A comprehensive genomic pan-cancer classification using The Cancer Genome Atlas gene expression data

YuanYuan Li
BCBB retreat poster presentation
09/08/2016

Introduction

- The Cancer Genome Atlas (TCGA) makes available gene-expression profiles using RNA-seq for many human tumor types.
- These profiles provide a great opportunity to identify unique genes that can classify tumor types.
- Those genes may serve as biomarkers for tumor diagnosis and potential targets for drug development
- Gender differences in cancer susceptibility are consistent findings in cancer epidemiology
- Knowing whether the distinguishing features differ between males and females for the same tumor types might enhance their utility as biomarkers
- Our goals are
 - To identify a set of genes whose expression levels classify pan-cancer tumor types when gender is ignored
 - 2. To identify analogous sets of genes for pan-cancer classification in sex non-specific tumors from men and from women separately

TCGA RNAseq data (33 tumor types)

		Number of Samples					
Available cancer types		Pan-cancer	Males	Females			
Adrenocortical carcinoma	ACC	79	31	48			
Bladder urothelial carcinoma	BLCA	408	272	99			
Breast invasive carcinoma	BRCA	1,102	Not used	Not used			
Cervical squamous cell carcinoma and endocervical denocarcinoma	CESC	306	Not used	Not used			
Cholangiocarcinoma	CHOL	36	Not used	Not used			
Colon adenocarcinoma	COAD	287	156	129			
Lymphoid neoplasm diffuse large B-cell lymphoma	DLBC	48	Not used	Not used			
Esophageal carcinoma	ESCA	Not used	159	26			
Glioblastoma multiforme	GBM	169	109	59			
Head and Neck squamous cell carcinoma	HNSC	522	385	137			
Kidney chromophobe	KICH	66	Not used	Not used			
Kidney renal clear cell carcinoma	KIRC	534	346	188			
Kidney renal papillary cell carcinoma	KIRP	291	214	77			
Acute Myeloid Leukemia	LAML	173	93	80			
Brain lower grade glioma	LGG	534	292	241			

Liver hepatocellular carcinoma	LIHC	374	253	121
Lung adenocarcinoma	LUAD	517	240	277
Lung squamous cell carcinoma	LUSC	502	371	131
Mesothelioma	MESO	87	71	16
Rectum adenocarcinoma	READ	95	52	42
Sarcoma	SARC	263	119	144
Skin cutaneous melanoma	SKCM	473	259	156
Stomach adenocarcinoma	STAD	Not used	268	147
Testicular germ cell tumors	TGCT	156	Not used	Not used
Thyroid carcinoma	THCA	513	102	246
Thymoma	THYM	120	63	57
Uterine corpus endometrial carcinoma	UCEC	177	Not used	Not used
Uterine carcinosarcoma	UCS	57	Not used	Not used
Uveal melanoma	UVM	80	45	35
Total		9,096	4,081	2,638

Methods

- Used our in-house GA/KNN (Genetic algorithm/K-nearest neighbors) algorithm for multi-class classification of 31 tumor types
- Randomly split samples into 75/25 training & testing sets (proportional allocation of each tumor type)
- Used the training set to obtain 2,000 near-optimal classifiers (each consisting of 20 genes) from repeated runs
- Applied each resultant near-optimal classifier to the test set
- Compared the predicted class with the true class to calculate training & testing performance
- To see if sex non-specific tumors (not related to reproductive organs) differ between males & females, we repeated the analysis for 23 tumor types separately for males & for females.

Results: pan-cancer 31 tumor types

Enriched gene ontology (GO) terms for the top 200 genes from the pan-cancer

Results: male & female 23 sex nonspecific tumor types

Male testing performance

Female testing performance

Gene ranks male vs female

	Gene	Rank from full female dataset	Rank from full male dataset	Difference (F-M)	Mean (SD) rank from 8 matched male datasets	Difference (F-meanM)
	BNC1	931	44	887	54(16)	877
	FAT2	391	89	302	143(23)	248
	KRT5	327	46	281	165(57)	162
Conoc ranked higher	RNF43	298	93	205	81(14)	217
Genes ranked higher using male samples	S1PR5	280	99	181	98(38)	182
	ANKS4B	244	96	148	115(20)	129
than female samples	CSTA	217	92	125	129(33)	88
	ANXA8	160	47	113	121(36)	39
	KRT8	174	64	110	94(22)	80
	CLRN3	203	97	106	86(15)	117
	FOXA1	81	416	-335	237(92)	-156
	AMY1A	99	369	-270	386(162)	-287
	HPN	73	335	-262	256(94)	-183
	LAD1	44	268	-224	129(40)	-85
Genes ranked higher	PDZK1	82	292	-210	228(79)	-146
using male samples	TMC5	54	240	-186	139(50)	-85
than female samples	KIF12	88	248	-160	324(135)	-236
	STK32A	78	225	-147	123(28)	-45
	CFAP221	80	186	-106	94(21)	-14
	TRIM29	85	187	-102	143(25)	-58
	HOXA11	83	183	-100	291(77)	-208

BNC1 in 23 sex non-specific tumor types

FOXA1 in 23 sex non-specific tumor types

Summary & Conclusion

- Pan-cancer classification (ignoring gender) of 9,096 samples into 31 tumor types using RNA-seq gene expression alone was remarkably accurate.
 - > 90% testing accuracy
 - Classification accuracies were high for except 3 tumors
 - Genes whose expression best discriminated all tumors
 - ~1/3 were pseudogenes
 - ~1/3 were transcription factors
 - and ~1/3 were encoded proteins involved in cell adhesion, ion and small molecular transport, protein synthesis and folding, and lung function

Summary & Conclusion (Cont'd)

- Repeating the analysis for 23 sex non-specific tumor types in males & females separately led to similarly accurate classification in each gender and overlapping but distinct gene lists
 - > 80% of the 100 most discriminative genes were common between males & females
 - Genes that were differentially expressed between male
 & female included: BNC1, FAT2, FOXA1, & HOXA11
- The few top-ranked discriminative genes that differed between males and females might be related to sex differences in tumor incidence and prognosis

THANK YOU!

