Scilab Textbook Companion for Electronic Devices And Circuits by K. L. Kishore¹

Created by
Laxman Ghanasham Sole
B.Tech.
Electronics Engineering
Vishwakarma Institute of Technology, Pune
College Teacher
Prof. Vijay Mane
Cross-Checked by
Lavitha Pereira

May 24, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electronic Devices And Circuits

Author: K. L. Kishore

Publisher: BS Publications, Hyderabad

Edition: 1

Year: 2008

ISBN: 81-7800-167-5

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	List of Scilab Codes	
1	Electron Dynamics and CRO	5
2	Junction Diode Characteristics	14
3	Rectifiers Filters and Regulators	35
4	Transistor Characteristics	44
5	Transistor biasing and Stabilization	54
6	Amplifiers	64
7	Feedback Amplifiers	69

List of Scilab Codes

Exa 1.1	speed of electron in electric field	5
Exa 1.2	speed of electron and position of applied AC voltage	
	point	6
Exa 1.3	effect of electric filed on electron	6
Exa 1.4	calculation of potential	7
Exa 1.5	Application of magnetic field on electron	7
Exa 1.6	calculation of transit time	8
Exa 1.7	time of flight under electric field	9
Exa 1.8	velocity of electron	9
Exa 1.9	application of electric and magnetic filed	9
Exa 1.10	distance travelled in helical path	10
Exa 1.11	Deflection sensitivity	11
Exa 1.12	displacement angle and velocity of electron in CRT	11
Exa 1.13	Calculation of transverse magnetic field	12
Exa 1.14	effect of earths magnetic filed on deflection in CRT	13
Exa 2.1	radius of the lowest state of Ground State	14
Exa 2.2	no of photons emitted per second by lamp	14
Exa 2.3	Speed of ejected electron	15
Exa 2.4	speed of electron in sodium vapour lamp	15
Exa 2.5	radio transmitter	16
Exa 2.6	Neon Ionization	16
Exa 2.8	wavelength of photon	17
Exa 2.9	High field emission	17
Exa 2.10		18
Exa 2.11	effect of temperature on emission	19
Exa 2.12	RF voltage frequency in cyclotron	19
Exa 2.13	Emission current and cathode efficiency	20
Exa 2.14	resistivity of doped material	20

Exa 2.15	conductivity and resistivity of pure silicon	21
Exa 2.16	concentration of free electrons and holes	21
Exa 2.17	concentration of free electrons and holes	22
Exa 2.18	concentration of free electrons and holes in p type Ge	
	and n type Si	22
Exa 2.19	conduction current density	23
Exa 2.20	concentration of free electrons and holes in Ge	23
Exa 2.21	intrinic concentration and conductivity of Germanium	24
Exa 2.22	resistivity of intrinsic Germanium at room temperature	24
Exa 2.23	Fermi level of p type Ge	25
Exa 2.24	Distance of Fermi level from centre of forbidden bond	25
Exa 2.25	Temperature for which conduction band and fermi level	
	coincides	26
Exa 2.26	distance between valence band and Fermi level	26
Exa 2.27	doping concentration for given fermi level	27
Exa 2.28	Distance of Fermi level from centre of forbidden bond	27
Exa 2.29	Einstein relationship	28
Exa 2.30	Hall Effect	28
Exa 2.31	Reverse saturation current in diode	29
Exa 2.32	AC and DC resistance of Ge diode	29
Exa 2.33	width of the depletion layer	30
Exa 2.34	dynamic forward and reverse resistance of a p n junction	
	diode	30
Exa 2.35	zener breakdown voltage	31
Exa 2.36	Effect of bias on capacitance of a diode	32
Exa 2.37	Zener As voltage regulator	32
Exa 2.39	Zener As voltage regulator	33
Exa 2.40	forward snd reverse current ratios	33
Exa 2.41	PN junction diode as Resistance	34
Exa 2.42	Zener As voltage regulator	34
Exa 3.1	Ripple Factor	35
Exa 3.2	diode as a rectifier	36
Exa 3.4	Full scale reading of voltmeter	37
Exa 3.5	FWR with LC filter	37
Exa 3.6	Ripple Factor	38
Exa 3.7	power supply using pi filter	38
Exa 3.8	Diode rating for FWR	39
Exa 3.9	FWR with C type capacitor filter	40

Exa 3.10	Half Wave Rectifier	40
Exa 3.11	FWR with C type capacitor filter	41
Exa 3.12	Full wave rectifier circuit	41
Exa 3.13	Shunt regulator	42
Exa 4.1	minimum base current to work transistor in saturation	
	region	44
Exa 4.5	maximum allowable value of RB for transistor in cut off	44
Exa 4.6	temperature increase before transistor comes of cut off	45
Exa 4.7	calculation of ib ic and vbc for transistor AF 114	45
Exa 4.8	calculation of resistance in CE configuration	46
Exa 4.9	Barrier Potential	47
Exa 4.10	Av Ai and Ap of transistor in CB configuration	47
Exa 4.11	Av Ai and Ap of Transistor in CE configuration	47
Exa 4.12	Junction voltages for open collector transistor	48
Exa 4.13	variation in Vi corresponding to variation in Vo	48
Exa 4.14	Design of bias circuit for zero drain current drift	49
Exa 4.15	pinch off voltage	50
Exa 4.16	pinch off voltage	50
Exa 4.17	pinch off voltage and channel half width	51
Exa 4.20	design of self bias circuit	51
Exa 4.21	Voltage gain and output impedance of common source	
	amplifier	52
Exa 4.22	calculation of Vgs Id and Vds	52
Exa 5.1	Quiescent Point and Stability Factor of CE amplifier .	54
Exa 5.2	Stability Factor	55
Exa 5.3	Stability Factor and Quiescent Point	55
Exa 5.5	Stability factor and Rb for 2N780 connected in collector	
	to base bias	56
Exa 5.6	Stability factor and Rb for CE configuration	56
Exa 5.7	calculation of parameters of two identical Si transistors	57
Exa 5.8	Quiescent Point and Stability Factor for self bias arrang-	
	ment	58
Exa 5.9	Self bias circuit design when Q point and stability are	
	given	58
Exa 5.10	designing of self bias circuit of given specification	59
Exa 5.11	Q point and stability for self bias arrangement	60
Exa 5.12	Stability factor and thermal resistance	61
Exa 5.13	DC input resistance of a JFET	62

Exa 5.14	V0 for a JFET amplifier	62
Exa 6.1	conversion efficiency	64
Exa 6.2	calculation of different parameters of CC circuit	64
Exa 6.4	calculation of different parameters of CE circuit	65
Exa 6.5	calculation of different parameters of CC circuit	66
Exa 6.7	maximum value of RL in CE configuration	67
Exa 6.8	voltage gains Avs Av1 and Av2 for given circuit	67
Exa 7.1	determination of various parameters of feedback ampli-	
	fiers	69
Exa 7.2	percentage variation in Avdash	69
Exa 7.3	reverse transmission factor and gain with feedback	70
Exa 7.4	Improvement in stability	70
Exa 7.5	Overall gain and reverse transmission factor	71
Exa 7.6	different parameeters with and without negative feedback	71
Exa 7.7	Avf Rof and Rif for the voltage series feedback	72
Exa 7.8	current series feedack	73
Exa 7.9	calculation of Avf and Rif for given circuit	75

Chapter 1

Electron Dynamics and CRO

Scilab code Exa 1.1 speed of electon in electric field

```
1 // Example 1.1 page no-4
2 clear
3 clc
5 //(1)
6 V = 10
7 d=5*10^-2
8 t=50*10^-9
9 T=10^-7
10 x=1.76*10^11
11 eps=V/(d*T)
12 \quad a=x*eps
13 \ v=a*t^2/2
14 printf("\n(1)\nVelocity, v = \%.1 f*10^5 m/s n", v
      /100000)
15
16 //(2)
17 x1=(a/6)*(t^3)
18 printf("\n(2)\ndistance, x=%f cm\n",x1*100)
19
20 //(3)
```

```
21 x2=0.05

22 t1=(x2/(a/6))^{(1/3)}

23 v1=(a/2)*t1^2

24 printf("\n(3)\nspeed with which the electron strikes the positive plate, \nv = \%.2 f*10^6 m/sec", v1 /10^6)
```

Scilab code Exa 1.2 speed of electron and position of applied AC voltage point

```
1 // Example 1.2 page no-9
2 clear
3 clc
4
5 e=1.6*10^-19//C
6 m=9.1*10^-31//kg
7 Vmax=1.5 //v
8 w=2*%pi*60*10^6//rad/sec
9 d=8*10^-3 //m
10 Max_Vel=2*e*Vmax/(m*d*w)
11 Max_Vel=ceil(Max_Vel*10^-3)
12 printf("The Maximum value of Velocity is, \n dx/dt=%.2 f*10^5 m/sec", Max_Vel/100)
```

Scilab code Exa 1.3 effect of electric filed on electron

```
1 // Example 1.3 page no-10
2 clear
3 clc
4
5
6 ///(1)
7 eps=(2000)/3 //V/cm
```

```
8 e=1.6*10^-19 //C
9 m=9.1*10^-31 //kg
10 v= 10^7 // dy/dt=v m/sec
11 t=v*m/(e*eps*100)
12 t=floor(t*10^11)
13 t=t/10
14 printf("\n(1)\nTime ,t=%.1f*10^-10 sec\n",t)
15 t=t*10^-10
16 //(2)
17 y=(e*eps*100*t^2)/(2*m)
18 printf("\n(2)\nDistance travelled by electron , y=%f m\n",y)
19 //(3)
20 pd=eps*100*y
21 printf("\n(3)\nPotential Drop=%.1f Volts",pd)
```

Scilab code Exa 1.4 calculation of potential

```
1 // Example 1.4 page no-13
2 clear
3 clc
4 V0=10 //volts siince energy is 10ev
5 xm=2
6 theta=%pi/4
7 V=(2*V0*sin(2*theta))/xm
8 printf("V=%.0 fd Volts",V)
```

Scilab code Exa 1.5 Application of magnetic field on electron

```
1 // Example 1.5 page no-19
2 clear
3 clc
4
```

Scilab code Exa 1.6 calculation of transit time

```
1 // Example 1.6 page no -20
2 clear
3 clc
4
5 \text{ m} = 9.1 * 10^{-31} / \text{kg}
6 V = 100
7 e=1.6*10^-19 //C
8 d=5*10^-2 //m
9 t=10^-8 // sec
10 d1 = (e*V*t^2)/(m*d*2)
11 d2=(5-d1*100)
12 printf ("\nd1=\%.3 f*10^-2m\nd2=\%.2 f*10^-2m", d1*100, d2)
13 t1=0.01*10^-6//sec
14 v1 = e * V * t1/(m * d)
15 \text{ v1} = \text{ceil}(\text{v1}/10^4)
16 printf("\nVelocity of Electron, v=\%.2 \text{ f}*10^6\text{m/s}", v1
       /100)
17 t2=(d2*10^-2)/(v1*10^4)
18 printf("\nt2=\%.1 \text{ f}*10^--8 \text{ sec}",t2*10^8)
```

```
19 printf("\nTotal transit time =t1+t2=\%.1 \text{ f}*10^--8 \text{ sec}", (t1/10^-8)+t2*10^8)
```

Scilab code Exa 1.7 time of flight under electric field

```
1 // Example 1.7 page no-20
2 clear
3 clc
4
5 V=1000 //volt
6 d=0.01 //m
7 e=1.6*10^-19 //C
8 m=9.1*10^-31//kg
9 eps=V/d
10 t=sqrt((2*m*d)/(e*eps))
11 printf("t=%.2 f*10^-9",t*10^10)
```

Scilab code Exa 1.8 velocity of electron

```
1 // Example 1.8 page no-21
2 clear
3 clc
4
5 V=1000 //volt
6 e=1.6*10^-19 //C
7 m=9.1*10^-31//kg
8 Vf=sqrt((2*e*V)/m)
9 printf("V_final=%.2f*10^6 m/sec", Vf/10^6)
```

Scilab code Exa 1.9 application of electric and magnetic filed

```
1 // Example 1.9 page no-24
2 clear
3 clc
4
5 k=1.76*10^11 ///e/m in C/kg
6 eps=10^4
7 B=0.01
8
9 Xmax=2*eps*%pi/((B^2)*k)
10 printf("Xmax=%.3 f cm", Xmax*100)
```

Scilab code Exa 1.10 distance travelled in helical path

```
1 // \text{Example } 1.10 \text{ page no} -25
 2 clear
3 clc
 4
5 Energy=50 //eV
6 VO=Energy //Volts
 7 e=1.6*10^-19 //c
8 m=9.1*10^-31 //kg
9 \ v0 = sqrt (2*e*V0/m)
10 \text{ v0} = \text{ceil}(\text{v0}/10^5)
11 v0 = (v0/10) *10^6
12 printf ("\nVelocity, v0=\%.0 f", v0)
13
14 t=(35.5*10^-12)/(2*10^-3)
15 //Components of velocities are
16 \text{ v1=v0*}\cos(10*\%\text{pi}/180)
17 v2=v0*\cos(20*\%pi/180)
18 x = v1 - v2
19 d=x*t
20 printf("\nDistance, d =\%.4 f cm", d*100)
```

Scilab code Exa 1.11 Deflection sensitivity

```
1 // Example 1.11 page no-33
     2 clear
     3 clc
     5 1=2 /cm
     6 D = 18 / cm
                  s=0.5 / cm
    9 //(a)
10 va1=500 // volts
11 ds1=1*D/(2*s*va1)//Deflection Sensitivity
12 //(b)
13 va2=1000 // Volts
14 ds2=1*D/(2*s*va2)
15 //(c)
16 \text{ va3} = 1500 // \text{Volts}
17 ds3=1*D/(2*s*va3)
18 printf("\n(a)Va=%dV\nDeflection Sensitivity S_E=%.3 f
                                                    cm/V \setminus n \setminus n(b) Va=%dV \setminus n Deflection Sensitivity S_E=%dV \setminus n S_E=%dV \setminus n
                                               .3 f cm/V n (c) Va=\% dV n Deflection Sensitivity S_E
                                            =\%.3 \text{ f cm/V}", va1, ds1, va2, ds2, va3, ds3)
```

Scilab code Exa 1.12 displacement angle and velocity of electron in CRT

```
1 // Example 1.12 page no-34
2 clear
3 clc
4
5 l=2 //cm
6 D=24 //cm
```

```
7 \text{ s} = 0.5 //\text{cm}
8 \text{ Vd}=30 // \text{Volts}
9 Va=1000 // Volts
10
11 //(a)
12 d=Vd*1*D/(2*s*Va)
13 printf("\n(a)\nDeflection Produce, d=%.2f cm\n",d)
14
15 //(b)
16 theta=(atan(d/D))*(180/\%pi)
17 printf("\n(b)\nTheta=%.2 f ",theta)
18 //(c)
19 e=1.6*10^-19/C
20 \text{ m} = 9.1 * 10^{-31} / \text{kg}
21 \quad v = sqrt (2*e*Va/m)
22 \text{ vr=v/cos}(\text{theta*\%pi/180})
23 printf("\n\n(c)\nResultant\ Velocity,\ Vr=\%.2f\ *10^6\ m
       /sec", vr/10<sup>6</sup>)
```

Scilab code Exa 1.13 Calculation of transverse magnetic field

```
1 // Example 1.13 page no-34
2 clear
3 clc
4
5 l=1.27 //cm
6 D=19.4 //cm
7 s=0.475 //cm
8 Va=400 //volts
9 Se=1*D*10^-2/(2*s*Va)
10 Se=ceil(Se*10^5)
11 printf("\nS_E=%.2 f mm/v",Se/100)
12
13 v=30 //volt
14 e=1.6*10^-19 //C
```

```
15 m=9.1*10^-31 //kg
16 x=sqrt(m/e)
17 B=(x*0.65*30*sqrt(2*Va))/(1*D)
18 printf("\nB=%.2 f*10^-5 wb/m^2", B*10^5)//answer not matches with given answer
```

Scilab code Exa 1.14 effect of earths magnetic filed on deflection in CRT

Chapter 2

Junction Diode Characteristics

Scilab code Exa 2.1 radius of the lowest state of Ground State

```
1 // Example 2.1 page no-45
2 clear
3 clc
4
5 n=1
6 h=6.626*10^-34 //J-sec
7 eps=10^-9/(36*%pi)
8 m=9.1*10^-31 //kg
9 e=1.6*10^-19
10 r=n^2*h^2*eps/(%pi*m*e^2)
11 printf("\nradius of the lowest state of Ground State
, r=%.2f A ",r*10^10)
```

Scilab code Exa 2.2 no of photons emitted per second by lamp

```
1 // Example 2.2 page no-46
2 clear
3 clc
```

```
4
5 lambda=2537 // A
6 E_diff=12400/lambda
7 e=1.6*10^-19
8 energy=50/1000 //J/sec
9 e_j=energy/e //eV/sec
10 n=e_j/E_diff
11 printf("The lamp emits %.1f *10^16 photons/sec of wavelength, lambda=%dA",n/10^16,lambda)
```

Scilab code Exa 2.3 Speed of ejected electron

```
1 // Example 2.3 page no-47
2 clear
3 clc
4 e_ar=11.6 //eV
5 e_Na=5.12 //eV
6 V=e_ar-e_Na
7 e=1.6*10^-19 //C
8 m=9.1*10^-31 //kg
9 v=sqrt(2*e*V/m)
10 printf("Velocity, v=%.2f*10^6 m/sec",v/10^6)
```

Scilab code Exa 2.4 speed of electron in sodium vapour lamp

```
1 // Example 2.4 page no-48
2 clear
3 clc
4
5 l=5893 // A
6 V=2.11 // Volts
7 e=1.6*10^-19 //C
8 m=9.1*10^-31 //kg
```

```
9 v=sqrt(2*e*V/m)
10 printf("Velocity, v=%.2f*10^5 m/sec",v/10^5)
```

Scilab code Exa 2.5 radio transmitter

```
1 // Example 2.5 page no-48
2 clear
3 clc
4
5 f = 10 * 10^6 / Hz
6 h=6.626*10^-34 //Joules/sec
7 e=1.6*10^-19 //C
8 //(a)
9 E=h*f/e
10 printf("\n(a) Energy of each radiated quantum, \ntE=%
      .3 f*10^--27 Joules/Quantum\n\tE=\%.2 f*10^--8 eV/
      Quantum",h*f*10^27,E*10^8)
11
12 //(b)
13 E=1000
          //Joule/sec
14 N=E/(h*f)
15 printf("\n\n(b)\nTotal number of quanta per sec, N=\%
      .2 f*10^29, N/10^29)
16
17 //(c)
18 \, o = 10^{-7}
19 printf("\n\n(c)\nNumber of quanta emitted per cycle
     = \%.2 f*10^22 per cycle,o*N/10^22
```

Scilab code Exa 2.6 Neon Ionization

```
1 // Example 2.6 page no-48 2  clear
```

```
3 clc
4
5 //(a)
6 V = 21.5 / Volts
7 e=1.6*10^-19 //C
8 \text{ m} = 9.1 * 10^{-31} / \text{kg}
9 \text{ v=sqrt} (2*e*V/m)
10 lambda=12400/V // A
11 printf("\n(a)\nVelocity, v=\%.2 f*10^6 m/sec
      nWavelength of Radiation, Lambda=%.1f", v/10<sup>6</sup>,
      ceil(lambda))
12 //(b)
13 c = 3*10^8 / m/sec
14 f=c/(lambda*10^-10)
15 printf("\n(b)\nFrequency of Radiation, f=\%.1 f *10^15
      Hz", f/10^15)
```

