CS2040S Data Structures and Algorithms

Augmented Trees!

Puzzle of the Week: Prime Cubes

A cube has eight vertices.

Assign a prime number to each vertex.

A FaceSum is the sum of the four vertices on a face.

Example: all FaceSums = 18

Can you find an assignment of prime numbers so that all six FaceSums are equal?

Where we are...

Dictionaries

Binary search trees

Tries

Balanced search trees

- AVL trees
- Scapegoat Trees
- B-trees

Admin

Coursemology Survey

- Anonymous
- Goal: to understand how things are going
- Goal: calibration
- Goal: feedback to TAs and tutors.
- Goal: feedback to me!

Appreciate constructive feedback!

Also appreciate some understanding when things haven't gone perfectly. Remember, the tutors are *also* students with problem sets, midterms, etc.

Midterm

Thurs. March 10 6:30pm

- Location: MPSH
- < 50 students / rooms TBA</p>
- 13+ rooms

Bring to quiz:

- One double-sided sheet of paper with any notes you like.
- Pens/pencils.
- You may not use anything else. (No calculators, no phones, etc.)

Midterm

Midterm covers everything through the end of this week.

Practice Material:

- Posted on Coursemology
- Beware previous years were not necessarily the same as this year.

What have we done so far?

Part I: Organizing your Data

Range trees

Interval trees

Order statistics

AVL

B-trees

Binary Search

selectionsort

So much material?

BubbleSort

InsertionSort

PancakeSort

QuickSelect

QuickSort BogoSort

Reversalsort

MergeSort

Binary tree

Tries

CardFlipTrees Hash table

Random Permutations

Basic Theory: Key Topics

Asymptotic notation (big-O, etc.)

Simple recurrences

Asymptotic analysis

Basic probability (e.g., CS1231 review)

Key Algorithms

Binary Search

Balanced binary trees

Augmented trees

Hash table (introduction, Wednesday)

Key Ideas

Basic strategies for solving problems

Invariants

Trade-offs: how to choose which data structure

Augmenting data structures

Basic strategies for solving problems

Try something simple

E.g., naïve search

Reduce-and-conquer

E.g., binary search

Divide-and-conquer

E.g., MergeSort

Maintaining an invariant

E.g., AVL trees

E.g., keep your data sorted

Augment an existing data structure

E.g., AVL trees

Two important questions:

How do you understand what an algorithm is doing?

How do you show that an algorithm is correct?

To understand algorithms:

For every algorithm in the class, identify all of its important invariants.

Midterm

Thurs. March 10 6:30pm

- Location TBA (MPSH)
- < 50 students / room</p>
- 13+ rooms

Bring to quiz:

- One double-sided sheet of paper with any notes you like.
- Pens/pencils.
- You may not use anything else. (No calculators, no phones, etc.)

Dynamic Data Structures

1. Maintain a set of items

2. Modify the set of items

3. Answer queries.

Big picture idea:

Trees are a good way to store, summarize, and search dynamic data.

Dynamic Data Structures

- Operations that create a data structure
 - build (preprocess)

- Operations that modify the structure
 - insert
 - delete

- Query operations
 - search, select, etc.

Augmented Data Structures

Many problems require storing additional data in a standard data structure.

Augment more frequently than invent...

Plan

Three examples of augmenting balanced BSTs

1. Order Statistics

2. Interval Queries

3. Orthogonal Range Searching

Basic methodology:

1. Choose underlying data structure (tree, hash table, linked list, stack, etc.)

Basic methodology:

- 1. Choose underlying data structure (tree, hash table, linked list, stack, etc.)
- 2. Determine additional info needed.

Basic methodology:

- 1. Choose underlying data structure (tree, hash table, linked list, stack, etc.)
- 2. Determine additional info needed.
- 3. Modify data structure to *maintain* additional info when the structure changes.

(subject to insert/delete/etc.)

Basic methodology:

- 1. Choose underlying data structure (tree, hash table, linked list, stack, etc.)
- 2. Determine additional info needed.
- 3. Modify data structure to *maintain* additional info when the structure changes.

(subject to insert/delete/etc.)

4. Develop new operations.

Plan

Three examples of augmenting balanced BSTs

1. Order Statistics

2. Interval Queries

3. Orthogonal Range Searching

Find a tower that covers my location.

