

第八章 二重积分

【考试要求】

- 1. 理解二重积分的概念,了解二重积分的基本性质,了解二重积分的中值定理.
- 2. 掌握二重积分的计算方法(直角坐标、极坐标).
- 3. 了解无界区域上较简单的反常二重积分并会计算. (数三)

§1. 二重积分的概念

一、二重积分的定义

1.定义

设 f(x,y) 是闭区域 D 上的有界函数,将区域 D 任意分成 n 个小闭区域 $\Delta\sigma_1$, $\Delta\sigma_2$,… $\Delta\sigma_n$. 其中, $\Delta\sigma_i$ 既 表 示 第 i 个 小 区 域 ,也 表 示 它 的 面 积 .在 每 个 $\Delta\sigma_i$ 上 任 取 - 点 (ξ_i,η_i) , 作 乘 积 $f(\xi_i,\eta_i)\Delta\sigma_i(i=1,2\cdots,n)$,并作和式 $\sum_{i=1}^n f(\xi_i,\eta_i)\Delta\sigma_i$. 若 $\lambda\to 0$ 时,极限 $\lim_{\lambda\to 0}\sum_{i=1}^n f(\xi_i,\eta_i)\Delta\sigma_i$ 存在,其中 λ 为 n 个小闭区域的直径中的最大值,则称此极限值为函数 f(x,y) 在区域 D 上的二重积分,记作 $\iint_{\Omega} f(x,y)\,\mathrm{d}\sigma$,即

$$\iint_{D} f(x, y) d\sigma = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}, \eta_{i}) \Delta \sigma_{i}$$

其中: f(x,y)称之为被积函数, f(x,y)d σ 称之为被积表达式, d σ 称之为面积元素, x,y称之为积分变量, D称之为积分区域, $\sum_{i=1}^n f(\xi_i,\eta_i)\Delta\sigma_i$ 称之为积分和式.

2. 几何意义: 若 $f(x,y) \ge 0$,二重积分表示以f(x,y)为曲顶,以D为底的曲顶柱体的体积.

3. **存在性定理**: f(x,y) 在闭区域 D 上连续,则 f(x,y) 在 D 上的二重积分存在.

二、二重积分的性质

1. 线性性质

$$\iint_{D} [\alpha f(x, y) + \beta g(x, y)] d\sigma = \alpha \iint_{D} f(x, y) d\sigma + \beta \iint_{D} g(x, y) d\sigma$$

2. 积分区域的可加性

若区域 D 可分为两个部分区域 D_1, D_2 ,则

$$\iint_{D} f(x, y) d\sigma = \iint_{D_{1}} f(x, y) d\sigma + \iint_{D_{2}} f(x, y) d\sigma.$$

3. 若f(x,y)=1, S_D 为区域D的面积,则 $\iint_D 1 d\sigma = S_D$.

4. 若在D上, $f(x,y) \leqslant g(x,y)$,则有不等式

$$\iint\limits_{D} f(x, y) d\sigma \leqslant \iint\limits_{D} g(x, y) d\sigma,$$

特别地,

$$\left| \iint_{D} f(x, y) d\sigma \right| \leqslant \iint_{D} |f(x, y)| d\sigma.$$

5. 估值不等式

设M与m分别是f(x,y)在闭区域D上最大值M和最小值m, σ 是D的面积,则

$$m\boldsymbol{\sigma} \leqslant \iint_D f(x, y) d\boldsymbol{\sigma} \leqslant M\boldsymbol{\sigma}$$

三、二重积分中值定理

设函数 f(x,y) 在闭区域 D 上连续, S_D 是 D 的面积,则在 D 上至少存在一点 (ξ,η) ,使得 $\iint_D f(x,y) \mathrm{d}\sigma = f\left(\xi,\eta\right) S_D \, .$

【例 8. 1】设 $D = \{(x,y) | x^2 + y^2 \le 1\}$,比较下面三个二重积分的大小:

$$I_1 = \iint_D \sqrt{x^2 + y^2} d\sigma$$
, $I_2 = \iint_D (x^2 + y^2) d\sigma$, $I_3 = \iint_D (x^2 + y^2)^2 d\sigma$.

【例 8. 2】二重积分 $I_i = \iint_{D_i} \sqrt{1-x^2-y^2} d\sigma, i = 1,2,3,4$ $D_i = \left\{ (x,y) \middle| x^2 + y^2 \leqslant \frac{1}{i} \right\}$,则下列积分中,最大

的是().

- (A) I_1 (B) I_2 (C) I_3

(D) I_4

【例 8. 3】设 g(x) 有连续的导数, g(0)=0 , $g'(0)=a\neq 0$, f(x,y) 在点(0,0) 的某邻域内连续,

则
$$\lim_{r \to 0^+} \frac{\iint\limits_{x^2 + y^2 \leqslant r^2} f(x, y) dx dy}{g(r^2)} = () .$$

(A)
$$\frac{f(0,0)}{a}$$
.

(B)
$$\frac{f(0,0)}{2a}$$
.

(c)
$$\frac{\pi}{a} f(0,0)$$
.

(A)
$$\frac{f(0,0)}{a}$$
. (B) $\frac{f(0,0)}{2a}$. (C) $\frac{\pi}{a}f(0,0)$. (D) $\frac{\pi}{2a}f(0,0)$.

