

数字热释电传感器

(型号: RDB224)

使用说明书

版本号: 1.0

实施日期: 2019-11-25

郑州炜盛电子科技有限公司 Zhengzhou Winsen Electronic Technology Co., Ltd

声明

本说明书版权属郑州炜盛电子科技有限公司(以下称本公司)所有,未经书面许可, 本说明书任何部分不得复制、翻译、存储于数据库或检索系统内,也不可以电子、翻拍、 录音等任何手段进行传播。

感谢您使用炜盛科技的系列产品。为使您更好地使用本公司产品,减少因使用不当造成的产品故障,使用前请务必仔细阅读本说明书并按照所建议的使用方法进行使用。如果您不依照本说明书使用或擅自去除、拆解、更换传感器内部组件,本公司不承担由此造成的任何损失。

您所购买产品的颜色、款式及尺寸以实物为准。

本公司秉承科技进步的理念,不断致力于产品改进和技术创新。因此,本公司保留任何产品改进而不预先通知的权力。使用本说明书时,请确认其属于有效版本。同时,本公司鼓励使用者根据其使用情况,探讨本产品更优化的使用方法。

请妥善保管本说明书,以便在您日后需要时能及时查阅并获得帮助。

郑州炜盛电子科技有限公司

数字热释电传感器-RDB224

产品描述:

RDB224 数字热释电传感器是将传统热释电传感器的敏感元与信号处理芯片集成化设计,将敏感元与 IC 芯片集成封装到传感器屏蔽罩内部,敏感元通过感应外界人体移动产生的红外信号,以差分输入的方式传送到高精度的数字智能处理芯片进行处理,信号处理完成,传感器直接输出数字信号,方便使用。

产品特点:

- 1.高精度 AD 信号处理;
- 2.差分信号输入方式, 抗干扰能力强;
- 3.延迟时间调节功能;
- 4. 宽电压供电 1.5~4.5V、低功耗;
- 5.数字 TTL 信号输出。

主要应用:

- ➤安防产品
- ➤人体感应玩具
- ➤人体感应灯具、开关、家电
- ➤工业自动化控制
- ▶智能家居
- ➤物联网终端
- ▶智能家电等

技术参数:

1.极限参数

参数	符号	最小值	最大值	单位	备注
供电电压	V _{DD}	-0.3	4.5	V	25℃
引脚电压		-0.3	V _{DD} +0.3	V	25℃
储存温度	T st	-40	125	$^{\circ}$ C	

2.工作条件(T=25℃)

参数	符号	最小值	典型值	最大值	单位	备注
工作条件						
工作电压	V_{DD}	1.5	3.0	4.5	V	供电模式
工作电流	Ірр		10		uA	10uA
工作电视						@3V@25℃
灵敏度阈值	V_{SENS}		104		uV	
工作温度	W_{ST}	-25		85	$^{\circ}$	
模拟输入(ONTIME)引脚						
ONTIME 输入范围		0		VDD		
ONTIME 输入电流	V_{IL}			20	nA	下拉电流
输出引脚(REL)						
输出驱动电流	I _{REL}	-5	-	5	mA	

封锁时间			2.0		S	
延迟时间	ОПтіме	1.0		3600	S	16 档调节
振荡器和滤波器	振荡器和滤波器					
低通滤波器截止频率				7	Hz	
高通滤波器截止频率				0.4	Hz	
芯片振荡器频率	Fclk			32	KHz	
芯片振荡器误差	F _{CLK_Err}	-1000		1000	ppm/K	-20~80℃

3.内部框图

4.触发模式

在正常检测状态下,以下两种情况为有效触发:

- (1) 当 4S 内信号幅度相继超过正反阀值;
- (2) 信号幅度超出5倍阀值;

传感器有效触发后,REL 脚输出并维持一定时间的高电平,输出高电平时间可以通过 ONTIME 引脚的分压电阻调节,在输出高电平期间,如果再次检测到有效触发信号,则重新计算输出高电平时间。

备注: 传感器具有热机功能,上电后,REL 脚输出高电平 10 秒,低电平 2 秒,之后正常检测, 热机时间与 ONTIME 时长无关。

以诚为本、信守承诺 创造完美、服务社会

注: 持续时间内再次检测到触发信号, 持续时间会重新计算。

5.延迟时间调节:

