EQUAÇÃO DA ONDA UNIDIMENSIONAL: UM ESTUDO ANALÍTICO E NUMÉRICO

Marcelo Eiji Saiki¹

RESUMO

Neste trabalho, foi feita uma investigação sobre a equação da onda no contexto analítico e no contexto numérico. É apresentado um método de resolução analítica, método da separação de variáveis, e um método de solução numérica, diferenças finitas. Exemplos numéricos são apresentados para exemplificar a eficiência do método.

Palavra chave: Equação da onda, Método de separação de variáveis, Método das diferenças finitas, Estabilidade numérica.

1. INTRODUÇÃO

Muitos fenômenos que ocorrem na ótica, ondulatória, mecânica, magnetismo, etc., podem ser descritos através de equações diferenciais parciais (EDP). O objetivo deste trabalho será o estudo sobre a equação da onda, que é um exemplo típico de uma equação do tipo hiperbólico em duas variáveis independentes. Portanto, para a resolução analítica deste tipo de problema, utiliza-se conceitos e técnicas que serão apresentados na próxima seção. A eficiência de um esquema numérico depende da escolha dos espaçamentos em cada uma das variáveis. Esta condição é conhecida como condição de estabilidade, que é apresentada na seção 3. No caso da equação da onda, mostra-se que esta condição está relacionada com a sua velocidade. Exemplos numéricos são apresentados na seção 4.

2. EQUAÇÃO DA ONDA

Uma equação diferencial parcial (EDP) é uma equação que envolve duas ou mais variáveis independentes x, y, z, t,... e derivadas parciais de uma função u = u(x, y, z, t,...). De forma mais geral, uma EDP em n variáveis independentes $x_1,...,x_n$ é uma equação do tipo

$$F(x_1, ..., x_n, u, \frac{\partial u}{\partial x_1}, ..., \frac{\partial u}{\partial x_n}, \frac{\partial^2 u}{\partial x_1^2}, ..., \frac{\partial^2 u}{\partial x_1 \partial x_n}, ..., \frac{\partial^k u}{\partial x_n^k}) = 0$$
 (1)

onde $x = (x_1, ..., x_n) \in \Omega$, Ω é um subconjunto aberto de \Re^n , F é uma função dada e u = u(x) é a função que será determinada.

Quanto à classificação de EDP's, segundo ordem e linearidade, é semelhante à classificação das equações diferenciais ordinárias (EDO's). A ordem de uma EDP é dada pela derivada parcial de maior ordem que ocorre na equação, e ela é dita linear se é de primeiro grau em u e em todas as suas derivadas parciais que ocorrem na equação.

Uma EDP linear é homogênea se o termo que não contem a variável dependente é identicamente nulo.

Orientador: Prof. Dr. Jose Eduardo Castilho

¹ Licenciando em Matemática da Universidade Católica de Brasília – UCB messp@pop.com.br

A seguir, veja um exemplo de equação diferencial parcial

Considere a corda na figura 1-(a) de comprimento L, como uma corda de violão, mantida tensa e fixada em dois pontos no eixo x, x = 0 e x =L.

Figura 1: (a) a corda, (b) segmento da corda

Quando a corda começa a vibrar, suponha que o movimento se verifique no plano xu de modo que cada ponto da corda se mova em uma direção perpendicular ao eixo x (vibrações transversais). Conforme mostra a Figura 1(a), denota-se por u(x,t) o deslocamento vertical de um ponto arbitrário da corda medido a contar do eixo x para t>0. Suponha ainda que: A corda é perfeitamente flexível. A corda é homogênea, isto é, sua massa ρ por unidade de comprimento é constante. Os deslocamentos u são pequenos em relação ao comprimento da corda. A inclinação da curva é pequena em todos os pontos. A tensão T atua tangencialmente à corda e seu módulo T é o mesmo em todos os pontos. A tensão é grande comparada com a força da gravidade e nenhuma outra força externa atua sobre a corda.

