

ADS AD TO AT P CA CO SOUN

www.aduni.edu.pe

QUÍMICA

PROPIEDADES DEL CARBONO-HIDROCARBUROS

SEMANA 36

ADUNI

I. OBJETIVOS

Los estudiantes, al término de la sesión de clase serán capaces de:

- 1. **Explicar** las propiedades químicas del carbón, covalencia, tetravalencia, autosaturación e hibridización.
- 2. **Definir** y **clasificar** a los hidrocarburos.
- 3. Identificar y nombrar a los alcanos.
- 4. **Identificar** los tipos de carbono en una cadena carbonada saturada y **nombrar** a los radicales alquilo.

II. INTRODUCCIÓN

¡Llego el momento de hablar de los compuestos más importantes contenidos en los siguiente productos!

- ¿Los compuestos indicados, que tienen en común?
- ¿El compuesto contenido en los productos mencionados son de síntesis natural o artificial?

Los compuestos indicados tienen **en común al carbono**, son obtenidos por síntesis **natural** y **artificial**, a estos compuestos lo estudia la **química orgánica**.

III. QUÍMICA ORGÁNICA:

3.1. CONCEPTO

Llamado también **química del carbono**, es una parte de la química que estudia a los compuestos constituidos por átomos de **C,H,O,N**, los cuales pueden ser de origen natural o artificial.

Ejemplo:

veneno de la hormiga HCOOH

La hormona de ma duración de frutas C_2H_4

el mal olor del pescado se debe N(CH₃)₃

Juguete de polipropileno {-CH₂--CH-}_n I CH₃

3.2. PROPIEDADES GENERALES DE LOS COMPUESTOS ORGÁNICOS:

- Presentan enlaces covalentes, se unen entre los elementos organógenos C,H,O,N compartiendo su electrones de valencia.
- Sus moléculas son apolares, insolubles en solventes polares como el agua, pero solubles en solvente apolares como el CCl₄, CS₂, C₆H₆, etc.
- A condiciones del ambiente se encuentran en estado sólido, líquido o gaseoso.
- Tiene bajas temperaturas de fusión menores a 400°C, son termolábiles o sensibles al calor.
- A elevadas temperaturas se carbonizan o se queman es decir son combustibles.
- Presentan isomería

$$\begin{matrix} \mathsf{CH_3} \\ \mathsf{CH_3} - \mathsf{CH} - \mathsf{CH_2} - \mathsf{CH_3} \end{matrix}$$

IV. CARBONO:

4.1. CONCEPTO

Es un elemento no metálico de número atómico seis (Z=6), a condiciones del ambiente se encuentra como sólido cristalino en dos formas alotrópicas naturales grafito y diamante.

- el átomo de carbono :
 - neutro tiene: $\#p^+ = \#e^- = Z = 6$
 - al formar enlace: ${}_{6}\text{C}$: $1\text{s}^2 2\text{s}^2 2\text{p}^2$
 - su notación Lewis: C ·

4.2. PROPIEDADES QUÍMICAS DEL CARBONO

A) COVALENCIA

Se presenta cuando el carbono se une a otros elementos no metálicos mediante la **compartición de sus electrones** de valencia.

B) TETRAVALENCIA

El carbono para alcanzar el octeto (estabilidad electrónica) utiliza sus cuatro electrones de valencia; con los que **forma cuatro enlaces covalentes**, ya sea con enlace simple y/o múltiple.

Enlace covalente	Simple	Doble	Triple
Ejemplo	- C - 	=c<	≡C-

Ejemplo:

C) HIBRIDACIÓN

Un átomo de carbono puede formar dos, tres o cuatro enlaces sigma, lo cual dependerá de la forma de combinación o hibridación de sus orbitales atómicos del ultimo nivel.

O. híbridos sp

$$H-C \equiv C-H$$

O. híbridos sp²

Regla práctica:

И	Enlace covalente	Simple	Doble	Triple
	Ejemplo	- C -	=C <	≡C-
И	Orbital hibrido	sp ³	sp²	sp

D) AUTOSATURACIÓN O CONCATENACIÓN

Capacidad del átomo de carbono para compartir sus electrones de valencia consigo mismo, formando diferentes cadenas carbonadas. Esta propiedad explica la gran cantidad de compuestos orgánicos.

