M BÁNKI

MECHANIKA I. (Statika)

Erőrendszerek statikája

1.1.2 Lecke. Síkbeli erőrendszerek

Ó B U D A Ι E G Y E T E

CÉLKITŰZÉS

Ez a lecke bemutatja a közös metszéspontú, a párhuzamos hatásvonalú és az általános síkbeli erőrendszer eredőjének meghatározását szerkesztéssel és számítással.

KAPCSOLÓDÓ IRODALOM

Mechanika I. (Statika) elektronikus jegyzet 5., 6. fejezet.

Felhasznált irodalom

[1] Alfred Böge, Walter Schlemmer: Mechanikai és szilárdságtani feladatgyűjtemény, B+V Lap és Könyvkiadó, Budapest, 1993.

[2] Kósa Csaba: Nyugvó rendszerek mechanikája. Példatár és útmutató, Budapest, 2009

[3] Gelencsér Endre: Statika példatár, Gödöllő, 2006

M

ÓE-BGK GBI Mechanika 1

E GYETEM

MOTIVÁCIÓ

A gyakorlatban gyakran olyan feladatokkal találkozunk, ahol az erővektorok közös síkban találhatóak, illetve érdemes megjegyezni, hogy a térbeli erőrendszerekkel kapcsolatos problémák jó része is visszavezethető síkbeli feladatra, legyen szó egy autó tengelyterheléseinek vagy akár egy fogaskerékhajtás tengelyét terhelő erők kiszámításának problémájáról.

E tananyag elsajátítása révén képesek lehetünk az erőrendszerek eredőjének és az eredő hatásvonalának meghatározására. Az erőrendszer origóba történő redukálásával megtanuljuk az eredő vektorkettős kiszámításának módját.

ÓE-BGK GBI

Mechanika 1

E GY E T E M

ELMÉLETI ÁTTEKINTÉS

A közös metszéspontú (közös pontban metsződő) erők eredője egyetlen erő, melynek hatásvonala a közös metszésponton halad át. Az eredő erő nagysága az erők vektoriális összege:

$$\underline{F}_R = \sum_{i=1}^n \underline{F}_i$$

$$(F_1, F_2, F_3, \dots, F_n) \doteq (F_R).$$

Mivel mindegyik erő átmegy a közös "O" metszésponton, arra nyomatékuk nincs:

$$\underline{M}_{0R} = \underline{0}$$

O B U D A I

számító eljárásban az erővektor koordinátás alakjából indulunk ki:

$$F_{ix} = \underline{F}_i \cdot \underline{i}; F_{iy} = \underline{F}_i \cdot \underline{j},$$

az eredő erővektor pedig a következőképpen alakul:

$$\underline{F}_{R} = \begin{bmatrix} F_{Rx} \\ F_{Ry} \end{bmatrix} = \sum_{i=1}^{n} \underline{F}_{i} = \begin{bmatrix} \sum_{i=1}^{n} F_{ix} \\ \sum_{i=1}^{n} F_{iy} \end{bmatrix}.$$

vetületekből az eredő erővektor nagysága és hajlásszöge is számítható:

$$|\underline{F}_R| = \sqrt{F_{Rx}^2 + F_{Ry}^2}, \qquad tg \; \alpha_R = \frac{F_{Ry}}{F_{Rx}},$$

E G Y E T E M

Mechanika 1

Dr. Horváth Miklós

ÓE-BGK GBI

az egyensúly szükséges feltétele:

$$F_{Rx}=F_{Ry}=0.$$

A szerkesztő eljárás visszavezethető két erő összegzésére. Adott (F_1, F_2, F_3, F_4) közös metszéspontú erőrendszer, melynek keressük az eredőjét. Először meghatározzuk az első két erő eredőjét:

majd ehhez hozzáadjuk F_3 erőt, és így tovább. Végül kapjuk F_R eredőt, mely szintén a közös metszésponton halad át.

ÓE-BGK GBI

Mechanika 1

O B U D A I

E G Y E T E M

Párhuzamos erőkből álló erőrendszer során úgy választjuk meg a koordináta rendszert, hogy az erők az xy síkba esnek, illetve az erők hatásvonalai párhuzamosak az y tengellyel.

