

Chapter 01 아두이노 설치하기

Step 1. 아두이노?

Step 2. 아두이노 설치하기

Step 3. 통신 드라이버 설치하기

Step 4. 소스파일 작성하기

Step 5. 확인(컴파일), 업로드

아두이노(ARDUINO)?

아두이노는 컴퓨터의 두뇌를 담당하는 하드웨어인 마이크로컨트롤러(MCU)와 마이크로컨트롤러를 제어하기 위한 소프트웨어(스케치라고 말한다) 제작 환경을 함께 묶어서 부르는 말입니다.

아두이노는 프로그램이나 전자회로 같은 하드웨어적 기술이 없는 사람도 일상생활에서 쉽게 사용 할 수 있도록 하기 위한 목적을 가지고 만들어졌습니다.

덕분에 아두이노를 익히는 것으로 어려운 Physical computing(물리적 컴퓨팅) 같은 복잡한 기술을 쉽게 사용 할 수 있습니다.

최근 IoT(사물인터넷), 쿼드콥터(드론), 3D프린터, 소프트웨어 의무교육 등의 키워드가 이슈화 되면서 아두이노도 함께 이슈화 되고 있습니다.

아두이노를 이용해서 IoT, 드론, 3D프린터, 웨어러블기기, 로봇 등등 모든 Make 활동이 가능하기 때문입니다. 그리고, 그 중심에는 아두이노를 활용하는 수많은 개발자들이 '오픈소스 플랫폼'을 따르기에, 초보자들이 인터넷에서 쉽 게 찾아 보고 따라 해볼 수 있기 때문입니다.

아두이노 IDE 설치하기

- 인터넷 주소창에 'http://www.arduino.cc' 을 직접 입력
- 구글에서 'ARDUINO' 로 검색 후 ARDUINO 공식 사이트의 시작화면에서 "SOFTWARE" 버튼

아두이노 IDE 설치하기

- 2. JUST DOWNLOAD를 클릭
- 3. 다운된 파일을 실행하면 설치과정이 진행됩니다.

- PC에서 아두이노 보드 인식을 위해 USB Driver가 설치되어야 한다.
 - 정품의 경우는 ARDUINO IDE 설치시 자동 설치됨
 - FTDI계열 칩을 사용하는 호환 보드는 OS에서 자동 인식
 - 그 외의 경우는 제조사에서 제공하는 USB Driver 별도 설치 필요
- 포트 선택
 - Windows의 경우 "COM1", "COM2" 등의 이름 규칙

윈도우의 경우 검색입력창에서 'http://blog.naver.com/makist2015' 를 입력하셔서 메이키스트 블로그에 들어간 뒤 왼쪽 검색란에 'CH341'을 검색한 후 글에서 첨부파일을 다운 받습니다.

- 1. 첨부파일을 클릭
- 2. CH341을 내PC에 저장

맥의 경우 검색입력창에서 'mac arduino ch314' 를 입력하셔서 나타난 두번째 사이트로 들어갑니다.

- 1. 파란색 링크 클릭
- 2. 다운된 드라이버 설치

압축파일을 푼 후 SETUP.EXE 파일을 설치해 줍니다.

1. SETUP.EXE 파일 클릭

- 1. INSTALL 클릭
- 2. 설치가 끝나면 창을 닫습니다.

준비된 USB 케이블로 아두이노와 PC를 연결한 후 '장치관리자'를 실행합니다.

1. 시작버튼옆 '검색' 아이콘 클릭

- 2. 검색어 '장치관리자'를 입력
- 3. 검색된 '장치 관리자'를 선 택

장치 관리자 화면의 하단에 '포트(COM & LPT)' 항목 아래 'USB-SERIAL CH340(COM..)' 항목이 있는지 확인후 기억합니다.

만약, USB-SERIAL' 또는 'Arduino Uno' COM 포트가 보이지 않는다면 위의 설치 과정을 다시 진행하거나, PC의 다른 USB 포트에 연결 해봐야 합니다.

Chapter 01 아두이노 설치하기

통신 드라이버 설치하기

확인 후 창을 닫습니다.

