This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

DEX-0075

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Burcau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		(11) International Publication Number: WO 99/60161
C12Q 1/68, G01N 33/53, 33/574	A1	(43) International Publication Date: 25 November 1999 (25.11.99)
(21) International Application Number: PCT/US9		Massey Licata, 66 E. Main Street, Marlton, NJ 08053 (US).
(22) International Filing Date: 12 May 1999 (1	2.05.9	"
(30) Priority Data: 60/086,266 21 May 1998 (21.05.98)	τ	(81) Designated States: CA, JP, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(63) Related by Continuation (CON) or Continuation-in- (CIP) to Earlier Application US 60/086,26 Filed on 21 May 1998 (2	56 (CII	
(71) Applicant (for all designated States except US): DIA LLC [US/US]; 3303 Octavius Drive, Santa Clara, C. (US).		
(72) Inventors; and (75) Inventors/Applicants (for US only): MACINA, Rob [AR/US]; 4118 Crescendo Avenue, San Jose, CA (US). YANG, Fei [CN/US]; Apartment 204, 18375 C Cantilena, San Diego, CA 92128 (US). SUN, Yo [CN/US]; Apartment 260, 869 S. Winchester Boulevi Jose, CA 92128 (US).	A 9513 Caminii ongmin	6 0 g

- (54) Title: A NOVEL METHOD OF DIAGNOSING, MONITORING, AND STAGING COLON CANCER
- (57) Abstract

The present invention provides a new method for detecting, diagnosing, monitoring, staging, and prognosticating colon cancer.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL.	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	* Armenia	FI	Finland	LT	Lithuania	sĸ	Stovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GΛ	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belanis	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico ,	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	I.C	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	1.K	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

A NOVEL METHOD OF DIAGNOSING, - MONITORING, AND STAGING COLON CANCER

FIELD OF THE INVENTION

This invention relates, in part, to newly developed assays for detecting, diagnosing, monitoring, staging, and prognosticating cancers, particularly colon cancer.

BACKGROUND OF THE INVENTION

Colon cancer is the second most frequently diagnosed in the United States. Cancer gastrointestinal tract, especially colon cancer, is a highly treatable and often a curable disease when localized to the bowel. However, currently colon cancer is the second most common cause of cancer death. Surgery is the primary treatment and results in cure in approximately 50% of patients. Recurrence following surgery is a major problem and often is the ultimate cause of death. The prognosis of colon cancer is clearly related to the degree of penetration of the tumor through the bowel wall and the presence or absence of nodal involvement. These two characteristics form the basis for all staging systems developed for this disease. Bowel obstruction and bowel perforation are indicators of poor Elevated pretreatment serum prognosis. carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA 19-9) also have negative prognostic significance.

Because of the frequency of the disease (approximately 160,000 new cases of colon cancer per year), the identification of high-risk groups, the demonstrated slow growth of primary lesions, the better survival of early-stage lesions, and the relative simplicity and accuracy of screening tests, screening for colon cancer should be a part of routine

care for all adults starting at age 50, especially those with first-degree relatives with colorectal cancer.

Procedures used for detecting, diagnosing, monitoring, staging, and prognosticating colon cancer are of critical importance to the outcome of the patient. For example, patients diagnosed with early colon cancer generally have a much greater five-year survival rate as compared to the survival rate for patients diagnosed with distant metastasized colon cancer. Treatment decisions are usually made in reference to the older Dukes or the Modified Astler-Coller (MAC) classification schema for staging. However, new diagnostic methods which are more sensitive and specific for detecting early colon cancer are clearly needed.

Further, colon cancer patients must be closely monitored following initial therapy and during adjuvant therapy to determine response to therapy and to detect persistent or recurrent disease of metastasis. Thus, there is clearly a need for a colon cancer marker which is more sensitive and specific in detecting colon cancer recurrence.

Another important step in managing colon cancer is to determine the stage of the patient's disease. determination has potential prognostic value and provides designing optimal therapy. for criteria pathological staging of colon cancer is preferable over clinical staging as pathological staging provides a more accurate prognosis. However, clinical staging would be preferred were the method of clinical staging at least as accurate as pathological staging because it does not depend on an invasive procedure to obtain tissue for pathological evaluation. Staging of colon cancer would be improved by detecting new markers in cells, tissues, or bodily fluids which could differentiate between different invasion.

In the present invention, methods are provided for detecting, diagnosing, monitoring, staging, and

prognosticating colon cancers, particularly colon, stomach, and small intestine cancer, via nine (9) Colon Specific Genes (CSGs)=. The =nine CSGs refer, among other things, to native proteins expressed by the genes comprising the polynucleotide sequences of any of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8 or 9. In the alternative, what is meant by the nine CSGs as used herein, means the native mRNAs encoded by the genes comprising any of the polynucleotide sequences of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8 or 9 or levels of the genes comprising any of the polynucleotide sequences of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8 or 9.

Other objects, features, advantages and aspects of the present invention will become apparent to those of skill in the art from the following description. It should be understood, however, that the following description and the specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only. Various changes and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from reading the following description and from reading the other parts of the present disclosure.

SUMMARY OF THE INVENTION

Toward these ends, and others, it is an object of the present invention to provide a method for diagnosing the presence of colon cancer in a patient which comprises measuring levels of CSG in a sample of cells, tissue or bodily fluid from the patient and comparing the measured levels of CSG with levels of CSG in preferably the same cells, tissue, or bodily fluid type of a control, wherein an increase in the measured CSG levels in the patient versus levels of CSG in the control is associated with colon cancer.

Another object of the present invention is to provide a method of diagnosing metastatic colon cancer in a patient which comprises measuring CSG levels in a sample of cells,

tissue, or bodily fluid from the patient and comparing the measured CSG levels with levels of CSG in preferably the same cells, tissue, or bodily fluid type of a control, wherein an increase in measured CSG levels in the patient versus levels of CSG in the control is associated with a cancer which has metastasized.

Another object of the present invention is to provide a method of staging colon cancer in a patient which comprises identifying a patient having colon cancer, measuring levels of CSG in a sample of cells, tissues, or bodily fluid obtained from the patient, and comparing the measured CSG levels with levels of CSG in preferably the same cells, tissue or bodily fluid type of a control. An increase in measured CSG levels in the patient versus CSG levels in the control can be associated with a cancer which is progressing while a decrease or equivalent level of CSG measured in the patient versus the control can be associated with a cancer which is regressing or in remission.

Another object of the present invention is to provide a method of monitoring colon cancer in a patient for the onset of metastasis. The method comprises identifying a patient having colon cancer that is not known to have metastasized, periodically measuring levels of CSG in a sample of cells, tissues, or bodily fluid obtained from the patient, and comparing the measured CSG levels with levels of CSG in preferably the same cells, tissue, or bodily fluid type of a control, wherein an increase in measured CSG levels versus control CSG levels is associated with a cancer which has metastasized.

Yet another object of the present invention is to provide a method of monitoring the change in stage of colon cancer in a patient which comprises identifying a patient having colon cancer, periodically measuring levels of CSG in a sample of cells, tissue, or bodily fluid obtained from the patient, and comparing the measured CSG levels with levels of

WO 99/60161 PCT/US99/10498

- 5 -

CSG in preferably the same cells, tissues, or bodily fluid type of a control wherein an increase in measured CSG levels versus the control CSG levels is associated with a cancer which is progressing and a decrease in the measured CSG levels versus the control CSG levels is associated with a cancer which is regressing or in remission.

Other objects, features, advantages and aspects of the present invention will become apparent to those of skill in the art from the following description. It should be understood, however, that the following description and the specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only. Various changes and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from reading the following description and from reading the other parts of the present disclosure.

DESCRIPTION OF THE INVENTION

The present invention relates to diagnostic assays and methods, both quantitative and qualitative for detecting, diagnosing, monitoring, staging, and prognosticating cancers by comparing levels of CSG with those of CSG in a normal human control. What is meant by "levels of CSG" as used herein, means levels of the native protein expressed by the genes comprising the polynucleotide sequence of any of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8 or 9. In the alternative, what is meant by "levels of CSG" as used herein, means levels of the native mRNA encoded by any of the genes comprising any of the polynucleotide sequences of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, or 9 or levels of the gene comprising any of the polynucleotide sequence of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8 or 9. Such levels are preferably measured in at least one of, cells, tissues and/or bodily fluids, including determination Thus, for instance, a of normal and abnormal levels. diagnostic assay in accordance with the invention for diagnosing over-expression of any one of the CSG proteins compared to normal control bodily fluids, cells, or tissue samples may be used to diagnose the presence of cancers, including colon cancer. Any of the nine CSGs may be measured alone in the methods of the invention, or all together or any combination of the nine.

By "control" it is meant a human patient without cancer and/or non cancerous samples from the patient, also referred to herein as a normal human control; in the methods for diagnosing or monitoring for metastasis, control may also include samples from a human patient that is determined by reliable methods to have colon cancer which has not metastasized.

All the methods of the present invention may optionally include measuring the levels of other cancer markers as well as CSG. Other cancer markers, in addition to CSG, useful in the present invention will depend on the cancer being tested and are known to those of skill in the art.

Diagnostic Assays

The present invention provides methods for diagnosing the presence of colon cancer by analyzing for changes in levels of CSG in cells, tissues or bodily fluids compared with levels of CSG in cells, tissues or bodily fluids of preferably the same type from a normal human control, wherein an increase in levels of CSG in the patient versus the normal human control is associated with the presence of colon cancer. Without limiting the instant invention, typically, for a quantitative diagnostic assay a positive result indicating the patient being tested has cancer is one in which cells, tissues, or bodily fluid levels of the cancer marker, such as CSG, are at least two times higher, and most preferably are at least five times higher, than in preferably the same cells, tissues, or bodily fluid of a normal human control.

