#### Kernels and the Kernel Trick

Martin Hofmann

Reading Club "Support Vector Machines"

#### **Optimization Problem**

maximize:

$$W(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_j \alpha_j y_i y_j \langle x_i \cdot x_j \rangle$$

subject to 
$$\alpha_i \geq 0, i = 1, \dots, m$$
 and  $\sum_{i=1}^m \alpha_i y_i = 0$ 

- data not linear separable in input space
  - → map into some feature space where data is linear separable

# Mapping Example

- map data points into feature space with some function  $\phi$
- e.g.:
  - $\phi: \mathbb{R}^2 \to \mathbb{R}^2$
  - $(x_2, x_2) \rightarrow (z_1, z_2, z_3) := (x_1^2, \sqrt{2}x_1x_2, x_2^2)$



• hyperplane  $\langle w \cdot z \rangle = 0$ , as a function of x:

$$w_1 x_1^2 + w_2 \sqrt{2} x_1 x_2 + w_3 x_2^2 = 0$$

#### Kernel Trick

solve maximisation problem using mapped data points

$$W(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_j \alpha_j y_i y_j \langle \phi(x_i) \cdot \phi(x_j) \rangle$$

Dual Representation of Hyperplane ( primal Lagrangian):

$$f(x) = \langle w \cdot x \rangle + b = \sum \alpha_i y_i \langle x_i \cdot x \rangle$$
 with  $w = \sum \alpha_i y_i x_i$ 

- weight vector represented only by data points
- only inner product of data points necessary, no coordinates
- kernel function  $K(x_1, x_2) = \langle \phi(x_i) \cdot \phi(x_i) \rangle$ 
  - $\rightarrow \phi$  not necessary any more
  - → possible to operate in any n-dimensional FS
  - → complexity independent of FS



## **Example Kernel Trick**

$$\vec{x} = (x_1, x_2)$$

$$\vec{z} = (z_1, z_2)$$

$$K(x, z) = \langle \vec{x} \cdot \vec{z} \rangle^2$$

$$K(x, z) = (\vec{x} \cdot \vec{z})^2$$

$$= (x_1 z_1 + x_2 z_2)^2$$

$$= (x_1^2 z_1^2 + 2x_1 z_1 x_2 z_2 + x_2^2 z_2^2)$$

$$= (x_1^2, \sqrt{2} x_1 x_2, x_2^2) \cdot (z_1^2, \sqrt{2} z_1 z_2, z_2^2)$$

$$= (\phi(\vec{x}) \cdot \phi(\vec{z}))$$

mapping function  $\phi$  fused in K

$$\rightarrow$$
 implicit  $\phi(\vec{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$ 

## Typical Kernels

Polynomial Kernel

$$K(x,z) = (\langle x \cdot z \rangle + \theta)^d$$
, for  $d \ge 0$ 

Radial Basis Function (Gaussian Kernel)

$$K(x,z) = e^{-\frac{\|x-z\|^2}{2\sigma^2}}$$
  $\|x\| := \sqrt{\langle x \cdot x \rangle}$ 

(Sigmoid Kernel)

$$K(x,z) = tanh(\eta \langle x \cdot z \rangle + \theta$$

Inverse multi-quadric

$$K(x,z) = \frac{1}{\sqrt{\|x - z\|^2} 2\sigma^2 + c^2}$$

# Typical Kernels Cont.

• Kernels for Sets -  $\chi$ ,  $\chi'$ 

$$K - s(\chi, \chi') = \sum_{i=1}^{N_{\chi}} \sum_{j=1}^{N_{\chi'}} k(x_i, x'_j)$$

where  $k(x_i, x_i')$  is a kernel on elements in  $\chi$ ,  $\chi'$ 

- Kernels for strings (Spectral Kernels) and trees
  - → no one-fits-all kernel
  - → model search and cross-validation in practice
  - → low polynomial or RBF a good initial try

## **Kernel Properties**

Symmetry

$$K(x,z) = \langle \phi(x) \cdot \phi(z) \rangle = \langle \phi(z) \cdot \phi(x) \rangle = K(z,x)$$

Cauchy-Schwarz Inequality

$$K(x,z)^{2} = \langle \phi(x) \cdot \phi(z) \rangle^{2} \leq \|\phi(x)\|^{2} \|\phi(z)\|^{2}$$
$$= \langle \phi(x) \cdot \phi(x) \rangle \langle \phi(z) \cdot \phi(z) \rangle$$
$$= K(x,x)K(z,z)$$

## Making Kernels from Kernels

- create complex Kernels by combining simpler ones
- Closure Properties:

$$K(x,z) = c \cdot K_1(x,z)$$

$$K(x,z) = c + K_1(x,z)$$

$$K(x,z) = K_1(x,z) + K_2(x,z)$$

$$K(x,z) = K_1(x,z) \cdot K_2(x,z)$$

$$K(x,z) = f(x) \cdot f(z)$$

if  $K_1$  and  $K_2$  are kernels,  $\forall f: X \to \mathbb{R}$ , and c > 0

#### **Gram Matrix**

- Kernel function as similarity measure between input objects
- Gram Matrix (Similarity/Kernel Matrix) represents similarities between input vectors
- let  $V = \vec{v}_1, \dots, \vec{v}_n$  a set of input vectors, then the Gram Matrix **K** is defined as:

$$\mathbf{K} = \begin{pmatrix} \langle \phi(\vec{v}_1) \cdot \phi(\vec{v}_1) \rangle & \dots & \langle \phi(\vec{v}_1) \cdot \phi(\vec{v}_n) \rangle \\ \langle \phi(\vec{v}_2) \cdot \phi(\vec{v}_1) \rangle & \ddots & \vdots \\ \vdots & & & \\ \langle \phi(\vec{v}_n) \cdot \phi(\vec{v}_1) \rangle & \dots & \langle \phi(\vec{v}_n) \cdot \phi(\vec{v}_n) \rangle \end{pmatrix}$$

**K** is symmetric and positive semis-definite (positive eigenvalues)

#### Mercer's Theorem

#### assume:

- finite input space  $X = \{x_1, \dots, x_n\}$
- symmetric function K(x, z) on X
- Gram Matrix  $\mathbf{K} = (K(x_i, x_i))_{i=1}^n$
- since K is symmetric there exists an orthogonal matrix V s.t.  $K = V\Lambda V'$
- diagonal  $\Lambda$  containing eigenvalues  $\lambda_t$  of **K**
- and eigenvectors  $\mathbf{v_t} = (v_{ti})_{i=1}^n$  as columns of  $\mathbf{V}$
- all eigenvalues are non-negative and let feature mapping be

$$\phi: \mathbf{x_i} \mapsto \left(\sqrt{\lambda_i} v_{ti}\right)_{t=1}^n \in \mathbb{R}^n, i = 1, \dots, n.$$

then

$$\langle \phi(x_i) \cdot \phi(x_j) \rangle = \sum_{t=1}^n \lambda_t v_{ti} v_{tj} = (\mathbf{V} \Lambda \mathbf{V}')_{ij} = \mathbf{K}_{ij} = K(x_i, x_j)$$

#### Mercer's Theorem Cont.

- every Gram Matrix is symmetric and positive semi-definite
- every spsd matrix can be regarded as a Kernel Matrix, i.e. as an inner product matrix in some space
- diagonal matrix satisfies Mercer's criteria, but not good as Gram Matrix
  - self-similarity dominates between-sample similarity
  - represents orthogonal samples
- generalization for infinite input space
  - eigenvectors of the data in can be used to detect directions of maximum variance
  - kernel principal components analysis

# Summary

- Kernel calculates dot product of mapped data points without mapping function  $\phi$
- represented by symmetric, positive semi-definite Gram Matrix
  - fuses information about data and kernel
- standard kernels (cross validation)
- every similarity matrix can be used as kernel (satisfying Mercer's criteria)
- ongoing research to estimate Kernel Matrix from available data