CS 240 - Data Structures and Data Management

Module 8: Range-Searching in Dictionaries for Points

A. Storjohann

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2018

References: Goodrich & Tamassia 12.1, 12.3

Outline

- 1 Range-Searching in Dictionaries for Points
 - Range Search Query
 - Quadtrees
 - kd-Trees
 - Range Trees
 - Conclusion

Outline

- 1 Range-Searching in Dictionaries for Points
 - Range Search Query
 - Quadtrees
 - kd-Trees
 - Range Trees
 - Conclusion

Multi-Dimensional Data

- Various applications
 - Attributes of a product (laptop: price, screen size, processor speed, RAM, hard drive,···)
 - ► Attributes of an employee (name, age, salary,···)
- Dictionary for multi-dimensional data
 A collection of d-dimensional items
 Each item has d aspects (coordinates): (x₀, x₁, ····, x_{d-1})
 Operations: insert, delete, range-search query
- (Orthogonal) Range-search query: specify a range (interval) for certain aspects, and find all the items whose aspects fall within given ranges.
 - Example: laptops with screen size between 11 and 13 inches, RAM between 8 and 16 GB, price between 1,500 and 2,000 CAD

Multi-Dimensional Data Example

- Each item has d aspects (coordinates): $(x_0, x_1, \dots, x_{d-1})$
- Aspect values (x_i) are numbers
- Each item corresponds to a point in d-dimensional space
- We concentrate on d = 2, i.e., points in Euclidean plane

2-Dimensional Range Search

Options for implementing d-dimensional dictionaries:

 Reduce to one-dimensional dictionary: combine the d-dimensional key into one key

Problem: Range search on one aspect is not straightforward

 Use several dictionaries: one for each dimension Problem: inefficient, wastes space

Partition trees

- ► A tree with *n* leaves, each leaf corresponds to an item
- ► Each internal node corresponds to a region
- quadtrees, kd-trees
- multi-dimensional range trees
 - ► A binary search tree for one dimension
 - ► Each node has an associated binary search tree for the other dimension

Outline

- 1 Range-Searching in Dictionaries for Points
 - Range Search Query
 - Quadtrees
 - kd-Trees
 - Range Trees
 - Conclusion

Quadtrees

We have *n* points $S = \{(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})\}$ in the plane.

Assume: All points are within a square R.

- ullet Can find R by computing minimum and maximum x and y values in S
- Ideally the width/height of R is a power of 2

How to **build** the quadtree on *S*:

- Root r of the quadtree corresponds to R
- If R contains 0 or 1 points, then root r is a leaf that stores point.
- Else **split**: Partition R into four equal subsquares (**quadrants**) R_{NE} , R_{NW} , R_{SW} , R_{SE}
- Root has four children v_{NE} , v_{NW} , v_{SW} , v_{SE} ; v_i is associated with R_i
- Recursively repeat this process at each child.
- Convention: Points on split lines belong to right/top side
- We could delete leaves without point (but then need edge labels)

Quadtrees example

Quadtree Dictionary Operations

- **Search**: Analogous to binary search trees and tries
- Insert:
 - Search for the point
 - ► Split the leaf if there are two points
- Delete:
 - ► Search for the point
 - ► Remove the point
 - ▶ If its parent has only one child left, delete that child and continue the process toward the root.

Quadtree Range Search

```
QTree-RangeSearch(T, A)
T: The root of a quadtree, A: Query rectangle
       let R be the square associated with T
       if (R \subseteq A) then
2.
                 report all points in T; return
3.
       if (R \cap A \text{ is empty}) then
4.
5.
                 return
       if (T stores a single point p) then
6.
7.
                 if p is in A return p
                 else return
8.
       for each child v of T do
9.
10.
            QTree-RangeSearch(v, A)
```

Note: We assume here that each node of the quadtree stores the associated square. Alternatively, these could be re-computed during the search (space-time tradeoff).

Quadtree range search example

Blue: Search stopped due to $R \cap A = \emptyset$. Green: Must continue search in children / evaluate.

Quadtree Analysis

- Crucial for analysis: what is the height of a quadtree?
 - ► Can have very large height for bad distributions of points
 - ▶ **spread factor** of points *S*: $\beta(S) = \frac{\text{sidelength of } R}{d_{min}}$
 - ▶ d_{min} : minimum distance between two points in S
 - ▶ **height** of quadtree: $h \in \Theta(\log \beta(S))$
- Complexity to build initial tree: $\Theta(nh)$ worst-case
- Complexity of range search: $\Theta(nh)$ worst-case even if the answer is \emptyset
- But in practice much faster.

