Домашнее Задание по ТРЯПу №5

Павливский Сергей Алексеевич , 873 07.10.2019

Задание 1.

1. L — конечный язык. Выполняется ли для него лемма о накачке?

Решение

Задание 2.

Будут ли регулярными следующие языки?

- 1. $L1 = \{a^{2017n+5} | n = 0, 1, ...\} \bigcap \{a^{503k+29} | k = 401, 402, ...\} \subseteq \{a^*\}.$
 - 2. $L2 = \{a^{200n^2+1} | n = 1000, 1001, ...\} \subseteq \{a^*\}.$

Пусть $w = w_1 w_2 ... w_n, w_i \in \Sigma, w^R = w_n w_{n-1} ... w_1.$ Обозначим LR = $\{w^R | w \in L\}$ - обращение языка L.

- 3. SQ = $\{ww|w\in\Sigma^*\}$ язык квадратов.
- 4. $\Sigma^* \ PAL, PAL = \{w|w=w^R\}$ язык палиндромов.

Решение

1.

 $a^{2017n+5}=a^5a^{2017n}=a^5(a^{2017})^n=a^5a^*\in Reg$ (так как регулярность замкнута относительно операции конкатенации) , $n\in 0,1,\dots$

Аналогично $a^{503k+29}=a^29(a^{503})^k=a^29((a^{503})^{k_1}(a^{503})^{k_2})$ inReg (так как регулярность замкнута относительно операции вычитания (вычитание - композиция пересечения и дополнения , относительно которых замкнута регулярность) относительнои конкатенации) , $k_1 \in \{0,1,...\}, k_2 \in \{0,1,...,400\}$

Тогда , так как регулярность замкнута относительно операции пересечения , то $L1 \subset \mathrm{Reg}$ ч.т.д.

2. Воспользуемся леммой о накачке для доказательства нерегулярности L2 .

Предположим противное. Пусть L2 регулярный. Тогда для него выполняются условия леммы о накачке. Тогда для некоторой константы р существует разбиение любого слова длиннее р на хуz, которое удовлетворяет условиям леммы.

По условию леммы $|y| = k \leqslant p$.

Для того чтобы прийти к противоречию , найдем такое n и слово w = xyz, что $w=a^{200n^2+1}$, а для $xy^2z\nexists k:xy^2z=a^{200k^2+1}$. В качестве k рассмотрим n+1 :

 $200n+1^2+1=200n^2+400n+200+1$. Длина $a^{200n^2+1+400n+200}$ отличается от a^{200n^2+1} на 400n+200. При этом длина слово x^2z - минимальное по длине по xyz, получающееся накачкой у . При накачке длина слова увеличивается на у , которое как было сказано ранее по длине \leq р . Тогда если р < 400n+200, то не будет существовать требуемого представления для xy^2z . Но для каждого р существует слово , представимое в виде $a^{200n_1^2+1}$, где $n_1 > \frac{p-200}{400}$, которое и будет нарушать условие леммы. Противоречие . Значит L2 не \subset Reg .

3. Предположим , что SQ регулярный . Тогда возьмем ww такое , что |ww|=2p. По условию леммы существует разбиение ww на xyz . Так как $|xy|\leqslant p$, то элементы y - это элементы w . Тогда xy^0z не полином (первая из двух ранее одинаковых частей слова изменилась , вторая нет) , т.е. $\notin SQ$, что проти-

воречит предположению . Значит SQ не принадлежит Reg .

4. Пусть Σ^* $PAL \subset \mathrm{Reg}$. Тогда \exists ДКА $(\Sigma^*$ PAL) . Тогда \exists ДКА (PAL) , который получается из ДКА $(\Sigma^*$ PAL) всюду определением ДКА $(\Sigma^*$ PAL) и инвертированием принимаемости его состояний , т.к. $\mathrm{PAL} = \overline{\Sigma^*} \, \overline{PAL}$

Задание 3.

