TEAM 4

MARKET TENDENCES

DATA ANALYTICS BOOTCAMP - 1ST PROJECT

QUESTIONS THAT YOU FOUND INTERESTING AND WHAT MOTIVATED YOU TO ANSWER THEM

- 1.- Distinguish which has been the best year of a specific line of item, compared to the behavior and determine if the change has been set by volume or price.
- 2.- Which line of items has more sales on a single period?
- 3.- Which subgroup of an item has more sales?
- 4.- Which subgroup has increased and decreased?
- 5.- What is the best selling tendencies over the years?

WHERE AND HOW YOU FOUND THE DATA YOU USED TO ANSWER THESE QUESTIONS?

The database we used is a simulation of the operation of several years of a company dedicated to the commercialization of dried chillies, nuts and spices.

WE STARTED
BY MERGING
BOTH ITEMS
AND TOTAL
SALES PER
ITEM.

THE DATA EXPLORATION AND CLEANUP PROCESS

```
items = "items.csv"
sales = "sales.csv"
# show = "Show.csv"

items_data = pd.read_csv(items, low_memory=False)
sales_data = pd.read_csv(sales, low_memory=False)
# show_data = pd.read_csv(show, low_memory=False)

combined_sales_items = pd.merge(items_data, sales_data, how="left", on="Item")
combined_sales_items.head()
```

	Item	Description	Dim	Dimension	GDim	Tipo	Unit	Period	Qtty	Sales	Store	TipoC	Customer
0	Item_1	SCRAP BAGS	1605	[M] Comp Empaques	Abarrotes	Venta	PZ	202002.0	-124.0	1488.0	StoreA	V Mostrador	Customer27435
1	Item_1	SCRAP BAGS	1605	[M] Comp Empaques	Abarrotes	Venta	PΖ	202007.0	-19.0	228.0	StoreA	V Mostrador	Customer27435
2	Item_1	SCRAP BAGS	1605	[M] Comp Empaques	Abarrotes	Venta	PΖ	202010.0	-43.0	516.0	StoreA	V Mostrador	Customer27435
3	Item_1	SCRAP BAGS	1605	[M] Comp Empaques	Abarrotes	Venta	PΖ	202104.0	-88.0	1056.0	StoreA	V Mostrador	Customer27435
4	Item_1	SCRAP BAGS	1605	[M] Comp Empaques	Abarrotes	Venta	PZ	202107.0	-155.0	1860.0	StoreA	V Mostrador	Customer27435

WE SEPARATED
'YEAR' AND
'MONTH' AND
ADDED THEM
IN A NEW
COLUM.

THE DATA EXPLORATION AND CLEANUP PROCESS

```
combined_sales_items['Period'] = combined_sales_items['Period'].astype(str)

# Crear las nuevas columnas 'Year' y 'Month'
combined_sales_items['Year'] = combined_sales_items['Period'].str[:4]
combined_sales_items['Month'] = combined_sales_items['Period'].str[4:]
combined_sales_items.head()
```

Dim	Dimension	GDim	Tipo	Unit	Period	Qtty	Sales	Store	TipoC	Customer	Location	Year	Month
1605	[M] Comp Empaques	Abarrotes	Venta	PZ	202002.0	-124.0	1488.0	StoreA	V Mostrador	Customer27435	D. F.	2020	02.0
1605	[M] Comp Empaques	Abarrotes	Venta	PZ	202007.0	-19.0	228.0	StoreA	V Mostrador	Customer27435	D. F.	2020	07.0
1605	[M] Comp Empaques	Abarrotes	Venta	PZ	202010.0	-43.0	516.0	StoreA	V Mostrador	Customer27435	D. F.	2020	10.0
1605	[M] Comp Empaques	Abarrotes	Venta	PZ	202104.0	-88.0	1056.0	StoreA	V Mostrador	Customer27435	D. F.	2021	04.0
1605	[M] Comp Empaques	Abarrotes	Venta	PZ	202107.0	-155.0	1860.0	StoreA	V Mostrador	Customer27435	D. F.	2021	07.0

