Міністерство освіти і науки України Чернівецький національний університет імені Юрія Федьковича

Математичні моделі **мікроекономіки**Теорія споживання та виробництва

Методичні рекомендації та практичні завдання

Чернівці Чернівецький національний університет 2017 ББК 22.18я73

УДК 519.86: 330.101.542 (075.8)

M34

M34

Математичні моделі мікроекономіки. Теорія споживання та виробництва: Методичні рекомендації та практичні завдання / Укл.: Г.П.Івасюк. – Чернівці: Рута, 2010. – 36 с.

Методичні вказівки містять практичні завдання до лабораторних робіт з курсу "Математичні моделі мікро- та макроекономіки" та рекомендації до їх виконання.

Для студентів вищих навчальних закладів зі спеціальностей напряму "Комп'ютерні науки".

ББК 22.18я73

УДК 519.86: 330.101.542 (075.8)

Підписано до друку 20.10. 2017. Формат 60х84/16. Папір газетний. Друк офсетний. Ум. друк. арк. 1.97. Обл.- вид. арк. 2.18. Зам. 514. Тираж 20 прим.

Видавничий дім «Родовід», м. Чернівці, вул. Заводська, 26

Вступ

Успішна реалізація досягнень науково-технічного прогресу та вирішення завдань, які ставить ринкова економіка, тісно пов'язані з використанням математичних методів та моделей при вирішенні багатьох проблем із різноманітних областей людської діяльності. У зв'язку з цим для студентів необхідні знання як можливостей застосування математичних методів та моделей у практичній діяльності, так і розуміння необхідності їх використання.

Методичні вказівки містять завдання до лабораторних робіт з математичних моделей мікроекономіки, які дають змогу студентам самостійно засвоїти здобуті знання. Кожне з лабораторних завдань розраховано на 2 години аудиторної роботи та роботи у позааудиторний час. До кожного завдання лабораторної роботи надаються детальні пояснення щодо ходу розв'язання типових завдань, що дає змогу самостійно виконати роботу.

До кожної лабораторної роботи студент вдома повинен підготувати у текстовому редакторі MS Word звіт, який має таку структуру: тема лабораторної роботи; мета; завдання; результат виконання завдання та висновки.

Матеріали методичних вказівок можуть бути корисними студентам різних спеціальностей всіх форм навчання як для розв'язання типових задач, так і для самостійного вивчення теоретичного матеріалу, а також як допоміжний засіб при організації дистанційного навчання.

Мета та завдання навчальної дисципліни "Математичні моделі мікро- та макроекономіки"

Мета курсу: ознайомлення студентів з основами теорії споживання, теорії виробництва, теорії рівноваги, основними економічними показниками та чинниками, які на них впливають, основними принципами побудови найпростіших моделей мікрота макроекономіки.

Студент повинен знати: основні поняття та твердження з програмного матеріалу даного курсу.

Стиудент повинен вміти: використовувати вивчений матеріал при розв'язуванні конкретних задач, застосовувати теоретичні знання на практиці.

Форма контролю та засоби діагностики: виконання лабораторних робіт, тестових завдань, ІНДЗ, завдання підсумкового контролю.

Лабораторна робота № 1

Тема: Порядкові функції корисності

Мета: Вивчити властивості порядкових функцій корисності та кривих байдужості споживача, набути навиків роботи в пакеті MathCad.

Завдання №1. Для заданих функцій корисності перевірити засобами MathCad виконання властивостей монотонності та строгої опуклості вгору та вказати області де вони виконуються.

Завдання № 2. Побудувати графіки заданих функцій корисності та кривих байдужості споживача.

Методичні рекомендаціїї

- **1.** Для перевірки властивостей монотонності та строгої опуклості вгору заданих функцій корисності споживача засобами MathCad необхідно:
- описати функцію корисності, для цього, спочатку, в круглих дужках вказують всі аргументи та параметри (якщо вони ϵ)

далі використовують кнопку (присвоєння) на панелі **Калькулятор** або **Подсчеты** чи комбінацію клавіш **Shift** + : і , використовуючи знаки арифметичних дій та інші кнопки панелі **Калькулятор**, задають відповідну функцію;

• за допомогою кнопки на панелі **Калькулус**, знайти всі частинні похідні заданої функції корисності і перевірити виконання умови монотонності:

$$\frac{\partial U(x)}{\partial x_i} > 0, \ i \in \{1, ..., n\};$$

• за допомогою кнопки на панелі **Калькулус**, знайти всі частинні похідні другого порядку заданої функції корисності і перевірити виконання умови строгої опуклості вгору: знаки головних мінорів матриці Гессе функції корисності споживача чергуються, починаючи з від'ємного, тобто

$$\frac{\partial^2 U(x)}{\partial x_i^2} < 0, i \in \{1, ..., n\}, \frac{\partial^2 U(x)}{\partial x_1^2} \cdot \frac{\partial^2 U(x)}{\partial x_2^2} - \left(\frac{\partial^2 U(x)}{\partial x_1 \partial x_2}\right)^2 > 0, ...;$$

- **2.** Для того, щоб побудувати графік заданої функції корисності споживача засобами MathCad необхідно:
- враховуючи умови монотонності та строгої опуклості вгору заданих функцій корисності споживача, знайти діапазон зміни кількості кожного товару;
- за допомогою вбудованої функції

$$S := CreateMesh(U, x1, x2, y1, y2, mesh),$$

де U — функція, що задає поверхню, xI, x2 — початкове та кінцеве значення першої зміннної, yI, y2 — початкове та кінцеве значення другої зміннної, mesh — масштаб, будуємо матрицю значень функції корисності споживача;

- використовуючи кнопку на панелі **Графики** або комбінацію клавіш **Shift** + **2**, будуємо при n=2 графік функції корисності;
- для побудови кривих байдужості споживача можна використати кнопку на панелі Графики або комбінацію клавіні Shift + 5.

Варіанти завдань

1. Квадратична функція корисності

$$U(x_1, x_2) = a_1 x_1 + a_2 x_2 + a_{11} x_1^2 + a_{12} x_1 x_2 + a_{22} x_2^2, (x_1, x_2) \in \mathbb{R}_+^2,$$

Варіант	a_1	a_2	a_{11}	a_{12}	a_{22}
1	2	1	-2	2	-3
2	4	3	-4	1	-3
3	8	1	-1	2	-10
4	3	0	-5	3	-4

5	4	3	-2	2	-5
Варіант	a_1	a_2	a_{11}	a_{12}	a_{22}
6	8	6	-5	4	-8
7	4	2	-4	3	-3
8	5	2	-7	6	-6
9	4	5	-8	4	-5
10	9	3	-6	4	-4

Варіанти 11 - 20 формуються з варіантів 1 - 10 шляхом заміни значень a_2 та a_{12} на відповідні значення, взяті з варіантів 10 - 1.

