Microprocesadores y Control Trabajo Practico Final

Diagrama General

Enunciado

El Sistema esta basado en dos ECUs .La primera asociada al motor y la segunda asociada al tablero .

La función de la ECU del motor es controlar la velocidad del motor en función de la posición del acelerador que se encuentra en la ECU del tablero. Esta información se recibirá via CAN.

El eje del motor tiene (solidario al mismo) un encoder óptico que entrega un pulso cada vez que se pasa por el PMS. Dicho pulso se detecta mediante el modulo IC del microcontrolador.

La salida del OC deberá entregar un pulso que comienza cuando el eje del motor se encuentra a phi1 grados respecto del PMS. El ancho del pulso será de (phi2 - phi1) grados.

Enunciado

Tanto phi2 como phi1 pueden ser modificados desde una PC conectada a la SCI de la ECU del Tablero.

El valor por defecto de (phi2 - phi1) es de 30 grados mientras que el de phi1 será de 230 grados.

Desde la PC se debera poder visualizar las RPM actuales y la posición acelerador. A su vez se deberá poder accionar el acelerador desde la PC (modo remoto). Se recomienda usar Matlab o Pyton

L298 Bridge Board

CSA/CSB: Current test pin for A/B channel

Motor A

5V

GND VMS

U1/2/3/4:

Pull up resistor jumper for IN1/2/3/4

Power indicator

Motor B ENABLE

Motor B -IN4 Motor B -IN3

Motor A -IN2

Motor A -IN1

Motor A ENABLE

5V source jumper

IN1/2/3/4 indicator

L298 Bridge Schematic

Joystick

Opto acoplador de ranura

Micro Servo SG90

Torsión de parada (5V): 2,5kg/cm.

Velocidad de trabajo: 0,12 segundos / 60 grados (4.8V sin carga).

Voltaje de funcionamiento: 3.0v ~ 7.2v.

Rango de temperatura: -0°C a 55°C.

Ángulo de rotación: 180º.

Interface CAN

