Lecture 4: Rejection Sampling and Sampling from Compositions, Conditionals, Marginals

Deniz Akyildiz

MATH60047/70047 - Stochastic Simulation

October 18, 2022

Imperial College London

Rejection sampling The algorithm

The rejection sampler:

2

The algorithm

The rejection sampler:

$$ightharpoonup X' \sim q(x)$$
,

The algorithm

The rejection sampler:

- $ightharpoonup X' \sim q(x)$,
- ightharpoonup Accept the sample X' with probability

$$a(X') = \frac{p(X')}{Mq(X')}$$

We have

$$\hat{a} = \mathbb{E}[a(X')] = \int a(x')q(x')dx'$$

$$= \int \frac{p(x')}{Mq(x')}q(x')dx'$$

$$= \frac{1}{M} \int p(x')dx'$$

$$= \frac{1}{M}.$$

3

For the unnormalised case:

$$\hat{a} = \mathbb{E}[a(X')] = \int a(x')q(x')dx'$$

$$= \int \frac{\bar{p}(x')}{Mq(x')}q(x')dx'$$

$$= \int Z \frac{p(x')}{Mq(x')}q(x')dx'$$

$$= \frac{Z}{M} \int p(x')dx'$$

$$= \frac{Z}{M}.$$

Example: Optimising rejection sampling

Assume that we would like to sample from

$$X \sim \Gamma(\alpha, 1),$$

for $\alpha > 1$. The density is given by

$$p(x) = \frac{x^{\alpha - 1}e^{-x}}{\Gamma(\alpha)}, \quad \text{for } x > 0,$$

where $\Gamma(\alpha)$ is the Gamma function. $\Gamma(n)=(n-1)!$

Example: Optimising rejection sampling

Choose as a proposal:

$$q_{\lambda}(x) = \operatorname{Exp}(x; \lambda) = \lambda e^{-\lambda x}, \quad x > 0,$$

with $0 < \lambda < 1$.

Example: Optimising rejection sampling

Choose as a *proposal*:

$$q_{\lambda}(x) = \operatorname{Exp}(x; \lambda) = \lambda e^{-\lambda x}, \quad x > 0,$$

with $0 < \lambda < 1$. How do we ensure that $p(x) \leq Mq(x)$?

Example: Optimising rejection sampling

Choose as a proposal:

$$q_{\lambda}(x) = \operatorname{Exp}(x; \lambda) = \lambda e^{-\lambda x}, \quad x > 0,$$

with $0 < \lambda < 1$. How do we ensure that $p(x) \leq Mq(x)$? Choose

$$M_{\lambda} = \sup_{x} \frac{p(x)}{q_{\lambda}(x)}.$$

Find M_{λ} for fixed λ first:

$$\frac{p(x)}{q_{\lambda}(x)} = \frac{x^{\alpha - 1}e^{(\lambda - 1)x}}{\lambda\Gamma(\alpha)}.$$

Example: Optimising rejection sampling

Choose as a *proposal*:

$$q_{\lambda}(x) = \operatorname{Exp}(x; \lambda) = \lambda e^{-\lambda x}, \quad x > 0,$$

with $0 < \lambda < 1$. How do we ensure that $p(x) \leq Mq(x)$? Choose

$$M_{\lambda} = \sup_{x} \frac{p(x)}{q_{\lambda}(x)}.$$

Find M_{λ} for fixed λ first:

$$\frac{p(x)}{q_{\lambda}(x)} = \frac{x^{\alpha - 1}e^{(\lambda - 1)x}}{\lambda\Gamma(\alpha)}.$$

Maximise this w.r.t. x?

Example: Optimising rejection sampling

How to compute a maximum? It is useful to take \log :

$$\arg\max_x f(x) = \arg\max_x \log f(x).$$

Take the \log of

$$\frac{p(x)}{q_{\lambda}(x)} = \frac{x^{\alpha - 1}e^{(\lambda - 1)x}}{\lambda\Gamma(\alpha)}.$$

So we want to optimise

$$G(x) = \log \frac{p(x)}{q_{\lambda}(x)} = (\alpha - 1)\log x + (\lambda - 1)x - \log \lambda \Gamma(\alpha).$$

Set
$$\frac{\mathrm{d}G(x)}{\mathrm{d}x} = 0$$
.

7

Example: Optimising rejection sampling

The derivative

$$\frac{\mathrm{d}G(x)}{\mathrm{d}x} = \frac{\alpha - 1}{x} + (\lambda - 1) = 0$$

which implies

$$x^* = \frac{\alpha - 1}{1 - \lambda}.$$

Example: Optimising rejection sampling

The derivative

$$\frac{\mathrm{d}G(x)}{\mathrm{d}x} = \frac{\alpha - 1}{x} + (\lambda - 1) = 0$$

which implies

$$x^{\star} = \frac{\alpha - 1}{1 - \lambda}.$$

How do we understand if this is a maximum?

