Question 1

Part A

- (a), (b), (e), and (f) will converge to A as n goes to infinity. Because they are first density and second the support of f is contained in the support of h.
- (c) is not because it is not the we want to use for importance sampling as it doesn't have the indicator function like in A.
- (d) is not because the support of f does not contain in the support of h

Part B

Setup functions:

```
unif<-runif(1000,0,1)
h_x<-function(x){
   abs(cos(x+x^2)*exp(-2*x))
}
se_calculator<-function(h,f,est,n){
   var<-sum((h/f-est)**2)/(n-1)
   s<-var**0.5
   s/(n)**0.5
}
n=1000</pre>
```

Function (a):

```
inv_f_a<- function(x){
    -log(1-x)
}
f_a<-function(x){
    exp(-x)
}
f_a_x<-inv_f_a(unif)

f_a_y<-f_a(f_a_x)
h_a_y<-h_x(f_a_x)
mean_a<-sum(h_a_y/f_a_y)/n
se_a<-se_calculator(h_a_y,f_a_y,mean_a,n)
se_a/mean_a # useful
mean_a+qnorm(0.05)*se_a
mean_a+qnorm(0.95)*se_a</pre>
```

```
> mean_a
[1] 0.373683
```

Confidence Interval:

```
> mean_a+qnorm(0.05)*se_a
[1] 0.3569571
> mean_a+qnorm(0.95)*se_a
[1] 0.390409
```

The 90% confidence interval is about [0.357, 0.390]

Meaningful?

Yes, because the relative error is smaller than 1.

```
> se_a/mean_a # useful
[1] 0.02721194
```

Function (b):

```
inv_f_b<- function(x){
    -1/2*log(1-x)
}
f_b<-function(x){
    2*exp(-2*x)
}

f_b_x<-inv_f_b(unif)
f_b_y<-f_b(f_b_x)
h_b_y<-h_x(f_b_x)
mean_b<-sum(h_b_y/f_b_y)/1000
se_b<-se_calculator(h_b_y,f_b_y,mean_b,n)
se_b/mean_b # useful
mean_b+qnorm(0.05)*se_b
mean_b+qnorm(0.95)*se_b

> mean_b

[1] 0.3870542
```

Confidence Interval:

```
> mean_b+qnorm(0.05)*se_b
[1] 0.3799592
> mean_b+qnorm(0.95)*se_b
[1] 0.3941492
```

The 90% confidence interval is about [0.380, 0.394]

Meaningful?

```
Yes, because the relative error is smaller than 1.
```

```
> se_b/mean_b # useful
[1] 0.01114431
```

Function (e):

```
inv_f_e<- function(x){
  -1/3*log(1-x)
f_e<-function(x){
  3*exp(-3*x)
f_e_x<-inv_f_e(unif)
f_e_y < -f_e(f_e_x)
h_e_y<-h_x(f_e_x)
mean_e < -sum(h_e_y/f_e_y)/1000
se_e<-se_calculator(h_e_y,f_e_y,mean_e,n)</pre>
se_e/mean_e # useful
mean_e+qnorm(0.05)*se_e
mean_e+qnorm(0.95)*se_e
 > mean_e
 [1] 0.3938754
Confidence Interval:
> mean_e+qnorm(0.05)*se_e
 [1] 0.3813041
> mean_e+qnorm(0.95)*se_e
[1] 0.4064467
```

The 90% confidence interval is about [0.381, 0.406]

Meaningful?

Yes, because the relative error is smaller than 1.

```
> se_e/mean_e # useful
[1] 0.01940413
```

Function (f):

```
u_1<-runif(1000)
u_2<-runif(1000)
x1\_box\_muller < -abs(sqrt(-2*log(u_1))*cos(2*pi*u_2))
f_f<-function(x){
  2/sqrt(2*pi)*exp((-x^2)/2)
mean_f < -sum(h_x(x1\_box\_muller)/f_f(x1\_box\_muller))/1000
se_f < -se_calculator(h_x(x1_box_muller), f_f(x1_box_muller), mean_f, n)
se_f/mean_f # useful
mean_f+qnorm(0.05)*se_f
mean_f+qnorm(0.95)*se_f
 > mean_f
 [1] 0.3716307
Confidence Interval:
 > mean_f+qnorm(0.05)*se_f
 [1] 0.3536431
 > mean_f+qnorm(0.95)*se_f
 [1] 0.3896184
```

The 90% confidence interval is about [0.354, 0.390]

Meaningful?

