

Gliederung

- 1. Vorführung des TヨGGL市
- 2. Entwicklungsprozess (via V-Modell)
- 3. Merkmale und Schlüsseltechnologien
- 4. Erweiterungs und Verbesserungsmöglichkeiten
- 5. Quellen

2. Entwicklungsprozess (via V-Modell)

- 2.1 Planung
- 2.2 Anforderungsermittlung
- 2.3 Systementwurf
- 2.4 TEGL Test & Validierung

2.1 Planung

	Variante A	Variante B	Variante C	
Antrieb	Servo	D <mark>¢</mark> -Motor	Step-Motor	
Lenkung	Lenkachse	Einzeln gesteuerte Motoren		
Räder	Mecanum	Rad	Kette	
Getriebe	Keins	Planetengetriebe	Gearbox	
Controller	ESP32	ESP8266		
Akku	LiPo 2S	LiPo 3S	Battery	
Ladetechnik	Keiner	BMS + 9V Netzteil	BMS + 5V USB	
Steuerung	Laptop	Spiele Controller	Handy	
Federung	Keine	3D-Druck	Feder-Dämpfer	
Lage-Sensorik	Keine	Pendel	Gyroskop	
Material	PLA	PLA+TPU	ABS	
Verbindung	Schrauben	Pins		

2.2 Anforderungsermittlung (Auswahl)

Anforderungen

Fahren (F)

Lenken können (F)

Mindestdistanz 4 Meter (F)

Ei Transport (F)

Funktionen

Omnidirektionales Fahren

Steuerung via XBOX
Controller

Reichweite lediglich durch WLAN & Akku begrenzt

Eihalterung (Chassis + Federung)

2.3 Systementwurf

TEIGLA: Gesamt- und Teilfunktionen (wichtigsten Subsysteme)

2.3 Systementwurf (Technische Zeichnung – Auswahl)

2.3 Systementwurf (Technische Zeichnung – Auswahl)

2.3 Systementwurf (Schaltplan)

2.3 Systementwurf Kommunikation und Steuerung 1 – Java (obsolet)

2.3 Kommunikation und Steuerung 2 HTML5 & Websocket

Name	ID	Werte										
DRIVE	0	X-Achse L	Y-Achse L	X-Achse R	Y-Achse R							
GYRO	1	Speed - X	Speed - Y	Speed - Z	Accel - X	Accel - Y	Accel - Z	Rot - X	Rot - Y	Rot - Z		
BATTERY	2	Voltage										
MOTOR	3	Speed – M1	Speed – M2	Speed – M3	Speed – M4							
COMB	4	Speed - X	Speed - Y	Speed - Z	Accel - X	Accel - Y	Accel - Z	Rot - X	Rot - Y	Rot - Z	Battery	Temp

→Werte je 16 bit signed Integer

2.4 Test & Validierung

3. Merkmale und Schlüsseltechnologien

- 3.1 Gesamtübersicht
- 3.2 Mecanum Räder & Planetengetriebe
- 3.3 PLA vs TPU
- 3.4 ESP32 vs ESP8266
- 3.5 BMS

3.1 Gesamtübersicht

Stückliste:

1x Hauptträger

2x Motorträger

4x Motorhalterung oben

4x Motorhalterung unten

4x Innenfelge & Felge

8x Sigma

4x H-Brücken Halterung

2x Akku Halterung

1x Eierhalter Base

8x Eihalter Segmente

4x Mecanum Räder

3.2 Mecanum – Steuerung & Formeln

$$\begin{split} V_2 &= V_d \sin \left(\theta_d + \frac{\pi}{4}\right) + V_\theta \\ V_2 &= V_d \cos \left(\theta_d + \frac{\pi}{4}\right) - V_\theta \\ V_5 &= V_d \cos \left(\theta_d + \frac{\pi}{4}\right) + V_\theta \\ V_5 &= V_d \sin \left(\theta_d + \frac{\pi}{4}\right) - V_\theta \\ V_5 &= V_d \sin \left(\theta_d + \frac{\pi}{4}\right) - V_\theta \\ \end{split}$$

- Nicht alle Teile wurden mit **PLA** (=Polyactide) Filament gedruckt
- Folgende Teile wurden mit TPU (=thermoplastisches Elastometer) Filament gedruckt:
 1) Motorhalterung und 2) Sigma

Wesentliche Unterschiede zwischen PLA und TPU

PLA	TPU		
Hohes E-Modul(=Zugfestigkeit) und Steifigkeit	Mehr Flexibilität und Elastizität als PLA Material		
Sehr einfache Verarbeitung	Teurer als PLA Filament		
Problemloser Druckprozess	Fehleranfälliger Druckprozess		

	ESP8266	ESP32
Cores	single core	dual core
Max Frequenz	160 MHz	240 MHz
GPIO	17 (11 nutzbar)	36 (30 nutzbar)
SRAM	160 KB	520 KB
ADC Auflösung	10-Bit	12-Bit
Preis (aus China)	2€	4€

Benötigte Pins		
4x PWM	Motor Enable	
8x Output	Motor Richtung	
2x I ² C	Gyroskop	
1x ADC	Batteriespannung	
15 Pins		

27

P+P-input output and output, combined with no output, charge with 8.4 v voltage charger

- Überspannungsschutz: max 4.2V pro Zelle
- Unterspannungsschutz: min 3.2V pro Zelle
- Ausgleichen der Zellen beim Laden

4. Zukünftige Entwicklung

- 4.1 Erweiterung Regler
- 4.2 Verbesserungsvorschläge

- Stepper-Motor anstatt DC-Motoren
- Besserer Ladestecker
- Höhere Übersetzungen
- Spannung mit Step-Up / Step-Down konstant halten
- Weniger Spiel im Getriebe
- Mehr Grip auf den kleinen Rollen
- Notaus-Schalter neu designen

3D - Modelle:

- 1. Source for 24mm customized Gear Bearing http://www.thingiverse.com/thing:53451
- 2. Source for 44mm Mecanum Wheel http://www.thingiverse.com/thing:1358552
- 3. Source for 11:1 Planetary Gearbox https://www.thingiverse.com/thing:2666785
- 4. Source for 66.46:1 Compound Planetary Gearbox https://www.thingiverse.com/thing:2277105

Library:

- 1. Source for WebServer https://github.com/me-no-dev/ESPAsyncWebServer?utm source=platformio&utm medium=piohome
- 2. Source for Gyro Code https://github.com/jrowberg/i2cdevlib?utm_source=platformio&utm_medium=piohome