A vektortétel alapján az erőrendszert redukálhatjuk az origóba:

$$(F_1, F_2, F_3, ..., F_n) \doteq (F_R, M_{0R}),$$

ahol

$$\underline{F}_R = \sum_{i=1}^n \underline{F}_i \text{ és } \underline{M}_{0R} = \sum_{i=1}^n \underline{r}_i \times \underline{F}_i.$$

A koordinátarendszer célszerű megválasztása miatt az erő nagyságára írható:

$$F_R = \sum_{i=1}^n F_i \,,$$

ÓE-BGK GBI Mechanika 1

ami <u>j</u> irányú, a nyomaték nagysága pedig:

$$M_{0R} = \sum_{i=1}^{n} x_i \cdot F_i = x_R \cdot F_R.$$

Az eredő erő helye a nyomatéki tétel segítségével meghatározható:

$$x_R = \frac{\sum_{i=1}^n x_i \cdot F_i}{F_R}$$

ahol x_R az eredő x tengellyel való metszéspontját határozza meg.

A szerkesztési eljárásban a kötélsokszög (kötélábra) szerkesztést alkalmazzuk, ahol az elrendezési ábrán hosszléptéket, az erők vektorábrájában erőléptéket kell használni.

ÓE-BGK GBI

Mechanika 1

E G Y E T E M

BÁNKI

Általános síkbeli erőrendszerről beszélünk, ha az erők hatásvonalai egyéb megkötés nélkül közös síkban helyezkednek el. A koordináta rendszer xy síkját – célszerűen – az erőkkel közös síkban vesszük fel. A vektortétel alapján az erőket az origóba redukálhatjuk:

$$(F_1, F_2, F_3, ..., F_n) \doteq (F_R, M_{0R}),$$

ahol az eredő erő:

$$\underline{F}_{R} = \sum_{i=1}^{n} \underline{F}_{i} = \begin{bmatrix} \sum_{i=1}^{n} F_{ix} \\ \sum_{i=1}^{n} F_{iy} \end{bmatrix} = \begin{bmatrix} F_{Rx} \\ F_{Ry} \end{bmatrix},$$

mely két skaláregyenletre bontható:

O B U D A I

EGYETEM

BÁNKI

$$F_{Rx} = \sum_{i=1}^{n} F_{ix} = \sum_{i=1}^{n} |\underline{F}_{i}| \cdot \cos \alpha_{i},$$

$$F_{Ry} = \sum_{i=1}^{n} F_{iy} = \sum_{i=1}^{n} |\underline{F}_{i}| \cdot \sin \alpha_{i}.$$

A redukált nyomaték:

$$\underline{M}_{0R} = \sum_{i=1}^{n} \underline{M}_{0i} = \sum_{i=1}^{n} \underline{r}_{i} \times \underline{F}_{i} = \sum_{i=1}^{n} \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ x_{i} & y_{i} & 0 \\ F_{\chi i} & F_{y i} & 0 \end{vmatrix} =$$

$$= \sum_{i=1}^{n} (x_i \cdot F_{yi} - y_i \cdot F_{xi}) \cdot \underline{k} =$$

$$= \sum_{i=1}^{n} x_{0i} \cdot F_{yi} \cdot \underline{k} = \sum_{i=1}^{n} -y_{0i} \cdot F_{xi} \cdot \underline{k}.$$

Az eredő erő helye a nyomatéki tétel segítségével meghatározható:

$$x_{0R} = \frac{\sum_{i=1}^{n} \left(x_i \cdot F_{yi} - y_i \cdot F_{xi} \right)}{F_{Rv}},$$

ahol x_{0R} az eredő x tengellyel való metszéspontját határozza meg.

Az eredő helye és nagysága a párhuzamos erőkből álló erőrendszerekhez hasonlóan szerkesztéssel is meghatározható. Az eredő nagyságát és irányát a vektorábrából, a helyét a kötélsokszög felhasználásával határozhatjuk meg.

O B U D A I

E G Y E T E M

A mintafeladatok megoldása előtt érdemes megjegyezni, hogy a feladatok egy megfelelően megválasztott koordinátarendszer felvétele után, tisztán mechanikai, "elméleti" feladattá egyszerűsödnek.

ÓE-BGK GBI Mechanika 1

E G Y E T E \mathbf{M}

1. MINTAPÉLDA

Az ábrán (metszetben) látható telefonoszlopot vízszintesen 4 huzal húzza F_1 , F_2 , F_3 , F_4 erővel. Keressük az erők eredőjét és az eredő irányszögét. Oldjuk meg a feladatot számítással és szerkesztéssel!

