Mapping patterns of occupancy and richness in a community characterized by strong philopatry

Appendix S1: Model Code

The model was run indivudally for each species, using data extracted from the main Antarctic Site Inventory database.

Code from one species (Gentoo Penguin) is displayed here.

Data Preparation:

```
jags.path="/usr/local/bin/jags/"
library('R2jags')
library('coda')
library('gtools')
library('boot')
library('reshape')
library('reshape2') # used for acast function
library('snowfall') # used to run in parallel
library('parallel') # used to run in parallel
library('SpatialEpi') # used to run in parallel
seaice.data <- read.csv("SeaIceNov.csv", header = TRUE)</pre>
visit.data <- read.csv("GEPE.visit.csv", header = TRUE)</pre>
temp.data <- merge(visit.data, seaice.data, by="Site", all.x=TRUE)
# Taking out any sites for which no sea-ice data exist:
temp.data <- subset(temp.data, is.na(Mean.Nov.Ice)==FALSE)</pre>
temp.data <- temp.data[order(temp.data$Site, temp.data$Season),]</pre>
# Creating simpler data columns:
temp.data$seaice <- as.numeric(temp.data$Mean.Nov.Ice)</pre>
temp.data$state <- as.numeric(temp.data$State+1)</pre>
# Labels the number of repeat visits in a year
temp.data$visit <- 1
for (i in 2:dim(temp.data)[1]){
  if (temp.data$Site[i] == temp.data$Site[i-1] &
      temp.data$Season[i] == temp.data$Season[i-1])
    temp.data$visit[i] <- temp.data$visit[i-1]+1</pre>
}
# turning variables into numeric for ease in modeling
temp.data$site <- as.numeric(as.factor(temp.data$Site))</pre>
temp.data$season <- as.numeric(as.factor(temp.data$Season))</pre>
final.data.matrix <- subset(temp.data, select=c(site,season,visit,state))</pre>
# Creating sea-ice object
```

The JAGS model:

```
sink("Occupancy.jags")
cat("
    model {
    #### Priors ####
    beta.psi ~ dnorm(0,0.386)
    beta.r ~ dnorm(0,0.386)
    alpha.psi ~ dnorm(0,0.386)
    alpha.r ~ dnorm(0,0.386)
    gamma.psi ~ dnorm(0,0.386)
    gamma.r ~ dnorm(0,0.386)
    p2 ~ dunif(0,1)
    p3[1:3] ~ ddirch(alpha.p3[1:3])
    for (i in 1:3){
      alpha.p3[i] <- 1
    #### Likelihood ####
    ## states-space model ##
    # First year:
    for (i in 1:S){
      logit(mu.psi[i,1]) <- alpha.psi + beta.psi*seaice[i]</pre>
      logit(mu.r[i,1]) <- alpha.r + beta.r*seaice[i]</pre>
      z1[i,1] ~ dbin(mu.psi[i,1], 1)
      z2[i,1] ~ dbin(mu.r[i,1]*z1[i,1], 1)
      z[i,1] \leftarrow c(1-\max(z1[i,1], z2[i,1]),
                   z1[i,1]-z2[i,1],
                   z2[i,1]
                   ) \%*\% c(1,2,3)
```

```
# Subsequent years:
for (i in 1:S){
  for (j in 2:Y){
   logit(mu.psi[i,j]) <- alpha.psi +</pre>
                             beta.psi*seaice[i] +
                             gamma.psi*z1[i,j-1]
   logit(mu.r[i,j]) <- alpha.r +</pre>
                          beta.r*seaice[i] +
                          gamma.r*z2[i,j-1]
    z1[i,j] ~ dbin(mu.psi[i,j], 1)
    z2[i,j] ~ dbin(mu.r[i,j]*z1[i,j], 1)
    z[i,j] \leftarrow c(1-\max(z1[i,j], z2[i,j]),
                 z1[i,j]-z2[i,j],
                 z2[i,j]
                  ) %*% c(1,2,3)
  }
}
## observation model ##
# Define observation matrix
p[1,1] <- 1
p[1,2] <- 0
p[1,3] <- 0
p[2,1] <- 1-p2
p[2,2] \leftarrow p2
p[2,3] \leftarrow 0
p[3,1] \leftarrow p3[1]
p[3,2] \leftarrow p3[2]
p[3,3] \leftarrow p3[3]
for (i in 1:S){
  for (j in 1:Y){
    for (k in 1:V){
      y[i,j,k] \sim dcat(p[z[i,j],])
      y.new[i,j,k] \sim dcat(p[z[i,j],]) # for posterior predictive check
  }
}
#### Derived values ####
## phi = the probability of being in each state
for (i in 1:S) {
  for (j in 1:Y) {
    phi[i,j,1] <- 1 - mu.psi[i,j]
    phi[i,j,2] \leftarrow mu.psi[i,j] * (1 - mu.r[i,j])
    phi[i,j,3] <- mu.psi[i,j] * mu.r[i,j]</pre>
  }
}
```

```
## eval = the probability of recording each state
    for (i in 1:S) {
      for (j in 1:Y) {
        eval[i,j,1] \leftarrow (phi[i,j,1] * 1) +
                         (phi[i,j,2] * (1 - p2)) +
                         (phi[i,j,3] * p3[1])
        eval[i,j,2] \leftarrow (phi[i,j,1] * 0) +
                         (phi[i,j,2] * p2) +
                         (phi[i,j,3] * p3[2])
        eval[i,j,3] \leftarrow (phi[i,j,1] * 0) +
                         (phi[i,j,2] * 0) +
                         (phi[i,j,3] * p3[3])
      }
    }
    }",fill = TRUE)
sink()
```