Scilab code Exa 2.8 wavelength of photon

Scilab code Exa 2.9 High field emission

```
1 // \text{Example } 2.9 \text{ page no} -58
2 clear
3 clc
4 A=60.2*10^4 //A/m^2/ K^2
5 B=52400
            // K
            // K
6 T1 = 2400
             // K
7 T2 = 2410
8 js1=A*T1^2*(%e^(-B/T1))
9 js2=A*T2^2*(%e^(-B/T2))
12 printf ("\nJS1=\%d\ A/m^2\nJS2=\%d\ A/m^2", js1, js2)
13 p = (js2 - js1) * 100 / js1
14 printf("\nPercentage Increase=\%.2f\%\%",p)
```

Scilab code Exa 2.10 Work function and wavelength

```
1 // Example 2.10 page no-58
2 clear
3 clc
4
5 //(a)
6 h=6.63*10^-34 //Plank's Constant, J sec.
7 e=1.6*10^-19 //Charge of Electron, C
8 c=3*10^8 // Velocity of Light, m/sec
9 v = 0.55
          //volts
10 \ 1=5500*10^-10 \ //m
11 fi=(h*c)/(1*e)
12 fi=fi-v
13 printf("\n(a)\nWork Function(WF), fi=\%.2 f Volts", fi)
14 //(b)
15 10=12400/fi
16 printf("\n\n(b)\nThreshold Wavelength = %d A ",10)
```

Scilab code Exa 2.11 effect of temperature on emission

```
1 // Example 2.11 page no-59
2 clear
3 clc
4 dT=20
5 T=2310 // K
6 Ew=4.52
7 k=8.62*10^-5
8 x=(Ew/(k*T))
9 x=(2+x)*dT/T
10 printf("\n(a)\ndIth/Ith=%.1f%%\n\n(b)\nThis is solved by Trial and Error Method to get T = 2370 K",x*100)
```

Scilab code Exa 2.12 RF voltage frequency in cyclotron

```
1 // Example 2.12 page no-60
2 clear
3 clc
4
         //Tesla
5 B = 1
6 T=35.5*10^-6 //sec
7 f = 1/T
8 printf("\n(a)\nThe frequency of the R.F voltage, f=\%
      .2 f*10^4 Hz, f/10^4)
9 k = 2 * 10^6
10 g = 40000
11 printf("\n\n(b)) Number of passages required to gain
      2*10^6 eV are ,N=\%d",k/g)
12 v = 49 * g
13 R = (3.37*10^-6)*sqrt(v)
```

```
14 printf("\n\n(c)\nDiameter of last semicircle, D = 2R = \%.2 \text{ f }*10^--4 \text{ m}", 2*R*10000)
```

Scilab code Exa 2.13 Emission current and cathode efficiency

```
1 // Example 2.13 page no-60
2 clear
3 clc
4 Ew=1 //eV
5 A0=100 // A/m2 I K2
6 S=1.8*10^-4 //cm2
7 K =8.62 * 10^-5 //eV/oK
8 T=1100
9 pd=5.8*10^4 //W/m^2
10 ipd=1.1*pd
11 tip=S*ipd
12 Ith=S*A0*T^2*%e^(-Ew/(K*T))
13 printf("\nIth=%.3f A\nCathode Efficiency, eta=%.0f mA/ K",Ith,ceil(Ith*1000/11.5))
```

Scilab code Exa 2.14 resistivity of doped material

```
1  // Example 2.14 page no-71
2  clear
3  clc
4
5  n=4.4*10^22 ///cm^3
6  mu=3600//cm62/volt-sec
7  e=1.6*10^-19//C
8  sigma=n*mu*e*10^-6
9  printf("\nResistivity, rho=%.3 f Ohm-cm",1/sigma)
```

Scilab code Exa 2.15 conductivity and resistivity of pure silicon

Scilab code Exa 2.16 concentration of free electrons and holes

```
1 // Example 2.16 page no-71
2 clear
3 clc
4
5 A = 9.64 * 10^14
6 EG = 0.25 //eV
7 n1 = 6.25*10^26///cm^3
8 na=3*10^14
9 nd=2*10^14
10 n=-(10^14)+(sqrt(10^28+4*6.25*10^26))
11 n=n/2
12 printf("\nn=%.1f*10^12 electrons/cm^3\np=%.2f*10^14 holes/cm^3\nAs p> n, this is p-type semiconductor .",n/10^12,(n+10^14)/10^14)
```

Scilab code Exa 2.17 concentration of free electrons and holes

Scilab code Exa 2.18 concentration of free electrons and holes in p type Ge and n type Si

```
1 // Example 2.18 page no-72
2 clear
3 clc
4
5 //(a)
                //Ohm-cm
6 sigma=100
7 e=1.6*10^-19 //c
             //\text{cm}^2/\text{V}-\text{sec}
8 \text{ mup} = 1800
9 ni=2.5*10^13 // cm^3
10 printf("\n(a)\nAs it is p-type semiconductor, p>>n."
      )
11 pp=sigma/(e*mup)
12 n=ni^2/pp
13 printf("\nPp=\%.2 f*10^17 holes/cm^3\\nn=\%.1 f*10^9
      electrons/cm^3",pp/10^17,n/10^9)
14
15 //(b)
```

```
16 mun=1300

17 sig=0.1

18 n1=1.5*10^10

19 n2=sig/(mun*e)

20 p1=(n1^2)/n2

21 printf("\n\n(b)\nn=%.2f*10^14 elecrons/cm^3\np=%.2f

*10^5 holes/cm^3",n2/10^14,p1/10^5)
```

Scilab code Exa 2.19 conduction current density

```
1 // \text{Example } 2.19 \text{ page no} -73
2 clear
3 clc
4 \text{ sig} = 1/60 // v/cm
5 mup=1800 //\text{cm}^2/\text{V}-\text{sec}
6 mun=3800 //\text{cm}^2/\text{V}-\text{sec}
7 e=1.6*10^-19 //C
9 ni=sig/(e*(mun+mup))
10 na=7*10^13 / cm^3
11 nd=10^14 // cm^3
12 \text{ k=na-nd } //p-n
13 p=0.88*10^13
14 n=3.88*10<sup>13</sup>
15 \text{ eps=2}
16 J=(n*mun+p*mup)*(e*eps)
17 printf("J=%.1 f mA/cm<sup>3</sup>", J*1000)
```

Scilab code Exa 2.20 concentration of free electrons and holes in Ge

```
1 // Example 2.20 page no-74
2 clear
3 clc
```

```
4 na=3* 10^14 // /cm^3
5 nd= 2*10^14 // /cm^3
6 ni= 2.5*10^13 // /cm^3
7
8 k=na-nd
9 n=(-k+sqrt(k^2+4*ni^2))/2
10 printf("\nn=%.1f*10^18 electrons/m^3\np=%.2f*10^19
    holes/m^3\n\nas p > n, it is p-type semiconductor
    ",n/10^12,ni^2/n*10^-13)
```

Scilab code Exa 2.21 intrinic concentration and conductivity of Germanium

```
1 // Example 2.21 page no-75
2 clear
3 clc
4
5 \quad A=9.64*10^21
6 T = 320
7 e=1.6*10^-19
8 \text{ Eg} = 0.75
9 k=1.37*10^-23
10 ni=A*T^(3/2)*%e^(-(e*Eg)/(2*k*T))
11 printf("\nni=\%.2 f *10^19 electrons(holes)/m^3",ni
      /10^19)
12 \text{ mup} = 0.36
13 mun = 0.17
14 sig=e*ni*(mup+mun)
15 printf("\nConductivity, Sigma=%.3f Mho/m", sig)
```

Scilab code Exa 2.22 resistivity of intrinsic Germanium at room temperature

```
1  // Example 2.22 page no-75
2  clear
3  clc
4
5  e=1.6*10^-19//C
6  ni=2.5*10^19
7  mun=0.36  //m^2/V-sec
8  mup=0.17  //m^2/V-sec
9  sig=e*ni*(mup+mun)
10
11  rho=1/sig
12  printf("Resistivity, rho=%.2 f Ohm-m", rho)
```

Scilab code Exa 2.23 Fermi level of p type Ge

```
1 // Example 2.23 page no-80
2 clear
3 clc
4 mup=0.4
5 T=300
6 Nv=4.82*10^15
7 Na=Nv*mup^(3/2)*T^(3/2)
8 printf("\nDoping concentration, NA=%.2f*10^18 atoms/cm^3",Na/10^18)
```

Scilab code Exa 2.24 Distance of Fermi level from centre of forbidden bond

```
1 // Example 2.24 page no-80
2 clear
3 clc
4 Vt=0.026
5 Nv=(3/4)*Vt*log(2)
```

6 printf("\nFor Intrinsic Semiconductor,\nEF will be at the centre of the forbidden band. \nBut if mp and mn are unequal, EF will be away\nfrom the centre of the forbidden band by\n\nNv=\%.1 f*10^-3 eV", Nv*10^3)

Scilab code Exa 2.25 Temperature for which conduction band and fermi level coincides

```
1 // Example 2.25 page no-83
2 clear
3 clc
4
5 si=5*10^22 //atom/cm^3
6 d=2*10^8
7 Nd=si/d
8 m=9.1*10^-31//kg
9 k=1.38*10^-23
10 h=6.626*10^-34
11 Nc=2*(2*%pi*m*k/h^2)^(3/2)
12 T=(Nd/Nc)^(2/3)
13 printf("T=%.2 f K",T*10^4)//Nd/10^14)
```

Scilab code Exa 2.26 distance between valence band and Fermi level

```
1 // Example 2.25 page no-83
2 clear
3 clc
4
5 m=9.1*10^-31//kg
6 k=1.38*10^-23
7 h=6.626*10^-34
8 T=300
```

```
9 mp=0.6
10 si=5*10^22
11 at=10^8
12 Nc=si/at
13 Nv=2*(2*%pi*m*k*T*mp/h^2)^(3/2)
14 printf("\nNv=%.2 f * 10^19 /cm^3",Nv/10^25)
15 Kt=0.026
16 Ediff=Kt*log(1.17*10^19/(5*10^14))
17 printf("\nEf-Ev =%.2 f eV\nTherefore, EF is above Ev", Ediff)
```

Scilab code Exa 2.27 doping concentration for given fermi level

```
1 // Example 2.27 page no-86
2 clear
3 clc
4 mp=0.4
5 T=300
6 k=4.82*10^15
7 Nv=k*(mp*T)^(3/2)
8 printf("Doping concentration, NA = ND = %.2 f*10^18 atoms/cm^3", Nv/10^18)
```

