

## TIPOS ESPECIALES DE MATRICES, FACTORACIONES $LL^T$ Y $LDL^T$

ALAN REYES-FIGUEROA MÉTODOS NUMÉRICOS II

(AULA 09) 06.AGOSTO.2024

### Definición

Una matriz  $A \in \mathbb{R}^{n \times n}$  es **diagonalmente dominante** cuando cada entrada de la diagonal principal (en módulo) es mayor o igual que la suma del resto de entradas en la misma fila

$$|a_{ii}| \geq \sum_{j \neq i} |a_{ij}|, \qquad \textit{para todo } i = 1, 2, \dots, n.$$

En caso las desigualdes sean todas estrictas, decimos que A es **estrictamente diagonal dominante**.

#### Ejemplo:

$$A = \begin{pmatrix} 4 & 2 & 0 \\ 3 & 6 & -1 \\ 0 & 3 & -5 \end{pmatrix}, \qquad B = \begin{pmatrix} 5 & 6 & -2 \\ 3 & -1 & 0 \\ -4 & 2 & 1 \end{pmatrix}$$

A es diagonalmente dominante, pero B no. De hecho, A es estrictamente diagonal dominante.

#### **Teorema**

Una matriz estrictamente diagonal dominante A es no singular. En este caso, la eliminación gaussiana se puede realizar en cualquier sistema lineal de la forma  $A\mathbf{x} = \mathbf{b}$  sin intercambios de fila o columna, y los cálculos serán estables respecto al crecimiento del error de redondeo.

<u>Prueba</u>: Considere el sistema  $A\mathbf{x} = \mathbf{o}$  y suponga que existe una solución no trivial  $\mathbf{x} = (x_1, \dots, x_n)^T \in \mathbb{R}^n$  para este sistema. Sea k un índice para el que  $0 < |x_k| = \max_{1 \le j \le n} |x_j|$ . Como  $\sum_{j=1}^n a_{ij}x_j = \mathbf{o}$ , para cada  $i = 1, 2, \dots, n$ , entonces cuando i = k se tiene  $a_{kk}x_k = -\sum_{j \ne k} a_{kj}x_j$ . De la desigualdad triangular

$$|a_{kk}| |x_k| = \Big| \sum_{j \neq k} a_{kj} x_j \Big| \leq \sum_{j \neq k} |a_{kj}| |x_j| \qquad \Rightarrow \qquad |a_{kk}| \leq \sum_{j \neq k} |a_{kj}| \frac{|x_j|}{|x_k|} \leq \sum_{j \neq k} |a_{kj}|.$$

Esta desigualdad contradice la dominancia diagonal estricta de A. Por consiguiente, la única solución para  $A\mathbf{x} = \mathbf{0}$  es  $\mathbf{x} = \mathbf{0}$ . Esto muestra que A es no singular.

Mostramos ahora que las matrices  $U_1, U_2, \dots U_n$  generadas por el proceso de eliminación gaussiana son estrictamente diagonal dominantes. Eso garantiza que en cada etapa el elemento pivote es distinto a cero.

Como  $A = U_1$  es estrictamente diagonal dominante,  $a_{11} \neq 0$  y  $U_2$  se puede calcular.

Además, para  $i = 2, 3, n \ y \ j = 2, 3, \ldots, n$ 

$$u_{ij}^{(2)} = u_{ij}^{(1)} - \frac{u_{i1}^{(1)}}{u_{ii}^{(2)}} u_{1j}^{(2)}$$

Primero,  $u_{i_1}^{(2)} = o$ . La desigualdad triangular implica que

$$\sum_{j=2, j\neq i}^{n} |u_{ij}^{(2)}| = \sum_{j=2, j\neq i}^{n} \left|u_{ij}^{(1)} - \frac{u_{i1}^{(1)}}{u_{ii}^{(2)}} u_{1j}^{(2)}\right| \leq \sum_{j=2, j\neq i}^{n} |u_{ij}^{(1)}| + \sum_{j=2, j\neq i}^{n} \frac{|u_{i1}^{(1)}|}{|u_{ij}^{(2)}|} |u_{1j}^{(2)}|$$

