Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Homework 1 (Jan 16 – Jan 24).

- 1 (10+10) 1) Using Vieta's trigonometric method, solve $x^3 3x + 1 = 0$.
 - 2) Applying the cube of sum formula, solve $x^3 3 \cdot 2^{1/3}x 3 = 0$.
- **2** (10) Let x_1, x_2, x_3 be the roots of the cubic $x^3 + ax^2 + bx + c = 0$. Compute $x_1^2 + x_2^2 + x_3^2 + x_1^{-1} + x_2^{-1} + x_3^{-1}$.
- **3** (10) Prove that the stabilizer of the polynomial $x_1x_2 + x_2x_3 + x_3x_4 + x_4x_5 + x_5x_1$ is D_5 , that is the subgroup of permutations $g \in S_5$ of the form $g: \mathbb{Z}/5\mathbb{Z} \to \mathbb{Z}/5\mathbb{Z}$ and $gx = \pm x + b$, where $b \in \mathbb{Z}/5\mathbb{Z}$.
- 4 (5+5) Let $H \leq S_n$ be a subgroup and K be a field. Take any $f \in K[x_1, \ldots, x_n]$ and form

$$F = F(f) = \sum_{h \in H} f(x_{h(1)}, \dots, x_{h(n)}) := \sum_{h \in H} h \cdot f,$$

where $h \cdot f$ and the natural action of S_n on $K[x_1, \ldots, x_n]$ (i.e. $(h \cdot f)(x_1, \ldots, x_n) := f(x_{h(1)}, \ldots, x_{h(n)})$).

- 1) Prove that for any $h \in H$ one has $h \cdot F = F$.
- 2) Take $f = x_1 x_2^2 \dots x_n^n$ and prove that $h \cdot F = F$ iff $h \in H$.
- 3) (for enthusiasts, does not affect the rating) Is the second part true for any f?
- **5** (5+5+15) A complex polynomial $f(x_1,\ldots,x_n)$ is called skew-symmetric if $h\cdot f=-f$ for any transposition h.
 - 1) Prove that the ratio of any skew-symmetric polynomials is a symmetric rational function.
 - 2) Let $D = D(x_1, ..., x_n) = \prod_{i < j} (x_i x_j)^2$ be the discriminant and $\Delta = \Delta(x_1, ..., x_n) = \prod_{i < j} (x_i x_j)$, $\Delta^2 = D$. Prove that Δ is a skew-symmetric polynomial.
 - 3) Prove that any symmetric polynomial f is a product of Δ and another symmetric polynomial q.

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Homework 2 (Jan 23 – Jan 31).

- 1 (20+20) For each of the following pairs of polynomials f and g:
 - (i) find the quotient and remainder on dividing f by g;
 - (ii) use the Euclidean Algorithm to find gcd(f, g);
 - (iii) find polynomials a and b with the property that gcd(f,g) = af + bg.
 - a) $f = t^3 + 4t^2 + t 2$, g = t + 1 over \mathbb{Z} .
 - b) $f = t^7 3t^6 + t + 4$, $g = 2t^3 + 1$ over \mathbb{F}_5 .
- **2** (5+15) 1) Prove that $f(t) = t^3 + t^2 + 1$ is irreducible in $\mathbb{Q}[t]$.
 - 2) Suppose that $\alpha \in \mathbb{C}$ is a root of f. Express α^{-1} and $(\alpha + 2)^{-1}$ as linear combinations, with rational coefficients, of $1, \alpha, \alpha^2$.
- 3 (5+10+5+10) 1) Let p>2 be a prime number and consider $P(x)=x^4+2ax^2+b^2$, where $a,b\in\mathbb{Z}$. Show that

$$P(x) = (x^2 + a)^2 - (a^2 - b^2) = (x^2 + b)^2 - (2b - 2a)x^2 = (x^2 - b)^2 - (-2a - 2b)x^2.$$

- 2) Noticing $(2b-2a)(-2a-2b)=4(a^2-b^2)$, derive that one of the numbers $(a^2-b^2), (2b-2a), (-2a-2b)$ is a square modulo p.
- 3) Prove that $P(x) = x^4 + 2ax^2 + b^2$, $a, b \in \mathbb{Z}$ is reducible over $\mathbb{F}_p[x]$ for any prime p.
- 4) Prove that $f(x) = x^4 + 1$ is irreducible over \mathbb{Z} but reducible over \mathbb{F}_p for any prime p.
- **4** (10+10) 1) Prove that \mathbb{C} is isomorphic to the set of matrices $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, where $a, b \in \mathbb{R}$.
 - 2) Given a matrix A denote by exp A the matrix $I + \frac{A}{1!} + \frac{A^2}{2!} + \dots$ Using the isomorphism above and the Euler formula,

