Assignment 7 Q3

Find all solutions to the system:

$$2x \equiv 4 \pmod{5}$$

$$3x \equiv 5 \pmod{7}$$

$$7x \equiv 1 \pmod{13}$$

ightharpoons

Since

$$3 \cdot 2 \equiv 1 \pmod{5}$$

$$5 \cdot 3 \equiv 1 \pmod{7}$$

$$2 \cdot 7 \equiv 1 \pmod{13}$$

then equivalently, we rewrite the system as

$$x \equiv 2 \pmod{5}$$

$$x \equiv 4 \pmod{7}$$

$$x \equiv 4 \pmod{13}$$

Since $m_1 = 5, m_2 = 7, m_3 = 13$ are pairwise relatively prime, then $[M_k]_{m_k} \in (\mathbb{Z}/m_k\mathbb{Z})^*$. Now $m = 5 \cdot 7 \cdot 13 = 455$ and consider

$$M_1 = \frac{455}{5} = 91, M_2 = \frac{455}{7} = 65, M_3 = \frac{455}{13} = 35$$

Note that $y_1 = 1$, $y_2 = 4$, $y_3 = 3$, then

$$x = \sum_{k=1}^{n} a_k M_k y_k = 2 \cdot 91 \cdot 1 + 4 \cdot 65 \cdot 4 + 4 \cdot 35 \cdot 3 = 1642 = 277 \pmod{455}$$

Due to the uniqueness of solutions (mod 455), all the solutions to this system are

$$x = 455k + 277, \quad \forall k \in \mathbb{Z}$$

★★★Get familiar with the procedure! Speed up your calculation!

Assignment 8 Q1

Prove that if (a_n) is a sequence that satisfies a linear homogeneous recurrence relation of degree 2 whose characteristic polynomial has only one real root α , then there exists $q_1, q_2 \in \mathbb{R}$ such that for all $n \in \mathbb{N}$,

$$a_n = q_1 \alpha^n + q_2 n \alpha^n$$

▶

Proof. Suppose that the characteristic equation of a_n is $(\lambda - \alpha)^2 = 0$, then we have a linear homogeneous recurrence relation

$$a_n = 2\alpha a_{n-1} - \alpha^2 a_{n-2}, \quad n \ge 2$$

with $a_0 = u$ and $a_1 = v$.

Now we only consider that $\alpha \neq 0$. Otherwise, 0^0 does not make sense. Then we prove that there exists $q_1 = u$ and $q_2 = \frac{v - u\alpha}{\alpha}$ such that for all $n \in \mathbb{N}$,

$$a_n = u\alpha^n + \frac{v - u\alpha}{\alpha}n\alpha^n$$

First, it's easy to see that $a_0 = u\alpha^0 + 0 = u$ and $a_1 = u\alpha + \frac{v}{\alpha}\alpha - u\alpha = v$. For $n \ge 2$,

LHS =
$$a_n = q_1 \alpha^n + q_2 n \alpha^n$$

RHS = $2\alpha a_{n-1} - \alpha^2 a_{n-2}$
= $2\alpha (q_1 \alpha^{n-1} + q_2 (n-1)\alpha^{n-1}) - \alpha^2 (q_1 \alpha^{n-2} + q_2 (n-2)\alpha^{n-2})$
= $(2q_1 - q_1)\alpha^n + q_2 (2n - 2 - n + 2)\alpha^n$
= $q_1 \alpha^n + q_2 n \alpha^n$
= LHS

★★★To prove the existence? Just find it!

Assignment 8 Q4

Find an expression for the terms of the sequence (a_n) that satisfy

$$a_n = 7a_{n-1} - 16a_{n-2} + 12a_{n-3} + n4^n$$

with $a_0 = 3$, $a_1 = 2$, $a_2 = 5$.

▶

The characteristic equation is

$$\lambda^{3} - 7\lambda^{2} + 16\lambda - 12 = 0$$
$$(\lambda - 2)^{2}(\lambda - 3) = 0$$

Hence the homogeneous part of (a_n) has the form

$$a_n = q_1 2^n + q_2 n 2^n + q_3 3^n$$

Since $f'(n) = n4^n$, then we guess the particular solution is

$$p(n) = c_0 n 4^n + c_1 4^n$$

This requires

$$c_0 n 4^n + c_1 4^n = 7(c_0(n-1)4^{n-1} + c_1 4^{n-1}) - 16(c_0(n-2)4^{n-2} + c_1 4^{n-2})$$

$$+ 12(c_0(n-3)4^{n-3} + c_1 4^{n-3}) + n4^n$$

$$= (16 + 15c_0)n4^{n-2} + (15c_1 - 5c_0)4^{n-2}$$

$$\begin{cases} c_0 = 1 + \frac{15}{16}c_0 \\ c_1 = \frac{15}{16}c_1 - \frac{5}{16}c_0 \end{cases} \Rightarrow \begin{cases} c_0 = 16 \\ c_1 = -80 \end{cases}$$

This means that (a_n) has the form

$$a_n = q_1 2^n + q_2 n 2^n + q_3 3^n + 16n4^n - 80 \cdot 4^n$$

Thus

$$\begin{pmatrix}
1 & 0 & 1 & | & -3 - (-80) \\
2 & 2 & 3 & | & 2 - (-256) \\
4 & 8 & 9 & | & 5 - (-768)
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 0 & 0 & | & 28 \\
0 & 1 & 0 & | & \frac{55}{2} \\
0 & 0 & 1 & | & 49
\end{pmatrix}$$

Thus

$$a_n = 28 \cdot 2^n + \frac{55}{2}n2^n + 49 \cdot 3^n + 16n4^n - 80 \cdot 4^n$$

 $\star\star\star$ For particular solutions, start from the multiplicity of s

Assignment 8 Q5

For all $n \in \mathbb{N} \setminus \{0\}$, let

$$a_n = \sum_{i=1}^n i^4$$

By finding a recurrence relation that (a_n) satisfies and solving that recurrence relation, find an expression for the terms of the sequence (a_n) .

