

Sistemas de Comunicações e Redes

Universidade do Minho Grupo de Comunicações por Computador Departamento de Informática

LCC-SCR

conceitos gerais

- WAN, MAN, LAN, PAN, BAN
 - designação depende da área geográfica coberta
 - WAN (wide area networks): área alargada, acima das dezenas de kilómetros
 - MAN (metropolitan area networks): cobertura de uma área metropolitana, até poucas dezenas de kilómetros
 - LAN (local areas networks): área local, até poucas centenas de metros
 - PAN (personal area networks): área pessoal, até poucas dezenas de metros
 - BAN (body area networks): até uma dezena de metros
 - condicionam o tipo de protocolos que podem ser usados

Evolução: Largura de Banda

http://www.fiber-optic-components.com

conceitos gerais

Redes alargadas, WAN (Wide Area Networks) Switching Wide-area node linhas ponto-a-ponto network nós de acesso à rede comutadores de tráfego longas distâncias SourceSystem Destination System Trans-Trans-Destination Receiver Source mission mitter System Mais comum: Redes locais, LAN (Local Area Networks) - Redes sem fios Local area - Redes cabladas com linhas e acessos multiponto, network ligação ponto a ponto a ponto-a-ponto / redes sem fios switch pequenas distâncias

[DCC,Stallings07]

acesso directo à rede

conceitos gerais

What's the Internet: "nuts and bolts" view

billions of connected computing devices:

- hosts = end systems
- running network apps

communication links

- fiber, copper, radio, satellite
- transmission rate: bandwidth

- packet switches: forward packets (chunks of data)
 - · routers and switches

mobile network

Universidade do Minho Escola de Engenharia Departamento de Informática

conceitos gerais

Redes Locais de Computadores

Universidade do Minho Escola de Engenharia Departamento de Informática

características das LAN

- Utilização generalizada:
 - permitem a interligação de um elevado número de sistemas terminais (computadores, sistemas de voz e vídeo) em áreas limitadas
 - topologias Lan mais frequentes:
 - barramento, anel, estrela e árvore

características?

- em geral constituem redes privadas
- Tecnologia normalizada e de baixo custo. Elementos duma rede:
 - estações possuem interfaces de rede [NIC, Network Interface Cards]
 - rede possui equipamentos de interligação
 - repetidores, bridges, switches, routers, etc.

diferenças?

- equipamento interligado por cablagem ou wireless
 - cabo coaxial, UTP, fibra óptica, etc.

Redes Locais de Computadores

Universidade do Minho Escola de Engenharia Departamento de Informática

Estrela

Nível Físico

- Funções do nível físico (nível 1)
- Meios de transmissão
- Equipamento

Universidade do Minho Escola de Engenharia Departamento de Informática

Conceitos básicos

- Transmissão ponto-a-ponto / multiponto
 - simplex
 - unidireccional
 - half-duplex
 - bidireccional, alternado
 - full-duplex
 - bidireccional, simultâneo

a) Ligações ponto a ponto (PP)

b) Ligações multiponto (MP)

Universidade do Minho Escola de Engenharia Departamento de Informática

Meios de transmissão

- Efeitos indesejáveis
 - atenuação
 - distorção [ruído, interferência (cross-talk)]
 Os sinais a transmitir são atenuados ou corrompidos nos meios de transmissão [erros nos dados]
- A atenuação e/ou distorção são influenciadas por:
 - distância entre o transmissor e o receptor
 - ritmo de transmissão bps (bits/s), Kbps, Mbps, Gbps
 - tipo de meio de transmissão

cuidado com as unidades!

