XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks

2018-11-11

Overview

• 提出 Binary-Weight-Networks & XNOR-Net

• Binary-Weight-Networks: 二值化filter(weight); smaller 32x than an equivalent network with single-precision weight values & 2 speed up

• XNOR-Net: 二值化input & weight; smaller 32x than an equivalent network with single-precision weight values & offering 58x speed up in CPUs

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks

 Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, Ali Farhadi

• Torch 7

• 2016

Binary-Weight-Networks

- 将卷积操作替换为 I_{*}W ≈ (I ⊕ B) α
- Estimating binary weights
- Binarization in Forward & Backward

Algorithm 1 Training an *L*-layers CNN with binary weights:

Input: A minibatch of inputs and targets (\mathbf{I}, \mathbf{Y}) , cost function $C(\mathbf{Y}, \hat{\mathbf{Y}})$, current weight \mathcal{W}^t and current learning rate η^t .

Output: updated weight W^{t+1} and updated learning rate η^{t+1} .

- 1: Binarizing weight filters:
- 2: **for** l = 1 to L **do**
- 3: **for** k^{th} filter in l^{th} layer **do**
- 4: $\mathcal{A}_{lk} = \frac{1}{n} \| \mathcal{W}_{lk}^t \|_{\ell 1}$
- 5: $\mathcal{B}_{lk} = \operatorname{sign}(\mathcal{W}_{lk}^t)$
- 6: $\widetilde{\mathcal{W}}_{lk} = \mathcal{A}_{lk}\mathcal{B}_{lk}$
- 7: $\hat{\mathbf{Y}} = \mathbf{BinaryForward}(\mathbf{I}, \mathcal{B}, \mathcal{A})$ // standard forward propagation except that convolutions are computed using equation 1 or 11
- 8: $\frac{\partial C}{\partial \widetilde{W}} = \mathbf{BinaryBackward}(\frac{\partial C}{\partial \widehat{\mathbf{Y}}}, \widetilde{W})$ // standard backward propagation except that gradients are computed using \widetilde{W} instead of W^t
- 9: $\mathcal{W}^{t+1} = \mathbf{UpdateParameters}(\mathcal{W}^t, \frac{\partial C}{\partial \widetilde{\mathcal{W}}}, \eta_t)$ // Any update rules (e.g., SGD or ADAM)
- 10: $\eta^{t+1} = \text{UpdateLearningrate}(\eta^t, t)''$ Any learning rate scheduling function

$$J(\mathbf{B}, \alpha) = \|\mathbf{W} - \alpha \mathbf{B}\|^{2}$$

$$\alpha^{*}, \mathbf{B}^{*} = \underset{\alpha.\mathbf{B}}{\operatorname{argmin}} J(\mathbf{B}, \alpha)$$
(2)

$$J(\mathbf{B}, \alpha) = \alpha^2 \mathbf{B}^\mathsf{T} \mathbf{B} - 2\alpha \mathbf{W}^\mathsf{T} \mathbf{B} + \mathbf{W}^\mathsf{T} \mathbf{W}$$
 (3)

$$\mathbf{B}^* = \underset{\mathbf{B}}{\operatorname{argmax}} \{ \mathbf{W}^\mathsf{T} \mathbf{B} \} \quad s.t. \quad \mathbf{B} \in \{+1, -1\}^n$$
 (4)

$$\alpha^* = \frac{\mathbf{W}^\mathsf{T} \mathbf{B}^*}{n} \tag{5}$$

By replacing \mathbf{B}^* with $sign(\mathbf{W})$

$$\alpha^* = \frac{\mathbf{W}^\mathsf{T} \operatorname{sign}(\mathbf{W})}{n} = \frac{\sum |\mathbf{W}_i|}{n} = \frac{1}{n} ||\mathbf{W}||_{\ell 1}$$
 (6)

a的最优解是W的每个元素的绝对值之和的均值

XNOR-Net

Binary Dot Product(similar as Estimating binary weights)

$$\alpha^*, \mathbf{B}^*, \beta^*, \mathbf{H}^* = \underset{\alpha \in \mathbf{B}}{\operatorname{argmin}} \| \mathbf{X} \odot \mathbf{W} - \beta \alpha \mathbf{H} \odot \mathbf{B} \|$$

