An Introduction to MIMO communications

Pascal Vallet

Bordeaux INP/Laboratoire IMS

Evolution of cellular communications

- 1980-2000. 1G cellular networks (AMPS, NMT, Radiocom2000)
- 1990-? 2G cellular networks (GSM, DCS, GPRS, EDGE)
- 2000-? 3G cellular networks (CDMA2000, UMTS, HSDPA, HSPA+)
- 2010-? 4G celullar networks (LTE, LTE Advanced)
- 2020-? 5G cellular networks
- ∼2030 6G cellular networks

Review of "classical" channel access techniques

- TDMA. Time Division Multiple Access (2G, 3G)
 - flexible data rates
 - → synchronization/equalization, roaming, multipath interference
- FMDA. Frequency Division Multiple Access (1G, 2G)
 - simplicity
 - of fading, inefficient use of bandwidth, static data rates
- CMDA. Code Division Multiple Access (3G)
 - random access
 - receiver complexity, complex power allocation
- OFDMA. Orthogonal Frequency Division Multiple Access (4G)
 - simplicity, reduced multi-user interference and fading
 - → non-robust to frequency offsets

SDMA

- SDMA. Space Division Multiple Access
- The use of multiple antennas at the BS allows to form virtual beams focused on a specific user.
- Mutiple users may share the same time slots and frequency bands.
- Increased capacity if the UTs have multiple antennas (MIMO communications).
- Signal processing techniques for SDMA rely on array processing methods.

SDMA and mobile communications (1)

Figure: Evolution of downlink data rates (Mbps), from 2G to 4G

- TDMA, FDMA, CDMA, OFDMA.
- SDMA: No exploitation until LTE (MIMO 4x4) and LTE Adv. (MIMO 8x8).
- SDMA will be one of the main features in 5G standards.

SDMA and mobile communications (2)

Figure: Requirements for future 2020 mobile standards (source: Nokia)

SDMA and mobile communications (3)

Key features

- Extreme densification of cells
- mmWave (30 GHz to 300 GHz)
- Massive MIMO (up to 120 antennas at base stations)

Challenges

- Green communications
- Co-user and co-channel interference
- Propagation of mmWaves

SDMA and mobile communications (4)

Figure: Exemple of a massive MIMO phased array for 5G communications (Aurora CMM.100.A, 5-6GHz, 64 antennas)

MIMO techniques

- **Diversity.** MIMO allows to exploit spatial diversity, as a complement of the standard time and frequency diversities, to combat channel fading.
- ullet Capacity. Under certain conditions, the use of M antennas at TX and N antennas at RX increases the capacity by a factor $\min(M,N)$, compared to the classical case where both TX and RX have a single antenna.
- **Space-Time Codes.** MIMO offers a new layer of coding, by carefully choosing how to organize symbols across each TX antenna and time.

Outline

- MIMO channel modelling
 - Reminder on SISO channel model
 - MISO model: signal received at a scatterer
 - SIMO model: signal backscattered to the receiver
 - MIMO model: global link
 - Statistical models
- MIMO channel capacity
 - Some reminders
 - The case of deterministic H
 - The case of fast fading Gaussian H
 - The case of block fading Gaussian H
- Space-Time Coding
 - Model
 - Standard decoders
 - Bound on the error probability and Tarokh's criteria
 - Examples of STBC
 - DMT
- 4 References

Outline

- MIMO channel modelling
 - Reminder on SISO channel model
 - MISO model: signal received at a scatterer
 - SIMO model: signal backscattered to the receiver
 - MIMO model: global link
 - Statistical models
- MIMO channel capacity
 - Some reminders
 - The case of deterministic H
 - The case of fast fading Gaussian H
 - The case of block fading Gaussian H
- Space-Time Coding
 - Model
 - Standard decoders
 - Bound on the error probability and Tarokh's criteria
 - Examples of STBC
 - DMT
- 4 References

SISO model (1)

Figure: SISO transmit/receive chain

SISO model (2)

• Transmit signal. $\tilde{s}(t) = \operatorname{Re}\left(s(t) \mathrm{e}^{\mathrm{i} 2\pi f_c t}\right)$ with

$$s(t) = \sum_{k \in \mathbb{Z}} s_k p(t - kT_s).$$

• Receive signal. $\tilde{r}(t) = \operatorname{Re}\left(r(t)\mathrm{e}^{\mathrm{i}2\pi f_c t}\right)$ with

$$r(t) = \sum_{p=1}^{P} \gamma_p s(t - T_p) + v(t)$$

where

- P is the multipath number
- $ightharpoonup T_p$ is the p-th path delay
- $ightharpoonup \gamma_p$ is the p-th path fading coefficient
- $\triangleright v(t)$ is the baseband additive noise

SISO model (3)

Filtered signal.

$$y(t) = (r \star g)(t)$$
$$= \sum_{k \in \mathbb{Z}} s_k h(t - kT_s) + w(t)$$

where

- ▶ $h(t) = \sum_{p=1}^{P} \gamma_p(p \star g)(t T_p)$ is the "equivalent" channel
- $\mathbf{v}(t) = (g \star v)(t).$

MISO model (1)

- ullet N colocated transmit antennas radiating isotropically
- Narrowband signals (cf. array processing chapter)
- P far-field scatterers

Figure: Example with a ULA at TX

MISO model (2)

The signal received at the p-th scatterer is modelled as

$$\tilde{x}_p(t) = \alpha_p \sum_{n=1}^{N} \tilde{s}_n \left(t - T_{n,p} \right)$$

where

- lacktriangledown $lpha_p$ is a fading coefficient between the antenna array and the p-th scatterer
- lacksquare $T_{n,p}$ is the propagation delay between the n-th antenna and the p-th scatterer
- $\tilde{s}_n(t)=\mathrm{Re}\left(s_n(t)\mathrm{e}^{\mathrm{i}2\pi f_c t}\right)$ is the signal transmitted by the n-th antenna.

MISO model (3)

ullet The baseband model of $ilde{x}_p(t)$ can be approximated as

$$x_p(t) = \alpha_p e^{-i2\pi f_c T_{1,p}} \mathbf{a}(\theta_p, \phi_p)^T \mathbf{s}(t - T_{1,p})$$

with

- $\mathbf{a}(\theta,\phi)$ is the steering vector associated with the transmit N-antenna array
- \bullet θ_p, ϕ_p are the elevation and azimuth of the p-th scatterer
- $\mathbf{s}(t) = (s_1(t), \dots, s_N(t))^T.$

MISO model (4)

Figure: Example with ULA at TX, $\mathbf{a}(\theta) = \left(1, \mathrm{e}^{-\mathrm{i}2\pi\frac{d}{\lambda_c}\sin(\theta)}, \dots, \mathrm{e}^{-\mathrm{i}2\pi(N-1)\frac{d}{\lambda_c}\sin(\theta)}\right)^T$

Digression on a 1st type of beamforming (1)

- **Scenario.** Instead of scatterers, consider two single-antenna UTs with directions (θ_1, ϕ_1) and (θ_2, ϕ_2) , in LOS with the array.
- **Transmit signal.** On the *n*-th antenna, we transmit (in baseband)

$$s_n(t) = \overline{[\mathbf{a}(\theta_1,\phi_1)]_n} \quad \underbrace{s^{(1)}(t)}_{\text{signal for UT1}} + \overline{[\mathbf{a}(\theta_2,\phi_2)]_n} \quad \underbrace{s^{(2)}(t)}_{\text{signal for UT2}}$$

Digression on a 1st type of beamforming (2)

Signal received at UT1.

$$\begin{split} x_1(t) &= \alpha_1 \, \operatorname{e}^{-\mathrm{i} 2\pi f_c T_1} \underbrace{\left\| \mathbf{a}(\theta_1,\phi_1) \right\|_2^2 \, s^{(1)}(t-T_1)}_{\text{useful signal}} \\ &+ \alpha_1 \, \operatorname{e}^{-\mathrm{i} 2\pi f_c T_1} \, \underbrace{\mathbf{a}(\theta_1,\phi_1)^T \overline{\mathbf{a}(\theta_2,\phi_2)} s^{(2)}(t-T_1)}_{\text{interference}} \\ &+ \operatorname{noise}. \end{split}$$

Digression on a 1st type of beamforming (3)

• Example for ULA. Denoting $\nu(\theta) = \frac{d}{\lambda_c}\sin(\theta)$, we have

$$\|\mathbf{a}(\theta_1)\|_2^2 = N$$

$$\left| \mathbf{a}(\theta_2)^T \overline{\mathbf{a}(\theta_1)} \right| = \left| \frac{\sin \left(\pi (N-1)(\nu(\theta_1) - \nu(\theta_2)) \right)}{\sin \left(\pi (\nu(\theta_1) - \nu(\theta_2)) \right)} \right|$$

SIMO model (1)

- M colocated isotropic received antennas
- One far-field source backscattering signal $\tilde{x}_p(t)$ to the RX.

Figure: Example with ULA at RX

SIMO model (2)

• The complex envelope of the signal received by the RX array from the *p*-th scatterer is modelled as (cf. array processing chapter)

$$\mathbf{r}_p(t) = \beta_p e^{-i2\pi f_c \bar{T}_{1,p}} \mathbf{b} \left(\bar{\theta}_p, \bar{\phi}_p\right) x_p \left(t - \bar{T}_{1,p}\right)$$

where

- \triangleright β_p is a fading coefficient between p-th scatterer/RX
- ullet $\bar{T}_{m,p}$ is the propagation delay between p-th scatterer/m-th antenna
- \bullet $\bar{\theta}_p, \bar{\phi}_p$ are the elevation and azimuth of the scatterer
- ullet ${f b}(ar{ heta},ar{\phi})$ is the steering vector associated with the received M antenna array.