Pero, siendo A es estrictamente diagonalmente dominante, sabemos

$$\sum_{j=2,\,j\neq i}^n |u_{ij}^{(1)}| \leq |u_{ii}^{(1)}| - |u_{i1}^{(1)}| \qquad y \qquad \sum_{j=2,\,j\neq i}^n |u_{1j}^{(1)}| \leq |u_{11}^{(1)}| - |u_{1i}^{(1)}|,$$

por lo que

$$\begin{split} \sum_{j=2, j \neq i}^{n} |u_{ij}^{(2)}| &< |u_{ii}^{(1)}| - |u_{i1}^{(1)}| + \frac{|u_{i1}^{(1)}|}{|u_{11}^{(2)}|} (|u_{11}^{(1)}| - |u_{1i}^{(1)}|) = |u_{11}^{(1)}| + \frac{|u_{i1}^{(1)}| |u_{1i}^{(1)}|}{|u_{11}^{(1)}|} \\ &< \left| |u_{11}^{(1)}| + \frac{|u_{i1}^{(1)}| |u_{1i}^{(1)}|}{|u_{11}^{(1)}|} \right| = |u_{ii}^{(2)}| \end{split}$$

Esto establece la diagonal dominancia para las filas 2, 3, ..., n. La primera fila de  $U_2$  y de  $U_1 = A$  son la misma, por lo que  $U_2$  es estrictamente diagonal dominante.

Este proceso continúa de manera inductiva hasta que se obtiene  $U_n$  triangular superior y estrictamente diagonal dominante. Esto implica que todos los elementos diagonales son no-nulos, y se puede realizar la eliminación gaussiana sin intercambios de fila. La demostración de estabilidad para este procedimiento se puede encontrar en el libro de Wendroff, Theoretical Numerical Analysis.

### Definición

Una matriz simétrica  $A \in \mathbb{R}^{n \times n}$  es **positiva definida** ( $A \succ o$ ), si  $\mathbf{x}^T A \mathbf{x} > o$ ,  $\forall \mathbf{x} \in \mathbb{R}^n$ ,  $\mathbf{x} \neq \mathbf{o}$ .

#### **Observaciones:**

- No todos los autores requieren la simetría. En el libro de Golub y van Loan, para que A sea positiva definida se requiere únicamente que  $\mathbf{x}^T A \mathbf{x} > \mathbf{0}$ , para todo  $\mathbf{x} \neq \mathbf{0}$ .
- Existen definiciones similares:
  - A es positiva semi-definida ( $A \succeq o$ ) si  $\mathbf{x}^T A \mathbf{x} \geq o$ ,  $\forall \mathbf{x} \neq \mathbf{o}$ ,
  - A es negativa definida (A  $\prec$  o) si  $\mathbf{x}^T A \mathbf{x} < \mathbf{o}$ ,  $\forall \mathbf{x} \neq \mathbf{o}$ ,
  - A es negativa semi-definida (A  $\leq$  o) si  $\mathbf{x}^T A \mathbf{x} \leq$  o,  $\forall \mathbf{x} \neq$  o,
  - A es **no definida** si no cumple ninguna de las anteriores.
- El signo de  $\mathbf{x}^T A \mathbf{x}$  clasifica las formas cuadráticas (recordar  $\mathbf{x}^T A \mathbf{x} = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$ ).

**Ejemplo**: La matriz 
$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$
 es definida positiva.

Tomemos  $\mathbf{x} = (x_1, x_2, x_3)^T \in \mathbb{R}^3$ ,  $\mathbf{x} \neq \mathbf{0}$ . Entonces

$$\mathbf{x}^{T} A \mathbf{x} = 2X_{1}^{2} - X_{1}X_{2} - X_{2}X_{1} + 2X_{2}^{2} - X_{2}X_{3} - X_{3}X_{2} + 2X_{3}^{2}$$

$$= X_{1}^{2} + (X_{1}^{2} - 2X_{1}X_{2} + X_{2}^{2}) + (X_{2}^{2} - 2X_{2}X_{3} + X_{3}^{2}) + X_{3}^{2}$$

$$= X_{1}^{2} + (X_{1} - X_{2})^{2} + (X_{2} - X_{3})^{2} + X_{3}^{2} \ge 0.$$

Mas aún, esta suma es cero, únicamente si todos los términos se anulan, y esto se cumple si, y sólo si,  $x_1 = x_2 = x_3 = o$ .