Покажите, что следующий язык удовлетворяет лемме о разрастании для регулярных языков, но сам регулярным не является: $L = \{ab^{2^i}|i>0\} \cup \{b^j|j>0\} \cup \{a^mb^n|m>1, n>0\}.$

Решение

Рассмотрим язык $L' = ab^{2^i}|i>0$. Докажем его нерегулярность по лемме о накачке . Предположим противное , пусть он регулярный . Тогда существует представление $ab2^i=xyz$, $|y|\leqslant p$. Поступим аналогично доказательству в задаче 1 пункте 2 . Найдем такое слово $ab2^l$, что следующее после него по длине ab^{2^l} не может равняться следующему по накачке после xyz слову xy^2z . $p={\rm const}$, $ab^{2^l}\uparrow$, тогда $\exists l_1:|ab^{2^l}|-|ab^{2^{l+1}}|>p$. То есть найдется слово w противоречащее условию леммы о накачке , то есть не удовлетворяет лемме о накачке , противоречие . Значит L' не \subset Reg .

Но $L' = L \bigcap abb^*$. Если бы L был регулярным, то из замкнутости регулярности относительно операции пересечения бы следовало, что L' также регулярный. Но L' не регулярный, как было показано раньше. Значит L не регулярный ч.т.д.

Докажем , что данный язык удовлетворяет лемме о накачке . Возьмем p=2 . Если в слове нет ни одной буквы a , то возьмем $x=\varepsilon,\ y=b,\ z=$ остаток слова . Тогда слово разрастается в слова из $\{b^j|j>0$. Если в слове одна буква a , то возьмем $x=\varepsilon$, y=a , z= остаток слова . Тогда слово разрастается в слова из $\{b^j|j>0$ (если i=0) или из $\{a^mb^n|m>1,n>0\}$ (если

 $i\geqslant 1$). Если в слове несколько букв а , то возьмем x=a , y=a , z= остаток слова . Тогда слово разрастается в слова из $\{a^mb^n|m>1,n>0\}$. То есть во всех случаях выполняются условия леммы о накачке ч.т.д.

Задание 4.

Пусть R регулярный язык. Верно ли, что F тоже регулярный язык, если

- а) F \bigcap R регулярный язык;
- б) языки $F \cap R$ и $F \cap \overline{R}$ являются регулярными?

Решение

а)
Нет ,
$$\Box R = a^* \subset Reg$$
 .
 $F = \{a^*\} \bigcup \{a^ib^i|i \geqslant 0\}$
 $F \cap R = a^* \in Reg$
Аналогично задаче 3 ,
 $\{a^*\} \bigcup \{a^ib^i|i \geqslant 0\} \notin Reg$ ($\{a^ib^i|i \geqslant 0\} \notin Reg$, $\{a^ib^i|i \geqslant 0\} = \{a^*\} \bigcup \{a^ib^i|i \geqslant 0\} \cap \{ab^*\}$, $\{ab^*\} \in Reg$) .

6) $F \cap R \bigcup F \cap \overline{R} = F \cap \Sigma^* = F$

т.к. регулярность замкнута относительно объединения , то $F \subset \mathrm{Reg}$, т.е. да .

Задание 5.

Язык L распознаётся автоматам, заданным диаграммой:

- 1. Построить ДКА с минимальным числом состояний, который распознаёт язык L.
 - 2. Построить минимальный ДКА для языка \overline{L} .

Под минимальным ДКА понимается полный ДКА, распознающий L, с минимально возможным числом состояний.

Решение

2.

Для того чтобы построить ДКА , сначала сделаем его всюду определенным :

Разобьем состояния на группы:

$$F = q_1, q_3$$

$$Q - F = q_0, q_2$$

Отдельная группа - Дьявольская Вершина q_4 , назовем группу из нее ${
m Tr}=q_4$

Далее, согласно алгоритму, разобьем начальные группы на группы, одинаковые переходы из элементов которых ведут в элементы одинаковых групп

$$(q_1, \mathbf{a}) \in \mathrm{Tr}$$

 $(q_3, a) \in \operatorname{Tr}$

 $(q_1, b) \in Q - F$

 $(q_3, b) \in Tr$

Так как элементы q1 и q3 по b переходят в элементы разных групп , то мы их делаем элементами разных групп . Пусть $F_1=\mathrm{q1}$; $F_2=\mathrm{q3}$.

 $(q0, a) \in F1$

 $(q2, a) \in F1$

 $(q0, b) \in F2$

 $(q2, b) \in F2$

Значит они остаются в одной группе . На основании этого строим требуемый ДКА :

1.

ДКА с минимальным числом состояний получается из минимального удалением состояния Tr, которое нужно исключительно для всюдуопределенности. Тогда ДКА с минимальным числом состояний:

