

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

الدورة الاستثنائية: 2017

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات، تقني رياضي

اختبار في مادة: العلوم الفيزيائية

المدة: 04 سا و30 د

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

يحتوي الموضوع الأول على 04 صفحات (من الصفحة 1 من 8 إلى الصفحة 4 من 8)

الجزء الأول: (14 نقطة)

التمرين الأول: (04 نقاط)

ho=30% يُستعمل نظير البلوتونيوم المُشع $rac{239}{94}Pu$ كوَقود مفاعل نووي لإنتاج الطاقة الكهربائية بمردود طاقوي من النيترونات. ho=30% وتحرير عدد ho=30% من النيترونات. ho=30% والنيوبيوم $rac{102}{41}Nb$ وتحرير عدد ho=30% من النيترونات. ho=30% الكناب المعادلة المُنمذجة لتفاعل الانشطار النووي الحادث، ثم احسب قيمة العدد ho=30%

- 2) تفاعل انشطار البلوتونيوم 239 هو تفاعل تسلسلي مغذى ذاتيا. فسر ذلك؟
 - 3) يمثل الشكل-1 مخطط الحصيلة الكتابية لهذا التحول النووي.
 - روی وی Δm_3 اگری من اس Δm_1 ، ک Δm_3 و الماذا تمثل کل من الم Δm_1 الماذا تمثل کل من المرازع من المرازع المرا
 - ب) اعتمادا على المخطط أوجد:
 - E_{l} لنواة البلوتونيوم E_{l} لنواة البلوتونيوم
 - الطاقة E_{Lib} المحررة عن انشطار نواة بلوتونيوم 239 بوحدة Mev .

- $\Delta m = 0.93119u$ هو $Nb^{102}Nb$ انواة النيوبيوم الكتلي لنواة النيوبيوم Nb^{102} هو النيوبيوم E_l والنيوبيوم 102.
- 4) احسب الطاقة الكهربائية التي ينتجها هذا المفاعل النووي عند استهلاك $_{1kg}$ من البلوتونيوم 239 مقدرة بوحدة الجول.

. $1 Mev = 1,6 \times 10^{-13} J$ ، $1 u = 931,5 Mev / c^2$ ، $N_A = 6,02 \times 10^{-23} mol^{-1}$: المعطيات

التمرين الثاني: (04 نقاط)

نحقق الدارة الكهربائية الموضحة في الشكل-2 باستعمال العناصر التالية:

 $E = 6 \ V$ مولد مثالي للتوتر قوته المحركة الكهريائية -

- وشيعة ذاتيتها L ومقاومتها الداخلية r.

- ناقل أومي مقاومته $\Omega=50$ ، قاطعة k وصمام ثنائي.

نغلق القاطعة لمدة زمنية كافية لإقامة التيار.

عند اللحظة t=0 نفتح القاطعة k. ما هي الظاهرة التي تحدث (1

كا اكتب عبارة الاستطاعة اللحظية P(t) للتحويل الطاقوي الحادث على P(t)مستوى الناقل الأومى R بدلالة R، I_0 (شدة التيار العظمى)، τ (ثابت الزمن للدارة) والزمن t

أ) برهن أنّ المماس للمنحنى البياني عند اللحظة t=0 يقطع

 \mathbf{L} استنتج قيمة كل من مقاومة الوشيعة \mathbf{r} وذاتيتها

6) أثبت أن زمن تناقص الاستطاعة الأعظمية المصروفة في الناقل الأومي R إلى النصف هو:
$$t_{1/2} = \frac{\tau}{2} \ln 2$$
 ، ثم أوجد قيمته.

 $P(t) = Ri^2(t)$ تذکیر:

 $^{\uparrow}P(10^{-2}W)$

10

الشكل _3

التمرين الثالث: (06 نقاط)

يتألف طريق من جزئين حيث:

الجزء AB: ربع دائرة شاقولي أملس

. O ومركزها r ومركزها (الاحتكاكات مهملة)

الجزء BC: طريق أفقي خشن (الاحتكاكات تكافئ

قوة ثابتة في الشدة ومعاكسة لاتجاه الحركة) طوله

BC = 1m

M انطلاقا من نقطة m=0.5kg انترك كرية نعتبرها نقطية بدون سرعة ابتدائية كتلتها m=0.5kg انطلاقا من نقطة من المسار AB، بحيث يشكل شعاع موضعها \overline{OM} زاوية قدرها Θ مع شاقول النقطة O كما هو موضع في الشكل -4.

- AB مثل القوى الخارجية المؤثرة على الكرية في الجزء AB .
- (B) بتطبیق مبدأ انحفاظ الطاقة للجملة (کریة) بین الموضعین M و M ، أوجد عبارة V_B^2 (مربع السرعة عند M) بدلالة θ .
 - 3) بتطبيق القانون الثاني لنيوتن، ادرس حركة مركز عطالة الكرية وحدّد طبيعتها على الجزء BC.
 - $v_c^2 = a \cos\theta + b$: بيّن أنّ عبارة $v_c^2 = a \cos\theta + b$ بيّن أنّ عبارة $v_c^2 = a \cos\theta + b$ بيّن أنّ عبارة عبارتيهما.

 \mathbf{II} قمنا بتغيير قيمة الزاوية θ بتغيير موضع الكرية \mathbf{M} ، وباستعمال برنامج مناسب تمكنًا من تحديد سرعة وصول الكرية للموضع \mathbf{C} فتحصلنا على البيان الموضح في الشكل $\mathbf{-5}$.

- 1) اكتب معادلة البيان.
- 2) باستعمال البيان والعلاقة (I-4) اوجد كلا من:
 - r نصف قطر المسار.
 - f شدة قوة الاحتكاك.

 $v_c^2(m^2/s^2)$

C حدّد أدنى زاوية θ تمكن الكرة من الوصول الى النقطة

III- نترك الكرية من النقطة A لحالها دون سرعة ابتدائية لتصل إلى النقطة C فتصطدم بنهاية نابض مرن مهمل الكتلة، حلقاته غير متلاصقة، ثابت مرونته $K = 200N.m^{-1}$ ، لتنعدم سرعتها عند النقطة C بعد قطعها المسافة C في الاتجاه الموجب لمحور الحركة. باعتبار مبدأ الأزمنة لحظة وصول الكرية للنقطة C ومبدأ الفواصل النقطة C. (الاحتكاكات مهملة على الجزء C).

