Машинное обучение: композиции моделей

Эмели Драль MADE academy, Москва 2020

Алгоритмы машинного обучения

- 1. Обучение с учителем: линейные модели
- 2. Обучение с учителем: ансамбли моделей
- 3. Обучение с учителем: нейросетевые модели
- 4. Обучение без учителя: обзор методов
- 5. (optional) Рекомендательные системы
- 6. (optional) Обучение с подкреплением

План занятия

- 1. Идея композиции моделей
- 2. Оценка модели: noise, bias & variance
- 3. Bagging
- 4. Boosting
- 5. Обзор композиций

Композиция моделей

$$X^l = (x_i, y_i)_{i=1}^l \subset X \times Y$$
 — обучающая выборка $a(x) = C(b(x))$ — алгоритм, где $b: X \to R$ — базовый алгоритм $C: R \to Y$ — решающее правило R — пространство оценок

Композиция базовых алгоритмов $b_1, ..., b_N$: $a(x) = C\left(F(b_1(x), ..., b_N(x))\right),$

где $F \colon R^N \to R$ – корректирующая операция.

Решающее правило вводится для удобства работы с задачами классификации, где часто для получения метки класса требуется преобразование ответа модели.

Композиция моделей

Для чего строить композицию?

Идея: за счет использования комбинации из нескольких моделей вместо одной снизить ошибку прогноза

Композиция моделей

Для чего строить композицию?

Идея: за счет использования комбинации из нескольких моделей вместо одной снизить ошибку прогноза

Проблема: если просто взять выборку X и построить N моделей, они все будут одинаковыми

Bootstrap

Проблема: если просто взять выборку X и построить N моделей, они все будут одинаковыми

Идея: с помощью технологии bootstrap сгенерируем подвыборки из исходной выборки с возвращением

Тогда:

 X_1,\dots,X_n - подвыборки, полученные методом bootstrap b_1,\dots,b_n - базовые модели y(x) - верные ответы

Bootstrap

 X_1,\dots,X_n - подвыборки, полученные методом bootstrap b_1,\dots,b_n - базовые модели y(x) - верные ответы

Определим $\mathrm{E}_x(b_j(x)-y(x))^2$ - матожидание ошибки базового алгоритма по всем х. Обозначим ошибку $\varepsilon_j(x)$

Предположим, что:

 $\mathbf{E}_{x}\varepsilon_{j}(x)=0$ – ошибки несмещенные

 $E_{x}\varepsilon_{j}(x)\ \varepsilon_{k}(x)=0,\ j\neq k$ – ошибки независимы (не коррелированы)

Bootstrap

Определим $\mathbf{E}_x(b_j(x)-y(x))^2$ - матожидание ошибки базового алгоритма по всем х. Обозначим ошибку $\varepsilon_j(x)$

Предположим, что:

$$E_{x}\varepsilon_{j}(x)=0$$

$$E_x \varepsilon_j(x) \ \varepsilon_k(x) = 0, \ j \neq k$$

Рассмотрим $a(x) = \frac{1}{N} \sum_{j=1}^N b_j(x)$ - среднее N базовых алгоритмов

Давайте оценим ошибку композиции и сравним с ошибкой базового алгоритма

Bootstrap

$$a(x) = \frac{1}{N} \sum_{j=1}^{N} b_j(x)$$

Оценим ошибку композиции

$$E_x(\frac{1}{N}\sum_{j=1}^{N}b_j(x)-y(x))^2$$

внесем у(х) внутрь суммы

$$E_{x}(\frac{1}{N}\sum_{j=1}^{N}(b_{j}(x)-y(x)))^{2}=E_{x}(\frac{1}{N}\sum_{j=1}^{N}\varepsilon_{j}(x))^{2}$$

раскроем квадрат суммы

$$\frac{1}{N^2} \left(\mathbb{E}_{x} \sum_{j=1}^{N} \varepsilon_j^2 (x) + \sum_{j \neq k}^{N} \mathbb{E}_{x} \varepsilon_j (x) \varepsilon_k (x) \right)$$