- Cadena lineal saturada:
 Cadena ramificada saturada:

$$-\frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1}$$

• Cadena lineal insaturada:

$$-\frac{1}{1} - \frac{1}{1} = \frac{1}{1} - \frac{1}{1} = \frac{1}{1}$$

• Cadena ramificada insaturada: $-\dot{C} - \dot{C} - \dot{C} - C = C -$

- Cadena cíclica saturada:
- Cadena cíclica insaturada:

iAsí de claro!

Para que se dé la autosaturación como mínimo debe haber dos carbonos enlazados directamente

EJERCICIO

Respecto a los siguientes compuestos:

a.
$$CH_3 - CH_2 - CH_3$$

marque la alternativa que presenta las proposiciones correctas.

- En ambos compuestos se manifiesta la propiedad de autosaturación.
- II. Solo en b se manifiesta la covalencia.
- III. Todos los carbonos presentan hibridación sp³.
- A) II y III
- B) solo III
- C) I y III

D) I y II

RESOLUCIÓN:

 Con relación a las propiedades químicas del carbono pide indicar las proposiciones correctas.

✓ Tenemos como datos los siguientes compuestos orgánicos.

7.1.	a)	b) H				
M/s —	$CH_3 - CH_2 - CH_3$	H C OH				
Covalencia	Si presenta	Si presenta				
Autosaturación	Si presenta	 No presenta (no hay unión c-c) 				
Tipo de orbital hibrido	• Todo los átomos de C presentan sp ³	• El átomo de C presenta sp ³				

- I) INCORRECTO
- II) CORRECTO
- III) CORRECTO

4.3. TIPOS DE FÓRMULAS EN COMPUESTOS ORGÁNICOS

A) FÓRMULA DESARROLLADA

B) FÓRMULA SEMIDESARROLLADA

$$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$$

C) FÓRMULA CONDENSADA

CH₃CH₂CH₂CH₂CH₂CH₃

C) FÓRMULA TOPOLÓGICA

D) FÓRMULA GLOBAL O MOLECULAR

 C_7H_{16}

4.4. TIPOS DE CARBONO SEGÚN SU ACTIVIDAD

	MANAGE AND THE STREET	ACADEMIA	ACADEMIA
	CARBONO PRIMARIO	$CH_3 - CH_2 - CH_3$	Cuando esta unido a 1 carbono
	CARBONO SECUNDARIO	$CH_3 - CH_2 - CH_3$	Cuando esta unido a 2 carbonos
AC	CARBONO TERCIARIO	$CH_3 \\ \\ CH_3 - CH_2 - CH - CH_3$	Cuando esta unido a 3 carbonos
AC	CARBONO CUATERNARIO	CH_3 \mid $CH_2 - C - CH_3$ \mid CH_3	Cuando esta unido a 4 carbonos

V. HIDROCARBUROS (H.C)

5.1 CONCEPTO

Los hidrocarburos son compuestos orgánicos binarios constituidos por átomos de carbono e hidrogeno " C_xH_y ", en condiciones ambientales puede ser sólido, líquido o gas.

Ejemplo:

- G.L.P
- G.N.V

- Gasolina
- Diésel

- Ceras
- Betún

La **fuente natural de obtención** de los hidrocarburos es el petróleo, el gas natural y el alquitrán de hulla.

 Gas natural: mezcla de H.C livianos

La **petroquímica** es la industria encargada de hacer la trasformación física o química de los hidrocarburos. Aproximadamente el 30% de esta trasformación se utiliza como combustible (fuente de generación de la energía calorífica), el resto se utiliza para elaborar productos o insumos químicos para otras industrias como:

Pinturas

- Fertilizante
- Cosmetología
- Polímeros

Textil

5.2 Clasificación de los hidrocarburos según su composición química.

EJERCICIO:

El siguiente hidrocarburo

se puede clasificar como

- A) saturado de cadena cerrada.
- B) insaturado ramificado y de cadena cerrada.
- C) saturado lineal y ramificado.
- D) insaturado lineal y homocíclico.
- E) insaturado de cadena abierta y lineal.

RESOLUCIÓN:

- Los hidrocarburos se clasifican en alifáticos (acíclicos y cíclicos) y aromáticos (Benceno y derivados)
- El hidrocarburo es ALIFÁTICO CÍCLICO (ALICÍCLICO)

Hidrocarburo alifático cíclico insaturado (por tener enlace doble) con ramificación.

