Name: Pete Irwin

Topic: Homework Three

Date: {{date:MMM d, YYYY}}

Course: C241

Question 1 (a)

Claim: $(P \land Q) \rightarrow R, P \land S, \neg \neg Q \vdash R$

PF:

Assume $P \wedge S$ and $\neg \neg Q$,

This would imply Q (dbl. neg)

This would imply P and S (simp.)

Now $P \wedge Q$ (conj.)

Since $(P \land Q)$ is true, R is true (appl.)

Question 1 (b)

Claim: $(K \vee L) \rightarrow N, K \wedge M \vdash N \wedge M$

PF:

Assume $K \wedge M$,

This would imply M and K (simp.)

 $(K \vee L)$ now holds (weak.)

Which implies N (appl.)

From N, we derive $N \wedge M$ (conj.)

Question 1 (c)

Claim: $A \land \neg \neg B \vdash B \lor (A \rightarrow \neg C)$

PF:

Assume $A \land \neg \neg B$

This would imply A and $\neg\neg B$ (simp.)

 $\neg \neg B$ would imply B (dbl. neg)

B would imply $B \lor (A \to \neg C)$ (weak.)

Question 1 (d)

Claim: $(A \wedge B) \rightarrow C, B, A \wedge \neg D \vdash C \wedge \neg D$

PF:

Assume $A \wedge \neg D$ and BThis would imply A and $\neg D$ (simp.) $(A \wedge B)$ holds (conj.) Which implies C (appl.) C would then imply $C \wedge \neg D$ (conj.)

Question 1 (e)

Claim $(A \land B) \rightarrow C, B \vdash (A \land \neg D) \rightarrow (C \land \neg D)$

PF: (Direct Proof)

Assume $(A \wedge B)$ and $\neg D$ This implies A and B (simp.) And implies C (appl.) With $\neg D$, we see that $(A \wedge \neg D)$ (conj.) Aswell as $(C \wedge \neg D)$ (conj.) Which concludes $(A \wedge \neg D) \rightarrow (C \wedge \neg D)$ (dir. pf)

Question 1 (f)

Claim: $\neg P \rightarrow (Q \land R) \vdash (\neg P \land S) \rightarrow (R \land S)$

PF:

Assume $\neg P$ and S $\neg P$ would imply $(Q \land R)$ (appl.) Which would imply Q and R (simp.) S would imply $(\neg P \land S)$ (conj.) And would also imply $(R \land S)$ (conj.) These truths would imply $(\neg P \land S) \rightarrow (R \land S)$ (dir. pf)

Question 1 (g)

Claim: $X \wedge (X \rightarrow (Z \wedge Y)) \vdash X \wedge Y$

PF: Direct Proof

Assume $X \wedge (X \to (Z \wedge Y))$ Then X and $(X \to (Z \wedge Y))$ (simp.) Since X, this would imply $(Z \wedge Y)$ (appl.)

```
Which would then imply Y and Z (simp.)
Since X and Y, (X \wedge Y) holds (conj.)
```

Question 1 (h)

Claim: $\vdash (X \land (X \rightarrow (Z \land Y))) \rightarrow (X \land Y)$

PF:

Assume $(X \wedge Y)$

This would imply X and Y (simp.)

We can then imply $(Z \wedge Y)$ (appl.)

Which would verify $X \to (Z \land Y)$ (dir. pf)

Now we can say that $X \wedge (X \to (Z \wedge Y))$ (conj.)

Which concludes $(X \land (X \rightarrow (Z \land Y))) \rightarrow (X \land Y)$ (dir. pf)

Question 1 (i)

Claim: $P \wedge Q \vdash \neg (P \rightarrow \neg Q)$

PF:

Assume $(P \rightarrow \neg Q)$, and $P \wedge Q$

 $P \wedge Q$ implies P and Q (simp.)

And P would imply $\neg Q$ (appl.)

Q and $\neg Q$ cannot stand, therefore we get $\neg (P \to \neg Q)$ (condic.)

Question 1 (j)

Claim: $(W \wedge X) \rightarrow \neg Y, X \vdash \neg (W \wedge Y)$

PF:

Assume $(W \wedge Y)$ and X

This implies W and Y (simp.)

And now $(W \wedge X)$ (conj.)

Which implies $\neg Y$ (appl.)

Y and $\neg Y$ cannot stand, therefore we get $\neg (W \land Y)$ (condic.)

Question 2

Claim: $P \rightarrow \neg Q, \neg Q \vdash \neg \neg P$

PF:

Assume $\neg Q$, $\neg (P \rightarrow \neg Q)$, and $\neg \neg P$

We can see P (dbl. neg)

Now P o
eg Q (dir pf.)

Which implies $(P \to \neg Q) \land \neg (P \to \neg Q)$ (conj.)

Since this is always false, the claim is disproven