Example: Optimising rejection sampling

The derivative

$$\frac{\mathrm{d}G(x)}{\mathrm{d}x} = \frac{\alpha - 1}{x} + (\lambda - 1) = 0$$

which implies

$$x^* = \frac{\alpha - 1}{1 - \lambda}.$$

How do we understand if this is a maximum? Compute

$$\frac{\mathrm{d}G^2(x)}{\mathrm{d}^2x} = -\frac{\alpha - 1}{x^2},$$

plug x^* into this

$$\frac{\mathrm{d}^2 G(x^*)}{\mathrm{d}x^2} = -\frac{(\alpha - 1)(1 - \lambda)^2}{(\alpha - 1)^2} < 0,$$

as $\alpha > 1$ and $0 < \lambda < 1$.

Example: Optimising rejection sampling

Therefore,

$$M_{\lambda} = \frac{p(x^{*})}{q_{\lambda}(x^{*})},$$

$$= \frac{x^{*\alpha-1}e^{(\lambda-1)x^{*}}}{\lambda\Gamma(\alpha)},$$

$$= \frac{\left(\frac{\alpha-1}{1-\lambda}\right)^{\alpha-1}e^{(\lambda-1)\frac{\alpha-1}{1-\lambda}}}{\lambda\Gamma(\alpha)}$$

$$= \frac{\left(\frac{\alpha-1}{1-\lambda}\right)^{\alpha-1}e^{-(\alpha-1)}}{\lambda\Gamma(\alpha)}.$$

Example: Optimising rejection sampling

Recall that, we are interested in the acceptance probability (or maximising it)

$$\frac{p(x)}{M_{\lambda}q_{\lambda}(x)} = \left(\frac{x(1-\lambda)}{\alpha-1}\right)^{\alpha-1} e^{(\lambda-1)x+\alpha-1}.$$

Now, the task is to minimise M_λ w.r.t. λ so we get the *optimal* proposal ($\hat{a}=1/M_\lambda$ would be maximised).

Example: Optimising rejection sampling

Recall

$$M_{\lambda} = \frac{\left(\frac{\alpha - 1}{1 - \lambda}\right)^{\alpha - 1} e^{-(\alpha - 1)}}{\lambda \Gamma(\alpha)}.$$

Compute \log

$$\log M_{\lambda} = (\alpha - 1)\log(\alpha - 1) - (\alpha - 1)\log(1 - \lambda) - (\alpha - 1) - \log \lambda - \log \Gamma(\alpha).$$

Example: Optimising rejection sampling

Take the derivative

$$\frac{\mathrm{d}\log M_{\lambda}}{\mathrm{d}\lambda} = \frac{\alpha - 1}{1 - \lambda} - \frac{1}{\lambda} = 0,$$

Example: Optimising rejection sampling

Take the derivative

$$\frac{\mathrm{d}\log M_{\lambda}}{\mathrm{d}\lambda} = \frac{\alpha - 1}{1 - \lambda} - \frac{1}{\lambda} = 0,$$

which implies

$$\lambda \alpha - \lambda = 1 - \lambda,$$

Example: Optimising rejection sampling

Take the derivative

$$\frac{\mathrm{d}\log M_{\lambda}}{\mathrm{d}\lambda} = \frac{\alpha - 1}{1 - \lambda} - \frac{1}{\lambda} = 0,$$

which implies

$$\lambda \alpha - \lambda = 1 - \lambda,$$

therefore

$$\lambda^{\star} = \frac{1}{\alpha}.$$

Example: Optimising rejection sampling

Take the derivative

$$\frac{\mathrm{d}\log M_{\lambda}}{\mathrm{d}\lambda} = \frac{\alpha - 1}{1 - \lambda} - \frac{1}{\lambda} = 0,$$

which implies

$$\lambda \alpha - \lambda = 1 - \lambda,$$

therefore

$$\lambda^* = \frac{1}{\alpha}$$
.

Finally we get the optimal M by computing

$$M_{\lambda^*} = \frac{\alpha^{\alpha} e^{-(\alpha - 1)}}{\Gamma(\alpha)}.$$

Example: Optimising rejection sampling

In order to sample from $\Gamma(\alpha,1)$, we perform

- $\blacktriangleright \ \mbox{Sample} \ X' \sim \mbox{Exp}(1/\alpha) \ \mbox{and} \ U \sim \mbox{Unif}(0,1)$
- ▶ If

$$U \le (x/\alpha)^{\alpha - 1} e^{(1/\alpha - 1)x + \alpha - 1},$$

accept X', otherwise start again.

