(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-229057

(43)公開日 平成9年(1997)9月2日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ		技術表示箇所
F 1 6 C 19/26			F16C	19/26	
33/34				33/34	
33/64				33/64	

審査請求 未請求 請求項の数1 OL (全 5 頁)

		田正的の 外間の 間がない 以 こ (主 し 女)
(21)出願番号	特顧平8-40090	(71)出願人 000004204 日本精工株式会社
(22)出顧日	平成8年(1996)2月27日	東京都品川区大崎1丁目6番3号
		(72)発明者 村井 隆司 神奈川県藤沢市鶴沼神明一丁目 5 番50号 日本精工株式会社内
		(72)発明者 飯田 彰 神奈川県藤沢市鶴沼神明一丁目 5 番50号 日本精工株式会社内
		(74)代理人 弁理士 森 哲也 (外2名)

(54) 【発明の名称】 転がり軸受

(57)【要約】

【課題】転がり軸受の振動抑制に弾性体や粘性ダンバを 設ける従来の方法では、その効果が不十分でしかも構造 が複雑になり適用範囲も限られる。また、軸受のつば面 と転動体の接触面の粗さを向上させると、焼付き等の問 題は解消できても、振動の低減に対しては逆効果にな

【解決手段】転がり軸受2において、つば面4aもしく はつばに接する転動体5の端面5aのうちの少なくとも 一方の面粗さが、内・外輪軌道面3R,4Rおよび転動 体5の転動面5bの粗さに対して、次の関係有するもの とする。

2 $(\sigma_1^2 + \sigma_2^2)^{1/2} < (\sigma_3^2 + \sigma_4^2)^{1/2} < 4 (\sigma_3^2 + \sigma_4^2)^{1/2} < 4$ $_{1}^{2} + \sigma_{2}^{2})^{-1/2}$

ここで σι; 内・外輪軌道面粗さ (中心線平均粗 さ)

σ2; 転動体の軌道面粗さ σ₃;内・外輪つば部粗さ σ4; 転動体端部面粗さ

1

【特許請求の範囲】

【請求項1】 つば面を有する転がり軸受において、当 該つば面もしくはつばに接する転動体の端面のうちの少 なくとも一方の面粗さが、内・外輪軌道面および転動体 の転動面の粗さに対して、次の関係を有することを特徴 とする転がり軸受。

 $2 (\sigma_1^2 + \sigma_2^2)^{1/2} < (\sigma_3^2 + \sigma_4^2)^{1/2} < 4 (\sigma_3^2 + \sigma_4^2)^{1/2} < 4 (\sigma_3^2 + \sigma_4^2)^{1/2}$ $_{1}^{2} + \sigma_{2}^{2})^{-1/2}$

ここで σ1;内・外輪軌道面粗さ(中心線平均粗 さ)

σ2;転動体の軌道面粗さ

σ₃;内・外輪つば面粗さ

σ4;転動体端部面粗さ

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、つば部を有する転 がり軸受に係り、特に、その振動の低減に関する。

[0002]

【従来の技術】転がり軸受自身の振動の減衰能は小さい ため、転がり軸受を含む系の振動抑制には、軸受外径部 20 に弾性体を入れたり、ハウジング部に粘性ダンパ構造を 設けたりすることが一般によく知られている。

【0003】また、つば部を有する転がり軸受では、つ ば部における焼付き対策などの見地から、可能な限りつ ば部および転動体のつば部との接触面の粗さを向上させ て、接触部における摩擦抵抗を小さくすることが行われ ている。

[0004]

【発明が解決しようとする課題】しかしながら、弾性体 を用いたり、もしくは粘性ダンパ構造を設ける従来の振 30 法は、次の通りである。 動抑制方法では、その効果も十分ではなく、しかも構造 が複雑になって適用範囲も限られるという未解決の課題 がある。

【0005】また、つば部と転動体の接触面の粗さを向 上させると、焼付き等の問題は解消できても、振動の低 減に対しては逆効果になることがあるという点も未解決 のままである。

