<u>1.5 Hours</u>

THE UNIVERSITY OF MANCHESTER

Fur	ndan	nental	ls of	Finar	nce

Date?

Time?

Answer **ALL** questions in **Section A** and **Section B** (choose only one answer for each question and use the multiple choice answer sheet)

And answer only **ONE** question in **Section C** (use the answer book)

Electronic calculators may be used, provided that they cannot store text

Formula sheet attached

Section A (40%)

Answer ALL questions in this section. Choose only ONE answer for each question and use the multiple choice answer sheet. Each question in this section counts for 4 marks.

- 1. The process of identifying which investment projects a company should undertake is known as
- A) Capital Asset Pricing Model
- B) Capital budgeting
- C) Capital gains
- D) Market capitalisation
- E) None of the above
- 2. An annuity with an infinite life, providing continual annual cash flow is known as
- A) Financial futures
- B) Put option
- C) Infinity
- D) Perpetuity
- E) None of the above
- 3. The amount of time required for a company to recover its initial investment in a project, as calculated from cash inflows is known as
- A) Time to maturity
- B) Average collection period
- C) Payback period
- D) Average payment period
- E) None of the above
- 4. Which of the following ratios measure the speed with which various accounts are converted into sales or cash inflows or outflows?
- A) Sharpe ratio
- B) Liquidity ratios
- C) Activity ratios
- D) Profitability ratios
- E) None of the above
- 5. A feature included in corporate bond issues that gives the issuer the opportunity to repurchase bonds at a stated price prior to maturity is known as
- A) Call feature
- B) Put option
- C) Restrictive covenants
- D) Conversion feature
- E) None of the above

- 6. The average compound return earned per year over a multi-year period is known as which of the following?
- A) Bond yield
- B) Geometric average return
- C) Arithmetic average return
- D) Internal rate of return
- E) None of the above
- 7. A plot of the yields on Treasury notes and bonds relative to maturity is known as which of the following?
- A) Security Market Line
- B) Zero coupon bonds
- C) Yield to maturity
- D) Treasury yield curve
- E) None of the above
- 8. A symmetric, bell-shaped frequency distribution that is completely defined by its mean and standard deviation is known as which of the following?
- A) Variance
- B) Wealth distribution
- C) Normal distribution
- D) Geometric averages
- E) None of the above
- 9. The relation between expected returns and beta is depicted by which of the following?
- A) SML
- B) HML
- C) AOL
- D) IRR
- E) None of the above
- 10. Bonds that are rated below investment grade are known as
- A) Foreign bond
- B) Junk bond
- C) Euro bonds
- D) Treasury bond
- E) None of the above

Section B (40%)

Answer ALL questions in this section. Choose only ONE answer for each question and use the multiple choice answer sheet. Each question in this section counts for 4 marks.

11. Assume the following information for five projects that last for 1 year:

Project	Initial outlay	Cash flow at the end of 1	Cost of capital (%)
S	(£)	year	Cost of Capital (78)
1	367,000	425,000	12
2	254,000	279,000	7.5
3	105,000	125,000	15
4	560,000	610,000	6
5	50,000	56,000	9

Which project has the highest NPV?

- A) Project 5
- B) Project 4
- C) Project 3
- D) Project 2
- E) Project 1
- 12. Which project in Question 11 has the highest IRR?
- A) Project 5
- B) Project 4
- C) Project 3
- D) Project 2
- E) Project 1
- 13. Assume that the UK short-term government bond yield is 5.12% and the FTSE All Shares Index return is 6.95%.

Stock	А	В	С	D	E
Actual returns					
(%)	9.56	7.91	7.21	9.41	6.85
CAPM beta	1.15	1.6	0.75	2.45	0.75

Which of the following choice is correct?

- A) Stocks A and C have actual returns that are equal to their expected returns
- B) Stocks C and E have actual returns below their expected returns
- C) Stocks B and D have actual returns below their expected returns
- D) All five stocks have actual returns that are equal to their expected returns
- E) None of the above

14. The annual returns of three stocks over a 5-year period are given below:

Year	Stock X	Stock Y	Stock Z
2001	7%	6%	-4%
2002	-2%	-7%	15%
2003	14%	16%	-10%
2004	-4%	-2%	24%
2005	6%	8%	-2%

The weights of Stocks X, Y, and Z in three portfolios are given below:

Portfolios	XY	YZ	XZ	XYZ
Stock X	0.7		0.7	0.6
Stock Y	0.3	0.6		0.2
Stock Z		0.4	0.3	0.2

Which portfolio has highest average return over the 5-year period?