Example: Optimising rejection sampling

Example: Rejection sampling

Sample Gaussian using Cauchy

Let

$$\bar{p}(x) = e^{-x^2/2}$$
 $q(x) = \frac{1}{\pi} \frac{1}{1+x^2}.$

Compute

$$M = \sup_{x} \frac{\bar{p}(x)}{q(x)}.$$

Example: Rejection sampling

Sample Gaussian using Cauchy

Compute

$$\log \bar{p}(x)/q(x) = -\frac{x^2}{2} + \log(1+x^2) + \log(1/\pi)$$

Find the roots.

Sample Gaussian using Cauchy

Compute

$$\log \bar{p}(x)/q(x) = -\frac{x^2}{2} + \log(1+x^2) + \log(1/\pi)$$

Find the roots. Taking the derivative

$$\frac{\mathrm{d}}{\mathrm{d}x}\log\bar{p}(x)/q(x) = -x + \frac{2x}{1+x^2} = 0$$
$$x = 0, \pm 1.$$

Which one is the maximum?

Example: Rejection sampling

Sample Gaussian using Cauchy

Compute the second derivative

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}\log\bar{p}(x)/q(x) = -1 + \frac{2(1-x^2)}{(1+x^2)^2} = 0$$

- When x = 0, the second derivative is positive which means x = 0 is a minimum.
- When $x=\pm 1$, the second derivative is negative which means $x=\pm 1$ is a maximum.
- $x^* = \pm 1.$

So we have

$$M = \frac{\bar{p}(1)}{q(1)} = 2\pi e^{-1/2}.$$

- Given a p(x) (or unnormalised $\bar{p}(x)$, how to draw independent samples
 - Inversion
 - ► Transformation
 - Rejection

Before we see more of *sampling* methods, we will see how we can use them by

- Given a p(x) (or unnormalised $\bar{p}(x)$, how to draw independent samples
 - Inversion
 - Transformation
 - Rejection

Before we see more of *sampling* methods, we will see how we can use them by

- Composition
- Conditional sampling
- ► Computing marginals

- ▶ Given a p(x) (or unnormalised $\bar{p}(x)$, how to draw independent samples
 - Inversion
 - Transformation
 - Rejection

Before we see more of *sampling* methods, we will see how we can use them by

- Composition
- Conditional sampling
- ► Computing marginals

Let us look at how to *utilise* sampling methods.

Background Let us finally settle on some notions

Recall that we denote generic densities p(x) and p(y) etc...

Background Let us finally settle on some notions

Recall that we denote generic densities p(x) and p(y) etc...

We say that X and Y are independent if p(x,y) satisfies

Recall that we denote generic densities p(x) and p(y) etc...

We say that X and Y are independent if p(x,y) satisfies

$$p(x,y) = p(x)p(y).$$

Similar property naturally follows for expectations.

Background

Let us finally settle on some notions

For dependent \boldsymbol{X} and \boldsymbol{Y} , we have the decomposition

Background Let us finally settle on some notions

For dependent \boldsymbol{X} and \boldsymbol{Y} , we have the decomposition

$$p(x,y) = p(y|x)p(x) = p(x|y)p(y).$$

For dependent \boldsymbol{X} and \boldsymbol{Y} , we have the decomposition

$$p(x,y) = p(y|x)p(x) = p(x|y)p(y).$$

The Bayes' rule follows from this formula:

$$p(x|y) = \frac{p(x,y)}{p(y)} = \frac{p(y|x)p(x)}{p(y)}.$$

We will look at it in detail later.

Background

Let us finally settle on some notions

Let us look into details the structure of joint distributions. Given p(x,y), we have for continuous variables

$$p(y) = \int p(x, y) \mathrm{d}x,$$

or for discrete variables

$$p(y) = \sum_{x \in \mathsf{X}} p(x,y).$$

Background

Let us finally settle on some notions

Let us look into details the structure of joint distributions. Given p(x,y), we have for continuous variables

$$p(y) = \int p(x, y) \mathrm{d}x,$$

or for discrete variables

$$p(y) = \sum_{x \in \mathsf{X}} p(x, y).$$

The same is true for

$$p(x) = \int p(x, y) \mathrm{d}y,$$

for continuous variables and

$$p(x) = \sum_{y \in \mathsf{Y}} p(x, y)$$

Background

Joint continuous distribution and marginals

An example table for a joint distribution p(x,y)

p(x,y)	X = 0	X = 1	X=2	X = 3	$p_Y(y)$
Y = 0	1/6	1/6	0	0	2/6
Y = 1	1/6	0	1/6	0	2/6
Y=2	0	0	1/6	0	1/6
Y = 3	0	0	0	1/6	1/6
$p_X(x)$	2/6	1/6	2/6	1/6	1

Sampling from a discrete mixture

Let us consider a mixture of two distributions $q_1(x)$ and $q_2(x)$ with weights w_1 and w_2 where $w_1+w_2=1$.