- 1) حدّد السرعة التي تصل بها الكرية للموضع C.
- 2) مثّل القوى الخارجية المؤثرة على الكرية أثناء الانتقال CD، وماهي القوة المسؤولة عن انعدام سرعتها.

- X_0 احسب المسافة (3
- 1.4) بتطبيق القانون الثاني لنيوتن على الكرية خلال الانتقال CD اكتب المعادلة التفاضلية للحركة بدلالة الفاصلة (x(t).
 - $(x(t) = A\cos(\omega_0 t + \varphi))$ علما أن حل المعادلة التفاضلية السابقة من الشكل: $(x(t) = A\cos(\omega_0 t + \varphi))$ علما أن حل المعادلة التفاضلية السابقة من الشكل: $(x(t) = A\cos(\omega_0 t + \varphi))$ علما أن حل المعادلة التفاضلية السابقة من الشكل: $(x(t) = A\cos(\omega_0 t + \varphi))$ علما أن حل المعادلة التفاضلية السابقة من الشكل: $(x(t) = A\cos(\omega_0 t + \varphi))$

يعطى: g=10N/Kg

الجزء الثاني: (06 نقاط)

التمرين التجريبي: (06 نقاط)

. $Ke = 10^{-14}$: حيث عند الدرجة عند الدرجة عند المحاليل مأخوذة عند الدرجة

نعاير على التوالي حجما V_1 =30mL محلول حمض كلور الهيدروجين ذي التركيز المولي ، c_1 ثم حجما V_1 =30mL من محلول حمض الميثانويك HCOOH تركيزه المولي c_2 ، بواسطة محلول هيدروكسيد الصوديوم V_2 =20mL . c_b = 0,1mol/L تركيزه المولى $(Na^+(aq) + OH^-(aq))$

نتابع تطور pH الوسط التفاعلي بواسطة جهاز الـ pH متر بدلالة حجم الاساس المضاف V_b من السحاحة، فتحصلنا على البيانين (1) و (2) المُمثلين في الشكل -6.

- 1) ضع بروتوكولا تجريبيا للمعايرة باستعمال رسم تخطيطي.
 - 2) اكتب معادلة تفاعل المعايرة لكل حمض.
- 3) حدّد إحداثيات نقطة التكافؤ لكل منحنى ثم انسب كل منحنى للحمض الموافق له مع التعليل.
 - c_2 استنتج قیمة کل من c_1 و c_2
 - 5) حدّد ثابت الحموضة pKa للثنائية (THCOOH/HCOO).
 - 6) احسب ثابت التوازن K لتفاعل معايرة حمض الميثانويك.

ماذا تستنج؟

7) نريد استعمال كاشفا ملونا في كل معايرة، ما هو الكاشف المناسب لكل معايرة من بين الكواشف التالية؟

					/			ئىف
					/			
₩								
₩								
Ш								
▦			₩		/			
▦		ऻऻऻ((2) #	\nearrow				
			-					
	_		(1)	,	/			
			(1)	${ \mathscr{L}}$			#	
Н							V(mI)	
							$V_b(mL)$	
	5				الشك		 	

الكاشف الملون	مجال التغير اللوني
الهليانتين	3,1 - 4,4
ازرق البروموتيمول	6,2 - 7,6
فينول فتاليين	8,0 - 10,0

انتهى الموضوع الأول

 \uparrow_{pH}

الموضوع الثاني

يحتوي الموضوع الثاني على 4 صفحات (من الصفحة 5 من 8 إلى الصفحة 8 من 8)

الجزء الأول: (14 نقطة)

التمرين الأول: (04 نقاط)

في كامل التمرين، نهمل قوى الاحتكاك وتأثير الهواء.

في لعبة تستهوي الأطفال، قذف لاعب كرة مضرب صغيرة نعتبرها نقطية، كتلتها m=45g من النقطة A لكي تسقط في الحفرة عند النقطة A، مرورا بالمواضع A ، A ، مع العلم أن الموضع A يقع على نفس الاستقامة الأفقية مع الموضعين A و A ، والمسلك B عبارة عن نصف دائرة مركزها A ونصف قطرها A و A . أنظر (الشكل A).

C الحالة الأولى: محاولة فاشلة لم تتجاوز فيها الكرة النقطة -1

- أوجد سرعة قذف الكرة عند النقطة A بتطبيق مبدأ انحفاظ الطاقة.

 $v_D = 6,71 \ m.s^{-1}$ بسرعة D بسرعة الكرة النقطة المحاولة أخرى، بلغت الكرة الكرة المحاولة أخرى، بلغت الكرة الكرة الكرة المحاولة أخرى، بلغت الكرة ال

أ) ما هي قيمة السرعة V_A التي قذف بها اللاعب الكرة ؟

ب بيِّن أن عبارة شدة فعل المسلك \overline{R} على الكرة عند النقطة D تعطى بالعبارة: $R=m(\frac{v_A^2}{r}-5g)$ ، ثم احسب قيمتها.

 $x=2v_{D}\cdot\sqrt{rac{r}{g}}$ بيّن أن فاصلة ارتطام الكرة بالمستوى الأفقي المار بالنقطة A تعطى بالعبارة: ج

د) هل وُقِق اللاعب في رميته أم لا ؟ برّر إجابتك.

AB = 2,00m ، AN = 1,00m ، $g = 10m.s^{-2}$ المعطيات:

التمرين الثاني: (04 نقاط)

حدثت تطورات كبيرة وهامة في مجال الطب بفضل تقنية يُوَظَّفُ فيها النشاط الإشعاعي تتمثل في إدخال مواد نشطة إشعاعياً في جسم المريض تُسمى بالرسّامات، تُستَعمل في معالجة الأورام السرطانية.

