```
#include <stdlib.h>
#include <string.h>
#define MAXPAROLA 30
#define MAXRIGA 80
int main(int arge, char "argv[])
   int freq[MAXPAROLA]; /* vettore di conjutte
delle frequenze delle lunghezze delle proce
char riga[MAXRIGA];
int i, inizio, lunghezza;
```

Recursion

Sorting

Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

Merge sort

- Proposed by Von Neumann in 1949
- Division
 - Partition the array into 2 subarrays L and R with respect to the array's middle element
- Recursion

Divide does not reorder anything

- Merge sort on subarray L
- Merge sort on subarray R
- > Termination condition
 - With 1 (l=r) or 0 (l>r) elements the array is sorted

Ricombination

Merge 2 sorted subarrays into one sorted array

Combine performes the sorting

Example

Merge

- Merge sort is based on merge
 - Given two already ordered arrays v₁ and v₂
 - Generate e unique ordered array v₃
 - > Example

```
v1 = 3 6 9 30 40
v2 = -1 6 7 8 10
v3 = -1 3 6 6 7 8 9 10 30 40
```

Merge

```
i1 = i2 = i3 = 0;
                                   Merge body of v1 and
                                    body of v2 (both of
while (i1<N && i2<N) {
                                         size N)
  if (v1[i1] < v2[i2]) {
    v3[i3++] = v1[i1++];
  } else {
    v3[i3++] = v2[i2++];
                                    Merge tail of
                                   v1, if it exists
while (i1 < N) {
  v3[i3++] = v1[i1++];
                                    Merge tail of
                                    v2, if it exists
while (i2 < N) {
  v3[i3++] = v2[i2++];
```

Merge

- Merging two arrays has a linear cost the size of the final array
 - \succ T(n) = O(n)
- In merge sort the merge phase
 - Operates on two partitions of the same array (A) instead of working on arrays v₁ and v₂
 - Generates the resulting array v₃ in the original array (A)
 - Uses a temporary array (B)

Wrapper

Solution

```
B is an auxiliary array
                                        (check and free are missing)
void merge sort (int *A, int N) {
  int l=0, r=N-1;
  int *B = (int *)malloc(N*sizeof(int));
  merge sort r (A, B, 1, r);
                                                     Recursion
void merge sort r (int *A, int *B, int 1, int r) {
  int c;
  if (r <= 1)
    return;
                                         Left recursion
  c = (1 + r)/2
  merge sort r (A, B, 1, c);
                                           Right recursion
  merge sort r (A, B, c+1, r);
  merge (A, B, 1, c, r);
  return;
                                           Combine
                                     (merge on 2 partitions of
                                        the same array)
```

Solution

```
void merge (int *A, int *B, int 1, int c, int r) {
  int i, j, k;
                                             Compare and merge
  for (i=1, j=c+1, k=1; i<=c && j<=r; )
    if (A[i]<=A[j])
                                 Use <= to make
      B[k++] = A[i++];
                                 the sorting stable
    else
      B[k++] = A[j++];
                                  Copy the
                                   first tail
  while (i<=c)
    B[k++]=A[i++];
                                  Copy the
  while (j<=r)
                                  second tail
    B[k++]=A[j++];
  for (k=1; k<=r; k++)
                                   Copy the
    A[k] = B[k];
                                  array back
  return;
```

Features

- Not in place
 - > It uses an auxiliary array
- Stable
 - Function merge takes keys from the left subarray in the case of duplicate values

- Analitic analysis
 - Assumption
 - $n = 2^k$
- Divide and conquer problem with
 - Number of subproblems
 - a = 2
 - Reduction factor
 - b = n/n' = 2
 - Division cost
 - $D(n) = \Theta(1)$

```
void merge_sort_r (...){
  int c;
  if (r <= 1)
    return;
  c = (1 + r)/2
  merge_sort_r (A, B, 1, c);
  merge_sort_r (A, B, c+1, r);
  merge (A, B, 1, c, r);
}</pre>
```

- Recombination cost
 - Based on merge
 - $C(n) = \Theta(n)$
- > Termination
 - Simple test $\Theta(1)$
- Recurrence equation
 - $> T(n) = D(n) + a \cdot T(n/b) + C(n)$

```
void merge_sort_r (...) {
  int c;
  if (r <= 1)
    return;
  c = (1 + r)/2
  merge_sort_r (A, B, 1, c);
  merge_sort_r (A, B, c+1, r);
  merge (A, B, 1, c, r);
}</pre>
```

That is

$$> T(n) = n + 2 \cdot T(n/2)$$

$$> T(1) = 1$$

n>1

$$n=1$$

Resolution by unfolding

$$T(n) = n + 2 T(n/2)$$

$$> T(n/2) = n/2 + 2 \cdot T(n/4)$$

$$T(n/4) = n/4 + 2 \cdot T(n/8)$$

$$D(n)+C(n)=\Theta(n)$$

Replacing in T(n)

