

Nom:			
Prénom:			
Parcours	ISI gr1	ISI gr2	SAR

HMM - 4pts

On considère un HMM à 3 états : s_1 =soleil, s_2 = pluie, s_3 =nuage. Les observations correspondant à ces états sont directement l'état du ciel. On a donc, pour le premier état

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \text{ pour le second}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \text{ et pour le troisième } \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \text{. A l'instant initial, chaque état est}$$

équiprobable. Pour les instants suivants, on a 2 fois plus de chance de rester dans le même état que de changer d'état et si on change d'état, les deux autres états sont équiprobables.

1. **2pts** Déterminer la matrice de transition A, le vecteur de probabilité initiale Π et la matrice d'observation B.

$$A = \begin{bmatrix} 2/3 & 1/6 & 1/6 \\ 1/6 & 2/3 & 1/6 \\ 1/6 & 1/6 & 2/3 \end{bmatrix} \quad \pi = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

2. **2pts** Déterminer la probabilité de la séquence y= « soleil, soleil, nuage, soleil, pluie » en utilisant l'algorithme forward (on posera les calculs sans les résoudre).

	soleil	soleil	nuage	soleil	pluie
S1	1/3	2/9		2/9*1/6*1/6	
S2					2/9*1/6*1/6*1/6
S3			2/9*1/6		

SVM - 6pts

On considère l'ensemble de points, de dimension 2 ci-dessous :

$$\begin{pmatrix} 0 & 0 \\ 0 & 2 \\ 2 & 0 \\ 2 & 2 \end{pmatrix} \text{ de classe} \begin{pmatrix} -1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

On souhaite résoudre le problème de classification en utilisant le formalisme des SVM.

1. 1 pt Tracer (sans faire de calcul) sur la figure l'hyper-plan optimal et entourer les vecteurs support.

Axe comme \

Les vecteurs support sont les 3 premiers points

2. **2pts** A partir de 2 points de cet hyperplan et sachant qu'il vérifie $\min_{i} y_{i}(w^{T}. x_{i} + b) = 1$ retrouver les paramètres w_{a}, w_{b} et b de l'hyperplan. Tout le raisonnement doit être **clairement** explicité.

En (1,0), on a $w_a+b=0$ En (0,1), on a $w_b+b=0$ Le point (2,0) est vecteur support et vérifie donc $y_i(w^T, x_i+b)=1$. D'où $2w_a+b=1$ Les équations 1 et 3 donnent b=-1. Il en découle ensuite $w_a=1$ et $w_b=1$

3. 1pt Sachant que l'hyperplan optimal a pour équation w = (1,1)et b = -1, donner l'équation de la fonction de décision.

Elle a pour équation $f(x) = w^T$. x + b = 0, soit $x_a + x_b - 1 = 0$

4. **2pts** On ajoute un cinquième point en (-0.5 - 0.5) d'étiquette 1 et on résout le problème de classification avec un SVM à marge souple. Le solver renvoie le même hyperplan que précédemment et les 5 variables d'ajustement ξ_i . Donner la valeur de ces 5 variables.

Les variables d'ajustement sont nulles pour les points qui vérifient la condition de séparabilité. On a donc $\xi_1=\xi_2=\xi_3=\xi_4=0$.

Pour le cinquième point, on a

$$y_i\left(\boldsymbol{w}^T.\ \boldsymbol{x_i}+b\right)=1-\xi_i$$
 soit $-0.5w_a-0.5w_b+b=1-\xi_5$ et en remplaçant w_a,w_b et b par leur valeur, $-2=1-\xi_5$ et donc, $\xi_5=3$

4

8

5

4

1 2 4 9

k-means – 3.5pts

On considère les 8 points ci-contre que l'on 2 souhaite regrouper en 3 ensembles en 2 utilisant l'algorithme des k-means et la 8 distance euclidienne.

Les points 1, 4 et 7 (représentés en rouge cicontre) ont été tirés aléatoirement pour l'initialisation des centres.

Quelle seront les valeurs des 3 nouveaux centres suite à la première itération?

```
1^{\text{er}} centre : (2,10)
2ieme centre (6,6)
3ieme centre (1.5 3.5)
```

Réseaux de neurones – 6.5pts

1. **2pts** On considère le réseau de neurone suivant :

Combien de paramètre y a-t-il à estimer?

A quoi peut servir ce réseau (quel problème peut-il résoudre) ?

Si on suppose que tous les poids et bais valent 1, quelle sera la sortie du réseau à l'entrée (1, -6, 3) ?

$$12 + 8 + 2 + 1 = 23$$
 paramètres

Il peut servir à faire de la régression (1 seul neurone de sortie, activation linéaire) A la sortir de la première couche, on aura que des zéros. A la sortir de la seconde couche, on aura que des 1 et en sortie, on aura 3

2. **1.5pts** L'image ci-dessous est passée en entrée d'une couche convolutionnelle. Représentez la réponse au filtre F, avec un stride de 1 et un padding de 0.

3 3 3 1 6		
3 3 3 1 6		18 12 22
3 3 3 1 1	[1 0 1]	14 13 18
1 1 1 4 4	$F = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$	14 18 14
5 5 1 4 4	[1 0 1]	

3. **1.5pts** En considérant l'image d'entrée ci-dessous et une couche de max-pooling de taille 3x3 avec un stride de 2 et un padding de 0, donner l'image en sortie.

-							
	1	2	4	1	4	0	1
	0	0	1	6	1	5	5
	1	4	4	5	1	4	1
	4	1	5	1	6	5	0
	1	0	6	5	1	1	8
	2	3	1	8	5	8	1
	0	9	1	2	3	1	4

4. **1.5pts** On considère l'architecture suivante composée de couches convolutionnelles C, de pooling P et fully connected FC.

Les couches convolutionnelles sont réalisées avec des filtres 3x3, avec un padding de 1 un un stride de 1. De combien de filtres est composée la seconde couche convolutionnelle? Combien y a-t-il de paramètres à estimer sur cette couche?

```
128 filtres
128*(3*3*64+1)
```