18. Собствени вектори и инвариантни подпространства на линеен оператор.

Александър Гуров 17 януари 2023 г.

Определение 18.1

Характеристичният полином на квадратна матрица $A \in M_{n \times n}(F)$ от ред n е

$$f_A(x) = det(A - xE_n) = \begin{vmatrix} a_{11} - x & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - x & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - x \end{vmatrix}$$

$$= (-1)^n x^n + (-1)^{n-1} (a_{11} + a_{22} + \dots + a_{nn}) x^{n-1} + \dots + det(A).$$

Корените на $f_A(x) = 0$ се наричат характеристични корени на A.

Лема 19.2

Ако $A \in M_{n \times n}(F)$) и $B = T^{-1}AT \in M_{n \times n}(F)$ са подобни матрици, то характеристичните полиноми $f_A(x) = f_B(x)$ на A и B съвпадат.

Доказателство

$$f_B(x) = det(B - xE_n) = det(T^{-1}AT - T^{-1}(xE_n)T)$$

$$= det(T^{-1})det(A - xE_n)det(T) = det(T^{-1}T)det(A - xE_n)$$

$$= det(E_n)det(A - xE_n) = det(A - xE_n) = f_A(x)$$

Определение 18.3

Нека $\varphi:V\to V$ е линеен оператор в крайномерно пространство V над поле F. Характеристичният полином на матрицата на φ спрямо един, а оттам и всеки един базис на V се нарича характеристичен полином на φ и се бележи с $f_{\varphi}(x)$. Характеристичните корени на φ са корените на $f_{\varphi}(x)$.

Определение 18.4

Собствен вектор на линеен оператор $\varphi: V \to V$ е ненулев вектор $v \in V \setminus \{\vec{\mathcal{O}}_V\}$ с $\varphi(v) = \lambda v$ за някое $\lambda \in F$. Казваме, че λ е собствена стойност на φ , отговаряща на собствения вектор v.

Лема 18.5

Нека $\varphi:V\to V$ е линеен оператор в крайномерно линейно пространство V над поле F. Тогава собствените стойности на φ съвпадат с характеристичните корени на φ от F.

<u>Доказателство</u> Хомогенна система линейни уравнения $Mx = \mathbb{O}_{n \times 1}$ с квадратна матрица коефициенти $M \in M_{n \times n}(F)$ има ненулево решение тогава и само тогава, когато размерността на пространството е n - rk(M) > 0, еквивалентно на rk(m) < n, което е изпълнено единствено при det(M) = 0.

Нека $e=(e_1,...,e_n)$ е базис на V и $A\in M_{n\times n}(F)$ е матрицата на φ спрямо базиса e на V. За произволен ненулев вектор $v\in V\setminus\{\vec{\mathcal{O}}_V\}$ с координати $x\in M_{n\times 1}(F)\setminus\mathbb{O}_{n\times 1}$ спрямо базиса e е вярно $\varphi(v)=\varphi(ex)=\varphi(e)x=(eA)x=e(Ax)$. Следователно v е собствен вектор на φ , отговарящ на собствена стойност $\lambda\in F$ тогава и само тогава, когато

$$e(Ax) = \varphi(x) = \lambda v = \lambda(ex) = e(\lambda x)$$

По Лема 15.3 (ii) и свойствата на единичната матрица $E_n \in M_{n \times n}(F)$, горното е еквивалентно на $Ax = \lambda x = \lambda(E_n x) = (\lambda E_n) x$ и е в сила точно когато хомогенната система линейни уравнения $(A - \lambda E_n) x = Ax - (\lambda E_n) x = O_{n \times 1}$ има ненулево решение $x \in M_{n \times 1}(F) \setminus O_{n \times 1}$. Последното условие е равносилно на $0 = \det(A - \lambda E_n) = fA(\lambda)$ на детерминантата на матрицата от коефициенти $A - \lambda E_n \in M_{n \times n}(F)$, която съвпада със стойността $f_{\varphi}(\lambda) = fA(\lambda) = 0$ на характеристичния полином $f_{\varphi}(x)$ на φ в $\lambda \in F$. По този начин установихме, че $\lambda \in F$ е собствена стойност на φ тогава и само тогава, когато λ е характеристичен корен на φ , който принадлежи на F.