Entonces  $\mathbf{x}^T A \mathbf{x} > \mathbf{0}$ . Esto muestra que A es definida positiva.

#### **Teorema**

Una matriz simétrica A es definida positiva  $\Leftrightarrow$  todos sus autovalores son positivos.

<u>Prueba</u>: ( $\Rightarrow$ ). Supongamos que  $A \succ$  o, y sea  $\lambda$  un autovalor de A. Observe primero que, como A es simétrica,  $\lambda \in \mathbb{R}$ . Por otro lado, existe  $\mathbf{x} \neq \mathbf{0}$  autovector asociado a  $\lambda$   $\Rightarrow A\mathbf{x} = \lambda \mathbf{x}$ . Entonces  $\mathbf{0} < \mathbf{x}^T A \mathbf{x} = \mathbf{x}^T (\lambda \mathbf{x}) = \lambda \mathbf{x}^T \mathbf{x} = \lambda ||\mathbf{x}||_2^2$ . Como  $||\mathbf{x}||_2^2 > \mathbf{0}$ , entonces  $\lambda > \mathbf{0}$ .

( $\Leftarrow$ ) Suponga ahora que  $\lambda_i > 0$  para todo autovalor de A. Por el Teorema Espectral, A posee una base ortonormal de autovectores  $\{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n\}$ , con autovalores asociados  $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n > 0$ . Sea  $\mathbf{x} \in \mathbb{R}^n$ ,  $\mathbf{x} \neq \mathbf{0}$ . Escribimos  $\mathbf{x} = \sum_{i=1}^n c_i \mathbf{q}_i$ , con al menos una  $c_i \neq 0$ . Entonces

Entonces
$$\mathbf{x}^{T}A\mathbf{x} = \left(\sum_{i=1}^{n} c_{i}\mathbf{q}_{i}\right)^{T}A\left(\sum_{i=1}^{n} c_{i}\mathbf{q}_{i}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i}c_{j} \mathbf{q}_{i}^{T}A\mathbf{q}_{j} = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i}c_{j} \mathbf{q}_{i}^{T}(\lambda_{j}\mathbf{q}_{j})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i}c_{j} \lambda_{j}(\mathbf{q}_{i}^{T}\mathbf{q}_{j}) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i}c_{j}\lambda_{j} \delta_{ij} = \sum_{i=1}^{n} c_{i}^{2}\lambda_{i} > 0. \square$$

### **Propiedades**

Si  $A \in \mathbb{R}^{n \times n}$  es una matriz simétrica y positiva definida, entonces

- a) A es no singular,
- b)  $\max_{1 \le j,k \le n} |a_{jk}| \le \max_{1 \le i \le n} |a_{ii}|$ ,
- c)  $a_{ii} > 0$ , para todo i = 1, 2, ..., n,
- d)  $(a_{ii})^2 < a_{ii}a_{ii}$ , para cada  $i \neq j$ .
- e) (Criterio de Sylvester) Todos los determinantes principales menores de  $M_i = A[1:i,1:i]$  y  $N_i = A[i:n,i:n]$ , para i = 1,2,...,n son positivos.

<u>Prueba</u>: (a) Como todos los autovalores  $\lambda_i$  de A son positivos, entonces rank A = n y Ker  $A = \{0\}$ . Esto muestra que A es no singular.

(b) Para cada  $i=1,2,\ldots,n$ , tome  $\mathbf{x}=\mathbf{e}_i$ . Entonces o  $<\mathbf{x}^TA\mathbf{x}=\sum_i\sum_ia_{ij}x_ix_j=a_{ii}$ .

