

# Hierarchical Attention Networks for Sentence Ordering

Tianming Wang & Xiaojun Wan *{wangtm,wanxiaojun}@pku.edu.cn* 

Institute of Computer Science and Technology, Peking University Beijing, China



Introduction

Prior methods

Our approach



Introduction

Prior methods

Our approach

### Introduction



- What's Sentence Ordering?
  - organize a given set of sentences into a coherent text in a clear and consistent manner
  - learn which ordering of sentences is likely to enhance understanding and avoid confusion
- Why do this?
  - modeling discourse coherence
  - help downstream tasks
    - multi-doc summarization
    - question answering
    - text planning



Introduction

Prior methods

Our approach

#### Prior methods



- Pair-wise
  - Classification
    - only consider local coherence
    - no contextual information

- End-to-end
  - RNN based pointer network
    - treats the out-of-order set of sentences as a sequential input





Chen, X.; Qiu, X.; and Huang, X. 2016. Neural sentence ordering. arXiv: Computation and Language.

Agrawal, H.; Chandrasekaran, A.; Batra, D.; Parikh, D.; and Bansal, M. 2016. Sort story: Sorting jumbled images and captions into stories. empirical methods in natural language processing 925–931.

Gong, J.; Chen, X.; Qiu, X.; and Huang, X. 2016. End-to-end neural sentence ordering using pointer network. arXiv: Computation and Language.



Introduction

Prior methods

Our approach

# Our approach



Hierarchical attention networks



#### Word attention



- Word clues
  - keywords like "first" and "then" provide clues for ordering
- Multi-head attention(Transformer)

$$\begin{split} \hat{Q}^j &= ReLU(QW_Q^j) \\ \hat{K}^j &= ReLU(KW_K^j) \\ \hat{V}^j &= ReLU(VW_V^j) \\ \hat{C}^j &= softmax(\frac{\hat{Q}^j \hat{K}^{j\top}}{\sqrt{d/H}}) \hat{V}^j \\ C &= [\hat{C}^1; \hat{C}^2; ...; \hat{C}^H] \end{split}$$

where Q, K, V are the packages of a set of queries, keys and values,  $W_Q^j, W_K^j, W_V^j \in \mathbb{R}^{d \times d/H}$  are parameter matrices,



#### Sentence encoder



- Recode sentence
  - capture global dependencies
  - adjust representations of sentences in context
- Encoder stack

$$\begin{split} E_{in}^j &= E_{out}^{j-1} \\ C &= MultiHead(E_{in}^j, E_{in}^j, E_{in}^j) \\ G &= sigmoid(E_{in}^j W_{in}^j + CW_{out}^j) \\ F &= GE_{in}^j + (1-G)C \\ E_{out}^j &= LayerNorm(F) \\ \end{split}$$
 where  $W_{in}^j, W_{out}^j \in \mathbb{R}^{d \times 1}$  are parameter matrices



#### Sentence Decoder



Masked multi-head attention

 prevent earlier decoding steps from accessing information from later steps

utilize the information of ordered subsequence and construct a context

for predicting the next sentence

$$\begin{aligned} Mask_{x,y} &= \begin{cases} 0 & x <= y \\ -\infty & otherwise \end{cases} \\ \hat{C}^{j} &= softmax(\frac{\hat{Q}^{j}\hat{K}^{j\top} + Mask}{\sqrt{d/H}})\hat{V}^{j} \\ C &= [\hat{C}^{1}; \hat{C}^{2}; ...; \hat{C}^{H}] \end{aligned}$$



#### Sentence Decoder



- global attention
  - utilizes the global information captured by the encoder



#### Sentence Decoder



- Pointer
  - predicting the next sentence
  - Inference
    - beam search

$$Q = ReLU(D_{out}^{M}W_{Q})$$

$$K = ReLU(E_{out}^{M}W_{K})$$

$$P = softmax(\frac{QK^{\top}}{\sqrt{d}})$$





Introduction

Prior methods

Our approach

## Experiment



#### Dataset

- arXiv
  - 884912 training abstracts, 110614 validation abstracts and 110615 testing abstracts of papers on arXiv website
  - composed of 2 to 20 sentences
- VIST
  - 40155 training stories, 4990 validation stories and 5055 testing stories
  - composed of 5 sentences
- ROCStory
  - 78529 training stories, 9816 validation stories and 9817 testing stories
  - composed of 5 sentences

