

Operaciones con expresiones algebraicas

MAT G

Meta

Suma coeficientes fraccionarios

División de

.

Actividad 3

Operaciones con expresiones algebraicas Algoritmos de las Operaciones

Matemáticas

(Re-edición) Grado 9

2023

Contenidos

Operaciones co expresiones algebraicas

MAT (

Meta

Suma coeficiente fraccionarios

División d

polinomio

Actividad 3

1 Metas

2 Suma coeficientes fraccionarios

3 Producto de polinomios

4 División de polinomios

5 Actividades

- Actividad 3
- Actividad 4

Metas de la temática

Operaciones algebraicas

Operaciones cor expresiones algebraicas

MAT G

Metas

Suma coeficiente fraccionarios

División de polinomios Actividades Actividad 3

Propósitos

- Comprender y aplicar los algoritmos de las las operaciones algebraicas.
- Realizar apropiadamente las operaciones algebraicas.

Desempeños

- Reconoce la utilidad de las operaciones con expresiones algebraicas.
- Conoce y aplica correctamente los algoritmos de las operaciones algebraicas para resolver problemas de situaciones particulares.

Suma de polinomios coeficientes fraccionarios Método

Suma coeficientes fraccionarios

En estas situaciones se recomienda:

- Usar el método de selección por columnas.
- Por aparte, extraer los coeficientes y realizar operaciones con fracciones.
- m Escribir el resultado final.

Ejemplo 1

Resolver la suma de polinomios:

$$\frac{3}{2}x^2 - \frac{1}{2}y^2 - \frac{2}{5}xy + \frac{1}{6}y^2 - \frac{1}{10}xy + \frac{1}{3}y^2$$

Suma de polinomios coeficientes fraccionarios Usando el método

Operaciones con expresiones

MAT G

Meta

Suma coeficientes fraccionarios

Producto de

polinomios

polinomios

Actividad

Actividad :

Solución. Siguiendo el método,

$$\frac{3}{2}x^{2} - \frac{1}{2}y^{2} + \frac{1}{6}y^{2} - \frac{2}{5}xy + \frac{1}{3}y^{2} + \frac{1}{10}xy + \frac{3}{2}x^{2} + 0 - \frac{3}{10}xy$$

■ Términos y²,

$$-\frac{1}{2} + \frac{1}{6} + \frac{1}{3} = -\frac{3}{6} + \frac{1}{6} + \frac{2}{6} = 0$$

$$mcm(2, 6, 3) = 2 \cdot 3 = 6$$

$$\begin{vmatrix} 2 & 6 & 3 & 2 \\ 1 & 3 & 3 & 3 \\ 1 & 1 & 1 & 1 \end{vmatrix}$$

■ Términos *xy*,

$$-\frac{2}{5} + \frac{1}{10} = \frac{-2 \cdot 10 + 5 \cdot 1}{5 \cdot 10}$$
$$= \frac{-20 + 5}{50} = -\frac{15}{50} = -\frac{3}{10}$$

Los fundamentos

Operaciones co expresiones algebraicas

MAT

Met

Suma coeficiente fraccionarios

Producto de polinomios

División de polinomios Actividades ^{Actividad 3}

- Su objetivo es operar dos o más expresiones algebraicas llamadas factores para obtener un resultado llamado producto, siguiendo el producto de números reales y producto de potencias [Baldor, 1980].
- El resultado de esta operación (puede) origina una expresión algebraica de grado mayor a los factores.

Ley de los coeficientes

El producto de la parte numérica de una expresión algebraica obedece al producto de números reales con su respectivo signo (ley de signos). P. ej., $(-3) \cdot (2) \cdot (-4) = 24$.

