1 Gruppi

1.1 Definizioni base

 \mathbf{Def} un magma è un insieme M in cui è definita una singola operazione binaria. L'unico assioma soddisfatto dall'operazione è quello di chiusura.

Def un magma associativo si dice *semigruppo* **Esempio** $(\mathbb{Z}^+,+)$, (\mathbb{N},\times)

Def un monoide è una terna (M, *, e) dove M è un insieme chiuso rispetto a * che è un'operazione associativa con elemento neutro e. Un monoide quindi è un semigruppo con elemento neutro **Esempio** (\mathbb{Z}, \times)

Def un gruppo è una terna (G, *, 1) dove (G, *, 1) è un monoide in cui ogni elemento è invertibile

1.2 Sottogruppo normale

Def: Sia H sottogruppo di G, H si dice normale $H \lhd G$ se $ghg^{-1} \in H \ \forall g \in G, h \in H$

Esempio: $K \triangleleft H \triangleleft G$ non è detto che $K \triangleleft G$ (vd esempio wiki)

1.3 Gruppi abelianizzati e commutatori

Def. $[g,h] := g^{-1}h^{-1}gh$ commutatore $[H,K] = \{[h,k] : h \in H, k \in K\}$ per $H,K \subset G$

Def: il gruppo [G,G] viene detto sottogruppo dei commutatori Oss. un elemento di [G,G] non è per forza delle forma [g,h]

Lemma: $[G,G] \triangleleft G$ Oss. Gè abeliano $\iff [G,G] = \{1\}$

Lemma: sia N un sottogruppo normale di G, allora G/N è abeliano $\iff [G,G] \lhd N$ ovvero il sottogruppo dei commutatori è il piu' piccolo sottogruppo normale di G

Ab(G)=G/[G,G]abelianizzato $G\simeq G^{'}\Rightarrow Ab(G)\simeq Ab(G^{'}) \text{ ma non viceversa}$

1.4 Gruppo risolubile

Def. Un gruppo G è detto risolubile se esiste una sequenza di sottogruppi

$$G = G_1 \supset G_2 \supset \dots \supset G_m = \{1\}$$

tale che

- $G_{k+1} \lhd G_k$
- G_k/G_{k+1} è abeliano

Esempio: S_3 è risolubile

Def: sia G un gruppo, poniamo

- $-G^{(1)} = G$
- $G^{(k+1)} = [G^{(k)}, G^{(k)}]$

La serie

$$G = G^{(1)} \supset G^{(2)} \supset \dots \supset G^{(k)}$$

viene detta serie derivata.

Thm: sia G un gruppo. Allora G è risolubile $\iff \exists m > 0 \text{ t.c. } G^{(m)} = \{1\}$

1.5 Gruppo ciclico

È un gruppo che puo' essere generato da un unico elemento.

Sia G ciclico. Se |G|=n finito allora $G\simeq \mathbb{Z}/n\mathbb{Z}$ altrimenti $G\simeq \mathbb{Z}$

$$g^i$$
 genera \iff $(i, n) = 1$

Oss. un gruppoo ciclico è abeliano

Prop. Ogni sottogruppo ed ogni gruppo quoziente di un gruppo ciclico è ciclico.

 $G = \{g^n : g \in \mathbb{Z}\}$ notazione moltiplicativa

 $G = \{ng : n \in \mathbb{Z}\}$ notazione additiva

Thm ogni sottogruppo finito G del gruppo moltiplicativo di un campo E è ciclico.

Prop sia G un gruppo ciclico finito, $a \in G$ allora

$$x^n = a$$
 in G ha soluzioni $\iff a^{\frac{|G|}{(n,|G|)}} = 1$

 \mathbf{Oss} se G è un gruppo finito e (n,|G|)=1allora $x^n=a$ ha soluzione in G $\forall a\in G$

