TTK4150 Nonlinear Control Systems Lecture 9

Perturbation Theory and Averaging

Previous lecture:

Passivity

- How to analyze the passivity properties of a system by using the definitions of passivity for
 - Memoryless functions
 - Dynamical systems
- Understand the relations between passivity and
 - Lyapunov stability
 - \mathcal{L}_2 stability (IOS)
- The passivity theorems (for feedback connections)

Outline

Introduction

Introduction

- Previous lecture
- Today's goals
- Literature
- Motivation

Periodic Perturbation of Autonomous Systems

- Introduction
- Lemmas
- Theorem 10.3

Averaging Theory

- Introduction to Averaging Theory
- Averaging Method
- Averaged System
- Theorem 10.4

Examples

- Linear System
- The Suspended Pendulum
- Snake Robot
- Next lecture

After today you should...

- Analyze an autonomous system under the influence of a weak periodic perturbation
- Use Averaging method-Periodic averaging

Literature

Today's lecture is based on

Khalil Chapter 10

Sections 10.3 and 10.4

Asymptotic Methods

- Exact closed-form analytical solutions of nonlinear differential equations are possible only for special cases
- An alternative
 - Numerical Methods
 - Asymptotic Methods
 - Perturbation Method
 - Averaging Theory
 - Singular Perturbation
- The goal of an asymptotic method is to obtain $\tilde{x}(t,\varepsilon)$ such that $x(t,\varepsilon)-\tilde{x}(t,\varepsilon)$ is small, for small $|\varepsilon|$ and the $\tilde{x}(t,\varepsilon)$ is expressed in terms of equations simpler than the original equation.

Part I

Periodic Perturbation of Autonomous Systems

Consider the system

$$\dot{x} = f(x) + \varepsilon g(t, x, \varepsilon) \tag{1}$$

where

- f, g, and their first partial derivatives with respect to x are continuous and bounded for all $(t,x,\varepsilon)\in [0,\infty)\times D_0\times [-\varepsilon_0,\varepsilon_0]$, for every compact set $D_0\subset D$, where $D\subset R^n$ is a domain that contains the origin.
- Suppose the origin is an exponentially stable equilibrium point of the autonomous system

$$\dot{x} = f(x) \tag{2}$$

We should show that

• there exist r>0 and $\varepsilon_1>0$ such that for all $\|x(0)\|\leq r$ and $|\varepsilon|\leq \varepsilon_1$, the solution of

$$\dot{x} = f(x) + \varepsilon g(t, x, \varepsilon)$$

is uniformly ultimately bounded with ultimate bound proportional to $|\varepsilon|$.

• all solutions approach an $O(\varepsilon)$ neighborhood of the origin as $t \to \infty$ and this is true for any bounded g.

Question

What happens inside that $O(\varepsilon)$ neighborhood when g is T-periodic in t?

Possibility that a T- periodic solution might exist within an $O(\varepsilon)$ neighborhood of the origin.

Define $P_{\varepsilon}(x)$

Let $\phi(t;t_0,x_0,\varepsilon)$ be the solution of (1) that starts at (t_0,x_0) ; that is, $x_0 = \phi(t_0;t_0,x_0,\varepsilon)$. For all ||x|| < r, define a map $P_{\varepsilon}(x)$ by

$$P_{\varepsilon}(x) = \phi(T; 0, x, \varepsilon)$$

 $P_{\varepsilon}(x)$ is the state of the system at time T when the initial state at time zero is x.

Lemma 10.1

The system

$$\dot{x} = f(x) + \varepsilon g(t, x, \varepsilon)$$

has a T-periodic solution if and only if the equation

$$x = P_{\varepsilon}(x) \tag{3}$$

has a solution.

Lemma 10.2

There exist positive constants k and ε_2 such that

$$x = P_{\varepsilon}(x)$$

has a unique solution in $||x|| = k|\varepsilon|$, for $|\varepsilon| < \varepsilon_2$.

NB

• For sufficient small ε , the perturbed system

$$\dot{x} = f(x) + \varepsilon g(t, x, \varepsilon)$$

has a T- periodic solution in an $O(\varepsilon)$ neighborhood of the origin

 The periodic solution has to be unique due to the uniqueness of the solution of equation

$$x = P_{\varepsilon}(x)$$

Lemma 10.3

If $\bar{x}(t,\varepsilon)$ is a T-periodic solution of

$$\dot{x} = f(x) + \varepsilon g(t, x, \varepsilon)$$

such that

$$\|\bar{x}(t,\varepsilon)\| \le k|\varepsilon|$$

then $\bar{x}(t,\varepsilon)$ is exponentially stable.

