Agrégation interne 1997, épreuve 1

Soit n un entier supérieur on égal à 1. $\mathcal{M}_n(\mathbb{R})$ (resp. $\mathcal{M}_n(\mathbb{C})$) désigne l'algèbre des matrices carrées à n lignes et n colonnes à coefficients dans \mathbb{R} (resp. \mathbb{C}). I_n désigne la matrice identité.

On rappelle que $\mathcal{M}_n(\mathbb{C})$ est un \mathbb{C} -espace vectoriel normé muni de la norme :

$$||(a_{ij})|| = \sup_{1 \le i,j \le n} |a_{ij}|.$$

Pour $p \geq 1$, $\mathcal{M}_{n,p}(\mathbb{C})$ désigne le \mathbb{C} -espace vectoriel des matrices à coefficients complexes ayant n lignes et p colonnes. On identifiera $\mathcal{M}_{n,1}(C)$ à \mathbb{C}^n . Pour $A \in \mathcal{M}_{n,p}(\mathbb{C})$, tA désigne la matrice transposée de A, élément de $M_{p,n}(\mathbb{C})$.

 $GL_n(\mathbb{R})$ (resp. $GL_n(\mathbb{C})$) désigne le groupe des matrices inversibles de $\mathcal{M}_n(\mathbb{R})$ (resp. $\mathcal{M}_n(\mathbb{C})$).

 S_n désigne le sous-espace de $\mathcal{M}_n(\mathbb{R})$ constitué des matrices symétriques réelles.

 S_n^+ désigne le sous-ensemble de S_n formé des matrices réelles symétriques a valeurs propres positives ou nulles.

 S_n^{++} est le sous-ensemble de S_n^+ formé des matrices symétriques réelles a valeurs propres strictement positives.

 $\mathbb{C}_n[X]$ (resp. $\mathbb{R}_n[X]$) est le \mathbb{C} -espace vectoriel des polynômes à coefficients complexes (resp. le \mathbb{R} -espace vectoriel des polynômes à coefficients réels) de degré inférieur ou égal à n. On rappelle que $\mathbb{C}_n[X]$ est un espace vectoriel normé avec :

$$\left\| \sum_{i=0}^{n} a_i X^i \right\| = \sup_{0 \le i \le n} |a_i|.$$

Pour A appartenant à $\mathcal{M}_n(\mathbb{C})$, on désigne par χ_A le polynôme caractéristique de A:

$$\chi_A(X) = \det(A - XI_n).$$

Pour A appartenant à $\mathcal{M}_n(\mathbb{C})$, on désigne par $P_{m,A}$ le polynôme minimal de A. On rappelle que $P_{m,A}$ est le polynôme unitaire générateur de l'idéal I de $\mathbb{C}[X]$ défini par $I = \{P \in \mathbb{C}[X] \mid P(A) = 0\}$ et que $A \in \mathcal{M}_n(\mathbb{C})$ est diagonalisable si et seulement si $P_{m,A}$ est à racines simples.

Pour $A \in \mathcal{M}_n(\mathbb{C})$, on rappelle qu'il existe un couple unique (D, N) dans $(\mathcal{M}_n(\mathbb{C}))^2$ où D est diagonalisable et N est nilpotente, vérifiant : DN = ND et A = D + N.

On rappelle que, si M appartient à $\mathcal{M}_n(\mathbb{C})$, on note :

$$\exp\left(M\right) = \sum_{i=0}^{+\infty} \frac{M^i}{i!}$$

et que si A et B appartiennent à $\mathcal{M}_n(\mathbb{C})$ et vérifient AB = BA alors on a l'égalité $\exp(A + B) = \exp(A) \exp(B)$.

Pour $A \in \mathcal{M}_n(\mathbb{C})$, Spec (A) désigne l'ensemble des valeurs propres de A.

Pour $(a, b) \in \mathbb{R}^2$ et $z = a + ib \in \mathbb{C}$ on pose $\Im(z) = b$.

On désigne par \mathfrak{S}_n le groupe des bijections de l'ensemble $\{1, 2, \cdots, n\}$.

