Image Statistics with supplied test image

Based on the test image supplied (testImage.bmp) and with the help of Statistics and Machine Learning Toolbox 10 image statistics were calculated in MATLAB. In order to achieve the following results, the image was converted to greyscale using rgb2gray. Please, see the achieved results below:

Fig1: Achieved Results

Statistic	Formula	Value(s)
Range	$C_{range} = L_{max} - L_{min}$	= 205
Normalised Range	$C_{normRange} = \frac{L_{max} - L_{min}}{2^t - 1}$	= 0.8039
Michelson Contrast	$C_{mich} = \frac{L_{max} - L_{min}}{L_{max} + L_{min}}$	= 0.8367
RMS Contrast	$C_{rms} = \sqrt{\frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} (L_{i,j} - \bar{L})^2}$	= 66.0763
Simple Arithmetic Mean	$\bar{L} = \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} L_{i,j}$	= 123.3943
Harmonic Mean	$\bar{L}_{harm} = (MN) / \sum_{i=1}^{M} \sum_{j=1}^{N} \frac{1}{L_{i,j}}$	= 82.9792
Geometric Mean	$\bar{L}_{geom} = \left(\prod_{i=1}^{M} \prod_{j=1}^{N} L_{i,j}\right)^{\frac{1}{MN}}$ $= \exp\left(\frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} \ln(L_{i,j})\right)$	= 103.4029
Midrange	Cmidrange = Lmax+Lmin/2	= 122.50
10% Winsorised Mean	$\bar{L}_{wk} = \frac{1}{n} \{ (k+1)L_{(k+1)} + \sum_{i=k+2}^{n-k-1} L_i + (k+1)L_{(n-k)} \}$	= 116.2541
10% Trimmed Mean	$\bar{L}_{tk} = (1/n - 2k) \sum_{i=k+1}^{n-k} L_i$	= 123.2447