Optimization - Exercise session 4 Duality (part 1)

$1.\ \, {\rm Find}\ {\rm the}\ {\rm dual}\ {\rm of}\ {\rm problems}$

$1.1 \min_{x} 3x_1 - 9x_2$

$$2x_1 - x_2 + x_3 \ge 3,$$

$$x_1 - x_2 - 3x_3 \ge 2$$
,

$$x_1, x_2, x_3 \ge 0.$$

The dual $\max_x 3y_1 + 2y_2$ such that

$$2y_1 + y_2 \le 3$$
,

$$-y_1 - y_2 \le -9,$$

$$y_1 - 3y_2 \le 0,$$

$$y_1, y_2 \ge 0.$$

 $1.2 \min_{x} 3x_1 - 9x_2$ such that

$$4x_1 - x_2 + x_3 = 3,$$

$$x_1 - x_2 - 6x_3 \ge 2,$$

$$x_1 - 4x_2 - 6x_3 \le 8,$$

$$x_1, x_2 \ge 0.$$

The dual is $\max_y 3y_1 + 2y_2 - 8y_3$ such that

$$4y_1 + y_2 - y_3 \le 3,$$

$$-y_1 - y_2 + 4y_3 \le -9,$$

$$y_1 - 6y_2 + 6y_3 = 0,$$

$$y_2, y_3 \ge 0.$$

 $1.3 \min_{x} c^{T} x$ such that

$$a_1^T x = b_1,$$

$$a_2^T x \ge b_2,$$

$$a_3^T x \leq b_3$$
,

$$x \ge 0$$
.

The dual is $\max_x b_1 y_1 + b_2 y_2 - b_3 y_3$ such that

$$a_{1,1}y_1 + a_{2,1}y_2 + a_{3,1}y_3 \le c_1,$$

$$a_{1,2}y_1 + a_{2,2}y_2 + a_{3,2}y_3 \le c_2$$

. . .

$$a_{1,n}y_1 + a_{2,n}y_2 + a_{3,n}y_3 \le c_n,$$

$$y_2, y_3 \ge 0.$$

 $1.4 \min_{x \in \mathbb{R}^3} c^T x$ such that

$$a^Tx=b,$$

$$x_1free$$

$$x_2 \ge 0$$
,

$$x_3 \leq 0$$
.

This problem is equivalent to $\min_{x\in\mathbb{R}^3}c_1x_1^+-c_1x_1^-+c_2x_2-c_3x_3'$ such that

$$a_1x_1^+ - a_1x_1^- + a_2x_2 - a_3x_3 = b,$$

 $x_1^+, x_1^-, x_2, x_3' \ge 0.$

$$A = \left(\begin{array}{ccc} a_1 & -a_1 & a_2 & -a_3 \end{array}\right)$$

The dual is $\max_{y \in \mathbb{R}^3} by_1$ such that

$$a_1 y_1 \le c_1,$$

 $-a_1 y_1 \le -c_1$
 $a_2 y_1 \le c_2,$
 $-a_3 y_1 \le -c_3,$

$$y_1 - free.$$

Hence,

 $\max_{y \in \mathbb{R}^3} by_1$ such that

$$a_1y_1=c_1,$$

$$a_2y_1 \le c_2$$

$$a_3y_1 \ge c_3$$
,

$$y_1 - free$$
.

2. Find a dual formulation of problems

 $2.1 \min_{x} c^T x$ such that

$$Ax = b,$$
$$x \ge a.(a \ge 0)$$

 $\begin{array}{l} 2.2 \\ \min_{x} c^T x \\ \text{such that} \end{array}$

$$b_1 \le Ax \le b_2,$$
$$x \ge 0.$$

Solution

2.1 This problem is equivalent to $\min_{x'} c^T x'$ such that

$$Ax' = b - Aa,$$
$$x' \ge 0,$$

where x' = x - a. Hence, the dual is $\max_a (b - Aa)^T y$ such that

$$A^T y \le c,$$
$$y \in \mathbb{R}.$$

2.2 This problem is equivalent to $\min_x c^T x$ such that

$$Ax \ge b_1,$$

$$-Ax \ge -b_2,$$

$$x \ge 0.$$

Hence, the dual is $\max_{y,y'} b_1^T y - b_2^T y'$ such that

$$A^T y - A^T y' \le c,$$

$$y \ge 0.$$

where c = [c', c''].

3. How to solve the problem $\min_x 50x_1 + 25x_2$ such that

$$x_1 + 3x_2 \ge 8,$$

 $3x_1 + 4x_2 \ge 19,$
 $3x_1 + x_2 \ge 7,$
 $x_1, x_2 \ge 0,$

without an initialization phase?

