Lecture 8: Balanced Incomplete Block Design

Montgomery Section 4.4

Catalyst Experiment

Four catalysts are being investigated in an experiment. The experimental procedure consists of selecting a batch raw material, loading the pilot plant, applying each catalyst in a separate run and observing the reaction time. The batches of raw material are considered as blocks, however each batch is only large enough to permit three catalysts to be run.

Block(raw material)						
Catalyst	1	2	3	4	y_{i} .	
1	73	74	-	71	218	
2	-	75	67	72	214	
3	73	75	68	-	216	
4	75	-	72	75	222	
$y_{.j}$	221	224	207	218	870= <i>y</i>	

Balanced Incomplete Block Design (BIBD)

- There are a treatments and b blocks;
- Each block contains *k* (different) treatments;
- Each treatment appears in *r* blocks;
- Each pair of treatments appears together in λ blocks;

Example 1.
$$a = 3, b = 3, k = 2, r = 2, \lambda = 1$$

	block			inc	iden	се
treatment	1	2	3	matrix		
Α	Α	-	Α	1	0	1
В	В	В	-	1	1	0
С	1	С	С	0	1	1

Incidence Matrix: $\mathcal{N}=(n_{ij})_{a\times b}$ where $n_{ij}=1$, if treatment i is run in block j; =0 otherwise.

Example 2.

	block						incid	ence)			
treatment	1	2	3	4	5	6			ma	ıtrix		
Α	Α	Α	Α	-	-	-	1	1	1	0	0	0
В	В	-	-	В	В	-	1	0	0	1	1	0
С	_	С	-	С	-	С	0	1	0	1	0	1
D	_	-	D	-	D	D	0	0	1	0	1	1

$$a = 4, b = 6, k = 2, r = 3, \lambda = 1, \mathcal{N} = (n_{ij})_{4 \times 6}$$

BIBD: Design Properties

a, b, k, r, and λ are not independent

- $\bullet \ N = ar = bk$, where N is the total number of runs $\Longrightarrow r = bk/a$
- $\lambda(a-1) = r(k-1) \Longrightarrow \lambda = r(k-1)/(a-1)$
 - 1. for any fixed treatment i_0
 - 2. two different ways to count the total number of pairs including treatment i_0 in the experiment.
 - I. a-1 possible pairs, each appears in λ blocks, so $\lambda(a-1)$;
 - II. treatment i_0 appears in r blocks. Within each block, there are k-1 pairs including i_0 , so r(k-1)
- $b \ge a$ (a brainteaser for math/stat students).
- Nonorthogonal design

Extensive list of BIBDs can be found in Fisher and Yates (1963) and Cochran and Cox (1957).

BIBD: Design in SAS

```
TITLE 'Balanced Incomplete Block Design';
DATA candidates;
DO treatment = 1 to 4; OUTPUT; END;
PROC OPTEX DATA=candidates SEED=5140514 CODING=ORTH;
CLASS treatment;
MODEL treatment;
BLOCKS STRUCTURE=(6)2; /* (b)k: b=6, k=2 */
OUTPUT OUT=bibd BLOCKNAME=block;
PROC PRINT DATA=bibd; RUN; QUIT;
```

Obs	BLOCK	treatment	Obs	BLOCK	treatment
1	1	1	7	4	3
2	1	2	8	4	1
3	2	3	9	5	1
4	2	4	10	5	4
5	3	2	11	6	3
6	3	4	12	6	2

BIBD: Statistical Model

Statistical Model

$$y_{ij} = \mu + \tau_i + \beta_j + \epsilon_{ij}$$

$$\begin{cases} i = 1, 2, \dots, a \\ j = 1, 2, \dots, b \end{cases}$$

- additive model (without interaction)
- Not all y_{ij} exist because of incompleteness
- Usual treatment and block restrictions : $\sum \tau_i = 0$; $\sum \beta_j = 0$
- Nonorthogonality of treatments and blocks

Use Type III Sums of Squares and lsmeans

Model Estimates

• Least squares estimates for μ , etc.

$$\hat{\mu} = \bar{y}_{..} = \frac{\sum_{i,j} n_{ij} y_{ij}}{N}; \qquad \hat{\tau}_i = \frac{kQ_i}{\lambda a}; \qquad \hat{\beta}_j = \frac{rQ_j'}{\lambda b}$$

where

$$Q_i = r\bar{y}_{i.} - \sum_{j=1}^b n_{ij}\bar{y}_{.j};$$
 $Q'_j = k\bar{y}_{.j} - \sum_{i=1}^a n_{ij}\bar{y}_{i.}$

• Note that $\bar{y}_{i.} = \sum_{j=1}^b n_{ij} y_{ij}/r$, $\bar{y}_{.j} = \sum_{i=1}^a n_{ij} y_{ij}/k$

$$\operatorname{Var}(Q_{i}) = \operatorname{Var}(r\bar{y}_{i.}) + \operatorname{Var}\left(\sum_{j=1}^{b} n_{ij}\bar{y}_{.j}\right) - 2\operatorname{Cov}\left(r\bar{y}_{i.}, \sum_{j=1}^{b} n_{ij}\bar{y}_{.j}\right)$$
$$= r^{2}\frac{\sigma^{2}}{r} + r\frac{\sigma^{2}}{k} - 2r\frac{\sigma^{2}}{k} = \frac{(k-1)r}{k}\sigma^{2}$$

•
$$\operatorname{Var}(\hat{\tau}_i) = \left(\frac{k}{\lambda a}\right)^2 \operatorname{Var}(Q_i) = \left(\frac{k}{\lambda a}\right)^2 \frac{(k-1)r}{k} \sigma^2 = \frac{k(a-1)}{\lambda a^2} \sigma^2; \text{ S.E.}_{\hat{\tau}_i} =?$$

•
$$\operatorname{Var}(\hat{\tau}_i - \hat{\tau}_j) = \frac{2k\sigma^2}{\lambda a}$$
; S.E. $\hat{\tau}_i - \hat{\tau}_j = ?$

Analysis of Variance (Focus: Treatment Effects)

ullet SS $_{
m T}=\sum y_{ij}^2-Nar{y}_{..}^2$ may be partitioned into

$$SS_T = SS_{Blocks} + SS_{Treatments(adjusted)} + SS_E$$

- $SS_{Block} = k \sum_{j} \bar{y}_{.j}^2 N \bar{y}_{..}^2$
- $SS_{Treatment(adjusted)} = k \sum Q_i^2/(\lambda a) = \frac{\lambda a}{k} \sum \hat{\tau}_i^2$ is adjusted to separate the treatment and the block effects as each treatment is represented in a different set of r blocks (incompleteness)
- Note that $Q_i = r\bar{y}_{i.} \sum_{j=1}^b n_{ij}\bar{y}_{.j}$
 - treatment i's total minus treatment i's block averages
 - $-\sum Q_i=0$
- ullet SS_E by subtraction

Analysis of Variance Table (Type I SS)

Source of	Sum of	Degrees of	Mean	F
Variation	Squares	Freedom	Square	
Blocks	SS_{Block}	b-1	MS_{Block}	
Treatment	$SS_{\mathrm{Treatment}(\mathrm{adjusted})}$	a-1	$MS_{\mathrm{Treatment}(\mathrm{adjusted})}$	F_0
Error	SS_{E}	N-a-b+1	MS_{E}	
Total	SS_{T}	N-1		

• This table can be followed for testing hypothesis on TREATMENTS

– If
$$F_0>F_{\alpha,a-1,N-a-b+1}$$
 then reject $H_0:\tau_1=\tau_2=\cdots=\tau_a=0$

Analysis of Variance (Focus: Block Effects)

ullet SS $_{
m T}=\sum y_{ij}^2-Nar{y}_{..}^2$ may be partitioned into

$$SS_T = SS_{Treatments} + SS_{Blocks(adjusted)} + SS_E$$

- $SS_{Treatment} = r \sum_{i} \bar{y}_{i.}^2 N \bar{y}_{..}^2$
- ${\rm SS_{Blocks(adjusted)}}=r\sum_j Q_j'^2/(\lambda b)$ is adjusted for non-orthogonal treatment effects
- Note that $Q'_j = k\bar{y}_{.j} \sum_{i=1}^a n_{ij}\bar{y}_{i.}$
 - block j's total minus block j's treatment averages
 - $-\sum_{i} Q_{i}' = 0$
- ullet SS_E by subtraction

Analysis of Variance Table (Type I SS)

Source of	Sum of	Degrees of	Mean	F
Variation	Squares	Freedom	Square	
Treatments	$SS_{\mathrm{Treatment}}$	a-1	$MS_{\mathrm{Treatment}}$	
Blocks	$SS_{\mathrm{Block}(\mathrm{adjusted})}$	b-1	$MS_{ m Block(adjusted)}$	F_0'
Error	SS_E	N-a-b+1	MS_{E}	
Total	SS_{T}	N-1		

• This table can be followed for testing hypothesis on BLOCKS.

– If
$$F_0'>F_{\alpha,b-1,N-a-b+1}$$
 then reject $H_0':\beta_1=\beta_2=\cdots=\beta_b=0$

Analysis of Variance Table (Type III SS)

Source of	Sum of	Degrees of	Mean	\overline{F}
Variation	Squares	Freedom	Square	
Blocks	$SS_{\mathrm{Block}(\mathrm{adjusted})}$	b - 1	$MS_{\mathrm{Block}(\mathrm{adjusted})}$	F_0'
Treatment	$SS_{\mathrm{Treatment}(\mathrm{adjusted})}$	a-1	$MS_{\mathrm{Treatment}(\mathrm{adjusted})}$	F_0
Error	SS_{E}	N-a-b+1	MS_{E}	
Total	SS_{T}	N-1		

• $SS_T \neq SS_{Block(adjusted)} + SS_{Treatment(adjusted)} + SS_E$

$$SS_{\rm E} = SS_{\rm T} - SS_{\rm Block} - SS_{Treatment(adjusted)}$$

= $SS_{\rm T} - SS_{\rm Treatment} - SS_{Block(adjusted)}$

This table can be followed for tests on BLOCKS or TREATMENTS

– If
$$F_0'>F_{\alpha,b-1,N-a-b+1}$$
 then reject $H_0':\beta_1=\beta_2=\cdots=\beta_b=0$

– If
$$F_0 > F_{\alpha,a-1,N-a-b+1}$$
 then reject $H_0 : \tau_1 = \tau_2 = \cdots = \tau_a = 0$

Mean Tests and Contrasts

- Must compute adjusted means (lsmeans)
- ullet Adjusted mean is $\widehat{\mu}+\widehat{ au}_i$
- ullet Standard error of adjusted mean is $\sqrt{\mathrm{MS_E}(rac{k(a-1)}{\lambda a^2} + rac{1}{N})}$
- Contrasts based on adjusted treatment totals

For a contrast: $\sum c_i \mu_i$

Its estimate: $\sum c_i \hat{\tau}_i = \frac{k}{\lambda a} \sum c_i Q_i$

Contrast sum of squares:

$$SS_C = \frac{k(\sum_{i=1}^{a} c_i Q_i)^2}{\lambda a \sum_{i=1}^{a} c_i^2}$$

Pairwise Comparison

- Pairwise comparison $\tau_i \tau_j$:
 - 1. Bonferroni:

$$CD = t_{\alpha/(2m), ar-a-b+1} \sqrt{MS_E \frac{2k}{\lambda a}}.$$

2. Tukey:

$$CD = \frac{q_{\alpha}(a, ar - a - b + 1)}{\sqrt{2}} \sqrt{\text{MS}_{\text{E}} \frac{2k}{\lambda a}}$$

Using SAS

```
options nocenter ps=60 ls=75;
data example;
  input trt block resp 00;
  datalines;
1 1 73 1 2 74 1 4 71 2 2 75 2 3 67 2 4 72
3 1 73 3 2 75 3 3 68 4 1 75 4 3 72 4 4 75
proc glm;
  class block trt;
  model resp = block trt;
  lsmeans trt / tdiff pdiff adjust=bon stderr;
  lsmeans trt / pdiff adjust=tukey;
  contrast 'a' trt 1 -1 0 0;
  estimate 'b' trt 0 0 1 -1;
  run; quit;
```

SAS Output

Dependent Variab	le:	resp			
		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	6	77.75000000	12.95833333	19.94	0.0024
Error	5	3.25000000	0.6500000		
Corrected Total	11	81.00000000			
Source	DF	Type I SS	Mean Square	F Value	Pr > F
block	3	55.00000000	18.33333333	28.21	0.0015
trt	3	22.75000000	7.58333333	11.67	0.0107
Source	DF	Type III SS	Mean Square	F Value	Pr > F
block	3	66.08333333	22.02777778	33.89	0.0010
trt	3	22.75000000	7.58333333	11.67	0.0107

Dabao Zhang

Least Squares Means

Adjustment for Multiple Comparisons: Bonferroni

		Standard		LSMEAN
trt	resp LSMEAN	Error	Pr > t	Number
1	71.3750000	0.4868051	<.0001	1
2	71.6250000	0.4868051	<.0001	2
3	72.0000000	0.4868051	<.0001	3
4	75.0000000	0.4868051	<.0001	4

Bonferr	oni Method:			
i/j	1	2	3	4
1		-0.35806	-0.89514	-5.19183
		1.0000	1.0000	0.0209
2	0.358057		-0.53709	-4.83378
	1.0000		1.0000	0.0284
3	0.895144	0.537086		-4.29669
	1.0000	1.0000		0.0464
4	5.191833	4.833775	4.296689	
	0.0209	0.0284	0.0464	
·				
Tukey's	Method:			
i/j	1	2	3	4
1		0.9825	0.8085	0.0130
2	0.9825		0.9462	0.0175
3	0.8085	0.9462		0.0281

0.0175

0.0281

0.0130

4

Dependent Variable: resp

Contrast DF Contrast SS Mean Square F Value Pr > F a 1 0.08333333 0.08333333 0.13 0.7349

Standard

Parameter Estimate Error t Value Pr > |t|b -3.00000000 0.69821200 -4.30 0.0077

Other Incomplete Designs

- Youden Square
- Partially Balanced Incomplete Block Design
- Cyclic Designs
- Square, Cubic, and Rectangular Lattices