Контрольная сумма - 2014

Решения

1. Разглядывая семейный альбом, Ванечка обнаружил, что у него 4 прабабушки и 4 прадедушки. А сколько прабабушек и прадедушек имели его прабабушки и прадедушки все вместе?

Решение:

У каждого человека 4 прабабушки и 4 прадедушки. T.к. всего прабабушек и прадедушек у Ванечки было 8, то 8*4=32 прабабушки и 32 прадедушки было у Ваничкиных прабабушек и прадедушек вместе взятых.

<u>Ответ</u>: 32 прабабушки и 32 прадедушки было у Ваничкиных прабабушек и прадедушек вместе взятых.

2. Два поезда движутся навстречу друг другу. Их скорости составляют 105 км/ч и 85 км/ч. На каком расстоянии друг от друга находятся эти поезда за полчаса до их встречи?

<u>Решение</u>: Можно считать, что поезда начинают двигаться из одной точки в разные стороны с заданными скоростями тогда расстояние между ними будет:

$$S = 105 \cdot 0.5 + 85 \cdot 0.5 = 95$$

Ответ: 95 км.

3. Найти значение выражения 12 log₉ 27.

<u>Решение:</u> $T.\kappa. \log_a a = 1 \ u \log_a x^n = n \log_a x \ npu \ x > 0 \ имеем:$

$$12 \log_9 27 = 12 \log_9(3^3) = 12 \cdot 3 \log_9 3 = 12 \cdot 3 \cdot \frac{1}{2} = 18$$

Ответ: 18.

4. Центры непересекающихся окружностей радиуса 2 расположены в вершинах треугольника. Какова сумма площадей трех закрашенных секторов?

<u>Решение:</u> Известно, что сумма всех углов треугольника равна 180° . Т.к. окружности одинакового радиуса, и сумма углов закрашенных секторов равна 180° , то суммарная площадь закрашенных секторов будет равна половине площади окружности.

$$S = \pi \frac{r^2}{2}$$
$$S = 2\pi$$

Ответ: $S = 2\pi$

5. Решить неравенство:

$$6^{x} + \left(\frac{1}{6}\right)^{x} > 2.$$

Решение:

$$6^{x} + \left(\frac{1}{6}\right)^{x} = 2$$
$$6^{x} + 6^{-x} - 2 = 0$$

Домножим на $6^x (\neq 0)$

$$6^{2x} + 1 - 2 \cdot 6^x = 0$$

Введем замену $t = 6^x$, тогда:

$$t^2 - 2t + 1 = 0 \Rightarrow t_{1,2} = 1$$

Вернемся к замене:

$$6^x = 1 \Rightarrow x = 0$$

 $\underline{\text{Otbet}} \colon x \in (-\infty,0) \cup (0,+\infty).$

6. Решите уравнение $tg\frac{\pi(x-6)}{6} = \frac{1}{\sqrt{3}}$. В ответе написать наименьший положительный корень.

Решение: Пусть $\alpha = \frac{\pi(x-6)}{6}$. Тогда $tg \alpha = \frac{1}{\sqrt{3}} \alpha = \frac{\pi}{6} + \pi k, k \in \mathbb{Z}$.

$$\frac{\pi(x-6)}{6} = \frac{\pi}{6} + \pi k$$

$$x = 7 + 6k, k \in \mathbb{Z}$$

x(k) — возрастающая функция от k.

$$x > 0, k > -\frac{7}{6}$$

T.к. k – целые числа, то x- положительны при $k \ge -1$.

x = 1 при k = -1 — наименьшее положительное значение.

Ответ: 1.

7. Какова величина $\angle COM$, если $\angle OND = 60^{\circ}$ и ABCD -квадрат?

Решение:

Как видно AOC – диагональ квадрата, а значит, $\angle OAN = 45^{\circ}$.

Угол $\angle OND = 60^\circ$, отсюда, так как $\angle ONA -$ смежный к нему, то $\angle ONA = 180 \angle OND = 120^\circ$.

Так как сумма углов в треугольнике равна 180° , то $\angle NOA = 180^\circ - \angle ONA - \angle OAN = 180^\circ - 120^\circ - 45^\circ = 15^\circ$.

По теореме о вертикальных углах: $\angle COM = \angle NOA = 15^{\circ}$

OTBET: $\angle COM = 15^{\circ}$.

8. 100 кг грибов влажностью 99 процентов подсушили до влажности 98 процентов. Сколько стали весить грибы?

