Poisson process: Ni is a counting process with rate A

super position

1st approach

znd approach

Nt is a poisson process with rate 1.

X+Y has the same distribution as $(N_{\gamma+\nu}-N_{\nu})+(N_{\nu})$

which is pois (T+ N)

superposition is the generalization of the above idea Let us define

Mt = # undergrads that arrive by time t

Nt = # grads that arrive by time t

Rt = # customers that arrive by time t

{Mt}tho is a poisson process with rate poisson process.

exactly the same reasoning applies to N6-N5

$$M_{t}$$
 - M_{s} ω pois ($\mu(t-s)$) => R_{t} - R_{s} ω Pois ($(\mu+r)(t-s)$)
 M_{t} - M_{s} ω pois ($r(t-s)$)

=> Rt is a poisson process with rate (U+r)

If N_t^1 , N_t^2 , ..., N_t^k are indep poisson processes with rates $\mu_1, \mu_2, ..., \mu_k$, then $N_t^1 + ... + N_t^k$ is a poisson process with rate $N_1 + ... + N_k$

$$N_{t} = \int_{K^{2}} \frac{1}{4} \{ X_{K} = D \}$$

$$P(M_{t} = K) = \int_{\Gamma^{2}}^{\infty} P(M_{t} = K) R_{t} = \Gamma) P(R_{t} = \Gamma)$$

$$= \int_{\Gamma^{2}}^{\infty} P\{ \sum_{i=1}^{N} H_{i} X_{i} = U \} = K | R_{t} = \Gamma \} \times P(R_{t} = \Gamma)$$

$$= \int_{\Gamma^{2}}^{\infty} P\{ \sum_{i=1}^{N} H_{i} X_{i} = U \} = K | R_{t} = \Gamma \} \times P(R_{t} = \Gamma)$$

$$P(M_{t} = K) = \int_{\Gamma^{2}}^{\infty} (K) P^{K} (1-P)^{\Gamma-K} = \frac{e^{\rho t} (\nu t)^{\Gamma}}{\Gamma!}$$

$$= \int_{\Gamma^{2}}^{\infty} (P + \nu t)^{K} \sum_{i=1}^{\infty} (\Gamma^{2} - \nu^{2})^{i} P^{K} (1-P)^{\rho-K} = \frac{e^{\rho t} (\nu t)^{\Gamma-K}}{\Gamma!}$$

$$= \frac{e^{-\rho t} (P + \nu t)^{K}}{K!} \sum_{i=1}^{\infty} (\Gamma^{2} - \nu^{2})^{i} P^{K} (1-P)^{\rho-K} = \frac{e^{-\rho t} (\nu t)^{\Gamma-K}}{\Gamma!}$$

$$= \frac{e^{-\rho t} (P + \nu t)^{K}}{K!} \sum_{i=1}^{\infty} (\Gamma^{2} - \nu^{2})^{K} P^{K} (1-P)^{\rho-K} = \frac{e^{-\rho t} (\nu t)^{\Gamma-K}}{\Gamma!}$$

$$= \frac{e^{-\rho t} (\nu t)^{K}}{K!} \sum_{i=1}^{\infty} (\Gamma^{2} - \nu^{2})^{K} P^{K} (1-P)^{\rho-K} P^{K} (1-P$$

It is easy to show that My has indep increament

My is a poisson process with rate p.y

Not a following the process with rate p.y

Note that
$$M_{t} + N_{t} = R_{t}$$

$$P(M_{t}=m, N_{t}=n) = P(M_{t}=m, R_{t}=m+n)$$

$$= P(\sum_{i=1}^{R_{t}} 1_{i} X_{i} = U_{i}^{2} = m, R_{t}=m+n)$$

$$= P(\sum_{i=1}^{m+n} 1_{i} X_{i} = U_{i}^{2} = m, R_{t}=m+n)$$

$$= P(\sum_{i=1}^{m+n} 1_{i} X_{i} = U_{i}^{2} = m) P(R_{t}=m+n)$$

$$= \binom{m \cdot n}{m} P^{m} (1-P)^{n} e^{-pt} \frac{(pt)^{m+n}}{(m \cdot n)!}$$

$$= \frac{e^{-pt} (ppt)^{m}}{m!} \times \frac{e^{(-p)pt} (1-p)pt}{(1-p)pt}$$

$$= P(M_{t}=m) \times P(N_{t}=n)$$

Let Mt be a poisson process with rate p

for thinning of Rt ____ Mt we need to set the probability to $\frac{\nu}{\nu_{+}}$

Rt -> Nt subsampling r

 $P(X \leq Y) = P(X \land Y = X) = P(first label is ①)$ $= \frac{\nu}{\nu_{t}r}$

X / Y is the first arrival of R+ ~ enp(N+r)