GEOMETRIA 14 settembre 2012 – 2 ore

Istruzioni:

- Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi.
- Per ogni quiz nella prima parte, indicare l'affermazione giudicata corretta nella tabella in questa pagina.
- Trascrivere la risposta alle singole domande degli esercizi della seconda parte nelle pagine bianche alla fine di ogni esercizio.
- Per la brutta utilizzare i fogli distribuiti dal docente.

Cogno	OME,]	Nom	Е:										
Matri	COLA	:											
Docen	JTE:	_											
	Q1	a		b	С	d		Q9	a	b	С	d	
	Q2	a		b	С	d		Q10	a	b	С	d	
	Q3	a		b	С	d		Q11	a	b	С	d	
	Q4	a		b	С	d		Q12	a	b	С	d	
	Q5	a		b	С	d		Q13	a	b	С	d	
	Q6	a		b	С	d		Q14	a	b	С	d	
	Q7	a		b	С	d		Q15	a	b	С	d	
	Q8	a		b	С	d		Q16	a	b	С	d	
Non scriver	e in qu	iesto s	spazio		Г		7 [Г	
QUIZ	UIZ ESERCIZI										TO	TALE	

Quiz

Q1. Sia data l'applicazione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita da

$$f(x, y, z) = (x, x + y, x + y + z).$$

Quale delle seguenti affermazioni è vera?

- (a) f non è lineare.
- (b) L'immagine di f è contenuta nell'insieme $\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 17\}$.
- (c) f è lineare ed il suo nucleo ha dimensione 1.
- (d) f è lineare e la sua matrice rispetto alla base canonica è triangolare.
- **Q2.** Siano dati i seguenti vettori di \mathbb{R}^5 :

$$v_1 = (0, 2, -1, 3, 0), v_2 = (\sqrt{2}, 0, 1, 0, 1), v_3 = (\pi, 0, 0, e, \pi), v_4 = (\sqrt{2}, 4, -1, 6, 1).$$

Quale delle seguenti affermazioni è vera?

- (a) I vettori sono linearmente indipendenti.
- (b) v_3 appartiene al sottospazio generato da v_1 e v_2 .
- (c) $\dim(\mathcal{L}(v_1, v_2, v_3, v_4)) = 3$.
- (d) $\dim(\mathcal{L}(v_1, v_2, v_3, v_4)) = 5.$
- **Q3.** Sia dato il sistema lineare S: AX = B dove

$$A = \begin{pmatrix} 2 & 1 \\ -1 & 4 \\ 1 & 5 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

Quale delle seguenti affermazioni è vera?

- (a) Le soluzioni di S dipendono da un parametro libero.
- (b) S ha solo la soluzione nulla.
- (c) S ha una e una sola soluzione.
- (d) Il sistema *S* non ha soluzioni.
- Q4. Sia data la matrice

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix}.$$

- (a) $\det(3A) = 12$.
- (b) Esiste $B \in \mathbb{R}^{3,3}$ tale che AB = 8I (I denota la matrice identità).
- (c) $\det A^2 = 2 \det(A)$.
- (d) $\det(A^t A) = 0$.

Q5. Sia data la matrice

$$A = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 3 & 1 \end{pmatrix}$$

e sia

$$q(x, y, z) = \begin{pmatrix} x & y & z \end{pmatrix} A \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

la forma quadratica associata ad A.

Quale delle seguenti affermazioni è vera?

- (a) A ammette 1 + 3i come autovalore.
- (b) q(x, y, z) è definita.
- (c) A ha almeno un autovalore positivo.
- (d) A ha l'autovalore 1.
- **Q6.** Sia $A \in \mathbb{R}^{2,2}$ e si consideri l'applicazione $f : \mathbb{R}^{2,2} \to \mathbb{R}^{2,2}$ definita da f(X) = XA.

Quale delle seguenti affermazioni è vera?

- (a) f non è lineare.
- (b) f è un endomorfismo avente matrice in $\mathbb{R}^{3,3}$ rispetto ad una base opportuna.
- (c) f è lineare e la sua matrice rispetto a basi opportune è in $\mathbb{R}^{4,4}$.
- (d) Nessuna delle altre affermazioni è vera.
- **Q7.** Nello spazio siano dati i vettori $\vec{u} = 4\vec{i} + \vec{j} 3\vec{k}$ e $\vec{v} = \vec{i} \vec{j} + \vec{k}$.

Quale delle seguenti affermazioni è vera?

- (a) Il prodotto scalare di \vec{u} e \vec{v} è nullo.
- (b) \vec{u} e \vec{v} sono paralleli.
- (c) Il prodotto vettoriale di \vec{u} e \vec{v} è nullo.
- (d) L'angolo fra \vec{u} e \vec{v} è in $]\pi/2, \pi[$.
- **Q8.** Nello spazio sia dato il piano π di equazione 2x 3y + z + 4 = 0.

Quale delle seguenti affermazioni è vera?

(a) π contiene la retta

$$r: (x, y, z) = (t, t, t - 1).$$

- (b) π passa per il punto A di coordinate (2, -3, 1).
- (c) π interseca il piano z=0 in uno ed un solo punto.
- (d) π è ortogonale alla retta

$$s: (x, y, z) = (2t, \sqrt{5} - 3t, 100 + t).$$

Q9. Sia data la funzione $f: \mathbb{R}^2 \to \mathbb{R}$ definita da

$$f(x,y) = xe^{xy}$$
.

Sia poi $\mathscr{S} = \{ (x, y, f(x, y)) \mid (x, y) \in \mathbb{R}^2 \}$ il suo grafico.

Quale delle seguenti affermazioni è vera?

