	Data pre We are going t	rnlab) ndomForest) m) processing		_	nly, and leave	e the testing set	for final validatio	n. Therefore, the data clea
13]:	<pre>train_file test_file train = re dim(train)</pre>	= 'https://d396g = 'https://d396g ad.csv(train_fil d.csv(test_file,	qusza40orc.cl usza40orc.cl e, sep=',', l	loudfront. oudfront.n header= TR U	et/predma			
	•	observations and 16 o remove variables v		_	•	•		riables in testing dataset. N the training set.
14];		ain[, colSums(is ain[,-c(1:7)]	.na(train)) =	== 0]				
.5] :	-	oing to remove varia ZeroVar(train) ain[,-nvz]	bles with almos	st zero varia	nce across c	bservations.		
22]:	<pre>set.seed(1 inTrain = training = validation</pre>	886) createDataPartit train[inTrain,] = train[-inTrai	n,]				"validation se	et" = dim(validation))
	original datase training se validation se							
23]:	select the bes Set up control	t performance mode for training with 5-for trainControl (met	el and look at the	e prediction tion.	s on the test	ing dataset.	Machine to predic	et the outcomes. We will als
80]:	<pre>pred1 = pr cm1 = conf cm1 Confusion M Prediction</pre>	train(classe~., edict(modFit1, v usionMatrix(pred fatrix and Statis eference A B C	alidation) 1, factor(value) tics D E			crControl = co	ontrol)	
	B C D E E Overall Sta	33 0 0 tistics Accuracy: 0 95% CI: (rmation Rate: 0	177 144 350 264 0 0 0 529 1.4904 0.4775, 0.50	33)				
	Mcnemar's Statistics Sensitivity Specificity	Class: 0.89 0.62	A Class: B 13 0.31694 174 0.92078	0.49123 0.78987	0.0000	0.48891 0.99313		
31]:	Random F modFit2 =	lue 0.93 0.28 ate 0.25 revalence 0.52 curacy 0.75 orests train(classe~.,	93 0.61886 data=training	0.88028 0.17434 0.08564 0.25913 0.64055	0.8362 0.1638 0.0000 0.0000 0.5000	0.18386 0.08989 0.09550 0.74102	rol)	
	cm2 = conf cm2 Confusion M Prediction A B	edict (modFit2, vusionMatrix (pred fatrix and Statis eference A B C 1671 9 0 2 1129 4 0 1 1019	2, factor(value) tics D E 0 0 0 1	lidation \$ c	lasse))			
		0 0 3 1 0 0 tistics Accuracy: 0 95% CI: 0 rmation Rate: 0 [Acc > NIR]: <	956 3 0 1078 0.9946 0.9923, 0.99 0.2845 2.2e-16	63)				
	Sensitivity Specificity Pos Pred Va Neg Pred Va	Class: 0.99 0.99 lue 0.99 lue 0.99	A Class: B 182 0.9912 179 0.9985 146 0.9938 193 0.9979	0.9932 0.9981 0.9912 0.9986	0.9917 0.9988 0.9938 0.9984	0.9963 0.9998 0.9991 0.9992		
35]:	Gradient E modFit3 = pred3 = pr	revalence 0.28 curacy 0.99 Boosted Trees train(classe~., edict(modFit3, v	0.1918 0.1930 0.9949 data=training	0.1732 0.1747 0.9957	0.1624 0.1635 0.9952	0.1839 0.1832 0.1833 0.9980	trol)	
	Cm3 Iter Trai	nDeviance Vali 1.6094 1.5253 1.4670 1.4223 1.3865 1.3545 1.3263 1.3030		StepSize	Improve 0.1263 0.0890 0.0674 0.0547 0.0490 0.0445 0.0376 0.0324			
	8 9 10 20 40 60 80 100 120 140 150							
	Iter Trai 1 2 3 4 5 6 7 8 9			StepSize	Improve 0.1844 0.1284 0.1009 0.0840 0.0732 0.0717 0.0582 0.0494 0.0516 0.0431			
	10 20 40 60 80 100 120 140 150	1.0959 0.8944 0.6803 0.5537 0.4653 0.3984 0.3473 0.3050 0.2888	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0431 0.0190 0.0092 0.0084 0.0051 0.0032 0.0036 0.0026 0.0019			
	1 2 3 4 5 6 7 8 9 10 20	1.6094 1.4626 1.3611 1.2813 1.2187 1.1586 1.1079 1.0651 1.0288 0.9849 0.7512	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.2312 0.1615 0.1242 0.0981 0.0965 0.0799 0.0697 0.0569 0.0708 0.0571			
	1 2	1.6094 1.5236	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 StepSize 0.1000 0.1000	0.0114 0.0081 0.0057 0.0036 0.0020 0.0018 0.0012 Improve 0.1329 0.0872			