Scilab code Exa 2.28 Distance of Fermi level from centre of forbidden bond

```
1 // Example 2.28 page no-86
2 clear
3 clc
4 Vt=0.026
5 Nv=(3/4)*Vt*log(3)
6 printf("\nFor Intrinsic Semiconductor,\nEF will be at the centre of the forbidden band. \nBut if mp
```

and mn are unequal, EF will be away\nfrom the centre of the forbidden band by\n\nNv=%.1 f*10^-3 eV", Nv*10^3)

Scilab code Exa 2.29 Einstein relationship

```
1  // Example 2.29 page no-90
2  clear
3  clc
4  mung=3800
5  mupg=1800
6  muns=1300
7  mups=500
8  Vt=0.026
9  printf("\nFor Germanium at room temperature,\nDp=%d cm^2/sec\nDn=%d cm^2/sec\nDn=%d cm^2/sec\nNFor Silicon,\nDp=%d cm^2/sec\nDn=%d cm^2/sec",ceil(mupg*Vt),ceil(mung*Vt),ceil(mung*Vt),ceil(mung*Vt),ceil(mung*Vt)
```

Scilab code Exa 2.30 Hall Effect

```
1 // Example 2.30 page no-95
2 clear
3 clc
4
5 B=0.1 //Wb/m^2
6 Vh=50 //mV
7 I=10 //mA
8 rho=2*10^5 //Ohm-cm
9 w=3*10^-3 //m
10 x=B*I*10^-3/(Vh*10^-2*w)
11 printf("\n1/RH=%.3 f",x)
12 y=1/(rho*10^-2)
```

```
13 printf("\nConductivity = %f mhos/meter\nmu=\%.0 f cm ^2/V-sec",y,(y/x)*10^6)
```

Scilab code Exa 2.31 Reverse saturation current in diode

```
1 // Example 2.31 page no-116
2 clear
3 clc
4
5 //(a)
6 Vt=300/11600
7 v=Vt*log(1.9)
8 printf("\n(a)\nV=%.3fV",v)
9
10 //(b)
11 v1=0.2
12 i1=10*(%e^(v1/Vt)-1)
13 printf("\n(b)\nFor V=0.2, I=%.2f mA",i1/1000)
14 v2=0.3
15 i2=10*(%e^(v2/Vt)-1)
16 printf("\n\nFor V=0.3, I=%.2f A",i2/1000000)
```

Scilab code Exa 2.32 AC and DC resistance of Ge diode

```
1 // Example 2.32 page no-116
2 clear
3 clc
4
5 Vt=301.6/11600
6 i0=20*10^-6
7 v=0.1
8 I=i0*(%e^(v/Vt)-1)
9 printf("\nI=%.3 f mA",I*1000)
```

```
10 r_DC=v/I

11 printf("\nr_DC=%.1 f Ohm",r_DC)

12 r_AC=i0*(%e^(v/Vt))/Vt

13 printf("\nr_AC = %.1 f Ohm",1/r_AC)
```

Scilab code Exa 2.33 width of the depletion layer

```
1 // Example 2.33 page no-117
2 clear
3 clc
5 A = 0.001// cm^2
6 \text{ sig1n} = 1 //\text{mhos/cm},
7 \text{ sig1p=100 } //\text{mhos/cm}
8 mun=3800 //\text{cm}2/\text{sec}
9 mup = 1800 / \text{cm} 2 / \text{sec}.
10 e=1.6*10^-19 //C
11 eps=16*8.85*10^{-14} / F/cm
12 ni=6.25*10<sup>26</sup>
13 T=300
14 Vt=T/11600
15 Nd=sig1n/(e*mun)
16 Na=sig1p/(e*mup)
17 V0=Vt*log(Na*Nd/ni)
18 w = sqrt(2*eps*(V0+1)/(e*Na))
19 printf("\nND=%.2 f * 10^15 /cm^3\nNA=%.1 f * 10^17 /cm
       3 \ NV0=\%.3 f \ V\ m=\%.3 f * 10^-4 cm, Nd*10^-15, Na
      *10^-17, V0, w*10^4)
```

Scilab code Exa 2.34 dynamic forward and reverse resistance of a p n junction diode

```
1 // Example 2.34 page no-118
```

```
2 clear
3 clc
5 I0=10^--6 //A
6 T = 301.6 / K
7 Vf = 0.25 / V
8 \text{ Vr= } 0.25 \text{ } //\text{V}
9 //Dynamic Forward Resistance
10 \text{ Vt} = T/11600
11 x=(I0*\%e^(Vf/Vt))/Vt
12 \text{ rf} = 1/x
13 printf("\nDynamic Forward Resistance, rf = \%.3 f Ohm"
14 //Dynamic Reverse Resistance
15
16 x1 = (I0 * \%e^{(-Vf/Vt)})/Vt
17 \text{ rr}=1/x1
18 printf("\nDynamic Reverse Resistance, rr = \%.1 f *
       10^6 \text{ Ohm}, rr/10<sup>6</sup>)
```

Scilab code Exa 2.35 zener breakdown voltage

```
1 // Example 2.35 page no-125
2 clear
3 clc
4
5 eps=16/(36*%pi*10^9) //F/m
6 mup=1800
7 E=4*10^14
8 V=(eps*mup*E*10^-6)/2
9 sige=1/45
10 Vz=ceil(V)/sige
11 printf("V=%d V", Vz)
```

Scilab code Exa 2.36 Effect of bias on capacitance of a diode

```
1  // Example 2.36 page no-125
2  clear
3  clc
4
5  Ct=20  //pF
6  v1=5  //v
7  v2=6  //v
8  Ct2=Ct*sqrt(v1/v2)
9  printf("Therefore, decrease in the value of capacitance is\nCt1-Ct2=%.2 f pF",Ct-Ct2)
```

Scilab code Exa 2.37 Zener As voltage regulator

```
1 // Example 2.37 page no-126
2 clear
3 clc
4 V1 = 200 / V
5 \text{ Vd} = 50 //V
6 I = 40 * 10^{-3} / A
8 // If Il = 0,
9 R = (V1 - Vd)/I
10 IO=5
          / \text{/mA}
11 printf("\n(a)\nR=\%d Ohm\nImax occurs when I0 = \%d mA
      \nTherefore, Imax = %d mA", R, IO, I*1----IO)
12 //for Vmin
13 I1=25
14 Vmin=Vd+(I1+I0)*0.001*R
15 // for Vmax
16 Vmax=Vd+(I1+I*1000)*0.001*R
```

```
17 printf("\n(b)\nFor Vmin\nVmin=\%.1 fV\n\nFor Vmax\nVmax=\%.1 fV", Vmin, Vmax)
```

Scilab code Exa 2.39 Zener As voltage regulator

```
1 // Example 2.39 page no-127
2 clear
3 clc
4 x=99.5 *10^3 //Ohm (R1+R2)
5 rm=0.56 *10^3 //Ohm
6 v1=20 //V
7 i=v1/x
8 i=0.0002 //aproxximated to
9 k=16/i
10 R1=k-rm
11 R2=x-R1
12
13 printf("\nR1=%.1 f K-ohm\nR2=%.1 f K-ohm",R1/1000,R2 //1000)
```

Scilab code Exa 2.40 forward snd reverse current ratios

```
1 // Example 2.40 page no-127
2 clear
3 clc
4
5 T=301.6
6 vt=T*1000/11600
7 vf=50 //mV
8 vr=-50 //mV
9 k=(%e^(vf/vt)-1)/(%e^(vr/vt)-1)
```

10 printf("\nratio=%.2f\nNegative sign is oecause, the direction of \ncurrent is opposite when the diode is reverse biased",k)

Scilab code Exa 2.41 PN junction diode as Resistance

```
1 // Example 2.41 page no-128
2 clear
3 clc
4 V=10 //v
5 I0=0.07/0.11//(0.07/0.11)xI
6 i1=5 //mA
7 Ir=1-I0
8 i=Ir/I0
9 Ir=i*i1
10 R=V/Ir
11 printf("R=%.1 f K-Ohm",R)
```

Scilab code Exa 2.42 Zener As voltage regulator

```
1 // Example 2.42 page no-128
2 clear
3 clc
4
5 V=30 //V
6 R=2000 //Ohm
7 I=V/R
8 Iz=0.025 //A
9 It=Iz+I
10 Rs=200
11 Vmax=V+Rs*It
12 printf("Vrmax = %d V", Vmax)
```

Chapter 3

Rectifiers Filters and Regulators

Scilab code Exa 3.1 Ripple Factor

```
1 // Example 3.1 page no-155
2 clear
3 clc
4
5 //(1)
6 R1=2000
7 f = 50
8 1=20
9 V1 = 0.074
10 w = 2 * \%pi * f
11 V=R1/(3*2*sqrt(w*2))
12 printf("\n1.One Inductor Filter,\nV = \%.3 f\n",V1)
13 / (2)
14 \, \text{Idc=1}
15 c = 16 * 10^{-6}
16 gam=Idc/(4*sqrt(3)*f*c*R1)
17 printf("\n2. Capacitor filter, \nGamma = \%.2 f\n", gam)
18
19 //(3)
```

```
20 gam2=(sqrt(2)/3)*(1/4*1*c*(w^2))
21 printf("\n3. L Type filter,\nGamma = %.4f",gam2
/1000)
```

Scilab code Exa 3.2 diode as a rectifier

```
1 // Example 3.2 page no-156
2 clear
3 clc
4
5 \text{ vm} = 110
             //rms
6 x = 1020
             //Rf+Rl
7 rl = 1000
8 //(a)
9 Im=vm*sqrt(2)/x
10 printf("\n(a)\nIm = \%.1 \text{ f mA}", Im*1000)
11 //(b)
12 Idc=Im*1000/%pi
13 printf("\n(b)\nIdc = \%.1 f mA", Idc)
14
15 //(c)
16 \text{ Ir} = \text{Im} * 1000/2
17 printf("\n(c)\nIrms = \%.1 f mA", Ir)
18 // (d)
19 v=-(Im*rl/\%pi)
20 printf("\n(d)\n Vdc = %.1 f V",v)
21
22 // (e)
23 p = Ir * x / 1000
24 printf("\n(e)\nPi = \%.2 f W",p)
25 // (f)
26 rl = 1
27 lr = ((vm * sqrt(2) / %pi) - (Idc * rl)) / (Idc * rl)
28 printf("\n(f)\n\% regulation = \%.2 f \%\", lr*100)
```

