Herbst 16 Themennummer 1 Aufgabe 1 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

- a) Sei $U \subset \mathbb{C}$ offen und $f: U \to \mathbb{C}$ holomorph. Für ein $z_0 \in U$ gelte $|f(z)| \leq |z z_0|^{\alpha}$ mit $\alpha > 1$. Zeigen Sie $f(z_0) = 0$ und $f'(z_0) = 0$.
- b) Sei $\lambda \in \mathbb{R}$ und sei $u : \mathbb{C} \to \mathbb{R}$ gegeben durch $u(z) = x^2 + \lambda y^2$ für z = x + iy. Bestimmen Sie alle λ , für die u Realteil einer ganzen Funktion $f : \mathbb{C} \to \mathbb{C}$ ist. Geben Sie für diese λ alle zugehörigen ganzen Funktionen an.

Lösungsvorschlag:

a) Aus $0 \le |f(z_0)| \le |z_0 - z_0|^\alpha = 0$ folgt $|f(z_0)| = 0$ und daraus $f(z_0) = 0$. Daher gilt für den Betrag des Differentialquotienten $0 \le |f'(z_0)| =$

$$\left| \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \right| = \lim_{z \to z_0} \frac{|f(z)|}{|z - z_0|} \le \lim_{z \to z_0} |z - z_0|^{\alpha - 1} = |z_0 - z_0|^{\alpha - 1} = 0,$$

weil die Funktion $\mathbb{R} \ni x \mapsto x^{\alpha-1}$ stetig ist. Es folgt $|f'(z_0)| = 0$ und daher $f'(z_0) = 0$.

b) Falls u Realteil einer holomorphen Funktion ist, muss u harmonisch sein, wir berechnen also den Laplaceoperator von u. Es gilt $\Delta u(z) = \partial_{x^2}^2 u(z) + \partial_{y^2}^2 u(z) = 2 + 2\lambda \stackrel{!}{\equiv} 0$, was genau für $\lambda = -1$ erfüllt ist. Der einzig mögliche Wert ist also $\lambda = -1$. Wir erhalten $u(z) = x^2 - y^2$ was tatsächlich der Realteil der ganzen Funktion $\mathbb{C} \ni z \mapsto z^2$ ist, wegen $\Re(x+iy)^2 = \Re(x^2-y^2+i2xy) = u(z)$. Wir behaupten, dass die einzigen ganzen Funktionen, deren Realteil durch u gegeben ist, die Funktionen $\mathbb{C} \ni z \mapsto z^2 + ic$ mit einem $c \in \mathbb{R}$ sind. Jede dieser Funktionen hat natürlich diese Eigenschaft. Sei g eine ganze Funktion deren Realteil u ist, dann ist $\mathbb{R}(g(z)-z^2) = \mathbb{R}(g(z)) - \mathbb{R}(z^2) = u(z) - u(z) = 0$ und aus den Cauchy-Riemann-Differentialgleichungen folgt, für den Imaginärteil von $g-z^2$, dass $\partial_x \Im(g(z)-z^2) \equiv 0 \equiv \partial_y \Im(g(z)-z^2)$ ist, also muss der Imaginärteil konstant sein. Nennen wir diese Konstante $c \in \mathbb{R}$, so folgt $g(z)-z^2=\Re(g(z)-z^2)+i\Im(g(z)-z^2)=0+ic$ für alle $z \in \mathbb{C}$ und daraus dann $g(z)=z^2+ic$ wie behauptet.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$