Package 'MethylGenotyper'

April 5, 2024

Title MethylGenotyper: Call genotypes from SNP probes and CCS probes on Illumina methylation ar-

Type Package

iay
Version 1.0
RoxygenNote 7.2.3
Imports minfi, tidyverse, foreach, doParallel, HardyWeinberg, multimode, rlist, stats4, ggplot2, ggpubr, ggsci
LazyData false
VignetteBuilder knitr
Suggests knitr, rmarkdown
Roxygen list(markdown = TRUE)
Depends R (>= 2.10)
Encoding UTF-8
Encouring 011-0
R topics documented:
backgroundCorrectionNoobFit
callGeno_snp
callGeno_typeI
callGeno_typeII
call_genotypes
constrain_R2
correct_noob_dye
dosage2hard
eBeta
filter_by_AF
filter_by_HWE
filter_by_missing
filter_by_R2
fit_beta_em 15 format_genotypes 15
getHWE
getKinship
getKinship_het
getMod
getRAI snp

	getRelation	.7
	get_AF 1	8
	get_GP_bayesian	8
	get_indAF	9
	get_target	9
	mnfst	20
	mnfst_450K	20
	mval2beta	21
	normExpSignal	21
	plot_AF	22
	plot_PCA	22
	plot_RAI_distribution	22
	pprocrustes	23
	probeInfo_snp	23
	probeInfo_snp_450K	24
		25
	probeInfo_typeII	26
	probeInfo_typeII_450K	27
	probeInfo_typeI_450K	28
	probelist	29
	probelist_450K	29
	procrustes	30
	projection	80
	recal_Geno	31
	refGeno_1KGP3	32
	refGeno_1KGP3_SNP_failQC	32
		33
	TRACE	33
Index	3	35

 ${\tt backgroundCorrectionNoobFit}$

Fit Normal and exponential distributions (adapted from SeSAMe)

Description

Fit Normal and exponential distributions (adapted from SeSAMe)

Usage

backgroundCorrectionNoobFit(ib, bg)

Arguments

ib Foreground signals.bg Background signals.

Value

mu and sigma by fitting background signals with normal distribution. alpha by fitting foreground signals with exponential distribution.

callGeno_snp 3

callGeno_snp

Call genotypes for SNP probes

Description

Call genotypes for SNP probes

Usage

```
callGeno_snp(
  inData,
  input = "raw",
 plotRAI = FALSE,
  vcf = FALSE,
  vcfName = "genotypes.snp_probe.vcf",
 GP\_cutoff = 0.9,
 outlier_cutoff = "max",
 missing_cutoff = 0.1,
 R2\_cutoff\_up = 1.1,
 R2\_cutoff\_down = 0.75,
 MAF_cutoff = 0.01,
 HWE\_cutoff = 1e-06,
  pop = "EAS",
 bayesian = FALSE,
 platform = "EPIC",
  verbose = 1
)
```

Arguments

inData	If input="raw"	, provide rgData l	nere (Noob and d	lye-bias corrected	l signals pro-
--------	----------------	--------------------	------------------	--------------------	----------------

duced by using correct_noob_dye). Otherwise, provide beta or M-value ma-

trix here.

input Input data types. One of "raw", "beta", and "mval". If input is "beta" or "mval",

please use probes as rows and samples as columns.

plotRAI If TRUE, plot distribution of RAIs.

vcf If TRUE, will write a VCF file in the current directory.

vcfName VCF file name. Only effective when vcf=TRUE.

GP_cutoff When calculating missing rate, genotypes with the highest genotype probability

< GP_cutoff will be treated as missing.

outlier_cutoff "max" or a number ranging from 0 to 1. If outlier_cutoff="max", genotypes with

outlier probability larger than all of the three genotype probabilities will be set as missing. If outlier_cutoff is a number, genotypes with outlier probability >

outlier_cutoff will be set as missing.

missing_cutoff Missing rate cutoff to filter variants. Note that for VCF output, variants with

missing rate above the cutoff will be marked in the FILTER column. For the returned dosage matrix, variants with missing rate above the cutoff will be re-

moved.

4 callGeno_typeI

R2_cutoff_up, R2_cutoff_down

R-square cutoffs to filter variants (Variants with R-square > R2_cutoff_up or < R2_cutoff_down should be removed). Note that for VCF output, variants with R-square outside this range will be marked in the FILTER column. For the returned dosage matrix, variants with R-square outside this range will be

removed.

MAF_cutoff A MAF cutoff to filter variants. Note that for VCF output, variants with MAF

below the cutoff will be marked in the FILTER column. For the returned dosage

matrix, variants with MAF below the cutoff will be removed.

HWE_cutoff HWE p value cutoff to filter variants. Note that for VCF output, variants with

HWE p value below the cutoff will be marked in the FILTER column. For the returned dosage matrix, variants with HWE p value below the cutoff will be

removed.

pop Population. One of EAS, AMR, AFR, EUR, SAS, and ALL.

bayesian Use the Bayesian approach to calculate posterior genotype probabilities.

platform EPIC or 450K.

verbose Verbose mode: 0/1/2.

Value

A list containing

dosage A matrix of genotype calls. Variants with R2s, HWE p values, MAFs, or missing

rates beyond the cutoffs are removed.

genotypes A list containing RAI, shapes of the mixed beta distributions, prior probabilities

that the RAI values belong to one of the three genotypes, proportion of RAI

values being outlier (U), and genotype probability (GP).

callGeno_typeI

Call genotypes for Type I probes

Description

Call genotypes for Type I probes

Usage

```
callGeno_typeI(
  rgData,
  plotRAI = FALSE,
  vcf = FALSE,
  vcfName = "genotypes.typeI_probe.vcf",
  bw = 0.04,
  minDens = 0.001,
  GP_cutoff = 0.9,
  outlier_cutoff = "max",
  missing_cutoff = 0.1,
  R2_cutoff_up = 1.1,
  R2_cutoff_down = 0.75,
```

callGeno_typeI 5

```
MAF_cutoff = 0.01,

HWE_cutoff = 1e-06,

cpu = 1,

pop = "EAS",

bayesian = FALSE,

platform = "EPIC",

verbose = 1
```

Arguments

rgData Noob and dye-bias corrected signals produced by using correct_noob_dye.

plotRAI If TRUE, plot distribution of RAIs.

vcf If TRUE, will write a VCF file in the current directory.

vcfName VCF file name. Only effective when vcf=TRUE.

bw band width.

minDens A parameter for mode test. Minimum density for a valid peak.

