졸업프로젝트 보고서

자동화된 뉴런 선택을 통한 심층 신경망 검사 기법

지도교수 : 오학주

2019년 12월 06일

고려대학교 정보대학 컴퓨터학과

이석현 (2016320125)

이다인 (2016320202)

Contents

- ☐ Introduction
- ☐ Related Work (Project)
- ☐ Solution Approach (Main Idea)
- ☐ Experiment / 성능평가
- □ Conclusion

1. Introduction

☐ Problem Statement

- 심층 신경망은 높은 복잡도와 내부의 값의 의미를 알기 어렵기때문에 이를 검사하기 어렵다.
- 현존하는 검사 기법은 1) 계산 복잡도가 지나치게 높거나, 2) 연구자가 디자인한 효율적이지 않은 뉴런 선택 전략을 이용한다.

True output = Face

Why face?

Why not somthing else?

How to automatically verify it?

How to trust the network?

Wrong output = Face

How to find out this is a failure point?

How to improve the network?

1. Introduction

□ Pains and Needs

- 계산 복잡도가 낮은 검사 기법이 개발될 경우,
- 1) 실제로 사용되는 큰 신경망을 검사 할 수 있다.
- 뉴런 선택 전략을 자동으로 생성해주는 알고리즘이 개발될 경우,
- 1) 연구자가 새로운 알고리즘을 생성하기 위한 노력을 줄일 수 있고,
- 2) 다양한 실험 상황 및 신경망에서 보다 효율적으로 동작할 수 있다.

☐ Importance

○ 기계학습, 인공지능 관련 학계와 실제 모델을 적용하는 산업에서도 더욱 쉽고 효율적으로 심층 신경망을 검사할 수 있다.

2. Related Works (Project)

- □ 내부 값을 이용하여 입력을 생성하는 심층 신경망 검사 (White-box)
 - 연구자가 디자인한 간단한 뉴런 선택 전략에 따라 동작 (DeepXplore, DLFuzz)
 - 계산 복잡도가 지나치게 높아 매우 작은 신경망만 검사할 수 있음 (DeepConcolic)
- □ 내부 값을 참고하여 입력을 생성하는 심층 신경망 검사 (Grey-box)
 - 연구자가 입력을 변환할 수 있는 수 많은 방법을 직접 디자인해야함 (DeepTest, DeepHunter)
 - 생성된 입력이 원본과 차이가 큼 (DeepTest, DeepHunter, Tensorfuzz)
 - 입력을 원하는 방향으로 만들지 못해 효율적이 못함 (DeepTest, DeepHunter, Tensorfuzz)

2. Related Works (Project)

□ 심층 신경망에 대한 커버리지

- 심층 신경망의 구조를 이용하여 신경망을 얼마나 탐색해봤는지 수치화 (Neuron Coverage, Top-k Neuron Coverage)
- 심층 신경망의 학습 과정 중에서 얻을 수 있는 값을 바탕으로 신경망을 얼마나 탐색해봤는지 수치화 (K-multisection Neuron Coverage, Surprise Adequacy)

□ 학습을 이용한 소프트웨어 검사

○ 탐색 전략을 벡터로 표현하여 학습을 이용하여 탐색 전략을 생성해서 기존의 소프트웨어를 검사하는 방법 (ParaDySE, Chameleon)