아두이노 설치하기

소스파일 작성하기

보드 선택

• 아두이노 보드 시리즈

아두이노 Nano

아두이노 Mega

아두이노 Yun

Chapter 01 아두이노 설치하기

소스파일 작성하기

보드 선택

툴 -> 보드 -> Arduino/Genuino Uno 선택

Chapter 01 아두이노 설치하기

소스파일 작성하기

- 아두이노 프로그램 소스를 부르는 명칭
- C/C++ 언어로 작성
- 스케치 명명규칙
 - 숫자가 제일 앞에 오면 안된다.
 - 특수 문자가 포함되면 안된다. (_ 제외)
 - 띄어쓰기를 하면 안된다.
 - 한글을 사용하면 안된다.

```
_ D X
Blink | Arduino 1.5.3-Intel.1.0.4
File Edit Sketch Tools Help
                                                                              ø
 Blink
  Blink
  Turns on an LED on for one second, then off for one second, repeatedly.
  This example code is in the public domain.
// Fin 13 has an LED connected on most Arduino boards.
// give it a name:
int led = 13;
 // the setup routine runs once when you press reset:
 void setup() {
  // initialize the digital pin as an output.
  pinMode(led, OUTPUT);
 // the loop routine runs over and over again forever:
  digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
  delay(1000);
                            // wait for a second
  digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
  delay(1000);
                             // wait for a second
```

Chapter 01

아두이노 설치하기

확인(컴파일), 업로드

- 아두이노 프로그램을 보드에 옮기는 과정
- 한번 업로드되면 전원이 꺼져도 유지됨
- 보드 전원이 켜지면 바로 실행됨
- 리셋 버튼을 누르면 업로드된 프로그램 다시 실행

실습

LED Blink 예제 실행

좌측 상단의에서 파일 -> 예제 -> 01. Basic -> Blink 열기

Chapter 02 브래드보드 이해하기

Step 1. 브래드보드 이해하기

Chapter 02

브래드보드 이해하기

브레드보드(빵판) 이해하기

브레드보드 사용시 쇼트가 나지 않도록 주의해서 사용해야 합니다.

브레드보드는 설계한 회로가 정상적으로 작동하는지를 확인하기 위해서 사용합니다. 납땜 없이 자유롭게 회로를 구성 할 수 있습니다.

Step 1. LED 점멸

Step 2. PWM을 이용하여 밝기 바꾸기

Step 3. 애노드 캐소드 이해

Chapter 03

LED 사용해보기

LED 점멸

LED

- 전류가 흐르면 빛이난다. (전류가 셀수록 빛이 밝아진다.)
- 핀 극성에 주의
- 정격
 - 약 0.1W = 5V * 0.02A (5V인가 시 20mA가 최대)
 - 정격을 지키기 위해 저항으로 조절한다. (R = V / I이므로 최소 250옴이상의 저항이 필요하다.)
 - 정격을 지키지 않으면 타게된다.

LED 점멸

저항(Resistor)

• 띠 색깔로 저항 크기 표시

Resistor Identification

Color	1 st Band	2 nd Band	3 rd Band	Multiplier	Tolerance
Black	0	0	0	x 1 Ω	
Brown	1	1	1	x 10 Ω	+/- 1%
Red	2	2	2	x 100 Ω	+/- 2%
Orange	3	3	3	x 1K Ω	
Yellow	4	4	4	x 10K Ω	
Green	5	5	5	× 100K Ω	+/5%
Blue	6	6	6	x 1M Ω	+/25%
Violet	7	7	7	x 10M Ω	+/1%
Grey	8	8	8		+/05%
White	9	9	9		
Gold				x .1 Ω	+/- 5%
Silver				x .01 Ω	+/- 10%

Al3malka com

LED 점멸

아두이노 디지털 출력

- 디지털 핀 사용
 - D2 ~ D13까지 12개 사용 가능
- 출력 핀으로 설정
 - 입력과 출력 공용
- 디지털 제어
 - 5V 혹은 0V 상태 제어 가능

LED 점멸

LED 회로 구현

LED 점멸

LED 깜박이기

디지털 신호만들기

LED 점멸

setup / loop

- setup
 - 보드에 전원이 켜지면 한번만 실행
 - 초기화관련 코드 구현
- loop
 - setup실행 이후에 반복적으로 실행
 - 반복적으로 수행할 코드 구현

LED 점멸

pinMode

- 아두이노 디지털 핀의 출력 혹은 입력으로 용도 결정
- C언어 문법
 - void pinMode(int pin, int mode);
 - 반환값 없음, 인자 2개
- 사용방법
 - pin: 아두이노 디지털 핀 번호
 - mode: 출력 혹은 입력으로 사용할 지 여부
 - OUTPUT: 출력핀으로 설정
 - INPUT: 입력핀으로 설정
 - INPUT_PULLUP: 내부 풀업 입력핀으로 설정
 - 예) pinMode(3, OUTPUT); // 3번 핀을 출력으로 설정

