Olimpiada Națională de Matematică 2007 Etapa finală, Pitești 11 aprilie 2007

CLASA A IX-A, SOLUŢII ŞI BAREMURI

Subiectul 1. Fie a,b,c,d patru numere naturale nenule, astfel încât ecuația

$$x^{2} - (a^{2} + b^{2} + c^{2} + d^{2} + 1)x + ab + bc + cd + da = 0$$

să aibă o soluție întreagă. Demonstrați că și cealaltă soluție este număr întreg, iar cele două soluții sunt pătrate perfecte.

Soluție. Prima cerință rezultă din observația $x_1 + x_2 = a^2 + b^2 + c^2 + d^2 + 1 \in \mathbb{Z}$.

Apoi, cele două soluții sunt întregi dacă și numai dacă discriminantul ecuației este pătrat perfect. Fie $N=a^2+b^2+c^2+d^2+1$. Observăm că $\Delta < N^2$ și că Δ are aceeași paritate cu N. Deci, pentru ca Δ să fie pătrat perfect este necesar ca $\Delta \leq (N-2)^2$, adică $(a^2+b^2+c^2+d^2+1)^2-4(ab+bc+cd+da) \leq (a^2+b^2+c^2+d^2-1)^2$, echivalent cu $(a-b)^2+(b-c)^2+(c-d)^2+(d-a)^2\leq 0$. De aici rezultă a=b=c=d și $x_1=1, x_2=4a^2=(2a)^2$.

Subiectul 2. Se consideră un triunghi ascuțitunghic ABC și un punct M diferit de vârfurile triunghiului. Demonstrați că M este ortocentrul triunghiului dacă și numai dacă

$$\frac{BC}{MA}\overrightarrow{MA} + \frac{CA}{MB}\overrightarrow{MB} + \frac{AB}{MC}\overrightarrow{MC} = \overrightarrow{0}.$$

Soluție. ,, \Longrightarrow " Fie H ortocentrul și A', B', C', A'' astfel încât

$$\frac{a}{MA}\overrightarrow{MA} = \overrightarrow{HA'}, \ \frac{b}{MB}\overrightarrow{MB} = \overrightarrow{HB'}, \ \frac{c}{MC}\overrightarrow{MC} = \overrightarrow{HC'}, \ \overrightarrow{HB'} + \overrightarrow{HC'} = \overrightarrow{HA''}.$$

Atunci $\triangle HC'A'' \equiv \triangle BAC$ şi $HA'' \perp BC$, deci $\overrightarrow{HA''} = \overrightarrow{HB'} + \overrightarrow{HC'} = -\overrightarrow{HA'}$. ,, \Leftarrow " Prin ridicare la pătrat obținem $a^2 + b^2 + 2ab\cos\angle(\overrightarrow{MA}, \overrightarrow{MB}) = c^2$, de unde $\cos\angle(\overrightarrow{MA}, \overrightarrow{MB}) = -\cos C$, deci $\angle(\overrightarrow{MA}, \overrightarrow{MB}) = \pi - C$, adică M se află pe unul din arcele capabile de unghi $\pi - C$, delimitate de [AB]. Analog M se află pe unul din arcele capabile de unghi $\pi-A$, delimitate de [BC], şi pe unul din arcele capabile de unghi $\pi-B$, delimitate de [AC]. Cum singurul punct comun al celor trei reuniuni de arce este H, deducem M=H.

Subiectul 3. Se împarte planul într-o mulţime infinită de benzi prin drepte paralele echidistante, situate la distanţă 1, iar punctele din interiorul fiecărei benzi se colorează cu roşu sau alb, în fiecare bandă folosindu-se o singură culoare (punctele de pe drepte rămân necolorate). Demonstraţi că există un triunghi echilateral de latură 100, cu vârfurile în puncte de aceeaşi culoare.

