# Evaluation & Wrap-Up for RAG Systems

Understanding how to properly evaluate and optimize Retrieval-Augmented Generation systems for maximum performance and reliability.



### Key Goals

Understand how to measure both correctness and faithfulness of answers

Learn common evaluation metrics used in RAG & related tasks

See how tuning (chunk size, top-k, overlap) affects performance

Know how to detect and limit hallucinations

### Retrieval Metrics

These measure how well the retrieval component (before generation) is doing: whether it brings in relevant documents/chunks.

| Metric                            | What it measures                                                                                                          | Example                                                                                                                                                                                     |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Precision@k                       | Fraction of retrieved top-k items that are relevant.                                                                      | If you retrieve 5 documents for a query, and 3 of them are relevant, Precision@5 = 3/5 = 0.6.                                                                                               |
| Recall@k                          | Fraction of all relevant items that appear in top-k retrieved ones.                                                       | If there are 10 relevant docs overall, and your top-<br>5 retrieval contains 4 of them, Recall@5 = 4/10 =<br>0.4.                                                                           |
| Mean Reciprocal Rank<br>(MRR)     | How early (on average) the first relevant document appears in the ranking.                                                | If for Query1 the first relevant doc appears at rank 2 (so reciprocal rank is $1/2 = 0.5$ ), for Query2 at rank 4 ( $1/4 = 0.25$ ), then MRR for those two = ( $0.5 + 0.25$ )/2 = $0.375$ . |
| Mean Average<br>Precision (MAP@k) | Takes into account both relevance and position; average of precision at all relevant-item ranks, averaged across queries. | If a query has relevant docs at positions 1, 3, 7 out of retrieved 10, compute precision at each of those cutoff points and average.                                                        |

### Retrieval Metrics Examples

### Precision@k Example:

Query: "What is machine learning?"

Retrieved 5 documents: [ML textbook chapter, AI history, cooking recipe, ML tutorial, sports article]

Relevant documents: 3 out of 5 (ML textbook, ML tutorial, AI history)

Precision@5 = 3/5 = 0.6 (60% of retrieved docs are relevant)

### Recall@k Example:

Total relevant documents in database: 10

Retrieved in top-5: 3 relevant documents

Recall@5 = 3/10 = 0.3 (30% of all relevant docs were retrieved)

### MRR Example:

Query 1: First relevant doc at rank  $2 \rightarrow$  reciprocal rank = 1/2= 0.5

Query 2: First relevant doc at rank  $4 \rightarrow$  reciprocal rank = 1/4 = 0.25

Query 3: First relevant doc at rank 1  $\rightarrow$  reciprocal rank = 1/1 = 1.0

MRR = (0.5 + 0.25 + 1.0) / 3 = 0.583

### MAP@k Example:

Query with relevant docs at positions 1, 3, 5 out of top-10:

- Precision@1 = 1/1 = 1.0
- Precision@3 = 2/3 = 0.67
- Precision@5 = 3/5 = 0.6

Average Precision = (1.0 + 0.67 + 0.6) / 3 = 0.76



### Generation Metrics

## These measure how good the generated answer is, given the retrieved context + reference (if available).

| Metric                                        | What it measures                                                                                                        | Example                                                                                                                                                  |  |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ROUGE (ROUGE-1,<br>ROUGE-2, ROUGE-L,<br>etc.) | Overlap between generated answer and reference text. Higher = more overlap.                                             | If reference: "The cat sat on the mat." and generated: "The cat is sitting on a mat." ROUGE-1 (unigram) quite high, ROUGE-2 (bigrams) somewhat lower.    |  |
| BLEU                                          | Precision of n-grams in generated vs reference; penalizes missing or wrong phrases.                                     | If generated uses many exact phrases from reference, BLEU score is high; if wording very different, BLEU drops.                                          |  |
| BERTScore                                     | Semantic similarity using embeddings; captures similarity beyond exact n-grams.                                         | If generated paraphrases reference, BERTScore will reflect similarity even when ROUGE/BLEU are low.                                                      |  |
| Answer Relevancy                              | How much the generated answer is relevant to the question (addresses the query). Doesn't check correctness necessarily. | If question: "What causes rain?" and answer talks about evaporation & clouds, good relevancy. If it digresses into unrelated info, relevancy lower.      |  |
| Faithfulness /<br>Groundedness                | Whether the generated answer's claims are supported by the retrieved documents/context; limit hallucinations.           | If the answer says "X is true" but that fact is nowhere in the retrieved context, that lowers faithfulness.                                              |  |
| Answer Correctness /<br>Accuracy              | Whether the answer is factually correct (compared to reference / trusted source) given the retrieved info.              | If retrieved document says "COVID-19 first identified in 2019 in China" and generated answer says same, that's correct; if it says "2020", that's wrong. |  |
| Hallucination Rate                            | The proportion of statements in generated answer that are not supported by context or truth.                            | If answer has 5 claims, 2 are unsupported → hallucination rate ≈ 40%.                                                                                    |  |



### Generation Metrics Examples

#### **ROUGE Example**

Reference: "The cat sat on the mat and slept peacefully."

