# AM170B Project Proposal

#### Nicolas Vaillancourt

#### April 2025

#### Abstract

Autonomous vehicle navigation requires precise control over a car's motion to reach desired destinations while respecting physical constraints and dynamic limitations. A key challenge in this domain is computing the control inputs—or forcing terms—necessary to transition a vehicle from its current state to a specified target location. These inputs must be consistent with the vehicle's kinematics or dynamics and must yield feasible, smooth trajectories. In this paper, we propose a method for computing these forcing terms using a sequential refinement multi-headed multilayer perceptron (MLP) model. Our approach iteratively improves the predicted control signals through a structured learning process, enabling accurate and efficient maneuvering across a variety of driving scenarios.

#### 1 Equations of Motion

In this section we will discuss the governing equations of motion for a simple 2D car simulation. The car drives along the xy-plane with an angle  $\theta$ , forwards speed s and angular velocity  $\omega$ . The car is controlled by 2 forcing terms, linear acceleration  $\phi$  (pressing the gas pedal) and angular acceleration  $\psi$  (turning the steering wheel). To estimate future positions of the car's trajectory in time, a second order Taylor series approximation is used. This requires the 0<sup>th</sup>, 1<sup>st</sup> and 2<sup>nd</sup> derivatives of the cars trajectory corresponding to position, velocity and acceleration.

#### Position 1.1

To model the car's position, motion and orientation, locations are stored as a 5-dimensional vector. This takes the form  $\vec{V} = \langle x, y, \theta, s, \omega \rangle$  where x and y are the location in  $\mathbb{R}^2$ ,  $\theta \in [-\pi, \pi)$  is the direction of the car, s is the signed speed in the direction of travel and  $\omega$  is the angular velocity. Writing the position of the car as a function of time yields:

$$\vec{V}(t) = \underbrace{\langle x, y, \theta, s, \omega \rangle}_{\vec{A_1}}$$

$$\vec{V}(t) = \vec{A_1}$$
(2)

$$\vec{V}(t) = \vec{A_1} \tag{2}$$

### 1.2 Velocity

The derivative of the car's position vector  $\vec{V} \in \mathbb{R}^5$  is the velocity denoted as  $\vec{V}'$ . Computing each component of the velocity and factoring out the forcing terms results in:

$$\vec{V}'(t) = \langle s\cos\theta, s\sin\theta, \omega, \phi, \psi \rangle \tag{3}$$

$$\vec{V}'(t) = \underbrace{\langle s\cos\theta, s\sin\theta, \omega, 0, 0\rangle}_{\vec{A_2}} + \phi \underbrace{\langle 0, 0, 0, 1, 0\rangle}_{\vec{B_2}} + \psi \underbrace{\langle 0, 0, 0, 0, 1\rangle}_{\vec{C_2}}$$
(4)

$$\vec{V}'(t) = \vec{A_2} + \phi \vec{B_2} + \psi \vec{C_2} \tag{5}$$

#### 1.3 Acceleration

Taking the derivative again yields the acceleration vector  $\vec{V}''$ , and factoring as before gives:

$$\vec{V}''(t) = \langle \phi \cos \theta - s\omega \sin \theta, \phi \sin \theta + s\omega \cos \theta, \psi, 0, 0 \rangle \tag{6}$$

$$\vec{V}''(t) = \underbrace{\langle -s\omega\sin\theta, s\omega\cos\theta, 0, 0, 0\rangle}_{\vec{A}_3} + \phi\underbrace{\langle\cos\theta, \sin\theta, 0, 0, 0\rangle}_{\vec{B}_3} + \psi\underbrace{\langle 0, 0, 1, 0, 0\rangle}_{\vec{C}_3}$$
(7)

$$\vec{V}''(t) = \vec{A}_3 + \phi \vec{B}_3 + \psi \vec{C}_3 \tag{8}$$

# 2 Computing a Trajectory

Approximating a discretized trajectory using a second order Taylor series is important for planning the car's course of motion. At each timestep in the trajectory, the next position is determined by the following equation:

$$\vec{V}(t+\Delta) \approx \vec{V}(t) + \Delta \vec{V}'(t) + \frac{\Delta^2}{2} \vec{V}''(t)$$
(9)

$$\vec{V}(t+\Delta) \approx \vec{A_1} + \Delta(\vec{A_2} + \phi \vec{B_2} + \psi \vec{C_2}) + \frac{\Delta^2}{2}(\vec{A_3} + \phi \vec{B_3} + \psi \vec{C_3})$$
 (10)

$$\vec{V}(t+\Delta) \approx \underbrace{(\vec{A_1} + \Delta \vec{A_2} + \frac{\Delta^2}{2} \vec{A_3})}_{\vec{A}} + \phi \underbrace{(\Delta \vec{B_2} + \frac{\Delta^2}{2} \vec{B_3})}_{\vec{B}} + \psi \underbrace{(\Delta \vec{C_2} + \frac{\Delta^2}{2} \vec{C_3})}_{\vec{C}}$$
(11)

$$\vec{V}(t+\Delta) \approx \vec{A} + \phi \vec{B} + \psi \vec{C} \tag{12}$$

Lets define a trajectory as the set of n+1 points starting at  $(\vec{V_0}, t_0)$  and ending at  $(\vec{V_n}, t_n)$ . At each point the forcing terms applied are  $\phi_i$  and  $\psi_i$ . By using evenly spaced timesteps,  $t_j = t_0 + j\Delta$  where  $\Delta = \frac{t_n - t_0}{n}$  a recurrence relation can be defined.

$$\vec{V}_{j+1} = \vec{A}_j(\vec{V}_j) + \phi_j \vec{B}_j(\vec{V}_j) + \psi_j \vec{C}_j(\vec{V}_j)$$
(13)

## 2.1 Trajectory Optimization

For the following section we will rewrite the trajectory and forcing terms as matrices of the row vectors:

$$\mathbf{V} = \left[ \vec{V}_0, \cdots, \vec{V}_n \right]_{n+1 \times 5} \tag{14}$$

$$\mathbf{F} = \left[\vec{F}_0, \cdots, \vec{F}_{n-1}\right]_{n \times 2} \tag{15}$$

If we define a target ending point  $\vec{T}$  which we want the trajectory to end at, let the loss of a trajectory be the mean squared error (MSE) between the trajectories endpoint  $\vec{Y} = V_n(\mathbf{F})$  and the target:

$$\mathcal{L}(\mathbf{F}, \vec{T}) = \frac{1}{5} \sum_{j=1}^{5} (\vec{Y}_j - \vec{T}_j)^2$$
 (16)

Now our goal becomes finding a set of forcing terms that minimize the loss function:

$$\mathbf{F} = \underset{\mathbf{F}}{\operatorname{argmin}} \left[ \mathcal{L}(\mathbf{F}, \vec{T}) \right] \tag{17}$$

A common approach to finding a value that minimizes a complicated function is gradient descent. We can apply this by defining  $\mathbf{F}^i$  as the  $i^{\text{th}}$  descent step. Using a step size of  $\eta$ , the recurrence relation is:

$$\mathbf{F}^{i+1} = \mathbf{F}^i - \eta \nabla_{\mathbf{F}^i} \mathcal{L}(\mathbf{F}, \vec{T}) \tag{18}$$

## 3 Gradient Flow

Solving for the gradient of the loss function with respect to the (n,2) forcing terms  $\nabla_{\mathbf{F}^i}\mathcal{L}(\mathbf{F}^i,\vec{T})$  can be done by separating the gradient into a product 2 terms.

$$\nabla_{\mathbf{F}^{i}} \mathcal{L}(\mathbf{F}^{i}, \vec{T}) = \left[ \frac{\partial \mathcal{L}}{\partial \mathbf{F}_{i,k}^{i}} \right]_{n \times 2}$$
(19)

$$\nabla_{\mathbf{F}^{i}} \mathcal{L}(\mathbf{F}^{i}, \vec{T}) = \left[ \nabla_{\vec{Y}} \mathcal{L} \times \nabla_{\mathbf{F}^{i}_{j,k}} \vec{Y} \right]_{n \times 2}$$
(20)

The first term has a fairly simple closed form solution:

$$\nabla_{\vec{Y}} \mathcal{L} = \left[ \frac{\partial \mathcal{L}}{\partial \vec{Y}_1}, \cdots, \frac{\partial \mathcal{L}}{\partial \vec{Y}_5} \right]^{\top}$$
 (21)

$$\nabla_{\vec{Y}} \mathcal{L} = \frac{1}{5} \left[ 2(\vec{Y}_1 - \vec{T}_1), \cdots, 2(\vec{Y}_5 - \vec{T}_5) \right]^{\top}$$
 (22)

$$\nabla_{\vec{Y}} \mathcal{L} = \frac{2}{5} (\vec{Y} - \vec{T})^{\top} \tag{23}$$

The second term requires a different approach. When holding all else constant each forcing term  $\mathbf{F}_{j,k}$  applied along the path at  $\vec{V}_j$  causes a slight change in the position of the next point  $\vec{V}_{j+1}$ . This perturbation propagates forward in time and has an effect on the final position  $\vec{V}_n$ . Without integrating this perturbation for all forcing terms there is a local approximation for small changes leveraging a cumulative product of Jacobians. Lets define the change in a future position  $\vec{V}_{j+1}$  as a function of the previous position  $\vec{V}_j$  as the  $j^{\text{th}}$  Jacobian  $J_j$ :

$$J_{j} = \nabla_{\vec{V}_{j}} \vec{V}_{j+1} = \begin{bmatrix} \frac{\partial \vec{V}_{j+1,x}}{\partial \vec{V}_{j,x}} & \frac{\partial \vec{V}_{j+1,x}}{\partial \vec{V}_{j,y}} & \frac{\partial \vec{V}_{j+1,x}}{\partial \vec{V}_{j,\theta}} & \frac{\partial \vec{V}_{j+1,x}}{\partial \vec{V}_{j,\theta}} & \frac{\partial \vec{V}_{j+1,x}}{\partial \vec{V}_{j,s}} & \frac{\partial \vec{V}_{j+1,x}}{\partial \vec{V}_{j,\omega}} \\ \frac{\partial \vec{V}_{j+1,y}}{\partial \vec{V}_{j,x}} & \frac{\partial \vec{V}_{j+1,y}}{\partial \vec{V}_{j,y}} & \frac{\partial \vec{V}_{j+1,y}}{\partial \vec{V}_{j,\theta}} & \frac{\partial \vec{V}_{j+1,y}}{\partial \vec{V}_{j,\theta}} & \frac{\partial \vec{V}_{j+1,y}}{\partial \vec{V}_{j,s}} & \frac{\partial \vec{V}_{j+1,y}}{\partial \vec{V}_{j,\omega}} \\ \frac{\partial \vec{V}_{j+1,\theta}}{\partial \vec{V}_{j,x}} & \frac{\partial \vec{V}_{j+1,\theta}}{\partial \vec{V}_{j,y}} & \frac{\partial \vec{V}_{j+1,\theta}}{\partial \vec{V}_{j,\theta}} & \frac{\partial \vec{V}_{j+1,\theta}}{\partial \vec{V}_{j,s}} & \frac{\partial \vec{V}_{j+1,\theta}}{\partial \vec{V}_{j,\omega}} \\ \frac{\partial \vec{V}_{j+1,s}}{\partial \vec{V}_{j,x}} & \frac{\partial \vec{V}_{j+1,s}}{\partial \vec{V}_{j,y}} & \frac{\partial \vec{V}_{j+1,s}}{\partial \vec{V}_{j,\theta}} & \frac{\partial \vec{V}_{j+1,s}}{\partial \vec{V}_{j,s}} & \frac{\partial \vec{V}_{j+1,s}}{\partial \vec{V}_{j,\omega}} \\ \frac{\partial \vec{V}_{j+1,\omega}}{\partial \vec{V}_{j,x}} & \frac{\partial \vec{V}_{j+1,\omega}}{\partial \vec{V}_{j,y}} & \frac{\partial \vec{V}_{j+1,\omega}}{\partial \vec{V}_{j,\theta}} & \frac{\partial \vec{V}_{j+1,\omega}}{\partial \vec{V}_{j,s}} & \frac{\partial \vec{V}_{j+1,\omega}}{\partial \vec{V}_{j,\omega}} \end{bmatrix}$$

If we consider a small perturbation  $\epsilon_j$  to the  $j+1^{\rm th}$  point on the trajectory caused by the forcing term  $\mathbf{F}_{j,k}$  an approximation for the displacement of the endpoint can be written as a product. The perturbation at the next timesteps approximately follow the locally linear Jacobian transformation:

$$\epsilon_{j+1} \approx J_j \times \epsilon_j$$
 (25)

$$\epsilon_{j+2} \approx (J_{j+1} \times J_j) \times \epsilon_j$$
 (26)

$$\epsilon_n \approx \prod_{j=1}^{j} J_j \times \epsilon_j \tag{27}$$

$$\epsilon_n \approx J_j^c \times \epsilon_j$$
 (28)

Where  $J_j^c$  is the backward cumulative product of Jacobians and  $J_n^c$  is defined to be the identity matrix  $I_5$ . Writing this out in terms of the gradient of the endpoint:

$$\nabla_{\mathbf{F}_{j,k}^i} \vec{Y} \approx J_{j+1}^c \times \nabla_{\mathbf{F}_{j,k}^i} \vec{V}_{j+1} \tag{29}$$

With equations for each of the terms, the gradient of the loss function with respect to each of the forcing terms can be written as:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{F}_{j,k}^{i}} = \nabla_{\vec{Y}} \mathcal{L} \times \nabla_{\mathbf{F}_{j,k}^{i}} \vec{Y}$$
(30)

$$\frac{\partial \mathcal{L}}{\partial \mathbf{F}_{j,k}^i} \approx \frac{2}{5} (\vec{Y} - \vec{T})^\top \times J_{j+1}^c \times \nabla_{\mathbf{F}_{j,k}^i} \vec{V}_{j+1}$$
 (31)



Figure 1:

Going back to the formula for computing the next point in a trajectory, the gradient of  $\vec{V}_{j+1}$  with respect to  $\mathbf{F}_{j,k}^i$  can be broken into 2 parts:

$$\frac{\partial \vec{V}_{j+1}}{\partial \mathbf{F}_{j,1}^i} = \vec{B}(\vec{V}_j) \tag{32}$$

$$\frac{\partial \vec{V}_{j+1}}{\partial \mathbf{F}_{j,2}^i} = \vec{C}(\vec{V}_j) \tag{33}$$

Putting this all together, an analytical approximation for the gradient of the loss function with respect to the forcing terms is:

$$\nabla_{\mathbf{F}^{i}} \mathcal{L} = \frac{2}{5} \begin{bmatrix} (\vec{Y} - \vec{T})^{\top} J_{1}^{c} \vec{B}(\mathbf{V}_{0}) & (\vec{Y} - \vec{T})^{\top} J_{1}^{c} \vec{C}(\mathbf{V}_{0}) \\ \vdots & \vdots \\ (\vec{Y} - \vec{T})^{\top} J_{n}^{c} \vec{B}(\mathbf{V}_{n-1}) & (\vec{Y} - \vec{T})^{\top} J_{n}^{c} \vec{C}(\mathbf{V}_{n-1}) \end{bmatrix}_{n \times 2}$$
(34)

# 4 ML Approach

When analytic solutions fail, general function approximators can help find satisfactory solutions.

$$\mathbf{F}^{i+1} = M(F^i, V^i) \tag{35}$$