Optimization Theory and Algorithms

Instructor: Prof. LIAO, Guocheng (廖国成)

Email: liaogch6@mail.sysu.edu.cn

School of Software Engineering Sun Yat-sen University

Outline

- General optimization problem
- Convex optimization problem
- Optimality condition
- Equivalent transformation

Optimization problem in standard form

min
$$f_0(x)$$

s.t. $f_i(x) \le 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., p$

- $x = (x_1, ..., x_n)$: optimization/decision variables
- $f_0(\cdot): \mathbb{R}^n \to \mathbb{R}$: objective function
- $f_i(\cdot): \mathbb{R}^n \to \mathbb{R}$, i = 1, ..., m: inequality constrain functions
- $h_i(\cdot): \mathbb{R}^n \to \mathbb{R}$, i = 1, ..., p: equality constrain functions
- Domain: $\mathcal{D} = \bigcap_{i=0}^m \mathbf{dom}\, f_i \,\cap\, \bigcap_{i=1}^p \mathbf{dom}\, h_i$
- If a point $x \in \mathcal{D}$ satisfies all the constraints $f_i(x) \le 0$, i = 1, ..., m, and $h_i(x) = 0$, i = 1, ..., p, it is a *feasible point*. The set of all feasible point is *feasible set*.
- The problem is feasible if there exists at least one feasible point, and infeasible otherwise.

Notations

min
$$f_0(x)$$

s.t. $f_i(x) \le 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., p$

Optimal value

$$p^* = \inf\{f_0(x) \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p\}$$

- $p^* = -\infty$: if there are feasible points x_k with $f_0(x_k) \to -\infty$ as $k \to \infty$, i.e., the problem is unbounded below.
- Optimal points: x^* is feasible and $f_0(x^*) = p^*$, i.e., x^* solves the problem.
- Optimal set

$$X_{\text{opt}} = \{x \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p, \ f_0(x) = p^*\}$$

- Example (unconstrained optimization problem):
- $F_0(x) = \frac{1}{x}$, $\mathcal{D} = \mathbb{R}_{++}$, $p^* = 0$, no optimal point
- $> f_0(x) = -\log x$, $\mathcal{D} = \mathbb{R}_{++}$, $p^* = -\infty$, unbounded below
- $> f_0(x) = x \log x, \mathcal{D} = \mathbb{R}_{++}, p^* = -1/e, x = 1/e$ is optimal point

Notations

min
$$f_0(x)$$

s.t. $f_i(x) \le 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., p$

- ε -suboptimal points: feasible x with $f_0(x) = p^* + \varepsilon$
- ε -suboptimal set: the set of all ε -suboptimal points.
- Locally optimal points solves the following problem for an R > 0:

$$\begin{aligned} & \min \ f_0(z) \\ & \text{s.t.} \ f_i(z) \leq 0, i = 1, ..., m \\ & \ h_i(z) = 0, i = 1, ..., p \\ & \|z - x\|_2 < R \end{aligned}$$

Convex optimization problem

min
$$f_0(x)$$

s.t. $f_i(x) \le 0, i = 1, ..., m$

$$a_i^T x = b_i, i = 1, ..., p$$

$$Ax = b, A \in \mathbb{R}^{p \times n}, b \in \mathbb{R}^p$$

- Convex optimization problem:
- \triangleright Objective function f_0 is convex function
- \triangleright Inequality constraint functions $f_1,...,f_m$ are convex functions
- \triangleright Equality constraint functions are affine $(a_i^T x = b_i)$.
- Property: feasible set of a convex optimization problem is convex

Abstract form convex optimization problem

min
$$f_0(x) = x_1^2 + x_2^2$$

s.t. $f_1(x) = x_1/(1 + x_2^2) \le 0$,
 $h_1(x) = (x_1 + x_2)^2 = 0$

- The problem is not a convex problem inequality constraint function is not convex; equality constraint function is not affine
- Equivalent convex problem

min
$$f_0(x) = x_1^2 + x_2^2$$

s.t. $f_1(x) = x_1 \le 0$,
 $h_1(x) = x_1 + x_2 = 0$

Local and global optima

Any locally optimal point of a convex problem is (globally) optimal

Proof by contradiction:

- Let *x* be locally optimal.
- Suppose x is not globally optimal, i.e., there exists y such that $f_0(y) < f_0(x)$.
- Consider $\theta \in [0,1]$:

$$f_0(\theta y + (1-\theta)x) \leq \theta f_0(y) + (1-\theta)f_0(x) < \frac{\theta f_0(x)}{\theta} + (1-\theta)f_0(x) = f_0(x),$$

i.e., $f_0(\theta x + (1 - \theta)y) < f_0(x)$, which is a contradiction when $\theta = 1$.

Optimality criterion for differentiable f_0

First-order condition: x is optimal if and only if it is feasible and $\nabla f_0(x)^T(y-x) \ge 0$ for all feasible y

If $\nabla f_0(x)$ is nonzero, $-\nabla f_0(x)$ defines a supporting hyperplane to the feasible set at x

Unconstrained problems as a special case

min
$$f_0(x)$$

x is optimal if and only if it is feasible and $\nabla f_0(x)^T(y-x) \ge 0$ for all feasible y

reduce x is optimal if and only if $\nabla f_0(x) = 0$

Example:

$$\min f_0(x) = \frac{1}{2}x^TQx + b^Tx$$

The first-order condition: $\nabla f_0(x) = Qx + b = 0$

- Case 1: Qx = -b has unique solution.
- Case 2: Qx = -b has infinitely many solutions.
- Case 3: Qx = -b has no solution, i.e., min $f_0(x) = -\infty$.

Equivalent transformation

Eliminating equality constraints

$$\min f_0(x)$$
s.t. $f_i(x) \le 0, i = 1, ..., m$

$$Ax = b$$

$$\min_{z} f_0(Fz + x_0)$$

s.t. $f_i(Fz + x_0) \le 0, i = 1, ..., m$

$$F$$
 and x_0 are such that $Ax = b \Leftrightarrow x = Fz + x_0$ for some z

Introducing equality constraints

min
$$f_0(A_0x + b_0)$$

s.t. $f_i(A_ix + b_i) \le 0, i = 1, ..., m$

$$\min_{\substack{x,y_i \\ \text{s.t.}}} f_0(y_0)$$
s.t. $f_i(y_i) \le 0, i = 1,..., m$

$$y_i = A_i x + b_i, i = 1,..., m$$

Equivalent transformation

Introducing slack variables for *linear inequalities*

$$\min_{\substack{x,s_i\\ \text{s.t. }}} f_0(x) \\ \text{s.t. } a_i^T x \leq b_i, i = 1, ..., m$$

$$\sup_{\substack{x,s_i\\ \text{s.t. }}} f_0(x) \\ \text{s.t. } a_i^T x + s_i = b_i, i = 1, ..., m$$

$$s_i \geq 0, i = 1, ..., m$$

Epigraph form

$$\min_{\substack{f_0(x)\\ \text{s.t.} \ f_i(x) \leq 0, i = 1, \dots, m\\ Ax = b}} \min_{\substack{x,t\\ \text{s.t.} \ f_i(x) \leq 0, i = 1, \dots, m\\ Ax = b\\ f_i(x) - t \leq 0}} \min_{\substack{x,t\\ \text{s.t.} \ f_i(x) \leq 0, i = 1, \dots, m\\ Ax = b\\ f_i(x) - t \leq 0}}$$