HOMEWORK 3

JESSE COBB - 2PM SECTION

2.2.1
$$A = \{1, 3, 5, 7, 9\}, B = \{0, 2, 4, 6, 8\},\ C = \{1, 2, 4, 5, 7, 8\}, D = \{1, 2, 3, 5, 6, 7, 8, 9, 10\}\ d. \ A - (B - C) = A - \{0, 6\} = \{1, 3, 5, 7, 9\} = A$$
 f. $A \cup (C \cap D) = A \cup \{1, 2, 5, 7, 8\} = \{1, 2, 3, 5, 7, 8, 9\}$ h. $A \cap (B \cup C) = A \cap \{0, 1, 2, 4, 5, 6, 7, 8\} = \{1, 5, 7\}$
2.2.2 $A = [3, 8), B = [2, 6], C = (1, 4), D = (5, \infty)$ b. $A \cup B = [2, 8]$ d. $A \cap B = [3, 6]$ f. $A - B = (6, 8)$
2.2.5 $A = [3, 8), B = [2, 6], C = (1, 4), D = (5, \infty)$ $C \cap D = \emptyset$ C and D is the only disjoint pair
2.2.6 d. $A \nsubseteq B \cup C, B \nsubseteq A \cup C$, and $C \subseteq A \cup B$ $A = \{1, 4\}, B = \{2, 3\}, C = \{1, 2\}$

- $A = \{1, 4\}, B = \{2, 3\}, C = \{1, 2\}$
- q. Prove if $A \subseteq B$, then $A \cup C \subseteq B \cup C$. 2.2.7

Proof. Assume all elements $x \in A$, and since $A \subseteq B$ then $x \in B$. By the definition of union $x \in A \cup C$ for any set C with the addition of all elements $y \in C - A$. Since $x \in B$ then all $x \in B \cup C$ and all $y \in C$ so all $y \in B \cup C$. Since the elements x and y make up all of $A \cup C$ and $x, y \in B \cup C$ we've proved that $A \cup C \subseteq B \cup C$ if $A \subseteq B$.

h. Prove $(A \cap B)^c = A^c \cup B^c$. 2.2.8

Proof.

$$x \in (A \cap B)^{c} \iff x \notin A \cap B \iff x \notin A \text{ or } x \notin B \iff x \in A^{c} \text{ or } x \in B^{c} \iff x \in A^{c} \cup B^{c}$$

Since the last statement is true, so are all previous statements. $(A \cap B)^c$ if and only if $A^c \cup B^c$.

- 2.2.9 b. Proof. Assume for all $x \in A$ and $A \subseteq B \cup C$ and $A \cap B = \emptyset$, which implies $x \in B \cup C$ and $x \notin B$. Since $x \notin B$ and x is in the union of $B \cup C$ this implies $x \in C$. Thus we've proved that $A \subseteq C$ if $A \subseteq B \cup C$ and $A \cap B = \emptyset$.
- 2.2.10 a. Proof. Assume $x \in C$, $y \in D$, $C \subseteq A$, and $D \subseteq B$. This implies $x \in A$ and $y \in B$. By definition of intersection $z \in C \cap D$ where z = x = y. $z \in A \cap B$ since $x \in A$ and $y \in B$. Thus we've proved that $C \cap D \subseteq A \cap B$.