Partie I

Soient A et B deux éléments de $\mathcal{M}_n(\mathbb{C})$ et soit $\Phi_{A,B}$ l'application de $\mathcal{M}_n(\mathbb{C})$ dans $\mathcal{M}_n(\mathbb{C})$ définie par $\Phi_{A,B}(X) = AX + XB$.

- 1. Montrer que, si $X \in \mathcal{M}_n(\mathbb{C})$, Spec $(X) = \operatorname{Spec}(^tX)$.
- 2. Soit $b \in \text{Spec}(B)$, $a \in \text{Spec}(A)$. Montrer qu'il existe $(V, W) \in (\mathbb{C}^n \{0\})^2$ tel que ${}^tWB = b{}^tW$, AV = aV. Calculer $\Phi_{A,B}(V{}^tW)$. Que peut-on en déduire pour l'application $\Phi_{A,B}$?
- 3. (a) Soient $0 \neq Y \in \mathcal{M}_n(\mathbb{C})$ et $\lambda \in \mathbb{C}$ tels $\Phi_{A,B}(Y) = \lambda Y$. Montrer que, pour tout $P \in \mathbb{C}_n[X]$, on a $P(A)Y = YP(\lambda I_n B)$. En utilisant une factorisation de $P_{m,A}$, montrer qu'il existe $a \in \operatorname{Spec}(A)$ tel que $(\lambda a)I_n B$ ne soit pas inversible.

(b) Déduire de ce qui précède que :

$$\operatorname{Spec}(\Phi_{A,B}) = \operatorname{Spec}(A) + \operatorname{Spec}(B)$$
.

4. Que peut-on dire de Spec $(\Phi_{A,A})$ si A appartient S_n^{++} ?

5.

(a) Soit
$$X_i=\begin{pmatrix}0\\\vdots\\0\\1\\0\\\vdots\\0\end{pmatrix}$$
 pour $1\leq i\leq n$ où i est situé à la $i^{\grave{e}me}$ ligne. Calculer $X_i{}^tX_j$ pour $1\leq i\leq n$ et $1\leq j\leq n$.

(b) Montrer que si A et B sont diagonalisables alors $\Phi_{A,B}$ est diagonalisable.

6.

- (a) Déterminer le polynôme minimal de $\Phi_{A,0}$ en fonction de celui de A ainsi que celui de $\Phi_{0,B}$ en fonction de celui de B.
- (b) En déduire une nouvelle démonstration de la question I. 5. (b).

(c) Soit
$$D = \begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & d_n \end{pmatrix}$$
 avec $d_i \neq d_j$ pour $i \neq j$. Trouver la dimension de $\ker (\Phi_{D,-D})$.

Partie II

Soit h l'application de $\mathcal{M}_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$ définie par $h(X) = X^2$.

- 1. Montrer que h est de classe \mathcal{C}^1 et montrer que sa différentielle au point X est l'application $H \longmapsto XH + HX$.
- 2. On suppose dans cette question uniquement que $n \geq 2$ et on désigne par \tilde{h} l'application de $\mathcal{M}_n(\mathbb{C})$ dans $\mathcal{M}_n(\mathbb{C})$ définie par $\tilde{h}(X) = X^2$. Montrer que \tilde{h} n'est pas surjective. (On pourra construire et utiliser une matrice $X \in \mathcal{M}_n(\mathbb{C})$ telle que $X^n = 0, X^{n-1} \neq 0$, en montrant qu'elle n'a pas d'antécédent par \tilde{h}).
- 3. Soit $X \in \mathcal{M}_n(\mathbb{C})$ telle que $X^2 = I_n$. Montrer que X est diagonalisable sur \mathbb{C} et que X est semblable

$$\grave{a} \ X' = \begin{pmatrix}
\varepsilon_1 & 0 & \cdots & 0 \\
0 & \varepsilon_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & \varepsilon_n
\end{pmatrix}$$
où $\varepsilon_i = \pm 1, i = 1, \cdots, n$. Le résultat demeure-t-il pour $X \in \mathcal{M}_n(\mathbb{R})$?

