Тема 1. Начало работы с MatLab. Построение графиков.

1. Интерфейс программы MATLAB.

Рабочий стол. Рабочая область. Текущий каталог и путь поиска. Окно CommandHistory (История команд). Онлайновая справка. Ресурсы по изучению MatLab

https://youtu.be/YOyLmbkKUaE

https://exponenta.ru/

2. Примеры простых вычислений.

Арифметика. Разрешение проблем. Ошибки при вводе. Прерывание вычислений. Запрещение вывода. Продолжение на следующей строке длинных строк при вводе и выводе. Алгебраическое или символьное счисление. Подстановка в символьных выражениях. Символьные выражения, точность переменной и точная арифметика

- 3. Векторы и матрицы
- 4. Функции
- 5. Решение уравнений
- 6. Графики

Построение графиков командой plot. Редактирование графиков. Форматирование графика, заголовок, подписи осей, тип линии, цвет линии, толщина линии, подписи характерных точек. Построение нескольких кривых. Индивидуальные задания на построение графиков

7. М-файлы.

ЗАДАНИЕ:

- 1. Проделать задачки, указанные на следующей странице.
- 2. Построить два графика в соответствии с заданным вариантом (см.ниже)
- 3. Подготовить отчет в следующем формате:
 - ✓ Введение: Что узнали по данной теме
 - ✓ Формулировка задания
 - ✓ Описание выполнения задания
 - ✓ Заключение
 - ✓ Использованные источники

Задачки и некоторые пояснения

Попробуйте ввести 2+2, затем нажмите клавишу Enter.

```
Затем попробуйте ввести команду factor (23456789) и, sin (100). введите 1/2 + 1/3. 3^2 - (5+4)/2 + 6*3 ans ^2 +  sqrt (ans)
```

МАТLAВ присваивает новое значение переменной с каждым вычислением. Чтобы выполнять более сложные вычисления, можно присваивать численные значения переменным, например:

```
>> u = cos(10)
>> v = sin (10)
>>u^2 + v^2
```

Используются радианы, а не градусы.

Вычисления используют арифметику двойной точности с плавающей точкой, причем точность сохраняется до 15 знака; однако по умолчанию MATLAB отображает только 5 знаков. Чтобы отобразить больше знаков, введите команду format long.

Интересная команда ура(рі,100)

что больше е^рі или рі^е?

Символьное счисление

```
Введите 1/2 + 1/3.
Введите sym(1/2)+sym(1/3)
Введите cos (pi/2)
Введите cos (sym(pi/2)), символьный вывод всегда выровнен слева.
>> syms x y
» (x-y)*(x-y)^2
ans =
(x-y)^3
>> expand(ans)
ans =
x^3-3*x^2*y+3*x*y^2-y^3
```

Матрицы

$$X = [2,4,6,8]$$

>> factor(ans)

ans = (x-^3

Элементы отделяются запятыми или пробелами и помещаются в квадратные скобки.

```
X = 1:9
X = 0:2:10
```

точка с запятой в конце строки ввода приводит к запрещению вывода результата команды

X=a:h:b

Приращение h может быть дробным или отрицательным Элементы вектора X можно выделить в виде X (3), X (4) и т.д.

```
Например:
» X (3)
Транспонирование
X'
```

Например, чтобы возвести в квадрат элементы вектора X, введите следующее:

```
>>X.^2
X^2
X.*X
X*X
Exp(X)
Expm(X)
```

A = [1, 2, 3, 4; 5, 6, 7, 8; 9, 10, 11, 12]

элементы матрицы в строке отделяются друг от друга запятыми, а сами строки разделяются точкой с запятой.

Операции над матрицами

много встроенных функций. sqrt, cos, sin, tan, log, exp и atan. Встроенные

Функции, задаваемые пользователем

$$f = @(x) x^2$$

Решение уравнений

Команды fzero и Solve

```
Например, решить квадратное уравнение x^2 - 2x - 4 = 0: »syms x solve (x^2 - 2^*x - 4 = 0) ans =???
```

Обратите внимание, что предварительно переменная х объявлена как символьная. Ответ представляет собой точное (символьное) решение 1+sqrt(5). Для получения числовых решений введите double (ans) или vpa (ans), чтобы отобразить больше знаков.