- (a) Il piano tangente a \mathcal{S} in (0,0,0) è parallelo al piano coordinato xy.
- (b) Il piano tangente a \mathcal{S} in (0,0,0) è parallelo all'asse delle z.
- (c) (0,0) è un punto stazionario di f.
- (d) f non ammette punti stazionari.
- **Q10.** Sia V un sottospazio di \mathbb{R}^4 con $\dim(V) = 2$.

Quale delle seguenti affermazioni è vera?

- (a) Esiste un sottospazio $W \subseteq \mathbb{R}^4$ di dimensione 2 tale che $\dim(V+W)=3$.
- (b) Esiste un sottospazio $W \subseteq \mathbb{R}^4$, di dimensione 3, tale che $V \cap W = \{ (0,0,0,0) \}$.
- (c) Per ogni sottospazio $W \subseteq \mathbb{R}^4$ di dimensione 2 si ha che $V + W = \mathbb{R}^4$.
- (d) Non esiste un sottospazio $W \subseteq \mathbb{R}^4$ di dimensione 2 tale che $\dim(V \cap W) = 1$.
- **Q11.** Sia *D* il dominio della funzione definita da

$$f(u,v) = \left(u^2, 2uv, \frac{u}{v}\right).$$

Quale delle seguenti affermazioni è vera?

- (a) D è aperto.
- (b) La matrice jacobiana di f in un punto $P \in D$ è in $\mathbb{R}^{2,3}$.
- (c) Esiste $P \in D$ tale che la matrice jacobiana di f in P sia nulla.
- (d) Non è possibile calcolare la matrice jacobiana di f, perché f non è lineare.
- **Q12.** Nello spazio sia data la curva γ di equazioni

$$(x, y, z) = (\cos t, \cos t, 2 + \sin t)$$

 $0 < t < 2\pi$.

- (a) γ giace su una sfera avente centro in (0,0,0).
- (b) γ non è una curva piana.
- (c) γ ammette retta tangente in ogni suo punto.
- (d) γ ha punti in comune con il piano coordinato xy.

Q13. Sia data la funzione $f(x,y) = \frac{1}{\sqrt{1-xy}}$ e sia D il suo dominio.

Quale delle seguenti affermazioni è vera?

- (a) D è aperto.
- (b) D è chiuso.
- (c) La frontiera di D è vuota.
- (d) D è limitato.
- **Q14.** Nello spazio sia $\vec{v}=3\vec{\imath}+2\vec{\jmath}-\vec{k}$ e sia $\mathcal{B}=(\vec{\imath}+\vec{\jmath},\vec{\imath}+\vec{k},\vec{\jmath}+\vec{k})$ una base dello spazio dei vettori applicati.

Quale delle seguenti affermazioni è vera?

- (a) Le componenti di \vec{v} rispetto alla base \mathcal{B} sono (3,0,-1).
- (b) Le componenti di \vec{v} rispetto alla base \mathcal{B} sono (3, 2, -1).
- (c) Le componenti di \vec{v} rispetto alla base $\mathcal B$ non si possono determinare.
- (d) Le componenti di \vec{v} rispetto alla base \mathcal{B} sono (0,0,0).
- **Q15.** Nello spazio sia data la quadrica $\mathcal Q$ di equazione

$$z = x^2 - 2y^2.$$

Quale delle seguenti affermazioni è vera?

- (a) \mathcal{Q} è un iperboloide.
- (b) \mathcal{Q} è un paraboloide.
- (c) L'intersezione di \mathcal{Q} con il piano x=1 è degenere.
- (d) 2 è un cono.
- **Q16.** Nello spazio sia data la sfera ${\mathscr S}$ di equazione

$$x^2 + y^2 + z^2 - 2x - 2z + 1 = 0.$$

- (a) La retta r di equazione (x, y, z) = (t, 0, t) passa per il centro di \mathscr{S} .
- (b) $(1, -1, 0) \in \mathscr{S}$.
- (c) La retta s di equazione (x, y, z) = (0, t, t) interseca \mathscr{S} .
- (d) \mathcal{S} ha raggio 2.

Esercizio 1. Per ogni $h \in \mathbb{R}$, sia $f_h: \mathbb{R}^4 \to \mathbb{R}^3$ l'applicazione lineare associata, rispetto alle basi canoniche, alla matrice

$$M_h = \begin{pmatrix} 2 & -1 & 3 & 0 \\ 1 & 1 & -1 & -1 \\ 4 & 1 & 1 & h \end{pmatrix}.$$

- (i) Determinare $\dim(\ker(f_h))$ al variare di $h \in \mathbb{R}$.
- (ii) Posto h=-2, determinare una base di $\ker(f_{-2})$.
- (iii) Posto h=-2, determinare una base di $\operatorname{Im}(f_{-2})$: è vero o falso che $(1,1,0) \not\in \operatorname{Im}(f_{-2})$?
- (iv) Spiegare perché $\mathscr{B}=((1,2,5),(3,-1,1))$ è base di $\mathrm{Im}(f_{-2}).$
- (v) Completare \mathscr{B} a una base di \mathbb{R}^3 .

Esercizio 2. Nello spazio sia data la superficie ${\mathscr S}$ di equazioni parametriche

$$\mathscr{S}: \left\{ \begin{array}{l} x=v+1+\cos u \\ y=-1-v+2\sin u \\ z=3v. \end{array} \right.$$

- (i) Verificare che il punto P di coordinate (4, -3, 6) appartiene a \mathscr{S} .
- (ii) Calcolare l'equazione del piano tangente a ${\mathscr S}$ nel punto corrispondente a u=0 e v=2.
- (iii) Nel piano xy sia data la conica $\mathscr C$ di equazione

$$4x^2 + y^2 - 8x + 2y + 1 = 0:$$

calcolare un'equazione canonica di \mathscr{C} .

