基于元胞自动机的矿料仓库系统 摘要

摘要

关键词: 元胞自动机 边缘检测 形状匹配

一、问题重述

1.1 问题背景

一些背景

1.2 问题重述

经过分析整理, 我们需要解决以下问题:

- 1. 考虑到
- 2. 在自卸
- 3. 在第二

二、问题分析

2.1 问题一的分析

该问要求我们查阅参考资料,建立战机机动的量化模型。为此考虑根据已知的飞行参数确定对应的战斗机机动行为。一个战斗行为可能来带一系列参数的变化,因此结合多个参数的变化情况来判断动作类型,对于某些复杂动作,可能会有多段变化过程,因此需要结合相邻的两次变化情况进行判断。由于决定飞机飞行动作的参数种类有限,每一种参数也只有集中情况,考虑就飞行参数变化建立决策树,对战斗机的机动行为进行识别。

2.2 问题二的分析

分析题中附件所给数据,得出附件中信息有以下特点:数据冗余、数据缺失和个体多样问题。针对数据冗余问题,需要去除那些不便于利用的数据格式;针对数据缺失问题,需要采用缺失处相邻部分的数据进行填充,考虑到填充过程不应当引入噪声,因此采用 matlab 工具箱中的移动均值方法填补缺失数据;对于数据个体多样问题,由于每个个体的动作分析应当独立进行,且需要分析的个体类型为"Air+FixedWing"且每次战斗不止有一架飞机参与战斗,因此需要使用 id 和类型对时间序列进行分类分析。

在分析数据的基础上,我们还构思了提取飞行参数变化情况的方法。单一飞机一段时间内的飞行数据,可以看作是多维度的时间序列数据。为了分析各个维度的变化状态,尝试使用差分法,但是体现出易受噪声干扰和局部性的特点,不能很好体现出数据的变化趋势。由于以上原因,又改用双滑动窗口法,具有较好的消除噪声和判断趋势的能力。

2.3 问题三的分析

三、模型假设

1. 飞机所记录的飞行参数真实可信,没有因各种因素而导致数据错误。

原因: 动作序列的分割识别工作基于飞行时的各项参数所决定,如果飞行参数有误,那么所计算得出的动作序列将不准确。

2. 十大

原因:

四、名词解释与符号说明

4.1 名词解释

1. 飞行参数

在空战模拟中飞机的时序数据,包含飞机海拔高度,真实空速(TAS),俯仰角,偏航角(Yaw)等指标。每条指标由 id 与 Unix 时间唯一标识。

2. 机动动作

战机在空中飞行过程中,飞机为了某些战术意图而做出的行为。在分析过程中,机动动作是最小的分析单位,不能再进行分割。

4.2 符号说明

以下是本文使用的符号以及含义:

符号	说明	单位
L_0	仓库长度	m

五、模型的建立与求解

以下将对提出的三个问题进行建模求解。

5.1 机动动作描述与量化模型

为了进行空战势态感知,机动决策,意图识别等工作,常常根据需要预先建立空战动作库[?]。常见的空战库设计有两种方法,分别是包含丰富战术动作的典型战术动作库和由美国 NASA 学者 [?] 提出的基本操纵动作库。前者内容丰富,但是前一种方法存在识别困难,对于某些复杂动作可能中断的情况处理不佳,而后一种方式以极限情况操作粗猛,不能保证组合出所有的战术动作。文献 [?] 中提出的机动动作集合兼顾二者的优点,列举了仪表动作,简单特技,复杂特技共三类十二种动作,如表(1)。这一选择兼顾了简单动作与复杂动作,具有飞行动作代表性,易于识别。

表 1: 战斗机的三类机动动作

仪表动作	简单特技	复杂特技	
盘旋	半滚倒转	"S"形急转	
急跃升	十亿国权	3	
俯冲	斤 斗	战斗转弯	
水平匀速直线飞行	月 十	以十わ弓	
水平加速直线飞行	半斤斗翻转	眼镜蛇机动	
水平减速直线飞行	十八十十十	联境 纪 70.40	

下面分别介绍各个动作的战机移动特点,并总结出各个动作的定性判别标准。

1. 盘旋

据有关文献 [?], 盘旋动作时,飞机的航向角一定会发生变化。航向角变化是盘旋的主要特点,根据航向角的变化趋势,还可以将盘旋进一步细分为左盘旋和右盘旋。此外,盘旋还可以被分为各种细类,但是考虑到识别的效率和复杂度,本文中仅考虑水平稳定盘旋,在此过程中,飞机飞行速度和飞行高度俱不变。

2. 急跃升

在急跃升动作中,飞机迅速拉起,以达到躲避敌机和占据有利地位的目的。其飞行参数特点 是提升高度的同时降低了速度。

3. 俯冲

飞机进行俯冲动作时以大角度和高速度下冲,在飞机高度下降过程中飞机的势能转变为机 械能,速度增加。

4. 直线飞行

飞行过程中高度和方位角不发生变化,此时飞机进行直线飞行。根据加速度分为加速、匀速和减速直线飞行三种。

5. 半滚倒转

据参考文献显示[?],半滚倒转是一种常用在脱离空战情况下的机动方式。在进行该动作时,飞机先横滚半圈,再做半个内斤斗,随后在低高度下反方向改平飞出,如图 (1a)。该机动方式迅速改变航向的同时,降低了高度,提升速度,是一种高效的脱离方式。

6. 斤斗

在斤斗过程中,飞机由水平直线飞行过程中拉起机身,在竖直方向上做一个圆周运动,飞机机盖指向圆周内部,如图 (1b)。飞行参数表现为高度先升高后降低,航向角发生两次突变,速度先增后减。

图 1: 部分飞行动作示意图

7. "S" 形急转

飞机在进行"S"形急转时方向变化两次,高度不发生变化。经过该动作后的飞机航向改变。

8. 战术转弯

该动作适用于在俯冲攻击后改出的情况,在拉升的过程中同时改变方向角。在此过程中,高度上升,方向角增加或者减少。

9. 眼镜蛇机动

在敌机紧追我方时使用该动作对敌方进行战术躲避。[?] 该动作上拉机头,导致飞行速度迅速降低,随后机头开始下沉时,加大油门直到飞机转为水平姿态。在整个过程中,飞机的高度基本保持不变,如图(1c)所示。

为了区分各个机动动作,综合上述分析结果,文章还提出各动作的定性评价指标。所列出的十二项动作都可以由五项飞行参数定量确定,机动动作和飞行参数的对应关系如表 2 所示。各个飞行参数同附件数据中对应情况如下:

- 飞行高度这一参数对应附件中的 Altitude 字段, 该字段代表海拔高度, 与 ASL 几乎相同。不 选用地面海拔高度 (AGL) 的原因是指标表示了飞机同地面的高度之差, 飞机进行平飞的时候可能经过变化的地形, 导致飞机与高度变化相关的机动动作识别出现错误。
- 航向角这一飞行参数对应"YAW"字段,又称偏航角,表示飞机相对于正北方向的角度。
- 飞行速度考虑使用真实空速(TAS)字段代表其航行速度。这是参考相关资料 [?] 后得出的决定,在指示空速,真空速和马赫数之间,只有真空速(TAS)代表飞机事实上在空气中的移动速度。
- 对于某些字段的变化速率的趋势问题(如航向角变化速率变大)我们采用二阶差分判断其变化情况。

表 2: 机动动作同飞行参数的定性对应关系

机动动作	飞行高度	飞行高度变化率	 航向角	航向角变化率	飞行速度
左盘旋	保持	保持	变小	保持	保持
 右盘旋	保持	保持	变大	保持	保持
急跃升	升高	先增大后减小	保持	保持	变小
俯冲	降低	先减小后增大	保持	保持	变大
水平匀速	保持	保持	保持	保持	保持
直线飞行	体付				
水平加速	 保持	保持	保持	保持	变大
直线飞行	NC1/1	水 村	水 1寸		文八
水平减速	保持	保持	保持	保持	变小
直线飞行		MIN MIN	N/1/1		
半滚倒转	降低	先减小后增大	突变	突变	变大
斤斗	先升高	先增大后减小	突变	突变	先减小
	后降低				后增大
半斤斗翻转	先升高	先增大后减小	突变	突变	变小
	后保持				
"S"形急转	保持	保持	先减小后增大/	先减小后增大/	保持
			先增大后减小	先增大后减小	
战斗转弯	升高	先增大后减小	变大/变小	先增大后减小	变小
				先减小后增大	
眼镜蛇机动	先升高	先增大后减小	保持	保持	变小
	后保持	ノロ <i>*</i> 日 ノヘノロ が吹/)	W14	N/14	

根据以上信息,我们依据战机一段时间内的飞行参数情况可以判断其动作。我们取这五个飞行参数作为决策节点,构建决策树进行战机行为识别,每次选取使节点不纯度下降最大的决策顶点进行划分,直至所有的飞行参数被用完,或是对应分支下只有一类。根据该方法划分出决策树如下:

PIC

假设战机在 Δt 时间内的飞行参数序列为 $A(h,\dot{h},\theta,\dot{\theta},\nu)$, 其中 h,\dot{h} 分别代表飞行高度和飞行高度变化率, $\theta,\dot{\theta}$ 分别代表航向角及其变化率, ν 代表飞行速度。

七、模型的评价

6.1 模型的优点

1. 采用

6.2 模型的缺点

• 利用较

附件

附件清单:

• xxx 代码

sobel 边缘检测代码

1 function GAdsa