2011-(05)maj-11: dag 29

Mer om grafer

Fortsättning på (hörn)färgning av grafer

Kromatiska polynomet, $P_G(\lambda)$

Matchning i grafer

Fullständig och maximal matchning

Bipartita grafer

Halls sats (giftermålssatsen)

Utökande alternerande stigar

Maximal matchning i bipartita grafer

Distinkta representater (tramsversalerna)

Övnings-KS 5

Tentaanmälan senast söndag.

Om kromatiska polynomet för en graf G = (V, E):

 $P_G(\lambda)$ — antalet sätt att hörnfärga grafen G med λ färger.

Exempel:

G ett träd T = (V, E)

de andra (bara en granne bland resten färgadem ty inga cykler).

Exempel: C₃:

$$P_{C_3}(\lambda) = \lambda_1(\lambda - 1)(\lambda - 2)$$

Rekursion för att finna $P_G(\lambda)$:

Låt $e \in E i G = (V, E)$

Låt G - e: G med e borttagenG/e: G med e kontraherad

$$D\mathring{a}\ P_{G-e}(\lambda) = P_G(\lambda) + P_{G/e}(\lambda) \qquad \text{(additionsprincipen)}$$

$$u,\ v\ olika\ f\"{a}rg. \qquad u,\ v\ samma\ f\"{a}rg.$$

$$\begin{cases} P_{G}(\lambda) = P_{G-e}(\lambda) - P_{G/e}(\lambda) \\ P_{(V, \emptyset)}(\lambda) = \lambda^{|V|} \end{cases}$$

ger en rekursion över antalet kanter i grafen.

Med induktion (över antalet kanter) kan då visas:

$$\begin{cases} P_G(\lambda) \text{ är ett polynom i } \lambda. \\ & \text{höstagradstermen:} \qquad \lambda^{|V|} \\ & \text{nästagradstermen:} \qquad -|E|\lambda^{|V|-1} \\ & \text{koefficienterna är heltal, alternerande} \geq 0, \leq 0. \end{cases}$$

 $\chi(G)$: det minsta $\lambda = 0, 1, 2, ...$ så att $P_G(\lambda) \neq 0$.

Exempel:

$$P_{C_{n}}(\lambda) = P_{T_{n}}(\lambda) - P_{C_{n-1}}(\lambda) =$$

$$= \lambda(\lambda - 1)^{n-1} - P_{C_{n-1}}(\lambda) =$$

$$= (\lambda - 1)^{n} + (\lambda - 1)^{n-1} - P_{C_{n-1}}(\lambda)$$

Det vill säga

$$\begin{split} P_{C_n}(\lambda) - (\lambda - 1)^n &= -(P_{C_{n-1}}(\lambda) - (\lambda - 1)^{n-1}) &= \\ &= (-1)^{n-3}(P_{C_n}(\lambda) - (\lambda - 1)^3) &= \\ &= (-1)^{n-3}(\lambda(\lambda - 1)(\lambda - 2) - (\lambda - 1)^3) &= \\ &= (-1)^n(\lambda - 1) \end{split}$$

Så:

$$P_{C_n}(\lambda) = (\lambda - 1)^n + (-1)^n(\lambda - 1)$$

$$P_{C_n}(0) = 0 = P_{C_n}1$$

$$P_{C_n}(2) = 1^n + (-1)^n \cdot 1^n = 1 + (-1)^n = \begin{cases} 2 & \text{n jämnt} \\ 0 & \text{n udda} \end{cases}$$

Matchning i grafen G = (V, E)

en delmängd M till E (M \subseteq E) med parvis disjunkta kanter ($\delta(v) \le 1$).

Fullständig matchning, alla hörn ingår i en kant $M = \{e_1, e_2, e_3\}$.

Maximal matchning |M| maximal

Vi talar här om matchning i bipartita grafer, $G = (X \sqcup Y, E)$.

För dem kallar vi en matchning fullständig om $|M| = |X| \le |Y|$.

Halls sats: (giftermålssatsen)

En bipartit graf $G = (X \sqcup Y, E)$ har en fullständig matchning omm

$$|P(A)| \ge |A|$$
 för alla $A \subseteq X$

där

$$P(A) = \{y \in Y \mid \{x, y\} \in E, \text{ något } x \in X\}$$

Bevis för Halls sats:

- ⇒: Klart (P(A) innehåller alla som de i A matchas med).
- \leftarrow : Det räcker att visa att (om villkoret är uppfyllt) om en matchning M har m = |M| < |X|, finns en matchning M' med |M'| = m + 1.

Vi skall finna en utökande alternerande stig i G.

Låt $x_0 \in X$ vara omatchat (i M).

 $|P(\{x_0\})| \ge |\{x_0\}| = 1$, så det finns en kant till x_0y , i M annars $x_1y_1 \in M$, $x_1 \ne x_0$. $|P(\{x_0, x_1\}| \ge |\{x_0, x_1\}| = 2$ så det finns $y_2 \ne y_1$, så att $x_0y_2 \in E$ eller $x_1y_2 \in E$ och $\notin M$.

Man finner olika y_1 , y_2 , ... med en alternerande stig x_0 , ..., y_i .

varannan kant i M, varannan inte.

Tar slut med att något y_n är omatchat.

Byt matchat-omatchat i stigen $x_0, ..., y_n!$ Ger M' med |M'| = m + 1. Sats:

En maximal matchning M av en bipartit graf har storlek $|M| = |X| - \delta(G)$

$$\delta(G) = \max_{A \subseteq X} \{|A| - |P(A)|\} \ge 0$$
, G:s defekt (G:s underskott)

Ty:

$$\delta(G) \ge 0$$
, ty $A \ne \emptyset$ ger $|A| - |P(A)| = 0$

 $\delta(G) = 0$ omm villkoret i Halls sats är uppfyllt.

Om $\delta(G) > 0$: Utvidga G till G* = (X U (Y U D), E*) enligt

Då är
$$|P^*(A)| = |P(A)| + |D| =$$
$$A \neq \emptyset$$
$$= |P(A)| + \delta(G) \ge$$
$$\ge |A| - \delta(G) + \delta(G) = |A|$$

G* har en fullständig matchning M* (Halls sats) som ger en matchning med $|M| \ge |X| - \delta(G)$ i G och minst $\delta(G)$ är omatchad:

$$|A_0| = |P(A_0)| + \delta(G)$$
, $n = X$

Sats:

En matchning M i en bipartit graf G är maximal omm det inte finns en utökande alternerande stig för M i G. (Ger en algoritm för att finna maximal matchning.)

Ty:

- ⇒: Klart (en utökande alternerande stig utökar matchningen).
- ←: Om M inte är maximal, låt M* vara det, |M*| > |M|.
 Vi skall visa att det finns en utökande alternerande stig.

Betrakta $G' = (X \sqcup Y, F)$, valenser 0, 1, 2 (inga andra) inte två kanter i M eller två kanter i M* till ett hörn.

G':s komponenter är alternerande stigar eller cykler, någon av dem har fler kanter från M*. En utökande alternerande stig för M.

