

Universidad Nacional Autónoma de México Facultad de Ciencias

Cálculo II

Resumen del Curso Elías López Rivera

elias.lopezr@ciencias.unam.mx Fecha: 06/07/2025

Cálculo 2

El siguiente documento es una recopilación de los teoremas, problemas de examenes, ejemplos y solcuiones más importantes expuestos durante el curso de Cálculo II, del profesor Javier Páez Cardeas, de la facultad de ciencias de la unam

Teorema de integrabilidad de Lebesgue

Antes de poder demostrar este teorema necesitamos introducir 3 conceptos importantes que se usaran durante la prueba.

Conjuntos Nulos

Definición 1

Decimos que un conjunto $A \subset \mathbb{R}$ es nulo si dado $\epsilon > 0$, existe una coleccion contable $\{(a_k, b_k)\}_{k=1}^{\infty}$, de intervalos abiertos tales que:

$$Z \subseteq \bigcup_{k=1}^{\infty} (a_k, b_k) \ y \ \sum_{k=1}^{\infty} (b_k - a_k) \le \epsilon$$

Partiendo de lo anterior es fácil demostrar los siguientes hechos:

Teorema 1

Union de conjuntos nulos

- I. Si Z_1 , Z_2 son conjuntos nulos entonces $Z_1 \cup Z_2$ es un conjunto nulo
- II. Si Z_n es un conjunto nulo para toda $n \in \mathbb{N}$, demostrar que $\bigcup_{n=1}^{\infty} Z_n$, es un conjunto nulo

Demostración.

1 Tenemos que como Z_1 y Z_2 son nulos, entonces para $\frac{\epsilon}{2} > 0$, existen $\{J_k^1 | k \in \mathbb{N}\}$ y $\{J_k^2 | k \in \mathbb{N}\}$, tales que $\sum_{k \in \mathbb{N}} |J_k^1| < \frac{\epsilon}{2}$ y $\sum_{k \in \mathbb{N}} |J_k^2| < \frac{\epsilon}{2}$, tenemos que $\{J_k^{1,2} | k \in \mathbb{N}\} := \{J_k^1 | k \in \mathbb{N}\} \cup \{J_k^2 | k \in \mathbb{N}\}$, es un conjunto contable de intevalos, luego tenemos que $Z_1 \cup Z_2 \subset \bigcup_{k \in \mathbb{N}} J_k^{1,2}$, ademas que $\sum_{k \in \mathbb{N}} |J_k^{1,2}| \leq \sum_{k \in \mathbb{N}} |J_k^1| + \sum_{k \in \mathbb{N}} |J_k^2| \leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$

2 Dada $\epsilon > 0$ y $n \in \mathbb{N}$ existe $\{J_k^n | k \in \mathbb{N}\}$ tal que $Z_n \subset \bigcup_{k \in \mathbb{N}} J_k^n$ y $\sum_{k \in \mathbb{N}} |J_k^n| < \frac{\epsilon}{2^n}$, definimos $\{J_k^n | n, k \in \mathbb{N}\} = \bigcup_{n \in \mathbb{N}} \{J_k^n | k \in \mathbb{N}\}$, es claro que $\{J_k^n | n, k \in \mathbb{N}\}$ es un conjunto contable de intervalos abiertos, ademas tenemos que $\bigcup_{n=1}^{\infty} Z_n \subset \bigcup_{k,n \in \mathbb{N}} J_k^n$, luego finalmente tenemos que: $\sum_{k,n \in \mathbb{N}} |J_k^n| \leq \sum_{k \in \mathbb{N}} \frac{\epsilon}{2^n} = \epsilon$

Teorema 2

Ejemplos de subconjuntos nulos

I. Si $Z \subset \mathbb{R}$ es finito, entonces Z es nulo

II. $\mathbb{Q} \subset \mathbb{R}$ es nulo

III. Ø es nulo

Demostración.

