

Chemistry data booklet

First assessment 2016

Edited in 2014 (version 2)

Diploma Programme Chemistry data booklet

Published June 2014

Published on behalf of the International Baccalaureate Organization, a not-for-profit educational foundation of 15 Route des Morillons, 1218 Le Grand-Saconnex, Geneva, Switzerland by the

International Baccalaureate Organization (UK) Ltd
Peterson House, Malthouse Avenue, Cardiff Gate
Cardiff, Wales CF23 8GL
United Kingdom
Website: www.ibo.org

© International Baccalaureate Organization 2014

The International Baccalaureate Organization (known as the IB) offers four high-quality and challenging educational programmes for a worldwide community of schools, aiming to create a better, more peaceful world. This publication is one of a range of materials produced to support these programmes.

The IB may use a variety of sources in its work and checks information to verify accuracy and authenticity, particularly when using community-based knowledge sources such as Wikipedia. The IB respects the principles of intellectual property and makes strenuous efforts to identify and obtain permission before publication from rights holders of all copyright material used. The IB is grateful for permissions received for material used in this publication and will be pleased to correct any errors or omissions at the earliest opportunity.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior written permission of the IB, or as expressly permitted by law or by the IB's own rules and policy. See http://www.ibo.org/copyright.

IB merchandise and publications can be purchased through the IB store at http://store.ibo.org.

Email: sales@ibo.org

Contents

1. Some relevant equations	1
2. Physical constants and unit conversions	2
3. The electromagnetic spectrum	3
4. Fundamental particles	3
5. Names of the elements	4
6. The periodic table	6
7. Melting points and boiling points of the elements (at 101.325 kPa)	7
8. First ionization energy, electron affinity and electronegativity of the elements	8
9. Atomic and ionic radii of the elements	9
10. Covalent bond lengths	10
11. Bond enthalpies and average bond enthalpies at 298 K	11
12. Selected compounds—thermodynamic data	12
13. Enthalpies of combustion	13
14. Common oxidation numbers of the 3d ions	14
15. Spectrochemical series	14
16. Ligands	15
17. Colour wheel	15
18. Lattice enthalpies at 298 K (experimental values)	16
19. Enthalpies of aqueous solutions	17
20. Enthalpies of hydration	18
21. Strengths of organic acids and bases	19
22. Acid-base indicators	21
23. Values of ionization constant	22
24. Standard electrode potentials at 298 K	23
25. Activity series	24
26. Infrared data	25
27. ¹ H NMR data	26
28. Mass spectral fragments lost	27
29. Triangular bonding diagram	28
30. Resin identification codes	29

31. Representations of some materials molecules	29
32. Solubility product constants at 298 K	30
33. 2-amino acids	31
34. Lipids, carbohydrates and nucleotide components	33
35. Vitamins and pigments	35
36. Binding energy curve	37
37. Representations of some medicinal molecules	38
38. References	40

Notes

This booklet cannot be used for paper 1 of the examination (SLP1 and HLP1), but the periodic table given in section 6 will be available as part of these examination papers. Clean copies of this booklet must be made available to candidates for papers 2 and 3 (SLP2, HLP2, SLP3 and HLP3).

1. Some relevant equations

Topic	Equation
1.3	PV = nRT
2.2 and C.4	$c = v\lambda$
5.1	$q = mc\Delta T$
8.3	$pH = -\log_{10}[H_3O^+]$ or $pH = -\log_{10}[H^+]$
12.1	E = hv
15.2	$\Delta G^{\Theta} = \Delta H^{\Theta} - T \Delta S^{\Theta}$
16.2	$k = Ae^{\frac{-E_a}{RT}}$
16.2	$\ln k = \frac{-E_a}{RT} + \ln A$
16.2	$\ln \frac{k_1}{k_2} = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$
17.1	$\Delta G^{\Theta} = -RT \ln K$
19.1	$\Delta G^{\Theta} = -nFE^{\Theta}$
A.5	% atom economy = $\frac{\text{molar mass of desired product}}{\text{molar mass of all reactants}} \times 100$
A.8	$n\lambda = 2d\sin\theta$
B.7	$pH = pK_a + \log\left(\frac{[A^-]}{[HA]}\right)$
B.7	$\log_{10} \frac{I_0}{I} = \varepsilon lc$

Topic	Equation
C.1	Energy density $=$ $\frac{\text{energy released from fuel}}{\text{volume of fuel consumed}}$
C.1	Specific energy = $\frac{\text{energy released from fuel}}{\text{mass of fuel consumed}}$
C.3	$N = N_0 e^{-\lambda t}$
C.3 and D.8	$t_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$
C.6	$E = E^0 - \left(\frac{RT}{nF}\right) \ln Q$
C.7	$\frac{\text{Rate}_1}{\text{Rate}_2} = \sqrt{\frac{M_2}{M_1}}$
D.8	$N_t = N_0(0.5)^{t/k}$

2. Physical constants and unit conversions

Avogadro's constant (L or N_A) = $6.02 \times 10^{23} \text{ mol}^{-1}$

Gas constant $(R) = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Molar volume of an ideal gas at STP = $2.27 \times 10^{-2} \text{ m}^3 \text{ mol}^{-1} = 22.7 \text{ dm}^3 \text{ mol}^{-1}$

 $1 \text{ dm}^3 = 1 \text{ litre} = 1 \times 10^{-3} \text{ m}^3 = 1 \times 10^3 \text{ cm}^3$

STP conditions = 273 K and 100 kPa

SATP conditions = 298 K and 100 kPa

Speed of light = $3.00 \times 10^8 \text{ ms}^{-1}$

Specific heat capacity of water = 4.18 kJ kg $^{-1}\mathrm{K}^{-1}$ = 4.18 J g $^{-1}$ K $^{-1}$

Planck's constant (h) = 6.63×10^{-34} J s

Faraday's constant $(F) = 9.65 \times 10^4 \text{ C mol}^{-1}$

Ionic product constant for water $(K_w) = 1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$ at 298 K

 $1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg}$

3. The electromagnetic spectrum

4. Fundamental particles

	Proton	Neutron	Electron
Mass (kg)	1.672622×10^{-27}	1.674927×10^{-27}	9.109383×10^{-31}
Charge (C)	1.602189×10^{-19}	0	$-1.602189 \times 10^{-19}$

