Name:

1

Do Now: Formulating geometric situations

Use the postulates and theorems you have learned. You may abbreviate them as follows: "def. of bisector," " \bot rays meet at 90°," "complementary \angle s add to 90," "linear pairs add to 180," "vertical \angle s are \cong ,"

Circle the appropriate equation and state the justification

1. Given complementary angles, $\angle A$, $\angle B$.

$$\angle A \cong \angle B$$
 $m\angle A + m\angle B = 90^{\circ}$

2. $\angle RPS \cong \angle SPU \quad m\angle RPS + m\angle SPU = 180^{\circ}$

3. Given $m \angle 1 = 4x + 6$, $m \angle 2 = 6x - 32$. Find $m \angle 1$.

$$\angle 1 \cong \angle 2$$
 $m\angle 1 + m\angle 2 = 180$ ___

4. Given $m \angle R = 50$, $m \angle U = 65$, and $m \angle UST = 115$. Find $m \angle RSU$.

$$\angle UST \cong \angle RSU \qquad m\angle UST + m\angle RSU = 180$$

5. Given $\overrightarrow{BA} \perp \overrightarrow{BC}$, $m \angle ABD = 2x - 5$, and $m \angle DBC = x - 10$.

$$\angle ABD \cong \angle DBC \qquad m\angle ABD + m\angle DBC = 90$$

6. Prove the quadrilateral BECA with B(1,3), E(3,2), C(5,6), and A(3,7) is a rectangle, using the theorem "If a quadrilateral's diagonals are congruent, then it is a rectangle."

- (a) Plot and label the points on the graph. Draw BECA.
- (b) Draw the diagonals, \overline{BC} and \overline{EA} .
- (c) Find the length of EA, showing the subtraction of the y values.
- (d) Find BC using the distance formula.

7. Given the circle C with circumference 6π .

- (a) Write down the formula for the circumference of a circle.
- (b) Solve for the radius yielding a circumference of 6π .
- (c) Find the area of the circle.

