Винт-гайка скольжения

Исходные данные

 $F \coloneqq 24000~$ H - внешняя осевая сила

 $l_{max} = 225 \,$ мм - максимальная рабочая длина винта (только для сжатых винтов!!!!!)

Тип резьбы - Метрическая

Определить размеры винта, высоту гайки, размеры воротка.

Таблица 1 Значения коэффициента высоты резьбы и угла наклона рабочей стороны профиля резьбы

Тип резьбы	Коэффициент высоты резьбы =H ₁ /p	Угол наклона рабочей стороны профиля резьбы
Упорная	0,75	3
Трапецеидальная	0,5	15
Метрическая	0,54	30

 ψ_h γ

 $\psi_h\!\coloneqq\!0.54$ - коффициент высоты резьбы - коэффициент высоты гайки (принимается равным 1,2...2,5)

 $\gamma\!\coloneqq\!30$ - угол наклона рабочей стороны профиля резьбы

Таблица 2

Значения допускаемого давления в витках резьбы передачи винт-гайка скольжения [P]

Материалы	[P], МПа
Незакаленная сталь — серый чугун	5
Незакаленная сталь - бронза	9
Закаленная сталь — бронза, антифрикционный чугун	12
Сталь - сталь	16

Принимаем $[P].\coloneqq 16$ МПа

1. Средний диаметр резьбы из условия износостойкости:

$$d_2\!\coloneqq\!\sqrt{\frac{F}{\boldsymbol{\pi}\!\cdot\!\psi_h\!\cdot\!\psi_H\!\cdot\![P].}} \qquad \qquad d_2\!=\!21.026 \qquad \mathrm{MM}$$

Параметры резьбы выбираем по ГОСТ:

- таблица 16:

наружный диаметр резьбы	$d_{\it e}\!\coloneqq\!24$ mm
шаг резьбы	$p\!\coloneqq\!3$ MM
средний диаметр резьбы	$d_2\!\coloneqq\!22.051 \ MM$
внутренний диаметр резьбы гайки	$D_{_{1}}\!\coloneqq\!20.752$ мм

Угол подъема резьбы

2. Высота гайки равна:

$$H_{\operatorname{c}} \coloneqq \psi_{\operatorname{H}} \cdot d_2$$

 $H_2 = 44.102 \text{MM}$

Принимаем по ряду Ra40 высоту гайки

$$H_z \coloneqq 45$$
 MM

3. Наружный диаметр гайки:

$$D_{\it c}\!\coloneqq\!2.0 \cdot d_{\it g} \\ D_{\it c}\!=\!48 \quad {\rm MM}$$

ВНИМАНИЕ!!!! Если винт растянут, то пункты 4 и 5 пропустить!!!

4. Расчетная длина сжатого участка винта:

$$L_p\!\coloneqq\!l_{max}\!+\!\frac{H_{\varepsilon}}{2}$$

$$L_p\!=\!247.5\,$$
 mm

5. Гибкость винта:

$$\psi_H \coloneqq \frac{H_{\varepsilon}}{d_2} \qquad \qquad \psi_H = 2.041$$

Если $\psi_H \ll 2$, гайку считаем шарнирной опорой, μ =1; Если $\psi_H > 2$, гайку считаем заделкой, μ =0,7.

Радиус инерции

$$i\!\coloneqq\!\frac{d_3}{4}$$
 $\mu\!\coloneqq\!0.7$ $i\!=\!5.08$ MM

$$\lambda_{e} := \mu \cdot \frac{L_{p}}{i}$$
 $\lambda_{e} = 34.104$

6. Проверка винта по объединенному условию прочности и устойчивости $\sigma_{cæ} < \phi[\sigma]_{cж}$

$$\sigma_{\text{cw}} \coloneqq \frac{4 \cdot F}{\pi \cdot d_3^2}$$
 $\sigma_{\text{cw}} = 74.007 \quad \text{M}\Pi a$

Винт изготовлен из стали 40Х улучшенной $\sigma_m \coloneqq 750~{
m M}$ Па

Допускаемые напряжения сжатия при коэффициенте запаса прочности S=2...4

$$S\!\coloneqq\!3$$
 $[\sigma]_{\mathrm{CM}}\!\coloneqq\!\frac{\sigma_m}{S}$ $[\sigma]_{\mathrm{CM}}\!=\!250$ МПа

Коэффициент снижения допускаемых напряжений для стальных сжатых стержней

$$\phi \coloneqq 0.86$$
 $\phi \cdot [\sigma]_{cx} = 215 \ M\Pi a$

ВЫВОД: Рабочие напряжения сжатия меньше допустимых, следовательно прочность и устойчивость винта обеспечивается.

