1 Lezione del 08-05-25

Iniziamo quindi a vedere nel dettaglio le *specifiche statiche*, cioè di reiettamento dei disturbi e di errore a regime.

1.0.1 Rejettamento dei disturbi

Consideriamo per adesso ingressi a gradino. Vediamo che per i sistemi di tipo 0 che i guadagni statici G(0) delle funzioni di trasferimento in anello chiuso sono i valori della risposta a regime. Questo viene dal teorema del valor finale (vedi teorema 11.2), che afferma:

$$\lim_{t \to +\infty} y(t) = \lim_{s \to 0} s \cdot Y(s)$$

Perciò, posto $D(s) = \frac{1}{s}$ e le altre componenti a 0, si ha:

$$\lim_{t\to +\infty}y(t)=\lim_{s\to 0}s\cdot C(s)G(s)\cdot \frac{1}{s}=G(0)$$

che è esattamente il guadagno statico.

Prendendo quindi il modello a disturbo interno visto in 25.2.3, idealmente vorremmo i guadagni statici:

$$W(0) = 1, \quad W_d(0) = 0$$

cioè guadagno per il trasferimento in retroazione pari a 1 e per i disturbi pari a 0. Questa si verifica per alti guadagni C(0) >> 1, cioè alti guadagni della funzione di catena $L(s) = C(s)G_1(s)G_2(s)$, in quanto secondo tale ipotesi vale:

$$\lim_{s \to 0} W(s) = \lim_{s \to 0} \frac{C(s)G_1(s)G_2(s)}{1 + C(s)G_1(s)G_2(s)} \sim \lim_{s \to 0} \frac{C(s)G_1(s)G_2(s)}{C(s)G_1(s)G_2(s)} \approx 1$$

$$\lim_{s \to 0} W_d(s) = \lim_{s \to 0} \frac{G_2(s)}{1 + C(s)G_1(s)G_2(s)} \sim \lim_{s \to 0} \frac{1}{C(s)G_1(s)} \approx 0$$

Nel caso ideale, il guadagno a alle basse frequenze si massimizza con poli all'origine. Poniamo ad esempio un modello con disturbo a gradino:

$$D(s) = \frac{d_0}{s}$$

e controllore integratore, cioè che introduce un polo all'origine:

$$C(s) = \frac{C_0(s)}{s}$$

In questo caso l'uscita di disturbo $Y_d(s)$ sarà:

$$Y_d(s) = \frac{G_2(s)}{1 + C(s)G_1(s)G_2(s)} \cdot D(s) = \frac{G_2(s)}{1 + C(s)G_1(s)G_2(s)} \cdot \frac{d_0}{s}$$

dal teorema del valor finale varrà:

$$\lim_{t \to +\infty} y_d(t) = \lim_{s \to 0} s \cdot Y_d(s) = \lim_{s \to 0} \frac{sG_2(s)}{1 + C(s)G_1(s)G_2(s)} \cdot \frac{d_0}{s} \approx \lim_{s \to 0} \frac{d_0}{\frac{C_0(s)}{s}G_1(s)} = 0$$

dove si nota che è proprio il polo introdotto dal controllore integratore a rendere stabile il sistema, in quanto l'ultimo limite ha valore definito grazie al termine $\frac{C_0(s)}{s}$. Fosse stata

solo una costante, questo avrebbe avuto un valore definito e quindi si avrebbe avuto un errore pari a:

$$\varepsilon = \frac{d_0}{C_0(s)G_1(s)}$$

Si può quindi dare la regola:

Teorema 1.1: Reiettamento dei disturbi a gradino

Per controllori di tipo 1, o maggiore di 1, si ha l'annullamento dell'effetto del disturbo a gradino.

Quindi affinché a regime venga annullato l'effetto di un disturbo a gradino, occorre che sia presente nella catena diretta, a *monte* del disturbo, un termine integrale. Chiaramente questo vale solo per sistemi stabili.

1.0.2 Errore a regime

Prendiamo lo stesso esempio di prima (quindi con lo stesso controllore integratore $C(s) = \frac{C_0(s)}{s}$), ma poniamo il disturbo D(s) = 0 nullo e prendiamo il riferimento a gradino:

$$R(s) = \frac{R_0}{s}$$

In questo caso l'errore sarà:

$$E(s) = \frac{1}{1 + C(s)G_1(s)G_2(s)} \cdot R(s) = \frac{1}{1 + C(s)G_1(s)G_2(s)} \cdot \frac{R_0}{s}$$

In questo caso, visto che il disturbo interno è nullo e non ci interessa la distinzione fra parti del sistema disturbate e non, prendiamo per il sistema l'unica funzione di trasferimento P(s):

$$P(s) = G_1(s)G_2(s)$$

A questo punto avremo che:

• Per sistemi di tipo 0 (stabili) si ha l'errore a regime:

$$e(t \to +\infty) = \frac{1}{1 + C(0)P(0)} = \frac{1}{1 + k_0}$$

dove k_0 è il guadagno statico in catena diretta, cioè:

$$k_0 = C(0)P(0)$$

• Per sistemi di tipo 1 o > 1 (stabili) si ha invece l'errore a regime:

$$e(t \rightarrow 0) = 0$$

direttamente dal teorema del valore finale, come nell'esempio precedente.

