PATENT ABSTRACTS OF JAPAN

(11) Publication number:

10-298442

(43)Date of publication of application: 10.11.1998

(51)Int.CI.

C08L101/14 C08K 3/34 C08K 5/092 CO8L 33/02 CO8L 33/24 CO8L 51/00

(21)Application number: 09-113738

(71)Applicant: MITSUBISHI CHEM CORP

(22)Date of filing:

01.05.1997

(72)Inventor: IIDA SEIICHIRO

KATO SUEICHI ITO KIICHI

(54) HIGHLY WATER-ABSORBING POLYMER COMPOSITION

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a highly water-absorbing polymer composition having improved long-term stability as a gel and showing excellent deodorizing effect in the powder/gel state.

SOLUTION: This composition comprises a highly water-absorptive polymer (A) having a crosslinked structure and containing carboxyl groups and/or carboxylate groups as a constituent of the polymer and a composite silicate compound containing an oxalic acid (salt) compound (B) and 30-80 wt.% SiO2 (C) in such amounts that the total amount of components B and C is 0.05-10 pts.wt. per 100 pts.wt. component A, and the ratio of component B to component C compounded is 90/10 to 10/90 by weight.

LEGAL STATUS

[Date of request for examination]

04.06.2002

[Date of sending the examiner's decision of

24.08.2004

rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision

of rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平10-298442

(43)公開日 平成10年(1998)11月10日

(51) Int. Cl. 6 C08L101/14 C08K 3/34 5/092 C08L 33/02 33/24	識別記号		F I C08L101/14 C08K 3/34 5/092 C08L 33/02 33/24					
33,22		審査請求	•		OL	(全9頁)	最終頁に続く	
(21)出願番号	特願平9-113738		(71)出願。	人 00000596		社		
(22) 出願日	平成 9 年(1997) 5 月 1 日		(72)発明者	東京都千 皆 飯田 説 三重県四	一代田区 成一郎 日市市	丸の内二丁目	35番2号 · · 三菱化学株	
			(72) 発明		日市市	東邦町1番5 合研究所内	也 三菱化学株	
			(72) 発明 (74) 代理		日市市	東邦町1番埠 合研究所内	也 三菱化学株	

(54) 【発明の名称】高吸水性ポリマー組成物

(57)【要約】

【課題】 ゲル経時安定性が改善され、更に粉体/ゲル 状態時に優れた消臭効果を示す高吸水性ポリマー組成物 の提供。

【解決手段】 (A) 架橋構造を有し、且つカルボキシル基及び/又はカルボキシレート基を重合体の構成成分として含有する高吸水性ポリマー、(B) シュウ酸(塩) 化合物及び(C) SiO_2 を30~80 重量%含有する複合ケイ酸塩化合物からなり、(A) 100 重量 部に対して(B) と(C) の合計量が0.05~10 重量部であり、(B) と(C) の配合割合が重量比で90:10~10:90であることを特徴とする高吸水性ポリマー組成物。

1

【特許請求の範囲】

【請求項1】 (A) 架橋構造を有し、且つカルボキシル基及び/又はカルボキシレート基を重合体の構成成分として含有する高吸水性ポリマー、(B) シュウ酸(塩) 化合物及び(C) SiO2 を30~80重量%含有する複合ケイ酸塩化合物からなり、(A) 100重量部に対して(B) と(C) の合計量が0.05~10重量部であり、(B) と(C) の配合割合が重量比で90:10~10:90であることを特徴とする高吸水性ポリマー組成物。

【請求項2】 該高吸水性ポリマー(A)が、ポリアクリル酸塩架橋物、澱粉ーアクリル酸塩グラフト共重合体架橋物、澱粉一アクリロニトリルグラフト共重合体架橋物の加水分解物、アクリル酸エステルー酢酸ビニル共重合体架橋物の加水分解物、アクリル酸塩ーアクリルアミド共重合体架橋物及びポリアクリロニトリル架橋物の加水分解物からなる群より選ばれた少なくとも一種である、請求項1に記載の高吸水性ポリマー組成物。

【請求項3】 シュウ酸(塩)化合物が、シュウ酸、シュウ酸カリウム、シュウ酸ナトリウム、シュウ酸チタン 20酸カリウム、シュウ酸チタン酸ナトリウム及びシュウ酸チタン酸アンモニウムからなる群より選ばれた少なくとも一種である請求項1又は2に記載の高吸水性ポリマー組成物。

【請求項4】 複合ケイ酸塩化合物の組成比が、SiO2が30~80重量%、且つAl2O3、ZnO、Ag2O、MgOの群から選ばれた少なくとも一種の金属酸化物が20~70重量%である請求項1~3のいずれかに記載の高吸水性ポリマー組成物。

【請求項5】 複合ケイ酸化合物の組成比が、SiO2が30~80重量%、Al2O3及び/又はZnOが20~70重量%である請求項1に記載の高吸水性ポリマー組成物。

【請求項6】 複合ケイ酸塩化合物の組成比が、SiO2が30~80重量%、且つZnOが20~70重量%である請求項1に記載の高吸水性ポリマー組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、高吸水性ポリマー組成物に関する。詳しくは、高吸水性ポリマー、シュウ 40酸(塩)化合物及び特定の複合ケイ酸塩化合物からなる高吸水性ポリマー組成物に関する。本発明の高吸水性ポリマー組成物は、高吸水性ポリマーの組成物の本来の吸水性能を損なうことなく、吸水後のゲルの経時安定性を改善し、更に消臭機能を合わせ持つことによりアンモニア等の悪臭物質の発生を強く抑えることができるので、尿、血液、汗等の体液に対して非常に有効であり、子供用/大人用紙おむつや生理用品、更に各種パット等の衛生材料として、有効に使用することができる。