□심층 신경망 적대적 공격

○ 신경망이 잘못 동작하도록 하게 하는 입력을 생성하는 연구로 신경망의 다양한 상태를 검사하고자 하는 본 연구와는 다른 방향의 연구

□ 벡터화된 뉴런 선택 전략

내부 값을 이용하여 입력을 생성하는 심층 신경망 검사 기법 중 뉴런을 선택하는 전략을 벡터화 함

```
Algorithm 1 White-box Testing for Neural Networks
 1: procedure TESTINGDNN(N, I, Cov)
          C \leftarrow \mathsf{Cov}(\mathsf{Forward}(N, I))
 3:
          repeat
                W \leftarrow \{I\}
 4:
                                                                             ·뉴런 선택 전략
               while W \neq \emptyset do
                     I' \leftarrow \text{Pick an input from } W
 6:
                     W \leftarrow W \setminus \{I'\}
                     V \leftarrow \mathsf{Strategy}(\mathsf{Forward}(N, I'))
                    for m=1 to \eta_1 do
 9:
                          I' \leftarrow I' + \lambda \cdot \partial(\sum_{v \in V} v) / \partial I'
10:
                          O' \leftarrow \mathsf{Forward}(N, I')
11:
                          if Cov(O') \not\subseteq C \land Obj(I, I') then
12:
                               W \leftarrow W \cup \{I'\}
13:
                               C \leftarrow C \cup \mathsf{Cov}(O')
14:
15:
          until testing budget expires (e.g. timeout)
          return |C|
16:
```


□ 벡터화된 뉴런 선택 전략

- 총 17개의 정적 피처, 총 12개의 동적 피처를 디자인
- 세부적으로 17개의 정적 피처 중, 11개의 피처는 신경망의 층과 관련되어 있고, 6개는 뉴런과 관련되어 있음
- 12개의 동적 피처는 모두 뉴런과 관련되어 있음

#	Description
	*
1	Neuron located in front 25% layers
2	Neuron located in front 25-50% layers
3	Neuron located in front 50-75% layers
4	Neuron located in front 75-100% layers
5	Neuron in a normalization layer
6	Neuron in a pooling layer
7	Neuron in a convolution layer
8	Neuron in a dense layer
9	Neuron in an activation layer
10	Neuron in a layer with multiple input source
11	Neuron that does not belong to of 5-10 features
12	Neuron with top 10% weights
13	Neuron with weights between top 10% and 20%
14	Neuron with weights between top 20% and 30%
15	Neuron with weights between top 30% and 40%
16	Neuron with weights between top 40% and 50%
17	Neuron with weights in bottom 50%
18	Neuron activated when an adversarial input is found
19	Neuron never activated
20	Neuron with the number of activations (top 10%)
21	Neuron with activation numbers (top 10-20%)
22	Neuron with activation numbers (top 20-30%)
23	Neuron with activation numbers (top 30-40%)
24	Neuron with activation numbers (top 40-50%)
25	Neuron with activation numbers (top 50-60%)
26	Neuron with activation numbers (top 60-70%)
27	Neuron with activation numbers (top 70-80%)
28	Neuron with activation numbers (top 80-90%)
29	Neuron with activation numbers (top 90-100%)

□ 벡터화된 뉴런 선택 전략

- 뉴런(n)의 피처 벡터와 $F_n = \langle F_{n,1}, F_{n,2}, \cdots, F_{n,29} \rangle \left(F_{n,i} \in \{0,1\} \right)$
- \bigcirc 벡터화된 뉴런 선택 전략을 이용하여 $p \in \mathbb{R}^{29}$
- \circ 각 뉴런의 점수을 계산 한 후, $score_n = F_n \cdot p$
- 점수가 가장 높은 k개의 뉴런을 선택

