Econometrics II: Assignment 3

Due: Thursday, March 6th

1 Binary Variables IV Estimator A researcher wants to study the effect of Malaria nets on child mortality in a developing country. She observes y_i , an indicator of infant death, and x_i , and indicator of whether the household in question had purchased a Malaria net. Consider estimation of the model

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

by OLS.

1.1 Show that in this particular setting,

$$\begin{array}{rcl} \hat{\beta} & = & \overline{y}_1 - \overline{y}_0 \\ \hat{\alpha} & = & \overline{y}_0 \\ \hat{y}_1 & = & \overline{y}_1 \\ \hat{y}_0 & = & \overline{y}_0, \end{array}$$

where $\overline{y}_x = \frac{\sum_{i=1}^n y_i \cdot 1\{x_i = x\}}{\sum_{i=1}^n 1\{x_i = x\}}$ is the sample average of y_i for the subsample where $x_i = x$, and where \hat{y}_x is the fitted value for $x_i = x$.

- 1.2 Is $\hat{\beta}$ a credible estimate for the causal effect of β ? The consideration I am after is *omitted variables*: x_i is likely correlated with other, unobserved traits of households.
- 1.3 Suppose an experiment had been conducted and Malaria nets had been randomly assigned to households. Suppose perfect compliance with the experiment, thus a household used a Malaria net if, and only if, it was randomized into *treatment*; the other households are *control*. Can you now estimate the causal effect of Malaria nets?
- 1.4 Suppose now more realistically that compliance is imperfect: Some households discard their malaria nets. And maybe there is a secondary market. (We continue to assume, however, that the true causal effect of a malaria net, if it were used, would be the same across households. This homogeneous treatment effect assumption is of course questionable.) However, we assume that having received a malaria net from the experimenter increases the chance that a household uses one. Letting the r.v. z_i denote receipt of a Malaria net and x_i use of a Malaria net, argue that you can estimate the causal effect of Malaria nets and express the estimator similarly to the simplification in 2.1.

2 Measurement Error Consider the model

$$Y^* = \beta_0 + \beta_1 X^* + \varepsilon,$$

where OLS assumptions hold with important exceptions that I am about to explain. (Assume throughout that moments exist as needed.) The substantive motivation for this exercise are different forms of measurement error. That is, you are invited to think of (Y^*, X^*) as "true" (and causally relevant) quantities but you observe some of them subject to additive measurement error.

- **2.1 Measurement Error in Outcome** You do not observe Y^* but $Y = Y^* + \eta$, where η is i.i.d. and independent from all other random variables with mean 0 and variance σ_{η}^2 . Argue that you can still estimate β_1 by OLS of Y on X^* . What is the estimator's asymptotic distribution?
- **2.2 Errors-in-Variables** You observe Y^* , however you do not observe X^* but $X = X^* + \eta$, where η is just as before. Argue that β_1 can not be estimated by OLS of Y^* on X. Can you characterize the OLS estimator's bias?
- **2.3 Dual Measurements** As in the previous question but in addition, you observe $\tilde{X} = X^* + \nu$ of X^* . Here, ν is i.i.d. and independent from all other random variables with mean 0 and variance σ^2_{ν} .

Argue that you can now estimate β_1 . How? Provide an estimator and characterize the estimator's asymptotic distribution.

- 3. Empirical Exercise The data for this exercise are the "Card" data at https://www.ssc.wisc.edu/bhansen/econometrics/. They belong to the paper Card (1995) which is uploaded.
- **3.1** Please replicate the column 2SLS(a) in Table 12.1 and the final column of Table 12.2 in Hansen's textbook. Note that the variable experience has to be created as age-educ-6.
- **3.2** Add nearc2 ("grew up near a 2 year college") to the first stage/reduced form equation. Do results change appreciably?
- 3.3 Estimate the structural equation by TSLS but add instruments nearc4a,nearc4b,near4ca*age76,near4ca*age76squared/100 (the last two are generated interaction variables whose names should be self-explanatory). Do results change appreciably?

2