

DATA LOG FOR TRANSECT ID: CM-144-1

PART 1: USER INPUT

SWAN 1-D / WHAFIS input

station: -133.5 ft LON: -69.9645 deg E LAT: 43.762 deg N

Bottom ELEV: -15.7402 ft-NAVD88

TWL: 8.8043 ft-NAVD88

HS: 6.9445 ft TP: NaN sec

Wave Direction bin: 180 deg CCW from East (90 deg sector)

Transect Direction: 164.7455 deg CCW from East

TAW/RUNUP input

toe sta: -65.5 ft

toe elev: -3.2072 ft-NAVD88

top sta: 91.5 ft

top elev: 29.6293 ft-NAVD88

Wave and water level conditions at toe to be calculated in SWAN 1-D

PART 1 COMPLETE_____

PART 2: SWAN 1-D

swan input grid name: 2_swan/gridfiles/CM-144-1zmeters_xmeters.grd

2_swan/swanfiles/CM-144-1.swn swan file name: swan output name: 2_swan/swanfiles/CM-144-1.dat

Boundary Conditions:

TWL- 2.6836 meters HS- 2.1167 meters PER- 10 seconds

Batch File: 2_swan/swanfiles/runswan.dat

SWAN maximum additional wave setup: 1.5194 feet

SWAN output at toe:

SETUP- -0.068077 feet HS-7.5548 feet PER-9.9345 seconds

PART 2 COMPLETE_

2-D ADCIRC+SWAN and SWAN 1-D results, Transect:

SWAN
SIMULATION OF WAVES IN NEAR SHORE AREAS
VERSION NUMBER 41.20A

```
PROJECT '2018FemaAppeal' '1'
  '100-year Wind and Wave conditions'
! -- SET commands ------
SET DEPMIN=0.01 MAXMES=999 MAXERR=3 PWTAIL=4
SET LEVEL 0
SET CARTESIAN
! -- MODE commands -----
MODE STATIONARY ONED
!-- COORDINATES commands-----
COORDINATES CART
! -- computational (CGRID) grid commands ------
                              xlenc=length of grid in meters
! mxc = number of mesh cells (one less than number of grid points)
!CGRID REGular [xpc] [ypc] [alpc] [xlenc] [ylenc] [mxc] [myc] &
     [ CIRcle | SECtor[dir1] [dir2] ] [mdc] [flow] [fhigh] [msc]
             0 0 0
CGRID REGULAR
                                46
                                 36
                                      0.03
                                           0.8
Resolution in sigma-space: df/f = 0.1157
! -- READgrid --- not used in 1-D mode -----
! -- INPgrid commands ------
!INPgrid BOTtom REGular [xpinp] [ypinp] [alpinp] [mxinp] [myinp] [dxinp] [dyinp]
INPGRID BOTTOM REGULAR 0
                           0
                                   0
                                        46 0 1
!READinp BOTtom [fac] 'fname1' [idla] [nhedf] [FREe|FORmat[form]|UNFormatted]
       BOTTOM -1. '../gridfiles/CM-144-1zmeters xmeters.grd' 1
                                                                    FREE
! -- WIND [vel] [dir]
      25.1 0
WIND
! -- BOUnd SHAPespec
BOUND SHAPE JONSWAP 3.3 PEAK DSPR POWER
! -- BOUndspec
! BOU SIDE W CCW CON FILE 'swanspec.txt' 1
BOUN SIDE W CCW CONSTANT PAR 2.1167 10
                                       0 2
!-- \ {\tt BOUndnest1} \ - \ {\tt optional} \ {\tt for} \ {\tt boundary} \ {\tt from} \ {\tt parent} \ {\tt run}
!-- BOUndnest2
!-- BOUndnest3
!-- INITial -- usest to specify initial values
```

```
!-- GEN1 [cf10] [cf20] [cf30] [cf40] [edm1pm] [cdrag] [umin] [cfpm]
!-- GEN2 [cf10] [cf20] [cf30] [cf40] [cf50] [cf60] [edm1pm] [cdrag] [umin] [cfpm]
    GEN3 KOMEN
  whitecapping ( on by default)
!-- WCAPping KOMen [cds2] [stpm] [powst] [delta] [powk]
    WCAP KOM
  quadruplet wave interactions
!-- QUADrupl [iquad] [lambda] [Cn14] [Csh1] [Csh2]
! -- BREaking CONstant [alpha] [gamma]
    BREAK
            CON
                    1.
!-- FRICtion JONswap CONstant [cfjon]
    FRIC
           JONSWAP CON
                           0.038
!-- TRIad [itriad] [trfac] [cutfr] [a] [b] [urcrit] [urslim]
! TRIAD
            1 0.65
                           2.5
                               0.95 -0.75 0.2 0.01
  TRIAD
!-- VEGEtation [height] [diamtr] [nstems] [drag]
!-- MUD [layer] [rhom] [viscm]
!- LIMiter [ursell] [qb] deactivates quadruplets with Ursell number exceeds ursell
!-- OBSTacle -- not in 1-D
!-- SETUP [supcor]
   SETUP
          Ω
! ----- N U M E R I C S -----
!-- PROP can use BBST or GSE instead of default
! -- NUMeric -- lots of options
     NUM ACCUR npnts=100. stat 30
    NUMeric STOPC
! -----O U T P U T ------
!OUTPut OPTIons "comment' (TABLE [field]) (BLOck [ndec] [len]) (SPEC [ndec])
 OUTPUT OPTIONS '%' TABLE 16
 $BLOCK 9 1000 SPEC 8
!CURve 'sname' [xp1] [yp1] <[int] [xp] [yp] >
 CURVE 'curve' 0
                 0
                        46 46 0
!TABLe 'sname' < HEADer NOHEADer INDexed > 'fname' <output parameters> (output time)
 Table 'curve'
               HEADER 'CM-144-1.dat' XP YP HSIGN TPS RTP TMM10 DIR &
 DSPR DEPTH SETUP
!QUANTITY XP hexp=99999
!-----
COMPUTE STATIONARY
              COMPUTATIONAL PART OF SWAN
_____
```

!----- P H Y S I C S -----

```
One-dimensional mode of SWAN is activated
                                       47 MYC
Gridresolution
                    : MXC
                                                          1
                     : MCGRD
                                       48
                                       31 MDC
                    : MSC
                                                         36
                    : MTC
                    : NSTATC
                                        O TTERMX
                                                          50
Propagation flags
                    : ITFRE
                                        1 IREFR
                                                           1
                    : IBOT
Source term flags
                                        1 ISURF
                                                           1
                    : IWCAP
                                        1 IWIND
                                                           3
                    : ITRIAD
                                        1 IOUAD
                                                           2
                    : IVEG
                                        0 ITURBV
                    : IMUD
                              0.1000E+01 DY
Spatial step
                    : DX
                                                 0.1000E+01
Spectral bin
                    : df/f
                               0.1157E+00 DDIR
                                                 0.1000E+02
                  : GRAV
Physical constants
                              0.9810E+01 RHO
                                                 0.1025E+04
                    : WSPEED 0.2510E+02 DIR
Wind input : WSPEED Tail parameters : E(f)
                                                 0.0000E+00
                               0.4000E+01 E(k)
                                                 0.2500E+01
                    : A(f)
                               0.5000E+01 A(k)
                                                 0.3000E+01
Accuracy parameters : DREL
                               0.1000E-01 NPNTS 0.9950E+02
                    : DHABS
                               0.0000E+00 CURVAT 0.5000E-02
                    : GRWMX
                               0.1000E+00
                    : LEVEL
                               0.0000E+00 DEPMIN 0.1000E-01
Drying/flooding
The Cartesian convention for wind and wave directions is used
Scheme for geographic propagation is SORDUP
Scheme geogr. space : PROPSC
                                  2 ICMAX
                               0.5000E+00 CDD
Scheme spectral space: CSS
                                                 0.5000E+00
Current is off
Quadruplets
                    : IQUAD
                    : LAMBDA 0.2500E+00 CNL4
                                                 0.3000E+08
                               0.5500E+01 CSH2
                    : CSH1
                                                 0.8330E+00
                    : CSH3
                              -0.1250E+01
                              0.1000E+01
Maximum Ursell nr for Snl4:
                                       1 TRFAC
                                                0.8000E+00
Triads
                    : ITRIAD
                    : CUTFR
                               0.2500E+01 URCRI 0.2000E+00
                               0.1000E-01
Minimum Ursell nr for Snl3 :
JONSWAP ('73)
                    : GAMMA
                             0.3800E-01
Vegetation is off
Turbulence is off
Fluid mud is off
                   : EMPCOF (CDS2):
: APM (STPM) :
: POWST :
W-cap Komen ('84)
                                      0.2360E-04
W-cap Komen ('84)
                                      0.3020E-02
                    : POWST
W-cap Komen ('84)
                                      0.2000E+01
W-cap Komen ('84)
                    : DELTA
                                       0.1000E+01
W-cap Komen ('84)
                    : POWK
                                  : 0.1000E+01
Wind drag is fit
Snyder/Komen wind input
Battjes&Janssen ('78): ALPHA
                               0.1000E+01 GAMMA 0.7300E+00
                   : SUPCOR 0.0000E+00
Set-up
Diffraction is off
Janssen ('89,'90)
Janssen ('89,'90)
                    : ALPHA
                               0.1000E-01 KAPPA 0.4100E+00
                    : RHOA
                               0.1280E+01 RHOW
                                                  0.1025E+04
1st and 2nd gen. wind: CF10
                               0.1880E+03 CF20
                                                 0.5900E+00
                    : CF30
                               0.1200E+00 CF40
                                                 0.2500E+03
                    : CF50
                               0.2300E-02 CF60
                                                 -0.2230E+00
                               0.0000E+00 CF80
                                               -0.5600E+00
                    : CF70
                               0.1249E-02 EDMLPM 0.3600E-02
                    : RHOAW
                    : CDRAG
                               0.1230E-02 UMIN
                    : LIM_PM
                              0.1300E+00
 First guess by 2nd generation model flags for first iteration:
                        0.1000E+23 ALFA
0 IQUAD 0
 ITER 1 GRWMX
 IWIND
           2 IWCAP
        1 IBOT 1 ISURF
0 ITURBV 0 IMUD
 ITRIAD
                        1 ISURF
                                     1
                                     0
 IVEG
 -----
iteration 1; sweep 1
          1; sweep 2
1; sweep 3
iteration
iteration
          1; sweep 4
iteration
not possible to compute, first iteration
 Options given by user are activated for proceeding calculation:
 ITER 2 GRWMX 0.1000E+00 ALFA
                                        0.0000E+00
           3 IWCAP
 IWIND
                        1 IQUAD
                                     2
 ITRIAD
           1 IBOT
                        1 ISURF
                                     1
                       0 IMUD
 IVEG
          0 ITURBV
                                     0
 _____
iteration 2; sweep 1
iteration
            2; sweep 2
iteration
            2; sweep 3
            2; sweep 4
iteration
accuracy OK in 36.18 % of wet grid points (99.50 % required)
iteration
            3; sweep 1
            3; sweep 2
iteration
iteration
            3; sweep 3
```

```
3; sweep 4
iteration
accuracy OK in 2.13 % of wet grid points (99.50 % required)
iteration
             4; sweep 1
             4; sweep 2
iteration
iteration
             4; sweep 3
iteration
             4; sweep
accuracy OK in 31.92 % of wet grid points ( 99.50 % required)
iteration
             5; sweep 1
iteration
             5; sweep 2
iteration
             5; sweep 3
iteration
             5; sweep
accuracy OK in 65.96 % of wet grid points ( 99.50 % required)
iteration
             6; sweep 1
iteration
             6; sweep
iteration
             6; sweep
iteration
             6; sweep
accuracy OK in 91.49 % of wet grid points (99.50 % required)
iteration
             7; sweep 1
iteration
             7; sweep 2
             7; sweep 3
iteration
             7; sweep 4
iteration
accuracy OK in 91.49 % of wet grid points (99.50 % required)
iteration
             8; sweep 1
iteration
             8; sweep 2
             8; sweep 3
iteration
             8; sweep 4
iteration
accuracy OK in 93.62 % of wet grid points (99.50 % required)
             9; sweep 1
iteration
iteration
             9; sweep 2
             9; sweep 3
iteration
             9; sweep 4
iteration
accuracy OK in 93.6\bar{2} % of wet grid points ( 99.50 % required)
            10; sweep 1
iteration
iteration
            10; sweep 2
iteration
            10; sweep
iteration
            10; sweep 4
accuracy OK in 93.62 % of wet grid points (99.50 % required)
iteration
            11; sweep 1
iteration
           11; sweep 2
iteration
            11; sweep
iteration
            11; sweep
accuracy OK in 93.62 % of wet grid points (99.50 % required)
            12; sweep 1
iteration
iteration
           12; sweep 2
           12; sweep 3
iteration
           12; sweep 4
iteration
accuracy OK in 93.62 % of wet grid points (99.50 % required)
iteration
            13; sweep 1
iteration
           13; sweep
iteration
            13; sweep 3
iteration
            13; sweep
accuracy OK in 93.62 % of wet grid points (99.50 % required)
iteration
            14; sweep
iteration
           14; sweep 2
iteration
            14; sweep 3
            14; sweep
iteration
accuracy OK in 95.\overline{75} % of wet grid points ( 99.50 % required)
            15; sweep 1
iteration
iteration
            15; sweep 2
iteration
           15; sweep 3
iteration
            15; sweep
accuracy OK in 95.75 % of wet grid points (99.50 % required)
iteration
            16; sweep 1
iteration
            16; sweep 2
iteration
           16; sweep 3
            16; sweep
iteration
accuracy OK in 95.75 % of wet grid points (99.50 % required)
iteration
            17; sweep 1
iteration
            17; sweep
            17; sweep
iteration
            17; sweep
accuracy OK in 97.88 % of wet grid points (99.50 % required)
iteration
            18; sweep 1
iteration
            18; sweep 2
iteration
           18; sweep 3
```

```
18; sweep 4
iteration
accuracy OK in 97.88 % of wet grid points (99.50 % required)
            19; sweep 1
iteration
            19; sweep 2
iteration
iteration
            19; sweep 3
            19; sweep
iteration
accuracy OK in 97.88 % of wet grid points (99.50 % required)
iteration
            20; sweep 1
            20; sweep 2
iteration
iteration
            20; sweep 3
iteration
            20; sweep
accuracy OK in 97.88 % of wet grid points (99.50 % required)
iteration
            21; sweep 1
iteration
            21; sweep 2
iteration
            21; sweep 3
iteration
            21; sweep
accuracy OK in 97.88 % of wet grid points (99.50 % required)
iteration
            22; sweep 1
iteration
            22; sweep 2
iteration
            22; sweep 3
            22; sweep 4
iteration
accuracy OK in 97.88 % of wet grid points (99.50 % required)
iteration
            23; sweep 1
iteration
            23; sweep 2
iteration
            23; sweep 3
            23; sweep 4
iteration
accuracy OK in 97.88 % of wet grid points (99.50 % required)
iteration
            24; sweep 1
iteration
            24; sweep 2
            24; sweep 3
iteration
            24; sweep 4
iteration
accuracy OK in 97.88 % of wet grid points (99.50 % required)
            25; sweep 1
iteration
iteration
            25; sweep 2
iteration
            25; sweep 3
iteration
            25; sweep 4
accuracy OK in 97.88 % of wet grid points (99.50 % required)
            26; sweep 1
iteration
iteration
            26; sweep 2
iteration
            26; sweep
iteration
            26; sweep 4
accuracy OK in 97.88 % of wet grid points (99.50 % required)
iteration
            27; sweep 1
iteration
            27; sweep 2
iteration
            27; sweep 3
iteration
            27; sweep 4
accuracy OK in 100.00 % of wet grid points ( 99.50 % required)
```

STOP

PART 3: WHAFIS

WHAFIS input: CM-144-1.dat WHAFIS output: CM-144-1.out

PART 3 COMPLETE___

WAVE HEIGHT COMPUTATIONS FOR FLOOD INSURANCE STUDIES (WHAFIS VERSION 4.0G, 08_2007)

Executed on: Wed Feb 26 13:21:30 2020

Input file: C:\FEMA-TransectAnalysis\LOMR-TransectAnalysis-Harpswell\Additional_Transects\3_whafis\whafis4\CM-144-1.dat
Output file: C:\FEMA-TransectAnalysis\LOMR-TransectAnalysis-Harpswell\Additional_Transects\3_whafis\whafis4\CM-144-1.out
header

THIS IS A 100-YEAR CASE

THE FOLLOWING NON-DEFAULT WIND SPEEDS ARE BEING USED
WINDLE 56 14 WINDLE 56

THE FOLLOWING NON-DEFAULT WIND SPEEDS ARE BEING USED WINDIF 56.14 WINDOF 56.14 WINDVH 60.00										
	0 000	15 740			PART1 INE	PUT		56 140	0.060	0.000
IE OF	0.000 1.000	-15.740 -15.671	1.000	1.000 8.804	8.804 0.000	11.111	10.000	56.140 0.000	0.069 0.069	0.000
OF	2.000	-15.602	0.000	8.804	0.000	0.000	0.000	0.000	0.069	0.000
OF	3.000	-15.533	0.000	8.804	0.000	0.000	0.000	0.000	0.069	0.000
OF OF	4.000 5.000	-15.464 -15.395	0.000	8.804 8.804	0.000	0.000	0.000	0.000	0.069 0.069	0.000
OF	6.000	-15.326	0.000	8.804	0.000	0.000	0.000	0.000	0.068	0.000
OF	7.000	-15.258	0.000	8.804	0.000	0.000	0.000	0.000	0.068	0.000
OF OF	8.000 9.000	-15.189 -15.120	0.000	8.804 8.804	0.000	0.000	0.000	0.000	0.069 0.109	0.000
OF	10.000	-14.970	0.000	8.805	0.000	0.000	0.000	0.000	0.176	0.000
OF	11.000	-14.767	0.000	8.806	0.000	0.000	0.000	0.000	0.203	0.000
OF OF	12.000 13.000	-14.564 -14.362	0.000	8.807 8.808	0.000	0.000	0.000	0.000	0.203	0.000
OF	14.000	-14.159	0.000	8.809	0.000	0.000	0.000	0.000	0.203	0.000
OF	15.000	-13.956	0.000	8.810	0.000	0.000	0.000	0.000	0.203	0.000
OF OF	16.000 17.000	-13.753 -13.550	0.000	8.811 8.812	0.000	0.000	0.000	0.000	0.203	0.000
OF	18.000	-13.348	0.000	8.813	0.000	0.000	0.000	0.000	0.203	0.000
OF	19.000	-13.144	0.000	8.814	0.000	0.000	0.000	0.000	0.203	0.000
OF OF	20.000 21.000	-12.942 -12.739	0.000	8.815 8.816	0.000	0.000	0.000	0.000	0.203	0.000
OF	22.000	-12.536	0.000	8.817	0.000	0.000	0.000	0.000	0.203	0.000
OF	23.000	-12.333	0.000	8.818	0.000	0.000	0.000	0.000	0.203	0.000
OF OF	24.000 25.000	-12.131 -11.928	0.000	8.818 8.819	0.000	0.000	0.000	0.000	0.203	0.000
OF	26.000	-11.725	0.000	8.821	0.000	0.000	0.000	0.000	0.203	0.000
OF	27.000	-11.522	0.000	8.821	0.000	0.000	0.000	0.000	0.203	0.000
OF OF	28.000 29.000	-11.319 -11.117	0.000	8.822 8.823	0.000	0.000	0.000	0.000	0.203	0.000
OF	30.000	-11.117	0.000	8.824	0.000	0.000	0.000	0.000	0.203	0.000
OF	31.000	-10.711	0.000	8.825	0.000	0.000	0.000	0.000	0.203	0.000
OF OF	32.000 33.000	-10.508 -10.305	0.000	8.826 8.827	0.000	0.000	0.000	0.000	0.203	0.000
OF	34.000	-10.303	0.000	8.828	0.000	0.000	0.000	0.000	0.203	0.000
OF	35.000	-9.900	0.000	8.829	0.000	0.000	0.000	0.000	0.203	0.000
OF	36.000	-9.697	0.000	8.830	0.000	0.000	0.000	0.000	0.203	0.000
OF OF	37.000 38.000	-9.495 -9.292	0.000	8.831 8.832	0.000	0.000	0.000	0.000	0.203	0.000
OF	39.000	-9.089	0.000	8.833	0.000	0.000	0.000	0.000	0.203	0.000
OF OF	40.000 41.000	-8.886 -8.683	0.000	8.834 8.835	0.000	0.000	0.000	0.000	0.203	0.000
OF	42.000	-8.481	0.000	8.836	0.000	0.000	0.000	0.000	0.203	0.000
OF	43.000	-8.277	0.000	8.837	0.000	0.000	0.000	0.000	0.203	0.000
OF OF	44.000 45.000	-8.075 -7.872	0.000	8.838 8.839	0.000	0.000	0.000	0.000	0.203	0.000
OF	46.000	-7.669	0.000	8.840	0.000	0.000	0.000	0.000	0.203	0.000
OF	47.000	-7.466	0.000	8.841	0.000	0.000	0.000	0.000	0.203	0.000
OF OF	48.000 49.000	-7.264 -7.061	0.000	8.842 8.842	0.000	0.000	0.000	0.000	0.203	0.000
OF	50.000	-6.858	0.000	8.844	0.000	0.000	0.000	0.000	0.203	0.000
OF	51.000	-6.655	0.000	8.844	0.000	0.000	0.000	0.000	0.203	0.000
OF OF	52.000 53.000	-6.452 -6.250	0.000	8.845 8.846	0.000	0.000	0.000	0.000	0.203	0.000
OF	54.000	-6.046	0.000	8.847	0.000	0.000	0.000	0.000	0.203	0.000
OF	55.000	-5.844	0.000	8.848	0.000	0.000	0.000	0.000	0.203	0.000
OF OF	56.000 57.000	-5.641 -5.438	0.000	8.849 8.850	0.000	0.000	0.000	0.000	0.203	0.000
OF	58.000	-5.235	0.000	8.851	0.000	0.000	0.000	0.000	0.203	0.000
OF	59.000	-5.032	0.000	8.852	0.000	0.000	0.000	0.000	0.203	0.000
OF OF	60.000 61.000	-4.830 -4.627	0.000	8.853 8.854	0.000	0.000	0.000	0.000	0.203	0.000
OF	62.000	-4.424	0.000	8.855	0.000	0.000	0.000	0.000	0.203	0.000
OF	63.000	-4.221	0.000	8.856	0.000	0.000	0.000	0.000	0.203	0.000
OF OF	64.000 65.000	-4.019 -3.816	0.000	8.857 8.858	0.000	0.000	0.000	0.000	0.203	0.000
OF	66.000	-3.613	0.000	8.859	0.000	0.000	0.000	0.000	0.203	0.000
OF	67.000	-3.410	0.000	8.860	0.000	0.000	0.000	0.000	0.203	0.000
OF OF	68.000 69.000	-3.207 -3.005	0.000	8.861 8.862	0.000	0.000	0.000	0.000	0.203	0.000
OF	70.000	-2.801	0.000	8.863	0.000	0.000	0.000	0.000	0.203	0.000
OF	71.000	-2.599	0.000	8.864	0.000	0.000	0.000	0.000	0.203	0.000
OF OF	72.000 73.000	-2.396 -2.193	0.000	8.865 8.866	0.000	0.000	0.000	0.000	0.203	0.000
OF	74.000	-1.990	0.000	8.866	0.000	0.000	0.000	0.000	0.206	0.000
OF	75.000	-1.782	0.000	8.868	0.000	0.000	0.000	0.000	0.208	0.000
OF OF	76.000 77.000	-1.574 -1.365	0.000	8.869 8.870	0.000	0.000	0.000	0.000	0.208	0.000
OF	78.000	-1.157	0.000	8.872	0.000	0.000	0.000	0.000	0.208	0.000
OF	79.000	-0.949	0.000	8.873	0.000	0.000	0.000	0.000	0.208	0.000
OF OF	80.000 81.000	-0.740 -0.532	0.000	8.874 8.876	0.000	0.000	0.000	0.000	0.208 0.208	0.000
OF	82.000	-0.332	0.000	8.877	0.000	0.000	0.000	0.000	0.208	0.000
OF	83.000	-0.115	0.000	8.878	0.000	0.000	0.000	0.000	-0.226	0.000
OF OF	91.900 95.100	-2.560 -2.593	0.000	8.805 8.811	0.000	0.000	0.000	0.000	-0.205 0.061	0.000
OF	98.400	-2.162	0.000	8.810	0.000	0.000	0.000	0.000	0.131	0.000
OF	101.700	-1.732	0.000	8.810	0.000	0.000	0.000	0.000	0.131	0.000
OF OF	105.000 108.300	-1.301 -0.870	0.000	8.811 8.813	0.000	0.000	0.000	0.000	0.131 0.180	0.000
OF	111.500	-0.131	0.000	8.812	0.000	0.000	0.000	0.000	0.281	0.000
IF	114.800	0.953	0.000	8.809	0.000	0.000	0.000	0.000	0.329	0.000
IF	118.100	2.038	0.000	8.812	0.000	0.000	0.000	0.000	0.329	0.000

1	IF	121.400 124.700 128.000 131.200 134.500 137.800 141.100 144.400 147.600 150.900 152.300 0.000	3.123 4.207 5.292 6.377 7.299 7.858 8.417 8.976 9.536 10.095 10.324 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	8.825 8.845 9.028 9.303 9.545 9.698 9.848 10.002 10.160 10.324 10.324 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.329 0.329 0.334 0.309 0.225 0.169 0.172 0.172 0.172 0.168 0.163 0.000
1	END STATION	END ELEVATION	FETCH LENGTH	SURGE ELEV 10-YEAR		INITIAL WAVE HEIGHT	INITIAL W. PERIOD		BOTTOM SLOPE	AVERAGE A-ZONES
IE	0.000 END	-15.740 END	1.000 NEW SURGE	1.000 NEW SURGE	8.804	11.111	10.000	56.140	0.069 BOTTOM	0.000 AVERAGE
OF	STATION 1.000 END	ELEVATION -15.671 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.804 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.069 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 2.000 END	ELEVATION -15.602 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.804 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.069 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 3.000	ELEVATION -15.533	10-YEAR 0.000	100-YEAR 8.804	0.000	0.000	0.000	0.000	SLOPE 0.069	A-ZONES 0.000
OF	END STATION 4.000	END ELEVATION -15.464	NEW SURGE 10-YEAR 0.000	NEW SURGE 100-YEAR 8.804	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.069	AVERAGE A-ZONES 0.000
OF	END STATION	END ELEVATION	NEW SURGE 10-YEAR	NEW SURGE 100-YEAR 8.804	0.000	0.000	0.000	0.000	BOTTOM SLOPE	AVERAGE A-ZONES
OF	5.000 END STATION	-15.395 END ELEVATION	0.000 NEW SURGE 10-YEAR	NEW SURGE 100-YEAR	0.000	0.000	0.000	0.000	0.069 BOTTOM SLOPE	0.000 AVERAGE A-ZONES
OF	6.000 END	-15.326 END	0.000 NEW SURGE	8.804 NEW SURGE	0.000	0.000	0.000	0.000	0.068 BOTTOM	0.000 AVERAGE
OF	STATION 7.000 END	ELEVATION -15.258 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.804 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.068 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 8.000	ELEVATION -15.189	10-YEAR 0.000	100-YEAR 8.804	0.000	0.000	0.000	0.000	SLOPE 0.069	A-ZONES 0.000
	END STATION	END ELEVATION	NEW SURGE 10-YEAR	NEW SURGE 100-YEAR	0.000	0.000			BOTTOM SLOPE	AVERAGE A-ZONES
OF	9.000 END STATION	-15.120 END ELEVATION	0.000 NEW SURGE 10-YEAR	8.804 NEW SURGE 100-YEAR	0.000	0.000	0.000	0.000	0.109 BOTTOM SLOPE	0.000 AVERAGE A-ZONES
OF	10.000 END	-14.970 END	0.000 NEW SURGE	8.805 NEW SURGE	0.000	0.000	0.000	0.000	0.176 BOTTOM	0.000 AVERAGE
OF	STATION 11.000 END	ELEVATION -14.767 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.806 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 12.000	ELEVATION -14.564	10-YEAR 0.000	100-YEAR 8.807	0.000	0.000	0.000	0.000	SLOPE 0.203	A-ZONES 0.000
OF	END STATION 13.000	END ELEVATION -14.362	NEW SURGE 10-YEAR 0.000	NEW SURGE 100-YEAR 8.808	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.203	AVERAGE A-ZONES 0.000
Or	END STATION	END ELEVATION	NEW SURGE 10-YEAR	NEW SURGE 100-YEAR	0.000	0.000	0.000	0.000	BOTTOM SLOPE	AVERAGE A-ZONES
OF	14.000 END	-14.159 END	0.000 NEW SURGE	8.809 NEW SURGE	0.000	0.000	0.000	0.000	0.203 BOTTOM	0.000 AVERAGE
OF	STATION 15.000 END	ELEVATION -13.956 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.810 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 16.000	ELEVATION -13.753	10-YEAR 0.000	100-YEAR 8.811	0.000	0.000	0.000	0.000	SLOPE 0.203	A-ZONES 0.000
OF	END STATION 17.000	END ELEVATION -13.550	NEW SURGE 10-YEAR 0.000	NEW SURGE 100-YEAR 8.812	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.203	AVERAGE A-ZONES 0.000
Or	END STATION	END ELEVATION		NEW SURGE 100-YEAR	0.000	0.000	0.000	0.000	BOTTOM SLOPE	AVERAGE A-ZONES
OF	18.000 END	-13.348 END	0.000 NEW SURGE	8.813 NEW SURGE	0.000	0.000	0.000	0.000	0.203 BOTTOM	0.000 AVERAGE
OF	STATION 19.000 END	ELEVATION -13.144 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.814 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 20.000	ELEVATION -12.942	10-YEAR 0.000	100-YEAR 8.815	0.000	0.000	0.000	0.000	SLOPE 0.203	A-ZONES 0.000
OF	END STATION 21.000	END ELEVATION -12.739	NEW SURGE 10-YEAR 0.000	NEW SURGE 100-YEAR 8.816	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.203	AVERAGE A-ZONES 0.000
Or	END STATION	END ELEVATION	NEW SURGE 10-YEAR	NEW SURGE 100-YEAR	0.000	0.000	0.000	0.000	BOTTOM SLOPE	AVERAGE A-ZONES
OF	22.000 END	-12.536 END	0.000 NEW SURGE	8.817 NEW SURGE	0.000	0.000	0.000	0.000	0.203 BOTTOM	0.000 AVERAGE
OF	STATION 23.000 END	ELEVATION -12.333 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.818 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 24.000 END	ELEVATION -12.131	10-YEAR 0.000 NEW SURGE	100-YEAR 8.818 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 25.000	END ELEVATION -11.928	10-YEAR 0.000	100-YEAR 8.819	0.000	0.000	0.000	0.000	SLOPE 0.203	A-ZONES 0.000
OF	END STATION 26.000	END ELEVATION -11.725	NEW SURGE 10-YEAR 0.000	NEW SURGE 100-YEAR	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.203	AVERAGE A-ZONES
Or	END STATION	-11.725 END ELEVATION	NEW SURGE 10-YEAR	8.821 NEW SURGE 100-YEAR	0.000	0.000	0.000	0.000	BOTTOM SLOPE	0.000 AVERAGE A-ZONES
OF	27.000 END	-11.522 END	0.000 NEW SURGE	8.821 NEW SURGE	0.000	0.000	0.000	0.000	0.203 BOTTOM	0.000 AVERAGE
OF	STATION 28.000 END	ELEVATION -11.319 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.822 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203 BOTTOM	A-ZONES 0.000 AVERAGE
	STATION	ELEVATION	10-YEAR	100-YEAR					SLOPE	A-ZONES

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

OF	29.000 END STATION	-11.117 END	0.000 NEW SURGE 10-YEAR	8.823 NEW SURGE 100-YEAR	0.000	0.000	0.000	0.000	0.203 BOTTOM	0.000 AVERAGE A-ZONES
OF	30.000 END	ELEVATION -10.914 END	0.000 NEW SURGE	8.824 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203 BOTTOM	0.000 AVERAGE
OF	STATION 31.000 END	ELEVATION -10.711 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.825 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 32.000 END	ELEVATION -10.508 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.826 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 33.000 END	ELEVATION -10.305 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.827 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 34.000 END	ELEVATION -10.103 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.828 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 35.000 END	ELEVATION -9.900 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.829 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 36.000 END	ELEVATION -9.697 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.830 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 37.000 END	ELEVATION -9.495 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.831 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 38.000 END	ELEVATION -9.292 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.832 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 39.000 END	ELEVATION -9.089 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.833 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 40.000 END	ELEVATION -8.886 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.834 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 41.000	ELEVATION -8.683	10-YEAR 0.000 NEW SURGE	100-YEAR 8.835 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203	A-ZONES 0.000 AVERAGE
OF	STATION 42.000	END ELEVATION -8.481	10-YEAR 0.000	100-YEAR 8.836	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.203	A-ZONES 0.000
OF	STATION 43.000	END ELEVATION -8.277	NEW SURGE 10-YEAR 0.000	NEW SURGE 100-YEAR 8.837	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.203	AVERAGE A-ZONES 0.000
OF	STATION 44.000	END ELEVATION -8.075	NEW SURGE 10-YEAR 0.000	NEW SURGE 100-YEAR 8.838	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.203	AVERAGE A-ZONES 0.000
OF	END STATION 45.000	END ELEVATION -7.872	NEW SURGE 10-YEAR 0.000	NEW SURGE 100-YEAR 8.839	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.203	AVERAGE A-ZONES 0.000
OF	END STATION 46.000	END ELEVATION -7.669	NEW SURGE 10-YEAR 0.000	NEW SURGE 100-YEAR 8.840	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.203	AVERAGE A-ZONES 0.000
OF	END STATION 47.000	END ELEVATION -7.466	NEW SURGE 10-YEAR 0.000	NEW SURGE 100-YEAR 8.841	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.203	AVERAGE A-ZONES 0.000
OF	END STATION 48.000	END ELEVATION -7.264	NEW SURGE 10-YEAR 0.000	NEW SURGE 100-YEAR 8.842	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.203	AVERAGE A-ZONES 0.000
OF	END STATION 49.000	END ELEVATION -7.061	NEW SURGE 10-YEAR 0.000	NEW SURGE 100-YEAR 8.842	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.203	AVERAGE A-ZONES 0.000
OF	END STATION 50.000	END ELEVATION -6.858	NEW SURGE 10-YEAR 0.000	NEW SURGE 100-YEAR 8.844	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.203	AVERAGE A-ZONES 0.000
OF	51.000	ELEVATION -6.655	NEW SURGE 10-YEAR 0.000	100-YEAR 8.844	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.203	AVERAGE A-ZONES 0.000
OF	END STATION 52.000	ELEVATION -6.452	NEW SURGE 10-YEAR 0.000	100-YEAR 8.845	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.203	AVERAGE A-ZONES 0.000
OF	53.000	ELEVATION -6.250	NEW SURGE 10-YEAR 0.000	100-YEAR 8.846	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.203	AVERAGE A-ZONES 0.000
OF	54.000	ELEVATION -6.046	NEW SURGE 10-YEAR 0.000	100-YEAR 8.847	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.203	AVERAGE A-ZONES 0.000
OF	55.000	ELEVATION -5.844	NEW SURGE 10-YEAR 0.000	100-YEAR 8.848	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.203	AVERAGE A-ZONES 0.000
OF	56.000	ELEVATION -5.641	NEW SURGE 10-YEAR 0.000	100-YEAR 8.849	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.203	AVERAGE A-ZONES 0.000
OF	END STATION 57.000	END ELEVATION -5.438	NEW SURGE 10-YEAR 0.000	NEW SURGE 100-YEAR 8.850	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.203	AVERAGE A-ZONES 0.000
OF	END STATION 58.000	ELEVATION -5.235	NEW SURGE 10-YEAR 0.000	100-YEAR 8.851	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.203	AVERAGE A-ZONES 0.000
OF	59.000	ELEVATION -5.032	NEW SURGE 10-YEAR 0.000	100-YEAR 8.852	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.203	AVERAGE A-ZONES 0.000
OF	60.000	ELEVATION -4.830	NEW SURGE 10-YEAR 0.000	100-YEAR 8.853	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.203	AVERAGE A-ZONES 0.000
OF	END STATION 61.000	ELEVATION -4.627	NEW SURGE 10-YEAR 0.000	NEW SURGE 100-YEAR 8.854	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.203	AVERAGE A-ZONES 0.000
OF	END STATION 62.000	END ELEVATION -4.424	NEW SURGE 10-YEAR 0.000	NEW SURGE 100-YEAR 8.855	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.203	AVERAGE A-ZONES 0.000
	END		NEW SURGE 10-YEAR						BOTTOM SLOPE	AVERAGE A-ZONES

OF	63.000 END STATION	-4.221 END	0.000 NEW SURGE 10-YEAR	8.856 NEW SURGE	0.000	0.000	0.000	0.000	0.203 BOTTOM	0.000 AVERAGE A-ZONES
OF	64.000 END	ELEVATION -4.019 END	0.000 NEW SURGE	100-YEAR 8.857 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203 BOTTOM	0.000 AVERAGE
OF	STATION 65.000 END	ELEVATION -3.816 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.858 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 66.000 END	ELEVATION -3.613 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.859 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 67.000 END	ELEVATION -3.410 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.860 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 68.000 END	ELEVATION -3.207 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.861 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 69.000 END	ELEVATION -3.005 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.862 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 70.000 END	ELEVATION -2.801 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.863 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 71.000 END	ELEVATION -2.599 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.864 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 72.000 END	ELEVATION -2.396 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.865 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 73.000 END	ELEVATION -2.193 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.866 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.203 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 74.000 END	ELEVATION -1.990 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.866 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.206 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 75.000 END	ELEVATION -1.782 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.868 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.208 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 76.000 END	ELEVATION -1.574 END	10-YEAR 0.000 NEW SURGE	100-YEAR 8.869 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.208 BOTTOM	A-ZONES 0.000 AVERAGE
OF	STATION 77.000 END STATION	ELEVATION -1.365 END ELEVATION	10-YEAR 0.000 NEW SURGE 10-YEAR	100-YEAR 8.870 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.208 BOTTOM	A-ZONES 0.000 AVERAGE A-ZONES
OF	78.000 END STATION	-1.157 END ELEVATION	0.000 NEW SURGE 10-YEAR	100-YEAR 8.872 NEW SURGE 100-YEAR	0.000	0.000	0.000	0.000	SLOPE 0.208 BOTTOM SLOPE	0.000 AVERAGE A-ZONES
OF	79.000 END STATION	-0.949 END ELEVATION	0.000 NEW SURGE 10-YEAR	8.873 NEW SURGE 100-YEAR	0.000	0.000	0.000	0.000	0.208 BOTTOM SLOPE	0.000 AVERAGE A-ZONES
OF	80.000 END STATION	-0.740 END ELEVATION	0.000 NEW SURGE 10-YEAR	8.874 NEW SURGE 100-YEAR	0.000	0.000	0.000	0.000	0.208 BOTTOM SLOPE	0.000 AVERAGE A-ZONES
OF	81.000 END STATION	-0.532 END ELEVATION	0.000 NEW SURGE 10-YEAR	8.876 NEW SURGE 100-YEAR	0.000	0.000	0.000	0.000	0.208 BOTTOM SLOPE	0.000 AVERAGE A-ZONES
OF	82.000 END STATION	-0.324 END ELEVATION	0.000 NEW SURGE 10-YEAR	8.877 NEW SURGE 100-YEAR	0.000	0.000	0.000	0.000	0.208 BOTTOM SLOPE	0.000 AVERAGE A-ZONES
OF	83.000 END STATION	-0.115 END ELEVATION	0.000 NEW SURGE 10-YEAR	8.878 NEW SURGE 100-YEAR	0.000	0.000	0.000	0.000	-0.226 BOTTOM SLOPE	0.000 AVERAGE A-ZONES
OF	91.900 END STATION	ELEVATION	0.000 NEW SURGE 10-YEAR	100-YEAR	0.000	0.000	0.000	0.000	-0.205 BOTTOM SLOPE	0.000 AVERAGE A-ZONES
OF	95.100 END STATION	ELEVATION	0.000 NEW SURGE 10-YEAR	100-YEAR	0.000	0.000	0.000	0.000	0.061 BOTTOM SLOPE	0.000 AVERAGE A-ZONES
OF	98.400 END STATION	-2.162 END ELEVATION -1.732	0.000 NEW SURGE 10-YEAR	100-YEAR	0.000	0.000	0.000	0.000	0.131 BOTTOM SLOPE	0.000 AVERAGE A-ZONES
OF OF	101.700 END STATION 105.000		0.000 NEW SURGE 10-YEAR 0.000	8.810 NEW SURGE 100-YEAR 8.811	0.000	0.000	0.000	0.000	0.131 BOTTOM SLOPE 0.131	0.000 AVERAGE A-ZONES 0.000
OF	END STATION 108.300	END	NEW SURGE 10-YEAR 0.000	NEW SURGE 100-YEAR 8.813	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.180	AVERAGE A-ZONES 0.000
OF	END STATION 111.500		NEW SURGE 10-YEAR 0.000		0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.281	AVERAGE A-ZONES 0.000
IF	END		NEW SURGE 10-YEAR 0.000		0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.329	AVERAGE A-ZONES 0.000
IF	END STATION 118.100	END ELEVATION 2.038	NEW SURGE 10-YEAR 0.000	NEW SURGE 100-YEAR 8.812	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.329	AVERAGE A-ZONES 0.000
IF	121.400	ELEVATION 3.123	NEW SURGE 10-YEAR 0.000	NEW SURGE 100-YEAR 8.825	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.329	AVERAGE A-ZONES 0.000
IF	END STATION 124.700	END ELEVATION 4.207	NEW SURGE 10-YEAR 0.000	100-YEAR 8.845	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.329	AVERAGE A-ZONES 0.000
IF	END STATION 128.000	ELEVATION 5.292	NEW SURGE 10-YEAR 0.000	100-YEAR 9.028	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.334	AVERAGE A-ZONES 0.000
IF	END STATION 131.200	ELEVATION 6.377	NEW SURGE 10-YEAR 0.000 NEW SURGE	100-YEAR 9.303	0.000	0.000	0.000	0.000	BOTTOM SLOPE 0.309 BOTTOM	AVERAGE A-ZONES 0.000 AVERAGE
	END STATION	ELEVATION	10-YEAR	100-YEAR					SLOPE	AVERAGE A-ZONES

	IF	134.500 END	7.299 END	0.000 NEW SURGE	9.545 NEW SURGE	0.000	0.000	0.000	0.000	0.225 BOTTOM	0.000 AVERAGE
	IF	STATION 137.800	ELEVATION 7.858	10-YEAR 0.000	100-YEAR 9.698	0.000	0.000	0.000	0.000	SLOPE 0.169	A-ZONES 0.000
		END STATION	END ELEVATION	NEW SURGE 10-YEAR	NEW SURGE 100-YEAR					BOTTOM SLOPE	AVERAGE A-ZONES
	IF	141.100 END	8.417 END	0.000 NEW SURGE	9.848 NEW SURGE	0.000	0.000	0.000	0.000	0.169 BOTTOM	0.000 AVERAGE
	IF	STATION 144.400	ELEVATION 8.976	10-YEAR 0.000	100-YEAR 10.002	0.000	0.000	0.000	0.000	SLOPE 0.172	A-ZONES 0.000
		END STATION	END ELEVATION	NEW SURGE 10-YEAR	NEW SURGE 100-YEAR					BOTTOM SLOPE	AVERAGE A-ZONES
	IF	147.600 END	9.536 END	0.000 NEW SURGE	10.160 NEW SURGE	0.000	0.000	0.000	0.000	0.172 BOTTOM	0.000 AVERAGE
	IF	STATION 150.900	ELEVATION 10.095	10-YEAR 0.000	100-YEAR 10.324	0.000	0.000	0.000	0.000	SLOPE 0.168	A-ZONES 0.000
		END STATION	END ELEVATION	NEW SURGE 10-YEAR	NEW SURGE 100-YEAR					BOTTOM SLOPE	AVERAGE A-ZONES
	IF	152.300	10.324	0.000	10.324	0.000 -END OF TRANS	0.000 ECT		0.000	0.163	0.000
	NOTE: SURGE					RONOMICAL AND					
1					_	anno. common			CERT A F		

