

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 ПРОГРАММНАЯ ИНЖЕНЕРИЯ

ОТЧЕТ

по лабораторной работе № ___1__

Название: Синхронные одноступенчатые триггеры со статическим и динамическим управлением записью

Дисциплина: Архитектура ЭВМ

Студент	<u>ИУ7-45Б</u> (Группа)	(Подпись, дата)	<u>А.П. Бугаенко</u> (И.О. Фамилия)
Преподавател	Ъ		Ю.А.Попов
		(Подпись, дата)	(И.О. Фамилия)

Цель работы — изучить схемы асинхронного RS-триггера, который является запоминающей ячейкой всех типов триггеров, синхронных RS- и D-триггеров со статическим управлением записью и DV-триггера с динамическим управлением записью.

Задание №1. Исследовать работу асинхронного RS-триггера с инверсными входами в статическом режиме.

Схема RS-триггера на ЛЭ И-НЕ с подключёнными световыми индикаторами:

Рисунок 1 - Схема RS-триггера на ЛЭ И-НЕ

Таблица 1 - Таблица переходов RS-триггера на ЛЭ И-НЕ

Вход		Выход	
\sim S _n	$\sim R_n$	Q_{n+1}	$\sim Q_{n+1}$
0	0	X	X
0	1	0	1
1	0	1	0
1	1	Qn	Qn

Задание №2. Исследовать работу синхронного RS-триггера в статическом режиме.

Рисунок 2 - Схема синхронного RS-триггера в статическом режиме

Таблица 2 - Таблица переходов для RS-триггера на ЛЭ И-НЕ

Вход			Выход	
S _n	R _n	С	Q_{n+1}	$\sim Q_{n+1}$
0	0	0	X	X
0	0	1	X	X
0	0	0	X	X
0	1	0	X	X
0	1	1	1	0
0	1	0	1	0
1	0	0	1	0
1	0	1	0	1
1	0	0	0	1
1	1	0	0	1
1	1	1	Qn	Qn
1	1	0	Qn	Qn

Задание №3. Исследовать работу синхронного D-триггера в статическом режиме.

Рисунок 3 - Схема синхронного D-триггера

Таблица 3 - Таблица переходов синхронного D-триггера

C _n	D _n	Q_{n+1}
0	0	Qn
0	1	Qn
1	0	0
1	1	1

Задание №4. Исследовать схему синхронного D-триггера с динамическим управлением записью в статическом режиме.

Рисунок 4 - Схема синхронного D-триггера с динамическим управлением записью Асинхронные входы \sim R и \sim S используются для начальной установки состояния в 1 или 0.

Таблица 4 - Таблица переходов для ~S ~R входов синхронного D-триггера

t _n		t_{n+1}
$\sim S_n$	$\sim R_n$	Q_{n+1}
0	0	X
0	1	1
1	0	0

Таблица 5 - Таблица переходов для входов C_n, C_{n+1}, D_n синхронного D-триггера

C _n	C_{n+1}	D _n	Q_{n+1}
0	0	0	Qn
0	0	1	Qn
0	1	0	0
0	1	1	1
1	0	0	Qn
1	0	1	Qn
1	1	0	Qn
1	1	1	Qn

Задание №5. Исследовать схему синхронного DV-триггера с динамическим управлением записью в динамическом режиме.

Рисунок 5 - Схема синхронного DV-триггера с динамическим управлением записью

Рисунок 6 - Результаты анализа работы синхронного DV-триггера VL показывает сигнал входа V, когда V = 1 DV триггер ведёт себя как D-триггер, если V = 0, то он переходит в режим хранения информации. Как мы можем увидеть, значение QL не меняется, когда V = 0. Что означает, что информация сохраняется. Запись информации происходит, когда C = 1, V = 1. Как мы можем увидеть, QL принимает значение потенциала входа D при C = 1 и V = 1, что и требовалось показать.

Задание №6. Исследовать работу DV-триггера, включенного по схеме TV-триггера.

Рисунок 7 - Схема DV-триггера, включённого по схеме TV-триггера

Рисунок 8 - Результаты анализа работы синхронного DV-триггера, включённого по схеме TV-триггера

Смысл Т-триггера состоит в том, чтобы подсчитывать поступающие на вход Т импульсы. Значение Q остаётся неизменным, если Т не меняется, и меняется, если Т переходит либо с 0 на 1, либо с 1 на 0. При этом V должен быть равен 1.

Вывод:

В данной лабораторной работе были изучены различные виды асинхронных и синхронных триггеров, а также экспериментальным путём вывели таблицы истинности. В результате мы увидели, что триггеры могут применяться для хранения и передачи информации в двоичном представлении, причём длительность и качество хранения этой информации зависит от вида триггера.