1 Se sigue del hecho de que Z no tiene puntos de acumulación ,por tanto para todo $z \in \mathbb{Z}$ existe una vecindad $V_x(\epsilon)$ tal que $V_x(\epsilon) \cap Z - \{x\} = \emptyset$, tome estas vecindades como intervalos y rellene su coleccion contable con \emptyset , se dejan los detalles de la demostración al lector

2 La demostración puede encontrarse en el Bartle (página 267).

3 Se sigue directamente por vacuidad

Oscilaciones de una función

Definición 2

Sea $f: A \to \mathbb{R}$ una funcion acotada. si $S \subset A \subset \mathbb{R}$, definimos la Oscilación de f en S como:

$$W(f,S) := \sup\{|f(x) - f(y)| : x, y \in S\}$$

Si $c \in A$, la oscilación de f en c, se define como:

$$w(f,c) := \inf\{W(f; V_r(c)) : r > 0\} = \lim_{r \to 0+} W(f; V_r(c))$$

De la definición podemos deducir el siguiente teorema:

Teorema 3

 $Si\ f:A\to\mathbb{R}\ esta\ acotada\ y\ x_0\in A,\ entonces\ f\ es\ continua\ en\ x_0\ si\ y\ sólo\ si\ w(f;x_0)=0$

Demostración.

Primero demostremos que:

$$w(f, x_0) = \inf\{\sup\{|f(x) - f(y)| : x, y \in V_{\delta}(x_0) \cap A, \delta > 0\}\}\$$

Sea $\delta > 0$, definimos:

$$g(\delta) := \sup\{|f(x) - f(y)| : x, y \in V_{\delta}(x_0) \cap A\}$$

Como $0 < g(\delta) \ \forall \ \delta > 0$, sabemos que existe $\inf\{g[I]\}$, con $I := (0, \infty)$.

Sea $\epsilon > 0 \; \exists t > 0 \; \text{tal que:}$

$$g(t) < \inf\{g[I]\} + \epsilon$$

finalmente sea $x \in (0, t)$, como x < t, se tiene que g(x) < g(t) concluimos que:

$$\inf\{g[I]\} - \epsilon < g(x) < \inf\{g[I]\} + \epsilon$$

Es decir $\forall \epsilon > 0 \; \exists t > 0 \; \text{tal que:}$

Si $x \in (0, t)$, entonces: $g(x) \in V_{\epsilon}(\inf\{g[I]\})$ por tanto:

$$w(f, x_0) = \inf\{\sup\{|f(x) - f(y)| : x, y \in V_{\delta}(x_0) \cap A, \delta > 0\}\}\$$

 \Longrightarrow) Tomando en cuenta que f es continua en x_0 , la condición continua de Cauchy nos asegura la existencia de $\delta_1 > 0$ tal que, si $x, y \in V_{\delta_1}(x_0) \cap A$ se cumple que $|f(x) - f(y)| < \epsilon$, para algún $\epsilon > 0$ Luego tenemos, por la condición de supremo:

$$\sup\{|f(x)-f(y)|: x,y\in V_{\delta_1}(x_0)\cap A\}<\epsilon$$

Finalmente, aplicamos la condición de ínfimo a lo anterior:

$$w(f, x_0) < \epsilon$$

Debido a que 0 es cota inferior del conjunto g[I]:

$$0 \le w(f, x_0) < \epsilon$$

como ϵ es arbitrario, conlcuimos que:

$$w(f, x_0) = 0$$

 \iff) Ahora, suponiendo que $w(f,x_0)=0$, sabemos, por la condición de ínfimo que:

Sea $\epsilon > 0$, existe $\delta_1 > 0$ tal que:

$$\sup\{|f(x) - f(y)| : x, y \in V_{\delta_1}(x_0) \cap A\} < w(f, x_0) + \epsilon = \epsilon$$

Luego aplicando la condicion de supremo, fijamos $x=x_0$, tomamos $y \in V_{\delta_1}(x_0) \cap A$ tal que:

$$|f(x_0) - f(y)| < \epsilon$$

Como épsilon es arbitrario, se cumple la condición de continuidad, por tanto f es continua en x_0 .

