Winter Camp 2009 Mock Olympiad

- 1. At a party, one or more pairs of people shook hands with each other. We say two people were "close" if either they shook hands with each other or if there was a third person they both shook hands with. Show there were two people who (a) were close, and (b) shook hands with the exact same number of people.
- 2. Let ABCD be a cyclic quadrilateral such that AD + BC = AB. Prove that the bisectors of the angles ADC and BCD meet on the line AB.
- 3. Find all integer-valued functions, f and g, defined on the integers, for which g is one-to-one and

$$f(g(x) + y) = g(f(y) + x)$$

for all integers x, y.

4. Prove that any set of 10 positive integers, ranging between 1 and 2009, contains three distinct elements a, b, c such that gcd(a, b) divides c.

Solutions

1. For each person p, let n_p denote the number of people that p shook hands with. Let $M = \max n_p$, let x_0 be a person for which $n_p = M$, and let $\{x_1, x_2, \ldots, x_M\}$ be the people that x_0 shook hands with.

For each i, we have $n_{x_i} \geq 1$ since each person x_i shook hands with x_0 , and $n_{x_i} \leq M$ by definition. Therefore, the Pigeonhole Principle implies that two of the values $\{n_{x_0}, n_{x_1}, \ldots, n_{x_M}\}$ are equal. But if $n_{x_p} = n_{x_q}$, then x_p and x_q have the property we are looking for.

2. Choose E on AB so that AE = AD and hence BE = BC. Also let F denote the second intersection of AB and the circumcircle of $\triangle CDE$. Note that F lies between A and B.¹ Also note that regardless of configuration, $\angle AFD = \angle ECD$.

Therefore, $\angle ADC = 180^{\circ} - \angle EBC = 2\angle BCE = 2\angle BCD - 2\angle ECD = 360^{\circ} - 2\angle FAD - 2\angle AFD = 2\angle ADF$. Similarly, $\angle BCD = 2\angle BCF$, so F is the intersection of the bisectors of $\angle BCD$ and $\angle ADC$.

We know that F lies on AB, however, so the result follows.

Source: American Math Olympiad Program 1999

3. Let m = f(0) and n = g(0). Setting x = 0 in the given equation yields f(n + y) = g(f(y)) (1). Setting y = 0 in the given equation yields g(m + x) = f(g(x)) (2).

Setting y = g(x) in equation (1) gives us g(f(g(x))) = f(n + g(x)), which we know from the original equation is equal to g(f(n) + x). Since g is one-to-one, it follows that f(g(x)) = f(n) + x. Combining this with (2), we have g(m + x) = f(n) + x. In particular, there exists a constant C so that g(x) = x + C.

Substituting this into (2) yields m + x + C = f(x + C), which implies there exists a constant B so that f(x) = x + B.

Conversely, it is easy to check that f(x) = x + B and g(x) = x + C satisfies the original functional equation.

Source: Latvia

4. Consider a set $\{x_1, x_2, ..., x_{10}\}$ of positive integers for which $gcd(x_i, x_j)$ does not divide x_k for all distinct i, j, k. We claim $max(x_i) > 2009$. If each x_i is even, we can divide through by 2 to achieve a set with smaller elements. Therefore, we may assume without loss of generality that the set contains an odd element, say x_1 .

For i > 1, let $g_i = \gcd(x_1, x_i)$. If $g_i | g_j$ for any $i \neq j$, then $\gcd(x_1, x_i) | x_j$, which is impossible. Therefore, x_1 has 9 factors (g_2, g_3, \ldots, g_9) , none of which divide each other.

Now, let $p_1^{e_1} \cdot p_2^{e_2} \cdot \ldots \cdot p_k^{e_k}$ be the prime factorization of x_1 , ordered so that $e_1 \geq e_2 \geq \ldots \geq e_k$. Each g_i can be written in the form $p_1^{e_{i,1}} \cdot p_2^{e_{i,2}} \cdot \ldots \cdot p_k^{e_{i,k}}$. If $e_{i,t} = e_{j,t}$ for all t > 1, then one of g_i or g_j must divide the other, which is impossible. However, there are only $\prod_{j>1} (e_j+1)$ possible values for $\{e_{i,2}, e_{i,3}, \ldots, e_{i,t}\}$, so if these are all distinct, we must have $\prod_{j>1} (e_j+1) \geq 9$.

¹For example, if B, E, A, F occur on line BA in that order, then by continuity, there exists X between E and A for which $BX \cdot XA = EX \cdot XF$. This point X must lie on the radical axis of circle ABCD and circle CDE, which is CD. Therefore, CD intersects AB between A and B, which is impossible.

Now, if k=2, then $e_2\geq 8$ and $x_1\geq 3^8\cdot 5^8$. If k=3, then $e_2,e_3\geq 2$ and $x_1\geq 3^2\cdot 5^2\cdot 7^2$, or $e_2\geq 4$ and $x_1\geq 3^4\cdot 5^4\cdot 7$. If k=4, then $a_2\geq 2$ and $x_1\geq 3^2\cdot 5^2\cdot 7\cdot 11$. If k=5, then $x_1\geq 3\cdot 5\cdot 7\cdot 11\cdot 13$. Regardless, $x_1>2009$, and the result is proven.

Source: Romanian Math Stars Competition 2007, #8, except they consider 27 integers instead of 10. They also conjecture the result holds even for 6 integers.