LED 점멸

digitalWrite

- 아두이노 디지털 핀의 출력 상태 제어
- C언어 문법
 - void digitalWrite(int pin, int state);
 - 반환값 없음, 인자 2개
- 사용방법
 - pin: 아두이노 디지털 핀 번호
 - state: 출력 핀의 상태
 - HIGH: 5V 상태
 - LOW: 0V 상태
 - 예) digitalWrite(3, LOW); // 3번 핀을 0V로 제어

Chapter 03

LED 사용해보기

LED 점멸

delay

- 지정한 시간동안 프로그램이 멈춤
- C언어 문법
 - void delay(unsigned long ms);
 - 반환값 없음, 인자 1개
- 사용방법
 - ms: 멈출 시간, millisecond(1/1000초) 단위
 - 예) delay(1000); // 1000ms = 1sec 초 동안 멈춤

LED 점멸

C언어 변수 타입별 사용 수 범위

타입	크기 (Byte)	수 범위	
char	1	-128 ~ 127	
unsigned char	1	0 ~ 255	
int	2	-32768 ~ 32767	
unsigned int	2	0 ~ 65535	
long	4	-2147483648 ~ 2147483647	
unsigned long	4	0 ~ 4294967295	
float	4	1.2E-38 ~ 3.4E+38	

```
Chapter 03 LED 사용해보기
```

LED 점멸

LED Blink 소스코딩

```
#define LED_PIN 2
#define HIGH_TIME 1000 //msec
#define LOW_TIME 1000 //msec

void setup()
{
   pinMode(LED_PIN, OUTPUT);
}

void loop()
{
   digitalWrite(LED_PIN, HIGH);
   delay(HIGH_TIME);

   digitalWrite(LED_PIN, LOW);
   delay(LOW_TIME);
}
```

PWM을 이용하여 밝기 바꾸기

LED 부드럽게 깜박이기

• 아날로그 신호만들기

PWM을 이용하여 밝기 바꾸기

PWM 신호

- 디지털 신호로 아날로그 신호를 만드는 기법
- PWM(Pulse Width Modulation)
 - 펄스 폭에 정보를 싣는 신호

PWM을 이용하여 밝기 바꾸기

아두이노 PWM 핀

- ~표시 핀
 - Uno보드의 경우 6개
 (3, 5, 6, 9, 10, 11번 핀)

PWM을 이용하여 밝기 바꾸기

LED Analog 제어 회로 구현

Chapter 03

LED 사용해보기

PWM을 이용하여 밝기 바꾸기

analogWrite

- 아두이노 PWM 출력 상태 제어
- C언어 문법
 - void analogWrite(int pin, int value);
 - 반환값 없음, 인자 2개
- 사용방법
 - pin: 아두이노 PWM 핀 번호
 - value: PWM의 펄스 폭 (0 ~ 255)
 - 예) analogWrite(3, 50); // PWM 3번 핀을 약 20%로 제어

PWM을 이용하여 밝기 바꾸기

C언어 For 반복문

• 지정한 수만큼 반복한다.

```
for (int i=0; i<255; i++)
{
    // 반복할 코드
}
```

PWM을 이용하여 밝기 바꾸기

LED Analog 제어 소스코딩

```
#define LED PIN 3
#define HIGH_TIME 500 //msec
#define LOW_TIME 500 //msec
#define STEP TIME 10 //msec
void setup()
 pinMode(LED_PIN, OUTPUT);
void loop()
 for(int i=0; i<256; i++)
  analogWrite(LED_PIN, i);
  delay(STEP_TIME);
 digitalWrite(LED_PIN, HIGH);
 delay(HIGH_TIME);
```

```
for(int i=0; i<255; i++)
{
    analogWrite(LED_PIN, 255 - i);
    delay(STEP_TIME);
}

digitalWrite(LED_PIN, LOW);
    delay(LOW_TIME);
}</pre>
```

Chapter 03 LED 사용해보기

애노드 캐소드 이해

애노드 캐소드 알아보기

- Anode : (+)국으로 전자를 방출하거나 산화(oxidation) 반응이 일어나는 전극
 - 양극이 모두 묶여 한꺼번에 전원을 주면 반대방향의 캐소드에 MCU포트가 물려 LOW신호를 주면 동작하는 방식
- Cathod : (-)극으로 전자가 들어오거나 환원(reduction) 반응이 일어나는 전극
 - 음극이 모두 묶여 그라운드로 향하게 되는데 MCU에서 HIGH신호를 주면 동작하는 방식
- * 키트에서 RGB LED는 애노드 방식이며, 단색 LED는 캐소드 방식이다.

