

Education evenings 2016

Practical introduction to groundwater modelling

Computer exercises 03 01 RMA example model

Purpose

In this exercise, we will reconstruct the Rocky Mountain Arsenal model, which is one of the examples that come with ModelMuse. We will learn to

- ✓ import a map,
- ✓ import objects from a shapefile,
- ✓ generate the grid and
- ✓ use the CHD package.

Create new model

- ✓ Start ModelMuse by double-clicking on its icon.
- Choose Create
 new MODFLOW
 model and click
 Next.

Use a single layer

- ✓ Change the Number of layers to 1,
- ✓ set the Layer group name to "Aquifer",
- ✓ and click the No grid button.

Import image

- ✓ Select File | Import | Image...,
- ✓ and use the Select image button to choose "03_01_rma_example_model _map.emf".
- ✓ Then increase the Number of rows to 2, and
- ✓ fill in the table as shown on the right to correctly georeference the image.
- ✓ Click **OK**.

Import objects (1/2)

- ✓ Select File | Import | Shapefile...,
- ✓ and choose
 "03_01_rma_example_model_ objects.SHP" in the Open a
 Shapefile dialog box.
- ✓ In the Import Shapefile dialog box, check the check box for Set values of intersected cells.
- ✓ We will only use the geometry of the shapes, so click **OK**.

Import objects (2/2)

✓ Select Edit | Show or Hide Image, so we can focus on the objects.

Define model limits (1/2)

- ✓ Select **Object | Create | Polygon**, or use the corresponding button,
- ✓ and draw a polygon as shown on the right.
- ✓ Double click at the final point, to open the **Object Properties** dialog box.

Define model limits (2/2)

- ✓ Change the object Name to "Domain Outline",
- ✓ check the check box for Use to set grid cell size, and
- ✓ set the **Grid cell size** to 100.
- ✓ Then press **OK**.

Generate the grid

- ✓ Select **Grid | Generate Grid...** or use the corresponding button.
- ✓ Uncheck the Calculate grid angle automatically check box, and
- ✓ click **OK**.

This is what you should get

Set active part of the grid (1/6)

- ✓ First visualize the Active data set by selecting Data | Data
 Visualization... or using the corresponding button,
- ✓ expanding DataSets | Required | Hydrology,
- ✓ and selecting Active.
- ✓ Then press **Apply**.

Set active part of the grid (2/6)

- ✓ Select **Data | Edit Data Sets...**,
- and choose the Active data set.
- ✓ Change its **Default Formula** to "False",
- ✓ and click Apply.

Set active part of the grid (3/6)

- ✓ Select the object that was used to define the domain outline, and double-click to open the **Object Properties** dialog box.
- ✓ Change the Higher Zcoordinate and Lower Zcoordinate to "Model_Top" and "Aquifer_Bottom" respectively.

Set active part of the grid (4/6)

- ✓ Switch to the **Data Sets** tab,
- ✓ expand Required | Hydrology,
- ✓ and select Active.
- ✓ Change the formula to "True".
- ✓ Then press **OK**.

Set active part of the grid (5/6)

✓ Now repeat the procedure in the last two slides for the objects that are selected in the figure on the right, but set the **Active** data set to "False".

Set active part of the grid (6/6)

- ✓ Finally, selectObject | Edit | RearrangeObjects..., and
- ✓ move the Domain_Outline object located at the bottom of the list to the top of the list.
- ✓ Then press **OK**.

This is what you should get

Enable the CHD package

- ✓ Select Model | MODFLOW Packages and Programs...,
- ✓ expand Boundary conditions | Specified head,
- ✓ and select the CHD package.
- ✓ Then click **OK**.

Add specified head boundaries (1/6)

- ✓ We will model the lake and river as a specified head boundary.
- ✓ First select Data | DataVisualization... and select theCHD Ending Head.
- ✓ Then press **Apply**.

Add specified head boundaries (2/6)

- ✓ Double-click the object that represents the lake.
- ✓ In the Object Properties
 dialog box, check Set values
 of enclosed cells and uncheck
 Set values of intersected
 cells.
- ✓ Change the Number of Z formulas to Two.

Add specified head boundaries (3/6)

- ✓ Switch to the MODFLOW Features tab,
- ✓ select the CHD package,
- ✓ change the Number of times to 1,
- ✓ and set Starting time, Ending time, Starting head, and Ending head to -1, 0, 75 and 75.
- ✓ Then click **OK**.

Add specified head boundaries (4/6)

- ✓ Now double-click on the object that represents the river, to open the Object
 Properties dialog box.
- ✓ Change the Number of Z formulas to Two.