- d. Proof. Assume $x \in C$, $y \in D$, $C \subseteq A$, and $D \subseteq B$. This implies $x \in A$ and $y \in B$. D-A includes all elements y that are not elements of A which includes elements x. B-C includes all elements y that are not in C which is only elements x. In summary B-C includes y, not x, and any elements $z \in B - D$. While D - A includes only y, not x, and not $w \in A - C$. Thus we've proved $D - A \subseteq B - C$ if $C \subseteq A$ and $D \subseteq B$.
- b. Statement: if $A \cap C \subseteq B \cap C$ then $A \subseteq C$ 2.2.11Counterexample: $A = \{4\}, B = \emptyset, C = \emptyset$
 - f. Statement: A (B C) = (A B) CCounterexample: $A = \{4, 13\}, B = \emptyset, C = \{4\}$
- 2.2.13 a. $A = \{1, 3, 4\}, B = \{a, e, k, n, r\}$ $A \times B = \{(1, a), (1, e), (1, k), (1, n), (1, r)\}$ (3, a), (3, e), (3, k), (3, n), (3, r)(5, a), (5, e), (5, k), (5, n), (5, r) $B \times A = \{(a, 1), (a, 3), (a, 5), (e, 1), (e, 3), (e, 5)\}$ (k,1), (k,3), (k,5), (n,1), (n,3), (n,5)(r,1),(r,3),(r,5)
- b. Proof. Seeking a contradiction, assume $A \times \emptyset \neq \emptyset$. Assuming this there 2.2.15must be at least one element $x \in A \times \emptyset$. Which implies the existence of the ordered pair (a, b) where $a \in A$ and $b \in \emptyset$, though this is a contradiction as there can be no $b \in \emptyset$. Thus we've proved by contradiction that $A \times \emptyset =$
- 2.2.16 a. $(A \times B) \cup (C \times D) \neq (A \cup B) \times (C \cup D)$ $A = \{1\}, B = \{2\}, C = \{3\}, D = \{4\}$
- b. $\mathscr{A} = \{\{1,3,5\}, \{2,4,6\}, \{7,9,11,13\}, \{8,10\}\}$ $\bigcup_{A \in \mathscr{A}} A = \{n \in \mathbb{N} : n \le 13\} \qquad \bigcap_{A \in \mathscr{A}} A = \varnothing$ h. $\mathscr{A} = \{A_r = [-\pi,r) : r \in (0,\infty)\}$ $\bigcup_{A \in \mathscr{A}} A = [-\pi,\infty) \qquad \bigcap_{A \in \mathscr{A}} A = [-\pi,0]$ l. $\mathscr{C} = \{C_n = [n,n+1) : n \in \mathbb{Z}\}$ $\bigcup_{C \in \mathscr{C}} C = (-\infty,\infty) \qquad \bigcap_{C \in \mathscr{C}} C = \varnothing$ m. $\mathscr{A} = \{A_n = (n,n+1) : n \in \mathbb{Z}\}$ $\bigcup_{A \in \mathscr{A}} C = \varnothing$ b. $\mathscr{A} = \{\{1,3,5\},\{2,4,6\},\{7,9,11,13\},\{8,10,12\}\}$ 2.3.1

 - $\bigcup_{A \in \mathscr{A}} A = \{x \in \mathbb{R} : x \notin \mathbb{Z}\} \qquad \bigcap_{A \in \mathscr{A}} A = \varnothing$ $\text{n. } \mathscr{D} = \{D_n = (-n, \frac{1}{n}) : n \in \mathbb{N}\}$
 - $\bigcup_{D \in \mathscr{D}} D = (-\infty, 1) \qquad \bigcap_{D \in \mathscr{D}} D = (-1, 0]$
- b. Pairwise Disjoint 2.3.2
 - h. Not Pairwise Disjoint
 - 1. Pairwise Disjoint
 - m. Pairwise Disjoint
 - n. Not Pairwise Disjoint
- 2.3.3 a. For every set B in the family \mathscr{A} , $B \subseteq \bigcup_{A \in \mathscr{A}} A$.

Proof. Let $B \in \mathcal{A}$ and $x \in B$. Since $B \in \mathcal{A}$, by the definition of union $x \in \bigcup_{A \in \mathscr{A}} A$. Thus we've proved $B \subseteq \bigcup_{A \in \mathscr{A}} A$ if $B \in \mathscr{A}$.

b. If $A \subseteq B$ for all $A \in \mathcal{A}$, then $\bigcup_{A \in \mathcal{A}} A \subseteq B$.

Proof. Let $A \subseteq B$ for any set $A \in \mathscr{A}$. If $x \in \bigcup_{A \in \mathscr{A}} A$ then $x \in B$. Thus we've proved that $\bigcup_{A \in \mathscr{A}} A \subseteq B$ if $A \subseteq B$ for all $A \in \mathscr{A}$.

- $2.3.12 \ X = \{1, 2, 3, 4, \dots 20\}$ a. $\bigcup_{\substack{A\in\mathcal{A}\\ \mathscr{A}=\{\{1\},X\}}} A=X \qquad \bigcap_{\substack{A\in\mathcal{A}}} A=\{1\}$
 - b. B = X 4 disjoint subsets of X $\mathcal{B} = \{\{1, 2, 3, 4, 5\}, \{6, 7, 8, 9, 10\}, \{11, 12, 13, 14, 15\}, \{16, 17, 18, 19, 20\}\}$
 - c. C = X 20 disjoint subsets of X $\mathcal{C} \in \mathcal{C}$ $\mathcal{C} = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}, \{8\}, \{9\}, \{10\},$ $\{11\}, \{12\}, \{13\}, \{14\}, \{15\}, \{16\}, \{17\}, \{18\}, \{19\}, \{20\}\}$
- 2.3.16 $\mathscr{A} = \{A_i : i \in \mathbb{N}\} \quad k, m \in \mathbb{N} \quad k \leq m$ $d. \bigcap_{i=1}^{\infty} A_i \subseteq \bigcap_{i=k}^{m} A_i$

Proof. Let $x \in \bigcap_{i=1}^{\infty} A_i$ which implies $x \in A_i$ for any $A_i \in \mathscr{A}$. This implies that $x \in \bigcap_{i=k}^{m} A_i$ since $k \ge 1$ and $m < \infty$. Thus we've proved that $\bigcap_{i=1}^{\infty} A_i \subseteq \bigcap_{i=k}^{m} A_i$ if $\mathscr{A} = \{A_i : i \in \mathbb{N}\}$, and $k, m \in \mathbb{N}$, and $k \le m$.

