Università di Trento - Dip. di Ingegneria e Scienza dell'Informazione

CdL in Informatica, Ingegneria dell'informazione e delle comunicazioni e

Ingegneria dell'informazione e organizzazione d'impresa

a.a. 2017-2018 - Foglio di esercizi 12 ... "la magia degli sviluppi di Taylor e i primi passi con le serie"

12.1) Determinate il polinomio di Taylor di ordine 4, centrato in $x_0 = 0$, delle funzioni

- i) $f(x) = (e^{-x} 1)\sin 2x$; ii) $f(x) = \log(1 \frac{x^2}{2})$; iii) $f(x) = (e^{2x} 1)^3$.
- Determinate l'ordine di infinitesimo e la parte principale rispetto all'infinitesimo campione x, per $x \to 0^+$, delle seguenti funzioni:

i) $f(x) = (x - x^2)(\cos 2x - 1) + 2x \log(1 + x^2)$;

- ii) $f(x) = \log(\cos x) + \frac{1}{2}\sin^2 x$.
- Calcolate i seguenti limiti usando gli sviluppi di Taylor: 12.3)

i) $\lim_{x \to -\infty} \frac{\cos \frac{1}{x} - e^{\frac{1}{x^2}}}{\arctan \frac{1}{2}};$ ii) $\lim_{x \to 0^+} \frac{e^{3x} - (1+x)^3}{x(\sqrt{1+x}-1)};$

iii) $\lim_{x \to +\infty} \frac{\tan \frac{1}{x} - \sin \frac{1}{x}}{\log(1 + \frac{1}{3})}$; iv) $\lim_{x \to 1} \frac{\sin^2(x-1)}{\sqrt{x} \log^2 x}$.

Determinate, al variare di $\alpha \in \mathbf{R}$, $\alpha > 0$, i seguenti limiti: 12.4)

i) $\lim_{x\to 0^+} \frac{(e^{-x}-1)\sin 2x + \log(1-\frac{x^2}{2}) + \frac{5}{2}x^2}{\cos x^{\alpha}-1}$;

ii) $\lim_{x \to 0^+} \frac{3xe^x - \sin(\log(1+x)) - 2x - \frac{7}{2}x^{\alpha}}{\sin x^3}$.

Scrivete il polinomio di Taylor di ordine 2 di $f(x) = e^{-x^2}$ centrato in $x_0 = 1$.

a) Rappresentate graficamente $f(x) = \sqrt{1+x} - \sin \frac{x}{2} - 1$ in un intorno di $x_0 = 0$.

b) Sia $f(x) = -x^2 + 3x^3 - o(x^3)$ per $x \to 0$. Determinate f(0), f'(0), f''(0) e f'''(0).

a) Determinate gli $\alpha \in \mathbf{R}$ tali che la serie $\sum_{n=0}^{+\infty} \left(\frac{2|\alpha|-4}{|\alpha|+2}\right)^n$ risulti convergente. Per tali α determinate la somma.

b) Discutete la convergenza della serie $\sum_{n=0}^{+\infty} \frac{1}{n^2 + 5n + 6}$. Determinate la somma.

1

Discutete il carattere delle seguenti serie

a)
$$\sum_{n=0}^{+\infty} \frac{2^n + n^2}{3^n + n}$$

a)
$$\sum_{n=0}^{+\infty} \frac{2^n + n^2}{3^n + n}$$
; b) $\sum_{n=1}^{+\infty} \frac{n^6 + \log n + 3^n}{2^n + n^4 + \log^5 n}$ c) $\sum_{n=1}^{+\infty} \sqrt[3]{n} \sqrt{1 + \frac{3}{n^2}}$.

c)
$$\sum_{n=1}^{+\infty} \sqrt[3]{n} \sqrt{1 + \frac{3}{n^2}}$$

Determinate gli $\alpha \in \mathbf{R}$ tali che le seguenti serie risultino convergenti:

a)
$$\sum_{n=1}^{+\infty} \log(1 + \arctan n^{\alpha});$$

a)
$$\sum_{n=1}^{+\infty} \log(1 + \arctan n^{\alpha});$$
 b)
$$\sum_{n=1}^{+\infty} (\arctan \frac{1}{\sqrt{n}} + \sin \frac{1}{n}) n^{\alpha}.$$

12.10) Discutete la convergenza delle seguenti serie:

i)
$$\sum_{n=1}^{+\infty} \frac{1}{n^2} (\frac{a}{4})^n$$
, al variare di $a > 0$; ii) $\sum_{n=1}^{+\infty} \frac{1}{n} (\frac{a}{4})^n$, al variare di $a > 0$;

ii)
$$\sum_{n=1}^{+\infty} \frac{1}{n} (\frac{a}{4})^n$$
, al variare di $a > 0$;

$$iii) \sum_{n=1}^{+\infty} \frac{e^{n^2}}{(n!)^n}$$

iv)
$$\sum_{n=1}^{+\infty} \frac{n^{100}}{3^n}$$

v)
$$\sum_{n=1}^{+\infty} \frac{1}{4^n} (\frac{n+2}{n})^{n^2}$$

iii)
$$\sum_{n=1}^{+\infty} \frac{e^{n^2}}{(n!)^n}; \quad \text{iv)} \sum_{n=1}^{+\infty} \frac{n^{100}}{3^n}; \quad \text{v)} \sum_{n=1}^{+\infty} \frac{1}{4^n} (\frac{n+2}{n})^{n^2}; \quad \text{vi)} \sum_{n=1}^{+\infty} \frac{(1+\frac{1}{n})^n}{n^2+|\cos n|}.$$