Analysis I Übung (WS 18/19)

Pavel Zwerschke, Daniel Augustin

26. November 2018

Inhaltsverzeichnis

1	Aussagenlogik (19.10.18)	2
	1.1 Tautologie	3

1 Aussagenlogik (19.10.18)

Definition 1.0.1. Eine Aussage ist die gedankliche Widerspiegelung eines Sachverhalts in Form eines Satzes in einer natürlichen oder künstlichen Sprache.

Jede Aussage ist entweder wahr oder falsch.

Beispiel. Aussagen:

- 1. Wenn es regnet, dann ist die Straße nass.
- 2. Vögel können fliegen

Aussagen verknüpfen:

Wahrheitstafel: Seien A und B Variablen die entweder wahr oder falsch sind.

$$\begin{array}{c|c} A & \neg A \\ \hline \text{true} & \text{false} \\ \text{false} & \text{true} \end{array}$$

Tabelle 1: Negation

A	В	$A \wedge B$	$A \lor B$	$A \rightarrow B$	$A \Leftrightarrow B$
W	W	w	W	W	W
W	f	f	w	f	f
\mathbf{f}	w	f	w	W	f
f	f	f	f	w	w

Tabelle 2: Konjunktion, Disjunktion, Implikation, Äquivalenz

Ausdrücken der Aussagenlogik:

1. Konstanten und Variablen sind Ausdrücke

2. Sind A und B Variablen, so sind auch (siehe Wahrheitstabelle) Ausdrücke

Definition 1.0.2. Zwei Aussagenlogische Ausdrücke heißen logisch äquivalent oder wertgleich (A = B), wenn sie die gleichen Wahrheitswerte besitzen.

Beispiel.

$$(A \land B) \lor C = (A \lor C) \land (B \lor C)$$

$$\Leftrightarrow (A \land B) \lor C = (B \land (A \lor C)) \lor (C \land (A \lor C)))$$

$$\Leftrightarrow (A \land B) \lor C = (B \land A) \lor ((B \land C) \lor C)$$

$$\Leftrightarrow (A \land B) \lor C = (A \land B) \lor C$$

Beispiel.

$$\neg (A \land B) = (\neg A \lor \neg B)$$
$$(\neg A \lor \neg B) = (\neg A \lor \neg B)$$

Somit sind $\neg (A \land B)$ und $(\neg A \lor \neg B)$ logisch äquivalent und es gilt:

$$\neg (A \land B) = (\neg A \lor \neg B)$$

1.1 Tautologie

Definition 1.1.1. Ein Aussagenlogischer Ausdruck heißt allgemeingültig oder Tautologie, wenn die Wahrheitsfunktion identisch true ist.

Beispiel. Kontraposition:

$$A \to B \Leftrightarrow \neg B \to \neg A$$

$$((A \to B) \to (\neg B \to \neg A)) \land ((\neg B \to \neg A) \to (A \to B))$$

$$((\neg A \lor B) \to (B \lor \neg A)) \land ((B \lor \neg A) \to (\neg A \lor B))$$

$$(\neg (\neg A \lor B) \lor (B \lor \neg A)) \land (\neg (B \lor \neg A) \lor (\neg A \lor B))$$

$$((A \land \neg B) \lor (\neg A \lor B)) \land ((A \land \neg B) \lor (\neg A \lor B))$$

$$((A \lor (\neg A \lor B)) \land (\neg B \lor (\neg A \lor B))) \land ((A \lor (\neg A \lor B)) \land (\neg B \lor (\neg A \lor B)))$$

$$true \land true$$

$$true$$

true