Основни производни	Основни неопределени интеграли
(C)' = 0, C = const	$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \alpha \neq -1$
$(u^{\alpha})' = \alpha u^{\alpha - 1} \cdot u'$	$\int \frac{dx}{x} = \ln x + C$
$(a^u)' = a^u \ln a \cdot u'$	$\int a^x dx = \frac{a^x}{\ln a} + C$
$(e^u)' = e^u \cdot u'$	$\int e^x dx = e^x + C$
$(\log_a u)' = \frac{1}{u \ln a} \cdot u'$	$\int \sin x dx = -\cos x + C$
$(\ln u)' = \frac{1}{u} \cdot u'$	$\int \cos x dx = \sin x + C$
$(\sin u)' = \cos u \cdot u'$	$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C$
$(\cos u)' = -\sin u \cdot u'$	$\int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + C$
$(\operatorname{tg} u)' = \frac{1}{\cos^2 u} \cdot u'$	$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C$
$(\operatorname{ctg} u)' = -\frac{1}{\sin^2 u} \cdot u'$	$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$
$(\arcsin u)' = \frac{1}{\sqrt{1 - u^2}} \cdot u'$	$\int \frac{dx}{x^2 + 1} = \arctan x + C$
$(\arccos u)' = -\frac{1}{\sqrt{1-u^2}} \cdot u'$	$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C$
$(\operatorname{arctg} u)' = \frac{1}{1+u^2} \cdot u'$	$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln x + \sqrt{x^2 \pm a^2} + C$
$(\operatorname{arcctg} u)' = -\frac{1}{1+u^2} \cdot u'$	$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + C$

$$(f+g)' = f' + g',$$
 $(f-g)' = f' - g',$ $(fg)' = f'g + fg',$ $(\frac{f}{g})' = \frac{f'g - fg'}{g^2},$ $(f(u))' = f'(u).u'$ $(f+C)' = f',$ $(Cf)' = Cf'$

Тригонометрични функции

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
$\operatorname{tg} \alpha$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	$+\infty$	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0
$\operatorname{ctg} \alpha$	$+\infty$	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	$-\frac{1}{\sqrt{3}}$	-1	$-\sqrt{3}$	$-\infty$

 $\sin 2\alpha = 2 \sin \alpha \cos \alpha$, $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2 \cos^2 \alpha - 1 = 1 - 2 \sin^2 \alpha$

Степени и логаритми

$$\begin{split} a^m a^n &= a^{m+n}, \qquad \frac{a^m}{a^n} = a^{m-n}, \qquad a^{-m} &= \frac{1}{a^m}, \qquad \sqrt[n]{a^m} = a^{\frac{m}{n}} \\ \ln a^n &= n \ln a, \qquad \ln(ab) = \ln a + \ln b, \qquad \ln \frac{a}{b} = \ln a - \ln b, \qquad a = e^{\ln a} \end{split}$$

Формули за съкратено умножение

$$(x \pm y)^2 = x^2 \pm 2xy + y^2,$$
 $x^2 - y^2 = (x - y)(x + y)$
 $(x \pm y)^3 = x^3 \pm 3x^2y + 3xy^2 \pm y^3,$ $x^3 \pm y^3 = (x \pm y)(x^2 \mp xy + y^2)$

Разлагане на квадратен тричлен

$$ax^2 + bx + c = a(x - x_1)(x - x_2),$$
 където $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$