

# Gradients and initialization



Understanding







### **Goal**: to compute the derivatives of the loss $\ell$ with respect to each of the weights (arrows) and biases (not shown)



#### Backpropagation forward pass



**Figure 7.3** Backpropagation forward pass. We compute and store each of the intermediate variables in turn until we finally calculate the loss.

#### Backpropagation backward pass



**Figure 7.4** Backpropagation backward pass #1. We work backward from the end of the function computing the derivatives  $\partial \ell_i/\partial f_{\bullet}$  and  $\partial \ell_i/\partial h_{\bullet}$  of the loss with respect to the intermediate quantities. Each derivative is computed from the previous one by multiplying by terms of the form  $\partial f_k/\partial h_k$  or  $\partial h_k/\partial f_{k-1}$ .

$$(x_i) \qquad (\frac{\partial \ell_i}{\partial f_0}) \stackrel{\partial h_1}{\longleftarrow} (\frac{\partial \ell_i}{\partial h_1}) \stackrel{\partial f_1}{\longleftarrow} (\frac{\partial \ell_i}{\partial f_1}) \stackrel{\partial h_2}{\longleftarrow} (\frac{\partial \ell_i}{\partial h_2}) \stackrel{\partial f_2}{\longleftarrow} (\frac{\partial \ell_i}{\partial f_2}) \stackrel{\partial h_3}{\longleftarrow} (\frac{\partial \ell_i}{\partial h_3}) \stackrel{\partial f_3}{\longleftarrow} (\frac{\partial \ell_i}{\partial f_3}) \stackrel{\partial \ell_i}{\longleftarrow} (\ell_i)$$

$$\frac{\partial \ell_{i}}{\partial f_{2}} = \frac{\partial h_{3}}{\partial f_{2}} \left( \frac{\partial f_{3}}{\partial h_{3}} \frac{\partial \ell_{i}}{\partial f_{3}} \right) 
\frac{\partial \ell_{i}}{\partial h_{2}} = \frac{\partial f_{2}}{\partial h_{2}} \left( \frac{\partial h_{3}}{\partial f_{2}} \frac{\partial f_{3}}{\partial h_{3}} \frac{\partial \ell_{i}}{\partial f_{3}} \right) 
\frac{\partial \ell_{i}}{\partial f_{1}} = \frac{\partial h_{2}}{\partial f_{1}} \left( \frac{\partial f_{2}}{\partial h_{2}} \frac{\partial h_{3}}{\partial f_{2}} \frac{\partial f_{3}}{\partial h_{3}} \frac{\partial \ell_{i}}{\partial f_{3}} \right) 
\frac{\partial \ell_{i}}{\partial h_{1}} = \frac{\partial f_{1}}{\partial h_{1}} \left( \frac{\partial h_{2}}{\partial f_{1}} \frac{\partial f_{2}}{\partial h_{2}} \frac{\partial h_{3}}{\partial f_{2}} \frac{\partial f_{3}}{\partial h_{3}} \frac{\partial \ell_{i}}{\partial f_{3}} \right) 
\frac{\partial \ell_{i}}{\partial f_{0}} = \frac{\partial h_{1}}{\partial f_{0}} \left( \frac{\partial f_{1}}{\partial h_{1}} \frac{\partial h_{2}}{\partial f_{1}} \frac{\partial f_{2}}{\partial h_{2}} \frac{\partial h_{3}}{\partial f_{2}} \frac{\partial f_{3}}{\partial h_{3}} \frac{\partial \ell_{i}}{\partial f_{3}} \right)$$

$$\underbrace{\begin{pmatrix} x_i \end{pmatrix}} \longrightarrow \underbrace{\begin{pmatrix} f_1 \end{pmatrix}} \longrightarrow \underbrace{\begin{pmatrix} f_2 \end{pmatrix}} \longrightarrow \underbrace{\begin{pmatrix} f_3 \end{pmatrix}} \longrightarrow \underbrace{\begin{pmatrix} \ell_i \end{pmatrix}}$$

$$f_k = \beta_k + \omega_k \cdot h_k$$

$$\frac{\partial f_k}{\partial \beta_k} = 1$$
 and  $\frac{\partial f_k}{\partial \omega_k} = h$ 

