Homework 1

Released: 12/10/2022 Due: 23/10/2022

Instructions. You may work with other students, but you must individually write your solutions **in your own words**. If you work with other students or consult outside sources (such as Internet/book), cite your sources.

Submissions. Submit a pdf file through odtuclass. LaTeX or Word typed submission is required.

1. **Stable Matching**. Consider the following stable matching instance.

Men	Preference List	V	Vomen	Preference List
X	C, D, A, B		A	X, Y, Z, W
Y	D, A, B, C		В	X, Y, Z, W
${ m Z}$	A, B, C, D		\mathbf{C}	Y, Z, X, W
W	D, C, A, B		D	Z, X, Y, W

- (a) Use the Gale and Shapley algorithm to find a man-optimal stable matching.
- (b) Find a woman-optimal stable matching in this instance.
- (c) Suppose we are given n men and n women where each man has a preference list of all women and every woman has preference list of all men. On a stable matching instance, prove that if we run the Gale-Shapley algorithm twice, once with men proposing and once with women proposing and we obtain the same matching, then the instance has a unique stable solution.
- (d) Show that the Gale-Shapley algorithm terminates within $(n-1)^2 + 1$ iterations for n boys and n girls and this bound is tight.

2. Alternative matchings. Consider the following stable matching instance.

Men	Preference List		Women	Preference List
X	B, A, D, C	_	A	W, Y, X, Z
Y	C, B, A, D		В	Z, Y, W, X
${ m Z}$	D, A, C, B		\mathbf{C}	X, Z, Y, W
W	C, B, D, A		D	X, W, Z, Y

- (a) In addition to man-optimal and woman-optimal matchings suppose we have an alternative matching $S = \{(X A), (Y B), (Z C), (W D)\}$. Is S a stable matching? Explain.
- (b) How can we find all stable matchings for a problem where there are n men and n women? Is there a polynomial time algorithm to find all stable matchings? If so, describe it.
- (c) Can a woman can end up better off by lying about her preferences? More conceretly, suppose a woman w falsely switches the order of m and m' although she prefers m to m'. Prove that this is possible by giving an example of a set of preference lists (for $n \geq 3$) for which there is a switch that would improve the partner of a woman who falsely switched preferences.
- 3. Order of growth]. Analyze the growth of n!.
- (a) Prove that $n! = O(n^n)$ and $n! = \Omega(2^{n-1})$.
- (b) Prove that for any fixed k > 1, $n! = \Omega(k^{n-k})$, or find a counter example.
- (c) Prove that for any fixed k > 1, $n! = \Omega(k^n)$, or find a counter example.
- 4. **Asymptotics**. Given an array A of n integers, you'd like to output a two-dimensional $n \times n$ array B in which for all i < j, $B[i,j] = \max\{A[i], A[i+1], \dots, A[j]\}$. For $i \ge j$ the value of B[i,j] can be left as is.

```
for i=1,2,\cdots,n do

for j=i+1,\cdots,n do

compute the maximum of the entries A[i],A[i+1],\cdots,A[j].

storethe maximum value in B[i,j].

end for
end for
```

- (a) Find a function f such that the running time of the algorithm is O(f(n)), and clearly explain why.
- (b) For the same function f argue that the running time of the algorithm is also $\Omega(f(n))$. (This establishes an asymptotically tight bound $\Theta(f(n))$.)
- (b) Design and analyze a faster algorithm for this problem. You should give an algorithm with running time O(g(n)), where $\lim_{n\to\infty} g(n)/f(n) = 0$.

- 5. Big O and Ω . For each function f(n) below, find (1) the smallest integer constant H such that $f(n) = O(n^H)$, and (2) the largest positive real constant L such that $f(n) = \Omega(n^L)$. Otherwise, indicate that H or L do not exist. All logarithms are with base 2. Your answer should consist of: (1) the correct value of H, (2) a proof that f(n) is $O(n^H)$, (3) the correct value of L, (4) a proof that f(n) is $\Omega(n^L)$.
- (a) $f(n) = \frac{1}{2}n^2$.
- (b) $f(n) = n(\log n)^3$.
- (c) $f(n) = \sum_{i=0}^{\lceil \log n \rceil} \frac{n}{2^i}$.
- (d) $f(n) = \sum_{i=1}^{n} i^3$.
- (e) $f(n) = 2^{(\log n)^2}$.