2. Мультиплікативна функція корисності

$$U(x_1, x_2) = A \cdot x_1^{\alpha} \cdot x_2^{\beta}, (x_1, x_2) \in \mathbb{R}_+^2,$$

Варіант	A	α	β	Варіант	A	α	β
1	0,2	1/2	3/8	11	0,8	1/4	1/2
2	2,2	1/4	1/8	12	5,6	1/5	3/5
3	2,5	2/3	1/6	13	4,1	1/2	1/4
4	0,5	1/8	3/8	14	1,5	4/5	1/10
5	1,2	4/7	2/7	15	5,4	2/3	1/6
6	4,1	2/5	1/5	16	2	4/11	5/11
7	5,2	1/9	3/5	17	2	5/6	1/12
8	6	4/7	1/7	18	3	3/4	1/8
9	2	1/2	1/4	19	3,5	7/15	1/3
10	2,3	3/5	1/5	20	4,5	2/9	5/9

3. Логарифмічна функція корисності (Бернуллі)

$$U(x_1, x_2) = a_1 \log_b(x_1 - c_1) + a_2 \log_b(x_2 - c_2), (x_1, x_2) \in R_+^2,$$

Варіант	a_1	a_2	b	c_1	c_2
1	2	1	2	2	0,5
2	5	0,8	3	3	5
3	3,4	7	4	5	10
4	2,5	10	2	4	4
5	3	7,8	2	7	0,8
6	7	1,5	4	2	6,9

7	8,8	2,5	5	6	7
8	4,2	4,8	6	8	2,5
9	2,2	8	4	5	2
10	9	1,5	8	7	4

Варіанти 11-20 формуються з варіантів 1-10 шляхом заміни значень a_1 та a_2 на відповідні значення c_1 та c_2 , і навпаки.

4. Функція корисності зі сталою еластичністю

$$U(x_1,x_2) = \frac{a_1}{1-b_1} \cdot (x_1-c_1)^{1-b_1} + \frac{a_2}{1-b_2} \cdot (x_2-c_2)^{1-b_2}, (x_1,x_2) \in \mathbb{R}_+^2,$$

Варіант	a_1	a_2	b_1	b_2	c_1	c_2
1	2,2	1	0,2	0,5	2	7
2	6,5	5,3	0,3	0,6	3	8
3	4	7,5	0,2	0,2	5	6
4	2,8	1,4	0,6	0,4	2	11
5	6,8	2,6	0,8	0,8	5	2
6	7	8,5	0,7	0,4	7	2
7	12	11	0,4	0,6	9	2,5
8	9,8	8,7	0,5	0,7	1	1,5
9	3,5	4	0,2	0,5	11	2
10	4,6	8,3	0,1	0,8	5	8,5

Варіанти 11-20 формуються з варіантів 1-10 шляхом заміни значень a_1 та a_2 на відповідні значення c_1 та c_2 , і навпаки.

Контрольні питання

- 1. Що називають набором торарів?
- 2. Що називають простором торарів?
- 3. Аксіоми відношення переваги
- 4. Що таке поверхня байдужості?
- 5. Дайте означення поля переваг.
- 6. Що називають функцією корисності споживача?
- 7. Як знайти граничну корисність i-того товару?
- 8. Як перевітири умову монотонності функцій корисності? Економічна інтерпритація.

- 9. Як перевітири умову опуклості вгору функцій корисності? Економічна інтерпритація.
- 10. Властивості кривих байдужості.

Лабораторна робота № 2

Тема: Неокласична модель поведінки споживача. Функції попиту

Мета: Навчитись знаходити оптимальний набір товарів за відомою функцією корисності та бюджетними обмеженнями споживача; вивчити властивості функцій попиту на товар; навчитись розв'язувати системи рівнянь та будувати графіки функцій засобами пакета MathCad.

Завдання №1. За допомогою пакета MathCad знайти оптимальний набір товарів (x^*, y^*) та рівень найвищої корисності споживача $U_{\max} = U(x^*, y^*)$, якщо функція корисності $U(x, y) = Ax^{\alpha}y^{\beta}$, бюджетні обмеження — I (споживчий доход), p_1 (ціна на перший товар), p_2 (ціна на другий товар) (конкретні значення $A, \alpha, \beta, I, p_1, p_2$ див. у таблиці).

Завдання № 2. Засобами пакета MathCad побудувати графік бюджетної прямої та кривої байдужості, яка відповідає найвищому рівню корисності споживача та позначити на графіку точку, яка відповідає оптимальному наборові (x^*, y^*) .

Завдання № 3. Знайти функції попиту на перший та другий товар, дослідити залежність їх від кожного з параметрів, побудувати їхні графіки та дати економічну інтерпритацію.

Методичні рекомендаціїї

1. Неокласична модель поведінки споживача має вигляд

$$U(x, y) = A \cdot x^{\alpha} y^{\beta} \to \max,$$

$$p_1 x + p_2 y \le I, \quad (x, y) \in R_+^2.$$

Розв'язок цієї задачі задовольняє систему

$$\begin{cases} p_1 x + p_2 y = I, \\ p_1 \cdot \frac{\partial U(x, y)}{\partial y} = p_2 \frac{\partial U(x, y)}{\partial x}. \end{cases}$$

Щоб знайти розв'язок системи рівнянь в пакеті MathCad використовують дерективу *Given* та функцію *Find*. Приклад

$$x := 1$$
 $y := 1$ (деякі початкові значення) Given

$$p1 \cdot x + p2 \cdot y = I$$

$$p1 \cdot \left(\frac{d}{dy}U(x,y,A,\alpha,\beta)\right) - p2 \cdot \left(\frac{d}{dx}U(x,y,A,\alpha,\beta)\right) = 0$$

 $find(x,y) \rightarrow$

2. Рівняння кривої байдужості, яка відповідає найвищому рівню корисності має вигляд

$$U(x, y) = U_{\text{max}}$$
,

де $U_{\rm max}$ – стала, яка відповідає найвищому рівню корисності. Щоб побудувати її графік засобами MathCad потрібно, спочатку виразити змінну y через x, для цього можна використати дерективу Given та функцію Find, приклад:

Given

$$U(x,y,A,\alpha,\beta) = Umax$$

 $Find(y) \rightarrow$

а потім кнопку на панелі Графіки. За аналогічною схемою можна побудувати графік бюджетної прямої.

3. Щоб знайти функції попиту на перший та другий товар потрібно знайти розв'язок системи із завдання №1, при цьому I, p_1 , p_2 вважати змінними параметрами. Для того, щоб дослідити вплив кожного параметра, необхідно два із них фіксувати конкретними значеннями, а третій змінювати. Для побудови графіків використати кнопку на панелі **Графіки.**

Варіанти завдань

Варіант	A	α	β	p_1	p_2	I
1	5	1/2	1/4	3	5	100
2	8	1/3	2/9	7	8	110
Варіант	A	α	β	p_1	p_2	I
3	6	1/2	3/7	6	4	120
4	7	5/8	1/4	10	8	200
5	9	2/7	3/7	2	8	140
6	10	1/5	3/5	5	10	130
7	11	3/11	7/11	3	4	110
8	22	4/9	4/9	5	8	140
9	12	1/8	5/8	7	6	80
10	14	1/10	3/10	3	10	190
11	18	1/4	1/4	8	9	100
12	21	5/9	1/9	6	9	90
13	15	1/7	1/7	2	8	210
14	19	3/7	2/7	1	7	170
15	20	1/5	1/5	4	5	90
16	17	1/2	3/8	3	9	100
17	28	2/9	2/9	4	2	150
18	24	1/4	1/8	10	4	120
19	16	1/6	1/3	6	8	220
20	27	2/5	2/5	4	1	190

Контрольні питання

- 1. Сформулюйте неокласичну задачу споживання.
- 2. Що називають оптимальним набором торарів?
- 3. Який вигляд має бюджетне обмеження.
- 4. Сформулюйте теорему існування та єдиності розв'язку неокласичної задачі споживання .
- 5. Дайте означення Вальрасівської (звичайної) функції попиту.
- 6. Яку криву називають кривою Енгела для i-го товару? Що вона відображає?

- 7. Яку криву називають кривою "дохід-споживання" ("цінаспоживання")? Що вона відображає?
- 8. Яку функцію називають прямою (звичайною) функцією попиту для i-го товару?
- 9. Яку функцію називають перехресною функцією попиту для *i*-го товару?

Лабораторна робота № 3

Тема: Дослідження статики споживання. Класифікація товарів **Мета:** Навчитись визначати зміну попиту на товари при компенсованому зростанні якоїсь із цін; знаходити еластичність попиту за цінами та доходом, граничну норму заміщення товарів та здійснювати класифікацію товарів.

Завдання №1. Виписати рівняння Слуцького для функцій попиту на товари, знайдені в лабораторній роботі №2. Знайти граничну зміну попиту на кожен товар при компенсованому зростанні якоїсь із цін.

Завдання №2. Здійснити класифікацію товарів та визначити граничну норму заміщення першого товару другим.

Завдання №3. Визначити коефіцієнти еластичності функцій попиту за цінами та споживчим доходом. Перевірити таку властивість функцій попиту: сума всіх еластичностей за цінами дорівнює від'ємній еластичності за доходом.

Завдання №4. Перевірити виконання умов агрегації Енгеля і Курно, дати їх економічну інтерпретацію.

Методичні рекомендації

1. Граничну зміна попиту на *і*-тий товар при компенсованому зростанні *j*-тої ціни можна одержати з рівнянь Слуцького, тобто

$$\frac{\partial x_i^{comp}(p,I)}{\partial p_j} = \frac{\partial x_i(p,I)}{\partial p_j} + \frac{\partial x_i(p,I)}{\partial I} \cdot x_j(p,I), \ \{i,j\} \subset \{1,2\},$$

де $p := (p_1, p_2)$. Для цього, спочатку, в пакеті Mathcad задаємо функції попиту на товари та, за допомогою кнопки панелі **Калькулус,** знаходимо їх похідні по цінах та доходу, потім описуємо функції $\frac{\partial x_i^{comp}(p,I)}{\partial p_j}$ та знаходимо їх значення при заданих цінах та споживчому доході.

2. Товар i називають qiнним (малоцінним), якщо при збільшенні доходу попит на цей товар зростає (спадає), тобто

$$\frac{\partial x_i(p,I)}{\partial I} > 0 \left(\frac{\partial x_i(p,I)}{\partial I} < 0 \right), \ i \in \{1,2\}.$$

Товар i називають нормальним (товаром Γ іффена), якщо при збільшенні ціни на товар попит на цей товар спадає (зростає), тобто

$$\frac{\partial x_i(p,I)}{\partial p_i} < 0 \left(\frac{\partial x_i(p,I)}{\partial p_i} > 0 \right), \ i \in \{1,2\}.$$

Товари i та j називають eза ϵ мозамінними (eза ϵ модопоeняльними), якщо компенсоване зростання ціни на один з них призводить до збільшення (зменшення) попиту на інший, тобто

$$\frac{\partial x_i^{comp}(p,I)}{\partial p_j} > 0 \left(\frac{\partial x_i^{comp}(p,I)}{\partial p_j} < 0 \right), \ i \in \{1,2\}.$$

Граничною нормою заміщення товарів називається кількість товару x_2 , від якої споживач готовий відмовитися в обмін на додаткову одиницю товару x_1 при незмінному загальному рівні корисності. Граничну норму заміщення першого товару другим можна обчислити за формулою

$$M_{x_2x_1} := \frac{\partial U(x_1, x_2)}{\partial x_1} / \underbrace{\frac{\partial U(x_1, x_2)}{\partial x_2}}.$$

3. Еластичністю (коефіцієнтом еластичності) функції f(x), $x \in D$, називається границя відношення відносних приростів функції і аргумента при прямуванні абсолютного приросту аргумента до нуля. Позначається $E_f(x)$, обчислюється за формулою

$$E_f(x) := \frac{x}{f(x)} \cdot f'(x).$$

4. Умова агрегації Енгела при n = 2 має вигляд

$$p_1 \cdot \frac{\partial x_1(p,I)}{\partial I} + p_2 \cdot \frac{\partial x_2(p,I)}{\partial I} = 1,$$

тобто всі товари з кошика споживача одночасно не можуть бути малоцінними.

Умова агрегації Курно при n=2 має вигляд

$$x_i(p,I)\!=\!-\!\left(p_1\cdot\frac{\partial x_1(p,I)}{\partial p_i}+\ p_2\cdot\frac{\partial x_2(p,I)}{\partial p_i}\right),\,i\in\{1,\,2\}.$$

Значення попиту на деякий товар дорівнює від'ємній зваженій сумі змін значень попиту стосовно ціни на даний товар, у якій за ваги взято ціни.