Theorem 10.3

Suppose

- f, g and their first partial derivatives with respect to x are continuous and bounded for all
 - $(t,x,arepsilon)\in [0,\infty) imes D_0 imes [-arepsilon_0,arepsilon_0]$, for every compact set $D_0\subset D$, where $D\subset R^n$ is a domain that contains the origin
- The origin is an exponentially stable equilibrium point of the autonomous system

$$\dot{x} = f(x)$$

• $g(t, x, \varepsilon)$ is T- periodic in t.

Theorem 10.3 cont.

Then, there exist positive constants ε^* and k such that for all $|\varepsilon|<\varepsilon^*$, the perturbed system

$$\dot{x} = f(x) + \varepsilon g(t, x, \varepsilon)$$

has a unique *T*-periodic solution $\bar{x}(t,\varepsilon)$ with the property that

$$\|\bar{x}(t,\varepsilon)\| \le k|\varepsilon|$$

Moreover, this solution is exponentially stable.

Perturbed system

$$\dot{x} = f(x) + \varepsilon g(t, x, \varepsilon)$$

- If $g(t,0,\varepsilon) = 0$, the origin will be an equilibrium point of the perturbed system.
- By uniqueness of the periodic solution $\bar{x}(t,\varepsilon)$, it follows that $\bar{x}(t,\varepsilon)$ is the trivial solution x=0.

NB

The Theorem 10.3 ensures that the origin is an exponentially stable equilibrium point of the perturbed system.

Part II

Averaging Theory

Introduction to Averaging Theory

The basic idea of averaging theory-deterministic or stochastic

is to approximate the original system

- time-varying and periodic
- almost periodic, or randomly perturbed

by a simpler (average) system

time-invariant, deterministic

or some approximating diffusion system

a stochastic system simpler than the original one

The averaging method has been developed as:

- a practical tool in mechanics/dynamics
- a theoretical tool in mathematics both for deterministic dynamics and for stochastic dynamics.

Averaging method

- Averaging method is a useful computational technique
- Lagrange formulated the gravitational three-body problem as a perturbation of the two-body problem (1788)
- Fatou gave the first proof of the asymptotic validity of the method in 1928
- After the systematic researches done by Krylov, Bogoliubov, Mitropolsky etc, in 1930s, the averaging method gradually became one of the classical methods in analyzing nonlinear oscillations

Averaging method

The averaging method applies to a system of the form

$$\dot{x} = \varepsilon f(t, x, \varepsilon)$$

where ε is a small positive parameter and $f(t,x,\varepsilon)$ is T- periodic in t:

$$f(t+T,x,\varepsilon) = f(t,x,\varepsilon), \forall (t,x,\varepsilon) \in [0,\infty) \times D \times [0,\varepsilon_0]$$

for some domain $D \subset \mathbb{R}^n$.

The averaging methond approximates

the solution of the system by the solution of an "averaged system," obtained by averaging $f(t,x,\varepsilon)$ at $\varepsilon=0$.

Consider the system

$$\dot{x} = \varepsilon f(t, x, \varepsilon) \tag{4}$$

- where f and its partial derivatives with respect to (x, ε) up to the second order are continuous and bounded for $(t, x, \varepsilon) \in [0, \infty) \times D \times [0, \varepsilon_0]$, for every compact set $D_0 \subset D$, where $D \subset R^n$ is a domain
- Moreover, $f(t,x,\varepsilon)$ is T- periodic in t for some T>0 and ε is positive.

We associate with (4) an autonomous averaged system

$$\dot{x} = \varepsilon f_{av}(x) \tag{5}$$

where

$$f_{av}(x) = \frac{1}{T} \int_0^T f(\tau, x, 0) d\tau$$
 (6)

Nonautonomous System

$$\dot{x} = \varepsilon f(t, x, \varepsilon)$$

Autonomous System

$$\dot{x} = \varepsilon f_{av}(x)$$

NB

Determine in what sense the behavior of the

- autonomous system approximates the behavior of the
 - nonautonomous system.

Theorem 10.4

- Let $f(t,x,\varepsilon)$ and its partial derivatives with respect to (x,ε) up to the second order be continious and bounded for $(t,x,\varepsilon) \in [0,\infty) \times D \times [0,\varepsilon_0]$, for every compact set $D_0 \subset D$, where $D \subset R^n$ is a domain.
- Suppose f is T- periodic in t for some T > 0 and ε is a positive parameter.
- Let $x(t,\varepsilon)$ and $x_{av}(\varepsilon t)$ denote the solutions of (4) and (5) respectively.

if $x_{av}(\varepsilon t) \in D$ $\forall t \in [0,b/\varepsilon]$ and $x(0,\varepsilon) - x_{av}(0) = O(\varepsilon)$, then there exists $\varepsilon^* > 0$ such that for all $0 < \varepsilon < \varepsilon^*$, $x(t,\varepsilon)$ is defined and

$$x(t,\varepsilon) - x_{av}(\varepsilon t) = O(\varepsilon)$$
 on $[0,b/\varepsilon]$

continue ...

