Structures

Martin Andrieux

1 Groupes

Définition -

Soit $H \subset G$, H est un sous-groupe de G si :

- H ≠ ∅
- H est stable par ·
- 1 ∈ H
- $\forall \alpha \in H, \alpha^{-1} \in H$

Théorèmes -

- \bullet Les sous-groupes de $\mathbb Z$ sont de la forme $\mathfrak n\mathbb Z$
- Tout groupe fini de cardinal $\mathfrak n$ est isomorphe à un sous-groupe de $\mathfrak S_{\mathfrak n}$
- L'intersection de deux sous-groupes est un sous-groupe.

Définition -

Pour $A \subset G$, il existe un plus petit sous-groupe de G contenant A, c'est le sous-groupe engendré par A, noté $\langle A \rangle$.

Théorème de Lagrange -

Le cardinal de tout sous-groupe divise le cardinal du groupe.

En particulier, pour x dans G, le cardinal de $\langle x \rangle$, aussi appelé ordre de x, divise le cardinal de G.

2 Anneaux

Définition -

Soit $B\subset A,$ B est un $\mathit{sous-anneau}$ de A si :

- B ≠ ∅
- \bullet B est stable par \cdot et +
- 1 ∈ B

Définition -

Un *corps* est un anneau dans lequel tous les éléments non nuls sont inversibles.

Soit A un anneau, on note A^* l'ensemble des éléments inversibles de A. A^* est un groupe pour la loi \cdot .

Définition -

Soit A un anneau, on dit que x et y sont des diviseurs de 0 si $x \neq 0$, $y \neq 0$ et xy = 0.

Si A ne possède pas de diviseur de \emptyset , il est dit intègre.