	3 4 5 6 7 8 9 10 20 40 60	1.4653 1.4208 1.3857 1.3524 1.3278 1.3025 1.2804 1.2585 1.1056 0.9317 0.8248	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0661 0.0521 0.0515 0.0380 0.0399 0.0338 0.0330 0.0301 0.0176 0.0081 0.0069			
	80 100 120 140 150	0.7447 0.6799 0.6294 0.5839 0.5649	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0039 0.0028 0.0032 0.0029 0.0025 Improve 0.1851 0.1346 0.0996 0.0842			
	5 6 7 8 9 10 20 40 60 80 100	1.2858 1.2365 1.1949 1.1562 1.1224 1.0937 0.8921 0.6816 0.5545 0.4641 0.3979	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0757 0.0647 0.0605 0.0519 0.0447 0.0399 0.0228 0.0137 0.0076 0.0025 0.0037			
	120 140 150 Iter Trai 2 3 4 5 6	0.3469 0.3059 0.2886 nDeviance Vali 1.6094 1.4630 1.3604 1.2827 1.2153 1.1597	nan nan nan dDeviance nan nan nan nan nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	0.0024 0.0021 0.0022 Improve 0.2278 0.1608 0.1223 0.1065 0.0900 0.0800			
	7 8 9 10 20 40 60 80 100 120 140	1.1096 1.0673 1.0242 0.9852 0.7546 0.5258 0.4043 0.3238 0.2662 0.2240 0.1888	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0662 0.0687 0.0586 0.0494 0.0209 0.0107 0.0066 0.0034 0.0025 0.0028			
	150	0.1741	nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0012 Improve 0.1282 0.0846 0.0689 0.0539 0.0495 0.0366 0.0405 0.0343			
	9 10 20 40 60 80 100 120 140	1.2815 1.2607 1.1071 0.9348 0.8270 0.7445 0.6810 0.6300 0.5851 0.5642	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0309 0.0297 0.0166 0.0087 0.0062 0.0062 0.0033 0.0031 0.0023 0.0015			
	Iter Trai 1 2 3 4 5 6 7 8 9 10	nDeviance Vali 1.6094 1.4895 1.4054 1.3393 1.2864 1.2404 1.1958 1.1579 1.1270 1.0969	dDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.1861 0.1273 0.1043 0.0817 0.0708 0.0716 0.0599 0.0473 0.0480 0.0406			
	20 40 60 80 100 120 140	0.8892 0.6792 0.5534 0.4647 0.3985 0.3456 0.3033 0.2857 Deviance Valiance V	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 StepSize 0.1000	0.0214 0.0080 0.0070 0.0046 0.0025 0.0038 0.0020 0.0029 Improve 0.2257			
	2 3 4 5 6 7 8 9 10 20 40	1.4643 1.3615 1.2837 1.2209 1.1616 1.1103 1.0643 1.0259 0.9878 0.7564 0.5313	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1669 0.1208 0.0975 0.0942 0.0790 0.0750 0.0624 0.0597 0.0476 0.0238 0.0083			
	60 80 100 120 140 150 Iter Trai	0.4060 0.3254 0.2631 0.2193 0.1854 0.1716 Deviance Vali 1.6094 1.5238 1.4655	nan nan nan nan nan nan nan nan dDeviance nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000	0.0095 0.0031 0.0030 0.0027 0.0015 0.0012 Improve 0.1297 0.0866 0.0655			
	4 5 6 7 8 9 10 20 40 60 80	1.4213 1.3854 1.3534 1.3276 1.3023 1.2799 1.2582 1.1039 0.9320 0.8224 0.7427	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0545 0.0507 0.0396 0.0394 0.0345 0.0328 0.0303 0.0162 0.0090 0.0065 0.0055			
	1 2 3 4 5	0.6798 0.6286 0.5841 0.5658 Deviance Vali 1.6094 1.4877 1.4064 1.3369 1.2837	nan nan nan nan dDeviance nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0032 0.0028 0.0017 0.0030 Improve 0.1878 0.1240 0.1098 0.0825 0.0722			
	6 7 8 9 10 20 40 60 80 100 120	1.2376 1.1927 1.1531 1.1176 1.0899 0.8897 0.6716 0.5471 0.4598 0.3955 0.3459	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0717 0.0639 0.0567 0.0424 0.0383 0.0263 0.0115 0.0077 0.0065 0.0050			
	140 150 Iter Trai 1 2 3 4 5 6 7 8	0.3050 0.2849 nDeviance Vali 1.6094 1.4584 1.3583 1.2776 1.2122 1.1559 1.1109 1.0603	nan nan dDeviance nan nan nan nan nan nan nan nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0022 0.0017 Improve 0.2378 0.1581 0.1288 0.1028 0.0897 0.0698 0.0824 0.0648			