(c) Para cada  $k \neq j$ , definamos  $\mathbf{x} \in \mathbb{R}^n$  por  $\mathbf{x} = \mathbf{e}_j - \mathbf{e}_k = (0, \dots, 0, 1, 0, \dots, 0, -1, 0, \dots, 0)$ ,  $\mathbf{y} = \mathbf{e}_j + \mathbf{e}_k = (0, \dots, 0, 1, 0, \dots, 0, 1, 0, \dots, 0)$ . Resulta

o 
$$< \mathbf{x}^{T} A \mathbf{x} = a_{jj} - a_{jk} - a_{kj} + a_{kk} = a_{jj} - 2_{jk} + a_{kk},$$
  
o  $< \mathbf{y}^{T} A \mathbf{y} = a_{jj} + a_{jk} + a_{kj} + a_{kk} = a_{jj} + 2_{jk} + a_{kk}. < \max_{1 < i < n} |a_{ji}|$ 

Entonces  $2a_{jk} < a_{jj} + a_{kk}$  y  $-2a_{jk} < a_{jj} + a_{kk}$ . Luego

$$|a_{jk}| < \frac{a_{jj} + a_{kk}}{2} \le \max_{1 \le i \le n} |a_{ii}|, \qquad \Rightarrow \qquad \max_{1 \le k, j \le n} |a_{jk}| < \max_{1 \le i \le n} |a_{ii}|.$$

- (d) Para  $i \neq j$ , definimos  $\mathbf{x} = \alpha \mathbf{e}_i + \mathbf{e}_j = (0, \dots, 0, \alpha, 0, \dots, 0, 1, 0, \dots, 0)$ , con  $\alpha \in \mathbb{R}$  arbitrario. Entonces  $0 < \mathbf{x}^T A \mathbf{x} = a_{ii} \alpha^2 + 2 a_{ij} \alpha + a_{jj}$ . Este polinomio cuadrático en  $\alpha$  es siempre positivo, de modo que no posee raíces reales. Entonces su discriminante es negativo. Así,  $4a_{ii}^2 4a_{ii}a_{jj} < 0 \Rightarrow a_{ij}^2 < a_{ii}a_{jj}$ , para todo  $i \neq j$ .
- (e) Pendiente. Se deduce de la descomposición de Cholesky  $A=R^TR$ .  $\Box$

#### **Teorema**

Una matriz simétrica  $A \in \mathbb{R}^{n \times n}$  es positiva definida si, y sólo si, la eliminación gaussiana se puede realizar sin intercambios de fila, y todos los elementos pivote son positivos. Además, en este caso, los cálculos son estables respecto al crecimiento del error de redondeo.

<u>Prueba</u>: Ver libro de WENDROFF, Theoretical Numerical Analysis.

### Eliminación Gaussiana Simétrica

Sea  $A \in \mathbb{R}^{n \times n}$  positiva definida. Nos interesa descomponer A en factores triangulares LU. Si aplicamos un solo paso de la eliminación gaussiana a la matriz A, con un 1 en la primera entrada ( $a_{11} = 1$ ) obtenemos

$$\begin{pmatrix} \mathbf{1} & \mathbf{w}^T \\ \mathbf{w} & K \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{w} & I \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{w}^T \\ \mathbf{0} & K - \mathbf{w} \mathbf{w}^T \end{pmatrix}.$$

Ahora introducimos ceros en la segunda columna. Sin embargo, para mantener la simetría, se hace una variante de la descomposición *LU*, llamada la **factoración de Cholesky**, que primero introduce ceros en la primera fila para coincidir con los ceros recién introducidos en la primera columna de *U*. Podemos hacer esto por una operación triangular superior derecha que resta múltiplos de la primera columna de los siguientes:

$$\begin{pmatrix} \mathbf{1} & \mathbf{w}^{\mathsf{T}} \\ \mathbf{o} & K - \mathbf{w} \mathbf{w}^{\mathsf{T}} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{o} \\ \mathbf{o} & K - \mathbf{w} \mathbf{w}^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{w}^{\mathsf{T}} \\ \mathbf{o} & I \end{pmatrix}.$$

Esta operación es la transpuesta de la triangular inferior arriba.



Tenemos

$$A = \begin{pmatrix} \mathbf{1} & \mathbf{w}^T \\ \mathbf{w} & K \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{w} & I \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & K - \mathbf{w} \mathbf{w}^T \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{w}^T \\ \mathbf{0} & I \end{pmatrix}.$$

La idea de la factorización de Cholesky es continuar este proceso, haciendo cero una columna y una fila de A simétricamente, hasta que se reduce a la identidad.