(iv) Verificare che $\mathscr C$ è l'intersezione del piano xy con $\mathscr S.$

GEOMETRIA 14 settembre 2012 – 2 ore

Istruzioni:

- Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi.
- Per ogni quiz nella prima parte, indicare l'affermazione giudicata corretta nella tabella in questa pagina.
- Trascrivere la risposta alle singole domande degli esercizi della seconda parte nelle pagine bianche alla fine di ogni esercizio.
- Per la brutta utilizzare i fogli distribuiti dal docente.

Cogno	OME, Ì	Nom	Е:									
Matri	COLA	:										
Docen	NTE:	_										
	Q1	a		b	С	d	Q9	a	b	С	d	
	Q2	a		b	С	d	Q10	a	b	С	d	
	Q3	a		b	С	d	Q11	a	b	С	d	
	Q4	a		b	С	d	Q12	a	b	С	d	
	Q5	a		b	С	d	Q13	a	b	С	d	
	Q6	a		b	С	d	Q14	a	b	С	d	
	Q7	a		b	С	d	Q15	a	b	С	d	
	Q8	a		b	С	d	Q16	a	b	С	d	
Non scriver	e in qu	iesto s	spaz	rio	_		 				-	
QUIZ				ESE	RCIZI					TO	ΓALE	

Quiz

Q1. Nello spazio sia data la sfera ${\mathscr S}$ di equazione

$$x^2 + y^2 + z^2 - 3x - 2z + 1 = 0.$$

Quale delle seguenti affermazioni è vera?

- (a) La retta r di equazione (x, y, z) = (t, 0, t) passa per il centro di \mathscr{S} .
- (b) $(1,-1,0) \in \mathscr{S}$.
- (c) \mathcal{S} ha raggio 2.
- (d) La retta s di equazione (x, y, z) = (0, t, t) interseca \mathscr{S} .

Q2. Nello spazio sia data la quadrica \mathcal{Q} di equazione

$$z^2 = x^2 - 2y^2$$
.

Quale delle seguenti affermazioni è vera?

- (a) \mathcal{Q} è un iperboloide.
- (b) \mathcal{Q} è un paraboloide.
- (c) L'intersezione di \mathcal{Q} con il piano x=1 è degenere.
- (d) \mathcal{Q} è un cono.

Q3. Sia data la funzione $f: \mathbb{R}^2 \to \mathbb{R}$ definita da

$$f(x,y) = xe^{xy}$$
.

Sia poi $\mathscr{S}=\{\ (x,y,f(x,y))\ |\ (x,y)\in\mathbb{R}^2\ \}$ il suo grafico.

Quale delle seguenti affermazioni è vera?

- (a) *f* non ammette punti stazionari.
- (b) Il piano tangente a \mathcal{S} in (0,0,0) è parallelo all'asse delle z.
- (c) (0,0) è un punto stazionario di f.
- (d) Il piano tangente a \mathcal{S} in (0,0,0) è parallelo al piano coordinato xy.

Q4. Sia V un sottospazio di \mathbb{R}^4 con $\dim(V) = 2$.

- (a) Per ogni sottospazio $W \subseteq \mathbb{R}^4$ di dimensione 2 si ha che $V + W = \mathbb{R}^4$.
- (b) Non esiste un sottospazio $W \subseteq \mathbb{R}^4$ di dimensione 2 tale che $\dim(V+W)=3$.
- (c) Esiste un sottospazio $W \subseteq \mathbb{R}^4$ di dimensione 2 tale che $\dim(V \cap W) = 1$.
- (d) Esiste un sottospazio $W \subseteq \mathbb{R}^4$, di dimensione 3, tale che $V \cap W = \{ (0,0,0,0) \}$.

Q5. Sia data la funzione $f(x,y) = \sqrt{1-xy}$ e sia D il suo dominio.

Quale delle seguenti affermazioni è vera?

- (a) D è aperto.
- (b) D è chiuso.
- (c) La frontiera di D è vuota.
- (d) D è limitato.
- **Q6.** Sia *D* il dominio della funzione definita da

$$f(u,v) = \left(u^2, 2uv, \frac{u}{v}\right).$$

Quale delle seguenti affermazioni è vera?

- (a) D è chiuso.
- (b) Esiste $P \in D$ tale che la matrice jacobiana di f in P sia nulla.
- (c) Non è possibile calcolare la matrice jacobiana di f, perché f non è lineare.
- (d) La matrice jacobiana di f in un punto $P \in D$ è in $\mathbb{R}^{3,2}$.
- **Q7.** Nello spazio sia $\vec{v} = 5\vec{i} + 2\vec{j} + \vec{k}$ e sia $\mathcal{B} = (\vec{i} + \vec{j}, \vec{i} + \vec{k}, \vec{j} + \vec{k})$ una base dello spazio dei vettori applicati.

Quale delle seguenti affermazioni è vera?

- (a) Le componenti di \vec{v} rispetto alla base \mathcal{B} sono (5,2,1).
- (b) Le componenti di \vec{v} rispetto alla base \mathcal{B} non si possono determinare.
- (c) Le componenti di \vec{v} rispetto alla base \mathcal{B} sono (0,0,0).
- (d) Le componenti di \vec{v} rispetto alla base \mathcal{B} sono (3,2,-1).
- **Q8.** Nello spazio sia data la curva γ di equazioni

$$(x, y, z) = (2 + \sin t, \cos t, \cos t)$$

 $0 < t < 2\pi$.

- (a) γ ammette retta tangente in ogni suo punto.
- (b) γ ha punti in comune con il piano coordinato yz.
- (c) γ non è una curva piana.
- (d) γ giace su una sfera avente centro in (0,0,0).

Q9. Sia $A \in \mathbb{R}^{2,2}$ e si consideri l'applicazione $f : \mathbb{R}^{2,2} \to \mathbb{R}^{2,2}$ definita da f(X) = XA.

Quale delle seguenti affermazioni è vera?

- (a) f è lineare e la sua matrice rispetto a basi opportune è in $\mathbb{R}^{4,4}$.
- (b) f non è lineare.
- (c) Nessuna delle altre affermazioni è vera.
- (d) f è un endomorfismo avente matrice in $\mathbb{R}^{3,3}$ rispetto ad una base opportuna.

Q10. Sia data l'applicazione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita da

$$f(x, y, z) = (x + y + z, y + z, z).$$

Quale delle seguenti affermazioni è vera?

- (a) f è lineare ed il suo nucleo ha dimensione 1.
- (b) f è lineare e la sua matrice rispetto alla base canonica è triangolare.
- (c) L'immagine di f è contenuta nell'insieme $\{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 17\}$.
- (d) f non è lineare.

Q11. Nello spazio sia dato il piano π di equazione 2x - 3y + z + 1 = 0.

Quale delle seguenti affermazioni è vera?

- (a) π interseca il piano z=0 in uno ed un solo punto.
- (b) π contiene la retta

$$r: (x, y, z) = (t, t, t - 1).$$

- (c) π passa per il punto A di coordinate (2, -3, 1).
- (d) π è ortogonale alla retta

$$s: (x, y, z) = (2t, \sqrt{5} + 3t, 100 + t).$$

Q12. Sia data la matrice

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 3 & 1 \end{pmatrix}$$

e sia

$$q(x, y, z) = \begin{pmatrix} x & y & z \end{pmatrix} A \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

la forma quadratica associata ad *A*.

- (a) A ha almeno un autovalore negativo.
- (b) A ha l'autovalore 2.
- (c) q(x, y, z) è definita.
- (d) A ammette -2 + i come autovalore.

Q13. Sia data la matrice

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix}.$$

Quale delle seguenti affermazioni è vera?

- (a) $\det(A^t A) = 0$.
- (b) Esiste $B \in \mathbb{R}^{3,3}$, $B \neq 0$, tale che AB = 0 (0 denota la matrice nulla).
- (c) $\det(3A) = 12$.
- (d) $\det A^2 = 4 \det(A)$.

Q14. Sia dato il sistema lineare S: AX = B dove

$$A = \begin{pmatrix} 2 & 1 \\ -1 & 4 \\ 1 & 5 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}.$$

Quale delle seguenti affermazioni è vera?

- (a) Il sistema S non ha soluzioni.
- (b) S ha una e una sola soluzione.
- (c) S ha solo la soluzione nulla.
- (d) Le soluzioni di S dipendono da un parametro libero.

Q15. Siano dati i seguenti vettori di \mathbb{R}^5 :

$$v_1 = (0, 2, -1, 3, 0), v_2 = (\sqrt{2}, 0, 1, 0, 1), v_3 = (\pi, 0, 0, e, \pi), v_4 = (\sqrt{2}, 4, -1, 6, 1).$$

Quale delle seguenti affermazioni è vera?

- (a) $\dim(\mathcal{L}(v_1, v_2, v_3, v_4)) = 5$.
- (b) v_3 appartiene al sottospazio generato da v_1 e v_2 .
- (c) I vettori sono linearmente indipendenti.
- (d) $\dim(\mathcal{L}(v_1, v_2, v_3, v_4)) = 3.$

Q16. Nello spazio siano dati i vettori $\vec{u} = 3\vec{i} + \vec{j} - 3\vec{k}$ e $\vec{v} = \vec{i} - \vec{j} + \vec{k}$.

- (a) Il prodotto scalare di \vec{u} e \vec{v} è nullo.
- (b) Il prodotto vettoriale di \vec{u} e \vec{v} è nullo.
- (c) \vec{u} e \vec{v} sono paralleli.
- (d) L'angolo fra \vec{u} e \vec{v} è in $]\pi/2, \pi[$.

Esercizio 1. Nello spazio sia data la superficie ${\mathscr S}$ di equazioni parametriche

$$\mathscr{S}: \left\{ \begin{array}{l} x = -v + 1 - 2\cos u \\ y = 1 + v + \sin u \\ z = 2v. \end{array} \right.$$

- (i) Verificare che il punto P di coordinate (-4,4,6) appartiene a \mathscr{S} .
- (ii) Calcolare l'equazione del piano tangente a ${\mathscr S}$ nel punto corrispondente a u=0 e v=3..
- (iii) Nel piano xy sia data la conica $\mathscr C$ di equazione

$$x^2 + 4y^2 - 2x - 8y + 1 = 0:$$

calcolare un'equazione canonica di \mathscr{C} .

(iv) Verificare che $\mathscr C$ è l'intersezione del piano xy con $\mathscr S.$

Esercizio 2. Per ogni $k \in \mathbb{R}$, sia $f_k : \mathbb{R}^4 \to \mathbb{R}^3$ l'applicazione lineare associata, rispetto alle basi canoniche, alla matrice

$$M_k = \begin{pmatrix} 1 & 1 & -1 & 0 \\ 2 & -1 & 3 & 1 \\ 5 & -1 & 5 & k \end{pmatrix}.$$

- (i) Determinare $\dim(\ker(f_k))$ al variare di $k \in \mathbb{R}$.
- (ii) Posto k=2, determinare una base di $ker(f_2)$.
- (iii) Posto k=2, determinare una base di $\text{Im}(f_2)$: è vero o falso che $(1,1,0) \notin \text{Im}(f_2)$?
- (iv) Spiegare perché $\mathcal{B} = ((2,1,4),(-1,3,5))$ è base di $\operatorname{Im}(f_2)$.
- (v) Completare \mathscr{B} a una base di \mathbb{R}^3 .

