GENERACIÓN Y CARACTERIZACIÓN DE VÓRTICES ÓPTICOS MEDIANTE MODULADORES ESPACIALES DE LUZ

TRABAJO DE GRADO

Santiago Echeverri Chacón sechev14@eafit.edu.co

ESCUELA DE CIENCIAS DEPARTMENTO DE CIENCIAS FÍSICAS MAESTRÍA EN FÍSICA APLICADA UNIVERSIDAD EAFIT 2015

GENERACIÓN Y CARACTERIZACIÓN DE VÓRTICES ÓPTICOS MEDIANTE MODULADORES ESPACIALES DE LUZ

Santiago Echeverri Chacón sechev14@eafit.edu.co

TRABAJO DE GRADO PARA OPTAR AL TÍTULO DE MÁGISTER EN FÍSICA APLICADA

DIRECTOR: René Restrepo Gómez rrestre6@eafit.edu.co

ESCUELA DE CIENCIAS
DEPARTMENTO DE CIENCIAS FÍSICAS
MAESTRÍA EN FÍSICA APLICADA
UNIVERSIDAD EAFIT
2015

"The first principle is that you must not fool yourself - and you are the easiest person to fool..."

Richard P. Feynman

Agradecimientos

Muchas gracias.

Santiago

abril 2015

Resumen

Escribir un resumen decente

Índice general

1.	Intr	oducci	ión																																	1
	1.1.	Estado	o del arte	del	l es	st	tu	ıd	lio) (de	e h	ıa	ce	s]	Lε	ıgı	ıe:	re	e-(Ga	au	SS								•					3
	1.2.	Motiva	ación														•												•				•			4
	1.3.	Plante	eamiento d	del :	pro	:ol	b]	le	em	ıa	ι.																									5
	1.4.	Objeti	vos																																	5
		1.4.1.	Objetivo	o Ge	ene	er	ra	al																												5
		1.4.2.	Objetivo	os E	Esp	pe	∋c :	if	ic	os	s .																									5
	1.5.	Estruc	tura del d	docı	um	ne	er	$_{ m nt}$	Ю								•												•				•			6
Ι	Ger	neraci	ón de ha	ace	es l	L	Ĺε	ag	gı	u€	er	re	e -	G	a	us	SS	p	O]	r	m	ıe	di	io	d	le	U	ın	S	${ m SL}$	N .	I				11
2.	Gen	eració	n de Vóı	rtic	ces	S	Ć	Ój	pt	tio	cc	os																								12
	2.1.	Estado	o del Arte	e																									•					•		12
		2.1.1.	Modulad	dore	es 1	E	lsj	pa	ac	cia	ale	es	d	e]	Lι	1Z																				13
			2.1.1.1.	M	od	lu.	ıla	ac	do	ore	es	b	as	sac	do	\mathbf{s}	en	n	nic	cro	Э (es]	ре	jo	\mathbf{s}											13
			2.1.1.2.				,		,			,					11	(a)	.:.	4.																14

	2.1.2.	Aberraci	ones ópticas	15
2.2	. Marco	Teórico d	le la Caracterización de SLMs de Trasmisión	17
	2.2.1.	Cristales	líquidos	17
		2.2.1.1.	Características de los CL	17
		2.2.1.2.	Clasificación de los CL	19
		2.2.1.3.	Las pantallas de cristal líquido nematico retorcido	21
	2.2.2.	Polarizac	ción de la luz	22
	2.2.3.	El forma	lismo de Jones	29
		2.2.3.1.	Algunos estados de polarización importantes	30
		2.2.3.2.	Elementos ópticos como operadores en la representación de Jones	31
	2.2.4.	-	des ópticas de los cristales líquidos nemáticos enroscados D)	39
2.3	. Revisi	ón de la li	teratura	44
II C	Caracte	rización	y corrección de aberraciones de VO	52
3. Co	nclusio	nes		53
A. A p	éndice	Planos d	e rotadores	54

Índice de figuras

1.1.	Comparación entre haces Gaussianos y haces Laguerre-Gauss	2
2.1.	Comparación entre TN-SLM	13
2.2.	Modulador espacial basado en arreglos de micro espejos	14
2.3.	Efecto de pixelado eb el SLM sobre las aberraciones en VO	16
2.4.	Dos estados de la materia comunes en la naturaleza	17
2.5.	Esquema de la composición química general en una molécula de CL	18
2.6.	Orientación de una molécula de CL con respecto al ángulo director en su vecindad	20
2.7.	Clasificación de los cristales líquidos según su orden	21
2.8.	Arquitectura de un TN-LCD	22
2.9.	Distintas representaciones del campo eléctrico para ilustrar la polarización .	24
2.10.	Rotación del sistema de coordenadas de la elipse de polarización	26
2.11.	Estados de polarización circular	27
2.12.	Propagación de un estado de polarización lineal a través de un polarizador horizontal	34
2.13.	Generación de estados de polarización circulares	37

2.14. Generación de estados de polarización lineales	38
2.15. Propagación de la luz en un TN-LC	39
2.16. Modelos de TN-LCD	4:
2.17. Publicaciones en relación a la caracterización de TN-LCD	45

CAPÍTULO 1

Introducción

Como es bien sabido, la luz transporta energía; esto se hace evidente al comparar las temperaturas en el día y en la noche o al iluminar una celda fotovoltáica. En su representación cuántica, la luz está compuesta por partículas sin masa llamadas fotones. Al no tener masa, su energía está directamente asociada a su momento, y el momento de los fotones así como el de otras partículas en la mecánica cuántica puede ser tanto lineal como angular. El momento angular se compone a su vez de dos contribuciones, la de spin y la orbital. Desde un punto de vista macroscópico, el momento angular de spin se asocia con la polarización de la luz, es decir con la dirección de oscilación de los campos eléctrico y magnético con respecto a un eje coordenado. Asimismo, el momento angular orbital (OAM) se asocia con las distribuciones espaciales de la amplitud y la fase, tal y como se observan en un plano perpendicular a la propagación de la luz. Para aclarar esta idea comparemos dos haces polarizados linealmente, uno con OAM cero, y el otro con OAM +1. El haz de luz que carece de momento angular orbital presenta una distribución de fase constante. Si éste tiene una distribución de amplitud Gaussiana, al ser enfocado por una lente, en un plano de observación veremos que la distribución de intensidad está dada por una función de Airy como la que se ilustra en la figura 1.1c).

Por el contrario, el haz con OAM +1 posee una distribución de fase helicoidal donde el valor de la fase varía azimutalmente desde π a $-\pi$ radianes como se muestra en la figura 1.1b). Haces con distribuciones de fase de este tipo poseen una indeterminación de la fase en el centro dado que en la coordenada r=0 confluyen fotones con todos los valores posibles de fase. La consecuencia directa de la indeterminación en este tipo de puntos es

la ausencia de luz por efecto de superposición. Si, como en el caso anterior, observamos la intensidad en un plano de enfoque veremos perfil con forma de dona como la de la figura 1.1 d).

Figura 1.1: Las figuras a) y b) representan mapas de fase de haces con OAM 0 y +1 definidos en el intervalo $[-\pi,\pi]$. Las intensidades correspondientes luego de enfocar los haces en un plano de observación se muestran en las figuras c) y d).

Por su naturaleza rotacional, los puntos alrededor de los cuales la fase varía de $-\pi$ a π se conocen como **vórtices ópticos** (VO), y están presentes siempre que haya haces con momento angular orbital distinto de cero. Por otra parte, de forma similar a cómo se describe la amplitud en haces con OAM cero como "Gaussiana", los haces con momento angular distinto de cero se describen matemáticamente como haces "Laguerre-Gauss" (LG). Esto se debe a que soluciones de la ecuación de onda en coordenadas cilíndricas incluyen no sólo una componente de amplitud Gaussiana, sino también una dependencia radial y azimutal descrita por polinomios de Laguerre, con los cuales se pueden representar vórtices ópticos de fase y amplitudes del tipo dona. El estudio, y el desarrollo de aplicaciones sobre los haces Laguerre-Gauss y por consecuencia, de los VO, requiere entonces de la capacidad de manipular el OAM de haces de luz.

1.1 Estado del arte del estudio de haces Laguerre-Gauss

El momento angular orbital añade un grado de libertad al conjunto de propiedades que pueden ser manipuladas y que caracterizan a la luz, en particular: la polarización o espin, la coherencia, el espectro y la cantidad de energía. Siendo así, la posibilidad de manipular el momento angular orbital abre camino a un amplio rango de aplicaciones en numerosas áreas de la ciencia y la tecnología, tanto en el mundo microscópico (células y micromanipulación) como en el macroscópico (astronomía y telecomunicaciones).

Por listar brevemente algunas aplicaciones de los haces con OAM distinto de cero se pueden mencionar: El uso de OAM en telecomunicaciones ópticas como una nueva variable para multiplexación de señales en fibra y en espacio libre [1, 2, 2-4]. En microscopía óptica para resaltar bordes de muestras biológicas transparentes [5, 6], e identificar curvaturas de objetos de fase por medio de interferometría espiral [7]. Además, es una herramienta esencial para la manipulación de objetos en la escala micro al ser usados como pinzas ópticas capaces de atrapar y mover partículas [8]. Se espera también un avance importante en el campo de la computación cuántica vía entrelazamiento cuántico de OAM en fotones [9]. Fuera de las anteriores, cabe destacar algunas de las patentes relacionadas con el tema como: aplicaciones en imagenología médica de resonancia magnética n uclear [10], y teledetección de objetivos militares [11]. También han sido patentadas herramientas y métodos para micromanipulación de partículas microscópicas[12], con posibles aplicaciones en bombas peristálticas para microfluidos [13]. Para concluir, cabe mencionar que hoy en día la radiación óptica no es la única que está siendo usada para la propagación del momento angular orbital; destacan trabajos en los cuales se utilizan los regímenes de ondas de radio [14], rayos X [15], e inclusive haces de electrones [13] para transmitir OAM.

Las referencias y ejemplos mencionados respaldan e ilustran el intenso interés que se ha generado sobre el tema en la comunidad científica, y en particular en las áreas de óptica aplicada y fotónica. En Colombia, el tema de los vórtices ópticos es un area incipiente pero fértil. A nivel nacional se destaca una primera iniciativa teórica por parte del grupo de óptica e información cuántica de la Universidad Nacional sede Bogotá, en la cual se estudió la propagación de haces con OAM distinto de cero en elementos ópticos conocidos como axicones [16]. Asimismo, en el grupo de óptica y tratamiento de señales de la Universidad Industrial de Santander han trabajado en el diseño de un codificador optoelectrónico basado en el momento angular [17, 18]. Es, sin embargo en el ámbito regional de Antioquia

en el cual se concentra la mayor cantidad de esfuerzos en Colombia. El grupo de Óptica y Procesamiento Opto-digital de la Universidad Nacional sede Medellín desarrolló un sistema de pinzas ópticas para la manipulación de microsistemas [19], mientras que el grupo de Óptica y Fotónica de la Universidad de Antioquia ha estudiado la Multiplexación de Información Encriptada y Codificación con Momento Angular Orbital [20], así como la generación experimental de vórtices ópticos con moduladores de transmisión [21, 22]. Además de los esfuerzos de cada institución, destaca el trabajo colaborativo que se ha afianzado en el marco de convenios de cooperación tales como el proyecto interinstitucional titulado: Aberraciones ópticas en haces Laguerre-Gaussianos: corrección y aplicaciones metrológicas

Este es un proyecto cuya duración es de 24 meses, que comenzó a ejecutarse el 5 de agosto de 2013 y que culminará el 5 de agosto de 2015. Se desarrolla con la participación de grupos de la Universidad EAFIT, la Universidad de Antioquia, el Centro de Investigaciones Ópticas de Argentina, el Politécnico Colombiano Jaime Isaza Cadavid, y el Instituto Tecnológico Metropolitano.

