Operations on Fuzzy Sets

Murat Osmanoglu

Standart fuzzy operations

• Complement, $\mu_C(x) = 1 - \mu_A(x)$ where $C = \neg A$ Intersection, $\mu_C(x) = \min\{\mu_A(x), \mu_B(x)\}$ where $C = A \cap B$ Union, $\mu_C(x) = \max\{\mu_A(x), \mu_B(x)\}$ where $C = A \cup B$

- Complement, $\mu_C(x) = 1 \mu_A(x)$ where $C = \neg A$ Intersection, $\mu_C(x) = \min\{\mu_A(x), \mu_B(x)\}$ where $C = A \cap B$ Union, $\mu_C(x) = \max\{\mu_A(x), \mu_B(x)\}$ where $C = A \cup B$
- standart fuzzy operations are generalizations of the corresponding classical set operations

- Complement, $\mu_C(x) = 1 \mu_A(x)$ where $C = \neg A$ Intersection, $\mu_C(x) = \min\{\mu_A(x), \mu_B(x)\}$ where $C = A \cap B$ Union, $\mu_C(x) = \max\{\mu_A(x), \mu_B(x)\}$ where $C = A \cup B$
- standart fuzzy operations are generalizations of the corresponding classical set operations
- a desirable feature of the standard operations is their inherent prevention of the compounding of errors of operands
 - if e is the error associated with $\mu_A(x)$ and $\mu_B(x)$, then maximum error associated with $\mu_C(x)$ remains e where $C = \neg A$, or $A \cap B$, or $A \cup B$

- Complement, $\mu_C(x) = 1 \mu_A(x)$ where $C = \neg A$ Intersection, $\mu_C(x) = \min\{\mu_A(x), \mu_B(x)\}$ where $C = A \cap B$ Union, $\mu_C(x) = \max\{\mu_A(x), \mu_B(x)\}$ where $C = A \cup B$
- standart fuzzy operations are generalizations of the corresponding classical set operations
- a desirable feature of the standard operations is their inherent prevention of the compounding of errors of operands
 - if e is the error associated with $\mu_A(x)$ and $\mu_B(x)$, then maximum error associated with $\mu_C(x)$ remains e where $C = \neg A$, or $A \cap B$, or $A \cup B$
- for each operation, there exist a broad class of functions where each of them considered a class of operations and characterized by justified axioms

- Complement, $\mu_C(x) = 1 \mu_A(x)$ where $C = \neg A$ Intersection, $\mu_C(x) = \min\{\mu_A(x), \mu_B(x)\}$ where $C = A \cap B$ Union, $\mu_C(x) = \max\{\mu_A(x), \mu_B(x)\}$ where $C = A \cup B$
- standart fuzzy operations are generalizations of the corresponding classical set operations
- a desirable feature of the standard operations is their inherent prevention of the compounding of errors of operands
 - if e is the error associated with $\mu_A(x)$ and $\mu_B(x)$, then maximum error associated with $\mu_C(x)$ remains e where $C = \neg A$, or $A \cap B$, or $A \cup B$
- for each operation, there exist a broad class of functions where each of them considered a class of operations and characterized by justified axioms
- different functions can be used in different contexts

Fuzzy Complement

Let a fuzzy complement operation be defined as a function

$$c: [0,1] \rightarrow [0,1]$$

$$\mu_A(x) \rightarrow c(\mu_A(x))$$

 to produce fuzzy sets that qualify as meaningful complements of given fuzzy sets, the functions c must satisfy certain properties

Fuzzy Complement

Let a fuzzy complement operation be defined as a function

$$c: [0,1] \rightarrow [0,1]$$

$$\mu_A(x) \rightarrow c(\mu_A(x))$$

 to produce fuzzy sets that qualify as meaningful complements of given fuzzy sets, the functions c must satisfy certain properties

 $\mu_A(x)$ specifies the degree of which x belongs to A, $\mu_C(x)$ specifies the degree of which x does not belong to A or x belongs to C where $C = \neg A$

Fuzzy Complement

$$c: [0,1] \rightarrow [0,1]$$

$$\mu_A(x) \rightarrow c(\mu_A(x))$$

- to produce fuzzy sets that qualify as meaningful complements of given fuzzy sets, the functions c must satisfy certain properties
- Axiom 1 : c(0) = 1, c(1) = 0 (boundary condition)

Fuzzy Complement

$$c: [0,1] \rightarrow [0,1]$$

$$\mu_A(x) \rightarrow c(\mu_A(x))$$

- to produce fuzzy sets that qualify as meaningful complements of given fuzzy sets, the functions c must satisfy certain properties
- Axiom 1 : c(0) = 1, c(1) = 0 (boundary condition)
- Axiom 2: for all a, b in [0,1], if a \leq b, then $c(a) \geq c(b)$ (monotonicity)

Fuzzy Complement

$$c: [0,1] \rightarrow [0,1]$$

$$\mu_A(x) \rightarrow c(\mu_A(x))$$

- to produce fuzzy sets that qualify as meaningful complements of given fuzzy sets, the functions c must satisfy certain properties
- Axiom 1 : c(0) = 1, c(1) = 0 (boundary condition)
- Axiom 2: for all a, b in [0,1], if $a \le b$, then $c(a) \ge c(b)$ (monotonicity)
- Axiom 1 required to get correct complements for crisp sets (since we stated that the fuzzy operations are generalizations of corresponding crisp operations)

Fuzzy Complement

$$c: [0,1] \rightarrow [0,1]$$

$$\mu_A(x) \rightarrow c(\mu_A(x))$$

- to produce fuzzy sets that qualify as meaningful complements of given fuzzy sets, the functions c must satisfy certain properties
- Axiom 1: c(0) = 1, c(1) = 0 (boundary condition)
- Axiom 2: for all a, b in [0,1], if $a \le b$, then $c(a) \ge c(b)$ (monotonicity)
- Axiom 1 required to get correct complements for crisp sets (since we stated that the fuzzy operations are generalizations of corresponding crisp operations)
- Axiom 2 required to be monotonic decreasing, i.e. when μ_A increaes, the complement $c(\mu_A)$ must not increase (it may decrease or, at least remain same.

Fuzzy Complement

 to consider a function as a fuzzy complement operation, it must satisfy the first two axioms (axiomatic skeleton)

- to consider a function as a fuzzy complement operation, it must satisfy the first two axioms (axiomatic skeleton)
- each additional axiom reduces the general class to a special subclass

- to consider a function as a fuzzy complement operation, it must satisfy the first two axioms (axiomatic skeleton)
- each additional axiom reduces the general class to a special subclass
- Axiom 3: c is a continuous function

- to consider a function as a fuzzy complement operation, it must satisfy the first two axioms (axiomatic skeleton)
- each additional axiom reduces the general class to a special subclass
- Axiom 3: c is a continuous function

- a function is continuous at some x_0 in D, if f is defined at x_0 , the limit of the function exist x_0 , and equals to $f(x_0)$
- the graph of a continuous function is a single unbroken curve with no holes or jumps

- to consider a function as a fuzzy complement operation, it must satisfy the first two axioms (axiomatic skeleton)
- each additional axiom reduces the general class to a special subclass
- Axiom 3: c is a continuous function
- Axiom 4: c is involutive, i.e. c(c(a)) = a for each a in [0,1]

- to consider a function as a fuzzy complement operation, it must satisfy the first two axioms (axiomatic skeleton)
- each additional axiom reduces the general class to a special subclass
- Axiom 3: c is a continuous function
- Axiom 4: c is involutive, i.e. c(c(a)) = a for each a in [0,1]
- Standart Complement; c(a) = 1 a where $a = \mu_A(x)$ in [0,1]

- to consider a function as a fuzzy complement operation, it must satisfy the first two axioms (axiomatic skeleton)
- each additional axiom reduces the general class to a special subclass
- Axiom 3: c is a continuous function
- Axiom 4: c is involutive, i.e. c(c(a)) = a for each a in [0,1]
- Standart Complement; c(a) = 1 a where $a = \mu_A(x)$ in [0,1]
 - -c(0) = 1 0 = 1 and c(1) = 1 1 = 0

- to consider a function as a fuzzy complement operation, it must satisfy the first two axioms (axiomatic skeleton)
- each additional axiom reduces the general class to a special subclass
- Axiom 3: c is a continuous function
- Axiom 4: c is involutive, i.e. c(c(a)) = a for each a in [0,1]
- Standart Complement; c(a) = 1 a where $a = \mu_A(x)$ in [0,1]
 - -c(0) = 1 0 = 1 and c(1) = 1 1 = 0
 - assume $a \le b$, then $1 a \ge 1 b$, and $c(a) \ge c(b)$

- to consider a function as a fuzzy complement operation, it must satisfy the first two axioms (axiomatic skeleton)
- each additional axiom reduces the general class to a special subclass
- Axiom 3: c is a continuous function
- Axiom 4: c is involutive, i.e. c(c(a)) = a for each a in [0,1]
- Standart Complement; c(a) = 1 a where $a = \mu_A(x)$ in [0,1]
 - -c(0) = 1 0 = 1 and c(1) = 1 1 = 0
 - assume $a \le b$, then $1 a \ge 1 b$, and $c(a) \ge c(b)$

- to consider a function as a fuzzy complement operation, it must satisfy the first two axioms (axiomatic skeleton)
- · each additional axiom reduces the general class to a special subclass
- Axiom 3: c is a continuous function
- Axiom 4: c is involutive, i.e. c(c(a)) = a for each a in [0,1]
- Standart Complement; c(a) = 1 a where $a = \mu_A(x)$ in [0,1]
 - -c(0) = 1 0 = 1 and c(1) = 1 1 = 0
 - assume $a \le b$, then $1 a \ge 1 b$, and $c(a) \ge c(b)$

- to consider a function as a fuzzy complement operation, it must satisfy the first two axioms (axiomatic skeleton)
- · each additional axiom reduces the general class to a special subclass
- Axiom 3: c is a continuous function
- Axiom 4: c is involutive, i.e. c(c(a)) = a for each a in [0,1]
- Standart Complement; c(a) = 1 a where $a = \mu_A(x)$ in [0,1]
 - -c(0) = 1 0 = 1 and c(1) = 1 1 = 0
 - assume $a \le b$, then $1 a \ge 1 b$, and $c(a) \ge c(b)$
 - c is continuous