GP_cutoff When calculating missing rate, genotypes with the highest genotype probability

< GP_cutoff will be treated as missing.

 $outlier_cutoff \verb| "max" or a number ranging from 0 to 1. If outlier_cutoff="max", genotypes with the control of the control$

outlier probability larger than all of the three genotype probabilities will be set as missing. If outlier_cutoff is a number, genotypes with outlier probability >

outlier_cutoff will be set as missing.

missing_cutoff Missing rate cutoff to filter variants. Note that for VCF output, variants with

missing rate above the cutoff will be marked in the FILTER column. For the returned dosage matrix, variants with missing rate above the cutoff will be re-

moved.

R2_cutoff_up, R2_cutoff_down

R-square cutoffs to filter variants (Variants with R-square > R2_cutoff_up or < R2_cutoff_down should be removed). Note that for VCF output, variants with R-square outside this range will be marked in the FILTER column. For the returned dosage matrix, variants with R-square outside this range will be

removed.

MAF_cutoff A MAF cutoff to filter variants. Note that for VCF output, variants with MAF

below the cutoff will be marked in the FILTER column. For the returned dosage

matrix, variants with MAF below the cutoff will be removed.

HWE_cutoff HWE p value cutoff to filter variants. Note that for VCF output, variants with

HWE p value below the cutoff will be marked in the FILTER column. For the returned dosage matrix, variants with HWE p value below the cutoff will be

removed.

cpu Number of CPU cores.

pop Population. One of EAS, AMR, AFR, EUR, SAS, and ALL. Only probes with

MAF of matching population > 0.01 will be kept.

bayesian Use the Bayesian approach to calculate posterior genotype probabilities.

platform EPIC or 450K.

verbose Werbose mode: 0/1/2.

6 callGeno_typeII

Value

A list containing

dosage A matrix of genotype calls. Variants with R2s, HWE p values, MAFs, or missing

rates beyond the cutoffs are removed.

genotypes A list containing RAI, shapes of the mixed beta distributions, prior probabilities

that the RAI values belong to one of the three genotypes, proportion of RAI

values being outlier (U), and genotype probability (GP).

callGeno_typeII

Call genotypes for Type II probes

Description

Call genotypes for Type II probes

Usage

```
callGeno_typeII(
  inData,
  input = "raw",
  plotRAI = FALSE,
  vcf = FALSE,
  vcfName = "genotypes.typeII_probe.vcf",
  bw = 0.04,
  minDens = 0.001,
  GP\_cutoff = 0.9,
  outlier_cutoff = "max",
  missing_cutoff = 0.1,
  R2\_cutoff\_up = 1.1,
  R2\_cutoff\_down = 0.75,
  MAF_cutoff = 0.01,
  HWE\_cutoff = 1e-06,
  cpu = 1,
  pop = "EAS",
  maxiter = 50,
  bayesian = FALSE,
  platform = "EPIC",
  verbose = 1
)
```

Arguments

inData	If input="raw", provide rgData here (Noob and dye-bias corrected signals produced by using correct_noob_dye). Otherwise, provide beta or M-value matrix here.
input	Input data types. One of "raw", "beta", and "mval". If input is "beta" or "mval", please use probes as rows and samples as columns.
plotRAI	If TRUE, plot distribution of RAIs.
vcf	If TRUE, will write a VCF file in the current directory.

callGeno_typeII 7

vcfName VCF file name. Only effective when vcf=TRUE.

bw band width.

minDens A parameter for mode test. Minimum density for a valid peak.

GP_cutoff When calculating missing rate, genotypes with the highest genotype probability

< GP cutoff will be treated as missing.

 $outlier_cutoff \verb| "max" or a number ranging from 0 to 1. If outlier_cutoff="max", genotypes with the control of the control$

outlier probability larger than all of the three genotype probabilities will be set as missing. If outlier_cutoff is a number, genotypes with outlier probability >

outlier_cutoff will be set as missing.

missing_cutoff Missing rate cutoff to filter variants. Note that for VCF output, variants with

missing rate above the cutoff will be marked in the FILTER column. For the returned dosage matrix, variants with missing rate above the cutoff will be re-

moved.

R2_cutoff_up, R2_cutoff_down

R-square cutoffs to filter variants (Variants with R-square > R2_cutoff_up or < R2_cutoff_down should be removed). Note that for VCF output, variants with R-square outside this range will be marked in the FILTER column. For the returned dosage matrix, variants with R-square outside this range will be

removed.

MAF_cutoff A MAF cutoff to filter variants. Note that for VCF output, variants with MAF

below the cutoff will be marked in the FILTER column. For the returned dosage

matrix, variants with MAF below the cutoff will be removed.

HWE_cutoff HWE p value cutoff to filter variants. Note that for VCF output, variants with

HWE p value below the cutoff will be marked in the FILTER column. For the returned dosage matrix, variants with HWE p value below the cutoff will be

removed.

cpu Number of CPU cores.

pop Population. One of EAS, AMR, AFR, EUR, SAS, and ALL. Only probes with

MAF of matching population > 0.01 will be kept.

maxiter Maximal number of iterations for the EM algorithm.

bayesian Use the Bayesian approach to calculate posterior genotype probabilities.

platform EPIC or 450K.

verbose Verbose mode: 0/1/2.

