Manual de Utilização

- simmaq 3D Modbus

Antes de operar o equipamento, leia atentamente todas as instruções de operação e as diretrizes de segurança contidas neste manual. Isso irá garantir que você obtenha a melhor performace do equipamento com total segurança.

Para maiores informações acesse o site www.automatus.net ou entre em contato diretamente com os nossos técnicos através do telefone (54)3218-7700.

Prezado Usuário,

A Automatus agradece a sua preferência e com prazer inclui seu nome na lista de clientes. Esperamos servi-los cada vez melhor, ratificando que estamos em alerta permanente quanto ao controle de qualidade de nossos produtos, para que sua satisfação seja plena e nossos laços de parceria sejam cada vez mais fortes.

Acompanhamos a evolução e a aplicação de novas tecnologias, inovando constantemente na área de Educação Profissional e Tecnológica - EPT. Temos como objetivo fazer parte de um processo educacional que forma profissionais altamente qualificados, possibilitando que a indústria brasileira cresça capacitada para competir globalmente.

A Automatus desenvolve seus produtos para fornecer as melhores soluções em diversas áreas do conhecimento, oportunizando situações práticas que remetam à realidade do mercado de trabalho, otimizando o processo de ensino-aprendizagem nas instituições de ensino.

Esperamos que você obtenha ótimo proveito do nosso produto.

Sumário

simmaq 3D Modbus

1 Bem-Vindo	
1.1 O que é o simmaq 3D Modbus	4
1.2 Como Funciona	4
2 Instalação	5
2.1 Requisitos Mínimos	5
2.2 Instalação do Software	6
2.3 Configuração do IP	10
2.4 Configurações Modbus	13
3 Interface com o Usuário	16
3.1 Menus	16
3.2 Painel de Controle	19
3.2.1 Zonas de Operações	20
3.3 Navegação nos Ambientes	23
4 Interatividade com os Ambientes	24
5 Modo Manual/Automático	25
5.1 Modo Manual	25
5.2 Modo Automático	25
6 Ambientes	26
6.1 Classificador de Peças	26
6.1.1 Descrição do Ambiente	27
6.1.2 Listas de Alocação	33
6.2 Portão de Garagem	35
6.2.1 Descrição do Ambiente	36
6.2.2 Listas de Alocação	39
6.3 Planta de Controle Nível e Temperatura	40
6.3.1 Descrição do Ambiente	41
6.3.2 Listas de Alocação	43
6.4 Elevador	45
6.4.1 Descrição do Ambiente	46
6.4.2 Listas de Alocação	50
6.5 Controle de Tráfego por Semáforo	52
6.5.1 Descrição do Ambiente	53
6.5.2 Listas de Alocação	56
7 Cuidados	57
9 Contato	гΩ

1 Bem-Vindo

simmaq 3D Modbus

1.1 O que é o simmaq 3D Modbus

Simmaq 3D Modbus é um software didático para treinamento em aplicações voltadas à programação de controladores, simulando máquinas com áudio e gráfico 3D. As situações disponibilizadas no software permitem um aumento gradual no nível de dificuldade, proporcionando um aprendizado constante na formação de alunos.

1.2 Como Funciona

O simmaq 3D Modbus possui 5 ambientes virtuais que simulam uma aplicação real, inclui sensores e atuadores digitais e analógicos (virtuais) para que o seu estado possa ser sentido pelo controlador.

A comunicação dos ambientes com o controlador é realizada através do protocolo Modbus. O simmaq opera como escravo da rede, que pode ser do tipo TCP ou RTU, utilizando os meios físicos Ethernet ou RS-232/485.

Fig. 01 - Imagem demonstrativa de comunicação

simmaq 3D Modbus

2.1 Requisitos Mínimos

Processador	1.6 GHz ou superior
Memória RAM mínima	1GB
Espaço disponível em disco	1GB
Placa de vídeo	64MB
Sistemas operacionais compatíveis	Windows XP (SP2), Windows 7 ou Windows 8

simmaq 3D Modbus

2.2 Instalação do Software

Insira o CD de instalação do simmaq 3D no drive e siga as instruções que aparecerão na tela.

Uma mensagem de finalização de instalação irá aparecer quando a instalação for bem sucedida. Um grupo de programas chamado Simmaq 3D será criado no seu Computador.

Caso o instalador não execute automaticamente, abra o arquivo setup.exe para instalar o simmaq 3D. Siga os passos abaixo, se tiver alguma dúvida, clique em Cancelar.

Passo 1:

Escolha o idioma em que irá ser apresentado o resto do programa de instalação e clique em OK.

Fig. 02 - Seleção de idioma

Passo 2:

Será apresentada a janela inicial do Assistente de Instalação do simmaq 3D, clique em Avançar.

Fig. 03 - Janela inicial do assistente de instalação

simmaq 3D Modbus

Passo 3: Escolha o local onde deseja salvar o programa executável do simmaq 3D e clique em *Avançar*.