SIMO model (3)

Figure: Example with ULA at RX, $\mathbf{b}(\bar{\theta}) = \left(1, \mathrm{e}^{-\mathrm{i}2\pi\frac{\bar{d}}{\lambda_c}\sin(\bar{\theta})}, \ldots, \mathrm{e}^{-\mathrm{i}2\pi(M-1)\frac{\bar{d}}{\lambda_c}\sin(\bar{\theta})}\right)^T$

MIMO model (1)

• Taking into account the P scatterers and additive noise,

$$\mathbf{r}(t) = \sum_{p=1}^{P} \mathbf{r}_p(t) + \mathbf{v}(t)$$
$$= \sum_{p=1}^{P} \gamma_p \mathbf{b} \left(\bar{\theta}_p, \bar{\phi}_p \right) \mathbf{a}(\theta_p, \phi_p)^T \mathbf{s}(t - \delta_p) + \mathbf{v}(t)$$

where

•
$$\delta_p = T_{1,p} + \bar{T}_{1,p}$$
.

MIMO model (2)

• The transmit signal used is given by

$$\mathbf{s}(t) = \sum_{k \in \mathbb{Z}} \begin{pmatrix} s_{k,1} \\ \vdots \\ s_{k,N} \end{pmatrix} p(t - kT_s)$$

where p(t) is a shaping filter common to the N TX antennas.

ullet We use g(t) as a filter common to the M RX antennas.

MIMO model (3)

MIMO model - continuous time

The received signal after filtering is modelled as

$$\mathbf{y}(t) = (\mathbf{r} \star g)(t)$$
$$= \sum_{k \in \mathbb{Z}} \mathbf{H}(t - kT_s)\mathbf{s}_k + \mathbf{w}(t)$$

with

- $\mathbf{H}(t) = \sum_{p=1}^{P} \gamma_p \mathbf{b} \left(\bar{\theta}_p, \bar{\phi}_p \right) \mathbf{a}(\theta_p, \phi_p)^T (p \star g) (t \delta_p)$ the MIMO channel impulse response
- $\mathbf{w}(t) = ((v_1 \star g)(t), \dots, (v_M \star g)(t))^T$ the filtered noise

MIMO model (4)

MIMO model - discrete time

After sampling at frequency $\frac{1}{T_s}\text{, we get}$

$$\mathbf{y}_n = \mathbf{y}(nT_s)$$

$$= \sum_{k \in \mathbb{Z}} \mathbf{H}_k \mathbf{s}_{n-k} + \mathbf{w}_n$$

where $\mathbf{H}_k = \mathbf{H}(kT_s)$ and $\mathbf{w}_n = \mathbf{w}(nT_s)$.

MIMO model (5)

• Remark. In practice, we consider finite-length and causal channels:

$$\mathbf{y}_n = \sum_{k=0}^K \mathbf{H}_k s_{n-k} + \mathbf{w}_n$$

- If K > 1, the channel is said to be frequency selective.
- ▶ If K = 1, the channel is said to be *flat fading*: $y_n = Hs_n + w_n$.

Kronecker model (1)

• **Assumption 1.** The scatterers are colocated and induce approximately the same delays

$$\delta_1 = \ldots = \delta_P = \delta$$

- Assumption 2. $\gamma_1, \ldots, \gamma_p$ are modelled as i.i.d. complex circular rv with variance $\frac{1}{P}$ (normalized total transmit energy is spread uniformly among the scatterers).
- Assumption 3.
 - ▶ The DoD and DoA (θ_1, ϕ_1) , $(\bar{\theta}_1, \bar{\phi}_1)$, . . . , (θ_P, ϕ_P) , $(\bar{\theta}_P, \bar{\phi}_P)$ are independent, and mutually independent of $\gamma_1, \ldots, \gamma_P$.
 - $(\theta_1, \phi_1), \dots, (\theta_P, \phi_P)$ are i.i.d., distributed as a generic rv (θ, ϕ)
 - $(\bar{\theta}_1, \bar{\phi}_1), \dots, (\bar{\theta}_P, \bar{\phi}_P)$ are i.i.d., distributed as a generic rv $(\bar{\theta}, \bar{\phi})$

Kronecker model (2)

• **TLC.** As $P \to \infty$, the channel matrix

$$\mathbf{H} = (p \star g)(0) \sum_{p=1}^{P} \gamma_p \mathbf{b} \left(\bar{\theta}_p, \bar{\phi}_p\right) \mathbf{a} (\theta_p, \phi_p)^T$$

converge in distribution to a Gaussian random matrix, with correlated entries.

 \bullet Correlation analysis. Assuming $(p\star g)(0)=1,$ straightfoward computations show that

$$\mathbb{E}\left[h_{i,j}\overline{h}_{k,l}\right] = \mathbb{E}\left[\left[\mathbf{b}\left(\overline{\theta},\overline{\phi}\right)\mathbf{a}\left(\theta,\phi\right)^{T}\right]_{i,j}\overline{\left[\mathbf{b}\left(\overline{\theta},\overline{\phi}\right)\mathbf{a}\left(\theta,\phi\right)^{T}\right]_{l,k}}\right]$$
$$= r_{i,l}\ \tilde{r}_{j,k}$$

where

$$r_{i,l} = \mathbb{E}\left[\left[\mathbf{b}\left(\bar{\theta},\bar{\phi}\right)\right]_{l}\ \overline{\left[\mathbf{b}\left(\bar{\theta},\bar{\phi}\right)\right]_{l}}\ \right] \ \text{and} \ \tilde{r}_{j,k} = \mathbb{E}\left[\left[\mathbf{a}\left(\theta,\phi\right)\right]_{j}\overline{\left[\mathbf{a}\left(\theta,\phi\right)\right]_{k}}\ \right].$$

Kronecker model (3)

RX covariance matrix.

$$\mathbf{R} = (r_{i,l})_{i,l=1,\dots,M} = \mathbb{E}\left[\mathbf{b}\left(\bar{\theta},\bar{\phi}\right)\mathbf{b}\left(\bar{\theta},\bar{\phi}\right)^*\right]$$

TX covariance matrix.

$$\tilde{\mathbf{R}} = (\tilde{r}_{j,k})_{j,k=1,...,N} = \mathbb{E}\left[\mathbf{a}\left(\theta,\phi\right)\mathbf{a}\left(\theta,\phi\right)^*\right]$$

Kronecker model

Under the previous assumptions, and if the number of scatterers P is large, one can model ${\bf H}$ as

$$\mathbf{H} = \mathbf{R}^{\frac{1}{2}} \mathbf{X} \tilde{\mathbf{R}}^{\frac{1}{2}}$$

where \mathbf{X} is a $M \times N$ random matrix with i.i.d $\mathcal{N}_{\mathbb{C}}(0,1)$ entries.

Kronecker model for a ULA

 \bullet If the DoA are uniformly spread in the angular sector $\bar{\Theta},$ i.e.

$$\bar{\theta} \sim \mathcal{U}\left(\bar{\Theta}\right)$$

then

$$r_{k,l} = \frac{1}{|\bar{\Theta}|} \int_{\bar{\Theta}} e^{-i2\pi \frac{\bar{d}}{\lambda_c}(k-l)\sin(\bar{\theta})} d\bar{\theta} = \frac{1}{|\bar{\Theta}|} \int_{\sin(\bar{\Theta})} \frac{e^{-i2\pi \frac{\bar{d}}{\lambda_c}(k-l)u}}{\sqrt{1-u^2}} du.$$

so that

$$\mathbf{R} \xrightarrow{\frac{\bar{d}}{\lambda_c} \to \infty} \mathbf{I}.$$

• If $\bar{d} \gg \lambda_c$, the RX antennas may be considered as "statistically uncorrelated" (id. for TX antennas).

Rice model

Rice model

Under the assumptions of the Kronecker model, and in the presence of a direct path, one can model ${\bf H}$ as

$$\mathbf{H} = \sqrt{\frac{\kappa}{\kappa + 1}} \mathbf{C} + \sqrt{\frac{1}{\kappa + 1}} \mathbf{R}^{\frac{1}{2}} \mathbf{X} \tilde{\mathbf{R}}^{\frac{1}{2}}$$

where

- $\mathbf{C} = \mathbf{b} \left(\bar{\theta}_0, \bar{\phi}_0 \right) \mathbf{a} \left(\theta_0, \phi_0 \right)^T$ with $\left(\bar{\theta}_0, \bar{\phi}_0 \right)$ and $\left(\theta_0, \phi_0 \right)$ deterministic
- \bullet κ is the ratio between the energy carried by the direct path over the energy reflected by the scatterers.

Outline

- MIMO channel modelling
 - Reminder on SISO channel model
 - MISO model: signal received at a scatterer
 - SIMO model: signal backscattered to the receiver
 - MIMO model: global link
 - Statistical models
- 2 MIMO channel capacity
 - Some reminders
 - ullet The case of deterministic ${f H}$
 - The case of fast fading Gaussian H
 - The case of block fading Gaussian H
- Space-Time Coding
 - Model
 - Standard decoders
 - Bound on the error probability and Tarokh's criteria
 - Examples of STBC
 - DMT
- 4 References

Reminder on channel codes (1)

 \bullet Context. We consider a flat fading $M\times N$ MIMO channel. On a symbol time, we receive

$$y = Hx + v$$

where

- ▶ $\mathbf{H} \in \mathbb{C}^{M \times N}$ is the channel matrix,
- $\mathbf{v} \sim \mathcal{N}_{\mathbb{C}^M}\left(\mathbf{0}, \sigma^2 \mathbf{I}\right)$ is the additive Gaussian noise, assumed spatially white.
- $\mathbf{x} \in \mathbb{C}^N$ is the transmit signal, satisfying the power constraint

$$\mathbb{E} \|\mathbf{x}\|_2^2 \le P \quad \Leftrightarrow \quad \mathsf{tr}\mathbf{Q} \le P$$

where $\mathbf{Q} = \mathbb{E}[\mathbf{x}\mathbf{x}^*]$.

Reminder on channel codes (2)

• Code. A code is a set of codewords $\mathcal{C} = \{\mathbf{X}_1, \dots, \mathbf{X}_{|\mathcal{C}|}\}$, where for $k = 1, \dots, |\mathcal{C}|$, \mathbf{X}_k is a $N \times L$ matrix of symbols, with L the codelength.

In the context of MIMO communications, such codes are referred to as Space-Time Block Codes (STBC).

