Introdução à Segurança e Primitivas Criptográficas

March 9, 2018

Sumário

Introdução

Criptografia

Primitivas Criptográficas

Encriptação com Chave Partilhada Encriptação com Chave Pública Funções de Hashing Criptográficas Assinaturas Digitais

Conclusão

Leitura Adicional

Sumário

Introdução

Criptografia

Primitivas Criptográficas

Encriptação com Chave Partilhada Encriptação com Chave Pública Funções de Hashing Criptográficas Assinaturas Digitais

Conclusão

Leitura Adicional

Segurança: Definição

Segurança em Sistemas Computacionais: "deals with the prevention and detection of unauthorised actions by users of a computer system", Dieter Gollmann in Computer Security, John Wiley & Sons, 1999

- Autorização requer autenticação e controlo de acesso.
- Prevenir acções não autorizadas nem sempre é possível/economicamente viável, nesse caso teremos que nos contentar com a detecção dessas acções.
- Essencial para garantir a segurança dum sistema é definir a política de segurança, i.e. quais são as acções autorizadas e quais são as acções não autorizadas.

Segurança: Mais Definições

- Por vezes define-se segurança em termos de garantir:
 - Integridade: impedir modificação não autorizada de informação;
 - Confidencialidade: impedir o acesso não autorizado a informação;
 - Disponibilidade: impedir que o acesso autorizado a informação seja negado.
- Esta definição é mais restrita e aplica-se apenas a informação, embora possa ser generalizada.
 - Em última análise, para que servem os computadores senão para aceder a informação (possivelmente processada)?
- Tal como na definição anterior, é notório que para garantir segurança é essencial definir o que é e o que não é autorizado.

Segurança: Processo

- Não há sistemas 100% seguros.
 - Mesmo que tecnicamente seja possível, tal poderá não se justificar em termos económicos.
- Implementar segurança requer uma análise de risco, formal ou não.
 - É essencial determinar as ameaças à segurança a que um sistema computacional pode estar sujeito.
- Desta análise resulta a especificação da política de segurança.
- Para implementar a política de segurança, recorre-se a mecanismos de segurança.
- Para verificar a conformidade da implementação com a política de segurança recorre-se à auditoria e à monitorização da operação através de logs.

Segurança: Ameaças

- Internas vs. externas;
- Passivas vs. activas;
- Ou ainda, quanto ao tipo de acção:

Intercepção p.ex. ouvir a comunicação entre 2 entidades; Interrupção p.ex. impedir o acesso a um serviço Web, através dum ataque de *denial of service*;

Modificação p.ex. alterar o conteúdo duma mensagem ou dum registo duma BD;

Fabricação p.ex. acrescentar uma password a uma conta.

 Contrariar as ameaças de forma a satisfazer as políticas (requisitos) de segurança requer o recurso a mecanismos de segurança.

Segurança: Concepção

- A segurança não deve ser acrescentada no fim do projecto como mais uma camada:
 - Nessa altura, decisões previament tomadas podem restringir seriamente as opções.
- Alguns aspectos de projecto a considerar são:
 - Camada em que camada dum sistema computacional (p.ex. sistema de comunicações, SO, aplicação) se deve implementar os mecanismos de segurança?
 - Complexidade vs. Simplicidade o sistema deverá ter muita funcionalidade ou é importante garantir um grau de confiança elevado?
 - Centralização vs. Descentralização De que componentes depende a segurança do sistema? Por outras palavras, qual a sua *Trusted Computing Base (TCB)*?

Sumário

Introdução

Criptografia

Primitivas Criptográficas

Encriptação com Chave Partilhada Encriptação com Chave Pública Funções de Hashing Criptográficas Assinaturas Digitais

Conclusão

Leitura Adiciona

Criptografia

- É um dos mecanismos de segurança mais usados em sistemas distribuídos:
 - Permite proteger a comunicação entre entidades contra diferentes ameaças:

Primitivas Criptográficas

- 1. Algoritmos para Encriptação/Descodificação
- 2. Funções para Verificação de Integridade (funções de *hashing* criptográficas)
- 3. Algoritmos para Assinatura Digital

Princípio Fundamental Os algoritmos devem ser públicos. A segurança é obtida *parametrizando* os algoritmos com *chaves*.

Tipos de Sistema Criptográfico Dois:

Simétricos (ou de chave partilhada) usam uma única chave que é *partilhada* (K);

Assimétricos (ou de chave pública) usam duas chaves uma das quais é pública (K⁺) e a outra privada (K⁻).