5. Names of the elements

Element	Symbol	Atomic number				
actinium	Ac	89				
aluminium	Al	13				
americium	Am	95				
antimony	Sb	51				
argon	Ar	18				
arsenic	As	33				
astatine	At	85				
barium	Ва	56				
berkelium	Bk	97				
beryllium	Be	4				
bismuth	Bi	83				
bohrium	Bh	107				
boron	В	5				
bromine	Br	35				
cadmium	Cd	48				
caesium	Cs	55				
calcium	Ca	20				
californium	Cf	98				
carbon	С	6				
cerium	Ce	58				
chlorine	Cl	17				
chromium	Cr	24				
cobalt	Со	27				
copernicium	Cn	112				
copper	Cu	29				
curium	Cm	96				
darmstadtium	Ds	110				
dubnium	Db	105				

Element	Symbol	Atomic number
dysprosium	Dy	66
einsteinium	Es	99
erbium	Er	68
europium	Eu	63
fermium	Fm	100
fluorine	F	9
francium	Fr	87
gadolinium	Gd	64
gallium	Ga	31
germanium	Ge	32
gold	Au	79
hafnium	Hf	72
hassium	Hs	108
helium	Не	2
holmium	Но	67
hydrogen	Н	1
indium	In	49
iodine	I	53
iridium	Ir	77
iron	Fe	26
krypton	Kr	36
lanthanum	La	57
lawrencium	Lr	103
lead	Pb	82
lithium	Li	3
lutetium	Lu	71
magnesium	Mg	12
manganese	Mn	25

Element	Symbol	Atomic number
meitnerium	Mt	109
mendelevium	Md	101
mercury	Hg	80
molybdenum	Mo	42
neodymium	Nd	60
neon	Ne	10
neptunium	Np	93
nickel	Ni	28
niobium	Nb	41
nitrogen	N	7
nobelium	No	102
osmium	Os	76
oxygen	0	8
palladium	Pd	46
phosphorus	P	15
platinum	Pt	78
plutonium	Pu	94
polonium	Po	84
potassium	K	19
praseodymium	Pr	59
promethium	Pm	61
protactinium	Pa	91
radium	Ra	88
radon	Rn	86
rhenium	Re	75
rhodium	Rh	45
roentgenium	Rg	111
rubidium	Rb	37

Element	Symbol	Atomic number				
ruthenium	Ru	44				
rutherfordium	Rf	104				
samarium	Sm	62				
scandium	Sc	21				
seaborgium	Sg	106				
selenium	Se	34				
silicon	Si	14				
silver	Ag	47				
sodium	Na	11				
strontium	Sr	38				
sulfur	S	16				
tantalum	Та	73				
technetium	Tc	43				
tellurium	Те	52				
terbium	Tb	65				
thallium	Tl	81				
thorium	Th	90				
thulium	Tm	69				
tin	Sn	50				
titanium	Ti	22				
tungsten	W	74				
uranium	U	92				
vanadium	V	23				
xenon	Xe	54				
ytterbium	Yb	70				
yttrium	Y	39				
zinc	Zn	30				
zirconium	Zr	40				

6. The periodic table

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H 1.01							number nent										2 He 4.00
	3	4					Lici	ilelit					5	6	7	8	9	10
2	Li	Ве						atomic					В	C	N	0	F	Ne
	6.94 11	9.01 12					ma	ass					10.81	12.01	14.01	16.00 16	19.00 17	20.18 18
3	Na	Mg											Al	14 Si	15 P	S	Cl	Ar
-	22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
•	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.63	74.92	78.96	79.90	83.90
_	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	85.47	87.62	88.91	91.22	92.91	95.96	(98)	101.07	102.91 77	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
6	55 C a	56 Ba	57 † La	72 Hf	73 Ta	74 W	75 Re	76 Os	Ir	78 Pt	79 A.	80 Ua	81 Tl	82 Pb	83 Bi	84 D o	85 A +	86 D
О	Cs 132.91	137.33	138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	Au 196.97	Hg 200.59	204.38	207.20	208.98	Po (209)	At (210)	Rn (222)
	87	88	89 ‡	104	100.55	106	100.21	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Uuq	Uup	Uuh	Uus	Uuo
	(223)	(226)	(227)	(267)	(268)	(269)	(270)	(269)	(278)	(281)	(281)	(285)	(286)	(289)	(288)	(293)	(294)	(294)
				58	59	60	61	62	63	64	65	66	67	68	69	70	71	
			†	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
				140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97	
			+	90 Th	91 Pa	92 U	93 Nn	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103	
			‡	232.04	231.04	238.03	Np (237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	Lr (262)	
				232.07	431.0T	230.03	(237)	(217)	(213)	(21/)	(217)	(231)	(232)	(237)	(230)	(237)	(202)	1