второе слагаемое равно 0

$$\frac{1}{N^2} E_x \sum_{i=1}^{N} \varepsilon_i^2 (x)$$

Bootstrap

$$a(x) = \frac{1}{N} \sum_{j=1}^{N} b_j(x)$$

Идея композиции моделей

Пусть ошибки одинаково распределены

$$\frac{1}{N^2} \mathrm{E}_{\mathcal{X}} \sum_{j=1}^N \varepsilon_j^2 \, (x) = \frac{1}{N} \mathrm{E}_{\mathcal{X}} \varepsilon_j^2$$
 - таким образом ошибка усредненной модели в n раз меньше

Значит, построение композиции для снижения ошибки имеет смысл

Оценка модели

Оценка модели

Разложение ошибки

Ошибка любого алгоритма может быть представлена в виде суммы трёх составляющих:

- **Сложность задачи**: насколько задача поддается решению?
- **Смещение**: насколько выбранная модель подходит для решения задачи?
- **Разброс**: насколько разнообразно выбранное семейство моделей (дисперсия ответов модели)

Оценка модели

Какова сложность задачи?

- задача умеренно сложная
- для нас это не принципиально, так как не влияет на модель

Оценка модели

Оценка модели

- высокое смещение
- низкий разброс

Оценка модели

Оценка модели

- низкое смещение
- высокий разброс

Оценка модели

Компромисс между смещением и разбросом называют bias-variance tradeoff

Идея: с помощью построения композиции снизить разброс при сохранении смещения

Bootstrap

Bagging = Bootstrap aggregation

Nº	значение
1	
2	
3	
N	

Bootstrap

Bagging = Bootstrap aggregation

Nº	значение						
1							
25							
1							
		Nº	№ значен			•	
		67					
		24					
		13					
				Nº		211211211146	
				_		значение	;
				9			
				9)		
				9)		

Bagging = Bootstrap aggregation

Bagging

 $\mu: (X \times Y)^l \to A$ - метод обучения $ilde{X}$ - подвыборка, полученная с помощью bootstrap $b_1(ilde{X}), \dots, b_N(ilde{X})$ – базовые модели (одинаковые), обученные на разных подвыборках

$$a(x) = \frac{1}{N} \sum_{i=1}^{N} b_i(x)$$
 - композиция моделей

Random Forest = Bagging over decision trees

Для достижения эффекта снижения разброса деревья должны быть разными (некоррелированными)

*помните, мы требовали, чтобы $\mathbf{E}_{x}\varepsilon_{j}(x)$ $\varepsilon_{k}(x)=0$, $j\neq k$

Bagging

Random Forest = Bagging over decision trees

Для достижения эффекта снижения разброса деревья должны быть разными (некоррелированными):

- каждое дерево строится на своей подвыборке
- разбиение в каждом узле производится по признаку из ограниченного подмножества признаков
- используются деревья большой глубины (всего несколько объектов в листе)

Random forest: построение

- 1. Генерируем М выборок на основе имеющейся
- 2. Строим на них деревья с рандомизированными разбиениями в узлах: выбираем k случайных признаков и ищем наиболее информативное разбиение по ним
- 3. При прогнозировании усредняем ответ всех деревьев

Random Forest: переобучение

Random forest:

- Не требует тонкой настройки
- Устойчив к переобучению

Bagging

Сложность модели (количество параметров)

Out of bag estimation

Random forest позволяет делать оценку обобщающей способности модели без использования тестовой выборки

Bagging

Идея: давайте оценим качество для каждого объекта, только по тем деревьям, в построении которых он не участвовал (а такие есть и их много, так как используется bagging)

Out of bag estimation

Random forest позволяет делать оценку обобщающей способности модели без использования тестовой выборки

Bagging

$$OOBE = \sum_{i=1}^{l} L(y_i, \frac{1}{\sum_{n=1}^{N} [x_i \notin \tilde{X}_n]} \sum_{n=1}^{N} [x_i \notin \tilde{X}_n] b_n(x_i))$$

