VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belgaum -590014, Karnataka.

LAB REPORT on

Machine Learning (23CS6PCMAL)

Submitted by

Pratham Ganapathy (1BM22CS206)

in partial fulfillment for the award of the degree of

BACHELOR OF ENGINEERING

in

COMPUTER SCIENCE AND ENGINEERING

B.M.S. COLLEGE OF ENGINEERING
(Autonomous Institution under VTU)
BENGALURU-560019
Sep-2024 to Jan-2025

B.M.S. College of Engineering,

Bull Temple Road, Bangalore 560019

(Affiliated To Visvesvaraya Technological University, Belgaum)

Department of Computer Science and Engineering

CERTIFICATE

This is to certify that the Lab work entitled "Machine Learning (23CS6PCMAL)" carried out by **Pratham Ganapathy** (1BM22CS206), who is a bonafide student of **B.M.S. College of Engineering.** It is in partial fulfillment for the award of **Bachelor of Engineering in Computer Science and Engineering** of the Visvesvaraya Technological University, Belgaum. The Lab report has been approved as it satisfies the academic requirements in respect of an Machine Learning (23CS6PCMAL) work prescribed for the said degree.

Lab Faculty Incharge

Name: Ms. Saritha A N

Assistant Professor

Department of CSE, BMSCE

Dr. Kavitha Sooda

Professor & HOD

Department of CSE, BMSCE

Index

Sl. No.	Date	Experiment Title	Page No.
1	21-2-2025	Write a python program to import and export data using Pandas library functions	
2	3-3-2025	Demonstrate various data pre-processing techniques for a given dataset	
3	10-3-2025	Implement Linear and Multi-Linear Regression algorithm using appropriate dataset	
4	17-3-2025	Build Logistic Regression Model for a given dataset	
5	24-3-2025	Use an appropriate data set for building the decision tree (ID3) and apply this knowledge to classify a new sample.	
6	7-4-2025	Build KNN Classification model for a given dataset.	
7	21-4-2025	Build Support vector machine model for a given dataset	
8	5-5-2025	Implement Random forest ensemble method on a given dataset.	
9	5-5-2025	Implement Boosting ensemble method on a given dataset.	
10	12-5-2025	Build k-Means algorithm to cluster a set of data stored in a .CSV file.	
11	12-5-2025	Implement Dimensionality reduction using Principal Component Analysis (PCA) method.	

 $Github\ Link:\ \underline{https://github.com/PrathamGanapathy/ML-206}$

Write a python program to import and export data using Pandas library functions.

03/03/25	N Date P
03/	
	2 Shop of the color of the state of the stat
→ —	Write a python program to import and export data using pandas library functions
	To Do Jest feed of product product of slegal dil
4	Initializing values directly into Data Frame.
	import pandas as pa
	'Name': ['Alice', 'Bob', 'Charlie', 'David'], 'Age': [25, 30, 35, 00], 'City'! ('New York', 'Low Angeles', 'Chicago', 'Houston']
	Gity! ('New York', 'Low Angeles', 'Chicago', Houston')
	df = pd DataFrame (data) print (df head (1)) in the print distallar tragmi
	LIKERS - ["POPCEANK NE", "TOTOTEANK, NE"
₹.	Importing datasets from skleam datasets
	5 10 - 10 - 100 15 1 100 10 diameter
	from sklearn datasets import load iris
	05 1 000 ()
	iris = load_grisc) dj = pd. Dataframe (iris data, columns = iris, feature names)
	print (of head ())
	((2 c1) = ocianil) empt the
	(seal) - faultat }"] = offit) folg ('seal)] what willing

```
import pandas as pd
data = {
  'Name': ['Alice', 'Bob', 'Charlie', 'David'],
  'Age': [25, 30, 35, 40],
  'City': ['New York', 'Los Angeles', 'Chicago', 'Houston']
}
df = pd.DataFrame(data)
print("Sample data:")
print(df.head())
from sklearn.datasets import load_iris
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['target'] = iris.target
print("Sample data:")
print(df.head())
from sklearn.datasets import load_iris
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['target'] = iris.target
print("Sample data:")
print(df.head())
file_path = 'mobiles-dataset-2025.csv'
df = pd.read_csv(file_path, encoding='latin-1') # or 'cp1252' or other suitable encoding
print("Sample data:")
print(df.head())
import pandas as pd
data = {
```

```
'USN': ['IS001','IS002','IS003','IS004','IS005'],
  'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],
  'Marks': [25, 30, 35, 40,45]
}
df = pd.DataFrame(data)
print("Sample data:")
print(df.head())
file_path = 'sample_sales_data.csv'
df = pd.read_csv(file_path)
print("Sample data:")
print(df.head())
print("\n")
df = pd.read_csv("/content/dataset-of-diabetes .csv",encoding='latin-1')
print("Sample data:")
print(df.head())
print("\n")
df =pd.read_csv('sample_sales_data.csv')
print("Sample data:")
print(df.head())
df.to_csv('output.csv',index=False)
print("Data saved to output.csv")
sales_df =pd.read_csv('sample_sales_data.csv')
print("Sample data:")
print(sales_df.head())
sales_by_region =sales_df.groupby('Region')['Sales'].sum()
print("\nTotal sales by region:")
print(sales_by_region)
best_selling_products = sales_df.groupby('Product')['Quantity'].sum().sort_values(ascending=False)
```

```
print("\nBest-selling products by quantity:")
print(best_selling_products)
sales_by_region.to_csv('sales_by_region.csv')
best_selling_products.to_csv('best_selling_products.csv')
print("Data saved to sales_by_region.csv and best_selling_products.csv")
import yfinance as yf
import matplotlib.pyplot as plt
tickers = ["RELIANCE.NS", "TCS.NS", "INFY.NS"]
data = yf.download(tickers, start="2022-10-01", end="2023-10-01",
            group_by='ticker')
print("First 5 rows of the dataset:")
print(data.head())
print("\nShape of the dataset:")
print(data.shape)
print("\nColumn names:")
print(data.columns)
print("\n")
reliance_data = data['RELIANCE.NS']
print("\nSummary statistics for Reliance Industries:")
print(reliance_data.describe())
reliance_data['Daily Return'] = reliance_data['Close'].pct_change()
print("\n")
plt.figure(figsize=(12, 6))
plt.subplot(2, 1, 1)
reliance_data['Close'].plot(title="Reliance Industries - Closing Price")
plt.subplot(2, 1, 2)
reliance data['Daily Return'].plot(title="Reliance Industries - Daily Returns", color='orange')
plt.tight_layout()
plt.show()
reliance_data.to_csv('reliance_stock_data.csv')
```

```
tickers = ["HDFCBANK.NS", "ICICI.NS", "KOTAKBANK.NS"]
data = yf.download(tickers, start="2024-01-01", end="2024-12-30",
           group_by='ticker')
print("First 5 rows of the dataset:")
print(data.head())
print("\nShape of the dataset:")
print(data.shape)
print("\nColumn names:")
print(data.columns)
print("\n")
reliance_data = data['HDFCBANK.NS']
print("\nSummary statistics for Reliance Industries:")
print(reliance_data.describe())
reliance_data['Daily Return'] = reliance_data['Close'].pct_change()
print("\n")
plt.figure(figsize=(12, 6))
plt.subplot(2, 1, 1)
reliance_data['Close'].plot(title="HDFC Industries - Closing Price")
plt.subplot(2, 1, 2)
reliance_data['Daily Return'].plot(title="HDFCIndustries - Daily Returns", color='red')
plt.tight_layout()
plt.show()
reliance_data.to_csv('hdfc_stock_data.csv')
print("\nhdfc stock data saved to 'hdfc_stock_data.csv'.")
```

