

## **CODAGE/NUMERATION**



- I) Notions de codage-décodage
- II) Représentation des nombres
- III) Méthodes de conversion
- IV) Code Binaire Naturel
- V) Nombres Binaires Signés
- VI) Codage des nombres flottants
- VII) Autres codes



- I) Notions de codage-décodage
- II) Représentation des nombres
- III) Méthodes de conversion
- IV) Code Binaire Naturel
- V) Nombres Binaires Signés
- VI) Codage des nombres flottants
- VII) Autres codes



#### Ordinateurs : nombres en précision finie et fixe

Exemple : ensemble des entiers positifs à trois chiffres décimaux

$$\mathbf{A} = \{000,001,002, ..., 999\}$$

Ne peut représenter : > 999

< 0

fractionnaires irrationnels complexes





Soient 
$$i, j \in \mathbb{Z}$$
  $\Rightarrow i+j \in \mathbb{Z}$   
 $i-j \in \mathbb{Z}$   
 $i*j \in \mathbb{Z}$   
 $i/j \notin \mathbb{Z}$  en général

Sur A: 
$$600 + 600 = 1200 \notin A$$
 (dépassement)  
 $003 - 005 = -2 \notin A$  (dépassement)  
 $050*050 = 2500 \notin A$  (dépassement)  
 $007 / 002 = 3,5 \notin A$  (dépassement)

Dépassement = overflow en anglais



## Conséquences sur les ordinateurs

Possibilités de résultats faux en conditions normales de fct. (pas de panne)

Dans A: 
$$a = 700$$
,  $b = 400$ ,  $c = 300$ 

$$a + (b - c) = (a + b) - c$$
 commutativité

$$700 + 100 = 800$$

700 + 100 = 800 dépassement -300 = dépassement



## Conséquences sur ordinateurs (suite)

Dans A: 
$$a = 5, b = 210, c = 195$$

a \* (b - c) = a \* b - a \* c distributivité



$$5 * 15 = 75$$



Overflow - Overflow = OverFlow

Il faut connaître les méthodes de représentation pour prévoir les problèmes éventuels



- I) Notions de codage-décodage
- II) Représentation des nombres
- III) Méthodes de conversion
- IV) Code Binaire Naturel
- V) Nombres Binaires Signés
- VI) Codage des nombres flottants
- VII) Autres codes



Evolution: romaine (invention du zéro), inde, arabe

Principe de numération : Juxtaposition de symboles

appelés chiffres (caillou en arabe)

Système décimal : dix symboles {0,1,2, ...,9}

Nombre de symbole = Base de numération

Ecriture d'un nombre : position du chiffre détermine son poids

NUMERATION DE POSITION

 $1578 = 1.10^3 + 5.10^2 + 7.10^1 + 8.10^0$ 

(en europe : 970 Gesbert d'Aurillac devenu en 999 Sylvestre II, relayé en 1202 par Fibonnacci)



# Généralisation

Base b associée à b symboles  $\{S_0, S_1, S_2, ..., S_{b-1}\}$ 

N s'écrit 
$$(a_n a_{n-1} a_{n-2} ... a_0, a_{-1} ... a_{-m})$$
 (dépend de la base)

avec 
$$a_i$$
 dans  $\{S_0, S_1, S_2, ..., S_{b-1}\}$ 

Valeur de 
$$N = a_n.b^n + a_{n-1}.b^{n-1} + ... + a_0.b^0 + a_{-1}.b^{-1} + ... + a_{-m}.b^{-m}$$

$$= \sum_{-m}^{n} a_i.b^i$$

Forme polynomiale

La valeur est indépendante de la base



## **Définitions**

$$N = (a_n a_{n-1} a_{n-2} ... a_0, a_{-1} ... a_{-m})_b$$

a<sub>i</sub> chiffre de rang i (ou digit)

b<sup>i</sup> poids associé à a<sub>i</sub>

a<sub>n</sub> chiffre le plus significatif (ou de poids fort) MSD

a<sub>-m</sub> chiffre le moins significatif LSD

$$(a_n a_{n-1} a_{n-2} ... a_0)$$
 partie entière  $(a_{-1} ... a_{-m})$  partie fractionnaire  $(<1)$ 



## Systèmes utilisés

```
Base 2 (ou binaire) {0,1} digit = élément binaire ou eb binary digit ou bit
```

```
la plus utilisée : MSB, LSB 00110101 = octet
1101 = quartet
```

Base 10 (ou décimal)

celle de l'école primaire ou de tous les jours

```
Base 8 (ou octal) \{0,1,2,3,4,5,6,7\}
```

Base 16 (ou héxadécimal) {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} raccourci d'écriture de la base 2



- I) Notions de codage-décodage
- II) Représentation des nombres
- III) Méthodes de conversion
- IV) Code Binaire Naturel
- V) Nombres Binaires Signés
- VI) Codage des nombres flottants
- VII) Autres codes



Problème: exprimer le même nombre dans des bases différentes

Sous problèmes : de b<sup>m</sup> vers b

de b vers bm

de b vers 10

de 10 vers b

de i vers j



#### **PLAN**

### III) Méthodes de conversion

- III-1) Conversion : de 2<sup>m</sup> vers 2 / 2 vers 2<sup>m</sup>
- III-2) Conversion de B vers 10
- III-3) Conversion de 10 vers B
- III-4) Conversion de i vers j
- III-5) Représentation binaire



### III-1) Conversion: de 2<sup>m</sup> vers 2 / 2 vers 2<sup>m</sup>

2<sup>m</sup> vers 2 : expansion d'un digit en m bits

2 vers 2<sup>m</sup>: regroupement de bits par paquets de m

$$N = a_7.2^7 + a_6.2^6 + a_5.2^5 + a_4.2^4 + a_3.2^3 + a_2.2^2 + a_1.2^1 + a_0.2^0$$

$$= (a_7.2^3 + a_6.2^2 + a_5.2^1 + a_4.2^0).2^4 + (a_3.2^3 + a_2.2^2 + a_1.2^1 + a_0.2^0)$$

$$= (a_7.2^3 + a_6.2^2 + a_5.2^1 + a_4.2^0).16^1 + (a_3.2^3 + a_2.2^2 + a_1.2^1 + a_0.2^0).16^0$$

$$N = b_1.16^1 + b_0.16^0$$

$$0 \le a_3.2^3 + a_2.2^2 + a_1.2^1 + a_0.2^0 \le 15$$



### III-1) Conversion : de 2<sup>m</sup> vers 2 / 2 vers 2<sup>m</sup>

### Ecriture de (622)<sub>8</sub> en base 2 et base 16?

```
6 2 2 base 8
110 010 010 base 2
1 1001 0010 base 2
```

1 9 2 base 16

## Ecriture de (622,663)<sub>8</sub> en base 2 et base 16 ?

```
6 2 2 , 6 6 3 base 8 110 010 010 , 110 110 011 base 2
```

```
1 1001 0010, 1101 1001 1 base 2
1 9 2, D 9 8 base 16
```



#### Application de la forme polynomiale

Valeur de N = 
$$a_n.b^n + a_{n-1}.b^{n-1} + ... + a_0.b^0 + a_{-1}.b^{-1} + ... + a_{-m}.b^{-m}$$

$$= \sum_{-m}^{n} a_i.b^i$$

si B = 2 
$$(10001101)_2 = 2^7 + 2^3 + 2^2 + 1 = (141)_{10}$$

si B = 16 
$$(FF)_h = 15*16 + 15 = (255)_{10}$$



#### Première méthode: soustraction

 $(363)_{10}$  en base 2?

Recherche de la puissance 2 juste supérieure  $= 2^9 = 512$ 

$$363 - 2^8 = 107$$
 1 MSB  
 $2^7$  trop grand 0  
 $107 - 2^6 = 43$  1  
 $43 - 2^5 = 11$  1  
 $2^4$  trop grand 0  
 $11 - 2^3 = 3$  1  
 $2^2$  trop grand 0  
 $3 - 2^1 = 1$  1 LSB

 $(363)_{10} = (101101011)_2$ 



Cette méthode est applicable pour toute les bases

Autre exemple :  $(363)_{10}$  en base 16?