Value

A list containing

dosage A matrix of genotype calls. Variants with R2s, HWE p values, MAFs, or missing

rates beyond the cutoffs are removed.

genotypes A list containing RAI, shapes of the mixed beta distributions, prior probabilities

that the RAI values belong to one of the three genotypes, proportion of RAI

values being outlier (U), and genotype probability (GP).

methyl_recalc Re-calculated methylation levels on reference alleles. A list containing shapes

of the mixed beta distributions and true methylation level (pM) for each probe.

8 call_genotypes

call_genotypes Ca	ll genotypes based on EM algorithm
-------------------	------------------------------------

Description

The Expectation–maximization (EM) algorithm is used to fit a mixture of three beta distributions representing the three genotypes (AA, AB, and BB) and one uniform distribution representing the outliers (adapted from ewastools). Probe-specific weights were used in the EM algorithm.

Usage

```
call_genotypes(
  RAI,
  pop,
  type,
  maxiter = 50,
  bayesian = FALSE,
  platform = "EPIC",
  verbose = 1
)
```

Arguments

RAI A matrix of RAI (Ratio of Alternative allele Intensity) for probes.	Provide
---	---------

probes as rows and samples as columns.

pop Population to be used to extract AFs. One of EAS, AMR, AFR, EUR, SAS, and

ALL.

type One of snp_probe, typeI_probe, and typeII_probe.maxiter Maximal number of iterations for the EM algorithm.

bayesian Use the Bayesian approach to calculate posterior genotype probabilities.

platform EPIC or 450K.

verbose Werbose mode: 0/1/2.

Value

A list containing

RAI Ratio of Alternative allele Intensity shapes Shapes of the mixed beta distributions

weights Prior probabilities that the RAI values belong to one of the three genotypes

U Overall probability of RAI values being outlieroutliers Probability of each RAI value being outlier

logLik Log-likelihood

GP Genotype probabilities of the three genotypes

constrain_R2

Description

R2 is calculated by var(G)/2p(1-p), where G is dosage genotype and p is allele frequency. Variants with 1 < R2 <= 1.1 are constrained to 1. Variants with R2 > 1.1 (marked as .) are recommended to remove.

Usage

```
constrain_R2(R2)
```

Arguments

R2 R-square

Value

Constrained R2

correct_noob_dye Noob and dye-bias correction

Description

Noob and dye-bias correction

Usage

```
correct_noob_dye(target, platform = "EPIC", cpu = 1)
```

Arguments

target A data frame of two columns: Sample_Name, Basename, where Basename tells

the location of IDAT files.

platform EPIC or 450K. cpu Number of CPU.

Value

A list of noob and dye-bias corrected signals containing:

AR - A matrix of probeA signals in Red channel

AG - A matrix of probeA signals in Green channel

BR - A matrix of probeB signals in Red channel

BG - A matrix of probeB signals in Green channel

10 eBeta

doc 20	e2hard

Get hard genotypes from genotype probabilities

Description

Hard genotype is defined as the genotype with highest genotype probability.

Usage

```
dosage2hard(AA, AB, BB)
```

Arguments

AA	Genotype probability of AA or 0/0.
AB	Genotype probability of AB or 0/1.
BB	Genotype probability of BB or 1/1.

Value

A matrix of hard genotypes.

eBeta

Moments estimator for beta distribution (adapted from ewastools)

Description

Moments estimator for beta distribution (adapted from ewastools)

Usage

```
eBeta(x, w)
```

Arguments

x A vector of RAI values.

w Weights.

Value

A list of beta distribution shapes.

filter_by_AF

filter_by_AF

Filter by AF

Description

Variants with MAF<0.01 are recommended to remove.

Usage

```
filter_by_AF(AF, MAF_cutoff = 0.01)
```

Arguments

AF Allele frequency

MAF_cutoff An MAF (Minor allele frequency) cutoff to filter variants.

Value

Whether the variant passed filtering.

filter_by_HWE

Filter by Hardy–Weinberg Equilibrium (HWE) p value

Description

Variants with Hardy–Weinberg Equilibrium (HWE) p value < HWE_cutoff are recommended to remove.

Usage

```
filter_by_HWE(hwe_p, HWE_cutoff = 1e-06)
```

Arguments

hwe_p Hardy-Weinberg Equilibrium (HWE) p values

HWE_cutoff A HWE p value cutoff to filter variants.

Value

Whether the variant passed filtering.

12 filter_by_R2

filter_by_missing

Filter by missing rate

Description

Variants with missing rate > missing_cutoff are recommended to remove.

Usage

```
filter_by_missing(F_MISSING, missing_cutoff = 0.1)
```

Arguments

F_MISSING Fraction of missing genotypes

missing_cutoff Missing rate cutoff to filter variants.

Value

Whether the variant passed filtering.

filter_by_R2

Filter by R2

Description

Variants with R2>1.1 (marked as .) or R2<0.75 are recommended to remove.

Usage

```
filter_by_R2(R2, R2_cutoff_up = 1.1, R2_cutoff_down = 0.75)
```

Arguments

R2 R-square

R2_cutoff_up Variants with R-square greater than this cutoff should be removed.

R2_cutoff_down Variants with R-square less than this cutoff should be removed.

Value

Whether the variant passed filtering.

fit_beta_em 13

fit be	eta er	n

Estimate mixed beta distribution parameters based on EM algorithm

Description

The Expectation–maximization (EM) algorithm is used to fit a mixture of three beta distributions representing the three genotypes (AA, AB, and BB) and one uniform distribution representing the outliers (adapted from ewastools).

Usage

```
fit_beta_em(RAI, maxiter = 50, verbose = 1)
```

Arguments

RAI A matrix of RAI (Ratio of Alternative allele Intensity) for probes. Provide

probes as rows and samples as columns.

maxiter Maximal number of iterations for the EM algorithm.

verbose Verbose mode: 0/1/2.