Teorema 4

Si $f:[a,b]\to\mathbb{R}$ esta acotada, entonces $D:=\{c\in[a,b]:w(f,c)>0\}=\bigcup_{k\in\mathbb{N}}H_k,$ donde $H_k=\{c\in[a,b]:w(f,c)>\frac{1}{2^k}\}$

Demostración.

Como $\lim_{n\to\infty}\frac{1}{2^n}=0$, si tomamos $c\in D$, entonces $w(f,c)=\epsilon>0$, por tanto existe $k\in\mathbb{N}$ tal que si $n\geq k$ entonces $\frac{1}{2^n}<\epsilon=w(c,f)$, por tanto $c\in H_n$ para algún $n\in\mathbb{N}$, se concluye que $c\in\bigcup_{k\in\mathbb{N}}H_k$, por tanto $D\subseteq\bigcup_{k\in\mathbb{N}}H_k$, la otra contecnión es trivial, debido al teorema 3 tenemos que $\bigcup_{k\in\mathbb{N}}H_k$ es el conjunto de discontinuidades de f en [a,b]

Medidas δ y particiones fina- δ

Definición 3

Sea $A \subset \mathbb{R}$ una medida δ en A es una función estrictamente positiva en A, sea $P := \{(I_k, t_k)\}_{k \in \mathbb{N}_n}$, esta se directamente fina- δ si cumple que:

$$t_i \in I_i \subseteq [t_i - \delta(i), t_i + \delta(i)] \ \forall i \in \mathbb{N}_n$$

De la definición se desprende el siguiente teorema el cual no demostraremos ya que escapa del proposito del texto:

Teorema 5

Si δ e suna medida definida en $[a,b] \subset \mathbb{R}$, entonces existe una partición fina- δ de [a,b]

Enunciado y demostración

Teorema de integrabilidad de Lebesgue

Sea $f:[a,b]\to\mathbb{R}$ una función acotada, esta es Riemann integrable si y solo si su conjunto de discontinuidades es nulo

Demostración.

 \Rightarrow) Si f es continua en [a,b], entonces f es continua y por tanto su conjunto de discontinuidades es nulo pues \emptyset es nulo por el teorema 2, por tanto sea D definido en el teorema 4, el conjunto de discontinuidades de f en [a,c], supongamos que este es no vacio, como estamos considerando que $D = \bigcup_{l \in \mathbb{N}} H_l \neq \emptyset$ por tanto existe $K \in \mathbb{N}$ tal que $H_k \neq \emptyset$, tomemos $\frac{\epsilon}{2^k} > 0$, por el criterio de Riemann, existe una partición $P_k := \{[x_{i-1}^k, x_i^k]\}_{i=0}^{n(k)}$, tal que:

$$\sum_{i=1}^{n(k)} \left(M_i^k - m_i^k \right) (x_i^k - x_{i-1}^k) < \frac{\epsilon}{2^k}$$

Donde M_i^k y m_i^k son el respectivo infimo y supremo de la partición, como $H_k \subset P$ para toda $k \in \mathbb{N}$, existe (x_{i-1}^k, x_i^k) tal que $(x_{i-1}^k, x_i^k) \cap H_k \neq \emptyset$, sea $x \in (x_{i-1}^k, x_i^k) \cap H_k$, entonces existe r > 0 tal que $V_r(x) \subseteq (x_{i-1}^k, x_i^k)$, se sigue que:

$$\frac{1}{2^k} \le w(f, x) \le W(f, V_r(x)) \le M_i^k - m_i^k$$

Si hacemos \sum' la sumatoria sobre todos los i tal que $H_k \cap (x_{i-1}^k, x_i^k) \neq \emptyset$, tenemos que:

$$\frac{1}{2^k} \sum_{i=1}^{r} (x_i^k - x_{i-1}^k) \le \sum_{i=1}^{n(k)} (M_i^k - m_i^k) (x_i^k - x_{i-1}^k) < \frac{\epsilon}{2^k} \implies \sum_{i=1}^{r} (x_i^k - x_{i-1}^k) \le \epsilon$$