$$363 < 16^3 = 4096$$

$$363 = 1.16^2 + 107$$
 1  
 $107 = 6.16^1 + 11$  6  
 $11 = B.16^0$  B

$$(363)_{10} = (16B)_{16}$$

inconvénient de cette méthode : il faut connaître les puissances



#### deuxième méthode : division / multiplication

Principe: En base 10 xyz = xy \*10 + z





#### deuxième méthode: division / multiplication





$$si I = B^m et J = B^n$$

B<sup>m</sup> vers B puis B vers B<sup>n</sup>

sinon

I vers 10 puis 10 vers J

Exemple:  $(77)_8 = (11\ 1111)_2 = (3F)_h$ 



### III-5) Représentation binaire

Définitions: format nb de bit de utilisés

convention protocole de codage

dynamique différence entre le max et le min

résolution différence entre deux consécutifs

Exemple: format 8 bits

convention entiers positifs

dynamique 28

résolution 1 (constante sur la dynamique)

$$(255)_{10} = (1111\ 1111)_2$$
  $(1)_{10} = (0000\ 0001)_2$ 





- I) Notions de codage-décodage
- II) Représentation des nombres
- III) Méthodes de conversion
- IV) Code Binaire Naturel
- V) Nombres Binaires Signés
- VI) Codage des nombres flottants
- VII) Autres codes



# IV) Code Binaire Naturel (CBN)

- CBN => codage des entiers positifs
- Avec N bits, on code les entiers positifs de 0 à  $2^N$  1

Exemple : avec N=8, on code de 0 à  $2^8-1=255$ 

- On démontre

$$\forall n \ge 1$$
  $2^n - 1 = \sum_{i=0}^{n-1} 2^i$ 

- LSB => Bit de parité (à démontrer)
- Opérations en base 2 avec un CBN (+, -, \*, /)

LSB=1 => impair



- IV) Code Binaire Naturel
  - IV-1) Addition
  - IV-2) Soustraction
  - IV-3) Multiplication
  - IV-4) Division



### IV-1) Addition

En CBN, le principe est le même qu'en base 10





### IV-2) Soustraction

En CBN, le principe est le même qu'en base 10





### IV-3) Multiplication

En CBN, le principe est le même qu'en base 10

Retenue (Carry)





### IV-4) Division

En CBN, le principe est le même qu'en base 10





- I) Notions de codage-décodage
- II) Représentation des nombres
- III) Méthodes de conversion
- IV) Code Binaire Naturel
- V) Nombres Binaires Signés
- VI) Codage des nombres flottants
- VII) Autres codes



# V) Nombres Binaires Signés

- CBN => codage des entiers positifs
- Il est nécessaire de pouvoir coder les entiers relatifs

Exemple: une commande -5V +5V

- Il existe différents solutions (avantages et inconvénients)
  - \* Bit de Signe
  - \* Complément à 1
  - \* Complément à 2



- V) Nombre Binaires Signés
  - V-1) Bit de signe
  - V-2) Complément à 1
  - V-3) Complément à 2



### V-1) Bit de signe

Sur n bits on garde 1 bit pour indiquer le signe

## S Msb xxxxxx Lsb

Signe Module (positif)
1 bit n-1 bits

#### Convention:

S=0 pour positif S=1 pour négatif

Dynamique :  $-(2^{n-1}-1)$  à  $(2^{n-1}-1)$ 

Exemple sur 8 bits :  $-22 = (1\ 0010110)_{2,S+M}$ 



### V-1) Bit de signe

#### **Avantages:**

Multiplications faciles N1\*N2 Abs(N1)\*Abs(N2)S = S1 xor S2

#### **Inconvénients:**

- Deux représentations du zéro
   Sur 4 bits +0 = 0000, -0 = 1000
- Additions moins simples



- Complément réduit

Notation : 
$$CR(X) = \overline{X}$$

- Définition : Complément chiffre à chiffre (xyz)<sub>b</sub> donne (x'y'z')<sub>b</sub> tel que x+x'=y+y'=z+z'= b-1



En binaire 00110 donne 11001 et 00110 + 11001 = 11111

#### **Inconvénients:**

- le chiffre 0 est codé 2 fois
- les additions binaires ne sont pas directes

BASE



- Soit  $(X)_b$  codé sur n digits On a  $X + CR(X) = b^n - 1$ 



Dans le format considéré  $2^n = 0$ 

Partie interprétée

sur 4 bits: 
$$2^4 = 10000 = 0$$

d'où : 
$$CR(X) + 1 = -X$$



Complément à 2



# V-3) Complément à 2 (complément vrai)

**Définition :** N\* complément vrai de N sur n chiffres en base B

$$N^* = B^n - N = -N$$
 (rappel :  $B^n = 0$  sur n chiffres)

