Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/019770

International filing date: 24 December 2004 (24.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-19438

Filing date: 28 January 2004 (28.01.2004)

Date of receipt at the International Bureau: 17 February 2005 (17.02.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application: 2004年 1月28日

出 願 番 号

特願2004-019438

Application Number: [ST. 10/C]:

[JP2004-019438]

出 願 人
Applicant(s):

三井化学株式会社

特許庁長官 Commissioner, Japan Patent Office 2005年 2月 4日

)· ")

【書類名】 【整理番号】 【提出日】 【あて先】 【国際特許分類】 【発明者】	特許願 P0002928 平成16年 1月28日 特許庁長官 殿 A01N 33/00	
【発明者】 【住所又は居所】 【氏名】 【発明者】	千葉県茂原市東郷1144 吉田 圭	三井化学株式会社内
【住所又は居所】 【氏名】	千葉県茂原市東郷1144 脇田 健夫	三井化学株式会社内
【発明者】 【住所又は居所】 【氏名】	千葉県茂原市東郷1144 勝田 裕之	三井化学株式会社内
【発明者】 【住所又は居所】 【氏名】	千葉県茂原市東郷1144 甲斐 章義	三井化学株式会社内
【発明者】 【住所又は居所】 【氏名】	千葉県茂原市東郷1144 千葉 豊	三井化学株式会社内
【発明者】 【住所又は居所】 【氏名】	千葉県茂原市東郷1144 高橋 清	三井化学株式会社内
【発明者】 【住所又は居所】 【氏名】	千葉県茂原市東郷1144 野村 路一	三井化学株式会社内
【発明者】 【住所又は居所】 【氏名】	千葉県茂原市東郷1144 槇 准司	三井化学株式会社内
【発明者】 【住所又は居所】 【氏名】	千葉県茂原市東郷1144 大同 英則	三井化学株式会社内
【発明者】 【住所又は居所】 【氏名】	千葉県茂原市東郷1144 河原 信行	三井化学株式会社内
【発明者】 【住所又は居所】 【氏名】	千葉県茂原市東郷1144 番場 伸一	三井化学株式会社内
【特許出願人】 【識別番号】 【氏名又は名称】 【代表者】	000005887 三井化学株式会社 中西 宏幸	
【手数料の表示】 【予納台帳番号】 【納付金額】	005278 21,000円	
【提出物件の目録】 【物件名】 【物件名】 【物件名】	特許請求の範囲 1 明細書 1 要約書 1	

【書類名】特許請求の範囲

【請求項1】

一般式(1):

【化1】

|式中、Z1、Z2は互いに独立して、酸素原子または硫黄原子を示し、R1、R2、R3、R4は互 いに独立して、水素原子、C1~C3アルキル基、トリフルオロメチル基、ヒドロキシ基、ア ミノ基、またはハロゲン原子を示し、R5、R6は互いに独立して水素原子、C1~C3アルキル 基を示し、Yは水素原子、C1~C3アルキル基、またはハロゲン原子を示し、nは1または2 であり、X1はC2~C6パーフルオロアルキル基を示し、X2、X3は互いに独立してC1~C3アル キル基、トリフルオロメチル基、またはハロゲン原子を示し、Qはフェニル基、或いは、 ハロゲン原子、C1~C3アルキル基、C1~C3ハロアルキル基、C1~C3アルコキシ基、C1~C3 ハロアルコキシ基、C1~C3アルキルチオ基、C1~C3ハロアルキルチオ基、C1~C3アルキル スルフィニル基、C1~C3ハロアルキルスルフィニル基、C1~C3アルキルスルホニル基、C1 ~C3ハロアルキルスルホニル基、C1~C4アルキルアミノ基、ジC1~C4アルキルアミノ基、 シアノ基、ニトロ基、ヒドロキシ基、C1~C4アルキルカルボニル基、C1~C4アルキルカル ボニルオキシ基、C1~C4アルコキシカルボニル基、フェニル基から選択される1以上の同 一または異なっていても良い置換基を有する置換フェニル基、ナフチル基、複素環基(こ こでの複素環基とはピリジル基、ピリジン-N-オキシド基、ピリミジニル基、ピリダジ ル基、ピラジル基、フリル基、チエニル基、オキサゾリル基、イソキサゾリル基、チアゾ リル基、イソチアゾリル基、イミダゾリル基、トリアゾリル基、ピロール基、ピラゾリル 基、またはテトラゾリル基を示す。)、或いは、ハロゲン原子、C1~C3アルキル基、C1~ C3ハロアルキル基、C1~C3アルコキシ基、C1~C3ハロアルコキシ基、C1~C3アルキルチオ 基、C1~C3ハロアルキルチオ基、C1~C3アルキルスルフィニル基、C1~C3ハロアルキルス ルフィニル基、C1~C3アルキルスルホニル基、C1~C3ハロアルキルスルホニル基、C1~C4 アルキルアミノ基、ジC1~C4アルキルアミノ基、シアノ基、ニトロ基、ヒドロキシ基、C1 ~C4アルキルカルボニル基、C1~C4アルキルカルボニルオキシ基、C1~C4アルコキシカル ボニル基、フェニル基から選択される1以上の同一または異なっていても良い置換基を有 する置換複素環基(複素環基は前記と同じものを示す。但し、置換複素環基がピリジル基 である場合、選択される置換基からヒドロキシ基を除く。)であることを示す。」で表さ れる化合物。

【請求項2】

一般式(1)において、R1は水素原子、ヒドロキシ基、またはフッ素原子を示し、R2は水素原子、ヒドロキシ基、フッ素原子、または塩素原子を示し、R3は水素原子、メチル基、トリフルオロメチル基、またはアミノ基を示し、R4は水素原子を示す請求項1に記載の化合物。

【請求項3】

一般式(1)において、Qはフェニル基、同一または異なっていても良く、ハロゲン原子、メチル基、エチル基、トリフルオロメチル基、トリフルオロメトキシ基、ジメチルアミノ基、シアノ基、ニトロ基、フェニル基から選択される1から3個の置換基を有する置換フェニル基、ナフチル基、複素環基(ここでの複素環基とは、ピリジル基、ピリミジニル

基、ピリダジル基、ピラジル基、フリル基、チエニル基、ピラゾリル基を示す。)、ハロゲン原子、メチル基、エチル基、トリフルオロメチル基、トリフルオロメトキシ基、ジメチルアミノ基、シアノ基、ニトロ基、フェニル基から選択される1から3個の置換基を有する置換複素環基(ここでの複素環基とは、ピリジル基、ピリミジニル基、ピリダジル基、ピラジル基、フリル基、チエニル基、ピラゾリル基を示す。)であることを示す請求項2に記載の化合物。

【請求項4】

一般式(1)において、X1はC3~C4のパーフルオロアルキル基を示し、X2、X3は互いに独立して、C1~C3アルキル基、またはハロゲン原子を示し、Yは水素原子を示す請求項 3に記載の化合物。

【請求項5】

一般式(1)において、X2はC1~C3アルキル基、またはハロゲン原子を示し、X3はC1~C3アルキル基を示す請求項 4 に記載の化合物。

【請求項6】

一般式(1)において、R1は水素原子、フッ素原子を示し、R2、R3、R4は水素原子を示す請求項5に記載の化合物。

【請求項7】

請求項1~請求項6の何れか一項に記載の化合物を有効成分として含有することを特徴とする農園芸用有害生物防除剤。

【書類名】明細書

【発明の名称】アミノ安息香酸アニリド誘導体及びそれを含有する農園芸用有害生物防除 剤

【技術分野】

[0001]

本発明は、一般式(1)(化1)

【0002】 【化1】

[0003]

|式中、Z1、Z2は互いに独立して、酸素原子または硫黄原子を示し、R1、R2、R3、R4は互 いに独立して、水素原子、C1~C3アルキル基、トリフルオロメチル基、ヒドロキシ基、ア ミノ基、またはハロゲン原子を示し、R5、R6は互いに独立して水素原子、C1~C3アルキル 基を示し、Yは水素原子、C1~C3アルキル基、またはハロゲン原子を示し、nは1または2 であり、X1はC2~C6パーフルオロアルキル基を示し、X2、X3は互いに独立してC1~C3アル キル基、トリフルオロメチル基、またはハロゲン原子を示し、Qはフェニル基、或いは、 ハロゲン原子、C1~C3アルキル基、C1~C3ハロアルキル基、C1~C3アルコキシ基、C1~C3 ハロアルコキシ基、C1~C3アルキルチオ基、C1~C3ハロアルキルチオ基、C1~C3アルキル スルフィニル基、C1~C3ハロアルキルスルフィニル基、C1~C3アルキルスルホニル基、C1 ~C3ハロアルキルスルホニル基、C1~C4アルキルアミノ基、ジC1~C4アルキルアミノ基、 シアノ基、ニトロ基、ヒドロキシ基、C1~C4アルキルカルボニル基、C1~C4アルキルカル ボニルオキシ基、C1~C4アルコキシカルボニル基、フェニル基から選択される1以上の同 一または異なっていても良い置換基を有する置換フェニル基、ナフチル基、複素環基(こ こでの複素環基とはピリジル基、ピリジン-N-オキシド基、ピリミジニル基、ピリダジ ル基、ピラジル基、フリル基、チエニル基、オキサゾリル基、イソキサゾリル基、オキサ ジアゾリル基、チアゾリル基、イソチアゾリル基、イミダゾリル基、トリアゾリル基、ピ ラゾリル基、またはテトラゾリル基を示す。)、或いは、ハロゲン原子、C1~C3アルキル 基、C1~C3ハロアルキル基、C1~C3アルコキシ基、C1~C3ハロアルコキシ基、C1~C3アル キルチオ基、C1~C3ハロアルキルチオ基、C1~C3アルキルスルフィニル基、C1~C3ハロア ルキルスルフィニル基、C1~C3アルキルスルホニル基、C1~C3ハロアルキルスルホニル基 、C1~C4アルキルアミノ基、ジC1~C4アルキルアミノ基、シアノ基、ニトロ基、ヒドロキ シ基、C1~C4アルキルカルボニル基、C1~C4アルキルカルボニルオキシ基、C1~C4アルコ キシカルボニル基、フェニル基から選択される1以上の同一または異なっていても良い置 換基を有する置換複素環基(複素環基は前記と同じものを示す。但し置換複素環基がピリ ジル基である場合、選択される置換基からヒドロキシ基を除く。)であることを示す。 で表される化合物および該化合物を有効成分として含有する農園芸用有害生物防除剤なら びにその使用方法に関するものである。

【背景技術】

[0004]

WO2000-007980公報には、アミノ安息香酸アニリド誘導体が医薬用途としての化合物として記載されているが、殺虫活性を有することを示す記載はなく、また、ア

ニリン部分の構造が全く異なっており、本発明の特許請求の範囲と異なることは明らかである。

【特許文献1】WO2000-007980公報

【発明の開示】

【発明が解決しようとする課題】

[0005]

本発明の目的は、高い効果を有する農園芸用有害生物防除剤を提供することにある。 【課題を解決するための手段】

[0006]

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、本発明の一般式(1)(化2)

【0007】 【化2】

[0008]

|式中、Z1、Z2は互いに独立して、酸素原子または硫黄原子を示し、R1、R2、R3、R4は互 いに独立して、水素原子、C1~C3アルキル基、トリフルオロメチル基、ヒドロキシ基、ア ミノ基、またはハロゲン原子を示し、R5、R6は互いに独立して水素原子、C1~C3アルキル 基を示し、Yは水素原子、C1~C3アルキル基、またはハロゲン原子を示し、nは1または2 であり、X1はC2~C6パーフルオロアルキル基を示し、X2、X3は互いに独立してC1~C3アル キル基、トリフルオロメチル基、またはハロゲン原子を示し、Qはフェニル基、或いは、 ハロゲン原子、C1~C3アルキル基、C1~C3ハロアルキル基、C1~C3アルコキシ基、C1~C3 ハロアルコキシ基、C1~C3アルキルチオ基、C1~C3ハロアルキルチオ基、C1~C3アルキル スルフィニル基、C1~C3ハロアルキルスルフィニル基、C1~C3アルキルスルホニル基、C1 ~C3ハロアルキルスルホニル基、C1~C4アルキルアミノ基、ジC1~C4アルキルアミノ基、 シアノ基、ニトロ基、ヒドロキシ基、C1~C4アルキルカルボニル基、C1~C4アルキルカル ボニルオキシ基、C1~C4アルコキシカルボニル基、フェニル基から選択される1以上の同 一または異なっていても良い置換基を有する置換フェニル基、ナフチル基、複素環基(こ こでの複素環基とはピリジル基、ピリジン-N-オキシド基、ピリミジニル基、ピリダジ ル基、ピラジル基、フリル基、チエニル基、オキサゾリル基、イソキサゾリル基、オキサ ジアゾリル基、チアゾリル基、イソチアゾリル基、イミダゾリル基、トリアゾリル基、ピ ラゾリル基、またはテトラゾリル基を示す。)、或いは、ハロゲン原子、C1~C3アルキル 基、C1~C3ハロアルキル基、C1~C3アルコキシ基、C1~C3ハロアルコキシ基、C1~C3アル キルチオ基、C1~C3ハロアルキルチオ基、C1~C3アルキルスルフィニル基、C1~C3ハロア ルキルスルフィニル基、C1~C3アルキルスルホニル基、C1~C3ハロアルキルスルホニル基 、C1~C4アルキルアミノ基、ジC1~C4アルキルアミノ基、シアノ基、ニトロ基、ヒドロキ シ基、C1~C4アルキルカルボニル基、C1~C4アルキルカルボニルオキシ基、C1~C4アルコ キシカルボニル基、フェニル基から選択される1以上の同一または異なっていても良い置 換基を有する置換複素環基(複素環基は前記と同じものを示す。但し置換複素環基がピリ ジル基である場合、選択される置換基からヒドロキシ基を除く。)であることを示す。 で表される文献未記載の新規化合物を見出し、農園芸用有害生物防除剤としての用途を見 出すことにより本発明の完成に至ったものである。

