

Mathematik I (Inf.) Funktionen (Teil 2)

Jens Hüppmeier

Eigenschaften von Funktionen

Eigenschaften

- Nullstellen
- Symmetrie
- Monotonie
- Umkehrbarkeit
- Verhalten im Unendlichen
- Stetigkeit

Funktionen

- Polynomfunktionen
- Gebrochenrationale Funktionen
- Potenz- und Wurzelfunktionen
- Trigonometrische Funktionen und deren Umkehrung
- Exponential- und Logarithmusfunktionen

Allgemeine Form einer Polynomfunktion

$$y = f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$$

$$y = f(x) = a_0$$

$$y = f(x) = a_0 + a_1 x$$

$$y = f(x) = a_0 + a_1 x + a_2 x^2$$

$$y = f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$
 Kubische Funktion

Konstante Funktion

Lineare Funktion

Quadratische Funktion

Nullstellen einer Polynomfunktion

Das Aufsuchen von Nullstellen einer Polynomfunktion bis zum Grad $n \le 2$ erfolgt nach einfachen Methoden (z.B. p,q-Formel).

Für Polynome höheren Grades hilft das Zerlegen in Linearfaktoren (Produkte):

$$y = f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$$
$$= a_n (x - x_1)(x - x_2) \dots (x - x_n)$$

Die Funktion f(x) ist gleich Null, wenn einer der Faktoren gleich Null ist.

Beispiel quadratische Gleichung:

$$y = f(x) = 3x^2 + 3x - 6 = 3(x - 1)(x + 2)$$

Linearfaktorzerlegung

$$f(x_N) = 3(x_N - 1)(x_N + 2) = 0$$

$$x_{N1} - 1 = 0$$
 \forall $x_{N2} + 2 = 0$
 $x_{N1} = 1$ \forall $x_{N2} = -2$

$$f(x_N) = 3x_N^2 + 3x_N - 6 = 0$$
$$x_N^2 + x_N - 2 = 0$$

$$x_{N1/2} = -\frac{1}{2} \pm \sqrt{\left(-\frac{1}{2}\right)^2 + 2}$$

$$x_{N1/2} = -\frac{1}{2} \pm \sqrt{\frac{9}{4}} = -\frac{1}{2} \pm \frac{3}{2}$$

$$x_{N1} = 1$$
 \forall $x_{N2} = -2$

Nullstellen von Polynomfunktionen höherer Ordnung:

Lässt sich eine Nullstelle der Polynomfunktion (z.B. durch Probieren) ermitteln, kann diese als Linearfaktor vom Polynom abgespalten werden.

$$y = f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$$
$$= (x - x_1) \cdot (b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1})$$

Linearfaktor

Das Restpolynom ist dann vom Grad n-1

Die Koeffizienten $b_1, b_2, ... b_{n-1}$ können durch **Polynomdivision** oder mit Hilfe des **Horner-Schema**s bestimmt werden.

Polynomdivision:

$$(a_n x^n + a_{n-1} x^{n-1} + \dots + a_0) : (x - x_1) = a_n x^{n-1} + (a_{n-1} + x_1 a_n) x^{n-2} + \dots$$
$$-(a_n x^n - x_1 a_n x^{n-1})$$

$$(a_{n-1} + x_1 a_n) x^{n-1} + a_{n-2} x^{n-2}$$
$$-((a_{n-1} + x_1 a_n) x^{n-1} - x_1 (a_{n-1} + x_1 a_n) x^{n-2})$$

/,

Horner-Schema:

Gebrochenrationale Funktionen

$$f(x) = \frac{g(x)}{h(x)} = \frac{a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0}{b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0}$$

g(x): Zählerpolynom vom Grad m

h(x): Nennerpolynom vom Grad n

n > m: Echt gebrochenrationale Funktion

 $n \leq m$: Unecht gebrochenrationale Funktion

Nullstellen einer gebrochenrationalen Funktion

Die Nullstellen des Zählerpolynoms g(x) sind gleichzeitig die Nullstellen der Funktion f(x), wenn das Nennerpolynom h(x) an diesen Stellen von Null verschieden ist.

