

Workpackage 5: High Performance Mathematical Computing

Clément Pernet

First OpenDreamKit Project review

Brussels, April 25, 2017

Goal: delivering high performance to maths users

Harnessing modern hardware → parallelisation

- in-core parallelism (SIMD vectorisation)
- multi-core parallelism
- distributed computing: clusters, cloud

Goal: delivering high performance to maths users

Languages

- Computational Maths software use high level languages (e.g. Python)
- High performance delivered by languages close to the metal (C, assembly)

Outline

Task 5.4: Singular Task 5.5: MPIR

Task 5.6: Combinatorics

Task 5.7: Pythran

Task 5.8: SunGridEngine in JupyterHub

Progress report on other tasks

Task 5.4: Singular

Singular: A computer algebra system for polynomial computations.

- ► Already has a generic parallelization framework
- ► Focus on optimizing kernel routines for fine grain parallelism
- D5.6: Quadratic sieving for integer factorization
- D5.7: Parallelization of matrix fast Fourier Transform

D5.6: Quadratic Sieving for integer factorization

Problem: Factor an integer *n* into prime factors

Role: Crucial in algebraic number theory, arithmetic geometry.

Earlier status: no HPC implementation for large instances:

- only fast code for up to 17 digits,
- only partial sequential implementation for large numbers

D5.6: Quadratic Sieving for integer factorization

Achievements

- Completed and debugged implementation of large prime variant
- Parallelised sieving component of implementation using OpenMP
- Experimented with a parallel implementation of Block Wiedemann

Results

Now modern, robust, parallel code for numbers in 17–90 digit range

D5.6: Quadratic Sieving for integer factorization

Achievements

- Completed and debugged implementation of large prime variant
- Parallelised sieving component of implementation using OpenMP
- Experimented with a parallel implementation of Block Wiedemann

Results

- ▶ Now modern, robust, parallel code for numbers in 17–90 digit range
- Significantly faster on small multicore machines

Table: Speedup for four cores (c/f single core):

Digits	50	60	70	80	90
Speedup	1.1×	1.76×	$1.55 \times$	2.69×	2.80×

D5.7: Parallelise and assembly optimize FFT

SINGULAR

FFT: Fast Fourier Transform over $\mathbb{Z}/p\mathbb{Z}$

- Among the top 10 most important algorithms
- Key to fast arithmetic (integers, polynomials)
- ▶ Difficult to optimize: high memory bandwidth requirement

Earlier status:

- world leading sequential code in MPIR and FLINT;
- no parallel code.

D5.7: Parallelise and assembly optimize FFT

Achievements

- Parallelised Matrix Fourier implementation using OpenMP
- Assembly optimised butterfly operations in MPIR

Results:

- ho pprox 15% speedup on Intel Haswell
- $ho \approx 20\%$ speedup on Intel Skylake
- Significant speedups on multicore machines

Table: Speedup of large integer multiplication on 4/8 cores:

Digits	3M	10M	35M	125M	700M	3.3B	14B
4 cores	1.35×	2.67×	2.92×	2.92×	3.01×	2.95×	3.32×
8 cores	$1.35 \times$	$3.56 \times$	$4.22 \times$	$4.36 \times$	$4.50\times$	$4.31 \times$	$5.49 \times$

MPIR: a library for big integer arithmetic

▶ Bignum operations: fundamental across all of computer algebra

D5.5: Assembly superoptimization

- ▶ MPIR contains assembly language routines for bignum operations \rightsquigarrow hand optimised for every new microprocessor architecture $\rightsquigarrow \approx 3-6$ months of work for each architecture
- ► Superoptimisation: rearranges instructions to get optimal ordering

Earlier status:

▶ No assembly code for recent (> 2012) Intel and AMD chips (Bulldozer, Haswell, Skylake, . . .)

D5.5: Assembly superoptimisation

Achievements

- ► A new assembly superoptimiser supporting recent instruction sets
- Superoptimised handwritten assembly code for Haswell and Skylake
- Hand picked faster assembly code for Bulldozer from existing implementations

Results:

- ▶ Sped up basic arithmetic operations for Bulldozer, Skylake and Haswell
- ▶ Noticeable speedups for bignum arithmetic for all size ranges

Ор	Mul (s)	Mul (m)	Mul (b)	GCD (s)	GCD (m)	GCD (b)
Haswell	$1.18 \times$	1.27×	1.29×	0.72×	$1.45 \times$	1.27×
Skylake	$1.15\times$	$1.20 \times$	$1.22 \times$	$0.84 \times$	$1.65\times$	$1.32 \times$

s=512 bits, m=8192 bits, big=100K bits

Task 5.6: Combinatorics

Perform a map/reduce operation on a very large set described recursively.