T(n) = n + 2·T(n/2)
= n + n + 4·T(n/4)
= n + n + n + 8·T(n/8)
= ...
= n + n + n + n + ...
= n ·
$$\sum_{i=1}^{\log n} 1$$

= n · log n
= O (n · log n)

$$T(n) = n + 2 \cdot T(n/2)$$

 $T(n/2) = n/2 + 2 \cdot T(n/4)$
 $T(n/4) = n/4 + 2 \cdot T(n/8)$

Termination condition n/2i = 1 i = log2n

Intuitive analysis

Recursion levels: log₂ n

Operations at each level: n

Total operations: n · log₂ n

Bottom-up merge sort

- Non recursive version of merge sort
- Core idea
 - > It starts from subarrays of length 1 (thus sorted)
 - ➤ It applies merge to obtain at each step sorted arrays whose length is twice as big

Termination

➤ The length of the sorted array equals the length of the initial array

Example

subarrays of size m

Solution

Merge subarrays

```
int min (int i, int j) {
  if (i < j)
    return i;
                        B is an auxiliary array
  else
                      (check and free are missing)
    return j;
                                                  I and r are the
                                                 array boundaries
void bottom up merge sort (int *A, int 1, int r) {
  int i, m, l=0, r=N-1;
  int *B = (int *)malloc(N*sizeof(int));
  for (m = 1; m \le r-1; m = m + m)
    for (i = 1; i \le r-m; i += m + m)
      merge (A, B, i, i+m-1, min(i+m+m-1,r));
        Consider the pairs of sorted
```

Tim Sort

- Proposed by Peters in 2002
- It is based on the consideration than for small arrays insertion sort is faster than merge sort
- Thus, tim sort is a hybrid sorting algorithm
 - It applies merge sort for "large" arrays
 - > It switches to insertion sort for "small" arrays
 - > In other words tim sort

From a few tens to a few hundreds of elements

- Applies the stardard merge sort divide-and-conquer procedure to split arrays in sub-arrays
- When the sub-arrays are small enough, it applies insertion sort to sort them
- It restart merge-sort to merge sorted sub-arrays

Quick sort

- Proposed by Richard Hoare in 1962
- Quick sort proceeds as merge sort
 - ➤ It uses a divide and conquer (divide et impera) approach
 - The array is partitioned
 - Each partition in conquered
 - The two partitions are combined
 - Nevertheless, while merge sort does all the job in the combination (merge) phase, quick sort does all the job in the partition (division) phase
 - Partition is based on a specific element used as a separator and called **pivot**

Quick sort

The overall logic is the following one

- Partition phase
 - The array A[I..r] is partitioned in 2 subarrays L (left subarray) and R (right subarray)
 - Given a pivot element x
 - L, i.e., A[I..q-1], contains all elements less than the pivot, i.e., A[i] < x
 - R, i.e., A[q+1..r], contains all elements larger than the pivot, i.e., A[i] > x
 - The value x is placed in the right place, i.e., in its final position
 - Division doesn't necessarily halve the array

Quick sort

- Recursion phase
 - Quicksort on subarray L, i.e., A[l..q-1]
 - Quicksort on subarray R, i.e., A[q+1..r]
 - Termination condition
 - If the array has 1 element it is sorted
- Ricombination phase
 - None

Implementation

Wrapper

```
void quick sort(int *A, int N) {
  int 1, r;
  1 = 0;
                                      Recursive call
  r = N-1;
  quick sort r (A, l, r);
                                                  Boundaries
void quick sort r (int *A, int 1, int r) {
  int c;
                                    Termination
  if (r <= 1)
                                     condition
    return;
  c = partition (A, 1, r);
                                                  Division
  quick sort r (A, 1, c-1);
  quick sort r (A, c+1, r);
  return;
                                           Recursive calls
                  Element c is not
                 moved any more
```

Partition

- There are several partition schemes
 - > Hoare, Lomuto, etc.
 - > We present the original Hoare partition scheme
- The pivot may be selected in several ways
 - We select the pivot as the rightmost element of the subarray
 - pivot = A[r]
- Then the partition phase proceeds as follows

Partition

- > It sets
 - i=l-1 and j=r
- ➤ A first cycle (ascending loop) increments i until it finds an element A[i] greater than the pivot x
- ➤ A second cycle (descending loop) decrements j until it finds an element less than the pivot x
- As the elements A[i] and A[j] are on the wrong array partition
 - Swap A[i] and A[j]
- ➤ Repeat until i < j
- Swap A[i] and pivot x
- Return the value of i to partition the array into subarrays

Implementation

```
int partition (int *A, int 1, int r ){
  int i, j, pivot;
                                     Pivot values are moved in the
  i = 1-1;
                                    right sub-array; worst case: stop
  j = r;
                                             on pivot
  pivot = A[r];
  while (i<j) {</pre>
    while (A[++i]<pivot);
    while (j>l && A[--j]>=pivot);
    if (i < j)
       swap(A, i, j);
                                         Pivot values stay in the right
                                        sub-array; worst case: stop on
                                                 element I
  swap (A, i, r);
  return i;
                            void swap (int *v, int n1, int n2) {
                              int temp;
                              temp=v[n1];v[n1]=v[n2];v[n2]=temp;
                              return;
```

Algorithms and Data Structures - Stefano Quer

Example

Partition ...

```
13 pivot
```

```
int partition (...){
  int i, j, pivot;
  i = 1-1; j = r;
  pivot = A[r];
  while (i<j) {
    while (A[++i]<pivot);
    while (j>l && A[--j]>=pivot);
    if (i < j) swap(A, i, j);
  }
  swap (A, i, r);
  return i;
}</pre>
```


Example: Scrambled order

pivot	0	1	2	3	4	5	6	7	8	9
	1	8	0	2	3	9	4	6	5	7
7	1	5	0	2	3	6	4	7	8	9
4	1	3	0	2	4	6	5	7	8	9
2	1	0	2	3	4	6	5	7	8	9
0	0	1	2	3	4	6	5	7	8	9
5	0	1	2	3	4	5	6	7	8	9
9	0	1	2	3	4	5	6	7	8	9

This case in very unconvenient

Example: Ascending order

pivot	0	1	2	3	4	5	6	7	8	9
	0	1	2	3	4	5	6	7	8	9
9	0	1	2	3	4	5	6	7	8	9
8	0	1	2	3	4	5	6	7	8	9
7	0	1	2	3	4	5	6	7	8	9
6	0	1	2	3	4	5	6	7	8	9
5	0	1	2	3	4	5	6	7	8	9
4	0	1	2	3	4	5	6	7	8	9
3	0	1	2	3	4	5	6	7	8	9
2	0	1	2	3	4	5	6	7	8	9
1	0	1	2	3	4	5	6	7	8	9

This case in very unconvenient

Example: Descending order

pivot	0	1	2	3	4	5	6	7	8	9
	9	8	7	6	5	4	3	2	1	0
0	0	8	7	6	5	4	3	2	1	9
9	0	8	7	6	5	4	3	2	1	9
1	0	1	7	6	5	4	3	2	8	9
8	0	1	7	6	5	4	3	2	8	9
2	0	1	2	6	5	4	3	7	8	9
7	0	1	2	6	5	4	3	7	8	9
3	0	1	2	3	5	4	6	7	8	9
6	0	1	2	3	5	4	6	7	8	9
4	0	1	2	3	4	5	6	7	8	9

Features

- In place
- Not stable
 - Partition may swap "far away" elements
 - ➤ Then occurrence of a duplicate key moves to the left of a previous occurrence of the same key
- Complexity
 - > Efficiency depends on the partition balance
 - > Balancing depends on the choice of the pivot

This happens when the array is already sorted in ascending or descending order

Worst case

- ➤ The pivot is the minimum or the maximum value within the array
 - Quick sort generates a subarray with n-1 elements and a subarray with 1 element
- Recursion equation

■
$$T(n) = n + T(n-1)$$
 $n>=2$

•
$$T(1) = 1$$
 $n = 1$

> That is

■
$$T(n) = n + n + n + n + n$$
 i.e., n'n

> Time complexity

•
$$T(n) = O(n^2)$$

- Best case
 - ➤ At each step **partition** returns 2 subarrays with n/2 elements
 - Recursion equation

•
$$T(n) = n + 2 \cdot T(n/2)$$

$$-$$
 T(1) = 1

$$n > = 2$$

$$n = 1$$

As for merge sort ...

- > Time complexity
 - $T(n) = O(n \cdot \lg n)$

Average case

- ➤ At each step **partition** returns 2 subarrays of different sizes
- Provided we are not in the worst case, though partitions may be strongly unbalanced
 - The average case leads to performances quite close to the ones of the best case

> Example

- At each step **partition** generates 2 partitions
- Let us suppose the first one has (9/10·n) elements and the second one (1/10·n) elements

Pivot selection

- Selecting the pivot is one of the main issues
- The pivot can be selected following several different strategies
 - Random element
 - Generate a random number i with $p \le i \le r$, then swap A[r] and A[i], use A[r] as pivot
 - Middle element
 - x = A[(p+r)/2]
 - Select average between min and max
 - Select median of 3 elements chosen randomly in array
 - **>** ...

Sorting algorithms

A synoptic table for all analyzed sorting algorithms

Algorithm	In place	Stable	Worst-Case
Bubble sort	Yes	Yes	O(n ²)
Selection sort	Yes	No	O(n ²)
Insertion sort	Yes	Yes	O(n ²)
Shellsort	Yes	No	depends
Mergesort	No	Yes	O(n·log n)
Quicksort	Yes	No	O(n ²)
Counting sort	No	Yes	O(n)