Sumário

Introdução

Criptografia

Primitivas Criptográficas

Encriptação com Chave Partilhada Encriptação com Chave Pública Funções de Hashing Criptográficas

Assinaturas Digitais

Conclusão

Leitura Adiciona

Algoritmos para <u>Cifrar/Decifrar</u>

Simétricos, ou de chave partilhada: neste caso, as chaves para cifrar e decifrar são iguais:

$$K_e = K_d = K$$

- A chave deverá ser partilhada por todas as entidades autorizadas a aceder à informação.
- A chave deverá ser do conhecimento apenas dessas entidades.

Assimétricos, ou de chave pública: neste caso, as chaves para cifrar e para decifrar são diferentes:

$$K_e \neq K_d$$

► Uma das chaves é pública e a outra privada. Qual é o quê?

Encriptação com Chave Partilhada: DES (1/3)

- Data Encryption Standard (DES) é uma norma dos EE.UU. para encriptação considerada vulnerável desde os meados dos anos 90:
 - ► Foi derrotada pela lei de Moore, como os seus conceptores previram.
- O algoritmo em si é relativamente simples e baseia-se na aplicação repetida de 2 operações básicas:

Permutação de bits dum bloco;

Substituição de subblocos de 6 bits, por outros sub-blocos de 4 bits.

Encriptação com Chave Partilhada: DES (2/3)

- O algoritmo básico opera sobre blocos de 64 bits, que são transformados em blocos com o mesmo comprimento.
- O processo de encriptação dum bloco exige 16 passos (rounds).
 - ► Em cada passo usa-se uma chave diferente de 48 bits, gerada a partir da chave principal (*master*) de 56 bits.

Encriptação com Chave Partilhada: DES (3/3)

- A permutação final é a inversa da permutação inicial.
- O verdadeiro trabalho é feito pela função não linear (mangler function) (f)

- 1. Expande R_{i-1} para um bloco de 48 bits;
- 2. Faz o XOR do resultado com a chave do passo, K_i ;
- 3. Parte o resultado em 8 subblocos de 6 bits cada;
- Cada subbloco é processado por uma função de substituição diferente que o converte num subbloco de 4 bits.
- O conjunto de 8 subblocos de 4 bits é combinado num único de 32-bis, que é permutado.
- Esta mesma função pode ser usada para decifrar uma mensagem cifrada.
- DES foi substituída como norma por AES.

Encriptação com Chave Pública: RSA (1/3)

- RSA baseia-se na seguinte propriedade de aritmética módulo n:
 - ► Sejam *p* e *q* dois números primos
 - Sejam n = p.q e z = (p-1)(q-1)
 - Sejam d e e dois números tais que: d.e = 1 mod z
 - ► Então, para qualquer x (0 ≤ x < n): $x^{d.e} = x \mod n$

Encriptação com Chave Pública: RSA (2/3)

- O algoritmo para cifrar vem:
 - Dividir a mensagem a enviar em blocos de comprimento fixo pré-estabelecido, tal que cada bloco m_i, interpretado como um número binário, seja menor do que n.
 - 2. Calcular para cada bloco:

$$c_i = m_i^e \mod n$$

- O algoritmo para decifrar a mensagem, vem:
 - Decompor a mensagem recebida em blocos de comprimento fixo,
 - 2. Calcular: $m_i = c_i^d \mod n$
- Assim, para garantir confidencialidade com RSA:
 - ▶ A chave para decifrar, $K_d = (d, n)$, deve ser secreta;
 - ▶ A chave para cifrar, $K_e = (e, n)$, deve ser pública.

Encriptação com Chave Pública: RSA (3/3)

- Como calcular as chaves?
 - 1. Escolher $p \in q$, 2 números primos muito grandes, e.g. $> 10^{100}$:
 - 2. Calcular n = pq e z = (p 1)(q 1)
 - 3. Escolher um valor d arbitrário.
 - Usar o algoritmo de Euclides para calcular e: ed = 1 mod z
- A segurança de RSA está relacionada com a dificuldade da determinação dos factores dum número (n) muito grande.

Modos de Operação de Block Ciphers (1/3)

- Observação A maioria dos algoritmos de encriptação operam sobre blocos de comprimento fixo (64 bits no caso de DES, p.ex.), sendo por isso designados por *block ciphers*
 - Stream ciphers são outro tipo de algoritmos que operam diretamente sobre sequências de bytes de comprimento arbitrário

Problema Como se pode cifrar dados/mensagens com comprimento superior ao de um bloco?