Quadtrees in other dimensions

Quad-tree of 1-dimensional points:

Same as a trie (with splitting stopped once key is unique)

Quadtrees also easily generalize to higher dimensions (octrees, etc.)
 but are rarely used beyond dimension 3.

Quadtree summary

- Very easy to compute and handle
- No complicated arithmetic, only divisions by 2 (bit-shift!) if the width/height of R is a power of 2
- Space potentially wasteful, but good if points are well-distributed
- Variation: We could stop splitting earlier and allow up to S points in a leaf (for some fixed bound S).
- Variation: Store pixelated images by splitting until each region has the same color.

Outline

- 1 Range-Searching in Dictionaries for Points
 - Range Search Query
 - Quadtrees
 - kd-Trees
 - Range Trees
 - Conclusion

kd-trees

- We have n points $S = \{(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})\}$
- Quadtrees split square into quadrants regardless of where points are
- (Point-based) kd-tree idea: Split the region such that (roughly) half the point are in each subtree
- Each node of the kd-tree keeps track of a splitting line in one dimension (2D: either vertical or horizontal)
- Convention: Points on split lines belong to right/top side
- Continue splitting, switching between vertical and horizontal lines, until every point is in a separate region

kd-tree example

Constructing kd-trees

Build kd-tree with initial split for x on points S:

- If $|S| \le 1$ create a leaf and return.
- Else find $(\lfloor \frac{n}{2} \rfloor + 1)$ st smallest *x*-coordinates *X* in *S*.
- Partition S into $S_{x < X}$ and $S_{x \ge X}$ by comparing points' x coordinate with X.
- Create left child with recursive call (splitting on y) for points $S_{x < X}$.
- Create right child with recursive call (splitting on y) for points $S_{x \ge X}$.

Building with initial *y*-split symmetric.

Analysis:

- Find median and partition in linear time.
- $\Theta(n)$ work on each level in the tree (summed over all nodes)
- Total is $\Theta(height \cdot n)$

kd-tree height

Assume first that the points are in general position (no two points have the same x-coordinate or y-coordinate).

- Then the split always puts $\lfloor \frac{n}{2} \rfloor$ points on one side and $\lfloor \frac{n}{2} \rfloor$ points on the other.
- So height h(n) satisfies the recursion $h(n) \le h(\lceil \frac{n}{2} \rceil) + 1$.
- This resolves to $h(n) \leq \lceil \log(n) \rceil$.
- So can build the kd-tree in $\Theta(n \log n)$ time.

 $p_0 \bullet$

D1 ●

If points share coordinates, then height can be infinite! P2 •

P3 ●

This could be remedied by modifying the splitting routine. (No details.)

kd-tree Dictionary Operations

- Search (for single point): as in binary search tree using indicated coordinate
- Insert: search, insert as new leaf.
- Delete: search, remove leaf and unary parents.

Problem: After insert or delete, the split might no longer be at exact median and the height is no longer guaranteed to be $O(\log n)$ even for points in general position.

This can be remedied by allowing a certain imbalance and re-building the entire tree when it becomes to unbalanced. (No details.)

kd-tree Range Search

- Note: every node is again associated with a region.
- If not stored explicitly this can be computed during a search.
- Rest of range search is very similar to the one for quad-trees.

```
kdTree-RangeSearch(T, R, A)
T: The root of a kd-tree, R: region associated with T, A: query rectangle
       if (R \subseteq A) then report all points in T; return
     if (R \cap A \text{ is empty}) then return
2.
     if (T stores a single point p) then
3.
                  if p is in A return p
4.
5.
                  else return
6.
    if T stores split "is x < X"?
7.
            R_{\ell} \leftarrow R \cap \{(x, y) : x < X\}
            R_r \leftarrow R \cap \{(x,y) : x > X\}
8.
9.
            kdTree-RangeSearch(T.left, R_{\ell}, A)
10.
            kdTree-RangeSearch(T.right, R_r, A)
11.
       else // root node splits by y-coordinate
            ... // symmetric
12.
```

kd-tree: Range Search Example

Blue: Search stopped due to $R \cap A = \emptyset$. Pink: Search stopped due to $R \subseteq A$.