Na Figura 1(b), as tensões T_1 e T_2 são tangentes às extremidades da curva no intervalo [$x, x + \Delta x$]. Para pequenos valores θ_1 e θ_2 , a força vertical resultante que atua no elemento correspondente Δs da corda é então

$$Tsen \theta_2 - Tsen \theta_1 \approx Ttg \theta_2 - Ttg \theta_1$$

= $T[u_x(x + \Delta x, t) - u_x(x, t)],$

onde $T = |T_1| = |T_2|$, e $\rho \Delta s \approx \rho \Delta x$ é a massa da corda em $[x, x + \Delta x]$ e assim a segunda lei de Newton dá

$$T[u_x(x+\Delta x,t) - u_x(x,t)] = \rho \Delta x \ u_{tt}$$

$$\frac{u_x(x+\Delta x,t) - u_x(x,t)}{\Delta x} = \frac{\rho}{T} \ u_{tt}$$

ou

Tomando o limite quando $\Delta x \to 0$, a última equação se escreve $u_{xx} = \frac{\rho}{T} u_{tt}$, onde pode-se escrever uma equação da onda de forma geral como

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \tag{2}$$

$$com c^2 = \frac{T}{\rho}.$$

A equação acima representa uma equação da onda, que é uma EDP linear, homogênea e de segunda ordem. A variável t > 0 representa o tempo, $x \in \Re$ é a variável espacial e c > 0 é uma constante (velocidade de propagação da onda).

Deseja-se encontrar soluções de problemas que envolvam a equação da onda que satisfazem certas condições. Como a solução de uma equação da onda depende do tempo t, pode-se prefixar o que acontece em t=0, isto é, fixa-se condições iniciais (CI). É possível ver na figura 1(a), que a corda é fixa permanentemente ao eixo x em x=0 e x=1. Esse fato traduz-se pelas duas condições de contorno (CC).

Veja um exemplo de condição de contorno. O deslocamento vertical de u(x,t) da corda vibrante de comprimento L da figura 1(a) é determinado por

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < L, \quad t > 0$$
 (3)

$$u(0,t) = 0$$
, $u(0,t) = 0$, $t > 0$ (4)

$$u(x,0) = f(x), \quad \frac{\partial u}{\partial t}|_{t=0} = g(x), \quad 0 < x < L$$
 (5)

Para resolver esse problema, usa-se o método de separação de variáveis.

Apesar de existirem vários métodos para achar soluções particulares, irá interessar-nos somente um, o método chamado *método de separação de variáveis*, que segundo EDWARDS e PENNEY (1995), as aplicações mais importantes de séries de Fourier aparecem na solução de equações diferenciais parciais por meio do método de separação de variáveis.

Quando deseja-se encontrar uma solução particular na forma do produto de duas funções, uma de x e uma de t,

$$u(x,t) = X(x)Y(t), (6)$$

às vezes é possível reduzir uma equação de derivadas parciais linear em duas variáveis a duas equações diferenciais ordinárias. Para isso, veja que

$$\frac{\partial u}{\partial x} = X'Y , \quad \frac{\partial u}{\partial t} = XY' \tag{7}$$

$$\frac{\partial^2 u}{\partial x^2} = X^{"}Y , \quad \frac{\partial^2 u}{\partial t^2} = XY^{"}, \tag{8}$$

onde as "linhas" denotam diferenciação ordinária.

$$X Y'' = c^2 X'' Y$$

Dividindo ambos os lados por XY, separamos as variáveis,

$$\frac{Y''}{Y} = c^2 \frac{X''}{X}$$
 ou $\frac{X''}{X} = \frac{Y''}{c^2 Y}$

e como o primeiro membro da última equação é independente de t e é igual ao segundo membro, que é independente de x, conclui-se que ambos os membros da equação são independentes de x e t. Logo, cada membro da equação deve ser uma constante. Para facilitar, é preciso escrever essa constante real de separação como λ^2 ou $-\lambda^2$.

Fazendo então

$$\frac{X''}{X} = \frac{Y''}{c^2 Y} = \lambda^2$$

tem-se

$$X'' - \lambda^2 X = 0$$

$$Y'' - \lambda^2 c^2 Y = 0$$

Como as soluções dessas equações são

$$X = c_1 e^{\lambda x} + c_2 e^{-\lambda x}$$
 e $Y = c_3 e^{\lambda ct} + c_4 e^{-\lambda ct}$,

$$e X(0) = 0 e X(L) = 0$$
.