- 4. Soit G un sous-groupe de $GL_n(\mathbb{C})$ tel que pour tout g de G on ait $g^2 = I_n$.
 - (a) Montrer que G est commutatif.
 - (b) On désigne par Vect (G) le \mathbb{C} -sous-espace vectoriel de $\mathcal{M}_n(\mathbb{C})$ engendré par G.
 - i. Montrer qu'il existe (g_1, \dots, g_p) appartenant à G^p tel que

$$\operatorname{Vect}(G) = \operatorname{Vect}\{g_1, \cdots, g_p\}.$$

- ii. Montrer qu'il existe $P \in GL_n(\mathbb{C})$ tel que pour tout g de G la matrice $P^{-1}gP$ soit diagonale.
- (c) Déduire du b) que G est fini et qu'il existe un entier $m \le n$ tel que l'ordre de G soit 2^m .

- 5. Montrer que les groupes $GL_n(\mathbb{C})$ et $GL_m(\mathbb{C})$ sont isomorphes si et seulement si m=n. (On pourra supposer que n>m et qu'il existe un isomorphisme de $GL_n(\mathbb{C})$ sur $GL_m(\mathbb{C})$ et introduire un sous-groupe approprié de $GL_n(\mathbb{C})$.
- 6. Montrer le même résultat pour les groupes $GL_n(\mathbb{R})$ et $GL_m(\mathbb{R})$. Les groupes $GL_n(\mathbb{C})$ et $GL_m(\mathbb{R})$ sont-ils isomorphes?

Partie III

On désigne par $\mathcal{U}_n\left(\mathbb{C}\right)$ l'ensemble des polynômes unitaires de degré n à coefficients dans \mathbb{C} et soit s l'application de \mathbb{C}^n dans $\mathcal{U}_n\left(\mathbb{C}\right)$ définie par :

$$s(\lambda_1, \dots, \lambda_n) = \prod_{i=1}^n (X - \lambda_i).$$

- 1. Montrer que s est une application continue et surjective.
- 2. Soit $P \in \mathcal{U}_n(\mathbb{C})$ et $P = \sum_{i=0}^n a_i X^i$ avec $a_n = 1$. Montrer que si z est une racine de P dans \mathbb{C} on a $|z| \le 1 + \|P\|$ (on pourra envisager les deux cas $|z| \le 1$ et |z| > 1).
- 3. Montrer que l'application de $\mathcal{M}_n(\mathbb{C})$ dans $\mathcal{U}_n(\mathbb{C})$ définie par :

$$A \longmapsto (-1)^n \chi_A$$

est continue.

- 4. Soit Ω un ouvert de \mathbb{C}^n et soit $(P_k)_{k\in\mathbb{N}}$ une suite de polynômes appartenant à $\mathcal{U}_n(\mathbb{C})-s(\Omega)$ convergente vers $P\in\mathcal{U}_n(\mathbb{C})$. Soit, pour tout entier naturel $k, (\lambda_{1,k},\cdots,\lambda_{n,k})$ tel que $s(\lambda_{1,k},\cdots,\lambda_{n,k})=P_k$.
 - (a) Montrer que, pour tout entier k et tout $\sigma \in \mathfrak{S}_n$, $(\lambda_{\sigma(1),k}, \dots, \lambda_{\sigma(n),k})$ n'appartient pas à Ω et qu'il existe $M \in \mathbb{R}$ tel que, pour tout i et tout k, $|\lambda_{i,k}| \leq M$.
 - (b) Déduire du (a) que $P \notin s(\Omega)$.
- 5. Montrer que si ω est un ouvert non vide de \mathbb{C} , l'ensemble des matrices de $\mathcal{M}_n(\mathbb{C})$ dont toutes les valeurs propres appartiennent à ω est un ouvert non vide de $\mathcal{M}_n(\mathbb{C})$.
- 6. Soit U l'ensemble des matrices de $\mathcal{M}_n(\mathbb{C})$ dont toutes les valeurs propres vérifient l'inégalité $|\Im(\lambda)| < \pi$.
 - (a) Montrer que U est un ouvert de $\mathcal{M}_n(\mathbb{C})$.
 - (b) Soit $\mathcal{N} = \{ N \in \mathcal{M}_n(\mathbb{C}) \mid \exists p(N) \in \mathbb{N} ; N^{p(N)} = 0 \}$. On considère l'ensemble $\mathcal{L} = \{ I_n + N \mid N \in \mathcal{N} \}$. Pour $v = I_n + N$ appartenant à \mathcal{L} on pose :

$$\ln(v) = \ln(I_n + N) = \sum_{q=1}^{p(N)-1} \frac{(-1)^{q+1} N^q}{q}.$$

- i. Montrer que si X appartient à \mathcal{N} , $\exp(X) \in \mathcal{L}$.
- ii. Soient X appartenant à \mathcal{N} et f l'application de \mathbb{R} dans $\mathcal{M}_n(\mathbb{C})$ définie par :

$$f(t) = \ln(\exp(tX))$$
.

