概率论与数理统计 B (56 学时) 综合练习二

(建议复习完再做题,模拟期末考,闭卷,答题时间控制在1个半小时内)

班级	学号	姓名	成绩	
一、填空(每题2分1、烧中有红球4日。	,共 10 分) 黑球 3 只, 不放回地从中仨	11取 2 日 同1文:	2 日球的颜色不相同的	概玄竿干
	是 $P(AB) = P(\overline{A} \cap \overline{B})$ 且			
	$\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, r\right)$			
4. 已知 <i>X</i> 的概率密度	度函数 $f_X(x) = \frac{1}{2}e^{- x }$,贝	$\Psi Y = 3X$ 的概图	奉密度函数 $f_{Y}(y) =$	°
5. 设总体 <i>X</i> 服从参数	之 女为 2 的泊松(Poisson)分布	\vec{i} , (X_1, \dots, X_8)	\mathbf{L} 是来自总体 X 的容量	为 8 的样本, \overline{X}
是样本均值,那么	$\leq E(\overline{X})^2 = \underline{\hspace{1cm}}$			
二、单项选择题(每		0 r<0		
1. 设连续型随机变量	$\frac{1}{2}X$ 的分布函数 $F(x) = \begin{cases} x \\ 0 \end{cases}$	$kx + b , 0 \le x$ $1 , x > \pi$	r ≤ π ,则以下正确的?	答案是。
A. $b = 1, k = \pi$; B. $b=1/\pi, k=0$;	C. $b = 0, k = 0$	$=1/\pi$; D. $b=\pi,k$	=1
2. 设 $X \sim N(3, \sigma^2)$,	$P{3 < X < 4} = 0.4$,则	$P\{X \le 2\} = \underline{\hspace{1cm}}$	· · · · · · · · · · · · · · · · · · ·	
A. 0.1 ;	B. 0.2 ; C.	0.3;	D. 0.9	
	=4 , <i>Y</i> 的方差 <i>DY</i> =1	, <i>X</i> 和 <i>Y</i> 相 <i>i</i>	た系数 $\rho_{xy}=0.6$, 则 3	3X-2Y 的方差
	· · · · · · · · · · · · · · · · · · ·			
	B. 24; C. 17.6			
4. 什平(<i>A</i> ₁ , <i>A</i> ₂ , <i>A</i> ₃)不上	目总体 X , X 的期望 $EX=\mu$,	4		
A. $X_1+X_2+X_3 \not\equiv \mu$	的无偏估计;	B. $\frac{1}{3}(X_1)$	$+X_2+X_3$) 是 μ 的无偏	估计;
C. $X_1^2 + X_2^2 + X_3^2$	是 み 的 无偏估计;	D. $\left(\frac{X_1+X_2-X_3}{X_1+X_2-X_3}\right)$	$\left(\frac{X_2 + X_3}{3}\right)^2$ 是 σ^2 的无	偏估计
5. 设 X_1, X_2, X_3 相互	独立, $X_i \sim N(0,1)$, $i =$	$=1,2,3$. 则 $\frac{}{\sqrt{X_2}}$	$\frac{\overline{2}X_1}{\frac{2}{2} + X_3^2}$ 服从	分布。
A. $t(3)$;	B. $t(2)$; C. χ	F(3); D. $F(1)$.,2)	

三、(8分)一个车间由甲、乙两台机床加工同种零件。甲机床加工的零件出现废品的概率为0.03, 乙机床加工的零件出现废品的概率为0.02,已知甲机床加工的零件数量是乙机床加工的零件数量的 两倍,加工出来的零件放在一起。现从该车间任抽取一个零件,(1)求该零件为废品的概率;

(2) 若已知抽取到的该零件为废品, 求该零件为乙机床加工的概率。

四、(12 分) 设二维随机变量 (X, Y) 的分布律如下表所示。(1) 求 X 和 Y 各自的边缘分布律;

- (2) 求 EX, EY, E(XY), 以及 X 和 Y 的协方差 COV(X,Y), 并且判断 X 和 Y 是否相关;
- (3) 求X+Y的分布律。

五、(10 分) 设随机变量 X 的概率密度函数为 $f_X(x) = \begin{cases} Cx^2, 0 \le x \le 1 \\ 0 其它 \end{cases}$

(1) 求常数 C ; (2) 求 X 的分布函数 F(x) ; (3) 求常数 m , 使 $P\{X>m\}=P\{X< m\}$ 。

六、(12 分)设二维连续型随机变量(X,Y)的联合密度函数为

$$f(x,y) = \begin{cases} 2, & 0 < x < 1, & 0 < y < x \\ 0, & 其它 \end{cases}$$
 , (1) 求 X 和 Y 各自的边缘密度函数 $f_X(x)$, $f_Y(y)$;

(2) 判断 X与Y 是否独立; (3) 计算概率 $P{Y > X^2}$ 。

七、(8分)某保险公司多年的统计资料表明,在索赔户中被盗索赔户占20%,随机抽查100户。利 用中心极限定理求被盗索赔户不少于 10 户且不多于 30 户的概率。 ($\Phi(2.5) = 0.9938$)

八、 $(10\, \text{分})$ 设 X_1, X_2, \cdots, X_n 为来自总体 X 的一个样本,且 X 的密度函数 $f(x) = \begin{cases} \theta e^{-\theta x}, & x > 0 \\ 0, &$ 其它, 其中未知参数 $\theta > 0$ 。(1) 求参数 θ 的矩估计量:(2) 求参数 θ 的极大似然估计量。

九、(10 分) 某工厂生产一批滚珠, 其直径 X 服从正态分布 $N(\mu, \sigma^2)$, 现从某天的产品中随机抽取 6 件,测得直径(单位: 厘米)为 15.1 , 14.8 , 15.2 , 14.9 , 14.6 , 15.1 。 (1) 求 μ 的置信 度为 0.95 的置信区间: (2) 求 σ^2 的置信度为 0.95 的置信区间。

 $(t_{0.025}(5) = 2.5706, \quad \chi_{0.025}^2(5) = 12.833, \quad \chi_{0.025}^2(5) = 0.831)$

十、(10 分) 分别用甲、乙两个不同的计算机系统检索 10 个资料, $\bar{x_1}$, $\bar{x_2}$ 分别是甲系统和乙系统检索时间 (单位: 秒) 的样本均值, s_1^2 , s_2^2 分别为甲系统和乙系统检索时间的样本方差。测量得 $\bar{x_1}=3.097, \ \bar{x_2}=3.179, \ s_1^2=2.67, \ s_2^2=1.21$,假定检索时间服从正态分布。在显著水平 $\alpha=0.05$ 下,(1) 检验甲、乙两系统检索时间的方差是否有显著差别;(2) 检验甲、乙两系统检索时间的均值是否有显著差别。

 $(F_{0.975}(9, 9) = 0.248, F_{0.025}(9, 9) = 4.03, t_{0.025}(18) = 2.101)$