E), 07/11/2014		Q2	
		- Q3	
RA	Turma	Q4	
		Q5	
07/11/2014		\sum	

Q1

2a. Prova - MA-211 - Sexta-feira (NOITE), 07/11/2014

INSTRUÇÕES

NÃO É PERMITIDO DESTACAR AS FOLHAS DA PROVA É PROIBIDO O USO DE CALCULADORAS SERÃO CONSIDERADAS SOMENTE AS QUESTÕES ESCRITAS DE FORMA CLARA E DEVIDAMENTE JUSTIFICADAS

EQUAÇÕES ÚTEIS

Se $\rho(x,y,z)$ é a função densidade de um objeto sólido que ocupa a região E, então:

• Massa:
$$m = \iiint_E \rho(x, y, z) dV$$
.

ALUNO

$$\begin{array}{l} \bullet \quad \text{Momentos:} \\ M_{yz} = \iiint_E x \rho(x,y,z) dV, \\ M_{xz} = \iiint_E y \rho(x,y,z) dV, \\ M_{xy} = \iiint_E z \rho(x,y,z) dV. \end{array}$$

$$\bullet \ \ {\rm Centro} \ \ {\rm de \ massa:} \ \ (\bar x,\bar y,\bar z) = \bigg(\frac{M_{yz}}{m},\frac{M_{xz}}{m},\frac{M_{xy}}{m}\bigg).$$

$$\hbox{\bf Momentos de In\'ercia:} \ I_x=\iiint_E (y^2+z^2)\rho(x,y,z)dV,$$

$$I_y=\iiint_E (x^2+z^2)\rho(x,y,z)dV \qquad \hbox{e} \qquad I_z=\iiint_E (x^2+y^2)\rho(x,y,z)dV.$$

Questão 1. Calcule
$$\int_0^a \int_0^{\sqrt{a^2-x^2}} dy dx$$
. Esboce a região de integração. $(\checkmark 2,0)$

Questão 2. Calcule $\iint_R \cos\left(\frac{y-x}{y+x}\right) dA$, em que R é a região trapezoidal com vértices (1,0), (2,0), (0,2), (0,1).

Questão 3. Determine o volume do sólido limitado pelo cilindro $x^2 + y^2 = 4$ e pelos planos z = 0 e y + z = 3.

Questão 4. Determine o centro de massa do cubo $0 \le x \le 1, \ 0 \le y \le 1, \ 0 \le z \le 1$, cuja densidade no ponto (x,y,z) é $\rho(x,y,z)=x$.

Questão 5. Calcule a integral $\iiint_E xyzdV$, em que E está no primeiro octante entre as esferas $\rho=2$ e $\rho=4$ e acima do cone $\phi=\pi/3$.