【発明の効果】

[0009]

本発明の化合物は低薬量で農園芸用有害生物防除剤特に農園芸用殺虫剤として優れた防 除効果を示し、また、他の農園芸用殺虫剤、殺ダニ剤、殺線虫剤、殺菌剤、除草剤、植物 成長調節剤、生物農薬などとの混合使用によっても優れた防除効果を示すものである。

【発明を実施するための最良の形態】

[0010]

一般式(1)で表される化合物において、「ハロゲン原子」とはフッ素原子、塩素原子 、臭素原子またはヨウ素原子を示し、「C1~C3アルキル基」とは例えば、メチル、エチル 、n-プロピル、イソプロピル、プロパルギル基などの直鎖状または分岐鎖状の炭素原子 数1~3個のアルキル基を示し、「C1~C3ハロアルキル基」とは例えば、トリフルオロメ チル、ペンタフルオロエチル、ヘプタフルオロ-n-プロピル、ヘプタフルオロイソプロ ピル、1,3-ジフルオロ-2-プロピル、1,1,1-トリフルオロ-2-プロピル、 2, 2, 2-トリフルオロエチル、2, 2, 2-トリクロロエチル、2, 2, 2ートリブ ロモエチル、2-フルオロエチル、2-クロロエチル、2-ブロモエチル、3-クロロエ チルなどの同一または異なっていてもよい1以上のハロゲン原子によって置換された直鎖 状または分岐鎖状の炭素原子数 1 ~ 3 個のアルキル基を示し、「C1~C3アルコキシ基 | と は例えば、メトキシ、エトキシ、イソプロピルオキシなどの炭素原子数1~3個のアルコ キシ基を示し、「C1~C3ハロアルコキシ基」とは例えば、トリフルオロメトキシなどの同 一または異なっていても良い1個以上のハロゲン原子により置換された直鎖状または分岐 鎖状の炭素原子数1~3個のアルコキシ基を示し、「C1~C3アルキルチオ基」とは例えば 、メチルチオ、エチルチオなどの炭素原子数1~3個のアルキルチオ基を示し、「C1~C3 ハロアルキルチオ基」とは例えば、トリフルオロメチルチオなどの同一または異なってい ても良い1個以上のハロゲン原子により置換された直鎖状または分岐鎖状の炭素原子数1 ~3個のアルキルチオ基を示し、「C1~C3アルキルスルフィニル基」とは例えば、メチル スルフィニルなどの炭素原子数 1 ~ 3 個のアルキルスルフィニル基を示し、「C1~C3ハロ アルキルスルフィニル基」とは例えば、トリフルオロメチルスルフィニルなどの同一また は異なっていても良い1個以上のハロゲン原子により置換された直鎖状または分岐鎖状の 炭素原子数1~3個のアルキルスルフィニル基を示し、「C1~C3アルキルスルホニル基」 とは例えば、メタンスルホニル、エタンスルホニルなどの炭素原子数1~3個のアルキル スルホニル基を示し、「C1~C3ハロアルキルスルホニル基」とは例えば、トリフルオロメ タンスルホニルなどの同一または異なっていても良い1個以上のハロゲン原子により置換 された直鎖状または分岐鎖状の炭素原子数1~3個のアルキルスルホニル基を示し、「C1 ~C4アルキルアミノ基」とは例えば、メチルアミノ、エチルアミノ、イソプロピルアミノ 、n-ブチルアミノなどの炭素原子数1~4個のアルキルアミノ基を示し、「ジC1~C4ア ルキルアミノ基」とは例えば、ジメチルアミノ、ジエチルアミノ、エチルメチルアミノな どの炭素原子数1~4個のジアルキルアミノ基を示し、「アルキルカルボニル基」とは例 えば、アセチル、プロピオニルなどのアルキルカルボニル基を示し、「アルキルカルボニ ルオキシ基 | とは例えば、アセチルオキシ基などのアルキルカルボニルオキシ基を示し、 「アルコキシカルボニル基」とは例えば、メトキシカルボニル基、t-ブトキシカルボニ ル基、ベンジルオキシカルボニル基などのアルコキシカルボニル基を示し、「C2~C6パー フルオロアルキル基」とは例えば、ペンタフルオロエチル基、ヘプタフルオローn-プロ ピル基、ヘプタフルオロイソプロピル基、ノナフルオロー1ーブチル基、ノナフルオロー 2-ブチル基などのフッ素原子により全て置換された直鎖状または分岐鎖状の炭素数2~ 6個のアルキル基を示す。

[0011]

本発明の一般式(1)で表される化合物は、その構造式中に、不斉炭素原子または不斉 中心を含む場合があり、2種以上の光学異性体が存在する場合もあるが、本発明の化合物 は各々の光学異性体及びそれらが任意の割合で含まれる混合物をも全て包含するものであ る。

[0012]

本発明の一般式(1)で表される新規化合物は以下に示す方法などで製造することがで きる。

[0013]

例えば、製造方法 1 (化 3) (式中、X1、X2、X3、R1、R2、R3、R4、R5、R6、Q、Y、n は前記と同じものを示す。Xは脱離基を示す。)を示すことができる。

[0014]

【化3】

製造方法 1

[0015]

1-(i) 一般式(2)+-般式(3)→一般式(4)

一般式(2)で表される脱離基を有するm-ニトロ安息香酸誘導体と一般式(3)で表 されるアニリン誘導体を適当な溶媒中もしくは無溶媒で反応させることにより、一般式(4) で表されるm-ニトロ安息香酸アミド誘導体を製造することができる。溶媒としては 、本反応の進行を著しく阻害しないものであれば良く、例えば、ベンゼン、トルエン、キ シレンなどの芳香族炭化水素類、ヘキサン、シクロヘキサンなどの脂肪族炭化水素類、ジ クロロメタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素類、ジエチルエーテ ル、ジオキサン、テトラヒドロフラン、1,2-ジメトキシエタンなどの鎖状または環状 エーテル類、酢酸エチル、酢酸ブチルなどのエステル類、ジメチルホルムアミド、ジメチ ルアセトアミド、1-メチル-2-ピロリドンなどのアミド類、アセトニトリルなどのニ トリル類、1,3-ジメチルー2ーイミダゾリジノンなどの不活性溶媒を示すことができ 、これらの溶媒は単独もしくは2種以上混合して使用することができる。

[0016]

また、本工程では適当な塩基を用いることもできる。塩基としては、トリエチルアミン 、トリーn-ブチルアミン、ピリジン、4-ジメチルアミノピリジンなどの有機塩基類、 水酸化ナトリウム、水酸化カリウムなどの水酸化アルカリ金属類、炭酸水素ナトリウム、 炭酸カリウムなどの炭酸塩類、リン酸一水素二カリウム、リン酸三ナトリウムなどのリン 酸塩類、水素化ナトリウムなどの水素化アルカリ金属塩類、ナトリウムメトキシド、ナト リウムエトキシドなどのアルカリ金属アルコラート類などを示すことができる。これらの 塩基は、一般式(2)で表される化合物に対して0.01~5倍モル当量の範囲で適宜選 択して使用すれば良い。

[0017]

一般式(2)で表される化合物は一般式(3)で表される化合物に対して、 $1\sim2$ 当量 用いることができ、好ましくは、1~1.2当量である。反応温度は、-20℃~使用す る溶媒の還流温度、反応時間は、数分間から96時間の範囲でそれぞれ適宜選択すれば良 VIO

[0018]

一般式 (2) で表される化合物は、市販されているものを用いるか、もしくは製造方法2に示す一般式 (10) で表される公知の安息香酸誘導体を塩化チオニル、オキザリルクロリド、ホスゲン、オキシ塩化リン、三塩化リン、五塩化リン、臭化チオニル、三臭化リン、ジエチルアミノ硫黄トリフルオリド、1,1ーカルボニルビス-1H-イミダゾールなどと反応させるという公知の常法により製造することができる。また、製造方法2に示す一般式 (10) で表される公知の安息香酸誘導体をクロロギ酸メチル、クロロギ酸エチルなどのクロロギ酸エステル類と反応させる公知の常法によっても製造することができる

[0019]

1-(i i) 一般式(4)→一般式(5)

一般式(4)で表されるm-ニトロ安息香酸アミド誘導体は、還元反応により、一般式(5)で表されるm-アミノ安息香酸アミド誘導体に導くことができる。還元反応としては水素添加反応を用いる方法と塩化第一スズ無水物を用いる方法を例示することできるが、前者は適当な溶媒中、触媒存在下、常圧下もしくは加圧下にて、水素雰囲気下で反応を行うことができる。触媒としては、パラジウムーカーボンなどのパラジウム触媒、ラネーニッケルなどのニッケル触媒、コバルト触媒、ルテニウム触媒、ロジウム触媒、白金触媒などが例示でき、溶媒としては、水、メタノール、エタノールなどのアルコール類、ベンゼン、トルエンなどの芳香族炭化水素類、エーテル、ジオキサン、テトラヒドロフランなどの鎖状または環状エーテル類、酢酸エチルなどのエステル類を示すことができる。反応温度は、-20 $\mathbb C$ ~使用する溶媒の還流温度、反応時間は、数分から96時間の範囲でそれぞれ適宜選択すれば良い。後者は、"Organic Syntheses" Coll $\mathbb C$ Vol. III p. 453(1955)に記載の条件を使用することにより、一般式(5)の化合物を容易に製造することができるが、その条件にのみ限定されるものではない。

[0020]

1-(i i i) 一般式(5)→一般式(7)

一般式 (5) で表されるm-rミノ安息香酸アミド誘導体を一般式 (6) で表される脱離基を有する芳香族カルボン酸誘導体と溶媒中もしくは無溶媒で反応させることにより、一般式 (7) で表される本発明の化合物に含まれる新規化合物を製造することができる。製造における反応条件としては、1-(i) に記載されたものと同じ条件を用いることができる。一般式 (6) で表される化合物は、市販されている化合物を用いるか、もしくは一般式 (11) で表される公知の芳香族カルボン酸誘導体を塩化チオニル、オキザリルクロリド、ホスゲン、オキシ塩化リン、三塩化リン、五塩化リン、臭化チオニル、三臭化リン、ジエチルアミノ硫黄トリフルオリド、1,1'-カルボニルビス-1H-イミダゾールなどと反応させるという公知の常法により製造することができる。また、一般式 (6) で表される化合物は一般式 (11) で表される公知の芳香族カルボン酸誘導体をクロロギ酸メチル、クロロギ酸エチルなどのクロロギ酸エステル類と反応させる公知の常法によっても製造することができる。

[0021]

1-(i v) 一般式(7)→一般式(9)

一般式 (7) で表される化合物と、一般式 (8) で表される脱離基を有するアルキル化合物と溶媒中もしくは無溶媒で反応させることにより、一般式 (9) で表される本発明に含まれる新規化合物を製造することができる。一般式 (8) で表される化合物は、メチルヨージド、エチルヨージド、n-プロピルブロミドなどのアルキルハライド類などを例示することができる。また、本工程では適当な塩基を用いることが可能であり、塩基としては、1- (i) に例示したものを用いることができる。

[0022]

製造方法 1 に示した一般式 (4) の化合物は、製造方法 2 (化4) (式中、X1、X2、X3、R1、R2、R3、R4、R6、Y、n は前記と同じものを示す。) によっても、製造することができる。

【0023】 【化4】

製造方法 2

[0024]

製造方法 2 において、一般式(1 0)であらわされるmーニトロ安息香酸誘導体及び一般式(3)で表されるアニリン誘導体を無溶媒もしくは溶媒中で縮合させることにより、一般式(4)で表されるmーニトロ安息香酸アニリド誘導体を製造することができる。溶媒としては、製造方法 1 一(i)で示した溶媒と同様のものを使用することができる。縮合剤としては、N, N 一ジシクロヘキシルカルボジイミド、1, 1 ーカルボニルビスー1 Hーイミダゾール、1, 1 ・ - オキサリルジイミダゾール、1 ーエチルー3 ー ジメチルアミノプロビル)カルボジイミド塩酸塩、2 ー クロロー1, 3 ー ジメチルイミダゾリウムクロリドなどを例示することができる。

[0025]

製造方法 1 に示した一般式(7)の化合物は、製造方法 3 (化 5)(式中、X1、X2、X3、R1、R2、R3、R4、R6、Q、Y、n は前記と同じものを示す。)によっても、製造することができる。

【0026】

製造方法3

[0027]

製造方法 3 において、一般式(1 1)であらわされる芳香族カルボン酸誘導体及び一般式(3)で表されるアニリン誘導体を無溶媒もしくは溶媒中で縮合させることにより、一般式(7)で表される本発明に含まれる新規化合物を製造することができる。溶媒としては、製造方法 1 一(i)で示した溶媒と同様のものを使用することができる。縮合剤としては、製造方法 2 に記載したものを例示することができる。

[0028]

また、製造方法 4 (化 6)(式中、X1、X2、X3、R1、R2、R3、R4、Y、n は前記と同じものを示す。ここでの場合のみR6が水素原子であることを除く。Xは脱離基を表す。)により、一般式(4)で表される化合物を製造することができる。

[0029]

【化6】

製造方法 4

[0030]

