2018/6/11 Bayes

概率模型的数学基础

1. <u>Bayes 公式</u> (appendix probability and information theory.ipynb)

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$

问题:掷硬币,得到8次正面朝上,4次正面朝下,求硬币正反面的概率?

2. 数学推导

问题: 已知经验数据 $S = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$, 若此后给定一个新的 x 怎样预测它对应的 y 值?

我们把 $[x_1, x_2, ..., x_n]$ 和 $[y_1, y_2, ..., y_n]$ 分别看做是n维随机变量 $\mathcal{X} \equiv [X_1, ..., X_n]$ 和 $\mathcal{Y} \equiv [Y_1, ..., Y_n]$ 的一次采样结果 ((注意: 各个 X_i, Y_i 本身也可以是多维的)

基于**i.i.d** (independent, identical distribution)假设, 我们认为描述 \mathcal{X}, \mathcal{Y} 的"**真实"**概率分布 $\mathcal{Q}(\mathcal{X}, \mathcal{Y})$ 满足:

$$Q(\mathcal{X}, \mathcal{Y}) \equiv \prod_{i} q(X_i, Y_i)$$

不难证明,此时我们也有

$$Q(\mathcal{Y}|\mathcal{X}) \equiv \prod_{i} q(Y_{i}|X_{i})$$

而若给定一个新的x,它对应的y预测值,由如下期望值决定:

$$\langle y \rangle = \int y * q(y|x) dy$$
 (1)

我们试图用某种理论模型 $\mathcal{P}(\mathcal{Y}|\mathcal{X},\theta) \equiv \prod_i p(Y_i|X_i,\theta)$ 来逼近 $Q(\mathcal{Y}|\mathcal{X})$,即

$$\mathcal{P}(\mathcal{Y}|\mathcal{X},\theta) \equiv \prod_{i} p(Y_{i}|X_{i},\theta) \to \mathcal{Q}(\mathcal{Y}|\mathcal{X}) \equiv \prod_{i} q(Y_{i}|X_{i}) \tag{2}$$

显然当上述条件满足, 可用 $p(y|x,\theta)$ 来近似 (1)式中的 q(y|x),

定义

$$\mathcal{P}(\theta|\mathcal{X},\mathcal{Y}) \equiv \prod_i p(\theta|X_i,Y_i)$$

它表示在选定理论模型下,若已知 $\{X_i\}$, $\{Y_i\}$, 那么 θ 的取值概率是多少。

Bayes inference

2018/6/11 Ba

由于我们已知一组经验数据 $\{(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)\}$,因此在已知的信息条件下, θ 的概率为

$$\mathcal{P}(\theta|\{x_i\},\{y_i\}) \equiv \prod_i p(\theta|x_i,y_i) = \prod_i \left(\frac{1}{C_i} p(y_i|x_i,\theta) p(\theta)\right)$$
(3)

其中 C_i 是归一化系数,定义为

$$C_i = \int p(y_i | x_i, \theta) p(\theta) d\theta$$

因此, 用 $p(y|x,\theta)$ 近似 q(y|x), 同时考虑到 θ 本身的概率性, (1)式可化为:

$$\langle y \rangle \approx \int y * p(y|x, \theta) \mathcal{P}(\theta|\{x_i\}, \{y_i\}) dy d\theta = \frac{1}{C} \int y * p(y|x, \theta) \prod_i [p(y_i|x_i, \theta)p(\theta)] dy d\theta$$
 (4)

其中 $C \equiv \prod_i C_i$ 是整体的归一化系数, $p(\theta)$ 是选定的 prior distribution. 一般来说,我们在选择 $p(\theta)$ 时应当考虑以下几个方面:

- 能够反映我们关于heta 的 naive belief
- 数学表达式具有较好的拟合能力 (capacity)
- 数学表达式在推解析导中较容易计算 (详见概率论中conjugate prior (appendix probability and information theory.ipynb)的概念)

注意这个公式允许我们在没有"模型训练"的前提下,就可以直接进行预测 ("空手套白狼"), 预测的好坏取决于我们选择的"泛型" $p(y|x,\theta)$ 函数形式与实际问题的匹配程度

"鞍点"近似 (MAP, maximum posteriori)

实际应用中,(4)的数值计算过于困难。为简化计算,我们进一步引入"鞍点"近似,即我们仅考虑(3)中 θ^* 的贡献,其中 θ^* 对应 $\mathcal{P}(\theta|\{x_i\},\{y_i\})$ 的峰值位置,即

$$\theta^* = \underset{\theta}{\operatorname{argmax}} \mathcal{P}(\theta | \{x_i\}, \{y_i\}) = \underset{\theta}{\operatorname{argmax}} \frac{1}{n} \log \mathcal{P}(\theta | \{x_i\}, \{y_i\})$$

$$= \underset{\theta}{\operatorname{argmax}} \frac{1}{n} \log \prod_{i=1}^{n} (p(y_i | x_i, \theta) p(\theta))$$

$$= \underset{\theta}{\operatorname{argmax}} [S(\theta) + \log p(\theta)]$$

$$S(\theta) \equiv \frac{1}{n} \sum_{i=1}^{n} \log p(y_i | x_i, \theta)$$
(5)

其中 $S(\theta)$ 是 Maximum Likelihood 项, $\log p(\theta)$ 项相当于"正则化"

$$\langle y \rangle \approx \int y * p(y|x, \theta) * \delta(\theta - \theta^*) dy d\theta = \int y * p(y|x, \theta^*) dy$$
 (6)

3. 重要关系

与正则化的关系

 $\log p(\theta)$ 相当于正则化项,例如:取 $p(\theta)$ 为正态分布,则得到 Ridge 正则化

2018/6/11 Bayes

与 MLE的关系 (Maximum Likelihood Estimation)

当 $p(\theta)$ 是一个 trivial 的 **uniform** 分布时,有

$$\underset{\theta}{\operatorname{argmax}} \mathcal{P}(\theta | \{x_i\}, \{y_i\}) = \underset{\theta}{\operatorname{argmax}} \mathcal{P}(\{y_i\} | \{x_i\}, \theta)$$

即,没有正则化项时,MAP"退化为"MLE

与KL散度的关系 (Kullback-Leibler divergence)

 $\underset{\theta}{\operatorname{argmax}} S(\theta)$ 可视为一个KL divergence项:

定义"经验"概率分布为 $q_e \equiv \frac{1}{n} \sum_i \delta(x - x_i) \delta(y - y_i)$ 则:

与MSE 的关系 (线性回归,逻辑回归)

同样基于i.i.d.假设,我们认为单次采样的model分布具有如下高斯形式:

$$p(y|x, \theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(f(x, \theta) - y)^2}{2\sigma^2}\right]$$

则

$$\theta^* = \operatorname{argmin} S_{\theta} = \operatorname{argmin} \left(\sum_{i=1}^n \frac{1}{n} \|f(x_i, \theta) - y_i\|^2 \right)$$

这个结论和前文model first"决定论"框架中基于 minimize training error $R_{\rm emp}(\alpha)$ 的形式一致 求得最优参数 θ^* 后,给定输入x,预测值v 为:

$$\langle y \rangle = \int y \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(f(x,\theta^*) - y)^2}{2\sigma^2}\right] dy = f(x,\theta^*)$$