TESTING DOCUMENT

Project: Final DPM Project **Document Version:** 1.0

Date: 20/10/2018 Author: Ashish Edit history:

[18/10/2018] Ashish: Created Testing Document [22/10/2018] Ashish: Completed some tests [28/10/2018] Ashish: Added more tests

[30/10/2018] Ashish: Added results from previous tests and made changes to the structure of the

document

[3/11/2018] Ashish: Added test 2, 4 & 6 [5/11/2018] Ashish: Added test 7, 8, & 9

Table of contents

- 1.0 Requirements
 - 1.1 Project Requirements
 - 1.2 Testing Requirements
 - 1.3 General Test Procedures
- 2.0 Testing Plan
- 3.0 Tests
- 4.0 Glossary of terms

1.0 Requirements

1.1 Project requirements

see Requirements document

1.2 Testing Requirements

- Each test should note: date, testers, author, hardware version, software version, goal, procedure, expected result, test report, conclusion, action and distribution.
- Each test should have at least 10 trials.
- Weak points should be tested exhaustively
- Testers should have a clear expected outcome for each test.

1.3 General Test Procedures

- Test whether the hardware design is stable when moving and turning.
- Test whether the robot can light localize accurately
- Test whether the robot can ultrasonic localize accurately
- Test whether the robot can correctly detect the color of the ring.
- Test whether the robot can correctly turn to any direction
- Test whether the robot can correctly travel to any coordinate after localization

2.0 Testing Plan

2.1 Hardware

- Hardware stability (Incomplete)
 - The center of gravity needs to be center of the robot so that the robot has equal weight distribution and does not lean on one side, affecting navigation.
- Large EV3 motor performance (Incomplete)
 - The motors need to be accurate when moving around the field at different speeds.
 The motors that are selected need to be of similar performance to make sure the robot navigates properly.
- Ultrasonic sensor (Incomplete)
 - The ultrasonic sensor must be accurate to ensure the requirements of ultrasonic localization and obstacle avoidance are met

- Light sensor (Incomplete)
 - The light sensor must be accurate to ensure the requirements of light localization and ring color detection are met.

2.2 Software

- Navigation (Incomplete)
 - The navigation algorithm must accurately move the robot to any given coordinate on the field. The accuracy should be such that when the robot relocalizes, it should be at the correct co-ordinate
- Ultrasonic localization (completed)
 - o The ultrasonic localization algorithm must have an accuracy of 10 degrees.
- Light localization (completed)
 - The light localization algorithm must have an accuracy of less than 2cm and an angle of less than 5 degrees
- Ring Color detection (Incomplete)
 - The color detection algorithm must accurately determine the color of the ring up to 5cm away from the light sensor.

3.0 Tests

Test 1: Ultrasonic localization I (Falling edge)

Date: 20/10/18 Tester: Ashish Author: Ashish

Hardware Version: 1.0 **Software Version**: N/A

Goal: Determine if the robot can localize reliably.

Procedure: Place the robot facing away from the wall on the left corner tile. Run ultrasonic localization and record the angle.

Expected result: The robot should turn clockwise and detect the wall when it is within 30cm and record it. Then the robot turns anticlockwise till it detects the wall again and record it. The robot will then compute 0 degrees and turn to it.

Test Report: the test was performed 10 times and the results are shown in the table below.

Run	US Angle(degrees)
1	6
2	-2
3	3
4	0
5	-5
6	4
7	-1
8	2
9	4
10	0
Mean:	1
Standard Deviation:	3

Conclusion: The robot always localized within 6 degrees which is within the acceptable margin of error. It should be noted that this test was done when the battery was outputting at 8.0V and accurate localization is not guaranteed for anything less than 8.0V.

Action: No further testing is required unless the hardware configuration is changed.

Distribution: Software Development, Project management

Test 2: Ultrasonic localization II (Falling edge)

Date: 20/10/18 Tester: Ashish Author: Ashish

Hardware Version: 1.1 **Software Version**: N/A

Goal: Determine if the robot can localize reliably.