7. Melting points and boiling points of the elements (at 101.325 kPa)

		-							-									
	-259.2						Melting p	ooint (°C)										
	H																	He
	-252.9		_				Eler	nent										-268.9
	180.5	1287											2077	3500	-210.0	-218.8	-219.7	-248.6
	Li	Ве					Boiling p	oint (°C)					В	С	N	0	F	Ne
	1342	2468											4000	4827	-195.8	-183.0	-188.1	-246.0
Ī	97.79	650.0							_				660.3	1414	44.15	115.2	-101.5	-189.3
	Na	Mg											Al	Si	P	S	Cl	Ar
	882.9	1090											2519	3265	280.5	444.6	-34.04	-185.8
Ī	63.38	842.0	1541	1670	1910	1907	1246	1538	1495	1455	1085	419.5	29.77	938.2	816.8	220.8	-7.050	-157.4
	K	Ca	Sc	Ti	v	Cr	Mm	D.	ο.	NT:	C	7	C-	C-	A	C-	D	17
			50	1 11	, v	CI.	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	758.8	1484	2836	3287	3407	2671	2061	2861	2927	N1 2913	2560	2 n 907.0	Ga 2229	Ge 2833	AS 613.0	Se 684.8	Br 58.78	-153.4
-		1484	2836	3287	3407	2671	2061	2861	2927	2913	2560	907.0	2229	2833	613.0	684.8	58.78	-153.4
-	39.30	1484 768.8	2836 1522	3287 1854	3407 2477	2671 2622	2061 2157	2861 2333	2927 1963	2913 1555	2560 961.8	907.0 321.1	2229 156.6	2833 231.9	613.0 630.6	684.8 449.5		-153.4 -111.8
_	39.30 Rb	1484 768.8 Sr	2836 1522 Y	3287 1854 Zr	3407 2477 Nb	2671 2622 Mo	2061 2157 Tc	2861 2333 Ru	2927 1963 Rh	2913 1555 Pd	2560 961.8 Ag	907.0 321.1 Cd	2229 156.6 In	2833 231.9 Sn	613.0 630.6 Sb	684.8 449.5 Te	58.78 113.7 I	−153.4 −111.8 Xe
-	39.30 Rb 687.8	1484 768.8 Sr 1377	2836 1522 Y 3345	3287 1854 Zr 4406	3407 2477 Nb 4741	2671 2622 Mo 4639	2061 2157 Tc 4262	2861 2333 Ru 4147	2927 1963 Rh 3695	2913 1555 Pd 2963	2560 961.8 Ag 2162	907.0 321.1 Cd 766.8	2229 156.6 In 2027	2833 231.9 Sn 2586	613.0 630.6 Sb 1587	684.8 449.5 Te 987.8	58.78 113.7 I 184.4	-153.4 -111.8 Xe -108.1
-	39.30 Rb 687.8 28.44	1484 768.8 Sr 1377 725.0	2836 1522 Y 3345 920.0	3287 1854 Zr 4406 2233	3407 2477 Nb 4741 3017	2671 2622 Mo 4639 3414	2061 2157 Tc 4262 3453	2861 2333 Ru 4147 3033	2927 1963 Rh 3695 2446	2913 1555 Pd 2963 1768	2560 961.8 Ag 2162 1064	907.0 321.1 Cd 766.8 -38.83	2229 156.6 In 2027 303.8	2833 231.9 Sn 2586 327.5	613.0 630.6 Sb 1587 271.4	684.8 449.5 Te 987.8 253.8	58.78 113.7 I 184.4 301.8	-153.4 -111.8 Xe -108.1 -71.15
-	39.30 Rb 687.8	1484 768.8 Sr 1377	2836 1522 Y 3345	3287 1854 Zr 4406	3407 2477 Nb 4741	2671 2622 Mo 4639	2061 2157 Tc 4262	2861 2333 Ru 4147	2927 1963 Rh 3695	2913 1555 Pd 2963	2560 961.8 Ag 2162 1064 Au	907.0 321.1 Cd 766.8	2229 156.6 In 2027 303.8 Tl	2833 231.9 Sn 2586	613.0 630.6 Sb 1587	684.8 449.5 Te 987.8	58.78 113.7 I 184.4	-153.4 -111.8 Xe -108.1
-	39.30 Rb 687.8 28.44	1484 768.8 Sr 1377 725.0	2836 1522 Y 3345 920.0	3287 1854 Zr 4406 2233	3407 2477 Nb 4741 3017	2671 2622 Mo 4639 3414	2061 2157 Tc 4262 3453	2861 2333 Ru 4147 3033	2927 1963 Rh 3695 2446	2913 1555 Pd 2963 1768	2560 961.8 Ag 2162 1064	907.0 321.1 Cd 766.8 -38.83	2229 156.6 In 2027 303.8	2833 231.9 Sn 2586 327.5	613.0 630.6 Sb 1587 271.4	684.8 449.5 Te 987.8 253.8	58.78 113.7 I 184.4 301.8	-153.4 -111.8 Xe -108.1 -71.15
-	39.30 Rb 687.8 28.44 Cs	1484 768.8 Sr 1377 725.0 Ba	2836 1522 Y 3345 920.0 La	3287 1854 Zr 4406 2233 Hf	3407 2477 Nb 4741 3017 Ta	2671 2622 Mo 4639 3414 W	2061 2157 Tc 4262 3453 Re	2861 2333 Ru 4147 3033 Os	2927 1963 Rh 3695 2446 Ir	2913 1555 Pd 2963 1768 Pt	2560 961.8 Ag 2162 1064 Au	907.0 321.1 Cd 766.8 -38.83 Hg	2229 156.6 In 2027 303.8 Tl	2833 231.9 Sn 2586 327.5 Pb	613.0 630.6 Sb 1587 271.4 Bi	684.8 449.5 Te 987.8 253.8 Po	58.78 113.7 I 184.4 301.8 At	-153.4 -111.8 Xe -108.1 -71.15 Rn

8. First ionization energy, electron affinity and electronegativity of the elements

131 - 73 H 2.2				First ioniz energy (k		Electr	on affinity ((2nd EA /										²³⁷² He
520 -60	900					Element						801 -27	1086 -122	1402	1314 -141 (+753)	1681 -328	2081
Li	Ве											В	С	N	Ò	F	Ne
1.0	1.6				Ele	ctronegativ	vity .					2.0	2.6	3.0	3.4	4.0	
496 – 53	738											578 -42	787 -134	1012 -72	1000 -200 (+545)	1251 -349	1520
Na	Mg											Al	Si	P	Š	Cl	Ar
0.9	1.3											1.6	1.9	2.2	2.6	3.2	
419 -48	590 -2	633 -18	659 -8	651 -51	653 -64	717	762 -15	760 -64	737 -112	745 -119	906	579 -41	762 -119	944 -78	941 -195	1140 -325	1351
K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.8	1.0	1.4	1.5	1.6	1.7	1.6	1.8	1.9	1.9	1.9	1.6	1.8	2.0	2.2	2.6	3.0	
403 - 47	549 -5	600 -30	640 -41	652 -88	684 -72	702 -53	710 -101	720 -110	804 -54	731 -126	868	558 –29	709 -107	831 -101	869 -190	1008 -295	1170
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
0.8	1.0	1.2	1.3	1.6	2.2	2.1	2.2	2.3	2.2	1.9	1.7	1.8	2.0	2.0	2.1	2.7	2.6
376 -46	503 -14	538 -45	659 -1	728 -31	759 -79	756 -14	814 -106	865 -151	864 -205	890 -223	1007	589 -36	716 -35	703 -91	812 -183	-270	1037
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
0.8	0.9	1.1	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2	
393 -47	509 -10	499 -34		•								•	•	•	•		
Fr	Ra	Ac															
0.7	0.9	1.1															