- to consider a function as a fuzzy complement operation, it must satisfy the first two axioms (axiomatic skeleton)
- · each additional axiom reduces the general class to a special subclass
- Axiom 3: c is a continuous function
- Axiom 4: c is involutive, i.e. c(c(a)) = a for each a in [0,1]
- Standart Complement; c(a) = 1 a where $a = \mu_A(x)$ in [0,1]
 - -c(0) = 1 0 = 1 and c(1) = 1 1 = 0
 - assume $a \le b$, then $1 a \ge 1 b$, and $c(a) \ge c(b)$
 - c is continuous
 - -c(c(a)) = c(1-a) = 1-(1-a) = a

$$c(a) = \begin{cases} 1 & \text{if } a \le z \\ 0 & \text{if } a > z \end{cases}$$

$$c(a) = \begin{cases} 1 & \text{if } a \le z \\ 0 & \text{if } a > z \end{cases}$$

$$c(a) = \begin{cases} 1 & \text{if } a \le z \\ 0 & \text{if } a > z \end{cases}$$

$$-c(0) = 1$$
 and $c(1) = 0$

$$c(a) = \begin{cases} 1 & \text{if } a \le z \\ 0 & \text{if } a > z \end{cases}$$

- -c(0) = 1 and c(1) = 0
- assume $a \le b \le z$, then $c(a) \ge c(b)$; or $z \le a \le b$, then $c(a) \ge c(b)$; or $a \le z \le b$, then $c(a) = 1 \ge c(b) = 0$

$$c(a) = \begin{cases} 1 & \text{if } a \le z \\ 0 & \text{if } a > z \end{cases}$$

- -c(0) = 1 and c(1) = 0
- assume $a \le b \le z$, then $c(a) \ge c(b)$; or $z \le a \le b$, then $c(a) \ge c(b)$; or $a \le z \le b$, then $c(a) = 1 \ge c(b) = 0$
- c is not continuous

$$c(a) = \begin{cases} 1 & \text{if } a \le z \\ 0 & \text{if } a > z \end{cases}$$

- -c(0) = 1 and c(1) = 0
- assume $a \le b \le z$, then $c(a) \ge c(b)$; or $z \le a \le b$, then $c(a) \ge c(b)$; or $a \le z \le b$, then $c(a) = 1 \ge c(b) = 0$
- c is not continuous
- assume a in (0,1), then $c(c(a)) \neq a$

Fuzzy Complement

Yager Class

$$c_w(a) = (1 - a^w)^{1/w}$$

where w in $(0, \infty)$

Sugeno Class

$$c(a) = (1 - a) / (1 + c.a)$$

where A in $(-1, \infty)$

Fuzzy Intersection (t-norm)

$$i: [0,1] \times [0,1] \rightarrow [0,1]$$

 $(\mu_A(x), \mu_A(x)) \rightarrow i(\mu_A(x), \mu_B(x))$

Fuzzy Intersection (t-norm)

```
i: [0,1] \times [0,1] \rightarrow [0,1]

(\mu_A(x), \mu_A(x)) \rightarrow i(\mu_A(x), \mu_B(x))
```

- Axiom 1: i(1,1) = 1, i(1,0) = 0, i(0,1) = 0, i(0,0) = 0 (boundary condition)
- Axiom 2: i(a,b) = i(b,a) (comutativity)
- Axiom 3: if b ≤ d, then i(a,b) ≤ i(a,d) (monotonicity)
- Axiom 4: i(i(a,b),c) = i(a,i(b,c)) (associativity)

Fuzzy Intersection (t-norm)

```
i: [0,1] \times [0,1] \rightarrow [0,1]

(\mu_A(x), \mu_A(x)) \rightarrow i(\mu_A(x), \mu_B(x))
```

- Axiom 1: i(1,1) = 1, i(1,0) = 0, i(0,1) = 0, i(0,0) = 0 (boundary condition)
- Axiom 2: i(a,b) = i(b,a) (comutativity)
- Axiom 3: if b ≤ d, then i(a,b) ≤ i(a,d) (monotonicity)
- Axiom 4: i(i(a,b),c) = i(a,i(b,c)) (associativity)
- these axioms ensure that the fuzzy intersection becomes the classical intersection when A and B are crisp

Fuzzy Intersection (t-norm)

```
i: [0,1] \times [0,1] \rightarrow [0,1]

(\mu_A(x), \mu_A(x)) \rightarrow i(\mu_A(x), \mu_B(x))
```

- Axiom 1: i(1,1) = 1, i(1,0) = 0, i(0,1) = 0, i(0,0) = 0 (boundary condition)
- Axiom 2: i(a,b) = i(b,a) (comutativity)
- Axiom 3: if b ≤ d, then i(a,b) ≤ i(a,d) (monotonicity)
- Axiom 4: i(i(a,b),c) = i(a,i(b,c)) (associativity)
- these axioms ensure that the fuzzy intersection becomes the classical intersection when A and B are crisp
- monotonicity and commutativity express that a decrease in the degree of membership in sets A and B cannot produce an increase in the degree of membership of intersection

Fuzzy Intersection (t-norm)

$$i: [0,1] \times [0,1] \rightarrow [0,1]$$

 $(\mu_A(x), \mu_A(x)) \rightarrow i(\mu_A(x), \mu_B(x))$

- Axiom 5: i is a continuous function (continuity)
- Axiom 6: i(a,a) = a (idempotency)

Fuzzy Intersection (t-norm)

$$i: [0,1] \times [0,1] \rightarrow [0,1]$$

 $(\mu_A(x), \mu_A(x)) \rightarrow i(\mu_A(x), \mu_B(x))$

- Axiom 5: i is a continuous function (continuity)
- Axiom 6: i(a,a) = a (idempotency)
- Standart Intersection; $i(a,b) = min\{a,b\}$ where $a = \mu_A(x)$ and $b = \mu_B(x)$

