Министерство науки и высшего образования Российской Федерации

Муромский институт

федерального государственного бюджетного образовательного учреждения высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (МИВлГУ)

Факультет	ИТР
Кафедра	ИС

ЛАБОРАТОРНАЯ РАБОТА №2

МиСЦОИ

ПО

Тема	Повышение контраста и ви	идоизменения г	<u>истограмм</u>
	<u>изображений</u>	<u>ĭ</u>	
		Руководитель	
		Андрианов Д.	E.
			инициалы)
		(подпись)	(дата)
		Студент	ИСм-121
			(группа)
		Минеев Р. Р.	
		(фамилия,	инициалы)
		(подпись)	(дата)

Лабораторная работа №2.

Тема: Повышение контраста и видоизменения гистограмм изображений.

Цель работы: изучить и практически оценить алгоритмы повышения контраста и изменения гистограмм для улучшения визуального восприятия изображений.

Задание на работу: Реализация алгоритмов видоизменения гистограмм.

```
Peaлизованы формулы:

1. Линейное функциональное отображение
    -- linear_function_mapping
2. Paвномерное распределение
    -- uniform_distribution
3. Экспоненциальное распределение
    -- exponential_distribution
4. Pacпределение Pэлея
    -- Rayleigh_distribution
5. Pacпределение степени 2/3
    -- degree_2_dev_3_distribution
6. Гиперболическое распределение
    -- hyperbolic_distribution
7. Степенная интенсификация
    -- power_intensification
```

```
def linear_function_mapping(image: np.array, g: dict) -> np.array:
    f = {'min': image.min(), 'max': image.max()}
    return (((g['max'] - g['min']) / (f['max'] - f['min'])) * (image - f['min']))
        .astype(np.uint8)

def uniform_distribution(image: np.array, g: dict) -> np.array:
    p = probability(image)
    img = np.zeros_like(image).astype(np.float64)
    for x in range(image.shape[0]):
        for y in range(image.shape[1]):
            img[x][y] = (g['max'] - g['min']) * p[image[x][y]] + g['min']
    return img.astype(np.uint8)
```

Изм	Лист	№ докум.	Подп.	Дата	МИВУ 09.04.02	-02.001			
Сту	дент	Минеев Р. Р.		06.04.		Литера	Лист	Листов	
Рук	OB.	Андрианов Д. Е.			Лабораторная работа №2	У	2	7	
Кон	С				Покапьная пинейная				
Н.контр.					dual the management and MN		МИ ВлГ	-	
Утв	-				фильтрация изооражении		ИСм-12 ⁻	1	

В последующих методах меняется только формула расчёта значения яркости результирующего изображения.

```
def exponential_distribution(image: np.array, g: dict, a: float) -> np.array:
      img[x][y] = g['min'] - 1/a * np.log(1 - p[image[x][y]])
def Rayleigh_distribution(image: np.array, g: dict, a: float) -> np.array:
      img[x][y] = g['min'] + (2 * a**2 * np.log( 1/( 1-p[image[x][y]] ) ))**0.5
def degree_2_dev_3_distribution(image: np.array, g: dict) -> np.array:
      img[x][y] = ((g['max']**0.33 - g['min']**0.33) * p[image[x][y]] + g['min']**0.33) **3
def hyperbolic_distribution(image: np.array, g: dict) -> np.array:
      img[x][y] = g['min'] * (g['max'] / g['min']) **p[image[x][y]]
def power_intensification(image: np.array, g: dict, k: float) -> np.array:
      p = probability(image)
     img = np.zeros like(image).astype(np.float64)
     dev = sum([pr**k for pr in p.values()])
      f min = image.min()
      for x in range(image.shape[0]):
       for y in range(image.shape[1]):
             ch = 0
             for i in range(f min, image[x][y] + 1):
                    if i in p.keys(): ch += p[i]**k
             img[x][y] = ((g['max'] - g['min']) * ch) / dev + g['min']
      return img.astype(np.uint8)
```

Анализ результатов:

Рисунок 1 – Исходное изображение

Изм	Лист	№ докум.	Подп.	Дата

1. Линейное функциональное отображение

Рисунок 2 – Линейное функциональное отображение с ограничением яркостей пикселей от 10 до 250

2. Равномерное распределение

Рисунок 3 – Равномерное распределение с яркостями от 10 до 250

Рисунок 4 – Равномерное распределение с яркостями от 30 до 200

						Лист
					МИВУ 09.04.02-02.001	1
Изм	Лист	№ докум.	Подп.	Дата		4

3. Экспоненциальное распределение

Рисунок 5 – Экспоненциальное распределение с коэффициентом а=0.6

Рисунок 6 – Экспоненциальное распределение с коэффициентом а=2

4. Распределение Рэлея

Рисунок 7 – Распределение Рэлея по коэффициенту а=0.6

Изм Лист	№ докум.	Подп.	Дата

Рисунок 8 – Распределение Рэлея по коэффициенту а=2

5. Распределение степени 2/3

Рисунок 9 — Распределение степени 2/3

6. Гиперболическое распределение

Рисунок 10 – Гиперболическое распределение

Изм Лис	т № докум	и. Подп	Дата

7. Степенная интенсификация

Рисунок 11 – Интенсификация с параметром k=0.25

Рисунок 12 – Интенсификация с параметром k=1.5

Вывод: В данной лабораторной работе были получены навыки реализации алгоритмов изменения гистограмм для упрощения дальнейшей обработки или поиску контуров на изображениях.

Изм	Лист	№ докум.	Подп.	Лата