Yes, because the relative error is smaller than 1.

```
> se_f/mean_f # useful
[1] 0.02942627
```

Question 2

Part A

(a)U1, . . . , Un i.i.d. samples from Uniform([-1, 1]³) . Then the law of large numbers implies that

$$\frac{1}{n}\sum_{i=1}^{n}h(U_{i})\approx I.$$

(b) if we wanted to estimate the volume of a region A in [0, 1]^d, then we could consider h to be the indicator function of A. That is, we could estimate A's volume with:

$$\frac{\# \left\{ U_i \in A \right\}}{n} = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_A(U_i) \approx \int_{[0,1]^d} \mathbb{1}_A(x) dx = \mathrm{Vol}(A).$$

For the quantity (1) and (2) we can use (a) to estimate

```
n = 1000
x1<-runif(n,-1,1)
x2<-runif(n,-1,1)
x3<-runif(n,-1,1)
x<-x1^2+x2^2+x3^2
q1<-8*sum(h_muti(x1,x2,x3))/n

> q1
[1] 2.673399

x2_1<-as.numeric(x1<=1 & x1>=0)
x2_2<-as.numeric(x2<=1 & x2>=0)
x2_3<-as.numeric(x3<=1 & x3>=0)
q2<-8*sum(x2_1*x2_2*x2_3*h_muti(x1,x2,x3))/n

> q2
[1] 0.2529547
```

For the quantity (4) we can use (b) to estimate

```
8*sum(as.numeric(x<=1.1)*x2_1*x2_2*x2_3)/n
> 8*sum(as.numeric(x<=1.1)*x2_1*x2_2*x2_3)/n
[1] 0.52</pre>
```

We cannot use this uniform sample to estimate (3) because (3) is covering the real line R, but our sample is only covering $Uniform([-1, 1]^3)$.

Part B

Setup functions:

```
b =1/sqrt(2)
n <-1000
x1_sample<-rnorm(n, mean = 0, sd = b)
x2_sample<-rnorm(n, mean = 0, sd = b)
x3_sample<-rnorm(n, mean = 0, sd = b)

f_muti<-function(x1,x2,x3,b){
    (2*pi*b**2)^(-3/2)*exp(-(x1^2+x2^2+x3^2)/(2*b**2))
}
h_muti<-function(x1,x2,x3){
    cos(x1+x2)*exp(-(x1^2+x2^2+x3^2))
}
se_calculator<-function(h,f,est,n){
    var<-sum((h/f-est)**2)/(n-1)
    s<-var**0.5
    s/(n)**0.5
}
h_y<-h_muti(x1_sample,x2_sample,x3_sample)
f_y<-f_muti(x1_sample,x2_sample,x3_sample,b)</pre>
```

Quantity(a)

```
\label{lem:continuous} $$\inf(ator_i1<-x1\_sample^2+x2\_sample^2+x3\_sample^2)$$ in1<-as.numeric(indicator_i1<=1)$$ estimator1<-sum((in1*h_y/f_y))/1000$$ estimator1+qnorm(0.05)*se_calculator(in1*h_y,f_y,estimator1,n)$$ estimator1+qnorm(0.95)*se_calculator(in1*h_y,f_y,estimator1,n)$$ > estimator1$$ [1] 2.032979$$ > estimator1+qnorm(0.05)*se_calculator(in1*h_y,f_y,estimator1,n)$$ [1] 1.908116$$ > estimator1+qnorm(0.95)*se_calculator(in1*h_y,f_y,estimator1,n)$$ [1] 2.157841$$
```

The 90% confidence interval is about [1.908, 2.158]