$$egin{array}{lll} \mathbf{h}_1 &=& \mathbf{a}[\mathbf{f}_0] \ \mathbf{f}_1 &=& oldsymbol{eta}_1 + oldsymbol{\Omega}_1 \mathbf{h}_1 \ \mathbf{h}_2 &=& \mathbf{a}[\mathbf{f}_1] \ \mathbf{f}_2 &=& oldsymbol{eta}_2 + oldsymbol{\Omega}_2 \mathbf{h}_2 \ \mathbf{h}_3 &=& \mathbf{a}[\mathbf{f}_2] \ \mathbf{f}_3 &=& oldsymbol{eta}_3 + oldsymbol{\Omega}_3 \mathbf{h}_3 \ \ell_i &=& \mathbb{I}[\mathbf{f}_3, y_i], \end{array}$$

$$\partial \ell_i \quad \partial \mathbf{h}_3 \ \partial \mathbf{f}_3 \ \partial \ell_i$$
  $\mathbf{f}_0 = oldsymbol{eta}_0 + oldsymbol{\Omega}_0 \mathbf{x}_i$ 

 $\mathbf{h}_1 = \mathbf{a}[\mathbf{f}_0]$ 

 $\mathbf{h}_2 = \mathbf{a}[\mathbf{f}_1]$ 

 $\mathbf{h}_3 = \mathbf{a}[\mathbf{f}_2]$ 

 $\mathbf{f}_1 = \boldsymbol{\beta}_1 + \boldsymbol{\Omega}_1 \mathbf{h}_1$ 

 $\mathbf{f}_2 = \boldsymbol{\beta}_2 + \boldsymbol{\Omega}_2 \mathbf{h}_2$ 

 $\mathbf{f}_3 = \boldsymbol{\beta}_3 + \boldsymbol{\Omega}_3 \mathbf{h}_3$ 

 $\ell_i = \mathbf{l}[\mathbf{f}_3, y_i],$ 

$$\frac{\partial \mathbf{f}}{\partial \mathbf{f}_2} = \frac{\partial}{\partial \mathbf{f}_2} \frac{\partial}{\partial \mathbf{h}_3} \frac{\partial}{\partial \mathbf{f}_3}$$

$$D_3 \times D_3, D_3 \times D_f, \text{ and } D_f \times 1$$

$$\partial \ell_i$$
  $\partial \mathbf{h}_3$   $\partial \mathbf{f}_3$   $\partial \ell_i$   $\partial \mathbf{h}_3$   $\partial \mathbf{h}_3$   $\partial \mathbf{h}_3$   $\partial \mathbf{h}_4$   $\partial \mathbf{h}_5$   $\partial \mathbf{h}_5$   $\partial \mathbf{h}_5$   $\partial \mathbf{h}_6$   $\partial \mathbf{h}_7$   $\partial \mathbf{h}_8$   $\partial \mathbf{h}_8$ 

$$\frac{\partial \ell_i}{\partial \mathbf{f}_2} = \frac{\partial \mathbf{h}_3}{\partial \mathbf{f}_2} \frac{\partial \mathbf{h}_3}{\partial \mathbf{h}_3} \frac{\partial \ell_i}{\partial \mathbf{f}_3}$$

 $\partial \ell_i$ 

$$D_3 \times D_3, D_3 \times D_f, \text{ and } D_f \times 1$$

$$= \frac{\partial \mathbf{h}_2}{\partial \mathbf{a}} \frac{\partial \mathbf{f}_2}{\partial \mathbf{r}} \left( \frac{\partial \mathbf{h}_3}{\partial \mathbf{a}} \frac{\partial \mathbf{f}_3}{\partial \mathbf{r}} \frac{\partial \ell_i}{\partial \mathbf{r}} \right)$$

$$\frac{\partial \mathbf{h}_2}{\partial \mathbf{f}_1} \frac{\partial \mathbf{f}_2}{\partial \mathbf{h}_2} \left( \frac{\partial \mathbf{h}_3}{\partial \mathbf{f}_2} \frac{\partial \mathbf{f}_3}{\partial \mathbf{h}_3} \frac{\partial \ell_i}{\partial \mathbf{f}_3} \right)$$

$$egin{array}{lll} \mathbf{h}_1 &=& \mathbf{a}[\mathbf{f}_0] \ \mathbf{f}_1 &=& oldsymbol{eta}_1 + oldsymbol{\Omega}_1 \mathbf{h}_1 \ \mathbf{h}_2 &=& \mathbf{a}[\mathbf{f}_1] \end{array}$$

