

План

Метрические алгоритмы
Ближайший центроид
Метод к ближайших соседей (kNN)
Весовые обобщения kNN
Регрессия Надарая-Ватсона
Метрики
Приложения метрического подхода

Метрические алгоритмы

«distance-based» – анализируются расстояния

$$\rho(x,x_1),\ldots,\rho(x,x_m)$$

Примеры:

- Nearest centroids algorithm / Distance from Means
 - kNN (Nearest Neighbor)

ещё называют:

- «memory-based»
- «instance-based»
- «non-parametric»

Модельные задача классификации

на них будем показывать работу алгоритмов

Ближайший центроид (Nearest centroid algorithm)

Задача классификации на непересекающиеся классы с вещественными признаками:

$$Y = \{1, 2, ..., l\}, x_i \in \mathbb{R}^n$$

центроиды:

$$c_{j} = \frac{1}{|\{i: y_{i} = j\}|} \sum_{i: y_{i} = j} x_{i}$$

классификация:

$$a(x) = \arg\min_{j} \rho(x, c_{j})$$

обобщается на случаи, когда можно вычислить «средний объект»

Ближайший центроид (Nearest centroids algorithm)

- + хранить только центроиды (их можно адаптивно менять)
- + понятие центроида можно менять («средний объект»)
- + простая реализация
- + размер модели = число классов × описание центроида
- очень простой алгоритм интуитивно подходит в задачах, где объекты разных классов распределены «колоколообразно»

Минутка кода: ближайший центроид (Nearest centroids algorithm)

```
from sklearn.neighbors.nearest_centroid import NearestCentroid
model = NearestCentroid(metric='euclidean')
model.fit(X, y)
a = model.predict(X2)
```

Подход, основанный на близости

Задача классификации:
$$a(x) = \text{mode}(y_i \mid x_i \in N(x))$$

Задача регрессии:
$$a(x) = mean(y_i \mid x_i \in N(x))$$

N(x) – окрестность (neighborhood) объекта x (похожие на него объекты)

Окрестность

Если X – метрическое пространство с метрикой ρ , пусть нумерация объектов такая, что

$$\rho(x, x_1) \le \ldots \le \rho(x, x_m)$$

В методе k ближайших соседей (kNN = k nearest neighbours) окрестность выбирается

$$N(x) = \{x_1, \dots, x_k\}$$
 – k ближайших соседей:

Окрестность

Есть также «Fixed-Radius Near Neighbor»

$$N(x) = \{x_t \mid \rho(x_t, x) \le R\}$$

про него не будем подробно

Метод k ближайших соседей (kNN)

Гиперпараметр k можно выбрать на скользящем контроле дальше Ещё гиперпараметры: метрика (параметры метрики), ядро (+ параметры ядра) и т.п.

k = 1 – алгоритм ближайшего соседа (nearest neighbour algorithm)

Термины

Нетерпеливый алгоритм	Обучение – получение значений параметров
(Eager learner)	После обучения данные не нужны
Ленивый алгоритм	Не использует обучающую выборку до классификации
(Lazy learner)	Формально нет обучения – храним всю выборку

Решение модельной задачи при разном числе соседей

Как увидим дальше, k отвечает за «сложность модели»

Минутка кода

```
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n neighbors=5, # число соседей
    radius=1.0, # ограничение пространства
    algorithm='auto', # алгоритм для определения БС ball_tree,
                       # kd tree, brute
    leaf size=30, # параметр для BallTree / KDTree
   weights='uniform', # веса («distance», функция)
   metric='minkowski', # метрика (функция или строка),
                       # scipy.spatial.distance
                       # параметр для minkowski
   p=2,
   metric params=None) # дополнительные параметры для метрики
model.fit(X, y)
a = model.predict(X2)
p = model.predict proba(X2)[:, 1]
```

Метод ближайшего соседа в регрессии

обобщается на регрессию

Метод ближайшего соседа в регрессии

обобщается на регрессию

Минутка кода

```
from sklearn.neighbors import KNeighborsRegressor
model = KNeighborsRegressor(n_neighbors=3) # kNN-регрессия
model.fit(x_train, y_train) # обучение
a = model.predict(x_test) # ответ
```

Подбор гиперпараметров специальными методами контроля

```
# cv-контроль
from sklearn.model_selection import KFold
cv = KFold(n splits=10, shuffle=True,
random state=2)
# модель
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n neighbors=5)
# параметр
param_name = "n_neighbors"
# его значения
pars = np.arange(1, 41)
# сделать тест
from sklearn.model selection import validation curve
train errors, test errors = validation curve (model,
                           X, y,
                           param name=param name,
                           param range=pars,
                           cv=cv.split(X),
                           scoring='accuracy',
                           n jobs=-1)
```


Проблема классического kNN

близкие соседи должны быть важнее

Весовые обобщения kNN

классика:

$$mode(y_i | x_i \in N(x)) = arg \max \sum_{t=1}^{k} I[y(x_t) = a]$$

обобщение:

$$\arg\max \sum_{t=1}^{k} w_t I[y(x_t) = a]$$

разные весовые схемы:

$$w_1 \ge w_2 \ge \ldots \ge w_k > 0$$

Весовые схемы

$$W_t = (k - t + 1)^{\delta}$$

$$k^{\delta} \ge (k-1)^{\delta} \ge \dots \ge 1^{\delta} > 0$$

$$w_{t} = \frac{1}{t^{\delta}}$$

$$\frac{1}{1^{\delta}} \ge \frac{1}{2^{\delta}} \ge \dots \ge \frac{1}{k^{\delta}} > 0$$

$$w_{t} = K \left(\frac{\rho(x, x_{t})}{h(x)} \right)$$

часто веса лучше отнормировать, чтобы сумма = 1

главное преимущество -

богатое пространство вероятности в задачах классификации!

Что такое ядро

Треугольное / linear

$$K(z) = \max(\min(1-z,1+z),0)$$

Квартическое

$$K(z) = \frac{15}{16}(1-z^2)^2 I[|z| \le 1]$$

Прямоугольное / tophat

$$K(z) = \frac{1}{2}I[|z| \le 1]$$

Гауссовское / gaussian

$$K(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^{\mathrm{T}}z}{2}\right)$$

Епанечникова / epanechnikov

$$K(z) = \frac{3}{4}(1-z^2)I[|z| \le 1]$$

https://scikit-learn.org/stable/auto_examples/neighbors/plot_kde_1d.html

Весовые обобщения kNN

Весовые обобщения kNN

60

номер объекта

80

100

20

40

0.00

Весовые обобщения в регрессии

$$\frac{\sum_{t=1}^{k} w_t y(x_t)}{\sum_{t=1}^{k} w_t}$$

пример для 5NN

Эффект почти не заметен, дальше будет обобщение – регрессия Надарая-Ватсона

Регрессия Надарая-Ватсона (Nadaraya-Watson regression, 1964)

ответ - взвешенное усреднение целевых значений

$$a(x) = \frac{w_1(x)y_1 + \dots + w_m(x)y_m}{w_1(x) + \dots + w_m(x)}$$

Регрессия Надарая-Ватсона

$$a(x) = \frac{w_1(x)y_1 + \dots + w_m(x)y_m}{w_1(x) + \dots + w_m(x)}$$

Смысл весов – чем ближе объект обучения, тем скорее ответ похож на его метку

$$w_i(x) = K\left(\frac{\rho(x, x_i)}{h}\right)$$

Ядро с шириной h.

Здесь также как выше... (про функции ядра)

Регрессия Надарая-Ватсона

пример регрессии при разных значениях ширины ядра

Регрессия Надарая-Ватсона

Смысл:

ответ алгоритма – решение оптимизационной задачи

$$\sum_{i=1}^{m} w_i(x) (a - y(x_i))^2 \to \min_{a}$$

Свойства:

- + хорошее решение задачи сглаживания
 - не решает задачи экстраполяции

Приложения регрессии Надарая-Ватсона

1. Сглаживание сигналов

2. «Многомерные» усреднения

Метрики

Расстояние (метрика) на X – функция ho(x,z): $X imes X o \mathbb{R}$

1.
$$\rho(x,z) \ge 0$$

2.
$$\rho(x,z)=0 \Leftrightarrow x=z$$
 (без – полумерика/псевдометрика)

