HNCO

Visualization of Walsh transforms of various functions defined on bit vectors

July 16, 2018

Abstract

This document proposes to visualize Walsh (or Fourier) transforms of various functions defined on bit vectors (hypercube) of size n=10. For each function, two graphics are displayed. In the first one, coefficients of the Walsh transform are sorted in decreasing order of amplitude and normalized relatively to the greatest amplitude. The second graphics displays the energy (sum of square of coefficients) as a function of the Hamming weight of features. This can be thought of as a spectrum. Coefficients c such that $0 < |c/c_{\rm max}| < 10^{-15}$ have been filtered out as they mostly result from accumulated errors in floating point arithmetic.

Contents

1 All functions	2
2 one-max	3
3 lin	4
4 leading-ones	5
5 ridge	6
6 jmp-2	7
7 jmp-4	8
$8 ext{ djmp-2}$	9
9 djmp-4	10
10 fp-2	11
11 fp-4	12
12 nk	13
13 max-sat	14
14 labs	15
15 ep	16
16 cancel	17
17 trap	18
18 hiff	19
19 plateau	20
20 walsh2	21
A Plan	21

1 All functions

2 one-max

4 leading-ones

9 djmp-4

13 max-sat

14 labs

16 cancel

19 plateau

20 walsh2

A Plan

```
{
   "exec": "hnco",
   "opt": "--fn-walsh-transform -b 0 -s 10",
```

```
"parallel": true,
"results": "results",
"graphics": "graphics",
"report": "report",
"functions": [
    {
        "id": "one-max",
        "opt": "-F 0"
    },
        "id": "lin",
        "opt": "-F 1 -p instances/lin.10"
   },
        "id": "leading-ones",
        "opt": "-F 10"
    },
        "id": "ridge",
        "opt": "-F 11"
   },
        "id": "jmp-2",
        "opt": "-F 30 -t 2"
    },
        "id": "jmp-4",
        "opt": "-F 30 -t 4"
   },
        "id": "djmp-2",
        "opt": "-F 31 -t 2"
    },
        "id": "djmp-4",
        "opt": "-F 31 -t 4"
   },
        "id": "fp-2",
        "opt": "-F 40 -t 2"
    },
        "id": "fp-4",
        "opt": "-F 40 -t 4"
    },
        "id": "nk",
        "opt": "-F 60 -p instances/nk.10.2"
    },
        "id": "max-sat",
        "opt": "-F 70 -p instances/ms.10.3.10"
    },
        "id": "labs",
        "opt": "-F 80"
    },
        "id": "ep",
        "opt": "-F 90 -p instances/ep.10"
   },
    {
        "id": "cancel",
```

```
"opt": "-F 100 -s 9"
},
{
        "id": "trap",
        "opt": "-F 110 --fn-num-traps 2"
},
{
        "id": "hiff",
        "opt": "-F 120 -s 8"
},
{
        "id": "plateau",
        "opt": "-F 130"
},
{
        "id": "walsh2",
        "opt": "-F 162 -p instances/walsh2.10"
}
]
```

B Default parameters

```
# algorithm = 100
# bm_mc_reset_strategy = 1
# bm_num_gs_cycles = 1
# bm_num_gs_steps = 100
# bm_sampling = 1
# budget = 10000
\# bv_size = 100
# cache_budget = 0
\# ea_lambda = 100
\# ea_mu = 10
# fn_name = noname
# fn_num_traps = 10
# fn_prefix_length = 2
# fn_threshold = 10
# function = 0
# ga_crossover_bias = 0.5
# ga_crossover_probability = 0.5
# ga_tournament_size = 10
# hea_binary_dynamics = 0
\# hea_delay = 10000
# hea_num_par_updates = 1
# hea_num_seq_updates = 100
# hea_rate_strategy = 0
# hea_reset_period = 0
# hea_sampling_method = 0
# hea_time_constant = 1000
# hea_weight = 1
# learning_rate = 0.001
\# map = 0
# map_input_size = 100
# map_path = nopath
# mutation_probability = 1
# neighborhood = 0
# neighborhood_iterator = 0
# noise_stddev = 1
# num_iterations = 0
# num_threads = 1
# path = nopath
# pn_mutation_probability = 1
```

```
# pn_neighborhood = 0
# pn_radius = 2
# population_size = 10
# pv_log_num_components = 5
# radius = 2
# rls_patience = 50
# sa_beta_ratio = 1.2
# sa_initial_acceptance_probability = 0.6
# sa_num_transitions = 50
# sa_num_trials = 100
\# seed = 0
# selection_size = 1
# target = 100
# print_defaults
# last_parameter
# exec_name = hnco
\# version = 0.9
# Generated from hnco.json
```