Procedure: Place the robot facing away from the wall on the left corner tile. Run ultrasonic localization and record the angle.

Expected result: The robot should turn clockwise and detect the wall when it is within 30cm and record it. Then the robot turns anticlockwise till it detects the wall again and record it. The robot will then compute 0 degrees and turn to it.

Test Report: the test was performed 10 times and the results are shown in the table below.

Run	US Angle(degrees)
1	10
2	7
3	6

4	8
5	11
6	12
7	3
8	9
9	9
10	5
Mean:	8
Standard Deviation:	2.64

The angles are mostly greater than 5 degrees. The standard deviation is also too large. The robot did not localize with an acceptable margin of error

Conclusion: Ultrasonic localization is not reliable.

Action: This report will be sent to the hardware and software team to make necessary changes.

Distribution: Software Development, Hardware Development, Project management

Test 3: Light localization I (2 light sensors)

Date: 20/10/18 Tester: Ashish Author: Ashish

Hardware Version: 1.0 Software Version: N/A

Goal: Determine if the robot can light localize reliably.

Procedure: Place the robot facing away from the wall on the left corner tile. Run the ultrasonic localization and record the angle. After ultrasonic localization finishes run the light localization and record angle and the distance.

Expected result: The values should be close to zero.

Test Report: the test was performed 10 times and the results are shown in the table below

Run	US Angle(degrees)	Euclidean error(cm)	Final Angle(degrees)
1	6	0.1	2
2	-2	1.3	-3
3	3	0.4	4
4	0	0.6	1
5	-5	1.5	-2
6	4	1.1	6

7	-1	0.1	-4
8	2	1.9	5
9	4	0.3	3
10	0	1	2
Mean:	1	0.8	1
Standard Deviation:	3	0.6	3

Conclusion: The robot always localized within 5 degrees and 2cm from (0,0) which is within the acceptable margin of error. It should be noted that this test was done when the battery was outputting at 8.0V and accurate localization is not guaranteed for anything less than 8.0V.

Action: No further testing is required unless the hardware configuration is changed.

Distribution: Software Development, Project management

Test 4: Light localization I (2 light sensors)

Date: 20/10/18 Tester: Ashish Author: Ashish

Hardware Version: 1.1 **Software Version**: N/A

Goal: Determine if the robot can light localize reliably.

Procedure: Place the robot facing away from the wall on the left corner tile. Run the ultrasonic localization and record the angle. After ultrasonic localization finishes run the light localization and record angle and the distance.

Expected result: The values should be close to zero.

Test Report: the test was performed 10 times and the results are shown in the table below

Run	US Angle(degrees)	Euclidean error(cm)	Final
			Angle(degrees)
1	10	FAILED	FAILED
2	7	1.0	3
3	6	FAILED	FAILED
4	8	1.6	2
5	11	FAILED	FAILED
6	12	3.2	2
7	3	FAILED	FAILED
8	9	FAILED	FAILED
9	9	2.1	3
10	5	1.9	2
Mean:	8	N/A	N/A

Standard Deviation:	2.64	N/A	N/A

When testing the light localization, the light sensor failed to detect lines in 5 out of the 10 trials and therefore failed the test.

Conclusion: Light localization is not reliable

Action: This report will be sent to the hardware and software team to make necessary changes.

Distribution: Software Development, Hardware Development, Project management

Test 5: Ring color detection

Date: 22/10/18 Tester: Ashish Author: Ashish

Hardware Version: N/A Software Version: N/A

Goal: To record the RGB values of each ring.

Procedure: Place the light sensor 2 cm away from the ring. Press any button on the robot and record the RGB values that are printed on the console. Collect 18 samples of RGB values. Repeat same procedure for the other 3 rings.

Expected result: The RGB values should give a gaussian distribution.