Demonstrate various data pre-processing techniques for a given dataset.

	Lab 1
1	Housing csv:
	import pandas as pd
	#: dj = pd read -csv (housing - csv)
	#ii print (dj. info())
	# iii pint (df-describe())
	print (dy ['ocean proximity'] value counts ())
	#v mining values = df. Pinull (). sum () att = mining values [mining values > 0] print (att)
->	Diabetes and soldelt meome datasets:
1.	Diabetes dataset: Glucose, Blood promure, skin thickness de had mixing values. Handled by drop no () ddult income: Work dass occupation had mixing values Handled by drop no ()
1	

```
Diabetes: No categorical column
adoutt Anconne: Work, class, education, occupation

Men max scaling scales data to a fixed range, usually

To, 17, while standardization centers data around o

with a standard deviation of 1 the min-max

scaling when data has a known range and

standardization when data has outliers
```

adult_df.head(10)

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.impute import SimpleImputer
```

```
try:
    diabetes_df = pd.read_csv('diabetes.csv')
    adult_df = pd.read_csv('adult.csv')
    except FileNotFoundError:
    print("Error: Please upload 'diabetes.csv' and 'adult.csv' to your Google Colab environment.")
    exit()

diabetes_df.head(10)
```

```
diabetes_df.shape
adult_df.shape
#Handling Missing Values
diabetes_numeric_cols = diabetes_df.select_dtypes(include=[np.number]).columns
diabetes_categorical_cols = diabetes_df.select_dtypes(exclude=[np.number]).columns
adult_numeric_cols = adult_df.select_dtypes(include=[np.number]).columns
adult_categorical_cols = adult_df.select_dtypes(exclude=[np.number]).columns
diabetes_numeric_imputer = SimpleImputer(strategy='mean')
adult_numeric_imputer = SimpleImputer(strategy='mean')
diabetes_df[diabetes_numeric_cols] =
diabetes_numeric_imputer.fit_transform(diabetes_df[diabetes_numeric_cols])
adult_df[adult_numeric_cols] = adult_numeric_imputer.fit_transform(adult_df[adult_numeric_cols])
diabetes_categorical_imputer = SimpleImputer(strategy='most_frequent')
adult_categorical_imputer = SimpleImputer(strategy='most_frequent')
diabetes_df[diabetes_categorical_cols] =
diabetes_categorical_imputer.fit_transform(diabetes_df[diabetes_categorical_cols])
adult_df[adult_categorical_cols] =
adult_categorical_imputer.fit_transform(adult_df[adult_categorical_cols])
print("Missing values in Diabetes dataset after imputation:")
print(diabetes_df.isnull().sum())
print("Missing values in Adult Income dataset after imputation:")
print(adult df.isnull().sum())
adult_df.replace("?", np.nan, inplace=True)
print("Missing values in Adult Income dataset after replacing '?':")
print(adult_df.isnull().sum())
```

```
from sklearn.impute import SimpleImputer
```

```
# Identify numeric and categorical columns
adult_numeric_cols = adult_df.select_dtypes(include=[np.number]).columns
adult_categorical_cols = adult_df.select_dtypes(exclude=[np.number]).columns
# Handle missing values in numeric columns using mean imputation
adult_numeric_imputer = SimpleImputer(strategy='mean')
adult_df[adult_numeric_cols] = adult_numeric_imputer.fit_transform(adult_df[adult_numeric_cols])
# Handle missing values in categorical columns using most frequent imputation
adult_categorical_imputer = SimpleImputer(strategy='most_frequent')
adult_df[adult_categorical_cols] =
adult_categorical_imputer.fit_transform(adult_df[adult_categorical_cols])
print("Missing values in Adult Income dataset after imputation:")
print(adult_df.isnull().sum())
from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()
# Encode categorical columns in Diabetes dataset
for col in diabetes_categorical_cols:
  diabetes_df[col] = label_encoder.fit_transform(diabetes_df[col])
# Encode categorical columns in Adult Income dataset
for col in adult_categorical_cols:
  adult_df[col] = label_encoder.fit_transform(adult_df[col])
print("Encoded columns in Diabetes dataset:")
print(diabetes_df.head())
print("Encoded columns in Adult Income dataset:")
print(adult_df.head())
```

```
#Handling outliers
def remove_outliers(df):
  Q1 = df.quantile(0.25)
  Q3 = df.quantile(0.75)
  IQR = Q3 - Q1
  df_{no}_outliers = df[\sim((df < (Q1 - 1.5 * IQR)) | (df > (Q3 + 1.5 * IQR))).any(axis=1)]
  return df_no_outliers
diabetes_df_no_outliers = remove_outliers(diabetes_df)
adult_df_no_outliers = remove_outliers(adult_df)
print("Diabetes dataset shape after removing outliers:", diabetes_df_no_outliers.shape)
print("Adult Income dataset shape after removing outliers:", adult_df_no_outliers.shape)
#Min-max scaling
from sklearn.preprocessing import MinMaxScaler
min_max_scaler = MinMaxScaler()
diabetes_scaled_minmax = pd.DataFrame(min_max_scaler.fit_transform(diabetes_df_no_outliers),
columns=diabetes_df_no_outliers.columns)
adult_scaled_minmax = pd.DataFrame(min_max_scaler.fit_transform(adult_df_no_outliers),
columns=adult_df_no_outliers.columns)
print("Diabetes dataset after Min-Max scaling:")
print(diabetes_scaled_minmax.head())
print("Adult Income dataset after Min-Max scaling:")
print(adult_scaled_minmax.head())
# Initialize Standard Scaler
from sklearn.preprocessing import StandardScaler
standard_scaler = StandardScaler()
diabetes_scaled_standard = pd.DataFrame(standard_scaler.fit_transform(diabetes_df_no_outliers),
columns=diabetes_df_no_outliers.columns)
adult_scaled_standard = pd.DataFrame(standard_scaler.fit_transform(adult_df_no_outliers),
```

```
columns=adult_df_no_outliers.columns)
print("Diabetes dataset after Standard scaling:")
print(diabetes_scaled_standard.head())
print("Adult Income dataset after Standard scaling:")
print(adult_scaled_standard.head())
```

Implement Linear and Multi-Linear Regression algorithm using appropriate dataset.

	dinear Regs				van Deg
Algorithm	1			-	parlitan
1 det	(N. XD, X	xon . y)	man man	1 11
Total ad	(X21, X25, X26	, Xam	y2),	Name of the least	Sand b
		~	L Max	he the	0 11
-	(xa, xa, xns,		im . gri	(W)	#I Very
datapoin	k	8:	Bn	100	91
.9 L. A R.	be Intriept	and Bi	be the	coeffici	ent.
ac po	30 1100-07-0				
3. Y=	g, b.	Bo Bo	, ×	= 7.01 X21	X22 745
	Lyn 1 131	B2	18 top	nim	2m2 ··
	1 3	[Bn]	1 15 11 1	18	
4. Rearro	ange:		ne le	- 14	
		1	100		
Y =	11 x21 + x22 1		Bo	1	٤١
	1		I B		43
and an	1+ 2m. + 2m2.	+ H Xn	nn] Bn	17	En
b =	((xT/x)-	. 1	` '	2010	130 day
D E	C(x,/x)	. X .) 4		
5. Obtain	arales 1	h 0	-		
0010011	values of	Bo , B,	Bn	from	B

```
import pandas as pd
import numpy as np
from sklearn import linear_model
import matplotlib.pyplot as plt
df = pd.read_csv('housing_area_price.csv')
plt.xlabel('area')
plt.ylabel('price')
plt.scatter(df.area,df.price,color='red',marker='+')
new_df = df.drop('price',axis='columns')
new df
price = df.price
reg = linear_model.LinearRegression()
reg.fit(new_df,price)
\#(1) Predict price of a home with area = 3300 sqr ft
reg.predict([[3300]])
reg.coef_
reg.intercept_
3300*135.78767123 + 180616.43835616432
\#(2) Predict price of a home with area = 5000 sqr ft
reg.predict([[5000]])
df = pd.read_csv('homeprices_Multiple_LR.csv')
df.bedrooms.median()
df.bedrooms = df.bedrooms.fillna(df.bedrooms.median())
reg = linear_model.LinearRegression()
reg.fit(df.drop('price',axis='columns'),df.price)
reg.coef_
reg.intercept_
```

```
#Find price of home with 3000 sqr ft area, 3 bedrooms, 40 year old
reg.predict([[3000, 3, 40]])
112.06244194*3000 + 23388.88007794*3 + -3231.71790863*40 + 221323.00186540384
df = pd.read_csv('canada_per_capita_income.csv')
print(df.head())
X = df[['year']]
y = df['per capita income (US\$)']
reg = LinearRegression()
reg.fit(X, y)
predicted_income_2020 = reg.predict([[2020]])
print(f"Predicted per capita income for Canada in 2020: {predicted_income_2020[0]:.2f}")
plt.scatter(X, y, color='blue')
plt.plot(X, reg.predict(X), color='red')
plt.xlabel('Year')
plt.ylabel('Per Capita Income')
plt.title('Per Capita Income in Canada Over the Years')
plt.show()
df = pd.read_csv('salary.csv')
print(df.head())
print("Missing values in the dataset:")
print(df.isnull().sum())
df['YearsExperience'] = df['YearsExperience'].fillna(df['YearsExperience'].median())
print("\nMissing values after filling:")
print(df.isnull().sum())
X = df[['YearsExperience']]
y = df['Salary']
reg = LinearRegression()
reg.fit(X, y)
```

```
predicted_salary_12_years = reg.predict([[12]])
print(f"\nPredicted salary for an employee with 12 years of experience:
${predicted_salary_12_years[0]:,.2f}")
plt.scatter(X, y, color='blue')
plt.plot(X, reg.predict(X), color='red')
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.title('Salary vs. Years of Experience')
plt.show()
def convert_to_numeric(value):
  word_to_num = {
     'zero': 0, 'one': 1, 'two': 2, 'three': 3, 'four': 4, 'five': 5,
     'six': 6, 'seven': 7, 'eight': 8, 'nine': 9, 'ten': 10,
     'eleven': 11, 'twelve': 12, 'thirteen': 13, 'fourteen': 14,
     'fifteen': 15
  }
  return word_to_num.get(value.lower(), value) if isinstance(value, str) else value
df_hiring = pd.read_csv('hiring.csv')
print(df.head())
df_hiring['experience'] = df_hiring['experience'].apply(convert_to_numeric)
df_hiring['experience'].fillna(0, inplace=True)
df_hiring['test_score(out of 10)'].fillna(df_hiring['test_score(out of 10)'].median(), inplace=True)
df_hiring['interview_score(out of 10)'].fillna(df_hiring['interview_score(out of 10)'].median(),
inplace=True)
X_hiring = df_hiring[['experience', 'test_score(out of 10)', 'interview_score(out of 10)']]
y_hiring = df_hiring['salary($)']
reg_hiring = LinearRegression()
reg_hiring.fit(X_hiring, y_hiring)
```