Fig. 04 - Assistente de instalação

Passo 4: Selecione a pasta onde deseja salvar os atalhos do simmaq 3D e clique em *Avançar*.

Fig. 05 - Assistente de instalação

simmaq 3D Modbus

Passo 5: Selecione a opção Criar um Ícone na Área de Trabalho e clique em *Avançar*.

Fig. 06 - Assistente de instalação

Passo 6:

O programa está pronto para ser instalado, confira os dados e clique em Instalar.

Fig. 07 - Assistente de instalação

simmaq 3D Modbus

Passo 7: Aguarde o programa de instalação finalizar o processo.

Fig. 08 - Assistente de instalação

Passo 8: Clique em *Concluir* para finalizar o assistente de instalação do simmaq 3D.

Fig. 09 - Assistente de instalação

Para rodar o software simmaq 3D é necessário inserir a chave USB fornecida. Caso não seja encontrada uma licença válida, o simmaq 3D não executará.

simmaq 3D Modbus

2.3 Configuração do IP

Para conexão com o CLP, deverá ser configurado um IP fixo para seu computador. Para configurar um endereço de IP em um computador, siga os passos abaixo:

Passo 1:

Clique em Iniciar na tela inicial do Windows e selecione o item Painel de Controle.

Fig. 10 - Tela para acesso ao painel de controle

Passo 2: Clique sobre a opção Central de Rede e Compartilhamento.

Fig. 11 - Tela do painel de controle

simmaq 3D Modbus

Passo 3:

Clique sobre a opção conexão local.

Fig. 12 - Tela central de Rede e Compartilhamento

Passo 4:

Clique na opção Propriedades na tela de Status de Conexão local.

Fig. 13 - Tela de Status de conexão local

simmaq 3D Modbus

Passo 5:

Selecione o ícone Protocolo TCP/IP versão 4 (TCP/IPv4), e clique em Propriedades.

Fig. 14 - Tela Propriedades de Conexão local

Passo 6:

Selecione o ícone *Usar a seguinte configuração de IP* e defina as configurações do IP desejado, confirme a operação clicando em *OK*.

Fig. 15 - Tela Propriedades de Protocolo TCP/IP

simmaq 3D Modbus

2.4 Configuração ModBus

Para a configuração do protocolo ModBus, é necessária a execução do aplicativo ModBus Config, instalado em conjunto com o simmaq 3D.

Para configurar, siga os passos abaixo:

Passo 1:

Clique em Iniciar na tela inicial do Windows e selecione o item *Todos os programas*. Na pasta do Simmaq 3D, selecione o programa *Modbus Config*.

Fig. 16 - Tela para acesso ao Modbus Config

Passo 2:

Selecione o tipo de comunicação que será utilizado (TCP ou RTU).

a) Para TCP, selecione na caixa de seleção.

Fig. 17 - Tela do Modbus Config

simmaq 3D Modbus

Preencha o endereço *IP* do CLP, e a *porta* de comunicação (por padrão, porta 502). Após, clique em *Salvar*.

Fig. 18 - Tela do Modbus Config - Modo TCP

b) Caso a comunicação for RTU, selecione na caixa de seleção.

Fig. 19 - Tela do Modbus Config

simmaq 3D Modbus

Preencha os dados nos campos, conforme as configurações setadas no CLP. Após, clique em Salvar.

Fig. 20 - Tela do Modbus Config - Modo RTU

Obs: A comunicação somente iniciará quando for selecionado o Modo Automático no ambiente virtual.

simmaq 3D Modbus

3.1 Menus

Ao iniciar o simmaq 3D Modbus, será apresentado o menu inicial.

Clique em *Iniciar* para acessar a tela ambientes, *Opções* para acessar a tela opções, *Créditos* para acessar a tela de créditos e *Sair* para encerrar a aplicação.

Fig. 21 - Menu inicial

simmaq 3D Modbus

No menu *Ambientes*, selecione o ambiente a ser executado. Para retornar ao menu inicial, clique em *voltar* ou pressione ESC.

Fig. 22 - Menu ambientes

simmaq 3D Modbus

No menu *Opções,* pode-se escolher entre algumas configurações do sistema. Clique em *Aplicar* para salvar os parâmetros modificados ou *Voltar* para retornar à tela inicial.

Fig. 23 - Menu opções

Tela Cheia	Maximiza a tela do software.	
Resolução de Tela	Aumenta ou diminui o tamanho da tela de exibição.	
Qualidade Gráfica	Aumenta ou diminui a qualidade da imagem.	
Som	Liga ou desliga o som dos ambientes.	

simmaq 3D Modbus

3.2 Painel de Controle

O painel de controle permite a interação com o ambiente virtual, apresentando o estado dos sensores e atuadores e a seleção de cenas e opções para o usuário interagir diretamente com o sistema virtual.

O painel de controle do software está na extremidade inferior da tela de cada ambiente.