Tenemos que $H_K \neq \emptyset$ esta totalmente contenido en una subpartición P' fininita tal que la longitud de sus intervalos es menor a ϵ , H_k es un conjunto nulo, por tanto $D = \bigcup_{l \in \mathbb{N}} H_l$ es un conjunto nulo por el teorema 1

- \Leftarrow) Sea $|f(x)| \leq M$ para $x \in [a,b]$ y supongamos que D es un conjunto nulo, entonces dado $\epsilon > 0$, existe un conjunto contable $\{J_k\}_{k\in\mathbb{N}}$ de intervalos abiertos con $D \subseteq \bigcup_{k\in\mathbb{N}} J_k$ y $\sum_{k\in\mathbb{N}} |J_k| \leq \frac{\epsilon}{4M}$, definimos δ una medida sobre [a,b] de la siguiente manera:
 - I. i) Si $t \notin D$, entonces f es continua en t y existe $\delta(t) > 0$ tal que si $x \in V_{\delta(t)}(t)$, entonces $|f(x) f(t)| < \frac{\epsilon}{4(b-a)}$, de donde:

$$0 \le M_i - m_i \le \frac{\epsilon}{2(b-a)}$$

II. ii) Si $t \in D$, se elige $\delta(t) > 0$ tal que $V_{\delta(t)}(t) \subseteq J_k$ para alguna $k \in \mathbb{N}$, para estos valores se cumple que $0 \le M_t - m_t \le 2M$

Por tanto por el teorema 5 existe $P := \{([x_{i-1}, x_i], t_i)\}_{i=1}^n$ partición fina- δ , separamos los indices i en los siguientes dos conjuntos disjuntos:

$$S_c := \{i : t \notin D\} \ S_d := \{i : t_i \in D\}$$

Como P es fina- δ se tiene que $[x_{i-1}, x_i] \subseteq V_{\delta(t_i)}(t_i)$, luego tenemos que $M_i - m_i \leq M_{t_i} - m_{t_i}$, por tanto si $i \in S_c$ entonces $M_i - m_i \leq \epsilon$, en tanto que si $i \in S_d$, se tiene que $M_i - m_i \leq 2M$, luego tenemos que la collección de intervalos $[x_{i-1}, x_i]$ con $i \in S_d$ esta contenida en la union arbitraria de $\{J_k\}_{k \in \mathbb{N}}$ cuya longitud es menor a $\frac{\epsilon}{4M}$, finalmente se sigue que:

$$\sum_{i=1}^{n} (M_i - m_i)(x_i - x_{i-1}) = \sum_{i \in S_c} (M_i - m_i)(x_i - x_{i-1}) + \sum_{i \in S_d} (M_i - m_i)(x_i - x_{i-1})$$

$$\leq \sum_{i \in S_c} \frac{\epsilon}{2(b-a)} (x_i - x_{i-1}) + \sum_{i \in S_d} 2M (x_i - x_{i-1}) \leq \frac{\epsilon (b-a)}{2(b-a)} + \frac{2M\epsilon}{4M} = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Como $\epsilon > 0$ fue arbitrario se concluye que $f \in R[a, b]$

Problemas de los examenes

Parcial 1

Parcial 1

Sea $f:[a,b]\to\mathbb{R}$ integrable,tal que $f(x)\leq 0\ \forall\ x\in[a,b]$, definimos $A:=\{c\in[a,b]:f\ es\ continua\ en\ c\}$ demuestre que $\int_a^b f(t)\ dt=0$ si y solo si $f(a)=0\ \forall\ a\in A$

Demostración.