Fuzzy Intersection (t-norm)

$$i: [0,1] \times [0,1] \rightarrow [0,1]$$

 $(\mu_A(x), \mu_A(x)) \rightarrow i(\mu_A(x), \mu_B(x))$

- Axiom 5: i is a continuous function (continuity)
- Axiom 6: i(a,a) = a (idempotency)
- Standart Intersection; $i(a,b) = min\{a,b\}$ where $a=\mu_A(x)$ and $b=\mu_B(x)$
- $i(0,a) = min\{0,a\} = 0$ and $i(1,1) = min\{1,1\} = 1$

Fuzzy Intersection (t-norm)

$$i: [0,1] \times [0,1] \rightarrow [0,1]$$

 $(\mu_A(x), \mu_A(x)) \rightarrow i(\mu_A(x), \mu_B(x))$

- Axiom 5: i is a continuous function (continuity)
- Axiom 6: i(a,a) = a (idempotency)
- Standart Intersection; $i(a,b) = min\{a,b\}$ where $a=\mu_A(x)$ and $b=\mu_B(x)$
- $-i(0,a) = min\{0,a\} = 0$ and $i(1,1) = min\{1,1\} = 1$
- i(a,b) = i(b,a)

Fuzzy Intersection (t-norm)

$$i: [0,1] \times [0,1] \rightarrow [0,1]$$

 $(\mu_A(x), \mu_A(x)) \rightarrow i(\mu_A(x), \mu_B(x))$

- Axiom 5: i is a continuous function (continuity)
- Axiom 6: i(a,a) = a (idempotency)
- Standart Intersection; $i(a,b) = min\{a,b\}$ where $a = \mu_A(x)$ and $b = \mu_B(x)$
- $-i(0,a) = min\{0,a\} = 0$ and $i(1,1) = min\{1,1\} = 1$
- -i(a,b) = i(b,a)
- assume $b \le d$; if a < b, then $i(a,b) = a \le i(a,d) = a$

Fuzzy Intersection (t-norm)

$$i: [0,1] \times [0,1] \rightarrow [0,1]$$

 $(\mu_A(x), \mu_A(x)) \rightarrow i(\mu_A(x), \mu_B(x))$

- Axiom 5: i is a continuous function (continuity)
- Axiom 6: i(a,a) = a (idempotency)
- Standart Intersection; $i(a,b) = min\{a,b\}$ where $a = \mu_A(x)$ and $b = \mu_B(x)$
- $-i(0,a) = min\{0,a\} = 0$ and $i(1,1) = min\{1,1\} = 1$
- i(a,b) = i(b,a)
- assume $b \le d$; if a < b, then $i(a,b) = a \le i(a,d) = a$ if b < a, then $i(a,b) = b \le i(a,d)$

Fuzzy Intersection (t-norm)

$$i: [0,1] \times [0,1] \rightarrow [0,1]$$

 $(\mu_A(x), \mu_A(x)) \rightarrow i(\mu_A(x), \mu_B(x))$

- Axiom 5: i is a continuous function (continuity)
- Axiom 6: i(a,a) = a (idempotency)
- Standart Intersection; $i(a,b) = min\{a,b\}$ where $a = \mu_A(x)$ and $b = \mu_B(x)$
- $-i(0,a) = min\{0,a\} = 0$ and $i(1,1) = min\{1,1\} = 1$
- i(a,b) = i(b,a)
- assume $b \le d$; if a < b, then $i(a,b) = a \le i(a,d) = a$ if b < a, then $i(a,b) = b \le i(a,d)$
- i(i(a,b),c) = i(a,i(b,c))

Fuzzy Intersection (t-norm)

$$i: [0,1] \times [0,1] \rightarrow [0,1]$$

 $(\mu_A(x), \mu_A(x)) \rightarrow i(\mu_A(x), \mu_B(x))$

- Axiom 5: i is a continuous function (continuity)
- Axiom 6: i(a,a) = a (idempotency)
- Standart Intersection; $i(a,b) = min\{a,b\}$ where $a = \mu_A(x)$ and $b = \mu_B(x)$
- $i(0,a) = min\{0,a\} = 0$ and $i(1,1) = min\{1,1\} = 1$
- i(a,b) = i(b,a)
- assume $b \le d$; if a < b, then $i(a,b) = a \le i(a,d) = a$ if b < a, then $i(a,b) = b \le i(a,d)$
- i(i(a,b),c) = i(a,i(b,c))

- i is continuous function
- -i(a,a)=a

Fuzzy Intersection (t-norm)

• Algebraic Product (A•B); i(a,b) = a.b

- Algebraic Product (A•B); i(a,b) = a.b
 - -i(0,a) = 0 and i(1,1) = 1

- Algebraic Product (A•B); i(a,b) = a.b
 - -i(0,a) = 0 and i(1,1) = 1
 - -i(a,b)=i(b,a)

- Algebraic Product (A•B); i(a,b) = a.b
 - -i(0,a) = 0 and i(1,1) = 1
 - i(a,b) = i(b,a)
 - assume $b \le d$, then $i(a,b) = a.b \le i(a,d) = a.d$

- Algebraic Product (A•B); i(a,b) = a.b
 - -i(0,a) = 0 and i(1,1) = 1
 - i(a,b) = i(b,a)
 - assume $b \le d$, then $i(a,b) = a.b \le i(a,d) = a.d$
 - $i(i(a,b),c) = i(a,i(b,c)) \rightarrow a.b.c = a.b.c$

