

ADVANCED ENERGY STORAGE
FOR SPACE APPLICATIONS
A FOLLOW - UP

GERALD HALPERT
SUBBARAO SURAMPUDI

1993 NASA BATTERY WORKSHOP
NASA/MARSHALL SPACE FLIGHT CENTER
HUNTSVILLE, ALABAMA
NOVEMBER 16, 1993

ENERGY STORAGE SYSTEMS GROUP —

PRECEDING PAGE BLANK NOT FILMED

AGENDA / OVERVIEW

- FUTURE SPACE MISSIONS
- OVERVIEW AND PERFORMANCE CHARACTERISTICS OF ADVANCED BATTERY TECHNOLOGIES
 PRIMARY BATTERIES
 RECHARGEABLE BATTERIES
- JPL EXPERIENCE WITH ADVANCED BATTERIES

CATEGORIES OF SPACE MISSIONS USING BATTERIES

- PRIMARY CELL APPLICATIONS
 - LAUNCH VEHICLES
 - PROBES AND PENETRATORS
 - SHUTTLE EXPERIMENTS
 - PLANETARY STATIONS
- RECHARGEABLE CELL APPLICATIONS
 - LOW EARTH MISSIONS
 - GEOSYNCHRONOUS ORBIT MISSIONS
 - ROVERS
 - PLANETARY STATIONS

BATTERY CHALLENGES

- REDUCED WEIGHT
- REDUCED VOLUME
- INCREASED OPERATIONAL LIFE
- INCREASED SPECIFIC POWER AND POWER DENSITY
- INCREASE ACTIVE STORAGE AND CHARGE RETENTION
- EXTEND OPERATION TO EXTREME ENVIRONMENTS

PROPERTIES OF SOA AND ADVANCED PRIMARY BATTERIES

LITHIUM PRIMARY CELL APPLICATIONS

- CREW EQUIPMENT, TOOLS, EXPERIMENTS
 - EXTRAVEHICULAR MOBILITY LIGHT (1 Li - BCX)
 - EXTRAVEHICULAR MOBILITY TV (8 Li - BCX)
 - ACCELEROMETER RECORDING UNIT (2, 3 C Li - BCX)
 - CASSETTE DATA TAPE RECORDER (2 Li - BCX)
 - MINIOSCILLOSCOPE (4 D Li - BCX)
 - ULTRASONIC LIMB PLETHYSMOGRAPH (2 Li - BCX)
 - PRC - 112 MILITARY RADIO (3 C Li - BCX)
 - CAMCORDER, CAMERA, PRIMARY POWER, PAYLOADS (Li - X)
WHERE X = SOCl_2 , SO_2 , CF_x , MnO_2 , I, Ag_2CrO_4
- RANGE SAFETY (4, 28V Li - CFx)

ADVANCED LITHIUM BATTERIES FOR CENTAUR

REQUIREMENTS
TO 6 BATTERIES

SILVER-ZINC
(STATE-OF-THE-ART)

LITHIUM THIONYL CHLORIDE
(JPL TECHNOLOGY)

SAVES 30kg/BATTERY

16 BATTERIES TO 1 BATTERY

ADVANCED RECHARGEABLE BATTERY APPLICATIONS

<u>LEO</u>	<u>GEO</u>	<u>PLANETARY</u>
Ni- MH ?	Ni-MH	Ni - MH
Na - S	Na - S	Li - ION
Na - NiCl ₂	Na - NiCl ₂	Li - TiS ₂
	Li - ION	Li - POLYMER
	Li - TiS ₂	Li - POLYMER

SPECIFIC ENERGY OF RECHARGEABLE CELLS AND BATTERIES

ENERGY DENSITY OF RECHARGEABLE CELLS AND BATTERIES

PRESENT LIMITATIONS OF ADVANCED BATTERY TECHNOLOGIES

- SMALL - MEDIUM CAPACITY CELLS ARE AVAILABLE
- TO DATE ADVANCED BATTERIES ARE HANDMADE OR BATCH PROCESSED
- CYCLE LIFE GENERALLY LIMITED TO 1000 CYCLES
- ADVANCES IN CHARGE CONTROL NEEDED TO BALANCE CELLS IN BATTERY
- SAFETY AND ABUSE AFFECTS NOT WELL KNOWN

