Anderson Junior College Preliminary Examination 2015 H2 Mathematics Paper 1 (9740/01)

H2 Mathematics Paper 1 (9740/01)					
Qn	Solution				
1	$\frac{x+2}{2x-1} < 2x+1$				
	$\frac{x+2-(2x+1)(2x-1)}{2x-1} < 0$				
	2x-1				
	$\left \frac{-4x^2 + x + 3}{2x - 1} \right < 0$				
	${2x-1}$ < 0				
	$(2x-1)(4x^2-x-3)>0$				
	(2x-1)(4x+3)(x-1)>0				
	$-\frac{3}{4} < x < \frac{1}{2}$ or $x > 1$ (ans)				
	$\left \frac{2x^2 + 1}{2 - x^2} < \frac{2 + x^2}{x^2} \right $				
	$\frac{2 + \frac{1}{x^2}}{\frac{2}{x^2} - 1} < \frac{2}{x^2} + 1$				
	$\frac{x^2}{2} < \frac{2}{2} + 1$				
	$\left \frac{2}{x^2} - 1 \right ^X$				
	2 1 1 1				
	$\Rightarrow -\frac{3}{4} < \frac{1}{x^2} < \frac{1}{2} \text{ or } \frac{1}{x^2} > 1$				
	$\Rightarrow 0 < \frac{1}{x^2} < \frac{1}{2} \text{ or } \frac{1}{x^2} > 1$				
	$\Rightarrow x^2 > 2 \text{ or } x^2 < 1$				
	$\Rightarrow x > \sqrt{2}$ or $x < -\sqrt{2}$ or $-1 < x < 1, x \neq 0$				
2	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x+5}{y^2} \Longrightarrow y^2 \frac{\mathrm{d}y}{\mathrm{d}x} = x+5$				
	$2y\left(\frac{dy}{dx}\right)^2 + y^2 \frac{d^2y}{dx^2} = 1$				
	$2\left[\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^3 + 2y\frac{\mathrm{d}y}{\mathrm{d}x} \cdot \frac{\mathrm{d}^2y}{\mathrm{d}x^2}\right] + 2y\frac{\mathrm{d}y}{\mathrm{d}x} \cdot \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + y^2\frac{\mathrm{d}^3y}{\mathrm{d}x^3} = 0$				
	$\Rightarrow 2\left(\frac{dy}{dx}\right)^3 + 6y\frac{dy}{dx} \cdot \frac{d^2y}{dx^2} + y^2\frac{d^3y}{dx^3} = 0$				
	When $x = 0$, $y = 5 \Rightarrow \frac{dy}{dx} = \frac{1}{5}$				
	$10\left(\frac{1}{25}\right) + 25\frac{d^2y}{dx^2} = 1 \Rightarrow \frac{d^2y}{dx^2} = \frac{3}{125}$				
	$2\left(\frac{1}{5}\right)^3 + 30\left(\frac{1}{5}\right)\left(\frac{3}{125}\right) + 25\frac{d^3y}{dx^3} = 0 \Rightarrow \frac{d^3y}{dx^3} = -\frac{4}{625}$				
	$\therefore y = 5 + \frac{1}{5}x + \frac{3}{125(2!)}x^2 - \frac{4}{625(3!)}x^3 + \dots$				
	$=5+\frac{1}{5}x+\frac{3}{250}x^2-\frac{2}{1875}x^3+\dots$				

	T					
	$=\frac{\pi^2}{9} - \frac{\pi}{2} [y - \sin y]_0^{\frac{\pi}{3}}$					
	$=\frac{\pi^2}{9} - \frac{\pi}{2} \frac{\cancel{\xi}\pi}{\cancel{\xi}3} - \sin \frac{\pi \cancel{\psi}}{3 \cancel{\xi}}$					
	$= \frac{\pi^2}{9} - \frac{\pi^2}{6} + \frac{\pi}{2} \frac{e\sqrt{3} \hat{\mathbf{v}}}{\hat{\mathbf{e}}} \frac{\hat{\mathbf{v}}}{2 \hat{\mathbf{v}}}$					
	$=\frac{\pi\sqrt{3}}{4}-\frac{\pi^2}{18}$					
5	By sine rule,					
	$\frac{AB}{\sin\frac{\pi}{6}} = \frac{\sqrt{3}}{\sin(\frac{5\pi}{6} - \theta)}$					
	/H					
	$AB = \frac{\frac{1}{2}\sqrt{3}}{\sin\frac{5\pi}{6}\cos\theta - \cos\frac{5\pi}{6}\sin\theta}$ $A = \frac{\frac{1}{2}\sqrt{3}}{\sin\frac{5\pi}{6}\cos\theta - \cos\frac{5\pi}{6}\sin\theta}$					
	$=\frac{\frac{1}{2}\sqrt{3}}{\frac{1}{2}\cos\theta+\frac{\sqrt{3}}{2}\sin\theta}$					
	$\approx \frac{2\sqrt{3}}{2(1-\frac{1}{2}\theta^2)+2\sqrt{3}(\theta)}$ since θ is small					
	$=\frac{2\sqrt{3}}{2+2\sqrt{3}\theta-\theta^2} \text{(shown)}$					
	$= \frac{1}{2 + 2\sqrt{3}\theta - \theta^2} $ (SHOWII)					
	Applying binomial expansion,					
	$AB \approx \sqrt{3} \left[1 + \left(\sqrt{3}\theta - \frac{1}{2}\theta^2 \right) \right]^{-1}$					
	$\approx \sqrt{3} \left[1 - \left(\sqrt{3}\theta - \frac{1}{2}\theta^2 \right) + \left(\sqrt{3}\theta - \frac{1}{2}\theta^2 \right)^2 \right]$					
	$\approx \sqrt{3} \left[1 - \sqrt{3}\theta + \frac{1}{2}\theta^2 + 3\theta^2 \right]$					
	$= \sqrt{3} - 3\theta + \frac{7\sqrt{3}}{2}\theta^{2} \qquad \left(a = \sqrt{3}, b = -3, c = \frac{7\sqrt{3}}{2}\right)$					
6(i)	Given that $\sin x > \frac{2x}{\pi}$					
	π					
	$\Rightarrow e^{\sin x} > e^{\frac{2x}{\pi}} \text{since } y = e^x \text{ is increasing}$					
	$\Rightarrow 0 < \frac{1}{e^{\sin x}} < \frac{1}{\frac{2x}{e^{\pi}}}$					
	$\frac{\pi}{2} \qquad \frac{\pi}{2} \qquad \frac{\pi}{2} \qquad -\frac{2x}{2}$					
	$\Rightarrow \int_{0}^{\pi} e^{-\sin x} dx < \int_{0}^{\pi} e^{-\pi} dx$					
6(ii)	$\Rightarrow e > e^{x} \text{ since } y = e \text{ is increasing}$ $\Rightarrow 0 < \frac{1}{e^{\sin x}} < \frac{1}{\frac{2x}{e^{\pi}}}$ $\Rightarrow \int_{0}^{\frac{\pi}{2}} e^{-\sin x} dx < \int_{0}^{\frac{\pi}{2}} e^{-\frac{2x}{\pi}} dx$ $\Rightarrow \int_{0}^{\pi} e^{-\sin x} dx = \int_{\frac{\pi}{2}}^{0} e^{-\sin(\pi - u)} (-du) \qquad \text{Let } u = \pi - x \Rightarrow \frac{du}{dx} = -1 \qquad =$					
	$\int_{0}^{\frac{\pi}{2}} e^{-\sin(u)} du \qquad \text{since sin } (\pi - u) = \sin u$					

6(iii)	$\int_{0}^{\pi} e^{-\sin x} dx = \int_{0}^{\frac{\pi}{2}} e^{-\sin x} dx + \int_{\frac{\pi}{2}}^{\pi} e^{-\sin x} dx$
	$= 2 \int_{0}^{\pi/2} e^{-\sin x} dx$ from the result in (ii)
	$< 2\int_{0}^{\frac{\pi}{2}} e^{-\frac{2x}{\pi}} dx \qquad \text{from the result in (i)}$
	$= 2\left[\frac{-\pi}{2}e^{-\frac{2x}{\pi}}\right]_0^{\frac{\pi}{2}}$
	$= -\pi \left[e^{-1} - e^{0} \right]$ $= \frac{\pi \left(e - 1 \right)}{\pi \left(e^{-1} \right)}$
7(i)	$= \frac{1}{e}$ $n^2 x^2 - y^2 = n^2 \text{ where } n > 1$

7(ii) The transformation is that of a translation of 2 units in the direction of the positive *x*-axis.

