Step Response of a Series RLC Circuit

p Response of a Series REC Circuit

The solution

$$v(t) = v_t(t) + v_{ss}(t)$$

The complete solutions for the three conditions of damping are:

$$v(t) = V_S + (A_1 e^{S_1 t} + A_2 e^{S_2 t})$$
 (Overdamped)

$$v(t) = V_s + (A_1 + A_2 t)e^{-\alpha t}$$
 (Critically Damped)

$$v(t) = V_s + (B_1 \cos \omega_d t + B_2 \sin \omega_d t)e^{-\alpha t}$$
 (Underdamped)

Example

- Find v(t) and i(t) for t > 0. Consider three cases:
 - $R = 5\Omega$
 - $R = 4\Omega$
 - $R = 1\Omega$

When $R = 5\Omega$,

- For t < 0, switch closed, capacitor open, inductor shorted.
- For t > 0, switch open, a series RLC network

•
$$v(0) = 4V$$
 $i(0) = 4A = C \frac{dv(0)}{dt}$, $\frac{dv(0)}{dt} = 16$
 $\alpha = \frac{R}{2L} = 2.5$, $\omega_0 = \frac{1}{\sqrt{LC}} = 2$, $s_{1,2} = -1$, -4 Overdamped.
 $v(t) = v_s + (A_1 e^{-t} + A_2 e^{-4t})$

When $R = 4\Omega$,

- For t < 0, switch closed, capacitor open, inductor shorted.
- For t > 0, switch open, a series RLC network

•
$$v(0) = 4.8V$$
, $i(0) = 4.8A = C \frac{dv(0)}{dt}$, $\frac{dv(0)}{dt} = 19.2$
 $\alpha = \frac{R}{2L} = 2$, $\omega_0 = \frac{1}{\sqrt{LC}} = 2$, $s_{1,2} = -2$ Critically damped
$$v(t) = v_s + (A_1 + A_2 t)e^{-2t}$$

When $R = 1\Omega$,

- For t < 0, switch closed, capacitor open, inductor shorted.
- For t > 0, switch open, a series RLC network

•
$$v(0) = 12V$$
, $i(0) = 12A = C\frac{dv(0)}{dt}$, $\frac{dv(0)}{dt} = 48$
 $\alpha = \frac{R}{2L} = 0.5$, $\omega_0 = \frac{1}{\sqrt{LC}} = 2$, $s_{1,2} = -0.5 \pm j1.936$ Underdamped
 $v(t) = v_s + (B_1 \cos 1.936t + B_2 \sin 1.936t)e^{-0.5t}$

Step Response of a Parallel RLC Circuit

Apply KCL,

$$\frac{v}{R} + i + C \frac{dv}{dt} = I_{S}$$

$$\& v = L \frac{di}{dt}$$

So we get

$$\frac{d^2i}{d^2t} + \frac{1}{RC}\frac{di}{dt} + \frac{i}{LC} = \frac{I_s}{LC}$$

Step Response of a Parallel RLC Circuit

$$\frac{d^2i}{d^2t} + \frac{1}{RC}\frac{di}{dt} + \frac{i}{LC} = \frac{I_S}{LC}$$

 The total response is a combination of steady state responses and transient response:

$$i(t) = I_s + (A_1 e^{s_1 t} + A_2 e^{s_2 t})$$
 (Overdamped)
$$i(t) = I_s + (A_1 + A_2 t) e^{-\alpha t}$$
 (Critically Damped)
$$i(t) = I_s + (B_1 \cos \omega_d t + B_2 \sin \omega_d t) e^{-\alpha t}$$
 (Underdamped)

Here the variables $A_1/A_2B_1/B_2$ are obtained from the initial conditions, i(0) and di(0)/dt.

Example

• Find i(t) and $i_R(t)$ for t > 0.

General Second-Order Circuits

An example

General Second-Order Circuits

- The principles of solving the series/parallel forms of RLC circuits can be applied to general second-order circuits, by taking the following six steps:
 - 1. First determine the initial conditions, x(0) and dx(0)/dt.
 - **2. Applying KVL and KCL**, to find the general second-order differential equation to describe x(t). 3. Depending on the roots of C.E., the form of the general solution $x_{g.s.}(t)$ (3 cases) of homogeneous equation can be determined.
 - 4. We obtain the **particular solution** by observation/calculation, **specially** for a DC/step response

$$x_{p.s.}(t)=x(\infty)$$

5. The total response = general solution + particular solution.

$$x(t) = x_{p.s.}(t) + x_{g.s.}(t)$$

6. Using the initial conditions to determine the constants of x(t).

General RLC Circuits

- Find the complete response v(t) for t > 0 in the circuit.
 - 1. Initial conditions

$$v(0^+) = v(0^-) = 12V, i(0^+) = i(0^-) = 0$$

$$\frac{dv(0^+)}{dt} = \frac{i_C(0^+)}{C} = \frac{-12/2}{0.5} = -12 V/s$$

General RLC Circuits

• Find the complete response v(t) for t > 0 in the circuit.

2. KCL at node a: $i = \frac{v}{2} + 0.5 \frac{dv}{dt}$ KVL on left mesh: $4i + 1 \frac{di}{dt} + v = 12$

$$\Rightarrow \frac{d^2v}{dt^2} + 5\frac{dv}{dt} + 6v = 24$$

$$\frac{d^2v}{dt^2} + 5\frac{dv}{dt} + 6v = 24$$

3. General Solution:

$$\Rightarrow$$
 General Solution $v_t(t) = A_1 e^{-2t} + A_2 e^{-3t}$

- 4. Particular Solution : Steady-state response $v_{ss}(t) = 4V$
- 5. Put together: $v(t) = 4 + A_1 e^{-2t} A_2 e^{-3t}$
- 6. Using initial conditions to determine A₁, A₂

Self-test-General RLC Circuit

• Find the complete response i(t) for t > 0 in the circuit.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display