Chapter 5 - Financial Forwards and Futures

Tyler J. Brough

February 11, 2017

Section 5.1 Alternative Ways to Buy a Stock

Introduction

- ► Financial futures and forwards
 - ► On stocks and indexes
 - On currencies
 - ► On interest rates
- ► How are they used?
- ► How are they priced?
- ► How are they hedged?

Alternative Ways to Buy a Stock

- ► Four different payment and receipt timing combinations
 - ► Outright purchase: ordinary transaction
 - ► Fully leveraged purchase: investor borrows the full amount
 - Prepaid forward contract: pay today, receive the share later
 - ► Forward contract: agree on price now, pay/receive later
- ► Payments, receipts, and their timing

TABLE	ГΙ	
IADLE	3. I	

Four different ways to buy a share of stock that has price S_0 at time 0. At time 0 you agree to a price, which is paid either today or at time T. The shares are received either at 0 or T. The interest rate is r.

Description	Pay at Time	Receive Security at Time	Payment
Outright purchase	0	0	S_0 at time 0
Fully leveraged purchase	T	0	$S_0 e^{rT}$ at time T
Prepaid forward contract	0	T	?
Forward contract	T	T	$? \times e^{rT}$

Pricing Prepaid Forwards

▶ If we can price the *prepaid* forward (F^P) , then we can calculate the price for a forward contract

$$F =$$
Future Value of F^P

- ► Three possible methods to price prepaid forwards
 - ► Pricing by analogy
 - Pricing by discounted cash flows
 - ► Pricing by arbitrage
- ▶ For now, assume that there are no dividends

- Pricing by analogy
 - ▶ In the absence of dividends, the timing of delivery is irrelevant
 - Price of the prepaid forward contract same as current stock price
 - ► $F^P = S_0$ (where the asset is bought at t = 0, delivered at t = T)
- ▶ Pricing by discounted present value (α : risk-adjusted discount rate)
 - ▶ If expected t = T stock price at t = 0 is $E_0(S_T)$, then $F^P = E_0(S_T)e^{-\alpha T}$
 - ► Since t = 0 expected value of price at t = T is $E_0(S_T) = S_0 e^{\alpha T}$
 - ► Combining the two, $F_{0,T}^P = S_0 e^{\alpha T} = S_0$

- ► Pricing by arbitrage
 - Arbitrage: a situation in which one can generate positive cash flow by simultaneously buying and selling related assets, with no net investment and with no risk. Free money!
 - ▶ If at time t=0, the prepaid forward price somehow exceeded the stock price, i.e., $F_{0,T}^P > S_0$, an arbitrageur could do the following

TABL			to undertake arbitrage who T , exceeds the stock price,
		Cash Flows	
	Transaction	Time 0	Time T (expiration)
	Buy stock @ S ₀	· S ₀	$+S_T$
	Sell prepaid forward	$F_{0,T}^{P}$	$-S_T$
	Total	$F_{0,T}^{P} - S_{0}$	0

► The price mechanism will ensure that these sort of arbitrage opportunities cannot persist, at equilibrium we can expect: $F_{0,T}^P = S_0$

- ▶ What if there are dividends? Is $F_{0.T}^P = S_0$ still valid?
 - ▶ No, because the holder of the forward will not receive dividends that will be paid to the holder of the stock, $F_{0.T}^P > S_0$
 - $F_{0,T}^P = S_0$ PV(all dividends paid from t = 0 to t = T)
- ▶ For discrete dividends D_{t_i} at times t_i , i = 1, ..., n
 - ▶ The prepaid forward price: $F_{0,T}^P = S_0 \sum_{i=1}^n PV_0(D_{t_i})$
 - For continuous dividends with an annualized yield δ , the prepaid forward price is $F_{0,T}^P = S_0 e^{-\delta T}$

- ► Example 5.1
 - ► XYZ stock costs \$100 today and is expected to pay a quarterly dividend of \$1.25. If the risk-free rate is 10% compounded continuously, how much does a 1-year prepaid forward cost?
 - $F_{0,1}^P = \$100 \sum_{i=1}^{4} \$1.25e^{-0.025i} = \$95.30$

- ► Example 5.2
 - ► The index is \$125 and the dividend yield is 3% continously compounded. How much does a 1-year prepaid forward cost?
 - $F_{0.1}^P = $125e^{-0.03} = 121.31