- Rate. $R = \frac{\log |\mathcal{C}|}{L}$.
- Decoding function. $\phi : \mathbb{C}^{M \times L} \mapsto \mathcal{C}$.
- Error probability. If X is a (randomly) transmitted codeword and if we receive the $M \times L$ matrix Y, then

$$P_e = \mathbb{P}\left(\phi(\mathbf{Y}) \neq \mathbf{X}\right).$$

Reminder on channel codes (3)

• Achievability. A rate R>0 is said to be achievable if there exists a sequence of STBC $(\mathcal{C}_L)_{L>1}$ with length L, rate R_L and error probability $P_{e,L}$ such that

$$R_L \xrightarrow[L \to \infty]{} R$$
 and $P_{e,L} \xrightarrow[L \to \infty]{} 0$.

• Channel capacity. The capacity of the MIMO channel is defined as

$$C = \sup \{R \ge 0 : R \text{ is achievable} \}.$$

Reminder on the SVD (1)

ullet SVD. Any M imes N complex matrix ${f H}$ can be factorized as

$$\mathbf{H} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*$$

where

 $oldsymbol{\Sigma} = (\sigma_{i,j})$ is a M imes N diagonal matrix of singular values, with

$$\sigma_{1,1} \geq \ldots \geq \sigma_{r,r} > 0$$

and $\sigma_{i,i} = 0$ for all i > r, with $r = \text{rank}(\mathbf{H})$.

- ightharpoonup U is a $M \times M$ unitary matrix of left singular vectors.
- ightharpoonup V is $N \times N$ matrix of right singular vectors.

Reminder on the SVD (2)

ullet EVD (1). An eigenvalue decomposition of matrix 1 $HH^*\succeq 0$ is given by

$$\mathbf{H}\mathbf{H}^* = \mathbf{U} \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_M \end{pmatrix} \mathbf{U}^*,$$

where $\lambda_1 = \sigma_{1,1}^2 \ge \dots \lambda_r = \sigma_{r,r}^2 > \lambda_{r+1} = \dots = \lambda_M = 0$.

• EVD (2). An eigenvalue decomposition of matrix $H^*H \succeq 0$ is given by

$$\mathbf{H}^*\mathbf{H} = \mathbf{V} \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_N \end{pmatrix} \mathbf{V}^*,$$

where $\lambda_1 = \sigma_{1,1}^2 \ge \dots \lambda_r = \sigma_{r,r}^2 > \lambda_{r+1} = \dots = \lambda_N = 0$.

¹N.B. $A \succeq 0 \Leftrightarrow A$ is positive semidefinite.

Capacity for a deterministic channel \mathbf{H} (1)

• Information capacity. The information capacity of the channel is defined by

$$C = \sup_{f_{\mathbf{x}}: \ \mathbb{E}||\mathbf{x}||_2^2 \le P} \mathbb{I}(\mathbf{x}; \mathbf{y})$$

where $\mathbb{I}(\mathbf{x}; \mathbf{y})$ is the mutual information between the input/output of the channel.

Mutual information.

$$\begin{split} \mathbb{I}(\mathbf{x}; \mathbf{y}) &= \mathbb{H}(\mathbf{y}) - \mathbb{H}(\mathbf{y} | \mathbf{x}) \\ &= \mathbb{H}(\mathbf{y}) - M \log(\pi e \sigma^2). \end{split}$$

where $\mathbb{H}(.)$ is the entropy and $\mathbb{H}(.|.)$ the conditional entropy.

Capacity for a deterministic channel H (2)

• Output entropy. Since $\mathbb{E}[\mathbf{y}\mathbf{y}^*] = \mathbf{H}\mathbf{Q}\mathbf{H}^* + \sigma^2\mathbf{I}$ with $\mathbf{Q} = \mathbb{E}[\mathbf{x}\mathbf{x}^*]$, we have

$$\mathbb{H}(\mathbf{y}) \leq \log \Big((\pi e)^M \det \left(\mathbf{H} \mathbf{Q} \mathbf{H}^* + \sigma^2 \mathbf{I} \right) \Big)$$

with equality iff $\mathbf{y} \sim \mathcal{N}_{\mathbb{C}^M}(\mathbf{0}, \mathbf{HQH^*} + \sigma^2 \mathbf{I})$, which is verified if $\mathbf{x} \sim \mathcal{N}_{\mathbb{C}^N}(\mathbf{0}, \mathbf{Q})$.

Information capacity (1st formula)

$$C = \sup_{\substack{\mathbf{Q} \succeq \mathbf{0} \\ \operatorname{tr} \mathbf{Q} \leq P}} \operatorname{logdet} \left(\mathbf{I} + \frac{\mathbf{H} \mathbf{Q} \mathbf{H}^*}{\sigma^2} \right)$$

Capacity for a deterministic channel H(3)

ullet Consider the EVD of matrix $\mathbf{H}^*\mathbf{H}\succeq \mathbf{0}$

$$\mathbf{H}^*\mathbf{H} = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^*$$

where
$$\Lambda = \operatorname{diag}(\lambda_1,\dots,\lambda_r,\underbrace{0,\dots,0}_{N-r})$$
 and $\mathbf V$ is $N\times N$ unitary.

ullet Since $\mathbf{Q}\mapsto \mathbf{V}^*\mathbf{Q}\mathbf{V}$ is an isometric isomorphism conserving the trace,

$$C = \sup_{\substack{\mathbf{Q} \succeq \mathbf{0} \\ \operatorname{tr} \mathbf{Q} \leq P}} \operatorname{logdet} \left(\mathbf{I} + \frac{\mathbf{\Lambda}^{\frac{1}{2}} \mathbf{V}^* \mathbf{Q} \mathbf{V} \mathbf{\Lambda}^{\frac{1}{2}}}{\sigma^2} \right) = \sup_{\substack{\mathbf{Q} \succeq \mathbf{0} \\ \operatorname{tr} \mathbf{Q} \leq P}} \operatorname{logdet} \left(\mathbf{I} + \frac{\mathbf{\Lambda}^{\frac{1}{2}} \mathbf{Q} \mathbf{\Lambda}^{\frac{1}{2}}}{\sigma^2} \right)$$

Capacity for a deterministic channel H(4)

• Using Hadamard's inequality,

$$\operatorname{logdet}\left(\mathbf{I} + \frac{\boldsymbol{\Lambda}^{\frac{1}{2}}\mathbf{Q}\boldsymbol{\Lambda}^{\frac{1}{2}}}{\sigma^2}\right) \leq \sum_{i=1}^r \operatorname{log}\left(1 + \frac{q_i\lambda_i}{\sigma^2}\right)$$

with equality iff $\mathbf{Q} = \operatorname{diag}(q_1, \dots, q_N)$.

Information capacity (2nd formula)

$$C = \sup_{\substack{q_1, \dots, q_r \ge 0 \\ q_1 + \dots + q_r \le P}} \sum_{i=1}^r \log \left(1 + \frac{q_i \lambda_i}{\sigma^2} \right)$$

Capacity for a deterministic channel H (5)

• Water-Filling. Using KKT Theorem, there exists unique maximizers q_1^*, \dots, q_r^* such that

$$q_i^* = \left(\frac{1}{\gamma^*} - \frac{1}{\frac{\lambda_i}{\sigma^2}}\right)^+ \quad \forall i = 1, \dots, r$$

where γ^* is the unique solution to the equation $f\left(\frac{1}{\gamma}\right) = P$ with

$$f\left(\frac{1}{\gamma}\right) = \sum_{i=1}^{r} \left(\frac{1}{\gamma} - \frac{1}{\frac{\lambda_i}{\sigma^2}}\right)^+.$$

Capacity for a deterministic channel H (6)

Figure: Illustration of the water-filling problem

Capacity for a deterministic channel \mathbf{H} (7)

Figure: Illustration of the water-filling problem (no power allocated to sub-channel 4)

Precoding/postcoding and optimal power allocation (1)

 \bullet From the previous study, the optimal capacity-achieving covariance matrix ${\bf Q}$ is given by

where the allocated powers q_1^*,\ldots,q_r^* are adjusted by water-filling, and ${\bf V}$ is the $N\times N$ unitary eigenvectors matrix of ${\bf H}^*{\bf H}$.

ullet Remark. The knowledge of the channel matrix ${f H}$ is required, which may be unrealistic depending on the context.

Precoding/postcoding and optimal power allocation (2)

• Transmit signal/Precoding. We use

$$\mathbf{x} = \mathbf{V} \begin{pmatrix} \sqrt{q_1^*} & & & & & \\ & \ddots & & & & \\ & & \sqrt{q_r^*} & & & \\ & & & 0 & & \\ & & & & \ddots & \\ & & & & 0 \end{pmatrix} \mathbf{s}$$

where $\mathbf{s} \in \mathbb{C}^N$ is a vector of transmit symbols, such that

$$\mathbb{E}[\mathbf{s}\mathbf{s}^*] = \mathsf{diag}\left(\underbrace{1,\ldots,1}_{r \; \mathsf{times}},0,\ldots,0\right)$$

Precoding/postcoding and optimal power allocation (3)

• Receive signal. Using the SVD of H, the receive signal writes

$$y = Hx + v$$

$$=\mathbf{U}\begin{pmatrix} \sqrt{q_1^*\lambda_1}s_1\\ \vdots\\ \sqrt{q_r^*\lambda_r}s_r\\ 0\\ \vdots\\ 0\end{pmatrix}+\mathbf{v}$$

Precoding/postcoding and optimal power allocation (4)

• **Postcoding.** The receiver computes

$$\mathbf{z} = \mathbf{U}^*\mathbf{y}$$

$$= \begin{pmatrix} \sqrt{q_1^* \lambda_1} s_1 \\ \vdots \\ \sqrt{q_r^* \lambda_r} s_r \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \mathbf{w}$$

where $\mathbf{w} \sim \mathcal{N}_{\mathbb{C}^M} (\mathbf{0}, \sigma^2 \mathbf{I})$.