Scilab code Exa 3.4 Full scale reading of voltmeter

```
1 // Example 3.4 page no-157
2 clear
3 clc
4
5 Rl=5010 //ohm
6 idc=0.001
7 Vrms=idc*%pi*R1/(2*sqrt(2))
8 printf("\nVrms = %.2 f V", Vrms)
```

Scilab code Exa 3.5 FWR with LC filter

```
1 // Example 3.5 page no-164
2 clear
3 clc
4 \text{ rf} = 0.02
5 f = 60
6 w = 2 * \%pi * f
7 lc=sqrt(2)/(rf*12*w^2)
8 printf("\nLC=\%.1 f micro", lc*10^6)
9 \text{ vdc} = 9
10 idc = 0.1
11 Rl=vdc/idc
12 printf ("\nRL = %d Ohm\n\n LC> R1/3w > R1/1130\n
      But LC should be 25\% larger\ntherefore, for f=
      60 \text{ Hz}, the value of LC should be > \text{Rl}/900", R1)
13 lc1=R1/900
14 printf("\nIf L=0.1H, then C=\%.1f micro F, This is
      high value \ nIf L=1H, then C=41.5 micro F", ceil(lc
      *10^6/lc1))
15 printf("\n\nTransformer Rating:")
```

```
16     vdc=vdc+5
17     vm=vdc*%pi/2
18     vrms=vm/sqrt(2)
19     printf("\nVdc=%.0fV\nVm=%.0fV\nVrms=%.1fV\nTherefore
        , a 15.5 - 0 -15.5 V, 100mA transformer is
        required\n PIV=%d V", vdc, ceil(vm), vrms, 2*ceil(vm)
        )
```

Scilab code Exa 3.6 Ripple Factor

```
1 // Example 3.6 page no -165
2 clear
3 clc
4 vrpp=0.8 / V
5 \text{ vrms} = \text{vrpp}/(2*\text{sqrt}(3))
6 vrms=floor(vrms*10)
7 \text{ vrms} = \text{vrms} / 10
8 \text{ vm} = 8.8
9 \text{ vdc=vm-vrpp/2}
10 gam=vrms/vdc
11 printf("\n\% regulation, gamma = \%.2f\%\%", gam*100)
12 r = 100
13 f=60
14 c = 1050 * 10^{-6}
15 tgam=1/(4*(sqrt(3*c*r*f)))
16 printf("\nTheoretical values, gamma = \%.2f\%\%", tgam
       *100)
17 Vdc = (4*f*r*c*vm)/(1+4*f*r*c)
18 printf("\nVdc = \%.2 f \ V", Vdc)
```

Scilab code Exa 3.7 power supply using pi filter

```
1 // Example 3.7 page no-167
```

```
2 clear
3 clc
4 Vdc=25
5 Idc=0.1
6 R=Vdc/Idc
7
8 Vc=Vdc+37.5
9
10 vm=Vc+(Idc/(4*50))
11 vrms=vm/sqrt(2)
12 vrms=60 ///approximated to
13 printf("\nVrms=%.0 f V\n\nTherefore, a transformer with 60 - 0 -60V is chosen. \nThe ratings of the diode should be,\ncurrent of 125mA.and voltage = PIV = 2Vm = %.1 f",vrms,169.2)
```

Scilab code Exa 3.8 Diode rating for FWR

```
1 // Example 3.8  page no-169
2 clear
3 clc
4
5 \text{ Vdc} = 250 / V
6 \text{ Idc} = 0.1
7 \text{ rc} = 400
8 rl=Vdc/Idc
9 Vm = (Vdc * \%pi/2) * (1 + (rc/rl))
10 Vrms=Vm/sqrt(2)
11 printf("Vrms=\%dV \setminus n \setminus nTherefore, the transformer
       should supply \n\%dV rms on each side of the
       centre tap.", Vrms, Vrms)
12 L=10 //Ohm
13 c = 20 * 10^{-6}
14 \quad w = 377
15 Ib=2*Vm/(3*\%pi*w*L)
```

```
16 rf=0.47/(4*w^2*c)
17 printf("\n\nIb=\%.4 f A\nRipple factor=\%f", Ib, rf)
```

Scilab code Exa 3.9 FWR with C type capacitor filter

```
1 // Example 3.9 page no-170
2 clear
3 clc
4
5 Idc=0.02 //A
6 Vdc=16 //V
7 rl=Vdc/Idc
8 f=50
9 x=4*sqrt(3)*f*0.05*rl
10 C=1/x
11 printf("\nC=%d microF",C*10^6)
12 vm=Vdc*((1+(4*f*C*rl)))/(4*f*C*rl)
13 printf("\nVm=%.2 f V",vm)
```

Scilab code Exa 3.10 Half Wave Rectifier

```
1 // Example 3.10 page no-170
2 clear
3 clc
4
5 Vdc=(100/(2*%pi))*(-cos(5*%pi/6)+cos(%pi/6))
6 printf("\nVdc=%.1 f V", Vdc)
7 Vrms=sqrt(3.1)*Vdc
8 printf("\nVrms=%.1 fV", Vrms)
```

Scilab code Exa 3.11 FWR with C type capacitor filter

```
1 // \text{Example } 3.11 \text{ page no} -172
2 clear
3 clc
4
6 //(a)
7 \text{ vdc}=30 //V
8 \text{ idc} = 0.05 //A
9 rl=vdc/idc
10 f = 50
            ///Hz
11 c=80*10^-6 //F
12 vm = vdc + (idc/(4*f*c))
13 printf("\n(a)\nRL=%.0 f Ohm\nVm=%.3 fV\nVrms=%.1 fV",rl
       , vm , vm/sqrt(2))
14 //(b)
15 is=vm*2*%pi*f*c
16 printf("\n\n\)\n\I_diode swing/I_diode mean = %.2 f",
      is/idc)
17 //(c)
18 gam=4*sqrt(3)*f*c*rl
19 \text{ gam} = 1/\text{gam}
20 printf("\n\n\c)_mgamma=%.2 f", gam)
```

Scilab code Exa 3.12 Full wave rectifier circuit

```
9
10 r1=25
11 im= vp/r1
12 idc=2*im/%pi
13 irms=sqrt(1-idc^2)
14 printf("\nVdc=%.1 f V\nVrms=%.2 f V\nIm=%.2 f A\nIdc=%
.2 f A\nIrms=%.3 f A",vdc,vrms,im,idc,irms)
```

Scilab code Exa 3.13 Shunt regulator

```
1 // Example 3.13 page no-176
2 clear
3 clc
4 veb=0.2 //V
5 \text{ hfe}=49
6 \text{ vz} = 6.3
7 i=5*10^{-3}
8 \text{ vi=8}
9 //(1)
10 y = veb + vz
11 printf("\n1. The nominal output voltage is the sum
      of the transistor V_EB and zener voltage.\nV0=\%.1
      f V n, y)
12 / (2)
13 \text{ r1}=(\text{vi-vz})/\text{i}
14 printf("\n2. R1 must supply 5mA to the zener diode\n
      nR1=\%.0 f Ohm", r1)
15 //(3)
16 k=veb/vz
17 printf("\n13. The maximum allowable zener current
       is \setminus nIz = \%f A",k)
18 \text{ ibmax=k-i}
19 it=ibmax*(1+hfe)
20 printf("\nTotal current range = \%.2 \, f \, A", it)
21 / (4)
```

```
22 pd=y*it
23 printf("\n\n(4)\nThe\ maximum\ power\ dissipation\,\nPd= \%.1 f W",pd)
24 //(5)
25 rs=(vi-y)/it
26 pdr=it^2*rs
27 printf("\n\n(5)\nRs=\%.2 f\ Ohm\nPower\ dissipated\ by\ Rs
is\ P=\%dW",rs,pdr)
```

Chapter 4

Transistor Characteristics

Scilab code Exa 4.1 minimum base current to work transistor in saturation region

```
1 // Example 4.1 page no-203
2 clear
3 clc
4
5 vcc=12 //V
6 rl=4 // Ohm
7 ic=vcc/rl
8 alfa=0.98
9 B=alfa/(1-alfa)
10 ibmin=ic/B
11 printf("\nIc(saturation)= %d mA\nBeta = %.0 f \nIb(min) = %.1 f micro A",ic,B,ibmin*1000)
```

Scilab code Exa $4.5\,$ maximum allowable value of RB for transistor in cut off

```
1 // Example 4.5  page no-206
```

Scilab code Exa 4.6 temperature increase before transistor comes of cut off

```
1 // Example 4.6 page no-207
2 clear
3 clc
4 vbb=-1 //V
5 Rb=50 //K-Ohm
6 vbe=-0.1
7 Icbo=(vbe-vbb)/Rb
8 printf("\nIcbo=%.0 f micro A",Icbo*1000)
9 t=log(Icbo*1000/2)*10/(log(2))
10 printf("\nDelta_T = %d C \nHence, T=%d C",ceil(t),ceil(t)+25)
```

Scilab code Exa 4.7 calculation of ib ic and vbc for transistor AF 114

```
1 // Example 4.7 page no-207
2 clear
3 clc
4
```