	PART2:	CONTROLLING WAV		
LO	CATION	PEAK WAVE PERIC CONTROLLING WAVE HEIGHT	SPECTRAL PEAK WAVE PERIOD	ST ELEVATIONS WAVE CREST ELEVATION
IE	0.00	11.11	10.00	16.58
OF	1.00	11.12	10.00	16.59
OF	2.00	11.13	10.00	16.59
OF	3.00	11.14	10.00	16.60
OF	4.00	11.15	10.00	16.61
OF OF	5.00 6.00	11.15 11.16	10.00 10.00	16.61 16.62
OF	7.00	11.17	10.00	16.62
OF	8.00	11.18	10.00	16.63
OF	9.00	11.19	10.00	16.64
OF	10.00	11.21	10.00	16.65
OF OF	11.00 12.00	11.24 11.26	10.00 10.00	16.67 16.69
OF	13.00	11.29	10.00	16.71
OF	14.00	11.32	10.00	16.73
OF	15.00	11.35	10.00	16.75
OF	16.00 17.00	11.38 11.41	10.00 10.00	16.77 16.80
OF OF	18.00	11.41	10.00	16.82
OF	19.00	11.47	10.00	16.84
OF	20.00	11.50	10.00	16.86
OF	21.00	11.53	10.00	16.89
OF OF	22.00 23.00	11.56 11.59	10.00 10.00	16.91 16.93
OF	24.00	11.62	10.00	16.96
OF	25.00	11.66	10.00	16.98
OF	26.00	11.69	10.00	17.01
OF	27.00 28.00	11.73 11.76	10.00 10.00	17.03 17.05
OF OF	29.00	11.70	10.00	17.03
OF	30.00	11.81	10.00	17.09
OF	31.00	11.79	10.00	17.08
OF	32.00	11.76	10.00	17.06 17.04
OF OF	33.00 34.00	11.74 11.71	10.00 10.00	17.04
OF	35.00	11.68	10.00	17.01
OF	36.00	11.66	10.00	16.99
OF	37.00	11.63	10.00	16.97
OF OF	38.00 39.00	11.60 11.57	10.00 10.00	16.95 16.93
OF	40.00	11.54	10.00	16.91
OF	41.00	11.51	10.00	16.89
OF	42.00	11.48	10.00	16.87
OF	43.00 44.00	11.44 11.41	10.00 10.00	16.85 16.83
OF OF	45.00	11.38	10.00	16.80
OF	46.00	11.35	10.00	16.78
OF	47.00	11.31	10.00	16.76
OF	48.00	11.28	10.00 10.00	16.74 16.71
OF OF	49.00 50.00	11.24 11.20	10.00	16.69
OF	51.00	11.17	10.00	16.66
OF	52.00	11.13	10.00	16.63
OF	53.00 54.00	11.16 11.11	10.00 10.00	16.66 16.62
OF OF	55.00	10.96	10.00	16.52
OF	56.00	10.82	10.00	16.42
OF	57.00	10.67	10.00	16.32
OF	58.00 59.00	10.53	10.00	16.22 16.12
OF OF	60.00	10.38 10.24	10.00 10.00	16.02
OF	61.00	10.09	10.00	15.92
OF	62.00	9.95	10.00	15.82
OF	63.00	9.80	10.00	15.72
OF OF	64.00 65.00	9.66 9.51	10.00 10.00	15.62 15.52
OF	66.00	9.37	10.00	15.42
OF	67.00	9.22	10.00	15.32
OF	68.00	9.08	10.00	15.21
OF OF	69.00 70.00	8.93 8.78	10.00 10.00	15.11 15.01
OF	71.00	8.64	10.00	14.91
OF	72.00	8.49	10.00	14.81
OF	73.00	8.34	10.00	14.71
OF	74.00	8.19	10.00	14.60

	75.00 76.00 77.00 78.00 77.00 80.00 81.00 82.00 83.00 91.90 95.10 98.40 101.70 101.50 114.80 114.80 114.40 124.40 124.70 134.50 134.50 137.80 141.10 144.40 147.60 150.90 152.30 0CATION S ABOVE		10.00 10.00	
10.00 11.00 12.00 13.00 14.00 15.00 16.00		1.00 1.00 1.00 1.00 1.00 1.00		8.81 8.81 8.81 8.81 8.81 8.81
17.00 18.00 19.00 20.00 21.00 22.00 23.00 25.00 26.00		1.00 1.00 1.00 1.00 1.00 1.00 1.00		8.81 8.81 8.81 8.81 8.82 8.82 8.82 8.82
28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00		1.00 1.00 1.00 1.00 1.00 1.00 1.00		8.82 8.82 8.82 8.83 8.83 8.83 8.83 8.83
37.00 38.00 39.00 40.00 41.00 42.00 43.00 44.00 45.00		1.00 1.00 1.00 1.00 1.00 1.00 1.00		8.83 8.83 8.83 8.83 8.84 8.84 8.84 8.84
46.00 47.00 48.00 50.00 52.00 53.00 54.00 55.00 56.00		1.00 1.00 1.00 1.00 1.00 1.00 1.00		8.84 8.84 8.84 8.85 8.85 8.85 8.85 8.85
57.00 58.00 59.00 60.00 61.00 62.00 63.00 64.00 65.00		1.00 1.00 1.00 1.00 1.00 1.00 1.00		8.85 8.85 8.85 8.85 8.85 8.86 8.86 8.86
66.00 67.00 68.00 69.00 70.00 71.00 72.00 73.00 75.00		1.00 1.00 1.00 1.00 1.00 1.00 1.00		8.86 8.86 8.86 8.86 8.86 8.86 8.86 8.87
76.00 77.00 78.00 79.00 80.00 81.00 82.00 83.00		1.00 1.00 1.00 1.00 1.00 1.00 1.00		8.87 8.87 8.87 8.87 8.87 8.88 8.88

91.90 95.10 98.40 105.00 108.30 111.50 114.80 118.10 121.40 124.70	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00		8.81 8.81 8.81 8.81 8.81 8.81 8.82 8.83	
128.00 131.20	1.00 1.00		9.03 9.30	
134.50 137.80	1.00 1.00		9.55 9.70	
141.10 144.40	1.00		9.85 10.00	
147.60 150.90	1.00 1.00	OF 11 70	10.16 10.32	
STATION OF		LOCATION	ON OF ZONE	
	27.43 5 NUMBERED A ZON CR ELEVATION Z	ES AND '	DWARD V ZONES IGNATION	FHF
0.00	16.58	V22	EL=17	120
9.00	16.64	V22	EL=17	120
10.00	16.65	V22	EL=17	120
11.00	16.67	V22	EL=17	120
12.00	16.69	V22	EL=17	120
13.00	16.71	V22	EL=17	120
14.00	16.73	V22	EL=17	120
15.00	16.75	V22	EL=17	120
16.00	16.77	V22	EL=17	120
17.00	16.80	V22	EL=17	120
18.00	16.82	V22	EL=17	120
19.00	16.84	V22	EL=17	120
20.00	16.86	V22	EL=17	120
21.00	16.89	V22	EL=17	120
22.00	16.91	V22	EL=17	120
23.00	16.93	V22	EL=17	120
24.00	16.96	V22	EL=17	120
25.00	16.98	V22	EL=17	120
26.00	17.01	V22	EL=17	120
27.00	17.03	V22	EL=17	120
28.00	17.05	V22	EL=17	120
29.00 30.00	17.08 17.09	V22	EL=17	120
31.00	17.09	V22	EL=17	120
32.00	17.06	V22	EL=17	120
33.00	17.04	V22	EL=17	120
34.00	17.03	V22	EL=17	120
35.00	17.01	V22	EL=17	120
36.00	16.99	V22	EL=17	120
37.00	16.97	V22	EL=17	120
38.00	16.95	V22	EL=17	120
39.00	16.93	V22	EL=17	120
40.00	16.91	V22	EL=17	120
41.00	16.89	V22	EL=17	120
42.00	16.87	V22	EL=17	120
43.00	16.85	V22	EL=17	120
44.00	16.83	V22	EL=17	120
45.00	16.80	V22	EL=17	120
46.00	16.78	V22	EL=17	120
47.00	16.76	V22	EL=17	120

48.00	16.74		EL=17	120
49.00	16.71		EL=17	
50.00	16.69		EL=17	
51.00	16.66	V22		120
52.00	16.63		EL=17	
53.00	16.66	V22	EL=17	120
54.00	16.62	V22	EL=17	120
55.00	16.52	V22	EL=17	120
55.21	16.50	V22	EL=17	120
56.00	16.42	V22	EL=16	120
57.00	16.32	V22	EL=16	120
58.00	16.22	V22	EL=16	120
59.00	16.12	V22	EL=16	120
60.00	16.02	V22	EL=16	120
61.00	15.92	V22	EL=16	120
62.00	15.82	V22	EL=16	120
63.00	15.72	V22	EL=16	120
64.00	15.62	V22	EL=16	120
65.00	15.52	V22	EL=16	120
		V22	EL=16	120
65.17	15.50	V22	EL=15	120
66.00	15.42	V22	EL=15	120
67.00	15.32	V22	EL=15	120
68.00	15.21	V22	EL=15	120
69.00	15.11	V22	EL=15	120
70.00	15.01	V22	EL=15	120
71.00	14.91	V22	EL=15	120
72.00	14.81	V22	EL=15	120
73.00	14.71	V22	EL=15	120
74.00	14.60	V22	EL=15	120
74.98	14.50	V22	EL=14	120
75.00	14.50	V22	EL=14	120
76.00	14.39	V22	EL=14	120
77.00	14.29	V22	EL=14	120
78.00	14.18	V22	EL=14	120
79.00	14.08	V22	EL=14	120
80.00	13.97	V22	EL=14	120
81.00	13.87	V22	EL=14	120
82.00	13.76	V22	EL=14	120
83.00	13.66	V22	EL=14	120
91.90	13.87	V22	EL=14	120
95.10	13.88	V22	EL=14	120
98.40	13.84	V22	EL=14	120
101.70	13.79	V22	EL=14	120
105.00	13.74	V22	EL=14	120
108.30	13.69	V22	EL=14	120
111.50	13.56	V22	EL=14	120
111.87	13.50		EL=13	
114.80	13.00	V22	EL=13	
117.72	12.50		EL=12	
118.10	12.44	V22		
121.40	11.88			

		V22	EL=12	120
123.74	11.50	***	11	100
124.70	11.34	V22	EL=11	120
105 42	11 04	V22	EL=11	120
127.43	11.04	A19	EL=11	95
128.00	11.04	710	mr _ 1.1	95
131.20	10.89	A19	EL=11	95
134.50	10.76	A19	EL=11	95
134.50	10.76	A19	EL=11	95
137.80	10.70	A19	EL=11	95
141.10	10.63			
144.40	10.56	A19	EL=11	95
		A19	EL=11	95
147.60	10.50	A19	EL=11	95
147.60	10.50			
150.90	10.45	A19	EL=10	95
		A19	EL=10	95
152.30	10.33			

152.30 10.33

ZONE TERMINATED AT END OF TRANSECT
PART 7 POSTSCRIPT NOTES
PS# 1 START(422364.6654,4845890.3094)
PS# 2 END(422315.9586,4845909.2882)

-1.000000e+00

CM-144-1 100-year WHAFIS Output Zero Station: -69.96488149, 43.76209992


```
% begin recording
diary on
% FEMA appeal for The Town of Harpswell, Cumberland county, Maine
% TRANSECT ID: CM-144-1
% calculation by SJH, Ransom Consulting, Inc. 26-Feb-2020
% 100-year wave runup using TAW methodology
% including berm and weighted average with foreshore if necessary
% chk nld 20200220
% This script assumes that the incident wave conditions provided
% as input in the configuration section below are the
% appropriate values located at the end of the foreshore
% or toe of the slope on which the run-up is being calculated
% the script does not attempt to apply a depth limit or any other
\mbox{\ensuremath{\mbox{\$}}} transformation to the incident wave conditions other than
% conversion of the peak wave period to the spectral mean wave
% as recommended in the references below
% references:
Van der Meer, J.W., 2002. Technical Report Wave Run-up and
% Wave Overtopping at Dikes. TAW Technical Advisory Committee on
% Flood Defence, The Netherlands.
% FEMA. 2007, Atlantic Ocean and Gulf of Mexico Coastal Guidelines Update
% CONFIG
fname='inpfiles/CM-144-1sta_ele_include.csv'; % file with station, elevation, include
                                            % third column is 0 for excluded points
imgname='logfiles/CM-144-1-runup';
SWEL=8.8043; % 100-yr still water level including wave setup. H0=7.5548; % significant wave height at toe of structure
Tp=9.9345;
               % peak period, 1/fma,
T0=Tp/1.1;
gamma_berm=1;
                  % this may get changed automatically below
gamma_rough=1;
gamma_beta=1;
gamma_perm=1;
setupAtToe=-0.068077;
maxSetup=1.5194; % only used in case of berm/shallow foreshore weighted average
plotTitle='Iterative TAW for CM-144-1'
plotTitle =
Iterative TAW for CM-144-1
% END CONFIG
              ______
SWEL=SWEL+setupAtToe
SWEL =
                     8.736223
SWEL_fore=SWEL+maxSetup
SWEL fore =
                   10.255623
% FIND WAVELENGTH USING DEEPWATER DISPERSION RELATION
% using English units
L0=32.15/(2*pi)*T0^2
T<sub>1</sub>O =
           417.357062285715
% Find Hb (Munk, 1949)
%Hb=H0/(3.3*(H0/L0)^(1/3))
%Db=-Hb/.78+SWEL; % depth at breaking
% The toe elevation here is only used to determine the average
% structure slope, it is not used to depth limit the wave height.
% Any depth limiting or other modification of the wave height
```

```
% to make it consitent with TAW guidance should be performed
% prior to the input of the significant wave height given above.
Ztoe=SWEL-1.5*H0
Ztoe =
                  -2.595977
% read the transect
[sta,dep,inc] = textread(fname,'%n%n%n%*[^\n]','delimiter',',','headerlines',0);
% remove unselected points
k=find(inc==0);
sta(k)=[];
dep(k)=[];
sta_org=sta; % used for plotting purposes
dep_org=dep;
% initial guess at maximum run-up elevation to estimate slope
Z2=SWEL+1.5*H0
Z2 =
                  20.068423
% determine station at the max runup and -1.5*H0 (i.e. the toe)
top_sta=-999;
toe_sta=-999;
for kk=1:length(sta)-1
   if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))</pre>
                                               % here is the intersection of z2 with profile
       top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
       ((Ztoe > dep(kk)) & (Ztoe <= dep(kk+1))) %
toe_sta=interpl(dep(kk:kk+1),sta(kk:kk+1),Ztoe)</pre>
                                                       % here is the intersection of Ztoe with profile
    i f
    end
end
toe_sta =
         -62.4868075374234
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
% check to make sure we got them, if not extend the end slopes outward
S=diff(dep)./diff(sta);
if toe_sta==-999
   dy=dep(1)-Ztoe;
   toe_sta=sta(1)-dy/S(1)
end
if top_sta==-999
   dy=Z2-dep(end);
   top_sta=sta(end)+dy/S(end)
% just so the reader can tell the values aren't -999 anymore
top_sta
top_sta =
          34.9443976794092
toe sta
toe_sta =
         -38.3813446313046
% check for case where the toe of slope is below SWL-1.5*H0 \,
% in this case interpolate setup from the setupAtToe(really setup as first station), and the max setup
% also un-include points seaward of SWL-1.5*H0
if Ztoe > dep(1)
   dd=SWEL_fore-dep;
   k=find(\overline{dd}<0,1); % k is index of first land point
   staAtSWL=interp1(dep(k-1:k),sta(k-1:k),SWEL_fore);
   dsta=staAtSWL-sta(1);
```

```
dsetup=maxSetup-setupAtToe;
    dsetdsta=dsetup/dsta;
    setup=setupAtToe+dsetdsta*(toe_sta-sta(1));
   sprintf('-!!- Location of SWEL-1.5*HO is %4.1f ft landward of toe of slope',dsta) sprintf('-!!- Setup is interpolated between setup at toe of slope and max setup')
    sprintf('-!!-
                           setup is adjusted to %4.2f feet', setup)
    SWEL=SWEL-setupAtToe+setup;
    sprintf('-!!-
                           SWEL is adjusted to %4.2f feet', SWEL)
   k=find(dep < SWEL-1.5*H0)
    sta(k)=[];
   dep(k)=[];
else
   sprintf('-!!- The User has selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n',dep(1 sprintf('-!!- This may be reasonable for some cases. However the user may want to consider:\n') sprintf('-!!- 1) Selecting a starting point that is at or below %4.2f feet elevation, or\n', Ztoe)
    sprintf('-!!-
                       2) Reducing the incident wave height to a depth limited condition. \n')
end
ans =
-!!- Location of SWEL-1.5*HO is 84.4 ft landward of toe of slope
-!!- Setup is interpolated between setup at toe of slope and max setup
ans =
             setup is adjusted to 0.45 feet
-!!-
ans =
-!!-
             SWEL is adjusted to 9.26 feet
k =
      1
      2
      3
      4
      5
      6
7
     24
     25
     26
     27
     28
     29
     30
     31
     32
% now iterate converge on a runup elevation
tol=0.01; % convergence criteria
R2del=999;
R2_new=3*H0; %initial guess
R2=R2_new;
iter=0;
R2_all=[];
topStaAll=[];
Berm_Segs=[];
TAW_ALWAYS_VALID=1;
while(abs(R2del) > tol && iter <= 25)
    iter=iter+1;
sprintf ('!------ STARTING ITERATION %d -----!',iter)
     % elevation of toe of slope
     Ztoe
     % station of toe slope (relative to 0-NAVD88 shoreline
     toe_sta
     % station of top of slope/extent of 2% run-up
     % elevation of top of slope/extent of 2% run-up
     Z2
     % incident significant wave height
    H0
     % incident spectral peak wave period
     Тp
     % incident spectral mean wave period
    T0
     R2=R2_new
     Z2=R2+SWEL
```

```
% determine slope for this iteration
top_sta=-999;
for kk=1:length(sta)-1
   if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
                                             % here is the intersection of z2 with profile
      \verb"top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)"
     break;
   end
end
if top_sta==-999
   dy=Z2-dep(end);
   top_sta=sta(end)+dy/S(end)
end
% get the length of the slope (not accounting for berm)
Lslope=top sta-toe sta
% loop over profile segments to determine berm factor
% re-calculate influence of depth of berm based on this run-up elevation
% check for berm, berm width, berm height
berm_width=0;
rdh_sum=0;
Berm_Segs=[];
Berm_Heights=[];
for kk=1:length(sta)-1
   ddep=dep(kk+1)-dep(kk);
   dsta=sta(kk+1)-sta(kk);
   s=ddep/dsta;
   if (s < 1/15)
                      % count it as a berm if slope is flatter than 1:15 (see TAW manual)
      sprintf ('Berm Factor Calculation: Iteration %d, Profile Segment: %d',iter,kk)
      berm width=berm width+dsta; % tally the width of all berm segments
      % compute the rdh for this segment and weight it by the segment length
      dh=SWEL-(dep(kk)+dep(kk+1))/2
      if dh < 0
          chi=R2;
      else
          chi=2* H0;
      end
      if (dh <= R2 & dh >=-2*H0)
         rdh=(0.5-0.5*cos(3.14159*dh/chi));
      else
         rdh=1;
      end
      rdh_sum=rdh_sum + rdh * dsta
      Berm_Segs=[Berm_Segs, kk];
      Berm_Heights=[Berm_Heights, (dep(kk)+dep(kk+1))/2];
   end
   if dep(kk) >= Z2 % jump out of loop if we reached limit of run-up for this iteration
   end
end
sprintf ('!----- End Berm Factor Calculation, Iter: %d -----!',iter)
berm_width
rB=berm_width/Lslope
if (berm_width > 0)
   rdh_mean=rdh_sum/berm_width
else
  rdh_mean=1
end
gamma_berm=1- rB * (1-rdh_mean)
if gamma_berm > 1
   gamma_berm=1
end
if gamma_berm < 0.6
   gamma_berm = 0.6
end
% Iribarren number
slope=(Z2-Ztoe)/(Lslope-berm_width)
Irb=(slope/(sqrt(H0/L0)))
% runup height
gamma_berm
gamma perm
gamma beta
gamma_rough
gamma=gamma_berm*gamma_perm*gamma_beta*gamma_rough
% check validity
TAW_VALID=1;
if (Irb*gamma_berm < 0.5 | Irb*gamma_berm > 10 )
   sprintf('!!! - - Iribaren number: %6.2f is outside the valid range (0.5-10), TAW NOT VALID - - !!!\n', Irb*gam
   TAW_VALID=0;
   sprintf('!!! - Tribaren number: %6.2f is in the valid range (0.5-10), TAW RECOMMENDED - - <math>!!!\n', Irb*gamma_1
end
islope=1/slope;
if (slope < 1/8 | slope > 1)
    sprintf('!!! - - slope: 1
                  - slope: 1:%3.1f V:H is outside the valid range (1:8 - 1:1), TAW NOT VALID - - !!!\n', islope)
   TAW VALID=0;
   sprintf('!!! - - slope: 1:%3.1f V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!\n', islope)
```

```
if TAW_VALID == 0
       TAW_ALWAYS_VALID=0;
    if (Irb*gamma_berm < 1.8)</pre>
       R2\_new=gamma*H0*1.77*Irb
    else
       R2_new=gamma*H0*(4.3-(1.6/sqrt(Irb)))
    end
    % check to see if we need to evaluate a shallow foreshore if berm_width > 0.25 * {\tt L0};
       disp ('! Berm_width is greater than 1/4 wave length')
       disp ('!
                  Runup will be weighted average with foreshore calculation assuming depth limited wave height on ber
       % do the foreshore calculation
       fore_H0=0.78*(SWEL_fore-min(Berm_Heights))
       % get upper slope
       fore_toe_sta=-999;
       fore_toe_dep=-999;
       for kk=length(dep)-1:-1:1
          ddep=dep(kk+1)-dep(kk);
          dsta=sta(kk+1)-sta(kk);
          s=ddep/dsta;
          if s < 1/15
             break
          end
          fore_toe_sta=sta(kk);
          fore_toe_dep=dep(kk);
          upper_slope=(Z2-fore_toe_dep)/(top_sta-fore_toe_sta)
       end
       fore_Irb=upper_slope/(sqrt(fore_H0/L0));
       fore_gamma=gamma_perm*gamma_beta*gamma_rough;
       if (fore Irb < 1.8)
          fore_R2=fore_gamma*fore_H0*1.77*fore_Irb;
       else
          fore_R2=fore_gamma*fore_H0*(4.3-(1.6/sqrt(fore_Irb)));
       end
       if berm width >= L0
          R2_new=fore_R2
          disp ('berm is wider than one wavelength, use full shallow foreshore solution');
          w2=(berm_width-0.25*L0)/(0.75*L0)
          w1 = 1 - w2
          R2_new=w2*fore_R2 + w1*R2_new
       end
    end % end berm width check
    % convergence criterion
    R2del=abs(R2-R2_new)
    R2_all(iter)=R2_new;
    % get the new top station (for plot purposes)
    Z2=R2_new+SWEL
    top_sta=-999;
    for kk=1:length(sta)-1
       if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1))) % here is the intersection of z2 with profile
          top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
          break;
       end
    end
    if top_sta==-999
       dy=Z2-dep(end);
       top_sta=sta(end)+dy/S(end);
    end
    topStaAll(iter)=top_sta;
end
ans =
       -----! STARTING ITERATION 1 -----!
Zt.oe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
7.2 =
                 20.068423
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
                   22.6644
Z2 =
          31.9203345021268
top_sta =
          107.041046462901
Lslope =
          145.422391094205
ans =
```

```
Berm Factor Calculation: Iteration 1, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
        0.695983762046982
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
         1.40666398849417
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
Berm Factor Calculation: Iteration 1, Profile Segment: 12
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!---- End Berm Factor Calculation, Iter: 1 -----!
berm_width =
   17
rB =
         0.116900842243663
rdh_mean =
         0.810625187975784
gamma_berm
        0.977861924974634
slope =
        0.268771755517362
Irb =
          1.9976804779061
gamma_berm =
        0.977861924974634
gamma_perm =
gamma beta =
gamma\_rough =
gamma =
        0.977861924974634
ans =
!!! - - Iribaren number: 1.95 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:3.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         23.4035594084022
R2del =
        0.739159408402184
Z2 =
          32.659493910529
ans =
!----- STARTING ITERATION 2 -----!
                -2.595977
toe_sta =
        -38.3813446313046
top_sta =
         112.060463877013
Z2 =
```

```
32.659493910529
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          23.4035594084022
7.2 =
           32.659493910529
top_sta =
          112.060463877013
Lslope =
          150.441808508318
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 9
          9.49194100212682
rdh_sum =
         0.695983762046982
Berm Factor Calculation: Iteration 2, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 15
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
         13.7806281955883
ans =
      -- End Berm Factor Calculation, Iter: 2 -----!
berm_width =
    17
rB =
         0.113000502776195
rdh_mean =
         0.810625187975784
gamma_berm =
         0.978600551028116
slope =
         0.264201087385079
Irb =
          1.96370840192932
gamma_berm =
         0.978600551028116
gamma_perm =
gamma_beta =
gamma_rough =
gamma =
         0.978600551028116
!!! - - Iribaren number:
                          1.92 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
```

ans =

```
!!! - - slope: 1:3.8 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2_new =
         23.3491540099791
R2del =
       0.0544053984230999
Z_{2} =
         32.6050885121059
ans =
!----- STARTING ITERATION 3 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
         111.691012577114
Z2 =
          32.6050885121059
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
         9.03136363636364
R2 =
          23.3491540099791
Z2 =
         32.6050885121059
top_sta =
         111.691012577114
Lslope =
         150.072357208419
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 9
dh =
         9.49194100212682
rdh_sum =
        0.695983762046982
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 10
dh =
         9.64669100212682
rdh_sum =
         1.40666398849417
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
         3.68942949541434
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 14
         10.7503620021268
rdh_sum =
         4.49773093822128
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 3 -----!
berm_width =
   17
rB =
         0.113278689801551
rdh_mean =
        0.810625187975784
gamma_berm =
        0.978547869412482
slope =
```

```
0.264525753135745
Irb =
         1.96612152168106
gamma_berm =
         0.978547869412482
gamma_perm =
gamma_beta =
gamma_rough =
gamma =
         0.978547869412482
ans =
!!! - - Iribaren number: 1.92 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:3.8 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
         23.3530785745975
R2del =
      0.00392456461842983
          32.6090130767243
% final 2% runup elevation
Z2=R2_new+SWEL
          32.6090130767243
diary off
plotTitle =
Iterative TAW for CM-144-1
SWEL =
                  8.736223
SWEL_fore =
                 10.255623
L0 =
          417.357062285715
7toe =
                 -2.595977
Z_{2} =
                 20.068423
toe_sta =
         -62.4868075374234
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
top_sta =
         34.9443976794092
toe_sta =
         -38.3813446313046
-!!- Location of SWEL-1.5*HO is 84.4 ft landward of toe of slope
ans =
-!!- Setup is interpolated between setup at toe of slope and max setup
-!!-
           setup is adjusted to 0.45 feet
ans =
-!!-
           SWEL is adjusted to 9.26 feet
k =
     1
     3
     4
     5
     6
    24
    25
    26
27
    28
    29
    30
    31
    32
ans =
       -----! STARTING ITERATION 1 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
Z2 =
                 20.068423
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
```

```
9.03136363636364
R2 =
                   22.6644
Z2 =
          31.9203345021268
top_sta =
          107.041046462901
Lslope =
          145.422391094205
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 10
          9.64669100212682
rdh_sum =
          1.40666398849417
Berm Factor Calculation: Iteration 1, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 16
          11.2205850021268
rdh_sum =
          13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 1 -----!
berm_width =
rB =
         0.116900842243663
rdh_mean =
         0.810625187975784
gamma_berm =
         0.977861924974634
slope =
         0.268771755517362
Trb =
          1.9976804779061
gamma_berm =
         0.977861924974634
gamma perm =
gamma_beta =
gamma_rough =
gamma =
         0.977861924974634
ans =
!!! - - Iribaren number: 1.95 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:3.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          23.4035594084022
R2del =
         0.739159408402184
z2 =
```

```
32.659493910529
ans =
      ----- STARTING ITERATION 2 -----!
7toe =
                 -2.595977
toe_sta =
        -38.3813446313046
top_sta =
          112.060463877013
7.2 =
           32.659493910529
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          23.4035594084022
Z2 =
           32.659493910529
top_sta =
         112.060463877013
Lslope =
          150.441808508318
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 9
         9.49194100212682
rdh sum =
        0.695983762046982
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 10
dh =
         9.64669100212682
rdh_sum =
         1.40666398849417
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 11
dh =
         9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
         4.49773093822128
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 15
         11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 2 -----!
berm_width =
rB =
        0.113000502776195
rdh_mean =
         0.810625187975784
gamma_berm
         0.978600551028116
slope =
         0.264201087385079
Irb =
         1.96370840192932
        0.978600551028116
```