3.
$$\rho(x,z) = \rho(z,x)$$

4.
$$\rho(x,z) + \rho(z,v) \ge \rho(x,v)$$

- ullet Минковского L_p
 - \circ Евклидова L_{2}
 - $_{\circ}$ Манхэттенская $L_{\!\scriptscriptstyle 1}$
- Махаланобиса

- Canberra distance
- Хэмминга
- косинусное
- расстояние Жаккара
- DTW
- Левенштейна

Евклидова (L2)

Общий вариант – Минковского (L_p)

Предельный случай – Чебышёва (L_∞)

Частный случай – Манхэттенская (L₁)

$$\sqrt{\sum_{i=1}^{n} (x_i - z_i)^2}$$

$$\left(\sum_{i=1}^{n} |x_i - z_i|^p\right)^{1/p}$$

$$\left(\sum_{i=1}^{n} |x_i - z_i|^{\infty}\right)^{1/\infty} \sim \max_{i} |x_i - z_i|$$

$$\sum_{i=1}^{n} |x_i - z_i|$$

здесь
$$x = (x_1, ..., x_n), \quad z = (z_1, ..., z_n)$$

$$(|x_1-z_1|^p+|x_2-z_2|^p)^{1/p}$$

Расстояние Махаланобиса (Mahalanobis distance)

– евклидово расстояние после преобразования $x \to \varphi(x) = \Sigma^{-1/2}(x - \mu)$

стандартизует нормальные данные

 $norm(\mu, \Sigma) \rightarrow norm(0, I)$

$$\rho(x,z) = \rho_{L_2}(\varphi(x),\varphi(z)) = \sqrt{(\varphi(x) - \varphi(z))^{\mathrm{T}}(\varphi(x) - \varphi(z))} = \sqrt{(x-z)^{\mathrm{T}}\Sigma^{-1}(x-z)}$$

Расстояние Махаланобиса

$$\Sigma = \begin{bmatrix} 1.5 & 0 \\ 0 & 0.5 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 2 & 0.3 \\ 0.3 & 0.5 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 4 & 0.3 \\ 0.3 & 0.25 \end{bmatrix}$$

Canberra distance

https://en.wikipedia.org/wiki/Canberra_distance

$$\sum_{i=1}^{n} \frac{|x_{i} - z_{i}|}{|x_{i}| + |z_{i}|}$$

Хэмминга

$$\sum_{i=1}^{n} I[x_i \neq z_i]$$

Функции сходства

Косинусная мера сходство (не расстояние)

$$\cos(x,z) = \frac{x^{\mathrm{T}}z}{\|x\| \cdot \|z\|}$$

Коэффициенты корреляции

$$cor(x,z) = \frac{(x - \overline{x})^{T}(z - \overline{z})}{\sqrt{\|x - \overline{x}\|_{2}^{2} \cdot \|z - \overline{z}\|_{2}^{2}}}$$

если работать с нормированными (+ центрированными) векторами, достаточно рассматривать скалярное произведение

Различные метрики

Расстояние дЖаккарда (на множествах)

$$1 - \frac{|X \cap Z|}{|X \cup Z|}$$

тут есть много разных вариантов...

Проблема выбора метрики

- зависимость от масштаба нормировка признаков однородные признаки смесь метрик
- можно выбирать не метрику, а близость пример: косинусная мера сходства

• часто выбор функции расстояния, как ни странно, довольно прост...

Метрики на временных рядах

как ввести расстояние?

Ряды могут быть разной длины... Как оценить похожесть формы?