## Experiment



- Metrics
  - Kendall's tau

$$\tau = 1 - \frac{2(InvertPairs)}{N(N-1)/2}$$

where N is the number of sentences being ordered and (InvertPairs) is the number of interchanges of consecutive elements necessary to arrange them in their natural order.

- Perfect Match Ratio
  - the ratio of cases of exact match of the whole sequence

## Result



| Methods                                        | arXiv  |        | VIST   |        | ROCStory |        |
|------------------------------------------------|--------|--------|--------|--------|----------|--------|
|                                                | au     | PMR    | au     | PMR    | τ        | PMR    |
| random                                         | 0      | 0.0827 | 0      | 0.0083 | 0        | 0.0083 |
| LSTM+Pairwise (Chen, Qiu, and Huang 2016)      | 0.6594 | 0.3343 | -      | -      | -        | -      |
| SkipThought+Pairwise (Agrawal et al. 2016)     | -      | -      | 0.4640 | -      | -        | -      |
| LSTM+PtrNet (Gong et al. 2016)                 | 0.7158 | 0.4044 | 0.4842 | 0.1234 | -        | -      |
| Seq2Seq+Pairwise (Li and Jurafsky 2017)        | 0.0593 | 0.1370 | 0.1892 | 0.1250 | 0.3419   | 0.1793 |
| LSTM+Set2Seq (Logeswaran, Lee, and Radev 2018) | 0.7281 | 0.4157 | 0.4919 | 0.1380 | 0.7112   | 0.3581 |
| WordAtt+PtrNet                                 | 0.7367 | 0.4210 | 0.4925 | 0.1346 | 0.7024   | 0.3285 |
| Our                                            | 0.7536 | 0.4455 | 0.5021 | 0.1501 | 0.7322   | 0.3962 |

#### Parameter study on the arXiv dataset

|      | M | Н | $P_{drop}$ | WordAtt | au     | PMR    |
|------|---|---|------------|---------|--------|--------|
| base | 3 | 4 | 0.05       | yes     | 0.7536 | 0.4455 |
| (A)  | 2 |   |            |         | 0.7484 | 0.4419 |
| (A)  | 4 |   |            |         | 0.7515 | 0.4409 |
|      |   | 1 |            |         | 0.7437 | 0.4368 |
| (B)  |   | 2 |            |         | 0.7496 | 0.4420 |
|      |   | 8 |            |         | 0.7481 | 0.4407 |
| (C)  |   |   | 0          |         | 0.7475 | 0.4413 |
| (C)  |   |   | 0.1        |         | 0.7526 | 0.4442 |
| (D)  |   |   |            | no      | 0.7399 | 0.4301 |



## Experiment with noise



- Noise
  - Randomly chosen from another abstract or story
  - Why?
    - to test the robustness and effectiveness
    - For example, if the model arranging sentence only according to words clues like "First" and "Then", we can add a noisy sentence like "First, we...", which is irrelevant to the abstract to cheat the model
- Strategy
  - add 1 noisy sentence (1 noise)
  - add 1 noisy sentence with a probability of 50% (0/1 noise)

# Experiment with noise



#### Discrimination

Table 3: Performance of noise discrimination.

| Strategy  | Methods | arXiv  | VIST   | ROCStory |  |
|-----------|---------|--------|--------|----------|--|
|           |         | acc    | acc    | acc      |  |
| 1 noise   | random  | 0.1819 | 0.1667 | 0.1667   |  |
|           | Our     | 0.9664 | 0.8462 | 0.9382   |  |
| 0/1 noise | random  | 0.2955 | 0.5833 | 0.5833   |  |
|           | Our     | 0.9330 | 0.9151 | 0.9698   |  |

