	(ii)	Viscoelastic material subjected to sinusoidal oscillatory shear stress.	5	3	2	1
h	Write th	(OR)	10	3	2	1
U.	recovery	ne constitutive relation of Burger's model and sketch its creep and behaviour.	10	3	2	1
28. a.	layer. E	o top-down cracking and bottom up cracking occurs in bituminous explain, how the fatigue damage of the bituminous mixture is d in the laboratory scale?	10	2	3	1
		(OR)				
b.	Explain bituming	clearly the step by step process involved in the production of ous mixture in the hot mix asphalt mixing plant.	10	2	3	1
29. a.	Explain pavemer	the step by step design process involved in the design of flexible at with bonded layer.	10	2	4	3
		(OR)				
b.		the step by step design methodology involved in the design of pavement with granular base and subbase layer.	10	2	4	3
30. a.	List out and give	various types of failures in flexible pavement. Explain the causes remedial measures.	10	2	5	2
		(OP)				
b.	The foll	(OR) owing are the 12 deflection in mm measured using Benkelman	10	3	5	2
٥.	beam.	owing the the 12 deflection in him measured using benkelingin				
	1.46	5, 1.52, 1.56, 1.76, 1.96, 1.75, 1.68, 1.74, 1.96, 1.42, 1.56, 1.62				
e	the char	perature during all the observation is found to be 43°C. Calculate acteristic deflection for determining overlay thickness. Use sub disture correction factor of 2.				

	r - r	-		_	 	 	 		
Reg. No.			. 1					1 0	
iteg. 110.									l

B.Tech. DEGREE EXAMINATION, MAY 2022

Seventh Semester

		501	OIILII	Schioster				
				ANALYSIS AND DESIGN academic year 2018-2019 to 2019-2020	())			
Note:								
(i)	Pa	t - A should be answered in OMR s	heet v	within first 40 minutes and OMR shee	et shou	ld be	han	ded
(ii)	OVe	r to hall invigilator at the end of 40^{th} r t - B should be answered in answer be	ninute	2.				
Time: 2	½ Ho	urs			Max.	Maı	ks: 7	75
		$PART - A (25 \times 1 =$	= 25]	Marks)	Marks	BL	CO	PO
		Answer ALL Q						
1.	The the	ratio of $z/a = 0$, where 'z' is the stress at	dep	th and 'a' is the radius represents	1	2	1	1
	(A)	Surface	(B)	Subgrade				
	(C)	Base	(D)	•				
	_							
2.	In a	flexible pavement, which of the f	ollow	ving is true?	1	2	1	2
	(A)	The vertical compressive stress	(B)	The vertical compressive stress				
e		is maximum at the lowest layer		decreases with the depth of the layer				
	(C)	Stress induced is independent	(D)	Due to the vertical stress,				
		of the depth of the pavement		fatigue occurs in pavement				
3	In tl	e stress-strain analysis, the layere	d atm	ratura are aggressed as	1	1	1	1
٥.	(A)	Non linear-elastic			_1	1	1	1
	` /		, ,	Linearly elastic				
	(C)	Non linear-plastic	(D)	Linear-plastic				
4.	The	critical stress and strain in the lay	ered	structure are determined for	1	1	1	1
	(A)	Vehicle load or axle load as a	(B)	Vehicle load				
	` ,	whole	(_)	, chart load				
	(C)	Axle load	(D)	Wheel load				
5.	Whi	ch of the below mentioned layer h	120 le	ast elastic modulus?	1	1	1	1
	(A)	Surface layer	(B)	Base layer	-	•	•	-
	(C)	Sub base layer		•				
	(0)	Sub base layer	(D)	Subgrade layer				
6.	Whi	ch of the below material dissipates	s moi	e energy?	1	1	2	1
		Elastic	(B)	Viscous				
	(C)	Viscoelastic solid	(D)	Viscoelastic fluid				
	. ,		(-)					
7.	Whi	ch of the below is a characteristic	funct	ion of viscoelastic material?	1	2	2	2
		Recovery in the material	(B)					
	(C)	The network done is zero	(D)					
	(\cup)	THE HOUR OUR WOLLD IS ZOLU	(\mathcal{D})	All energy is dissipated				