The equation of C₂: $p^2(x-2)^2 - y^2 = p^2$ Sub (4,3) into C₂:

$$p^{2}(4-2)^{2}-3^{2}=p^{2}$$

$$4p^{2}-9=p^{2}$$

$$3p^{2}=9$$

$$p^2 = 3$$

$$p = \sqrt{3} \ (\text{rej } -\sqrt{3} :: p > 1)$$

No. of roots = no. of intersection points between both graphs = 3

8(i) Let
$$P_n$$
 be the proposition:
$$\sum_{r=2}^{n} \frac{2}{(r+3)(r+5)} = \frac{11}{30} - \frac{2n+9}{(n+4)(n+5)}, \ n \in \mathbb{Z}^+, \ n \ge 2.$$
When $n = 2$, LHS = $\frac{2}{(5)(7)} = \frac{2}{35}$,

RHS =
$$\frac{11}{30} - \frac{2(2) + 9}{(6)(7)} = \frac{2}{35}$$
.

Since LHS = RHS, P_2 is true.

Assume P_k is true for some $k \in \mathbb{Z}^+$, $k \ge 2$

i.e.
$$\sum_{r=2}^{k} \frac{2}{(r+3)(r+5)} = \frac{11}{30} - \frac{2k+9}{(k+4)(k+5)}.$$

Need to show that P_{k+1} is also true. i.e.

$$\sum_{r=2}^{k+1} \frac{2}{(r+3)(r+5)} = \frac{11}{30} - \frac{2(k+1)+9}{(k+1+4)(k+1+5)} = \frac{11}{30} - \frac{2k+11}{(k+5)(k+6)}.$$

LHS of
$$P_{k+1} = \mathop{a}\limits_{r=2}^{k+1} \frac{2}{(r+3)(r+5)}$$

$$= \mathop{a}\limits_{r=2}^{k} \frac{2}{(r+3)(r+5)} + \frac{2}{(k+4)(k+6)}$$

$$= \left[\frac{11}{30} - \frac{2k+9}{(k+4)(k+5)}\right] + \frac{2}{(k+4)(k+6)}$$

$$= \frac{11}{30} - \frac{(2k+9)(k+6) - 2(k+5)}{(k+4)(k+5)(k+6)}$$

$$= \frac{11}{30} - \frac{2k^2 + 21k + 54 - 2k - 10}{(k+4)(k+5)(k+6)}$$

$$= \frac{11}{30} - \frac{2k^2 + 19k + 44}{(k+4)(k+5)(k+6)}$$

$$= \frac{11}{30} - \frac{(k+4)(2k+11)}{(k+4)(k+5)(k+6)}$$

$$= \frac{11}{30} - \frac{2k+11}{(k+5)(k+6)}$$

Since P_2 is true, and P_k is true $\Rightarrow P_{k+1}$ is true, by mathematical induction, P_n is true for all $n \in \mathbb{Z}^+$, $n \ge 2$.

all
$$n \in \mathbb{Z}^+$$
, $n \ge 2$.

$$\sum_{r=4}^{n+4} \frac{2}{r(r+2)} = \sum_{r=1}^{n+1} \frac{2}{(r+3)(r+5)}$$

$$= \sum_{r=2}^{n+1} \frac{2}{(r+3)(r+5)} + \frac{2}{(4)(6)}$$

$$= \frac{11}{30} - \frac{2n+11}{(n+5)(n+6)} + \frac{2}{24}$$

$$= \frac{9}{20} - \frac{2n+11}{(n+5)(n+6)}$$

8(iii)
$$\sum_{r=4}^{n+4} \frac{1}{(r+1)^2} = \frac{1}{2} \sum_{r=4}^{n+4} \frac{2}{(r+1)^2}$$

