Asymptotic Properties of the Hill estimator

Jaakko Pere

School of Science

Bachelor's thesis Espoo xx.8.2018

Supervisor

Ph.D Pauliina Ilmonen

Advisor

M.Sc Matias Heikkilä

Copyright © 2018 Jaakko Pere

Aalto University, P.O. BOX 11000, 00076 AALTO www.aalto.fi Abstract of the bachelor's thesis

Author Jaakko Pere	
Title Asymptotic Properties of the Hill estimator	
Degree programme Technical Physics and Mathematics	
Major Mathematics and Systems Analysis	Code of major $SCI3025$
Supervisor Ph.D Pauliina Ilmonen	
Advisor M.Sc Matias Heikkilä	
	Language English

Abstract

Your abstract in English. Keep the abstract short. The abstract explains your research topic, the methods you have used, and the results you obtained.

The abstract text of this thesis is written on the readable abstract page as well as into the pdf file's metadata via the \thesisabstract macro (see above). Write here the text that goes onto the readable abstract page. You can have special characters, linebreaks, and paragraphs here. Otherwise, this abstract text must be identical to the metadata abstract text.

If your abstract does not contain special characters and it does not require paragraphs, you may take advantage of the abstracttext macro (see the comment below).

Keywords For keywords choose, concepts that are, central to your, thesis

Aalto-yliopisto, PL 11000, 00076 AALTO www.aalto.fi Tekniikan kandidaatintyön tiivistelmä

Tekijä Jaakko Pere			
Työn nimi Opinnäytteen otsikk	(0		
Koulutusohjelma Elektroniikka	ı ja sähkötekniikka		
Pääaine Sopiva pääaine		Pääaineen koodi S	SCI3025
Vastuuopettaja Ph.D Pauliina	Ilmonen		
Työn ohjaaja TkT Alan Adviso	or		
Päivämäärä xx.8.2018	Sivumäärä $11+1$	Kieli]	Englanti
Tiivistelmä			
Tiivistelmässä on lyhyt selvitys on tutkittu, sekä mitä tuloksia	•	tä sisällöstä: mitä j	ja miten
Avainsanat Vastus, resistanssi,	lämpötila		

Preface

I want to thank Professor Pirjo Professori and my instructor Dr Alan Advisor for their good and poor guidance.

Otaniemi, 24.4.2018

Eddie E. A. Engineer

Contents

A	bstract	3
\mathbf{A}	bstract (in Finnish)	4
Pı	reface	5
\mathbf{C}_{0}	ontents	6
Sy	mbols and abbreviations	7
1	Introduction	8
2	Backround2.1 Extreme Value Theory2.2 Problem	9 9
3	Consistency of the Hill estimator	10
4	Simulations	10
\mathbf{R}	eferences	11

Symbols and abbreviations

Symbols

 $\begin{aligned} x^* &= \sup\{x: F(x) < 1\} & \text{right endpoint of the distribution} \\ \gamma & \text{extreme value index} \end{aligned}$

Operators

Abbreviations

cdf cumulative distribution function i.d.d independent and identically distributed

1 Introduction

2 Backround

2.1 Extreme Value Theory

First approch to study behavior of extreme events would be to find limiting distribution of the sample maxima $M_n = max(X_1, X_2, ..., X_n)$. Here $X_1, X_2, ..., X_n$ are i.d.d random variables from cdf F. Function for the cdf of M_n can be derived, because $X_1, X_2, ..., X_3$ are i.d.d.

$$P(max(X_1, X_2, ..., X_n) \le x) = P(X_1 \le x, X_2 \le x, ..., X_n \le x) = P(X_1 \le x)P(X_2 \le x)...P(X_n \le x) = F^n(x).$$

Now it can be shown that this approach is not very fruitful since

$$\lim_{n \to \infty} F^n(x) = \begin{cases} 0, x < x^* \\ 1, x \ge x^*. \end{cases}$$

To achieve a nondegerate distribution it is necessary to normalize the sample maxima M_n . After normalization a nondegenate distribution is gained as stated in the Fisher-Tippett-Gnedenko Theorem [1].

Theorem 2.1 There exists real constants $a_n > 0$ and $b_n \in \mathbb{R}$ such that

$$\lim_{n \to \infty} F^n(a_n x + b_n) = G_{\gamma}(x) = \begin{cases} exp(-(1 + \gamma x)^{-\frac{1}{\gamma}}), \gamma \neq 0 \\ exp(-e^{-x}), \gamma = 0, \end{cases}$$
(1)

for all x with $1 + \gamma x > 0$ where $\gamma \in \mathbb{R}$.

If cdf F satisfies the equation 1 for some $\gamma \in \mathbb{R}$ it is said that F is in the maximum domain of attraction of G_{γ} i.e $F \in D(G_{\gamma})$. Concerning the Hill estimator special interest lies in the case $F \in D(G_{\gamma>0})$.

2.2 Problem

- 3 Consistency of the Hill estimator
- 4 Simulations

References

 $[1]\,$ A. F. Laurens De Haan. $\it Extreme\ \it Value\ \it Theory.$ Springer, 2009.

Appendix