Student Information

Full Name : Derya TINMAZ

 $Id\ Number:\ 2380947$

Answer 1

a)

b) Yes, it is lattice, because it is a partially ordered set, and each pair of elements has a least upper bound (LUB) and a greatest lower bound (GLB).

- c) $\{\{1,2,3\}\}$
- d) {Ø}
- e) Yes, since it is unique element in the maximal elements, $\{1,2,3\}$ is the greatest element.
- f) Yes, since it is unique element in the minimal elements, \emptyset is the least element.
- g) $\{1, 3\}$

Answer 2

a)

deg(a) = 2, deg(b) = 4, deg(c) = 2, deg(d) = 3, deg(e) = 3 the sum is 14.

b)

	a	b	c	d	е
a	0	1	0	0	1
b	1	0	1	1	1
С	0	1	0	1	0
d	0	1	1	0	1
е	1	1	0	1	0

The number of nonzero entries is 14.

c)

	e_1	e_2	e_3	e_4	e_5	e_6	e_7
a	1	1	0	0	0	0	0
b	1	0	1	0	1	1	0
С	0	0	0	0	0	1	1
d	0	0	0	1	1	0	1
е	0	1	1	1	0	0	0

The number of nonzero entries is 14.

d) Yes, it does.

e) G is not a bipartite graph. If we remove three edges we can partition its vertex set into two disjoint sets as $V_1 = \{a, e, d\}$ and $V_2 = \{b, c\}$ such that every edge in the subgraph of G connects a vertex in V_1 and a vertex in V_2 , and becomes bipartite.

- f) Every edge can have 2 different directions, and makes a different graph every time a direction changes. Therefore, for 7 edges there are 2^7 possible graphs, which is 128.
- g)The length of the simple longest path in G is 7. Without passing through the same edge we can go $d \longrightarrow e \longrightarrow a \longrightarrow b \longrightarrow c \longrightarrow d \longrightarrow e$
- h) It is 1, because there is only one connected component of a graph G is a connected subgraph of G that is not a proper sub-graph of another connected subgraph of G.
- i)No, there is not an Euler circuit in G, because there is not a circuit that contains every edge of a graph exactly once.
- j)Yes, there in an Euler path in G. $d \longrightarrow e \longrightarrow a \longrightarrow b \longrightarrow c \longrightarrow d \longrightarrow b \longrightarrow e$ is the Euler path in G that contains every edge of G exactly once.
- k)Yes, G has a Hamilton circuit. $a \longrightarrow b \longrightarrow c \longrightarrow d \longrightarrow e \longrightarrow a$ is the Hamilton circuit in G that passes through each vertex exactly once.
- l)Yes, G has a Hamilton path. $a \longrightarrow b \longrightarrow c \longrightarrow d \longrightarrow e$ is the Hamilton path in G that passes through each vertex exactly once.

Answer 3

The graphs G and H both have 8 vertices and 16 edges. They also both have eight vertices of degree four. Because G and H agree with respect to these invariants, it is reasonable to try to find an isomorphism f. Let f be a function one to one and onto function from G to H; f(a) = a', f(b) = c', f(c) = e', f(d) = g', f(e) = b', f(f) = h', f(g) = d', f(h) = f' the adjacency matrix of G,

	a	b	c	d	е	f	g	h
a	0	1	0	1	1	1	0	0
b	1	0	1	0	1	0	1	0
С	0	1	0	1	0	0	1	1
d	1	0	1	0	0	1	0	1
е	1	1	0	0	0	1	0	1
f	1	0	0	1	1	0	1	0
g	0	1	1	0	0	1	0	1
h	0	0	1	1	1	0	1	0

and the adjacency matrix of H with the rows and columns labeled by the images of the corresponding vertices in G,

	a'	c'	e'	g'	b'	h'	ď'	f'
a'	0	1	0	1	1	1	0	0
c'	1	0	1	0	1	0	1	0
e'	0	1	0	1	0	0	1	1
g'	1	0	1	0	0	1	0	1
b'	1	1	0	0	0	1	0	1
h'	1	0	0	1	1	0	1	0
d'	0	1	1	0	0	1	0	1
f'	0	0	1	1	1	0	1	0

Because AG = AH, it follows that f preserves edges. We conclude that f is an isomorphism, so G and H are isomorphic.

