เอกสารโครงการ: Baanneemerak

1. บทนำและปัญหา

บทนำ

แนวคิดของบ้านอัจฉริยะใช้เทคโนโลยี IoT เพื่อเพิ่มความสะดวกสบาย ประหยัดพลังงาน และเสริมสร้าง ความปลอดภัย โครงการนี้พัฒนาระบบบ้านอัจฉริยะที่มีคุณสมบัติหลากหลายโดยใช้บอร์ด ESP32 ร่วม กับเซนเซอร์และบริการคลาวด์ ระบบนี้ช่วยอัตโนมัติในงานประจำและแสดงผลแบบเรียลไทม์ผ่านแอป พลิเคชันเว็บและแดชบอร์ด

ปัญหา

ระบบบ้านทั่วไปยังคงพึ่งพาการทำงานด้วยมือ ซึ่งก่อให้เกิดปัญหา เช่น:

- ไฟฟ้าสูญเปล่าเนื่องจากลืมปิดไฟ
- ขาดระบบตรวจสอบข้อมูลสิ่งแวดล้อม เช่น อุณหภูมิและความชื้น
- การตอบสนองต่อฝน เช่น การเก็บผ้า ยังคงต้องทำด้วยมือ

โครงการนี้มุ่งเน้นแก้ปัญหาเหล่านี้ด้วยการผสมผสานเซนเซอร์และระบบอัตโนมัติ เพื่อสร้างบ้านที่ตอบ สนองต่อข้อมูลและความต้องการของผู้อยู่อาศัยได้อย่างเหมาะสม

2. งานที่เกี่ยวข้องหรือโชลูชันที่คล้ายกัน

ปัจจุบันมีโซลูชันบ้านอัจฉริยะ เช่น Google Nest หรือ Amazon Alexa ที่มีความก้าวหน้า แต่มีราคาสูง และใช้ระบบปิด โซลูชัน DIY เช่น Raspberry Pi หรือ Arduino มีความยืดหยุ่น แต่ขาดการเชื่อมต่อคลา วด์ขั้นสูง

โครงการนี้เน้นความสมดุลระหว่างราคาและฟังก์ชัน โดยผสาน ESP32, NETPIE, Firebase และ Google Sheets กับการสร้างเว็บแอปเฉพาะตัว

3. การออกแบบระบบ

ภาพรวมระบบ

ภาพแผนภาพแสดงการเชื่อมต่อระหว่างเซนเซอร์, เกตเวย์, คลาวด์ และแดชบอร์ด

4. ส่วนประกอบของระบบ

4.1 Sensor Node

1. HC-SR505 PIR Motion Sensor

- ตรวจจับการเคลื่อนไหวบนบันได
- เปิดไฟตรงบันได 10 วินาที
- o สั่งให้ ESP32-CAM ถ่ายภาพและอัปโหลดไปยัง Firebase

2. DHT11 Temperature and Humidity Sensor

- ตรวจสอบอุณหภูมิและความชื้นภายในบ้าน
- แสดงผลข้อมูลแบบเรียลไทม์บนแดชบอร์ด

3. Rain Sensor

- ติดตั้งบนหลังคา
- ตรวจจับฝนและสั่งให้มอเตอร์เก็บผ้าเพื่อกันฝน

4. Sound Sensor

- ติดตั้งบริเวณหัวเตียง
- ควบคุมไฟด้วยเสียงตบมือ หรือพูดเสียงดัง (1 ครั้งเปิด, 2 ครั้งปิด)

5. LDR Photoresistor Sensor

- ตรวจจับความเข้มแสงในโรงรถ
- เปิดไฟโดยอัตโนมัติเมื่อแสงน้อย
- ปิดไฟโดยอัตโนมัติเมื่อมีแสงสว่าง

4.2 Gateway

• ESP32-CAM

- ถ่ายภาพเมื่อมีการเคลื่อนใหวจาก PIR Motion Sensor
- o ส่งภาพไปยัง Firebase เพื่อเก็บและแสดงผล

4.3 Cloud / Storage

NETPIE

- ส่งข้อมูลแบบเรียลไทม์และควบคุมอุปกรณ์
- มีแดชบอร์ดสำหรับแสดงข้อมูลเซนเซอร์

Firebase

o เก็บภาพจาก ESP32-CAM

Google Sheets

เก็บข้อมูลเซนเซอร์ย้อนหลังเพื่อวิเคราะห์

4.4 Dashboard

- แอปพลิเคชันเว็บเฉพาะ: https://baannimeerak2.web.app
 - o แสดงข้อมูลแบบเรียลไทม์จาก NETPIE
 - o แสดงภาพจาก Firebase
 - ใช้สำหรับตรวจสอบ

