Experiment 2 Implementation of Pca

Implementation of PCA

```
import pandas as pd
df = pd.read_csv("/content/IRIS_dataset (1).csv")
df
```

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

¹⁵⁰ rows v 5 columns

Part A: Compute Eigen Values and Vectors

df.head()

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

```
import numpy as np
import matplotlib.pyplot as plt
X =df[['sepal_length','sepal_width','petal_length','petal_width']]
```

	sepal_length	sepal_width	petal_length	petal_width
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

```
Y = df[['species']]
Y.head()
```

species

- 0 Iris-setosa
- 1 Iris-setosa
- 2 Iris-setosa
- 3 Iris-setosa
- 4 Iris-setosa

df.shape

(150, 5)

X.shape

(150, 4)

Y.shape

(150, 1)

Compute the covariance matrix
features = X.T
features.shape

(4, 150)

covariance_matrix = np.cov(features)
covariance_matrix

```
array([[ 0.68569351, -0.03926846, 1.27368233, 0.5169038 ], [-0.03926846, 0.18800403, -0.32171275, -0.11798121], [ 1.27368233, -0.32171275, 3.11317942, 1.29638747], [ 0.5169038 , -0.11798121, 1.29638747, 0.58241432]])
```

```
eig_vals, eig_vecs = np.linalg.eig(covariance_matrix)
eig_vals
     array([4.22484077, 0.24224357, 0.07852391, 0.02368303])
eig_vecs
     array([[ 0.36158968, -0.65653988, -0.58099728, 0.31725455],
            [-0.08226889, -0.72971237, 0.59641809, -0.32409435],
            [\ 0.85657211,\ 0.1757674\ ,\ 0.07252408,\ -0.47971899],
            [ 0.35884393, 0.07470647, 0.54906091, 0.75112056]])
eig_vals[0]/sum(eig_vals)
     0.9246162071742685
projected_X = X.dot(eig_vecs.T[0])
projected_X
     0
            2.827136
            2.795952
     2
            2.621524
            2.764906
           2.782750
     145
           7.455360
     146
           7.037007
     147
           7.275389
     148
           7.412972
     149
            6.901009
     Length: 150, dtype: float64
result = pd.DataFrame(projected_X,columns=['PC1'])
result['y-axis']=0.0
result['label']= Y
result
```

label	y-axis	PC1	
Iris-setosa	0.0	2.827136	0
Iris-setosa	0.0	2.795952	1
Iris-setosa	0.0	2.621524	2
Iris-setosa	0.0	2.764906	3

```
import seaborn as sns
sns.lmplot('PC1', 'y-axis', data =result, fit_reg = False, hue = 'label')
plt.title("PCA result")
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarni FutureWarning

Text(0.5, 1.0, 'PCA result')

→ Part B: Face Recognition using PCA

```
from sklearn.model_selection import train_test_split
from sklearn.datasets import fetch_lfw_people
from sklearn.metrics import classification_report
from sklearn.decomposition import PCA
from sklearn.neural_network import MLPClassifier

# Load the dataset
lfw_dataset = fetch_lfw_people(min_faces_per_person=100)
```

_, h, w = lfw_dataset.images.shape

X = lfw dataset.data

