Introdução ao LATEX

Módulo III: tabelas + referências

Introdução ao LATEX

Lucas Gregolon 1 a

13/11/2023 e 14/11/2023

¹Instituto de Matemática, Estatística e Física - IMEF/FURG

^aFisicaComOGreg@gmail.com

Sumário

- 1. Tabelas
 - 1.1. Criando Tabelas

- 2. Referenciando objetos
- 3. Referências

Tabelas

Criando tabelas!

Uma tabela é especificada pelo ambiente tabular.

A criação de tabelas é relativamente simples. Entretanto, em alguns casos, pode gerar transtornos. É feita da seguinte forma:

\begin{tabular}{espec},

onde o argumento **espec** especifica a quantidade de colunas, e o seu alinhamento é dado por:

- | adiciona uma linha vertical;
- 1 indica uma coluna alinhada à esquerda;
- r indica uma coluna alinhada à direita;
- c indica uma coluna com texto centralizado.

Quanto ao preenchimento da tabela, utilizamos:

- & para passar para a próxima coluna;
- \\ para terminar uma linha e criar uma nova;
- \hline para criar uma linha horizontal.

Uma tabela pode ser inserida dentro do ambiente table, o que faz dela um objeto flutuante.

Vantagens de utilizar esse tipo de ambiente:

- posição correta da tabela no texto;
- permite a inserção de rótulos e legendas;
- faz com que a tabela apareça em um índice de tabelas.

Para usar este ambiente é preciso utilizar o comando

\begin{table}[pos],

onde o argumento **pos** indica a posição desejada para posicionar a tabela verticalmente na página:

- h no local onde o texto ocorreu;
- t no topo da página;
- b no fim da página;
- p em uma página especial contendo somente objetos flutuantes.

Para adicionar uma legenda utilizamos, ainda dentro do ambiente table, o comando

\caption{legenda}.

A seguir apresentamos uma tabela criada como objeto flutuante e os comandos utilizados para que fosse gerada.

RS	Máxima (°C)
Porto Alegre	39
Santa Maria	37
Rio Grande	34
Pelotas	33
Caxias do Sul	31

```
\begin{table}[h]
\begin{tabular}{|c|c|}
   \toprule
   \textbf{RS}
                  & \textbf{Máxima} ($^{\circ} C$)\\
   \midrule
   Porto Alegre
                  & 39
                         \\ \hline
   Santa Maria
                  & 37
                         \\ \hline
   Rio Grande & 34 \\ \hline
                         \\ \hline
   Pelotas
              & 33
   Caxias do Sul & 31
                         //
   \bottomrule
\end{tabular}
\end{table}
```

EXEMPLOS DE TABELAS

Mais alguns exemplos de tabelas:

Qualidade da construção	a	b	c
Boa vedação Média Má vedação	$ \begin{array}{ c c c } 0,15 \\ 0,20 \\ 0,25 \end{array} $	$\begin{array}{ c c c } 0,010 \\ 0,015 \\ 0,020 \end{array}$	$ \begin{vmatrix} 0,007 \\ 0,014 \\ 0,022 \end{vmatrix} $

Resistência	Expressão	Efeito
R_1	$\frac{1}{h_i 2\pi r_1 L}$	Inalterada
R_2	$\frac{\ln(r_2/r_1)}{K_t 2\pi L}$	Inalterada
R_3	$\frac{\ln(r_3/r_2)}{K_{iso}2\pi L}$	Aumenta
R_4	$\frac{1}{h_e 2\pi r_3 L}$	Diminui

EXEMPLOS DE TABELAS

Material Isolante	$\frac{Kgf}{m^3}$	$\frac{Kcal}{mh^{\circ}C}$	Resistência Mecânica $(\frac{Kgf}{m^2})$	Resistência à temperatura (°C)	$ \begin{array}{ c c } \hline \textbf{Permeabilidade} \\ \hline (\frac{g}{m.h.mmHg}) \end{array} $
Aço ordinário	7800	45 a 50			Nula
Vidro	2500	0,65			Nula
Concreto	2300	1,2			22,3
Pedra (granito)	2600	3			
Alvenaria	1800	0,84			220,98
Asfalto	2120	0,65			
Madeira (pinho)	550	0,14 a 0,3			6,0 a 9,0
Serragem de madeira	200	0,06			
Fibra de madeira aglomerada (Eucatex frigorífico)	210	0,028	20		30 a 2800
Cortiça	200	0,045	1	100	66
Cortiça aglomerada	200	0,036		100	
Lã de vidro	100 a 200	0,025 a 0,045		540	80
Lã de rocha	100 a 200	0,025 a 0,035		600	
Vermiculite (cortiça mineral)	70	0,04	Fraca	1000	10 a 39
Concreto celular	300 a 600	0,049 a 0,12			
Espuma de plástico	25	0,035		80	
Espuma de borracha	80	0,03		65	
Poliestireno expandido (styropor)	15 a 30	0,028	0,3 a 0,7		1,3 a 1,82
Espuma fanólica rígida	30 a 45	0,026	Fraca		
Espuma rígida de poliestireno (styrofoan)	30	0,028	1,0 a 2,0		
Espuma rígida de poliuretano (moltopren)	30 a 45	0,02	2		Baixa
Espuma rígida de vidro (foamglass)	145	0,046	7	430	Nula