Value

A list containing

shapes Shapes of the mixed beta distributions

weights Prior probabilities that the RAI values belong to one of the three genotypes

U Overall probability of RAI values being outlier outliers Probability of each RAI value being outlier

logLik Log-likelihood

GP Genotype probabilities of the three genotypes

format_genotypes

Format genotype calls

Description

Format genotype calls

Usage

```
format_genotypes(
  genotypes,
  vcf = FALSE,
  vcfName,
  GP_cutoff = 0.9,
  outlier_cutoff = "max",
  missing_cutoff = 0.1,
  R2_cutoff_up = 1.1,
```

14 format_genotypes

```
R2_cutoff_down = 0.75,
MAF_cutoff = 0.01,
HWE_cutoff = 1e-06,
pop = "ALL",
type,
plotAF = FALSE,
platform = "EPIC"
)
```

Arguments

genotypes Genotype calls.

vcf If TRUE, will write a VCF file in the current directory.

vcfName VCF file name. Only effective when vcf=TRUE.

GP_cutoff When calculating missing rate, genotypes with the highest genotype probability

< GP_cutoff will be treated as missing.

outlier_cutoff "max" or a number ranging from 0 to 1. If outlier_cutoff="max", genotypes with

outlier probability larger than all of the three genotype probabilities will be set as missing. If outlier_cutoff is a number, genotypes with outlier probability >

outlier_cutoff will be set as missing.

missing_cutoff Missing rate cutoff to filter variants. Note that for VCF output, variants with

missing rate above the cutoff will be marked in the FILTER column. For the returned dosage matrix, variants with missing rate above the cutoff will be re-

moved.

R2_cutoff_up, R2_cutoff_down

R-square cutoffs to filter variants (Variants with R-square > R2_cutoff_up or < R2_cutoff_down should be removed). Note that for VCF output, variants with R-square outside this range will be marked in the FILTER column. For the returned dosage matrix, variants with R-square outside this range will be

removed.

MAF cutoff MAF cutoff to filter variants. Note that for VCF output, variants with MAF

below the cutoff will be marked in the $\ensuremath{\mathsf{FILTER}}$ column. For the returned dosage

matrix, variants with MAF below the cutoff will be removed.

HWE_cutoff HWE p value cutoff to filter variants. Note that for VCF output, variants with

HWE p value below the cutoff will be marked in the FILTER column. For the returned dosage matrix, variants with HWE p value below the cutoff will be

removed.

pop Population to be used to extract AFs. One of EAS, AMR, AFR, EUR, SAS, and

ALL.

type One of snp_probe, typeI_probe, and typeII_probe.

plotAF To plot the distribution of AFs in 1KGP and input data.

platform EPIC or 450K.

Value

A matrix of genotype calls. Variants with R2s, HWE p values, MAFs, or missing rates beyond the cutoffs are removed.

getHWE 15

getime ediculate fluidy welliotig Equilibrium (11 w E) p value	getHWE	Calculate Hardy-Weinberg	Equilibrium (HWE) p value
--	--------	--------------------------	---------------------------

Description

Calculate Hardy-Weinberg Equilibrium (HWE) p value

Usage

```
getHWE(hardgeno)
```

Arguments

hardgeno A matrix of hard genotypes, with each row indicates a SNP and each column

indicates a sample.

Value

HWE p values.

getKinship Get kinship coefficients and inbreeding coefficients using the SEEKIN estimator

Description

Only SNPs with missing rate < 10% were used.

Usage

```
getKinship(dosage)
```

Arguments

dosage A matrix of genotype calls. Provide probes as rows and samples as columns.

Value

A list containing

kinship A data frame containing kinship coefficient (Phi) and sample relationships be-

tween each two samples.

inbreed A vector of inbreeding coefficients.

16 getMod

getKinship_het

Get kinship coefficients using the SEEKIN-het estimator

Description

Only SNPs with missing rate < 10% were used.

Usage

```
getKinship_het(dosage, indAF)
```

Arguments

dosage A matrix of genotype calls. Provide probes as rows and samples as columns.

indAF A matrix of individual-specific AFs. Provide probes as rows and samples as

columns.

Value

A data frame containing kinship coefficient (Phi) and sample relationships between each two samples.

getMod

Estimate mode location for each probe

Description

Estimate mode location for each probe

Usage

```
getMod(x, bw = 0.04, minDens = 0.001, cpu = 1)
```

Arguments

x Matrix of beta or RAI values. Row names must be supplied.

bw band width.

minDens Minimum density for a valid peak.

cpu Number of CPU.

Value

A data frame of mode locations.

getRAI_snp 17

getRAI_snp

Get RAI (Ratio of Alternative allele Intensity) for SNP probes

Description

Get RAI (Ratio of Alternative allele Intensity) for SNP probes

Usage

```
getRAI_snp(inData, platform = "EPIC")
```

Arguments

inData Noob and dye-bias corrected signals produced by using correct_noob_dye.

platform EPIC or 450K.

Value

RAI (Ratio of Alternative allele Intensity).

getRelation

Get sample relationships

Description

Get sample relationships

Usage

```
getRelation(phi)
```

Arguments

phi

A vector of kinship coefficient (Phi).

Value

A vector of sample relationships.

18 get_GP_bayesian

get_AF Extract AFs from matching population in the 1000 Genomes Projection (1KGP)	iect
---	------

Description

Extract AFs from matching population in the 1000 Genomes Project (1KGP)

Usage

```
get_AF(pop = "EAS", type, platform = "EPIC")
```

Arguments

pop Population to be used to extract AFs. One of EAS, AMR, AFR, EUR, SAS, and

ALL.

type One of snp_probe, typeI_probe, and typeII_probe.

platform EPIC or 450K.

Value

A vector of AFs

get_GP_bayesian	Infer posterior genotype probabilities base	ed on the Bayesian approach

Description

Prior genotype probabilities were inferred from AFs. The AFs can be in population level or individual-specific level. For population level AFs, they can be extracted from the matched population in the 1000 Genomes Project (1KGP). For individual-specific AFs, they can be calculated according to the top four PCs.