애노드 캐소드 이해

RGB LED 회로 구현

Chapter 03 LED 사용해보기

애노드 캐소드 이해

RGB LED 소스코딩

```
#define LED R PIN 11
#define LED_G_PIN 10
#define LED_B_PIN 9
#define TIME 500 //msec
void setup()
  pinMode(LED R PIN, OUTPUT);
  pinMode(LED G PIN, OUTPUT);
  pinMode(LED B PIN, OUTPUT);
void loop()
  digitalWrite(LED R PIN, LOW);
  digitalWrite(LED_G_PIN, HIGH);
  digitalWrite(LED B PIN, HIGH);
  delay(TIME);
```

```
digitalWrite(LED R PIN, HIGH);
digitalWrite(LED_G_PIN, LOW);
digitalWrite(LED_B_PIN, HIGH);
delay(TIME);
digitalWrite(LED R PIN, HIGH);
digitalWrite(LED G PIN, HIGH);
digitalWrite(LED B PIN, LOW);
delay(TIME);
digitalWrite(LED R PIN, LOW);
digitalWrite(LED G PIN, LOW);
digitalWrite(LED_B_PIN, LOW);
delay(TIME);
digitalWrite(LED R PIN, HIGH);
digitalWrite(LED_G_PIN, HIGH);
digitalWrite(LED_B_PIN, HIGH);
delay(TIME);
```


Chapter 04 스위치 사용해보기

Step 1. 택트 스위치 사용해보기

Step 2 . 슬라이드 스위치 사용해보기

스위치 사용해보기

택트 스위치 사용해보기

택트 스위치

- 손으로 회로를 차단시키거나 연결시킬 수 있는 부품
- 핀 극성은 없다.
- 정격
 - 고려하지 않아도 됨

택트 스위치 사용해보기

풀업 / 풀다운 회로

- Button의 경우 누르지 않았을 때 회로가 끊어진 상태이다.
- 이때의 전압은 애매한 크기를 가지기에 알 수가 없다.
- 이를 해결해주는 것이 풀업 / 풀다운 회로이다.
 - 풀업(Pull-up): 애매한 전압을 5V로 만들어 줌
 - 안 누름: 5V
 - 누름: 0V
 - 풀다운(Pull-down): 애매한 전압을 0V로 만들어 줃
 - 안 누름: 0V
 - 누름: 5V

Chapter 04 스위치 사용해보기

택트 스위치 사용해보기

Button Pull-down 회로 구현 (테스트를 위해 LED 회로 추가)

택트 스위치 사용해보기

pinMode

- 아두이노 디지털 핀의 출력 혹은 입력으로 용도 결정
- C언어 문법
 - void pinMode(int pin, int mode);
 - 반환값 없음, 인자 2개
- 사용방법
 - pin: 아두이노 디지털 핀 번호
 - mode: 출력 혹은 입력으로 사용할 지 여부
 - OUTPUT: 출력핀으로 설정
 - INPUT: 입력핀으로 설정
 - INPUT_PULLUP: 내부 풀업 입력핀으로 설정
 - 예) pinMode(3, OUTPUT); // 3번 핀을 출력으로 설정

택트 스위치 사용해보기

digitalRead

- 아두이노 디지털 핀의 입력 상태 확인
- C언어 문법
 - int digitalRead(int pin);
 - 반환값 있음, 인자 1개
- 사용방법
 - pin: 아두이노 디지털 핀 번호
 - 반환값 : 입력 핀의 상태
 - HIGH: 5V 상태
 - LOW: 0V 상태
 - 예) int state = digitalRead(3); // 3번 핀의 상태를 state 변수에 저장

스위치 사용해보기

택트 스위치 사용해보기

Button으로 LED 제어 (Pull-down방식)

- 버튼이 눌리면 LED 켜기
 - 버튼의 상태가 5V이면 LED 출력 5V
- 버튼이 안 눌리면 LED 끄기
 - 버튼의 상태가 0V이면 LED 출력 0V