$$f(x) = \frac{g(x)}{h(x)} = \frac{a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0}{b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0}$$

$$g(x_N) = 0$$

$$h(x_N) \neq 0$$

$$f(x_N) = 0$$

Polstellen einer gebrochenrationalen Funktion

Die Nullstellen des Nennerpolynoms h(x) sind gleichzeitig die Polstellen (Unendlichkeitsstellen) der Funktion f(x), wenn das Zählerpolynom g(x) an diesen Stellen von Null verschieden ist.

$$f(x) = \frac{g(x)}{h(x)} = \frac{a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0}{b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0}$$

$$g(x_P) \neq 0$$

$$h(x_P) = 0$$

$$\lim_{x \to x_P} f(x_P) = \pm \infty$$

Beispiel

$$y = f(x) = \frac{x}{x^2 - 4}$$

Nullstellen:

$$x_N = 0$$

Polstellen:

$$x_P^2 - 4 = 0$$
$$x_{P1/2} = \pm \sqrt{4}$$

$$x_{P1} = 2 \qquad x_{P2} = -2$$

Pole mit Vorzeichenwechsel

Nullstelle

$$f(x) = \frac{g(x)}{h(x)} = \frac{a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0}{b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0}$$

Nullstellen

$$g(x_N) = 0$$

$$h(x_N) \neq 0$$

$$f(x_N) = 0$$

Polstellen

$$g(x_P) \neq 0$$

$$h(x_P) = 0$$

$$\lim_{x \to x_P} f(x_P) = \pm \infty$$

Was ist, wenn $g(x_0) = h(x_0) = 0$?

Was ist, wenn $g(x_0) = h(x_0) = 0$?

$$f(x) = \frac{g(x)}{h(x)} = \frac{a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0}{b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0}$$

Abspaltung der Nullstelle als Linearfaktor im Zähler und Nenner:

$$f(x) = \frac{g(x)}{h(x)} = \frac{(x - x_0) \cdot g_r(x)}{(x - x_0) \cdot h_r(x)}$$

Kürzen des Linearfaktors:

$$f(x) = \frac{g(x)}{h(x)} = \frac{g_r(x)}{h_r(x)}$$

Die Funktion f(x) besitzt an der Stelle $x = x_0$ eine **behebbare Lücke**!

Verhalten im Unendlichen

$$f(x) = \frac{g(x)}{h(x)} = \frac{a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0}{b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0}$$

Für **echt** gebrochen rationale Funktionen (n > m):

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{g(x)}{h(x)} = 0$$
 Nenner wächst schneller als Zähler!

Die Funktion nähert sich im Unendlichen asymptotisch der x-Achse (y = 0).

Beispiel: Unecht gebrochen rationale Funktion

$$f(x) = \frac{0.5x^3 - 1.5x + 1}{x^2 + 3x + 2}$$

$$\lim_{x \to \pm \infty} f(x) = \pm \infty$$

Verlauf der Funktion nähert sich einer Geraden an.

Lässt sich diese berechnen?

Verhalten im Unendlichen

$$f(x) = \frac{g(x)}{h(x)} = \frac{a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0}{b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0}$$

Für **unecht** gebrochen rationale Funktionen $(n \le m)$ lassen sich die Asymptoten als Gleichung (Polynom p(x)) angeben. Dazu wird die Funktion aufgeteilt in einen Polynomanteil und einen echt gebrochenen Rest (durch Polynomdivision.

$$f(x) = p(x) + r(x)$$

Polynomfunktion

Echt gebrochener Anteil (geht gegen Null)

