

Guilherme Vasco da Silva: 1603019

Henrique Moura Bini: 2046326

Juan Felipe da Silva Rangel :2046385

Laboratório 04: Simulação de Algoritmos de Escalonamento

Campo mourão 03/2021

DACOM - Departamento de Computação BCC34G - Sistemas Operacionais UTFPR - Universidade Tecnológica Federal do Paraná

1. FCFS: P1, P2, P3, P4

SJF (não preemptivo): P1, P3, P2, P4. SJF (preemptivo): P1, P3, P2, P4.

Prioridade (não preemptivo): P4, P3, P1, P2 Prioridade (preemptivo): P4, P3, P1, P2

Round Robin: P1, P2, P3, P4

- 2. b) A eficiência no sistema de multiprogramação é igual a 100% e no sistema de monoprogramação é igual a 79%
 - c) O tempo médio de espera em um sistema de monoprogramação é igual a 7.50, já no sistema de multiprogramação esse número é muito menor, sendo igual a 6.75 u.t. Essa diferença de tempo se dá justamente porque em um ambiente de monoprogramação a CPU fica ociosa durante os processos de I/O bound, já em um ambiente de multiprogramação, isso não acontece. Dessa forma a CPU demora mais unidades de tempo para finalizar um processo e começar outro, além do fato que a CPU na monoprogramação executa um único processo do começo ao fim sem intercalar com outros processos gerando um tempo de espera maior.
 - d) No desempenho geral é possível perceber que nenhum parâmetro na monoprogramação foi melhor do que na multiprogramação. Considerando o desempenho individual podemos perceber que o único processo que possui uma melhora é o processo P1, pois na monoprogramação o primeiro recebe todos os recursos da CPU, resultando em um tempo de resposta e tempo de duração menor, além de fazer uso total da CPU.

3. a) Prioridade(preemptivo):

Processo	Tempo de espera	Tempo de resposta	Tempo de duração
P1	2	0	9
P2	0	0	2

Prioridade(não preemptivo):

Processo	Tempo de espera	Tempo de resposta	Tempo de duração
P1	0	0	7
P2	5	5	7

UTFPR - Universidade Tecnológica Federal do Paraná DACOM - Departamento de Computação BCC34G - Sistemas Operacionais

b) No desempenho geral o tempo de resposta assim como o tempo de espera é maior no não preemptivo, isso se deve ao fato de que o escalonador de prioridade não preemptivo não começa a executar o processo P2 assim que ele chega, pois é necessário que processo P2 espere que o processo P1 termine, ao contrário do escalonador de prioridade preemptivo, o qual começa a executar o processo P2 no momento em que ele entra na fila de pronto.

O desempenho individual do processo P1 é melhor no escalonador não preemptivo pois ele tem um tempo de espera e de duração menor, já o processo P2 tem um desempenho melhor no escalonador de prioridade preemptivo pois ele recebe acesso ao processador no momento em que ele entra na fila de pronto.

4. a)

Algorithm: FCFS (First Come First Served)

Efficiency: 1,00 Throughput: 0,25

Average duration: 12,6 Avg. waiting time: 8,60 Avg. response time: 8,60

PID	Response Time	Wait Time	Duration Time	% CPU
P1	0	0	5	1,0000
P2	5	5	9	0,4444
P3	9	9	16	0,4375
P4	16	16	19	0,1578
P5	13	13	14	0,0714

UTFPR - Universidade recinologica : DACOM - Departamento de Computação BCC34G - Sistemas Operacionais UTFPR - Universidade Tecnológica Federal do Paraná

Algorithm: SJF (não preemptivo)

Efficiency: 1,00 Throughput: 0,25 Average duration: 9,00 Avg. waiting time: 5,00 Avg. response time: 5,00

PID	Response Time	Wait Time	Duration Time	% CPU
P1	8	8	13	0.3846
P2	3	3	7	0.5714
P3	13	13	20	0.35
P4	0	0	3	1.0
P5	1	1	2	0.5

Algorithm: SJF (preemptivo)

Efficiency: 1,00 Throughput: 0,25 Average duration: 9,00 Avg. waiting time: 5,00 Avg. response time: 5,00

PID	Response Time	Wait Time	Duration Time	% CPU
P1	8	8	13	0,3846
P2	3	3	7	0,5714
P3	13	13	20	0,3500
P4	0	0	3	1,0
P5	1	1	2	0,5

UTFPR - Universidade recircograma DACOM - Departamento de Computação BCC34G - Sistemas Operacionais UTFPR - Universidade Tecnológica Federal do Paraná

Algorithm: prioridade (não preemptivo)

Efficiency: 1,00 Throughput: 0,25 Average duration: 9,00 Avg. waiting time: 5,00 Avg. response time: 5,00

PID	Response Time	Wait Time	Duration Time	% CPU
P1	8	8	13	0.3846
P2	3	3	7	0.5714
P3	13	13	20	0.35
P4	0	0	3	1.0
P5	1	1	2	0.5

Algorithm: prioridade (preemptivo)

Efficiency: 1.00 Throughput: 0.25 Average duration: 9.00 Avg. waiting time: 5.00 Avg. response time: 4.80

PID	Response Time	Wait Time	Duration Time	% CPU
P1	8	13	13	0.3846
P2	3	8	8	0.5
P3	13	20	20	0.35
P4	0	3	3	1.0
P5	0	1	1	1.0

UTFPR - Universidade Tecnológica Federal do Paraná DACOM - Departamento de Computação BCC34G - Sistemas Operacionais

Algorithm: Round Robin (quantum = 1)

Efficiency: 1.00 Throughput: 0.25

Average duration: 13.80 Avg. waiting time: 9.80 Avg. response time: 1.80

PID	Response Time	Wait Time	Duration Time	% CPU
P1	0	12	17	0.2941
P2	1	11	15	0.2666
P3	2	13	20	0.35
P4	3	10	13	0.2307
P5	3	3	4	0.25

b) No desempenho geral é possível notar que a eficiência é de 100% para todos os algoritmos assim como o throughput que tem o valor de 0.25 em todos os casos. Também é possível constatar que o Round Robin possui o maior tempo de duração e o maior tempo de espera, já o segundo maior tempo de duração e de espera é o do FCFS e o restante dos algoritmos possui o mesmo tempo de duração. Apesar do Round Robin possuir o pior tempo de duração e de espera, ele possui o melhor tempo de resposta.

No desempenho individual é possível notar que todos os processos possuem o mesmo comportamento nos escalonadores SJF(preemptivo e não preemptivo) e nos de prioridade (preemptivo e não preemptivo), exceto pelos processos P1 e P5 no escalonador de prioridade preemptivo, que tem um tempo de espera maior e um tempo de resposta menor do que nos outros algoritmos citados, respectivamente. É possível constatar que os processos do Round Robin nunca utilizam 100% da CPU devido ao seu quantum ser 1, e também é possível reparar que o tempo de resposta e o tempo de espera são iguais no escalonador FCFS. Isso se deve ao fato de que esse escalonador possui um comportamento similar ao de uma fila.