Teoria da Computação

Autômatos Finitos
Não Determinísticos
Prof. Thiago Alves

Introdução

- Transições dos AFD são determinísticas
- Podemos estender com a capacidade ir para mais de um estado com um mesmo símbolo
- Pode estar em vários estados ao mesmo tempo

Introdução

N_1 :

Autômato Finito Não Determinístico

- ◆Um autômato finito não determinístico tem a habilidade de estar em vários estados ao mesmo tempo
- Transições de um estado com um símbolo podem levar a um vários estados

Autômato Finito Não Determinístico

- O AFN também permite "pular" estados usando transições ε
- A execução de um dos estados pode parar caso não tenha saída com o símbolo da string

- Inicia no estado inicial
- Pode terminar em vários estados
- AFN aceita uma string se alguma sequência de escolhas leva a um estado final
- Intuitivamente: o AFN sempre "escolhe corretamente."

Processamento da string 010110

Processamento da string 010

◆Que strings o AFN N₁ aceita?

◆Que strings o AFN N₁ aceita?

Strings com 11 ou 101 como substring

Processamento da string 0101

Processamento da string 0110

Que strings são aceitas?

- Que strings são aceitas?
- Strings que terminam em 01

Formalização do AFN

- ◆Um AFN é uma tupla (Q,Σ,δ,q₀,F)
- Um conjunto finito de estados Q
- Um alfabeto de entrada Σ
- Uma função de transição δ
 - δ :Qx(ΣU{ε}) → P(Q)
- ◆Um estado inicial q₀ em Q
- ◆Um conjunto de estado finais F ⊆ Q

Função de Transição AFN

- δ(q, a) é um conjunto de estados
 - Todos os estados alcançáveis a partir de q com o símbolo a
 - $\delta(q, a) = \{p_1, ..., p_k\}$
- •δ(q, ε) é o conjunto de estados alcançáveis a partir de q com ε
 - $\delta(q, ε) = \{p_1, ..., p_k\}$

AFN

◆Vamos formalizar o AFN N₁

AFN

 $↑N1 = (Q, Σ, δ, q₁, F)

↑Q = {q₁, q₂, q₃, q₄}

↑Σ = {0,1}

↑F = {q₄}$

AFN

◆N1 = (Q,Σ,δ,q₁,F)

♦δ =

	0	1	ε
q_1	$\{q_1\}$	$\{q_1,q_2\}$	Ø
q_2	$\{q_3\}$	Ø	$\{q_3\}$
q_3	Ø	$\{q_4\}$	Ø
q_4	$ \{q_4\}$	$\{q_4\}$	Ø

Função de Transição Estendida

- Podemos estender a função de transição dos AFNs para lidar com strings
- É necessário definir os estados alcançáveis com transições ε
- Vamos definir o fecho das transições ε indutivamente para conjuntos de estados

Função de Transição Estendida

- Vamos definir o fecho das transições ε indutivamente para conjuntos de estados
 - Base: R ⊆ ε-closure(R)
 - Properties Recursão: se p ∈ ε-closure(R) então $\delta(p, ε) ⊆ ε$ -closure(R)

♦ Computar ε-closure({1})

Função de Transição Estendida

Seja q um estado

- $\bullet \delta^*(q, \epsilon) = \epsilon closure(\{q\})$
- δ^* (q, ua) = ε-closure($U_{p \in \delta^*(q, u)}$ δ(p, a))

Aceitação

- Uma string w é aceita por um AFN se δ*(q₀, w) contém algum estado final
- $\delta^*(q_0, w) \cap F \neq \emptyset$

- ◆Computar δ*(q0, 0110)
- ◆N₁ aceita 0110?

- ◆Computar δ*(q0, 1101)
- ♦ N₂ aceita 1101?

Linguagem de um AFN

- A linguagem de um AFN N é o conjunto de strings que ele aceita
- ♦L(N) = {w ∈ Σ * | δ *(q₀, w) ∩ F ≠ ∅}
- ◆Se B é uma linguagem e N é um AFN tal que L(N) = B então dizemos que N aceita B.
 - Também usamos N reconhece B.

◆L(N₁)={xyz ∈ {0,1}* | x ∈ {0,1}*, z ∈ {0,1}* e y = 11 ou y = 101}

◆L(N₂) = {w ∈ {0,1}* | w termina em 01}

◆Construa um AFN para reconhecer a linguagem $B_1 = \{w \in \{0,1\}^* \mid o \text{ penúltimo símbolo é 1}.$

- ◆Seja N₃ o AFN definido abaixo
- ♦ N_3 reconhece B_1 pois $L(N_3) = B_1$

◆Construa um AFN para aceitar a linguagem $B_2 = \{w \in \{0,1\}^* \mid w \text{ tem como substring 101 ou 011}\}.$

- ◆Seja N₄ o AFN abaixo
- \bullet L(N₄) = B₂

Exercício

Mostre que todo AFN pode ser convertido em um equivalente que possui apenas um único estado final.

Exercício

◆Construa um AFN para reconhecer a linguagem $B_3 = \{w \in \{0\}^* \mid a \text{ quantidade de 0's é múltipla de 2 ou de 3}.$

Exercício

◆Seja N₅ no diagrama abaixo

