# Continuous Authentication using Smartwatches

Siddarth Todi Sujay Patni 2019B2A70991P 2019B3A70575P

#### Introduction

- Continuous Authentication is a method of confirming a user's identity in real time.
- Our focus is on using biometric traits or behaviors to verify the user's identity.
- It is believed that every person has unique hemodynamics and cardiovascular system.

• Smartwatches have advanced a lot in the last few years.

Capable of providing very accurate data on heart rate, oxygen level,
 no of step and much more.



 Collecting accurate biometric data from bio wearables is a very important step in our project.

 Initially focussed on finding ways to extract data from smartwatches using their own applications

 Borrowed smartwatches/fitness bands from friends and family to collect the necessary data.

- We had collected around 8-10 datasets from different smartwatches/fitness bands, ranging from different brands like Apple, Mi and Redmi smartbands.
- These data were collected using export options in the respective band's app present in mobile phones linked with watches.

#### Challenges:

- Many brands do not support data extraction due to security concerns.(e.g. Redmi, RealMe, etc). Also can't
  access sensor data directly.
- After collecting a few datasets, we realized that the dataset varies hugely from watch to watch and brand to brand, so it is not feasible for us to analyze datasets of different types.
- Limited number of smartwatch users on campus.

#### • Possible Solution:

- To do sample analysis on Datasets, publicly available on internet
- o To have a smart watch, and do complete analysis using its data
- Different brands have different sensors and hence different parameters are collected from these watches. Also the format of data collection is also different for different watches.

1) Apple Watch

Phone: Iphone

App: Health

Steps: Iphone -> Health App -> Click on Profile image on top left -> Export All Health Data -> Export -> Share

via various options

The data collected is a zip file and within it .xml files are present. We then need to convert xml to csv in Excel.

2) MI Watch

App: MI Fit

Steps: Phone -> MI Fit App -> Profiles -> settings -> about -> exercising user rights -> export

The user needs to select the parameters and date, from which he/she wants the data to be exported.

The data collected in a zip file and a password is required to open the zip file.

3) Redmi Smart Band Pro

App: MI Fit

Steps:

The user needs to select the parameters and date, from which he/she wants the data to be exported.

The data collected in a zip file and a password is required to open the zip file.

• Next, we researched on various sensors present in different smartwatches.

- Major sensors present in bio wearables include:
  - Accelerometer: Tracks movement of your body
  - Gyroscope: Detects motion and gestures
  - Altimeter: Detects change in height and altitude
  - Temperature Sensors: Measures body temperature as well as surrounding temperature
  - o Optical Heart Rate Sensor: Measures pulse rate
  - Oximetric Sensor: SpO2 and Oxygen level
  - ECG Sensor: Heart's Rhythm and electrical activity
  - o And so on

• Selected 3-4 smartwatches that provide the maximum number of sensor capabilities and are economically feasible to work on.

| sno | brand         | model                               | spo2 | 24x7 body temperature | blood_pres | sure heart_r | ate exercise_modes | auto_sleep_tracking |
|-----|---------------|-------------------------------------|------|-----------------------|------------|--------------|--------------------|---------------------|
| 1   | goqii         | personal care with smart vital plus | У    | у                     | У          | У            | 18                 | у                   |
| 2   | goqii         | personal care with smart vital      | У    | y                     | У          | у            | 18                 | у                   |
| 3   | goqii         | personal care with vital 4          | У    | У                     | У          | У            | 17                 | У                   |
| 4   | Fitbit        | Charge 5                            | У    | у                     | n          | У            |                    | y                   |
| 5   | Amazfit       | Bip 3                               | У    | n                     | n          | у            | 60                 | у                   |
| 6   | Espruino      | Bangle.js 2                         | n    | у                     | n          | У            |                    | n                   |
| 7   | Denver        | BFH-153                             | n    | n                     | У          | У            |                    | y                   |
| 8   | Denver        | BFH-252                             | У    | n                     | У          | у            |                    | y                   |
| 9   | Denver        | 164 BlackMK2                        | У    | у                     | n          | У            |                    | у                   |
| 10  | Pebble        | zen-pro                             | У    | n                     | y          | У            |                    | n                   |
| 11  | Enhance Colmi | colmi P8 Plus                       | У    | n                     | y          | У            | 8                  | у                   |
| 12  | Ambrane       | Fitshot Loop                        | У    | n                     | y          | у            |                    | y                   |
| 13  | Dr Trust USA  | Healthpal 1                         | у    | У                     | у          | у            |                    | у                   |
| 14  | Fire-boltt    | Mercury                             | У    | у                     | n          | У            |                    | У                   |
| 15  | Hammer        | Pulse Oximeter                      | У    | у                     | у          | у            |                    | у                   |
| 16  | Fire-boltt    | Talk                                | У    | n                     | У          | У            |                    | у                   |
| 17  | PineTime      | Open Source, hackable               | n    | n                     | n          | У            |                    | n                   |

• Watches selected: Gogii Smart Vital, Hammer Pulse Oximeter and OnePlus SmartBand

- Goqii Smart Vital: Optical Heart Sensor, SpO2, Body Temperature and Blood Pressure along with Movement Trackers
  - Challenges: App doesn't have the necessary capabilities, No developer mode
- **Hammer Pulse Oximeter**: Optical Heart Sensor, SpO2, Body Temperature and Blood Pressure along with Movement Trackers
  - Challenges: No developer mode, Doesn't store fitness data frequently
- OnePlus SmartBand: Optical Heart Sensor, SpO2 and Blood Pressure(different from others as its a fitness band instead of smartwatch)

• Shifted focus on heart rate specifically, to focus on univariate models.

- Heart Rate: the number of times the heart beats within a certain time period, usually a minute.
- Collected heart rate data from smartwatches

- Challenges:
  - As the data is collected on per minute basis, only 1 datapoint per minute is available on all the smartwatches.
  - Thus the data is not useful for continuous authentication.

- Photoplethysmography (PPG) is a non-invasive method for optical measurement of changes in tissue blood volume.
- The basic setup consists of a light source irradiating the tissue under examination, and a detector registering changes in light intensity due to light-tissue interaction.

- Most smartwatches use PPG method to find Heart Rate of the user
- Thus, we lose a lot of features when using heart rate instead of PPG.
- Furthermore, PPG data is as frequent as 10 data points in a single second, which can provide enough
- Thus, shifted focus to PPG data instead of Heart Rate.

- Extracting raw PPG data from smartwatches is a big challenge
- None of the watches provide direct access to their raw data

- Worked on creating an API for Google Fit to extract PPG data from the smartwatches.
- However, none of the watches provide access to developer options to install custom applications on them. The option is only available in high end android watches.
- Looked into creating an application on android phone and then using Google Fit to access the smartwatches for data

Couldn't find any concrete solution for the same.

- Extracting raw ppg data from Smartwatches a difficult task
- Initially: aim to extract data directly from PPG sensors

- Future Work: Finding the right ppg sensors for data extraction and working with it
- SmartCare wrist-worn pulse oximeter
- Heart Pulse Monitor: Fossil Gen 5, Huawei watch 2, Galaxy watch 4 (Samsung reverted back to Wear os)
- MAXREFDES100
- HRM2511e
- MAX30100 Pulse Oximeter Heart Rate Sensor Module
- MAX30101
- Empatica E4 wristband sensor
- National Instruments device (NI cDAQ-9172)
- Maxim Integrated MAXREFDES100 device.
- SOMNOtouch NIBP
- NJL5310R, NJR Corporation, Japa

#### **PPG Research**

- Photoplethysmography (PPG) is a simple and low-cost optical technique that can be used to detect blood volume changes in the microvascular bed of tissue.
- The PPG waveform comprises a pulsatile ('AC') physiological waveform attributed to cardiac synchronous changes in the blood volume with each heartbeat, and is superimposed on a slowly varying ('DC') baseline with various lower frequency components attributed to respiration, sympathetic nervous system activity and thermoregulation.
- PPG sensors are extremely sensitive to motion, particularly in a wearable device, and have significant challenges measuring biometrics accurately during daily activities and exercise.
- PPG signal's second derivative wave contains important health-related information.



