Chapter 1

Expected value proof

1.1 Upper bound

Before proving part (b) of the main theorem, we will prove a lemma that shows that a cyclic group of prime order is covered by the sums of a random subset of logarithmic size almost always.

Lemma 1.1.1. Let q be a prime number and \mathcal{A} be a random subset of \mathbb{Z}_q of size $4 \lfloor 6 \log_2 q \rfloor$. As q tends to infinity, $2 \lfloor 6 \log_2 q \rfloor \mathcal{A}$ covers \mathbb{Z}_q almost always.

Proof. Let $s \in \mathbb{N}$ such that $s \leq q$. Let \mathcal{A} be a uniformly random subset of \mathbb{Z}_q of size s, that is,

$$\Pr(\mathcal{A}) = \frac{1}{\binom{q}{s}}.$$

For a given $z \in \mathbb{Z}_q$ and $k \in \mathbb{N}$ for which $k \leq s/2$, let

$$N_z^k := \left\{ K \subseteq \mathbb{Z}_q : |K| = k, \sum_{t \in K} t = z \right\}.$$

Note that $|N_z^k| = \frac{1}{q} \binom{q}{k}$, since $K \in N_0^k$ if and only if $K + k^{-1}z \in N_z^k$ for every $z \in \mathbb{Z}_q$.

For $K \in N_z^k$, let E_K be the event that $K \subset \mathcal{A}$. Let X_K be the indicator variable of E_K . We define the random variable

$$X_z = \sum_{K \in N_z^k} X_K.$$

Note that X_z counts the number of sets of size k which add up to z. We now find $E[X_z]$. Since the sum of every subset $K \subset S$ is in \mathbb{Z}_q ,

$$\sum_{z \in Z_a} X_z = \binom{s}{k},$$

and so

$$\binom{s}{k} = \mathrm{E}\left[\sum_{z \in Z_q} X_z\right] = \sum_{z \in Z_q} \mathrm{E}[X_z].$$

As in the argument for finding $|N_z^k|$, for every $z \in \mathbb{Z}_q$,

$$\mathrm{E}[X_0] = \sum_{K \in N_0^k} \mathrm{E}[X_K] = \sum_{K \in N_0^k} \mathrm{E}[X_{K+k^{-1}z}] = \sum_{K \in N_z^k} \mathrm{E}[X_K] = \mathrm{E}[X_z].$$

Therefore, we have that

$$E[X_z] = \frac{1}{q} \binom{s}{k}. \tag{1.1}$$

Now, for $K, L \in \mathbb{N}_z^k$, let $j \in \mathbb{N}$ such that $j \leq k$ and define

$$\Delta_j := \sum_{|K \cap L| = j} \Pr[E_K \wedge E_L].$$

If $|K \cap L| = j$,

$$\Pr[E_K \wedge E_L] = \frac{\binom{q-2k+j}{s-2k+j}}{\binom{q}{s}}.$$

We can bound the number of events for which $|K \cap L| = j$. First we choose K as any set in N_z^k and then we choose the remaining k - j elements as any subset of $\mathbb{Z}_q \setminus K$ with size k - j. Thus,

$$\Delta_j \le \frac{1}{q} \binom{q}{k} \binom{q-k}{k-j} \frac{\binom{q-2k+j}{s-2k+j}}{\binom{q}{s}}.$$

This implies that, using 1.1,

$$\begin{split} \frac{\Delta_{j}}{\mathrm{E}[X_{z}]^{2}} &\leq \frac{\binom{q}{k}\binom{q-k}{k-j}\binom{q-2k+j}{s-2k+j}}{\frac{1}{q}\binom{s}{k}\frac{1}{q}\binom{s}{k}q\binom{q}{s}} \\ &= \frac{\frac{q!}{(q-k)!k!}\frac{(q-k)!}{(k-j)!(q-2k+k)!}\frac{(q-2k+j)!}{(s-2k+j)!(q-s)!}}{\frac{1}{q}\binom{s}{k}\frac{s!}{(s-k)!k!}\frac{q!}{(q-s)!s!}} \\ &= \frac{q\binom{s-k}{k-j}}{\binom{s}{k}}. \end{split}$$

Let $s = 4 \lfloor 6 \log_2 q \rfloor$ and $k = 2 \lfloor 6 \log_2 q \rfloor$. Using that $\binom{s-k}{k-j}$ is maximized at $k-j = \lfloor (s-k)/2 \rfloor$,

$$\frac{\Delta_j}{\mathrm{E}[X_z]^2} \le \frac{q^{\binom{2\lfloor 6\log_2 q\rfloor}{\lfloor 6\log_2 q\rfloor}}}{\binom{4\lfloor 6\log_2 q\rfloor}{2\lfloor 6\log_2 q\rfloor}} \le \frac{q}{\binom{2\lfloor 6\log_2 q\rfloor}{\lfloor 6\log_2 q\rfloor}} \le \frac{q}{2^{\lfloor 6\log_2 q\rfloor}} \sim \frac{1}{q^5},$$

since $\binom{2\lfloor 6\log_2 q\rfloor}{\lfloor 6\log_2 q\rfloor}^2 \le \binom{4\lfloor 6\log_2 q\rfloor}{2\lfloor 6\log_2 q\rfloor}$ (Proposition ??).