gamma_perm =

```
gamma_beta =
gamma_rough =
gamma =
         0.978600551028116
ans =
!!! - - Iribaren number: 1.92 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:3.8 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
          23.3491540099791
R2del =
        0.0544053984230999
Z2 =
          32.6050885121059
       -----! STARTING ITERATION 3 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          111.691012577114
          32.6050885121059
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          23.3491540099791
Z_{2} =
          32.6050885121059
top_sta =
          111.691012577114
Lslope =
          150.072357208419
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 11
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 12
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 15
dh =
          11.0262795021268
rdh_sum =
          5.32809529031497
Berm Factor Calculation: Iteration 3, Profile Segment: 16
          11.2205850021268
rdh_sum =
          13.7806281955883
ans =
```

```
!---- End Berm Factor Calculation, Iter: 3 -----!
berm width =
    17
rB =
          0.113278689801551
rdh_mean =
          0.810625187975784
gamma berm =
          0.978547869412482
slope =
          0.264525753135745
Irb =
          1.96612152168106
gamma_berm =
         0.978547869412482
gamma_perm =
gamma_beta =
gamma rough =
gamma =
          0.978547869412482
!!! - - Iribaren number: 1.92 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:3.8 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
           23.3530785745975
R2del =
       0.00392456461842983
Z2 =
           32.6090130767243
Z2 =
           32.6090130767243
diary on % begin recording % FEMA appeal for The Town of Harpswell, Cumberland county, Maine % TRANSECT ID: CM-144-1
diary on
% calculation by SJH, Ransom Consulting, Inc. 26-Feb-2020
% 100-year wave runup using TAW methodology
% including berm and weighted average with foreshore if necessary
% chk nld 20200220
% This script assumes that the incident wave conditions provided
% as input in the configuration section below are the
% appropriate values located at the end of the foreshore
% or toe of the slope on which the run-up is being calculated
% the script does not attempt to apply a depth limit or any other
\ensuremath{\mathtt{\$}} transformation to the incident wave conditions other than
% conversion of the peak wave period to the spectral mean wave
% as recommended in the references below
% references:
% Van der Meer, J.W., 2002. Technical Report Wave Run-up and
% Wave Overtopping at Dikes. TAW Technical Advisory Committee on
% Flood Defence, The Netherlands.
% FEMA. 2007, Atlantic Ocean and Gulf of Mexico Coastal Guidelines Update
% CONFIG
fname='inpfiles/CM-144-1sta_ele_include.csv'; % file with station, elevation, include
                                         % third column is 0 for excluded points
imgname='logfiles/CM-144-1-runup';
SWEL=8.8043; % 100-yr still water level including wave setup. H0=7.5548; % significant wave height at toe of structure
Tp=9.9345;
              % peak period, 1/fma,
T0=Tp/1.1;
                 % this may get changed automatically below
gamma_berm=1;
gamma_rough=1;
gamma_beta=1;
gamma_perm=1;
setupAtToe=-0.068077;
maxSetup=1.5194; % only used in case of berm/shallow foreshore weighted average
plotTitle='Iterative TAW for CM-144-1'
plotTitle =
Iterative TAW for CM-144-1
% END CONFIG
SWEL=SWEL+setupAtToe
SWEL_fore=SWEL+maxSetup
SWEL_fore =
                  10.255623
```

```
% FIND WAVELENGTH USING DEEPWATER DISPERSION RELATION
% using English units
L0=32.15/(2*pi)*T0^2
T<sub>1</sub>O =
           417.357062285715
% Find Hb (Munk, 1949)
%Hb=H0/(3.3*(H0/L0)^(1/3))
%Db=-Hb/.78+SWEL; % depth at breaking
\mbox{\ensuremath{\upsigma}} The toe elevation here is only used to determine the average
% structure slope, it is not used to depth limit the wave height.
% Any depth limiting or other modification of the wave height
% to make it consitent with TAW guidance should be performed
% prior to the input of the significant wave height given above.
Ztoe=SWEL-1.5*H0
Ztoe =
                  -2.595977
% read the transect
[sta,dep,inc] = textread(fname,'%n%n%n%*[^n]','delimiter',',','headerlines',0);
% remove unselected points
k=find(inc==0);
sta(k)=[];
dep(k)=[];
sta_org=sta;
              % used for plotting purposes
dep_org=dep;
% initial guess at maximum run-up elevation to estimate slope
Z2=SWEL+1.5*H0
                  20.068423
% determine station at the max runup and -1.5*H0 (i.e. the toe)
top_sta=-999;
toe_sta=-999;
for kk=1:length(sta)-1
    if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
                                                 % here is the intersection of z2 with profile
       top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
    end
                                                         % here is the intersection of Ztoe with profile
        ((Ztoe > dep(kk)) & (Ztoe <= dep(kk+1)))
    if
       toe_sta=interpl(dep(kk:kk+1),sta(kk:kk+1),Ztoe)
    end
end
toe_sta =
         -62.4868075374234
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
% check to make sure we got them, if not extend the end slopes outward
S=diff(dep)./diff(sta);
if toe_sta==-999
   dy=dep(1)-Ztoe;
   toe_sta=sta(1)-dy/S(1)
end
if top sta==-999
   dy=Z2-dep(end);
   top_sta=sta(end)+dy/S(end)
% just so the reader can tell the values aren't -999 anymore
top_sta
top_sta =
          34.9443976794092
toe sta
toe_sta =
          -38.3813446313046
% check for case where the toe of slope is below SWL-1.5*H0 \,
% in this case interpolate setup from the setupAtToe(really setup as first station), and the max setup
% also un-include points seaward of SWL-1.5*H0
if Ztoe > dep(1)
   dd=SWEL_fore-dep;
   k=find(dd<0,1); % k is index of first land point
   staAtSWL=interp1(dep(k-1:k),sta(k-1:k),SWEL_fore);
   dsta=staAtSWL-sta(1);
   dsetup=maxSetup-setupAtToe;
   dsetdsta=dsetup/dsta;
   setup=setupAtToe+dsetdsta*(toe_sta-sta(1));
   sprintf('-!!- Location of SWEL-1.5*H0 is %4.1f ft landward of toe of slope',dsta) sprintf('-!!- Setup is interpolated between setup at toe of slope and max setup')
   sprintf('-!!-
                        setup is adjusted to %4.2f feet', setup)
   SWEL=SWEL-setupAtToe+setup;
   sprintf('-!!-
                         SWEL is adjusted to %4.2f feet', SWEL)
   k=find(dep < SWEL-1.5*H0)
   sta(k)=[];
   dep(k)=[];
   sprintf('-!!- The User has selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n',dep(1
   sprintf('-!!- This may be reasonable for some cases. However the user may want to consider:\n') sprintf('-!!- 1) Selecting a starting point that is at or below %4.2f feet elevation, or\n', Z
                    1) Selecting a starting point that is at or below %4.2f feet elevation, or\n', Ztoe)
   sprintf('-!!-
                     2) Reducing the incident wave height to a depth limited condition.\n')
-!!- Location of SWEL-1.5*HO is 84.4 ft landward of toe of slope
ans =
```

```
-!!- Setup is interpolated between setup at toe of slope and max setup
ans =
-!!-
           setup is adjusted to 0.45 feet
ans =
-!!-
           SWEL is adjusted to 9.26 feet
k =
     2
     3
     4
     5
     6
7
    24
    25
    26
    27
    28
    29
    30
    31
    32
% now iterate converge on a runup elevation
tol=0.01; % convergence criteria
R2del=999;
R2_new=3*H0; %initial guess
R2=R2_new;
iter=0;
R2_all=[];
topStaAll=[];
Berm_Segs=[];
TAW_ALWAYS_VALID=1;
\overline{\text{while}}(abs(R2del) > tol \&\& iter <= 25)
    iter=iter+1;
    sprintf ('!-----' STARTING ITERATION %d -----!',iter)
    % elevation of toe of slope
    7.toe
    % station of toe slope (relative to 0-NAVD88 shoreline
    toe_sta
    % station of top of slope/extent of 2% run-up
    top sta
    % elevation of top of slope/extent of 2% run-up
    7.2
    % incident significant wave height
    H0
    % incident spectral peak wave period
    Тр
    % incident spectral mean wave period
    T0
    R2=R2_new
    Z2=R2+SWEL
    % determine slope for this iteration
    top_sta=-999;
    for kk=1:length(sta)-1
       if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
                                                 % here is the intersection of z2 with profile
          top_sta=interpl(dep(kk:kk+1),sta(kk:kk+1),Z2)
          break;
       end
    end
    if top_sta==-999
       dy=Z2-dep(end);
       top_sta=sta(end)+dy/S(end)
    end
    % get the length of the slope (not accounting for berm)
    Lslope=top_sta-toe_sta
    % loop over profile segments to determine berm factor
    % re-calculate influence of depth of berm based on this run-up elevation
    % check for berm, berm width, berm height
    berm_width=0;
    rdh_sum=0;
    Berm_Segs=[];
    Berm_Heights=[];
    for kk=1:length(sta)-1
       ddep=dep(kk+1)-dep(kk);
       dsta=sta(kk+1)-sta(kk);
       s=ddep/dsta;
                          \mbox{\ensuremath{\$}} count it as a berm if slope is flatter than 1:15 (see TAW manual)
       if (s < 1/15)
          sprintf ('Berm Factor Calculation: Iteration %d, Profile Segment: %d',iter,kk)
          berm_width=berm_width+dsta; % tally the width of all berm segments
          % compute the rdh for this segment and weight it by the segment length
          dh=SWEL-(dep(kk)+dep(kk+1))/2
          if dh < 0
              chi=R2;
          else
              chi=2* H0;
          end
          if (dh <= R2 \& dh >= -2*H0)
             rdh=(0.5-0.5*cos(3.14159*dh/chi));
```

```
else
         rdh=1;
      end
      rdh_sum=rdh_sum + rdh * dsta
      Berm_Segs=[Berm_Segs, kk];
      {\tt Berm\_Heights=[Berm\_Heights, (dep(kk)+dep(kk+1))/2];}
   end
   if dep(kk) >= 22 % jump out of loop if we reached limit of run-up for this iteration
      break
   end
end
sprintf ('!----- End Berm Factor Calculation, Iter: %d -----!',iter)
berm_width
rB=berm_width/Lslope
if (berm_width > 0)
   rdh_mean=rdh_sum/berm_width
else
  rdh_mean=1
end
gamma_berm=1- rB * (1-rdh_mean)
if gamma_berm > 1
   gamma_berm=1
end
if gamma_berm < 0.6
   gamma_berm =0.6
% Iribarren number
slope=(Z2-Ztoe)/(Lslope-berm_width)
Irb=(slope/(sqrt(H0/L0)))
% runup height
{\tt gamma\_\bar{b}erm}
gamma perm
gamma beta
gamma rough
gamma=gamma_berm*gamma_perm*gamma_beta*gamma_rough
% check validity
TAW_VALID=1;
if (Irb*gamma_berm < 0.5 | Irb*gamma_berm > 10 )
   sprintf('!!! - - Iribaren number: %6.2f is outside the valid range (0.5-10), TAW NOT VALID - - !!!\n', Irb*gam
  TAW_VALID=0;
else
   sprintf('!!! - - Iribaren number: %6.2f is in the valid range (0.5-10), TAW RECOMMENDED - - !!!\n', Irb*gamma_
end
islope=1/slope;
if (slope < 1/8 | slope > 1)
    sprintf('!!! - - slope: 1
                  - slope: 1:%3.1f V:H is outside the valid range (1:8 - 1:1), TAW NOT VALID - - !!!\n', islope)
   TAW_VALID=0;
else
   sprintf('!!! - - slope: 1:%3.1f V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!\n', islope)
end
if TAW_VALID == 0
  TAW_ALWAYS_VALID=0;
if (Irb*gamma_berm < 1.8)
  R2_new=gamma*H0*1.77*Irb
else
  R2_new=gamma*H0*(4.3-(1.6/sqrt(Irb)))
end
% check to see if we need to evaluate a shallow foreshore
if berm_width > 0.25 * L0;
   disp ('!
              Berm_width is greater than 1/4 wave length')
   disp ('!
              Runup will be weighted average with foreshore calculation assuming depth limited wave height on ber
   % do the foreshore calculation
   fore_H0=0.78*(SWEL_fore-min(Berm_Heights))
   % get upper slope
   fore_toe_sta=-999;
   fore_toe_dep=-999;
   for kk=length(dep)-1:-1:1
      ddep=dep(kk+1)-dep(kk);
      dsta=sta(kk+1)-sta(kk);
      s=ddep/dsta;
      if s < 1/15
         break
      end
      fore_toe_sta=sta(kk);
      fore_toe_dep=dep(kk);
      upper_slope=(Z2-fore_toe_dep)/(top_sta-fore_toe_sta)
   end
   fore_Irb=upper_slope/(sqrt(fore_H0/L0));
   fore_gamma=gamma_perm*gamma_beta*gamma_rough;
   if (fore_Irb < 1.8)
      fore_R2=fore_gamma*fore_H0*1.77*fore_Irb;
      fore_R2=fore_gamma*fore_H0*(4.3-(1.6/sqrt(fore_Irb)));
   end
   if berm_width >= L0
      R2_new=fore_R2
      disp ('berm is wider than one wavelength, use full shallow foreshore solution');
```

```
w2=(berm_width-0.25*L0)/(0.75*L0)
          w1 = 1 - w2
          R2_new=w2*fore_R2 + w1*R2_new
       end
    end % end berm width check
    % convergence criterion
R2del=abs(R2-R2_new)
    R2_all(iter)=R2_new;
    % get the new top station (for plot purposes)
    Z2=R2_new+SWEL
    top_sta=-999;
    for kk=1:length(sta)-1
       if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
                                                 % here is the intersection of z2 with profile
          top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
       end
    end
    if top_sta==-999
       dy=Z2-dep(end);
       top_sta=sta(end)+dy/S(end);
    topStaAll(iter)=top_sta;
end
ans =
         -----! STARTING ITERATION 1 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
Z2 =
                 20.068423
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
                   22.6644
Z_{2} =
          31.9203345021268
top_sta =
          107.041046462901
Lslope =
          145.422391094205
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
Berm Factor Calculation: Iteration 1, Profile Segment: 15
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
```

```
Berm Factor Calculation: Iteration 1, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 1 -----!
berm_width =
   17
rB =
         0.116900842243663
rdh_mean =
        0.810625187975784
gamma_berm =
        0.977861924974634
slope =
        0.268771755517362
Irb =
          1.9976804779061
gamma_berm =
         0.977861924974634
gamma_perm =
gamma_beta =
gamma_rough =
gamma =
        0.977861924974634
ans =
!!! - - Iribaren number:
                         1.95 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:3.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         23.4035594084022
R2del =
        0.739159408402184
Z_{2} =
           32.659493910529
ans =
!----- STARTING ITERATION 2 -----!
Ztoe =
                -2.595977
toe_sta =
        -38.3813446313046
top_sta =
         112.060463877013
Z2 =
           32.659493910529
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          23.4035594084022
Z2 =
          32.659493910529
top_sta =
         112.060463877013
Lslope =
         150.441808508318
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
        0.695983762046982
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
         1.40666398849417
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
          2.90420535902459
Berm Factor Calculation: Iteration 2, Profile Segment: 13
dh =
```

```
10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
         5.32809529031497
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 16
         11.2205850021268
rdh_sum =
         13.7806281955883
!----- End Berm Factor Calculation, Iter: 2 -----!
berm_width =
rB =
         0.113000502776195
rdh_mean =
        0.810625187975784
gamma berm =
        0.978600551028116
slope =
        0.264201087385079
Irb =
         1.96370840192932
gamma_berm =
        0.978600551028116
gamma\_perm =
gamma_beta =
gamma_rough =
    1
gamma =
        0.978600551028116
ans =
!!! - - Iribaren number: 1.92 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:3.8 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         23.3491540099791
R2del =
        0.0544053984230999
Z2 =
          32.6050885121059
ans =
    -----: STARTING ITERATION 3 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
         111.691012577114
Z2 =
          32.6050885121059
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
         9.03136363636364
R2 =
          23.3491540099791
Z_{2} =
          32.6050885121059
top_sta =
         111.691012577114
Lslope =
         150.072357208419
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 9
          9.49194100212682
rdh_sum =
        0.695983762046982
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 10
         9.64669100212682
rdh_sum =
```

```
1.40666398849417
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 14
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 15
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
          13.7806281955883
ans =
!---- End Berm Factor Calculation, Iter: 3 -----!
berm_width =
    17
rB =
         0.113278689801551
rdh_mean =
         0.810625187975784
gamma_berm
         0.978547869412482
slope =
         0.264525753135745
Irb =
          1.96612152168106
gamma_berm =
         0.978547869412482
gamma_perm =
gamma_beta =
gamma_rough =
    1
gamma =
         0.978547869412482
ans =
!!! - - Iribaren number: 1.92 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:3.8 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          23.3530785745975
R2del =
       0.00392456461842983
Z2 =
          32.6090130767243
% final 2% runup elevation
Z2=R2\_new+SWEL
Z_{2} =
          32.6090130767243
diary off
diary on
                 % begin recording
\mbox{\ensuremath{\mbox{\tt FEMA}}} appeal for The Town of Harpswell, Cumberland county, Maine
% TRANSECT ID: CM-144-1
% calculation by SJH, Ransom Consulting, Inc. 26-Feb-2020
% 100-year wave runup using TAW methodology
% including berm and weighted average with foreshore if necessary
% chk nld 20200220
% This script assumes that the incident wave conditions provided
% as input in the configuration section below are the
% appropriate values located at the end of the foreshore
% or toe of the slope on which the run-up is being calculated
\mbox{\ensuremath{\$}} the script does not attempt to apply a depth limit or any other
```

```
% transformation to the incident wave conditions other than
\mbox{\ensuremath{\$}} conversion of the peak wave period to the spectral mean wave
\mbox{\ensuremath{\mbox{\$}}} as recommended in the references below
% references:
% Van der Meer, J.W., 2002. Technical Report Wave Run-up and
% Wave Overtopping at Dikes. TAW Technical Advisory Committee on
% Flood Defence, The Netherlands.
% FEMA. 2007, Atlantic Ocean and Gulf of Mexico Coastal Guidelines Update
% CONFIG
% third column is 0 for excluded points
imgname='logfiles/CM-144-1-runup';
SWEL=8.8043; % 100-yr still water level including wave setup. H0=7.5548; % significant wave height at toe of structure
Tp=9.9345;
              % peak period, 1/fma,
T0=Tp/1.1;
               % this may get changed automatically below
gamma_berm=1;
gamma_rough=1;
gamma_beta=1;
gamma_perm=1;
setupAtToe=-0.068077;
maxSetup=1.5194; % only used in case of berm/shallow foreshore weighted average
plotTitle='Iterative TAW for CM-144-1
plotTitle =
Iterative TAW for CM-144-1
% END CONFIG
SWEL=SWEL+setupAtToe
SWEL =
                  8.736223
SWEL_fore=SWEL+maxSetup
SWEL_fore =
                 10.255623
% FIND WAVELENGTH USING DEEPWATER DISPERSION RELATION
% using English units
L0=32.15/(2*pi)*T0^2
L0 =
          417.357062285715
% Find Hb (Munk, 1949)
\theta_0 %Hb=H0/(3.3*(H0/L0)^(1/3)) %Db=-Hb/.78+SWEL; % depth at breaking
% The toe elevation here is only used to determine the average
% structure slope, it is not used to depth limit the wave height.
% Any depth limiting or other modification of the wave height
% to make it consitent with TAW guidance should be performed
% prior to the input of the significant wave height given above.
Ztoe=SWEL-1.5*H0
Ztoe =
                 -2.595977
% read the transect
[sta,dep,inc] = textread(fname,'%n%n%n%*[^\n]','delimiter',',','headerlines',0);
% remove unselected points
k=find(inc==0);
sta(k)=[];
dep(k)=[];
sta_org=sta; % used for plotting purposes
dep_org=dep;
\mbox{\%} initial guess at maximum run-up elevation to estimate slope \mbox{\sc Z2=SWEL+1.5*H0}
7.2 =
                 20.068423
% determine station at the max runup and -1.5*HO (i.e. the toe)
top_sta=-999;
toe_sta=-999;
for kk=1:length(sta)-1
    if ((Z2 > dep(kk)) & (Z2 \le dep(kk+1)))
                                                % here is the intersection of z2 with profile
       top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
    end
                                                     % here is the intersection of Ztoe with profile
    if
       ((Ztoe > dep(kk)) & (Ztoe <= dep(kk+1)))
       toe_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Ztoe)
    end
end
toe_sta =
         -62.4868075374234
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
% check to make sure we got them, if not extend the end slopes outward
S=diff(dep)./diff(sta);
if toe_sta==-999
   dy=dep(1)-Ztoe;
```

```
toe_sta=sta(1)-dy/S(1)
end
if top_sta==-999
   dv=Z2-dep(end);
   top_sta=sta(end)+dy/S(end)
end
% just so the reader can tell the values aren't -999 anymore
top_sta
top_sta =
           34.9443976794092
toe_sta
toe_sta =
          -38.3813446313046
% check for case where the toe of slope is below SWL-1.5*H0 \,
% in this case interpolate setup from the setupAtToe(really setup as first station), and the max setup
% also un-include points seaward of SWL-1.5*H0
if Ztoe > dep(1)
   dd=SWEL_fore-dep;
   k=find(dd<0,1); % k is index of first land point
   staAtSWL=interp1(dep(k-1:k),sta(k-1:k),SWEL_fore);
   dsta=staAtSWL-sta(1);
   dsetup=maxSetup-setupAtToe;
   dsetdsta=dsetup/dsta;
   setup=setupAtToe+dsetdsta*(toe_sta-sta(1));
   sprintf('-!!- Location of SWEL-1.5*H0 is %4.1f ft landward of toe of slope',dsta) sprintf('-!!- Setup is interpolated between setup at toe of slope and max setup')
   sprintf('-!!-
                          setup is adjusted to %4.2f feet', setup)
   SWEL=SWEL-setupAtToe+setup;
   sprintf('-!!-
                         SWEL is adjusted to %4.2f feet', SWEL)
   k=find(dep < SWEL-1.5*H0)
   sta(k)=[];
   dep(k)=[];
else
   sprintf('-!!- The User has selected a starting point that is 4.2f feet above the elevation of SWEL-1.5H0\n', dep(1)
   sprintf('-!!- This may be reasonable for some cases. However the user may want to consider:\n')
sprintf('-!!- 1) Selecting a starting point that is at or below %4.2f feet elevation, or\n', Ztoe)
sprintf('-!!- 2) Reducing the incident wave height to a depth limited condition.\n')
end
ans =
-!!- Location of SWEL-1.5*HO is 84.4 ft landward of toe of slope
ans =
-!!- Setup is interpolated between setup at toe of slope and max setup
ans =
- ! ! -
            setup is adjusted to 0.45 feet
ans =
-11-
            SWEL is adjusted to 9.26 feet
k =
     2
     3
     4
     5
     6
    24
    25
    26
    29
    30
    31
    32
% now iterate converge on a runup elevation
tol=0.01; % convergence criteria
R2del=999;
R2_new=3*H0; %initial guess
R2=R2 new;
iter=0;
R2_all=[];
topStaAll=[];
Berm_Segs=[];
TAW_ALWAYS_VALID=1;
while(abs(R2del) > tol && iter <= 25)
    iter=iter+1;
    sprintf ('!-----: STARTING ITERATION %d -----!',iter)
    % elevation of toe of slope
    Ztoe
    % station of toe slope (relative to 0-NAVD88 shoreline
    toe_sta
    % station of top of slope/extent of 2% run-up
    % elevation of top of slope/extent of 2% run-up
    Z2
    % incident significant wave height
    НΟ
    % incident spectral peak wave period
    Тр
      incident spectral mean wave period
    T0
```

```
R2=R2 new
Z2=R2+SWEL
% determine slope for this iteration
top_sta=-999;
for kk=1:length(sta)-1
   if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
                                               % here is the intersection of z2 with profile
      top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
      break;
   end
end
if top_sta==-999
   dy=Z2-dep(end);
   top_sta=sta(end)+dy/S(end)
end
% get the length of the slope (not accounting for berm)
Lslope=top_sta-toe_sta
% loop over profile segments to determine berm factor
% re-calculate influence of depth of berm based on this run-up elevation
% check for berm, berm width, berm height
berm_width=0;
rdh_sum=0;
Berm_Segs=[];
Berm_Heights=[];
for kk=1:length(sta)-1
   ddep=dep(kk+1)-dep(kk);
   dsta=sta(kk+1)-sta(kk);
   s=ddep/dsta;
   if (s < 1/15)
                       % count it as a berm if slope is flatter than 1:15 (see TAW manual)
      sprintf ('Berm Factor Calculation: Iteration %d, Profile Segment: %d',iter,kk) berm_width=berm_width+dsta; % tally the width of all berm segments
      % compute the rdh for this segment and weight it by the segment length
      dh=SWEL-(dep(kk)+dep(kk+1))/2
      if dh < 0
          chi=R2;
      else
          chi=2* H0;
      end
      if (dh <= R2 & dh >=-2*H0)
         rdh=(0.5-0.5*cos(3.14159*dh/chi));
      else
         rdh=1;
      end
      rdh_sum=rdh_sum + rdh * dsta
      Berm_Segs=[Berm_Segs, kk];
      Berm_Heights=[Berm_Heights, (dep(kk)+dep(kk+1))/2];
   end
   if dep(kk) >= Z2 % jump out of loop if we reached limit of run-up for this iteration
      break
   end
end
sprintf ('!----- End Berm Factor Calculation, Iter: %d -----!',iter)
berm width
rB=berm_width/Lslope
if (berm_width > 0)
   rdh_mean=rdh_sum/berm_width
else
  rdh_mean=1
end
gamma_berm=1- rB * (1-rdh_mean)
if gamma_berm > 1
   gamma_berm=1
end
if gamma berm < 0.6
   gamma_berm =0.6
end
% Iribarren number
slope=(Z2-Ztoe)/(Lslope-berm_width)
Irb=(slope/(sqrt(H0/L0)))
% runup height
gamma_berm
gamma_perm
gamma beta
gamma_rough
gamma=gamma_berm*gamma_perm*gamma_beta*gamma_rough
% check validity
TAW_VALID=1;
if (Irb*gamma_berm < 0.5 | Irb*gamma_berm > 10 )
   sprintf('!!! - - Iribaren number: %6.2f is outside the valid range (0.5-10), TAW NOT VALID - - !!!\n', Irb*gam
   TAW_VALID=0;
else
   sprintf('!!! - - Iribaren number: %6.2f is in the valid range (0.5-10), TAW RECOMMENDED - - !!!\n', Irb*gamma_
islope=1/slope;
if (slope < 1/8 | slope > 1)
   sprintf('!!!
                  - slope: 1:%3.1f V:H is outside the valid range (1:8 - 1:1), TAW NOT VALID - - !!!\n', islope)
   sprintf('!!! - - slope: 1:%3.1f V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!\n', islope)
```

```
end
    if TAW VALID == 0
       TAW_ALWAYS_VALID=0;
    end
    if (Irb*gamma_berm < 1.8)
   R2_new=gamma*H0*1.77*Irb</pre>
    else
       R2_new=gamma*H0*(4.3-(1.6/sqrt(Irb)))
    end
    % check to see if we need to evaluate a shallow foreshore
    if berm_width > 0.25 * L0;
       disp ('! disp ('!
                  Berm_width is greater than 1/4 wave length')
                  Runup will be weighted average with foreshore calculation assuming depth limited wave height on ber
       % do the foreshore calculation
       fore_H0=0.78*(SWEL_fore-min(Berm_Heights))
       % get upper slope
       fore_toe_sta=-999;
       fore_toe_dep=-999;
       for \overline{k}=length(dep)-1:-1:1
          ddep=dep(kk+1)-dep(kk);
          dsta=sta(kk+1)-sta(kk);
          s=ddep/dsta;
          if s < 1/15
             break
          end
          fore toe sta=sta(kk);
          fore_toe_dep=dep(kk);
          upper_slope=(Z2-fore_toe_dep)/(top_sta-fore_toe_sta)
       end
       fore_Irb=upper_slope/(sqrt(fore_H0/L0));
       fore_gamma=gamma_perm*gamma_beta*gamma_rough;
       if (fore_Irb < 1.8)
          fore_R2=fore_gamma*fore_H0*1.77*fore_Irb;
       else
          fore_R2=fore_gamma*fore_H0*(4.3-(1.6/sqrt(fore_Irb)));
       end
       if berm_width >= L0
          R2 new=fore R2
          disp ('berm is wider than one wavelength, use full shallow foreshore solution');
       else
          w2=(berm_width-0.25*L0)/(0.75*L0)
          w1 = 1 - w2
          R2_new=w2*fore_R2 + w1*R2_new
       end
    end % end berm width check
    % convergence criterion
    R2del=abs(R2-R2_new)
    R2_all(iter)=R2_new;
    % get the new top station (for plot purposes)
    Z2=R2_new+SWEL
    top_sta=-999;
    for kk=1:length(sta)-1
       if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1))) % here is the intersection of z2 with profile
          top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
          break;
       end
    end
    if top_sta==-999
       dy=Z2-dep(end);
       top_sta=sta(end)+dy/S(end);
    topStaAll(iter)=top_sta;
end
ans =
!----- STARTING ITERATION 1 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
7.2 =
                 20.068423
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
                   22.6644
Z_{2} =
          31.9203345021268
top_sta =
          107.041046462901
Lslope =
          145.422391094205
Berm Factor Calculation: Iteration 1, Profile Segment: 9
```

```
dh =
         9.49194100212682
rdh_sum =
        0.695983762046982
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
         1.40666398849417
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 13
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
         4.49773093822128
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
         5.32809529031497
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!---- End Berm Factor Calculation, Iter: 1 -----!
berm_width =
rB =
         0.116900842243663
rdh_mean =
         0.810625187975784
gamma_berm =
        0.977861924974634
slope =
        0.268771755517362
Irb =
          1.9976804779061
gamma_berm =
        0.977861924974634
gamma_perm =
gamma_beta =
    1
gamma_rough =
    1
gamma =
        0.977861924974634
ans =
!!! - - Iribaren number: 1.95 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:3.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         23.4035594084022
R2del =
        0.739159408402184
7.2 =
          32.659493910529
ans =
    -----! STARTING ITERATION 2 -----!
Ztoe =
                -2.595977
toe_sta =
         -38.3813446313046
top_sta =
         112.060463877013
Z2 =
          32.659493910529
```

```
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          23.4035594084022
Z_{2} =
           32.659493910529
top_sta =
          112.060463877013
Lslope =
          150.441808508318
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
Berm Factor Calculation: Iteration 2, Profile Segment: 15
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 16
         11.2205850021268
rdh_sum =
          13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 2 -----!
berm_width =
   17
rB =
         0.113000502776195
rdh_mean =
         0.810625187975784
gamma_berm =
         0.978600551028116
slope =
         0.264201087385079
Irb =
         1.96370840192932
gamma_berm =
         0.978600551028116
gamma_perm =
gamma_beta =
gamma_rough =
gamma =
         0.978600551028116
!!! - - Iribaren number: 1.92 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:3.8 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
```

```
R2\_new =
         23.3491540099791
R2del =
       0.0544053984230999
7.2 =
         32.6050885121059
ans =
!----- STARTING ITERATION 3 -----!
Ztoe =
                -2.595977
toe_sta =
        -38.3813446313046
top_sta =
         111.691012577114
Z2 =
          32.6050885121059
H0 =
                   7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          23.3491540099791
Z2 =
          32.6050885121059
top_sta =
         111.691012577114
Lslope =
         150.072357208419
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 9
         9.49194100212682
rdh_sum =
        0.695983762046982
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 10
dh =
         9.64669100212682
rdh_sum =
         1.40666398849417
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 12
         10.1985265021268
rdh_sum =
          2.90420535902459
Berm Factor Calculation: Iteration 3, Profile Segment: 13
         10.4744445021268
rdh_sum =
          3.68942949541434
Berm Factor Calculation: Iteration 3, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
         4.49773093822128
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
         5.32809529031497
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
!----- End Berm Factor Calculation, Iter: 3 -----!
berm_width =
   17
rB =
         0.113278689801551
rdh_mean =
         0.810625187975784
gamma_berm
        0.978547869412482
slope =
        0.264525753135745
```

```
Irb =
          1.96612152168106
gamma_berm =
         0.978547869412482
gamma_perm =
gamma_beta =
     1
gamma_rough =
     1
gamma =
         0.978547869412482
ans =
!!! - - Iribaren number: 1.92 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:3.8 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2 \text{ new} =
          23.3530785745975
R2del =
       0.00392456461842983
Z2 =
          32.6090130767243
% final 2% runup elevation
Z2=R2_new+SWEL
          32.6090130767243
diary off
diary on
                  % begin recording
% FEMA appeal for The Town of Harpswell, Cumberland county, Maine
% TRANSECT ID: CM-144-1
% calculation by SJH, Ransom Consulting, Inc. 26-Feb-2020 % 100-year wave runup using TAW methodology
% including berm and weighted average with foreshore if necessary
% chk nld 20200220
\ensuremath{^{\circ}} This script assumes that the incident wave conditions provided
% as input in the configuration section below are the
\mbox{\ensuremath{\upsigma}} appropriate values located at the end of the foreshore
\mbox{\%} or toe of the slope on which the run-up is being calculated
\mbox{\ensuremath{\$}} the script does not attempt to apply a depth limit or any other
\ensuremath{\mathtt{\$}} transformation to the incident wave conditions other than
% conversion of the peak wave period to the spectral mean wave
% as recommended in the references below
% references:
% Van der Meer, J.W., 2002. Technical Report Wave Run-up and
% Wave Overtopping at Dikes. TAW Technical Advisory Committee on
% Flood Defence, The Netherlands.
% FEMA. 2007, Atlantic Ocean and Gulf of Mexico Coastal Guidelines Update
fname='inpfiles/CM-144-1sta_ele_include.csv'; % file with station, elevation, include
                                         % third column is 0 for excluded points
imgname='logfiles/CM-144-1-runup';
SWEL=8.8043; % 100-yr still water level including wave setup.
              % significant wave height at toe of structure % peak period, 1/fma,
H0=7.5548;
Tp=9.9345;
\bar{\text{T0}} = \text{Tp}/1.1;
gamma_berm=0.97855; % this may get changed automatically below
gamma rough=0.6;
gamma_beta=1;
gamma_perm=1;
setupAtToe=-0.068077;
maxSetup=1.5194; % only used in case of berm/shallow foreshore weighted average
plotTitle='Iterative TAW for CM-144-1'
plotTitle =
Iterative TAW for CM-144-1
% END CONFIG
SWEL=SWEL+setupAtToe
SWEL =
                   8.736223
SWEL_fore=SWEL+maxSetup
SWEL_fore =
                  10.255623
% FIND WAVELENGTH USING DEEPWATER DISPERSION RELATION
% using English units
L0=32.15/(2*pi)*T0^2
          417.357062285715
% Find Hb (Munk, 1949)
%Hb=H0/(3.3*(H0/L0)^(1/3))
%Db=-Hb/.78+SWEL; % depth at breaking
```

```
% The toe elevation here is only used to determine the average
% structure slope, it is not used to depth limit the wave height.
% Any depth limiting or other modification of the wave height
% to make it consitent with TAW guidance should be performed
% prior to the input of the significant wave height given above.
Ztoe=SWEL-1.5*H0
Ztoe =
                              -2.595977
% read the transect
[sta,dep,inc] = textread(fname,'%n%n%n%*[^\n]','delimiter',',','headerlines',0);
% remove unselected points
k=find(inc==0);
sta(k)=[];
dep(k)=[];
sta_org=sta;
                       % used for plotting purposes
dep_org=dep;
% initial guess at maximum run-up elevation to estimate slope
Z2=SWEL+1.5*H0
                              20.068423
% determine station at the max runup and -1.5*H0 (i.e. the toe)
top_sta=-999;
toe_sta=-999;
for kk=1:length(sta)-1
       if ((Z2 > dep(kk))) & (Z2 <= dep(kk+1))) % here is the intersection of z2 with profile
             top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
              ((Ztoe > dep(kk)) & (Ztoe <= dep(kk+1)))
                                                                                            % here is the intersection of Ztoe with profile
             toe_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Ztoe)
       end
end
toe_sta =
               -62.4868075374234
toe_sta =
                -38.3813446313046
top_sta =
                 34.9443976794092
% check to make sure we got them, if not extend the end slopes outward
S=diff(dep)./diff(sta);
if toe_sta==-999
     dy=dep(1)-Ztoe;
     toe_sta=sta(1)-dy/S(1)
end
if top_sta==-999
     dy=Z2-dep(end);
     top_sta=sta(end)+dy/S(end)
end
% just so the reader can tell the values aren't -999 anymore
top_sta =
                 34.9443976794092
toe sta
toe_sta =
                -38.3813446313046
\mbox{\ensuremath{\$}} check for case where the toe of slope is below SWL-1.5*H0
  in this case interpolate setup from the setupAtToe(really setup as first station), and the max setup
% also un-include points seaward of SWL-1.5*H0
if Ztoe > dep(1)
     dd=SWEL_fore-dep;
     k=find(dd<0,1); % k is index of first land point
     staAtSWL=interp1(dep(k-1:k),sta(k-1:k),SWEL_fore);
     dsta=staAtSWL-sta(1);
     dsetup=maxSetup-setupAtToe;
     dsetdsta=dsetup/dsta;
     setup=setupAtToe+dsetdsta*(toe_sta-sta(1));
     sprintf('-!!- Location of SWEL-1.5*H0 is %4.1f ft landward of toe of slope',dsta) sprintf('-!!- Setup is interpolated between setup at toe of slope and max setup')
     sprintf('-!!-
                                        setup is adjusted to %4.2f feet', setup)
     SWEL=SWEL-setupAtToe+setup;
     sprintf('-!!-
                                         SWEL is adjusted to %4.2f feet', SWEL)
     k=find(dep < SWEL-1.5*H0)
     sta(k)=[];
     dep(k)=[];
else
     sprintf('-!!-The User has selected a starting point that is $4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and the selected a starting point that is $4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and the selected a starting point that is $4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and the selected a starting point that is $4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and the selected a starting point that is $4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and the selected a starting point that is $4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and the selected a starting point that is $4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and the selected a starting point that is $4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and the selected as the se
     sprintf('-!!- This may be reasonable for some cases. However the user may want to consider:\n') sprintf('-!!- 1) Selecting a starting point that is at or below \%4.2f feet elevation, or\n', Ztoe)
     sprintf('-!!-
                                  2) Reducing the incident wave height to a depth limited condition.\n')
end
ans =
-!!- Location of SWEL-1.5*H0 is 84.4 ft landward of toe of slope
ans =
-!!- Setup is interpolated between setup at toe of slope and max setup
ans =
                    setup is adjusted to 0.45 feet
-!!-
ans =
-!!-
                    SWEL is adjusted to 9.26 feet
k =
```

2

```
3
     4
     5
     6
7
    24
25
    26
    27
    28
    29
    30
    31
    32
% now iterate converge on a runup elevation
tol=0.01; % convergence criteria R2del=999;
R2_new=3*H0; %initial guess
R2=R2_new;
iter=\overline{0};
R2_all=[];
topStaAll=[];
Berm_Segs=[];
TAW_ALWAYS_VALID=1;
\overline{\text{while}}(abs(\overline{\text{R2del}}) > \text{tol \&\& iter} <= 25)
    iter=iter+1;
                      -----!',iter
    sprintf ('!--
    % elevation of toe of slope
    Ztoe
    % station of toe slope (relative to 0-NAVD88 shoreline
    toe sta
    % station of top of slope/extent of 2% run-up
    top sta
    % elevation of top of slope/extent of 2% run-up
    Z2
    % incident significant wave height
    HΩ
    % incident spectral peak wave period
    Тр
    % incident spectral mean wave period
    т0
    R2=R2_new
    Z2=R2+SWEL
    % determine slope for this iteration
    top_sta=-999;
    for kk=1:length(sta)-1
       if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
                                                   % here is the intersection of z2 with profile
           top_sta=interpl(dep(kk:kk+1),sta(kk:kk+1),Z2)
          break;
       end
    end
    if top_sta==-999
       dy=Z2-dep(end);
       top_sta=sta(end)+dy/S(end)
    % get the length of the slope (not accounting for berm)
    Lslope=top_sta-toe_sta
    % loop over profile segments to determine berm factor
    % re-calculate influence of depth of berm based on this run-up elevation
    % check for berm, berm width, berm height
    berm width=0;
    rdh_sum=0;
Berm_Segs=[];
    Berm_Heights=[];
    for kk=1:length(sta)-1
       ddep=dep(kk+1)-dep(kk);
       dsta=sta(kk+1)-sta(kk);
       s=ddep/dsta;
                            % count it as a berm if slope is flatter than 1:15 (see TAW manual)
       if (s < 1/15)
           sprintf ('Berm Factor Calculation: Iteration %d, Profile Segment: %d',iter,kk)
          berm_width=berm_width+dsta; % tally the width of all berm segments % compute the rdh for this segment and weight it by the segment length
           dh=SWEL-(dep(kk)+dep(kk+1))/2
           if dh < 0
               chi=R2;
           else
               chi=2* H0;
           end
           if (dh \le R2 \& dh \ge -2*H0)
              rdh=(0.5-0.5*cos(3.14159*dh/chi));
           else
              rdh=1;
           end
           rdh_sum=rdh_sum + rdh * dsta
           Berm_Segs=[Berm_Segs, kk];
           Berm_Heights=[Berm_Heights, (dep(kk)+dep(kk+1))/2];
       if dep(kk) >= Z2 % jump out of loop if we reached limit of run-up for this iteration
```

```
break
   end
end
sprintf ('!----- End Berm Factor Calculation, Iter: %d -----!',iter)
berm_width
rB=berm_width/Lslope
if (berm_width > 0)
   rdh_mean=rdh_sum/berm_width
else
   rdh_mean=1
end
gamma_berm=1- rB * (1-rdh_mean)
if gamma_berm > 1
   gamma_berm=1
end
if gamma_berm < 0.6
   gamma_berm =0.6
end
% Iribarren number
slope=(Z2-Ztoe)/(Lslope-berm_width)
Irb=(slope/(sqrt(H0/L0)))
% runup height
gamma_berm
gamma perm
gamma_beta
gamma rough
gamma=gamma_berm*gamma_perm*gamma_beta*gamma_rough
% check validity
TAW VALID=1;
if (Irb*gamma berm < 0.5 | Irb*gamma berm > 10 )
   sprintf('!!! - - Iribaren number: %6.2f is outside the valid range (0.5-10), TAW NOT VALID - - !!!\n', Irb*gam
   TAW VALID=0;
else
   sprintf('!!! - - Iribaren number: %6.2f is in the valid range (0.5-10), TAW RECOMMENDED - - !!!\n', Irb*gamma_
end
islope=1/slope;
if (slope < 1/8 | slope > 1)
    sprintf('!!! - - slope: 1
                  - slope: 1:%3.1f V:H is outside the valid range (1:8 - 1:1), TAW NOT VALID - - !!!\n', islope)
   TAW_VALID=0;
else
   sprintf('!!! - - slope: 1:%3.1f V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!\n', islope)
end
if TAW_VALID == 0
   TAW_ALWAYS_VALID=0;
if (Irb*gamma_berm < 1.8)</pre>
   R2_new=gamma*H0*1.77*Irb
   R2_new=gamma*H0*(4.3-(1.6/sqrt(Irb)))
% check to see if we need to evaluate a shallow foreshore
if berm_width > 0.25 * L0;
   disp ('! disp ('!
              Berm_width is greater than 1/4 wave length')
              Runup will be weighted average with foreshore calculation assuming depth limited wave height on ber
   % do the foreshore calculation
   fore_H0=0.78*(SWEL_fore-min(Berm_Heights))
   % get upper slope
   fore_toe_sta=-999;
   fore_toe_dep=-999;
   for kk=length(dep)-1:-1:1
      ddep=dep(kk+1)-dep(kk);
      dsta=sta(kk+1)-sta(kk);
      s=ddep/dsta;
      if s < 1/15
         break
      end
      fore_toe_sta=sta(kk);
      fore_toe_dep=dep(kk);
      upper_slope=(Z2-fore_toe_dep)/(top_sta-fore_toe_sta)
   fore_Irb=upper_slope/(sqrt(fore_H0/L0));
   fore_gamma=gamma_perm*gamma_beta*gamma_rough;
   if (fore Irb < 1.8)
      fore_R2=fore_gamma*fore_H0*1.77*fore_Irb;
   else
      fore_R2=fore_gamma*fore_H0*(4.3-(1.6/sqrt(fore_Irb)));
   end
   if berm_width >= L0
      R2_new=fore_R2
      disp ('berm is wider than one wavelength, use full shallow foreshore solution');
      w2=(berm_width-0.25*L0)/(0.75*L0)
      w1 = 1 - w2
      R2_new=w2*fore_R2 + w1*R2_new
end % end berm width check
% convergence criterion
R2del=abs(R2-R2_new)
R2_all(iter)=R2_new;
```

```
% get the new top station (for plot purposes)
    Z2=R2_new+SWEL
    top_sta=-999;
    for kk=1:length(sta)-1
       if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1))) % here is the intersection of z2 with profile
          top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
         break;
       end
    end
    if top_sta==-999
       dy=Z2-dep(end);
       top_sta=sta(end)+dy/S(end);
    end
    topStaAll(iter)=top_sta;
end
ans =
!----- STARTING ITERATION 1 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
Z2 =
                 20.068423
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
                   22.6644
Z2 =
          31.9203345021268
top_sta =
          107.041046462901
Lslope =
         145.422391094205
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 9
dh =
         9.49194100212682
rdh_sum =
        0.695983762046982
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 11
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
         3.68942949541434
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 16
         11.2205850021268
rdh_sum =
         13.7806281955883
!----- End Berm Factor Calculation, Iter: 1 -----!
berm_width =
```

```
17
rB =
         0.116900842243663
rdh_mean =
         0.810625187975784
gamma_berm =
         0.977861924974634
slope =
         0.268771755517362
Irb =
           1.9976804779061
gamma_berm =
         0.977861924974634
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
          0.58671715498478
!!! - - Iribaren number: 1.95 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:3.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          14.0421356450413
R2del =
          8.62226435495869
Z2 =
          23.2980701471681
top_sta =
          46.9993332993712
ans =
       -----! STARTING ITERATION 2 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          46.9993332993712
Z2 =
          23.2980701471681
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          14.0421356450413
Z2 =
          23.2980701471681
top_sta =
          46.9993332993712
Lslope =
          85.3806779306758
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 13
          10.4744445021268
rdh_sum =
          3.68942949541434
Berm Factor Calculation: Iteration 2, Profile Segment: 14
dh =
```

```
10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
!----- End Berm Factor Calculation, Iter: 2 -----!
berm_width =
    17
rB =
         0.199108280843155
rdh_mean =
         0.810625187975784
gamma_berm =
        0.962293906742863
slope =
        0.378674911258111
Irb =
         2.81454975146854
gamma_berm =
        0.962293906742863
gamma_perm =
gamma_beta =
gamma\_rough =
                       0.6
gamma =
        0.577376344045718
ans =
!!! - - Iribaren number: 2.71 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:2.6 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         14.5964003534129
R2del =
        0.554264708371569
Z2 =
         23.8523348555397
top_sta =
         50.8951497883595
ans =
!----- STARTING ITERATION 3 -----!
Ztoe =
                -2.595977
toe_sta =
         -38.3813446313046
top_sta =
         50.8951497883595
Z2 =
         23.8523348555397
H0 =
                   7.5548
Tp =
                   9.9345
T0 =
         9.03136363636364
R2 =
         14.5964003534129
Z2 =
          23.8523348555397
top_sta =
          50.8951497883595
Lslope =
          89.2764944196642
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
        0.695983762046982
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 10
dh =
         9.64669100212682
rdh_sum =
         1.40666398849417
Berm Factor Calculation: Iteration 3, Profile Segment: 11
dh =
```

```
9.92260850212682
rdh_sum =
         2.14299703977601
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
         2.90420535902459
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
         3.68942949541434
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 14
         10.7503620021268
rdh_sum =
         4.49773093822128
Berm Factor Calculation: Iteration 3, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
         5.32809529031497
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 3 -----!
berm_width =
   17
rB =
        0.190419663210427
rdh_mean =
        0.810625187975784
gamma_berm =
        0.963939312073811
slope =
        0.365932410915933
Irb =
         2.71983948652912
gamma_berm =
        0.963939312073811
gamma_perm =
gamma_beta =
gamma_rough =
                      0.6
gamma =
        0.578363587244287
!!! - - Iribaren number: 2.62 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2 new =
          14.549424968147
R2del =
       0.0469753852659309
Z2 =
         23.8053594702738
top_sta =
         50.5649673529656
ans =
!----- STARTING ITERATION 4 -----!
Ztoe =
                -2.595977
toe_sta =
        -38.3813446313046
top_sta =
         50.5649673529656
Z2 =
         23.8053594702738
H0 =
                   7.5548
Tp =
                   9.9345
T0 =
         9.03136363636364
R2 =
          14.549424968147
Z2 =
         23.8053594702738
top_sta =
```

```
50.5649673529656
Lslope =
          88.9463119842703
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 11
          9.92260850212682
rdh_sum =
          2.14299703977601
Berm Factor Calculation: Iteration 4, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 15
dh =
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 4 -----!
berm_width =
   \frac{-}{17}
rB =
         0.191126530383928
rdh_mean =
         0.810625187975784
gamma_berm =
         0.963805449235703
slope =
         0.366958857822288
Irb =
          2.72746868455436
gamma berm =
         0.963805449235703
gamma perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
        0.578283269541422
ans =
!!! - - Iribaren number: 2.63 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
           14.553336534471
R2del =
       0.00391156632409739
          23.8092710365979
top_sta =
          50.5924611241776
% final 2% runup elevation
Z2=R2_new+SWEL
```

```
23.8092710365979
diary off
diary on
                  % begin recording
% FEMA appeal for The Town of Harpswell, Cumberland county, Maine
% TRANSECT ID: CM-144-1
% calculation by SJH, Ransom Consulting, Inc. 26-Feb-2020
% 100-year wave runup using TAW methodology
% including berm and weighted average with foreshore if necessary
% chk nld 20200220
% This script assumes that the incident wave conditions provided
% as input in the configuration section below are the
% appropriate values located at the end of the foreshore
% or toe of the slope on which the run-up is being calculated
% the script does not attempt to apply a depth limit or any other
\ensuremath{\mathtt{\$}} transformation to the incident wave conditions other than
% conversion of the peak wave period to the spectral mean wave
% as recommended in the references below
% references:
% Van der Meer, J.W., 2002. Technical Report Wave Run-up and
% Wave Overtopping at Dikes. TAW Technical Advisory Committee on
% Flood Defence, The Netherlands.
% FEMA. 2007, Atlantic Ocean and Gulf of Mexico Coastal Guidelines Update
% CONFIG
% third column is 0 for excluded points
imgname='logfiles/CM-144-1-runup';
SWEL=8.8043; % 100-yr still water level including wave setup. H0=7.5548; % significant wave height at toe of structure
Tp=9.9345;
              % peak period, 1/fma,
T0=Tp/1.1;
gamma_berm=0.96381; % this may get changed automatically below
gamma_rough=0.8;
gamma_beta=1;
gamma_perm=1;
setupAtToe=-0.068077;
maxSetup=1.5194; % only used in case of berm/shallow foreshore weighted average
plotTitle='Iterative TAW for CM-144-1'
plotTitle =
Iterative TAW for CM-144-1
% END CONFIG
SWEL=SWEL+setupAtToe
                   8.736223
SWEL_fore=SWEL+maxSetup
SWEL_fore =
                  10.255623
% FIND WAVELENGTH USING DEEPWATER DISPERSION RELATION
% using English units
L0=32.15/(2*pi)*T0^2
L0 =
          417.357062285715
% Find Hb (Munk, 1949)
% That m (% 1.5.15),

%Hb=H0/(3.3*(H0/L0)^(1/3))

%Db=-Hb/.78+SWEL; % depth at breaking
% The toe elevation here is only used to determine the average % structure slope, it is not used to depth limit the wave height.
% Any depth limiting or other modification of the wave height
\mbox{\ensuremath{\$}} to make it consitent with TAW guidance should be performed
% prior to the input of the significant wave height given above.
Ztoe=SWEL-1.5*H0
Ztoe =
                  -2.595977
% read the transect
[sta,dep,inc] = textread(fname,'%n%n%n%*[^\n]','delimiter',',','headerlines',0);
% remove unselected points
k=find(inc==0);
sta(k)=[];
dep(k)=[];
sta_org=sta; % used for plotting purposes
dep_org=dep;
% initial guess at maximum run-up elevation to estimate slope
Z2=SWEL+1.5*H0
                  20.068423
% determine station at the max runup and -1.5*H0 (i.e. the toe)
top_sta=-999;
toe_sta=-999;
for kk=1:length(sta)-1
```

if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1))) % here is the intersection of z2 with profile

```
top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
    end
        ((Ztoe > dep(kk)) & (Ztoe <= dep(kk+1)))
                                                        % here is the intersection of Ztoe with profile
    if
       toe_sta=interpl(dep(kk:kk+1),sta(kk:kk+1),Ztoe)
    end
end
toe_sta =
          -62.4868075374234
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
% check to make sure we got them, if not extend the end slopes outward
S=diff(dep)./diff(sta);
if toe_sta==-999
   dy=dep(1)-Ztoe;
   toe_sta=sta(1)-dy/S(1)
end
if top_sta==-999
   dy=Z2-dep(end);
   top_sta=sta(end)+dy/S(end)
% just so the reader can tell the values aren't -999 anymore
top_sta
top_sta =
          34.9443976794092
toe sta
toe_sta =
          -38.3813446313046
% check for case where the toe of slope is below SWL-1.5*H0 \,
% in this case interpolate setup from the setupAtToe(really setup as first station), and the max setup % also un-include points seaward of SWL-1.5*HO
if Ztoe > dep(1)
   dd=SWEL_fore-dep;
   k = \texttt{find}(\texttt{dd} < \texttt{0,1}); \ \ k \ \ \texttt{is index of first land point}
   staAtSWL=interp1(dep(k-1:k),sta(k-1:k),SWEL_fore);
   dsta=staAtSWL-sta(1);
   dsetup=maxSetup-setupAtToe;
   dsetdsta=dsetup/dsta;
   setup=setupAtToe+dsetdsta*(toe_sta-sta(1));
   sprintf('-!!- Location of SWEL-1.5*H0 is %4.1f ft landward of toe of slope',dsta) sprintf('-!!- Setup is interpolated between setup at toe of slope and max setup')
   sprintf('-!!-
                        setup is adjusted to %4.2f feet', setup)
   SWEL=SWEL-setupAtToe+setup;
   sprintf('-!!-
                        SWEL is adjusted to %4.2f feet', SWEL)
   k=find(dep < SWEL-1.5*H0)
   sta(k)=[];
   dep(k)=[];
else
   sprintf('-!!- The User has selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n',dep(1
   sprintf('-!!- This may be reasonable for some cases. However the user may want to consider:\n')
   sprintf('-!!-
                    1) Selecting a starting point that is at or below %4.2f feet elevation, or\n', Ztoe)
   sprintf('-!!-
                     2) Reducing the incident wave height to a depth limited condition.\n')
end
-!!- Location of SWEL-1.5*HO is 84.4 ft landward of toe of slope
ans =
-!!- Setup is interpolated between setup at toe of slope and max setup
ans =
-!!-
            setup is adjusted to 0.45 feet
ans =
-!!-
            SWEL is adjusted to 9.26 feet
k =
     2
     3
     4
     5
     6
7
    2.4
    25
    26
    27
    28
    29
    30
    31
    32
% now iterate converge on a runup elevation
tol=0.01; % convergence criteria
R2del=999;
R2_new=3*H0; %initial guess
R2=R2_new;
iter=0;
R2_all=[];
topStaAll=[];
Berm_Segs=[];
TAW_ALWAYS_VALID=1;
while(abs(R2del) > tol && iter <= 25)
```

```
iter=iter+1;
sprintf ('!-----!',iter)
% elevation of toe of slope
7.toe
% station of toe slope (relative to 0-NAVD88 shoreline
toe sta
% station of top of slope/extent of 2% run-up
top sta
% elevation of top of slope/extent of 2% run-up
7.2
% incident significant wave height
H0
% incident spectral peak wave period
Тp
% incident spectral mean wave period
T0
R2=R2_new
Z2=R2+SWEL
% determine slope for this iteration
top_sta=-999;
for kk=1:length(sta)-1
   if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
                                            % here is the intersection of z2 with profile
      top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
      break;
   end
end
if top_sta==-999
   dy=Z2-dep(end);
   top_sta=sta(end)+dy/S(end)
end
% get the length of the slope (not accounting for berm)
Lslope=top_sta-toe_sta
% loop over profile segments to determine berm factor
% re-calculate influence of depth of berm based on this run-up elevation
% check for berm, berm width, berm height
berm_width=0;
rdh sum=0;
Berm_Segs=[];
Berm_Heights=[];
for kk=1:length(sta)-1
   ddep=dep(kk+1)-dep(kk);
   dsta=sta(kk+1)-sta(kk);
   s=ddep/dsta;
   if (s < 1/15)
                      \mbox{\ensuremath{\$}} count it as a berm if slope is flatter than 1:15 (see TAW manual)
      sprintf ('Berm Factor Calculation: Iteration %d, Profile Segment: %d',iter,kk)
      berm_width=berm_width+dsta; % tally the width of all berm segments
      % compute the rdh for this segment and weight it by the segment length
      dh=SWEL-(dep(kk)+dep(kk+1))/2
      if dh < 0
          chi=R2;
      else
          chi=2* H0;
      end
      if (dh <= R2 \& dh >= -2*H0)
         rdh=(0.5-0.5*cos(3.14159*dh/chi));
      else
        rdh=1;
      end
      rdh_sum=rdh_sum + rdh * dsta
      Berm_Segs=[Berm_Segs, kk];
      Berm_Heights=[Berm_Heights, (dep(kk)+dep(kk+1))/2];
   end
   if dep(kk) >= Z2 % jump out of loop if we reached limit of run-up for this iteration
     break
   end
end
sprintf ('!----- End Berm Factor Calculation, Iter: %d -----!',iter)
berm_width
rB=berm_width/Lslope
if (berm_width > 0)
  rdh_mean=rdh_sum/berm_width
else
  rdh_mean=1
end
gamma_berm=1- rB * (1-rdh_mean)
if gamma_berm > 1
   gamma_berm=1
end
if gamma_berm < 0.6
   gamma_berm =0.6
end
% Iribarren number
slope=(Z2-Ztoe)/(Lslope-berm_width)
Irb=(slope/(sqrt(H0/L0)))
% runup height
gamma_berm
gamma_perm
gamma_beta
```

```
gamma rough
    gamma=gamma berm*gamma perm*gamma beta*gamma rough
    % check validity
    TAW_VALID=1;
    if (Irb*gamma_berm < 0.5 | Irb*gamma_berm > 10 )
       sprintf('!!! - - Iribaren number: %6.2f is outside the valid range (0.5-10), TAW NOT VALID - - !!!\n', Irb*gam
       TAW_VALID=0;
    else
       sprintf('!!! - - Iribaren number: %6.2f is in the valid range (0.5-10), TAW RECOMMENDED - - !!!\n', Irb*gamma_
    end
    islope=1/slope;
    if (slope < 1/8 | slope > 1)
    sprintf('!!! - - slope: 1
                      - slope: 1:%3.1f V:H is outside the valid range (1:8 - 1:1), TAW NOT VALID - - !!!\n', islope)
       TAW_VALID=0;
       sprintf('!!! - - slope: 1:%3.1f V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!\n', islope)
    end
    if TAW_VALID == 0
       TAW_ALWAYS_VALID=0;
    if (Irb*gamma_berm < 1.8)
       R2_new=gamma*H0*1.77*Irb
    else
       R2_new=gamma*H0*(4.3-(1.6/sqrt(Irb)))
    end
    % check to see if we need to evaluate a shallow foreshore
if berm_width > 0.25 * L0;
       disp ('!
                  Berm_width is greater than 1/4 wave length')
       disp ('!
                  Runup will be weighted average with foreshore calculation assuming depth limited wave height on ber
       % do the foreshore calculation
       fore_H0=0.78*(SWEL_fore-min(Berm_Heights))
       % get upper slope
       fore_toe_sta=-999;
       fore_toe_dep=-999;
       for kk=length(dep)-1:-1:1
          ddep=dep(kk+1)-dep(kk);
          dsta=sta(kk+1)-sta(kk);
          s=ddep/dsta;
          if s < 1/15
             break
          end
          fore_toe_sta=sta(kk);
          fore_toe_dep=dep(kk);
          upper_slope=(Z2-fore_toe_dep)/(top_sta-fore_toe_sta)
       end
       fore_Irb=upper_slope/(sqrt(fore_H0/L0));
       fore_gamma=gamma_perm*gamma_beta*gamma_rough;
       if (fore_Irb < 1.8)
          fore_R2=fore_gamma*fore_H0*1.77*fore_Irb;
          fore_R2=fore_gamma*fore_H0*(4.3-(1.6/sqrt(fore_Irb)));
       end
       if berm_width >= L0
          R2_new=fore_R2
          disp ('berm is wider than one wavelength, use full shallow foreshore solution');
          w2=(berm_width-0.25*L0)/(0.75*L0)
          w1 = 1 - w2
          R2_new=w2*fore_R2 + w1*R2_new
       end
    end % end berm width check
    % convergence criterion
   R2del=abs(R2-R2_new)
   R2_all(iter)=R2_new;
   % get the new top station (for plot purposes) Z2=R2\_new+SWEL
    top_sta=-999;
    for kk=1:length(sta)-1
       if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
                                                 % here is the intersection of z2 with profile
          top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
          break;
       end
    end
    if top_sta==-999
       dy=Z2-dep(end);
       top_sta=sta(end)+dy/S(end);
    end
    topStaAll(iter)=top_sta;
ans =
         -----: STARTING ITERATION 1 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
Z2 =
```

