

SC2001/ CX2101: Algorithm Design and Analysis

Part 2

Huang Shell Ying

Office: N4-02b-38

Email: assyhuang@ntu.edu.sg

Topics

- Analysis Techniques (3 hours)
- Dynamic Programming (5 hours)
- String Matching (3 hours)
- Introduction to NP Completeness (2 hours)

Lecture Delivery Method

- 1. Recorded lectures in Course Media(Media Gallery) /Home. Videos of one chapter in one PlayList.
- Weekly review lectures/Q & As in Zoom on Mondays
 1.30pm 2.30pm, Week 8 to Week 13. No lecture on Fridays unless notified otherwise.

Schedule

Week	Lecture materials to be studied by end of the week	Tutorials	Example classes
7	Analysis techniques (up to slide 38)	Graphs	Project 1
8	Analysis techniques (up to end), DP (up to DP slide 18)	Graphs	Project 2
9	DP (up to DP slide 40)	Analysis techniques	Project 2
10	DP (up to end)	DP	Quiz
11	String matching (up to end)	DP	Quiz
12	NP completeness (up to end)	String matching	Project 3
13		NP completeness	Project 3

Review lectures are from Week 8 to Week 13

Analysis Techniques

Huang Shell Ying

Reference: Computer Algorithms: Introduction to Design and Analysis, 3rd Ed, by Sara Basse and Allen Van Gelder.

Outline

- Review of the big oh, big omega, big theta
- Solving recurrences (1)
 - 1. The substitution method
 - 2. The iteration method
 - 3. The master method.
- Solving recurrences (2)
 - Solving linear homogeneous recurrences with constant coefficients

The Big-oh notation:

<u>Definition</u>: Let f and g be 2 functions such that

 $f(n): N \rightarrow R^+$ and $g(n): N \rightarrow R^+$, if there exists positive constants c and n_0 such that

$$f(n) \le c * g(n) \text{ for all } n > n_0$$

then $f(n) = O(g(n))$.

Alternative definition: if

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c < \infty$$

then f(n) = O(g(n)).

Example: f(n)=lg(n), g(n)=n,

Let c=1,
$$n_0 = 1$$
, then for all n>1
 $lg(n) \le n$, i.e., $f(n) \le g(n)$
so $f(n) = O(g(n))$.

Another way: Since

$$\lim_{n\to\infty} \frac{f(x)}{g(x)} = \lim_{n\to\infty} \frac{\lg(n)}{n} = 0 < \infty$$

so
$$f(n) = O(g(n))$$
.

g(n) gives the asymptotic upper bound for f(n).

The big Omega notation

<u>Definition</u>: Let f and g be 2 functions such that

 $f(n): N \rightarrow R^+$ and $g(n): N \rightarrow R^+$, if there exists positive constants c and n_0 such that

$$f(n) >= c * g(n) for all n > n_0$$

then $f(n) = \Omega(g(n))$.

Alternative definition: if

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} > 0$$

then $f(n) = \Omega(g(n))$.

Example:
$$f(n) = n^2$$
, $g(n) = 4n + 3$

Let c=1/4,
$$n_0$$
 =1, then for all n>1
 $n^2 >= (4n+3)/4$ i.e., $f(n) >= (1/4)g(n)$
so $f(n) = \Omega(g(n))$.

Another way: Since

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{n^2}{4n+3} = \lim_{n \to \infty} \frac{n}{4 + \frac{3}{n}} = \infty > 0$$

so
$$f(n) = \Omega(g(n))$$
.

g(n) gives the asymptotic lower bound for f(n).

The big Theta notation

Definition: Let f and g be 2 functions such that

 $f(n) : N \rightarrow R^+$ and $g(n) : N \rightarrow R^+$, if there exists positive constants c_1 , c_2 and n_0 such that

 $c_1 * g(n) \le f(n) \le c_2 * g(n)$ for all $n > n_0$

then $f(n) = \theta(g(n))$.

Alternative definition: if

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c \quad (0 < c < \infty)$$

then $f(n) = \theta(g(n))$.