製造方法1-(iv) に記載した反応条件を用いることにより、効率よく一般式 (4) で表される化合物を製造することができる。一般式 (13) で表される脱離基を有するアルキル化合物は、製造方法1-(iv) に記載した化合物と同様のものを示す。一般式 (4) で表される化合物からは、その後、製造方法1 に記載の方法に従い、本発明に含まれる新規化合物を製造することができる。

[0031]

一般式 (3) で表されるアニリン誘導体は、製造方法 5 (化 7) (式中、X1、X3、R6、Y、n は前記と同じものを示す。X2はこの場合のみ、塩素原子、臭素原子及びヨウ素原子を示す。)によっても、製造することが可能である。

【0032】 【化7】

製造方法5

[0033]

一般式(14)で表されるアニリン誘導体と一般式(15)で表されるイミド化合物をSynthesis 669頁(1985年)の条件で反応させることにより、一般式(3)で表されるアニリン誘導体を製造することができる。一般式(15)で表されるイミド化合物としては、N-クロロコハク酸イミド、N-ブロモコハク酸イミド、N-ヨードコハク酸イミドを例示することができる。溶媒や反応温度、反応時間は前記文献の限りではない。一般式(3)で表される化合物からは、その後、製造方法1に記載の方法に従い、本発明に含まれる新規化合物を製造することができる。

[0034]

本発明の一般式 (1) においてZ1もしくはZ2が硫黄原子を示すチオアミド(もしくはジチオアミド) 誘導体は、製造方法 6 (化8) (式中、X1、X2、X3、R1、R2、R3、R4、R6、Y、n、Qは前記と同じものを示す。) 及び製造方法 7 (化9) (式中、X1、X2、X3、R1、R2、R3、R4、R6、Y、n、Qは前記と同じものを示す。) に従い、製造することができる。

[0035]

【化8】

製造方法 6

[0036]

6-(i) 一般式(5)→一般式(16)

Synthesis 463 頁 (1993 年)やSynthesis 829 頁 (1984 年)などに記載の条件に従って、一般式 (5) で表される化合物とローソン試薬とを反応させることにより、製造することが可能であるが、溶媒などの条件は文献記載のものに限定されない。

6-(i i) 一般式(16)→一般式(17)

一般式 (16) で表される化合物と前に記載の一般式 (6) で表される化合物を製造方法 1-(ii) に記載の条件で反応させることにより、一般式 (17) で表される化合物を製造することができる。また、一般式 (16) で表される化合物と前に記載の一般式 (11) で表される化合物を製造方法 2 に記載の条件で反応させることにより、一般式 (17) で表される化合物を製造することもできる。

【0037】 【化9】

製造方法7

[0038]

製造方法6-(i)に記載の条件により、一般式(7)で表される化合物から、一般式(18)及び一般式(19)で表される化合物を製造することができる(上記製造方法7)。これら2つの化合物は、シリカゲルカラムクロマトグラフィーなどの公知の分離精製方法により、容易に分離精製することが可能である。

[0039]

これらの製造方法に従うことにより、本発明の一般式(1)で表される化合物の製造が可能となるが、これにより、一般式(1)で表される化合物の製造方法経路を限定することには全くならない。

[0040]

以下、第1表(表1-1~表1-3)、第2表(表2)、第3表(表3)に本発明の農園芸用有害生物防除剤の有効成分である一般式(1)で表される化合物の代表的な化合物を示すが、本発明はこれらに限定されるものではない。

なお、表中、「Me」はメチル基を、「Et」はエチル基を、「F」はフッ素原子を、「C1」は塩素原子を、「Br」は臭素原子を、「I」はヨウ素原子を、「CF3」はトリフルオロメチル基を、「NH2」はアミノ基を、「OH」はヒドロキシ基を、「i-C3F7」はヘプタフルオロイソプロピル基を、「2-C4F9」はノナフルオロ-2ーブチル基をそれぞれ表すものである。

[0041]

第1-1表

(Z1 = Z2 = 酸素原子、R5 = R6 = Y = 水素原子)

化合物 No.	R1	R2	R3	R4	X1	X2	Х3	Q
1	Н	Н	Н	Н	i−C₃F ₇	Me	Ме	フェニル
2	Н	Н	Н	Н	2-C ₄ F ₉	Ме	Ме	フェニル
3	Н	Н	Н	Н	i−C₃F ₇	Et	Me	フェニル
4	Н	Н	Н	Н	i−C₃F ₇	CI	Et	フェニル
5	Н	Н	Н	Н	i−C₃F ₇	Br	Ме	フェニル
6	Н	Н	Н	Н	i−C₃F ₇	I	Me	フェニル
7	Н	Н	Н	Н	i−C₃F ₇	Ме	Ме	2-ヨードフェニル
8	Н	Н	Н	Н	i−C₃F ₇	Ме	Ме	2-ブロモフェニル
9	Н	Н	Н	Н	i−C₃F ₇	Ме	Ме	2-クロロフェニル
10	Н	Н	Н	Н	i−C₃F ₇	Ме	Me	2-トリフルオロメチルフェニル
11	Н	Н	Н	Н	i−C₃F ₇	Ме	Ме	3-ヨードフェニル
12	Н	Н	Н	Н	i-C ₃ F ₇	Ме	Ме	4-3ードフェニル
13	Н	Н	Н	Н	i−C₃F ₇	Ме	Ме	2-メチルフェニル
14	Н	Н	Н	Н	i−C ₃ F ₇	Ме	Ме	3-メチルフェニル
15	Н	Н	Н	Н	i−C₃F ₇	Me	Ме	4-メチルフェニル
16	Н	Н	Н	Н	i−C₃F ₇	Ме	Ме	3,4-ジクロロフェニル
17	Н	Н	Н	Н	i−C₃F ₇	Ме	Ме	2-フルオロフェニル
18	Н	Н	Н	Н	i-C ₃ F ₇	Ме	Ме	3-フルオロフェニル
19	Н	Н	Н	Н	i−C₃F ₇	Ме	Ме	4-フルオロフェニル
20	Н	Н	Н	Н	i−C₃F ₇	Ме	Ме	2-ニトロフェニル
21	Н	Н	Н	Н	i−C₃F ₇	Me	Me	3-ニトロフェニル
22	Н	Н	Н	Н	i−C₃F ₇	Me	Ме	4-トリフルオロメチルフェニル
	1	T		1,,	: 0.5	Ma	Me	4-トリフルオロメトキシ
23	Н	Н	Н	Н	i−C ₃ F ₇	Me	Me	フェニル
24	Н	Н	Н	Н	i−C ₃ F ₇	Ме	Me	2,4-ジクロロフェニル
25	Н	Н	Н	Н	i-C ₃ F ₇	Me	Ме	2,6-ジフルオロフェニル

[0042]

第1-2表

		_						
化合物 No.	R1	R2	R3	R4	X1	X2	Х3	Q
26	Н	Н	Н	Н	i−C₃F ₇	Ме	Me	3-シアノフェニル
27	Н	н	Н	Н	i-C ₃ F ₇	Ме	Ме	4-シアノフェニル
28	н	Н	-н	Н	i-C ₃ F ₇	Me	Ме	2-メトキシフェニル
29	Н	Н	Н	Н	i-C ₃ F ₇	Me	Ме	2,4,6-トリメチルフェニル
30	Н	Н	H	Н	i-C ₃ F ₇	Me	Me	2,6-ジクロロフェニル
31	н	Н	Н	Н	i-C ₃ F ₇	Me	Me	4-tert-ブチルフェニル
32	Н	Н	Н	Н	i−C₃F ₇	Me	Me	2,6-ジメチルフェニル
<u> </u>	 							2,3,4,5,6-ペンタフルオロ
33	H	Н	Н	Н	i−C ₃ F ₇	Me	Me	フェニル
34	Н	Н	Н	Н	i-C ₃ F ₇	Me	Me	2-エチルフェニル
35	Н	Н	Н	Н	i−C ₃ F ₇	Me	Ме	4-エチルフェニル
36	Н	Н	Н	Н	i-C ₃ F ₇	Ме	Ме	2,4-ジメチルフェニル
37	H	Н	Н	Н	i-C ₃ F ₇	Me	Ме	2,3-ジメチルフェニル
38	H	Н	Н	Н	i−C₃F ₇	Me	Me	3-ジメチルアミノフェニル
39	H	Н	Н	Н	i-C ₃ F ₇	Me	Me	4-ジメチルアミノフェニル
40	Н	Н	Н	Н	i−C ₃ F ₇	Me	Me	2-ビフェニル
41	H	H	Н	H	i-C ₃ F ₇	Me	Me	4-ビフェニル
42	H	H	Н	Н	i−C ₃ F ₇	Me	Me	2-アミノフェニル
43	H	H	Н	Н	i-C ₃ F ₇	Me	Me	2-アセトキシフェニル
44	H	H	Н	н	i-C ₃ F ₇	Me	Ме	2-ヒドロキシフェニル
77	+	+ :-		1				4-メトキシカルボニル
45	Н	Н	Н	Н	i−C ₃ F ₇	Me	Me	フェニル
46	H	Н	Н	Н	i-C ₃ F ₇	Me	Me	2,6-ジメトキシフェニル
47	Н.	Н.	Н	Н	i-C ₃ F ₇	Me	Me	3,5-ジメトキシフェニル
48	Н	H	 ;;	H	i-C ₃ F ₇	Me		2-クロロ-6-フルオロフェニル
49	Н.	H	H	H	i-C ₃ F ₇	Me	Me	2-フルオロ-5-ニトロフェニル
50	 	Н,	<u>;;</u>	H	i-C ₃ F ₇	Me		5-アミノ-2-フルオロフェニル
30	1 11				1 - 3. /			<u> </u>

[0043]

第1-3表

化合物 No.	R1	R2	R3	R4	X1	X2	Х3	Q
51	Н	н	Н	Н	i−C₃F ₇	Ме	Ме	2,3-ジフルオロフェニル
52	Н	Н	Н	Н	i−C ₃ F ₇	Me	Me	2,4-ジフルオロフェニル
53	Н	Н	Н	Н	i-C ₃ F ₇	Me	Me	2,5-ジフルオロフェニル
54	Н	Н	Н	Н	i-C ₃ F ₇	Me	Ме	2-チエニル
								1-メチル-3-トリフルオロメチル
55	н	Н	Н	Н	i−C ₃ F ₇	Ме	Ме	ピラゾール-4-イル
56	Н	Н	Н	Н	i-C ₃ F ₇	Me	Me	ピリジン-2-イル
57	Н	Н	Н	Н	i−C₃F ₇	Ме	Ме	ピリジン-3-イル
58	Н	Н	Н	Н	i−C₃F ₇	Ме	Ме	ピリジン-4-イル
59	Н	Н	Н	Н	i−C₃F ₇	Ме	Ме	2-クロロピリジン-3-イル
60	Н	Н	Н	Н	i−C₃F ₇	Me	Ме	フラン-2-イル
61	Н	Н	Н	Н	i−C₃F₁	Ме	Ме	1-メチルピロール-2-イル
62	Н	Н	Н	Н	i−C₃F ₇	Ме	Ме	イソオキサゾール-5-イル
63	Н	Н	Н	Н	i−C₃F ₇	Me	Ме	ピラジン-2-イル
64	Н	Н	Н	Н	i−C ₃ F ₇	Ме	Me	1-ナフチル
65	Н	Н	Н	Н	i−C₃F ₇	Ме	Me	2-ナフチル
66	ОН	Н	Н	Н	i−C₃F ₇	Ме	Ме	フェニル
67	F	Н	Н	Н	i−C₃F ₇	Ме	Ме	フェニル
68	CI	Н	Н	Н	i−C₃F₁	Me	Ме	フェニル
69	F	Н	Н	Н	i−C₃F ₇	Ме	Ме	2-フルオロフェニル
70	F	Н	Н	Н	i−C ₃ F ₇	Me	Ме	2,6-ジフルオロフェニル
71	F	Н	Н	Н	i−C₃F ₇	Ме	Ме	3-ヨードフェニル
72	F	Н	Н	Н	2-C ₄ F ₉	Ме	Ме	フェニル
73	F	Н	Н	Н	2-C ₄ F ₉	Ме	Ме	2-フルオロフェニル
74	F	Н	Н	Н	2-C ₄ F ₉	Ме	Ме	2,6-ジフルオロフェニル
75	Н	ОН	Н	Н	i−C₃F ₇	Me	Ме	フェニル
76	Н	Ме	Н	Н	i−C₃F ₇	Ме	Ме	フェニル
77	Н	F	Н	Н	i−C₃F ₇	Ме	Ме	フェニル
78	Н	CI	Н	Н	i−C ₃ F ₇	Ме	Ме	フェニル
79	Н	Н	CF ₃	Н	i−C₃F ₇	Ме	Ме	フェニル
80	Н	Н	NH ₂	Н	i-C ₃ F ₇	Ме	Ме	フェニル
81	Н	Н	Н	F	i−C ₃ F ₇	Ме	Ме	フェニル
82	H	Н	Н	CI	i−C₃F ₇	Ме	Ме	フェニル
83	Н	Н	Н	I	i−C₃F ₇	Me	Ме	フェニル

[0044]

【表2】

第2表

化合物 No.	Z1	Z2	X1	X2	Х3	Q
84	0	S	i-C ₃ F ₇	Me	Me	フェニル
85	s	0	i-C ₃ F ₇	Me	Ме	フェニル
86	S	S	i−C ₃ F ₇	Ме	Me	フェニル

【0045】 【表3】

第3表

(R1 = R2 = R3 = R4 = Y = 水素原子、Z1 = Z2 = 酸素原子)