□ 학습을 이용한 선택 전략 생성

```
Algorithm 2 Our Approach for Testing Neural Networks
                                                   1: procedure ADAPT(N, I, Cov)
                                                           C \leftarrow \mathsf{Cov}(\mathsf{Forward}(N, I))
                                                           P \leftarrow \{p_1, \cdots, p_{n_2} \mid p_i \sim \mathcal{U}([-1, 1])^{29}\}
                                                           D \leftarrow \emptyset
                                                   4:
                                                                                                                                 벡터화된 뉴런 선택 전략
                                                           repeat
                                                   5:
                                                                for all p \in P do
                                                   6:
                                                                     C_p \leftarrow \emptyset
                                                                      W \leftarrow \{I\}
                                                                     while W \neq \emptyset do
                                                                          I' \leftarrow \text{Pick an input from } W
                                                 10:
                                                 11:
                                                                          V \leftarrow \mathsf{Strategy}_n(\mathsf{Forward}(N, I'))
                                                 12:
                                                                          for m=1 to \eta_1 do
                                                 13:
                                                                               I' \leftarrow I' + \lambda \cdot \partial(\sum_{v \in V} v) / \partial I'
                                                 14:
                                                                               O' \leftarrow \mathsf{Forward}(N, I')
                                                 15:
검사 과정 중 생성된 정보
                                                                               if Cov(O') \not\subset C \wedge Obj(I, I') then
                                                                                     W \leftarrow W \cup \{I'\}
                                                 17:
                                                                                    C \leftarrow C \cup \mathsf{Cov}(O')
                                                 18:
                                                                               C_p \leftarrow C_p \cup \mathsf{Cov}(O')
                                                 19:
                                                                                                                           학습을 이용한 전략 생성
                                                                     D \leftarrow D \cup \{(p, C_p)\}
                                                 20:
                                                                 P \leftarrow \mathsf{Learning}(D)
                                                 21:
                                                 22:
                                                           until testing budget expires (e.g. timeout)
                                                           return |C
                                                 23:
```

- □ 학습을 이용한 선택 전략 생성
 - 커버리지의 합집합이 최대가 되도록 선택 전략을 선택하고,

$$SD = \underset{SD' \subseteq D}{\operatorname{argmax}} \left| \bigcup_{(p,C_p) \in SD'} C_p \right|$$

○ 선택된 전략의 평균과 분산을 이용하여,

$$\mu = \frac{\sum_{(p,C_p) \in SD} p}{|SD|}, \Sigma = \frac{\sum_{(p,C_p) \in SD} (p - \mu)(p - \mu)^T}{|SD| - 1}$$

○ 새로운 뉴런선택 전략들을 생성

$$\{p_1, p_2, \cdots, p_{\eta} | p_i \sim \mathcal{N}(\mu, \Sigma)\}$$

□ 실험에 이용한 심층 신경망과 데이터셋

Dataset	Model	# of Neurons	# of Layers	Accuracy
MNIST	LeNet-4	148	9	0.985
1,11,110,1	LeNet-5	268	10	0.988
ImageNet	VGG-19	16,168	26	0.713
	ResNet-50	94,123	177	0.764

□ 실험에 이용한 커버리지 평가 방법

- O Neuron Coverage (SOSP'17)
- Top-k Neuron Coverage (ASE'18)

- □ 실험에 이용한 툴
 - O Adapt: 제안하는 툴
 - O DLFuzz_{RR}(FSE'19): 논문에서 제안한 3가지 선택 전략의 라운드로빈
 - 1) 가장 많이 탐색해본 뉴런을 선택
 - 2) 가장 적게 탐색해본 뉴런을 선택
 - 3) 가장 가중치가 큰 뉴런을 선택
 - O DLFuzz_{Best}(FSE'19): 논문에서 제안한 가장 좋은 선택 전략 (1번 전략)
 - DeepXplore(SOSP'17): 한번도 가보지 않은 뉴런을 선택
 - Random: 전체 뉴런 중에서 임의로 선택
 - Tensorfuzz(arXiv'18): 심층 신경망을 이용하여 기울기를 구하지 않고 커버리지만 이용하여 다음 입력을 생성하는 툴