```
candidates = np.array([[2, 9, 6], [12, 10, 10]])
predicted_salaries = reg_hiring.predict(candidates)
for i, candidate in enumerate(candidates):
  print(f"\nPredicted salary for candidate with {candidate[0]} yrs experience, {candidate[1]} test score,
{candidate[2]} interview score: {predicted_salaries[i]:.2f} USD")
plt.scatter(y_hiring, reg_hiring.predict(X_hiring), color='blue', label='Predicted vs Actual')
plt.xlabel("Actual Salary")
plt.ylabel("Predicted Salary")
plt.title("Actual vs Predicted Salary")
plt.legend()
plt.show()
df_companies = pd.read_csv('1000_Companies.csv')
print(df.head())
label_encoder = LabelEncoder()
df_companies['State'] = label_encoder.fit_transform(df_companies['State'])
X_companies = df_companies[['R&D Spend', 'Administration', 'Marketing Spend', 'State']]
y_companies = df_companies['Profit']
df_companies.fillna(df_companies.median(), inplace=True)
reg_companies = LinearRegression()
reg_companies.fit(X_companies, y_companies)
input_data = np.array([[91694.48, 515841.3, 11931.24, label_encoder.transform(['Florida'])[0]]])
predicted profit = reg companies.predict(input data)
print(f"Predicted profit: {predicted_profit[0]:.2f} USD")
plt.scatter(y_companies, reg_companies.predict(X_companies), color='blue', label='Predicted vs
Actual')
plt.xlabel("Actual Profit")
plt.ylabel("Predicted Profit")
plt.title("Actual vs Predicted Profit")
plt.legend()
plt.show()
```

Build Logistic Regression Model for a given dataset.

Screenshot:

Code:

import pandas as pd

```
import seaborn as sns
import matplotlib.pyplot as plt
df = pd.read_csv("HR_comma_sep.csv")
print(df.info())
numericCols = df.select_dtypes(include=['float64', 'int64']).columns
plt.figure(figsize=(10, 8))
sns.heatmap(df[numericCols].corr(), annot=True, cmap='coolwarm', fmt='.2f')
plt.title("Correlation Matrix (Numeric Features)")
plt.show()
plt.figure(figsize=(8, 6))
sns.countplot(x='salary', hue='left', data=df)
plt.title("Impact of Salary on Employee Retention")
plt.xlabel("Salary Level")
plt.ylabel("Employee Count")
plt.show()
import pandas as pd
df = pd.read_csv("zoo-data.csv")
print(df.info())
print(df.head())
print(df.isnull().sum())
df.drop(columns=['animal_name'], inplace=True)
X = df.drop(columns=['class_type'])
y = df['class\_type']
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
X_train, X_test, y_train, y_test = train_test_split(
  X, y, test_size=0.2, random_state=42, stratify=y)
```

```
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_{test} = scaler.transform(X_{test})
logreg = LogisticRegression(max_iter=200, multi_class='multinomial', solver='lbfgs')
logreg.fit(X_train, y_train)
from sklearn.metrics import accuracy_score
y_pred = logreg.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f"Model Accuracy: {accuracy:.2f}")
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
import matplotlib.pyplot as plt
cm = confusion_matrix(y_test, y_pred)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=logreg.classes_)
disp.plot(cmap=plt.cm.Blues)
plt.title("Confusion Matrix for Zoo Animal Classification")
plt.show()
y_pred = logreg.predict(X_test)
pred_classes = [class_mapping[pred] for pred in y_pred]
print("Predicted Classes:", pred_classes)
import seaborn as sns
import matplotlib.pyplot as plt
sns.countplot(x='class_type', data=df)
plt.title("Class Distribution of Animals in Zoo Dataset")
plt.xlabel("Class Type")
plt.ylabel("Count")
plt.show()
```

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

```
cm = confusion_matrix(y_test, y_pred)
class_labels = [class_mapping[num] for num in logreg.classes_]
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=class_labels)
disp.plot(cmap=plt.cm.Blues)
plt.title("Confusion Matrix with Class Names")
plt.show()
```

Use an appropriate data set for building the decision tree (ID3) and apply this knowledge to classify a new sample.

	Cabilla Market
	Zah 2 manda tamada da minda s
Sr.	appropriate totaket for reading trulding a decision of appropriate totaket for reading trulding a decision.
4	gaillen and a state of the stat
1	A set of hairing examples each with a target clark . It set of features with possible values
2	Anifolise . Start with the entire delevet as the root mode
13	Recursion
	for each node
	Af all instances in the dataset belong to the same claner, create a had node with that clared the same create a had node with the trajective clares a had node with the majority do
1	2 Calculate Entropy: H(5) = - \(\hat{\Sign}\) pi dog. pi
+	M32 511 11
1	pi - probability of class i
-	3. Calculate information gain:
	IG(S,A) > H(S) - > (Sul H(Su

```
Le Select the Jeature with highest IG

Le Split the dataset

Recursively apply 103 algorithm to the subset

teating it as a new dataset

S Combuet the tree

Repeat steps 3 and 4 recursively tell no

features are lift

6 Output

a decision tree representing the learned classification

model
```

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score, f1_score
from sklearn.preprocessing import LabelEncoder
```

```
def train_and_evaluate_iris():
    iris_df = pd.read_csv("iris.csv")
    X = iris_df.drop(columns=["species"])
    y = iris_df["species"]
    y_le = LabelEncoder()
    y = y_le.fit_transform(y)
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
  model = DecisionTreeClassifier(random_state=42)
  model.fit(X_train, y_train)
  y_pred = model.predict(X_test)
  # Evaluating the model
  acc = accuracy_score(y_test, y_pred)
  prec = precision_score(y_test, y_pred, average='weighted')
  rec = recall_score(y_test, y_pred, average='weighted')
  f1 = f1_score(y_test, y_pred, average='weighted')
  cm = confusion matrix(y test, y pred)
  print("IRIS Dataset Classification:")
  print(f"Accuracy Score: {acc:.4f}")
  print(f"Precision Score: {prec:.4f}")
  print(f"Recall Score: {rec:.4f}")
  print(f"F1 Score: {f1:.4f}")
  plt.figure(figsize=(6, 4))
  sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=y_le.classes_,
yticklabels=y_le.classes_)
  plt.xlabel("Predicted")
  plt.ylabel("Actual")
  plt.title("Confusion Matrix: iris.csv")
  plt.show()
train_and_evaluate_iris()
def train_and_evaluate_drug():
  drug_df = pd.read_csv("drug.csv")
  categorical_features = ["Sex", "BP", "Cholesterol"]
  label_encoders = {}
```

```
for col in categorical_features:
    le = LabelEncoder()
    drug_df[col] = le.fit_transform(drug_df[col])
    label_encoders[col] = le
  X = drug_df.drop(columns=["Drug"])
  y = drug_df["Drug"]
  y_le = LabelEncoder()
  y = y_le.fit_transform(y)
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
  model = DecisionTreeClassifier(random state=42)
  model.fit(X_train, y_train)
  y_pred = model.predict(X_test)
  acc = accuracy_score(y_test, y_pred)
  prec = precision_score(y_test, y_pred, average='weighted')
  rec = recall_score(y_test, y_pred, average='weighted')
  f1 = f1_score(y_test, y_pred, average='weighted')
  cm = confusion_matrix(y_test, y_pred)
  print("Drug Dataset Classification:")
  print(f"Accuracy Score: {acc:.4f}")
  print(f"Precision Score: {prec:.4f}")
  print(f"Recall Score: {rec:.4f}")
  print(f"F1 Score: {f1:.4f}")
  plt.figure(figsize=(6, 4))
  sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=y_le.classes_,
yticklabels=y_le.classes_)
  plt.xlabel("Predicted")
  plt.ylabel("Actual")
  plt.title("Confusion Matrix: drug.csv")
```

```
plt.show()
train_and_evaluate_drug()
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor, plot_tree
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_absolute_error, mean_squared_error
petrol_df = pd.read_csv("petrol_consumption.csv")
X = petrol_df.drop(columns=["Petrol_Consumption"])
y = petrol_df["Petrol_Consumption"]
scaler = StandardScaler()
X_{scaled} = scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
model = DecisionTreeRegressor(max_depth=5, random_state=42)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print("Petrol Consumption Regression:")
print("Mean Absolute Error (MAE):", mean_absolute_error(y_test, y_pred))
print("Mean Squared Error (MSE):", mean_squared_error(y_test, y_pred))
print("Root Mean Squared Error (RMSE):", np.sqrt(mean_squared_error(y_test, y_pred)))
```