- \Rightarrow) Supongamos que $\int_a^b f(x) dx = 0$, y supongamos que existe $x_0 \in A$ tal que $f(x_0) < 0$, tenemos que como f(x) es integrable en [a,b] entonces -f(x) es integrable en [a,b] y como $-f(x_0) > 0$ y $x_0 \in A$ se tiene que $\int_a^b -f(x) dx = -\int_a^b f(x) dx > 0 \implies \int_a^b f(x) dx < 0$, una contradicción, como nuestra unica suposición fue la existencia de x_0 , concluimos que $f(a) = 0 \ \forall a \in A$
- \Leftarrow) Supongamos que $f(a) = 0 \ \forall a \in A$, como los puntos de continuidad son densos, si tomamos cualquier particion P de [a,b] para todo $(x_{i-1},x_i) \in P$, existe $l \in (x_{i-1},x_i)$ tal que f(l) = 0, como $f(x) \leq 0$ $\forall x \in [a,b]$, tenemos que $M_i = 0$, por tanto $\overline{S}(P,f) := 0$, para cualquier partición P de [a,b] como:

$$\int_{a}^{b} f(x) dx = \inf \{ \overline{S}(P, f) | P \text{ es particion } de [a, b] \} = 0$$

Parcial 2

Parcial 2

Sea $f: \left[0, \frac{1}{2}\right] \to \mathbb{R}$ una función dos veces diferenciable (con f'' integrable en $\left[0, \frac{1}{2}\right]$), tal que f(0) = 0, $f'\left(\frac{1}{2}\right) = -\frac{5}{4}$ y $f\left(\frac{1}{2}\right) > 0$, demuestre que existe $x_0 \in \left[0, \frac{1}{2}\right]$ tal que tal que:

$$f''(x_0) \le 6x_0 - \frac{1}{(1-x_0)^2}$$

Hint: $je < 2^8!$

Demostración.

Procedemos por contradicción es decir $\forall\,t\in\left[0,\frac{1}{2}\right],$ con $x\in\left[0,\frac{1}{2}\right],$ se tiene que:

$$6t - \frac{1}{(1-t)^2} < f''(t) \implies \int_x^{1/2} \left(6t - \frac{1}{(1-t)^2}\right) dt < \int_x^{\frac{1}{2}} f''(t) dt$$

De donde se sigue que:

$$-\frac{5}{4} - 3x^2 + \frac{1}{1-x} = \int_x^{1/2} \left(6t - \frac{1}{(1-t)^2}\right) dt < \int_x^{\frac{1}{2}} f''(t) dt \stackrel{\mathbf{T.F.C}}{=} f'\left(\frac{1}{2}\right) - f'(x) = -\frac{5}{4} - f'(x)$$

Finalmente

$$f'(x) < 3x^2 - \frac{1}{1-x} \implies \int_0^{\frac{1}{2}} f'(x) dx < \int_0^{\frac{1}{2}} \left(3x^2 - \frac{1}{1-x}\right) dx$$

Obtenemos que:

$$\frac{1}{8} - \ln(2) = \int_0^{\frac{1}{2}} \left(3x^2 - \frac{1}{1 - x} \right) dx > \int_0^{\frac{1}{2}} f'(x) dx \stackrel{\mathbf{T.F.C}}{=} f\left(\frac{1}{2}\right) - f(0) = f\left(\frac{1}{2}\right)$$

Usando el hint $e<2^8\implies \frac{1}{8}-ln(2)<0$

$$f\left(\frac{1}{2}\right) < \frac{1}{8} - \ln(2) < 0$$

Una contradicción pues $f\left(\frac{1}{2}\right) > 0$, como nuestra unica suposición fue la no existencia de x_0 , concluimos la tesis del problema.