9. Atomic and ionic radii of the elements

32 H						(10-	radius ¹² m)										37 He
130 Li 76 (1+)	99 Be 45 (2+)					Ionic	nent radius ¹² m)					84 B 27 (3+)	75 C 16 (4+)	71 N 146 (3-)	64 0 140 (2-)	60 F 133 (1–)	62 Ne
160 Na 102 (1+)	140 Mg 72 (2+)							1				124 Al 54 (3+)	114 Si 40 (4+)	109 P 38 (5+)	104 S 184 (2-)	100 Cl 181 (1–)	101 Ar
200 K 138 (1+)	174 Ca 100 (2+)	159 Sc 75 (3+)	148 Ti 86 (2+) 61 (4+)	144 V 79 (2+) 54 (5+)	130 Cr 62 (3+) 44 (6+)	129 Mn 83 (2+) 53 (4+)	124 Fe 61 (2+) 55 (3+)	118 Co 65(+2) 55 (+3)	117 Ni 69 (2+)	122 Cu 77 (1+) 73 (2+)	120 Zn 74 (2+)	123 Ga 62(3+)	120 Ge 53 (4+) 272(4-)	120 As 58 (3+) 46 (5+)	118 Se 198 (2-)	117 Br 196 (1–)	116 Kr
215 Rb 152 (1+)	190 Sr 118 (2+)	176 Y 90 (3+)	164 Zr 72 (4+)	156 Nb 72 (3+) 64 (5+)	146 Mo 65 (4+)	138 Tc 65(4+)	136 Ru 68(3+) 62 (4+)	134 Rh 67 (+3) 60 (+4)	130 Pd 86(2+) 62(4+)	136 Ag 115 (1+)	140 Cd 95 (2+)	142 In 80(3+)	140 Sn 118(2+) 69 (4+)	140 Sb 76 (3+)	137 Te 221 (2-)	136 I 220(1-)	136 Xe
238 Cs 167 (1+)	206 Ba 135 (2+)	194 La 103 (3+)	164 Hf 71 (4+)	158 Ta 64 (5+)	150 W 66 (4+) 60(6+)	141 Re 63(4+) 53(7+)	136 Os 63 (4+) 55(6+)	132 Ir 68(+3) 63 (+4)	130 Pt 80(2+) 63(4+)	130 Au 137 (1+) 85 (3+)	132 Hg 119 (1+) 102 (2+)	144 Tl 150 (1+) 89 (3)	145 Pb 119 (2+) 78 (4+)	150 Bi 103 (3+) 76(5+)	142 Po 97(4+)	148 At	146 Rn
242 Fr	211 Ra	201 Ac															

10. Covalent bond lengths

Single bonds $(10^{-12} \text{m} = \text{pm})$

	Br	С	Cl	F	Н	I	N	0	P	S	Si
Br	228	194	214	176	141	247	214		220	227	216
С	194	154	177	138	108	214	147	143	184	182	185
Cl	214	177	199	163	128	232	197	170	203	199	202
F	176	138	163	142	92	257	136	142	154	158	156
Н	141	108	128	92	74	160	101	97	142	134	148
I	247	214	232	257	160	267			247		243
N	214	147	197	136	101		146	136		175	174
0		143	170	142	97		136	148	154	161	163
P	220	184	203	154	142	247		154	221	210	
S	227	182	199	158	134		175	161	210	205	215
Si	216	185	202	156	148	243	174	163		215	232

Multiple bonds (10^{-12} m = pm)

C=C	134	C≡N 116	N≡N	110
C≡C	120	C=0 122	N=O	114
C=C (in benzene)	140	C=S 156	0=0	121
C=N	130	N=N 125	S=S	189

11. Bond enthalpies and average bond enthalpies at 298 $\ensuremath{\mathrm{K}}$

Single bonds (kJ mol^{-1})

	Br	С	Cl	F	Н	I	N	0	P	S	Si
Br	193	285	219	249	366	178		201	264	218	330
С	285	346	324	492	414	228	286	358	264	289	307
Cl	219	324	242	255	431	211	192	206	322	271	400
F	249	492	255	159	567	280	278	191	490	327	597
Н	366	414	431	567	436	298	391	463	322	364	323
I	178	228	211	280	298	151		201	184		234
N		286	192	278	391		158	214			
0	201	358	206	191	463	201	214	144	363		466
P	264	264	322	490	322	184		363	198		
S	218	289	271	327	364					266	293
Si	330	307	400	597	323	234		466		293	226

Multiple bonds (kJ mol^{-1})

C=C	614	C≡N	890	$N \equiv N$	945
C≡C	839	C=O	804	N=O	587
C=C (in benzene)	507	C=S	536	0=0	498
C=N	615	N=N	470	S=S	429

12. Selected compounds—thermodynamic data

Substance	Formula	State	$\Delta H_{\rm f}^{\oplus}$ (kJ mol ⁻¹)	$\Delta G_{\rm f}^{\scriptscriptstyle \oplus} ({ m kJ mol^{-1}})$	$S^{\Theta}(J K^{-1} mol^{-1})$
methane	CH ₄	g	-74.0	-50.0	+186
ethane	C_2H_6	g	-84.0	-32.0	+230
propane	C ₃ H ₈	g	-105	-24.0	+270
butane	C ₄ H ₁₀	g	-126	-17.0	+310
pentane	C ₅ H ₁₂	ì	-173		
hexane	C_6H_{14}	1	-199		
ethene	C_2H_4	g	+52.0	+68.0	+220
propene	C ₃ H ₆	g	+20.0	+62.0	+267
but-1-ene	C ₄ H ₈	g	+0.10	+71.0	+306
<i>cis</i> -but-2-ene	C ₄ H ₈	g	-7.0	+66.0	+301
<i>trans</i> -but-2-ene	C ₄ H ₈	g	-11.0	+63.0	+297
ethyne	C_2H_2	g	+228	+211	+201
propyne	C_3H_4	g	+185	+194	+248
buta-1,3-diene	C ₄ H ₆	g	+110	+151	+279
cyclohexane	C ₆ H ₁₂	ĺ i̇̃	-156	, = = =	, = , ,
benzene	C ₆ H ₆	i	+49.0	+125	+173
methylbenzene	C ₆ H ₅ CH ₃	ì	+12.0	1120	1270
ethylbenzene	C ₆ H ₅ CH ₂ CH ₃	ì	-12.0		
phenylethene	C ₆ H ₅ CHCH ₂	ì	+104		
chloromethane	CH ₃ Cl	g	-82.0	-58.0	+235
dichloromethane	CH ₂ Cl ₂	l	-124	50.0	+178
trichloromethane	CHCl ₃	i	-134	-74.0	+202
bromomethane	CH ₃ Br	g	-36.0	-26.0	+246
iodomethane	CH ₃ I	Ì	-14.0	20.0	+163
chloroethane	C ₂ H ₅ Cl	g	-137	-53.0	1100
bromoethane	C ₂ H ₅ Br	Ì	-90.0	-26.0	+199
chlorobenzene	C ₆ H ₅ Cl	i i	+11.0	20.0	1277
methanol	CH ₃ OH	i	-239	-167	+127
ethanol	C ₂ H ₅ OH	ì	-278	-175	+161
phenol	C ₆ H ₅ OH	S	-165	1,0	+144
methanal	НСНО	g	-109	-102	+219
ethanal	CH ₃ CHO	g	-166	-133	+264
propanone	(CH ₃) ₂ CO	ì	-248		+200
methanoic acid	HCOOH	ì	-425	-361	+129
ethanoic acid	CH ₃ COOH	l i	-484	-390	+160
benzoic acid	C ₆ H ₅ COOH	S	-385		+168
methylamine	CH ₃ NH ₂	g	-23	+32.0	+243
water	H ₂ 0	l	-285.8	-237.1	+70.0
steam	H ₂ 0	g	-241.8	-228.6	+188.8
carbon monoxide	CO	g	-110.5	-137.2	+197.7
carbon dioxide	CO_2	g	-393.5	-394.4	+213.8
hydrogen bromide	HBr	g	-36.3	-53.4	+198.7
hydrogen chloride	HCl	g	-92.3	-95.3	+186.9
hydrogen fluoride	HF	g	-273.3	-275.4	+173.8
hydrogen iodide	HI	g	+26.5	+1.7	+206.6
, 502 104.40	-		0.0	. ±.,,	50.0