- Tipos de meios:
 - não guiados: atmosfera, água do mar; Propagação omnidireccional
 vs. direccional
 - guiados: par entrançado (xTP), cabo coaxial (coax), fibra óptica (FO)

Meios de transmissão guiados

- Par entrançado
 - Unshielded Twisted Pair (UTP)
 - Shielded Twisted Pair (STP)
 - cada par protegido por écran
 - usado: redes telefónicas, redes locais
- Cabo coaxial
 - usado: transmissão de tv, redes locais

[DCC, Stallings 99]

Universidade do Minho

ormática

Universidade do Minho Escola de Engenharia Departamento de Informática

Meios de transmissão guiados

- Fibra óptica: multimodo e monomodo (single mode)
 - Monomodo: usado em longa distância, Multimodo: curta distância
 - elevada largura de banda, tamanho e peso reduzidos, baixa atenuação, isolamento electromagnético

12

camada física: funções

LCC-SCR

- Funções da camada física:
 - transmissão de bits sobre um canal de transmissão
 - codificação de linha, modulação, multiplexagem física, acesso ao meio, controlo de erros.
 - definição e normalização das características das interfaces físicas:

mecânicas (conectores, nº de pinos e funções)

eléctricas (níveis eléctricos)

funcionais (controlo, dados, temporização)

procedimentais (sequência de acções entre circuitos)

camada física: interface com o meio físico de transmissão

características

características funcionais

Figure 6.5 Pin Assignments for V.24/EIA-232 (DTE Connector Face)

V.24/EIA-252 (DTE Connector Face)

camada física: transmissão

- Transmissão, série ou paralelo?
 - Por regra, em telecomunicações, a transmissão faz-se em série por bit
- Transmissão, o que interessa conhecer?
 - ritmo binário (bits/s), Kbps, Mbps, Gbps ...
 - potência do sinal (em mW ou em dBm)
 - código de linha utilizado (forma do sinal que representa os bits)
 - probabilidade de erro do código ou probabilidade de erro total na linha de transmissão (P_e, também designado BER=bit error rate)
- Técnicas de transmissão de dados em série:
 - transmissão <u>assíncrona</u> e
 - transmissão síncrona

Noção de Overhead

camada física: transmissão

- Técnicas usuais de transmissão de dados em série:
 - transmissão <u>assíncrona</u>
 - transmissão <u>síncrona</u>

Universidade do Minho
Escola de Engenharia
Departamento de Informática

camada física: transmissão assíncrona

- Estratégia:
 - enviar dados em pequenas unidades (caracter)
 - envia código de caracter (5 a 8 bits) de cada vez
 - os caracteres ocorrem assincronamente

[DCC, Stallings99]

Universidade do Minho
Escola de Engenharia
Departamento de Informática

camada física: transmissão assíncrona

- Vantagens:
 - sincronização no início e dentro de cada caracter
 - esquema simples e económico

Assincronismo entre caracteres

[DCC,Stallings99]

Universidade do Minho
Escola de Engenharia
Departamento de Informática

camada física: transmissão assíncrona

- Desvantagens:
 - *overhead* elevado (em geral > 20%)
 - erros resultantes de assimetrias

Timing error

[DCC, Stallings99]

Comunicação de dados digitais

camada física: transmissão síncrona

- Usada para transmitir unidades de dados maiores
- Sincronização transmissor (Tx) com receptor (Rx):
 - não são usados start/stop bits
 - ou existe um canal separado de sincronização [chamada sincronização fora da banda]
 - ou a sincronização faz-se no canal dos dados [chamada sincronização dentro da banda]

LCC-SCR Universidade do Minho 23

camada física: transmissão síncrona

- Trama = campo de controlo + campo de dados
 - campo de controlo = endereço(s) destino/origem, comprimento da trama, número de sequência, tipo dos dados, etc

(Trama é a designação dada à unidade de dados ao nível físico)

- Detecção de início e/ou fim de trama:
 - caracteres especiais ou padrão de bits de alinhamento (flag).