Команды fzero ищет приближенное решение, в окрестности заданной точки.

```
>>h =@(x) exp(-x) - sin(x);
>>fzero (h, 0.5)
ans =
0.5885
```

Замените значение 0.5 на 3 и найдите следующее решение, и так далее.

Команды plot и fplot

Построение графиков командой fplot(f,xinterval)

```
f1 = @ (x) sin(x)
f2 = @(x) exp(-x)
fplot(f1,[0 10]) и т.д
```


Рис. Графики функций exp(-x) и sin(x)

Построение графиков командой **plot**

Команда plot работает с массивами числовых данных. Синтаксис в простейшем случае имеет вид:

plot (X,Y), где X и Y являются векторами одинаковой длины.

Команда plot рассматривает вектора X и Y, как наборы координат последовательных точек на графике, и соединяет точки ломаными.

```
X = -1:h:2; plot(X, X.^2)
```

Проделать для h=3/4 и 0.01

Название графика вводится командой:

» title 'Parabola'

Метки на осях xlabel и ylabel.

Работа с осями:

```
» axis ([-1 2 0 3])
```

Тип линии и цвет освоить с помощью help plot

Команда hold on позволяет строить несколько кривых на одном графике Освоить форматирование графиков (заголовок, подписи осей, тип линий, цвет, толщина 'LineWidth',2,)

Дополнительные задания.

1. Приближение гладкой функции полиномом Тейлора.

```
% Draws the Taylor approximation
% to a sine curve of degree 2k-1
k=input('Type the number of terms of the Taylor series for sine: ');
x=0:.05:2*pi;
z=sin(x);
plot(x,z,'g') %Actual sine curve is drawn in green
hold on
pause % This holds up execution until Enter is pressed
    w=x;
    y=x;
    s=-1;
for j=1:k-1
        w=w.*x.*x/(2*j*(2*j+1));
        y=y+s*w;
        s=-s;
end
plot(x,y,'r') % approximation is drawn in red
```

2. Построить огибающую нормалей к параболе

Дополнительные материалы

Обзорный 2-х часовой курс https://www.mathworks.com/learn/tutorials/matlab-onramp.html

MATLAB 08 Расширенное построение графиков: особенности и приемы https://www.youtube.com/watch?v=rH8kiCK_aUQ&t=0s&index=9&list=PLmu_y3-DV2_nKd7epECPEbTVamsmEmMMI

ИНДИВИДУАЛЬНЫЕ ЗАДАНИЯ

Продемонстрировать форматирование графиков - заголовок, подписи осей, типлиний, цвет, толщина ('LineWidth',2,)

Вариант 1

- 1. Построить лемнискату Бернулли, параметрические уравнения которой имеет вид $x = a(t+t^3)/(t^4+1)$, $y = a(t-t^3)/(t^4+1)$ при $t \in (-\infty, \infty)$.
- 2. Построить четырехлепестковую розу, заданную уравнением в полярных координатах: $r = a \sin 2\varphi$, где $\varphi \in [0; 2\pi]$.

Вариант 2

- 1. Построить улитку Паскаля, уравнение которой в полярной системе координат имеет вид $r = a + b \cos \varphi$.
- 2. Построить полукубическую параболу (параболу Нейля), параметрические уравнения которой: $x = t^2$, $y = t^3$.

Вариант 3

- 1. Построить спираль Архимеда, уравнение которой в полярных координатах: $r = a\varphi$.
- 2. Построить строфоиду, заданную с помощью параметрических уравнений $x = 2at^2/(t^2+1)$, $y = at(t^2-1)/(t^2+1)$, $t \in [-2; 2]$, a > 0.

Вариант 4

- 1. Построить инволюту окружности, уравнения которой в прямоугольных координатах: $x = r \cos \theta + r \theta \sin \theta$, $y = r \sin \theta r \theta \cos \theta$, где r радиус окружности, $\theta \in [0; 2\pi]$ угол.
- 2. Построить кохлеоиду, уравнение которой в полярных координатах: $r = a \sin \varphi / \varphi$, где $\varphi \in [0, +\infty)$.

