Reg.No: 210701281

Exp.No: 7

IMPLEMENT LINEAR AND LOGISTIC REGRESSION

AIM:

To write an R code to implement linear and logistic regression.

PROCEDURE:

- 1. Create sample data for heights and weights, fit a linear regression model, and plot the data with the regression line.
- 2. Use the sample data to create a data frame for the regression model.
- 3. Fit the linear regression model using the 'lm()' function and display the summary.
- 4. Plot the data points and add the regression line using the 'plot()' and 'abline()' functions.
- 5. Load the 'mtcars' dataset, convert the 'am' variable to a factor, fit a logistic regression model using the 'glm()' function, and plot the probabilities.

PROGRAM CODE:

a)Linear regression

```
# Linear Regression heights <- c(150, 160, 165, 170, 175, 180, 185) weights <- c(55, 60, 62, 68, 70, 75, 80) data <- data.frame(heights, weights) linear_model <- lm(weights ~ heights, data = data) print(summary(linear_model))

# Plotting Linear Regression plot(data$heights, data$weights, main = "Linear Regression:
Weight vs. Height", xlab = "Height (cm)", ylab = "Weight (kg)", pch = 19, col = "blue")
abline(linear model, col = "red", lwd = 2)
```

Reg.No: 210701281

OUTPUT:


```
b) Logistic regression
# Logistic Regression data(mtcars) mtcarsam < -factor(mtcars<math>am, levels = c(0, 1), levels = c(0, 1),
labels = c("Automatic", "Manual")) logistic model <- glm(am ~ mpg, data = mtcars,
family = binomial) print(summary(logistic model))
# Plotting Logistic Regression predicted probs <-
predict(logistic model, type = "response")
print(predicted probs) plot(mtcars$mpg,
                                                                                                                       main = "Logistic Regression:
as.numeric(mtcars$am) - 1,
Transmission vs. MPG",
                                                                                                            xlab = "Miles Per Gallon (mpg)",
ylab = "Probability of Manual Transmission",
                                                                                                                                                                                              pch = 19,
col = "blue")
curve(predict(logistic model, data.frame(mpg = x), type = "response"),
                                                                                                                                                                                                                                 add = TRUE, col = "red", lwd = 2)
```

Reg.No: 210701281

OUTPUT:

RESULT:

Thus the R program to implement Linear and Logistic Regression has been executed and verified successfully.