University of Liège

Faculty of Applied Sciences Department of Electrical Engineering & Computer Science

PhD dissertation

CONTRIBUTIONS TO DEEP GENERATIVE MODELING

FROM BLACK-BOX TO HYBRID APPROACHES

by Antoine Wehenkel

Advisor: Prof. GILLES LOUPPE August 2022

JURY MEMBERS

???, Professor at the Université de Liège (President);

GILLES LOUPPE, Professor at the Université de Liège (Advisor);

???, Professor at the Université de Liège;

???, ???;

???, ???;

???, ???;

ABSTRACT

To be completed.

ACKNOWLEDGMENTS

To be completed.

CONTENTS

1	INTRODUCTION	1
	1.1 Outline and contributions	1
	1.2 Publications	1
2	BACKGROUND	3
	2.1 Unsupervised learning	3
i	BLACK-BOX GENERATIVE MODELING	5
3	DEEP LATENT VARIABLES GENERATIVE MODELS	7
	3.1 Variational Auto Encoders	7
	3.2 Diffusion Models	7
	3.3 Contribution: Diffusion Priors in Variational Autoenco	ders 7
4	UNSTRUCTURED DENSITY ESTIMATION WITH NORMA	AL-
	IZING FLOWS	9
	4.1 Normalizing Flows	9
	4.2 Contribution: You say Normalizing Flows I see Bayes	ian
	Networks	9
	4.3 Contribution: Unconstrained Monotonic Neural Netwo	rks 9
5	DIGRESSION ON MONOTONIC FUNCTIONS IN MACHI	NE
	LEARNING	11
ii	HYBRID GENERATIVE MODELING	13
6	STRUCTURED DENSITY ESTIMATION WITH NORMAL	IZ-
	ING FLOWS	15
	6.1 Contribution: Graphical normalizing flows	15
7	HYBRID GENERATIVE MODELS	17
	7.1 Contribution: Robust Hybrid Learning With Expert A	ug-
	mentation	17
iii	APPENDIX	19
A	NOTATIONS	21
В	REFERENCES	25

INTRODUCTION

If you erase this you are almost there! :D

1.1 OUTLINE AND CONTRIBUTIONS

If you erase this you are almost there! :D

1.2 PUBLICATIONS

To be completed.

BACKGROUND

OUTLINE

This chapter concerns the definition of unsupervised learning with a brief review of classical methods. Graphical models (in particular B-net are introduced here.) It continues with a review of deep generative modeling, with a discussion between explicit and implicit generative modeling. We introduce the concepts of GANs, VAEs, Normalizing Flows and diffusion models. With a note that VAEs and diffusions models are discussed in more details in further chapters.

2.1 UNSUPERVISED LEARNING

Part I BLACK-BOX GENERATIVE MODELING

DEEP LATENT VARIABLES GENERATIVE MODELS

OUTLINE

???

- 3.1 VARIATIONAL AUTO ENCODERS
- 3.2 DIFFUSION MODELS
- 3.3 CONTRIBUTION: diffusion priors in variational autoencoders

UNSTRUCTURED DENSITY ESTIMATION WITH NORMALIZING FLOWS

OUTLINE

???

- 4.1 NORMALIZING FLOWS
- 4.2 CONTRIBUTION: you say normalizing flows i see bayesian networks
- 4.3 CONTRIBUTION: unconstrained monotonic neural networks

DIGRESSION ON MONOTONIC FUNCTIONS IN MACHINE LEARNING

OUTLINE

???

Part II HYBRID GENERATIVE MODELING

STRUCTURED DENSITY ESTIMATION WITH NORMALIZING FLOWS

OUTLINE

???

6.1 Contribution: graphical normalizing flows

HYBRID GENERATIVE MODELS

OUTLINE

???

7.1 CONTRIBUTION: robust hybrid learning with expert augmentation

Part III APPENDIX

NOTATIONS

\mathcal{A}	A supervised learning algorithm??
$\mathcal{A}(\theta,\mathcal{L})$	The model $\varphi_{\mathcal{L}}$ produced by algorithm \mathcal{A} over \mathcal{L} and hyper-parameters θ ?
α_s	The proportion of samples in a random patch??
α_{f}	The proportion of features in a random patch??
$\mathfrak{b}_{\mathfrak{l}}$	The l-th value of a categorical variable??
В	A subset $B \subseteq V$ of variables?
c_k	The k-th class??
C_p^k	The number of k-combinations from a set of p elements??
C(N)	The time complexity for splitting N samples?
E	Expectation
$\overline{E}(\phi_{\mathcal{L}},\mathcal{L}')$	The average prediction error of $\varphi_{\mathcal{L}}$ over \mathcal{L}' ?
$\text{Err}(\phi_{\mathcal{L}})$	The generalization error of $\varphi_{\mathcal{L}}$??, ??
H(X)	The Shannon entropy of X??
H(X Y)	The Shannon entropy of X conditional to Y ?
\mathcal{H}	The space of candidate models??
i(t)	The impurity of node t??, ??
$i_R(t)$	The impurity of node t based on the local resubstitution estimate??, ??
$i_H(t)$	The entropy impurity of node t??
$i_G(t)$	The Gini impurity of node t??
$\Delta i(s,t)$	The impurity decrease of the split s at node t??
I(X;Y)	The mutual information between X and Y??
$Imp(X_j)$	The variable importance of X_j ??, ??
J	The number of classes??
K	The number of folds in cross-validation?? The number of input variables drawn at each node for finding a split??
$K(\mathbf{x}_i, \mathbf{x}_j)$	The kernel of x_i and x_j ??, ??
L	A loss function?? The number of values of a categorical variable??
\mathcal{L}	A learning set (X, y) ??
~ ∠ ^m	The m-th bootstrap replicate of \mathcal{L} ??