end

20.068423

```
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
                   22.6644
Z_{2} =
          31.9203345021268
top_sta =
          107.041046462901
Lslope =
          145.422391094205
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 10
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
Berm Factor Calculation: Iteration 1, Profile Segment: 15
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 16
         11.2205850021268
rdh_sum =
          13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 1 -----!
berm_width =
   17
rB =
         0.116900842243663
rdh_mean =
         0.810625187975784
gamma_berm =
         0.977861924974634
slope =
         0.268771755517362
Irb =
           1.9976804779061
gamma_berm =
         0.977861924974634
gamma_perm =
gamma_beta =
gamma_rough =
                       0.8
gamma =
         0.782289539979707
!!! - - Iribaren number: 1.95 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:3.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
```

```
R2\_new =
          18.7228475267218
R2del =
          3.94155247327825
7.2 =
          27.9787820288486
top_sta =
          79.8990878658385
ans =
       -----! STARTING ITERATION 2 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          79.8990878658385
Z_{2} =
          27.9787820288486
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          18.7228475267218
z2 =
          27.9787820288486
top_sta =
          79.8990878658385
Lslope =
          118.280432497143
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
Berm Factor Calculation: Iteration 2, Profile Segment: 12
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 13
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 15
dh =
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 2 -----!
berm_width =
rB =
         0.143726224541922
rdh_mean =
         0.810625187975784
gamma_berm =
         0.972781873244423
```

```
slope =
         0.301882192591457
Irb =
          2.24377803987103
gamma_berm =
         0.972781873244423
gamma_perm =
gamma_beta =
gamma_rough =
                       0.8
gamma =
         0.778225498595539
ans =
!!! - - Iribaren number: 2.18 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:3.3 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          19.0011704443444
R2del =
          0.27832291762261
Z2 =
          28.2571049464712
top_sta =
          81.8553611847108
ans =
              ---- STARTING ITERATION 3 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          81.8553611847108
Z2 =
          28.2571049464712
H0 =
                    7.5548
= qT
                    9.9345
T0 =
          9.03136363636364
R2 =
          19.0011704443444
Z2 =
          28.2571049464712
top_sta =
          81.8553611847108
Lslope =
          120.236705816015
Berm Factor Calculation: Iteration 3, Profile Segment: 9
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 10
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 15
          11.0262795021268
```

```
rdh_sum =
         5.32809529031497
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 3 -----!
berm_width =
   17
rB =
          0.14138777243293
rdh_mean =
        0.810625187975784
gamma_berm
        0.973224717172991
slope =
        0.298857675693918
Irb =
          2.22129793086672
gamma_berm =
         0.973224717172991
gamma_perm =
gamma_beta =
gamma_rough =
                       0.8
gamma =
        0.778579773738393
ans =
!!! - - Iribaren number: 2.16 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:3.3 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         18.9781084739222
R2del =
        0.0230619704221695
7.2 =
          28.234042976049
top_sta =
         81.6932634393908
ans =
!----- STARTING ITERATION 4 -----!
Ztoe =
                -2.595977
toe_sta =
        -38.3813446313046
top_sta =
          81.6932634393908
Z2 =
           28.234042976049
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
         9.03136363636364
R2 =
         18.9781084739222
Z2 =
          28.234042976049
top_sta =
          81.6932634393908
Lslope =
         120.074608070695
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 9
dh =
         9.49194100212682
rdh_sum =
        0.695983762046982
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 10
dh =
         9.64669100212682
rdh_sum =
         1.40666398849417
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 12
          10.1985265021268
```

```
rdh_sum =
         2.90420535902459
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 15
dh =
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 16
          11.2205850021268
rdh_sum =
          13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 4 -----!
berm_width =
   17
rB =
         0.141578642421977
rdh_mean =
         0.810625187975784
gamma_berm =
         0.973188571204694
slope =
         0.299103926302623
Irb =
          2.22312822003805
gamma berm =
         0.973188571204694
gamma_perm =
gamma_beta =
gamma_rough =
                       0.8
gamma =
         0.778550856963756
!!! - - Iribaren number: 2.16 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:3.3 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
         18.9800034263996
R2del =
        0.0018949524774321
          28.2359379285264
top_sta =
          81.7065826622698
% final 2% runup elevation
Z2=R2_new+SWEL
28.2359379285264
diary off
plotTitle =
Iterative TAW for CM-144-1
SWEL =
                  8.736223
SWEL_fore =
                 10.255623
L0 =
          417.357062285715
Ztoe =
                 -2.595977
Z2 =
                 20.068423
toe_sta =
         -62.4868075374234
         -38.3813446313046
top_sta =
         34.9443976794092
top_sta =
         34.9443976794092
        -38.3813446313046
ans =
```

```
-!!- Location of SWEL-1.5*HO is 84.4 ft landward of toe of slope
ans =
-!!- Setup is interpolated between setup at toe of slope and max setup
ans =
           setup is adjusted to 0.45 feet
-!!-
ans =
           SWEL is adjusted to 9.26 feet
-!!-
k =
     1
     3
     4
     5
     6
7
    24
    25
    26
    27
    28
    29
    30
    31
    32
ans =
         -----: STARTING ITERATION 1 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
Z2 =
                 20.068423
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
                   22.6644
72 =
          31.9203345021268
top_sta =
          107.041046462901
Lslope =
          145.422391094205
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 9
          9.49194100212682
rdh_sum =
         0.695983762046982
Berm Factor Calculation: Iteration 1, Profile Segment: 10
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
Berm Factor Calculation: Iteration 1, Profile Segment: 15
          11.0262795021268
rdh_sum =
          5.32809529031497
```

```
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 1 -----!
berm_width =
   17
rB =
         0.116900842243663
rdh_mean =
         0.810625187975784
gamma_berm
         0.977861924974634
slope =
         0.268771755517362
Irb =
         1.9976804779061
gamma_berm =
         0.977861924974634
gamma_perm =
gamma_beta =
gamma_rough =
                       0.8
gamma =
         0.782289539979707
ans =
!!! - - Iribaren number: 1.95 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:3.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         18.7228475267218
R2del =
          3.94155247327825
Z_{2} =
          27.9787820288486
top_sta =
         79.8990878658385
ans =
      -----! STARTING ITERATION 2 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
         79.8990878658385
Z2 =
          27.9787820288486
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
         18.7228475267218
          27.9787820288486
top_sta =
          79.8990878658385
Lslope =
         118.280432497143
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 9
dh =
         9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 10
dh =
         9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
Berm Factor Calculation: Iteration 2, Profile Segment: 12
          10.1985265021268
rdh_sum =
          2.90420535902459
```

```
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
         3.68942949541434
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 2 -----!
berm_width =
rB =
        0.143726224541922
rdh_mean =
        0.810625187975784
gamma_berm =
        0.972781873244423
slope =
        0.301882192591457
Trb =
         2.24377803987103
gamma_berm =
        0.972781873244423
gamma_perm =
gamma_beta =
gamma_rough =
                       0.8
gamma =
        0.778225498595539
ans =
!!! - - Iribaren number: 2.18 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:3.3 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          19.0011704443444
R2del =
          0.27832291762261
         28.2571049464712
top_sta =
          81.8553611847108
ans =
!----- STARTING ITERATION 3 -----!
Ztoe =
                 -2.595977
toe_sta =
        -38.3813446313046
top_sta =
         81.8553611847108
Z_{2} =
          28.2571049464712
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
         9.03136363636364
R2 =
          19.0011704443444
7.2 =
          28.2571049464712
top_sta =
          81.8553611847108
Lslope =
          120.236705816015
Berm Factor Calculation: Iteration 3, Profile Segment: 9
          9.49194100212682
rdh_sum =
         0.695983762046982
```

```
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 10
dh =
         9.64669100212682
rdh_sum =
         1.40666398849417
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 11
dh =
         9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 15
         11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 3 -----!
berm_width =
   17
rB =
          0.14138777243293
rdh_mean =
         0.810625187975784
gamma_berm
         0.973224717172991
slope =
        0.298857675693918
Irb =
          2.22129793086672
gamma berm =
         0.973224717172991
gamma_perm =
gamma_beta =
gamma_rough =
                       0.8
gamma =
        0.778579773738393
ans =
!!! - - Iribaren number: 2.16 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:3.3 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         18.9781084739222
R2del =
        0.0230619704221695
Z2 =
           28.234042976049
top_sta =
         81.6932634393908
ans =
!----- STARTING ITERATION 4 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          81.6932634393908
Z2 =
           28.234042976049
H0 =
                    7.5548
```

```
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          18.9781084739222
7.2 =
           28.234042976049
top_sta =
          81.6932634393908
Lslope =
          120.074608070695
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 12
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 15
          11.0262795021268
rdh_sum =
          5.32809529031497
Berm Factor Calculation: Iteration 4, Profile Segment: 16
          11.2205850021268
rdh_sum =
          13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 4 -----!
berm_width =
    17
rB =
         0.141578642421977
rdh_mean =
         0.810625187975784
gamma_berm =
         0.973188571204694
slope =
         0.299103926302623
Irb =
          2.22312822003805
gamma_berm =
         0.973188571204694
gamma_perm =
gamma_beta =
gamma_rough =
                       0.8
gamma =
         0.778550856963756
!!! - - Iribaren number: 2.16 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:3.3 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          18.9800034263996
```

```
R2del =
       0.0018949524774321
7.2 =
         28.2359379285264
top_sta =
          81.7065826622698
Z2 =
          28.2359379285264
plotTitle =
Iterative TAW for CM-144-1
SWEL =
                  8.736223
SWEL_fore =
                 10.255623
L0 =
          417.357062285715
Ztoe =
                 -2.595977
Z2 =
                 20.068423
toe_sta =
         -62.4868075374234
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
top_sta =
          34.9443976794092
toe_sta =
         -38.3813446313046
ans =
-!!- Location of SWEL-1.5*HO is 84.4 ft landward of toe of slope
ans =
-!!- Setup is interpolated between setup at toe of slope and max setup
ans =
-!!-
           setup is adjusted to 0.45 feet
ans =
-!!-
           SWEL is adjusted to 9.26 feet
k =
     2
     3
4
     5
     6
7
    24
    25
26
    27
    28
    29
    30
    31
    32
ans =
!----- STARTING ITERATION 1 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
Z2 =
                 20.068423
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
                   22.6644
Z_{2} =
          31.9203345021268
top_sta =
          107.041046462901
Lslope =
          145.422391094205
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 10
          9.64669100212682
rdh_sum =
```

```
1.40666398849417
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
         3.68942949541434
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 14
         10.7503620021268
rdh_sum =
         4.49773093822128
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 15
         11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!---- End Berm Factor Calculation, Iter: 1 -----!
berm_width =
   17
rB =
        0.116900842243663
rdh_mean =
        0.810625187975784
gamma_berm
        0.977861924974634
slope =
        0.268771755517362
Irb =
          1.9976804779061
gamma_berm =
        0.977861924974634
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
         0.58671715498478
ans =
!!! - - Iribaren number: 1.95 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:3.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         14.0421356450413
R2del =
          8.62226435495869
Z2 =
          23.2980701471681
top_sta =
          46.9993332993712
ans =
!----- STARTING ITERATION 2 -----!
Ztoe =
                -2.595977
toe_sta =
        -38.3813446313046
top_sta =
         46.9993332993712
Z2 =
          23.2980701471681
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
         9.03136363636364
R2 =
```

```
14.0421356450413
Z2 =
          23.2980701471681
top_sta =
          46.9993332993712
Lslope =
          85.3806779306758
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 11
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 12
          10.1985265021268
rdh sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 15
dh =
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
          13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 2 -----!
berm_width =
   17
rB =
         0.199108280843155
rdh_mean =
         0.810625187975784
gamma_berm =
         0.962293906742863
slope =
         0.378674911258111
Irb =
          2.81454975146854
gamma_berm =
         0.962293906742863
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
         0.577376344045718
ans =
!!! - - Iribaren number: 2.71 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.6 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          14.5964003534129
R2del =
         0.554264708371569
          23.8523348555397
top_sta =
```

```
50.8951497883595
ans =
       -----! STARTING ITERATION 3 -----!
7toe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          50.8951497883595
7.2 =
          23.8523348555397
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
         14.5964003534129
Z2 =
          23.8523348555397
top_sta =
          50.8951497883595
Lslope =
          89.2764944196642
Berm Factor Calculation: Iteration 3, Profile Segment: 9
         9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 10
dh =
         9.64669100212682
rdh_sum =
         1.40666398849417
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 11
dh =
         9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
         4.49773093822128
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 15
         11.0262795021268
rdh_sum =
         5.32809529031497
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 3 -----!
berm_width =
rB =
         0.190419663210427
rdh_mean =
         0.810625187975784
gamma_berm
         0.963939312073811
slope =
         0.365932410915933
Irb =
          2.71983948652912
gamma_berm =
         0.963939312073811
gamma_perm =
```

```
1
gamma_beta =
gamma_rough =
                       0.6
gamma =
        0.578363587244287
ans =
!!! - - Iribaren number: 2.62 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          14.549424968147
R2del =
       0.0469753852659309
Z2 =
          23.8053594702738
top_sta =
         50.5649673529656
       -----! STARTING ITERATION 4 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
         50.5649673529656
Z2 =
          23.8053594702738
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          14.549424968147
Z_{2} =
         23.8053594702738
top_sta =
          50.5649673529656
Lslope =
          88.9463119842703
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 9
dh =
         9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 12
         10.1985265021268
rdh_sum =
         2.90420535902459
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 15
         11.0262795021268
rdh_sum =
         5.32809529031497
Berm Factor Calculation: Iteration 4, Profile Segment: 16
         11.2205850021268
rdh_sum =
```

```
13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 4 -----!
berm_width =
   17
rB =
         0.191126530383928
rdh_mean =
         0.810625187975784
gamma_berm =
         0.963805449235703
slope =
         0.366958857822288
Irb =
          2.72746868455436
gamma_berm =
        0.963805449235703
gamma_perm =
gamma_rough =
                       0.6
gamma =
        0.578283269541422
ans =
!!! - - Iribaren number: 2.63 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
           14.553336534471
R2del =
       0.00391156632409739
          23.8092710365979
top_sta =
          50.5924611241776
Z_{2} =
          23.8092710365979
diary on
                % begin recording
% FEMA appeal for The Town of Harpswell, Cumberland county, Maine
% TRANSECT ID: CM-144-1
\mbox{\ensuremath{\$}} calculation by SJH, Ransom Consulting, Inc. 26-Feb-2020
% 100-year wave runup using TAW methodology
% including berm and weighted average with foreshore if necessary
% chk nld 20200220
\ensuremath{\mathtt{\%}} This script assumes that the incident wave conditions provided
% as input in the configuration section below are the
% appropriate values located at the end of the foreshore
% or toe of the slope on which the run-up is being calculated
% the script does not attempt to apply a depth limit or any other
% transformation to the incident wave conditions other than
% conversion of the peak wave period to the spectral mean wave
% as recommended in the references below
% references:
Yan der Meer, J.W., 2002. Technical Report Wave Run-up and
Wave Overtopping at Dikes. TAW Technical Advisory Committee on
% Flood Defence, The Netherlands.
% FEMA. 2007, Atlantic Ocean and Gulf of Mexico Coastal Guidelines Update
% CONFIG
% third column is 0 for excluded points
imgname='logfiles/CM-144-1-runup';
SWEL=8.8043; % 100-yr still water level including wave setup.
H0=7.5548;
              % significant wave height at toe of structure
Tp=9.9345;
              % peak period, 1/fma,
T0=Tp/1.1;
gamma_berm=0.96381; % this may get changed automatically below
gamma_rough=0.6;
gamma_beta=1;
gamma_perm=1;
setupAtToe=-0.068077;
maxSetup=1.5194; % only used in case of berm/shallow foreshore weighted average
plotTitle='Iterative TAW for CM-144-1'
plotTitle =
Iterative TAW for CM-144-1
% END CONFIG
SWEL=SWEL+setupAtToe
SWEL =
```

```
8.736223
SWEL fore=SWEL+maxSetup
SWEL fore =
                  10.255623
% FIND WAVELENGTH USING DEEPWATER DISPERSION RELATION
% using English units
L0=32.15/(2*pi)*T0^2
L0 =
           417.357062285715
% Find Hb (Munk, 1949)
%Hb=H0/(3.3*(H0/L0)^(1/3))
%Db=-Hb/.78+SWEL; % depth at breaking
\mbox{\ensuremath{\$}} The toe elevation here is only used to determine the average
% structure slope, it is not used to depth limit the wave height.
% Any depth limiting or other modification of the wave height
\mbox{\ensuremath{\$}} to make it consitent with TAW guidance should be performed
% prior to the input of the significant wave height given above.
Ztoe=SWEL-1.5*H0
                  -2.595977
% read the transect
[sta,dep,inc] = textread(fname,'%n%n%n%*[^\n]','delimiter',',','headerlines',0);
% remove unselected points
k=find(inc==0);
sta(k)=[];
dep(k)=[];
sta org=sta;
              % used for plotting purposes
dep org=dep;
% initial guess at maximum run-up elevation to estimate slope
Z2=SWEL+1.5*H0
Z2 =
                  20.068423
% determine station at the max runup and -1.5*H0 (i.e. the toe)
top_sta=-999;
toe_sta=-999;
for kk=1:length(sta)-1
    if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
                                                  % here is the intersection of z2 with profile
       top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
                                                        % here is the intersection of Ztoe with profile
        ((Ztoe > dep(kk)) & (Ztoe <= dep(kk+1)))
    if
       toe_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Ztoe)
    end
end
toe_sta =
         -62.4868075374234
toe_sta =
         -38.3813446313046
top sta =
          34.9443976794092
% check to make sure we got them, if not extend the end slopes outward
S=diff(dep)./diff(sta);
if toe_sta==-999
   dy=dep(1)-Ztoe;
   toe_sta=sta(1)-dy/S(1)
end
if top_sta==-999
   dy=Z2-dep(end);
   top_sta=sta(end)+dy/S(end)
% just so the reader can tell the values aren't -999 anymore
top sta
top_sta =
          34.9443976794092
toe sta
toe_sta =
          -38.3813446313046
\mbox{\ensuremath{\$}} check for case where the toe of slope is below SWL-1.5*H0
% in this case interpolate setup from the setupAtToe(really setup as first station), and the max setup
% also un-include points seaward of SWL-1.5*H0
if Ztoe > dep(1)
   dd=SWEL_fore-dep;
   k=find(dd<0,1); % k is index of first land point
   staAtSWL=interp1(dep(k-1:k),sta(k-1:k),SWEL_fore);
   dsta=staAtSWL-sta(1);
   dsetup=maxSetup-setupAtToe;
   dsetdsta=dsetup/dsta;
   setup=setupAtToe+dsetdsta*(toe_sta-sta(1));
   sprintf('-!!- Location of SWEL-1.5*H0 is %4.1f ft landward of toe of slope',dsta)
sprintf('-!!- Setup is interpolated between setup at toe of slope and max setup')
   sprintf('-!!-
                        setup is adjusted to %4.2f feet', setup)
   SWEL=SWEL-setupAtToe+setup;
   sprintf('-!!-
                        SWEL is adjusted to %4.2f feet', SWEL)
   k=find(dep < SWEL-1.5*H0)
   sta(k)=[];
   dep(k)=[];
   sprintf('-!!- The User has selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n',dep(1
   sprintf('-!!- This may be reasonable for some cases. However the user may want to consider:\n')
                    1) Selecting a starting point that is at or below %4.2f feet elevation, or\n', Ztoe)
                    2) Reducing the incident wave height to a depth limited condition.\n')
```

```
end
ans =
-!!- Location of SWEL-1.5*HO is 84.4 ft landward of toe of slope
ans =
-!!- Setup is interpolated between setup at toe of slope and max setup
ans =
           setup is adjusted to 0.45 feet
-11-
ans =
           SWEL is adjusted to 9.26 feet
- ! ! -
k =
     1
     2
     3
     4
     5
     6
7
    24
    25
    26
    27
    28
    29
    30
% now iterate converge on a runup elevation
tol=0.01; % convergence criteria
R2del=999;
R2_new=3*H0; %initial guess
R2=R2_new;
iter=\overline{0};
R2 all=[];
topStaAll=[];
Berm_Segs=[];
TAW_ALWAYS_VALID=1;
while(abs(R2del) > tol && iter <= 25)
    iter=iter+1;
    sprintf ('!-----!',iter)
    % elevation of toe of slope
    Ztoe
    % station of toe slope (relative to 0-NAVD88 shoreline
    toe_sta
    % station of top of slope/extent of 2% run-up
    % elevation of top of slope/extent of 2% run-up
    Z_2
    % incident significant wave height
    Н0
    % incident spectral peak wave period
    Тp
     incident spectral mean wave period
    T0
    R2=R2_new
    Z2=R2+SWEL
    % determine slope for this iteration
    top_sta=-999;
    for kk=1:length(sta)-1
       if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
                                                  % here is the intersection of z2 with profile
          top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
          break;
       end
    end
    if top_sta==-999
       dy=Z2-dep(end);
       top_sta=sta(end)+dy/S(end)
    end
    % get the length of the slope (not accounting for berm)
    Lslope=top_sta-toe_sta
    % loop over profile segments to determine berm factor
% re-calculate influence of depth of berm based on this run-up elevation
    % check for berm, berm width, berm height
    berm_width=0;
    rdh_sum=0;
    Berm_Segs=[];
    Berm_Heights=[];
    for kk=1:length(sta)-1
       ddep=dep(kk+1)-dep(kk);
       dsta=sta(kk+1)-sta(kk);
       s=ddep/dsta;
       if (s < 1/15)
                           % count it as a berm if slope is flatter than 1:15 (see TAW manual)
          sprintf ('Berm Factor Calculation: Iteration %d, Profile Segment: %d',iter,kk)
          berm_width=berm_width+dsta; % tally the width of all berm segments
          % compute the rdh for this segment and weight it by the segment length
          dh=SWEL-(dep(kk)+dep(kk+1))/2
          if dh < 0
              chi=R2;
          else
```

```
chi=2* H0;
      end
      if (dh <= R2 \& dh >= -2*H0)
         rdh=(0.5-0.5*cos(3.14159*dh/chi));
      else
         rdh=1;
      end
      rdh_sum=rdh_sum + rdh * dsta
      Berm_Segs=[Berm_Segs, kk];
      Berm_Heights=[Berm_Heights, (dep(kk)+dep(kk+1))/2];
   end
   if dep(kk) >= Z2 % jump out of loop if we reached limit of run-up for this iteration
      break
   end
end
sprintf ('!----- End Berm Factor Calculation, Iter: %d -----!',iter)
berm_width
rB=berm_width/Lslope
if (berm_width > 0)
   rdh_mean=rdh_sum/berm_width
else
  rdh_mean=1
end
gamma_berm=1- rB * (1-rdh_mean)
if gamma_berm > 1
   gamma_berm=1
end
if gamma_berm < 0.6
   gamma_berm =0.6
end
% Iribarren number
slope=(Z2-Ztoe)/(Lslope-berm_width)
Irb=(slope/(sqrt(H0/L0)))
% runup height
gamma_berm
gamma_perm
gamma_beta
gamma rough
gamma=gamma_berm*gamma_perm*gamma_beta*gamma_rough
% check validity
TAW_VALID=1;
if (Irb*gamma_berm < 0.5 | Irb*gamma_berm > 10 )
   sprintf('!!! - - Iribaren number: %6.2f is outside the valid range (0.5-10), TAW NOT VALID - - !!!\n', Irb*gam
   TAW_VALID=0;
else
   sprintf('!!! - - Iribaren number: %6.2f is in the valid range (0.5-10), TAW RECOMMENDED - - !!!\n', Irb*gamma_
end
islope=1/slope;
if (slope < 1/8 | slope > 1)
    sprintf('!!! - - slope: 1
                  - slope: 1:%3.1f V:H is outside the valid range (1:8 - 1:1), TAW NOT VALID - - !!!\n', islope)
   TAW VALID=0;
else
   sprintf('!!! - - slope: 1:%3.1f V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!\n', islope)
end
if TAW_VALID == 0
   TAW_ALWAYS_VALID=0;
if (Irb*gamma_berm < 1.8)</pre>
  R2_new=gamma*H0*1.77*Irb
else
  R2_new=gamma*H0*(4.3-(1.6/sqrt(Irb)))
end
% check to see if we need to evaluate a shallow foreshore
if berm_width > 0.25 * L0;
              Berm_width is greater than 1/4 wave length')
Runup will be weighted average with foreshore calculation assuming depth limited wave height on ber
   disp ('!
   disp ('!
   % do the foreshore calculation
   fore_H0=0.78*(SWEL_fore-min(Berm_Heights))
   % get upper slope
   fore_toe_sta=-999;
   fore_toe_dep=-999;
   for kk=length(dep)-1:-1:1
      ddep=dep(kk+1)-dep(kk);
      dsta=sta(kk+1)-sta(kk);
      s=ddep/dsta;
      if s < 1/15
         break
      end
      fore_toe_sta=sta(kk);
      fore_toe_dep=dep(kk);
      upper_slope=(Z2-fore_toe_dep)/(top_sta-fore_toe_sta)
   end
   fore_Irb=upper_slope/(sqrt(fore_H0/L0));
   fore_gamma=gamma_perm*gamma_beta*gamma_rough;
   if (fore_Irb < 1.8)
      fore_R2=fore_gamma*fore_H0*1.77*fore_Irb;
      fore_R2=fore_gamma*fore_H0*(4.3-(1.6/sqrt(fore_Irb)));
   end
```

```
if berm_width >= L0
          R2 new=fore R2
          disp ('berm is wider than one wavelength, use full shallow foreshore solution');
       else
          w2=(berm_width-0.25*L0)/(0.75*L0)
          w1 = 1 - w2
          R2_new=w2*fore_R2 + w1*R2_new
       end
    end % end berm width check
    % convergence criterion
R2del=abs(R2-R2_new)
    R2_all(iter)=R2_new;
    % get the new top station (for plot purposes)
    Z2=R2_new+SWEL
    top_sta=-999;
    for kk=1:length(sta)-1
       if ((Z2 > dep(kk)) & (Z2 \le dep(kk+1))) % here is the intersection of z2 with profile
          top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
          break;
       end
    end
    if top_sta==-999
       dy=Z2-dep(end);
       top_sta=sta(end)+dy/S(end);
    end
    topStaAll(iter)=top_sta;
end
ans =
       -----! STARTING ITERATION 1 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
Z_{2} =
                 20.068423
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
                   22.6644
7.2 =
          31.9203345021268
top_sta =
          107.041046462901
Lslope =
          145.422391094205
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 9
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
Berm Factor Calculation: Iteration 1, Profile Segment: 15
dh =
```

```
11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 1 -----!
berm_width =
   17
rB =
         0.116900842243663
rdh_mean =
         0.810625187975784
gamma_berm
         0.977861924974634
slope =
        0.268771755517362
Irb =
          1.9976804779061
gamma_berm =
        0.977861924974634
gamma_perm =
gamma_beta =
gamma\_rough =
                       0.6
gamma =
         0.58671715498478
ans =
!!! - - Iribaren number: 1.95 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:3.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         14.0421356450413
R2del =
          8.62226435495869
Z_{2} =
         23.2980701471681
top_sta =
          46.9993332993712
ans =
!----- STARTING ITERATION 2 -----!
Ztoe =
                -2.595977
toe_sta =
         -38.3813446313046
top_sta =
         46.9993332993712
Z2 =
          23.2980701471681
H0 =
                   7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
         14.0421356450413
Z2 =
         23.2980701471681
top_sta =
          46.9993332993712
Lslope =
          85.3806779306758
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
        0.695983762046982
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 10
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 11
dh =
         9.92260850212682
rdh_sum =
         2.14299703977601
Berm Factor Calculation: Iteration 2, Profile Segment: 12
dh =
```

```
10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 15
         11.0262795021268
rdh_sum =
          5.32809529031497
Berm Factor Calculation: Iteration 2, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 2 -----!
berm_width =
   17
rB =
         0.199108280843155
rdh_mean =
         0.810625187975784
gamma_berm =
         0.962293906742863
slope =
        0.378674911258111
Irb =
         2.81454975146854
gamma_berm =
         0.962293906742863
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
         0.577376344045718
ans =
!!! - - Iribaren number: 2.71 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.6 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         14.5964003534129
R2del =
         0.554264708371569
Z2 =
         23.8523348555397
top_sta =
         50.8951497883595
ans =
       -----! STARTING ITERATION 3 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          50.8951497883595
Z_{2} =
          23.8523348555397
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          14.5964003534129
Z2 =
          23.8523348555397
top_sta =
          50.8951497883595
Lslope =
          89.2764944196642
Berm Factor Calculation: Iteration 3, Profile Segment: 9
dh =
```

```
9.49194100212682
rdh_sum =
        0.695983762046982
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 10
dh =
         9.64669100212682
rdh_sum =
         1.40666398849417
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
         2.14299703977601
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 12
         10.1985265021268
rdh_sum =
         2.90420535902459
Berm Factor Calculation: Iteration 3, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
         3.68942949541434
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
         4.49773093822128
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
         5.32809529031497
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 3 -----!
berm_width =
   17
rB =
        0.190419663210427
rdh_mean =
        0.810625187975784
gamma_berm
        0.963939312073811
slope =
        0.365932410915933
Irb =
         2.71983948652912
gamma_berm =
        0.963939312073811
gamma_perm =
gamma_beta =
gamma\_rough =
                      0.6
gamma =
        0.578363587244287
ans =
!!! - - Iribaren number: 2.62 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          14.549424968147
R2del =
       0.0469753852659309
Z_{2} =
         23.8053594702738
top_sta =
         50.5649673529656
ans =
!----!
                -2.595977
toe_sta =
        -38.3813446313046
top_sta =
         50.5649673529656
Z2 =
```

```
23.8053594702738
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
           14.549424968147
7.2 =
          23.8053594702738
top_sta =
          50.5649673529656
Lslope =
          88.9463119842703
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 9
          9.49194100212682
rdh_sum =
         0.695983762046982
Berm Factor Calculation: Iteration 4, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 15
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
         13.7806281955883
ans =
      -- End Berm Factor Calculation, Iter: 4 -----!
berm_width =
    17
rB =
         0.191126530383928
rdh_mean =
         0.810625187975784
gamma_berm =
         0.963805449235703
slope =
         0.366958857822288
Irb =
          2.72746868455436
gamma_berm =
         0.963805449235703
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
         0.578283269541422
!!! - - Iribaren number:
                          2.63 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
```

```
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2_new =
           14.553336534471
R2del =
      0.00391156632409739
7.2 =
          23.8092710365979
top_sta =
50.5924611241776
% final 2% runup elevation
Z2=R2\_new+SWEL
23.8092710365979
diary off
plotTitle =
Iterative TAW for CM-144-1
SWEL =
                  8.736223
SWEL_fore =
                 10.255623
L0 =
          417.357062285715
Ztoe =
                 -2.595977
Z2 =
                 20.068423
toe_sta =
         -62.4868075374234
toe_sta =
         -38.3813446313046
top_sta =
         34.9443976794092
top_sta =
         34.9443976794092
toe_sta =
         -38.3813446313046
ans =
-!!- Location of SWEL-1.5*HO is 84.4 ft landward of toe of slope
ans =
-!!- Setup is interpolated between setup at toe of slope and max setup
ans =
-!!-
           setup is adjusted to 0.45 feet
ans =
           SWEL is adjusted to 9.26 feet
- ! ! -
k =
     2
     3
     4
     5
     6
7
    24
    25
    26
    27
    28
    29
    30
    31
    32
ans =
        ----- STARTING ITERATION 1 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
Z2 =
                 20.068423
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
                   22.6644
Z2 =
          31.9203345021268
top_sta =
          107.041046462901
Lslope =
          145.422391094205
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 9
          9.49194100212682
rdh_sum =
```

```
0.695983762046982
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
         1.40666398849417
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 13
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 14
         10.7503620021268
rdh sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 1 -----!
berm_width =
   17
rB =
        0.116900842243663
rdh_mean =
         0.810625187975784
gamma_berm
        0.977861924974634
slope =
         0.268771755517362
Irb =
          1.9976804779061
gamma_berm =
        0.977861924974634
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
         0.58671715498478
ans =
!!! - - Iribaren number: 1.95 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:3.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          14.0421356450413
R2del =
          8.62226435495869
72 =
          23.2980701471681
top_sta =
          46.9993332993712
ans =
 -----! STARTING ITERATION 2 -----!
Ztoe =
                -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          46.9993332993712
Z2 =
          23.2980701471681
```