Precoding/postcoding and optimal power allocation (5)

Summary of precoding/postcoding

- After precoding/postcoding, we retrieve $r = \operatorname{rank}(\mathbf{H})$ parallel AWGN subchannels, with optimized SNR (the channel capacity and the information capacity coincides). Thus, a maximum of r symbols per channel use can be transmitted.
- Precoding/postcoding may be interpreted as a beamforming along "virtual" directions (i.e. along the singular vectors of H).
- Precoding/postcoding and optimal power allocation can only be performed if
 H is known at both the transmitter and the receiver.

Capacity for a fast fading Gaussian H (1)

- **Model.** The channel matrix \mathbf{H} has i.i.d. $\mathcal{N}_{\mathbb{C}}(0,1)$ entries (and independent of \mathbf{x}), changes at each symbol time (fast fading) and is known to the receiver.
- IT model.

• Information capacity (1).

$$C = \sup_{f_{\mathbf{x}}: \ \mathbb{E}\|\mathbf{x}\|_{2}^{2} \leq P} \mathbb{I}\left(\mathbf{x}; (\mathbf{y}, \mathbf{H})\right)$$

Capacity for a fast fading Gaussian H (2)

Information capacity (2). Conditioning on H, we get

$$C = \sup_{f_{\mathbf{x}}: \ \mathbb{E}\|\mathbf{x}\|_{2}^{2} \le P} \mathbb{I}(\mathbf{x}; \mathbf{H}) + \mathbb{I}(\mathbf{x}; \mathbf{y} | \mathbf{H})$$

where

$$\mathbb{I}(\mathbf{x}; \mathbf{y}|\mathbf{H}) := \mathbb{H}(\mathbf{x}|\mathbf{H}) - \mathbb{H}(\mathbf{x}|\mathbf{y}, \mathbf{H})$$
$$:= \mathbb{E}[J(\mathbf{H})]$$

with

$$\mathbf{Z} \mapsto J(\mathbf{Z}) = \int \int f(\mathbf{x}, \mathbf{y} | \mathbf{H} = \mathbf{Z}) \log \left(\frac{f(\mathbf{x}, \mathbf{y} | \mathbf{H} = \mathbf{Z})}{f(\mathbf{x} | \mathbf{H} = \mathbf{Z}) f(\mathbf{y} | \mathbf{H} = \mathbf{Z})} \right) d\mathbf{x} d\mathbf{y}$$

Capacity for a fast fading Gaussian H (3)

• Information capacity (3). Since x and H are independent,

$$C = \sup_{\substack{\mathbf{Q} \succeq \mathbf{0} \\ \operatorname{tr} \mathbf{Q} \leq P}} \quad \sup_{f_{\mathbf{x}} : \; \mathbb{E}[\mathbf{x} \mathbf{x}^*] = \mathbf{Q}} \mathbb{E}[J(\mathbf{H})].$$

• Information capacity (4). From the previous section,

$$\sup_{f_{\mathbf{x}} \colon \mathbb{E}[\mathbf{x}\mathbf{x}^*] = \mathbf{Q}} J(\mathbf{H}) = \operatorname{logdet}\left(\mathbf{I} + \frac{\mathbf{H}\mathbf{Q}\mathbf{H}^*}{\sigma^2}\right).$$

with equality if $\mathbf{x} \sim \mathcal{N}_{\mathbb{C}^N}(\mathbf{0}, \mathbf{Q})$.

Capacity for a fast fading Gaussian H (4)

Information capacity (1st formula)

$$C = \sup_{\substack{\mathbf{Q}\succeq\mathbf{0}\\ \mathrm{tr}\mathbf{Q}\leq P}} \mathbb{E}\left[\mathrm{logdet}\left(\mathbf{I} + \frac{\mathbf{H}\mathbf{Q}\mathbf{H}^*}{\sigma^2}\right)\right].$$

Capacity for a fast fading Gaussian H (5)

• Information capacity (6). Using the unitary invariance of the standard complex Gaussian distribution, namely

$$\mathbf{H}\mathbf{U} \stackrel{\mathcal{D}}{=} \mathbf{H}$$

for any $N \times N$ unitary matrix \mathbf{U} , we deduce from the EVD of \mathbf{Q} that

$$C = \sup_{\substack{\mathbf{D} \succeq \mathbf{0} \text{ diagonal} \\ \operatorname{tr} \mathbf{D} \leq P}} \quad \underbrace{\mathbb{E}\left[\operatorname{logdet}\left(\mathbf{I} + \frac{\mathbf{H}\mathbf{D}\mathbf{H}^*}{\sigma^2}\right)\right]}_{=\Psi(\mathbf{D})}.$$

• Information capacity (6). Moreover, if \mathcal{P}_N is the set of $N \times N$ permutation matrices,

$$\Psi(\mathbf{D}) = \Psi(\mathbf{P}\mathbf{D}\mathbf{P}^*) \quad \forall \mathbf{P} \in \mathcal{P}_N.$$

Capacity for a fast fading Gaussian H (6)

• Information capacity (7). Using the concavity of $\mathbf{D} \mapsto \Psi(\mathbf{D})$, we obtain

$$\Psi(\mathbf{D}) = \frac{1}{|\mathcal{P}_N|} \sum_{\mathbf{P} \in \mathcal{P}_N} \Psi(\mathbf{P} \mathbf{D} \mathbf{P}^*)$$

$$\leq \Psi \left(\underbrace{\frac{1}{|\mathcal{P}_N|} \sum_{\mathbf{P} \in \mathcal{P}_N} \mathbf{P} \mathbf{D} \mathbf{P}^*}_{= \text{ multiple of the identity}} \right).$$

where $|\mathcal{P}_N| = N!$ is the cardinality of \mathcal{P}_N .

• Information capacity (8). It follows that $\mathbf{D} \mapsto \Psi(\mathbf{D})$ achieves its maximum for $\mathbf{D} = \alpha \mathbf{I}$, with $\alpha \geq 0$.

Capacity for a fast fading Gaussian \mathbf{H} (7)

Information capacity (2nd formula)

The information capacity is given by

$$C = \mathbb{E}\left[\operatorname{logdet}\left(\mathbf{I} + \frac{P}{N\sigma^2}\mathbf{H}\mathbf{H}^*\right)\right]$$

and is achieved for $\mathbf{x} \sim \mathcal{N}_{\mathbb{C}^N}(\mathbf{0}, \frac{P}{N}\mathbf{I})$.

- Remark (1). This information capacity is usually called *ergodic capacity* and coincides with the channel capacity if H is known at the receiver.
- Remark (2). Uniform power allocation $\frac{P}{N}$ per antenna, and no specific direction favored.
- Remark (3). No simple expression (i.e. by solving expectation) is known.

Large SNR analysis (1)

• The ergodic capacity may be written as

$$\begin{split} C(\rho) &= \mathbb{E}\left[\operatorname{logdet}\left(\mathbf{I} + \rho \mathbf{H} \mathbf{H}^*\right)\right] \\ &= \mathbb{E}[\operatorname{rank}(\mathbf{H})] \log(\rho) + \mathbb{E}\left[\sum_{i=1}^{\operatorname{rank}(\mathbf{H})} \log\left(\lambda_i(\mathbf{H} \mathbf{H}^*) + \frac{1}{\rho}\right)\right] \end{split}$$

where $\lambda_1(\mathbf{HH}^*) \geq \ldots \geq \lambda_M(\mathbf{HH}^*) \geq 0$ are the eigenvalues of \mathbf{HH}^* and ρ is the SNR per antenna.

It holds that

$$\begin{split} & \mathbb{P}\left(\mathrm{rank}(\mathbf{H}) = \min(M, N)\right) = 1 \\ & \mathbb{E}\left[\sum_{i=1}^{\mathrm{rank}(\mathbf{H})} \log\left(\lambda_i(\mathbf{H}\mathbf{H}^*) + \frac{1}{\rho}\right)\right] \xrightarrow[\rho \to \infty]{} \sum_{i=1}^{\min(M, N)} \mathbb{E}\left[\log\left(\lambda_i(\mathbf{H}\mathbf{H}^*)\right)\right]. \end{split}$$

Large SNR analysis (2)

Behaviour for large SNR

As $\rho \to \infty$,

$$C(\rho) = \min(M, N) \log(\rho) + \mathcal{O}(1).$$

- Remark (1). At high SNR, the Gaussian MIMO ergodic capacity behaves as the capacity of $\min(M,N)$ scalar Gaussian channels.
- Remark (2). At high SNR, the ergodic capacity may be further increased by increasing $both\ M$ and N.

Large SNR analysis (3)

Figure: Ergodic capacity and large SNR approximation (M=N=2)

Large N analysis (1)

• As $N \to \infty$, the LLN implies

$$\frac{\mathbf{H}\mathbf{H}^*}{N} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{h}_n \mathbf{h}_n^* \xrightarrow[N \to \infty]{a.s.} \mathbf{I}.$$

Behaviour for large N

$$C\left(\frac{P}{N\sigma^2}\right) \xrightarrow[N \to \infty]{} M\log\left(1 + \frac{P}{\sigma^2}\right).$$

ullet Remark. Increasing the number of transmit antennas N to increase the capacity is pointless if the number of receive antennas M does not increase as well.

Large N analysis (2)

Figure: Ergodic capacity and large N approximation (M=2) vs. total SNR $\frac{P}{\sigma^2}$

Large M analysis (1)

 \bullet Using the fact that $\mathsf{det}(\mathbf{I}+\mathbf{AB})=\mathsf{det}(\mathbf{I}+\mathbf{BA})$,

$$\mathbb{E}\left[\operatorname{logdet}\left(\mathbf{I} + \mathbf{H}\mathbf{H}^* \frac{P}{N\sigma^2}\right)\right] = N \log(M) + \mathbb{E}\left[\operatorname{logdet}\left(\mathbf{I} + \frac{\mathbf{H}^*\mathbf{H}}{M} \frac{P}{N\sigma^2}\right)\right]$$

Behaviour for large M

As $M o \infty$,

$$C\left(\frac{P}{N\sigma^2}\right) = N\log(M) + N\log\left(\frac{P}{N\sigma^2}\right) + o(1).$$

• **Remark.** Increasing the number of receive antennas M "slowly" increases the capacity (i.e. with \log speed).