Find a tower that covers my location.

Dynamic data structure: supports new towers.

insert(begin, end) delete(begin, end)

Find a tower that covers my location.

19

insert(begin, end) delete(begin, end)

query(x): find an interval that overlaps x.

Find a tower that covers my location.

Idea 1: Keep intervals in a list.

Sort by minimum value in interval.

Query: scan entire list.

Does sorting help? Can we binary search?

Find a tower that covers my location.

example: query(11)

Idea 1: Keep intervals in a list.

Sort by minimum value in interval.

Query: scan entire list.

Does sorting help? Can we binary search?

Find a tower that covers my location.

Idea 2: O(1) queries??

Find a tower that covers my location.

			A	A	A	A	A	В	В	C				D	D	D	D	Ε	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Find a tower that covers my location.

Idea 2: O(1) queries

			A	A	A	A	A	В	В	C				D	D	D	D	Ε	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Space usage, requires discrete integers, potentially expensive to update.

Find a tower that covers my location.

Not ideal solution:

- Space depends on the values stored.
- Time depends on the values stored.

Find a tower that covers my location.

Goal:

- Solutions where space is linear (or near linear) in the number of things stored (i.e., intervals).
- Operations are logarithmic in # of things stored.

Idea 3: Interval Trees

Each node is an interval

Sorted by left endpoint

Important: always specify what your tree is sorted by!

search-interval(25) = ?

Augment: ??

Augment: maximum endpoint in subtree

- 1. 5
- 2.8
- 3. 11
- 4. 18
- **✓**5. 25
 - 6. 19

Augment: maximum endpoint in subtree

Insertion: example – insert(7, 25)

Insertion: *example* – **insert(7, 25)**

Insertion: example – insert(7, 25)

Insertion: out-of-balance

Insertion: right-rotate (17, 19)

Insertion: right-rotate (17, 19)

Is the tree now balanced?

Insertion: right-rotate (17, 19), OOPS!

Insertion: out-of-balance

Insertion: left-rotate, right-rotate

Maintain MAX during rotations:

Maintain MAX during rotations:

Maintain MAX during rotations:

Searching: interval-search(22)

It is possible that 22 is covered in the left subtree.

Do we know *for sure* that going left will work?

```
interval-search(x): find interval containing x
interval-search(x)
    c = root;
    while (c!= null and x is not in c.interval) do
          if (c.left == null) then
                 c = c.right;
          else if (x > c.left.max) then
                c = c.right;
          else c = c.left;
    return c.interval;
```



```
interval-search(x): find interval containing x
interval-search(x)
    c = root;
    while (c!= null and x is not in c.interval) do
          if (c.left == null) then
                 c = c.right;
          else if (x > c.left.max) then
                c = c.right;
          else c = c.left;
    return c.interval;
```

Will any search find (21, 23)?

Why does it work?

Claim: If search goes right, then no overlap in left subtree.

Max in "left sub-tree" is 18:

Safe to go right: 22 is not in the left sub-tree.

Claim: If search goes left and there is no overlap in the left subtree...

Claim: If search goes left, then safe to go left.

Max in "left sub-tree" is 18:

Right subtree

Assume we go to left subtree. Assume search fails!

Max in "left sub-tree" is 18:

Right

subtree

Go left: search(13) < 18

Max in "left sub-tree" is 18:

Go left: search(13) < 15 < 18

Right subtree

Max in "left sub-tree" is 18:

Right

subtree

Go left: search(13) < 15 < 18

Tree sorted by left endpoint.

Max in "left sub-tree" is 18:

Go left: search(13) < 15 < 18

Tree sorted by left endpoint.

- 13 < every interval in right subtree
- → Search also would fail in right subtree

Max in "left sub-tree" is 18:

If search in left subtree fails,

Then search also would fail in right subtree!

Claim: If search goes left and fails, then key < every interval in right sub-tree.

If search goes right: then no interval in left subtree.

→ Either search finds key in right subtree or it is not in the tree.

If search goes left: if there is no interval in left subtree, then there is no interval in right subtree either.

→ Either search finds key in left subtree or it is not in the tree.

Conclusion: search finds an overlapping interval, if it exists.

The running time of interval-search is:

- 1. O(1)
- 2. O(log n)
- 3. O(n)
- 4. O(n log n)
- 5. $O(n^2)$
- 6. Can't say.

