QuaranTeam2

Lukas Coffey, Drew Klaubert, David Parks, Arthur Presnetsov 20 April 2020

Import the data.

```
counties <- read.csv("EpiModel_Data.csv", stringsAsFactors = FALSE)</pre>
str(counties)
## 'data.frame': 24 obs. of 6 variables:
                         : chr "Allegany" "Anne Arundel" "Baltimore City" "Baltimore County" ...
## $ name
## $ county
                         : int 1 3 510 5 9 11 13 15 17 19 ...
## $ icu_bed_count
                         : int 15 80 658 171 8 0 12 9 20 0 ...
## $ inpatient bed count: int 316 748 3953 1317 139 0 143 109 110 47 ...
## $ pop_density
                         : num 172 936 6760 1199 260 ...
## $ county_population : int 71977 567696 614700 827625 91082 32875 167522 102517 157671 32261 ...
Create variables needed for the model.
# the infection probability rate
inf_prob_rate <- 0.25</pre>
# the infected death rate
death rate <- 0.0138
# the infected recovery rate
recovery_rate <- 1 / 24.7
# per county activity rate
# using the log base 10 of the per county population density as a proxy for
# transmissive acts per person per time period
activity_rate <- log10(counties$pop_density)</pre>
# manually correct baltimore city's activity rate to be equal to the
# maximum of the other counties
activity_rate[3] <- sort(activity_rate, decreasing = TRUE)[2]</pre>
```

Compute the SIR model for each county WITHOUT intervention.

Compute the SIR model for each county WITH intervention starting on day 1, reducing the probability of transmission by 72%.

```
effectiveness <- 0.72
start_day <- 1
# number of time steps
n_steps <- 90
# create an empty list to capture the models
sir_models_i <- list()</pre>
# instantiate the models and store them in a list
index <- 1
for (pop in counties$county_population) {
  # assumes no births and no deaths from natural causes
  param <- param.dcm(inf.prob = inf_prob_rate,</pre>
                      inter.eff = effectiveness,
                      inter.start = start_day,
                      act.rate = activity_rate[[index]],
                      rec.rate = recovery_rate,
                      a.rate = 0,
                      ds.rate = 0,
                      di.rate = death_rate,
                      dr.rate = 0)
  # assumes full population is susceptible, 1 infected person
  init <- init.dcm(s.num = pop - 1, i.num = 1, r.num = 0)</pre>
  control <- control.dcm(type = "SIR",</pre>
                          nsteps = n_steps)
  sir_model <- dcm(param, init, control)</pre>
  sir_models_i[[index]] <- sir_model</pre>
  index <- index + 1</pre>
}
```

Determine when the number of hospital beds would be fully occupied if 4% of those infected need hospitalization.

```
# % of infected that need hospitalization
hospitalization_rate <- 0.04

# create empty arrays to capture the results
icu_no_i <- rep(NA, length(counties$name))</pre>
```

```
normal_no_i <- rep(NA, length(counties$name))</pre>
max_inf_no_i <- rep(NA, length(counties$name))</pre>
icu_i <- rep(NA, length(counties$name))</pre>
normal_i <- rep(NA, length(counties$name))</pre>
max_inf_i <- rep(NA, length(counties$name))</pre>
for (i in 1:length(counties$name)) {
 # number of hospitalized patients per day
 infected <- as.data.frame(sir_models_ni[[i]])$i.num</pre>
 hospitalized <- floor(infected * hospitalization_rate)</pre>
 total_beds <- counties$icu_bed_count[i] + counties$inpatient_bed_count[i]</pre>
 # get the day when the number of infected needing hospitalization
 # exceeds icu capacity
 icu_no_i[i] <- which.max(hospitalized > counties$icu_bed_count[i])
 # get the day when the number of infected needing hospitalization
 # exceeds total bed capacity
 normal_no_i[i] <- which.max(hospitalized > total_beds)
 # get the maximum number of infected
 max_inf_no_i[i] <- round(max(infected))</pre>
 # number of hospitalized patients per day
 infected <- as.data.frame(sir_models_i[[i]])$i.num</pre>
 hospitalized <- floor(infected * hospitalization_rate)</pre>
 # get the day when the number of infected needing hospitalization
 # exceeds icu capacity
 icu_i[i] <- which.max(hospitalized > counties$icu_bed_count[i])
 # get the day when the number of infected needing hospitalization
 # exceeds total bed capacity
 normal_i[i] <- which.max(hospitalized > total_beds)
 # get the maximum number of infected
 max_inf_i[i] <- round(max(infected))</pre>
 }
# manually correct for counties without hospital beds
icu_no_i[counties$icu_bed_count == 0] <- 0</pre>
normal_no_i[counties$inpatient_bed_count == 0] <- 0</pre>
icu_i[counties$icu_bed_count == 0] <- 0</pre>
normal_i[counties$inpatient_bed_count == 0] <- 0</pre>
# create a table of the results
results <- cbind(counties$name,
              icu_no_i,
```