The present invention also provides a method of diagnosing metastatic colon cancer in a patient having colon

WO 99/60161 PCT/US99/10498

- 7 -

cancer which has not yet metastasized for the onset of metastasis. In the method of the present invention, a human cancer-patient suspected of having colon cancer which may have metastasized (but which was not previously known to have metastasized) is identified. This is accomplished by a variety of means known to those of skill in the art. For example, in the case of colon cancer, patients are typically diagnosed with colon cancer following traditional detection methods.

In the present invention, determining the presence of CSG level in cells, tissues, or bodily fluid, is particularly useful for discriminating between colon cancer which has not metastasized and colon cancer which has metastasized. Existing techniques have difficulty discriminating between colon cancer which has metastasized and colon cancer which has not metastasized and proper treatment selection is often dependent upon such knowledge.

In the present invention, the cancer marker levels measured in such cells, tissues, or bodily fluid is CSG, and are compared with levels of CSG in preferably the same cells, tissue, or bodily fluid type of a normal human control. That is, if the cancer marker being observed is just CSG in serum, this level is preferably compared with the level of CSG in serum of a normal human patient. An increase in the CSG in the patient versus the normal human control is associated with colon cancer which has metastasized.

Without limiting the instant invention, typically, for a quantitative diagnostic assay a positive result indicating the cancer in the patient being tested or monitored has metastasized is one in which cells, tissues, or bodily fluid levels of the cancer marker, such as CSG, are at least two times higher, and most preferable are at least five times higher, than in preferably the same cells, tissues, or bodily fluid of a normal patient.

Normal human control as used herein includes a human patient without cancer and/or non cancerous samples from the patient; in the methods for diagnosing or monitoring for metastasis, normal human control may also include samples from a human patient that is determined by reliable methods to have colon cancer which has not metastasized.

Staging

The invention also provides a method of staging colon cancer in a human patient.

The method comprises identifying a human patient having such cancer; analyzing a sample of cells, tissues, or bodily fluid from such patient for CSG. Then, the method compares CSG levels in such cells, tissues, or bodily fluid with levels of CSG in preferably the same cells, tissues, or bodily fluid type of a normal human control sample, wherein an increase in CSG levels in the patient versus the normal human control is associated with a cancer which is progressing and a decrease in the levels of CSG is associated with a cancer which is regressing or in remission.

Monitoring

Further provided is a method of monitoring colon cancer in a human having such cancer for the onset of metastasis. The method comprises identifying a human patient having such cancer that is not known to have metastasized; periodically analyzing a sample of cells, tissues, or bodily fluid from such patient for CSG; comparing the CSG levels in such cells, tissue, or bodily fluid with levels of CSG in preferably the same cells, tissues, or bodily fluid type of a normal human control sample, wherein an increase in CSG levels in the patient versus the normal human control is associated with a cancer which has metastasized.

Further provided by this inventions is a method of monitoring the change in stage of colon cancer in a human having such cancer. The method comprises identifying a human patient having such cancer; periodically analyzing a sample

of cells, tissues, or bodily fluid from such patient for CSG; comparing the CSG levels in such cells, tissue, or bodily fluid with levels of CSG in preferably the same cells, tissues, or bodily fluid type of a normal human control sample, wherein an increase in CSG levels in the patient versus the normal human control is associated with a cancer which is progressing in stage and a decrease in the levels of CSG is associated with a cancer which is regressing in stage or in remission.

Monitoring such patient for onset of metastasis is periodic and preferably done on a quarterly basis. However, this may be more or less frequent depending on the cancer, the particular patient, and the stage of the cancer.

Assay Techniques

Assay techniques that can be used to determine levels of gene expression, such as CSG of the present invention, in a sample derived from a host are well-known to those of skill in the art. Such assay methods include radioimmunoassays, (RT-PCR)transcriptase PCR immunohistochemistry assays, in situ hybridization assays, competitive-binding assays, Western Blot analyses and ELISA assays. Among these, ELISAs are frequently preferred to diagnose a gene's expressed protein in biological fluids. An ELISA assay initially comprises preparing an antibody, if not readily available from a commercial source, specific to CSG, preferably a monoclonal antibody. In addition a reporter antibody generally is prepared which binds specifically to The reporter antibody is attached to a detectable reagent such as radioactive, fluorescent or enzymatic reagent, example horseradish peroxidase enzyme or alkaline phosphatase.

To carry out the ELISA, antibody specific to CSG is incubated on a solid support, e.g., a polystyrene dish, that binds the antibody. Any free protein binding sites on the dish are then covered by incubating with a non-specific

protein such as bovine serum albumin. Next, the sample to be analyzed is incubated in the dish, during which time CSG binds to the specific antibody attached to the polystyrene dish. Unbound sample is washed out with buffer. A reporter antibody linked to horseradish specifically directed to CSG and peroxidase is placed in the dish resulting in binding of the reporter antibody to any monoclonal antibody bound to CSG. Unattached reporter antibody is then washed out. Reagents for peroxidase activity, including a colorimetric substrate are then added to the dish. Immobilized peroxidase, linked to CSG antibodies, produces a colored reaction product. The amount of color developed in a given time period is proportional to the amount of CSG protein present in the sample. Quantitative results typically are obtained by reference to a standard curve.

A competition assay may be employed wherein antibodies specific to CSG attached to a solid support and labeled CSG and a sample derived from the host are passed over the solid support and the amount of label detected attached to the solid support can be correlated to a quantity of CSG in the sample. Nucleic acid methods may be used to detect CSG mRNA as a marker for colon cancer. Polymerase chain reaction (PCR) and other nucleic acid methods, such as ligase chain reaction (LCR) and nucleic acid sequence based amplification (NASABA), can be used to detect malignant cells for diagnosis and monitoring of various malignancies. For example, reversetranscriptase PCR (RT-PCR) is a powerful technique which can be used to detect the presence of a specific mRNA population in a complex mixture of thousands of other mRNA species. RT-PCR, an mRNA species is first reverse transcribed to complementary DNA (cDNA) with use of the enzyme reverse transcriptase; the cDNA is then amplified as in a standard PCR RT-PCR can thus reveal by amplification the reaction. presence of a single species of mRNA. Accordingly, if the mRNA is righly specific for the cell that produces it, RT-PCR can be used to identify the presence of a specific type of cell.

Hybridization to clones or oligonucleotides arrayed on a solid support (i.e., gridding) can be used to both detect the expression of and quantitate the level of expression of that gene. In this approach, a cDNA encoding the CSG gene is fixed to a substrate. The substrate may be of any suitable type including but not limited to glass, nitrocellulose, nylon or plastic. At least a portion of the DNA encoding the CSG gene is attached to the substrate and then incubated with the analyte, which may be RNA or a complementary DNA (cDNA) copy of the PNA, isolated from the tissue of interest.

Hybridization between the substrate bound DNA and the analyte can be detected and quantitated by several means including but not limited to radioactive labeling or fluorescence labeling of the analyte or a secondary molecule designed to detect the hybrid. Quantitation of the level of gene expression can be done by comparison of the intensity of the signal from the analyte compared with that determined from known standards. The standards can be obtained by in vitro transcription of the target gene, quantitating the yield, and then using that material to generate a standard curve.

The above tests can be carried out on samples derived from a variety of patients' cells, bodily fluids and/or tissue extracts (homogenates or solubilized tissue) such as from tissue biopsy and autopsy material. Bodily fluids useful in the present invention include blood, urine, saliva, or any other bodily secretion or derivative thereof. Blood can include whole blood, plasma, serum, or any derivative of blood.

EXAMPLES

The present invention is further described by the following examples. These examples are provided solely to illustrate the invention by reference to specific embodiments.

WO 99/60161 PCT/US99/10498

- 12 -

These exemplifications, while illustrating certain specific aspects of the invention, do not portray the limitations or circumscribe the scope of the disclosed invention.

Example 1: CSGs

Searches were carried out and CSGs identified using the following: Search Tools as part of the LIFESEQ® database available from Incyte Pharmaceuticals, Palo Alto, CA:

- 1. Library Comparison (compares one library to one other library) allows the identification of clones expressed in tumor and absent or expressed at a lower level in normal tissue.
- 2. Subsetting is similar to library comparison but allows the identification of clones expressed in a pool of libraries and absent or expressed at a lower level in a second pool of libraries.
- 3. Transcript Imaging lists all of the clones in a single library or a pool of libraries based on abundance. Individual clones can then be examined using Electronic Northerns to determine the tissue sources of their component ESTs.
- 4. Protein Function: Incyte has identified subsets of ESTs with a potential protein function based on homologies to known proteins. Some examples in this database include Transcription Factors and Proteases. We identified some leads by searching in this database for clones whose component ESTs showed disease specificity.

Electronic subtractions, transcript imaging and protein function searches were used to identify clones, whose component ESTs were exclusively or more frequently found in libraries from specific tumors. Individual candidate clones were examined in detail by checking where each EST originated.

Table 1: CSGs

SEQ ID	Clone ID #	Gene ID #	
NO:	-		
1	238330	242807	Transcript Imaging
2	1285234	239588	Subsetting
3	1341701	29634	Transcript Imaging
4	816257	233421	Subsetting
5	775133	245080	Subsetting
6	1335450	245811	Subsetting
7	2348122	233711	Transcript Imaging
8	3228674	230273	Subsetting
9	1632174	229022	Transcript Imaging

The following example was carried out using standard techniques, which are well known and routine to those of skill in the art, except where otherwise described in detail. Routine molecular biology techniques of the following example can be carried out as described in standard laboratory manuals, such as Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989).

Example 2: Relative Quantitation of CSG Gene Expression

Real-Time quantitative PCR with fluorescent Taqman probes is a quantitation detection system utilizing the 5'-3' nuclease activity of Taq DNA polymerase. The method uses an internal fluorescent oligonucleotide probe (Taqman) labeled with a 5' reporter dye and a downstream, 3' quencher dye. During PCR, the 5'-3' nuclease activity of Taq DNA polymerase releases the reporter, whose fluorescence can then be detected by the laser detector of the Model 7700 Sequence Detection System (PE Applied Biosystems, Foster City, CA, USA).

