CS/B.Tech (EI(O)/EE(O)/EE(N))/SEM-6/EC-611/09

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2009 DIGITAL SIGNAL PROCESSING SEMESTER - 6

Nime: 3 H	lours		er e			[Full Marks : 70
			GROU	P - A		
		(Mul	tiple Choice	Туре	Questions)	
1. Choo	ose th	ne correct alternati	ves for any te	en of tl	ne following :	10 × 1 = 10
ŋ	Infi	nite memory syster	n is also kno	wn as		
	a)	FIR system		b)	IIR system	
	c)	Digital system		d)	Analog system.	
ii)	The	z-transform of u (- n) is			
	a)	$\frac{1}{(1-z^{-1})}$			$\frac{z}{(1-z)}$	
	c)	$\frac{1}{(1-z)}$		d)	$\frac{1}{(z-1)}.$	
iii)	For	rectangular wind	ow used for	design	ning FIR filters, the	peak amplitude of
	side	lobe is				
	a)	- 40″dB		b)	- 3 dB	
	c)	0 dB		d)	– 13 dB.	
iv)	The	sequence x ($n = 0$	$-1)^n$ is per	lodic v	vith a period of	
	a)	6 samples		b)	4 samples	
	c)	2 samples		d)	0 sample.	
		•				

6845 (15/06)

CS/B.Tech (EI(O)/EE(O)/EE(N))/SEM-6/EC-611/09

- v) Zero padding a signal
 - a) reduces aliasing
 - b) increases time resolution
 - c) increases frequency resolution
 - d) has no effect.

vi) If the Fourier transform of x(n) is $x(\omega)$, then the Fourier transform of nx(n) is

a) $-j \frac{dx(\omega)}{d\omega}$

b) $\frac{dx(\omega)}{d\omega}$

c) $\int \frac{dx(\omega)}{d\omega}$

d) none of these.

vii) The digital system in $y(n) = x(n^2)$ is

- a) linear and causal
- b) linear and non-causal
- c) non-linear and causal
- d) non-linear and non-causal.

viii) If $x^*(n)$ is the complex conjugate of x(n) then

a)
$$|x(n)|^2 \neq |x^*(n)|^2$$

b)
$$|x(n)| = x(n).x^*(n)$$

c)
$$|x(n)|^2 = x(n).x^*(n)$$

d) none of these.

ix) If x(k) represents the 8-point DFT of $x(n) = \{1, 1, 1, 1, 1, 1, 0, 0\}, x(o)$ is

a) 3

b) . . .

c) 6

d) (

- x) A discrete-time LTI system is known as causal system if its
 - a) impulse response h(n) is zero for n < 0
 - b) impulse response h(n) is zero for n > 0
 - c) impulse response h(n) is positive for n < 0
 - d) none of these.

- xi) X(n) is an energy signal when
 - a) $G = \sum_{-\infty}^{+\infty} |x(n)|^2$ is finite
 - b) $G = \sum_{n=0}^{+\infty} |x(n)|^2$ is infinite
 - c) $P = \lim_{n \to \infty} \frac{1}{2N+1} \left\{ \sum_{-\infty}^{+\infty} |x(n)|^2 \right\} \text{ is finite}$
 - d) none of these.

- xii) The energy of constant amplitude complex valued exponential function x(n) = A exp $(jn\omega)$ where A and ω are constants, is given by
 - a) A²

b) $\frac{A^2}{2\omega}$

c) $\frac{A^2}{2}$

d) $\frac{A^2}{\omega}$.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. a) State Parseval's energy theorem.
 - b) Compute the convolution of the following signals:

$$x(n) = n/2 ; 0 \le n \le 5$$

$$h(n) = n/2 ; -3 \le n \le 5$$

= 0; otherwise

$$1 + 4$$

CS/B.Tech (EI(O)/EE(O)/EE(N))/SEM-6/EC-611/09

- Prove that the energy of a real valued energy signal is equal to the sum of the energies of its even and odd components i.e. $E_s = E_e + E_o$.
- 4. For the analog filter having transfer function $h(s) = \frac{1}{s(s+1)}$. Determine H(z) using impulse invariance method.
- 5. Find out the relation between Fourier transform and Laplace transform with Z-transform.
- 6. For a causal LTI system, the output $y(n) = \frac{1}{4}y(n-1) + x(n)$. Calculate y(n) while $x(n) = n^3 u(n+1)$.

GROUP - C

(Long Answer Type Questions)

		Answer any three of the following. $3 \times 15 = 4$	15
7.	a)	Find the circular convolution of two sequences $x_1(n) = \{1, 1, 2, 2\}$ ar	ıd
		$x_2(n) = \{1, 2, 3, 4, 5\}.$	7
•	b)	State and prove intial value theorem regarding z-transform.	3
	c)	Compute DFT of the sequence $x(n) = \{1, 0, 0, 1\}$.	5
8.	a)	Discuss about design method of Low-pass filter.	4
	b)	What do you mean by Windowing?	2
,	c)	What is rectangular window?	2
	d)	How are rectangular windows used to design FIR filter?	4
	e)	Determine the IDFT of $Y(k) = \{1, 0, 1, 0\}$.	3
9.	a)	Find the system function and impulse response of the system described by the	1C
		difference equation $y(n) = x(n) + 2x(n-1) - 4x(n-2) + x(n-3)$.	5
	b)	Find the inverse z-transform of $X(Z) = (z + 0.2) / (z + 0.5) (z - 1), z >$	1.
			5
	c)	What are the properties of Region of convergence? Find the z-transform an	ıd
		ROC of the signal $x(n) = -b^n u(-n-1)$.	5

- 10. a) Find the order of Butterworth filter that has a-2dB passband attenuation at a frequency of 20 rad/sec and 10dB stopband attenuation at 30 rad/sec. 5
 - b) Draw the following:

10

- i) Direct form I
- ii) Direct form II
- iii) Cascade
- iv) Parallel strutures for the system described by the difference equation:

$$y(n) = \frac{3}{4}y(n-1) - \frac{1}{8}y(n-2) + x(n) + \frac{1}{3}x(n-1).$$

11. a) Find the convolution sum of the singnals:

$$x(n) = 1$$
 for $3 \le n \le 6$

= 0 otherwise

$$h(n) = 1$$
 for $-4 \le n \le 3$

= 0 otherwise.

5

b) What is zero padding? What are its uses?

- 3
- c) A discrete-time system is represented by the following difference equation :

$$y(n) = 3y^{2}(n-1) - nx(n) + 4x(n-1) - 2x(n+1)$$

is the system

- i) linear
- ii) time-invariant
- iii) causal.

Justify.

2 + 5

END