化合物 No.	R5	R6 ·	X1	X2	X3	Q
87	Me	Me	i−C₃F ₇	Ме	Ме	フェニル
88	Н	Me	i-C ₃ F ₇	Br	Ме	フェニル
89	Н	Me	i−C₃F ₇	Ме	Ме	フェニル
90	Н	Et	i-C ₃ F ₇	Me	Ме	フェニル
91	Н	イソプロピル	i-C ₃ F ₇	Me	Me	フェニル
92	Et	Н	i−C₃F ₇	Ме	Me	フェニル

[0046]

以下、第4表(表4-1~表4-6)に本発明の一般式(1)で表される化合物のうち幾つかの化合物について物性値を示す。ここに示した 1 H-NMRのシフト値は、特に記載がない場合、テトラメチルシランを内部基準物質として使用している。

[0047]

【表4-1】

第4-1表

化合物 No.	¹ H-NMR(DMSO-d ₆ , ppm)
== 1,5	δ 2.37 (6H, s), 7.34 (2H, s), 7.46–7.57 (4H, m), 7.75 (1H, d, J =7.8Hz), 7.98–8.01
1	(2H, m), 8.12 (1H, d, J =7.3Hz), 8.34 (1H, s), 8.87 (1H, s), 9.66 (1H, s).
	δ 2.30 (6H, s), 7.45 (2H, s), 7.51-7.63 (4H, m), 7.76 (1H, d, J =7.8Hz), 7.98-8.07
2	(3H, m), 8.37 (1H, d, J =2.0Hz), 9.99 (1H, s), 10.48 (1H, s).
	$(CDCl_3)$ δ 1.20 (3H, t, J =7.3Hz), 2.32 (3H, s), 2.67 (2H, q, J =7.3Hz), 7.36 (2H, s),
3	7.46-7.51 (3H, m), 7.55-7.59 (1H, m), 7.67-7.72 (2H, m), 7.85-7.88 (3H, m), 8.15
	(1H, s), 8.28 (1H, s).
	δ 1.15 (3H, t, J =7.3Hz), 2.73 (2H, q, J =7.3Hz), 7.50-7.63 (5H, m), 7.71-7.77 (2H, m),
4	7.94-8.01 (2H, m), 8.08 (1H, d, J =7.8Hz), 8.37 (1H, s), 10.28 (1H, s), 10.50 (1H, s).
	δ 2.38 (3H, s), 7.53-7.63 (4H, m), 7.70 (1H, s), 7.77 (1H, d, J =7.8Hz), 7.81 (1H, s),
5	7.99-8.01 (2H, m), 8.08 (1H, d, J =7.8Hz), 8.37 (1H, s), 10.28 (1H, s), 10.50 (1H, s).
	δ 2.36 (3H, s), 7.53-7.63 (4H, m), 7.68 (1H, s), 7.79 (1H, d, J =7.8Hz), 7.96 (1H, s),
6	7.99-8.01 (2H, m), 8.08 (1H, dd, J=1.5,7.8Hz), 8.38 (1H, d, J=1.5Hz), 10.27 (1H, s),
	10.50 (1H, s).
	$(CDCl_3)$ δ 2.36 (6H, s), 7.19 (1H, dt, J = 2.0,7.8Hz), 7.36 (2H, s), 7.46 (1H, t, J =
7	7.8Hz), $7.52-7.57$ (3H, m), 7.66 (1H, s), 7.74 (1H, d, $J = 7.8$ Hz), 7.85 (1H, d, $J = 7.8$ Hz),
	7.94 (1H, d, J = 7.8Hz), 8.31 (1H, s)
	(CDCl ₃) δ 2.36 (6H, s), 7.34–7.38 (3H, m), 7.42–7.46 (1H, m), 7.53 (1H, t, J =7.8Hz),
8	7.62 (1H, s), 7.65-7.68 (2H, m), 7.73-7.75 (1H, m), 7.82-7.84 (1H, m), 7.89 (1H, s),
	8.32 (1H, s).
9	(CDCl ₃) δ 2.35 (6H, s), 7.36 (2H, s), 7.37-7.54 (4H, m), 7.69-7.83 (4H, m), 8.13
3	(1H, s), 8.33 (1H, s).
10	$(CDCl_3) \delta 2.34$ (6H, s), 7.35 (2H, s), 7.51 (1H, t, J =7.8Hz), 7.62-7.80 (8H, m), 8.25
,,,	(1H, s).
12	δ 2.36 (6H, s), 7.33 (2H, s), 7.48 (1H, t, J =7.8Hz), 7.75-7.84 (5H, m), 8.14 (1H, d,
1 4-	J =7.8Hz), 8.31 (1H, s), 9.20 (1H, s), 10.04 (1H, s).
13	(CDCl ₃) δ 2.35 (6H, s), 2.52 (3H, s), 7.26–7.31 (2H, m), 7.36 (2H, s), 7.37–7.42
	(1H, m), 7.49-7.54 (2H, m), 7.68-7.73 (3H, m), 7.79 (1H, d, J =7.3Hz), 8.30 (1H, s).
14	δ 2.30(6H, s), 2.41(3H, s), 7.38-7.44(2H, m), 7.45(2H, s), 7.54(1H, t, J = 7.8Hz),
	7.73-7.82(3H, m), 8.05-8.08(1H, m), 8.35(1H, t, J = 2.0Hz), 9.99(1H, s), 10.43(1H, s).
	δ 2.30(6H, s), 2.40(3H, s), 7.35(2H, d, J = 8.3Hz), 7.45(2H, s), 7.53(1H, t, J = 7.8Hz),
15	7.74(1H, d, $J = 7.8$ Hz), 7.92(2H, d, $J = 8.3$ Hz), 8.06(1H, d, $J = 7.8$ Hz), 8.36(1H, s),
	9.98(1H, s), 10.39(1H, s).

[0048]

【表4-2】

第4-2表

化合物 No.	¹H-NMR(DMSO-d₅、ppm)
	δ 2.30(6H, s), 7.45(2H, s), 7.56(1H, t, J = 7.8Hz), 7.79(1H, d, J = 7.8Hz), 7.85(1H, d,
16	J = 8.3Hz), 7.97–8.00(1H, m), 8.05–8.08(1H, m), 8.27(1H, d, $J = 2.0$ Hz), 8.33(1H, s),
	10.00(1H, s), 10.61(1H, s).
	δ 2.30(6H, s), 7.33-7.41(2H, m), 7.44(2H, s), 7.52-7.63(2H, m), 7.67-7.76
17	(2H, m), 7.97(1H, d, J = 8.3Hz), 8.32(1H, s), 10.00(1H, s), 10.65(1H, s).
	δ 2.30(6H, s), 7.45(2H, s), 7.47-7.50(1H, m), 7.53-7.64(2H, m), 7.76-7.87
18	(3H, m), 8.05(1H, d, J = 1.5Hz), 8.35(1H, s), 10.00(1H, s), 10.54(1H, s).
	δ 2.30(6H, s), 7.37-7.41(2H, m), 7.45(2H, s), 7.54(1H, t, J = 7.8Hz), 7.76
19	(1H, d, $J = 7.8$ Hz), 8.04–8.10(3H, m), 8.34(1H, s), 10.00(1H, s), 10.49(1H, s).
	δ 2.30 (6H, s), 7.45 (2H, s), 7.56 (1H, d, J=7.8Hz), 7.76-7.81 (3H, m), 7.88-7.94
20	(2H, m), 8.17 (1H, d, J=7.8Hz), 8.24 (1H, s), 10.02 (1H, s), 10.90 (1H, s).
	δ 2.32(6H, s), 7.46(2H, s), 7.58(1H, t, J = 7.8Hz), 7.80-7.89(2H, m), 8.11(1H, d,
21	J = 7.8Hz), 8.36(1H, s), 8.44-8.48(2H, m), 8.86(1H, s), 10.04(1H, s), 10.83(1H, s).
	δ 2.31(6H, s), 7.45(2H, s), 7.57(1H, t, J = 7.8Hz), 7.79(1H, d, J = 7.8Hz), 7.94(2H,
22	d, $J = 8.3$ Hz), 8.07(1H, d, $J = 7.8$ Hz), 8.20(2H, d, $J = 8.3$ Hz), 8.36(1H, s), 10.01
	(1H, s), 10.70(1H, s).
	δ 2.31(6H, s), 7.45(2H, s), 7.53-7.60(3H, m), 7.77(1H, d, J = 7.3Hz), 8.06(1H, d,
23	J= 8.3Hz), 8.13(2H, d, J = 8.3Hz), 8.35(1H, s), 10.01(1H, s), 10.59(1H, s).
	δ 2.30(6H, s), 7.45(2H, s), 7.52–7.62(2H, m), 7.66(1H, d, J = 8.3Hz), 7.75–7.80
24	(2H, m), $7.94(1H, d, J = 7.8Hz)$, $8.30(1H, s)$, $10.02(1H, s)$, $10.77(1H, s)$.
	δ 2.30 (6H, s), 7.25-7.30 (2H, m), 7.45 (2H, s), 7.54-7.65 (2H, m), 7.77 (1H, d,
25	J =7.8Hz), 7.93 (1H, d, J =7.8Hz), 8.29 (1H, s), 10.03 (1H, s), 11.04 (1H, s).
	δ 2.30 (6H, s), 7.45 (2H, s), 7.57 (1H, d, J =7.8Hz), 7.75-7.80 (2H, m), 8.06-8.11
26	(2H, m), 8.29 (1H, d, J =7.8Hz), 8.34 (1H, s), 8.46 (1H, s), 10.02 (1H, s), 10.65 (1H, s).
	δ 2.30 (6H, s), 7.45 (2H, s), 7.56 (1H, t, J =7.8Hz), 7.79 (1H, d, J =7.8Hz), 8.04-
27	8.06 (3H, m), 8.16 (2H, d, J =8.3Hz), 8.36 (1H, s), 10.02 (1H, s), 10.72 (1H, s).
	δ 2.30(6H, s), 3.90(3H, s), 7.05-7.10(1H, m), 7.19(1H, d, J = 8.3Hz), 7.45(2H, s),
28	7.49-7.54(2H, m), $7.63(1H, dd, J = 2.0, 7.8Hz)$, $7.72(1H, d, J = 7.8Hz)$, $7.96(1H, d, J = 7.8Hz)$
	J = 7.8Hz), 8.33(1H, s), 9.98(1H, s), 10.33(1H, s).
	δ 2.25 (6H, s), 2.27 (3H, s), 2.29 (6H, s), 6.94 (2H, s), 7.45 (2H, s), 7.51 (1H, t,
29	J=7.8Hz), 7.73 (1H, d, J =7.8Hz), 7.94 (1H, d, J =7.8Hz), 8.34 (1H, s), 9.97 (1H, s),
	10.53 (1H, s).
	δ 2.30 (6H, s), 7.45 (2H, s), 7.50-7.62 (4H, m), 7.78 (1H, d, J =7.8Hz), 7.94 (1H, d,
30	J =7.8Hz), 8.28 (1H, s), 10.03 (1H, s), 10.99 (1H, s).

[0049]