Theorem 10.4

If the origin $x=0\in D$ is an exponentially stable equilibrium point of the average system (5), $\Omega\in D$ is a compact subset of its region of attraction, $x_{av}(0)\in\Omega$, and $x(0,\varepsilon)-x_{av}(0)=O(\varepsilon)$, then there exists $\varepsilon^*>0$ such that for all $0<\varepsilon<\varepsilon^*$, $x(t,\varepsilon)$ is defined and

$$x(t,\varepsilon) - x_{av}(\varepsilon t) = O(\varepsilon)$$
 for all $t \in [0,\infty)$

If the origin $x=0\in D$ is an exponentially stable equilibrium point of the average system (5), then there exist positive constant ε^* and k such that, for all $0<\varepsilon<\varepsilon^*$, (4) has a unique, exponentially stable, T- periodic solution $\bar{x}(t,\varepsilon)$ with the property

$$\|\bar{x}(t,\varepsilon)\| \le k\varepsilon$$

NB

• If $f(t,0,\varepsilon)=0$ for all $(t,\varepsilon)\in[0,\infty)\times[0,\varepsilon_0]$, the origin will be an equilibrium point of

$$\dot{x} = \varepsilon f(t, x, \varepsilon)$$

- By uniqueness of the *T*-periodic solution $\bar{x}(t,\varepsilon)$, it follows that $\bar{x}(t,\varepsilon)$ is the trivial solution x=0.
- In this case, the theorem ensures that the origin is an exponentially stable equilibrium point of

$$\dot{x} = \varepsilon f(t, x, \varepsilon)$$

Part III

Examples

Consider the linear system

$$\dot{x} = \varepsilon A(t)x$$

where A(t+T) = A(t) and $\varepsilon > 0$. Let

$$\bar{A} = \frac{1}{T} \int_0^T A(\tau) d\tau$$

The average system is given by

$$\dot{x} = \varepsilon \bar{A} x$$

It has an equilibrium point at x = 0.

Suppose that the matrix \bar{A} is Hurwitz

Then, it follows from the Theorem 10.4 that:

- For sufficient small ε , $\dot{x} = \varepsilon A(t)x$ has unique T- periodic solution in an $O(\varepsilon)$ neighborhood of the origin x = 0.
- x = 0 is an equilibrium point for the system. Hence, the periodic solution is the trivial solution x(t) = 0.
- For sufficient small, ε , x = 0 is an exponentially stable equilibrium point for the nonautonomous system

$$\dot{x} = \varepsilon A(t)x$$

- Suspension point: vertical vibrations with $a \sin \omega t$, where a is the amplitude and ω is the frequency.
- $a/l \ll 1$ and $\omega_0/\omega \ll 1$, where $\omega_0 = \sqrt{g/l}$

The equation of the system is given by

$$m(l\ddot{\theta} - a\omega^2 \sin \omega t \sin \theta) = -mg \sin \theta - k(l\dot{\theta} + a\omega \cos \omega t \sin \theta)$$

- Let $\varepsilon = a/l$ and $\omega_0/\omega = \alpha \varepsilon$, where $\alpha = \omega_0 l/\omega a$.
- Let $\beta = k/m\omega_0$ and changing the time scale from t to $\tau = \omega t$

The equation of motion can be written as

$$\frac{d^2\theta}{d\tau^2} + \alpha\beta\varepsilon\frac{d\theta}{d\tau} + (\alpha^2\varepsilon^2 - \varepsilon\sin\tau)\sin\theta + \alpha\beta\varepsilon^2\cos\tau\sin\theta = 0$$

Choosing

$$x_1 = \theta, \qquad x_2 = \frac{1}{\varepsilon} \frac{d\theta}{d\tau} + \cos \tau \sin \theta$$

as state variables, the state equation is given by

$$\frac{dx}{d\tau} = \varepsilon f(\tau, x) \tag{7}$$

where

$$f_1(\tau, x) = x_2 - \sin x_1 \cos \tau$$

$$f_2(\tau, x) = -\alpha \beta x_2 - \alpha^2 \sin x_1 + x_2 \cos x_1 \cos \tau - \sin x_1 \cos x_1 \cos^2 \tau$$

The function $f(\tau, x)$ is 2π - periodic in τ .