## **Experimentation: Heart Rate**

Using one of the data which we had collected, we had done time series analysis on heart rate data. (Snapshot of a part of data attached below)

| 1  | time | heartRate |
|----|------|-----------|
| 2  | 0:00 | 107       |
| 3  | 0:01 | 97        |
| 4  | 0:02 | 84        |
| 5  | 0:03 | 80        |
| 6  | 0:04 | 90        |
| 7  | 0:05 | 93        |
| 8  | 0:06 | 94        |
| 9  | 0:07 | 82        |
| 10 | 0:08 | 119       |
| 11 | 0:09 | 91        |
| 12 | 0:10 | 94        |
| 13 | 0:11 | 80        |
| 14 | 0:12 | 92        |
| 15 | 0:13 | 93        |
| 16 | 0:14 | 84        |
| 17 | 0:15 | 77        |
| 18 | 0:16 | 76        |



# **Experimentation-Statistics**

#### Rolling Mean(Window size=60)



#### Standard Deviation(Window size=60)



**Challenges**: Scattered discontinuous data and also step wise data(1 point/minute)

## Experimentation-Statistics

Dickey-Fuller test was also conducted on this data (tests null hypothesis in univariate stationary data)

Result of Dickey-Fuller Test

| Test Statistic  |         |      | -4.723755  |
|-----------------|---------|------|------------|
|                 |         |      |            |
| p-value         |         |      | 0.000076   |
|                 |         |      |            |
| #Lags Used      |         |      | 10.000000  |
|                 |         |      |            |
| Number of obser | vations | Used | 590.000000 |
|                 |         |      |            |
| Critical Value  | (1%)    |      | -3.441482  |
|                 |         |      |            |
| Critical Value  | (5%)    |      | -2.866451  |
|                 |         |      |            |
| Critical Value  | (10%)   |      | -2.569386  |
|                 |         |      |            |

dtype: float64

# Experimentation

We had taken 2 datasets of 2 hour interval each, of two different days of the same person.

|    | time  | heartRate |
|----|-------|-----------|
| 2  | 13:00 | 62        |
|    | 13:01 | 69        |
| 4  | 13:02 | 69        |
| 5  | 13:03 | 69        |
| 6  | 13:04 | 70        |
| 7  | 13:05 | 75        |
| 8  | 13:06 | 67        |
| 9  | 13:07 | 83        |
| 10 | 13:08 | 81        |
| 11 | 13:09 | 80        |
| 12 | 13:10 | 80        |
| 13 | 13:11 | 81        |
| 14 | 13:12 | 90        |
| 15 | 13:13 | 83        |
| 16 | 13:14 | 57        |
| 17 | 13:15 | 71        |
| 18 | 13:16 | 88        |

|    | time  | heartRate |
|----|-------|-----------|
| 2  | 13:00 | 77        |
|    | 13:01 | 90        |
| 4  | 13:02 | 82        |
| 5  | 13:03 | 91        |
| 6  | 13:04 | 81        |
| 7  | 13:05 | 77        |
| 8  | 13:06 | 76        |
| 9  | 13:07 | 92        |
| 10 | 13:08 | 93        |
| 11 | 13:09 | 80        |
| 12 | 13:10 | 90        |
| 13 | 13:11 | 83        |
| 14 | 13:12 | 102       |
| 15 | 13:13 | 102       |
| 16 | 13:14 | 87        |
| 17 | 13:15 | 78        |
| 18 | 13:16 | 90        |

## Experimentation

Plot of the 2 datasets taken of 2 hours on different days

Data 1



Data 2



# Experimentation

#### Comparing the plots of both the datasets



# Experimentation-Statistics

#### Rolling Mean(Window size=10)



#### Standard Deviation(Window size=10)



#### SARIMA Model

It is a time-series forecasting model implemented on univariate stationary data.