Adatok: $F_1 = 400 N, F_2 = 500, F_3 = 350 N, F_4 = 450 N.$

ÓE-BGK GBI

Mechanika 1

E GYETEM

Megoldás

Adott tehát négy, közös metszéspontú erő egy xy koordinátarendszerben, melynek keressük az eredőjét és az eredő hajlásszögét.

A feladat megoldása során használt szögeket az x tengelyhez képest olvassuk le, így az előjelhelyes eredményt is az xy koordinátarendszerben fogjuk megkapni.

ÓE-BGK GBI

Mechanika 1

A feladat megoldása számítással:

Az eredő erő:

$$\underline{F}_{R} = \begin{bmatrix} F_{Rx} \\ F_{Ry} \end{bmatrix}$$

O B U D A I

A vektort skaláregyenletekre felbontva kapjuk az eredő x és y irányú komponenseit:

$$F_{Rx} = \sum_{i=1}^{n} F_{ix} = \sum_{i=1}^{n} |\underline{F}_{i}| \cdot \cos \alpha_{i} =$$

$$= F_1 \cdot \cos \alpha_1 + F_2 \cdot \cos \alpha_2 + F_3 \cdot \cos \alpha_3 + F_4 \cdot \cos \alpha_4$$

$$= 400 N \cdot \cos 120^{\circ} + 500 N \cdot \cos 45^{\circ} + 350 N \cdot \cos 0^{\circ} +$$

$$+450 N \cdot \cos 270^{\circ} = -200 N + 354 N + 350 N + 0 N =$$

$$= 504 N$$

EGYETEM

$F_{Ry} = \sum F_{iy} = \sum |\underline{F_i}| \cdot \sin \alpha_i =$

$$= F_1 \cdot \sin \alpha_1 + F_2 \cdot \sin \alpha_2 + F_3 \cdot \sin \alpha_3 + F_4 \cdot \sin \alpha_4 =$$

$$= 400 N \cdot \sin 120^{\circ} + 500 N \cdot \sin 45^{\circ} + 350 N \cdot \sin 0^{\circ} +$$

$$+450 N \cdot \sin 270^{\circ} = 346 N + 354 N + 0 N - 450 N =$$

= 250 N

Az eredő erő nagysága és hajlásszöge:
$$\left|\underline{F}_{R}\right| = \sqrt{F_{Rx}^{2} + F_{Ry}^{2}} = \sqrt{(504 \ N\)^{2} + (250 \ N\)^{2}} = 562 \ N$$

$$\alpha_R = arctg \frac{F_{Ry}}{F_{Ry}} = arctg \frac{250 \text{ N}}{504 \text{ N}} = 26.4^{\circ}$$

E G Y E T E M

A feladat megoldása szerkesztéssel:

szerkezetábra: erőábra:

Mivel a közös metszéspontú erőrendszer eredője is keresztülmegy a metszésponton, az eredő helye egyértelműen meghatározott. Az eredő nagysága és

ÓE-BGK GBI Mechanika 1

E G Y E T E M

BÁNKI

iránya az erőábrában (vektorsokszög) kerül megszerkesztésre. Erőléptéket felvéve és alkalmazva, az erőket nyílfolytonosan összegezzük, majd a kezdő és végpontot összekötve (ütköző nyílértelemmel) kapjuk az eredő erőt. Nagyságát és hajlásszögét léptékhelyesen leolvashatjuk a vektorábrából.

Az erő nagysága az erőlépték alapján és hajlásszöge: $F\cong 560~N$, $\alpha_R=26^\circ$.

Válasz/értékelés

A feladat megoldása során kerestük a telefonoszlopot terhelő huzalok eredő erejét. A megoldás az erők koordinátarendszerben való feltüntetése, majd összegzése volt, melyet számítással és szerkesztéssel is megoldottunk.

EGYETEM

BÁNKI

2. MINTAPÉLDA

A teherautó tengelyterhelése F_1 , F_2 és F_3 . Az l_1 , l_2 , l_3 távolságok ismeretében határozzuk meg az összsúlyt (eredő erőt) illetve hatásvonalának helyét a teherautó elejéhez képest. Oldjuk meg a feladatot számítással és szerkesztéssel!