5. ผลการทดสอบ

ตารางการทดสอบฟังก์ชันการทำงาน

ฟังก์ชัน	ผลลัพธ์ที่คาดหวัง	ผลการทดสอบ
การตรวจจับการเคลื่อนไหว	ไฟเปิด 10 วินาที	ผ่าน
การถ่ายภาพ	ESP32-CAM อัปโหลดภาพไป ยัง Firebase	ผ่าน
การแสดงผลอุณหภูมิและ ความชื้น	ข้อมูลแสดงบนแดชบอร์ดอย่าง ถูกต้อง	ผ่าน
การตรวจจับฝนและควบคุม มอเตอร์	มอเตอร์เก็บผ้าเพื่อเมื่อฝนตก	ผ่าน
การควบคุมด้วยเสียง	ไฟตอบสนองตามคำสั่งตบมือ	ผ่าน
การตรวจจับความเข้มแสง	ไฟในโรงรถเปิดโดยอัตโนมัติ เมื่อแสงน้อย	ผ่าน

6. การอภิปรายและสรุป

การอภิปราย

ระบบสามารถทำงานได้ตรงตามที่ออกแบบ โดยอัตโนมัติในงานสำคัญของบ้าน พร้อมกับมีแดชบอร์ด แสดงผล ความท้าทายที่พบ เช่น ความล่าช้าของเครือข่ายและระยะตรวจจับเซนเซอร์ที่จำกัด ซึ่งสามารถ พัฒนาให้ดียิ่งขึ้นในอนาคต

สรุป

โครงการบ้านอัจฉริยะนี้แสดงให้เห็นถึงการแก้ปัญหาอย่างมีประสิทธิภาพในราคาประหยัด และสามารถ ขยายขอบเขตการทำงานได้ ในอนาคตอาจเพิ่มฟังก์ชัน เช่น:

- 1. เพิ่มเชนเซอร์สำหรับตรวจจับแก๊สหรือปลั๊กไฟอัจฉริยะ
- 2. เพิ่มการควบคุมด้วยเสียงแบบเต็มรูปแบบ
- 3. ปรับปรุงประสิทธิภาพและความรวดเร็วของระบบ

โครงการนี้แสดงถึงการผสมผสานฮาร์ดแวร์และซอฟต์แวร์อย่างมีประสิทธิภาพ เพื่อตอบโจทย์ปัญหาใน ชีวิตจริงและเพิ่มคุณภาพชีวิตให้ดียิ่งขึ้น

7. การแบ่งงานในทีม

1. นายพีรธัช ขำมีศักดิ์ 6633175421

System Architect and Model Designer

หน้าที่รับผิดชอบ:

วางแผนผังระบบงานและออกแบบโมเดลของระบบ
สร้างโมเดลบ้านจำลองที่สามารถแสดงการทำงานของระบบจริง
ดูแลการจัดวางเซนเซอร์และมอเตอร์ในโมเดลบ้านให้ทำงานร่วมกับระบบฝังตัว

2. นายณภัทร ชาติวันไชย 6633059221

Cloud and Dashboard Developer

หน้าที่รับผิดชอบ:

พัฒนาและดูแลระบบ Web Application สำหรับแสดงข้อมูลแดชบอร์ด จัดการการ Deployment ระบบ Web App ขึ้น Cloud (Firebase Hosting) เชื่อมต่อข้อมูลจาก NETPIE และ Firebase มายังหน้า Dashboard ทดสอบและปรับปรุง UI/UX เพื่อให้ผู้ใช้งานสามารถเข้าใจข้อมูลได้ง่าย

3. นายศุภณัฏฐ์ ธนพรโพธิ์ 6633249221

Embedded System Developer

หน้าที่รับผิดชอบ:

เขียนและพัฒนาโค้ดสำหรับไมโครคอนโทรลเลอร์ (MCU) เช่น ESP32

เชื่อมต่อเซนเซอร์และมอเตอร์เข้ากับระบบ

จัดการการอัปโหลดข้อมูลเซนเซอร์ไปยัง Cloud Storage (NETPIE และ Google Sheets)

ทดสอบและแก้ไขปัญหาการทำงานของฮาร์ดแวร์

GitHub: https://github.com/LDZA01/Baannimeerak-project