UNIT 2-FORCE VI	ECTORS					
$F_{x} = Fcos(\alpha)$	$F_y = Fco$	s(β)	$F_z = Fcos(\gamma)$	F_{χ}	$\frac{F_y}{(\alpha)} = \frac{F_y}{\sin(\beta)} = \frac{F_y}{\sin(\gamma)} = \frac{F_y}{\sin(\gamma)}$	F
→ → →	(1.60)î + ()î	sin(a	$(\alpha) \sin(\beta) \sin(\gamma)$	
$\vec{r}_{AB} = \vec{r}_B - \vec{r}_A = (x_B - x_A)\hat{i} + (y_B - y_A)\hat{j} + (z_B - z_A)\hat{k}$				$r_{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$		
$\widehat{U}_{AB} = \frac{(x_B - x_A)\widehat{\iota}}{r_{AB}} + \frac{(y_B - y_A)\widehat{\jmath}}{r_{AB}} + \frac{(z_B - z_A)\widehat{k}}{r_{AB}}$				$A_x B_x + A_y B_y + A_z B_z += \vec{A} \cdot \vec{B} = AB \cos(\theta)$		$Bcos(\theta)$
UNIT 3-EQUILIBRUM IN 3D						
F = kx				$\Sigma F_{x,y,z} = 0$		
UNIT 4-FORCE SYSEM RESULTANTS					,	
$ \oint M_{o} = \vec{r} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ r_{x} & r_{y} & r_{z} \\ F_{x} & F_{y} & F_{z} \end{vmatrix} = (r_{y}F_{z} - r_{z}F_{y})\hat{i} - (r_{x}F_{z} - r_{z}F_{x})\hat{j} - (r_{x}F_{y} - r_{y}F_{x})\hat{k} $ $ \vec{M}_{a} = \begin{vmatrix} U_{ax} & U_{ay} & U_{az} \\ r_{x} & r_{y} & r_{z} \\ F_{x} & F_{y} & F_{z} \end{vmatrix} = (r_{y}F_{z} - r_{z}F_{y})U_{ax} - (r_{x}F_{z} - r_{z}F_{x})U_{ay} - (r_{x}F_{y} - r_{y}F_{x})U_{az} $						
UNIT 5-EQUILIBRIUM OF A RIGID BODY $\Sigma F_{x,y,z} = 0$				$\Sigma M_{x,y,z} = 0$		
$ ZP_{x,y,z} = 0 $ UNIT 6-STRUCTURAL ANALYSIS						
M = 2J - 3						
UNIT 7-INTERNAL FORCES – shear and bending moment diagrams						
$\frac{dv}{dt} = -w(x)$				$\frac{dm}{dt} = n(x)$		
$\frac{1}{dx} = -w(x)$			$\frac{dx}{dx} = v(x)$			
$\frac{\frac{dv}{dx} = -w(x)}{\Delta v_{AB} = -\int_{A}^{B} w(x)dx}$				$\frac{dm}{dx} = v(x)$ $\Delta m_{AB} = -\int_{A}^{B} v(x)dx$ $v_{f} = m_{f} = 0$		
$\deg(m(x)) = \deg(v(x)) + 1$				$v_f = m_f = 0$		
UNIT 8-FRICTION						
$F_{\scriptscriptstyle S} = \mu_{\scriptscriptstyle S} N$				$F_k = \mu_k N$		
UNIT 9-CENTER OF GRAVITY AND CENTROID						
$\bar{x} = \frac{\Sigma \tilde{x} w}{1}$			$\bar{x} = \frac{\Sigma \tilde{x} V}{}$	$\bar{x} = \frac{\Sigma \tilde{x} A}{1}$	$\bar{x} = \frac{1}{\bar{x}}$	$=\frac{\Sigma \widetilde{x} L}{L}$
$\sum W$			$\sum V$	$\bar{x} = \frac{\Sigma \tilde{x} A}{\Sigma A}$ $\bar{x} = \frac{\int \tilde{x} dA}{\int dA}$	1	$\sum L$
$\bar{x} = \frac{\Sigma \tilde{x} w}{\Sigma w}$ $\bar{x} = \frac{\int \tilde{x} dw}{\int dw}$			$\bar{x} = \frac{\int x dv}{\int dv}$	$\bar{x} = \frac{\int x dA}{\int dA}$	$\bar{x} =$	$=\frac{\int xut}{\int dl}$
UNIT 10-MOMENTS OF INERTIA						
			ſ .	ſ.		ſ
$I_x = \int_A y^2$	$I_{x} = \int_{A} y^{2} dA \qquad I_{y} = I_{x} = \bar{I}_{x'} + A(d_{y})^{2} \qquad I_{y} = \bar{I}_{x}$		$\int_{A} x^{2} dA$	$J_o = \int_A r^2 dr$		$\int_{A} xydA$
$I_{x} = \bar{I}_{x'} + A$			$=I_{y'}+A(d_x)^2$	$J_o = J_c + A(a)$	$I_{xy} = \bar{I}_{x'}$	$d_{y'} + Ad_x d_y$
$K_{x} = \sqrt{\frac{I_{x}}{A}}$				$K_{y} = \sqrt{\frac{l_{y}}{A}}$		
$I_{u} = \frac{I_{x} + I_{y}}{2} + \frac{I_{x} - I_{y}}{2}\cos(2\theta) - I_{xy}\sin(2\theta)$				$I_{v} = \frac{I_{x} + I_{y}}{2} - \frac{I_{x} - I_{y}}{2} \cos(2\theta) + I_{xy} \sin(2\theta)$ $J_{o} = I_{u} + I_{v} = I_{x} + I_{y}$		
$I_{u} = \frac{I_{x} + I_{y}}{2} + \frac{I_{x} - I_{y}}{2}\cos(2\theta) - I_{xy}\sin(2\theta)$ $I_{uv} = \frac{I_{x} - I_{y}}{2}\sin(2\theta) + I_{xy}\cos(2\theta)$				$J_o = I_u + I_v = I_x + I_y$		
$I_x = \int_A y^2 dm$		$I_{y} = \int_{A}$	L A		^{2}dm	
$I = I_G + md^2$						
GENERAL FORMULA						
→ → → →	. →		$C = \sqrt{A^2 + B^2}$		→ /→ → → →	→ →
$\vec{A} \times \vec{B} = -\vec{B} \times \vec{A} \qquad a(\vec{A} \times \vec{B}) = (a\vec{A}) \times \vec{B} = (\vec{A} \times \vec{B})a = \vec{A} \times (a\vec{B}) \qquad \vec{A} \times (\vec{B} + \vec{D}) = \vec{A} \times \vec{B} + \vec{A} \times \vec{D}$						