택트 스위치 사용해보기

C언어 if 조건문

- 조건에 맞으면 실행한다.
- if / else if / else 순으로 사용
 - if : 처음 조건이 맞다면 (필수 사용)
 - else if : 그 다음 조건이 맞다면
 (선택적 사용, 여러 개 사용 가능)
 - else : 앞의 조건들이 안 맞는다면 (선택적 사용)

```
if (a == 1)
{
    // a가 1이면 실행할 코드
}
else if (a == 2)
{
    // a가 2이면 실행할 코드
}
else if (a == 3)
{
    // a가 3이면 실행할 코드
}
else
{
    // a가 나머지 값이면 실행할 코드
}
```

스위치 사용해보기

택트 스위치 사용해보기

Button으로 LED 제어 소스코딩(Pull-down방식)

```
#define LED_PIN 2
#define BUTTON_PIN 3

void setup()
{
   pinMode(LED_PIN, OUTPUT);
   pinMode(BUTTON_PIN, INPUT);
}

void loop()
{
   if(digitalRead(BUTTON_PIN) == HIGH)
      digitalWrite(LED_PIN, HIGH);
   else
      digitalWrite(LED_PIN, LOW);
}
```

Chapter 04 스위치 사용해보기

택트 스위치 사용해보기

Button Pull-down을 Pull-up으로 회로 수정

스위치 사용해보기

택트 스위치 사용해보기

Button으로 LED 제어 (Pull-up방식)

- 버튼이 눌리면 LED 켜기
 - 버튼의 상태가 0V이면 LED 출력 5V
- 버튼이 안 눌리면 LED 끄기
 - 버튼의 상태가 5V이면 LED 출력 0V

Chapter 04 스

스위치 사용해보기

택트 스위치 사용해보기

Button으로 LED 제어 소스코딩(Pull-up방식)

```
#define LED_PIN 2
#define BUTTON_PIN 3

void setup()
{
   pinMode(LED_PIN, OUTPUT);
   pinMode(BUTTON_PIN, INPUT);
}

void loop()
{
   if(digitalRead(BUTTON_PIN) == LOW)
      digitalWrite(LED_PIN, HIGH);
   else
      digitalWrite(LED_PIN, LOW);
}
```

택트 스위치 사용해보기

내부 풀업

- 아두이노 보드는 풀업 회로가 내장되어 있다.
- pinMode 설정 시 INPUT_PULLUP 모드로 사용

Chapter 04 스위치 사용해보기

택트 스위치 사용해보기

Button Pull-up회로를 내부 Pull-up 회로로 수정

스위치 사용해보기

택트 스위치 사용해보기

토글(Toggle) 제어

- 2가지 상태를 번갈아가며 제어하는 방식
 - 참이면 거짓으로 거짓이면 참으로 바꿈
- 버튼을 누를때마다 LED ON/OFF 제어

Chapter 04 스위치 사용해보기

택트 스위치 사용해보기

에지(Edge) 입력

- 버튼 누름 상태가 아닌 누르거나 뗄 때를 체크하는 것
 - Button Down: 누르는 순간
 - Button Up: 떼는 순간

Chapter 04 스위치 사용해보기

택트 스위치 사용해보기

Button으로 LED 토글 방식 제어

```
#define LED_PIN 2
#define BUTTON_PIN 3

int led_state = LOW;
int pre_button_state = HIGH;

void setup()
{
   pinMode(LED_PIN, OUTPUT);
   pinMode(BUTTON_PIN, INPUT_PULLUP);
}

void loop()
{
   int button_state = digitalRead(BUTTON_PIN);
```

```
if(button_state != pre_button_state)
{
   if(button_state == LOW &&
      pre_button_state == HIGH) // Rising Edge
   {
      if(led_state == LOW) led_state = HIGH;
      else led_state = LOW;
    }
      pre_button_state = button_state;
}
digitalWrite(LED_PIN, led_state);
}
```

스위치 사용해보기

슬라이드 스위치 사용해보기

슬라이드 스위치

- 정적인 성질을 가짐
- 전원 스위치용으로 많이 사용됨

Chapter 04 스위치 사용해보기

슬라이드 스위치 사용해보기

슬라이드 스위치 회로구현(테스트를 위해 LED 회로 추가)

스위치 사용해보기

슬라이드 스위치 사용해보기

슬라이드 스위치 소스코딩

```
#define LED PIN
#define BUTTON_PIN 3
void setup()
  pinMode(LED_PIN, OUTPUT);
  pinMode(BUTTON_PIN, INPUT);
void loop()
  int button_state = digitalRead(BUTTON_PIN);
  if (button_state == HIGH) {
     digitalWrite(LED_PIN, HIGH);
  else {
      digitalWrite(LED_PIN, LOW);
```