1.5.1 Radici n-esime dell'unita'

 $R_n = {\alpha \in \mathbb{C} : \alpha^n = 1}$ radici n-esime dell'unita' Def n-esimo polinomio ciclotomico

$$\Phi_n = \prod_{\zeta \in RPU} (x - \zeta)$$

Lemma:

$$\prod_{d|n} \Phi_d = x^n - 1$$

Lemma: Φ_n è un polinomio monico di $\mathbb{Z}[X]$ e ha grado $\varphi(n)$

Thm: Φ_n è irriducibile in $\mathbb{Q}[X]$

Def: sia F un campo e $w \in F$ una radici primitiva n-esima dell'unita',

allora F(w)/F è detta n-esima estensione ciclotomica di F

Def: un'estensione di Galois E/F è detta ciclica

se Gal(E/F) è un gruppo ciclico

1.6 Gruppo di torsione

Un gruppo di torsione o gruppo periodico è un gruppo in cui ogni elemento ha ordine finito. Tutti i gruppi finiti sono di torsione.

Il concetto di gruppo di torsione non va confuso con quello di gruppo ciclico: $(\mathbb{Z}, +)$ è ciclico senza essere di torsione.

$$Tor(G) = \{ g \in G : g^n = 1 \}$$
 notazione moltiplicativa $Tor(G) = \{ g \in G : ng = 0 \}$ notazione additiva

Sia
$$\varphi: G \to G'$$
 isomorfismo allora $\varphi(Tor(G)) = Tor(G')$

1.7 Gruppo diedrale

Gli elementi base del gruppo sono le rotazioni del poligono pari all'n-esima parte dell'angolo giro, e la riflessione attorno ad un asse di simmetria del poligono. Esistono in tutto n rotazioni possibili e n assi di simmetria per un poligono di n lati, per cui il gruppo diedrale corrispondente è formato da 2n elementi.

Esempio: quadrato

$$< x, y | x^4 = y^2 = (xy)^2 = 1 >$$

1.8 Esempi

Gruppi comuni

$$(\mathbb{Z},+),(\mathbb{Q}^*,\times)$$

 S_n gruppo delle permutazioni, non è abeliano

Il gruppo simmetrico S_n

Sia ${\cal S}_n$ l'insieme di tutte le mappe bi
iettive da

$$\pi: \{1, 2, ..., n\} \to \{1, 2, ..., n\}$$

 $\pi \in S_n$ è detta permutazione di $\{1, 2, ..., n\}$

Oss. $|S_n| = n!$

Lemma: S_n è generato da (1,2),(1,3),..,(1,n)

Lemma: S_n è generato da (1,2) e (1,2,..,n)

Def: una coppia (i, j) è detta inversione della permutazione π se $\pi(i) > \pi(j)$. Denotiamo con $\varphi(n)$ il numero di inversioni di una permutazione.

Lemma: $\varphi(\pi\sigma) = \varphi(\pi) + \varphi(\sigma) \mod 2$

Prop. in ogni rappresentazione di π come prodotto di 2-cicli, il numero di 2-cicli sara' sempre pari o sempre dispari.

Oss. il prodotto di due permutazioni pari è ancora pari e l'inverso di una permutazione pari è ancora pari.

Def: l'insieme delle permutazioni pari forma un sottogruppo di S_n detto gruppo alterno A_n

Lemma: A_n è generato dai 3-cicli (i,j,k) per i,j,k distinti Prop. $A_n \triangleleft S_n, S_n/A_n \simeq \{1,-1\}$, segue che $|A_n| = \frac{1}{2}|S_n| = \frac{n!}{2}$

Thm: $[S_n, S_n] = A_n$

Gruppo generale lineare

 $\operatorname{GL}_n(K)$ gruppo generale lineare: matrici invertibili di dimensione n a valori in K

 $SL_n({\cal K})$ gruppo lineare speciale: sottogruppo delle matrici avente determinante uguale a 1

Oss. non sono commutativi per n > 1

Oss. $SL_n(K) \triangleleft GL_n(K)$ (sottogruppo normale, vd thm Binet)

 $O_n(K) = \{A \in GL_n(K) | A^T A = AA^T = I\}$ gruppo ortogonale $SO_n(K)$ gruppo ortogonale speciale (gruppo delle rotazioni dello spazio)