$$< \frac{1}{2} \sum_{r=4}^{n+4} \frac{2}{r(r+2)} \quad \text{(Since } (r+1)^2 = r^2 + 2r + 1 > r^2 + 2r = r(r+2))$$

$$= \frac{1}{2} \left[\frac{9}{20} - \frac{2n+11}{(n+5)(n+6)} \right]$$

$$< \frac{9}{40} \quad \text{(since } \frac{2n+11}{(n+5)(n+6)} > 0 \text{ for all } n \in \mathbb{Z}^* \text{)}$$

$$= \frac{1}{40} \left(\frac{1}{\sqrt{x^2 - 3}} \right) = \frac{d}{dx} \left((x^2 - 3)^{-\frac{1}{2}} \right) = \left(-\frac{1}{2} \right) (x^2 - 3)^{-\frac{1}{2}} (2x) = \frac{-x}{(x^2 - 3)^{\frac{1}{2}}}$$

$$= \frac{1}{\sqrt{x^2 - 1}} \left(-\frac{1}{x^2} \right) = \frac{x}{\sqrt{x^2 - 1}} \left(-\frac{1}{x^2} \right)$$

$$= \frac{1}{\sqrt{x^2 - 1}} \left(-\frac{1}{x^2} \right) = \frac{x}{\sqrt{x^2 - 1}} \left(-\frac{1}{x^2} \right)$$

$$= -\frac{1}{x\sqrt{x^2 - 1}}$$

$$= -\frac{1}{x\sqrt{x^2 - 1}}$$

$$= \frac{1}{2} \ln t \cdot \frac{dx}{dt} dt$$

$$= \int_{\frac{3}{2}}^{2} \ln t \cdot \frac{t}{(t^2 - 1)^{\frac{3}{2}}} dt \quad \text{(as } \int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx \right)$$

$$= \left[\left(-\frac{1}{\sqrt{t^2 - 1}} \right) \ln t \right]_{-\frac{x}{2}}^{-2} - \frac{1}{\sqrt{t^2 - 1}} \left(\frac{1}{t} \right) dt$$

$$= \left[\left(-\frac{\ln 2}{\sqrt{3}} \right) - \left(-\frac{\ln \frac{\sqrt{3}}{\sqrt{3}}}{\sqrt{1}} \right) \right] + \frac{1}{\sqrt{t}} \frac{1}{t} \frac{1}{t\sqrt{t^2 - 1}} dt$$

$$= \left[-\frac{\ln 2}{\sqrt{3}} + \sqrt{3} \ln 2 - \sqrt{3} \ln(\sqrt{3}) - \left[\sin^{-1} \left(\frac{1}{2} \right) - \sin^{-1} \left(\frac{\sqrt{3}}{2} \right) \right]$$

$$= (\sqrt{3} - \frac{1}{\sqrt{3}} \ln 2 - \frac{\sqrt{3}}{2} \ln 3 - \left(\frac{\pi}{6} - \frac{\pi}{3} \right)$$

$$= \frac{2\sqrt{3}}{3} \ln 2 - \frac{\sqrt{3}}{2} \ln 3 + \frac{\pi}{6}$$

$$= \frac{10(i)}{2} \quad \text{Let } y = f(x) \Rightarrow y = \frac{1}{2 - x^2}$$

$$\Rightarrow x^2 = 2 - \frac{1}{y}$$

11(i)

i) From triangle APQ,

$$\tan 30^\circ = \frac{\frac{a-x}{2}}{h} \Rightarrow \frac{1}{\sqrt{3}} = \frac{a-x}{2h}$$
$$\Rightarrow x = a - \frac{2}{\sqrt{3}}h$$

