BLAST

Basic Local Alignment Search Tool

So useful – it is now a verb in the literature

Goals for Today:

A Lot of Blasting

Where is BLAST on this list?

- Altschul et al. 1990
 - #12 38,380 citations
 - 53,672 (Web of Science 6/1/2019)
- Altschul et al. 1997
 - #14 36,410 citations
 - 48,001 (Web of Science 6/1/2019)
- · Combined: 4th!

Goals

Search a query against a database

- Identify species
- Locate domains
- Assess function
- Establish phylogeny
- Mapping

What is BLAST?

- Sequence searching algorithm
- Finds the best local alignments
- Calculates statistical significance
- Similarity suggests homology
- Less sensitive than Smith-Waterman, but FASTER!

Global vs Local Alignment

Global alignment: entire sequences

Local alignment: segments of sequences

- Local alignment often the most relevant
 - Depends on biological assumptions

Blast Types

Name	Query	Database
blastn	nucleotide	nucleotide
blastp	protein	protein
blastx	nucleotide	protein
tblastx	nucleotide	nucleotide
tblastn	protein	nucleotide
PSI-blast	protein	protein

Blast Databases: Protein

Name	Host	Description
nr	NCBI	Non-redundant, general
Refseq_protein	NCBI	Annotated and curated protein collection
SwissProt	SIB	Manually curated and reviewed proteins form UniProt
Trembl	EBI	Automatically annotated, non-reviewed proteins
PDB	Rutgers/UCSD/UCSC	Proteins with 3D structural information

Blast Databases: Nucleotide

Name	Host	Description					
nt	NCBI	Non-redundant, general					
Refseq_RNA	NCBI	Annotated and curated RNA sequence collection					
Refseq_Genomics	NCBI	Sequenced and curated genomes					
EST	NCBI	Expressed sequence tags					
UNIVEC	NCBI	Vector contaminant database					
WGS	NCBI	Draft, whole genome shotgun sequence assemblies					
SRA	NCBI	Raw NGS datasets					
Many more databases, e.g. barcoding, viral, tRNA, etc, custom-built databases							

How it works: Making words

Nucleotide

- 11-letter words (seeds)
 - ACTACGTGCTATGC
 - ACTACGTGCTA
 - CTACGTGCTAT
 - TACGTGCTATG
 - ACGTGCTATGC

Protein

- 3-letter words (seeds)
 - PQGDEF
 - PQG
 - QGD
 - GDE
 - DEF

How it works

Blast Scoring and E-values

- Nucleotide sequences search for 11-letter matches
 - $(4^11 = 4,194,304 \text{ combinations})$
 - Match = +5, mismatch = -4
 - Only scores above a threshold (T) are kept

ACTACGTGCTA ACTACGTGCTA 5+5+5+5+5+5+5+5+5+5=55

ACTACGTGCTA **ACAAGATGGTA** 5+5-4+5-4-4+5+5-4+5+5=19

11

Blast Scoring and E-values

- Proteins use a BLOSUM62 scoring matrix
 - 20x20x20 = 8,000 possible 3-letter words
 - All possible amino acid pairs are given a score
 - All combinations above a threshold (T) are kept
 - Minimizes search space

	С	S	T	Р	Α	G	N	D	E	Q	Н	R	K	M	I	L	٧	F	Υ	W	
C	9																				С
S	-1	4																			S
T	-1	1	5																		Т
P	-3	-1		7																	P
Α	0	1	0	-	4																Α
G	-3	0	-2	-2	0	6															G
N	-3	1	0	-2	-		6														N
D	-3	0	-1	-1	-2	-1	1	6													D
E	-4	0	-1	-1	-1	-2	0	2													E
Q	-3	0	-1	-1	-1	-2	0	0	2	5											Q
Н	-3	-1	-2	-2	-2	-2	1	-1	U	0	8										Н
R	-3	-1	-1	-2	-1	-2	0	-2	0	1	0	5									R
K	-3	0	-1	-1	-1	-2	0	-1	1	1	-1	2	5								K
M	-1	-1	-1	-2	-1	-3	-2	-3	-2	0	-2	-1	-1	5							M
	-1	-2	-1	-3	-1	-4	-3	-3	-3	-3	-3	-3	-3	1	4						1
L	-1	-2	-1	-3	-1	-4	-3	-4	-3	-2	-3	-2	-2	2	2	4					L
V	-1	-2	0	-2	0	-3	-3	-3	-2	-2	-3	-3	-2	1	3	1	4				٧
F	-2	-2	-2	-4	-2	-3	-3	-3	-3	-3	-1	-3	-3	0	0	0	-1	6			F
Y	-2	-2	-2	-3	-2	-3	-2	-3	-2	-1	2	-2	-2	-1	-1	-1	-1	3	7		Υ
W	-2	-3	-2	-4	-3	-2	-4	-4	-3	-2	-2	-3	-3	-1	-3	-2	-3	1	2	11	W

PQG PQG PEG EQR 7+2+6 = 15 -1+5+-2 = 2

Extending Matches

- Match = HSP (High-scoring Sequence Pair)
 - Match is found and extended as long as score stays above a threshold value
 - After finished extending, the HSP is kept if above the cutoff score (S)

Assembling HSPs

HSPs, after extension, are assembled into a longer alignment

Output

- Max/Total Score: quality of the alignment
 - Higher the score the better the match
- Query Coverage: what proportion of the query the particular HSP covers
- E-value: probability that a match ≥ Max Score occurs by random chance (based on database size)
- Max Identity: For that HSP, the % of bases that match

Accession	Total Score	Query Coverage	E-value	Max Ident
X56286.1	579	54%	7e-162	99%
AF091629.1	573	54%	3e-160	99%
L48348.1	481	55%	2e-132	93%

Interpretation

- The matches you get are only acceptable matches, not necessarily the optimal match
- Your search is only as good as your database
 - If the optimal match is not in the database, you will not find it.
 - If you have sequences not in the database, SUBMIT THEM!

Pandyland.net

Take Home Points

Blast is a powerful tool for database searching

Very fast, but at the expense of sensitivity

Flexible (types, databases)

Interpret results carefully

Help make it grow!

Several examples

- Example 1: SRA Blast (https://www.ncbi.nlm.nih.gov/sra)
 - Query: M55627.1
 - Coccidiodes immitis (Valley fever fungus) ssuRNA
 - Project: SRX633288
 - Puma 454 transcriptome reads
- Example 2: Blast an assembly (https://blast.ncbi.nlm.nih.gov/)
 - Query:
 - TruSeq Universal Adapter
 - AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
 - Database: nt
 - Organism: Cyprinus carpio (taxid:7962)

"Mr. Osborne, may I be excused? My brain is full."