## AKADEMIA GÓRNICZO-HUTNICZA

Wydział Informatyki Kierunek Informatyka



Teoria Współbieżności

# Laboratorium 8

Petri Nets

Kyrylo Iakymenko

## 1 Zadanie 1



Rysunek 1: Maszyna stanów



Rysunek 2: Graf osiągalności maszyny stanów

## 1.1 Analiza grafu osiągalności

- Jak widać na grafie osiągalności wszystkie stany są osiągalne.
- Sieć jest zachowawcza i 2 ograniczona, ale nie jest bezpieczna.

- Każde przejście jest krawędzią w grafie.
- Sieć jest żywa.

### 1.2 Analiza niezmienników

Wiemy, że wszystkie możliwe rozkłady dwóch zasobów sieci są osiągalne. Więc jedynym niezmiennikiem miejsc jest  $P_0+P_1+P_2+P_3=2$ , mówiący nam o tym, że sieć jest zachowawcza.

Podobna sytuacja z niezmiennikami przejść. Możemy wrócić do stanu początkowego przez dowolną krawędź w dwóch krokach.

## 2 Zadanie 2



Rysunek 3: Sieć z podanego przykładu

## Petri net invariant analysis results

# T-Invariants

The net is not covered by positive T-invariants, therefore we do not know if it is bounded and live.



The net is not covered by positive P-Invariants, therefore we do not know if it is bounded.

## P-Invariant equations

M(P0) + M(P1) + M(P2) = 1

Analysis time: 0.001s

Rysunek 4: Niezmienniki sieci z podanego przykładu



Rysunek 5: Graf osiągalności

## 2.1 Graf osiągalności

W miejscu  $P_3$  może wystąpić dowolnie duża liczba, więc graf osiągalności jest nieskończony.

## 2.2 Analiza niezminników przejść

Sieć nie jest odwracalna, ponieważ możemy dodać dowolną ilość tokenów w stanie  $P_3$ .

## 3 Zadanie 3



Rysunek 6: Sieć reprezentująca wzajemne używanie zasobów

## 3.1 Analiza niezminników sieci

Równanie pierwsze chroni nam sekcję krytyczną.

Równanie drugie wskazuje na to, że w każdym momencie dokładnie jeden z procesów po prawej stronie sieci jest uruchomiony.

### Petri net invariant analysis results

#### T-Invariants

| T2 | тз | T4 | T5 | Т6 | Т7 |
|----|----|----|----|----|----|
| 0  | 1  | 1  | 1  | 0  | 1  |
| 1  | 0  | 0  | 0  | 1  | 0  |

The net is covered by positive T-Invariants, therefore it might be bounded and live.

#### P-Invariants

| P0 | P2 | ΡЗ | Р4 | Р5 | Р6 |
|----|----|----|----|----|----|
| 1  | 1  | 1  | 1  | 1  | 0  |
| 0  | 1  | 0  | 0  | 0  | 1  |

The net is covered by positive P-Invariants, therefore it is bounded.

#### P-Invariant equations

 $\begin{array}{c} M(P0) + M(P2) + M(P3) + M(P4) + M(P5) = 1 \\ M(P2) + M(P6) = 1 \end{array}$ 

Rysunek 7: Niezmienniki sieci

## 4 Zadanie 4



Rysunek 8: Sieć reprezentująca bufor ograniczony

## Petri net invariant analysis results

# T-Invariants

The net is covered by positive T-Invariants, therefore it might be bounded and live.

#### P-Invariants



The net is covered by positive P-Invariants, therefore it is bounded.

#### P-Invariant equations

M(P0) + M(P1) + M(P2) = 1 M(P3) + M(P4) + M(P5) = 1M(P6) + M(P7) = 3

Rysunek 9: Niezminniki sieci

### 4.1 Analiza niezmienników

Tak, sieć jest zachowawcza. Za pojemność bufora odpowiada ostatnie równanie.

## 5 Zadanie 5



Rysunek 10: Sieć reprezentująca bufor nieograniczony

## Reachability/Coverability Graph Results

There are 8334 states with 10002 arcs. The graph is too big to be displayed properly.

Rysunek 11: Niezminniki sieci

### 5.1 Analiza niezmienników

Można łatwo zaobserwować, że ze względu na bufor  $(P_2)$  sieć nie będzie ograniczona ani tym bardziej bezpieczna. Nie będzie także zachowawcza.

## 5.2 Graf osiągalności

Jak widzimy graf osiągalności jest za duży, żeby program go narysował. Czego warto było się spodziewać, gdyż sieć nie jest ograniczona.

## 6 Zadanie 6

## 6.1 Graf osiągalności

Jak widzimy graf osiągalności posiada sekcje z których nie da się wyjść (zaznaczone na czerowno). Gdy sieć wchodzi do tego stanu następuje zakleszczenie.



Rysunek 12: Sieć z deadlockiem



Rysunek 13: Graf osiągalności

## Petri net state space analysis results

Bounded true
Safe true
Deadlock true
Shortest path to deadlock: T0 T2 T4 T0

\_\_\_\_\_\_

Rysunek 14: Niezminniki sieci

## 6.2 Analiza przestrzeni stanów

Obecność zakleszczenia możemy także zaobserwować w tabeli analizującej przestrzeń stanów naszej sieci.