Fig. 24 - Painel de controle

simmaq 3D Modbus

1 Câmeras	•Seleciona câmeras pré-estabelecidas.	
2 Opções	•Exibe ou oculta rótulo dos sensores e atuadores na tela.	
3 Lista de Atuadores	 Mostra o estado atual dos atuadores. Permite o acionamento manual dos atuadores. Ajusta a velocidade de certos atuadores. 	
4 Lista de Sensores	•Mostra o estado atual dos sensores.	
5 Automático/Manual	•Seleciona entre modo automático ou manual de utilização.	
6 Zona de Operação	Constitui uma interface específica para cada ambiente.	
7 Barra de exibição	•Exibe ou oculta painel do sistema.	

3.2.1 Zonas de Operações

Cada sistema virtual possui um bloco específico para operações, permitindo a integração do usuário diretamente com o ambiente selecionado.

Zona de Operação do classificador de peças:

Fig. 25 - Zona de operação do Classificador de peças

1 Iniciar	•Utilize este ícone em seu programa para iniciar o processo.	
1 Reset	•Utilize este ícone em seu programa para retornar o processo à etapa	
i Reset	inicial de funcionamento.	
2 Parada Emergencial	 Utilize como parada de emergência do processo. 	
a Docas Cilíndricas	•Insere peças no slot do manipulador eletropneumático de entrada,	
3 Peças Cilíndricas	clique sobre o ícone da peça desejada.	

simmaq 3D Modbus

Zona de Operação do Portão de Garagem

Fig. 26 - Zona de operação do portão de garagem

1 Controle	●Aciona o portão.
Controle	•Solicita presença de carro no sistema.
2 Informações	●Indica o número de colisões registradas.
	 Reinicia a contagem de colisões registradas.

Zona de Operação da Planta de Controle Nível e Temperatura

Fig. 27 - Zona de operação da planta de controle

1 Parada Emergencial	•Ícone de parada de emergência do processo.		
2 Acrescentar Fluido	•Ícone acrescenta quantidade de fluido no reservatório inferior. Selecione a quantidade de fluido que pretende inserir e clique em <i>Encher</i> .		
3 B (Bo)	•ícone pode ser utilizado pelo usuário em seu programa para acionar a bomba manualmente, funciona como um botão.		
4 V (B1) •Ícone pode ser utilizado pelo usuário em seu programa para ao a válvula manualmente, funciona como um botão.			

Zona de Operação do Elevador

Fig. 28 - Zona de operação do elevador

1 Origem/Destino	 Lista a origem e o destino que o passageiro efetuará. O usuário deve inserir uma origem e um destino para o passageiro. Insere passageiro no sistema. Após listar a origem e o destino, clique no ícone azul.
2 Informações	Indica o número de acidentes ocorridos.Reinicia a contagem de acidentes registrados.

Zona de Operação do Controle de Tráfego por Semáforo

Fig. 29 - Zona de operação do controle de tráfego

Ontrole Insere carro de uma faixa para a outra. Insere pessoas para atravessar nas faixas de segurança.	
2 Informações	 Indica o número de atropelamentos e acidentes ocorridos. Reinicia a contagem de acidentes e colisões registrados.

simmaq 3D Modbus

3.3 Navegação nos Ambientes

Pressione o botão direito do mouse e use as teclas de seta do teclado para navegar nos ambientes virtuais.

A tecla "ESC" abre uma janela de opções quando se está dentro de algum dos ambientes.

Fig. 31 - Janela de opções

Continuar	Continua a operação do ambiente.	
Reiniciar	Reinicia o ciclo do processo.	
0pções	Permite o acesso à tela de opções.	
Encerrar	Encerra a aplicação e retorna ao menu inicial.	

4 Interatividade com os Ambientes

simmaq 3D Modbus

Uma das características do simmaq 3D Modbus é a possibilidade de interagir com alguns elementos dos ambientes. A interatividade com os ambientes é feita através do mouse, podendo mover peças, fechar ou abrir válvulas.

Para movimentar objetos móveis do ambiente, pressione o botão esquerdo do mouse sobre o objeto e arraste-o ao local desejado.

Fig. 32 - Movimentação de objeto

No caso de abertura ou fechamento de válvulas, clique sobre o elemento cujo valor deverá ser modificado e ajuste o valor desejado com o cursor, que abrirá ao lado desta válvula.

5 Modo Manual/Automático

simmaq 3D Modbus

Todos os sistemas podem ser controlados em modo manual, pelo usuário ou em modo automático, pelo controlador:

5.1 Modo Manual

Em modo manual, o usuário é o controlador do sistema.

Utilize este modo para se familiarizar com o modo de funcionamento de cada ambiente. Neste modo é possível o acionamento individual de cada atuador, e não há troca de sinais elétricos com o controlador.

Fig. 34 - Modo manual

5.2 Modo Automático

Em modo automático, o ambiente virtual troca informações com o programa estipulado. Neste modo há troca de sinais elétricos com o controlador.