Adatok:

$$F_1 = 50 \text{ kN}, F_2 = F_3 = 52 \text{ kN},$$

 $l_1 = 1.7 \text{ m}, l_2 = 4.7 \text{ m}, l_3 = 1.3 \text{ m}.$

ÓE-BGK GBI

Mechanika 1

EGYETEM

Megoldás

A feladat megoldását a szerkezet elhagyásával és egy alkalmasan megválasztott koordinátarendszer felrajzolásával kezdjük. Az y tengelyt célszerűen az autó elejéhez "rögzítjük", az erők távolságát pedig a későbbi számítások miatt az origóhoz képest jelöljük.

ÓE-BGK GBI

Mechanika 1

A feladatban adott tehát egy F_1 , F_2 és F_3 **párhuzamos erőkből álló erőrendszer**, keressük az eredő erőt, azaz az eredő erővektor helyét és nagyságát.

A feladat megoldása számítással:

Az erők a párhuzamos erőrendszer – és a jelen koordinátarendszer irányítottsága miatt - csak <u>j</u> irányú komponenseket tartalmaznak, így az eredő erő nagysága:

$$F_R = \sum_{i=1}^{n} F_i = 50 \ kN + 52 \ kN + 52 \ kN = 154 \ kN$$

Az eredő helye:

$$x_R = \frac{\sum_{i=1}^n x_i \cdot F_i}{F_R} =$$

 \mathbf{M}

E G Y E T E

ÓE-BGK GBI Mechanika 1

E T E M

$$= \frac{(l_1 \cdot F_1) + ((l_1 + l_2) \cdot F_2) + ((l_1 + l_2 + l_3) \cdot F_3)}{F_R} =$$

$$= \frac{(1,7 m \cdot 50 kN) + (6,4 m \cdot 52 kN) + (7,7 m \cdot 52 kN)}{154 kN} =$$

$$= 5,3 m$$

A feladat megoldása szerkesztéssel:

Első lépésben egy hosszlépték alkalmazása mellett megrajzoljuk az erők szerkezetábráját:

EGYETEM

Ezután megszerkesztjük az erők vektorsokszögét a megválasztott erőléptéknek megfelelően.

Az első erővektor kezdőpontját összekötjük az utolsó erővektor végpontjával, így kapjuk az eredő erővektort, a vektorábra nyílfolyama az eredőre nézve ütköző. A lépték segítségével az eredő meghatározható. Jelen feladatban az erők egy vonalba esnek, így a könnyebb értelmezhetőség érdekében az eredőt kissé eltolva is megrajzoljuk.

Ezután következik a kötélábra szerkesztése. Felveszünk egy O póluspontot, majd ezt összekötjük az erők kezdő- illetve végpontjával, és beszámozzuk őket az ábra szerint. Az első erő kezdőpontjából húzott kötéloldal az I-es. Az első erő végpontja, illetve a második erő kezdőpontjából húzott kötéloldal a II-es jelet kapja, és így tovább.

Ó B U D A I E GYETEM

A szerkesztés eredménye a lépték használatával, mérés alapján:

$$F_R = 154 \, kN$$

ÓE-BGK GBI Mechanika 1

E G Y E T E M

A kötéloldalakkal párhuzamosokat húzunk a szerkezeti ábrába oly módon, hogy az első erő hatásvonalát metszük az I-es és II-es kötéloldallal.

Majd a második erő hatásvonalát metsző II-es kötéloldali metszéspontba párhuzamost húzunk a III-as kötéloldallal és így tovább. Végül az utolsó kötéloldalt metszésre hozzuk az I-es kötéloldallal, a metszéspont kijelöli az eredő erő hatásvonalának helyét.

A kötéloldalakkal párhuzamosokat húzunk a szerkezeti ábrába oly módon, hogy az első erő hatásvonalát metszük az I-es és II-es kötéloldallal.

ÓE-BGK GBI Mechanika 1

Majd a második erő hatásvonalát metsző II-es kötéloldali metszéspontba párhuzamost húzunk a III-as kötéloldallal,

ÓE-BGK GBI Mechanika 1

és így tovább. Végül az utolsó kötéloldalt metszésre hozzuk az I-es kötéloldallal,

ÓE-BGK GBI Mechanika 1

a metszéspont kijelöli az eredő erő hatásvonalának helyét.

Az eredő erővektor helye a szerkesztés eredményei, mérés alapján:

ÓE-BGK GBI

Mechanika 1

Válasz/értékelés

A feladat megoldása során kerestük a teherautó összsúlyát és a terhelés eredőjének helyét.

