Teoria: Przestrzenie euklidesowe i unitarne: baza ortogonalna, ortonormalna. Współrzędne wektora w bazie ortonormalnej. Ortonormalizacja bazy metodą Grama-Schmidta. P_W : rzut ortogonalny na podprzestrzeń W < V, S_W : odbicie (symetria) względem W. Przekształcenia ortogonalne, unitarne. Izomorfizm przestrzenie euklidesowych, unitarnych. Przestrzenie euklidesowe [unitarne] tego samego wymiaru skończonego są izomorficzne. $F: V \to W$ jest ortogonalne [unitarne] $\iff F$ jest izometrią liniową $\iff m_{\mathcal{B}}(F)$ jest ortogonalna [unitarna] (tu \mathcal{B} jest bazą ortonormalną). Macierz A jest ortogonalna [unitarna] $\iff A$ jest odwracalna i $A^{-1} = \bar{A}^T$. Dla A, F ortogonalnych [unitarnych]: $|\det(A)| = 1$, $|\det(F)| = 1$, $|\lambda| = 1$, gdy λ : wartość własna A lub F.

Zadania. Tu $(V, \langle \cdot, \cdot \rangle)$ oznacza przestrzeń euklidesową lub unitarną skończonego wymiaru.

- 1. Niech $v \neq w \in V$. Niech u = w v, L = Lin(u) i L' = v + L (zatem L jest prostą wzdłuż u, zaś L' jest warstwą podprzestrzeni L).
 - a)– Udowodnić, że $v, w \in L'$ oraz $L' = \{tv + sw : t, s \in \mathbb{R} \ i \ t + s = 1\}$ (L' nazywamy prostą przechodzącą przez wektory (punkty) v, w).
 - b)
– Udowodnić, że wektor 1/2(v+w) jest jedynym wektorem na proste
j L^\prime równoodległym od v i
 w.
 - c) Niech $U'\subset V$ będzie zbiorem wszystkich wektorów równoodległych od v i w. Udowodnić, że U' jest warstwą podprzestrzeni $U=L^\perp$ (dokładniej : U'=1/2(v+w)+U).
 - d)* Ogólniej: kombinacje liniowe postaci $\sum t_i v_i$, gdzie $\sum_i t_i = 1$, nazywamy afinicznymi kombinacjami liniowymi wektorów v_i . Oznaczmy przez Aff (v_1, \ldots, v_n) zbiór afinicznych kombinacji liniowych wektorów $v_1, \ldots v_n$. Zbiór ten nazywamy afiniczną podprzestrzenią V generowaną przez wektory v_1, \ldots, v_n . Udowodnić, że zbiór ten jest warstwą pewnej podprzestrzeni liniowej przestrzeni V.
- 2. Udowodnić nierówność Minkowskiego w przestrzeni unitarnej V.
- 3. * Czy istnieje iloczyn skalarny w przestrzeni \mathbb{R}^3 taki, ze kosinusy kątów między wektorami E_1, E_2, E_3 wynoszą $\frac{1}{2}$ (między E_1, E_2), $\frac{1}{3}$ (między E_2, E_3), $\frac{1}{4}$ (między E_1, E_3)?
- 4. * Udowodnić, że jesli układ k wektorów w przestrzeni n-wymiarowej V ma tę własność, że każde dwa z nich tworzą kąt rozwarty, to $k \le n+1$.
- 5. W przestrzeni $\mathbb{R}_2[X]$ z iloczynem skalarnym $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$ znaleźć:
 - (a) baze ortonormalna,
 - (b) bazę o.n. podprzestrzeni W = Lin(1 + X, 1 + 2X),
 - (c) rzut prostopadły wektora X^2 na W,
 - (d) odległość wektora X^2 od przestrzeni W,
 - (e) odbicie wektora X^2 względem płaszczyzny W.

- 6. Znaleźć bazę o.n. płaszczyzny $\Pi \subseteq R^3$ o równaniu (a) 2x+3y-z=0, (b) x+y-2z=0.
- 7. Udowodnić, że jeśli $A, B \in M_{n \times n}(\mathbb{R})$ są ortogonalne, to macierz AB też jest ortogonalna. (wariant dla macierzy unitarnych też zachodzi)
- 8. Załóżmy, że \mathcal{B}, \mathcal{C} są o.n. bazami V. Udowodnić, że $m_{\mathcal{BC}}(id)$ jest macierzą ortogonalną [unitarną].
- 9. * (a) Udowodnić, że metodą Grama-Schmidta można ortonormalizować bazy przestrzeni euklidesowej/unitarnej wymiaru przeliczalnego.
 - (b) Podać przykład przestrzeni euklidesowej bez bazy ortonormalnej (przestrzeń ta musi miec wymiar nieprzeliczalny).
- 10. (a) Załóżmy, że $\{b_1, \ldots, b_n\}$ jest bazą ortonormalną $V, F: V \to V$ jest liniowe oraz $\{F(b_1), \ldots, F(b_n)\}$ też jest bazą ortonormalną V. Udowodnić, że F jest ortogonalne [unitarne].
 - (b)* Załóżmy, że $v_1, \ldots, v_k, w_1, \ldots, w_k \in V$ spełniają $\langle v_i, v_j \rangle = \langle w_i, w_j \rangle$ dla dowolnych $i, j \in \{1, \ldots, k\}$. Udowodnić, że istnieje przekształcenie ortogonalne/unitarne $F: V \to V$ takie, że $f(v_i) = w_i$ dla wszystkich i.