Scilab code Exa 4.8 calculation of resistance in CE configuration

```
1 // Example 4.8 page no -208
2 clear
3 clc
4
5 \text{ alfa=0.98}
           //in mA IE is negative because it is NPN
      transistor
7 Ic=-alfa*Ie
8 Ib=(1-alfa)*(-Ie)
9 vbe=0.6 //V
10 \text{ vcc}=12 //V
11 re=100 //ohm
12 \text{ r2} = 20000 //\text{ohm}
13 r1=3.3 //k—Ohm
14 vbn=vbe-(Ie*re*10^-3)
15 printf ("\nIc = \%.2 f mA\nIb = \%.0 f micro A\nV_BN = \%.1
      f V", Ic, Ib * 1000, vbn)
16 Ir2=vbn*10^3/r2
17 Ir1=Ir2+Ib
18 printf("\nIR1 = \%.0 f micro A\nIR2 = \%.0 f micro A\
      nIrc = \%.2 f mA", Ir1*1000, Ir2*1000, Ir1+Ic)
19 vr1=vcc-((Ir1+Ic)*r1)-vbn
```

```
20 R1=vr1/Ir1
21 printf("\nR1=%d K-Ohm", ceil(R1))
```

Scilab code Exa 4.9 Barrier Potential

```
1 // Example 4.9 page no-208
2 clear
3 clc
4
5 eps=12/(36*%pi*10^11) //F/cm
6 mup=500 // cm^2/V-Sec
7 Vb=(2.54/1000)^2/(2*eps*mup)
8 printf("VB = %.1 f*10^3*W^2/rho_B", Vb/1000)
```

Scilab code Exa 4.10 Av Ai and Ap of transistor in CB configuration

```
1 // Example 4.10 page no-210
2 clear
3 clc
4
5 alfa=0.96
6 Rl=5000
7 x=80
8 Av=alfa*R1/x
9
10 pg=Av*alfa
11 printf("Power Gain = %.1f",pg)
```

Scilab code Exa 4.11 Av Ai and Ap of Transistor in CE configuration

```
1 // Example 4.11 page no-211
2 clear
3 clc
4
5 alfa = 0.96
6 B=alfa/(1-alfa)
7 x=80
8 R1=75000 //ohm
9 Av=B*R1/x
10 Ap=Av*B
11 printf("power gain = %.0f", Ap)
```

Scilab code Exa 4.12 Junction voltages for open collector transistor

```
1 // Example 4.12 page no-211
2 clear
3 clc
4 ico=2 //micro A
5 ieo=1.6 //micro A
6 alfa = 0.98
7 ie=2 //micro A
8 T=301.6
9 vt=T/11600
10 ve=vt*log(1+(ie/ieo))
11 printf("\nVe = %f V",ve)
12 vc=vt*log(1+(alfa*ie/ico))
13 printf("\nVc = %f V\nV_CE = %f V",vc,vc-ve)
```

Scilab code Exa 4.13 variation in Vi corresponding to variation in Vo

```
1 // Example 4.13 page no-212
2 clear
3 clc
```

```
4
5 \text{ rs} = 200 / \text{Ohm}
6 vz = 100 / V
7 \text{ rz} = 20 // \text{Ohm}
8 i1=50 // mA
9 iz = 0.01 / mA
10 ilmax=100 / mA
11 izmin=0.1*ilmax
12
13 vl=vz+iz*rz
14 printf("\nV_L = \%.1 f \ V",vl)
15 \text{ v1=vl+((il/1000)+iz)*rs}
16 printf ("\nV1 = \%.1 \text{ fV}", v1)
17 vldash=vl+1
18 izdash=(vldash-100)/rz
19 printf("\nIncrease in Iz = \%.2 f \text{ mA}", izdash)
20 \text{ it} = (i1/1000) + izdash
21 vt=vldash+(rs*it)
22 printf("\nTotal Current = \%.1 f A\nTotal Voltage = \%
       .1 f V\nchange in V1 = \%.0 fV\nA change of 11 V in V
       , on the input side produces a change of\n1V on
      the output side due to zener diode action", it, vt,
      vt-v1)
```

Scilab code Exa 4.14 Design of bias circuit for zero drain current drift

```
1 // Example 4.14 page no-226
2 clear
3 clc
4 vp=-3 //V
5 vgs=vp-0.63 //V
6 idss=1.75 //mA
7 rd=5 //K-Ohm
8 gmo=1.8 //mA/V
9 //(a)
```

```
10 id=idss*(1-(vgs/vp))^2
11 rs=-vgs/0.08
12 gm=gmo*(vgs-vp)/vp
13 Av=gm*rd
14 printf("\n(a)Id for zero drift current\nId = %.2 f mA
   \n\n(b)\nVgs = %.2 f V\n\n(c)\nRs = %d K-Ohm\n\n(d
   )\ngm = %.3 f mA/V\nAv = %.2 f",id,vgs,rs,gm,Av)
```

Scilab code Exa 4.15 pinch off voltage

```
// Example 4.15 page no-228
clear
clc
a = 2*10^-4 //cm
n = 10 //Ohm-cm
eps=12/(36*%pi*10^11)
mup = 500 //cm^2/V-sec
ena=1/(rho*mup)

vp= (ena*a^2)/(2*eps)
printf("Vp = %.2 f V", vp)
```

Scilab code Exa 4.16 pinch off voltage

```
1 // Example 4.16 page no-231
2 clear
3 clc
4
5 printf("Same as problem 4.15 in the same chapter")
```

Scilab code Exa 4.17 pinch off voltage and channel half width

```
1 // Example 4.17 page no-231
2 clear
3 clc
4
5 a=3*10^-4 //cm
6 nd=10^15 //electrons/cm^3
7 e=1.6*10^-19 //C
8 eps=12/(36*%pi*10^11)
9 vp=e*nd*a^2/(2*eps)
10 printf("\n(a)\nVp = %.1 f V", vp)
11 b=a*(1-(1/2)^(1/2))
12 printf("\n\n(b)Vgs=Vp/2\nb = %.2 f * 10^-4 cm",b *10^4)
```

Scilab code Exa 4.20 design of self bias circuit

```
1 // Example 4.20 page no-241
2 clear
3 clc
4
5 \text{ vdd}=30 \text{ }//\text{v}
6 rl=4.7 //k-ohm
7 \text{ vd} = 20 //\text{v}
8 id = (vdd - vd)/rl
9 printf("\nId = \%.1 f mA",id)
10 printf("\nfor vd to be constant, it should be within
          1 V ")
11 del_id=1/rl
12 printf("\nDelta_Id = \%.1 \text{ f mA} \setminus \text{nId} \text{ (min)} = \% \text{f mA} \setminus \text{nId}
       (max) = \%f mA", del_id,id-del_id,id+del_id)
13
14 delv=vdd-vd
15 \text{ deli=}2.5 / \text{mA}
```

```
16 rs=delv/(deli)
17 printf("\nRs = \%d K-Ohm",rs)
```

Scilab code Exa 4.21 Voltage gain and output impedance of common source amplifier

```
1 // Example 4.21 page no-243
2 clear
3 clc
4 rd=100*10^3 //Ohm
5 \text{ gm} = 3000 * 10^{-6}
6 rl=10000 //Ohm
7 Av=(-gm*rd*rl)/(rd+rl)
8 printf("\n(a)\nAv = \%.1 f", Av)
9 f = 10^6 / Hz
10 c = 3*10^-12
              //F
11 \text{ xc=1/(2*\%pi*f*c)}
12 r0= 9.09 //K—Ohm
14 	 z0 = (r0*xc)/sqrt(r0^2 + (xc/1000)^2)
15 printf("\nZ0 = \%.2 \text{ f } \text{K-Ohm}",z0/1000)
```

Scilab code Exa 4.22 calculation of Vgs Id and Vds

```
1 // Example 4.22 page no-245
2 clear
3 clc
4
5 idss=5*10^-3//mA
6 vp = -5 //V
7 rs =5000 //Ohm
8 rl=2 //k-ohm
9 vdd=10
```

Chapter 5

Transistor biasing and Stabilization

Scilab code Exa 5.1 Quiescent Point and Stability Factor of CE amplifier

```
1 // Example 5.1 page no -281
2 clear
3 clc
5 B=50 //beta
6 \text{ rc} = 2000 //\text{ohm}
7 rb=100*10^3 //K—ohm
8 \text{ vcc} = 10 //V
9 vbe=0 //v
10 ib=vcc/((B+1)*rc+rb)
11 printf("\nIb = \%.1 f micro A", ib*10^6)
12 ic=B*ib
13 printf("\n Ic = \%.3 f mA",ic*10^3)
14 \text{ vce=ib*rb}
15 printf("\nVce = \%.2 f \ V", vce)
16 s = (B+1)/(1+(B*rc/(rc+rb)))
17 printf ("\nS = \%.1 \text{ f}",s)
```

Scilab code Exa 5.2 Stability Factor

```
1 // Example 5.2 page no-281
2 clear
3 clc
4 B=100 //Beta
5 rc=1000 //Ohm
6 vcc=10 //V
7 vbe=0 //v
8 vce=4 //V
9 ib=(vcc-vce)/(rc*(B+1))
10 printf("\nIb = %.1 f micro A",ib*10^6)
11 rb=vce/ib
12 s=(B+1)/(1+(B*rc/(rc+rb)))
13 printf("\nRb = %.1 f K-Ohm\nS = %.0 f",rb/1000,s)
```

Scilab code Exa 5.3 Stability Factor and Quiescent Point

```
1 // Example 5.3 page no-282
2 clear
3 clc
4
5 vcc=4.5 //V
6 vbe=0.2 //V
7 rc=1500 //Ohm
8 r1=27000 //Ohm
9 r2=2700 //Ohm
10 re =270 //Ohm
11 ib=1.1 //mA
12 b=44 //Beta
13 v=r2*vcc/(r1+r2)
14 rb=r1*r2/(r1+r2)
```

Scilab code Exa 5.5 Stability factor and Rb for 2N780 connected in collector to base bias

```
1 // Example 5.5 page no-287
2 clear
3 clc
4 b=50 //Beta
5 vcc=10 //V
6 rc= 250 //ohm
7 ib=0.4 //mA
8 ic=21 //mA
9 vce=vcc-((ic+ib)*rc/1000)
10 vce=floor(vce*10)/10//aproximated to
11 printf("\nVce = %.1 fV", vce)
12 vbe=0.6
13 rb=(vce-vbe)/ib
14 s=(b+1)/(1+(b*rc/(rc+rb*1000)))
15 printf("\nRb = %.0 f K-Ohm\nS = %d",rb,ceil(s))
```

