Bac 2014 Uppgift A1

Simon Freiermuth simon@freiermuth.org

16 April, 2020

a) En stark enprotonig syra HX, är i fast form vid 25 °C. Syran är den enda sura beståndsdelen i ett avkalkningsmedel för kaffemaskiner. Antag att kalkavlagringarna i kaffemaskinen består av $CaCO_3(s)$, och ange ekvationen för reaktionen som kan observeras när avkalkaren gör sitt jobb.

$$CaCO_3(s) \stackrel{H_2O}{\to} Ca^{2+}(aq) + CO_3^{2-}(aq)$$

 $2HX(aq) + CaCO_3(s) \to H_2CO_3 + Ca^{2+} + 2X^{-}$

b) En kommersiell avkalkningsprodukt innehåller 91.0%~HX (massprocent).

För att kunna bestämma molmassan löser man upp 3.00 g av avkalkaren i $5.00 * 10^{-1} dm^3$ destillerat vatten. Ett prov på 20.0 cm^3 titreras med en natriumhydroxid-lösning, NaOH(aq). Lösningens pH antecknas samtidigt som den tillsatta basens volym, V_b , stiger progressivt.

Den resulterande graphen, $pH = f(V_b)$ gav följande information:

$$pH = 1.25 \ n\ddot{a}r \ V_b = 0.00 \ cm^3$$

 $pH = 7.00 \ n\ddot{a}r \ V_b = 11.2 \ cm^3$

i. Skissa den resulterande titreringsgrafen.

Volume of NaOH added $/cm^3$

ii. Visa med hjälp av en uträkning att den initiala koncentrationen av syran är $5.62*10^{-2}\ mol/dm^3$

$$pH = -log([H^+])$$

$$C_{init}(HX) = 10^{-1.25} = 5.62 * 10^{-2} \ mol/dm^{-3}$$

Eftersom syran är stark dissocieras den fullständigt: $[H^+] = C_{init}(HX)$

iii. Beräkna molmassan av syran HX.

$$n = C * V$$

 $n(HX) = 10^{-1.25} * 0.5 = 0.028117 \ mol$

$$n = \frac{m}{M} \rightarrow M = \frac{m}{n}$$

$$m(HX) = m(Avkalkare) * 0.91$$

$$m(HX) = 3.00 * 0.91 = 2.73 q$$

$$M(HX) = \frac{2.73}{0.028117} = 97.0942845965 \ g/mol$$

iv. Beräkna koncentrationen av NaOH(aq)

$$HX + NaOH \rightarrow Na^+ + X^- + H_2O$$

$$n_{init}(HX) = n_{eq}(OH^{-})$$

$$n_{init}(HX) = 10^{-1.25} * 0.02 = 0.0011247 \ mol$$

$$n_{eq}(OH^{-}) = 1.13 * 10^{-3} \ mol$$

$$C = \frac{n}{V}$$

$$C(OH^-) = \frac{1.13*10^{-3}}{0.0112} = 0.01 \ mol/dm^3$$

 \mathbf{v} . Hitta molekylformeln för syran HX.

Fler experiment har igenomförts för att bestämma den procentuella sammansättningen av massan av varje element i syran HX. Följande resultat har noterats:

$$H: 3.10\%, N: 14.4\%, S: 33.3\%, O: 49.5\%$$

Vi utgår ifrån 100g

	Н	N	S	0
Massprocent	3.10%	14.4%	33.3%	49.5%
Antal g	3.10 g	14.4 g	33.3 g	49.5 g
Antal mol	$\frac{3.10}{1.01} = 3.07$	$\frac{14.4}{14.0} = 1.03$	$\frac{33.3}{32.1} = 1.04$	$\frac{49.5}{16.0} = 3.09$

$$H_{3.07}N_{1.03}S_{1.04}O_{3.09} \rightarrow NH_3SO_3$$

$$M_{empirisk}(NH_3SO_3) \ = \ 14 + 3*1 + 32 + 3*16 = 97 \ g/mol$$

$$M(HX) = 97 \ g/mol : \rightarrow NH_3SO_3$$
 är den riktiga molekylformeln