Fig. 35 - Modo automático

6.1 Classificador de Peças

Fig. 36 - Classificador de peças

simmaq 3D Modbus

6.1.1 Descrição do Ambiente

Este é um sistema de classificação de peças, cujo objetivo é selecionar três tipos de peças, separandoas por cor e material.

O sistema é constituído por um manipulador de entrada, uma esteira e um manipulador de saída. As peças são adicionadas pela zona de operação do software, o manipulador de entrada desloca-as até a esteira, onde serão identificadas conforme material e cor, podendo ser separadas utilizando os expulsadores contidos na própria esteira, ou serão retiradas pelo manipulador de saída no final do sistema.

simmaq 3D Modbus

Manipulador Eletropneumático

O manipulador é um sistema de eixos cartesianos tridimensionais para movimentação, envio e recebimento de peças.

simmaq 3D Modbus

Eixo X	N	0 eixo X tem por função movimentar horizontalmente as peças.
Eixo Y		O eixo Y tem por função movimentar a peça para frente ou para trás.
Eixo Z		O eixo Z se movimenta verticalmente, aproximando e afastando a ventosa da peça.
Ventosa		Com um sistema a vácuo, prende a peça quando acionada e a solta quando desativada.
Bloco de Válvulas		Responsável pelos acionamentos, sinaliza através de indicadores luminosos quais atuadores estão acionados.

Os atuadores pneumáticos são acionados através de sinais digitais, sendo que o nível lógico destes determina a ação conforme tabela abaixo:

Nível o	Recua cilindro Desaciona vácuo
Nível 1	Avança cilindro Aciona vácuo

O sistema do manipulador permite a alteração de velocidade de cada eixo, através de válvulas reguladoras de fluxo, localizadas em cada extremidade dos cilindros. Cada atuador possui uma faixa de velocidade de operação:

simmaq 3D Modbus

Eixo X	0 - 12 m/min		
Eixo Y	o - 96 m/min		
Eixo Z	o - 18 m/min		

Para identificar o posicionamento dos eixos, o manipulador apresenta sensores magnéticos dispostos nas extremidades de cada atuador linear. Assim, o sistema informa a posição (avançado ou recuado) para cada eixo.

O sensor capacitivo, instalado no slot de posicionamento, indica a presença de peça no manipulador.

Esteira de Automação de Processos

Conjunto responsável pela identificação das peças, efetuando a separação das mesmas conforme a programação. Conforme a sequência, pode-se separar as peças em dois recipientes ou transportá-las até o manipulador de saída.

Esteira	A esteira pode operar em dois sentidos, podendo transportar a peça até o manipulador de entrada ou saída. A velocidade de transporte é estipulada pelo controlador.
Cilindro de descarte 1 e 2	Cilindros para expulsar a peça da esteira. As velocidades de avanço e recuo são configuráveis em o e 26m/min.
Recipiente 1 e 2	Armazena as peças retiradas pelos cilindros de descarte.

O sistema classificador permite a utilização de 3 tipos de peças:

A identificação dos tipos de peças é realizada conforme o acionamento dos sensores localizados no início da esteira.

O sensor indutivo aciona somente quando peças metálicas passam por ele. O sensor ótico reflexivo identifica peças claras (metálica e plástica branca). Peças pretas não são identificadas por tais sensores.

Os sensores óticos de barreira servem para indicar o posicionamento de qualquer tipo de peça sobre a esteira. Estes estão posicionados antes de cada cilindro de descarte.

simmaq 3D Modbus

6.1.2 Listas de Alocação

Sensores

Sensores digitais								
Rótulo	Símbolo	End. Modbus	R/W	Range	Localização	Descrição		
Dlo	So	40001:0	R	0/1	Manipulador de entrada	Sensor Capacitivo, peça no slot de entrada		
DI1	S 1	40001:1	R	0/1	Manipulador de entrada eixo X	Sensor Magnético, eixo X recuado		
DI2	S2	40001:2	R	0/1	Manipulador de entrada eixo X	Sensor Magnético, eixo X avançado		
DI3	S3	40001:3	R	0/1	Manipulador de entrada eixo Y	Sensor Magnético, eixo Y recuado		
DI4	S4	40001:4	R	0/1	Manipulador de entrada eixo Y	Sensor Magnético, eixo Y avançado		
DI5	S 5	40001:5	R	0/1	Manipulador de entrada eixo Z	Sensor Magnético, eixo Z recuado		
DI6	S 6	40001:6	R	0/1	Manipulador de entrada eixo Z	Sensor Magnético, eixo Z avançado		
DI7	S7	40001:7	R	0/1	Esteira	Sensor Indutivo		
DI8	S8	40001:8	R	0/1	Esteira	Sensor Ótico Reflexivo		
DI9	S9	40001:9	R	0/1	Esteira, descarte 1	Sensor Ótico com Espelho Refletor		
DI10	S10	40001:10	R	0/1	Esteira, descarte 2	Sensor Ótico com Espelho Refletor		
Dl11	S11	40001:11	R	0/1	Manipulador de saída	Sensor Capacitivo, peça no slot de saída		
Dl12	S12	40001:12	R	0/1	Manipulador de saída eixo X	Sensor Magnético, eixo X recuado		
Dl13	S13	40001:13	R	0/1	Manipulador de saída eixo X Sensor Magnético, eixo avançado			
DI14	S14	40001:14	R	0/1	Manipulador de saída eixo Y Sensor Magnético, eixo Y I			
Dl15	S15	40001:15	R	0/1	Manipulador de saída eixo Y Sensor Magnético, eixo Y avançado			
DI16	S16	40002:0	R	0/1	Manipulador de saída eixo Z	Sensor Magnético, eixo Z recuado		
DI17	S17	40002:1	R	0/1	Manipulador de saída eixo Z	Sensor Magnético, eixo Z avançado		
DI18	INICIO	40002:2	R	0/1	Zona de operação do ambiente	Botão Início		
DI19	RESET	40002:3	R	0/1	Zona de operação do ambiente	Botão Reset		
DI20	EMERG	40002:4	R	0/1	Zona de operação do ambiente	Botão Emergência		

