Appendix IV Children excluded from school: Sheffield

Table AIV.1 Numbers of children excluded from school by ward: Sheffield. Ward number, observed number excluded; expected numbers based on average for the city times the number of children in the ward; deprivation index

1	1		
	1	5.130	-4.930
2	5	5.410	-0.040
3	13	5.510	1.180
4	0	2.910	-3.180
5	11	5.030	3.900
6	8	4.650	6.060
7	3	6.090	-2.960
8	10	6.070	0.640
9	1	4.880	-4.780
10	0	6.240	<i>−7.</i> 990
11	15	5.910	3.490
12	0	4.820	-7.170
13	3	4.500	-0.650
14	3	4.950	-0.280
15	7	4.940	-2.360
16	1	5.120	-0.710
17	5	3.810	6.010
18	2	9.930	-2.500
19	3	3.970	-2.520
20	14	5.020	3.540
21	4	2.550	3.490
22	4	3.900	1.860
23	4	4.600	2.060
24	6	4.490	4.280
25	3	4.140	3.850
26	13	5.300	5.580
27	1	6.560	-4.270
28	2	3.790	-2.790
29	2	3.740	-1.300

Table AIV.2 WinBUGS code for Poisson log-normal model with a single covariate and spatially structured (v[i]) and spatially unstructured (e[i]) random effects

```
model
     v[1:N] \sim \text{car.normal(adj[], weights[], num[], prec.v)}
     v.mean < -mean(v[])
for (i \text{ in } 1 : N) \{
             O[i] \sim dpois(mu[i])
             \log(\text{mu}[i]) < -\log(E[i]) + \text{beta0} + \text{beta1}^* x1[i] + v[i] + e[i] #x1:tdi
             e[i] \sim \text{dnorm}(0, \text{prec.e})
             R[i] < -\exp(beta0+beta1*x1[i]+v[i]+e[i])
           for (k \text{ in 1:sumNumNeigh}) \{ \text{weights}[k] < -1 \}
           # other priors
                beta0 ~ dflat()
                 beta1 \sim dnorm(0.0, 1.0E-5)
                 prec.v \sim dgamma (0.5,0.0005)
                                                                 # prior on spatially structured precision
                 v.v<-1/prec.v
                                                                 # spatially structured variance
                 sigma.v < -1/sqrt(prec.v)
                                                                 # spatially structured standard deviation
                 prec.e \sim dgamma(0.5, 0.0005)
                                                                 # prior on unstructured precision
                                                                 # unstructured variance
                 v.e < -1/prec.e
                 sigma.e <-sqrt(1 / prec.e)
                                                                 # unstructured standard deviation
                 }
```

Table AIV.3 Sample results from WinBUGS

NT - 1 - ----! ---! ---

A 5000 update burn in followed by a further 5000 updates with two chains gave the parameter estimates

Node s	Node statistics							
node	Mean	sd	MC error	2.5%	median	97.5%	start	sample
beta0	-0.2509	0.1213	0.003788	-0.5103	-0.243	-0.03141	5001	10000
beta1	0.1997	0.03112	8.243E-4	0.1434	0.198	0.267	5001	10000
prec.e	622.1	1159.0	61.68	3.522	135.7	4027.0	5001	10000
prec.v	1422.0	1811.0	102.2	2.105	765.3	6424.0	5001	10000
Summ	ary statistics							
	node	mean	sd	sample				
	R[1]	0.289	0.089	10000				
	R[2]	0.795	0.186	10000				
	R[29]	0.625	0.153	10000				
	v[1]	-0.041	0.142	10000				
	v[2]	-0.023	0.135	10000				
	v[29]	0.020	0.108	10000				
	e[1]	-0.017	0.201	10000				
	e[2]	0.025	0.176	10000				
	•							
	e[29]	-0.010	0.192	10000				

Table AIV.4 Area by area decomposition of the posterior mean of the relative risk of children excluded from school in Sheffield: Poisson log normal convolution prior

Ward No.	R_i^+ from WINBUGS	$\exp(\text{beta1*}\ X_1(i))^+$	$\exp(v(i))^+$	$\exp(e(i))^+$
1	0.289	0.374	0.960	0.983
2	0.795	0.992	0.977	1.025
3	1.352	1.266	1.105	1.195
4	0.394	0.530	0.957	0.951
5	1.879	2.179	1.043	1.044
6	2.366	3.354	0.971	0.910
7	0.471	0.554	1.034	1.016
8	1.052	1.136	1.033	1.124
9	0.299	0.385	0.961	0.985
10	0.157	0.203	0.955	0.960
11	1.926	2.008	1.084	1.111
12	0.189	0.239	0.980	0.964
13	0.686	0.878	0.978	0.996
14	0.715	0.946	0.962	0.981
15	0.644	0.624	1.087	1.164
16	0.620	0.868	0.961	0.920
17	2.257	3.321	0.951	0.889
18	0.430	0.607	0.937	0.926
19	0.494	0.605	0.969	1.043
20	2.002	2.028	1.096	1.126
21	1.588	2.008	0.995	0.999
22	1.105	1.450	0.966	0.988
23	1.183	1.509	1.028	0.958
24	1.694	2.351	0.955	0.946
25	1.484	2.157	0.949	0.901
26	2.505	3.048	1.044	0.995
27	0.346	0.426	1.039	0.958
28	0.489	0.573	1.035	1.010
29	0.625	0.771	1.020	0.990

 $^{^{+}}$ Calculation uses the posterior mean