- Algebraic Product (A•B); i(a,b) = a.b
 - -i(0,a) = 0 and i(1,1) = 1
 - -i(a,b)=i(b,a)
 - assume $b \le d$, then $i(a,b) = a.b \le i(a,d) = a.d$
 - $i(i(a,b),c) = i(a,i(b,c)) \rightarrow a.b.c = a.b.c$
 - $i(a,a) = a^2 \neq a$

- Algebraic Product (A•B); i(a,b) = a.b
 - -i(0,a) = 0 and i(1,1) = 1
 - i(a,b) = i(b,a)
 - assume $b \le d$, then $i(a,b) = a.b \le i(a,d) = a.d$
 - $i(i(a,b),c) = i(a,i(b,c)) \rightarrow a.b.c = a.b.c$
 - $-i(a,a) = a^2 \neq a$
- Bounded Product $(A \odot B)$; $i(a,b) = max\{0, a+b-1\}$

- Algebraic Product (A•B); i(a,b) = a.b
 - -i(0,a) = 0 and i(1,1) = 1
 - i(a,b) = i(b,a)
 - assume $b \le d$, then $i(a,b) = a.b \le i(a,d) = a.d$
 - $i(i(a,b),c) = i(a,i(b,c)) \rightarrow a.b.c = a.b.c$
 - $-i(a,a) = a^2 \neq a$
- Bounded Product $(A \odot B)$; $i(a,b) = max\{0, a+b-1\}$
- Yager Class; $i_w(a,b) = 1 \min\{1, ((1-a)^w + (1-b)^w)^{1/w}\}$ where w in $(0,\infty)$

Fuzzy Union (s-norm)

u: [0,1] x [0,1] → [0,1]

$$(\mu_A(x), \mu_A(x)) \rightarrow u(\mu_A(x), \mu_B(x))$$

Fuzzy Union (s-norm)

```
u: [0,1] \times [0,1] \rightarrow [0,1]

(\mu_A(x), \mu_A(x)) \rightarrow u(\mu_A(x), \mu_B(x))
```

- Axiom 1: u(1,1) = 1, u(1,0) = 1, u(0,1) = 1, u(0,0) = 0 (boundary condition)
- Axiom 2: u(a,b) = u(b,a) (comutativity)
- Axiom 3: if b ≤ d, then u(a,b) ≤ u(a,d) (monotonicity)
- Axiom 4: u(u(a,b),c) = u(a,u(b,c)) (associativity)

Fuzzy Union (s-norm)

```
u: [0,1] \times [0,1] \rightarrow [0,1]

(\mu_A(x), \mu_A(x)) \rightarrow u(\mu_A(x), \mu_B(x))
```

- Axiom 1: u(1,1) = 1, u(1,0) = 1, u(0,1) = 1, u(0,0) = 0 (boundary condition)
- Axiom 2: u(a,b) = u(b,a) (comutativity)
- Axiom 3: if b ≤ d, then u(a,b) ≤ u(a,d) (monotonicity)
- Axiom 4: u(u(a,b),c) = u(a,u(b,c)) (associativity)
- these axioms ensure that the fuzzy union becomes the classical union when A and B are crisp
- monotonicity and commutativity express that a decrease in the degree of membership in sets A and B cannot produce an increase in the degree of membership of union

Fuzzy Union (s-norm)

```
u: [0,1] \times [0,1] \rightarrow [0,1]

(\mu_A(x), \mu_A(x)) \rightarrow u(\mu_A(x), \mu_B(x))
```

- Axiom 5: u is a continuous function (continuity)
- Axiom 6: u(a,a) = a (idempotency)

Fuzzy Union (s-norm)

$$u: [0,1] \times [0,1] \rightarrow [0,1]$$

 $(\mu_A(x), \mu_A(x)) \rightarrow u(\mu_A(x), \mu_B(x))$

- Axiom 5: u is a continuous function (continuity)
- Axiom 6: u(a,a) = a (idempotency)
- Standart Union; $u(a,b) = max\{a,b\}$ where $a=\mu_A(x)$ and $b=\mu_B(x)$

Fuzzy Union (s-norm)

$$u: [0,1] \times [0,1] \rightarrow [0,1]$$

 $(\mu_A(x), \mu_A(x)) \rightarrow u(\mu_A(x), \mu_B(x))$

- Axiom 5: u is a continuous function (continuity)
- Axiom 6: u(a,a) = a (idempotency)
- Standart Union; $u(a,b) = max\{a,b\}$ where $a=\mu_A(x)$ and $b=\mu_B(x)$
- $u(1,a) = max\{1,a\} = 1$ and $u(0,0) = max\{0,0\} = 0$

Fuzzy Union (s-norm)

$$u: [0,1] \times [0,1] \rightarrow [0,1]$$

 $(\mu_A(x), \mu_A(x)) \rightarrow u(\mu_A(x), \mu_B(x))$

- Axiom 5: u is a continuous function (continuity)
- Axiom 6: u(a,a) = a (idempotency)
- Standart Union; $u(a,b) = max\{a,b\}$ where $a=\mu_A(x)$ and $b=\mu_B(x)$
- $u(1,a) = max\{1,a\} = 1$ and $u(0,0) = max\{0,0\} = 0$
- u(a,b) = u(b,a)

Fuzzy Union (s-norm)

$$u: [0,1] \times [0,1] \rightarrow [0,1]$$

 $(\mu_A(x), \mu_A(x)) \rightarrow u(\mu_A(x), \mu_B(x))$

- Axiom 5: u is a continuous function (continuity)
- Axiom 6: u(a,a) = a (idempotency)
- Standart Union; $u(a,b) = max\{a,b\}$ where $a=\mu_A(x)$ and $b=\mu_B(x)$
- $u(1,a) = max\{1,a\} = 1$ and $u(0,0) = max\{0,0\} = 0$
- u(a,b) = u(b,a)
- assume $b \le d$; if d < a, then $u(a,b) = a \le u(a,d) = a$