De proyectos como este, se ha formado una red de grupos interesados específicamente en el estudio de VO. En particular, la cooperación entre algunos de ostos grupos derivó en trabajos en los cuales se estudió el efecto de la birrefringencia inducida por cristales birrefringentes en vórtices ópticos [23], y la posibilidad de generar vórtices con una cantidad reducida de niveles de gris en moduladores de transmisión [22, 24]. De forma similar, la Universidad EAFIT, a través de su grupo de Óptica Aplicada y en cooperación con el Centro de Investigaciones Ópticas de Argentina, ha contribuido con el desarrollo de técnicas metrológicas computacionales basadas en el estudio de vórtices en patrones de speckle [25–29].

1.2 Motivación

Con la iniciativa de adquirir las capacidades técnicas y experimentales necesarias para el desarrollo de aplicaciones metrológicas de vórtices ópticos, el grupo de Óptica Aplicada de la Universidad EAFIT abrió dos proyectos internos, y fue merecedor de una beca del programa Jóvenes Investigadores de Colciencias, convocatoria 645 a cursar en el 2015. Las prioridades del grupo, y asimismo los temas de trabajo de estos dos proyectos son:

• El desarrollo de aplicaciones metrológicas de haces Laguerre Gauss.

 La implementación de técnicas basadas en los haces con OAM distinto de cero para instrumentos de microscopia de objetos de fase.

1.3 Planteamiento del problema

En este proyecto se busca generar y caracterizar haces LG por medio de un instrumento electro óptico conocido como modulador espacial de luz (SLM) que previamente debe ser caracterizado.

La propuesta del presente proyecto consiste entonces en caracterizar haces LG por medio de un SLM a partir de la integración de algoritmos de identificación de aberraciones, y una plataforma experimental sistematizada para la generación de haces del tipo LG. Adicionalmente, se propone estudiar posibles aplicaciones de la observación o manipulación de las aberraciones ópticas presentes en haces LG una vez haya sido dominada la capacidad para identificarlas y corregirlas.

1.4 Objetivos

A continuación se listan el objetivo general y los objetivos específicos.

1.4.1 Objetivo General

Desarrollar la capacidad para generar y caracterizar vórtices de fase mediante un SLM de transmisión.

1.4.2 Objetivos Específicos

- Identificar y apropiar los conceptos y procedimientos necesarios para caracterizar moduladores espaciales de luz de transmisión, con miras a la producción y análisis de vórtices ópticos.
- Implementar una plataforma experimental para caracterizar la modulación de amplitud y fase de un SLM a partir de un montaje interferométrico automatizado.

- Obtener experimentalmente vórtices ópticos del tipo Laguerre-Gauss mediante el uso de un SLM y estudiar las distribuciones de intensidad y fase alrededor de los vórtices.
- Proponer alternativas para el desarrollo de aplicaciones metrológicas basadas en la generación de VO y el estudio de sus propiedades.

1.5 Estructura del documento

El texto principal de este trabajo, está dividido en 2 partes temáticas que agrupan los Capítulos. A continuación, se presenta la estructura general de la disertación por Partes y Capítulos:

Parte I: Generación de haces Laguerre-Gauss por medio de un SLM

Parte II: Caracterización y corrección de aberraciones de VO

Bibliografía

- [1] J. Lin, X.-C. Yuan, S. H. Tao, and R. E. Burge. Multiplexing free-space optical signals using superimposed collinear orbital angular momentum states. *Applied Optics*, 46(21): 4680–4685, July 2007. doi: 10.1364/AO.46.004680.
- [2] Graham Gibson, Johannes Courtial, Miles Padgett, Mikhail Vasnetsov, Valeriy Pas'ko, Stephen Barnett, and Sonja Franke-Arnold. Free-space information transfer using light beams carrying orbital angular momentum. *Optics Express*, 12(22):5448–5456, November 2004. doi: 10.1364/OPEX.12.005448.
- [3] Nicolas K. Fontaine, Christopher R. Doerr, and Larry Buhl. Efficient multiplexing and demultiplexing of free-space orbital angular momentum using photonic integrated circuits. In *Optical Fiber Communication Conference*, OSA Technical Digest, page OTu1I.2. Optical Society of America, March 2012. doi: 10.1364/OFC.2012.OTu1I.2.
- [4] Nenad Bozinovic, Yang Yue, Yongxiong Ren, Moshe Tur, Poul Kristensen, Hao Huang, Alan E. Willner, and Siddharth Ramachandran. Terabit-scale orbital angular momentum mode division multiplexing in fibers. *Science*, 340(6140):1545–1548, June 2013. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.1237861.
- [5] Alexander Jesacher, Severin Fürhapter, Stefan Bernet, and Monika Ritsch-Marte. Shadow effects in spiral phase contrast microscopy. *Physical Review Letters*, 94(23):233902, June 2005. doi: 10.1103/PhysRevLett.94.233902.
- [6] Petr Bouchal and Zden?k Bouchal. Selective edge enhancement in three-dimensional vortex imaging with incoherent light. Optics Letters, 37(14):2949–2951, July 2012. doi: 10.1364/OL.37.002949.
- [7] Severin Fürhapter, Alexander Jesacher, Stefan Bernet, and Monika Ritsch-Marte. Spiral interferometry. *Optics Letters*, 30(15):1953–1955, August 2005. doi: 10.1364/OL. 30.001953.
- [8] David G. Grier. A revolution in optical manipulation. *Nature*, 424(6950):810–816, 2003. doi: 10.1038/nature01935.
- [9] Alois Mair, Alipasha Vaziri, Gregor Weihs, and Anton Zeilinger. Entanglement of the orbital angular momentum states of photons. *Nature*, 412(6844):313–316, July 2001. ISSN 0028-0836. doi: 10.1038/35085529.

- [10] Daniel R. Elgort and Lucian Remus Albu. Active device tracking using light with orbital angular momentum to hyperpolarized MRI, December 2013. URL http://www.google.com/patents/US8611982. U.S. Classification 600/423, 324/307, 600/420; International Classification G01V3/00; Cooperative Classification A61B2019/5231, A61B19/5244, A61B5/055, A61B2019/5251, A61B5/06, A61B2019/5236.
- [11] Harry A. Schmitt, Donald E. Waagen, Nitesh N. Shah, Delmar L. Barker, and Andrew D. Greentree. System and method of orbital angular momentum (OAM) diverse signal processing using classical beams, April 2010. URL http://www.google.com/patents/US7701381. U.S. Classification 342/42, 340/572.7, 340/572.2; International Classification G01S13/74; Cooperative Classification G01S7/499, G01S7/024, G01S17/74, G01S13/78, G01S13/751; European Classification G01S17/74, G01S13/75C, G01S7/499, G01S7/02P, G01S13/78.
- [12] David G. Grier. Holographic microfabrication and characterization system for soft matter and biological systems, April 2013. URL http://www.google.com/patents/ US8431884. U.S. Classification 250/251; International Classification H01S3/10; Cooperative Classification G02B5/001, G03H1/08, G02B21/32, G02B5/32, G03H1/2294, G03H2001/0077.
- [13] Giulio Guzzinati, Laura Clark, Armand Béché, and Jo Verbeeck. Measuring the orbital angular momentum of electron beams. *Physical Review A*, 89(2):025803, February 2014. doi: 10.1103/PhysRevA.89.025803.
- [14] B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Ya. N. Istomin, N. H. Ibragimov, and R. Khamitova. Utilization of photon orbital angular momentum in the low-frequency radio domain. *Physical Review Letters*, 99(8):087701, August 2007. doi: 10.1103/PhysRevLett.99.087701.
- [15] Shigemi Sasaki and Ian McNulty. Proposal for generating brilliant x-ray beams carrying orbital angular momentum. *Physical Review Letters*, 100(12):124801, March 2008. doi: 10.1103/PhysRevLett.100.124801.
- [16] Angela M. Guzmán, Claudia P. Barrera, Jefferson Flórez, and Florencio E. Hernández. Difracción de luz con momento angular orbital por un axicon. *Bistua: Revista de la Facultad de Ciencias Básicas*, 7(2):31–36, 2009.
- [17] Cristian Acevedo. Análisis teórico-experimental de un haz con momento angular orbital entero y no entero. PhD thesis, Universidad Industrial de Santander, Bucara-

- manga, Santander Colombia, 2012. URL http://repositorio.uis.edu.co/jspui/bitstream/123456789/7339/2/144386.pdf.
- [18] Carlos Fernando Díaz Meza, Cristian Hernando Acevedo Cáceres, Yezid Torres Moreno, and Jaime Guillermo Barrero Pérez. Modelado preliminar de un codificador optoelectrónico para la transferencia de datos sobre el momento angular orbital de la luz. REVISTA UIS INGENIERÍAS, 11(1), May 2013. ISSN 2145-8456. URL http://revistas.uis.edu.co/index.php/revistauisingenierias/article/view/3193.
- [19] María Isabel Alvarez. Implementación de Pinzas Ópticas Holográficas para la Manipulación de Microsistemas. Maestría, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia, 2011. URL http://www.bdigital.unal.edu.co/6814/1/43977451._1_2012.pdf.
- [20] Carlos Andres Rios. Procesamiento Óptico para la Multiplexación de Información Encriptada y Codificación con Momento Angular Orbital. Pregrado, Universidad de Antioquia, Medellín, Antioquia, Colombia, 2010.
- [21] David Muñeton. Generación y caracterización de vórtices ópticos. Pregrado, Universidad de Antioquia, Medellín, Antioquia, Colombia, 2012. URL http://barlai.udea.edu.co/index.php/es/docencia/trabajos-pregrado/637-generacion-y-caracterizacion-de-vortices-opticos.
- [22] E. Rueda, D. Muñetón, J. A. Gómez, and A. Lencina. High-quality optical vortex-beam generation by using a multilevel vortex-producing lens. *Optics Letters*, 38(19): 3941, October 2013. ISSN 0146-9592, 1539-4794. doi: 10.1364/OL.38.003941.
- [23] Jorge A. Gómez, Edgar Rueda, Ángel Salazar, Myriam Tebaldi, Nestor Bolognini, and Alberto Lencina. Effects of the induced birefringence in photorefractive crystals on speckle optical vortices. *Optics and Lasers in Engineering*, 50(3):359–365, March 2012. ISSN 01438166. doi: 10.1016/j.optlaseng.2011.10.021.
- [24] N. Londoño, E. Rueda, J. A. Gómez, and A. Lencina. Generation of optical vortices by using binary vortex producing lenses. *Applied Optics*, 54(4):796–801, February 2015. doi: 10.1364/AO.54.000796.
- [25] Luciano Angel-Toro, Daniel Sierra-Sosa, Myrian Tebaldi, and Néstor Bolognini. Speckle decorrelation influence on measurements quality in vortex metrology. Optics Communications, 285(21–22):4312–4316, October 2012. ISSN 0030-4018. doi: 10.1016/j.optcom.2012.07.021.

- [26] Luciano Angel-Toro, Daniel Sierra-Sosa, Myrian Tebaldi, and Néstor Bolognini. Vortex metrology using fourier analysis techniques: vortex networks correlation fringes. Applied Optics, 51(30):7411-7419, October 2012. ISSN 1539-4522.
- [27] Luciano Angel-Toro, Daniel Sierra-Sosa, Myrian Tebaldi, and Néstor Bolognini. Inplane displacement measurement in vortex metrology by synthetic network correlation fringes. *Journal of the Optical Society of America. A, Optics, Image Science, and Vision*, 30(3):462–469, March 2013. ISSN 1520-8532.
- [28] Daniel Sierra-Sosa, Luciano Angel-Toro, Nestor Bolognini, and Myrian Tebaldi. Novel vortex-transform for high frequency modulated patterns. *Optics Express*, 21(20):23706–23711, October 2013. doi: 10.1364/OE.21.023706.
- [29] Daniel Sierra-Sosa and Luciano Angel-Toro. VORTEX-SIM, October 2013.

