- 1. Considere uma onda plana monocromática, linearmente polarizada segundo zz´ e a propagar-se no vazio segundo yy´.
- a) Obtenha todos os elementos do correspondente tensor de Maxwell.
- b) Imagine que a referida onda plana tem uma frequência angular $\omega=10^{10}~rad/s$ e incide normalmente numa superfície metálica ($\sigma=6\times10^7[\Omega.m]^{-1}$; $\varepsilon\sim\varepsilon_0=8,854\times\frac{10^{-12}F}{m}$; $\mu\sim\mu_0=4\pi\times10^{-7}~N/A^2$). Qual o comprimento de penetração da radiação no metal? (indique apenas as contas e explique o seu raciocínio).
- c) Qual a diferença de fase entre o campo magnético e o campo eléctrico no interior do metal?

Recorde:
$$T_{ij} = \varepsilon_0 \left(E_i E_j - \frac{1}{2} \delta_{ij} E^2 \right) + \frac{1}{\mu_0} \left(B_i B_j - \frac{1}{2} \delta_{ij} B^2 \right); \qquad k = k_1 + i k_2 \; ;$$

$$k_1 = \omega \sqrt{\frac{\varepsilon \mu}{2}} \left[\sqrt{1 + (\frac{\sigma}{\varepsilon \omega})^2} + 1 \right]^{\frac{1}{2}} \; ; \quad k_2 = \omega \sqrt{\frac{\varepsilon \mu}{2}} \left[\sqrt{1 + (\frac{\sigma}{\varepsilon \omega})^2} - 1 \right]^{\frac{1}{2}}$$

(6 valores)

2. a) Explique por que razão modos TEM não podem existir no interior num tubo oco de paredes perfeitamente condutoras.

<u>Pista</u>: considere um tubo orientado segundo zz´ e analise as implicações das leis de Gauss ($\nabla \cdot \vec{B} = 0$) e de Faraday ($\nabla \times \vec{E} + \dot{\vec{B}} = 0$) se $E_z = B_z = 0$).

b) Considere agora um modo TE propagando-se no interior do referido tubo, supondo que este é rectangular e tem uma secção transversal $a \times b$. A relação de dispersão deste modo é, nestas

condições, $k=\frac{1}{c}\sqrt{\omega^2-\omega_{mn}^2}$, com $\omega_{mn}=c\pi\sqrt{(\frac{m}{a})^2+(\frac{n}{b})^2}$. Quais as velocidades de fase e de grupo correspondentes? Como se comparam estas velocidades com c (a velocidade da luz no vazio)? (5 valores)

- 3. a) Explique como pode formular as equações de Maxwell em termos dos potenciais \vec{A} e φ .
- b) O que entende por liberdade de gauge?
- c) Considere os potenciais $\varphi=0$ e $\vec{A}=A_0\hat{y}\sin(kx-\omega t)$. Obtenha os campos \vec{E} e \vec{B} por eles gerados. (Recorde as eqs. de Maxwell: $\nabla\cdot\vec{E}=\frac{\rho}{\varepsilon_0}$, $\nabla\cdot\vec{B}=0$, $\nabla\times\vec{E}+\dot{\vec{B}}=0$, $\nabla\times\vec{B}-\frac{1}{c^2}\dot{\vec{E}}=\mu_0\vec{J}$)

(4 valores)

- 4. O fio representado na figura abaixo transporta uma corrente que cresce proporcionalmente ao quadrado do tempo, $I(t)=kt^2$.
- a) Calcule os potenciais retardados no ponto O.
- b) Obtenha o campo eléctrico em O.

$$\vec{A}(\vec{r},t) = \frac{\mu_0}{4\pi} \int \frac{\vec{j}(\vec{r'},t_R)}{\left[\vec{r}-\vec{r'}\right]} \ d^3r', \quad \varphi(\vec{r},t) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\vec{r'},t_R)}{\left[\vec{r}-\vec{r'}\right]} \ d^3r', \quad t_R = t - \frac{\left[\vec{r}-\vec{r'}\right]}{c}$$

(5 valores)