Test Report: The test was performed 18 times for each of the 4 rings. The mean and standard deviation was calculated using the following formulas:

$$mean = \frac{\sum_{i=0}^{n} Si}{n}$$
 $stddev = \sqrt{\sum_{i=0}^{n} \frac{(Si-mean)^2}{n-1}}.$

The tables and graphs below show the results:

For the blue ring:

i or the ordering.			
	R	G	В
1	11.76471	54.90196	53.92157
2	21.56863	92.15687	61.76471
3	7.843138	33.33334	29.41176
4	16.66667	73.52941	62.7451
5	19.60784	84.31373	54.90196
6	23.52941	106.8628	93.13726
7	27.45098	112.7451	95.09804
8	26.47059	113.7255	85.29412

12.7451	66.66667	50
21.56863	96.07843	72.54903
10.78431	50.98039	39.21569
28.43137	110.7843	100.9804
30.39216	124.5098	112.7451
34.31373	133.3333	112.7451
30.39216	116.6667	103.9216
23.52941	100.9804	90.19608
19.60784	86.27451	72.54903
20.58824	93.13726	74.5098
21.51416	91.72113	75.87146
7.237454	26.37606	26.37606
	21.56863 10.78431 28.43137 30.39216 34.31373 30.39216 23.52941 19.60784 20.58824 21.51416	21.56863 96.07843 10.78431 50.98039 28.43137 110.7843 30.39216 124.5098 34.31373 133.3333 30.39216 116.6667 23.52941 100.9804 19.60784 86.27451 20.58824 93.13726 21.51416 91.72113

For the green ring:

2 01 0110 82 0011 11118 .			
	R	G	В
1	43.13726	82.35294	14.70588
2	35.29412	66.66667	12.7451
3	61.76471	124.5098	18.62745
4	63.72549	126.4706	24.5098
5	43.13726	85.29412	14.70588
6	11.76471	27.45098	3.921569
7	26.47059	55.88236	6.862745
8	51.96079	105.8824	20.58824
9	33.33334	68.62746	11.76471
10	29.41176	56.86275	10.78431
11	55.88236	117.6471	19.60784
12	22.54902	50	7.843138
13	34.31373	69.60785	11.76471
14	30.39216	59.80392	10.78431
15	47.05882	96.07843	15.68628
16	37.2549	77.45098	12.7451
17	74.5098	148.0392	24.5098
18	26.47059	54.90196	8.82353
19	9.803922	23.52941	1.960784
Mean	38.85449	78.79257	13.31269
STD.dev	16.79279	32.88598	6.104473

For the yellow ring:

	R	G	В
1	117.6471	80.39216	18.62745
2	127.451	83.33334	20.58824
3	88.2353	59.80392	12.7451
4	56.86275	39.21569	7.843138
5	51.96079	35.29412	6.862745
6	104.902	66.66667	16.66667
7	108.8235	67.64706	19.60784
8	96.07843	64.70589	14.70588
9	110.7843	76.47059	15.68628
10	156.8628	105.8824	22.54902
11	146.0784	93.13726	24.5098
12	66.66667	40.19608	12.7451
13	77.45098	50.98039	11.76471
14	78.43137	49.01961	11.76471
15	83.33334	50.98039	15.68628
16	89.21569	54.90196	15.68628
17	129.4118	84.31373	19.60784
18	176.4706	118.6275	25.4902
Mean	115.6437	75.70333	17.94544
STD.dev	38.39451	25.98696	5.541675

For the orange ring:

	R	G	В
1	178.4314	59.80392	18.62745
2	142.1569	45.09804	16.66667
3	155.8824	50	15.68628
4	164.7059	58.82353	19.60784
5	98.03922	31.37255	7.843138
6	121.5686	42.15686	11.76471
7	107.8431	36.27451	9.803922
8	85.29412	25.4902	6.862745
9	147.0588	50	13.72549
10	157.8431	45.09804	21.56863
11	94.11765	26.47059	11.76471
12	144.1177	44.11765	14.70588
13	156.8628	44.11765	17.64706
14	175.4902	58.82353	22.54902
15	125.4902	36.27451	15.68628
16	172.549	62.7451	19.60784
17	129.4118	44.11765	10.78431
18	150.9804	48.03922	18.62745
Mean	139.3246	44.93464	15.19608
STD.dev	27.88884	10.66607	4.495692

Conclusion: The test results shows that we can use the RGB values to detect the color of the ring accurately.