▶

$$a_n = a_{n-1} + n^4, \quad a_1 = 1$$

Since $\lambda = 1$, then the homogeneous part of (a_n) is $q_1 1^n = q_1$. On the other hand, since $n^4 = n^4 \times 1^n$, the particular part is

$$p(n) = c_5 n^5 + c_4 n^4 + c_3 n^3 + c_2 n^2 + c_1 n$$

Thus

$$c_5n^5 + c_4n^4 + c_3n^3 + c_2n^2 + c_1n$$

$$= c_5(n-1)^5 + c_4(n-1)^4 + c_3(n-1)^3 + c_2(n-1)^2 + c_1(n-1) + c_0 + n^4$$

$$= c_5n^5 + (c_4 - 5c_5 + 1)n^4 + (c_3 - 4c_4 + 10c_5)n^3 + (c_2 - 3c_3 + 6c_4 - 10c_5)n^2$$

$$+ (c_1 - 2c_2 + 3c_3 - 4c_4 + 5c_5)n - c_1 + c_2 - c_3 + c_4 - c_5$$

$$\begin{cases} c_4 = c_4 - 5c_5 + 1 \\ c_3 = c_3 - 4c_4 + 10c_5 \\ c_2 = c_2 - 3c_3 + 5c_4 - 10c_5 \\ c_1 = c_1 - 2c_2 + 3c_3 - 4c_4 + 5c_5 \\ 0 = -c_1 + c_2 - c_3 + c_4 - c_5 \end{cases} \Rightarrow \begin{cases} c_5 = \frac{1}{5} \\ c_4 = \frac{1}{2} \\ c_3 = \frac{1}{3} \\ c_2 = 0 \\ c_1 = -\frac{1}{30} \end{cases}$$

This means that (a_n) has the form

$$a_n = q_1 + \frac{1}{5}n^5 + \frac{1}{2}n^4 + \frac{1}{3}n^3 - \frac{1}{30}n$$

Since $a_1 = 1$, then $q_1 = 0$ Thus

$$a_n = \frac{1}{5}n^5 + \frac{1}{2}n^4 + \frac{1}{3}n^3 - \frac{1}{30}n$$

 $\star\star\star$ When f'(n) is a polynomial, imagine 1^n

Assignment 8 Q6

Q6. Solve the simultaneous recurrence relations

$$\begin{cases} a_n = 3a_{n-1} + 2b_{n-1} \\ b_n = a_{n-1} + 2b_{n-1} \end{cases}$$

with $a_0 = 1$ and $b_0 = 2$.

We multiply the second equation by 3

$$\begin{cases} a_n = 3a_{n-1} + 2b_{n-1} \\ 3b_n = 3a_{n-1} + 6b_{n-1} \end{cases}$$

Then we subtract the difference back to the second equation

$$a_n = 3b_n - 4b_{n-1}$$

$$b_n = (3b_{n-1} - 4b_{n-2}) + 2b_{n-1}$$

$$= 5b_{n-1} - 4b_{n-2}$$

Since $a_0 = 1$ and $b_0 = 2$, then $b_1 = a_0 + 2b_0 = 5$.

Thus $b_n = 1 + 4^n$.

Similarly, $a_n = 5a_{n-1} - 4a_{n-2}$ with $a_0 = 1$ and $a_1 = 7$. Thus $a_n = -1 + 2 \cdot 4^n$ Therefore,

$$a_n = -1 + 2 \cdot 4^n$$
$$b_n = 1 + 4^n$$

★★★ Substitution!

Assignment 8 Q11

Prove that if $n \in \mathbb{N}$ with $n \geq 4$, then there exists a 3-regular graph of order n if and only if n is even.

>

Proof. \Rightarrow : Since it's a 3-regular graph, we obtain the total edge number

$$|E| = \frac{3|V|}{2} = \frac{3n}{2}$$

Since |E| has to be an integer, then n is even.

 \Leftarrow : Since *n* is even, then we apply induction.

Let P(n) be that for all $n \geq 4$ and n is even, there exists a 3-regular graph.

P(4) holds since K_4 .

Assume P(k) holds. For n = k + 2, here gives the procedure to get a 3-regular graph with order k + 2 (denoted as G_{k+2}) from a 3-regular graph with order k (denoted as G_k).

- 1. Consider a pair of new vertices with new edge (v_k, v_{k+1})
- 2. Break an arbitrary edge (v_0, v_1) from G_k . Build edges (v_0, v_k) and (v_1, v_k)
- 3. Break an arbitrary edge (v_2, v_3) from G_k . Build edges (v_2, v_k) and (v_3, v_k)

The degree of every vertex is 3. P(k+2) holds.

Thus P(n) holds for $n \geq 4$ and n is even.

Assignment 8 Q13

Let G be a graph of order 10 and size 15.

1. Is it the case that $\Delta(G) \geq 3$?

▶

Proof. Suppose $\Delta(G) \leq 2$, then

$$|E| = 15 = \frac{\sum d_G(v)}{2} \le \frac{|V| \times \Delta(G)}{2} \le \frac{|V| \times 2}{2} = |V| = 10$$

which leads to contradiction.

Hence $\Delta(G) \geq 3$ holds.

- 2. Is it the case that $\delta(G) \geq 2$?
 - •

Proof. Find a counterexample where $\delta(G) = 0$

 $\star\star\star$ Understand $\delta(G)$ and $\Delta(G)$! Use it in inequalities!

Figure 1: order= 10, size= 15