COMP6704 Lecture 4 Advanced Topics in Optimization

Convex Problems (1)

Fall, 2022

Instructor: WU, Xiao-Ming

For internal use only, please do not distribute!

Exercise

Exercise 4 Consider the non-linear problem:

$$\min_{x} f(x) = x_{1}^{2} + x_{2}^{2} - 4x_{1} + 4$$

$$s.t. g_{1}(x) = x_{1} - x_{2} + 2 \ge 0$$

$$g_{2}(x) = -x_{1}^{2} + x_{2} - 1 \ge 0$$

$$g_{3}(x) = x_{1} \ge 0$$

$$g_{4}(x) = x_{2} \ge 0.$$
(12)

- 1. Show that the constraints define a convex set;
- 2. Show that the objective function f(x) is convex.

Solution

- (a) The feasible region (i.e. the set defined by the constraints of the problem) is convex because:
 - (i) constraints $g_1(x), g_3(x)$ and $g_4(x)$ are linear and hence concave. (Remember that a linear function can be <u>both</u> concave and convex.)
 - (ii) constraint $g_2(x)$ is non-linear. To check whether it is concave or not we need to find its Hessian matrix:

$$H_2 = \begin{bmatrix} \frac{\partial^2 g_2}{\partial x_1^2} & \frac{\partial^2 g_2}{\partial x_1 \partial x_2} \\ \frac{\partial^2 g_2}{\partial x_2 \partial x_1} & \frac{\partial^2 g_2}{\partial x_2^2} \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 0 & 0 \end{bmatrix}$$
(13)

Solution

and show that it is negative semi-definite, i.e.

$$\forall v \in R^2, \quad v^t H_2 v \le 0. \tag{14}$$

The matrix H_2 is negative semi-definite because for every vector $v^t = (v_1, v_2) \in \mathbb{R}^2$ we have:

$$v^{t}H_{2}v = (v_{1}, v_{2}) \begin{bmatrix} -2 & 0 \\ 0 & 0 \end{bmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = -2v_{1}^{2} \le 0.$$
 (15)

Therefore all the functions g_i , i = 1, 2, 3, 4 which define the feasible region are concave functions. We have concave functions, and from the previous example, sets:

$$L_i = \{ x \in \mathbb{R}^n \mid |g_i(x)| \ge 0 \}, \quad i = 1, 2, 3, 4$$
 (16)

are convex (show it!). Feasible region $\mathcal{F} = \cap_i L_i$ is an intersection of convex sets, therefore also convex.

Solution

(b) To show that the objective function f(x) is convex we need to show that its Hessian matrix

$$H = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
(17)

is positive semi-definite.

Matrix H is positive semi-definite because for any $v^t = (v_1, v_2) \in \mathbb{R}^2$ we have:

$$v^{t}Hv = (v_{1}, v_{2}) \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = 2v_{1}^{2} + 2v_{2}^{2} \ge 0.$$
 (18)

Optimization Problem in Standard Form

$$minimize_x$$
 $f_0(x)$
 $subject to$ $f_i(x) \le 0$ $i = 1, ..., m$
 $h_i(x) = 0$ $i = 1, ..., p$

 $x \in \mathbb{R}^n$ is the optimization variable

 $f_0: \mathbb{R}^n \longrightarrow \mathbb{R}$ is the objective function

 $f_i: \mathbb{R}^n \to \mathbb{R}, i = 1, ..., m$ are inequality constraint functions

 $h_i: \mathbb{R}^n \to \mathbb{R}$, i = 1, ..., p are equality constraint functions.

• Feasibility:

- A point $x \in \text{dom } f_0$ is feasible if it satisfies all the constraints and infeasible otherwise
- A problem is feasible if it has at least one feasible point and infeasible otherwise.

Optimal value:

- $p^* = \inf\{f_0(x)|f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p\}$
 - $p^* = \infty$ if problem infeasible (no x satisfies the constraints)
 - $p^* = -\infty$ if problem unbounded below.
- Optimal solution: x^* such that $f(x^*) = p^*$ (and x^* feasible).

Global and Local Optimality

- A feasible x is optimal if $f_0(x) = p^*$; X_{opt} is the set of optimal points.
- A feasible x is locally optimal if is optimal within a ball, i.e., there is an $\mathbb{R} > 0$ such that x is optimal for

```
minimize<sub>z</sub> f_0(z)

subject to f_i(z) \le 0, i = 1, ..., m, h_i(z) = 0, i = 1, ..., p

||z - x||_2 \le R
```

Examples

$$f_0(x) = \frac{1}{x}$$
, $\mathbf{dom} = \mathbb{R}_{++}$: $p^* = 0$, no optimal point $f_0(x) = x^3 - 3x$: $p^* = -\infty$, local optimum at $x = 1$.

Implicit Constraints

• The standard form optimization problem has an explicit constraint:

$$x \in \mathcal{D} = \bigcap_{i=0}^{m} \mathbf{dom} \, f_i \cap \bigcap_{i=1}^{p} \mathbf{dom} \, h_i$$

- \mathcal{D} is the domain of the problem
- The constraints $f_i(x) \le 0$, $h_i(x) = 0$ are explicit constraints
- A problem is unconstrained if it has no explicit constraints

Examples

 $minimize_x \log(b - a^T x)$ is an unconstrained problem with implicit constraint $b > a^T x$.

Feasibility Problem

• Sometimes, we don't really want to minimize any objective, just to find a feasible point:

find
$$x$$
 subject to $f_i(x) \leq 0$ $i = 1, ..., m$ $h_i(x) = 0$ $i = 1, ..., p$

• This feasibility problem can be considered as a special case of a general problem:

minimize
$$0$$
 subject to $f_i(x) \leq 0$ $i = 1, \ldots, m$ $h_i(x) = 0$ $i = 1, \ldots, p$

where $p^* = 0$ if constraints are feasible and $p^* = \infty$ otherwise.

Convex Optimization Problem

• Convex optimization problem in standard form:

minimize
$$f_0\left(x\right)$$
 subject to $f_i\left(x\right) \leq 0$ $i=1,\ldots,m$ $Ax=b$

where $f_0, f_1, ..., f_m$ are convex and equality constraints are affine.

- Local and global optima: any locally optimal point of a convex problem is globally optimal.
- Most problems are not convex when formulated.
- Reformulating a problem in convex form is an art, there is no systematic way.

Example

• The following problem is nonconvex (why not?):

minimize
$$x_1^2 + x_2^2$$

subject to $x_1/(1+x_2^2) \le 0$
 $(x_1+x_2)^2 = 0$

- The objective is convex.
- The equality constraint function is not affine; however, we can rewrite it as $x_1 = -x_2$ which is then a linear equality constraint.
- The inequality constraint function is not convex; however, we can rewrite it as $x_1 \le 0$ which again is linear.
- We can rewrite it as

minimize
$$x_1^2 + x_2^2$$

subject to $x_1 \le 0$
 $x_1 = -x_2$

Convex Optimization Problems

Definition: An optimization problem is convex if its objective is a convex function, the inequality constraints f_j are convex and the equality constraints h_i are affine

```
minimize f_0(x) (Convex function) s.t. f_i(x) \leq 0 (Convex sets) h_j(x) = 0 (Affine)
```

It's nice to be convex

Theorem: If \hat{x} is a local minimizer of a convex optimization problem, it is a global

minimizer.

Global and Local Optimality

- Any locally optimal point of a convex problem is globally optimal.
- Proof:

Suppose x is locally optimal (around a ball of radius R) and y is optimal with $f_0(y) < f_0(x)$. We will show this cannot be.