H0 =

```
7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          14.0421356450413
Z_{2} =
          23.2980701471681
top_sta =
          46.9993332993712
Lslope =
          85.3806779306758
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 10
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 11
dh =
          9.92260850212682
rdh sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 15
dh =
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
          13.7806281955883
ans =
      -- End Berm Factor Calculation, Iter: 2 -----!
berm_width =
    17
rB =
         0.199108280843155
rdh_mean =
         0.810625187975784
gamma_berm =
         0.962293906742863
slope =
         0.378674911258111
Irb =
          2.81454975146854
gamma_berm =
         0.962293906742863
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
         0.577376344045718
!!! - - Iribaren number: 2.71 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.6 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
```

```
14.5964003534129
R2del =
        0.554264708371569
Z2 =
          23.8523348555397
top_sta =
         50.8951497883595
ans =
!-----!
Ztoe =
                -2.595977
toe_sta =
        -38.3813446313046
top_sta =
         50.8951497883595
Z2 =
          23.8523348555397
H0 =
                   7.5548
Tp =
                   9.9345
T0 =
         9.03136363636364
R2 =
         14.5964003534129
         23.8523348555397
top_sta =
         50.8951497883595
Lslope =
         89.2764944196642
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 9
dh =
         9.49194100212682
rdh_sum =
        0.695983762046982
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 10
dh =
         9.64669100212682
rdh_sum =
         1.40666398849417
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 11
dh =
         9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
         3.68942949541434
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 14
         10.7503620021268
rdh_sum =
         4.49773093822128
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 15
         11.0262795021268
rdh_sum =
         5.32809529031497
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 3 -----!
berm_width =
   17
rB =
         0.190419663210427
rdh_mean =
        0.810625187975784
gamma_berm =
        0.963939312073811
slope =
```

```
0.365932410915933
Irb =
         2.71983948652912
gamma_berm =
         0.963939312073811
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
        0.578363587244287
ans =
!!! - - Iribaren number: 2.62 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
           14.549424968147
R2del =
       0.0469753852659309
Z2 =
         23.8053594702738
top_sta =
          50.5649673529656
ans =
      -----! STARTING ITERATION 4 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          50.5649673529656
Z2 =
          23.8053594702738
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
         9.03136363636364
R2 =
          14.549424968147
Z_{2} =
          23.8053594702738
top_sta =
          50.5649673529656
Lslope =
          88.9463119842703
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
         1.40666398849417
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
         2.14299703977601
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 14
         10.7503620021268
rdh_sum =
         4.49773093822128
Berm Factor Calculation: Iteration 4, Profile Segment: 15
         11.0262795021268
rdh_sum =
```

```
5.32809529031497
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
          13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 4 -----!
berm_width =
    17
rB =
         0.191126530383928
rdh_mean =
         0.810625187975784
gamma_berm =
         0.963805449235703
slope =
         0.366958857822288
Irb =
          2.72746868455436
gamma_berm =
         0.963805449235703
gamma perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
        0.578283269541422
ans =
!!! - - Iribaren number: 2.63 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
           14.553336534471
R2del =
       0.00391156632409739
         23.8092710365979
top_sta =
          50.5924611241776
Z_{2} =
          23.8092710365979
plotTitle =
Iterative TAW for CM-144-1
SWEL =
                  8.736223
SWEL_fore =
                 10.255623
L0 =
         417.357062285715
Ztoe =
                 -2.595977
Z2 =
                 20.068423
toe_sta =
         -62.4868075374234
toe_sta =
         -38.3813446313046
top_sta =
         34.9443976794092
top_sta =
         34.9443976794092
toe_sta =
        -38.3813446313046
ans =
-!!- Location of SWEL-1.5*HO is 84.4 ft landward of toe of slope
ans =
-!!- Setup is interpolated between setup at toe of slope and max setup
ans =
-11-
           setup is adjusted to 0.45 feet
ans =
-!!-
           SWEL is adjusted to 9.26 feet
k =
     1
     2
     3
     4
     5
     6
7
    24
    25
    26
```

```
31
    32
ans =
          ----- STARTING ITERATION 1 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
7.2 =
                 20.068423
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
                   22.6644
Z2 =
          31.9203345021268
top_sta =
          107.041046462901
Lslope =
          145.422391094205
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
Berm Factor Calculation: Iteration 1, Profile Segment: 13
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 14
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
          13.7806281955883
ans =
!---- End Berm Factor Calculation, Iter: 1 -----!
berm_width =
   17
rB =
         0.116900842243663
rdh_mean =
         0.810625187975784
gamma_berm
         0.977861924974634
slope =
         0.268771755517362
Irb =
          1.9976804779061
gamma_berm =
         0.977861924974634
```

```
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
          0.58671715498478
ans =
                          1.95 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - Iribaren number:
ans =
!!! - - slope: 1:3.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          14.0421356450413
R2del =
          8.62226435495869
Z_{2} =
          23.2980701471681
top_sta =
          46.9993332993712
ans =
       -----! STARTING ITERATION 2 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          46.9993332993712
Z2 =
          23.2980701471681
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          14.0421356450413
Z_{2} =
          23.2980701471681
top_sta =
          46.9993332993712
Lslope =
          85.3806779306758
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
Berm Factor Calculation: Iteration 2, Profile Segment: 10
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 11
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 15
dh =
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 16
          11.2205850021268
```

```
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 2 -----!
berm_width =
   17
rB =
         0.199108280843155
rdh_mean =
         0.810625187975784
gamma_berm =
         0.962293906742863
slope =
         0.378674911258111
Irb =
          2.81454975146854
gamma_berm =
         0.962293906742863
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
         0.577376344045718
ans =
!!! - - Iribaren number: 2.71 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:2.6 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         14.5964003534129
R2del =
         0.554264708371569
Z2 =
          23.8523348555397
top_sta =
          50.8951497883595
ans =
      ----- STARTING ITERATION 3 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          50.8951497883595
Z_{2} =
          23.8523348555397
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
         14.5964003534129
Z2 =
          23.8523348555397
top_sta =
          50.8951497883595
Lslope =
          89.2764944196642
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 9
dh =
         9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
         1.40666398849417
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 13
          10.4744445021268
```

```
rdh_sum =
         3.68942949541434
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 3 -----!
berm_width =
   17
rB =
         0.190419663210427
rdh_mean =
         0.810625187975784
gamma_berm =
         0.963939312073811
slope =
         0.365932410915933
Irb =
         2.71983948652912
gamma_berm =
         0.963939312073811
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
        0.578363587244287
ans =
!!! - - Iribaren number: 2.62 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
          14.549424968147
R2del =
       0.0469753852659309
         23.8053594702738
top_sta =
         50.5649673529656
ans =
      -----! STARTING ITERATION 4 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
         50.5649673529656
Z2 =
          23.8053594702738
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
         9.03136363636364
R2 =
          14.549424968147
Z_{2} =
          23.8053594702738
top_sta =
          50.5649673529656
Lslope =
          88.9463119842703
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 10
          9.64669100212682
```

```
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 14
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 15
dh =
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
          13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 4 -----!
berm_width =
    17
rB =
         0.191126530383928
rdh_mean =
         0.810625187975784
gamma_berm =
         0.963805449235703
slope =
         0.366958857822288
          2.72746868455436
gamma_berm =
         0.963805449235703
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
         0.578283269541422
ans =
!!! - - Iribaren number:
                          2.63 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
           14.553336534471
R2del =
       0.00391156632409739
Z_{2} =
          23.8092710365979
top_sta =
          50.5924611241776
Z_{2} =
          23.8092710365979
diary on
                 % begin recording
% FEMA appeal for The Town of Harpswell, Cumberland county, Maine
% TRANSECT ID: CM-144-1
% calculation by SJH, Ransom Consulting, Inc. 26-Feb-2020
% 100-year wave runup using TAW methodology
% including berm and weighted average with foreshore if necessary
% chk nld 20200220
% This script assumes that the incident wave conditions provided
% as input in the configuration section below are the
% appropriate values located at the end of the foreshore
% or toe of the slope on which the run-up is being calculated
\mbox{\ensuremath{\$}} the script does not attempt to apply a depth limit or any other
```

```
% transformation to the incident wave conditions other than
\mbox{\ensuremath{\$}} conversion of the peak wave period to the spectral mean wave
\mbox{\ensuremath{\mbox{\$}}} as recommended in the references below
% references:
% Van der Meer, J.W., 2002. Technical Report Wave Run-up and
% Wave Overtopping at Dikes. TAW Technical Advisory Committee on
% Flood Defence, The Netherlands.
% FEMA. 2007, Atlantic Ocean and Gulf of Mexico Coastal Guidelines Update
% CONFIG
% third column is 0 for excluded points
imgname='logfiles/CM-144-1-runup';
SWEL=8.8043; % 100-yr still water level including wave setup.
H0=7.5548;
              % significant wave height at toe of structure
Tp=9.9345;
              % peak period, 1/fma,
T0=Tp/1.1;
gamma_berm=0.96381; % this may get changed automatically below
gamma_rough=0.6;
gamma_beta=1;
gamma_perm=1;
setupAtToe=-0.068077;
maxSetup=1.5194; % only used in case of berm/shallow foreshore weighted average
plotTitle='Iterative TAW for CM-144-1
plotTitle =
Iterative TAW for CM-144-1
% END CONFIG
SWEL=SWEL+setupAtToe
SWEL =
                 8.736223
SWEL_fore=SWEL+maxSetup
SWEL_fore =
                 10.255623
% FIND WAVELENGTH USING DEEPWATER DISPERSION RELATION
% using English units
L0=32.15/(2*pi)*T0^2
L0 =
          417.357062285715
% Find Hb (Munk, 1949)
\theta_0 %Hb=H0/(3.3*(H0/L0)^(1/3)) %Db=-Hb/.78+SWEL; % depth at breaking
% The toe elevation here is only used to determine the average
% structure slope, it is not used to depth limit the wave height.
% Any depth limiting or other modification of the wave height
% to make it consitent with TAW guidance should be performed
% prior to the input of the significant wave height given above.
Ztoe=SWEL-1.5*H0
Ztoe =
                 -2.595977
% read the transect
[sta,dep,inc] = textread(fname,'%n%n%n%*[^\n]','delimiter',',','headerlines',0);
% remove unselected points
k=find(inc==0);
sta(k)=[];
dep(k)=[];
sta_org=sta; % used for plotting purposes
dep_org=dep;
\mbox{\%} initial guess at maximum run-up elevation to estimate slope \mbox{\sc Z2=SWEL+1.5*H0}
7.2 =
                 20.068423
% determine station at the max runup and -1.5*HO (i.e. the toe)
top_sta=-999;
toe_sta=-999;
for kk=1:length(sta)-1
    if ((Z2 > dep(kk)) & (Z2 \le dep(kk+1)))
                                               % here is the intersection of z2 with profile
       top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
    end
                                                    % here is the intersection of Ztoe with profile
    if
       ((Ztoe > dep(kk)) & (Ztoe <= dep(kk+1)))
       toe_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Ztoe)
    end
end
toe_sta =
         -62.4868075374234
toe_sta =
         -38.3813446313046
top_sta =
         34.9443976794092
% check to make sure we got them, if not extend the end slopes outward
S=diff(dep)./diff(sta);
if toe_sta==-999
   dy=dep(1)-Ztoe;
```

```
toe_sta=sta(1)-dy/S(1)
end
if top_sta==-999
   dv=Z2-dep(end);
   top_sta=sta(end)+dy/S(end)
end
% just so the reader can tell the values aren't -999 anymore
top_sta
top_sta =
           34.9443976794092
toe_sta
toe_sta =
          -38.3813446313046
% check for case where the toe of slope is below SWL-1.5*H0 \,
% in this case interpolate setup from the setupAtToe(really setup as first station), and the max setup
% also un-include points seaward of SWL-1.5*H0
if Ztoe > dep(1)
   dd=SWEL_fore-dep;
   k=find(dd<0,1); % k is index of first land point
   staAtSWL=interp1(dep(k-1:k),sta(k-1:k),SWEL_fore);
   dsta=staAtSWL-sta(1);
   dsetup=maxSetup-setupAtToe;
   dsetdsta=dsetup/dsta;
   setup=setupAtToe+dsetdsta*(toe_sta-sta(1));
   sprintf('-!!- Location of SWEL-1.5*H0 is %4.1f ft landward of toe of slope',dsta) sprintf('-!!- Setup is interpolated between setup at toe of slope and max setup')
   sprintf('-!!-
                          setup is adjusted to %4.2f feet', setup)
   SWEL=SWEL-setupAtToe+setup;
   sprintf('-!!-
                         SWEL is adjusted to %4.2f feet', SWEL)
   k=find(dep < SWEL-1.5*H0)
   sta(k)=[];
   dep(k)=[];
else
   sprintf('-!!- The User has selected a starting point that is 4.2f feet above the elevation of SWEL-1.5H0\n', dep(1)
   sprintf('-!!- This may be reasonable for some cases. However the user may want to consider:\n')
sprintf('-!!- 1) Selecting a starting point that is at or below %4.2f feet elevation, or\n', Ztoe)
sprintf('-!!- 2) Reducing the incident wave height to a depth limited condition.\n')
end
ans =
-!!- Location of SWEL-1.5*HO is 84.4 ft landward of toe of slope
ans =
-!!- Setup is interpolated between setup at toe of slope and max setup
ans =
- ! ! -
            setup is adjusted to 0.45 feet
ans =
-11-
            SWEL is adjusted to 9.26 feet
k =
     2
     3
     4
     5
     6
    24
    25
    26
    29
    30
    31
    32
% now iterate converge on a runup elevation
tol=0.01; % convergence criteria
R2del=999;
R2_new=3*H0; %initial guess
R2=R2 new;
iter=0;
R2_all=[];
topStaAll=[];
Berm_Segs=[];
TAW_ALWAYS_VALID=1;
while(abs(R2del) > tol && iter <= 25)
    iter=iter+1;
    sprintf ('!-----: STARTING ITERATION %d -----!',iter)
    % elevation of toe of slope
    Ztoe
    % station of toe slope (relative to 0-NAVD88 shoreline
    toe_sta
    % station of top of slope/extent of 2% run-up
    % elevation of top of slope/extent of 2% run-up
    Z2
    % incident significant wave height
    НΟ
    % incident spectral peak wave period
    Тр
      incident spectral mean wave period
    т0
```

```
R2=R2 new
Z2=R2+SWEL
% determine slope for this iteration
top_sta=-999;
for kk=1:length(sta)-1
   if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
                                               % here is the intersection of z2 with profile
      top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
      break;
   end
end
if top_sta==-999
   dy=Z2-dep(end);
   top_sta=sta(end)+dy/S(end)
end
% get the length of the slope (not accounting for berm)
Lslope=top_sta-toe_sta
% loop over profile segments to determine berm factor
% re-calculate influence of depth of berm based on this run-up elevation
% check for berm, berm width, berm height
berm_width=0;
rdh_sum=0;
Berm_Segs=[];
Berm_Heights=[];
for kk=1:length(sta)-1
   ddep=dep(kk+1)-dep(kk);
   dsta=sta(kk+1)-sta(kk);
   s=ddep/dsta;
   if (s < 1/15)
                       % count it as a berm if slope is flatter than 1:15 (see TAW manual)
      sprintf ('Berm Factor Calculation: Iteration %d, Profile Segment: %d',iter,kk) berm_width=berm_width+dsta; % tally the width of all berm segments
      % compute the rdh for this segment and weight it by the segment length
      dh=SWEL-(dep(kk)+dep(kk+1))/2
      if dh < 0
          chi=R2;
      else
          chi=2* H0;
      end
      if (dh <= R2 & dh >=-2*H0)
         rdh=(0.5-0.5*cos(3.14159*dh/chi));
      else
         rdh=1;
      end
      rdh_sum=rdh_sum + rdh * dsta
      Berm_Segs=[Berm_Segs, kk];
      Berm_Heights=[Berm_Heights, (dep(kk)+dep(kk+1))/2];
   end
   if dep(kk) >= Z2 % jump out of loop if we reached limit of run-up for this iteration
      break
   end
end
sprintf ('!----- End Berm Factor Calculation, Iter: %d -----!',iter)
berm width
rB=berm_width/Lslope
if (berm_width > 0)
   rdh_mean=rdh_sum/berm_width
else
  rdh_mean=1
end
gamma_berm=1- rB * (1-rdh_mean)
if gamma_berm > 1
   gamma_berm=1
end
if gamma berm < 0.6
   gamma_berm =0.6
end
% Iribarren number
slope=(Z2-Ztoe)/(Lslope-berm_width)
Irb=(slope/(sqrt(H0/L0)))
% runup height
gamma_berm
gamma_perm
gamma beta
gamma_rough
gamma=gamma_berm*gamma_perm*gamma_beta*gamma_rough
% check validity
TAW_VALID=1;
if (Irb*gamma_berm < 0.5 | Irb*gamma_berm > 10 )
   sprintf('!!! - - Iribaren number: %6.2f is outside the valid range (0.5-10), TAW NOT VALID - - !!!\n', Irb*gam
   TAW_VALID=0;
else
   sprintf('!!! - - Iribaren number: %6.2f is in the valid range (0.5-10), TAW RECOMMENDED - - !!!\n', Irb*gamma_
islope=1/slope;
if (slope < 1/8 | slope > 1)
   sprintf('!!!
                  - slope: 1:%3.1f V:H is outside the valid range (1:8 - 1:1), TAW NOT VALID - - !!!\n', islope)
   sprintf('!!! - - slope: 1:%3.1f V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!\n', islope)
```

```
end
    if TAW VALID == 0
       TAW_ALWAYS_VALID=0;
    end
    if (Irb*gamma_berm < 1.8)
   R2_new=gamma*H0*1.77*Irb</pre>
    else
       R2_new=gamma*H0*(4.3-(1.6/sqrt(Irb)))
    end
    % check to see if we need to evaluate a shallow foreshore
    if berm_width > 0.25 * L0;
       disp ('! disp ('!
                  Berm_width is greater than 1/4 wave length')
                  Runup will be weighted average with foreshore calculation assuming depth limited wave height on ber
       % do the foreshore calculation
       fore_H0=0.78*(SWEL_fore-min(Berm_Heights))
       % get upper slope
       fore_toe_sta=-999;
       fore_toe_dep=-999;
       for \overline{k}=length(dep)-1:-1:1
          ddep=dep(kk+1)-dep(kk);
          dsta=sta(kk+1)-sta(kk);
          s=ddep/dsta;
          if s < 1/15
             break
          end
          fore toe sta=sta(kk);
          fore_toe_dep=dep(kk);
          upper_slope=(Z2-fore_toe_dep)/(top_sta-fore_toe_sta)
       end
       fore_Irb=upper_slope/(sqrt(fore_H0/L0));
       fore_gamma=gamma_perm*gamma_beta*gamma_rough;
       if (fore_Irb < 1.8)
          fore_R2=fore_gamma*fore_H0*1.77*fore_Irb;
       else
          fore_R2=fore_gamma*fore_H0*(4.3-(1.6/sqrt(fore_Irb)));
       end
       if berm_width >= L0
          R2 new=fore R2
          disp ('berm is wider than one wavelength, use full shallow foreshore solution');
       else
          w2=(berm_width-0.25*L0)/(0.75*L0)
          w1 = 1 - w2
          R2_new=w2*fore_R2 + w1*R2_new
       end
    end % end berm width check
    % convergence criterion
    R2del=abs(R2-R2_new)
    R2_all(iter)=R2_new;
    % get the new top station (for plot purposes)
    Z2=R2_new+SWEL
    top_sta=-999;
    for kk=1:length(sta)-1
       if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1))) % here is the intersection of z2 with profile
          top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
          break;
       end
    end
    if top_sta==-999
       dy=Z2-dep(end);
       top_sta=sta(end)+dy/S(end);
    topStaAll(iter)=top_sta;
end
ans =
!----- STARTING ITERATION 1 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
7.2 =
                 20.068423
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
                   22.6644
Z_{2} =
          31.9203345021268
top_sta =
          107.041046462901
Lslope =
          145.422391094205
Berm Factor Calculation: Iteration 1, Profile Segment: 9
```

```
dh =
         9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 13
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!---- End Berm Factor Calculation, Iter: 1 -----!
berm_width =
   17
rB =
         0.116900842243663
rdh_mean =
         0.810625187975784
gamma_berm =
         0.977861924974634
slope =
         0.268771755517362
Irb =
          1.9976804779061
gamma_berm =
         0.977861924974634
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
         0.58671715498478
ans =
!!! - - Iribaren number: 1.95 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:3.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          14.0421356450413
R2del =
          8.62226435495869
7.2 =
          23.2980701471681
top_sta =
          46.9993332993712
ans =
       -----! STARTING ITERATION 2 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
         46.9993332993712
```

```
Z2 =
          23.2980701471681
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          14.0421356450413
Z_{2} =
          23.2980701471681
top_sta =
          46.9993332993712
Lslope =
          85.3806779306758
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 10
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
Berm Factor Calculation: Iteration 2, Profile Segment: 15
         11.0262795021268
rdh_sum =
          5.32809529031497
Berm Factor Calculation: Iteration 2, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 2 -----!
berm_width =
    17
rB =
         0.199108280843155
rdh_mean =
         0.810625187975784
gamma_berm =
         0.962293906742863
slope =
         0.378674911258111
Irb =
          2.81454975146854
gamma_berm =
         0.962293906742863
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
         0.577376344045718
!!! - - Iribaren number: 2.71 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
```

```
ans
!!! - - slope: 1:2.6 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         14.5964003534129
R2del =
         0.554264708371569
7.2 =
          23.8523348555397
top_sta =
          50.8951497883595
ans =
     -----! STARTING ITERATION 3 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          50.8951497883595
Z2 =
          23.8523348555397
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          14.5964003534129
Z2 =
          23.8523348555397
top_sta =
          50.8951497883595
Lslope =
          89.2764944196642
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
Berm Factor Calculation: Iteration 3, Profile Segment: 12
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 3 -----!
berm_width =
   17
rB =
         0.190419663210427
rdh_mean =
         0.810625187975784
```

```
gamma_berm =
         0.963939312073811
slope =
         0.365932410915933
Irb =
          2.71983948652912
gamma_berm =
         0.963939312073811
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
         0.578363587244287
ans =
!!! - - Iribaren number: 2.62 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
           14.549424968147
R2del =
        0.0469753852659309
Z2 =
          23.8053594702738
top sta =
          50.5649673529656
ans =
       -----! STARTING ITERATION 4 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          50.5649673529656
Z2 =
          23.8053594702738
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
           14.549424968147
Z_{2} =
          23.8053594702738
top_sta =
          50.5649673529656
Lslope =
          88.9463119842703
Berm Factor Calculation: Iteration 4, Profile Segment: 9
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
Berm Factor Calculation: Iteration 4, Profile Segment: 15
```

```
dh =
          11.0262795021268
rdh_sum =
           5.32809529031497
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
          13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 4 -----!
berm_width =
    17
rB =
         0.191126530383928
rdh_mean =
         0.810625187975784
gamma_berm
         0.963805449235703
slope =
         0.366958857822288
Irb =
          2.72746868455436
gamma_berm =
         0.963805449235703
gamma_perm =
gamma_beta =
gamma_rough =
                         0.6
gamma =
         0.578283269541422
ans =
!!! - - Iribaren number: 2.63 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
           14.553336534471
R2del =
       0.00391156632409739
7.2 =
          23.8092710365979
top_sta =
          50.5924611241776
% final 2% runup elevation
Z2=R2_new+SWEL
          23.8092710365979
diary off
diary on
                  % begin recording
% FEMA appeal for The Town of Harpswell, Cumberland county, Maine
% TRANSECT ID: CM-144-1
% calculation by SJH, Ransom Consulting, Inc. 26-Feb-2020
% 100-year wave runup using TAW methodology
% including berm and weighted average with foreshore if necessary
% chk nld 20200220
% This script assumes that the incident wave conditions provided
% as input in the configuration section below are the
% appropriate values located at the end of the foreshore
% or toe of the slope on which the run-up is being calculated
% the script does not attempt to apply a depth limit or any other
\mbox{\ensuremath{\$}} transformation to the incident wave conditions other than
\mbox{\ensuremath{\$}} conversion of the peak wave period to the spectral mean wave
% as recommended in the references below
% references:
% Van der Meer, J.W., 2002. Technical Report Wave Run-up and
% Wave Overtopping at Dikes. TAW Technical Advisory Committee on
% Flood Defence, The Netherlands.
% FEMA. 2007, Atlantic Ocean and Gulf of Mexico Coastal Guidelines Update
%-----
% CONFIG
fname='inpfiles/CM-144-1sta_ele_include.csv'; % file with station, elevation, include
                                        % third column is 0 for excluded points
imgname='logfiles/CM-144-1-runup';
SWEL=8.8043; % 100-yr still water level including wave setup.
H0=7.5548;
               % significant wave height at toe of structure
Tp=9.9345;
               % peak period, 1/fma,
T0=Tp/1.1;
gamma_berm=0.96381; % this may get changed automatically below
```

```
gamma_rough=0.6;
gamma_beta=1;
gamma_perm=1;
setupAtToe=-0.068077;
maxSetup=1.5194; % only used in case of berm/shallow foreshore weighted average
plotTitle='Iterative TAW for CM-144-1'
plotTitle =
Iterative TAW for CM-144-1
% END CONFIG
SWEL=SWEL+setupAtToe
SWEL =
                  8.736223
SWEL_fore=SWEL+maxSetup
SWEL_fore =
                 10.255623
% FIND WAVELENGTH USING DEEPWATER DISPERSION RELATION
% using English units
L0=32.15/(2*pi)*T0^2
L0 =
          417.357062285715
% Find Hb (Munk, 1949)
%Hb=H0/(3.3*(H0/L0)^(1/3))
%Db=-Hb/.78+SWEL; % depth at breaking
% The toe elevation here is only used to determine the average
% structure slope, it is not used to depth limit the wave height.
% Any depth limiting or other modification of the wave height
% to make it consitent with TAW guidance should be performed
% prior to the input of the significant wave height given above.
Ztoe=SWEL-1.5*H0
Ztoe =
                 -2.595977
% read the transect
[sta,dep,inc] = textread(fname,'%n%n%n%*[^\n]','delimiter',',','headerlines',0);
% remove unselected points
k=find(inc==0);
sta(k)=[];
dep(k)=[];
             % used for plotting purposes
sta_org=sta;
dep_org=dep;
% initial guess at maximum run-up elevation to estimate slope
Z2=SWEL+1.5*H0
7.2 =
                 20.068423
% determine station at the max runup and -1.5*H0 (i.e. the toe)
top_sta=-999;
toe_sta=-999;
for kk=1:length(sta)-1
    if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
                                             % here is the intersection of z2 with profile
       top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
        ((Ztoe > dep(kk)) & (Ztoe <= dep(kk+1)))
                                                     % here is the intersection of Ztoe with profile
       toe_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Ztoe)
end
toe_sta =
         -62.4868075374234
toe_sta =
         -38.3813446313046
top sta =
         34.9443976794092
% check to make sure we got them, if not extend the end slopes outward
S=diff(dep)./diff(sta);
if toe sta==-999
   dy=dep(1)-Ztoe;
   toe\_sta=sta(1)-dy/S(1)
end
if top sta==-999
   dy=Z2-dep(end);
   top_sta=sta(end)+dy/S(end)
% just so the reader can tell the values aren't -999 anymore
top_sta
top_sta =
          34.9443976794092
toe_sta
toe_sta =
         -38.3813446313046
\mbox{\ensuremath{\$}} check for case where the toe of slope is below SWL-1.5*H0
% in this case interpolate setup from the setupAtToe(really setup as first station), and the max setup
% also un-include points seaward of SWL-1.5*H0
if Ztoe > dep(1)
   dd=SWEL_fore-dep;
   k=find(dd<0,1); % k is index of first land point
   staAtSWL=interp1(dep(k-1:k),sta(k-1:k),SWEL_fore);
   dsta=staAtSWL-sta(1);
   dsetup=maxSetup-setupAtToe;
   dsetdsta=dsetup/dsta;
   setup=setupAtToe+dsetdsta*(toe_sta-sta(1));
   sprintf('-!!- Location of SWEL-1.5*H0 is %4.1f ft landward of toe of slope', dsta)
```

```
sprintf('-!!- Setup is interpolated between setup at toe of slope and max setup')
   sprintf('-!!-
                       setup is adjusted to %4.2f feet', setup)
   SWEL=SWEL-setupAtToe+setup;
   sprintf('-!!-
                       SWEL is adjusted to %4.2f feet', SWEL)
   k=find(dep < SWEL-1.5*H0)
   sta(k)=[];
   dep(k)=[];
else
   sprintf('-!!- The User has selected a starting point that is 4.2f feet above the elevation of SWEL-1.5H0\n', dep(1)
   sprintf('-!!- This may be reasonable for some cases. However the user may want to consider:\n') sprintf('-!!- 1) Selecting a starting point that is at or below %4.2f feet elevation, or\n', Ztoe)
   sprintf('-!!-
                   2) Reducing the incident wave height to a depth limited condition.\n')
end
ans =
-!!- Location of SWEL-1.5*HO is 84.4 ft landward of toe of slope
ans =
-!!- Setup is interpolated between setup at toe of slope and max setup
ans =
-!!-
           setup is adjusted to 0.45 feet
ans =
-!!-
           SWEL is adjusted to 9.26 feet
k =
     2
     3
     4
     5
     6
    24
    25
    26
    27
    28
    29
    30
    31
    32
% now iterate converge on a runup elevation
tol=0.01; % convergence criteria
R2del=999;
R2_new=3*H0; %initial guess
R2=R2_new;
iter=0;
R2_all=[];
topStaAll=[];
Berm_Segs=[];
TAW_ALWAYS_VALID=1;
while(abs(R2del) > tol && iter <= 25)
    iter=iter+1;
    sprintf ('!--
                    % elevation of toe of slope
    Ztoe
    % station of toe slope (relative to 0-NAVD88 shoreline
    toe sta
    % station of top of slope/extent of 2% run-up
    top_sta
    % elevation of top of slope/extent of 2% run-up
    % incident significant wave height
    Н0
    % incident spectral peak wave period
    Тp
    % incident spectral mean wave period
    T0
    R2=R2_new
    Z2=R2+SWEL
    % determine slope for this iteration
    top_sta=-999;
    for kk=1:length(sta)-1
       if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
                                                 % here is the intersection of z2 with profile
          top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
          break;
       end
    end
    if top_sta==-999
       dy=Z2-dep(end);
       top_sta=sta(end)+dy/S(end)
    end
    % get the length of the slope (not accounting for berm)
    Lslope=top_sta-toe_sta
    % loop over profile segments to determine berm factor
    % re-calculate influence of depth of berm based on this run-up elevation
    % check for berm, berm width, berm height
    berm_width=0;
    rdh_sum=0;
    Berm_Segs=[];
    Berm_Heights=[];
```

```
for kk=1:length(sta)-1
   ddep=dep(kk+1)-dep(kk);
   dsta=sta(kk+1)-sta(kk);
   s=ddep/dsta;
   if (s < 1/15)
                      \mbox{\ensuremath{\$}} count it as a berm if slope is flatter than 1:15 (see TAW manual)
      sprintf ('Berm Factor Calculation: Iteration %d, Profile Segment: %d',iter,kk)
      berm_width=berm_width+dsta; % tally the width of all berm segments
      % compute the rdh for this segment and weight it by the segment length
      dh=SWEL-(dep(kk)+dep(kk+1))/2
      if dh < 0
          chi=R2;
      else
          chi=2* H0;
      end
      if (dh <= R2 & dh >=-2*H0)
         rdh=(0.5-0.5*cos(3.14159*dh/chi));
      else
         rdh=1;
      end
      rdh_sum=rdh_sum + rdh * dsta
      Berm_Segs=[Berm_Segs, kk];
      Berm_Heights=[Berm_Heights, (dep(kk)+dep(kk+1))/2];
   if dep(kk) >= Z2 % jump out of loop if we reached limit of run-up for this iteration
      break
   end
end
sprintf ('!----- End Berm Factor Calculation, Iter: %d -----!',iter)
berm_width
rB=berm_width/Lslope
if (berm_width > 0)
  rdh_mean=rdh_sum/berm_width
else
  rdh_mean=1
end
gamma_berm=1- rB * (1-rdh_mean)
if gamma_berm > 1
   gamma_berm=1
end
if gamma_berm < 0.6
   gamma_berm =0.6
end
% Iribarren number
slope=(Z2-Ztoe)/(Lslope-berm_width)
Irb=(slope/(sqrt(H0/L0)))
% runup height
gamma_berm
gamma_perm
gamma_beta
gamma rough
gamma=gamma_berm*gamma_perm*gamma_beta*gamma_rough
 check validity
TAW_VALID=1;
if (Irb*gamma_berm < 0.5 | Irb*gamma_berm > 10 )
   sprintf('!!! - - Iribaren number: %6.2f is outside the valid range (0.5-10), TAW NOT VALID - - !!!\n', Irb*gam
   TAW_VALID=0;
else
   sprintf('!!! - - Iribaren number: %6.2f is in the valid range (0.5-10), TAW RECOMMENDED - - !!!\n', Irb*gamma_
end
islope=1/slope;
if (slope < 1/8 | slope > 1)
   sprintf('!!!
                  - slope: 1:%3.1f V:H is outside the valid range (1:8 - 1:1), TAW NOT VALID - - !!!\n', islope)
   TAW VALID=0;
else
  sprintf('!!! - - slope: 1:%3.1f V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!\n', islope)
end
if TAW VALID == 0
   TAW_ALWAYS_VALID=0;
end
if (Irb*gamma berm < 1.8)
  R2\_new=gamma*H0*1.77*Irb
else
  R2_new=gamma*H0*(4.3-(1.6/sqrt(Irb)))
end
% check to see if we need to evaluate a shallow foreshore if berm_width > 0.25 * {\tt L0};
   disp ('! Berm_width is greater than 1/4 wave length')
   disp ('!
              Runup will be weighted average with foreshore calculation assuming depth limited wave height on ber
   % do the foreshore calculation
   fore_H0=0.78*(SWEL_fore-min(Berm_Heights))
   % get upper slope
   fore_toe_sta=-999;
   fore_toe_dep=-999;
   for kk=length(dep)-1:-1:1
      ddep=dep(kk+1)-dep(kk);
      dsta=sta(kk+1)-sta(kk);
      s=ddep/dsta;
      if s < 1/15
         break
```

```
end
          fore toe sta=sta(kk);
          fore_toe_dep=dep(kk);
          upper_slope=(Z2-fore_toe_dep)/(top_sta-fore_toe_sta)
       end
       fore_Irb=upper_slope/(sqrt(fore_H0/L0));
       fore_gamma=gamma_perm*gamma_beta*gamma_rough;
       if (fore Irb < 1.8)
          fore_R2=fore_gamma*fore_H0*1.77*fore_Irb;
       else
          fore_R2=fore_gamma*fore_H0*(4.3-(1.6/sqrt(fore_Irb)));
       end
       if berm_width >= L0
          R2_new=fore_R2
          disp ('berm is wider than one wavelength, use full shallow foreshore solution');
       else
          w2=(berm_width-0.25*L0)/(0.75*L0)
          w1 = 1 - w2
          R2_new=w2*fore_R2 + w1*R2_new
       end
    end % end berm width check
    % convergence criterion
    R2del=abs(R2-R2_new)
   R2_all(iter)=R2_new;
    % get the new top station (for plot purposes)
   Z2=R2_new+SWEL
    top_sta=-999;
    for kk=1:length(sta)-1
       if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
                                                % here is the intersection of z2 with profile
          top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
          break;
       end
    end
    if top_sta==-999
       dy=Z2-dep(end);
       top_sta=sta(end)+dy/S(end);
    end
    topStaAll(iter)=top_sta;
end
ans =
      -----! STARTING ITERATION 1 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
Z2 =
                 20.068423
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
                   22.6644
Z2 =
          31.9203345021268
top sta =
          107.041046462901
Lslope =
          145.422391094205
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 12
          10.1985265021268
rdh_sum =
          2.90420535902459
Berm Factor Calculation: Iteration 1, Profile Segment: 13
dh =
```

```
10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
         5.32809529031497
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 16
         11.2205850021268
rdh_sum =
         13.7806281955883
!----- End Berm Factor Calculation, Iter: 1 -----!
berm_width =
rB =
         0.116900842243663
rdh_mean =
        0.810625187975784
gamma_berm =
        0.977861924974634
slope =
        0.268771755517362
Irb =
          1.9976804779061
gamma_berm =
        0.977861924974634
gamma\_perm =
gamma_beta =
    1
gamma_rough =
                       0.6
gamma =
          0.58671715498478
ans =
!!! - - Iribaren number: 1.95 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:3.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         14.0421356450413
R2del =
          8.62226435495869
Z2 =
          23.2980701471681
top_sta =
          46.9993332993712
ans =
    -----! STARTING ITERATION 2 -----!
Ztoe =
                -2.595977
toe sta =
         -38.3813446313046
top_sta =
         46.9993332993712
Z2 =
         23.2980701471681
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
         14.0421356450413
7.2 =
          23.2980701471681
top_sta =
          46.9993332993712
Lslope =
          85.3806779306758
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 9
         9.49194100212682
rdh_sum =
        0.695983762046982
Berm Factor Calculation: Iteration 2, Profile Segment: 10
dh =
```

```
9.64669100212682
rdh_sum =
         1.40666398849417
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 11
dh =
         9.92260850212682
rdh_sum =
         2.14299703977601
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
         2.90420535902459
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 13
         10.4744445021268
rdh_sum =
         3.68942949541434
Berm Factor Calculation: Iteration 2, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
         4.49773093822128
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
         5.32809529031497
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 2 -----!
berm_width =
   17
rB =
        0.199108280843155
rdh_mean =
        0.810625187975784
gamma_berm
         0.962293906742863
slope =
        0.378674911258111
Irb =
         2.81454975146854
gamma_berm =
        0.962293906742863
gamma_perm =
gamma_beta =
gamma_rough =
gamma =
        0.577376344045718
ans =
!!! - - Iribaren number: 2.71 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:2.6 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         14.5964003534129
R2del =
        0.554264708371569
Z_{2} =
         23.8523348555397
top_sta =
         50.8951497883595
ans =
!-----!
Ztoe =
                -2.595977
toe_sta =
        -38.3813446313046
top_sta =
         50.8951497883595
Z2 =
         23.8523348555397
H0 =
                   7.5548
Tp =
                   9.9345
T0 =
```

```
9.03136363636364
R2 =
          14.5964003534129
Z2 =
          23.8523348555397
top_sta =
          50.8951497883595
Lslope =
          89.2764944196642
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 10
          9.64669100212682
rdh_sum =
          1.40666398849417
Berm Factor Calculation: Iteration 3, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 16
          11.2205850021268
rdh_sum =
          13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 3 -----!
berm_width =
rB =
         0.190419663210427
rdh_mean =
         0.810625187975784
gamma_berm =
         0.963939312073811
slope =
         0.365932410915933
Trb =
          2.71983948652912
gamma_berm =
         0.963939312073811
gamma perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
        0.578363587244287
ans =
!!! - - Iribaren number: 2.62 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
           14.549424968147
       0.0469753852659309
Z2 =
```

```
23.8053594702738
top_sta =
          50.5649673529656
ans =
      ----- STARTING ITERATION 4 -----!
!----
Ztoe =
                -2.595977
toe_sta =
        -38.3813446313046
top_sta =
         50.5649673529656
Z2 =
          23.8053594702738
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          14.549424968147
Z2 =
          23.8053594702738
top_sta =
          50.5649673529656
Lslope =
          88.9463119842703
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 9
dh =
         9.49194100212682
rdh_sum =
        0.695983762046982
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 10
dh =
         9.64669100212682
rdh_sum =
         1.40666398849417
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 11
dh =
         9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 13
         10.4744445021268
rdh_sum =
         3.68942949541434
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
         5.32809529031497
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 4 -----!
berm_width =
   17
rB =
         0.191126530383928
rdh_mean =
        0.810625187975784
gamma_berm :
        0.963805449235703
slope =
        0.366958857822288
         2.72746868455436
gamma_berm =
```

```
0.963805449235703
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
        0.578283269541422
ans =
!!! - - Iribaren number: 2.63 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          14.553336534471
R2del =
       0.00391156632409739
         23.8092710365979
top_sta =
         50.5924611241776
% final 2% runup elevation
Z2=R2_new+SWEL
23.8092710365979
diary off
plotTitle =
Iterative TAW for CM-144-1
SWEL =
                 8.736223
SWEL_fore =
                10.255623
L0 =
         417.357062285715
Ztoe =
                 -2.595977
Z2 =
                 20.068423
toe_sta =
         -62.4868075374234
toe_sta =
        -38.3813446313046
top_sta =
         34.9443976794092
top_sta =
         34.9443976794092
         -38.3813446313046
ans =
-!!- Location of SWEL-1.5*HO is 84.4 ft landward of toe of slope
-!!- Setup is interpolated between setup at toe of slope and max setup
ans =
-!!-
          setup is adjusted to 0.45 feet
ans =
-!!-
           SWEL is adjusted to 9.26 feet
k =
     2
     3
     5
     6
7
    24
    25
    26
    27
    28
    29
    30
    31
    32
ans =
!----- STARTING ITERATION 1 -----!
Ztoe =
                 -2.595977
toe_sta =
        -38.3813446313046
top_sta =
          34.9443976794092
Z2 =
                 20.068423
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
```

```
22.6644
Z2 =
          31.9203345021268
top_sta =
          107.041046462901
Lslope =
          145.422391094205
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 11
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 12
          10.1985265021268
rdh sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 15
dh =
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
          13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 1 -----!
berm_width =
   17
rB =
         0.116900842243663
rdh_mean =
         0.810625187975784
gamma_berm
         0.977861924974634
slope =
         0.268771755517362
Irb =
           1.9976804779061
gamma_berm =
         0.977861924974634
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
          0.58671715498478
ans =
!!! - - Iribaren number: 1.95 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:3.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          14.0421356450413
R2del =
          8.62226435495869
Z2 =
          23.2980701471681
top_sta =
```

```
46.9993332993712
ans =
       -----! STARTING ITERATION 2 -----!
7toe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          46.9993332993712
7.2 =
          23.2980701471681
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
         14.0421356450413
Z2 =
          23.2980701471681
top_sta =
          46.9993332993712
Lslope =
          85.3806779306758
Berm Factor Calculation: Iteration 2, Profile Segment: 9
         9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 10
dh =
         9.64669100212682
rdh_sum =
         1.40666398849417
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 11
dh =
         9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
         4.49773093822128
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 15
         11.0262795021268
rdh_sum =
         5.32809529031497
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 2 -----!
berm_width =
rB =
         0.199108280843155
rdh_mean =
         0.810625187975784
gamma_berm
         0.962293906742863
slope =
         0.378674911258111
Irb =
          2.81454975146854
         0.962293906742863
```

gamma_perm =

```
1
gamma_beta =
gamma_rough =
                       0.6
gamma =
        0.577376344045718
ans =
!!! - - Iribaren number: 2.71 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:2.6 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         14.5964003534129
R2del =
         0.554264708371569
Z2 =
          23.8523348555397
top_sta =
         50.8951497883595
       -----! STARTING ITERATION 3 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
         50.8951497883595
Z2 =
          23.8523348555397
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
         14.5964003534129
Z_{2} =
          23.8523348555397
top_sta =
          50.8951497883595
Lslope =
          89.2764944196642
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 9
dh =
         9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 12
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 15
         11.0262795021268
rdh_sum =
         5.32809529031497
Berm Factor Calculation: Iteration 3, Profile Segment: 16
         11.2205850021268
rdh_sum =
```

```
13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 3 -----!
berm_width =
   17
rB =
        0.190419663210427
rdh_mean =
        0.810625187975784
gamma_berm =
         0.963939312073811
slope =
        0.365932410915933
Irb =
          2.71983948652912
gamma\_berm =
        0.963939312073811
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
        0.578363587244287
ans =
!!! - - Iribaren number: 2.62 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          14.549424968147
R2del =
        0.0469753852659309
Z2 =
         23.8053594702738
top_sta =
          50.5649673529656
ans =
!----- STARTING ITERATION 4 -----!
Ztoe =
                -2.595977
toe_sta =
         -38.3813446313046
top_sta =
         50.5649673529656
7.2 =
          23.8053594702738
H0 =
                   7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          14.549424968147
Z2 =
          23.8053594702738
top_sta =
          50.5649673529656
Lslope =
          88.9463119842703
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 9
          9.49194100212682
rdh_sum =
        0.695983762046982
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 12
         10.1985265021268
rdh_sum =
         2.90420535902459
Berm Factor Calculation: Iteration 4, Profile Segment: 13
         10.4744445021268
rdh_sum =
```

```
3.68942949541434
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 14
           10.7503620021268
rdh_sum =
           4.49773093822128
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 15
dh =
           11.0262795021268
rdh_sum =
           5.32809529031497
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 16
           11.2205850021268
rdh_sum =
          13.7806281955883
!----- End Berm Factor Calculation, Iter: 4 -----!
berm_width =
          0.191126530383928
rdh_mean =
          0.810625187975784
gamma_berm =
          0.963805449235703
slope =
          0.366958857822288
Irb =
          2.72746868455436
gamma_berm =
          0.963805449235703
gamma_perm =
gamma_beta =
gamma_rough =
                          0.6
gamma =
         0.578283269541422
ans =
!!! - - Iribaren number: 2.63 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
            14.553336534471
R2del =
       0.00391156632409739
Z2 =
           23.8092710365979
top_sta =
           50.5924611241776
Z2 =
          23.8092710365979
diary on
                  % begin recording
% FEMA appeal for The Town of Harpswell, Cumberland county, Maine
% TRANSECT ID: CM-144-1
% calculation by SJH, Ransom Consulting, Inc. 26-Feb-2020
% 100-year wave runup using TAW methodology
% including berm and weighted average with foreshore if necessary
% chk nld 20200220
% This script assumes that the incident wave conditions provided
% as input in the configuration section below are the % appropriate values located at the end of the foreshore
% or toe of the slope on which the run-up is being calculated
% the script does not attempt to apply a depth limit or any other
\mbox{\ensuremath{\upsigma}} transformation to the incident wave conditions other than
% conversion of the peak wave period to the spectral mean wave
% as recommended in the references below
% references:
% Van der Meer, J.W., 2002. Technical Report Wave Run-up and
% Wave Overtopping at Dikes. TAW Technical Advisory Committee on
% Flood Defence, The Netherlands.
% FEMA. 2007, Atlantic Ocean and Gulf of Mexico Coastal Guidelines Update
fname='inpfiles/CM-144-1sta_ele_include.csv'; % file with station, elevation, include
```

