A Few Notes on Trust Region Policy Optimization

David Meyer

 $dmm@{1-4-5.net,uoregon.edu,...}$

Last update: April 26, 2018

1 Introduction

One of the goals of this note is to prove Theorem 1 of Schulman, J. et al., "Trust Region Policy Optimization [1]. This is the proof of the *Policy Improvement Bound* described in [1], The proof begins with a lemma from Kakade & Langford [2] that shows that the difference in policy performance $\eta(\tilde{\pi}) - \eta(\pi)$ can be decomposed as a sum of per-timestep advantages.

First, define $\eta(\pi)$ as follows. Let π denote a stochastic policy $\pi: \mathcal{S} \times \mathcal{A} \to [0, 1]$, and let $\eta(\pi)$ be the expected discounted reward under π . Then define $\eta(\pi)$:

$$\eta(\pi) = \mathbb{E}_{s_0, a_0, s_1, a_1, \dots} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t) \right]$$
 where
$$s_0 \sim \rho(s_0), a_t \sim \pi(a_t \mid s_t), s_{t+1} \sim P(s_{t+1} \mid s_t, a_t)$$

Lemma 1.1 Given two policies π and $\tilde{\pi}$

$$\eta(\tilde{\pi}) = \eta(\pi) + \mathbb{E}_{\tau \sim \tilde{\pi}} \left[\sum_{t=0}^{\infty} \gamma^t A_{\pi}(s_t, a_t) \right]$$

where the expectation is taken over trajectories $\tau := (s_0, a_0, s_1, a_1, \cdots)$ and the notation $\mathbb{E}_{\tau \sim \tilde{\pi}} [\cdots]$ means that actions are sampled from $\tilde{\pi}$ to generate τ .

Proof. First, recall that the advantage $A_{\pi}(s,a)$ of an action a in state s is defined as follows:

$$A_{\pi}(s, a) = \mathbb{E}_{s' \sim P(s'|s, a)} [r(s) + \gamma V_{\pi}(s') - V_{\pi}(s)]$$

From here we can just work out the result:

$$\begin{split} \mathbb{E}_{\tau \mid \tilde{\pi}} \left[\sum_{t=0}^{\infty} \gamma^t A_{\pi}(s_t, a_t) \right] &= \mathbb{E}_{\tau \mid \tilde{\pi}} \left[\sum_{t=0}^{\infty} \left[\gamma^t (r(s_t) + \gamma V_{\pi}(s_{t+1}) - V_{\pi}(s_t)) \right] \right] \\ &= \mathbb{E}_{\tau \mid \tilde{\pi}} \left[\sum_{t=0}^{\infty} \left[\gamma^t r(s_t) + \gamma^{t+1} V_{\pi}(s_{t+1}) - \gamma^t V_{\pi}(s_t) \right] \right] \\ &= \mathbb{E}_{\tau \mid \tilde{\pi}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t) + \sum_{t=0}^{\infty} \gamma^{t+1} V_{\pi}(s_{t+1}) - \sum_{t=0}^{\infty} \gamma^t V_{\pi}(s_t) \right] \\ &= \mathbb{E}_{\tau \mid \tilde{\pi}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t) + \sum_{t=1}^{\infty} \gamma^t V_{\pi}(s_t) - \sum_{t=0}^{\infty} \gamma^t V_{\pi}(s_t) \right] \\ &= \mathbb{E}_{\tau \mid \tilde{\pi}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t) + \sum_{t=1}^{\infty} \gamma^t V_{\pi}(s_t) - \left(V_{\pi}(s_0) + \sum_{t=1}^{\infty} \gamma^t V_{\pi}(s_t) \right) \right] \\ &= \mathbb{E}_{\tau \mid \tilde{\pi}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t) + \left(\sum_{t=1}^{\infty} \gamma^t V_{\pi}(s_t) - \sum_{t=1}^{\infty} \gamma^t V_{\pi}(s_t) \right) - V_{\pi}(s_0) \right] \\ &= \mathbb{E}_{\tau \mid \tilde{\pi}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t) - V_{\pi}(s_0) \right] \\ &= -\mathbb{E}_{s_0} \left[V_{\pi}(s_0) + \mathbb{E}_{\tau \mid \tilde{\pi}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t) \right] \right] \\ &= -\eta(\pi) + \eta(\tilde{\pi}) & \text{\# Definition } \eta(\pi) \end{split}$$