Para que la reducción triangular simétrica funcione en general, necesitamos una factoración que funcione para cualquier  $a_{11} > 0$ , no sólo el caso  $a_{11} = 1$ . La generalización se logra ajustando algunos de los elementos de la fila 1, por un factor de  $\alpha = \sqrt{a_{11}}$ :

$$A = \begin{pmatrix} a_{11} & \mathbf{w}^T \\ \mathbf{w} & K \end{pmatrix} = \begin{pmatrix} \alpha & \mathbf{0} \\ \frac{\mathbf{w}}{\alpha} & I \end{pmatrix} \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & K - \frac{\mathbf{w}\mathbf{w}^T}{a_{11}} \end{pmatrix} \begin{pmatrix} \alpha & \frac{\mathbf{w}^T}{\alpha} \\ \mathbf{0} & I \end{pmatrix} = R_1^T A_1 R_1.$$

Si la entrada superior izquierda de la submatriz  $K-\frac{\mathbf{w}\mathbf{w}^T}{a_{11}}$  es positiva, el proceso puede repetirse de la mismo forma, para factorizarla. Así,  $A_1=R_2^TA_2R_2$  y  $A=R_1^TR_2^TA_2R_2R_1$ . Continuando este proceso, obtenemos eventualmente



$$A = \underbrace{R_1^T R_2^T \cdots R_n^T}_{R^T} I \underbrace{R_n \cdots R_2 R_1}_{R} = R^T R,$$

donde R es triangular superior, y  $r_{jj} > o$ ,  $\forall j$ . Esta factoración se conoce como la **descomposición**  $LL^T$  o **factoración de** CHOLESKY.

La descripción anterior deja una pregunta. ¿Cómo sabemos que la entrada superior izquierda de la submatriz  $K-\frac{\mathbf{w}\mathbf{w}^T}{a_{11}}$  es positiva? La respuesta es que debe ser positiva porque  $K-\frac{\mathbf{w}\mathbf{w}^T}{a_{11}}$  es positiva definida, ya que es el  $(n-1)\times (n-1)$  submatriz principal inferior derecha de la matriz definida positiva  $R_1^{-T}AR_1^{-1}$ . Por inducción, el mismo argumento muestra que todas las submatrices subsiguientes son definidas positivas, y por lo tanto el proceso no concluye con éxito.

#### **Teorema**

 $A \in \mathbb{R}^{n \times n}$  es simétrica y positiva definida  $\Leftrightarrow$  admite una factoración  $LL^T$ .  $\square$ 

**Algoritmo**: (Factoración de Cholesky ó  $LL^T$ ).

Inputs:  $A \in \mathbb{R}^{n \times n}$  simétrica y positiva definida, Outputs:  $R \in \mathbb{R}^{n \times m}$  tal que  $A = R^T R$ .

Initialize R = A.

for k = 1 to k

El número de operaciones aritméticas es  $O(\frac{1}{3}n^3)$ .

#### **Teorema**

Sea  $A \in \mathbb{R}^{n \times n}$ , simétrica y positiva definida. Si la descomposición de Cholesky de A se calcula mediante el algoritmo anterior en un computador que satisface los axiomas de la aritmética de punto flotante, , entonces ara todo  $\varepsilon_{maq}$  suficientemente pequeño, este proceso está garantizado de ejecutarse hasta el final (es decir, no surgirán entradas pivote cero o negativas  $r_{kk}$ ), generando una matriz  $\widetilde{R}$  que satisface

$$\widetilde{R}^{\mathsf{T}}\widetilde{R} = \mathsf{A} + \delta \mathsf{A}, \qquad \frac{||\delta \mathsf{A}||}{||\mathsf{A}||} \leq \mathsf{O}(\varepsilon_{maq}),$$

para alguna  $\delta A \in \mathbb{R}^{n \times n}$ .

#### **Teorema**

Sea  $A \in \mathbb{R}^{n \times n}$ , simétrica y positiva definida. La solución del sistema  $A\mathbf{x} = \mathbf{b}$  a través de la factoración de Cholesky, es estable hacia atrás, lo que genera una solución calculada que satisface  $(A + \delta A)\widetilde{\mathbf{x}} = \mathbf{b}, \qquad \frac{||\delta A||}{||\mathbf{A}||} = O(\varepsilon_{mag}),$ 

para alguna  $\delta A \in \mathbb{R}^{n \times n}$ .