Build KNN Classification model for a given dataset.

3 Jon	
	Lab 05 - K Nearest Meighbourn Algorithm
	digarthra:
1	Prepare the data
	Prepare the data Soud the dataset and separate the Jeanures (x) from the labels (x). If necessary, split the data hate training and test sets
S	Choose the number of neighborers (k).
	the default value of K is 3
3	Normalize the data 41's remailer beneficial to scale
	Normalize the data 41's usually beneficial to scale or normalize the features to prevent features with larger hanger from dominating the distance calculation
Li.	Calculate the distance for each test sample calculate
	Calculate the distance for each test sample, calculate the distance to every training sample using cucledian distance formula
	d(x/xi)= \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
5.	Sort the distances:
	Sort the distances: Sort the distances for each test

=	
6.	Select the K nearest neighbours
	select the top & nearest neighbours
7.	Count the class labels of reighbours
	count the class labels of a nearest neighbours
8	Dilumine the predicted class:
	determined by the ranjority vote
9	Make the prediction
	which the predicted class label
	to the test sample
10	Evaluate the model. Evaluate the model wing performance
	metrics like accuracy

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder

from sklearn.preprocessing import StandardScaler

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import classification_report, confusion_matrix, accuracy_score

import seaborn as sns

import matplotlib.pyplot as plt

iris_df = pd.read_csv('iris.csv')

```
le = LabelEncoder()
iris_df['species'] = le.fit_transform(iris_df['species'])
X = iris\_df.drop('species', axis=1)
y = iris_df['species']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
error_rates = []
accuracies = []
k_values = range(1, 10)
for k in k_values:
  knn = KNeighborsClassifier(n_neighbors=k)
  knn.fit(X_train, y_train)
  y_pred_k = knn.predict(X_test)
  error = 1 - accuracy_score(y_test, y_pred_k)
  error_rates.append(error)
  accuracies.append(accuracy_score(y_test, y_pred_k))
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(k_values, accuracies, marker='o', color='blue')
plt.title("Accuracy vs K")
plt.xlabel("K Value")
plt.ylabel("Accuracy")
plt.subplot(1, 2, 2)
plt.plot(k_values, error_rates, marker='o', color='red')
plt.title("Error Rate vs K")
plt.xlabel("K Value")
plt.ylabel("Error Rate")
plt.tight_layout()
plt.show()
best_k = k_values[accuracies.index(max(accuracies))]
```

```
print(f"Best K: {best_k} with Accuracy: {max(accuracies):.2f}")
knn = KNeighborsClassifier(n_neighbors=best_k)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
# Evaluation
print("\n=== Final Evaluation on IRIS Dataset ===")
print("Accuracy Score:", accuracy_score(y_test, y_pred))
print("\nClassification Report:")
print(classification_report(y_test, y_pred, labels=[0, 1, 2], target_names=le.classes_))
# Confusion Matrix
cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
       xticklabels=le.classes_, yticklabels=le.classes_)
plt.title("Confusion Matrix - IRIS")
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.show()
df = pd.read_csv('diabetes.csv')
X = df.drop('Outcome', axis=1)
y = df['Outcome']
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(
  X_scaled, y, test_size=0.2, random_state=42, stratify=y
)
accuracy_scores = []
k_range = range(1, 21)
```

```
for k in k_range:
  knn = KNeighborsClassifier(n_neighbors=k)
  knn.fit(X_train, y_train)
  y_pred_k = knn.predict(X_test)
  acc = accuracy_score(y_test, y_pred_k)
  accuracy_scores.append(acc)
plt.figure(figsize=(8, 5))
plt.plot(k_range, accuracy_scores, marker='o', color='purple')
plt.title("Accuracy vs K (Diabetes Dataset)")
plt.xlabel("K Value")
plt.ylabel("Accuracy")
plt.xticks(k_range)
plt.grid()
plt.show()
best_k = k_range[accuracy_scores.index(max(accuracy_scores))]
print(f"Best K: {best_k} with Accuracy: {max(accuracy_scores):.2f}")
knn = KNeighborsClassifier(n_neighbors=best_k)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
print("=== Final Evaluation (Diabetes Dataset) ===")
print("Accuracy Score:", accuracy_score(y_test, y_pred))
print("\nClassification Report:")
print(classification_report(y_test, y_pred))
cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt='d', cmap='Purples', xticklabels=['No Diabetes', 'Diabetes'],
yticklabels=['No Diabetes', 'Diabetes'])
plt.title("Confusion Matrix - Diabetes")
plt.xlabel("Predicted")
```

```
plt.ylabel("Actual")
plt.show()
heart_df = pd.read_csv('heart.csv')
X = heart_df.drop('target', axis=1)
y = heart_df['target']
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(
  X_scaled, y, test_size=0.2, random_state=42, stratify=y
)
accuracy_scores = []
k_range = range(1, 21)
for k in k_range:
  knn = KNeighborsClassifier(n_neighbors=k)
  knn.fit(X_train, y_train)
  y_pred_k = knn.predict(X_test)
  acc = accuracy_score(y_test, y_pred_k)
  accuracy_scores.append(acc)
plt.figure(figsize=(8, 5))
plt.plot(k_range, accuracy_scores, marker='o', color='red')
plt.title("Accuracy vs K (Heart Dataset)")
plt.xlabel("K Value")
plt.ylabel("Accuracy")
plt.xticks(k_range)
plt.grid()
plt.show()
best_k = k_range[accuracy_scores.index(max(accuracy_scores))]
print(f"Best K: {best_k} with Accuracy: {max(accuracy_scores):.2f}")
```

```
knn = KNeighborsClassifier(n_neighbors=best_k)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)

print("=== Final Evaluation (Heart Dataset) ===")
print("\nAccuracy Score:", accuracy_score(y_test, y_pred))
print("\nClassification Report:")
print(classification_report(y_test, y_pred, target_names=['No Disease', 'Disease']))
cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt='d', cmap='Reds', xticklabels=['No Disease', 'Disease'],
yticklabels=['No Disease', 'Disease'])
plt.title("Confusion Matrix - Heart Disease")
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.show()
```