Calcul de l'opposé (sur n bits) :

$$N^* = (-N) = 2^n - N = [2^n - 1] - N + 1$$

$$= [N + CR(N)] - N + 1 = CR(N) + 1$$



$$N^* = CR(N) + 1 = CV(N)$$



# V-3) Complément à 2 (complément vrai)

#### **Sur 4 bits**:

**Remarques :** le bit de poids fort = signe (0:positif, 1:négatif) poids du bit de signe =  $-(2^{n-1})$  0 n'a qu'une représentation

#### exemple:

sur 8 bits signés: 
$$(11110000)_2 = -128 + 64 + 32 + 16$$
  
=  $(-16)_{10}$ 

$$C1 + 1 = (00001111)_2 + 1 = (16)_{10}$$



# V-3) Complément à 2 (complément vrai)

### **Dynamique sur n bits :** $-(2^{n-1})$ à $(2^{n-1}-1)$

**Avantages :** additions directes en binaire sans tenir compte de la retenue

Exemple 1: 
$$4 + (-3)$$

Exemple 2: 
$$4 + (-5)$$



# Nombres signés : comparaison (sur 4 bits)

| $N_{10}$ | $N_2$ | $-N_{S+M}$ | $-N_{2,CF}$ | $_{R}$ - $N_{2*}$ |
|----------|-------|------------|-------------|-------------------|
| 0        | 0000  | 1000       | 1111        | 0000              |
| 1        | 0001  | 1001       | 1110        | 1111              |
| 2        | 0010  | 1010       | 1101        | 1110              |
| 3        | 0011  | 1011       | 1100        | 1101              |
| 4        | 0100  | 1100       | 1011        | 1100              |
| 5        | 0101  | 1101       | 1010        | 1011              |
| 6        | 0110  | 1110       | 1001        | 1010              |
| 7        | 0111  | 1111       | 1000        | 1001              |
| 8        | 1000  | • • • •    |             | (1000)            |



#### **Propriétés**

- pas de gestion de retenue intermédiaire
- détection simple d'overflow (dépassement de capacité)

sur 4 bits : 
$$(-8 à +7)$$

$$X + (-Y) = N \text{ avec}$$
  $X > N > -Y$   
 $4 + 5 = 9 \text{ (of) } 0100 + 0101 = 1001$   
 $-4 - 5 = -9 \text{ (of) } 1100 + 1011 = 0111$ 

Indicateur d'overflow : (dans les microprocesseurs)  $OF = S_a xor S_b xor S_r xor Carry_r$ 



### **exemples**

 $(-128)_{10}$ 

- Sur 8 bits signés :  $(127)_{10}$ +1 et  $(127)_{10}$ -1 et  $(-128)_{10}$ -1 1 1 11 1 1 1 1111111 0111 1111 1000 0000 0111 1111 + 1 111 1111 1 111 1111 0000 0001 10111 1110 10111 1111 0 1000 0000 Overflow=0 Overflow=1  $(127)_{10}$ Overflow=1  $(64)_{10} + (32)_{10} + (16)_{10} + (8)_{10} + (4)_{10} + (2)_{10} = (126)_{10}$ 



## Exemple (suite et fin)

- Sur 8 bits signés :  $(-127)_{10}$ -1







# Numération-codage

#### **PLAN**

- I) Notions de codage-décodage
- II) Représentation des nombres
- III) Méthodes de conversion
- IV) Code Binaire Naturel
- V) Nombres Binaires Signés
- VI) Codage des nombres flottants
- VII) Autres codes



# VI) Codage des nombres flottants

Dans un calculateur : nombre sous format déterminé (entier, virgule fixe, virgule flottante ...)



# TOUT EST QUESTION DE CONVENTION

A quoi est associé 1101100011100110?

nombre entier 2\*, Caractère ASCII, pixel d'une image, nombre fractionnaire ... ?





