Math 214 Homework 5

Keshav Balwant Deoskar

February 19, 2024

Q4-5. Let \mathbb{CP}^n denote the n-dimensional complex projective space.

- (a) Show that the quotient map $\pi: \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{CP}^n$ is a surjective smooth submersion.
- (b) Show that \mathbb{CP}^n is diffeomorphic to \mathbb{S}^n .

Proof:

Q4-6. Let M be a nonempty smooth compact manifold. Show that there is no smooth submersion $F: M \to \mathbb{R}^k$ for any k > 0.

Proof:

Q4-7. Suppose M and N are smooth manifolds, and $\pi: M \to N$ is an injective smooth submersion. Show that there is no other smooth manifold structure on N that satisfies the conclusion of Theorem 4.29.

Proof:

Q4-8. Let $\pi: \mathbb{R}^2 \to \mathbb{R}$ be defined by $\pi(x,y) = xy$. Show that π is surjective and smooth, and that for each smooth manifold P, a map $F: \mathbb{R} \to P$ is smooth if and only if $F \circ \pi$ is smooth; but π is not a smooth submersion.

Proof:

Q4-9. Let M be a connected smooth manifold, and let $\pi: E \to M$ be a topological covering map. Complete the proof of proposition 4.40 by showing that there is only one smooth structure on E such that π is a smooth covering map.

Proof:

Q5-4. Show that the image of the curve $\beta:(-\pi,\pi)\to\mathbb{R}^2$ of Example 4.19 is not an embedded submanifold of \mathbb{R}^2 .

Proof:

Q5-6. Suppose $M \subseteq \mathbb{R}^n$ is an embedded m-dimensional submanifold, and let $UM \subseteq T\mathbb{R}^n$ be the set of all *unit* tangent vectors to M:

$$UM = \{(x, v) \in T\mathbb{R}^n : x \in M, v \in T_xM, |v| = 1\}$$

This is called the *Unit Tangent Bundle of M*. Prove that UM is an embedded (2n-1)-dimensional submanifold of $T\mathbb{R}^n \approx \mathbb{R}^n \times \mathbb{R}^n$.

Proof:

Q5-7. Let $F: \mathbb{R}^2 \to \mathbb{R}$ be defined as $F(x,y) = x^3 + xy + y^3$. Which level sets of F are embedded submanifolds of \mathbb{R}^2 ? For each level set, prove either that it is or that it is not an embedded submanifold.

Proof: