Lecture2: Diode

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Two-terminal element

How many terminal quantities?

- Two for terminal voltages
- Two for terminal currents
- Then, how many independent ones?

- Note that $I_1 + I_2 = 0$.
- Note that a common change in V₁ and V₂ does not make a difference.
- Therefore, I_1 and $V_1 V_2$ can be regarded as independent variables.
- Each type of a two-terminal element specifies the relation between I_1 and $V_1 V_2$.

Current vs. voltage

Sources

- Voltage source: $V_1 V_2 = V$
- Current source: $I_1 = -I_2 = I$
- R, L, C
 - Resistor: $I_1 = \frac{V_1 V_2}{R}$
 - Capacitor: $I_1 = C \frac{d(V_1 V_2)}{dt}$
 - Inductor: $V_1 V_2 = L \frac{dI_1}{dt}$

– However, we need nonlinear elements!

Nonlinearity?

- My examples
 - Light switch?
 - A program language without if ... else statement?
 - Alarm system?
 - (And so on)

Assume a circuit element.

- For a negative voltage, it's electrically open.
- For a positive voltage, it's resistive.
- Is there such a circuit element? Yes!

Diode

- Di(2) + ode(Electrode): Two-terminal device
 - Its symbol

- Current → : Allowed
- Current ← : Not allowed

Forward/reverse

- A diode shows a strong polarity.
 - Does a resistor have a polarity?
 - In diodes, the following two cases are completely different.
- Forward bias
 - The voltage at the cathode is higher than the adode voltage.

- Reserve bias
 - The voltage at the anode is lower than the cathode voltage.

How to realize(/fabricate) it

- PN junction
 - Results of the process simulation are shown.

- Red: Silicon region with Arsenic ions
- Blue: Silicon region with Boron ions

Vertical doping profile

Ion implantation for source/drain formation

IV characteristics (1)

- In forward bias,
 - The external voltage opposes the built-in potential, raising the diffusion currents substantially.
- In reverse bias,
 - The applied voltage enhances the field, prohibiting current flow.
- In summary,

$$I_D = I_S \left(\exp \frac{V_D}{V_T} - 1 \right)$$

Here, the "reverse saturation current" is given by

$$I_S = Aqn_i^2 \left(\frac{D_n}{N_A L_n} + \frac{D_p}{N_D L_p} \right)$$

- L_n and L_p are electron and hole "diffusion lengths," respectively.
- Also, V_T is the thermal voltage.

IV characteristics (2)

Some limiting cases:

$$I_D = I_S \left(\exp \frac{V_D}{V_T} - 1 \right)$$

- When V_D is close to zero,

$$I_D = I_S \frac{V_D}{V_T}$$

- When V_D is negative and $V_D \ll -V_T$, $I_D = -I_S$
- When V_D is positive and $V_D \gg V_T$, $I_D = I_S \exp \frac{V_D}{V_T}$