第4-3表

化合物 No.	¹H-NMR(DMSO-d ₆ , ppm)
	δ 1.33 (9H, s), 2.31 (6H, s), 7.45 (2H, s), 7.53 (1H, t, J =7.8Hz), 7.54 (2H, d, J =8.3Hz),
31	7.74 (1H, d, J =7.8Hz), 7.94 (2H, d, J =8.3Hz), 8.06 (1H, d, J =7.8Hz), 8.36 (1H, s), 9.99
•	(1H, s), 10.40 (1H, s).
	δ 2.30 (12H, s), 7.12 (2H, d, J =7.8Hz), 7.23-7.27 (1H, m), 7.45 (2H, s), 7.52 (1H, t,
32	J =8.3Hz), 7.75 (1H, d, J =8.3Hz), 7.94-7.99 (1H, m), 8.35 (1H, s), 10.00 (1H, s),
-	10.61 (1H, s).
	δ 2.30 (6H, s), 7.45 (2H, s), 7.59 (1H, t, J =7.8Hz), 7.83 (1H, d, J =7.8Hz), 7.91-7.94
33	(1H, dd, J =1.5,7.8Hz), 8.25 (1H, d, J =1.5Hz), 10.06 (1H, s), 11.27 (1H, s).
	δ 1.18 (3H, t, J =7.3Hz), 2.30 (6H, s), 2.76 (2H, q, J =7.3Hz), 7.30–7.37 (2H, m), 7.42–
34	7.46 (4H, m), 7.52 (1H, t, J = 7.8Hz), 7.73 (1H, d, J = 7.8Hz), 7.96 (1H, d, J = 7.8Hz), 8.35
	(1H, s), 9.98 (1H, s), 10.56 (1H, s).
	δ 1.22 (3H, t, J =7.3Hz), 2.31 (6H, s), 2.69 (2H, q, J =7.3Hz), 7.39 (2H, d, J =8.3Hz),
35	7.45 (2H, s), 7.53 (1H, t, J =7.8Hz), 7.74 (1H, d, J =7.8Hz), 7.94 (2H, d, J =8.3Hz),
	8.06 (1H, d, J =7.8Hz), 8.36 (1H, s), 9.99 (1H, s), 10.40 (1H, s).
	δ 2.30 (6H, s), 2.33 (3H, s), 2.38 (3H, s), 7.11-7.13 (2H, m), 7.40 (1H, d, J =7.8Hz),
36	7.44 (2H, s), 7.51 (1H, t, J =7.8Hz), 7.72 (1H, d, J =7.8Hz), 7.95 (1H, d, J =8.8Hz),
	8.34 (1H, s), 9.98 (1H, s), 10.43 (1H, s).
	δ 2.27 (6H, s), 2.30 (6H, s), 7.18-7.22 (1H, m), 7.26-7.30 (2H, m), 7.45 (2H, s), 7.52
37	(1H, t, J =7.8Hz), 7.72 (1H, d, J =7.8Hz), 7.95 (1H, d, J =7.8Hz), 8.36 (1H, s), 9.98
	(1H, s), 10.52 (1H, s).
	δ 2.30 (6H, s), 2.98 (6H, s), 6.93-6.95 (1H, m), 7.25-7.35 (3H, m), 7.45 (2H, s),
38	7.53 (1H, t, J =7.8Hz), 7.74 (1H, d, J =7.8Hz), 8.06 (1H, d, J =7.8Hz), 8.35 (1H, s),
	9.99 (1H, s), 10.35 (1H, s).
	δ 2.30 (6H, s), 3.01 (6H, s), 6.77 (2H, d, J =9.3Hz), 7.45 (2H, s), 7.50 (1H, t, J =7.8Hz),
39	7.69 (1H, d, J = 7.8Hz), 7.91 (2H, d, J = 9.3Hz), 8.06 (1H, d, J = 7.8Hz), 8.33 (1H, s),
	9.96 (1H, s), 10.09 (1H, s).
40	δ 2.30 (6H, s), 7.28–7.55 (10H, m), 7.57–7.61 (2H, m), 7.69 (1H, d, J =7.8Hz), 7.74
	(1H, d, J =7.8Hz), 8.13 (1H, s), 9.94 (1H, s), 10.47 (1H, s).
41	δ 2.32 (6H, s), 7.41-7.57 (6H, m), 7.72-7.82 (3H, m), 7.85-7.88 (2H, m), 8.09-8.13
71	(3H, m), 8.40 (1H, s), 10.01 (1H, s), 10.53 (1H, s).
	δ 2.30 (6H, s), 6.39 (2H, s), 6.58-6.62 (1H, m), 6.76 (1H, dd, J =1.0,8.3Hz), 7.19-
42	7.24 (1H, m), 7.45 (2H, s), 7.51 (1H, t, J = 7.8Hz), 7.66-7.73 (2H, m), 7.94-7.97
	(1H, m), 8.30 (1H, d, J =2.0Hz), 9.96 (1H, s), 10.20 (1H, s).
	δ 2.21 (3H, s), 2.30 (6H, s), 7.27 (1H, d, J =8.3Hz), 7.39-7.44 (1H, m), 7.45 (2H, s),
43	7.50-7.62 (2H, m), 7.70-7.52 (2H, m), 7.92 (1H, d, J =7.8Hz), 8.29 (1H, s), 9.99
	(1H, s), 10.57 (1H, s).
44	δ 2.30 (6H, s), 6.96-7.01 (2H, m), 7.43-7.48 (3H, m), 7.56 (1H, t, J =8.3Hz), 7.78
~* *	(1H, d, J =8.3Hz), 7.97-8.00 (2H, m), 8.29 (1H, s), 10.01 (1H, s), 10.61 (1H, s).
45	δ 2.30 (6H, s), 3.91 (3H, s), 7.45 (2H, s), 7.56 (1H, t, J =7.8Hz), 7.78 (1H, d, J =7.8Hz),
40	8.03-8.15 (5H, m), 8.36 (1H, s), 10.01 (1H, s), 10.67 (1H, s).

[0050]

【表4-4】

第4-4表

合物 No.	¹H-NMR(DMSO-d₅、ppm)
40	δ 2.30 (6H, s), 3.78 (6H, s), 6.66-6.75 (2H, m), 7.34-7.50 (4H, m), 7.67 (1H, d,
46	J =7.8Hz), 7.91 (1H, d, J =7.8Hz), 8.34 (1H, s), 9.98 (1H, s), 10.44 (1H, s).
	δ 2.30 (6H, s), 3.83 (6H, s), 6.73 (1H, t, J =2.4Hz), 7.15 (2H, d, J =2.4Hz), 7.45 (2H, s),
47	7.54 (1H, t, J =8.3Hz), 7.75 (1H, d, J =8.3Hz), 8.06 (1H, d, J =8.3Hz), 8.33 (1H, s),
	9.99 (1H, s), 10.39 (1H, s).
	δ 2.30 (6H, s), 7.38–7.48 (4H, m), 7.54–7.60 (2H, m), 7.78 (1H, d, J =7.8Hz), 7.93
48	(1H, d, J =7.8Hz), 8.28 (1H, s), 10.03 (1H, s), 11.03 (1H, s).
	δ 2.30 (6H, s), 7.45 (2H, s), 7.58 (1H, t, J =7.8Hz), 7.70 (1H, t, J =8.8Hz), 7.80
49	(1H, d, J =7.8Hz), 7.99 (1H, d, J =7.8Hz), 8.29 (1H, s), 8.45-8.50 (1H, m), 8.57-
	8.60 (1H, m), 10.03 (1H, s), 10.91 (1H, s).
	δ 2.30 (6H, s), 5.22 (2H, broad-s), 6.67-6.72 (1H, m), 6.78-6.81 (1H, m), 6.97-7.02
50	(1H, m), 7.45 (2H, s), 7.52 (1H, t, J =7.8Hz), 7.72 (1H, d, J =7.8Hz), 7.94 (1H, d,
00	J =7.8Hz), 8.32 (1H, s), 9.98 (1H, s), 10.46 (1H, s).
	δ 2.30 (6H, s), 7.34-7.40 (1H, m), 7.45 (2H, s), 7.50-7.58 (2H, m), 7.60-7.68
51	(1H, m), 7.77 (1H, d, J =7.8Hz), 7.96 (1H, d, J =8.3Hz), 8.31 (1H, s), 10.02 (1H, s),
, ,	10.78 (1H, s).
	δ 2.30 (6H, s), 7.22–7.28 (1H, m), 7.42–7.48 (3H, m), 7.53–7.57 (1H, m), 7.75–7.82
52	(2H, m), 7.96 (1H, d, J =7.8Hz), 8.30 (1H, s), 10.01 (1H, s), 10.65 (1H, s).
	δ 2.30 (6H, s), 7.45 (2H, s), 7.46–7.49 (2H, m), 7.53–7.59 (2H, m), 7.77 (1H, d,
53	J =7.8Hz), 7.96 (1H, d, J =8.3Hz), 8.30 (1H, s), 10.02 (1H, broad), 10.72 (1H, broad).
	(CDCl ₃) δ 2.35(6H, s), 7.16(1H, dd, J = 3.9,4.9Hz), 7.36(2H, s), 7.51(1H, t, J = 7.8Hz),
54	7.59(1H, dd, $J = 1.0,4.9Hz$), 7.67(1H, dd, $J = 1.0,3.9Hz$), 7.70–7.74(2H, m), 7.80–7.83
34	(1H, m), 7.95(1H, s), 8.27(1H, s).
	(CDCl ₃) δ 2.35(6H, s), 4.01(3H, s), 7.36(2H, s), 7.51(1H, t, J = 7.8Hz), 7.68–7.73
55	(3H, m), 7.92(1H, s), 8.05(1H, s), 8.25(1H, s).
	δ 2.31 (6H, s), 7.45 (2H, s), 7.55 (1H, t, J =7.8Hz), 7.69–7.76 (2H, m), 8.07–8.14
56	(2H, m), 8.19 (1H, d, J =7.8Hz), 8.54 (1H, s), 8.77 (1H, d, J =4.9Hz), 9.99 (1H, s),
30	10.86 (1H, s).
	δ 2.30 (6H, s), 7.45 (2H, s), 7.54–7.61 (2H, m), 7.78 (1H, d, J =8.3Hz), 8.06 (1H, d,
57	J =7.3Hz), 8.32–8.35 (2H, m), 8.77–8.79 (1H, m), 9.14 (1H, d, J =1.5Hz), 10.00
37	(1H, s), 10.66 (1H, s).
——	δ 2.30 (6H, s), 7.45 (2H, s), 7.57 (1H, t, J =7.8Hz), 7.80 (1H, d, J =7.8Hz), 7.91
50	(2H, d, J =5.6Hz), 8.06 (1H, d, J =7.8Hz), 8.35 (1H, s), 8.81 (2H, d, J =5.6Hz),
58	10.01 (1H, s), 10.72 (1H, s).
	δ 2.30 (6H, s), 7.45 (2H, s), 7.54–7.60 (2H, m), 7.77–7.81 (1H, m), 7.95 (1H, d,
	J =7.8Hz), 8.10-8.13 (1H, m), 8.30 (1H, s), 8.54-8.59 (1H, m), 10.03 (1H, s),
59	
	10.88 (1H, s).
	δ 2.30 (6H, s), 6.71–6.73 (1H, m), 7.39–7.41 (1H, m), 7.45 (2H, s), 7.53 (1H, t,
60	J = 7.8Hz), 7.74 (1H, d, $J = 7.8Hz$), 8.03 (1H, t, $J = 1.0Hz$), 8.05 (1H, d, $J = 1.0Hz$),
	8.33 (1H, t, J =1.5Hz), 9.99 (1H, s), 10.41 (1H, s).

[0051]

第4-5表

化合物 No.	¹H-NMR(DMSO-d₅、ppm)
	δ 2.30 (6H, s), 3.89 (3H, s), 6.11 (1H, dd, J =2.0,3.9Hz), 7.03 (1H, t, J =2.0Hz),
61	7.10 (1H, dd, J =2.0,3.9Hz), 7.45 (2H, s), 7.49 (1H, t, J =7.8Hz), 7.69 (1H, d,
	J =7.8Hz), 7.99 (1H, d, J =7.8Hz), 8.28 (1H, s), 9.95 (2H, s).
	δ 2.30 (6H, s), 7.32 (1H, d, J =2.0Hz), 7.45 (2H, s), 7.58 (1H, t, J =7.8Hz), 7.81
62	(1H, d, J =7.8Hz), 8.04 (1H, d, J =7.8Hz), 8.35 (1H, s), 8.84 (1H, d, J =2.0Hz),
	10.03 (1H, s), 10.97 (1H, s).
	δ 2.31 (6H, s), 7.45 (2H, s), 7.57 (1H, t, J =7.8Hz), 7.78 (1H, d, J =7.8Hz), 8.11
63	(1H, d, J =7.8Hz), 8.53 (1H, s), 8.84 (1H, dd, J =1.5,2.4Hz), 8.95 (1H, d, J =2.4Hz),
	9.33 (1H, d, J =1.5Hz), 10.00 (1H, s), 10.97 (1H, s).
	δ 2.31(6H, s), 7.45(2H, s), 7.54-7.65(4H, m), 7.76-7.80(2H, m), 8.01-8.06(2H, m),
64	8.10(1H, d, J = 8.3Hz), 8.21-8.23(1H, m), 8.43(1H, s), 10.01(1H, s), 10.80(1H, s).
	δ 2.32(6H, s), 7.46(2H, s), 7.57(1H, t, J = 7.8Hz), 7.61-7.72(2H, m), 7.78(1H, d,
65	J = 7.8Hz), $7.99 - 8.17(5$ H, m), $8.41(1$ H, t, $J = 2.0$ Hz), $8.65(1$ H, s), $10.01(1$ H, s),
	10.66(1H, s).
	δ 2.32(6H, s), 7.05(1H, t, J = 7.8Hz), 7.49(2H, s), 7.52-7.63(3H, m), 7.93-8.00(4H, m),
66	9.64(1H, s), 10.43(1H, s), 12.82(1H, s).
	δ 2.34(6H, s), 7.37(1H, t, J = 7.8Hz), 7.45(2H, s), 7.53-7.65(4H, m), 7.77-7.82
67	(1H, m), 8.00-8.02(2H, m), 10.10(1H, s), 10.29(1H, s).
00	δ 2.40(6H, s), 7.44(2H, s), 7.52-7.66(5H, m), 7.71-7.76(1H, m), 8.01-8.03(2H, m),
68	10.20(1H, s), 10.24(1H, s).
	δ 2.34(6H, s), 7.33-7.40(3H, m), 7.45(2H, s), 7.52-7.56(1H, m), 7.59-7.65(1H, m),
69	7.72-7.77(1H, m), 8.00(1H, t, J = 7.8Hz), 10.12(1H, s), 10.35(1H, s).
	δ 2.34(6H, s), 7.23-7.28(2H, m), 7.38(1H, t, J = 7.8Hz), 7.45(2H, s), 7.52-7.64(2H, m),
70	8.05-8.10(1H, m), 10.13(1H, s), 10.88(1H, s).
	δ 2.34(6H, s), 7.22–7.27(1H, m), 7.38(1H, t, J = 7.8Hz), 7.46(2H, s), 7.50–7.55(3H, m),
71	7.95(1H, d, $J = 7.8$ Hz), 7.99–8.03(1H, m), 10.12(1H, s), 10.50(1H, s).
	δ 2.34(6H, s), 7.37(1H, t, J = 7.8Hz), 7.44(2H, s), 7.53-7.65(4H, m), 7.77-7.81(1H, m),
72	7.99-8.02(2H, m), 10.09(1H, broad), 10.29(1H, broad).
	δ 2.34(6H, s), 7.33-7.40(3H, m), 7.44(2H, s), 7.51-7.56(1H, m), 7.58-7.65(1H, m),
73	7.72-7.77(1H, m), $8.00(1H, t, J = 8.3Hz)$, $10.10(1H, s)$, $10.34(1H, s)$.
	δ 2.34(6H, s), 7.23-7.28(2H, m), 7.38(1H, t, J = 7.8Hz), 7.44(2H, s), 7.52-7.65(2H, m),
74	8.05-8.10(1H, m), 10.12(1H, s), 10.88(1H, s).
	$(CDCl_3)$ δ 2.35(6H,s),7.09(1H,d,J = 8.8Hz),7.34(2H,s),7.54-7.75(5H,m),7.95(1H,broad),
75	7.97(2H,d,J = 7.3Hz), 8.68(1H,s), 9.11(1H,broad).

