

The European Event for Electronic System Design & Test

Towards Decrypting the Art of Analog Layout: Placement Quality Prediction via Transfer Learning

Mingjie Liu*, Keren Zhu*, Jiaqi Gu, Linxiao Shen, Xiyuan Tang, Nan Sun, and David Z. Pan

Dept. of Electrical and Computer Engineering

The University of Texas at Austin

* Indicates equal contributions.

- Introduction and Motivation
- UT-AnLay Dataset with MAGICAL
- Placement Quality Prediction
- Improved Data Efficiency with Transfer Learning
- Conclusions

Outline

- Introduction and Motivation
- UT-AnLay Dataset with MAGICAL
- Placement Quality Prediction
- Improved Data Efficiency with Transfer Learning
- Conclusions

Analog/Mixed-Signal IC Demand

High demand of analog/mixed-signal (AMS) IC in emerging applications

Image Sources: IBM, Ansys, public technology

Analog/Mixed-Signal IC Design Challenges

- Repetitive iterations and feedback during manual design flows
- Close interactions with circuit designers and layout engineers
- Our focus is on back-end physical design (layout) stage
- Provide design closure and guarantee to meet specification, manufacturability, reliability, etc...

Challenges in Analog Layout Design

- Multiple performance trade-offs
 - No uniform representation for performance
 - Each design is "unique"
- Complex layout dependent effects
 - BSIM4 model >250 parameters
 - Increased parasitic
 - Well proximity effect (WPE), substrate noise coupling, etc...
- Complex layout design rules

Behzad Razavi, 2000

Prior Work on Analog Layout

- Sensitivity analysis based optimization:
 - ✓ Model how parasitic effects performance
 - ✓ Some guarantee on performance
 - × Simulations are too expensive for systems
- Heuristic constraint based:
 - ✓ Encode in layout algorithms
 - ✓ Enforced satisfiability for crucial effects: symmetry
 - × Difficult to enumerate
 - × No room for trade-offs: contradictory constraints
 - × Limited guarantee towards performance

How can we guide the backend physical design process to ensure post-layout performance?

Prior Work on Analog Layout

WellGAN [Xu et al., DAC, 2019]

GeniusRoute [Zhu et al., ICCAD, 2019]

- Leveraging generative neural network
 - × Data hungry algorithms
 - **x** Good human layout examples
 - x Technology dependent: difficult to share data
 - × No explicit optimization on performance

Decrypting the Art of Analog Layout

- "The process of constructing layouts for analog and mixed signal circuits have stubbornly defied all attempts at automation." [Hastings, The Art of Analog Layout, 2001]
- Our contributions:
 - A model for placement quality prediction for fast design space explorations
 - Automatically generated simulated layout training data with MAGICAL
 - 3D convolutional neural network with coordinate channel embeddings
 - Leveraging transfer learning for improved data efficiency
 - Open-sourced on GitHub: https://github.com/magical-eda/UT-AnLay

Outline

- Introduction and Motivation
- UT-AnLay Dataset with MAGICAL
- Placement Quality Prediction
- Improved Data Efficiency with Transfer Learning
- Conclusions

MAGICAL Layout System

- Input: unannotated netlist
- Output: GDSII Layout
- Key Components:
 - Device Generation
 - Constraint Extraction
 - Analog Placement
 - Analog Routing

- Fully-automated (no-human-in-the-loop)
- Guided by analytical, heuristic, and machine learning algorithms
- Open-sourced on GitHub: https://github.com/magical-eda/MAGICAL

Analytical Global Placement

Objective:

Objective =
$$f_{WL}$$
 + $a \cdot f_{OL}$ + $b \cdot f_{BND}$ + $c \cdot (f_{SYM}^{x} + f_{SYM}^{y})$

- Performance:
 - Wirelength term (half-perimeter wirelength):

$$f_{WL} = \sum_{n_k} (\max_{i \in n_k} x_i - \min_{i \in n_k} x_i + \max_{i \in n_k} y_i - \min_{i \in n_k} y_i)$$