Amplification of an endogenous control is used to standardize the amount of sample RNA added to the reaction and normalize for Reverse Transcriptase (RT) efficiency. Either cyclophilin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) or 18S ribosomal RNA (rRNA) is used as this endogenous control. To calculate relative quantitation between all the samples studied, the target RNA levels for one sample are used comparative results (calibrator). for basis the as Quantitation relative to the "calibrator" can be obtained using the standard curve method or the comparative method (User Bulletin #2: ABI PRISM 7700 Sequence Detection System).

To evaluate the tissue distribution, and the level of CSGs in normal and tumor tissue, total RNA was extracted from normal tissues, tumor tissues, and from tumors and the corresponding matched normal tissues. Subsequently, first strand cDNA was prepared with reverse transcriptase and the polymerase chain reaction was done using primers and Taqman probe specific to the CSG. The results were analyzed using the ABI PRISM 7700 Sequence Detector. The absolute numbers are relative levels of expression of the CSG compared to the calibrator.

Comparative Examples

Similar mRNA expression analysis for genes coding for the diagnostic markers PSA (Prostate Specific Antigen) and PLA2 (Phospholipase A2) was performed for comparison. PSA is currently the only cancer screening marker available in clinical laboratories. When the panel of normal pooled tissues was analyzed, PSA was expressed at very high levels in prostate, with a very low expression in breast and testis. After analysis of more than 55 matching samples from 14 different tissues, the data corroborated the tissue specificity seen with normal tissue samples. PSA expression was compared in cancer and normal adjacent tissue for 12 matching samples of prostate tissue. The relative levels of PSA were higher in 10 cancer samples (83%). Clinical data

recently obtained support the utilization of PLA2 as a staging marker for late stages of prostate cancer. mRNA expression data described herein showed overexpression of the mRNA in 8 out of the 12 prostate matching samples analyzed (66%). PLA2 had high levels of mRNA expression in small intestine, prostate, liver, and pancreas.

Measurement of SEQ ID NO:3; Clone ID 1341701; Gene ID 29634 (Cln106)

Absolute numbers are depicted in Table 2 as relative levels of expression of Cln106 (SEQ ID NO:3) in 12 normal different tissues. All the values are compared to normal testis (calibrator). These RNA samples are commercially available pools, originated by pooling samples of a particular tissue from different individuals.

Table 2: Relative levels of Cln106 Expression in Pooled Samples

Tissue	NORMAL
Colon-Ascending	110
Endometrium	0
Kidney	0
Liver	. 0
Ovary	0
Pancreas	0
Prostate	1,6
Small Intestine	0
Spleen	0
Stomach	0 .
Testis	1
Uterus	0

The relative levels of expression in Table 2 show for the CSG Cln106 (SEQ ID NO:3), mRNA expression is more than 6 fold higher in the pool of normal ascending colon (110) compared with prostate (16). Testis, the calibrator, with a relative expression level of 1, is the only other tissue expressing the mRNA for Cln106 (SEQ ID NO:3). These results demonstrate that mRNA expression of this CSG is highly specific for colon.

The absolute numbers in Table 2 were obtained analyzing pools of samples of a particular tissue from different individuals. They can not be compared to the absolute numbers originated from RNA obtained from tissue samples of a single individual in Table 3.

The absolute numbers in Table 3 are relative levels of expression of Cln106 (SEQ ID NO:3) in 57 pairs of matching samples. All the values are compared to normal testis (calibrator). A matching pair is formed by mRNA from the cancer sample for a particular tissue and mRNA from the normal adjacent sample for that same tissue from the same individual.

Table 3: Relative levels of Cln106 Expression in Individual Samples

Sampres			
Sample ID	Tissue	Cancer	Matching Normal Adjacent
Sto AC93	Stomach 1	4 :	96
Sto AC99	Stomach 2	0.4	0.5
Sml 21XA	Small Intestine 1	0	0
Sml H89	Small Intestine 2	0.93	1.28
Cln B56:	Colon-Cecum(A)1	317	101
Cln AS45	Colon-Ascending(A)2	316.3	146.5
Cln CM67	Colon-Cecum(B)3	481.0	217.5
Cln AS67	Colon-Ascending(B)4	858.1	220.6
Cln AS43	Colon-Ascending(C)5	1370	98
Cln AS46	Colon-Ascending(C)6	3051	375
Cln AS98	Colon-Ascending(C)7	26	42
Cln AS89	Colon-Ascending(D)8	524.6	11.0
Cln TX01	Colon-Transverse(B)9	2886.3	1992.0
Cln TX89	Colon-Transverse(B)10	146.0	35.9
Cln TX67	Colon-Transverse(C)11	2.9	421.7
Cln MT38	Colon-Splenic Flexture(M)12	1681	187

		1062.3	77.7
Cln SG89	Colon-Sigmoid(B)13	1063.8	31.1
Cln SG67	Colon-Sigmoid(C)14	8.5	9.4
Cln SG33	Colon-Sigmoid(C)15	264	549
Cln SG45	Colon-Sigmoid(D)16	580.0	114.6
Cln B34	Colon-Rectosigmoid(A)17	.97	244
Cln CXGA	Colon-Rectum(A)18	45.1	273.4
Cln RC67	Colon-Rectum(B)19	2.7	20.0
Cln C9XR	Colon-Rectosigmoid(C)20	609	460
Cln RS45	Colon-Rectosigmoid(C)21	472.8	144.0
Cln RC01	Colon-Rectum(C)22	568	129
Cln RC89	Colon-Rectum(D)23	. 4.6	322.91
Bld 46XK	Bladder 1	0.2	0
Bld 66X	Bladder 2	1	1
Bld 32XK	Bladder 3	0.0	0.0
Kid 126XD	Kidney 1	. 0.	0
Kid 12XD	Kidney 2	0	0
Kid 5XD	Kidney 3	0.0	1.0
Kid 6XD	Kidney 4	0.0	0.0
Kid 106XD	Kidney 5	0.4	0.0
Liv 42X	Liver 1	0.0	0.0
Liv 15XA	Liver 2	0.0	0.0.
Liv 94XA	Liver 3	0.0	0.0
Lng AC69	Lung 1	2	0
Lng BR94	Lung 2	0	0
Lng 47XQ	Lung 3	0	0
Mam 59X	Mammary Gland 1	0	0
Mam B011X	Mammary Gland 2	0	0
Mam A06X	Mammary Gland 3	. 0	0
Ovr 103X	Ovary 1	0.04	2.08
Ovr 130X	Ovary 2	0.1	2.76
3 - 2 - 2	<u> </u>		

Pan 71XL	Pancreas 1	4.08	0.1
Pan 82XP	Pancreas 2	0	0
Pro 12B	Prostate 1	0.3	0
Pro 23B	Prostate 2	3	· 4
Pro 13XB	Prostate 3	. 2	7
Pro 34B	Prostate 4	0.54	4.01
Pro 20XB	Prostate 5	4.8	4.3
Pro 65XB	Prostate 6	0.7	1.3
Tst 39X	Testis 1 :	2.78	0
End 8XA	Endometrium 1	0	0.2
Utr 85XU	Uterus 1	1.26	0

0= Negative

When matching samples were analyzed, the higher levels of expression were in the colon, showing a high degree of tissue specificity for this tissue. These results confirm the tissue specificity results obtained with the panel of normal pooled samples (Table 2). Furthermore, the level of mRNA expression in cancer samples and the isogenic normal adjacent tissue from the same individual were compared. comparison provides an indication of specificity for the cancer stage (e.g. higher levels of mRNA expression in the cancer sample compared to the normal adjacent). Table 3 shows overexpression of Cln106 (SEQ ID NO:3) in 15 colon cancer tissues compared with their respective normal adjacent (colon samples #1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 16, 20, 21, and 22). There is overexpression in the cancer tissue for 65% of the colon matching samples tested (total of 23 colon matching samples). The matching sample Pan 71XL is a secondary cancer in pancreas, the primary cancer in that individual was a duodenal cancer.

Altogether, the high level of tissue specificity, plus the mRNA overexpression in 65% of the colon matching samples

tested are demonstrative of CSG Cln106 (SEQ ID NO:3) being a diagnostic marker for colon cancer.

Measurement of SEQ ID NO:4; Clone ID 816257; Gene ID 406452 (Cln107)

Absolute numbers as depicted in Table 4 are relative levels of expression of CSG Cln107 (SEQ ID NO:4) in 12 normal different tissues. All the values are compared to normal small intestine (calibrator). These RNA samples are commercially available pools, originated by pooling samples of a particular tissue from different individuals.

Table 4: Relative levels of Cln107 Expression in Pooled Samples

Tissue	NORMAL
Colon-Ascending	3.2
Endometrium	0
Kidney	0.2
Liver	0
Ovary	0
Pancreas	0
Prostate	0.1
Small.Intestine	1
Spleen	· 0
Stomach	0.3
Testis	0
Uterus	0

The relative levels of expression in Table 4 show that mRNA expression of the CSG Cln107 (SEQ ID NO:4) is more than 10 fold higher in the pool of normal ascending colon (3.2), five fold higher in small intestine (1), and 1.5 fold higher in stomach (0.3), compared with the next higher expressor (0.2 for kidney). Seven of the pooled tissues samples analyzed were negative and prostate showed a relative expression of 0.1 for Cln107 (SEQ ID NO:4). These results demonstrate that Cln107 mRNA expression is highly specific for colon, small intestine, and in a lower degree for stomach.

The absolute numbers in Table 4 were obtained analyzing pools of samples of a particular tissue from different

individuals. They can not be compared to the absolute numbers originated from RNA obtained from tissue samples of a single individual in-Table 5.

The absolute numbers in Table 5 are relative levels of expression of Cln107 (SEQ ID NO:4) in 57 pairs of matching samples. All the values are compared to normal small intestine (calibrator). A matching pair is formed by mRNA from the cancer sample for a particular tissue and mRNA from the normal adjacent sample for that same tissue from the same individual.