[0002]

【従来の技術】近年、高吸水性ポリマーは生理用品や使い捨て紙おむつ等の衛生分野のみならず、止水材、結解防止剤、鮮度保持材、溶剤脱水剤等の各種産業用品、更には緑化、農園芸分野にも実用化されており、その応用範囲は更に拡大しつつある。これら応用分野の中でも生理用品、使い捨て紙おむつや失禁パット等の衛生用品は、最近、使用材料の改良、立体裁断、各種のギャザー等により装着感が改良され、その装着時間が長くなりつつある。

【0003】高吸水性ポリマーは尿、経血、汗等の体液を吸液するとゲル状になるが、ゲルは時間の経過と共に劣化、分解して強度を失い、同時にゲルの表面、内部がべとつくようになってくる。即ち、ゲルの保液性は経時的に低下する。このことに起因する衛生用品使用時の液漏れ、装着感の悪化といった問題は最近の装着時間の長時間化に伴い、深刻なものとなってきている。

【0004】一方、高吸水性ポリマーは尿、経血、汗等の体液を吸収すると、時間経過に伴いゲル劣化すると共に体液成分に起因するアンモニア、メルカプタン等の悪臭物質を発生する。従って、高吸水性ポリマーには、これら悪臭物質を取り除くことができる消臭性に優れた高吸水性ポリマーの出現も望まれていた。

【0005】ゲル安定性を改良する方法としては、例えば高吸水性ポリマーの架橋密度を高める方法が考えられるが、この場合、ポリマーの吸水能が低下するという問題がある。また、ポリマー中に、例えば含酸素還元性無機塩及び/又は有機酸化防止剤(特開昭63-153060号公報)、酸化防止剤(特開昭63-127754号公

報)、硫黄含有還元剤(特開昭63-272349号公報)、ホスフィン酸基又はホスホン酸基含有アミン化合物又はその塩(特開平1-275661号公報)等を含有させる方法も提案されている。

【0006】しかしながら、これらいずれの方法においてもゲルの劣化防止には不十分であったり、体液の個人差によって極めてばらつきが大きく、劣化防止安定性がない問題点を有している。更にこれらのいずれの方法においても体液から発生する悪臭物質は取り除けないばかりか、硫黄含有還元剤のように添加物自体が悪臭物質を発生する場合もある。

【0007】一方、体液から発生する悪臭物質を取り除く方法として、ポリマー中に、例えば活性炭(特開昭59-105448号公報)、ツバキ科植物の葉抽出物

(特開昭60-158861号公報)、特定金属の酸化物(特開平1-5546号、同1-5547号各公報)、製茶(特開平2-41155号公報)、金属錯体(特開平5-277143号公報)等を含有させる方法が提案されている。

【0008】しかしながら、これらいずれの方法におい 50 ても、ポリマー粉体状態では悪臭物質を幾分取り除くこ

.

とはできるが、体液等を吸収しゲル化した後では消臭性 能が大きく低下する問題点を有している。また、これら のいずれの方法においても、吸液ゲルの経時安定性には 効果が殆んど見られない。

【0009】その後、ゲル経時安定性という課題に対して、本発明者等は、高吸水性ポリマーにシュウ酸(塩)化合物を含有させる方法(特開平7-113048号公報)、高吸水性ポリマーにシュウ酸(塩)化合物及び多価金属酸化物を含有させる方法(特開平7-228788号公報)を提案した。

[0010]

【発明が解決しようとする課題】これらの方法により、 上述のゲル経時安定性、劣化安定性は大きく改善される ことが判明したが、その効果は決して満足できるレベル のものではなく、依然として改良の余地が残されてい る。なお、本発明者等による最近の研究により、上記物 質を含有した高吸水性ポリマーゲルは上記物質を含有し ない高吸水性ポリマーに比べ、粉体状態での消臭効果に 大差はないものの、体液を吸収したゲル状態では、アン モニア等の悪臭物質が減少しており、消臭効果があるこ 20 とが見出されている。

【0011】本発明の目的は、体液吸収後の高吸水性ポリマーにおけるゲル経時安定性及び悪臭物質の除去という問題点を解決するために、高吸水性ポリマー本来の吸水性能を損なうことなく、ゲル経時安定性、粉体状態/ゲル状態での消臭効果を有する高吸水性ポリマー組成物を提供することにある。

[0012]

【課題を解決するための手段】本発明者等は、かかる背景下上記課題を解決するために更に鋭意検討を重ねた結 30 果、高吸水性ポリマーにシュウ酸(塩)化合物の他、更に特定の複合ケイ酸塩化合物(以下、複合ケイ酸塩と略記することがある)を必須成分として含有せしめることにより、体液吸収ゲルの経時安定性、ポリマー粉体状態での消臭効果、ゲル状態での消臭効果の何れにおいても単独では得がたい飛躍的な効果があることを見い出し、本発明を完成するに至った。