Твърдение 18.6

Нека $\lambda_1,...,\lambda_n$ са различни собствени стойности на линеен оператор $\varphi:V\to V$ в пространство V над поле F. За всяко $1\le i\le n$ да предположим, че $v_{i,1},...,v_i,k_i\in V$ са линейно независими собствени вектори на φ , отговарящи на собствената стойност λ_i . Тогава системата вектори

$$v_{i,j}|1 \le j \le k_i, 1 \le i \le n$$

е линейно независима. В частност, ако $v_1,...,v_n$ са собствени вектори на φ , отговарящи на различни собствени стойности $\lambda_1,...,\lambda_n$, то $v_1,...,v_n$ са линейно независими, защото всеки от тези собствени вектори е ненулев, а оттам и линейно независим.

Доказателство С индукция по броя n на собствените стойности на φ - $\lambda_1,...,\lambda_n$, за n=1 твърдението е изпълнено. В общия случай: Да разгледаме линейна комбинация

$$\sum_{i=1}^{n} \sum_{j=1}^{k_i} \mu_{i,j} v_{i,j} = \vec{\mathcal{O}}_V \tag{1}$$

След действието на φ имаме

$$\sum_{i=1}^{n} \sum_{j=1}^{k_i} \mu_{i,j} \lambda_i v_{i,j} = \vec{\mathcal{O}}_V$$
 (2)

съгласно $\varphi(v_{i,j}) = \lambda_i v_{i,j}$ и $\varphi(\vec{\mathcal{O}}_V) = \vec{\mathcal{O}}_V$. За да елиминираме $v_{n,1}, ..., v_{n,k_n}$, умножаваме (1) с $-\lambda n$ и прибавяме към (2). Получаваме

$$\vec{\mathcal{O}}_{V} = \sum_{i=1}^{n} \sum_{j=1}^{k_{i}} \mu_{i,j} (\lambda_{i} - \lambda_{n}) v_{i,j} - \sum_{i=1}^{n-1} \sum_{j=1}^{k_{i}} \mu_{i,j} (\lambda_{i} - \lambda_{n}) v_{i,j}$$

По индукционно предположение, системата $\{v_{i,j}|1\leq i\leq n-1, 1\leq j\leq k_i\}$ е линейно независима, така че

$$\mu_{i,j}(\lambda_i - \lambda_n) = 0$$
 за всички $1 \le i \le n-1$ и $1 \le j \le k_i$

Съгласно $\lambda_i-\lambda_n\neq 0$ за $1\leq i\leq n-1$, стигаме до извода, че $\mu_{i,j}=0$ за всички1 $1\leq i\leq n-1$ и $1\leq j\leq k_i$. Сега (1) приема вида

$$\sum_{i=1}^{k_n} \mu_{n,j} v_{n,j} = \vec{\mathcal{O}}_V$$

Съгласно линейната независимост на $v_{n,1},...,v_{n,k_n}$, коефициентите $\mu_{n,j}=0$ се анулират за всички $1 \le i \le k_n$. Това доказва линейната независимост на

$$v_{i,j}|1 \le j \le k_i, 1 \le i \le n.$$

Определение 18.7

- (i) Спектърът на матрица $A \in M_{n \times n}(F)$ е множеството на характеристичните корени на A от основното поле F. Ако A има n различни характеристични корена от F, то казваме, че A има прост спектър.
- (ii) Спектърът на линеен оператор $\varphi:V\to V$ в n-мерно пространство V над поле F е множеството на характеристичните корени на φ от F или, еквивалентно, множеството на собствените стойности на φ . Ако φ има n различни характеристични корена от F, то казваме, че φ има прост спектър.

Твърдение 18.8

- (i) Нека $\varphi: V \to V$ е линеен оператор с прост спектър в n-мерно пространство V над поле F. Тогава съществува базис $v_1, ..., v_n$ на V, в който матрицата на φ е диагонална. Еквивалентно, съществува базис на V, съставен от собствени вектори за φ .
- (ii) Нека $A\in M_{n\times n}(F)$ е матрица с прост спектър. Тогава съществува обратима матрица $T\in M_{n\times n}(F)$, така че $D=T^{-1}AT$ е диагонална.

Доказателство (i) По определение, φ е оператор с прост спектър, ако има п различни характеристични корена $\lambda_1,...,\lambda_n$ от F. Съгласно Твърдение 18.5, $\lambda_1,...,\lambda_n$ са собствени стойности на φ . Ако v_i са собствени вектори на $\varphi:V\to V$, отговарящи на собствените стойности λ_i , то $v_1,...,v_n$ са линейно независими по Твърдение 18.6. Прилагаме Твърдение 5.12 към линейно независимите вектори $v_1,...,v_n$ от п-мерното пространство V и получаваме, че $v_1,...,v_n$ е базис на V. Съгласно $\varphi(v_i)=\lambda_i v_i=0.v_1+...+0.v_{i-1}+\lambda_i.v_i+0.v_{i+1}+...+0.v_n$ за всяко $1\leq i\leq n$, матрицата на φ в базиса $v_1,...,v_n$ е диагонална и диагоналните и елементи са равни на съответните собствени стойности,

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

и диагоналните елементи са равни на съответните собствени стойности.

(ii) Нека $e=(e_1,...,e_n)$ е базис на n-мерно пространство V над F, а $\varphi:V\to V$ е линейният оператор с матрица $A\in M_{n\times n}(F)$ спрямо базиса е. Тогава φ има прост спектър и съгласно (i) съществува базис $v=(v_1,...,v_n)$ на V, в който матрицата на φ е диагонална,

$$D = \left(\begin{array}{cccc} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{array}\right)$$

Матрицата на прехода $T\in M_{n\times n}(F)$ от базиса е към базиса v=eT е обратима

$$D = T^{-1}AT$$

Определение 18.9

Подпространство W на линейно пространство V е инвариантно относно линеен оператор $\varphi:V\to V$, ако $\varphi(W)\subseteq W.$

Лема 18.10

Нека $\varphi:V\to V$ е линеен оператор в линейно пространство V над поле F.

- (i) За всяко $\lambda \in F$ множеството $U_{\lambda} = \{v \in V | \varphi(v) = \lambda v\}$ е φ -инвариантно подпространство на V . Ако λ е собствена стойност на φ , то $U\lambda$ е обединението на собствените вектори на φ , отговарящи на собствената стойност λ и нулевия вектор на V . Ако λ не е собствена стойност на φ , то $U_{\lambda} = \{\vec{\mathcal{O}}\}$ е нулевото подпространство.
- (ii) Ненулев вектор $v \in V \setminus \{\vec{\mathcal{O}}_V\}$ поражда 1-мерно φ -инвариантно подпространство l(v) на V тогава и само тогава, когато v е собствен вектор на оператора φ .

Доказателство (i) Подмножеството $U_{\lambda}=\{v\in V|\ \varphi(v)=\lambda v\}$ на V е подпространство на V , защото за произволни $u_1,u_2\in U_{\lambda}$ и $\mu\in F$ е в сила $u_1+u_2,\mu u_1\in U_{\lambda}$, съгласно

$$\varphi(u_1+u_2)=\varphi(u_1)+\varphi(u_2)=\lambda u_1+\lambda u_2=\lambda(u_1+u_2)$$
 и
$$\varphi(\mu u_1)=\mu\varphi(u_1)=(\mu\lambda)u_1=(\lambda\mu)u_1=\lambda(\mu u_1)$$

Подпространството U_λ на V е φ -инвариантно, защото за произволен вектор $u\in U_\lambda$ е изпълнено $\varphi(u)=\lambda u\in U_\lambda$.

(ii) Ако 1-мерното подпространство l(v) на V е φ -инвариантно, то ненулевият вектор $v \in V \setminus \{\vec{\mathcal{O}}_V\}$ се изобразява в $\varphi(v) \in l(v)$, така че $\varphi(v) = \lambda v$ за някое $\lambda \in F$ и v е собствен вектор на φ , отговарящ на собствена стойност λ . Обратно, ако $v \in V$ $\vec{\mathcal{O}}_V$ е собствен вектор на φ , отговарящ на собствена стойност λ , то произволен вектор $\mu v \in l(v)$ се изобразява в $\varphi(\mu v) = \mu \varphi(v) = \mu(\lambda v) = (\mu \lambda)v \in l(v)$ и 1-мерното подпространство l(v) на V е φ -инвариантно.

Приемаме без доказателство следната

Теорема 18.11 (Основна Теорема на алгебрата)

Всички корени на непостоянен полином $f(x) \in \mathbb{C}[x] \setminus \mathbb{C}$ с комплексни коефициенти са комплексни числа $\alpha \in \mathbb{C}$.

Твърдение 18.12

Всеки линеен оператор $\varphi:V\to V$ в крайномерно линейно пространство V над полето $\mathbb C$ на комплексните числа има 1-мерно φ -инвариантно подпространство.

Твърдение 18.13

Всеки линеен оператор $\varphi:V\to V$ в крайномерно пространство V над полето на реалните числа $\mathbb R$ има 1-мерно или 2-мерно φ -инвариантно подпространство.