simmaq 3D Modbus

Atuadores

Atuadores digitais							
Rótulo	Símbolo	End. Modbus	R/W	Range	Localização	Descrição	
D0o	C1	40003:0	W	0/1	Manipulador de entrada eixo X	Desloca eixo X	
D01	C2	40003:1	W	0/1	Manipulador de entrada eixo Y	Desloca eixo Y	
D02	C3	40003:2	W	0/1	Manipulador de entrada eixo Z	Desloca eixo Z	
D03	V1	40003:3	W	0/1	Manipulador de entrada Vácuo	Aciona ventosa	
D04	M1	40003:4	W	0/1	Esteira	Esteira avança	
D05	M2	40003:5	W	0/1	Esteira	Esteira recua	
D06	C4	40003:6	W	0/1	Esteira descarte 1	Avança cilindro de descarte 1	
D07	C5	40003:7	W	0/1	Esteira descarte 2	Avança cilindro de descarte 2	
D08	C6	40003:8	W	0/1	Manipulador de saída eixo X	Desloca eixo X	
D09	C7	40003:9	W	0/1	Manipulador de saída eixo Y	Desloca eixo Y	
D010	C8	40003:10	W	0/1	Manipulador de saída eixo Z	Desloca eixo Z	
D011	V2	40003:11	W	0/1	Manipulador de saída vácuo	Aciona ventosa	

Atuador analógico							
Rótulo	Símbolo	End. Modbus	R/W	Range	Simmaq	Localização	Descrição
A0o	Ao	40006	W	0255	0100%	Painel de controle do software	Set de velocidade da esteira

6.2 Portão de Garagem

Fig. 44 - Portão de garagem

simmaq 3D Modbus

6.2.1 Descrição do Ambiente

Este é um sistema cujo objetivo é simular o funcionamento real de um portão de garagem.

Fig. 45 - Descrição do portão de garagem

simmaq 3D Modbus

Portão		O motor do portão funciona em dois sentidos, abrindo e fechando o portão.
Trava		Trata-se de um atuador que bloqueia a movimentação do portão quando o mesmo está fechado, liberando caso for acionado.
Sinaleiro luminoso e sonoro	CUIDADO VEÍCULOS	Identificador utilizado para sinalizar que o portão está em movimento ou aberto.
Sensor fim de curso superior		Indica quando o portão está totalmente aberto.
Sensor fim de curso inferior		Indica quando o portão está totalmente fechado.
Sensor de barreira		Detecta a presença de obstáculos que possam impedir a operação do portão.

simmaq 3D Modbus

Automóvel

O ambiente possui automóveis que entram no estacionamento, acionados por um comando da zona de operação do sistema.

Fig. 46 - Automóveis

simmaq 3D Modbus

6.2.2 Listas de Alocação

Sensores

	Sensores digitais												
Rótulo	Símbolo	Descrição											
Dlo	Во	40001:0	R	0/1	Zona de operação do ambiente	Botão abrir/fechar do controle							
DI1	So	40001:1	R	0/1	Parte superior da haste do portão	Sensor portão aberto							
DI2	S 1	40001:2	R	0/1	Parte inferior da haste do portão	Sensor portão fechado							
DI3	S2	40001:3	R	0/1	Extremidade inferior do portão	Sensor de obstrução							

Atuadores

	Atuadores digitais												
RótuloSímboloEnd. ModbusR/WRangeLocalizaçãoDescrição													
D0o	M1	40003:0	W	0/1	Lateral do portão	Portão Fecha							
D01	M2	40003:1	W	0/1	Lateral do portão	Portão Abre							
DO2 T1 40003:2 W 0/1 Extremidade inferior do portão Libera Trava					Libera Trava								
D03	L1	40003:3	W	0/1	Extremidade superior do portão	Sinaleiro Luminoso e Sonoro							

6.3 Planta de Controle Nível e Temperatura

Fig. 47 - Planta de controle de nível e temperatura

6.3.1 Descrição do Ambiente

Este é um sistema para controle de nível e temperatura, cujo objetivo é realizar o controle destas grandezas, utilizando um conjunto que apresenta dois tanques de armazenamento de líquido.

simmaq 3D Modbus

O tanque inferior é preenchido com líquido pelo próprio usuário, através do painel de controle do software. O controle de temperatura é realizado neste reservatório, através do resistor de aquecimento e sensor de medicão.