Parcial 3

Parcial 3

Sea $f:[-a,a] \to \mathbb{R}$ una función integrable, entonces:

$$\int_{-a}^{a} \frac{(f(x) + f(-x))e^{-f(x)}}{e^{-f(x)} + e^{-f(-x)}} dx = \int_{-a}^{a} f(x) dx$$

Demostración.

Lemma 0.1.

Sean h, g funciones integrables en $[-a, a] \subset \mathbb{R}$, tal que h es par y g es impar, entonces:

$$\int_{-a}^{a} \frac{h(x)}{1 + e^{g(x)}} dx = \int_{0}^{a} h(x) dx$$

Demostración.

Primero tenemos que:

$$\int_{-a}^{a} \frac{h(x)}{1 + e^{g(x)}} dx = \int_{0}^{a} \frac{h(x)}{1 + e^{g(x)}} dx + \int_{-a}^{0} \frac{h(x)}{1 + e^{g(x)}} dx$$

Luego sea $u = -x \implies -du = dx$:

$$\int_{-a}^{0} \frac{h(x)}{1 + e^{g(x)}} dx = -\int_{a}^{0} \frac{h(-u)}{1 + e^{g(-u)}} du = \int_{0}^{a} \frac{h(u)}{1 + e^{-g(u)}} du = \int_{0}^{a} \frac{e^{g(u)} h(u)}{1 + e^{g(u)}} du$$

por tanto:

$$\int_{-a}^{a} \frac{h(x)}{1 + e^{g(x)}} \, dx = \int_{0}^{a} \frac{h(x)}{1 + e^{g(x)}} \, dx + \int_{0}^{a} \frac{e^{g(x)} \, h(x)}{1 + e^{g(x)}} \, dx = \int_{0}^{a} \frac{1 + e^{g(x)}}{1 + e^{g(x)}} \, h(x) \, dx = \int_{0}^{1} h(x) \, dx$$

Reescribimos:

$$\int_{-a}^{a} \frac{(f(x) + f(-x)) e^{-f(x)}}{e^{-f(x)} + e^{-f(-x)}} dx = \int_{-a}^{a} \frac{f(x) + f(-x)}{1 + e^{f(x) - f(-x)}} dx$$

Como h(x) = f(x) + f(-x) es una función par y l(x) = f(x) - f(-x) es impar podemos aplicar el lemma:

$$\int_{-a}^{a} \frac{f(x) + f(-x)}{1 + e^{f(x) - f(-x)}} dx = \int_{0}^{a} (f(x) + f(-x)) dx$$

Luego tenemos que sea u = -x entonces -du = dx:

$$\int_0^a f(-x) \, dx = -\int_0^{-a} f(u) \, du = \int_{-a}^0 f(u) \, du$$

Finalmente tenemos que:

$$\int_{-a}^{a} \frac{(f(x) + f(-x)) e^{-f(x)}}{e^{-f(x)} + e^{-f(-x)}} dx = \int_{0}^{a} f(x) dx + \int_{-a}^{0} f(x) dx = \int_{-a}^{a} f(x) dx$$

Parcial 4

Parcial 4

Sea $f: \mathbb{R} \to \mathbb{R}$ tal que $f^{28}(0)$ existe y tal que

$$\lim_{x \to 0} \frac{f(x) - 4(x^2 + 1)^2 + \frac{f^{28}(0)}{28!} x^{28} + 3x^3 + f(2x)}{x^4 \operatorname{sen}(x^{22})} = 0$$

Calcule $f^k(0)$ para k = 1, 2, 3, 4

Demostración.

