Aide mémoire 2021

Léo Bernard

October 1, 2021

Préface

L'objectif de cet aide mémoire est de regrouper la théorie nécéssaire / utilisée au premier semestre de l'EPFL. Ce receuil est entièrement écrit par mes soins, regroupant les théories que j'ai jugées utiles et/ou nécéssaires pour ce premier semestre.

Ce traité n'est en aucun cas relié ou affilié à l'EPFL. Il est notamment possible d'y croiser des erreurs, ainsi je vous serai reconnaissant de me faire part de ces dernières sur :

le repo de ce projet:https://github.com/Aryeth/aide_memoire_BA1,

discord [Aryeth#2839],

ou encore par mail : leo.bernard@epfl.ch

Merci de votre compréhension et bonne lecture.

Contents

1	Ana	Analyse 7						
	1.1	Notion	ns de bases					
		1.1.1	Introduction					
		1.1.2	Intervalles					
		1.1.3	Valeur absolue					
		1.1.4	Partie entière					
		1.1.5	function $ln(x)$ et e					
	1.2	Foncti	on réelle					
		1.2.1	Représentation graphique					
		1.2.2	Parité d'une fonction					
		1.2.3	Périodicité d'une fonction					
		1.2.4	Croissance et décroissance d'une fonction					
		1.2.5	Maximum et minimum d'une fonction					
		1.2.6	Opérations sur les fonctions					
		1.2.7	Injection, surjection, bijection					
		1.2.8	Fonction réciproque					
	1.3	Limite	s					
		1.3.1	Limite: définition					
		1.3.2	Limite à droite, limite à gauche					
		1.3.3	Propriétés des limites					
		1.3.4	Théorème des deux gendarmes					
		1.3.5	Continuité					
		1.3.6	Limites de fonctions composées					
		1.3.7	Propriétés des fonctions continues					
		1.3.8	Limites infinies					
		1.3.9	Propriétés des limites infinies					
		1.3.10	Limites à l'infini					
		1.3.11	Asymptotes					
		1.3.12	Astuces de calcul					
	1 4	Séries	21					

6 CONTENTS

		1.4.1	Séries numériques	21
		1.4.2	Critères de convergence	21
	1.5	Dérivé	es	23
		1.5.1	Tangeante (dérivée) en x_0	23
		1.5.2	Nombre dérivé à gauche, à droite	23
		1.5.3	Point anguleux, à tangeante verticale, de rebroussement	24
		1.5.4	fonction dérivée	24
		1.5.5	Dérivée d'ordre supérieur	26
		1.5.6	Règle de Bernouilli-L'Hospital	26
		1.5.7	Théorème de Rolle	27
		1.5.8	Théorème des accroisements finis (TAF)	27
		1.5.9	Polynôme de taylor	27
		1.5.10	Développement limité	27
		1.5.11	Règles de dérivation	28
		1.5.12	Remarques	28
	1.6	Intégra	ales	30
		1.6.1	Introduction	30
		1.6.2	Primitives d'une fonction	31
		1.6.3	Intégration par parties	31
		1.6.4	Changement de variable	32
		1.6.5	Primitives de fonctions élémentaires	33
		1.6.6	Primitives de fonctions particulières	33
		1.6.7	Règles d'intégration	34
	1.7	Applic	ations des dérivées	35
	1.8	Equati	ions Différentielles	36
2	Alg	èbre Li	inéaire	37
	2.1	Equati	ions linéaires en algèbre linéaire	37
		2.1.1	Systèmes d'équations linéaires	37
		2.1.2	Notation matricielle	38

Chapitre 1

Analyse

1.1 Notions de bases

1.1.1 Introduction

On désigne par \emptyset l'ensemble vide. $\mathbb N$ l'ensemble des entiers naturels, $\mathbb Z$ l'anneau des entiers relatifs, $\mathbb Q$ le corps des nombres rationnels, et $\mathbb R$ le corps des nombres réels. $\mathbb R\setminus\mathbb Q$ étant l'ensemble des Nombres irrationnels. On a donc les inclusions suivantes :

$$\varnothing \subset \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$

Par définition, on ajoute * pour signifier que le zéro est non compris dans l'ensemble, + pour signifier que l'ensemble ne contient que des positifs, - pour signifier que l'ensemble ne contient que des négatifs.

1.1.2 Intervalles

Définition. Un sous ensemble $I \neq \emptyset$ de \mathbb{R} est appelé un **intervalle** si pour tout couple $(a,b) \in I \times I$ vérifiant $a \leq b$, la relation $a \leq x \leq b$ implique $x \in I$.

Il en découle une suite de notations :

Intervalles bornés

Intervalle ouvert : $]a; b[=x \in \mathbb{R} : a < x < b]$ Intervalle fermé : $[a; b] =x \in \mathbb{R} : a \le x \le b$

Intervalle semi-ouvert à gauche : $]a;b] = x \in \mathbb{R} : a < x \le b$ Intervalle semi-ouvert à droite : $[a;b] = x \in \mathbb{R} : a \le x < b$

Intervalles non bornés

Intervalle ouvert : $] - \infty; a[=x \in \mathbb{R} : x < a]$ Intervalle ouvert : $]a; +\infty[=x \in \mathbb{R} : x > a]$

Intervalle fermé : $]-\infty;a]=x\in\mathbb{R}:x\leq a$ Intervalle fermé : $[a;+\infty[=x\in\mathbb{R}:x\geq a$

1.1.3 Valeur absolue

Définition. A tout nombre réel x, on peut associer le nombre réel positif ou nul défini par :

$$|x| = \begin{cases} x & \text{si } x > 0 \\ -x & \text{si } x \le 0 \end{cases}$$

|x| est appelé la valeur absolue de x.

1.1.4 Partie entière

Définition. A tout nombre réel x, on peut associer un unique entier relatif [x] tel que :

$$[x] \le x < [x] + 1$$

[x] est appelé la **partie entière** de x, soit le plus grand entier relatif inférieur ou égal à x.

1.1. NOTIONS DE BASES

9

1.1.5 function ln(x) et e

e, le nombre d'Euler

On pose par définition:

$$e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$

On nomme fonction exponentielle la fonction exp : $R \to \mathbb{R}_+^*$ définie par $exp(x) = e^x$. Elle est continue, strictement croissante et bijective.

Propriétés

 $\forall x, y \in \mathbb{R}$:

- $e^x > 0$
- $\bullet \ e^{x+y} = e^x e^y$
- $\bullet \ e^{-x} = \frac{1}{e^x}$
- $\lim_{x\to-\infty} e^x = 0$ et $\lim_{x\to+\infty} e^x = +\infty$

ln: logarithme naturel, aussi appelé logarithme népérien

le logarithme népérien est un logarithme dit "de base e", car ln(e)=1. Cette fonction est la fonction réciproque de la fonction exponentielle. Elle est donc une fonction continue strictement croissante ln : $R \to \mathbb{R}_+^*$. Ainsi, par défininition

$$y = ln(x) \iff x = e^y$$

Propriétés

 $\forall x \in \mathbb{R}, y \in \mathbb{R}_+^*$:

- $ln(e^x) = x$
- ln(1) = 0 et ln(e) = 1
- ln(xy) = ln(x) + ln(y) et $ln(\frac{x}{y}) = ln(x) ln(y)$
- $\lim_{x\to 0^+} \ln(x) = -\infty$ et $\lim_{x\to +\infty} \ln(x) = +\infty$
- $a^x = e^{xln(a)}$

1.2 Fonction réelle

Soit A et B deux sous ensembles de \mathbb{R} . On appelle fonction réelle une relation qui lie un élément x de A à un élément y (f(x), la valeur de f en x) dans <math>B.

Remarque. On appelle A l'ensemble de départ et B l'ensemble d'arrivée.

Remarque. x est aussi appelé la préimage de y par f.

Remarque. L'ensemble des valeurs de f est noté Im(f).

Remarque. Deux fonctions f(x) et g(x) sont dites égales si elles ont les mêmes ensembles d'arrivée et de départ, et si $f(x) = g(x) \ \forall x \in A$. On note alors f = g.

1.2.1 Représentation graphique

On représente une fonction en dessinant l'ensemble des points de coordonnées (a; f(a)). Ce dessin est appelé **graphe** de f.

Remarque. On appelle le nombre a zéro de f si f(a) = 0. son ensemble correspond à l'ensemble des points ou le graphe de f intersecte O_x

1.2.2 Parité d'une fonction

Si f(-x) = f(x) pour tout x de l'ensemble de définiton de f, on dit que f est une fonction paire.

Si f(-x) = -f(x) pour tout x de l'ensemble de définiton de f, on dit que f est une **fonction impaire**.

Remarque. Le graphe d'une fontion paire est symétrique à l'axe O_y , et Le graphe d'une fontion impaire est symétrique à l'origine.

1.2.3 Périodicité d'une fonction

Une fonction est dite de **période p** si il existe un nombre p > 0 tel que $f(x + kp) = f(x) \ \forall k \in \mathbb{Z}$

Remarque. Le graphe d'une fonction périodique est un motif qui se répète indéfiniment par translation horizontale (d'amplitude p).

1.2.4 Croissance et décroissance d'une fonction

Pour tout $x_1, x_2 \in I$ on dit que:

• Une fonction f est **croissante** sur un intervalle I si :

$$x_1 < x_2 \Rightarrow f(x_1) \le f(x_2)$$

ullet Une fonction f est **strictement croissante** sur un intervalle I si :

$$x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$$

 $\bullet\,$ Une fonction f est **décroissante** sur un intervalle I si :

$$x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2)$$

ullet Une fonction f est **strictement décroissante** sur un intervalle I si :

$$x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$$

1.2.5 Maximum et minimum d'une fonction

Soit $f:A\to\mathbb{R}$ une fonction réelle

• f(a) est un maximum local de f si il existe un intervalle ouvert I contenant a tel que :

$$\forall x \in I \cap A : f(x) \le f(a)$$

On dit aussi que f admet un maximum en a.

• f(a) est un **minimum local** de f si il existe un intervalle ouvert I contenant b tel que :

$$\forall x \in I \cap A : f(x) \ge f(b)$$

On dit aussi que f admet un minimum en b.

• f(a) est un maximum absolu de f si :

$$\forall x \in A : f(x) \le f(a)$$

• f(a) est un **minimum absolu** de f si :

$$\forall x \in A : f(x) \ge f(a)$$

Remarque. Le nom extremum peut être aussi utilisé à la place de maximum ou minimum.

1.2.6 Opérations sur les fonctions

Soit $f: A \to \mathbb{R}$ et $f: B \to \mathbb{R}$ deux fonctions réelles

• La **somme** des fonctions f et g est une nouvelle fonction notée f+g : $A\cap B\to \mathbb{R}$ définie par :

$$(f+q)(x) = f(x) + q(x)$$

• La **différence** des fonctions f et g est une nouvelle fonction notée $f - g : A \cap B \to \mathbb{R}$ définie par :

$$(f-g)(x) = f(x) - g(x)$$

• Le **produit** de la fonction f par un nombre réel c est une nouvelle fonction notée $c*f:A\to\mathbb{R}$ définie par :

$$(c * f)(x) = fc * (x)$$

• Le **produit** des fonctions f et g est une nouvelle fonction notée f * g : $A \cap B \to \mathbb{R}$ définie par :

$$(f * q)(x) = f(x) * q(x)$$

• Le **quotient** des fonctions f et g est une nouvelle fonction notée $\frac{f}{g}$: $A \cap B \cap x | g(x) \neq 0 \to \mathbb{R}$ définie par :

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

• La **composée** des fonctions f et g est une nouvelle fonction notée $g \circ f : x | x \in A$ et $f(x) \in B \to \mathbb{R}$ définie par :

$$(g \circ f)(x) = g(f(x))$$

1.2.7 Injection, surjection, bijection

Soit une fonction $f A \to B$.

- f est dite **surjective** si tout élément y de B est l'image par f d'au minimum un élément x de A (au minimum une précédence pour chaque objet de B).
- f est dite **injective** si tout élément y de B est l'image par f d'au maximum un élément x de A (au maximum une précédence pour chaque objet de B).
- f est dite **bijective** si elle est à la fois injective et surjective. Ainsi, chaque élément y de B est l'image par f d'un unique élément x de A.

1.2.8 Fonction réciproque

Soit une fonction $f A \to B$ bijective.

On appelle **réciproque** de f notée rf ou f^{-1} la fonction $f^{-1}:B\to A$ définie par :

$$y = f(x) \Leftrightarrow x = f^{-1}(y)$$

Chaque fonction f bijective peut donc avoir une fonction réciproque f^{-1} tel que :

$$(f^{-1} \circ f)(x) = x \ \forall x \in A$$
$$(f \circ f^{-1})(y) = y \ \forall y \in B$$

1.3. LIMITES 15

1.3 Limites

1.3.1 Limite: définition

Soit f une fonction définie sur un intervalle ouvert contenant a sauf eventuellement en a.

Le nombre L est **limite de** f **en** a **si** f(x) est arbitrairement proche de L dès que x tend vers a, avec $x \neq a$. On note :

$$\lim_{x \to a} f(x) = L$$

On dit que f(x) tend vers L quand x tend vers a.

Remarque. On peut aussi utiliser les limites sur des suites plutôt que sur des fonctions.

1.3.2 Limite à droite, limite à gauche

Soit f une fonction définie sur un intervalle de la forme a; d. Le nombre L est **limite à droite de f en a** si $\lim_{x\to a_+} f(x) = L$ Soit f une fonction définie sur un intervalle de la forme a; a. Le nombre L est **limite à gauche de f en a** si $\lim_{x\to a_-} f(x) = L$

1.3.3 Propriétés des limites

Soit f et g deux fonctions admettant une limitent en a et soit $\lambda \in \mathbb{R}$

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

$$\lim_{x \to a} [\lambda f(x)] = \lambda \lim_{x \to a} f(x)$$

$$\lim_{x \to a} [f(x) * g(x)] = \lim_{x \to a} f(x) * \lim_{x \to a} g(x)$$

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ si } \lim_{x \to a} g(x) \neq 0$$

1.3.4 Théorème des deux gendarmes

Soit f, g et h trois fonctions définies sur un intervalle ouvert I contenant a,

sauf éventuellement en a.

Si
$$f(x) \le h(x) \le g(x) \forall x \in I / \{a\} \text{ et si } \lim_{x \to a} f(x) = \lim_{x \to a} g(x) = L$$

alors
$$\lim_{x\to a} h(x) = L$$

1.3.5 Continuité

Une fonction f est **continue** en a si elle est définie sur une intervalle ouvert contenant a et si $\lim_{x\to a} f(x) = f(a)$

Une fonction f est **continue** en a si elle est continue en tout point de l'intervalle I.

Une fonction f est **continue sur un intervalle fermé** [a;b] si elle est continue en tout point de l'intervalle et si

$$\lim_{x\to a_+} f(x) = f(a)$$
 et $\lim_{x\to b_-} f(x) = f(b)$.

1.3.6 Limites de fonctions composées

Soit f et g deux fonctions.

Si $\lim_{x\to a} f(x) = L$ et si de plus g est continue en L, alors

$$\lim_{x\to a} g(f(x)) = g(\lim_{x\to a} f(x)) = g(L)$$

Si $\lim_{x\to a} f(x) = L$ et si de plus $f(x) \neq L$ sur un intervalle ouvert

contenant a, sauf éventuellement a, alors :

$$\lim_{x\to a} g(f(x)) = \lim_{t\to L} g(t)$$

1.3. LIMITES 17

1.3.7 Propriétés des fonctions continues

Continuité de la réciproque

Soit I un intervalle et $f: I \to J$ une fonction bbijective et continue.

Alors la réciproque rf est continue sur l'intervalle J.

Théorème de Bolzanno

Si f est continue sur l'intervalle [a;b] et si f(a) et f(b) sont de signes différents, alors la fonction f admet au moins un zéro dans

[a;b]

Théorème de la valeur intermédiaire

Si f est continue sur l'intervalle [a;b], alors pour tout nombre γ compris entre f(a) et f(b), il existe $c \in [a;b] \text{ tel que } f(c) = \gamma$

Théorème de Bolzanno-Weierstrass

L'image d'un intervalle fermé borné par une fonction continue est

un intervalle fermé borné

Corollaire

Une fonction continue sur un intervalle fermé [a;b] admet un maximum absolu et un minimum absolu sur cet intervalle.

1.3.8 Limites infinies

Soit f une fonction définie sur un intervalle ouvert contenant a, sauf éventuellement en a.

on écrit $\lim_{x\to a} f(x) = +\infty$ si f(x) est arbitrairement grand quand x tend vers a, avec $x \neq a$. on écrit $\lim_{x\to a} f(x) = -\infty$ si $\lim_{x\to a} (-f(x)) = +\infty$

1.3.9 Propriétés des limites infinies

$$\lim_{x \to a} f(x) = L \text{ et } \lim_{x \to a} g(x) = +\infty \Rightarrow \lim_{x \to a} [f(x) + g(x)] = +\infty$$

$$\lim_{x \to a} f(x) = L < 0 \text{ et } \lim_{x \to a} g(x) = +\infty \Rightarrow \lim_{x \to a} [f(x) * g(x)] = -\infty$$

$$\lim_{x \to a} f(x) = L \neq 0 \text{ et } \lim_{x \to a} g(x) = 0 \Rightarrow \lim_{x \to a} \left| \frac{f(x)}{g(x)} \right| = +\infty$$

$$\lim_{x \to a} f(x) = L \neq 0 \text{ et } \lim_{x \to a} g(x) = \pm \infty \Rightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = 0$$

Remarque. $\frac{0}{0}$, $\frac{\infty}{\infty}$, $0 * \infty$ et $\infty - \infty$ sont des formes dites indéterminées.

1.3.10 Limites à l'infini

Soit f une fonction définie sur un intervalle de la forme $[a; +\infty[$. On écrit $\lim_{x\to\infty} f(x) = L$ si f(x) est arbitrairement proche de L quand x est suffisamment grand ou de manière équivalente, si $\lim_{t\to 0_+} f(\frac{1}{t}) = L$. Soit f une fonction définie sur un intervalle de la forme $]-\infty;a]$. On écrit $\lim_{x\to -\infty} f(x) = L$ si $\lim_{x\to +\infty} f(-x) = L$

1.3. LIMITES 19

1.3.11 Asymptotes

Définition. La droite d'équation x = a est une **asymptote verticale** de la fonction f si

$$\lim_{x\to a_+} |f(x)| = +\infty$$
 ou si $\lim_{x\to a_-} |f(x)| = +\infty$

Définition. La droite d'équation $y = h_1$ est une **asymptote horizontale** de la fonction f vers $+\infty$ si $\lim_{x\to+\infty} f(x) = h_1$

Définition. La droite d'équation $y = h_2$ est une **asymptote horizontale** de la fonction f vers $-\infty$ si $\lim_{x\to-\infty} f(x) = h_2$

Définition. La droite d'équation $y = h_1$ est une **asymptote horizontale** de la fonction f vers $+\infty$ si $\lim_{x\to+\infty} f(x) = h_1$

Définition. La droite d'équation y = mx + h est une **asymptote oblique** de la fonction f vers $+\infty$ si

$$f(x) = mx + h + \delta(x)$$
 avec $\lim_{x \to +\infty} \delta(x) = 0$

Définition. La droite d'équation y = mx + h est une **asymptote oblique** de la fonction f vers $-\infty$ si

$$f(x) = mx + h + \delta(x)$$
 avec $\lim_{x \to -\infty} \delta(x) = 0$

1.3.12 Astuces de calcul

Division euclidienne

Soit f(x), g(x) deux fonctions rationnelles et $L = \lim_{x \to +b} \frac{f(x)}{g(x)} = 0$, avec $b \in \mathbb{R}$

On remarque dans cette situation que f(x) et g(x) sont divisibles par (x-b) (car quand x = b, f(x) et g(x) sont tous deux nuls.)

Ainsi, nous pouvons mettre en évidence (x-b) dans f(x) et g(x) grâce a une divison euclidienne (un schéma de Horner peut s'avérer pratique).

Remarque. Si le reste de la division euclidienne est de zéro, il peut être intéressant de remettre (x - b) en évidence dans la nouvelle limite obtenue.

Règle de Bernouilli-L'Hospital

Se réferer à la définition de la règle de Bernouilli L'Hospital. Rappel rapide :

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = \lim_{x \to a} \frac{f(x)}{g(x)} = L$$

Avec g et g' non nuls, et f, g dérivables.

Limites remarquables

Fonctions Trigonométriques :	Fonctions Logarithmiques :
$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$	$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$
$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$	$\lim_{x \to 0} (1 + \frac{a}{x})^x = e^a$
$\lim_{x \to 0} \frac{\arcsin(x)}{x} = 1$	$\lim_{x \to 0} \frac{\ln(1+ax)}{x} = a$
$\lim_{x \to 0} \frac{\tan(x)}{x} = 1$	$\lim_{x \to 0} (1 + ax)^{\frac{1}{x}} = e^a$

1.4. SÉRIES 21

1.4 Séries

1.4.1 Séries numériques

Soit (a_n) une suite d'éléments de \mathbb{R} . Toute expression de la forme :

$$\sum_{n=0}^{+\infty} a_n$$

est appellée une série numérique.

Définition. On dit de la série $\sum_{n=0}^{+\infty} a_n$ qu'elle est **convergente** si la suite des **sommes partielles** :

$$(S_p = \sum_{n=0}^{+\infty} a_n)$$

converge. La limite de cette suite, lorsqu'elle existe, est appelée la **somme** de la série, et on pose, par définition :

$$\sum_{n=0}^{+\infty} a_n = \lim_{p \to \infty} S_p$$

Lorsque la suite S_p diverge, on dit que la série $\sum_{n=0}^{+\infty} a_n$ diverge. Dans le cas particulier ou $\lim_{p\to\infty} S_p = +\infty$ (resp. $-\infty$), on écrit: $\sum_{n=0}^{+\infty} a_n = +\infty$ (resp. $-\infty$).

Définition. On dit de la série $\sum_{n=0}^{+\infty} a_n$ qu'elle est **absolument convergente** si la série $\sum_{n=0}^{+\infty} |a_n|$ est convergente.

1.4.2 Critères de convergence

Critère du quotient

Soient (a_n) et (b_n) deux suites de nombres réels positifs telles que

$$\lim_{n \to \infty} \frac{a_n}{b_n} = l \in \mathbb{R}_+^*$$

alors deux cas se présentent :

Soit $\sum_{n=0}^{+\infty} a_n$ et $\sum_{n=0}^{+\infty} b_n$ sont convergentes, soit les deux divergent.

