

UPDATE 2017-06-23

L. Di Stasio^{1,2}, Z. Ayadi¹, J. Varna²

¹EEIGM, Université de Lorraine, Nancy, France ²Division of Materials Science, Luleå University of Technology, Luleå, Sweden

June 23, 2017

Outline

- Symbols, Models, Equations & Reference Data
- Normal stress distribution at the loaded boundary
- $ightharpoonup \sigma_0$ and G_0
- Finite strain and small strain formulations
- Elements's aspect ratio
- Next steps

SYMBOLS, MODELS, EQUATIONS & REFERENCE DATA

Description

Symbols

Symbol

Unit

θ	[°]	Debond angular position with respect to the center of the arc defined by the debond itself
$\Delta \theta$	[°]	Debond semi-angular aperture
δ	[°]	Angle subtended by a single element at the fiber/matrix interface
VF_f	[-]	Fiber volume fraction
I	[<i>µm</i>]	Ply's half-length, equal to RVE's half-length (square element)
и	$[\mu m]$	Displacement along x
W	$[\mu m]$	Displacement along z

Symbols

Symbol	Unit	Description
Γ_1	[-]	Bonded part of fiber surface
Γ_2	[-]	Free (debonded) part of fiber surface
Γ_3	[-]	Bonded part of matrix surface
Γ_4	[-]	Free (debonded) part of matrix surface

Reference Models

Simple RVE, BC: free.

Reference Models

Simple RVE, BC: fixed vertical displacement.

Reference Models

Simple RVE, BC: fixed vertical and homogeneous horizontal displacement.

Angular discretization

Angular discretization at fiber/matrix interface: $\delta = \frac{360^{\circ}}{4N_{\odot}}$.

Material properties

Material	E [GPa]	G [GPa]	ν [-]
Glass fiber	70,0	29,2	0,2
Ероху	3,5	1,25	0,4

Evaluation of G_0

$$G_0 = \pi R_f \sigma_0^2 \frac{1 + k_m}{8G_m} \tag{1}$$

$$k_m = 3 - 4\nu_m \tag{2}$$

$$\sigma_0^{undamaged} = \frac{E_m}{1 - \nu_m^2} \varepsilon_{xx} \tag{3}$$

VCCT in Forces

$$\Delta u = \left(x_1^{\textit{fiber},\textit{def}} - x_1^{\textit{fiber},\textit{undef}} - x_1^{\textit{fiber},\textit{undef}}\right) - \left(x_1^{\textit{matrix},\textit{def}} - x_1^{\textit{matrix},\textit{undef}} - x_1^{\textit{matrix},\textit{undef}}\right)$$
(4)

$$\Delta w = \left(z_{1 \text{ element before crack tip}}^{\text{fiber, odef}} - z_{1 \text{ element before crack tip}}^{\text{fiber, undef}}\right) - \left(z_{1 \text{ element before crack tip}}^{\text{matrix}, \text{ def}} - z_{1 \text{ element before crack tip}}^{\text{matrix}, \text{ undef}}\right)$$
(5)

$$\beta = \arctan \begin{pmatrix} \frac{Z_{\text{crack tip}}^{\text{matrix}, \text{ def}}}{Z_{\text{crack tip}}^{\text{matrix}, \text{ def}}} \end{pmatrix}$$
 (6)

$$\Delta_{r} = \cos(\beta)\Delta u + \sin(\beta)\Delta w \qquad \Delta_{\theta} = -\sin(\beta)\Delta u + \cos(\beta)\Delta w \tag{7}$$

$$F_r = \cos(\beta)F_x^{reaction} + \sin(\beta)F_z^{reaction}$$
 $F_\theta = -\sin(\beta)F_x^{reaction} + \cos(\beta)F_z^{reaction}$ (8)

$$G_{I} = \frac{1}{2} \frac{F_{f} \Delta_{f}}{R_{f} \delta} \qquad G_{II} = \frac{1}{2} \frac{F_{\theta} \Delta_{\theta}}{R_{f} \delta} \qquad b = 1.0 \leftrightarrow \Delta A = b R_{f} \delta$$
(9)

$$ightharpoonup \sigma_{xx}(x=L,z)$$

$$\sigma_{xx}$$
 $(x=L,z)$ for $Vf_f=0.001$, $\frac{L}{B_t}\sim 28$ and $\delta=0.4^\circ$

In red small strain FEM, in green finite strain FEM.

$$\sigma_{xx}$$
 $(x=L,z)$ for $Vf_f=0.000079$, $\frac{L}{R_t}\sim 100$ and $\delta=0.4^\circ$

In red small strain FEM.