[0052]

【表4-6】

第4-6表

¹ H-NMR(DMSO-d ₈ , ppm)
δ 2.28(6H, s), 2.33(3H, s), 7.44(2H, s), 7.47(1H, d, J = 7.8Hz), 7.52-7.64(3H, m),
2.85(1H, dd, J = 2.0,7.8Hz), 7.98-8.02(3H, m), 9.95(1H, s), 10.11(1H, s).
δ 2.29(6H, s), 7.45(2H, s), 7.48-7.65(4H, m), 7.93-8.02(3H, m), 8.23(1H, dd, J =2.4,
7.3Hz), 10.03(1H, s), 10.32(1H, s).
δ 2.29(6H, s), 7.45(2H, s), 7.54-7.66(3H, m), 7.77(1H, d, J =8.8Hz), 7.94(1H, dd,
J =2.0,8.1Hz), 8.00-8.03(2H, m), 8.19(1H, d, J =2.0Hz), 10.10(1H, s), 10.29(1H, s).
δ 2.31(6H, s), 7.47(2H, s), 7.55-7.59(2H, m), 7.62-7.66(1H, m), 8.01-8.04(2H, m),
3.09(1H, s), 8.54(1H, s), 8.66(1H, s), 10.27(1H, s), 10.79(1H, s).
(CDCl ₃) δ 2.34 (6H, s), 3.97 (2H, broad), 7.01(1H, s), 7.35-7.36 (3H,m),7.49-
7.60 (5H,m), 7.86(2H,d,J = 7.3Hz), 7.92 (1H, broad-s)
δ 2.34(6H, s), 7.40(1H, t, J =9.3Hz), 7.45(2H, s), 7.53-7.64(3H, m), 7.97-8.05(3H, m),
8.14(1H, dd, J =2.9,6.3Hz), 10.03(1H, s), 10.48(1H, s).
δ 2.40(6H, s), 7.45(2H, s), 7.54-7.65(4H, m), 7.97-8.03(3H, m), 8.09(1H, d, J = 2.4Hz),
10.20(1H, s), 10.56(1H, s).
δ 2.44(6H, s), 7.45(2H, s), 7.53-7.65(3H, m), 7.79(1H, dd, J =2.4,8.3Hz), 7.90-7.98
(3H, m), 8.05(1H, d, J =2.4Hz), 10.15(1H, s), 10.53(1H, s).
(CDCl₃) δ 2.38(6H,s),7.25-8.00(11H,m),8.34(1H,s),8.85(1H,broad).
(CDCl ₃) δ 2.36 (6H, s), 7.37 (2H, s), 7.47-7.61(5H,m), 7.85-8.03 (4H,m), 8.57
(1H,s),9.18(1H,s).
(CDCl ₃) δ 2.38 (6H,s), 7.41(2H, s), 7.45-7.55 (4H, m), 7.90-7.96 (4H,m) ,8.57
(1H, broad),8.74 (1H,broad), 9.18(1H,broad).
δ 2.20 (6H, s), 3.08 (3H, s), 3.20 (3H, s), 6.93-7.39 (10H, m), 7.45-7.51 (1H, m).
δ 2.41(3H, s), 3.25(3H, s), 6.95(1H, dd, J = 1.5,7.8Hz), 7.16(1H, t, J = 7.8Hz), 7.50-
7.64(4H, m), 7.68(1H, s), 7.86-7.88(2H, m), 7.93(1H, t, J = 1.5Hz), 7.98-8.00(1H, m),
10.24(1H, s).
δ 2.29(6H, s), 3.24(3H, s), 6.84(1H, d, J = 7.8Hz), 7.12(1H, t, J = 7.8Hz), 7.33(2H, s),
7.50-7.64(4H, m), 7.85-7.88(2H, m), 7.98-8.03(1H, m), 10.22(1H, s).
δ 1.18(3H, t, J = 7.3Hz), 2.30(6H, s), 3.76(2H, q, J = 7.3Hz), 6.81(1H, d, J = 7.8Hz),
7.11(1H, t, J = 7.8Hz), 7.33(2H, s), 7.50-7.62(4H, m), 7.84-7.88(2H, m), 7.95-8.00
(1H, m), 10.20(1H, s).
δ 1.44(6H, d, J = 6.3Hz), 2.07(6H, s), 5.35(1H, septet, J = 6.3Hz), 6.84(1H, d, J =
7.8Hz), 7.21(1H, t, $J = 7.8$ Hz), 7.21(2H, s), 7.50–7.61(3H, m), 7.75(1H, dd, $J = 1.5$,
7.8Hz), 7.86-7.89(3H, m), 10.29(1H, s).
$(CDCI_3) \delta 1.25 (3H, t, J = 7.3Hz), 2.25 (6H, s), 4.02 (2H, q, J = 7.3Hz), 7.16-7.40$
(10H, m), 7.56 (1H, s), 7.69 (1H, d, J =7.8Hz).

[0053]

本発明の一般式(1)で表される化合物を有効成分として含有する農園芸用殺虫剤は、水稲、果樹、野菜、その他作物及び花卉などを加害する各種農林、園芸、貯穀害虫や衛生害虫あるいは線虫などの害虫防除に適しており、例えば、リンゴコカクモンハマキ(Adox ophyes orana fasciata)、チャノコカクモンハマキ(Adoxophyes sp.)、リンゴコシンクイ(Grapholita inopinata)、ナシヒメシンクイ(Grapholita molesta)、マメシンクイガ(Leguminivora glycinivorella)、クワハマキ(Olethreutes mori)、チャノホソガ(Caloptilia thevivora)、リンゴホソガ(Caloptilia zachrysa)、キンモンホソガ(Phyllonorycter ringoniella)、ナシホソガ(Spulerrina astaurota)、モンシロチョウ(Piers rapae cruci vora)、オオタバコガ類(Heliothis sp.)、コドリンガ(Laspey resia pomonella)、コナガ

(Plutella xylostella)、リンゴヒメシンクイ(Argyresthia conjugella)、モモシンクイ ガ(Carposina niponensis)、ニカメイガ(Chilo suppressalis)、コブノメイガ(Cnaphaloc rocis medinalis)、チャマダラメイガ(Ephestia elutella)、クワノメイガ(Glyphodes py loalis)、サンカメイガ(Scirpophaga incertulas)、イチモンジセセリ(Parnara guttata) 、アワヨトウ(Pseudaletia separata)、イネヨトウ(Sesamia inferens)、ハスモンヨトウ (Spodoptera liitura)、シロイチモンジヨトウ(Spodoptera exigua)などの鱗翅目害虫、 フタテンヨコバイ(Macrosteles fascifrons)、ツマグロヨコバイ(Nephotettix cincticep s)、トビイロウンカ(Nilaparvata lugens)、ヒメトビウンカ(Laodelphax striatellus)、 セジロウンカ((Sogatella furcifera)、ミカンキジラミ(Diaphorina citri)、ブドウコナ ジラミ(Aleurolobus taonabae)、タバココナジラミ(Bemisia tabaci)、オンシツコナジラ ミ(Trialeurodes vaporariorum)、ニセダイコンナブラムシ(Lipaphis erysimi)、モモア カアブラムシ(Myzus persicae)、ツノロウムシ(Ceroplastes ceriferus)、ミカンワタカ イガラムシ(Pulvinaria aurantii)、ミカンマルカイガラムシ(Pseudaonidia duplex)、ナ シマルカイガラムシ(Comstockaspis perniciosa)、ヤノネカイガラムシ(Unaspis yanonen sis)、などの半翅目害虫、ネグサレセンチュウ(Pratylllenchus sp.)、ヒメコガネ(Anoma la rufocuprea)、マメコガネ(Popillia japonica)、タバコシバンムシ(Lasioderma serri corne)、ヒラタキクイムシ(Lyctusbrunneus)、ニジュウヤホシテントウ(Epilachna vigin tiotopunctata)、アズキゾウムシ(Callosobruchus chinensis)、ヤサイゾウムシ(Listrod eres costirostris)、コクゾウムシ(Sitophilus zeamais)、ワタミゾウムシ(Anthonomus gradis gradis)、イネミズソウムシ(Lissorhoptrus oryzophilus)、ウリハムシ(Aulacoph ora femoralis)、イネドロオイムシ(Oulema oryzae)、キスジノミハムシ(Phyllotreta st riolata)、マツノキクイムシ(Tomicus piniperda)、コロラドポテトビートル(Leptinotar sa decemlineata)、メキシカンビートビートル(Epilachna varivestis)、コーンルートワ ーム類(Diabrotica sp.)などの甲虫目害虫、ウリミバエ(Dacus(Bactrocera) dorsalis)、 イネハモグリバエ(Agromyza oryzae)、タマネギバエ(Delia antiqua)、タネバエ(Delia p latura)、ダイズサヤタマバエ(Asphondylia sp.)、イエバエ(Musca domestica)、アカイ エカ(Culex pipiens pipiens)などの双翅目害虫、ミナミネグサレセンチュウ(Pratylench us coffeae)、ジャガイモシストセンチュウ(Globodera rostochiensis)、ネコブセンチュ ウ(Meloidogyne sp.)、ミカンネセンチュウ(Tylemchulus semipenetrans)、ニセネグサレ センチュウ(Aphelenchus avenae)、ハガレセンチュウ(Aphelenchoides ritzemabosi)など のハリセンチュウ目害虫、チャノキイロアザミウマ(Scirtothrips dorsalis)、キイロハ ナアザミウマ(Thrips flavus)、ネギアザミウマ(Thrips tabaci)などのアザミウマ目害虫 、チャバネゴキブリ(Blattella germanica)、ワモンゴキブリ(Periplaneta americana)な どの直翅目害虫などに対して殺虫効果を有するものである。

[0054]

本発明の一般式(1)で表される化合物を有効成分とする農園芸用殺虫剤は、水田作物、畑作物、果樹、野菜、その他の作物及び花卉などに被害を与える前記害虫に対して顕著な防除効果を有するものであるので、害虫の発生が予測される時期に合わせて、害虫の発生前または発生が確認された時点で、水田、畑、果樹、野菜、その他の作物、花卉などの水田水、茎葉または土壌に処理することにより本発明の農園芸用殺虫剤としての効果が得られるものである。

[0055]

本発明の農園芸用殺虫剤は、農薬製剤上の常法に従い、使用上都合の良い形状に製剤して使用するのが一般的である。すなわち、一般式(1)で表される化合物はこれらを適当な不活性担体に、または必要に応じて補助剤と一緒に適当な割合に配合して溶解、分離、懸濁、混合、含浸、吸着もしくは付着させ、適宜の剤形、例えば、懸濁剤、乳剤、液剤、水和剤、粒剤、粉剤、錠剤などに製剤して使用すればよい。本発明で使用できる不活性担体としては固体または液体のいずれであっても良く、固体の担体になりうる材料としては、例えば、ダイズ粉、穀物粉、木粉、樹皮粉、鋸粉、タバコ茎粉、クルミ殻粉、ふすま、繊維素粉末、植物エキス抽出後の残渣、粉砕合成樹脂などの合成重合体、粘土類(例えば

カオリン、ベントナイト、酸性白土など)、タルク類(例えばタルク、ピロフィライドなど)、シリカ類(例えば珪藻土、珪砂、雲母、ホワイトカーボン〔含水微粉珪素、含水珪酸ともいわれる合成高分散珪酸で、製品により珪酸カルシウムを主成分として含むものもある。〕)、活性炭、イオウ粉末、軽石、焼成珪藻土、レンガ粉砕物、フライアッシュ、砂、炭酸カルシウム、リン酸カルシウムなどの無機鉱物性粉末、硫安、燐安、硝安、尿素、塩安などの化学肥料、堆肥などを挙げることができ、これらは単独でもしくは二種以上の混合物の形で使用される。

[0056]

液体の担体になりうる材料としては、それ自体溶媒能を有するものの他、溶媒能を有さずとも補助剤の助けにより有効成分化合物を分散させうることとなるものから選択され、例えば代表例として次に上げる担体を例示できるが、これらは単独でもしくは2種以上の混合物の形で使用される。そのようなものとして、例えば水、アルコール類(例えば、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコールなど)、ケトン類(例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロへキサノンなど)、エーテル類(例えばジエチルエーテル、ジオキサン、セロソルブ、ジイソプロピルエーテル、テトラヒドロフランなど)、脂肪族炭化水素類(例えばケロシン、鉱油など)、芳香族炭化水素類(例えばベンゼン、トルエン、キシレン、ソルベントナフサ、アルキルナフタレンなど)、ハロゲン化炭化水素類(例えばジクロロメタン、クロロホルム、四塩化炭素、クロロベンゼンなど)、エステル類(例えばずりロロメタン、クロロホルム、四塩化炭素、クロロベンゼンなど)、エステル類(例えばずチル、フタル酸ジオクチルなど)、アミド類(例えばジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミドなど)、ニトリル類(例えばアセトニトリルなど)を挙げることができる。

[0057]

他の補助剤としては、次に例示する代表的な補助剤を挙げることができ、これらの補助剤は目的に応じて使用され、単独で、ある場合は2種以上の補助剤を併用し、またある場合には全く補助剤を使用しないことも可能である。有効成分化合物の乳化、分散、可溶化および/または湿潤の目的のために界面活性剤が使用され、例えば、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンと高級脂肪酸エステル、ポリオキシエチレンと樹脂酸エステル、ポリオキシエチレンリルビタンモノラウレート、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノカレエート、アルキルアリールスルホン酸塩、ナフタレンスルホン酸塩、リグニンスルホン酸塩、高級アルコール硫酸・オルなどの界面活性剤を示すことができる。また、有効成分化合物の分散安定化、粘着よび/または結合の目的のために、次に例示する補助剤を使用することができ、例えば、カゼイン、ゼラチン、澱粉、メチルセルロース、カルボキシメチルセルロース、アラビアゴム、ポリビニルアルコール、松根油、糠油、ベントナイト、リグニンスルホン酸塩などの補助剤を使用することができる。