Pan-cancer word cloud

Male word cloud

Female word cloud

Pan-cancer testing performance

Top 100 ranked genes in males vs females

Male sex-non specific

Female sex-non specific

Male sex-non specific (44 genes)

Female sex-non specific (46 genes)

Type	Sample	ACC	BLCA	BRCA	CESC	•••	THYM	UCS	UVM	Unclassifiable
	S1	0.911	0.000	0.002	0.000	•••	0.000	0.000	0.000	0.041
ACC	S2	0.938	0.000	0.001	0.000	•••	0.000	0.000	0.000	0.028
	S3	0.885	0.000	0.000	0.000	•••	0.000	0.000	0.001	0.038
	S4	0.946	0.000	0.000	0.000	•••	0.000	0.000	0.000	0.019
	S79	0.232	0.001	0.006	0.000	•••	0.000	0.000	0.004	0.304
	S1	0.000	0.823	0.001	0.108	•••	0.000	0.000	0.000	0.048
	S2	0.000	0.138	0.196	0.014	•••	0.007	0.000	0.000	0.376
BLCA	S3	0.000	0.986	0.000	0.000	•••	0.001	0.000	0.000	0.011
BLCA	S4	0.009	0.041	0.006	0.005	•••	0.001	0.000	0.002	0.531
								i i	i	
	S408	0.000	0.983	0.000	0.002	•••	0.000	0.000	0.000	0.008
	S1	0.000	0.000	1.000	0.000	•••	0.000	0.000	0.000	0.000
	S2	0.000	0.000	1.000	0.000	•••	0.000	0.000	0.000	0.000
DDCA	S 3	0.000	0.004	0.978	0.000	•••	0.001	0.000	0.000	0.007
BRCA	S4	0.000	0.001	0.986	0.000	•••	0.001	0.000	0.000	0.006
		•	•					•	•	
	S1102	0.000	0.004	0.979	0.000	•••	0.001	0.000	0.000	0.011
								:		
	S1	0.000	0.000	0.000	0.000	•••	0.000	0.000	0.982	0.000
	S2	0.000	0.000	0.000	0.000		0.000	0.000	1.000	0.000
	S3	0.000	0.000	0.000	0.000		0.000	0.000	0.999	0.000
UVM	S4	0.000	0.000	0.000	0.000		0.000	0.000	0.970	0.001
		i						i	:	
	S80	0.000	0.000	0.000	0.000		0.000	0.000	0.993	0.000

Summary statistics for π_{cc} values when classifying 31 tumor types and ignoring sex of the samples. The rightmost column labeled "overall" is not based on π_{cc} but instead on a prediction using the tumor type to which each sample was assigned most often.

Type							Posterior-like prob.*
ACC	0.228	0.757	0.877	0.831	0.920	0.971	97.0%
BLCA	0.009	0.508	0.811	0.711	0.957	0.997	90.6%
CHOL	0.000	0.006	0.400	0.369	0.504	0.659	73.3%
COAD	0.181	0.769	0.851	0.829	0.906	0.984	98.6%
DLBC	0.653	0.821	0.894	0.870	0.935	0.975	100.0%
GBM	0.463	0.857	0.955	0.910	0.981	0.998	98.6%
HNSC	0.040	0.909	0.980	0.930	0.997	1.000	98.7%
KICH	0.000	0.877	0.919	0.856	0.957	0.992	96.4%
KIRC	0.003	0.980	0.998	0.933	1.000	1.000	95.7%
KIRP	0.000	0.790	0.974	0.853	0.996	1.000	92.1%
LAML	0.886	0.997	0.999	0.992	1.000	1.000	100.0%
LGG	0.562	0.989	1.000	0.972	1.000	1.000	100.0%
LHIC	0.035	0.967	0.991	0.937	0.998	1.000	97.6%
LUAD	0.002	0.877	0.960	0.884	0.990	1.000	95.9%
LUSC	0.019	0.674	0.917	0.780	0.974	1.000	88.0%
MESO	0.000	0.721	0.865	0.757	0.931	0.988	90.0%
PAAD	0.031	0.835	0.961	0.848	0.992	1.000	94.7%
PCPG	0.705	0.984	0.995	0.984	0.999	1.000	100.0%
READ	0.034	0.090	0.136	0.147	0.192	0.279	0.0%
SARC	0.026	0.776	0.908	0.830	0.962	0.998	95.7%
SKCM	0.001	0.930	0.972	0.904	0.986	1.000	96.6%
THCA	0.372	0.998	1.000	0.989	1.000	1.000	100.0%
THYM	0.079	0.904	0.988	0.893	0.998	1.000	94.4%
UCS	0.010	0.062	0.255	0.266	0.405	0.615	60.9%
UVM	0.518	0.951	0.986	0.949	0.996	1.000	100.0%
BRCA	0.010	0.975	0.994	0.967	0.999	1.000	99.4%
CESC	0.001	0.515	0.757	0.681	0.867	0.979	94.1%
OV	0.359	0.954	0.979	0.951	0.992	0.999	100.0%
PRAD	0.527	0.997	0.999	0.987	1.000	1.000	100.0%
TGCT	0.250	0.965	0.997	0.937	1.000	1.000	100.0%
UCEC	0.042	0.518	0.713	0.675	0.864	0.995	95.9%

*Porsterior-like prob. = counts of correct classified testing samples in tumor *i* / no. of samples in tumor *i*