foreign investors can participate in;
 - Lack of historical economic and political stability, regulatory / legal framework and transparency;
 - High growth and liberalization / privatizations, but heavily regulated with barriers and capital controls;
 - Markets susceptible to financial and currency crisis, often a reflection of the domestic banking system strength

Drivers

1. Systemic:

- General risk appetite and liquidity constraints
- State of economy, monetary policy, levels of inflation and interest rates
- Scare of contagion effect (will be shown later)

2. Idiosyncratic:

- Political process, fiscal discipline
- History of payments, defaults (at least 7 for Argentina so far)
- Economic growth, reforms, transparency, etc.

Emerging Markets Definitions

Map [Mirae 2013]

Local Markets Overview [JPMorgan 2014]

- Continue to depend on US monetary policy and even more so now than before
- Local yields recovery was very moderate connected to low money inflow into dedicated EM strategies and capital flights from them
- Regionally Emerging Eastern Europe Middle East and Africa (EMEA EM) sees less of the inflow compared to Asia and Latin America (LatAm) due to the ever increased geopolitical risks
- EM FX liquidity continues to improve since 2012, but is still low

Emerging Markets as an Asset Class

What makes it special?

- [Fabozzi 2002] suggests Brady debt restructuring in 1990's as first step towards Asset Class recognition
- Look at XCcy IR Swap in EM [JPMorgan 2006]:
 - 1. IR Fixed Float Single Ccy Swap
 - Deliverable XCcy Swap
 - 3. Non-Deliverable XCcy Swap
 - Local Ccy Collateral in offmarket mode
 - 5. Rates and FX correlated to Credit
 - 6. Commodities dependency

o. Commo

Emerging Markets as an Asset Class

Regional differences. Latin America

Mexico:

- Deep capital markets, high products sophistication
- Economy highly correlated to US
- Only free floating and convertible currency in LatAm
- Heavy regulatory environment limits development in the derivatives space

Chile:

- Strong and stable capital markets with high products sophistication
- Freely convertible, but non-deliverable FX (will be defined later)
- Heavy attention to the inflation market due to historical reasons

■ Brazil (to be covered in more details later):

- Large scope of exchange traded products and deep capital control
- Non Convertible FX
- Regulatory framework is becoming more fluid
- Largest local bonds market in EM
- High inflation and wide range of inflation linked products
- Special conventions historical going back to high interest rates

Emerging Markets as an Asset Class

Regional differences. Europe, Africa. Middle East

■ Poland, Czech, Hungary:

- Free floating and convertible FX
- Not in Eurozone, but market is following EUR both in depth and products sophistication

■ Turkey:

- Low product sophistication with visible growing and liberalization
- Free floating and convertible FX
- Liquid Fixed Income market

South Africa:

- One of the deepest FX and Rates markets in EM
- Fully convertible and free floating FX
- Fixed coupon bonds are among the most liquid in EM, but FX Options are less liquid
- Heavy regulatory requirement from SA Reserve Bank (SARB)

■ Israel:

- Deep capital markets
- FX is managed float and convertible
- Highly liquid local bonds, FX Options, Rates derivatives

Regional differences. Asia

South Korea:

- Most developed, dynamic and liquid markets in EM Asia
- Credit Default Swap (CDS) spread is close to Japan
- Large and active IR Options market

China:

- Complex variety of onshore (CNY) and Hong Kong traded deliverable CNB
- Gradual evolution of regulations
- Active and liquid government bonds market

Agenda for Today. Introduction to Emerging Markets

1. Class introduction: syllabus and structure

2. Lecture 1. Introduction to Emerging Markets

- a) Emerging Markets definition, drivers, map
- b) EM Local Markets. Latest Overview
- c) Emerging Markets as an Asset Class. Regional differences
- d) Emerging Markets Indices and Derivatives on them
 - EMBI+ and the EM Contagion effect
 - GBI-EM and Derivatives pricing
- e) Debt Exchange Warrants
 - Pricing model and risk management
 - Parameters estimation

Overview [J.P.Morgan Markets]

■ Powerful tool providing investors with an access to multi-component markets without trading components directly

Scalar collection of assets (benchmarks), or investment strategy replicating underlyings in a transparent manner

■ In EM justified by lack of access to Local Markets directly and thus are among the most popular ones

■ Think of your own Index as it will be needed for the Home work later

EM families

External Sovereigns

- EMBI (Emerging Markets Bond Index) family: USD EM debt benchmark covering securities issued by sovereign and quasi-sovereign entities
- NEXGEM (Next Generation Market Index) for less liquid population of EM Economies with frequent and large debt issuance

