

Bachelor Thesis Final Presentation

Exploring Fuzzy Tuning Technique for Molecular Dynamics Simulations in AutoPas

Manuel Lerchner manuel.lerchner@tum.de

Advisors: Manish Kumar Mishra, M.Sc. (hons) Samuel James Newcome, M.Sc.

Aut®Pas

What is AutoPas?

- Library for optimal node-level performance in N-body simulations
- Many different implementations for the N-body problem
- AutoTuning: Automatically switch between implementations
 - Container: How to find neighboring particles?
 - Traversal: How to handle multi-threading?
 - Data Layout: How to store particles in memory?
 - Newton 3: Can we exploit Newton's 3rd law?
 - ...
- Example applications:
 - md_flexible (Molecular Dynamics)
 - sph (Smoothed Particle Hydrodynamics)

Structure of AutoPas

- Three main components:
 - User Application
 - Algorithm Library
 - Tuning Strategies
- Algorithm Library:
 - Huge Search Space¹
- Tuning Strategies:
 - Full Search
 - Random Search
 - Predictive Tuning
 - Bayesian Search
 - Rule Based Tuning

Source: [Newcome et al., 2023]

 $^{^1}$ Container imes Traversal imes Data Layout imes Newton 3 imes Load Estimator imes Cell Size Factor

Auto-Tuning

- Tuning Phase: Find the best configuration
 - Tuning Strategies select configurations to evaluate
 - Expensive, Time consuming
- Simulation Phase: Use the best configuration

Fuzzy Logic Systems

- Use human-like reasoning to model complex systems
- Example: Heater Control
 - Input: temperature (e.g. 20°C), humidity (e.g. 50%)
 - Output: heater power (e.g. 50%)
 - Rules:

<pre>IF temp is cold</pre>	AND	humidity is dry	THEN power is high
<pre>IF temp is hot</pre>	OR	humidity is wet	THEN power is low
IF temp is warm			THEN power is medium

- Very easy to understand and interpret
- Can handle uncertainty and imprecise information
- Complexity is abstracted away in the linguistic terms (e.g. cold, warm, hot)
- Fuzzy System $f: \mathbb{R}^n \to \mathbb{R}$

Mathematical Foundations

Consider the Fuzzy Rule:

- Fuzzy Logic Systems consist of:
 - Linguistic Terms / Fuzzy Sets (e.g. cold, warm, hot)
 - Linguistic Variables (e.g. temperature, humidity, power)
 - Fuzzy Logic Operators (e.g. AND, OR, NOT)
 - Fuzzy Rules (e.g. IF antecedent THEN consequent)

Fuzzy Sets

- Fuzzy Sets are generalizations of classical sets
 - Classical Sets: binary membership function \in_A : $A \to \{false, true\}$
- Fuzzy Sets are defined by:
 - Underlying Crisp Set X (e.g. $age \subseteq \mathbb{R}$)
 - Continuous membership function $\mu_{\tilde{A}}: X \to [0, 1]$
- Allow for uncertainty. When is a person young?

Linguistic Variables

- Linguistic Variables can take on linguistic terms / fuzzy sets
 - E.g. age can take young, middle-aged or old
- Instead of using crisp values (35 years), we use a combination of linguistic terms to describe the age (Fuzzyification):

35 years
$$\implies$$

$$\begin{cases} 20\% \text{ young} \\ 60\% \text{ middle-aged} \\ 0\% \text{ old} \end{cases}$$

- This allows for non-numerical reasoning:
 - E.g. **IF** age is *young* **THEN** fitness is *high*
 - Use abstract concepts instead of crisp values
- Each linguistic term represents a certain collection of values

Fuzzy Logic Operators

- Fuzzy Logic Operators are used to modify/combine fuzzy sets
- Extension of boolean logic operators to real numbers
 - \wedge : {false, true} \times {false, true} \rightarrow {false, true}
 - **AND** : $[0,1] \times [0,1] \rightarrow [0,1]$
- Extended operators need to maintain the classical semantics
- Typically, Fuzzy Logic Operators are defined as:
 - AND: Corresponds to the intersection of fuzzy sets

$$\mu_{\tilde{A}\cap\tilde{B}}(x) = \min(\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x))$$

OR: Corresponds to the union of fuzzy sets

$$\mu_{\tilde{A} \cup \tilde{B}}(x) = \max(\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x))$$

