Capitolo 6

Esercizio 1

Per tutto questo esercizio, indico con K il campo di spezzamento del polinomio in questione e con G il gruppo di Galois richiesto.

- (a) Il polinomio $x^3 x 1$ è irriducibile perché è di grado 3 e né 1 né -1 sono radici. Il suo discriminante è $\Delta = 4 27 = -23$, che non è un quadrato in \mathbb{Q} . Quindi $G \simeq S_3$ (cfr. pag. 270, Lang).
- (b) Osservo che $x^3 1 = (x 1)(x^2 + x + 1) = (x 1)(x \varepsilon)(x \varepsilon^2)$ dove ε è una radice terza dell'unità diversa da 1. Quindi K è il campo di spezzamento del polinomio separabile $x^2 + x + 1$. Perciò |G| = 2. È chiaro che i due omomorfismi sono σ_1, σ_2 dati da $\sigma_1 = \mathrm{id} \in \sigma_2(\varepsilon) = \varepsilon^2$.
- (c) L'elemento ε dell'esercizio (b) è $\varepsilon = \frac{-1 \pm \sqrt{-3}}{2}$. È evidente che $\varepsilon \notin \mathbb{Q}(\sqrt{2})$, quindi anche in questo caso il polinomio $x^2 + x + 1$ è irriducibile e perciò |G| = 2 e quindi G è lo stesso del punto (b).
- (d) Guardando al punto (c), è immediato che $\varepsilon \in \mathbb{Q}(\sqrt{-3})$, quindi il polinomio si spezza completamente su di esso. Quindi $K = \mathbb{Q}(\sqrt{-3})$ e $G = \{id\}$.
- (e) Si può vedere che il polinomio $x^3 x 1$ è irriducibile anche su $\mathbb{Q}(\sqrt{-23})$ (trovando esplicitamente le radici). Come abbiamo già osservato nel punto (a), il discriminante è -23, che è un quadrato in $\mathbb{Q}(\sqrt{-23})$. Quindi $G \simeq A_3$.
- (f') $f(x) = x^4 5 = (x \alpha)(x + \alpha)(x i\alpha)(x + i\alpha)$ con $\alpha = \sqrt[4]{5}$. Quindi il campo di spezzamento di f è $\mathbb{Q}(i,\alpha)$, che è banalmente un'estensione di Galois di \mathbb{Q} di grado 8. Osservo che esiste $\tau \in \operatorname{Gal}(K/\mathbb{Q}(\alpha))$ determinato da $\tau(i) = -i$. Inoltre $\tau^2 = \operatorname{id}$. D'altra parte, esiste anche $\sigma \in \operatorname{Gal}(K/\mathbb{Q}(i))$ determinato da $\sigma(\alpha) = i\alpha$. Inoltre si può verificare facilmente che id, σ , σ^2 , σ^3 sono distinti e che $\sigma^4 = \operatorname{id}$. Poiché τ non coincide con nessuno di questi quattro automorfismi, e osservando (si vede facilmente) che $\tau \sigma = \sigma^3 \tau$, trovo che

$$G = <\tau, \sigma \mid \tau \sigma = \sigma^3 \tau >$$

ovvero $G \simeq D_4$, che infatti ha 8 elementi, come cercato.

- (f") Sia $F := \mathbb{Q}(\sqrt{5})$. È chiaro che [K : F] = 4. Con riferimento al punto (f'), osservo che esiste $\tau \in \operatorname{Gal}(K/F(\alpha))$ determinato da $\tau(i) = -i$. Inoltre $\tau^2 = \operatorname{id}$. D'altra parte, esiste anche $\sigma \in \operatorname{Gal}(K/F(i))$ determinato da $\sigma(\alpha) = -\alpha$, ed è chiaro che $\operatorname{Gal}(K/F(i)) = \{\operatorname{id}, \sigma\}$, in quanto ogni suo automorfismo deve mandare $\alpha^2 = \sqrt{5}$ in α^2 . Si verifica facilmente che $\tau \sigma \in G$ e che $\tau \sigma \neq \tau, \sigma$. Quindi, poiché |G| = 4, si trova $G = \{\operatorname{id}, \tau, \sigma, \tau \sigma\}$.
- (m) $f(x) = x^n t = (x \alpha)(x \varepsilon \alpha)(x \varepsilon^2 \alpha)...(x \varepsilon^{n-1}\alpha)$ dove ε è una radice n-esima primitiva di 1 e $\alpha^n = t$. Quindi $K = \mathbb{C}(t)(\alpha, \varepsilon) = \mathbb{C}(\alpha)$. Mostro che f(x) è irriducibile: consideriamo l'anello $\mathbb{C}[t]$. Poiché t è trascendente su \mathbb{C} , è chiaro che (t) è massimale, e quindi primo, in $\mathbb{C}[t]$. Quindi, per il criterio di Eisenstein, f(x) è irriducibile su $\mathbb{C}[t]$. Per il lemma di Gauss, f(x) è irriducibile anche sul suo campo delle frazioni, ovvero su $\mathbb{C}(t)$. Quindi |G| = n, ed è chiaro quindi che $G = \langle \sigma \rangle$ dove $\sigma(\alpha) = \varepsilon \alpha$ (e quindi $\sigma^n = \mathrm{id}$).
- (n) $f(x) = x^4 t = (x \alpha)(x i\alpha)(x + \alpha)(x + i\alpha)$, dove $\alpha^4 = t$. Quindi $K = \mathbb{R}(t)(i,\alpha) = \mathbb{R}(i,\alpha)$, che ha banalmente grado 4 su $\mathbb{C}(t)$ e quindi 8 su $\mathbb{R}(t)$. Ragionando come nel punto (f'), si trova che $G \simeq D_4$.

Esercizio 3

Grazie al lemma di Gauss, per verificare che i polinomi in questione sono irriducibili su $\mathbb{C}(t)$, è sufficiente verificare che lo siano su $\mathbb{C}[t]$. Ed essendo polinomi di terzo grado, si verifica facilmente che tutti i polinomi dell'esercizio sono irriducibili in quanto non hanno soluzioni in $\mathbb{C}[t]$ (basta guardare i divisori del termine noto). A questo punto, possiamo applicare come in precedenza il ragionamento che sfrutta il discriminante del polinomio. In particolare, si verifica subito che per tutti i polinomi dell'esercizio, tranne l'ultimo, il discriminante non è un quadrato in $\mathbb{C}(t)$. Calcoliamo ora il discriminante dell'ultimo polinomio $x^3 + t^2x - t^3$:

$$\Delta = -4(t^2)^3 - 27(-t^3)^2 = -31t^6$$

che è il quadrato di $i\sqrt{31}t^3 \in \mathbb{C}(t)$.