Action: The test report will be sent to the software team to make an accurate ring detection algorithm using the results.

Distribution: Software Development, Project management

Test 6: Ultrasonic accuracy test

Date: 3/11/18 Tester: Ashish Author: Ashish

Hardware Version: 1.0 **Software Version:** N/A

Goal: To determine which ultrasonic sensor is the best for our use case

Procedure: Place the robot one grid length away from the wall and then 2 grid lengths away from the wall. Press any button on the robot to record the distance from the ultrasonic sensor

Expected result: The sensors will read the distance from the wall and display the results on the console. The distances read from the sensors should have an error of less than 2cm.

Test Report: The test was done 10 times for each grid length for each sensor and the data is in the table below:

	1st sensor		2nd sensor		3rd sensor	
Trial	Distance (30.48cm)	distance (60.96cm)	Distance (30.48cm)	distance (60.96cm)	Distance (30.48cm)	Distance (60.96cm)
1	30	60	30	61	29	60
2	32	60	32	63	33	60
3	30	61	30	63	32	62
4	30	61	32	62	31	64
5	32	61	30	61	33	61
6	32	61	32	60	33	61
7	32	61	32	63	33	61
8	32	61	30	63	32	62
9	32	60	31	62	31	62
10	32	60	30	61	31	63
STD.dev	0.916515139	0.489897949	0.943398113	1.044030651	1.2489996	1.2000000
Mean	31.4	60.6	30.9	61.9	31.8	61.6

From the data, all the sensors produced values close to the actual distance from the wall therefore we had to look at the standard deviation to decide on what sensor to choose. The first sensor had the smallest standard deviation.

Conclusion: We decided to choose the first sensor for ultrasonic localization

Action: The report is to be sent to the hardware team to make the changes to the robot

Distribution: Hardware development, Project Management

Test 7: Light Poller

Date: 5/11/18 **Tester:** Ashish **Author:** Ashish

Hardware Version: 1.1 **Software Version**: N/A

Goal: To determine the light differential required to accurately detect the lines on the board.

Procedure: Place robot in the middle of the tile and run data acquisition test. The values from the light sensor are displayed on the console. Record the values and plot a scatter graph.

Expected result: The graph should show when the lines are detected by the sensor.

Test Report: The robot went over 3 lines and the graphs below show the results.

The dips in the graph are when the sensor detects the lines.

Conclusion: A differential of 100 would allow the light sensor to accurately detect lines

Action: This report will be sent to the software team to make necessary changes.

Distribution: Software development, Project Manager

Test 8: Ring detection

Date: 5/11/18 Tester: Ashish Author: Ashish

Hardware Version: 1.1 Software Version: N/A

Goal: To determine the reliability of ring color detection.

Procedure: Run color detection test. Place a ring 2cm away from the light sensor and press any button on the robot. Record the color displayed on the console. Repeat 15 times and get the probability of the correct color detection. Repeat for all the rings.

Expected result: The rings should accurately detect the color for 2cm and 4cm but may not correctly detect the ring for 6cm because the light sensor does not work accurately at that distance.