```
Y = lfw_dataset.target
target names = lfw dataset.target names
     Downloading LFW metadata: <a href="https://ndownloader.figshare.com/files/5976012">https://ndownloader.figshare.com/files/5976012</a>
     Downloading LFW metadata: <a href="https://ndownloader.figshare.com/files/5976009">https://ndownloader.figshare.com/files/5976009</a>
     Downloading LFW metadata: https://ndownloader.figshare.com/files/5976006
     Downloading LFW data (~200MB): <a href="https://ndownloader.figshare.com/files/5976015">https://ndownloader.figshare.com/files/5976015</a>
# Split the data into tarin and test split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2)
X_train.shape
     (912, 2914)
X.shape
     (1140, 2914)
#compute PCA
n_{components} = 80
pca = PCA(n_components=n_components, whiten=True).fit(X_train)
#apply PCA transformation
X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)
X_train_pca.shape
      (912, 80)
#Train a neural network on the transformed dataset
clf=MLPClassifier(hidden_layer_sizes=(512,),batch_size=256,verbose=True,early_stopping=Tru
     Iteration 1, loss = 1.64811335
     Validation score: 0.532609
     Iteration 2, loss = 1.26218045
     Validation score: 0.641304
     Iteration 3, loss = 1.04980538
     Validation score: 0.673913
     Iteration 4, loss = 0.89809513
     Validation score: 0.717391
     Iteration 5, loss = 0.76291759
     Validation score: 0.760870
     Iteration 6, loss = 0.64634407
     Validation score: 0.771739
     Iteration 7, loss = 0.55256239
     Validation score: 0.815217
     Iteration 8, loss = 0.47807918
```

validation score: 0.81521/ Iteration 9, loss = 0.41929237 Validation score: 0.836957 Iteration 10, loss = 0.37042709 Validation score: 0.891304 Iteration 11, loss = 0.32853155 Validation score: 0.891304 Iteration 12, loss = 0.29322237 Validation score: 0.891304 Iteration 13, loss = 0.26232305 Validation score: 0.891304 Iteration 14, loss = 0.23548858Validation score: 0.880435 Iteration 15, loss = 0.21268101 Validation score: 0.891304 Iteration 16, loss = 0.19316507 Validation score: 0.902174 Iteration 17, loss = 0.17557182 Validation score: 0.902174 Iteration 18, loss = 0.15969277 Validation score: 0.913043 Iteration 19, loss = 0.14602423 Validation score: 0.913043 Iteration 20, loss = 0.13392562 Validation score: 0.913043 Iteration 21, loss = 0.12321120 Validation score: 0.913043 Iteration 22, loss = 0.11375854 Validation score: 0.913043 Iteration 23, loss = 0.10502117 Validation score: 0.913043 Iteration 24, loss = 0.09716044 Validation score: 0.913043 Iteration 25, loss = 0.09044732 Validation score: 0.913043 Iteration 26, loss = 0.08438528 Validation score: 0.913043 Iteration 27, loss = 0.07876971Validation score: 0.913043 Iteration 28, loss = 0.07334918 Validation score: 0.902174 Iteration 29, loss = 0.06859759 Validation score: 0.902174

Y_pred = clf.predict(X_test_pca)
print(classification_report(Y_test, Y_pred, target_names=target_names))

	precision	recall	f1-score	support
Colin Powell	0.92	0.88	0.90	52
Donald Rumsfeld	0.68	0.76	0.72	25
George W Bush	0.88	0.90	0.89	93
Gerhard Schroeder	0.92	0.76	0.83	29
Tony Blair	0.77	0.79	0.78	29
accuracy			0.85	228
macro avg	0.83	0.82	0.82	228
weighted avg	0.86	0.85	0.85	228

```
#Visualization
import matplotlib.pyplot as plt
def plot_gallery(images, titles, h, w, rows=3, cols=4):
  plt.figure(figsize=(10,10))
  for i in range(rows*cols):
    plt.subplot(rows,cols,i+1)
    plt.imshow(images[i].reshape((h,w)),cmap=plt.cm.gray)
    plt.title(titles[i])
    plt.xticks(())
    plt.yticks(())
def titles(Y_pred, Y_test, target_names):
  for i in range(Y_pred.shape[0]):
    pred_name = target_names[Y_pred[i]].split(' ')[-1]
    true_name = target_names[Y_test[i]].split(' ')[-1]
    yield 'predicted: {0}\ntrue: {1}'.format(pred_name, true_name)
prediction_titles = list(titles(Y_pred, Y_test, target_names))
plot_gallery(X_test, prediction_titles, h, w)
```


• x