Lecture 21: More hypothesis testing

Rejecting H_0

$$H_0: \theta \in \Theta_0 \qquad H_A: \theta \in \Theta_1$$

Question: A hypothesis test rejects H_0 if $(X_1, ..., X_n)$ is in the rejection region R. Are there any issues if we only use a rejection region to test hypotheses?

p-values

$$H_0: \theta \in \Theta_0 \qquad H_A: \theta \in \Theta_1$$

Given α , we construct a rejection region R and reject H_0 when $(X_1, \ldots, X_n) \in R$. Let (x_1, \ldots, x_n) be an observed set of data.

Definition: The **p-value** for the observed data (x_1, \ldots, x_n) is the smallest α for which we reject H_0 .

Example

 X_1, \ldots, X_n iid from a population with mean μ and variance σ^2 .

$$H_0: \mu = \mu_0 \qquad H_A: \mu \neq \mu_0$$

Issue: Wald tests with small n

The Wald test for a population mean μ relies on

$$Z_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{S} \approx N(0, 1)$$

- $Z_n \stackrel{d}{\to} N(0,1) \text{ as } n \to \infty$
- But for small n, Z_n is not normal, even if $X_1, \ldots, X_n \overset{iid}{\sim} N(\mu, \sigma^2)$

What is the exact distribution of $\frac{\sqrt{n}(X_n-\mu)}{s}$?

t-tests

If $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$, then

$$\frac{\sqrt{n}(\overline{X}_n - \mu)}{S} \sim t_{n-1}$$

Class activity

https://sta711s24.github.io/class_activities/ca_lecture_21.html

Class activity

Type I error rate with Normal distribution:

Class activity

Wald test vs. *t*-test:

Philosophical question

- Position 1: We should always use a Wald test to test hypotheses about a population mean
- Position 2: We should always use a t-test to test hypotheses about a population mean

With which position do you agree?