Hence, by (??) and Theorem ??,

$$\Pr[X_z = 0] \le \frac{\mathrm{E}[X_z] + \Delta}{\mathrm{E}[X_z]^2} = \frac{1}{E[X_z]} + \sum_{j=0}^k \frac{\Delta_j}{\mathrm{E}[X_z]^2}$$

$$\le \frac{1}{E[X_z]} + \frac{(k+1)}{q^5} = \frac{1}{E[X_z]} + \frac{2\lfloor 6\log_2 q \rfloor + 1}{q^5}.$$

Therefore, by the union bound and since $q \to \infty$ as $p \to 0$,

$$\Pr\left[\bigvee_{z\in\mathbb{Z}_q} X_z = 0\right] \le \frac{q}{\mathrm{E}[X_z]} + \frac{2\lfloor 6\log_2 q\rfloor + 1}{q^4}$$
(1.2)

$$= \frac{q^2}{\binom{4\lfloor 6\log_2 q\rfloor}{2\lceil 6\log_2 q\rfloor}} + \frac{2\lfloor 6\log_2 q\rfloor + 1}{q^4}$$
 (1.3)

$$\leq \frac{q^2}{2^{2\lfloor 6\log_2 q\rfloor}} + \frac{2\lfloor 6\log_2 q\rfloor + 1}{q^4}$$
(1.4)

$$\sim \frac{1}{q^{10}} + \frac{6\log q}{q^4} = o(1). \tag{1.5}$$

We conclude that, as $q \to \infty$, $X_z > 0$ for every $z \in \mathbb{Z}_q$ almost always. Thus, for every $z \in \mathbb{Z}_q$, there exists $K \in N_z^k$ such that $K \subset \mathcal{A}$ almost always. This means that $2 \lfloor 6 \log_2 q \rfloor \mathcal{A}$ covers \mathbb{Z}_q almost always.

1.1.1 Proof of the upper bound

Lemma 1.1.2. Let $\psi(x)$ be a function for which $x(\log x)^2 \in o(\psi(x))$. Then

$$\lim_{p \to 0} \Pr \left[F(\mathcal{S}) \le \psi \left(\frac{1}{p} \right) \right] = 1.$$

The proof of this theorem consists of several parts. The strategy is to prove that the Ápery set of a subsemigroup of S is completed before step $\psi\left(\frac{1}{p}\right)$ with high probability, since F(S) is less than the maximum element of this Ápery set. The proof has the following structure:

- 1. First, we will find a step for which a prime q is chosen with high probability (E_1) .
- 2. Then, in the spirit of Lemma 1.1.1 we will find a step such that a set \mathcal{A} of s elements which are different modulo q are chosen with high probability (E_2) .
- 3. Finally, we will apply Lemma 1.1.1 to $Ap(\langle \mathcal{A} \cup \{q\} \rangle, q)$.

Proof.

Part 1

Consider the event D_1 that a prime q is selected, such that

$$\frac{200}{p}\log\frac{4}{p} \le q \le \left(\frac{4}{p}\log\frac{1}{p}\right)\log\left(\frac{4}{p}\log\frac{1}{p}\right).$$

Then

$$\Pr[\neg D_1] \le (1-p)^{\frac{1}{p}(4\log\frac{1}{p}-200)} \le e^{-(4\log\frac{1}{p}-200)} \in O(p^4).$$

Part 2

Given D_1 , let D_2 be the event that more than $24 \log q$ generators are selected. Let $X \sim \text{Bin}(q, p)$. Since

$$q \le \left(\frac{4}{p}\log\frac{1}{p}\right)\log\left(\frac{4}{p}\log\frac{1}{p}\right),$$

then

$$24\log q \le 24\log\left(\frac{4}{p}\right)^4 \le 100\log\frac{4}{p}.$$

Also, since

$$q \ge \frac{200}{p} \log \frac{4}{p},$$

then

$$E[X] = qp \ge 200 \log \frac{4}{p}.$$

Remember Chernoff's bound:

$$\Pr[X \le E[X] - \lambda] \le e^{-\frac{\lambda^2}{2E[X]}} \tag{1.6}$$

Thus, using $\lambda = \frac{E[X]}{2}$,

$$\Pr[\neg D_2] \le \Pr\left[X \le \mathrm{E}[X] - \frac{\mathrm{E}[X]}{2}\right] = e^{-\frac{\mathrm{E}[X]}{8}} \le e^{-25\log\frac{4}{p}} \in O(p^{25}). \tag{1.7}$$