Quantity(b)

```
in2_1<-as.numeric(x1_sample<=1 & x1_sample>=0)
in2_2<-as.numeric(x2_sample<=1 & x2_sample>=0)
in2_3<-as.numeric(x3_sample<=1 & x3_sample>=0)
in2<-in2_1*in2_2*in2_3
estimator2<-sum((in2*h_y/f_y))/1000
se_calculator(in2*h_y,f_y,estimator2,n)
estimator2+qnorm(0.05)*se_calculator(in2*h_y,f_y,estimator2,n)
estimator2+qnorm(0.95)*se_calculator(in2*h_y,f_y,estimator2,n)
> estimator2
[1] 0.2710625
> estimator2+qnorm(0.05)*se_calculator(in2*h_y,f_y,estimator2,n)
[1] 0.2175746
> estimator2+qnorm(0.95)*se_calculator(in2*h_y,f_y,estimator2,n)
[1] 0.3245504
```

The 90% confidence interval is about [0.218, 0.325]

Quantity(c)

```
estimator3<-sum((h_y/f_y))/1000
estimator3+qnorm(0.05)*se_calculator(h_y,f_y,estimator3,n)
estimator3+qnorm(0.95)*se_calculator(h_y,f_y,estimator3,n)
> estimator3
[1] 3.371076
> estimator3+qnorm(0.05)*se_calculator(h_y,f_y,estimator3,n)
[1] 3.240953
> estimator3+qnorm(0.95)*se_calculator(h_y,f_y,estimator3,n)
[1] 3.501199
```

The 90% confidence interval is about [3.241, 3.501]

Quantity(d)

```
in4<-as.numeric(indicator_i1<=1.1)
estimator4<-sum((in4*in2/f_y))/1000
estimator4+qnorm(0.05)*se_calculator(in4*in2,f_y,estimator4,n)
estimator4+qnorm(0.95)*se_calculator(in4*in2,f_y,estimator4,n)

> estimator4
[1] 0.4537726
> estimator4+qnorm(0.05)*se_calculator(in4*in2,f_y,estimator4,n)
[1] 0.3206582
> estimator4+qnorm(0.95)*se_calculator(in4*in2,f_y,estimator4,n)
[1] 0.5868871
```

The 90% confidence interval is about [0.321, 0.587]

Question 3

Part A

(a)
let Q: P(XCLOB) Sich Xn bin (n,p)
we can vewrite PUELOSS as an expedición
E[x [, b]] = 1. P(x ∈ [a, b)) + 0 (1-1 P(x ∈ [a, b])
COFT - COFT
1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =
A Comment of the Control of the Cont
- According to result from bush and CLT that
$\frac{J_n(I_{n-1})}{\epsilon} \sim N(0,1)$
so we can write our estimate as.
Jn (\(\frac{1}{\pi} \bigg[\big \bigg[\alpha \bigg[\big \bigg] \cho \alpha \bigg[\bigg] \cho \bigg[\bigg] \cho \bigg[\bigg] \cho \bigg[\bigg[\bigg] \cho \bigg[\bigg] \cho \bigg[\bigg] \cho \bigg[\bigg[\bigg] \cho \bigg[\bigg] \cho \bigg[\bigg] \cho \bigg[\bigg[\bigg] \cho \bigg[\bigg] \cho \bigg[\bigg] \cho \bigg[\bigg[\bigg] \cho \bigg[\bigg] \cho \bigg[\bigg] \cho \bigg[\bigg[\bigg] \cho \bigg[\bigg] \cho \bigg[\bigg] \cho \bigg[\bigg[\bigg] \cho \bigg[\bigg] \cho \bigg[\bigg] \cho \bigg[\bigg[\bigg] \cho \bigg[\bigg] \cho \bigg[\bigg] \cho \bigg[\bigg[\bigg] \cho \bigg[\bigg] \cho \bigg[\bigg] \cho \bigg[\bigg[\bigg] \cho \bigg[\bigg] \cho \bigg[\bigg] \cho \bigg[\bigg[\bigg] \cho \bigg[\bigg] \cho \bigg[\bigg] \cho \bigg[\bigg[\bigg] \cho \bigg[\bigg] \cho \bigg[\bigg[\bigg] \cho \bigg[\bigg] \cho \bigg[\bigg[\bigg[\bigg] \cho \bigg[\bigg[\bigg] \cho \bigg[\bigg[\bigg[\bigg] \cho \bigg[\bigg[\bigg] \cho \bigg[\bigg[\bigg[\bigg] \cho \bigg[\bigg[\bigg] \cho \bigg[\bigg[\bigg[\bigg] \cho \bigg[\bigg[\bigg[\bigg] \cho \bigg[\bigg[\bigg] \cho \bigg[\bigg[\bigg[\bigg[\bigg] \cho \bigg[\bigg[\bigg[\bigg[\bigg[\bigg] \cho \bigg[\bigg[\bigg[\bigg[\bigg] \cho \bigg[\bigg[\bigg[\bigg[\bigg[\bigg] \cho \bigg[\big \etg \etg \etg \etg \etg \etg \etg \et
essentially we work to estimate 90% CI so
6.42 P (In () (x.) - a,) E [-1.65, 1.65)
= P(a, E[1/2 land (x.) - 1/1/2 2 land (x.) + 1/1/2]
So a, E [] [[[] (x,) - [] []] [[] (x,) + [] [] [] [] [] [] [] [] [] [

