TABLA DE LA TRANSFORMADA Z

	$f(n) = \frac{1}{2\pi j} \oint_{l} F(z) z^{n-1} dz$	$Z[f[n]] = F(z) = \sum_{n=-\infty}^{n=+\infty} f[n]z^{-n}$
1	af[n] + bg[n]	aF(z) + bG(z)
2	f[n-k]	$z^{-k}F(z)$
3	f[n-k]u[n]	$z^{-k}(X(z) + f[-1]z + f[-2]z^{2} + \dots + f[-k]z^{k})$ $X(z) = Z[f[n]u[n]] , k > 0$
4	f[n+k]u[n]	$z^{k}(X(z) - f[0] - f[1]z^{-1} - \dots - f[k-1]z^{-(k-1)})$ $X(z) = Z[f[n]u[n]] , k > 0$
5	$a^n f[n]$	$F(z/a)$, $a \in \mathbb{C}$
6	$e^{jan}f[n]$	$F(e^{-ja}z)$
7	f[an]	$F(z^{\frac{1}{a}})$, $a \in \mathbb{Z} - \{0\}$
8	f[-n]	F(1/z)
9	$\Delta f[n] = f[n+1] - f[n]$	(z-1)F(z)
10	$\Delta^2 f[n]$	$(z-1)^2F(z)$
11	$\sum_{k=0}^{p} f[n-k]$	$F(z)\frac{1-z^{p+1}}{1-z}$
12	nf[n]	-zF'(z)
13	$-\frac{f[n+1]}{n}$	$\int_{z}^{\infty} F(v) dv$
14	$f[n] * g[n] = \sum_{k=-\infty}^{k=+\infty} f[k]g[n-k]$	F(z)G(z)
15	f[n]g[n]	$F(z) * G(z) = \frac{1}{2\pi} \int_{I} \frac{F(z)G(z/x)}{x} dx$
16	f[n] = f[n+T]	$\frac{1}{1-z^{-T}} (f[0] + f[1]z^{-1} + \dots + f[T-1]z^{-(T-1)})$

CAUSAL

f[n]: Señal causal $(n \ge 0)$

	f(n) behave current $(n = 0)$		
	$f[n] = \frac{1}{2\pi} \oint_{l} F(z) z^{n-1} dz$	$Z[f(n)] = F(z) = \sum_{n=0}^{n=+\infty} f[n]z^{-n}$	
17	f[n+k]u[n]	$z^{k}(F(z) - f[0] - f[1]z^{-1} - \dots - f[k-1]z^{-(k-1)})$ $k > 0$	
18	f[n-k]u[n]	$z^{-k}F(z) , k > 0$	
19	$\Delta f[n] = f[n+1] - f[n]$	(z-1)F(z)-zf[0]	
20	$\Delta^2 f[n]$	$(z-1)^2F(z) - z(z-2)f[0] - zf[1]$	
21	$f[n] * g[n] = \sum_{k=0}^{k=\infty} f[k]g[n-k]$ $g[n]$: Señal causal	F(z)G(z)	

TRANSFORMADA Z - CASOS ESPECIALES

	f[n]	Z(f[n]) = F(z)
22	$\delta[n]$	1
23	$\delta[n-k]$	z^{-k}
24	u[n]	$\frac{1}{(1-z^{-1})}$, $ROC: z > 1$
25	$a^nu[n]$	$\frac{1}{1-az^{-1}} , ROC: z > a $
26	$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$, $ROC: z > a $
27	$a^nu[-n-1]$	$\frac{-1}{1-az^{-1}} , ROC: z < a $
28	$na^nu[-n-1]$	$\frac{-az^{-1}}{(1-az^{-1})^2}$, $ROC: z < a $
29	cos (an)u[n]	$\frac{1 - z^{-1}\cos(a)}{1 - 2z^{-1}\cos(a) + z^{-2}} , ROC: z > 1$
30	$\operatorname{sen}(an)u[n]$	$\frac{z^{-1}\mathrm{sen}(a)}{1 - 2z^{-1}\cos(a) + z^{-2}} , ROC: z > 1$
31	$(a^n\cos(an))u[n]$	$\frac{1 - az^{-1}cos(a)}{1 - 2az^{-1}\cos(a) + a^2z^{-2}} , ROC: z > a $
32	$(a^n \operatorname{sen}(an))u[n]$	$\frac{1 - az^{-1}\operatorname{sen}(a)}{1 - 2az^{-1}\cos(a) + a^{2}z^{-2}} , ROC: z > a $