Machine Learning (Most of AI)

Srinivasan Viswanathan

Oct 12, 2022

What we have learned so far?

- Big Picture
- Overview of Data management
- Statistics/probability mean/median/mode, CLT, normal,poisson,exponential,uniform distributions
- Population/Sample same distribution sampling, sampling strategies.
- Confidence intervals, hypothesis testing p-value, z-test, t-test, anova, chi-square test
- Linear regression, logistic regressions.

Let us think through this

• Probability vs statistics – difference ?

Probability

- Probability
- Model/pattern of data generation ---> probabilities of outcome ?

Parameters related to the above.. Different distributions, etc.

eg., if we have exponential distribution for a light bulb, with average life time of 2 years, what can you say about the two outcomes (bulb fail, bulb survives) after 3 years?

Statistics

Statistics

Given a bunch of data or outcomes, what model is it? What are the parameters of the model?

• Infer the parameters related to the above.. Infer the correctness/confidence in a hypothesis..

Statistics

Statistics

Given a bunch of data or outcomes, what model is it? What are the parameters of the model?

• Infer the parameters related to the above.. Infer the correctness/confidence in a hypothesis..

Eg., you collect data about students coming into the class from 9 am till 10 am for a class that starts at 9:30 am! (what distribution is it?) Other examples?

Machine Learning

- A computer program is said to learn from experience E with respect to some class of tasks T, and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."
 - Eg., hand written number recognition
 - T recognize and classify the numbers
 - P Correctly classify them
 - E training set of hand written numbers and their classification.

Machine Learning(ctd.)

- Other examples
 - Regression real estate prices, stock market values
 - Classification images, categorization based on features, etc.
 - Recommender systems shopping cart, movies
 - Anamoly detection credit card fraud etc.
 - Machine translation one language to other.

Machine Learning - Performance

- Loss functions
- Accuracy of predictions or error rate.
- Objective functions specific to the problem
 - Mean squared error (regression)
 - Maximize the rewards
 - Minimize the total distance (clustering)

Machine Learning —Experience

- Process of learning
 - Supervised learning teacher
 - Maps from a vector to a label value
 - It could be classification or regression
 - Unsupervised
 - Clustering discover groups of data
 - Density estimation what kind of distribution it could be ?
 - Reinforcement Learning
 - A set (sequence) of actions to take to maximize a reward. Eg., a game where next move has a set of alternatives and program chooses the best alternative.
 - Robot doing an action effectively.
 - Active learning by questions, transfer learning apply what you learnt in A to B.

Supervised Learning

- Features
 - Feature vector (x1, x2, .. xn)
 - Could be very large.
 - Eg., pixels in an image.
 - Eg., blood report, xray images
 - Eg., Monitored system data.
 - Eg., house size, location, features etc.
- Labels or target
 - Image is a number 1 .. 9 classify
 - Cancer onset or not
 - System is failing or healthy
 - House price.

Supervised Learning (ctd.)

- A function f(features) ---> target
- The function f could be a FAMILY of functions.
- The function will have many parameters depending on the model:
 - Linear model for a feature vector of size n will have n parameters.
 - Quadratic model will have ... how many?
 - "n" the degree polynomial will have many parameters?
- TRAINING SET
- TEST SET
- VALIDATION SET (may or may not be there).

Supervised Learning (ctd.)

- Performance
 - Sum of squares of the difference between predicted from actual.
 - Minimize the objective function (calculus technique)

Thank You!

Srinivasan Viswanathan