Texas Spectroscopic Search for Lya Emission at the End of Reionization Constraining the Ly α Equivalent Width Distribution at z > 6 (Jung et al. 2018, ApJ, 864, 103)

Intae Jung¹, Steven Finkelstein¹, Rachael Livermore^{1,2,3}, Mark Dickinson⁴, Rebecca Larson¹, Casey Papovich⁵, Mimi Song⁶, Vithal Tilvi⁷, and Isak Wold¹ The University of Texas at Austin, ²The University of Melbourne, ³ASTRO 3D, ⁴National Optical Astronomy Observatory, ⁵Texas A&M University, ⁶NASA Goddard Space Flight Center, ⁷Arizona State University

[1] Topic: Ly α Emission as a Probe of Cosmic Reionization

- Neutral hydrogens in the IGM affect the observed features of ${\sf Ly}lpha$ emission

[Fig. I] Lyα galaxy EW distribution with the best fit exponential, characterized by e-folding scale, wo

[Fig.2] Observed Lya EW distribution with the model predictions

[2] Spectroscopic Observation for $\sim 200 \text{ z} = 5.5 - 8.2 \text{ galaxies}$

[Fig.4] Five detected Ly α emitters from the **DEIMOS** data

✓ Our MOSFIRE data provides deep NIR spectroscopic observations for 72 galaxies, including the deepest ($t_{exp}\sim16-20hr$) NIR data for six candidates.

[3] Measuring the Ly α Equivalent Width Distribution

- ★ Simulating the expected number of detections accounting for incompleteness (e.g., observing depth, wavelength coverage, P(z) distribution, UV continuum level)
 - We simulate mock emission lines for our observed galaxies in a Monte-Carlo fashion. ii) Line location from P(z)

S (Signal-to-Noise)

i) Ly α strength from P(EW)

iii) Determine S/N levels

- From the simulations, we calculate the posterior distribution of the expected number of detections as a function of S/N for e-folding scales of $W_0=5-200$ Å.
- ← [Fig.6] The mean expected number of detections as a function of S/N for a range of EW distributions for $z \sim 6.5$.

[4] Ly α Equivalent Width Distribution at z ~ 6.5 from DEIMOS

From the MCMC sampling using the PDFs of simulated N_{detections} with the actually observed detections, we calculate the posterior distribution of the Ly α EW ϕ -folding scale (W₀).

[Fig.7] Our measurement shows a weak evidence that the e-folding scale (W₀) begins to drop at z > 6 (~36Å in $I\sigma$ upper limit, red arrow), suggesting an increasing HI fraction in the IGM. With our MOSFIRE observations, we will extend this study at z > 7.

← [Fig.5] 2D spectra of the deepest MOSFIRE observations (left) and a new discovery of Ly α emission at z=7.6 (right)