External Credit

- CEMBI (Corporate Emerging Markets Bond Index)
- JACI (JPMorgan Credit Asia Index)
- CACI (Central America and Caribbean Index)

■ FX

- ELMI (EM Local Market Index) good at tracking short term returns
- LACI (Latin America Currencies Index)

Local Government Bonds

■ GBI-EM provides exposure to local currency denominated sovereign debt and FX rates

EMBI+ and EM Contagion effect

- Among the first offered and proved to be a great measure for EM investors
- Weighting of its components uses complex liquidity criteria with rebalance
- Stripped Spread measures the credit risk premium over US Treasury bonds:
 - A difference between Yield to Maturity of a bond to the Yield to Maturity of the corresponding point on the US Treasury curve
 - Measures constituents' sovereign risk since it also accounts for collateral

EMBI+ and EM Contagion effect (continued)

GBI-EM Index [JPMorgan GBI-EM]

- Tracks local currency bonds issued by EM governments
- Includes the following 16 countries split in 4 regions:
 - Asia: Indonesia, Malaysia, Philippines and Thailand
 - Europe: Hungary, Poland, Romania, Russia, Turkey
 - Latin America: Brazil, Chile, Colombia, Mexico, Peru
 - Africa: Nigeria, South Africa
- Excludes countries with explicit capital control
- Positioned as the investable benchmark

GBI-EM Index (continued)

■ Monthly rebalanced with inclusion / removal of countries and issuances

- Includes fixed coupon bonds with very strict liquidity requirements:
 - Pricing: trading with enough frequency to prevent stale pricing
 - Availability: regularly traded at size at acceptable bid-offer
 - Replication cost: no additional cost to replicate index via weighted components

^{*} Liquidity as ability to trade in sizable amounts without affecting the market. We will need this later for hedging

Emerging Markets and Inflation

GBI-EM Index. Definition

Define some notations:

 \blacksquare *CP(t)* : Clean Price of a bond at time *t*

 \blacksquare IA(t) : Accrued Interest of a bond at time t

■ DP(t): Dirty Price of a bond at time t. DP(t) = CP(t) + IA(t)

 $\blacksquare MV(t)$: Market Value (outstanding amount) of a bond at time t

 \blacksquare FX rate in terms of foreign currency per US dollars at time t

 \blacksquare r(t): One-day return at time t

 \blacksquare w(t): Weight at time t

 \blacksquare I(t): Index value at time t

GBI-EM Index. Definition (contd)

- Global Index consists of collection weighted Regional Indices
- Regional Index is a weighted collection of USD denominated Country Indices
- Country USD denominated index is FX converted from Local Ccy denominated country Index
- Ccy denominated country index is collection of weighted returns on individual bond prices

GBI-EM Index. One bond return

One-day return of a bond in local currency:

$$r_{B}^{(L)}(t) = \frac{CP(t) + IA(t)}{CP(t-1) + IA(t-1)} - 1 = \frac{DP(t)}{DP(t-1)} - 1$$

One-day return of a bond in USD:

$$r_B^{(U)}(t) = [1 + r_B^{(L)}(t)][1 + r_{FX}(t)] - 1$$

where

$$r_{FX}(t) = \frac{FX(t-1)}{FX(t)} - 1$$

GBI-EM Index. Country Index

■ Country Index in Local currency for N_{CB} bonds:

$$I_{C}^{(L)}(t) = I_{C}^{(L)}(t-1) \cdot \left[1 + r_{C}^{(L)}(t)\right]$$

$$= I_{C}^{(L)}(t-1) \cdot \left[1 + \sum_{i=1}^{N_{CB}} w_{B_{i}}(t) \cdot r_{B_{i}}^{(L)}(t)\right]$$

■ Here $w_{B_i}(t)$ is weight of *i*-th bond for country C:

$$w_{i}(t) = \frac{MV_{i}^{(L)}(t-1)}{\sum_{k=1}^{NC} MV_{k}^{(L)}(t-1)}$$

Country index in USD then:

$$I_{C}^{(U)}(t) = I_{C}^{(U)}(t-1) \cdot \left[(1 + r_{C}^{(L)}(t)) \cdot (1 + r_{FX}(t)) \right]$$

GBI-EM Index, Regional Index

- Weighted combo of Country Indices
- Defined as month-to-date return since last rebalance at s:

$$\hat{r}_{C}^{(L)}(t) = \frac{I_{C}^{(L)}(t)}{I_{C}^{(L)}(s)} - 1$$

$$\hat{r}_{C}^{(U)}(t) = [1 + \hat{r}_{C}^{(L)}(t)][1 + \hat{r}_{FX}(t)] - 1$$

■ So for N_{RC} countries in a Region:

$$I_{R}^{(U)}(t) = I_{R}^{(U)}(s) \left[1 + \sum_{j=1}^{N_{RC}} w_{C_{j}}(s) \cdot \hat{r}_{C_{j}}^{(U)}(t) \right]$$

