Path Spaces of Higher Inductive Types in Homotopy Type Theory

Nicolai Kraus^{1,2} <u>Jakob von Raumer</u>¹

¹FP Lab, University of Nottingham, United Kingdom

²Eötvös Loránd University, Budapest, Hungary

17 June 2019

Preliminary Remarks

Environmental impact of LICS

- ► European Participant: 3 tons of CO₂ equivalent emissions.
- Carbon Offsetting tries to neutralise impact by saving it elsewhere.
- ► Why not make it the default?

Path Spaces of Higher Inductive Types in Homotopy Type Theory

Nicolai Kraus^{1,2} <u>Jakob von Raumer</u>¹

¹FP Lab, University of Nottingham, United Kingdom

²Eötvös Loránd University, Budapest, Hungary

17 June 2019

Homotopy Type Theory

- For any type $A : \mathcal{U}$ and x, y : A have a type of *equality* proofs $(x = y) : \mathcal{U}$.
- ▶ The family $(x = _{-}): A \rightarrow \mathcal{U}$ is inductively generated by the reflexivity witness refl : (x = x).
- ▶ We can show statements of the form

$$Q: \Pi(x:A). x = y \rightarrow \mathcal{U}$$

by giving an instance of Q(x, refl). ("J-rule")

Homotopy Type Theory

- ▶ A function $f: A \to B$ is an equivalence if there are $g, g': B \to A$ s. t. $f \circ g = \mathrm{id}_B$ and $g' \circ f = \mathrm{id}_A$.
- ► The univalence axiom states that on types, equality and equivalence coincide.
- ► Types model *spaces*, equality types model *path spaces* · · · Synthetic way to obtain results in topology.

Higher Inductive Types (HITs)

- ► HITs generalize inductive types to similar generate elements *and* equalities of a type.
- Example: The circle could be written as the following declaration:

data $\mathbb{S}^1: \mathcal{U}$ where $\mathsf{base}: \mathbb{S}^1 \qquad \mathsf{base} \bullet \mathsf{base}$ loop : $\mathsf{base} = \mathsf{base}$

- Specifications for HITs:
 - ► Via "embedded" type theory (Kaposi & Kovács).
 - In cubical type theory (Coquand, Huber, Mortberg).
 - Based on Homotopy Coequalizers (Lean Theorem Prover).

Homotopy Coequalizers

- ▶ A variant of the notion of a *quotient* of a type $A : \mathcal{U}$ by a relation $\sim: A \to A \to \mathcal{U}$.
- ightharpoonup $a \sim b$ does not need to be propositional (unique).
- ▶ The coequalizer $A/\!\!/\sim$ does not need to be a set (unique equalities).
- ► In pseudo Agda code:

data
$$A/\!\!/\sim$$
 : $\mathcal U$ where
$$[-]:A\to A/\!\!/\sim$$
 glue : $\Pi\{a,b:A\}.(a\sim b)\to [a]=[b]$

Examples for Homotopy Coequalizers

▶ For $A = \mathbf{1}$ and $a \sim b = \mathbf{1}$, $A /\!\!/ \sim$ is the circle \mathbb{S}^1 .

$$\begin{array}{ccc}
L & \xrightarrow{g} & N \\
\downarrow & & \downarrow & \text{inr} \\
M & \xrightarrow{---} & M \sqcup^{L} N
\end{array}$$

For types L, M, N, f, g as above consider

- \triangleright A = M + N and
- ▶ _ \sim _ inductively generated by $\operatorname{inl}(f(I)) \sim \operatorname{inr}(g(I))$ for each I:L.

Then, $A/\!\!/ \sim$ is the *pushout* of M and N along f and g.

From this get suspensions, sequential colimits, truncation, ...

Encode-decode Proofs

- ► Common proof strategy when reasoning about HITs
- **Examples**:
 - ► To prove $\Omega(\mathbb{S}^1) = ([\star] = [\star]) \simeq \mathbb{Z}$, construct Cover : $\mathbb{S}^1 \to \mathcal{U}$, s. t. Cover $(x) \simeq ([\star] = x)$ and observe that Cover $([\star]) \simeq \mathbb{Z}$.
 - Seifert-van Kampen theorem
- ▶ In all those cases: Prove the inhabitedness of a family

$$Q: \Pi\{a, b: A\}.([a] = [b]) \rightarrow \mathcal{U}$$

The Main Theorem

Theorem

Let $a_0: A$ and $P: \Pi\{b: A\}.[a_0] = [b] \rightarrow \mathcal{U}$. From

 $r: P(\mathsf{refl}_{[a_0]})$

$$e : \Pi\{b, c : A\}(q : [a_0] = [b])(s : b \sim c).P(q) \simeq P(q \cdot glue(s))$$

we can construct

$$ind_{r,e} : \Pi\{b : A\}(q : [a_0] = [b]).P(q)$$

such that $\operatorname{ind}_{r,e}(\operatorname{refl}) = r$ and $\operatorname{ind}_{r,e}(q \cdot \operatorname{glue}(s)) = e(q, s, \operatorname{ind}_{r,e}(q))$.