1

prove that

$$\exp\left(\begin{array}{cc} a & -b \\ b & a \end{array}\right) = \left(\begin{array}{cc} e^a \cos b & -e^a \sin b \\ e^a \sin b & e^a \cos b \end{array}\right) \,.$$

- **5** (5+5+10) 1) Let $[L:K] < \infty$ be a finite extension. Prove that L:K is an algebraic extension, that is any $\alpha \in L$ is algebraic over K.
 - 2) Let $\alpha \in L/K$ and $[L:K] < \infty$. Then $K[\alpha] = K(\alpha)$.
 - 3) Suppose that L: K is an extension and any $\alpha \in L$ is algebraic. Is it true that $[L:K] < \infty$?

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Homework 3 (Jan 31 – Feb 13).

- 1 (5+10+15) 1) Show that $t^3 + t + 1$ is irreducible in $\mathbb{F}_2[t]$.
 - 2) Consider the quotient ring $L := \mathbb{F}_2[t]/(t^3+t+1)$ and compute its size.
 - 3) Take g = t + 1 and prove that the set $\{0, g, g^2, \dots, g^7\}$ coincides with L.
- **2** (15) Let K be a field and $p, q \in K[t]$ be irreducible polynomials over K, $(p) \neq (q)$ (this is equivalent to the statement that p is coprime to q). Consider the field $\mathbb{F} := K(t)$ and the polynomial $g(x) = x^n + px + pq \in \mathbb{F}[x]$. Prove that g is irreducible over \mathbb{F} .
- **3** (10) Prove that $t^2 7$ is irreducible over $\mathbb{Q}(\sqrt{5})$.
- 4 (5+5+5+10+20) 1) Let $\alpha=2^{1/6}$ and $\varepsilon_3^3=1,\ \varepsilon_3\neq 1$. Find the minimal polynomials of α over
 - a) \mathbb{Q} b) $\mathbb{Q}(\alpha)$ c) $\mathbb{Q}(\alpha^2)$ d) $\mathbb{Q}(\alpha\varepsilon_3)$.
 - 2) In each case (a—d), find the conjugate elements of all roots of $x^6 2$.
- 5 Midterm exam is next Thursday!

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Homework 4 (Feb 13 – Feb 21)

- 1 (5+5+15+20) For each of the following polynomials, construct a splitting field L over \mathbb{Q} and compute the degree $[L:\mathbb{Q}]$.
 - 1) $t^4 + 7t^2 + 12$
 - 2) $t^4 + t^2 12$
 - 3) $t^{2n} 2^n$, where n = 3, 4.
 - 4) $t^{14} 1$.
- 2 (15) Let K L M be a field extension and K L, L M are algebraic extensions. Prove that K M is also an algebraic extension.
- **3** (15) Let α be transcendental over a field $K \subset \mathbb{C}$. Show that $K(\alpha)$ is not algebraically closed (hint: consider the polynomial $t^2 \alpha$).
- 4 (15) Let L: K be a splitting field extension for a non–constant polynomial $f \in K[t]$. Prove that [L: K] divides $(\deg f)!$ (hint: at the very end look at some binomial coefficients).

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Homework 5 (Feb 21 – Feb 28)

- 1 (5+5+5+10+15) Which of the following field extensions are normal? Justify your answers.
 - 1) $\mathbb{Q}(i):\mathbb{Q}$
 - 2) $\mathbb{Q}(2^{1/4}):\mathbb{Q}$
 - 3) $\mathbb{Q}(2^{1/4},i):\mathbb{Q}$
 - 4) $\mathbb{Q}(2^{1/4}, i, \sqrt{5}) : \mathbb{Q}$
 - 5) $\mathbb{Q}(3^{1/3}, i, \sqrt{3}) : \mathbb{Q}.$
- **2** (15) Let $\psi: L \to M$ be a homomorphism, suppose that L is algebraically closed. Prove that $\psi(L)$ is algebraically closed.
- **3** (20) Let L:K be a field extension. Then \overline{K} is isomorphic to \overline{L} . In addition, if $K\subset L\subseteq \overline{L}$, then $\overline{K}=\overline{L}$.
- **4** (15) Let K-L be a normal extension, $K\subseteq L\subseteq \overline{K}$. Then for any K-homomorphism $\tau:L\to \overline{K}$ one has $\tau(L)=L$.
- **5** (25) Put $K = \mathbb{F}_2(t)$ and consider $L = K(t^{1/3})$. Prove that the extension L: K is algebraic but not normal.

