Министерство науки и высшего образования Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Отчет

по практической работе №3 «Применение Node-Red для построения КФС на основе технологий интернета вещей»

по дисциплине «Основы цифрового производства»

Выполнила: Осинина Т. С.

Факультет: СУиР

Группа: R33362

Преподаватель: Афанасьев М. Я.

Санкт-Петербург 2022

Оглавление

Часть 1. Предупреждение о погодных условиях	
Задание:	3
Ход работы	3
Задание 1	3
Задание 2	4
Задание 3	4
Задание 4	5
Часть 1. Изучение MQTT	6
Задание:	6
Задание 1	6
Задание 2	6
Задание 3	7
Задание 4	7
Задание 5	7

Часть 1. Предупреждение о погодных условиях

Задание:

Создать приложение в среде Node-Red для мониторинга погодных условий

Город	Выбранные	Диапазон	Диапазон
	погодные	влажности, <=%	скорости
	условия		ветра
			<= _M /c
Ust-Ilimsk	Snow	60 %	6 м/с

- 1. Создать флоу с анализом погодных условий
- 2. Отправить предупреждение о погодных условиях на электронную почту
- 3. Создать флоу с предупреждением о дожде, используя выбранный диапазон влажности
- 4. Создать флоу с предупреждением о ветре, используя выбранный диапазон скорости ветра

Ход работы

Рисунок 1. Анализ погодных условий и откладка

Задание 2

Current Weather Information

Рисунок 2. Письмо на почте о предупреждении погодных условий

Рисунок 3. Флоу с предупреждением о дожде, используя диапазон влажности

```
18.11.2022, 00:12:37 node: msg.payload
msg.payload: string[17]
"Snow ahead today!"

18.11.2022, 00:12:37 node: msg.payload
msg.payload: string[11]
"Rain Alert"
```

Рисунок 4. Окно отладки, результат программы о предупреждении о дожде

Рисунок 5. Флоу с предупреждением о ветре, используя диапазон скорости ветра

Рисунок 6. Отладка и письмо на почту с сообщением о безветренной погоде

Часть 1. Изучение MQTT

Задание:

- 1. Получение сообщения в виде JSON объекта через MQTT сервис
- 2. Использование switch node для анализа JSON объекта
- 3. Использование Change node для изменения или управлением message payload сообщения
- 4. Использование ноды rbe (отчет по исключению)
- 5. Масштабирование входных значений при помощи range node

Задание 1

Рисунок 7. Флоу с получением сообщения в виде JSON через MQTT сервис

Рисунок 8. Использование switch node для анализа JSON объекта

Задание 3

Рисунок 9. Использование блока Change для изменения сообщения

Задание 4

Рисунок 10. Флоу с использованием ноды rbe и вывод сообщений при значениях 6, 7, 10

Задание 5

Рисунок 11. Масштабирование входных значений при помощи range node

Вывод: в процессе выполнения лабораторной работы мы познакомились со средой Node – Red, создали приложение в среде Node-Red для мониторинга погодных условий. А также познакомились с MQTT сервисом.