يتم اختيار هذه الرسّامات لتناقص نشاطها بسرعة. تُعْرَف هذه الطريقة بالعلاج بالأشعة (الطب التصويري).

يتلخص مبدأ هذه التقنية في قصف الورم بواسطة الإشعاع الصادر عن المادة المشعة. من بين المواد المشعة المستعملة نظير الكوبالت $eta=0.13~am^{-1}$. ثابت التفكك له $eta=0.13~am^{-1}$

. عرّف النشاط الإشعاعي eta^- واكتب معادلة تفكك نواة الكوبالت ^{60}Co علماً أن النواة البنت تنتج في حالة مثارة.

$$25Mn$$
 $_{26}Fe$ $_{27}Co$ $_{28}Ni$ $_{29}Cu$ $_{30}Zn$ $_{30}Zn$ $_{26}Fe$ $_{27}Co$ $_{28}Ni$ $_{29}Cu$ $_{30}Zn$

- $m_0 = 2\mu g$ يَسْتَقْبِل مخبرًا للتحاليل الطبية عيّنة من الكوبالت 60 كتلتها (2
 - . (t=0) احسب عدد الأنوية الابتدائية N_0 في العيّنة لحظة استقبالها
- t والزمن λ ، N_0 بدلالة و λ ، N_0 والزمن λ ، والزمن λ والزمن λ .
 - ج) يُعَرَّفُ النشاط A لعينة مشعة بعدد التفككات ΔN الحادثة

خلال مدة زمنية $\Delta t=1s$ عبّر عن قانون النشاط (A(t) بدلالة ثابت التفكك A والنشاط الابتدائي A والزمن t وبيّن أن:

$$(t$$
 كتلة العيّنة في اللحظة $m(t)$ $\frac{A(t)}{A_0} = \frac{m(t)}{m_0} = e^{-\lambda t}$

$$\frac{A(t)}{A_0}$$
نرسم بالاعتماد على برنامج ملائم بيان النسبة (3

بدلالة الزمن t (الشكل–2).

- أ) عرّف زمن نصف العمر $t_{1/2}$ ثم استنتج قيمته بيانياً.
- ب) تأكد من أن العيّنة المستقبلة في مخبر التحاليل الطبية هي للنظير $^{60}_{27}Co$
 - t_{ν_2} احسب قيمة النشاط A في اللحظة ج

$$N_A = 6.023 \times 10^{23} mo\ell^{-1}$$
 يعظى:

التمرين الثالث: (06 نقاط)

أثناء المتابعة الزمنية لتطور التحول الكيميائي التام بين معدن الزنك ومحلولا لحمض الآزوت HNO_3 المنمذج بالتفاعل الكيميائي الذي معادلته:

الشكل-3

$$Zn(s) + 2H_3O^+(aq) = Zn^{2+}(aq) + H_2(g) + 2H_2O(l)$$

ألقينا كتلة قدرها m_{0} من مسحوق الزنك في دورق به حجما V=75,0~m من المحلول الحمضي ذي التركيز المولي V=75,0~m التركيب التجريبي الموضح **بالشكل**-3.

$$y = \frac{\left[Zn^{2+}\right]}{\left[H_3O^+\right]}$$
 النسبة $y = \frac{\left[Zn^{2+}\right]}{\left[H_3O^+\right]}$

) بالاستعانة بجدول التقدم، اكتب عبارة v بدلالة v و v و v

ب) باستغلال المعطيات أوجد مع التعليل كل من المتفاعل المُحِد والتركيز المولي c وزمن نصف التفاعل c.

الشكل - الشكل - الشكل -
$$v(t) = \frac{cV}{\left(1+2y(t)\right)^2} \times \frac{dy(t)}{dt}$$
 عند قيمتها عند $v(t) = \frac{cV}{\left(1+2y(t)\right)^2}$ عند اللحظية للتفاعل هي:

- $\cdot y = \frac{1}{2}$ أعط التركيب المولي للمزيج التفاعلي من أجل
 - 2) اشرح ماذا يحدث في غياب الحمام المائي.

 $\cdot M(Zn) = 65 \ g.mol^{-1}$ للزنك الكتلة المولية للزنك

الجزء الثاني: (06 نقاط)

التمرين التجريبي: (06 نقاط)

Iحقّق فوج من التلاميذ الدارة الكهربائية المبينة في (الشكل-5).

التجربة الأولى (الوشيعة بداخلها نواة حديدية): بعد غلق القاطعة K لمدة طويلة، i = f(t) على البيان f(t) على البيان f(t) الممثل لتغيرات شدة التيار بدلالة الزمن.

التجربة الثانية (الوشيعة بدون النواة الحديدية): أُعيدت نفس التجربة السابقة i = g(t) النواة الحديدية، فتمكن التلاميذ من الحصول على البيان i = g(t) أنظر (الشكل-6).

- 1) حدّد المنحنى الموافق لكل حالة مع التعليل.
 - 2.أ) احسب قيمة مقاومة الوشيعة المستعملة.
- ب) استنتج قيمة ذاتية الوشيعة في كل من التجربتين.
- 3) احسب قيمة الطاقة الأعظمية المخزنة في الوشيعة في كل من التجربتين. برر الاختلاف بين القيمتين.

تم ربط وشيعة أخرى على التسلسل مع مكثفة تحمل شحنة قدرها $q=2.5~\mu C$ ، مع العلم أن هذه المكثفة شُحِنت $-{
m II}$

كليا تحت توتر كهربائي $U_0 = 5\,V$ في الدارة الموضحة في (الشكل-7).

 $\mathscr{E}(t)$ يمثل البيان الموضح في (الشكل - 8) تغيرات الطاقة المخزنة داخل المكثفة بدلالة الزمن.

1) احسب سعة المكثفة.

2-أ) حدّد نمط الاهتزازات الملاحظ، علّل.

- ب) استنتج قيمة ذاتية الوشيعة المستعملة في الدارة .
- ج) هل هذه الوشيعة مماثلة لتلك المستعملة سابقا؟ برر إجابتك.