Let us consider a mixture of two distributions $q_1(x)$ and $q_2(x)$ with weights w_1 and w_2 where $w_1 + w_2 = 1$.

We can sample from this mixture by

▶ Sampling from the discrete distribution p(k) with $p(k = 1) = w_1$ and $p(k = 2) = w_2$, i.e.,

$$k \sim p(k)$$
.

Let us consider a mixture of two distributions $q_1(x)$ and $q_2(x)$ with weights w_1 and w_2 where $w_1 + w_2 = 1$.

We can sample from this mixture by

Sampling from the discrete distribution p(k) with $p(k=1)=w_1$ and $p(k=2)=w_2$, i.e.,

$$k \sim p(k)$$
.

▶ Sampling from the distribution $q_k(x)$.

The resulting distribution is $p(x) = w_1q_1(x) + w_2q_2(x)$.

Sampling from a discrete mixture

True for

$$p(x) = \sum_{n=1}^{K} w_n q_n(x).$$

Sampling from a discrete mixture

True for

$$p(x) = \sum_{n=1}^{K} w_n q_n(x).$$

We can sample from this mixture by

Sampling from the discrete distribution with $p(k = 1) = w_1, p(k = 2) = w_2, \dots, p(k = n) = w_n$, i.e.,

$$k \sim p(k)$$
.

▶ Sampling from the distribution $q_k(x)$.

The resulting distribution is $p(x) = \sum_{n=1}^{K} w_n q_n(x)$.

Sampling from a discrete mixture

True for

$$p(x) = \sum_{n=1}^{K} w_n q_n(x).$$

We can sample from this mixture by

Sampling from the discrete distribution with $p(k = 1) = w_1$, $p(k = 2) = w_2, \ldots, p(k = n) = w_n$, i.e.,

$$k \sim p(k)$$
.

▶ Sampling from the distribution $q_k(x)$.

The resulting distribution is $p(x) = \sum_{n=1}^{K} w_n q_n(x)$.

Compose the discrete sampling with any other sampling method.

Sampling from a discrete mixture: A Gaussian example

Figure: The density of a mixture of three Gaussians: $p(x) = \sum_{k=1}^{3} w_k \mathcal{N}(x; \mu_k, \sigma_k^2)$ with $\mu_1 = -2, \mu_2 = 0, \mu_3 = 4, \sigma_1 = 0.5, \sigma_2 = 1, \sigma_3 = 0.5, w_1 = 0.2, w_2 = 0.6, w_3 = 0.2.$

Sampling from conditional distributions

Let us consider a conditional distribution p(y|x). This is a density for fixed x, i.e.,

$$\int p(y|x)\mathrm{d}y = 1.$$

Sampling from conditional distributions

Let us consider a conditional distribution p(y|x). This is a density for fixed x, i.e.,

$$\int p(y|x)\mathrm{d}y = 1.$$

Sampling from this distribution is trivial given x with known techniques

- Inversion
- Transformation
- Rejection
- ► Thousand other methods

Sampling from conditional distributions

Simple example:

$$p(y|x) = \mathcal{N}(y; x, 1).$$

Just sample by fixing \boldsymbol{x} from a Gaussian with mean \boldsymbol{x} .

Sampling from joint distributions

Recall that we have for any joint distribution p(x,y)

$$p(x,y) = p(y|x)p(x).$$

This decomposition can be used for sampling $(x,y) \sim p(x,y)$. Indeed, we can sample from the joint by

- ▶ Sampling $X \sim p(x)$
- ▶ Sampling $Y|X = x \sim p(y|x)$

Surprisingly, we can use the samples from joint to compute p(y):

$$p(y) = \int p(x, y) dx.$$

The above operation is called *marginalisation*¹.

¹Mathematically same as continuous mixtures, more on this later.

Suppose we have 2D samples $(x_1, y_1), \ldots, (x_n, y_n)$ from p(x, y). How to sample from p(y)?

Suppose we have 2D samples $(x_1, y_1), \ldots, (x_n, y_n)$ from p(x, y). How to sample from p(y)?

Do nothing! Just keep the y's and discard the x's. The resulting samples are from p(y)!

Suppose we have 2D samples $(x_1, y_1), \ldots, (x_n, y_n)$ from p(x, y). How to sample from p(y)?

Do nothing! Just keep the y's and discard the x's. The resulting samples are from p(y)!

This is a neat way to avoid computing an integral.

