LUS Image Classification of Covid-19 and Pneumonia

Abhijith C

242CS003

Under the guidance of Dr. Jeny Rajan

March 24, 2025

Introduction

LUS Images

Lung ultrasound (LUS) images provide key diagnostic information by capturing different artifacts and structures in the lungs. Key elements in LUS images include:

- Pleural Line The bright, horizontal line at the top of the image, representing the lung's surface.
- A-Lines Repetitive horizontal artifacts indicating normal aerated lungs.
- B-Lines Vertical, hyperechoic (bright) lines extending to the bottom, associated with lung pathologies like pneumonia and pulmonary edema.

1

LUS Images

LUS Differences: COVID-19 vs. Pneumonia

Feature COVID-19		Pneumonia	
B-Lines	Scattered, widespread	Localized in one area	
Pleural Line	Thick and uneven	Mostly normal	
Lung Involvement	Both lungs (bilateral)	One lung (unilateral)	

Dataset

Dataset Overview

Label	Count
COVID-19	524
Pneumonia	463

Table 1: Dataset Label Distribution

Data Loading and Preprocessing

Data Loading Process:

- Resize images to uniform dimensions (224 × 224).
- Convert labels into numerical format (COVID = 0, Pneumonia = 1).

Data Splitting:

• Train (80%) + Validation (10%) + Test (10%) split.

Data Augmentation Steps

• Geometric Transformations:

- Rotation: Randomly rotates images by up to $\pm 20^{\circ}$.
- Width Shift: Shifts images horizontally by $\pm 10\%$.
- Height Shift: Shifts images vertically by $\pm 10\%$.
- Shear: Applies shearing transformation up to 0.2 radians.
- Zoom: Random zooming in/out up to $\pm 20\%$.
- Horizontal Flip: Randomly flips images left-right.
- Fill Mode: Uses nearest pixel values to fill missing areas.

Experiments Performed

Model Architecture:

- Base Model: Pretrained ResNet50 model with weights trained on ImageNet
- Custom Layers:
 - Flatten Layer
 - Fully Connected Layer (512 units, ReLU activation)
 - Output Layer (1 unit, Sigmoid activation)
- Loss Function: Binary Cross-Entropy
- **Optimizer:** Adam (Learning Rate = 0.0001)

Figure: Accuracy Curve

Figure: Loss Curve

Figure: Confusion Matrix

Final Test Accuracy: 1.0000 Final Test Loss: 0.0003						
Classification Report for ResNet50:						
precision recall f1-score support						
covid	1.00	1.00	1.00	50		
pneumonia	1.00	1.00	1.00	49		
accuracy			1.00	99		
macro avg	1.00	1.00	1.00	99		
weighted avg	1.00	1.00	1.00	99		

Model Architecture:

- Base Model: Pretrained VGG16 model with weights trained on ImageNet
- Custom Layers:
 - Flatten Layer
 - Fully Connected Layer (512 units, ReLU activation)
 - Output Layer (1 unit, Sigmoid activation)
- Loss Function: Binary Cross-Entropy
- **Optimizer:** Adam (Learning Rate = 0.0001)

Figure: Accuracy Curve

Figure: Loss Curve

Figure: Confusion Matrix

Final Test Accuracy: 1.0000 Final Test Loss: 0.0033						
Classification	Classification Report for VGG16:					
рі	recision	recall	f1-score	support		
covid	1.00	1.00	1.00	50		
pneumonia	1.00	1.00	1.00	49		
accuracy			1.00	99		
macro avg	1.00	1.00	1.00	99		
weighted avg	1.00	1.00	1.00	99		

Key Steps:

- **Splitting Data:** The dataset is divided into 5 folds.
- Training & Validation: Each fold is used once as validation while the remaining 4 folds are used for training.
- Performance Evaluation: Validation accuracy and loss are computed for each fold.
- **Final Model Training:** After 5 iterations, a final model is trained on the full dataset.
- Test Set Evaluation: The final model is evaluated on the test set.