Soluție. Să considerăm un sistem de axe de coordonate, astfel încât frontierele benzilor să aibă ecuații de forma $x = n, n \in \mathbb{Z}$. Asociem fiecărui segment de pe Ox de forma $(n, n + 1), n \in \mathbb{Z}$, culoarea benzii în care este conținut. Este suficient să găsim un triunghi cu o latură verticală, deci să găsim x astfel încât x și x+a, unde $a = 100\sqrt{3}/2$, să fie în segmente de aceeași culoare. Demonstrăm că există un asemenea x prin reducere la absurd.

Să presupunem contrariul. Atunci segmentele (0,1) şi (b,b+1), unde $b=\lfloor a\rfloor$, au culori diferite. În acest caz, au culori diferite şi segmentele (b,b+1) şi (b-a,0), deci segmentele (-1,0) şi (0,1) au aceeaşi culoare. Analog rezultă că au aceeaşi culoare segmentele $(-2,-1),(-3,-2),\ldots$ În acest caz obţinem un triunghi monocolor în semiplanul x<0, contradicţie.

Subiectul 4. Pentru o mulțime nevidă A și o funcție $f:A\to A$ vom nota

$$f_1(A) = f(A), f_2(A) = f(f_1(A)), f_3(A) = f(f_2(A))...$$

și, în general, $f_n(A) = f(f_{n-1}(A)), \forall n \geq 2, n \in \mathbb{N}$ (ca de obicei, pentru o mulțime $B \subset A$, notația f(B) reprezintă mulțimea $\{f(x)|x \in B\}$ a imaginilor elementelor lui B). Definim

$$f_{\infty}(A) = f_1(A) \cap f_2(A) \cap f_3(A) \cap \ldots = \bigcap_{n \ge 1} f_n(A).$$

- a) Demonstrați că, dacă A este mulțime finită, atunci $f(f_{\infty}(A)) = f_{\infty}(A)$.
- b) Precizați valabilitatea concluziei precedente pentru

$$A = \mathbb{N} \times \mathbb{N}, \ f((m,n)) = \begin{cases} (m+1,n) & \operatorname{dacă} n \ge m \ge 1\\ (0,0) & \operatorname{dacă} m > n\\ (0,n+1) & \operatorname{dacă} m = 0. \end{cases}$$

Soluţie. a) Avem $f_1(A) \supset f_2(A) \supset f_3(A) \supset \dots$ Cum A este finită, rezultă că există $n \in \mathbb{N}^*$ astfel încât $f_n(A) = f_{n+1}(A)$. Rezultă că $f_m(A) = f_n(A)$

- $f_n(A)$ pentru orice $m \geq n$, deci $f_{\infty}(A) = f_n(A)$, de unde rezultă imediat concluzia.
- b) Arătăm că în acest caz concluzia este falsă. Dovedim mai întâi că $f_{\infty}(A) = \{(0, n) | n \in \mathbb{N}\}.$ Într-adevăr
 - $(0,0) \in f_{\infty}(A)$ deoarece $f_n((1,n-1)) = (0,0) \, \forall n \in \mathbb{N}^*;$ $(0,n) \in f_{\infty}(A)$ deoarece $f_n((0,0)) = (0,n) \, \forall n \in \mathbb{N}^*;$
- $(m,n) \notin f_{\infty}(A)$ pentru m > 0, deoarece $f_m((a,b)) = (x,y)$ cu x > msau x = 0.

Avem acum imediat $f(f_{\infty}(A)) = f_{\infty}(A) \setminus \{(0,0)\} \neq f_{\infty}(A)$, qed.

Barem de corectare

1.
x_2 este întreg
Δ trebuie să fie pătrat perfect
Observăm că $\Delta \leq (N-2)^2$
Finalizare
-
II.
\implies
⇐
III.
Căutăm triunghiuri cu o latură paralelă cu dreptele 2 puncte
Finalizare
IV.
a) Şirul $(f_n(A))_{n\geq 1}$ este descrescător
Rezultă că el este staționar
b) $(0,n) \in f_{\infty}(A)$
$(0,0) \notin f_{\infty}(A)$