Build Support vector machine model for a given dataset.

	The state of the s
	Stupper Victor Markine (sum)
-	algorithm
	Propose the data.
	feature (x) from the labels (x)
2	Split dataset Divide the date into baining and testing
-	set in a specified rate

3	Anihabre the SUM class
	C - Regularization constant max iter - No of having iterations
	Kernel linear $K(x,x') \in 2.2'$
- 227	marine later to provide act us frame
b	One us Rest Training Shategy
A DES	Forwert labels toke hinary
	y binary = \ 1 \ y + c \ otherwise
	Irain a binary svar clanifich rung the simplified
5.	Birary SVM training
	Anihalize:
	for each training sample
	Randomly select lodge ; + 1 - Compute prediction exids & and &;
	Some old values de di
	- Compute bounds (4)
-1	· Commute
	J = &K (xi, xj) - K(xi, xj) - K(xj, xj)
	come by frame of all the

· Update of the bias term

Compute by the bias term

Store model for each close

Compute decision score:

(hore the score

Predict the class with maximum decision score

Predict the class with maximum decision score

Total no of samples

Code:

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder, StandardScaler

from sklearn.svm import SVC

from sklearn.metrics import accuracy_score, confusion_matrix, roc_auc_score, roc_curve

from sklearn.preprocessing import label_binarize

import matplotlib.pyplot as plt

import seaborn as sns

```
iris = pd.read_csv("iris.csv")
label encoder = LabelEncoder()
iris['species'] = label_encoder.fit_transform(iris['species'])
class_names_iris = label_encoder.classes_
X_iris = iris.drop('species', axis=1)
y_iris = iris['species']
X_train_iris, X_test_iris, y_train_iris, y_test_iris = train_test_split(X_iris, y_iris, test_size=0.2,
random_state=42)
scaler = StandardScaler()
X train iris = scaler.fit transform(X train iris)
X_test_iris = scaler.transform(X_test_iris)
svm_linear = SVC(kernel='linear')
svm_linear.fit(X_train_iris, y_train_iris)
y_pred_linear = svm_linear.predict(X_test_iris)
acc_linear = accuracy_score(y_test_iris, y_pred_linear)
cm_linear = confusion_matrix(y_test_iris, y_pred_linear)
plt.figure(figsize=(6,4))
sns.heatmap(cm_linear, annot=True, fmt='d', cmap='Blues', xticklabels=class_names_iris,
yticklabels=class_names_iris)
plt.title(f'IRIS SVM Linear Kernel\nAccuracy: {acc_linear:.2f}')
plt.xlabel("Predicted Label")
plt.ylabel("True Label")
plt.tight_layout()
plt.show()
svm rbf = SVC(kernel='rbf')
svm_rbf.fit(X_train_iris, y_train_iris)
y_pred_rbf = svm_rbf.predict(X_test_iris)
acc_rbf = accuracy_score(y_test_iris, y_pred_rbf)
cm_rbf = confusion_matrix(y_test_iris, y_pred_rbf)
```

```
plt.figure(figsize=(6,4))
sns.heatmap(cm_rbf, annot=True, fmt='d', cmap='Greens', xticklabels=class_names_iris,
yticklabels=class_names_iris)
plt.title(f'IRIS SVM RBF Kernel\nAccuracy: {acc_rbf:.2f}')
plt.xlabel("Predicted Label")
plt.ylabel("True Label")
plt.tight_layout()
plt.show()
letters = pd.read csv("letter-recognition.csv")
X_letters = letters.drop('letter', axis=1)
y_letters = letters['letter']
label_encoder_letters = LabelEncoder()
y_letters_encoded = label_encoder_letters.fit_transform(y_letters)
class_names_letters = label_encoder_letters.classes_
X_train_letters, X_test_letters, y_train_letters, y_test_letters = train_test_split(
  X_letters, y_letters_encoded, test_size=0.2, random_state=42)
scaler_letters = StandardScaler()
X_train_letters = scaler_letters.fit_transform(X_train_letters)
X_test_letters = scaler_letters.transform(X_test_letters)
svm_letters = SVC(kernel='rbf', probability=True)
svm_letters.fit(X_train_letters, y_train_letters)
y_pred_letters = svm_letters.predict(X_test_letters)
acc_letters = accuracy_score(y_test_letters, y_pred_letters)
cm_letters = confusion_matrix(y_test_letters, y_pred_letters)
plt.figure(figsize=(14, 12))
sns.heatmap(cm_letters, annot=True, fmt='d', cmap='Purples',
```

```
xticklabels=class_names_letters,
       yticklabels=class_names_letters,
       annot_kws={"size": 8},
       cbar=True)
plt.title(f'Letter Recognition - SVM RBF Kernel\nAccuracy: {acc_letters*100:.2f}%', fontsize=16)
plt.xlabel("Predicted Label", fontsize=14)
plt.ylabel("True Label", fontsize=14)
plt.xticks(rotation=45)
plt.yticks(rotation=0)
plt.tight_layout()
plt.show()
y_test_binarized = label_binarize(y_test_letters, classes=np.arange(len(class_names_letters)))
y_score = svm_letters.predict_proba(X_test_letters)
auc_score = roc_auc_score(y_test_binarized, y_score, average='macro')
fpr = dict()
tpr = dict()
for i in range(len(class_names_letters)):
  fpr[i], tpr[i], _ = roc_curve(y_test_binarized[:, i], y_score[:, i])
plt.figure(figsize=(8, 6))
for i in range(0, len(class_names_letters), 4): # Plot every 4th class
  plt.plot(fpr[i], tpr[i], lw=1.5, label=f'Class {class_names_letters[i]}')
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title(f"Multi-Class ROC Curve (Macro AUC = {auc_score:.6f})")
plt.legend(loc="lower right", fontsize='small')
plt.grid()
plt.tight_layout()
plt.show()
print(f"Exact AUC Score = {auc_score}")
```

Implement Random forest ensemble method on a given dataset.