Part 3

Finally, assume D_1 and D_2 . Let \mathcal{A} be the set of generators of chosen before q. Since the generators are chosen randomly and $|\mathcal{A}| \geq 24 \log q$, we can apply Lemma 1.1.1 to $\mathbb{Z}_q \cong \operatorname{Ap}(\langle \mathcal{A} \cup \{q\} \rangle, q)$. Consider the event D_3 that $\operatorname{Ap}(\langle \mathcal{A} \cup \{q\} \rangle, q)$ will be completed before step

$$12q\log q \in O\left(\frac{1}{p}\left(\log\frac{1}{p}\right)^3\right).$$

Applying Lemma 1.1.1 (Equation 1.5), we have that

$$\Pr[\neg D_3] \le \frac{1}{q^{10}} + \frac{6\log q}{q^4}$$

$$\le \frac{1}{\left(\frac{96}{p}\log\frac{4}{p}\right)^{10}} + \frac{6\log\left(\frac{4}{p}\right)^4}{\left(\frac{96}{p}\log\frac{4}{p}\right)^4} \in O(p^4).$$

Thus, there exists K > 0 such that

$$\lim_{p \to 0} \Pr \left[F(\langle \mathcal{A} \cup \{q\} \rangle) \le \frac{K}{p} \left(\log \frac{1}{p} \right)^3 \right] = 1.$$

Since $F(S) \leq F(\langle A \cup \{q\} \rangle)$, we conclude that

$$\lim_{p \to 0} \Pr \left[F(\mathcal{S}) \le \frac{K}{p} \left(\log \frac{1}{p} \right)^3 \right] = 1. \quad \Box$$

Now that the expected value of the Frobenius number can be bounded by

$$E[F(\mathcal{S})] = E[F(\mathcal{S})|D_1 \wedge D_2 \wedge D_3]Pr[D_1 \wedge D_2 \wedge D_3]$$

$$+ \operatorname{E}[F(\mathcal{S})|\neg(D_{1} \wedge D_{2} \wedge D_{3})]\operatorname{Pr}[\neg(D_{1} \wedge D_{2} \wedge D_{3})]$$

$$\leq \operatorname{E}[F(\mathcal{S})|D_{1} \wedge D_{2} \wedge D_{3}]$$

$$+ \operatorname{E}[F(\mathcal{S})|\neg(D_{1} \wedge D_{2} \wedge D_{3})]\operatorname{Pr}[\neg(D_{1} \wedge D_{2} \wedge D_{3})]$$

$$= \frac{K}{p} \left(\log \frac{1}{p}\right)^{3} + \operatorname{E}[F(\mathcal{S})|\neg(D_{1} \wedge D_{2} \wedge D_{3})]O(p^{4}).$$

Now,

$$E[F(\mathcal{S})|\neg(D_1 \wedge D_2 \wedge D_3)] \leq E[(\min\{(2n)^2|2n \text{ and } 2n+1 \text{ are selected}\})]$$

$$= \sum_{n=0}^{\infty} (2n)^2 (1-p^2)^{n-1} p^2$$

$$= p^2 \sum_{n=0}^{\infty} (2n)^2 e^{-p^2(n-1)}$$

$$\leq p^2 \int_0^{\infty} (2x)^2 e^{-p^2(x-1)} dx$$

$$= \frac{8e^{p^2}}{p^4}.$$

Therefore,

$$E[F(S)] \le \frac{K}{p} \left(\log \frac{1}{p}\right)^3 + C,$$

for some constants K and C that do not depend on p.

Corollary 1.1.1. Let $\psi(x)$ be a function for which $x(\log x)^2 \in o(\psi(x))$. Then

$$\lim_{p \to 0} \Pr \left[g(\mathcal{S}) \le \psi \left(\frac{1}{p} \right) \right] = 1.$$

Proof. Use Proposition ??.

Corollary 1.1.2. Let $\varphi(x)$ be a function for which $(\log x)^2 \in o(\varphi(x))$. Then

$$\lim_{p \to 0} \Pr \left[e(\mathcal{S}) \le \varphi \left(\frac{1}{p} \right) \right] = 1.$$

Proof. Since

$$\lim_{p \to 0} \Pr \left[F(\mathcal{S}) \le \psi \left(\frac{1}{p} \right) \right] = 1,$$

and the maximal element of the minimal generating set is at most 2F(S), the elements of the minimal generating set are chosen before step $2\psi\left(\frac{1}{p}\right)$ with high probability. Since

$$\left| \mathcal{A} \cap \left\{ 1, \dots, \left[2\psi\left(\frac{1}{p}\right) \right] \right\} \right| \sim \operatorname{Bin}\left(\left[2\psi\left(\frac{1}{p}\right) \right], p \right),$$

by the bound on the right tail of the binomial distribution (Proposition ??), we have that

$$\lim_{p \to 0} \Pr \left[e(\mathcal{S}) \le (3p)\psi \left(\frac{1}{p}\right) \right] = 1.$$

Thus, if $\varphi(x) = \frac{3}{x}\psi(x)$, then $(\log x)^2 \in \varphi(x)$ and

$$\lim_{p \to 0} \Pr\left[e(\mathcal{S}) \le \varphi\left(\frac{1}{p}\right)\right] = 1. \quad \Box$$