Example: Consider the following model:

$$p(x) = \mathcal{N}(x; \mu, \sigma_0^2)$$
$$p(y|x) = \mathcal{N}(y; x, \sigma^2).$$

The samples $(x_i, y_i)_{i=1}^n$ can be drawn straightforwardly and y's will be distributed w.r.t. p(y).

Example: Consider the following model:

$$p(x) = \mathcal{N}(x; \mu, \sigma_0^2)$$
$$p(y|x) = \mathcal{N}(y; x, \sigma^2).$$

The samples $(x_i,y_i)_{i=1}^n$ can be drawn straightforwardly and y's will be distributed w.r.t. p(y).

But what is p(y)?

Example: Consider the following model:

$$p(x) = \mathcal{N}(x; \mu, \sigma_0^2)$$
$$p(y|x) = \mathcal{N}(y; x, \sigma^2).$$

The samples $(x_i, y_i)_{i=1}^n$ can be drawn straightforwardly and y's will be distributed w.r.t. p(y).

But what is p(y)? We can compute it by marginalisation.

$$p(y) = \int p(y|x)p(x)dx$$
$$= \int \mathcal{N}(y; x, \sigma^2)\mathcal{N}(x; \mu, \sigma_0^2)dx.$$

This is given as

$$p(y) = \mathcal{N}(y; \mu, \sigma_0^2 + \sigma^2).$$

Two ways to sample $\boldsymbol{p}(\boldsymbol{y})$

Two ways to sample p(y)

Sample from joint and keep y's

$$\blacktriangleright X \sim p(x) = \mathcal{N}(x; \mu, \sigma_0^2)$$

$$Y|X = x \sim p(y|x) = \mathcal{N}(y; x, \sigma^2)$$

Sample n times and keep Y's which will be $Y \sim p(y)$.

Two ways to sample p(y)

Sample from joint and keep y's

$$\blacktriangleright X \sim p(x) = \mathcal{N}(x; \mu, \sigma_0^2)$$

$$Y|X = x \sim p(y|x) = \mathcal{N}(y; x, \sigma^2)$$

Sample n times and keep Y's which will be $Y \sim p(y).$ Or

Two ways to sample p(y)

Sample from joint and keep y's

- $\blacktriangleright X \sim p(x) = \mathcal{N}(x; \mu, \sigma_0^2)$
- $Y|X = x \sim p(y|x) = \mathcal{N}(y; x, \sigma^2)$

Sample n times and keep Y's which will be $Y \sim p(y)$.Or

- ► Derive $p(y) = \mathcal{N}(y; \mu, \sigma_0^2 + \sigma^2)$
- ▶ Sample $Y \sim p(y)$

Figure: The sampling from marginal p(y) with $p(x) = \mathcal{N}(x;2,2)$ and $p(y|x) = \mathcal{N}(y;x,3)$. The marginal p(y) is given by $\mathcal{N}(y;2,5)$. Samples drawn from p(x) and p(y|x) as described. Red line is true p(y) and the histogram is obtained by drawing (x,y) and keeping only y.

Multivariate Gaussian

Sampling from Multivariate Gaussian

Define a multivariate Gaussian as

$$p(x) = \mathcal{N}(x; \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} \sqrt{\det \Sigma}} \exp\left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)\right).$$

Recall the univariate sampling, using $X \sim \mathcal{N}(0,1)$ and $Y = \mu + \sigma X$.

Define a multivariate Gaussian as

$$p(x) = \mathcal{N}(x; \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} \sqrt{\det \Sigma}} \exp\left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)\right).$$

Recall the univariate sampling, using $X \sim \mathcal{N}(0,1)$ and $Y = \mu + \sigma X$.

In the multivariate case, we first compute L such that $\Sigma = LL^T$ and then sample $X \sim \mathcal{N}(0, I)$ (i.e.,)

- ▶ Sample X_1, \ldots, X_d from $\mathcal{N}(0, 1)$
- $\blacktriangleright \mathsf{Set}\ Y = \mu + LX$

Cholesky decomposition can be computed using np.linalg.cholesky in numpy.

- Sample from mixtures $p(x) = \sum_{k=1}^{M} w_k q_k(x)$
 - ▶ Sample k from a discrete distribution $p(k) = w_k$
 - ▶ Sample $x \sim q_k(x)$ from the mixture component

- Sample from mixtures $p(x) = \sum_{k=1}^{M} w_k q_k(x)$
 - Sample k from a discrete distribution $p(k) = w_k$
 - Sample $x \sim q_k(x)$ from the mixture component
- ightharpoonup Sample from joint p(x,y)
 - $ightharpoonup X \sim p(x)$
 - $Y|X = x \sim p(y|x)$