13. Enthalpies of combustion

The values of the molar enthalpy of combustion (ΔH_c^{Φ}) in the following table refer to a temperature of 298 K and a pressure of 1.00 \times 10⁵ Pa .

Substance	Formula	State	ΔH_{c}^{Θ} (kJ mol ⁻¹)
hydrogen	H ₂	g	-286
sulfur	S	S	-297
carbon (graphite)	С	S	-394
carbon monoxide	CO	g	-283
methane	CH ₄	g	-891
ethane	C_2H_6	g	-1561
propane	C_3H_8	g	-2219
butane	C_4H_{10}	g	-2878
pentane	C_5H_{12}	l	-3509
hexane	C_6H_{14}	1	-4163
octane	C_8H_{18}	l	-5470
cyclohexane	C_6H_{12}	l	-3920
ethene	C_2H_4	g	-1411
buta-1,3-diene	C_4H_6	g	-2541
ethyne	C_2H_2	g	-1301
benzene	C_6H_6	l	-3268
methylbenzene	$C_6H_5CH_3$	l	-3910
naphthalene	$C_{10}H_{8}$	S	-5156
chloroethane	C ₂ H ₅ Cl	g	-1413
iodoethane	C_2H_5I	l	-1463
trichloromethane	CHCl ₃	l	-473
methanol	CH ₃ OH	l	-726
ethanol	C ₂ H ₅ OH	l	-1367

Substance	Formula	State	ΔH_{c}^{Θ} (kJ mol ⁻¹)
propan-1-ol	C ₃ H ₇ OH	1	-2021
butan-1-ol	C ₄ H ₉ OH	1	-2676
cyclohexanol	C ₆ H ₁₁ OH	S	-3728
phenol	C ₆ H ₅ OH	S	-3053
ethoxyethane	$(C_2H_5)_2O$	l	-2724
methanal	НСНО	g	-571
ethanal	CH ₃ CHO	g	-1167
benzaldehyde	C ₆ H ₅ CHO	l	-3525
propanone	$(CH_3)_2CO$	l	-1790
pentan-3-one	$(C_2H_5)_2CO$	l	-3100
phenylethanone	CH ₃ COC ₆ H ₅	l	-4149
methanoic acid	НСООН	l	-255
ethanoic acid	CH ₃ COOH	l	-874
benzoic acid	C ₆ H ₅ COOH	S	-3228
ethanedioic acid	$(COOH)_2$	S	-243
ethyl ethanoate	$CH_3COOC_2H_5$	l	-2238
ethanamide	CH ₃ CONH ₂	S	-1186
methylamine	CH ₃ NH ₂	g	-1086
phenylamine	$C_6H_5NH_2$	l	-3393
nitrobenzene	$C_6H_5NO_2$	l	-3088
urea	$CO(NH_2)_2$	S	-633
glucose	$C_6H_{12}O_6$	S	-2803
sucrose	$C_{12}H_{22}O_{11}$	S	-5640

14. Common oxidation numbers of the 3d ions

Sc	Ti	v	Cr	Mn	Fe	Со	Ni	Cu	Zn
								+1	
	+2	+2	+2	+2	+2	+2	+2	+2	+2
+3	+3	+3	+3	+3	+3	+3			
	+4	+4		+4					
		+5							
			+6	+6					
				+7					

15. Spectrochemical series

Ligands can be arranged in a spectrochemical series according to the energy difference they produce between the two sets of d-orbitals in an octahedral complex.

$$\rm I^- < Br^- < S^{2-} < Cl^- < F^- < OH^- < H_2O < SCN^- < NH_3 < CN^- \approx CO$$

16. Ligands

17. Colour wheel

18. Lattice enthalpies at 298 K (experimental values)

The lattice enthalpy values $(\Delta H^e_{lattice})$ given relate to the endothermic process $M_a X_b(s) \to a M^{b+}(g) + b X^{a-}(g)$ in which the gaseous ions of a crystal are separated to an infinite distance from each other.

Experimental values

The data in these tables are experimental values obtained by means of a suitable Born–Haber cycle.