Ley de los exponentes

Cuando se multiplican bases iguales, la base permanece y los exponentes se suman [Guanajuato, 2021]. P. ej., $a^2 \cdot a^3 \cdot a = a^{2+3+1} = a^6$

Producto de expresiones algebraicas

Producto de monomios

Operaciones co expresiones algebraicas

MAT

Met

ıma coeficien

Producto de

División de polinomios

Actividade

fraccionarios

Ejemplo 1

Resolver los productos de monomios,

la lev de exponentes [Baldor, 1980].

1
$$2x^2$$
 por $-5x$.

$$2 5a^3 \text{ por } 7z^4.$$

$$\frac{1}{2}b^3$$
 por $-\frac{2}{3}w^2b$ por $\frac{3}{5}w^4c$.

Solución.

$$(2x^2) \cdot (-5x) = (2) \cdot (-5)x^{2+1} = -10x^3.$$

Se multiplican los coeficientes y las letras se multiplican de acuerdo a

$$(5a^3) \cdot (7z^4) = (5) \cdot (7)a^3z^4 = 35a^3z^4.$$

$$(\frac{1}{2}) \cdot (-\frac{2}{3}) \cdot (\frac{3}{5})b^{3+1}w^{2+4}c = -\frac{6}{30}b^4w^6c.$$

Producto de expresiones algebraicas

Operaciones co expresiones algebraicas

MAT (

Met

Suma coeficiente fraccionarios

Producto de polinomios

División de

Actividade

Actividad 3

Producto de un monomio por un polinomio

Se multiplica el monomio por todos y cada uno de los monomios que forman el polinomio, teniendo en cuenta la regla de los signos asi como su escritura [Baldor, 1980].

Ejemplo 2

Multiplicar $-5bx^2$ por $4x^2 - 7x + 9$.

Solución. Dos esquemas del producto de polinomios:

$$4x^2 - 7x + 9$$
$$-5bx^2$$

$$\frac{-20bx^4 + 35bx^3 - 45bx^2}{-20bx^4 + 35bx^3 - 45bx^2}$$

Producto de expresiones algebraicas

Operaciones co expresiones algebraicas

MAT

Met

uma coeficiente accionarios

Producto de polinomios División de

Actividade:
Actividad 3
Actividad 4

Producto de un polinomio por un polinomio

Se multiplica cada monomio del primer polinomio por todos los términos del segundo polinomio, teniendo en cuenta los signos y luego se reducen los términos semejantes [Baldor, 1980].

Nota. En lo posible redactar los polinomios ordenados en forma descendente para facilitar la reducción de términos semejantes por columnas.

Ejemplo 3

Sean los polinomios $P = 2x^3 - 3x^2 + 4x$ y $Q = 2x^2 + x - 3$. Encontrar $P \times Q$.

Solución. Usando columnas de TS, la operación se escribe así,

$$2x^3 - 3x^2 + 4x$$
$$2x^2 + x - 3$$

Producto de expresiones algebraicas

Operaciones co expresiones algebraicas

MAT (

Meta

Suma coeficientes fraccionarios

Producto de polinomios

División de

polinomio

Actividad

Actividad 3

Una vez ordenados los polinomios, se efectúa el producto y la RTS,

$$2x^{3}-3x^{2}+4x$$

$$2x^{2}+x-3$$

$$4x^{5}-6x^{4}+8x^{3}$$

$$2x^{4}-3x^{3}+4x^{2}$$

$$-6x^{3}+9x^{2}-12x$$

$$4x^{5}-4x^{4}-x^{3}+13x^{2}-12x$$

En el producto de polinomios también pueden intervenir varios factores polinomiales.

Las bases

Operaciones co expresiones algebraicas

MAT

Met

fraccionarios

Producto de polinomios División de

polinomios Actividades

- La operación tiene por objetivo hallar uno de los *factores* algebraicos de la multiplicación a partir del resultado de un producto [Baldor, 1980].
- Demanda mayores recursos cognitivos, pues en ella se usan "a la vez" las tres anteriores operaciones: +, -, \times .