Test Report: The tables below show the results:

Distance (2cm)					
	Ring				
	Blue Green Yellow			Orange	
Trial					
1	Blue	Green	Yellow	Orange	
2	Blue	Green	Yellow	Orange	
3	Blue	Green	Yellow	Orange	
4	Blue	Green	Yellow	Orange	
5	Blue	Green	Yellow	Orange	
6	Blue	Green	Yellow	Orange	
7	Blue	Green	Yellow	Yellow	
8	Blue	Green	Yellow	Orange	
9	Blue	Green	Orange	Orange	
10	Blue	Green	Yellow	Orange	
11	Blue	Green	Yellow	Orange	
12	Blue	Blue	Yellow	Orange	
13	Blue	Green	Yellow	Orange	
14	Blue	Green	Yellow	Orange	
15	Blue	Green	Yellow	Orange	
Accuracy	100%	93.33%	93.33%	93.33%	

Distance (4cm)					
	Ring				
	Blue Green Yellow		Orange		
Trial					
1	Blue	Green	Orange	Orange	
2	Blue	Green	Orange	Orange	
3	Blue	Blue	Yellow	Orange	
4	Blue	Green	Yellow	Orange	
5	Blue	Green	Yellow	Orange	
6	Blue	Green	Yellow	Orange	
7	Blue	Green	Yellow	Orange	
8	Blue	Green	Yellow	Orange	
9	Blue	Green	Yellow	Orange	
10	Blue	Green	Yellow	Yellow	
11	Blue	Green	Yellow	Orange	
12	Blue	Green	Yellow	Orange	
13	Blue	Green	Yellow	Orange	
14	Blue	Green	Yellow	Orange	
15	Blue	Green	Yellow	Orange	
Accuracy	100%	93.33%	86.67%	93.33%	

Distance (6cm)					
	Ring				
	Blue	Green	Yellow	Orange	
Trial					
1	Blue	Green	Orange	Orange	
2	Blue	Green	Yellow	Yellow	
3	Blue	Green	Yellow	Orange	
4	Blue	Green	Yellow	Orange	
5	Blue	Green	Yellow	Orange	
6	Blue	Green	Orange	Orange	
7	Blue	Blue	Yellow	Orange	
8	Blue	Blue	Yellow	Yellow	
9	Blue	Green	Yellow	Orange	
10	Blue	Green	Yellow	Orange	
11	Blue	Green	Yellow	Orange	
12	Blue	Green	Yellow	Orange	
13	Blue	Green	Orange	Orange	
14	Blue	Blue	Yellow	Orange	
15	Blue	Green	Yellow	Orange	
Accuracy	100%	80.00%	80.00%	86.67%	

The accuracy of the detection was always 80% or above.

Conclusion: Ring detection reliable.

Action: This report will be sent to the software team and hardware team to make necessary changes.

Distribution: Software development, Project Management

Test 9: Odometer

Date: 5/11/18 **Tester:** Ashish **Author:** Ashish

Hardware Version: 1.1 **Software Version:** N/A

Goal: To determine the reliability of the odometer.

Procedure: Set the robot at (0,0) and run the square driver from lab 2. Measure the resulting x and y distances with respect to the starting position of the robot. Compute the Euclidean error, mean value and standard deviation

Expected Results: The Euclidean error should be smaller than 2cm.

Test Report: The test was performed 10 times and the results are shown in the table below:

	Xs	Ys	X	Y	error
Run 1	-1	-0.3	-0.1	-0.21	0.904489
Run 2	-0.6	-0.9	-0.12	-0.65	0.541202
Run 3	0.4	1	0.914	-0.43	1.519571
Run 4	0.7	-1.2	0.13	0.374	1.67403
Run 5	1.6	1	0.103	0.332	1.639278
Run 6	0.3	1.2	0.169	0.09	1.117703
Run 7	-0.6	-0.7	0.192	-0.63	0.795087
Run 8	-2.8	3.2	-0.09	-0.46	4.554086
Run 9	-0.5	0.3	-0.35	0.23	0.165529
Run 10	0.6	-0.4	0.48	-0.246	0.195233
Mean		0.1328	-0.16	1.310621	
Standard deviation			0.337249	0.370893	1.200794

The mean values and Euclidean error were all below 2 cm.

Conclusion: The odometer is reliable in the current hardware configuration

Action: This report will be sent to the software team to make necessary changes.

Distribution: Software development, Project management