Usage

```
get_GP_bayesian(pD_AA, pD_AB, pD_BB, AF)
```

Arguments

pD_AA	A MxN matrix of AA genotype probabilities. Provide SNPs as rows and samples as columns.
pD_AB	A MxN matrix of AB genotype probabilities. Provide SNPs as rows and samples as columns.
pD_BB	A MxN matrix of BB genotype probabilities. Provide SNPs as rows and samples as columns.
AF	A MxN matrix of AFs. Provide SNPs as rows and samples as columns.

get_indAF

Value

A list containing

pAA Posterior genotype probability of AA
pAB Posterior genotype probability of AB
pBB Posterior genotype probability of BB

get_indAF

Calculate individual-specific AFs

Description

Calculate individual-specific AFs

Usage

```
get_indAF(snpvec, refPC, studyPC)
```

Arguments

snpvec A vector of SNP IDs.

refPC Top PCs in the reference.
studyPC Top PCs in study samples.

Value

A matrix of individual-specific AFs.

get_target

Get example IDAT file list

Description

Get example IDAT file list

Usage

```
get_target(platform = "EPIC")
```

Arguments

platform

One of "EPIC" and "450K"

Value

A data frame of the IDAT file list

20 mnfst_450K

mnfst

EPIC manifest file

Description

A dataset containing all EPIC probes information.

Usage

data(mnfst)

Format

A data frame with 866554 rows and 5 columns:

Name CpG name

AddressA_ID AdressA ID

AddressB_ID AdressB ID

Infinium_Design_Type Infinium design type

Color_Channel Color channel

Source

 $https://webdata.illumina.com/downloads/productfiles/methylation {\tt EPIC/infinium-methylationepic-v-zip} \\$

mnfst_450K

450K manifest file

Description

A dataset containing all 450K probes information.

Usage

data(mnfst_450K)

Format

A data frame with 486428 rows and 5 columns:

Name CpG name

AddressA_ID AdressA ID

AddressB_ID AdressB ID

Infinium_Design_Type Infinium design type

Color_Channel Color channel

Source

 $https://webdata.illumina.com/downloads/productfiles/humanmethylation 450/humanmethylation 450_15017482_v1-2.csv$

mval2beta 21

-		
mval	2beta	

Convert M values to beta values

Description

Convert M values to beta values

Usage

```
mval2beta(mval)
```

Arguments

mval

M value matrix.

Value

Beta value matrix.

 ${\tt normExpSignal}$

Normal-exponential deconvolution (adapted from SeSAMe)

Description

Normal-exponential deconvolution (adapted from SeSAMe)

Usage

```
normExpSignal(mu, sigma, alpha, x)
```

Arguments

mu, sigma Background signal parameters returned by backgroundCorrectionNoobFit.

alpha Foreground signal parameters returned by backgroundCorrectionNoobFit.

x Foreground signals to be corrected.

Value

The conditional expectation of the signal given the observed foreground and background.

22 plot_RAI_distribution

plot_AF

Plot the distribution of AFs in 1KGP and input data.

Description

Plot the distribution of AFs in 1KGP and input data.

Usage

```
plot_AF(AF_input, AF_1KGP, pop, type)
```

Arguments

 AF_i nput A vector. AF_1 KGP A vector.

pop Population. One of EAS, AMR, AFR, EUR, SAS, and ALL.

type One of snp_probe, typeI_probe, and typeII_probe.

plot_PCA

To plot the projection of study samples in reference ancestry space

Description

To plot the projection of study samples in reference ancestry space

Usage

```
plot_PCA(refPC, studyPC)
```

Arguments

refPC Top PCs in the reference studyPC Top PCs in study samples

plot_RAI_distribution Plot beta distributions for reference homozygous, heterozygous, and alternative homozygous

Description

Plot beta distributions for reference homozygous, heterozygous, and alternative homozygous

Usage

```
plot_RAI_distribution(genotypes, type)
```

Arguments

genotypes Genotype calls.

type One of "snp_probe", "typeI_probe", and "typeII_probe".

pprocrustes 23

pprocrustes

Projection Procrustes Analysis

Description

Adapted from http://csg.sph.umich.edu/chaolong/LASER

Usage

```
pprocrustes(
  refPC_new,
  refPC,
  MAX_ITER = 10000,
  THRESHOLD = 1e-06,
  PROCRUSTES_SCALE = 0
)
```

Arguments

refPC_new Top PCs in the combination of reference samples and one study sample

refPC Top PCs in the reference samples

MAX_ITER Maximum iterations for the projection Procrustes analysis

THRESHOLD Convergence criterion for the projection Procrustes analysis

PROCRUSTES_SCALE

Fit the scaling parameter to maximize similarity

Value

Projection Procrustes Analysis results

probeInfo_snp

SNP probe information for EPIC

Description

A dataset containing SNP probe information. Only autosome probes are included.

Usage

```
data(probeInfo_snp)
```

Format

A data frame with 53 rows and 14 columns:

Chr Chromosome ID

Pos Position

SNP SNP ID targeted by the CpG

RefAllele Reference allele

AltAllele Alternative allele

CpG CpG

Color Color channel

Group Probe types, color channel, and signal corresponds to alternative allele

ALL_AF Allele frequency of all population

EAS_AF Allele frequency of East Asian

AMR_AF Allele frequency of American

AFR_AF Allele frequency of African

EUR_AF Allele frequency of European

SAS_AF Allele frequency of South Asian

Source

https://webdata.illumina.com/downloads/productfiles/methylationEPIC/infinium-methylationepic-v-zin

probeInfo_snp_450K

SNP probe information for 450K

Description

A dataset containing SNP probe information. Only autosome probes are included.