# Numération-codage

#### **PLAN**

- VI) Codage des Nombres Flottants
  - VI-1) Virgule fixe
  - VI-2) Virgule flottante

# VI-1) Virgule fixe

Par convention on place la virgule quelque part et on interprète

```
2^{n-1} 2^0 avant de placer la virgule MSB xxxxxx , xxxx LSB 2^{n-1-k} 2^0, 2^{-k} avec la virgule au rang k
```

**Dynamique**: 2<sup>n-1-k</sup>

**Résolution**: 2-k # 0



# VI-1) Virgule fixe

### <u>avantage</u>

Bon format pour l'addition :

**inconvénient** Mauvais format pour la multiplication :



# VI-1) Virgule fixe

#### solution

Problèmes réglés si les nombres sont inférieurs à 1 :

$$0.87$$
\*  $0.74$ 
=  $0.6438$ 

- On place la virgule toujours à gauche
- On utilise un autre groupe de bit pour connaître la position de la virgule





$$M = \text{mantisse en } 2^* \text{ de forme } 0,xxx$$

$$N = M.b^E$$
 b = base de l'exponentiation (2)

E = exposant en binaire signé (C2)

On stocke la chaîne de bit ME dans le calculateur

Exemple : codage de PI sur 5 chiffres de mantisse et 2 chiffres d'exposant (en décimal)

$$\longrightarrow$$
 0,3141.10<sup>1</sup> = 0,0003.10<sup>4</sup> !!! PI\*10000=3

On dit qu'un flottant est normalisé quand le premier chiffre significatif est juste derrière la virgule (précision maximum)



#### Calcul et stockage

Multiplication:  $M_1.b^{E_1} * M_2.b^{E_2} = M_1.M_2.b^{(E_1+E_2)}$ 

dénormalisation du plus petit nombre (vers la droite)

Addition:

$$M_1.b^{E_1} + M_2.b^{E_2} = M_1.b^{(E_1-E_2)}.b^{E_2} + M_2.b^{E_2}$$

$$= (M_1.b^{(E_1-E_2)} + M_2).b^{E_2}$$
puis renormalisation
Si E<sub>2</sub>> E<sub>1</sub>

il faut comparer facilement

Exposant codé en binaire décalé

S<sub>M</sub> EXPOSANT MANTISSE



#### Une possibilité parmi d'autres

- 1) Codage du nombre positif (partie entière puis partie décimale)
- 2) Fusion des 2 parties et décalage de la virgule devant le 1<sup>er</sup> chiffre significatif
- 3) Codage de la Mantisse et de l'Exposant (complément à 2)
- 4) Codage en C2 de la Mantisse si le nombre initial est négatif

#### exemple: $(-6.625)_{10}$ sur 12 bits dont 4 pour l'exposant

Nombre positif: 6.625

Partie entière 6 -> 110

Partie décimale 0.625 -> 0.101 (multiplications successives)

Fusion et décalage ->  $110.101 = 0.110101 * 2^3$ 

Codage -> 0/1101010 0/011

Traitement de la négation -> 1/0010110 0/011



#### Norme internationale: IEEE 754 flottant sur 32 bits

 $b_{31}$  ......  $b_0$  signe mantisse, exposant, mantisse 1 bit 8 bit 23 bits

Le bit de signe est 1 pour négatif et 0 pour positif La mantisse vaut toujours 1,xxxx et on ne stocke que xxxx L'exposant est en excédent 127 La valeur 0 correspond à des 0 partout (en fait 1,0.2<sup>-127</sup>)



#### Attention aux résultats!

Exemple : (en base 10) Mantisse 3 chiffres  $0.999 \gg |M| \gg 0.1$ Exposant 2 chiffres -99 à 99



convention spéciale (non normalisé)

#### ON NE MANIPULE JAMAIS L'ENSEMBLE DES REELS



# Numération-codage

#### **PLAN**

- I) Notions de codage-décodage
- II) Représentation des nombres
- III) Méthodes de conversion
- IV) Code Binaire Naturel
- V) Nombres Binaires Signés
- VI) Codage des nombres flottants
- VII) Autres codes



# VII) Autres codes

Dans un calculateur : nombre sous format déterminé (entier, virgule fixe, virgule flottante ...)