Extension: List all intervals that overlap with point?

E.g.: search(22) returns:

Extension: List all intervals that overlap with point?

All-Overlaps Algorithm:

Repeat until no more intervals:

- -Search for interval.
- -Add to list.
- -Delete interval.

Repeat for all intervals on list:

Add interval back to tree.

The running time of All-Overlaps, if there are k overlapping intervals?

- 1. O(1)
- 2. O(k)
- 3. O(k log n)
- 4. O(k + log n)
- 5. O(kn)
- 6. O(kn log n)

Extension: List all intervals that overlap with point?

All-Overlaps Algorithm: O(k log n)

Repeat until no more intervals:

- -Search for interval.
- -Add to list.
- Delete interval.

Repeat for all intervals on list:

Add interval back to tree.

Best known solution: O(k + log n)

Today

Three examples of augmenting BSTs

1. Order Statistics

2. Intervals

3. Orthogonal Range Searching

Orthogonal Range Searching

Input: *n* points in a 2d plane

Orthogonal Range Searching

Input: *n* points in a 2d plane

Query: Box

- Contains at least one point?
- How many?

Orthogonal Range Searching

Input: *n* points in a 2d plane

Query: Box

- Contains at least one point?
- How many?

Practical Example

Are there any good restaurants within one block of me?

One Dimension

One Dimension

Range Queries

- Important in databases
- "Find me everyone between ages 22 and 27."

One Dimension

Strategy:

1. Use a binary search tree.

2. Store all points in the <u>leaves</u> of the tree. (Internal nodes store only copies.)

3. Each internal node ν stores the MAX of any leaf in the <u>left</u> sub-tree.

Example: what is the root?

Example

25)

Example

Example

Note: BST Property

Example: query(10, 50)

Example: query(10, 50)

Example: query(8, 20)

- Find "split" node.
- Do left traversal.
- Do right traversal.

- Find "split" node.
- Do left traversal.
- Do right traversal.

- Find "split" node.
- Do left traversal.
- Do right traversal.


```
FindSplit(low, high)
     v = root;
     done = false;
     while !done {
            if (high <= v.key) then v=v.left;
            else if (low > v.key) then v=v.right;
            else (done = true);
     return v;
```

Example: query(8, 20)

- v = FindSplit(low, high);
- LeftTraversal(v, low, high);
- RightTraversal(v, low, high);

```
LeftTraversal(v, low, high)
     if (low <= v.key) {
           all-leaf-traversal(v.right);
           LeftTraversal(v.left, low, high);
     else {
           LeftTraversal(v.right, low, high);
```


Invariant:

The search interval for a left-traversal at node v includes the maximum item in the subtree rooted at v.


```
LeftTraversal(v, low, high)
     if (low <= v.key) {
           all-leaf-traversal(v.right);
           LeftTraversal(v.left, low, high);
     else {
           LeftTraversal(v.right, low, high);
```



```
RightTraversal(v, low, high)
     if (v.key <= high) {</pre>
            all-leaf-traverasal(v.left);
            RightTraversal(v.right, low, high);
     else {
            RightTraversal(v.left, low, high);
```


Algorithm:

- v = FindSplit(low, high);
- LeftTraversal(v, low, high);
- RightTraversal(v, low, high);

Query time:

- Finding split node: O(log n)
- Left Traversal:

At every step, we either:

- 1. Output all right sub-tree and recurse left.
- 2. Recurse right.
- Right Traversal:

At every step, we either:

- 1. Output all left sub-tree and recurse right.
- 2. Recurse left.

Left Traversal:

At every step, we either:

- 1. Output all right sub-tree and recurse left.
- 2. Recurse right.

Counting:

- 1. Recurse at most O(log n) times (i.e., option 2).
- 2. How expensive is "output all sub-tree" (i.e., option 1)?

Left Traversal:

At every step, we either:

- 1. Output all right sub-tree and recurse left.
- 2. Recurse right.

Counting:

- 1. Recurse at most O(log n) times (i.e., option 2).
- 2. How expensive is "output all sub-tree" (i.e., option 1)?
 - \rightarrow O(k), where k is number of items found.

Query time complexity:

O(k + log n)

where k is the number of points found.

