基于元胞自动机的城镇预测模型设计

周财霖1

1 代码说明

代码语言: MATLAB

编译平台: MATLAB R2016a

CAdemo.m:运行 CA模拟的脚本文件,主要进行影像的读取,函数使用前的预处理,以及 CA函数调用,控制迭代次数和结果影像的输出

CAsimulate.m: 进行 CA 模拟的核心函数

使用: output = CAsimulate(data, pg, unsuitable, pthreshold, urban index, nodata)

参数: data 一输入的城市用地类型分类图,像元的值表示像元的用地类型 pg 一 输入的空间变量发展概率图,像元的值表示像元的空间变量发展概率 unsuitable 一输入的城市限制开发图,值为 1 的像素表示不可开发地 pthreshold 一规定的城市开发概率 P 阈值,0 到 1 之间的浮点数 $urban_index$ 一输入的城市用地类型分类图中,表示城镇用地的像元值,一般为 1 nodata 一输入的城市用地类型分类图中,表示无数据的像元值,一般为-9999

输出: output 一完成 CA 模拟后的城市用地类型分类图

CAassess.m: 进行 CA 模拟的结果的精度评价函数

使用: prod, user, OA, kappa, fom, fusion = CAassess(data, testdata)

1中山大学地理科学与规划学院 2017 级 GIS 系, 学号: 16333279, 邮箱: choilamchow@hotmail.com

输出: prod 一生产者精度

user 一用户精度

kappa —Kappa 系数

fom -Figure of merit 指数

 $fusion - 2 \times 2$ 混淆矩阵,例:

		分类结果		
		城市建成区	非城市建成区	
真实情况	城市建成区	40396	21481	
	非城市建成区	20746	9281127	

使用注意:

- (1)输入的城市用地类型分类图,输入的空间变量发展概率图和输入的城市限制开发图,需要保持像元大小,行数和列数的一致。即保证相同行列号表示的像元对应实际的同一块区域。
- (2) 目前仅支持 tiff 和 tif 格式的栅格影像,其他格式的图像格式需要预先进行转换。

2 模拟结果

选取东莞市作为研究区域,以东莞市 2001 年分类影像作为主要输入数据:

图 1 CA 城市变化模拟结果

3 精度评价

图 2 2005 年东莞城镇用地分布真实影像

图 3 2005 年基于 CA 的模拟影像

直观上看,总体模拟效果较好,城镇用地的空间分布基本吻合,但基于 CA 的模拟影像中城镇用地的斑块边缘更加圆滑,趋于集聚,因此部分精度较高的细节斑块较难模拟恢复,例如道路,较小的城镇斑块等。继续以 2005 年用地分类影像作为精度评价依据,进行基于统计的评价。

迭代次数	生产精度	用户精度	总体精度	Kappa	FOM
1	0.592	0.915	0.831	0.605	0.276
2	0.637	0.881	0.836	0.624	0.304
3	0.680	0.847	0.838	0.636	0.331
4	0.719	0.814	0.837	0.641	0.357
5	0.754	0.784	0.834	0.639	0.381
6	0.784	0.755	0.828	0.632	0.402
7	0.811	0.729	0.821	0.622	0.421
8	0.833	0.706	0.812	0.609	0.438
9	0.853	0.684	0.802	0.595	0.453
10	0.870	0.664	0.792	0.578	0.466

表 1 精度评价

Kappa 精度在第四次迭代中得到最高值,而第四次迭代正好是预测 2005 年的城镇用地结果,因此当评价依据是 2005 年真实影像时,精度取最大值时间符合客观实际。生产精度,用户精度和总体精度值均在较高值,说明该程序模拟结果的有效性较高。