- 2.3.18 Nested family $\mathscr{A} = \{A_i : i \in \mathbb{N}\}\$
 - b. $\bigcap_{i=1}^{\infty} A_i = (-\infty, 1] \Longrightarrow A_i = (-\infty, 1 + \frac{1}{i})$ d. $\bigcap_{i=1}^{\infty} A_i = \varnothing \Longrightarrow A_i = (0, \frac{1}{n})$
- b. *Proof.* We'll prove the claim using mathematical induction. First note that when n = 1 that $3 = 4(1)^2 - 1$ is true, which proves the base case holds. Next assume $3+11+19+\dots(8n-5)=4n^2-n$ for all $n\in\mathbb{N}$. Then $3+11+19+\dots(8n-5)+(8(n+1)-5)=4n^2-n+(8(n+1)-5)$ by the inductive hypothesis. This implies $4n^2 - n + (8(n+1) - 5) =$ $4n^{2} + 7n + 3 = 4(n+1)^{2} - (n+1)$ so the statement works for the n+1case. Thus we've proved by the Principle of Mathematical Induction, that $3 + 11 + 19 + \dots (8n - 5) = 4n^2 - n$ for all natural numbers n.
 - c. Proof. We'll prove the claim using mathematical induction. First note that when n=1 that $\sum_{i=1}^{n} 2^i = 2^{n+1} 2 \implies 2^1 = 2^2 2$ which proves the base case holds. Now assume $\sum_{i=1}^{n} 2^i = 2^{n+1} 2$ for all natural numbers n. Then $\sum_{i=1}^{n} 2^i + 2^{n+1} = 2^{n+1} 2 + 2^{n+1}$ by the inductive hypothesis. Thus $2^{n+1} - 2 + 2^{n+1} = 2 \cdot 2^{n+1} - 2 = 2^{(n+1)+1} - 2$ which proves that the n+1 case is true. Thus we've proved, by the Principle of Mathematical Induction, that $\sum_{i=1}^{n} 2^i = 2^{n+1} - 2$ for all $n \in \mathbb{N}$.
 - d. Proof. We'll prove the claim using mathematical induction. First note that when n = 1 that $1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \dots + n! = (n+1)! - 1 \implies 1 \cdot 1! = 2! - 1$ so the base case holds. Now assume $1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \dots + n \cdot n! = (n+1)! - 1$ for all $n \in \mathbb{N}$. Then $1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \dots + n! + (n+1) \cdot (n+1)$ $1)! = (n+1)! - 1 + (n+1) \cdot (n+1)!$ by the induction hypothesis. Then $(n+1)! - 1 + (n+1) \cdot (n+1)! = (n+2)(n+1)! - 1 = (n+2)! - 1$ which proves the n+1 case. Thus we've proved, by the Principle of Mathematical

Induction, that $1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \dots + n! = (n+1)! - 1$ for all natural numbers n.

e. Proof. We'll prove the claim using mathematical induction. First note that when n=1 that $1^3+2^3+3^3+\dots n^3=[\frac{n(n+1)}{2}]^2 \implies 1^3=[\frac{2}{2}]^2$ which proves the base case is true. Now assume $1^3+2^3+3^3+\dots n^3=[\frac{n(n+1)}{2}]^2$ for all $n\in\mathbb{N}$. Then $1^3+2^3+3^3+\dots n^3+(n+1)^3=[\frac{n(n+1)}{2}]^2+(n+1)^3$ by the induction hypothesis. Then:

$$\left[\frac{n(n+1)}{2}\right]^{2} + (n+1)^{3} = \frac{(n(n+1))^{2} + 4(n+1)^{3}}{4}$$

$$= \frac{n^{2}(n+1)^{2} + 4(n+1)(n+1)^{2}}{4}$$

$$= \frac{(n+1)^{2}(n^{2} + 4n + 4)}{4}$$

$$= \frac{(n+1)^{2}(n+2)^{2}}{4}$$

$$= \left[\frac{(n+1)(n+2)}{2}\right]^{2}$$

which proves the n+1 case. Thus we've proved, by the Principle of Mathematical Induction, that $1^3+2^3+3^3+\dots n^3=[\frac{n(n+1)}{2}]^2$ for all natural numbers n.