Fuzzy Union (s-norm)

$$u: [0,1] \times [0,1] \rightarrow [0,1]$$

 $(\mu_A(x), \mu_A(x)) \rightarrow u(\mu_A(x), \mu_B(x))$

- Axiom 5: u is a continuous function (continuity)
- Axiom 6: u(a,a) = a (idempotency)
- Standart Union; $u(a,b) = max\{a,b\}$ where $a=\mu_A(x)$ and $b=\mu_B(x)$
- $u(1,a) = max\{1,a\} = 1$ and $u(0,0) = max\{0,0\} = 0$
- u(a,b) = u(b,a)
- assume $b \le d$; if d < a, then $u(a,b) = a \le u(a,d) = a$ if a < d, then $u(a,d) = d \ge u(a,b)$

Fuzzy Union (s-norm)

$$u: [0,1] \times [0,1] \rightarrow [0,1]$$

 $(\mu_A(x), \mu_A(x)) \rightarrow u(\mu_A(x), \mu_B(x))$

- Axiom 5: u is a continuous function (continuity)
- Axiom 6: u(a,a) = a (idempotency)
- Standart Union; $u(a,b) = max\{a,b\}$ where $a=\mu_A(x)$ and $b=\mu_B(x)$
- $u(1,a) = max\{1,a\} = 1$ and $u(0,0) = max\{0,0\} = 0$
- u(a,b) = u(b,a)
- assume $b \le d$; if d < a, then $u(a,b) = a \le u(a,d) = a$ if a < d, then $u(a,d) = d \ge u(a,b)$
- u(u(a,b),c) = u(a,u(b,c))

Fuzzy Union (s-norm)

$$u: [0,1] \times [0,1] \rightarrow [0,1]$$

 $(\mu_A(x), \mu_A(x)) \rightarrow u(\mu_A(x), \mu_B(x))$

- Axiom 5: u is a continuous function (continuity)
- Axiom 6: u(a,a) = a (idempotency)
- Standart Union; $u(a,b) = max\{a,b\}$ where $a=\mu_A(x)$ and $b=\mu_B(x)$
- $u(1,a) = max\{1,a\} = 1$ and $u(0,0) = max\{0,0\} = 0$
- u(a,b) = u(b,a)
- assume $b \le d$; if d < a, then $u(a,b) = a \le u(a,d) = a$ if a < d, then $u(a,d) = d \ge u(a,b)$
- u(u(a,b),c) = u(a,u(b,c))

- u is continuous function
- u(a,a) = a

Fuzzy Union (s-norm)

• Probabilistic Sum; u(a,b) = a + b - a.b

- Probabilistic Sum; u(a,b) = a + b a.b
 - u(1,a) = 1 and u(0,0) = 0

- Probabilistic Sum; u(a,b) = a + b a.b
 - u(1,a) = 1 and u(0,0) = 0
 - u(a,b) = u(b,a)

- Probabilistic Sum; u(a,b) = a + b a.b
 - u(1,a) = 1 and u(0,0) = 0
 - u(a,b) = u(b,a)
 - assume $b \le d$, then $u(a,b) = a + b(1 a) \le u(a,d) = a + d(1 a)$

- Probabilistic Sum; u(a,b) = a + b a.b
 - u(1,a) = 1 and u(0,0) = 0
 - u(a,b) = u(b,a)
 - assume $b \le d$, then $u(a,b) = a + b(1 a) \le u(a,d) = a + d(1 a)$
 - $u(u(a,b),c) = u(a,u(b,c)) \rightarrow a+b+c-ac-ab+abc = a+b+c-ab-ac+abc$

- Probabilistic Sum; u(a,b) = a + b a.b
 - u(1,a) = 1 and u(0,0) = 0
 - u(a,b) = u(b,a)
 - assume $b \le d$, then $u(a,b) = a + b(1 a) \le u(a,d) = a + d(1 a)$
 - $u(u(a,b),c) = u(a,u(b,c)) \rightarrow a+b+c-ac-ab+abc = a+b+c-ab-ac+abc$
 - $u(a,a) = 2a a^2 \neq a$

- Probabilistic Sum; u(a,b) = a + b a.b
 - u(1,a) = 1 and u(0,0) = 0
 - u(a,b) = u(b,a)
 - assume $b \le d$, then $u(a,b) = a + b(1 a) \le u(a,d) = a + d(1 a)$
 - $u(u(a,b),c) = u(a,u(b,c)) \rightarrow a+b+c-ac-ab+abc = a+b+c-ab-ac+abc$
 - $u(a,a) = 2a a^2 \neq a$
- Bounded Sum $(A \oplus B)$; $u(a,b) = min\{1, a+b\}$

- Probabilistic Sum; u(a,b) = a + b a.b
 - u(1,a) = 1 and u(0,0) = 0
 - u(a,b) = u(b,a)
 - assume $b \le d$, then $u(a,b) = a + b(1 a) \le u(a,d) = a + d(1 a)$
 - $u(u(a,b),c) = u(a,u(b,c)) \rightarrow a+b+c-ac-ab+abc = a+b+c-ab-ac+abc$
 - $u(a,a) = 2a a^2 \neq a$
- Bounded Sum $(A \oplus B)$; $u(a,b) = min\{1, a+b\}$
- Yager Class; $u_w(a,b) = min\{1, (a^w + b^w)^{1/w}\}$ where w in $(0,\infty)$

