МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

Кафедра систем штучного інтелекту

Лабораторна робота №1 з дисципліни «Дискретна математика»

Виконала:

студентка групи КН-112 Максимець Віра

Викладач:

Мельникова H. I.

Тема: Моделювання основних логічних операцій.

Мета: Ознайомитись на практиці із основними поняттями математичної логіки, навчитись будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинностні значення таблицями істинності, використовувати закони алгебри логіки, освоїти методи доведень.

Варіант № 10

- 1. Формалізувати речення. Якщо не можеш визнати притензії заслуженими, то вважай що тебе не дооцінили.
- 2. Побудувати таблицю істинності для висловлювань:

$$(x \Leftrightarrow \overline{(y \land z)}) \Leftrightarrow (x \Leftrightarrow (y \land z))$$

- 3. Побудовою таблиць істинності вияснити, чи висловлювання є тавтологією або протиріччям: $(\overline{(p \wedge q)} \vee (\overline{q} \wedge \overline{r})) \vee \overline{(p \vee r)}$.
- 4. За означенням без побудови таблиць істинності та виконання еквівалентних перетворень перевірити, чи є тавтологією висловлювання:

$$(((p \rightarrow q) \rightarrow p) \land ((\neg (p \rightarrow q)) \rightarrow r)) \rightarrow (p \rightarrow q).$$

- 5. Довести, що формули еквівалентні: $(q \lor r \land p)$ та $(q \rightarrow r \lor p)$
- 6. Написати на будь-якій відомій студентові мові програмування програму для реалізації програмного визначення значень таблиці істиності логічних висловлювань при різних інтерпретаціях, для формули.
 - p визнати притензії заслуженими
 q тебе не дооцінили.

Розв'язок: (¬р)→q

2.

X	У	Z	<i>y</i> ∧ <i>z</i>	$\neg(y \land z)$	$x \leftrightarrow (\neg(y \land z))$	$x \leftrightarrow (y \land z)$	F
0	0	0	0	1	0	1	0
0	0	1	0	1	0	1	0
0	1	0	0	1	0	1	0
1	0	0	0	1	1	0	0
0	1	1	1	0	1	0	0
1	0	1	0	1	1	0	0
1	1	0	0	1	1	0	0
1	1	1	1	0	0	1	0

3. 3 7 4 6 5 9 8 1 2
$$\left(\overline{(p \wedge q)} \vee (\overline{q} \wedge \overline{r})\right) \vee \overline{(p \vee r)}. \qquad \overline{(p \wedge q)} \qquad (p \vee r)$$

р	q	r	1	2	3	4	5	6	7	8	9
0	0	0	0	0	1	1	1	1	1	1	1
0	0	1	0	1	1	1	0	0	1	0	1
0	1	0	0	0	1	0	1	0	1	1	1
0	1	1	0	1	1	0	0	0	1	0	1
1	0	0	0	1	1	1	1	1	1	0	1
1	0	1	0	1	1	1	0	0	1	0	1
1	1	0	1	1	0	0	1	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0

Висловлювання не є ні тавтологією, ні протиріччям.

4. Доведемо від протилежного: припустимо, що це висловлювання не є тавтологією, а, отже, хоча б раз набуває значення False.

$$(((p \rightarrow q) \rightarrow p) \land ((\neg (p \rightarrow q)) \rightarrow r)) \rightarrow (p \rightarrow q)$$
. = False

Імплікація стає хибною, тільки тоді, коли з True випливає False. Тобто:

1.
$$(((p \rightarrow q) \rightarrow p) \land ((\neg (p \rightarrow q)) \rightarrow r))$$
 = True

2.
$$(p \rightarrow q)$$
 = False

У 2-му висловлюванні ми бачимо, що імплікація = False. Це можливо, якщо із істинного літерала випливає хибний, тобто:

p = True

q = False

Замінимо ці літерали на відповідні значення:

$$((\overline{T} \to \overline{F}) \to T) \land ((\overline{T \to F}) \to r = T$$

Значення $((\overline{T} \to \overline{F}) \to T)$ = True і $(\overline{T \to F})$ = True. Якщо в операції кон'юнкції обидва літерали = True, то відповідно r набуває значення True.

