VIDEOS

Quadcopter Acrobatics

https://youtu.be/XxFZ-VStApo

Inverted Pendulum

https://youtu.be/a4c7AwHFkT8

Questions to consider

- How are these similar?
- · How are these different?
- How are these tasks accomplished?
- How will you accomplish these tasks?

James A. Mynderse

MRE 5323 - Modeling Dynamic Systems

MODELING PHYSICAL SYSTEMS

Topics

- Why we model dynamic systems
- · How we model dynamic systems

At the end of this section, students should be able to:

- Model dynamic systems with ODEs.
- Model dynamic systems with transfer functions.
- Model dynamic systems with state-space representation.

James A. Mynderse

MRE 5323 - Modeling Dynamic Systems

WE LIKE TO MAKE SEVERAL MODELING ASSUMPTIONS

Linear - obeys linear superposition

Time Invariant – constant parameters

Lumped Parameters – characteristics are lumped into discrete elements

James A. Mynderse

MRE 5323 - Modeling Dynamic Systems

DYNAMIC SYSTEMS

Models are the same regardless of the physical domain:

$$y = \text{Charge}$$

$$u = e$$

$$y = \text{Transl. displ.}$$

$$y = \text{Angular displ.}$$

$$u = \tau$$

$$u = \frac{dq}{dt}$$

We only have to understand one model, but we have four different systems!

$$\ddot{y} + \dot{y} + y = u(t)$$

James A. Mynderse

MRE 5323 - Modeling Dynamic Systems

5

IDEALIZED MODELING ELEMENTS

Basic Components

- Inertia
- Energy Storage
- Energy Dissipation

Mechanical - Force driven

- Mass
- Linear Spring
- Linear Damper

Electrical - Voltage driven

- Inductor
- Capacitor
- Resistor

Thermal

- Thermal capacitance (specific heat)
- Thermal resistance from conduction or convection (actually energy transfer, not dissipation)

Hydraulic

- Usually distributed (i.e. along a length of pipe)
- Lumped approximations may be used

James A. Mynderse

MRE 5323 - Modeling Dynamic Systems

TERMINOLOGY

Nominal Model

· Simplified approximate model used for control design

Calibration (or Simulation) Model

 Model that captures all pertinent aspects of plant behavior to be used for controller validation

Model Error

• The difference between the nominal and calibration model

James A. Mynderse

MRE 5323 - Modeling Dynamic Systems

7

MODEL ERRORS

Let y_o be the nominal system output and y be the actual system output

$$u \longrightarrow G \longrightarrow y \qquad \qquad u \longrightarrow G_o \longrightarrow y_0$$
(True plant) (Nominal plant)

Additive Modeling Error (AME):

$$AME = y - y_o = [G - G_o]U(s) = \Delta G \cdot U(s)$$

Multiplicative Modeling Error (MME):

$$Y(s) = G(s)U(s) = [G_o + \Delta G]U(s) = G_o \left(1 + \frac{\Delta G}{G_o}\right)U(s)$$

James A. Mynderse

MRE 5323 - Modeling Dynamic Systems

.

BUILDING MODELS

Three approaches:

- From physical principles (white-box model)
- From experimental data (black-box model)
- · Combination of the above

Always use the simplest model that captures the essential aspects of the process for control design.

James A. Mynderse

MRE 5323 - Modeling Dynamic Systems

9

WHAT PROBLEMS EXIST WITH A WHITE-BOX MODEL?

Damping coefficients (friction) can be difficult (or impossible) to estimate

James A. Mynderse

MRE 5323 – Modeling Dynamic Systems

WHAT PROBLEMS EXIST WITH A BLACK-BOX MODEL?

How do you select a model structure?

Can you gain any intuition from the model?

James A. Mynderse

MRE 5323 - Modeling Dynamic Systems

11

CAN WE REMEDY THESE PROBLEMS WITH A GRAY-BOX MODEL?

