Subjectul A. MECANICĂ

Nr. item	Soluţie/Rezolvare
III.a.	
	$L_{urcare} = -m \cdot g \cdot h$; $L_{coborare} = m \cdot g \cdot h$
	Rezultat final: $L = L_{urcare} + L_{coborare} = 0$
b.	
	Aplicarea teoremei variației energiei cinetice la mișcarea corpului până la înălțimea h:
	$\Delta E_{\rm C} = L; \ \Delta E_{\rm C} = -\frac{m \cdot v_0^2}{2} = -E_{\rm C0}; \ L = L_{\rm G} + L_{\rm f}$
	$L_f = -\mu \cdot m \cdot g \cdot d \cdot \cos \alpha$; $L_G = -m \cdot g \cdot h$; $h = d / \sin \alpha$
	Exprimarea energiei potențiale: $E_{p,\max} = m \cdot g \cdot h$
	Rezultat final: $E_{p,\text{max}} = \frac{E_{\text{C0}}}{1 + \mu / tg\alpha} = 312,5 J$
C.	
	$L_f = -\mu \cdot m \cdot g \cdot d \cdot \cos \alpha \; ; \; h = d / \sin \alpha$
	$E_{p,\max} = m \cdot g \cdot h$
	Rezultat final: $L_f = -\mu \cdot E_{p,\text{max}} / tg\alpha = -187,5 J$
d.	
	Aplicarea teoremei variației energiei cinetice la coborârea corpului până în poziția din care a fost lansat:
	$\Delta E_{C}' = L'; \ L = m \cdot g \cdot h - \mu \cdot m \cdot g \cdot d \cdot \cos \alpha$
	Rezultat final: $E_C = E_{p,max} + L_f = 125J$