Running JAGS

```
##### Bundle the data for JAGS #####
Dat \leftarrow list(y = y, S = dim(y)[1], Y = dim(y)[2], V = dim(y)[3], seaice = seaice)
##### Select Initial Values #####
InitStage <- function()</pre>
 list(
    z1 = matrix(1, nrow = dim(y)[1], ncol = dim(y)[2]),
    z2 = matrix(1, nrow = dim(y)[1], ncol = dim(y)[2]),
    beta.psi = runif(1,0.2,0.2),
   beta.r = runif(1,0.2,0.2),
    alpha.psi = runif(1, 0.2, 0.3),
   alpha.r = runif(1, 0.2, 0.3),
   gamma.psi = 0,
    gamma.r = 0,
    p3 = as.vector(rdirichlet(1,c(1,1,1))),
    p2 = runif(1,.1,.9)
}
##### Posteriors to return #####
# Note: it may be necessary to limit this list to limit object size
# (recommend only returning "y.new" OR "z")
```

```
ParsStage <- c("beta.psi","beta.r",</pre>
                "alpha.psi", "alpha.r",
                "gamma.psi", "gamma.r",
                "p2", "p3",
                "mu.psi", "mu.r",
                "eval", "y.new",
                "z")
##### MCMC settings #####
ni <- 100000 # final iterations
nt <- 50 #thinning rate
nb <- 250000 # burn-in
nc <- 3 # number of chains</pre>
n.adapt <- 10000
##### Parallel Execution #####
cl <- makeCluster(3)</pre>
clusterExport(cl, c("Dat", "y", "InitStage", "ParsStage", "n.adapt", "nb", "ni", "nt"))
system.time({
  out1 <- clusterEvalQ(cl, {</pre>
    library(rjags); library(SpatialEpi); library('gtools')
    jm <- jags.model("Occupancy.jags",</pre>
                      data = Dat, InitStage,
                      n.chains=1, n.adapt=n.adapt)
    update(jm, n.iter=nb, thin=nt)
    samples = coda.samples(jm, n.iter=ni, variable.names=ParsStage, thin=nt)
    return(as.mcmc(samples))
 })
})
stopCluster(cl)
zm.GEPE <- mcmc.list(out1)</pre>
save(zm.GEPE,file="GEPE.results.Rdata")
```