Global Addresses

- Properties
 - globally unique
 - hierarchical: network + host
 - 4 Billion IP address, half are A type, ¼ are B type, and 1/8 are C type
- Format

- Dot notation
 - **1**0.3.2.4
 - **128.96.33.81**
 - **1**92.12.69.77

M<

Global Addresses

						<u>e</u>
Class	1 st Octet Decimal Range	1 st Octet High Order Bits	Network/ Host ID (N=Netwo rk, H=Host)	Default Subnet Mask	Number of Networks	Hosts per Network (Usable Addresses)**
Α	1 – 126*	0	N.H.H.H	255.0.0.0	126 (2 ⁷ – 2)	16,777,214 (2 ²⁴ – 2)
В	128 – 191	10	N.N.H.H	255.255.0.0	16,382 (2 ¹⁴ – 2)	65,534 (2 ¹⁶ – 2)
С	192 – 223	110	N.N.N.H	255.255.255.0	2,097,150 (2 ²¹ – 2)	254 (2 ⁸ – 2)
D	224 – 239	1110	Reserved for Multicasting			
Е	240 – 254	1111	Experimental; used for research			

Note: *Class A addresses 127.0.0.0 to 127.255.255.255 cannot be used and are reserved for loopback and diagnostic functions.

network

/

^{**} host 255 is for broadcast, host 0 is not a valid host - identifies the

IP Datagram Forwarding

Chapter 3

- Strategy
 - every datagram contains destination's address
 - if directly connected to destination network, then forward to host
 - if not directly connected to destination network, then forward to some router
 - forwarding table maps network number into next hop
 - each host has a default router
 - each router maintains a forwarding table
- Example (router R2)

NetworkNum	NextHop	
1	R1	
2	Interface 1	
3	Interface 0	
4	R3	

3

IP Datagram Forwarding

Algorithm

if (NetworkNum of destination = NetworkNum of one of my
interfaces) then

deliver packet to destination over that interface

else

 $\begin{tabular}{ll} \textbf{if} & (\texttt{NetworkNum of destination is in my forwarding table}) \\ \textbf{then} \\ \end{tabular}$

deliver packet to NextHop router

else

deliver packet to default router

For a host with only one interface and only a default router in its forwarding table, this simplifies to

if (NetworkNum of destination = my NetworkNum)then
deliver packet to destination directly

else

deliver packet to default router

M<

- Take one IP network number and break it up into subnets
- Adds another level to address/routing hierarchy: subnet
- Subnet masks define variable partition of host part of class A and B addresses
- Subnets visible only within site of base IP network
- Allows for smaller number of hosts to be handled more efficiently
 - If a network is to connect 300 hosts
 - Need 2 class C networks requires 2 Network addresses in tables
 - 1 class B network requires one network address, but wastes over 65,000 hosts

5

Subnetting

- For class B networks, its mask is 255.255.0.0
- For a Subnet of a Class B network, use 255.255.XXX.0
- Have three levels now
 - Network Id (first 16 bits)
 - Subnet ID (next 8 bits)
 - Host ID (last 8 bits)
- Subnet mask does not align on 8 bit boundaries
- Using multiple subnets on a single network forces hosts to use routers

M<

- Assign a Class B network to a group that creates a subnet 192.11.0.0 to 192.11.255.255
- Router advertises network address192.11.0.0/16 (/16 indicates first 16 bits as the network address)
 - Subnet mask is 255.255.XXX.0
 - The third octet of mask determines how the Class B network is subnetted

Start Address	End Address	Subnet Mask	Subnet IP
192.11.128.0	192.11.255.255	255.255.128.0	192.11.128.0
192.11.64.0	192.11.127.255	255.255.64.0	192.11.64.0
192.11.16.0	192.11.31.255	255.255.16.0	192.11.16.0
192.11.48.0	192.11.63.255	255.255.48.0	192.11.48.0

Subnetting

- Private networks and Subnets
- Three network ranges have been reserved for intranets for internal use

Network address range	Default mask
10.0.0.0 - 10.255.255.255	255.0.0.0
172.16.0.0 - 172.31.255.255	255.240.0.0
192.168.0.0 - 192.168.255.255	255.255.0.0