Ley de los coeficientes

El coeficiente del cociente es el resultado de la división de los coeficiente del dividendo y divisor. Aquí aplica la división de números reales, mientras que la ley de signos es similar a la usada en el producto: $20 \div (-5) = -4$; $2.678 \div 1.3 = ?$; $(-3/5) \div (-20) = ?$.

Ley de los exponentes

Si se dividen bases iguales, la base permanece y los exponentes del numerador y denominador se restan [Guanajuato, 2021]. P. ej., $a^7 \doteq a^3 = a^{7-3} = a^4$

Las bases

Operaciones co expresiones algebraicas

MAT

Met

Suma coeficient fraccionarios

polinomios

División de polinomios Actividades Algunas recomendaciones de la división algebraica:

- Es frecuente el uso de fraccionarios en lugar del símbolo \div . Así, $a \div b \Rightarrow \frac{a}{b}$.
- El exponente puede ser negativo, en cuyo caso p. ej.: $a^{-2} = \frac{1}{a^2}$. Si es cero, entonces $a^0 = 1$.
- Para la división entre polinomios, es indispensable la ordenación descendente de las expresiones.

La división es desarrollada:

- Entre monomios.
- Entre un polinomio y un monomio.
- Entre polinomios.

La División es usada como último recurso en los procesos de *factorización*.

División de expresiones algebraicas

Operaciones co expresiones algebraicas

MAT

Met

Suma coeficient fraccionarios

División de

Actividad 3

División de dos monomios

Se dividen los coeficiente de cada monomio y luego las letras mediante la ley de los exponentes; para las letras se sugiere una ordenación alfabética [Baldor, 1980].

Ejemplo 1

Resolver cada división de monomios.

$$\frac{-18x^4y^5z^2}{2z^2v^3x^3}$$

$$0.0245b^{2.6}m^{1.25} \div 0.5m^{0.2}b^{1.8}$$
 (con procedimiento)

Werificar
$$\left(-\frac{4x^2}{3a}\right) \div \left(-\frac{10x^4}{7a^3}\right) = \frac{14a^4}{15x^2}$$

Solución.

$$\int_{0}^{\infty} \frac{-18}{2} x^{4-3} y^{5-3} z^{2-2} = -9xy^2$$

$$0.0245b^{2.6}m^{1.25} \div 0.5m^{0.2}b^{1.8} = 0.049b^{0.8}m^{1.05}$$

División de expresiones algebraicas

Operaciones con expresiones algebraicas

MAT

Met

fraccionarios

División de

polinomios

Actividad 3

División polinomio entre monomio

Cada uno de los elementos del polinomio se divide por el monomio [Guanajuato, 2021]. El divisor es **distribuido** entre los términos del polinomio según la ley de signos.

Ejemplo 2

Dividir $-20bx^4 + 35bx^3 - 45bx^2$ entre $-5bx^2$.

Solución. Distribuyendo el divisor,

División de expresiones algebraicas

Operaciones co expresiones algebraicas

MAT (

Meta

Suma coeficiente fraccionarios

polinomios

División de polinomios

Actividad 3

Ejemplo 3

Resolver:

$$\frac{15x^4y^5 - 10x^3y^6}{-5x^2y^2}$$

Solución. Distribuyendo el divisor con su signo como fracción,

$$\frac{15x^4y^5}{-5x^2y^2} - \frac{10x^3y^6}{-5x^2y^2} = -3x^2y^3 + 2xy^4$$

Example 4

The volume of a Postal Box Retro can be represented by the expression $30x^3y + 10x^2y - 20xy$. The length of box is the expression 5x, while height can be represented by 2y. ¿Which is the other dimension? Solution. Obviously, Dividing!!!