WE DISPLAY EVERY SALE BY SUBGROUP

THE DATA EXPLORATION AND CLEANUP PROCESS

```
combined_sales_items['Sales'] = combined_sales_items['Sales'].astype(str).replace('-','')

combined_sales_items['Sales'] = combined_sales_items['Sales'].astype(float).round(2)

combined_sales_items = combined_sales_items[combined_sales_items['Sales'] >= 1]

sales_by_year = combined_sales_items.set_index('GDim')

sales_by_year = combined_sales_items.groupby(['GDim'])

sales_by_year = combined_sales_items.groupby(['Year'])

sales_by_year = combined_sales_items.groupby(['Sales']).sum()

sales_by_year
```

	Item	Description	Dim	Dimension	GDIM	Про
Sales						
1.00	Item_4Item_4 File display I_1589Item_4055Item_4055I	other productsother productsother productsSHOE	32293	NoNoNo[M] UniformesNoNoNoNoNoNoNoNoNoPistach	AbarrotesAbarrotesAbarrotesAbarrotesA	NoNoNoMaterialesNoNoNoNoNoNoNoNoNoVentaMater
1.04	Item_4055	OTHER PRODUCTS	1906	No	Abarrotes	No
1.06	Item_4055	OTHER PRODUCTS	1906	No	Abarrotes	No
1.08	Item_4055Item_4097	OTHER PRODUCTSSPECIAL NUGGET CLOVER B-25K	9916	NoPepita	AbarrotesSemillas	NoVenta
1.11	Item_4055	OTHER PRODUCTS	1906	No	Abarrotes	No
000.00	Item_599	BLACK CHILE WITH EXTRA LEG	2150	Mora	Chiles Secos	Venta
00.00	Item_2967	DATI-009NoHab	4005	Datiles	Frutas Secas	Venta
000.00	Item_4166	PINON WITH SHELL	4008	Pinon	Frutas Secas	Venta
036.48	Item_1867	ALMOND 25/27 CARMEL 22.68K	6010	Almendra	Nueces y Almendras	Venta
500.00	Item_3315	DEHYDRATED STRAWBERRY	4006	Deshidratadas	Frutas Secas	Venta

WE SHOW THE TOTAL SALES BY YEAR AND SUBGROUP

Year	2020	2021	2022	2023	2024
GDim					
Abarrotes	33695197.68	33769333.19	34394161.06	35642362.08	16582324.75
Chiles Secos	53297977.06	45968490.88	55024702.33	52181460.60	22612518.11
Especias	38675176.36	38792506.90	37798643.38	39445310.22	17558787.92
Frutas Secas	50273260.41	49748280.77	53514533.13	53108275.45	24300819.79
Frutas y verduras	5016.00	2786.19	4267739.40	3098413.60	807411.35
Nueces y Almendras	51512533.53	58949645.43	62986511.23	53315978.87	21704818.51
Producción	18460717.78	24927845.50	26613171.01	29442607.36	14176397.47
Productos del Mar	25526852.47	26248697.29	26912530.08	30744922.29	10887484.19
Semillas	33483406.05	32809354.33	35675649.11	36427036.98	18770759.28

THE ANALYSIS PROCESS

```
pivot_table.plot(kind='bar', figsize=(12, 8))
plt.title('Sales by GDim and Year')
plt.xlabel('GDim')
plt.ylabel('Sales')
plt.legend(title='Year')
plt.show()
```

WE TRANSFORM THE
PREVIOUS TABLE INTO A
PIVOT TABLE TO VIEW AND
ANALYZE THE INFORMATION

WE EXPLORED
THE
SUBCATEGORY
'FRUTAS
SECAS' AND
DEPLOYED THE
TOTAL SALES
BY YEAR.

Year	2020	2021	2022	2023	2024
Dimension					
Arandano	9825992.93	10942273.74	10369402.03	10400294.51	4911393.86
Cacahuates	2625790.15	2972198.34	3853061.40	4873848.88	1982943.76
Cerezas	1252101.50	1691465.47	2534558.90	2821689.84	1249335.83
Ciruelas	7759886.41	7697337.13	7261619.24	6667975.69	1667741.27
Coco	1015934.67	979067.06	857163.19	734667.13	462547.14
Cristalizadas	663729.95	525170.69	795044.66	996348.47	161735.97
Datiles	1362713.08	1853284.91	2791040.23	1671112.36	819837.35
Deshidratadas	6499580.51	4164064.02	5385814.39	4498705.31	1453612.91
Enchilados	0.00	5039.10	1508.50	0.00	0.00
Pasas	5511986.42	6355758.70	5668935.63	6869456.55	4510561.97
Pinon	7553461.14	4534391.02	6099599.51	5705887.48	2488197.15
Pistaches	4110419.14	6161015.71	5264978.77	5066174.71	2886218.61
Tamarindo	2091664.51	1867214.88	2631806.68	2802114.52	1706693.97