■ With country weight $w_c(s)$ as of last rebalance defined as

$$w_{C}(s) = \frac{MV_{C}^{(U)}(s)}{\sum_{j=1}^{N_{RC}} MV_{C_{j}}^{(U)}(s)}$$

GBI-EM Index. Global Index

Expressed similarly to Regional via weighted collection:

$$I(t) = I(s) \left[1 + \sum_{k=1}^{N_R} w_{R_k}(s) \cdot \hat{r}_{R_k}^{(U)}(t) \right]$$

$$w_R(s) = \frac{MV_R^{(U)}(s)}{\sum_{j=1}^{N_R} MV_{R_j}^{(U)}(s)}$$

where $w_R(s)$ is the weight of the Region in the global index at the last rebalancing date in terms of its total market value in USD

■ So, why all the details?...

GBI-EM Index. Total Return Swap

- Total Return Swap (TRS): financial contract that fully transfers risk of an underlying asset from one party to another
- No asset ownership is required
- Risk transferred includes Market and Credit risk
- For position Q on an Index I till maturity T Future Value FV(T) is

$$FV_T = Q \cdot \left\{ \frac{I_T}{I_o} - \Phi \right\},$$

$$\Phi = \begin{cases} 0, & \text{with final exchange} \\ 1, & \text{without final exchange} \end{cases}$$
(1)

Now we need some dynamics assumptions!

GBI-EM Index. Total Return Swap. Pricing

Funding rate or general rate of growth:

Forward price of an index via Forward price of a bond:

$$P_{t,T} = \frac{P_{t,t}}{Z^{Fund}_{t,T}}$$

- here Z^{Fund} is standard price of a Discount Zero Coupon bond paying \$1 at time T. Comes from Repo market for a bond
- Repo: a combination of a security's sale and an agreement of later purchase for a pre-agreed price on a pre-agreed day
- So let us start building Forward price of an Index via assumptions on Repo rates for 200+ bonds in it and market information on FX growth:

Use Country index as a starting point:

$$I_{T}^{U} = I_{o}^{U} \left\{ 1 + \left(\frac{I_{T}^{L}}{I_{o}^{L}} \frac{FX_{o}}{FX_{T}} - 1 \right) \right\} = I_{o}^{U} \left\{ 1 + \left(\frac{I_{T-1}^{L} \left(1 + \frac{R}{365} \right)}{I_{o}^{L}} \frac{FX_{o}}{FX_{T}} - 1 \right) \right\},$$

$$R = \sum_{i} w_{i} \binom{DP_{T}^{i}}{DP_{T-1}^{i}} - 1 = \sum_{i} w_{i} \binom{DP_{T-1}^{i} \left(1 + \frac{\rho}{365} \right)}{DP_{T-1}^{i}} - 1 = \sum_{i} w_{i} \frac{\rho^{i}}{365}$$

$$FX_{T} = FX_{T-1} \frac{Z_{T-1,T}^{U}}{Z_{T-1,T}^{L}}$$

here ρ is an overnight repo rate for individual bond.

Next is to extend overnight repo to a term one...

GBI-EM Index. Total Return Swap. Pricing

- Stop here as it already is getting too complicated...
- Instead use generic arbitrage free assumption in Eq. (1):

$$FV_{T} = Q \cdot \left\{ \frac{I_{T}}{I_{o}} - 1 \right\} = Q \cdot \left\{ \frac{I_{t}}{I_{o}} \cdot \frac{I_{T}}{I_{t}} - 1 \right\} = Q \cdot \left\{ \frac{I_{o}(1 + R_{t})}{I_{o}} \cdot \frac{I_{t}(1 + \rho_{T})}{I_{t}} - 1 \right\}$$

$$= Q \left\{ (1 + R_{t}) \cdot (1 + \rho_{T}) - 1 \right\} = Q(R_{t} + \rho_{T} + R_{t} \cdot \rho_{T})$$
(2)

- Now TRS depends only on realized Index return and generic Funding rate ρ from time t to maturity T
- Could even dissect into regional (hedge-able) funding (using fv for Regional)

$$fv_T = q_i \cdot \left\{ \frac{I_T^R}{I_O^R} - 1 \right\} = q_i \cdot \left(R_t^R + \rho_T^R + R_t^R \cdot \rho_T^R \right)$$

Emerging Markets and Inflation

Mexico Debt Exchange Warrants of 2005

- Switch foreign currency (debt) holding into locally denominated
- Enticing as allows to rely on domestic based financing
- And allows to exclude FX risk due to convertible nature of MXN Peso
- More details:
 - Compare local market MBono securities to offshore UMS
 - Option (warrant) involves cash-neutral switch basket ATMF option
 - Option to exchange any UMS bond from deliverable basket into predefined MBono with price quanto'd into USD

Quanto is a derivative where payoff measured in currency X is made in currency Y. Good introduction to quanto math could be found in Ch. 19.9 of (Hull, 2000)

General description

Actual pay-off at maturity:

$$\pi_{T} = MAX \left[f_{B} \hat{P}_{B}(T) - f_{U_{1}} P_{U_{1}}(T), f_{B} \hat{P}_{B}(T) - f_{U_{2}} P_{U_{2}}(T), ..., 0 \right]$$

where:

 f_B - face value of MBono;

 $\hat{P}_{\scriptscriptstyle B}(T)$ - MXN spot price of MBono at option maturity, quanto'd in USD

 f_{U_i} - face value of the *i*-th UMS bond from the deliverable basket

 $P_{U_i}(T)$ - spot price of the *i*-th UMS bond at option maturity

Option valuation

- Start with 1 UMS bond in a basket
- Two assets exchange option valuation as in [Margrabe'78]:

$$\pi_{o} = \mathbb{E}\left[Z_{0,T} \cdot \max\left(f_{B}\hat{P}_{B}(T) - f_{U}P_{U}(T),0\right)\right]$$

$$= \mathbb{E}\left[Z_{0,T} \cdot \max\left(f_{B}P_{B}(T)e^{\rho_{B,FX} \cdot \sigma_{B} \cdot \sigma_{FX} \cdot \tau} - f_{U}P_{U}(T),0\right)\right]$$

$$\stackrel{def}{=} \mathbb{E}\left[Z_{0,T} \cdot \max(B - U,0)\right]$$

$$= Z_{0,T} \cdot B \cdot \{B \cdot \mathbb{N}(d_{1}) - U \cdot \mathbb{N}(d_{2})\}$$
(3)

- $Z_{0,T}$ USD discount factor from today to expiry T
- $P_{\scriptscriptstyle U}(T)$ forward price of UMS bond at expiry
- $P_{\scriptscriptstyle B}(T)$ forward price of MBono bond at expiry in MXN
- $\hat{P}_{\!\scriptscriptstyle B}(T)$ MXN forward price of MBono bond at expiry quanto'd into USD

Option valuation

Continue with two assets case as in [Margrabe'78]:

 $e^{
ho_{B,FX}\cdot\sigma_{B}\cdot\sigma_{FX}\cdot au}$ - standard quanto adjustment from numeraire change

 $\rho_{B,FX}$ - MBono price and FX rate correlation

 $\sigma_{\scriptscriptstyle B}$ - MBono price volatility

 $\sigma_{\scriptscriptstyle FX}$ - MXN forward price of MBono bond at expiry quanto'd into USD

τ - option's tenor

And standard notations for cumulative normal density N(*), d_1 and d_2

$$d_1 = \frac{\ln(B/U) + \frac{\hat{\sigma}^2 \tau}{2}}{\hat{\sigma} \sqrt{\tau}}$$
$$d_2 = d_1 - \hat{\sigma} \sqrt{\tau}$$

Option valuation

Two assets variance $\hat{\sigma}^2$ could be easily derived as

$$\left|\hat{\sigma}^2 = \sigma_B^2 - 2\rho_{B,U}\sigma_B\sigma_U + \sigma_U^2\right|$$

 $\sigma_{\scriptscriptstyle U}$ - UMS price volatility

 $ho_{{\scriptscriptstyle B},{\scriptscriptstyle U}}$ - MBono price and UMS price correlation

HW1: Derive variance of two assets exchange warrant

Option valuation for full deliverable basket

Price of a basket at time 0:

$$\pi_{o} = \mathbb{E} \Big[Z_{0,T} \cdot MAX \Big(f_{B} \hat{P}_{B}(T) - f_{U_{1}} P_{U_{1}}(T), f_{B} \hat{P}_{B}(T) - f_{U_{2}} P_{U_{2}}(T), ..., 0 \Big) \Big]$$

$$\stackrel{def}{=} \mathbb{E} \Big[Z_{0,T} \cdot MAX \Big(B - U_{1}, B - U_{2}, ..., 0 \Big) \Big]$$

$$(4)$$

■ Margrabe doesn't help us, so what can we do?→

Multi-dimensional Monte-Carlo

Parameters estimation

- What parameters do we need? Let's look at Eq. [4] again →
- Individual Volatilities and Correlations matrix for all assets
- Where and how can we get them? →
- Of course in the market →
- But no Warrants market to calibrate parameters directly. Next? →
- Bond Derivatives with vols. Bond Options, Bond Future Options →
- Bond Derivatives with correlations →
- So we have nothing...