\mathcal{L}_{t}	The subset of node samples falling into node t??
M	The number of base models in an ensemble??
$\mu_{\mathcal{L},\theta_{\mathfrak{m}}}(\boldsymbol{x})$	The mean prediction at $X = x$ of $\varphi_{\mathcal{L},\theta_m}$??
N	The number of input samples??
N_t	The number of node samples in node t??
N_{ct}	The number of node samples of class \boldsymbol{c} in node \boldsymbol{t} . ??
Ω	The universe, or population, from which cases are sampled?
p	The number of input variables??
pL	The proportion of node samples going to t_L ??
p _R	The proportion of node samples going to t_R ?
p(t)	The estimated probability $p(X \in \mathcal{X}_t) = \frac{N_t}{N}$??
p(c t)	The empirical probability estimate $p(Y = c X \in \mathcal{X}_t) = \frac{N_{ct}}{N_t}$ of class c at node t?
$\widehat{\mathfrak{p}}_{\mathcal{L}}$	An empirical probability estimate computed from the learning set \mathcal{L} ??
P(X,Y)	The joint probability distribution of the input variables $X = (X_1, \dots, X_p)$ and the output variable Y . ??
$\mathcal{P}_k(V)$	The set of subsets of V of size k??
φ	A model or function $\mathfrak{X} \mapsto \mathfrak{Y}$?? A single decision tree??
$\widetilde{\varphi}$	The set of terminal nodes in φ ??
$\varphi(\mathbf{x})$	The prediction of φ for the sample x ?
$\varphi_{\mathcal{L}}$	A model built from \mathcal{L} ?
φε,θ	A model built from \mathcal{L} with random seed θ ?
ϕ_B	A Bayes model??
$\psi_{\mathcal{L},\theta_1,,\theta_M}$	An ensemble of M models built from \mathcal{L} and random seeds $\theta_1, \dots, \theta_M$?
Q	A set $Q \subseteq S$ of splits of restricted structure ??, ??
$Q(X_j)$	The set $\mathfrak{Q}(X_j) \subseteq \mathfrak{Q}$ of univariate binary splits that can be defined on variable X_j ??, ??
$\rho(\mathbf{x})$	The correlation coefficient between the predictions at $X = x$ of two randomized models?
S	A split??, ??
s*	The best split??, ??
s _j *	The best binary split defined on variable $X_j \dots ??, ??$
s_j^{ν}	The binary split $(\{x x_j \le v\}, \{x > v\})$ defined on variable X_j with discretization threshold v ?
s _t	The split labeling node t??
$\tilde{\mathfrak{s}}_{t}^{j}$	The best surrogate split for s_t defined from X_j ??
t	The best surrogate split for s_t defined from $x_1 \dots$

S	The set of all possible splits s??
$\sigma^2_{\mathcal{L},\theta_{\mathfrak{m}}}(\mathbf{x})$	The prediction variance at $X = \mathbf{x}$ of $\varphi_{\mathcal{L},\theta_{\mathfrak{m}}}$?
t	A node in a decision tree??
t_L	The left child of node t??, ??
t_R	The right child of node t??, ??
θ	A vector of hyper-parameter values??
	A random seed??
θ*	The optimal hyper-parameters??
$\widehat{\Theta}^*$	The approximately optimal hyper-parameters??
$\theta_{\mathfrak{m}}$	The seed of the m-th model in an ensemble??
ν	A discretization threshold in a binary split??
v_k	The k-th value of an ordered variable, when node samples are in sorted order??
v_k'	The mid-cut point between v_k and v_{k+1} ?
V	The set $\{X_1, \ldots, X_p\}$ of input variables \ldots ??
V^{-j}	$V \setminus \{X_j\}$??
\mathbb{V}	Variance
x	A case, sample or input vector $(x_1,, x_p)$?
\mathbf{x}_{i}	The i-th input sample in \mathcal{L} ??
x_j	The value of variable X_j for the sample x ?
X	The $N \times p$ matrix representing the values of all N samples for all p input variables??
X_j	The j-th input variable or feature??, ??
X	The random vector (X_1, \ldots, X_p) ?
$\mathfrak{X}_{\mathfrak{j}}$	The domain or space of variable X_j ??
\mathfrak{X}	The input space $X_1 \times \cdots \times X_p$??
\mathfrak{X}_{t}	The subspace $X_t \subseteq X$ represented by node t ?
у	A value of the output variable Y??
\widehat{y}_{t}	The value labelling node t??
$\widehat{\mathbf{y}}_{t}^*$	The optimal value labelling node t??
y	The output values (y_1, \ldots, y_N) ??
Υ	The output or response variable Y??
y	The domain or space of variable Y??

B

REFERENCES