Отже, у висловлюванні 1. $T \to T$ =T, а у висловлюванні 2. $(T \to F) = F$, що є правильно. Дані висловлювання пов'язані операцією імплікації: $T \to F = F$

Висновок: ми довели, що дане висловлювання може набувати хибного значення, тому воно не є тавтологією.

 Для доведення еквівалентності формул (q ∨ r ∧ p) та (q→r ∨ p), побудуємо таблиці істинності.

q	r	p	q V r	q∨r∧p	q→r	q→r V p
0	0	0	0	1	1	1
0	0	1	0	0	1	1
0	1	0	1	0	1	1
0	1	1	1	1	1	1
1	0	0	1	0	0	0
1	0	1	1	1	0	1
1	1	0	1	0	1	1
1	1	1	1	1	1	1

Згідно з таблицею, дані вирази є різні, тому довести їхню еквівалентність неможливо.

6. Дане висловлювання є тавтологією, отже, для усіх комбінацій значень х, у і z є хибним.

Код програми:

```
#include <stdio.h>
                                                                                  else if ((x==1) && (y==1) && (z==0))
 1
                                                                           32
 2
       #include <stdlib.h>
                                                                           33
                                                                                         printf("False");
 3
                                                                           34
       int main()
 4
                                                                           35
                                                                                     else if ((x==1) && (y==0) && (z==1))
    = { int x;
                                                                           36
         int y;
                                                                            37
                                                                                         printf("False");
 7
         int z;
                                                                           38
8
       //User must enter the value 0 or 1.
                                                                                     else if ((x==0) && (y==1) && (z==1))
                                                                            39
 9
         printf("Enter x: ");
                                                                            40
10
         scanf ("%d", &x);
                                                                            41
                                                                                         printf("False");
         if ((x!=0)&&(x!=1))
11
                                                                            42
12
         {printf("\n You are allowed to enter 0 or 1. Enter x: ");
                                                                            43
                                                                                     else if ((x==1) && (y==0) && (z==0))
13
         scanf("%d", &x);};
                                                                            44
14
                                                                                         printf("False");
15
         printf("\n Enter y: ");
                                                                            45
                                                                            46
16
         scanf ("%d", &y);
                                                                                     else if ((x==0) && (y==1) && (z==0))
17
         if ((y!=0) && (y!=1))
                                                                            48
         {printf("\n You are allowed to enter 0 or 1. Enter y: ");
18
                                                                            49
                                                                                         printf("False");
19
         scanf("%d", &y); };
                                                                            50
20
                                                                            51
                                                                                     else if ((x==0) && (y==0) && (z==1))
         printf("\n Enter z: ");
21
22
         scanf ("%d", &z);
                                                                            52
                                                                            53
                                                                                         printf("False");
23
          if ((z!=0)&&(z!=1))
24
         {printf("\n You are allowed to enter 0 or 1. Enter z: ");
                                                                            55
                                                                                     else if ((x==0) && (y==0) && (z==0))
25
         scanf("%d",&z);};
                                                                            56
26
                                                                            57
                                                                                         printf("False");
27
         if ((x==1) && (y==1) && (z==1))
                                                                            58
28
                                                                           59
                                                                                     return 0:
29
              printf("False");
                                                                            60
30
       else if ((x==1) && (y==1) && (z==0))
31
```

```
"C:\Users\User_2\Desktop\!—wë Lab1\яЁюуЁрьр\bin\Debug\Project77.exe"

Enter x: 4

You are allowed to enter 0 or 1. Enter x: 1

Enter y: 0

Enter z: 0

False
Process returned 0 (0x0) execution time : 6.768 s

Press any key to continue.
```

Висновок

Я ознайомилась на практиці із основними поняттями математичної логіки, навчилась будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинностні значення таблицями істинності, використовувати закони алгебри логіки, освоїти методи доведень.