Gruppo di Galois

Sia E/F estensione di campi

 $Gal(E/F) = \{ \sigma : E \to E : \sigma \text{ automorfismo t.c. } \sigma(a) = a \ \forall a \in F \}$

Gruppo fondamentale

 $\pi(X,x_0)$ è un gruppo rispetto al cammino prodotto di classi di equivalenza di cappi omotopi con punto base x_0

 $H_q(C):=Z_q(C)/B_q(C)$ q-esimo gruppo di omologia dove $Z_q(C):=\ker\delta_q$ e $B_q(C):=\mathrm{Im}\delta_{q+1}$

2 Teoremi sui gruppi e congruenze

Def. funzione di Eulero $\varphi(n) = \#U(\mathbb{Z}/n\mathbb{Z}) = \{a \in \mathbb{Z} : 0 \le a < n, (a, n) = 1\}$

Lemma: se p è primo $\varphi(p) = p - 1$

Prop. $\varphi(p^k) = p^k - p^{k-1}$

Thm. se (m,n)=1 allora $\varphi(mn)=\varphi(m)\varphi(n)$

Prop. $\sum_{d|n} \varphi(d) = n$

Teorema di Lagrange

Sia G un gruppo finito e H un suo sottogruppo, |G:H| l'indice di H in G (il numero di classi laterali di H in G) allora |G|=|H||G:H|

Corollario: il periodo di $a \in G$ divide l'ordine di G

Teorema di Eulero Fermat

Se (a, n) = 1 allora $a^{\varphi(n)} \equiv 1 \mod n$

Piccolo teorema di Fermat

 $a^p \equiv a \pmod{p}$

Teorema di Wilson

 $(p-1)! \equiv -1 \mod p$

Prop. se $p \equiv 1 \mod 4$ allora -1 è un quadrato mod p ovvero $\exists x \text{ t.c. } x^2 \equiv -1 \mod p$

Prop. se $p = 2^n + 1$ è un primo allora 3 è una radice primitiva mod p

2.1 Gruppo degli elementi invertibili

Prop. $(1+ap)^{p^{\beta-2}} \equiv 1 + ap^{p^{\beta-1}} \mod p^{\beta}$

Lemma: sia p > 2 primo e a un intero non multiplo di p.

Allora 1 + ap ha ordine $p^{\alpha - 1} \mod p^{\alpha}$

Lemma: se a non è multiplo di 2 la classe resto $1+4a \mod 2^{\alpha}$ ha ordine $2^{\alpha-2}$

Oss. è la versione del lemma precedente per p=2

Prop il gruppo $U(\mathbb{Z}/p^{\alpha}\mathbb{Z})$ è ciclico per p>2 primo

Teorema $U(\mathbb{Z}/m\mathbb{Z})$ è ciclico se e solo se $m=2,4,p^k,2p^k$

Prop. Supponiamo esista una radice primitiva $\mod m$ con (a,m)=1 Allora a è una potenza n-esima (cioè $x^n\equiv a \mod m$ ha soluzione) $\iff a^{\frac{\varphi(m)}{(n,\varphi(m))}}=1$

Oss. deriva dalla proposizione più generale sui gruppi ciclici

Prop.sia p>2 primo, $p\nmid a,p\nmid n,$ se $x^n\equiv a\mod p$ è risolubile allora anche

 $x^n \equiv \mod p^e$ è risolubile $\forall e \geq 1$

Teorema di isomorfismo

Sia $f:G\to H$ un omomorfismo di gruppi. Allora $Ker(f)\lhd G$ e $G/Ker(f)\simeq Im(f)$

Def sia G un gruppo, si definisce centro l'insieme $C:=\{c\in G:ac=ca\forall a\in G\}$

Class equation sia G un gruppo finito con centro C. Allora

$$|G| = |C| + \sum_{i=1}^{k} n_i$$

dove n_i sono i divisiori propri di |G|.

