VE230: Electromagnetics I

Homework I

May 25, 11.59pm Due:

- **P.2–17** A field is expressed in spherical coordinates by $E = a_R(25/R^2)$.
 - a) Find |E| and E_x at the point P(-3, 4, -5).
 - b) Find the angle that E makes with the vector $\mathbf{B} = \mathbf{a}_x 2 \mathbf{a}_y 2 + \mathbf{a}_z$ at point P.
- P.2-18 Express the base vectors \mathbf{a}_R , \mathbf{a}_θ , and \mathbf{a}_ϕ of a spherical coordinate system in Cartesian coordinates.
- P.2-19 Determine the values of the following products of base vectors:
- b) a_θ·a_ν
- c) $a_r \times a_x$

- d) $\mathbf{a}_R \cdot \mathbf{a}_r$
- e) $\mathbf{a}_y \cdot \mathbf{a}_R$ h) $\mathbf{a}_\theta \cdot \mathbf{a}_z$
- $f) a_R \cdot a_z$
- g) $a_R \times a_z$
- f) $\mathbf{a}_R \cdot \mathbf{a}_z$ i) $\mathbf{a}_z \times \mathbf{a}_\theta$.
- **P.2-21** Given a vector function $\mathbf{E} = \mathbf{a}_x y + \mathbf{a}_y x$, evaluate the scalar line integral $\int \mathbf{E} \cdot d\ell$ from $P_1(2, 1, -1)$ to $P_2(8, 2, -1)$
 - a) along the parabola $x = 2y^2$,
 - b) along the straight line joining the two points.

Is this **E** a conservative field?

- **P.2-22** For the E of Problem P.2-21, evaluate $\int \mathbf{E} \cdot d\ell$ from $P_3(3, 4, -1)$ to $P_4(4, -3, -1)$ by converting both E and the positions of P_3 and P_4 into cylindrical coordinates.
- P.2-26 Find the divergence of the following radial vector fields:
 - $\mathbf{a)} \ f_1(\mathbf{R}) = \mathbf{a}_R R^n,$
 - **b)** $f_2(\mathbf{R}) = \mathbf{a}_R \frac{k}{R^2}$
- **P.2–28** For a scalar function f and a vector function \mathbf{A} , prove that

$$\nabla \cdot (f\mathbf{A}) = f \nabla \cdot \mathbf{A} + \mathbf{A} \cdot \nabla f$$

in Cartesian coordinates.

- **P.2-34** Assume the vector function $\mathbf{A} = \mathbf{a}_x 3x^2y^3 \mathbf{a}_y x^3y^2$.
 - a) Find $\oint \mathbf{A} \cdot d\ell$ around the triangular contour shown in Fig. 2-36.
 - **b)** Evaluate $\int (\nabla \times \mathbf{A}) \cdot d\mathbf{s}$ over the triangular area.
 - c) Can A be expressed as the gradient of a scalar? Explain.

Graph for Problem P.2-34.