A feladatot számítással és szerkesztéssel is megoldottunk, a szerkesztés során az erők helyét koordináta rendszerben ábrázoltuk, vektorábrában összegeztük, majd kötélsokszög szerkesztés során megkerestük a vektorábrában kapott eredő helyét. A szerkesztés során kapott eredményeket méréssel állapítottuk meg a feladatban felvett léptékek felhasználásával.

E G Y E T E M

E G Y E T E M

3. MINTAPÉLDA

A fenékcsappantyúra G súlyerő, F_1 és súrlódásmentes csigán átvetett idealizált kötélen keresztül F_2 erő hat. Az erők hatásvonalainak távolsága l_1 , l_2 és l_3 , a kötél hajlásszöge α .

Keressük

- az eredő nagyságát,
- az eredő hajlásszögét a vízszinteshez képest, illetve
- az eredő hatásvonalának távolságát az O ponthoz viszonyítva.

Oldjuk meg a feladatot számítással és szerkesztéssel!

Adatok:
$$G = 2 kN, F_1 = 1.5 kN, F_2 = 0.5 kN,$$
 $l_1 = 0.2 m, l_2 = 0.8 m, l_3 = 0.9 m, \alpha = 45^{\circ}.$

ÓE-BGK GBI Mechanika 1

ÓE-BGK GBI

Mechanika 1

Ó B U D A I E G Y E T E

BÁNKI

M

Megoldás

A feladat megoldását ismét a szerkezet elhagyásával és egy alkalmasan megválasztott koordinátarendszer felvételével kezdjük.

A feladat felrajzolásakor figyelembe vesszük, hogy a kötél végén felfüggesztett F_2 súlyerő hatására a kötélben F_2 erő ébred.

Ne felejtsük, az erők a hatásvonalaikon eltolhatók és tetszőlegesen felbonthatók összetevőkre.

Így a feladat tehát egy G, F_1 és F_2 **általános síkbeli erőrendszer**. Keressük az eredő erőt, az eredő hajlásszögét és hatásvonalának távolságát az "O" ponthoz viszonyítva. Írjuk fel az eredő vektorkettőst is!

ÓE-BGK GBI

Mechanika 1

E GYETEM

A feladat megoldása számítással:

Az eredő erővektort számíthatjuk skaláregyenletekre bontva vagy vektoros formában is. Most ez utóbbit választjuk.

Írjuk fel előjelhelyesen a feladatban szereplő erőket és a támadáspontjukba mutató helyvektorokat vektoros alakban: x, y, z térbeli koordinátarendszernek megfelelően! (Bár a feladat síkbeli, szükség van a z koordinátákra is. A feladat során hamarosan belátjuk, hogy az origóra történő redukálás során keletkező nyomatékvektor z irányú, azaz merőleges a feladatban szereplő erők síkjára.)

Az eredő erő számítása:

$$\underline{G} = \begin{bmatrix} 0 \\ -2 \\ 0 \end{bmatrix} kN, \underline{r}_g = \begin{bmatrix} -0.8 \\ 0 \\ 0 \end{bmatrix} m$$

ÓE-BGK GBI Mechanika 1

O B U D A I

$\underline{F_1} = \begin{bmatrix} 0 \\ -1.5 \end{bmatrix} kN, \underline{r_1} = \begin{bmatrix} 0.2 \\ 0 \end{bmatrix} m$

 $F_R = G + F_1 + F_2 =$

$$\underline{F}_{2} = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 0,5 \cdot \cos 45^{\circ} \\ 0,5 \cdot \sin 45^{\circ} \end{bmatrix} kN = \begin{bmatrix} 0,35 \\ 0,35 \\ 0 \end{bmatrix} kN, \underline{r}_{2} = \begin{bmatrix} -1,7 \\ 0 \\ 0 \end{bmatrix} m$$

$$= \begin{bmatrix} 0 \\ -2 \\ 0 \end{bmatrix} kN + \begin{bmatrix} 0 \\ -1.5 \\ 0 \end{bmatrix} kN + \begin{bmatrix} 0.35 \\ 0.35 \\ 0 \end{bmatrix} kN = \begin{bmatrix} 0.35 \\ -3.15 \\ 0 \end{bmatrix} kN$$
$$|\underline{F}_R| = \sqrt{(0.35 \ kN)^2 + (-3.15 \ kN)^2} = 3.17 \ kN$$