延迟时间为传感器达到比较阈值之后输出高电平的持续时间, ONTIME 管脚的输入电压决定了传感器被触发后 REL 管脚维持高电平的时间,每次收到触发信号,延迟时间会重新计算,延迟时间与管脚电压及分压电阻之间的关系请参照下表。

ONTIME 管脚电压与延迟时间及分压电阻关系表:

编	对应签册市压装围	管脚电压	持续时间	上拉电阻	下拉电阻	下拉电阻
号	对应管脚电压范围	中间值	(秒)	ohm	理论值 ohm	推荐值 ohm
1	(0~8/256) *VDD	1*VDD/64	1	1M	16k	接地
2	(9/256~16/256) *VDD	3*VDD/64	5	1M	49k	47k
3	(17/256~24/256) *VDD	5*VDD/64	10	1M	85k	82k
4	(25/256~32/256) *VDD	7*VDD/64	15	1M	122k	120k
5	(33/256~40/256) *VDD	9*VDD/64	20	1M	164k	160k
6	(41/256~48/256) *VDD	11*VDD/64	30	1M	208k	205k
7	(49/256~56/256) *VDD	13*VDD/64	45	1M	255k	261k
8	(57/256~64/256) *VDD	15*VDD/64	60	1M	306k	300k
9	(65/256~72/256) *VDD	17*VDD/64	90	1M	362k	360k
10	(73/256~80/256) *VDD	19*VDD/64	120	1M	422k	430k
11	(81/256~88/256) *VDD	21*VDD/64	180	1M	488k	487k
12	(89/256~96/256) *VDD	23*VDD/64	300	1M	561k	560k
13	(97/256~104/256) *VDD	25*VDD/64	600	1M	641k	620k
14	(105/256~112/256) *VDD	27*VDD/64	900	1M	730k	750k
15	(113/256~120/256) *VDD	29*VDD/64	1800	1M	829k	820k
16	(121/256~128/256) *VDD	31*VDD/64	3600	1M	940k	1M

传感器感应角度:

外观尺寸:单位 mm

管脚定义:					
1	VSS 电源地				
2	ONTIME 延迟时间调节管脚,16档延迟时间选择,每次触发后,重新计算延迟时间				
3	VDD 传感器供电脚				
4	REL 传感器输出脚,输出 TTL 高低电平				
备注	选择0电平建议用电阻下拉到地,选择高电平建议用电阻上拉到高电平				

实物图片:

频率特性:

菲涅尔透镜:

使用菲涅尔透镜可决定传感器的检测范围和检测距离。根据客户的要求,可以对应各种检测范围和检测距离。

以诚为本、信守承诺 创造完美、服务社会

注意:图表所示为典型的5~14um 红外滤光片参考图,曲线是红外线通过率的平均值。该窗口材料是经过特殊真空镀膜处理过的半导体硅片。

产品典型应用:

RDB224 数字热释电典型应用电路

注意事项:

- 1、传感器的出厂参数,是在标准黑体和相关测试条件下经过一分钟的稳定时间后测试所得。
- 2、设计产品时请注意传感器的窗口方向,结合菲涅尔透镜能达到较理想的探测角度。
- 3、传感器的距离和背景温度、移动中的目标温度、菲涅尔透镜、环境温度、放大倍数设置均有直接关系,使用时需综合考虑各参数。
- 4、传感器窗口镜片为半导体硅片经特殊材料真空镀膜的滤光片,使用时不能用手或硬物直接接触 窗口。
- 5、频繁、过度振动会导致传感器内部敏感体断裂,使用时需轻拿轻放。
- 6、焊接传感器时使用手工焊接,焊接温度为300℃以下,施焊时间小于3秒钟。
- 7、施加±800V以上的静电有可能造成传感器损坏,使用本产品时请做好静电防护措施。

郑州炜盛电子科技有限公司

地址: 郑州市高新技术开发区金梭路 299 号 电话:0371-60932955/60932966/60932977

传真:0371-60932988 微信号: winsensor

E-mail:sales@winsensor.com

Http://www.winsensor.com

