	$\overline{\text{REG}}$	REG	CFL	DEC.	REC.	P	NP	NPC
$L_1 \cup L_2$	no	✓	✓	✓	✓	√	√	no
$L_1\cap L_2$	no	✓	no	✓	✓	✓	√	no
\overline{L}	✓	√	no	✓	no	✓	?	?
$L_1 \cdot L_2$	no	✓	✓	✓	✓	✓	√	no
L^*	no	✓	✓	✓	✓	✓	√	no
$_L\mathcal{R}$	✓	✓	✓	✓	√	✓		
$L_1 \setminus L_2$	no	√	no	✓	no	√	?	
$L\cap R$	no	√	✓	✓	✓	✓		

- (**DFA**) $M=(Q,\Sigma,\delta,q_0,F),\,\delta:Q imes\Sigma o Q.$
- (NFA) $M = (Q, \Sigma, \delta, q_0, F), \delta : Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q).$
- (GNFA) $(Q, \Sigma, \delta, q_0, q_a)$,
 - $\delta: (Q \setminus \{q_{\mathrm{a}}\}) imes (Q \setminus \{q_{\mathrm{start}}\} o \mathcal{R}$ (where
 - $\mathcal{R} = \{ \text{Regex over } \Sigma \})$
- (DFA → GNFA → Regex)

- GNFA accepts $w \in \Sigma^*$ if $w = w_1 \cdots w_k$, where $w_i \in \Sigma^*$ and there exists a sequence of states q_0, q_1, \dots, q_k s.t.
- n-state DFA A, m-state DFA $B \implies \exists nm$ -state DFA Cs.t. $L(C) = L(A)\Delta L(B)$.

 $q_0=q_{ ext{start}}$, $q_k=q_{ ext{a}}$ and for each i, we have $w_i\in L(R_i)$,

p-state DFA C, if $L(C) \neq \emptyset$ then $\exists \ s \in L(C)$ s.t. |s| < p.

Every NFA has an equiv. NFA with a single accept state

(NFA → DFA)

- $N = (Q, \Sigma, \delta, q_0, F)$
- $D=(Q'=\mathcal{P}(Q),\Sigma,\delta',q_0'=E(\{q_0\}),F')$
- $F' = \{q \in Q' \mid \exists p \in F : p \in q\}$
- $E(\{q\}) := \{q\} \cup \{ \text{states reachable from } q \text{ via } \varepsilon\text{-arrows} \}$
- $orall R\subseteq Q, orall a\in \Sigma, \delta'(R,a)=E\left(igcup \delta(r,a)
 ight)$

Regular Expressions Examples:

$$\{a^nwb^n:w\in\Sigma^*\}\equiv a(a\cup b)^*b$$

$$\{w\in\Sigma^*:\#_w(\mathtt{0})\geq 2\wedge\#_w(\mathtt{1})\leq 1\}\equiv$$

$$((0 \cup 1)^*0(0 \cup 1)^*0(0 \cup 1)^*) \cup (0^*(\varepsilon \cup 1)0^*)$$

$$\{w\mid \#_w(\mathtt{01})=\#_w(\mathtt{10})\}\equiv arepsilon\cup \mathtt{0}\Sigma^*\mathtt{0}\cup \mathtt{1}\Sigma^*\mathtt{1}$$

$$\{w \in \{a,b\}^* : |w| mod n = m\} \equiv (a \cup b)^m ((a \cup b)^n)^*$$

$$\{w \in \{a,b\}^*: \#_b(w) mod n = m\} \equiv (a^*ba^*)^m \cdot ((a^*ba^*)^n)$$

$\textbf{PL:}\ A\in\mathrm{REG} \implies \exists p: \forall s\in A\text{, } |s|\geq p\text{, } s=xyz\text{, (i)}\ \forall i\geq 0, xy^iz\in A\text{, (ii)}\ |y|>0 \ \text{and (iii)}\ |xy|\leq p\text{.}$

- $\{w=a^{2^k}\}; \quad k=\lfloor \log_2 |w|
 floor, s=a^{2^k}=xyz.$ $2^k = |xyz| < |xy^2z| \le |xyz| + |xy| \le 2^k + p < 2^{k+1}.$
- $\{w = w^{\mathcal{R}}\}; \quad s = 0^p 10^p = xyz. \text{ then }$ $xy^2z=0^{p+|y|}10^p\not\in L.$

where $R_i = \delta(q_{i-1}, q_i)$.