Relaxed Constraints:

 f_{OL} : Device overlap cost

 f_{BND} : Layout boundary cost

 f_{SYM}^{x} , f_{SYM}^{y} : Device symmetry constraint

Wirelength term (half-perimeter wirelength):

$$f_{WL} = \sum_{n_k} (\max_{i \in n_k} x_i - \min_{i \in n_k} x_i + \max_{i \in n_k} y_i - \min_{i \in n_k} y_i)$$

x Not a good indication of performance

- × Different nets should have different importance

$$f_{WL} = \sum_{n_k} \alpha_{n_k} (\max x_i - \min x_i + \max y_i - \min y_i)$$
• Different pentility termifindicating net criticality

Allow multiple layout solutions for same schematic

• UT-AnLay Dataset:

- Industrial level parasitic extraction and simulation tool
- Custom designed testing benchmark suite
- Over 16,000 different layout for each design

Design	Stage	Compensation	Layouts
OTA1	3	Nested Miller	16376
OTA2	3	Nested Miller	16381
OTA3	2	Miller	16384
OTA4	2	None	16363

UT-AnLay Dataset:

- Circuit netlist
- Device boundary box
- Device placement coordinates (with pin coordinates)
- Post layout simulation results
- X Routing information
- X Currently only OTA circuits
- X Currently only in TSMC 40nm technology

• UT-AnLay Dataset:

- Noticeable difference in layout implementations
- High variations in some performance
 - CMRR and offset -> Large variation
 - Gain, power, phase margin etc. -> Small variation

Offset (mV)	~ 0	
CMRR (dB)	110	

Offset (mV)	5.0
CMRR (dB)	76.3

- Introduction and Motivation
- UT-AnLay Dataset with MAGICAL
- Placement Quality Prediction
- Improved Data Efficiency with Transfer Learning
- Conclusions

- Traditional automated analog layout generators
 - Human in the loop
 - Infer new heuristics and constraints
 - Poor generalizability and little flexibility

- Design exploration and early design pruning
 - Generating layout is "cheap"
 - Verifying functionality is expensive
 - Predict performance in early design stage

- Define layout quality with post layout simulation
 - Layout sensitive performance: CMRR and offset
- Formulate problem into binary classification
 - Balanced: Worst 25% vs Best 25%
 - ●Imbalanced: Worst 25% vs Rest 75%

• Placement feature extraction:

- Device location and size: images
- Circuit topology: separating devices to different channels
- Device types: image intensity
- Pin location: routing congestion map

- Coordinate channel embedding
 - Additional channel for numerical coordinates

[R. Liu et al., NIPS, 2018]

• 3D CNN

- Depth-wise convolution
- Interactions between different channels

[S. Ji et al., IEEE T. Pattern Anal, 2013

- Dataset: OTA1 with balanced labeling
- Feature is of utmost importance
- 3D CNN helps a little with generalization

TABLE III: Baseline Model Comparisons

Model	Training Accuracy	Testing Accuracy
nofeat+2D	97.95%	78.44%
nofeat+3D	79.23%	78.32%
feat+2D	96.19%	91.94%
feat+3D	95.51%	93.83%

- Introduction and Motivation
- UT-AnLay Dataset with MAGICAL
- Placement Quality Prediction
- Improved Data Efficiency with Transfer Learning
- Conclusions

- Transfer learning:
 - Train model on source domain with abundant data
 - Fine-tune model on target domain with limited data

- Source Domain: OTA1
- Target Domains:
 - OTA2: Same schematic and performance metric different sizing
 - OTA3: Different schematic same performance metric
 - OTA4: Different schematic and performance metric
- Data utilization α:
 - Percentage of available training data in target domain
 - 20% reserved for testing $\alpha_{max} = 0.8$

Accuracy

• Acc =
$$\frac{TP + TN}{TP + FP + FN + TN}$$

- Measures overall performance
- False omission rate (FOR)

• FOR =
$$\frac{FN}{TN+FN}$$
 =
Predicted good with bad performance
Total predicted good design

- Percentage of leaked bad designs
- Random selection: 25%

• Transfer learning improves results compared with random initialization

Design	α	Accuracy (%)		FOR	? (%)
		W	w/o	W	w/o
OTA1	0.80	90.29	i—	8.32	·—
OTA2	0.80	90.96	92.61	7.12	4.99
	0.10	90.10	80.40	7.57 ←	→ 22.00
	0.01	88.28	74.05	9.60	22.38
	0.00	70.10		21.28	-
OTA3	0.80	90.23	91.33	8.38	6.26
	0.10	87.29	79.98	9.75 ←	→ 23.84
	0.01	81.21	77.32	13.40	26.76
	0.00	74.73	1 -	18.72	
OTA4	0.80	89.81	92.05	6.06	4.09
	0.10	88.70	74.33	9.54 ←	→ 22.90
	0.01	81.05	76.68	16.95	21.92
	0.00	49.72	-	22.77	_