Fold	Validation Accuracy	Validation Loss
Fold 1	0.9430	0.6063
Fold 2	0.9937	0.0074
Fold 3	0.9937	0.0267
Fold 4	0.9494	1.8617
Fold 5	0.8280	40.4298

Average Validation Accuracy across 5 folds: 0.9416 Average Validation Loss across 5 folds: 8.5864 Average Training Time per fold: 117.22 seconds

Figure: Confusion Matrix

Final Test Accuracy: 0.9495 Final Test Loss: 6.3086					
Classification Report for KFold Model:					
Classification Re	sport tor	KEOTa_MO	aer:		
precision recall f1-score support					
covid	1.00	0.90	0.95	105	
pneumonia	0.90	1.00	0.95	93	
accuracy			0.95	198	
macro avg	0.95	0.95	0.95	198	
weighted avg	0.95	0.95	0.95	198	

- Original Class Distribution:
 - Class 0 (Covid): 524 samples
 - Class 1 (Pneumonia): 463 samples
- Imbalanced Class Distribution:
 - Class 0 (Covid): 524 samples
 - Class 1 (Pneumonia): 46 samples

Figure: Accuracy Curve

Figure: Loss Curve

Figure: Confusion Matrix

Final Test Accuracy: 1.0000						
Final Test Loss: 0.0057						
Classification	Classification Report for ResNet50:					
precision recall f1-score support						
covid	1.00	1.00	1.00	50		
pneumonia	1.00	1.00	1.00	7		
accuracy			1.00	57		
macro avg	1.00	1.00	1.00	57		
weighted avg	1.00	1.00	1.00	57		

Introduction to Vision Transformers (ViTs)

- Originally designed for Natural Language Processing (NLP), used in models like GPT and BERT.
- First applied to computer vision in 2020 for image classification and segmentation by Dosovitskiy et al. [3].
- The core idea:
 - Instead of convolutional filters, images are divided into patches.
 - Each patch is treated as a token, similar to words in NLP.
 - A standard Transformer encoder is used to process these tokens.
- Great potential in Ultrasound Image Analysis [2].

ViT Architecture

Figure: Model Overview of Vision Transformers

Introduction to Swin Transformer

- Swin Transformer was proposed by Microsoft Research in 2021 [1].
- The core idea:
 - Uses a shifted window attention mechanism instead of global self-attention.
 - Reduces computational complexity compared to ViT.
- Captures Fine Details with Local & Global Features.
- Scales well and processes high resolution images faster.
- Used in COVID-19 Pneumonia Assessment in Lung Ultrasound Images [3].

- Base Model: Swin Tiny Transformer pretrained on ImageNet-1K
- **Input Size**: 224 × 224 × 3
- Frozen Layers: All except classification head
- New Classification Head:
 - Linear (num_features \rightarrow 256)
 - ReLU Activation
 - Dropout (0.5)
 - Linear (256 \rightarrow 2 classes)
- Loss Function: CrossEntropyLoss
- Optimizer: Adam (Ir= 1×10^{-4} , weight decay= 1×10^{-5})
- **Scheduler:** StepLR (Step size = 5, Gamma = 0.5)

Figure: Accuracy Curve

Figure: Loss Curve

Test Accuracy: 98.48% Test Loss: 0.0783

Conclusion

Summary

Performance Metrics for Different Models

Model	Train Accuracy	Test Accuracy	Train Loss	Test Loss
ResNet50	99.69	100	0.0413	0.003
VGG16	97.59	100	0.1192	0.033
ResNet50 K-Fold	99.60	94.95	0.0123	6.3086
ResNet50 Imbalanced	97.79	100	0.2008	0.0057
Swin Transformer	96.60	98.48	0.1477	0.0783

References

- Xing, W., et al. "Automatic detection of A-line in lung ultrasound using deep learning." Medical Physics 50.1 (2023): 330-343.
- Baloescu, C., et al. "Automated lung ultrasound B-line assessment using deep learning." IEEE T-UFFC 67.11 (2020): 2312-2320.
- Dosovitskiy, A., et al. "An image is worth 16x16 words: Transformers for image recognition at scale." arXiv:2010.11929 (2020).

References

- Liu, Z., et al. "Swin Transformer: Hierarchical ViT using shifted windows." ICCV (2021).
- Vafaeezadeh, M., Behnam, H., & Gifani, P. "Ultrasound image analysis with vision transformers." Diagnostics 14.5 (2024): 542.
- Fiorentino, M. C., et al. "ViT approaches for COVID-19 pneumonia assessment in lung ultrasound." IEEE MetroXRAINE (2024).

Thank You!