Table 5: Relative levels of Cln107 Expression in Individual Samples

	Cancer	Matching	
Sample ID	Tissue	0000	Normal
			Adjacent
Sto AC93	Stomach 1	8.9	13.4
Sto AC99	Stomach 2	6.0	0.9
Sml 21XA	Small Intestine 1	1.07	1.42
Sml H89 -	Small Intestine 2	0.97	4.13
Cln B56	Colon-Cecum(A)1	2	16
Cln AS45	Colon-Ascending(A)2	0.7	2.1
Cln CM67	Colon-Cecum(B)3	1.6	2.1
Cln AS67	Colon-Ascending(B)4	1.2	6.2
Cln AS43	Colon-Ascending(C)5	13.5	0.5
Cln AS46	Colon-Ascending(C)6	9.7	23.6
Cln AS98	Colon-Ascending(C)7	28.1	1.4
Cln AS89	Colon-Ascending(D)8	0.9	3.1
Cln TX01	Colon-Transverse(B)9	3.0	10.6
Cln TX89	Colon-Transverse(B)10	4.5	0.6
Cln TX67	Colon-Transverse(C)11	3.6	3.4
Cln MT38	Colon-Splenic Flexture(M)12	4.0	2.6
Cln SG89	Colon-Sigmoid(B)13	4.7	0.9

			·
Cln SG67	Colon-Sigmoid(C)14	1.0	1.3
Cln SG33	Colon-Sigmoid(C)15	14.2	7.6
Cln SG45	Colon-Sigmoid(D)16	4.8	6.0
Cln B34	Colon-Rectosigmoid(A)17	3	2
Cln CXGA	Colon-Rectum(A)18	4.4	. 1.9
Cln RC67	Colon-Rectum(B)19	0.1	0.4
Cln C9XR	Colon-Rectosigmoid(C)20	5	3
Cln RS45	Colon-Rectosigmoid(C)21	11.4	4.6
Cln RC01	Colon-Rectum(C)22	1.8	2.3
Cln RC89	Colon-Rectum(D)23	0.1	5.35
Bld 46XK	Bladder 1	0.2	0
Bld 66X	Bladder 2	1	. 1
Bld 32XK	Bladder 3	0.1	0.1
Kid 126XD	Kidney 1	0	0.02
Kid 12XD	Kidney 2	0.1	0.2
Kid 5XD	Kidney 3	0.3	0.0
Kid 6XD	Kidney 4	0.1	0.1
Kid 106XD	Kidney 5	0.0	0.1
Liv 42X	Liver 1	7.9	0.002
Liv 15XA	Liver 2	0.0	0.0
Liv 94XA	Liver 3	0.0	0.0
Lng AC 69	Lung 1	1.6	0.2
Lng BR94	Lung 2	0.4	0
Lng 47XQ	Lung 3	0.78	0.2
Mam 59X	Mammary Gland 1	0.05	0.3
Mam B011X	Mammary Gland 2	0.01	0.004
Mam A06X	Mammary Gland 3	0.22	0
Ovr 103X	Ovary 1	0.01	0.01
	<u></u>		
Ovr 130X	Ovary 2	0.09	0.1

Pan 82XP	Pancreas 2	0	.0.62
Pro 12B	Prostate 1	0.3	0.1
Pro 23B	Prostate 2	0.3	0.2
Pro 13XB	Prostate 3	. 0	0
Pro 34B	Prostate 4	0.04	0.22
Pro 20XB	Prostate 5	0.4	0.1
Pro 65XB	Prostate 6	0.0	0.1
Tst 39%	Testis 1	0.02	0.01
End 8XA	Endometrium 1	0.01	0.5
Utr 85XU	Uterus 1	0.03	0

0= Negative

When matching samples were analyzed, the higher levels of expression were in colon, stomach, and small intestine, showing a high degree of tissue specificity for colon tissues. These results confirm the tissue specificity results obtained with normal pooled samples (Table 4). Furthermore, the level of mRNA expression in cancer samples and the isogenic normal adjacent tissue from the same individual were compared. comparison provides an indication of specificity for the cancer stage (e.g. higher levels of mRNA expression in the cancer sample compared to the normal adjacent). Table 5 shows overexpression of Cln107 (SEQ ID NO:4) in 11 colon cancer tissues compared with their respective normal adjacent (colon samples #5, 7, 10, 11, 12, 13, 15, 17, 18, 20, and 21). is overexpression in the cancer tissue for 48% of the colon matching samples tested (total of 23 colon matching samples). The matching sample Pan 71XL is a secondary cancer in pancreas, the primary cancer in that individual was a duodenal cancer.

Altogether, the high level of tissue specificity, plus the mRNA overexpression in almost half of the colon, stomach, and small intestine matching samples tested are demonstrative

of CSG Cln107 (SEQ ID NO:4) being a diagnostic marker for colon cancer.

Measurement of SEQ ID NO:5; Clone ID 775133; Gene ID 24508 (Cln108)

The absolute numbers shown in Table 6 are relative levels of expression of CSG Cln108 (SEQ ID NO:5) in 12 normal different tissues. All the values are compared to normal small intestine (calibrator). These RNA samples are commercially available pools, originated by pooling samples of a particular tissue from different individuals.

Table 6: Relative levels of Cln108 Expression in Pooled
Samples

Tissue	NORMAL
Colon-Ascending	2846.5
Endometrium	1
Kidney	5.5
Liver	18.7
Ovary	3.4
Pancreas ·	198.1
Prostate	1024
Small Intestine	810.8
Spleen	32.2
Stomach	9981.2
Testis	0
Uterus	294.1

The relative levels of expression in Table 6 show that mRNA expression of CSG Cln108 (SEQ ID NO:5) is more than 10 fold higher in the pool of normal ascending colon (2846.5) and almost ten fold higher in stomach (9981.2), compared to the expression level in any other tissue analyzed. These results demonstrate that mRNA expression of this CSG is also highly specific for colon and stomach.

The absolute numbers in Table 6 were obtained analyzing pools of samples of a particular tissue from different individuals. They can not be compared to the absolute numbers originated from RNA obtained from tissue samples of a single individual in Table 7.

The absolute numbers depicted in Table 7 are relative levels of expression of Cln108 (SEQ ID NO:5) in 57 pairs of matching samples. All the values are compared to normal small intestine (calibrator). A matching pair is formed by mRNA from the cancer sample for a particular tissue and mRNA from the normal adjacent sample for that same tissue from the same individual.

Table 7: Relative levels of Cln108 Expression in Individual Samples

Sample ID	Tissue	Cancer	Matching Normal Adjacent
Sto AC93	Stomach 1	28696	34842
Sto AC99	Stomach 2	21523	30862
Sml 21XA	Small Intestine 1	2944	964.4
Sml H89	Small Intestine 2	244.5	3513.2
Cln B56	Colon-Cecum(A)1	27242	24637
Cln AS45	Colon-Ascending(A)2	5827.0	8771.0
Cln CM67	Colon-Cecum(B)3	4251.0	4684.0
Cln AS67	Colon-Ascending(B)4	564.0	1949.0
Cln AS43	Colon-Ascending(C)5	50310	10949
Cln AS46	Colon-Ascending(C)6	246044	120073
Cln AS98	Colon-Ascending(C)7	40442	17482
Cln AS89	Colon-Ascending(D)8	5730.0	1581.0
Cln TX01	Colon-Transverse(B)9	22281.0	114784.0
Cln TX89	Colon-Transverse(B)10	11026.0	1639.0
Cln TX67	Colon-Transverse(C)11	17004.0	11654.0
Cln MT38	Colon-Splenic Flexture(M)12	77589	31620
Cln SG89	Colon-Sigmoid(B)13	140339.0	49617.0
Cln SG67	Colon-Sigmoid(C)14	4951.0	7905.0
Cln SG33	Colon-Sigmoid(C)15	60875	120490

			,
Cln SG45	Colon-Sigmoid(D)16	30437.0	47267.0
Cln B34	Colon-Rectosigmoid(A)17	5848	5861
Cln CXGA	Colon-Rectum(A)18	13877.0	9787.0
Cln RC67	Colon-Rectum(B)19	1703.0	26589.0
Cln C9XR	Colon-Rectosigmoid(C)20	2458	19071
Cln RS45	Colon-Rectosigmoid(C)21	95523	61939
Cln RC01	Colon-Rectum(C)22	98891.0	. 80047.0
Cln RC89	Colon-Rectum(D)23	17.0	1775
Bld 46XF	Bladder 1	0	8
Bld 66%	Bladder 2	397	44
Bld 32XF	Bladder 3	0.0	16.0
Kid 126XD	Kidney 1	32	22
Kid 12XD	Kidney 2	. 6	0
Kid 106XD	Kidney 3	4.0	33.0
Liv 42X	Liver l	4783	0
Liv 15XA	Liver 2	4.0	10.0
Liv 94XA	Liver 3	159.0	21.0
Lng AC69	Lung 1	222	295
Lng BR94	Lung 2	112	0
Lng 47XQ	Lung 3	30	69
Lng AC66	Lung 4	29	137
Mam 59X	Mammary Gland 1	56	0
Mam B011X	Mammary Gland 2	54	31
Mam A06X	Mammary Gland 3	12	0
Ovr 103X	Ovary 1	37	0
Pan 71XL	Pancreas 1	13203	4163
Pan 82XP	Pancreas 2	39.1	0
Pro 12B	Prostate 1	386	88
Pro 23B	Prostate 2	250	23
Pro 13XB	Prostate 3	92	731

Pro 34B	Prostate 4	33.3	265.7
Pro 20XB	Prostate 5	454.6	1908.9
Pro 65XB	Prostate 6	733.5	922.0
End 8XA	Endometrium 1	5	92
Utr 85XU	Uterus 1	98.9	21.8
Utr 23XU	Uterus 2	35.3	0
Utr 135X0	Uterus 3	39.2	43.8
Utr 141X0	Uterus 4	212.1	55.9

0= Negative

When matching samples were analyzed, the higher levels of expression were in colon and stomach, showing a high degree of tissue specificity for these two tissues. These results confirm the tissue specificity results obtained with normal pooled samples (Table 6). Furthermore, the level of mRNA expression in cancer samples and the isogenic normal adjacent tissue from the same individual were compared. comparison provides an indication of specificity for the cancer stage (e.g. higher levels of mRNA expression in the cancer sample compared to the normal adjacent). Table 7 shows overexpression of CSG Cln108 (SEQ ID NO:5) in 13 colon cancer tissues compared with their respective normal adjacent (colon samples #1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 21, and 22). There is overexpression in the cancer tissue for 56% of the colon matching samples tested (total of 23 colon matching samples). The matching sample Pan 71XL is a secondary cancer in pancreas, the primary cancer in that individual was a duodenal cancer.

