# ML Workshop

#### Methods

- Least squares
- Forward stepwise selection
- Ridge
- Lasso
- Regression (Decision) tree
- Bagging
- Random Forests
- Boosting

#### **Basics**

- No one method dominates all others over all possible data sets.
- Selecting the best method is the challenging part of ML.
- How close are the assumptions of a method to the data generating process?
- Mean squared error (MSE) is a common metric for accuracy of a method:

MSE = 
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

- MSE measures closeness of the predicted response to the true response value.
- Training MSE: To fit/train the model (to get  $\widehat{f}$ ).
- Test MSE: To test the accuracy of our model we apply our method to previously unseen data.
- We would like to select a model with the **Smallest Test MSE**.

#### Bias-Variance Trade-Off

Expected Test MSE for a given point x<sub>0</sub> can be decomposed into,

$$E[y_0 - \hat{f}(x_0)]^2 = Var(\hat{f}(x_0)) + [Bias(\hat{f}(x_0))]^2 + Var(\varepsilon)$$

- We want to select a ML method with a low variance and low bias to minimize the expected Test MSE.
- Lower bound = Var(ε) i.e. irreducible error
- Variance refers to the amount by which  $\hat{\mathbf{f}}$  will change if we estimated it using a different training data set.
- A ML method with high variance will result in a large change in  $\hat{\mathbf{f}}$  with a small change in the training data.
- More flexible learning methods generally have a high variance.
- Do number of observations in a training data impact variance?

#### Bias variance Trade-Off

- Bias refers to the error introduced by approximating a complicated problem by a much simpler model.
- **High bias:** If the true *f* is highly non-linear, increasing any amount of training obs. will not improve the prediction with a linear model.
- More flexible learning methods have a lower bias.
- The <u>relative rate of change of bias and variance</u> determines whether Test MSE decreases or increases.
- As we increase flexibility of a method, bias tends to decrease faster than the variance increases.
- However, at some point increasing flexibility has little impact on bias but starts to significantly increase the variance. Hence, the **U-shaped Test MSE curve**.

### Forward Stepwise Selection

• Forward stepwise selection begins with no predictors and then adds predictors, one-at-a-time, until all of the predictors are in the model.

#### Algorithm 6.2 Forward stepwise selection

- 1. Let  $\mathcal{M}_0$  denote the *null* model, which contains no predictors.
- 2. For  $k = 0, \ldots, p 1$ :
  - (a) Consider all p-k models that augment the predictors in  $\mathcal{M}_k$  with one additional predictor.
  - (b) Choose the *best* among these p k models, and call it  $\mathcal{M}_{k+1}$ . Here *best* is defined as having smallest RSS or highest  $R^2$ .
- 3. Select a single best model from among  $\mathcal{M}_0, \ldots, \mathcal{M}_p$  using cross-validated prediction error,  $C_p$  (AIC), BIC, or adjusted  $R^2$ .

## Shrinkage Methods: Ridge and Lasso

• Least squares regression estimates  $\widehat{\beta}$  by minimizing RSS:

RSS = 
$$\sum_{i=1}^{n} \left( \mathbf{y}_i - \boldsymbol{\beta}_0 - \sum_{j=1}^{p} \boldsymbol{\beta}_j \mathbf{x}_{ij} \right)^2$$

• Ridge regression estimates coefficient  $\widehat{\beta}^R$  that minimizes:

$$RSS + \lambda \sum_{j=1}^{p} \beta_{j}^{2}$$

• Lasso regression estimates coefficient  $\widehat{\pmb{\beta}}^L$  that minimize

$$RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

where  $\lambda \ge 0$  is a tuning parameter to be determined separately.

•  $\lambda$ =0 gives us the least squares estimates. As  $\lambda \to \infty$ , coefficients approach zero.

### Why does Ridge/Lasso improve over least squares?

- The answer is rooted in bias-variance trade-off.
- As  $\lambda$  increases, flexibility of the regression fit decreases ( $\sqrt{\text{Var}}$  and  $\sqrt{\text{Bias}}$ ).
- $\lambda$ =0 (LS variance) and as  $\lambda \to \infty$  (Var  $\to$  0).



 Lasso/Ridge regression works best where the LS estimates have high variance i.e. a small change in data can cause large change in parameters.

## Alternative formulation for Ridge and Lasso

**Lasso:** minimize 
$$\left\{\sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij}\right)^2\right\}$$
 subject to  $\sum_{j=1}^p |\beta_j| \le s$ 

Ridge: minimize 
$$\left\{\sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij}\right)^2\right\}$$
 subject to  $\sum_{j=1}^p \beta_j^2 \le s_i$ 

- In **Lasso** we are trying to find coefficients that minimize RSS, subject to the constraint that there is a **budget** s for how large  $\sum_{i=1}^p |\beta_i|$  can be.
- If s is large enough, that the **LS** solution falls in the budget we get LS estimates as the Lasso solution.
- If s is small,  $\sum_{j=1}^{p} |\beta_j|$  must be small so as not to violate the budget.

#### Variable selection in Lasso



- Ridge: Since circular constraint has no sharp points, the intersection will typically not occur on axes i.e. no coefficient is set to zero.
- Lasso constraint has corners at each axes, so the ellipse will often intersect at one of the axes i.e. some coefficient will be set to zero.