Solução Simplesmente:

- Usar padding para que o comprimento dos dados a cifrar seja múltiplo do do bloco usado pela cifra
- Decompor os dados em blocos que são posteriormente cifrados

Este último passo pode ser realizado de diferentes formas designadas por *modo de operação*

Modos de Operação de *Block Ciphers* (2/3)

Electronic Code Book (ECB)

Electronic Codebook (ECB) mode encryption

Problema Facilita criptanálise book (ECB) mode decryption

 Blocos de dados idênticos são sempre a blocos cifrados idênticos

Modos de Operação de Block Ciphers (3/3)

Cipher Block Chaining (CBC)

Cipher Block Chaining (CBC) mode decryption

▶ O Initialization Vector é normalmente um valor (pseudo-)aleatório

Funções de Hashing Criptográficas

- São usadas para verificar a integridade de dados.
- ► Propriedades desejáveis duma função de *hashing* (*h*):

Compressão mapeia a entrada de comprimento arbitrário num valor de *hashing* de comprimento fixo;

Facilidade de Computação

Não Inversibilidade (*One-way*) dado um valor de *hashing*, y é computacionalmente inviável determinar um valor x tal que y = h(x)

Fracamente Resistente a Colisões dado um valor x é computacionalmente inviável encontrar um valor x' diferente, tal que h(x) = h(x')

Fortemente Resistente a Colisões é computacionalmente inviável encontrar dois valores x e x' tal que $x \neq x'$ e h(x) = h(x')

Funções de Hashing Criptográficas: MD5

- ➤ O algoritmo é executado em k fases, sendo k o número de blocos de 512 bits:
 - A entrada é pré-processada para garantir que o seu comprimento é múltiplo de 512 bits.
- Cada fase usa como entrada um número de 128 bits e um bloco de 512 bits, sendo a saída um número de 128 bits.

▶ Uma fase consiste em 4 passos (rounds) de computação;

MD5: Primeira Ronda duma Fase

- ► Cada sequência de 512 bits é decomposta em 16 blocos (b₀, b₁,..., b₁₅) de 32 bits.
- As operações executadas na primeira ronda são:

Iterations 1-8	Iterations 9-16
$p \leftarrow (p + F(q, r, s) + b_0 + C_1) \ll 7$	$p \leftarrow (p + F(q, r, s) + b_8 + C_9) \ll 7$
$s \leftarrow (s + F(p, q, r) + b_1 + C_2) \ll 12$	$s \leftarrow (s + F(p, q, r) + b_9 + C_{10}) \ll 12$
$r \leftarrow (r + F(s, p, q) + b_2 + C_3) \ll 17$	$r \leftarrow (r + F(s, p, q) + b_{10} + C_{11}) \ll 17$
$q \leftarrow (q + F(r, s, p) + b_3 + C_3) \ll 22$	$q \leftarrow (q + F(r, s, p) + b_{11} + C_{12}) \ll 22$
$p \leftarrow (p + F(q, r, s) + b_4 + C_5) \ll 7$	$p \leftarrow (p + F(q, r, s) + b_{12} + C_{13}) \ll 7$
$s \leftarrow (s + F(p, q, r) + b_5 + C_6) \ll 12$	$s \leftarrow (s + F(p, q, r) + b_{13} + C_{14}) \ll 12$
$r \leftarrow (r + F(s, p, q) + b_6 + C_7) \ll 17$	$r \leftarrow (r + F(s, p, q) + b_{14} + C_{15}) \ll 17$
$q \leftarrow (q + F(r, s, p) + b_7 + C_8) \ll 22$	$q \leftarrow (q + F(r, s, p) + b_{15} + C_{16}) \ll 22$

- p, q, r e s são variáveis de 32 bits no total 128 bits que são passadas duma fase para a seguinte.
- ▶ Os C_i são constantes, no total 64 delas C_1 a C_{64}
- ► $F \in F(x,y,z) = (x \text{ AND } y) \text{ XOR } ((\text{NOT } x) \text{ AND } z);$
- ► Em cada um dos outros 3 passos usam-se funções semelhantes *G*, *H*, *I*;

Autenticação com Funções de Hashing

- Se a função de hashing além da mensagem/dados tomar como entrada uma chave, pode ser usada também para autenticar a fonte e garantir a integridade da mensagem.
 - O valor de hashing, e por vezes a função, é conhecido por message authentication code (MAC).
- Neste caso a função de hashing deve satisfazer uma propriedade adicional:
 - Resistência Computacional para qualquer valor de k desconhecido, dados os valores $(x, h_k(x))$ é computacionalmente inviável calcular $h_k(y)$ para um valor y diferente.

