INTERNATIONAL UNIVERSITY (IU) - VIETNAM NATIONAL UNIVERSITY - HCMC

FINAL EXAMINATION

August 2018

Duration: 120 minutes

SUBJECT: REAL ANALYSIS	
Head of Dept. of Mathematics:	Lecturer:
Assoc. Prof. Pham Huu Anh Ngoc	Assoc. Prof. Nguyen Ngoc Hai

INSTRUCTIONS: Each student is allowed a scientific calculator and a maximum of two double-sided sheets of reference material (size A4 or similar), stapled together and marked with their name and ID. All other documents and electronic devices are forbidden.

Question 1 (25 marks) Let μ be a measure on $\mathcal{B}(\mathbb{R})$ such that $\mu(I) < \infty$ for each bounded interval I. Let $F : \mathbb{R} \to \mathbb{R}$ be defined by

$$F(x) = \begin{cases} -\mu((x,0]) & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ \mu((0,x]) & \text{if } x > 0. \end{cases}$$

Show that F is increasing.

Question 2 (a) (10 marks) Let (X, \mathcal{M}) be a measurable space and E a nonmeasurable subset of X. Show that $f = \chi_E - \chi_{E^c}$ is not measurable on X but |f| is measurable.

(b) (15 marks) Let (X, \mathcal{M}, μ) be a measure space and $f: X \to \overline{\mathbb{R}}$ a measurable function. For $E, F \in \mathcal{M}$ define $E\Delta F = (E \setminus F) \cup (F \setminus E)$. Show that if $\mu(E\Delta F) = 0$, then $\int_E f d\mu = \int_F f d\mu$ provided one of the integrals exists.

----continued on next page-----

Question 3 Consider the sequence of functions $f_n:[0,1]\to\mathbb{R}$ defined by $f_n(x)=\frac{nx^{n-1}}{1+x}$ for $x\in[0,1]$.

- (a) (20 marks) Show that $\lim_{n \to \infty} \int_0^1 f_n(x) dx = \frac{1}{2}$. (*Hint:* Apply integration by parts to the integral $\int_0^1 f_n(x) dx$.)
- (b) (5 marks) Show that $f_n \to 0$ m-a.e.

Question 4 (25 marks) Let μ, ν be positive measures on the measurable space (X, \mathcal{M}) . Assume that $\nu = \nu_1 + \nu_2$ where $\nu_1 \ll \mu$ and $\nu_2 \perp \mu$, $\mu(A) = \nu_2(A^c) = 0$. Show that ν_2 has the form

$$\nu_2(E) = \nu(E \cap A)$$
 for every $E \in \mathcal{M}$.

-----END OF QUESTION PAPER-----

SOLUTIONS

Question 1 For x < y, we have

$$F(y) - F(x) = \begin{cases} -\mu((y,0]) + \mu((x,0]) = \mu((x,y]) & \text{if } x < y < 0, \\ 0 + \mu((x,0]) = \mu((x,0]) & \text{if } x < y = 0, \\ \mu((0,y]) - 0 = \mu((0,y]) & \text{if } x = 0 < y, \\ \mu((0,y]) - \mu((0,x]) = \mu((x,y]) & \text{if } 0 < x < y. \end{cases}$$

Thus $F(y) - F(x) \ge 0$ whenever x < y, so F is increasing.

Question 2

(a) Since $X = E \cup E^c$ and $E \cap E^c = \emptyset$, we have

$$f(x) = \begin{cases} 1 & \text{if } x \in E \\ -1 & \text{if } x \notin E. \end{cases}$$

Since the set $f^{-1}(\{1\}) = E$ is not measurable, we conclude that f is not measurable. However, |f| = 1, which is a constant function. Hence |f| is measurable on X.

(b) We write $E \cup F$ as disjoint unions:

$$E \cup F = F \cup (E \setminus F) = E \cup (F \setminus E).$$

 $E\setminus F$ and $F\setminus E$ are measurable subsets of $E\Delta F$ and by assumption, $\mu(E\Delta F)=0$, so $\mu(E\setminus F)=\mu(F\setminus E)=0$. It follows that $\int_{E\setminus F}fd\mu=\int_{F\setminus E}fd\mu=0$ and that

$$\int_E f d\mu = \int_E f d\mu + \int_{F \backslash E} f d\mu = \int_{E \cup F} f d\mu = \int_F f d\mu + \int_{E \backslash F} f d\mu = \int_F f d\mu$$

whenever either $\int_E f d\mu$ or $\int_F f d\mu$ exists.

Question 3 (a) Since the functions f_n are continuous on [0, 1], their Riemann integrals exist. Applying integration by parts we get

$$\int_0^1 f_n(x)dx = \frac{x^n}{1+x} \Big|_0^1 + \int_0^1 \frac{x^n}{(1+x)^2} dx = \frac{1}{2} - \int_0^1 \frac{x^n}{(1+x)^2} dx.$$
 (1)

Since $\lim_{n\to\infty}\frac{x^n}{(1+x)^2}=0$ for $0\leq x<1$ and $0\leq \frac{x^n}{(1+x)^2}\leq \frac{1}{(1+0)^2}=1$ for all n, we can apply the Dominated Convergence Theorem to obtain $\lim_{n\to\infty}\int_0^1\frac{x^n}{(1+x)^2}dx=0$. Therefore (1) gives $\lim\int_0^1f_n(x)dx=\frac{1}{2}$.

(b) For each 0 < x < 1 consider the function $\varphi_x(t) = \frac{tx^{t-1}}{1+x}$ on $[1, \infty)$. Applying L'Hospital's Rule we get

$$\lim_{t \to \infty} \varphi_x(t) = \lim_{t \to \infty} \frac{t}{(1+x)x^{1-t}} = \lim_{t \to \infty} \frac{1}{(1+x)x^{1-t} \ln x} = 0.$$

It follows that $\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} \varphi_x(n) = 0$ for all $x \in (0,1)$, that is, $f_n \to 0$ m-a.e.

Alternative solution Consider the series $\sum_{n=1}^{\infty} f_n(x)$ on (0,1). Applying the Ratio Test we get

$$\lim_{n \to \infty} \frac{f_{n+1}(x)}{f_n(x)} = \lim_{n \to \infty} \frac{\frac{(n+1)x^n}{1+x}}{\frac{nx^{n-1}}{1+x}} = \lim_{n \to \infty} \frac{n+1}{n}x = x < 1.$$

Thus the series $\sum_{n=1}^{\infty} f_n(x)$ converges for all $x \in (0,1)$. It follows that $f_n(x) \to 0$ for all $x \in (0,1)$, that is, $f_n \to 0$ m-a.e.

Question 4 Let $E \in \mathcal{M}$. Since $\nu_2(A^c) = 0$ and ν_2 is a measure, $\nu_2(E \cap A^c) = 0$. Thus

$$\nu_2(E) = \nu_2(E \cap A) + \nu_2(E \cap A^c) = \nu_2(E \cap A). \tag{2}$$

Likewise, as $\mu(A) = 0$, $\mu(E \cap A) = 0$. Since $\nu_1 \ll \mu$, we have $\nu_1(E \cap A) = 0$, so

$$\nu(E \cap A) = \nu_1(E \cap A) + \nu_2(E \cap A) = \nu_2(E \cap A).$$
 (3)

Equalities (2) and (3) imply $\nu_2(E) = \nu(E \cap A)$ for all $E \in \mathcal{M}$.