Algorithmes de production et d'identification d'empreintes de sons musicaux

Outils analytiques utilisés

Théorie de Fourier

Théorie des ondelettes

Transformation de Fourier

•
$$\forall f, g \in L^2(\mathbb{C}), \langle f, g \rangle = \int_{-\infty}^{+\infty} f(t) \overline{g(t)} dt$$

• Transformée de Fourier de s(t) :

$$\hat{s}: \nu \longmapsto \langle s, e^{i2\pi\nu t} \rangle$$

i.e. $\hat{s}: \nu \to \int_{-\infty}^{+\infty} s(t)e^{-i2\pi\nu t}dt$

Transformation de Fourier à fenêtre glissante

•
$$S: (v, b) \mapsto \langle s(t)g(t-b), e^{i2\pi vt} \rangle = \int_{-\infty}^{+\infty} s(t)g(t-b)e^{-i2\pi vt}dt$$

• Fenêtre rectangulaire :
$$g(t) = \begin{cases} 1 \ si \ t \in [0, T] \\ 0 \ sinon \end{cases}$$

Analyse multirésolution par ondelettes (AMR)

- Une AMR est une suite de sous-espaces vectoriels fermés de $L^2(\mathbb{R})$ telle que :
 - (1) $\forall j \in \mathbb{Z}$, $V_{j+1} \subset V_j$
 - (2) $\lim_{j\to +\infty} V_j = \{0\}$ et $\overline{\lim_{j\to -\infty} V_j} = L^2(\mathbb{R})$
 - (3) $\forall f(t) \in L^2(\mathbb{R}), f(t) \in V_j \Leftrightarrow f\left(\frac{t}{2}\right) \in V_{j+1}$
 - (4) $\exists \varphi(t) \in L^2(\mathbb{R})$; $\{\varphi(t-k), k \in \mathbb{Z}\}$ est une base orthogonale de V_0

Les espaces V_j sont définis par

fonction d'échelle ondelette père

 $V_j = \{f, f \text{ constante sur } [k2^j, (k+1)2^j]\}$

$$V_{j-1} = V_j \bigoplus^{\perp} W_j$$

$$proj_{V_{j-1}}s(t) = proj_{V_j}s(t) + proj_{W_j}s(t)$$

coefficients d'ondelettes

Exemple d'AMR

Réalisation des algorithmes

3 approches : 2 via la TFFG, 1 via l'AMR

Principe

- 1) Extraire l'information utile des signaux (les features)
- 2) Adapter cette information de sorte à ce qu'elle soit stockée dans une base de données : étape de hachage
- 3) Enregistrer l'information / l'utiliser pour identifier un extrait, à l'aide de requêtes SQL

Calcul du spectrogramme

- On découpe le signal en subdivisions régulières
- On applique la transformée de Fourier à chaque subdivision

• On applique à chaque subdivision une fenêtre de Blackmann-Harris

• On fait se chevaucher les subdivisions (on en rajoute)

Exemple de spectrogramme obtenu

Première approche

- On découpe le spectrogramme en 6 bandes de fréquences, et à chaque instant, on cherche le point de chaque bande de fréquences où l'intensité est maximale à cet instant.
- Si ce maximum est supérieur à 60%, on le considère comme un pic d'amplitude.

• On obtient donc un nuage de points

nuage de pics de l'extrait analysé

nuage de pics d'une musique de la base de données

Deuxième programme

Extraction des features

• Recherche des maximums locaux d'amplitude

Appairage des points

On stocke une paire dans la base de données sous la forme (t_0 , h)

Structure de la base de données

Identification

On insère les paires hachées de l'extrait dans la table hashes, avec idSong=0.

FROM hashes a, hashes b
WHERE a.idSong=0 AND b.idSong!=0 AND b.t >= a.t AND b.h=a.h
GROUP BY b.t-a.t, b.idSong
ORDER BY COUNT(*) DESC LIMIT 1

Troisième programme : analyse multirésolution par ondelettes (AMR)

Projections sur les espaces de détails W_i

extrait de qualité optimale

extrait enregistré par une webcam

Bilan

Résultats, améliorations possibles

Résultats obtenus

- Testé avec 432 musiques dans la base de données
- Premier algorithme naïf :
 - 1h30 de temps d'importation
 - 5 minutes pour identifier un extrait de 10 secondes
 - Identifie correctement des extraits très dégradés
- Deuxième algorithme :
 - 30 minutes de temps d'importation (3 fois plus rapide)
 - 27 secondes pour identifier un extrait de 10 secondes (10 fois plus rapide)
 - Identifie correctement des extraits moyennement dégradés
- Troisième algorithme (estimations):
 - Temps d'importation semblable
 - 4 fois moins de paires : identification 4 fois plus rapide