- Transfer learning improves results compared with random initialization
- Results improves with more training data in target domain

Design	α	Accuracy (%)		FOF	? (%)
		W	w/o	W	w/o
OTA1	0.80	90.29	1-	8.32	i —
OTA2	0.80	90.96	92.61	7.12	4.99
	0.10	90.10	80.40	7.57	22.00
	0.01	88.28	74.05	9.60	22.38
	0.00	70.10	-	21.28	-
OTA3	0.80	90.23	91.33	8.38	6.26
	0.10	87.29	79.98	9.75	23.84
	0.01	81.21	77.32	13.40	26.76
	0.00	74.73	-	18.72	-
OTA4	0.80	89.81	92.05	6.06	4.09
	0.10	88.70	74.33	9.54	22.90
	0.01	81.05	76.68	16.95	21.92
	0.00	49.72	_	22.77	_

- Transfer learning improves results compared with random initialization
- Results improves with more training data in target domain
- Satisfactory results in transfer learning with only 1% data (160 layouts)

Design	α	Accuracy (%)		FOF	? (%)
		W	w/o	W	w/o
OTA1	0.80	90.29	1-	8.32	i-
OTA2	0.80	90.96	92.61	7.12	4.99
	0.10	90.10	80.40	7.57	22.00
	0.01	88.28	74.05	9.60	22.38
	0.00	70.10	-	21.28	-
OTA3	0.80	90.23	91.33	8.38	6.26
	0.10	87.29	79.98	9.75	23.84
	0.01	81.21	77.32	13.40	26.76
	0.00	74.73	-	18.72	.—
OTA4	0.80	89.81	92.05	6.06	4.09
	0.10	88.70	74.33	9.54	22.90
	0.01	81.05	76.68	16.95	21.92
	0.00	49.72	-	22.77	-

- Transfer learning improves results compared with random initialization
- Results improves with more training data in target domain
- Satisfactory results in transfer learning with only 1% data (160 layouts)
- Applying baseline model without transfer learning produce bad results

Design	α	Accuracy (%)		FOI	? (%)
		W	w/o	W	w/o
OTA1	0.80	90.29	1-	8.32	1-
OTA2	0.80	90.96	92.61	7.12	4.99
	0.10	90.10	80.40	7.57	22.00
	0.01	88.28	74.05	9.60	22.38
	0.00	70.10	-	21.28	ı —
OTA3	0.80	90.23	91.33	8.38	6.26
	0.10	87.29	79.98	9.75	23.84
	0.01	81.21	77.32	13.40	26.76
	0.00	74.73	_	18.72	_
OTA4	0.80	89.81	92.05	6.06	4.09
	0.10	88.70	74.33	9.54	22.90
	0.01	81.05	76.68	16.95	21.92
	0.00	49.72	-	22.77	_

- What is the limit? Can 0.1% data work (16 layouts)?
- Testing data 20%, 200 times of training
- Issues: Data distributions in train/test varies significantly

- What is the limit? Can 0.1% data work (16 layouts)?
- Testing data 20%, 200 times of training
- Issues: Data distributions in train/test varies significantly

- Random select 16 layouts (0.1%) as transfer learning data
- Label training data according to relative rank in training set
- Relabel testing set according to the training set
- Repeat experiment for 100 times for each transfer target

- Improvement gained from transfer learning is related with task difficulty
- OTA2: Same design and performance metric different sizing
- OTA3: Different design and same performance metric
- OTA4: Different design and different performance metric

- Introduction and Motivation
- UT-AnLay Dataset with MAGICAL
- Placement Quality Prediction
- Improved Data Efficiency with Transfer Learning
- Conclusions

- UT-AnLay:
 - A dataset for post layout performance modeling
 - Include placement solution and post layout simulation results
- Our preliminary work:
 - Placement quality prediction
 - Improved data efficiently with transfer learning
- Open-sourced data and model:
 - https://github.com/magical-eda/UT-AnLay
- Open-sourced MAGICAL layout generator:
 - https://github.com/magical-eda/MAGICAL

Thank You