	Nob. Ob - Random Jorest
	algorithm:
	Data Preparation: Given a dataset D with N samples and M features, D = f (x, y,), (x, y,) (x, y,) where x represents the features, and y; represents the target variable for the its sample
oŽ.	Bootstrap sampling: Jos each tree in the forest draw a bootstrap sample from the dateset D by sampling N
	bookhap sample from the dataset D by sampling N
3	Random fature subset selection:
	select a subset of m features from the M total leatures. Sypically, m + im for classification. It each mode the heat feature to split on is chosen band on some criterian
4	Build Decision Trees:
	tree To using the bookhap sample De and the random feature subset Features rely applied the date great mach node by relecting the feature and threshold that minimize the chosen applitting

-	
5.	Calculate Ampurity
	Calculate Ampurity: For classification, compute Gini Ampurity for each possible split of the dataset
6.	Calculate Mean Squared Error: For regression, calculate mean
	Recursive Splitting: Recursively epitting the data at each made of the three board on the training that provide the best split according to the impurity or MSE
	the best split according to the impuribly or MSE
8	Repeat for Multiple Trees: Repeat steps of to 7 B to
9.	Make Predictions Cranification Majority vote Regression Average
10	Evaluate to model Clampication: Accuracy Regression: MSE, MAE
	The second second

Code:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import confusion_matrix

```
iris_df = pd.read_csv("iris.csv")
X = iris\_df.drop('species', axis=1)
y = iris_df['species']
le = LabelEncoder()
y_encoded = le.fit_transform(y)
X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=0.3, random_state=42)
rf_model = RandomForestClassifier(n_estimators=10, random_state=42)
rf_model.fit(X_train, y_train)
y_pred = rf_model.predict(X_test)
print("Random Forest Accuracy with 10 trees:", accuracy_score(y_test, y_pred))
scores = []
n_range = range(1, 101)
best_model = None
best_preds = None
for n in n_range:
  model = RandomForestClassifier(n_estimators=n, random_state=42)
  model.fit(X_train, y_train)
  preds = model.predict(X_test)
  acc = accuracy_score(y_test, preds)
  scores.append(acc)
  if acc == max(scores):
    best_model = model
    best_preds = preds
best\_score = max(scores)
best_n = n_range[scores.index(best_score)]
print(f"Best Random Forest Accuracy: {best_score:.4f} with {best_n} trees")
```

```
plt.figure(figsize=(10, 5))

plt.plot(n_range, scores, marker='o', linestyle='-', color='blue')

plt.title('Random Forest Accuracy vs Number of Trees (Iris Dataset)')

plt.xlabel('Number of Trees')

plt.ylabel('Accuracy')

plt.grid(True)

plt.show()

cm = confusion_matrix(y_test, best_preds)

plt.figure(figsize=(6, 5))

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=le.classes_, yticklabels=le.classes_)

plt.title(f''Confusion Matrix for Best Random Forest Model ({best_n} Trees)'')

plt.xlabel("Predicted")

plt.ylabel("Actual")

plt.show()
```

Implement Boosting ensemble method on a given dataset.

13	
	Bouring Ensemble Method
	dood the dataset Goen dataset D = (2, 4) (2, 4) (20 4) 3, where ye 6 1-1, 1) for birmy classification
	Anihalize nample weight: Assign equal weight to each datapoint: N
3	Choose Number of Stration T: Set the number of
	7372 33311,000
C.	In t-1. Train weak Learner: Train a weak learner A he(x) on wighted data
	8 he(x) on weighted data
5	Calculate Error of weak dearner: Weighted clarestration
	Extra (h. (x) + y.)
6.	Copapite Learner's Weight: Kearner impostance: Ke * In (I-E)

-	(P) (P)
1.	Update Sample whight: Emphasize misclanifed point. in: - in. exp (-xey he (m))
8	Normalize weight:
	Normalise in that Iw. 1
9	Final Strong Classifier: Carobini weak learners:
	H(n) = sign (& xike (x))
D	Evaluate Model Calculate accuracy Accuracy = correct predictions
	to the southern than a not
	Control of the control of the control of

Code:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.ensemble import AdaBoostClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import confusion_matrix
```

```
income_df = pd.read_csv("income.csv")
X_income = income_df.drop('income_level', axis=1)
y_income = income_df['income_level']
X_train_i, X_test_i, y_train_i, y_test_i = train_test_split(X_income, y_income, test_size=0.3, random_state=42)
ada_model = AdaBoostClassifier(n_estimators=10, random_state=42)
ada_model.fit(X_train_i, y_train_i)
```

```
y_pred_i = ada_model.predict(X_test_i)
print("AdaBoost Accuracy with 10 estimators:", accuracy_score(y_test_i, y_pred_i))
scores_ada = []
n_range_ada = range(1, 51)
best_model_ada = None
best_preds_ada = None
for n in n_range_ada:
  model = AdaBoostClassifier(n_estimators=n, random_state=42)
  model.fit(X_train_i, y_train_i)
  preds = model.predict(X_test_i)
  acc = accuracy_score(y_test_i, preds)
  scores_ada.append(acc)
  if acc == max(scores\_ada):
    best_model_ada = model
    best_preds_ada = preds
best_score_ada = max(scores_ada)
best_n_ada = n_range_ada[scores_ada.index(best_score_ada)]
print(f"Best AdaBoost Accuracy: {best_score_ada:.4f} with {best_n_ada} estimators")
plt.figure(figsize=(10, 5))
plt.plot(n_range_ada, scores_ada, marker='o', linestyle='-', color='orange')
plt.title('AdaBoost Accuracy vs Number of Estimators (Income Dataset)')
plt.xlabel('Number of Estimators')
plt.ylabel('Accuracy')
plt.grid(True)
plt.show()
cm_ada = confusion_matrix(y_test_i, best_preds_ada)
plt.figure(figsize=(6, 5))
```

