גלגל המזל – מסמך אפיון טכני מלא

מבוא .1

מערכת "גלגל המזל" היא מיצב אמנות-טכנולוגי אינטראקטיבי המשלב הנדסת חומרה, תאורה חכמה ובקרה מבוססת מיקרו-בקרים. המערכת נבנית בהשראת נושא מידברן השנה – "ויהי אור", ומשלבת חוויית אור, תנועה, מבוססת מיקרו-בקרים. המערכת נבנית בהשראת נושא מידברן השנה – "ויהי אור", ומשלבת חוויית אור, תנועה, תבוססת מיקרו-בקרים.

מטרות המערכת .2

- יצירת גלגל מסתובב בהיקף 10 מטרים עם תאורה צבעונית דינמית.
- הדגשת סגמנט נבחר בעת עצירה באמצעות משולש מואר.
- יצירת סנכרון מלא בין התנועה הפיזית לבין התאורה והמטריצה המרכזית.
- אפשרות שליטה ובקרה דרך ממשק ווב.

מבנה כללי .3

המערכת מורכבת משלושה בקרים לצורך יתירות ועמידות לתקלות:

- Arduino Uno שולט בטבעת ההיקפית של פסי ה-LED.
- ESP32 (חיישנים + משולש) קורא את חיישני הסיבוב ומפעיל את תאורת המשולש).
- ESP32 (מטריצה) שולט במטריצה המרכזית ומפעיל ממשק ווב לניהול ובקרה).

:החיבור בין הרכיבים

- תקשורת UART פיזית בין -ESP32 (חיישנים).
- תקשורת אלחוטית ESP-NOW מטריצה), כולל מנגנון) בו ESP32 (חיישנים) ל ESP-NOW מטריצה), כולל מנגנון בSP32 (חיישנים) אישור).

4. דרישות מערכת

- 24 לפטריצה ולבקרים WS2814, 5V לפסי /
- דיודות פסי µF בתחילת פסי LED. דערוים נפרדים לכל ענף, דיודות LED.
- סנ**כרון:** הודעות (ACK) קצרות עם אישורי קבלה JSON סנכרון: הודעות.
- עמידות: IP65 עמידות. לפחות לרכיבים החיצוניים.

ממשק משתמש ובקרה .5

שליטה מלאה דרך ממשק ווב רספונסיבי המתארח על ESP32 שליטה מלאה דרך.

מסכי עיקריים 5.1

- Dashboard: טטטוס, מצב מערכת, בהירות (Ring/Matrix), טלמטריה חיה (אווי לינק).
- Animations: פרמטרי טבעת/מטריצה (Palette/Speed/Width/FPS/brightness).
- Text & Graphics: הזנת טקסט, בחירת פונט, גלילה, יישור, טעינת אייקונים.

- Diagnostics: Pixel-walk, Sensor-scan, Link-test, ,(אוסצילוסקופ וירטואלי). מפת תקינות תקשורת, בדיקות זרם/מתח אם זמינים.
- **Settings:** רשת, אבטחה/הרשאות, OTA, Presets export/import.

5.2 מסך כיול ייעודי (Calibration UI)

- Spin & Learn: מדד יציבות (confidence). מדד יציבות Doublet; מדר יציבות (confidence).
- Align Triangle: לחצן יישור מהיר מציב את המשולש על הסגמנט המחושב ומבקש אישור משתמש.
- **Segment Offset:** כפתור "אפס (-4...+4) + כפתור "אפס".
- **AB Phase:** מעלות/אחוז פסיעה) + כפתור "תקן" אוטומטי) + (מעלות אחוז פסיעה).
- Thresholds: טופס ערכים (MIN_PULSE_US, T_STOP_DETECT_MS, RPM_MIN_SPIN) עם Restore Defaults.
- Save/Export: עם פרמטרי כיול JSON הורדת קובץ + NVS הורדת קובץ.
- Safety Note: ווללא קהל קרוב IDLE הודעת אזהרה כיול רק במצב.