Usage

data(probeInfo_snp_450K)

Format

A data frame with 57 rows and 14 columns:

Chr Chromosome ID

Pos Position

SNP SNP ID targeted by the CpG

RefAllele Reference allele

AltAllele Alternative allele

CpG CpG

Color Color channel

probeInfo_typeI 25

Group Probe types, color channel, and signal corresponds to alternative allele

ALL_AF Allele frequency of all population

EAS_AF Allele frequency of East Asian

AMR_AF Allele frequency of American

AFR_AF Allele frequency of African

EUR_AF Allele frequency of European

SAS_AF Allele frequency of South Asian

Source

https://webdata.illumina.com/downloads/productfiles/methylationEPIC/infinium-methylationepic-v-zip

probeInfo_typeI

Type I probe information for EPIC

Description

A dataset containing Type I probe information.

Usage

data(probeInfo_typeI)

Format

A data frame with 715 rows and 16 columns:

Chr Chromosome ID

Pos Position

SNP SNP ID targeted by the CpG

RefAllele Reference allele

AltAllele Alternative allele

CpG CpG

Color Color channel

Group NA

ALL_AF Allele frequency of all population

EAS_AF Allele frequency of East Asian

AMR_AF Allele frequency of American

AFR_AF Allele frequency of African

EUR_AF Allele frequency of European

SAS_AF Allele frequency of South Asian

loc_pass Passed peak position test or not

Source

https://webdata.illumina.com/downloads/productfiles/methylationEPIC/infinium-methylationepic-v-1zip

26 probeInfo_typeII

probeInfo_typeII

Type II probe information for EPIC

Description

A dataset containing information of Type II probes with SNPs at the extension bases. We only consider the situation that the alternative allele is A/T and the reference allele is C/G.

Usage

```
data(probeInfo_typeII)
```

Format

A data frame with 26420 rows and 16 columns:

Chr Chromosome ID

Pos Position

SNP SNP ID targeted by the CpG

RefAllele Reference allele

AltAllele Alternative allele

CpG CpG

Color Color channel

Group Probe types, color channel, and signal corresponds to alternative allele

ALL_AF Allele frequency of all population

EAS_AF Allele frequency of East Asian

AMR_AF Allele frequency of American

AFR_AF Allele frequency of African

EUR_AF Allele frequency of European

SAS_AF Allele frequency of South Asian

loc_pass Passed peak position test or not

Source

https://webdata.illumina.com/downloads/productfiles/methylationEPIC/infinium-methylationepic-v-zip

probeInfo_typeII_450K Type II probe information for 450K

Description

A dataset containing information of Type II probes with SNPs at the extension bases. We only consider the situation that the alternative allele is A/T and the reference allele is C/G.

Usage

```
data(probeInfo_typeII_450K)
```

Format

A data frame with 11875 rows and 14 columns:

Chr Chromosome ID

Pos Position

SNP SNP ID targeted by the CpG

RefAllele Reference allele

AltAllele Alternative allele

CpG CpG

Color Color channel

Group Probe types, color channel, and signal corresponds to alternative allele

ALL_AF Allele frequency of all population

EAS_AF Allele frequency of East Asian

AMR_AF Allele frequency of American

AFR_AF Allele frequency of African

EUR_AF Allele frequency of European

SAS_AF Allele frequency of South Asian

Source

https://webdata.illumina.com/downloads/productfiles/methylationEPIC/infinium-methylationepic-v-zip

probeInfo_typeI_450K TypeIprobeinformation for 450K

Description

A dataset containing Type I probe information.

Usage

```
data(probeInfo_typeI_450K)
```

Format

A data frame with 712 rows and 14 columns:

Chr Chromosome ID

Pos Position

SNP SNP ID targeted by the CpG

RefAllele Reference allele

AltAllele Alternative allele

CpG CpG

Color Color channel

Group NA

ALL_AF Allele frequency of all population

EAS_AF Allele frequency of East Asian

AMR_AF Allele frequency of American

AFR_AF Allele frequency of African

EUR_AF Allele frequency of European

SAS_AF Allele frequency of South Asian

Source

https://webdata.illumina.com/downloads/productfiles/methylationEPIC/infinium-methylationepic-v-zip

probelist 29

probelist

Probe list for EPIC

Description

A dataset containing the list of 53 SNP probes on autosomes, 715 Type I probes, and 26420 type II probes.

Usage

```
data(probelist)
```

Format

A data frame with 27188 rows and 2 columns:

CpG CpG list

Type Probe types

A2 Alternative alleles

probelist_450K

Probe list for 450K

Description

A dataset containing the list of 53 SNP probes on autosomes, 712 Type I probes, and 11875 type II probes.

Usage

```
data(probelist_450K)
```

Format

A data frame with 12644 rows and 2 columns:

CpG CpG list

Type Probe types

30 projection

procrustes

Standard Procrustes Analysis

Description

Adapted from http://csg.sph.umich.edu/chaolong/LASER

Usage

```
procrustes(refPC_new, refPC, PROCRUSTES_SCALE = 0)
```

Arguments

refPC_new Top PCs in the combination of reference samples and one study sample

refPC Top PCs in the reference samples

PROCRUSTES_SCALE

Fit the scaling parameter to maximize similarity

Value

Procrustes Analysis results

projection

PCA and Procrustes analysis

Description

PCA and Procrustes analysis

Usage

```
projection(studyGeno, plotPCA = TRUE, cpu = 1, platform = "EPIC")
```

Arguments

studyGeno A matrix of genotypes of study samples. Provide probes as rows and samples as

columns. Include all SNP probes, type I probes, and type II probes if available.

plotPCA To plot the projection of study samples in reference ancestry space.

cpu Number of CPU. platform EPIC or 450K.

