

Méthode des différences finies pour l'EDP de transport 1D

Andrea Brugnoli

11 Avril 2022

UNIVERSITY OF TWENTE.

Aperçu

Équation du transport 1D : le cas continu

Discrétisation par différence finies

Équation du transport 1D

L'EDP la plus simple

L'évolution d'un champ scalaire u(x,t) transporté par un fluide satisfait

$$\frac{\partial u}{\partial t} + \frac{\partial q}{\partial x} = 0, \qquad x \in [0, L], \quad t \in (0, T].$$

Pour le flux q(u,x,t) on considère une vitesse constante pour le fluide

$$q(u, x, t) = c \ u(x, t), \qquad c > 0.$$

Le problème est bien posé lorsque on spécifie

$$u(x,0)=g(x),$$
 Donnée initiale, $u(0,t)=f(t),$ Condition au bord.

Solution Analytique

Si f, g sont régulières, i.e. C^1 , et f(0)=g(0), f'(0)=-cg'(0) alors $u\in C^1([0,T]\times[0,L])$

$$u(x,t) = \begin{cases} g(x-ct), & x \ge ct \\ f(t-x/c), & x \le ct, \end{cases}$$

i.e. u constant sur γ telle que $\dot{\gamma}=(c,1).$

f(t) = 1.

Solution Analytique

Si f,~g sont régulières, i.e. C^1 , et f(0)=g(0),~f'(0)=-cg'(0) alors $u\in C^1([0,T]\times[0,L])$

$$u(x,t) = \begin{cases} g(x-ct), & x \ge ct \\ f(t-x/c), & x \le ct, \end{cases}$$

i.e. u constant sur γ telle que $\dot{\gamma}=(c,1).$

Exemple:
$$c = 2$$
, $L = 20$, $T = 10$ $g(x) = \exp(-x^2/4)$, $f(t) = \exp(-t^2)$.

Solution Analytique

Si f, g sont régulières, i.e. C^1 , et f(0)=g(0), f'(0)=-cg'(0) alors $u\in C^1([0,T]\times[0,L])$

$$u(x,t) = \begin{cases} g(x-ct), & x \ge ct \\ f(t-x/c), & x \le ct, \end{cases}$$

i.e. u constant sur γ telle que $\dot{\gamma}=(c,1).$

Exemple : $c=2, \quad L=20, \quad T=10$ $g(x)=\exp(-x^2/4),$

 $f(t) = \cos^2(t)$.

Discrétisation du domaine : le maillage

On considère un maillage rectangulaire uniforme (t_j,x_m) : cela signifie que $\Delta x=x_{i+1}-x_i$ et $\Delta t=t_{n+1}-t_n$ sont constants.

La champs scalaire discret est noté par $u_{i,n} \approx u(x_i, t_n)$ et représente une approximation de la solution exact.

Approximation des dérivées

Premier essai : schema d'Euler explicite

On considère l'approximation au premier ordre

$$\frac{\partial u}{\partial t}(x_i, t_j) \approx \frac{u_{i,n+1} - u_{i,n}}{\Delta t} + O(\Delta t), \qquad \frac{\partial u}{\partial x}(x_i, t_j) \approx \frac{u_{i+1,n} - u_{i,n}}{\Delta x} + O(\Delta x)$$

Bibliographie

OLVER, Peter J. Introduction to partial differential equations. Springer, 2014.