- $\{a^nb^n\}; \quad s=a^pb^p=xyz, \text{ where } |y|>0 \text{ and } |xy|\leq p.$
- Then $xy^2z=a^{p+|y|}b^p\not\in L$.
- $L=\{a^p: p \text{ is prime}\}; \quad s=a^t=xyz \text{ for prime } t \geq p.$ r := |y| > 0

$L \in \mathbf{CFL} \Leftrightarrow \exists G_\mathsf{CFG} \, : L = L(G) \Leftrightarrow \exists M_\mathsf{PDA} \, : L = L(M)$

- A derivation of w is a **leftmost derivation** if at every step the leftmost remaining variable is the one replaced: w is derived **ambiguously** in G if it has at least two different l.m. derivations. G is ambiguous if it generates at least one string ambiguously. A CFG is ambiguous iff it generates some string with two different parse trees. A CFL is inherently ambiguous if all CFGs that generate it are ambiguous.
- (CFG \leadsto CNF) (1.) Add a new start variable S_0 and a rule $S_0 \to S$. (2.) Remove ε -rules of the form $A \to \varepsilon$ (except for $S_0 o \varepsilon$). and remove A's occurrences on the RH of a rule (e.g.: R o u A v A w becomes $R
 ightarrow u AvAw \mid u Avw \mid u v Aw \mid u v w$. where
- $u,v,w\in (V\cup\Sigma)^*$). (3.) Remove unit rules A o B then whenever B o u appears, add A o u, unless this was a unit rule previously removed. ($u \in (V \cup \Sigma)^*$). (4.) Replace each rule $A \to u_1 u_2 \cdots u_k$ where $k \ge 3$ and $u_i \in (V \cup \Sigma)$, with the rules $A \to u_1 A_1, A_1 \to u_2 A_2, ...,$ $A_{k-2} \rightarrow u_{k-1}u_k$, where A_i are new variables. Replace terminals u_i with $U_i \rightarrow u_i$.
- If $G \in \mathsf{CNF}$, and $w \in L(G)$, then $|w| \leq 2^{|h|} 1$, where his the height of the parse tree for w.
- $\forall L \in \mathsf{CFL}, \exists G \in \mathsf{CNF} : L = L(G).$
- (derivation) $S \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_n = w$, where each u_i is in $(V \cup \Sigma)^*$. (in this case, G generates w (or $S \text{ derives } w), S \stackrel{*}{\Rightarrow} w)$

- (PDA) $M=(Q,\sum\limits_{\mathsf{input}},\prod\limits_{\mathsf{stack}},\delta,q_0\in Q,\mathop{F}_{\mathsf{accepts}}\subseteq Q).$ (where Q, Σ , Γ , F finite). $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$.
- M accepts $w \in \Sigma^*$ if there is a seq. $r_0, r_1, \ldots, r_m \in Q$ and $s_0, s_1, \ldots, s_m \in \Gamma^*$ s.t.: (1.) $r_0 = q_0$ and $s_0 = \varepsilon$; (2.) For $i=0,1,\ldots,m-1$, we have $(r_i,b)\in\delta(r_i,w_{i+1},a)$, where $s_i=at$ and $s_{i+1}=bt$ for some $a,b\in\Gamma_{arepsilon}$ and $t\in\Gamma^*$; (3.) $r_m\in F$.
- A PDA can be represented by a state diagram, where each transition is labeled by the notation "a,b
 ightarrow c" to denote that the PDA: Reads a from the input (or read nothing if $a = \varepsilon$). **Pops** b from the stack (or pops nothing if $b=\varepsilon$). Pushes c onto the stack (or pushes nothing if $c = \varepsilon$)

(CFG) $G=(V,\Sigma,R,S)$, $A\to w$, $(A\in V,w\in (V\cup\Sigma)^*)$; (CNF) $A\to BC$, $A\to a$, $S\to \varepsilon$, $(A,B,C\in V,a\in\Sigma,B,C\neq S)$. $\{w: \#_w(a) \geq \#_w(b)\}; S \rightarrow SS \mid aSb \mid bSa \mid a \mid \varepsilon$