Other Operations on Fuzzy Sets

• Disjunctive Sum; $C = (A \cap \neg B) \cup (\neg A \cap B)$ $\mu_C(x) = \max\{\min[\mu_A(x), 1 - \mu_B(x)], \min[\mu_B(x), 1 - \mu_A(x)]\}$

Other Operations on Fuzzy Sets

- Disjunctive Sum; $C = (A \cap \neg B) \cup (\neg A \cap B)$ $\mu_{C}(x) = \max\{\min[\mu_{A}(x), 1 - \mu_{B}(x)], \min[\mu_{B}(x), 1 - \mu_{A}(x)]\}$
- Disjoint Sum; $C = A\Delta B$ $\mu_C(x) = |\mu_A(x) - \mu_B(x)|$

Other Operations on Fuzzy Sets

- Disjunctive Sum; $C = (A \cap \neg B) \cup (\neg A \cap B)$ $\mu_{C}(x) = \max\{\min[\mu_{A}(x), 1 - \mu_{B}(x)], \min[\mu_{B}(x), 1 - \mu_{A}(x)]\}$
- Disjoint Sum; $C = A\Delta B$ $\mu_C(x) = |\mu_A(x) - \mu_B(x)|$
- <u>Set Difference</u>; $C = A B = A \cap \neg B$ $\mu_{C}(x) = \min\{\mu_{A}(x), 1 - \mu_{B}(x)\}$

Other Operations on Fuzzy Sets

- Disjunctive Sum; $C = (A \cap \neg B) \cup (\neg A \cap B)$ $\mu_C(x) = \max\{\min[\mu_A(x), 1 - \mu_B(x)], \min[\mu_B(x), 1 - \mu_A(x)]\}$
- <u>Disjoint Sum</u>; $C = A\Delta B$ $\mu_C(x) = |\mu_A(x) - \mu_B(x)|$
- <u>Set Difference</u>; $C = A B = A \cap \neg B$ $\mu_{C}(x) = \min\{\mu_{A}(x), 1 - \mu_{B}(x)\}$
- Distance in Fuzzy Set;

Minkowski distance, $d_w(A,B) = (\sum_{x \text{ in } X} |\mu_A(x) - \mu_B(x)|^w)^{1/w}$

$$\mu_C(x) = 1 - \mu_A(x)$$
 $\mu_C(x) = 1 - 1/(x^2+1)$
 $\mu_C(x) = x^2/(x^2+1) = \mu_B(x)$

$$\mu_C(x) = 1 - \mu_A(x)$$

 $\mu_C(x) = 1 - 1/(x^2+1)$
 $\mu_C(x) = x^2/(x^2+1) = \mu_B(x)$

$$\mu_D(x) = 1 - \mu_B(x)$$
 $\mu_D(x) = 1 - x^2/(x^2+1)$
 $\mu_C(x) = 1/(x^2+1) = \mu_A(x)$

• $\mu_A(x) = 1/(x^2+1)$ and $\mu_B(x) = x^2/(x^2+1)$

$$C = \neg A$$
, $D = \neg B$, $E = A \cap B$, $F = A \cup B$, μ_C , μ_D , μ_E , $\mu_F = ?$

$$\mu_C(x) = 1 - \mu_A(x)$$
 $\mu_C(x) = 1 - 1/(x^2+1)$
 $\mu_C(x) = x^2/(x^2+1) = \mu_B(x)$

$$\mu_D(x) = 1 - \mu_B(x)$$
 $\mu_D(x) = 1 - x^2/(x^2+1)$
 $\mu_C(x) = 1/(x^2+1) = \mu_A(x)$

$$\mu_{\mathsf{E}}(x) = \min\{\mu_{\mathsf{A}}(x), \mu_{\mathsf{B}}(x)\}$$

$$\mu_F(x) = \max\{\mu_A(x), \mu_B(x)\}$$

• $\mu_A(x) = 1/(x^2+1)$ and $\mu_B(x) = x^2/(x^2+1)$

$$C = \neg A$$
, $D = \neg B$, $E = A \cap B$, $F = A \cup B$, μ_C , μ_D , μ_E , μ_E = ?

$$\mu_C(x) = 1 - \mu_A(x)$$
 $\mu_C(x) = 1 - 1/(x^2+1)$
 $\mu_C(x) = x^2/(x^2+1) = \mu_B(x)$

$$\mu_D(x) = 1 - \mu_B(x)$$
 $\mu_D(x) = 1 - x^2/(x^2+1)$
 $\mu_C(x) = 1/(x^2+1) = \mu_A(x)$

$$\mu_{\mathsf{E}}(x) = \min\{\mu_{\mathsf{A}}(x), \mu_{\mathsf{B}}(x)\}$$

$$\mu_{F}(x) = \max\{\mu_{A}(x), \mu_{B}(x)\}$$

$$1/(x^2+1) = x^2/(x^2+1)$$

$$\mu_C(x) = 1 - \mu_A(x)$$
 $\mu_C(x) = 1 - 1/(x^2+1)$
 $\mu_C(x) = x^2/(x^2+1) = \mu_B(x)$
 $\mu_D(x) = 1 - \mu_B(x)$

$$\mu_D(x) = 1 - \mu_B(x)$$
 $\mu_D(x) = 1 - x^2/(x^2+1)$
 $\mu_C(x) = 1/(x^2+1) = \mu_A(x)$