для каждого объекта посчитали ошибку среднего прогноза по деревьям, в обучении которых он не участвовал

Out of bag estimation

Random forest позволяет делать оценку обобщающей способности модели без использования тестовой выборки

Bagging

$$OOBE = \sum_{i=1}^{l} L(y_i, \frac{1}{\sum_{n=1}^{N} [x_i \notin \tilde{X}_n]} \sum_{n=1}^{N} [x_i \notin \tilde{X}_n] b_n(x_i))$$

для каждого объекта посчитали ошибку среднего прогноза по деревьям, в обучении которых он не участвовал

Random forest

 $T_n(x)$ — номер листа, в который попал объект x в дереве b_n

Тогда можно записать прогноз базового алгоритма:

$$b_n(x) = \sum_{i=1}^l w_n(x, x_i) y_i, \ w_n(x, x_i) = \frac{[T_n(x) = T_n(x_i)]}{\sum_{j=1}^l [T_n(x) = T_n(x_j)]}$$

фактически здесь записано среднее по объектам обучающей выборке в листе, в который попал объект х

Random forest

 $T_n(x)$ – номер листа, в который попал объект x в дереве b_n

Тогда можно записать прогноз базового алгоритма:

$$b_n(x) = \sum_{i=1}^l w_n(x, x_i) y_i, \ w_n(x, x_i) = \frac{[T_n(x) = T_n(x_i)]}{\sum_{j=1}^l [T_n(x) = T_n(x_j)]}$$

Выразим через эту формулу прогноз всей композиции:
$$a(x) = \frac{1}{N} \sum_{n=1}^{N} \sum_{i=1}^{l} w_n(x, x_i) y_i = \sum_{i=1}^{l} (\frac{1}{N} \sum_{n=1}^{N} w_n(x, x_i)) y_i$$

Random forest

Прогноз всей композиции:

$$a(x) = \frac{1}{N} \sum_{n=1}^{N} \sum_{i=1}^{l} w_n(x, x_i) y_i = \sum_{i=1}^{l} (\frac{1}{N} \sum_{n=1}^{N} w_n(x, x_i)) y_i$$

Bagging

 $\sum_{n=1}^{N} w_n(x,x_i)$ - количество деревьев, в которых х и x_i попали в один лист. Или сходство х и x_i в терминах деревьев

Можно понимать RF как способ построения метрики близости на объектах на основе их попадания в одни и те же листья.

Random Forest

- Bagging над деревьями решений
- Не требует тонкой настройки
- Устойчив к переобучению
- Умеренно интерпретируем
- Позволяет обучать модель распределено

Boosting

Bagging: строим базовые алгоритмы независимо друг от друга

Boosting

Идея: давайте строить базовые алгоритмы последовательно. Причем, строить будем таким образом, чтобы каждый следующий алгоритм корректировал прогнозы всей предыдущей композиции

Идея: давайте строить базовые алгоритмы последовательно таким образом, чтобы каждый следующий алгоритм корректировал прогнозы всей предыдущей композиции

Boosting

Рассмотрим простой случай:

$$a(x) = \sum_{n=1}^{N} b_n(x)$$

$$\sum_{i=1}^{l} (a(x_i) - y_i)^2 \to \min_{a}$$

Gradient Boosted Decision Trees

Попробуем построить b_i последовательно так, чтобы каждый следующий алгоритм корректировал ошибки предыдущих.

Шаг 1:

$$b_1(x) = arg \min_{b} \sum_{i=1}^{l} (b(x_i) - y_i)^2$$

Проанализируем прогнозы этой модели:

$$b_1(x_1)$$
 $b_1(x_2)$ y_2 Что должен прогнозировать следующий алгоритм, чтобы скорректировать уже построенный? $b_1(x_n)$ y_n

Gradient Boosted Decision Trees

Попробуем построить b_i последовательно так, чтобы каждый следующий алгоритм корректировал ошибки предыдущих.

Шаг 1:

Gradient Boosted Decision Trees

Попробуем построить b_i последовательно так, чтобы каждый следующий алгоритм корректировал ошибки предыдущих.

