Fundamentals of Big Data Analytics

Lecture 7-8 Hierarchical Clustering

Dr. Iqra Safder Assistant Professor FAST NUCES, Lahore

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Hierarchical Clustering

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - Compute the proximity matrix
 - Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - 6. Until only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

Start with clusters of individual points and a provincity matrix

Intermediate Situation

After some merging steps, we have some clusters

Intermediate Situation

We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.

After Merging

The question is "How do we update the proximity matrix?"

- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	р3	p4	р5	<u> .</u>
р1						
p2						
р3	1				1	
p4	+			/	7	
р5	1			11		
			V	X		

- MIN (Single Linkage)
- MAX (Complete Linkage)
- Group Average (Average Linkage)
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	р3	p4	р5	<u> .</u> .
p1						
p2						
рЗ	1				1	
p4	1			/	7	
р5	1		1	11		
			V	X		

- MIN (Single Linkage)
- MAX (Complete Linkage)
- Group Average (Average Linkage)
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	р3	p4	р5	<u> </u>
р1						
p2						
рЗ	1				1	
p4	+			/		
р5	1			11		
			X	X		

- MIN (Single Linkage)
- MAX (Complete Linkage)
- Group Average (Average Linkage)
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	р3	p4	р5	<u>L.</u> .
p1						
p2						
рЗ	1				1	
p4	1			/	7	
р5	1		1	1		
			V	X		

- MIN (Single Linkage)
- MAX (Complete Linkage)
- Group Average (Average Linkage)
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Single Linkage	This is the distance between the closest members of the two clusters.
Complete Linkage	This is the distance between the members that are farthest apart.
Average Linkage	This method involves looking at the distances between all pairs and averages all of these distances. This is also called Unweighted Pair Group Mean Averaging.

Cluster Similarity: MIN or Single Link

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

	I 1	12	13	14	<u> 15</u>
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	1.00 0.90 0.10 0.65 0.20	0.50	0.30	0.80	1.00

Cluster Similarity: MIN or Single Link

	p1	p2	p3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
p3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28 -	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Euclidean distance matrix for 6 points.

Hierarchical Clustering: MIN

	p1	p2	p3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Table 8.4. Euclidean distance matrix for 6 points.

Nested Clusters

Dendrogram

Cluster Similarity: MIN or Single Link

 $\begin{array}{lll} dist(\{3,6\},\{2,5\}) & = & \min(dist(3,2),dist(6,2),dist(3,5),dist(6,5)) \\ & = & \min(0.15,0.25,0.28,0.39) \\ & = & 0.15. \end{array}$

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
p3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28 -	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Table 8.4. Euclidean distance matrix for 6 points.

	X	Y
P1	0.40	0.53
P2	0.22	0.38
P3	0.35	0.32
P4	0.26	0.19
P5	0.08	0.41
P6	0.45	0.30

Calculate Euclidean distance, create the distance matrix.

Distance
$$[(x,y), (a,b)] = \sqrt{(x-a)^2 + (x-b)^2}$$

Distance $(P1,P2) = \sqrt{(0.40 - 0.22)^2 + (0.53 - 0.38)^2}$
 $(0.40,0.53), (0.22,0.38) = \sqrt{(0.18)^2 + (0.15)^2}$
 $= \sqrt{0.0324 + 0.0225}$
 $= \sqrt{0.0549}$
 $= 0.23$

The distance matrix is

	P1	P2	Р3	P4	P5	P6
P1	0					
P2	0.23	0				
Р3	0.22	0.15	0			
P4	0.37	0.20	0.15	0		
P5	0.34	0.14	0.28	0.29	0	
P6	0.23	0.25	0.11	0.22	0.39	0

The distance matrix is

	P1	P2	P3	P4	P5	P6
P1	0					
P2	0.23	0				
Р3	0.22	0.15	0			
P4	0.37	0.20	0.15	0		
P5	0.34	0.14	0.28	0.29	0	
P 6	0.23	0.25	0.11	0.22	0.39	0

- To update the distance matrix MIN[dist(P3,P6),P1)]
- MIN(dist(P3,P1), (P6,P1))
 - $= \min[(0.22, 0.23)]$
 - = 0.22
- To update the distance matrix MIN[dist(P3,P6),P2)]
- MIN(dist(P3,P2), (P6,P2))
 - $= \min[(0.15, 0.25)]$
 - = 0.15

The updated distance matrix for cluster P3, P6

	P1	P2	P3,P6	P4	P5
P1	0				
P2	0.23	0			
P3,P6	0.22	0.15	0		
P4	0.37	0.20	0.15	0	
P5	0.34	0.14	0.28	0.29	0

The distance matrix is

	P1	P2	P3,P6	P4	P5
P1	0				
P2	0.23	0			
P3,P6	0.22	0.15	0		
P4	0.37	0.20	0.15	0	
P5	0.34	0.14	0.28	0.29	0

- To update the distance matrix MIN[dist(P2,P5),P1)]
- MIN[dist(P2,P1), (P5,P1)]
 - $= \min[(0.23, 0.34)]$
 - = 0.23
- To update the distance matrix MIN[dist(P2,P5),(P3,P6)]
- MIN[dist(P2,(P3,P6)), (P5,(P3,P6))]
 - $= \min[(0.15, 0.28)]$
 - = 0.15