GEOMETRIA 14 settembre 2012 – 2 ore

Istruzioni:

- Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi.
- Per ogni quiz nella prima parte, indicare l'affermazione giudicata corretta nella tabella in questa pagina.
- Trascrivere la risposta alle singole domande degli esercizi della seconda parte nelle pagine bianche alla fine di ogni esercizio.
- Per la brutta utilizzare i fogli distribuiti dal docente.

Cogno	OME, Ì	Nom	E: _										
Matricola:													
DOCENTE:													
	Q1	a	b	С	d	Q9	а	b	С	d			
	Q2	a	b	С	d	Q10	a	b	С	d			
	Q3	a	b	С	d	Q11	a	b	С	d			
	Q4	a	b	С	d	Q12	a	b	С	d			
	Q5	a	b	С	d	Q13	a	b	С	d			
	Q6	a	b	С	d	Q14	a	b	С	d			
	Q7	a	b	С	d	Q15	a	b	С	d			
	Q8	a	b	С	d	Q16	a	b	С	d			
Non scriver	e in qu	iesto s	spazio							г			
QUIZ			ES	SERCIZI	-				TO	TALE			

Quiz

Q1. Sia data la matrice

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix}.$$

Quale delle seguenti affermazioni è vera?

- (a) $\det(3A) = 12$.
- (b) $\det(A^t A) = 0$.
- (c) Esiste $B \in \mathbb{R}^{3,3}$ tale che AB = 8I (I denota la matrice identità).
- (d) $\det A^2 = 2 \det(A)$.

Q2. Sia data la funzione $f: \mathbb{R}^2 \to \mathbb{R}$ definita da

$$f(x,y) = xe^{xy}$$
.

Sia poi $\mathscr{S}=\{\,(x,y,f(x,y))\mid (x,y)\in\mathbb{R}^2\,\}$ il suo grafico.

Quale delle seguenti affermazioni è vera?

- (a) (0,0) è un punto stazionario di f.
- (b) *f* non ammette punti stazionari.
- (c) Il piano tangente a \mathcal{S} in (0,0,0) è parallelo al piano coordinato xy.
- (d) Il piano tangente a $\mathscr S$ in (0,0,0) è parallelo all'asse delle z.

Q3. Sia D il dominio della funzione definita da

$$f(u,v) = \left(u^2, 2uv, \frac{u}{v}\right).$$

Quale delle seguenti affermazioni è vera?

- (a) La matrice jacobiana di f in un punto $P \in D$ è in $\mathbb{R}^{2,3}$.
- (b) D è aperto.
- (c) Non è possibile calcolare la matrice jacobiana di f, perché f non è lineare.
- (d) Esiste $P \in D$ tale che la matrice jacobiana di f in P sia nulla.

Q4. Sia dato il sistema lineare S: AX = B dove

$$A = \begin{pmatrix} 2 & 1 \\ -1 & 4 \\ 1 & 5 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

- (a) Il sistema *S* non ha soluzioni.
- (b) S ha solo la soluzione nulla.
- (c) Le soluzioni di *S* dipendono da un parametro libero.
- (d) S ha una e una sola soluzione.

Q5. Sia V un sottospazio di \mathbb{R}^4 con $\dim(V) = 2$.

Quale delle seguenti affermazioni è vera?

- (a) Per ogni sottospazio $W \subseteq \mathbb{R}^4$ di dimensione 2 si ha che $V + W = \mathbb{R}^4$.
- (b) Esiste un sottospazio $W \subseteq \mathbb{R}^4$, di dimensione 3, tale che $V \cap W = \{ (0,0,0,0) \}$.
- (c) Non esiste un sottospazio $W\subseteq \mathbb{R}^4$ di dimensione 2 tale che $\dim(V\cap W)=1$.
- (d) Esiste un sottospazio $W \subseteq \mathbb{R}^4$ di dimensione 2 tale che $\dim(V+W)=3$.
- **Q6.** Nello spazio sia data la quadrica \mathcal{Q} di equazione

$$z = x^2 - 2y^2.$$

Quale delle seguenti affermazioni è vera?

- (a) \mathcal{Q} è un paraboloide.
- (b) L'intersezione di $\mathcal Q$ con il piano x=1 è degenere.
- (c) \mathcal{Q} è un iperboloide.
- (d) \mathcal{Q} è un cono.
- **Q7.** Sia data la funzione $f(x,y) = \frac{1}{\sqrt{1-xy}}$ e sia D il suo dominio.

Quale delle seguenti affermazioni è vera?

- (a) La frontiera di D è vuota.
- (b) D è limitato.
- (c) D è aperto.
- (d) D è chiuso.
- **Q8.** Nello spazio sia data la sfera ${\mathscr S}$ di equazione

$$x^2 + y^2 + z^2 - 2x - 2z + 1 = 0.$$

- (a) La retta s di equazione (x, y, z) = (0, t, t) interseca \mathscr{S} .
- (b) \mathcal{S} ha raggio 2.
- (c) La retta r di equazione (x, y, z) = (t, 0, t) passa per il centro di \mathscr{S} .
- (d) $(1, -1, 0) \in \mathscr{S}$.

Q9. Nello spazio sia dato il piano π di equazione 2x - 3y + z + 4 = 0.

Quale delle seguenti affermazioni è vera?

(a) π contiene la retta

$$r: (x, y, z) = (t, t, t - 1).$$

- (b) π interseca il piano z=0 in uno ed un solo punto.
- (c) π è ortogonale alla retta

$$s: (x, y, z) = (2t, \sqrt{5} - 3t, 100 + t).$$

(d) π passa per il punto A di coordinate (2, -3, 1).