- 2.4.5 a. Proof. We'll prove the claim using mathematical induction. First note that when n=1 that $3\mid n^3+5n+6\implies 3\mid 1^3+5(1)+6$ which is true since $1^3+5(1)+6=12=3(4)$ where $4\in\mathbb{Z}$ which proves the base case. Now assume $3\mid n^3+5n+6$ which implies $n^3+5n+6=3k$ for $n\in\mathbb{N}$ and $k\in\mathbb{Z}$. Then $(n+1)^3+5(n+1)+6=n^3+3n^2+8n+12=(n^3+5n+6)+3n^2+3n+6=3k+3n^2+3n+6$ by the induction hypothesis. Then $3k+3n^2+3n+6=3(k+n^2+n+2)=3j$ where $j=k+n^2+n+2$ is an integer. This proves that the n+1 case is true. Thus we've proved, by the Principle of Mathematical Induction, that $3\mid n^3+5n+6$ for all natural numbers n.
 - j. Proof. We'll prove the claim using mathematical induction. First note that when n=1 that $3^n \geq 1+2^n \implies 3^1 \geq 1+2^n$ which proves the base case. Now assume $3^n \geq 1+2^n$ for all natural numbers n. Then $3^{n+1}=3\cdot 3^n \geq 3(1+2^n)$ by the induction hypothesis. Then $3(1+2^n)=(1+2^n)+(1+2^n)+(1+2^n)=3+2^n+2\cdot 2^n=3+2^n+2^{n+1}>1+2^{n+1}$ which implies that $3^{n+1} \geq 1+2^{n+1}$ which proves the n+1 case. Thus we've proved, by the Principle of Mathematical Induction, that $3^n \geq 1+2^n$ for all natural numbers n.
 - q. Proof. We'll prove the claim using mathematical induction. First note that when n=1 that |A|=1 so that $A=\{a\}$, then the power set $\mathscr{P}(A)=\{\varnothing,\{a\}\}$ which implies $|\mathscr{P}(A)|=2$ which proves the base case true as $|\mathscr{P}(A)|=2^{|A|}=2$. Now assume that if |A|=n then $|\mathscr{P}(A)|=2^n$ for all natural numbers n. Now let the set B have n+1 elements where there exists an element $x\in B$ but $x\notin A$. Then $\mathscr{P}(B)$ has 2^n elements excluding x and 2^n elements including x by the inductive hypothesis, so $|\mathscr{P}(B)|=2\cdot 2^n=2^{n+1}$, so we've proved the n+1 case. Thus we've proved,

by the Principle of Mathematical Induction, that $\mathscr{P}(A)$ has 2^n elements if A has n elements for all $n \in \mathbb{N}$.

2.4.6 c. *Proof.* We'll prove the claim using mathematical induction. First note that when n=5 that $(n+1)!>2^{n+3} \implies 6!>2^8$ which is true since 720>256 thus proving the base case. Now assume $(n+1)!>2^{n+3}$ for all natural numbers n>5. Then:

$$(n+2)! = (n+2)(n+1)!$$

> $(n+2)2^{n+3}$
> $2 \cdot 2^{n+3}$
= 2^{n+4}

which proves $(n+2)! > 2^{n+4}$ by the induction hypothesis, proving the n+1 case true. Thus we've proved, by the Principle of Mathematical Induction, that $(n+1)! > 2^{n+3}$ for all natural numbers $n \ge 5$.

e. Proof. We'll prove the claim using mathematical induction. First note that when n=4 that $n!>3n\implies 4!>3(4)$ which is true since 24>12 which proves the base case. Now assume n!>3n for all natural numbers $n\geq 4$. Then:

$$(n+1)! = (n+1)n!$$

> $(n+1)3n$
> $3(n+1)$

which proves (n+1)! > 3(n+1) by the induction hypothesis, proving the n+1 case true. Thus we've proved, by the Principle of Mathematical Induction, that n! > 3n for all natural numbers $n \ge 4$.