Large M analysis (2)

Figure: Ergodic capacity and large M approximation (N=2) vs. total SNR $\frac{P}{\sigma^2}$

- Model. The channel matrix \mathbf{H} has i.i.d. $\mathcal{N}_{\mathbb{C}}(0,1)$ entries (and independent of \mathbf{x}), is constant during the transmission of a codeword (block fading) and is known to the receiver.
- For a fixed realization of H, the maximum achievable rate is given by

$$C(\mathbf{H}) = \sup_{\substack{\mathbf{Q} \succeq \mathbf{0} \\ \operatorname{tr} \mathbf{Q} \le P}} \operatorname{logdet} \left(\mathbf{I} + \frac{\mathbf{H} \mathbf{Q} \mathbf{H}^*}{\sigma^2} \right).$$

• If R > 0 is a fixed target rate, then

$$\mathbb{P}\left(C(\mathbf{H}) < R\right) > 0.$$

 \Rightarrow The channel capacity is zero.

- In the context of block fading channels, we use the concepts of *outage* probability and *outage* capacity to extend the notion of channel capacity.
- \bullet Outage probability. For a fixed target rate R, we define

$$P_{\mathsf{out}}(R) = \inf_{\substack{\mathbf{Q} \succeq \mathbf{0} \\ \mathsf{tr} \mathbf{Q} \leq P}} \mathbb{P}\left(\mathsf{logdet}\left(\mathbf{I} + \frac{\mathbf{H}\mathbf{Q}\mathbf{H}^*}{\sigma^2}\right) < R \right).$$

• Outage capacity. For $\epsilon > 0$, we define

$$C_{\mathsf{out}}(\epsilon) = \sup \{R > 0 : P_{\mathsf{out}}(R) \le \epsilon \}.$$

Literature

- **SU-MIMO.** Foschini & Ganz'98 [6], Telatar'99 [12], Zheng & Tse'02 [16], Jorswieck & Boche [8]
- MU-MIMO. Viswanath & Tse'03 [14], Caire & Shamai'03 [2], Viswanath et al.'01 [15]

Outline

- MIMO channel modelling
 - Reminder on SISO channel model
 - MISO model: signal received at a scatterer
 - SIMO model: signal backscattered to the receiver
 - MIMO model: global link
 - Statistical models
- MIMO channel capacity
 - Some reminders
 - The case of deterministic H
 - The case of fast fading Gaussian H
 - The case of block fading Gaussian H
- Space-Time Coding
 - Model
 - Standard decoders
 - Bound on the error probability and Tarokh's criteria
 - Examples of STBC
 - DMT
- 4 References

Model (1)

• Scenario. We consider a $M \times N$ flat fading MIMO channel, constant over L symbols (block fading)

$$Y = HX + V$$

where

- ▶ **H** is a $M \times N$ with i.i.d. $\mathcal{N}_{\mathbb{C}}(0,1)$ entries, known at the receiver.
- ▶ **V** is a $M \times L$ with i.i.d. $\mathcal{N}_{\mathbb{C}}(0, \sigma^2)$ entries, with σ^2 known at the receiver.
- $\mathbf{X} \in \mathcal{C}$ is a matrix of transmit symbols, where $\mathcal{C} \subset \mathcal{A}^{N \times L}$ is a STBC and \mathcal{A} is the symbol alphabet

Model (2)

ullet Decoding. We recall that a decoder is a mapping $\phi:\mathbb{C}^{M imes L}\mapsto\mathcal{C}$, and we denote

$$\hat{\mathbf{X}} = \phi(\mathbf{Y}).$$

• Error probability. If X is randomly chosen in C, the error probability associated with decoder ϕ is given by

$$P_e = \mathbb{P}\left(\hat{\mathbf{X}} \neq \mathbf{X}\right).$$

Maximum Likelihood (1)

ullet Principle. We estimate ${f X}$ as

$$\hat{\mathbf{X}} \in \underset{\mathbf{C} \in \mathcal{C}}{\operatorname{argmax}} f\left(\mathbf{Y}; \mathbf{H}, \mathbf{C}, \sigma^2\right)$$

where $f\left(\mathbf{Y};\mathbf{H},\mathbf{C},\sigma^{2}\right)$ is the likelihood function given by

$$f\left(\mathbf{Y}; \mathbf{H}, \mathbf{C}, \sigma^{2}\right) = \left(\frac{1}{\sigma^{2}\pi}\right)^{ML} \exp\left(-\frac{1}{\sigma^{2}} \|\mathbf{Y} - \mathbf{H}\mathbf{C}\|_{F}^{2}\right).$$

with $\|.\|_F$ the Frobenius (or Hilbert-Schmidt) norm 2

$$\|\mathbf{A}\|_F^2 = \sum_{i=1}^M \sum_{i=1}^L |a_{i,j}|^2 = \operatorname{tr}(\mathbf{A}^*\mathbf{A}) = \sum_{i=1}^{\min(M,L)} \sigma_i(\mathbf{A})^2.$$

where $\sigma_1(\mathbf{A}) \geq \ldots \geq \sigma_{\min(M,L)}(\mathbf{A}) \geq 0$ are the singular values of \mathbf{A} .

²For any matrix $M \times L$ matrix **A**,

Maximum Likelihood (2)

ML decoder

The ML decoder is given by

$$\hat{\mathbf{X}} \in \underset{\mathbf{C} \in \mathcal{C}}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{HC}\|_F^2$$

- Remark (1). The ML reduces to a least squares optimization problem.
- Remark (2). The ML decoder minimizes the error probability among all possible decoders, when the codeword X is uniformly distributed in C (cf. 2nd year Channel Coding course).
- Remark (3). High computational complexity $\mathcal{O}\left(|\mathcal{C}|\right)$ due to the exhaustive search, which may be of the order $\mathcal{O}\left(|\mathcal{A}|^{NL}\right)$ in the worst case scenario where $\mathcal{C}=\mathcal{A}^{N\times L}$.

ZF decoder (1)

• **Principle.** Design a $M \times N$ filtering matrix \mathbf{F} to minimize the ISI due to the spatial mixing induced by the MIMO channel:

$$\begin{split} \mathbf{Z} &= \mathbf{F}^* \mathbf{Y} \\ &= \underbrace{\mathbf{F}^* \mathbf{H}}_{\approx \mathbf{I}} \mathbf{X} + \mathbf{F}^* \mathbf{V} \end{split}$$

• **Design (1).** The Zero-Forcing (ZF) filter is chosen as the (unique) minimum norm matrix among the set of solutions of the least squares problem

$$\operatorname*{argmin}_{\mathbf{F} \in \mathbb{C}^{M \times N}} \|\mathbf{F}^*\mathbf{H} - \mathbf{I}\|_F^2$$

ZF decoder (2)

• **Design (2).** The solution is given by

$$\mathbf{F}_{ZF} = (\mathbf{H}^*)^+ = (\mathbf{H}^+)^*$$

where \mathbf{H}^+ is the pseudo-inverse ³ of \mathbf{H} .

• Remark. If rank(H) = N, then $F_{ZF} = H(H^*H)^{-1}$ in which case the filtered observed signal writes

$$\mathbf{Z} = \mathbf{X} + \mathbf{F}_{ZF}^* \mathbf{V}.$$

The spatial interference is totally cancelled.

$$\mathbf{H}^{+} = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^{*}.$$

³If $r = \mathsf{rank}(\mathbf{H})$ and if a SVD of \mathbf{H} is given by $\mathbf{H} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*$ where \mathbf{U} and \mathbf{V} are resp. $M \times r$ and $N \times r$ isometric matrices and Σ is a $r \times r$ positive diagonal matrix, then

ZF decoder (3)

ZF decoder

The ZF decoder is given by $\hat{\mathbf{X}}=(\hat{x}_{n,\ell})_{\substack{n=1,...,N\\\ell=1,...,L}}$ with

$$\hat{x}_{n,\ell} \in \underset{s \in \mathcal{A}}{\operatorname{argmin}} |z_{n,\ell} - s|^2,$$

with $\mathbf{Z} = (z_{n,\ell})_{\substack{n=1,\ldots,N\\\ell=1,\ldots,L}} = \mathbf{H}^+\mathbf{Y}$.

ZF decoder (4)

- Remark (1). The decoded matrix $\hat{\mathbf{X}}$ does not belong to \mathcal{C} in general, and additionnal operations may be needed to "project" $\hat{\mathbf{X}}$ onto \mathcal{C} .
- Remark (2). The ZF decoder is suboptimal (in terms of error probability) but has reduced complexity compared to the ML decoder: in the worst case scenario where $\mathcal{C} = \mathcal{A}^{N \times L}$, we have $\mathcal{O}(NL|\mathcal{A}|)$.

ZF decoder (5)

• Remark (3). The filtered noise $\mathbf{F}_{ZF}^*\mathbf{V}$ is no longer spatially white, with energy

$$\begin{split} \frac{1}{L} \mathbb{E}[\|\mathbf{F}_{ZF}^* \mathbf{V}\|_F^2] &= \sigma^2 \|\mathbf{F}_{ZF}\|_F^2 \\ &= \sigma^2 \mathrm{tr} \left(\mathbf{H}^+ (\mathbf{H}^+)^* \right) \\ &= \sigma^2 \sum_{i=1}^{\mathsf{rank}(\mathbf{H})} \frac{1}{\sigma_i(\mathbf{H})^2} \end{split}$$

where $\sigma_1(\mathbf{H}) \geq \ldots \geq \sigma_{\mathsf{rank}(\mathbf{H})}(\mathbf{H})$ are the singular values of \mathbf{H} .

The noise energy is amplified if \mathbf{H} has singular values close to 0.

