

Dissertação de Mestrado

Um *Framework* para Difusão Eficiente de Interesses em Redes Veiculares Orientadas a Conteúdo

Aluno: Adriano Antunes Prates

Orientador: Igor Monteiro Moraes

Roteiro

- Introdução
- Proposta: Framework GeoZone
 - Geographically-Based Naming Scheme (GBNS)
 - Zone Forwarding Mechanism (ZFM)
- GeoZone Proativo e Não-Proativo
- Trabalhos Relacionados
- Avaliação
- Conclusão e Trabalhos Futuros

Redes Veiculares

Redes Veiculares

- Desafio para as Redes Veiculares:
 - Alto grau de mobilidade.
 - Manutenção de rotas fim-a-fim.
- Redes Orientadas a Conteúdo:
 - Distribuição de conteúdos independente à localização.
 - Suporte nativo à mobilidade.
 - Content Centric Network (CCN).

Legendas

Host

Rua Rio Grande do Norte

Redes Veiculares Orientadas a Conteúdo (RVOCs)

Arquitetura CCN

Arquitetura CCN

Desafio de Pesquisa

- Reduzir o problema de broadcast storm de pacotes de interesse em RVOCs.
- Manter as propriedades benéficas da CCN para as RVOCs.

Framework GeoZone

- Objetivo
 - Disseminação eficiente de pacotes de interesses em RVOCs.
- Geographically-Based Naming Scheme (GBNS)
 - Esquema de nomeação de conteúdos geo-referenciados.
- Zone Forwarding Mechanism (ZFM)
 - Mecanismo de encaminhamento por zona.

Geographically-Based Naming Scheme

/longitude/latitude/application/timestamp

- Nomeação hierárquica (como na CCN).
- Coordenadas do produtor original como elementos mais significativos do nome.
- Vantagens:
 - Transparência para consumidores.
 - Busca por aplicações disponíveis em uma região.

Zone Forwarding Mechanism

- Estabelece uma zona de disseminação de interesses.
 - Limitar o encaminhamento de pacotes de interesses.
- Baseado nas:
 - Coordenadas do consumidor inicial.
 - Source Position Tag (SPT).
 - Coordenadas do produtor original
 - Nomeação GBNS.

Zone Forwarding Mechanism

Versões do GeoZone

- GeoZone: Qual o impacto na entrega dos pacotes de conteúdo?
- GeoZone Proativo:
 - Cache Oportunista.
 - Retransmissão Proativa de Conteúdos.
- GeoZone Não-Proativo:
 - Operação conforme a arquitetura CCN original.

Trabalhos Relacionados

- Wang et al. (2012)
 - Rapid Traffic Information Dissemination Using Named Data.
 - Emprega o4 temporizadores para reduzir a ocorrência de colisões.
 - Collision-avoidance timer.
 - Pushing timer.
 - Layer retransmission timer.
 - Application retransmission timer.

Propostas Avaliadas

- GeoZone Não-Proativo.
- GeoZone Proativo.
- Adaptação da arquitetura CCN para redes sem-fio.
 - Não-Proativo
- Proposta: Wang et αl.
 - Rapid Traffic Information Dissemination Using Named Data.
 - Proativo.

Simulação

- Simulador: ndnSIM.
 - Baseado no NS-3.
 - t_{max:} 300 s.
- Interface física:
 - IEEE 802.11a
 - Modo ad-hoc.
 - Potência de transmissão: 5 dbm.
 - Modulação OFDM.
 - Taxa de transmissão: 24 Mb/s.

Simulação

- Temporizadores:
 - Collision-avoidance timer: 2 ms.
 - Pushing timer: 5 ms.
 - Layer retransmission timer: 50 ms. (Máx. 8 tentativas).
- ZFM:
 - Constante δ : 200 m.
- Pacotes de conteúdo: 300 bytes.
- Política descarte CS: LRU.

Avaliação

- Modelo de Mobilidade Sintético.
 - Urban-Vehicular Mobility Model.
 - Regras que simulam o tráfego veicular em um centro urbano.
 - Objetivo: avaliar cenários distintos de densidade da rede.
- Dados Reais de Mobilidade Veicular.
 - Traces de movimentação veicular da cidade de Genebra.
 - Objetivo: consolidar resultados obtidos na avaliação anterior.

Cenários:

- Densos e esparsos.
- Distância física entre consumidores e produtor.

Quantidade	Qtde. Nós no	Distância	Área Total	Distância
Consumidores	Núcleo da Rede	entre Veículos		Consumidor x
		(Hor. e Vert.)		Produtor inicial
50	500	100 m.	$\approx 6.2 \text{ km}^2$	≈ 1 km.
50	1050	75 m.	$\approx 7.2 \text{ km}^2$	≈ 1 km.
50	625	200 m.	$\approx 30 \text{ km}^2$	≈ 5 km.
50	2500	100 m.	$\approx 28 \text{ km}^2$	≈ 5 km.