- To update the distance matrix MIN[dist(P2,P5),P4)]
- MIN[dist(P2,P4), (P5,P4)]
 - $= \min[(0.20, 0.29)]$
 - = 0.20
- The updated distance matrix for cluster P2,P5

	P1	P2,P5	P3,P6	P4
P1	0			
P2,P5	0.23	0		
P3,P6	0.22	0.15	0	
P4	0.37	0.20	0.15	0

The distance matrix is

	P1	P2,P5	P3,P6	P4
P1	0			
P2,P5	0.23	0		
P3,P6	0.22	0.15	0	
P4	0.37	0.20	0.15	0

- To update the distance matrix MIN[dist((P2,P5),(P3,P6)),P1]
- MIN[dist((P2,P5),P1), ((P3,P6),P1)]

$$= \min[(0.23, 0.22)]$$

$$= 0.22$$

- To update the distance matrix MIN[dist((P2,P5),(P3,P6)),P4]
- MIN[dist((P2,P5),P4), ((P3,P6),P4)]

$$= \min[(0.20,0.15)]$$

$$= 0.15$$

The updated distance matrix for cluster P2,P5,P3,P6

	P1	P2,P5,P3,P6	P4
P1	0		
P2,P5,P3,P6	0.22	0	
P4	0.37	0.15	0

	P1	P2,P5,P3,P6	P4
P1	0		
P2,P5,P3,P6	0.22	0	
P4	0.37	0.15	0

- To update the distance matrix MIN[dist(P2,P5,P3,P6),P4
- MIN[dist((P2,P5,P3,P6),P1), (P4,P1)]

 $= \min[(0.22,0.37)]$

The updated distance matrix for cluster P2,P5,P3,P6,P4

= 0.22

	P1	P2,P5,P3,P6,P4
P1	0	
P2,P5,P3,P6,P4	0.22	0

Strength of MIN

Limitations of MIN

Original Points

Two Clusters

Sensitive to noise and outliers

Cluster Similarity: MAX or Complete Linkage

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
 - Determined by all pairs of points in the two clusters

	11	12	13	14	15
11	1.00 0.90 0.10 0.65 0.20	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

Hierarchical Clustering: MAX

Nested Clusters

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
p3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Table 8.4. Euclidean distance matrix for 6 points.

Cluster Similarity: MAX

```
\begin{aligned} dist(\{3,6\},\{4\}) &= \max(dist(3,4),dist(6,4)) \\ &= \max(0.15,0.22) \\ &= 0.22. \\ dist(\{3,6\},\{2,5\}) \end{aligned}
```

$$dist({3,6},{1})$$

	p1	p2	p3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
p3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28 -	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Table 8.4. Euclidean distance matrix for 6 points.

- To update the distance matrix MAX[dist(P3,P6),P1)]
- MAX(dist(P3,P1), (P6,P1))

$$= MAX[(0.22,0.23)]$$

$$= 0.23$$

- To update the distance matrix MAX[dist(P3,P6),P2)]
- MAX(dist(P3,P2), (P6,P2))

$$= MAX[(0.15,0.25)]$$

= 0.25

	P1	P2	P3	P4	P5	P6
P1	0					
P2	0.23	0				
P3	0.22	0.15	0			
P4	0.37	0.20	0.15	0		
P5	0.34	0.14	0.28	0.29	0	
P6	0.23	0.25	0.11	0.22	0.39	0

Strength of MAX

Less susceptible to noise and outliers

Limitations of MAX

Original Points

- Tends to break large clusters
- Biased towards globular clusters

Two Clusters

Cluster Similarity: Group Average

 Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}} proximity(p_{i}, p_{j})}{|Cluster_{i}| * |Cluster_{i}|}$$

Need to use average connectivity for scalability since total proximity favors large clusters

	<u> 11 </u>	12	13	14	<u> 15</u>
11	1.00	0.90	0.10	0.65	0.20 0.50 0.30 0.80 1.00
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

Hierarchical Clustering: Group Average

Nested Clusters

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
p3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28 -	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Table 8.4. Euclidean distance matrix for 6 points.

Hierarchical Clustering: Group Average

 Compromise between Single and Complete Link

- Strengths
 - Less susceptible to noise and outliers

- Limitations
 - Biased towards globular clusters

Hierarchical Clustering: Comparison

Hierarchical Clustering: Time and Space requirements

- O(N²) space since it uses the proximity matrix.
 - N is the number of points.
- O(N³) time in many cases
 - There are N steps and at each step the size, N², proximity matrix must be updated and searched
 - Complexity can be reduced to O(N² log(N)) time for some approaches

Hierarchical Clustering: Problems and Limitations

- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and convex shapes
 - Breaking large clusters

Resources

- https://www.youtube.com/watch?v=Cy3ci0Vqs3Y
- https://www.youtube.com/watch? v=RdT7bhm1M3E
- https://www.youtube.com/watch?v=9U4h6pZw6f8