NUMERICAL METHODS AND OPTIMIZATION

TUTO3 TOOLBOX

Methods complexity

SOLVING COST

- Diagonal system : **n** disvisions
- Triangular system: Forward or Backward resolution

n divisions and $\frac{n(n-1)}{2}$ addition/multiplication, so in total:

$$n+2\times\frac{n(n-1)}{2}=n^2$$

GAUSS METHOD COST

Let A be a matrix **mxm**, then we have:

step	addition	multiplication	division
1	$(m-1)^2$	$(m-1)^2$	m-1
2	$(m-2)^2$	$(m-2)^2$	m-2
	i i	÷	:
m-1	1	1	1
total:	$6^{-1}m(m-1)(2m-1)$	$6^{-1}m(m-1)(2m-1)$	$2^{-1}n(n-1)$

Computational complexity
$$O\left(\frac{2n^3}{3}\right)$$

LU DECOMPOSITION METHOD COST

Let A be a matrix **nxn**, then we have:

Number of divisions:
$$(n-1) + (n-2) + \dots + 1 = n(n-1)/2$$

Number of multiplications $(n-1)^2 + (n-2)^2 + \dots + (1)^2 = \frac{n^3}{3} - \frac{n^2}{2} + \frac{n}{6}$
Number of subtractions: $(n-1)^2 + (n-2)^2 + \dots + (1)^2 = \frac{n^3}{3} - \frac{n^2}{2} + \frac{n}{6}$

Computational complexity: $O\left(\frac{2n^3}{3}\right)$

CHOLESKY DECOMPOSITION METHOD COST

- Square roots : **n**
- Divisions: $\frac{n(n-1)}{2}$
- $2\sum_{j=1}^{n}(j-1)(n-j)$ addition and multiplication cost
- $\sum_{j=1}^{n} (j-1)$ addition and multiplication in the square root
- The total is $O\left(\frac{n^3}{3}\right)$ which is the half of gauss cost.

CHOLESKY ALGORITHM DESCRIPTION

Input data: a symmetric positive definite matrix A whose elements are denoted by a_{ij}).

Output data: the lower triangular matrix L whose elements are denoted by l_{ij}).

The Cholesky algorithm can be represented in the form