Контрольні питання

- 1.Як визначити граничну зміну попиту на товари при компенсованому зростанні якоїсь із цін?
- 2.Що називають компенсованими функціями попиту?
- 3.Які товари називають цінними (малоцінними)?
- 4. Які товари називають нормальними?
- 5. Які товари називають товарами Гіффена?

- 6.Які товари називають взаємозамінними (взаємодоповняльними)?
- 7.Що називають граничною нормою заміщення? Як її визначити?
- 8. Як визначити еластичність попиту? Яку вона має властивість?
- 9. Умова агрегації Ангеля. Її економічна інтерпретація.
- 10. Умови агрегації Курно. Їх економічна інтерпретація.

Лабораторна робота № 4

Тема: Виробничі функції

Мета: Ознайомитись з поняттям виробничої функції та одним із методів знаходження її параметрів; навчитись перевіряти гіпотези, які задовольняють неокласичні виробничі функції, а також визначати основні числові характеристики виробничого процесу.

Завдання №1. Для неокласичної степеневої виробничої функції

$$f(x_1, x_2) = Ax_1^{\alpha} x_2^{\beta}, A, \alpha, \beta > 0, \alpha + \beta < 1,$$

знайти числові значення параметрів A, α, β , користуючись даними з таблиць згідно варіантів.

Завдання №2. Для конкретизованої виробничої функції перевірити гіпотези про «відсутність рогу достатку», монотонність, опуклість вгору, однорідність та дати їм економічну інтерпритацію.

Завдання №3. Для конкретизованої виробничої функції визначити основні характеристики виробничого процесу та граничну норму заміщення ресурсів. Дати економічну інтерпретацію отриманим результатам.

Методичні рекомендації

1. Задача ідентифікації параметрів A, α , β розв'язується наступним чином. Прологарифмувавши $f(x_1, x_2)$, перейдемо від функції $f(x_1, x_2) = Ax_1^{\alpha} x_2^{\beta}$ до еквівалентного співвідношення $F = B + \alpha X_1 + \beta X_2$.

де $F = \ln f$, $B = \ln A$, $X_1 = \ln x_1$, $X_2 = \ln x_2$. Параметри α , β , B (а значить і $A = e^B$) знаходимо, розв'язуючи систему лінійних алгебраїчних рівнянь (вона випливає з методу найменших квадратів):

$$\begin{cases} nB + \left(\sum_{i=1}^{n} \overline{X}_{1}^{(i)}\right) \alpha + \left(\sum_{i=1}^{n} \overline{X}_{2}^{(i)}\right) \beta = \sum_{i=1}^{n} \overline{F}^{(i)}, \\ \left(\sum_{i=1}^{n} \overline{X}_{1}^{(i)}\right) B + \left(\sum_{i=1}^{n} \left(\overline{X}_{1}^{(i)}\right)^{2}\right) \alpha + \left(\sum_{i=1}^{n} \overline{X}_{1}^{(i)} \overline{X}_{2}^{(i)}\right) \beta = \sum_{i=1}^{n} \overline{X}_{1}^{(i)} \overline{F}^{(i)}, \\ \left(\sum_{i=1}^{n} \overline{X}_{2}^{(i)}\right) B + \left(\sum_{i=1}^{n} \overline{X}_{1}^{(i)} \overline{X}_{2}^{(i)}\right) \alpha + \left(\sum_{i=1}^{n} \left(\overline{X}_{2}^{(i)}\right)^{2}\right) \beta = \sum_{i=1}^{n} \overline{X}_{2}^{(i)} \overline{F}^{(i)}, \end{cases}$$

де $\overline{F}^{(i)} = \ln \overline{f}^{(i)}$, $\overline{X}_1^{(i)} = \ln \overline{x}_1^{(i)}$, $\overline{X}_2^{(i)} = \ln \overline{x}_2^{(i)}$ ($i = \overline{1,n}$) (під час проведення числових розрахунків взяти n = 10). Як відомо дана система називається системою нормальних рівнянь і має єдиний розв'язок, оскільки її головний визначник відмінний від нуля.

Для того, щоб знайти розв'язок цієї системи за допомогою пакету Mathcad потрібно:

- •задати вектор-стовпчики \bar{x}_1 , \bar{x}_2 , \bar{f} , використавши кнопку на панелі **Матриці** або комбінацію кнопок **Ctrl+M** і вказавши відповідну розмірність у діалоговому вікні (рядків 10, стовпчиків 1),
- •ввести заміну $F = \ln f$, $B = \ln A$, $X_1 = \ln x_1$, $X_2 = \ln x_2$,
- •матричним методом розв'язати систему, тобто

$$\begin{pmatrix} B \\ \alpha \\ \beta \end{pmatrix} := \begin{bmatrix} 10 & \sum X & \sum Y \\ \sum X & \sum_{i=0}^{9} (X_{i,0})^2 & \sum_{i=0}^{9} (X_{i,0} \cdot Y_{i,0}) \\ \sum Y & \sum_{i=0}^{9} (X_{i,0} \cdot Y_{i,0}) & \sum_{i=0}^{9} (Y_{i,0})^2 \end{bmatrix}^{-1} \begin{bmatrix} \sum F \\ \sum_{i=0}^{9} (X_{i,0} \cdot F_{i,0}) \\ \sum_{i=0}^{9} (F_{i,0} \cdot Y_{i,0}) \end{bmatrix}$$

при цьому зауважимо, що для того щоб задати обернену матрицю використовують кнопку на панелі **Матриці,** нижній індекс — кнопка вказується через кому).

2. Для неокласичних виробничих функцій правильні наступні гіпотези.

A₁ (відсутність "рогу достатку"). За відсутності всіх ресурсів виробництво неможливе: f(0,0) = 0.

A₂ (монотонність). Існує множина $\varepsilon \subset R_+^2$, яка називається *економічною областю*, в якій збільшення якогось виду витрат не призводить до зменшення випуску продукції:

$$\forall x \in \varepsilon : \frac{\partial f(x)}{\partial x_i} \ge 0, i \in \{1, 2\}.$$

А3 (опуклість). Існує опукла підмножина $D \subset \varepsilon$, яка називається *особливою областю*, на якій виробнича функція f опукла вгору. Аксіома відображає економічний закон спадання віддачі. Якщо функція $f = f(x), x \in R_+^2$, ϵ двічі неперервно диференційовною за сукупністтю змінних на особливій області $D \subset \varepsilon$, то опуклість функції f вгору рівносильна від'ємній визначеності *матриці* Γ ессе

$$\boldsymbol{H}_{f} = \begin{pmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} \end{pmatrix}$$

у кожній точці $x \in D$.

