

STANDARD DEVIATION FORMULAS

$$\sigma = \sqrt{\sigma^2}$$

population standard deviation sample standard deviation

$$S = \sqrt{S^2}$$

COEFFICIENT OF VARIATION (CV)

/relative standard deviation/

standard deviation

mean

Standard deviation is the most common measure of variability for a SINGLE DATASET

Comparing TWO OR MORE datasets

Standard deviation and coefficient of variation Pizza price example

	D	ollars		Pesos
Mean	\$	5.50	MXN	103.46
Sample variance	\$2	10.72	MXN ²	3793.69
Sample standard deviation	S	3.27	MXN	61.59

Sample standard deviation

$$\sqrt{\frac{\sum_{i=1}^{n}(x_i-\bar{x})^2}{n-1}}$$

Step 1: Sample or population?

Step 2: Find the mean

Step 3: Find the sample variance

Step 4: Find the sample standard deviation

REASONS

- They approximate a wide variety of random variables
- Distributions of sample means with large enough sample sizes could be approximated to normal
- All computable statics are elegant

Decisions based on normal distribution insights have a good track record

STANDARDIZATION

of a Normal distribution

$$\sim N(\mu, \sigma^2)$$
 $\sim N(0,1)$

$$Z = \frac{x - \mu}{\sigma}$$

When we standardize a Normal distribution, the result is a Standard Normal distribution

Standard normal distribution

$$\boldsymbol{\chi}$$

$$x - \mu$$

$$\frac{x-\mu}{\sigma}$$

CENTRAL LIMIT THEOREM

original distribution

Sampling distribution

No matter the underlying distribution, the sampling distribution approximates a Normal

sampling distribution ~
$$N\left(\mu, \frac{\sigma^2}{n}\right)$$

365√DataScience

REASONS TO USE THE NORMAL DISTRIBUTION

CLT allows us to perform tests, solve problems and make inferences using the Normal distribution, even when the population is not normally distributed

- They approximate a wide variety of random variables
- Distributions of sample means with large enough sample sizes could be approximated to normal
- All computable statics are elegant
 - Decisions based on normal distribution insights have a good track record

365√DataScience

POINT ESTIMATORS AND ESTIMATES

Estimator Parameter Inow to estimate I what to estimate I what to estimate I concrete result I is \bar{x} of μ 52.22

 S^2 of σ^2

UNBIASED ESTIMATOR

expected value = population parameter

EFFICIENCY

The most efficient estimator is the unbiased estimator with smallest variance

STATISTICS

ESTIMATORS

broader term a type of statistic

95% CI MEANS THERE IS ONLY 5% CHANCE THAT THE POPULATION PARAMETER IS OUTSIDE THE RANGE

CONFIDENCE LEVEL

 $0 \le \alpha \le 1$

1-α

CONFIDENCE LEVEL

 $0 \le \alpha \le 1$

 $1-\alpha$

$$\frac{\bar{x}}{x} - \text{RELIABILITY * } \frac{\sigma}{\sqrt{n}}, \quad \frac{\bar{x}}{x} + \text{RELIABILITY * } \frac{\sigma}{\sqrt{n}}$$

Confidence intervals. Population known, z-score

	Dataset
\$	117,313
	104.002
10.2	113,038
	101,936
	84,560
100	113,136
	80,740
5	100,536
\$	105,052
\$	87,201
\$	91,986
\$	94,868
\$	90,745
5	102,848
\$	85,927
5	112,276
S	108,637
S	96,818
\$	92,307
-	

 Sample mean
 \$100,200

 Population std
 \$ 15,000

 Standard error
 \$ 2,739

$$[\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}]$$

Dataset
\$ 117,313
\$ 104,002
\$ 113,038
\$ 101,936
\$ 84,560
\$ 113,136
\$ 80,740
\$ 100,536
\$ 105,052
\$ 87,201
\$ 91,986
\$ 94,868
\$ 90,745
\$ 102,848
\$ 85,927
\$ 112,276
\$ 108,637
\$ 96,818
\$ 92,307

Sample mean \$100,200 Population std \$15,000 Standard error \$2,739

$$[\bar{x}-z_{\alpha/2}rac{\sigma}{\sqrt{n}}$$
 , $\bar{x}+z_{\alpha/2}rac{\sigma}{\sqrt{n}}$]

$$[100200-2.58\frac{15000}{\sqrt{30}}$$
 , $100200+2.58\frac{15000}{\sqrt{30}}\,]=[93135$, $107206]$

We are 99% confident that the average data scientist salary is going to lie in the interval [\$93135, \$107206]