Chapter 05 피에조 부저 사용해보기

Step 1. 피에조 부저를 사용하여 노래 만들기

피에조 부저를 사용하여 노래 만들기

피에조 부저 (piezo buzzer)

- 전기적 신호를 소리로 바꾸는 전자 소자
- 정격
 - 정격 전압: 4 ~ 6V
 - 정격 전류: 40mA
 - 5V 입력 시 125옴 이상 사용

피에조 부저 사용해보기

피에조 부저를 사용하여 노래 만들기

버저 제어 방법

- 전기적 신호의 주파수에 따라 음의 높낮이 제어
 - 저주파: 낮은 음
 - 고주파: 높은 음
 - 기본 '라' 음이 440Hz

피에조 부저 사용해보기

피에조 부저를 사용하여 노래 만들기

아두이노 Tone라이브러리 사용

- 버저를 쉽게 사용할 수 있도록 라이브러리가 만들어져 있다.
- Tone 함수 호출
 - tone: 아두이노 핀에 음계 주파수를 출력함
 - noTone: 주파수 출력 멈춤

피에조 부저를 사용하여 노래 만들기

tone

- 아두이노 핀에 음계 주파수 출력
- C언어 문법
 - void tone(int pin, unsigned int frequency);
 - 반환값 없음, 인자 2개
- 사용방법
 - pin: 아두이노 핀 번호
 - frequency: 음계 주파수
 - 예) tone(3, 440); // 3번 핀에 440Hz 주파수 출력

피에조 부저 사용해보기

피에조 부저를 사용하여 노래 만들기

음계표

(단위 : Hz)

· • • • • •								
옥타브 음계	1	2	3	4	5	6	7	8
C(도)	32.7032	65.4064	130.8128	261.6256	523.2511	1046.502	2093.005	4186.009
C#	34.6478	69.2957	138.5913	277.1826	554.3653	1108.731	2217.461	4434.922
D(레)	36.7081	73.4162	146.8324	293.6648	587.3295	1174.659	2349.318	4698.636
D#	38.8909	77.7817	155.5635	311.1270	622.2540	1244.508	2489.016	4978.032
E(n])	41.2034	82.4069	164.8138	329.6276	659.2551	1318.510	2637.020	5274.041
F(파)	43.6535	87.3071	174.6141	349.2282	698.4565	1396.913	2793.826	5587.652
F#	46.2493	92.4986	184.9972	369.9944	739.9888	1479.978	2959.955	5919.911
G(솔)	48.9994	97.9989	195.9977	391.9954	783.9909	1567.982	3135.963	6271.927
G#	51.9130	103.8262	207.6523	415.3047	830.6094	1661.219	3322.438	6644.875
A(라)	55.0000	110.0000	220.0000	440.0000	880.0000	1760.000	3520.000	7040.000
A#	58.2705	116.5409	233.0819	466.1638	932.3275	1864.655	3729.310	7458.620
B(시)	61.7354	123.4708	246.9417	493.8833	987.7666	1975.533	3951.066	7902.133

피에조 부저 사용해보기

피에조 부저를 사용하여 노래 만들기

피에조 부저 회로구현

피에조 부저를 사용하여 노래 만들기 (영상이 어려우면 아래 코드로 연습하세요~^^)

피에조 부저 소스코딩

```
#define BUZZER PIN 11
void setup() {
   pinMode(BUZZER_PIN, OUTPUT);
void loop() {
  //옥타브 = 4
  tone(BUZZER PIN, 262); // 도
  delay(500);
  tone(BUZZER PIN, 277); // 도#
  delay(500);
  tone(BUZZER PIN, 294); //레
  delay(500);
  tone(BUZZER PIN, 311); //레#
  delay(500);
  tone(BUZZER PIN, 330); // I
  delay(500);
  tone(BUZZER_PIN, 349); //파
   delay(500);
```

```
tone(BUZZER_PIN, 370); // 파#
delay(500);
tone(BUZZER_PIN, 392); // 솔
delay(500);
tone(BUZZER_PIN, 415); // 솔#
delay(500);
tone(BUZZER_PIN, 440); //라
delay(500);
tone(BUZZER_PIN, 466); // 라#
delay(500);
tone(BUZZER_PIN, 494); // 시
delay(500);
tone(BUZZER_PIN, 523); //도(옥타브5)
delay(500);
}
```