STATUS OF Li-TiS₂ CELL TECHNOLOGY

Schematic Diagram of a Li-TiS₂ Cell

Specific Power vs Specific Energy

Cycle Life Performance

ENERGY STORAGE SYSTEMS GROUP —

STATUS OF Li ION CELL TECHNOLOGY

CARBON MATERIALS UNDER STUDY

REVERSIBLE Li CAPACITY OF SELECTED CARBONS

• PITCH COKE: 0.070 Li PER CARBON
• PETROLEUM COKE: 0.057 - 0.077 Li PER CARBON
• CARBON FIBER: 0.097 Li PER CARBON
• GRAPHITE: 0.124 Li PER CARBON
*** PAN FIBER HAS VERY SLOW RATE CAPABILITY**

STATUS OF Li-TiS₂ CELL TECHNOLOGY

PROPERTIES OF JPL Li/POLYMER ELECTROLYTES

CYCLE LIFE OF Li-TiS₂ CELL

ELECTROLYTE	CONDUCTIVITY (SCM) RT 90°C	LI TRANSPORT #	ELECTROCHE- MIC WINDOW (V)	LI CYCLING EFFICIENCY (%)
PEO12- GR4LiBF ₄	10 ⁻⁸ - 8X10 ⁻⁴	0.2-0.4	1.4-4.6	88-93%
PEO/Li ₂ O ₃	... 8X10 ⁻⁵	0.8-1.0	1.4-3.7	88-93%
ENVIBARIEC- DEC/LiAsF ₆	2X10 ⁻³ - - -	0.2-0.4	1.4-4.3	87-93%

STATUS OF THE Ni-MH CELL TECHNOLOGY

MH MATERIALS UNDER STUDY

- La Ni₅ (5978)
- La_{0.3} Ce_{0.51} Pr_{0.07} Nd_{0.13} Ni_{3.56} Co_{0.76} Mn_{0.4} Al_{0.3} (6025)
- La_{0.25} Ce_{0.55} Pr_{0.07} Nd_{0.13} Ni_{3.68} Co_{0.75} Mn_{0.4} Al_{0.34} (6062)
- La_{0.64} Ce_{0.25} Pr_{0.04} Nd_{0.08} Ni_{3.51} Co_{0.77} Mn_{0.4} Al_{0.31} (6039)
- La_{0.49} Ce_{0.20} Pr_{0.09} Nd_{0.22} Ni_{3.05} Co_{1.50} Al_{0.53} (6077)
- Mn Ni_{3.5} Co_{0.8} Mn_{0.4} Al_{0.3} (IBA MH NO 5)
- JPL/CALTECH/JPL MATERIAL

PERFORMANCE OF 250 mAh Ni-MH CELLS DURING CYCLING

SPECIFIC CAPACITIES OF MH ALLOYS

FLOODED CELL PRIMATIC CELL

VARIATION OF CAPACITY WITH Mn COMPOSITION AND CYCLING

INITIAL 10 CYCLES 50 CYCLES 100 CYCLES 132 CYCLES

STATUS OF Na -NiCl₂ CELL TECHNOLOGY

CYCLE LIFE OF 2 Ah $\text{Na} - \text{NiCl}_2$ CELLS WITH DIFFERENT ADDITIVES

PROJECTED PERFORMANCE ENVELOPE STATE OF ART AND ADVANCED CELLS

SUMMARY

- FUTURE SPACE MISSIONS REQUIRE LIGHTER WEIGHT,
SMALLER VOLUME, HIGHER ENERGY BATTERIES
("SMALLER, CHEAPER, BETTER")
- SEVERAL ADVANCED BATTERY SYSTEMS ARE UNDER
DEVELOPMENT
- SEVERAL, PRIMARY LITHIUM BATTERY SYSTEMS ARE IN
USE
- SELECTION OF THE NEW RECHARGEABLE SYSTEMS
REQUIRES ADDED CYCLE LIFE AND BATTERY
PERFORMANCE DEMONSTRATION

ACKNOWLEDGEMENT

- THE AUTHORS ARE APPRECIATIVE OF THE SUPPORT OF NASA HEADQUARTERS CODE C AND CODE Q FOR THIS EFFORT
- THE BATTERY SYSTEM COMPARATIVE DATA WAS DERIVED FROM REPORTS IN:
 - THE 1991-3 NASA BATTERY WORKSHOP PROCEEDINGS
 - THE 1991 AND 1993 SPACE ELECTROCHEMICAL RESEARCH AND TECHNOLOGY PROCEEDINGS

