Fraud Detection for Xente

Daniela, Kai-Yang, Fabio

Introduction and Project Objective

Our Stakeholder:

Xente is an financial services company in Uganda offering various products and services that can be paid for using Mobile Money.

Xente's Objectives:

Provide improved and safer services to its customers

Project Objectives:

- create a ML algorithm to detect fraudulent transactions
- obtain a **maximized F1-Score** (stakeholder requirement)

EDA

Data Overview - Dataset and Variables

Data Set

Number of Transactions Total: 140,000

Training: ~95,000

Test: ~45,000

Time Period

Training: 15/11/18 - 13/03/19

Test: 13/02/19 - 14/03/19

Origin

Transactions from Uganda

Currency

Exclusively in UGX

Frauds - Overview

Volume of Fraud transactions

Frauds - Provider and Channel

Frauds - Pricing Strategy and Products

Frauds - Time dependencies

Frauds - Batchsize and Transactions to Date

Feature Engineering

Irrelevant Features

No additional Information

CurrencyCode CountryCode

SubscriptionID

TransactionID

Redundant

TransactionStartTime

Amount

BatchID

MODEL

Baseline Model (BSL)

Stakeholder Requirement:

Xente requires a maximized **F1-Score**

Metric Characteristics:

- F1-Score is the harmonic mean between *precision* and *recall*
- Precision: how accurately are positive cases identified
- Recall: how many of true positive cases are identified as positive

BSL Characteristics:

Naive strategy: predict the minority class in all cases.

BSL Results:

F1-Score = **0.667** (resampled data)

Main Model

Model Analysis

Employed a **stacked model**

Advantages:

Combine capabilities of different models to deal

Model Description

Sub-models:

- Decision tree
- AdaBoost
- Random Forest

Meta model:

Logistic regression

Model was further enhanced during training phase.

Model Performance

Performance on data set:

Precision - 0.84

Recall - 0.84

F1-Score - 0.84

Confusion Matrix

Model Performance

Fraud Cases:

- 84% identified
- 16% not identified

Legal Cases:

All cases correctly identified.

Saving ~253 Mio. UGX by using the stacked model.

CONCLUSIONS

Conclusions: patterns of fraudulent transactions

- Source provider of item: not a criterion
- Almost all frauds happened in Channel 3: IOS and in category: financial services
- The majority can be found in **pricing strategy 2**
- No abnormalities of amount volume between weekdays
- Substantially less at night, but with the highest volumes
- Not hidden in transaction batches
- Fraudulent transactions often occur as the first or second transaction of an account

Recommendations: What should be paid attention to?

- The provider is insignificant
- Increase monitoring Channel 3 (IOS), pricing strategy 2 and financial services
- Check large transaction volumes set at night
- A **frequently used account** usually doesn't commit frauds
- Doublecheck single transaction batches

BACKUP

Data Overview - Dataset and Variables

Data Set

Number of Transactions Total: 140,000

Training: ~95,000

Test: ~45,000

Time Period

Training: 15/11/18 - 13/03/19

Test: 13/02/19 - 14/03/19

Origin

Transactions from Uganda

Currency

Exclusively in UGX

Variable Set

Transaction related

Batch ID

ID

Account & Customer IDs

Subscription ID

Product related

ID & Category

Provider ID

Sales Channel

Value

Pricing Strategy

Feature Engineering

Added Features

Time related

Weekday

Week of Transaction

Daytime

Transaction related

Number of Transaction before fraud occurred;

Batch Size;

Difference between

transaction Amount and

Value;

Debit / Credit

Irrelevant Features

No additional Information

CurrencyCode

CountryCode

SubscriptionID BatchID

TransactionID

Redundant

TransactionStartTime

Amount