```
sns.heatmap(cm_ada, annot=True, fmt='d', cmap='Oranges', xticklabels=[0, 1], yticklabels=[0, 1])
plt.title(f"Confusion Matrix for Best AdaBoost Model ({best_n_ada} Estimators)")
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.show()
```

Build k-Means algorithm to cluster a set of data stored in a .CSV file.

he dataset from a CSV file and a
By distance from a CSV file and a
K., M. 2m/ X. E. R.
the missing values, resmalise, and extract the features X for

- 19	
0	A Land comment districts
3.	Chanse K. Select the number of cluster K. This is a hypoparameter that needs to be specified by acchand.
	bypurparameter that need to be springer
A	gnifialize Centraids Pandende releat & paink from
	The dataset as initial controlle Cr. Co. Ck
5.	Assign points to the market charter. The earth datapoint as aways the the charter whose centraid to the chartest.
	for each datapoint a wign
	It to the chiefe whose centraid to the closest
-	The Christianic
- 33	d(ai, G) = \ mi (ain-Gin)
	am - mith feature of as
	gin - mth feature of as
6	Update Centroids
	After aring nine all points to
	clusters, calculate the new centraids by taking
	Opdate Centroids After arrighing all points to cleriting, calculate the new centroids by taking mean of all points
3	Chuk los tonuramas
	Check for tonvergence:
	change a grifficantly, stop the algorithm
100	Repeat steps 5 to 7.
-	The street of th
	Anyon final chaters:
	Once convergence is

4	N one P
	reached the final cluster engineering and centraids
10.	Evaluate the clusters
	Sum of squared errors, silhouette store

Code:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from scipy import stats
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
df1=pd.read_csv("iris.csv")
df1.head()
df = df1.drop(['sepal_length', 'sepal_width', 'species'], axis=1)
scaler = StandardScaler()
scaled_df = scaler.fit_transform(df)
wcss = []
for i in range(1, 11):
kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=300, n_init=10, random_state=0)
kmeans.fit(scaled_df)
wcss.append(kmeans.inertia_)
plt.plot(range(1, 11), wcss)
plt.title('Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
kmeans = KMeans(n_clusters=3, init='k-means++', max_iter=300, n_init=10, random_state=0)
pred_y = kmeans.fit_predict(scaled_df)
df['cluster'] = pred_y
```

```
plt.scatter(df['petal_length'], df['petal_width'], c=df['cluster'])
plt.title('Clusters of Iris Flowers')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.show()
```

Implement Dimensionality reduction using Principal Component Analysis (PCA) method.

SCI	reensnot:	
	Principle Component Analysis	
	Load the dataset Load the dataset D. f(2, xx, x, 2m) &	
2	Biprocess the data. Standardize the dataset by centering the features and scale thing to have unit variance.	
	Compute the covariance makes Cot The standardized data	
	Compute Eigenvalues and Eigenvectors: Jind eigenvalues & eigenvectors of the covariance matrix &	
5	Sort Eigenvalues & Eigenvectors: Sort the eigenvalues A. Az Am In descending order Sort the eigenvectors correspondingly	

a. Reconstruct X TE = XPCA - WX

Code:

from google.colab import files
heart=files.upload()
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

```
from scipy import stats
import seaborn as sns
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.decomposition import PCA
df1=pd.read_csv("heart.csv")
df1.head()
text_cols = df1.select_dtypes(include=['object']).columns
label_encoder = LabelEncoder()
for col in text_cols:
df1[col] = label_encoder.fit_transform(df1[col])
print(df1.head())
X = df1.drop('HeartDisease', axis=1)
y = df1['HeartDisease']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_{\text{test}} = \text{scaler.transform}(X_{\text{test}})
# Support Vector Machine
svm model = SVC(kernel='linear', random state=42)
svm_model.fit(X_train, y_train)
svm_predictions = svm_model.predict(X_test)
svm_accuracy = accuracy_score(y_test, svm_predictions)
print(f"SVM Accuracy: {svm_accuracy}")
```

```
# Logistic Regression
lr_model = LogisticRegression(random_state=42)
lr_model.fit(X_train, y_train)
lr_predictions = lr_model.predict(X_test)
lr_accuracy = accuracy_score(y_test, lr_predictions)
print(f"Logistic Regression Accuracy: {lr_accuracy}")
# Random Forest
rf_model = RandomForestClassifier(random_state=42)
rf_model.fit(X_train, y_train)
rf_predictions = rf_model.predict(X_test)
rf_accuracy = accuracy_score(y_test, rf_predictions)
print(f"Random Forest Accuracy: {rf_accuracy}")
models = {
"SVM": svm_accuracy,
"Logistic Regression": lr_accuracy,
"Random Forest": rf_accuracy}
best_model = max(models, key=models.get)
print(f"\nBest Model: {best_model} with accuracy {models[best_model]}")
pca = PCA(n\_components=0.95)
X_train_pca = pca.fit_transform(X_train)
X_{test_pca} = pca.transform(X_{test_pca})
svm_model_pca = SVC(kernel='linear', random_state=42)
svm_model_pca.fit(X_train_pca, y_train)
svm_predictions_pca = svm_model_pca.predict(X_test_pca)
svm_accuracy_pca = accuracy_score(y_test, svm_predictions_pca)
print(f"SVM Accuracy (with PCA): {svm_accuracy_pca}")
lr_model_pca = LogisticRegression(random_state=42)
```

```
lr_model_pca.fit(X_train_pca, y_train)
lr_predictions_pca = lr_model_pca.predict(X_test_pca)
lr_accuracy_pca = accuracy_score(y_test, lr_predictions_pca)
print(f"Logistic Regression Accuracy (with PCA): {lr_accuracy_pca}")

rf_model_pca = RandomForestClassifier(random_state=42)
rf_model_pca.fit(X_train_pca, y_train)
rf_predictions_pca = rf_model_pca.predict(X_test_pca)
rf_accuracy_pca = accuracy_score(y_test, rf_predictions_pca)
print(f"Random Forest Accuracy (with PCA): {rf_accuracy_pca}")

models_pca = {
    "SVM": svm_accuracy_pca,
    "Logistic Regression": lr_accuracy_pca,
    "Random Forest": rf_accuracy_pca,
    best_model_pca = max(models_pca, key=models_pca.get)
print(f"\nBest Model (with PCA): {best_model_pca} with accuracy {models_pca[best_model_pca]}")
```