Analysis Techniques

SC2001/CX2101

- The idea of the O, Ω and θ definitions is to establish a relative order among functions.
- We compare the <u>relative rates of growth</u>.
 - If f(n) = O(g(n)), g(n) gives the asymptotic upper bound
 - If f(n) = Ω(g(n)), g(n) gives the asymptotic lower bound
 - If f(n) = θ(g(n)), g(n) gives the asymptotic tight bound

Recursive algorithms and Recurrence relations

- Many problems have a recursive solution
- A common way of analysis for such solution algorithms will involve a recurrence relation that needs to be solved
- A recurrence is an equation or inequality that describe a function in terms of its value on smaller inputs, e.g.

$$M(n) = 2M(n-1) + 1$$

Example 1: Towers of Hanoi

Move all disks from the first pole to the third pole subject to the condition that only one disk can be moved at a time and that no disk is ever placed on top of a smaller one.

```
void TowersOfHanoi(int n, int x, int y, int z)
{ // Let M(n) be the total no. of disk moves
  if (n == 1)
     cout << "Move disk from " << x << " to " << y << endl;
     // this has one disk move
  else {
     TowersOfHanoi(n-1, x, z, y);
     // this involves M(n-1) disk moves</pre>
```

cout << "Move disk from " << x << " to " << y << endl;

// one disk move

TowersOfHanoi(n-1, z, y, x);
// another M(n-1) disk moves

The number of disk moves: M(1) = 1; M(n) = 2M(n-1) + 1

Example 2: Merge sort

```
void mergesort(int l, int m)
{
    int mid = (l+m)/2;
    if (m-l > 1) {
        mergesort(l, mid);
        mergesort(mid+1, m);
    }
    merge(l, m);
}
```

Let M(n) be the total no. of comparisons between array elements. n is a power of 2.

$$M(2) = 1;$$

 $M(n) = 2M(n/2) + n - 1$

Solving recurrences (1)

- We want to solve recurrences of the form
 - W(n) = aW(n/b) + f(n)

where $a \ge 1$ and b > 1 are constants, f(n) is a function of n.

- The recurrence describes the computational cost of an algorithm that uses the "divide-and-conquer" approach.
- f(n) is the cost of dividing the problem and combining the results of the subproblems.
- Usually the problem of size n is divided into subproblems of sizes either \[\frac{n}{b} \] or \[\frac{n}{b} \]. However it does not change the asymptotic behaviour of the recurrence.

Analysis Techniques SC2001/CX2101

Solving recurrences (1)

Examples

$\mathbf{W}(\mathbf{n}) = 2\mathbf{W}(\mathbf{n}/2) + 2$	Finding the max and min from a sequence
$\mathbf{W}(\mathbf{n}) = \mathbf{W}(\mathbf{n}/2) + 2$	Binary search
W(n) = 3W(n/2) + cn	Multiplying two 2n-bits integers
W(n) = 2W(n/2) + n - 1	Merge sort
$W(n) = 7W(n/2) + 15n^2/4$	Multiplying two nxn matrices

Solving recurrences (1)

We describe three methods:

- 1) The substitution method
- 2) The iteration method
- 3) The master method.

1. The substitution method

- It is a "guess and check" strategy. First guess the form of the solution and then use mathematical induction to prove it.
- A powerful method because often it is easier to prove that a certain bound (in the form of the O notation) is valid than to compute the bound.

- but the method is only useful when it is easy to guess the form of the solution.
- Mathematical Induction: If p(a) is true and, for some integer $k \ge a$, p(k+1) is true whenever p(k) is true, then p(n) is true for all $n \ge a$.
- Example: The worst case for merge sort (n = 2^k)

$$W(2) = 1$$

$$W(n) = 2 W(n/2) + n - 1$$

Guess W(n) = O(f(n)) then prove it.

Show (i) W(2) <= f(2) (ii) for some integer $k \ge 2$, assume W(n) = O(f(n)) for $n \le 2^k$, prove W(2n) <= f(2n) then W(n) = O(f(n)) for all $n \ge 2$.

First guess: $W(n) = O(n^2)$

Proof by mathematical induction that $W(n) \le cn^2$:

(1) Base case: $W(2) = 1 \le 2^2$;

i.e. $W(2^{k+1}) \le (2^{k+1})^2$

(2) Inductive step: assume that W(n) = O(n²) for n ≤ 2^k.
Now consider n = 2^{k+1}

$$W(2^{k+1}) = 2W(2^{k}) + 2^{k+1} - 1$$

$$\leq 2 * (2^{k})^{2} + 2^{k+1} - 1$$

$$= 2 * (2^{k})^{2} + 2 * 2^{k} - 1$$

$$\leq 4 * (2^{k})^{2}$$

$$= (2^{k+1})^{2}$$

A lot is added from step 3 to step 4

Thus $W(n) = O(n^2)$. But is this the best guess?