- $\{w: w=w^{\mathcal{R}}\}; S \rightarrow aSa \mid bSb \mid a \mid b \mid \varepsilon$
- $\{w: w \neq w^{\mathcal{R}}\}; S \rightarrow aSa \mid bSb \mid aXb \mid bXa;$
- $X o aX \mid bX \mid \epsilon$
- $\{ww^{\mathcal{R}}\mid w\in\{a,b\}^*\}$
- $\{w\#x: w^\mathcal{R}\subseteq x\}; S\to AX; A\to 0A0\mid 1A1\mid \#X; X\to 0X\mid \texttt{Larbite}^k\mid i\leq j \text{ or } j\leq k\}; S\to S_1C\mid AS_2;$
- $\{w: \#_w(a) = \#_w(b)\}; S \rightarrow aSb \mid bSa \mid SS \mid \varepsilon$
- $\overline{\{a^nb^n\}}$; $S \to XbXaX \mid A \mid B$; $A \to aAb \mid Ab \mid b$; $B
 ightarrow aBb \mid aB \mid a$; $X
 ightarrow aX \mid bX \mid arepsilon$.
- $\{a^nb^m\mid n
 eq m\};S
 ightarrow aSb\mid A\mid B;A
 ightarrow aA\mid a;B
 ightarrow bB\mid b^{ullet}\quad \{a^nb^n\};S
 ightarrow aSb\mid arepsilon$
- $A o A\mathtt{a}\midarepsilon;C o C\mathtt{c}\midarepsilon$
- $\{x\mid x
 eq ww\};S
 ightarrow A\mid B\mid AB\mid BA;A
 ightarrow CAC\mid$ 0; $B o CBC \mid \mathbf{1}; C o \mathbf{0} \mid \mathbf{1}$
- $\{a^nb^m\mid m\leq n\leq 3m\};S
 ightarrow aSb\mid aaaSb\mid arepsilon ;S
 ightarrow aSb\mid aaaSb\mid arepsilon ;$
- $\{a^nb^m\mid n>m\};S o aSb\mid aS\mid a$
- $\{w:\#_w(a)>\#_w(b)\}; S \rightarrow TaT; T \rightarrow TT \mid aTb \mid bTa \mid a \mid \varepsilon \quad S_1 \rightarrow \mathsf{a}S_1 \mathsf{b} \mid S_1 \mathsf{b} \mid \varepsilon; S_2 \rightarrow \mathsf{b}S_2 \mathsf{c} \mid S_2 \mathsf{c} \mid \varepsilon; S_2 \rightarrow \mathsf{b}S_2 \mathsf{c} \mid S_2 \mathsf{c} \mid \varepsilon; S_2 \rightarrow \mathsf{b}S_2 \mathsf{c} \mid S_2 \mathsf{c} \mid \varepsilon; S_2 \rightarrow \mathsf{b}S_2 \mathsf{c} \mid S_2 \mathsf{c} \mid \varepsilon; S_2 \rightarrow \mathsf{b}S_2 \mathsf{c} \mid S_2 \mathsf{c} \mid S_2 \mathsf{c} \mid \varepsilon; S_2 \rightarrow \mathsf{b}S_2 \mathsf{c} \mid S_2 \mathsf{c} \mid S_2 \mathsf{c} \mid \varepsilon; S_2 \rightarrow \mathsf{b}S_2 \mathsf{c} \mid S_2 \mathsf{c} \mid \varepsilon; S_2 \rightarrow \mathsf{b}S_2 \mathsf{c} \mid S_2 \mathsf{c} \mid S_2 \mathsf{c} \mid \varepsilon; S_2 \rightarrow \mathsf{b}S_2 \mathsf{c} \mid S_2 \mathsf{c} \mid S$ $\textbf{PL:}\ L\in \mathrm{CFL} \implies \exists p: \forall s\in L, |s|\geq p,\ s=uvxyz, \textbf{(i)}\ \forall i\geq 0, uv^ixy^iz\in L, \textbf{(ii)}\ |vxy|\leq p, \textbf{ and (iii)}\ |vy|>0.$

$\{w=a^nb^nc^n\}; \quad s=a^pb^pb^p=uvxyz.\ vxy \ {\rm can't\ contain}$ all of a,b,c thus uv^2xy^2z must pump one of them less

- than the others. • $\{ww: w \in \{a,b\}^*\};$

$L \in \text{DECIDABLE} \iff (L \in \text{REC. and } L \in \text{co-REC.}) \iff \exists M_{\mathsf{TM}} \text{ decides } L.$

- (**TM**) $M=(Q,\sum\limits_{\mathsf{input}}\subseteq\Gamma,\sum\limits_{\mathsf{tape}},\delta,q_0,q_{lacktriangle},q_{\boxed{\mathbb{R}}}),$ where $\sqcup\in\Gamma,$
- $\sqcup
 otin \Sigma, q_{\mathbb{R}}
 eq q_{\textcircled{\scriptsize 0}}, \delta: Q imes \Gamma \longrightarrow Q imes \Gamma imes \{\mathrm{L},\mathrm{R}\}$
- (recognizable) **A** if $w \in L$, \mathbb{R} /loops if $w \notin L$; A is co**recognizable** if \overline{A} is recognizable.
- $L \in \text{RECOGNIZABLE} \iff L \leq_{\text{m}} A_{\mathsf{TM}}.$
- Every inf. recognizable lang. has an inf. dec. subset.
- (decidable) \triangle if $w \in L$, \mathbb{R} if $w \notin L$.
- $L \in \text{DECIDABLE} \iff L \leq_{\text{m}} 0^*1^*$.

- $L \in \text{DECIDABLE} \iff L^{\mathcal{R}} \in \text{DECIDABLE}.$
- (decider) TM that halts on all inputs.
- (Rice) Let P be a lang. of TM descriptions, s.t. (i) P is nontrivial (not empty and not all TM desc.) and (ii) for each two TM M_1 and M_2 , we have
- $L(M_1) = L(M_2) \implies (\langle M_1 \rangle \in P \iff \langle M_2 \rangle \in P).$ Then P is undecidable.
- $\{all\ TMs\}\ is\ count.;\ \Sigma^*\ is\ count.\ (finite\ \Sigma);\ \{all\ lang.\}\ is$ uncount.; $\{all\ infinite\ bin.\ seq.\}$ is uncount.
- $\mathsf{DFA} \equiv \mathsf{NFA} \equiv \mathsf{GNFA} \equiv \mathsf{REG} \, \subset \, \mathsf{NPDA} \equiv \mathsf{CFG} \, \subset \, \mathsf{DTM} \equiv \mathsf{NTM}$
- $f:\Sigma^* o\Sigma^*$ is **computable** if $\exists M_{\mathsf{TM}}: \forall w\in\Sigma^*,\, M$ halts on w and outputs f(w) on its tape.
- If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is dec.
- If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undec.
- If $A \leq_{\mathrm{m}} B$ and B is recognizable, then A is rec.
- If $A \leq_{\mathrm{m}} B$ and A is unrecognizable, then B is unrec. (transitivity) If $A \leq_{\mathrm{m}} B$ and $B \leq_{\mathrm{m}} C$, then $A \leq_{\mathrm{m}} C$.
- $A \leq_{\mathrm{m}} B \iff \overline{A} \leq_{\mathrm{m}} \overline{B} \text{ (esp. } A \leq_{\mathrm{m}} \overline{A} \iff \overline{A} \leq_{\mathrm{m}} A)$
- If $A \leq_{\mathrm{m}} \overline{A}$ and $A \in \text{RECOGNIZABLE}$, then $A \in \text{DEC}$.

$FINITE \subset REGULAR \subset CFL \subset CSL \subset DECIDABLE \subset RECOGNIZABLE$