- Sample from mixtures $p(x) = \sum_{k=1}^{M} w_k q_k(x)$
 - ▶ Sample k from a discrete distribution $p(k) = w_k$
 - ▶ Sample $x \sim q_k(x)$ from the mixture component
- ightharpoonup Sample from joint p(x,y)
 - $ightharpoonup X \sim p(x)$
 - $ightharpoonup Y|X=x\sim p(y|x)$
- Sample from marginal
 - ▶ Sample $(X,Y) \sim p(x,y)$ as above
 - ► Keep only *Y* samples

- Sample from mixtures $p(x) = \sum_{k=1}^{M} w_k q_k(x)$
 - Sample k from a discrete distribution $p(k) = w_k$
 - ▶ Sample $x \sim q_k(x)$ from the mixture component
- ightharpoonup Sample from joint p(x,y)
 - $ightharpoonup X \sim p(x)$
 - $ightharpoonup Y|X=x\sim p(y|x)$
- Sample from marginal
 - Sample $(X,Y) \sim p(x,y)$ as above
 - Keep only Y samples
- Sample from multivariate Gaussian (using Cholesky decomposition)

So far, we've seen

- Sample from mixtures $p(x) = \sum_{k=1}^{M} w_k q_k(x)$
 - ▶ Sample k from a discrete distribution $p(k) = w_k$
 - ▶ Sample $x \sim q_k(x)$ from the mixture component
- ightharpoonup Sample from joint p(x,y)
 - $ightharpoonup X \sim p(x)$
 - $ightharpoonup Y|X=x\sim p(y|x)$
- Sample from marginal
 - ▶ Sample $(X,Y) \sim p(x,y)$ as above
 - Keep only Y samples
- Sample from multivariate Gaussian (using Cholesky decomposition)

Let us see some examples.

Example 1: Marginalisation of Gaussians

Consider

$$p(x) = \mathcal{N}(x; \mu, \sigma_0^2)$$
$$p(y|x) = \mathcal{N}(y; x, \sigma^2).$$

Compute p(y).

Example 1: Marginalisation of Gaussians

The direct computation of the integral

$$p(y) = \int p(y|x)p(x)dx = \int \mathcal{N}(y; x, \sigma^2)\mathcal{N}(x; \mu, \sigma_0^2)dx.$$

could be tedious. Note that

$$y = (y - x) + x$$
$$y - x \sim \mathcal{N}(y - x; 0, \sigma^2)$$
$$x \sim \mathcal{N}(x; \mu, \sigma_0^2).$$

This is a sum of Gaussians. Therefore, p(y) is also a Gaussian with means and variances summed.

$$p(y) = \mathcal{N}(y; \mu, \sigma_0^2 + \sigma^2).$$

Example 2: Sample from a linear model

Imagine we would like to simulate data from a linear model. The linear relationship we aim to simulate is

$$y = ax + b + \epsilon,$$

where $\epsilon \sim \mathcal{N}(0, \sigma^2)$. In order to simulate data, we could choose p(x) (modelling assumption). Assume

$$p(x) = \text{Unif}(x; -10, 10).$$

Next, we need to sample from p(y|x):

$$p(y|x) = \mathcal{N}(y; ax + b, \sigma^2).$$

```
import numpy as np
import matplotlib.pyplot as plt

n = 10000
x = np.random.uniform(-10, 10, n)

a = 0.5
b = 0.5
sigma = 2
y = a * x + b + sigma * np.random.normal(0, 1, n)
```

Example 2: Sample from a linear model

Sampling from joint distributions: The discrete case

Recall our example of a discrete joint distribution $p(\boldsymbol{x},\boldsymbol{y})$

	X = 0	X = 1	X=2	X = 3	$p_Y(y)$
Y = 0	1/6	1/6	0	0	2/6
Y = 1	1/6	0	1/6	0	2/6
Y=2	0	0	1/6	0	1/6
Y=3	0	0	0	1/6	1/6
$p_X(x)$	2/6	1/6	2/6	1/6	1

Sampling from joint distributions: The discrete case

Recall our example of a discrete joint distribution p(x,y)

	X = 0	X = 1	X=2	X = 3	$p_Y(y)$
Y = 0	1/6	1/6	0	0	2/6
Y = 1	1/6	0	1/6	0	2/6
Y=2	0	0	1/6	0	1/6
Y=3	0	0	0	1/6	1/6
$p_X(x)$	2/6	1/6	2/6	1/6	1

How to sample e.g. p(y|X=2)?