Altogether, the high level of tissue specificity, plus the mRNA overexpression in more than half of the colon, stomach, and small intestine matching samples tested are demonstrative of this CSG, Cln108 (SEQ ID NO:5), also being a diagnostic marker for colon cancer.

Measurement of SEQ ID NO:7; Clone ID 2348122; Gene ID 23371 (Cln109)

The absolute numbers depicted in Table 8 are relative levels of expression of CSG Cln109 (SEQ ID NO:7) in 12 normal different tissues. All the values are compared to normal ovary (calibrator). These RNA samples are commercially available pools, originated by pooling samples of a particular tissue from different individuals.

Table 8: Relative levels of Cln109 Expression in Pooled Samples

	NOTAT
Tissue	NORMAL
Colon-Ascending	28.8
Endometrium	0.45
Kidney	0.41
Liver	0.72
Ovary	0.07
Pancreas	82.8
Prostate	124.3
Small Intestine	626.4
Spleen	1.2
Stomach	12.05
Testis	1.51
Uterus	52.99

The relative levels of expression in Table 8 show that mRNA expression of CSG Cln109 (SEQ ID NO:7), is more than 5 fold higher in the pool of normal small intestine (626.4) compared to the expression level in any other tissue analyzed. These results demonstrate that Cln109 (SEQ ID NO:7) mRNA expression is highly specific for small intestine

The absolute numbers in Table 8 were obtained analyzing pools of samples of a particular tissue from different individuals. They can not be compared to the absolute numbers originated from RNA obtained from tissue samples of a single individual in Table 9.

The absolute numbers depicted in Table 9 are relative levels of expression of Cln109 (SEQ ID NO:7) in 53 pairs of matching samples. All the values are compared to normal ovary (calibrator). A matching pair is formed by mRNA from the

cancer sample for a particular tissue and mRNA from the normal adjacent sample for that same tissue from the same individual.

Table 9: Relative levels of Cln109 Expression in Individual Samples

Sample ID	Tissue	Cancer	Matching Normal Adjacent
Sto AC93	Stomach 1	2574	1310
Sto AC99	Stomach 2	4153	5
Sml 21XA	Small Intestine 1 :	2667	13663.8
Sml H89	Small Intestine 2	57.8	904.29
Cln B56	Colon-Cecum(A)1	6794	299
Cln AS45	Colon-Ascending(A)2	814.6	105.8
Cln CM67	Colon-Cecum(B)3	294.6	36.1
Clm AS67	Colon-Ascending(B)4	2.2	26.3
Cln AS43	Colon-Ascending(C)5	111	377
Cln AS46	Colon-Ascending(C)6	1180	352
Cln AS98	Colon-Ascending(C)7	1075	92
Cln AS89	Colon-Ascending(D)8	14022.7	87.5
Cln TX01	Colon-Transverse(B)9	1027.6	282.1
Cln TX89	Colon-Transverse(B)10	2.5	23.7
Cln TX67	Colon-Transverse(C)11	0.1	72.3
Cln MT38	Colon-Splenic Flexture(M)12	372	88
Cln SG89	Colon-Sigmoid(B)13	179.2	33.4
Cln SG67	Colon-Sigmoid(C)14	85.0	94.7
Cln SG33	Colon-Sigmoid(C)15	5461	377
Cln SG45	Colon-Sigmoid(D)16	762.7	15.9
Cln B34	Colon-Rectosigmoid(A)17	4 60	1
Cln RC67	Colon-Rectum(B)18	64.5	136.2
Cln C9XR	Colon-Rectosigmoid(C)19	441	34
Cln RS45	Colon-Rectosigmoid(C)20	1931	195

			T .
-Cln RC01	Colon-Rectum(C)21	72.8	19.1
Cln RC89	Colon-Rectum(D)22	4.8	90.2
Bld 46XK	Bladder 1	4	3
Bld 66X	Bladder 2	1	0
Bld 32XK	Bladder 3	0.1	307.6
Kid 126XD	Kidney 1	0	2
Kid 12XD	Kidney 2	3	16
Kid 5XD	Kidney 3	0.0	0.3
Kid 6XD	Kidney 4	. 18.5	1.2
Liv 42X	Liver 1	21	0.03
Liv 15XA	Liver 2	0.5	0.4
Liv 94XA	Liver 3	0.4	0.0
Lng AC69	Lung 1	0.1	0
Lng BR94	Lung 2	3	0
Lng 60XL	Lung 3	0.1	0
Mam 59X	Mammary Gland 1	0	4
Mam B011X	Mammary Gland 2	8	13
Mam A06X	Mammary Gland 3	4.7	9.6
Pan 71XI	Pancreas 1	8902.5	1428.2
Pan 82XP	Pancreas 2	0.2	9.3
Pro 12B	Prostate 1	9	20
Pro 23B	Prostate 2	191	88
Pro 13XB	Prostate 3	12	460
Pro 34B	Prostate 4	3.2	80.4
Tst 39X	Testis 1	29.9	0
End 8XA	Endometrium 1	0.3	21
Utr 85XU	Uterus 1	244.7	592.2
Ovr 63A	Ovary 1	11.4	0
Ovr AlC	Ovary 2	68.4	0

0= Negative

When matching samples were analyzed, the higher levels of expression were in small intestine, colon and stomach, showing a high degree of tissue specificity for these three colon tissues. These results confirm the tissue specificity results obtained with normal pooled samples for small Furthermore, the level of intestine (Table 8). expression in cancer samples and the isogenic normal adjacent tissue from the same individual were compared. comparison provides an indication of specificity for the cancer stage (e.g. higher levels of mRNA expression in the cancer sample compared to the normal adjacent). Table 9 shows overexpression of CSG, Cln109 (SEQ ID NO:7) in 15 colon cancer tissues compared with their respective normal adjacent (colon samples #1, 2, 3, 6, 7, 8, 9, 12, 13, 15, 16, 17, 19, 20, and 21). There is overexpression in the cancer tissue for 68% of the colon matching samples tested (total of 22 colon matching samples). The matching sample Pan 71XL is a secondary cancer in pancreas, the primary cancer in that individual was a duodenal cancer.

Altogether, the high level of tissue specificity, plus the mRNA overexpression in more than half of the colon, stomach, and small intestine matching samples tested are demonstrative of CSG Cln109 (SEQ ID NO:7) being a diagnostic marker for colon cancer. The amino acid sequence encoded by the open reading frame of Cln109 is depicted in SEQ ID NO:10.

What is claimed is:

- 1. A method for diagnosing the presence of colon cancer in a patient comprising:
- (a) measuring levels of CSG in a sample of cells, tissue or bodily fluid obtained from the patient; and
- (b) comparing the measured levels of CSG with levels of CSG in a sample of cells, tissue or bodily fluid obtained from a control, wherein an increase in measured levels of CSG in the patient versus the CSG levels in the control is associated with the presence of colon cancer.
- 2. A method of diagnosing metastatic colon cancer in a patient comprising:
- (a) measuring levels of CSG in a sample of cells, tissue, or bodily fluid obtained from the patient; and
- (b) comparing the measured levels of CSG with levels of CSG in a sample of cells, tissue, or bodily fluid obtained from a control, wherein an increase in measured CSG levels in the patient versus the CSG levels in the control is associated with a cancer which has metastasized.
- 3. A method of staging colon cancer in a patient comprising:
 - (a) identifying a patient suffering from colon cancer;
- (b) measuring levels of CSG in a sample of cells, tissue, or bodily fluid obtained from the patient; and
- (c) comparing the measured levels of CSG with levels of CSG in a sample of cells, tissue, or bodily fluid obtained from a control, wherein an increase in the measured levels of CSG versus the levels of CSG in the control is associated with a cancer which is progressing and a decrease in the measured levels of CSG versus the levels of CSG in the control is associated with a cancer which is regressing or in remission.

- 4. A method of monitoring colon cancer in a patient for the onset of metastasis comprising:
- _(a): identifying a patient having colon cancer that is not known to have metastasized;
- (b) periodically measuring CSG levels in samples of cells, tissue, or bodily fluid obtained from the patient; and
- (c) comparing the periodically measured levels of CSG with levels of CSG in cells, tissue, or bodily fluid obtained from a control, wherein an increase in any one of the periodically measured levels of CSG in the patient versus the levels of CSG in the control is associated with a cancer which has metastasized.
- 5. A method of monitoring changes in a stage of colon cancer in a patient comprising:
 - (a) identifying a patient having colon cancer;
- (b) periodically measuring levels of CSG in samples of cells, tissue, or bodily fluid obtained from the patient; and
- (c) comparing the measured levels of CSG with levels of CSG in a sample of the same cells, tissue, or bodily fluid of a control, wherein an increase in any one of the periodically measured levels of CSG versus levels of CSG in the control is associated with a cancer which is progressing in stage and a decrease in any one of the periodically measured levels of CSG versus the levels of CSG in the control is associated with a cancer which is regressing in stage or in remission.
- 6. The method of claim 1, 2, 3, 4 or 5 wherein the CSG comprises SEQ ID NO:3, 4, 5 or 7.