Вариант 5

- 1. Построить локон Аньези. Уравнение в прямоугольных координатах: $y = a^3/(a^2 + x^2)$.
- **2.** Построить гиперболическую спираль, заданную уравнением в полярных координатах: $r = a/\theta$.

Вариант 6

- 1. Построить цепную линию, заданную уравнением в прямоугольных координатах: $y = a(x/a) = a(e^{x/a} + e^{-x/a})/2$
- 2. Построить трактрису, заданную с помощью параметрических уравнений: $x = a(\cos(t) + \ln(t/2)), y = a\sin(t), t \in (0, \infty)$.

- 1. Построить спираль Кейли. Уравнение в полярных координатах имеет $r = a/\cos^3(\varphi/3)$.
- 2. Построить дельтоид, заданный с помощью параметрических уравнений $x = 2a\cos t + a\cos 2t$, $y = 2a\sin t a\sin 2t$ $t \in [0, 2\pi)$.

Вариант 8

- 1. Построить логарифмическую спираль, уравнение которой в полярных координатах: $r = ae^{b\varphi}$.
- 2. Построить нефроиду, заданную с помощью параметрических уравнений $x = 3a\cos t a\cos 3t$, $y = 3a\sin t a\sin 3t$, $t \in [0; 2\pi]$.

Вариант 9

- 1. Построить строфоиду, заданную с помощью параметрических уравнений $x = 2at^2/(t^2+1)$, $y = at(t^2-1)/(t^2+1)$, $t \in [-2;2]$, a > 0.
- 2. Построить циссоиду Диоклеса, уравнение которой в полярной системе координат: $r = 2a_{\sin}^2 \varphi / cos(\varphi)$, $\varphi \in [-\pi/4; \pi/4]$.

Вариант 10

- 1. Построить спираль Ферма, заданную с помощью уравнения в полярных координатах $r = a\sqrt{\varphi}$, $\varphi \in [0; 4\pi]$.
- 2. Построить Декартов лист, заданный с помощью параметрических уравнений $x = 3at/(t^3 + 1)$, $y = 3at^2/(t^3 + 1)$, $t \in [-6\pi; -2] \cup [-0.3; 6\pi]$.

Вариант 11

- 1. Построить спираль Галилея, уравнение в полярных координатах которой $r = a \varphi^2$, $\varphi \in [0; 2\pi]$.
- 2. Построить инволюту окружности, уравнения которой в прямоугольных координатах: $x = r \cos \theta + r \theta \sin \theta$, $y = r \sin \theta r \theta \cos \theta$, где r -- радиус окружности, $\theta \in [0; 2\pi]$ угол.

Вариант 12

- 1. Построить лист щавеля, заданный с помощью уравнения в полярных координатах $r = 4(1 + \cos 3\varphi) + 4\sin^2 3\varphi$, $\varphi \in [0; 2\pi]$.
- 2. Построить трактрису, заданную с помощью параметрических уравнений: $x = a(\cos(t) + \ln(t/2)), x = a\sin(t), t \in (0, \infty)$.

Вариант 13

- 1. Построить трехлепестковую розу, уравнение которой в полярных координатах $r = a \sin 3\varphi$, $\varphi \in [0; 2\pi]$.
- 2. Построить строфоиду, заданную с помощью параметрических уравнений $x = 2at^2/(t^2+1)$, $y = at(t^2-1)/(t^2+1)$, $t \in [-2;2]$, a > 0.

- 1. Построить трисектрису Маклорена, заданную с помощью уравнения в полярных координатах $r = a/\cos(\varphi/3)$, $\varphi \in (-3\pi/2; 3\pi/2)$.
- 2. Построить цепную линию, заданную уравнением в прямоугольных координатах: $y = ach\left(\frac{x}{a}\right) = a(e^{\frac{x}{a}} + e^{-\frac{x}{a}})/2$

Вариант 15

- 1. Построить трилистник, заданный с помощью уравнения в полярных координатах $r = 4(1 + \cos 3\varphi) 4\sin^2 3\varphi$, $\varphi \in [0; 2\pi]$.
- 2. Построить нефроиду, заданную с помощью параметрических уравнений $x = 3a\cos t a\cos 3t$, $y = 3a\sin t a\sin 3t$, $t \in [0; 2\pi]$.