Parte I

Generación de haces Laguerre-Gauss por medio de un SLM

CAPÍTULO 2

Generación de Vórtices Ópticos

2.1 Estado del Arte

Los haces con OAM distinto de cero inicialmente fueron generados en el laboratorio por medio de técnicas analógicas entre las que se destacan el uso de conversores modales [1], placas de fase espiral grabadas en sustratos transparentes [2], y hologramas de fase impresos en acetato [3]. La conversión modal utiliza sucesiones de lentes astigmáticas para convertir los modos Hermite Gauss en modos Laguerre Gauss, y fue la primera forma en la cual se produjeron VO en el laboratorio. A diferencia de la conversión modal, - que requiere un montaje experimental muy sensible - las técnicas que utilizan máscaras de fase se caracterizan por necesitar sólo un elemento óptico que permite modificar punto a punto la fase de un haz que originalmente carecía de momento angular, para convertirlo en un haz con vorticidad óptica. El uso de placas físicas grabadas con un patrón espiral tiene la ventaja de generar haces LG con sólo ubicarlas en el camino óptico del haz, y tiene la desventaja de que una vez fabricadas no se pueden modificar. En situaciones donde es requerido generar haces del tipo LG con la suficiente flexibilidad como para corregir aberraciones ópticas, se necesita de dispositivos digitales con propiedades similares a los dispositivos analógicos mencionados anteriormente. Estos dispositivos se conocen como moduladores espaciales de luz o SLM por sus siglas en inglés. En este proyecto se pretende generar VO y caracterizar su frente de onda utilizando un tipo de SLM's que modifican la fase de la luz cuando ésta pasa a través de ellos.

2.1.1 Moduladores Espaciales de Luz

Como su nombre lo indica, los moduladores espaciales de luz sirven para modular punto a punto las propiedades de la luz sobre un plano. Ya sea solamente su amplitud como en los dispositivos de visualización de cristal líquido (pantallas LCD), o su fase como en los dispositivos que se ilustran en la figura 2.1.

Figura 2.1: Moduladores espaciales PLUTO y LC2012 de reflexión y transmisión marca Holoeye basados en la tecnología de cristal líquido. Por ser hecho a partir de un LCD comercial el modulador de la derecha es ensamblado a una cuarta parte del costo del izquierdo.

Si diferenciamos los SLM por el tipo de tecnología, estos pueden ser agrupados en dos categorías: basados en cristales líquidos, o en arreglos de micro espejos (figura 2.2), mejor conocidos en la industria de la proyección como DLP (de Digital Light Processing).

2.1.1.1 Moduladores basados en micro espejos

En su mayoría, los moduladores comerciales basados en arreglos de micro espejos funcionan con micro mecanismos que inclinan la superficie reflectiva de tal forma que se modifique la cantidad de luz que un observador ve desde una perspectiva dada, es decir que modulan intensidad. Sin embargo, con el interés de modular fase además de intensidad se han desarrollado nuevos micro mecanismos que permiten desplazar verticalmente el espejo sin modificar su inclinación introduciendo así un cambio en la longitud del camino óptico y por ende la fase tal y como se presenta en [4, 5]. Dado que es una tecnología incipiente y ha tenido menor tiempo en el mercado que los cristales líquidos, estos sistemas y en particular los de tipo pistón, siguen teniendo precios elevados y aún están lejos de ser utilizados en muchos laboratorios.

Figura 2.2: Modulador espacial basado en arreglos de micro espejos marca Texas Instruments.

2.1.1.2 Moduladores de cristal líquido

Los SLM basados en Cristales Líquidos (CL) aprovechan las propiedades físicas de ciertos polímeros que dada su forma alargada y propiedades electrónicas polares, cambian su orientación ante la presencia de campos eléctricos. Esta sensibilidad a los campos eléctricos, en conjunto con sus propiedades ópticas anisotrópicas permitió que desde los años 70s se implementaran CL para generar imágenes en pantallas de dispositivos como relojes, calculadoras y luego televisores y proyectores. Fue más adelante cuando estudios más especializados de las propiedades de los cristales líquidos como los realizados por Yariv y Yeh en [6, 7], y experimentos como los de Konforti et al. [8] demostraron que los LCD pueden ser usados como moduladores de solo fase. Aunque la aplicación de cristales líquidos para modulación de fase es relativamente reciente, el estudio de sus propiedades físicas no lo es y desde los años 60's la investigación ha sido respaldada por grandes empresas interesadas en desarrollar productos tecnológicos de generación y procesamiento de imágenes como RTC, Hamamatsu, Hitachi, HP, Texas Instruments, Sony y otros. Dado este interés por entender los CL, se ha llegado a modelos matemáticos y técnicas de caracterización robustas que permiten extraer los parámetros de un SLM para simular su comportamiento. El desarrollo de estas técnicas ha permitido a investigadores alrededor del mundo implementar moduladores de fase a partir de elementos LCD extraídos de dispositivos de proyección comerciales, entre ellos se encuentran los trabajos de [9-24]. Mientras que autores como Mahmud, [25], Roopahsree [26], y David [27] caracterizaron un Holoeye LC2002 que es vendido comercialmente como modulador de amplitud y fase. Ejemplo de la práctica de reensamblar un LCD v venderlo como SLM es el modulador marca Holoeve LC2012 que gracias a usar un LCD comercial marca Sony es ensamblado a una cuarta parte del precio de otros moduladores.

Adicionalmente, cabe mencionar que los moduladores en base a CL se dividen en dos tipos, de reflexión y de transmisión. Sin entrar en detalle, los primeros permiten modulaciones

de fase que van hasta 2π radianes, tienen mayor resolución, necesitan menos elementos de polarización para su uso, tienen altas velocidades de operación y el hecho de que la electrónica esté detrás del cristal (y detrás de la superficie reflectiva) hace que se produzcan menos efectos indeseados de difracción. Todo esto a costa de desarrollar CL y electrónica personalizados. En cambio, los moduladores de transmisión se desarrollan a partir de CL comerciales que fuera de polarizar la luz retardan su fase. Esto implica un acople entre modulación de fase y modulación de intensidad que se traduce en menor calidad de la modulación de fase total. Para lograr una buena modulación se necesitan polarizadores y retardadores que generan un estado de polarización específico a la entrada del SLM. Por otra parte, al tener la electrónica acoplada sobre el cristal, se limita la resolución; no todo el volumen de CL se aprovecha y se introducen efectos indeseados de difracción. No obstante, los SLM de transmisión son muy económicos y algunos autores como Davis et al. [28, 29] han propuesto que se podrían usar como dispositivos para modular polarización. En base a esto otros como Moreno et al. [30, 31] han combinado el formalismo de Fourier con el de las matrices de Jones para modelar el comportamiento de dispositivos ópticos de Fourier que involucran polarización. En el laboratorio de metrología óptica del grupo de Optica Aplicada se encuentran dos moduladores de transmisión marca Holoeye modelos LC-2002 y LC- 2012 que necesitan ser caracterizados para optimizar su uso en aplicaciones metrológicas tales como la creación de vórtices ópticos. La generación de VO se da entonces una vez se tenga apropiada la herramienta que los produce. El resto de esta sección se enfoca en la segunda mitad del problema, es decir, ¿Cómo caracterizar y corregir las aberraciones ópticas de un VO?

2.1.2 Aberraciones ópticas

Los VO generados en el laboratorio están sujetos a aberraciones ópticas que se asocian a situaciones tales como:

- Problemas en la alineación de componentes ópticos como lentes o espejos.
- Deformaciones en las superficies de elementos como polarizadores, lentes, espejos, láminas retardadoras, e incluso de las céldas de cristal líquido en el SLM.
- Presencia de partículas de polvo en las superficies de las componentes ópticas que inducen efectos indeseados de difracción.

Adicionalmente, y siguiendo con el tema de la sección anterior, los SLM de transmisión basados en pantallas de CL introducen otras fuentes de aberraciones. En primera medida, las pantallas son dispositivos discretos en dos de los sentidos de la palabra. Por un lado, son discretos espacialmente y las señales de control son asignadas a subdivisiones del cristal de tamaño finito conocidas como pixeles. El arreglo rectangular de todos los pixeles genera efectos de difracción similares a los de rejillas verticales y horizontales combinadas. Esto quiere decir que el SLM separa los órdenes de difracción de la luz que pasa a travez de él. Asimismo, el hecho de ser una cuadrícula discreta hace que el modulador obviamente no pueda generar distribuciones de fase en regiones infinitamente pequeñas como sería deseado alrededor de una singularidad óptica. Como ejemplo, en la figura 2.3 a) se muestra una imagen del la máscara que se envía al SLM en la región donde resultaría una singularidad óptica. Como se puede ver, la máscara de fase discreta resulta muy distinta a la máscara ideal que se presentó en la figura 1.1b), y por lo tanto introduce deformaciones en el haz Laguerre-Gauss que resulta a la salida del SLM.

Figura 2.3: a) Magnificación de una mascara tipica proyectada al SLM. b) Imagen de un VO de poca calidad producido con un SLM de transmisión modelo Holoeye LC2002.

Por otra parte, el SLM es discreto en la medida que sólo puede asignar níveles de voltaje discretos (0-255 divisiónes de 5V) a cada una de las celdas. Este fenómeno también es observable en la figura 2.3a) y puede introducir efectos indeseados. Más aún, si cómo el nuestro, el modulador no llega a una modulación de sólo fase, o tiene una modulación que no llega a completar el ciclo de 2π radianes. Todas las posibles fuentes de error mencionadas anteriormente se combinan para generar haces Laguerre-Gauss de poca calidad como el que se muestra en la figura 2.3 b).

(b) Moléculas desordenadas pero cercanas en un líquido.

Figura 2.4: Dos estados de la materia comunes en la naturaleza.

2.2 Marco Teórico de la Caracterización de SLMs de Trasmisión

Hace falta una buena introduccíon

2.2.1 Cristales líquidos

2.2.1.1 Características de los CL

Un cristal Líquido es una sustancia que posee propiedades que se asemejan tanto a las de los sólidos cristalinos como a las de los líquidos. También puede ser visto como un líquido en el cual existe orden entre sus moléculas. Para ilustrar esta idea recordemos que los sólidos cristalinos son un estado de la materia que se caracteriza por su rigidez y fuertes enlaces químicos, en el cual se puede establecer un orden posicional en todas las direcciones tal y como se ilustra en la figura 2.4a. Esto implica que la posición de las moléculas o átomos que lo componen puede ser abstraída como una red periódica que cumple ciertas reglas de simetría. En cambio, un líquido amorfo como el de la figura 2.4b tiene enlaces más débiles por lo cual puede fluir, y está compuesto por moléculas que están completamente desorganizadas. Los cristales líquidos son sustancias que como los sólidos poseen cierto orden y que pueden fluir como los líquidos.