ZF decoder (6)

• Remark (4). After filtering, we have

$$\mathbf{Z} = \mathbf{X} + \underbrace{\left(\mathbf{H}^{+}\mathbf{H} - \mathbf{I}\right)\mathbf{X}}_{ISI} + \mathbf{H}^{+}\mathbf{V},$$

and the ISI energy is given by

$$\begin{split} \frac{1}{L} \mathbb{E} \left\| \left(\mathbf{H}^{+} \mathbf{H} - \mathbf{I} \right) \mathbf{X} \right\|_{F}^{2} &= \mathsf{tr} \left(\mathbf{\Pi} \mathbb{E} [\mathbf{X} \mathbf{X}^{*}] \right) \\ &= N - r \qquad (\mathsf{if} \ \mathbb{E} [\mathbf{X} \mathbf{X}^{*}] = \mathbf{I}), \end{split}$$

where $\Pi = I - H^{+}H$ is the orthogonal projection matrix onto Ker(H)

MMSE decoder (1)

• Principle. On one symbol time, we observe

$$z = Hx + v$$

where $\mathbf{x} \in \mathbb{C}^N$ is the transmit symbol vector and $\mathbf{v} \sim \mathcal{N}_{\mathbb{C}^M}(\mathbf{0}, \sigma^2 \mathbf{I})$, and the goal is to design a $M \times N$ filtering matrix \mathbf{F} minimizing the MSE between $\mathbf{F}^*\mathbf{y}$ and \mathbf{x} :

$$\mathbf{F}_{MMSE} \in \operatorname*{argmin}_{\mathbf{F} \in \mathbb{C}^{M \times N}} \mathbb{E} \left\| \mathbf{F}^* \mathbf{y} - \mathbf{x} \right\|_2^2.$$

• Design. The MMSE filter is unique and given by

$$\mathbf{F}_{MMSE} = \left(\mathbf{HQH}^* + \sigma^2 \mathbf{I}\right)^{-1} \mathbf{HQ},$$

where $\mathbf{Q} = \mathbb{E}[\mathbf{x}\mathbf{x}^*]$.

MMSE decoder (2)

MMSE decoder

The MMSE decoder is given by $\hat{\mathbf{X}} = (\hat{x}_{n,\ell})_{\substack{n=1,\ldots,N\\\ell=1,\ldots,L}}$ with

$$\hat{x}_{n,\ell} \in \operatorname*{argmin}_{s \in \mathcal{A}} |z_{n,\ell} - s|^2,$$

with
$$\mathbf{Z} = (z_{n,\ell})_{\substack{n=1,\dots,N\\\ell=1,\dots,L}} = \mathbf{Q}^*\mathbf{H}^* \left(\mathbf{H}\mathbf{Q}\mathbf{H}^* + \sigma^2\mathbf{I}\right)^{-1}\mathbf{Y}.$$

MMSE decoder (3)

• Remark (1). When Q = I, we have

$$\mathbf{F}_{MMSE} = \left(\mathbf{H}\mathbf{H}^* + \sigma^2 \mathbf{I}\right)^{-1} \mathbf{H}$$

$$= \mathbf{H} \left(\mathbf{H}^* \mathbf{H} + \sigma^2 \mathbf{I}\right)^{-1}$$

$$\xrightarrow{\sigma^2 \to 0} \mathbf{F}_{ZF}.$$

MMSE decoder (4)

• Remark (2). If Q = I, the filtered noise energy is given by

$$\begin{split} \frac{1}{L} \mathbb{E} \left\| \mathbf{F}_{MMSE}^* \mathbf{V} \right\|_F^2 &= \sigma^2 \left\| \mathbf{F}_{MMSE} \right\|_F^2 \\ &= \sigma^2 \sum_{i=1}^r \left(\frac{\sigma_i(\mathbf{H})}{\sigma_i(\mathbf{H})^2 + \sigma^2} \right)^2 \end{split}$$

The noise energy cannot be unbounded for a fixed value of σ^2 if e.g. $\sigma_r(\mathbf{H}) \to 0$.

The SIC decoder (1)

• **Principle (1).** The idea is to perform Successive Interference Cancellation (SIC) technique based on a QR decomposition of the channel matrix \mathbf{H} : if we assume $M \geq N$, then

$$\mathbf{H} = \mathbf{Q}\mathbf{R}$$

where ${\bf Q}$ is a $M \times N$ isometric matrix, and ${\bf R}$ is a $N \times N$ upper triangular matrix.

The SIC decoder (2)

• Principle (2). We compute

$$egin{aligned} \mathbf{Z} &= \mathbf{Q}^* \mathbf{Y} \ &= \mathbf{R} \mathbf{X} + \mathbf{Q}^* \mathbf{V} \ &= egin{pmatrix} r_{1,1} & \dots & r_{1,N} \\ & \ddots & dots \\ & & r_{N,N} \end{pmatrix} egin{pmatrix} x_{1,1} & \dots & x_{1,L} \\ dots & & dots \\ x_{N,1} & \dots & x_{N,L} \end{pmatrix} + \mathbf{W} \end{aligned}$$

where $\mathbf{W} = \mathbf{Q}^* \mathbf{V}$ has i.i.d. $\mathcal{N}_{\mathbb{C}}(0, \sigma^2)$ entries (i.e. the transformed noise remains temporally and spatially white).

The SIC decoder (3)

SIC decoder

The SIC decoder is given by $\hat{\mathbf{X}} = (\hat{x}_{n,\ell})_{\substack{n=1,\ldots,N\\\ell=1,\ldots,L}}$ with

$$\hat{x}_{N,\ell} \in \operatorname*{argmin}_{s \in \mathcal{A}} \left| z_{N,\ell} - r_{N,N} s \right|^2 \quad \text{for } \ell = 1, \dots, L$$

and for all $n = N - 1, \dots, 1$ and $\ell = 1, \dots, L$

$$\hat{x}_{n,\ell} \in \operatorname*{argmin}_{s \in \mathcal{A}} \left| z_{n,\ell} - \sum_{k=n+1}^{N} r_{n,k} \hat{x}_{k,\ell} - r_{n,n} s \right|^{2},$$

with
$$\mathbf{Z} = (z_{n,\ell})_{\substack{n=1,\ldots,N\\\ell=1,\ldots,L}} = \mathbf{Q}^*\mathbf{Y}$$
.

The SIC decoder (4)

- Remark (1). In general, the SIC decoder outperforms the ZF and MMSE decoder in terms of error probability, in the high SNR regime.
- Remark (2). The SIC performance may be degraded due to error propagation.
- Remark (3). The SIC idea may also be used in conjunction with ZF and MMSE decoders, giving new decoders SIC-ZF and SIC-MMSE.

Performance of standard decoders (1)

Figure: Error probability vs. SNR (M=2, N=1, L=1, $\mathcal{C}=\mathcal{A}^{N\times L}$, $\mathcal{A}=\mathsf{QPSK}$)

Performance of standard decoders (2)

Figure: Error probability vs. SNR ($M=N=2, L=1, \mathcal{C}=\mathcal{A}^{N\times L}$, $\mathcal{A}=\mathsf{QPSK}$)

Performance of standard decoders (3)

Figure: Error probability vs. SNR (M=4, N=2, L=1, $\mathcal{C}=\mathcal{A}^{N\times L}$, $\mathcal{A}=\mathsf{QPSK}$)

Performance of standard decoders (4)

Figure: Error probability vs. SNR (M=8, N=2, L=1, $\mathcal{C}=\mathcal{A}^{N\times L}$, $\mathcal{A}=\mathsf{QPSK}$)

Performance of standard decoders (5)

Figure: Error probability vs. SNR ($M=4,~N=4,~L=1,~\mathcal{C}=\mathcal{A}^{N\times L}$, $\mathcal{A}=\mathsf{QPSK}$)

PEP (1)

• Error probability (1). When the random codeword X is uniformly distributed in the code C, we have

$$\begin{split} P_e &= \mathbb{P}\left(\hat{\mathbf{X}} \neq \mathbf{X}\right) \\ &= \frac{1}{|\mathcal{C}|} \sum_{\mathbf{C} \in \mathcal{C}} \mathbb{P}\left(\hat{\mathbf{X}} \neq \mathbf{X} | \mathbf{X} = \mathbf{C}\right). \\ &= \frac{1}{|\mathcal{C}|} \sum_{\mathbf{C} \in \mathcal{C}} \sum_{\substack{\mathbf{C}' \in \mathcal{C} \\ \mathbf{C}' \neq \mathbf{C}}} \mathbb{P}\left(\hat{\mathbf{X}} = \mathbf{C}' | \mathbf{X} = \mathbf{C}\right). \end{split}$$

PEP (2)

• Error probability (2). Using the ML decoder (which minimizes P_e), we get

$$\begin{split} P_{e} &= \frac{1}{|\mathcal{C}|} \sum_{\mathbf{C} \in \mathcal{C}} \sum_{\substack{\mathbf{C}' \in \mathcal{C} \\ \mathbf{C}' \neq \mathbf{C}}} \mathbb{P} \left(\hat{\mathbf{X}} = \mathbf{C}' | \mathbf{X} = \mathbf{C} \right) \\ &= \frac{1}{|\mathcal{C}|} \sum_{\mathbf{C} \in \mathcal{C}} \sum_{\substack{\mathbf{C}' \in \mathcal{C} \\ \mathbf{C}' \neq \mathbf{C}}} \mathbb{P} \left(\bigcap_{\mathbf{C}'' \in \mathcal{C}} \left\{ \| \mathbf{Y} - \mathbf{H} \mathbf{C}' \|_F^2 \le \| \mathbf{Y} - \mathbf{H} \mathbf{C}'' \|_F^2 \right\} | \left\{ \mathbf{X} = \mathbf{C} \right\} \right) \\ &\le \frac{1}{|\mathcal{C}|} \sum_{\mathbf{C} \in \mathcal{C}} \sum_{\substack{\mathbf{C}' \in \mathcal{C} \\ \mathbf{C}' \neq \mathbf{C}}} \mathbb{P} \left(\| \mathbf{Y} - \mathbf{H} \mathbf{C}' \|_F^2 \le \| \mathbf{Y} - \mathbf{H} \mathbf{C} \|_F^2 | \mathbf{X} = \mathbf{C} \right). \\ &= P_{e}(\mathbf{C} \to \mathbf{C}') \end{split}$$

PEP (3)

• PEP. The Pairwise Error Probability (PEP) is defined as

$$P_{e}\left(\mathbf{C} \to \mathbf{C}'\right) = \mathbb{P}\left(\left\|\mathbf{Y} - \mathbf{H}\mathbf{C}'\right\|_{F}^{2} \leq \left\|\mathbf{Y} - \mathbf{H}\mathbf{C}\right\|_{F}^{2} \mid \mathbf{X} = \mathbf{C}\right)$$

• Remark. The PEP represents the probability of decoding \mathbf{C}' knowing that \mathbf{C} is the transmit codeword, and assuming that \mathbf{C} and \mathbf{C}' are the only codewords in the code.