Referenciando objetos

Referenciando figuras, tabelas e equações ao longo do texto.

LIDANDO COM REFERÊNCIAS

Uma das grandes vantagens do LATEX é a facilidade de fazer referências a figuras, tabelas, equações, artigos, livros, etc..

Para citar alguma figura, tabela ou equação, devemos adicionar o comando,

\label{nome}

em que nome será utilizado para a citação. Para chamar no texto, devemos utilizar o comando,

\ref{nome}

LIDANDO COM REFERÊNCIAS - EXEMPLO

$$\nabla \cdot \vec{E} = \frac{Q}{\varepsilon_0} \tag{1}$$

FIGURA 1: Logo FURG

A equação (1) é a primeira equação de Maxwell. A FIGURA 1 é o logo da FURG.

Lidando com referências - Código do Exemplo

```
\begin{equation}
\nabla \cdot \vec{E} = \frac{Q}{\varepsilon_0} \label{maxwell}
\end{equation}
\begin{figure}[h]
\centering
\includegraphics[scale=0.05]{furg.png}
\caption{Logo FURG}
\label{furg}
\end{figure}
A equação (\ref{maxwell}) é a primeira equação de Maxwell.
A {\sc Figura} \ref{furg} é o logo da FURG.
```

O PACOTE CLEVEREF

 Com o pacote cleveref é possível referenciar multiplos objetos ao mesmo tempo. Por exemplo usando o código:

```
\begin{align}
a = b + c \label{a} \\
c = d + e \label{b} \\
e = f + g \label{c} \\
g = h + j \label{d}
\end{align}
```

As \cref{a,b,c,d} são do tipo recorrente.

• Obtemos:

$$a = b + c \tag{2}$$

$$c = d + e \tag{3}$$

$$e = f + g \tag{4}$$

$$g = h + j \tag{5}$$

As eqs. (2) to (5) são do tipo recorrente.

O PACOTE CLEVEREF

- Note que o pacote automaticamente adiciona eqs., os numeros das equações inicial e final referenciadas além da conjunção to. A linguagem padrão do pacote é inglês.
- Para modificar as conjunções para português, basta renovar os comandos no preâmbulo:

```
\newcommand{\crefrangeconjunction}{}
%Para varias referências (ex: eqs. 5 à 10)
\newcommand{\crefmiddleconjunction}{}
%Para equações não consecutivas (ex:eqs 3, 5 e 10)
\newcommand{\crefpairconjunction}{}
%Para pares de referências (ex:eqs. 3 e 4)
Com a conjunção desejada entre parênteses.
```

Referências

Lidando com referências

Fazer juntos no Texstudio!

Fim do Módulo III! Dúvidas?

Referências

Referências

- Lees-Miller, D. J. (2015a). An Interactive Introduction to Latex, Part 1: The Basics. Curso Online.
- Lees-Miller, D. J. (2015b). An Interactive Introduction to Latex, Part 2: Structured Documents & More. Curso Online.
- Lees-Miller, D. J. (2015c). An Interactive Introduction to Latex, Part 3: Not Just Papers, Presentations & More. Curso Online.
- Lucatelli, G., Ramos, L. G., and Becker, M. V. (2016). Minicurso LaTeX. Curso de curta duração.
- Overleaf (2017). Real-time Collaborative Writing and Publishing Tools with Integrated PDF Preview. https://www.overleaf.com/latex/templates/. [Online].
- Stack Exchange (2017). https://tex.stackexchange.com/. [Online].
- Wikibooks (2016). LaTeX. https://en.wikibooks.org/wiki/LaTeX. [Online].

Links úteis

Curso online de LATEX aqui.

Livro extenso sobre LATEX aqui.

OBRIGADO! =)