- A) XYZ
- B) XZ
- C) YZ
- D) XY
- E) All four portfolios are equal

15. Which portfolio has the highest return volatility over the 5-year period in Question 14?

- A) XYZ
- B) XZ
- C) YZ
- D) XY

E) All four portfolios are equal

16. Assuming that the UK short-term government bond yield is 4%, which portfolio has the highest excess return (average return minus risk free rate) per unit of total risk (standard deviation) over the 5-year period in Question 14?

- A) XYZ
- B) XZ
- C) YZ
- D) XY

E) All four portfolios are equal

17. If Portfolio XYZ in Question 14 is adjusted so that it has equal weights in all three stocks over the 5-year period, which of the following choice is correct?

- A) The average return will be higher than the original Portfolio XYZ
- B) The average return will be lower than the original Portfolio XYZ
- C) The average return stays unchanged from the original Portfolio XYZ
- D) The return volatility will be higher than the original Portfolio XYZ
- E) None of the above

- 18. Over the next 5 years, the dividend of a company is expected to grow 15% per year. After that, the dividend growth of this company will decline to 4%. The company's last paid dividend is 20p per share and the current stock price is 450p per share. If the required return is assumed to be at a constant of 10%, what is the present value of the price of the stock at the end of the initial growth period?
- A) 432.95p
- B) 445.74p
- C) 450.62p
- D) 421.45p
- E) None of the above
- 19. What is the intrinsic value of the stock in Question 18?
- A) 520.91
- B) 547.44
- C) 565.21
- D) 581.76
- E) None of the above
- 20. Given the stock in Question 18, if we now assume that the required return is 10% over the next 5 years but will increase to 12% afterward, what is the intrinsic value of the stock?
- A) 439.20
- B) 446.52
- C) 451.36
- E) 461.51
- E) none of the above

Section C (20%)

Answer only ONE question from this section. Use the answer book. Each question in this section counts for 20 marks.

BMAN10552 Fundamentals of Finance Formula sheet

- 1. Future value: $FV = PV(1+r)^t$
- 2. Present value: $PV = \frac{FV}{(1+r)^t}$
- 3. Annuity: $PV = \frac{C\left[1 \frac{1}{(1+r)^n}\right]}{r}$
- 4. Perpetuity $PV = \frac{C}{r}$
- 5. Effective rate formula: $EAR = \left[1 + \frac{r}{m}\right]^m 1$
- 6. Net present value: NPV = –Initial outlay + $\sum_{t=1}^{n} \frac{CF_t}{(1+r)^t}$
- 7. Internal rate of return: 0 = -Initial outlay + $\sum_{t=1}^{n} \frac{CF_t}{(1+IRR)^t}$
- 8. Bond valuation: $V_0 = \sum_{t=1}^n \frac{coupon_t}{(1+r)^t} + \frac{principal}{(1+r)^n}$
- 9. Yield to maturity $V_0 = \sum_{t=1}^{n} \frac{coupon_t}{(1+YTM)^t} + \frac{principal}{(1+YTM)^n}$
- 10. Quadratic equation: $ax^2 + bx + c = 0$ $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- 11. Dividend growth model: $P_0 = \frac{D_1}{(r-g)}$ $D_1 = D_0(1+g)$
- 12. Two period growth model: $P_0 = \sum_{t=1}^{n} \frac{D_0 (1+g_1)^t}{(1+r_1)^t} + \frac{\frac{D_0 (1+g_1)^n (1+g_2)}{(r_2-g_2)}}{(1+r_1)^n}$
- 13. Stock return: $R_{t} = \frac{(P_{t} P_{t-1}) + D_{t}}{P_{t-1}}$
- 14. Variance: $\sigma_i^2 = \frac{\sum_{s=1}^n [R_{i,s} E(R_i)]^2}{(n-1)}$
- 15. Standard deviation: $\sigma_i = \sqrt{\sigma_i^2}$
- 16. CAPM: $E(R_i) = R_f + \beta (E(R_m) R_f)$