Шаг 1:

$$b_1(x) = arg \min_b \sum_{i=1}^l (b(x_i) - y_i)^2$$
War 2: $b_2(x) = arg \min_b \sum_{i=1}^l (b(x_i) - (y_i - b_1(x_i)))^2$

таким образом, если предыдущие модели работают корректно, мы учим следующий приближать 0; в противном случае – приближать разницу

$$a(x) = b_1(x) + \dots + b_n(x)$$

Boosting

Gradient Boosted Decision Trees

Обобщим подход для произвольной дифференцируемой функции потерь *L:*

$$a(x) = \sum_{n=1}^{\infty} b_n(x)$$

Обозначим $s_i = y_i - b_k(x_i)$ ошибка на объекте i

Допустим композиция $a_{n-1}(x)$ уже построена

Нужно построить $b_N(x)$ так, чтобы:

$$\sum_{i=1}^{t} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N}$$

Gradient Boosted Decision Trees

Прежде чем искать модель $b_N(x)$ давайте оценим, как стоило бы сделать правку на ответы композиции a_{N-1} , чтобы уменьшить ошибку

$$\sum_{i=1}^{l} L(y_i, a_{N-1}(x_i) + s_i) \to \min_{s_i}$$

Какие s_i точно уменьшат ошибку?

Gradient Boosted Decision Trees

Прежде чем искать модель $b_N(x)$ давайте оценим, как стоило бы сделать правку на ответы композиции a_{N-1} , чтобы уменьшить ошибку

$$\sum_{i=1}^{l} L(y_i, a_{N-1}(x_i) + s_i) \to \min_{s_i}$$

Какие s_i точно уменьшат ошибку?

Вариант 1: $s_i = y_i - a_{N-1}(x_i)$ – можно, но такой вариант не учитывает особенности выбранной L.

Что если, например, перепрогнозирование и недопрогнозирование стоят неодинаково?

Gradient Boosted Decision Trees

Прежде чем искать модель $b_N(x)$ давайте оценим, как стоило бы сделать правку на ответы композиции a_{N-1} , чтобы уменьшить ошибку

$$\sum_{i=1}^{l} L(y_i, a_{N-1}(x_i) + s_i) \to \min_{s_i}$$

Какие s_i точно уменьшат ошибку?

Вариант 1: $s_i = y_i - a_{N-1}(x_i)$ – нет учета специфики L

Вариант 2: $s_i = -\frac{\partial L}{\partial z}|_{z=a_{N-1}(x_i)}$ - сдвигаем ответ на объекте x_i в сторону наискорейшего убывания ошибки

$$s_i = -\frac{\partial L}{\partial z}|_{z=a_{N-1}(x_i)}$$

Вектор частных производных – антиградиент суммарной ошибки

$$\left(-\frac{\partial L}{\partial z}|_{z=a_{N-1}(x_i)}\right) = -\nabla_z \sum_{i=1}^l L(y_i, z_i)|_{z_i=a_{N-1}(x_i)}$$

т.е. взяли L на всей обучающей выборке и посчитали градиент по всем прогнозам

Boosting

$$s_i = -\frac{\partial L}{\partial z}|_{z=a_{N-1}(x_i)}$$

$$\left(-\frac{\partial L}{\partial z}|_{z=a_{N-1}(x_i)}\right) = -\nabla_z \sum_{i=1}^l L(y_i, z_i)|_{z_i=a_{N-1}(x_i)}$$

Мы договорились искать модель b_N так, чтобы она приближала s_i . Можем сделать это таким образом:

$$b_N(x) = arg \min_{b} \sum_{i=1}^{s} (b(x_i) - s_i)^2$$

Интересно, что в данном случае нас устраивает квадратичная функция потерь, так как особенности L уже учтены в s

Boosting

$$\left(-\frac{\partial L}{\partial z}|_{z=a_{N-1}(x_i)}\right) = -\nabla_z \sum_{i=1}^l L(y_i, z_i)|_{z_i=a_{N-1}(x_i)}$$

