Electromagnetic Theory II HW4

Vince Baker

May 15, 2016

7.8

a) Inside each slab of linear, lossless, nondispersive media both the forward and backward waves will propagate without interaction or attenuation. They will only undergo a phase shift of kt_j ($-kt_j$ for the backward wave) where t_j is the thickness of slab j and $k = \frac{n_j \omega}{c}$. The transfer matrix is then:

$$T_j(n_j, t_j) = \begin{bmatrix} e^{ik_j t_j} & 0\\ 0 & e^{-ik_j t_j} \end{bmatrix}$$
 (0.1)

Since $\sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ we can use Euler's formula to write this transfer matrix as:

$$T_{j}(n_{j}, t_{j}) = \begin{bmatrix} \cos(k_{j}t_{j}) + i\sin(k_{j}t_{j}) & 0\\ 0 & \cos(k_{j}t_{j}) - i\sin(k_{j}t_{j}) \end{bmatrix}$$
(0.2)

$$T_i(n_i, t_i) = I\cos(k_i t_i) + i\sigma_3 \sin(k_i t_i) \tag{0.3}$$

b) Across a zero-width boundary between layers the phases of the forward and backward waves must be identical on both sides of the boundary. For normal incidence, with $\mu' = \mu$, the transmitted and reflected components of an incident wave (Jackson 7.39) can be written:

$$E_{trans} = 2\left(1 + n'/n\right)^{-1} E_{incident} \tag{0.4}$$

$$E_{reflect} = \frac{n'/n - 1}{n'/n + 1} E_{incident}$$
 (0.5)

We consider the backward-propagating wave in region 1 as the combination of the reflected part of the forward-propagating wave in region 1 and the transmitted part of the backward-propagating wave in region 2. Defining $\beta^+ \equiv \frac{1}{2}(n_1/n_2 + 1), \beta^- \equiv \frac{1}{2}(n_1/n_2 - 1)$:

$$E_{-} = E'_{-} \frac{1}{\beta^{+}} + E_{+} \frac{\beta^{-}}{\beta^{+}}$$
 (0.6)

$$E'_{-} = \beta^{+} E_{-} - \beta^{-} E_{+} \tag{0.7}$$

Defining $n \equiv n_1/n_2$ we have recovered the t_{21} and t_{22} transfer matrix elements. Across the two layers we must have $E_+ + E_- = E'_+ + E'_-$. Therefore must have $t_{11} = t_{22}$ and $t_{12} = t_{21}$. Using the Pauli matrix $\sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ we can now write the transfer matrix as:

$$T_{i \to j} = I \frac{n+1}{2} - \sigma_1 \frac{n-1}{2} \tag{0.8}$$

c) There will be no backward-propagating wave in the final semi-infinite region. Therefore the expression for total transmission and reflection by the stack is:

$$\begin{bmatrix} E'_+ \\ 0 \end{bmatrix} = \begin{bmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{bmatrix} \begin{bmatrix} E_+ \\ E_- \end{bmatrix}$$
 (0.9)

From the second row in this matrix equation it is clear that $E_{-} = -\frac{t_{21}}{t_{22}}E_{+}$. Plugging that result into the first row gives:

$$E'_{+} = \left(t_{11} - \frac{t_{12}t_{21}}{t_{22}}\right)E_{+} \tag{0.10}$$

$$E'_{+} = \left(\frac{t_{11}t_{22} - t_{12}t_{21}}{t_{22}}\right)E_{+} \tag{0.11}$$

$$E'_{+} = \left(\frac{\det(T)}{t_{22}}\right) E_{+} \tag{0.12}$$

(0.13)

7.12

a) Starting in the time domain with the charge/current equation, and using Ohm's law $(J = \sigma E)$:

$$\nabla \cdot \mathbf{J}(\mathbf{x}, t) + \frac{\partial \rho(\mathbf{x}, t)}{\partial t} = 0 \tag{0.14}$$

$$\sigma \nabla \cdot \mathbf{E}(\mathbf{x}, t) + \frac{\partial \rho(\mathbf{x}, t)}{\partial t} = 0 \tag{0.15}$$

Tranforming to the Fourier domain, using the identity $F(dG/dx) = -i\omega F(G(x))$:

$$\sigma(\omega)\nabla \cdot \mathbf{E}(\mathbf{x}, \omega) - i\omega\rho(\mathbf{x}, \omega) = 0 \tag{0.16}$$

Since $\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$ we have:

$$(\sigma(\omega) - i\omega\epsilon_0) \rho(\mathbf{x}, \omega) = 0 \tag{0.17}$$

b) Plugging in the given representation for $\sigma(\omega)$:

$$\left(\frac{\epsilon_0 \omega_p^2 \tau}{1 - i\omega \tau} - i\omega \epsilon_0\right) \rho(\mathbf{x}, \omega) = 0$$
(0.18)

$$\left(\frac{\epsilon_0 \omega_p^2 \tau}{1 - i\omega \tau} - i\omega \epsilon_0\right) = 0$$
(0.19)

$$\omega_n^2 \tau = i\omega + \omega^2 \tau \tag{0.20}$$

$$\omega_p^2 \tau = i\omega + \omega^2 \tau \qquad (0.20)$$

$$\omega = \frac{-i \pm \sqrt{4\tau^2 \omega_p^2 - 1}}{2\tau} \qquad (0.21)$$

In the approximation $\omega_p \tau \gg 1$ the roots are $-\frac{i}{2\tau} \pm \omega_p$. All other frequencies would require that $\rho = 0$ from eq. 5. Since ρ is only non-zero at two frequencies, it is straightforward to evaluate the inverse Fourier transform:

$$\rho(\mathbf{x},t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \rho(\omega) e^{-i\omega t} d\omega$$
 (0.22)

$$\rho(\mathbf{x},t) = \frac{1}{2\pi} \left(e^{-i(-\frac{i}{2\tau} + \omega_p)t} + e^{-i(-\frac{i}{2\tau} - \omega_p)t} \right)$$
(0.23)

$$\rho(\mathbf{x},t) = \frac{1}{2\pi} e^{-t/2\tau} \left(e^{-i\omega_p t} + e^{i\omega_p t} \right)$$
 (0.24)

$$\rho(\mathbf{x},t) = \frac{1}{\pi} e^{-t/2\tau} \cos(\omega_p t) \tag{0.25}$$

This function form shows that the initial charge distribution at t = 0 will cause a damped oscillation at ω_p that will decay with time constant $1/2\tau$.