Sr. No. of Question Paper:

Your Roll No.....

Unique Paper Code :

Name of the Course :

Name of the Paper : THEORY OF COMPUTATION

Semester : V

Duration: 3 Hours Maximum Marks: 75

Instructions For Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. Part A is of 35 marks and all its questions are compulsory. Attempt any four questions from Part B.
- 3. Assume $\Sigma = \{a, b\}$ as the underlying alphabet set unless mentioned otherwise.
- 4. Parts of a question must be answered together.

Part A

1	(a)	Prove that for all sets S, $(S^*)^+ = (S^+)^*$.	2
	(b)	Give regular expression for the language of all strings that contains at least one 'a' and one 'b' in any order, no matter where they are distributed.	2
	(c)	Does $a(aa)^*$ and a^*a a^* defines the same language. (Consider $\Sigma = \{a\}$). Generate first 6 words of each of the language in the lexicographic order.	3
	(d)	Build deterministic finite automata (DFA) machine that accept all strings that either begin or end with double letters.	4
	(e)	Build a DFA machine that accepts only those strings that do not end with substring 'ba' (including Λ).	4
	(f)	Find a Context Free Grammar (CFG) for a language PALINDROME.	4
	(g)	Use pumping lemma for regular languages to show that the language $L=\{\ a^nb\ a^n\ \ n\geq 0\ \}$ is not regular.	4
	(h)	Show that if L_1 and L_2 are regular languages then so are $L_1 + L_2$, $L_1 L_2$ and $L_1 *$.	4
	(i)	Construct a PDA for the language $L = \{a^mb^n \mid m, n > 0 \text{ and } m > n\}.$	4
	(j)	Design a Turing Machine for the language $L = \{ a^n b^n \mid n \ge 1 \}$.	4
		Part B	
2	(a)	Define deterministic finite automat (DFA).	2
	(b)	Build a regular expression for all strings that do not have 'ab' as substring.	3
	(c)	Build an FA that accepts all strings that have different first and last letters.	5
3	(a)	For languages, $L_1=(a+b)b(a+b)^*$ and $L_2=(a+b)^*b$, Construct respective DFA's and derive the finite automata that define $L_1 \cap L_2$.	6
	(b)	Show that if the following context free grammar is ambiguous or not: $S \to XbaaaX \mid aX. \\ X \to aX \mid bX \mid \Lambda.$	4
4	(a)	Convert the following NFA to DFA.	5

- (b) Write a regular expression and construct a DFA for the language of all words that do not contain 'bbb' as substring.
- 5 (a) Construct a PDA for the language $L = \{a^m b^n a^{m+n} \mid m, n > 0 \}$.
 - (b) Construct a CFG for the language NON-PALINDROME. 4
- 6 (a) If L is a recursive language, then prove that its complement is also recursive.
 - (b) Determine whether the given CFG in ambiguous or not: $S \longrightarrow XaX$ $X \longrightarrow aX \mid bX \mid \Lambda.$
- 7 (a) Design a Turing machine which gives two's complement of a given input in binary form on the input tape.
 - (b) Describe Turing machine. 4