

# UNIVERSITY INSTITUTE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

NUMERICAL METHODS AND OPTIMIZATION USING PYTHON COURSE CODE- 22CSH-259/22ITH-259

DISCOVER . LEARN . EMPOWER



## **CHAPTER-1.1**

### **Introduction to Python Programming for Numerical Computation:**

Python is a versatile programming language widely used in various domains, including numerical computation and scientific computing. Its simplicity, readability, and a vast ecosystem of libraries make it an excellent choice for numerical tasks. In this introduction, we'll cover essential aspects of Python for numerical computation.





## **Getting Started:**

### Installation:

Visit the official Python website to download and install Python.

Consider using package managers like Anaconda that come bundled with popular numerical computing libraries.



### Why Python?

### Readability and ease-of-maintenance

- Python focuses on well-structured easy to read code
- Easier to understand source code.





### **Extensibility with libraries**

• Large base of third-party libraries that greatly extend functionality. Eg., NumPy, SciPy etc.





### **Python Interpreter**

The system component of Python is the interpreter.

• The interpreter is independent of your code and is required to execute your code.

Two major versions of interpreter are currently available:

- Python 2.7.X (broader support, legacy libraries)
- Python 3.6.X (newer features, better future support)



### **Variables and Objects**

Variables are the basic unit of storage for a program.

- Variables can be created and destroyed.
- At a hardware level, a variable is a reference to a location in memory.
- Programs perform operations on variables and alter or fill in their values.
- An object can therefore be considered a more complex variable.





### Classes vs. Objects

- Every Object belongs to a certain class.
- Classes are abstract descriptions of the structure and functions of an object.
- Objects are created when an instance of the class is created by the program.
- For example, "Fruit" is a class while an "Apple" is an object.





### What is an Object?

- Almost everything is an object in Python, and it belongs to a certain class.
- Python is dynamically and strongly typed:
- Opnamic: Objects are created dynamically when they are initiated and assigned to a class.
- Strong: Operations on objects are limited by the type of the object.
- Every variable you create is either a built-in data type object OR a new class you created





# THANKYOU





# UNIVERSITY INSTITUTE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

NUMERICAL METHODS AND OPTIMIZATION USING PYTHON COURSE CODE- 22CSH-259/22ITH-259 DR. HARDEEP KAUR (E15828)

DISCOVER . LEARN . EMPOWER



Core data types: • Numbers • Strings • Lists • Dictionaries • Tuples • Files • Sets

#### **Numbers**

- Can be integers, decimals (fixed precision), floating points (variable precision), complex numbers etc.
- Simple assignment creates an object of number type such as:
- a = 3 b = 4.56 Supports simple to complex arithmetic operators. Assignment via numeric operator also creates a number object:
- c = a / b a, b and c are numeric objects.
- Try dir(a) and dir(b). This command lists the functions available for these objects.



## **Strings**

- A string object is a 'sequence', i.e., it's a list of items where each item has a defined position. Each character in the string can be referred, retrieved and modified by using its position.
- This order id called the 'index' and always starts with 0.

```
>>> S = 'Hello'
>>> len(S)
5
>>> S[0]
'H'
>>> S[4]
'o'
>>> S[5]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError: string index out of range
```

```
>>> S[-1]
'o'
>>> S[3:]
'lo'
>>> S[2:5]
'llo'
```



### **Strings:**

• String objects support concatenation and repetition operations.

```
>>> S + 'World!'
'HelloWorld!'
>>> S + ' World!'
'Hello World!'
>>> S * 4
'HelloHelloHello'
>>> S + ' World! ' * 4
'Hello World! World! World! '
>>> (S + ' World! ') * 4
'Hello World! Hello World! Hello World! '
```





### Lists

- List is a more general sequence object that allows the individual items to be of different types.
- Equivalent to arrays in other languages.
- Lists have no fixed size and can be expanded or contracted as needed.
- Items in list can be retrieved using the index.
- Lists can be nested just like arrays, i.e., you can have a list of lists.

### Simple list:

```
>>> L = [123, 3.14, 'Hello']
>>> L
[123, 3.1400000000000001, 'Hello'] >>> L[0]
```

### Nested list:

```
>>> DDL = [[1,2,3],
... [4,5,6],
... [7,8,9]]
>>> DDL
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
```





### **Dictionaries:**

- Dictionaries are unordered mappings of 'Name: Value' associations.
- Comparable to hashes and associative arrays in other languages.
- Intended to approximate how humans remember associations

```
>>> D = {'name':'apple','color':'red','taste':'sweet','number':'5'}
>>> D['name']
'apple'
>>> D
{'color': 'red', 'taste': 'sweet', 'name': 'apple', 'number': '5'}
```



### Files:

• File objects are built for interacting with files on the system. Same object used for any file type. User has to interpret file content and maintain integrity

```
>>> f = open('test.txt','w')
>>> f.write('Hello\t')
>>> f.write('world!\n')
>>> f.close()
>>> f = open('test.txt')
>>> text = f.read()
>>> text
'Hello\tworld!\n'
>>> print(text)
Hello world!
```





### Mutable vs. Immutable

- Numbers, strings and tuples are immutable i.,e cannot be directly changed.
- Lists, dictionaries and sets can be changed in place.

```
>>> S[0]
'H'
>>> S[0] = 'h'
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment
>>> L[1]
3.140000000000000001
>>> L[1] = 3.145
```





## **Tuples**

• Tuples are immutable lists. • Maintain integrity of data during program execution.



