Correction des exercices du Chapitre 4 -A. Principes d'algorithmique

IV.2 Prouver la terminaison

○ Terminaison de PGCD_naif

1ère boucle while:

Variant de boucle *i* décrémenté de 1 à chaque itération

Valeurs i = (a, a-1, ... 0) Condition sortie $i \leq 0$

Les valeurs du variant de boucle *i* forment une suite d'entiers strictement décroissante à partir de *a* et par pas de 1. La valeur i = 0 sera forcément atteinte après a itérations et la boucle se termine.

2ème boucle while:

Variant de boucle *i* décrémenté de 1 à chaque itération

Valeurs i = (b, b-1, ... 0) Condition sortie

 $i \leq 0$

Les valeurs du variant de boucle i forment une suite d'entiers strictement décroissante à partir de bet par pas de 1. La valeur i = 0 sera forcément atteinte après b itérations et la boucle se termine. La 3ème boucle est une boucle for qui se termine forcément.

Conclusion: Toutes les boucles se terminent et l'algorithme aussi.

Terminaison de PGCD_premiers

Fonction facteurs_premiers:

2ème boucle while:

Variant de boucle *i* incrémenté de 1 à chaque itération

Valeurs $i = (2, 3, 4, ... i_{max})$ $i_{max} = temp$ si i est premier $i_{max} < temp$ sinon

Condition sortie (temp mod i) = 0c'est-à-dire i est un diviseur de temp

Les valeurs du variant de boucle *i* forment une suite d'entiers strictement croissante à partir de 2 et par pas de 1. Quel que soit la valeur de *temp*, *i* finira forcément par être un diviseur *temp*, au pire quand i = temp, et la boucle se termine.

1ère boucle while:

Variant de boucle *temp* qui est remplacé par le reste de la division entière par *i_{max}* à chaque itération

Valeurs *temp* vaut *n* au départ puis est remplacé par le reste de la division entière de *n* par *i* avec 2

Condition sortie premier = Vrai c'est-à-dire i = tempou encore temp est premier

 $\leq i \leq n$

Les valeurs du variant de boucle *temp* forment une suite d'entiers strictement décroissante à partir de n et minorée par 2. La boucle se termine dès que temp est premier. Quel que soit la valeur de n, *temp* finira forcément par être un nombre premier, au pire quand *temp* = 2, et la boucle se termine. **Conclusion**: Toutes les boucles se terminent et l'algorithme aussi.

Fonction PGCD_premiers

boucle while:

Variant de boucle *i* incrémenté de 1 à chaque itération à moins d'une instruction break

Valeurs i = (0, 1, 2, ...longueur(facteurs_de_b))

Condition sortie $i \ge longueur(facteurs_de_b)$

Les valeurs du variant de boucle i forment une suite d'entiers strictement croissante à partir de 0 et par pas de 1. Car à chaque itération, soit on sort de la boucle par une instruction break, soit on incrémente *i*. Au pire, i atteint *longueur(facteurs_de_b)* et la boucle se termine.

Conclusion: Toutes les boucles se terminent car l'algorithme contient 2 autres boucles **for** qui se terminent forcément donc il se termine.

• Terminaison de PGCD_euclide

boucle while:

Variant de boucle *reste* qui est remplacé par le reste Au départ *reste* = *b*, puis *reste* de la division entière de u par v à devient le reste de la division chaque itération

Valeurs entière de *a* par *b* qui est Condition sortie reste = 0

Les valeurs du variant de boucle *reste* forment une suite d'entiers strictement croissante à partir de **b** et minorée par 0. **reste** atteint donc forcément 0 et la boucle se termine.

forcément < b et ≥ 0 .

Conclusion : L'algorithme ne contient pas d'autres boucles et donc il se termine.

IV.3 Prouver la correction

Correction de PGCD_soustraction

L'invariant de boucle est la propriété « PGCD(u,v) = PGCD(a,b) ».