Just take the segment from x to y: $z = \theta y + (1 - \theta)x$. Obviously the objective function is strictly decreasing along the segment since $f_0(y) < f_0(x)$:

$$\theta f_0(y) + (1 - \theta)f_0(x) < f_0(x), \theta \in (0,1].$$

Using now the convexity of the function, we can write

$$f_0(\theta y + (1 - \theta)x) < f_0(x), \theta \in (0,1].$$

Finally, just choose θ sufficiently small such that the point z is in the ball of local optimality of x, arriving at a contradiction.

Handling convex equality constraints. A convex optimization problem can have only linear equality constraint functions. In some special cases, however, it is possible to handle convex equality constraint functions, i.e., constraints of the form g(x) = 0, where g is convex. We explore this idea in this problem.

Consider the optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, ..., m$
 $h(x) = 0,$ (4.65)

where f_i and h are convex functions with domain \mathbb{R}^n . Unless h is affine, this is not a convex optimization problem. Consider the related problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$, (4.66)
 $h(x) \le 0$,

Optimality Criterion for Differentiable f_0

• Minimum Principle: A feasible point x is optimal if and only if $\nabla f_0(x)^T(y-x) \ge 0 \text{ for all feasible } y$

• unconstrained problem: x is optimal iff $x \in \operatorname{dom} f_0$, $\nabla f_0(x) = 0$

- equality constrained problem: $\min_{x} f_0(x)$ s. t. Ax = bx is optimal iff $x \in dom f_0$, Ax = b, $\nabla f_0(x) + A^T v = 0$
- minimization over nonnegative orthant: $\min_{x} f_0(x)$, $s.t.x \ge 0$ x is optimal iff

$$x \in \text{dom } f_0,$$
 $x \ge 0,$
$$\begin{cases} \nabla_i f_0(x) \ge 0 & x_i = 0 \\ \nabla_i f_0(x) = 0 & x_i > 0 \end{cases}$$

Equivalent Reformulations

• Eliminating/introducing equality constraints:

minimize
$$f_0\left(x\right)$$
 subject to $f_i\left(x\right) \leq 0$ $i=1,\ldots,m$ $Ax=b$

is equivalent to

minimize
$$f_0\left(Fz+x_0\right)$$
 subject to $f_i\left(Fz+x_0\right)\leq 0$ $i=1,\ldots,m$

where F and x_0 are such that $Ax = b \iff x = Fz + x_0$ for some z

Introducing Slack Variables for Linear Inequalities

is equivalent to

$$\begin{aligned} & \underset{x,s}{\text{minimize}} & & f_0\left(x\right) \\ & \text{subject to} & & a_i^Tx+s_i=b_i & & i=1,\ldots,m \\ & & s_i \geq 0 \end{aligned}$$

• **epigraph form**: a standard form convex problem is equivalent to

minimize
$$t$$
 subject to
$$f_0\left(x\right) - t \leq 0$$

$$f_i\left(x\right) \leq 0 \qquad i = 1, \dots, m$$

$$Ax = b$$

minimizing over some variables

minimize
$$f_0\left(x,y\right)$$
 subject to $f_i\left(x\right) \leq 0$ $i=1,\ldots,m$

is equivalent to

where
$$\tilde{f}_0(x) = \inf_y f_0(x, y)$$
.

Linear Programming (LP)

- Convex problem: affine objective and constraint functions.
- Feasible set is a polyhedron:

Polyhedral Sets

A polyhedral set is given by finitely many linear inequalities

$$C = \{x \mid Ax \leq b\}$$
 where A is an $m \times n$ matrix

- Every polyhedral set is convex
- Linear Problem

minimize c'x

subject to $Bx \leq b$, Dx = d

The constraint set $\{x | Bx \le b, Dx = d\}$ is polyhedral.