【0006】そこで、本発明は、このような従来技術の 未解決の課題に着目してなされたものであり、つば部を に接する転動体の端面のうちの少なくとも一方の粗さが 内・外輪および転動体の転動面粗さに対して特定の関係 となるように定めることにより、転がり軸受の振動レベ ルを低減させることを目的とする。

[0007]

【課題を解決するための手段】本発明の請求項1に係る 発明は、つば面を有する転がり軸受において、当該つば 面もしくはつばに接する転動体の端面のうちの少なくと も一方の面粗さが、内・外輪軌道面および転動体の転動 面の粗さに対して、次の関係有することを特徴とする。 $2 (\sigma_1^2 + \sigma_2^2)^{1/2} < (\sigma_3^2 + \sigma_4^2)^{1/2} < 4 (\sigma_3^2 + \sigma_4^2)^{1/2} < 4 (\sigma_3^2 + \sigma_4^2)^{1/2}$ $1^2 + \sigma_2^2$) 1/2

ここで σ1;内・外輪軌道面粗さ(中心線平均粗 さ)

10 σ2; 転動体の軌道面粗さ

σ₃;内・外輪つば部粗さ

σ4;転動体端部面粗さ

つば面を有する転がり軸受に振動(例えばラジアル振 動)が発生すると、通常、つば面に接触している転動体 とつば面との間に摩擦が生じる。本発明によれば、その 接触部分を粗くしてあることから、減衰作用が高められ て振動を効果的に減衰させる。

[0008]

【発明の実施の形態】以下、本発明の実施の形態を図面 を参照して説明する。図1は、駆動軸1に装着した外輪 両つば付きタイプの円筒ころ軸受 (NUタイプ) 2の上 半分の断面図およびその振動測定の説明概要図である。 【0009】内輪3は駆動軸1に嵌合固定されている。 外輪4は、両つば面4a,4aを有している。転動体5 はころで、その頭部の端面5a,5aが外輪のつば面4 a, 4 aにそれぞれ接触している。6 は保持器である。 【0010】この円筒ころ軸受2について、粗さが部分 的に異なる試料として、実施例1と比較例1及び比較例 2を用意して振動試験を施し、結果を比較した。試験方

【0011】駆動軸1に試料の円筒ころ軸受(型番はN U218)を取りつけて、室温で60番スピンドル油に より潤滑しつつ図外のモータにより1800rpmで回 転させた。そのときの振動レベルを、外輪4の外径部に 装着した加速度ピックアップ?で測定し、振動スペクト ルを記録した。

【0012】実施例と比較例の各試料毎の各構成部品の 面粗さ(中心線平均粗さ; μmRa)を表1に示す。表 1中、σ1は内輪3及び外輪4の各軌道面3R及び4R 有する転がり軸受において、つば部の粗さもしくはつば 40 の面粗さ、 σ_2 はころ5の転動面5bの面粗さ、 σ_3 は 外輪4のつば面4aの面粗さ、 σ_4 はころ5の頭部端面 5 aの面粗さである。

[0013]

【表1】

0.05

0.05

0.05

【0014】各試料とも、内・外輪の軌道面3R,4R 及びころの転動面5bの面粗さは全て同一($\sigma_1 = \sigma_2$ =0.05 μ mRa)とし、外輪のつば面4aの面粗さ σ_3 とこれに接触するころの頭部端面5aの面粗さ σ_4 とをそれぞれ変えた。

3 (比較例)

【0.0.1.5】そして、つば面の面粗さ σ_3 及びころの頭部端面の面粗さ σ_4 (以下、一括して「ころ・つば接触 20 面粗さ」 σ_3 , σ_4 ともいう)の程度に応じて次の三つのケースに分類した。

