Основные понятия (продолжение)

- 1. Непрерывный образ компакта компактен.
- 2. Если X/A хаусдорфово, то $A\subset X$ замкнуто. Приведите пример, когда $A\subset X$ замкнуто, но X/A не хаусдорфово.
- 3. Отрезок и окружность негомеоморфны. Указание. Пространство X называется связным, если оно не может быть представлено в виде объединения двух непересекающихся открытых множеств, и несвязным в противном случае. Покажите, что связность является топологическим инвариантом (то есть сохраняется при непрерывных отображениях).
- 4. Отрезок и интервал негомеоморфны. Указание. Какой здесь подходящий инвариант?
- 5. а) Непрерывный образ отрезка отрезок.
 - б) (Теорема Брауэра о неподвижной точке) Пусть $f:[0,1] \to [0,1]$ непрерывно. Тогда существует точка $x \in [0,1]$ такая, что x = f(x).
- 6. (Теорема Борсука-Улама) Если $g: S^1 \to \mathbb{R}$ непрерывно, то существует точка $x \in S^1$ такая, что g(x) = g(-x). (Неформальное следствие: в каждый момент времени на экваторе Земли есть пара противоположных точек с равными температурами воздуха.)
- 7. (Теорема Тихонова для конечного произведения) Если X, Y компактны, то $X \times Y$ компактно. (Теорема верна и для произвольного числа множителей: конечного, счётного, несчётного, неважно. Случай конечного произведения очевидно сводится к проверке для двух множителей, что можно сделать по-босяцки. В случае произвольного числа множителей теорема Тихонова следует из знаменитой аксиомы выбора и даже экивалентна ей.)

Пространства отображений

Напомню, что на пространстве отображений $\mathcal{C}(X,Y) = \{f \colon X \to Y | f \text{ непрерывно} \}$ вводится компактнооткрытая топология: это слабейшая топология, в которой множества вида $U^K = \{f \colon X \to Y | f(K) \subset U \}$, где $K \subset X$ компактно, а $U \subset Y$ открыто, открыты.

Можно показать, что если Y — метрическое пространство с метрикой d, то эта топология порождается метрикой $\rho(f,g) = \sup_{x \in X} d(f(x),g(x)).$

8. Пространство непрерывных отображений $\mathcal{C}(X,Y)$ с компактно-открытой топологией не зря также обозначается как Y^X . Постройте естественную биекцию и докажите гомеоморфность:

$$\mathcal{C}(X,Y\times Z)\stackrel{\cong}{\longrightarrow} \mathcal{C}(X,Y)\times \mathcal{C}(X,Z),$$
 или $(Y\times Z)^X\cong Y^X\times Z^X.$

9. Пространство Y локально компактно, если у каждой точки $y \in Y$ существует окрестность, замыкание которой компактно. (Вообще говоря, если Y таково, что оно локально *свойство*, то всегда подразумевается, что это свойство выполняется для какой-то окрестности каждой точки, то есть оно локально). Определим отображение, ставящее в соответствие паре функций их композицию:

$$\Phi \colon \mathcal{C}(X,Y) \times \mathcal{C}(Y,Z) \to \mathcal{C}(X,Z)$$
$$(f,g) \mapsto g \circ f.$$

Докажите, что если Y локально компактно и хаусдорфово, то Φ непрерывно. В частности, отсюда следует, что отображение вычисления

eval:
$$Y \times C(Y, Z) \rightarrow Z$$

 $(y, f) \mapsto f(y).$

непрерывно. Где в курсе линейной алгебры оно встречается?

10. (Экспоненциальный закон (сложная задача)) Определено естественное отображение

$$\Phi \colon Z^{X \times Y} \to \left(Z^Y\right)^X$$
,

ставящее в соответствие отображению $f\colon X\times Y\to Z$ отображение $\Phi(f)\colon X\to Z^Y$, переводящее $x\in X$ в отображение $\Phi(f)(x)(\cdot)=f(x,\cdot)$. Покажите, что Φ биективно, а также что если X хаусдорфово, а Y хаусдорфово и локально компактно, то Φ — гомеоморфизм.

- 11. Открыто ли множество $\{f \in C[0,1] | \forall x \in [0,1] | 0 < f(x) < 1\}$?
- 12. (Для слушателей Константинова) Верно ли, что топология поточечной сходимости на пространстве отображений $\mathcal{C}([0,1],\mathbb{R})$ делает его гомеоморфным произведению $\prod_{x\in[0,1]}\mathbb{R}$?
- 13. Верно ли, что топология на Y^X совпадает с топологией произведения $\prod_{x \in X} Y$ для произвольного X?