Emerging Markets and Inflation

Parameters estimation. Historical estimates

- 1. Assets distribution:
 - Goodness of Fit (GoF) or Chi Square
 - What measure will let us say "lognormal enough"? →

- Compare to other assets with traded options:
 - US treasury Options
 - Mexico IR (TIIE) Swaptions + Correlation of Swap rates to Bond yields

Parameters estimation. Historical estimates

- 2. Volatilities. Suggest two approaches:
 - A. Standard Deviation of bond prices returns in log space:

$$\sigma = n\sqrt{\frac{n\left(\sum_{i}^{n} x_{i}^{2}\right) - \left(\sum_{i}^{n} x_{i}\right)^{2}}{n(n-1)}}$$

$$x_{i} = \ln\left(\frac{P_{i+1}}{P_{i}}\right)$$

Questions to consider:

- How big rolling window to take?
- What do we do with vol as a function of time or asset prices?

Parameters estimation. Historical estimates

- 2. Volatilities. Suggest two approaches:
 - B. Correlation to IR Options:
 - Yield vs. IR Swap → Yield vol. How do we get Price vol? →
 - Simple assumption for price P_t and yield to maturity Y_t :

Assuming

$$\begin{cases} dP_t = \sigma_P P_t dW_t \\ dY_t = \mu dt + \sigma_Y Y_t dW_t \end{cases}$$

$$\sigma_P \equiv \mathsf{E}\left[\frac{dP_t}{P_t}\right]$$
 and $\sigma_Y \equiv \mathsf{E}\left[\frac{dY_t}{Y_t}\right]$

■ Results in a simple

$$\begin{cases} dP_{t} = \frac{dP_{t}}{dY_{t}}dY_{t} \\ \sigma_{p}P_{t} \propto \frac{dP_{t}}{dY_{t}}\sigma_{y}Y_{t} \end{cases} \Rightarrow \sigma_{p} = \sigma_{y} \cdot BondDuration \cdot Y_{t}$$

Parameters estimation. Historical estimates

3. Correlations:

■ Same as before, go for simple historical correlations:

$$\begin{cases} A_i = \ln\left(\frac{(P_1)_{i+1}}{(P_1)_i}\right) \\ B_i = \ln\left(\frac{(P_2)_{i+1}}{(P_2)_i}\right) \end{cases} \Rightarrow \rho = \operatorname{Corr}(A, B)$$

Parameters are ready, but how stable is our Monte-Carlo?

Emerging Markets Indices

HW2 discuss pricing vanilla CALL Option on a generic Index

Given:

- Index is newly created: not much of historical index prices is available
- Index components have been traded for a while and do have historical prices
- Feel free to use earlier discussed GBI-EM index as example to make question more detailed
- There is no option market for this index

Questions:

- Discuss what model we could use to price this option. Can we start with Black-Sholes?
- Discuss how could we extract or derive parameters for this model: Index' volatility?
- If we are to deviate from Black-Sholes a bit and to introduce some simple Local Vol as vol for strike, how could we mark this smile and where from?
- How would we hedge this option if ever traded?

Summary

- Justified and agreed on pricing model
- Estimated parameters via some simple assumptions
- Implemented stand-alone pricing engine
- Discussed stability and potential ways of improvement
- What is next? →
 - Hedging: what can we hedge and how? →
 - Credit considerations? →
 - Stochastic behavior and jumps of EM bond yields [Matovu'07]
 - In times of economic distress when needed the most

Emerging Markets and Inflation

References

Goldman Sachs

[JPMorgan 2006] What makes Emerging Markets, Emerging Markets? JPMorgan

Chase. 2006

[Mirae 2013] MIRAE ASSET web page

[JPMorgan 2014] Local Markets Guide. J.P.Morgan. 2014

[JPMorgan GBI-EM] Government Bond Index-Emerging Markets Family of Indices.

J.P.Morgan. 2014

[Fab] Fabozzi. (2002). Investing in Emerging Fixed Income Markets

[Margrabe'78] Margrabe, W. (1978). The Value of an Option to Exchange One

Asset for Another. The Journal of Finance, 177-186

[Matovu'07] John Matovu. (2007). Volatility and Jump Risk Premia in

Emerging Markets Bonds. International Monetary Fund working

paper