Second guess: W(n) = O(n), i.e. $W(n) \le c * n$

Proof by mathematical induction:

- Base case: $W(2) = 1 \le 2c$;
- Inductive step: assume that W(n) = O(n) for $n \le 2^k$. (c+1)nW(n)_↑

Now consider $n = 2^{k+1}$

$$W(2^{k+1}) = 2W(2^k) + 2^{k+1} - 1$$

$$\leq 2 * c * 2^k + 2^{k+1} - 1$$

$$= c * 2^{k+1} + 2^{k+1} - 1$$

Thus $W(2^{k+1}) \le (c+1) * 2^{k+1} - 1$ but we cannot say $W(2^{k+1}) \le c * 2^{k+1}$ (note: $2^{k+1} - 1 > 0$ for all $k \ge 0$)

Thus W(n) \neq O(n).

Third guess: W(n) = O(nlgn)

Proof by mathematical induction:

- (1) Base case: $W(2) = 1 \le 2lg2$;
- (2) Inductive step: assume that W(n) ≤ nlgn for n ≤ 2^k.
 Now consider n = 2^{k+1}

$$W(2^{k+1}) = 2W(2^{k}) + 2^{k+1} - 1$$

$$\leq 2 * k * 2^{k} + 2^{k+1} - 1$$

$$= k * 2^{k+1} + 2^{k+1} - 1$$

$$\leq (k+1) * 2^{k+1}$$

Thus $W(n) = O(n \lg n)$ is a very close upper bound.

What if the base condition does not hold?

Consider the recurrence $(n = 2^k)$:

```
W(1) = 1

W(n) = 2 W(n/2) + n - 1
```

Prove that $W(n) = O(n \lg n)$:

- (1) Base case: W(1) = 1 > clg1;
- (2) Recall the big-O notation: for f(n) = O(g(n)), we need $f(n) \le x \circ g(n)$ for all $n > n_0$.
- (3) Thus to prove W(n) = O(nlgn), we may use another base case.
 - We have $W(2) = 3 < c^2 \text{ Ig2 for any } c > 1$.
 - We can assume that $W(n) \le cnlgn$ for $n \le 2^k$ then prove $W(2^{k+1}) \le c^*(k+1) * 2^{k+1}$

Then W(n) = O(nlgn).

What can we say about the general case of n?

The worst case for merge sort :

$$W(2) = 1$$

$$W(n) = W(\lceil n/2 \rceil) + W(\lfloor n/2 \rfloor) + n - 1$$

$$Proof^{+}$$

- (1) W(n) is a monotonically increasing function. So when n is not a power of 2, that is, $2^k < n < 2^{k+1}$, then W(2^k) \leq W(n) \leq W(2^{k+1}).
- (2) We have proved that W(n) = O(nlgn) for powers of 2, so, W $(2^{k+1}) \le c * (k+1) * 2^{k+1}$.
- (3) For any $n < 2^{k+1}$ for some k, $W(n) \le W(2^{k+1})$. Therefore $W(n) \le c * (k+1) * 2^{k+1} < c * \lg(2n) * (2*n) < 4cn \lg n$.

Therefore $W(n) = O(n \lg n)$.

 $2^k < n$, so $2^{k+1} < 2n$ and k+1 < lg(2n)

^{*}See The design and analysis of Algorithms by Anany Levitin (pp481-483) about Smoothness Rule.

