Branch and Bound

Kwei-Long Huang

Branch and Bound Method

- Traditional approach to solving integer programming problems.
- Based on principle that total set of feasible solutions can be partitioned into smaller subsets of solutions.
- Smaller subsets evaluated until best solution is found.
- Method is a tedious and complex mathematical process.
- See Module C "Integer Programming: the Branch and Bound Method" for detailed description of method.

Branch and Bound

Problems are solved as LP. If not integers, one of them is chosen and 2 new constraints are added.

$$x_i \le \lfloor v \rfloor$$
 and $x_i \ge \lfloor v \rfloor + 1$

Proceeds until optimal.

How Integer Programs are Solved: Original Graph

After Branch and Bound on x_1

Branch & Bound 1/3

- Step 1: Solve problem using LP. If solution is integer—finished.

 Otherwise, next.
- Step 2: Branch on non-integer variable from step 1. Split problem into two pieces: integer above, and integer below.

Branch & Bound 2/3

Step 3: Create nodes of these branches and solve the new LP problems.

Step 4:

- a) Infeasible, terminate branch;
- b) Feasible, not integer, back to Step 2;
- c) Feasible and integer, go to Step 5.

Branch & Bound 3/3

Step 5: Check branches.

- The feasible solution is a lower bound of the optimum (Max problem).
- 2) If the feasible solution is better than the LP solution of a node, the branch of that node is fathomed.
- If there are no remaining branches, the feasible solution is the solution to the problem.

First Branch

Original Problem

Max $7x_1 + 6x_2$ st. $2x_1 + 3x_2 \le 12$ $6x_1 + 5x_2 \le 30$

Sub-problem A

Max $7x_1 + 6x_2$ st. $2x_1 + 3x_2 \le 12$ $6x_1 + 5x_2 \le 30$ $x_1 \ge 4$

Sub-problem B

Max $7x_1 + 6x_2$ st. $2x_1 + 3x_2 \le 12$ $6x_1 + 5x_2 \le 30$ $x_1 \le 3$

Second Branch

Sub-problem A

Max
$$7x_1 + 6x_2$$

st. $2x_1 + 3x_2 \le 12$
 $6x_1 + 5x_2 \le 30$
 $x_1 \ge 4$

Sub-problem C

Max $7x_1 + 6x_2$ st. $2x_1 + 3x_2 \le 12$ $6x_1 + 5x_2 \le 30$ $x_1 \ge 4$ $x_2 \ge 2$

Sub-problem D

Max
$$7x_1 + 6x_2$$

st. $2x_1 + 3x_2 \le 12$
 $6x_1 + 5x_2 \le 30$
 $x_1 \ge 4$
 $x_2 \le 1$

Third Branch

Sub-problem B Max
$$7x_1 + 6x_2$$

st. $2x_1 + 3x_2 \le 12$
 $6x_1 + 5x_2 \le 30$
 $x_1 \le 3$
 $x_1 \le 3$
 $x_2 = 33$

Integer solution \Rightarrow No more branch is needed along this sub-problem.

Fourth Branch

Sub-problem C

Max
$$7x_1 + 6x_2$$

st. $2x_1 + 3x_2 \le 12$
 $6x_1 + 5x_2 \le 30$
 $x_1 \ge 4$
 $x_2 \ge 2$

No feasible solution ⇒ No more branch is needed along this sub-problem.

Fifth Branch

Sub-problem D

Max $7x_1 + 6x_2$ st. $2x_1 + 3x_2 \le 12$ $6x_1 + 5x_2 \le 30$ $x_1 \ge 4$ $x_2 \le 1$

 $x_1 = 4.16$ $x_2 = 1$ Z = 35.12

Sub-problem E

Max $7x_1 + 6x_2$ st. $2x_1 + 3x_2 \le 12$ $6x_1 + 5x_2 \le 30$

$$x_1 \ge 4, x_1 \le 4$$

$$x_2 \leq 1$$

Sub-problem F

$$\begin{vmatrix} \text{Max} & 7x_1 + 6x_2 \\ \text{st.} & 2x_1 + 3x_2 \le 12 \end{vmatrix}$$

$$6x_1 + 5x_2 \le 30$$

$$x_1 \ge 4, x_1 \ge 5$$

$$x_2 \leq 1$$

Sixth Branch

Sub-problem E

Max
$$7x_1 + 6x_2$$

st. $2x_1 + 3x_2 \le 12$
 $6x_1 + 5x_2 \le 30$
 $x_1 \ge 4, x_1 \le 4$
 $x_2 \le 1$

Sub-problem F

Max
$$7x_1 + 6x_2$$

st. $2x_1 + 3x_2 \le 12$
 $6x_1 + 5x_2 \le 30$
 $x_1 \ge 4, x_1 \ge 5$
 $x_2 \le 1$

$$\begin{cases} x_1 = 5 \\ x_2 = 0 \end{cases}$$

$$Z = 35$$

Integer solutions ⇒ No more branch is needed along this sub-problem.

Branch & Bound - Overall