**Lasso constraint: Diamond** 

**Ridge constraint : Circle** 

### Regression Tree

- Regression tree (Decision tree) is simple and useful for interpretation.
  - It segments the predictor space into a number of simple regions.
  - Mean of the training observations in a given region is used for prediction.
- The best split is made for each step without looking ahead.
- 1. Select the predictor  $X_j$  and the cut-point s such that splitting the predictor space into regions  $R_1 = \{X \mid X_j < s\}$  and  $R_2 = \{X \mid X_j \ge s\}$  leads to the greatest possible reduction in **RSS**.
- 2. Repeat the process i.e. looking for the best predictor and its cut-point so as to minimize the **RSS** within each of the resulting regions.
- 3. This process continues until some stopping criteria is reached e.g.  $|R_k| < 10$ .

### Bagging

- Regression trees have high variance.
- **Bootstrap aggregation** (or **Bagging**) is a general procedure for reducing variance of any ML method.
- Insight: If **n** independent obs.  $\mathbf{Z_1}$ ,  $\mathbf{Z_2}$ , ...,  $\mathbf{Z_n}$  each has a variance  $\sigma^2$   $\longrightarrow$  The variance of the mean  $\overline{\mathbf{Z}}$  is  $\sigma^2/\mathbf{n}$ .
- Bagging: Take many training sets and build separate prediction models using each training set, and average the resulting predictions.
- But we do not have many training sets Bootstrap!
- We train our method on  $\mathbf{b} = \mathbf{1}$ , ...,  $\mathbf{B}$  bootstrapped training sets in order to get  $\widehat{\mathbf{f}^{*b}}$ , and finally average all the predictions

$$\widehat{\mathbf{f}_{\mathrm{bag}}}(\mathbf{x}) = \frac{1}{R} \sum_{b=1}^{R} \widehat{\mathbf{f}^{*b}}(\mathbf{x})$$
 [Bagging]

#### Random Forests

- Random forests improve over bagged trees by <u>de-correlating</u> the trees.
- Method for building random forests:
  - We build a number of decision trees using bootstrapped training samples.
  - Each time a split in a tree is considered, a random sample of **m** predictors is considered from the full set of **p** predictors.
  - The split is allowed to use one of the m chosen predictors.
  - A fresh sample of **m** (typically,  $\mathbf{m} = \sqrt{\mathbf{p}}$ ) predictors is taken at each split.
- Why random forests?
  - Suppose there is one very strong predictor with other moderately strong ones.
  - In a collection of bagged trees, all of them will have this strong predictor at the top split.
  - All the bagged trees will start to look similar high correlation among trees.
  - Averaging highly correlated quantities doesn't lead to a large decrease in variance.
  - Random forests force each split to consider only a subset of the predictors. Hence, decorrelating the trees

### Boosting

- Boosting grows trees sequentially each tree uses information from previously grown trees.
- Unlike bagging, the construction of a tree depends strongly on the trees already grown.
- Unlike making a single large decision tree (fitting the data hard) boosting instead learns slowly.
- Boosting improves  $\hat{f}$  in areas where it didn't perform well.
- The shrinkage parameter  $\lambda$  slows the process further, allowing more trees to work on the residuals. (Slow is good, but slower is better!)

#### Algorithm 8.2 Boosting for Regression Trees

- 1. Set  $\hat{f}(x) = 0$  and  $r_i = y_i$  for all i in the training set.
- 2. For b = 1, 2, ..., B, repeat:
  - (a) Fit a tree  $\hat{f}^b$  with d splits (d+1) terminal nodes) to the training data (X,r).
  - (b) Update  $\hat{f}$  by adding in a shrunken version of the new tree:

$$\hat{f}(x) \leftarrow \hat{f}(x) + \lambda \hat{f}^b(x). \tag{8.10}$$

(c) Update the residuals,

$$r_i \leftarrow r_i - \lambda \hat{f}^b(x_i). \tag{8.11}$$

3. Output the boosted model,

$$\hat{f}(x) = \sum_{b=1}^{B} \lambda \hat{f}^b(x).$$
 (8.12)

### Boosting

- Boosting has three tuning parameters:
  - 1. Number of trees: Unlike bagging or random forests, boosting can overfit if **B** is too large.
  - 2. Shrinkage parameter  $\lambda$ : It controls the rate of learning. Typical values are 0.01 or 0.001. Very small  $\lambda$  can require using a large value of **B**.
  - **3. Number of splits d** in each tree: It controls the complexity of the boosted trees. Often d=1 or d=2 works well. The number d is often called *interaction depth*, as it controls the interaction order of the boosted model.

| Method              | Test MSE | Test R <sup>2</sup> |
|---------------------|----------|---------------------|
| OLS                 | 24.4301  | 0.7217              |
| Forward<br>Stepwise | 24.4301  | 0.7217              |
| Lasso               | 24.6004  | 0.7198              |
| Ridge               | 24.4502  | 0.7215              |
| Regression Tree     | 23.5125  | 0.7322              |
| Bagging             | 14.9331  | 0.8299              |
| Random Forest       | 12.5293  | 0.8573              |
| Boosting            | 14.1929  | 0.8383              |

# End of Workshop