Lecture 15 The Real Business Cycle Model Part 2: Firm

Hui-Jun Chen

The Ohio State University

July 7, 2022

Overview

- Recall that in Lecture 13, there is no production in dynamic model.
- The following 5 lectures is for **Real Business Cycle** (RBC) model:
 - Lecture 14: consumer
 - Lecture 15: firm
 - Lecture 16: competitive equilibrium
 - Lecture 17: formal example
 - Lecture 18: application to bring RBC to data

Lecture 15 July 7, 2022 2/13 Ultimately, 3 markets will have to clear in the current period (date 0):

- labor (like static model)
- credit (like dynamic model)

- 3 mkts need to some to
- **3** consumption goods (implied in each case by Walras' Law)

Recall our insights from last classes. Primary determinants of consumption:

- over lifetime: permanent income / lifetime wealth
- across periods: interest rate, current vs future income

Based on this, we'll construct a demand curve for current consumption goods that depends on lifetime wealth and the interest rate

Lecture 15 July 7, 2022 3/13

Figure 11.4 Consumer's Current Demand for Consumption Goods Increases with Income

Assumption C1: demands for goods

- Recall pure income effect
- Slope of tangent line is marginal propensity to consume (MPC)
 - what fraction of $Y \uparrow$ goes to C? Υ : \S | \uparrow \uparrow C : \S M.PC \uparrow • $MPC = dC_D/dY$

 - normal goods: both C and $C' \uparrow$, so saving $S \uparrow$
 - usually MPC < 1, i.e., not all $Y \uparrow \text{ goes to } C$.

Current Goods Demand and Real Interest Rate

Figure 11.5 Real Interest Rate \uparrow Shifts the Demand for Consumption Goods Down

Assumption C2: demands for goods

↓in real interest rate

- Recall both income and substitution effect (from dynamic model)
- Income effect: ambiguous (for borrowers and lenders)
- Substitution effect: always negative (for borrowers and lenders)
- C2 assumes substitution effect dominates

lui-Jun Chen (OSU) Lecture 15 July 7, 2022 5 / 13

Current Goods Demand and Lifetime Wealth

1. Pe time wealth

Figure 11.6 An Increase in Lifetime Wealth Shifts the Demand for Consumption Goods Up

$$\int C + \frac{C'}{1+r} = y + \frac{y'}{1+r} \int \int \frac{dr}{1+r} dr$$

Assumption C3: demands for goods

- $C^d(r) \uparrow$ in lifetime wealth
 - similar to pure income effect

 $C^d(r)$ Note: consumer's demand is only one part of the GDP:

$$Y = C + I + G.$$

We'll discuss I and G in next lecture

K: stock. : flow variable "decision" Jecision made period by period.

Overview: Firm Decision

- **production**: needs both capital K and labor N, Y = zF(K, N)
- endowment: firm is endowed with initial capital K

■ firm decision:

- both dates: labor (N), profit (π) , and output (Y) by production Y=zF(K,N) and Y'=z'F(K'),N'
- date 0 (today): investment (I) determines future capital K' given initial capital K and depreciation rate $\delta \in [0,1]$,

thur's capital $K' = (1 - \delta)K + I$ stock

undepreciated capital investment.

- Assumptions:
 - 1 investment made in consumption goods
 - 2 remaining capital $(1-\delta)K'$ liquidates tomorrow (: model ends)

Hui-Jun Chen (OSU) Lecture 15 July 7, 2022 7/13

Firm maximizes the discounted present value of profits: law of motion
$$\max_{N_D,N'_D,K',I} \quad \underline{V} = \overline{\pi} + \frac{\overline{\pi'}}{1+r} \quad \text{subject to} \quad K' = (1-\delta)K + I,$$
 where $\overline{\pi} = \underline{Y} - \underline{w}N - \underline{I}$, and $\overline{\pi'} = \underline{Y'} - \underline{w'}N' + \underbrace{(1-\delta)K'}_{\text{liquidate}}$.

Notice: since we assume that consumer owns the firm, so firm calculates present value using real interest rate r, i.e., how consumer discounts.

By substituting π , π' , Y, Y' and I into above problem, we get

Lecture 15 July 7, 2022 8 / 13

Firm's Optimality Conditions

$$\begin{split} \left[[N_D]: \quad zD_N F(K,N_D) = w \\ [N_D']: \quad z'D_N F(K',N_D') = w' \\ [K']: \quad -1 + \underbrace{\frac{[z'D_{K'} F(K',N_D') + (1-\delta)]}{1+r}}_{\text{be Te-lit}} = 0 \end{split}$$

- FOCs on current and future labor are the same as static model!
 - Why? Since labor choice is static: choose labor for current production
- FOC on future capital equalize the marginal cost and benefit of investment
 - cost: loss in current consumption (incurred today)
 - benefit: \uparrow in marginal production + liquidating K' (incurred tomorrow)

Lecture 15 July 7, 2022 9/13

$$C \times' J = \frac{MPK' + 1 - \delta}{(tY)} = I$$

$$MPK' + Y - S = Y + Y$$

$$IMPK' - J = Y$$

10 / 13

Optimal Investment Schedule: Derivation

Solve for [K'], we get

$$z'D_{K'}F(K', N'_D) + 1 - \delta = 1 + r$$
 $PK' - \delta$

For consumer, there are 2 assets to undertake intertemporal substitution:

- saving in credit market (supply in credit mkt; demand in bond mkt)
- 2 capital held by the firm for production

Investing in capital means giving up (net) return n for (net) return $MPK' - \delta$: optimal investment rule means both must offset, WHY?

- if $r > MPK' \delta$: consumer will save more for bond \Rightarrow supply in credit market \uparrow , $r \downarrow$
 - if $r < MPK' \delta$: consumer asks firm to invest more capital \Rightarrow $MPK' \downarrow$

To sum up, $r = MPK' - \delta$ in equilibrium: "optimal" investment rule!

Lecture 15 July 7, 2022

Labor Demand is decreasing in \underline{w} and increasing in $\underline{z}, \underline{K}$

Figure 11.7 The Demand Curve for N Is the Firm's MPI Schedule

Figure 11.8 The Current Demand Curve for Labor Shifts Due to Changes in z and K

Optimal Investment Schedule: Graphical Representation

Figure 11.9 Optimal Investment Schedule for the Representative Firm

Put capital accumulation process into MPK and get

$$z'D_{K'}F((1-\delta)K + I_D, N_D') = r + \delta$$

- \blacksquare as $r \uparrow$ need less K' for optimal investment schedule to hold.
 - why? diminishing MPK
- \blacksquare $K' \uparrow \text{ in}(I)$ so $r \uparrow \text{ also means less}$ investment ⇒ downward slope
- i.e., higher opportunity cost of investing

Lecture 15 July 7, 2022 12 / 13

The optimal investment schedule shifts to the right, i.e., demand for

''' Investment rises if

current capital K decreases:

Intuition: need to invest more for less endowment

- (expected) future TFP increases:
 - Intuition: Investment is more productive

real interest rate \boldsymbol{r}

Demand for investment goods I_D