Alkali metal halides	$\Delta H_{ m lattice}^{ m e} ({ m kJ mol}^{-1})$								
	F	Cl	Br	I					
Li	1049	864	820	764					
Na	930	790	754	705					
К	829	720	691	650					
Rb	795	695	668	632					
Cs	759	670	647	613					
U.S.	737	070	017	013					

Other substances	ΔH _{lattice} (kJ mol ⁻¹)
CaF ₂	2651
BeCl ₂	3033
${ m MgCl}_2$	2540
CaCl ₂	2271
SrCl ₂	2170
BaCl ₂	2069
MgO	3791
CaO	3401

Other substances	$\Delta H_{\text{lattice}}^{\Theta}$ (kJ mol ⁻¹)
SrO	3223
BaO	3054
CuCl ₂	2824
AgF	974
AgCl	918
AgBr	905
AgI	892

19. Enthalpies of aqueous solutions

Solute	$\Delta H_{\rm sol}^{\rm e}$ (kJ mol ⁻¹)
NH ₄ Cl	+14.78
$\mathrm{NH_4NO_3}$	+25.69
LiF	+4.73
LiCl	-37.03
LiBr	-48.83
LiI	-63.30
NaF	+0.91
NaCl	+3.88
NaBr	-0.60
NaI	-7.53
KF	-17.73

Solute	$\Delta H_{\rm sol}^{\circ}$ (kJ mol ⁻¹)
KCl	+17.22
KBr	+19.87
KI	+20.33
RbF	-26.11
RbCl	+17.28
RbBr	+21.88
RbI	+25.10
CsF	-36.86
CsCl	+17.78
CsBr	+25.98
CsI	+33.35

20. Enthalpies of hydration

Cations	$\Delta H_{\mathrm{hyd}}^{\mathrm{e}} (\mathrm{kJ} \mathrm{mol}^{-1})$
Li ⁺	-538
Na ⁺	-424
K ⁺	-340
Rb ⁺	-315
Cs ⁺	-291
Be ²⁺	-2524
Mg ²⁺	-1963
Ca ²⁺	-1616
Sr ²⁺	-1483
Ba ²⁺	-1346
Ra ²⁺	-1335
Al ³⁺	-4741
Ga ³⁺	-4745
In ³⁺	-4171
Tl ³⁺	-4163
Tl+	-346
Sn ²⁺	-1587
Pb ²⁺	-1523

Anions	$\Delta H_{\mathrm{hyd}}^{\mathrm{e}}$ (kJ mol ⁻¹)
F-	-504
Cl ⁻	-359
Br ⁻	-328
I-	-287
ClO ₃	-331
BrO₃−	-358
IO ₃	-446
ClO ₄	-205
OH-	-519
CN-	-341
NO ₃	-316
HCO ₃	-383
CO ₃ ²⁻	-1486
HSO ₄	-362
SO ₄ ²⁻	-1099
PO ₄ ³⁻	-2921

21. Strengths of organic acids and bases

The acid strengths in the following tables are given in terms of pK_a values, where $pK_a = -log_{10}K_a$.

The dissociation constant K_a values are for aqueous solutions at 298 K . Base strengths are given in terms of pK_b values

Carboxylic acids

Name	Formula	pK _a
methanoic	НСООН	3.75
ethanoic	CH ₃ COOH	4.76
propanoic	CH ₃ CH ₂ COOH	4.87
butanoic	CH ₃ (CH ₂) ₂ COOH	4.83
2-methylpropanoic	(CH ₃) ₂ CHCOOH	4.84
pentanoic	CH ₃ (CH ₂) ₃ COOH	4.83
2,2-dimethylpropanoic	(CH ₃) ₃ CCOOH	5.03
benzoic	C ₆ H ₅ COOH	4.20
phenylethanoic	C ₆ H ₅ CH ₂ COOH	4.31

Halogenated carboxylic acids

Name	Formula	pK _a
chloroethanoic	CH ₂ ClCOOH	2.87
dichloroethanoic	CHCl ₂ COOH	1.35
trichloroethanoic	CCl₃COOH	0.66
fluoroethanoic	CH ₂ FCOOH	2.59
bromoethanoic	CH ₂ BrCOOH	2.90
iodoethanoic	CH ₂ ICOOH	3.18

Phenols

Name	Formula	pK _a
phenol	C ₆ H ₅ OH	9.99
2-nitrophenol	O ₂ NC ₆ H ₄ OH	7.23
3-nitrophenol	O ₂ NC ₆ H ₄ OH	8.36
4-nitrophenol	O ₂ NC ₆ H ₄ OH	7.15
2,4-dinitrophenol	$(O_2N)_2C_6H_3OH$	4.07
2,4,6-trinitrophenol	$(O_2N)_3C_6H_2OH$	0.42

Alcohols

Name	Formula	pK _a
methanol	CH ₃ OH	15.5
ethanol	C ₂ H ₅ OH	15.5

Amines

Name	Formula	pK _b
ammonia	NH ₃	4.75
methylamine	CH ₃ NH ₂	3.34
ethylamine	CH ₃ CH ₂ NH ₂	3.35
dimethylamine	(CH ₃) ₂ NH	3.27
trimethylamine	$(CH_3)_3N$	4.20
diethylamine	$(C_2H_5)_2NH$	3.16
triethylamine	$(C_2H_5)_3N$	3.25
phenylamine	C ₆ H ₅ NH ₂	9.13

22. Acid-base indicators

		Colou	r change	
Indicator	pK _a	pH range	Acid	Alkali
methyl orange	3.7	3.1-4.4	red	yellow
bromophenol blue	4.2	3.0-4.6	yellow	blue
bromocresol green	4.7	3.8-5.4	yellow	blue
methyl red	5.1	4.4-6.2	red	yellow
bromothymol blue	7.0	6.0-7.6	yellow	blue
phenol red	7.9	6.8-8.4	yellow	red
phenolphthalein	9.6	8.3-10.0	colourless	pink

23. Values of the ionization constant of water

Temperature (°C)	K _w value
0	0.113×10^{-14}
5	0.185×10^{-14}
10	0.292×10^{-14}
15	0.453×10^{-14}
20	0.684×10^{-14}
25	1.00×10^{-14}
30	1.47×10^{-14}
35	2.09×10^{-14}
40	2.92×10^{-14}
45	4.02×10^{-14}
50	5.43×10^{-14}
55	7.24×10^{-14}
60	9.55×10^{-14}
65	12.4×10^{-14}
70	15.9×10^{-14}
75	20.1×10^{-14}
80	25.2×10^{-14}
85	31.3×10^{-14}
90	38.3×10^{-14}
95	46.6×10^{-14}
100	56.0×10^{-14}