Section 5.3 Forward Contracts on Stock

Pricing Forwards on Stock

- ► Forward price is the future value of the *prepaid* forward price
 - No dividends
 - $ightharpoonup F_{0,T} = FV(F_{0,T}^P) = FV(S_0) = S_0 e^{rT}$
 - ► Continuous dividends

$$F_{0,T} = S_0 e^{(r-\delta)T}$$

Pricing Forwards on Stock (cont'd)

- ► Forward premium
 - ► The difference between current forward price and stock price
 - ► Can be used to infer the current stock price from forward price
 - ► Definition:
 - ▶ Forward premium: $F_{0.T}/S_0$
 - ► Annualized forward premium = $(1/T) \ln (F_{0,T}/S_0)$

Creating a Synthetic Forward

- ► One can offset the risk of a forward by creating a *synthetic* forward to offset a position in the actual forward contract
- ▶ How can one do this? (assume continuous dividends at rate δ)
 - ▶ Recall the long forward payoff at expiration = $S_T F_{0,T}$
 - ► Borrow and purchase shares as follows

TABLE 5.3		Demonstration that borrowing $S_0e^{-\delta T}$ to buy $e^{-\delta T}$ shares of the index replicates the payoff to a forward contract, $S_T-F_{0,T}$.			
		Cash Flows			
Transac	tion	Time 0	Time T (expiration)		
Buy $e^{-\delta}$	T units of the index	$-S_0e^{-\delta T}$	$+ S_T$		
Borrow	$S_0e^{-\delta T}$	$-S_0e^{-\delta T}$ $+S_0e^{-\delta T}$	$\frac{-S_0 e^{(r-\delta)T}}{S_T - S_0 e^{(r-\delta)T}}$		
Total		0	$S_T - S_0 e^{(r-\delta)T}$		

 Note that the total payoff at expiration is same as forward premium

Creating a Synthetic Forward (cont'd)

- ► The idea of creating synthetic forward leads to following
 - ► Forward = Stock zero-coupon bond
 - ▶ Stock = Forward zero-coupon bond
 - ▶ Zero-coupon bond = Stock forward
- Cash-and-Carry arbitrage: Buy the index, short the forward

TABLE 5.6	Transactions and cash flows for a cash-and-carry: A market- maker is short a forward contract and long a synthetic forward contract.		
		Cash Flows	
Transaction		Time 0	Time T (expiration)
Buy tailed position	in stock, paying $S_0e^{-\delta T}$	$-S_0e^{-\delta T}$	$+S_T$
Borrow $S_0e^{-\delta T}$		$-S_0e^{-\delta T}$ $+S_0e^{-\delta T}$	$-S_0e^{(r-\delta)T}$
Short forward		0	$F_{0,T} - S_T$
Total		0	$F_{0,T} - S_0 e^{(r-\delta)T}$

Creating a Synthetic Forward (cont'd)

- ► Cash-and-carry arbitrage with transaction costs
 - ► Trading fees, bid-ask spreads, different borrowing/lending rates, the price effect of trading in large quantities, make arbitrage harder
 - Suppose
 - ▶ Bid-ask spreads: for stock $S^b < S^a$, and for forward $F^b < F^a$
 - ► Cost *k* of transacting forward
 - ▶ Interest rate for borrowing and lending are $r^b < r^l$
 - ▶ No dividends and no time *T* transaction costs for simplicity
 - ► Arbitrage possible if
 - $F^b > F^+ = (S_0^a + 2k)e^{r^bT}$
 - $F^a < F^- = (S_0^b 2k)e^{r^l T}$

Other Issues in Forward Pricing

- ▶ Does the forward price predict the future price?
 - According to the formula $F_{0,T} = S_0 e^{-(r-\delta)T}$ the forward price conveys no additional information beyond what S_0 , r, and δ provides
 - ► Moreover, the forward price underestimates the future stock price
- ► Forward pricing formula and cost of carry

Forward Price = Spot Price+Interest to carry the asset – asset lease rate

Cost of carry, $(r-\delta)S$

Section 5.4 Futures Contracts

Futures Contracts

- ► Exchange-traded "forward contracts"
- Typically features of futures contracts
 - ► Standardized, with specified delivery dates, locations, procedures
 - A clearinghouse
 - ► Matches buy and sell orders
 - ► Keeps track of members' obligations and payments
 - ► After matching the trades, becomes counterparty
- ► Differences from forward contracts
 - lackbox Settled daily through the mark-to-market process ightarrow low credit risk
 - lacktriangle Highly liquid ightarrow easier to offset an existing position
 - lacktriangle Highly standardized structure ightarrow harder to customize