חיישנים ומשולש .6

- מני חיישני).
- מגנט כפול (Doublet) 0 לנקודת.
- מרחק חיישן–מגנט 2–4 מ"מ.
- המשולש מואר לפי סגמנט העצירה.
- מערך החיישנים מתוכנן להיות עמיד לרעידות ושינויים סביבתיים, כולל מנגנון כיול ידני או אוטומטי לאיפוס רגישות וזווית.

דרישות מכניות .7

- מטר 10 **היקף גלגל:** 10 מטר.
- טבעת תאורה: פרופיל אלומיניום עם פסי FCOB WS2814.
- **32** כל אחד 11.25°).
- מגנטים: 32 יחידות + אינדקס Doublet.
- חיישנים קבועים, מגנטים על חלק מסתובב.
- 6061 מסגרת אלומיניום-T6.
- חיבורי כבל מוגנים ומקובעים, IP65 הגנה.

לוגיקה ואלגוריתמים .8

- שני חיישני A3144 שני סדר ההפעלות A3144 שני חיישני (A לפני B לפני B , עם כיוון השעון B + לפני A לפני A לפני B.
- 0 מגנט כפול יוצר שני פולסים מהירים \leftarrow נקודת.
- מערכת מחשבת RPM המערכת מחשבת.
- בעת עצירה (אין פולסים > 0.6 שניות): קובעת סגמנט זכייה.
- במקרי קצה כמו תנועה איטית מאוד או עצירה על נקודת האיפוס, האלגוריתם מבצע סינון ממוצע ומוודא
 דיוק בנקודת העצירה.
- שולחת לארדואינו פקודה להאיר את הסגמנט הזוכה.
- המטריצה מציגה אנימציית זכייה.

תקשורת בין-בקרים .9

- ESP32 (חיישנים) הוא ה-Master.
- 100 או על שינוי מצב msאולח נתונים כל.
- אל Arduino דרך UART: <SPIN, CW, 45, 12>
- אל מטריצה (אלחוטית JSON): { "state": "spinning", "dir": "cw", "rpm": 42, "segment": 18, "ack": true }

מצבי תקלה ותקשורת

סוג תקלה	פעולה	תצוגה
נתק ESP→Arduino	אפקט רדיפה צבעוני איטי	הטבעת נשארת פעילה.
נתק ESP→Matrix	טקסט קבוע "גלגל המזל"	המטריצה נשארת פעילה.
אובדן חיישנים	מעבר ל-IDLE	כל התאורה עדינה וקבועה.
הפרעות זמניות	שמירה על מצב קיים עד 30 שניות	מונע הבהובים.

התאוששות (Recovery)

- עם חזרת תקשורת שליחת Reset גורפת.
- כל הרכיבים נכנסים למצב IDLE (אור רך קבוע).
- נתונים ישנים נמחקים, סנכרון מחדש תוך 3 הודעות.

מצבי מערכת

מצב	תיאור
IDLE	תאורה רכה, ממתין לתנועה.
SPINNING	אפקט ריצה צבעוני בכיוון הסיבוב.
SLOWDOWN	האטת אנימציה לקראת עצירה.
STOPPED	הדגשת סגמנט זכייה.
ERROR	אפקט תקלה או טקסט קבוע עד התאוששות.

חשמל וחיווט .10

מערכת הזנה 10.1

- 24 ספק V/300W 12.5).
- למטריצה ולבקרים V/60Aספק 5.
- הארקה משותפת לכל הרכיבים.

הזרקות מתח 10.2

- הזרקה כל 2 מ' בטבעת.
- חוט ראשי 2.5 4 מ"מ², הזרקות 1.5 מ"מ².
- 7.5–5 לכל ענף Aפיוז.

הגנות חשמליות 10.3

- 15 פיוז ראשי A (24V), 30A (5V).
- על TVS על DATA.
- בתחילת כל פס µF בתחילת כל בלים LED.
- הארקה בצורת כוכב (Star Ground).

10.4 DATA

- UART: ESP32→Arduino (115200bps, ≤30 n"o).
- ESP-NOW בין שני ה-ESP32 (חיישנים↔מטריצה).
- בקו הנתונים $k\Omega$ נגד הגנה 1.