No reservatório superior, é efetuado o controle de nível do fluido, através do acionamento da motobomba e indicação pelo sensor ultrassônico.

A motobomba é responsável pela transferência do líquido do reservatório inferior para o superior. Esta transferência pode ser controlada através da velocidade da bomba, variando a vazão do sistema entre o e 100%.

Cada reservatório possui sensores tipo chave boia, que indicam se o mesmo está vazio ou cheio.

A válvula tipo gaveta, instalada entre a motobomba e o reservatório superior, simula a perda de carga na linha de bombeamento, oferecendo restrição à passagem de fluido. A regulagem desta válvula é determinada pelo usuário.

Para a drenagem do reservatório inferior, existe outra válvula para este fim.

Fig. 50 - Válvula tipo gaveta

Para o retorno do líquido contido no reservatório superior ao reservatório inferior, o sistema conta com uma eletroválvula que realiza esta função. O acionamento da mesma será determinado pelo usuário.

Fig. 51 - Eletroválvula

simmaq 3D Modbus

6.3.2 Listas de Alocação

Sensores

	Sensores digitais												
Rótulo	Símbolo	End. Modbus	Localização	Descrição									
Dlo	Во	40001:0	R	0/1	Zona de operação do ambiente	Botão acionamento bomba							
DI1	B1	40001:1	R	0/1	Zona de operação do ambiente	Botão acionamento válvula							
DI2	So	40001:2	R	0/1	Reservatório inferior	Nível mínimo de fluido no reservatório inferior							
DI3	S 1	40001:3	R	0/1	Reservatório superior	Nível mínimo de fluido no reservatório superior							
DI4	S2	40001:4	R	0/1	Reservatório superior	Nível máximo de fluido no reservatório superior							
DI5	EMERG	40001:5	R	0/1	Zona de operação do ambiente	Parada emergencial							

	Sensores analógicos											
Rótulo	Símbolo	End. Modbus	R/W	Range	Simmaq	Localização	Descrição					
Alo	\$3	40004	R	0255	020,0	Reservatório superior, visualização de valores painel de controle do software	Sensor ultrassônico de nível					
Al1	S4	40005	R	0255	0100,0°C	Reservatório inferior, visualização de valores painel de controle do software	Sensor de temperatura					

simmaq 3D Modbus

Atuadores

	Atuadores digitais												
Rótulo	Símbolo	End. Modbus	R/W	Range	Localização	Descrição							
D0o	Vo	40003:0	W	0/1	Parte inferior da bancada	Válvula de interligação do reservatório superior com o inferior							
D01	Мо	40003:1	W	0/1	Parte inferior da bancada	Bomba, transfere fluido do reservatório inferior para o superior							
D02	L1	40003:2	W	0/1	Painel de controle da bancada	Sinaleiro luminoso da bomba manual							
D03	L2	40003:3	W	0/1	Painel de controle da bancada	Sinaleiro luminoso da válvula manual							
D04	R1	40003:4	W	0/1	Cuba inferior	Resistor, aquece o fluido							

	Atuador analógico											
Rótulo Símbolo End. Modbus R/W Range Simmaq Localização Descrição						Descrição						
A0o	Ao	40006	W	0255	0.100%	Painel de controle do software	Ajuste de Velocidade da Bomba					

6.4 Elevador

Fig. 52 - Elevador

simmaq 3D Modbus

6.4.1 Descrição do Ambiente

Este é um sistema de elevador, cujo objetivo é deslocar as pessoas entre os 4 níveis do prédio. O elevador deve seguir a sequência estipulada pelo usuário.

Fig. 53 - Descrição do elevador

simmaq 3D Modbus

Motor abre/fecha porta da cabine		O motor funciona em dois sentidos, abrindo e fechando a porta da cabine. A porta externa do prédio só abrirá se os sensores de posicionamento estiverem acionados.
Motor sobe/desce cabine		O motor funciona em dois sentidos, subindo e descendo a cabine.
Freio motor sobe/desce cabine		O freio do motor da cabine trava a mesma quando desacionado e libera o motor quando acionado.
Sinaleiros dos botões da cabine	2	Sinaliza o andar que foi solicitado pelo passageiro.
Sinaleiros dos botões do prédio	2	Sinaliza quando o passageiro pressionou o botão para chamar a cabine ao nível.
Botões da cabine	2	Indica quando o passageiro pressionou algum botão da cabine.