Preprocessing (buildtree) time complexity:

O(n log n)

Total space complexity:

O(n)

What if you just want to know *how many* points are in the range?

What if you just want to know *how many* points are in the range?

- Augment the tree!
- Keep a count of the number of nodes in each sub-tree.
- Instead of walking entire sub-tree, just remember the count.

```
LeftTraversal(v, low, high)
     if (low <= v.key) {
           all-leaf-traversal(v.right);
           total += v.right.count;
           LeftTraversal(v.left, low, high);
     else {
           LeftTraversal(v.right, low, high);
```


1D Range Tree

Done??

What about dynamic updates?

– Need to fix rotations! Any changes needed?

Ex: search for all points between dashed lines.

Idea:

Step 1: Create a 1d-range-tree on the x-coords.

Step 2: Enumerate all points in range, sort.

Step 3: Return only points in the y-range.

Idea:

Step 1: Create a 1d-range-tree on the x-coords.

Step 2: Enumerate all points in range, sort.

Step 3: Return only points in the y-range.

Problem: can't enumerate entire sub-trees, since there may be too many nodes that don't satisfy the y-restriction.


```
LeftTraversal(v, low, high)
  if (v.key >= low) {
        all-leaf-traversal(v.right);
        LeftTraversal(v.left, low, high);
  else {
        LeftTraversal(v.right, low, high);
```

Solution: Augment!

- Each node in the x-tree has a set of points in its sub-tree.
- Store a y-tree at each x-node containing all the points in the sub-tree.

Solution: Augment!

- Each node in the x-tree has a set of points in its sub-tree.
- Store a y-tree at each x-node containing all the points in the sub-tree.

Solution: Augment!

- Each node in the x-tree has a set of points in its sub-tree.
- Store a y-tree at each x-node containing all the points in the sub-tree.


```
LeftTraversal(v, low, high)
  if (v.key.x >= low.x) {
        ytree.search(low.y, high.y);
        LeftTraversal(v.left, low, high);
  else {
        LeftTraversal(v.right, low, high);
```

Example:

Example:

Idea:

- Build an x-tree using only x-coordinates.
- For every node in the x-tree, build a y-tree out of nodes in subtree using only y-coordinates.

Query time: $O(log^2n + k)$

- O(log n) to find split node.
- O(log n) recursing steps
- O(log n) y-tree-searches of cost O(log n)
- O(k) enumerating output

Space complexity: O(n log n)

- Each point appears in at most one y-tree per level.
- There are O(log n) levels.
- → Each node appears in at most O(log n) y-trees.

The rest of the x-tree takes O(n) space.

Building the tree: O(n log n)

- Tricky...
- − Left as a puzzle... ☺

Challenge of the Day...

Dynamic Trees

What about inserting/deleting nodes?

Dynamic Trees

What about inserting/deleting nodes?

- Hard!
- How do you do rotations?
- Every rotation you may have to entirely rebuild the y-trees for the rotated nodes.
- Cost of rotate: O(n) !!!!

Example:

Example:

Dynamic Trees

Moral:

- Static 2d-range trees support efficient operations.
- We do not support insert/delete operations in 2d-range trees because rotations would be too expensive.

Augmenting data structures has to be done carefully!

Many useful augmentations cannot be supported efficiently!

d-dimensional

What if you want high-dimensional range queries?

- Query cost: O(log^dn + k)
- buildTree cost: O(n log^{d-1}n)
- Space: O(n log^{d-1}n)

Idea:

- Store d–1 dimensional range-tree in each node of a 1D range-tree.
- Construct the d–1-dimensionsal range-tree recursively.

Curse of Dimensionality

What if you want high-dimensional range queries?

- Query cost: O(log^dn + k)
- buildTree cost: O(n log^{d-1}n)
- Space: O(n log^{d-1}n)

Idea:

- Store d–1 dimensional range-tree in each node of a 1D range-tree.
- Construct the d–1-dimensionsal range-tree recursively.

Real World (aside)

kd-Trees

- Alternate levels in the tree:
 - vertical
 - horizontal
 - vertical
 - horizontal
- Each level divides the points in the plane in half.
- Supports more efficient updates
- Often better in practice.
- Good for a variety of queries (e.g., nearest neighbor).

Augmented BSTs

Three examples of augmenting BSTs

1. Order Statistics

2. Intervals

3. Orthogonal Range Searching