Tenemos que como $|sen(x)| \le 1 \implies 1 \le \frac{1}{|sen(x)|} \ \forall x \in \mathbb{R}$, por tanto:

$$\lim_{x \to 0} \left| \frac{f(x) - 4(x^2 + 1)^2 + \frac{f^{28}(0)}{28!} x^{28} + 3x^3 + f(2x)}{x^4} \right| \le \lim_{x \to 0} \left| \frac{f(x) - 4(x^2 + 1)^2 + \frac{f^{28}(0)}{28!} x^{28} + 3x^3 + f(2x)}{x^4, sen(x^{22})} \right| = 0$$

Por tanto tenemos que:

$$\lim_{x \to 0} \frac{f(x) - 4(x^2 + 1)^2 + \frac{f^{28}(0)}{28!} x^{28} + 3x^3 + f(2x)}{x^4} = 0$$

Luego como $\lim_{x\to 0} \frac{f^{28}(0) x^{28}}{x^4} = 0$, se sigue que:

$$\lim_{x \to 0} \frac{f(x) + f(2x) - (4(x^4 + 2x^2 + 1) - 3x^3)}{x^4} = 0$$

Finalmente tenemos que l(x) = f(x) + f(2x) tenemos que:

$$\lim_{x \to 0} \frac{l(x) - (4x^4 - 3x^3 + 8x^2 + 4)}{x^4} = 0$$

Por la unicidad del polinomio de Taylor tenemos que:

$$P_{l,4,0} = 4 + 8x^2 - 3x^3 + 4x^4 = 2f(0) + \frac{3f'(0)}{1}x + \frac{5f''(0)}{2}x^2 + \frac{9f^3(0)}{6}x^3 + \frac{17f^4(0)}{24}x^4$$

Por tanto tenemos que:

$$2f(0) = 4$$
 $f'(0) = 0$ $\frac{5f''(0)}{2} = 8$ $\frac{9f^{3}(0)}{6} = -3$ $\frac{17f^{4}(0)}{24} = 4$

Parcial 5

Parcial 5

Sea f una función tal que f(0) = 0 y f'(0) > 0, ademas se a_n una sucesión cuyo limite es 0 y $a_n \neq 0 \ \forall n \in \mathbb{N}$, pruebe que $\sum_{n=1}^{\infty} a_n$ converge absolutamente si y solo si la serie $\sum_{n=1}^{\infty} f(|a_n|)$ converge

Demostración.

 $\Rightarrow)$ Supongamos que $\sum_{n\in\mathbb{N}}\,a_n$ converge absolutamente, como f'(0)=l>0 tenemos que:

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{f(x)}{x} = l$$

Como $\sum_{n\in\mathbb{N}} |a_n|$ converge entonces $\lim_{n\to\infty} |a_n| = 0$, por tanto:

$$\lim_{n \to \infty} \frac{f(|a_n|)}{|a_n|} = l$$

Luego sea $\epsilon = 2l > 0$, existe $k \in \mathbb{N}$ tal que $n \geq k$, entonces:

$$\left| \frac{f(|a_n|)}{|a_n|} - l \right| \le l \implies \frac{f(|a_n|)}{|a_n|} \le 3l \implies f(|a_n|) \le 3l |a_n|$$

De esto se sigue que $\sum_{n=k}^{\infty} f(|a_n|)$, converge por tanto $\sum_{n\in\mathbb{N}} f(|a_n|)$ converge

 \Leftarrow) Supongamos que $\sum_{n\in\mathbb{N}} f(|a_n|)$ converge, como el limite de a_n es cero, sigue siendo valido que:

$$\lim_{n \to \infty} \frac{f(|a_n|)}{|a_n|} = l$$

Por tanto sea $\epsilon:=\frac{l}{2},$ existe $k\in\mathbb{N}$ tal que si $n\leq k$ entonces:

$$\left| \frac{f(|a_n|)}{|a_n|} \right| < \frac{l}{2} \implies \frac{l}{2} \le \frac{f(|a_n|)}{|a_n|} \implies |a_n| \le \frac{2}{l} f(|a_n|)$$

De nuevo $\sum_{n=k}^{\infty}\,|a_n|$ converge por tanto $\sum_{n\in\mathbb{N}}\,|a_n|$ converge