<u>Решение</u>: Пусть x – масса грибов, не содержащих воду, а y1 – масса воды до сушки, y2 – масса воды после сушки. Составим систему уравнений:

$$\frac{y_1}{x + y_1} = 0.99$$

$$\frac{y_2}{x+y_2} = 0.98$$

$$x + y_1 = 100$$

Тогда

x = 1 кг – «чистый» вес грибов.

$$y_2 = 0.98 + 0.98y_2$$

 $y_2 = 49 \ \kappa z - вес воды после сушки.$

Тогда общий вес грибов после сушки составит 50 кг.

Ответ: 50

9. В равнобедренном треугольнике ABC проведены высоты AA_1 и BB1. Чему равны стороны треугольника A_1B_1C , если AB = 3, AC = 2?

Решение:

Так как треугольник равнобедренный, то:

- 1. AB = BC = 3;
- 2. BB_I является высотой, медианой и биссектрисой $\Rightarrow AB_1 = B_1C = \frac{AC}{2} = 1$.

По теореме Пифагора в треугольнике $\triangle ABB_1$:

$$BB_1 = \sqrt{AB^2 - AB_1^2} = \sqrt{9 - 1} = 2\sqrt{2}$$

Найдем AC_1 . Для этого рассмотрим два варианта нахождения площади ΔABC :

$$S_{\Delta} = \frac{1}{2}BB_1 \cdot AC = \frac{1}{2}2\sqrt{2}2 = 2\sqrt{2}$$

С другой стороны,

$$S_{\Delta} = \frac{1}{2}AA_1 \cdot BC \Rightarrow AA_1 = \frac{2S_{\Delta}}{BC} = \frac{4\sqrt{2}}{3}$$

По теореме Пифагора в треугольнике ΔAA_1C :

$$A_1C = \sqrt{AC^2 - AA_1^2} = \sqrt{4 - \frac{32}{9}} = \frac{2}{3}$$

Воспользуемся теоремой косинусов:

$$B_1 A_1^2 = B_1 C^2 + C A_1^2 - 2 B_1 C \cdot C A_1 \cdot \cos \angle C$$

Найдем $\cos \angle C$ из прямоугольного треугольника ΔAA_1C :

$$\cos \angle C = \frac{CA_1}{AC} = \frac{2}{3 \cdot 2} = \frac{1}{3}$$

Тогда находим $B_1A_1^2$:

$$B_1 A_1^2 = B_1 C^2 + C A_1^2 - 2 B_1 C \cdot C A_1 \cdot \cos \angle C = 1 + \frac{4}{9} - 2 \cdot 1 \cdot \frac{2}{3} \cdot \frac{1}{3} = 1$$

$$B_1 A_1 = 1$$

Ответ:
$$B_1A_1 = 1$$
, $A_1C = \frac{2}{3}$, $CB_1 = 1$.

10. Решить систему уравнений:

$$\begin{cases} (x+y)(x^2+y^2) = 65\\ (x-y)(x^2-y^2) = 5 \end{cases}$$

Решение:

Рассмотрим левую часть первого уравнения:

$$(x+y)(x^2+y^2) = (x+y)(x^2+y^2+2xy-2xy) = (x+y)((x+y)^2-2xy)$$

Рассмотрим левую часть второго уравнения:

$$(x-y)(x^2-y^2) = (x-y)((x-y)(x+y)) = (x+y)(x-y)^2$$
$$= (x+y)(x^2+y^2-2xy) = (x+y)(x^2+y^2-2xy+(2xy-2xy))$$
$$= (x+y)((x+y)^2-4xy)$$

Вернемся к системе:

$$\begin{cases} (x+y)((x+y)^2 - 2xy) = 65\\ (x+y)((x+y)^2 - 4xy) = 5 \end{cases}$$

Введем замену переменных:

$$u = (x + y)$$
$$v = xy$$

Тогда получаем:

$$\begin{cases} u(u^{2} - 2v) = 65 \\ u(u^{2} - 4v) = 5 \end{cases}$$
$$\begin{cases} u^{3} - 2uv = 65 \\ u^{3} - 4uv = 5 \end{cases}$$

Вычтем из первого уравнения второе:

$$u^{3} - 2uv - u^{3} + 4uv = 60$$
$$2uv = 60$$
$$v = \frac{30}{u}$$

Подставляя в первое уравнение, получаем:

$$u^3 - 2u \cdot \frac{30}{u} = 65$$
$$u^3 = 125$$
$$u = 5$$

И тогда

$$v = \frac{30}{u} = 6$$

Вернемся к замене:

$$\begin{cases} x + y = 5 \\ x \cdot y = 6 \end{cases}$$
$$\begin{cases} x = 5 - y \\ y(5 - y) = 6 \end{cases}$$

