Previously.

This Section.

- Cosets

- Dihedral Groups

- Lagrange's Theorem

- Groups of order 2p

- Corollaries to Lagrange!

Definition. A regular n-gon is an n-sided polygon whose sides are all congruent. Denote this figure by P_n .

Example.

$$P_4 =$$

Definition. A symmetry of P_n is any action on P_n by a sequence of flips and/or rotation which return P_n to its original position in the plane.

Definition. The dihedral group D_n is the group of symmetries of the figure P_n . (Operation is composition.)

Definition. Let $n \geq 2$. The dihedral group D_n is the group of order 2n presented as follows:

$$D_n = \{e, r, r^2, \dots, r^{n-1}, f, fr, fr^2, \dots, fr^{n-1}\},\$$

where |r|=n, |f|=2, and $rf=fr^{-1}$.

Note. The last relation $rf = fr^{n-1}$ can be written in many other ways, such as

- $frf = r^{n-1}$
- rfr = f (this is the one the book uses)
- $r^i f = f r^{-i}$ for all $i \in \mathbb{Z}$
- $fr^i f = r^{-i}$ for all $i \in \mathbb{Z}$
- $r^i f r^i = f$ for all $i \in \mathbb{Z}$

Note. Here's the generator notation for D_n :

$$D_n = \langle f, r \mid f^2 = e, r^n = e, rf = fr^{-1} \rangle$$
.

1

Section 2.7: Groups of Motions and Symmetries Last Updated: March 29, 2024

Theorem 2.6.3. Let G be a group and p a prime. If |G| = 2p, then G is cyclic or $G \cong D_p$.

Exercise 1. Let $D_4 = \{e, r, r^2, r^3, f, fr, fr^2, fr^3\}$. The subgroup of order 4 are

- $\{\varepsilon, r^2, f, fr^2\}$
- $\{\varepsilon, r, r^2, r^3\}$
- $\{\varepsilon, r^2, fr, fr^3\}$

Which of these are cyclic, and which are isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$?

Example. The subgroups of $D_4 = \{e, r, r^2, r^3, f, fr, fr^2, fr^3\}.$

- Subgroups of order 2: $\langle f \rangle$, $\langle fr^2 \rangle$, $\langle r^2 \rangle$, $\langle fr^3 \rangle$, $\langle fr \rangle$,
- Subgroup of order 1: $\{e\}$

The full subgroup lattice of D_4 .

