SPRAWOZDANIE

Awiczenie: Cia3o doskonale czarne

- 1. Piotr Lewandowski
- 2. Dymitr Lubczyk3. Krzysztof Tabeau

I) Cel Awiczenia

Celem doowiadczenia by3a eksperymentalna weryfikacja prawa Stefana-Boltzmana oraz prawa Wiena, na podstawie pomiarów widma owiat3a wydzielanego przez ?arówke w zale?nooci od pod31czonego pod ni1 napiecia.

II) Schemat uk3adu pomiarowego

Uk3ad pomiarowy sk3ada sie z dwóch g3ównych czeoci: ?arówki oraz spektrometru. Do ?arówki pod31czone jest tak?e Yród3o pr1du oraz woltomierz i amperomierz. Doowiadczenie polega na zbadaniu zale?nooci pomiedzy napieciem i nate?eniem na ?arówce a charakterystyk1 wydzielanego przez nie owiat3a. Logicznym wyborem w takim wypadku jest wykorzystanie woltomierza i amperomierza do pomiaru odpowiednio napiecia i nate?enia. Badanie wydzielanego owiat3a przeprowadzono z pom1c1 spektrometru, który pozwala na wyznaczenie jego widma.

Rysunek 1. Schemat uk3adu pomiarowego

III) Wyniki

Jak widaa wszystkie wyniki s1 rosn1ce. Jako ?e sterujemy w doowiadczeniu tylko jednym parametrem to mo?emy podaa dla niego niepewnooa pomiarow1 równ1 0.1 V. Wyniki wygl1daj1 na poprawne.

Tabela 1. Analiza wyników

IV) Weryfikacja prawa Stefana-Boltzmana

Przy sta3ym polu powierzchni cia3a doskonale czarnego, prawo Stefana-Boltzmanna definiuje nam zale?nooa mocy od temperatury. Prawo jest spe3nione, poniewa? moc powinna rosn1a tak szybko jak temperatura do czwartej potegi, co mo?na wyczytaa z wykresu jest prawdziwe.

Rysunek 2. Dopasowanie

V) Weryfikacja prawa przesuniea Wiena

Na wykresie poni?ej widzimy, ?e d3ugooa fali, dla której osi1gane jest maksimum funkcji, malejej wraz ze wzrostem temperatury cia3a. Jest to zgodne z prawem przesuniea Wiena, które mówi, ?e lambda_max jest odwrotnie proporcjonalna do temperatury.

Rysunek 3. Widma

VI) Podsumowanie

Przeprowadzone doowiadczenie choa proste i w wirtualnej formie, by3o bardzo ciekawe. Umo?liwi3o nam lepsze zrozumienie prawo przesuniea Wiena jak i prawo Stefana-Boltzmana. Pozowoli3o nam ono lepiej zrozumiea zale?nooa miedzy temperatur1 a promieniowaniem cia3, która wydaje sie bya bardzo interesujaca.