DataFrames and Resilient Distributed Datasets

- Review: Spark Driver and Workers
 - · A Spark program is two programs
 - A driver program and a workers program
 - · Worker programs run on cluster nodes or in local threads
 - · DataFrames are distributed across workers
- Review: Spark and SQL Contexts
 - spark program first creates a SparkContext object
 - SparkContext tells Spark how and where to access a cluster
 - · program next creates a sqlContext
 - use sqlContext to create DataFrames
- Review: DataFrames
 - · Primary abstraction in Spark
 - Immutable once constructed
 - Track lineage information to efficiently recompute lost data
 - Enable operations on collection of elements in parallel
 - · You construct DataFrames
 - by parallelizing existing Python collections (lists)
 - by transforming an existing Spark or pandas DFs
 - from files in HDFS or any other storage system
 - Two types of operations: transformation and actions
 - Transformations are lazy (not computed immediately)
 - Transformed DF is executed when action runs on it
 - Persist (cache) DFs in memory or disk
- Resilient Distributed Datasets
 - Untyped Spark abstraction underneath DataFrames:
 - Immutable once constructed
 - Track lineage information to efficiently recompute lost data
 - Enable operations on collection of elements in parallel
 - You construct RDDs
 - by parallelizing existing Python collections (lists)
 - by transforming an existing RDDs or DataFrame
 - from files in HDFS or any other storage system
- RDDs
 - programmer specifies number of partitions for an RDD
 - more partitions = more parallelism
 - Two types of operations transformations and actions
 - · Transformed RDD is executed when action runs on it
 - · Persist (cache) RDDs in memory or disk
- When to use DataFrames?
 - · Need high-level transformations and actions, want high-level control over your dataset
 - · Have typed (structured or semi-structured) data
 - You want DataFrame optimization and performance benefits
- DataFrame Performance
 - Faster than RDDs
 - Memory Usage when Caching
- When to use RDDs?
 - Need low-level transformations and actions, and want low-level control over your dataset
 - · Have unstructured or schema-less data

- Want to manipulate your data with functional programming constructs other than domain specific expressions
- don't want the optimization and performance benefits available with DataFrames
- Working with RDDs
 - create from a datasource
 - apply transformations
 - · apply actions: collect count
 - list> parallelize => filter => map => collect => result
- Creating an RDD
 - Create RDDs from Python collections (lists)
 - sc.parallelize(data,40
 - sc.textFile() etc...
- Spark Transformations
 - · create new datasets from an existing one
 - use lazy evaluation: results not computed right away instead Spark remembers set of transformations applied to base dataset
 - Spark optimizes the required calculations
 - Spark recovers from failures and slow workers
- RDD transformations
 - · parallelize
 - map
 - filter
 - flatMap
 - distinct
- Transforming an RDD
 - lines = sc.textFile(,4)
 - comments = lines.filter(isComment)
- Spark Actions
 - · cause spark to execute recipe to transform source
 - Mechanism for getting results out of Spark
- Some Actions
 - reduce(func)
 - aggregate dataset's elements using function func, fun takes two arguments and returns one, and is commutative and associative so that it can be computed correctly in parallel
 - take(n)
 - return an array with the first n elements
 - collect()
 - return all the elements as an array
 - takeOrdered(n, key=func)
 - return n elements ordered in ascending order or as specified by the optional key
- Getting Data Out of RDDs
 - rdd = sc.parallelize([1,2,3])
 - rdd.reduce(lambda a, b: a * b)
 - rdd.take(2)
 - rdd.collectIO
- Spark Key-Value RDDs
 - · Each element of a Pair RDD is a pair tuple
 - RDD: [(1,2), (3,4)]
- Some Key-Value Transformations

- reduceByKey(func)
 - return a new distributed dataset of (K,V) pairs where the values for each key are aggregated using the given reduce function func, which must be of type (V,V) => V
- sortByKey()
 - return a new dataset(K,V) pairs sorted by keys in ascending order
- groupByKey()
 - return a new dataset of (k, Iterable<V>) pairs
 - it can cause a lot of data movement across the network and create large Iterables at workers
- Spark RDD Programming Model
- Spark Programming Model
 - · count() causes Spark to
 - read data
 - sum within partitions
 - combine sums in driver
- Caching RDDs
- Spark Program Lifecycle with RDDs
 - Create RDDs from external data or parallelize a collection in your driver program
 - Lazily transform them into new RDDs
 - · cache() some RDDs for reuse
 - Perform actions to execute parallel computation and produce results
- Spark Shared Variables
- pySpark Closures
 - Spark automatically creates closures for:
 - Functions that run on RDDs at executors
 - Any global variables used by those executors
 - · One closure per executor
 - Sent to every task
 - No communication between executors
 - Changes to global variables at executors are not sent to driver
- Consider These Use Cases
 - Iterative or single jobs with large global variables
 - Sending large read-only lookup table to executors
 - Sending large feature vector in ML algorithm to executors
 - Counting events that occur during job execution
 - How many input lines were blank?
 - How many input records were corrupt?
 - Problems
 - closures resent for every job
 - inefficient to send large data to each worker
 - closures are one way: driver => worker
- pySpark Shared Variables
 - Broadcast Variables
 - Efficiently send large, read-only value to all executors
 - Saved at workers for use in one or more Spark operations
 - Like sending a large, read-only lookup table to all the nodes
 - Accumulators
 - Aggregate values from executors back to driver
 - Only driver can access value of accumulator

- For tasks, accumulators are write-only
- Use to count errors seen in RDD across executors
- Broadcast Variables
 - · read-only variable cached on executors
 - ship to each worker only once instead of with each task
 - · example: efficiently give every executor a large dataset
 - Usually distributed using efficient broadcast algorithms
- Accumulators
 - Variables that can only be "added" to by associative op
 - · Used to efficiently implement parallel counters and sums
 - · Only driver can read an accumulator's value, not tasks
 - Tasks at executors cannot access accumulator's values
 - · Tasks see accumulators as write-only variables
 - Accumulators can be used in actions or transformations
 - · Types: integers, double, long, float
- File Performance
 - file
 - named sequence of bytes
 - typically stored as collection of pages (or blocks)
 - · filesystem is a collection of files organized within a hierarchical namespace
 - Responsible for laying out those bytes on physical media
 - stores file metadata
 - Provides an API for interaction with files
 - Standard operations
 - open() / close()
 - seek()
 - read() / write()
- Considerations for a File Format
 - Data model: tabular, hierarchical, array
 - Physical layout
 - · Field units and validation
 - · Metadata: header, side file, specification, other?
 - Plain text or binary
 - · Delimiters and escaping
 - · Compression, encryption, checksums
 - · Schema evolution
- File Performance considerations
 - Read versus write performance
 - Plain text verus binary format
 - Environment: Panda (Python) versus Scala/Java
 - Uncompressed versus compressed
- File Performance Summary
 - Uncompressed read and write times are comparable
 - Binary I/O is much faster than text I/O
 - Compressed reads much faster than compressed writes