

概述

H6201是支持宽电压输入的开关降压型DC-DC 的控制器,最高输入电压可高达150V。H6201同时支持输出恒压和输出恒流功能。通过设置CS电阻可设置输出恒流值。通过设置FB1、FB2引脚的分压电阻可设置输出恒压值。H6201采用固定频率的PWM控制方式,典型开关频率为140KHz。轻载时会自动降低开关频率以获得高的转换效率。H6201内部集成软启动以及过温保护电路,输出短路保护,限流保护等功能,提高系统可靠性。H6201 具有低待机功耗、高效率、低纹波、优异的母线电压调整率和负载调整率等特性。支持大电流输出,输出电流可高达10A。

特点

- ★宽输入电压范围: 8V~120V
- ★输出电压从5V到30V可调
- ★支持输出恒流
- ★支持输出 12V/10A, 5V/3A
- ★高效率:可高达 98%
- ★工作频率: 140KHz
- ★低待机功耗
- ★内置过温保护
- ★内置软启动
- ★内置输出短路保护

应用

- ★车充、电池充电
- ★恒压源
- ★电动汽车、电动自行车、电瓶车
- ★扭扭车、卡车
- ★电动车转换器

H6201_版本 2.0 1 of 8

典型应用电路图

恒流恒压典型应用(一)Vin=8-100V, Vout=5V/2A

LED恒流典型应用(二) Vin=8-120V, 降压恒流2A

H6201_版本 2.0 2 of 8

封装及管脚分配

.

管脚定义

- 1 DRV 接外部MOS 管栅极
- 2 VDD 芯片电源
- 3 FB1 输出反馈电压正端采样
- 4 FB2 输出反馈电压负端采样
- 5 VCC 内部5V LDO 输出,接电容。
- 6 VSN 电感电流检测电阻负端
- 7 VSS 芯片地
- 8 VSP 电感电流检测电阻正端

H6201_版本 2.0

内部电路方框图

极限参数 (注1)

符号	描述	参数范围	单位
VDD	VDD端最大电压	33	V
Vmax	FB1, FB2, VCC, VSP, VSN, DRV脚电压	-0.3~6	V
Psop8	SOP8 封装最大功耗	0.8	W
TA	工作温度范围	-20 [~] 85	°C
Тѕтс	存储温度范围	-40 [~] 120	°C
TsD	焊接温度范围(时间小于30 秒)	240	°C
V ESD	静电耐压值 (人体模型)	2000	V

注1: 极限参数是指超过上表中规定的工作范围可能会导致器件损坏。而工作在以上极限条件下可能会影响器件的可靠性。

H6201_版本 2.0 4 of 8

电特性(除非特别说明, VDD =12V, TA =25。C)

参数	符号	测试条件	最小值	典型值	最大值	单位			
电源									
VDD 钳位电压	VDD	I VDD<10mA		33		V			
欠压保护开启	VDD_ON	VDD上升		6		V			
欠压保护关闭	VDD_0FF	VDD下降		4		V			
电源电流									
工作电流	I OP	DRV负载1nF电容		1		mA			
启动电流	ISTARTUP	VDD=5V		40	100	uA			
功率管电流限流									
过流保护阈值	VCS_LMT			300		mV			
输出电流与输出电压采样									
VSP, VSN 电压降	VCS		145	150	155	mV			
FB1, FB2 电压差	VFB		369	380	391	mV			
开关频率									
开关频率	FS			140		KHZ			
DRV 驱动									
DRV 脚电压	VDRV			5. 5		V			
DRV 上升时	TRISE	DRV 脚接1nF电容		30		nS			
DRV 下降时间	TFALL	DRV 脚接1nF电容		30		nS			
过温保护									
过温调节	OTP_TH			150		°C			
LDO									
VCC电压	VCC			5. 5		V			

H6201_版本 2.0 5 of 8

应用指南 概述

H6201是一款兼容宽输入电压范围的开关降压型DC-DC控制器,其支持输入电压可高达120V。 H6201采用固定频率的PWM峰值电流模控制方式,具有低待机功耗、快的响应速度,以及优异的母 线电压与负载调整率。典型开关频率为140KHz。轻载时会自动降低开关频率以获得高的转换效率。 H6201同时支持输出恒压与输出恒流。H6201内部集成软启动以及过温保护电路,输出短路保护, 限流保护等功能,提高系统可靠性。

最大输出电流设置

最大输出电流通过连接于VSP与VSN之间的电阻设置(参见图1 应用电路图):

$$IOUT _MAX = \frac{VCS}{R5}$$

VCS 典型值为150mV。例如R5=100m0hm 则输出限流为1.5A。

输出电压设置

通过连接于FB1, FB2 脚的分压电阻R1, R3, R2, R4 设置输出电压。电阻选择应满足R1=R2, R3=R4, 且需要使用1%精度的电阻。

$$VOUT = \frac{R3 + R1}{R1} * VFB$$

其中 VFB 典型值为380mV。

电感取值

电感典型取值在 33uH到100uH之间, 大的电感值可获得小的纹波电流有助于提高效率。另一方面需注意电感的ESR, ESR过大会降低效率。

MOS 管选择

首先要考虑MOS管的耐压,一般要求MOS管的耐压高过最大输入电压的1.2-1.5 倍以上。此外,MOS管的导通电阻RDSON要小,RDSON越小,损耗在MOS管上的功率也越小,系统转换效率就越高。然而RDSON并非越小越好,因为另外一方面还需考虑MOS管的节电容,节电容过大则会导致开关损耗加大从而降低转换效率。需综合评估折衷RDSON和节电容以获得高的转换效率。

过温保护

芯片内部集成过温保护,当芯片温度过高达到过温保护点(典型值为 150 度)时,系统会关断功率管,从而限制输入功率,增强系统可靠性。

H6201_版本 2.0 6 of 8

封装信息

SOP8 封装尺寸图:

H6201_版本 2.0 7 of 8

Comb. a I	Dimensions In	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	1. 350	1. 750	0. 053	0.069	
A1	0. 100	0. 250	0. 004	0. 010	
A2	1. 350	1. 550	0. 053	0.061	
b	0. 330	0. 510	0. 013	0. 020	
С	0. 170	0. 250	0.006	0. 010	
D	4. 700	5. 100	0. 185	0. 200	
E	3.800	4. 000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
е	1. 270 (BSC)		0. 050 (BSC)		
L	0. 400	1. 270	0. 016	0.050	
θ	0°	8°	0°	8°	

声明

- ▶ 本规格书所包含的信息仅作为惠新晨产品的应用指南。惠新晨不提供任何声明或保证,表示或暗示对该信息的准确性或完整性,使用者应当有责任对使用此类信息进行验证确认。
- ➤ 惠新晨有权对该产品做出修改与改进,以便为客户提供更优秀的产品,规格若有更改,恕不 另行通知。客户有责任在使用惠新晨产品进行产品研发时,严格按照对应规格书的要求或咨 询我司工程人员使用惠新晨产品,并在进行系统设计和整机制造时遵守安全标准并采取安全 措施。如果因为客户不当使用惠新晨产品而造成的人身伤害、财产损失等情况,惠新晨不承 担任何责任。
- ▶ 该产品主要用于消费电子产品,客户用于医学、军事、航空航天等领域的要求高质量、高可靠性的产品,造成人身伤害,财产损失等等,惠新晨不承担任何责任。

注意: 本产品为静电敏感元件,请注意防护! ESD 导致损害的范围可能从细微的性能下降至整机故障,因可能导致元件参数不能满足实际规格。

H6201_版本 2.0 8 of 8