Onde tem-se que, $c_1 = c_2 = 0$, logo

$$u(x,t) = X(x)Y(t) = 0$$

Portanto,

$$\frac{X''}{X} = \frac{Y''}{c^2 Y} = -\lambda^2$$

de forma que

$$X'' + \lambda^2 X = 0$$

$$Y'' + \lambda^2 c^2 Y = 0$$

e, por conseguinte,

$$X = c_1 \cos \lambda x + c_2 sen \lambda x$$

$$Y = c_3 \cos \lambda ct + c_4 \operatorname{sen} \lambda ct$$
.

como X(0) = 0 e X(L) = 0. Onde tem-se

$$c_1 = 0$$
 e $c_2 sen \lambda L = 0$

Esta última equação fornece os autovalores $\lambda = \frac{n\pi}{L}$, com n = 1,2,3,... As autofunções correspondente são

$$X = c_2 sen \frac{n\pi}{L} x$$
, com $n = 1, 2, 3, ...$

Assim, as soluções da equação (3) que satisfazem as condições de contorno (4) são

$$u_n = \left(A_n \cos \frac{n\pi c}{L} t + B_n sen \frac{n\pi c}{L} t\right) sen \frac{n\pi}{L} x \tag{9}$$

e

$$u(x,t) = \sum_{n=1}^{\infty} \left(A_n \cos \frac{n\pi c}{L} t + B_n sen \frac{n\pi c}{L} t \right) sen \frac{n\pi}{L} x$$
 (10)

Fazendo t = 0 em (10), tem-se

$$u(x,0) = f(x) = \sum_{n=1}^{\infty} A_n sen \frac{n\pi}{L} x,$$

que é um desenvolvimento de meio-intervalo de f em uma série de Fourier de senos, onde podemos escrever

$$A_n = \frac{2}{L} \int_0^L f(x) sen \frac{n\pi}{L} x dx. \tag{11}$$

Para determinar B_n , diferenciamos (10) em relação a t e fazemos t = 0:

$$\frac{\partial u}{\partial t} = \sum_{n=1}^{\infty} \left(-A_n \frac{n\pi c}{L} sen \frac{n\pi c}{L} t + B_n \frac{n\pi c}{L} \cos \frac{n\pi c}{L} t \right) sen \frac{n\pi}{L} x$$

$$\frac{\partial u}{\partial t}|_{t=0} = g(x) = \sum_{n=1}^{\infty} \left(B_n \frac{n\pi c}{L} \right) sen \frac{n\pi}{L} x.$$

Para que essa última série seja um desenvolvimento de meio-intervalo de g em senos no intervalo, o coeficiente total $B_n \frac{n\pi c}{L}$ deve ser dado por

$$B_n \frac{n\pi c}{L} = \frac{2}{L} \int_0^L g(x) sen \frac{n\pi}{L} x dx,$$

onde obtém-se

$$B_n = \frac{2}{n\pi c} \int_0^L g(x) sen \frac{n\pi}{L} x dx, \qquad (12)$$

A solução do problema consiste da série (10) com A_n e B_n definidos por (11) e (12), respectivamente.

Neste trabalho considere o problema modelo:

$$\begin{cases} c^{2} \frac{\partial^{2} u}{\partial x^{2}} = \frac{\partial^{2} u}{\partial t^{2}}, & 0 < x < 1, & 0 < t < 0,5 \\ u(0,t) = 0, & u(1,t) = 0, & 0 < t < 0,5 \\ u(x,0) = sen \pi x, & \frac{\partial u}{\partial t} \Big|_{t=0} = 0, & 0 < x < 1 \end{cases}$$

Resolvendo pelo método de separação de variáveis, encontramos a seguinte solução:

$$u(x,t) = \cos \pi \, ct \, sen \pi x$$
.

3. MÉTODOS DAS DIFERENÇAS FINITAS

Como em alguns casos é muito difícil de se encontrar uma solução analítica para certos tipos de problemas, utiliza-se métodos numéricos para obter uma solução aproximada.

Segundo ZILL e CULLEN (2001), para certos fins, é perfeitamente justificável aceitar uma aproximação numérica da equação da onda, pois, para regiões complicadas, o método de separação de variáveis pode não ser conveniente, ou sequer aplicável. Na verdade, um processo numérico pode ser a única maneira de abordar um problema de contorno.