Formula
$$t_{n-1,\alpha} = \frac{\bar{x} - \mu}{s/\sqrt{n}}$$

Degrees of freedom (d.f.) $t_{n-1,\alpha} = \frac{\bar{x} - \mu}{s/\sqrt{n}}$ sample size: n

Confidence intervals, t-score

	Dataset	
\$	78,000	Sample mean
S	90,000	Sample standard deviation
S	75,000	Standard error
\$	117,000	
S	105,000	
S	96,000	
\$	89,500	_
S	102,300	Po
0	80,000	

d.f.: n-1

Population variance unknown

Population variance known

t-table

d.f. / α	0.1	0.05	0.025	0.01	0.005
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
5	1.476	2.015	2.571	3,365	4.032
6	1.440	1.943	2.447	3.143	3.707
7	1.415	1 805	2.266	2 000	2.400
8	1.397	1.860	2.306	2.896	3.355
9	1.383	1.833	2.262	2.821	3.250
10	1.372	1.812	2.228	2.764	3.169
11	1.363	1.796	2.201	2.718	3.106
12	1.356	1.782	2.179	2.681	3.055
13	1.350	1.771	2.160	2.650	3.012
14	1.345	1.761	2.145	2.624	2.977
15	1.341	1.753	2.131	2.602	2.947
16	1.337	1.746	2.120	2.583	2.921
17	1.333	1.740	2.110	2.567	2.898
18	1.330	1.734	2.101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861
20	1.325	1.725	2.086	2.528	2.845
21	1.323	1.721	2.080	2.518	2.831
22	1.321	1.717	2.074	2.508	2.819
23	1.319	1.714	2.069	2.500	2.807
24	1.318	1.711	2.064	2.492	2.797
25	1.316	1.708	2.060	2.485	2.787
26	1.315	1.706	2.056	2.479	2.779
27	1.314	1.703	2.052	2.473	2.771
28	1.313	1.701	2.048	2.467	2.763
29	1.311	1.699	2.045	2.462	2.756
30	1.310	1.697	2.042	2.457	2.750
35	1.306	1.690	2.030		2.724
40	1.303	1.684	2.021	2.423	2.704
50	1.299	1.676	2.009	2.403	2.678
60	1.296	1.671	2.000	2.390	2.660
120	1.289	1.658	1.980	2.358	2.617
inf.	1.282	1.645	1.960	2.326	2.576
CI	80%	90%	95%	98%	99%

$$t_{n-1,\alpha/2}$$

$$t_{8,}$$

95% CI => alpha = 5%

Confidence intervals, t-score

	Data set		
\$	78,000	Sample mean	\$ 92,53
\$	90,000	Sample standard deviation	\$ 13,93
\$	75,000	Standard error	\$ 4,64
S	117,000		
\$	105,000	t-stat 95%	2
S	96,000		
\$	89,500		
S	102,300		
\$	80,000		

 $Cl_{95\%,unknown} = (\$81806, \$103261)$ width = \\$21,455

 $CI_{95\%,known} = (\$ 94833 , \$ 105568)$ width = \$10,735

*Here we've got two effects: 1) smaller sample size and 2) unknown population variance Both contribute to the width of the interval

STEPS IN DATA-DRIVEN DECISION MAKING

SIGNIFICANCE LEVEL

The probability of rejecting the null hypothesis, if it is true.

Typical values for alpha are: 0.01, 0.05, 0.1

DISTRIBUTION OF GRADES

$$Z = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

$$\overline{z} = \mu_o = >$$

$$Z = 0$$

DISTRIBUTION OF Z (STANDARD NORMAL DISTRIBUTION)

PISTRIBUTION OF Z (STANDARD NORMAL DISTRIBUTION) $\alpha = 0.05$ rejection region $\alpha/2 = 0.025$ $\alpha/2 = 0.025$ 1.96

60al of hypothesis testing

Rejecting a false null hypothesis

Probability:1-β

a.k.a. power of the test

P-VALUE 10% P-value 10% 10%

P-value is the smallest level of significance at which we can still reject the null hypothesis, given the observed sample statistic

EXAMPLE 2

thow to find the p-value manually

1 - the number from the => table

1-0.983=

= 0.017

Two-sided p-value:

1-the number x2=> from the table

(1-0.983)X2=

= 0.034 365√DataScience

WHERE AND HOW ARE P-VALUES USED?

most statistical software calculates p-values for each test

Researcher decides significance post-factum

P-values are usually found with 3 digits after the dot x.xxx

IF THE P-VALUE IS LOWER THAN THE LEVEL OF SIGNIFICANCE

YOU REJECT THE NULL HYPOTHESIS