7. Момент на торце винта

Расчетный средний диаметр опорного торца винта $d_{\mathbf{q}}\!\coloneqq\!0.5\cdot d_3$

Для передачи винт-гайки скольжения коэффициент трения на торце винта принимается ft=0,15...0,2

$$f_m = 0.17$$

Момент трения на торце винта

$$T_m := F \cdot f_m \cdot \frac{d_u}{2}$$
 $T_m = 2.073 \cdot 10^4$ HMM

8. Момент сопртивления в резьбе:

Для передачи винт-гайки скольжения коэффициент трения в резьбе fp=0,1

$$f_p = 0.1$$

$$\phi_{mp} \coloneqq \operatorname{atan}\left(\frac{f_p}{\cos\left(\gamma \cdot \frac{\pi}{180}\right)}\right) \quad \phi_{mp} = 0.115$$

$$T_p := F \cdot \frac{d_2}{2} \cdot \tan \left(\psi \cdot \frac{\pi}{180} + \phi_{mp} \right)$$

$$T_p = 4.223 \cdot 10^4$$
 Hmm

9. Момент завинчивания:

$$T_{\mathit{3ag}} \coloneqq T_m + T_p$$

$$T_{3a8} = 6.295 \cdot 10^4 \text{ Hmm}$$

10. Длина воротка:

Принимаем усилие, развиваемое одним рабочим: $F_{\it pa6} \coloneqq 100~{\rm Hz}$

$$T_{\it 3ae} = F_{\it pa6} \cdot l_{\it eop}$$

$$l_{\textit{BOP}}\!\coloneqq\!\frac{T_{\textit{3AB}}}{F_{\textit{pa6}}}$$

$$l_{\mathit{BOP}}\!=\!629.515~\mathrm{MM}$$

Принимаем $l_{\it вор}\!\coloneqq\!630$ мм

11. Диаметр воротка из условия его прочности по изгибу:

Принимаем, что кратковременно рабочий может приложить максимальную силу Fmax=3Fpaб

$$F_{max} = 3 \cdot F_{pa6}$$
 $F_{max} = 300 \text{ H}$

Вороток изготовлен из стали 45 горячекатаной $\sigma_m \coloneqq 360$ МПа

Допускаемые напряжения по изгибу при коэффициенте запаса прочности S=1,5

$$S\!\coloneqq\!1.5$$

$$[\sigma]_u\!\coloneqq\!\frac{\sigma_m}{S} \qquad \qquad [\sigma]_u\!=\!240 \qquad {\rm M}\Pi{\rm a}$$

Напряжения изгиба в опасном сечении воротка равно:

$$\sigma_{\mathcal{N}} = \frac{M_{\mathcal{N}}}{W_{\mathcal{N}}} = F_{max} \cdot \frac{\left(l_{\text{BOD}} - \frac{D_2}{2}\right)}{0.1 \ d_{\text{BOD}}^{-3}}$$

Из условия
$$D_2\!\coloneqq\!2.5 \cdot d_{\scriptscriptstyle extit{g}}$$
 $D_2\!=\!60$ мм

$$D_2 = 60$$
 MM

Примем
$$D_2 \coloneqq 60$$
 мм

$$d_{\textit{eop}} \coloneqq \sqrt[3]{10 \cdot F_{\textit{max}} \cdot \frac{\left(l_{\textit{eop}} - \frac{D_2}{2}\right)}{[\sigma]_{\textit{u}}}}$$

$$d_{\mathit{sop}}\!=\!19.574\qquad \mathsf{MM}$$

Принимаем по ряду Ra40 $d_{sop}\!\coloneqq\!20$

$$d_{\text{BOD}} \coloneqq 20$$