Uma classe de métodos numéricos para solução de EDP é formada pelos métodos de diferenças finitas. Apresenta-se esta formulação para um problema de contorno que envolve a equação unidimensional da onda.

$$\begin{cases}
c^{2} \frac{\partial^{2} u}{\partial x^{2}} = \frac{\partial^{2} u}{\partial t^{2}}, & 0 < x < L, \quad t > 0 \\
u(0,t) = 0, & u(L,t) = 0, \quad t > 0 \\
u(x,0) = f(x), & \frac{\partial u}{\partial t}\Big|_{t=0} = g(x), & 0 < x < L
\end{cases} \tag{13}$$

A equação da onda é um exemplo de equação de derivadas parciais do tipo hiperbólico. Esse problema admite solução única se as funções f e g tem derivadas segundas contínuas no intervalo (0,L) e se f(L) = f(0) = 0. Agora iremos substituir a equação da onda com derivadas parciais por uma equação de diferenças finitas. Neste caso, substitui-se as duas derivadas parciais de segunda ordem pelas aproximações por diferenças centrais.

Essas equações de diferenças centrais são obtidas a partir do desenvolvimento em série de Taylor da função u(x,t). O desenvolvimento em série de Taylor da função u(x,t) na variável x pode ser escrito como:

$$u(x+h,t) = u(x,t) + h\frac{\partial u}{\partial x} + \frac{h^2}{2}\frac{\partial^2 u}{\partial x^2} + \frac{h^3}{6}\frac{\partial^3 u}{\partial x^3} + \dots$$

ou

$$u(x-h,t) = u(x,t) - h\frac{\partial u}{\partial x} + \frac{h^2}{2} \frac{\partial^2 u}{\partial x^2} - \frac{h^3}{6} \frac{\partial^3 u}{\partial x^3} + \dots$$

Agora somando essas últimas duas equações, obtemos uma aproximação da derivada

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{h^2} \left[u(x+h,t) - 2u(x,t) + u(x-h,t) \right] + O(h^2).$$

Observa-se que esta expressão fornece uma aproximação da segunda derivada de ordem h^2 .

Fazendo de forma análoga na variável t, obtém-se:

$$\frac{\partial^2 u}{\partial t^2} = \frac{1}{k^2} [u(x, t+k) - 2u(x, t) + u(x, t-k)] + O(k^2).$$

Assim podemos substituir $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ pela seguinte equação de diferenças, o que resulta em:

$$\frac{1}{k^2}[u(x,t+k) - 2u(x,t) + u(x,t-k)] = \frac{c^2}{h^2}[u(x+h,t) - 2u(x,t) + u(x-h,t)]$$

Isolando u(x,t+k)e chamando $\frac{kc}{h}$ de μ , tem-se que

$$u(x,t+k) = \mu^2 u(x+h,t) + 2(1-\mu^2)u(x,t) + \mu^2 u(x-h,t) - u(x,t-k)$$
 (14)

Agora pode-se utilizar a equação de diferenças para aproximar a solução u(x,t) sobre uma região retangular no plano xt, definida por $0 \le x \le L$, $0 \le t \le V$. Seja $n \in m$ números inteiros positivos e

$$h = \frac{L}{n}$$
 e $k = \frac{V}{m}$.

Definido os passos no tempo e espaço, obtém-se uma malha de pontos da forma $u_{p,q} = u(x_p, t_q)$, onde

$$x_p = ph$$
, $p = 0,1,2,...,n$

$$t_q = qk,$$
 $q = 0,1,2,...,m$.

Agora fazendo $u(x,t) = u_{p,q}$; $u(x+h,t) = u_{p+1,q}$; $u(x-h,t) = u_{p-1,q}$; $u(x,t+k) = u_{p,q+1}$; $u(x,t-k) = u_{p,q-1}$, (14) pode ser escrito como:

$$u_{p,q+1} = \mu^2 u_{p+1,q} + 2(1 - \mu^2) u_{p,q} + \mu^2 u_{p-1,q} - u_{p,q-1}$$
 (15)

para p = 1, 2, ..., n-1 e q = 1, 2, ..., m-1.

e

Para compreender melhor, veja a Figura 2, onde é representada a malha sobre o domínio da função:

Figura 2: Malha de pontos.