Use what we know (intuition) as a starting point Fill in the gaps using data

James A. Mynderse

MRE 5323 - Modeling Dynamic Systems

DEFINITIONS

State

• The smallest set of n variables (state variables) such that knowledge of these n variables at $t=t_0$, together with knowledge of the input for $t\geq t_0$, completely and uniquely determines system behavior for $t\geq t_0$.

State vector

nth order vector whose components are the state variables

State space

• n-dimensional space whose coordinate axes consist of the x_1 axis, x_2 axis, etc.

State trajectory

 Path produced in the state space by the state vector as it changes over time

James A. Mynderse

MRE 5323 - Modeling Dynamic Systems

13

FOR LTI SYSTEMS WE CAN SIMPLIFY THE GENERAL STATE SPACE FORM

General state space equations:

$$\dot{x}(t) = f(x, u, t)$$
$$y(t) = g(x, u, t)$$

Assuming system is linear:

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$

$$y(t) = C(t)x(t) + D(t)u(t)$$

Assuming system is time-invariant:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

James A. Mynderse

MRE 5323 - Modeling Dynamic Systems

WHAT IF WE HAVE A NONLINEAR STATE SPACE MODEL?

$$\dot{x}(t) = f(x, u, t)$$
$$y(t) = g(x, u, t)$$

Choose operating point: x_Q , u_Q

$$\dot{x}(t) \approx f\left(x_Q, u_Q\right) + \frac{\partial f}{\partial x}\bigg|_{\substack{x=x_Q\\u=u_Q}}\left(x(t)-x_Q\right) + \frac{\partial f}{\partial u}\bigg|_{\substack{x=x_Q\\u=u_Q}}\left(u(t)-u_Q\right)$$

$$y(t) \approx g\left(x_Q, u_Q\right) + \frac{\partial g}{\partial x}\Big|_{\substack{x = x_Q \\ u = u_Q}} \left(x(t) - x_Q\right) + \frac{\partial g}{\partial u}\Big|_{\substack{x = x_Q \\ u = u_Q}} \left(u(t) - u_Q\right)$$

James A. Mynderse

MRE 5323 - Modeling Dynamic Systems

15

WHEN LINEARIZING ABOUT THE ORIGIN, THE LINEARIZATION IS CLEAR

$$x_Q = 0$$
$$u_Q = 0$$

$$\dot{x}(t) \approx Ax(t) + Bu(t) + f(0,0)$$

$$y(t) \approx Cx(t) + Du(t) + g(0,0)$$

 For other operating points we might consider an incremental model (see textbook)

James A. Mynderse

MRE 5323 – Modeling Dynamic Systems

CONTROL THEORY

Classical Control Theory

- Single-Input Single-Output (SISO) systems
- · Linear Time-Invariant (LTI) systems
- · Developed without computers
- · Graphical tools, algebraic manipulation

Modern Control Theory

- Multiple-Input Multiple-Output (MIMO) systems
- Nonlinear systems
- · Easy access to computers
- Numeric solutions, matrix manipulation

James A. Mynderse

MRE 5323 - Modeling Dynamic Systems

17

COMMENTS ON MODEL TYPES

Transfer Function Models:

- · Are conceptually simple
- Are easily converted to frequency domain transfer functions that are more intuitive to practicing engineers
- Are difficult to solve in the time domain (solution: Laplace transformation)

State Space Models:

- · Consider the internal behavior of a system
- · Can easily incorporate complicated output variables
- Have significant computation advantage for computer simulation
- Can represent multi-input multi-output (MIMO) systems and nonlinear systems

James A. Mynderse

MRE 5323 - Modeling Dynamic Systems

COMING UP...

Case Study: Hard disk drive read/write head

Transfer Functions

- Poles and zeros
- First and second order systems

Dynamic Response

- Types of inputs
- Free and Force responses
- Transient and Steady-State responses

James A. Mynderse

MRE 5323 - Modeling Dynamic Systems