##	County	ICU-No I	IPB-No I	MaxInf-No I	ICU-I	IPB-I	Max Inf-I
## A	Allegany	13	20	49147	60	1	7022
## B	Anne Arundel	13	16	420110	51	67	216708
## C	Baltimore City	14	17	466468	57	70	270204
## D	Baltimore County	13	16	617853	53	67	336626
## E	Calvert	11	17	63657	49	74	16778
## F	Caroline	0	0	21607	0	0	1805
## G	Carroll	11	16	119208	48	68	38207
## H	Cecil	12	16	71413	51	73	15587
## I	Charles	13	17	109598	58	74	16270
## J	Dorchester	0	23	19007	0	1	103
## K	Frederick	0	17	176287	0	73	42828
## L	Garrett	15	22	17980	80	1	241
## M	Harford	12	16	180250	49	67	65708
## N	Howard	11	14	234666	44	57	131151
## 0	Kent	0	24	12052	0	1	276
## P	Montgomery	13	16	787623	50	63	457205
## Q	Prince George's	12	15	684806	46	59	393775
## R	Queen Anne's	0	0	32297	0	0	1635
## S	St. Mary's	13	18	75210	62	84	4789
## T	Somerset	0	24	15626	0	1	203
## U	Talbot	0	21	24017	0	1	1027
## V	Washington	13	17	105828	55	76	28797
## W	Wicomico	13	18	71221	58	82	16427
## X	Worcester	0	19	33039	0	1	876

Compute the Root Sum Squared Error for the intervention model on day 45.

```
results <- cbind(counties$name,
                 actual_cases,
                 estimated_cases,
                 actual_cases - estimated_cases)
colnames(results) <- c("County",</pre>
                       "Actual Cases",
                       "Model Cases",
                       "Difference")
print(as.table(results))
                      Actual Cases Model Cases Difference
##
    County
## A Allegany
                      33
                                   90
                                               -57
## B Anne Arundel
                      1005
                                   863
                                                142
                                               -969
## C Baltimore City
                      1378
                                   2347
## D Baltimore County 1664
                                   1203
                                                461
## E Calvert
                                   156
                                                -47
                                               -11
## F Caroline
                      33
                                   44
## G Carroll
                      308
                                   249
                                                59
## H Cecil
                                               -12
                      131
                                   143
## I Charles
                                               211
                      347
                                   136
## J Dorchester
                      20
                                               10
                                   10
## K Frederick
                      557
                                   239
                                                318
## L Garrett
                                   15
                                               -11
                      4
## M Harford
                                               -149
                      195
                                   344
## N Howard
                      508
                                   1173
                                                -665
## O Kent
                      16
                                   16
## P Montgomery
                      2404
                                   2352
                                               52
## Q Prince George's 3160
                                   2027
                                               1133
## R Queen Anne's
                      24
                                   40
                                               -16
## S St. Mary's
                      101
                                   69
                                                32
                                                -4
## T Somerset
                      10
                                   14
## U Talbot
                      16
                                   32
                                                -16
## V Washington
                      116
                                   204
                                                -88
## W Wicomico
                      138
                                   148
                                               -10
## X Worcester
                      31
                                   29
                                                2
# RSSE
sqrt(sum((actual_cases - estimated_cases)^2))
## [1] 1756.968
Plot the results
for (i in 1:length(counties$name)) {
  # NO INTERVENTION *********
                                    ************
  # plot the results of the SIR model
  plot(sir_models_ni[[i]],
       main = paste(counties$name[i], "w\\o Intervention"),
       xlab = "Days", ylab = "Population",
       xlim = c(1, n_steps),
       ylim = c(0, counties$county_population[i] * 1.1))
  abline(v=45)
  # plot the number of daily deaths
```

```
plot(sir_models_ni[[i]], y = "di.flow", lwd = 4, col = "firebrick",
    main = paste(counties$name[i], "Daily Deaths w\\o Intervention"))
 abline(v=45)
 # plot the results of the SIR model
 plot(sir_models_i[[i]],
    main = paste(counties$name[i], "with Intervention"),
    xlab = "Days", ylab = "Population",
    xlim = c(1, n_steps),
    ylim = c(0, counties$county_population[i] * 1.1))
 abline(v=45)
 # plot the number of daily deaths
 plot(sir_models_i[[i]], y = "di.flow", lwd = 4, col = "firebrick",
    main = paste(counties$name[i], "Daily Deaths with Intervention"))
 abline(v=45)
 }
```

Allegany w\o Intervention

Time
Allegany Daily Deaths with Intervention

Anne Arundel Daily Deaths w\o Intervention

Baltimore City Daily Deaths w\o Intervention

Time

Baltimore City Daily Deaths with Intervention

Baltimore County Daily Deaths w\o Intervention

Calvert Daily Deaths w\o Intervention

Caroline Daily Deaths w\o Intervention

Carroll Daily Deaths w\o Intervention

Time

Charles Daily Deaths w\o Intervention

Dorchester Daily Deaths w\o Intervention

Time

Frederick Daily Deaths w\o Intervention

Garrett Daily Deaths w\o Intervention

Harford Daily Deaths w\o Intervention

Howard Daily Deaths w\o Intervention

Kent Daily Deaths w\o Intervention

Montgomery Daily Deaths w\o Intervention

Prince George's Daily Deaths w\o Intervention

Queen Anne's Daily Deaths w\o Intervention

St. Mary's Daily Deaths w\o Intervention

Somerset Daily Deaths w\o Intervention

Talbot Daily Deaths w\o Intervention

Time

Washington Daily Deaths w\o Intervention

Wicomico Daily Deaths w\o Intervention

Time
Wicomico Daily Deaths with Intervention

Worcester Daily Deaths w\o Intervention

Time
Worcester Daily Deaths with Intervention

