东工业智造大数据创新大赛

数据引领 飞粤云端

都都都都都都

Defects Detection

主办单位

广东省人民政府 阿里巴巴集团 承办单位

广东省工业和信息化厅 佛山市人民政府 阿里云计算有限公司 执行承办

佛山市南海区人民政府佛山市经济和信息化局

- 01 Team Member
- 02 Problem Analysis
- 03 Innovations
- 04 Implementation Scheme
- **Extensibility & Conclusion**

01 Team Member

李浩宇 华南理工大学

姚粤汉 华南理工大学

朱焕升 华南理工大学

博学慎思, 明辨笃行

Summary

Given a picture of an aluminum sheet, detecting the defects of interest.

Detect = Locate + Classify

Metrics: mAP@IOU0.5

Difficulties: small defect, extreme aspect ratio

■ Feature Pyramid Networks for feature extraction

FPN(feature pyramid networks)

Lin T Y , Dollar P , Girshick R , et al. Feature Pyramid Networks for Object Detection[C]// CVPR. IEEE Computer Society, 2017.

■ Baseline: Faster R-CNN with FPN

Lin T Y , Dollar P , Girshick R , et al. Feature Pyramid Networks for Object Detection[C]// CVPR. IEEE Computer Society, 2017.

He K, Gkioxari G, Dollur, Piotr, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, PP(99):1-1.

■ Training Details

Data Augmentation:

Symmetric images → Random horizontal/vertical filp

Different camera's parameters and lighting environment → ColorJitter Augmentation

Multi-scales Training:

More robust to defects' scale ——scaling invariance

Transfer Learning:

Pretrained on Coco dataset and then finetune on our dataset.

■ **Problem:** Original receptive field (1027) is insufficient for high resolution input (800*1066)

Solution: Dilated convolution

dilated convolution

Pros:

Cost-free(got larger receptive field without more compute)

Method	w.o. Dilated Conv	Dilated Conv	\triangle
FPN	80.88	82.38	1.50

■ **Problem:** Extreme aspect ratio

■ **Problem:** Non-optimal Rois mapping due to extreme aspect ratio

Feature Pyramid

■ S2: Multi-levels Roi-Align Pooling (MLRP)

Motivation: unsuitable Rois mapping due to extreme aspect ratio

Solution:

Feature Pyramid

Multi-levels Roi-Align Pooling

Method	w.o. MLRP	MLRP	\triangle
FPN	82.38	82.91	0.53

- Stochastic Weight Averaging (SWA)
- 1. Averaging Weights Leads to Wider Optima and Better Generalization
- 2. Cost-free Ensembling: Ensembles in the Weight Space, generating ensemble models without any additional inference or training time.

Method	w.o. SWA	SWA	\triangle
DPA	83.72	83.85	0.13
MLRP	82.91	83.02	0.11

Izmailov P, Podoprikhin D, Garipov T, et al. Averaging Weights Leads to Wider Optima and Better Generalization[J]. 2018.

■ Stochastic Weight Averaging (SWA)

Method	w.o. SWA	SWA	\triangle	FPS
S1: DPA	83.72	83.85	0.13	1.2
S2: MLRP	82.91	83.02	0.11	4.2

	B榜数据集		
团队名称	mAP分数	计算耗时(秒)	
Are you OK?	0.8172	2838	
воомвоом	0.8055	1744	
都都都都都	0.7927	823	
打怪升级	0.7897	7111	
shuzhilian_ai	0.7897	6689	
风不动	0.7886	13165	

■ Hierachical Feature Ensembling (HFE): Infer 1, got better for free!

04 Implementation Scheme

mAP

FPS

Scheme customization without retraining

04 Implementation Scheme

■ Run faster on this dataset —— De-background

04 Implementation Scheme

■ Run faster on this dataset —— Data preprocessing

FPN + MLRP + HEF + DB@(800, 1066)

05 Extensibility & Conclusion

Dual Path Aggregation for Object Detection

- ☐ Working well in complex scenario with small objects
- ☐ E.g. birds/traffic light/aircraft... detection

Multi-levels Roi-Align Pooling

- ☐ Face to detecting objects with extreme aspect ratio
- E.g. Fabric flaw detection

Hierachical Feature Ensembling

- ☐ An effective method to improve FPN's performance.
- E.g. object detection / semantic segmentation tasks

05 Extensibility & Conclusion

- Our reported solution is at least twice as fast as other teams.
- Without bells and whistles, we got ranking 3rd.
- The proposed methods has **high extensibility** in object detection and semantic segmentation.
 - DPA: Dual Path Aggregation for Object Detection
 - MLRP: Multi-levels Roi-Align Pooling
 - HEF: Hierachical Feature Ensembling
 - De-background
- FPN + MLRP + HEF + DB : Faster(5 fps) & Cost-effective