<flag><trama><flag> Exemplos: cpreambulo>>trama>

Formato geral de uma trama

[DCC, Stallings 99]

Comunicação de dados detecção de erros

- A cada trama, o Tx adiciona um número de bits que será usado pelo Rx para detecção de erros.
 - Em caso de erro, ou o Rx corrige o erro, ou o Tx deve ser notificado -> ver ações no nível 2.
- Técnicas:
 - utilização de bit e de caracter de paridade
 - processo simples que reduz a probabilidade de aceitação de tramas erradas; a taxas de transmissão elevadas podem ocorrer erros em bits consecutivos (erros residuais...); não detecta alguns pares de erros
 - verificação de redundância cíclica (CRC)
- Probabilidade de erro residual probabilidade de existirem erros em número superior aos que é possível detectar pelo mecanismo utilizado para o efeito.

LCC-SCR Universidade do Minho 25

Comunicação de dados digitais detecção de erros - CRC

Cyclic Redundacy Check

Dada uma mensagem inicial *k* bits, o transmissor gera uma sequência de *n-k* bits [CRC ou FCS *Frame Check Sequence*] tal que, os *n* bits da trama resultante sejam divisíveis por um número pré-determinado G.

Comunicação de dados digitais detecção de erros - CRC

- Detecção de erros na recepção
 - dividir a trama recebida por G
 - se Resto = 0 decidir que não há erro, senão
- Pode falhar se o número de erros for superior à capacidade de detecção do código C(n,k)

Comunicação de dados digitais detecção de erros - CRC

 O processo CRC é, em geral, expresso através de polinómios de uma variável, com coeficientes binários.

Exemplo de um polinómio gerador G(x):

CRC-32:
$$x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^{8}+x^{7}+x^{5}+x^{4}+x^{2}+x+1$$

normalizado para transmissão síncrona ponto-a-ponto (IEEE-802.x)

Universidade do Minho 28

Comunicação de dados digitais detecção de erros – CRC

(usando aritmética módulo 2)

- Seja G(x) o polinómio de grau n-k gerador de um código sistemático (n,k) e D(x) o polinómio correspondente aos dados da mensagem
- Seja R(x) (digitos de verificação) o resto da divisão de x^{n-k}D(x) por G(X)
- C(x) é o polinómio correspondente à palavra de código gerada -

29

- **Exercício**: Seja $g(x) = 1 + x + x^3$ um polinómio gerador de um código sistemático (7,4).
 - Determinar as palavras de código correspondentes aos seguintes dados:
 - A) $D_1 = (1010) \sim 1 + x^2 = R = (001)$
 - B) $D_2 = (1100) \sim 1 + x$ R= (101)
 - Se o receptor receber a palavra de código C = (0110101) será esta válida no contexto do código referido ? Justifique. Inválida ->Erro
 - E se a palavra recebida for C = (0011010)? Válida

Comunicação de dados detecção de erros - CRC

• Circuito codificador genérico para código com polinómio gerador G(x)= $x^{n-k}+g_{n-k-1}x^{n-k-1}+...+g_1x+1$

- U circuito contemi:
 - registo para *n-k* bits (comprimento do FCS)
 - n-k ou-exclusivos [dependem dos coeficientes de G(x)]

- Técnica de Forward Error Correction (FEC)
 - é o receptor que corrige o erro
 - probabilidades de erro aceitáveis exigem que o código seja gerado por polinómio com grau da mesma ordem de grandeza do dos dados.
 - técnica pouco usada em comunicação de dados
 - apenas usada em situações onde é impraticável a retransmissão
 - em geral, é preferível retransmitir

Comunicação de dados correcção de erros

- Técnica de *Automatic Repeat Request* (ARQ)
 - o receptor n\u00e3o tenta corrigir os erros
 - o código de controlo de erros é usado no receptor apenas como detector erros
 - detectados erros, o receptor pede a retransmissão da unidade de dados
 - probabilidades de erro aceitáveis podem ser obtidas com polinómios de menor grau
 - técnica mais usada em comunicação de dados