Los CL líquidos pueden ser clasificados en tres tipos o fases distintas conocidas como, nemáticos, smeticos y colestéricos, y más adelante se abordará esta clasificación, no obstante su diversidad (más de 100.000 compuestos distintos según http://www.lci-publisher.

com), la característica común de los CL es que están compuestos de moléculas muy anisotrópicas, esto es, que sus propiedades (ópticas, eléctricas y mecánicas) dependen de la dirección desde la que se observen. La anisotropía se debe tanto a la geometría alargada o achatada de las moléculas, como a las propiedades electrónicas de sus componentes. En el caso de moléculas alargadas como en la figura 2.5 su estructura química se compone de un sistema de anillos aromáticos que pueden ser o no saturados conectados por un grupo de conexión A, y sujetos a dos cadenas o grupos terminales X y Y [6]. La presencia de los

Figura 2.5: Esquema de la composición química general en una molécula de CL.

anillos proporciona las fuerzas intermoleculares de corto alcance que son necesarias para formar fases nemáticas y el tipo de anillos (saturado o no saturado) determina la presencia o no de enlaces π que se asocian a orbitales P_z de los electrones. Esto a su vez afecta la absorción en el ultravioleta y la birefringencia, se observa mayor birefringencia en CL con anillos no saturados y mejor comportamiento en el ultravioleta para anillos saturados. Luego, las cadenas del grupo terminal X pueden ser de tres tipos:

- Cadenas alquilos (alkyl) $C_n H_{2n+1}$:
- Grupos alcoxy $C_n H_{2n+1} O$
- Grupos alilos (alkenyl) $CH_2 = CH CH_2 -$

La longitud de las cadenas X influencia tanto las constantes elásticas como las temperaturas de transición de fase. Para cadenas cortas con uno o dos átomos de carbono los grupos son muy cortos como para presentar fases de CL. Los grupos terminales de tamaño medio: n = 3-8 son los más adecuados para para construir fases nemáticas por su mayor anisotropía, y los compuestos con cadenas aún más largas exhiben fases smeticas. La temperatura a la cual la solución pasa de ser nemática a isotrópica se conoce como el punto de aclarado o clearing point, en términos generales, esta temperatura disminuye en la medida en la que se alargan los tamaños del grupo terminal X. La función que relaciona el punto de aclarado con el número de átomos de carbono es una función suave en la cual los números pares generan temperaturas más bajas que los impares. Fuera de esto, las propiedades mecánicas como la

viscosidad también se ven afectadas por el tamaño de los grupos terminales, cadenas largas implican viscosidades más altas, y por ello frecuencias de operación más bajas. Finalmente, las cadenas que forman el grupo terminal Y son las que tienen mayor influencia en las constantes dieléctricas de la molécula (ϵ_x, ϵ_y) , y asimismo su anisotropía dieléctrica $\Delta \epsilon$ variables que como veremos más adelante son las que determinan la birrefringencia del CL asociada a la modulación de fase. Las cadenas del grupo terminal Y pueden ser:

- No polares: No Influencian mucho la anisotropía dieléctrica, un ejemplo es el grupo alquilo CnH2n + 1.
- Polares: Como CN, F, y Cl. Su alta polaridad induce en la molécula una alta anisotropía dieléctrica y por tanto alta birrefringencia. La alta anisotropía se obtiene a costa de alta viscosidad, resistividad insuficiente y problemas de estabilidad bajo iluminación ultravioleta. Los grupos Y muy polares como los que contienen cianuro CN No son buenos para operar a altas temperaturas como por ejemplo proyectores, y sufren de degradación en el UV. Para esas aplicaciones se utilizan compuestos menos polares como el flúor o cloro que tienen menor birrefringencia.

2.2.1.2 Clasificación de los CL

En 1922 y sintetizando los hallazgos de 30 años desde su descubrimiento el cristalógrafo George Friedel publicó un artículo [32] en el que clasifica los CL en tres tipos básicos conocidos como cristales smeticos, nemáticos y colestéricos. En términos de orden, los CL sméticos son los más similares a un sólido, y los nemáticos se asemejan más a un líquido, y en la medida en la que se calienta un CL este realiza una transición desde cristal smetico hasta líquido isotrópico pasando por la fase nemática. Los estados colestéricos son un tipo particular de CL nemáticos que a diferencia de los anteriores tienen propiedades inhomogeneas. La principal característica que le da una medida de orden a los CL es la tendencia de sus moléculas a orientarse en una dirección preferente gracias a su distribución polar de cargas. Esta tendencia se puede observar claramente en las figuras 2.7a y 2.7b como si las moléculas fueran vagones de un tren que se siguen uno detrás del otro en forma de hilo ¹.

La orientación preferencial de las moléculas les otorga una cierta medida de orden a los CL que en adelante llamaremos orden orientacional. La *cantidad* de orden se medirá por

De hecho, la palabra Nematic proviene de la expresión griega nema que significa hilo.

medio de un parámetro estadístico conocido como parámetro de orden que relaciona la orientación de las moléculas individuales con la orientación preferencial o vector director \vec{n} en las vecindades de la molécula. Si se tiene un conjunto de moléculas como la que se ilustra en la figura 2.6 dónde θ es el ángulo que se forma entre el eje mayor de la molécula \vec{v} y el vector director, el parámetro de orden orientacional del cristal se da como el siguiente promedio estadístico sobre todas las moléculas.

$$S = \frac{1}{2} \left\langle 3\cos^2\theta - 1 \right\rangle$$

Figura 2.6: Orientación de una molécula de CL con respecto al ángulo director en su vecindad.

Un CL con sus moléculas alineadas perfectamente paralelas tiene un parámetro de orden S=1, mientras que un CL con moléculas orientadas aleatoriamente posee un parámetro S=0. El parámetro de orden depende tanto del tipo de molécula como de la temperatura, en la medida en la que aumenta la temperatura las moléculas pierden su alineación y el CL se convierte en un líquido isotrópico. El parámetro de orden gana importancia cuando se necesita seleccionar un CL que deba ser usado en rangos de temperatura especiales y se necesite garantizar anisotropía.

Los Cristales smeticos como el que se ilustra en la figura 2.7a se diferencian de los nemáticos en que poseen orden posicional en una dirección además de orden orientacional. Sin embargo, este orden viene acompañado de propiedades mecánicas que son menos convenientes para la construcción de LCDs y por ello las fases nemáticas y colestéricas son las que tienen mayor número de aplicaciones en dispositivos electro ópticos. A diferencia de las fases smetica y nemática que tienen un solo vector de orientación, en los cristales líquidos colestéricos el vector director varía a través del medio de una forma bien definida y por ello se consideran medios inhomogeneos. Generalmente la variación es helicoidal como la que se ve en la figura 2.7c. La variable que caracteriza un cristal líquido colestérico es el

ángulo de inclinación o pitch que forman las moléculas inclinadas con respecto al eje óptico del material.

Figura 2.7: Clasificación de los cristales líquidos según su orden.

2.2.1.3 Las pantallas de cristal líquido nematico retorcido.

Los moduladores de CL de transmisión que se usan para proyección se construyen usando una configuración conocida como Twisted Nematic (TN-LCD) o nematicos retorcidos. Los TN-LCD son dispositivos como el que se ilustra en la figura 2.8 en los cuales una solución de cristal líquido nemático se inyecta entre dos superficies rígidas transparentes que han sido frotadas a lo largo de una dirección preestablecida. Las moléculas del CL en contacto con las superficies transparentes se adhieren a los canales microscópicos que resultan del frotado, tomando así su dirección. Cuando las direcciones de frotado de las superficies en ambos extremos no coinciden, la dirección preferente de orientación de las moléculas cambia gradualmente en profundidad desde la dirección del plano de entrada hasta la del plano de salida como se ve en la figura 2.8a. El resultado es un cristal líquido inhomogeneo parecido a un cristal colestérico en el cual la orientación de las moléculas varía de forma lineal.

Generalmente las direcciones de frotado en las superficies de entrada y salida son orto-

(b) Esquema de un TN-LCD dónde se aplica una diferencia de potencial entre placas

Figura 2.8: Arquitectura de un TN-LCD cuando (a) está apagado, y (b) se le aplica una diferencia de potencial. Tomado de Nestor Uribe [33]

gonales de tal forma que las moléculas experimentan una rotación de 90 grados. Ante la presencia de un campo eléctrico a lo largo del cristal las moléculas experimentan una inclinación que es proporcional a la diferencia de potencial entre las placas como en la figura 2.8b. Al ser moléculas alargadas y polares experimentan un torque que atrae a la parte negativa de la molécula hacia el electrodo positivo del dispositivo y viceversa. La inclinación es proporcional al voltaje aplicado y es de mayor magnitud en las regiones más alejadas de las paredes del dispositivo. La configuración Twisted Nematic ha sido seleccionada para muchos dispositivos electro ópticos comerciales porque afecta la polarización de la luz que incide sobre ella. El objetivo de los autores que han caracterizado moduladores de transmisión ha sido principalmente el de describir matemáticamente y de forma robusta las propiedades ópticas dispositivos que tienen cristales líquidos de esta naturaleza.

En lo que sigue se presentarán las herramientas matemáticas que son base para la descripción matemática de campos ópticos polarizados, y se aplicará para la descripción de un modelo de CL.

2.2.2 Polarización de la luz

En la teoría electromagnética de la luz se representan los campos ópticos como ondas que se propagan en el espacio. Un haz de luz se puede representar tanto por su vector de campo eléctrico como magnético y ambos son perturbaciones de carácter periódico. Si el medio de propagación es isotrópico, la dirección de la perturbación es transversal, es decir ortogonal a la dirección de propagación ($\mathbf{k} \cdot \mathbf{E}$). Para haces planos monocromáticos se suele usar la siguiente expresión para el campo eléctrico:

$$\mathbf{E} = \Re \left[\mathbf{A} e^{i(\omega t - \mathbf{k} \cdot \mathbf{r})} \right],$$

$$\mathbf{E} = \mathbf{A} \cos (\omega t - \mathbf{k} \cdot \mathbf{r}),$$
(2.1)

dónde, $i = \sqrt{-1}$, ω es la frecuencia temporal, \mathbf{k} es el vector de onda o frecuencia espacial, y \mathbf{A} determina la amplitud. Las frecuencias espacial y temporal se relacionan por medio de la longitud de onda (λ) y el índice de refracción del medio (\mathbf{n}) con la siguiente expresión:

$$\mathbf{k} = \mathbf{n} \frac{2\pi}{\lambda}.$$

Dado que son ortogonales, las variaciones del campo se pueden representar sobre un plano que es ortogonal a la dirección de propagación (z en nuestro caso), y ese plano se puede representar a su vez por dos vectores que son ortogonales entre si (x, y). Cuando la variación del campo sucede sobre una dirección preferencial se dice que la luz es polarizada, y esa dirección se puede descomponer como una combinación lineal de las variaciones mutuamente independientes sobre cada uno de los ejes que forman el plano:

$$\mathbf{E} = E_x + E_y,$$

$$E_x = A_x \cos(\omega t - kz + \delta_x),$$
(2.2)

$$E_y = A_y \cos(\omega t - kz + \delta_y). \tag{2.3}$$

Se ha separado entonces el campo en sus componentes vertical (y) y horizontal (x), cada una con su respectiva amplitud (A_x, A_y) y retardo en fase (δ_x, δ_y) . Dado que las amplitudes son positivas las fases se dan en el rango $-\pi < \delta_{x,y} < \pi$. La representación en componentes perpendiculares se asemeja a un sistema acoplado de osciladores armónicos que oscilan a una misma frecuencia. Si se dibuja la suma vectorial de las componentes x, y y como un vector que va desde el origen hasta el punto (E_x, E_y) y luego se avanza en el tiempo, la

trayectoria que describe la punta del vector será una figura elíptica como la que se muestra en 2.9a . Si en cambio se congela el tiempo y se gráfica el desplazamiento de la punta del vector en el espacio se obtiene una figura helicoidal como en 2.9b. En estos dibujos se ha escogido representar una elipse por que es el caso más general de polarización, sin embargo, la relación entre las amplitudes (A_y/A_x) y la diferencia de fases $(\delta = \delta_y - \delta_x)$ entre las componentes del campo determina si la polarización es lineal $(\delta = 0)$, circular $(\delta = \pm \frac{\pi}{2})$ o elíptica, y la orientación del eje mayor con respecto a x.

Figura 2.9: Representaciones de la posición de un vector de campo eléctrico con polarización elíptica cuando (a) se analiza en un punto en el espacio, y (b) se congela el tiempo.

Desde el punto de vista matemático, la figura 2.9a se describe por medio de la ecuación 2.6 que es la ecuación de una cónica y se puede obtener a partir de las expresiones 2.2 y 2.3 como se muestra a continuación.