Для перевірки виконання вище вказаних гіпотез в пакеті Mathcad використовують кнопки та на панелі **Калькулус,** описуючи відповідні умови, та аналізують одержані результати.

А₄ **(однорідність).** Розширення масштабу виробництва дає пропорційну віддачу випуску, тобто виробнича функція є однорідною з деяким показником $\gamma > 0$:

$$\forall x \in \mathbb{R}^2_+ \ \forall a > 0 : f(ax) = a^{\gamma} f(x),$$

якщо $\gamma=1$, то говорять, що виробнича функція характеризується *сталою віддачею* від розширення масштабу виробництва; якщо $\gamma\in(0,1)$, то говорять про *спадаючу віддачу* від розширення масштабу виробництва; якщо $\gamma>1$, то говорять про *зростаючу віддачу*.

Для знаходження показника γ (його ще називають масштабним множником виробництва) в пакеті Mathcad досить описати його при будь-якому фіксованому значенні a, тобто

$$\gamma = \log_a \left(\frac{f(ax)}{f(x)} \right), \ a > 0.$$

3. Основні числові характеристики виробничих функцій. 1. Середня ефективність і-го ресурсу (вказує кількість одиниць випущеної продукції на одну одиницю і-го ресурсу):

$$P_i^{(c)}(x) = \frac{f(x)}{x_i}, i \in \{1, 2\}, x \in X.$$

2. Гранична ефективність і-го ресурсу (вказує на скільки одиниць збільшиться випуск продукції при збільшенні на одну одиницю і-го ресурсу):

$$p_i^{(en)}(x) = \frac{\partial f(x)}{\partial x_i}, i \in \{1, 2\}, x \in X.$$

3. Еластичність випуску за і-им ресурсом або коефіцієнт еластичності і-го ресурсу (вказує на скільки відсотків збільшиться випуск продукції при збільшенні використання на однин відсоток і-го ресурсу):

$$e_i(x) := \frac{x_i}{f(x)} \cdot \frac{\partial f(x)}{\partial x_i} = \frac{1}{p_i^{(c)}(x)} \cdot p_i^{(ep)}(x), i \in \{1, 2\}, x \in X.$$

Еластичність випуску у довільній точці ϵ сумою еластичностей випуску за всіма ресурсами у цій точці:

$$\varepsilon_f(x) = \sum_{i=1}^n e_i(x).$$

4. Гранична норма заміщення ј-того ресурсу i-тим, при збереженні кількості інших ресурсів (вказує яку кількість j-того ресурсу можна замінити на одну додаткову одиницю i-того при незмінному випуску):

$$M_{x_i x_j}(x) := -\frac{dx_i}{dx_j}\Big|_{f=const} = \frac{\partial f(x)/\partial x_j}{\partial f(x)/\partial x_i}, x \in D.$$

Варіанти завдань

	Варіант 1			Варіант 2	
\overline{x}_1	\overline{x}_2	$ar{f}$	\overline{x}_1	\bar{x}_2	$ar{f}$
5,1	16,1	23,3	51,1	16,1	73,3
5,2	15,1	25,5	52,2	15,1	71,5
5,3	10,7	18,8	51,3	10,7	68,8
5,4	15,8	25,1	55,4	15,8	75,1
5,5	20,9	27,4	51,5	20,9	77,4
5,8	20,1	28,3	54,8	20,1	78,3
6,7	20,2	29,1	60,7	20,2	79,1
6,6	20,3	27,8	61,6	20,3	85,8
6,9	20,4	28,1	56,9	20,4	80,1
6,1	30,5	37,1	56,1	30,5	87,1

	Варіант 3			Варіант 4	
\overline{x}_1	\overline{x}_2	$ar{f}$	\overline{x}_1	\overline{x}_2	$ar{f}$
63,3	51,1	110,5	6,3	5,1	105,5
51,5	52,2	120,1	5,5	5,2	110,1
68,8	51,3	110,7	6,8	5,3	111,7
75,1	45,4	115,8	7,1	4,4	115,8
77,4	51,5	120,9	7,4	5,5	90,9
78,3	54,8	120,1	8,3	5,8	121,1
79,1	50,7	120,2	9,1	9,7	110,2
65,8	61,6	144,2	6,8	9,6	114,2
70,1	56,9	140,8	7,1	8,9	110,8
77,1	46,1	157,5	8,1	4,1	107,5

	Варіант 5			Варіант 6	
\bar{x}_1	\bar{x}_2	$ar{f}$	\overline{x}_1	\bar{x}_2	$ar{f}$
36,3	25,1	32,2	26,3	45,1	92,2
45,5	35,2	48,3	25,5	35,2	78,3
36,8	25,3	44,5	26,8	45,3	94,5
47,1	34,4	44,6	27,1	34,4	84,6
37,4	35,5	28,4	27,4	35,5	88,4
48,3	25,8	38,2	28,3	45,8	98,2
39,1	29,7	42,5	29,1	49,7	102,5
46,8	29,6	40,7	26,8	39,6	90,7
37,1	28,9	38,8	27,1	38,9	88,8
38,1	24,2	37,5	28,1	34,1	77,5

	Варіант 7			Варіант 8	
\overline{x}_1	\overline{x}_2	$ar{f}$	\overline{x}_1	\overline{x}_2	$ar{f}$
56,3	15,1	82,2	5,3	15,1	22,2
45,5	25,2	78,3	4,5	15,2	28,3
56,8	15,3	74,5	5,8	15,3	34,5
47,1	24,4	84,6	4,1	14,4	24,6
57,4	25,5	88,4	5,4	15,5	18,4
58,3	25,8	88,2	5,3	15,8	28,2
49,1	19,7	72,5	4,1	19,7	22,5
56,8	29,6	80,7	6,8	19,6	30,7
47,1	28,9	78,8	7,1	18,9	38,8
48,1	24,1	77,5	8,1	14,1	27,5

	Варіант 9		Варіант 10		
\bar{x}_1	\bar{x}_2	$ar{f}$	\bar{x}_1	\bar{x}_2	$ar{f}$
22,2	85,1	9,3	65,1	42,2	98,3
28,3	75,2	8,5	55,2	38,3	88,3
34,5	85,3	9,8	65,3	44,5	99,8
24,6	74,4	8,1	64,4	34,6	81,9
18,4	75,5	8,4	55,5	38,4	84,8
28,2	85,8	9,3	65,8	48,2	99,4
22,5	79,7	9,1	69,7	42,5	91,4
30,7	79,6	9,8	59,6	40,7	97,8
38,8	78,9	9,8	68,9	48,8	99,5
27,5	84,1	8,1	64,1	47,5	91,7