M<

- Add another level to address/routing hierarchy: subnet
- Subnet masks define variable partition of host part of class A and B addresses
- Subnets visible only within site

Chapter 3

Forwarding Algorithm

```
D = destination IP address
for each entry < SubnetNum, SubnetMask, NextHop>
   D1 = SubnetMask & D
   if D1 = SubnetNum
      if NextHop is an interface
        deliver datagram directly to destination
   else
      deliver datagram to NextHop (a router)
```

M<

11

Subnetting

Cilabia

Notes

- Would use a default router if nothing matches
- Not necessary for all ones in subnet mask to be contiguous
- Can put multiple subnets on one physical network
- Subnets not visible from the rest of the Internet

M<

- Classless Inter-Domain Routing (CIDR)
 - A technique that addresses two scaling concerns in the Internet
 - The growth of backbone routing table as more and more network numbers need to be stored in them
 - Potential exhaustion of the 32-bit address space
 - Addresses assignment efficiency
 - Arises because of the IP address structure with class A, B, and C addresses
 - IP address structure forces us to hand out network address space in fixed-size chunks of three very different sizes
 - A network with two hosts needs a class C address
 - Address assignment efficiency = 2/255 = 0.78
 - A network with 256 hosts needs a class B address
 - Address assignment efficiency = 256/65535 = 0.39

13

Classless Addressing

- Exhaustion of IP address space centers on exhaustion of the class B network numbers
- Solution
 - Say "NO" to any Autonomous System (AS) that requests a class B address unless they can show a need for something close to 64K addresses
 - Instead give them an appropriate number of class C addresses
 - For any AS with at least 256 hosts, we can guarantee an address space utilization of at least 50%
- What is the problem with this solution?

M<

- Problem with this solution
 - Excessive storage requirement at the routers.
- If a single AS has, say 16 class C network numbers assigned to it (4080 hosts),
 - Every Internet backbone router needs 16 entries in its routing tables for that AS
 - This is true, even if the path to every one of these networks is the same
- If we had assigned a class B address to the AS
 - The same routing information can be stored in one entry
 - But Efficiency(% used) = 16 x 255 / 65, 536 = 6.2%

15

Classless Addressing

- CIDR tries to balance the desire to minimize the number of routes that a router needs to know against the need to hand out addresses efficiently.
- CIDR uses aggregate routes
 - Uses a single entry in the forwarding table to tell the router how to reach a lot of different networks
 - Breaks the rigid boundaries between address classes

M<

- Consider an AS with 16 class C network numbers.
- Instead of handing out 16 addresses at random, hand out a block of contiguous class C addresses
- Suppose we assign the class C network numbers from 192.4.16 through 192.4.31
- Observe that top 20 bits of all the addresses in this range are the same (11000000 00000100 0001)
- We have created a 20-bit network number (which is in between class B network number and class C number)

M< 17

Classless Addressing

- Requires to hand out blocks of class C addresses that share a common prefix
- The convention is to place a /X after the prefix where X is the prefix length in bits
- For example, the 20-bit prefix for all the networks 192.4.16 through 192.4.31 is represented as 192.4.16/20
- By contrast, if we wanted to represent a single class C network number, which is 24 bits long, we would write it 192.4.16/24

NOTICE ALCOHOLOGY

- How do the routing protocols handle this classless addresses?
 - It must understand that the network number may be of any length
 - Represent network number with a single pair <length, value>
 - All routers must understand CIDR addressing

M< 19

Subnetting

- Want a network router to handle 8 class C networks 192.11.64.XXX to 192.11.71.XXX
- Router advertises network address192.11.64/21 (/21 indicates first 21 bits as the network address)
 - Subnet mask is 255.255.248.0
 - The third octet of IP addresses are masked with 11111000

Third Octet	3 rd Octet Binary	Masked	Subnet IP
63	00111111	00111000	192.11. <mark>56</mark> .0
64	01000000	01000000	192.11. <mark>64</mark> .0
71	01000111	01000000	192.11. <mark>64</mark> .0
72	01001000	01001000	192.11. <mark>72</mark> .0

