On rappelle les valeurs remarquables des sinus et cosinus :

x (rad)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
<i>x</i> (*)	0	30°	45°	60°	90°
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Les exercices suivants seront résolus <u>sans utiliser la machine</u>.

Mais il est conseillé d'utiliser la figure ci-contre \rightarrow

EXERCICE 1D.1

a. Compléter:

$$\cos 30^{\circ} = \dots$$

$$\sin 45^{\circ} = \dots$$

$$\cos 60^{\circ} = \dots$$

$$\sin 90^\circ = \dots$$

$$\cos 180^{\circ} = \dots$$

$$\sin 120^{\circ} = \dots$$

$$\cos 150^{\circ} = \dots$$

$$\sin 210^{\circ} = \dots$$

$$\cos 330^{\circ} = \dots$$

$$\sin 225^{\circ} = \dots$$

$$\cos 135^{\circ} = \dots$$

$$\sin 270^{\circ} = \dots$$

b. Compléter :

$$\cos\frac{\pi}{4} = \dots$$

$$\sin \frac{\pi}{6} = \dots$$

$$\sin\frac{\pi}{3} = \dots$$

$$\cos\left(-\frac{\pi}{4}\right) = \dots$$

$$\sin\left(-\frac{\pi}{6}\right) = \dots$$

$$\cos \pi = \dots$$

$$\sin\left(-\frac{\pi}{3}\right) = \dots$$

$$\cos\frac{2\pi}{3} = \dots$$

$$\sin\frac{5\pi}{6} = \dots$$

$$\cos \frac{3\pi}{4} = \dots$$

$$\sin\left(-\frac{3\pi}{4}\right) = \dots$$

$$\cos\left(-\frac{5\pi}{3}\right) = \dots$$

$$\sin\left(-\frac{3\pi}{6}\right) = \dots$$

$$\cos\frac{\pi}{2} = \dots$$

$$\sin\left(-\frac{3\pi}{2}\right) = \dots$$

EXERCICE 1D.2

a. Compléter:

$$\cos x = \frac{\sqrt{3}}{2} \operatorname{donc} x = \dots ^{\circ} \operatorname{ou} \dots ^{\circ}$$

$$\sin x = \frac{\sqrt{2}}{2} \operatorname{donc} x = \dots^{\circ} \operatorname{ou} \dots^{\circ}$$

$$\cos x = \frac{1}{2} \operatorname{donc} x = \dots \circ \operatorname{ou} \dots \circ$$

$$\sin x = 1 \text{ donc } x = \dots^{\circ} \text{ ou } \dots^{\circ}$$

$$\cos x = \frac{\sqrt{2}}{2} \operatorname{donc} x = \dots \circ \operatorname{ou} \dots \circ$$

$$\sin x = 0$$
 donc $x = \dots^{\circ}$ ou \dots°

$$\cos x = -\frac{\sqrt{3}}{2} \operatorname{donc} x = \dots^{\circ} \operatorname{ou} \dots^{\circ}$$

$$\sin x = -\frac{\sqrt{2}}{2}$$
 donc $x = \dots^{\circ}$ ou \dots°

$$\cos x = -1 \text{ donc } x = \dots^{\circ} \text{ ou } \dots^{\circ}$$

$$\sin x = -\frac{1}{2} \operatorname{donc} x = \dots^{\circ} \operatorname{ou} \dots^{\circ}$$

$$\cos x = 0 \text{ donc } x = \dots^{\circ} \text{ ou } \dots^{\circ}$$

$$\sin x = -\frac{\sqrt{3}}{2}$$
 donc $x = \dots \circ$ ou $\dots \circ$

b. Déterminer une mesure en radians de l'angle dont on connaît le cosinus et le sinus

$$\cos x = \frac{\sqrt{3}}{2} \text{ et } \sin x = -\frac{1}{2} \text{ donc } x = \dots$$

$$\cos x = -\frac{\sqrt{2}}{2} \quad \text{et } \sin x = -\frac{\sqrt{2}}{2} \quad \text{donc } x = \dots$$

$$\cos x = 1$$
 et $\sin x = 0$ donc $x = \dots$

$$\cos x = 0$$
 et $\sin x = -1$ donc $x = \dots$

$$\cos x = -\frac{\sqrt{3}}{2} \operatorname{et} \sin x = -\frac{1}{2} \operatorname{donc} x = \dots$$

$$\cos x = -\frac{1}{2} \operatorname{et} \sin x = -\frac{\sqrt{3}}{2} \operatorname{donc} x = \dots$$

CORRIGE - NOTRE DAME DE LA MERCI - MONTPELLIER

x (rad)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
<i>x</i> (•)	0	30°	45°	60°	90 °
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

EXERCICE 1D.1

a. Compléter :

$$\cos 30^\circ = \frac{\sqrt{3}}{2}$$

$$\sin 45^\circ = \frac{\sqrt{2}}{2}$$

$$\cos 60^{\circ} = \frac{1}{2}$$

$$\sin 90^{\circ} = 1$$

$$\cos 180^{\circ} = -1$$

$$\sin 120^\circ = \frac{\sqrt{3}}{2}$$

$$\cos 150^\circ = -\frac{\sqrt{3}}{2}$$

$$\sin 210^\circ = -\frac{1}{2}$$

$$\cos 330^\circ = \frac{\sqrt{3}}{2}$$

$$\sin 225^\circ = -\frac{\sqrt{2}}{2}$$

$$\cos 135^{\circ} = -\frac{\sqrt{2}}{2}$$

$$\sin 270^\circ = -1$$

b. Compléter :

$$\cos\frac{\pi}{4} = \frac{\sqrt{2}}{2}$$

$$\sin\frac{\pi}{6} = \frac{1}{2}$$

$$\cos 0 = 1$$

$$\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$$

$$\cos\left(-\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$\sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2}$$

$$\cos \pi = -1$$

$$\sin\left(-\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}$$

$$\cos\frac{2\pi}{3} = -\frac{1}{2}$$

$$\sin\frac{5\pi}{6} = \frac{1}{2}$$

$$\cos\frac{3\pi}{4} = -\frac{\sqrt{2}}{2}$$

$$\sin\left(-\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$

$$\cos\left(-\frac{5\pi}{3}\right) = \frac{1}{2}$$

$$\sin\left(-\frac{3\pi}{6}\right) = -1$$

$$\cos\frac{\pi}{2}=0$$

$$\sin\left(-\frac{3\pi}{2}\right) = 1$$

EXERCICE 1D.2

a.
$$\cos x = \frac{\sqrt{3}}{2}$$
 donc $x = 30^{\circ}$ ou -30°

$$\cos x = \frac{1}{2} \operatorname{donc} x = 60^{\circ} \operatorname{ou} -60^{\circ}$$

$$\cos x = \frac{\sqrt{2}}{2} \text{ donc } x = 45^{\circ} \text{ ou } -45^{\circ}$$

$$\cos x = -\frac{\sqrt{3}}{2}$$
 donc $x = 150^{\circ}$ ou -150°

$$\cos x = -1 \text{ donc } x = 180^{\circ} \text{ ou } -180^{\circ}$$

$$\cos x = 0 \text{ donc } x = 90^{\circ} \text{ ou } -90^{\circ}$$

$$\sin x = \frac{\sqrt{2}}{2} \text{ donc } x = 45^{\circ} \text{ ou } 135^{\circ}$$

$$\sin x = 1$$
 donc $x = 90^{\circ}$ ou°

$$\sin x = 0 \text{ donc } x = \mathbf{0}^{\circ} \text{ ou } \mathbf{180}^{\circ}$$

$$\sin x = -\frac{\sqrt{2}}{2}$$
 donc $x = -45^{\circ}$ ou -135°

$$\sin x = -\frac{1}{2} \text{ donc } x = -30^{\circ} \text{ ou } -210^{\circ}$$

$$\sin x = -\frac{\sqrt{3}}{2}$$
 donc $x = -60^{\circ}$ ou -120°

b. Déterminer une mesure en radians de l'angle dont on connaît le cosinus et le sinus

$$\cos x = \frac{\sqrt{3}}{2} \text{ et } \sin x = -\frac{1}{2} \text{ donc } x = -\frac{\pi}{6}$$

$$\cos x = -\frac{\sqrt{2}}{2}$$
 et $\sin x = -\frac{\sqrt{2}}{2}$ donc $x = -\frac{3\pi}{4}$

$$\cos x = 1$$
 et $\sin x = 0$ donc $x = 0$

$$\cos x = 0$$
 et $\sin x = -1$ donc $x = -\frac{\pi}{2}$

$$\cos x = -\frac{\sqrt{3}}{2}$$
 et $\sin x = -\frac{1}{2}$ donc $x = -\frac{5\pi}{6}$

$$\cos x = -\frac{1}{2}$$
 et $\sin x = -\frac{\sqrt{3}}{2}$ donc $x = -\frac{2\pi}{3}$