3.1

- 4. The following relations are defined on N.
 - (a) Write the relation R_1 defined by $(m, n) \in R_1$ if m + n = 5 as a set of ordered pairs. $R_1 = \{(0, 5), (1, 4), (2, 3), (3, 2), (4, 1), (5, 0)\}$
 - (b) Do the same for R_2 defined by $\max\{m, n\} = 2$. $R_2 = \{(0, 2), (1, 2), (2, 2), (2, 1), (2, 0)\}$
 - (c) The relations R_3 defined by $\min\{m, n\} = 2$ consists of infinitely many ordered pairs. List five of them. $\{(2,3),(2,4),(2,5),(2,6),(2,7)\}$
- 6. Consider the relation R on \mathbb{Z} defined by $(m,n) \in R$ if and only if $m^3 n^2 \equiv 0 \mod(5)$. Which of the properties (R), (AR), (S), (AS), and (T) are satisfied by R?
 - R does not satisfy (R) because if (m, n) = (3, 3) then $3^3 3^2 = 27 9 = 18$ and $5 \nmid 18$, so 3 is not related to itself. Thus it's not reflexive.
 - R does not satisfy (AR) because if m, n = 5 then $5^3 5^2 = 125 25 = 100$ and $5 \mid 100$, so 5 is related to itself. Thus it's not antireflexive.
 - R does not satisfy (S) because if m=1, n=4 then $1^3-4^2=1-16=-15$ and $5\mid -15$, so 1 is related to 4. if m=4, n=1 then $4^3-1^2=64-1=63$ and $5\nmid 63$, so 4 is not related to 1. Since 1 is related to 4 and 4 is not related to 1, it's not symmetric.
 - R does not satisfy (AS) because if m = 5, n = 0 then $5^3 0^2 = 125$ and $5 \mid 125$, so 5 is related to 0. if m = 0, n = 5 then $0^3 5^2 = -25$ and $5 \mid -25$, so 0 is related to 5. Since 0 is related to 5 and 5 is related to 0, but $5 \neq 0$ it's not antisymmetric.
 - R satisfies (T).
- 7. Define the "divides" relation R on N by $(m, n) \in R$ if $m \mid n$.
 - (a) Which of the properties (R), (AR), (S), (AS), (T) does R satisfy?
 - R satisfies (R).
 - R does not satisfy (AR) because if m, n = 5 then $5 \mid 5$ thus $(5,5) \in R$.
 - R does not satisfy (S) because if m = 5, n = 10 then $5 \mid 10$, but if m = 10, n = 5 then $10 \nmid 5$ thus $(5, 10) \in R$, but $(10, 5) \notin R$.
 - R satisfies (AS).

- R satisfies (T).
- (b) Describe the converse relation R^{\leftarrow} . R^{\leftarrow} is the relation on \mathbb{N} by $(m,n) \in R^{\leftarrow}$ if $n \mid m$.
- (c) Which of the properties (R), (AR), (S), (AS), (T) does the converse satisfy?
 - R^{\leftarrow} satisfies (R).
 - R^{\leftarrow} does not satisfy (AR) because if m, n = 5 then $5 \mid 5$ thus $(5,5) \in R^{\leftarrow}$.
 - R^{\leftarrow} does not satisfy (S) because if m = 10, n = 5 then $5 \mid 10$, but if m = 5, n = 10 then $10 \nmid 5$ thus $(5, 10) \in R^{\leftarrow}$, but $(10, 5) \notin R^{\leftarrow}$.
 - R^{\leftarrow} satisfies (AS).
 - R^{\leftarrow} satisfies (T).
- 10. Give an example of the relation that is:
 - (a) antisymmetric and transitive but not reflexive. The relation R on \mathbb{Z} by $(m,n) \in R$ if and only if m < n.
 - (b) symmetric but not reflexive or transitive. The relation R on the set $\{0, 1, 2, 3\}$ by $(m, n) \in R$ if and only if max(m, n) = 3.

3.2

2. Draw a picture of the digraph G with vertex set $V(G)=\{w,x,y,z\}$, edge set $E(G)=\{a,b,c,d,e,f,g\}$, and γ given by the following table:

3. Which of the following vertex sequences describe paths in the digraph pictured in Figure (7a)?

- (a) zyvwt
 - Yes
- (b) xzwt
 - Yes
- (c) vstx
 - No
- (d) zysu
 - No
- (e) xzyvs
 - Yes
- (f) suxt
 - No
- 6. There are four basic blood types: A, B, AB, and O. Type O can donate to any of the four types. A and B can donate to AB as well as their own types. AB can only donate to AB. Draw a digraph that presents this information. Is the digraph acyclic?

- Yes the digraph is acyclic because there are no cycles.
- 8. Determine the reachability relation for the digraps in figures 6(a), (c), and (d).
 - If R is the reachable relation on V(G), then R is the universal relation for figures 6(a), (c), and (d).
- 16. For the graph in Figure 8(a), give an example of each of the following. Be sure to specify the edge sequence and the vertex sequence.
 - (a) a path of length 2 from w to z. $w \xrightarrow{d} x \xrightarrow{f} z$
 - (b) a path of length 4 from z to itself. $z \xrightarrow{e} x \xrightarrow{f} z \xrightarrow{g} x \xrightarrow{e} z$

- (c) a path of length 5 from z to itself. Impossible.
- (d) a path of length 3 from w to x. $w \xrightarrow{b} y \xrightarrow{b} w \xrightarrow{d} x$