Beispiel: Unecht gebrochen rationale Funktion

Gleichung der Asymptoten im Unendlichen

$$f(x) = \frac{0.5x^2 - x + 0.5}{x + 1}$$

$$(0.5x^{2} - x + 0.5) : (x + 1) = 0.5x - 1.5 + \frac{2}{x + 1}$$

$$-(0.5x^{2} + 0.5x)$$

$$-1.5x + 0.5$$

$$-(-1.5x - 1.5)$$

2

$$f(x) = 0.5x - 1.5 + \frac{2}{x+1} \le$$

Geht gegen Null

$$\sin \alpha = \frac{a}{c} \qquad \cos \alpha = \frac{b}{c}$$

$$\tan \alpha = \frac{a}{b} \qquad \cot \alpha = \frac{b}{a}$$

Ankathete

Gegenkathete

Einheitskreis

$$x = \frac{2\pi}{360^{\circ}} \alpha$$

$$\alpha = \frac{360^{\circ}}{2\pi} x$$

	$y = \sin x$	$y = \cos x$
Definitionsbereich	$-\infty < x < \infty$	$-\infty < x < \infty$
Wertebereich	$-1 \le y \le 1$	$-1 \le y \le 1$
Periode (primitive)	2 π	2π
Symmetrie	ungerade	gerade
Nullstellen	$x_k = k \cdot \pi$	$x_k = \frac{\pi}{2} + k \cdot \pi$

	$y = \tan x$	$y = \cot x$
Definitionsbereich	$x \in \mathbb{R}$ mit Ausnahme der Stellen	$x \in \mathbb{R}$ mit Ausnahme der Stellen $x_k = k \cdot \pi$
	$x_k = \frac{\pi}{2} + k \cdot \pi$	
Wertebereich	$-\infty < y < \infty$	$-\infty < y < \infty$
Periode (primitive)	π	π
Symmetrie	ungerade	ungerade
Nullstellen	$x_k = k \cdot \pi$	$x_k = \frac{\pi}{2} + k \cdot \pi$
Pole	$x_k = \frac{\pi}{2} + k \cdot \pi$	$x_k = k \cdot \pi$
Senkrechte Asymptoten	$x = \frac{\pi}{2} + k \cdot \pi$	$x = k \cdot \pi$

Rechenregeln und Beziehungen

$$\cos x = \sin\left(x + \frac{\pi}{2}\right) \qquad \sin x = \cos\left(x - \frac{\pi}{2}\right)$$

$$\sin^2 x + \cos^2 x = 1$$

Trigonometrischer Pythagoras

$$\sin(x_1 \pm x_2) = \sin x_1 \cdot \cos x_2 \pm \cos x_1 \cdot \sin x_2$$

$$\cos(x_1 \pm x_2) = \cos x_1 \cdot \cos x_2 \mp \sin x_1 \cdot \sin x_2$$

Additionstheoreme

$$\tan(x_1 \pm x_2) = \frac{\tan x_1 \pm \tan x_2}{1 \mp \tan x_1 \cdot \tan x_2}$$

Trigonometrischer Pythagoras

$$c = 1$$

$$\to \sin(\alpha) = \frac{a}{c} = a$$

$$\rightarrow \cos(\alpha) = \frac{b}{c} = b$$

Satz des Pythagoras:

$$a^2 + b^2 = c^2$$

$$\sin(\alpha)^2 + \cos(\alpha)^2 = 1$$

Arkusfunktionen

Umkehrung der trigonometrischen Funktionen

Ähnlich wie bei den Quadratfunktionen ist auch hier zwar jedem x-Wert ein y-Wert eindeutig zugeordnet, für die Umkehrung gibt es aber mehrere (hier unendlich viele) Möglichkeiten.

Arkusfunktionen

Umkehrung der trigonometrischen Funktionen

Für die Umkehrung beschränkt man sich auf ein Intervall, in dem Monotonie gegeben ist.

$$y = \sin x \qquad -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$

$$y = \arcsin x$$

$$y = \cos x$$

$$0 \le x \le \pi$$

$$y = \arccos x$$

$$y = \tan x$$

$$-\frac{\pi}{2} \le x \le \frac{\pi}{2}$$

$$y = \arctan x$$

$$y = \cot x$$

$$0 \le x \le \pi$$

$$y = \operatorname{arccot} x$$

Bsp.: Bakterienwachstum

Vermehrung durch Zellteilung (aus einer Zelle werden in der nächsten Generation wie Zellen)

0. Generation (Eltern)
$$N_0 = 1$$

1. Generation
$$N_1 = 2 \cdot N_0 = 2$$

2. Generation
$$N_2 = 2 \cdot N_1 = 2 \cdot 2 \cdot N_0 = 4$$

3. Generation
$$N_3 = 2 \cdot N_2 = 2 \cdot 2 \cdot N_1 = 2 \cdot 2 \cdot 2 \cdot N_0 = 8$$

x. Generation
$$N_x = 2 \cdot N_{x-1} = 2 \cdot 2 \cdot N_{x-2} = 2^x \cdot N_0$$

Exponentielles Wachstum

$$N = N_0 \cdot 2^x$$

Exponentialfunktion

Basis $(a > 0; a \neq 1)$

	$y = a^x (0 < a < 1)$	$y = a^x (a > 1)$
Definitionsbereich	$-\infty < x < \infty$	$-\infty < x < \infty$
Wertebereich	$0 < y < \infty$	$0 < y < \infty$
Monotonie	streng monoton fallend	streng monoton wachsend
Asymptoten	$y = 0 (f \ddot{u} r x \to \infty)$	$y = 0 (f \ddot{u} r x \to -\infty)$

e-Funktion

Viele Vorgänge in der Natur und in den Ingenieurswissenschaften lassen sich durch Exponentialfunktionen mit der Eulerschen Zahl e als Basis darstellen.

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = 2,71828 \dots$$
 $y = e^x$ $y = e^{-x}$

Beispiele:

- Abklingfunktionen (radioaktiver Zerfall usw.) $\rightarrow y = a \cdot e^{-\lambda \cdot t}$
- Sättigungsfunktionen $\rightarrow y = a \cdot (1 e^{-\lambda \cdot t})$
- Wachstumsfunktionen $\rightarrow y = n_0 \cdot e^{\alpha \cdot x}$
- Gedämpfte Schwingungen $\rightarrow y = A \cdot e^{-x} \cdot \sin(\omega_0 \cdot t + \varphi)$

Logarithmusfunktionen können als Umkehrfunktionen der Exponentialfunktionen angesehen werden:

$$y=a^x \rightarrow x=\log_a y$$
 "Logarithmus von y zur Basis a"

Für die Basis a gilt weiterhin a > 0 und $a \ne 1$ Damit gilt auch y > 0 !!!

Für Logarithmen gelten die gleichen Rechenregeln wie für Exponenten! Inbesondere:

$$\log_a(u \cdot v) = \log_a u + \log_a v$$

$$\log_a\left(\frac{u}{v}\right) = \log_a u - \log_a v$$

$$\log_a(u^n) = n \cdot \log_a u$$

Logarithmusfunktionen können als Umkehrfunktionen der Exponentialfunktionen angesehen werden:

$$y=a^x \rightarrow x=\log_a y$$
 "Logarithmus von y zur Basis a"

Für die Basis a gilt weiterhin a > 0 und $a \ne 1$ Damit gilt auch y > 0 !!!

Für Logarithmen gelten die gleichen Rechenregeln wie für Exponenten! Inbesondere:

$$\log_a(u \cdot v) = \log_a u + \log_a v$$

$$\log_a\left(\frac{u}{v}\right) = \log_a u - \log_a v$$

$$\log_a(u^n) = n \cdot \log_a u$$

	$y = a^x$	$y = \log_a x$
Definitionsbereich	$-\infty < x < \infty$	$0 < x < \infty$
Wertebereich	$0 < y < \infty$	$-\infty < y < \infty$
Nullstellen		$x_0 = 1$
Monotonie	0 < a < 1: streng monoton fallend a > 1: streng monoton wachsend	
Asymptoten	y = 0 (x-Achse)	x = 0 (y-Achse)

Natürlicher Logarithmus

Ähnlich wie bei der e-Funktion hat auch ihre Umkehrfunktion eine besondere Bedeutung in den Natur- und Ingenieurswissenschaften:

$$y = \log_e x = \ln x$$