# TOUT EST QUESTION DE CONVENTION

A quoi est associé 1101100011100110?

nombre entier, négatif, Caractère ASCII, pixel d'une image, nombre fractionnaire ... ?

- Code Binaire Réfléchi
- Code BCD
- Code ASCII



# Numération-codage

#### **PLAN**

- VII) Autres codes
  - VII-1) Code Binaire Réfléchi
  - VII-2) Code BCD
  - VII-3) Code ASCII



# VII-1) Code Binaire Réfléchi (code GRAY)



#### Un seul bit de modifié à la fois

(01,10)

(0011,1100)

(00001111, ...)

. . .

**Intérêt :** simplification d'équations logiques

| Base 10 | Base 2 | Code Gray |
|---------|--------|-----------|
| 0       | 0000   | 0000      |
| 1       | 0001   | 0001      |
| 2       | 0010   | 0011      |
| 3       | 0011   | 0010      |
| 4       | 0100   | 0110      |
| 5       | 0101   | 0111      |
| 6       | 0110   | 0101      |
| 7       | 0111   | 0100      |
| 8       | 1000   | 1100      |
| 9       | 1001   | 1101      |
| 10      | 1010   | 1111      |
| 11      | 1011   | 1110      |
| 12      | 1100   | 1010      |
| 13      | 1101   | 1011      |
| 14      | 1110   | 1001      |
| 15      | 1111   | 1000      |



# VII-1) Code Binaire Réfléchi (code GRAY)



| Base 10 | Base 2 $(b_3b_2b_1b_0)$ | Gray $(r_3r_2r_1r_0)$ |
|---------|-------------------------|-----------------------|
| 0       | 0000                    | 0000                  |
| 1       | 0001                    | 0001                  |
| 2       | 0010                    | 0011                  |
| 3       | 0011                    | 0010                  |
| 4       | 0100                    | 0110                  |
| 5       | 0101                    | 0111                  |
| 6       | 0110                    | 0101                  |
| 7       | 0111                    | 0100                  |
| 8       | 1000                    | 1100                  |
| 9       | 1001                    | 1101                  |
| 10      | 1010                    | 1111                  |
| 11      | 1011                    | 1110                  |
| 12      | 1100                    | 1010                  |
| 13      | 1101                    | 1011                  |
| 14      | 1110                    | 1001                  |
| 15      | 1111                    | 1000                  |

#### Autre technique



Nr = Nb xor (Nb/2)

(on le démontrera)



### VII-2) Code BCD



**Binary Coded Decimal** 

Les chiffres de 0 à 9 sont codés sur 4 bits (quartet)

Exemple:  $(127)_{10} = (0001\ 0010\ 0111)_{BCD}$ 

#### <u>avantages</u>

Afficheurs, facilité de conversion en ASCII

#### inconvénient

Opérations plus complexes (rajouter 6 pour le +)

Exemple:  $(9 + 6 = 15)_{10}$  mais l'utilisation de l'addition binaire donne  $(1001 + 0110 = 1111)_2$   $(1111 + 0110 = 0001 0101)_2$  ce qui est bien égal au nombre BCD recherché.



# VII-3) Code ASCII

**Code ASCII 7 bits:** 



Codage des caractères alpha-numériques

| Car | Dec | Hex | Car | Dec | Hex |
|-----|-----|-----|-----|-----|-----|
| Nul | 0   | 0   | SP  | 32  | 20  |
| SOH | 1   | 1   | ļ   | 33  | 21  |
| STX | 2   | 2   | **  | 34  | 22  |
| ETX | 3   | 3   | #   | 35  | 23  |
| EOT | 4   | 4   | \$  | 36  | 24  |
| ENQ | 5   | 5   | %   | 37  | 25  |
| ACK | 6   | 6   | &   | 38  | 26  |
| BEL | 7   | 7   | '   | 39  | 27  |
| BS  | 8   | 8   | (   | 40  | 28  |
| HT  | 9   | 9   | )   | 41  | 29  |
| LF  | 10  | Α   | *   | 42  | 2A  |
| VT  | 11  | В   | +   | 43  | 2B  |
| FF  | 12  | С   | ,   | 44  | 2C  |
| CR  | 13  | D   | -   | 45  | 2D  |
| SO  | 14  | Е   |     | 46  | 2E  |

