The curse of dimensionality

DIMENSIONALITY REDUCTION IN PYTHON

Jeroen Boeye

Machine Learning Engineer,
Faktion

From observation to pattern

City	Price
Berlin	2
Paris	3

From observation to pattern

City	Price
Berlin	2
Paris	3

From observation to pattern

City	Price
Berlin	2.0
Berlin	3.1
Berlin	4.3
Paris	3.0
Paris	5.2
•••	•••

Building a city classifier - data split

Separate the feature we want to predict from the ones to train the model on.

```
y = house_df['City']

X = house_df.drop('City', axis=1)
```

Perform a 70% train and 30% test data split

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
```

Building a city classifier - model fit

Create a Support Vector Machine Classifier and fit to training data

```
from sklearn.svm import SVC

svc = SVC()

svc.fit(X_train, y_train)
```

Building a city classifier - predict

```
from sklearn.metrics import accuracy_score
print(accuracy_score(y_test, svc.predict(X_test)))
```

0.826

print(accuracy_score(y_train, svc.predict(X_train)))

0.832

Adding features

City	Price
Berlin	2.0
Berlin	3.1
Berlin	4.3
Paris	3.0
Paris	5.2
•••	•••

Adding features

City	Price	n_floors	n_bathroom	surface_m2
Berlin	2.0	1	1	190
Berlin	3.1	2	1	187
Berlin	4.3	2	2	240
Paris	3.0	2	1	170
Paris	5.2	2	2	290
•••	•••	•••	•••	•••

Let's practice!

DIMENSIONALITY REDUCTION IN PYTHON

Features with missing values or little variance

DIMENSIONALITY REDUCTION IN PYTHON

Jeroen Boeye

Machine Learning Engineer,
Faktion

Creating a feature selector

```
print(ansur_df.shape)
(6068, 94)
from sklearn.feature_selection import VarianceThreshold
sel = VarianceThreshold(threshold=1)
sel.fit(ansur_df)
mask = sel.get_support()
```

```
array([ True, True, ..., False, True])
```


print(mask)

Applying a feature selector

```
print(ansur_df.shape)
```

```
(6068, 94)
```

```
reduced_df = ansur_df.loc[:, mask]
print(reduced_df.shape)
```

(6068, 93)

Variance selector caveats

buttock_df.boxplot()

Normalizing the variance

```
from sklearn.feature_selection import VarianceThreshold
sel = VarianceThreshold(threshold=0.005)
sel.fit(ansur_df / ansur_df.mean())
mask = sel.get_support()
reduced_df = ansur_df.loc[:, mask]
print(reduced_df.shape)
```

```
(6068, 45)
```


Missing value selector

	Name	Type 1	Type 2	Total	HP	Attack	Defense
	Bulbasaur	Grass	Poison	318	45	49	49
	Ivysaur	Grass	Poison	405	60	62	63
	Venusaur	Grass	Poison	525	80	82	83
(Charmander	Fire	NaN	309	39	52	43
	Charmeleon	Fire	NaN	405	58	64	58

Missing value selector

	Name	Type 1	T	ype 2	Total	HP	Attack	Defense
	Bulbasaur	Grass	Poison		318	45	49	49
	Ivysaur	Grass	Poison		405	60	62	63
	Venusaur	Grass	Р	oison	525	80	82	83
C	Charmander	Fire		NaN	309	39	52	43
(Charmeleon	Fire		NaN	405	58	64	58

Identifying missing values

pokemon_df.isna()

Name	Type 1	Type 2	Total	HP	Attack	Defense
False	False	False	False	False	False	False
False	False	False	False	False	False	False
False	False	False	False	False	False	False
False	False					False
False	False	True	False	False	False	False

Counting missing values

```
pokemon_df.isna().sum()
```

```
Name 0
Type 1 0
Type 2 386
Total 0
HP 0
Attack 0
Defense 0
dtype: int64
```


Counting missing values