Part B

3	The state of the s
5	b the state of the
	$\alpha_2 = \frac{1}{n} E\left(\frac{n}{2}(X_N)^2\right) = E(X_N^2)$
	dz=n=(k=1000)
- / 60	
illordry ?	to Jn E (Xh2) - az ~ N(O))
CLZ	
	6.5 5 P (IN E(Xx2) - az E[-1.64,1.64])
	- Late T.D. And L. L. Britan & Charles & Charles
	= P (az E [hzx2-1.646 12x2+ 1.646)
	The state of the s
	1 600 1 2 1/40
	So IP (az EI - IXi2 - 1.646 - IXi2 + 1.646)
	CI : az E I - IXx - 1.646 - 12xx + 1.646)
	CI de El nexu - In In In In
	from expo(1) we know $E[X^2] = \frac{2^n}{2^n} = 2$
	11 (1) TI (1)27 TIV212
	$Var(x^2) = E[(x^2)^2] - E[x^2]^2$ $= E[x^4] - E[x^2]^2$
	$=\frac{4!}{\lambda^4}-2$
	(3) 4.3.2.1-2
	- 24
	so for close form 22
	# (- T 1 N - 1 - C
	2 + 1,65 - 522/500
	The second secon

Part C

```
Parametric
```

```
sample_bin<-rbinom(500, 30, 3/4)
estmated_np<-mean(sample_bin)
estmated_p<-estmated_np/30
a<-10
b<-20
sampling_dist<-c()
for (i in 1:1000) {
    sampling_dist<-c(sampling_dist,mean(rbinom(500, 30, estmated_p) %in% c(a:b)))}
quantile(sampling_dist,.95)
quantile(sampling_dist,.05)
> quantile(sampling_dist,.05)
    yountile(sampling_dist,.05)
    5%
0.222
> quantile(sampling_dist,.05)
    5%
0.164
```

Non-parametric

```
sampling_dist_non<-c()
for (i in 1:1000) {
    bsample <- mean(sample(sample_bin,500,replace=T) %in% c(a:b))
    sampling_dist_non<-c(sampling_dist_non,bsample)
}
quantile(sampling_dist_non,.95)
quantile(sampling_dist_non,.05)

> quantile(sampling_dist_non,.95)
95%
0.24
> quantile(sampling_dist_non,.05)
5%
0.178
```

CLT

```
 \begin{tabular}{ll} mean(rbinom(500, 30, 3/4) %in% $c(a:b)) + qnorm(0.05)*sd((rbinom(500, 30, 3/4) %in% $c(a:b)))/30**0.5 \\ mean(rbinom(500, 30, 3/4) %in% $c(a:b)) + qnorm(0.05)*sd((rbinom(500, 30, 3/4) %in% $c(a:b)))/30**0.5 \\ > mean(rbinom(500, 30, 3/4) %in% $c(a:b)) + qnorm(0.05)*sd((rbinom(500, 30, 3/4) %in% $c(a:b)))/30**0.5 \\ [1]  0.07155965 \\ > mean(rbinom(500, 30, 3/4) %in% $c(a:b)) + qnorm(0.95)*sd((rbinom(500, 30, 3/4) %in% $c(a:b)))/30**0.5 \\ [1]  0.2948693 \\ \end{tabular}
```