THE ANALYSIS PROCESS

```
# Graficar la tabla pivot
pivot_table_frutas_secas.plot(kind='bar', figsize=(12, 8))
plt.title('Sales of Frutas Secas by Dimension and Year')
plt.xlabel('Dimension')
plt.ylabel('Sales')
plt.legend(title='Year')
plt.show()
```

WE TRANSFORM THE
PREVIOUS TABLE INTO A
PIVOT TABLE TO VIEW AND
ANALYZE THE INFORMATION

WE
EXTRACTED
'ARANDANOS'
FROM THE
PREVIOUS
TABLE AND
DEPLOYED THE
TOTAL SALES
BY YEAR.

Year	2020	2021	2022	2023	2024
Item					
Item_2014	3969188.81	6165432.63	5788216.17	5469172.17	2336040.89
Item_2020	4827167.48	3824372.64	3552011.19	3676615.93	1827080.26
Item_280	856.00	16938.10	14222.85	22196.70	18320.80
Item_281	366056.13	623894.11	636988.10	708943.65	413289.77
Item_4565	662302.01	311581.26	377639.72	523366.06	316496.14
Item_4569	272.50	55.00	324.00	0.00	56.00
Item_4586	150.00	0.00	0.00	0.00	110.00

THE ANALYSIS PROCESS

```
pivot_table_transposed = pivot_table_arandanos.T
pivot_table_transposed.plot(kind='line', marker='o', figsize=(12, 8))

# Configurar el título y las etiquetas
plt.title('Sales of Arándanos by Year and Item')
plt.xlabel('Year')
plt.ylabel('Sales')
plt.legend(title='Item')
plt.grid(True)
plt.tight_layout()
# Mostrar la gráfica
plt.show()
```

WE TRANSFORM THE
PREVIOUS TABLE INTO A
PIVOT TABLE TO VIEW AND
ANALYZE THE INFORMATION

THE ANALYSIS PROCESS

```
average_price_per_year = arandanos_data.groupby('Year')['Sales'].mean()

# Graficar el precio promedio por año en una gráfica de pie
plt.figure(figsize=(10, 7))
average_price_per_year.plot(kind='pie', autopct='%1.1f%%', startangle=90, colormap='viridis')
plt.title('Average Sales Price of Arándanos by Year')
plt.ylabel('') # Eliminar la etiqueta del eje y
plt.show()
```

WE CREATED A PIE CHART
TO DEMONSTRATE AND
APPRECIATE THE AVERAGE
SALES PRICE OF
'ARANDANOS' BY YEAR

Average Sales Price of Arándanos by Year

IN HERE WE CAN SEE THE AVERAGE PRICE OF 'ARANDANOS' BY YEAR

```
item_2014_data = combined_sales_items[combined_sales_items['Item'] == 'Item_2014']

# Filtrar los datos para los años 2021 a 2023
item_2014_data = item_2014_data[item_2014_data['Year'].isin(['2021', '2022', '2023'])]

# Calcular el precio por ítem
item_2014_data['Price'] = item_2014_data['Sales'] / item_2014_data['Qtty']

# Agrupar por año y calcular el precio promedio si es necesario
average_price_per_year = item_2014_data.groupby('Year')['Price'].mean()

# Mostrar el resultado
print(average_price_per_year)
```

Year	
2021	102.003051
2022	118.373790
2023	100.810450

WE DECIDED TO ANALYZE THE AVERAGE PRICE OF 'ARANDANO' BY MONTH

```
# Crear una columna 'Year-Month' para agrupar por mes y año
item_2014_data['Year-Month'] = item_2014_data['Year'] + '-' + item_2014_data['Month']

# Agrupar por 'Year-Month' y calcular el precio promedio
average_price_per_month = item_2014_data.groupby('Year-Month')['Price'].mean()

# Mostrar el resultado
print(average_price_per_month)
```