Метрики на временных рядах

Евклидово расстояние

DTW = Dynamic time warping

Расстояние Левенштейна

```
sampabka2
nonpabka2 (exchange=3)
nonpabka_22 (insert=2)
nonpabka_22 (dist=5)
```

«Edit distance»

Расстояние между строками Вводим элементарные операции правки:

- вставить букву
- удалить букву
- заменить букву

расстояние – минимальное число операций, с помощью которых их одной строки можно получить другую

использование: исправление опечаток

Приложения метрического подхода: Ленкор

«VideoLectures.Net Recommender System Challenge» (ECML/PKDD Discovery Challenge 2011)

- написать рекомендательную систему в режиме холодного старта

Описание лекции

101, 'Lecture', 'eng', 'biology', '2008-12-04', '2009-02-12', 'Implementing a common framework on business', 'Professor Rudolf Smith', ...

$$\rho(\text{Lecture}_1, \text{Lecture}_2) =$$

$$= c_1 \cdot \rho_1(\text{Author}_1, \text{Author}_2) + c_2 \cdot \rho_2(\text{Title}_1, \text{Title}_2) + \dots + c_r \cdot \rho_r(\text{Subject}_1, \text{Subject}_2)$$

метрики можно параметризовать и настраивать параметры «хитрый весовой учёт близости» – см. совместные просмотры

Дьяконов А.Г. Алгоритмы для рекомендательной системы: технология LENKOR // Бизнес-Информатика, 2012, №1(19), С. 32–39.

Приложения метрического подхода: поиск похожих объектов

звука, изображения, видео, ...

https://code.fb.com/data-infrastructure/faiss-a-library-for-efficient-similarity-search/

Приложения метрического подхода: Сиамские сети

Discriminative Learning of Deep Convolutional Feature Point Descriptors

[Simo-Serra et al., 2015 http://icwww.epfl.ch/~trulls/pdf/iccv-2015-deepdesc.pdf]

Приложения метрического подхода: простота интерпретаций

http://cs231n.stanford.edu/2017/syllabus.html

Приложения метрического подхода: классификация текстов

задача «Large Scale Hierarchical Text Classification»

Взвешенный kNN

Итог – матрица оценок

https://www.kaggle.com/c/lshtc

Приложения метрического подхода: классификация текстов

задача «Large Scale Hierarchical Text Classification»

вычисление центроидов

Приложения метрического подхода: прогнозирование рядов

$$\tilde{f} = (f_1, \dots, f_n) \to \tilde{g} = (f_1, \dots, f_n, f_{n+1}, \dots, f_{n+t})
\| A(f_{k-l+1}, \dots, f_k) - (f_{n-l+1}, \dots, f_n) \| \to \min_{k, \tilde{a}}
A(x_1, \dots, x_l) = (a_1 x_1 + a_2, \dots, a_1 x_l + a_2)
\sum_k c_k A(f_{k+1}, \dots, f_{k+l}), \sum_k c_k = 1$$

http://www.neural-forecasting-competition.com/NN5/results.htm

Проблема проклятия размерности

в пространствах большой размерности все объекты примерно на одном расстоянии

но, к счастью, на реальных данных...

есть внутренняя (intrinsic) размерность, все объекты лежат около низкоразмерного многообразия (low-dimensional manifold)

Ещё интересные функции

sklearn.neighbors.kneighbors_graph

- граф соседей

sklearn.neighbors.RadiusNeighborsClassifier sklearn.neighbors.RadiusNeighborsRegressor

- алгоритмы с соседством по радиусу

sklearn.neighbors.NeighborhoodComponentsAnalysis

- обучение метрики

sklearn.neighbors.KernelDensity

- KDE-оценка плотности

Метрические алгоритмы: итог

+ не требуется признаковых описаний

(достаточно уметь измерять расстояния / близости)

- + легкая реализация
- + интерпретируемость
- + нет обучения
- + мало гиперпараметров (хотя... есть метрика)
- + можно учитывать контекст (с помощью метрики)
- медленная классификация (если kNN, зависит от объёма обучения)
- **требуется хранение всей обучающей выборки**
- требуется подбор метрики (нормировки признаков)

Считается, что в пространствах гигантских размерностей стандартные метрики неадекватны (проклятие размерности),

но в реальности расположение объектов неслучайно – есть геометрия!!!

Итог

весовые схемы

очень мощное оружие

метрики

много... есть специализированные могут быть параметризованы

Кстати, есть эффективные способы обнаружения соседства

Ссылки

Код

https://github.com/Dyakonov/ml_hacks/blob/master/dj_IML_kNN.ipynb

Теория kNN

https://github.com/mlss-2019/slides/tree/master/learning_theory