Actividad 3-a

Producto de polinomios

Operaciones co expresiones algebraicas

MAT

Met

Suma coeficiente fraccionarios

División de polinomios Actividade Resolver:

$$(8b) \cdot (-3b) \cdot (b^2)$$

$$(-m^2n) \cdot (-5m^2) \cdot (-5m^3n^4)$$

$$(-3.1m) \cdot (-2.8mn) \cdot (0.3mp) \cdot (-mq)$$

$$(-\frac{3}{5}x^2y) \cdot (-\frac{7}{3}xy^2) \cdot (-\frac{10}{3}x^3) \cdot (-\frac{9}{11}x^2y)$$

- 2 Multiplicar el monomio $-3a^2x^2$ por el polinomio
 - $\Box x^4 \triangle ax^3 + 9a^2x + \Box a^3$. Aquí \Box es su código de lista y \triangle es su código complementario de la lista.
- Multiplicar los polinomios usando el modo de columnas de TS (tener en cuenta el orden de la expresión).

a)
$$(3w^2 - 5w)$$
 y $(-w + 4w^2 + 2w^3 + 2)$

$$(2-2p^2+p^4)$$
 y (p^2+3-2p)

Actividad 3-b

Producto de polinomios

Actividad 3

Resolver los productos de monomios:

$$(3x^3yz) \cdot (-9x^2y^2z) \cdot (2xyz^2)$$

$$(-\frac{1}{2}abc) \cdot (\frac{3}{4}a^2b^2c^2) \cdot (-\frac{8}{5}a^3b^3c^3)$$

$$(-0.5xny) \cdot (1.23x^3my^2)$$

$$(-\frac{4}{7}h^3k)\cdot (14h^2k^2f)\cdot (2.1fhk^3)$$

Resolver los productos de polinomios:

a)
$$(2xy) \cdot (-2x + 3y - 5x^2y)$$

$$(1-2x)\cdot (1-2x+4x^2-8x^3+16x^4)$$

3 Hallar el factor(es) faltante en cada producto para que la operación sea correcta.

$$(3abc^3) \cdot (---) \cdot (7ac^4) \cdot (---) = -252a^2b^5c^{11}$$

$$(-5a^3 + 7abc - 2bc^3) \cdot (---) = 25a^4bc^4 - 35a^2b^2c^5 + 10ab^2c^7$$

$$(3x^2y) = 6x^5y + 12x^4y^3 - 3x^3y + 6x^2y$$

Actividad 4

División de polinomios

Operaciones co expresiones algebraicas

MAT

Meta

Suma coeficientes fraccionarios

División de polinomios

Actividades Actividad 3 Actividad 4 En esta actividad hacer <u>evidente</u> los procedimientos de la división donde sea requerida.

- Resolver la división entre monomios:
 - $(986a^7b^6c^8) \div (-34b^6c^8)$
 - $(1.288m^4n^5p) \div (-0.23n^3m^8p)$
 - $(-\frac{75}{4}a^{25}z^{35}) \div (\frac{84}{3}a^{12}z^{22})$
- Resolver la división $21a^5b^2 + 14a^2b^3 7ab$ entre 7ab.
- Brando's father is building her a box in the backyard. The volume of box, in meters, can be represented by the polynomial $0.16x^3 + 16x^5 4x^7 + 12x^9$. If the length measure is the expression $\frac{8}{5}x$ and the height is $0.1x^2$,
 -) Which is the width of the box?
 - Draw the box with the respective algebraic measures.

Referencias I

Operaciones co expresiones algebraicas

MAT 0

Met

Suma coeficient fraccionarios

Producto de polinomios

División d polinomio

Actividad

Actividad 3

Baldor, A. (1980).

Álgebra.

Ediciones y Distribuciones CODICE S.A., Madrid, España.

Guanajuato, U. (2021).

Unidad 1: Operaciones con números reales, complejos y expresiones algebraicas.

https://nodo.ugto.mx/wp-content/uploads/2017/03/ Unidad-1-Operacion-con-Numeros-Reales-Complejos-y-Expr pdf.

Curso Matemáticas (Homologación). Consultado Jul 2022.