【0013】即ち、本発明の要旨は、、(A) 架橋構造を有し、且つカルボキシル基及び/又はカルボキシレート基を重合体の構成成分として含有する高吸水性ポリマ 40一、(B) シュウ酸(塩) 化合物及び(C) SiO。を30~80重量%含有する複合ケイ酸塩化合物からなり、(A) 100重量部に対して(B) と(C) の合計量が0.05~10重量部であり、(B) と(C) の配合割合が重量比で90:10~10:90であることを特徴とする高吸水性ポリマー組成物、にある。以下、本発明を詳細に説明する。

[0014]

【発明の実施の形態】

(高吸水性ポリマー) 本発明に用いられる高吸水性ポリ 50

マーとしては架橋構造を有し、重合体の構成成分として カルボキシル基及び/又はカルボキシレート基を有する 高吸水性ポリマーであればいかなるものでも使用でき、 重合体の種類及び重合法は問わない。中でもポリアクリ ル酸塩架橋物、デンプン-アクリロニトリルグラフト共 重合体架橋物の加水分解物、デンプンーアクリル酸グラ フト共重合体架橋物、アクリル酸エステルー酢酸ビニル 共重合体の加水分解物、アクリル酸塩-アクリルアミド 共重合体架橋物及びポリアクリロニトリル架橋体物の加 水分解物が好適な例として挙げられる。上記以外でもア クリル酸で架橋されたポリエチレンオキサイド、ナトリ ウムカルボキシセルロースの架橋物、無水マレイン酸塩 ーイソブチレン、アクリル酸にマレイン酸塩、イタコン 酸塩、2-アクリルアミド-2-メチルスルホン酸塩、 2-アクロイルエタンスルホン酸、2-ヒドロキシエチ ルアクリレート等のコモノマーを共重合させたものを例 示することができる。高吸水性ポリマー中の上記カルボ キシレート基の塩の型としてはアルカリ金属塩、アルカ リ土類金属塩、アンモニウム塩等が挙げられるが、中で もアルカリ金属塩が好適である。

【0015】上記の高吸水性ポリマーは一般的にはアクリル酸(塩)や無水マレイン酸(塩)等カルボキシル基及び/又はカルボキシレート基を有する重合性単量体を水、ラジカル重合開始剤、架橋剤存在下又は不在下で公知の水溶液重合法、溶液重合法、逆相懸濁重合法により重合して得られる。例えば、特公昭60-25045号公報、特開昭59-210198号公報、特開昭57-158210号公報、特開昭57-21405号公報、特公昭53-46199号公報、特開昭58-71907号公報、特開昭55-84304号公報、特開昭56-91837号公報、特開平2-49002号、及び特開昭62-62807号公報等々に記載の方法により製造することができる。

【0016】ここで行われる架橋は高吸水性ポリマー母体の内部架橋を示すものであり、後述する表面処理で示される架橋とは操作及び内容を異にするものである。即ち、この架橋は重合前又は重合後、架橋剤をポリマー内部に均一に分散させ、ポリマー内部を均一に架橋せしめてなるものである。一方、この内部架橋は架橋剤を使用しなくても例えば重合時の熱による重合性単量体自身に由来する自己架橋も含まれる。

【0017】架橋剤を用いる方法としては、例えば架橋剤として分子内に二重結合を二個以上有し、重合性単量体と共重合性を示すもの或いは分子内に重合性単量体中の官能基、例えばカルボキシル基及び/又はカルボキシレート基と重合中或いは重合後の乾燥時に反応しうるような官能基を二個以上有するものが挙げられる。前者の架橋剤の一例を挙げれば、N-N'ーメチレンビスアクリルアミド、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、プ

5

ロピレングリコールジ (メタ) アクリレート、ポリプロ ピレングリコールジ (メタ) アクリレート、ジアリルフ タレート、ジアリルマレート、ジアリルテレフタレー ト、トリアリルシアヌレート、トリアリルホスフェート 等が挙げられる。また、後者の架橋剤の一例を挙げる と、エチレングリコールジグリシジルエーテル、ポリエ チレングリコールジグリシジルエーテル、脂肪族多価ア ルコールのジ又はポリグリシジルエーテル等が挙げられ る。更に前者と後者の両機能を備えたものとして、N-ト等が挙げられる。

【0018】上記の高吸水性ポリマーは一般に重合後に おいて水を含んだゲルとして得られるが、通常この含水 ゲルはこのまま、或いは不活性溶媒との共沸等により脱 水され、必要に応じて粉砕/分級等が行われて製品とな る。また、本発明に使用される高吸水性ポリマーは上記 のような製造プロセスの過程で或いは製品に対し表面架 橋や表面改質等の処理を施されたものも有効に使用する ことができる。本発明で言う表面架橋や表面改質は、高 吸水性ポリマーの粒子の内部を処理するものではなく表 20 面を架橋したり疎水変成したりして改質することを意味

【0019】このような表面架橋に使用する架橋剤とし ては、カルボキシル基及び/又はカルボキシレート基と 反応しうる二個以上の官能基を有する架橋剤であれば、 いずれも使用することができる。例えば、ポリジグリシ ジルエーテル化合物、ハロエポキシ化合物、アルデヒド 化合物、イソシアネート化合物等が使用できるが、特に ポリグリシジルエーテル類が一般的である。これらの架 橋剤の使用量及び添加方法は特に限定されないが、通 常、ポリマーに対して0.005~5重量%の範囲で使 用される。

【0020】また、表面改質に使用する化合物として は、水酸化アルミニウム等の多価金属塩や、下記シラン 化合物が挙げられる。

[0021]

【化1】X(R)、Si(Y)3-.

