22/03/2023

New GT

Compute centroids and intra/inter dists. for current GT classes

- Intra dist for filling (0.07) > Intra dist for not_filling_peso (0.01)
- filling 4x4 (0.16) > not filling peso 4x4 (0.068)
- not filling intra dist for 2x2 (0.01) < 4x4 (0.068)

Inter/Intra distances (not filling)

- Intra (same class): Max distance from centroid (sample mas alejado)
- Inter (other class): Min distance from centroid (sample from other class that is closest to centroid →Centroid A to sample from B is different that centroid B from sample A → Better to measure distance between centroids? Then there is no min value

2x2	Class A	Class B	Class C	Class D
Class_A	0.001	0.001	0.001	0.007
Class_B	0	0.011	0.001	0.004
Class_C	0.001	0.001	0.004	0.006
Class_D	0.003	0.002	0.002	0.011

4x4	Class A	Class B	Class C	Class D
Class A	0.954	0.879	1.024	1.626
Class B	0.056	2.142	0.899	1.429
Class C	0.063	0.893	1.508	1.725
Class D	1.95	1.826	1.759	0.069

5x5	Class A	Class B	Class C	Class D
Class A	1.973	1.82	1.783	1.484
Class B	0.196	2.895	1.257	2.192
Class C	1.428	1.515	2.4	2.587
Class D	1.979	2.334	2.342	1.393

10x10	Class A	Class B	Class C	Class D
Class A	3.49	4.767	4.719	4.077
Class B	1.867	5.274	2.521	5.094
Class C	4.833	2.736	4.299	5.618
Class_D	4.874	5.012	5.261	2.435

Intra should be less than inters!

New GT

- Remove samples that make intra larger → Move them where?
- Remove samples that make inter smaller → Move them where?
- Compute intra/inter again

Changed success extraction method - not filling peso

Combining class label assignment and selecting the one that maximises total success

• n_clusters=4, init='random', n_init=20, max_iter=500, tol=1e-8, random_state=0

	2x2	3x3	4x4	5x5	6x6	7x7	8x8	9x9	10x10
Success_A	0	100	0	92.857	100	100	100	100	96.429
Success B	73.333	15.556	57.778	40	0	57.778	0	62.222	55.556
Success C	45.455	36.364	27.273	0	27.273	27.273	63.636	0	27.273
Success D	33.333	100	100	100	0	100	0	0	100
TOTAL	44.444	50	38.889	55.556	34.444	70	38.889	62.222	67.778

n_clusters=4, init=k-means++, n_init=20, max_iter=500, tol=1e-8, random_state=0

	2x2	3x3	4x4	5x5	6x6	7x7	8x8	9x9	10x10
Success A	100	100	100	92.857	100	100	100	100	0
Success B	20	20	26.667	44.444	60	26.667	26.667	26.667	62.222
Success C	0	36.364	0	0	0	54.545	72.727	72.727	0
Success D	33.333	100	100	100	0	100	100	100	100
TOTAL	43.333	52.222	51.111	57.778	61.111	57.778	60	60	37.778

• n_clusters=4, init=[init_centr], n_init=20, max_iter=500, tol=1e-8, random_state=None -> samples with LESS intra dist to centroid of class

2x2	3x3	4x4	5x5	6x6	7x7	8x8	9x9	10x10
		1127		1000		110000		100
13.333	11.111	33.333	37.778	62.222	82.222	88.889	55.556	55.556
36.364	36.364	36.364	45.455	63.636	27.273	63.636	27.273	27.273
50	100	100	100	100	100	100	100	100
45.556	47.778	58.889	61.111	76.667	82.222	90	68.889	68.889
	100 13.333 36.364 50	100 100 13.333 11.111 36.364 36.364 50 100	100 100 100 13.333 11.111 33.333 36.364 36.364 36.364 50 100 100	100 100 100 96.429 13.333 11.111 33.333 37.778 36.364 36.364 36.364 45.455 50 100 100 100	100 100 100 96.429 100 13.333 11.111 33.333 37.778 62.222 36.364 36.364 36.364 45.455 63.636 50 100 100 100 100	100 100 100 96.429 100 100 13.333 11.111 33.333 37.778 62.222 82.222 36.364 36.364 36.364 45.455 63.636 27.273 50 100 100 100 100 100	100 100 100 96.429 100 100 100 13.333 11.111 33.333 37.778 62.222 82.222 88.889 36.364 36.364 36.364 45.455 63.636 27.273 63.636 50 100 100 100 100 100 100	The state of the s

