```
A.A) loga(n) is \Theta(log_b(n)) (bases are asymptotically irrelevant)
        = \frac{\log_a(n)}{\log_a(n)} \quad \text{is} \quad O(\log_a(n)) \quad \bigcap \quad \Omega(\log_a(n))
= \frac{\log_a(n)}{\log_a(n)} \quad \text{sig-} \Omega
= \frac{\log_a(n)}{\log_a(n)} \quad \text{sig-} \Omega
```

=> Both sides are always true, if c constants are chosen properly.

1.2) if $C_1 n^{c_2}$ is $\Theta(c_3 n^{c_4})$ then $c_2 = c_4$ (constant exponent are relevant)

 $C_A \cdot n^{c_2}$ is $O(c_3 \cdot n^{c_4})$ $\bigcap \Omega(c_3 \cdot n^{c_4})$ $\Rightarrow C_A \cdot n^{c_2} \leq c_3 \cdot n^{c_4}$ & $C_A \cdot n^{c_2} \geq C_3 \cdot n^{c_4}$

Bemerkung:

Man sieht, dass wenn Cz.nc4 sowohl die obere, als auch die untere Schranke sein soll, muss C4 = C2 sein. Ansonsten ist es nicht möglich, dass die Gleichung beide Bedingungen erfüllt.

Begründung anhand von einem Beispiel

Wern $f(n) = n^2 \lg g(n) = C_1 \cdot n^n$ (Also $C_2! = C_4$) So existient niemals ein C_1 , so dass für alle n (-> bis in Unendlichkeit) eine obere Schranhe für n^2 existient.

Wenn $f(n) = n^2 k g(n) = c_1 \cdot n^2$ (Also nochmals $c_2! = c_4$) so existing niemals ein c_1 , so dass für n^2 eine untere Schranke existing

=> Cz k cq mussen gleich sein. (Formell nicht bewiesen)

<u>Jedoch grafisch & logisch erhlört</u>

3) a)
$$\sum_{i=0}^{n} i = \frac{n(n+\lambda)}{2} = \frac{n^2+n}{2}$$

 $\Theta(n^2)$ complexity

b)
$$\sum_{i=0}^{n} x^{i} = \frac{x^{n+\Lambda} - \Lambda}{x - \Lambda} \quad (x \neq \Lambda)$$

G(cn) complexity