Problema 6:

Sea $u: \mathbb{R}^3 \to \mathbb{R}$ una función escalar diferenciable. Sea $H = \nabla u$ el campo vectorial gradiente de u.

- **1** Verifique que $\nabla \times H = \vec{0}$.
- **2** (V ó F) Es verdad qué $\nabla \cdot H = 0$ para cualquier función diferenciable u?
- **3** (V ó F) Si F es un campo vectorial con $\nabla \times F = 0$ entonces F es conservativo.

Problema 7: Teorema de Green

Considere el campo vectorial

$$F(x,y) = (22y + 2x\sin(y) + 17\sin(x), x^2\cos(y) + 13y^{200\sin(y)})$$

Calcule el trabajo realizado por F a lo largo del triángulo con vértices (0,0), $(2\pi,0)$ y $(2\pi,2\pi)$ en ese orden.

Considere el campo vectorial

$$G(x, y) = (3xy^2, 3x^2).$$

Calcule el trabajo realizado por G a lo largo de la frontera del rectángulo $0 \le x \le 2$, $0 \le y \le 3$ en dirección de las manecillas del reloj.

Problema 8: Teorema de Green y el cálculo de áreas

I Sea F(x,y)=(0,x). Utilice el Teorema de Green para demostrar que, para cualquier curva simple cerrada σ positivamente orientada

$$\int_{\sigma} F d\vec{s} = Area(D)$$

Donde D es la region encerrada por σ .

2 Sea r(t) la curva parametrizada para $-1 \le t \le 1$ por:

$$r(t) = \left(\frac{\sin(\pi t)^2}{t}, t^2 - 1\right)$$

- Dibuje la curva (puede ayudarse con software)
- 2 Calcule el área encerrada por la curva usando la parte (1).

Esta es la idea detrás de un *planímetro*https://en.wikipedia.org/wiki/Planimeter

Problema 9: Teorema de Stokes

El plano z=x+4 y el cilindro $x^2+y^2=4$ se intersectan en una curva C orientada en contra de las manecillas del reloj cuando la vemos desde arriba. Calcule $\int_C Fds$ donde F es el campo vectorial dado por

$$F(x, y, z) = (x^3 + 2y, \sin(y) + z, x + \sin(z^2))$$

Problema 10: Teorema de Stokes

Sea C la curva orientada parametrizada por

$$r(t) = \left(\cos(t), \sin(t), 8 - \cos^2(t) - \sin(t)\right)$$

para $0 \le t \le 2\pi$ y sea F el campo vectorial dado por

$$F(x, y, z) = (z^2 - y^2, -2xy^2, e^{\sqrt{z}}\cos(z)).$$

Calcule el trabajo realizado por F a lo largo de σ .