Large range of intensive applications in combinatorics:

- ► Compute the cardinality, or more generally any kind of generating series
- ightharpoonup Test a conjecture: i.e. find an element of S satisfying a specific property
- ► Count/list the elements of *S* having this property

Specificity of combinatorics:

- ▶ Typically the sets *don't fit in the computers* memory / disks and are enumerated on the fly (example of value: 10¹⁷ bytes).
- ▶ Easy to parallelize, if the set is flat (a list, a file, stored on a disk).

A Challenge: The tree of numerical semigroups

Extremely unbalanced. Need for an efficient load balancing algorithm.

A Challenge: The tree of numerical semigroups

Extremely unbalanced. Need for an efficient load balancing algorithm.

→ need for a high level task parallelization framework.

Work-Stealing System Architecture

A Python implementation

- Work stealing algorithm (Leiserson-Blumofe / Cilk)
- Easy to use, easy to call from sage
- Already, a dozen use case
- Scale well with the number of CPU cores
- Reasonably efficient (knowing that this is Python code).

References

- ► Trac Ticket 13580 http://trac.sagemath.org/ticket/13580
- ► Exploring the Tree of Numerical Semigroups Jean Fromentin and Florent Hivert https://hal.inria.fr/UNIV-ROUEN/hal-00823339v3

Task 5.7: Pythran

Pythran: a NumPy-centric Python to C compiler

- Many High level VRE rely on the Python language
- High performance is most often achieved by the C language

Task 5.7: Pythran

Pythran: a NumPy-centric Python to C compiler

- Many High level VRE rely on the Python language
- High performance is most often achieved by the C language
- Python to C compilers: Cython: general purpose
 - Pythran: narrower scope, better at optimizing Numpy code (Linear algebra)

Task 5.7: Pythran

Pythran: a NumPy-centric Python to C compiler

- Many High level VRE rely on the Python language
- High performance is most often achieved by the C language
- Python to C compilers:

Cython: general purpose Pythran: narrower scope, better at optimizing Numpy code (Linear algebra)

Goal: Implement the convergence

- D5.4 Improve Pythran typing system
- D5.2 Make Cython use Pythran backend to optimize Numpy code

D5.2: Make Cython use Pythran backend for NumPy code

D5.2: Make Cython use Pythran backend for NumPy code


```
def harris(numpy.ndarray[numpy.float_t, ndim=2] l):
cdef int m = l.shape[0]
cdef int n = l.shape[1]
cdef numpy.ndarray[numpy.float_t, ndim=2] dx = (l[1:,:] - l[:m-1,:])[:,1:]
cdef numpy.ndarray[numpy.float_t, ndim=2] dy = (l[:,1:] - l[:,:n-1])[1:,:]
cdef numpy.ndarray[numpy.float_t, ndim=2] A = dx * dx
cdef numpy.ndarray[numpy.float_t, ndim=2] B = dy * dy
cdef numpy.ndarray[numpy.float_t, ndim=2] C = dx * dy
cdef numpy.ndarray[numpy.float_t, ndim=2] tr = A + B
cdef numpy.ndarray[numpy.float_t, ndim=2] tr = A + B
cdef numpy.ndarray[numpy.float_t, ndim=2] det = A * B - C * C
return det - tr * tr
Clément Pernet: Workpackage 5
```

Task 5.8: SunGridEngine integration in JupytherHub

Access to big compute

- ► Traditional access to supercomputers is difficult
- Notebooks are easy but run on laptops or desktops
- We need a way to connect notebooks to supercomputers

Sun Grid Engine

A job scheduler for Academic HPC Clusters

- Controls how resources are allocated to researchers
- One of the most popular schedulers

Achievements: D5.3

- ▶ Developed software to run Jupyter notebooks on supercomputers
- Users don't need to know details. They just log in.
- Demonstration install at University of Sheffield

Outline

Task 5.4: Singular Task 5.5: MPIR

Task 5.6: Combinatorics

Task 5.7: Pythran

Task 5.8: SunGridEngine in JupyterHub

Progress report on other tasks

Progress report on other tasks

T5.1: Pari

Generic parallelization engine is now mature, released (D5.10, due M24)

T5.2: GAP

- ▶ 6 releases were cut integrating contributions of D3.11 and D5.15
- ▶ Build system refactoring for integration of HPC GAP

T5.3: LinBox

- ▶ Algorithmic advances (5 articles) on linear algebra and verified computing
- Software releases and integration into SageMath