Az eredő hajlásszöge:

$$\alpha_R = arctg \frac{F_{Ry}}{F_{Rx}} = arctg \frac{-3,15 \ kN}{0,35 \ kN} = -83,6^{\circ}$$

ÓE-BGK GBI Mechanika 1

EGYETEM

BÁNKI

Az eredő hatásvonalának origótól mért távolságához meg kell határozni a *redukált nyomatékvektor*t, melyet a hely- és erővektorok vektoriális szorzatának összege ad:

$$\underline{M}_{0R} = \sum_{i=1}^{n} \underline{M}_{0i} = \sum_{i=1}^{n} \underline{r}_{i} \times \underline{F}_{i} = \sum_{i=1}^{n} \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ x_{i} & y_{i} & 0 \\ x_{i} & y_{i} & 0 \end{vmatrix} \\
\underline{M}_{G} = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ -0.8 & 0 & 0 \\ 0 & -2 & 0 \end{vmatrix} kNm = \begin{bmatrix} 0 \\ 0 \\ 1.6 \end{bmatrix} kNm \\
\underline{M}_{1} = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ 0.2 & 0 & 0 \\ 0 & -1.5 & 0 \end{vmatrix} kNm = \begin{bmatrix} 0 \\ 0 \\ -0.3 \end{bmatrix} kNm \\
\underline{M}_{2} = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ -1.7 & 0 & 0 \\ 0.35 & 0.35 & 0 \end{vmatrix} kNm = \begin{bmatrix} 0 \\ 0 \\ -0.6 \end{bmatrix} kNm$$

ÓE-BGK GBI

Mechanika 1

$M_{OR} = M_G + M_1 + M_2 =$

$$= \begin{bmatrix} 0 \\ 0 \\ 1,6 \end{bmatrix} kNm + \begin{bmatrix} 0 \\ 0 \\ -0,3 \end{bmatrix} kNm + \begin{bmatrix} 0 \\ 0 \\ -0,6 \end{bmatrix} kNm = \begin{bmatrix} 0 \\ 0 \\ 0,7 \end{bmatrix} kNm$$

Az egyenlet mindkét oldalát skalárisan megszorozzuk a z tengely irányába mutató k egységvektorral:

$$M_{0R} = 0.7 \ kNm$$

Az eredő hatásvonalának távolsága az x tengely mentén az origótól (x tengelymetszék):

$$x_{0R} = \frac{M_{0R}}{F_{Ry}} = \frac{0.7 \ kNm}{-3.15 \ kN} = -0.22 \ m$$

EGYETEM

A feladat megoldása szerkesztéssel:

(A szerkesztés analóg a párhuzamos erőrendszerek mintapéldájával.)

Első lépésben egy hosszlépték alkalmazása mellett megrajzoljuk az erők szerkezetábráját.

Ezután megszerkesztjük az erők vektorsokszögét a megválasztott erőléptéknek megfelelően. Az első erővektor kezdőpontját összekötjük az utolsó erővektor végpontjával, így kapjuk az eredő erővektort, a vektorábra nyílfolyama az eredőre nézve ütköző. A lépték segítségével az eredő meghatározható.

Ezután következik a kötélábra szerkesztése. Felveszünk egy O póluspontot, majd ezt összekötjük az erők kezdő- illetve végpontjával, és beszámozzuk őket az ábra szerint. Az első erő kezdőpontjából húzott kötéloldal az I-es. Az első erő végpontja, illetve a

ÓE-BGK GBI Mechanika 1

E GYETEM

második erő kezdőpontjából húzott kötéloldal a II-es jelet kapja, és így tovább. A kötéloldalakkal párhuzamosokat húzunk a szerkezeti ábrába oly módon, hogy az első erő hatásvonalát metszük az I-es és II-es kötéloldallal. (Az erővektorok hatásvonalát érdemes meghosszabbítani.)

Majd a második erő hatásvonalát metsző II-es kötéloldali metszéspontba párhuzamost húzunk a III-as kötéloldallal és így tovább. Végül az utolsó kötéloldalt metszésre hozzuk az I-es kötéloldallal, a metszéspont kijelöli az eredő erő hatásvonalának helyét.

A szerkesztés eredménye a léptékek használatával, mérés alapján:

$$F_R = 3.2 \text{ kN}, x_{0R} = -0.2 \text{ m}$$

ÓE-BGK GBI

Mechanika 1

Válasz/értékelés

A feladat megoldása során kerestük a fenékcsappantyúra ható erőrendszer eredőjét és hatásvonalát.