Si
$$\delta = \delta_y - \delta_x$$
 y $z = 0$, entonces:

$$E_x = A_x \cos(\omega t),$$

$$E_y = A_y \cos(\omega t - \delta).$$

Luego:

$$\cos \omega t = \frac{E_x}{A_x},$$

$$\sin^2 \omega t = 1 - \left(\frac{E_x}{A_x}\right)^2,$$

$$\sin \omega t = \sqrt{1 - \left(\frac{E_x}{A_x}\right)^2}.$$

Por otra parte se tiene:

$$E_y = A_y \left(\cos \omega t \cos \delta + \sin \omega t \sin \delta\right). \tag{2.4}$$

Reemplazando $\sin \omega t$ y $\cos \omega t$ en la expresión 2.4 obtenemos:

$$E_y = \frac{A_y E_x}{A_x} \cos \delta + A_y \sqrt{1 - \frac{E_x}{A_x}} \sin \delta,$$

$$\frac{E_y}{A_y} - \frac{E_x}{A_x} \cos \delta = \sqrt{1 - \left(\frac{E_x}{A_x}\right)^2} \sin \delta.$$
(2.5)

Elevando al cuadrado la igualdad 2.5 y organizando términos, obtenemos la ecuación general de una elipse inscrita en un rectángulo con lados $2A_x$, $2A_y$:

$$\left(\frac{E_x}{A_x}\right)^2 + \left(\frac{E_y}{A_y}\right)^2 - 2\frac{\cos\delta}{A_x A_y} E_x E_y = \sin^2\delta. \tag{2.6}$$

Se puede ahora plantear una rotación de un ángulo ϕ con respecto al eje horizontal (x) sobre el sistema de coordenadas como se muestra en la figura 2.10 para que el eje mayor de la elipse quede alineado con el eje horizontal del nuevo sistema. Haciendo esto, se lleva la ecuación 2.6 a la forma más conocida de la ecuación 2.7.

$$\left(\frac{E_{x'}}{a}\right)^2 + \left(\frac{E_{y'}}{b}\right)^2 = 1,$$
(2.7)

dónde a y b son los semi ejes mayor y menor, y $E_{x'}, E_{y'}$ son las componentes del campo

Figura 2.10: Rotación del sistema de coordenadas un ángulo ϕ .

eléctrico en las direcciones x', y'. Los semiejes de la elipse están dados por las siguientes expresiones:

$$a^2 = A_x \cos^2 \phi + A_y^2 \sin^2 \phi + 2A_x A_y \cos \delta \cos \phi \sin \phi,$$

$$b^2 = A_x \sin^2 \phi + A_y^2 \cos^2 \phi - 2A_x A_y \cos \delta \cos \phi \sin \phi.$$

La elipticidad se define como la razón entre el eje menor y el eje mayor de la elipse $e=\pm \frac{b}{a}$ de tal forma que si el semi eje menor es cero, la elipse se vuelve una linea y por tanto se dice que la polarización es lineal en la dirección de a. Si por el contrario los dos semi ejes tienen la misma longitud, la ecuación de la elipse se vuelve la de un círculo, y se dice que la polarización es circular como en la figura 2.11a. El signo de la elipticidad determina el sentido de giro de la hélice, si el signo es positivo la elipse es circular izquierda como en la figura 2.11b y es circular derecha cuando el signo es negativo 2.11c. Cabe anotar que el sentido de giro de la polarización es una convención que varía según el autor, algunos interpretan el sentido de giro como si se congelara el tiempo y se siguiera la punta del vector $\mathbf E$ desde el cero en adelante. Sin embargo otros autores interpretan el sentido de giro como si en un punto fijo vieran girar el vector $\mathbf E$ que les llega en la medida que pasa el tiempo.

Una ellipse de polarización arbitraria se puede expresar entonces conociendo su elipticidad y su ángulo de inclinación con respecto al eje horizontal. Estas dos características se pueden parametrizar como dos ángulos que se dan en términos de las amplitudes máximas del

Figura 2.11: (a) Esquema de una polarizaciónes circular en donde los semiejes de la elipse son iguales. La polarización circular izquierda (b) se da cuando $e = \frac{b}{a}$ y la derecha (c) cuando $e = -\frac{b}{a}$.

campo A_x , A_y y el retardo entre componentes δ . Por una parte, el ángulo de inclinación se encuentra interpretando la ecuación 2.6 en su forma bilineal de la forma:

$$\begin{pmatrix} E_x & E_y \end{pmatrix} \begin{pmatrix} \frac{1}{A_x^2} & -\frac{\cos \delta}{A_x A_y} \\ -\frac{\cos \delta}{A_x A_y} & \frac{1}{A_y^2} \end{pmatrix} \begin{pmatrix} E_x \\ E_y \end{pmatrix} = \sin^2 \delta, \tag{2.8}$$

sacando factor común $\frac{1}{A_x^2}$ se obtiene:

$$\begin{pmatrix} E_x & E_y \end{pmatrix} \begin{pmatrix} 1 & -\frac{A_x \cos \delta}{A_y} \\ -\frac{A_x \cos \delta}{A_y} & \frac{A_x/2}{A_y^2} \end{pmatrix} \begin{pmatrix} E_x \\ E_y \end{pmatrix} = A_x/2 \sin^2 \delta, \tag{2.9}$$

o en forma compacta:

$$\begin{pmatrix} E_x & E_y \end{pmatrix} \begin{pmatrix} 1 & a \\ a & b \end{pmatrix} \begin{pmatrix} E_x \\ E_y \end{pmatrix} = c.$$
(2.10)

Una cuádrica o superficie cuádrica es una hipersuperficie D-dimensional representada por una ecuación de segundo grado con coordenadas espaciales. Si estas coordenadas son $\{x_1, x_2, ... x_D\}$, entonces la cuádrica típica en ese espacio se define mediante la ecuación algebraica:

$$\sum_{i,j=1}^{D} Q_{i,j} x_i x_j + \sum_{i=1}^{D} P_i x_i + R = 0.$$

El caso particular en el cual solo hay dos dimensiones y los valores P_i son todos 0, es el de una elipse. En nuestro caso, tenemos en notación matricial:

$$\mathbf{E}^T Q \mathbf{E} + R = 0,$$

con

$$Q = \begin{pmatrix} 1 & a \\ a & b \end{pmatrix}.$$

y $R = -c = -A_x/2\sin^2\delta$. Ahora los autovalores de una elipse representada por su forma matricial están asociados con la direcciones de sus ejes principales, y apuntan en la dirección de los puntos máximos [34]. Como nuestra incógnita es el ángulo que determina la dirección de los puntos máximos podemos escribir la siguiente ecuación de autovalores para despejar ϕ http://en.wikipedia.org/wiki/Quadratic_form

$$\begin{pmatrix} 1 & a \\ a & b \end{pmatrix} \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix} = \lambda \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix},$$

desarrollando, se obtienen las siguientes dos ecuaciones:

$$\cos \phi + a \sin \phi = \lambda \cos \phi,$$

$$a \cos \phi + b \sin \phi = \lambda \sin \phi.$$

Despejando λ e igualando las ecuaciones se llega a una expresión dependiente de un ángulo doble:

$$1 + a \tan \phi = \frac{a}{\tan \phi} + b,$$
$$b - 1 = a \tan \phi - \frac{a}{\tan \phi},$$
$$b - 1 = a \left(\frac{\tan^2 \phi - 1}{\tan \phi}\right),$$

$$\tan 2\phi = \frac{2a}{b-1}.$$

Finalmente, reemplazando a, y b se tiene el ángulo de inclinación de la elipse:

$$\phi = \frac{1}{2} \tan^{-1} \left(\frac{2A_x A_y}{A_x^2 - A_y^2} \cos \delta \right).$$

Siguiendo un esquema similar, aunque más tedioso se encuentra el ángulo de elipticidad $(\theta = \tan^{-1} e)$ en términos de la función seno como:

$$\theta = \frac{1}{2}\sin^{-1}\left(\frac{2A_x A_y}{A_x^2 + A_y^2}\sin\delta\right).$$

A la hora de despejar ϕ y θ reemplazando valores en la primera ecuación usando un computador se aconseja reemplazar la función \tan^{-1} por la función atan2, que es popular en paquetes de cálculos numéricos (como numpy) o lenguajes de programación como Matlab, porque permite evitar las singularidades que ocurren cuando el argumento de la función tangente inversa es $\pi/2$.

2.2.3 El formalismo de Jones

Se conoce como formalismo de Jones al uso de una representación vectorial para describir campos ópticos coherentes y monocromáticos cuando es importante la naturaleza vectorial de la luz y la polarización. En el esquema de Jones los campos ópticos con dos componentes ortogonales se representan como un vector con elementos complejos conocido como vector de Jones. Las dos componentes complejas del campo en la ecuación 2.1 se representan como elementos de un vector columna conocido como vector de Jones:

$$\mathbf{J} = \begin{pmatrix} A_x e^{i\delta_x} \\ A_y e^{i\delta_y} \end{pmatrix}. \tag{2.11}$$

Siendo un vector complejo, **J** no es una cantidad observable en el espacio físico. Para obtener obtener por ejemplo, la componentente x del campo eléctrico se hace la operación $E_x(t) = \Re \left[J_x e^{i\omega t}\right]$. Para el estudio de la polarización conviene representar el vector de

Jones en su forma normalizada, es decir tal que cumpla la condición:

$$\mathbf{J}^{\dagger}\mathbf{J}=1.$$

La normalización se logra parametrizando las amplitudes con el ángulo del vector que forman:

$$\tan \psi = \frac{\sin \psi}{\cos \psi} = \frac{A_y}{A_x},$$

de esta forma $A_y = \sin \psi$ y $A_x = \cos \psi$. Adicionalmente, la fase de las componentes se acostumbra a escribir en su forma relativa y con respecto a la componente y como se muestra en la expresión 2.12.

$$\mathbf{J}(\psi, \delta) = \begin{pmatrix} \cos \psi \\ \sin \psi e^{i\delta} \end{pmatrix}. \tag{2.12}$$

2.2.3.1 Algunos estados de polarización importantes

Como se dijo antes, las polarizaciones lineales se obtienen cuando las componentes están en fase, es decir que $\delta = \delta_y - \delta_x = 0$, sin embargo, también se cumple cuando las diferencias de fase entre las componentes son múltiplos de π .

La polarizaciónes lineales ($\delta=n\pi$) horizontal y vertical se dan cuando $\psi=n\pi$ y $\psi=\frac{\pi}{2}(2n+1)$ respectivamente:

$$\mathbf{H} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad \qquad \mathbf{V} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

La polarización lineal a 45° se da cuando las componentes x y y tienen la misma magnitud y dirección, es decir cuando $\psi = \frac{\pi}{4}(4n+1)$. La polarización a -45° se da cuando $\psi = \frac{\pi}{4}(4n-1)$.

$$\mathbf{45}^{\circ} = \begin{pmatrix} \cos \pi/4 \\ \sin \pi/4 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \qquad -\mathbf{45}^{\circ} = \begin{pmatrix} \cos -\pi/4 \\ \sin -\pi/4 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Las polarizaciones circular izquierda y circular derecha son tales que ambas componentes tienen la misma magnitud como en la de 45°, pero el retardo en fase es de $\delta = \frac{\pi}{2}$:

$$\mathbf{CD} = \begin{pmatrix} \cos \pi/4 \\ \sin \pi/4 e^{i\frac{\pi}{2}} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}, \qquad \mathbf{CI} = \begin{pmatrix} \cos -\pi/4 \\ \sin -\pi/4 e^{i\frac{\pi}{2}} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}.$$

Una característica interesante de los estados lineales y circulares es que se pueden dar unos como combinación lineal de los otros:

$$\mathbf{CD} = \frac{1}{\sqrt{2}} (\mathbf{H} - i\mathbf{V}),$$

$$\mathbf{CI} = \frac{1}{\sqrt{2}} (\mathbf{H} + i\mathbf{V}),$$

$$\mathbf{H} = \frac{1}{\sqrt{2}} (\mathbf{CD} + \mathbf{CI}),$$

$$\mathbf{V} = \frac{i}{\sqrt{2}} (\mathbf{CD} - \mathbf{CI}).$$

2.2.3.2 Elementos ópticos como operadores en la representación de Jones

Así como en el álgebra lineal se usan matrices para transformar vectores, en el formalismo de Jones existen operadores que se representan como matrices 2x2 y que tienen la cualidad de transformar los campos. Las matrices de Jones deben cumplir algunas propiedades generales [7]:

1. La dirección de propagación de un campo determina las componentes de la matriz que representa al elemento polarizador. Si la incidencia es desde la izquierda (z=0) definimos la matriz M como aquella que transforma el vector de entrada en el de salida:

$$\begin{pmatrix} V_x^{out} \\ V_y^{out} \end{pmatrix} = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \begin{pmatrix} V_x^{in} \\ V_y^{in} \end{pmatrix}, \tag{2.13}$$

si el vector de entrada ingresa desde la derecha entonces definiremos una matriz distinta N para representar la transformación:

$$\begin{pmatrix} V_x^{out} \\ V_y^{out} \end{pmatrix} = \begin{pmatrix} N_{11} & N_{12} \\ N_{21} & N_{22} \end{pmatrix} \begin{pmatrix} V_x^{in} \\ V_y^{in} \\ V_y^{in} \end{pmatrix}.$$

Para que se cumpla el principio de simetría temporal, se debe cumplir que NM = 1. Si se rebobina la propagación en la expresión 2.13 el haz de salida debería seguir el mismo camino que recorrió a la entrada, y ser afectado por la matriz N de tal forma que vuelva a la forma que tenía en un principio:

$$\begin{pmatrix} V_x^{in} \\ V_y^{in} \end{pmatrix} = \begin{pmatrix} N_{11} & N_{12} \\ N_{21} & N_{22} \end{pmatrix} \begin{pmatrix} V_x^{out} \\ V_y^{out} \end{pmatrix},$$

$$= \begin{pmatrix} N_{11} & N_{12} \\ N_{21} & N_{22} \end{pmatrix} \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \begin{pmatrix} V_x^{in} \\ V_y^{in} \end{pmatrix}.$$

Conociendo que las matrices están asociadas a un mismo elemento se debe cumplir que N sea la transpuesta de M:

$$N_{11} = M_{11}, \qquad N_{12} = M_{21}, \qquad N_{21} = M_{12}, \qquad N_{22} = M_{22}.$$

Esta relación es importante para analizar sistemas en los cuales la luz debe pasar dos veces por el CL en sentidos opuestos, caso especial es el de los SLM's de reflexión en los cuales hay una superficie especular de un lado.

2. Tanto la matriz M como la N son operadores unitarios:

$$M^{\dagger}M = 1, \qquad N^{\dagger}N = 1.$$

Dónde el símbolo \dagger indica que se saca el conjugado hermítico de M:

$$M^{-1} = M^{\dagger} = \begin{pmatrix} M_{11}^* & M_{21}^* \\ M_{12}^* & M_{22}^* \end{pmatrix}.$$

3. Las matrices de Jones son unimodulares es decir:

$$det(M) = det(M^{\dagger}) = M_{11}M_{22} - M_{12}M_{21} = 1.$$

Si asumimos que M^{-1} es:

$$M = \begin{pmatrix} M_{22} & -M_{12} \\ -M_{21} & M_{11} \end{pmatrix},$$

se ve que cumple con la relación $M^{-1}M = 1$:

$$\begin{pmatrix} M_{22} & -M_{12} \\ -M_{21} & M_{11} \end{pmatrix} \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} = \begin{pmatrix} M_{22}M_{11} - M_{12}M_{21} & M_{22}M_{12} - M_{12}M_{22} \\ -M_{11}M_{21} + M_{11}M_{21} & -M_{12}M_{21} + M_{11}M_{22} \end{pmatrix},$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Con esto, se puede simplificar la forma de una matriz de Jones a partir de las siguientes relaciones:

$$M_{21} = -M_{12}^*, M_{22} = M_{11}^*,$$

obteniendo una forma de la matriz que depende de sólo dos números complejos:

$$M = \begin{pmatrix} A & B \\ -B^* & A^* \end{pmatrix} \tag{2.14}$$

Tener la matriz en esta forma facilita encontrar los parámetros de elementos ópticos desconocidos como un SLM.

Los operadores que se verán a continuación hacen referencia a dos tipos de elementos ópticos que se utilizan en el laboratorio para modificar los estados de polarización de una onda, estos son polarizadores y retardadores. Los polarizadores son elementos que afectan únicamente la amplitud y los retardadores introducen un retardo en fase entre las componentes del campo.

Por una parte, los polarizadores horizontales son elementos que sólo dejan pasar la componente x del campo, y se representan con la matriz de la expresión 2.15.

$$P_x = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}. \tag{2.15}$$

Si llega cualquier campo al polarizador horizontal este dejará pasar sólo la componente x tal y como se muestra en la figura 2.12.

Figura 2.12: Propagación de un estado de polarización lineal a través de un polarizador horizontal.

La operación vectorial correspondiente a este fenómeno se da como la multiplicación entre la matriz del polarizador y el vector de Jones que representa al campo, en este caso un campo con polarización lineal a 45°:

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 1 & 0\\0 & 0 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}.$$

Los polarizadores que no están orientados con el eje x se pueden obtener a partir de la matriz de P_x por medio de la siguiente operación de rotación:

$$P_{\theta} = R^{T}(\theta) P_{x} R(\theta)$$

$$P_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}.$$

En adelante se seguirá usando este método para representar la matriz de cualquier elemento óptico rotado. Reemplazando $\theta = \frac{\pi}{2}$ y $\theta = \frac{\pi}{4}$ obtenemos las matrices P_V y P_{45° correspondientes al polarizador horizontal y al que está inclinado 45° :

$$P_{V} = \begin{pmatrix} \cos\frac{\pi}{2} & -\sin\frac{\pi}{2} \\ \sin\frac{\pi}{2} & \cos\frac{\pi}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \cos\frac{\pi}{2} & \sin\frac{\pi}{2} \\ -\sin\frac{\pi}{2} & \cos\frac{\pi}{2} \end{pmatrix},$$

$$= \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},$$

$$= \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

$$P_{45^{\circ}} = \begin{pmatrix} \cos\frac{\pi}{4} & -\sin\frac{\pi}{4} \\ \sin\frac{\pi}{4} & \cos\frac{\pi}{4} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \cos\frac{\pi}{4} & \sin\frac{\pi}{4} \\ -\sin\frac{\pi}{4} & \cos\frac{\pi}{4} \end{pmatrix},$$
$$= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix},$$
$$= \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

Por otra parte, los retardadores ópticos modifican tanto la amplitud como la fase de las componentes del campo y sus elementos son complejos. La matriz general para un retardador óptico con desfase β y orientación del eje rápido con el eje x es:

$$WP = \begin{pmatrix} e^{i\beta/2} & 0\\ 0 & e^{-i\beta/2} \end{pmatrix}$$

Los retardadores ópticos se construyen a partir de materiales birrefringentes donde el retardo de fase β de una componente con respecto a otra es proporcional a la diferencia de índices de refracción, y a la profundidad d del medio birrefringente como se muestra a continuación:

$$\beta = \frac{\pi}{2}d\left(n_e - n_o\right).$$

Dónde el índice de refracción extraordinario corresponde al eje rápido del medio, y el extraordinario al eje lento. Si multiplicamos la ecuación 2.2.3.2 por $e^{-i\beta/2}$ obtenemos la forma no normalizada que es muy común en los libros de texto porque se hace evidente que la componente E_y del campo sufre un retardo en fase de β con respecto a E_x :

$$WP = \begin{pmatrix} 1 & 0 \\ 0 & e^{-i\beta} \end{pmatrix}.$$

Los retardadores más usados en el laboratorio son aquellos que introducen retardos de cuarto de onda:

$$QWP = \begin{pmatrix} e^{i\frac{\pi}{4}} & 0\\ 0 & e^{-i\frac{\pi}{4}} \end{pmatrix},$$
$$= \begin{pmatrix} 1 & 0\\ 0 & e^{-i\frac{\pi}{2}} \end{pmatrix},$$
$$= \begin{pmatrix} 1 & 0\\ 0 & -i \end{pmatrix},$$

y retardos de media onda:

$$HWP = \begin{pmatrix} e^{i\frac{\pi}{2}} & 0\\ 0 & e^{-i\frac{\pi}{2}} \end{pmatrix},$$
$$= \begin{pmatrix} 1 & 0\\ 0 & e^{-i\frac{\pi}{2}} \end{pmatrix},$$
$$= \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix},$$

Los de cuarto de onda permiten obtener polarizaciones circulares o elípticas a partir de polarizaciones lineales. La figura 2.13 muestra cómo conseguir un campo con polariza-

ción circular derecha a partir de polarización lineal y un retardador QWP. La operación

Figura 2.13: Propagación de un estado de polarización lineal a 45° a través de una placa de retardo de cuarto de onda vertical que genera un estado de polarización circular derecho. Las placas de cuarto de onda introducen un retardo de fase de $\frac{\pi}{2}$ radianes.

correspondiente en el formalismo de Jones es:

$$\begin{split} \mathbf{C}\mathbf{D} &= R^T \left(\frac{\pi}{2}\right) \left(QWP\right) R \left(\frac{\pi}{2}\right) \mathbf{45}^\circ, \\ \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix} &= \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} e^{i\frac{\pi}{4}} & 0 \\ 0 & e^{-i\frac{\pi}{4}} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \\ &= \begin{pmatrix} e^{-i\frac{\pi}{4}} & 0 \\ 0 & e^{i\frac{\pi}{4}} \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \\ &= \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}. \end{split}$$

En cambio, los de media onda permiten rotar el estado de polarización sin afectar la intensidad a la salida. En la figura 2.14 se muestra cómo una placa de media onda orientada a 45° puede rotar un estado de polarización lineal horizontal a uno vertical.

Como en los casos anteriores, se puede representar la rotación de la polarización usando el formalismo de Jones:

Figura 2.14: Propagación de un estado de polarización lineal horizontal a través de una placa de retardo de media onda vertical a 45° que genera un estado de polarización lineal vertical. Las placas de media onda introducen un retardo de fase de π radianes.

$$\mathbf{V} = R^{T} \begin{pmatrix} \frac{\pi}{4} \end{pmatrix} (HWP) R \begin{pmatrix} \frac{\pi}{4} \end{pmatrix} \mathbf{H},$$

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$

$$= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$

$$= \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Combinando rotadores ópticos (HWP) y retardadores de cuarto de onda (QWP), podemos generar polarizaciones elípticas con cualquier inclinación y elipticidad. Esto será de utilidad más adelante pues los autovectores de las matrices de Jones indican los estados de polarización para los cuales el sistema es transparente, es decir, no se modifica el vector tras la operación de la matriz:

$$\mathbf{M}J_{\lambda}=\lambda J_{\lambda}.$$

Cuando se desea modulación de sólo fase en un SLM lo que se busca es precisamente que no se modifique la polarización y por ende la amplitud. El problema de calibrar moduladores se reduce a encontrar la matriz que define el CL y extraer sus autoestados tal y como dicen Pezzanitti y Davis en [9, 15, 35]. En la sección que sigue se construirá un modelo para describir el comportamiento de un cristal líquido enroscado (TN-LCD) en términos de matrices de Jones.

2.2.4 Propiedades ópticas de los cristales líquidos nemáticos enroscados (TN-LCD)

Los cristales líquidos del tipo TN-LCD son medios ópticos inhomogeneos y anisotrópicos que localmente actúan como si fueran cristales birrefringentes uniaxiales con su eje óptico orientado en la dirección preferente de las moléculas. Como se mencionó en la sección 2.2.1.2 la anisotropía se debe a la forma obloide de las moléculas del cristal, y en el caso de los TN la inhomogeneidad viene dada por la orientación preferencial de las moléculas que es función de su posición. Las propiedades ópticas se estudian suponiendo que el material se puede representar como láminas delgadas perpendiculares a la dirección de propagación, cada una de ellas actuando como si fuera un cristal birrefringente uniaxial con su eje óptico rotado respecto al eje x un ángulo ψ como se ilustra en la figura 2.15.

Figura 2.15: Propagación de la luz en un cristal líquido del tipo Twisted Nematic. En este diagrama el ángulo de entorchado es de 90° .

