Логистика

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Один известный маркетплейс решил оптимизировать свою логистику. Для этого они хотят минимизировать время загрузки товара на склады. Чтобы решить эту задачу, они обратились к вам за помощью!

Вам предстоит минимизировать это время для t разных складов независимо. Склад задается числом k — количеством доступных в нём ворот для подъезда фуры с товарами. Также известно, что на этот склад в течение дня должны прибыть n фур с товаром. В связи с разной грузоподъёмностью и другими техническими факторами, фуры имеют ограничения на ворота, к которым они могут подъехать и разгрузить свой товар. Конкретнее, i-й фуре допускается подъехать к одним из m_i ворот, задаваемых набором $a_{i,1}, a_{i,2}, \ldots, a_{i,m_i}$.

Чтобы наладить график поставок, было решено, что будет выбрано несколько разгрузочных часов в течение дня, в каждый из которых будет приезжать какое-то множество из запланированных фур на **разные** ворота, чтобы не мешать друг другу. Покупатели очень важны, поэтому товар не должен быть утерян. В связи с этим каждая фура должна приехать на склад ровно один раз в течение дня.

Так как скорость очень важна, вам необходимо, зная информацию о складе и фурах, составить график приезда всех фур на склад, минимизируя количество разгрузочных часов.

Формат входных данных

Каждый тест состоит из нескольких наборов входных данных. Первая строка содержит целое число t ($1 \le t \le 200$) — количество наборов входных данных. Далее следует описание наборов входных данных.

В первой строке каждого набора входных данных находится два целых числа k, n $(1 \le k, n \le 300)$ — количество доступных ворот на складе и количество фур.

Следующие n строк каждого набора входных данных описывают ограничения для фур. В i-й из этих строк содержится число m_i ($1 \le m_i \le k$) — количество доступных ворот для i-й фуры. За которым следуют m_i различных чисел $a_{i,1}, a_{i,2}, \ldots, a_{i,m_i}$ ($1 \le a_{i,j} \le k$) — номера доступных ворот.

Гарантируется, что сумма всех m_i в одном тестовом наборе не превосходит 900.

Обозначим за N, K, M сумму n, k и m_i по всем тестовым наборам. Гарантируется, что $N, M, K \leq 900$.

Формат выходных данных

Для каждого набора входных данных сначала выведите одно целое число l — минимальное необходимое количество разгрузочных часов.

Затем выведите описание каждого из l разгрузочных часов.

Для i-го часа сначала выведите одно целое число c_i — число фур разгружаемых в этот час.

После выведите c_i строк, каждая из которых содержит два целых числа f, g $(1 \le f \le n, 1 \le g \le k)$ — номер фуры и ворота, на которые она разгружается.

Необходимо, чтобы каждая из фур была разгружена ровно один раз в одни из **допустимых** ворот.

Пример

стандартный ввод	стандартный вывод
3	3
1 3	1
1 1	1 1
1 1	1
1 1	2 1
2 4	1
1 1	3 1
2 1 2	2
1 2	2
1 2	1 1
3 6	3 2
2 1 2	2
2 1 3	2 1
2 2 3	4 2
2 1 2	2
1 1	3
3 1 2 3	5 1
	3 2
	2 3
	3
	1 1
	4 2
	6 3