Montrer que f est dérivable, que f'(t) = X, puis que pour tout t réel f(t) = tX. (On pourra écrire $\exp(tX) = I_n + Z(t)$).

iii. En Déduire que pour tout X appartenant à \mathcal{N} :

$$\ln\left(\exp\left(X\right)\right) = X.$$

(c) Montrer que si D et D' appartiennent à U, sont diagonalisables et telles que $\exp(D) = \exp(D')$, alors D = D'. (On pourra montrer que D et D' ont les mêmes sous-espaces propres).

- (d) Montrer que exp est injective sur U. (On pourra décomposer une matrice M de U en la somme de deux éléments appropriés et utiliser III. 6. (b) (iii) et III. 6. (c)).
- 7. Soit \mathcal{D} l'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbb{C})$ et \mathcal{D}_1 l'ensemble des matrices de $\mathcal{M}_n(\mathbb{C})$ ayant n valeurs propres distinctes.
 - (a) Montrer que \mathcal{D}_1 est un ouvert dense de $\mathcal{M}_n(\mathbb{C})$ en utilisant 3. et 4.
 - (b) Quel est l'intérieur de \mathcal{D} ?
 - (c) Expliciter le polynôme caractéristique de $\Phi_{A,0}$ en fonction de χ_A si A appartient à $\mathcal{M}_n(\mathbb{C})$.
 - (d) L'application de $\mathcal{M}_n(\mathbb{C})$ dans $\mathbb{C}_n[X]$ qui à A associe son polynôme minimal $P_{m,A}$ est-elle continue sur \mathcal{D}_1 ? Est-elle continue sur $\mathcal{M}_n(\mathbb{C})$?
- 8. (a) Soit P appartenant à $U_n(\mathbb{R}_n[X])$ (P est unitaire de degré n à coefficients réels). Montrer que P est scindé sur \mathbb{R} (i.e. a toutes ses racines réelles) si et seulement si pour tout z de \mathbb{C} on a $|P(z)| \ge |\Im(z)|^n$.
 - (b) On désigne par \mathcal{D}' l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ qui sont diagonalisables sur \mathbb{R} . Caractériser l'adhérence de \mathcal{D}' dans $\mathcal{M}_n(\mathbb{R})$.
 - (c) En déduire que \mathcal{D}' n'est pas dense dans $\mathcal{M}_n(\mathbb{R})$.
- 9. Soit $p \ge 1$ et q deux entiers naturels. On considère l'ensemble F des matrices A appartenant à $M_p(\mathbb{C})$ et de rang strictement supérieur à q. Montrer que F est un ouvert de $M_p(\mathbb{C})$.
- 10. Montrer que pour tout A de $\mathcal{M}_n(\mathbb{C})$, la dimension du \mathbb{C} -espace vectoriel $\ker(\Phi_{A,-A})$ est supérieure ou égale à n.
- 11. En déduire que, si A appartient à $\mathcal{M}_n(\mathbb{R})$, alors la dimension du \mathbb{R} -espace vectoriel :

$$\{X \in \mathcal{M}_n(\mathbb{R}) \mid XA = AX\}$$

est supérieure ou égale à n.

- 12. Soit Φ l'application de S_n dans $\mathcal{M}_n(\mathbb{R})$ définie par $\Phi(X) = X^2$.
 - (a) Montrer que $g = \Phi|_{S_n^+}$ est injective.
 - (b) A l'aide de III. 5. montrer que S_n^{++} est un ouvert de S^n . Montrer que $\Phi|_{S_n^{++}}$ est un C^1 -difféomorphisme de S_n^{++} .