 $\mathbf{f}_2 = \boldsymbol{\beta}_2 + \boldsymbol{\Omega}_2 \mathbf{h}_2$ 

 $\mathbf{h}_3 = \mathbf{a}[\mathbf{f}_2]$  $\mathbf{f}_3 = \boldsymbol{\beta}_3 + \boldsymbol{\Omega}_3 \mathbf{h}_3$  $\ell_i = \mathbf{l}[\mathbf{f}_3, y_i],$ 

$$(x_i) \xrightarrow{} (f_0) \xrightarrow{} (h_1) \xrightarrow{} (f_1) \xrightarrow{} (h_2) \xrightarrow{} (f_2) \xrightarrow{} (h_3) \xrightarrow{} (f_3) \xrightarrow{} (\ell_i)$$

$$\underline{\partial \ell_i} \quad \underline{\partial \mathbf{h}_2} \ \underline{\partial \mathbf{h}_2} \ \underline{\partial \mathbf{h}_2} \ \underline{\partial \mathbf{h}_3} \ \underline{\partial \mathbf{h}_3} \ \underline{\partial \ell_i} ) \qquad \mathbf{h}_1 \quad = \quad \mathbf{a}[\mathbf{f}_0]$$

$$\frac{\partial \ell_{i}}{\partial \mathbf{f}_{1}} = \frac{\partial \mathbf{h}_{2}}{\partial \mathbf{f}_{1}} \frac{\partial \mathbf{f}_{2}}{\partial \mathbf{h}_{2}} \left( \frac{\partial \mathbf{h}_{3}}{\partial \mathbf{f}_{2}} \frac{\partial \mathbf{f}_{3}}{\partial \mathbf{h}_{3}} \frac{\partial \ell_{i}}{\partial \mathbf{f}_{3}} \right)$$

$$\frac{\partial \ell_{i}}{\partial \mathbf{f}_{0}} = \frac{\partial \mathbf{h}_{1}}{\partial \mathbf{f}_{0}} \frac{\partial \mathbf{f}_{1}}{\partial \mathbf{h}_{1}} \left( \frac{\partial \mathbf{h}_{2}}{\partial \mathbf{f}_{1}} \frac{\partial \mathbf{f}_{2}}{\partial \mathbf{h}_{2}} \frac{\partial \mathbf{h}_{3}}{\partial \mathbf{f}_{2}} \frac{\partial \mathbf{f}_{3}}{\partial \mathbf{h}_{3}} \frac{\partial \ell_{i}}{\partial \mathbf{f}_{3}} \right)$$

 $egin{array}{lll} {f f}_1 & = & m{eta}_1 + m{\Omega}_1 {f h}_1 \ {f h}_2 & = & {f a}[{f f}_1] \ {f f}_2 & = & m{eta}_2 + m{\Omega}_2 {f h}_2 \ {f h}_3 & = & {f a}[{f f}_2] \ {f f}_3 & = & m{eta}_3 + m{\Omega}_3 {f h}_3 \end{array}$ 

 $\ell_i = \mathbf{l}[\mathbf{f}_3, y_i],$ 

The derivative  $\partial \ell_i/\partial \mathbf{f}_3$  of the loss  $\ell_i$  with respect to the network output  $\mathbf{f}_3$  will depend on the loss function but usually has a simple form.

The derivative  $\partial \mathbf{f}_3/\partial \mathbf{h}_3$  of the network output with respect to hidden layer  $\mathbf{h}_3$  is:

$$\begin{split} \frac{\partial \mathbf{f}_3}{\partial \mathbf{h}_3} &= \frac{\partial}{\partial \mathbf{h}_3} \left( \boldsymbol{\beta}_3 + \boldsymbol{\Omega}_3 \mathbf{h}_3 \right) = \boldsymbol{\Omega}_3^T \\ \frac{\partial \ell_i}{\partial \boldsymbol{\beta}_k} &= \frac{\partial \mathbf{f}_k}{\partial \boldsymbol{\beta}_k} \frac{\partial \ell_i}{\partial \mathbf{f}_k} \\ &= \frac{\partial}{\partial \boldsymbol{\beta}_k} \left( \boldsymbol{\beta}_k + \boldsymbol{\Omega}_k \mathbf{h}_k \right) \frac{\partial \ell_i}{\partial \mathbf{f}_k} \\ &= \frac{\partial \ell_i}{\partial \mathbf{f}_k}, \end{split}$$

