

WHAT IS CLAIMED IS:

1. A compound represented by Formula I:

5

wherein R¹ and R² are independently chosen from hydrogen or an alkyl group;
R³ and R⁴ are independently chosen from hydrogen, an alkyl group or R³, R⁴ and the carbon
10 atom to which they are attached form a cycloalkyl ring, or R² and R³ together represent
(CH₂)_m to form a saturated heterocycle;
R⁵ is chosen from hydroxyl, alkoxy, alkyl, halogen, or OC(=O)W;
R⁶ is chosen from hydrogen, halogen, a substituted or unsubstituted alkyl group;
R⁷ and R⁸ are hydrogen or an alkyl group;
15 W is a substituted or unsubstituted alkyl group, NR⁷R⁸, N(R⁷)CH₂(CH₂)_nN(R⁷)(R⁸), O-alkyl,
or a substituted or unsubstituted alkenyl;
m is 3 or 4;
n is 2 or 3;
A is a 5- to 7-membered ring optionally containing one heteroatom chosen from NR⁷, O, or
20 S;
X is either N or C;
Y and Z are either N or C, wherein Y and Z are different; and
the dashed bonds denote a suitably appointed single and double bond;
or pharmaceutically acceptable salts or solvates thereof.

25

2. The compound of claim 1, wherein R¹ and R² are independently chosen from
hydrogen or C₁₋₄alkyl;
R³ and R⁴ are independently chosen from hydrogen, C₁₋₄alkyl or R³, R⁴ and the carbon atom
to which they are attached form a cyclopropyl ring, or R² and R³ together represent (CH₂)_m
to form a saturated heterocycle;
R⁵ is chosen from hydroxyl, C₁₋₄alkoxy, C₁₋₄alkyl, halogen, or OC(=O)W;
R⁶ is chosen from hydrogen, halogen, C₁₋₄alkyl, C₁₋₄alkyl substituted with halogen;

- R⁷ and R⁸ are hydrogen or C₁₋₄alkyl;
- W is C₁₋₆alkyl, NR⁷R⁸, N(R⁷)CH₂(CH₂)_nN(R⁷)(R⁸), OC₁₋₆alkyl, C₁₋₆alkyl optionally substituted with halogen, hydroxyl, CO₂C₁₋₄alkyl, CON(C₁₋₄alkyl)₂, C(=NH)NH₂, NHC(=NH)NH₂, or NH₂, C₂₋₄alkenyl optionally substituted by phenyl, unsubstituted or substituted with one or more of C₁₋₄alkyl, C₁₋₄alkoxy or halogen;
- 5 m is 3 or 4;
- n is 2 or 3;
- A is a 5- to 7-membered ring optionally containing one heteroatom chosen from NR⁷, O, or S;
- 10 X is either N or C;
- Y and Z are either N or C, wherein Y and Z are different; and
the dashed bonds denote a suitably appointed single and double bond;
or pharmaceutically acceptable salts or solvates thereof.

3. The compound of claim 1, wherein said R² and R³ form a saturated (CH₂)_m
15 heterocycle or said R³ and R⁴ together form a cycloalkyl ring.

4. The compound of claim 1, wherein R¹, R², and R³ are hydrogen;
or R² and R³ together represent (CH₂)_m to form a pyrrolidine;
R⁴ is C₁₋₄alkyl;
R⁵ is chosen from hydroxyl, C₁₋₄alkoxy, or OC(=O)W;

20 R⁶ is chosen from hydrogen, halogen, C₁₋₄alkyl, C₁₋₄alkyl substituted with halogen;
R⁷ and R⁸ are hydrogen or C₁₋₄alkyl;
W is C₁₋₆alkyl, NR⁷R⁸, C₁₋₆alkyl optionally substituted with halogen, hydroxyl, or
CO₂C₁₋₄alkyl;

m is 3;

25 A is a 6-membered ring optionally containing one heteroatom chosen from NR⁷ or
O;
X is either N or C;
Y is N and Z is C; and

the dashed bonds denote a suitably appointed single and double bond.

5. The compound of claim 1, wherein the compound is:

2-(2-Aminopropyl)-2,6,7,8-tetrahydro-benzo[cd]indazol-4-ol;

2-(2-Dimethylaminoethyl)-2,6,7,8-tetrahydro-benzo[cd]indazol-4-ol;

5 2-(2-Aminopropyl)-5-methyl-2,6,7,8-tetrahydro-benzo[cd]indazol-4-ol;

2-(2-Aminopropyl)-5-fluoro-2,6,7,8-tetrahydro-benzo[cd]indazol-4-ol;

2-(6-Fluoro-7-methoxy-4,5-dihydro-3H-benzo[cd]indazol-1-yl)-1-methylethylamine;

Cyclopropanecarboxylic acid 2-(2-aminopropyl)-2,6,7,8-tetrahydro-
benzo[cd]indazol-4-yl ester;

10 1-(2-Aminopropyl)-1,3,4,5-tetrahydro-benzo[cd]indol-7-ol;

1-(2-Aminopropyl)-5H-pyrano[4,3,2-cd]indazol-7-ol; or

1-(2-Aminopropyl)-4-methyl-1,3,4,5-tetrahydro-pyrazolo[4,3,2-de]isoquinolin-7-ol

or combinations thereof.