Add specified head boundaries (5/6)

- ✓ Switch to the MODFLOW features tab,
- ✓ select the CHD package,
- ✓ set the Starting time and Ending time to -1 and 0,
- ✓ and click the button in the Starting head cell to open the Formula Editor.

Add specified head boundaries (6/6)

- ✓ The head in the stream varies from 5 near the cross mark near the left end of the stream to 23.5 near the cross mark at the right end of the stream. The cross marks are at 10% and 90% of the length of the object representing the stream. Enter the formula "Interpolate(FractionOfObjectLength , 5, 0.1, 23.5, 0.9)"
- ✓ Check the Interpolate and FractionOfObjectLength Function help to see what these functions do, and click OK.
- Copy the Starting head formula to the **Ending head** cell, and press **OK**.

This is what you should get

Define aquifer geometry (1/9)

- ✓ The elevation of the top of the aquifer slopes gradually from approximately 71 at the north end of the model to 1 m above the stream at the south end of the model.
- ✓ First select Data | DataVisualization... and select the Model_Top.
- ✓ Then press **Apply**.

Define aquifer geometry (2/9)

- ✓ Select **Data | Edit Data Sets...**,
- ✓ select Model_Top,
- ✓ for interpolation, select Triangle Interp., and
- ✓ press Apply.

Define aquifer geometry (3/9)

- ✓ Select
 Object | Create | Straight Line,
 or use the corresponding
 button, and
- ✓ draw a straight east-west line at the north end of the model.

Define aquifer geometry (4/9)

- ✓ In the Object Properties dialog box, change the Number of Z formulas to Zero,
- ✓ uncheck Set values of intersected cells, and
- ✓ check Set values of cells by interpolation.

Define aquifer geometry (5/9)

- ✓ Switch to the **Data Sets** tab,
- ✓ select Model_Top, and
- ✓ change its formula to 71.
- ✓ Then click **OK**.

Because there are only two points in this object, nothing will change yet. At least 3 non-collinear points must be present for **Triangle Interp.** to be used.

Define aquifer geometry (6/9)

- ✓ Select
 Object | Create | Polyline, or use the corresponding button, and
- ✓ draw a polyline at the location of the stream.
- ✓ The previous stream object can not be used for this because it must have two Z formulas and this one will need to have zero Z formulas.

Define aquifer geometry (7/9)

- ✓ In the Object Properties dialog box, change the Number of Z formulas to Zero,
- ✓ uncheck Set values of intersected cells, and
- ✓ check Set values of cells by interpolation.

Define aquifer geometry (8/9)

- ✓ Switch to the **Data Sets** tab,
- ✓ select Model_Top, and
- ✓ change its formula to

 "Interpolate(FractionOfObject
 Length, 5., 0.1, 23.5, 0.9) + 1".
- ✓ Then click **OK**.

Define aquifer geometry (9/9)

- ✓ Finally, change the aquifer bottom elevation by selecting
 Data | Edit Data Sets...,
- ✓ selecting Aquifer_Bottom, and changing the Default Formula to "Model_Top - 12".
- ✓ Then click **Apply**.

This is what you should get

Add wells (1/5)

- ✓ Select Model | MODFLOW Packages and Programs...,
- expand Boundary
 conditions|Specified flux, and
- ✓ check the **Well Package**.
- ✓ Then click **OK**.

Add wells (2/5)

- Double click on the object that represents the disposal pond to open the **Object Properties** dialog box.
- ✓ Change the Number of Z formulas to One and make sure the formula is "(Model_Top + Aquifer_Bottom) / 2".

Add wells (3/5)

- ✓ Switch to the MODFLOW Features tab,
- ✓ check the **WEL** package,
- change the Number of times to 1,
- ✓ the Pumping rate interpretation to Total per layer,
- ✓ and set Starting time, Ending time and Total pumping rate to -1, 0, and 0.025.
- ✓ Then click **OK**.

Add wells (4/5)

- ✓ Now colour the grid with the Well pumping rate,
- ✓ and check if the total is 0.025.

Add wells (5/5)

- ✓ To add the two pumping wells, create point objects at the center of the well symbols,
- ✓ check the **WEL** package,
- ✓ set the **Number of times** to 1,
- the Pumping rate interpretation to Direct,
- ✓ the Starting and Ending time to -1 and 0,
- ✓ and finally the Pumping rate to -0.001 and -0.002 for the western and eastern well respectively.

Run the model

- ✓ Now save the model as "03_01_rma_example_model.m mZLib" in folder "03_01_rma_example_model",
- ✓ run MODFLOW, and
- ✓ import the head results.
- ✓ You should get something similar to the figure on the right.

Education evenings 2016

Practical introduction to groundwater modelling

Computer exercises 03 01 RMA example model

Questions? Found an error?
Please contact B. Rogiers at brogiers@sckcen.be.