Tarokh's criteria (1)

A bound on the PEP

We have

$$P_e\left(\mathbf{C} \to \mathbf{C}'\right) \le \prod_{j=1}^{N} \left(\frac{1}{1 + \frac{\lambda_j}{4\sigma^2}}\right)^M$$

where $\lambda_1 \geq \ldots \geq \lambda_N \geq 0$ denote the eigenvalues of matrix $(\mathbf{C} - \mathbf{C}')(\mathbf{C} - \mathbf{C}')^*$.

• **Remark.** The eigenvalues $\lambda_1, \dots, \lambda_N$ intuitively measures the distance between codewords \mathbf{C} and \mathbf{C}' , so that if $\lambda_1 \to \infty$, we have

$$P_e\left(\mathbf{C} \to \mathbf{C}'\right) \to 0.$$

Tarokh's criteria (2)

• Large SNR behaviour. Letting $ho=rac{1}{\sigma^2}$ and $r={\sf rank}({f C}-{f C}')$, we have

$$P_e\left(\mathbf{C} \to \mathbf{C}'\right) \le \left(\frac{4}{\rho}\right)^{Mr} \left(\prod_{j=1}^r \frac{1}{\lambda_j}\right)^M + \mathcal{O}\left(\frac{1}{\rho^{Mr+1}}\right)$$

as $\rho \to \infty$.

The STBC can be designed in terms of parameters r and $\lambda_1,\dots,\lambda_r$ to minimize the bound on the PEP for large SNR.

Tarokh's criteria (3)

The Rank Criterion

The STBC should be designed to maximize the minimum rank of the code, i.e. choose the code $\mathcal C$ such that

$$r_{min}(\mathcal{C}) = \min_{\substack{\mathbf{C}, \mathbf{C}' \in \mathcal{C} \\ \mathbf{C} \neq \mathbf{C}'}} \operatorname{rank}\left(\mathbf{C} - \mathbf{C}'\right)$$

is maximal.

- Remark (1). The quantity $d(\mathcal{C})=M\times r_{min}(\mathcal{C})$ is called the *diversity* advantage of the code \mathcal{C} , and corresponds to the exponent of the factor $\frac{1}{\rho}$ in the error probability.
- Remark (2). The maximum diversity advantage is $d(\mathcal{C}) = MN$ (achieved when $r_{min}(\mathcal{C}) = N$), and coincides with the number of independent paths in the $M \times N$ MIMO channel.

Tarokh's criteria (4)

The Determinant Criterion

The STBC should be designed to maximize

$$\kappa_{min}(\mathcal{C}) = \min_{\substack{\mathbf{C}, \mathbf{C}' \in \mathcal{C} \\ \mathbf{C} \neq \mathbf{C}'}} \prod_{j=1}^{\mathsf{rank}(\mathbf{C} - \mathbf{C}')} \lambda_j.$$

- Remark (1). The quantity $\kappa_{min}(\mathcal{C})$ is called the *coding advantage* of the code \mathcal{C} , and acts as a secondary criterion to compare two STBC having the same diversity advantage.
- Remark (2). When $r_{min}(\mathcal{C}) = N$, then

$$\kappa_{min}(\mathcal{C}) = \max_{\substack{\mathbf{C}, \mathbf{C}' \in \mathcal{C} \\ \mathbf{C} \neq \mathbf{C}'}} \det \left((\mathbf{C} - \mathbf{C}')(\mathbf{C} - \mathbf{C}')^* \right).$$

Tarokh's criteria (5)

Figure: Illustration of the diversity and coding advantages.

STBC

- Principles. Space-Time Block Coding consists in organizing the sequence of symbols
 - across the transmit antennas (space)
 - across channel uses (time)

$$\mathbf{C} = \begin{array}{c} \underbrace{\mathsf{re}}_{\mathsf{e}} \\ \underbrace{\mathsf{re}}_{\mathsf{e}} \\ \underbrace{\mathsf{c}}_{N,1} & \dots & c_{1,L} \\ \vdots & & \vdots \\ c_{N,1} & \dots & c_{N,L} \\ \end{array}$$

• Challenge. Compromise between the error probability (diversity advantage) and the rate (number of effective transmit symbol per codeword).

Layered codes: the V-BLAST (1)

- Vertical Bell LAbs Space-Time.
- Idea. Transmit N streams of symbols $(s_\ell^{(0)})_{\ell\in\mathbb{Z}},\ldots,\,(s_\ell^{(N-1)})_{\ell\in\mathbb{Z}}$, with each stream attached to one antenna, so that
- Codeword.

$$\mathbf{C} = \begin{pmatrix} s_0^{(0)} & s_1^{(0)} & \dots & s_{L-1}^{(0)} \\ \vdots & \vdots & & \vdots \\ s_0^{(N-1)} & s_1^{(N-1)} & \dots & s_{L-1}^{(N-1)} \end{pmatrix}$$

Layered codes: the V-BLAST (2)

• Code size. The code is given by

$$C = S^N$$

where S is the set of substreams $(S \subset A^L)$.

Rate.

$$R(\mathcal{C}) = \frac{\log |\mathcal{C}|}{L} = \frac{N}{L} \log |\mathcal{S}|.$$

If $S = A^L$, R(C) = N is the maximal rate achievable by V-BLAST.

Layered codes: the V-BLAST (3)

Diversity advantage.

$$r_{min} = \min_{\substack{\mathbf{C}, \mathbf{C}' \in \mathcal{C} \\ \mathbf{C} \neq \mathbf{C}'}} \operatorname{rank} \left(\mathbf{C} - \mathbf{C}' \right) = 1.$$

V-BLAST offers the minimal diversity advantage $d(\mathcal{C})=M$, whatever the choice of substream set $\mathcal{S}.$

 Remark. V-BLAST offers a poor diversity advantage due to the absence of coding across antennas, since each substream is associated with a fixed antenna.

Layered codes: the D-BLAST (1)

- Diagonal Bell LAbs Space-Time.
- Idea. Transmit K streams of symbols $(s_\ell^{(0)})_{\ell\in\mathbb{Z}},\ldots,(s_\ell^{(K-1)})_{\ell\in\mathbb{Z}}$, with each stream shifting "circularly" across the antennas, so that
- Codeword.

$$\mathbf{C} = \begin{pmatrix} s_0^{(0)} & \dots & \dots & s_0^{(K-1)} & 0 & \dots & \dots & 0 \\ 0 & s_1^{(0)} & \dots & \dots & s_1^{(K-1)} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & & & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & & & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & & & \ddots & 0 \\ 0 & \dots & \dots & 0 & s_{N-1}^{(0)} & \dots & \dots & s_{N-1}^{(K-1)} \end{pmatrix}$$

Layered codes: the D-BLAST (2)

• Code size. The code is given by

$$C = S^K$$

where \mathcal{S} is the set of substreams $(\mathcal{S} \subset \mathcal{A}^N)$.

Rate.

$$R(\mathcal{C}) = \frac{\log |\mathcal{C}|}{L} = \frac{K}{N + K - 1} \log |\mathcal{S}|.$$

If $\mathcal{S}=\mathcal{A}^N$, $R(\mathcal{C})=\frac{KN}{N+K-1}$ is the maximum rate achievable by D-BLAST.

Layered codes: the D-BLAST (3)

Diversity advantage.

$$r_{min} = \min_{\substack{\mathbf{C}, \mathbf{C}' \in \mathcal{C} \\ \mathbf{C} \neq \mathbf{C}'}} \operatorname{rank}\left(\mathbf{C} - \mathbf{C}'\right) = \min_{\substack{\mathbf{s}, \mathbf{s}' \in \mathcal{S} \\ \mathbf{s} \neq \mathbf{s}'}} \left\|\mathbf{s} - \mathbf{s}'\right\|_{0},$$

where $\|.\|_0$ is the ℓ^0 -norm (number of non-zero entries).

D-BLAST may achieve a diversity advantage $d(\mathcal{C})$ up to N, depending on the choice of the substream set \mathcal{S} .

ullet Remark. With D-BLAST, each substream is sent across the N antennas, allowing to achieve a better diversity advantage than V-BLAST, at the cost of a lower rate.

Orthogonal codes (1)

Principles. Orthogonal codes are STBC such that every codeword matrix C
can be represented as

$$\mathbf{C} = \sum_{k=1}^{K} \left(s_k \mathbf{\Phi}_k + \overline{s}_k \mathbf{\Psi}_k \right)$$

with $s_1, \ldots, s_K \in \mathcal{A}$, and where $\Phi_1, \Psi_1, \ldots, \Phi_K, \Psi_K$ are $N \times L$ matrices with entries in the set $\{-1, 0, 1\}$ chosen so that

$$\mathbf{CC}^* = \alpha \left(\sum_{k=1}^K |s_k|^2 \right) \mathbf{I}$$

for some $\alpha > 0$.

Orthogonal codes (2)

 Decoding. Orthogonal codes can be decoded via ML with reduced computational cost: the minimization problem

$$\hat{\mathbf{C}} = \underset{\mathbf{C} \in \mathcal{C}}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{H}\mathbf{C}\|_F^2$$

is equivalent to estimate s_1, \ldots, s_K as

$$\hat{s}_k = \operatorname*{argmin}_{s \in \mathcal{A}} \left| z_k - \alpha \| \mathbf{H} \|_F^2 s \right|^2,$$

where
$$z_k = \overline{\operatorname{tr}\left(\mathbf{Y}^*\mathbf{H}\mathbf{\Phi}_k\right)} + \operatorname{tr}\left(\mathbf{Y}^*\mathbf{H}\mathbf{\Psi}_k\right)$$
.