【0016】ケース1(実施例):ころ・つば接触面粗 さ σ_3 , σ_4 を、内・外輪の各軌道面の面粗さ σ_1 及びころの転動面の面粗さ σ_2 (以下、一括して「レース面粗さ」 σ_1 , σ_2 ともいう)の約2倍程度悪くした軸受グループ。粗さ程度を2($\sigma_1^2 + \sigma_2^2$) $^{1/2}$ で表す。【0017】ケース2(比較例):ころ・つば接触面粗さ σ_3 , σ_4 を、レース面粗さ $\sigma_1\sigma_2$ の約4倍程度悪くした軸受グループ。粗さ程度を4($\sigma_1^2 + \sigma_2^2$) $^{1/2}$ で表す。

【0019】ころ・つば接触面粗さ σ 。, σ 4、の良い比較例のケース3では、駆動軸1で振動が発生した場合、外輪4の外径部における振動レベルは高い。特に、人間の耳が最も不快に感じる周波数である4 kHzで最高になる。これに比べて、ころ・つば接触面粗さ σ 3, σ 4がより粗い実施例のケース1では、振動レベルは低い。ところが、ころ・つば接触面粗さ σ 3, σ 4、を更に悪くした比較例のケース2では、ケース1程の大きな振動減衰効果は見られず、むしろ0~10kHz0の周波数帯域全域で高くなっている。

【0020】その理由を、図3に基づいて検討してみる。縦軸に外輪外径部で測定した周波数4kHzにおける振動レベルをとり、横軸に $(\sigma_3^2 + \sigma_4^2)^{1/2}$ の $(\sigma_1^2 + \sigma_2^2)^{1/2}$ に対する比の値をとって、各ケースの試料毎の値をプロットした。 $(\sigma_1^2 + \sigma_2^2)^{1/2}$

はレース面(内・外輪の各軌道面ところの転動面との)間の油膜パラメータを決める粗さファクタであり、主転動面の潤滑状態を示すファクタであるから、これを基準にしてころ・つば接触面粗さ $(\sigma_3^2 + \sigma_4^2)^{1/2}$ を評価する。

0.05

4

【0021】図3から明らかなように、ケース3は、前 記比の値が全て2を下回る範囲にあり、その振動レベルは10数dB~20数dBと高いレベルにある。その理由は次の通りである。駆動軸1で発生した振動内輪3及びころ5を介して外輪4に伝達され、このときころ5の頭部端面5aと外輪4のつば面4aで振動による相対的な動きが生じる。通常、ころ5は外輪つば面4aと接触しているので、両者の相対的な動きで接触部には摩擦が発生する。そこで、この摩擦を大きくする即ちころ・つば接触面粗さ σ 30、 σ 4、 σ 50を粗くすることで振動の減衰効果を高めて振動を減衰させることが可能となるが、ケース3ではころ・つば接触面粗さが良くてその程度(σ 5、 σ 7・つば接触面粗さが良くてその程度(σ 7・カイ2・カイ2・カイ3・カーシャルにある。振動減衰効果がないことによる。

【0022】一方、ケース2は、前記比の値が全て4を上回る範囲にあり、その振動レベルはケース3と同じく10数dB ~ 20 数dBと高いレベルにある。その理由は、ころ・つば接触面粗さの程度 $(\sigma_3^2 + \sigma_4^2)^{-1/2}$ が大き過ぎるため、例えばつば面4aところ頭部端面5aとの焼付きが発生して内輪3ところとの間のすべりによる軸受自身の振動(騒音)が大きくなったり、またはつば面4aところ頭部端面5aとの異常摩耗が多くなったりして、その結果、振動レベルが高くなることによる。

【0023】これらに対し、実施例であるケース1の場合は、前記比の値が2~4の範囲内にあり、その振動レベルは10数dB以下と低くなっている。ころ・つば接触面粗さが適当な大きさであって、これが軸受の半径方向の振動に一種のブレーキとして作用し振動抑制効果を奏することによると考えられる。ここで、前記比の値を2.25~3.75の範囲内にすれば、振動レベルをほび10dB以下と非常に好ましい程度に抑制することも

5

可能である。

【0024】表2は、図3の結果に基づき、表1に示した軸受各構成部分の面粗さ(中心線平均粗さ) $\sigma_1 \sim \sigma_4$ の値を用いて、レース面粗さ程度の2倍と4倍即52 $(\sigma_1^2 + \sigma_2^2)^{1/2}$ 及び4 $(\sigma_1^2 + \sigma_2^2)^{1/2}$ と、こ

ろ・つば接触面粗さの程度 $(\sigma_3^2 + \sigma_4^2)^{-1/2}$ とを各ケース別に算出し、周波数 $4 \, \mathrm{kHz}$ における軸受外輪外径の振動レベルとの関係を表したものである。

[0025]

【表2】

مد	軸受各構成部の面粗さ程度					
1	内・外輪軌道面 2 (σ ₁ ² +σ ₂ ²) ^{1/2}	ころ・つば接触面 (σ₃²+σ₄²) 1/2	内・外輪軌道面 4 (σ ₁ ² +σ ₂ ²) ^{1/2}	の程度 (大小)		
1	0. 141	< 0.135 <	0. 282	小		
2	0. 141	< 0.29 >	0. 282	中		
3	0. 141	> 0.071 <	0. 282	大		

【0026】以上の結果を踏まえて、本発明の転がり軸 受にあっては、ころ・つば接触面粗さの程度 $(\sigma_3^2 + \sigma_4^2)^{-1/2}$ とレース面粗さの程度 $(\sigma_1^2 + \sigma_2^2)^{-1/2}$ との間の関係を次の式 (1) のように規定して、振動の 低減を達成できた。

2
$$(\sigma_1^2 + \sigma_2^2)^{1/2} < (\sigma_3^2 + \sigma_4^2)^{1/2} < 4 (\sigma_1^2 + \sigma_2^2)^{1/2}$$

····· (1)

なお、内輪 3 及び外輪 4 の各軌道面 3 R 及び 4 R の面粗 2 3 及びころ 5 の転動面 5 4 のの面粗 3 の影響によ 4 名振動減衰効果も期待できそうであるが、実験的には上記のころ・つば接触面粗 3 4 その大きな効果は得られなかった。

【0027】また、上記実施形態例では、内・外輪つば面粗さ σ_3 及びころ頭部(端面)粗さ σ_4 の両方について、それぞれ内・外輪レース面粗さ σ_1 及び転動体のレース面粗さ σ_2 より2~4倍程度粗くした場合を説明したが、これに限らず、前記 σ_3 又は σ_4 のいずれか一方のみを粗くしても良い。

【0028】また、上記実施形態例では、円筒ころ軸受 30 について述べたが、例えば円錐ころ軸受等その他のつば を有する各種転がり軸受にも適用することができる。

[0029]

【発明の効果】以上、説明したように、本発明の転がり 軸受によれば、つば面もしくはつばに接する転動体の端 面のうちの少なくとも一方の面粗さを、内・外輪軌道面 および転動体の転動面の粗さに対して特定の範囲内で粗 くしたため、ラジアル振動のような軸受振動が発生する と、つば面と転動体の端面との接触部において摩擦が発 生して振動を減衰させるという効果を奏する。

【図面の簡単な説明】

【図1】外輪両つば付き円筒ころ軸受の上半分の断面図 およびその振動測定の説明概要図である。

【図2】図1における振動スペクトルの測定結果を示す グラフである。

【図3】振動レベルところ・つば接触面粗さとの関係を 表したグラフである。

【符号の説明】

- 1 駆動軸
- 2 転がり軸受
- 0 3 内輪
 - 3 R 軌道面
 - 4 外輪
 - 4 a つば面
 - 4 R 軌道面
 - 5 転動体
 - 5 a. 端面
 - 5 b 転動面
 - 6 保持器

6

【図1】

【図2】

【図3】