La rotación de cada *lámina* de moléculas se asume proporcional a la distancia desde la superficie de entra da del LCD:

$$\psi(z) = \alpha z. \tag{2.16}$$

Aquí la constante α se conoce como coeficiente de torsión, y el ángulo a la salida viene dado por:

$$\phi \equiv \psi(d) = \alpha d.$$

Si se divide el cristal en N láminas, cada una tendrá un grosor d/N y estará orientada en los ángulos $\rho, 2\rho, 3\rho, \dots (N-1)\rho, N\rho$ con $\rho = \phi/N$. Si cada una representa un cristal

birrefringente, este tendrá una birrefringencia asociada al grosor dada por:

$$\beta_N = \frac{\pi d}{2N} \left(n_e - n_o \right).$$

La matriz de Jones general para el conjunto de todas las láminas se encuentra como la multiplicación de cada una como se muestra a continuación:

$$M = W_N W_{N-1} \cdots W_3 W_2 W_1 = \prod_{m=1}^N W_m = \prod_{m=1}^N R(m\rho)^T W_0 R(m\rho),$$

dónde R es la matriz de rotación, y W_m es la matriz de Jones para el retardador m rotada, y W_0 es aquella donde el eje rápido está orientado con el eje x:

$$W_0 = \begin{pmatrix} e^{i\beta/2N} & 0\\ 0 & e^{-i\beta/2N} \end{pmatrix}.$$

Las matrices de rotación cumplen la siguiente regla:

$$\begin{split} R^{T}(\psi_{m})R^{T}(\psi_{m-1}) &= R^{T}\left(\psi_{m} + \psi_{m-1}\right), \\ &= \begin{pmatrix} \cos\psi_{m} & -\sin\psi_{m} \\ \sin\psi_{m} & \cos\psi_{m} \end{pmatrix} \begin{pmatrix} \cos\psi_{m-1} & -\sin\psi_{m-1} \\ \sin\psi_{m-1} & \cos\psi_{m-1} \end{pmatrix}, \\ &= \begin{pmatrix} \cos\psi_{m}\cos\psi_{m-1} - \sin\psi_{m}\sin\psi_{m-1} & -(\cos\psi_{m}\sin\psi_{m-1} + \sin\psi_{m}\cos\psi_{m-1}) \\ \sin\psi_{m}\cos\psi_{m-1} + \cos\psi_{m}\sin\psi_{m-1} & -\sin\psi_{m}\sin\psi_{m-1} + \cos\psi_{m}\cos\psi_{m-1} \end{pmatrix}, \\ &= \begin{pmatrix} \cos\left(\psi_{m} + \psi_{m-1}\right) & -\sin\left(\psi_{m} + \psi_{m-1}\right) \\ \sin\left(\psi_{m} + \psi_{m-1}\right) & \cos\left(\psi_{m} + \psi_{m-1}\right) \end{pmatrix}. \end{split}$$

Usando esto sobre las matrices de rotación, se puede realizar el siguiente razonamiento, si N=1:

$$M = R^T(\rho)W_0R(\rho).$$

Si en cambio N=2:

$$M = R^{T}(2\rho)W_0R(2\rho)R^{T}(\rho)W_0R(\rho),$$

= $R^{T}(2\rho)W_0R(\rho)R(\rho)R^{T}(\rho)W_0R(\rho).$

Como $R(\rho)R^T(\rho) = 1$ se tiene:

$$M = R^{T}(2\rho)W_0R(\rho)W_0R(\rho),$$

= $R^{T}(2\rho)[W_0R(\rho)]^2.$

Para N = 3:

$$\begin{split} M &= R^T(3\rho)W_0R(3\rho)R^T(2\rho)W_0R(2\rho)R^T(\rho)W_0R(\rho), \\ &= R^T(3\rho)W_0R(3\rho)R^T(2\rho)\left[W_0R(\rho)\right]^2, \\ &= R^T(3\rho)W_0R(\rho)R(2\rho)R^T(2\rho)\left[W_0R(\rho)\right]^2, \\ &= R^T(3\rho)W_0R(\rho)\left[W_0R(\rho)\right]^2, \\ &= R^T(3\rho)\left[W_0R(\rho)\right]^3. \end{split}$$

Ahora para una cantidad arbitraria m:

$$\begin{split} M &= R^T(m\rho) W_0 R(m\rho) R^T((m-1)\rho) \left[W_0 R(\rho) \right]^{m-1}, \\ &= R^T(m\rho) W_0 R(\rho) R((m-1)\rho) R^T((m-1)\rho) \left[W_0 R(\rho) \right]^{m-1}, \\ &= R^T(m\rho) W_0 R(\rho) \left[W_0 R(\rho) \right]^{m-1}, \\ &= R^T(m\rho) \left[W_0 R(m\rho) \right]^m. \end{split}$$

Y así se obtiene la matriz general del TN-LCD según Yariv et.al [7] en términos de dos matrices, una que cambia el estado de polarización y otra que simplemente lo rota:

$$M = R^{T}(\phi) \left[W_0 R\left(\frac{\phi}{N}\right) \right]^N, \tag{2.17}$$

$$= R^{T}(\phi) \begin{pmatrix} \cos \frac{\phi}{N} e^{i\beta/N} & \sin \frac{\phi}{N} e^{i\beta/N} \\ -\sin \frac{\phi}{N} e^{-i\beta/N} & \cos \frac{\phi}{N} e^{-i\beta/N} \end{pmatrix}^{N}.$$
 (2.18)

La ecuación 2.18 puede ser simplificada aún mas como muestra Yeh en [6] si se usa la identidad de Chebyshev 2.19 para matrices unimodulares:

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^m = \begin{pmatrix} \frac{A\sin(mZ) - \sin(m-1)Z}{\sin Z} & \frac{B\sin(mZ)}{\sin Z} \\ \frac{C\sin(mZ)}{\sin Z} & \frac{D\sin(mZ) - \sin(m-1)Z}{\sin Z} \end{pmatrix}, \tag{2.19}$$

con

$$Z = \cos^{-1}\left[\frac{1}{2}(A+D)\right].$$

Si se saca el límite cuando $(N \to \infty)$ se obtiene la siguiente matriz:

$$M = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} \cos \gamma + i\beta \frac{\sin \gamma}{\gamma} & \phi \frac{\sin \gamma}{\gamma} \\ -\phi \frac{\sin \gamma}{\gamma} & \cos \gamma - i\beta \frac{\sin \gamma}{\gamma} \end{pmatrix}, \tag{2.20}$$

dónde:

$$\gamma = \sqrt{\phi^2 + \beta^2}.$$

Ahora, esta es la matriz que todos los autores encontrados en el estudio del estado del arte referencian y a partir de la cual se basan para caracterizar moduladores. La matriz que representa un SLM tal como se estudió en esta sección es la forma más simple de representar un cristal líquido del tipo twisted nematic y se conoce como el modelo de Lu y Saleh [36]. Este modelo parte de asumir las siguientes aproximaciones:

- El TN-LCD se comporta como una sucesión de láminas retardadoras en las cuales la orientación del vector director varía gradualmente desde un ángulo a la entrada hasta un ángulo a la salida y formando un ángulo de rotación conocido como twist angle.
- El ángulo de rotación (twist angle) es una función lineal proporcional a la profundidad en el cristal tal y como se expresa en la ecuación 2.16.

• El ángulo de inclinación (tilt angle) se produce cuando se introduce un campo eléctrico que hace rotar las moléculas para alinearlas en su dirección. Éste ángulo se asume constante a lo largo del cristal para un voltaje específico. Si la birrefringencia es proporcional al ángulo de inclinación entonces al variar el voltaje esta variará linealmente con respecto al voltaje.

En modelos posteriores como los de Coy et al [37] y Marquez et al [38] se construyen matrices para el LCD que corrigen comportamientos no lineales no previstos por Lu y Saleh. El principal factor a corregir en un LCD es la tendencia de las moléculas cercanas a las paredes del cristal a conservar la dirección de pulido de los vidrios que las contienen como se ilustra en la figura 2.16. Este efecto hace que el ángulo de rotación no sea una

Fig. 1 Sketch of the behavior of the twist angle and the birefringence as a function of the depth in the modulator: (a) and (b) Berreman model, (c) and (d) Lu and Saleh model, (e) and (f) Coy et al. model, and (g) and (h) our model.

Figura 2.16: Modelos de TN-LCD tomado de Marquez et al en [38].

función lineal lo largo de la profundidad y que la birrefringencia no sea una función lineal del voltaje.

2.3 Revisión de la literatura

Se realizó una revisión de la literatura en el contexto de calibración de moduladores basados en TN-LCD y se encontró que para poder utilizar una pantalla de cristal líquido como un modulador de sólo fase se debe caracterizar el dispositivo como si fuera un elemento óptico que afecta tanto la polarización como la fase de la luz. La mayoría de los autores usan el cálculo de Jones para representar el efecto del SLM sobre la luz como la operación de la matriz del SLM sobre un vector de polarización a la entrada. Sin embargo, algunos autores como Yu et al. [24], Moreno et al. [?] y Durán et al. [19] utilizan también la medida de parámetros de Stokes y matrices de Muller para obtener curvas de calibración de los dispositivos. El reto en ambos casos es encontrar una matriz que modele con precisión el comportamiento del modulador para diferentes valores de voltaje aplicado.

Hay dos formas básicas de caracterizar el SLM, por una parte se puede seguir el camino riguroso y analizar el TN-LCD desde el punto de vista físico como se hizo en la sección anterior. Para este caso se deben encontrar los parámetros físicos que determinan la matriz que se presentó en la fórmula 2.20, es decir, la birrefringencia como función del voltaje, el ángulo de rotación de las moléculas a la entrada del modulador, y el ángulo de rotación total que experimentan las moléculas hasta la salida del modulador. Estos parámetros son encontrados en la mayoría de los casos por medio de ajuste de curvas con medidas experimentales de la tramitancia. La otra forma en la que se obtiene la matriz de Jones es asumiendo que el sistema es como una caja negra que debe cumplir reglas menos exigentes. En la figura 2.17 se ilustra por medio de dos columnas la cantidad y fecha en las cuales se han publicado artículos científicos en los cuales se usa uno u otro método para caracterizar los moduladores. Adicionalmente se identificaron los grupos que más han publicado sobre el tema. De la figura 2.17 y de las fechas en los artículos de la bibliografía se puede observar que la investigación en TN-LCD para aplicación en procesamiento óptico tuvo su auge entre 1990 y 2010 aproximadamente, esto se debe como afirma Kirsch en [39] a que a finales de los 80s las pantallas de CL para televisores portátiles resultaron interesantes a los investigadores como dispositivos para generación dinámica de máscaras de amplitud y fase. El declive en cambio, se debe a que los moduladores de reflexión han ido reemplazando a los de transmisión por no necesitar de una caracterización y tener mejores prestaciones. También se ha concluido que los artículos que buscaban encontrar todos los parámetros del modulador como el de Marquez et al del 2000[38] y el de Yun et al. en 1998 [40] preceden en el tiempo a los artículos donde se busca simplificar el modelo y asumir el comportamiento del LCD como una caja negra, como los dos artículos de Ma et al. en 2010 y 2011 [22, 23] o el de Ignacio Moreno en 2003 [16] (que es el que actualmente intentamos replicar en el laboratorio). Al parecer los autores de estos últimos identificaron una necesidad de simplificar el proceso de caracterización, y entre sus argumentos están: la simplicidad matemática y número reducido de medidas necesarias.

Figura 2.17: Tabla de publicaciones en relación con caracterización de moduladores tipo TN-LCD. Los rectángulos representan los grupos que han publicado más en el tema y que resultan de mayor interés para este trabajo.

El principal resultado del estudio del estado del arte fue encontrar un patrón en la evolución del tema en la literatura desde los primeros métodos para pantallas de televisor [12] hasta campos dónde se modula la polarización producidos por moduladores en [31]. Este patrón tiene como columna vertebral al investigador Ignacio Moreno que, junto con otros investigadores en universidades de España y California ha dirigido los avances en aplicaciones científicas de pantallas TN-LCD. En el momento, en el laboratorio de Óptica y Fotónica del Grupo de Óptica Aplicada nos encontramos apropiando las técnicas que se referencian en dos de sus artículos para encontrar ya sea la matriz de "caja negra" del modulador o la matriz con los parámetros de fabricación. Una vez caracterizado se procederá a encontrar los autovalores de la matriz de Jones (como se explica en [35]), y usarlos para plantear estados de polarización a la entrada y la salida del SLM que permitan una modulación de solo fase con la cual se puedan hacer elementos difractivos digitales tales como máscaras espiral de fase o lentes de Fresnel. Los elementos difractivos producidos de forma digital son la clave para investigar aberraciones ópticas en haces Laguerre-Gauss y

sus aplicaciones.