Generated: "A cat was sitting on a mat and sleeping."

- ROUGE-1 (unigrams): 5 matching words out of 8 → 0.625
- ROUGE-2 (bigrams): 1 matching bigram ("on a/the") out of  $7 \rightarrow 0.14$
- ROUGE-L (longest sequence): "cat...on...mat" → 0.5
   Can remember it as recall

### **BLEU Example**

Reference: "The quick brown fox jumps over the lazy dog"

Generated: "A quick brown fox leaps over a lazy dog"

- 1-gram precision: 7/9 = 0.78
- 2-gram precision: 5/8 = 0.625
- BLEU score considers all n-grams with brevity penalty
- Can remember it as precision

### BERT Score Example

Reference: "The weather is sunny today"

Generated: "It's a bright day outside"

- Word-level semantic similarity using BERT embeddings
- BERTScore: 0.85 (high semantic similarity despite different words)
- ROUGE would be low due to no exact word matches

#### Answer Relevancy Example

Question: "How do you make coffee?"

- Good answer: "Grind beans, add hot water, brew for 4 minutes" → High relevancy
- Poor answer: "Coffee was discovered in Ethiopia centuries ago" → Low relevancy (factual but irrelevant)

### Faithfulness Example

Retrieved context: "Paris is the capital of France. It has 2.2 million residents."

- Faithful answer: "Paris, France's capital, has about 2.2 million people"
- Unfaithful answer: "Paris has 3 million residents and is known for its beaches" (wrong population, unsupported claim about beaches)

#### Hallucination Rate Example

Answer with 4 claims: [Paris is capital  $\checkmark$ , Has 2.2M people  $\checkmark$ , Famous for Eiffel Tower  $\[mathbb{I}$ , Has best beaches  $\[mathbb{I}\]$ ]

• Hallucination rate = 2/4 = 50% (2 unsupported claims out of 4 total)

### When to Use Which Metric

### For Retrieval Evaluation:

### Precision@k

- You care about the quality of retrieved results
- False positives are costly (retrieving irrelevant docs wastes generation resources)
- You have limited context window for generation

### Recall@k

- You want to ensure you don't miss important information
- False negatives are costly
   (missing relevant docs hurts
   answer quality)
- You have comprehensive knowledge base coverage

#### **MRR**

- You care about finding the first relevant result quickly
- Users typically look at top results only
- Speed and early relevance matter most

### MAP@k

- You need balanced view of precision across all relevant items
- Multiple relevant documents exist per query
- You want to reward systems that rank relevant items higher

### For Generation Evaluation:

#### **ROUGE**

- You have reference answers available
- Exact word overlap matters
- Evaluating summarization tasks

#### **BLEU**

- You have reference answers
- Precision of exact phrases is important
- Evaluating translation-like tasks

#### **BERTScore**

- You want semantic similarity beyond exact words
- Paraphrasing should be rewarded
- Reference answers use different vocabulary

### Answer Relevancy

- You want to check if the answer addresses the question
- No reference answer available
- Evaluating question-answering systems

### Faithfulness

- Preventing hallucinations is critical
- You have retrieved context to verify against
- Trustworthiness is paramount

### Accuracy

- You have ground truth answers
- Factual correctness is most important
- Evaluating knowledge-based systems

### Hyperparameter Tuning

| Hyperparameter          | What it controls                                             | Trade-offs                                                                                                                                            |
|-------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chunk size & overlap    | How big document pieces are, how much context each chunk has | Larger chunks → more context, fewer splits, but risk mixing irrelevant info; smaller chunks with overlap → better coverage but more redundancy / cost |
| Top-k (retrieved items) | How many retrieved chunks are fed to the generator           | Too few → may miss needed info;<br>too many → more noise and delay, maybe<br>conflicting context                                                      |

### Practical Evaluation Steps

| 01                                                             | 02                        |                       | 03                                                                   |
|----------------------------------------------------------------|---------------------------|-----------------------|----------------------------------------------------------------------|
| repare a test set Evaluate retriev                             |                           | er separately         | Evaluate generation                                                  |
| queries + reference answers + known relevant documents/chunks  | using Precision@k, Re     | ecall@k, MRR, MAP     | compare generated answers to references using ROUGE, BLEU, BERTScore |
| 04                                                             |                           | 05                    |                                                                      |
| Check faithfulness / hallucinations                            |                           | Experiment            |                                                                      |
| see if statements are supported by retrieve human or LLM judge | ed context; possibly have | vary chunk size, over | lap, top-k → observe how metrics change                              |