Teoria de Números Computacional

folha 2 -

1. Use a factorização de Fermat para encontrar uma factorização de

- (a) 143
- (b) 979
- (c) 3139
- (d) 3713
- (e) 2279
- (f) 8051
- (g) 11413
- (h) 11021
- (i) 46009
- (j) 3200399
- (k) 24681023
- (1) 4210289
- (m) 4574741741
- (n) 184670524079
- (o) 649989426469

2. De l'Implemente uma função que obtenha uma factorização de um natural usando o método de Fermat.

3. Mostre que se $n \equiv 2 \mod 4$ então n não se pode escrever como diferença de quadrados.

4. Verifique a igualdade de Aurifeuille:

$$2^{4n+2} + 1 = (2^{2n+1} - 2^{n+1} + 1)(2^{2n+1} + 2^{n+1} + 1).$$

Use-a para obter uma factorização não trivial de $2^{58} + 1$.

- 5. Mostre que
 - (a) se a é um inteiro par então $a^2 \equiv 0 \mod 4$;
 - (b) se a é um inteiro ímpar então $a^2 \equiv 1 \mod 4$.
- 6. Mostre que se a é um inteiro ímpar então $a^2 \equiv 1 \mod 8$.
- 7. O que pode concluir se $a^2 \equiv b^2 \mod p$, onde $a, b \in \mathbb{Z}$ e p é primo?

- 8. Encontre as soluções de:
 - (a) $123456789x \equiv 9876543210 \mod 10000000001$
 - (b) $333333333x \equiv 87543211376 \mod 967454302211$
 - (c) $734342499999x \equiv 1 \mod 1533331$
 - (d) $499999x \equiv 1 \mod 1533331$
 - (e) $1000001x \equiv 1 \mod 1533331$
- 9. Mostre que $\mathbb{Z}/mn\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$, enquanto anéis, para (m, n) = 1. Sugestão: mostre que o homomorfismo $\psi([a]_{mn}) = ([a]_m, [a]_n)$ é injectivo, ou seja, que $\psi([a]_{mn}) = ([0]_m, [0]_n)$ implica que $[a]_{mn} = [0]_{mn}$.
- 10. Numa máquina que opera com números inferiores a 100, calcule
 - (a) 323 + 1261
 - (b) 123655 + 410231
 - (c) 124×201
- 11. Numa máquina que opera com números inferiores a 1000, calcule
 - (a) 3243 + 71261
 - (b) 4009143 + 2107002
 - (c) 1003×4101
- 12. Sejam $a, b \in \mathbb{N}$ com a > b. Mostre que
 - (a) se r é o resto da divisão de a por b então $2^r 1$ é o resto da divisão de $2^a 1$ por $2^b 1$. Como sugestão, observe que

$$2^{bq+r} - 1 = \left(2^b - 1\right) \left(2^{b(q-1)+r} + \dots + 2^{b+r} + 2^r\right) + \left(2^r - 1\right).$$

- (b) $(2^a 1, 2^b 1) = 2^{(a,b)} 1.$
- (c) $(2^a 1, 2^b 1) = 1$ se e só se (a, b) = 1.
- 13. Suponha que tem à sua disposição uma máquina que permite efectuar operações aritméticas que não excedam 2^{35} , e que pretende calcular o produto de 1237940039285380274899124225 por 2475880078570760549798248453. Mostre como tal se pode efectuar.

Sugestão: defina m1=2^35-1; m2=2^34-1; m3=2^33-1; m4=2^31-1;m5=2^29-1;m6=2^23-1; e M=m1*m2*m3*m4*m5*m6, e considere o Teorema Chinês dos Restos.

- 14. Use ρ -Pollard, com $x_0 = 2$ e $f(x) = x^2 + 1$ para encontrar a factorização de
 - (a) 133
 - (b) 1189

- (c) 1927
- (d) 8131
- (e) 36287
- (f) 48227
- 15. Use $\rho\text{-Pollard}$ para factorizar 1387, fazendo uso de
 - (a) $x_0 = 2$; $f(x) = x^2 + 1$
 - (b) $x_0 = 3; f(x) = x^2 + 1$
 - (c) $x_0 = 2$; $f(x) = x^2 1$
 - (d) $x_0 = 2$; $f(x) = x^3 + x + 1$