【0022】(式中、Xは高吸水性ポリマー中のカルボ キシル基及び/又はカルボキシレート基と反応しうる官 能基を表わし、Rは炭化水素基を表わし、Yは加水分解 40 ン、シュウ酸リチウム、シュウ酸アンニン、シュウ酸ア 基を表わし、mは0、1又は2である。)

【0023】具体的には、γーグリシドキシプロピルト リメトキシシラン、γ-グリシドキシプロピルメチルジ エトキシシラン、 β - (3, 4 - エポキシシクロヘキシ ル) エチルトリメトキシシラン、γ-(2-アミノエチ ル) アミノプロピルトリメトキシシラン、γ - (2 - ア ミノエチル)アミノプロピルメチルジメトキシシラン、 y-アミノプロピルトリエトキシシラン、N-フェニル ーッーアミノプロピルトリメトキシシラン、ッーメルカ プトプロピルトリメトキシシラン、γークロロプロピル 50 なるが、一般的には高吸水性ポリマー100重量部に対

トリメトキシシラン、γークロロプロピルメチルジメト キシシラン、オクタデシルジメチル [3-(トリメトキ シシリル) プロピル] アンモニウムクロライド等が挙げ

【0024】多価金属化合物としてはMg、Ca、B a、Zn等の二価金属化合物、Al、Fe等の三価金属 化合物で、具体的には硫酸マグネシウム、硫酸アルミニ ウム、塩化第二鉄、塩化カルシウム、塩化マグネシウ ム、塩化アルミニウム、ポリ塩化アルミニウム、硝酸 メチロールアクリルアミド、グリシジルメタアクリレー 10 鉄、硝酸カルシウム、硝酸アルミニウム、水酸化アルミ ニウム等が使用される。これらの化合物の使用量及び添 加方法は特に限定されるものではないが、通常使用量と して、ポリマーに対し0.001~10重量%である。 【0025】これ等の化合物で高吸水性ポリマーの表面 を処理すると、表面のポリマーと反応して、これ等の化 合物が疎水化変成したり、場合によっては架橋を生じた りして表面を疎水化し、粒子の融着を防止し、吸水速度 を大きくすることができる。また、本発明で使用される 高吸水性ポリマーの平均粒子径としては、通常10~2 $000 \mu m$ 、好ましくは $50 \sim 1000 \mu m$ である。

【0026】 (シュウ酸(塩)化合物)本発明で使用さ れるシュウ酸(塩)化合物はシュウ酸及びシュウ酸をべ ースにしたあらゆる金属塩、複塩、有機化合物を示す。 その代表例を挙げれば、シュウ酸、シュウ酸アルカリ金 属塩、シュウ酸アンモニウム塩、シュウ酸アルカリ土類 金属塩、シュウ酸亜鉛カリウム、シュウ酸アルミニウ ム、シュウ酸アルミニウムアンモニウム、シュウ酸アン チモンカリウム、シュウ酸ウラニル、シュウ酸銀、シュ ウ酸クロム、シュウ酸コバルト、シュウ酸ジルコニウ ム、シュウ酸水銀、シュウ酸水銀アンモニウム、シュウ 酸水素ナトリウム、シュウ酸鉛、シュウ酸ストロンチウ ム、シュウ酸銅、シュウ酸鉄、シュウ酸マンガン、シュ ウ酸チタニル、シュウ酸チタニルアンモニウム、シュウ 酸チタン酸アンモニウム、シュウ酸チタン酸ルビジウ ム、シュウ酸チタン酸アンモニウム、シュウ酸鉄アンモ ニウム、シュウ酸鉄カリウム、シュウ酸銅カリウム、シ ュウ酸錫、シュウ酸ニッケル、シュウ酸ニッケルカリウ ム、シュウ酸バナジウム、シュウ酸ビスマス、シュウ酸 ベリリウム、シュウ酸マグネシウム、シュウ酸マンガ ミド、シュウ酸ジメチル、シュウ酸ジニトリル、シュウ 酸ジヒドラジド、シュウ酸尿素、シュウ酸ヒドロキシア ンモニウム等が挙げられる。本発明はこの中でも特にシ ュウ酸、シュウ酸カリウム、シュウ酸ナトリウム、シュ ウ酸チタン酸カリウム、シュウ酸チタン酸ナトリウム、 シュウ酸チタン酸アンモニウムから選ばれた一種又は二 種以上の混合物が好ましい。

【0027】シュウ酸(塩)化合物の使用量は、使用す る高吸水性ポリマーの種類、性状、平均粒径によって異

して複合ケイ酸塩との合計量で0.05~10重量部、 好ましくは0.1~5重量部である。0.05重量部未 満の添加量では効果の発現が不十分であり、10重量部 超過では効果が飽和する。また、シュウ酸(塩) 化合物 と複合ケイ酸塩の配合割合は、重量比で10:90~9 0:10、好ましくは30:70~70:30である。 上記割合よりシュウ酸(塩)化合物の割合が多すぎた場 合、ゲル経時安定性は改善されるもの消臭機能が発揮さ れず、本発明の意図からは外れる。また、上記割合より 複合ケイ酸塩の割合が多すぎた場合、ゲル経時性が改善10 されず、本発明の意図からは外れる。