 $\mathbf{f}_0 = oldsymbol{eta}_0 + oldsymbol{\Omega}_0 \mathbf{x}_i$  $\mathbf{h}_1 = \mathbf{a}[\mathbf{f}_0]$ 

 $\mathbf{f}_1 = \boldsymbol{\beta}_1 + \boldsymbol{\Omega}_1 \mathbf{h}_1$ 

 $\mathbf{h}_2 = \mathbf{a}[\mathbf{f}_1]$  $\mathbf{f}_2 = \boldsymbol{\beta}_2 + \boldsymbol{\Omega}_2 \mathbf{h}_2$  $\mathbf{h}_3 = \mathbf{a}[\mathbf{f}_2]$ 

 $\mathbf{f}_3 = \boldsymbol{\beta}_3 + \boldsymbol{\Omega}_3 \mathbf{h}_3$  $\ell_i = \mathbf{l}[\mathbf{f}_3, y_i],$ 

$$egin{array}{lll} rac{\partial \ell_i}{\partial oldsymbol{eta}_k} &=& rac{\partial \mathbf{f}_k}{\partial oldsymbol{eta}_k} rac{\partial \ell_i}{\partial \mathbf{f}_k} \ &=& rac{\partial}{\partial oldsymbol{eta}_k} \left( oldsymbol{eta}_k + oldsymbol{\Omega}_k \mathbf{h}_k 
ight) rac{\partial \ell_i}{\partial \mathbf{f}_k} \ &=& rac{\partial \ell_i}{\partial \mathbf{f}_k}, \ rac{\partial \ell_i}{\partial oldsymbol{eta}_k} & \partial \ell_i \end{array}$$

$$\frac{\partial \ell_i}{\partial \mathbf{\Omega}_k} = \frac{\partial \mathbf{f}_k}{\partial \mathbf{\Omega}_k} \frac{\partial \ell_i}{\partial \mathbf{f}_k} 
= \frac{\partial}{\partial \mathbf{\Omega}_k} (\boldsymbol{\beta}_k + \mathbf{\Omega}_k \mathbf{h}_k) \frac{\partial \ell_i}{\partial \mathbf{f}_k} 
= \frac{\partial \ell_i}{\partial \mathbf{f}_k} \mathbf{h}_k^T.$$

$$= \frac{\partial}{\partial \mathbf{\Omega}_{k}} (\boldsymbol{\beta}_{k} + \mathbf{\Omega}_{k} \mathbf{h}_{k}) \frac{\partial \ell_{i}}{\partial \mathbf{f}_{k}}$$

$$= \frac{\partial \ell_{i}}{\partial \mathbf{f}_{k}} \mathbf{h}_{k}^{T}.$$

$$\frac{\partial \ell_{i}}{\partial \boldsymbol{\beta}_{0}} = \frac{\partial \ell_{i}}{\partial \mathbf{f}_{0}}$$

$$\frac{\partial \ell_{i}}{\partial \mathbf{\Omega}_{0}} = \frac{\partial \ell_{i}}{\partial \mathbf{f}_{0}} \mathbf{x}_{i}^{T}$$

 $\mathbf{f}_0 = oldsymbol{eta}_0 + oldsymbol{\Omega}_0 \mathbf{x}_i$ 

 $\mathbf{f}_1 = \boldsymbol{\beta}_1 + \boldsymbol{\Omega}_1 \mathbf{h}_1$ 

 $\mathbf{f}_2 = \boldsymbol{\beta}_2 + \boldsymbol{\Omega}_2 \mathbf{h}_2$ 

 $\mathbf{f}_3 = \boldsymbol{\beta}_3 + \boldsymbol{\Omega}_3 \mathbf{h}_3$ 

 $\ell_i = \mathbf{l}[\mathbf{f}_3, y_i],$ 

 $\mathbf{h}_1 = \mathbf{a}[\mathbf{f}_0]$ 

 $\mathbf{h}_2 = \mathbf{a}[\mathbf{f}_1]$ 

 $\mathbf{h}_3 = \mathbf{a}[\mathbf{f}_2]$ 

#### Forward pass



An example:

$$f_0 = \beta_0 + \omega_0 \cdot x_i$$

$$h_1 = \sin[f_0]$$

$$f_1 = \beta_1 + \omega_1 \cdot h_1$$

$$h_2 = \exp[f_1]$$

$$f_2 = \beta_2 + \omega_2 \cdot h_2$$

$$h_3 = \cos[f_2]$$

$$f_3 = \beta_3 + \omega_3 \cdot h_3$$

$$\ell_i = (f_3 - y_i)^2$$

#### Backward pass

$$\underbrace{\begin{pmatrix} \partial \ell_i \\ \partial f_0 \end{pmatrix}}^{\bullet} \underbrace{\begin{pmatrix} \partial h_1 \\ \partial h_1 \end{pmatrix}}^{\bullet} \underbrace{\begin{pmatrix} \partial f_1 \\ \partial h_1 \end{pmatrix}}^{\bullet} \underbrace{\begin{pmatrix} \partial \ell_i \\ \partial f_1 \end{pmatrix}}^{\bullet} \underbrace{\begin{pmatrix} \partial h_2 \\ \partial f_1 \end{pmatrix}}^{\bullet} \underbrace{\begin{pmatrix} \partial f_2 \\ \partial h_2 \end{pmatrix}}^{\bullet} \underbrace{\begin{pmatrix} \partial \ell_i \\ \partial f_2 \end{pmatrix}}^{\bullet} \underbrace{\begin{pmatrix} \partial h_3 \\ \partial f_2 \end{pmatrix}}^{\bullet} \underbrace{\begin{pmatrix} \partial h_3 \\ \partial h_3 \end{pmatrix}}^{\bullet} \underbrace{\begin{pmatrix} \partial f_3 \\ \partial h_3 \end{pmatrix}}^{\bullet} \underbrace{\begin{pmatrix} \partial \ell_i \\ \partial f_3 \end{pmatrix}}^{\bullet} \underbrace{\begin{pmatrix} \partial \ell_i \\ \partial f_3$$

$$\frac{\partial \ell_i}{\partial f_3}$$
,  $\frac{\partial \ell_i}{\partial h_3}$ ,  $\frac{\partial \ell_i}{\partial f_2}$ ,  $\frac{\partial \ell_i}{\partial h_2}$ ,  $\frac{\partial \ell_i}{\partial f_1}$ ,  $\frac{\partial \ell_i}{\partial h_1}$ , and  $\frac{\partial \ell_i}{\partial f_0}$ 

$$f_k = eta_k + \omega_k.h_k$$
  $rac{\partial f_i}{\partial f_3} = 2(f_3 - y_i)$   $rac{\partial f_k}{\partial f_3} = 1$  and  $rac{\partial f_k}{\partial f_k} = -h_i$ 

 $h_2$ 

 $f_2$ 

$$\frac{\partial \ell_{i}}{\partial h_{3}} = \frac{\partial f_{3}}{\partial h_{3}} \frac{\partial \ell_{i}}{\partial f_{3}}$$

$$\frac{\partial \ell_{i}}{\partial f_{2}} = \frac{\partial h_{3}}{\partial f_{2}} \left( \frac{\partial f_{3}}{\partial h_{3}} \frac{\partial \ell_{i}}{\partial f_{3}} \right)$$

$$\frac{\partial \ell_{i}}{\partial h_{2}} = \frac{\partial f_{2}}{\partial h_{2}} \left( \frac{\partial h_{3}}{\partial f_{2}} \frac{\partial f_{3}}{\partial h_{3}} \frac{\partial \ell_{i}}{\partial f_{3}} \right)$$

$$\frac{\partial \ell_{i}}{\partial f_{1}} = \frac{\partial h_{2}}{\partial f_{1}} \left( \frac{\partial f_{2}}{\partial h_{2}} \frac{\partial h_{3}}{\partial f_{2}} \frac{\partial f_{3}}{\partial h_{3}} \frac{\partial \ell_{i}}{\partial f_{3}} \right)$$

$$\frac{\partial \ell_{i}}{\partial h_{1}} = \frac{\partial f_{1}}{\partial h_{1}} \left( \frac{\partial h_{2}}{\partial f_{1}} \frac{\partial f_{2}}{\partial h_{2}} \frac{\partial h_{3}}{\partial f_{2}} \frac{\partial f_{3}}{\partial h_{3}} \frac{\partial \ell_{i}}{\partial f_{3}} \right)$$

