STA513 – Analisis Statistika untuk Bisnis, Ekonomi, dan Indu<mark>stri</mark>

Semester Ganjil 2020/2021

untuk rata-rata dan proporsi

disusun oleh:

Bagus Sartono
bagusco@gmail.com
0852-1523-1823

Prodi Statistika dan Sains Data

Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor

2020

Review Materi Sebelumnya #1

\overline{x} merupakan penduga tak bias bagi μ

catatan:

 \overline{x} adalah rata-rata contoh μ adalah rata-rata populasi

\hat{p} merupakan penduga tak bias bagi p catatan:

 \hat{p} adalah proporsi pada contoh p adalah proporsi pada populasi

s^2 merupakan penduga tak bias bagi σ^2 catatan:

 s^2 adalah ragam contoh σ^2 adalah ragam populasi

Review Materi Sebelumnya #2

Jika contoh berasal dari populasi yang menyebar normal

... maka rata-rata contoh akan menyebar normal, berapapun *n*.

Jika contoh berasal dari populasi yang menyebar tidak normal

 $\mu_{\overline{x}}$... maka rata-rata contoh akan menyebar normal, asalkan *n* besar.

Pendugaan Parameter

- Penduga Titik (point estimate), menduga parameter menggunakan sebuah bilangan tunggal
- Penduga Selang (interval estimate), menduga parameter dengan memberikan sebuah selang nilai
- Penduga selang mengakomodasi adanya variasi dan ketidakpastian penduga
- Penduga selang dinyatakan dalam bentuk selang kepercayaan (confidence interval)

- Penduga titik bagi μ adalah \overline{x}
- Penduga titik bagi p adalah \hat{p}

Bentuk Umum dari Selang Kepercayaan

Point Estimate ± (Reliability Factor)(Standard Error)

Selang Kepercayaan

- Selang kepercayaan berupa selang yang memuat rentang nilai tertentu
- Besaran peluang nilai parameter yang sebenarnya dinyatakan dalam bentuk $(1-\alpha)\times100\%$, yang disebut sebagai tingkat kepercayaan (confidence level)
- Tingkat kepercayaan yang umum digunakan: 90%, 95%, 99%.

Selang Kepercayaan bagi μ

- Jika:
 - populasi menyebar normal, atau
 - populasi tidak menyebar normal tapi ukuran contohnya besar
- maka selang kepercayaan $(1 \alpha) \times 100\%$ bagi μ adalah

$$\overline{\overline{x}} - z_{\alpha/2} \, \frac{\sigma}{\sqrt{n}} \; < \; \mu \; < \; \overline{x} + z_{\alpha/2} \, \frac{\sigma}{\sqrt{n}}$$

dengan $z_{\alpha/2}$ merupakan nilai dari sebaran normal baku untuk peluang sebesar $\alpha/2$ di ekor kanannya

Tingkat Kepercayaan	α	α/2	Z
90%	10%	0.05	1.645
95%	5%	0.025	1.960
99%	1%	0.005	2.576

perintah di MS Excel

=NORM.S.INV(0.95)

=NORM.S.INV(0.975)

=NORM.S.INV(0.995)

Semakin besar tingkat kepercayaan:

- semakin besar nilai Z
- semakin lebar selang kepecayaan

Teladan

- Sebuah survei terhadap 200 responden pedagang makanan keliling memperoleh informasi besarnya rata-rata pendapatan per hari sebesar 120 ribu rupiah selama masa pandemi covid. Andaikan diketahui bahwa simpangan baku pendapatan per hari adalah 40 ribu rupiah
- Selang Kepercayaan 90% bagi besarnya rata-rata pendapatan per hari pedagang makanan keliling selama masa pandemi adalah

$$\overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
 atau 120 ± 4.65 115.35 ribu s/d 124.65 ribu

Tingkat Kepercayaan dari Selang Sebaran Rata-Rata Contoh

Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Margin of Error (ME)

$$\overline{x} - z_{\alpha/2} \, \frac{\sigma}{\sqrt{n}} \; < \; \mu \; < \; \overline{x} + z_{\alpha/2} \, \frac{\sigma}{\sqrt{n}}$$

Penulisan di atas dapat dinyatakan sebagai

$$\overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

$$\overline{x} \pm ME$$

$$\overline{x} \pm ME$$
 dengan $ME = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

Untuk situasi yang sama (populasi dan tingkat kepercayaan tertentu), Margin of Error dapat diperkecil dengan meningkatkan atau memperbesar ukuran contoh (n)

Masalah: o tidak (pernah) diketahui

$$\overline{x} - z_{\alpha/2} \, \frac{\sigma}{\sqrt{n}} \; < \; \mu \; < \; \overline{x} + z_{\alpha/2} \, \frac{\sigma}{\sqrt{n}}$$

- Formula di atas tidak dapat diimplementasikan pada "sebagian besar" kasus karena memerlukan nilai o yang umumnya tidak diketahui
- Alternatifnya.... o diduga menggunakan s (simpangan baku contoh)
- Namun ini berimplikasi pada bentuk sebaran

$$\frac{\overline{x} - \mu}{S / n}$$
 tidak lagi $\frac{\overline{x} - \mu}{S / n}$ menyebar t-student dengan derajat bebas (n – 1)

$$\frac{\overline{x} - \mu}{\frac{S}{\sqrt{n}}}$$
 n

Sebaran t vs Sebaran Normal

semakin besar derajat bebas, sebaran t-student semakin mendekati sebaran normal baku

Selang Kepercayaan bagi μ ketika σ tidak diketahui dan populasi normal

$$\left| \overline{x} - t_{n\text{-}1,\alpha/2} \, \frac{s}{\sqrt{n}} \right| < \mu < \left| \overline{x} + t_{n\text{-}1,\alpha/2} \, \frac{s}{\sqrt{n}} \right|$$

beberapa nilai t

Tingkat Kepercayaan		db = 20	db = 30	Z
90%	1.812	1.725	1.697	1.645
95%	2.228	2.086	2.042	1.960
99%	3.169	2.845	2.750	2.576

nilai t semakin mendekati nilai Z untuk derajat bebas yang semakin besar

Selang Kepercayaan bagi proporsi

 ingat bahwa untuk ukuran contoh yang besar, proporsi contoh memiliki sebaran yang mendekati normal dengan simpangan baku

$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

yang selanjutnya diduga menggunakan

$$\hat{\sigma}_{\hat{p}} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

• Selang Kepercayaan (1 - α)x100% bagi proporsi populasi adalah

$$\left| \hat{\mathbf{p}} - \mathbf{z}_{\alpha/2} \sqrt{\frac{\hat{\mathbf{p}}(1-\hat{\mathbf{p}})}{\mathbf{n}}} \right|$$

 \hat{p} adalah proporsi pada contoh

n adalah ukuran contoh

z adalah skor normal baku sesuai dengan tingkat kepercayaan yang diinginkan

Teladan

- Sebuah survei terhadap 2000 responden UMKM makanan menghasilkan informasi bahwa 1600 responden mengalami penurunan omzet selama masa pandemi.
- Dari informasi tersebut kita dapatkan bahwa proporsi contoh UMKM yang mengalami penurunan omzet adalah

$$\hat{p} = \frac{1600}{2000} = 0.8$$

• Selang Kepercayaan 95% bagi proporsi UMKM yang mengalami penurunan omzet adalah

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$0.8 \pm (1.96) \sqrt{\frac{0.8(0.2)}{2000}}$$

Terima Kasih

Inspiring Innovation with Integrity in Agriculture, Ocean and Biosciences for a Sustainable World