Q10. Siano dati i seguenti vettori di \mathbb{R}^5 :

$$v_1 = (0, 2, -1, 3, 0), v_2 = (\sqrt{2}, 0, 1, 0, 1), v_3 = (\pi, 0, 0, e, \pi), v_4 = (\sqrt{2}, 4, -1, 6, 1).$$

Quale delle seguenti affermazioni è vera?

- (a) $\dim(\mathcal{L}(v_1, v_2, v_3, v_4)) = 5$.
- (b) v_3 appartiene al sottospazio generato da v_1 e v_2 .
- (c) $\dim(\mathcal{L}(v_1, v_2, v_3, v_4)) = 3$.
- (d) I vettori sono linearmente indipendenti.

Q11. Sia data la matrice

$$A = \begin{pmatrix} -2 & 0 & 0\\ 0 & 2 & 3\\ 0 & 3 & 1 \end{pmatrix}$$

e sia

$$q(x, y, z) = \begin{pmatrix} x & y & z \end{pmatrix} A \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

la forma quadratica associata ad *A*.

Quale delle seguenti affermazioni è vera?

- (a) A ammette 1 + 3i come autovalore.
- (b) A ha l'autovalore 1.
- (c) q(x, y, z) è definita.
- (d) *A* ha almeno un autovalore positivo.

Q12. Nello spazio sia data la curva γ di equazioni

$$(x, y, z) = (\cos t, \cos t, 2 + \sin t)$$

$$0 < t < 2\pi$$
.

- (a) γ non è una curva piana.
- (b) γ ammette retta tangente in ogni suo punto.
- (c) γ giace su una sfera avente centro in (0,0,0).
- (d) γ ha punti in comune con il piano coordinato xy.

Q13. Nello spazio sia $\vec{v} = 3\vec{i} + 2\vec{j} - \vec{k}$ e sia $\mathcal{B} = (\vec{i} + \vec{j}, \vec{i} + \vec{k}, \vec{j} + \vec{k})$ una base dello spazio dei vettori applicati.

Quale delle seguenti affermazioni è vera?

- (a) Le componenti di \vec{v} rispetto alla base \mathcal{B} sono (3, 2, -1).
- (b) Le componenti di \vec{v} rispetto alla base \mathcal{B} sono (3,0,-1).
- (c) Le componenti di \vec{v} rispetto alla base \mathcal{B} sono (0,0,0).
- (d) Le componenti di \vec{v} rispetto alla base \mathcal{B} non si possono determinare.
- **Q14.** Sia data l'applicazione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita da

$$f(x, y, z) = (x, x + y, x + y + z).$$

Quale delle seguenti affermazioni è vera?

- (a) f è lineare ed il suo nucleo ha dimensione 1.
- (b) L'immagine di f è contenuta nell'insieme $\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2+z^2\leq 17\}.$
- (c) f è lineare e la sua matrice rispetto alla base canonica è triangolare.
- (d) f non è lineare.
- **Q15.** Nello spazio siano dati i vettori $\vec{u} = 4\vec{i} + \vec{j} 3\vec{k}$ e $\vec{v} = \vec{i} \vec{j} + \vec{k}$.

Quale delle seguenti affermazioni è vera?

- (a) L'angolo fra \vec{u} e \vec{v} è in $]\pi/2, \pi[$.
- (b) Il prodotto scalare di \vec{u} e \vec{v} è nullo.
- (c) \vec{u} e \vec{v} sono paralleli.
- (d) Il prodotto vettoriale di \vec{u} e \vec{v} è nullo.
- **Q16.** Sia $A \in \mathbb{R}^{2,2}$ e si consideri l'applicazione $f : \mathbb{R}^{2,2} \to \mathbb{R}^{2,2}$ definita da f(X) = XA.

- (a) f è un endomorfismo avente matrice in $\mathbb{R}^{3,3}$ rispetto ad una base opportuna.
- (b) f è lineare e la sua matrice rispetto a basi opportune è in $\mathbb{R}^{4,4}$.
- (c) *f* non è lineare.
- (d) Nessuna delle altre affermazioni è vera.

Esercizio 1. Nello spazio sia data la superficie ${\mathscr S}$ di equazioni parametriche

$$\mathscr{S}: \left\{ \begin{array}{l} x = v + 1 + \cos u \\ y = -1 - v + 2\sin u \\ z = 3v. \end{array} \right.$$

- (i) Verificare che il punto P di coordinate (4, -3, 6) appartiene a \mathscr{S} .
- (ii) Calcolare l'equazione del piano tangente a $\mathscr S$ nel punto corrispondente a u=0 e v=2.
- (iii) Nel piano xy sia data la conica $\mathscr C$ di equazione

$$4x^2 + y^2 - 8x + 2y + 1 = 0:$$

calcolare un'equazione canonica di \mathscr{C} .

(iv) Verificare che $\mathscr C$ è l'intersezione del piano xy con $\mathscr S$.

Esercizio 2. Per ogni $h \in \mathbb{R}$, sia $f_h: \mathbb{R}^4 \to \mathbb{R}^3$ l'applicazione lineare associata, rispetto alle basi canoniche, alla matrice

$$M_h = \begin{pmatrix} 2 & -1 & 3 & 0 \\ 1 & 1 & -1 & -1 \\ 4 & 1 & 1 & h \end{pmatrix}.$$

- (i) Determinare $\dim(\ker(f_h))$ al variare di $h \in \mathbb{R}$.
- (ii) Posto h=-2, determinare una base di $\ker(f_{-2})$.
- (iii) Posto h=-2, determinare una base di $\operatorname{Im}(f_{-2})$: è vero o falso che $(1,1,0) \not\in \operatorname{Im}(f_{-2})$?
- (iv) Spiegare perché $\mathscr{B}=((1,2,5),(3,-1,1))$ è base di $\mathrm{Im}(f_{-2}).$
- (v) Completare \mathscr{B} a una base di \mathbb{R}^3 .