24. Standard electrode potentials at 298 K

Oxidized species		Reduced species	$E^{\Theta}(\mathbf{V})$
Li ⁺ (aq) + e ⁻		Li(s)	-3.04
$K^+(aq) + e^-$		K(s)	-2.93
$Ca^{2+}(aq) + 2e^{-}$		Ca(s)	-2.87
$Na^+(aq) + e^-$		Na(s)	-2.71
$Mg^{2+}(aq) + 2e^{-}$		Mg(s)	-2.37
$Al^{3+}(aq) + 3e^{-}$		Al(s)	-1.66
$Mn^{2+}(aq) + 2e^{-}$		Mn(s)	-1.18
$H_2O(l) + e^-$		$\frac{1}{2}$ H ₂ (g) + OH ⁻ (aq)	-0.83
$Zn^{2+}(aq) + 2e^{-}$		Zn(s)	-0.76
$Fe^{2+}(aq) + 2e^{-}$		Fe(s)	-0.45
$Ni^{2+}(aq) + 2e^{-}$		Ni(s)	-0.26
$Sn^{2+}(aq) + 2e^{-}$		Sn(s)	-0.14
$Pb^{2+}(aq) + 2e^{-}$		Pb(s)	-0.13
H ⁺ (aq) + e ⁻		$\frac{1}{2}H_2(g)$	0.00

Oxidized species	-	Reduced species	$E^{\Theta}(\mathbf{V})$
$Cu^{2+}(aq) + e^{-}$		Cu ⁺ (aq)	+0.15
$SO_4^{2-}(aq) + 4H^+(aq) + 2e^-$		$\mathrm{H_2SO_3(aq)} + \mathrm{H_2O(l)}$	+0.17
$Cu^{2+}(aq) + 2e^{-}$		Cu(s)	+0.34
$\frac{1}{2}O_2(g) + H_2O(l) + 2e^-$		20H ⁻ (aq)	+0.40
Cu ⁺ (aq) + e ⁻		Cu(s)	+0.52
$\frac{1}{2}I_2(s) + e^-$		I ⁻ (aq)	+0.54
$Fe^{3+}(aq) + e^{-}$		Fe ²⁺ (aq)	+0.77
$Ag^{+}(aq) + e^{-}$		Ag(s)	+0.80
$\frac{1}{2}\mathrm{Br}_2(\mathrm{l}) + \mathrm{e}^-$		Br ⁻ (aq)	+1.09
$\frac{1}{2}O_2(g) + 2H_2(aq) + 2e^-$		H ₂ O(l)	+1.23
$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^-$		$2Cr^{3+}(aq) + 7H_2O(l)$	+1.36
$\frac{1}{2}\operatorname{Cl}_{2}(g) + e^{-}$		Cl ⁻ (aq)	+1.36
$MnO_4^-(aq) + 8H^+(aq) + 5e^-$		$Mn^{2+} + 4H_2O(l)$	+1.51
$\frac{1}{2}F_2(g) + e^-$	-	F ⁻ (aq)	+2.87

25. Activity series

Increasing	
activity	
†	Li
	Cs
	Rb
	K
	Ва
	Sr
	Ca
	Na
	Mg
	Be
	Al
	111
	С
	G
	Zn
	Cr
	Fe
	Cd
	Co
	Ni
	Sn
	Pb
	**
	Н
	Cl-
	Sb
	As
	Bi
	Cu
	Ag
	Pd
	Hg
	Pt
I	Au

26. Infrared data

Characteristic ranges for infrared absorption due to stretching vibrations in organic molecules.

Bond	Organic molecules	Wavenumber (cm ⁻¹)	Intensity
C-I	iodoalkanes	490-620	strong
C-Br	bromoalkanes	500-600	strong
C-Cl	chloroalkanes	600-800	strong
C-F	fluoroalkanes	1000-1400	strong
C-O	alcohols, esters, ethers	1050-1410	strong
C=C	alkenes	1620-1680	medium-weak; multiple bands
C=0	aldehydes, ketones, carboxylic acids and esters	1700-1750	strong
C≡C	alkynes	2100-2260	variable
0-Н	hydrogen bonding in carboxylic acids	2500-3000	strong, very broad
С-Н	alkanes, alkenes, arenes	2850-3090	strong
0-Н	hydrogen bonding in alcohols and phenols	3200-3600	strong, broad
N-H	primary amines	3300–3500	medium, two bands

27. ¹H NMR data

Typical proton chemical shift values (\delta) relative to tetramethylsilane (TMS) $=\,0$.

R represents an alkyl group, and Hal represents F, Cl, Br, or I.

These values may vary in different solvents and conditions.

Type of proton	Chemical shift (ppm)
—CH ₃	0.9–1.0
—C H ₂ -R	1.3-1.4
—R ₂ CH	1.5
O RO∕ ^Ů `C H ₂—	2.0-2.5
O R CH ₂ —	2.2-2.7
—————————————————————————————————————	2.5–3.5
—C≡C− H	1.8-3.1
—C H ₂ -Hal	3.5-4.4
R-O-C H ₂ -	3.3-3.7
O R O – C H ₂ –	3.7-4.8
O R / C O – H	9.0-13.0
R-O- H	1.0-6.0
—HC=C H ₂	4.5-6.0

Type of proton	Chemical shift (ppm)
————ОН	4.0–12.0
————	6.9–9.0
O R ~ H	9.4–10.0

28. Mass spectral fragments lost

Mass lost	Fragment lost	
15	CH ₃	
17	ОН	
18	H ₂ O	
28	$CH_2=CH_2$, $C=0$	
29	CH ₃ CH ₂ , CHO	
31	CH ₃ O	
45	СООН	

29. Triangular bonding diagram

30. Resin identification codes

Resin Identification Code (RIC)	Plastic types
PETE	polyethylene terephthalate
2 HDPE	high-density polyethylene
A PVC	polyvinyl chloride
LDPE	low-density polyethylene

Resin Identification Code (RIC)	Plastic types
	polypropylene
6 PS	polystyrene
OTHER	other