□ Neuron Coverage

☐ Neuron Coverage

Model	Technique	# of Mutations	# of Adv. Inputs	# of Labels	# of Seeds
	ADAPT	34012.0	246.2	3.7	20/20
	TensorFuzz	98796.8	0.0	0.0	0/20
LeNet-4	Random	39769.3	221.4	2.0	15/20
Lenet-4	DeepXplore	39917.4	20.4	1.2	12/20
	$DLFuzz_{Best}$	36866.8	635.1	0.2	3/20
	$DLFuzz_RR$	37211.0	62.2	1.6	17/20
	ADAPT	32950.1	587.4	5.2	20/20
	TensorFuzz	90508.6	0.0	0.0	0/20
LeNet-5	Random	36637.5	268.4	2.4	17/20
Lenet-3	DeepXplore	37178.2	36.1	1.6	16/20
	$DLFuzz_{Best}$	37335.2	2.0	0.2	4/20
	$DLFuzz_RR$	36400.6	193.0	2.0	17/20
	ADAPT	12303.9	4566.5	27.0	10/10
	TensorFuzz	15583.4	186.8	0.1	1/10
VGG-19	Random	13038.3	1222.3	9.4	7/10
VGG-19	DeepXplore	13179.3	1575.4	7.3	8/10
	$DLFuzz_{Best}$	12883.0	2581.8	15.8	10/10
	$DLFuzz_RR$	12790.8	2686.9	15.8	9/10
	ADAPT	8461.6	3982.5	3.0	7/10
	TensorFuzz	12279.6	1948.0	0.3	2/10
ResNet-50	Random	9422.7	3005.0	3.0	7/10
Resnet-30	DeepXplore	9221.0	3043.0	2.6	7/10
	DLFuzz _{Best}	8914.5	3655.1	3.1	7/10
	DLFuzz _{RR}	9389.4	4083.2	3.6	7/10

☐ Top-k Neuron Coverage

☐ Top-k Neuron Coverage

Model	Technique	# of Mutations	# of Adv. Inputs	# of Labels	# of Seeds
	ADAPT	33041.0	253.0	2.8	18/20
	TensorFuzz	96388.4	0.0	0.0	0/20
LeNet-4	Random	38752.4	204.4	1.8	13/20
Lenet-4	DeepXplore	38618.4	13.8	1.0	9/20
	$DLFuzz_{Best}$	36349.5	1196.9	0.0	1/20
	$DLFuzz_RR$	38111.2	47.4	1.1	10/20
	ADAPT	30927.2	531.6	4.4	19/20
	TensorFuzz	91278.2	0.0	0.0	0/20
LeNet-5	Random	36742.6	244.8	2.0	15/20
Lenet-3	DeepXplore	37295.2	105.8	1.1	10/20
	$DLFuzz_{Best}$	34338.7	0.2	0.1	2/20
	$DLFuzz_RR$	35910.2	193.8	1.4	15/20
	ADAPT	12138.9	3155.8	32.0	10/10
	TensorFuzz	15130.9	181.2	0.1	1/10
VGG-19	Random	13180.2	303.9	3.0	4/10
VGG-19	DeepXplore	13053.9	619.3	9.1	5/10
	DLFuzz _{Best}	12710.7	891.1	8.3	7/10
	$DLFuzz_RR$	13022.7	1089.6	10.5	10/10
	ADAPT	8176.2	3162.5	6.7	8/10
	TensorFuzz	11779.4	1856.8	0.3	2/10
PagNat 50	Random	9215.4	1625.5	1.7	7/10
ResNet-50	DeepXplore	8944.9	1529.3	2.0	7/10
	DLFuzz _{Best}	9207.9	2381.0	3.0	7/10
	DLFuzz _{RR}	9131.2	1937.9	2.8	7/10

5. Conclusion

☐ Contributions & Summary

- 심층 신경망을 효율적으로 검사하기 위해서 1) 벡터화된 선택 전략을 디자인하고 2) 학습을 이용하여 적절한 선택 전략을 생성하는 알고리즘을 제안하였다.
- 기존에 제안된 툴과 비교했을 때 모든 실험에서 지속적으로 가장 높은 커버리지를 달성하였고, 생성하는 이미지도 가장 다양하다.

☐ Future work

- 사진 분류를 위한 심층 신경망을 넘어 다른 종류의 일을 처리하는 심층 신경망으로 확장하려 한다.
- 모든 모델에서 잘 동작 할 수 있도록 하는 선택 전략들을 미리 학습을 통해 구하려 한다.