EXPLOITER UN MODÈLE THÉORIQUE

note le numéro obtenu. L'univers est :

 $\Omega = \dots$

1

On rappelle les propositions suivantes très importantes :

Proposition. – Une probabilité est un nombre réel compris entre ... et ...

Proposition. – La somme des probabilités de toutes les issues d'une expérience aléatoire est égale à . .

Définition. – Une loi de probabilité est définie en associant à chaque une une expérience aléatoire, c'est faire le choix d'une telle loi.

Remarque. – On présente très souvent une loi de probabilité sous forme d'un tableau. Par exemple, le tableau suivant modélise le gain d'un jeu de grattage :

Gain (en XPF)	0	100	200	500	1000
Probabilité	0,5	0,3	0,1	0,09	0, 01

Définition et proposition. – Si toutes les issues d'une expérience aléatoire ont la même probabilité de se réaliser, alors on dit qu'il s'agit d'une

Dans ce cas, si l'univers est composé de *n* issues, la probabilité de chaque issue vaut

Exemple. – On lance un dé **équilibré** à six faces numérotées de 1 à 6 et on note le numéro obtenu.

Puisque le dé est supposé, il s'agit d'une La probabilité d'obtenir chaque numéro est égale à

6

Proposition. – La probabilité d'un événement est la somme des probabilités des					
Exemples. – Déterminer la probabilité des événements « obtenir un gain inférieur ou égal à 200 XPF » (exemple du jeu de grattage) et « le numéro obtenu est supérieur ou égal à 4 » (exemple du dé équilibré).					

Proposition. -

- La probabilité d'un événement impossible (un événement qui n'est réalisé par aucune issue) vaut ...
- La probabilité d'un événement certain (un événement réalisé par toutes les issues) vaut . .

6/6