Analysis Techniques SC2001/CX2101 24

2. The iteration method

- The idea is to expand (iterate) the recurrence and express it as a summation of terms depending only on n and the initial condition.
- Techniques for evaluating summations can then be used to provide bounds on the solution.
- Example:

W(1) = 1, W(2) = 1, W(3) = 1,
W(n) = 3W(
$$\lfloor \frac{n}{4} \rfloor$$
) + n

we expand (iterate) it:

$$W(n) = 3W(\lfloor \frac{n}{4} \rfloor) + n$$

$$= 3(3W(\lfloor \frac{n}{4^2} \rfloor) + \lfloor \frac{n}{4} \rfloor) + n$$

$$= 3^{2} \operatorname{W}(\lfloor \frac{n}{4^{2}} \rfloor) + 3 \lfloor \frac{n}{4} \rfloor + n$$

$$= 3^{2}(3\operatorname{W}(\lfloor \frac{n}{4^{3}} \rfloor) + \lfloor \frac{n}{4^{2}} \rfloor) + 3 \lfloor \frac{n}{4} \rfloor + n$$

$$= 3^{3} \operatorname{W}(\lfloor \frac{n}{4^{3}} \rfloor) + 3^{2} \lfloor \frac{n}{4^{2}} \rfloor + 3 \lfloor \frac{n}{4} \rfloor + n$$

we need to iterate until we reach one of the boundary conditions, i.e $\lfloor \frac{n}{A^i} \rfloor = 1$, 2 or 3.

E.g.
$$n=64$$
, $4^3 \le 64 < 4^4$ and $\lfloor \frac{64}{4^3} \rfloor = 1$;

$$n=255, 4^3 \le 255 < 4^4 \text{ and } \lfloor \frac{255}{4^3} \rfloor = 3;$$

This means if $4^{i} \le n < 4^{i+1}$ then $i = \lfloor \log_4 n \rfloor$. So

$$W(n) = 3^{i} W(a) + 3^{i-1} \lfloor \frac{n}{4^{i-1}} \rfloor + ... + 3^{2} \lfloor \frac{n}{4^{2}} \rfloor + 3 \lfloor \frac{n}{4} \rfloor + n$$

$$a = 1,2 \text{ or } 3$$

$$W(n) = 3^{i} W(a) + 3^{i-1} \left\lfloor \frac{n}{4^{i-1}} \right\rfloor + \dots + 3^{2} \left\lfloor \frac{n}{4^{2}} \right\rfloor + 3 \left\lfloor \frac{n}{4} \right\rfloor + n$$

$$\leq 3^{\log_{4} n} W(a) + 3^{i-1} \frac{n}{4^{i-1}} + \dots + 3^{2} \frac{n}{4^{2}} + 3 \frac{n}{4} + n$$

Let
$$x = 3^{\log_4 n}$$
 then $\log_4 x = \log_4 n \log_4 3$ then $4^{\log_4 x} = 4^{\log_4 n \log_4 3}$ then $x = n^{\log_4 3}$, i.e. $3^{\log_4 n} = n^{\log_4 3}$

$$\sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i = 4$$

$$W(n) \le n^{\log_4 3} + n \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i + = O(n)$$

- The iteration method usually leads to lots of algebra.
- We should focus on how many times the recurrence needs to be iterated to reach the boundary condition.

3. The master method

 The master method provides a "manual" for solving recurrences of the form

$$W(n) = aW(n/b) + f(n)$$

where $a \ge 1$ and b > 1 are constants.

 We are able to determine the asymptotic tight bound in the following three cases

The master theorem

For
$$W(n) = aW(n/b) + f(n)$$
 $a \ge 1$ and $b > 1$

The manual:

- 1. If $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $W(n) = \theta(n^{\log_b a})$.
- 2. If $f(n) = \theta(n^{\log_b a})$, then $W(n) = \theta(n^{\log_b a} \log_a n)$.

If
$$f(n) = \theta(n^{\log_b a} \log^k n)$$
, $k \ge 0$,
then $W(n) = \theta(n^{\log_b a} \log^{k+1} n)$

3. If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $a f(n/b) \le c f(n)$ for some constant c < 1 and all sufficiently large n, then $W(n) = \theta(f(n))$.

Analysis Techniques SC2001/CX2101 30

E.g.
$$n = 64$$
, $a = 2$, $b = 4$

Depth of tree L = $\log_4 64$, Number of leaves = $8 = 2^{\log_4 64} = 64^{\log_4 2}$ $(a^{\log_4 n} = n^{\log_4 n})$

Analysis Techniques SC2001/CX2101 31

1) W(n) = 3W(n/3) + 2,
so a = 3, b = 3,

$$n^{\log_b a} = n^1$$

 $f(n) = 2 = \theta(1) = O(n^1)$

Complexity

We may let
$$\varepsilon = 0.5$$
 then we confirm $2 = O(n^{1-0.5})$,

i.e.
$$f(n) = O(n^{1-\varepsilon})$$

$$\Rightarrow$$
 f(n) = O(n $\log b^{a-\varepsilon}$)