% third columm is 0 for excluded points

```
imgname='logfiles/CM-144-1-runup';
SWEL=8.8043; % 100-yr still water level including wave setup.
H0=7.5548;
               \mbox{\ensuremath{\upsigma}} significant wave height at toe of structure
Tp=9.9345;
              % peak period, 1/fma,
T0=Tp/1.1;
gamma_berm=0.96381; % this may get changed automatically below
gamma_rough=0.6;
gamma_beta=1;
gamma_perm=1;
setupAtToe=-0.068077;
maxSetup=1.5194; % only used in case of berm/shallow foreshore weighted average
plotTitle='Iterative TAW for CM-144-1'
plotTitle =
Iterative TAW for CM-144-1
% END CONFIG
SWEL=SWEL+setupAtToe
SWEL =
                   8.736223
SWEL_fore=SWEL+maxSetup
SWEL_fore =
                  10.255623
% FIND WAVELENGTH USING DEEPWATER DISPERSION RELATION
% using English units
L0=32.15/(2*pi)*T0^2
          417.357062285715
% Find Hb (Munk, 1949)
%Hb=H0/(3.3*(H0/L0)^(1/3))
%Db=-Hb/.78+SWEL; % depth at breaking
% The toe elevation here is only used to determine the average % structure slope, it is not used to depth limit the wave height.
% Any depth limiting or other modification of the wave height
% to make it consitent with TAW guidance should be performed
% prior to the input of the significant wave height given above.
Ztoe=SWEL-1.5*H0
7toe =
                  -2.595977
% read the transect
[sta,dep,inc] = textread(fname,'%n%n%n%*[^\n]','delimiter',',','headerlines',0);
% remove unselected points
k=find(inc==0);
sta(k)=[];
dep(k)=[];
sta_org=sta;
              % used for plotting purposes
dep_org=dep;
% initial guess at maximum run-up elevation to estimate slope
Z2=SWEL+1.5*H0
Z2 =
                  20.068423
% determine station at the max runup and -1.5*H0 (i.e. the toe)
top_sta=-999;
toe_sta=-999;
for kk=1:length(sta)-1
    if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
                                                % here is the intersection of z2 with profile
       top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
        ((Ztoe > dep(kk)) & (Ztoe <= dep(kk+1)))
                                                       % here is the intersection of Ztoe with profile
       toe_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Ztoe)
    end
end
toe sta =
         -62.4868075374234
toe sta =
         -38.3813446313046
top_sta =
          34.9443976794092
% check to make sure we got them, if not extend the end slopes outward
S=diff(dep)./diff(sta);
if toe sta==-999
   dy=dep(1)-Ztoe;
   toe_sta=sta(1)-dy/S(1)
end
if top sta==-999
   dy=Z2-dep(end);
   top_sta=sta(end)+dy/S(end)
end
% just so the reader can tell the values aren't -999 anymore
top_sta
top_sta =
          34.9443976794092
toe_sta
toe sta =
          -38.3813446313046
% check for case where the toe of slope is below SWL-1.5*H0 \,
% in this case interpolate setup from the setupAtToe(really setup as first station), and the max setup
 also un-include points seaward of SWL-1.5*HO
if Ztoe > dep(1)
   dd=SWEL_fore-dep;
   k=find(dd<0,1); % k is index of first land point
```

```
staAtSWL=interp1(dep(k-1:k),sta(k-1:k),SWEL_fore);
   dsta=staAtSWL-sta(1);
   dsetup=maxSetup-setupAtToe;
   dsetdsta=dsetup/dsta;
   setup=setupAtToe+dsetdsta*(toe_sta-sta(1));
   sprintf('-!!- Location of SWEL-1.5*H0 is %4.1f ft landward of toe of slope',dsta) sprintf('-!!- Setup is interpolated between setup at toe of slope and max setup')
   sprintf('-!!-
                        setup is adjusted to %4.2f feet', setup)
   SWEL=SWEL-setupAtToe+setup;
                        SWEL is adjusted to %4.2f feet', SWEL)
   sprintf('-!!-
   k=find(dep < SWEL-1.5*H0)
   sta(k)=[];
   dep(k)=[];
else
   sprintf('-!!- The User has selected a starting point that is 4.2f feet above the elevation of SWEL-1.5H0\n', dep(1)
   sprintf('-!!- This may be reasonable for some cases. However the user may want to consider:\n')
   sprintf('-!!-
                    1) Selecting a starting point that is at or below 4.2f feet elevation, or\n', Ztoe)
                    2) Reducing the incident wave height to a depth limited condition. \n')
end
ans =
-!!- Location of SWEL-1.5*HO is 84.4 ft landward of toe of slope
-!!- Setup is interpolated between setup at toe of slope and max setup
ans =
           setup is adjusted to 0.45 feet
-!!-
ans =
-!!-
           SWEL is adjusted to 9.26 feet
k =
     1
     2
     3
     4
     5
     6
7
    24
    25
    26
    27
    28
    29
    30
    31
    32
% now iterate converge on a runup elevation
tol=0.01; % convergence criteria
R2del=999;
R2_new=3*H0; %initial guess
R2=R2_new;
iter=0;
R2_all=[];
topStaAll=[];
Berm_Segs=[];
TAW_ALWAYS_VALID=1;
\overline{\text{while}}(abs(\overline{\text{R2del}}) > \text{tol \&\& iter} <= 25)
    iter=iter+1;
    sprintf ('!------ STARTING ITERATION %d -----!',iter)
    % elevation of toe of slope
    Ztoe
    % station of toe slope (relative to 0-NAVD88 shoreline
    toe sta
    % station of top of slope/extent of 2% run-up
    top sta
    % elevation of top of slope/extent of 2% run-up
    Z_2
    % incident significant wave height
    НΟ
    % incident spectral peak wave period
    Тp
    % incident spectral mean wave period
    T0
    R2=R2_new
    Z2=R2+SWEL
    % determine slope for this iteration
    top_sta=-999;
    for kk=1:length(sta)-1
                                                   % here is the intersection of z2 with profile
       if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
          top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
          break;
       end
    end
    if top_sta==-999
       dy=Z2-dep(end);
       top_sta=sta(end)+dy/S(end)
    % get the length of the slope (not accounting for berm)
    Lslope=top_sta-toe_sta
    % loop over profile segments to determine berm factor
```

```
% re-calculate influence of depth of berm based on this run-up elevation
% check for berm, berm width, \bar{b}erm height
berm_width=0;
rdh_sum=0;
Berm_Segs=[];
Berm_Heights=[];
for kk=1:length(sta)-1
   ddep=dep(kk+1)-dep(kk);
   dsta=sta(kk+1)-sta(kk);
   s=ddep/dsta;
                      % count it as a berm if slope is flatter than 1:15 (see TAW manual)
   if (s < 1/15)
      sprintf ('Berm Factor Calculation: Iteration %d, Profile Segment: %d',iter,kk)
      berm_width=berm_width+dsta; % tally the width of all berm segments
      % compute the rdh for this segment and weight it by the segment length
      dh=SWEL-(dep(kk)+dep(kk+1))/2
      if dh < 0
          chi=R2;
      else
          chi=2* H0;
      end
      if (dh <= R2 \& dh >= -2*H0)
         rdh=(0.5-0.5*cos(3.14159*dh/chi));
      else
         rdh=1;
      end
      rdh_sum=rdh_sum + rdh * dsta
      Berm_Segs=[Berm_Segs, kk];
      Berm_Heights=[Berm_Heights, (dep(kk)+dep(kk+1))/2];
   end
   if dep(kk) >= Z2 % jump out of loop if we reached limit of run-up for this iteration
      break
   end
end
sprintf ('!----- End Berm Factor Calculation, Iter: %d -----!',iter)
berm_width
rB=berm_width/Lslope
if (berm_width > 0)
   rdh_mean=rdh_sum/berm_width
else
  rdh_mean=1
end
gamma_berm=1- rB * (1-rdh_mean)
if gamma_berm > 1
   gamma_berm=1
end
if gamma_berm < 0.6
   gamma_berm =0.6
end
% Iribarren number
slope=(Z2-Ztoe)/(Lslope-berm_width)
Irb=(slope/(sqrt(H0/L0)))
% runup height
gamma_berm
gamma_perm
gamma_beta
gamma_rough
gamma=gamma_berm*gamma_perm*gamma_beta*gamma_rough
% check validity
TAW_VALID=1;
if (Irb*gamma_berm < 0.5 | Irb*gamma_berm > 10 )
   sprintf('!!! - - Iribaren number: %6.2f is outside the valid range (0.5-10), TAW NOT VALID - - !!!\n', Irb*gam
   TAW_VALID=0;
else
   sprintf('!!! - Iribaren number: %6.2f is in the valid range (0.5-10), TAW RECOMMENDED - - !!!\n', Irb*gamma_
end
islope=1/slope;
if (slope < 1/8 | slope > 1)
   sprintf('!!!
                 - slope: 1:%3.1f V:H is outside the valid range (1:8 - 1:1), TAW NOT VALID - - !!!\n', islope)
   TAW_VALID=0;
else
   sprintf('!!! - - slope: 1:%3.1f V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!\n', islope)
end
if TAW_VALID == 0
   TAW_ALWAYS_VALID=0;
end
if (Irb*gamma_berm < 1.8)</pre>
   R2_new=gamma*H0*1.77*Irb
else
   R2_new=gamma*H0*(4.3-(1.6/sqrt(Irb)))
end
% check to see if we need to evaluate a shallow foreshore
if berm_width > 0.25 * L0;
   disp ('! Berm_width is greater than 1/4 wave length')
              Runup will be weighted average with foreshore calculation assuming depth limited wave height on ber
   % do the foreshore calculation
   fore_H0=0.78*(SWEL_fore-min(Berm_Heights))
   % get upper slope
   fore_toe_sta=-999;
   fore_toe_dep=-999;
```

```
for kk=length(dep)-1:-1:1
          ddep=dep(kk+1)-dep(kk);
          dsta=sta(kk+1)-sta(kk);
          s=ddep/dsta;
if s < 1/15</pre>
             break
          end
          fore_toe_sta=sta(kk);
          fore_toe_dep=dep(kk);
          upper_slope=(Z2-fore_toe_dep)/(top_sta-fore_toe_sta)
       end
       fore_Irb=upper_slope/(sqrt(fore_H0/L0));
       fore_gamma=gamma_perm*gamma_beta*gamma_rough;
       if (fore_Irb < 1.8)</pre>
          fore_R2=fore_gamma*fore_H0*1.77*fore_Irb;
          fore_R2=fore_gamma*fore_H0*(4.3-(1.6/sqrt(fore_Irb)));
       end
       if berm_width >= L0
          R2_new=fore_R2
          disp ('berm is wider than one wavelength, use full shallow foreshore solution');
          w2=(berm_width-0.25*L0)/(0.75*L0)
          w1 = 1 - w2
          R2_new=w2*fore_R2 + w1*R2_new
       end
    end % end berm width check
    % convergence criterion
    R2del=abs(R2-R2_new)
    R2_all(iter)=R2_new;
    % get the new top station (for plot purposes) Z2=R2_new+SWEL
    top_sta=-999;
    for kk=1:length(sta)-1
       if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
                                                  % here is the intersection of z2 with profile
          top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
          break;
       end
    end
    if top_sta==-999
       dy=Z2-dep(end);
       top_sta=sta(end)+dy/S(end);
    end
    topStaAll(iter)=top_sta;
end
ans =
         -----: STARTING ITERATION 1 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
Z2 =
                  20.068423
H0 =
                    7.5548
Tp =
                     9.9345
T0 =
          9.03136363636364
R2 =
                    22.6644
Z2 =
          31.9203345021268
top_sta =
          107.041046462901
Lslope =
          145.422391094205
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 11
          9.92260850212682
rdh_sum =
          2.14299703977601
Berm Factor Calculation: Iteration 1, Profile Segment: 12
dh =
```

```
10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 15
         11.0262795021268
rdh_sum =
          5.32809529031497
Berm Factor Calculation: Iteration 1, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 1 -----!
berm_width =
   17
rB =
         0.116900842243663
rdh_mean =
         0.810625187975784
gamma_berm =
         0.977861924974634
slope =
         0.268771755517362
Irb =
          1.9976804779061
gamma_berm =
         0.977861924974634
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
         0.58671715498478
ans =
!!! - - Iribaren number: 1.95 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:3.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         14.0421356450413
R2del =
          8.62226435495869
Z2 =
          23.2980701471681
top_sta =
          46.9993332993712
ans =
       -----! STARTING ITERATION 2 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          46.9993332993712
Z_{2} =
          23.2980701471681
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          14.0421356450413
Z2 =
          23.2980701471681
top_sta =
          46.9993332993712
Lslope =
          85.3806779306758
Berm Factor Calculation: Iteration 2, Profile Segment: 9
dh =
```

```
9.49194100212682
rdh_sum =
        0.695983762046982
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 10
dh =
         9.64669100212682
rdh_sum =
         1.40666398849417
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 11
dh =
         9.92260850212682
rdh_sum =
         2.14299703977601
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 12
         10.1985265021268
rdh_sum =
         2.90420535902459
Berm Factor Calculation: Iteration 2, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
         3.68942949541434
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
         4.49773093822128
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
         5.32809529031497
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 2 -----!
berm_width =
   17
rB =
        0.199108280843155
rdh_mean =
        0.810625187975784
gamma_berm
        0.962293906742863
slope =
        0.378674911258111
Irb =
         2.81454975146854
gamma_berm =
        0.962293906742863
gamma_perm =
gamma_beta =
gamma\_rough =
                      0.6
gamma =
        0.577376344045718
ans =
!!! - - Iribaren number: 2.71 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.6 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         14.5964003534129
R2del =
        0.554264708371569
Z2 =
         23.8523348555397
top_sta =
         50.8951497883595
ans =
!----!
                -2.595977
toe_sta =
        -38.3813446313046
top_sta =
         50.8951497883595
Z2 =
```

```
23.8523348555397
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          14.5964003534129
7.2 =
          23.8523348555397
top_sta =
          50.8951497883595
Lslope =
          89.2764944196642
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 9
          9.49194100212682
rdh_sum =
         0.695983762046982
Berm Factor Calculation: Iteration 3, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 15
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
         13.7806281955883
ans =
      -- End Berm Factor Calculation, Iter: 3 -----!
berm_width =
    17
rB =
         0.190419663210427
rdh_mean =
         0.810625187975784
gamma_berm =
         0.963939312073811
slope =
         0.365932410915933
Irb =
          2.71983948652912
gamma_berm =
         0.963939312073811
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
         0.578363587244287
!!! - - Iribaren number:
                          2.62 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
```

```
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          14.549424968147
R2del =
       0.0469753852659309
Z_{2} =
         23.8053594702738
top_sta =
         50.5649673529656
ans =
!-----!
Ztoe =
                -2.595977
toe_sta =
        -38.3813446313046
top_sta =
         50.5649673529656
Z2 =
         23.8053594702738
H0 =
                   7.5548
Tp =
                   9.9345
T0 =
         9.03136363636364
R2 =
          14.549424968147
         23.8053594702738
top_sta =
         50.5649673529656
Lslope =
         88.9463119842703
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 9
dh =
         9.49194100212682
rdh_sum =
        0.695983762046982
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 10
dh =
         9.64669100212682
rdh_sum =
         1.40666398849417
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 11
dh =
         9.92260850212682
rdh_sum =
         2.14299703977601
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 12
         10.1985265021268
rdh_sum =
         2.90420535902459
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
         3.68942949541434
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
         4.49773093822128
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
         5.32809529031497
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 16
         11.2205850021268
rdh_sum =
         13.7806281955883
!---- End Berm Factor Calculation, Iter: 4 -----!
berm_width =
rB =
        0.191126530383928
        0.810625187975784
gamma_berm =
```

```
0.963805449235703
slope =
         0.366958857822288
Trb =
          2.72746868455436
gamma_berm = 0.963805449235703
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
        0.578283269541422
ans =
!!! - - Iribaren number: 2.63 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
           14.553336534471
       0.00391156632409739
          23.8092710365979
top_sta =
          50.5924611241776
% final 2% runup elevation
Z2=R2_new+SWEL
          23.8092710365979
diary off
plotTitle =
Iterative TAW for CM-144-1
SWEL =
                 8.736223
SWEL_fore =
                 10.255623
L0 =
          417.357062285715
Ztoe =
                 -2.595977
Z2 =
                 20.068423
toe_sta =
         -62.4868075374234
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
top_sta =
         34.9443976794092
toe_sta =
         -38.3813446313046
-!!- Location of SWEL-1.5*HO is 84.4 ft landward of toe of slope
-!!- Setup is interpolated between setup at toe of slope and max setup
ans =
-!!-
           setup is adjusted to 0.45 feet
ans =
-!!-
           SWEL is adjusted to 9.26 feet
k =
     2
     3
     4
     5
     6
7
    24
    25
26
    27
    28
    29
    30
    31
    32
ans =
        -----! STARTING ITERATION 1 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
Z2 =
                 20.068423
H0 =
```

```
7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
                   22.6644
Z_{2} =
          31.9203345021268
top_sta =
          107.041046462901
Lslope =
          145.422391094205
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 10
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 11
dh =
          9.92260850212682
rdh sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 15
dh =
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
          13.7806281955883
ans =
      -- End Berm Factor Calculation, Iter: 1 -----!
berm_width =
    17
rB =
         0.116900842243663
rdh_mean =
         0.810625187975784
gamma_berm =
         0.977861924974634
slope =
         0.268771755517362
Irb =
           1.9976804779061
gamma_berm =
         0.977861924974634
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
          0.58671715498478
!!! - - Iribaren number: 1.95 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:3.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
```

```
14.0421356450413
R2del =
          8.62226435495869
Z2 =
          23.2980701471681
top_sta =
          46.9993332993712
ans =
!-----!
Ztoe =
                -2.595977
toe_sta =
        -38.3813446313046
top_sta =
         46.9993332993712
Z2 =
          23.2980701471681
H0 =
                   7.5548
Tp =
                   9.9345
T0 =
         9.03136363636364
R2 =
         14.0421356450413
         23.2980701471681
top_sta =
         46.9993332993712
Lslope =
         85.3806779306758
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 9
dh =
         9.49194100212682
rdh_sum =
        0.695983762046982
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 10
dh =
         9.64669100212682
rdh_sum =
         1.40666398849417
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 11
dh =
         9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
         2.90420535902459
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 13
         10.4744445021268
rdh_sum =
         3.68942949541434
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 14
         10.7503620021268
rdh_sum =
         4.49773093822128
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 15
         11.0262795021268
rdh_sum =
         5.32809529031497
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!---- End Berm Factor Calculation, Iter: 2 -----!
berm_width =
   17
         0.199108280843155
rdh_mean =
        0.810625187975784
gamma_berm =
        0.962293906742863
slope =
```

```
0.378674911258111
Irb =
          2.81454975146854
gamma_berm =
         0.962293906742863
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
         0.577376344045718
ans =
!!! - - Iribaren number: 2.71 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:2.6 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          14.5964003534129
R2del =
         0.554264708371569
Z2 =
          23.8523348555397
top_sta =
          50.8951497883595
ans =
      -----! STARTING ITERATION 3 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          50.8951497883595
Z2 =
          23.8523348555397
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          14.5964003534129
Z_{2} =
          23.8523348555397
top_sta =
          50.8951497883595
Lslope =
          89.2764944196642
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 14
          10.7503620021268
rdh_sum =
          4.49773093822128
Berm Factor Calculation: Iteration 3, Profile Segment: 15
         11.0262795021268
rdh_sum =
```

```
5.32809529031497
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 16
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 3 -----!
berm_width =
   17
rB =
        0.190419663210427
rdh_mean =
        0.810625187975784
gamma_berm =
         0.963939312073811
slope =
        0.365932410915933
Irb =
         2.71983948652912
gamma_berm =
        0.963939312073811
gamma perm =
gamma_beta =
gamma_rough =
                      0.6
gamma =
        0.578363587244287
ans =
!!! - - Iribaren number: 2.62 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          14.549424968147
R2del =
       0.0469753852659309
         23.8053594702738
top_sta =
         50.5649673529656
ans =
!----- STARTING ITERATION 4 -----!
Ztoe =
                -2.595977
toe_sta =
        -38.3813446313046
top_sta =
         50.5649673529656
Z2 =
         23.8053594702738
H0 =
                   7.5548
Tp =
                   9.9345
T0 =
         9.03136363636364
R2 =
         14.549424968147
z2 =
         23.8053594702738
top_sta =
         50.5649673529656
Lslope =
         88.9463119842703
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 9
dh =
         9.49194100212682
rdh_sum =
        0.695983762046982
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 10
dh =
         9.64669100212682
rdh_sum =
         1.40666398849417
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 11
         9.92260850212682
rdh_sum =
         2.14299703977601
Berm Factor Calculation: Iteration 4, Profile Segment: 12
         10.1985265021268
rdh_sum =
```

```
2.90420535902459
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 13
           10.4744445021268
rdh_sum =
           3.68942949541434
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
           4.49773093822128
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 15
          11.0262795021268
rdh_sum =
          5.32809529031497
Berm Factor Calculation: Iteration 4, Profile Segment: 16
          11.2205850021268
rdh_sum =
          13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 4 -----!
berm_width =
    17
rB =
         0.191126530383928
rdh_mean =
         0.810625187975784
gamma_berm =
         0.963805449235703
slope =
         0.366958857822288
Irb =
          2.72746868455436
gamma_berm =
         0.963805449235703
gamma_perm =
gamma_beta =
gamma_rough =
                         0.6
gamma =
         0.578283269541422
!!! - - Iribaren number: 2.63 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
           14.553336534471
R2del =
       0.00391156632409739
           23.8092710365979
top sta =
          50.5924611241776
z2 =
          23.8092710365979
                  % begin recording
diary on
% FEMA appeal for The Town of Harpswell, Cumberland county, Maine
% TRANSECT ID: CM-144-1
% calculation by SJH, Ransom Consulting, Inc. 26-Feb-2020
% 100-year wave runup using TAW methodology
% including berm and weighted average with foreshore if necessary
% chk nld 20200220
\mbox{\ensuremath{\upsigma}} This script assumes that the incident wave conditions provided
% as input in the configuration section below are the
% appropriate values located at the end of the foreshore
\mbox{\ensuremath{\$}} or toe of the slope on which the run-up is being calculated
% the script does not attempt to apply a depth limit or any other
\ensuremath{\mathtt{\$}} transformation to the incident wave conditions other than
\mbox{\ensuremath{\$}} conversion of the peak wave period to the spectral mean wave
% as recommended in the references below
% references:
Yan der Meer, J.W., 2002. Technical Report Wave Run-up and
Wave Overtopping at Dikes. TAW Technical Advisory Committee on
% Flood Defence, The Netherlands.
% FEMA. 2007, Atlantic Ocean and Gulf of Mexico Coastal Guidelines Update
```

```
% _
% CONFIG
% third column is 0 for excluded points
imgname='logfiles/CM-144-1-runup';
SWEL=8.8043; % 100-yr still water level including wave setup.
H0=7.5548;
              % significant wave height at toe of structure
Tp=9.9345;
              % peak period, 1/fma,
T0=Tp/1.1;
gamma_berm=0.96381; % this may get changed automatically below
gamma_rough=0.6;
gamma_beta=1;
gamma_perm=1;
setupAtToe=-0.068077;
maxSetup=1.5194; % only used in case of berm/shallow foreshore weighted average
plotTitle='Iterative TAW for CM-144-1'
plotTitle =
Iterative TAW for CM-144-1
% END CONFIG
SWEL=SWEL+setupAtToe
SWEL =
                  8.736223
SWEL_fore=SWEL+maxSetup
SWEL fore =
                 10.255623
% FIND WAVELENGTH USING DEEPWATER DISPERSION RELATION
% using English units
L0=32.15/(2*pi)*T0^2
L0 =
          417.357062285715
% Find Hb (Munk, 1949)
% HD=H0/(3.3*(H0/L0)^(1/3))
%Db=-Hb/.78+SWEL; % depth at breaking
% The toe elevation here is only used to determine the average
% structure slope, it is not used to depth limit the wave height.
% Any depth limiting or other modification of the wave height
% to make it consitent with TAW guidance should be performed
% prior to the input of the significant wave height given above.
Ztoe=SWEL-1.5*H0
Ztoe =
                 -2.595977
% read the transect
[sta,dep,inc] = textread(fname,'%n%n%n%*[^\n]','delimiter',',','headerlines',0);
% remove unselected points
k=find(inc==0);
sta(k)=[];
dep(k)=[];
sta_org=sta; % used for plotting purposes
dep_org=dep;
% initial guess at maximum run-up elevation to estimate slope
Z2=SWEL+1.5*H0
                 20.068423
% determine station at the max runup and -1.5*H0 (i.e. the toe)
top_sta=-999;
toe_sta=-999;
for kk=1:length(sta)-1
    if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
                                                 % here is the intersection of z2 with profile
       top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
        ((Ztoe > dep(kk)) & (Ztoe <= dep(kk+1)))
                                                     % here is the intersection of Ztoe with profile
       toe_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Ztoe)
    end
end
toe_sta =
         -62.4868075374234
toe_sta =
         -38.3813446313046
top_sta =
         34.9443976794092
% check to make sure we got them, if not extend the end slopes outward
S=diff(dep)./diff(sta);
if toe_sta==-999
   dy=dep(1)-Ztoe;
   toe_sta=sta(1)-dy/S(1)
end
if top_sta==-999
   dy=Z2-dep(end);
   top_sta=sta(end)+dy/S(end)
% just so the reader can tell the values aren't -999 anymore
top_sta
top_sta =
          34.9443976794092
toe sta
toe_sta =
         -38.3813446313046
```

```
% check for case where the toe of slope is below {\tt SWL-1.5*H0}
% in this case interpolate setup from the setupAtToe(really setup as first station), and the max setup
% also un-include points seaward of SWL-1.5*HO
if Ztoe > dep(1)
   dd=SWEL_fore-dep;
   k=find(dd<0,1); % k is index of first land point
staAtSWL=interp1(dep(k-1:k),sta(k-1:k),SWEL_fore);</pre>
   dsta=staAtSWL-sta(1);
   dsetup=maxSetup-setupAtToe;
   dsetdsta=dsetup/dsta;
   setup=setupAtToe+dsetdsta*(toe_sta-sta(1));
   sprintf('-!!- Location of SWEL-1.5*HO is $4.1f ft landward of toe of slope',dsta) sprintf('-!!- Setup is interpolated between setup at toe of slope and max setup')
   sprintf('-!!-
                        setup is adjusted to %4.2f feet', setup)
   SWEL=SWEL-setupAtToe+setup;
   sprintf('-!!-
                       SWEL is adjusted to %4.2f feet', SWEL)
   k=find(dep < SWEL-1.5*H0)
   sta(k)=[];
   dep(k)=[];
else
   sprintf('-!!- The User has selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n',dep(1
   sprintf('-!!- This may be reasonable for some cases. However the user may want to consider:\n')
                    1) Selecting a starting point that is at or below %4.2f feet elevation, or\n', Ztoe)
   sprintf('-!!-
                    2) Reducing the incident wave height to a depth limited condition. \n')
end
ans =
-!!- Location of SWEL-1.5*HO is 84.4 ft landward of toe of slope
-!!- Setup is interpolated between setup at toe of slope and max setup
ans =
-!!-
           setup is adjusted to 0.45 feet
ans =
-!!-
           SWEL is adjusted to 9.26 feet
k =
     1
     2
     3
     4
     5
     6
     7
    24
    2.5
    26
    27
    2.8
    29
    30
    31
    32
% now iterate converge on a runup elevation
tol=0.01; % convergence criteria
R2del=999;
R2_new=3*H0; %initial guess
R2=R2 new;
iter=0;
R2_all=[];
topStaAll=[];
Berm_Segs=[];
TAW_ALWAYS_VALID=1;
while(abs(\overline{R}2del) > tol && iter <= 25)
    iter=iter+1;
    sprintf ('!---
                   -----!',iter
    % elevation of toe of slope
    Ztoe
    % station of toe slope (relative to 0-NAVD88 shoreline
    toe sta
    % station of top of slope/extent of 2% run-up
    top sta
    % elevation of top of slope/extent of 2% run-up
    Z_2
    % incident significant wave height
    HΩ
    % incident spectral peak wave period
    Тp
    % incident spectral mean wave period
    T0
    R2=R2_new
    Z2=R2+SWEL
    % determine slope for this iteration
    top_sta=-999;
    for kk=1:length(sta)-1
       if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
                                                   % here is the intersection of z2 with profile
          top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
       end
    end
    if top_sta==-999
       dy=Z2-dep(end);
```

```
top_sta=sta(end)+dy/S(end)
end
% get the length of the slope (not accounting for berm)
Lslope=top sta-toe sta
\$ loop over profile segments to determine berm factor \$ re-calculate influence of depth of berm based on this run-up elevation
% check for berm, berm width, berm height
berm_width=0;
rdh_sum=0;
Berm_Segs=[];
Berm_Heights=[];
for kk=1:length(sta)-1
   ddep=dep(kk+1)-dep(kk);
   dsta=sta(kk+1)-sta(kk);
   s=ddep/dsta;
   if (s < 1/15)
                       % count it as a berm if slope is flatter than 1:15 (see TAW manual)
      sprintf ('Berm Factor Calculation: Iteration %d, Profile Segment: %d',iter,kk)
      berm_width=berm_width+dsta;
                                     % tally the width of all berm segments
      % compute the rdh for this segment and weight it by the segment length
      dh=SWEL-(dep(kk)+dep(kk+1))/2
      if dh < 0
          chi=R2;
      else
          chi=2* H0;
      end
      if (dh <= R2 \& dh >= -2*H0)
         rdh=(0.5-0.5*cos(3.14159*dh/chi));
      else
         rdh=1;
      end
      rdh_sum=rdh_sum + rdh * dsta
      Berm_Segs=[Berm_Segs, kk];
      Berm_Heights=[Berm_Heights, (dep(kk)+dep(kk+1))/2];
   end
   if dep(kk) >= Z2 % jump out of loop if we reached limit of run-up for this iteration
      break
   end
end
sprintf ('!----- End Berm Factor Calculation, Iter: %d -----!',iter)
berm_width
rB=berm_width/Lslope
if (berm_width > 0)
   rdh_mean=rdh_sum/berm_width
else
   rdh_mean=1
end
gamma_berm=1- rB * (1-rdh_mean)
if gamma_berm > 1
   gamma_berm=1
end
if gamma_berm < 0.6
   gamma_berm =0.6
end
% Iribarren number
slope=(Z2-Ztoe)/(Lslope-berm_width)
Irb=(slope/(sqrt(H0/L0)))
% runup height
gamma_berm
gamma perm
gamma_beta
gamma rough
gamma=gamma_berm*gamma_perm*gamma_beta*gamma_rough
% check validity
TAW_VALID=1;
if (Irb*gamma_berm < 0.5 | Irb*gamma_berm > 10 )
sprintf('!!! - Iribaren number: %6.2f is outside the valid range (0.5-10), TAW NOT VALID - - !!!\n', Irb*gam
   TAW_VALID=0;
else
   sprintf('!!! - - Iribaren number: %6.2f is in the valid range (0.5-10), TAW RECOMMENDED - - !!!\n', Irb*gamma_
end
islope=1/slope;
if (slope < 1/8 | slope > 1)
sprintf('!!! - - slope: 1:%3.1f V:H is outside the valid range (1:8 - 1:1), TAW NOT VALID - - !!!\n', islope)
   TAW VALID=0;
else
   sprintf('!!! - - slope: 1:%3.1f V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!\n', islope)
end
if TAW_VALID == 0
   TAW_ALWAYS_VALID=0;
if (Irb*gamma_berm < 1.8)
   R2_new=gamma*H0*1.77*Irb
else
   R2_new=gamma*H0*(4.3-(1.6/sqrt(Irb)))
end
% check to see if we need to evaluate a shallow foreshore
if berm_width > 0.25 * L0;
   disp ('! Berm_width is greater than 1/4 wave length')
```

```
Runup will be weighted average with foreshore calculation assuming depth limited wave height on ber
       disp ('!
       % do the foreshore calculation
       fore_H0=0.78*(SWEL_fore-min(Berm_Heights))
       % get upper slope
       fore_toe_sta=-999;
       fore_toe_dep=-999;
       for kk=length(dep)-1:-1:1
          ddep=dep(kk+1)-dep(kk);
          dsta=sta(kk+1)-sta(kk);
          s=ddep/dsta;
          if s < 1/15
             break
          end
          fore_toe_sta=sta(kk);
          fore_toe_dep=dep(kk);
          upper_slope=(Z2-fore_toe_dep)/(top_sta-fore_toe_sta)
       end
       fore_Irb=upper_slope/(sqrt(fore_H0/L0));
       fore_gamma=gamma_perm*gamma_beta*gamma_rough;
       if (fore_Irb < 1.8)
          fore_R2=fore_gamma*fore_H0*1.77*fore_Irb;
          fore_R2=fore_gamma*fore_H0*(4.3-(1.6/sqrt(fore_Irb)));
       end
       if berm_width >= L0
          R2_new=fore_R2
          disp ('berm is wider than one wavelength, use full shallow foreshore solution');
          w2=(berm_width-0.25*L0)/(0.75*L0)
          w1 = 1 - w2
          R2_new=w2*fore_R2 + w1*R2_new
       end
    end % end berm width check
    % convergence criterion
    R2del=abs(R2-R2_new)
    R2_all(iter)=R2_new;
    % get the new top station (for plot purposes) Z2=R2\_new+SWEL
    top_sta=-999;
    for kk=1:length(sta)-1
       if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1))) % here is the intersection of z2 with profile
          top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
          break;
       end
    end
    if top_sta==-999
       dy=Z2-dep(end);
       top_sta=sta(end)+dy/S(end);
    end
    topStaAll(iter)=top_sta;
ans =
    -----! STARTING ITERATION 1 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
Z2 =
                 20.068423
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
                   22.6644
Z2 =
          31.9203345021268
top_sta =
          107.041046462901
Lslope =
          145.422391094205
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 9
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
Berm Factor Calculation: Iteration 1, Profile Segment: 11
dh =
```

```
9.92260850212682
rdh_sum =
         2.14299703977601
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
         2.90420535902459
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
         3.68942949541434
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 14
         10.7503620021268
rdh_sum =
         4.49773093822128
Berm Factor Calculation: Iteration 1, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
         5.32809529031497
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 1 -----!
berm_width =
   17
rB =
        0.116900842243663
rdh_mean =
        0.810625187975784
gamma_berm =
        0.977861924974634
slope =
        0.268771755517362
Irb =
          1.9976804779061
gamma_berm =
        0.977861924974634
gamma_perm =
gamma_beta =
gamma_rough =
                      0.6
gamma =
         0.58671715498478
!!! - - Iribaren number: 1.95 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:3.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         14.0421356450413
R2del =
         8.62226435495869
Z2 =
         23.2980701471681
top_sta =
         46.9993332993712
ans =
!----- STARTING ITERATION 2 -----!
Ztoe =
                -2.595977
toe_sta =
        -38.3813446313046
top_sta =
         46.9993332993712
Z2 =
         23.2980701471681
H0 =
                   7.5548
Tp =
                   9.9345
T0 =
         9.03136363636364
R2 =
         14.0421356450413
Z2 =
         23.2980701471681
top_sta =
```

```
46.9993332993712
Lslope =
          85.3806779306758
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 11
          9.92260850212682
rdh_sum =
          2.14299703977601
Berm Factor Calculation: Iteration 2, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 15
dh =
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 2 -----!
berm_width =
   \frac{-}{17}
rB =
         0.199108280843155
rdh_mean =
         0.810625187975784
gamma_berm =
         0.962293906742863
slope =
         0.378674911258111
Irb =
          2.81454975146854
gamma_berm =
         0.962293906742863
gamma perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
         0.577376344045718
ans =
!!! - - Iribaren number: 2.71 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.6 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          14.5964003534129
R2del =
         0.554264708371569
Z2 =
          23.8523348555397
top_sta =
          50.8951497883595
        -----: STARTING ITERATION 3 -----!
Ztoe =
```

```
-2.595977
toe_sta =
         -38.3813446313046
top_sta =
          50.8951497883595
Z_{2} =
          23.8523348555397
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          14.5964003534129
Z2 =
          23.8523348555397
top_sta =
          50.8951497883595
Lslope =
          89.2764944196642
Berm Factor Calculation: Iteration 3, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 10
dh =
         9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 14
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 15
dh =
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 3 -----!
berm_width =
    17
rB =
         0.190419663210427
rdh_mean =
         0.810625187975784
gamma_berm =
         0.963939312073811
slope =
         0.365932410915933
Irb =
          2.71983948652912
gamma_berm =
         0.963939312073811
gamma_perm =
gamma_beta =
gamma_rough =
```

```
0.6
gamma =
        0.578363587244287
ans =
!!! - - Iribaren number: 2.62 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
           14.549424968147
R2del =
        0.0469753852659309
Z_{2} =
          23.8053594702738
top_sta =
          50.5649673529656
ans =
!----- STARTING ITERATION 4 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          50.5649673529656
Z2 =
          23.8053594702738
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          14.549424968147
Z2 =
          23.8053594702738
top_sta =
          50.5649673529656
Lslope =
          88.9463119842703
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 9
dh =
         9.49194100212682
rdh_sum =
        0.695983762046982
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 10
dh =
         9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 11
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
         3.68942949541434
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 16
         11.2205850021268
rdh_sum =
         13.7806281955883
!----- End Berm Factor Calculation, Iter: 4 -----!
berm_width =
```

```
17
rB =
         0.191126530383928
rdh_mean =
         0.810625187975784
gamma_berm =
         0.963805449235703
slope =
         0.366958857822288
Irb =
          2.72746868455436
gamma_berm =
         0.963805449235703
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
         0.578283269541422
!!! - - Iribaren number: 2.63 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
           14.553336534471
R2del =
       0.00391156632409739
Z2 =
          23.8092710365979
top_sta =
          50.5924611241776
% final 2% runup elevation
Z2=R2_new+SWEL
23.8092710365979
diary off
plotTitle =
Iterative TAW for CM-144-1
SWEL =
                  8.736223
SWEL_fore =
                 10.255623
L0 =
          417.357062285715
Ztoe =
                 -2.595977
Z2 =
                 20.068423
toe_sta =
         -62.4868075374234
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
top_sta =
          34.9443976794092
toe_sta =
         -38.3813446313046
-!!- Location of SWEL-1.5*HO is 84.4 ft landward of toe of slope
ans =
-!!- Setup is interpolated between setup at toe of slope and max setup
ans =
-!!-
           setup is adjusted to 0.45 feet
ans =
-!!-
           SWEL is adjusted to 9.26 feet
k =
     1
     2
     3
4
     5
     6
7
    24
    25
    26
    27
    28
    29
    30
    31
    32
ans =
           ----- STARTING ITERATION 1 -----!
Ztoe =
                 -2.595977
toe_sta =
```

```
-38.3813446313046
top_sta =
          34.9443976794092
Z2 =
                 20.068423
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
                   22.6644
Z_{2} =
          31.9203345021268
top_sta =
          107.041046462901
Lslope =
          145.422391094205
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 9
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 10
          9.64669100212682
rdh sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 15
dh =
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 1 -----!
berm_width =
    17
rB =
         0.116900842243663
rdh_mean =
         0.810625187975784
gamma_berm =
         0.977861924974634
slope =
         0.268771755517362
Irb =
           1.9976804779061
gamma_berm =
         0.977861924974634
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
```

```
0.58671715498478
ans =
!!! - - Iribaren number: 1.95 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:3.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          14.0421356450413
R2del =
          8.62226435495869
7.2 =
          23.2980701471681
top_sta =
          46.9993332993712
ans =
       -----! STARTING ITERATION 2 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          46.9993332993712
Z2 =
          23.2980701471681
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
         14.0421356450413
Z2 =
          23.2980701471681
top_sta =
          46.9993332993712
Lslope =
          85.3806779306758
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
         3.68942949541434
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 16
          11.2205850021268
rdh_sum =
         13.7806281955883
!----- End Berm Factor Calculation, Iter: 2 -----!
berm_width =
```

rB =

```
0.199108280843155
rdh_mean =
         0.810625187975784
gamma berm =
         0.962293906742863
slope =
         0.378674911258111
Irb =
          2.81454975146854
gamma_berm = 0.962293906742863
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
         0.577376344045718
!!! - - Iribaren number: 2.71 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.6 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          14.5964003534129
R2del =
         0.554264708371569
Z2 =
          23.8523348555397
top_sta =
          50.8951497883595
ans =
     -----! STARTING ITERATION 3 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          50.8951497883595
72 =
          23.8523348555397
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          14.5964003534129
Z_{2} =
          23.8523348555397
top_sta =
          50.8951497883595
Lslope =
          89.2764944196642
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 13
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 14
         10.7503620021268
rdh_sum =
```

```
4.49773093822128
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 15
dh =
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
          13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 3 -----!
berm_width =
   17
rB =
         0.190419663210427
rdh_mean =
         0.810625187975784
gamma_berm =
         0.963939312073811
slope =
         0.365932410915933
Irb =
          2.71983948652912
gamma_berm =
         0.963939312073811
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
         0.578363587244287
ans =
!!! - - Iribaren number: 2.62 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans = !!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
           14.549424968147
R2del =
        0.0469753852659309
7.2 =
          23.8053594702738
top_sta =
          50.5649673529656
ans =
     -----! STARTING ITERATION 4 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          50.5649673529656
Z2 =
          23.8053594702738
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          14.549424968147
Z2 =
          23.8053594702738
top_sta =
          50.5649673529656
Lslope =
          88.9463119842703
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 10
          9.64669100212682
rdh_sum =
         1.40666398849417
Berm Factor Calculation: Iteration 4, Profile Segment: 11
          9.92260850212682
rdh_sum =
```

```
2.14299703977601
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 15
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 16
          11.2205850021268
rdh sum =
          13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 4 -----!
berm width =
    17
rB =
         0.191126530383928
rdh_mean =
         0.810625187975784
gamma_berm =
         0.963805449235703
slope =
         0.366958857822288
Irb =
          2.72746868455436
gamma_berm =
         0.963805449235703
gamma_perm =
gamma_beta =
gamma_rough =
                        0.6
gamma =
         0.578283269541422
!!! - - Iribaren number: 2.63 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2 \text{ new} =
           14.553336534471
R2del =
       0.00391156632409739
Z2 =
          23.8092710365979
top_sta =
          50.5924611241776
7.2 =
          23.8092710365979
diary on
                 % begin recording
% FEMA appeal for The Town of Harpswell, Cumberland county, Maine
% TRANSECT ID: CM-144-1
% calculation by SJH, Ransom Consulting, Inc. 26-Feb-2020
% 100-year wave runup using TAW methodology
% including berm and weighted average with foreshore if necessary
% chk nld 20200220
% This script assumes that the incident wave conditions provided
% as input in the configuration section below are the
% appropriate values located at the end of the foreshore
\mbox{\%} or toe of the slope on which the run-up is being calculated
% the script does not attempt to apply a depth limit or any other
% transformation to the incident wave conditions other than
% conversion of the peak wave period to the spectral mean wave
% as recommended in the references below
% references:
% Van der Meer, J.W., 2002. Technical Report Wave Run-up and
```

```
% Wave Overtopping at Dikes. TAW Technical Advisory Committee on
% Flood Defence, The Netherlands.
% FEMA. 2007, Atlantic Ocean and Gulf of Mexico Coastal Guidelines Update
<u>%______</u>
% CONFIG
% third column is 0 for excluded points
imgname='logfiles/CM-144-1-runup';
SWEL=8.8043; % 100-yr still water level including wave setup.
H0=7.5548;
             % significant wave height at toe of structure
Tp=9.9345;
             % peak period, 1/fma,
T0=Tp/1.1;
gamma_berm=0.96381; % this may get changed automatically below
gamma_rough=0.6;
gamma_beta=1;
gamma_perm=1;
setupAtToe=-0.068077;
maxSetup=1.5194; % only used in case of berm/shallow foreshore weighted average
plotTitle='Iterative TAW for CM-144-1'
plotTitle =
Iterative TAW for CM-144-1
% END CONFIG
SWEL=SWEL+setupAtToe
SWEL =
                 8.736223
SWEL_fore=SWEL+maxSetup
SWEL_fore =
                10.255623
% FIND WAVELENGTH USING DEEPWATER DISPERSION RELATION
% using English units
L0=32.15/(2*pi)*T0^2
L0 =
417.357062285715
% Find Hb (Munk, 1949)
%Hb=H0/(3.3*(H0/L0)^(1/3))
%Db=-Hb/.78+SWEL; % depth at breaking
% The toe elevation here is only used to determine the average
% structure slope, it is not used to depth limit the wave height.
% Any depth limiting or other modification of the wave height
% to make it consitent with TAW guidance should be performed
% prior to the input of the significant wave height given above.
Ztoe=SWEL-1.5*H0
Ztoe =
                -2.595977
% read the transect
[sta,dep,inc] = textread(fname,'%n%n%n%*[^\n]','delimiter',',','headerlines',0);
% remove unselected points
k=find(inc==0);
sta(k)=[];
dep(k)=[];
sta_org=sta; % used for plotting purposes
dep_org=dep;
% initial guess at maximum run-up elevation to estimate slope
Z2=SWEL+1.5*H0
                 20.068423
% determine station at the max runup and -1.5*HO (i.e. the toe)
top_sta=-999;
toe_sta=-999;
for kk=1:length(sta)-1
    if ((22 > dep(kk)) & (22 <= dep(kk+1))) % here is the intersection of z2 with profile
      top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
       ((Ztoe > dep(kk)) & (Ztoe <= dep(kk+1)))
                                                  % here is the intersection of Ztoe with profile
    i f
       toe_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Ztoe)
    end
end
toe_sta =
        -62.4868075374234
toe_sta =
        -38.3813446313046
         34.9443976794092
% check to make sure we got them, if not extend the end slopes outward
S=diff(dep)./diff(sta);
if toe_sta==-999
   dy=dep(1)-Ztoe;
   toe_sta=sta(1)-dy/S(1)
end
if top_sta==-999
   dy=Z2-dep(end);
   top_sta=sta(end)+dy/S(end)
% just so the reader can tell the values aren't -999 anymore
```

```
top sta
top_sta =
          34.9443976794092
toe sta
toe_sta =
          -38.3813446313046
% check for case where the toe of slope is below SWL-1.5*H0 \,
% in this case interpolate setup from the setupAtToe(really setup as first station), and the max setup
% also un-include points seaward of SWL-1.5*H0 \,
if Ztoe > dep(1)
   dd=SWEL_fore-dep;
   k=find(dd<0,1); % k is index of first land point
   staAtSWL=interp1(dep(k-1:k),sta(k-1:k),SWEL_fore);
   dsta=staAtSWL-sta(1);
   dsetup=maxSetup-setupAtToe;
   dsetdsta=dsetup/dsta;
   setup=setupAtToe+dsetdsta*(toe_sta-sta(1));
   sprintf('-!!- Location of SWEL-1.5*H0 is %4.1f ft landward of toe of slope',dsta) sprintf('-!!- Setup is interpolated between setup at toe of slope and max setup') sprintf('-!!- setup is adjusted to %4.2f feet',setup)
   SWEL=SWEL-setupAtToe+setup;
   sprintf('-!!-
                        SWEL is adjusted to %4.2f feet', SWEL)
   k=find(dep < SWEL-1.5*H0)
   sta(k)=[];
   dep(k)=[];
else
   sprintf('-!!- The User has selected a starting point that is <math>4.2f feet above the elevation of SWEL-1.5H0\n', dep(1)
   sprintf('-!!- This may be reasonable for some cases. However the user may want to consider:\n')
   sprintf('-!!-
                     1) Selecting a starting point that is at or below %4.2f feet elevation, or\n', Ztoe)
   sprintf('-!!-
                     2) Reducing the incident wave height to a depth limited condition.\n')
end
ans =
-!!- Location of SWEL-1.5*H0 is 84.4 ft landward of toe of slope
ans =
-!!- Setup is interpolated between setup at toe of slope and max setup
ans =
-11-
            setup is adjusted to 0.45 feet
ans =
- ! ! -
            SWEL is adjusted to 9.26 feet
k =
     1
     2
     3
     4
     5
     6
     7
    24
    25
    26
    27
    28
    29
    30
    31
    32
% now iterate converge on a runup elevation
tol=0.01; % convergence criteria
R2del=999;
R2_new=3*H0; %initial guess
R2=R2_new;
iter=\overline{0};
R2 all=[];
topStaAll=[];
Berm_Segs=[];
TAW_ALWAYS_VALID=1;
\overline{\text{while}}(abs(\overline{\text{R2del}}) > \text{tol \&\& iter} <= 25)
    iter=iter+1;
    sprintf ('!-----'.',iter)
    % elevation of toe of slope
    Ztoe
    \mbox{\ensuremath{\$}} station of toe slope (relative to 0-NAVD88 shoreline
    toe sta
    % station of top of slope/extent of 2% run-up
    top_sta
    % elevation of top of slope/extent of 2% run-up
    Z_2
    % incident significant wave height
    HΩ
    % incident spectral peak wave period
    Тp
    % incident spectral mean wave period
    T0
    R2=R2_new
    Z2=R2+SWEL
    % determine slope for this iteration
    top_sta=-999;
    for kk=1:length(sta)-1
       if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1))) % here is the intersection of z2 with profile
```

```
top sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
      break;
   end
end
if top_sta==-999
   dy=Z2-dep(end);
   top_sta=sta(end)+dy/S(end)
% get the length of the slope (not accounting for berm)
Lslope=top_sta-toe_sta
% loop over profile segments to determine berm factor
% re-calculate influence of depth of berm based on this run-up elevation
% check for berm, berm width, berm height
berm_width=0;
rdh_sum=0;
Berm_Segs=[];
Berm_Heights=[];
for kk=1:length(sta)-1
   ddep=dep(kk+1)-dep(kk);
   dsta=sta(kk+1)-sta(kk);
   s=ddep/dsta;
   if (s < 1/15)
                       % count it as a berm if slope is flatter than 1:15 (see TAW manual)
      sprintf ('Berm Factor Calculation: Iteration %d, Profile Segment: %d',iter,kk)
berm_width=berm_width+dsta; % tally the width of all berm segments
      % compute the rdh for this segment and weight it by the segment length
      dh=SWEL-(dep(kk)+dep(kk+1))/2
      if dh < 0
          chi=R2;
      else
          chi=2* H0;
      end
      if (dh <= R2 \& dh >= -2*H0)
         rdh=(0.5-0.5*cos(3.14159*dh/chi));
      else
        rdh=1;
      end
      rdh_sum=rdh_sum + rdh * dsta
      Berm_Segs=[Berm_Segs, kk];
      Berm_Heights=[Berm_Heights, (dep(kk)+dep(kk+1))/2];
   end
   if dep(kk) >= Z2 % jump out of loop if we reached limit of run-up for this iteration
   end
end
sprintf ('!----- End Berm Factor Calculation, Iter: %d -----!',iter)
berm_width
rB=berm_width/Lslope
if (berm_width > 0)
   rdh_mean=rdh_sum/berm_width
  rdh_mean=1
end
gamma_berm=1- rB * (1-rdh_mean)
if gamma_berm > 1
   gamma_berm=1
if gamma_berm < 0.6
   gamma_berm =0.6
end
% Iribarren number
slope=(Z2-Ztoe)/(Lslope-berm_width)
Irb=(slope/(sqrt(H0/L0)))
% runup height
gamma berm
gamma perm
gamma beta
gamma rough
gamma=gamma_berm*gamma_perm*gamma_beta*gamma_rough
% check validity
TAW VALID=1;
if (Irb*gamma_berm < 0.5 | Irb*gamma_berm > 10 )
   sprintf('!!! - - Iribaren number: %6.2f is outside the valid range (0.5-10), TAW NOT VALID - - !!!\n', Irb*gam
  TAW VALID=0;
   sprintf('!!! - - Iribaren number: %6.2f is in the valid range (0.5-10), TAW RECOMMENDED - - !!!\n', Irb*gamma_
end
islope=1/slope;
if (slope < 1/8 | slope > 1)
    sprintf('!!! - - slope: 1
                  - slope: 1:%3.1f V:H is outside the valid range (1:8 - 1:1), TAW NOT VALID - - !!!\n', islope)
   TAW_VALID=0;
   sprintf('!!! - - slope: 1:%3.1f V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!\n', islope)
if TAW_VALID == 0
  TAW_ALWAYS_VALID=0;
if (Irb*gamma_berm < 1.8)
   R2_new=gamma*H0*1.77*Irb
```

```
else
       R2_new=gamma*H0*(4.3-(1.6/sqrt(Irb)))
    end
    % check to see if we need to evaluate a shallow foreshore
if berm_width > 0.25 * LO;
       disp ('! disp ('!
                  Berm_width is greater than 1/4 wave length')
Runup will be weighted average with foreshore calculation assuming depth limited wave height on ber
       % do the foreshore calculation
       fore_H0=0.78*(SWEL_fore-min(Berm_Heights))
       % get upper slope
       fore_toe_sta=-999;
       fore_toe_dep=-999;
       for kk=length(dep)-1:-1:1
          ddep=dep(kk+1)-dep(kk);
          dsta=sta(kk+1)-sta(kk);
          s=ddep/dsta;
          if s < 1/15
             break
          end
          fore_toe_sta=sta(kk);
          fore_toe_dep=dep(kk);
          upper_slope=(Z2-fore_toe_dep)/(top_sta-fore_toe_sta)
       end
       fore_Irb=upper_slope/(sqrt(fore_H0/L0));
       fore_gamma=gamma_perm*gamma_beta*gamma_rough;
       if (fore_Irb < 1.8)
          fore_R2=fore_gamma*fore_H0*1.77*fore_Irb;
          fore_R2=fore_gamma*fore_H0*(4.3-(1.6/sqrt(fore_Irb)));
       end
       if berm_width >= L0
          R2 new=fore R2
          disp ('berm is wider than one wavelength, use full shallow foreshore solution');
       else
          w2=(berm_width-0.25*L0)/(0.75*L0)
          w1 = 1 - w2
          R2_new=w2*fore_R2 + w1*R2_new
       end
    end % end berm width check
    % convergence criterion
    R2del=abs(R2-R2_new)
    R2_all(iter)=R2_new;
    % get the new top station (for plot purposes)
    Z2=R2_new+SWEL
    top_sta=-999;
    for kk=1:length(sta)-1
       if ((Z2 > dep(kk)) & (Z2 \le dep(kk+1))) % here is the intersection of z2 with profile
          top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
       end
    end
    if top_sta==-999
       dy=Z2-dep(end);
       top_sta=sta(end)+dy/S(end);
    topStaAll(iter)=top_sta;
end
ans =
     -----! STARTING ITERATION 1 -----!
Ztoe =
                  -2.595977
toe sta =
         -38.3813446313046
top_sta =
          34.9443976794092
Z2 =
                  20.068423
H0 =
                     7.5548
Tp =
                     9.9345
T0 =
          9.03136363636364
R2 =
                    22.6644
7.2 =
          31.9203345021268
top_sta =
          107.041046462901
Lslope =
          145.422391094205
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 9
          9.49194100212682
rdh_sum =
         0.695983762046982
Berm Factor Calculation: Iteration 1, Profile Segment: 10
```

```
9.64669100212682
rdh_sum =
         1.40666398849417
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 11
dh =
         9.92260850212682
rdh_sum =
         2.14299703977601
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
         2.90420535902459
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 13
         10.4744445021268
rdh_sum =
         3.68942949541434
Berm Factor Calculation: Iteration 1, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
         4.49773093822128
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
         5.32809529031497
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 1 -----!
berm_width =
   17
rB =
        0.116900842243663
rdh_mean =
        0.810625187975784
gamma_berm
         0.977861924974634
slope =
        0.268771755517362
Irb =
          1.9976804779061
gamma_berm =
        0.977861924974634
gamma_perm =
gamma_beta =
gamma_rough =
                      0.6
gamma =
         0.58671715498478
ans =
!!! - - Iribaren number: 1.95 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:3.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         14.0421356450413
R2del =
         8.62226435495869
Z_{2} =
         23.2980701471681
top_sta =
         46.9993332993712
ans =
!-----!
Ztoe =
                -2.595977
toe_sta =
        -38.3813446313046
top_sta =
         46.9993332993712
Z2 =
         23.2980701471681
H0 =
                   7.5548
Tp =
                   9.9345
T0 =
```

```
9.03136363636364
R2 =
          14.0421356450413
Z2 =
          23.2980701471681
top_sta =
          46.9993332993712
Lslope =
          85.3806779306758
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 10
          9.64669100212682
rdh_sum =
          1.40666398849417
Berm Factor Calculation: Iteration 2, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 15
dh =
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 16
          11.2205850021268
rdh_sum =
          13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 2 -----!
berm_width =
rB =
         0.199108280843155
rdh_mean =
         0.810625187975784
gamma_berm =
         0.962293906742863
slope =
         0.378674911258111
Trb =
          2.81454975146854
gamma_berm =
         0.962293906742863
gamma perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
         0.577376344045718
ans =
!!! - - Iribaren number: 2.71 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.6 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          14.5964003534129
R2del =
         0.554264708371569
z2 =
```

```
23.8523348555397
top_sta =
          50.8951497883595
ans =
      -----! STARTING ITERATION 3 -----!
!----
Ztoe =
                -2.595977
toe_sta =
        -38.3813446313046
top_sta =
         50.8951497883595
Z2 =
          23.8523348555397
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
         14.5964003534129
Z2 =
         23.8523348555397
top_sta =
          50.8951497883595
Lslope =
          89.2764944196642
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 9
dh =
         9.49194100212682
rdh_sum =
        0.695983762046982
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 10
dh =
         9.64669100212682
rdh_sum =
         1.40666398849417
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 11
dh =
         9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 13
         10.4744445021268
rdh_sum =
         3.68942949541434
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
         5.32809529031497
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 3 -----!
berm_width =
   17
rB =
         0.190419663210427
rdh_mean =
        0.810625187975784
gamma_berm :
        0.963939312073811
slope =
        0.365932410915933
         2.71983948652912
gamma_berm =
```

```
0.963939312073811
gamma perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
        0.578363587244287
ans =
!!! - - Iribaren number: 2.62 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
           14.549424968147
R2del =
        0.0469753852659309
Z2 =
          23.8053594702738
top_sta =
          50.5649673529656
ans =
       -----! STARTING ITERATION 4 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          50.5649673529656
Z2 =
          23.8053594702738
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          14.549424968147
72 =
          23.8053594702738
top_sta =
          50.5649673529656
Lslope =
          88.9463119842703
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 9
dh =
         9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 10
          9.64669100212682
rdh_sum =
         1.40666398849417
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
         2.90420535902459
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
         5.32809529031497
Berm Factor Calculation: Iteration 4, Profile Segment: 16
dh =
```

```
11.2205850021268
rdh_sum =
          13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 4 -----!
berm_width =
   17
rB =
         0.191126530383928
rdh_mean =
         0.810625187975784
gamma_berm =
         0.963805449235703
slope =
         0.366958857822288
Irb =
          2.72746868455436
gamma_berm =
         0.963805449235703
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
        0.578283269541422
ans =
!!! - - Iribaren number: 2.63 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
           14.553336534471
R2del =
       0.00391156632409739
7.2 =
         23.8092710365979
top\_sta =
50.5924611241776
% final 2% runup elevation
Z2=R2_new+SWEL
Z2 =
          23.8092710365979
diary off
plotTitle =
Iterative TAW for CM-144-1
SWEL =
                  8.736223
SWEL_fore =
                 10.255623
L0 =
          417.357062285715
Ztoe =
                 -2.595977
Z2 =
                 20.068423
toe_sta =
        -62.4868075374234
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
top_sta =
         34.9443976794092
toe_sta =
        -38.3813446313046
ans =
-!!- Location of SWEL-1.5*HO is 84.4 ft landward of toe of slope
ans =
-!!- Setup is interpolated between setup at toe of slope and max setup
ans =
-!!-
           setup is adjusted to 0.45 feet
ans =
           SWEL is adjusted to 9.26 feet
- ! ! -
k =
     1
     2
     3
     4
     5
     6
7
    24
    25
    26
    27
```

