CHAPTER 7: TRIANGLES

EXERCISE 7.3

- 1. **ABC** is an isosceles triangle with AB = AC and BD and CE are its two medians. Show that BD = CE.
- 2. In Fig. 1, **D** and **E** are the points on side **BC** of a \triangle **ABC** such that **BD** = **CE** and **AD** = **AE**. Show that \triangle **ABD** $\cong \triangle$ **ACE**.

Figure 1:

- **3. CDE** is an equilateral triangle formed on a side **CD** of a square **ABCD** (Fig. 2). Show that \triangle **ADE** $\cong \triangle$ **BCE**.
- 4. In Fig. 3, BA \perp AC, DE \perp DF such that BA = DE and BF = EC. Show that \triangle ABC \cong \triangle DEF.
- 5. Q is a point on the side SR of $\triangle PSR$ such that PQ = PR. Prove that PS > PQ.
- 6. S is any point on side QR of a $\triangle PQR$. Show that PQ + QR + RP > 2PS.

- 7. **D** is any point on side **AC** of a \triangle **ABC** with **AB** = **AC**. Show that **CD** < **BD**.
- 8. In Fig. 4, 1||m an M is the mid-point of a line segment AB. Show that M is also the mid-point of any line segment CD, having its end points on 1 and m, respectively.
- 9. Bisectors of the $\angle B$ and $\angle C$ of an isosceles triangle with AB = AC intersect each other at O. BO is produced to a point M. Prove that $\angle MOC = \angle ABC$.
- 10. Bisectors of the $\angle B$ and $\angle C$ of an isosceles triangle ABC with AB = AC intersect each other at O. Show that the external angle adjacent to $\angle ABC$ is equal to $\angle BOC$.
- 11. In Fig. 5, AD is the bisector of $\angle BAC$. Prove that AB > BD.

Figure 2:

Figure 3:

Figure 4:

Figure 5: