Distributed Systems

Lecture 14: Time in Distributed Systems

Prof. Dr.-Ing. Christoph König

© 2024 Christoph König Computer Science, B.Sc.

Outline

- Challenges in distributed systems
 - Consistency
 - Concurrency
- Physical and logical time
 - ... and how to distribute it
- Time synchronization
 - Skew and drift
 - Cristian's algorithm
 - Berkeley algorithm
 - NTP and PTP
- Logical clocks
 - Relations
 - Lamport clock
 - Vector clock

Synchronization and drift

- Goal: All hosts should have the same time
- Challenges
 - Clocks can have different start times
 - $t_{clock_a} \neq t_{clock_b}$
 - Called skew
 - Clocks can run at different speeds
 - Called drift
 - Ideal: dC/dt = 1
- Drift example
 - Let p= the maximum deviation e.g., given by the manufacturer, such that $1-p \leq \frac{dC}{dt} \leq 1+p$
 - Question: What is the maximum difference of two drifting clocks after Δt time units?
 - Answer: $2p\Delta t$

Message delays (cont'd)

■ How to get (and calculate) message delays?

Approximation

$$OWD_{\mathsf{approx}} = \frac{t_3 - t_0 - (t_2 - t_1)}{2}$$

Question: What is the maximum error?