	Варіант 11			Варіант 12	
\overline{x}_1	\overline{x}_2	$ar{f}$	\overline{x}_1	\bar{x}_2	$ar{f}$
42,8	22,2	42,5	42,1	42,1	128,2
43,5	28,3	48,8	41,8	41,2	128,3
45,3	24,5	39,9	39,1	40,7	124,5
46,4	24,5	45,2	42,2	46,1	134,5
38,4	23,8	41,3	41,3	39,3	123,8
38,2	28,2	44,2	41,2	38,2	128,2
42,5	25	41,5	41,8	42,1	126,2
40,7	20,7	40,6	39,6	42,2	120,7
38,5	18,5	39	39	38,1	121,5
37,8	27,1	41,7	40,4	37,1	128,1

	Варіант 13			Варіант1 4	
\overline{x}_1	\bar{x}_2	$ar{f}$	\bar{x}_1	\bar{x}_2	$ar{f}$
4,1	2,1	12,8	74,2	21,1	14,2
1,8	1,2	10,3	71,8	12,2	11,3
3,1	1,7	14,5	73,6	17,1	13,1
2,2	4,6	13,4	72,2	46,2	28,1
1,3	3,9	13,8	71,2	39,1	12,1
1,2	3,8	12,8	73,5	38,1	20,2
1,8	4,2	12,6	71,8	42,3	14,2
3,6	2,2	12,7	33,6	22,4	10,1
3,9	3,1	21,5	73,4	31,2	14,1
4,4	3,7	28,1	74,1	37,2	18,6

	Варіант 15			Варіант 16	
\overline{x}_1	\overline{x}_2	$ar{f}$	\overline{x}_1	\bar{x}_2	$ar{f}$
37,2	101,1	152,1	67,1	103,1	152,1
38,1	102,4	155,3	68,1	101,4	153,2
37,6	107,1	154,8	67,4	104,1	154,1
37,2	106,1	153,1	67,3	104,1	153,1
38,5	103,3	152,2	68,4	105,3	154,2
37,3	103,8	152,7	67,1	101,8	150,2
37,8	102,3	152,6	67,7	103,3	152,1
37,6	101,2	151,7	67,9	101,2	151,7
37,4	100,2	150,2	67,2	101,2	150,1
37,1	113,7	158,1	67,1	110,7	155,5

	Варіант 17			Варіант 18	
\bar{x}_1	\bar{x}_2	$ar{f}$	\bar{x}_1	\bar{x}_2	$ar{f}$
63,5	52,1	97,5	45,5	72,1	187,5
61,4	55,8	98,2	48,4	71,6	191,2
64,4	53,1	97,9	45,4	73,2	192,5
64,2	51,5	97,4	46,2	78,1	195,1
65,5	56,2	98,4	44,5	76,4	190,4
61,8	52,2	97,5	42,8	72,3	187,5
61,3	50,1	97,3	40,3	72,7	188,3
61,1	53,7	97,9	42,1	79,4	197,4
61,8	51,1	97,4	41,8	79,8	197,6
60,7	51	97,2	40,7	71,5	187,2

	Варіант 19			Варіант 20	1
\bar{x}_1	\bar{x}_2	$ar{f}$	\overline{x}_1	\bar{x}_2	\bar{f}
85,5	92,1	167,5	161,5	95,1	294,2
88,4	91,6	171,2	170,2	98,2	293,4
85,4	93,2	172,5	171,5	95,3	293,3
86,2	98,1	175,1	174,1	96,4	295,7
84,5	96,4	170,4	173,4	94,1	294,1
82,8	92,3	167,5	170,5	92,4	293,6
80,3	92,7	168,3	168,3	90,1	291,4
82,1	99,4	177,4	174,4	92,5	295,1
81,8	99,8	177,6	172,6	91,1	294,8
80,7	91,5	167,2	169,2	90,8	291,5

Контрольні питання

- 1. Що називають виробничою функцією?
- 2. Як перевірити виконання гіпотези «рогу достатку»? Її економічна інтерпритація.
- 3. Як перевірити виконання гіпотези монотонності (опуклості вгору)? Її економічна інтерпритація
- 4. Як знайти масштабний множник пропорційного збільшення виробництва?
- 5. Що називають середньою ефективністю і-того ресурсу, як її визначити?
- 6. Що називають граничною ефективністю і-того ресурсу, як її визначити?
- 7. Що називають коефіцієнтом еластичності і-того ресурсу, як її визначити?
- 8. Як визначити еластичність виробництва?
- 9. Гранична норма заміщення ресурсів.
- 10. Що називають економічної (особливою) областю виробничої функції?

Лабораторна робота № 5

Тема: Найпростіша модель однопродуктової фірми. Функція пропозиції. Моделі встановлення рівноважної ціни

Мета: Навчитись знаходити функції попиту на витрати виробництва та функцію пропозиції на продукцію; визначати область прибутковості та збитковості фірми; встановлювати рівноважну ціну.

Завдання № 1. Користуючись неокласичною довгостроковою моделлю однопродуктової фірми в умовах досконалої конкуренції, знайти функції попиту на витрати виробництва, $i \in \{1,2\}$, де p — ціна продукції, $w = (w_1, w_2)$ — вектор цін на ресурси, та функцію пропозиції продукції $y^* = y^*(p, w)$ для фірми з виробничою функцією Кобба-Дугласа з двома видами виробничих витрат $f(x_1, x_2) = Ax_1^{\alpha} x_2^{\beta}$.

Завдання № **2.** Записати рівняння ізокости та ізокванти, які відповідають оптимальному випуску y^* , побудувати їх графіки, визначити області збитковості та прибутковості фірми при заданих цінах на продукцію та виробничі ресурси.

Завдання № **3.** Нехай задані функція попиту на товар d(p), p > 0 та функція пропозиції однопродуктової фірми s(p), p > 0. Визначити рівноважну ціну на товар, використовуючи модель Самуельсона з дискретним часом, побудувати послідов-ність цін, збіжну до рівноважної ціни (за початкову ціну p_0 взяти будь-яке додатне число).

Завдання № 4*. Побудувати алготитм і визначити рівноважну ціну на дану продукцію, використовуючи павутиноподібну модель з дискретним часом (за початкову ціну p_0 взяти будьяке додатне число).