2.2 Legge di reciprocità quadratica

Def. di resto quadratico e simbolo di Legendre

Prop. di Eulero $a^{\frac{p-1}{2}} \equiv (\frac{a}{p}) \mod p$ Corollario $(\frac{ab}{p}) = (\frac{a}{p})(\frac{b}{p}), (\frac{1}{p}) = 1, (\frac{-1}{p}) = (-1)^{\frac{p-1}{2}}$

Legge accessoria

$$\left(\frac{2}{p}\right) \equiv (-1)^{\frac{p^2 - 1}{8}}$$

cioè 1 se $p\equiv \pm 1 \mod 8, -1$ se $p\equiv \pm 3 \mod 8$

Teorema (Legge di reciprocità quadratica)

$$\left(\frac{p}{q}\right) \equiv (-1)^{\frac{(p-1)(q-1)}{4}} \left(\frac{q}{p}\right)$$

Che si può riformulare come: $(\frac{p}{q})(\frac{q}{p})=-1$ se $p,q\equiv -1\mod 4,$ 1 altrimenti

Def somma di Gauss

$$g_a = \sum_{t=0}^{p-1} \left(\frac{t}{p}\right) \zeta^{at}$$

Oss di fatto è il prodotto fra un carattere moltiplicativo e uno additivo

Lemma

$$\sum_{t=0}^{p-1} \left(\frac{t}{p}\right) = 0$$

Lemma se $p \nmid a$

$$\sum_{t=0}^{p-1} \zeta^{at} = 0$$

Oss sono ricnonducibili al caso più generale:

Lemma $\sum_{g \in G} \chi(g) = 0$ se χ non è il carattere banale

Prop $g_a = (\frac{a}{p})g_1$

Prop $g_1^2 = (-1)^{\frac{p-1}{2}} p$

Numeri di Mersenne, Fermat e Carmichael 3

 $\mathbf{Def}\ M_p=2^p-1$ è detto numero di Mersenne $\mathbf{Def}\ F_n:=2^{2^n}+1$ è detto numero di Fermat

 \mathbf{Def} p si dice elite prime se è una radice primitiva modulo tutti i primi di Fermat salvo un numero finito

Teorema di Pepin F_n è primo $\iff 3^{\frac{F_n-1}{2}} \equiv -1 \mod F_n$

Divisori della forma $b^n \pm 1$

Prop b, n > 1 interi. Se un primo $p|b^n - 1$ allora o $p|b^d - 1$ per un divisore proprio d di n o $p \equiv 1 \mod n$

Prop b,n>1 interi. Se un primo $p>2,p|b^n+1$ allora o $p|b^d+1$ per un divisore proprio d di n con $\frac{n}{d}$ dispari o $p \equiv 1 \mod 2n$

Prop un divisore primo p di F_k con k > 1 soddsfa $p \equiv 1 \mod 2^{k+2}$

4 Anelli

Thm Sia R un anello non banale, con identità, senza 0-divisori e con caratteristica positiva m. Allora m è un numero primo.

Corollario Ogni campo finito ha caratteristica p con p primo.

4.1 The ring of integers

The rings of integers of number fields may be divided in several classes:

- Quelli che non sono PID e quindi non sono domini Euclidei come $\mathbb{Q}[\sqrt{-5}]$
- Quelli che sono PID e non sono domini Euclidei come $\mathbb{Q}[\sqrt{-19}]$
- Quelli che sono Euclidei ma non norm-Euclidean come $\mathbb{Q}[\sqrt{69}]$
- Quelli che sono norm-Euclidean come gli interi di Gauss (gli interi di $\mathbb{Q}[\sqrt{-1}]$

The norm-Euclidean quadratic fields have been fully classified, they are $\mathbb{Q}[\sqrt{d}]$ where d is:

$$-11$$
, -7 , -3 , -2 , -1 , 2 , 3 , 5 , 6 , 7 , 11 , 13 , 17 , 19 , 21 , 29 , 33 , 37 , 41 , 57 , 73

4.2 Gli interi algebrici

Prop. i numeri algebrici formano un campo

Prop. gli interi algebrici formano un anello

Prop. un numero complesso è un intero algebrico sse il suo polinomio minimo su Q ha coefficienti interi.