 $\sqrt{10}=\pi$ یعظی:

الشكل-7

انتهى الموضوع الثاني

ة.	العلام	عناصر إجابة (الموضوع الأول)
مجموع	مجزأة	الموصوع الأول
		الجزء الأول: (14 نقطة):
	0,25	التمرين الأول: (04 نقاط):
0,5	0,25	$^{239}_{94}Pu + ^1_0n \rightarrow ^{135}_{53}I + ^{102}_{41}Nb + a^1_0n$ كتابة معادلة التفاعل -1
		تعيين العدد a : بتطبيق قانون انحفاظ العدد الكتلي :
		$\sum A_i = \sum A_f \Rightarrow 239 + 1 = 153 + 102 + a \Rightarrow a = 3$
		2- تفسير العبارة: تفاعل تسلسلي مغذى ذاتيا: تفاعل انشطار نووي مغذى ذاتيا لأن النترونات الثلاث الناتجة عن
0,5	0,5	الانشطار الأول تحدث 3 انشطارات في مرحلة ثانية وتنتج عنه مرحلة ثالثة ب 9 انشطارات
		و هكذا
	0,25	نقص الكتلة لنواة البلوتونيوم Pu : نقص الكتلة لنواة البلوتونيوم $\Delta m_1 - 1$
	0,25	$_{53}^{135}I, _{41}^{102}Nb$ مجموع نقص الكتلة لنواتي Δm_2
	0,25	نقص الكتلة لتفاعل الانشطار: نقص الكتلة لتفاعل الانشطار
		$: {}^{239}_{94}Pu$ ايجاد طاقة الربط لنواة ${}^{239}_{94}Pu$
	0,25	$E_{l}\left(\frac{239}{94}Pu\right) = \Delta m_{1} \cdot 931, 5 = (2,4195-2,4001) \cdot 10^{2} \cdot 931, 5 = 1807, 1 Mev$
	0,25	$E_{lib} = \Delta m_3 \cdot 931, 5 = (2,3981 - 2,4001) \cdot 931, 5 = 186,3 Mev$: E_{lib} الطاقة المحررة
		$E_{I}\left(\begin{smallmatrix} 135\\ 53 \end{smallmatrix} I\right) = \Delta m\left(\begin{smallmatrix} 135\\ 53 \end{smallmatrix} I\right) \cdot 931.5 : \begin{smallmatrix} 135\\ 53 \end{smallmatrix} I$ جـ حساب طاقة الربط لنواة اليود
	0,5	$\Delta m \binom{135}{53} I = \Delta m_2 - \Delta m \binom{102}{41} Nb = 2,3981 - 2,4195 \cdot 10^2 - 0,93119 = 1,20881u$
02,5		$E_{I}\binom{135}{53}I = 1,20881 \times 931,5 = 1126,00 Mev$
		$2J_{1}(531)$ 1,20001 1135 1,120,001 1120 , 1120,001 1120 1120,0001 1120
	0,25	55 11
	0,23	$\frac{E_{l}\binom{135}{53}I}{A} = \frac{1126,00}{135} = 8,34 Mev / nuc$
	0.35	$\frac{E_l \binom{102}{41} Nb}{A} = \frac{0.93119 \times 931.5}{102} = 8.50 Mev / nuc$
	0,25	
	0,25	نلاحظ ان : $\frac{E_l \binom{135}{53} I}{4} < \frac{E_l \binom{102}{53} Nb}{4}$ ومنه نواة $\frac{E_l \binom{135}{53} I}{4}$ ومنه نواة ومنه نواة الأحظ ان
		$A \qquad A$
		4- حساب الطاقة الكهربائية التي ينتجها المفاعل النووي عند استهلاك 1kg من البلوتونيوم 239:
0,5	0,25	$\rho = \frac{E_e}{E'_{lib}} \times 100 \Rightarrow E_e = \frac{\rho \times E'_{lib}}{100} = \frac{\rho \times E_{lib} \times N}{100} = \frac{\rho \times E_{lib} \times m \times N_A}{100M}$
	0,25	$E_e = \frac{30 \times 186, 3 \times 10^3 \times 6, 02 \times 10^{23}}{100 \times 239} = 1,41 \cdot 10^{26} Mev = 2,25 \cdot 10^{13} J$
		100×239

ä	العلام	عناصر إجابة (الموضوع الأول)
مجموع	مجزأة	عصر إجب (الموصوع الأون)
0,25	0,25	التمرين الثاني (04 نقاط): 1) الظاهرة التي تحدث في الدارة هي ظاهرة التحريض الذاتي (انقطاع التيار تدريجيا)
0,5	0,5	: cur Bie lie lie lie lie lie lie lie lie lie l
0,75	0,25 0,25 0,25	يجاد عبارة α و α أيجاد عبارة α و α أيجاد عبارة α و α ألح α الحل هو α الحل هو α بالاشتقاق نجد α بالاشتقاق نجد $\alpha = \frac{L}{R+r} = \tau$ بالتعويض في المعادلة التفاضلية نجد $\alpha = \frac{L}{R+r} = \tau$ ومن الشروط الابتدائية نجد α ومن الشروط الابتدائية نجد α المعادلة الدينا α ومن الشروط عبارة α المعادلة الدينا α ومنه الحل هو α ومنه الحل α ومنه الحل α ومنه الحل عبارة α المعادلة الدينا α ومنه الحل عبارة α المعادلة الدينا α ومنه الحل عبارة α المعادلة
0,25	0,25	$P(t) = R \cdot i(t)^2 = R \cdot \left(I_0 \cdot e^{\frac{-t}{\tau}}\right)^2 = R \cdot I_0^2 \cdot e^{\frac{-2t}{\tau}} = P_{\text{max}} \cdot e^{\frac{-2t}{\tau}}$: عبارة الاستطاعة : (4
1,75	0,5 0,25	ولدينا معامل توجيه المماس (5) $a = \left(\frac{dP(t)}{dt}\right)_{t=0} = \left(\frac{-2P_{\max}}{\tau}e^{\frac{-2t}{\tau}}\right)_{t=0} = \frac{-2P_{\max}}{\tau}(1)$ المماس توجيه المماس بيانيا (2) نجد $a = tg\alpha = \frac{-P_{\max}}{t'}(2)$ المماس توجيه المماس بيانيا والميان نجد $\frac{-P_{\max}}{t'} = \frac{-2P_{\max}}{\tau} \Rightarrow t' = \frac{\tau}{2}$ المتنتاج ثابت الزمن: من البيان نجد $t' = \frac{\tau}{2} = 5 ms \Rightarrow \tau = 10 ms$ به المماس بيانيا والميان نجد $t' = \frac{\tau}{2} = 5 ms \Rightarrow \tau = 10 ms$ المتنتاج ثابت الزمن: من البيان نجد $t' = \frac{\tau}{2} = 5 ms \Rightarrow \tau = 10 ms$ المتنال الأعظمي $t' = \frac{\tau}{2} = \frac{\tau}{2} = \frac{\tau}{2}$ المتنتاج ثابت الزمن: من البيان نجد $t' = \frac{\tau}{2} = \frac{\tau}{2} = \frac{\tau}{2}$ المتنتاج ثابت الزمن: من البيان نجد $t' = \frac{\tau}{2} = \frac{\tau}{2}$

ة.	العلام	عناصر احارة الأحرب الأراء
مجموع	مجزأة	عناصر إجابة (الموضوع الأول)
	0,25	$E_0=\frac{E}{R+r} \Rightarrow r=rac{E}{I_0}-R$ إيجاد $r=rac{6}{0,1}-50=10\Omega$
	0,25	$\frac{L}{R+r} = au \Rightarrow L = au(R+r) \Rightarrow L = 0,01(60) = 0,6H$: ایجاد -
0,5	0,25	: النصف: لدينا الاستطاعة إلى النصف: لدينا $t = t_{\frac{1}{2}} \Rightarrow \begin{cases} P(t_{1/2}) = \frac{P_{\text{max}}}{2} \Rightarrow P_{\text{max}}.e^{-2t_{\frac{1}{2}}/\tau} = \frac{P_{\text{max}}}{2} \\ P(t_{1/2}) = P_{\text{max}}.e^{-2t_{\frac{1}{2}}/\tau} = \frac{1}{2} \Rightarrow t_{\frac{1}{2}} = \frac{\tau}{2} Ln2 = 3.46 mS \end{cases}$
0,25	0,25	التمرين الثالث (06 نقاط): (1.I) تمثيل القوة الخارجية المؤثرة على الكرة في الجزء AB.
0,5	0,5	V_B^2 عبارة V_B^2 بدلالة V_B^2 عبارة V_B^2 بين V_B^2 نجد: $E_{CB}=E_{CM}+W(P)$ $V_B^2=mgh$ $V_B^2=ngh$ $V_B^2=2gh$ $V_B^2=2gr(1-\cos\theta)$ $V_B^2=2gr(1-\cos\theta)$ (3) در اسة طبيعة الحركة على الجزء $V_B^2=ngh$ $V_B^2=2gr(1-\cos\theta)$ $V_B^$

ä	العلام	عناصر إجابة (الموضوع الأول)
مجموع	مجزأة	عاصر إجابه (الموصوع الأول)
	0,25	.($a=C^{te}$) بانتظام ($a imes V<0$).
	0,25	$\mathbf{B} \xrightarrow{\overrightarrow{f}} \overset{\wedge}{\longleftarrow} \mathbf{R}$
0.77	0,25	$(x=BC$ عبارة V_{C}^{2} بدلاله V_{C}^{2} عبارة V_{C}^{2} بدلاله V_{C}^{2} عبارة V_{C}^{2}
0,75	0,25	$Vc^2=-2f.BC/m + 2gr(1-Cos\theta)$
	0,25	$Vc^2 = -2gr \cos\theta + 2 (gr-f.BC/m)$
		اذن: a= -2gr و (gr-f.BC/m) اذن: a= -2gr
0,5	0,5	$Vc^2 = -10 \cos\theta + 9$ معادلة البيان : (1.II) معادلة البيان :
0,5	0,25	2) ايجاد كل من: نصف قطر المسار و شدة قوة الاحتكاك 2 cr = 10
0,5	0,25	$\begin{cases} r = 0.5m \\ f = 0.25N \end{cases}$ ومنه $\begin{cases} 2gr = 10 \\ 2\left(gr - \frac{f.BC}{m}\right) = 9 \end{cases}$
		3) تحديد اصغر زاوية 6 تمكن الكرة من الوصول الى النقطة C:
0,5	0.5	$ ho = V_c^2 = 0$ اصغر زاویة توافق $V_c = 0$ و بالتالي $V_c^2 = 0$
	0.25	$ m Vc^2=0\Rightarrow Cos\theta=0.9\Rightarrow \theta=25,84^\circ$ من البيان نجد $V_{\rm C}=0.9\Rightarrow 0.9\Rightarrow 0.9$ تحديد السرعة $V_{\rm C}=0.9$
0,25	0,25	را الما $\theta=90^{\circ}$ من البيان نجد Vc²= 9 \Rightarrow Vc=3m/s من البيان نجد
0.5	0,25	2) تمثیل القوی الخارجیة المؤثرة علی الکرة: \vec{R} ـ القوة المسؤولة عن توقف الکرة ه قوة توتر النابض \vec{R}
0,5	0,25	\overrightarrow{P}
	0,25	$E_{Pe}~(D)=E_{CC}$ حساب المسافة $V_{C}^{2}:X_{0}=1/2$ $V_{C}^{2}:X_{0}$ حساب المسافة (3
0,5	0,25	$\Rightarrow X_0 = V_C \sqrt{\frac{m}{K}} = 0.15 m$
		4. أ) ايجاد المعادلة التفاضلية للحركة من C الى M D
		$\sum \overrightarrow{F}_{ext} = m.\overrightarrow{a} \Rightarrow -T = m.a$
01	0,25	$-Kx = m.\frac{d^2x}{dt^2} \Rightarrow \frac{d^2x}{dt^2} + \frac{K}{m}x = 0$
		ب) المعادلة : $x(t) = A\cos(\omega_0 t + \varphi)$ حل للمعادلة التفاضلية ومنه:
	0,25*3	$\varphi = \frac{3\pi}{2} rad$ و $\omega_0 = \sqrt{\frac{k}{m} = 20 rad/s}$ و $A = 0.15 m$

