Plotting One Variable Distributions Cheat Sheet

MIT Biological Engineering Communication Lab

Understanding your data

How many points do you have?

What does your data look like?

What is your message?

Example: "4 drug conditions, n = 3 mice per condition, each condition has small ranges"

Condition 1 results in longer survival.

Choosing a representation

Bar graph

Discrete, n < 10 *must also show points

Dot plot

Discrete, n < 30

Boxplot

Discrete/continuous. n > 10 should also show points*

Violin plot

Continuous, n > 30 *can also show points

Ridgeline plot (Joy plot)

Discrete/continuous, n > 30

Elements checklist

- ☐ Plot + data labels (label directly if possible)
- ☐ Appropriate axes scales and tick marks
- ☐ Gridlines if desired and needed
- ☐ Redundant (color + shape) markers
- ☐ Lines and points are thick and clear
- ☐ All text is clearly legible
- ☐ Units and annotations are directly on plot
- ☐ Plot is reproducible from clean workspace
- ☐ High-resolution output (DPI > 300)
- Statistical markers added if needed
- ☐ Peer/mentor proofread

Building a figure

"Biomechanics of predator-prey arms race in lion, zebra, cheetah and impala"

Data was pulled directly from Wilson et al. Nature (2018) and describes peak power/kg of muscle for pairs of predatory and prey.

What does our data look like? 4 groups, n > 30 per group with a broad distribution per group

Intended message

Predator peak muscle power is larger prey muscle power, only slightly.

→ Boxplot or violin plot

Follow along with the associated code notebooks in Python and R.

Peak Power (W kg-

Violin plot

Boxplot

- > great for highlighting characteristics of the underlying distribution, but
- > can still be misleading if the points are not shown.

The notches represent the 95% confidence interval of the medians.

- > the characteristic meaningful to our message
- > information about the uncertainty of the median
- > ability for viewer to interpret differences between species

Let's focus on ☐ Text size is illegible ☐ The distribution is hidden

Bar Graph*

- 1. Display all the points
- 2. Increase the font sizes

To make this even clearer,

- Colors and markers are redundant
- ☑ Horizontal plot makes labels easier to read

*With this data, we would not suggest a bar graph

The boxplot was the authors' choice Below is our reproduced version:

What are the strengths?

- ☑ Points are shown
- ☑ Points next to boxplots make it easier to understand both
- ☑ Large text, simple axes
- Median information make it easier to compare between species

What are the weaknesses?

- ☐ Abbreviated labels which are repeated throughout the paper, do not standalone
- ☐ The distribution of points is difficult to quantify
- ☐ Gathering exact quantities is difficult from few axis labels

