# Projet Spectre GUI: Identification d'un instrument de musique à partir de métadonnées spectrales

Amine Iklil Maxime Blanchard Marie Harnois



**Juin 2023** 

**Diginamic: Consultant Data analyst POEC PIC ATLAS** 

#### Introduction

Le son est une forme de donnée lorsqu'il est numérisé et stocké:

L'analyse du Big Data sur les données sonores présente plusieurs avantages et applications potentielles :

- 1. Reconnaissance vocale et transcription automatique
- 2. Surveillance et sécurité
- 3. Analyse musicale
- 4. Détection d'anomalies
- 5. Analyse de sentiment

Ces applications montrent comment l'analyse du Big Data sur les données sonores peut être appliquée dans divers domaines pour extraire des informations précieuses, améliorer les performances et prendre des décisions éclairées..

#### **Problématique**

Les instruments de musique produisent des caractéristiques spectrales spécifiques qui peuvent être exploitées pour les différencier. Cependant, cette tâche présente des défis techniques importants.

Construction d'une base de données d'instruments.

Extraction des métadonnées spectrales.

Adaptation aux variations en termes de tonalité, d'articulation, de dynamique et de technique de jeu.

Validation expérimentale afin d'évaluer l'efficacité de l'approche proposée et des tests.

#### **Problématique**

Les instruments de musique produisent des caractéristiques spectrales spécifiques qui peuvent être exploitées pour les différencier. Cependant, cette tâche présente des défis techniques importants.

Classification et apprentissage automatique:
Les métadonnées spectrales extraites des enregistrements audios doivent être utilisées pour former des modèles de classification capables de distinguer les différents instruments de musique.



#### Plan de présentation

- 1. Analyse et import des données
- 2. Description des datasets
- 3. Traitement complexe des données
- 4. Interaction avec l'utilisateur Application Projet spectre GUI

**Analyse et import des données** 

### Explorations de la base de données

Le jeu de données se base sur une bibliothèque de son qui comporte des bandes de son issue d'instruments de musique de différentes catégories (https://theremin.music.uiowa.edu/).

- 1. Elle contient 1304 Instruments
- 2. Chaque instrument à un potentiel d'enregistrement de 10 fichiers audio
- 3. Chaque fichier comporte potentiellement plusieurs notes

Fonction python : Web-scraping.py permet de télécharger la base de données depuis le site

#### **Description des fichiers audios**

Chaque fichier comporte potentiellement plusieurs notes et informations

Informations nominatives issues du nom du fichier

type instrument - option - Note & octave - dynamique - pitched – instrument.

Les noms des fichiers ne sont pas standardisés

Informations numériques issues de la piste audio

Signal (Donnée brut .aiff)

Nécessite un traitement du signal pour générer plus d'information sur l'enregistrement

□ Problématique : Les noms des fichiers ne sont pas standardisés

Fichier python : unzipper.py permet de dézipper les fichiers contenant les enregistrements de chaque instrument

Fichier python: rename.py permet de changer les noms de tous les 500 fichiers contenants les enregistrements.

La gestion des Path est automatisé durant ce processus

□ Problématique : Nécessite un traitement du signal pour générer plus d'information sur l'enregistrement

Fonction python : traitement\_du\_signal\_spliteur permet de découper les signaux en fonction des silences



□ Problématique : Nécessite un traitement du signal pour générer plus d'information sur l'enregistrement

Fonction python : traitement\_du\_signal\_spliteur permet de découper les signaux en fonction des silences



□ Problématique : Nécessite un traitement du signal pour générer plus d'information sur l'enregistrement

Fonction python : parameter\_extractor permet de détecter les max des premières harmoniques et les max harmonique



**Description des deux datasets** 

#### Création de la base de données

#### Import des données dans MongoDB

schéma validator + configuration insertion des enregistrements et les spectres
Sous forme d'array

```
_id: ObjectId('649ac09aea0190af17b6318c')
pitched: true
type: "altoflute"
instrument: "theremin"
option: "nooption"
note: "C4"
dynamique: "ff"
> signal: Array
> spectre: Array
> harmonique_amplitude: Array
> harmonique_fondamental: Array
> harmonique_equ: Array
```

```
# Définir le schéma des documents de la collection
schema = {
    "$isonSchema": {
        "bsonType": "object",
        "required": ["pitched", "type", "instrument", "option", "dynamique",
                     "fichier octave", "signal", "spectre",
                     "harmonique amplitude", "harmonique fondamental",
                     "harmonique distance entre harmonique",
                     "Note_first_harmonique", "Note_max_harmonique"],
        "properties": {
            "pitched": {"bsonType": "bool"},
            "type": {"bsonType": "string"},
            "instrument": {"bsonType": "string"},
            "option": {"bsonType": "string"},
            "dynamique": {"bsonType": "string"},
            "fichier_octave" : {"bsonType": "string"},
            "signal": {"bsonType": "array"},
            "spectre": {"bsonType": "array"},
            "harmonique amplitude": {"bsonType": "array"},
            "harmonique fondamental": {"bsonType": "array"}.
            "harmonique distance entre harmonique": {"bsonType": "array"},
            "Note_first_harmonique": {"bsonType": "string"},
            "Note_max_harmonique" : {"bsonType": "string"},
```

