CHAPITRE

Nombres et intervalles

Plan du chapitre

1.	Ens	emble de nombres	1
	1. 1.	Ensemble des entiers naturels \mathbb{N}	1
	1. 2.	Ensemble des entiers relatifs $\mathbb Z$	1
	1. 3.	Ensemble des nombres décimaux $\mathbb D$	2
	1. 4.	Les nombres rationnels et leur ensemble \mathbb{Q}	2
	1. 5.	L'ensemble des réels $\mathbb R$	2
	1. 6.	Inclusions d'ensembles	3
2.	Intervalles de \mathbb{R}		3
	2. 1.	Intervalle et inégalité associée	3
	2. 2.	Intersection, réunion d'intervalles et inclusion	4
3.	Puissances		6
	3. 1.	Définition d'une puissance	6
	3. 2.	Calcul avec les puissances	6

1. Ensemble de nombres

1. 1. Ensemble des entiers naturels \mathbb{N}

L'ensemble des entiers naturels se note $\mathbb{N} = \{0; 1; 2; 3; 4; \ldots\}$. C'est l'ensemble des nombres positifs qui permettent de **compter** une collection d'objets. On note \mathbb{N}^* ou $\mathbb{N} - \{0\}$ l'ensemble des entiers naturels **non nuls**.

Exemples et contre-exemples.

1. 2. Ensemble des entiers relatifs \mathbb{Z}

Exemples et contre-exemples.

1. 3. Ensemble des nombres décimaux \mathbb{D}

Les nombres décimaux sont les nombres qui s'écrivent comme quotient d'un entier par 1, 10, 100, 1000 et plus généralement par 10^k où k est un entier naturel. Ce sont les nombres dont l'écriture décimale n'a qu'un nombre fini de chiffres après la virgule.

Exemples et contre-exemples.

1. 4. Les nombres rationnels et leur ensemble \mathbb{Q}

Définition 4

Les nombres rationnels sont les nombres qui s'écrivent comme le quotient de deux entiers. On note:

$$\mathbb{Q} = \left\{ \frac{a}{b} \text{ où } a \in \mathbb{Z}, \ b \in \mathbb{Z}^* \right\}$$

- La fraction a avec b ≠ 0 est dite irréductible lorsque le numérateur et le dénominateur n'ont pas de diviseurs communs (autres que 1 ou −1).
 La partie décimale d'un nombre rationnel est infinie et périodique (se répète) à partir d'un certain rang.
- La division par 0 est **impossible** : l'écriture $\frac{a}{0}$ n'a donc aucun sens.

Exemples et contre-exemples.

1. 5. L'ensemble des réels $\mathbb R$

Dès l'antiquité, on avait découvert l'insuffisance des nombres rationnels.

Par exemple, il n'existe pas de rationnel x tel que $x^2 = 2$ on dit que $\sqrt{2}$ est un irrationnel. Ainsi, l'ensemble de tous les nombres rationnels et irrationnels est l'ensemble des nombres réels noté \mathbb{R} .

Chaque nombre réel correspond à un unique point de la droite graduée. Réciproquement, à chaque point de la droite graduée correspond un unique réel, appelé abscisse de ce point. Illustration:

1. 6. Inclusions d'ensembles

On retiendra le résultat qui suit :

Cela suggère donc qu'un entier naturel est un entier relatif qui est lui-même un nombre décimal qui est donc aussi un rationnel et finalement aussi un nombre réel. On peut donc retenir le schéma suivant :

2. Intervalles de \mathbb{R} .

2. 1. Intervalle et inégalité associée

0 L'ensemble des réels x tels que $a \le x \le b$ est l'intervalle [a;b]:

2 L'ensemble des réels x tels que $a \le x < b$ est l'intervalle [a; b]:

 $oldsymbol{3}$ L'ensemble des réels x tels que a < x < b est l'intervalle a : b : b : b :

4 L'ensemble des réels x tels que $a < x \le b$ est l'intervalle [a; b]:

6 L'ensemble des réels x tels que $x \leq a$ est l'intervalle $]-\infty$; a]:

6 L'ensemble des réels x tels que x < a est l'intervalle $]-\infty$; a[:

1 L'ensemble des réels x tels que x > a est l'intervalle a; $+\infty$:

3 L'ensemble des réels x tels que $x \ge a$ est l'intervalle $[a; +\infty[$:

2. 2. Intersection, réunion d'intervalles et inclusion

2. 2. a. Intersection

Définition 6

Soit I et J deux intervalles de \mathbb{R} . Les réels qui sont à la fois dans l'intervalle I et dans l'intervalle J sont dans l'intersection des intervalles I et J:

Si
$$x \in I$$
 et $x \in J$, alors $x \in I \cap J$ (\cap se lit **inter**)

Exemple. Soit I = [2; 5] et J = [4; 9]. Déterminer $I \cap J$.

2. 2. b. Réunion

Définition 7

Les réels qui sont dans l'intervalle I ou dans l'intervalle J sont dans la réunion des intervalles I et J :

Si
$$x \in I$$
 ou $x \in J$, alors $x \in I \cup J$ (\cup se lit **union**)

Exemple. Soit I = [2; 5] et J = [4; 9]. Déterminer $I \cup J$.

2. 2. c. Inclusion

Un ensemble A est **inclus** dans un ensemble B lorsque tous les éléments de A appartiennent à B.

On note :

 $A{\subset}B$

Exemple. tous les pays de la zone euro sont dans l'Union européenne. L'ensemble des pays de la zone euro est **inclus** dans l'ensemble des pays de l'Union européenne.

3. Puissances

3. 1. Définition d'une puissance

Soit n un entier naturel et a un nombre réel.

• Si
$$n > 0$$
: $a^n = \underbrace{a \times a \times a \times \dots \times a}_{nfacteurs}$.

• Pour
$$a \neq 0$$
, $a^{-n} = \frac{1}{a^n} = \underbrace{\frac{1}{a \times a \times a \times \dots \times a}}_{nfacteurs}$.

• Par convention, pour $a \neq 0$, on pose $a^0 = 1$.

Exemples.

Définition 9

1.
$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$
.

2. La décomposition en produit de facteurs premiers de 80 peut s'écrire $80 = 2^4 \times 5$.

3. 2. Calcul avec les puissances

Propriété

Si a et b sont des nombres réels non nuls; m et n sont des entiers relatifs quelconques (positifs ou négatifs), alors :

$$\bullet \ a^m \times a^n = a^{m+n}$$

$$\bullet \ \frac{a^m}{a^n} = a^{m-n}$$

$$\bullet (a^m)^n = a^{m \times n}$$

$$\bullet \ (a \times b)^n = a^n \times b^n$$

$$\bullet \ \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

Exemples.

1.
$$(-3)^4 \times (-3)^6 = \dots$$

4.
$$\frac{2^7}{2^{-4}} = \dots$$

3. $10^3 \times 2^3 = \dots$

2.
$$(5^4)^3 = \dots$$

$$2^{-4}$$