not filling peso 2x2

not filling peso 2x2

not filling peso 8x8

o3 gr e11

o5 gr e03

not filling peso 8x8

Changed success extraction method - filling

Combining class label assignment and selecting the one that maximises total success

• n clusters=4, init='random', n init=20, max iter=500, tol=1e-8, random state=0

2x2	3x3	4x4	5x5	6x6	7x7	8x8	9x9	10x10
0	100	96.429	100	100	100	100	100	100
66.667	0	60	0	55.556	0	26.667	55.556	26.667
63.636	72.727	27.273	72.727	0	27.273	72.727	27.273	72.727
83.333	0	100	0	0	0	100	100	100
46.667	40	70	40	58.889	34.444	60	68.889	60
	0 66.667 63.636 83.333	0 100 66.667 0 63.636 72.727 83.333 0	0 100 96.429 66.667 0 60 63.636 72.727 27.273 83.333 0 100	0 100 96.429 100 66.667 0 60 0 63.636 72.727 27.273 72.727 83.333 0 100 0	0 100 96.429 100 100 66.667 0 60 0 55.556 63.636 72.727 27.273 72.727 0 83.333 0 100 0 0	0 100 96.429 100 100 100 66.667 0 60 0 55.556 0 63.636 72.727 27.273 72.727 0 27.273 83.333 0 100 0 0 0	0 100 96.429 100 100 100 100 66.667 0 60 0 55.556 0 26.667 63.636 72.727 27.273 72.727 0 27.273 72.727 83.333 0 100 0 0 0 100	0 100 96.429 100 100 100 100 100 66.667 0 60 0 55.556 0 26.667 55.556 63.636 72.727 27.273 72.727 0 27.273 72.727 27.273 83.333 0 100 0 0 0 100 100

n_clusters=4, init=k-means++, n_init=20, max_iter=500, tol=1e-8, random_state=0

9	2x2	3x3	4x4	5x5	6x6	7x7	8x8	9x9	10x10
Success A	100	100	96.429	100	100	100	100	100	100
Success B	20	0	26.667	60	55.556	57.778	0	55.556	0
Success C	63.636	72.727	72.727	27.273	27.273	0	27.273	27.273	72.727
Success D	100	0	100	100	100	0	0	100	0
TOTAL	55.556	40	58.889	71.111	68.889	60	34.444	68.889	40

• n clusters=4, init=[init_centr], n init=20, max iter=500, tol=1e-8, random_state=None -> samples with LESS intra dist to centroid of class

	2x2	3x3	4x4	5x5	6x6	7x7	8x8	9x9	10x10
Success_A	100	100	100	100	100	100	100	100	100
Success_B	28.889	73.333	82.222	60	55.556	55.556	55.556	55.556	55.556
Success_C	54.545	63.636	54.545	27.273	45.455	27.273	27.273	45.455	27.273
Success D	83.333	100	100	100	100	100	100	100	100
TOTAL	57.778	82.222	85.556	71.111	71.111	68.889	68.889	71.111	68.889

filling 4x4

filling 4x4

TO DO

- Get more samples of C and D (igualar a A y B)
- Test other clustering
- Modify GT based on intra/inter distances
- Extract error clusterings (for each predicted cluster, compute numbers of samples misclassified)
- Paper Arnau