Chapter 2

Database Concepts

In this chapter, you will learn:

- The difference between data and information
- What a database is, about different types of databases, and why they are valuable assets for decision making
- Why database design is important
- How modern databases evolved from files and file systems

In this chapter, you will learn (continued):

- About flaws in file system data management
- How a database system differs from a file system, and how a DBMS functions within the database system
- About data storage and retrieval strategies

What is Database?

Different types of Database

Data vs. Information

Data	Information
 Raw facts Raw data - Not yet been processed to reveal the meaning Building blocks of information Data management Generation, storage, and retrieval of data 	 Produced by processing data Reveals the meaning of data Enables knowledge creation Should be accurate, relevant and timely to enable good decision making

- → Accurate, relevant, and timely information is key to good decision making
- → Good decision making is key to survival in global environment

Meaningful Information - example

Location-tagged payments made in the U.S. annually

154 billion

E-mails sent per day

U.S. adults whose location is known via their mobile phone

Digital Information Created Each Year, Globally

2,000%

Expected increase in global data by 2020

III Megabytes

Video and photos stored by Facebook, per user

75%

Percentage of all digital data created by consumers

Transforming raw data into information - example

Database Systems: Design, Implementation, & Management, 12th Edition, Rob & Coronel

Data Management Trends

Paper File-based

Data Warehouse
 And Data mining

Read:

http://cnx.org/content/m28156/latest

Sighted 09/05/2014

Database Approach

- Database—shared, integrated computer structure that houses:
 - End user data: Raw facts of interest to end user
 - Metadata: Data about data, which end-user data are integrated and managed

Database Approach

DBMS (database management system):

Collection of programs that manages database

structure and controls access to data

- Possible to share data among multiple applications or users
- Makes data management more efficient and effective

DBMS Makes Data Management More Efficient and Effective

- End users have better access to more and bettermanaged data
 - Promotes integrated view of organization's operations
 - Better understanding and minimize errors VS individualistic view (the story of the 4 blind man describing an elephant)
 - Probability of data inconsistency is greatly reduced
 - Possible to produce quick answers to ad hoc queries

The DBMS Manages the Interaction Between the End User and the Database

Types of Databases

- Single-user:
 - Supports only one user at a time
- Desktop:
 - Single-user database running on a personal computer
- Multi-user:
 - Supports multiple concurrent users at the same time

Types of Databases (continued)

Workgroup:

 Multi-user database that supports a small group of users or a single department

Enterprise:

 Multi-user database that supports a large group of users or an entire organization

Supports data distributed across several site

Uses of Databases

- Transactional (or production):
 - Supports a company's day-to-day operations
- Data warehouse:
 - Stores data used to generate information required to make tactical or strategic decisions
 - Such decisions typically require "data massaging"
 - Often used to store historical data

Why Database Design is Important

- Defines the database's expected use
- Different approach needed for different types of databases
- Avoid redundant data (unnecessarily duplicated)
- A poorly designed database may lead to poor decision making—and poor decision making can lead to the failure of an organization.

Manual File Systems

- Traditionally composed of collection of file folders kept in file cabinet
- Organization within folders was based on data's expected use (ideally logically related)
- System was adequate for small amounts of data with few reporting requirements
- Finding and using data in growing collections of file folders became time-consuming and cumbersome

Conversion from Manual File System to Computer File System

- Could be technically complex, requiring hiring of data processing (DP) specialists
- DP specialists created file structures, wrote software, and designed application programs
- Resulted in numerous "home-grown" systems being created
- Initially, computer files were similar in design to manual files

Components of a File

Example of Early Database Design

- DP specialist wrote programs for reports:
 - Monthly summaries of types and amounts of insurance sold by agents
 - Monthly reports about which customers should be contacted for renewal
 - Reports that analyzed ratios of insurance types sold by agent
 - Customer contact letters summarizing coverage
- Additional reports were written as required

Example of Early Database Design (continued)

- Other departments requested databases be written for them
 - SALES database created for sales department
 - AGENT database created for personnel department

Evolution of Simple File System

- As number of databases increased, small file system evolved
- Each file used its own application programs
- Each file was owned by individual or department who commissioned its creation

File-based System

- Each of the files in the systems used its own application programs to store, retrieve and modify data
- Each file was owned by the department that created it.