### Sets

- Special data type introduced since Python 2.4 onwards to support mathematical set theory operations.
- Unordered collection of unique items.
- Set itself is mutable, BUT every item in the set has to be an immutable type.
- So, sets can have numbers, strings and tuples as items but cannot have lists or dictionaries as items.





# THANKYOU





# UNIVERSITY INSTITUTE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

NUMERICAL METHODS AND OPTIMIZATION USING PYTHON COURSE CODE- 22CSH-259/22ITH-259

DISCOVER . LEARN . EMPOWER



### **Basic Python syntax**

Python is known for its simplicity and readability, making it an excellent choice for beginners and experienced developers alike.

1. Comments: Comments start with the # symbol and are ignored by the Python interpreter.

python
# This is a comment





### 2. Variables and Data Types:

Variables don't require explicit declaration and dynamically change types.

```
x = 5  # Integer
y = 3.14  # Float
name = "Python"  # String
is_true = True  # Boolean
```

### 3. Print Statement:

Use print() to display output.

```
python
print("Hello, World!")
```





#### 4. Indentation:

Python uses indentation to indicate blocks of code. It's crucial for readability and structure.

```
python

if x > 0:
    print("Positive")

else:
    print("Non-positive")
```

#### 5. Control Flow:

if, elif, and else statements for conditional execution. for and while loops for iteration.

```
# Example of a for loop
for i in range(5):
    print(i)

# Example of a while loop
counter = 0
while counter < 3:
    print("Counting:", counter)
    counter += 1</pre>
```



### **6. Functions:**

Define functions using the def keyword.

```
python

def greet(name):
    return "Hello, " + name + "!"

result = greet("Alice")
print(result)
```





### 7. Lists:

A versatile data structure for holding ordered elements.

```
python
numbers = [1, 2, 3, 4, 5]
```

### 8. Dictionaries:

Store data as key-value pairs.

```
python

person = {'name': 'John', 'age': 30, 'city': 'New York'}
```





### 9. Tuples:

Similar to lists, but immutable.

```
python

coordinates = (3, 4)
```

### 10. Strings:

Manipulate and concatenate strings.

```
python

message = "Hello"
print(message + " World")
```





### 11. List Comprehensions:

A concise way to create lists.

```
squares = [x**2 for x in range(5)]
```

### 12. Error Handling:

Use try, except blocks for handling exceptions.

```
try:
    result = 10 / 0
except ZeroDivisionError:
    print("Cannot divide by zero!")
```



### 13. Classes:

Define classes using the class keyword.

```
python

class Dog:
    def __init__(self, name):
        self.name = name

    def bark(self):
        print("Woof!")
```

### **14. Importing Modules:**

Import external libraries or modules using import.

```
python

import math

result = math.sqrt(25)
```





# 





# UNIVERSITY INSTITUTE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

NUMERICAL METHODS AND OPTIMIZATION USING PYTHON COURSE CODE- 22CSH-259/22ITH-259 DR. HARDEEP KAUR (E15828)

DISCOVER . LEARN . EMPOWER



### **Control Structures**

- Python has thought about these issues, and offers solutions in the form of control structures:
- The if structure that allows to control if a block of instruction need to be executed, and the for structure (and equivalent), that repeats a set of instructions for a preset number of times.





Logical operators Most of the control structure we will see in this chapter test if a condition is true or false. For programmers, "truth" is easier to define in terms of what is not truth! In Python, there is a short, specific list of false values:

- An empty string, "", is false
- The number zero and the string "0" are both false.
- An empty list, (), is false.
- The singleton None (i.e. no value) is false. Everything else is true



### **Comparing numbers and strings**

We can test whether a number is bigger, smaller, or the same as another. All the results of these tests are TRUE or FALSE. Table lists the common comparison operators available in Python.

| comparison | Corresponding question                       |  |
|------------|----------------------------------------------|--|
| a == b     | Is a equal to b?                             |  |
| a != b     | Is a not equal to b?                         |  |
| a > b      | Is a greater than b?                         |  |
| $a \ge b$  | Is a greater than or equal to b?             |  |
| $a \le b$  | Is a less than b?                            |  |
| $a \le b$  | Is a less than or equal to b?                |  |
| a in b     | Is the value a in the list (or tuple) b?     |  |
| a not in b | Is the value a not in the list (or tuple) b? |  |



### **Combining logical operators**

We can join together several tests into one, by the use of the logical operator and and or.

| a and b | True if both a and b are true.            |  |
|---------|-------------------------------------------|--|
| a or b  | True if either a, or b, or both are true. |  |
| not a   | True if a is false.                       |  |



### **Conditional structures**

- If
- It is used to protect a block of code that only needs to be executed if a prior condition is met (i.e. is TRUE).

>>> if condition: code block





### Else

• When making a choice, sometimes you have two different things you want to do, depending upon the outcome of the conditional. This is done using an if ...else structure that has the following format:

if condition:

block code 1

else:

block code 2



### Loops

loops allow you to do that. Every loop has three main parts:

• An entry condition that starts the loop • The code block that serves as the "body" of the loop





### For loop

The most basic type of determinate loop is the for loop. Its basic structure is:

for variable in listA: code block

```
>>> names=["John","Jane","Smith"]
>>> j=0
>>> for name in names:
    j+=1
    print "The name number ",j," in the list is ",name
```





### While loop

• Sometimes, we face a situation where neither Python nor we know in advance how many times a loop will need to execute. This is the case for example when reading a file: we do not know in advance how many lines it has. Python has a structure for that: the while loop:

```
while TEST;
code block;
```

• The while structure executes the code block as long as the TEST expression evaluates as TRUE. For example, here is a program that prints the number between 0 and N, where N is input:

```
>>> N=int(raw_input("Enter N --> "))
>>> print "Counting numbers from 0 to ",N,"\n"
i=0
while i < N+1;
print i,"\n"
i+=1
```



## THANKYOU





# UNIVERSITY INSTITUTE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

NUMERICAL METHODS AND OPTIMIZATION USING PYTHON COURSE CODE- 22CSH-259/22ITH-259

DISCOVER . LEARN . EMPOWER



### **Basic Python for Calculus and Algebra.**

- <u>Linear algebra</u> is a branch of mathematics that deals with linear equations and their representations using <u>vectors</u> and <u>matrices</u>
- Understanding Vectors, Matrices, and the Role of Linear Algebra
- A **vector** is a mathematical entity used to represent physical quantities that have both magnitude and direction.
- Matrices are used to represent vector transformations, among other applications.
- In Python, <u>NumPy</u> is the <u>most used library</u> for working with matrices and vectors

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$





- Python
- In [1]: import numpy as np
- In [2]: np.array([[1, 2], [3, 4], [5, 6]])
- Out[2]:
- array([[1, 2],
- [3, 4],
- [5, 6]])



A **linear system** or, more precisely, a system of linear equations, is a set of equations linearly relating to a set of variables. Here's an example of a linear system relating to the variables  $x_1$  and  $x_2$ :

$$\begin{cases} 3x_1 + 2x_2 = 12 \\ 2x_1 - 1x_2 = 1 \end{cases}$$

• It's common to write linear systems using matrices and vectors. For example, you can write the previous system as the following **matrix product**:

$$\left[\begin{array}{cc}
3 & 2 \\
2 & -1
\end{array}\right] \cdot \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 12 \\ 1 \end{array}\right]$$

• you can notice the elements of matrix **A** correspond to the coefficients that multiply  $x_1$  and  $x_2$ . Besides that, the values in the right-hand side of the original equations now make up vector **b**.



### **Using Determinants to Study Linear Systems**

- System with two equations given by  $x_1 + x_2 = 2$  and  $x_1 + x_2 = 3$  is inconsistent and has no solution.
- This happens because no two numbers  $x_1$  and  $x_2$  can add up to both 2 and 3 at the same time.
- system with two equivalent equations, such as  $x_1 + x_2 = 2$  and  $2x_1 + 2x_2 = 4$ , then you can find an infinite number of solutions, such as  $(x_1=1, x_2=1)$ ,  $(x_1=0, x_2=2)$ ,  $(x_1=2, x_2=0)$ , and so on.
- A **determinant** is a number, calculated using the <u>matrix of coefficients</u>, that tells you if there's a solution for the system.