30 31

```
32
ans =
         -----: STARTING ITERATION 1 -----!
7toe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
7.2 =
                 20.068423
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
                   22.6644
Z2 =
          31.9203345021268
top_sta =
          107.041046462901
Lslope =
          145.422391094205
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 9
          9.49194100212682
rdh sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 15
dh =
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
          13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 1 -----!
berm_width =
    17
rB =
         0.116900842243663
rdh_mean =
         0.810625187975784
gamma_berm
         0.977861924974634
slope =
         0.268771755517362
Irb =
           1.9976804779061
         0.977861924974634
gamma_perm =
```

```
1
gamma_beta =
gamma_rough =
                       0.6
gamma =
          0.58671715498478
ans =
!!! - - Iribaren number: 1.95 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:3.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         14.0421356450413
R2del =
          8.62226435495869
Z2 =
         23.2980701471681
top_sta =
         46.9993332993712
 -----! STARTING ITERATION 2 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
         46.9993332993712
Z2 =
          23.2980701471681
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
         14.0421356450413
Z_{2} =
          23.2980701471681
top_sta =
          46.9993332993712
Lslope =
          85.3806779306758
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 9
dh =
         9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 12
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 15
         11.0262795021268
rdh_sum =
         5.32809529031497
Berm Factor Calculation: Iteration 2, Profile Segment: 16
         11.2205850021268
rdh_sum =
```

```
13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 2 -----!
berm_width =
   17
rB =
        0.199108280843155
rdh_mean =
        0.810625187975784
gamma_berm =
         0.962293906742863
slope =
        0.378674911258111
Irb =
          2.81454975146854
gamma\_berm =
        0.962293906742863
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
        0.577376344045718
ans =
!!! - - Iribaren number: 2.71 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.6 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         14.5964003534129
R2del =
        0.554264708371569
Z2 =
         23.8523348555397
top_sta =
          50.8951497883595
ans =
!----- STARTING ITERATION 3 -----!
Ztoe =
                -2.595977
toe_sta =
         -38.3813446313046
top_sta =
         50.8951497883595
7.2 =
          23.8523348555397
H0 =
                   7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
         14.5964003534129
Z2 =
          23.8523348555397
top_sta =
          50.8951497883595
Lslope =
          89.2764944196642
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 9
          9.49194100212682
rdh_sum =
        0.695983762046982
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 12
         10.1985265021268
rdh_sum =
         2.90420535902459
Berm Factor Calculation: Iteration 3, Profile Segment: 13
         10.4744445021268
rdh_sum =
```

```
3.68942949541434
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 14
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
!----- End Berm Factor Calculation, Iter: 3 -----!
berm_width =
        0.190419663210427
rdh_mean =
        0.810625187975784
gamma_berm =
        0.963939312073811
slope =
        0.365932410915933
Irb =
         2.71983948652912
gamma_berm =
        0.963939312073811
gamma_perm =
gamma_beta =
    1
gamma_rough =
                       0.6
gamma =
        0.578363587244287
ans =
!!! - - Iribaren number: 2.62 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          14.549424968147
R2del =
        0.0469753852659309
Z2 =
         23.8053594702738
top_sta =
         50.5649673529656
ans =
!----- STARTING ITERATION 4 -----!
Ztoe =
                -2.595977
toe_sta =
         -38.3813446313046
top_sta =
         50.5649673529656
Z2 =
          23.8053594702738
H0 =
                   7.5548
Tp =
                   9.9345
T0 =
         9.03136363636364
R2 =
          14.549424968147
Z_{2} =
          23.8053594702738
top_sta =
          50.5649673529656
Lslope =
          88.9463119842703
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 9
          9.49194100212682
rdh_sum =
        0.695983762046982
Berm Factor Calculation: Iteration 4, Profile Segment: 10
         9.64669100212682
rdh_sum =
```

```
1.40666398849417
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 14
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 15
         11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 4 -----!
berm_width =
   17
rB =
         0.191126530383928
rdh_mean =
         0.810625187975784
gamma_berm =
        0.963805449235703
slope =
         0.366958857822288
Irb =
          2.72746868455436
gamma_berm =
        0.963805449235703
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
        0.578283269541422
ans =
!!! - - Iribaren number: 2.63 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          14.553336534471
R2del =
       0.00391156632409739
Z2 =
          23.8092710365979
top_sta =
          50.5924611241776
Z_{2} =
         23.8092710365979
plotTitle =
Iterative TAW for CM-144-1
SWEL =
                  8.736223
SWEL_fore =
                 10.255623
L0 =
         417.357062285715
Ztoe =
                 -2.595977
                 20.068423
        -62.4868075374234
toe_sta =
```

```
-38.3813446313046
top_sta =
          34.9443976794092
top_sta =
          34.9443976794092
toe_sta =
         -38.3813446313046
ans =
-!!- Location of SWEL-1.5*HO is 84.4 ft landward of toe of slope
ans =
-!!- Setup is interpolated between setup at toe of slope and max setup
-!!-
           setup is adjusted to 0.45 feet
ans =
-!!-
           SWEL is adjusted to 9.26 feet
k =
     1
     2
     3
     4
     5
     6
7
    24
    26
    27
    29
    30
    31
    32
ans =
          ----- STARTING ITERATION 1 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
Z_{2} =
                 20.068423
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
                   22.6644
Z2 =
          31.9203345021268
top_sta =
          107.041046462901
Lslope =
          145.422391094205
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 9
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 14
          10.7503620021268
```

```
rdh_sum =
         4.49773093822128
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 15
dh =
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
          13.7806281955883
ans =
!---- End Berm Factor Calculation, Iter: 1 -----!
berm_width =
   17
rB =
         0.116900842243663
rdh_mean =
         0.810625187975784
gamma_berm
         0.977861924974634
slope =
         0.268771755517362
Irb =
           1.9976804779061
gamma_berm =
         0.977861924974634
gamma_perm =
gamma_beta =
gamma\_rough =
                       0.6
gamma =
          0.58671715498478
ans =
!!! - - Iribaren number: 1.95 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:3.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          14.0421356450413
R2del =
          8.62226435495869
Z2 =
          23.2980701471681
top_sta =
          46.9993332993712
ans =
         ----- STARTING ITERATION 2 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          46.9993332993712
Z2 =
          23.2980701471681
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          14.0421356450413
Z_{2} =
          23.2980701471681
top_sta =
          46.9993332993712
Lslope =
          85.3806779306758
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 11
          9.92260850212682
```

```
rdh_sum =
         2.14299703977601
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
         5.32809529031497
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 2 -----!
berm_width =
   17
rB =
        0.199108280843155
rdh_mean =
        0.810625187975784
gamma_berm =
        0.962293906742863
slope =
        0.378674911258111
Irb =
         2.81454975146854
gamma_berm =
        0.962293906742863
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
        0.577376344045718
ans =
!!! - - Iribaren number: 2.71 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.6 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         14.5964003534129
R2del =
        0.554264708371569
Z2 =
         23.8523348555397
top_sta =
         50.8951497883595
ans =
!----- STARTING ITERATION 3 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
         50.8951497883595
Z_{2} =
          23.8523348555397
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
         14.5964003534129
Z2 =
          23.8523348555397
top_sta =
          50.8951497883595
```

```
Lslope =
          89.2764944196642
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 15
dh =
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
          13.7806281955883
!----- End Berm Factor Calculation, Iter: 3 -----!
berm_width =
   17
rB =
         0.190419663210427
rdh_mean =
         0.810625187975784
gamma_berm =
         0.963939312073811
slope =
         0.365932410915933
Irb =
          2.71983948652912
gamma_berm =
         0.963939312073811
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
         0.578363587244287
ans =
                          2.62 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - Iribaren number:
ans =
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
           14.549424968147
R2del =
        0.0469753852659309
Z_{2} =
          23.8053594702738
top_sta =
          50.5649673529656
ans =
          -----: STARTING ITERATION 4 -----!
Ztoe =
                 -2.595977
```

```
toe_sta =
         -38.3813446313046
top_sta =
          50.5649673529656
7.2 =
          23.8053594702738
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          14.549424968147
7.2 =
          23.8053594702738
top_sta =
          50.5649673529656
Lslope =
          88.9463119842703
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 9
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
Berm Factor Calculation: Iteration 4, Profile Segment: 14
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 15
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
          13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 4 -----!
berm_width =
    17
rB =
         0.191126530383928
rdh_mean =
         0.810625187975784
gamma_berm =
         0.963805449235703
slope =
         0.366958857822288
Irb =
          2.72746868455436
gamma_berm =
         0.963805449235703
gamma_perm =
gamma_beta =
gamma_rough =
```

```
gamma =
         0.578283269541422
ans =
!!! - - Iribaren number: 2.63 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
           14.553336534471
R2del =
       0.00391156632409739
7.2 =
          23.8092710365979
top_sta =
          50.5924611241776
Z_{2} =
          23.8092710365979
diary on
                 % begin recording
% FEMA appeal for The Town of Harpswell, Cumberland county, Maine
% TRANSECT ID: CM-144-1
% calculation by SJH, Ransom Consulting, Inc. 26-Feb-2020
 100-year wave runup using TAW methodology
% including berm and weighted average with foreshore if necessary
% chk nld 20200220
% This script assumes that the incident wave conditions provided
% as input in the configuration section below are the
% appropriate values located at the end of the foreshore
% or toe of the slope on which the run-up is being calculated
% the script does not attempt to apply a depth limit or any other
% transformation to the incident wave conditions other than
% conversion of the peak wave period to the spectral mean wave
% as recommended in the references below
% references:
Yan der Meer, J.W., 2002. Technical Report Wave Run-up and
Wave Overtopping at Dikes. TAW Technical Advisory Committee on
% Flood Defence, The Netherlands.
% FEMA. 2007, Atlantic Ocean and Gulf of Mexico Coastal Guidelines Update
%_____
% CONFIG
fname='inpfiles/CM-144-1sta_ele_include.csv'; % file with station, elevation, include
                                       % third column is 0 for excluded points
imgname='logfiles/CM-144-1-runup';
SWEL=8.8043; % 100-yr still water level including wave setup.
H0=7.5548;
              % significant wave height at toe of structure
Tp=9.9345;
              % peak period, 1/fma,
T0=Tp/1.1;
gamma_berm=0.96381; % this may get changed automatically below
gamma_rough=0.6;
gamma_beta=1;
gamma_perm=1;
setupAtToe=-0.068077;
maxSetup=1.5194; % only used in case of berm/shallow foreshore weighted average
plotTitle='Iterative TAW for CM-144-1
plotTitle =
Iterative TAW for CM-144-1
% END CONFIG
SWEL=SWEL+setupAtToe
SWEL =
                  8.736223
SWEL_fore=SWEL+maxSetup
SWEL_fore =
                 10.255623
% FIND WAVELENGTH USING DEEPWATER DISPERSION RELATION
% using English units
L0=32.15/(2*pi)*T0^2
L0 =
          417.357062285715
% Find Hb (Munk, 1949)
%Hb=H0/(3.3*(H0/L0)^(1/3))
%Db=-Hb/.78+SWEL; % depth at breaking
% The toe elevation here is only used to determine the average
% structure slope, it is not used to depth limit the wave height.
% Any depth limiting or other modification of the wave height
% to make it consitent with TAW guidance should be performed
% prior to the input of the significant wave height given above.
Ztoe=SWEL-1.5*H0
                 -2.595977
% read the transect
[sta,dep,inc] = textread(fname,'%n%n%n%*[^\n]','delimiter',',','headerlines',0);
% remove unselected points
```

```
k=find(inc==0);
sta(k)=[];
dep(k)=[];
sta_org=sta; % used for plotting purposes
dep org=dep;
% initial guess at maximum run-up elevation to estimate slope
Z2=SWEL+1.5*H0
                              20.068423
% determine station at the max runup and -1.5*HO (i.e. the toe)
top_sta=-999;
toe_sta=-999;
for kk=1:length(sta)-1
       if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1))) % here is the intersection of z2 with profile
             top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
       if
             ((Ztoe > dep(kk)) & (Ztoe <= dep(kk+1)))
                                                                                            % here is the intersection of Ztoe with profile
             toe_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Ztoe)
       end
end
toe_sta =
                -62.4868075374234
toe_sta =
                -38.3813446313046
top_sta =
                 34.9443976794092
% check to make sure we got them, if not extend the end slopes outward
S=diff(dep)./diff(sta);
if toe_sta==-999
     dy=dep(1)-Ztoe;
     toe_sta=sta(1)-dy/S(1)
end
if top_sta==-999
     dy=Z2-dep(end);
     top_sta=sta(end)+dy/S(end)
end
% just so the reader can tell the values aren't -999 anymore
top_sta
top_sta =
                 34.9443976794092
toe sta
toe_sta =
                -38.3813446313046
% check for case where the toe of slope is below SWL-1.5*H0 \,
% in this case interpolate setup from the setupAtToe(really setup as first station), and the max setup
% also un-include points seaward of SWL-1.5*H0
if Ztoe > dep(1)
     dd=SWEL_fore-dep;
     k=find(dd<0,1); % k is index of first land point
     staAtSWL=interp1(dep(k-1:k),sta(k-1:k),SWEL_fore);
     dsta=staAtSWL-sta(1);
     dsetup=maxSetup-setupAtToe;
     dsetdsta=dsetup/dsta;
     setup=setupAtToe+dsetdsta*(toe_sta-sta(1));
     sprintf('-!!- Location of SWEL-1.5*H0 is %4.1f ft landward of toe of slope', dsta)
     sprintf('-!!- Setup is interpolated between setup at toe of slope and max setup')
     sprintf('-!!-
                                        setup is adjusted to %4.2f feet', setup)
     SWEL=SWEL-setupAtToe+setup;
     sprintf('-!!-
                                        SWEL is adjusted to %4.2f feet', SWEL)
     k=find(dep < SWEL-1.5*H0)
     sta(k)=[];
     dep(k)=[];
else
     sprintf('-!!- The User has selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and selected a starting point that is %4.2f fee
     sprintf('-!! - This may be reasonable for some cases. However the user may want to consider:\n')
     sprintf('-!!-
                                  1) Selecting a starting point that is at or below \$4.2f feet elevation, or\n^{'}, \n^{'} ztoe)
     sprintf('-!!-
                                  2) Reducing the incident wave height to a depth limited condition.\n')
end
ans =
-!!- Location of SWEL-1.5*HO is 84.4 ft landward of toe of slope
ans =
-!!- Setup is interpolated between setup at toe of slope and max setup
ans =
- ! ! -
                    setup is adjusted to 0.45 feet
ans =
                   SWEL is adjusted to 9.26 feet
-!!-
k =
         1
         2
         3
         4
         5
         6
       24
       25
       26
```

27 28 29

```
30
    31
    32
% now iterate converge on a runup elevation
tol=0.01; % convergence criteria
R2del=999;
R2_new=3*H0; %initial guess
R2=R2 new;
iter=0;
R2_all=[];
topStaAll=[];
Berm_Segs=[];
TAW_ALWAYS_VALID=1;
while(abs(R2del) > tol && iter <= 25)
    iter=iter+1;
    sprintf ('!-----!',iter)
    % elevation of toe of slope
    Ztoe
    % station of toe slope (relative to 0-NAVD88 shoreline
    % station of top of slope/extent of 2% run-up
    top_sta
    % elevation of top of slope/extent of 2% run-up
    % incident significant wave height
    H0
    % incident spectral peak wave period
    Ţρ
    % incident spectral mean wave period
    T0
    R2=R2_new
    Z2=R2+SWEL
    % determine slope for this iteration
    top_sta=-999;
    for kk=1:length(sta)-1
       if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
                                                % here is the intersection of z2 with profile
          \verb"top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)"
          break;
       end
    end
    if top_sta==-999
       dy=Z2-dep(end);
       top_sta=sta(end)+dy/S(end)
    end
    % get the length of the slope (not accounting for berm)
    Lslope=top_sta-toe_sta
    % loop over profile segments to determine berm factor
    % re-calculate influence of depth of berm based on this run-up elevation
    % check for berm, berm width, berm height
    berm_width=0;
    rdh_sum=0;
    Berm_Segs=[];
    Berm_Heights=[];
    for kk=1:length(sta)-1
       ddep=dep(kk+1)-dep(kk);
       dsta=sta(kk+1)-sta(kk);
       s=ddep/dsta;
                          % count it as a berm if slope is flatter than 1:15 (see TAW manual)
       if (s < 1/15)
          sprintf ('Berm Factor Calculation: Iteration %d, Profile Segment: %d',iter,kk) berm_width=berm_width+dsta; % tally the width of all berm segments
          % compute the rdh for this segment and weight it by the segment length
          dh=SWEL-(dep(kk)+dep(kk+1))/2
          if dh < 0
              chi=R2;
          else
              chi=2* H0;
          end
          if (dh <= R2 \& dh >= -2*H0)
             rdh=(0.5-0.5*cos(3.14159*dh/chi));
          else
            rdh=1;
          end
          rdh_sum=rdh_sum + rdh * dsta
          Berm_Segs=[Berm_Segs, kk];
          Berm_Heights=[Berm_Heights, (dep(kk)+dep(kk+1))/2];
       if dep(kk) >= Z2 % jump out of loop if we reached limit of run-up for this iteration
       end
    end
    sprintf ('!----- End Berm Factor Calculation, Iter: %d -----!',iter)
    berm_width
    rB=berm_width/Lslope
    if (berm_width > 0)
       rdh_mean=rdh_sum/berm_width
       rdh_mean=1
    end
```

```
gamma_berm=1- rB * (1-rdh_mean)
if gamma_berm > 1
   gamma_berm=1
end
if gamma_berm < 0.6
   gamma_berm =0.6
end
% Iribarren number
slope=(Z2-Ztoe)/(Lslope-berm_width)
Irb=(slope/(sqrt(H0/L0)))
% runup height
gamma_berm
gamma_perm
gamma_beta
gamma rough
gamma=gamma_berm*gamma_perm*gamma_beta*gamma_rough
% check validity
TAW_VALID=1;
if (Irb*gamma_berm < 0.5 | Irb*gamma_berm > 10 )
   sprintf('!!! - - Iribaren number: %6.2f is outside the valid range (0.5-10), TAW NOT VALID - - !!!\n', Irb*gam
   TAW_VALID=0;
   sprintf('!!! - - Iribaren number: %6.2f is in the valid range (0.5-10), TAW RECOMMENDED - - !!!\n', Irb*gamma_
islope=1/slope;
if (slope < 1/8 | slope > 1)
   sprintf('!!!
                 - - slope: 1:%3.1f V:H is outside the valid range (1:8 - 1:1), TAW NOT VALID - - !!!\n', islope)
   TAW_VALID=0;
else
   sprintf('!!! - - slope: 1:%3.1f V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!\n', islope)
end
if TAW_VALID == 0
   TAW_ALWAYS_VALID=0;
end
if (Irb*gamma berm < 1.8)
   R2_new=gamma*H0*1.77*Irb
else
   R2_new=gamma*H0*(4.3-(1.6/sqrt(Irb)))
end
% check to see if we need to evaluate a shallow foreshore
if berm_width > 0.25 * L0;
   disp ('!
              Berm_width is greater than 1/4 wave length')
   disp ('!
              Runup will be weighted average with foreshore calculation assuming depth limited wave height on ber
   % do the foreshore calculation
   fore_H0=0.78*(SWEL_fore-min(Berm_Heights))
   % get upper slope
   fore_toe_sta=-999;
   fore_toe_dep=-999;
   for kk=length(dep)-1:-1:1
      ddep=dep(kk+1)-dep(kk);
      dsta=sta(kk+1)-sta(kk);
      s=ddep/dsta;
      if s < 1/15
         break
      end
      fore_toe_sta=sta(kk);
      fore_toe_dep=dep(kk);
      upper_slope=(Z2-fore_toe_dep)/(top_sta-fore_toe_sta)
   end
   fore_Irb=upper_slope/(sqrt(fore_H0/L0));
   fore_gamma=gamma_perm*gamma_beta*gamma_rough;
   if (fore Irb < 1.8)
      fore_R2=fore_gamma*fore_H0*1.77*fore_Irb;
   else
      fore_R2=fore_gamma*fore_H0*(4.3-(1.6/sqrt(fore_Irb)));
   end
   if berm width >= L0
      R2 new=fore R2
      disp ('berm is wider than one wavelength, use full shallow foreshore solution');
   else
      w2=(berm_width-0.25*L0)/(0.75*L0)
      w1 = 1 - w2
      R2_new=w2*fore_R2 + w1*R2_new
   end
end % end berm width check
% convergence criterion
R2del=abs(R2-R2_new)
R2_all(iter)=R2_new;
% get the new top station (for plot purposes)
Z2=R2_new+SWEL
top_sta=-999;
for kk=1:length(sta)-1
   if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
                                             % here is the intersection of z2 with profile
      top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
   end
end
if top_sta==-999
   dy=Z2-dep(end);
```

```
top_sta=sta(end)+dy/S(end);
    end
    topStaAll(iter)=top_sta;
end
ans =
       -----! STARTING ITERATION 1 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
7.2 =
                 20.068423
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
                   22.6644
Z2 =
          31.9203345021268
top_sta =
         107.041046462901
Lslope =
         145.422391094205
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 9
dh =
         9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
         1.40666398849417
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 12
         10.1985265021268
rdh_sum =
          2.90420535902459
Berm Factor Calculation: Iteration 1, Profile Segment: 13
         10.4744445021268
rdh_sum =
          3.68942949541434
Berm Factor Calculation: Iteration 1, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
         4.49773093822128
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 1 -----!
berm_width =
   17
rB =
         0.116900842243663
rdh_mean =
         0.810625187975784
gamma_berm
         0.977861924974634
slope =
         0.268771755517362
Irb =
          1.9976804779061
```

```
gamma_berm =
         0.977861924974634
gamma_perm =
gamma_beta =
     1
gamma_rough =
                       0.6
gamma =
         0.58671715498478
ans =
!!! - - Iribaren number: 1.95 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:3.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         14.0421356450413
R2del =
          8.62226435495869
Z2 =
         23.2980701471681
top_sta =
          46.9993332993712
ans =
    ----- STARTING ITERATION 2 -----!
Ztoe =
toe_sta =
         -38.3813446313046
top_sta =
          46.9993332993712
Z2 =
          23.2980701471681
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
         14.0421356450413
Z_{2} =
          23.2980701471681
top_sta =
          46.9993332993712
Lslope =
          85.3806779306758
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
Berm Factor Calculation: Iteration 2, Profile Segment: 10
         9.64669100212682
rdh_sum =
          1.40666398849417
Berm Factor Calculation: Iteration 2, Profile Segment: 11
dh =
         9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
          5.32809529031497
Berm Factor Calculation: Iteration 2, Profile Segment: 16
```

```
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 2 -----!
berm_width =
   17
rB =
        0.199108280843155
rdh_mean =
        0.810625187975784
gamma_berm =
        0.962293906742863
slope =
        0.378674911258111
Irb =
         2.81454975146854
gamma_berm =
        0.962293906742863
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
        0.577376344045718
ans =
!!! - - Iribaren number: 2.71 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:2.6 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         14.5964003534129
R2del =
        0.554264708371569
Z2 =
         23.8523348555397
top_sta =
         50.8951497883595
ans =
!----- STARTING ITERATION 3 -----!
Ztoe =
                -2.595977
toe_sta =
        -38.3813446313046
top_sta =
         50.8951497883595
Z2 =
          23.8523348555397
H0 =
                   7.5548
Tp =
                    9.9345
T0 =
         9.03136363636364
R2 =
         14.5964003534129
         23.8523348555397
top_sta =
          50.8951497883595
Lslope =
         89.2764944196642
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 9
dh =
         9.49194100212682
rdh_sum =
        0.695983762046982
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 10
dh =
         9.64669100212682
rdh_sum =
         1.40666398849417
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 11
dh =
         9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 12
         10.1985265021268
rdh_sum =
          2.90420535902459
Berm Factor Calculation: Iteration 3, Profile Segment: 13
```

```
dh =
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 15
dh =
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 3 -----!
berm_width =
rB =
         0.190419663210427
rdh_mean =
         0.810625187975784
gamma_berm =
         0.963939312073811
slope =
         0.365932410915933
Irb =
          2.71983948652912
gamma_berm =
         0.963939312073811
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
        0.578363587244287
ans =
!!! - - Iribaren number: 2.62 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
           14.549424968147
R2del =
        0.0469753852659309
Z2 =
          23.8053594702738
top_sta =
          50.5649673529656
ans =
           ----- STARTING ITERATION 4 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          50.5649673529656
Z2 =
          23.8053594702738
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          14.549424968147
Z_{2} =
          23.8053594702738
top_sta =
          50.5649673529656
Lslope =
          88.9463119842703
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
Berm Factor Calculation: Iteration 4, Profile Segment: 10
```

```
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 14
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 15
dh =
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
          13.7806281955883
ans =
!---- End Berm Factor Calculation, Iter: 4 -----!
berm_width =
    17
rB =
         0.191126530383928
rdh_mean =
         0.810625187975784
gamma_berm
         0.963805449235703
slope =
         0.366958857822288
          2.72746868455436
gamma_berm =
         0.963805449235703
gamma perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
         0.578283269541422
ans =
!!! - - Iribaren number: 2.63 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
           14.553336534471
R2del =
       0.00391156632409739
          23.8092710365979
top_sta =
          50.5924611241776
% final 2% runup elevation
Z2=R2_new+SWEL
Z2 =
          23.8092710365979
diary off
                 % begin recording
% FEMA appeal for The Town of Harpswell, Cumberland county, Maine
% TRANSECT ID: CM-144-1
% calculation by SJH, Ransom Consulting, Inc. 26-Feb-2020
% 100-year wave runup using TAW methodology
% including berm and weighted average with foreshore if necessary
% chk nld 20200220
```

```
% This script assumes that the incident wave conditions provided
% as input in the configuration section below are the
% appropriate values located at the end of the foreshore
% or toe of the slope on which the run-up is being calculated
% the script does not attempt to apply a depth limit or any other
\mbox{\ensuremath{\upsigma}} transformation to the incident wave conditions other than
% conversion of the peak wave period to the spectral mean wave
\ensuremath{\text{\%}} as recommended in the references below
% references:
% Van der Meer, J.W., 2002. Technical Report Wave Run-up and
% Wave Overtopping at Dikes. TAW Technical Advisory Committee on
% Flood Defence, The Netherlands.
% FEMA. 2007, Atlantic Ocean and Gulf of Mexico Coastal Guidelines Update
% third column is 0 for excluded points
imgname='logfiles/CM-144-1-runup';
SWEL=8.8043; % 100-yr still water level including wave setup.
               % significant wave height at toe of structure
% peak period, 1/fma,
H0=7.5548;
Tp=9.9345;
\bar{\text{T0}} = \text{Tp}/1.1;
gamma_berm=0.96381; % this may get changed automatically below
gamma_rough=0.6;
gamma_beta=1;
gamma_perm=1;
setupAtToe=-0.068077;
maxSetup=1.5194; % only used in case of berm/shallow foreshore weighted average plotTitle='Iterative TAW for CM-144-1'
plotTitle =
Iterative TAW for CM-144-1
% END CONFIG
SWEL=SWEL+setupAtToe
SWEL =
                   8.736223
SWEL_fore=SWEL+maxSetup
SWEL_fore =
                  10.255623
% FIND WAVELENGTH USING DEEPWATER DISPERSION RELATION
% using English units
L0=32.15/(2*pi)*T0^2
L0 =
           417.357062285715
% Find Hb (Munk, 1949)
%Hb=H0/(3.3*(H0/L0)^(1/3))
%Db=-Hb/.78+SWEL; % depth at breaking
% The toe elevation here is only used to determine the average
% structure slope, it is not used to depth limit the wave height.
% Any depth limiting or other modification of the wave height
% to make it consitent with TAW guidance should be performed
% prior to the input of the significant wave height given above.
Ztoe=SWEL-1.5*H0
Ztoe =
                  -2.595977
% read the transect
[sta,dep,inc] = textread(fname,'%n%n%n%*[^n','delimiter',',','headerlines',0);
% remove unselected points
k=find(inc==0);
sta(k)=[];
dep(k)=[];
sta_org=sta; % used for plotting purposes
dep org=dep;
% initial guess at maximum run-up elevation to estimate slope
Z2=SWEL+1.5*H0
7.2 =
                  20.068423
% determine station at the max runup and -1.5*H0 (i.e. the toe)
top_sta=-999;
toe_sta=-999;
for kk=1:length(sta)-1
    if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1))) % here is the intersection of z2 with profile
       top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
        ((Ztoe > dep(kk)) & (Ztoe <= dep(kk+1)))
                                                       % here is the intersection of Ztoe with profile
       toe_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Ztoe)
end
toe_sta =
         -62.4868075374234
         -38.3813446313046
top_sta =
```

```
34.9443976794092
% check to make sure we got them, if not extend the end slopes outward
S=diff(dep)./diff(sta);
if toe_sta==-999
   dy=dep(1)-Ztoe;
   toe_sta=sta(1)-dy/S(1)
end
if top sta==-999
   dy=Z2-dep(end);
   top_sta=sta(end)+dy/S(end)
end
% just so the reader can tell the values aren't -999 anymore
top_sta
top_sta =
          34.9443976794092
toe_sta
toe_sta =
          -38.3813446313046
% check for case where the toe of slope is below SWL-1.5*H0 \,
% in this case interpolate setup from the setupAtToe(really setup as first station), and the max setup
% also un-include points seaward of SWL-1.5*H0
if Ztoe > dep(1)
   dd=SWEL_fore-dep;
   k=find(dd<0,1); % k is index of first land point
   staAtSWL=interp1(dep(k-1:k),sta(k-1:k),SWEL_fore);
   dsta=staAtSWL-sta(1);
   dsetup=maxSetup-setupAtToe;
   dsetdsta=dsetup/dsta;
   setup=setupAtToe+dsetdsta*(toe_sta-sta(1));
   sprintf('-!!- Location of SWEL-1.5*H0 is %4.1f ft landward of toe of slope',dsta)
   sprintf('-!!- Setup is interpolated between setup at toe of slope and max setup') sprintf('-!!- setup is adjusted to %4.2f feet', setup)
   SWEL=SWEL-setupAtToe+setup;
   sprintf('-!!-
                        SWEL is adjusted to %4.2f feet', SWEL)
   k=find(dep < SWEL-1.5*H0)
   sta(k)=[];
   dep(k)=[];
else
   sprintf('-!!-\ The\ User\ has\ selected\ a\ starting\ point\ that\ is\ \$4.2f\ feet\ above\ the\ elevation\ of\ SWEL-1.5H0\n', dep(1\ sprintf('-!!-\ This\ may\ be\ reasonable\ for\ some\ cases.\ However\ the\ user\ may\ want\ to\ consider:\n')
   sprintf('-!!-
                    1) Selecting a starting point that is at or below %4.2f feet elevation, or\n', Ztoe)
   sprintf('-!!-
                    2) Reducing the incident wave height to a depth limited condition.\n')
end
ans =
-!!- Location of SWEL-1.5*HO is 84.4 ft landward of toe of slope
-!!- Setup is interpolated between setup at toe of slope and max setup
ans =
-!!-
            setup is adjusted to 0.45 feet
ans =
-!!-
            SWEL is adjusted to 9.26 feet
k =
     1
     2
     3
     4
     5
     6
     7
    24
    25
    26
    27
    28
    29
    30
    31
    32
% now iterate converge on a runup elevation
tol=0.01; % convergence criteria R2del=999;
R2_new=3*H0; %initial guess
R2=R2_new;
iter=0;
R2_all=[];
topStaAll=[];
Berm_Segs=[];
TAW_ALWAYS_VALID=1;
while(abs(R2del) > tol && iter <= 25)
    iter=iter+1;
    sprintf ('!-----!',iter)
    % elevation of toe of slope
    Ztoe
    % station of toe slope (relative to 0-NAVD88 shoreline
    % station of top of slope/extent of 2% run-up
    top_sta
    % elevation of top of slope/extent of 2% run-up
    % incident significant wave height
```

```
% incident spectral peak wave period
Тp
% incident spectral mean wave period
т0
R2=R2_new
Z2=R2+SWEL
% determine slope for this iteration
top_sta=-999;
for kk=1:length(sta)-1
   if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
                                              % here is the intersection of z2 with profile
      top_sta=interpl(dep(kk:kk+1),sta(kk:kk+1),Z2)
      break;
   end
end
if top_sta==-999
   dy=Z2-dep(end);
   top_sta=sta(end)+dy/S(end)
% get the length of the slope (not accounting for berm)
Lslope=top_sta-toe_sta
% loop over profile segments to determine berm factor
% re-calculate influence of depth of berm based on this run-up elevation
% check for berm, berm width, berm height
berm_width=0;
rdh_sum=0;
Berm_Segs=[];
Berm_Heights=[];
for kk=1:length(sta)-1
   ddep=dep(kk+1)-dep(kk);
   dsta=sta(kk+1)-sta(kk);
   s=ddep/dsta;
   if (s < 1/15)
                       % count it as a berm if slope is flatter than 1:15 (see TAW manual)
      sprintf ('Berm Factor Calculation: Iteration %d, Profile Segment: %d',iter,kk)
      berm_width=berm_width+dsta; % tally the width of all berm segments % compute the rdh for this segment and weight it by the segment length
      dh=SWEL-(dep(kk)+dep(kk+1))/2
      if dh < 0
          chi=R2;
      else
          chi=2* H0;
      end
      if (dh <= R2 \& dh >= -2*H0)
         rdh=(0.5-0.5*cos(3.14159*dh/chi));
      else
         rdh=1;
      end
      rdh_sum=rdh_sum + rdh * dsta
      Berm_Segs=[Berm_Segs, kk];
      Berm_Heights=[Berm_Heights, (dep(kk)+dep(kk+1))/2];
   if dep(kk) >= Z2 % jump out of loop if we reached limit of run-up for this iteration
   end
end
sprintf ('!----- End Berm Factor Calculation, Iter: %d -----!',iter)
berm_width
rB=berm_width/Lslope
if (berm_width > 0)
   rdh_mean=rdh_sum/berm_width
else
   rdh_mean=1
end
gamma_berm=1- rB * (1-rdh_mean)
if gamma_berm > 1
   gamma_berm=1
end
if gamma_berm < 0.6
   gamma_berm =0.6
end
% Iribarren number
slope=(Z2-Ztoe)/(Lslope-berm_width)
Irb=(slope/(sqrt(H0/L0)))
% runup height
gamma_berm
gamma_perm
gamma_beta
gamma_rough
gamma=gamma_berm*gamma_perm*gamma_beta*gamma_rough
% check validity
TAW_VALID=1;
if (Irb*gamma_berm < 0.5 | Irb*gamma_berm > 10 )
   sprintf('!!! - - Iribaren number: %6.2f is outside the valid range (0.5-10), TAW NOT VALID - - !!!\n', Irb*gam
   sprintf('!!! - - Iribaren number: %6.2f is in the valid range (0.5-10), TAW RECOMMENDED - - !!!\n', Irb*gamma_
end
islope=1/slope;
```

```
if (slope < 1/8 | slope > 1)
       sprintf('!!! - slope: 1:%3.1f V:H is outside the valid range (1:8 - 1:1), TAW NOT VALID - - !!!\n', islope)
       TAW_VALID=0;
    else
       sprintf('!!! - - slope: 1:%3.1f V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!\n', islope)
    end
    if TAW_VALID == 0
       TAW_ALWAYS_VALID=0;
    end
    if (Irb*gamma_berm < 1.8)</pre>
       R2_new=gamma*H0*1.77*Irb
    else
       R2_new=gamma*H0*(4.3-(1.6/sqrt(Irb)))
    end
    % check to see if we need to evaluate a shallow foreshore
if berm_width > 0.25 * L0;
       disp ('! Berm_width is greater than 1/4 wave length')
       disp ('!
                  Runup will be weighted average with foreshore calculation assuming depth limited wave height on ber
       % do the foreshore calculation
       fore_H0=0.78*(SWEL_fore-min(Berm_Heights))
       % get upper slope
       fore_toe_sta=-999;
       fore_toe_dep=-999;
       for kk=length(dep)-1:-1:1
          ddep=dep(kk+1)-dep(kk);
          dsta=sta(kk+1)-sta(kk);
          s=ddep/dsta;
          if s < 1/15
             break
          end
          fore_toe_sta=sta(kk);
          fore_toe_dep=dep(kk);
          upper_slope=(Z2-fore_toe_dep)/(top_sta-fore_toe_sta)
       end
       fore_Irb=upper_slope/(sqrt(fore_H0/L0));
       fore_gamma=gamma_perm*gamma_beta*gamma_rough;
       if (fore_Irb < 1.8)
          fore_R2=fore_gamma*fore_H0*1.77*fore_Irb;
       else
          fore_R2=fore_gamma*fore_H0*(4.3-(1.6/sqrt(fore_Irb)));
       end
       if berm_width >= L0
          R2_new=fore_R2
          disp ('berm is wider than one wavelength, use full shallow foreshore solution');
          w2=(berm_width-0.25*L0)/(0.75*L0)
          w1 = 1 - w2
          R2_new=w2*fore_R2 + w1*R2_new
       end
    end % end berm width check
    % convergence criterion
    R2del=abs(R2-R2_new)
    R2_all(iter)=R2_new;
    % get the new top station (for plot purposes)
    Z2=R2_new+SWEL
    top_sta=-999;
    for kk=1:length(sta)-1
       if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1))) % here is the intersection of z2 with profile
          top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
          break;
       end
    end
    if top_sta==-999
       dy=Z2-dep(end);
       top_sta=sta(end)+dy/S(end);
    end
    topStaAll(iter)=top_sta;
ans =
        -----! STARTING ITERATION 1 -----!
1----
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
Z2 =
                 20.068423
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
                   22.6644
Z2 =
          31.9203345021268
top_sta =
```