SEQUENCE LISTING

```
<110> Macina, Roberto A.
      Yang, Fei
      Sun, Yongming
<120> A Novel Method of Diagnosing, Monitoring and Staging
      Colon Cancers
<130> DEX-0035
<140>
<141>
<150> 60/086,266
<151> 1998-05-21
<160> 10
<170> Patentln Ver. 2.0
<210> 1
<211> 487
<212> DNA
<213> Homo sapiens
<400> 1
tetgeatetg geeeteccag tgeacetgtt caateccage yeetecctga cetgtacaaa 60
tacacctgag gaccggctcg agcccagact tcctgcccct gctctgcact ctcaggtatt 120
ccctgctctt actccaaaaa gatggaccca ggtccgaagg ggcactgcca ctgtgggggg 180
catggccatc ctccaggtca ctgcgggcga acccctggcc atggcccagg gccctgcggg 240
ccacccctg gccatggccc agggccctgc gggcaacccc ctggccatgg cccagggccc 300
tgcgggcctc ccctggcca tggcccaggt cacccaccc ctggtccaca tcactgagga 360
agtagaagaa aacaggacac aagatggcaa gcctgagaga attgcccagc tgacctggaa 420
tgaggectaa accaeaatet tetetteeta ataaacagee teetagagge caeattetat 480
                                                                  487
tctttaa
<210> 2
<211> 739
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> (693)
<220>
<221> unsure
```

```
<222> (698)..(699)
 <220>
 <221> unsure mm 1 1
 <222> (703)...(705)
 <220>
 <221> unsure
F<2225 (708)
 <220 %
 <221 % unsure
 <2221 (710 ... (716)
 <220.5
 <2215 undur-
 <2021 - Tim
 <220%
 <221> unsur-
 <222> (723... 726
 <220>
 <221> unsure
 <222> (728)
 <220>
 <221> unsure
 <222> (732)
 <220>
 <221> unsure
 <222> (737)
 <400> 2
S totgamaetg temptteeme cagemetget tygatmetgg tmmgttteem gggggetget 60
 ttgcatctga aactgtcage occagaatgt tgacagtege tetectagee ettetetgtg 120
 cetcageete tegeaatee atteageea ggtetteete etatagtega gagtategaa 180
 grggrggrgg adagogatts totoattorg goadcoagtt ggacggcccc atcaccgccc 240
 teegggteeg acteacata tactacateg taggtettea ggtgegetat ggeaaggtgt 300
 ggagcgacta tgtgggtggt cgcaacggag acctggagga gatctttctg caccctgggg 360
 aatcagtgat ccaggtttct gggaagtaca agtggtacct gaagaagctg gtatttgtga 420
 cagacaaggg cogetatoty tettttggga aagacagtgg cacaagttte aatgeegtee 480
 cettgcacce caacacegtg etcegettea teagtggeeg gretggttet etcategatg 540
 ccattggcct gcactgggat gtttacccca ctagctgcag cagatgctga gcctcctctc 600
 cttggcaggg gcactgtgat gaggagtaag aactccctta tcactaaccc ccatccaaat 660
 ggotcaataa aaaaatatoo ttaagootaa aanaaaanng gannnaanan nnnnnntnca 720
                                                                     739
 aannnnantt cheetghta
```

```
<210> 3
 <211> 428
 <212> DNA
 <213> Homo.sapiens
 <220>
 <221> unsure
.<222> (391)
 <400> 3
 aattgroogg ggroaaacag aggagagoat gaatgagagt catcotogoa agtgtgoaga 60
 gtottttgag atgrgggarg atcgtgacto coactgtagg cgccctaagt ttgaagggca 120
 tececetgag tettggaagt ggateettge accggteatt etttatatet gtgaaaggat 180
 cotcoggtt: tacogotoco agcagaaggt tgtgattaco aaggttgtta tgcacccato 240
 caaagtttig gaatteeaga tgaacaageg tggetteage atggaagtgg ggeagtatat 300
 etttgttaat tgeceettaa teteteteet gggaatggea teettttaet ttgacetetg 360
 ctocagagça agatttotto troattoata thogagoago aggggaetto acagaaaato 421
                                                                    425
 tataaggg
 <210> 4
 <211> 1347
 <212> DNA
 <213> Homo sapiens
 <400> 4
 ggaaaacccc tgagcacaaa gcaagaggca tcgaagcccc ctcggggatg cccgcaagcc 60
 aacaggggtg tegtgeggtg ggagtaette egeetgegte etetgeggtt eagggeeeda 120^{-6}
 gacgagecce ageaggesta agtececeat gtetgggget gggaggtgge tggggeceet 180 - -
 gcactgagge tgcagaagte coagtcatet gatetgetgg aaagggagag ggagagtgte 240
 ctgcgccggg agcaagaggt ggcagaggag cggagaaatg ctctcttccc agaggtcttc 300
 tecceaacqe cagatqaçaa etetgaceag aactecagga geteeteeca ggcateegge 360
 atcacgggca greateggr grotgagtet coeffettea geoccateca cetacactea 420
 aacgtggcgt ggacagtgga agatccagtg gacagtgctc.ctcccgggca gagaaagaag 480
 gagcaatggt acgctggcat caacccctcg gacggtatca actcagaggt cctggaagcc 540
latacgggtga cocqtcacaa gaacgccatg gcagagcgct gggaatceeg catetacgee 601
 agtgaggagg atgactgage etegggatgg ggegeecace ecetgeeetg ecetgaceet 660
 egtgggaact gecaagacea tegecaagee eccaecetag gaaatgggte etaggteeag 720
 gatocaagaa ocacagotta totgocaaca atoccaccat gggcacattt gggactgtto 780
 ggtttttcgt trocgtttt atcttocttt agaaatgttt otgootitgg ggtotaaago 840
 ttttggggat gaaatgggga cocctgctga ttctttctgc ttctaagact ttgccaaatg 901
 contgggto: aagaaaçasa gagaccogot cotocacttt caggtgtaat tigottoogo 960
 tagtotgagg goagagggas eggtoaaaga gggtggcaca gatogcagca cottgagggg 1020
 ctgcgggtct gagggaggag acactcagct cctccctctg agaagtccca agctgagagg 1080
 ggagacetge ecetttecaa ecetgggaaa ecatecagte tgagggagga ggecaaacte 1140
 ccagtgctgg gggtccctgt gcagccctca aacccttcac cttggtgcac ccagccacac 1200
 ctggtggaca caaagetete acategatag gateceatga ggatggteee etteacetgg 1260
 gagaaaagto acccagttta ggagctggag gggggtcttt gtcccccacc cccaaactgc 1320
```

WO 99/60161

```
1347
cctgaaataa acctggagtg agctgcc
<210> 5
<211> 1249
              ....
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> (1034)..(1046)
<400> 5
ggcagagcot gcgcagggca ggagcagctg gcccactggc ggcccgcaac actccgtctc 60
accetetggg eccaetgeat etagaggagg geegtetgtg aggeeactae eccteeagea 120
actgggaggt gggactgtca gaagctggcc cagggtggtg gtcagctggg tcagggacct 180
aacggcacct ggctgggacc acctcgcctt ctccatcgaa gcaggggaag tgggagcctc 240
gagecerege gregaagere accetagee accetreace regacageat gagagretea 300
ggigigatia geolooiggo ecteatetti gecatagica egacatggai gittattega 360
agetacatga getteageat gaaaaceate egtetgeeae getggetgge etegeecaee 420
aaggagatee aggttaaaaa gtacaagtgt ggeeteatea ageeetgeee ageeaactae 480
tttgcgttta aaatctgcag tggggccgcc aacgtcgtgg gccctactat gtgctttgaa 540
gaccgcatga tcatgagtcc tgtgaaaaac aatgtgggca gaggcctaaa catcgccctg 600
gtgaatggaa ccacgggagc tgtgctggga cagaagtcat ttgacatgta ctctggagat 660
gttatgcacc tagtgaaatt cottaaagaa attooggggg gtgcactggt gctggtggcc 720
tectaegacg atecagggae caaaatgaae gatgaaagea ggaaactett etetgaettg 780
gggagtteet acgeaaaaca actgggette egggacaget gggtetteat aggageeaaa 840
gacctcaggg gtaaaagccc ctttgagcag ttcttaaaga acagcccaga cacaaacaaa 900
tacgagggat gccaqacct gctggagatg gagggctgca tgcccccgaa gccattttag 960
ggtggctgtg gctcttcctc agccaggggc ctgaagaagc tcctgcctga cttaggagtc 1020 🕞
agagecegge aggmnnnnn nnnnnnnnn nnnnnntget gegtggaagg tgetgeaggt 1080
cettgeaege tgtgtegege eteteeteet eggaaacaga acceteecae agcacateet 1140
accoggaaga ccageeteag agggteette tggaaccage tgtetgtgga gagaatgggg 1200
tgotttogto agggactgot gacggotggt cotgaggaag gacaaactg
<210> 6
<211> 1220
<212> DNA
<213> Homo sabiens
<400> €
getttetgea ecteatteca cateaggage gtttttggag aaagetgeae tetgttgage 60
tocaggeoge agtggagega gggagtgaag gagetetetg tacccaagga aagtgeaget 120
gagactcaga caagattasa atgaaccaac tcagetteet getgittete atagegacea 180
ccagaggatg gagtacagat gaggctaata cttacttcaa ggaatggacc tgttcttcgt 240
ctccatctct gcccagaage tgcaaggaaa tcaaagacga atgtcctagt gcatttgatg 300
geotgtattt tetoogeact gagaatggtg ttatetacea gaeettetgt gaeatgaeet 360
ctgggggtgg egectggace ctggtggcca gcgtgcacga gaatgacatg cgtgggaagt 420
gcacggtggg cgatcgctgg tccagtcage agggcagcaa agcagtetae ccagaggggg 480
```