【0028】 (複合ケイ酸塩化合物) 本発明で使用され る複合ケイ酸塩化合物としては、SiO2を30~80 重量%の組成比で含有し、メルカプタン、硫化水素類等 の酸性悪臭、アンモニア、アミン等の塩基性悪臭両方に 消臭機能を有する限りは、どのような組成の複合ケイ酸 塩でも使用可能である。SiO2の組成比が80%を越 える場合は、アンモニアの消臭は優れるものの、トリメ チルアミン等のアミン類及び硫化水素、メルカプタン等 の硫黄系悪臭成分に対して効果を示さないので本発明の 20 意図からは外れる。更に、SiО₂の組成比が、30% に満たない場合は、粉体特性、例えば流動性が悪化する 虞れがあるので好ましくない。

【0029】複合ケイ酸塩化合物におけるSiOz以外 の酸化物成分としては、ZnO、Al2O3、Ag 2 O、MgO等が挙げられる。これらの内でZnO、A I₂ O₃の二成分が消臭性能やケイ酸塩化合物の色相の 面から好ましく、中でもZnOが一番好ましい。このよ うな複合ケイ酸塩化合物としては、例えばアルミノケイ び過硫酸カリウムの複合物、二酸化ケイ素及び酸化亜鉛 の混合物、二酸化ケイ素、酸化マグネシウム及び酸化亜 鉛の混合物(複合物)、二酸化ケイ素、酸化銀及び酸化 亜鉛の混合物 (複合物) 等が挙げられる。

【0030】これらの複合ケイ酸塩は、上述のように、 高吸水性ポリマー100重量部に対して、シュウ酸 (塩) との合計で0.05~10重量部、好ましくは 0.1~5重量部の量で用いられ、シュウ酸(塩)化合 物と複合ケイ酸塩の配合割合 (重量比) は90:10~ 10:90、好ましくは30:70~70:30であ る。上記複合ケイ酸塩の平均粒子径は小さい方が好まし く、例えば50μm以下、特に10μm以下が表面積が 増加するので好ましい。

【0031】 (高吸水性ポリマーの組成物の製造) 本発 明の高吸水性ポリマー組成物を得る方法としては特に制 限はなく、上記の高吸水性ポリマーに、上記のシュウ酸

(塩) 化合物及び複合ケイ酸塩を所定量均一に添加分散 又は含浸させることにより得ることができる。添加分散 又は含浸は、従来公知の任意の方法ないし手段により行 うことができ、一般的に粉末混合或いは固液混合に用い られる混合機、例えば攪拌翼の付いた槽形混合機、転動 式混合機、流動式混合機、気流型混合機、振動型混合 機、高速回転パドル機を用いて容易に行うことができ る。また場合によっては、高吸水性ポリマーの重合、熟 成、脱水、表面改質、造粒等の工程中に添加分散、又は 含浸させてもよい。

【0032】含浸させる場合の溶媒としては該粉体が溶 解可能な液体であれば、水、各種アルコール等の極性溶 媒或は脂肪族、脂環族炭化水素等の非極性溶媒のいずれ でもよい。また、シュウ酸(塩)化合物及び複合ケイ酸 塩は同一工程で高吸水性ポリマーに添加分散又は含浸し てもよいし、別々の工程中で該ポリマーに添加分散又は 含浸しても差支えない。更には繊維基材等の他の素材を 介して互いに非接触の状態で混合されていても差支えな い。混合若しくは含浸する場合の温度は、一般的に常温 ~150℃、好ましくは常温~50℃である。

[0033]

【実施例】以下、実施例及び比較例によって本発明を更 に具体的に説明するが、本発明は、その要旨を越えない 限りこれらの実施例に限定されるものではない。尚、実 施例によって得られた高吸水性ポリマーの後述の特性値 は下記の方法により限定したものである。

【0034】<吸水能>吸水性ポリマー約0.5gを精 秤し、250メッシュのナイロン袋(20cm×10c mの大きさ) に入れ、500ccの人工尿に30分浸漬 酸亜鉛、二酸化ケイ素、酸化亜鉛、酸化アルミニウム及 30 する。その後ナイロン袋を引き上げ、15分水切りした 後、重量を測定し、ブランク補正し吸水能を算出した。 尚、人工尿の組成(重量%)は以下の通りである。

> 尿素 1. 94% 塩化ナトリウム 0.80% 塩化カルシウム 0.06% 硫酸マグネシウム 0. 11% 97.09%

【0035】<粉体消臭性試験>容量約500mlのガ ラス製容器を三個用意し、容器底に高吸水性ポリマー 1 gを入れ、更に下記に示す悪臭含有溶液の一種類を所定 量注入し、密栓をして3時間放置した。3時間後に各悪 臭物質用のガステック製検知管式気体測定器を用いて悪 臭濃度を測定した。ブランクとして高吸水性ポリマーな しでの測定も行った。

【0036】使用した悪臭物質溶液の組成/添加量、使 用した検知管を下に示す。

<u>対象悪臭</u>	溶液組成/添加量		検知管
アンモニア	0.05重量%エタノール溶液	200 μ 1	3 L
メチルアミン	0.1 重量%水溶液	400 μ l	180
t ーブチルメルカプタン	0.1 重量%水溶液	400 µ 1	7 O L

【0037】更に、ブランクテストでの各悪臭物質濃度 を下に示す。

対象悪臭 <u> 濃度(ppm)</u> アンモニア 40 メチルアミン 4 5 tーブチルメルカプタン 5. 0

【0038】<ゲル消臭性試験>高吸水性ポリマー4g をコットン製不織布(目付:150g/m²、大きさ1 1 c m×8 c m) の上に均一に散布する。更に本不織布 の上に同素材、同サイズのコットン製不織布を被せ、簡 10 易的な吸液パッドを作成する。本吸液パッドを250m 1の蓋付きガラス製容器に入れ、成人の人尿(成人5名 の人尿を混合)を100g吸収後、蓋をして設定温度4 0℃にて、恒温槽中に放置した。放置後、容器内部の異 臭濃度をガステック製検知管式気体測定器を使用して測 定した。