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Homework 6 (Feb 28 – Mar 7)

- 1 (5+10+10) Find Galois groups for the following polynomials f over \mathbb{Q} :
 - 1) $(t^2-3)(t^2+1)$
 - 2) $t^4 t^2 + 1$
 - 3) $t^4 2$
- **2** (10+10) 1) Find $Gal_{\mathbb{F}_3(t^2)}(\mathbb{F}_3(t))$.
 - 2) Find $Gal_{\mathbb{F}_2(t^2)}(\mathbb{F}_2(t))$.
- 3 (10+5) (a) Let K-M-L be a field extension and L:K is a normal extension. Prove that L:M is also a normal extension
 - (b) Give an example of three fields K, M, L such that [L:K]=4 and [M:K]=[L:M]=2 (hence K-M and M-L are normal extensions) but L:K is not a normal extension.
- **4** (10) Let L: K be a splitting field extension for a non–constant polynomial $f \in K[t]$. Prove that $|Gal_L(K)|$ divides $(\deg f)!$.
- **5** (15+20) a) Let $f = t^3 + t + 1 \in \mathbb{F}_2[t]$. Prove that $\operatorname{Gal}_{\mathbb{F}_2}(f)$ is isomorphic to \mathbb{Z}_3 .
 - b) Let $f = t^3 + t^2 + 1 \in \mathbb{F}_2[t]$. Prove that $Gal_{\mathbb{F}_2}(f)$ is isomorphic to S_3 .

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Homework 7 (Mar 7 – Mar 14)

- 1 (10) Let $K = \mathbb{Q}$, $M = \mathbb{Q}(2^{1/3})$ and $L = \mathbb{Q}(2^{1/3}, \sqrt{3}, i)$. Prove that L : K and L : M are normal but M : K is not normal.
- **2** (10+5) a) Let K-L be algebraic, $\alpha \in L$ and $\sigma : K \to \overline{K}$ be a homomorphism. Prove that μ_{α}^{K} is separable over K iff $\sigma(\mu_{\alpha}^{K})$ is separable over $\sigma(K)$.
 - b) Let L: K be a splitting filed for $f \in K[t]$. Prove that if f is separable, then L: K is separable.
- **3** (10) Let L: K be a splitting field extension for a polynomial $f \in K[t]$. Then L: K is separable iff f is separable over K.
- 4 (15) Let K-M-L be an algebraic extension. Prove that K-L is separable iff K-M and M-L are separable.

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Homework 8 (Mar 14 – Apr 4)

- 1 (5+5+5) Let $K \subseteq L$ be a splitting field extension for some $f \in K[t] \setminus K$. Then the following are equivalent:
 - (i) f has a repeated root over L;
 - (ii) $\exists \alpha \in L \text{ s.t. } 0 = f(\alpha) = (\mathcal{D}f)(\alpha);$
 - (iii) $\exists g \in K[t], \deg g \geq 1 \text{ s.t. } g \text{ divides both } f \text{ and } \mathcal{D}f.$
- **2** (5) Let K be a field, char(K) = p > 0 and $f \in K[t^p]$ is an irreducible polynomial over K. Prove that f is inseparable.
- **3** (10) Let K be a field, $\operatorname{char}(K) = p > 0$ and $f \in K[t^p]$ is an irreducible polynomial over K. Prove that there is $g \in K[t]$ and a non-negative n such that $f(t) = g(t^{p^n})$ and g is an irreducible and separable polynomial.
- 4 (10) Prove that $\prod_{\alpha \in \mathbb{F}_q^*} \alpha = -1$.
- **5** (5+5+5+5) a) Let $\alpha \in \mathbb{F}_q$ and $\alpha = \beta \beta^p$ for some $\beta \in \mathbb{F}_q$. Prove that $\text{Tr}(\alpha) = 0$.
 - b) Let $\alpha \in \mathbb{F}_q$ and $\alpha = \gamma^{1-p}$ for some nonzero $\gamma \in \mathbb{F}_q$. Prove that $Norm(\alpha) = 1$.
 - c) Let $\alpha \in \mathbb{F}_p \subseteq \mathbb{F}_{p^n}$. Prove that $\text{Tr}(\alpha) = n\alpha$.
 - d) Let $\alpha \in \mathbb{F}_p \subseteq \mathbb{F}_{p^n}$. Prove that $Norm(\alpha) = \alpha^n$.
- 6 The midterm exam will be on Thursday the 27th!

