

NOME:

4val

## Tópicos de Física Moderna 3° Teste

## Licenciatura em Engenharia Informática

12 de junho de 2012 - 8h45 Duração - 2h00

| c:                                                                                       | teste é constituído por seis questões. Deve usar o espaço livre nas folhas de teste para apresentar todos os álculos que tem de fazer para responder às questões Q2-c-2, Q3 e Q4. Nas questões Q1 e Q6 quem tiver netade ou mais das respostas erradas a cotação é zero. Cada questão de escolha múltipla só é considerada orreta se forem selecionadas <u>todas</u> as opções corretas que lhe correspondem. |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q1. Das seguintes afirmações assinale as que são verdadeiras (V) e as que são falsas (F) |                                                                                                                                                                                                                                                                                                                                                                                                               |
| F                                                                                        | A interação eletromagnética é responsável por manter o núcleo coeso, uma vez que o núcleo é formado por partículas com carga elétrica.                                                                                                                                                                                                                                                                        |
| ٧                                                                                        | A interação eletromagnética é fundamental para explicar a estrutura atómica e molecular.                                                                                                                                                                                                                                                                                                                      |
| F                                                                                        | A interação eletromagnética é sempre atrativa e de alcance infinito.                                                                                                                                                                                                                                                                                                                                          |
| F                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                               |
| V                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                               |
| ٧                                                                                        | iggr l A interação fraca é a que permite explicar a desintegração radioativa $eta$ .                                                                                                                                                                                                                                                                                                                          |
| F                                                                                        | A interação nuclear forte é sempre atrativa e de alcance infinito.                                                                                                                                                                                                                                                                                                                                            |
| ٧                                                                                        | A interação nuclear forte é sempre atrativa e de muito curto alcance (<10 <sup>-13</sup> cm).                                                                                                                                                                                                                                                                                                                 |
| ٧                                                                                        | A interação gravitacional é sempre atrativa e de alcance infinito.                                                                                                                                                                                                                                                                                                                                            |
| V                                                                                        | As interações fundamentais para perceber o comportamento dos núcleos são a interação nuclear forte e a                                                                                                                                                                                                                                                                                                        |

**3.5val Q2.** Hipoteticamente o nuclídeo radioativo  $^{233}_{93}Np$  pode sofrer desintegração  $\alpha$  ou  $\beta^-$ .

A interação nuclear forte é fundamental para explicar a estrutura atómica. A interação gravitacional é fundamental para explicar a coesão do universo.

m ( $^{233}_{93}Np$ )= 233.040805 u m ( $^{229}_{91}Pa$ )= 229.032085 u m ( $^{233}_{94}Pu$ )= 233.042963 u m $_{\alpha}$  = 4.002603 u m $_{e}$  = 5.4858×10 $^{-4}$  u u = 1.660540×10 $^{-27}$  kg Dados:

a) Escreva a equação que traduz o decaimento  $\alpha$  deste nuclídeo.

$$^{233}_{~93}Np \rightarrow ^{~229}_{~91}Pa + ^{~4}_{~2}He$$

**b)** Escreva a equação que traduz o decaimento  $\beta^-$  deste nuclídeo.

$$^{233}_{93}Np ~\rightarrow ~^{233}_{94}Pu ~+~ \bar{e} ~+~ \bar{\mu}$$

- c) Como sabe as desintegrações radioativas são espontâneas.
- **c-1)** Indique, <u>justificando convenientemente</u>, qual ou quais dos hipotéticos mecanismos de desintegração pode efetivamente ocorrer.

só a desintegração α é espontânea, isto é ocorre com libertação de energia porque

233.040805 u  $c^2$  > (229.032085+4.002603) u  $c^2$ Na desintegração  $\beta$  verifica-se que

233.040805 u c<sup>2</sup> < 233.042963 u c<sup>2</sup>

**c-2)** A energia (Q) libertada na desintegração radioativa identificada em c-1 é:

 $\boxtimes$  Q = 5.706 MeV

 $\Box$  Q = 6.117×10<sup>-3</sup> J

 $\square$  Q = 9.1418×10<sup>-13</sup> eV

 $\triangle$  Q = 5.706×10<sup>6</sup> eV

 $\boxtimes$  Q = 6.117×10<sup>-3</sup> u c<sup>2</sup> (J)

 $\boxtimes$  Q = 9.1418×10<sup>-13</sup> J

 $\Box$  0 = 5.706 eV

**5val Q3.** O tempo de meia vida  $(\tau_{1/2})$  do isótopo radioativo  $^{69}Zn$  é de 56.4 min e verifica-se que a atividade de uma amostra recém preparada deste isótopo é de 1 mCi.

