Example 10 (Solutions) — RSA Digital Signatures

Quick reminders

- Letter \leftrightarrow number map (used by the text): A \rightarrow 00, B \rightarrow 01, ..., I \rightarrow 08, J \rightarrow 09, ..., Z \rightarrow 25.
- Make fixed-size blocks so each block m satisfies $0 \le m < n$.
- Sign one block: $s \equiv m^d \pmod{n}$. Verify: $m' \equiv s^e \pmod{n}$; accept iff m' = m.
- Fast modular exponentiation (square—and—multiply) is the tool for computing $a^b \mod n$ efficiently.

Textbook walkthrough (signature for "MEET AT NOON")

Public key (n, e) = (2537, 13) and private key d = 937 (from Ex. 9). Blocks of the message (using A=00,...,Z=25): 1204 0419 0019 1314 1413.

Signer (Alice) computes the signature blocks

$$s_i \equiv m_i^d \pmod{2537}$$
.

With fast modular exponentiation (or a calculator), this yields

Verifier (anyone) checks

$$m_i' \equiv s_i^e \pmod{2537}.$$

Raising each block above to the 13th power modulo 2537 gives back

which matches Alice's original blocks, so the signature is valid. Because only the holder of d can produce blocks that verify under e, recipients are convinced the message came from Alice.

Practice Solutions

Problem A (easier)

Task. With (n, e, d) = (77, 13, 37), sign the message HI and verify.

Block set-up. Since n = 77 < 100, we must use *two-digit* blocks:

$$HI \longrightarrow 07.08 \quad (A = 00, ..., I = 08).$$

Sign each block: $s \equiv m^{37} \pmod{77}$.

m = 07. Write 37 = 32 + 4 + 1. Square-and-multiply (all mod 77):

$$7^1 = 7$$
, $7^2 = 49$, $7^4 = 14$, $7^8 = 42$, $7^{16} = 70$, $7^{32} = 49$.

So $7^{37} \equiv 7^{32} \cdot 7^4 \cdot 7 \equiv 49 \cdot 14 \cdot 7 \equiv 28 \pmod{77}$.

m = 08. Powers (mod 77):

$$8^1 = 8$$
, $8^2 = 64$, $8^4 = 15$, $8^8 = 71$, $8^{16} = 36$, $8^{32} = 64$.

Hence $8^{37} \equiv 8^{32} \cdot 8^4 \cdot 8 \equiv 64 \cdot 15 \cdot 8 \equiv 57 \pmod{77}$.

Signature blocks: 28 57

Verify: compute $m' \equiv s^{13} \pmod{77}$. One can reuse the tables above or a calculator:

$$28^{13} \equiv 7 \pmod{77}$$
 and $57^{13} \equiv 8 \pmod{77}$.

Thus we recover $07.08 \Rightarrow \text{HI}$. \checkmark

Problem B (similar)

Task. With (n, e, d) = (2537, 13, 937), sign OK and verify.

Blocks. n=2537 allows 4-digit blocks. OK $\rightarrow 14\ 10 \Rightarrow m=1410$.

Sign: $s \equiv 1410^{937} \pmod{2537} = \boxed{0802}$

Verify: $s^{13} \equiv 802^{13} \equiv 1410 \pmod{2537} \Rightarrow \text{back to OK. } \checkmark$

(Computation notes.) A short binary-exponent table for 1410^{2^k} mod 2537 plus multiply on 1-bits of 937 (binary = 1110101001_2) reproduces the result efficiently; a CAS or Python also confirms 802.

Problem C (harder)

Task. Using public key (2537, 13), check whether the claimed signature

0817 0555 1310 2173 1026

matches the message "MEET AT NOON".

Verification. Raise each s_i to the 13th power mod 2537:

```
0817^{13} \equiv 1204, \ 0555^{13} \equiv 0419, \ 1310^{13} \equiv 0019, \ 2173^{13} \equiv 1314, \ 1026^{13} \equiv 1413 \ (\text{mod}2537).
```

These are exactly the blocks for "MEET AT NOON," so the signature is valid. If even one block failed to match, we would reject the signature immediately.

Teaching notes, tips, and gotchas (for review)

- Block sizing matters. Always choose the largest even number of digits so each block m is < n. Small n (like 77) means 2-digit blocks; n = 2537 allows 4-digit blocks.
- **Signature vs. encryption.** Sign with the *private* exponent d; anyone verifies with the *public* exponent e. (Encrypting for secrecy goes the other way.)
- Square—and—multiply is your friend: precompute $a^1, a^2, a^4, a^8, \ldots$ mod n and multiply the powers that correspond to 1-bits of the exponent.

• Common mistakes:

- Mixing the A=0 mapping (00-25) with A=1. Stick to A=00,...,Z=25 for RSA in this section.
- Building a block $\geq n$. If that happens, reduce the block size.
- Forgetting leading zeros when translating back (e.g., 0419 not 419).