The average system is given by

$$\frac{dx}{d\tau} = \varepsilon f_{av}(x) \tag{8}$$

where

$$f_{av1}(x) = \frac{1}{2\pi} \int_0^{2\pi} f_1(\tau, x) d\tau = x_2$$

$$f_{av2}(x) = \frac{1}{2\pi} \int_0^{2\pi} f_2(\tau, x) d\tau = -\alpha \beta x_2 - \alpha^2 \sin x_1 - \frac{1}{4} \sin 2x_1$$

Equilibrium point of the systems

- Both the original system (7) and the average system (8) have equilibrium points at
 - $(x_1 = 0, x_2 = 0)$
 - $(x_1 = \pi, x_2 = 0)$

which correspond to the equilibrium positions

- $\theta = 0$
- ullet $\theta = \pi$

With a fixed suspension point,

- the equilibrium $\theta = 0$ is **exponentially stable**
- while the equilibrium position $\theta = \pi$ is **unstable**.

Question

What a vibrating suspension point will do to the system?

Applying the Theorem 10.4, analyze

the stability properties of the equilibrium points of the average system (8) via linearization.

• The Jacobian of $f_{av}(x)$ is given by

$$\frac{\partial f_{av}}{\partial x} = \begin{bmatrix} 0 & 1\\ -\alpha^2 \cos x_1 - 0.5 \cos 2x_1 & -\alpha \beta \end{bmatrix}$$

• At the equilibrium point $(x_1 = 0, x_2 = 0)$, the Jacobian

$$\left[\begin{array}{cc} 0 & 1 \\ -\alpha^2 - 0.5 & -\alpha\beta \end{array}\right]$$

is Hurwitz for all positive values of α and β .

By Theorem 10.4:

- For sufficiently small ε , the original system (7) has a unique exponential stable 2π periodic solution in an $O(\varepsilon)$ neighborhood of the origin.
- The periodic solution is the trivial solution x = 0 because the origin is an equilibrium point for the original system.
- For sufficiently small ε , the origin is an exponentially stable equilibrium point for the original system (7).

Which means that:

Exponential stability of the $\theta = 0$ is preserved under

- small-amplitude
- high-frequency

vibration of the suspension point.

At the equilibrium point $(x_1 = \pi, x_2 = 0)$

The Jacobian

$$\left[\begin{array}{cc} 0 & 1 \\ \alpha^2 - 0.5 & -\alpha\beta \end{array}\right]$$

is Hurwitz for $0 < \alpha < 1/\sqrt{2}$ and $\beta > 0$.

NB

- $(x_1 = \pi, x_2 = 0)$ is an equilibrium point for the original system
- and applying Theorem 10.4

we are led to the conclusion that if $\alpha < 1/\sqrt{2}$, then $\theta = \pi$ is an **exponentially stable** equilibrium point for the original system (7) for sufficiently small ε .

NB

The unstable upper equilibrium position of the pendulum can be stabilized by vibrating the suspended point vertically with small amplitude and high frequency.

The idea of introducing

- high-frequency
- zero-mean vibration

in the parameters of a dynamic system in order to modify the properties of the system in a desired manner has been generalized into a **principle of vibrational control**.

The equation of motion is given by

Joint velocities
$$\dot{\boldsymbol{\phi}} = \boldsymbol{v}_{\boldsymbol{\phi}}$$
 Rotational velocity
$$\dot{\boldsymbol{\theta}} = v_{\boldsymbol{\theta}}$$

$$\dot{\boldsymbol{p}}_{x} = v_{t}\cos\theta - v_{n}\sin\theta$$

$$\dot{\boldsymbol{p}}_{y} = v_{t}\sin\theta + v_{n}\cos\theta$$
 Joint accelerations
$$\dot{\boldsymbol{v}}_{\boldsymbol{\phi}} = -\frac{c_{1}}{m}\boldsymbol{v}_{\boldsymbol{\phi}} + \frac{c_{2}}{m}v_{t}\boldsymbol{A}\boldsymbol{D}^{T}\boldsymbol{\phi} + \frac{1}{m}\boldsymbol{D}\boldsymbol{D}^{T}\boldsymbol{u}$$
 Rotational acceleration
$$\dot{\boldsymbol{v}}_{\boldsymbol{\theta}} = -c_{3}v_{\boldsymbol{\theta}} + \frac{c_{4}}{N-1}v_{t}\overline{\boldsymbol{e}}^{T}\boldsymbol{\phi}$$