# Descomposición *LDL*<sup>T</sup>

Una variante de la descomposición de Cholesky es la **descomposición**  $LDL^T$ . Esta tiene la particularidad que evita calcular las raíces cuadradas  $\sqrt{r_{kk}}$  necesarias en el algoritmo de Cholesky.

Para ello, en el primer paso, se factora la matriz como un producto de la forma

$$A = \begin{pmatrix} a_{11} & \mathbf{w}^T \\ \mathbf{w} & K \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \frac{\mathbf{w}}{a_{11}} & I \end{pmatrix} \begin{pmatrix} a_{11} & \mathbf{0} \\ \mathbf{0} & K - \frac{\mathbf{w}\mathbf{w}^T}{a_{11}} \end{pmatrix} \begin{pmatrix} \mathbf{1} & \frac{\mathbf{w}^T}{a_{11}} \\ \mathbf{0} & I \end{pmatrix} = L_1 D_1 L_1^T,$$

donde  $L_1$  es triangular inferior con 1s en la diagonal, y  $D_1$  ahora tiene en si primera entrada el valor  $a_{11}$  en lugar de 1. Continuando este proceso, obtenemos eventualmente

$$A = \underbrace{L_1 L_2 \cdots L_n}_{L} D \underbrace{L_n^T \cdots L_2^T L_1^T}_{L^T} = LDL^T,$$

donde L es triangular inferior con 1's en la diagonal, D es diagonal, y  $d_{jj} > 0$ ,  $\forall j$ . Esta factoración se conoce como la **descomposición**  $LDL^{T}$ .

# Descomposición *LDL*<sup>T</sup>

```
Algoritmo: (Factoración LDL^{T}). 
Inputs: A \in \mathbb{R}^{n \times n} simétrica y positiva definida, 
Outputs: R, D \in \mathbb{R}^{n \times m}, tales que A = R^{T}DR. 
Initialize R = A, D = I. 
for k = 1 to n: D_{kk} = R_{kk}, for j = k + 1 to n: R_{j,k:n} = R_{j,k:n} - (R_{kj}/D_{kk}) R_{k,k:n}, R_{k,k:n} = R_{k,k:n}/D_{kk}.
```

#### **Teorema**

 $A \in \mathbb{R}^{n \times n}$  es simétrica y positiva definida  $\Leftrightarrow$  admite una factoración LDL $^{\mathsf{T}}$ .  $\Box$ 

## Relaciones entre Descomposiciones

Tenemos varias relaciones entre las factoraciones discutidas. Suponemos aquí que  $A \in \mathbb{R}^{n \times n}$  es simétrica y positiva definida.

- Si  $A = LDL^T$ , entonces  $R = D^{1/2}L^T$ , resulta en una factoración de Cholesky para A:  $R^TR = (LD^{1/2})(D^{1/2}L^T) = LDL^T = A$ .
- Si  $A = LDL^T$ , entonces  $U = DL^T$  es triangular superior, y LU resulta en una factoración de Doolitle para A:

$$LU = L(DL^T) = LDL^T = A.$$

 Si A = LDL<sup>T</sup>, entonces Z = LD es triangular inferior, y ZL<sup>T</sup> resulta en una factoración de Crout para A:

$$ZL^{\mathsf{T}} = (LD)L^{\mathsf{T}} = LDL^{\mathsf{T}} = \mathsf{A}.$$

• Si  $A = R^T R$ , entonces haciendo la factoración LU de  $R^T$ , obtenemos  $R^T = LU$ , con L triangular inferior con 1's en la diagonal, y U es diagonal. Luego,  $D = UU^T$  es diagonal y resulta en una factoración  $LDL^T$  para A:  $LDL^T = L(UU^T)L^T = (LU)(U^TL^T) = R^T R = A$ .

### **Aplicaciones**

### La factoración de Cholesky es útil en muchas aplicaciones:

- mínimos cuadrados
- optimización no-lineal (método de NEWTON, DFP, BGFS)
- simulación Monte Carlo
- generación de matrices de covarianza
- filtros de KALMAN

### Implementaciones computacionales:

- LAPACK (Linear Algebra Package, 1970's), Fortran 77.
- LINPACK (Linear Package, 1976, Argone Labs.) Fortran, C.
- BLAS (Basic Linear Algebra Subprograms).