Sampling from joint distributions: The discrete case

Recall our example of a discrete joint distribution p(x,y)

p(x,y)	X = 0	X = 1	X=2	X = 3	$p_Y(y)$
Y = 0	1/6	1/6	0	0	2/6
Y=1	1/6	0	1/6	0	2/6
Y=2	0	0	1/6	0	1/6
Y=3	0	0	0	1/6	1/6
$p_X(x)$	2/6	1/6	2/6	1/6	1

The joint p(Y=y,X=2) for y=0,1,2,3. The conditional is given by

$$p(Y = y | X = 2) = \frac{p(Y = y, X = 2)}{p(X = 2)}$$
$$= \frac{p(Y = y, X = 2)}{2/6},$$
$$\Rightarrow 3 \times [0, 1/6, 1/6, 0] = [0, 1/2, 1/2, 0].$$

Sampling from joint distributions: The discrete case

Recall our example of a discrete joint distribution p(x,y)

p(x,y)	X = 0	X=1	X=2	X = 3	$p_Y(y)$
Y = 0	1/6	1/6	0	0	2/6
Y = 1	1/6	0	1/6	0	2/6
Y=2	0	0	1/6	0	1/6
Y = 3	0	0	0	1/6	1/6
$p_X(x)$	2/6	1/6	2/6	1/6	1

The joint p(Y=y,X=2) for y=0,1,2,3. The conditional is given by

$$p(Y = y | X = 2) = \frac{p(Y = y, X = 2)}{p(X = 2)}$$

$$= \frac{p(Y = y, X = 2)}{2/6},$$

$$\rightarrow 3 \times [0, 1/6, 1/6, 0] = [0, 1/2, 1/2, 0].$$

In order to sample, we can use good old inversion.

p(x,y)	X = 0	X = 1	X=2	X = 3	$p_Y(y)$
Y = 0	1/6	1/6	0	0	2/6
Y=1	1/6	0	1/6	0	2/6
Y=2	0	0	1/6	0	1/6
Y = 3	0	0	0	1/6	1/6
$p_X(x)$	2/6	1/6	2/6	1/6	1

p(y x)	X = 0	X = 1	X=2	X = 3
Y = 0				
Y = 1				
Y=2				
Y=3				

p(x,y)	X = 0	X = 1	X=2	X = 3	$p_Y(y)$
Y = 0	1/6	1/6	0	0	2/6
Y=1	1/6	0	1/6	0	2/6
Y=2	0	0	1/6	0	1/6
Y = 3	0	0	0	1/6	1/6
$p_X(x)$	2/6	1/6	2/6	1/6	1

p(y x)	X = 0	X = 1	X=2	X = 3
Y = 0	1/2			
Y = 1	1/2			
Y=2	0			
Y = 3	0			

p(x,y)	X = 0	X = 1	X=2	X = 3	$p_Y(y)$
Y = 0	1/6	1/6	0	0	2/6
Y = 1	1/6	0	1/6	0	2/6
Y=2	0	0	1/6	0	1/6
Y = 3	0	0	0	1/6	1/6
$p_X(x)$	2/6	1/6	2/6	1/6	1

p(y x)	X = 0	X = 1	X=2	X = 3
Y = 0	1/2	1		
Y = 1	1/2	0		
Y=2	0	0		
Y = 3	0	0		

p(x,y)	X = 0	X = 1	X=2	X = 3	$p_Y(y)$
Y = 0	1/6	1/6	0	0	2/6
Y = 1	1/6	0	1/6	0	2/6
Y=2	0	0	1/6	0	1/6
Y = 3	0	0	0	1/6	1/6
$p_X(x)$	2/6	1/6	2/6	1/6	1

p(y x)	X = 0	X = 1	X=2	X = 3
Y = 0	1/2	1	0	
Y = 1	1/2	0	1/2	
Y=2	0	0	1/2	
Y = 3	0	0	0	

p(x,y)	X = 0	X = 1	X=2	X = 3	$p_Y(y)$
Y = 0	1/6	1/6	0	0	2/6
Y = 1	1/6	0	1/6	0	2/6
Y=2	0	0	1/6	0	1/6
Y = 3	0	0	0	1/6	1/6
$p_X(x)$	2/6	1/6	2/6	1/6	1

p(y x)	X = 0	X = 1	X=2	X = 3
Y = 0	1/2	1	0	0
Y = 1	1/2	0	1/2	0
Y=2	0	0	1/2	0
Y = 3	0	0	0	1

p(x,y)	X = 0	X = 1	X=2	X = 3	$p_Y(y)$
Y = 0	1/6	1/6	0	0	2/6
Y = 1	1/6	0	1/6	0	2/6
Y=2	0	0	1/6	0	1/6
Y = 3	0	0	0	1/6	1/6
$p_X(x)$	2/6	1/6	2/6	1/6	1

p(x y)	X = 0	X = 1	X=2	X = 3
Y = 0				
Y = 1				
Y=2				
Y = 3				

p(x,y)	X = 0	X = 1	X=2	X = 3	$p_Y(y)$
Y = 0	1/6	1/6	0	0	2/6
Y = 1	1/6	0	1/6	0	2/6
Y=2	0	0	1/6	0	1/6
Y = 3	0	0	0	1/6	1/6
$p_X(x)$	2/6	1/6	2/6	1/6	1