Porquê?

- ► HMAC (RFC) é uma MAC que garante o mesmo *nível de segurança* que a função de *hashing* usada.
 - MD5 é considerada pouco segura desde 2004
- A chave deve ser partilhada por ambos os lados
 - Um MAC não é equivalente a uma assinatura digital.

Assinaturas Digitais

- Uma assinatura digital deverá:
 - 1. Identificar o seu autor;
 - 2. Ser verificável por outros;
- MACs permitem identificar o autor duma mensagem face ao receptor, mas não permitem que um terceiro identifique o autor
 - O MAC pode ser gerado por qualquer entidade que conheça a mensagem e a chave – em princípio, as 2 entidades comunicantes.
 - I.e., MACs não permitem não-repudiação.
- Primitivas para assinatura digital baseiam-se, tipicamente, em sistemas de encriptação assimétricos.

Assinaturas Digitais com RSA

- Algoritmos de encriptação de chave pública, e.g. RSA, podem ser usados para gerar assinaturas digitais.
- Na sua forma mais básica, a assinatura é a própria mensagem cifrada (C)
 - ▶ A obtenção de P usando a chave pública para decifrar, é prova suficiente.
- Na prática:
 - 1. Calcula-se um valor de hash da mensagem a assinar;
 - 2. Cifra-se esse valor o resultado é a assinatura.
- Algoritmos para assinatura digital não precisam ser invertíveis, p.ex. DSA.

```
Signature sign (Message m, Key K^-)
Boolean check (Message m, Signature s, Key K^+)
```

Sumário

Introdução

Criptografia

Primitivas Criptográficas

Encriptação com Chave Partilhada Encriptação com Chave Pública Funções de Hashing Criptográficas Assinaturas Digitais

Conclusão

Leitura Adicional

Força dos Mecanismos Criptográficos (1/2)

Empiricamente seguro , usa o teste do tempo. P.ex. DES.

- Não tem falhas óbvias;
- Embora não haja provas da sua segurança, é reconhecido seguro pela comunidade criptográfica.

Demonstravelmente seguro , usa a teoria da complexidade. Se quebrá-lo exigir a resolução dum problema para o qual não há uma solução computacionalmente eficiente. P.ex. RSA:

- ► A complexidade é medida em termos assimptóticos: quanto é *suficientemente grande*?
- Na realidade, não há prova de que a factorização não pode ser feita em tempo polinomial.
 - Se as constantes envolvidas fossem muito grandes, poderia não ser um problema.

Este tipo de algoritmos pode ser quebrado por um atacante com capacidade de processamento suficiente.

- É uma questão de tempo;
- ... e de comprimento das chaves.

Força dos Mecanismos Criptográficos (2/2)

Incondicionalmente seguro usa a teoria da informação. Um algoritmo é seguro se um atacante não conseguir extrair informação sobre a informação cifrada a partir da observação da cifra.

- A história mostra que algoritmos criptográficos publicados são quebrados normalmente por uma gestão inadequada das chaves e não tanto por vulnerabilidades intrínsecas aos algoritmos.
 - E estas últimas normalmente aparecem quando se consideram cenários de ataque que violam os pressupostos usados na sua concepção.
- Com algoritmos não publicados normalmente a história é outra.
 - DeCSS é talvez o exemplo mais recente e mais publicitado.

A Última Palavra aos Peritos

- "If you think cryptography will solve your problem then you don't understand cryptography ... and you don't understand your problem.", Bruce Schneier
- "Cryptography is rarely ever the solution to a security problem. Cryptography is a translation mechanism, usually converting a communications security problem into a key management problem and ultimately into a computer security problem.", Dieter Gollmann in Computer Security, John Wiley & Sons, 1999

Sumário

Introdução

Criptografia

Primitivas Criptográficas

Encriptação com Chave Partilhada Encriptação com Chave Pública Funções de Hashing Criptográficas Assinaturas Digitais

Conclusão

Leitura Adicional

Leitura Adicional

- Capítulo 9 de Tanenbaum e van Steen, Distributed Systems, 2nd Ed.
 - ► Secção 9.1: Introduction to Security