Critère de d'Alembert

Soit (a_n) une suite d'éléments de \mathbb{R} pour laquelle

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho$$

Alors, si $\rho < 1$, la série $\sum_{n=0}^{+\infty} a_n$ est absolument convergente, et diverge si $\rho > 1$.

Critère de Cauchy

Soit (a_n) une suite d'éléments de $\mathbb R$ et

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = l = \rho$$

Alors, si $\rho < 1$, la série $\sum_{n=0}^{+\infty} a_n$ est absolument convergente, et diverge si $\rho > 1$.

Critère des séries alternées

Soit (a_n) une suite d'éléments de $\mathbb R$ vérigiant les trois propriétés suivantes :

- $\forall n \in \mathbb{N} : a_n * a_{n+1} \le 0$
- $\forall n \in \mathbb{N} : |a_{n+1}| \le |a_n|$
- $\lim_{n\to\infty} a_n = 0$

Alors, la série $\sum_{n=0}^{+\infty} a_n$ converge. De plus, pour tout entier $p \geq 0$:

$$|\sum_{n=0}^{+\infty} a_n| \le |a_p|$$

1.5. DÉRIVÉES 23

1.5 Dérivées

1.5.1 Tangeante (dérivée) en x_0

Soit deux points M et M_0 , définis par : $M_0(x_0; f(x_0))$ et M(x; f(x)). Quand x tend vers x_0 , alors M s'approche de M_0 et la droite (M_0M) tend vers une droite limite que l'on appelle **tangeante** à f(x) en M_0 . Cette tangeante en x_0 est nommée dérivée de f au point x_0 , et sa pente est donnée par la limite :

$$f'(x_0) := m = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

1.5.2 Nombre dérivé à gauche, à droite

La notion de limite a gauche (resp. à droite) permet de définir le nombre dérivé à gauche (resp. droite) d'une fonction en un point. Ceci nous permet de déterminer si la fonction est **dérivable en ce point** si les limites à gauche et à droite sont les mêmes.

Ainsi:

$$f'(x_0)$$
 existe si : $=\lim_{x\to x_{0-}} \frac{f(x)-f(x_0)}{x-x_0} = \lim_{x\to x_{0+}} \frac{f(x)-f(x_0)}{x-x_0}$

(notons ici que x_{0-} et x_{0+} représentent un nombre légèrement plus petit que x, et resp. un nombre légèrement plus grand que x.)

1.5.3 Point anguleux, à tangeante verticale, de rebroussement

• Le graphe d'une fonction f admet un **point anguleux en a** si f est continue en a et si :

$$\lim_{x \to a_{-}} f'(x) \neq \lim_{x \to a_{+}} f'(x)$$

(si la fonction f est continue en a mais non dérivable en a alors f admet un point anguleux en a.)

• Le graphe d'une fonction f admet une **tangeante verticale en a** si f est continue en a et si :

$$\lim_{x \to a_{-}} |f'(x)| = +\infty$$

ce point est un **point de rebroussement** si de plus la limite $\lim_{x\to a_-} f'(x)$ n'existe pas.

1.5.4 fonction dérivée

Définition. Une fonction f est **dérivable** sur une partie de A sur \mathbb{R} si elle est dérivable en tout points de A. On définit la fonction dérivée par :

$$f': A \to \mathbb{R}$$

 $x \to f'(x)$

1.5. DÉRIVÉES

25

Dérivées de fonction élémentaires

f(x)	f'(x)
c	0
x	1
$x^n n \in \mathbb{N}^*$	$n * x^{n-1}$
e^u	$u'e^u$
$\frac{1}{x}$	$-\frac{1}{x^2} x \neq 0$
\sqrt{x}	$\frac{1}{2\sqrt{x}} x > 0$
cos(x)	-sin(x)
x	$sgn(x) x \neq 0$

