B.E. (Fifth Semester) EXAMINATION, Dec., 2004

(Computer Science & Engg. Branch)

THEORY OF COMPUTATION

RGPVONLINE.COM

(CS-505)

Note: Attempt any five questions. All questions carry equal marks.

- 1. (a) Use induction on the size of S to show that if S is a finite set then $|2^s| = 2^{|s|}$.
 - (b) Show that the following order of magnitude holds:

(i)
$$n^2 + 5 \log n = o(n^2)$$

(ii)
$$n! = o(n^n)$$

(c) Construct an NFA that accepts the language

convert it into DFA.

- (a) Show that if L is regular, so is L^R.
 - (b) Prove or disprove the following conjecture. If $M = (Q, \epsilon, \delta, q_0, p)$ is a minimal d.f.a. for a regular language L, then $\hat{M} = (Q, \Sigma, \delta, q_0, Q - F)$ is a minimal d.f.a. for I.
 - (c) Show that if r_1 and r_2 are regular expressions, then:

(i)
$$L(r_1.r_2) = L(r_1) L(r_2)$$

(i)
$$L(r_1,r_2) = L(r_1)L(r_2)$$
 (ii) $L(r_1^*) = (L(r_1))^*$

3. (a) What is the language accepted by the following generalized transition graph?

- (b) Find a regular expression for the following languages on {a, b}:
 - (i) $L = \{\omega : n_{\mu}(\omega) \text{ and } n_{\mu}(\omega) \text{ are both even}\}$
 - (ii) $L = \{\omega : (n_a(\omega) n_b(\omega)) \mod 3 \neq 0\}$
- (c) The head of a language is the set of all prefixes of its strings, that is: head (L) = $\{x : xy \in L \text{ for some } y \in \Sigma^*\}$

Show that the family of regular languages is closed under this operation.

- 4. (a) Let $L = \{a^n b^n : n \ge 0\}$ show that L2 is context-free.
 - (b) Show that the following grammar is ambiguous:

$$S \rightarrow AB \mid aa \mid B$$

 $A \rightarrow a \mid Aa$

$$B \rightarrow b$$

(c) Remove all unit productions, all useless productions and all λ-productions from the grammar:

$$S \rightarrow a A [a BB]$$

 $A \rightarrow aa A [\lambda]$
 $B \rightarrow b B [bb C]$
 $C \rightarrow B$

What language does this grammar generate?

5. (a) Find an npda on $\Sigma = \{a, b, c\}$ that accepts the language:

$$L = \{\omega_1 c \omega_2 : \omega_1 \omega_2 \in \{a,b\}^*, \omega_1 \neq \omega_2^R\}$$

(b) Find a context-free grammar that generates the language accepted by the npda $M = (\{q_0, q_1\}), \{a, b\}, \{A, Z\}, \delta, q_0, z, \{q_1\})$ with transitions:

$$\delta(q_0, a, z) = \{(q_0, A_2)\}\$$

 $\delta(q_0, b, A) = \{(q_0, AA)\}\$
 $\delta(q_0, a, A) = \{(q_1, \lambda)\}\$

- 6. (a) Show that the family by linear languages is closed under union, but not closed under concatenation.
 - (b) Construct a turing machine to compute the function:

$$f(w) = w^R$$

7. (a) Show that for arbitrary context-free grammars G_1 and G_2 , the problem "L(G_1) \bigcap L(G_2) is context-free" is undecidable.

(b) Show that Ackermann's function is a total function in I × I.

- (c) Show that for $|\Sigma| = 1$, the post correspondence problem is decidable that is, an algorithm that can decide whether or not (A, B) has a PC-solution for any given (A, B) on a single letter alphabet.
- 8. Write short notes on any four of the following:
 - (a) Various types of Turing Machines
 - (b) Deterministic Push Down Automata

RGPVONLINE.COM

- (c) Pumping Lemma for Regular Languages
- (d) Automata with Output
- (e) Unrestricted Grammars
- (f) CNF