Ex. 17.15 Trouver tous les réels a strictement positifs tels que $\forall x > 0, a^x \geqslant x^a$. En déduire lequel des deux nombres e^{π} et π^e est le plus grand.

Cor. 17.15

L'inégalité précédente est équivalente à $x \ln a \geqslant a \ln x$ puisque la fonction ln est croissante, ou aussi à $\frac{\ln a}{a} \geqslant \frac{\ln x}{x}$. Il s'agit donc de trouver, s'il existe, le maximum de la fonction $f:]0, +\infty[\rightarrow \mathbb{R}, \ x \mapsto \frac{\ln x}{x}]$.

Cette fonction est dérivable sur $]0, +\infty[$ et pour tout x > 0, $f'(x) = \frac{1-\ln x}{x^2}$ est nul seulement pour x = e. On a f' > 0 sur]0, e[, f' < 0 sur $]e, +\infty[$ donc f est strictement croissante sur]0, e[et strictement décroissante sur $[e, +\infty[$. Ainsi, f admet un unique maximum, obtenu pour a = e.

On en déduit que $e^{\pi} \geqslant \pi^e$. L'inégalité est même stricte puisque $\pi \neq e$ et que le maximum de f est unique.

Proposition 17.35 (Condition nécessaire et suffisante de stricte monotonie)

Soit une fonction $f: I \to \mathbb{R}$ continue sur I, dérivable sur I avec f' de signe constant sur I. Alors f est strictement monotone si et seulement si f' ne s'annule sur aucun intervalle ouvert non vide.

Démonstration

Supposons f croissante la démonstration étant similaire dans le cas décroissant.

Si f est strictement croissante, alors f n'est constante sur aucun intervalle ouvert non vide, donc sa dérivée n'est pas nulle sur un tel intervalle. On établit la réciproque par contraposée. Si f n'est pas strictement croissante, il existe deux points x et y dans I tels que x < y et $f(y) \leq f(x)$. La restriction de f à [x, y] est donc constante puisque f est croissante. La dérivée de f est alors nulle sur l'intervalle ouvert non vide [x, y].

Ex. 17.16 Montrer que $f: x \in \mathbb{R} \mapsto x + \cos(x)$ est strictement croissante sur \mathbb{R} .

Cor. 17.16

f est dérivable sur \mathbb{R} . Pour tout x dans \mathbb{R} , $f'(x) = 1 - \sin x \ge 0$, donc f est croissante. Par ailleurs, f'(x) = 0 si et seulement si $x = \frac{\pi}{2} + k\pi$ avec $k \in \mathbb{Z}$. Comme f' ne s'annule sur aucun intervalle ouvert non vide, f est une fonction strictement croissante sur \mathbb{R} .

Ex. 17.17 Étudier les variations sur \mathbb{R} de $f: x \mapsto \operatorname{ch} x + \cos x$.

Cor. 17.17

La fonction f est \mathcal{C}^{∞} sur \mathbb{R} . On a $\forall x \in \mathbb{R}$, $f'(x) = \sin x - \sin x$ dont le signe paraît difficile à étudier. Étudions les variations de f'.

 $\forall x \in \mathbb{R}, f''(x) = \operatorname{ch} x - \cos x \geqslant 0$ et f'' s'annule seulement pour x = 0, donc f' est strictement croissante sur \mathbb{R} . Or f'(0) = 0 donc f' est strictement positive sur \mathbb{R}_+^* et strictement négative

sur \mathbb{R}_{-}^{*} .

Donc f est strictement décroissante sur \mathbb{R}_{-} et strictement croissante sur \mathbb{R}_{+} .

IV.5. Limite de la dérivée

Proposition 17.36 (Limite de la dérivée)

Soient $f: I \to \mathbb{R}$ et $a \in I$.

Si f est une fonction continue sur I, dérivable sur $I \setminus \{a\}$ et si $f'(x) \xrightarrow[x \to a]{} l \in \overline{\mathbb{R}}$ alors

$$\frac{f(x) - f(a)}{x - a} \xrightarrow[x \to a]{} l$$

En particulier, si $l \in \mathbb{R}$, f est alors dérivable en a et f'(a) = l.

Démonstration

Soit x un point de $I \setminus \{a\}$. On peut appliquer le théorème des accroissements finis entre a et x puisque f est continue sur [a, x] et dérivable sur [a, x[. Il existe donc $c_x \in]a, x[$ tel que $\frac{f(x)-f(a)}{x-a} = f'(c_x)$. Par encadrement $(a < c_x < x)$, $\lim c_x = a$.

 $\frac{f(x)-f(a)}{x-a} = f'(c_x)$. Par encadrement $(a < c_x < x)$, $\lim_{x \to a} c_x = a$. D'après le théorème de composition des limites, $\lim_{x \to a} \frac{f(x)-f(a)}{x-a} = l$. Ainsi, f est dérivable en a et f'(a) = l.

Remarque

Le théorème précédent permet d'éviter de vérifier « à la main » qu'une fonction est dérivable en un point où elle a été prolongée par continuité lorsque sa dérivée possède une limite en ce point. L'exemple suivant permettra de mieux comprendre sa portée.