Value

A list containing

refPC Top PCs in the reference studyPC Top PCs in study samples recal_Geno 31

recal_Geno

Recalibrate genotypes for samples of mixed population

Description

Recalibrate genotypes for samples of mixed population

Usage

```
recal_Geno(
  genotypes,
  type,
  indAF,
  platform = "EPIC",
  GP_cutoff = 0.9,
  outlier_cutoff = "max",
  missing_cutoff = 0.1,
  R2_cutoff_up = 1.1,
  R2_cutoff_down = 0.75,
  MAF_cutoff = 0.01,
  HWE_cutoff = 1e-06
)
```

Arguments

genotypes A list returned by either callGeno_snp, callGeno_typeI, or callGeno_typeII

function.

type One of snp_probe, typeI_probe, and typeII_probe.

indAF A matrix of individual-specific AFs. Provide SNPs as rows and samples as

columns.

platform EPIC or 450K.

GP_cutoff When calculating missing rate, genotypes with the highest genotype probability

< GP_cutoff will be treated as missing.

outlier_cutoff "max" or a number ranging from 0 to 1. If outlier_cutoff="max", genotypes with

outlier probability larger than all of the three genotype probabilities will be set as missing. If outlier_cutoff is a number, genotypes with outlier probability >

outlier_cutoff will be set as missing.

missing_cutoff Missing rate cutoff to filter variants. Note that for VCF output, variants with missing rate above the cutoff will be marked in the FILTER column. For the

returned dosage matrix, variants with missing rate above the cutoff will be re-

moved.

R2_cutoff_up, R2_cutoff_down

R-square cutoffs to filter variants (Variants with R-square > R2_cutoff_up or < R2_cutoff_down should be removed). Note that for VCF output, variants with R-square outside this range will be marked in the FILTER column. For the returned dosage matrix, variants with R-square outside this range will be

removed.

MAF_cutoff A MAF cutoff to filter variants. Note that for VCF output, variants with MAF below the cutoff will be marked in the FILTER column. For the returned dosage

matrix, variants with MAF below the cutoff will be removed.

HWE_cutoff HWE p value cutoff to filter variants. Note that for VCF output, variants with

HWE p value below the cutoff will be marked in the FILTER column. For the returned dosage matrix, variants with HWE p value below the cutoff will be

removed.

Value

A list of recalibrated genotypes containing

dosage A matrix of genotype calls. Variants with R2s, HWE p values, MAFs, or missing

rates beyond the cutoffs are removed.

genotypes A list containing RAI, shapes of the mixed beta distributions, prior probabilities

that the RAI values belong to one of the three genotypes, proportion of RAI

values being outlier (U), and genotype probability (GP)

indAF A matrix of individual-specific AFs.

refGeno_1KGP3 Reference genotypes in the 1000 Genomes Project

Description

A matrix of reference genotypes in the 1000 Genomes Project (1KGP). It contains 2504 samples and 28,619 SNPs overlapping the methylation probes.

Usage

data(refGeno_1KGP3)

Format

A matrix with 28,619 rows and 2504 columns:

Row SNPs overlapping the methylation probes

Column Samples

refGeno_1KGP3_SNP_failQC

 $SNPs in 1KGP with HWE < 1e-20 or F_MISSING > = 0.05$

Description

SNPs to be removed in TRACE PCA

Usage

data(refGeno_1KGP3_SNP_failQC)

Format

A vector with 491 items:

Value SNP rs ID

sam2pop 33

sam2pop	Population information for the 1KGP samples	
sam2pop	Population information for the 1KGP samples	

Description

A vector of population information for the 2504 samples in 1KGP.

Usage

```
data(sam2pop)
```

Format

A vector with 2504 items:

Name Sample ID Value Population

TRACE

TRACE: fasT and Robust Ancestry Coordinate Estimation

Description

Adapted from http://csg.sph.umich.edu/chaolong/LASER

Usage

```
TRACE(
  refGeno,
  studyGeno,
  MIN_LOCI = 100,
  DIM = 4,
  DIM_HIGH = 20,
  MAX_ITER = 10000,
  THRESHOLD = 1e-06,
  cpu = 1
)
```

Arguments

refGeno	A matrix of genotypes of reference individuals. Provide probes as rows and samples as columns.
studyGeno	A matrix of genotypes of study samples. Provide probes as rows and samples as columns.
MIN_LOCI	Minimum number of non-missing loci required
DIM	Number of PCs in the reference to match
DIM_HIGH	Number of PCs for sample-specific PCA
MAX_ITER	Maximum iterations for the projection Procrustes analysis
THRESHOLD	Convergence criterion for the projection Procrustes analysis
cpu	Number of CPU.