A feladatot számítással és szerkesztéssel is megoldottunk.

A számító eljárás során kapott eredő erő és eredő nyomatékvektor az erőrendszer origóba redukált vektorkettősét adják $\left[\underline{F}_R;\underline{M}_{0R}\right]_0$.

A szerkesztés során az erők helyét koordináta rendszerben ábrázoltuk, vektorábrában összegeztük, majd kötélsokszög szerkesztés során megkerestük a vektorábrában kapott eredő helyét. A szerkesztés során kapott eredményeket méréssel állapítottuk meg a feladatban felvett léptékek felhasználásával.

M

ÓE-BGK GBI Mechanika 1

E GYETEM

1. FELADAT

Adott egy F_1, F_2, F_3, F_4 erőkből álló közös támadáspontú erőrendszer. Az erők irányszögei $\alpha_1, \alpha_2, \alpha_3$ és α_4 .

Határozzuk meg az eredő erőt és az eredő erő irányszögét!

Adatok: $F_1=22~N, F_2=15~N, F_3=30~N, F_4=25~N,$ $\alpha_1=15^\circ, \alpha_2=60^\circ, \alpha_3=145^\circ, \alpha_4=210^\circ.$

Végeredmények: $F_R = 29.2 N$, $\alpha_R = 126.76^\circ$.

E GYETEM

2. FELADAT

Adott egy $F_1, F_2, F_3, F_4, F_5, F_6$ erőkből álló közös támadáspontú erőrendszer. Az erők irányszögei $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ és α_6 .

Határozzuk meg az eredő erőt és az eredő erő irányszögét!

Adatok: $F_1 = 75~N, F_2 = 125~N, F_3 = 95~N, F_4 = 150~N, F_5 = 170~N, F_6 = 115~N,$ $\alpha_1 = 27^\circ, \alpha_2 = 72^\circ, \alpha_3 = 127^\circ, \alpha_4 = 214^\circ,$ $\alpha_5 = 270^\circ, \alpha_6 = 331^\circ.$

Végeredmények: $F_R = 84,46 \, N$, $\alpha_R = 286,9^{\circ}$.

3. FELADAT

Az ábrán látható elrendezésben egyensúlyi erőrendszer terhel egy anyagi pontot.

Határozzuk meg F_3 erő nagyságát és az x tengellyel

bezárt szögét!

Adatok: $F_1 = 40 \ kN$, $\alpha_{1x} = 43^{\circ}$, $F_2 = 46 \ kN$, $\alpha_{2x} = 152^{\circ}$

Végeredmények: $F_3 = 50,18 \, kN$, $\alpha_{3x} = 283,09^{\circ}$.

M

ÓE-BGK GBI Mechanika 1

4. FELADAT

Adott F_1, F_2 párhuzamos hatásvonalú, azonos nyílértelmű erő, egymástól *l* távolságra. Határozzuk meg az eredő erőt és az eredő erő F_2 erő hatásvonalától való l_0 távolságát!

Adatok: $F_1 = 5 N$, $F_2 = 11.5 N$, l = 18 cm.

Végeredmények: $F_R = 16.5 N$, $l_0 = 5.46 cm$.

Ó B U D A I E G Y E T E

5. FELADAT

Adott F_1, F_2 párhuzamos hatásvonalú, ellentétes nyílértelmű erő, egymástól l távolságra. F_1 az y tengely irányába pozitívan, F_2 negatívan hat.

Határozzuk meg

- az eredő erőt,
- az eredő erő F_1 erő hatásvonalától való l_0 távolságát,
- az eredő erő nyílértelmét!

Adatok: $F_1 = 180 N$, $F_2 = 240 N$, l = 780 mm.

Végeredmények: $F_R = 60 N$, $l_0 = 3.12 m$, negatív irányba.

M

Ó B U D A I E G Y E T E

M BÁNKI

6. FELADAT

Az ábrán látható pallóra F_1, F_2, F_3 párhuzamos hatásvonalú erőrendszer hat l_1, l_2, l_3 távolságban.

Határozzuk meg

- az eredő erőt,
- az eredő erő hatásvonalának távolságát a palló bal oldali alátámasztási pontjától!

Adatok:
$$F_1 = 800 N$$
, $F_2 = 1.1 kN$, $F_3 = 1.2 kN$, $l_1 = 1 m$, $l_2 = 1.5 m$, $l_3 = 2 m$.

