Introduction to the MinION sequencer

Tim Kahlke tim.kahlke@uts.edu.au https://github.com/timkahlke Twitter: @AdvancedTwigTec

MinION Sequencer

Base

- Connects to Computer
- Fan / thermal regulation

Flow Cell

- Sample goes here
- Includes chip with nanopores
- Enables up to 48h of sequencing (Consumable)

Flow cell – Overview

Spot-on port: library goes here.

Sample port

- Main inlet for buffers etc
- Confusing name: <u>Don't put the</u>
 <u>sample here!</u>
- Used to wash and prime the flow cell before / after use

Spot-On port & cover

- Library goes here
- Rigid cover connected to flow cell with a thin sticker.
- Always keep closed unless you're loading library.

Spot-on port & cover

Waste outlets

- To remove old primer, library etc using these
- Never remove liquid from waste outlets unless Spot-on port and Sample port are closed!!

Chip

- NO BUBBLES!!!
- Always check for bubbles
- While loading sample port always check for air in channels in front of chip

Sequencing workflow

- Prepare library
- Add Flow Cell to MinION
- Quality check of Flow Cell with MinKNOW software
- Load priming Buffer into Flow cell
 - Open Sample port
 - Take a few ul from sample port to make sure there is no air in the port
 - Load buffer (NO BUBBLES)

Sample port open

Sequencing workflow

- Prepare Library for loading
- Add more priming buffer into sample port
- Load library
 - Open Spot-on port cover
 - Drop library into spot-on port
- Close Spot-on port & sample port
- Start sequencing

Flow Cell washing (Storage)

Sample port open

- 1. Stop sequencing
- 2. Open sample port
- 3. Add solution A in sample port
- 4. Add storage buffer into sample port
- 5. Close sample port
- 6. Take old library from waste outlets

What to keep in mind

- 1. No bubbles in the system!
- 2. Take up a few ul from sample-port to make sure there is no air in it
- 3. Remove all air from pipette tip
- 4. Close spot-on port before using sample port
- 5. Close all port before using waste outlets

How does it work?

Flow Cell Chip

- High-density array of circuits
- Circuits measure and control current

Source: https://community.nanoporetech.com

• 2048 (32 x 64) hexagonal wells

512 measurement channels, 4 times multiplexed
 => per row always 4 wells are controlled by one channel

Flow Cell - multiplexing

 During MUX scan the best 512 channels are chosen as group1, second best as group2 etc

Questions?