Методичні рекомендації

1. Спочатку, опишіть виробничу функцію

$$f(x_1, x_2) = Ax_1^{\alpha} x_2^{\beta}, A, \alpha, \beta > 0, \alpha + \beta < 1,$$

далі побудуйте неокласичну довгострокову модель однопродуктової фірми в умовах досконалої конкуренції

$$\Pi(x_1, x_2) = p \cdot y - w_1 \cdot x_1 - w_2 \cdot x_2 \rightarrow \max, (x_1, x_2) \in R_+^2,$$

де $y = f(x_1, x_2)$, $(x_1, x_2) \in R_+^2$ — виробнича функція Кобба-Дугласа з двома видами виробничих витрат, конкретизована за варіантами.

Коли ціна p на продукцію фірми змінюється на деякому проміжку $[p_1,p_2]$, а вектор цін на виробничі ресурси w змінюється у деякій області $W \in \mathbb{R}^2_+$, то функції попиту на виробничі витрати можна одержати як розв'язок системи

$$p \cdot \frac{\partial f(x_1, x_2)}{\partial x_i} - w_i = 0, i \in \{1, 2\},$$

відносно невідомих x_1 , x_2 . Вони визначають оптимальні набори витрат як функції від цін продукції та виробничих факторів, тобто $x_1^* = x_1^*(p,w)$, $x_2^* = x_2^*(p,w)$ — функції попиту на витрати виробництва.

Щоб знайти функції попиту на витрати виробництва $x_1^* = x_1^*(p,w), \ x_2^* = x_2^*(p,w)$ засобами пакету Mathcad, потрібно виконати наступні кроки:

$$\begin{split} f(x1,x2) &:= A \cdot x1^{\alpha} \cdot x2^{\beta} \\ \Pi(x1,x2,p,w1,w2) &:= p \cdot f(x1,x2) - w1 \cdot x1 - w2 \cdot x2 \\ \Pix1(x1,x2,p,w1,w2) &:= \frac{d}{dx1} \Pi(x1,x2,p,w1,w2) \\ \Pix2(x1,x2,p,w1,w2) &:= \frac{d}{dx2} \Pi(x1,x2,p,w1,w2) \\ x1 &:= 1 \quad x2 &:= 1 \\ Given \\ \Pix1(x1,x2,p,w1,w2) &= 0 \end{split}$$

$$\Pi x2(x1,x2,p,w1,w2) = 0$$
$$find(x1,x2) \rightarrow$$

$$y^* = f(x_1^*(p, w), x_2^*(p, w)) := y^*(p, w).$$

Функцію $y^* = y^*(p, w)$ називають функцією пропозиції випуску продукції.

2. Ізокванта — це крива сталого випуску продукції, тобто $f(x_1, x_2) = Q = const$, $(x_1, x_2) \in R^2_+$.

Оскільки в умові потрібно виписати ізокванту, яка відповідає оптимальному випуску
$$y^*$$
, то спочатку, підставивши значення p та $w=(w_1,w_2)$ у функцію пропозиції $y^*=y^*(p,w)$, знайдемо оптимальний випуск продукції Q , тоді з рівності $f(x_1,x_2)=Q$ виразимо змінну x_2 через x_1 . Для цього в пакеті Mathcad можна виконати наступні кроки:

$$Q := y(p, w1, w2)$$

$$x2 := 1$$

Given

$$f(x1,x2) = Q$$

$$find(x2) \rightarrow$$

Ізокоста – це крива сталих витрат фірми, тобто

$$x_1 w_1 + x_2 w_2 = C = const, (x_1, x_2) \in \mathbb{R}^2_+$$

Для того, щоб записати рівняння ізокости, яка відповідає оптимальному випуску y^* при фіксованих значеннях цін на продукцію та виробничі витрати, потрібно спочатку знайти загальні витрати на виробництво продукції C ($C = w_1 x_1^* + w_2 x_2^*$), які відповідають y^* , тоді з рівності $x_1 w_1 + x_2 w_2 = C$, виразити змінну x_2 через x_1 .

Для цього в пакеті Mathcad можна виконати наступні кроки:

$$\begin{split} & C := w1 \cdot x1(p,w1,w2) + w2 \cdot x2(p,w1,w2) \\ & x2 := 1 \\ & \text{Given} \\ & w1 \cdot x1 + w2 \cdot x2 = C \\ & \text{find}(x2) \to \end{split}$$

Щоб побудувати графіки ізокости та ізокванти використайте кнопку капанелі Графіки.

Область прибутковості фірми — це область, де її прибуток додатний, та, відповідно, область збитковості фірми — це область, в якій її прибуток від'ємний. Щоб визначити їх при фіксованих цінах p та $w = (w_1, w_2)$, потрібно виразити прибуток фірми $\Pi(x_1, x_2) = p \cdot y - w_1 \cdot x_1 - w_1 \cdot x_1$, як функцію лише від випуску продукції $\Pi(y)$ та знайти проміжки, на яких $\Pi(y) > 0$ (область прибутковості) та $\Pi(y) < 0$ (область збитковості).

Для цього в пакеті Mathcad можна виконати наступні кроки:

$$\Pi(x1,x2,y,p,w1,w2) := p \cdot y - w1 \cdot x1 - w2 \cdot x2$$

 $\Pi(x1(p,w1,w2),x2(p,w1,w2),y,p,w1,w2) \rightarrow$

Тут $x_1(p,w_1,w_2),x_2(p,w_1,w_2)$ — функції попиту на виробничі фактори, знайдені в завданні №1. Далі, вказавши значення p та $w = (w_1, w_2)$, одержимо функцію $\Pi(y)$.

3. Модель П.Самуельсона з дискретним часом, як і багато інших моделей встановлення рівноважної ціни, базується на такому припущенні: зміна ціни пропорційна різниці між попитом і пропозицією:

$$p_{t+1} = p_t + \lambda (d(p_t) - s(p_t)), \ t \in \mathbb{N} \cup \{0\},$$

де $p_0 > 0$ — довільне наближення, число $\lambda > 0$ називається коефіцієнтом підлаштовування ціни.

Зауважимо, що у випадку лінійних функцій попиту d і пропозиції s дану модель запропонував Еванс.