Answer 4

```
1- consider a a=0,\ b=\infty,\ c=\infty,\ d=\infty,\ e=\infty,\ f=\infty,\ g=\infty,\ h=\infty,\ i=\infty,\ j=\infty,\ k=\infty 2-consider b a=0,\ b=3(a),\ c=\infty,\ d=\infty,\ e=5(a),\ f=\infty,\ g=\infty,\ h=4(a),\ i=\infty,\ j=\infty,\ k=\infty 3-consider h a=0,\ b=3(a),\ c=5(a,b),\ d=\infty,\ e=5(a),\ f=10(a,b),\ g=\infty,\ h=4(a),\ i=\infty,\ j=\infty,\ k=\infty 4-consider c a=0,\ b=3(a),\ c=5(a,b),\ d=\infty,\ e=5(a),\ f=9(a,h),\ g=\infty,\ h=4(a),\ i=6(a,h),\ j=\infty,\ k=\infty 5-consider e a=0,\ b=3(a),\ c=5(a,b),\ d=8(a,b,c),\ e=5(a),\ f=7(a,b,c),\ g=11(a,b,c),\ h=4(a),\ i=6(a,h),\ j=\infty,\ k=\infty 6-consider i a=0,\ b=3(a),\ c=5(a,b),\ d=8(a,b,c),\ e=5(a),\ f=7(a,b,c),\ g=11(a,b,c),\ h=4(a),\ h=4(a),\
```

$$i=6(a,h),\ j=\infty,\ k=\infty$$
7-consider f
$$a=0,\ b=3(a),\ c=5(a,b),\ d=8(a,b,c),\ e=5(a),\ f=7(a,b,c),\ g=11(a,b,c),\ h=4(a),\ i=6(a,h),\ j=12(a,h,e),\ k=\infty$$
8-consider d
$$a=0,\ b=3(a),\ c=5(a,b),\ d=8(a,b,c),\ e=5(a),\ f=7(a,b,c),\ g=11(a,b,c),\ h=4(a),\ i=6(a,h),\ j=10(a,b,c,f),\ k=\infty$$
9-consider j
$$a=0,\ b=3(a),\ c=5(a,b),\ d=8(a,b,c),\ e=5(a),\ f=7(a,b,c),\ g=11(a,b,c),\ h=4(a),\ i=6(a,h),\ j=10(a,b,c,f),\ k=10(a,b,c,d)$$
10-consider k
$$a=0,\ b=3(a),\ c=5(a,b),\ d=8(a,b,c),\ e=5(a),\ f=7(a,b,c),\ g=11(a,b,c),\ h=4(a),\ i=6(a,h),\ j=10(a,b,c,f),\ k=10(a,b,c,d)$$
11-consider g
$$a=0,\ b=3(a),\ c=5(a,b),\ d=8(a,b,c),\ e=5(a),\ f=7(a,b,c),\ g=11(a,b,c),\ h=4(a),\ i=6(a,h),\ j=10(a,b,c,f),\ k=10(a,b,c,d)$$

Therefore it is a, b, c, f, j with length of 10.

Answer 5

With using Kruskal's algorithm:

a) $\{a,b\}$ with weight 1

{e,f} with weight 2

 $\{c,f\}$ with weight 2

{a,d} with weight 3

 $\{b,c\}$ with weight 4

b)

c) No, it is not unique, we can construct other minimum spanning trees such as:

or

Answer 6

- a) the number of vertices is 13, the number of edges is 12 and the height is 4.
- b)w,s,m,t,q,x,n,y,u,z,v,r,p
- c)s,w,q,m,t,p,x,u,n,y,r,v,z
- d)p,q,s,w,t,m,r,u,x,y,n,v,z
- e)No, it is not a full binary tree, because there are nodes such as s and t which has one child.