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Homework 9 (Apr 4 – Apr 11)

- 1 (10+5) a) Let L be the splitting field of the polynomial $t^{13} 1$. Find all subgroups of $Gal_{\mathbb{Q}}(L)$.
 - b) How many intermediate subfields are there in the extension $L:\mathbb{Q}$?
- **2** (10) Draw the lattice of subfields and corresponding lattice of subgroups of $Gal_{\mathbb{F}_3}(\mathbb{F}_{3^8})$. Find orders of all subgroups of $Gal_{\mathbb{F}_3}(\mathbb{F}_{3^8})$.
- **3** (10) Prove Artin's theorem: let $[L:K] < \infty$, $G := \operatorname{Gal}_K(L)$. Then $[L:L^G]$ is a Galois extension.
- 4 (10) Let L: K be a finite Galois extension, $G:=\operatorname{Gal}_K(L)$. For any $\alpha \in L$ define

$$\operatorname{Tr}(\alpha) = \sum_{g \in G} g(\alpha)$$
 and $\operatorname{Norm}(\alpha) = \prod_{g \in G} g(\alpha)$.

Prove that for an arbitrary $\alpha \in L$ one has $\text{Tr}(\alpha)$, $\text{Norm}(\alpha) \in K$.

- **5** (15+15) a) Find all of the subfields of $\mathbb{Q}(2^{1/3}, e^{2\pi i/3})$.
 - b) Draw the lattice of subfields and corresponding lattice of subgroups of $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(2^{1/3}, e^{2\pi i/3}))$.

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Homework 10 (Apr 11 - Apr 18)

- 1 (10+10+5+5) Let $K, E, F \subseteq L$ be fields, E: K, F: K be finite extensions. Prove:
 - a) if E: K is separable, then EF: F is separable;
 - b) if E: K and F: K are both separable, then EF: K and $E \cap F: K$ are both separable;
 - c) if E: K is Galois, then EF: F is Galois;
 - d) if E: K and F: K are both Galois, then EF: K and $E \cap F: K$ are both Galois.
- **2** (5+5+10) a) Find the splitting field L of the polynomial $f(t) = t^4 4t^2 + 5$.
 - b) Prove that $[L:\mathbb{Q}]$ is either 4 or 8.
 - c) Find 10 intermediate fields of the extension $L:\mathbb{Q}$ and their degrees.
 - d) (for enthusiasts) Draw the lattice of subfields and corresponding lattice of subgroups of $Gal_{\mathbb{Q}}(f)$.
- 3 (30) Draw the lattice of subfields and corresponding lattice of subgroups of $Gal_{\mathbb{Q}}(t^6+3)$. *Hint*: Use the calculations (and the notation, if you like) from Lecture 18.

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Homework 11 (Apr 18 – Apr 25)

- 1 (5) Let $G = \mathbb{Z}/p^n\mathbb{Z}$, where p is a prime number. Construct a subnormal series G_j of subgroups of G such that $|G_{j-1}/G_j| = p$.
- **2** (5+5) a) Let G be a group. Prove that G' is a normal subgroup of G such that G/G' is abelian.
 - b) Prove that if N is any normal subgroup of G such that G/N is abelian, then $G' \leq N$.
- **3** (10) Let \mathbb{F} be a field and

$$H := \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{F} \right\}$$
 (1)

be the Heisenberg group. Prove that H is soluble.

- 4 (15) Prove that A_n , $n \geq 3$ is generated by 3-cycles.
- **5** (5+5+5) Let G be a group. Find G' for
 - a) $G = S_3$ b) $G = A_4$ c) $G = S_4$ (use the previous question).