ä	العلام	عناصر إجابة (الموضوع الأول)
مجموع	مجزأة	الموصوع الأول
0,5	0,5	الجزء الثاني: (06 نقاط): التمرين التجريبي: (06 نقاط): 1) البروتوكول التجريبي: المحلول التحريبي: PH متر المحلول التحفي
01,0	0,5 0,5	(2) معادلة تفاعل المعايرة لكل حمض: $H_3O^+ + OH^- = 2H_2O$ $HCOOH + OH^- = HCOO^- + H_2O$
01,5	0,5 0,5 0,25 0,25	(2) (1) (2) احداثيات نقطة التكافؤ لكل منحنى: $E(V_{bE}; pH_E) = (20ml; 7)$ (1) المنحنى $E(V_{bE}; pH_E) = (20ml; 8,2)$ (2) المنحنى (2): $E(V_{bE}; pH_E) = (20ml; 8,2)$ (2) يوافق معايرة محلول حمض كلور الهيدروجين لأن (2) يوافق معايرة محلول حمض الميثانويك لأن (2) يوافق معايرة محلول حمض الميثانويك لأن (2)
01,0	0,5 0,5	: (4) استنناج التركيز المولي لكل محلول حمضي: $C_1 \ V_1 = C_b \ V_{bE} \Rightarrow C_1 = \frac{C_b \ V_{bE}}{V_1} = \frac{0.1 \times 20}{30} = 6,6 \cdot 10^{-2} mol / L$ $C_2 \ V_2 = C_b \ V_{bE} \Rightarrow C_2 = \frac{C_b \ V_{bE}}{V_2} = \frac{0.1 \times 20}{20} = 10^{-1} mol / L$
0,5	0,5	(5) استناج ثابت الحموضة : عند نقطة نصف التكافؤ يكون $pKa=3,8$
01,0	0,5 0,25 0,25 0,25	(6) حساب ثابت التوازن K لتفاعل معايرة حمض الميثانويك: $K = \frac{\left[HCOO^{-}\right]_{f}}{\left[HCOOH\right]_{f}.\left[OH^{-}\right]_{f}} \times \frac{\left[H_{3}O^{+}\right]_{f}}{\left[H_{3}O^{+}\right]_{f}} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$ $[H_{3}O^{+}]_{f} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$ $[H_{3}O^{+}]_{f} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$ $[H_{3}O^{+}]_{f} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$ $[H_{3}O^{+}]_{f} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$ $[H_{3}O^{+}]_{f} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$ $[H_{3}O^{+}]_{f} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$ $[H_{3}O^{+}]_{f} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$ $[H_{3}O^{+}]_{f} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$ $[H_{3}O^{+}]_{f} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$ $[H_{3}O^{+}]_{f} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$ $[H_{3}O^{+}]_{f} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$ $[H_{3}O^{+}]_{f} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$ $[H_{3}O^{+}]_{f} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$ $[H_{3}O^{+}]_{f} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$ $[H_{3}O^{+}]_{f} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$ $[H_{3}O^{+}]_{f} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$ $[H_{3}O^{+}]_{f} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$ $[H_{3}O^{+}]_{f} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$ $[H_{3}O^{+}]_{f} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$ $[H_{3}O^{+}]_{f} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$ $[H_{3}O^{+}]_{f} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$ $[H_{3}O^{+}]_{f} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$ $[H_{3}O^{+}]_{f} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$ $[H_{3}O^{+}]_{f} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$ $[H_{3}O^{+}]_{f} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$ $[H_{3}O^{+}]_{f} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$ $[H_{3}O^{+}]_{f} = 10^{pKe-pKa} = 1,58 \times 10^{10}$
0,5	0,25	معايرة حمض كلور الهيدروجين: BBT لأن pH _E =7 ينتمي إلى مجال تغيره اللوني معايرة حمض الميثانويك: فينول فتالين لأن pH _E =8,2 ينتمي إلى مجال تغيره اللوني

ä	العلام	عناصر الإجابة (الموضوع الثاني)
مجموع	مجزأة	عاصر الإجاب (الموصوح اللاي)
		الجزء الأول: (14 نقطة)
		التمرين الأول: (04 نقاط)
0.5		1- الحالة الأولى: إيجاد سرعة قذف الكرة عند A : وفق مبدأ انحفاظ الطاقة يكون:
0,5	0,25	$E_A = E_C$
		أي: $E_{cA} + E_{ppA} = E_{cC} + E_{ppC}$ ، بأخذ مرجع الطاقة الكامنة الثقالية عند مستوى نقطة
	0,25	. $v_A = \sqrt{2.g.r} = 3,16 m.s^{-1}$ فنجد: $\frac{1}{2} m.v_A^2 = m.g.r$ نكتب:
		2- الحالة الثانية:
		أ. إيجاد سرعة قذف الكرة عند A: وفق مبدأ انحفاظ الطاقة للجملة (كرة) يكون:
	0,5	: فنجد ، $\frac{1}{2}m.v_A^2 - m.g.2r = \frac{1}{2}m.v_D^2$ ، فنجد ، $E_{cA} + W(\overrightarrow{p}) = E_{cD}$ ، فنجد
	0,25	$v_A = \sqrt{4.g.r + v_D^2} = 8,06 m.s^{-1}$
		ب. بتطبيق القانون الثاني لنيوتن على جملة كرة الغولف باعتماد المرجع السطحي أرضي:
	0.25	$\overrightarrow{P} + \overrightarrow{R} = m.\overrightarrow{a_G}$: $\overrightarrow{\sum} \overrightarrow{F_{ext}} = m.\overrightarrow{a_G}$
	0,25	$P+R=m.a_G$ اي $F_{ext}=m.a_G$ $P+R=m.a_G$ اي $P+R=m.a_G$ و بالاسقاط وفق Dz نجد: $P+R=m.a_N$
	0,25	$mg + R = m.a_N = m.\frac{v_D^2}{r} = m.\frac{v_A^2 - 4.g.r}{r}$ فیکون:
	0,25	R r r
	0,25	$\mathbf{v}_{\mathbf{z}}$ $R = m.\left(\frac{v_A^2}{r} - 5g\right)$ إذن:
03,5	0,25	R = 3,6N ت.ع
		ج. بتطبيق القانون الثاني لنيوتن على جملة كرة الغولف باعتماد المرجع السطحي أرضي:
		$\overrightarrow{P} = m.\overrightarrow{a_G}$: أي $\overrightarrow{P} = m.\overrightarrow{a_G}$ أي $\overrightarrow{F_{ext}} = m.\overrightarrow{a_G}$
		عاد: نجد: عام السقاط: نجد
	0,25	$\begin{cases} v_x = v_D \\ v_z = g.t \end{cases} $ $\begin{cases} 0 = m.a_x \\ P = m.a_z \end{cases}$
	0,25	$egin{array}{cccccccccccccccccccccccccccccccccccc$
	,,20	
U	0,25	. $z=rac{g}{2v_D^2}.x^2$. وبالتالي عبارة معادلة المسار من الشكل: $z=rac{g}{2v_D^2}.t^2$ المسلك عند $z=rac{g}{2}.t^2$
	0,25	$x=2v_D.\sqrt{rac{r}{g}}$ عند نقطة الارتطام $z=2r$ ، وبالتالي:

ة.	العلاه	عناصر الإجابة (الموضوع الثاني)
مجموع	مجزأة	عاصر الإجابة (الموضوع النايي)
	0,25 0,25	$x = 2 \times 6,71. \sqrt{\frac{0,5}{10}} = 3,00 m$: د . تطبیق عددي:
	0,23	x = BN = BA + AN = 3,00 m لقد وفق اللاعب في رميته، لأن
		التمرين الثاني: (04 نقاط)
0,5	0,25	النشاط الإشعاعي eta^- : إصدار النواة المشعة الأم لإلكترون تلقائيا بتحول نيترون إلى بروتون و إلكترون $(1$
0,0	0,25	$\cdot {}_{0}^{1}n \longrightarrow {}_{-1}^{0}e + {}_{+1}^{1}p$
		معادلة التفكك: $^{60}_{27}Co \longrightarrow ^{60}_{28}Ni^* + ^{0}_{-1}e$
	0,25	$N_0 = \frac{m_0}{M} \cdot N_A : N_0$ أ- عدد الأنوية الابتدائية (2
	0,25	$N_0 = 2 \times 10^{16} noyaux$
	0,25	$N(t) = N_0 \cdot e^{-\lambda t}$ ب $-$ عبارة قانون التناقص الإشعاعي:
04.5		$rac{A(t)}{A_0}=rac{m(t)}{m_0}=e^{-\lambda t}$ و إثبات أن $A(t)$ و إثبات أن ج
01,5	0,25	$A(t) = \lambda \cdot N(t) = A_0 \cdot e^{-\lambda t}$ العبارة:
	0,20	$N(t) = N_0 \cdot e^{-\lambda t}$
	0,5	$N(t) = N_0 \cdot e^{-\lambda t}$: الدينا: $m \cdot N_{\lambda} = \frac{m_0}{M} \cdot N_{\lambda} \cdot e^{-\lambda t}$ $\Rightarrow m(t) = m_0 \cdot e^{-\lambda t}$: الدينا:
		$\frac{A(t)}{A_0} = \frac{m(t)}{m_0} = e^{-\lambda t}$
		3) أ- تعريف ½:
		زمن نصف العمر هو الزمن اللازم لتناقص نصف عدد الأنوية المشعة الابتدائية
	0,5	$N(t_{1/2}) = \frac{N_0}{2}$
		$rac{A(t_{1/2})}{A_0}=rac{1}{2}$ قيمة $t_{1/2}$: بالتعريف
	0,5	$([5,2-5,4]ans$ بيانيا نقرأ: $t_{1/2}=5,3ans$ (ملاحظة: تقبل قيم مين المجال $t_{1/2}=5,3ans$
02.0		$:_{27}^{60}Co$ بأثبات أن العينة المستقبلة في المخبر هي للنظير
		من الدراسة التجريبية لدينا: $t_{1/2}=5,3$ و منه: $\lambda=\frac{\ln 2}{t_{1/2}}=0,13$ و هي توافق
	0,5	القيمة المعطاة للنظير c_{27}^{60}
		$A(t_{y_2}) = rac{A_0}{2} = rac{N_0 \cdot \ln 2}{2t_{y_2}} : A(t_{y_2})$ جـ قيمة النشاط النشاط المرابع
	0,5	$A(t_{1/2}) = 4,17 \times 10^7 Bq$ ت. ع: $A(t_{1/2}) = 4,17 \times 10^7 Bq$