Problems with File System Data Management

- Every task requires extensive programming in a third-generation language (3GL)
 - Programmer must specify task and how it must be done
- Modern databases use fourth-generation language (4GL)
 - Allows user to specify what must be done without specifying how it is to be done

Programming in 3GL

- Time-consuming, high-level activity
- Programmer must be familiar with physical file structure
- As system becomes complex, access paths become difficult to manage and tend to produce malfunctions
- Complex coding establishes precise location of files and system components and data characteristics

Programming in 3GL (continued)

- Ad hoc queries are impossible
- Writing programs to design new reports is time consuming
- As number of files increases, system administration becomes difficult
- Making changes in existing file structure is difficult
- File structure changes require modifications in all programs that use data in that file
- Modifications are likely to produce errors, requiring additional time to "debug" the program
- Security features hard to program and therefore often omitted

Structural and Data Dependence

- Structural dependence
 - Access to a file depends on its own structure
- Data dependence
 - Changes in database structure affect program's ability to access data
 - Logical data format
 - How a human being views the data
 - Physical data format
 - How the computer "sees" the data

Data Redundancy

- Data redundancy results in data inconsistency
 - Different and conflicting versions of the same data appear in different places
- Errors more likely to occur when complex entries are made in several different files and recur frequently in one or more files
- Data anomalies develop when required changes in redundant data are not made successfully

Data Anomalies

Unable to perform certain data maintenance due to errors in database design

- Modification anomalies
 - Occur when changes must be made to existing records
- Insertion anomalies
 - Occur when entering new records
- Deletion anomalies
 - Occur when deleting records

Database vs. File System

- Problems inherent in file systems make using a database system desirable
- File system
 - Many separate and unrelated files
- Database
 - Logically related data stored in a single logical data repository

Contrasting Database and File Systems

Database Systems: Design, Implementation, & Management, 12th Edition, Rob & Coronel

The Database System Environment

- Database system is composed of 5 main parts:
 - 1. Hardware
 - 2. Software
 - Operating system software
 - DBMS software
 - Application programs and utility software
 - 3. People
 - 4. Procedures
 - 5. Data

The Database System Environment (continued)

DBMS Functions

- Performs functions that guarantee integrity and consistency of data
 - Data dictionary management
 - defines data elements and their relationships
 - Data storage management
 - stores data and related data entry forms, report definitions, etc.
 - Data transformation and presentation
 - translates logical requests into commands to physically locate and retrieve the requested data

DBMS Functions (continued)

- Security management
 - enforces user security and data privacy within database
- Multi-user access control
 - creates structures that allow multiple users to access the data
- Backup and recovery management
 - provides backup and data recovery procedures

DBMS Functions (continued)

- Data integrity management
 - promotes and enforces integrity rules to eliminate data integrity problems
- Database access languages and application programming interfaces
 - provides data access through a query language
- Database communication interfaces
 - allows database to accept end-user requests within a computer network environment

Summary

- Information is derived from data, which is stored in a database
- To implement and manage a database, use a DBMS
- Database design defines its structure
- Good design is important

Summary (continued)

- Databases were preceded by file systems
- Because file systems lack a DBMS, file management becomes difficult as a file system grows
- DBMS were developed to address file systems' inherent weaknesses

Homework – Reading Assignment

Physical data storage concepts

- What are the media and devices?
- How does it actually work?
- What are the most common operations on files?
- Typical files storage methods and its uses
- How to make access to data faster?
- How to make storage of data more permanent?
- Indexing files to facilitate faster records access

Reference: Fundamentals of Database Systems, 6th Ed, Elmasri, Navathe - chapters 17,18

Physical data storage concepts

- Disk Storage Devices
- Files of Records
- Operations on Files
- Unordered Files
- Ordered Files
- Hashed Files
 - Dynamic and Extendible Hashing Techniques
- RAID Technology
- Indexed File

Reference: Fundamentals of Database Systems, 6th Ed, Elmasri, Navathe - chapters 17,18

Operation on Files

- Typical file operations include:
 - OPEN: Readies the file for access, and associates a pointer that will refer to a *current* file record at each point in time.
 - FIND: Searches for the first file record that satisfies a certain condition, and makes it the current file record.
 - FINDNEXT: Searches for the next file record (from the current record) that satisfies a certain condition, and makes it the current file record.
 - READ: Reads the current file record into a program variable.
 - INSERT: Inserts a new record into the file & makes it the current file record.
 - DELETE: Removes the current file record from the file, usually by marking the record to indicate that it is no longer valid.
 - MODIFY: Changes the values of some fields of the current file record.
 - CLOSE: Terminates access to the file.
 - REORGANIZE: Reorganizes the file records.
 - For example, the records marked deleted are physically removed from the file or a new organization of the file records is created.
 - READ_ORDERED: Read the file blocks in order of a specific field of the file.