Interesses Transmitidos

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

MINIMIN

CCN Sem-Fio

GeoZone Proativo

[Wang et al. 2012a]

2500

GeoZone Não-Proativo

(a) Distância Consumidor-Produtor: 1 km.

500 nós 1050 nós

Não-Proativos (GZ): -42% -51%

Proativos (GZ): -35% -49%

Qtde. de Veículos no Núcleo da Rede
(b) Distância Consumidor-Produtor: 5 km.

625 nós 2500 nós

Não-Proativos (GZ): -66% -56%

Proativos (GZ): -58% -45%

625

Conteúdos Transmitidos

Qtde. de Veículos no Núcleo da Rede

(a) Distância Consumidor-Produtor: 1 km.

500 nós 1050 nós

Não-Proativos (GZ): -14% -25%

Proativos (GZ): -06% -06%

Qtde. de Veículos no Núcleo da Rede

(b) Distância Consumidor-Produtor: 5 km.

625 nós 2500 nós

Não-Proativos (GZ): -75% -14%

Proativos (GZ): -10% -07%

Atraso Médio (5 km)

Qtde. de Veículos no Núcleo da Rede (a) 625 nós (atraso em segundos).

Qtde. de Veículos no Núcleo da Rede
(b) 2.500 nós (atraso em milissegundos)

Atraso Médio (1 km)

Qtde, de Veículos no Núcleo da Rede

Instituto de COMPUTAÇÃO LABORATÓRIO MÍDIACOM INSTITUTO FEDERAL MODITO DE MINAS CICAUS

Número Variável de Consumidores

Cenário com 2500 nós no núcleo da rede.

Pacotes de interesse transmitidos.

Número Variável de Consumidores

Cenário com 2500 nós no núcleo da rede.

(a) Pacotes de conteúdo transmitidos.

(b) Quantidade de nós produtores.

Instituto de Computação LABURATÓRIO MÍDIA COM INSTITUTO FEDERAL NORTE DE MINAS GERAIS

Número Variável de Consumidores

Cenário com 2500 nós no núcleo da rede.

Atraso médio de entrega.

Avaliação: Dados Reais

- Traces de mobilidade de Bellevue, Genebra (Suíça).
- 2582 nós.
- Cenários:
 - 30 nós consumidores.
 - 50 nós consumidores.
 - 100 nós consumidores.
- Único produtor.

30 nós 50 nós 100 nós

Não-Proativos (GZ): -55% -57% -37%

Proativos (GZ): -47% -51% -32%

30 nós 50 nós 100 nós Não-Proativos (GZ): -49% -50%

Proativos (GZ): -05% -09% -09%

-44%

Atraso Médio

30 nós 50 nós 100 nós Não-Proativos (GZ): +71% +70% +40% Proativos (GZ): -10% -27% 0%

Conclusões

- GBNS implementa um esquema de nomeação transparente.
- ZFM reduz o grau de inundação de pacotes de interesse necessários para a recuperação de conteúdos.
- GeoZone mantém as propriedades básicas e benefícios da arquitetura CCN.
- GeoZone proativo destaca-se como uma solução promissora para RVOCs.

Conclusões

- GeoZone reduz a sobrecarga de pacotes de interesse.
 - Até 66% no modelo sintético (propostas não-proativas).
 - Até 51% utilizando dados reais de mobilidade (propostas proativas).
- GeoZone reduz a sobrecarga de pacotes de conteúdo.
 - Até 10% no modelo sintético (propostas proativas).
 - Até 09% considerando dados reais de mobilidade (propostas proativas).
- GeoZone proativo reduz o atraso médio de recuperação de conteúdo.
 - Até 27% considerando dados reais de mobilidade (propostas proativas).

Trabalhos Futuros

- Análise GeoZone vs. protocolos de roteamento MANETs.
- Impacto quanto à indisponibilidade de cache e da quantidade variável de conteúdos na rede.
- ZFM adaptativo à condição de densidade da rede.
- Retransmissão proativa baseada na popularidade do conteúdo.
- Codificação de rede para melhor utilização da banda disponível.

Publicações

- Prates, A. A.; Moraes, I. M. GeoZone: Um framework eficiente de difusão de interesses em redes veiculares orientadas a conteúdo. Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC) (2014).
- Submetido a ACM/Springer Mobile Networks and Applications (MONET)
 - Special Issue Advances on Vehicular Communication.
 - Status: Under review.

Obrigado!

AUTORES

Adriano Antunes Prates

<u>aprates@ic.uff.br</u> <u>http://www.adrianoap.info</u>

Igor Monteiro Moraes

<u>igor@ic.uff.br</u> <u>http://www.ic.uff.br/~igor</u>

APOIO