Варіанти завдань

Варіант	A	α	β
1	55	0,5	0,15
2	62	0,1	0,8
3	41	0,2	0,4
4	52	0,3	0,1
5	14	0,4	0,12
6	45	0,6	0,32
7	62	0,7	0,14
8	41	0,04	0,5
9	45	0,2	0,3
10	53	0,8	0,17
11	35	0,4	0,25
12	63	0,24	0,6
13	47	0,04	0,56
14	64	0,08	0,2
15	29	0,2	0,4
16	48	0,4	0,3
17	31	0,5	0,2
18	60	0,09	0,4
19	58	0,2	0,5
20	44	0,5	0,2

Варіант	p	w_1	w_2
1	11	2	1
2	14	3	9
3	25	5	3
4	32	2	6
5	22	4	5
6	10	2	3
7	12	3	2
8	30	5	4
9	50	3	10
10	10	6	1
11	24	2	3
12	25	1	5
13	15	4	3
14	45	3	8
15	42	5	7
16	32	4	6
17	35	2	8
18	28	3	9
19	48	5	10
20	34	4	8

Варіант	λ	d(p)	s(p)
1	0,12	$(p^2+4)/p^3$	$\sqrt{p}+3$
2	0,2	$(p+1)/(2p^2)$	$\sqrt[3]{p^2} + p + 1$
3	0,24	$\left(2p^2+7\right)/p^4$	$\sqrt{p^3} + \sqrt{p} + 2$
4	0,1	$(p+9)/p^3$	$\sqrt[3]{p} + 2p + 0.5$
5	0,18	$(3p^2+5)/(4p^3)$	ln(<i>p</i> +1)

6	0,21	$(3p^4+1)$ $(7p^6)$	$4\sqrt[3]{p} + 2p + 1,3$
7	0,11	$(p+14)/(3p^3)$	$\sqrt{p}+3p+1,4$
8	0,22	$(4p^2+9)/(8p^3)$	$\sqrt[3]{p^2} + p + 3$
9	0,12	$(7p+4)/p^4$	$2\sqrt{p} + 3p + 1,4$
10	0,14	$(p^2+p+4)/p^4$	$\sqrt[4]{p} + 4p + 1,7$
11	0,18	$(p^3+6)/(2p^5)$	$4\ln(2p+1)$
12	0,21	(p+10)/p	$\sqrt[3]{p} + 7\sqrt{p} + 0.3$
13	0,15	$(p^2+4)/p^3$	$\sqrt[4]{p^3} + 2p + 1,1$
14	0,19	$(p^2+4)/p^3$	$\sqrt[3]{p}+4$
15	0,22	$(p^2 + p)/(p^3 + 1)$	$5\sqrt{3p} + 3p$
16	0,17	$(3p+4)/p^2$	$\sqrt[5]{p^2} + 4p + 2,1$
17	0,18	$(p+12)/(5p^3)$	$\lg(4p+3)$
18	0,24	$(p^4+8)/(4p^5)$	$\sqrt[5]{p} + 4p + 1,5$
19	0,16	$(2p^2+6)/(7p^3)$	$\sqrt[4]{p} + 2\sqrt{p} + 0.4$
20	0,12	$(3p^2+p)/(8p^3)$	$\sqrt[3]{3p^2} + 4p + 0.1$

Контрольні питання

- 1. Що розуміють під оптимальним випуском продукції? Як його знайти?
- 2. Що називають функціями попиту на виробничі фактори?
- 3. Що називають функцією пропозиції?
- 4. Яку криву називають ізоквантою? Яку властивість мають точки, що лежать на ній?
- 5. Яку криву називають ізокостою? Яку властивість мають точки, що лежать на ній?
- 6. Що називають областю прибутковості (збитковості) фірми?
- 7. Дайте означення рівноважної ціни.
- 8. У чому полягає павутиноподібна модель встановлення рівноважної ціни з дискретним часом.
- 9. У чому полягає модель Самуельсона встановлення рівноважної ціни з дискретним часом.
- 10. У чому полягає модель Самуельсона встановлення рівноважної ціни з неперервним часом.

Література

- **1.** *Колемаев В.А.* Математическая экономика: Учебник для вузов. М.: ЮНИТИ, 1998. 240 с.
- **2.** *Лавренюк С.П.* Математичні основи мікроекономіки. Теорія споживання: Текст лекцій. Львів: Видавничий центр ЛНУ ім. Івана Франка, 1999.— 80 с.
- **3.** *Лавренюк С.П.* Математичні основи мікроекономіки. Теорія виробництва: Текст лекцій. Львів: Видавничий центр ЛНУ ім. Івана Франка, 2000. 70 с.
- **4.** *Лавренюк С.П.* Математичні основи мікроекономіки. Теорія рівноваги: Текст лекцій. Львів: Видавничий центр ЛНУ ім. Івана Франка, 2000.– 104 с.
- **5.** Ляшенко І.М., Коробова М.В., Столяр А.М. Основи математичного моделювання економічних, екологічних та соціальних процесів: Навч.пос. Тернопіль: Навчальна книга Богдан, 2006. 304 с.
- **6.** Мікроекономіка і макроекономіка. Підручник. / *Будаговська С.М., Кілієвич О.І., Луніна І.О. та ін.* К.: Основи, 1998. 518с
- **7.** *Пономаренко О.І., Перестюк М.О., Бурим В.М.* Основи математичної економіки.— К.: Інформтехніка, 1995. 320с.
- **8.** *Розанов Н.М., Шаститко А.Е.* Теория спроса и предложения: Учебное пособие. М.: Анкил, 1995. 96с.
- **9.** *Григорків В.С.* Основи математичної економіки: вибрані завдання для тематичного контролю. Навчальний посібник. Чернівці: Рута, 2003. 92с.
- **10.** Дьяконов В.П., Абраменкова И.В. MathCAD 7.0 в математике, физике и в Internet.— М.: "Нолидж", 1998. 352с.

Зміст

Вступ	3
Мета та завдання навчальної дисципліни «Математичні моделі мікро- та макроекономіки»	4
Лабораторна робота №1. Порядкові функції корисності	5
Лабораторна робота № 2. Неокласична модель поведінки споживача. Функції попиту	9
Лабораторна робота № 3. Дослідження статики споживання. Класифікація товарів	12
Лабораторна робота № 4. Виробничі функції	15
Лабораторна робота № 5. Найпростіша модель однопродуктової фірми. Функція пропозиції. Моделі встановлення рівноважної ціни	26
Література	34

Навчальне видання

Математичні моделі мікроекономіки Теорія споживання та виробництва

Методичні рекомендації та практичні завдання

Укладачі:

Івасюк Галина Петрівна,

кандидат фізико-математичних наук, доцент кафедри математичного моделювання

Комп'ютерний набір Івасюк Г.П.