Volume,
$$V = \text{base area} \times \text{height}$$

$$= 6 \left(\text{area of } \Box \text{PST} \right) \times h$$

$$= 6 \left(\frac{1}{2} x^2 \sin 60^\circ \right) \times h$$

$$= 3h \left(a - \frac{2}{\sqrt{3}} h \right)^2$$

$$= 3h \left(\frac{2}{\sqrt{3}} \right)^2 \left(\frac{\sqrt{3}}{2} a - h \right)^2$$

$$= 2\sqrt{3} h \left(\frac{\sqrt{3}}{2} a - h \right)^2 \text{ (shown)}$$

Alternative method: find the height RS of triangle PST

From triangle PSR,

$$\tan 30^\circ = \frac{\frac{x}{2}}{RS} \Rightarrow \frac{1}{\sqrt{3}} = \frac{\frac{x}{2}}{RS}$$
$$\Rightarrow RS = \frac{\sqrt{3}}{2} \left(a - \frac{2}{\sqrt{3}} h \right)$$

Volume, $V = \text{base area} \times \text{height}$

$$= 6 \left[\frac{1}{2} (x) RS \right] \times h$$

$$= 3h \left(a - \frac{2}{\sqrt{3}} h \right) \left[\frac{\sqrt{3}}{2} \left(a - \frac{2}{\sqrt{3}} h \right) \right]$$

$$= \frac{3\sqrt{3}}{2} h \left(\frac{2}{\sqrt{3}} \right)^2 \left(\frac{\sqrt{3}}{2} a - h \right)^2 = 2\sqrt{3} h \left(\frac{\sqrt{3}}{2} a - h \right)^2 \quad \text{(shown)}$$

11(ii)
$$V = 2\sqrt{3} h \left(\frac{\sqrt{3}}{2}a - h\right)^2$$
$$\frac{dV}{dh} = 2\sqrt{3} \left[2\left(\frac{\sqrt{3}}{2}a - h\right)(-1)h + \left(\frac{\sqrt{3}}{2}a - h\right)^2 \right]$$

$$= 2\sqrt{3} \left(\frac{\sqrt{3}}{2} a - h \right) \left[-2h + \frac{\sqrt{3}}{2} a - h \right]$$
$$= 2\sqrt{3} \left(\frac{\sqrt{3}}{2} a - h \right) \left(\frac{\sqrt{3}}{2} a - 3h \right)$$

For stationary value of V, $\frac{dV}{dh} = 0$.

$$\Rightarrow h = \frac{\sqrt{3}}{2}a$$
 or $h = \frac{\sqrt{3}}{6}a$

When $h = \frac{\sqrt{3}}{2}a$, base area of the box is zero (or the volume is zero). Hence this value of

h does not give a maximum volume of the box. (OR: show that $\frac{d^2V}{dh^2} = 6a > 0$ for this value of h)

To check for maximum at $h = \frac{\sqrt{3}}{6}a$,

1st Derivative Test

h	$\left(\frac{\sqrt{3}}{6}a\right)^{-}$	$\frac{\sqrt{3}}{6}h$	$\left(\frac{\sqrt{3}}{6}h\right)^+$
$\frac{dV}{dh}$	>0	0	< 0

When
$$h = \left(\frac{\sqrt{3}}{6}a\right)^{-}$$
,

$$\left(\frac{\sqrt{3}}{2}a - h\right) > 0 \text{ and } \left(\frac{\sqrt{3}}{2}a - 3h\right) > 0 \Rightarrow \frac{dV}{dh} > 0$$

When
$$h = \left(\frac{\sqrt{3}}{6}a\right)^+$$
,

$$\left(\frac{\sqrt{3}}{2}a - h\right) > 0 \text{ and } \left(\frac{\sqrt{3}}{2}a - 3h\right) < 0 \Rightarrow \frac{dV}{dh} < 0$$

$$\frac{2^{nd} Derivative Test}{\frac{d^2V}{dh^2}} = 2\sqrt{3} \left[-\left(\frac{\sqrt{3}}{2}a - 3h\right) - 3\left(\frac{\sqrt{3}}{2}a - h\right) \right] = 12\sqrt{3}h - 12a$$

When
$$h = \frac{\sqrt{3}}{6}a$$
,

$$\frac{\mathrm{d}^2 V}{\mathrm{d}h^2} = -6a < 0.$$

So V is maximum when $h = \frac{\sqrt{3}}{6}a$.