Solution

To begin with we need to write the dual. We have $\max_y 8y_1 + 19y_2 + 7y_3$ such that

$$y_1 + 3y_2 + 3y_3 \le 50,$$

 $3y_1 + 4y_2 + y_3 \le 25,$
 $y_1, y_2, y_3 \ge 0.$

Let's transform into a min problem in standard form. We obtain $\min_y -8y_1 -19y_2 -7y_3$ such that

$$y_1 + 3y_2 + 3y_3 + y_4 = 50,$$

 $3y_1 + 4y_2 + y_3 + y_5 = 25,$
 $y_1, y_2, y_3, y_4, y_5 \ge 0.$

Use simplex method, we get

Based on the optimal dual solution, derive the optimal primal solution with strong duality and complementary slackness

If $y_1 = y_2 = y_30$ then a vertex is (0, 0, 0, 50, 25).

Using the previous equalities, we get

Basic	y_1	y_2	y_3	y_4	y_5	Solution
z	-8	-19	-7	0	0	0
y_4	1	3	3	1	0	50
y_5	3	4	1	0	1	25

The solution (0, 0, 0, 50, 25) is the BFS associated with the basic variables x_4 and x_5 .

The reduced costs associated with the variables x_1 , x_2 and x_3 are negative.

Since the most negative number in z-line is -19, we choose to enter x_2 in the base.

We can't increase x_2 without limit, since we have to satisfy the constraints

$$\begin{cases} 3x_2 + x_4 = 50, \\ 4x_2 + x_5 = 25. \end{cases}$$

The second constraint is the most restrictive since $\frac{50}{3} \ge \frac{25}{4}$. It's x_5 that leaves the base. Iteration 1.

Basic	y_1	y_2	y_3	y_4	y_5	Solution
z	25/4	0	-9/4	0	19/4	475/4
y_4	-5/4	0	9/4	1	-3/4	125/4
y_2	3/4	1	1/4	0	1/4	25/4

Iteration 2.

The solution (0, 25/4, 125/4, 0, 0) is the new BFS associated with the basic variables y_2 and y_4 . The non-basic variables are y_1, y_3 and y_5 .

The reduced costs associated with the variables y_3 is negative. The cost decreases if y_3 increases.

We choose to enter y_3 in the base. We can't increase x_3 without limit, since we have to satisfy the constraints:

- 1. The first imposes $9/4y_1 + y_4 = 125/4$.
- 2. and the second $x_2 + 1/4x_3 = 25/4$.

The first constraint is the most restrictive since $125/9 \ge 25$. It's y_3 that leaves the base.

After elementary transformations on the rows, we obtain the canonical table

Basic	y_1	y_2	y_3	y_4	y_5	Solution
z	5	0	0	1	4	150
y_3	-5/9	0	1	4/9	-1/3	125/9
y_2	8/9	1	0	-1/9	1/3	25/9

The associated reduced costs are positive. Therefore, the solution is optimal. The minimum is attained at (0, 25/9, 125/9) and is equal to -150.

If x is an optimal solution of the primal and y is an optimal solution of the dual, then

$$(0, 25/9, 125/9)(Ax - b) = 0$$

where

$$A = \left(\begin{array}{cc} 1 & 3\\ 3 & 4\\ 3 & 1 \end{array}\right)$$

$$b^T = (8, 19, 7)$$

Consequently,

$$(0,25/9,125/9) \left(\begin{array}{c} x_1 + 3x_2 - 8\\ 3x_1 + 4x_2 - 19\\ 3x_1 + x_2 - 7 \end{array} \right) = 0$$

Hence,

$$3x_1 + 4x_2 = 19$$
$$3x_1 + x_2 = 7$$

Therefore, the optimal solution of the initial problem is (1,4) and by strong duality the maximum is equal to 150.

6. Consider the following problem $\min_x 2x_1 + 9x_2 + 3x_3$ such that

$$-2x_1 + 2x_2 + x_3 \ge 1,$$

$$x_1 + 4x_2 - x_3 \ge 1,$$

$$x_1, x_2, x_3 \ge 0.$$

Find the dual of this problem and solve it graphically. Use complementary slackness conditions to obtain a solution of the primal.

Solution

The dual is $\max_{y} y_1 + y_2$ such that

$$-2y_1 + y_2 \le 2,$$

$$2y_1 + 4y_2 \le 9,$$

$$y_1 - y_2 \le 3,$$

$$y_1, y_2 \ge 0.$$

It is clear that the maximum is attained at the green point (7/2, 1/2) and is equal to 4. If x is an optimal solution of the primal and y is an optimal solution of the dual, then

$$(7/2, 1/2) (Ax - b) = 0$$

where

$$A = \begin{pmatrix} -2 & 2 & 1\\ 1 & 4 & -1 \end{pmatrix}$$
$$b^T = (1, 1)$$

Consequently,

$$(7/2, 1/2) \begin{pmatrix} -2x_1 + 2x_2 + x_3 - 1 \\ x_1 + 4x_2 - x_3 - 1 \end{pmatrix} = 0$$

Hence,

$$-2x_1 + 2x_2 + x_3 = 1$$
$$x_1 + 4x_2 - x_3 = 1$$
$$2x_1 + 9x_2 + 3x_3 = 4$$

Solution of this system of linear equations is (0, 1/3, 1/3). Therefore, the optimal solution of the initial problem is (0, 1/3, 1/3) and is equal to 4.