6. The compound of claim 1, wherein said X is N.

15 7. The compound of claim 1, wherein said X is C.

8. A method of controlling normal or elevated intraocular pressure comprising
administering a pharmaceutically effective amount of a composition comprising at least one
compound of claim 1.

9. The method of claim 8, wherein R² and R³ form a saturated (CH₂)_m
20 heterocycle.

10. The method of claim 8, wherein said R³ and R⁴ together form a cycloalkyl ring.

11. The method of claim 8, wherein said compound is 2-(2-Aminopropyl)-
2,6,7,8-tetrahydro-benzo[cd]indazol-4-ol;

2-(2-Dimethylaminoethyl)-2,6,7,8-tetrahydro-benzo[cd]indazol-4-ol;

25 2-(2-Aminopropyl)-5-methyl-2,6,7,8-tetrahydro-benzo[cd]indazol-4-ol;

2-(2-Aminopropyl)-5-fluoro-2,6,7,8-tetrahydro-benzo[cd]indazol-4-ol;
2-(6-Fluoro-7-methoxy-4,5-dihydro-3H-benzo[cd]indazol-1-yl)-1-methylethylamine;
Cyclopropanecarboxylic acid 2-(2-aminopropyl)-2,6,7,8-tetrahydro-

benzo[cd]indazol-4-yl ester;

- 5 1-(2-Aminopropyl)-1,3,4,5-tetrahydro-benzo[cd]indol-7-ol;
1-(2-Aminopropyl)-5H-pyrano[4,3,2-cd]indazol-7-ol; or
1-(2-Aminopropyl)-4-methyl-1,3,4,5-tetrahydro-pyrazolo[4,3,2-de]isoquinolin-7-ol;

or combinations thereof.

12. The method of claim 8, wherein wherein R¹, R², and R³ are hydrogen;
10 or R² and R³ together represent (CH₂)_m to form a pyrrolidine;
R⁴ is C₁₋₄alkyl ;
R⁵ is chosen from hydroxyl, C₁₋₄alkoxy, or OC(=O)W;
R⁶ is chosen from hydrogen, halogen, C₁₋₄alkyl, C₁₋₄alkyl substituted with halogen;
R⁷ and R⁸ are hydrogen or C₁₋₄alkyl;
15 W is C₁₋₆alkyl, NR⁷R⁸, C₁₋₆alkyl optionally substituted with halogen, hydroxyl, or
CO₂C₁₋₄alkyl;

m is 3;

A is a 6-membered ring optionally containing one heteroatom chosen from NR⁷ or
O;

20 X is either N or C;

Y is N and Z is C; and

the dashed bonds denote a suitably appointed single and double bond.

13. The method of claim 9, wherein said X is N.

14. The method of claim 9, wherein said X is C.

15. A method for the treatment of glaucoma comprising administering a pharmaceutically effective amount of a composition comprising at least one compound of claim 1.

16. The method of claim 15, wherein R¹, R², and R³ are hydrogen; or R² and R³ together represent (CH₂)_m to form a pyrrolidine; R⁴ is C₁₋₄alkyl; R⁵ is chosen from hydroxyl, C₁₋₄alkoxy, or OC(=O)W; R⁶ is chosen from hydrogen, halogen, C₁₋₄alkyl, C₁₋₄alkyl substituted with halogen; R⁷ and R⁸ are hydrogen or C₁₋₄alkyl; W is C₁₋₆alkyl, NR⁷R⁸, C₁₋₆alkyl optionally substituted with halogen, hydroxyl, or CO₂C₁₋₄alkyl;

10 m is 3; A is a 6-membered ring optionally containing one heteroatom chosen from NR⁷ or O;

15 X is either N or C;

Y is N and Z is C; and

the dashed bonds denote a suitably appointed single and double bond.

17. The method of claim 15, wherein said compound is:

1-(2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ol;
20 1-((S)-2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ol;
(R)-1-((S)-2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ol;
(S)-1-((S)-2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ol;
1-((S)-2-Aminopropyl)-3-methyl-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ol;
1-(S)-1-Pyrrolidin-2-ylmethyl-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ol;
25 1-((S)-2-Aminopropyl)-5-fluoro-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ol;

[1-((S)-2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-yl]-

dimethylamine;

[1-((S)-2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-yl]-methanol;

1-(2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[3,2-g]indazol-8-ol;

5 1-(Pyrrolidin-2-ylmethyl)-3,7,8,9-tetrahydro-pyrano[3,2-e]indazol-8-ol;

1-((S)-2-Aminopropyl)-3,7,8,9-tetrahydro-pyrano[3,2-e]indazol-8-ol; or

1-((S)-2-Aminopropyl)-3-methyl-3,7,8,9-tetrahydro-pyrano[3,2-e]indazol-8-ol; or

mixtures thereof.

18. A pharmaceutical composition comprising the compound of claim 1 and at
10 least one carrier.

19. A method to block or bind to serotonin receptors comprising administering an
effective amount of at least one compound of claim 1 to a patient.