5.13.71

Puni Aditya - EE25BTECH11046

Question:

If M is a 3×3 matrix, where

$$|\mathbf{M}| = 1$$
 and $\mathbf{M}\mathbf{M}^{\mathsf{T}} = \mathbf{I}$

. where I is an identity matrix, prove that

$$|\mathbf{M} - \mathbf{I}| = 0$$

Solution:

$$\mathbf{M}\mathbf{M}^{\top} = \mathbf{I}$$
$$\left|\mathbf{M}\right| = 1$$

$$|\mathbf{M} - \mathbf{I}| = |\mathbf{M} - \mathbf{M} \mathbf{M}^{\top}|$$
(1)

$$= |\mathbf{M} (\mathbf{I} - \mathbf{M}^{\top})|$$
(2)

$$= |\mathbf{M}| |\mathbf{I} - \mathbf{M}^{\top}|$$
(3)

$$= 1 \cdot |(\mathbf{I} - \mathbf{M})^{\top}|$$
(4)

$$= |\mathbf{I} - \mathbf{M}|$$
(5)

$$= |-(\mathbf{M} - \mathbf{I})|$$
(6)

$$= (-1)^{3} |\mathbf{M} - \mathbf{I}|$$
(7)

$$= -|\mathbf{M} - \mathbf{I}|$$
(8)

$$\begin{vmatrix} \mathbf{M} - \mathbf{I} \end{vmatrix} = - \begin{vmatrix} \mathbf{M} - \mathbf{I} \end{vmatrix} \tag{9}$$

$$2\left|\mathbf{M} - \mathbf{I}\right| = 0\tag{10}$$

$$\left|\mathbf{M} - \mathbf{I}\right| = 0\tag{11}$$

1