simmaq 3D Modbus

Botões do prédio	2	Indica quando o passageiro pressionou algum botão no prédio.
Sensores de posicionamento		Indica quando a cabine está próxima ao andar e posicionada no andar.
Sensor de obstrução		Detecta a presença de obstáculos que possam impedir a operação da porta do elevador.
Sensor de nível mínimo		Indica quando a cabine está em seu limite máximo inferior.
Sensor de nível máximo		Indica quando a cabine está em seu limite máximo superior.

simmaq 3D Modbus

Passageiro

O elevador conta com passageiros que se deslocam entre os níveis. Estes passageiros são criados pela zona de operação do software, onde o usuário define a sua origem e destino.

simmaq 3D Modbus

6.4.2 Listas de Alocação

Sensores

	Sensores digitais										
Rótulo	Símbolo	End. Modbus	R/W	Range	Localização	Descrição					
Dlo	Во	40001:0	R	0/1	Cabine	Botão Térreo					
DI1	B1	40001:1	R	0/1	Cabine	Botão 1° Andar					
Dl2	B2	40001:2	R	0/1	Cabine	Botão 2° Andar					
DI3	В3	40001:3	R	0/1	Cabine	Botão 3° Andar					
DI4	So	40001:4	R	0/1	Cabine	Sensor Porta Fechada					
DI5	S1	40001:5	R	0/1	Cabine	Sensor Porta Aberta					
DI6	S2	40001:6	R	0/1	Cabine	Sensor Porta Obstruída					
DI7	S ₃	40001:7	R	0/1	Prédio	Sensor Porta Fechada, indica que todas as portas dos andares estão fechadas					
DI8	B4	40001:8	R	0/1	Térreo do prédio	Botão Térreo					
DI9	B5	40001:9	R	0/1	1° andar do prédio	Botão 1° Andar					
DI10	В6	40001:10	R	0/1	2° andar do prédio	Botão 2° Andar					
Dl11	В7	40001:11	R	0/1	3° andar do prédio	Botão 3° Andar					
Dl12	S4	40001:12	R	0/1	Térreo do prédio	Sensor Indutivo de Cabine, indica que a cabine se encontra posicionada no térreo					
DI13	S ₅	40001:13	R	0/1	Próximo do térreo do prédio	Sensor Indutivo de Cabine, indica que a cabine se encontra próxima ao térreo					
DI14	S6	40001:14	R	0/1	1° Andar do prédio	Sensor Indutivo de Cabine, indica que a cabine se encontra posicionada no 1° andar					
Dl15	S ₇	40001:15	R	0/1	Próxima do 1º Andar do prédio	Sensor Indutivo de Cabine, indica que a cabine se encontra próxima ao 1º andar					
DI16	S8	40002:0	R	0/1	2° Andar do prédio	Sensor Indutivo de Cabine, indica que a cabine se encontra posicionada no 2° andar					
DI17	S9	40002:1	R	0/1	Próximo do 2º andar do prédio	Sensor Indutivo de Cabine, indica que a cabine se encontra próxima ao 2º andar					
DI18	S10	40002:3	R	0/1	3° Andar do prédio	Sensor Indutivo de Cabine,indica que a cabine se encontra posicionada no 3° andar					
Dl19	S11	40002:4	R	0/1	Próximo do 3º andar do prédio	Sensor Indutivo de Cabine, indica que a cabine se encontra próxima ao 3° andar					
Dl20	S12	40002:5	R	0/1	Térreo do prédio	Sensor Indutivo, indica que a cabine se encontra abaixo no térreo e está no seu limite máximo inferior					
Dl21	S13	40002:6	R	0/1	3° andar do prédio	Sensor Indutivo, indica que a cabine se encontra no 3° andar e está no seu limite máximo superior					

simmaq 3D Modbus

Atuadores

	Atuadores digitais												
Rótulo	Símbolo	End. Modbus	R/W	Range	Localização	Descrição							
D0o	L1	40003:0	W	0/1	Cabine	Sinaleiro Botão Térreo Pressionado							
D01	L2	40003:1	W	0/1	Cabine	Sinaleiro Botão 1º Andar Pressionado							
D02	L3	40003:2	W	0/1	Cabine	Sinaleiro Botão 2º Andar Pressionado							
D03	L4	40003:3	W	0/1	Cabine	Sinaleiro Botão 3° Andar Pressionado							
D04	L5	40003:4	W	0/1	Prédio	Sinaleiro Botão Térreo Pressionado							
D05	L6	40003:5	W	0/1	Prédio	Sinaleiro Botão 1º Andar Pressionado							
D06	L7	40003:6	W	0/1	Prédio	Sinaleiro Botão 2º Andar Pressionado							
D07	L8	40003:7	W	0/1	Prédio	Sinaleiro Botão 3° Andar Pressionado							
D08	M1	40003:8	W	0/1	Cabine	Fecha Porta							
D09	M2	40003:9	W	0/1	Cabine	Abre Porta							
D010	М3	40003:10	W	0/1	Prédio	Desce cabine							
D011	M4	40003:11	W	0/1	Prédio	Sobe cabine							
D012	F	40003:12	W	0/1	Prédio	Libera Freio Motor Desce/Sobe							

	Atuador analógico										
Rótulo	Rótulo Símbolo End. Modbus R/W Range Simmaq Localização Descrição										
A0o	Ao	40006	W	0255	0100%	Painel de controle do software	Ajuste de velocidade do elevador				

6.5 Controle de Tráfego por Semáforo

Fig. 55 - Controle de tráfego por semáforo

simmaq 3D Modbus

6.5.1 Descrição do Ambiente

Este é um sistema de semáforos, cujo objetivo é simular o controle de fluxo de automóveis e pedestres em um cruzamento de duas ruas de mão única.

