Proof Series Episode 1: Writing Proofs (Non-Assessable)

Note(s)

The most important skill in Computer Science is to clearly communicate your ideas. A proof is an argument to convince someone that your statement is correct. This document will outline some common techniques we can use to prove that something is true.

Direct Proof

A direct proof starts with the given information and uses logical steps to arrive at the desired conclusion. *Exercise* 1. For any two integers a and b, if a and b are even, then their sum a + b is even.

Answer(s)

Let a and b be arbitrary even integers. By definition of even integers, there exist integers m and n such that:

$$a = 2m$$
 (1) and $b = 2n$. (2)

Consider the sum a + b:

$$a + b = 2m + 2n$$
 (by (1) and (2))
= $2(m + n)$. (factoring out 2)

Since m and n are integers, their sum is also an integer. Therefore, a+b can be expressed as 2 multiplied by an integer. By definition, we have a+b is even.

Proof by Contradiction

Suppose that we want to prove that a statement is true. We can assume the opposite is true and show that it would lead to a contradiction (an outcome that is always false). This would mean that our statement must be true!

Exercise 2. Prove $\sqrt{2}$ is irrational.

Answer(s)

Assume, for the sake of contradiction, that $\sqrt{2}$ is rational. By definition of rational numbers, there exist integers p and $q \neq 0$ where $\gcd(p,q) = 1$, such that:

$$\sqrt{2} = \frac{p}{q}.\tag{1}$$

Squaring both sides of (1):

$$2 = \frac{p^2}{q^2}. (2)$$

Multiplying both sides of (2) by q^2 :

$$2q^2 = p^2. (3)$$

Equation (3) implies that p^2 is even. By the lemma that "if p^2 is even, then p is even" (which we assume is proven elsewhere), we can conclude that p is even.

Since p is even, there exists an integer k such that:

$$p = 2k. (4)$$

Substituting (4) into (3):

$$2q^2 = (2k)^2 (5)$$

$$=4k^2, (6)$$

$$q^2 = 2k^2. (7)$$

Equation (7) implies that q^2 is even, and by the same lemma, q is even.

However, we have now shown that both p and q are even, so they have a common divisor of 2. This contradicts our assumption that $\gcd(p,q)=1$. This contradiction implies that our initial assumption must be false.

Therefore, we proved $\sqrt{2}$ is irrational.

Proof by Contrapositive

To prove an implication "if P then Q", we can instead prove its contrapositive "if not Q then not P". Exercise 3. For any integer n, if n^2 is even, then n is even.

Answer(s)

We will prove the contrapositive: if n is odd, then n^2 is odd. Let n be an arbitrary odd integer. By definition of odd integers, there exists an integer k such that:

$$n = 2k + 1. (8)$$

Consider n^2 :

$$n^2 = (2k+1)^2$$
, (by (8))

$$=4k^2 + 4k + 1,$$
 (expanding the square) (10)

$$= 2(2k^2 + 2k) + 1.$$
 (factoring out 2)

Let $m = 2k^2 + 2k$. Since k is an integer, m is also an integer. Therefore, we have $n^2 = 2m + 1$, where m is an integer. By definition of odd integers, n^2 is odd.

We have proved that if n is odd, then n^2 is odd. By contraposition, this proves that if n^2 is even, then n is even.

Exercises

Practice writing formal proofs for the following exercises:

- 1. Prove that the sum of two odd integers is always even.
- 2. Prove that if $a \mid b$ and $b \mid c$, then $a \mid c$. (Note: $a \mid b$ means "a divides b")
- 3. Prove that for any integer n, $n^2 n$ is always even.
- 4. Prove by contradiction that there are infinitely many prime numbers.