#### Sentence ordering

Table 4: Performance of sentence ordering on three datasets with noise.

| Strategy  | Methods                        | arXiv  |        | VIST   |        | ROCStory                                                            |        |
|-----------|--------------------------------|--------|--------|--------|--------|---------------------------------------------------------------------|--------|
|           |                                | $PM_F$ | PMR    | $PM_F$ | PMR    | $PM_F$                                                              | PMR    |
|           | random                         | 0.5000 | 0.0827 | 0.5000 | 0.0083 | 0.5000                                                              | 0.0083 |
| 0 noise   | LSTM+PtrNet (Gong et al. 2016) | 0.8579 | 0.4044 | -      | -      | -                                                                   | -      |
| o noise   | WordAtt+PtrNet<br>Our          | 0.8683 | 0.4210 | 0.7463 | 0.1346 | 0.8512                                                              | 0.3285 |
|           | Our                            | 0.8768 | 0.4455 | 0.7510 | 0.1520 | 20 0.8661<br>11 0.3326                                              | 0.3962 |
|           | random                         | 0.3178 | 0.0238 | 0.3357 | 0.0011 | 0.3326                                                              | 0.0010 |
| 1 noise   | LSTM+PtrNet (Gong et al. 2016) | 0.8228 | 0.3733 | -      | -      | -                                                                   | -      |
| 1 noise   | WordAtt+PtrNet                 | 0.8271 | 0.3805 | 0.6432 | 0.0980 | 0.7852                                                              | 0.2930 |
|           | Our                            | 0.8586 | 0.4325 | 0.6992 | 0.1283 | PM <sub>F</sub><br>0.5000<br>-<br>0.8512<br><b>0.8661</b><br>0.3326 | 0.3883 |
|           | random                         | 0.3830 | 0.0259 | 0.4096 | 0.0049 | 0.4227                                                              | 0.0069 |
| 0/1 noise | LSTM+PtrNet (Gong et al. 2016) | 0.8344 | 0.3675 | -      | -      | -                                                                   | -      |
| 0/1 noise | WordAtt+PtrNet                 | 0.8407 | 0.3740 | 0.6706 | 0.1064 |                                                                     | 0.3055 |
|           | Our                            | 0.8516 | 0.4094 | 0.6974 | 0.1300 | 0.8293                                                              | 0.3879 |



#### Visualization



#### Word clues

Darker shades correspond to higher attention weights

$$\alpha = \frac{1}{H} \sum_{j=1}^{H} softmax(\frac{\hat{Q}^{j} \hat{K}^{j \top}}{\sqrt{d/H}})$$

In this paper some important inequalities are revisited.

First, as motivation, we give another proof of the Hardy 's inequality applying convenient vector fields as introduced by Mitidieri, see [6]. Then, we investigate a particular case of the Caffarelli-Kohn-Nirenberg's inequality.

Finally, we study the Rellic's inequality.

Wireless microsensor networks , which have been the topic of intensive research in recent years , are now emerging in industrial applications .

An important milestone in this transition has been the release of the IEEE 802.15.4 standard that specifies interoperable wireless physical and medium access control layers targeted to sensor node radios.

In this paper, we evaluate the potential of an 802.15.4 radio for use in an ultra low power sensor node operating in a dense network.

Starting from measurements carried out on the off-the-shelf radio, effective radio activation and link adaptation policies are derived.

It is shown that , in a typical sensor network scenario , the average power per node can be reduced down to  $211 \text{m} \, \text{mm} \, \text{mW}$  .

**Next**, the energy consumption breakdown between the different phases of a packet transmission is **presented**, indicating which part of the transceiver architecture can most effectively be optimized in order to further reduce the radio power, **enabling self-powered wireless** microsensor networks.

Jimmy **needed** to break up with his girlfriend. He **drove** to her house and **knocked** on her door. She **answered** a minute **later** and they began to talk. Jimmy **told** her the bad news and she began to cry. Jimmy **left** the scene and felt very bad about himself.

# Thanks

