DI/PPGI/UFES

3º Exercício Computacional de Algoritmos Numéricos II/Computação Científica - 2021 EARTE Método do Resíduo Mínimo Generalizado usando o Octave

Objetivos

- Observar o comportamento do Método do Resíduo Mínimo Generalizado para um conjunto de matrizes esparsas da SuiteSparse Matrix Collection¹.
- OBS: Essa atividade vai ser desenvolvida em grupo. Começa com uma atividade no dia 27/07/2021 durante o encontro síncrono da disciplina e termina com uma apresentação dos grupos no encontro síncrono do dia 03/08/2021.

Conceitos/comandos importantes:

O repositório de matrizes esparsas SuiteSparse Matrix Collection disponibiliza matrizes das mais variadas áreas do conhecimento. Um dos formatos disponíveis para as matrizes é <nome>.mat. Arquivo binário que armazena as informações para gerar uma matriz esparsa no formato Compressed Column Sparse(CCR) para o Octave. A seguir você encontra um conjunto de comandos do Octave para gerar e resolver um sistema cuja matriz esparsa foi obtida da SuiteSparse Matrix Collection pelo método GMRES:

- load <nome>.mat carrega dados da matriz em uma estrutura auxiliar A.
- A = Problem.A; Armazena os dados da estrutura A na matriz esparsa A no formato CCR.
- n = rows(A);
- b = A*ones(n,1);
- [x,flag,relres,iter,resvec] = gmres(A,b,k,rtol,maxit)
 - A: Matriz dos coeficientes²;
 - b: Vetor dos termos independentes;
 - k: Número de vetores para o restart;
 - rtol: Tolerância relativa;
 - maxit: número máximo de ciclos;
 - x: vetor solução aproximada;
 - flag: 0 convergência atingida; 1 número máximo de iterações atingido; 3 estagnação do resíduo
 - relres: valor final do resíduo relativo
 - iter: vetor contendo o número de ciclos (iter(1,1)) e o número de iterações do último ciclo (iter(1,2))³
 - -resvec: vetor contendo o resíduo relativo em cada iteração

Os grupos devem acessar os dados das matrizes esparsas, assim distribuídas:

- Grupo 1: olm100; e escolher uma matriz não listada de ordem $\geq 10^4$
- Grupo 2: oscil_dcop_02; e escolher uma matriz não listada de ordem $\geq 10^4$

¹https://sparse.tamu.edu

² default: armazenamento na estrutura CCR (Compressed Column Sparse)

³número de iterações gmres é igual a iter(1,1)*k+iter(1,2)

- Grupo 3: cavity05; e escolher uma matriz não listada de ordem $\geq 10^4$
- Grupo 4:cz2548; e escolher uma matriz não listada de ordem $\geq 10^3$
- Grupo 5: coater2; e escolher uma matriz não listada de ordem $\leq 10^3$
- Grupo 6: Dubcova1; e escolher uma matriz não listada de ordem $\leq 10^3$

A escolha da segunda matriz deve levar em consideração características distintas da primeira matriz.

- 1. Resolva o sistema linear trivial Ax = b, sendo b = A * ones(n,1) pelo método do Resíduo Mínimo Generalizado, assumindo tol e maxit adequados. Considere a possibilidade de alterar k, tol e maxit para obter uma solução mais satisfatória. (Dica: considerar $10^{-6} \le \text{tol} \le 10^{-12}$ e maxit ≤ 1000)
- 2. Plote o gráfico do resíduo para valores adequados de k no mesmo sistema de eixos;
- 3. Discuta as características do processo iterativo, quanto a convergência, levando em consideração as características da matriz dos coeficientes e as características do método do Resíduo Mínimo Generalizado.
- 4. Construa uma tabela contendo métricas importantes como: ordem do sistema, número de elementos não nulos, flag, k, número de iterações, norma do máximo da solução, número de condicionamento da matriz (se possível), etc.

Apresentação dos Resultados

Prepare um conjunto de no máximo 4 slides no documento único "Comportamento do Método do Resíduo mínimo Generalizado", disponível na Atividade. Estejam prontos para apresentar seus resultados no dia 03/08/2021 durante o encontro síncrono da disciplina.