Storjohann (SCS, UW)

kd-tree: Range Search Complexity

- The complexity is O(s + Q(n)) where
 - ► s is the number of keys reported (**output-size**)
 - ightharpoonup s can be anything from 0 to n.
 - ▶ No range-search can work in o(s) time since it must report the points.
 - ightharpoonup Q(n) is the number of nodes for which kdTreeRangeSearch was called.
- Can show: Q(n) satisfies the following recurrence relation (no details):

$$Q(n) \leq 2Q(n/4) + O(1)$$

- This solves to $Q(n) \in O(\sqrt{n})$
- ullet Therefore, the complexity of range search in kd-trees is $O(s+\sqrt{n})$

kd-tree: Higher Dimensions

- kd-trees for *d*-dimensional space:
 - ► At the root the point set is partitioned based on the first coordinate
 - At the children of the root the partition is based on the second coordinate
 - \blacktriangleright At depth d-1 the partition is based on the last coordinate
 - ▶ At depth *d* we start all over again, partitioning on first coordinate
- Storage: O(n)
- Construction time: $O(n \log n)$
- Range query time: $O(s + n^{1-1/d})$

This assumes that o(n) points share coordinates and d is a constant.

Outline

- 1 Range-Searching in Dictionaries for Points
 - Range Search Query
 - Quadtrees
 - kd-Trees
 - Range Trees
 - Conclusion

Towards Range Trees

- Both Quadtrees and kd-trees are intuitive and simple.
- But: both may be very slow for range searches.
- Quadtrees are also potentially wasteful in space.

New idea: Range trees

- Somewhat wasteful in space, but much faster range search.
- Have a binary search tree T
 (sorted by x-coordinate);
 this is the primary structure
- Each node v of T has an auxiliary structure T(v):
 a binary search tree (sorted by y-coordinate)

• Must understand first: How do do (1-dimensional) range search in binary search tree?

BST Range Search

```
BST-RangeSearch(T, k_1, k_2)
T: root of a binary search tree, k_1, k_2: search keys
Returns keys in T that are in range [k_1, k_2]
1. if T = null then return
2. if k_1 \leq key(T) \leq k_2 then
3.
             L \leftarrow \mathsf{BST}\text{-}\mathsf{RangeSearch}(T.left, k_1, k_2)
            R \leftarrow \mathsf{BST}\text{-}\mathsf{RangeSearch}(T.right, k_1, k_2)
5.
            return L \cup \{key(T)\} \cup R
6. if key(T) < k_1 then
7.
             return BST-RangeSearch(T.right, k_1, k_2)
8. if key(T) > k_2 then
             return BST-RangeSearch(T.left, k_1, k_2)
9
```

Note: Keys are reported in in-order, i. e., in sorted order.

BST Range Search example

BST-RangeSearch(T, 28, 47)

Note: Search from 39 was unnecessary: **all** its descendants are in range.

 Storjohann (SCS, UW)
 CS240 – Module 8
 Fall 2018
 24 / 36

BST Range Search re-phrased

- Search for left boundary k_1 : this gives path P_1
- Search for right boundary k_2 : this gives path P_2
- Partition nodes of T into three groups:
 - ▶ boundary nodes: nodes in P_1 or P_2
 - ▶ inside nodes: nodes that are right of P_1 and left of P_2
 - \blacktriangleright outside nodes: nodes that are left of P_1 or right of P_2
- Report all inside nodes
- Test each boundary node and report it if it is in range

BST Range Search analysis

Assume that the binary search tree is balanced:

- Search for path P_1 : $O(\log n)$
- Search for path P_2 : $O(\log n)$
- $O(\log n)$ boundary nodes
- But could have many inside nodes.

- We only need the topmost of them: allocation node v (39)
 - ▶ not in P_1 or P_2 , but parent is in P_1 or P_2 (but not both)
 - if parent is in P_1 , then v is right child
 - \blacktriangleright if parent is in P_2 , then v is left child
- $O(\log n)$ allocation nodes. For each of them report all descendants.
 - ► This is no faster overall, but allocation nodes will be important for 2d.
- As before, test each boundary node and report it if it is in range
- Run-time: $O(\# \text{ boundary nodes} + \# \text{ reported points}) = O(\log n + s)$

BST Range Search summary

- Balanced binary search supports ranges queries in $O(\log n + s)$ time.
 - ▶ log *n*-term comes from the height of the tree
 - ▶ s is the output-size as before
- Variants of range-searching: Only report *whether* there are items in the range, or the *number* of such items.
 - ▶ Balanced binary search trees support both in $O(\log n)$ time.
- We could have achieved the same result with a sorted array:
 - ▶ Binary search for k_1 , binary search for k_2
 - ► Report all keys between the returned indices
- But range search in BST is a key ingredient for search in higher dimension.

