of the same form $(S^n, s_0) \to (X, x_0)$. In this interpretation of $\pi_n(X, x_0)$, the sum f + g is the composition $S^n \xrightarrow{c} S^n \vee S^n \xrightarrow{f \vee g} X$ where c collapses the equator S^{n-1} in S^n to a point and we choose the basepoint s_0 to lie in this S^{n-1} .

We will show next that if X is path-connected, different choices of the basepoint x_0 always produce isomorphic groups $\pi_n(X, x_0)$, just as for π_1 , so one is

justified in writing $\pi_n(X)$ for $\pi_n(X, x_0)$ in these cases. Given a path $\gamma: I \to X$ from $x_0 = \gamma(0)$ to another basepoint $x_1 = \gamma(1)$, we may associate to each map $f: (I^n, \partial I^n) \to (X, x_1)$ a new map $\gamma f: (I^n, \partial I^n) \to (X, x_0)$ by shrinking the domain of f to a smaller concentric cube in I^n , then inserting the path γ on each radial segment in the shell between this smaller cube and ∂I^n . When

n=1 the map γf is the composition of the three paths γ , f, and the inverse of γ , so the notation γf conflicts with the notation for composition of paths. Since we are mainly interested in the cases n>1, we leave it to the reader to make the necessary notational adjustments when n=1.

A homotopy of γ or f through maps fixing ∂I or ∂I^n , respectively, yields a homotopy of γf through maps $(I^n, \partial I^n) \to (X, x_0)$. Here are three other basic properties:

- (1) $\gamma(f+g) \simeq \gamma f + \gamma g$.
- (2) $(\gamma \eta) f \simeq \gamma(\eta f)$.
- (3) $1f \simeq f$, where 1 denotes the constant path.

The homotopies in (2) and (3) are obvious. For (1), we first deform f and g to be constant on the right and left halves of I^n , respectively, producing maps we may call f + 0 and 0 + g, then we excise a progressively wider symmetric middle slab of $\gamma(f + 0) + \gamma(0 + g)$ until it becomes $\gamma(f + g)$:

An explicit formula for this homotopy is

$$h_t(s_1,s_2,\cdots,s_n) = \begin{cases} \gamma(f+0)\big((2-t)s_1,s_2,\cdots,s_n\big), & s_1 \in [0,\frac{1}{2}] \\ \gamma(0+g)\big((2-t)s_1+t-1,s_2,\cdots,s_n\big), & s_1 \in [\frac{1}{2},1] \end{cases}$$

Thus we have $\gamma(f+g) \simeq \gamma(f+0) + \gamma(0+g) \simeq \gamma f + \gamma g$.

If we define a change-of-basepoint transformation $\beta_{\gamma}:\pi_n(X,x_1)\to\pi_n(X,x_0)$ by $\beta_{\gamma}([f])=[\gamma f]$, then (1) shows that β_{γ} is a homomorphism, while (2) and (3) imply that β_{γ} is an isomorphism with inverse $\beta_{\overline{\gamma}}$ where $\overline{\gamma}$ is the inverse path of γ ,