GEOMETRIA 14 settembre 2012 – 2 ore

Istruzioni:

- Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi.
- Per ogni quiz nella prima parte, indicare l'affermazione giudicata corretta nella tabella in questa pagina.
- Trascrivere la risposta alle singole domande degli esercizi della seconda parte nelle pagine bianche alla fine di ogni esercizio.
- Per la brutta utilizzare i fogli distribuiti dal docente.

Cognome	, Nоме:													
Matricola:														
DOCENTE:														
Q1	a	b	С	d	Q9	а	b	С	d					
Q2	a	b	С	d	Q10	a	b	С	d					
Q3	a	b	С	d	Q11	a	b	С	d					
Q4	а	b	С	d	Q12	a	b	С	d					
Q5	а	b	С	d	Q13	a	b	С	d					
Q6	а	b	С	d	Q14	a	b	С	d					
Q7	а	b	С	d	Q15	a	b	С	d					
Q8	а	b	С	d	Q16	a	b	С	d					
Non scrivere in o	questo spa	azio	_						_					
QUIZ		ESEI			TO	ΓALE								

Quiz

Q1. Nello spazio sia dato il piano π di equazione 2x - 3y + z + 1 = 0.

Quale delle seguenti affermazioni è vera?

(a) π contiene la retta

$$r: (x, y, z) = (t, t, t - 1).$$

- (b) π passa per il punto A di coordinate (2, -3, 1).
- (c) π è ortogonale alla retta

$$s: (x, y, z) = (2t, \sqrt{5} + 3t, 100 + t).$$

- (d) π interseca il piano z=0 in uno ed un solo punto.
- **Q2.** ia dato il sistema lineare S: AX = B dove

$$A = \begin{pmatrix} 2 & 1 \\ -1 & 4 \\ 1 & 5 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}.$$

Quale delle seguenti affermazioni è vera?

- (a) S ha una e una sola soluzione.
- (b) Le soluzioni di S dipendono da un parametro libero.
- (c) Il sistema *S* non ha soluzioni.
- (d) *S* ha solo la soluzione nulla.
- **Q3.** Sia data l'applicazione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita da

$$f(x, y, z) = (x + y + z, y + z, z).$$

Quale delle seguenti affermazioni è vera?

- (a) *f* non è lineare.
- (b) L'immagine di f è contenuta nell'insieme $\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2+z^2\leq 17\}.$
- (c) f è lineare e la sua matrice rispetto alla base canonica è triangolare.
- (d) f è lineare ed il suo nucleo ha dimensione 1.
- **Q4.** Siano dati i seguenti vettori di \mathbb{R}^5 :

$$v_1 = (0, 2, -1, 3, 0), v_2 = (\sqrt{2}, 0, 1, 0, 1), v_3 = (\pi, 0, 0, e, \pi), v_4 = (\sqrt{2}, 4, -1, 6, 1).$$

- (a) I vettori sono linearmente indipendenti.
- (b) $\dim(\mathcal{L}(v_1, v_2, v_3, v_4)) = 5.$
- (c) v_3 appartiene al sottospazio generato da v_1 e v_2 .
- (d) $\dim(\mathcal{L}(v_1, v_2, v_3, v_4)) = 3.$

Q5. Sia data la matrice

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix}.$$

Quale delle seguenti affermazioni è vera?

- (a) $\det A^2 = 4 \det(A)$.
- (b) det(3A) = 12.
- (c) Esiste $B \in \mathbb{R}^{3,3}$, $B \neq 0$, tale che AB = 0 (0 denota la matrice nulla).
- (d) $\det(A^t A) = 0$.

Q6. Nello spazio siano dati i vettori $\vec{u} = 3\vec{i} + \vec{j} - 3\vec{k}$ e $\vec{v} = \vec{i} - \vec{j} + \vec{k}$.

Quale delle seguenti affermazioni è vera?

- (a) \vec{u} e \vec{v} sono paralleli.
- (b) L'angolo fra \vec{u} e \vec{v} è in $]\pi/2, \pi[$.
- (c) Il prodotto vettoriale di \vec{u} e \vec{v} è nullo.
- (d) Il prodotto scalare di \vec{u} e \vec{v} è nullo.

Q7. Nello spazio sia data la curva γ di equazioni

$$(x, y, z) = (2 + \sin t, \cos t, \cos t)$$

$$0 < t < 2\pi$$
.

Quale delle seguenti affermazioni è vera?

- (a) γ giace su una sfera avente centro in (0,0,0).
- (b) γ ammette retta tangente in ogni suo punto.
- (c) γ ha punti in comune con il piano coordinato yz.
- (d) γ non è una curva piana.

O8. Sia data la matrice

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 3 & 1 \end{pmatrix}$$

e sia

$$q(x, y, z) = \begin{pmatrix} x & y & z \end{pmatrix} A \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

la forma quadratica associata ad A.

- (a) q(x, y, z) è definita.
- (b) A ha almeno un autovalore negativo.
- (c) A ammette -2 + i come autovalore.
- (d) A ha l'autovalore 2.

Q9. Sia V un sottospazio di \mathbb{R}^4 con dim(V) = 2.

Quale delle seguenti affermazioni è vera?

- (a) Non esiste un sottospazio $W\subseteq \mathbb{R}^4$ di dimensione 2 tale che $\dim(V+W)=3$.
- (b) Esiste un sottospazio $W \subseteq \mathbb{R}^4$ di dimensione 2 tale che $\dim(V \cap W) = 1$.
- (c) Per ogni sottospazio $W \subseteq \mathbb{R}^4$ di dimensione 2 si ha che $V + W = \mathbb{R}^4$.
- (d) Esiste un sottospazio $W \subseteq \mathbb{R}^4$, di dimensione 3, tale che $V \cap W = \{ (0,0,0,0) \}$.