TRACE

Value

A list containing

refPC Top PCs in the reference studyPC Top PCs in study samples

Index

mnfst, 20 mnfst_450K, 20 mnfst_450K, 20 mval2beta, 21 probeInfo_snp, 23 probeInfo_typeI, 25 probeInfo_typeII, 26 probeInfo_typeII_450K, 27 probelist, 29 probelist_450K, 29 refGeno_1KGP3_SNP_failQC, 32 backgroundCorrectionNoobFit, 2 mnfst_450K, 20 mval2beta, 21 prowleta, 21 promeExpSignal, 21 plot_AF, 22 plot_PCA, 22 plot_PCA, 22 plot_RAI_distribution, 22 pprocrustes, 23 probeInfo_snp, 23 probeInfo_snp, 23 probeInfo_snp, 25 probeInfo_typeI, 25 probeInfo_typeI, 25 probeInfo_typeI, 25 probeInfo_typeII, 26 probeInfo_typeII, 26 probeInfo_typeII, 26
probeInfo_snp, 23 probeInfo_snp_450K, 24 probeInfo_typeI, 25 probeInfo_typeI, 25 probeInfo_typeI, 26 probeInfo_typeII_450K, 27 probelist, 29 probelist_450K, 29 refGeno_1KGP3, 32 refGeno_1KGP3_SNP_failQC, 32 sam2pop, 33 probeInfo_typeII_450K, 27 probeInfo_typeII, 26 probeInfo_typeII, 26 probeInfo_typeII, 25 probeInfo_typeII, 25 probeInfo_typeII, 26
probeInfo_snp, 23 probeInfo_snp_450K, 24 probeInfo_typeI, 25 probeInfo_typeI, 25 probeInfo_typeI, 26 probeInfo_typeII_450K, 27 probelist, 29 probelist_450K, 29 refGeno_1KGP3, 32 refGeno_1KGP3_SNP_failQC, 32 sam2pop, 33 probeInfo_typeII_450K, 27 probeInfo_typeII, 26 probeInfo_typeII, 26 probeInfo_typeII, 25 probeInfo_typeII, 25 probeInfo_typeII, 26
probeInfo_snp_450K, 24 probeInfo_typeI, 25 probeInfo_typeI_450K, 28 probeInfo_typeII, 26 probeInfo_typeII_450K, 27 probelist, 29 probelist_450K, 29 probelist_450K, 29 refGeno_1KGP3, 32 refGeno_1KGP3_SNP_failQC, 32 sam2pop, 33 backgroundCorrectionNoobFit, 2 normExpSignal, 21 plot_AF, 22 plot_PCA, 22 plot_PCA, 22 plot_RAI_distribution, 22 pprocrustes, 23 probeInfo_snp, 23 probeInfo_snp, 23 probeInfo_snp_450K, 24 probeInfo_typeI, 25 probeInfo_typeI, 25 probeInfo_typeII, 26 probeInfo_typeII, 26 probeInfo_typeII, 26
probeInfo_typeI, 25 probeInfo_typeI_450K, 28 probeInfo_typeII, 26 probeInfo_typeII_450K, 27 probelist, 29 probelist_450K, 29 probelist_450K, 29 refGeno_1KGP3_SNP_failQC, 32 sam2pop, 33 probeInfo_typeII_450K, 29 probeInfo_typeII, 25 probeInfo_typeII, 25 probeInfo_typeII, 26 probeInfo_typeII, 26 probeInfo_typeII, 26 probeInfo_typeII, 26 probeInfo_typeII, 26 probeInfo_typeII, 26
probeInfo_typeI_450K, 28 probeInfo_typeII, 26 probeInfo_typeII_450K, 27 probelist, 29 probelist_450K, 29 probelist_450K, 29 refGeno_1KGP3_SNP_failQC, 32 sam2pop, 33 probeInfo_typeII_450K, 28 probeInfo_typeII, 25 probeInfo_typeII, 25 probeInfo_typeII, 26 probeInfo_typeII, 26 probeInfo_typeII, 26 probeInfo_typeII, 26 probeInfo_typeII, 26
probeInfo_typeII, 26 probeInfo_typeII_450K, 27 probelist, 29 probelist_450K, 29 refGeno_1KGP3_SNP_failQC, 32 sam2pop, 33 probeInfo_typeII_450K, 29 probeInfo_snp, 23 probeInfo_snp_450K, 24 probeInfo_typeI, 25 probeInfo_typeI, 25 probeInfo_typeII, 26 probeInfo_typeII, 26 probeInfo_typeII, 26 probeInfo_typeII_450K, 27 probelist, 29
probeInfo_typeII_450K, 27 probelist, 29 probelist_450K, 29 probelist_450K, 29 prefGeno_1KGP3, 32 refGeno_1KGP3_SNP_failQC, 32 sam2pop, 33 backgroundCorrectionNoobFit, 2 plot_RAI_distribution, 22 pprocrustes, 23 probeInfo_snp, 23 probeInfo_snp_450K, 24 probeInfo_typeI, 25 probeInfo_typeI, 25 probeInfo_typeII, 26 probeInfo_typeII, 26
probelist, 29 probelist_450K, 29 probelist_450K, 29 probelist_450K, 29 probelifo_snp, 23 probelifo_snp_450K, 24 probelifo_typeI, 25 probelifo_typeI_450K, 28 probelifo_typeII, 26 probelifo_typeII, 26 probelifo_typeII, 450K, 27 probelist, 29
probelist_450K, 29 refGeno_1KGP3, 32 refGeno_1KGP3_SNP_failQC, 32 sam2pop, 33 backgroundCorrectionNoobFit, 2 probeInfo_snp_450K, 24 probeInfo_typeI, 25 probeInfo_typeI_450K, 28 probeInfo_typeII, 26 probeInfo_typeII, 26 probeInfo_typeII_450K, 27 probelist, 29
refGeno_1KGP3, 32 probeInfo_snp_450K, 24 probeInfo_typeI, 25 probeInfo_typeI_450K, 28 probeInfo_typeII, 26 probeInfo_typeII, 26 probeInfo_typeII_450K, 27 probeIst, 29
refGeno_1KGP3_SNP_failQC, 32 probeInfo_typeI, 25 probeInfo_typeI_450K, 28 probeInfo_typeII, 26 probeInfo_typeII_450K, 27 probeInfo_typeII_450K, 27 probelist, 29
sam2pop, 33 probeInfo_typeI_450K, 28 probeInfo_typeII, 26 probeInfo_typeII_450K, 27 probeIist, 29
backgroundCorrectionNoobFit, 2 probeInfo_typeII, 26 probeInfo_typeII_450K, 27 probelist, 29
probelist, 29
probelist, 29
call_genotypes, 8 probelist_450K, 29
callGeno_snp, 3 procrustes, 30
callGeno_typeI, 4 projection, 30
callGeno_typeII, 6
constrain_R2,9 recal_Geno, 31
correct_noob_dye, 9 refGeno_1KGP3, 32
refGeno_1KGP3_SNP_failQC, 32
dosage2hard, 10
sam2pop, 33
eBeta, 10
TRACE, 33
filter_by_AF, 11
filter_by_HWE, 11
filter_by_missing, 12
filter_by_R2, 12
fit_beta_em, 13
format_genotypes, 13
get_AF, 18
get_GP_bayesian, 18
get_indAF, 19
get_target, 19
getHWE, 15
getKinship, 15
getKinship_het, 16
getMod, 16
getRAI_snp, 17
getRelation, 17