									1	2	4 2	
8	The constitutive relation $\tau = \mu \dot{\varepsilon}$ wh	ere t is the shear stress, u is the	1	2	2 2	2	19. If a front axle of truck of single axle single wheel weights	70 kN and rear	1	2	4 3	
							axle of single axle dual wheel weighs 90 kN, what is the	vehicle damage				
	viscosity and $\dot{\varepsilon}$ is the strain rate descri						factor?					
		(B) Elastic material					(A) 3.94 (B) 2.95					
	(C) Newtonian material	(D) Viscoelastic material										
							(C) 1.35 (D) 1.6					
9.	The vertical tangential and radial stres	ss at a point in the pavement layer is	1	2	2	1			1	1	5 3	1
	96.6, 5.5 and 5.5 kPa. If the modulu	s of elasticity and Poisson's ratio is					20. Crack relief layer is provided in between		1	1	5 5	
	70 MPa and 0.5, the value of vertical s						(A) Subgrade and granular sub base (B) Granular base a	and granular sub				
							base					
	()	(B) 0.013					(C) Granular base and bituminous (D) Cement treate	ed base and				
	(C) 0.0026	(D) 0.026					layer bituminous layer					
				•	_	1	layer vitaminous tay e					
10.	The stress strain plot of viscoelastic ma	aterial due to sinusoidal shearing is	1	2	2	1	IDC27:-		1	1	4 3	3
	(A) Circular in shape	(B) Straight line					21. The standard axle load and type as per IRC37 is					
	` '	(D) Elliptical					(A) 80 kN single axle dual wheel (B) 80 kN single ax					
	(C) Tarabone	(b) Emption					(C) 120 kN single axle single wheel (D) 120 kN single a	xle dual wheel				
1.1	36 11 11: 1		1	1	3	1						
11.	Maxwell model is best captures for	(D) 11' 1 1 '					22. Falling weight deflectometer uses for		1	1	5 2	2
	(-)	(B) Viscous behavior					(A) Trapezoidal loading (B) Impact loading					
	(C) Viscoelastic solid behavior	(D) Viscoelastic fluid behavior										
							(C) Impulse loading (D) Sinusoidal load	mg				
12.	As the bitumen ages, its		1	1	3	1			1	1	4	1
12.	(A) Viscosity decreases	(B) Viscosity increases					23. The thickness of the existing pavement for overlay design is	s estimated using	1	,	7	1
		(D) Modulus decreases					(Λ) Percentage of cracked surface(Β) IRI					
		(D) Wodalus decreases					(C) Friction (D) Deflection					
	unchanged											
12	The elastic and the viscous modulus	Chinder is 60 and 80 MPa. Its phase	I	2	3	1	24. Reflection crack occurs in		1	1	4	1
15.		of officer is oo and oo mil at the prime						f				
	angle is	(D) 26 070					(A) Flexible overlay over rigid (B) Rigid pavement	<u>i</u>				
	(A) 53.13°	(B) 36.87°					pavement					
	(C) 45.12°	(D) 30.28°					(C) Subgrade layer (D) Sub base layer					
14.	Dense bituminous concrete layer is us	ed in	1.	1	3	1	25. Corrugation in flexible pavement indicates		1	1	4	1
	(A) Subgrade layer	(B) Base layer					(A) Deformation in the transverse (B) Longitudinal cr	racks				
	(C) Sub base layer	(D) Surface layer					direction					
	(C) Sub buse layer	(E) Surface full of					(C) Block cracks (D) Longitudinal de	eformation				
1.5	Ti i o Contanti at announce the colooti	an of aggregate for nevement lever is	1	1	3	1	(C) Block clacks (D) Longitudinal di	Joinanon				
15.	The key factor that governs the selection											
	(Λ) Gradation of aggregate	(B) Specific gravity							Marks	DI	CO 1	PΩ
	(C) Toughness	(D) Water absorption					$PART - B (5 \times 10 = 50 Marks)$		Marks	BL	CO I	·
						,	Answer ALL Questions					
16.	Which of the below option describes t	he resilient modulus of soil?	I	1	4	1						
	(A) It is the ratio of deviatoric stress	(B) It is the ratio of deviatoric stress					26. a. A homogeneous half space is subjected to circular load of	diameter 280 mm	10	3	1	1
	to total strain	to recoverable strain					and a pressure of 320 kPa. The material has an elastic mo	dulus of 70 MPa				
		(D) It is the ratio of confinement					and Poisson's ratio of 0.4. Determine the vertical stress,	radial stress and				
		pressure to recoverable strain					and Poisson's fatto of 0.4. Determine the vertical suces,	and arrestly at the				
	pressure to total strain	pressure to recoverable strain					tangential stress at a depth of 100 mm from the surface a	nu exactly at the				
			1	1	4	3	centre of loading.					
17	. The design CBR of the pavement is		1	1	7	5						
	(A) 80 th percentile CBR	(B) 50 th percentile CBR					(OR)					
	(C) 90 th percentile CBR	(D) 75 th percentile CBR					b. Sketch the cross section of bituminous layer and explain	n the function of	10	1	1	1
	• /						each layer.					
18	As per IRC method of pavement	design, which of the layer demands	1	1	4	3	Cuon luj Ci.					
1.0	cumulative damage analysis?	<u>J</u> ,					27. a. Explain the response of the viscoelastic material to the	following loading				
		(B) Subgrade layer						onowing toading				
	(A) Bituminous layer						conditions.	atrain for time a 649	5	3	2	1
	(C) Unbonded base layer	(D) Bonded base layer					(i) Viscoelastic solid material subjected to constant	suam for time 1.	-	-		

24MF718CEE401T