【0039】測定した悪臭物質及び、使用した検知管番 号は以下の通りである。

ガステック検知管:3L 全アミン類 ガステック検知管:180 硫化水素 ガステック検知管:4LT

アンモニア

全メルカプタン ガステック検知管:70L

【0040】<ゲルの経時安定性>上記の消臭性試験を 行った後の膨潤ゲルの様子を取出し、手触り及びゲルの 様子で安定性を評価した。安定性の尺度は次の三段階と した。

〇…膨潤粒子はそのままの形状を示し、触った感触が固

△…溶解まで至らないが、膨潤粒子の形状が不明瞭で触 った感触が柔らかい。

×…溶解が一部生じ、液状のものが見られる。触った感 触が粘性液体に近い。

【0041】後述の実施例及び比較例においては、下記 の高吸水性ポリマー及び複合ケイ酸塩を使用した。 高吸水性ポリマー (A)

攪拌機、還流冷却器、温度管、窒素ガス導入管を付設し た容量5000mlの四つ口丸底フラスコにシクロヘキ サン1210gを入れ、ソルビタンモノステアレート9 gを添加して溶解させた後、窒素ガスを吹き込んで、溶 存酸素を追い出した。別に、容量2000mlのビーカ 40 2 一中でアクリル酸350gを外部より冷却しながらこれ に水727.7gに溶解した143.1gの純度95% の水酸化ナトリウムを加えてカルボキシル基の70%を 中和した。この場合の水に対するモノマー濃度は、中和 後のモノマー濃度として35重量%に相当する。次い で、これにN, N' -メチレンビスアクリルアミドO. 37g、過硫酸カリウム0.94gを加えて溶解した 後、窒素ガスを吹き込んで溶存酸素を追い出した。

【0042】前記の四つ口丸底フラスコの内容物にこの 容量2000mlのビーカーの内容物を添加し、攪拌し 50

て分散させ、窒素ガスをバブリングさせながら油浴によ りフラスコ内温を昇温させたところ、60℃付近に達し てから内温が急激に上昇し、数十分後には75℃に達し た。次いで、攪拌しながら3時間反応させた後、攪拌を 停止すると、湿潤ポリマー粒子が丸底フラスコの底に沈 降したので、デカンテーションでシクロヘキサン相と容 易に分離できた。分離した湿潤ポリマーを減圧乾燥機に 移し、90℃に加熱して付着したシクロヘキサン及び水 を除去したところ、さらさらとした高吸水性ポリマー4 00gが得られた。

【0043】このようにして得られた乾燥ポリマー10 0gを500m1ナス型フラスコに入れ、次いでシクロ ヘキサン122.5gを加えてスラリーとした。このス ラリーを攪拌しながら水22.5gにγーグリシドキシ プロピルトリメトキシシラン 0. 44gを分散させた液 を添加し、室温で30分間攪拌した。次いで105℃の 油浴中に30分間浸漬した後、同油浴温度を保持しなが ら蒸発乾固させ、乾燥ポリマー95gを得た。

【0044】高吸水性ポリマー (B)

前述、高吸水性ポリマー(A)において、γ-グリシド キシプロピルトリメトキシシランの代わりに、エチレン グリコールジグリシジルエーテル 0.8 gを用いて、乾 燥ポリマー958gを得た。

【0045】高吸水性ポリマー (C)

澱粉-アクリル酸塩グラフト共重合体架橋物 (商品名: サンウエットIM-1000、三洋化成工業製)を使用

【0046】高吸水性ポリマー (D)

ポリアクリル酸塩架橋物(商品名:アリアリックCAW -4、日本触媒製)を使用した。

【0047】複合ケイ酸塩 (A)

アルミノケイ酸亜鉛(商品名:ミズカナイトHP、水澤 化学工業(株)製、乾燥時の成分及びその含有量: Si 52 w t %, Z n O 38 w t %, A l₂ O₃ 10wt%) を使用した。

【0048】複合ケイ酸塩 (B)

二酸化ケイ素、酸化亜鉛、酸化アルミニウム及び過硫酸 カリウムの複合物 (商品名:ミズカナイトAP、水澤化 学工業(株)製、乾燥時の成分及びその含有量:SiO 49. 7wt%, ZnO 36. 3wt%, Al₂ 9. 5 w t % K₂ S₂ O₈ 9. 5wt%) を 使用した。

【0049】複合ケイ酸塩 (C)

二酸化ケイ素及び酸化亜鉛の混合物(商品名:シューク レンズKD-211S、ラサ工業(株)製、乾燥時の成 分及び含有量: SiO₂ 73.2wt%、ZnO 2 6.8wt%) を使用した。

【0050】実施例1~28

上記(A)~(D)の高吸水性ポリマーにシュウ酸 (塩) 化合物及び複合ケイ酸塩を加え、Vブレンター

(筒井理化学器機株式会社製、S-5型)を用いて30 分間室温にて均一に混合し、高吸水性ポリマー組成物を 得た。使用した高吸水性ポリマー、シュウ酸(塩)化合 物及び複合ケイ酸塩の種類並びに使用量は、第1表に示 される通りである。得られた高吸水性ポリマー組成物に つき上記の測定を行った。結果を第2表に示す。

