

1 Premier ordre

1.1 Second membre constant

(E)
$$ay' + by = c$$

$$(E_0) \quad ay' + by = 0$$

avec $a, b \neq 0$.

- **1.** On résout l'équation (E_0) : les solutions sont de la forme $Ke^{-\frac{b}{a}t}$ avec K une constante réelle.
- **2.** On trouve une solution constante de (*E*) : c'est $\frac{c}{h}$.
- **3.** On exprime les solutions de (E): ce sont les fonctions de la forme $Ke^{-\frac{b}{a}t} + \frac{c}{b}$ avec K une constante réelle.
- **4.** On détermine la valeur de K qui correspond à la condition initiale f(0) = d. On remplace t par 0 dans $Ke^{-\frac{b}{a}t} + \frac{c}{b}$:

$$Ke^{-\frac{b}{a} \times 0} + \frac{c}{b} = d$$

$$\Leftrightarrow K + \frac{c}{b} = d$$

$$\Leftrightarrow K = d - \frac{c}{b}$$

1.2 Second membre non constant

$$(E) \quad ay' + by = c(t)$$

$$(E_0) \quad ay' + by = 0$$

avec $a, b \neq 0$.

1. On résout l'équation (E_0) : les solutions sont de la forme $Ke^{-\frac{b}{a}t}$ avec K une constante réelle.

2. On nous demande de vérifier que la fonction h(t) donnée par l'énoncé vérifie (E). On calcule :

$$ah'(t) + bh(t)$$

et en simplifiant cette expression, on doit tomber sur c(t).

- **3.** On exprime les solutions de (E): ce sont les fonctions de la forme $Ke^{-\frac{b}{a}t} + h(t)$ avec K une constante réelle.
- **4.** On détermine la valeur de K qui correspond à la condition initiale f(0) = d. On remplace t par 0 dans $Ke^{-\frac{b}{a}t} + h(t)$:

$$Ke^{-\frac{b}{a}\times 0} + h(0) = d$$

$$\Leftrightarrow K + h(0) = d$$

$$\Leftrightarrow K = d - h(0)$$

2 Second ordre

2.1 Second membre constant

$$(E) \quad ay'' + by' + cy = d$$

$$(E_0)$$
 $ay'' + by' + cy = 0$

avec $a, b, c \neq 0$.

1. On résout l'équation (E_0) .

Pour la résoudre, il faut d'abord résoudre l'équation caractéristique :

$$ar^2 + br + c = 0$$

 \implies Si $\Delta > 0$, alors il y a deux solutions réelles distinctes à l'équation caractéristique : r_1 et r_2 .

Les solutions de (E_0) sont de la forme $Ae^{r_1t} + Be^{r_2t}$ avec A, B des constantes réelles.

- Si $\Delta = 0$, alors il y a une solution double : r_0 . Les solutions de (E_0) sont de la forme $(At + B)e^{r_2t}$ avec A, B des constantes réelles.
- \implies Si Δ < 0, alors il y a deux solutions complexes conjuguées à l'équation caractéristique : $\alpha + \beta i$ et $\alpha \beta i$.

Les solutions de (E_0) sont de la forme $e^{\alpha t} \left(A\cos(\beta t) + B\sin(\beta t) \right)$ avec A, B des constantes réelles.

- **2.** On trouve une solution constante de (*E*) : c'est $\frac{d}{c}$.
- **3.** On exprime les solutions de (E): ce sont les fonctions de la forme "solution de l'équation $(E_0) + \frac{d}{c}$ " avec A, B des constantes réelles.

2.2 Second membre non constant

$$(E) \quad ay'' + by' + cy = d(t)$$

$$(E_0) \quad ay'' + by' + cy = 0$$

avec $a, b, c \neq 0$.

1. On résout l'équation (E_0). Pour la résoudre, il faut d'abord résoudre l'équation caractéristique :

$$ar^2 + br + c = 0$$

 \implies Si $\Delta > 0$, alors il y a deux solutions réelles distinctes à l'équation caractéristique : r_1 et r_2 .

Les solutions de (E_0) sont de la forme $Ae^{r_1t} + Be^{r_2t}$ avec A, B des constantes réelles.

- Si $\Delta = 0$, alors il y a une solution double : r_0 . Les solutions de (E_0) sont de la forme $(At + B)e^{r_2t}$ avec A, B des constantes réelles.
- Si $\Delta < 0$, alors il y a deux solutions complexes conjuguées à l'équation caractéristique : $\alpha + \beta i$ et $\alpha \beta i$. Les solutions de (E_0) sont de la forme $e^{\alpha t} \left(A \cos(\beta t) + B \sin(\beta t) \right)$ avec A, B des constantes réelles.
- **2.** On nous demande de vérifier que la fonction h(t) donnée par l'énoncé vérifie (E). On doit simplifier l'expression :

$$ah''(t) + bh'(t) + ch(t)$$

et, sauf erreurs de calculs, on doit tomber sur d(t).

3. On exprime les solutions de (E): ce sont les fonctions de la forme "solution de l'équation $(E_0)+h(t)$ " avec A,B des constantes réelles.