$$\dot{\boldsymbol{v}}_{t} = -\frac{c_{1}}{m}v_{t} + \frac{2c_{2}}{Nm}v_{n}\overline{\boldsymbol{e}}^{T}\boldsymbol{\phi} - \frac{c_{2}}{Nm}\boldsymbol{\phi}^{T}\boldsymbol{A}\overline{\boldsymbol{D}}\boldsymbol{v}_{\boldsymbol{\phi}}$$
 Translational acceleration
$$\dot{\boldsymbol{v}}_{n} = -\frac{c_{1}}{m}v_{n} + \frac{2c_{2}}{Nm}v_{t}\overline{\boldsymbol{e}}^{T}\boldsymbol{\phi}$$

Example: Snake Robot

The velocity dynamics in standard form of averaging is given by

$$\frac{d\mathbf{v}}{d\tau} = \varepsilon \mathbf{f}(\tau, \mathbf{v}) \tag{9}$$

where

$$f(\tau, \mathbf{v}) = \begin{bmatrix} -\frac{c_1}{m} v_t + \frac{2c_2}{Nm} v_n f_1(\tau) - \frac{c_2}{Nm} f_2(\tau) \\ -\frac{c_1}{m} v_n + \frac{2c_2}{Nm} v_t f_1(\tau) \\ -c_3 v_\theta + \frac{c_4}{N-1} v_t f_1(\tau) \end{bmatrix}$$

$$f_1(\tau) = (N-1) \phi_o + \sum_{i=1}^{N-1} \alpha \sin(\tau + (i-1) \delta)$$

$$f_{2}(\tau) = \sum_{i=1}^{N-1} \sum_{j=1}^{N-1} \left[\frac{k_{\alpha\omega}}{\alpha} \phi_{o} a_{ij} \cos(\tau + (j-1) \delta) + k_{\alpha\omega} a_{ij} \sin(\tau + (i-1) \delta) \cos(\tau + (j-1) \delta) \right]$$

Study the stability of the velocity dynamics.

The averaged model is given by

$$\dot{\mathbf{v}} = \mathscr{A}\mathbf{v} + \mathbf{b} \tag{10}$$

where

$$\mathscr{A} = \mathscr{A}(\phi_o) = egin{bmatrix} -\frac{c_1}{m} & \frac{2(N-1)}{Nm}c_2\phi_o & 0 \ \frac{2(N-1)}{Nm}c_2\phi_o & -\frac{c_1}{m} & 0 \ c_4\phi_o & 0 & -c_3 \end{bmatrix}$$

$$\boldsymbol{b} = \boldsymbol{b}(\alpha, \omega, \delta) = \begin{bmatrix} \frac{c_2}{2Nm} k_{\alpha\omega} k_{\delta} \\ 0 \\ 0 \end{bmatrix}$$

Stability Analysis

By performing coordinate transformation $z = v + \mathcal{A}^{-1}b$ we have

$$\dot{z} = \dot{v} = \mathscr{A}(z - \mathscr{A}^{-1}b) + b = \mathscr{A}z$$

The eigenvalues of \mathscr{A} are easily calculated as

$$\operatorname{eig}(\mathscr{A}) = \begin{bmatrix} -\frac{c_1}{m} - \frac{2(N-1)}{Nm} c_2 \phi_o \\ -\frac{c_1}{m} + \frac{2(N-1)}{Nm} c_2 \phi_o \\ -c_3 \end{bmatrix}$$

Stability condition

$$|\phi_o| < \frac{N}{2(N-1)} \frac{c_1}{c_2}$$

Using the Theorem 10.4

• There exist k > 0 and $\omega^* > 0$ such that for all $\omega > \omega^*$,

$$\|\mathbf{v}(t) - \mathbf{v}_{av}(t)\| \leq \frac{k}{\omega} \quad \text{for all } t \in [0, \infty)$$

where v(t) denotes the exact velocity of the snake robot and $v_{av}(t)$ denotes the average velocity.

• Furthermore, the average velocity $v_{av}(t)$ of the snake robot will converge exponentially fast to the steady state velocity \overline{v} given by

$$\overline{\boldsymbol{v}} = -\mathscr{A}^{-1}\boldsymbol{b} = \begin{bmatrix} \overline{v}_t & \overline{v}_n & \overline{v}_{\theta} \end{bmatrix}^T$$

Next lecture: Passivity-based control

Khalil Chapter 6

Sections 6.4 and 6.5

(Pages 254-259, including Ex. 6.12, is additional material)

Chapter 14

Section 14.4

Lozano et al. Dissipative Systems Analysis and Control

Section 2.3-2.4