(case 1)

thus
$$W(n) = \theta(n^{\log b})$$

$$W(n) = \theta(n).$$

2)
$$W(n) = 4W(n/4) + n - 1$$
,
so $a = 4$, $b = 4$,
 $n^{\log_b a} = n^1$
 $f(n) = n - 1$

We have
 $f(n) = n-1$
 $= \theta(n^1)$,
 $= \theta(n^{\log_b a})$, (case 2)
thus
 $W(n) = \theta(n^{\log_b a} \log_b n)$

 $= \theta(n \log n)$

3) W(n) = 2W(n/2) + n lg n,
so a = 2, b = 2,

$$f(n) = n \lg n$$

 $n^{\log b} = n^1$

Complexity

We have

$$f(n) = \theta(n^1 \lg n),$$

= $\theta(n^{\log b} \lg^k n),$

(case 2: k = 1)

thus

$$W(n) = \theta(n \log_b a \lg^2 n)$$
$$= \theta(n (\lg n)^2)$$

4) W(n) = 2W(n/4) + n,
so a = 2, b = 4,

$$n^{\log_b a} = n^{\log_4 2} = n^{0.5}$$

 $f(n) = n = \theta(n)$

We may let $\varepsilon = 0.1$ then we have $n = \Omega(n^{0.6})$

i.e.
$$f(n) = \Omega(n^{\log_b a + \varepsilon})$$
, and

for all sufficiently large n, we can find a value for c, say, $c = \frac{3}{4}$, to show that $a f(n/b) \le c f(n)$. (case 3)

$$a*f(n/b) = 2*f(n/4) = n/2 \le c*n$$

thus $W(n) = \theta(n)$.

Sometimes the master method cannot apply

Example 1: W(n) =
$$3W(n/3) + n/lgn$$
, $n \log b^a = n^1$

$$f(n) = nAgn = O(n^1)$$
 because $\lim_{n \to \infty} \frac{n/lgn}{n^1} = \lim_{n \to \infty} \frac{1}{lgn} = 0$

$$f(n) = O(n^{1 - \varepsilon})$$
? (L'Hôpital's rule, slide 55)

i.e.
$$n/\lg n = O(n^{1-\varepsilon})$$
?

No, because asymptotically, $n/\lg n > n^{1-\varepsilon}$ for any $\varepsilon > 0$

$$\lim_{n \to \infty} \frac{n/lgn}{n^{1-\varepsilon}} = \lim_{n \to \infty} \frac{n^{\varepsilon}}{lgn} = \infty$$

This recurrence falls into the gap between case 2 and case 3. So the Master Theorem cannot apply.

Sometimes the master method cannot apply

Example 2: W(n) = W(n/3) + f(n)

where
$$f(n) = \begin{cases} 3n + 2^{3n} & for \ n = 2^i \\ 3n & otherwise \end{cases}$$

so a = 1, b = 3 then
$$n^{\log b} = n^0$$

let
$$\varepsilon = 1$$
 then $f(n) = \Omega(n^{0+1})$, case 3?

 $a f(n/b) \le c f(n)$ for all sufficiently large n?

When
$$n = 3 * 2^i$$
, $a f(n/b) = f(2^i) = n + 2^n$, but $cf(n) = c(3n)$

i.e. a f(n/b) > c f(n). E.g. for n = 6 or greater

So the Master Theorem cannot apply.

 Notice that when we want to find the order of a recurrence, the initial conditions are not important. This is because the running costs of the terminating conditions are small constants that do not affect the order.

Solving recurrences (2)

 <u>Definition</u>: A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$$
,
where $c_1, c_2, ..., c_k$ are real constants and $c_k \neq 0$.

The two different notations: A(n) and a_n

- When using A(n), we mean the function value with parameter n
- When using a_n , we mean the *n*th term in a sequence $a_1, a_2, ..., a_n$.
- If we list A(1), A(2), ..., A(n) in a sequence, we can write them as $a_1, a_2, ..., a_n$. They are equivalent.

Solving recurrences (2)

• <u>Definition</u>: A *linear homogeneous recurrence relation* of degree k with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$$
,
where $c_1, c_2, ..., c_k$ are real constants and $c_k \neq 0$.

