

Bài tập về nhà số 3

Nền tảng toán học của các mô hình tạo sinh – PIMA

Chủ đề: Phương pháp lấy mẫu

Người giải: Võ Hoàng Nhật Khang

1. Chứng minh rằng nếu phân phối π thỏa mãn điều kiện cân bằng chi tiết, thì π là phân phối ổn định của xích Markov

Lời giải:

Xét một xích Markov với vô hạn trạng thái được đánh số $0,1,2,\ldots$, có ma trận chuyển trạng thái T được định nghĩa như sau

$$T_{ij} = egin{cases} \lambda, & j = i+1 \ ext{và} \ i \geq 0 \ \mu, & j = i-1 \ ext{và} \ i \geq 1 \ 1-\lambda-\mu, & i = j \ ext{và} \ i \geq 1 \ 1-\lambda, & i = j = 0 \ 0, & ext{còn lại} \end{cases}$$

với λ và μ là các hằng số dương thỏa mãn $\lambda < \mu$ và $\lambda + \mu \leq 1$. Yêu cầu chứng minh rằng nếu phân phối π thỏa mãn điều kiện cân bằng chi tiết $\pi_i T_{ij} = \pi_j T_{ji}$ với mọi i,j, thì π là phân phối ổn định, tức là $\pi T = \pi$.

Để chứng minh, ta xuất phát từ điều kiện cân bằng chi tiết $\pi_i T_{ij} = \pi_j T_{ji}$. Ta cần chỉ ra rằng

$$\sum_{i=0}^{\infty} \pi_i T_{ij} = \pi_j$$

với moi j.

Từ giả thiết điều kiện cân bằng chi tiết, ta tiến hành cố định j. Lấy tổng 2 vế

$$\sum_{i=0}^{\infty} \pi_i T_{ij} = \sum_{i=0}^{\infty} \pi_j T_{ji} \tag{1}$$

Vì π_j không phụ thuộc vào i, ta đưa π_j ra ngoài tống, được

$$\sum_{i=0}^{\infty} \pi_i T_{ij} = \pi_j \sum_{i=0}^{\infty} T_{ji} \tag{2}$$

Mà $\sum_{i=0}^{\infty}T_{ji}=1$ do T là ma trận chuyển trạng thái, nên $\pi_j\sum_{i=0}^{\infty}T_{ji}=\pi_j\cdot 1=\pi_j$. Vậy $\sum_{i=0}^{\infty}\pi_iT_{ij}=\pi_j$, tức là $\pi T=\pi$. Ngoài ra, π là phân phối xác suất nên $\sum_{i=0}^{\infty}\pi_i=1$. Do đó, π thỏa mãn mọi điều kiện của phân phối ổn định.

2. Xác định phân phối ổn định π của xích Markov đã cho

Lời giải

Ta sử dụng điều kiện cân bằng chi tiết để tìm π . Xét j=i+1, ta có

$$\pi_i T_{i,i+1} = \pi_{i+1} T_{i+1,i} \tag{3}$$

Từ ma trận T, $T_{i,i+1}=\lambda$ và $T_{i+1,i}=\mu$, nên

$$\pi_i \lambda = \pi_{i+1} \mu \tag{4}$$

Suy ra $\pi_{i+1} = \frac{\lambda}{\mu} \pi_i$ với mọi $i \geq 0$

Từ đây, ta biểu diễn π_i theo π_0 : $\pi_1=\frac{\lambda}{\mu}\pi_0$, $\pi_2=\left(\frac{\lambda}{\mu}\right)^2\pi_0$, và tổng quát

$$\pi_i = \left(\frac{\lambda}{\mu}\right)^i \pi_0 \tag{5}$$

Để π là phân phối xác suất, ta cần $\sum_{i=0}^{\infty} \pi_i = 1$.

Thay vào, ta được

$$\pi_0 \sum_{i=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^i = 1 \tag{6}$$

Vì $\lambda < \mu$, chuỗi hình học hội tụ và $\sum_{i=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^i = \frac{1}{1-\frac{\lambda}{\mu}}$

Do đó:
$$\pi_0 \cdot \frac{1}{1 - \frac{\lambda}{\mu}} = 1$$
, suy ra $\pi_0 = 1 - \frac{\lambda}{\mu}$

Vậy, phân phối ổn định là
$$\pi_i=\left(1-rac{\lambda}{\mu}
ight)\left(rac{\lambda}{\mu}
ight)^i$$
 với $i=0,1,2,\ldots$

3. Phân phối ổn định π giống phân phối rời rạc nào? Đề xuất cách lấy mẫu

Lời giải

Từ $\pi_i = \left(1-\frac{\lambda}{\mu}\right)\left(\frac{\lambda}{\mu}\right)^i$, ta nhận thấy đây là dạng của phân phối hình học $P(X=k)=p(1-p)^k$, với $p=1-\frac{\lambda}{\mu}$ và $1-p=\frac{\lambda}{\mu}$.

Vậy π là phân phối hình học với tham số $p=1-\frac{\lambda}{\mu}.$

Để lấy mẫu từ phân phối π , ta sử dụng phương pháp xích Markov Monte Carlo dựa trên ma trận chuyển trạng thái T. Tại mỗi bước, xích Markov chuyển từ trạng thái hiện tại i sang trạng thái tiếp theo theo các xác suất được định nghĩa bởi T_{ij}

$$T_{ij} = egin{cases} 1-p, & j=i+1 \ ext{và} \ i \geq 0 \ p, & j=0 \ ext{và} \ i \geq 0 \ 0, & ext{còn lại} \end{cases}$$

với $p=1-\frac{\lambda}{\mu}$. Sau khi thực hiện một số lượng lớn các bước, các trạng thái mà xích đi qua sẽ có phân phối gần đúng với phân phối ổn định π .