Bibliografía

- [1] A. N. Alekseev, K. N. Alekseev, O. S. Borodavka, A. V. Volyar, and Yu A. Fridman. Conversion of hermite-gaussian and laguerre-gaussian beams in an astigmatic optical system. 1. experiment. *Technical Physics Letters*, 24(9):694–696, 1998. doi: 10.1134/ 1.1262248.
- [2] Chen Jun, Kuang Deng-Feng, Gui Min, and Fang Zhi-Liang. Generation of optical vortex using a spiral phase plate fabricated in quartz by direct laser writing and inductively coupled plasma etching. *Chinese Physics Letters*, 26(1):014202, 2009. doi: 10.1088/0256-307X/26/1/014202.
- [3] Alicia V. Carpentier, Humberto Michinel, Jose Salgueiro, and David Olivieri. Making optical vortices with computer-generated holograms. *American Journal of Physics*, 76(10):916, 2008. ISSN 00029505. doi: 10.1119/1.2955792.
- [4] Lei Wu, S. Dooley, E.A. Watson, Paul F. McManamon, and Huikai Xie. A tip-tilt-piston micromirror array for optical phased array applications. *Journal of Microelectromechanical Systems*, 19(6):1450–1461, December 2010. ISSN 1057-7157. doi: 10.1109/JMEMS.2010.2076777.
- [5] Jan Liesener and Wolfgang Osten. Wavefront optimization using piston micro mirror arrays. In Professor Dr Wolfgang Osten, editor, *Fringe 2005*, pages 150–157. Springer Berlin Heidelberg, January 2006. ISBN 978-3-540-26037-0, 978-3-540-29303-3. URL http://link.springer.com/chapter/10.1007/3-540-29303-5_17.
- [6] Pochi Yeh and Gu Claire. Optics of liquid crystal displays. 1999.
- [7] Amnon Yariv and Pochi Yeh. Optical Waves in Crystals: Propagation and Control of Laser Radiation. Wiley-Interscience, Hoboken, N.J., November 2002. ISBN 9780471430810.
- [8] Naim Konforti, S.-T. Wu, and E. Marom. Phase-only modulation with twisted nematic liquid-crystal spatial light modulators. *Optics letters*, 13(3):251–253, 1988. doi: 10. 1364/OL.13.000251.
- [9] J. L. Pezzaniti and R. A. Chipman. Phase-only modulation of a twisted nematic liquidcrystal TV by use of the eigenpolarization states. *Optics letters*, 18(18):1567–1569, 1993. doi: 10.1364/OL.18.001567.

- [10] Colin Soutar and Kanghua Lu. Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell. Optical engineering, 33(8):2704–2712, 1994. doi: 10.1117/12.173544.
- [11] Zheng Zhang, Guowen Lu, and T. S. Francis. Simple method for measuring phase modulation in liquid crystal televisions. *Optical Engineering*, 33(9):3018–3022, 1994. doi: 10.1117/12.177518.
- [12] Ignacio Moreno, Jeffrey A. Davis, Kevin G. DNelly, and David B. Allison. Transmission and phase measurement for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators. *Optical Engineering*, 37(11):3048–3052, 1998. doi: 10.1117/1.601976.
- [13] Jeffrey A. Davis, Ignacio Moreno, Philbert Tsai, and Kevin G. DÑelly. Simple technique for determining the extraordinary axis direction for twisted-nematic liquid crystal spatial light modulators. Optical Engineering, 38(5):929–932, 1999. doi: 10.1117/1.602052.
- [14] Claudio Iemmi, Ignacio Moreno, Jeffrey A. Davis, Juan Campos, and Maria J. Yzuel. Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays based on a simple physical model. *Optical Engineering*, 40(11):2558–2564, 2001. doi: 10.1117/1.1412228.
- [15] Jeffrey A. Davis, Maria J. Yzuel, Juan Campos, Ignacio Moreno, Andres Marquez, and Josep Nicolas. Review of operating modes for twisted nematic liquid crystal displays for applications in optical image processing. In *Optical Science and Technology, SPIE's* 48th Annual Meeting, pages 120–131. International Society for Optics and Photonics, 2003. doi: 10.1117/12.510257.
- [16] I. Moreno, P. Velaśquez, C. R. Fernańdez-Pousa, M. M. Sańchez-Lopez, and F. Mateos. Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display. *Journal of Applied Physics*, 94(6):3697, 2003. ISSN 00218979. doi: 10.1063/1.1601688.
- [17] Hyun Kim and Yeon H. Lee. Unique measurement of the parameters of a twisted-nematic liquid-crystal display. Applied optics, 44(9):1642–1649, 2005. doi: 10.1364/AO.44.001642.

- [18] V. Durán, J. Lancis, E. Tajahuerce, and M. Fernández-Alonso. Phase-only modulation with a twisted nematic liquid crystal display by means of equi-azimuth polarization states. Optics express, 14(12):5607–5616, 2006. doi: 10.1364/OE.14.005607.
- [19] Vicente Duran, Jess Lancis, Enrique Tajahuerce, and Vicent Climent. Poincaré sphere method for optimizing the phase modulation response of a twisted nematic liquid crystal display. *Journal of Display Technology*, 3(1):9–14, March 2007. ISSN 1551-319X. doi: 10.1109/JDT.2006.890710.
- [20] Andrés Márquez, Sergi Gallego, David Méndez, Mariela L. Álvarez, Elena Fernández, Manuel Ortuño, Augusto Beléndez, and Inmaculada Pascual. <title>characterization and optimization of liquid crystal displays for data storage applications</title>. pages 658715–658715–12, May 2007. doi: 10.1117/12. 722647.
- [21] Meng-Han Liu, Wen-Chuan Kuo, Hsiang-Chun Wei, Chien-Chung Tsai, Chih-Jen Yu, Bau-Jy Liang, and Chien Chou. Cell parameter measurement of a twisted nematic liquid crystal device using interferometric polarimeter under normal incidence. *Optics* express, 18(9):8759–8766, 2010. doi: 10.1364/OE.18.008759.
- [22] Baiheng Ma, Baoli Yao, Tong Ye, and Ming Lei. Prediction of optical modulation properties of twisted-nematic liquid-crystal display by improved measurement of jones matrix. *Journal of Applied Physics*, 107(7):073107, 2010. ISSN 00218979. doi: 10. 1063/1.3361238.
- [23] Baiheng Ma, Baoli Yao, Ze Li, and Tong Ye. Improvement of the performance of the twisted-nematic liquid-crystal display as a phase modulator. *Applied optics*, 50(17): 2588–2593, 2011. doi: 10.1364/AO.50.002588.
- [24] Chih-Jen Yu, Yao-Teng Tseng, Kuei-Chu Hsu, and Chien Chou. Full-field characterization of a twisted nematic liquid-crystal device using equivalence theorem of a unitary optical system. *Applied optics*, 51(2):238–244, 2012. doi: 10.1364/AO.51.000238.
- [25] Mohammad Sultan Mahmud, Izabela Naydenova, and Vincent Toal. Implementation of phase-only modulation utilizing a twisted nematic liquid crystal spatial light modulator. *Journal of Optics A: Pure and Applied Optics*, 10(8):085007, August 2008. ISSN 1464-4258, 1741-3567. doi: 10.1088/1464-4258/10/8/085007.

- [26] M. B. Roopashree, Akondi Vyas, Ravinder Kumar Banyal, and B. Raghavendra Prasad. Phase characteristics of reflecting and transmitting type twisted nematic spatial light modulators. arXiv preprint arXiv:0911.0817, 2009.
- [27] Kapil Dev and Anand Asundi. Mueller–stokes polarimetric characterization of transmissive liquid crystal spatial light modulator. Optics and Lasers in Engineering, 50 (4):599–607, April 2012. ISSN 01438166. doi: 10.1016/j.optlaseng.2011.10.004.
- [28] Jeffrey A. Davis, Dylan E. McNamara, Don M. Cottrell, and Tomio Sonehara. Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator. Applied Optics, 39(10):1549–1554, 2000. doi: 10.1364/AO.39.001549.
- [29] Jeffrey A. Davis, Don M. Cottrell, Brandon C. Schoonover, Johnathan B. Cushing, Jorge Albero, and Ignacio Moreno. Vortex sensing analysis of radially and pseudoradially polarized beams. *Optical Engineering*, 52(5):050502-050502, 2013. doi: 10. 1117/1.OE.52.5.050502.
- [30] Ignacio Moreno, María J. Yzuel, Juan Campos, and Asticio Vargas. Jones matrix treatment for polarization fourier optics. *Journal of Modern Optics*, 51(14):2031– 2038, September 2004. ISSN 0950-0340, 1362-3044. doi: 10.1080/09500340408232511.
- [31] Ignacio Moreno, Claudio Iemmi, Juan Campos, and Maria J. Yzuel. Jones matrix treatment for optical fourier processors with structured polarization. *Optics express*, 19(5):4583–4594, 2011. doi: 10.1364/OE.19.004583.
- [32] Georges Friedel. The mesomorphic states of matter. Ann. phys, 18:273-474, 1922. URL http://www.personal.southampton.ac.uk/tim/crystals_that_flow/georges_friedel1922.pdf.
- [33] Nestor Uribe-Patarroyo. Optical Space Applications of Liquid Crystals: Polarimetry and Photon Orbital Angular Momentum in Remote Sensing. Tesis doctoral, Universidad Complutense de Madrid, Laboratorio de Instrumentación Espacial Instituto Nacional de Técnica Aeroespacial, 2011.
- [34] Patricia Cladis and Peter Palffy-Muhoray. Dynamics and Defects in Liquid Crystals: A Festschrift in Honor of Alfred Saupe. CRC Press, Amsterdam, July 1998. ISBN 9789056996499.
- [35] Jeffrey A. Davis, Ignacio Moreno, and Philbert Tsai. Polarization eigenstates for twisted-nematic liquid-crystal displays. Applied optics, 37(5):937–945, 1998. doi: 10. 1364/AO.37.000937.

- [36] Bahaa EA Saleh and Kanghua Lu. Theory and design of the liquid crystal TV as an optical spatial phase modulator. *Optical Engineering*, 29(3):240–246, 1990. URL http://opticalengineering.spiedigitallibrary.org/article.aspx?articleid=1066772.
- [37] Julio A. Coy, Diego F. Grosz, and Oscar Eduardo Marti. Characterization of a liquid crystal television as a programmable spatial light modulator. *Optical Engineering*, 35 (1):15–19, 1996. doi: 10.1117/1.600886.
- [38] Andres Marquez, Ignacio Moreno, Jeffrey A. Davis, and Claudio Iemmi. Characterization of edge effects in twisted nematic liquid crystal displays. *Optical Engineering*, 39(12):3301–3307, 2000.
- [39] James C. Kirsch, Don A. Gregory, Melissa W. Thie, and Brian K. Jones. Modulation characteristics of the epson liquid crystal television. *Optical Engineering*, 31(5):963– 970, 1992. doi: 10.1117/12.56170.
- [40] Yun Zhisheng, Li Yulin, Liu Jifang, and He Zhengquan. Measurement of the phase modulation of liquid-crystal televisions by a noninterferometric technique. *Applied optics*, 37(14):3069–3075, 1998. doi: 10.1364/AO.37.003069.

Parte II

Caracterización y corrección de aberraciones de VO

CAPÍTULO

Conclusiones

Se logró implementar un método para la caracterización y corrección de aberraciones ópticas en haces Laguerre-Gausianos.

CAPÍTULO A

Apéndice Planos de rotadores

Aquí deberían ir los planos del sistema de rotadores.