电磁学期中考试 A 卷 (06年10月28日)

系 学号		成绩	
一、填空题:(40分,每空2分)			
1 在均匀电场中各点电势梯度是否相等	等?是 各点的电	」势是否相等?	_否。
2. 麦克斯韦电磁场方程是	$\iint_{S} \vec{D} \cdot d\vec{S} = \iiint_{V} \rho dV$,	
$\iint_{S} \vec{D} \cdot d\vec{S} = \iiint_{V} \rho dV$, ∯ _s	$\vec{D} \cdot d\vec{S} = \iiint_{V} \rho dV$,
	$\ddot{S} = \iiint_{V} \rho dV$	•••	
3. 面积为 S 和 $2S$ 的两圆线圈 1 、2 如时的电流所产生的通过线圈 2 的磁通用 Φ 1 的磁通用 Φ_{12} 表示,则 Φ_{21} 和 Φ_{12} 的	21表示,线圈2的电流	听产生的通过线	$ \begin{array}{c c} I & I \\ \hline S & 2S \end{array} $
4. 一平行板空气电容器的两极板都是电场强度的变化率为 dE/dt 。若略去边是 $_{} \varepsilon_0 \pi R^2 dE/dt$			V
5. 一块半导体样品中通有电流 I ,置于 $V_a>V_b$,则此材料中流子是负电			\bar{B} V_b
6. 如右图所示的载流导线线圈,(1) (2)o 点的磁感应强度 $(\mu_0 I/4)(1/R)$	`	$(R_1^2 - \pi R_2^2)/2I$ o	R_{O} R_{2} I
7. 如图所示,在某一区域内,有正交的场强度为 600 伏特/米。若电子在其中位	作匀速直线运动,则电 _于		⊕ ↓E
8. (6分)如图所示,三块金属板 A、B、A 和 B 相距 4.0毫米,A 和 C 相距 2.0 都接地。如果使 A 板带正电,电量为 2.0 边缘效应。试求:金属板 B 和 C 上的 2.0 Q _B =	毫米, B和C两板 3.0×10 ⁷ 库仑,并忽略 感应电量。	, 	
U_A = $(1.0*10^{-4}/8.85*10^{-12})*1.0*10^{-3}$ = 2.25 9. 碳膜电位器中的碳膜,它是由蒸敷在	在绝缘基片上厚为 t, 内		
为 r_1 , 外半径为 r_2 的一层碳构成。 A 角为 α , 电流沿圆周曲线流动,设碳的			α

电阻____R = $\frac{\rho\alpha}{t\ln(r,/r_1)}$ ___。如果电流沿径向流动,则沿径向

的电阻为 $R = \frac{\rho}{\alpha t} \ln(r_2/r_1)$ __°

二、计算题 (60 分, 每题 15 分)

1. 如图,一无限长圆柱形直导线外包一层相对磁导率为 μ_r 的圆筒形均匀磁介质,导线半径为 R_I ,磁介质的外半径为 R_2 ,导线内通有恒定电流I,方向垂直于纸面向外,且电流沿导线横截面均匀分布,试求:

- (1) 介质内、外的磁场强度和磁感应强度的分布。
- (2) 介质内、外表面的磁化面电流密度 i'。

解:

(1)
$$r < R_1$$
: $H = \frac{Ir}{2\pi R_1^2}$, $B = \frac{\mu_0 Ir}{2\pi R_1^2}$
 $R_2 > r > R_1$: $H = \frac{I}{2\pi r}$, $B = \frac{\mu_0 \mu_r I}{2\pi r}$
 $r > R_2$: $H = \frac{I}{2\pi r}$, $B = \frac{\mu_0 I}{2\pi r}$

(2)
$$r = R_1$$
: $i' = \frac{(\mu_r - 1)I}{2\pi R_1}$;
 $r = R_2$: $i' = \frac{(\mu_r - 1)I}{2\pi R_2}$

- 2. 如图,平行板电容器极板面积为 S,两板间距为 d,接电源,极板间电压为 U_0 ,充电后不断开电源,插入相对介电常数为 ε_r 的均匀介质,并充满电容器的一半,忽略边缘效应。试求:
- (1) 电容器中的 E_1 , E_2 , D_1 , D_2 , σ_1 , σ_2 ;
- (2) 与未插入介质时相比,系统能量的改变 ΔW 。

解:

$$(1) \quad E_1 = E_2 = \frac{U_0}{d}, \quad D_1 = \varepsilon_0 \varepsilon_r \frac{U_0}{d}, \quad D_2 = \varepsilon_0 \frac{U_0}{d}$$

$$\sigma_1 = \varepsilon_0 \varepsilon_r \frac{U_0}{d}, \quad \sigma_2 = \varepsilon_0 \frac{U_0}{d}$$

(2)
$$\Delta W = \frac{\varepsilon_0 (\varepsilon_r - 1) S U_0^2}{4d}$$

3. 如图所示, $R_1 = R_2 = R_3 = 2 \Omega$, $\epsilon_2 = 2$ 伏特, $L = 10^3$ 亨利, $C = 10^3$ 法拉,稳态时通过 R_2 的电流为零。求通过的 R_1 电流 I_1 是多少?电源电动势 ϵ_1 =是多少伏特?电感 L 中储存的磁能及电容 C 上储存的电能为多少焦耳?

$$W_L = \frac{1}{2}LI^2 = 0.5 \times 10^{-3} \times 1 = 5.0 \times 10^{-4}J$$

$$W_C = \frac{1}{2}CU^2 = 0.5 \times 10^{-3} \times 2^2 = 2.0 \times 10^{-3} J$$

- 4. 如图,一无限长直导线通有交变电流 $i=I_0\sin\omega t$,矩形线圈 ABCD 与它共面,AB 边与直导线平行,线圈长为 l,AB 边和 CD 边到直导线的距离分别为 a 和 b ,求:
 - (1) 通过矩形线圈所围面积的磁通量;
 - (2) 矩形线圈中的感应电动势。

解:

$$(1) \Phi = \frac{\mu_0 l}{2\pi} \ln \frac{b}{a} I_0 \sin \omega t,$$

(2)
$$\varepsilon = -\frac{\mu_0 l\omega}{2\pi} \ln \frac{b}{a} I_0 \cos \omega t$$