Nota: A atividade é habitualmente expressa em curies (abreviatura Ci) e 1 Ci = 3.7×10<sup>10</sup> des/s

**a)** A constante de desintegração deste nuclídeo ( $k = \ln 2/\tau_{1/2}$ ) é

 $\square$  k = 1.229 ×10<sup>-2</sup> s<sup>-1</sup>

 $\times$  k = 1.229 ×10<sup>-2</sup> min<sup>-1</sup>

 $\square$  k = 1.229 ×10<sup>-2</sup> h<sup>-1</sup>

 $\times$  k = 2.048 ×10<sup>-4</sup> s<sup>-1</sup>

 $\times$  k = 0.7374 h<sup>-1</sup>

**b)** O número ( $N_0$ ) de nuclídeos radioativos presentes na amostra em t=0 é

 $\square$  N<sub>0</sub> = 3.01×10<sup>12</sup>

 $N_0 = 1.806 \times 10^{11}$ 

 $\square$  N<sub>0</sub> = 3.01×10<sup>9</sup>

 $\square$  N<sub>0</sub> = 1.806×10<sup>9</sup>

 $\square$  N<sub>0</sub> = 5.018×10<sup>7</sup>

**c)** A fração (f) de amostra que se mantém radioativa ao fim de duas horas é

 $\Box$  f = 0

 $\boxtimes$  f = 0.2288

 $\Box$  f = 0.4784

 $\Box$  f = 0.1128

**d)** Qual é a atividade inicial de uma segunda amostra (A<sub>0,2</sub>) cujo tempo de meia vida é 20 horas, sabendo que ao fim de duas horas as duas amostras têm a mesma atividade?

 $\triangle$  A<sub>0,2</sub> = 9.074×10<sup>6</sup> des/s

 $\triangle$  A<sub>0.2</sub> = 0.245 mCi

 $\Box$  A<sub>0.2</sub> = 9.074×10<sup>9</sup> des/s

 $\triangle$  A<sub>0,2</sub> = 3.263×10<sup>10</sup> des/h

- **Q4.** Considere um técnico de radiologia, de massa igual a 80 kg, exposto a uma dose elevada de radiação γ (fator de qualidade, Q = 1). O LMP (limite máximo permissível) recomendado é de 500 mSv/ano. O técnico realiza, em média, 3500 exames por ano e em cada exame são absorvidos cerca de 8×10<sup>15</sup> eV. O coeficiente de absorção desta radiação pelos tecidos vivos é de 0.07 cm<sup>-1</sup>.
  - **a)** A espessura da camada semi-redutora  $(x_{1/2})$  (espessura do material absorvente que reduz a metade a intensidade da radiação incidente) é

 $x_{1/2} = 9.9 \text{ cm}$ 

 $X_{1/2} = 0.099 \text{ m}$ 

**b)** A dose equivalente (H) a que está sujeito é:

 $\blacksquare$  H = 5.6×10<sup>-2</sup> Sv/ano

maior do que a LMP

 $\blacksquare$  H = 56 mSv/ano

 $\Box$  H = 5.6×10<sup>-2</sup> mSv/ano

 $\square$  H = 3.5 mSv/ano

1.5val Q5. Complete as seguintes reações nucleares:

**a)** 
$${}^{39}_{19}K + {}^{2}_{1}d \rightarrow {}^{40}_{19}K + {}^{1}_{1}p$$

**b)** 
$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{141}_{56}Ba + ^{92}_{36}Kr + 3^{1}_{0}n$$

c) 
$${}_{1}^{2}d + {}_{1}^{3}t \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$$

4val Q6. Das seguintes afirmações assinale as que são verdadeiras (V) e as que são falsas (F)

- V Quer os bariões quer os mesões são partículas compostas formadas por partículas elementares do grupo dos quarks e genericamente designadas por hadrões.
- **V** Os neutrões e os protões são partículas compostas por três quarks e pertencem ao grupo dos bariões.
- F Todas as partículas elementares têm spin 1/2.
- $\left( oldsymbol{v} 
  ight)$  Todas as partículas elementares pertencentes ao grupo dos fermiões têm spin 1/2.
- F A principal diferença entre os quarks e os leptões está no spin.
- V Uma diferença entre os quarks e os leptões é que nos primeiros a carga elétrica é uma fração da carga elementar e nos segundos e carga elétrica é nula ou um múltiplo inteiro de *e*.
- **F** Os mesões são partículas elementares.
- F Os mesões são partículas compostas formadas por três quarks.
- V O eletrão é uma partícula elementar do grupo dos leptões.
- ( F ) O protão, o neutrão e o eletrão pertencem ao grupo dos leptões.
- $oxed{v}$  Os leptões têm spin 1/2 e carga elétrica nula ou um múltiplo inteiro de e
- **V** Os neutrinos pertencem ao grupo dos leptões