Linear and Affine Functions

• Linear function: a function $f: \mathbb{R}^n \to \mathbb{R}$ is linear if

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y) \qquad \forall x, y \in \mathbf{R}^n, \alpha, \beta \in \mathbf{R}$$

• Property: f is linear if and only if $f(x) = a^T x$ for some a

• Affine function: a function $f: \mathbb{R}^n \to \mathbb{R}$ is affine if

$$f(\alpha x + (1 - \alpha)y) = \alpha f(x) + (1 - \alpha)f(y) \qquad \forall x, y \in \mathbf{R}^n, \alpha \in \mathbf{R}$$

• Property: f is affine if and only if $f(x) = a^T x + b$ for some a, b

Piecewise-linear Function

 $f: \mathbb{R}^n \to \mathbb{R}$ is (convex) piecewise-linear if it can be expressed as

$$f(x) = \max_{i=1,\dots,m} (a_i^T x + b_i)$$

f is parameterized by m n-vectors a_i and m scalars b_i

(the term piecewise-affine is more accurate but less common)

Piecewise-linear minimization

minimize
$$f(x) = \max_{i=1,\dots,m} (a_i^T x + b_i)$$

• equivalent LP (with variables x and auxiliary scalar variable t)

minimize
$$t$$
 subject to $a_i^T x + b_i \le t, \quad i = 1, \dots, m$

to see equivalence, note that for fixed x the optimal t is t = f(x)

• LP in matrix notation: minimize $\tilde{c}^T \tilde{x}$ subject to $\tilde{A}\tilde{x} \leq \tilde{b}$ with

$$\tilde{x} = \begin{bmatrix} x \\ t \end{bmatrix}, \qquad \tilde{c} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \qquad \tilde{A} = \begin{bmatrix} a_1^T & -1 \\ \vdots & \vdots \\ a_m^T & -1 \end{bmatrix}, \qquad \tilde{b} = \begin{bmatrix} -b_1 \\ \vdots \\ -b_m \end{bmatrix}$$

Minimizing a Sum of Piecewise-linear Functions

minimize
$$f(x) + g(x) = \max_{i=1,...,m} (a_i^T x + b_i) + \max_{i=1,...,p} (c_i^T x + d_i)$$

• cost function is piecewise-linear: maximum of mp affine functions

$$f(x) + g(x) = \max_{\substack{i=1,\dots,m\\j=1,\dots,p}} \left((a_i + c_j)^T x + (b_i + d_j) \right)$$

• equivalent LP with m + p inequalities

minimize
$$t_1+t_2$$
 subject to $a_i^Tx+b_i\leq t_1,\quad i=1,\ldots,m$ $c_i^Tx+d_i\leq t_2,\quad i=1,\ldots,p$

note that for fixed x, optimal t_1 , t_2 are $t_1 = f(x)$, $t_2 = g(x)$

equivalent LP in matrix notation

$$\begin{array}{ll} \text{minimize} & \tilde{c}^T \tilde{x} \\ \text{subject to} & \tilde{A} \tilde{x} \leq \tilde{b} \end{array}$$

with

$$\tilde{x} = \begin{bmatrix} x \\ t_1 \\ t_2 \end{bmatrix}, \quad \tilde{c} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \quad \tilde{A} = \begin{bmatrix} a_1^T & -1 & 0 \\ \vdots & \vdots & \vdots \\ a_m^T & -1 & 0 \\ c_1^T & 0 & -1 \\ \vdots & \vdots & \vdots \\ c_p^T & 0 & -1 \end{bmatrix}, \quad \tilde{b} = \begin{bmatrix} -b_1 \\ \vdots \\ -b_m \\ -d_1 \\ \vdots \\ -d_p \end{bmatrix}$$

l_{∞} -Norm (Cheybshev) Approximation

• l_{∞} -norm (Chebyshev norm) of m-vector y is

$$||y||_{\infty} = \max_{i=1,\dots,m} |y_i| = \max_{i=1,\dots,m} \max\{y_i, -y_i\}$$

• equivalent LP (with variables x and auxiliary scalar variable t)

(for fixed x, optimal t is $t = ||Ax - b||_{\infty}$)

• equivalent LP in matrix notation

minimize
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}^T \begin{bmatrix} x \\ t \end{bmatrix}$$
 subject to
$$\begin{bmatrix} A & -\mathbf{1} \\ -A & -\mathbf{1} \end{bmatrix} \begin{bmatrix} x \\ t \end{bmatrix} \leq \begin{bmatrix} b \\ -b \end{bmatrix}$$

l_1 -Norm Approximation

minimize
$$||Ax - b||_1$$

• l_1 -norm of m-vector y is

$$||y||_1 = \sum_{i=1}^m |y_i| = \sum_{i=1}^m \max\{y_i, -y_i\}$$

• equivalent LP (with variable x and auxiliary vector variable u) minimize $\sum_{i=1}^{n} u_i$

subject to
$$-u \le Ax - b \le u$$

(for fixed x, optimal u is $u_i = |(Ax - b)_i|, i = 1, ..., m$)

This is just to show the equivalence of the LP and the original problem.

equivalent LP in matrix notation

minimize
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}^T \begin{bmatrix} x \\ u \end{bmatrix}$$
 subject to
$$\begin{bmatrix} A & -I \\ -A & -I \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} \le \begin{bmatrix} b \\ -b \end{bmatrix}$$

Comparison with Least-squares Solution

• histogram of residuals Ax - b, with randomly generated $A \in \mathbb{R}^{200 \times 80}$, for

$$x_{ls} = \arg\min ||Ax - b||, \qquad x_{\ell_1} = \arg\min ||Ax - b||_1$$

 l_1 -norm distribution is wider with a high peak at zero

Least Square Regression

• Find the line that best fits the data

DATA		MODEL
x	y	y' = ax + b
2	2	2.42857
4	4	3.25714
6	4	4.08571
8	5	4.91429
10	5	5.74286
12	7	6.57143
14	??	7.4

Error Measurement

• Why not consider other measurement such as...?

$$\frac{1}{N}\sum_{n=1}^{N}(x_n-\bar{x}).$$

$$\frac{1}{N}\sum_{n=1}^{N}|x_n-\bar{x}|.$$

Meaning of the Best Fit

• What is the meaning of best fit?

$$\{(x_1, y_1), \dots, (x_N, y_N)\},\$$

 $y = ax + b$

Minimize the square error

$$E(a,b) = \sum_{n=1}^{N} (y_n - (ax_n + b))^2$$
.

Robust Curve Fitting

- fit affine function $f(t) = \alpha + \beta t$ to m points (t_i, y_i)
- an approximation problem $Ax \approx b$ with

$$A = \begin{bmatrix} 1 & t_1 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix}, \qquad x = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}, \qquad b = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$

- dashed: minimize ||Ax b||
- solid: minimize $||Ax b||_1$

 l_1 -norm approximation is more robust against outliers

Sparse Signal Recovery via l_1 -norm Minimization

- $\hat{x} \in \mathbb{R}^n$ is unknown signal, known to be very sparse
- We make linear measurements $y = A\hat{x}$ with $A \in \mathbb{R}^{m \times n}$, m < n

estimation by l_1 -norm minimization: compute estimate by solving

minimize
$$||x||_1$$
 subject to $Ax = y$

estimate is signal with smallest l_1 -norm, consistent with measurements equivalent LP (variables $x, u \in \mathbb{R}^n$)

$$\begin{array}{ll} \text{minimize} & \mathbf{1}^T u \\ \text{subject to} & -u \leq x \leq u \\ & Ax = y \end{array}$$

Example

- exact signal $\hat{x} \in \mathbb{R}^{1000}$
- 10 nonzero components

least-norm solutions (randomly generated $A \in \mathbb{R}^{1000 \times 1000}$)

 l_1 -norm estimate is exact