

CLAIMS

1. A piezoelectric ceramics having ceramic particles, wherein:

5 said ceramic particles comprises
 bismuth layer compound containing at least Sr,
 Ln (note that Ln is a lanthanoid element), Bi, Ti and O
 and including $M^{II}Bi_4Ti_4O_{15}$ type crystal (M^{II} is an element
 composed of Sr and Ln) as a main component, and
10 an oxide of Mn as a subcomponent; and
 an average particle diameter by the code length
 measuring method is 0.8 to 4.7 μm .

2. The piezoelectric ceramics as set forth in
15 claim 1, wherein said $M^{II}Bi_4Ti_4O_{15}$ type crystal is
 expressed by a composition formula $(Sr_\alpha Ln_\beta)Bi_\gamma Ti_4O_{15}$, and
 "α" satisfies $\alpha = 1-\beta$, "β" satisfies $0.01 \leq \beta \leq 0.50$ and
 "γ" satisfies $3.80 \leq \gamma \leq 4.50$.

20 3. The piezoelectric ceramics as set forth in
 claim 1 or 2, wherein a content of said oxide of Mn is
 0.1 to 1.0 wt% in terms of MnO .

4. A piezoelectric element, comprising a
25 piezoelectric substance formed by the piezoelectric
 ceramics as set forth in any one of claims 1 to 3.

5. The piezoelectric element as set forth in
 claim 4, wherein a maximum value Q_{max} of "Q" ($Q = |X|/R$,
30 wherein "X" is reactance and "R" is resistance) between a

resonant frequency and an antiresonant frequency with respect to a third harmonic wave of thickness vertical vibration at 24 MHz is 8 or larger.

5 6. A piezoelectric ceramics having ceramic particles, wherein:

 said ceramic particles comprises

 bismuth layer compound containing at least Ca,
 Ln (note that Ln is a lanthanoid element), Bi, Ti and O
10 and including $M^{II}Bi_4Ti_4O_{15}$ type crystal (M^{II} is an element composed of Ca and Ln) as a main component, and
 an oxide of Mn as a subcomponent; and
 an average particle diameter by the code length measuring method is 1.0 to 4.5 μm .

15

7. The piezoelectric ceramics as set forth in claim 6, wherein said $M^{II}Bi_4Ti_4O_{15}$ type crystal is expressed by a composition formula $(Ca_{1-\beta}Ln_\beta)Bi_yTi_4O_{15}$, and "β" satisfies $0.01 \leq \beta \leq 0.5$ and "γ" satisfies $3.80 \leq \gamma \leq 20$ 4.20.

25

8. The piezoelectric ceramics as set forth in claim 6 or 7, wherein a content of said oxide of Mn is 0.1 to 1.0 wt% in terms of MnO .

9. A piezoelectric element, comprising a piezoelectric substance formed by the piezoelectric ceramics as set forth in any one of claims 6 to 8.

30

10. The piezoelectric element as set forth in

claim 9, wherein a maximum value Q_{\max} of "Q" ($Q = |X|/R$, wherein "X" is reactance and "R" is resistance) between a resonant frequency and an antiresonant frequency with respect to a third harmonic wave of thickness vertical
5 vibration at 60 MHz is 6 or larger.

11. A piezoelectric ceramics having ceramic particles, wherein:

said ceramic particles comprises

10 bismuth layer compound containing at least Ba, Sr, Ln (note that Ln is a lanthanoid element), Bi, Ti and O and including $M^{II}Bi_4Ti_4O_{15}$ type crystal (M^{II} is an element composed of Ba, Sr and Ln) as a main component, and

15 an oxide of Mn and an oxide of Ge as a subcomponent; and

an average particle diameter by the code length measuring method is 0.4 to 3.2 μm .

20 12. The piezoelectric ceramics as set forth in claim 11, wherein

said $M^{II}Bi_4Ti_4O_{15}$ type crystal is expressed by a composition formula $(Ba_{1-\alpha-\beta}Sr_\alpha Ln_\beta)Bi_\gamma Ti_4O_{15}$, and

25 "α" satisfies $0.1 \leq \alpha \leq 0.6$, "β" satisfies $0.05 \leq \beta \leq 0.5$ and "γ" satisfies $3.90 \leq \gamma \leq 4.30$ in said composition formula.

13. The piezoelectric ceramics as set forth in claim 11 or 12, wherein

30 a content of said oxide of Mn is 0.1 to 1.0 wt% in

terms of MnO₂, and

a content of said oxide of Ge is 0.05 to 0.5 wt% in terms of GeO₂.

5 14. A piezoelectric element, comprising a piezoelectric substance formed by the piezoelectric ceramics as set forth in any one of claims 11 to 13.

10 15. The piezoelectric element as set forth in claim 14, wherein a maximum value Q_{max} of "Q" ($Q = |X|/R$, wherein "X" is reactance and "R" is resistance) between a resonant frequency and an antiresonant frequency with respect to the fundamental wave of thickness-shear vibration at 8 MHz is 23 or larger.