Вариант 16

- 1. Построить спираль Архимеда, уравнение которой в полярных координатах: $r = a\varphi$.
- 2. Построить лемнискату Бернулли, параметрические уравнения которой имеет вид $x = a(t+t^3)/(t^4+1)$, $y = a(t-t^3)/(t^4+1)$ при $t \in (-\infty, \infty)$.

Вариант 17

- 1. Построить локон Аньези. Уравнение в прямоугольных координатах: $y = a^3/(a^2 + x^2)$.
- 2. Построить трактрису, заданную с помощью параметрических уравнений: $x = a(\cos(t) + \ln(t/2)), x = a\sin(t). t \in (0, \infty).$

Вариант 18

- 1. Построить логарифмическую спираль, уравнение которой в полярных координатах: $r = ae^{b\varphi}$.
- 2. Построить лемнискату Бернулли, параметрические уравнения которой имеет вид $x = a(t+t^3)/(t^4+1)$, $y = a(t-t^3)/(t^4+1)$ при $t \in (-\infty,\infty)$.

Вариант 19

- 1. Построить циссоиду Диоклеса, уравнение которой в полярной системе координат: $r = 2a_{\sin}^2 \varphi / cos(\varphi)$, $\varphi \in [-\pi/4; \pi/4]$.
- 2. Построить Декартов лист, заданный с помощью параметрических уравнений $x = 3at/(t^3+1)$, $y = 3at^2/(t^3+1)$, $t \in [-6\pi; -2] \cup [-0.3; 6\pi]$.

- 1. Построить спираль Галилея, уравнение в полярных координатах которой $r = a\varphi^2$, $\varphi \in [0; 2\pi]$.
- 2. Построить цепную линию, заданную уравнением в прямоугольных координатах: $y = a(x/a) = a(e^{x/a} + e^{-x/a})/2$.

Вариант 21

- 1. Построить конхоиду Никомеда, уравнение которой в полярных координатах: $r = a/\cos \varphi \pm d$. Угол (изменяется в диапазоне [–1.25;1.25] с шагом 0.1.
- 2. Построить строфоиду, заданную с помощью параметрических уравнений $x = 2at^2/(t^2+1)$, $y = at(t^2-1)/(t^2+1)$, $t \in [-2;2]$, a > 0.

Вариант 22

- 1. Построить дельтоид, заданный с помощью параметрических уравнений $x = 2a\cos t + a\cos 2t$, $y = 2a\sin t a\sin 2t$ $t \in [0, 2\pi)$.
- 2. Построить гиперболическую спираль, заданную уравнением в полярных координатах: $r = a/\theta$.

Вариант 23

- 1. Построить нефроиду, заданную с помощью параметрических уравнений $x = 3a\cos t a\cos 3t$, $y = 3a\sin t a\sin 3t$, $t \in [0; 2\pi]$.
- 2. Построить спираль Галилея, уравнение в полярных координатах которой $r = a\phi^2$, $\phi \in [0; 2\pi]$.

Вариант 24

- 1. Построить строфоиду, заданную с помощью параметрических уравнений $x = 2at^2/(t^2+1)$, $y = at(t^2-1)/(t^2+1)$, $t \in [-2;2]$, a > 0.
- 2. Построить улитку Паскаля, уравнение которой в полярной системе координат имеет вид $r = a + b \cos \varphi$.

- 1. Построить трисектрису Маклорена, заданную с помощью уравнения в полярных координатах $r = a/\cos(\varphi/3)$, $\varphi \in (-3\pi/2; 3\pi/2)$.[-5*pi/4;5*pi/4]
- 2. Построить инволюту окружности, уравнения которой в прямоугольных координатах: $x = r \cos \theta + r \theta \sin \theta$, $y = r \sin \theta r \theta \cos \theta$, где r радиус окружности, $\theta \in [0; 2\pi]$ угол.