Com isso consegue-se encontrar a aproximação $u_{p,q+1}$ na $(q+1)^a$ linha de tempo a partir dos valores indicados nas q^a e $(q-1)^a$ linhas do tempo. Aplicando as condições iniciais e de contorno

$$u_{0,q}=u(0,qk)=0$$
, $u_{n,q}=u(L,qk)=0$ condições de contorno
$$u_{p,0}=u(x_p,0)=f(x_p)$$
 condição inicial,

Pode-se ver que a equação (15) é uma equação de recorrência de ordem 2 em q, ou seja, o termo q+1, depende dos termos $q \in q-1$. Logo para começar há um pequeno problema, pois, para encontrar $u_{p,2}$, é preciso fazer q=1 e conhecer os valores de $u_{p,1}$, que são as estimativas de u na primeira linha do tempo. Mas os valores de $u_{p,1}$, dependem dos valores de $u_{p,0}$ na linha zero do tempo e dos valores de $u_{p,-1}$. Para encontrar esses últimos valores, utiliza-se a condição de velocidade inicial $u_t(x,0)=g(x)$. Em t=0, tem-se

$$g(x_p) = u_t(x_p, 0) \approx \frac{u(x_p, k) - u(x_p, -k)}{2k}$$
 (16)

Para que o termo $u(x_p, -k) = u_{p,-1}$ tenha sentido, é preciso imaginar em (16), u(x,t) propagando para trás no tempo, o que resulta em

$$u(x_p,-k) \approx u(x_p,k) - 2kg(x_p)$$

onde obtém-se

$$u_{p,-1} = u_{p,1} - 2kg(x_p) \tag{17}$$

Por último, substituindo (17) em (15), quando q = 0, encontra-se o caso especial

$$u_{p,1} = \frac{\mu^2}{2} (u_{p+1,0} + u_{p-1,0}) + (1 - \mu^2) u_{p,0} + kg(x_p).$$
 (18)

3.1 ESTABILIDADE NUMÉRICA

Diz-se que um método computacional é estável, se este não propaga erros durante sua execução.

Para a utilização de alguns métodos computacionais é necessário fazer uma análise para que não haja nenhum erro grave. No caso do método das diferenças finitas, o problema pode ser instável se não escolhermos convenientemente os valores de $\frac{k^2}{h^2}$. Para determinar as condições de estabilidade, considera-se uma solução da forma:

$$u_{p,q} = e^{i\beta ph} \theta^q \tag{19}$$

sendo, β um parâmetro e $i = \sqrt{-1}$.

Substituindo (19) em (15), obtém-se

$$e^{i\beta ph}\theta^{q+1} = \frac{k^2c^2}{h^2}e^{i\beta(p+1)h}\theta^q + 2(1 - \frac{k^2c^2}{h^2})e^{i\beta ph}\theta^q + \frac{k^2c^2}{h^2}e^{i\beta(p-1)h}\theta^q - e^{i\beta ph}\theta^{q-1}$$

Dividindo tudo por $e^{i\beta ph}\theta^q$, obtém-se

$$\theta = \frac{k^2 c^2}{h^2} e^{i\beta h} + 2 \left(1 - \frac{k^2 c^2}{h^2} \right) + \frac{k^2 c^2}{h^2} e^{-i\beta h} - \theta^{-1}$$

$$\theta + \theta^{-1} = 2\left(1 - \frac{k^2c^2}{h^2}\right) + 2\frac{k^2c^2}{h^2}\cos(\beta h)$$

mas como

$$\cos(\beta h) = 1 - 2 \sin^2\left(\frac{\beta h}{2}\right),\,$$

substituindo na equação acima, obtém-se

$$\theta + \theta^{-1} - 2 + 4 \frac{k^2 c^2}{h^2} \operatorname{sen}^2 \left(\frac{\beta h}{2} \right) = 0$$

tirando o mínimo múltiplo comum, chega-se em

$$\theta^2 - 2 \left[1 - 2 \frac{k^2 c^2}{h^2} \operatorname{sen}^2 \left(\frac{\beta h}{2} \right) \right] \theta + 1 = 0,$$

que é uma equação do segundo grau, onde suas soluções são

$$\theta = \frac{2\left[1 - 2\frac{k^2c^2}{h^2}\sin^2\left(\frac{\beta h}{2}\right)\right] \pm \sqrt{\left\{2\left[1 - 2\frac{k^2c^2}{h^2}\sin^2\left(\frac{\beta h}{2}\right)\right]\right\}^2 - 4}}{2}$$

simplificando, encontra-se

$$\theta = \left[1 - 2\frac{k^2c^2}{h^2}sen^2\left(\frac{\beta h}{2}\right)\right] \pm \sqrt{1 - 2\frac{k^2c^2}{h^2}sen^2\left(\frac{\beta h}{2}\right)^2 - 1}$$
 (20)

Se

$$\left[1-2\frac{k^2c^2}{h^2}\operatorname{sen}^2\left(\frac{\beta h}{2}\right)\right]^2 > 1,$$

então tem-se que

$$1 - 2\frac{k^2c^2}{h^2}\operatorname{sen}^2\left(\frac{\beta h}{2}\right) > 1 \tag{21}$$

$$1 - 2\frac{k^2c^2}{h^2}sen^2\left(\frac{\beta h}{2}\right) < -1 \tag{22}$$

mas a inequação (21) é falsa, pois, $\frac{k^2c^2}{h^2} \mathrm{sen}^2 \left(\frac{\beta h}{2}\right)$ é sempre maior ou igual 0. Então segue-se que

$$\left| \left\{ \left[1 - 2\frac{k^2c^2}{h^2} \operatorname{sen}^2 \left(\frac{\beta h}{2} \right) \right] - \sqrt{\left[1 - 2\frac{k^2c^2}{h^2} \operatorname{sen}^2 \left(\frac{\beta h}{2} \right) \right]^2 - 1} \right\} \right| > 1$$

o que mostra que para esses valores de h e k a solução de (15) será instável.

Agora a única alternativa é ver o que acontece no caso de

$$\left[1 - 2\frac{k^2c^2}{h^2}\operatorname{sen}^2\left(\frac{\beta h}{2}\right)\right]^2 < 1$$

Se isso acontecer, a solução será um número complexo, que terá valor absoluto igual a 1, pois

$$|\theta| = \sqrt{\left[1 - 2\frac{k^2c^2}{h^2}\sin^2\left(\frac{\beta h}{2}\right)\right]^2 + \left(\sqrt{1 - \left[1 - 2\frac{k^2c^2}{h^2}\sin^2\left(\frac{\beta h}{2}\right)\right]^2}\right)^2} = 1$$

Pode ser mostrado rigorosamente que se

$$\left[1 - 2\frac{k^2c^2}{h^2}\operatorname{sen}^2\left(\frac{\beta h}{2}\right)\right]^2 \le 1 \tag{23}$$

então a solução de (15) é estável.

Se (23) é verdadeiro então

$$-1 \le 1 - 2\frac{k^2c^2}{h^2}\operatorname{sen}^2\left(\frac{\beta h}{2}\right) \le 1$$

ou

$$-2 \le -2\frac{k^2c^2}{h^2}\operatorname{sen}^2\left(\frac{\beta h}{2}\right) \le 0$$

e como sen²
$$\frac{\beta h}{2} \le 1$$
, então $\frac{k^2 c^2}{h^2} \le 1$, isto é $\frac{k}{h} \le \frac{1}{c}$.

Esse método numérico é mais viável, quando o valor de c (velocidade de propagação da onda) não é muito grande, pois, pode-se observar que se o valor de c for muito grande, a razão $\frac{1}{c}$ será um valor muito pequeno, fazendo com que $\frac{k}{h}$ seja um valor muito pequeno também, o que poderia demorar muito para se encontrar a solução. Por exemplo, considere no problema modelo, que o valor de c fosse igual a 10, não teria problema, pois bastaria fazer n=5 e m=25, para que $h=\frac{L}{n}=\frac{1}{5}=0,2$ e

$$k = \frac{V}{m} = \frac{0.5}{25} = 0.02$$
, e $\frac{k}{h} = \frac{\frac{0.5}{25}}{\frac{1}{5}} = \frac{0.5}{5} = 0.1 \le \frac{1}{c} = \frac{1}{10} = 0.1$, essa partição gera uma

malha com pouco mais de 150 pontos. Mas no caso de c=1000, já daria muito mais trabalho, pois seria preciso escolher valores mil vezes menor para k em relação à h, o que tornaria o processo de iteração muito mais lento, pois, pegando n=5 novamente, obtém-se h=0,2, onde valor de k deve ser menor ou igual que 0,0002, fazendo com que o valor de m=2500 para que $\frac{k}{h} \leq \frac{1}{c}$, o que iria acarretar em uma malha com mais de 15000 pontos.

4. RESULTADOS NUMÉRICOS

Considera-se o problema modelo, com a velocidade de propagação da onda c=1

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2} , \quad 0 < x < 1 , \quad 0 < t < 0,5$$

$$u(0,t) = 0 , \quad u(1,t) = 0 , \quad 0 < t < 0,5$$

$$u(x,0) = sen\pi x , \quad \frac{\partial u}{\partial t}|_{t=0} = 0 . \quad 0 < x < 1$$

onde sua solução analítica seria $u(x,t) = \cos(\pi t) sen(\pi x)$

Identificamos
$$L=1$$
, $V=0.5$, com $n=5$ e $m=10$, tem-se que $h=\frac{1}{5}=0.2$, $k=\frac{0.5}{10}=0.05$, logo, $\frac{k}{h}=0.25 \le \frac{1}{c}=1$ e $\mu=0.25$.

Implementou-se um programa na linguagem do MatLab, chamado onda.m. O Quadro 1 mostra os resultados obtidos pelo programa, considerando o problema acima.

Ouadro	1:Regultados	numáricac
GUADIO	T. Regulitanns	numerions

Tempo	X = 0,2	X = 0,4	X = 0,6	X = 0,8
00,0	0,5878	0,9511	0,9511	0,5878
0,05	0,5808	0,9397	0,9397	0,5808
0,10	0,5599	0,9059	0,9059	0,5599
0,15	0,5256	0,8505	0,8505	0,5256
0,20	0,4788	0,7748	0,7748	0,4788
0,25	0,4206	0,6806	0,6806	0,4206
0,30	0,3524	0,5701	0,5701	0,3524
0,35	0,2757	0,4460	0,4460	0,2757
0,40	0,1924	0,3113	0,3113	0,1924
0,45	0,1046	0,1692	0,1692	0,1046
0,50	0,0142	0,0230	0,0230	0,0142

A Figura 3, traz o gráfico dos resultados numéricos obtidos no Quadro 1

O erro absoluto do método computacional em relação à solução analítica esta na segunda casa decimal, como mostra a Figura 4.

Figura 4: Erro absoluto obtido no método computacional

A Figura 5 a seguir mostra o gráfico da solução do problema modelo, com valores de c=1, $h=\frac{1}{60}$, $k=\frac{1}{20}$, $\mu=3$, o que torna a equação instável.

Figura 5: Gráfico de uma solução instável

Nesse caso, pode-se observar que a solução numérica propaga erros já na primeira casa decimal. Observe a Figura 6 abaixo

Figura 6: Erro absoluto obtido no método computacional da Figura 5

5. CONSIDERAÇÕES FINAIS

Certamente foi atingido o objetivo deste trabalho, que é mostrar dois tipos de resoluções para o problema da equação da onda. No caso do método das diferenças finitas, mostrou-se a importância de se escolher adequadamente os passos no tempo e espaço, para que a equação pudesse ser resolvida sem nenhum problema de estabilidade.

Foram apresentados exemplos numéricos e gráficos para mostrar a eficiência do método. Foi feito um programa na linguagem do MatLab, onde é possível encontrar soluções numéricas para o problema da equação da onda unidimensional.

REFERÊNCIA BIBLIOGRAFICA

EDWARDS, C. H. Jr. PENNEY, David E. Equações Diferenciais Elementares com Problemas de Contorno - Rio de Janeiro: Editora Prentice-Hall do Brasil, 1995.

ZILL, Dennis G. CULLEN, Michael R. Equações Diferenciais - volume 2 - São Paulo: Editora MAKRON Books, 2001.