We had implemented this model, on the 2 hour heart rate data(data-1, as shown previously)

```
Test parameters: -3.587722330343093

p-value: 0.006000135418084747

#Lags in the database: 2

Data points used: 118

Dataset is stationary
```

As the p-value is less than 0.05, the data is stationary, otherwise we had to do normalization.

## SARIMA Model



# Predictions

#### **ARIMA Prediction**



#### SARIMA Prediction(Slot size=12)



# Long Short Term Memory(LSTM) Type-1: 1 minute

Total number of points: 599

Train points: 401
Test points: 198
Look back: 1

Train Score: 3683.60 RMSE Test Score: 3419.09 RMSE

|    | A       | В        |
|----|---------|----------|
| 1  | ppg     | timer    |
| 2  | 2653440 | 10:48:00 |
| 3  | 2650560 | 10:48:00 |
| 4  | 2650767 | 10:48:00 |
| 5  | 2653281 | 10:48:00 |
| 6  | 2655284 | 10:48:00 |
| 7  | 2657600 | 10:48:01 |
| 8  | 2661857 | 10:48:01 |
| 9  | 2658077 | 10:48:01 |
| 10 | 2655382 | 10:48:01 |
| 11 | 2662347 | 10:48:01 |
| 12 | 2675967 | 10:48:01 |
| 13 | 2685597 | 10:48:01 |
| 14 | 2687903 | 10:48:01 |
| 15 | 2685354 | 10:48:01 |
| 16 | 2679560 | 10:48:01 |



# Long Short Term Memory(LSTM) Type-2: 10 seconds

Total number of points: 99

Train points: 66
Test points: 33
Look back: 1

Train Score: 3015.30 RMSE Test Score: 2990.91 RMSE

| 2668344 | 10:49:03                                                                                                                                                          |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2670754 | 10:49:03                                                                                                                                                          |
| 2670008 | 10:49:03                                                                                                                                                          |
| 2662499 | 10:49:04                                                                                                                                                          |
| 2660045 | 10:49:04                                                                                                                                                          |
| 2660637 | 10:49:04                                                                                                                                                          |
| 2661234 | 10:49:04                                                                                                                                                          |
| 2663271 | 10:49:04                                                                                                                                                          |
| 2666107 | 10:49:04                                                                                                                                                          |
| 2660809 | 10:49:04                                                                                                                                                          |
| 2655025 | 10:49:04                                                                                                                                                          |
| 2654917 | 10:49:04                                                                                                                                                          |
| 2655926 | 10:49:04                                                                                                                                                          |
| 2657462 | 10:49:05                                                                                                                                                          |
| 2660578 | 10:49:05                                                                                                                                                          |
| 2662600 | 10:49:05                                                                                                                                                          |
| 2656310 | 10:49:05                                                                                                                                                          |
|         | 2670754<br>2670008<br>2662499<br>2660045<br>2660637<br>2661234<br>2663271<br>2666107<br>2660809<br>2655025<br>2654917<br>2655926<br>2657462<br>2660578<br>2662600 |



# Long Short Term Memory(LSTM) Type-3: 5 minutes

Total number of points: 2999

Train points: 2009 Test points: 990 Look back: 1

Train Score: 65.37 RMSE Test Score: 69.15 RMSE

| 1979 | 1857923 | 10:54:18 |
|------|---------|----------|
| 1980 | 1857953 | 10:54:18 |
| 1981 | 1857995 | 10:54:18 |
| 1982 | 1858053 | 10:54:18 |
| 1983 | 1858058 | 10:54:18 |
| 1984 | 1858041 | 10:54:18 |
| 1985 | 1858015 | 10:54:18 |
| 1986 | 1858053 | 10:54:18 |
| 1987 | 1858126 | 10:54:18 |
| 1988 | 1858068 | 10:54:19 |
| 1989 | 1858004 | 10:54:19 |
| 1990 | 1858112 | 10:54:19 |
| 1991 | 1858004 | 10:54:19 |
| 1992 | 1858123 | 10:54:19 |
| 1993 | 1858076 | 10:54:19 |
| 1994 | 1858052 | 10:54:19 |
| 1995 | 1858017 | 10:54:19 |
| 1996 | 1858047 | 10:54:19 |
| 1997 | 1858041 | 10:54:19 |
| 1998 | 1858036 | 10:54:20 |
| 1999 | 1857987 | 10:54:20 |
| 2000 | 1858029 | 10:54:20 |