- (unrecognizable) $\overline{A_{TM}}$, $\overline{EQ_{TM}}$, EQ_{CFG} , $\overline{HALT_{TM}}$, $REG_{TM} = \{\langle M \rangle : L(M) \text{ is regular}\}, E_{TM},$ $EQ_{\mathsf{TM}} = \{\langle M_1, M_2 \rangle : L(M_1) = L(M_2)\}, \, ALL_{\mathsf{CFG}},$ EQ_{CFG}
- (recognizable but undecidable) A_{TM} , $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M(w) \text{ halts} \}, \overline{EQ_{\mathsf{CFG}}}, \overline{E_{\mathsf{TM}}},$ $\{\langle M,k \rangle \mid \exists x \ (M(x) \ \mathrm{halts \ in} \ \geq k \ \mathrm{steps})\}$
- (decidable) A_{DFA} , A_{NFA} , A_{REX} , E_{DFA} , EQ_{DFA} , A_{CFG} , $E_{\mathsf{CFG}}, A_{\mathsf{LBA}}, ALL_{\mathsf{DFA}} = \{ \langle D \rangle \mid L(D) = \Sigma^* \},$ $A\varepsilon_{\mathsf{CFG}} = \{ \langle G \rangle \mid \varepsilon \in L(G) \},$ $\{\langle M, k \rangle \mid \exists x \ (M(x) \ \text{halts in} \le k \ \text{steps})\},$ $\{\langle M, k \rangle \mid \exists x \ (M(x) \ \text{runs for} \le k \ \text{steps})\}$
- (Deciders)
- $INFINITE_{DFA}$: "On *n*-state DFA $\langle A \rangle$: const. DFA *B* that lack A all words of length $\geq n$; const. DFA C s.t. $L(C) = L(A) \cap L(B)$; if $L(C) \neq \emptyset$ (via E_{DFA}) **(A)**; O/W,
- $\{\langle D \rangle \mid \not \exists w \in L(D): \#_1(w) \text{ is odd}\}$: "On $\langle D \rangle$: const. DFA A s.t. $L(A) = \{w \mid \#_1(w) \text{ is odd}\}$; const. DFA B s.t. $L(B) = L(D) \cap L(A)$; if $L(B) = \emptyset$ (via E_{DFA}) (A); O/W,
- $\{\langle R,S\rangle\mid R,S \text{ are regex}, L(R)\subseteq L(S)\}$: "On $\langle R,S\rangle$: const. DFA D s.t. $L(D) = L(R) \cap \overline{L(S)}$; if $L(D) = \emptyset$ (via E_{DFA}), **(A)**; O/W, \mathbb{R} "
- $\{\langle D_{\mathsf{DFA}}, R_{\mathsf{REX}} \rangle \mid L(D) = L(R)\}$: "On $\langle D, R \rangle$: convert Rto DFA D_R ; if $L(D) = L(D_R)$ (via EQ_{DFA}), \triangle ; O/W, \mathbb{R} " $\{\langle D_{\mathsf{DFA}}\rangle \mid L(D) = (L(D))^{\mathcal{R}}\}$: "On $\langle D\rangle$: const. DFA $D^{\mathcal{R}}$ s.t. $L(D^{\mathcal{R}}) = (L(D))^{\mathcal{R}}$; if $L(D) = L(D^{\mathcal{R}})$ (via EQ_{DFA}), A: O/W. R" $\{\langle M,k \rangle \mid \exists x \ (M(x) \ \mathrm{runs} \ \mathrm{for} \geq k \ \mathrm{steps})\}$: "On $\langle M,k \rangle$:
- (foreach w s.t. $|w| \leq k+1$: if M(w) not halt within ksteps, **(A)**); O/W, R"
- (not CFL) $\{a^i b^j c^k \mid 0 \le i \le j \le k\}, \{a^n b^n c^n \mid n \in \mathbb{N}\},$ $\{ww \mid w \in \{a,b\}^*\}, \{a^{n^2} \mid n \geq 0\},\$ $\{w \in \{a, b, c\}^* \mid \#_a(w) = \#_b(w) = \#_c(w)\},$ $\{a^p \mid p \text{ is prime}\}, L = \{ww^{\mathcal{R}}w : w \in \{a, b\}^*\}$

Mapping Reduction: $A \leq_{\mathrm{m}} B$ if $\exists f: \Sigma^* o \Sigma^*: \forall w \in \Sigma^*, \, w \in A \iff f(w) \in B$ and f is computable.

- $A_{TM} \leq_{\mathrm{m}} \{\langle M_{\mathsf{TM}} \rangle \mid L(M) = (L(M))^{\mathcal{R}}\};$ $f(\langle M, w \rangle) = \langle M' \rangle$, where M' = "On x, if $x \notin \{01, 10\}$, \mathbb{R} ; if x = 01, return M(x); if x = 10, \triangle ;"
- $A_{TM} \leq_{\mathrm{m}} L = \{\langle \underbrace{M}_{\mathsf{TM}}, \underbrace{D}_{\mathsf{DEA}} \rangle \mid L(M) = L(D)\};$ $f(\langle M, w \rangle) = \langle M', D \rangle$, where M' ="On x: if x = w return
- M(x); O/W, \mathbb{R} ;" D is DFA s.t. $L(D) = \{w\}$.
- $A \leq_m HALT_{TM}$; $f(w) = \langle M, \varepsilon \rangle$, where M ="On x: if $w \in A$, halt; if $w \notin A$, loop;"
- $A_{TM} \leq_{\mathrm{m}} CF_{\mathsf{TM}} = \{ \langle M \rangle \mid L(M) \text{ is CFL} \};$ $f(\langle M, w \rangle) = \langle N \rangle$, where N = "On x: if $x = a^n b^n c^n$, \triangle ; O/W, return M(w);"
- $A \leq_{\mathrm{m}} B = \{0w : w \in A\} \cup \{1w : w \notin A\}; f(w) = 0w.$
- $E_{\mathrm{TM}} \leq_{\mathrm{m}} \mathrm{USELESS_{\mathrm{TM}}}; \; f(\langle M \rangle) = \langle M, q_{m{eta}}
 angle$