Using orthogonal codes breaks the exponential computational cost of ML.

Orthogonal codes (3)

• Example 1. For the case where N=L=2, orthogonal codes are called Alamouti codes, and codewords are represented (up to some permutation) by matrices

$$\mathbf{C} = \begin{pmatrix} s_1 & s_2 \\ -\overline{s_2} & \overline{s_1} \end{pmatrix}$$

In that case, K=2 and

$$\Phi_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \Psi_1 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}
\Phi_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad \Psi_2 = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}$$

 Remark. The Alamouti code achieves a maximum diversity advantage of 2M and a rate of 1 symbol per channel use.

Orthogonal codes (4)

• Example 2. For N=3, L=4, the following codewords

$$\mathbf{C} = \begin{pmatrix} s_1 & -\overline{s_2} & \overline{s_3} & 0 \\ s_2 & \overline{s_1} & 0 & \overline{s_3} \\ s_3 & 0 & -\overline{s_1} & -\overline{s_2} \end{pmatrix}$$

for $s_1, s_2, s_3 \in \mathcal{A}$ define an orthogonal code, with basis matrices

This code has a diversity advantage of 3M and a rate $\frac{3}{4}$.

A new look at diversity (1)

• Reminder. Let us recall that the ergodic capacity, given by

$$C(\rho) = \mathbb{E}\left[\operatorname{logdet}\left(\mathbf{I} + \rho \mathbf{H} \mathbf{H}^*\right)\right]$$

behaves at large SNR ρ as

$$C(\rho) \underset{\rho \to +\infty}{\sim} \min(M, N) \log(\rho),$$

that is, as the capacity of $\min(M, N)$ independent SISO Gaussian channels.

To take fully benefits from this behaviour, it is relevant to consider STBC parametrized by SNR ρ with rates increasing logarithmically with ρ .

Diversity and multiplexing gains

Consider a family of STBC $(\mathcal{C}(\rho))_{\rho>0}$ with rate $R(\rho)$, error probability $P_e(\rho)$ and length L fixed w.r.t. ρ . We say that this family achieves

• a multiplexing gain of r > 0 if

$$\lim_{\rho \to \infty} \frac{R(\rho)}{\log(\rho)} = r,$$

• a diversity gain of d(r) > 0 if

$$\lim_{\rho \to \infty} \frac{\log (P_e(\rho))}{\log(\rho)} = -d(r).$$

A new look at diversity (3)

- Remark 1. The notion of diversity defined here is related to the actual error probability P_e , while the one defined previously was related to the PEP.
- Remark 2. The case r=0 includes the situation where the code rate R is kept fixed as SNR $\rho \to \infty$, and in that case, d(0) coincides with the diversity gain on the PEP.
- Remark 3. Intuitively, in the case where the multiplexing gain $r=\min(M,N)$, the code rate R is close to the ergodic capacity and one expects a diversity gain $d(\min(M,N))=0$.

Diversity-Multiplexing Trade-off (1)

Zheng & Tse Theorem [17]

Let $d^*(r)$ denotes the supremum of the diversity gains achieved over all family of STBC $(\mathcal{C}(\rho))_{\rho>0}$ having multiplexing gain r. Then if $L\geq M+N-1$, the function

$$r \mapsto d^*(r)$$

is piecewise linear between the points $k \in \{0, 1, \dots, \min(M, N)\}$, with

$$d^*(k) = (M - k)(N - k).$$

Diversity-Multiplexing Trade-off (2)

Figure: Illustration of DMT

Diversity-Multiplexing Trade-off (3)

- Remark 1. Increasing the STBC length L above M+N-1 to increase diversity is useless; a length L=M+N-1 is sufficient to extract the maximal diversity.
- Remark 2. DMT can be seen as an extension of Shannon's theorem in a different asymptotic regime $(\rho \to \infty \text{ instead of } L \to \infty)$
- Remark 3. In this framework, the Rank and Determinant criteria are no longer relevant to design efficient STBC.

DMT for standard codes (1)

• Symbol constellation. To ensure a rate $R = R(\rho) \sim r \log(\rho)$ as $\rho \to \infty$, we consider a QAM constellation $\mathcal{A}(\rho)$ such that

$$|\mathcal{A}(\rho)| \underset{\rho \to \infty}{\sim} \rho^{\frac{r}{N}}.$$

Figure: QAM constellation with size behaving as $\rho^{\frac{r}{N}}$ as $\rho \to \infty$

DMT for standard codes (2)

V-BLAST [11]

When $M \geq N$ and using ML decoder, the DMT for the V-BLAST code is given by

$$d_{\text{V-BLAST}}(r) = M \left(1 - \frac{r}{N}\right)^{+}$$

- ullet V-BLAST has a maximal diversity gain of M and maximal multiplexing gain of N.
- \bullet If M=N, V-BLAST achieves optimal DMT only for multiplexing gain r=N-1.

DMT for standard codes (3)

D-BLAST [11]

For $M,N\geq 2$, K=2 streams, and using ML decoder, the DMT for the D-BLAST code is given by

$$d_{\text{D-BLAST}}(r) = M\left(N - \frac{N+1}{2}r\right)^{+}$$

• For M=2, D-BLAST achieves the optimal DMT for $0 \le r \le 1$.

DMT for standard codes (4)

Alamouti [17]

Using ML decoder, the DMT for the Alamouti code is given by

$$d_{\text{ALAMOUTI}}(r) = 2M (1 - r)^{+}.$$

• If M=1, then

$$d_{\text{ALAMOUTI}}(r) = d^*(r)$$

and the Alamouti code achieves the optimal DMT.

• If M > 1, then

$$d_{\text{ALAMOUTI}}(r) < d^*(r) \quad \forall \ 0 < r \le 2.$$

Alamouti code is suboptimal when the receiver has more than one antenna.

DMT for standard codes (4)

Figure: DMT for M=N=2.

DMT for standard codes (5)

Figure: DMT for M=N=4.

Further references on DMT

- Optimal DMT achieving codes. [1, 10, 4, 5]
- DMT with linear decoders. [9, 7, 3]
- **DMT** for **MAC**. [13]

Outline

- MIMO channel modelling
 - Reminder on SISO channel model
 - MISO model: signal received at a scatterer
 - SIMO model: signal backscattered to the receiver
 - MIMO model: global link
 - Statistical models
- MIMO channel capacity
 - Some reminders
 - The case of deterministic H
 - The case of fast fading Gaussian H
 - The case of block fading Gaussian H
- Space-Time Coding
 - Model
 - Standard decoders
 - Bound on the error probability and Tarokh's criteria
 - Examples of STBC
 - DMT
- 4 References

References I

J-C Belfiore, G. Rekaya, and E. Viterbo.
 The golden code: a 2 × 2 full-rate space-time code with nonvanishing determinants.
 IEEE Trans. Inf. Theory, 51(4):1432–1436, 2005.

[2] G. Caire and S. Shamai. On the achievable throughput of a multiantenna gaussian broadcast channel. IEEE Trans. Inf. Theory, 49(7):1691–1706, 2003.

- [3] P. Dupuy, F.and Loubaton.
 - Diversity of the mmse receiver in flat fading and frequency selective mimo channels at fixed rate.
 - In 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pages 932–936. IEEE, 2011.
- [4] P. Elia, R. Kumar, S. Pawar, P. Kumar, and H. Lu. Explicit space–time codes achieving the diversity–multiplexing gain tradeoff. *IEEE Trans. Inf. Theory*, 52(9):3869–3884, 2006.
- [5] P. Elia, B. Sethuraman, and P. Kumar. Perfect space–time codes for any number of antennas. *IEEE Trans. Inf. Theory*, 53(11):3853–3868, 2007.

References II

[6] G. Foschini and M. Gans.

On limits of wireless communications in a fading environment when using multiple antennas.

Wirel. Pers. Commun., 6(3):311-335, 1998.

[7] Y. Jiang, M. Varanasi, and J. Li.

Performance analysis of zf and mmse equalizers for mimo systems: An in-depth study of the high snr regime.

IEEE Trans. Inf. Theory, 57(4):2008–2026, 2011.

[8] E. Jorswieck and H. Boche.

Channel capacity and capacity-range of beamforming in mimo wireless systems under correlated fading with covariance feedback.

IEEE Trans. Wirel. Commun., 3(5):1543-1553, 2004.

[9] R. Kumar, G. Caire, and A. Moustakas.

Asymptotic performance of linear receivers in mimo fading channels.

IEEE Trans. Inf. Theory, 55(10):4398-4418, 2009.

References III

[10] F. Oggier, G. Rekaya, J-C Belfiore, and E. Viterbo. Perfect space-time block codes. *IEEE Trans. Inf. Theory*, 52(9):3885–3902, 2006.

[11] S. Tavildar and P. Viswanath. Approximately universal codes over slow-fading channels. *IEEE Trans. Inf. Theory*, 52(7):3233–3258, 2006.

- [12] E. Telatar. Capacity of Multi-antenna Gaussian Channels. Eur. Trans. Telecommun., 10(6):585–595, 1999.
- [13] D. Tse, P. Viswanath, and L. Zheng. Diversity-multiplexing tradeoff in multiple-access channels. IEEE Trans. Inf. Theory, 50(9):1859–1874, 2004.
- [14] P. Viswanath and D. Tse.
 Sum capacity of the vector gaussian broadcast channel and uplink-downlink duality.
 IEEE Trans. Inf. Theory, 49(8):1912–1921, 2003.

References IV

[15] P. Viswanath, D. Tse, and V. Anantharam.

Asymptotically optimal water-filling in vector multiple-access channels.

IEEE Trans. Inf. Theory, 47(1):241-267, 2001.

[16] L. Zheng and D. Tse.

Communication on the grassmann manifold: A geometric approach to the noncoherent multiple-antenna channel.

IEEE Trans. Inf. Theory, 48(2):359-383, 2002.

[17] L. Zheng and D. Tse.

Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels.

IEEE Trans. Inf. Theory, 49(5):1073-1096, 2003.