# Long Short Term Memory(LSTM) Type-4: 40(train)-20(random) seconds (Look back: 1)

Total number of points: 599

Train points: 401
Test points: 198
Look back: 1

Train Score: 54.89 RMSE Test Score: 154.33 RMSE

| 395 | 1858211 | 10:55:39 |
|-----|---------|----------|
| 396 | 1858291 | 10:55:39 |
| 397 | 1858224 | 10:55:39 |
| 398 | 1858166 | 10:55:39 |
| 399 | 1858262 | 10:55:39 |
| 400 | 1858235 | 10:55:39 |
| 401 | 1858243 | 10:55:39 |
| 402 | 1858102 | 10:55:40 |
| 403 | 1858390 | 10:56:40 |
| 404 | 1858325 | 10:56:40 |
| 405 | 1858260 | 10:56:40 |
| 406 | 1858353 | 10:56:40 |
| 407 | 1858381 | 10:56:40 |
| 408 | 1858357 | 10:56:41 |
| 409 | 1858381 | 10:56:41 |



# Long Short Term Memory(LSTM) Type-4: 40(train)-20(random) seconds (Look back: 5)

Total number of points: 599

Train points: 401
Test points: 198
Look back: 5

Train Score: 49.75 RMSE Test Score: 109.34 RMSE

| 395 | 1858211 | 10:55:39 |
|-----|---------|----------|
| 396 | 1858291 | 10:55:39 |
| 397 | 1858224 | 10:55:39 |
| 398 | 1858166 | 10:55:39 |
| 399 | 1858262 | 10:55:39 |
| 400 | 1858235 | 10:55:39 |
| 401 | 1858243 | 10:55:39 |
| 402 | 1858102 | 10:55:40 |
| 403 | 1858390 | 10:56:40 |
| 404 | 1858325 | 10:56:40 |
| 405 | 1858260 | 10:56:40 |
| 406 | 1858353 | 10:56:40 |
| 407 | 1858381 | 10:56:40 |
| 408 | 1858357 | 10:56:41 |
| 409 | 1858381 | 10:56:41 |



# Long Short Term Memory(LSTM) Type-4: 40(train)-20(random) seconds (Look back: 10)

Total number of points: 599

Train points: 401 Test points: 198 Look back: 10

Train Score: 48.35 RMSE Test Score: 98.65 RMSE

| 395 | 1858211 | 10:55:39 |
|-----|---------|----------|
| 396 | 1858291 | 10:55:39 |
| 397 | 1858224 | 10:55:39 |
| 398 | 1858166 | 10:55:39 |
| 399 | 1858262 | 10:55:39 |
| 400 | 1858235 | 10:55:39 |
| 401 | 1858243 | 10:55:39 |
| 402 | 1858102 | 10:55:40 |
| 403 | 1858390 | 10:56:40 |
| 404 | 1858325 | 10:56:40 |
| 405 | 1858260 | 10:56:40 |
| 406 | 1858353 | 10:56:40 |
| 407 | 1858381 | 10:56:40 |
| 408 | 1858357 | 10:56:41 |
| 409 | 1858381 | 10:56:41 |



#### **Next Step**

- Divide the work into 3 parts:
  - o PPG Data Collection
  - Time Series Prediction
  - Matching Time Series Models

- Data Collection: Need assistance to look for PPG extraction methods and
- Time Series Prediction: Using LSTM and Prophet Model
- Matching Time Series: Statistical Approach (Gaussian Mixture, Mixture of Models ....)

# THANK YOU