$$\mu_{E}(x) = \min\{\mu_{A}(x), \mu_{B}(x)\}$$

$$\mu_F(x) = \max\{\mu_A(x), \mu_B(x)\}$$

$$1/(x^2+1) = x^2/(x^2+1)$$

 $x = +1$

$$\mu_{C}(x) = 1 - \mu_{A}(x)$$

$$\mu_{C}(x) = 1 - 1/(x^{2}+1)$$

$$\mu_{C}(x) = x^{2}/(x^{2}+1) = \mu_{B}(x)$$

$$\mu_{D}(x) = 1 - \mu_{B}(x)$$

$$\mu_{D}(x) = 1 - x^{2}/(x^{2}+1)$$

$$\mu_{C}(x) = 1/(x^{2}+1) = \mu_{A}(x)$$

$$\mu_{E}(x) = \min\{\mu_{A}(x), \mu_{B}(x)\}$$

$$\mu_{\mathsf{F}}(x) = \max\{\mu_{\mathsf{A}}(x), \mu_{\mathsf{B}}(x)\}$$

• $\mu_A(x) = 1/(x^2+1)$ and $\mu_B(x) = x^2/(x^2+1)$ $C = \neg A, D = \neg B, E = A \cap B, F = A \cup B, \mu_C, \mu_D, \mu_E, \mu_F = ?$

$$\mu_{C}(x) = 1 - \mu_{A}(x)$$

$$\mu_{C}(x) = 1 - 1/(x^{2}+1)$$

$$\mu_{C}(x) = x^{2}/(x^{2}+1) = \mu_{B}(x)$$

$$\mu_{D}(x) = 1 - \mu_{B}(x)$$

$$\mu_{D}(x) = 1 - x^{2}/(x^{2}+1)$$

 $\mu_c(x) = 1/(x^2+1) = \mu_A(x)$

$$\mu_{E}(x) = \min\{\mu_{A}(x), \mu_{B}(x)\}$$

$$\mu_{\mathsf{F}}(x) = \max\{\mu_{\mathsf{A}}(x), \mu_{\mathsf{B}}(x)\}$$

• $\mu_A(x) = 1/(x^2+1)$ and $\mu_B(x) = x^2/(x^2+1)$ $C = \neg A, D = \neg B, E = A \cap B, F = A \cup B, \mu_C, \mu_D, \mu_E, \mu_F = ?$

$$\mu_{C}(x) = 1 - \mu_{A}(x)$$

$$\mu_{C}(x) = 1 - 1/(x^{2}+1)$$

$$\mu_{C}(x) = x^{2}/(x^{2}+1) = \mu_{B}(x)$$

$$\mu_{D}(x) = 1 - \mu_{B}(x)$$

$$\mu_{D}(x) = 1 - x^{2}/(x^{2}+1)$$

 $\mu_c(x) = 1/(x^2+1) = \mu_A(x)$

$$\mu_{E}(x) = \min\{\mu_{A}(x), \mu_{B}(x)\}$$

$$\mu_F(x) = \max\{\mu_A(x), \mu_B(x)\}$$

• $\mu_A(x) = 1/(x^2+1)$ and $\mu_B(x) = x^2/(x^2+1)$ $C = \neg A, D = \neg B, E = A \cap B, F = A \cup B, \mu_C, \mu_D, \mu_E, \mu_F = ?$

$$\mu_{C}(x) = 1 - \mu_{A}(x)$$
 $\mu_{C}(x) = 1 - 1/(x^{2}+1)$
 $\mu_{C}(x) = x^{2}/(x^{2}+1) = \mu_{B}(x)$
 $\mu_{D}(x) = 1 - \mu_{B}(x)$
 $\mu_{D}(x) = 1 - x^{2}/(x^{2}+1)$

 $\mu_c(x) = 1/(x^2+1) = \mu_a(x)$

$$\mu_{E}(x) = \min\{\mu_{A}(x), \mu_{B}(x)\}$$

$$\mu_{E}(x) = \begin{cases} \mu_{A}(x) & \text{if } x < -1 \\ \mu_{B}(x) & \text{if } -1 \le x \le 1 \\ \mu_{A}(x) & \text{if } x > 1 \end{cases}$$

$$\mu_{F}(x) = \max\{\mu_{A}(x), \mu_{B}(x)\}$$

$$\mu_C(x) = 1 - \mu_A(x)$$
 $\mu_C(x) = 1 - 1/(x^2+1)$
 $\mu_C(x) = x^2/(x^2+1) = \mu_B(x)$

$$\mu_D(x) = 1 - \mu_B(x)$$
 $\mu_D(x) = 1 - x^2/(x^2+1)$
 $\mu_C(x) = 1/(x^2+1) = \mu_A(x)$

$$\mu_{E}(x) = \min\{\mu_{A}(x), \mu_{B}(x)\}$$

$$\mu_{E}(x) = \begin{cases} \mu_{A}(x) & \text{if } x < -1 \\ \mu_{B}(x) & \text{if } -1 \le x \le 1 \\ \mu_{A}(x) & \text{if } x > 1 \end{cases}$$

$$\mu_{\mathsf{F}}(x) = \max\{\mu_{\mathsf{A}}(x), \mu_{\mathsf{B}}(x)\}$$

$$\mu_{F}(x) = \begin{cases} \mu_{B}(x) & \text{if } x < -1 \\ \mu_{A}(x) & \text{if } -1 \le x \le 1 \\ \mu_{B}(x) & \text{if } x > 1 \end{cases}$$