- $A_{\mathrm{TM}} \leq_{\mathrm{m}} EQ_{\mathrm{TM}}; \quad f(\langle M, w \rangle) = \langle M_1, M_2 \rangle, \text{ where } M_1 =$ "**A** all"; $M_2 =$ "On x: return M(w);"
- $A_{
 m TM} \leq_{
 m m} \overline{EQ_{
 m TM}}; \quad f(\langle M,w
 angle) = \langle M_1,M_2
 angle$, where $M_1 =$ " $\mathbb R$ all"; $M_2=$ "On x: return M(w);"
- $ALL_{\mathrm{CFG}} \leq_{\mathrm{m}} EQ_{\mathrm{CFG}}; f(\langle G \rangle) = \langle G, H \rangle, \text{ s.t. } L(H) = \Sigma^*.$
- $f(\langle M, w \rangle) = \langle M' \rangle$, where M' ="On x: if M(w) halts, make $|\langle M \rangle| + 1$ steps and then halt; O/W, loop"
- $A_{\text{TM}} \leq_{\text{m}} \{ \langle M \rangle \mid M \text{ is TM}, |L(M)| = 1 \};$ $f(\langle M, w \rangle) = \langle M' \rangle$, where M' ="On x: if $x = x_0$, return M(w); O/W, \mathbb{R} ;" (where $x_0 \in \Sigma^*$ is fixed).
- $\overline{A_{\rm TM}} \leq_{\rm m} E_{\rm TM}; \quad f(\langle M,w \rangle) = \langle M' \rangle$, where M' ="On x: if $x \neq w$, \mathbb{R} ; O/W, return M(w);"
- $\overline{\mathrm{HALT}_{\mathsf{TM}}} \leq_{\mathrm{m}} \{ \langle M_{\mathsf{TM}} \rangle : |L(M)| \leq 3 \};$ $f(\langle M, w \rangle) = \langle M' \rangle$, where M' ="On x: A if M(w) halts"
- $\text{HALT}_{\mathsf{TM}} \leq_{\mathrm{m}} \{ \langle M_{\mathsf{TM}} \rangle : |L(M)| \geq 3 \};$ $f(\langle M, w \rangle) = \langle M' \rangle$, where M' = "On x: $oldsymbol{\triangle}$ if M(w) halts" $\overline{\text{HALT}_{\mathsf{TM}}} \leq_{\text{m}} \{ \langle M_{\mathsf{TM}} \rangle : M \ \& \ \text{all even num.} \};$ $f(\langle M, w \rangle) = \langle M' \rangle$, where M' ="On x: \mathbb{R} if M(w) halts within |x|. O/W, \blacksquare " $\text{HALT}_{\text{TM}} \leq_{\text{m}} \{ \langle M_{TM} \rangle \mid \exists \ x : M(x) \text{ halts in } > |\langle M \rangle| \text{ steps} \}$

 $f(\langle M,w \rangle) = \langle M' \rangle$, where M' ="On x: $oldsymbol{\triangle}$ if M(w) halts"

- $\overline{\mathrm{HALT}_{\mathsf{TM}}} \leq_{\mathrm{m}} \{ \langle M_{\mathsf{TM}} \rangle : L(M) \text{ is infinite} \};$ $f(\langle M,w
 angle)=\langle M'
 angle$, where M'= "On x: $\hbox{$\Bbb R$}$ if M(w) halts within |x| steps. O/W, \blacksquare " $\text{HALT}_{\mathsf{TM}} \leq_{\mathrm{m}} \{ \langle M_1, M_2 \rangle : \varepsilon \in L(M_1) \cup L(M_2) \};$
 - $f(\langle M, w \rangle) = \langle M', M' \rangle$, where M' ="On x: A if M(w)halts" $\mathrm{HALT}_{\mathsf{TM}} \leq_{\mathrm{m}} \overline{E_{\mathsf{TM}}}; \quad f(\langle M, w \rangle) = \langle M' \rangle, \text{ where } M' = 0$ "On x: if $x \neq w$ \mathbb{R} ; else, \triangle if M(w) halts"

$\mathbf{P} = \bigcup_{k \in \mathbb{N}} \mathsf{TIME}(n^k) \subseteq \mathbf{NP} = \bigcup_{k \in \mathbb{N}} \mathsf{NTIME}(n^k) = \{L \mid L \text{ is decidable by a PT verifier}\} \supseteq \mathbf{NP\text{-complete}} = \{B \mid B \in \mathsf{NP}, \forall A \in \mathsf{NP}, A \leq_{\mathsf{P}} B\}.$