M<

Classless Addressing Customers 128.112.128/24 128.112.130/24 128.112.135/24

Route aggregation with CIDR

IP Forwarding Revisited

- Chapter 3
- IP forwarding mechanism assumes that it can find the network number in a packet and then look up that number in the forwarding table
- We need to change this assumption in case of CIDR
- CIDR means that prefixes may be of any length, from 2 to 32 bits

IP Forwarding Revisited

- It is also possible to have prefixes in the forwarding tables that overlap: Some addresses may match more than one prefix
- For example, we might find both 171.69 (a 16 bit prefix) and 171.69.10 (a 24 bit prefix) in the forwarding table of a single router
- A packet destined to 171.69.10.5 clearly matches both prefixes - The rule is based on the principle of "longest match" 171.69.10 in this case
- A packet destined to 171.69.20.5 would match 171.69 and not 171.69.10

M< 23

Address Translation Protocol (ARP)

- Map IP addresses into physical (MAC) addresses
 - destination host
 - next hop router
- Techniques
 - encode physical address in host part of IP address
 - table-based
- ARP (Address Resolution Protocol)
 - table of IP to physical address bindings
 - broadcast request if IP address not in table
 - target machine responds with its physical address
 - table entries are discarded if not refreshed

M<

- HardwareType: type of physical network (e.g., Ethernet)
- ProtocolType: type of higher layer protocol (e.g., IP)
- HLEN & PLEN: length of physical(MAC) and protocol(IP) addresses
- Operation: ARP request or ARP response
- Source/Target Physical(Ethernet)/Protocol(IP) addresses

Host Configurations

Chapter 3

- Ethernet addresses are configured into network by manufacturer and they are unique
- IP addresses must be unique on a given internetwork but also must reflect the structure of the internetwork
- Most host Operating Systems provide a way to manually configure the IP information for the host
- Drawbacks of manual configuration
 - A lot of work to configure all the hosts in a large network
 - Configuration process is error-prone
- Automated Configuration Process is required

Dynamic Host Configuration Protocol (DHCP)

- DHCP server is responsible for providing configuration information to hosts
- There is at least one DHCP server for an administrative domain
- DHCP server maintains a pool of available addresses
- DHCP leases an address to a host. Host must renew the lease periodically
 - Handles cases where a host becomes disconnected

Unicast to server

Other networks

DHCP

relay

M< 27

DHCP

- Newly booted or attached host sends DHCPDISCOVER message to a special IP Broadcast address (255.255.255.255)
- DHCP relay agent unicasts the message to DHCP server and waits for the response
- Sent using the User Datagram Protocol(UDP)

Internet Control Message Protocol (ICMP)

- Defines a collection of error messages that are sent back to the source host whenever a router or host is unable to process an IP datagram successfully
 - Destination host unreachable due to link /node failure
 - Reassembly process failed
 - TTL had reached 0 (so datagrams don't cycle forever)
 - IP header checksum failed
- ICMP-Redirect: Router sends a source host better route information
- Debugging tools
 - ping uses ICMP to see if a host is alive and reachable
 - traceroute uses ICMP to determine the routers on the path to a destination

Virtual Networks and Tunnels

- VPN virtual Private Network
 - Use Virtual point-to-point links on a shared network
 - For IP, use a concept called tunneling
- IP Tunnel
 - Router to Router transmission of an IP Packet
 - IP packet transmitted on a tunnel encapsulates the entire IP packet from a source host to a destination host.
 - Router connected to the source host encapsulates the IP packet for the destination host in an IP packet with an address for the router of the destination host
 - Routers use a next hop entry of virtual interface 0, 1, ... in their forwarding table

M< 31

IP Tunnels

Chapter 3

- IP Tunnel Advantages
 - Provides security of transmissions
 - Routers with unique capabilities not available on networks between the connection can use these unique capabilities.
 - Can carry packets from protocols different from IP
 - Can force a packet to be delivered to a particular destination even if its original header specifies a different destination – used with mobile hosts
- IP Tunnel Disadvantages
 - Longer packets are created may cause fragmentation
 - Performance implications at the routers more work is required
 - Management cost for setting up and maintaining the tunnels

NK NOTICE ALUTHUM