| SI  | 15 | F  | 7 | 47 | 2F |
|-----|----|----|---|----|----|
| DLE | 16 | 10 | 0 | 48 | 30 |
| DC1 | 17 | 11 | 1 | 49 | 31 |
| DC2 | 18 | 12 | 2 | 50 | 32 |
| DC3 | 19 | 13 | 3 | 51 | 33 |
| DC4 | 20 | 14 | 4 | 52 | 34 |
| NAK | 21 | 15 | 5 | 53 | 35 |
| SYN | 22 | 16 | 6 | 54 | 36 |
| ETB | 23 | 17 | 7 | 55 | 37 |
| CAN | 24 | 18 | 8 | 56 | 38 |
| EM  | 25 | 19 | 9 | 57 | 39 |
| SUB | 26 | 1A | : | 58 | 3A |
| ESC | 27 | 1B | ; | 59 | 3B |
| FS  | 28 | 1C | ٧ | 60 | 3C |
| GS  | 29 | 1D | = | 61 | 3D |
| RS  | 30 | 1E | > | 62 | 3E |
| US  | 31 | 1F | ? | 63 | 3F |

| Car | Dec | Hex | Car | Dec | Hex |
|-----|-----|-----|-----|-----|-----|
| @   | 64  | 40  | `   | 96  | 60  |
| Α   | 65  | 41  | а   | 97  | 61  |
| В   | 66  | 42  | D   | 98  | 62  |
| С   | 67  | 43  | O   | 99  | 63  |
| D   | 68  | 44  | đ   | 100 | 64  |
| Е   | 69  | 45  | е   | 101 | 65  |
| F   | 70  | 46  | f   | 102 | 66  |
| G   | 71  | 47  | g   | 103 | 67  |
| Н   | 72  | 48  | h   | 104 | 68  |
| 1   | 73  | 49  | i   | 105 | 69  |
| J   | 74  | 4A  | j   | 106 | 6A  |
| K   | 75  | 4B  | k   | 107 | 6B  |
| L   | 76  | 4C  | 1   | 108 | 6C  |
| М   | 77  | 4D  | m   | 109 | 6D  |

| N | 78 | 4E | n   | 110 | 6E |
|---|----|----|-----|-----|----|
| 0 | 79 | 4F | 0   | 111 | 6F |
| Р | 80 | 50 | ρ   | 112 | 70 |
| Q | 81 | 51 | q   | 113 | 71 |
| R | 82 | 52 | r   | 114 | 72 |
| S | 83 | 53 | s   | 115 | 73 |
| T | 84 | 54 | t   | 116 | 74 |
| U | 85 | 55 | u   | 117 | 75 |
| ٧ | 86 | 56 | ٧   | 118 | 76 |
| W | 87 | 57 | W   | 119 | 77 |
| Χ | 88 | 58 | Х   | 120 | 78 |
| Υ | 89 | 59 | У   | 121 | 79 |
| Z | 90 | 5A | Z   | 122 | 7A |
| ( | 91 | 5B | {   | 123 | 7B |
| 1 | 92 | 5C | 1   | 124 | 7C |
| ) | 93 | 5D | }   | 125 | 7D |
| ٨ | 94 | 5E | ~   | 126 | 7E |
| _ | 95 | 5F | Del | 127 | 7F |
|   |    |    |     |     |    |



## VII-3) Code ASCII

#### Caractéristiques particulières :

De 00H à 1FH : codes de contrôle et de formatage.

Exemples:

ACK: acknowledge BS: Backspace

HT: Horizontal tabulation

LF: Line Feed

VT: Vertical Tabulation

FF: Form Feed

CR: Carriage Return

ESC: Escape

De 30H à 39H : codage des chiffres : La conversion d'un quartet BCD (valeur de 0 à 9) en code ASCII est directe et se réalise par addition de la valeur  $(30)_{16}$ .

L'ensemble des lettres majuscules commence au code (41)<sub>16</sub> pour la lettre A et suit ensuite l'ordre alphabétique.

Pour les minuscules, la lettre 'a' commence au code (61)<sub>16</sub>. La transformation des lettres majuscules en minuscules se fait directement en mettant à 1 le bit 5, respectivement à 0 pour la conversion inverse.



