EXERCICE 1 (4 points)

Cet exercice porte sur les réseaux et les protocoles de routages.

Quelques rappels:

Une adresse IPv4 est composée de 4 octets X1.X2.X3.X4 qui peuvent être écrits en notation binaire ou décimale.

La notation CIDR X1.X2.X3.X4/n signifie que les n premiers bits de poids forts de l'adresse IP représentent la partie « réseau », les bits suivants la partie « hôte » (machine).

1.

- **a.** Donner le nombre de bits formant un octet.
- **b.** Déterminer l'écriture décimale de l'adresse IPv4 correspondant à l'écriture binaire :

11000000.10101000.00000100.11110001

- 2. On considère la machine d'adresse IPv4 172.20.1.242 / 24.
 - a. Donner la notation décimale du masque de sous-réseau de cette machine.
 - b. Donner l'adresse décimale de ce réseau.
 - **c.** Donner le nombre maximal de machines que l'on peut connecter sur ce réseau.
- 3. On considère le réseau représenté ci-dessous :

Figure 1 : Schéma du réseau

Le protocole RIP (Routing Information Protocol) est un protocole de routage qui cherche à minimiser le nombre de routeurs traversés (ce qui correspond à la distance ou au nombre de sauts).

23-NSIJ1LR1 Page : 2/8

Le réseau est composé de 7 routeurs : R1, R2, R3, R4, R5, R6 et R7 et utilise le protocole RIP. Le routeur R1 doit transmettre des données au routeur R5.

a. Déterminer le parcours pouvant être emprunté par ces données en vous aidant des tables de routage ci-dessous.

Table de routage de R1		
Destination	passe	
	par	
R2	R2	
R3	R6	
R4	R2	
R5	R6	
R6	R6	
R7	R7	

Table de routage de R2	
Destination	passe
	par
R1	R1
R3	R3
R4	R4
R5	R4
R6	R3
R7	R1

Table de routage de R3		
Destination	passe	
	par	
R1	R6	
R2	R2	
R4	R2	
R5	R6	
R6	R6	
R7	R6	

Table de routage de R4		
Destination	passe	
	par	
R1	R2	
R2	R2	
R3	R2	
R5	R5	
R6	R5	
R7	R2	

Table de routage de R5		
Destination	passe	
	par	
R1	R6	
R2	R4	
R3	R6	
R4	R4	
R6	R6	
R7	R6	

1 \ 7	110	
Table de routage de		
R7 Destination	passe	
	par	
R1	R1	
R2	R1	
R3	R6	
R4	R7	
R5	R6	
R6	R6	

Table de routage de R6		
Destination	passe	
	par	
R1	R1	
R2	R3	
R3	R3	
R4	R5	
R5	R5	
R7	R7	

23-NSIJ1LR1 Page : 3/8

Pour les deux questions suivantes, on suppose que la liaison entre R1 et R6 est coupée.

- **b.** Donner une nouvelle table de routage possible pour R1.
- **c.** En déduire le parcours que suivront les données pour aller du routeur R1 au routeur R5.
- **4.** Pour la suite de l'exercice, on considère que la liaison entre R1 et R6 a été rétablie et on applique désormais le protocole de routage OSPF attribuant un coût à chaque liaison afin de trouver le chemin permettant une transmission plus rapide. Le coût d'une liaison est défini par la relation :

$$coût = \frac{10^8}{d}$$
où *d* représente le débit en bit·s⁻¹

a. Recopier et compléter le tableau suivant :

Liaison	Débit	Coût
Ethernet		10
Fast-Ethernet	108	
Fibre	109	0,1

b. Reproduire la Figure 2, ci-dessous, en faisant apparaître le coût de chacune des liaisons.

Figure 2 : Représentation du réseau

Le coût d'un chemin est la somme des coûts des liaisons empruntées.

- **c.** Donner les 6 chemins possibles ainsi que leur coût lors de l'envoi d'un paquet depuis le routeur R1 vers le routeur R5.
- d. Déduire, en respectant le protocole OSPF, le chemin le moins coûteux lors de l'envoi d'un paquet depuis le routeur R1 vers le routeur R5. Préciser le coût minimal.

23-NSIJ1LR1 Page : 4/8