Conclusions

- → Maximum and minimum are equal due to symmetry
- → For $\frac{L}{R_f}$ ~ 28 in small strain, the relative difference between maximum/minimum and mean value is 0.34%
- \rightarrow For $\frac{L}{R_f} \sim$ 28 in finite strain, the relative difference between maximum/minimum and mean value is 0.33%
- → For $\frac{L}{R_f}$ ~ 100 in small strain, the relative difference between maximum/minimum and mean value is 0.03%
- → The stress at the boundary can thus be effectively approximated as constant and equal to the mean value

$$\sigma_0$$
 for $V f_f = 0.001$, $rac{L}{R_f} \sim 28$ and $\delta = 0.4^\circ$

In red small strain FEM, in green finite strain FEM, in black $\sigma_0 = \frac{E}{1-v^2}\varepsilon$.

$$G_0$$
 for $Vf_f=0.001$, $\frac{L}{R_t}\sim 28$ and $\delta=0.4^\circ$

In red small strain FEM, in green finite strain FEM, in black G_0 calculated assuming $\sigma_0 = \frac{E}{1-\epsilon} \varepsilon$.

$$\sigma_0$$
 for $Vf_f=0.000079$, $\frac{L}{R_f}\sim 100$ and $\delta=0.4^\circ$

In red small strain FEM, in black $\sigma_0 = \frac{E}{1-\nu^2} \varepsilon$.

$$G_0$$
 for $Vf_f=0.000079$, $\frac{L}{R_f}\sim 100$ and $\delta=0.4^\circ$

In red small strain FEM, in black G_0 calculated assuming $\sigma_0 = \frac{E}{1-\nu^2}\varepsilon$.

Conclusions

- \rightarrow σ_0 and G_0 depend on $\Delta\theta$ for finite sizes of the RVE
- → As the RVE size $\to \infty$, i.e. $\frac{L}{R_i} \to \infty$ (\sim 100), σ_0 and G_0 tend to the theoretical undamaged value given by $\sigma_0 = \frac{E_m}{1-\nu_c^2} \varepsilon_0$
- → \(\sigma_0\) and \(G_0\) might be taken as a good measure of "infinetess" for strain-/displacement-controlled simulations
- → By selecting $\Delta\theta=10^\circ$ and running a parametric study with a comparatevely coarse mesh the minimum ratio $\frac{L}{R_f}$ or equivalently maximum Vf_f volume to have an infinite RVE could be found

$$rac{G_{(\cdot\cdot)}}{G_0}$$
 for $V_f=0.001$, $rac{L}{R_f}\sim 28$ and $\delta=0.4^\circ$

In red small strain FEM, in green finite strain FEM, in black BEM results.

$$\frac{G_{(\cdot \cdot \cdot)}}{G_0}$$
 for $V_f=0.001$, $\frac{L}{R_f}\sim 28$ and $\delta=0.4^\circ$, small strain formulation

Fading from blue to red J-Integrals evaluated at contours at increasing distance from the crack tip, in black BEM results.

$$rac{G_{(\cdot \cdot \cdot)}}{G_0}$$
 for $V_f=0.001$, $rac{L}{R_f}\sim 28$ and $\delta=0.4^\circ$, small strain formulation

Fading from blue to red J-Integrals evaluated at contours at increasing distance from the crack tip, in green evaluation with in-house VCCT routine, in black BEM results.

4□ > 4回 > 4 至 > 4 至 > 至 の Q ○

$$\frac{G_{(\cdot \cdot \cdot)}}{G_0}$$
 for $V_f=0.001$, $\frac{L}{R_f}\sim 28$ and $\delta=0.4^\circ$, finite strain formulation

Fading from blue to red J-Integrals evaluated at contours at increasing distance from the crack tip, in black BEM results.

$$\frac{G_{(\cdot,\cdot)}}{G_0}$$
 for $V_f=0.001$, $\frac{L}{R_f}\sim 28$ and $\delta=0.4^\circ$, finite strain formulation

Fading from blue to red J-Integrals evaluated at contours at increasing distance from the crack tip, in green evaluation with in-house VCCT routine, in black BEM results.