2.4.7 a. Proof. We'll prove the claim using mathematical induction. First note that when n=1 that $(\bigcap_{i=1}^n A_i)^c = \bigcup_{i=1}^n A_i^c \implies (A_i)^c = A_i^c$ which proves the base case. Now assume $(\bigcap_{i=1}^n A_i)^c = \bigcup_{i=1}^n A_i^c$ for all $n \in \mathbb{N}$ where the indexed family $\{A_i : i \in \mathbb{N}\}$ exists. Then:

$$\left(\bigcap_{i=1}^{n+1} A_i\right)^c = \left(\bigcap_{i=1}^n A_i \cap A_{n+1}\right)^c$$

$$= \left(\bigcap_{i=1}^n A_i\right)^c \cup A_{n+1}^c$$

$$= \bigcup_{i=1}^n A_i^c \cup A_{n+1}^c$$

$$= \bigcup_{i=1}^{n+1} A_i^c$$

which proves $(\bigcap_{i=1}^{n+1} A_i)^c = \bigcup_{i=1}^{n+1} A_i^c$ by the induction hypothesis, proving the n+1 case true. Thus we've proved, by the Principle of Mathematical Induction, that $(\bigcap_{i=1}^n A_i)^c = \bigcup_{i=1}^n A_i^c$ for all natural numbers n.

2.4.9 *Proof.* We'll prove the claim using mathematical induction. First note that when n = 1 that 1 point requires $\frac{1^2-1}{2} = 0$ points, which proves the base

- case. Now assume that for n points, with no three collinear points, the amount of line segments to join all of the points is $\frac{n^2-n}{2}$ for all natural numbers n. Then n+1 points requires an additional n points since the new point will have to connect to each n previously existing points. Then n+1 points requires $\frac{n^2-n}{2}+n=\frac{n^2-n+2n}{2}=\frac{(n+1)^2-(n+1)}{2} \text{ points which proves the } n+1 \text{ case by the induction hypothesis.}$ Thus we've proved, by the Principle of Mathematical Induction, that for any natural number n points, where no three points are collinear, they require $\frac{n^2-n}{2}$ line segments to connect all points. \square 2.4.10 *Proof.* We'll prove the claim using mathematical induction. First note that
- 2.4.10 *Proof.* We'll prove the claim using mathematical induction. First note that when n=1 that $2^{(1)}-1=1$ implies that with 1 disc it takes a minimum of 1 move to the disc to another peg without any larger discs ever being on top of a smaller disc. This is true as any possible move will achieve the desired result with a single disc confirming our base case. Now assume that any natural number n of discs can achieve the same result of being stacked in descending size on another peg then its starting position in $f(n)=2^n-1$ moves, this implies the recursive formula of f(n)=2f(n-1)+1 as each additional disc requires 1 additional move to move the new disc and another f(n-1) moves to then move the stack back on top of the new largest disc. Then $f(n+1)=2f(n)+1=2(2^n-1)+1$ by the induction hypothesis. Then $2(2^n-1)+1=2\cdot 2^n-2+1=2^{n+1}-1$ which proves the n+1 case. Thus we've proved, by the Principle of Mathematical Induction, that for any natural number n of disc the discs can all be moved to a new peg (out of three), without ever having a larger disc above a smaller disc, in 2^n-1 moves.
- 2.5.1 a. Proof. We'll prove the claim using complete induction. Suppose $n \geq 11$, then note that 11 = 2(3) + 5(1) and 12 = 2(1) + 5(2) verifying our base cases. Now we'll assume that $n \geq 13$, and that all natural numbers k where $n-1 \geq k \geq 11$ can be written as k=2s+5t for some $s,t \in \mathbb{N}$. We'll demonstrate that the same is true for n. Since $n \geq 13$ then $n-2 \geq 11$, so n-2=2s+5t by assumption. Then n=2s+5t+2=2(s+1)+5t where $s+1,t \in \mathbb{N}$ and the statement is true for n. Thus we've proved, by the Principle of Complete Induction, that any natural number $n \geq 11$ can be written as n=2s+5t for some $s,t \in \mathbb{N}$.
- 2.5.10 *Proof.* Let the set $\mathbb{Z}^- = \{-1, -2, -3...\}$ exist and also allow the set $A \subseteq \mathbb{Z}^-$ to exist. Assume any set A is nonempty, so that $A \neq \emptyset$, so that there exists an element $a \in A$. Now suppose a set B exists where $B = \{-a : a \in A\}$. Since the elements of A are all negative integers the elements of B must be only positive integers meaning $B \subseteq \mathbb{N}$. Since $B \subseteq \mathbb{N}$ we may apply the Well Ordering Principle, since it applies to all subsets of \mathbb{N} , and say that there exists an element b that is the smallest element $b \in B$ where $b \leq -a$. Inversely this implies the existence of a $-b \in A$ where $-b \geq a$. Thus we've proved that any subset A of \mathbb{Z}^- must have a largest element as its inverse $B \subseteq \mathbb{N}$ must have a smallest element, by the Well Ordering Principle.