2-dimensional Range Trees

- We have *n* points $P = \{(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})\}$
- A range tree is a tree of trees (a multi-level data structure)
- **Primary structure**: Binary search tree *T* that stores *P* and uses *x*-coordinates as keys.
- Each node v of T stores an **auxiliary structure** T(v):
 - ▶ Let P(v) be all points at descendants of v in T (including v)
 - ► T(v) stores P(v) in a binary search tree, using the *y*-coordinates as key
 - ▶ Note: v is not necessarily the root of T(v)

Range Tree Structure

T: binary search tree on x-coordinate

P(v): points in subtree of v (including point at v)

T(v): binary search tree on y-coordinate of all points on P(v)

Range Tree Space Analysis

- Primary tree uses O(n) space.
- Associate tree T(v) uses O(|P(v)|) space (where P(v) are the points at descendants of v in T)
- **Key insight**: $w \in P(v)$ means that v is an ancestor of w in T
 - ▶ Every node has $O(\log n)$ ancestors in T
 - ▶ Every node belongs to $O(\log n)$ sets P(v)
 - ► So $\sum_{v} |P(v)| \le n \cdot O(\log n)$
- Range tree space usage: $O(n \log n)$

Range Trees: Dictionary Operations

- Search: as in a binary search tree
- Insert: First, insert point by x-coordinate into T.
 Then, walk back up to the root and insert the point by y-coordinate in all T(v) of nodes v on path to the root.
- Delete: analogous to insertion
- Problem: Want binary search trees to be balanced.
 - ► This makes Insert/Delete very slow if we use AVL-trees. (A rotation at v changes P(v) and hence requires a re-build of T(v).)
 - ► Instead of rotations, can do something similar as for kd-trees: Allow certain imbalance, rebuild entire subtree if violated. (No details.)

Range Trees: Range Search

A two stage process

- To perform a range search query $A = [x_1, x_2] \times [y_1, y_2]$:
 - ▶ Perform a range search (on the x-coordinates) for the interval $[x_1, x_2]$ in primary tree T (BST-RangeSearch(T, x_1, x_2))
 - ► Obtain boundary, topmost outside and allocation nodes as before.
 - For every allocation node v, perform a range search (on the y-coordinates) for the interval $[y_1, y_2]$ in T(v). We know that all x-coordinates of points in T(v) are within range.
 - ► For every boundary node, test to see if the corresponding point is within the region *A*.

Range tree range search example

Range Trees: Query Run-time

- $O(\log n)$ time to find boundary and allocation nodes in primary tree.
- There are $O(\log n)$ allocation nodes.
- $O(\log n + s_v)$ time for each allocation node v, where s_v is the number of points in T(v) that are reported
- Two allocation nodes have no common point in their trees \Rightarrow every point is reported in at most one auxiliary structure $\Rightarrow \sum s_v \leq s$

Time for range-query in range tree: $O(s + \log^2 n)$

This can be reduced further to $O(s + \log n)$ (no details).

Range Trees: Higher Dimensions

• Range trees can be generalized to d-dimensional space.

Space $O(n(\log n)^{d-1})$ kd-trees: O(n)Construction time $O(n(\log n)^{d-1})$ kd-trees: $O(n\log n)$ Range query time $O(s + (\log n)^d)$ kd-trees: $O(s + n^{1-1/d})$

(Note: d is considered to be a constant.)

Space/time trade-off compared to kd-trees.

Outline

- 1 Range-Searching in Dictionaries for Points
 - Range Search Query
 - Quadtrees
 - kd-Trees
 - Range Trees
 - Conclusion

Comparison of range query data structures

- Quadtrees
 - ► simple (also for dynamic set of points)
 - work well only if points evenly distributed
 - ► wastes space for higher dimensions
- kd-trees
 - ► linear space
 - query-time $O(\sqrt{n})$
 - ► inserts/deletes destroy balance
 - ► care needed for duplicate coordinates
- range trees
 - ▶ fastest range search $O(\log^2 n)$
 - wastes some space
 - insert and delete more complicated