	9 10 20 40 60 80 100 120 140 150	1.0192 0.9852 0.7476 0.5259 0.4037 0.3226 0.2658 0.2214 0.1891 0.1761	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0513 0.0552 0.0235 0.0120 0.0079 0.0030 0.0046 0.0012 0.0008 0.0016			
	1 2 3 4 5 6 7 8 9	1.6094 1.5238 1.4649 1.4213 1.3855 1.3526 1.3257 1.3021 1.2816 1.2592	nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.1274 0.0903 0.0631 0.0525 0.0509 0.0401 0.0370 0.0325 0.0323 0.0310			
	20 40 60 80 100 120 140 150 Iter Trai	1.1044 0.9327 0.8243 0.7431 0.6799 0.6277 0.5834 0.5652 nDeviance Vali	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 StepSize 0.1000	0.0185 0.0073 0.0090 0.0040 0.0025 0.0027 0.0029 0.0016 Improve 0.1854			
	2 3 4 5 6 7 8 9 10 20 40	1.4884 1.4056 1.3411 1.2901 1.2433 1.1995 1.1620 1.1254 1.0931 0.8930 0.6848	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1295 0.1014 0.0779 0.0725 0.0683 0.0585 0.0592 0.0511 0.0416 0.0257 0.0135			
	60 80 100 120 140 150 Iter Trai	0.5544 0.4612 0.3975 0.3433 0.3048 0.2860 Deviance Vali 1.6094 1.4577 1.3546	nan nan nan nan nan nan nan nan dDeviance nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000	0.0048 0.0040 0.0038 0.0028 0.0040 0.0011 Improve 0.2380 0.1599 0.1309			
	4 5 6 7 8 9 10 20 40 60 80	1.2749 1.2130 1.1539 1.1073 1.0636 1.0238 0.9841 0.7563 0.5279 0.4045 0.3179	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0988 0.0926 0.0741 0.0693 0.0612 0.0635 0.0553 0.0293 0.0109 0.0080 0.0022			
	100 120 140 150 Iter Trai 1 2 3 4 5	0.2636 0.2198 0.1859 0.1737 nDeviance Vali 1.6094 1.4645 1.3622 1.2841 1.2187	nan nan nan dDeviance nan nan nan nan	0.1000 0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	0.0032 0.0023 0.0017 0.0009 Improve 0.2264 0.1608 0.1233 0.1032 0.0954			
	6 7 8 9 10 20 40 60 80 100 120	1.1601 1.1099 1.0618 1.0251 0.9898 0.7591 0.5298 0.4041 0.3219 0.2664 0.2258	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0812 0.0744 0.0587 0.0563 0.0547 0.0287 0.0139 0.0076 0.0042 0.0027 0.0036			
	140 150 Confusion M	0.2258 0.1914 0.1772 Satrix and Statis eference A B C 1641 40 0 27 1070 22 3 26 985	nan nan	0.1000 0.1000 0.1000	0.0036 0.0010 0.0024			
	E Overall Sta	1 2 1 tistics Accuracy: 0	5 1048 0.9631 0.958, 0.967 0.2845 2.2e-16	8)				
	Sensitivity Specificity Pos Pred Va Neg Pred Va Prevalence	Test P-Value: 0 by Class: Class: 0.98 0.98 lue 0.97 lue 0.99 0.28	A Class: B 803 0.9394 998 0.9865 45 0.9436 921 0.9855 945 0.1935	0.9600 0.9862 0.9363 0.9915 0.1743	0.9585 0.9931 0.9645 0.9919 0.1638	0.9686 0.9981 0.9915 0.9930 0.1839		
39]:	Detection R Detection R Balanced Ac Support V modFit4 = pred4 = pr	ate 0.27 revalence 0.28	88	0.1674 0.1788 0.9731 g, method=	0.1570 0.1628 0.9758	0.1781 0.1796 0.9834	= control)	
	Confusion M R Prediction	52 21 25	D E 64 60 40 125 113 61 695 61 52 775					
	Overall Sta	tistics Accuracy : 0	0.7816 0.7709, 0.79 0.2845 2.2e-16	21)				
	Sensitivity Specificity Pos Pred Va Neg Pred Va Prevalence Detection R Detection F	Class: 0.91 0.91 lue 0.80 lue 0.28 ate 0.26 revalence 0.32	A Class: B 64 0.7050 02 0.9402 23 0.7387 448 0.9300 45 0.1935 607 0.1364 49 0.1847	0.7729 0.9422 0.7384 0.9516 0.1743 0.1347 0.1825	0.7210 0.9677 0.8138 0.9465 0.1638 0.1181 0.1451	0.7163 0.9619 0.8090 0.9377 0.1839 0.1317 0.1628		
2]:	Model ev		me (Model = c	0.8575 ('Decision 'Support	0.8443 Tree','Ra	0.8391 andom Forests achine'),		posted Trees', erall[1],cm4\$overall[1
	1 2 R 3 Gradient 4 Support V	Model P Decision Tree 0. andom Forests 0. Boosted Trees 0. ector Machine 0.	4903993 9945624 9631266	0.9945624	accuracy.			