1. Consider the following LP:

- (a) Solve the problem graphically and indicate each basic feasible solution.
- (b) Solve the problem using the primal simplex method.
- (c) Associate each tableau with basic feasible solution in (a)
- (d) The dual model of the problem and draw the dual problem graphically.
- (a) Show as the Figure 1. We can get the solution $z^* = 28$ at $(x_1, x_2) = (4, 4)$, and the basic feasible solution are (0, 0), (0, 2), (6, 0) and (4, 4).

(b) Rewrite the problem:

	$(x_1,x_2)=(0,0)$							
		x_1	x_2	x_3	x_4	RHS		
٠	z	-4	-3	0	0	0		
	x_3	2	1	1	0	12		
	x_4	-1	0	0	1	4		

	$(x_1,x_2)=(6,0)$						
	x_1	x_2	x_3	x_4	RHS		
z	0	-1	2	0	24		
x_1	1	$\frac{1}{2}$	$\frac{1}{2}$	0	6		
x_4	0	$\frac{5}{2}$	$\frac{1}{2}$	1	10		

$$(x_1, x_2) = (4, 4)$$

$$x_1 \quad x_2 \quad x_3 \quad x_4 \quad \text{RHS}$$

$$z \quad 0 \quad 0 \quad \frac{11}{5} \quad \frac{2}{5} \quad 28$$

$$x_1 \quad 1 \quad 0 \quad \frac{2}{5} \quad -\frac{1}{5} \quad 4$$

$$x_2 \quad 0 \quad 1 \quad \frac{1}{5} \quad \frac{2}{5} \quad 4$$

- (c) Show above.
- (d) Consider the problem below and the Figure 2.

$$\begin{array}{rclrcrcr} \max & w & = & 12y_1 & + & 4y_2 \\ \text{s.t.} & 2y_1 & - & y_2 & \geq & 4 \\ & y_1 & + & 2y_2 & \geq & 3 \\ & & & y_1 & \geq & 0 \\ & & & y_2 & \geq & 0 \end{array}$$

Figure 1

Figure 2 $\text{We can get the solution } w^*=28 \ \text{ at } (y_1,y_2)=(\tfrac{11}{5},\tfrac{2}{5})$

2. Given the following LP:

- (a) Solve the problem graphically
- (b) Determine how many additional units of resource 1 (constraint 1) would be needed to increase the optimal value by 15. Justify your answer.
- (1) Show as the Figure 3.

Figure 3

We can get the solution $z^* = 38$ at $(x_1, x_2) = (8, 3)$

(2) While adding 1 unit of resource 1

$$\begin{cases} 2x_1 &= 17 \\ x_1 + 3x_2 &= 17 \end{cases} \implies x_1 = \frac{17}{2}, x_2 = \frac{17}{6} \implies z' = \frac{119}{3} \implies \Delta z = z' - z = \frac{5}{3}$$

Then $\implies 15 \div \frac{5}{3} = 9$ units. Trying to add 9 units of resource 1:

$$\begin{cases} 2x_1 &= 25 \\ x_1 + 3x_2 &= 17 \end{cases} \implies x_1 = \frac{25}{2}, x_2 = \frac{3}{2} \implies z' = 53 \implies \Delta z = z' - z = 15$$

R05546030 彭新翔

3. Show the feasible region of a LP model, $\{AX \leq 0, X \geq 0\}$ is convex

Definition of Convex Set

Let $u, v \in V$. Then the set of all convex combinations of u and v is the set of points

$$\{w_{\lambda} \in V : w_{\lambda} = (1 - \lambda)u + \lambda v, 0 \le \lambda \le 1\}$$

Let $x_1, x_2 \in A\mathbf{X}$ and $0 \le \lambda \le 1$, $\exists t_1, t_2 \in x$ such that $x_1 = A \cdot t_1$ and $x_2 = A \cdot t_2$

Then

$$\lambda x_1 + (1 - \lambda)x_2 = \lambda(A \cdot t_1) + (1 - \lambda)(A \cdot t_2) = A[\lambda t_1 + (1 - \lambda)t_2]$$

Since $t_1, t_2 \in x$ and x is Convex, $A[\lambda t_1 + (1 - \lambda)t_2] \in A\mathbf{X}$.

Q.E.D

R05546030 彭新翔

4. A caterer to "The Ritz" motel collects the dirty napkins and sends them to laundry every day. Due to different room occupation levels during a week, the number of napkins needed on day i is d_i . The caterer can wash and dry at most u napkins every day and the cleaned napkins will be ready for use next day. If the dirty napkin is not cleaned, a new one is purchased at the price of p. If the laundry room is used on day i, a fixed cost of f_i is incurred. Assume that at the beginning of a week, there are p clean napkins and no dirty napkins left. Find the best laundry plan for the caterer so that the entire week's cost is minimized.

Assume that

- \checkmark Number of napkins buy on day i is x_i
- ✓ Number of napkins washed on day i is w_i
- \checkmark $y_i = 1$ means laundry room is used on day i $(y_i = 0$ means laundry room is not used on day i).

Consider the Model below.

$$\min \sum_{i=1}^{7} (f_i \cdot y_i + p \cdot x_i)$$
s.t. $w_i \leq u, y_i$
 $w_i = \min(u_i, d_i)$
 $w_{i-1} + x_i \geq d_i$
 $x_i = \max(0, d_i - w_{i-1})$
 $n + x_1 \leq w_1$
 $n + x_1 \geq d_1$
 $w_i \leq M \cdot y_i$
 $f_i, y_i, x_i, p, u_i, d_i, w_i \geq 0$

R05546030 彭新翔

- 5. Assume that you have spare saving \$10,000 each year. There are three investment tools you can choose from:
 - (1) deposit
 - (2) mutual funds
 - (3) bonds

The annual interest rate is 2% if you deposit your money in a bank. If you buy mutual funds, the investment length is two years and the return is estimated to be 7% after two years. If you invest in bonds, you can get 4% of interest payment every year but the investment length is 4 years. At the end of year, you will re-invest all your available money and renew your portfolio. In addition, you are advised to deposit at least 30% of your available money in a bank and the amount of money invested in mutual funds not greater than twice of the amount invested in bonds throughout the entire investment period. Please formulate a mathematical model to maximize your money at the end of the fifth year. (At the beginning you already have \$10,000 and the investment length is five years.)

```
Assume that
```

```
\checkmark x_i money deposit at the i year
```

 \checkmark y_i money go on mutual funds at i year

 \checkmark z_i money go on bonds at i year

 \checkmark p_i money at i year

 $\max p_5$

s.t.

```
p_1 = 10000
x_1 + y_1 + z_1 \le 10000
\frac{x_1}{10000} \ge 0.3
\frac{y_1}{z_1} \leq 2
p_2 = 10000 + 1.02x_1 + 0.04z_1
x_2 + y_2 + z_2 \le p_2
\frac{x_2}{p_2} \ge 0.3
\frac{y_1}{z_2} \le 2
p_3 = 10000 + 1.02x_2 + 1.07y_1 + 0.04z_2
x_3 + y_3 + z_3 \le p_3
\frac{x_3}{p_3} \ge 0.3
\frac{y_3}{z_2} \le 2
p_4 = 10000 + 1.02x_3 + 1.07y_2 + 0.04z_1
x_4 + y_4 + z_4 \le p_4
\frac{x_4}{p_4} \ge 0.3
\frac{y_4}{z_4} \le 2
p_5 = 1.05x_5 + 1.07y_4 + 1.04z_2
x_i, y_i, z_i \geq 0
```