Thm se
$$D \equiv 2, 3 \pmod{4}$$
 allora $\mathbb{Q}(\sqrt{D}) = \mathbb{Z}[\sqrt{D}]$ se $D \equiv 1 \pmod{4}$ allora $\mathbb{Q}(\sqrt{D}) = \mathbb{Z}[\frac{1+\sqrt{D}}{2}]$

4.3 Domini

Un dominio è un anello commutativo con unità in cui vale la legge di annullamenteo del prodotto

Su un dominio è definita una funzione Norma

Oss.
$$\varepsilon$$
 è invertibile $\implies N(\varepsilon) = 1$

se vale anche l'altra implicazione la norma di dice *speciale* **Dominio Euclideo** È un dominio dotato di una norma in cui è possibile fare la divisione con resto.

Definizione (1)

Un dominio R è euclideo se $\exists d: R \to \mathbb{N}$ t.c. $\forall a, b, \in R, b \neq 0 \ \exists q, r, \in \mathbb{R}$ t.c.

$$a = bq + r$$

Definizione (2)

Come (1) però con $d(a) \leq d(ab)$

Oss. dato un dominio euclideo R si dimostra che se ne può modificare la norma d in modo che soddisfi (2)

Definizione (3)

Come (1) però con d(ab) = d(a)d(b)

Definizione (4)

Limitatamente a un number ring (anello degli interi algebrici) in un number

field ci si può chiedere se vale (3) con d
 la norma ordinaria cioè $N_{\mathbb{K}/\mathbb{Q}}$ Se questo vale si dice che R
è norm-Euclidean

 $\bf Lemma:$ la norma di un dominio euclideo è speciale

Oss. in un dominio euclideo primo = irriducibile

Thm ogni dominio euclideo è un PID Thm ogni dominio euclideo è un UFD

Prop ogni dominio d'integrità con un numero finito di elementi è un campo.

4.4 PID

A si dice PID (Principal ideal domain) se è un dominio è ogni ideale di A è principale.

 $\mathbf{Thm} \ \mathrm{PID} \implies \mathrm{UFD}$

Def un PID si dice **Noetheriano** se soddisfa la ACC (condizione sulle catene ascendenti) ovvero ogni catena ascendente di ideali

$$(a_1) \subseteq (a_2) \subseteq \dots$$

è stazionaria cioè esiste un indice k t.c. $(a_k) = (a_{k+1}) = ...$

Esempio PID che non è un dominio euclideo: $\mathbb{Z}[\frac{1}{2}(1+\sqrt{-19})]$

4.5 UFD

 $\mathbf{Def.}\,$ un dominio si dice a fattorizzazione unica se ogni elemento non nullo e non invertibile di D

- 1) si scrive come prodotto di irriducibili
- 2) i fattori irriducibili di due fattorizzazioni sono gli stessi con le stesse molteplicità e a meno di associati

Esempio: UFD che non è un PID

- 1) K[X,Y]: l'ideale generato da (x,y) non è principale
- 2) Z[X]: l'ideale generato da (2,x) non è principale

Prop. se D è un UFD $\implies D[X]$ è un UFD

4.6 Ideale

Def. sia A un anello, $I \subset A$ si dice **ideale** di A se 1) I è sottogruppo di $(A, +, \times)$ 2) $x \in I$ e $a \in A$ allora $ax, xa \in I$

Def. se un ideale è generato da un solo elemento diciamo che è principale

Oss. Un ideale che sia contemporaneamente destro e sinistro si dice ideale bilatero. Nel caso particolare in cui A sia un anello commutativo le nozioni date coincidono e parliamo semplicemente di ideale.

Def. un ideale si dice **proprio** se è un sottoinsieme proprio di A cioè non coincide con A.

Def. Un ideale proprio è un ideale **massimale** se non è contenuto strettamente in nessun altro ideale proprio

Oss. Gli ideali massimali sono pertanto caratterizzati dalla proprietà di essere contenuti solamente in due ideali: l'intero anello e l'ideale massimale stesso

Def. un ideale proprio è detto ideale **primo** se $\forall ab \in I$ allora a o b appartengono a I.