Scilab code Exa 5.6 Stability factor and Rb for CE configuration

```
1 // Example 5.6 page no-288
2 clear
3 clc
4
```

```
5 b=100 //Beta
6 rc=1000 //ohm
7 vcc= 10 //V
8 vbe=0 //v
9 vce=4 //v
10 ib=(vcc-vce)/((b+1)*rc)
11 printf("\nIb = %.1 f micro A",ib*10^6)
12 rb=vce/ib
13 s=(b+1)/(1+(b*rc/(rc+rb)))
14 printf("\nRb = %.1 f K-Ohm\nS = %.0 f",rb/1000,s)
```

Scilab code Exa 5.7 calculation of parameters of two identical Si transistors

```
1 // Example 5.7 page no-289
2 clear
3 clc
5 //(a)
6 b=48 / beta
7 vbe=0.6 //V
8 \text{ vcc} = 20.6 //v
9 \text{ r1} = 10 //k - \text{ohm}
10 rc= 5 / K—ohm
11 T=25
           //temperature in Degree C
12
13 i = (vcc - vbe)/r1
14 ib=i/(2+b)
15 ic=b*ib
16 printf("\n(a)\nI = %d mA\nIb = %.0 f mA \nIc = %.2 f
      mA",i,ib*1000,ic)
17
18 // (b)
19 b2=98 / Beta
20 vbe=0.22 //V
```

Scilab code Exa 5.8 Quiescent Point and Stability Factor for self bias arrangment

```
1 // \text{Example } 5.8 \text{ page no} -290
2 clear
3 clc
4 \text{ vcc} = 20 //V
5 \text{ rc=2 } //\text{K-Ohm}
6 re= 0.1 / K-Ohm
            //K-Ohm
7 r1 = 100
             //k—Ohm
8 r2 = 5
            //beta
9 b = 50
10 vbe=0.2 //V
11 v=r2*vcc/(r1+r2)
12 \text{ rb=r1*r2/(r1+r2)}
13 ib = (v - vbe) / (rb + re * (1+b))
14 ic=b*ib*1000
15 ie=ib*1000+ic
16 vce=vcc-ic*rc/1000-ie*re/1000
17 s=(1+b)*((1+rb/re)/(1+b+rb/re))
18 printf ("\nV = \%.3 \text{ f V} \setminus \text{nRb} = \%.2 \text{ f K-Ohm} \setminus \text{nIb} = \%.2 \text{ f mA}
      ",v,rb,ib*1000,ic/1000,ie/1000,ceil(vce),s)
```

Scilab code Exa 5.9 Self bias circuit design when Q point and stability are given

```
1 // Example 5.9 page no-291
2 clear
3 clc
4 vcc=16 //v
5 \text{ rc} = 1500 / \text{Ohm}
6 \text{ vce} = 8 //v
7 ic = 4*10^-3 //A
8 s=12 //Stability Factor
9 b=50 / Beta
10 \text{ ib=ic/b}
11 re=vcc-vce-ic*rc
12 \text{ re=re/(ib+ic)}
13 rb=14.4*re/(1+b)/((b/s)-1)
14 vbn = 2.2 / V
15 \quad V = vbn + ib * rb
16 printf ("\nIb = \%.0 f micro A\nRe = \%.2 f K-Ohm\nRb = \%
       .2 \text{ f } \text{ K-Ohm} \setminus \text{nV} = \%.2 \text{ fV}, ib*10^6, re/1000, rb/1000, V)
17
18 r1 = vcc * rb/V
19 r2=V*r1/(vcc-V)
20 printf("\nR1 = \%d \ K-Ohm \nR2 = \%.2 f \ K-Ohm", ceil(r1
       /1000),r2/1000)
```

Scilab code Exa 5.10 designing of self bias circuit of given specification

```
1  // Example 5.10 page no-294
2  clear
3  clc
4  //Though the procedure is same Answer do not match
      with the book
5  vcc=20  //v
6  vce =10  //v
7  vbe=0.6  //V
8  ic=2*10^-3  //A
9  rc=4000  //ohm
```

```
10 k=(vcc-vce)/ic //Rc+Re
11 re=k-rc
12 printf("\nRe = \%.0 f K-Ohm", re/1000)
13 ic2=2.25 //mA
14 \text{ ic1}=1.75 / \text{mA}
15 delic=(ic2-ic1)*10^-3 //A
16 b2=90 //Beta max
17 b1=36 //Beta min
18 \text{ delb=b2-b1}
19 s2=17.3 //stability factor
20 \text{ rb} = (1+b2)/((b2/s2)-1)
21 rb=rb*re
22 printf("\nRb = \%.1 f K-Ohm", rb/1000)
v = vbe + ((rb + re * (1 + b1))/b1) * ic
24 printf ("\nV = \%.2 \, \text{fV}", v)
25 \text{ r1=rb*vcc/v}
26 \text{ r2=r1*v/(vcc-v)}
27 printf("\nR1 = \%.1 \text{ f } \text{K-Ohm} \nR2 = \%.1 \text{ f } \text{k-Ohm}",r1/1000,
       r2/100)
```

Scilab code Exa 5.11 Q point and stability for self bias arrangement

```
1 // Example 5.11 page no-296
2 clear
3 clc
4
5 vcc=4.5 //V
6 r2 =2700 //Ohm
7 re=270 //Ohm
8 r1=27000// ohm
9 b=44 //Beta
10 vbe=0.6
11 rb=r1*r2/(r1+r2)
12 v2=vcc*r2/(r1+r2)
13 printf("\nRb = %.2 f K-Ohm\nV2 = %.2 fV",rb/1000,v2)
```

```
14
15 //(a)
16 s=(1+b)/(1+(b*re/(re+rb)))
17 printf("\n\n(a)\nS = \%.1 f",s)
18 //(b)
19 ib=-(v2-vbe)/((b+1)*re+rb)
20 ic=b*ib
21 k = (b*2035+re+b*re)
22 \text{ vce=vcc-k/}10^5
23 printf("\n\n(b) Quiescent Point\nIb = %.3 f mA\nIc = %
       .3 \, f \, mA \backslash nVce = \%.3 \, f \, V", ib*1000, ic*1000, vce)
24 //(c)
25 s1=(1+b)/(1+(b*re)/(re+3150))
26 \text{ ib1} = -0.19/((re*(1+b))+3.15)
27 \text{ vce2} = \text{vcc-0.938}
28 printf("\n\n(c)\nS=\%.2 f\nQuiescent Point:\nVce = \%.3
       f V \cap Ib = \%.3 f mA \cap Ic = \%f mA, s1, vce2, -ib1
       *1000,0.528)
```

Scilab code Exa 5.12 Stability factor and thermal resistance

Scilab code Exa $5.13\,$ DC input resistance of a JFET

```
1 // Example 5.13 page no-307
2 clear
3 clc
4
5 v=20 ///v
6 igss=5*10^-12 //A
7 rgs= v/igss
8 printf("Input Resistance, Rgs = %.0 f * 10^12 Ohm", rgs/10^12)
```

Scilab code Exa 5.14 V0 for a JFET amplifier

```
1 // Example 5.14 page no-308 2 clear 3 clc
```

```
4
5 gm=2500 //micro mho
6 vm=5 //mV
7 rs=7500 //ohm
8 x=1/(gm*10^-6) //Ohm
9 opr = 0.949*vm
10 z0=rs*x/(rs+x)
11 printf("\nOpen circuited output voltage, that is without considering RL\n\tV0 = %.2 f mV\nOutput impedance, \n\tZ0 = %.0 f Ohm",opr,ceil(z0))
12 V0=3000*opr/3380
13 printf("\n\nAC voltage across the load resistor is\n\tV0 = %.2 f mV",V0)
```

Chapter 6

Amplifiers

Scilab code Exa 6.1 conversion efficiency

```
1 // Example 6.1 page no-329
2 clear
3 clc
4
5 Vdc=9
6 Idc= 20*10^-3
7 V0=3
8 I0=12*10^-3
9
10 P0=V0*I0
11 Pdc=Vdc*Idc
12 eta=P0/Pdc
13 printf("\nEfficiency(Eta) = %.0f%%",eta*100)
```

Scilab code Exa 6.2 calculation of different parameters of CC circuit

```
3 clc
5 \text{ Ib} = 100 * 10^-6
6 \text{ hie} = 2000
7 R=50*10^3
8 \text{ Vbe=Ib*hie}
9 Ii = Vbe/R
10 I1=Ii+Ib
11 printf ("Total Current Input, I=\%.0 f micro A", I1
12 hfe=100
13 R4=2.1*10<sup>3</sup>
14 R1=1000
15 I0=hfe*Ib*R4/(R4+R1)
16 printf ("\nCurrent through Rl, I0=\%.2 \,\text{fmA}", I0*1000)
17 \quad Ai = IO/I1
18 printf("\nCurrent amplification, Ai= %d", Ai)
19 V0=-I0*R1
20 \text{ Av=VO/Vbe}
21 printf ("\nV0=\%.2 f\n Av=\%.1 f\nNegative sign indicates
       that there is phase shift of 1800\n between
      input and output voltages, i.e. as base voltage
      goes more positive, \n (it is NPN transistor), the
      collector voltage goes more negative", VO, Av)
```

Scilab code Exa 6.4 calculation of different parameters of CE circuit

```
1 // Example 6.12 page no-349
2 clear
3 clc
4
5 hie=1000
6 hfe=99
7 //hre negligible
8 r2=60
```

```
9 r3=30

10 r4=5

11 r7=20

12 r6=30

13 R11=20000

14 R23=r2*r3/(r2+r3)

15 R47=r4*r7/(r4+r7)

16 R1=R47

17 Av=-hfe*R1*10/hie

18 Av=floor(Av)

19 Ri=R11*1000/(R11+1000)

20 printf("Rl=%d kohm\nAv = %d\nRi=%.0 f Ohm",R1,Av*100,

Ri)
```