Рассмотрим второе уравнение системы:

$$y(5-y) = 6$$

 $5y - y^2 = 6$
 $y^2 - 5y + 6 = 0$
 $D = 25 - 4 \cdot 6 = 1$

$$y_{1,2} = \frac{5 \pm 1}{2} = \{3, 2\}$$

Найдем для каждого значения у значение х:

1. $y_1 = 3 \Rightarrow x = 2$

2. $y_2=2 \Rightarrow x=3$

 $\underline{\text{Otbet}}$: (2, 3), (3,2).

11. При издании книги потребовалось 6949 цифр для того, чтобы пронумеровать ее страницы. Сколько страниц в книге?

Решение:

Первые 9 страниц нумеруются цифрами от 1 до 9, далее с 10 по 99 страницу в номере страниц участвует 2 цифры, с 100 по 999 – 3 цифры, и тд.

Тогда на нумерацию книги из 999 страниц потребуется:

$$N = 1 \cdot 9 + 2 * 90 + 3 * 900 = 2889$$

На нумерацию книги из 9999 страниц потребуется:

$$N = 1 \cdot 9 + 2 \cdot 90 + 3 \cdot 900 + 4 \cdot 9000 = 38889$$

Значит искомое число страниц лежит в интервале от 1000 до 9999. Значит на все страницы, которых недостает искомой книге до книги из 9999 страниц, будет затрачено по 4 цифры.

Найдем разность из необходимых цифр для книги из 9999 и затраченных на искомую книгу:

38889-6949=31940

Составим уравнение:

Пусть x — искомое число страниц, тогда (9999 — x) · 4 — число цифр, использованных для нумерации страниц, которых недостает искомой книге до книги из 9999 страниц. Тогда:

$$(9999 - x) \cdot 4 = 31940$$
$$9999 - x = 7985$$
$$x = 2014$$

Ответ: 2014 страниц.

12. На круглой сковородке диаметра 30 см испекли блин в форме плоской выпуклой фигуры площадью 400 см². Доказать, что центр сковородки покрыт блином.

Доказательство:

Будем рассматривать сковородку, как окружность диаметра 30 см, а блин - как выпуклую фигуру, находящуюся внутри окружности.

Найдем площадь сковородки:

$$S = \pi R^2 = \pi * 15^2 = \pi * 225 \approx 706.86 \text{ cm}^2$$

Получаем, что площадь блина больше половины площади сковородки.

Из свойств выпуклых фигур следует, что через любую точку внутри сковородки и вне блина можно провести прямую, не пересекающую блин.

Докажем, что центр сковородки покрыт блином. Докажем от противного: Допустим, центр не покрыт, тогда через него и проведём такую прямую. Так как прямая не пересекает блин, и блин полностью находится на сковородке, то получается, что блин полностью лежит на одной половине сковородки. Но площадь блина больше площади половины сковородки. Получили противоречие. Следовательно центр сковородки покрыт блином.

13. Гусыня-мама выстроила своих 4-х гусят в одну линию так, как она делала это и прежде, чтобы пойти к ближайшему озеру понырять и поплавать.

На своем пути к озеру гусята перестроились и поменяли первоначальный порядок следования.

Вот что мы знаем про их новый порядок:

- 1) Ха-Хи медленно переваливается с ножки на ножку, но теперь никто не будет наступать ей на пятки, как это делал Хи-Ха прежде.
- 2) Xa-Xa перебежал на другое место, потому что он не любит идти впереди "кусачки" Xo-Xo.
- 3) Хи-Ха идет там, где он обычно идет.
- 4) Первым придет к озеру гусенок Xa-Xa, а не Xa-Xu, как это бывало раньше. Какой был прежний порядок следования гусят и на каком теперь месте будет Xo-Xo?

Решение:

При условиях, что Первым придет к озеру гусенок Ха-Ха, а не Ха-Хи, как это бывало раньше, мы знаем что Ха-хи стал первым. А зная, что Ха-Хи медленно переваливается с ножки на ножку, но теперь никто не будет наступать ей на пятки, как это делал Хи-Ха прежде, получаем, что Ха-Хи теперь идет последней. Ха-Ха перебежал на другое место, потому что он не любит идти впереди "кусачки" Хо-Хо, значит Хо-Хо

теперь не вторая. Из того, что Xu-Xa идет там, где он обычно идет, мы понимаем что второй. Получаем, что в прежнем порядке было так: Xa-Xu — первый, Xu-Xa — второй, Xa-Xa — третий, а Xo-Xo — четвертый.