Line
$$l: \mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 6 \\ 1 \end{pmatrix}, \lambda \in \square$$

Let θ be the angle between the line I and the plane p_1 .

$$\sin \theta = \frac{\begin{vmatrix} 0 \\ 6 \\ 1 \end{vmatrix} \bullet \begin{pmatrix} 2 \\ -1 \\ 1 \end{vmatrix}}{\sqrt{6^2 + 1^2} \sqrt{2^2 + 1^2 + 1^2}} = \frac{|-6 + 1|}{\sqrt{37} \sqrt{6}} \implies \theta = 19.6^{\circ}$$

12(ii) Let *M* be the point of
$$PQ = \left(0, 3, \frac{3}{2}\right)$$
.

Let
$$M$$
 be the point of $PQ = \begin{bmatrix} 0, 3, \frac{1}{2} \end{bmatrix}$.

 R lies on x - y plane $\Rightarrow R = (a, b, 0)$. Thus $\overrightarrow{MR} = \begin{bmatrix} a \\ b - 3 \\ -\frac{3}{2} \end{bmatrix}$

$$\overrightarrow{MR} \perp \text{line } l \implies \begin{pmatrix} a \\ b-3 \\ -\frac{3}{2} \end{pmatrix} \bullet \begin{pmatrix} 0 \\ 6 \\ 1 \end{pmatrix} = 0 \implies 6b-18-\frac{3}{2} = 0 \implies b = \frac{13}{4}$$

Length of
$$MR = 2$$

$$\Rightarrow \sqrt{a^2 + (b-3)^2 + \left(-\frac{3}{2}\right)^2} = 2$$
$$\Rightarrow a^2 + \left(\frac{13}{4} - 3\right)^2 + \left(-\frac{3}{2}\right)^2 = 4 \qquad \Rightarrow a = \pm \frac{3\sqrt{3}}{4}$$

$$\therefore R = \left(\frac{3\sqrt{3}}{4}, \frac{13}{4}, 0\right) \text{ or } \left(-\frac{3\sqrt{3}}{4}, \frac{13}{4}, 0\right)$$

12(iii)
$$p_1: \mathbf{r} \bullet \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 0 \\ 6 \\ 2 \end{pmatrix} = -5 \Rightarrow 2x - y + z = -4$$

$$p_2: x+5y-10z=0$$

Using GC, line of intersection of the two planes is

$$\mathbf{r} = \begin{pmatrix} -\frac{10}{11} \\ \frac{24}{11} \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 5 \\ 21 \\ 11 \end{pmatrix}, \beta \in \square \qquad [OR \ \mathbf{r} = \begin{pmatrix} \frac{30}{11} \\ \frac{16}{11} \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 5 \\ 21 \\ 11 \end{pmatrix}, \beta \in \square]$$

A vector parallel to p_3 is $\begin{pmatrix} 5 \\ 21 \\ 11 \end{pmatrix}$.

Another vector parallel to
$$p_3 = \begin{pmatrix} -\frac{10}{11} \\ \frac{24}{11} \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -\frac{21}{11} \\ \frac{13}{11} \\ -1 \end{pmatrix} = -\frac{1}{11} \begin{pmatrix} 21 \\ -13 \\ 11 \end{pmatrix}$$

[Note that (0,6,2) lies on p_3 since it lies on both p_1 and $p_2 \Rightarrow$ it lies on p_3 . Accept $\begin{bmatrix} -1 \\ 5 \\ 1 \end{bmatrix}$

or equivalent as direction vector]

Normal to
$$p_3 = \begin{pmatrix} 5 \\ 21 \\ 11 \end{pmatrix} \times \begin{pmatrix} -\frac{21}{11} \\ \frac{13}{11} \\ -1 \end{pmatrix} = \begin{pmatrix} -34 \\ -16 \\ 46 \end{pmatrix} = -2 \begin{pmatrix} 17 \\ 8 \\ -23 \end{pmatrix}$$

Equation of p_3 :

$$\mathbf{r} \bullet \begin{pmatrix} 17 \\ 8 \\ -23 \end{pmatrix} = \begin{pmatrix} 17 \\ 8 \\ -23 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \implies \mathbf{r} \bullet \begin{pmatrix} 17 \\ 8 \\ -23 \end{pmatrix} = 2$$