CLAVE: B

VI. ALCANOS O PARAFINAS 6.1 CONCEPTO

 Los alcanos son hidrocarburos saturados, en su estructura tienen enlaces simples entre átomos de carbono con cadenas carbonadas abiertas.

Ejemplo: Contienen alcanos los siguiente productos

 Reaccionan en luz ultravioleta, sustituyendo uno de sus átomos de hidrogeno por otro átomo o radical.

■ En su estructura se tiene: $-\dot{C}-\dot{C}-$

■ Formula General: C_nH_{2n+2} $n \ge 1$

■ Nomenclatura: Raíz.ano

de C

# de C	1	2	3	4	5	6	7
Raíz	met	et	prop	but	pent	hex	hept

# de C	8	9	10	11	- ACADE	W.
Raíz	oct	non	dec	undec		

Ejemplo:

■ Metano: (Es parte del gas natural en un 80%)

Etano: (Gas combustible; parte del gas natural)

■ **Propano:** (Es parte del gas licuado de petróleo en un 70%)

■ Butano: C₄H₁₀ (Es parte del G.L.P)

: isobutano

Pentano: (Es parte de la bencina o ligroina)

 El pentano tienen tres isómeros estructurales de cadena, los cuales tienen la misma formula global, con propiedades físicas y químicas diferentes.

Los alcanos: a partir del butano presentan isómeros estructurales de cadena.

El número de isómeros de cadena de los alcanos se evalúa como:

#isómeros de cadena = $2^{(n-4)} + 1$

Donde: n=# de C (valido: $4 \le n \le 7$

Ejemplo:

Determine el número de isómeros estructurales de cadena del compuesto C_6H_{14} .

Solución

 C_6H_{14} : Es un alcano ; n=6

#isómeros
de cadena
$$=2^{(6-4)}+1$$

 $=5$

6.2. RADICALES ALQUILO (R-)

Son restos hidrocarbonados, obtenidos a partir de un hidrocarburo al perder un átomo de hidrogeno mediante la ruptura homolítica del enlace covalente.

Ejemplo:

$$CH_4 \Leftrightarrow CH_3 \Leftrightarrow H \Rightarrow CH_3 \Leftrightarrow + \Leftrightarrow H$$

- Formula General: C_nH_{2n+1} n ≥1
- Raíz.....^{II} Nomenclatura: # de C

Ejemplo:

$$CH_{4} \longrightarrow CH_{3} - : metil$$

$$CH_{3}\text{-}CH_{3} \longrightarrow CH_{3}\text{-}CH_{2} - <> C_{2}H_{5} - : etil$$

$$CH_{3}\text{-}CH_{2}\text{-}CH_{2} - <> C_{3}H_{7} - : propil$$

$$CH_{3}\text{-}CH_{2}\text{-}CH_{3} <> (CH_{3})_{2}\text{CH} - : isopropil}$$

$$CH_{3}\text{-}CH_{2}\text{-}CH_{2}\text{-}CH_{2} - : n\text{-}butil}$$

$$CH_{3}\text{-}CH_{2}\text{-}CH_{2}\text{-}CH_{3} : sec\text{-}butil}$$

$$CH_{3}\text{-}CH\text{-}CH_{2}\text{-}CH_{3} : sec\text{-}butil}$$

$$CH_{3}\text{-}CH\text{-}CH_{2} - : isobutil$$

$$CH_{3}\text{-}CH\text{-}CH_{3} - : cH\text{-}CH_{3} - : butil$$

$$CH_{3}\text{-}CH\text{-}CH_{3} - : butil$$

$$CH_{3}\text{-}CH\text{-}CH\text{-}CH_{3} - : butil$$

$$CH_{3}\text{-}CH$$

VI. BIBLIOGRAFÍA

- Química esencial; Lumbreras editores.
- Química, colección compendios académicos ADUNI; Lumbreras editores
- Química, fundamentos teóricos y aplicaciones; 2019 Lumbreras editores.
- Química la ciencia central, Brow, Lemay, Bursten; 2003; PEARSON
- Química, segunda edición Timberlake; 2008, PEARSON
- Química un proyecto de la ACS; Editorial Reverte; 2005
- Química general, Mc Murry-Fay quinta edición

