06 | k-Nearest Neighbors

Ivan Corneillet

Data Scientist

Learning Objectives

After this lesson, you should be able to:

- Define and give examples of classification; implement a simple classifier by hand
- Explain the *k*-Nearest Neighbors algorithm; build a *k*-Nearest Neighbors model using *sklearn*
- Understand the fundamentals of evaluating and tuning classifiers; define error metrics for classification problems, goodness of fit, bias, and variance

Classification

k-Nearest Neighbors is a supervised learning algorithm for regression or classification

Regression

(continuous predictions; i.e., how much or how many?)

Classification

(categorical predictions; i.e., is this A, B or C?)

Supervised

a.k.a., predictive modeling (generalization; make predictions)

k-Nearest Neighbors \checkmark

k-Nearest Neighbors ✓

Unsupervised

(representation; extract structure)

Response Vector y (or c) (cont.)

Regression

Classification

Response vector *y*

Response vector c

(renamed from y to c for label classes)

	col
	e.g. price
row0, e.g., house #1	\$1.1M
row1, e.g., house #2	\$.9M
row2, e.g., house #3	\$1.5M

	col e.g., animal
row0, e.g., image #1	"dog"
row1, e.g., image #2	"cat"
row2, e.g., image #3	"bird"

A classifier aims to isolate the response vector y's class label by splitting the feature space modeled by the feature matrix X

The Iris Dataset: 3 class labels of iris plants (*Setosa, Versicolor,* and *Virginica*); 50 instances in each class label

Iris Setosa

Iris Versicolor

Iris Virginica

Source: Flick

The Iris Dataset (cont.)

Can we teach a machine
 to identify the type of iris
 based on the following
 four attributes?

- Sepal length and width
- Petal length and width

Accuracy and Misclassification Rate

- Accuracy (rate)
 - How many observations that we predicted were correct?
 - This is a value we want as high as possible

- Misclassification rate
 - Of all the observations we predicted, how many were incorrect?
 - This is a value we want as low as possible
 - Directly opposite of accuracy
 - (Pick one or the other; effectively they are the "same")

k-Nearest Neighbors

k-Nearest Neighbors

k-Nearest Neighbors is a
 classification algorithm that
 makes a prediction based
 upon the closest data points

k-Nearest Neighbors | How would you predict the color of the "question mark" point?

k-Nearest Neighbors | \bullet Pick a value for k, e.g., k=3

k-Nearest Neighbors | $\mathbf{2}$ Calculate the distance to all other points; given those distances, pick the k closest points

k-Nearest Neighbors | \mathfrak{G} Calculate the probabilities of each class label given those points: $\frac{1}{3}$ "red", $\frac{2}{3}$ "blue"

k-Nearest Neighbors | \bullet The original point is classified as the class label with the largest probability ("votes"): "blue"

k-Nearest Neighbors (cont.)

- k-Nearest Neighbors usesdistance to predict a class label
- This application of distance is used as a measure of similarity between classifications
 - We are using shared traits to identify the most likely class label

1-Nearest Neighbors

Feature Normalization

Non-Normalized Features with k-Nearest Neighbors (cont.)

High Dimensionality

Model Fit

Model Fit | Motivating Example (cont.)

Model Fit | Motivating Example (cont.)

Model Fit | Motivating Example (cont.)

The Training Error can go down to zero (effectively memorizing the entire dataset)

As the model gets more complex, the Generalization Error initially goes down; however, after reaching a minimum, it goes back up

The Generalization Error is made of two components: Bias and Variance

The Bias is a systematic, non-random error; the Variance is an idiosyncratic, random error

Errors, Complexity, Fit, Bias, and Variance

Errors, Complexity, Fit, Bias, and Variance (cont.)

Underfit

Underfit

- Model too simple
- It cannot represent the desired
 behavior very well; both its training
 and generalization error are poor
- High bias; low variance

Optimal Fit

- Optimal Fit
 - Model has the right level of complexity
 - It performs well on the training set (low training error) and generalize well to unknown data points (low generalization error)

Overfit

Overfit

- Model too complex
- It performs very well on the training set (low training error) but does not generalize well to unseen data points (high generalization error)
- Low bias; high variance

So far, we used the entire dataset to train the models. Question: How can we estimate the Generalization Error?

Answer: Divide (randomly) the dataset into a Train Set and a Test Set

Train and Test Sets

- Set aside the test set; don't look at it until the very end
- Train your model with the train set
 - Remodel as needed until you are satisfied with your model performance on the train set (low training error)
- Evaluate your model on the test set to compute the generalization error
 - Only then do you now know whether your model underfits, overfits, or seems ok
- If you need to go back and remodel you need a new test: as you incorporate knowledge from the test set back into your remodel, the test set's previously unseen data points are not longer unseen
 - Question: How can we really keep our test set aside until the very end

Answer: Divide (randomly) again your Train Set into a (new) Train Set and a Validation Set

Train, Validation, and Test Sets

- You still train the model with the train set (model building) but now you use the cross-validation set, not the test set, to estimate the generalization error (model checking)
- After using the cross-validation set and before a new phase of remodeling, you should then reshuffle data between your train set and your cross-validation set
- Question: Reshuffling the train/cross-validation sets seems heavy work. Can we do better?

Answer: Yes, we can. Using k-Fold Cross-Validation

k-Fold Cross-Validation

- ► Typically, k = 5 or 10 with each sample being used both for training (k 1 times) and validation (1 time)
- The training/validation errors are the average training/validation errors across all folds
- After selecting the model that minimize
 the validation error, you then build a final
 model that uses all the training data

Model Building and Model Checking with k-Fold Cross-Validation

k-Nearest Neighbors | Pros and Cons

Pros

- Intuitive and simple to explain
- Training phase is fast
- Non-parametric (does not presume a "form" of the decision boundary)
- The decision boundary easily captures non-linearity

Cons

- Not interpretable
- Prediction phase can be slow when n
 (number of observations) is large
- Very sensitive to feature scaling; need to standardize the data
- Sensitive to irrelevant features
- Cannot be used if you have sparse data and feature space with dimension $p \ge 4$

Slides © 2017 Ivan Corneillet Where Applicable Do Not Reproduce Without Permission