In the claims:

Claims 1-22 cancelled.

23. (currently amended) A spark plug for an internal combustion engine with a combustion chamber, comprising a shell (12), an insulator (16) located in the shell and composed of a sintered ceramic material, as well as a center electrode (18) heat-fused in an insulator, and a terminal stud (22) that have an electrically conductive connection with each other and are located in the insulator,

wherein a cermet (28) abuts the center electrode, wherein a ceramic phase of the cermet is composed of the same or a similar material as the insulator, wherein a metallic phase of the cermet is composed of a material having good electrical conductivity, and wherein the cermet is disposed between the center electrode and the terminal stud.

wherein a burn-off resistor (30) is located in the interior of the insulator, and

wherein a conductive phase of the burn-off resistor is composed of carbon.

24. (previously amended) The spark plug according to Claim 23, wherein the ceramic phase is composed of Al₂O₃.

- 25. (previously amended) The spark plug according to Claim 24, wherein the ceramic phase comprises sintering auxillary agents.
- 26. (previously amended) The spark plug according to Claim 23, wherein the metallic phase is composed of a metal from the platinum group that is stable at sintering temperature.
- 27. (previously amended) The spark plug according to Claim 26, wherein the metallic phase is composed of platinum or a platinum alloy.
- 28. (previously amended) The spark plug according to Claim 23, wherein a ceramic granulated material is used to produce the cermet (28), wherein granules of the granulated material are provided with a surface coating of the material having good electrical conductivity.
- 29. (previously amended) The spark plug according to Claim 28, wherein the granulated material has a granule size in a range between 90 μ m and 150 μ m.
- 30. (currently amended) The spark plug according to Claim 6 28, wherein the material having good electrical conductivity is pulverized, and the individual particles are less than 10 μm in size.

Claim 31 cancelled.

32. (previously amended) The spark plug according to Claim 23, wherein the center electrode (18) has a diameter between 0.3 mm and 0.8 mm.

Claim 33 cancelled.

- 34. (currently amended) A method for producing a spark plug using the following steps:
- pressing a ceramic material to form an insulator (16) that is provided with a location hole (36) for a center electrode;
 - inserting a center electrode (18) in the location hole;
- providing a cermet between the center electrode and a terminal stud of the insulator;
- filling and compacting a ceramic granulated material in the insulator, wherein granules of the granulated material are provided with a coating of a material having good electric conductivity, in the insulator and compacted;
 - sintering the insulator;
 - locating a burn-off resistor (30) in the interior of the insulator; and
 - providing a conductive phase of the burn-off resistor of carbon.

- 35. (previously amended) The method according to Claim 34, wherein Al₂O₃ is used as the ceramic material.
- 36. (previously amended) The method according to Claim 35, wherein sintering auxiliary agents are used.
- 37. (previously amended) The method according to Claim 35, wherein Al_2O_3 is used as the material for the insulator.
- 38. (previously amended) The method according to Claim 34, wherein a metal from the platinum group that is stable at sintering temperature is used as the material having good electrical conductivity.
- 39. (previously amended) The method according to Claim 38, wherein platinum or a platinum alloy is used as the material having good electrical conductivity.
- 40. (previously amended) The method according to Claim 34, wherein the granules of the ceramic granulated material are coated with the material having good electrical conductivity by stirring in a diluted suspension.

- 41. (previously amended) The method according to Claim 34, wherein the material having good electrical conductivity is applied to the granules of the granulated material using a binding agent.
- 42. (previously amended) The method according to Claim 41, wherein the binding agent is an organic binding agent.
- 43. (previously amended) The method according to Claim 34, wherein the material having good electrical conductivity is applied to the granules of the granulated material via vapour deposition.
- 44. (previously amended) The method according to Claim 34, wherein the material having good electrical conductivity is applied to the granules of the granulated material via sputtering.
- 45. (new claim) A spark plug for an internal combustion engine with a combustion chamber, comprising a shell (12), an insulator (16) located in the shell and composed of a sintered ceramic material, as well as a center electrode (18) heat-fused in an insulator, and a terminal stud (22) that have an electrically conductive connection with each other and are located in the insulator.

wherein a cermet (28) abuts the center electrode, wherein a ceramic phase of the cermet is composed of the same or a similar material as the

insulator, wher in a metallic phase of the cermet is composed of a material having good electrical conductivity, and wherein the cermet is disposed between the center electrode and the terminal stud, and wherein a metallic phase of the cermet constitutes a quantity of 10 and 15 % by volume.

- 46. A method for producing a spark plug using the following steps:
- pressing a ceramic material to form an insulator (16) that is provided with a location hole (36) for a center electrode;
 - inserting a center electrode (18) in the location hole;
- providing a cermet between the center electrode and a terminal stud of the insulator:
- filling and compacting a ceramic granulated material in the insulator, wherein granules of the granulated material are provided with a coating of a material having good electric conductivity, in the insulator and compacted;
 - sintering the insulator; and
- providing a metallic phase of the cermet with a quantity of 10 and
 15% by volume.