【0051】比較例1~11

シュウ酸(塩)化合物及び複合ケイ酸塩のいずれか一方 のみを添加し、上記実施例と同様の操作にて混合して得 た高吸水性ポリマー組成物、及びこれらの化合物のいず 10 れをも添加していない高吸水性ポリマー組成物自体につ

き上記の測定を行った。使用した高吸水性ポリマー、シ ュウ酸(塩)化合物及び複合ケイ酸塩の種類並びに使用 量を第1表に、測定結果を第2表に示す。

【0052】第2表から示される結果より明らかなよう に、本発明による高吸水性ポリマー組成物は高吸水性ポ リマー本来の吸水性能を損なうことなく、ゲル経時安定 性が大幅に改良され、更に粉体/ゲル状態時において優 れた消臭効果を示す。

[0053]

【表1】

F	1	

		第 1 表			
Ho.	ポリマーおよびその使用量	シュウ酸(塩)化合物	添加量(g)	シリカ系複合酸化物	添加量(g)
実施例 1	高吸水性ポリマー(A) 100g	シュウ酸	0. 5	復合ケイ酸塩 (A)	0.5
実施例 2	高吸水性ポリマー(A) 100g	シュウ酸カリウム	0. 5	複合ケイ酸塩 (A)	0.5
実施例3	高吸水性ポリマー(A) 100g	シュウ酸チタン酸カリウム	0.5	復合ケイ酸塩(A)	0.5
実施例 4	高吸水性ポリマー(A) 100g	シュウ酸チタン酸カリウム	0.75	複合ケイ酸塩 (A)	0.75
実施例 5	高吸水性ポリマー(A) 100g	シュウ酸チタン酸カリウム	1	複合ケイ酸塩 (A)	1
実施例 8	高吸水性ポリマー(A) 100g	シュウ酸チタン酸カリウム	0.7	複合ケイ酸塩 (A)	0.3
実施例 7	高吸水性ポリマー(A) 100g	シュウ酸チタン酸カリウム	0.3	複合ケイ酸塩 (A)	0.7
実施例 8	高吸水性ポリマー(A) 100g	シュウ酸チタン酸カリウム	0. 5	複合ケイ酸塩 (B)	0.5
実施例 9	高吸水性ポリマー(A) 100g	シュウ酸チタン酸カリウム	0.5	複合ケイ酸塩 (C)	0.5
実施例10	高吸水性ポリマー(A) 100g	シュウ酸チタン酸アンモニウム	0.5	複合ケイ酸塩 (A)	0.5
実施例は	高吸水性ポリマー(A) 100g	シュウ酸チタン酸アンモニウム	0. 5	復合ケイ酸塩 (B)	0.5
英施例12	高吸水性ポリマー(A) 100g	シュウ酸チタン酸アンモニウム	0.5	複合ケイ酸塩 (C)	0.5
突施例13	高吸水性ポリマー(B) 100g	シュウ酸	0.5	複合ケイ酸塩 (A)	0.5
実施例14	高吸水性ポリマー(B) 100g	シュウ酸カリウム	0.5	複合ケイ酸塩 (A)	0.5
突施例15	高吸水性ポリマー(B) 100g	シュウ酸チタン酸カリウム	0. 5	夜合ケイ酸塩 (A)	0.5
実施例16	高吸水性ポリマー(8) 100g	シュウ酸チタン酸カリウム	0. 5	復合ケイ酸塩 (B)	0.5
実施例17	高吸水性ポリマー(B) 100g	シュウ酸チタン酸カリウム	0.5	複合ケイ酸塩 (C)	0.5
突施例18	高吸水性ポリマー(B) 100g	シュウ酸チタン酸アンモニウム	0.5	複合ケイ酸塩 (A)	0.5
実施例19	高吸水性ポリマー(B) 100g	シュウ酸チタン酸アンモニウム	C. 5	複合ケイ酸塩 (B)	0.5
実施例20	高吸水性ポリマー(8) 100g	シュウ酸チタン酸アンモニウム	0. 5	複合ケイ酸塩 (C)	0.5

[0054]

第 1 表(つづき)

Na	ポリマーおよびその使用量	シュウ酸 (塩) 化合物	添加量(g)	シリカ系複合酸化物	添加量(g)
実施例21	高吸水性ポリマー(C) 100g	シュウ酸	0.5	複合ケイ酸塩 (A)	0.5
実施例22	高吸水性ポリマー(C) 100g	シュウ酸カリウム	0.5	複合ケイ酸塩 (A)	0.5
突施例23	高吸水性ポリマー(C) 100g	シュウ酸チタン酸カリウム	0.5	復合ケイ酸塩 (A)	0.5
実施例24	高吸水性ポリマー(C) 100g	シュウ酸チタン酸アンモニウム	0.5	複合ケイ酸塩 (A)	0.5
実施例25	高吸水性ポリマー(D) 100g	シュウ酸	0.5	複合ケイ酸塩 (A)	0.5
実施例26	高吸水性ポリマー(D) 100g	シュウ酸カリウム	0.5	複合ケイ酸塩 (A)	0.5
実施例27	高吸水性ポリマー(D) 100g	シュウ酸チタン酸カリウム	0.5	複合ケイ酸塩 (A)	0.5
実施例28	高吸水性ポリマー(D) 100g	シュウ酸チタン酸アンモニウム	0.5	複合ケイ酸塩 (A)	0.5
比較例 i	高吸水性ポリマー(A) 100g	シュウ酸	0.5	-	-
比較例 2	高吸水性ポリマー(A) 100g	シュウ酸カリウム	0. 5	-	-
比較例3	高吸水性ポリマー(A) 100g	シュウ酸チタン酸カリウム	0.5	-	
比較例4	高吸水性ポリマー(A) 100g	シュウ酸チタン酸アンモニウム	0.5	-	
比較例 5	高吸水性ポリマー(A) 100g	-	-	複合ケイ酸塩(A)	0.5
比較例 B	高吸水性ポリマー(A) 100g	-	-	複合ケイ酸塩 (B)	0.5
比較例7	高吸水性ポリマー(A) 100g	_		複合ケイ酸塩 (C)	0.5
比較例 8	高吸水性ポリマー(A) 100g	-	-	-	-
比較例 9	高吸水性ポリマー(B) 100g	-	_	-	
比較例10	高吸水性ポリマー(C) 100g	-	-	_	
比較例11	高吸水性ポリマー(D) 100g	-	_	-	-

[0055]

【表3】

				第	2 妻				
	吸水能	分経時		粉体消息	以試験	ゲル消臭性試験			
No.	(g/g-#U7-)	安定性	77627	メチル すミツ	ヒープチルメチルカプタソ	ア ソモニア	メチルブミソ	建化水索	メチルメルカブケン
	(8/8 4// /	A.C.	ррш	pp≡	p pm	ppm	ppm	pp■	ppm
実施例 1	41	0	7	23	3. 4	21	42	1.1	0.5
実施例 2	41	0	8	24	3.2	23	38	1.1	0.5
実施例 3	40	0	7	23	3. 4	19	40	ı	0. 6
実施例 4	42	0	8	21	3.2	15	35	0.9	0.4
実施例5	41	0	6	20	2. 9	14	30	0.7	0.3
実施例 6	41	0	4	24	3. 4	18	42	0.8	0.6
実施例7	40	0	7 ·	22	3.2	20	40	0.8	0.5
実施供8	41	0	5	23	3.2	24	35	0.9	0.7
実施例 9	40	0	7	24	3. 4	28	33	ı	0.6
実施例10	41	0	8	25	3. 3	25	40	1.1	0.6
実施例[]	42	0	9	25	3.4	26	38	1.1	0.5
実施例12	40	0	9	24	3. 1	23	39	1	0.6
実施例13	41	0	8	23	3. 2	24	38	1	0.5
実施例14	37	0	7	22	3. 2	41	60	1.1	C. 8
実施例15	36	0	8	26	3. 4	39	71	1	0.6
実施例16	35	△~0	10	24	3. 2	35	64	0.9	0.7
実施例17	86	0	9	28	8.5	32	59	1.2	0.7
実施例18	37	0	11	24	3.4	43	70	0.8	0.6
実施例19	37	0	8	26	3. 2	42	67	1.1	0.8
実施例20	36	0	9	24	3.3	40	84	1	0.5

第 2 表(つづき)

	吸水能	外経時	粉体消臭試験			ゲル消臭性試験			
No.	(g/g-#リマ-)	安定性	77627	i i	ヒープテルメテルカプタン	776=7	39N7ミア	硫化水素	メチルメルカプタン
- 		<u> </u>	ppm	ppm	pyan	ppm	ppm	ppm	ppm
実施例21	29	△~○	11	26	3. 6	73	105	1.6	1
実施例22	31	△~0	13	27	3.8	61	80	1.4	0.9
実施例23	30	Δ~0	13	25	3. 8	58	113	1.3	1.1
实施例24	29	Δ~0	12	29	3.7	70	101	1.7	0.8
爽鏟例25	35	Δ~0	11	26	3. 5	60	100	1.5	0.8
実施例28	35	Δ~0	8	24	3.6	52	85	1.2	0.7
実籍例27	36	△~0	9	26	3. 6	71	106	1.5	0.8
実籍例28	37	△~○	10	28	3.4	63	93	1.4	0.9
比較例 1	41	0	18	36	5	40	81	1.7	0.8
比較例 2	40	0	16	84	4. 9	42	75	1.6	0.9
比較例 3	42	0	17	35	4. 9	35	77	1. 9	0.7
比較例4	42	0	18	37	5	33	72	1.7	1
比較例 5	41	×	5	24	3. 1	55	100	1. 9	1
比較例 8	40	×~∆	6	23	2.9	58	108	1.7	0.7
比較例7	41	×	7	22	2.9	53	92	1.8	1
比較例8	41	×	18	36	5	60	120	2. 1	1.1
比較例 9	36	х	17	37	4. 9	75	112	2. 3	1. 2
比較例10	31	×	21	36	5	120	180	2. 5	1.5
比較例11	86	×	20	40	4.9	100	167	2	1.1

[0057]

【発明の効果】本発明による高吸水性ポリマー組成物は、高吸水性ポリマー本来の吸水性能を損なうことなく、ゲル経時安定性が改良され、更に優れた消臭効果を

示す。従って、本発明の高吸水性ポリマー組成物は、紙 おむつや生理用ナプキンその他各種パッド等の衛生材料 の分野において特に好適に用いることができる。

フロントページの続き

(51) Int. Cl. 6

識別記号

C O 8 L 51/00

FΙ

C 0 8 L 51/00