- Because you'll be using scipy.linalg to calculate it, you don't need to care much about the details on how to make the calculation. However, keep the following in mind:
- If the determinant of a coefficients matrix of a linear system is **different from zero**, then you can say the system has a **unique solution**.
- If the determinant of a coefficients matrix of a linear system is **equal to zero**, then the system may have either **zero solutions** or an **infinite number of solutions**.
- Now that you have this in mind, you'll learn how to solve linear systems using matrices.
- Using Matrix Inverses to Solve Linear Systems



- To understand the idea behind the inverse of a matrix, start by recalling the concept of the **multiplicative inverse** of a number. When you multiply a number by its inverse, you get 1 as the result. Take 3 as an example. The inverse of 3 is 1/3, and when you multiply these numbers, you get  $3 \times 1/3 = 1$ .
- With square matrices, you can think of a similar idea. However, instead of 1, you'll get an **identity matrix** as the result.

$$\mathbf{I}_2 = \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \quad \mathbf{I}_3 = \left[ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

- The identity matrix has an interesting property: when multiplied by another matrix **A** of the same dimensions, the obtained result is **A**.
- Recall that this is also true for the number 1, when you consider the multiplication of numbers.



This allows you to solve a linear system by following the same steps used to solve an equation. As an example, consider the following linear system, written as a matrix product:

$$\underbrace{\begin{bmatrix} 3 & 2 \\ 2 & -1 \end{bmatrix}}_{\mathbf{A}} \cdot \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{\mathbf{x}} = \underbrace{\begin{bmatrix} 12 \\ 1 \end{bmatrix}}_{\mathbf{b}}$$

• By calling  $A^{-1}$  the inverse of matrix A, you could multiply both sides of the equation by  $A^{-1}$ , which would give you the following result:

$$\begin{aligned} \mathbf{A}^{-1}\mathbf{A}\mathbf{x} &= \mathbf{A}^{-1}\mathbf{b} \\ \mathbf{I}\mathbf{x} &= \mathbf{A}^{-1}\mathbf{b} \\ \mathbf{x} &= \mathbf{A}^{-1}\mathbf{b} \end{aligned}$$



- This way, by using the inverse,  $A^{-1}$ , you can obtain the solution x for the system by calculating  $A^{-1}b$ .
- It's worth noting that while non-zero numbers always have an inverse, not all matrices have an inverse. When the system has no solution or when it has multiple solutions, the determinant of  $\bf A$  will be zero, and the inverse,  $\bf A^{-1}$ , won't exist.
- Now you'll see how to use Python with scipy.linalg to make these calculations.
- Calculating Inverses and Determinants With scipy.linalg





- You can calculate matrix inverses and determinants using scipy.linalg.inv() and scipy.linalg.det().
- Recall that the linear system for this problem could be written as a matrix product:

$$\underbrace{\begin{bmatrix}
1 & 9 & 2 & 1 & 1 \\
10 & 1 & 2 & 1 & 1 \\
1 & 0 & 5 & 1 & 1 \\
2 & 1 & 1 & 2 & 9 \\
2 & 1 & 2 & 13 & 2
\end{bmatrix}}_{\mathbf{A}} \cdot \underbrace{\begin{bmatrix}
x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5
\end{bmatrix}}_{\mathbf{x}} = \underbrace{\begin{bmatrix}
170 \\ 180 \\ 140 \\ 180 \\ 350
\end{bmatrix}}_{\mathbf{b}}$$

- Previously, you used scipy.linalg.solve() to obtain the solution 10, 10, 20, 20, 10 for the variables  $x_1$  to  $x_5$ , respectively.
- But as you've just learned, it's also possible to use the inverse of the coefficients matrix to obtain vector **x**, which contains the solutions for the problem.
- You have to calculate  $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$ , which you can do with the following program:



#### **Python**

```
1In [1]: import numpy as np
2 ...: from scipy import linalg
3
4In [2]: A = np.array(
5 ...: [
6 ...: [1, 9, 2, 1, 1],
7 ...: [10, 1, 2, 1, 1],
8 ...: [1, 0, 5, 1, 1],
9 ...: [2, 1, 1, 2, 9],
10 ...: [2, 1, 2, 13, 2],
11 ...:
12 ...:)
13
```

```
14In [3]: b = np.array([170, 180, 140, 180,
350]).reshape((5, 1))
15
16In [4]: A_inv = linalg.inv(A)
17
18 \text{In } [5]: x = A_{inv} @ b
19 ...: x
20Out[5]:
21array([[10.],
       [10.],
23
       [20.],
24
       [20.],
       [10.]]
25
```



• Here's a breakdown of what's happening:

- Lines 1 and 2 import NumPy as np, along with linalg from scipy. These imports allow you to use linalg.inv().
- Lines 4 to 12 create the coefficients matrix as a NumPy array called A.
- Line 14 creates the independent terms vector as a NumPy array called b. To make it a column vector with five elements, you use .reshape((5, 1)).
- Line 16 uses linalg.inv() to obtain the inverse of matrix A.
- Lines 18 and 19 use the @ operator to perform the matrix product in order to solve the linear system characterized by A and b. You store the result in x, which is printed.
- You get exactly the same solution as the one provided by scipy.linalg.solve(). Because this system has a unique solution, the determinant of matrix **A** must be different from zero. You can confirm that it is by calculating it using det() from scipy.linalg:



## 