[0058]

固体製品の流動性改良のために次に挙げる補助剤を使用することもでき、例えばワックス、ステアリン酸塩、燐酸アルキルエステルなどの補助剤を使用することができる。懸濁性製品の解こう剤として、例えばナフタレンスルホン酸縮合物、縮合燐酸塩などの補助剤を使用することもできる。消泡剤としては、例えばシリコーン油などの補助剤を使用することもできる。

[0059]

さらに本発明の一般式(1)で表される化合物は2種以上の配合使用によって、より優れた殺虫活性を発現させることも可能であり、他の生理活性物質、例えばアレスリン、テトラメトリン、レスメトリン、フェノトリン、フラメトリン、ペルメトリン、シペルメトリン、デルタメトリン、シハロトリン、シフルトリン、フェンプロパトリン、トラロメトリン、シクロプロトリン、フルシトリネート、フルバリネート、アクリナトリン、テフルトリン、ビフェントリン、エンペントリン、ベータサイフルスリン、ゼータサイパーメス

リン等の合成ピレスロイド系殺虫剤およびこれらの各種異性体あるいは除虫菊エキス;D DVP、シアノホス、フェンチオン、フェニトロチオン、テトラクロルビンホス、ジメチ ルビンホス、プロパホス、メチルパラチオン、テメホス、ホキシム、アセフェート、イソ フェンホス、サリチオン、DEP、EPN、エチオン、メカルバム、ピリダフェンチオン 、ダイアジノン、ピリミホスメチル、エトリムホス、イソキサチオン、キナルホス、クロ ルピリホスメチル、クロルピリホス、ホサロン、ホスメット、メチダチオン、オキシデブ ロホス、バミドチオン、マラチオン、フェントレート、ジメトエート、ホルモチオン、チ オメトン、エチルチオメトン、ホレート、テルブホス、プロフェノホス、プロチオホス、 スルプロホス、ピラクロホス、モノクロトホス、ナレド、ホスチアゼート、等の有機リン 系殺虫剤、NAC、MTMC、MIPC、BPMC、XMC、PHC、MPMC、エチオ フェンカルブ、ベンダイオカルブ、ピリミカーブ、カルボスルファン、ベンフラカルブ、 メソミル、オキサミル、アルジカルブ等のカーバメート系殺虫剤、エトフェンプロックス 、ハルフェンプロックス等のアリールプロピルエーテル系殺虫剤、シラフルオフェン等の シリルエーテル系化合物、硫酸ニコチン、ポリナクチン複合体、アベルメクチン、ミルベ メクチン、BT剤等の殺虫性天然物、カルタップ、チオシクラム、ベンズルタップ、ジフ ルベンズロン、クロルフルアズロン、テフルベンズロン、トリフルムロン、フルフェノク スロン、フルシクロクスロン、ヘキサフルムロン、フルアズロン、イミダクロプリド、ニ テンピラム、アセタミド、ジノテフラン、ピメトロジン、フィプロニル、ブプロフェジン 、フェニキシカルブ、ピリプロキシフェン、メトプレン、ハイドロプレン、キノプレン、 エンドスルファン、ジアフェンチウロン、トリアズロン、テブフェノジド、ベンゾエピン 等の殺虫剤、ジコホル、クロルベンジレート、フェニソブロモレート、テトラジホン、C PCBS、BPPS、キノメチオネート、アミトラズ、ベンゾメート、ヘキシチアゾック ス、酸化フェンブタスズ、シヘキサチン、ジエノクロル、クロフェンテジン、ピリダベン 、フェンピロキシメート、フェナザキン、テブフェンピラド、ピリミジナミン等の殺ダニ 剤、その他殺菌剤、肥料、土壌改良材、植物成長調整剤等の植物保護剤や資材等と混合す ることによりさらに効力の優れた多目的組成物を作ることもでき、また相乗効果も期待で きる。

[0060]

なお、本発明の一般式(1)で表される化合物は光、熱、酸化等に安定であるが、必要に応じ酸化防止剤あるいは紫外線吸収剤、例えばBHT(2,6ージーtーブチルー4ーメチルフェノール)、BHA(ブチルヒドロキシアニソール)のようなフェノール誘導体、ビスフェノール誘導体、またフェニルー α ーナフチルアミン、フェニルー β ーナフチルアミン、フェネチジンとアセトンの縮合物等のアリールアミン類あるいはベンゾフェノン系化合物類を安定剤として適量加えることによって、より効果の安定した組成物を得ることができる。

[0061]

本発明の一般式(1)で表される化合物の有効成分量は、通常粉剤では $0.5\sim20$ 重量%、乳剤では $5\sim50$ 重量%、水和剤では $10\sim90$ 重量%、粒剤では $0.1\sim20$ 重量%およびフロアブル製剤では $10\sim90$ 重量%である。一方それぞれの剤型における担体の量は、通常粉剤では $60\sim99$ 重量%、乳剤では $40\sim95$ 重量%、水和剤では $10\sim90$ 重量%、粒剤では $10\sim90$ 重量%、粒剤では $10\sim90$ 重量%である。また、補助剤の量は、通常粉剤では $10\sim20$ 重量%、乳剤では $1\sim20$ 重量%、水和剤では $1\sim20$ 重量%、水和剤では $1\sim20$ 重量%である。

[0062]

各種害虫を防除するためにそのまま、または水などで適宜希釈し、もしくは懸濁させた形で病害防除に有効な量を当該害虫の発生が予測される作物もしくは発生が好ましくない場所に適用して使用すればよい。その使用量は種々の因子、例えば目的、対象害虫、作物の生育状況、害虫の発生傾向、天候、環境条件、剤型、施用方法、施用場所、施用時期などにより変動するが、一般に有効成分0.0001~5000ppm、好ましくは0.0

[0063]

次の実施例により本発明の代表的な実施例を説明するが、本発明はこれらに限定される ものではない。

【実施例1】

[0064]

(1-1)

N-(2,6-i) ジェール $4-\alpha$ プタフルオロイソプロピル)フェニル 3-i トロベンズアミドの製造

2,6ージメチルー4ーへプタフルオロイソプロピルアニリン20.0g、ピリジン11.0gをテトラヒドロフラン100mlに加えて室温で撹拌した溶液に、テトラヒドロフラン20mlに溶解した3ーニトロベンゾイルクロリド13.0gをゆっくりと滴下装入した。室温で、10時間撹拌した後、酢酸エチルと水を反応溶液に加えた。分液操作を行ってから、有機層を分取して、無水硫酸マグネシウムで乾燥した。この溶液を濾過して、その濾液を集め、溶媒を減圧下で留去して得られた残渣を、ヘキサンージイソプロピルエーテル混合溶媒で洗浄することにより、目的物26.0g(収率85%)を白色固体として得た。

 $^{1}\text{H-NMR}(\text{CDC1}_{3},\text{ppm})$ & 2.33(6H, s), 7.37(2H, s), 7.68(1H, s), 7.72(1H, t, J = 8.1H z), 8.28(1H, d, J = 8.1Hz), 8.44(1H, dd, J = 1.2 , 8.1Hz), 8.75(1H, t, J = 1.2Hz)

(1-2)

N-(2,6-ジメチル-4-ヘプタフルオロイソプロピル)フェニル 3-ニトロベンズアミド 0.90g、塩化第一スズ無水物 1.56gをエタノール 25mlに加えて室温で撹拌した溶液に、濃塩酸 2mlを加えて、60℃で1時間加熱撹拌した。室温に戻した後、反応溶液を水に注ぎ、炭酸カリウムを用いて中和操作を行った。酢酸エチルを加えて、不溶物を濾去した後、有機層を分取して無水硫酸マグネシウムで乾燥した。この溶液を濾過して、その濾液を集め、溶媒を減圧下で留去して得られた残渣を、ヘキサンで洗浄することにより、目的物 0.44g(収率 53%)を白色固体として得た。

 1 H-NMR(CDC1₃,ppm) δ 2.34(6H, s), 3.87(2H, broad), 6.86-6.89(1H, m), 7.20-7.35(6 H, m)

(1-3)

N-(2,6-i) N-(4-i) N-(2,6-i) N-(4-i) N-(2,6-i) N-(4-i) N-(4-i

N-(2,6-ジメチルー4-ヘプタフルオロイソプロピル)フェニル 3-アミノベンズアミド0.25g、ピリジン0.06gをテトラヒドロフラン5mlに加えて室温で撹拌した溶液に、テトラヒドロフラン1mlに溶解したベンゾイルクロリド0.09gを滴下装入した。室温で1時間撹拌した後、酢酸エチルと1N塩酸を加えて、有機層を分取した。有機層を飽和重曹水で1回洗浄した後、無水硫酸マグネシウムで乾燥した。この溶液を濾過して、その濾液を集め、溶媒を減圧下で留去して析出した固体をジイソプロピルエーテルで洗浄することにより、目的物0.29g(収率92%)を白色固体として得た

 1 H-NMR(DMSO-d₆,ppm) δ 2.37 (6H, s), 7.34 (2H, s), 7.46-7.57 (4H, m), 7.75 (1H, d, J=7.8Hz), 7.98-8.01 (2H, m), 8.12 (1H, d, J=7.3Hz), 8.34 (1H, s), 8.87 (1H, s), 9.66 (1H, s).

【実施例2】

[0065]

(2-1)

N-(2,6-i) ジェールN-i タフルオロイソプロピル) フェニルN-i 3 ーニトロベンズアミドの製造

60%水素化ナトリウム0.18gをテトラヒドロフラン15m1に懸濁させた溶液に、テトラヒドロフラン5m1に溶解したN-(2,6-i)メチル-4-iペプタフルオロイソプロピル)フェニル 3-ニトロベンズアミド(実施例1-iに記載)2.0gを室温で滴下装入した。30分間、室温で撹拌した後、テトラヒドロフラン5m1に溶解したヨウ化メチル0.65gを滴下装入した。次いで、50℃に昇温して、4時間撹拌をした後、室温に戻して、酢酸エチルと水を反応溶液に加えた。有機層を分取して、水で1回洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧下で留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=6:1)で精製することにより、目的物1.73g(収率84%)を白色固体として得た。

 1 H-NMR(CDC1₃,ppm) δ 2.31(6H, s), 3.38(3H, s), 7.27(2H, s), 7.37(1H, t, J = 7.8H z), 7.62-7.65(1H, m), 8.05(1H, t, J = 2.0Hz), 8.11-8.14(1H, m). (2-2)

N-(2,6-i) ジェール-4-n プタフルオロイソプロピル) フェニル-N-y チル 3 - アミノベンズアミドの製造

N- (2, 6-ジメチル-4-ヘプタフルオロイソプロピル)フェニル-N-メチル 3-ニトロベンズアミド1.50g、10%パラジウム-カーボン0.15gをメタノール 20 m 1 に加えた溶液を、常圧下、水素雰囲気で 2 時間撹拌した。触媒を濾去した後、溶媒を減圧下で留去した。次いで、析出した固体をヘキサンで洗浄することにより、目的物 1.24g(収率 88%)を白色固体として得た。

 $^{1}\text{H-NMR}(\text{CDCl}_{3},\text{ppm})$ & 2.27(6H, s), 3.31(3H, s), 3.80 (2H, broad), 6.40-6.43(1H, m), 6.54-6.58(1H, m), 6.71(1H, t, J = 2.0Hz), 6.76-6.86(1H, m), 7.22(2H, s). (2 - 3)

N-(2,6-ジメチル-4-ヘプタフルオロイソプロピル)フェニルーN-メチル 3-(ベンゾイルアミノ)ベンズアミド(化合物 No.89)の製造

実施例 1-3 に記載したものと同様の条件に従うことにより、製造した。白色固体。収率 9.9%。

 $^{1}\text{H-NMR}(\text{DMSO-d}_{6},\text{ppm})$ & 2.29(6H, s), 3.24(3H, s), 6.84(1H, d, J = 7.8Hz), 7.12(1H, t, J = 7.8Hz), 7.33(2H, s), 7.50–7.64(4H, m), 7.85–7.88(2H, m), 7.98–8.03(1H, m), 10.22(1H, s).

【実施例3】

[0066]

N-(2,6-ジメチルー4-ヘプタフルオロイソプロピル)フェニル 3-[(2-クロロピリジン-3-イル)カルボニルアミノ]ベンズアミド(化合物No.59)の製造実施例1-2で製造したN-(2,6-ジメチルー4-ヘプタフルオロイソプロピル)フェニル 3-アミノベンズアミド0.6g、ピリジン0.4gをテトラヒドロフラン10mlに加えた溶液に、2-クロロニコチン酸クロリド塩酸塩0.35gを加えて、室温で4時間撹拌した。酢酸エチルを加えた後、飽和重曹水で2回洗浄し、溶媒を減圧下で留去した。析出した固体をヘキサンージイソプロピルエーテルの混合溶媒で洗浄して乾燥させることにより、目的物0.64g(収率75%)を白色固体として得た。 1H-NMR(DMSO-de,ppm) δ 2.30(6H,s),7.45(2H,s),7.54-7.60(2H,m),7.77-7.80(1H,m),7.95(1H,d,J=7.8Hz),8.10-8.12(1H,m),8.30(1H,s),8.54-8.59(1H

【実施例4】

[0067]

, m), 10.03 (1H, s), 10.88 (1H, s).