10.5 רעשים ו-EMI

- DATA בנפרד ממתח, עדיפות לכבלים שזורים.
- 100 קבלים חיישן nF,
- Ferrite Bead על DATA הראשי.

חיווט כללי 10.6

11. רשימת רכיבים (BOM)

- בקרים: Arduino Uno ×1, ESP32 ×2.
- **LED:** WS2814 (10 מ'), WS2812B 32×32 1× מטריצה.
- מגנטים ×32 + כפול לנקודת A3144 ×2, 0 מגנטים.
- 5) דיודות TVS, 1000הגנות: פיוזים F.
- 24 אחיווט: 24 V (מ"מ² 6), DATA מ"מ"), DATA שזור
- מבנה: פרופילי אלומיניום, מכסים שקופים, מארזים IP65.
- מלחם, מולטימטר, שרוולי חום, אפוקסי.

בטיחות .12

בטיחות חשמלית 12.1

- כל מערכת החשמל כוללת פיוזים נפרדים לכל ענף ומפסק חירום ראשי (E-STOP).
- 5 עם הארקה משותפת בלבד V בידוד מלא בין.
- שימוש בכבלים איכותיים, בידוד כפול, וחיבורים נעולים.
- בדיקה תקופתית של הארקות ופיוזים.

בטיחות מכנית 12.2

- תכנון עמיד לרעידות, עם חיזוקי אלומיניום ומרווחי ביטחון סביב חיישנים.
- הגנה פיזית סביב הגלגל, מניעת מגע ישיר עם חלקים נעים.
- חיישני עצירה או מפסק חירום מכני במקרה של תקלת סיבוב.

מנגנוני חירום 12.3

- לחצן E-STOP 24) מנתק פיזית את שני הספקים V 5-iV).
- מנגנון תוכנתי למעבר אוטומטי למצב IDLE בכל תקלה בזיהוי או תקשורת.
- עצירה מיידית של אפקטים ואיפוס כללי.

נספחים .13

13.1 תרשים מצבי מערכת (State Diagram)

- עצירה מלאה, או תקלה בתקשורת ,RPM כל מעבר מתרחש לפי תנאי סף: זיהוי פולסים, ירידת.
- מבטיחה יציבות ובטיחות IDLE חזרה תמידית למצב.

טבלת זרמים והספקים 13.2

רכיב	מתח	זרם משוער	הספק	הערות
טבעת WS2814	24V	12.5A	300W	כל הלדים בלבן מלא.
מטריצה WS2812B	5V	35A	175W	עומס מקסימלי.
ESP32 ×2	5V	0.5A	2.5W	בקר + Wi-Fi.
Arduino Uno	5V	0.1A	0.5W	בקרה לטבעת.
משולש תאורה	5V	1A	5W	עוצמה מלאה.
סה״כ מערכת	_	≈49A	≈483W	20%־ספקים ב
				רזרבה.

14. מנגנון כיול (Calibration)

מטרות 14.1

- דיוק בזיהוי כיוון, מהירות וסגמנט עצירה בתנאי שטח משתנים.
- עמידות בפני שינויי טמפרטורה/רטיבות, רעידות, וסטיות במיקום.

(כיול מכני (חד-פעמי 14.2

- מרחק חיישן–מגנט: 2–4 מ״מ.
- היסט זוויתי A↔B (קוודרטורה): ≈2.8° (קוודרטורה).
- קיבוע חיישנים על תושבות קשיחות עם ברגי כיוונון.

14.3 ביול אלקטרוני - "Spin & Learn"

נוהל מופעל דרך ה־Web UI.

- 1. איפוס פרמטרים
- סיבוב איטי ידני (לפחות 2 הקפות)
- 3. סטיית תקן, יחס median(Δt), סטיית תקן, יחס Doublet.
- 4. זיהוי אינדקס
- 5. חישוב היסטים: segmentOffset, phaseOffsetAB.
- 6. הגדרת ספים: MIN_PULSE_US, T_STOP_DETECT_MS, RPM_MIN_SPIN.
- 7. שמירה: כתיבה ל־ JSON.