- **Linear**: a_{n-1} , a_{n-2} , ..., a_{n-k} appear in separate terms and to the first power
- Homogeneous: the total degree of each term is the same, e.g. no constant term
- Constant coefficients: $c_1, c_2, ..., c_k$ are fixed real constants that do not depend on n
- **Degree** k: the expression for a_n contains the previous k terms a_{n-1} , a_{n-2} , ..., a_{n-k} , $(c_k \neq 0)$

Examples

- A linear homogeneous recurrence relation of degree 2: $a_n = a_{n-1} + a_{n-2}$
- A linear homogeneous recurrence relation of degree 1: a_n = 1.04a_{n-1}
- A linear homogeneous recurrence relation of degree 3 : $a_n = a_{n-3}$

Non-examples

- $a_n = a_{n-1} + a_{n-2} + 1$: non-homogeneous
- $a_n = a_{n-1}a_{n-2}$: not linear
- $-a_n = na_{n-1}$: coefficient not constant

- A linear homogeneous recurrence relation of degree
 k can be systematically solved, i.e. find the explicit
 expression for a_n
- The basic approach is to look for solutions of the form $a_n = t^n$ where t is a constant
- If $a_n = t^n$ is a solution for

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

Then

4n - a + n-1 + a + n-2 + a

$$t^{n} = c_1 t^{n-1} + c_2 t^{n-2} + \dots + c_k t^{n-k}$$

$$\Rightarrow t^k = c_1 t^{k-1} + c_2 t^{k-2} + \dots + c_k \qquad \text{(divide both side by } t^{n-k}\text{)}$$

$$\Rightarrow t^k - c_1 t^{k-1} - c_2 t^{k-2} - \dots - c_k = 0$$

This means if we can solve the equation

$$t^{k} - c_{1} t^{k-1} - c_{2} t^{k-2} - \dots - c_{k} = 0$$

to find t, then $a_n = t^n$ is a solution for

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

We call

$$t^{k} - c_{1} t^{k-1} - c_{2} t^{k-2} - \dots - c_{k} = 0$$

the characteristic equation of

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

The solutions to the characteristic equation are called the characteristic roots

 We consider a linear homogeneous recurrence relation of degree 2

$$a_n = Aa_{n-1} + Ba_{n-2}$$
 for all $n \ge 2$

where A and B are real constants

The characteristic equation

$$t^2 - At - B = 0$$

may have

- 1) two distinct roots
- 2) a single root

Theorem 1 (Distinct Roots Theorem)

Suppose a sequence a_0 , a_1 , a_2 , satisfies a recurrence relation

$$a_n = Aa_{n-1} + Ba_{n-2}$$
 for all $n \ge 2$

where A and B are real constants and B \neq 0. If the characteristic equation

$$t^2 - At - B = 0$$

has two distinct roots r and s, then a_0 , a_1 , a_2 , is given by the explicit formula

$$a_n = Cr^n + Ds^n$$

where C and D are determined by the values of a_0 and a_1 .

Example 1:

$$F_n = F_{n-1} + F_{n-2}$$
 for all $n \ge 2$, and $F_0 = F_1 = 1$

The characteristic equation is

$$t^2 - t - 1 = 0$$

The roots are

$$t = \frac{1 \pm \sqrt{1 - 4(-1)}}{2} = \begin{cases} \frac{1 + \sqrt{5}}{2} \\ \frac{1 - \sqrt{5}}{2} \end{cases}$$

$$F_n = C\left(\frac{1+\sqrt{5}}{2}\right)^n + D\left(\frac{1-\sqrt{5}}{2}\right)^n$$

For
$$ax^2 + bx + c = 0$$
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

To find C and D, we have

$$F_0 = 1 = C \left(\frac{1+\sqrt{5}}{2}\right)^0 + D \left(\frac{1-\sqrt{5}}{2}\right)^0 = C \cdot 1 + D \cdot 1 = C + D$$

$$F_1 = 1 = C\left(\frac{1+\sqrt{5}}{2}\right)^1 + D\left(\frac{1-\sqrt{5}}{2}\right)^1 = C\left(\frac{1+\sqrt{5}}{2}\right) + D\left(\frac{1-\sqrt{5}}{2}\right)$$