N-(2,6-ジメチル-4-ヘプタフルオロイソプロピル)フェニル 3-[(ピリジン-3-イル)カルボニルアミノ]ベンズアミド(化合物 No.57)の製造

ニコチン酸 $9.9 \, \mathrm{mg}$ 、1, 1' -オキサリルジイミダゾール $1.5.3 \, \mathrm{mg}$ をアセトニトリル $1.0 \, \mathrm{ml}$ に加えた溶液を室温で $1.5.5 \, \mathrm{mg}$ 、 $4.0 \, \mathrm{Co}$ で $4.0 \, \mathrm{D}$ 間撹拌した。室温に戻した後

、実施例 1-2 で製造したN-(2, 6-ジメチル-4-ヘプタフルオロイソプロピル)フェニル 3-アミノベンズアミド 300 mg を加え、60 $\mathbb C$ で 5 時間撹拌した。次いで、溶媒を減圧下で留去して得られる残渣に酢酸エチルを加えてから、有機層を飽和重曹水で 2 回洗浄し、再び溶媒を減圧下で留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:3)で精製することにより、目的物 70 mg(収率 18%)を白色固体として得た。

 1 H-NMR (DMSO-d₆, ppm) δ 2.30 (6H, s), 7.45 (2H, s), 7.54-7.61 (2H, m), 7.78 (1H, d, J = 8.3Hz), 8.06 (1H, d, J = 7.3Hz), 8.32-8.35 (2H, m), 8.77-8.79 (1H, m), 9. 15 (1H, d, J = 1.5Hz), 10.00 (1H, s), 10.66 (1H, s).

【実施例5】

[0068]

(5-1)

N-メチル-2-プロモー4-ヘプタフルオロイソプロピルー6-メチルアニリンの製造 N-メチルー4-ヘプタフルオロイソプロピルー2-メチルアニリン1.0 gをN, N-ジメチルホルムアミド5 m 1 に加えた溶液に、N, N-ジメチルホルムアミド3 m 1 に溶解したN-プロモコハク酸イミド0.8 gを滴下装入した。室温で5 時間撹拌した後、酢酸エチルと水を加えて有機層を分取した。有機層を水で2 回洗浄した後、無水硫酸マグネシウムで乾燥し、溶媒を減圧下で留去して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=9:1)で精製することにより、目的物0.86 g(収率68%)を赤色油状物として得た。

 1 H-NMR(CDC1₃,ppm) δ 2.41 (3H, s), 2.93 (3H, s), 3.90 (1H, broad), 7.23 (1H, s), 7.54 (1H, s).

(5-2)

N-(2-) ロモー 4- ペプタフルオロイソプロピルー 6- メチル)フェニルーN- メチル 3-(ベンゾイルアミノ)ベンズアミド(化合物 No.88)の製造

実施例 5-1 で製造したN-メチル-2- ブロモー 4- ヘプタフルオロイソプロピルー 6- メチルアニリンから、実施例 1-2 及び 1-3 に記載したものと同様の条件に従うことにより、製造した。白色固体。

 $^{1}\text{H-NMR}(\text{DMSO-d6,ppm}) \quad \delta \quad 2.41(3\text{H, s}), \quad 3.25(3\text{H, s}), \quad 6.95(1\text{H, dd}, \quad J=1.5,7.8\text{Hz}), \quad 7.16(1\text{H, t}, \quad J=7.8\text{Hz}), \quad 7.50-7.64(4\text{H, m}), \quad 7.68(1\text{H, s}), \quad 7.86-7.88(2\text{H, m}), \quad 7.93(1\text{H, t}, \quad J=1.5\text{Hz}), \quad 7.98-8.00(1\text{H, m}), \quad 10.24(1\text{H, s}).$

【実施例6】

[0069]

N-(2,6-i) ジェテルー 4-i プラフルオロイソプロピル)フェニルーN-i チル 3 -(N-i) グラングイルアミノ)ベンズアミド(化合物 No.87)の製造

60%水素化ナトリウム40mgをテトラヒドロフラン10m1に懸濁させた溶液に、テトラヒドロフラン5m1に溶解したN-(2,6-i)メチル-4-nプタフルオロイソプロピル)フェニル-N-メチル 3-(i) (ベンゾイルアミノ) ベンズアミド (実施例2-3に記載)0.3 gを室温で滴下装入した。1時間、室温で撹拌した後、テトラヒドロフラン5m1に溶解したヨウ化メチル0.16 gを滴下装入した。次いで、50 $^{\circ}$ に昇温して、4時間撹拌をした後、室温に戻して、酢酸エチルと水を反応溶液に加えた。有機層を分取して、水で1回洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧下で留去した。得られた残渣をジイソプロピルエーテルで洗浄することにより、目的物1.73 g(収率84%)を白色固体として得た。

 1 H-NMR (DMSO-d₆,ppm) δ 2.20 (6H, s), 3.08 (3H, s), 3.20 (3H, s), 6.93-7.39 (10 H, m), 7.45-7.51 (1H, m).

【実施例7】

[0070]

(7-1)

N-(2, 6-i)メチルー4-i0プタフルオロイソプロピル)フェニル 3-i7ミノベン

ズチオアミドの製造

実施例 1-2 で製造したN-(2,6-i)メチルー4-(2) マール 3-i アミノベンズアミド 0.35 g とローソン試薬 0.19 g をトルエン 10 m 1 に加えて、還流温度で 6 時間加熱撹拌した。反応溶液を減圧下で濃縮し、溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル= 3:1)で精製することにより、目的物 0.07 g (収率 20%)を得た。

 $^1\text{H-NMR}$ (CDC13,ppm) δ 2.36 (6H, s), 3.87 (2H, broad-s), 6.84-6.87 (1H, m), 7.18-7 .24 (2H, m), 7.33 (1H, s), 7.39 (2H, s), 8.56 (1H, broad-s).

(7-2)

N-(2,6-ジメチル-4-ヘプタフルオロイソプロピル)フェニル 3-(ベンゾイルアミノ)ベンズチオアミド(化合物 No.84)の製造

N-(2,6-i) ジェテルー4ーヘプタフルオロイソプロピル)フェニル 3ーアミノベンズチオアミドから実施例1-3 に記載したものと同様の条件に従うことにより、標記目的化合物を製造した。

¹H-NMR (CDC1₃,ppm) δ 2.38 (6H, s), 7.25-8.00 (11H, m), 8.34 (1H, s), 8.85 (1H, b road.).

【実施例8】

[0071]

N-(2,6-i)メチルー4-iペプタフルオロイソプロピル)フェニル 3-(7-i) チオカルボニルアミノ)ベンズアミド(化合物No.85)及びN-(2,6-i)メチルー4-iペプタフルオロイソプロピル)フェニル 3-(7-i) ボンズチオアミド(化合物No.86)の製造

化合物 No. 85

¹H-NMR (CDC1₃, ppm) δ 2.36 (6H, s), 7.37 (2H, s), 7.47-7.61(5H, m), 7.85-8.03 (4H, m), 8.57 (1H, s), 9.18 (1H, s).

化合物 No. 86

¹H-NMR (CDCl₃, ppm) δ2.38 (6H, s), 7.41 (2H, s), 7.45-7.55 (4H, m), 7.90-7.9 6 (4H, m), 8.57 (1H, broad), 8.74 (1H, broad), 9.18(1H, broad).

【実施例9】

[0072]

(9-1)

N-ベンジル-N-(2,6-ジメチル-4-ヘプタフルオロイソプロピル)フェニル <math>3-ニトロベンズアミドの製造

実施例 1-1 で製造したN-(2,6-i)メチルー 4-i0プタフルオロイソプロピル)フェニル 3-i1トロベンズアミドと臭化ベンジルを用いて、実施例 6 に記載の方法に従うことにより、製造した。

(9-2)

N-ベンジル-N-(2,6-ジメチル-4-ヘプタフルオロイソプロピル)フェニル 3-(ベンゾイルアミノ)ベンズアミドの製造

N-ベンジル-N-(2,6-ジメチル-4-ヘプタフルオロイソプロピル)フェニル 3-ニトロベンズアミドを用いて、実施例<math>1-2及び1-3に記載の方法に従うことに

より、製造した。

(9-3)

N-ベンジル-N-(2,6-ジメチル-4-ヘプタフルオロイソプロピル)フェニル 3-(N-エチルベンゾイルアミノ)ベンズアミドの製造

N-ベンジル-N-(2,6-ジメチル-4-ヘプタフルオロイソプロピル)フェニル 3-ニトロベンズアミドとヨウ化エチルを用いて、実施例 6 に記載の方法に従うことにより、製造した。

(9-4)

N-(2,6-i) ジェールN-4-i クラフルオロイソプロピル)フェニル 3-(N-i) ルベンゾイルアミノ)ベンズアミド(化合物 No.92)の製造

 1 H-NMR (CDC1₃, ppm) δ 1.25 (3H, t, J =7.3Hz), 2.25 (6H, s), 4.02 (2H, q, J =7.3Hz), 7.16-7.40

(10H, m), 7.56 (1H, s), 7.69 (1H, d, J = 7.8Hz).

【実施例10】

[0073]

(10-1)

N-(2,6-i) N-

実施例 1-1 に記載の方法に従うことにより製造したN-(2,6-i)メチルー4ーへプタフルオロイソプロピル)フェニル 2-0ロロー3-iトロベンズアミド 2.35 g、フッ化カリウム(スプレードライ品)0.87 gをモレキュラーシーブスで乾燥したN-i N-i メチルホルムアミド 2.5 m 1 に加えて、1.50 i で i 3 時間加熱撹拌した。室温に戻した後、酢酸エチルと水を反応溶液に加えて、分液操作を行ってから、有機層を分取し、水で i 2 回洗浄してから無水硫酸マグネシウムで乾燥した。この溶液を濾過して、その濾液を集め、溶媒を減圧下で留去して得られた残渣を、シリカゲルカラムクロマトグラフィー(展開溶媒;ヘキサン:酢酸エチル=i 4:1)で精製することにより、目的物 i 2.0 g(収率 i 4.5%)を固体として得た。

¹H-NMR (CDC1₃, ppm) δ 2.37 (6H, s), 7.39 (2H, s), 7.48-7.53 (1H, m), 7.87 (1H, d, J = 11.5Hz), 8.23-8.28 (1H, m), 8.42-8.46 (1H, m). (10-2)

N-(2,6-i) チルー4-(2) タフルオロイソプロピル)フェニル 3-(i) ルアミノ)-2-(i) フェニル 3-(i) の製造

実施例 1-2及び 1-3 に記載の方法に従うことにより、標記目的物を製造した。 1 H-NMR (DMSO-d₆,ppm) δ 2.34(6H, s), 7.37(1H, t, J = 7.8Hz), 7.45(2H, s), 7.53-7.65(4H, m), 7.77-7.82(1H, m), 8.00-8.02(2H, m), 10.10(1H, s), 10.29(1H, s).

[0074]

次に、本発明の一般式(1)で表される化合物が優れた殺虫活性を有することを明確に するために、以下の試験例を示し、具体的に説明する。

[0075]

前記第1表から第3表に示した化合物の中から、以下の代表的な化合物について、殺虫 効果確認試験に供試した。試験した化合物についてその試験結果を以下に示す。

[0076]

[試験例1]

試験化合物を所定濃度に希釈した薬液にキャベツ (四季穫) 葉片を30秒間浸漬し風乾後、7cmのポリエチレンカップに入れハスモンヨトウ2齢幼虫を放虫した。25℃恒温室にて放置し、3日後に生死虫数を調査した。1区5匹2連制で行った。

その結果、100ppmにおいて、化合物番号1~27、30、32、34~38、40、47、51~57、59、60、63、65~67、69~74、77~79、84~92が70%以上の死虫率を示した。

[0077]

[試験例2]

コナガ (Plutella xylostella) に対する殺虫試験

試験化合物を所定濃度に希釈した薬液にキャベツ (四季穫) 葉片を30秒間浸漬し風乾後、7cmのポリエチレンカップに入れコナガ2齢幼虫を放虫した。25℃恒温室にて放置し、3日後に生死虫数を調査した。1区5匹2連制で行った。

- Cの結果、100ppmにおいて、化合物番号1~11、13~27、30、32、39、48、51~57、59、63、66、67、69~74、77、80、84~90、92が70%以上の死虫率を示した。

[0078]

「比較例1]

 $N-(4-\alpha)$ タフルオロイソプロピルー 2-メチル)フェニル 3-(3-ヨードベンゾイルアミノ)ベンズアミドを用いた殺虫試験

対象薬剤として標記化合物を試験例1及び2に供試したが、同条件下での殺虫活性は確認できなかった。

【書類名】要約書

【要約】

【課題】 高い効果を有する農園芸用有害生物防除剤を提供する。

【解決手段】一般式(1)

{式中、Z1、Z2は互いに独立して、酸素原子または硫黄原子を示し、R1、R2、R3、R4は互いに独立して、水素原子、C1~C3アルキル基、トリフルオロメチル基、ヒドロキシ基、アミノ基、ハロゲン原子を示し、R5、R6は互いに独立して水素原子、C1~C3アルキル基を示し、Yは水素原子、C1~C3アルキル基、ハロゲン原子を示し、R50、R61 以上のR50、R50、R61 以上の置換基を有する置換フェニル基、同一または異なっていても良く、1以上の置換基を有する置換複素環基であることを示す。R50 で表される化合物およびこれを有効成分として含有する農園芸用殺虫剤。

【選択図】 なし

出願人履歴情報

識別番号

[000005887]

1. 変更年月日 [変更理由]

2003年11月 4日 住所変更

住 所 氏 名 東京都港区東新橋一丁目5番2号

三井化学株式会社