Boosting

а_{N-1}(x₁) прогнозы композиции на х₁

a_{N-1}(x₂) прогнозы композиции на x₂

Gradient Boosted Decision Trees

Получается, что мы двигаемся в пространстве прогнозов композиции алгоритмов, где каждый шаг – новый алгоритм, так, чтобы сойтись к оптимальному прогнозу (точному ответу на обучении)

a_{N-1}(x₁) прогнозы композиции на х₁

a_{N-1}(x₂) прогнозы композиции на x₂

GBDT: регуляризация

В отличие от random forest склонен к переобучению, однако позволяет получить меньшее смещение (ошибку)

Boosting

Сложность модели (количество параметров)

GBDT: регуляризация

Движение в сторону антиградиента суммарной ошибки:

- С помощью простых моделей
- С помощью сложных моделей

Boosting

GBDT: регуляризация

Движение в сторону антиградиента суммарной ошибки:

- С помощью простых моделей: движение в нужную сторону может быть осложнено. Можем идти очень медленно, или вовсе не сможем двигаться по сложной траектории
- С помощью сложных моделей

GBDT: регуляризация

Движение в сторону антиградиента суммарной ошибки:

- С помощью простых моделей: движение в нужную сторону может быть осложнено. Можем идти очень медленно, или вовсе не сможем двигаться по сложной траектории
- С помощью сложных моделей: первая модель может переобучиться, далее идея корректировки будет неприменима

GBDT: регуляризация

Движение в сторону антиградиента суммарной ошибки:

- С помощью простых моделей: движение в нужную сторону может быть осложнено: можем идти очень медленно, или вовсе не сможем двигаться по сложной траектории
- С помощью сложных моделей: первая модель может переобучиться, далее идея корректировки будет неприменима

Идея: ограничим шаг!

GBDT: скорость обучения

Ограничим шаг:

$$a_N(x) = a_{N-1}(x) + \eta b_n(x)$$
 $\eta \in (0;1]$ - длина шага или скорость обучения

Скорость обучения связана с количеством итераций:

- чем меньше скорость обучения, тем больше итераций нужно
- можно получить лучший минимум, хотя и потребуется больше итераций

Boosting

GBDT: регуляризация

Движение в сторону антиградиента суммарной ошибки:

- С помощью простых моделей: движение в нужную сторону может быть осложнено. Можем идти очень медленно, или вовсе не сможем двигаться по сложной траектории
- С помощью сложных моделей: первая модель может переобучиться, далее идея корректировки будет неприменима

Идея 2: будем обучать b_N на подвыборке объектов. Это стохастический градиентный бустинг.

GBDT: оптимизация ответов в листьях

Аналитическая запись дерева решений:

$$b_n(x) = \sum_{j=1}^{J_N} b_{Nj} [x \in R_{Nj}]$$

J_N – регионы, на которые дерево разбивает объекты

Запишем GB, подставив в качестве b_N дерево решений

$$a_N(x) = a_{N-1} + \sum_{j=1}^{J_N} b_{nj} [x \in R_{Nj}]$$

GBDT: оптимизация ответов в ЛИСТЬЯХ

Запишем GB, подставив в качестве b_N дерево решений

$$a_N(x) = a_{N-1} + \sum_{j=1}^{J_N} b_{nj} [x \in R_{Nj}]$$

Тогда потери примут вид:
$$\sum_{i=1}^{J_N} L(y_i, a_{N-1}(x_i) + \sum_{j=1}^{J_N} b_{Nj}[x_i \in R_{Nj}]) \to \min_{b_{Nj} \mid j=1, J_N}$$

Идея: не меняя структуру дерева, скорректировать ответ в листе так, чтобы он был оптимален с точки зрения L

Это возможно, так как мы строим деревья оптимизируя квадрат отклонения от смещения, а не саму L

GBDT: оптимизация ответов в листьях

Не меняя структуру дерева, скорректировать ответ в листе так, чтобы он был оптимален с точки зрения L

$$\sum_{i=1}^{l} L(y_i, a_{N-1}(x_i) + \sum_{j=1}^{J_N} b_{Nj}[x_i \in R_{Nj}]) \to \min_{b_{Nj} \mid j=1, J_N}$$

