An experiment on the appearance of the complete evaporation of a land planet with a general circulation model

陸惑星における完全蒸発状態の 発生に関する大気大循環モデル実験

Planetary and Space Group

Yoshida, Tetsuji 吉田 哲治

2020/02/06

### Introduction

### Exoplanets in habitable zone

- Exoplanet is a planet out of the solar system
  - Rocky planet may exist (http://exoplanets.org/)
- In Habitable zone (HZ), liquid water exist on the planetary surface (Kasting et al. 1993)
  - Liquid water is necessary for life like that of the Earth
  - Inner edge is focused



### Previous study

# Inner edge of HZ

- An aqua planet (Nakajima et al., 1992; Ishiwatari et al., 2002)
  - na et al., 1992; iri et al., 2002)
  - Covered with ocean
  - Appearance of runaway green house state
    - Runaway green house state: Planetary radiation < Insolation</li>
- A land planet (Abe et al., 2011)
  - Covered with soil and has small amount of water
  - Appearance of complete evaporation state
    - Complete evaporation state:
      All surface water evaporate



# <u>Purpose</u>

- The first purpose was the investigation of dependence on obliquity and planetary rotation rate for the appearance of complete evaporation in a land planet
  - In a preliminary experiment, the complete evaporation did not occur

The purpose of this study

The examination of appearance of complete evaporation in a land planet

• re-experiment of Abe et al. (2011)



#### Methods

# Model and Equations

### Atmospheric general circulation model DCPAM (Dennou-Club Planetary Atmospheric Model)

Zonal wind 
$$\frac{du}{dt} = \frac{uv\tan\varphi}{a} + fv - \frac{1}{\rho a\cos\varphi} \frac{\partial p}{\partial \lambda} + F_{\lambda}$$
 • Hydrostatic equilibrium

Hydrostatic equilibrium 
$$0 = -\frac{1}{\rho} \frac{\partial p}{\partial z} - g$$

$$\text{Mass} \quad \frac{d\rho}{dt} = -\rho \left\{ \frac{1}{a\cos\varphi} \frac{\partial u}{\partial\lambda} + \frac{1}{a\cos\varphi} \frac{\partial}{\partial\varphi} (v\cos\phi) + \frac{\partial w}{\partial z} \right\} \bullet \quad \text{Vertical coordinate } \sigma = p/p_{\mathcal{S}}$$

Energy 
$$\frac{dT}{dt} = \frac{1}{C_p^d \rho} \frac{dp}{dt} + \frac{Q^*}{C_p^d}$$

Water mass 
$$\frac{dq}{dt} = S_q$$

Equation of state 
$$p = \rho R^d T_v$$

- Primitive equations

 $T_n$ : Virtual temperature

- The horizontal coordinate system is latitude and longitude

u:Zonal wind, v: Meridional wind,  $\rho$ : Density, T: Temperature, q: Specific humidity, a: Planetary radius, F: Forcing terms of motion, *f* : Coriolis parameter, *p* : Pressure,  $C_p^d$ : Constant pressure specific heat of dry air,  $Q^*$ : Source term of energy,  $S_a$ : Source term of vapor,  $R^d$ : Gas constant of dry air,

#### **Methods**

### Numerical schemes for physical processes

- Dynamical process
  - Pseudo-spectral method is used
  - Semi-Lagrange method is used for advection of vapor
- Radiation process
  - Radiation scheme for the Earth is used (Chou and Lee, 1996; Chou et al., 1998; Chou et al., 2001)
- Vertical eddy mixing process
  - Mellor and Yamada level 2.5 scheme (Mellor and Yamada, 1982)
  - Vertical mixing of momentum, energy and water is considered

- Cumulus Convection process
  - Relaxed Arakawa-Schubert with ice is used (Arakawa and Schubert, 1974; Moorthi and Suarez, 1992)
  - Cumulus convectional advection of energy and water is considered
  - Large scale condensation process
    - Non-convective condensation with ice (Li Treut and Li, 1991)
    - Condensation of vapor in supersaturated air is considered
- Planetary surface setting
  - Thermal diffusion equation is solved
  - Bucket model is used (Manabe, 1969)

#### Methods

# Experimental settings

| <b>Experiment Name</b> | Surface condition | Solar const. $\left[W/m^2\right]$ | Initial state           |
|------------------------|-------------------|-----------------------------------|-------------------------|
| L_S1365_IniWet         | bucket            | 1365                              | Isothermal, Wind static |
| L_S2400_IniWet         | bucket            | 2400                              | A_S1365_IniWet          |
| L_S2400_IniRun         | bucket            | 2400                              | A_S2000_IniWet          |
| L_S3600_IniWet         | bucket            | 3600                              | L_S2400_IniWet          |
| A_S1365_IniWet         | swamp             | 1365                              | Isothermal, Wind static |
| A_S2000_IniWet         | swamp             | 2000                              | Isothermal, Wind static |

bucket: A land planet assumed; total water is unchanged

swamp: An aqua planet assumed; water is supplied continuously

- Resolution
  - T21L26

- Other parameter
  - Eccentricity, obliquity are 0
  - $\hbox{\bf Atmospheric components are} \\ \hbox{\bf same the Earth not including } O_3 \\ \\$

#### Results

### A statistical equilibrium state is obtained

Exp. L\_S2400\_IniWet





- Net insolation exceeds that of Abe et al. (2011)
- Complete evaporation does not occur

#### Results

# The structure of statistical equilibrium state Exp. L S2400 IniWet

- A statistical equilibrium state is maintained
  - Equatorial Planetary radiation is  $520 \, \text{W/m}^2$ 
    - Much larger than  $350 \, \text{W/m}^2$  (upper limit for aqua planet)
    - Because of dry atmosphere in the equatorial region
  - Can be balanced with large solar constant (Abe et al., 2011)

#### **Net insolation** (annual mean)



#### Planetary radiation (annual mean)



#### Results

### Precipitation and Evaporation

L\_S2400\_IniWet





#### Surface water



#### **Evaporation flux**



- Precipitation occurs in the region where evaporation occurs
  - Equatorial region
  - Polar region

#### <u>Results</u>

### Water localization

L S2400 IniWet

- Surface water is localized in polar region
- Polar ice cap exists
- Because temperature of polar region is low, surface water does not evaporate



# **Conclusions**

- Complete evaporation did not occur in the experiment of this study
  - HZ for a land planet can be wider than that for previous study
  - Temperature in polar region did not increase
    - Insolation to the polar region is small
    - Atmospheric meridional heat transport is small?

snow and water



- Further experiments
  - Experiments with different settings (increasing polar region temperature)
    - Larger solar constant
    - Various obliquity and planetary rotation rate
  - Comparative experiment using other GCMs