

가치 함수 근사 Value Function Approximation

#대규모강화학습

Large-Scale Reinforcement Learning

- 강화학습은 대규모의 문제를 해결하는 데 활용할 수 있음
 - o Backgammon: 10^20 상태 수
 - o Computer Go: 10^170 상태 수
 - o Helicopter: 연속 상태 수

가치함수근사

Value Function Approximation

- 모든 예측 방법은 특정 상태에서의 가치를 그 상태에 대한 '보강된 가치'
 또는 갱신 목표를 향해 이동시키기 위한 가치 함수 추정값의 갱신으로 설명됨
- 입출력 예제를 모사하기 위해 이러한 방식으로 학습하는 기계학습 방법을 지도학습 방법이라고 하고,
 - 출력이 u와 같은 숫자일 경우 이 과정은 종종 함수 근사(function approximation)라고도 한다.

#예측목적

VE, 평균 제곱 오차, Mean Squared Value Error

● 모델(model)이란 환경이 행동에 어떻게 반응할 것인지를 예측하기 위해 학습자가 사용할 수 있는 모든 것을 의미한다.

#예측목적

어떤 근사 함수를 사용할까?

planning

- 미분가능한 함수
 - 선형 방정식
 - 인공 신경망
 - 의사결정트리
 - 0
- 또한 우리는 iid가 아니고 정적이지 않은 데이터로부터 학습할 수 있는 방법들을 필요로 함

#비선형함수근사:인공신경망

Artificial Neural Network

ANN은 비선형 함수 근사에 폭넓게 활용된다.

활성화 함수(activation function)

Gradient Descent

- Let $J(\mathbf{w})$ be a differentiable function of parameter vector \mathbf{w}
- Define the gradient of $J(\mathbf{w})$ to be

$$abla_{\mathbf{w}} J(\mathbf{w}) = egin{pmatrix} rac{\partial J(\mathbf{w})}{\partial \mathbf{w}_1} \ dots \ rac{\partial J(\mathbf{w})}{\partial \mathbf{w}_n} \end{pmatrix}$$

- To find a local minimum of $J(\mathbf{w})$
- Adjust w in direction of -ve gradient

$$\Delta \mathbf{w} = -rac{1}{2} lpha
abla_{\mathbf{w}} J(\mathbf{w})$$

where α is a step-size parameter

Feature Vectors

Represent state by a *feature vector*

$$\mathbf{x}(S) = \begin{pmatrix} \mathbf{x}_1(S) \\ \vdots \\ \mathbf{x}_n(S) \end{pmatrix}$$

- For example:
 - Distance of robot from landmarks
 - Trends in the stock market
 - Piece and pawn configurations in chess

Feature Vectors

Represent state by a *feature vector*

$$\mathbf{x}(S) = \begin{pmatrix} \mathbf{x}_1(S) \\ \vdots \\ \mathbf{x}_n(S) \end{pmatrix}$$

- For example:
 - Distance of robot from landmarks
 - Trends in the stock market
 - Piece and pawn configurations in chess

Experience Replay in DQN

DQN uses experience replay and fixed Q-targets

- Take action a_t according to ϵ -greedy policy
- Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory \mathcal{D}
- Sample random mini-batch of transitions (s, a, r, s') from \mathcal{D}
- Compute Q-learning targets w.r.t. old, fixed parameters w⁻
- Optimise MSE between Q-network and Q-learning targets

$$\mathcal{L}_i(w_i) = \mathbb{E}_{s,a,r,s'\sim\mathcal{D}_i}\left[\left(r + \gamma \max_{a'} Q(s',a';w_i^-) - Q(s,a;w_i)\right)^2\right]$$

Using variant of stochastic gradient descent

DQN in Atari

- End-to-end learning of values Q(s, a) from pixels s
- Input state s is stack of raw pixels from last 4 frames
- Output is Q(s, a) for 18 joystick/button positions
- Reward is change in score for that step

선형가치함수근사 Linear Least Squares Prediction

Linear Least Square Prediction

- Experience replay finds least squares solution
- But it may take many iterations
- Using *linear* value function approximation $\hat{v}(s, \mathbf{w}) = \mathbf{x}(s)^{\top}\mathbf{w}$
- We can solve the least squares solution directly

E.O.D.