end

```
107.041046462901
Lslope =
          145.422391094205
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 11
          9.92260850212682
rdh_sum =
          2.14299703977601
Berm Factor Calculation: Iteration 1, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 15
dh =
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 1 -----!
berm_width =
   \frac{-}{17}
rB =
         0.116900842243663
rdh_mean =
         0.810625187975784
gamma_berm =
         0.977861924974634
slope =
         0.268771755517362
Irb =
          1.9976804779061
gamma_berm =
         0.977861924974634
gamma perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
          0.58671715498478
ans =
!!! - - Iribaren number: 1.95 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:3.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          14.0421356450413
R2del =
          8.62226435495869
Z2 =
          23.2980701471681
top_sta =
          46.9993332993712
        -----! STARTING ITERATION 2 -----!
Ztoe =
```

```
-2.595977
toe_sta =
         -38.3813446313046
top_sta =
          46.9993332993712
Z_{2} =
          23.2980701471681
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          14.0421356450413
Z2 =
          23.2980701471681
top_sta =
          46.9993332993712
Lslope =
          85.3806779306758
Berm Factor Calculation: Iteration 2, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 10
dh =
         9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 14
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 15
dh =
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 2 -----!
berm_width =
    17
rB =
         0.199108280843155
rdh_mean =
         0.810625187975784
gamma_berm =
         0.962293906742863
slope =
         0.378674911258111
Irb =
          2.81454975146854
gamma_berm =
         0.962293906742863
gamma_perm =
gamma_beta =
gamma_rough =
```

```
0.6
gamma =
        0.577376344045718
ans =
!!! - - Iribaren number: 2.71 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:2.6 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         14.5964003534129
R2del =
        0.554264708371569
Z_{2} =
          23.8523348555397
top_sta =
          50.8951497883595
ans =
!----- STARTING ITERATION 3 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          50.8951497883595
Z2 =
          23.8523348555397
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          14.5964003534129
Z2 =
          23.8523348555397
top_sta =
          50.8951497883595
Lslope =
          89.2764944196642
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 9
dh =
         9.49194100212682
rdh_sum =
        0.695983762046982
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 11
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
         3.68942949541434
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 16
         11.2205850021268
rdh_sum =
         13.7806281955883
!----- End Berm Factor Calculation, Iter: 3 -----!
berm_width =
```

```
17
rB =
         0.190419663210427
rdh_mean =
         0.810625187975784
gamma berm =
         0.963939312073811
slope =
         0.365932410915933
Irb =
          2.71983948652912
gamma_berm =
         0.963939312073811
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
         0.578363587244287
!!! - - Iribaren number: 2.62 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
           14.549424968147
R2del =
        0.0469753852659309
Z2 =
          23.8053594702738
top_sta =
          50.5649673529656
ans =
       -----! STARTING ITERATION 4 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          50.5649673529656
Z2 =
          23.8053594702738
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          14.549424968147
Z2 =
          23.8053594702738
top_sta =
          50.5649673529656
Lslope =
          88.9463119842703
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 13
          10.4744445021268
rdh_sum =
          3.68942949541434
Berm Factor Calculation: Iteration 4, Profile Segment: 14
dh =
```

```
10.7503620021268
rdh sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 15
dh =
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 16
          11.2205850021268
rdh_sum =
          13.7806281955883
!---- End Berm Factor Calculation, Iter: 4 -----!
berm_width =
    17
rB =
         0.191126530383928
rdh_mean =
         0.810625187975784
gamma berm =
         0.963805449235703
slope =
         0.366958857822288
Irb =
          2.72746868455436
gamma_berm =
         0.963805449235703
gamma_perm =
gamma_beta =
gamma_rough =
                        0.6
gamma =
        0.578283269541422
ans =
!!! - - Iribaren number: 2.63 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
           14.553336534471
R2del =
       0.00391156632409739
7.2 =
          23.8092710365979
top_sta =
          50.5924611241776
% final 2% runup elevation
Z2=R2_new+SWEL
          23.8092710365979
diary off
diary on
                 % begin recording
% FEMA appeal for The Town of Harpswell, Cumberland county, Maine
% TRANSECT ID: CM-144-1
% calculation by SJH, Ransom Consulting, Inc. 26-Feb-2020
% 100-year wave runup using TAW methodology
% including berm and weighted average with foreshore if necessary
% chk nld 20200220
\mathsection This script assumes that the incident wave conditions provided \mathsection as input in the configuration section below are the
% appropriate values located at the end of the foreshore
% or toe of the slope on which the run-up is being calculated
% the script does not attempt to apply a depth limit or any other
\ensuremath{\mathtt{\$}} transformation to the incident wave conditions other than
\$ conversion of the peak wave period to the spectral mean wave \$ as recommended in the references below
% references:
\mbox{\ensuremath{\$}} Van der Meer, J.W., 2002. Technical Report Wave Run-up and
% Wave Overtopping at Dikes. TAW Technical Advisory Committee on
% Flood Defence, The Netherlands.
% FEMA. 2007, Atlantic Ocean and Gulf of Mexico Coastal Guidelines Update
% third column is 0 for excluded points
```

imgname='logfiles/CM-144-1-runup';

```
SWEL=8.8043; % 100-yr still water level including wave setup.
               % significant wave height at toe of structure
H0=7.5548;
Tp=9.9345i
               % peak period, 1/fma,
T0=Tp/1.1;
gamma_berm=0.96381; % this may get changed automatically below
gamma_rough=0.6;
gamma_beta=1;
gamma_perm=1;
setupAtToe=-0.068077;
\label{lower} $\max = 1.5194; \quad $$ only used in case of berm/shallow foreshore weighted average plotTitle='Iterative TAW for CM-144-1'
plotTitle =
Iterative TAW for CM-144-1
% END CONFIG
SWEL=SWEL+setupAtToe
SWEL =
                   8.736223
SWEL_fore=SWEL+maxSetup
SWEL_fore =
                  10.255623
% FIND WAVELENGTH USING DEEPWATER DISPERSION RELATION
% using English units
L0=32.15/(2*pi)*T0^2
L0 =
           417.357062285715
% Find Hb (Munk, 1949)
%Hb=H0/(3.3*(H0/L0)^(1/3))
%Db=-Hb/.78+SWEL; % depth at breaking
% The toe elevation here is only used to determine the average
% structure slope, it is not used to depth limit the wave height.
% Any depth limiting or other modification of the wave height
% to make it consitent with TAW guidance should be performed % prior to the input of the significant wave height given above.
Ztoe=SWEL-1.5*H0
Ztoe =
                  -2.595977
% read the transect
[sta,dep,inc] = textread(fname,'%n%n%n%*(^\n]','delimiter',',','headerlines',0);
% remove unselected points
k=find(inc==0);
sta(k)=[];
dep(k)=[];
sta_org=sta; % used for plotting purposes
dep_org=dep;
% initial guess at maximum run-up elevation to estimate slope
Z2=SWEL+1.5*H0
7.2 =
                  20.068423
% determine station at the max runup and -1.5*H0 (i.e. the toe)
top_sta=-999;
toe_sta=-999;
for kk=1:length(sta)-1
    if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1))) % here is the intersection of z2 with profile
       top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
    if
        ((Ztoe > dep(kk)) & (Ztoe <= dep(kk+1)))
                                                       % here is the intersection of Ztoe with profile
       toe_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Ztoe)
    end
end
toe_sta =
         -62.4868075374234
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
% check to make sure we got them, if not extend the end slopes outward
S=diff(dep)./diff(sta);
if toe sta==-999
   dy=dep(1)-Ztoe;
   toe\_sta=sta(1)-dy/S(1)
end
if top_sta==-999
   dy=Z2-dep(end);
   top_sta=sta(end)+dy/S(end)
end
% just so the reader can tell the values aren't -999 anymore
top_sta
top_sta =
          34.9443976794092
toe sta
toe_sta =
          -38.3813446313046
% check for case where the toe of slope is below SWL-1.5*HO
% in this case interpolate setup from the setupAtToe(really setup as first station), and the max setup
% also un-include points seaward of SWL-1.5*H0
if Ztoe > dep(1)
   dd=SWEL_fore-dep;
   k=find(\overline{dd}<0,1); % k is index of first land point
   staAtSWL=interp1(dep(k-1:k),sta(k-1:k),SWEL_fore);
```

```
dsta=staAtSWL-sta(1);
   dsetup=maxSetup-setupAtToe;
   dsetdsta=dsetup/dsta;
   setup=setupAtToe+dsetdsta*(toe_sta-sta(1));
sprintf('-!!- Location of SWEL-1.5*H0 is %4.1f ft landward of toe of slope',dsta)
   sprintf('-!!- Setup is interpolated between setup at toe of slope and max setup') sprintf('-!!- setup is adjusted to %4.2f feet', setup)
   SWEL=SWEL-setupAtToe+setup;
   sprintf('-!!-
                         SWEL is adjusted to %4.2f feet', SWEL)
   k=find(dep < SWEL-1.5*H0)</pre>
   sta(k)=[];
   dep(k)=[];
else
   sprintf('-!!- The User has selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n',dep(1
   sprintf('-!!- This may be reasonable for some cases. However the user may want to consider: `\n') sprintf('-!!- 1) Selecting a starting point that is at or below %4.2f feet elevation, or `\n', Ztoe)
   sprintf('-!!-
                     2) Reducing the incident wave height to a depth limited condition.\n')
-!!- Location of SWEL-1.5*H0 is 84.4 ft landward of toe of slope
ans =
-!!- Setup is interpolated between setup at toe of slope and max setup
ans =
-!!-
            setup is adjusted to 0.45 feet
ans =
-!!-
            SWEL is adjusted to 9.26 feet
k =
     2
     3
     4
     5
     6
7
    24
    25
    26
    27
    28
    29
    30
    31
    32
% now iterate converge on a runup elevation
tol=0.01; % convergence criteria
R2del=999;
R2_new=3*H0; %initial guess
R2=R2_new;
iter=0;
R2_all=[];
topStaAll=[];
Berm_Segs=[];
TAW_ALWAYS_VALID=1;
while(abs(R2del) > tol && iter <= 25)
    iter=iter+1;
                     -----!',iter
    sprintf ('!--
    % elevation of toe of slope
    Ztoe
    % station of toe slope (relative to 0-NAVD88 shoreline
    toe sta
    % station of top of slope/extent of 2% run-up
    top sta
    % elevation of top of slope/extent of 2% run-up
    Z_2
    % incident significant wave height
    H0
    % incident spectral peak wave period
    Тp
    % incident spectral mean wave period
    ΤO
    R2=R2 new
    Z2=R2+SWEL
    \mbox{\ensuremath{\mbox{\$}}} determine slope for this iteration
    top_sta=-999;
    for kk=1:length(sta)-1
        if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
                                                     % here is the intersection of z2 with profile
           top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
           break;
        end
    end
    if top_sta==-999
        dy=Z2-dep(end);
        top_sta=sta(end)+dy/S(end)
    end
    % get the length of the slope (not accounting for berm)
    Lslope=top_sta-toe_sta
     % loop over profile segments to determine berm factor
    % re-calculate influence of depth of berm based on this run-up elevation
```

```
% check for berm, berm width, berm height
berm width=0;
rdh sum=0;
Berm_Segs=[];
Berm_Heights=[];
for kk=1:length(sta)-1
   ddep=dep(kk+1)-dep(kk);
   dsta=sta(kk+1)-sta(kk);
   s=ddep/dsta;
   if (s < 1/15)
                       \mbox{\ensuremath{\$}} count it as a berm if slope is flatter than 1:15 (see TAW manual)
      sprintf ('Berm Factor Calculation: Iteration %d, Profile Segment: %d',iter,kk)
      berm_width=berm_width+dsta; % tally the width of all berm segments
      % compute the rdh for this segment and weight it by the segment length
      dh=SWEL-(dep(kk)+dep(kk+1))/2
      if dh < 0
          chi=R2;
      else
          chi=2* H0;
      end
      if (dh \le R2 \& dh \ge -2*H0)
         rdh=(0.5-0.5*cos(3.14159*dh/chi));
         rdh=1;
      rdh_sum=rdh_sum + rdh * dsta
      Berm_Segs=[Berm_Segs, kk];
      Berm_Heights=[Berm_Heights, (dep(kk)+dep(kk+1))/2];
   if dep(kk) >= Z2 % jump out of loop if we reached limit of run-up for this iteration
      break
   end
end
sprintf ('!----- End Berm Factor Calculation, Iter: %d -----!',iter)
berm width
rB=berm_width/Lslope
if (berm_width > 0)
   rdh_mean=rdh_sum/berm_width
else
   rdh_mean=1
end
gamma_berm=1- rB * (1-rdh_mean)
if gamma_berm > 1
   gamma_berm=1
end
if gamma_berm < 0.6
   gamma_berm =0.6
end
% Iribarren number
slope=(Z2-Ztoe)/(Lslope-berm_width)
Irb=(slope/(sqrt(H0/L0)))
% runup height
gamma_berm
gamma_perm
gamma_beta
gamma rough
gamma=gamma_berm*gamma_perm*gamma_beta*gamma_rough
% check validity
TAW_VALID=1;
if (Irb*gamma_berm < 0.5 | Irb*gamma_berm > 10 )
   sprintf('!!! - - Iribaren number: %6.2f is outside the valid range (0.5-10), TAW NOT VALID - - !!!\n', Irb*gam
   TAW_VALID=0;
else
   sprintf('!!! - - Iribaren number: %6.2f is in the valid range (0.5-10), TAW RECOMMENDED - - !!!\n', Irb*gamma_
end
islope=1/slope;
if (slope < 1/8 | slope > 1)
    sprintf('!!! - - slope: 1
                   - slope: 1:%3.1f V:H is outside the valid range (1:8 - 1:1), TAW NOT VALID - - !!!\n', islope)
   TAW_VALID=0;
else
   sprintf('!!! - - slope: 1:%3.1f V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!\n', islope)
end
if TAW_VALID == 0
   TAW_ALWAYS_VALID=0;
if (Irb*gamma_berm < 1.8)
    R2_new=gamma*H0*1.77*Irb</pre>
   R2_new=gamma*H0*(4.3-(1.6/sqrt(Irb)))
% check to see if we need to evaluate a shallow foreshore
if berm_width > 0.25 * L0;
              Berm_width is greater than 1/4 wave length')
              Runup will be weighted average with foreshore calculation assuming depth limited wave height on ber
   % do the foreshore calculation
   fore_H0=0.78*(SWEL_fore-min(Berm_Heights))
   % get upper slope
   fore_toe_sta=-999;
   fore_toe_dep=-999;
   for kk=length(dep)-1:-1:1
```

```
ddep=dep(kk+1)-dep(kk);
          dsta=sta(kk+1)-sta(kk);
          s=ddep/dsta;
          if s < 1/15
             break
          end
          fore_toe_sta=sta(kk);
          fore_toe_dep=dep(kk);
          upper_slope=(Z2-fore_toe_dep)/(top_sta-fore_toe_sta)
       end
       fore_Irb=upper_slope/(sqrt(fore_H0/L0));
       fore_gamma=gamma_perm*gamma_beta*gamma_rough;
       if (fore_Irb < 1.8)
          fore_R2=fore_gamma*fore_H0*1.77*fore_Irb;
          fore_R2=fore_gamma*fore_H0*(4.3-(1.6/sqrt(fore_Irb)));
       end
       if berm_width >= L0
          R2_new=fore_R2
          disp ('berm is wider than one wavelength, use full shallow foreshore solution');
       else
          w2=(berm_width-0.25*L0)/(0.75*L0)
          R2_new=w2*fore_R2 + w1*R2_new
       end
    end % end berm width check
    % convergence criterion
    R2del=abs(R2-R2_new)
    R2_all(iter)=R2_new;
    % get the new top station (for plot purposes)
    Z2=R2 new+SWEL
    top_sta=-999;
    for kk=1:length(sta)-1
  if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))</pre>
                                                 % here is the intersection of z2 with profile
          top\_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
          break;
       end
    end
    if top_sta==-999
       dy=Z2-dep(end);
       top_sta=sta(end)+dy/S(end);
    end
    topStaAll(iter)=top_sta;
end
ans =
         ----- STARTING ITERATION 1 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
Z2 =
                 20.068423
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
                   22.6644
Z2 =
          31.9203345021268
top_sta =
          107.041046462901
Lslope =
          145.422391094205
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 12
          10.1985265021268
```

```
rdh_sum =
         2.90420535902459
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 15
dh =
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 1 -----!
berm_width =
   17
rB =
         0.116900842243663
rdh_mean =
         0.810625187975784
gamma_berm =
         0.977861924974634
slope =
         0.268771755517362
Irb =
          1.9976804779061
gamma berm =
         0.977861924974634
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
          0.58671715498478
!!! - - Iribaren number: 1.95 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:3.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          14.0421356450413
R2del =
          8.62226435495869
         23.2980701471681
top_sta =
          46.9993332993712
ans =
      ----- STARTING ITERATION 2 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          46.9993332993712
7.2 =
          23.2980701471681
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          14.0421356450413
Z2 =
          23.2980701471681
top_sta =
          46.9993332993712
Lslope =
          85.3806779306758
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 9
          9.49194100212682
```

```
rdh_sum =
        0.695983762046982
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
         1.40666398849417
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 11
dh =
         9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 13
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
         4.49773093822128
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
!----- End Berm Factor Calculation, Iter: 2 -----!
berm_width =
rB =
        0.199108280843155
rdh_mean =
         0.810625187975784
gamma_berm =
        0.962293906742863
slope =
        0.378674911258111
Irb =
         2.81454975146854
gamma_berm =
        0.962293906742863
gamma_perm =
gamma_beta =
gamma\_rough =
                       0.6
gamma =
        0.577376344045718
ans =
!!! - - Iribaren number: 2.71 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.6 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         14.5964003534129
R2del =
        0.554264708371569
7.2 =
         23.8523348555397
top_sta =
         50.8951497883595
ans =
    -----! STARTING ITERATION 3 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
         50.8951497883595
Z2 =
         23.8523348555397
```

```
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          14.5964003534129
Z_{2} =
          23.8523348555397
top_sta =
          50.8951497883595
Lslope =
          89.2764944196642
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 10
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
Berm Factor Calculation: Iteration 3, Profile Segment: 15
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 16
         11.2205850021268
rdh_sum =
          13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 3 -----!
berm_width =
   17
rB =
         0.190419663210427
rdh_mean =
         0.810625187975784
gamma_berm =
         0.963939312073811
slope =
         0.365932410915933
Irb =
          2.71983948652912
gamma_berm =
         0.963939312073811
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
         0.578363587244287
!!! - - Iribaren number: 2.62 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
```

```
R2\_new =
          14.549424968147
R2del =
        0.0469753852659309
7.2 =
          23.8053594702738
top_sta =
          50.5649673529656
ans =
       -----! STARTING ITERATION 4 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          50.5649673529656
Z_{2} =
          23.8053594702738
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
          14.549424968147
Z2 =
          23.8053594702738
top_sta =
          50.5649673529656
Lslope =
          88.9463119842703
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
Berm Factor Calculation: Iteration 4, Profile Segment: 12
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 13
         10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 14
dh =
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 15
dh =
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 4 -----!
berm_width =
rB =
         0.191126530383928
rdh_mean =
         0.810625187975784
gamma_berm =
         0.963805449235703
```

```
slope =
         0.366958857822288
Irb =
          2.72746868455436
gamma_berm =
         0.963805449235703
gamma_perm =
gamma_beta =
gamma_rough =
                        0.6
gamma =
         0.578283269541422
ans =
!!! - - Iribaren number: 2.63 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
           14.553336534471
R2del =
       0.00391156632409739
          23.8092710365979
top_sta =
          50.5924611241776
% final 2% runup elevation
Z2=R2_new+SWEL
23.8092710365979
diary off
Z2 =
diary on
                 % begin recording
% FEMA appeal for The Town of Harpswell, Cumberland county, Maine
% TRANSECT ID: CM-144-1
\mbox{\ensuremath{\$}} calculation by SJH, Ransom Consulting, Inc. 26-Feb-2020
% 100-year wave runup using TAW methodology
% including berm and weighted average with foreshore if necessary
% chk nld 20200220
% This script assumes that the incident wave conditions provided
% as input in the configuration section below are the
% appropriate values located at the end of the foreshore
\mbox{\ensuremath{\$}} or toe of the slope on which the run-up is being calculated
% the script does not attempt to apply a depth limit or any other
% transformation to the incident wave conditions other than
% conversion of the peak wave period to the spectral mean wave
% as recommended in the references below
% references:
% Van der Meer, J.W., 2002. Technical Report Wave Run-up and
% Wave Overtopping at Dikes. TAW Technical Advisory Committee on
% Flood Defence, The Netherlands.
% FEMA. 2007, Atlantic Ocean and Gulf of Mexico Coastal Guidelines Update
fname='inpfiles/CM-144-1sta_ele_include.csv'; % file with station, elevation, include
                                        % third column is 0 for excluded points
imgname='logfiles/CM-144-1-runup';
SWEL=8.8043; % 100-yr still water level including wave setup. H0=7.5548; % significant wave height at toe of structure
Tp=9.9345;
               % peak period, 1/fma,
T0=Tp/1.1;
gamma_berm=0.96381; % this may get changed automatically below
gamma_rough=0.6;
gamma_beta=1;
gamma_perm=1;
setupAtToe=-0.068077;
maxSetup=1.5194; % only used in case of berm/shallow foreshore weighted average
plotTitle='Iterative TAW for CM-144-1'
plotTitle =
Iterative TAW for CM-144-1
% END CONFIG
SWEL=SWEL+setupAtToe
SWEL =
                   8.736223
SWEL_fore=SWEL+maxSetup
SWEL_fore =
                  10.255623
% FIND WAVELENGTH USING DEEPWATER DISPERSION RELATION
% using English units
L0=32.15/(2*pi)*T0^2
L0 =
```

```
417.357062285715
% Find Hb (Munk, 1949)
%Hb=H0/(3.3*(H0/L0)^(1/3))
%Db=-Hb/.78+SWEL; % depth at breaking
\mbox{\ensuremath{\upsigma}} The toe elevation here is only used to determine the average
\$ structure slope, it is not used to depth limit the wave height. \$ Any depth limiting or other modification of the wave height
% to make it consitent with TAW guidance should be performed
% prior to the input of the significant wave height given above.
Ztoe=SWEL-1.5*H0
Ztoe =
                              -2.595977
% read the transect
[sta,dep,inc] = textread(fname,'%n%n%n%*[^\n]','delimiter',',','headerlines',0);
% remove unselected points
k=find(inc==0);
sta(k)=[];
dep(k)=[];
sta_org=sta;
                         % used for plotting purposes
dep org=dep;
  initial guess at maximum run-up elevation to estimate slope
Z2=SWEL+1.5*H0
Z2 =
                              20.068423
% determine station at the max runup and -1.5*H0 (i.e. the toe)
top_sta=-999;
toe_sta=-999;
for kk=1:length(sta)-1
       if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
                                                                                 % here is the intersection of z2 with profile
            top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
       end
             ((Ztoe > dep(kk)) & (Ztoe <= dep(kk+1)))
                                                                                             % here is the intersection of Ztoe with profile
       if
            toe_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Ztoe)
       end
end
toe_sta =
                -62.4868075374234
toe_sta =
                -38.3813446313046
top_sta =
                 34.9443976794092
% check to make sure we got them, if not extend the end slopes outward
S=diff(dep)./diff(sta);
if toe_sta==-999
     dy=dep(1)-Ztoe;
     toe_sta=sta(1)-dy/S(1)
end
if top_sta==-999
     dy=Z2-dep(end);
     top_sta=sta(end)+dy/S(end)
% just so the reader can tell the values aren't -999 anymore
top sta
top_sta =
                 34.9443976794092
toe sta
toe sta =
                -38.3813446313046
% check for case where the toe of slope is below SWL-1.5*HO
% in this case interpolate setup from the setupAtToe(really setup as first station), and the max setup
% also un-include points seaward of SWL-1.5*HO
if Ztoe > dep(1)
     dd=SWEL_fore-dep;
     k=find(\overline{d}d<0,1); % k is index of first land point
     staAtSWL=interp1(dep(k-1:k),sta(k-1:k),SWEL_fore);
     dsta=staAtSWL-sta(1);
     dsetup=maxSetup-setupAtToe;
     dsetdsta=dsetup/dsta;
     setup=setupAtToe+dsetdsta*(toe_sta-sta(1));
     sprintf('-!!- Location of SWEL-1.5*H0 is %4.1f ft landward of toe of slope',dsta) sprintf('-!!- Setup is interpolated between setup at toe of slope and max setup')
     sprintf('-!!-
                                        setup is adjusted to %4.2f feet', setup)
     SWEL=SWEL-setupAtToe+setup;
     sprintf('-!!-
                                         SWEL is adjusted to %4.2f feet', SWEL)
     k=find(dep < SWEL-1.5*H0)</pre>
     sta(k)=[];
     dep(k)=[];
else
     sprintf('-!!- The User has selected a starting point that is $4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and the selected a starting point that is $4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and the selected a starting point that is $4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and the selected a starting point that is $4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and the selected a starting point that is $4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and the selected a starting point that is $4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and the selected a starting point that is $4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and the selected a starting point that is $4.2f feet above the elevation of SWEL-1.5H0\n', dep(1) and the selected as the s
     sprintf('-!!- This may be reasonable for some cases. However the user may want to consider:\n')
     sprintf('-!!-
                                  1) Selecting a starting point that is at or below %4.2f feet elevation, or\n', Ztoe)
     sprintf('-!!-
                                  2) Reducing the incident wave height to a depth limited condition. \n'
end
 -!!- Location of SWEL-1.5*HO is 84.4 ft landward of toe of slope
ans =
-!!- Setup is interpolated between setup at toe of slope and max setup
-!!-
                    setup is adjusted to 0.45 feet
ans =
```

```
-!!-
           SWEL is adjusted to 9.26 feet
k =
     2
     3
     4
     5
     6
7
    24
    25
    26
    27
    28
    29
    30
    31
    32
% now iterate converge on a runup elevation
tol=0.01; % convergence criteria
R2del=999;
R2_new=3*H0; %initial guess
R2=R2_new;
iter=0;
R2_all=[];
topStaAll=[];
Berm_Segs=[];
TAW_ALWAYS_VALID=1;
while(abs(R2del) > tol && iter <= 25)
    iter=iter+1;
    sprintf ('!-----!',iter)
    % elevation of toe of slope
    Ztoe
    % station of toe slope (relative to 0-NAVD88 shoreline
    toe sta
    % station of top of slope/extent of 2% run-up
    top_sta
    % elevation of top of slope/extent of 2% run-up
    Z_2
    % incident significant wave height
    H0
    % incident spectral peak wave period
    Тр
    % incident spectral mean wave period
    Т0
    R2=R2_new
    Z2=R2+SWEL
    % determine slope for this iteration
    top_sta=-999;
    for kk=1:length(sta)-1
       if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
                                                 % here is the intersection of z2 with profile
          top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
          break;
       end
    end
    if top_sta==-999
       dy=Z2-dep(end);
       top_sta=sta(end)+dy/S(end)
    % get the length of the slope (not accounting for berm)
    Lslope=top sta-toe sta
    % loop over profile segments to determine berm factor
    % re-calculate influence of depth of berm based on this run-up elevation
    % check for berm, berm width, berm height
    berm_width=0;
    rdh_sum=0;
    Berm_Segs=[];
    Berm_Heights=[];
    for kk=1:length(sta)-1
       ddep=dep(kk+1)-dep(kk);
       dsta=sta(kk+1)-sta(kk);
       s=ddep/dsta;
          (s < 1/15) % count it as a berm if slope is flatter than 1:15 (see TAW manual) sprintf ('Berm Factor Calculation: Iteration %d, Profile Segment: %d',iter,kk)
       if (s < 1/15)
          berm_width=berm_width+dsta; % tally the width of all berm segments
          % compute the rdh for this segment and weight it by the segment length
          dh=SWEL-(dep(kk)+dep(kk+1))/2
          if dh < 0
              chi=R2;
          else
              chi=2* H0;
          if (dh \le R2 \& dh \ge -2*H0)
             rdh=(0.5-0.5*cos(3.14159*dh/chi));
          else
             rdh=1;
          end
          rdh_sum=rdh_sum + rdh * dsta
```

```
Berm_Segs=[Berm_Segs, kk];
      Berm_Heights=[Berm_Heights, (dep(kk)+dep(kk+1))/2];
   end
   if dep(kk) >= Z2 % jump out of loop if we reached limit of run-up for this iteration
      break
   end
end
sprintf ('!----- End Berm Factor Calculation, Iter: %d -----!',iter)
berm_width
rB=berm_width/Lslope
if (berm_width > 0)
   rdh_mean=rdh_sum/berm_width
else
  rdh_mean=1
end
gamma_berm=1- rB * (1-rdh_mean)
if gamma_berm > 1
   gamma_berm=1
end
if gamma_berm < 0.6
   gamma_berm = 0.6
end
% Iribarren number
slope=(Z2-Ztoe)/(Lslope-berm_width)
Irb=(slope/(sqrt(H0/L0)))
% runup height
gamma_berm
gamma perm
gamma beta
gamma rough
gamma=gamma_berm*gamma_perm*gamma_beta*gamma_rough
% check validity
TAW VALID=1;
if (Irb*gamma_berm < 0.5 | Irb*gamma_berm > 10 )
   sprintf('!!! - - Iribaren number: %6.2f is outside the valid range (0.5-10), TAW NOT VALID - - !!!\n', Irb*gam
   TAW_VALID=0;
else
   sprintf('!!! - - Iribaren number: %6.2f is in the valid range (0.5-10), TAW RECOMMENDED - - !!!\n', Irb*gamma_
end
islope=1/slope;
if (slope < 1/8 | slope > 1)
    sprintf('!!! - - slope: 1
                  - slope: 1:3.1f V:H is outside the valid range (1:8 - 1:1), TAW NOT VALID - - !!!n', islope)
  TAW_VALID=0;
else
   sprintf('!!! - - slope: 1:%3.1f V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!\n', islope)
end
if TAW_VALID == 0
  TAW_ALWAYS_VALID=0;
if (Irb*gamma_berm < 1.8)
  R2_new=gamma*H0*1.77*Irb
  R2_new=gamma*H0*(4.3-(1.6/sqrt(Irb)))
% check to see if we need to evaluate a shallow foreshore
if berm_width > 0.25 * L0;
              Berm_width is greater than 1/4 wave length')
              Runup will be weighted average with foreshore calculation assuming depth limited wave height on ber
   % do the foreshore calculation
   fore_H0=0.78*(SWEL_fore-min(Berm_Heights))
   % get upper slope
   fore_toe_sta=-999;
   fore_toe_dep=-999;
for kk=length(dep)-1:-1:1
      ddep=dep(kk+1)-dep(kk);
      dsta=sta(kk+1)-sta(kk);
      s=ddep/dsta;
      if s < 1/15
         break
      end
      fore_toe_sta=sta(kk);
      fore_toe_dep=dep(kk);
      upper_slope=(Z2-fore_toe_dep)/(top_sta-fore_toe_sta)
   end
   fore_Irb=upper_slope/(sqrt(fore_H0/L0));
   fore_gamma=gamma_perm*gamma_beta*gamma_rough;
   if (fore\_Irb < 1.8)
      fore_R2=fore_gamma*fore_H0*1.77*fore_Irb;
   else
      fore_R2=fore_gamma*fore_H0*(4.3-(1.6/sqrt(fore_Irb)));
   end
   if berm_width >= L0
      disp ('berm is wider than one wavelength, use full shallow foreshore solution');
      w2=(berm_width-0.25*L0)/(0.75*L0)
      w1 = 1 - w2
      R2_new=w2*fore_R2 + w1*R2_new
   end
```

```
end % end berm width check
    % convergence criterion
   R2del=abs(R2-R2_new)
   R2_all(iter)=R2_new;
    % get the new top station (for plot purposes)
    Z2=R2_new+SWEL
    top_sta=-999;
    for kk=1:length(sta)-1
       if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
                                                % here is the intersection of z2 with profile
          top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
          break;
       end
    end
    if top_sta==-999
       dy=Z2-dep(end);
       top_sta=sta(end)+dy/S(end);
    end
    topStaAll(iter)=top_sta;
end
ans =
        -----: STARTING ITERATION 1 -----!
Ztoe =
                 -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          34.9443976794092
Z2 =
                 20.068423
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
                   22.6644
Z_{2} =
          31.9203345021268
top_sta =
          107.041046462901
Lslope =
          145.422391094205
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 12
dh =
          10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 15
          11.0262795021268
rdh_sum =
          5.32809529031497
Berm Factor Calculation: Iteration 1, Profile Segment: 16
         11.2205850021268
rdh_sum =
```

```
13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 1 -----!
berm_width =
   17
rB =
        0.116900842243663
rdh_mean =
        0.810625187975784
gamma_berm =
         0.977861924974634
slope =
        0.268771755517362
Irb =
          1.9976804779061
gamma\_berm =
        0.977861924974634
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
          0.58671715498478
ans =
!!! - - Iribaren number: 1.95 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:3.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          14.0421356450413
R2del =
          8.62226435495869
Z2 =
         23.2980701471681
top_sta =
          46.9993332993712
ans =
!----- STARTING ITERATION 2 -----!
Ztoe =
                -2.595977
toe_sta =
         -38.3813446313046
top_sta =
          46.9993332993712
7.2 =
          23.2980701471681
H0 =
                   7.5548
Tp =
                    9.9345
T0 =
          9.03136363636364
R2 =
         14.0421356450413
Z2 =
          23.2980701471681
top_sta =
          46.9993332993712
Lslope =
          85.3806779306758
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 9
          9.49194100212682
rdh_sum =
        0.695983762046982
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 12
         10.1985265021268
rdh_sum =
         2.90420535902459
Berm Factor Calculation: Iteration 2, Profile Segment: 13
         10.4744445021268
rdh_sum =
```

```
3.68942949541434
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 14
         10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 15
dh =
         11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
!----- End Berm Factor Calculation, Iter: 2 -----!
berm_width =
        0.199108280843155
rdh_mean =
        0.810625187975784
gamma_berm =
        0.962293906742863
slope =
        0.378674911258111
Irb =
         2.81454975146854
gamma_berm =
        0.962293906742863
gamma_perm =
gamma_beta =
    1
gamma_rough =
                       0.6
gamma =
        0.577376344045718
ans =
!!! - - Iribaren number: 2.71 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.6 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
         14.5964003534129
R2del =
        0.554264708371569
Z2 =
         23.8523348555397
top_sta =
         50.8951497883595
ans =
!----- STARTING ITERATION 3 -----!
Ztoe =
                -2.595977
toe_sta =
         -38.3813446313046
top_sta =
         50.8951497883595
Z2 =
          23.8523348555397
H0 =
                    7.5548
Tp =
                   9.9345
T0 =
         9.03136363636364
R2 =
         14.5964003534129
Z_{2} =
          23.8523348555397
top_sta =
          50.8951497883595
Lslope =
          89.2764944196642
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 9
          9.49194100212682
rdh_sum =
        0.695983762046982
Berm Factor Calculation: Iteration 3, Profile Segment: 10
         9.64669100212682
rdh_sum =
```

```
1.40666398849417
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 11
dh =
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 12
dh =
         10.1985265021268
rdh_sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 13
dh =
         10.4744445021268
rdh_sum =
         3.68942949541434
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 14
         10.7503620021268
rdh_sum =
         4.49773093822128
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 15
         11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 16
dh =
         11.2205850021268
rdh_sum =
         13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 3 -----!
berm_width =
   17
rB =
        0.190419663210427
rdh_mean =
        0.810625187975784
gamma_berm =
        0.963939312073811
slope =
        0.365932410915933
Irb =
          2.71983948652912
gamma_berm =
        0.963939312073811
gamma_perm =
gamma_beta =
gamma_rough =
                       0.6
gamma =
        0.578363587244287
ans =
!!! - - Iribaren number: 2.62 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
          14.549424968147
R2del =
       0.0469753852659309
Z2 =
         23.8053594702738
top_sta =
         50.5649673529656
ans =
!----- STARTING ITERATION 4 -----!
Ztoe =
                -2.595977
toe_sta =
        -38.3813446313046
top_sta =
         50.5649673529656
Z2 =
          23.8053594702738
H0 =
                    7.5548
Tp =
                    9.9345
T0 =
         9.03136363636364
R2 =
```

```
14.549424968147
Z2 =
          23.8053594702738
top_sta =
          50.5649673529656
Lslope =
          88.9463119842703
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 9
dh =
          9.49194100212682
rdh_sum =
         0.695983762046982
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 10
dh =
          9.64669100212682
rdh_sum =
          1.40666398849417
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 11
          9.92260850212682
rdh_sum =
          2.14299703977601
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 12
          10.1985265021268
rdh sum =
          2.90420535902459
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 13
dh =
          10.4744445021268
rdh_sum =
          3.68942949541434
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 14
dh =
          10.7503620021268
rdh_sum =
          4.49773093822128
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 15
dh =
          11.0262795021268
rdh_sum =
          5.32809529031497
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 16
dh =
          11.2205850021268
rdh_sum =
          13.7806281955883
ans =
!----- End Berm Factor Calculation, Iter: 4 -----!
berm_width =
   17
rB =
         0.191126530383928
rdh_mean =
         0.810625187975784
gamma_berm =
         0.963805449235703
slope =
         0.366958857822288
Irb =
          2.72746868455436
gamma_berm =
         0.963805449235703
gamma_perm =
gamma beta =
gamma_rough =
                       0.6
gamma =
         0.578283269541422
ans =
!!! - - Iribaren number: 2.63 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:2.7 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
           14.553336534471
R2del =
       0.00391156632409739
          23.8092710365979
top_sta =
```

50.5924611241776 % final 2% runup elevation Z2=R2_new+SWEL Z2 =

23.8092710365979 diary off -1.000000e+00 -1.000000e+00

```
PART 5: RUNUP2
        for transect: CM-144-1
Station locations shifted by: -21.55 feet from their
original location to set the shoreline to
elevation 0 for RUNUP2 input
              _RUNUP2 INPUT CONVERSIONS_
        for transect: CM-144-1
Incident significant wave height: 6.94 feet
Peak wave period: 10.00 seconds
Mean wave height: 4.35 feet
Local Depth below SWEL: 24.54 feet
Mean wave height deshoaled using Hunt approximation for
celerity assuming constant wave energy flux.
 References: R.G. Dean and R.A. Dalrymple. 2000. Water
             Wave Mechanics for Engineers and Scientists. World
              Scientific Publishing Company, River Edge New Jersy
             USACE (1985), Direct Methods for Calculating Wavelength, CETN-1-17
             US Army Engineer Waterways Experiment Station Coastel Engineering
             Research Center, Vicksburg, MS
             also see Coastal Engineering Manual Part II-3
             for discussion of shoaling coefficient
    Depth, D = 24.54
    Period, T = 8.50
    Waveheight, H = 4.35
Deep water wavelength, L0 (ft)
    L0 = g*T*T/twopi
    L0 = 32.17*8.50*8.50/6.28 = 369.97
Deep water wave celerity, CO (ft/s)
    C0 = L0/T
    C0 = 369.97/8.50 = 43.53
Angular frequency, sigma (rad/s)
    sigma = twopi/T
    sigma = 6.28/8.50 = 0.74
Hunts (1979) approximation for Celerity C1H (ft/s) at Depth D (ft)
    y = sigma.*sigma.*D./g
    y = 0.74*0.74*24.54/32.17 = 0.42
    \texttt{C1H} = \texttt{sqrt}( \texttt{g.*D.}/(\texttt{y+1.}/(\texttt{1} + \texttt{0.6522.*y} + \texttt{0.4622.*y.^2} + \texttt{0.0864.*y.^4} + \texttt{0.0675.*y.^5})) \ )
    C1H = 26.15
Shoaling Coefficient KsH
    KsH = sqrt(C0/C1H)
    KsH = sqrt(43.53/26.15) = 1.29
Deepwater Wave Height HO_H (ft)
    H0_H = H/KsH
    H0_H = 4.35/1.29 = 3.37
Deepwater mean wave height: 3.37 feet
              END RUNUP2 CONVERSIONS
              _RUNUP2 RESULTS_
        for transect: CM-144-1
RUNUP2 SWEL:
8.80
```

8.80 8.80 8.80

```
8.80
8.80
8.80
8.80
RUNUP2 deepwater mean wave heights:
3.20
3.20
3.20
3.37
3.37
3.37
3.54
3.54
3.54
RUNUP2 mean wave periods:
8.07
8.50
8.93
8.07
8.50
8.93
8.07
8.50
8.93
RUNUP2 runup above SWEL:
3.58
3.80
4.20
3.79
4.05
4.38
3.94
4.24
4.61
RUNUP2 Mean runup height above SWEL: 4.07 feet
RUNUP2 2-percent runup height above SWEL: 8.94 feet
RUNUP2 2-percent runup elevation: 17.74 feet-NAVD88
RUNUP2 Messages:
Nonfatal Error, Check Output
             __END RUNUP2 RESULTS_
              ___ACES BEACH RUNUP_
Incident significant wave height: 6.94 feet
Significant wave height deshoaled using Hunt equation
Deepwater significant wave height: 4.72 feet
Peak wave period: 10.00 seconds
Average beach Slope: 1:4.96 (H:V)
ACES RUNUP CALCULATED USING 'Aces_Beach_Runup.m'
ACES Beach 2-percent runup height above SWEL: 14.86 feet
ACES Beach 2-percent runup elevation: 23.66 feet-NAVD88
!!!ACES BEACH RUNUP is NOT valid
```

8.80

RUNUP2 transect: C
7.00
-15.74 -111.9 0.6
-15.12 -102.9 0.6
-14.97 -101.9 0.6
-13.14 -92.9 0.6
-12.13 -87.9 0.6
-11.52 -84.9 0.6
-10.51 -79.9 0.6
-10.51 -79.9 0.6
-8.89 -71.9 0.6
-8.28 -68.9 0.6
-7.26 -63.9 0.6
-6.65 -60.9 0.6
-5.64 -55.9 0.6
-1.99 -37.9 0.6
-1.99 -37.9 0.6
-0.11 -28.9 0.6
-0.11 -1.9 0.6
7.13 21.6 0.6
10.53 41.6 0.6
22.02 59.6 0.6
1 29.63 113.1 0.6
8.8 3.20 8.07
8.8 3.20 8.93 RUNUP2 transect: CM-144-1 3.20 8.93 3.37 8.07 3.37 8.50 8.8 3.37 8.93 3.54 8.07 3.54 8.50 3.54 8.93 8.8 8.8 8.8

FEMA

job 2 1 sjh

CROSS SECTION PROFILE

	LENGTH	ELEV.	SLOPE	ROUGHNESS
1	-111.0	-15.7	.00	.60
2	-102.0	-15.1		
3	-101.0	-14.9	5.00	.60
4	-92.9	-13.1	4.50	.60
5	-87.9	-12.1	5.00	.60
6	-84.9	-11.5	5.00	.60
			5.00	.60
7	-79.9	-10.5	5.00	.60
8	-76.9	-9.9	4.95	.60
9	-71.9	-8.9	4.92	.60
10	-68.9	-8.3	4.90	.60
11	-63.9	-7.3		.60
12	-60.9	-6.6	4.92	
13	-55.9	-5.6	4.95	.60
14	-37.9	-2.0	4.93	.60
15	-28.9	1	4.79	.60
			FLAT	.60
16	-1.9	1	3.25	.60
17	21.6	7.1	5.88	.60
18	41.6	10.5	1.57	.60
19	59.6	22.0	7.03	.60
20	113.1	29.6	7.03	.00

LAST SLOPE 7.00 LAST ROUGHNESS .60

CLIENT- FEMA ** WAVE RUNUP-VERSION 2.0 ** ENGINEERED BY sjh JOB job 2 PROJECT-RUNUP2 transect: CM-144-1 RUN 1 PAGE 2

OUTPUT TABLE

INPUT PARAMETERS RUNUP RESULTS

	WATER LEVEL ABOVE DATUM (FT.)	DEEP WATER WAVE HEIGHT (FT.)	WAVE PERIOD (SEC.)	BREAKING SLOPE NUMBER	RUNUP SLOPE NUMBER	RUNUP ABOVE WATER LEVEL (FT.)	BREAKER DEPTH (FT.)
	8.80	3.20	8.07	11	18	3.58	4.64
	8.80	3.20	8.50	11	18	3.80	4.73
COMPOS	8.80 SITE SLOPE USED	3.20 BUT WAVE MAY R	8.93 EFLECT, NOT BREAK	11	18	4.20	4.81
	8.80	3.37	8.07	11	18	3.79	4.84
	8.80	3.37	8.50	11	18	4.05	4.93
	8.80	3.37	8.93	11	18	4.38	5.02
	8.80	3.54	8.07	11	18	3.94	5.05
	8.80	3.54	8.50	11	18	4.24	5.14
	8.80	3.54	8.93	11	18	4.61	5.23