Для того, чтобы удобнее сделать правки в листьях сведем многомерную задачу к J_N одномерных, оптимизируя по каждому листу ($x_i \in R_{Nj}$) отдельно

$$\sum_{x_i \in R_{Nj}} L(y_i, a_{N-1}(x_i) + b_{Nj}) \to \min_{b_{Nj}}$$

Эти задачи решать легко, так как b_{Nj} – число (ответ в листе) и каждая задача одномерная

Gradient Boosted Decision Trees

- Очень универсальный
- Позволяет точно приблизить восстанавливаемую функцию или разделяющую поверхность классов
- Умеренно интерпретируем
- Композиции могут содержать десятки тысяч базовых моделей и долго обучаться
- Переобучение на выбросах при избыточном количестве классификаторов

Обзор композиций

Ансамбли моделей

Способы комбинирования моделей

- Bagging
- Boosting
- Stacking
- Blending

Ансамбли моделей

Bagging

Bagging = Bootstrap aggregation

Nº	значение
1	
2	
3	
N	

Ансамбли моделей

Bagging

Bagging = Bootstrap aggregation

Nº	значение
1	
2	
3	
N	

Nº	значе	ние					
1							
25							
1							
		Nº	знач	ен	И	Э	
,		67					
		24					
		13					
				Nº		значение)
				9			
				9			
				9			

Ансамбли моделей

Bagging

Bagging = Bootstrap aggregation

Nº	значение
1	
2	
3	
N	

	Nº	значе	ние					
	1							
	25							
	1							
			Nº	знач	ені	ие)	
			67					
			24					
			13					
					Nº		значение	•
					9			
					9			
					9			
	ерируем М							
l,	, обучаем на							

По схеме выбора с возвращением, генерируем М обучающих выборок такого же размера, обучаем на них модели и усредняем результат

. . .

Бустинг – жадное построение взвешенной суммы базовых алгоритмов $b_k(x)$

Ансамбли моделей

$$a(x) = \eta_1 b_1(x)$$

$$a(x) = \eta_1 b_1(x) + \eta_2 b_2(x)$$

. .

Ансамбли моделей

Boosting

Бустинг – жадное построение взвешенной суммы базовых алгоритмов $b_k(x)$

$$a(x) = \sum_{t=1}^{T} \eta_t b_t(x)$$

$$a(x) = \eta_1 b_1(x)$$

$$a(x) = \eta_1 b_1(x) + \eta_2 b_2(x)$$

. .

Ансамбли моделей

Boosting

Бустинг – жадное построение взвешенной суммы базовых алгоритмов $b_k(x)$

$$a(x) = \sum_{t=1}^{T} \eta_t b_t(x)$$

$$a(x) = \eta_1 b_1(x)$$

 $b_k(x)$ – как правило, решающие деревья небольшой глубины или линейные модели

$$a(x) = \eta_1 b_1(x) + \eta_2 b_2(x)$$

. . .

Обучающая выборка:

Ансамбли моделей

F1	F2	F3				FN

Обучающая выборка:

Ансамбли моделей

Обучающая выборка:

Ансамбли моделей

Обучающая выборка:

Ансамбли моделей

$$a(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$$

Обучаем другую модель (например, линейную регрессию)

Ансамбли моделей

Blending

Смесь нескольких сильных классификаторов:

$$a(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$$

+ веса неотрицательны и дают в сумме единицу

Ансамбли моделей

Blending

Смесь нескольких сильных классификаторов:

$$a(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$$

+ веса неотрицательны и дают в сумме единицу

Преимущества и недостатки:

- Очень прост идейно, хорошо работает
- Иногда надо перебирать веса или использовать дискретную оптимизацию
- Не всегда композиция в виде взвешенной суммы то, что надо. Иногда нужна более сложная композиция

Машинное обучение: композиции моделей

Спасибо! Эмели Драль