#### Création de la base de données

#### **Première collection**

84 enregistrements

Les différentes caractéristiques de chaque document :

type instrument : altoflute, trumpet, bassflute, bbclar, flute,

bassclarinet, sopsax

option: nooption, nonvib

note et octave: C#4, F4, A4, C4, D4, E4, F#4, D#4, G#4, G4, A#4,

**B4** 

dynamique: ff, mf

pitched: True

instrument: theremin

signal et spectre : informations numériques (array) issues de l'audio

12 notes pour chacun des 7 fichiers  $\rightarrow$  84 enregistrements



#### Création de la base de données

#### **Deuxième collection**

1304 enregistrements

Les différentes caractéristiques de chaque document :

instrument : flute, bbclar, sopsax, bassclarinet, bassarco, trumpet, altosax, ebclar, altoflute,

bassflute, horn, violinarco

option: nooption, nonvib, vib, suld, sule, sula, sulg

note et octave: 0, A#2/Bb2, A#3/Bb3, A#4/Bb4, A#5/Bb5, A#6/Bb6, A#7/Bb7, A2, A3, A4, A5, A6,

A7, B1, B2, B3, B4, B5, B6, B7, C#2/Db2, C#3/Db3, E2, E3, E4, E5, E6, E7, F#2/Gb2, ...,

G#6/Ab6, G2, G3, G4, G5, G6, G7

dynamique: ff, mf

pitched: True

type instrument: theremin

signal et spectre : informations numériques (array) issues de l'audio

#### Doublons dans la deuxième collection

#### **Deuxième collection :** 1304 enregistrements

Chaque combinaison instrument/dynamique/option contient 12 enregistrements (12 notes)

| instrument                   | nombre enreg |
|------------------------------|--------------|
| [bassclarinet, mf, nooption] | 6.0          |
| [bbclar, mf, nooption]       | 6.0          |
| [ebclar, mf, nooption]       | 4.0          |
| [flute, mf, vib]             | 4.0          |
| [sopsax, mf, nonvib]         | 4.0          |
| [flute, mf, nonvib]          | 4.0          |
| [bbclar, ff, nooption]       | 3.0          |
| [bbclar, pp, nooption]       | 3.0          |
| [bassclarinet, ff, nooption] | 2.0          |
| [altoflute, mf, nooption]    | 2.0          |
| [flute, ff, nonvib]          | 2.0          |
| [sopsax, mf, vib]            | 2.0          |
| [sopsax, pp, nonvib]         | 2.0          |
| [sopsax, ff, vib]            | 2.0          |
| [altoflute, ff, nooption]    | 2.0          |
| [trumpet, mf, nonvib]        | 2.0          |
| [flute, pp, vib]             | 2.0          |
| [flute, ff, vib]             | 2.0          |
| [sopsax, ff, nonvib]         | 2.0          |
| [altosax, mf, vib]           | 2.0          |
| [trumpet, pp, nonvib]        | 2.0          |
| [erampee, pp, nonvib]        | 2.0          |

**Deuxième collection:** 1304 enregistrements

L'instrument le plus représenter est la flute

L'instrument le moins représenter sont le violon – basse flute - Horn



**Deuxième collection:** 1304 enregistrements

L'option le plus représenter est sans option

L'option le plus représenter est sulg



**Deuxième collection:** 1304 enregistrements

La dynamique le plus représenter pp

La dynamique le plus représenter est pp



**Deuxième collection:** 1304 enregistrements



**Deuxième collection:** 1304 enregistrements



#### **Notes manquantes**

#### **Deuxième collection :** 1304 enregistrements





#### Premiers résultats Traitement complexe des données

#### **Spectre de la note C4**

Première collection: 84 enregistrements



Première harmonique superposée pour tous les instruments. Changement reflétant un changement de timbre

#### Spectre de la trompette pour C4 E4 et G4

**Première collection :** 84 enregistrements



## Exemple de signaux pour la note C4

Première collection: 84 enregistrements



#### Distribution des modalités d'instruments

**Deuxiéme collection : 1304** enregistrements



#### Requête d'agrégation

**Deuxième collection : 1304** enregistrements

Cette requête permet d'obtenir le nombre d'enregistrements présent dans la base en fonction de l'instrument et de la note (1ère harmonique) sur l'octave 4

## Nombre d'enregistrements par instrument/note

**Deuxième collection : 1304** enregistrements

La flute est l'instrument le plus représenter sur l'octave 5





#### **Exemple de vues**

**Deuxième collection : 1304** enregistrements

Cette vue permet d'avoir tous les enregistrements pour la trompette.

```
pipeline = [{"$match": {"instrument": "trumpet"}}]
view = db.command("create", "vue_instrument_trumpet",
     viewOn="collection", pipeline = pipeline)
```

## Interaction avec utilisateur – Application projet spectre GUI



## **Projet Spectre GUI**

**Deuxième collection : 84** enregistrements

Interface graphique qui permet à l'utilisateur de sélectionner un fichier audio parmi la base de données (84 enregistrements) et d'afficher le signal et le spectre correspondant



#### **Conclusion et perspective**

- Proportion d'instrument/option/dynamique où Note max harmonique = Note 1st harmonique et Note max harmonique != Note 1st harmonique
- Exemple : pour Note\_max\_harmonique = C5, on a 79% de correspondance avec la Note\_first\_harmonique et 21% de non-correspondance

```
{'Note_max_harmonique': 'C5', 'Note_first_harmonique': 'F3'} : 4
{'Note_max_harmonique': 'C5', 'Note_first_harmonique': 'C5'} : 26
{'Note_max_harmonique': 'C5', 'Note_first_harmonique': 'C4'} : 3
```

- Comportement de l'instrument : par exemple, déterminer les instruments octaviens
- Améliorer le splitter