高等代数笔记

副标题

Zhang Liang

2025年4月21日

前言标题

前言内容

2025年4月21日

目录

第一章	线性空间	0
1.1	线性空间的定义	0
	1.1.1 线性空间的定义	0
	1.1.2 线性子空间	0
	1.1.3 线性空间的性质	1
1.2	线性组合	2
1.3	极大线性无关向量组、向量组的秩	2
1.4	基、线性空间的维数	2
1.5	线性子空间的直和	2
1.6	线性空间的同构	2
1.7	商空间	2
第二章	矩阵	3
第二章	矩阵 矩阵的定义和运算	
		3
2.1	矩阵的定义和运算	3
2.1	矩阵的定义和运算	3 3
2.1 2.2 2.3	矩阵的定义和运算	3 3 3
2.1 2.2 2.3 2.4 2.5	矩阵的定义和运算	3 3 3
2.1 2.2 2.3 2.4 2.5 第三章	矩阵的定义和运算	3 3 3 3
2.1 2.2 2.3 2.4 2.5 第三章	短阵的定义和运算	3 3 3 3 4
2.1 2.2 2.3 2.4 2.5 第三章 3.1	矩阵的定义和运算	3 3 3 3 4 5

	3.5	线性映射的特征值和特征向量	S
	3.6	线性映射可对角化的条件	5
	3.7	自伴算子和正规算子	5
	3.8	谱定理	5
	3.9	线性映射的不变子空间	5
	3.10	线性映射的最小多项式	5
	3.11	线性映射的 Jordan 标准形	5
	3.12	线性函数和对偶空间	5
第四章		多重线性映射	6
	4.1	Galois 群	6
第.	五章	附录	7
	5.1	一些典型的域	7
		5.1.1 F_p	7
		5.1.2 Q	8

第一章 线性空间

1.1 线性空间的定义

1.1.1 线性空间的定义

定义 1.1.1: 线性空间

设 F 是一个域,V 是一个集合,存在两个运算 $+: V \times V \to V$ 和 $:: F \times V \to V$,分 别称为加法和乘法,使得:

- ① $\exists \mathbf{0} \in V, \forall \alpha \in V, \mathbf{0} + \alpha = \alpha$
- ② $\forall \alpha \in V, \exists -\alpha \in V, \text{s.t. } \alpha + (-\alpha) = \mathbf{0}$
- $3 \forall \alpha, \beta \in V, \alpha + \beta = \beta + \alpha$
- $\textcircled{4} \forall \alpha, \beta, \gamma \in V, (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$
- \bullet $\forall k, l \in F, \alpha \in V, (k \cdot l) \cdot \alpha = k \cdot (l \cdot \alpha)$
- $\otimes \forall k \in F, \alpha \in V, k \cdot (\beta + \gamma) = k \cdot \beta + k \cdot \gamma$

那么我们称 V 是一个 F 上的线性空间(或向量空间)

1.1.2 线性子空间

定义 1.1.2: 线性子空间

设 V 是一个线性空间,集合 $W \subseteq V$,如果 W 在 V 的运算构成一个线性空间,那么我们称 W 是 V 的一个线性子空间

1.1.3 线性空间的性质

1.

命题 1.1.1. 0 是唯一的

证明: 不妨假设命题不成立, $\mathbf{0}_1, \mathbf{0}_2$ 均是零元,并且 $\mathbf{0}_1 \neq \mathbf{0}_2$

我们注意到: $\mathbf{0}_1 = \mathbf{0}_1 + \mathbf{0}_2 = \mathbf{0}_2$,与假设矛盾,于是命题得证

2.

命题 1.1.2. $\forall \alpha \in V$, $-\alpha$ 是唯一的

证明: 不妨假设命题不成立, α 有两个逆元 β_1, β_2 , 并且 $\beta_1 \neq \beta_2$

我们注意到: $\beta_1 = \mathbf{0} + \beta_1 = (\beta_2 + \alpha) + \beta_1 = \beta_2 + (\alpha + \beta_1) = \beta_2 + \mathbf{0} = \beta_2$,与假设矛盾,于是命题得证

3.

命题 1.1.3. $\forall \alpha \in V, 0 \cdot \alpha = \mathbf{0}$

证明: $0 \cdot \alpha = (0+0) \cdot \alpha = 0 \cdot \alpha + 0 \cdot \alpha$

$$\Rightarrow 0 \cdot \alpha + (-0 \cdot \alpha) = 0 \cdot \alpha + 0 \cdot \alpha + (-0 \cdot \alpha)$$

$$\Rightarrow \mathbf{0} = 0 \cdot \alpha$$

4.

命题 1.1.4. $\forall k \in F, k \cdot 0 = 0$

证明:
$$k \cdot \mathbf{0} = k \cdot (0 \cdot \alpha) = (k \cdot 0) \cdot \alpha = 0 \cdot \alpha = \mathbf{0}$$

5.