31. Representations of some materials molecules

polychlorinated biphenyls

1,4-dioxin

Cl_n

polychlorinated dibenzofuran

2,3,7,8-tetrachlorodibenzodioxin

polychlorinated dibenzo-p-dioxin

32. Solubility product constants at 298 $\mbox{\scriptsize K}$

Compound	K _{sp}	
BaCO ₃	2.58×10^{-9}	
Ba(0H) ₂ · 8H ₂ 0	2.55×10^{-4}	
BaSO ₄	1.08×10^{-10}	
CdCO ₃	1.0×10^{-12}	
Cd(OH) ₂	7.2×10^{-15}	
PbCO ₃	7.40×10^{-14}	
Pb(OH) ₂	1.43×10^{-20}	
PbSO ₄	2.53×10^{-8}	
Hg ₂ CO ₃	3.6×10^{-17}	
Hg ₂ SO ₄	6.5×10^{-7}	
NiCO ₃	1.42×10^{-7}	
Ni(OH) ₂	5.48×10^{-16}	
Ag ₂ CO ₃	8.46×10^{-12}	
Ag ₂ SO ₄	1.20×10^{-5}	
ZnCO ₃	1.46×10^{-10}	
Zn(OH) ₂	3.0×10^{-17}	

33. 2-amino acids

Common name	Symbol	Structural formula	pH of isoelectric point
alanine	Ala	H₂N−CH−COOH CH₃	6.0
arginine	Arg	H ₂ N—CH—COOH CH ₂ -CH ₂ -CH ₂ -NH—C—NH ₂ NH	10.8
asparagine	Asn	H ₂ N-CH-COOH CH ₂ -C-NH ₂	5.4
aspartic acid	Asp	H ₂ N-CH-COOH CH ₂ -COOH	2.8
cysteine	Cys	H ₂ N-CH-COOH CH ₂ -SH	5.1
glutamic acid	Glu	H ₂ N-CH-COOH CH ₂ -CH ₂ -COOH	3.2
glutamine	Gln	H₂N−CH−COOH CH₂-CH₂-C−NH₂ Ö	5.7
glycine	Gly	H ₂ N—CH ₂ -COOH	6.0
histidine	His	H ₂ N-CH-COOH CH ₂ N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	7.6
isoleucine	Ile	H ₂ N-CH-COOH H ₃ C-CH-CH ₂ -CH ₃	6.0
leucine	Leu	H ₂ N-CH-COOH CH ₂ H ₃ C-CH-CH ₃	6.0

Common name	Symbol	Structural formula	pH of isoelectric point
lysine	Lys	H ₂ N-CH-COOH CH ₂ -CH ₂ -CH ₂ -CH ₂ -NH ₂	9.7
methionine	Met	H ₂ N-CH-COOH CH ₂ -CH ₂ -S-CH ₃	5.7
phenylalanine	Phe	H ₂ N-CH-COOH CH ₂	5.5
proline	Pro	COOH	6.3
serine	Ser	H ₂ N—CH—COOH CH ₂ -OH	5.7
threonine	Thr	H ₂ N—CH—COOH H ₃ C—CH—OH	5.6
tryptophan	Trp	H ₂ N-CH-COOH CH ₂	5.9
tyrosine	Tyr	H ₂ N-CH-COOH CH ₂ OH	5.7
valine	Val	H ₂ N-CH-COOH H ₃ C-CH-CH ₃	6.0

34. Lipids, carbohydrates and nucleotide components

Lipids

Octanoic acid ${\rm CH_3(CH_2)_6C00H}$ Lauric acid ${\rm CH_3(CH_2)_{10}C00H}$ Palmitic acid ${\rm CH_3(CH_2)_{14}C00H}$ Stearic acid ${\rm CH_3(CH_2)_{16}C00H}$

Oleic acid $CH_3(CH_2)_7CH=CH(CH_2)_7COOH$

α-Linolenic acid $CH_3CH_2(CH=CHCH_2)_3(CH_2)_6COOH$

cholesterol

Carbohydrates

Nitrogenous bases

adenine

guanine

$$\begin{array}{c} NH_2 \\ N = \overset{\overset{}{C}}{\stackrel{}{C}} CH \\ O = \overset{\overset{}{C}}{\stackrel{}{C}} N = \overset{\overset{}{C}}{\stackrel{}{H}} \end{array}$$

cytosine

uracil

thymine

35. Vitamins and pigments

Vitamins

$$\begin{array}{c|c} CH_3 & CH_2 & CH_2 & CH_2 & CH_3 \\ CH_3 & CH_3 & CH_3 \\ CH_2 & CH_2 \\ HO & vitamin D (D3) \end{array}$$

Pigments

chlorophyll

heme B

quinoidal base (blue)

flavylium cation (red)

 $\alpha\text{-carotene}$

β-carotene

11-cis-retinal all-trans-retinal

36. Binding energy curve

37. Representations of some medicinal molecules

aspirin

penicillin (general structure)

ibuprofen

paracetamol (acetaminophen)

morphine

$$H_3C-N$$
 CH_2
 CH_2
 O
 CH_3

codeine

$$\begin{array}{c|c} CH_3-N & CH_2-CH_2 & C & CH_3 \\ \hline \\ CH_3-N & CH_2-CH_2 & C & CH_3 \\ \hline \\ CH_3-N & CH_3 & CH_3 \\ \hline \\ CH_3-N & CH_3-N & CH_3-N \\ \hline \\ CH_3-N$$

diamorphine (heroin)

$$CH_3 \xrightarrow{O} \begin{array}{c} NH & O \\ N & CH_3 \\ CH_3 & O-CH_3 \end{array}$$

ome prazole

ranitidine

$$\begin{array}{c} OH \\ OH \\ CH_3 \\ CH_3 \\ CH_3 \\ \end{array}$$

taxol

38. References

Data in sections 9, 10, 11, 12, 13, 22, 26 and 27 was taken fully or in part from:

Aylward, G and Findlay, T. 2008. SI chemical data. (5th edition). Queensland, Australia. John Wiley & Sons.

Data in section 20 reproduced by permission of The Royal Society of Chemistry.

Barret, J. 2003. *Inorganic chemistry in aqueous solution*. London, UK. Royal Society of Chemistry.

Data in section 13 was taken in part from:

Burgess, DR. 2012. "Thermochemical Data". *NIST Chemistry WebBook, NIST Standard Reference Database.* Number 69. http://webbook.nist.gov.

Data in sections 7, 8, 9, 12, 13, 18, 19, 21, 23, 24, 28, 32, 33 was taken fully or in part from:

Haynes, WM, (ed). 2012. CRC Handbook of chemistry and physics. (93rd edition). Boca Raton, US. CRC Press.

Data in section 29 can be found in the following source:

Leach, MR. 2013. *Timeline of structural theory*. 04 January 2013. http://www.meta-synthesis.com/webbook/30_timeline/timeline.html.