Q10. Sia $A \in \mathbb{R}^{2,2}$ e si consideri l'applicazione $f : \mathbb{R}^{2,2} \to \mathbb{R}^{2,2}$ definita da f(X) = XA.

Quale delle seguenti affermazioni è vera?

- (a) f non è lineare.
- (b) f è un endomorfismo avente matrice in $\mathbb{R}^{3,3}$ rispetto ad una base opportuna.
- (c) Nessuna delle altre affermazioni è vera.
- (d) f è lineare e la sua matrice rispetto a basi opportune è in $\mathbb{R}^{4,4}$.

Q11. Sia *D* il dominio della funzione definita da

$$f(u,v) = \left(u^2, 2uv, \frac{u}{v}\right).$$

Quale delle seguenti affermazioni è vera?

- (a) Esiste $P \in D$ tale che la matrice jacobiana di f in P sia nulla.
- (b) Non è possibile calcolare la matrice jacobiana di f, perché f non è lineare.
- (c) La matrice jacobiana di f in un punto $P \in D$ è in $\mathbb{R}^{3,2}$.
- (d) D è chiuso.

Q12. Nello spazio sia data la sfera ${\mathscr S}$ di equazione

$$x^2 + y^2 + z^2 - 3x - 2z + 1 = 0.$$

- (a) \mathcal{S} ha raggio 2.
- (b) La retta s di equazione (x, y, z) = (0, t, t) interseca \mathscr{S} .
- (c) La retta r di equazione (x, y, z) = (t, 0, t) passa per il centro di \mathscr{S} .
- (d) $(1,-1,0) \in \mathcal{S}$.

Q13. Sia data la funzione $f: \mathbb{R}^2 \to \mathbb{R}$ definita da

$$f(x,y) = xe^{xy}$$
.

Sia poi $\mathscr{S} = \{\; (x,y,f(x,y)) \;|\; (x,y) \in \mathbb{R}^2 \;\}$ il suo grafico.

Quale delle seguenti affermazioni è vera?

- (a) (0,0) è un punto stazionario di f.
- (b) Il piano tangente a \mathscr{S} in (0,0,0) è parallelo al piano coordinato xy.
- (c) f non ammette punti stazionari.
- (d) Il piano tangente a \mathcal{S} in (0,0,0) è parallelo all'asse delle z.
- **Q14.** Sia data la funzione $f(x,y) = \sqrt{1-xy}$ e sia D il suo dominio.

Quale delle seguenti affermazioni è vera?

- (a) La frontiera di D è vuota.
- (b) D è limitato.
- (c) D è aperto.
- (d) D è chiuso.

Q15. Nello spazio sia data la quadrica $\mathcal Q$ di equazione

$$z^2 = x^2 - 2y^2$$
.

Quale delle seguenti affermazioni è vera?

- (a) \mathcal{Q} è un iperboloide.
- (b) L'intersezione di $\mathcal Q$ con il piano x=1 è degenere.
- (c) \mathcal{Q} è un cono.
- (d) \mathcal{Q} è un paraboloide.

Q16. Nello spazio sia $\vec{v} = 5\vec{i} + 2\vec{j} + \vec{k}$ e sia $\mathcal{B} = (\vec{i} + \vec{j}, \vec{i} + \vec{k}, \vec{j} + \vec{k})$ una base dello spazio dei vettori applicati.

- (a) Le componenti di \vec{v} rispetto alla base \mathcal{B} sono (0,0,0).
- (b) Le componenti di \vec{v} rispetto alla base \mathcal{B} non si possono determinare.
- (c) Le componenti di \vec{v} rispetto alla base \mathcal{B} sono (3,2,-1).
- (d) Le componenti di \vec{v} rispetto alla base \mathcal{B} sono (5,2,1).

Esercizio 1. Per ogni $k \in \mathbb{R}$, sia $f_k : \mathbb{R}^4 \to \mathbb{R}^3$ l'applicazione lineare associata, rispetto alle basi canoniche, alla matrice

$$M_k = \begin{pmatrix} 1 & 1 & -1 & 0 \\ 2 & -1 & 3 & 1 \\ 5 & -1 & 5 & k \end{pmatrix}.$$

- (i) Determinare $\dim(\ker(f_k))$ al variare di $k \in \mathbb{R}$.
- (ii) Posto k = 2, determinare una base di $ker(f_2)$.
- (iii) Posto k=2, determinare una base di $\text{Im}(f_2)$: è vero o falso che $(1,1,0) \notin \text{Im}(f_2)$?
- (iv) Spiegare perché $\mathcal{B} = ((2,1,4),(-1,3,5))$ è base di $\operatorname{Im}(f_2)$.
- (v) Completare \mathscr{B} a una base di \mathbb{R}^3 .

Esercizio 2. Nello spazio sia data la superficie ${\mathscr S}$ di equazioni parametriche

$$\mathscr{S}: \left\{ \begin{array}{l} x = -v + 1 - 2\cos u \\ y = 1 + v + \sin u \\ z = 2v. \end{array} \right.$$

- (i) Verificare che il punto P di coordinate (-4,4,6) appartiene a \mathscr{S} .
- (ii) Calcolare l'equazione del piano tangente a ${\mathscr S}$ nel punto corrispondente a u=0 e v=3..
- (iii) Nel piano xy sia data la conica $\mathscr C$ di equazione

$$x^2 + 4y^2 - 2x - 8y + 1 = 0:$$

calcolare un'equazione canonica di \mathscr{C} .

(iv) Verificare che $\mathscr C$ è l'intersezione del piano xy con $\mathscr S.$