4

```
acggcaactg ggccaactac aacacctttg gatctgcaga ggcggccacg agcgatgact 540
 acaagaacco tggctactac gacatccagg ccaaggacct gggcatctgg cacgtgccca 600
 ataagteece catgeageae tggagaaaca geteectget gaggtaeege aeggaeaetg 660
 gettecteca gacactggga cataatetgt ttggcateta ecagaaatat ecagtgaaat 720
 atggagæagg aaagtgttgg actgacaacg gcccggtgat ccctgtggtc tatgattttg 780
 gegacgeeca gaaaacagea tettattaet caccetatgg ceagegggaa tteaetgegg 840
 gatttgttca gttcagggta tttaataacg agagagcage caacgcettg tgtgetggaa 900
 tgagggtcac cggatgtaac actgagcacc actgcattgg tggaggagga tactttccag 960
aggocagtos ocagoagtot ggagattttt otggttttga ttggagtgga tatggaacto 1020
 atqttggtta cagcagcagc cgtgagataa ctgaggcagc tgtgcttcta ttctatcgtt 1080
 gagagtttte tgggagggaa eccagacete tecteccaae catgagatee caaggatgga 1140
 gaacaactta cocaqtagot agaatgttaa tggcagaaga gaaaacaata aatcatattg 1200
                                                                    1220
 actcaaaaaa aaaaaaaaag
 <210 - 7
 <2119 2746
 <211 / DNA
 <213 Hom. sublems
 <400> 7
 cggctcgagg qacaggatga ggcccggcct ctcatttctc ctagcccttc tgttcttcct 60
 tggecaaget geaggggatt tggggggatgt gggaceteca atteccagee eeggetteag 120
 contitudes agricingant chageronay etteageted agetecaggi egggetedag 180
 ctccagccgc agcttaggca gcggaggttc tgtgtcccag ttgttttcca atttcaccgg 240
 ctccgtggat gaccgtggga cctgccagtg ctctgtttcc ctgccagaca ccacctttcc 300
 cgtggacaga gtgcaacct tggaattcac agctcatgtt ctttctcaga agtttgagaa 360
 agaactttoo aaaqtqaqqq aatatgtooa attaattagt gtgtatgaaa agaaactgtt 420
 aaacctaact gtccqaattg acatcatgga gaaggatacc atttcttaca cigaactgga 480
 cttcgagctg atcaapgtag aagtgaagga gatggaaaaa ctggtcatac agctgaagga 540
 gagttttggt ggaageteag aaattgttga eeagetggag gtggagataa gaaatatgae 600
 totottggta gagaagottg agacactaga caaaaacaat gtoottgoca ttogoogaga 660
 aatogtggot otgaaçacca agotgaaaga gtgtgaggoo totaaagato aaaacaccoo 720
 tgtcgtccac cotcotccca otccagggag ctgtggtcat ggtggtgtgg tgaacatcag 780
 caaaccgtct gtggttcagd tcaactggag agggttttct tatctatatg gtgcttgggg 840
 tagggattac ictoccoaço atocasacaa aggactgtat tgggtggcgc cattgaatac 900
agatgggaga ctqttggagi attatagact gtacaacaca ctggatgatt tgctattqta 960
 tataaatgot ogagagttgo ggatoacota tggocaaggt agtggtacag cagtttacaa 1020
 caacaacatg tacçicaaca tgtacaacac egggaatati gecagagita acetgaceae 1080
 caacacgatt gototoacto aaactotoco taatgotoco tataataaco gottttoata 1140
 tgotaatgit gottogoaag atattoactt tgototogat gagaatggat totogottat 1200
 ttattcaact gaagecagea etggtaacat ggtgattagt aaactcaatg acaccacct 1260
 tcaggtgota aacacttggt ataccaagca gtataaacca totgottota acgcottcat 1320
 ggtatgtggg gttctgtatg ccaccogtac tatgaacacc agaacagaag agatttttta 1380
 ctattatgac acaaacacag ggaaagaggg caaactagac attgtaatgc ataagatgca 1440
 ggaaaaagto cagaocatta actataacco tittigaccag aaactitato totataacoa 1500
 tggttacett etgaattatg atettretgt ettgeagaag ecceagtaag etgittagga 1560
 gttagggtga aagagaaaat gtttgttgaa aaaatagtot totooaotta ottagatato 1620
 tgcaggggtg totaaaagtg tgttcatttt qcagcaatgt ttaggtgcat agttstacca 1680
```

```
cactagagat ctaggacatt tgtcttgatt tggtgagttc tcttgggaat catctgcctc 1740
 ttcaggcgca ttttgcaata aagtctgtct agggtgggat tgtcagaggt ctaggggcac 1800
 tgtgggccta gtgaagccta ctgtgaggag gcttcactag aagccttaaa ttaggaatta 1860
 aggaacttaa aactcagtat ggcgtctagg gattctttgt acaggaaata ttgcccaatg 1920
 actagtecte atccatgtag caccactaat tettecatge etggaagaaa eetggggaet 1980
 tagttaggta gattaatate tggageteet egagggacea aateteeaae tttttttee 2040
 cctcactaca cctggaatga tgctttgtat gtggcagata agtaaatttg gcatgcttat 2100
 atattctaca tctgtaaagt gctgagtttt atggagagag gcctttttat gcattaaatt 2160
gtacatggca aataaateee agaaggatet gtagatgagg cacetgettt teettetee 2220
 tcattgtcca ccttactaaa agtcagtaga atcttctacc tcataacttc cttccaaagg 2280
 cageteagaa gattagaace agaettaeta accaatteea ecceceacea accecettet 2340
 actgcctact ttaaaaaaat taatagtttt ctatggaact gatctaagat tagaaaaatt 2400
 aattttettt aattteatta tggaetttta tttacatgae tetaagaeta taagaaaate 2460
 tgatggcagt gacaaagtgc tagcatttat tgttatctaa taaagacctr ggagcatatg 2520
 tgcaacttat gagtgtatca gttgttgcat gtaatttttg cctttgttta agcctggaac 2580
 ttgtaagaaa atgaaaattt aattttttt totaggacga gotatagaaa agotattgag 2640
 agtatotaçı taatoagtgo agtagttgga aacottgotg gtgtatgtga tqtgottotg 2700
 tgettttgaa igaetttate atétagtett tgtetgttit tecsitgatg ticaagteet 2760
                                                                    2796
 agtotatage attggcaett taaatgetti acteec
 <210> 8
 <211> 2331
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> unsure
 <222> (675)
 <400> 8
 tttatcacgg gctcaactgc aacaaaacac ttccttgaca gctccacaaa ctcaggccac 60
 agtgaggaat caacaatati ccacagcage ccagatgcaa gtggaacaac acceteatet 120
 geocacteca caaceteagg tegtggagaa tetacaacet caegeateag tecaggetea 180
 actgaaataa caacgttacc tggcagtacc acaacaccag gcctcagtga ggcatctacc 240
 accttotaca gragococag atoaccagae caaacactot cacctgocag catgagaage 300
¿ tocagoarda giggagaado daccagotig talagodaag dagagidaad adadadada 360
 gegtteectg ecageaceae caesteagge etcagteagg aateaacaae titteeacagt 420
 aagccagget caactgagac aacactgtee eetggeagea teacaactte atettttget 480
 caagaattta ccacccctéa tagccaacca ggctcagete tgtcaacagt gtcacctgee 540
 agcaccacag tgccaggest tagtgaggaa tetaccacet tetacagcag eccaggetea 600
 actgaaacca cagogtttto toacagcaac acaatgtoca ttoatagtoa acaatotaca 660
 ceetteeetg acagneeagg etteacteae acagtgttae etgecaceet cacaaccaca 720
 gacattggto aggaatcase agecttecae ageageteag aegeaaetgg aacaaeaeee 780
 ttacctgccc gctccacagc ctcagacctt gttggagaac ctacaacttt ctacatcagc 840
 ccatccccta cttacacaac actotttcct gcgagttcca gcacatcagg cotcactgag 900
 gaatctacca cottocacae cagtocaago ticacitota caattgigio tacigaaago 960
 ctggaaacct tagcaccagg gttgtgccag gaaggacaaa tttggaatgg aaaacaatgc 1020
 gtotgtocco aaggotacgt tgottaccag tgottgtocc ototggaato ottocctgta 1080
```

```
gaaaccccgg aaaaactcaa cgccacttta ggtatgacag tgaaagtgac ttacagaaat 1140
ttcacagaaa agatgaatga cgcatcctcc caggaatacc agaacttcag taccctcttc 1200
aagaatcgga tggatgtcgt tttgaagggc gacaatcttc ctcagtatag aggggtgaac 1260
attoggagat tgorcaacgg tagcatogtg gtcaagaacg atgtcatcot ggaggcagac 1320
tacactttag agtatgagga actgtttgaa aacctggcag agattgtaaa ggccaagatt 1380
atgaatgaaa ctagaacaac tottottgat cotgattoot gcagaaaggo caractgtgo 1440
tatagtgaag aggacacttt cgtggattca tcggtgactc cgggctttga cttccaggag 1500
caatgcaccc agaaggctgc cgaaggatat acccagttct actatgtgga tgtcttggat 1560
gggaagctgg cctgtgtgaa caagtgcacc aaaggaacga agtcgcaaat gaactgtaac 1620
ctgggcacat gtcagctgca acgcagtgga cccccgctgc ctgtgcccaa atacgaacac 1680
acactggtac tggggagaga cctgtgaatt caacatcgcc aagagcctcg tgtatgggat 1740
cgtgggggct gtgatggcgg tgctgctgct cgcattgatc atcctaatca tcttattcag 1800
cctatcccag agaaaacggc acagggaaca gtatgatgtg cctcaagagt ggcgaaagga 1860
aggcacccct ggcatcttcc agaagacggc catctgggaa gaccagaatc tgagggagag 1920
cagattegge ettgagaacg ectacaacaa etteeggeee accetggaga etgttgacte 1980
tggcacagag etecacates agaggeegga gatggtagea tecactgtgt gagseaacgg 2040
gggcctccca ccctcatcta gctctgttca ggagagctgc aaacacagag cccaccacaa 2100
gcctccgggg cgggtcaaga ggaqaccgaa gtcaggcct gaagccggtc ctgctctgag 2160
ctgacagact tggccagtes ectgectgtg etectgetgg ggaaggetge gggctgtaag 2220
cetetecate egggagette cagactecca gaageetegg cacecetgte teeteetggg 2280
tggctcccca ctctggaatt tccctaccaa taaaagcaaa tctgaaagct c
                                                                  2331
<210> 9
<211> 909
<212> DNA
<213> Homo sapiens
<400> 9
gaggaggtgg gegecaacag acaggegatt aatgeggete ttacceagge aaccaggaet 60
acagtataca ttgtggacat tcaggacata gattctgcag ctcgggcccg acctcactcc 120
tacctcgatg cctactttgt cttccccaat gggtcagccc tgacccttga tgagctgagt 180
gtgatgatcc ggaatgatca ggactcgctg acgcagctgc tgcagctggg gctggtggtg 240
ctgggctccc aggagagcca ggagtcagac ctgtcgaaac agctcatcag tgtcatcata 300
ggattgggag tggctttcct gctgqtcctt gtgatcatga ccatggcctt cgtgtgtgt 360
cggaagaget acaaccggaa getteaaget atgaaggetg ceaaggagge caggaagaca 420
gcagcagggg tgatgccctc agcccctgcc atcccaggga ctaacatgta caacactgag 480
cgagccaace ccatgetgaa ectecccaac aaagacetgg gettggagta ecteteee 540
tecaatgace tggactetgt cagegteaac tecetggacg acaactetgt ggatgtggae 600
aagaacagto aggaaatcaa ggagcacagg ccaccacaca caccaccaga gccagatcca 660
gageceetga gegtggtest gttaggaegg eaggeaggeg eaagtggaea getggagggg 720
ccatcctaca ccaacgetgg cetggacace aeggacetgt gaeaggggee eccaetette 780
tggacccctt gaagaggccc taccacaccc taactgcacc tgtctccctg gagatgaaaa 840
tatatgacge tgecetgest ectgettttg gecaateaeg geagacaggg gttggggaaa 900
                                                                  909
tattttatt
<210> 10
<211> 510
<212> PRT
```