Year-Month		2022-01.0	114.239179	2023-01.0	118.623429
2021-01.0	101.131408	2022-02.0	114.305650	2023-02.0	115.494286
2021-02.0	100.480806	2022-03.0	118.772213	2023-03.0	115.114859
2021-03.0	101.974460	2022-03.0	119.138180	2023-04.0	109.177056
2021-04.0	101.939835	2022-04.0	119.208209	2023-01.0	107.781312
2021-05.0	100.972191	2022-05.0	119.526615	2023-05.0	101.710017
2021-06.0	100.956936	2022-00.0	118.930565	2023-00.0	96.746630
2021-07.0	100.431370	2022-07.0	119.009236	2023-07.0	93.302261
2021-08.0	99.358214	2022-00.0	118.571431	2023-08.0	89.793771
2021-09.0	97.936353	2022-09.0	117.891086	2023-09.0	94.302889
2021-10.0	98.097979	2022-10.0	118.691591		90.191823
2021-11.0	102.423369			2023-11.0	
2021-12.0	114.596544	2022-12.0	120.046878	2023-12.0	88.604665

WE COMPARED
THE AVERAGE
SALES PRICE
VS THE SALES
QUANTITY

```
# Convertir el índice a un formato de fecha para la gráfica
# Manejar posibles inconsistencias en los datos
grouped data.index = pd.to datetime(grouped data.index, format='%Y-%m', errors='coerce')
# Eliminar filas con fechas inválidas
grouped data = grouped data.dropna()
# Crear la gráfica
fig, ax1 = plt.subplots(figsize=(12, 8))
# Graficar el precio en el primer eje y
ax1.plot(grouped data.index, grouped data['Price'], marker='o', color='b', label='Average Price')
ax1.set xlabel('Month')
ax1.set ylabel('Average Price', color='b')
ax1.tick params(axis='y', labelcolor='b')
# Crear un segundo eje y para la cantidad
ax2 = ax1.twinx()
ax2.bar(grouped data.index, grouped data['Qtty'], color='g', alpha=0.6, label='Total Quantity')
ax2.set ylabel('Total Quantity', color='g')
ax2.tick params(axis='y', labelcolor='g')
# Limitar el eje Y derecho a 8,000
ax2.set ylim(0, 8000)
# Títulos y etiquetas
plt.title('Comparison of Price and Quantity for Item 2014 (2021-2023)')
fig.tight layout()
# Mostrar la gráfica
plt.show()
```

WE COMPARED
THE AVERAGE
SALES PRICE
VS THE SALES
QUANTITY

WE ANALYZED THE TOTAL SALES BY STORE IN EVERY YEAR

```
# Filtrar los datos para los años 2020 a 2023
filtered_data = combined_sales_items[combined_sales_items['Year'].isin(['2020', '2021', '2022', '2023'])]

# Agrupar por 'Year' y 'Store' y sumar las ventas
sales_by_year_store = filtered_data.groupby(['Year', 'Store'])['Sales'].sum().unstack()

# Graficar las ventas por año para cada tienda
sales_by_year_store.plot(kind='line', marker='o', figsize=(12, 8))

# Configurar el título y las etiquetas
plt.title('Sales by Year for Each Store (2020-2023)')
plt.xlabel('Year')
plt.ylabel('Sales')
plt.legend(title='Store')
plt.grid(True)
plt.tight_layout()

# Mostrar la gráfica
plt.show()
```

WE ANALYZED
THE TOTAL
SALES BY
STORE IN
EVERY YEAR

WHAT DO OUR FINDINGS MEAN?

We were asked to review the data to determine the behavior of sales between 2020 and 2024.

Based on this analysis we find that the company has 4 stores in which 9 large groups of products are handled.

Within the leading groups in sales, we analyzed dried fruits and within this group we saw the behavior of the blueberry, which is the main item.

Although the exchange rate had a gradual decrease from 21.5 annual average in 2020 to 17.7 average in 2023, the price of this item has increased, impacting the volume of consumption in kg.

WHAT DO OUR FINDINGS MEAN?

As a result of this lack of control in prices, it is noted that store C (with the highest historical volume) has decreased in its sales amount, store A has maintained constant growth and the other 2 stores have maintained their volume.

It is important to be attentive to changes in elements external to the market and how they affect us since some item prices moved depending on the availability of freight, for example.

THANK YOU FOR YOUR TIME!