Scilab code Exa 6.5 calculation of different parameters of CC circuit

```
1 // Example 6.5 page no-352
2 clear
3 clc
4
5 \text{ hic} = 1100
6 \text{ hrc} = 1
7 \text{ hfc} = -51,
8 \text{ hoc} = 25*10^-6
9 R1=10000
10 Rs=R1
11 Ai = -hfc/(1+(hoc*Rl))
12 Ri=(hic+hrc*Ai*Rl)/1000
13 Av = Ai * R1/Ri
14 Avs = Av*Ri/(Ri+Rs)
15 R0=1/(hoc-(hfc*hrc/(hic+Rs)))
16 printf ("Ai=%.1 f\nRi=%.1 f kOhm\nAv=%.3 f\nAvs=%.3 f\nR0
      =\%.0 \text{ f om}", Ai, Ri, Av, Avs, ceil(R0))
```

Scilab code Exa 6.7 maximum value of RL in CE configuration

```
1 // Example 6.7 page no-353
2 clear
3 clc
4 hie = 1100
5 hfe = 50
6 hre = 2.50*10^-4
7 hoe = 25*10^-6
8
9 Rl=0.1*hie/((hfe*hre)-(0.1*hoe*hie))
10 Rl=Rl/1000
11 printf("Rl= %.1 f K Ohm",R1)
```

Scilab code Exa 6.8 voltage gains Avs Av1 and Av2 for given circuit

```
1 // Example 6.8 page no -364
 2 clear
 3 clc
 4
 5 \text{ hie} = 1000
 6 \text{ hre} = 10^{-4}
 7 \text{ hfe} = 50
 8 \text{ hoe} = 10^-8
9 R12=5000
10 \text{ Rs} = 1000
11 Ri2=hie+(1+hfe)*R12
12 Ri2=Ri2/1000
13 printf("Ri2= %d KOhm", Ri2)
14 Av2=1-(hie/(Ri2*1000))
15 printf ("\nAv2 = \%.3 f", Av2)
16 R11 = (10*256) / (10+256)
```

```
17  Ai1=-50*hfe
18  Av1=-hfe*Rl1/hie
19  o_g=Av1*Av2
20  Avs=o_g*Rs/(Rs+hie)
21  printf("\nRl1=%.2 f KOhm\nAv1=%.1 f\nOverall Gain=%.0 f\nAvs=%.0 f",Rl1,Av1*1000,floor(o_g*1000),floor(Avs*1000))
```

Chapter 7

Feedback Amplifiers

Scilab code Exa 7.1 determination of various parameters of feedback amplifiers

```
1 // Example 7.1 page no-402
2 clear
3 clc
4
5 Av=-100
6 B=0.01
7 Avd=Av/(1-B*Av)
8 v1d=10^-3 //1mV
9 V0=Avd*v1d*1000
10 Vx=B*V0
11 V1=v1d+Vx
12 printf("V1=%.3 f\nV1d=%.3 f\n This is negative feedback because, v1<v1_dash\n", V1,v1d)</pre>
```

Scilab code Exa 7.2 percentage variation in Avdash

```
1 // Example 7.2 page no-403
```

```
2 clear
3 clc
4
5 Av=-100
6 Avd=-50
7 Avnew=-200
8 B=0.01
9 Avdnew=Avnew/(1-B*Avnew)
10 avchange=(-Avdnew)-(-Avd)
11 var=avchange*100/(-Avd)
12 printf("Variation = %.1f%%", var)
```

Scilab code Exa 7.3 reverse transmission factor and gain with feedback

```
1 // Example 7.3 page no-403
2 clear
3 clc
4
5 //(a)
6 dA=100
7 A=1000
8 dAf=0.1
9 Af=100
10 B=(((dA/A)*(Af/dAf))-1)/A
11 printf("(a)\nBeta=%.3f",B)
12 //(b)
13 Aff=A/(1+B*A)
14 printf("\n\n(b)\nAf=%d",Aff)
```

Scilab code Exa 7.4 Improvement in stability

```
1 // Example 7.4  page no-404 2  clear
```

Scilab code Exa 7.5 Overall gain and reverse transmission factor

```
1 // Example 7.5 page no-404
2 clear
3 clc
4
5 Av=500
6 D=5
7 Ddash=0.1
8 B=((D/Ddash)-1)/(Av)
9 Avdash=-Av/(1+B*Av)
10 printf("Av_dash = %.0 f", Avdash)
```

Scilab code Exa $7.6\,$ different parameters with and without negative feedback

```
1 // Example 7.6 page no-405
2 clear
3 clc
4
5 Vs=150
```

```
6 \quad A = 10000
7 \ VO = A * Vs
9 Afb=10000/80
10
11 B = ((A/Afb)-1)/A
12 printf("Beta = \%.4 \text{ f} \n",B)
13
14 Vs2=130
15 A2=8000
16 \ VO2 = A2 * Vs
17 Afb2=A2/(1+(B*A2))
18 sg = (A - A2) * 100/A
19 sgf = (Afb - Afb2) *100/Afb
20 printf("%% stability of gain without feedback=%.0f%%
      \n\% stability of gain with feedback=\%f\%\n
      Therefore, with neative feedback stability is
      improved.",sg,sgf)
```

Scilab code Exa 7.7 Avf Rof and Rif for the voltage series feedback

```
1 // Example 7.7 page no-409
2 clear
3 clc
4 //Though the calculations are same as given in book
        answers do not match with the answers given in
        the Book.
5 Rs=0
6 hfe=50
7 hie =1.100
8 hre=0
9 hoe=0
10 r5=2.2000
11 r7=3.3000
12 r3=33
```

```
13 \text{ r}1=0.1
14 r2=10
15 \text{ r9} = 2.2
16 R1=0.98
17 \text{ r6} = 2.2
18 R0 = 2
19 //Rl =R5 is in parallel with R7, R8 and h1e2
20 R11=(r5*r3*r7*hie)/((r5*r3*r7)+(hie*r3*r7)+(r5*hie*
      r7) + (r5*r3*hie))
21 printf ("Rl1_dash=\%f", Rl1)
22 R12=(r9*(r1+r2))/(r9+(r1+r2))
23 printf("\nRl2=\%f = 2 KOhm(approx)",R12)
24 \text{ Re} = (r1*r6)/(r1+r6)
25 printf("\n\text{Re}=\%f kohm=\%.0f ohm", Re, ceil(Re*1000))
26
27 Av1=-(hfe*Rl1)/(hie+(1+hfe)*0.098)//The voltage gain
       AV1 of Q for a common emitter transistor with
      emitter resistance
28 Av2=(-hfe*R12)/hie//Voltage gain AY2 of transistor
      Q2
29 printf ("\nAv1=\%.2 f \nAv2=\%.2 f", Av1, Av2)
30 Av=Av1*Av2//Voltage gain Ay of the two stages is
      cascade without feedback
31 B=r1/(r1+r2)
32 \quad K = Av * B
33 D = 1 + K
34 \text{ Avf} = \text{Av/D}
35 printf ("\nAvf=\%d", Avf)
36 Ri=hie+(1+hfe)*Re//Input resistance without external
       feedback
37 Ridash=Ri*D
38 printf("\nRi_dash = \%f \ K \ Ohm", Ridash)
39 Rof=RO/D//Output resistance without feedback
40 printf("\nRof_dash=\%f \ K \ Ohm", Rof)
```

Scilab code Exa 7.8 current series feedack

```
1 // Example 7.8 page no-414
2 clear
3 clc
5 \text{ Rc1} = 3
6 \text{ Rc2} = 0.500
7 \text{ Re2} = 0.05
8 \text{ Rdash}=1.2
9 \text{ Rs} = 1.2
10 \text{ hfe} = 50.
11 \text{ hie} = 1.1
12 \text{ hre=0}
13 hre =0
14
15 Ai=-hfe
                            //EmItter follower
16
17 Ri2=hie+(1+hfe)*(Re2*Rdash/(Re2+Rdash))
18 k1 = -Rc1/(Rc1 + Ri2)
19 k1 = ceil(k1 * 1000)
20 k1=k1/1000
21 R=Rs*(Rdash+Re2)/(Rs+(Rdash+Re2))
22 \text{ k2=R/(R+hie)}
23 k2 = floor(k2 * 1000)
24 k2=k2/1000
25 \quad AI = Ai * k1 * k2 * hfe
26 B=Re2/(Re2+Rdash)
27 D = (1 + B * AI)
28 \quad Adash=AI/(1+B*AI)
29 Avdash=Adash*Rc2/Rs
30 printf ("\nAI=\%d\nBeta=\%.2 f\nAi_dash=\%.1 f\nAv_dash=\%
       .2 f", AI, B, Adash, Avdash)
31 Ri=R*hie/(R+hie) //Ri = Input resistance without
       feedback
32 Ridash=Ri/D
33 Rol=Rc2 //\text{RoL} =Ro in parallel with RC2 = RC2 and Ro
        is large
```

```
34 Rldash= Rol*D/D //with feedback considering RL 35 printf("\nRi=\%f K Ohm\nRl_dash=\%f K Ohm",Ri,Rldash)
```

Scilab code Exa 7.9 calculation of Avf and Rif for given circuit

```
1 // Example 7.9 page no-424
2 clear
3 clc
5 \text{ Rc} = 4
6 Rb = 40
7 \text{ Rs} = 10
8 \text{ hie} = 1.1
9 \text{ hfe} = 50
10 \text{ hre=0}
11 hoe=0
12
13 Rcdash=Rc*Rb/(Rc+Rb)
14 R=Rs*Rb/(Rs+Rb)
15 Rm=-hfe*Rcdash*R/(R+hie)
16 Rm=floor(Rm)
17 printf("\nTransresistance Rm=%d k", Rm)
18 B = -1/(Rb)
19 D = 1 + B * Rm
20 \quad Rmdash = Rm/D
21 Avdash=Rmdash/Rs
22 Ri=R*hie/(R+hie)
23 Ridash=Ri/D
24 printf("\nBeta=\%.3 f mA/V\nRm_dash=\%dk Ohm\nAv_dash=
      \%f \ nRi=\%f \ k \ Ohm \ nRi_dash=\%fk \ Ohm" ,B ,Rmdash ,Avdash
       , Ri, Ridash)
```