NOT: Corresponds to the complement of a fuzzy set

$$\mu_{\tilde{A}}(x) = 1 - \mu_{\tilde{A}}(x)$$

Fuzzy Rules

- Each rule is of the form: IF antecedent THEN consequent
 - Both antecedent and consequent are fuzzy sets
 - E.g. IF age is young THEN fitness is high
- Rules can be interpreted as a logical implication
 - IF \tilde{A} THEN $\tilde{B} \iff \tilde{A}$ IMPLIES \tilde{B}
 - Implication is similar to previous operators (AND, OR, NOT)
 - Special form of implication: Mamdani Implication
 - $\tilde{R} = \mathbf{IF} \ \tilde{A} \ \mathbf{THEN} \ \tilde{B}$
 - Effect of the rule is limited by the strength of the antecedent
- A Fuzzy System can consist of multiple rules acting on the same linguistic variable
 - The total effect on the output is the combination/union of all individual rule outputs

Defuzzification

- Process of converting arbitrary fuzzy sets to a crisp value
 - Special case: Fuzzy sets resulting from rule application

$$\begin{cases} 20\% \text{ young} \\ 60\% \text{ middle-aged} & \Longrightarrow 35 \text{ years} \\ 0\% \text{ old} \end{cases}$$

- Multiple methods for defuzzification:
 - Centroid: Weighted average of the fuzzy set

Centroid =
$$\frac{\int x \cdot \mu_{\tilde{R}}(x) dx}{\int \mu_{\tilde{R}}(x) dx}$$

- Mean of Maxima: Average of all maxima of the fuzzy set
- Core idea: Represent aspects of the fuzzy set with a crisp value
 - E.g. Weighted average of all possible values (Centroid)
 - E.g. Most likely value (Mean of Maxima)

Source: MathWorks - Fuzzy Inference Process

TODO: Maybe add decision surfaces here

Fuzzy Tuning Strategy

- Main Idea: Use Fuzzy Logic to tune AutoPas
- Make use of LiveInfoData² to perform tuning
- Benefits:
 - Similar to Rule-Based Tuning
 - Potentially more expressive and powerful
 - Still easy to understand and interpret
- Challenges and Questions for AutoPas:
 - What are the output variables? How to predict Configurations?
 - How to interpret the result? (Fuzzy System : $f : \mathbb{R}^n \to \mathbb{R}$)
 - How to create the fuzzy rules? Expert knowledge?
 - How to specify the linguistic terms / fuzzy sets?

²Simulation state: avgParticles/Cell, homogeneity, threadCount ...

Approach 1: Component Tuning

- Independently predict good values/patterns for each tunable parameter
- Create a Fuzzy System for each tunable parameter
 - Container_DataLayout
 - Traversal
 - Newton 3
- Output Variables: Nominal Representation of parameter values
- Numeric output mapped to the closest value [Mohammed et al., 2022]
- Combine the patterns to obtain final configurations

Approach 1: Component Tuning

TODO Linguistic Variables

Approach 2: Suitability Tuning

- Predict the suitability of each configuration
- Use the suitability values to determine worthwhile configurations
- Create a Fuzzy System for each possible configuration
- Output Variables: Suitability of the configuration
- More complex, but potentially more powerful

Approach 2: Suitability Tuning

- Each configuration has a separate suitability variable
- Example rule:
 - IF threadCount is high AND avgParticlesPerCell is low
 THEN suitability_LinkedCells_AoS_lc_c18_disabled is bad
 - Where high, low, bad are appropriate linguistic terms

Data-Driven Rule Extraction

- Creating the Fuzy Rules is hard
 - Expert Knowledge is required
 - Formalization of knowledge is difficult
 - Potentially many rules required
- Use Machine Learning to extract rules from data
- Decision Tree \rightarrow Fuzzy Decision Tree \rightarrow Fuzzy Rules [Crockett et al., 2006]
- Does not require expert knowledge
- Human experts can still validate the rules

Conversion Process

Comparison and Evaluation

- Exploding Liquid Benchmark
- Spinodal Decomposition MPI
- Further Analysis

Future Work

- Dynamic Rule Generation
- Improving Tuning Strategies
- Simplification of the Fuzzy System

Conclusion

- Summary of Findings
- Impact
- Final Thoughts

References I

Crockett, K., Bandar, Z., Mclean, D., and OShea, J. (2006). On constructing a fuzzy inference framework using crisp decision trees.

Fuzzy Sets and Systems, 157(21):2809–2832.

Mohammed, A., Korndörfer, J. H. M., Eleliemy, A., and Ciorba, F. M. (2022).

Automated scheduling algorithm selection and chunk parameter calculation in openmp.

IEEE Transactions on Parallel and Distributed Systems, 33(12):4383–4394.

References II

Newcome, S. J., Gratl, F. A., Neumann, P., and Bungartz, H.-J. (2023).

Towards the smarter tuning of molecular dynamics simulations. Amsterdam, The Netherlands.