To solve this system of 2 equations with 2 unknowns, from

$$C + D = 1$$

$$\Rightarrow \left(\frac{1+\sqrt{5}}{2}\right)C + \left(\frac{1+\sqrt{5}}{2}\right)D = \left(\frac{1+\sqrt{5}}{2}\right)$$

Then

$$D\left(\left(\frac{1+\sqrt{5}}{2}\right) - \left(\frac{1-\sqrt{5}}{2}\right)\right) = \left(\frac{1+\sqrt{5}}{2}\right) - 1$$

$$\Rightarrow D\sqrt{5} = \left(\frac{1+\sqrt{5}}{2}\right) - 1$$

$$\Rightarrow D = \left(\frac{-1+\sqrt{5}}{2\sqrt{5}}\right)$$

Then
$$C = 1 - D = 1 - \left(\frac{-1 + \sqrt{5}}{2\sqrt{5}}\right)$$

$$\Rightarrow C = \frac{1+\sqrt{5}}{2\sqrt{5}}$$

We can write

$$D = \left(\frac{-(1-\sqrt{5})}{2\sqrt{5}}\right)$$

So

$$F_n = \left(\frac{1+\sqrt{5}}{2\sqrt{5}}\right) \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{-(1-\sqrt{5})}{2\sqrt{5}}\right) \left(\frac{1-\sqrt{5}}{2}\right)^n$$

After simplifying it, we get

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{n+1}$$

for all $n \geq 0$.

Example 2:

$$a_n = 5a_{n-1} - 6a_{n-2}$$
, $a_0 = 9$, $a_1 = 20$

The characteristic equation is

$$t^2 - 5t + 6 = 0$$

$$\Rightarrow$$
 $(t-2)(t-3)=0 \Rightarrow$ two roots: $t=2, t=3$

$$a_n = C2^n + D3^n$$
 for all $n \ge 0$.

To find C and D:

$$9 = C + D, \Rightarrow 18 = 2C + 2D$$

$$20 = 2C + 3D$$

Thus
$$D = 2$$
, $C = 7$ So $a_n = 7^*2^n + 2^*3^n$ for all $n \ge 0$

Theorem 2 (Single-Root Theorem)

Suppose a sequence a_0 , a_1 , a_2 , satisfies a recurrence relation

$$a_n = Aa_{n-1} + Ba_{n-2}$$
 for all $n \ge 2$

where A and B are real constants and B \neq 0. If the characteristic equation

$$t^2 - At - B = 0$$

has a single (real) root, then a_0 , a_1 , a_2 , is given by the explicit formula

$$a_n = Cr^n + Dnr^n$$

where C and D are determined by the values of a_0 and any other known value of the sequence.

Example

$$b_n = 4b_{n-1} - 4b_{n-2}$$
 for all $n \ge 2$

with
$$b_0 = 1$$
, $b_1 = 3$.

The characteristic equation is

$$t^2 - 4t + 4 = 0$$

$$\Rightarrow (t-2)^2 = 0 \Rightarrow \text{single root } t = 2$$

The explicit formula is

$$b_n = C2^n + Dn2^n$$

where C and D are determined by the values of b_0 and b_1 .

We have 1 = C and 3 = 2C + 2D, so $D = \frac{1}{2}$ and C = 1.

Therefore

$$b_n = 2^n + (\frac{1}{2})n2^n = (1 + \frac{n}{2}) 2^n$$

Theorem 1 can be generalised to the recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

with characteristic equation

$$t^k - c_1 t^{k-1} - c_2 t^{k-2} - \dots - c_k = 0$$

having *k* distinct roots.

Theorem 2 can be generalised to less than *k* distinct roots.

Proof of $a^{\log b} = n^{\log b}$

• Let
$$L = \log_b n$$
, i.e. $b^L = n$

$$\Rightarrow (b^L)^{\log_b a} = n^{\log_b a}$$

$$\Rightarrow (b^{\log_b a})^L = n^{\log_b a}$$

$$\Rightarrow a^L = n^{\log_b a}$$

$$\Rightarrow a^{\log_b n} = n^{\log_b a}$$

L'Hôpital's rule

L'Hôpital's rule states that for functions f(x) and g(x), if:

$$\lim_{n\to\infty} f(x) = \lim_{n\to\infty} g(x) = \pm \infty$$

then:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$

where the prime (') denotes the derivative.