The Non-Dependent Version

Theorem

Let $a_0 : A$ and $K : A \rightarrow \mathcal{U}$. For

$$r: K(a_0)$$

 $e: \Pi\{b, c: A\}.b \sim c \rightarrow K(b) \simeq K(c)$

we have

$$rec_{r,e}: \Pi\{b:A\}.([a_0]=[b]) \to K(b)$$

with $\operatorname{rec}_{r,e}(\operatorname{refl}_{[a_0]}) = r$ and $\operatorname{rec}_{r,e}(q \cdot \operatorname{glue}(s)) = e(s, \operatorname{rec}_{r,e}(q))$ for $q : [a_0] = [b]$ and $s : b \sim c$.

Wild Categories

- Usually, categories in HoTT have sets, not types of morphisms.
- Wild categories are not restricted in this way:
 - ightharpoonup Objects $|\mathcal{A}|:\mathcal{U}$
 - For X, Y : |A| have a *type* of morphisms $A(X, Y) : \mathcal{U}$.
- Most categorical notions are not well-behaved.
- ▶ Still have *initiality* and *isomorphism* of categories.

The Category of Pointed Families

Let \mathcal{D} be the wild category where objects are pairs (L, p) with

$$L: A/\!\!/ \sim \to \mathcal{U}$$
 and $p: L([a_0])$

and where morphsims in $\mathcal{D}((L,p),(L',p'))$ are pairs (g,ϵ) where

$$g:\Pi(x:A/\hspace{-0.1cm}/_{\sim}).L(x) o L'(x)$$
 and $\epsilon:g(p)=p'.$

Equality induction gives us that $(\lambda x.[a_0] = x, refl)$ is initial in \mathcal{D} .

That Other Wild Category

Let C be the wild category where objects are triples (K, r, e) with

$$K: A \rightarrow \mathcal{U}$$

$$r:K(a_0)$$
, and

$$e:\Pi\{b,c:A\}.b\sim c\to K(b)\simeq K(c),$$

and morphisms in $\mathcal{C}((K,r,e),(K',r',e'))$ are triples (f,δ,γ) with

$$f: \Pi(b:A).K(b) \rightarrow K'(b),$$

$$\delta: f_{a_0}(r) = r'$$
, and

$$\gamma: \Pi\{b,c:A\}(s:b\sim c).e'(s)\circ f_b=f_c\circ e(s).$$

Both Categories are Isomorphic

Theorem

There is a map $\Phi_0: |\mathcal{D}| \to |\mathcal{C}|$ which is an equivalence, as well as a map $\Phi_1: \Pi(X,Y:|\mathcal{D}|).\mathcal{D}(X,Y) \to \mathcal{C}(\Phi_0(X),\Phi_0(Y))$ which is also an equivalence for each $X,Y:|\mathcal{D}|$.

We conclude that $\Phi_0([a_0] = _, refl)$ is initial in C.

Proof of the Non-Dependent Theorem

▶ The initial object $\Phi_0([a_0] = _, refl)$ unfolds to (K^i, p^i, e^i) with

$$K^{i}(b) = ([a_{0}] = [b])$$
 $r^{i} = \operatorname{refl}_{[a_{0}]}$
 $e^{i} = \underline{\quad \bullet \quad } \operatorname{glue}(s)$

▶ The existence of morphisms from (K^i, p^i, e^i) unfolds to the statement of the theorem itself.

Applications

- $lackbox{$\Gamma$} \Omega(\mathbb{S}^1) \simeq \mathbb{Z}$ is immediate, given a suitable definition of \mathbb{Z} .
- ► A higher version of Seifert-van Kampen.
- Embeddings are closed under pushouts.

Embeddings are Closed Under Pushouts

Definition

A map $f: L \to M$ is called an embedding if

$$ap_f: \Pi\{I, I': L\}. (I = I') \to (f(I) = f(I'))$$

is a family of equivalences.

Theorem

If f in the diagram on the right is an embedding, so is inr.

$$\begin{array}{ccc}
L & \xrightarrow{g} & N \\
f \downarrow & & \downarrow \text{inr} \\
M & \xrightarrow{-} & M \sqcup^{L} N
\end{array}$$

Embeddings are Closed Under Pushouts

- ▶ To show: The map $\operatorname{ap}_{\operatorname{inr}}:(n_0=n)\to (\operatorname{inr}(n)=\operatorname{inr}(n_0))$ is an equivalence for all $n,n_0:N$.
- \triangleright Fix n_0 and define

$$Q:\Pi(m:M+N).(\mathsf{inr}(n_0)=m) o \mathcal{U}$$
 $Q(\mathsf{inr}(n),q):\equiv \mathsf{ap}_\mathsf{inr}^{-1}(q)$ $Q(\mathsf{inl}(m),q):\equiv \Sigma((\mathit{l}_0,q_0):\mathit{f}^{-1}(m)).$ $\mathsf{ap}_\mathsf{inr}^{-1}\big(g(\mathit{l}_0),q\,ullet\,\mathsf{ap}_\mathsf{inl}(q_0)\,ullet\,\mathsf{glue}(\mathit{l}_0)\big)$

Our theorem gives us

$$\operatorname{ind}_{r,e}^{Q}:\Pi\{n:N\}.(q:\operatorname{inr}(n_{0})=\operatorname{inr}(n)).\operatorname{ap}_{\operatorname{inr}}^{-1}(q)$$

Conclusions

- ► We have shown a theorem, similar to an induction principle, to show statements about homotopy coequalizers.
- ► The theorem can serve as a replacement for encode/decode proofs.