ة.	العلاه	عناصر الإجابة (الموضوع الثاني)						
مجموع	مجزأة			الي)	- رانموصوح ال	سير اوب		
							<u>(القاط)</u>	التمرين الثالث: (وَ
							:y عبارة	1- أ. كتاب
							.م:	جدول التقد
		حالة	التقدم	7 () + 2	II () ⁺ ()	7 2+/	<i>TT</i> ()	211.07
	0,25	الجملة	(mol)	Zn(s) + 2s	$H_3O^+(aq) = $			$-2H_2O(l)$
	0,25	الابتدائية	0	0,01	`	ol) ية المادة بـ 0	0	7.6
	0,25	الانتقالية			CV	U	U	بوفرة بوفرة
		النهائية	x r	$0.01 - x$ $0.01 - x_{\text{max}}$	$\frac{CV - 2x}{CV - 2x_{\text{max}}}$	x	x	بودره بوفرة
			\mathcal{X}_{\max}	o, or x_{max}	CV 2x _{max}	\mathcal{X}_{\max}	$\mathcal{X}_{ ext{max}}$	9-9-
	0.5				1 2	$\mathbb{Z}n^{2+}$	r	
	0,5				H	$=\frac{1}{CV}$	$\frac{x}{-2x}$:دم لدينا	من جدول التقا
		N1 1 11	. 1	$\left[Zn^{2+}\right]$	ייי ולי ולי ולי	11. 31.1-	II ()+ \ \ #tl	
	0.25			$y = \frac{\left[Zn^{2+}\right]}{\left[H_3O^+\right]} \ddot{\mathbf{A}}$				
05.5	0,25	$\cdot y_{\text{max}} =$	ىعطى 1	منحنى البياني الم	لكن وفق الـ $igl[E$	$I_3O^+\Big]_{\max}=0$	$CV - 2x_{\text{max}} =$	نهاية، لأن 0
05,5	0,25				$x_{\text{max}} = 0$	، و 01 <i>mol</i>	ك محد للتفاعل	إذن معدن الزن
	0,25						ز المولي : C	
	0.5		C	$\frac{3 x_{\text{max}}}{V} = \frac{0}{0}$	$\frac{.03}{0.75} = 0.4 \text{ mo}$	l/L :أي،	$y_{\text{max}} = \frac{y}{CV}$	$\frac{x_{\text{max}}}{-2x} = 1$
	0,5							
	0.25			تعويض في عبار	2		7.2	-
	0,25		•	$t_{1/2} = 8 min$	، وبالاسقاط نجد:	$y = \frac{x}{CV - 1}$	$\frac{1}{2x} = \frac{0,00}{0,03-0}$	$\frac{15}{0,01} = 0,25$
		N					,	
							عة اللحظية:	ج. عبارة السر
	0,25			x =	$\frac{CVy}{1+2y}$:الشكل	عبارة x من	تكون $y = \frac{1}{2}$	$\frac{x}{VV - 2}$ Legi
	-,=5				1 1 2 y		C	230
	0,75						$\frac{dy(t)}{dt} :$	
	0,5			$dy(t_{\frac{1}{2}})$	$\frac{1}{1} = \frac{1}{30} = 0.03$	$3 min^{-1}$, v	$(t_{1/}) = 0.25$:د عند –
							· -	· -
	0,25			$v(t_{1/2}) =$	$\frac{0,03}{(1+0,50)^2}.0$	$,033 = 4,4 \times$	10 ^{-→} mol/m	ومنه: nin

ä	العلام	عناصر الإجابة (الموضوع الثاني)				
مجموع	مجزأة		موطوع (عاي) 			
					د. التركيب المولي للم	
	0,25	$x = \frac{CV y}{1 + 2x}$	$\frac{1}{1} = \frac{0.03 \times 0.50}{1.12 \times 0.50} = 0.00$	ن تقدم التفاعل 75 mol)	من أجل $y = \frac{1}{2}$ ، فإر	
	0,25	1+23	$7 + 2 \times 0,50$		2 من جدول التقدم نجد:	
	0,25	Zn	H_3O^+	Zn^{2+}	H_2	
	0,25	0,0025 mol	0,015 mol	0,0075 mol	0,0075 mol	
0,5	0,5	ن نصف التفاعل.	ل مما يؤدي إلى زيادة زه	لمائي تنقص سرعة التفاع	2) في غياب الحمام ا	
				(+	الجزء الثاني: (06 نقاط	
		- 16 ()	1) 4	· ·	التمرين التجريبي: (06	
0,75	0,75			الموافق: المنحنى (a)		
		يمه ٠٠	•	نواة داخل الوشيعة يرفع قي $\dot{g} = g(t)$ و المنحنى	· ·	
			ا يواقق (۷) ر	ا (۵) 8 م و الملكني (۱	إدل، المنحني (٥٠) يواقو	
	0,5	$r = 50 - 40 = 10 \Omega$: وبالتالي، $R_T = R + r$	$E = \frac{E}{1} = \frac{6}{100} = 50\Omega$	2- أ) مقاومتها الوشيعة :	
	0,5			V		
01,5	0,5	•		$0^{-3}.50 = 0.2 H$ نواة: $16 \times 10^{-3}.50 = 0.8 H$,	
			$L = l_b \cdot (R + I) -$	10×10 . 30 – 0,8 11	بوجود نواه.	
			$\mathscr{E} = \frac{1}{2} L \cdot I_0^2$ يعة:	إعظمية المخزنة في الوشا	3) حساب مقدار الطاقة الا	
	0,5		2		$5 imes 10^{-3} \ J$ وجود النواة: *	
1,25	0,5		1	2		
	0,25		$\cdot \mathscr{O} = \frac{1}{2} \times$		$^{-3}$ J عدم وجود النواة: J	
			0		التبرير: الاختلاف ناتج عن	
0,5	0,5		$C = \frac{\mathcal{Q}}{U_0} \Longrightarrow 0$	$C = \frac{2,3}{5} = 0,5 \mu F$ فقة:	II - 1 حساب سعة المكذ	
	0,5	سط الخارجي والسعة ثابتة	لمة لم تتلق الطاقة من الوا	متخامدة ودورية لأن الجم	2- أ) الاهتزازات حرة غير	
					(عدم وجود مقاومة).	
02				-	ب) قيمة ذاتية الوشيعة الم	
	0,5	دور الاهتزازات الحرة:	وعلاقة . $\frac{I_0}{2} = 1 ms \Rightarrow$	$T_0 = 2ms$: لدينا	من منحنى الطاقة (t)	
					$T_0 = 2\pi\sqrt{L'C}$	

ä	العلام	عناصر الإجابة (الموضوع الثاني)
مجموع	مجزأة	الموطوع الكاني)
	0,5	$L'=rac{(2 imes 10^{-3})^2}{4\pi^2 imes 0.5 imes 10^{-6}}=0,2H$ ت.ع: $L'=rac{T_0^2}{4\pi^2C}$:و منه الوشيعة الجديدة غير مماثلة للوشيعة السابقة.
	0,5	التبرير: $*$ الوشيعة الجديدة: مقاومتها معدومة نظرا لوجود اهتزازات حرة غير متخامدة، رغم أن ذاتيتها تساوي $0.2H$).