<213> Homo sapiens

< 400)> 10	0		•											
Met 1	Arg	Pro		Ъеч _ 5	Ser	Phe	Leu	Leu	Ala 10	Leu	Leu	Phe	Phe	Leu 15	Gly
Gln	Ala	Ala	Gly 20	Asp	Leu	Gly	Asp	Val 25	Gly	Pro	Pro	Ile	Pro 30	Ser	Pro
Gly	Phe	Ser 35	Pro	Phe	Pro	Gly	Val 40	Asp	Ser	Ser	Ser	Ser 45	Phe	Ser	Ser
Ser	Ser 50	Arg	Ser	Gly	Ser	Ser 55	Ser	Ser	Arg	Ser	Leu 60	Gly	Ser	Gly	Gly
Ser 65	Val	Ser	Gln	Leu	Phe 70	Ser	Asn	Phe	Thr	Gly 75	Ser	Val	Asp	Asp	Arg 80
Gly	Thr	Cys	Gln	Cys 85	Ser	Val	Ser	Leu	Pro 90	Asp	Thr	Thr	Phe	Pro 95	Val
Asp	Arg	Val	Glu 100	Arg	Leu	Glu	Phe	Thr 105	Ala	His	Val	Leu	Ser 110	Gln	Lys
Phe	Glu	Lys 115	Glu	Leu	Ser	Lys	Val 120	Arg	Glu	Tyr	Val	Gln 125	Leu	Ile	Ser
Val	Tyr 130	Glu	Lys	Lys	Leu	Leu 135	Asn	Leu	Thr	Val	Arg 140	Ile	Asp	Ile	Met
Glu 145	Lys	Asp	Tnr	Ile	Ser 150	Tyr	Thr	Glu	Leu	Asp 155	Phe	Glu	Leu	Ile	Lys 160
Val	Glu	Val	Lys	Glu 165	Met	Glu	Lys	Leu	Val 170	Ile	Gln	Leu	Lys	Glu 175	Ser
Phe	Gly	Gly	Ser 180	Ser	Glu	Ile	Val	Asp 185	Gln ,	Leu	Glu	Val	Glu 190	Ile	Arg
Asn	Met	Thr 195	Leu	Leu	Val	Glu	Lys 200	Leu	Glu	Thr	Leu	Asp 205	Lys	Asn	Asn
Val	Leu 210	Ala	Ile	Arg	Arg	Glu 215	Ile	Val	Ala	·Leu	Lys 220	Thr	Lys	Leu	Lys
Glu 225	Cys	Glu	Ala	Ser	Lys 230	Asp	Gln	Asn	Thr	Pro 235	Val	Val	His	Pro	Pro 240

Pro Thr Pro Gly Ser Cys Gly His Gly Gly Val Val Asn Ile Ser Lys 250 245 Pro Ser Val Var Gln Leu Asn Trp Arg Gly Phe Ser Tyr Leu Tyr Gly 265 Ala Trp Gly Arg Asp Tyr Ser Pro Gln His Pro Asn Lys Gly Leu Tyr 275 280 Trp Val Ala Pro Leu Asn Thr Asp Gly Arg Leu Leu Glu Tyr Tyr Arg 295 Leu Tyr Asn Thr Leu Asp Asp Leu Leu Leu Tyr Ile Asn Ala Arg Glu 315 310 Leu Arg Ile Thr Tyr Gly Gln Gly Ser Gly Thr Ala Val Tyr Asn Asn 325 Asn Met Tyr Val Asn Met Tyr Asn Thr Gly Asn Ile Ala Arg Val Asn 345 34C Leu Thr Thr Asn Thr Ile Ala Val Thr Gln Thr Leu Pro Asn Ala Ala 365 360 355 Tyr Asn Asn Arg Phe Ser Tyr Ala Asn Val Ala Trp Gln Asp Ile Asp 375 370 . Phe Ala Val Asp Glu Asp Gly Leu Trp Val Ile Tyr Ser Thr Glu Ala 395 Ser Thr Gly Asn Met Val Ile Ser Lys Leu Asn Asp Thr Thr Leu Gln 410 405 Val Leu Asn Thr Trp Tyr Thr Lys Gln Tyr Lys Pro Ser Ala Ser Asn 425 420 Ala Phe Met Val Cys Gly Val Leu Tyr Ala Thr Arg Thr Met Asn Thr 440 445 435 Arg Thr Glu Glu Ile Phe Tyr Tyr Tyr Asp Thr Asn Thr Gly Lys Glu 455 460 450 Gly Lys Leu Asp Ile Val Met His Lys Met Gln Glu Lys Val Gin Ser 475 465 470 Ile Asn Tyr Asn Pro Phe Asp Gln Lys Leu Tyr Val Tyr Asn Asp Gly 490 -485

Tyr Leu Leu Asn Tyr Asp Leu Ser Val Leu Gln Lys Pro Gln 500 505 510

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/10498

		·						
IPC(6)	SSIFICATION OF SUBJECT MATTER C12Q 1/68; G01N 33/53, 33/574							
US CL	435/4, 6, 7.1	ational classification and IPC						
	According to International Patent Classification (IPC) or to both national classification and IPC							
B. FIEL	DS SEARCHED	by classification symbols)						
Minimum de	ocumentation searched (classification system followed	by viasainoulou symbols,						
•	U.S.: 435/4, 6, 7.1 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched							
Documentat	in the heigs searched							
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)								
Flectronic d	Electronic data base consulted during the international search (name of data base and, where products are products of the search, HCAPLUS, medline, biosis, membase, wpids, jiest-eplus, biobusiness, biotechds, phin, phic, embal							
Scisearch,	HCAPLUS, medime, biosis, membase, whiles, liest-ep	hing, ninnegittano, aramanan kami kami						
C. DOC	UMENTS CONSIDERED TO BE RELEVANT							
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.					
Х	WO 96/39419 A1 (HUMAN GENO December 1996, see entire document.	ME SCIENCES, INC.) 12	1-5					
	December 1990, acc charte document.	-						
-								
_								
			1. 4					
			•					
		,						
	·							
		·						
		:						
Furth	ner documents are listed in the continuation of Box C.							
	ecial categories of cited documents:	"T" later document published after the inte date and not in conflict with the appl	ication but cited to understand					
"A" do	cument defining the general state of the art which is not considered be of particular relevance	the principle or theory underlying the "X" document of particular relevance; th	e claimed invention cannot be					
'E' cas	red to involve an inventive step							
L do	e claimed invention cannot be							
,O, qo	step when the document is h documents, such combination he art							
P• do	ı family							
	actual completion of the international search	Date of mailing of the international sea	arch report					
16 AUGU	JST 1999	10 SEP 1999						
Box PCT	mailing address of the ISA/US oner of Patents and Trademarks	NANCY JOHNSON TOL						
Washingto	on, D.C. 20231	Telephone No. (703) 308-0196	-					
l Egonia-il- b	via (703) 305-3230	. • · • • • · • · · · · · · · · · · · ·						

Form PCT/ISA/210 (second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/10498

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
<u>:</u>
2. X Claims Nos.: 6 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
The sequence listing in computer readable form did not comply with required standards. The disc could not be preocessed. Thus, a search of claim 6, drawn to SEQ ID NO:3, 4, 5 or 7, could not be carried out.
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest.
Remark on Protest The additional search fees were accompanied by the approach protest. No protest accompanied the payment of additional search fees.

THIS PAGE BLANK (USPTO)