טריגרים לכיול 14.4

- "כיול" ב־ UI.
- אוטומטי: בהפעלה או כאשר מדד היציבות (confidence) יורד.

טיפול במקרי קצה 14.5

- תנועה איטית מאוד: שימוש בחלון ממוצע ארוך יותר.
- עצירה על אינדקס (Doublet): הכרעה מבוססת פולס אחרון + היסטרזיס.
- רעש/דליפת פולס: דרישת עקביות של ≥2 רצפים תקינים.
- שינוי כיוון רגעי: דרישת עקביות של 3 "הצבעות" עוקבות.

אימות כיול (Verification)

- ריצת בדיקת סיבוב CW/CCW, אימות סטיית מיקום $\frac{1}{2}$ סגמנט.
- בדיקת התאמה טבעת↔משולש↔מטריצה.

ערכי ברירת מחדל 14.7

פרמטר	ערך דיפולט	טווח מומלץ	הערות
MIN_PULSE_US	1800 μs	1500–3000 µs	דיבאונס פולסים לחיישני
			הול.
T_STOP_DETECT_MS	600 ms	500–800 ms	חלון עצירה.
RPM_MIN_SPIN	5.0 RPM	3–8 RPM	סף כניסה ל-SPINNING.
RPM_SLOWDOWN_T	3.0 RPM	2–5 RPM	סף מעבר
Н			ל-SLOWDOWN.
T_WINNER_ARM_MS	250 ms	200–400 ms	דיליי חימוש לפני Winner.
T_WINNER_HOLD_S	5 s	3–10 s	משך הצגת Winner.
K_DOUBLET	0.55	0.45–0.65	יחס Δt לקביעת Doublet.
CONFIDENCE_MIN	0.70	0.6–0.8	מתחת לסף — לא מעדכנים
			סגמנט.

15. לוגים, ניטור ואבחון (Logging & Monitoring)

מטרות 15.1

- מתן שקיפות תפעולית בזמן אמת ובדיעבד.
- קיצור זמן ניתוח תקלות והוכחת ביצועים.

סוגי לוגים 15.2

- **Telemetry (5–10Hz):** rpm, dir, segment, confidence, rssi, ack_latency_ms, retries, v_in, t board.
- **Events:** mode_change, winner(seg), calibration_start/finish, link_up/down, recovery_to_idle, estop.
- Errors/Warnings: packet_loss, crc_fail, no_sensor_pulses, overtemp, undervoltage.

פורמט וקיבולת 15.3

- JSON Lines (.log), חותמת זמן מבוססת זמן ריצה (לא NTP).
- Ring Buffer שמירת סטטוס אחרון ל + (בזיכרון (2000 רשומות) + שמירת NVS.

דוגמאות רשומה 15.4

```
{"lvl":"INFO","ev":"mode_change","from":"spinning","to":"slowdown","ts
_ms":345123}
{"lvl":"WARN","ev":"link_down","target":"ring","retries":3,"ts_ms":412
345}
```

ונראות 15.5 UI

- **Logs:** אירוע, חיפוש טקסט, הורדה כקובץ/level/סנן לפי זמן log.
- אינדיקטורים חיים בדשבורד: מפת תקינות תקשורת (Heatmap), RSSI, ACK%, Retry Rate, V in. T°.
- דגלים: LINK LOST, DEGRADED, CALIBRATION NEEDED.

15.6 ספי התראות (Alerts)

- ACK success < 95% שני 60 שני → WARN.
- packet loss > 10% שני 30 → WARN.
- overtemp או undervoltage \rightarrow ERROR + הורדת בהירות אוטומטית.

:סיכום

מסמך זה מרכז את כל המידע ההנדסי לבניית מערכת גלגל המזל – כולל חשמל, תקשורת, חיישנים, תוכנה, בטיחות ומבנה. המערכת מתוכננת לעבודה ממושכת בתנאי שטח עם יציבות, גמישות ואמינות גבוהות, תוך בטיחות ומבנית מתוכנית מלאה.