Соответственно, в новом порядке стало так: Xa-Xa — первый (из условия 4), Xu-Xa — второй (из условия 3), Xo-Xo — третий, Xa-Xu — четвертый (из условия 1). Следовательно, Xo-Xo стал третьим.

14. У Ани на дне рождении собралось много друзей. Когда гости начали общаться, то заметили, что количество гостей, которые знакомы с нечетным числом приглашенных, четно. Анина лучшая подруга сделала утверждение, что такая закономерность справедлива для любой компании. Докажите так ли это.

Решение:

Обозначим число друзей, имеющих в компании нечетное число знакомых, через k, и соответственно число знакомых этих друзей через a1, a2,..., ak. Кроме того, число друзей, знакомых c четным числом членов компании, обозначим через n, a число знакомых этих друзей соответственно через b1, b2, ..., bn. Исходя из этого тогда общее число знакомств равно (a1 + a2 + ... + ak + b1 + b2 + ... + bn)/2. Сумма b1 + b2 + ... + bn четна, так как все ее слагаемые четны. Для того, чтобы эта дробь была равна целому числу, сумма a1 + a2 + ... + ak, должна быть четной. Но все слагаемые последней суммы нечетны, поэтому число k слагаемых суммы может быть только четным.

15. Проворные пираты капитан Блад и капитан Крюк, перекопав весь необитаемый остров, все таки нашли сундук с сокровищами. Когда они его открыли, то увидели в нем 17 монет, 2 кольца и 1 корону. Все это богатство поделили между собой равными по весу частями Блад и Крюк. Причем корона целиком досталась Крюку. Монеты и кольца на части тоже не пилили. Одна монета тяжелее одного кольца на столько же, на сколько одна монета легче одной короны. Сколько монет и колец у Блада?

Решение:

Пусть x — количество монет u y — количество колец y Блада. Тогда y Крюка (17 - x) монет u (2-y) колец. Пусть a — вес монеты, b — вес кольца u c — вес короны.

Условие o весе можно записать так: <math>a - b = c - a.

Т.к. вес частей у Крюка и у Блада одинаков, то

$$xa + yb = (17 - x)a + (2 - y)b + c.$$

$$c = 2a - b$$

$$xa + yb = 17a - xa + 2b - yb + 2a - b$$

$$2xa + 2yb = 19a + b$$

T.к. монеты и кольца на части не пилили, то x и y — целые числа. Соответственно у принимает одно из значений: $\{0,1,2\}$.

Пусть
$$y = 0$$
, тогда $x = \frac{19}{2} + \frac{b}{2a}$;

Так как x – целое, то $\frac{b}{2a} = \beta + \frac{1}{2} \Rightarrow b = \beta \cdot 2 \cdot a + a$, где β – целое и положительное,

Отсюда $b = (2\beta + 1)a$, но b < a по условию задачи, а значит противоречие.

$$\Pi pu \ y = 1, \ x = \frac{19}{2} - \frac{b}{2a};$$

Так как x – целое, то $\frac{b}{2a} = \gamma + \frac{1}{2} \Rightarrow b = \gamma \cdot 2 \cdot a + a$, где γ – целое и положительное.

Отсюда $b = (2\gamma + 1)a$, но b < a по условию задачи, а значит противоречие.

$$\Pi pu \ y = 2, \ x = \frac{19}{2} - \frac{3b}{2a};$$

Так как x — целое, то $\frac{3b}{2a} = \delta + \frac{1}{2} \Rightarrow b = \frac{(\delta \cdot 2 \cdot a + a)}{3} = \frac{(2\delta + 1)}{3}a$, где δ — целое и положительное. Так как b < a по условию задачи, то:

$$\frac{(2\delta+1)}{3} < 1$$
$$2\delta < 2$$
$$\delta < 1$$

Отсюда получаем, что $\delta = 0$. Тогда:

$$\frac{3b}{2a} = \delta + \frac{1}{2} = \frac{1}{2} \Rightarrow x = \frac{19}{2} - \frac{1}{2} = 9$$

Ответ: 9 монет и 2 кольца.