TYPE YOUR NAME HERE HW 21: 4.7 - 4.11 M328K April 10th, 2012

4.7 Question. Choose some relatively prime natural numbers a and n and compute the order of a modulo n. Frame a conjecture concerning how large the order of a modulo n can be, depending on n.

Answer.
4.8 Theorem. Let a and n be natural numbers with $(a, n) = 1$ and let $k = \operatorname{ord}_n(a)$. Then the numbers a^1, a^2, \ldots, a^k are pairwise incongruent modulo n.
Proof.
4.9 Theorem. Let a and n be natural numbers with $(a, n) = 1$ and let $k = \operatorname{ord}_n(a)$. For any natural number m , a^m is congruent modulo n to one of the numbers a^1 , a^2 ,, a^k .
Proof.
4.10 Theorem. Let a and n be natural numbers with $(a, n) = 1$, let $k = \operatorname{ord}_n(a)$, and let m be a natural number. Then $a^m \equiv 1 \pmod{n}$ if and only if $k m$.
Proof.
4.11 Theorem. Let a and n be natural numbers with $(a, n) = 1$. Then $\operatorname{ord}_n(a) < n$.
Proof.