§2.二重积分的计算

一、二重积分在直角坐标系中的计算

1. 积分区域 D 为 X 型区域

若积分区域 D 可以用不等式 $a \le x \le b$, $\varphi_1(x) \le y \le \varphi_2(x)$ 表示,则称区域 D 为 X 型区域. 此时二重积分可化为:

$$\iint_{D} f(x, y) d\sigma = \int_{a}^{b} dx \int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x, y) dy$$

2. 积分区域 D 为 Y 型区域

若积分区域 D 可以用不等式 $c \le y \le d$, $\varphi_1(y) \le x \le \varphi_2(y)$ 表示,则称区域 D 为 Y 型区域。此时二重积分可化为:

$$\iint_{D} f(x,y) d\sigma = \int_{c}^{d} dy \int_{\varphi_{1}(y)}^{\varphi_{2}(y)} f(x,y) dx.$$

新<u>汽</u>大学生学习与发展中心 南京分中<u>心</u>考研项目部

【例 8. 4】计算 $\int_D (x+y) \mathrm{d}x \mathrm{d}y$,其中区域 D 是由 x+y=1 与 \mathcal{X} 轴、 \mathcal{Y} 轴所围成的区域.

【例 8.5】计算 $\iint_D xy dx dy$, 其中 D 是由抛物线 $y^2 = x$ 及 y = x - 2 所围成的区域.

二、二重积分在极坐标中的计算

设积分区域 D 可表示成: $\alpha \leqslant \theta \leqslant \beta, r_1(\theta) \leqslant r \leqslant r_2(\theta)$, 其中函数 $r_1(\theta)$, $r_2(\theta)$ 在 $[\alpha, \beta]$ 上连续. 则

$$\iint_{D} f(x, y) d\sigma = \int_{\alpha}^{\beta} d\theta \int_{\varphi_{l}(\theta)}^{\varphi_{2}(\theta)} f(r \cos \theta, r \sin \theta) r dr.$$

【注】极坐标与直角坐标的关系如下:

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ dxdy = rdrd\theta \end{cases}$$

【例 8. 6】计算 $\iint_D x dx dy$, 区域 D 分别为如下区域:

$$(1)$$
 由 $x^2 + y^2 = 1$ 所围成的区域.

(1) 由
$$x^2 + y^2 = 1$$
 所围成的区域. (2) 由 $x^2 + y^2 = 2x(y \ge 0)$ 与 x 轴围成的区域.

(3)
$$D = \{(x, y) | x^2 + y^2 \le 4, x^2 + y^2 \ge 2y, x \ge 0, y \ge 0\}$$

【例 8. 7】计算 $\iint_D y dx dy$,其中区域 D 是由 x = -2, y = 0, y = 2 以及 $x = -\sqrt{2y - y^2}$ 所围成的区 域.

三、无界区域上的二重积分(数学三)

一般原理:用有界区域上的二重积分取极限来定义无界区域上的二重积分.

设函数 f(x,y) 在无界区域 D 上有定义,且在区域 D 的任何有界部分上 f(x,y) 的二重积分存在, 则函数 f(x,y) 在无界区域 D 上的二重积分 $\iint_D f(x,y) d\sigma = \lim_{D_\Gamma \to D} \iint_{D_\Gamma} f(x,y) d\sigma$.

【例 8. 8】计算二重积分 $\iint_D \mathrm{e}^x xy \mathrm{d}x \mathrm{d}y$,其中 D 是以曲线 $y = \sqrt{x}$, $y = \frac{1}{\sqrt{x}}$ 及 y 轴为边界的无界区域.

§3. 二重积分的对称性

一、二重积分的奇偶对称性

1. 设 f(x, y) 在有界闭区域 D 上连续,若 D 关于 X 轴对称,则

$$\iint_{D} f(x,y) dxdy = \begin{cases} 0, & f(x,y) 美于 y 为奇函数, \\ 2\iint_{D_{1}} f(x,y) dxdy, & f(x,y) 美于 y 为偶函数. \end{cases}$$

其中 D_1 为D在X轴上半平面部分.

2. 设 f(x, y) 在有界闭区域 D 上连续,若 D 关于 Y 轴对称,则

$$\iint_{D} f(x,y) dxdy = \begin{cases} 0, & f(x,y) 美于 x 为奇函数, \\ 2\iint_{D_{2}} f(x,y) dxdy, & f(x,y) 美于 x 为偶函数. \end{cases}$$

其中 D_2 为D在Y轴的右半平面部分.

【例 8. 9】 (1) 已知 $D = \{(x, y) | y \ge -x, y \le x, x \le 1\}$, 计算 $\int_{D} e^{x} \sin y dx dy$; (2) 已知 $D = \{(x, y) | x^{2} + y^{2} \le 2y\}$, 计算 $\int_{D} x^{3} y^{2} dx dy$.

【例 8. 10】设区域 $D = \{(x,y) | x^2 + y^2 \le 1, x \ge 0\}$,计算二重积分

$$I = \iint_D \frac{1 + xy}{1 + x^2 + y^2} \mathrm{d}x \mathrm{d}y \ .$$

【例 8. 11】求二重积分
$$\iint_D y \left[1 + x e^{\frac{1}{2}(x^2 + y^2)}\right] dx dy$$
 的值,其中 D 是由直线 $y = x, y = -1, x = 1$ 围成

的平面区域.

二、二重积分的轮换对称性

设 f(x,y) 在有界闭区域 D 上连续,若 D 关于直线 y=x 对称,则

$$\iint_{D} f(x, y) dxdy = \iint_{D} f(y, x) dxdy.$$

【例 8. 12】已知区域 D 是由圆 $x^2 + y^2 = 4$ 在第一象限所围的部分,计算 $\int_D \frac{x}{x+y} dxdy$.

新东方 大学生学习与发展中心

【例 8. 13】 计算
$$I = \iint_D (x+y)^2 dxdy$$
, 其中 $D = \{(x,y) \mid -1 \leqslant x \leqslant 1, -1 \leqslant y \leqslant 1\}$.