Lot 2 : Jet impactant une plaque chaufée

1 Introduction

Validation réalisée par : G. ETIEVENT. Rapport généré le 17/12/2007.

1.1 Description

Validation de Trio_U sur le cas du jet impactant.

Grandeurs caracteritisques:

- -diamètre du jet (D) = 0.0403m
- -hauteur du jet (L) = 2*D
- -nombre de Reynolds = 23000
- -température du jet (Tj) = 293K
- -température de la plaque (Tw) = 314.9K

1.2 Paramètres Trio_U

• Version Trio_U: 1.5.4_beta build 051007

• Dimension: 3D

• Discretisation : VEFPre1B

• Modèle de turbulence : kEpsilon

 \bullet Convection QDM : EF_Stab

• Convection kEpsilon : Amont

• Lois de Paroi : standard

1.3 Liste des cas test

 \bullet ./calcul_EF_Stab : ./6DomaineComplet_calculsEFStab/impingingJet.data

1.4 Références :

- 1. 'An experimental study of entertainment effects on the heat transfer from a flat surface to a heated circular impinging jet', J. Baughn, A. Hechanova, X. Yan, Journal of heat transfer 113, pp.1023-1025. cited in
- 2. 'Heat transfer predictions using advanced two-equation turbulence models', W. Vieser, T. Esch, F. Menter, CFX validation report, CFX-VAL10/0602, 2002.

2 Profils de l'écoulement en entrée

2.1 Profil de vitesse

Profil de la vitesse axiale en entrée, calculé par le canal périodique. (tracé des points (r,U) au centre des faces de bord)

 $Description \ des \ courbes:$

• Profil Vz : Trio_U 1.5.4beta fichier ./5DomaineComplet_calculsAmont/pb_VITESSE_PERIO_0.726767.dat

2.2 Profil de k

Profil du paramètre turbulent k en entrée, calculé par le canal périodique. (tracé des points (r,k) au centre des faces de bord)

 ${\bf Description\ des\ courbes}:$

2.3 Profil de epsilon

Profil du paramètre turbulent epsilon en entrée, calculé par le canal périodique. (tracé des points (r,Eps) au centre des faces de bord)

 ${\bf Description\ des\ courbes}:$

• Profil k-Eps : Trio_U 1.5.4beta fichier ./5DomaineComplet_calculsAmont/pb_K_EPS_PERIO_0.726767.dat

3 Résultats

Nombre de Reynolds : 23000 (soit une vitesse moyenne d'entrée : $U=0.\ 0.\ -8.561$). Le flux d'entrée est généré par un calcul préalable sur un canal périodique.

3.1 Nombre de Nusselt

Formule: Nu=h(x) D/lambda

Tracé à partir du coefficient d'échange h(x) écrit par Trio_U dans le fichier impingingJet_pb_Nusselt.face (mot clé Imprimer_flux maillage paroi)

- Baughn et al. 1991 : [1], fig 29, p50 fichier ./Reference/references_Nu_Baughn1991.csv
- k-Epsilon réf. : [1], fig 29, p50 fichier ./Reference/references_Nu_KEpsRef.csv
- Calcul : Trio_U 1.5.4beta fichier ./fichier_NusseltMoy.plot

3.2 Comparaison Nu, y+ et u*

Tracé sur la meme courbe de :

-Nombre de Nusselt local

-y+

 $-u^*$ (*100 pour l'affichage)

- Nombre de Nusselt local : Trio_U 1.5.4beta fichier ./fichier_NusseltMoy.plot
- y+ : Trio_U 1.5.4beta fichier ./fichier_UstarMoy.plot
- 100.u* : Trio_U 1.5.4beta fichier ./fichier_UstarMoy.plot

3.3 Vitesse à r/D=0.5

Vitesse en fonction de la distance à la plaque, à r/D=0.5 D'après une sonde 'segment' de Trio_U, placé sur le rayon à Pi/2 du bord.

- Expérimental : [1], fig 30, p51 fichier ./Reference/references_U05.csv
- k-Epsilon réf. : [1], fig 30, p51 fichier ./Reference/references_U05_KEpsRef.csv
- Calcul : Trio_U (Castor) v1.5.4beta fichier 6ReprisePost/impingingJet_SONDE_V0.5.coupe

3.4 Vitesse à r/D=1.0

Vitesse en fonction de la distance à la plaque, à r/D=1.0 D'après une sonde 'segment' de Trio_U, placé sur le rayon à Pi/2 du bord.

- Expérimental : [1], fig 31, p51 fichier ./Reference/references_U10.csv
- k-Epsilon réf. : [1], fig 31, p51 fichier ./Reference/references_U10_KEpsRef.csv
- Calcul : Trio_U (Castor) v1.5.4beta fichier 6ReprisePost/impingingJet_SONDE_V1.0.coupe

3.5 Vitesse à r/D=2.5

Vitesse en fonction de la distance à la plaque, à r/D=2.5 D'après une sonde 'segment' de Trio_U, placé sur le rayon à Pi/2 du bord.

 ${\bf Description\ des\ courbes:}$

- Expérimental : [1], fig 32, p52 fichier ./Reference/references_U25.csv
- k-Epsilon réf. : [1], fig 32, p52 fichier ./Reference/references_U25_KEpsRef.csv
- Calcul : Trio_U (Castor) v1.5.4beta fichier 6ReprisePost/impingingJet_SONDE_V2.5.coupe

4 Cas L/D=2 - Axisymétrie

Vérification de l'axisymétrie du calcul

Vitesse radiale à la paroi (z/2D=0%)

Vitesse axiale à la paroi (z/2D=15%)

4.3 Vitesse axiale à la paroi (z/2D=35%)

4.4 Vitesse axiale à la paroi (z/2D=95%)