Fig. 56 - Descrição do controle de tráfego

simmaq 3D Modbus

O sistema apresenta semáforos para controlar o fluxo de veículos em ambas as ruas. Cada semáforo possui as três indicações luminosas: verde, amarelo e vermelho.

Os veículos obedecem rigorosamente a tais sinalizações, atravessando o cruzamento somente quando a indicação verde estiver acionada ou todas as sinalizações desligadas.

Para o controle do fluxo de pedestres, o sistema disponibiliza semáforos em cada faixa de segurança, sinal sonoro e botões para travessia de pedestres.

Os pedestres atravessam somente nas faixas de segurança quando o semáforo correspondente à travessia encontra-se desligado ou o sinal verde estiver acionado.

O sistema disponibiliza o acionamento de um sinal sonoro, para auxiliar deficientes visuais a identificar quando a travessia é permitida.

Fig. 58 - Semáforo para pedestres

Todo pedestre inserido no sistema pressionará o botão para travessia, indicando a intenção de cruzar a via. O sinal do botão pode efetuar a parada dos veículos e liberar a passagem dos pedestres.

Fig. 59 - Botão para travessia

Automóveis e Pedestres

Este ambiente possui automóveis e pedestres, que são inseridos pela zona de operação do software. Eles obedecem à sinalização imposta pela via onde estão trafegando ou cruzando.

Fig. 60 - Automóveis e Pedestres

simmaq 3D Modbus

6.5.2 Listas de Alocação

Sensores

Sensor digital										
Rótulo	Símbolo	End. Modbus	R/W	Range	Localização	Descrição				
Dlo	Во	40001:0	R	0/1	Junto aos sinais de pedestres	Botão para travessia de pedestres				

Atuadores

Atuadores digitais								
Rótulo	Símbolo	End. Modbus	R/W	Range	Localização	Descrição		
D0o	L1	40003:0	W	0/1	Rua A	Sinal Verde - Semáforo rua A		
D01	L2	40003:1	W	0/1	Rua A	Sinal Amarelo - Semáforo rua A		
D02	L3	40003:2	W	0/1	Rua A	Sinal Vermelho - Semáforo rua A		
D03	L4	40003:3	W	0/1	Rua B	Sinal Verde - Semáforo rua B		
D04	L5	40003:4	W	0/1	Rua B	Sinal Amarelo - Semáforo rua B		
D05	L6	40003:5	W	0/1	Rua B	Sinal Vermelho - Semáforo rua B		
D06	L7	40003:6	W	0/1	Faixa Segurança 1	Sinal Verde Pedestre - Faixa de segurança 1		
D07	L8	40003:7	W	0/1	Faixa Segurança 1	Sinal Vermelho Pedestre - Faixa de segurança 1		
D08	L9	40003:8	W	0/1	Faixa Segurança 2	Sinal Verde Pedestre - Faixa de segurança 2		
D09	L10	40003:9	W	0/1	Faixa Segurança 2	Sinal Vermelho Pedestre - Faixa de segurança 2		
D010	L11	40003:10	W	0/1	Faixa Segurança 3	Sinal Verde Pedestre - Faixa de segurança 3		
D011	L12	40003:11	W	0/1	Faixa Segurança 3	Sinal Vermelho Pedestre - Faixa de segurança 3		
D012	L13	40003:12	W	0/1	Faixa Segurança 4	Sinal Verde Pedestre - Faixa de segurança 4		
D013	L14	40003:13	W	0/1	Faixa Segurança 4	Sinal Vermelho Pedestre - Faixa de segurança 4		
D014	E1	40003:14	W	0/1	Postes dos semáforos	Sinal Sonoro Pedestre		

7 Cuidados

simmaq 3D Modbus

Para manter o produto em perfeito estado de funcionamento é muito importante que sejam tomados todos os cuidados referentes à operação e à manutenção, bem como a limpeza dos componentes e acessórios.

ATENÇÃO!

- •Evitar o contato de líquidos diretamente com os componentes elétricos.
- •Ter cuidado com a ligação elétrica dos componentes, conexões incorretas poderão danificar os equipamentos.

8 Contato

simmaq 3D Modbus

Para maiores informações sobre nossos produtos, contate-nos:

Automatus Engenharia Ltda.

Telefone: (54)3218-7700

Email: didatica@grupoautomatus.com.br Visite-nos em www.grupoautomatus.com.br