Vediamo quindi di poter dare la regola:

Teorema 1.2: Errore a regime dei riferimenti a gradino

Affinché a regime venga annullato l'errore in risposta ad un ingresso a gradino, occorre che nella catena diretta sia presente un termine integrale.

Notiamo che la posizione di tale termine integrale conta:

- Se il termine integrale è in $G_2(s)$, cioè nella parte del sistema sensibile all'errore, si ha errore nullo ma non reiettamento dell'errore;
- Se il termine integrale è in $G_1(s)$ o nel controllore C(s), quindi a monte dell'errore, si ha errore nullo e reiettamento dell'errore.

Abbiamo quindi che la reiezione dell'errore e il corretto tracciamento del riferimento sono sostanzialmente lo stesso problema dal punto di vista matematico: perché si reietti un errore a gradino o si insegua un riferimento a gradino bisogna avere un polo integratore nella funzione di catena chiusa L(s). Vediamo come questo concetto può essere generalizzato a ingressi di ordine superiore allo 0 (il gradino considerato) finora.

1.0.3 Ingressi canonici di ordine superiore

Consideriamo gli ingressi a gradino "generalizzati" (rampa, parabola, ecc...) **ingressi canonici**. Possiamo estendere quanto detto finora a tali ingressi e ottenere che l'andamento complessivo dell'errore a regime è:

Ingresso $r(t)$	Tipo 0	Tipo 1	Tipo 2
H(t)	$\frac{1}{1+k_0}$	0	0
$t \cdot H(t)$	∞	$\frac{1}{k_1}$	0
$0.5 \cdot t^2 \cdot H(t)$	∞	∞	$\frac{1}{k_2}$

e via dicendo.

Questo criterio viene generalizzato nel cosiddetto principio del modello interno:

Teorema 1.3: Principio del modello interno

Riguardo ai sistemi visti finora vale:

- Affinché il sistema in catena chiusa abbia **errore nullo** a regime in risposta ad un ingresso, occorre che la funzione di trasferimento in catena diretta (cioè la funzione prodotto tra il controllore e il processo) sia in grado di generare un modo uguale al modo del segnale di ingresso.
- Per **reiettare il disturbo** a regime, occorre che il modo caratteristico sia riprodotto nei blocchi posti a monte del punto di immissione del disturbo stesso.

1.0.4 Configurazioni equivalenti per i disturbi

Sfruttando l'algebra dei blocchi possiamo portare il blocco $G_2(s)$ a valle dell'errore sulla catena chiusa, e quindi includere l'errore derivante $D_1(s)$ nella catena chiusa, cioè dire:

Questo è utile in quanto spesso in sistemi reali abbiamo configurazioni del tipo:

Dove individuiamo due termini di disturbo:

- N(s), detto rumore di misura;
- D(s) detto disturbo di carico.

Notiamo inoltre che qui R(s) è il regolatore (cioè il controllore) e non il segnale di riferimento.

In questo caso valgono le relazioni:

• Errore con solo riferimento:

$$E(s) = \frac{1}{1 + R(s)G(s)} Y_{rif}(s)$$

• Controllo con solo riferimento:

$$U(s) = \frac{R(s)}{1 + R(s)G(s)} Y_{rif}(s)$$

• Uscita con solo riferimento:

$$Y = \frac{R(s)G(s)}{1 + R(s)G(s)}$$

• Uscita con solo disturbo di carico:

$$Y(s) = \frac{1}{1 + R(s)G(s)}D(s)$$

• Uscita con solo rumore di misura:

$$Y(s) = \frac{R(s)G(s)}{1 + R(s)G(s)}N(s)$$

dove possiamo comunque studiare separatamente uscite a regime e disturbi grazie al principio di sovrapposizione degli effetti.

In ogni caso, potremo calcolare la risposta complessiva tenendo conto di tutti gli ingressi, risolvendo il sistema:

$$\begin{cases} Y(s) = D(s) + R(s)G(s)E(s) \\ E(s) = Y_{rif}(s) - Y(s) + N(s) \end{cases}$$

da cui sostituendo:

$$Y(s) = D(s) + R(s)G(s) [Y_{rif}(s) - Y(s) + N(s)]$$

$$= D(s) + R(s)G(s)Y_{rif}(s) - R(s)G(s)Y(s) + R(s)G(s)N(s)$$

$$\implies Y(s) [1 + R(s)G(s)] = D(s) + R(s)G(s)Y_{rif}(s) + R(s)G(sN(s))$$

$$\implies Y(s) = \frac{D(s) + R(s)G(s) [Y_{rif}(s) + N(s)]}{1 + R(s)G(s)}$$

Da queste relazioni ricaviamo due valori di proporzionalità che sono:

• **Sensitività**, a cui è proporzionale l'effetto del disturbo D(s):

$$S(s) = \frac{1}{1 + R(s)G(s)}$$

• Sensitività complementare: a cui sono proporzionali gli effetti del riferimento $Y_{rif}(s)$ e del rumore N(s):

$$T(s) = \frac{R(s)G(s)}{1 + R(s)G(s)}$$

da cui chiaramente:

$$S(s) + T(s) = \frac{1}{1 + R(s)G(s)} + \frac{R(s)G(s)}{1 + R(s)G(s)} = 1$$

e si può riscrivere Y(s) come:

$$Y(s) = \frac{1}{1 + R(s)G(s)}D(s) + \frac{R(s)G(s)}{1 + R(s)G(s)}[Y_{rif}(s) + N(s)]$$
$$= S(s) \cdot D(s) + T(s) \cdot [Y_{rif}(s) + N(s)]$$

Abbiamo poi che il termine che compare nella sensitività e nella sensitività complementare:

$$L(s) = R(s)G(s)$$

viene detta **funzione di anello**, e che tutte le funzioni di trasferimento di anello hanno per denominatore 1+L(s), per cui la stabilità di questa determina la stabilità di tutte le altre.

1.0.5 Specifiche della risposta a gradino

Definiamo quindi le seguenti caratteristiche d interesse per la risposta al gradino (che avevamo già visto nel dettaglio a 12.1.2 e poi in 14.1):

- 1. Tempo di salita T_s , il tempo impiegato dall'uscita per passare dal 10% al 90% (o dal 95% al 5%) del valore di riferimento;
- 2. Tempo di assestamento, T_a , il tempo oltre il quale l'uscita si discosta meno del 5% rispetto al valore di riferimento (con specifiche più restrittive si considera anche 2%);
- 3. Tempo di ritardo T_r , tempo richiesto perché l'uscita raggiunga il 50% del valore di riferimento;
- 4. Istante di massima elongazione T_m , il punto dove l'uscita raggiunge il picco massimo di sovraelongazione;
- 5. Massima sovraelongazione S(%), valore del massimo scostamento rispetto al valore di regime, solitamente espresso in percentuale rispetto al valore di regime stesso.

1.0.6 Specifiche della risposta armonica

Ci possiamo aspettare specifiche anche nel domino della frequenza. Definiamo innanzitutto la **banda passante**:

Definizione 1.1: Banda passante

La banda passante a 3 dB è la regione determinata dalle frequenze per cui il diagramma di modulo di Bode si attenua di un fattore $\sqrt{2}$, cioè di 3 dB rispetto al valore di riferimento W(s)

Possiamo quindi definire alcune specifiche di risposta in frequenza:

• Filtro passa basso: questo è sostanzialmente un filtro che riproduce il segnale di ingresso in uscita solo se la sua frequenza è bassa, sotto una certa soglia, detta frequenza di taglio ω_0 .

Chiaramente questo è il caso ideale, mentre nella pratica si ha un andamento "smussato" attorno alla frequenza di taglio, e nel punto di banda passante il filtro passa basso ha trasferimento di -3 dB rispetto al trasferimento a frequenza bassa ideale |W(0)|.

Vedremo che la maggior parte dei controllori sono essenzialmente filtri passa basso.

• Filtro passa alto: di contro, questo è un filtro che riproduce il segnale di ingresso in uscita solo se la sua frequenza è alta, sopra una certa soglia, chiamata sempre frequenza di taglio ω_0 .

Anche qui si ha una modellizzazione ideale che si traduce in un'implementazione "smussata", dove nel punto di banda passante il filtro passa alto ha trasferimento di -3 dB rispetto al trasferimento a frequenza alta ideale $|W(\infty)|$.

• Filtro passa banda: la combinazione di un filtro passa basso e di un filtro passa alto dà un filtro passa banda. La banda passante in questo caso sarà compresa fra due frequenze di taglio ω_0 e ω_1 , punti dove il grafico del modulo di Bode tocca il punto -3 dB (quindi $\frac{1}{\sqrt{2}}$ rispetto a un ipotetico punto posto fra ω_0 e ω_1 , assunta fra questi una regione abbastanza grande perché la risposta arrivi a regime).

Riguardo a tutti i tipi di filtri possiamo quindi definire la **risonanza** o *fattore Q*, determinata dal valore di smorzamento ξ del sistema che genera il filtro.

Avevamo visto nel dettaglio in 18.1.3 come determinare il punto ω_R e il valore del picco di risonanza M_R (chiamandoli con nomi diversi) di un sistema con poli complessi coniugati (cioè di un filtro passa basso risonante).

1.0.7 Legami globali

I legami globali sono legami fra funzione tempo, risposta armonica e funzione di Laplace su tutto il dominio.

Ne riportiamo il più interessante, che afferma che per un sistema passa basso:

$$B_{3dB} \cdot T_s \approx 0.35$$

dove B_{3dB} è la larghezza della regione determinata dagli estremi della banda passante, cioè semplicemente il valore della banda passante a 3 dB del filtro passa basso.

In sostanza, questa relazione afferma che più si allarga la banda passante, più diventa rapida la risposta del sistema nel dominio tempo.