Végeredmények: $F_R = 3.1 \ kN$, $l_R = 2.89 \ m$.

7. FELADAT

Az ábrán látható tengelyre F_1, F_2, F_3 párhuzamos hatásvonalú erőrendszer hat l_1, l_2, l_3 távolságban.

Határozzuk meg

- az eredő erő nagyságát és értelmét,
- az eredő erő hatásvonalának távolságát a bal oldali alátámasztás középpontjától!

Adatok: $F_1 = 500 N$, $F_2 = 800 N$, $F_3 = 2.1 kN$, $l_1 = 150 \, mm, l_2 = 300 \, mm, l_3 = 150 \, mm$

Végeredmények: $F_R = 1.8 \ kN$, lefelé hat, $l_R = 0.542 \, m.$

 \mathbf{M}

E G Y E T E

8. FELADAT

Az ábrán látható tartóra F_1, F_2 párhuzamos hatásvonalú erők hatnak. Közöttük egy kötél F_K erővel α hajlásszög alatt húzza a tartót felfelé. A távolságok: l_1, l_2, l_3 .

Határozzuk meg

- az eredő erőt,
- az eredő erő hatásvonalának hajlásszögét a függőleges irányhoz képest,
- az eredő erő hatásvonalának távolságát a "B" alátámasztási ponttól!

Adatok: $F_1 = 30 \ kN$, $F_2 = 20 \ kN$, $F_K = 25 \ kN$, $\alpha = 60^\circ$ $l_1 = 2 \ m$, $l_2 = 1.5 \ m$, $l_3 = 0.7 \ m$.

Végeredmények: $F_R = 30,98 \ kN$, $\alpha_R = -23,79^\circ$, $\alpha_R = 2,98 \ m$.

M

E G Y E T E

ÓE-BGK GBI

Mechanika 1

O B U D A I

E G Y E T E M

BÁNKI

9. FELADAT

Az ábrán látható kétkarú emelőre F_1, F_2, F_3, F_4 erő hat. Távolságuk: l_1, l_2, l_3 és adott F_3 hajlásszöge α .

Mekkora reakcióerő ébred az "A" pontban, illetve a a hatásvonala mekkora szöget zár be az emelővel? Milyen távolságban kell lennie az F_1 erőnek az "A" ponttól, hogy az emelő egyensúlyban legyen? (Megj.: Az "A" pontban a négy erő ellenereje hat.)

Adatok: $F_1 = 300 N$, $F_2 = 200 N$, $F_3 = 500 N$, $F_4 = 100 N$, $\alpha = 50^{\circ}$, $l_1 = 2 m$, $l_2 = 4 m$, $l_3 = 3.5 m$.

Végeredmények: $F_A = 846,4 N, \alpha_A = 67,68^{\circ}, l = 2.23 m.$

ÓE-BGK GBI

Mechanika 1

10. FELADAT

Adott az ábrán látható F_1, F_2, F_3, F_4 erőkből és egy M_0 koncentrált nyomatékból álló általános síkbeli erőrendszer.

Adott az erők és a koncentrált nyomaték nagysága, az erők hatásvonalainak x tengellyel bezárt szöge és az erők támadáspontjába mutató helyvektor.

Határozzuk meg szerkesztéssel és számítással az erőrendszer eredőjének helyét, irányát és nagyságát!

Adatok:
$$F_1 = 365 \text{ N}, r_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \text{ m}, \alpha_1 = 120^\circ,$$

$$F_2 = 471 \text{ N}, r_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ m}, \alpha_2 = 75^\circ,$$

$$F_3 = 550 \text{ N}, r_3 = \begin{bmatrix} 3 \\ 3 \end{bmatrix} \text{ m}, \alpha_3 = 0^\circ,$$

$$F_4 = 390 \text{ N}, r_4 = \begin{bmatrix} 4 \\ 0 \end{bmatrix} \text{ m}, \alpha_4 = 90^\circ, M_0 = 312 \text{ Nm}.$$

 \mathbf{M}

E G Y E T E

ÓE-BGK GBI Mechanika 1

Végeredmények: $F_R = 1259,98 \ kN$, $\alpha_R = 67,14^{\circ}$,

$$x_{0R}=1,07~m$$

$$M_{0R} = 1247,84 \text{ Nm}.$$

ÓE-BGK GBI

Mechanika 1