Chapitre VII - Fonctions polynômes

Exercice bilan N°1

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^2 + 2x - 3$.

1. Parmi les nombres a, b et c suivants, lesquels sont des racines de f(x)? Justifier par un calcul.

$$a = 1$$
; $b = 2$; $c = -3$

Il suffit de calculer l'image de chacun de ces nombres par la fonction f:

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^2 + 2x - 3$.

1. Parmi les nombres a, b et c suivants, lesquels sont des racines de f(x)? Justifier par un calcul.

$$a = 1$$
; $b = 2$; $c = -3$

Il suffit de calculer l'image de chacun de ces nombres par la fonction f: $f(1)=1^2+2\times 1-3=0$ donc 1 est bien une racine de f(x);

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^2 + 2x - 3$.

1. Parmi les nombres a, b et c suivants, lesquels sont des racines de f(x)? Justifier par un calcul.

$$a = 1$$
; $b = 2$; $c = -3$

Il suffit de calculer l'image de chacun de ces nombres par la fonction f: $f(1)=1^2+2\times 1-3=0$ donc 1 est bien une racine de f(x); $f(2)=2^2+2\times 2-3=5$ donc 2 n'est pas une racine de f(x); $f(-3)=(-3)^2+2\times (-3)-3=0$ donc -3 est bien une racine de f(x).

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^2 + 2x - 3$.

2. Montrer que la forme factorisée de la fonction f(x) est f(x) = (x - 1)(x + 3).

1 et -3 étant des racines de f(x), ce polynôme s'écrit sous la forme a(x-1)(x-(-3))=a(x-1)(x+3).

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^2 + 2x - 3$.

2. Montrer que la forme factorisée de la fonction f(x) est f(x) = (x - 1)(x + 3).

1 et -3 étant des racines de f(x), ce polynôme s'écrit sous la forme a(x-1)(x-(-3))=a(x-1)(x+3).

De plus le coefficient devant x^2 vaut 1 donc a=1.

Ainsi f(x) = (x - 1)(x + 3).

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^2 + 2x - 3$.

3. Étudier le signe de la fonction f.

On étudie le signe de f(x) à l'aide d'un tableau de signes (sachant qu'on connait les racines du polynôme qui sont les valeurs en lesquelles chaque fonction affine s'annule).

x	$-\infty$	-3	1	$+\infty$
signe de $x-1$				
signe de $x+3$				
signe du produit				•

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^2 + 2x - 3$.

3. Étudier le signe de la fonction f.

On étudie le signe de f(x) à l'aide d'un tableau de signes (sachant qu'on connait les racines du polynôme qui sont les valeurs en lesquelles chaque fonction affine s'annule).

x	$-\infty$	-3		1	$+\infty$
signe de $x-1$	_		_	0	+
signe de $x+3$	_	ф	+		+
signe du produit					

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^2 + 2x - 3$.

3. Étudier le signe de la fonction f.

On étudie le signe de f(x) à l'aide d'un tableau de signes (sachant qu'on connait les racines du polynôme qui sont les valeurs en lesquelles chaque fonction affine s'annule).

x	$-\infty$	-3		1	$+\infty$
signe de $x-1$	_		_	ф	+
signe de $x+3$	_	•	+		+
signe du produit	+	0	_	0	+

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^2 + 2x - 3$.

4. Parmi les trois courbes A, B et C proposées ci-dessous, déterminer celle représentant la fonction f.

f admet 1 et -3 pour racines, donc la courbe doit couper l'axe des abscisses aux points de coordonnées $(1\ ;\ 0)$ et $(-3\ ;\ 0)$. On peut ainsi exclure la courbe B.

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^2 + 2x - 3$.

4. Parmi les trois courbes A, B et C proposées ci-dessous, déterminer celle représentant la fonction f.

f admet 1 et -3 pour racines, donc la courbe doit couper l'axe des abscisses aux points de coordonnées $(1\ ;\ 0)$ et $(-3\ ;\ 0)$. On peut ainsi exclure la courbe B.

De plus le coefficient devant x^2 vaut 1 qui est positif, donc la parabole est tournée vers le haut. Ainsi la courbe représentant f est la courbe A.