 $\frac{\partial \ell_i}{\partial f_0} = \frac{\partial h_1}{\partial f_0} \left( \frac{\partial f_1}{\partial h_1} \frac{\partial h_2}{\partial f_1} \frac{\partial f_2}{\partial h_2} \frac{\partial h_3}{\partial f_2} \frac{\partial f_3}{\partial h_3} \frac{\partial \ell_i}{\partial f_3} \right)$ 

$$\frac{\partial f_k}{\partial \beta_k} = 1$$
 and  $\frac{\partial f_k}{\partial \omega_k} = h_k$ 

$$\frac{\partial f_0}{\partial \beta_0} = 1$$
 and  $\frac{\partial f_0}{\partial \omega_0} = x_i$ 

#### Parameter initialization

$$\mathbf{f}_k = \boldsymbol{\beta}_k + \boldsymbol{\Omega}_k \mathbf{h}_k$$
  
=  $\boldsymbol{\beta}_k + \boldsymbol{\Omega}_k \mathbf{a}[\mathbf{f}_{k-1}]$ 

#### vanishing gradient problem & exploding gradient problem



$$\mathbb{E}[f_i'] = \mathbb{E}\left[\beta_i + \sum_{j=1}^{D_h} \Omega_{ij} h_j\right]$$

$$= \mathbb{E}\left[\beta_i\right] + \sum_{j=1}^{D_h} \mathbb{E}\left[\Omega_{ij} h_j\right]$$

$$= \mathbb{E}\left[\beta_i\right] + \sum_{j=1}^{D_h} \mathbb{E}\left[\Omega_{ij}\right] \mathbb{E}\left[h_j\right]$$

 $= 0 + \sum_{i=1}^{D_h} 0 \cdot \mathbb{E}\left[h_j\right] = 0,$ 

$$\sigma_{f'}^{2} = \mathbb{E}[f_{i}'^{2}] - \mathbb{E}[f_{i}']^{2}$$

$$= \mathbb{E}\left[\left(\beta_{i} + \sum_{j=1}^{D_{h}} \Omega_{ij} h_{j}\right)^{2}\right] - 0$$

$$= \mathbb{E}\left[\left(\sum_{j=1}^{D_{h}} \Omega_{ij} h_{j}\right)^{2}\right]$$

$$= \sum_{j=1}^{D_{h}} \mathbb{E}\left[\Omega_{ij}^{2}\right] \mathbb{E}\left[h_{j}^{2}\right]$$

 $= \sum_{i=1}^{D_h} \sigma_{\Omega}^2 \mathbb{E}\left[h_j^2\right] = \sigma_{\Omega}^2 \sum_{i=1}^{D_h} \mathbb{E}\left[h_j^2\right],$ 

 $\sigma^2 = \mathbb{E}[(z - \mathbb{E}[z])^2] = \mathbb{E}[z^2] - \mathbb{E}[z]^2$ 

 $\sigma_{f'}^2 = \sigma_{\Omega}^2 \sum_{j=1}^{D_h} \frac{\sigma_f^2}{2} = \frac{1}{2} D_h \sigma_{\Omega}^2 \sigma_f^2$ 

#### He initialization (Kaiming Initialization)

$$\sigma_{\Omega}^2 = \frac{2}{D_h}$$



$$\sigma_{f'}^2 = \sigma_{\Omega}^2 \sum_{j=1}^{D_h} \frac{\sigma_f^2}{2} = \frac{1}{2} D_h \sigma_{\Omega}^2 \sigma_f^2$$

#### Initialization for both forward and backward pass

$$\sigma_{\Omega}^2 = \frac{2}{D_{h'}}$$

#### Initialization for both forward and backward pass

$$\sigma_{\Omega}^2 = \frac{4}{D_h + D_{h'}}$$

## Understanding Deep Learning Chapter 8