- Avant la 1ère itération de la boucle *while*, cette propriété est vraie puisque u = a et v = b.
- Supposons que cette propriété est vraie avant une itération quelconque de la boucle et notons *u*' et v' les valeurs de u et v après cette itération. D'après l'algorithme, on voir que soit u' = u - v et v' = v'v, soit u' = u et v' = v - u donc PGCD(u',v') = PGCD(u-v,v) ou PGCD(u',v') = PGCD(u,v-u). Or un théorème mathématique nous dit que PGCD(u-v,v) = PGCD(u,v-u) = PGCD(u,v). On en déduit que PGCD(u,v) = PGCD(u,v) et puisqu'on a fait l'hypothèse que PGCD(a,b) = PGCD(u,v), on a aussi PGCD(u',v') = PGCD(a,b). La propriété choisie reste donc vrai après une itération.
- On en déduit que la propriété reste vraie à la fin de la boucle et que c'est bien un invariant de boucle. Or, à la sortie de la boucle u = v donc PGCD(u, v) = PGCD(u, u) = u. L'invariant de boucle s'écrit alors PGCD(u,v) = u = PGCD(a,b) et puisque la fonction retourne u, elle retourne bien PGCD(a,b). CQFD

IV.4 Calcul de complexité

Complexité de PGCD naif

Dans la première boucle tant que, on fait *a* itérations puisque *i* varie de *a* à *1* par pas de 1. De même, on fait **b** itérations dans la deuxième boucle tant que. La troisième boucle est une boucle **for** qui fait autant d'itérations qu'il y a de diviseurs de b. On ne sait pas exactement combien cela peut faire d'itérations car cela dépend de la valeur de b, mais il y a forcément moins que b itérations. Au total, on a donc moins que a + b + b = a + 2b itérations. Par conséquent, si on multiplie a et b par n, le nombre d'itérations est aussi multiplié par n (n*a+2*n*b = n*(a+2b)). Cela montre que la complexité de cet algorithme est linéaire (en O(n)).

Complexité de PGCD_soustraction

On ne sait pas combien d'itérations fait la boucle *tant que* car ça dépend des valeurs de u et v. Mais on peut l'évaluer dans le pire des cas, c'est-à-dire si v=1. Dans ce cas, on voit que u est décrémenté de 1 à chaque itération jusqu'à ce que u=1. On aura donc u itérations. Si u est multiplié par n alors le nombre d'itérations est aussi multiplié par n et la complexité est donc bien linéaire.

o Mesure de la complexité

Pour le PGCD_naif, le pire des cas est lorsque a et b sont premiers entre eux. Pour le PGCD_soustraction, le pire des cas est lorsque b = 1.

Essai	1	2	3	4	5	6	7	8
N = 10 000	a = 385	a = 3850	$a = 10 \ 205$	a = 385	a = 3850	a = 385	a = 385	a = 10 250
exécutions	b = 210	b = 2100	b = 7654	b = 1	b = 1	b = 32	b = 211	b = 7500
naif	5.3e-01 s	5.7e+00 s	1.9e+01 s	3.7e-01 s	4.0e+00 s	3.9e-01 s	6.0e-01 s	1.8e+01 s
soustraction	5.4e-03 s	7.9e-03 s	2.2e+00 s	2.7e-01 s	3.1e+00 s	4.6e-02 s	1.0e-02 s	6.7e-03 s
Rapport	98	721	9	1.4	1.3	8	60	2700

Pour l'algorithme naif, on a bien une complexité linéaire : quand on passe de essai 1 à essai 2 ou de essai 4 à essai 5, on multiplie a et b par 10 et le temps d'exécution est aussi à peu près multiplié par 10.

Pour l'algorithme par soustraction, c'est moins net car en réalité, il est davantage sensible à la différence entre a et b qu'aux valeurs de a et b. Néanmoins, dans le cas ou b =1 (essais 4 et 5), c'est-à-dire dans son pire cas, le temps d'exécution est bien multiplié par 10 quand a est multiplié par 10.

Par ailleurs, on remarque que l'algorithme naïf est finalement assez peu sensible à son pire cas (essais 3 et 8 ou essais 1 et 7) alors que l'algorithme par soustraction y est effectivement très sensible (essais 1 et 4 ou 2 et 5).

Quand on compare les temps d'exécution de ces deux algorithmes (ligne rapport), on voit que l'algorithme par soustraction est toujours plus efficace que le naïf (tous les rapports sont >1) mais que cela varie énormément (de 1,3 à 2700). Dans son pire cas (b = 1), il est quasiment équivalent à l'algorithme naïf (essais 4 et 5). C'est quand a et b ont beaucoup de diviseurs (essais 2 et 8) que la différence semble la plus nette.

Enfin, certains résultats sont difficiles à expliquer :

- Pourquoi une telle différence pour les essais 3 et 8 avec l'algorithme soustraction ?
- Pourquoi si peu de différence entre les essais 1 et 7 pour l'algorithme naïf alors que le 7 devrait être un pire cas ?