命题 1.1.5. $\forall \alpha \in V, (-1) \cdot \alpha = -\alpha$

证明:
$$\mathbf{0} = 0 \cdot \alpha = (1 + (-1)) \cdot \alpha = 1 \cdot \alpha + (-1) \cdot \alpha$$

 $\Rightarrow \mathbf{0} + (-\alpha) = (-\alpha) + \alpha + (-1) \cdot \alpha \Rightarrow (-1) \cdot \alpha = -\alpha$

6. 事实上,验证一个子集是否是线性子空间,只需要验证封闭性即可,其他的条件都是不必要的。

命题 1.1.6. $W \subset V \neq V$ 的线性子空间, 当且仅当:

 $\forall k \in F, \alpha, \beta \in V, \alpha + \beta \in V, k \cdot \alpha \in V$

证明: 充分性是显然的,对于必要性,我们依次验证:

首先, $0 \in F$, 因此 $0 \cdot \alpha = \mathbf{0} \in W$

其次,因为 $-1 \in F$,所以 $(-1) \cdot \alpha = -\alpha \in W$

剩余的六条运算律,因为W上的运算即是V上的运算在W上的限制,所以显然成立。那么命题得证。

1.2 线性组合

- 1.3 极大线性无关向量组、向量组的秩
 - 1.4 基、线性空间的维数
 - 1.5 线性子空间的直和
 - 1.6 线性空间的同构
 - 1.7 商空间

第二章 矩阵

- 2.1 矩阵的定义和运算
 - 2.2 矩阵的行列式
- 2.3 矩阵的初等变换、线性方程组的解
 - 2.4 可逆矩阵
 - 2.5 矩阵的分块

第三章 线性映射

- 3.1 线性映射的定义与性质
 - 3.2 线性映射的运算
 - 3.3 线性映射的核和像
 - 3.4 线性映射的矩阵
- 3.5 线性映射的特征值和特征向量
 - 3.6 线性映射可对角化的条件
 - 3.7 自伴算子和正规算子
 - 3.8 谱定理
 - 3.9 线性映射的不变子空间
 - 3.10 线性映射的最小多项式
- 3.11 线性映射的 Jordan 标准形
 - 3.12 线性函数和对偶空间

第四章 多重线性映射

4.1 Galois 群

定义 4.1.1: Galois 群

设 E, F 是两个域, $E \setminus F$ 是一个扩张,那么称

 $Gal(E \backslash F) = \{ \sigma \in Aut(E) | \sigma|_F = id_F \}$

是 $E \setminus F$ 的 Galois 群

定理 4.1.1: 有限扩张的 Galois 群有限

如果 $E \setminus F$ 是有限扩张,那么 $Gal(E \setminus F)$ 是有限群

第五章 附录

这一部分中,对于正文中因为逻辑结构无法提及的部分,进行补充。

5.1 一些典型的域

5.1.1 F_p

首先约定,这一部分的讨论中,都认为 p 是一个素数。 我们首先讨论的是一个典型的有限域——模 p 剩余类域。

定义 5.1.1: F_p

设 F 是一个域, $CharF \ge p$ 且 p 是一个素数,

我们定义 $F_p = N(\mathbb{Z}_p)$

并定义其中的加法和乘法为:

 $+_F = N^- 1 \circ + \circ N, \cdot_F = N^- 1 \circ \cdot \circ N$

定理 $5.1.1: F_p$ 没有真子域

设 p 是一个素数, 那么域 F_p 不存在真子域, 即 $F_p \setminus E \to E = F_p$

证明:不妨假设命题不成立,那么一定有真子域 $E \subseteq F_p$

不妨假设 $[F_p:E]=d$,因为 F_p 是有限域,那么 $|E|,|F_p|$ 都是有限的。

但是, $|F_p| = |E|^d$

 $\Rightarrow p = |E|^d$, 但是 p 是素数, 因此只可能 d = 1

于是 $|F_p| = |E|$, 那么只可能 $F_p = E$, 与假设矛盾,于是命题得证。

5.1 一些典型的域 第五章 附录

5.1.2 Q

定理 5.1.2: Q 没有真子域

\mathbb{Q} 不存在真子域, 即 $\mathbb{Q}\backslash E \to E = \mathbb{Q}$

证明: 不妨假设命题不成立, $E \subset \mathbb{Q}$ 是 \mathbb{Q} 真子域。

那么,因为 $0,1 \in E$,由域对加法封闭,那么一定有 $\mathbb{N} \subseteq E$

进一步,因为任意元素的加法逆存在,于是有 $\mathbb{Z} \subseteq E$

于是,由任意非零元素的逆存在,一定有 $\mathbb{Q} \subseteq E$ 。

但是,我们假设 $E \subset \mathbb{Q}$,矛盾。于是命题成立