Proprietà

L'anello quoziente A/I è un dominio $\iff I$ è un ideale primo L'anello quoziente A/I è un campo $\iff I$ è un ideale massimale

Operazioni sugli ideali

```
\begin{split} I+J&=\{a+b|a\in I,b\in J\}\\ IJ&=\{a_1b_1+..+a_nb_n|a_i\in I,b_i\in J,i=1,..,n\text{ per }n=1,2,..\}\\ \text{Osservazioni:}\\ IJ\subset I\cap J\\ I\cup J\subset I+J\\ I\cap J\text{ è ancora un ideale mentre }I\cup J\text{ non sempre} \end{split}
```

Thm sia R un anello commutativo con unità. Allora

- Un ideale M di R è un ideale massimale $\iff R/M$ è un campo
- Un ideale P di R è un ideale primo $\iff R/P$ è un dominio d'integrità
- \bullet Ogni ideale massimale di R è un ideale primo
- Se R è un PID allora R/(c) è un campo $\iff c$ è un elemento primo di R

5 Campi

5.1 Estensioni di campi

Def. un campo che non contiene sottocampi propri è detto *campo primo* **Thm** il sottocampo primo di un campo F è isomorfo a \mathbb{F}_p o \mathbb{Q} a seconda che abbia caratteristica p o 0.

Def. sia K un sottocampo di F e M un sottoinsieme di F. Allora il campo K(M) è definito come l'intersezione di tutti i sottocampi di F che contengono M e K.

Def. sia K un sottocampo di F. Se θ è soluzione di un polinomio a coefficienti in K allora si dice *algebrica* su K. Un'estensione L di K dice algebrica su K se ogni elemento di L è algebrico su K.

Def sia $\theta \in F$ algebrica su K, allora l'unico polinomio monico $g \in K[X]$ che genrea l'ideale $J = \{f \in K[X] | f(\theta) = 0\}$ è detto polinomio minimo.

Thm sia $\theta \in F$ algebrica su K. Allora il polinomio minimo g su K soddisfa le proprietà seguenti:

- G è irriducibile in K[X]
- sia $f \in K[X]$, se $f(\theta) = 0$ allora g|f
- g è il polinomio monico di grado minimo che ha θ come radice.

Thm (forumla dei gradi) sia M un'estensione di l, l un'estensione di K. Allora

$$[M:K] = [M:L][L:K]$$

Thm ogni estensione finita di K è algebrica su K.

Thm sia $\theta \in f$ algebrica di grado n su K e sia g il polinomio minimo di θ su K. Allora

- $K(\theta) \simeq K[x]/(g)$
- $[K(\theta):K]=n$ e $\{1, \theta, ..., \theta^{n-1}\}$ è una base di $K(\theta)$ su K.
- Ogni $\alpha \in K(\theta)$ è algebrico su K e ha per grado un divisore di n.

Thm sia $f \in K[X]$ irriducibilesu K. Allora esiste un'estensione algebrica semplice di K con una radice di f come elemento che definisce.

Thm sian $\alpha \in \beta$ due radici di $f \in K[X]$ irriducibile su K. Allora $K(\alpha) \simeq K(\beta)$. Def sia $f \in K[X]$ di grado positivo e F estensione di K. f si spezza in F se si può scrivere come prodotto di fattori lineari.

Thm (esistenza e unicità del campo di spezzamento)

sia $f \in K[X], K$ un campo. Allora esiste un campo di spezzamento di f su K. Due campi di spezzamento di f su K sono fra loro isomorfi.

5.2 Norma e Traccia

Def. the (field) norm maps elements of a larger field into a subfield Sia E/F un'estensione di Galois di grado finito, allora la norma e la traccia sono definite rispettivamente come

$$N(\alpha) = \prod_{\sigma \in G} \sigma(\alpha)$$

$$Tr(\alpha) = \sum_{\sigma \in G} \sigma(\alpha)$$

Prop. sia G = Gal(E/F), e $H = \{ \sigma \in G | \sigma(\alpha) = \alpha \}$ lo stabilizzatore di α e $f = x^m + a_{m-1}x^{m-1} + ... + a_0$ sia il polinomio minimo di α su F.Allora:

$$N(\alpha) = (-1)^{|G|} a_o^{|H|}$$

$$Tr(\alpha) = -|H|a_{m-1}$$

5.3 Teoria di Galois

Sia E/F un'estensione algebrica

Estensione di Galois sia $E^G:=\{a\in E|\sigma(a)=a\forall\sigma\in G\}$ dove G=Gal(E/F) $E^G=F$

Estensione normale se ogni polinomio irriducibile in F[X] che ha una radice in E ha tutte le radici in E.