(7) βH近似表示输入X

$$\gamma^*, \mathbf{C}^* = \underset{\gamma, \mathbf{C}}{\operatorname{argmin}} \|\mathbf{Y} - \gamma \mathbf{C}\|$$
 (8)

$$\mathbf{C}^* = \operatorname{sign}(\mathbf{Y}) = \operatorname{sign}(\mathbf{X}) \odot \operatorname{sign}(\mathbf{W}) = \mathbf{H}^* \odot \mathbf{B}^*$$
(9)

Since $|\mathbf{X}_i|$, $|\mathbf{W}_i|$ are independent, knowing that $\mathbf{Y}_i = \mathbf{X}_i \mathbf{W}_i$ then, $\mathbf{E}[|\mathbf{Y}_i|] = \mathbf{E}[|\mathbf{X}_i||\mathbf{W}_i|] = \mathbf{E}[|\mathbf{X}_i|] \mathbf{E}[|\mathbf{W}_i|]$ therefore,

$$\gamma^* = \frac{\sum |\mathbf{Y}_i|}{n} = \frac{\sum |\mathbf{X}_i||\mathbf{W}_i|}{n} \approx \left(\frac{1}{n} \|\mathbf{X}\|_{\ell_1}\right) \left(\frac{1}{n} \|\mathbf{W}\|_{\ell_1}\right) = \beta^* \alpha^*$$
 (10)

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks

• Binary Convolution (使用XNOR替代乘法提速)

$$\mathbf{I} * \mathbf{W} \approx (\operatorname{sign}(\mathbf{I}) \circledast \operatorname{sign}(\mathbf{W})) \odot \mathbf{K}\alpha$$
 (11)

where * indicates a convolutional operation using XNOR and bitcount operations. This

XNOR-Net

 \mathbf{W}

 $\operatorname{sign}(\mathbf{I})$

Experiments

Classification Accuracy(%)									
Binary-Weight				Binary-Input-Binary-Weight				Full-Precision	
BWN		BC[11]		XNOR-Net		BNN[11]		AlexNet[1]	
Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5
56.8	79.4	35.4	61.0	44.2	69.2	27.9	50.42	56.6	80.2

Table 1: This table compares the final accuracies (Top1 - Top5) of the full precision network with our binary precision networks; Binary-Weight-Networks(BWN) and XNOR-Networks(XNOR-Net) and the competitor methods; BinaryConnect(BC) and BinaryNet(BNN).

Binary-Weight-N	XNOR-	XNOR-Network			
Strategy for computing α	top-1	top-5	Block Structure	top-1	top-5
Using equation 6	56.8	79.4	C-B-A-P	30.3	57.5
Using a separate layer	46.2	69.5	B-A-C-P	44.2	69.2
(a)		·		b)	·

Table 3: In this table, we evaluate two key elements of our approach; computing the optimal scaling factors and specifying the right order for layers in a block of CNN with binary input. (a) demonstrates the importance of the scaling factor in training binary-weight-networks and (b) shows that our way of ordering the layers in a block of CNN is crucial for training XNOR-Networks. C,B,A,P stands for Convolutional, BatchNormalization, Acive function (here binary activation), and Pooling respectively.

	Res	ResNet-18		gLenet
Network Variations	top-1	top-5	top-1	top-5
Binary-Weight-Network	60.8	83.0	65.5	86.1
XNOR-Network	51.2	73.2	N/A	N/A
Full-Precision-Network	69.3	89.2	71.3	90.0

Table 2: This table compares the final classification accuracy achieved by our binary precision networks with the full precision network in ResNet-18 and GoogLenet architectures.

精度效果

- Binary-Weight-Networks: 二值化filter(weight); smaller 32x than an equivalent network with single-precision weight values & 2 speed up
- XNOR-Net: 二值化input & weight; smaller 32x than an equivalent network with single-precision weight values & offering 58x speed up in CPUs

压缩效果