p(x y)	X = 0	X = 1	X=2	X = 3
Y = 0	1/2	1/2	0	0
Y = 1				
Y=2				
Y = 3				

p(x,y)	X = 0	X = 1	X=2	X = 3	$p_Y(y)$
Y = 0	1/6	1/6	0	0	2/6
Y = 1	1/6	0	1/6	0	2/6
Y=2	0	0	1/6	0	1/6
Y = 3	0	0	0	1/6	1/6
$p_X(x)$	2/6	1/6	2/6	1/6	1

p(x y)	X = 0	X = 1	X=2	X = 3
Y = 0	1/2	1/2	0	0
Y = 1	1/2	0	1/2	0
Y=2				
Y = 3				

p(x,y)	X = 0	X = 1	X=2	X = 3	$p_Y(y)$
Y = 0	1/6	1/6	0	0	2/6
Y = 1	1/6	0	1/6	0	2/6
Y=2	0	0	1/6	0	1/6
Y = 3	0	0	0	1/6	1/6
$p_X(x)$	2/6	1/6	2/6	1/6	1

p(x y)	X = 0	X = 1	X=2	X = 3
Y = 0	1/2	1/2	0	0
Y = 1	1/2	0	1/2	0
Y=2	0	0	1	0
Y = 3				

p(x,y)	X = 0	X = 1	X=2	X = 3	$p_Y(y)$
Y = 0	1/6	1/6	0	0	2/6
Y=1	1/6	0	1/6	0	2/6
Y=2	0	0	1/6	0	1/6
Y = 3	0	0	0	1/6	1/6
$p_X(x)$	2/6	1/6	2/6	1/6	1

p(x y)	X = 0	X = 1	X=2	X = 3
Y = 0	1/2	1/2	0	0
Y = 1	1/2	0	1/2	0
Y=2	0	0	1	0
Y = 3	0	0	0	1

Prove the fundamental theorem of simulation.

Theorem 1 (Theorem 2.2, Martino et al., 2018)

Drawing samples from one dimensional random variable X with a density $p(x) \propto \bar{p}(x)$ is equivalent to sampling uniformly on the two dimensional region defined by

$$A = \{(x, y) \in \mathbb{R}^2 : 0 \le y \le \bar{p}(x)\}. \tag{1}$$

In other words, if (x', y') is uniformly distributed on A, then x' is a sample from p(x).

Proof. Consider the pair (X,Y) uniformly distributed on the region A. We denote their joint density as q(x,y) as

Proof. Consider the pair (X,Y) uniformly distributed on the region A. We denote their joint density as q(x,y) as

$$q(x,y) = \frac{1}{|\mathsf{A}|}, \qquad \text{for } (x,y) \in \mathsf{A}. \tag{2}$$

where |A| is the area of the set A.

Proof. Consider the pair (X,Y) uniformly distributed on the region A. We denote their joint density as q(x,y) as

$$q(x,y) = \frac{1}{|\mathsf{A}|}, \qquad \text{for } (x,y) \in \mathsf{A}. \tag{2}$$

where |A| is the area of the set A. We note that

$$p(x) = \frac{\bar{p}(x)}{|\mathsf{A}|}.$$

We use the standard formula for the joint density q(x,y)=q(y|x)q(x). Note that, since (X,Y) is uniform in A, for fixed x, we have

$$q(y|x) = \frac{1}{\overline{p}(x)}$$
 for $(x, y) \in A$.

We use the standard formula for the joint density q(x,y) = q(y|x)q(x). Note that, since (X,Y) is uniform in A, for fixed x, we have

$$q(y|x) = \frac{1}{\overline{p}(x)}$$
 for $(x, y) \in A$.

We therefore write

$$q(x,y) = q(y|x)q(x) = \frac{q(x)}{\overline{p}(x)} \quad \text{for } (x,y) \in A.$$
 (3)

We use the standard formula for the joint density q(x,y) = q(y|x)q(x). Note that, since (X,Y) is uniform in A, for fixed x, we have

$$q(y|x) = \frac{1}{\bar{p}(x)}$$
 for $(x,y) \in A$.

We therefore write

$$q(x,y) = q(y|x)q(x) = \frac{q(x)}{\overline{p}(x)} \quad \text{for } (x,y) \in A.$$
 (3)

We consider now (2) and (3) which are both valid on $(x,y) \in A$. Combining them gives

$$q(x) = \frac{\bar{p}(x)}{|\mathsf{A}|},$$

which means q(x) = p(x).

See you next Monday!

References I