Estensione separabile se il polinomio minimo di ogni $\alpha \in F$ è separabile

Estensione ciclotomica $E \supset F$ campo di spezzamento di x^n-1

Estensione ciclica se il suo gruppo di Galois è ciclico.

Def si dice torre radicale una successione di estensioni $F=F_1\subset F_2\subset ...\subset F_m$ t.c. $F_{i+1}=F_i(\alpha_i)$ con $\alpha_i^{n_i}\in F_i$

Estensione radicale se esiste una torre radicale

$$F = F_1 \subset F_2 \subset ... \subset F_m = E$$

6 Polinomi

Thm Sia F un campo. Allora F[X] è un PID.

Thm sia $f \in F[X]$, allora F[X]/(f) è un campo $\iff f$ è irriducibile su F.

Thm $\alpha \in F$ è una radice di $f \iff (x - \alpha)|f$.

Thm $\alpha \in F$ è una radice multipla \iff è una radice sia di f che di f'.

Thm $f \in F[X]$ di grado 2 o 3 è irriducibile \iff non ha radici in F.

Thm (interpolazione di Lagrange) per $n \geq 0$ siano $a_0, ..., a_n$ elementi distinti di F e $b_0, ..., b_n$ elementi a piacere di F. Allora esiste un unico polinomio $f \in F[X]$ di grado len tale che $f(a_i) = b_i$. Questo polinomio è dato da

$$f(x) = \sum_{i=0}^{n} b_i \prod_{k=0, k \neq i}^{n} \frac{x - a_k}{a_i - a_k}$$

6.1 Definizioni

Polinomio minimo:

 $E \supset F, \alpha \in E, f \in F[X]$

f monico e di grado minimo t.c. $f(\alpha) = 0$

Polinomio irriducibile:

quando i suoi unici divisori sono 1 e lui stesso

Polinomio separabile:

Ogni fattore irriducibile ha radici distinte nel campo di spezzamento

Polinomio ciclotomico:

Il polinomio minimo di ζ_n su \mathbb{Q} dove $\zeta_n = e^{\frac{2\pi i}{n}}$

Polinomio primitivo:

 $f \in \mathbb{Z}[X]$ si dice primitivo se il massimo comun divisiore di tutti i coefficienti è 1.

Polinomio caratteristico:

 $p_A(x) := \det(A - xI_n)$

dove A è una matrice quadrata di dimensione n a coefficienti in un campo $\mathbb K$

Polinomio simmetrico se $f(x_{i_1},..,x_{i_n}) = f(x_1,..x_n)$ per ogni permutazione $(x_{i_1},..,x_{i_n})$ di 1,..,n.

6.2 Proposizioni e teoremi

Lemma di Gauss: il prodotto di due polinomi primitivi è primitivo. **Corollario:** se un polinomio è irriducibile in $\mathbb{Z}[X]$ allora è irriducibile anche in $\mathbb{Q}[X]$

Prop. se $p(x) \in \mathbb{Z}[X]$ e p(0), p(1) sono entrambi dispari $\implies p(x)$ non ha soluzioni intere (p.31 libro)

7 Morfismi

Def un morfismo è un'applicazione $f:A\to B$ che conserva le operazioni

Isomorfismo morfismo biiettivo

Omomorfismo morfismo tra due strutture algebriche dello stesso tipo

Endomorfismo è un omomorfismo con A=B

Automorfismo è un endomorfismo biiettivo, ovvero un isomorfismo con A = B

7.1 Esulando dall'algebra

Omeomorfismo è una funzione fra spazi topologici continua, biunivoca e con inversa continua

Diffeomorfismo è una funzione tra due varietà differenziabili con la proprietà di essere differenziabile, invertibile e di avere l'inversa differenziabile.