1 Reguession

> Prediction is a key touse of statistics.

let, there be height of 928 people, $\lambda = 61.1$ in. Now, predict the height of son whose father is 72 in. This addition information helps us to make a better prediction. Regression does just that.

Correlation coefficient v

The scooler plot is useful in visualizing two quantitative variables.

Things we can got of scattle plot:

- Dit may have & a direction (Sloping up/down)
- @ form (a scatter that clusters around a line is linear)
- 3 Stringth (how closely do point follow form)
- -> If the form is dinon, then a good measure of strength is carelation Coefficient (S)

(Mr, yi) -> data

$$S = \frac{1}{N} \sum_{i=1}^{N} \frac{N_i - N_i}{SN} \times \frac{Y_i - \overline{Y}}{SN}$$

Sn, sy > stolder

7	Correlation measures linear association:
8	
5	If we have min of data and the scatter tollars a linear
3	If we have pains of data and the scatter follows a linear Asm, then we can summarize the date by \$7,5x, \$7, \$9, \$9
3	
3	-> when we plot these pains x Eg, then we use
J	x-sexplanatory variable or predictor
3	y-> responsés variable.
Î	
	=7.8 is always blue -181.
Ū.	r=1 mean a perfect positive linear relationship
9	=7 is not offected by changing the center or the scale of either variable
4	association.
0	association.
1	
T _C	= Also, Carelation dues not moan causation.
4	Regression line:
=	If the scalluplot shows a linear association, then this relationship
4	Can be summarized by a line.
	The idea is to chose the deep
	Line quation, $\hat{y}_i = a + b\hat{\alpha}_i$ that minimizes the sum y
	Squared distances between the
	observed y: & ŷ:

$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - (a+b)(y_i))^2$
(i=) (i=)
MOH and of lagger sources.
Method of least squares.
h = 258 and a = 4 - box. This line if = a+bn is regulation
$b = 3 \frac{58}{5\pi}$ and $a = \overline{y} - b\overline{x}$. This line $\overline{y} = a + bn v$ regulation line.
3 the expected man value of y when x=0
the expected mean value of y when x=0 the value at which regression line crosses y-ax
Reguession to the mean :-
- Jacobs To The Michie
The main use of regression is to predict y from X.
Given X, y=a+bx
CHOT M J = SC 1
> The prediction by at x=x and y=y,
->but if it is I standard deviation above it, then if it only
[orsy] above y
Rogers i'm ellert - the hottom group on the first fest will on average
Regression effect -> the bottom group on the first first will on average show some improvement on the second Kest &
the top group will on average fall back.
(OV

Extremely dowlhigh variables more closy to average when measured second time.

=> If student get 58, the final score would be; 8.5 + average.

587 (067x0-83x11-8) 58-49.5 =+0.83

=> 58+ (0.67x0-83x11.8) 51+ (0.07x

=) 64.32 74.56

=> If student get 89 in final, find mid-term.

mid tem

89 1> above average

z = 89-69.1 = 1.68 std dev above avg

NXO BLY SAWID

6 49.5 + (1x0-84x H-8)

⇒ 60.98

Normal approximation given x }

Regression requires that the scatter plot is botball shaped.

For a given value of N, we can predict y value simply dealing a point falling on y, but y values near the pains at x value bollow a normal curve

- -> To standardize, subtract of the predicted value of g, then divide by (JI-J' sy)
- @ Among students who scoud around 41 in nigoteur, what 1/2 Scored above 00 in final?
- 62.5 m for for final **(A)** > Normal curve is centered 262.5

$$\frac{60-62-5}{\sqrt{1-(0.67)^2} \times S_f} = -0.29$$

area = 61.4%.

Normal approximation use in linear regression:

Fells us more about y-values. From regression, we know the average (predicted value for specific x), and the normal approximation tells us more about the actual values for a specific of and how they look lite, as they follow normal curve.

Residual plots:

For each observation, we have an observed 'y' value and we have a predicted by value. Distruence blue them is residual. It is used for checking it regression is appropriate.

$$e_i = y_i - \hat{y}_i$$

It should show an unstructured houzontd dure.

A curved pattern suggests scatter is not during. Lin Regression should not be applied but it may still be possible to analyze these dates with suggession after framsforming data.

Helewscedastic:-

Variability changes with x values.

If a plot dooks hetero, take dog of both variables.

- Points with very large residual is outlier.