Battery Technology for Electric Vehicle

기술 경영

4조 201132898 송인욱 201332987 김성철 201533258 장예훈

3사 현황

제조사별 전기차 배터리 점유율(단위:%)

순위	제조사	16년 1~5월	15년 1~5월	점유율변동
1	파나소닉(일본)	32.5	39	-6.5
2	BYD(중국)	15.1	7.3	+7.8
3	AESC(일본)	10.6	11.6	-1
4	PEVE(일본)	8.8	12.6	-3.8
5	LGC(한국)	7.8	7.6	+0.2
6	SDI(한국)	5.2	6	-0.8
7	Lishen(중국)	3.5	1.3	+2.2
8	SKI(한국)	2.9	2.3	+0.6
9	LEJ(일본)	2.8	4.2	-1.4
10	CATL(중국)	2.4	1.2	+1.1

1위 파나소닉 32.5%

5위 LG Chem 7.8%

6위 삼성SDI 5.2%

파나소닉의 NCA

NCM 양극재

NCA 양극재

파나소닉과 테슬라

ONE MILLION

파나소닉의 테슬라 독점 이유

3사의 현재 기술

파나소닉 원통형 배터리의 한계 직면 → 다른 형태의 배터리 개발

삼성SDI, LG화학 각형, 파우치형 배터리 제조 , 기술력 우위

배터리 형태	파우치형	각형	윈통형
1회 충전 시 최대 주행 거리	500km(2018년 양산)	600km(2020년 양산)	400km(테슬라 모델 s 시판 중)
장점	□차 내부 디자인 유리함	□내구성이 뛰어남	□ 가격이 저렴함
	□효율이 높음	□원가 절감 폭이 큼	□생산이 용이함
단점	□ 가격이 비쌈	□무게가 큼	□에너지 밀도 감소함
	□ 기계적 충격에 약함	□열 방출 어려움	□폭발 위험

삼성과 LG의 방향

높은 제품 응용력 다품종 소량생산 가능 뛰어난 열 발산 셀 구조설계 유연

높은 제품 생산성 대량생산 가능 높은 내구성 원가 절감

삼성과 LG의 약점

■ 리튬 이차전지 Supply Chain 동향

* 배터리 핵심요소 중 분리막, 양극재, 전해액 계열사 공급 가능

- * 첨가제/용매 공급 가능 국내 유일업체
 - "김캠"
 - → 공급의 문제 발생 시 제조 어려움

감사합니다