- ((Running time) decider M is a f(n)-time TM.) $f: \mathbb{N} \to \mathbb{N}$, where f(n) is the max. num. of steps that DTM (or NTM) M takes on any n-length input (and any branch of any n-length input. resp.).
- $\mathsf{TIME}(t(n)) = \{L \mid L \text{ is dec. by } O(t(n)) \text{ DTM}\}.$
- $\mathsf{NTIME}(t(n)) = \{L \mid L \text{ is dec. by } O(t(n)) \text{ NTM}\}.$
- (verifier for L) TM V s.t. $L = \{w \mid \exists c : V(\langle w, c \rangle) = \mathbf{A}\}$; (certificate for $w \in L$) str. c s.t. $V(\langle w, c \rangle) = \mathbf{A}$.
- $f: \Sigma^* \to \Sigma^*$ is **PT computable** if there exists a PT TM M s.t. for every $w \in \Sigma^*$, M halts with f(w) on its tape.
- If $A \leq_{\mathbf{P}} B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$.
- If $A \leq_{\mathbf{P}} B$ and $B \leq_{\mathbf{P}} A$, then A and B are **PT equivalent**, denoted $A \equiv_P B$. \equiv_P is an equiv.
- relation on NP. $P \setminus \{\emptyset, \Sigma^*\}$ is an equiv. class of \equiv_P . CLIQUE, SUBSET-SUM, SAT, 3SAT, COVER, HAMPATH, UHAMATH, $3COLOR \in NP$ -complete. $\emptyset, \Sigma^* \notin NP$ -complete.
- If $B \in NP$ -complete and $B \in P$, then P = NP.
- If $B \in \text{NPC}$ and $C \in \text{NP}$ s.t. $B \leq_{\text{P}} C$, then $C \in \text{NPC}$. If P = NP, then $\forall A \in P \setminus \{\emptyset, \Sigma^*\}, \ A \in NP$ -complete.

Polytime Reduction: $A \leq_{\mathrm{P}} B$ if $\exists f: \Sigma^* o \Sigma^*: \forall w \in \Sigma^*, \, w \in A \iff f(w) \in B$ and f is polytime computable.

- SAT $\leq_{\mathbf{P}}$ DOUBLE-SAT; $f(\phi) = \phi \wedge (x \vee \neg x)$
- $3SAT \leq_P 4SAT$; $f(\phi) = \phi'$, where ϕ' is obtained from the CNF ϕ by adding a new var. \boldsymbol{x} to each clause, and adding a new clause $(\neg x \lor \neg x \lor \neg x \lor \neg x)$.
- $SUBSET\text{-}SUM \leq_{P} SET\text{-}PARTITION;$
- $f(\langle x_1,\ldots,x_m,t
 angle)=\langle x_1,\ldots,x_m,S-2t
 angle$, where S sum of x_1, \ldots, x_m , and t is the target subset-sum.
- $3COLOR \leq_{\operatorname{P}} 3COLOR; f(\langle G \rangle) = \langle G' \rangle, \ G' = G \cup K_4$
- $HAM-PATH \leq_P 2HAM-PATH;$ $f(\langle G, s, t \rangle) = \langle G', s', t' \rangle$, where $V'=V\cup\{s',t',a,b,c,d\},$ $E' = E \cup \{(s',a),\, (a,b),\, (b,s)\} \cup \{(s',b),\, (b,a),\, (a,s)\}$ $\cup \{(t,c),\, (c,d),\, (d,t')\} \cup \{(t,d),\, (d,c),\, (c,t')\}.$
- $\mathbf{CLIQUE}_k \leq_{\mathbf{P}} \mathbf{HALF\text{-}CLIQUE};$
 - $f(\langle G=(V,E),k\rangle)=\langle G'=(V',E')\rangle$, if $k=\frac{|V|}{2}$, E=E'V' = V. if $k > \frac{|V|}{2}$, $V' = V \cup \{j = 2k - |V| \text{ new nodes}\}$.
 - if $k < \frac{|V|}{2}$, $V' = V \cup \{j = |V| 2k \text{ new nodes}\}$ and
 - UHAMPATH $\leq_{\mathbf{P}} \mathbf{PATH}_{\geq k}$; $f(\langle G, a, b \rangle) = \langle G, a, b, k = |V(G)| - 1 \rangle$

- $VERTEX-COVER \leq_{p} CLIQUE;$ $f(\langle G, k \rangle) = \langle G^{\complement} = (V, E^{\complement}), |V| - k
 angle$
- $CLIQUE_k \leq_P \{\langle G, t \rangle : G \text{ has } 2t\text{-clique}\};$
- $f(\langle G, k \rangle) = \langle G', t = \lceil k/2 \rceil \rangle$, G' = G if k is even; $G' = G \cup \{v\}$ (v connected to all G nodes) if k is odd.
- $\mathrm{CLIQUE}_k \leq_{\mathrm{P}} \mathrm{CLIQUE}_k; f(\langle G, k \rangle) = \langle G', k+2 \rangle, \text{ where }$ $G' = G \cup \{v_{n+1}, v_{n+2}\}$ and v_{n+1}, v_{n+2} are con. to all G
- CLIQUE < P INDEP-SET; SET-COVER < COVER; $3SAT \leq_P SET-SPLITTING;$
 - $INDEPENDENT-SET <_{P} COVER$

Counterexamples

- $A \leq_{\mathrm{m}} B$ and $B \in \mathrm{REG}$, but, $A \notin \mathrm{REG}$: $A = \{0^n 1^n \mid n \ge 0\}, B = \{1\}, f : A \to B,$ $f(w) = egin{cases} 1 & ext{if } w \in A \ 0 & ext{if } w
 otin A \end{cases}$
- $L \in \mathrm{CFL} \; \mathrm{but} \; \overline{L}
 otin \mathrm{CFL}
 vert: \quad L = \{x \; | \; \forall w \in \Sigma^*, x
 eq ww\},$ $\overline{L} = \{ww \mid w \in \Sigma^*\}.$
- $L_1, L_2 \in \text{CFL}$ but $L_1 \cap L_2 \notin \text{CFL}$: $L_1 = \{a^n b^n c^m\}$, $L_2 = \{a^m b^n c^n\}, L_1 \cap L_2 = \{a^n b^n c^n\}.$
- $L_1 \in \mathrm{CFL}, L_2$ is infinite, but $L_1 \setminus L_2 \notin \mathrm{REG}: \quad L_1 = \Sigma^*$, $L_2 = \{a^n b^n \mid n \geq 0\}, \, L_1 \setminus L_2 = \{a^m b^n \mid m \neq n\}.$
- $L_1, L_2 \in \mathrm{REG}, \, L_1 \not\subset L_2, \, L_2 \not\subset L_1$, but, $(L_1 \cup L_2)^* = L_1^* \cup L_2^*: \quad L_1 = \{\mathtt{a},\mathtt{b},\mathtt{ab}\}, \, L_2 = \{\mathtt{a},\mathtt{b},\mathtt{ba}\}$
- $L_1 \in \text{REG}, L_2 \notin \text{REG}, \text{ but, } L_1 \cap L_2 \in \text{REG}, \text{ and }$ $L_1 \cup L_2 \in \mathrm{REG}: \quad L_1 = L(\mathtt{a}^*\mathtt{b}^*), \, L_2 = \{\mathtt{a}^n\mathtt{b}^n \mid n \geq 0\}.$
- $L_1, L_2, L_3, \dots \in \mathrm{REG}$, but, $\bigcup_{i=1}^\infty L_i
 ot\in \mathrm{REG}:$ $L_i = \{\mathtt{a}^i\mathtt{b}^i\}, \, igcup_{i=1}^\infty L_i = \{\mathtt{a}^n\mathtt{b}^n \mid n \geq 0\}.$
- $L_1 \cdot L_2 \in \mathrm{REG}$, but $L_1 \notin \mathrm{REG}$: $L_1 = \{\mathtt{a}^n \mathtt{b}^n \mid n \geq 0\}$,
- $L_2 \in \mathrm{CFL}$, and $L_1 \subseteq L_2$, but $L_1
 otin \mathrm{CFL}: \quad \Sigma = \{a,b,c\},$ $L_1=\{a^nb^nc^n\mid n\geq 0\}$, $L_2=\Sigma^*$.
- $L_1, L_2 \in \mathrm{DECIDABLE}$, and $L_1 \subseteq L \subseteq L_2$, but $L \in \mathrm{UNDECIDABLE}: \quad L_1 = \emptyset, \, L_2 = \Sigma^*, \, L \text{ is some}$ undecidable language over Σ .
- $L_1 \in \text{REG}, L_2 \notin \text{CFL}, \text{ but } L_1 \cap L_2 \in \text{CFL}: L_1 = \{\varepsilon\},\$ $L_2 = \{a^n b^n c^n \mid n \ge 0\}.$
- $L^* \in \mathrm{REG}\text{, but }L \not\in \mathrm{REG}: \quad L = \{a^p \mid p \text{ is prime}\}\text{,}$ $L^* = \Sigma^* \setminus \{a\}.$
- $A \nleq_m \overline{A}: A = A_{TM} \in RECOGNIZABLE,$ $\overline{A} = \overline{A_{TM}} \notin \text{RECOG}.$
- $A \notin DEC., A \leq_{\mathrm{m}} \overline{A}:$