4□▶ 4億▶ 4億▶ 4億▶ 億 約9℃

Conclusions

- → For both small and finite strain formulations, J-integrals are already in good agreement with $\frac{G_{TOT}}{G_0}$ from BEM, i.e. no sizeable finite size effect already at $\frac{L}{R_t} \sim 28$
- → For both small and finite strain formulations, J-integrals correctly measure the peak value of $\frac{G_{TOT}}{G_0}$ at 60°
- → J-Integrals in small strain slightly overestimate the BEM result
- \rightarrow J-integrals in small strain shows poor convergence in the range $50^{\circ}-80^{\circ}$
- → J-Integrals in finite strain slightly underestimate the BEM result
- → J-integrals in finite strain shows very good convergence in all the range 10° - 150°

(□▶∢∰▶∢불▶∢불▶ 불 ∽9<℃

Conclusions

- $ightarrow rac{G_{TOT}}{G_0}$ is correctly calculated by the VCCT in small strain, in good agreement with BEM results
- → The peak value of $\frac{G_{TOT}}{G_0}$ is correctly calculated by the VCCT in small strain, at 60°
- $ightharpoonup rac{G_{707}}{G_0}$ is wrongly calculated by the VCCT in finite strain, with a peak at $65^\circ 70^\circ$
- → Small strain VCCT shows better results than finite strain VCCT
- → Mode ratio is still not correct, i.e. probably finite size effect

Observations & Questions

- → J-Integral is a far-field technique, using stresses, strain and displacements far from the crack tip; convergence is in fact far from crack tip (at least 10 contours, i.e. 10 ring of elements)
- → VCCT is a local technique, using forces and displacements at the crack tip
- → The difference between small and finite strain results rests mainly in the displacements
- → Previously, we observed that changing the formulation of the bonded interface, all other parameters equal, the result doesn't change
- → All the convergence problem reduces to the correct evaluation of displacements of debonded surfaces close to the crack tip
- → Displacements of debonded surfaces close to the crack tip are influenced by RVE size

Observations & Questions

- → Small strain shows (correctly) better results than finite strain formulation with respect to infinite reference values
- → However, Abaqus documentation suggests that, if contact between surfaces is present in the model, finite strain formulation (nonlinear geometry) should be used
- → For finite sizes of RVE, which formulation should be chosen?

■ ELEMENTS'S ASPECT RATIO

 $\frac{G_{(...)}}{G_0}$ for $Vf_f=0.000079$, $\frac{L}{B_f}\sim 100$ and $\delta=1.0^\circ$, small strain formulation

Fading from blue to red J-Integrals evaluated at contours at increasing distance from the crack tip, in green evaluation with in-house VCCT routine, in black BEM results.

 $\frac{G_{(\cdot\cdot)}}{G_0}$ for $Vf_f=0.000079$, $\frac{L}{R_f}\sim 100$ and $\delta=0.4^\circ$, small strain formulation

Fading from blue to red J-Integrals evaluated at contours at increasing distance from the crack tip, in green evaluation with in-house VCCT routine, in black BEM results.

4□ > 4回 > 4 至 > 4 至 > 至 の Q ○

Conclusions

- → Elements' aspect ratio (maximum side length/minimum side length) was very high in the exterior part of the matrix in this set of simulations
- → Spurious stresses adn deformations were created at 45°, 135°, 225°, 315°
- → Results are badly affected by this in the range 40° 70° with a marked oscillation between 40° 50°
- → Elements' aspect ratio in the matrix is more important than the elements' size at the fiber/matrix interface
- → Program has already been changed to receive aspect ratios as input instead of number of elements
- → Results from previous sections were calculated with meshes with controlled aspect ratios

←□ ト ←団 ト ← 直 ト ← 直 ・ りへで

Next steps

- → Simulations for $Vf_f = 7.9 \cdot 10^{-5}$, $\frac{L}{R_f} \sim 100$ for different δ (mesh size) for both finite and small strain: already running, results during next week
- → Simulations over Vf_f for fixed $\Delta\theta$ and δ to find the value of Vf_f for which the model can be considered infinite by measuring σ_0 and G_0 : starting beginning next week (\sim Monday)
- → Simulations over elements' aspect ratio for fixed size and Vf_f to measure its effect on the solution: starting mid next week (~Wednesday)