1.1 A Bit of Intuition

Another way to see this result: we can see that $\gamma V_{\pi}(s_{t+1}) - V_{\pi}(s_t) = -V_{\pi}(s_0)$ by expanding the first few terms:

Table 1: Expansion of terms

t	$\gamma^t(r(s_t) + \gamma V_{\pi}(s_{t+1}) - V_{\pi}(s_t))$
0	$r(s_0) + \gamma V_{\pi}(s_1) - V_{\pi}(s_0)$
1	$\gamma r(s_1) + \gamma^2 V_{\pi}(s_2) - \gamma V_{\pi}(s_1)$
2	$\gamma^2 r(s_2) + \gamma^3 V_{\pi}(s_3) - \gamma^2 V_{\pi}(s_2)$
3	$\gamma^3 r(s_3) + \gamma^4 V_{\pi}(s_4) - \gamma^3 V_{\pi}(s_3)$
:	<u>:</u>
∞	$\sum_{t=0}^{\infty} \gamma^t r(s_t) - V_{\pi}(s_0)$

Notice that in Table 1 the red term at time t minus the blue term at time t+1 equals zero. For example, at times t=0 and t=1 we have $\gamma V_{\pi}(s_1) - \gamma V_{\pi}(s_1) = 0$. More generally, at time t we have the term $\gamma^t V_{\pi}(s_t)$ and at time t+1 we have the term $\gamma^t V_{\pi}(s_t)$ whose difference is again zero. So in the limit we are left with $\sum_{t=0}^{\infty} \gamma^t r(s_t) - V_{\pi}(s_0)$.

Armed with this result we can now define the expected advantage of $\tilde{\pi}$ over π at state s as $\bar{A}(s) = \mathbb{E}_{a \sim \tilde{\pi}(\cdot|s)} \Big[A_{\pi}(s,a) \Big]$. Now Lemma 1.1 can be written as follows:

$$\eta(\tilde{\pi}) = \eta(\pi) + \mathbb{E}_{\tau \sim \tilde{\pi}} \left[\sum_{t=0}^{\infty} \gamma^t \bar{A}_{\pi}(s_t, a_t) \right]$$

and that $L_{\pi}(\tilde{\pi})$ can be written as

$$L_{\pi}(\tilde{\pi}) = \eta(\pi) + \mathbb{E}_{\tau \sim \tilde{\pi}} \left[\sum_{t=0}^{\infty} \gamma^{t} \bar{A}_{\pi}(s_{t}, a_{t}) \right]$$

The difference between $\eta(\tilde{\pi})$ and $L_{\pi}(\tilde{\pi})$ is whether the states are sampled using π or $\tilde{\pi}$.

To bound the difference between $\eta(\tilde{\pi})$ and $L_{\pi}(\tilde{\pi})$ we need to bound the difference arising at each timestep. To do this, we first need to introduce a measure of how much π and $\tilde{\pi}$ agree. The approach taken in this paper is to *couple* the policies so that they define a joint distribution over pairs of actions.

References

- [1] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, "Trust region policy optimization," *CoRR*, vol. abs/1502.05477, 2015.
- [2] S. Kakade and J. Langford, "Approximately optimal approximate reinforcement learning," in *Proceedings of the Nineteenth International Conference on Machine Learning (ICML 2002)* (C. Sammut and A. Hoffman, eds.), (San Francisco, CA, USA), pp. 267–274, Morgan Kauffman, 2002.