The 90% confidence interval is about [0.072, 0.295]

(b)

Parametric

```
exp_sample<-rexp(500, rate = 1)**2
lamda<-1/mean(exp_sample)
exp_sampling<-c()
for (i in 1:1000) {
   new_sample <- rexp(500, rate = lamda)
   exp_new_sample<-mean(new_sample)
   exp_sampling<-c(exp_sampling,exp_new_sample)
}
quantile(exp_sampling,.95)
quantile(exp_sampling,.05)
> quantile(exp_sampling,.95)
   95%
1.879856
> quantile(exp_sampling,.05)
   5%
1.620517
```

Non-parametric

```
sampling_expo_non<-c()
for (i in 1:1000) {
   bsample <- mean(sample(exp_sample,500,replace=T))
   sampling_expo_non<-c(sampling_expo_non,bsample)
}
quantile(sampling_expo_non,.95)
quantile(sampling_expo_non,.05)
> quantile(sampling_expo_non,.95)
   95%
1.969925
> quantile(sampling_expo_non,.05)
   5%
1.507556
```

CLT

```
#clt
#depend on sample
mean(exp_sample) +qnorm(0.05)*sd(exp_sample)/500**0.5
mean(exp_sample) +qnorm(0.95)*sd(exp_sample)/500**0.5
```

```
> mean(exp_sample)+qnorm(0.05)*sd(exp_sample)/500**0.5
[1] 1.508642
> mean(exp_sample)+qnorm(0.95)*sd(exp_sample)/500**0.5
[1] 1.978519
The 90% confidence interval is about [1.509, 1.979]
```

```
#close form
2+qnorm(0.05)*22^0.5/500**0.5
2+qnorm(0.95)*22^0.5/500**0.5
> 2+qnorm(0.05)*22^0.5/500**0.5

[1] 1.654973
> 2+qnorm(0.95)*22^0.5/500**0.5

[1] 2.345027
```

The 90% confidence interval is about [1.655, 2.345]

Question 4

Part A

Part B

Intuition

```
b, First set $\text{Fo} = 5

Sample $\times 1 \tau \tau \text{N} \text{n exp($\varsigma )}$

Second find $\text{E[V]} = \frac{1}{\text{L}} \left( \frac{1}{\text{G}} \left( \frac{1}{\text{L}} \right) \right( \frac{1}{\text{L}} \right) \right) \frac{1}{\text{L}} \left( \frac{1}{\text{L}} \right) \right) \frac{1}{\text{L}} \left( \frac{1}{\text{L}} \right) \right) \frac{1}{\text{L}} \left( \frac{1}{\text{L}} \right) \frac{1}{
```

Implementation

```
m = 300
lamda=5
question4_x<-rexp(n, rate = lamda)
expected_y_lamda<-function(n,lamda,x){
    sum((log(lamda)-lamda*x+x)*(1/lamda - x))/n
}
lamdas<-c()
step<-1
for (i in 1:2000) {
    question4_x<-rexp(m, rate = lamda)
    lamdas<-c(lamdas,lamda)
    lamda=lamda-step/i*expected_y_lamda(n,lamda,question4_x)
}</pre>
```

```
A side note I repeated this algorithm for different step
size and set it accordingly
lamdas_1<-lamdas
lamdas_5<-lamdas
lamdas_10<-lamdas
lamdas<-cbind(lamdas_1,lamdas_5,lamdas_10)</pre>
lamdas
library(ggplot2)
library("reshape2")
test_data_long <- melt(lamdas, id="lamdas")</pre>
colnames(test_data_long)[1]='iterations'
colnames(test_data_long)[2]='step_size'
ggplot(data=test_data_long,
        aes(x=iterations, y=lamdas, colour=step_size)) +
  geom_line()
   4 -
                                                          step size
                                                             lamdas_1
                                                              lamdas 5
                                                             lamdas_10
```

Comment

500

It seems like the larger the step the faster it converges, however if step is too large then it will drop to quickly

1000

iterations

1500

2000

and if step is too small it will not/take longer to converge.