```
pokemon_df.isna().sum() / len(pokemon_df)
```

```
Name 0.00
Type 1 0.00
Type 2 0.48
Total 0.00
HP 0.00
Attack 0.00
Defense 0.00
dtype: float64
```


Applying a missing value threshold

```
# Fewer than 30% missing values = True value
mask = pokemon_df.isna().sum() / len(pokemon_df) < 0.3
print(mask)</pre>
```

```
Name True
Type 1 True
Type 2 False
Total True
HP True
Attack True
Defense True
dtype: bool
```

Applying a missing value threshold

reduced_df = pokemon_df.loc[:, mask]

reduced_df.head()

Name	Type 1	Total	HP	Attack	Defense
Bulbasaur	Grass	318	45	49	49
lvysaur	Grass	405	60	62	63
Venusaur	Grass	525	80	82	83
Charmander	Fire	309	39	52	43
Charmeleon	Fire	405	58	64	58

Let's practice

DIMENSIONALITY REDUCTION IN PYTHON

Pairwise correlation

DIMENSIONALITY REDUCTION IN PYTHON

Jeroen Boeye

Machine Learning Engineer,
Faktion

Pairwise correlation

sns.pairplot(ansur, hue="gender")

Pairwise correlation

sns.pairplot(ansur, hue="gender")

Correlation coefficient

Correlation coefficient

	weight_lbs	weight_kg	height_in
weight_lbs	1.00	1.00	0.47
weight_kg	1.00	1.00	0.47
height_in	0.47	0.47	1.00

	weight_lbs	weig	ht_kg	heig	ht_in
weight_lbs	1.00		1.00		0.47
weight_kg	1.00		1.00		0.47
height_in	0.47		0.47		1.00

	weight_lbs	weight_kg	height_in
weight_lbs	1.00	1.00	0.47
weight_kg	1.00	1.00	0.47
height_in	0.47	0.47	1.00

Visualizing the correlation matrix

```
cmap = sns.diverging_palette(h_neg=10,
                                                                  1.00
                                                                             1.00
                                                                                       0.47
                                  h_pos=240,
                                                    weight lbs
                                  as_cmap=True)
sns.heatmap(weights_df.corr(), center=0,
                                                                  1.00
                                                                             1.00
                                                                                       0.47
                                                    weight_kg
                                                                                                 -0.7
              cmap=cmap, linewidths=1,
              annot=True, fmt=".2f")
                                                                                                 -0.6
                                                                                       1.00
                                                                            0.47
                                                                  0.47
                                                      height_in
                                                                    weight_lbs
                                                                              weight_kg
                                                                                        height_in
```


Visualizing the correlation matrix

```
array([[ True, True, True],
[False, True, True],
[False, False, True]])
```

Visualizing the correlation matrix

Visualising the correlation matrix

Let's practice!

DIMENSIONALITY REDUCTION IN PYTHON

Removing highly correlated features

DIMENSIONALITY REDUCTION IN PYTHON

Jeroen Boeye

Machine Learning Engineer,
Faktion

Highly correlated data

Highly correlated features

Removing highly correlated features

```
# Create positive correlation matrix
corr_df = chest_df.corr().abs()
# Create and apply mask
mask = np.triu(np.ones_like(corr_df, dtype=bool))
tri_df = corr_matrix.mask(mask)

tri_df
```

	Suprasternale height	Cervicale height	Chest height
Suprasternale height	NaN	NaN	NaN
Cervicale height	0.983033	NaN	NaN
Chest height	0.956111	0.951101	NaN

Removing highly correlated features

```
# Find columns that meet treshold
to_drop = [c for c in tri_df.columns if any(tri_df[c] > 0.95)]
print(to_drop)
```

```
['Suprasternale height', 'Cervicale height']
```

```
# Drop those columns
reduced_df = chest_df.drop(to_drop, axis=1)
```


Feature selection

Feature extraction

feature 1	feature 2	feature 3	new feature 1		new feature 2		

Correlation caveats - Anscombe's quartet

Anscombe's quartet

Correlation caveats - causation

Let's practice!

DIMENSIONALITY REDUCTION IN PYTHON