Dérivées de fonction particulières

f(x)	f'(x)
$x^q q \in \mathbb{Q}$	qx^{q-1}
tan(x)	$\frac{1}{\cos^2(x)} = 1 + \tan^2(x)$
cot(x)	$\frac{-1}{\sin^2(x)} = -1 - \cot^2(x)$
arcsin(x)	$\frac{1}{\sqrt{1-x^2}}$
arccos(x)	$\frac{-1}{\sqrt{1-x^2}}$
arctan(x)	$\frac{1}{1+x^2}$

1.5.5 Dérivée d'ordre supérieur

Définition. La **dérivée d'ordre n** de f est la fonction n fois dérivée $f^{(n)}$ définie par $f^{(n)}(x) = (f^{(n-1)})'(x)$

1.5.6 Règle de Bernouilli-L'Hospital

Définition. Soient des fonctions f, g telles que f, g:]a,b[$\to F$, dérivables telles que g, g' ne s'annulent pas sur]a,b[. De plus, on suppose que :

- $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = \alpha \text{ avec } \alpha = 0, -\infty \text{ ou } +\infty;$
- $\lim_{x\to a} \frac{f'(x)}{g'(x)} = L$, avec $L \in \mathbb{R} \cup -\infty, +\infty$

Alors,

$$\lim_{x o a}rac{f'(x)}{g'(x)}=L$$

Remarque. cette règle reste valable quand x tend vers b-, a+, $-\infty$ ou $+\infty$

1.5. DÉRIVÉES 27

1.5.7 Théorème de Rolle

Si f est une fonction continue sur l'intervalle [a; b], et dérivable sur

l'intervalle a; b et si f(a) = f(b) alors il existe au moins

un nombre c dans
$$a; b$$
 t.q. $f'(c) = 0$

(Il existe entre les points A et B de "même hauteur" un point ayant une tangeante horizontale.)

1.5.8 Théorème des accroisements finis (TAF)

Si f est une fonction continue sur l'intervalle [a; b], et dérivable

sur l'intervalle a; b[alors il existe au moins un nombre c

dans
$$]a; b[$$
 t.q. $f'(c) = \frac{f(b) - f(a)}{b - a}$

(Il existe entre les points A et B un point ayant une tangeante parrallèle à la droite AB.)

1.5.9 Polynôme de taylor

Soient I un intervalle ouvert, $a \in I$ et $f: I \to F$ une fonction de classe C^n . Alors la fonction polynomiale $\mathcal{P}_n: \mathbb{R} \to \mathbb{R}$ définie par :

$$\mathcal{P}_n(x) = f(a) + \frac{f'(a)}{1!} * (x - a) + \frac{f''(a)}{2!} * (x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!} * (x - a)^n$$

est appellée polynôme de Taylor d'ordre n de la fonction f autour de a.

1.5.10 Développement limité

Soient I un intervalle ouvert, (TODO)

1.5.11 Règles de dérivation

Soit f et g deux fonction dérivables en a. Soit $c \in \mathbb{R}$

$$(f+g)'(a) = f'(a) + g'(a)$$

$$(f-g)'(a) = f'(a) - g'(a)$$

$$(c*f)'(a) = c*f'(a)$$

$$(f*g)'(a) = f'(a)*g(a) + f(a)*g'(a)$$

$$(\frac{f}{g})'(a) = \frac{f'(a)*g(a) - f(a)g'(a)}{g^2(a)}$$

Si f est une fonction dérivable en a et g une fonction dérivable en f(a), alors $g \circ f$ est dérivable en a et :

$$(g\circ f)'(a)=g'(f(a))*f'(a)$$

Exemple. On "dérive en boîtes" :

$$\rightarrow sin^2(2x)' =$$

- ① Dériver le carré : 2sin(2x)
- (2) Dériver le sinus : cos(2x)
- (3) Dériver 2x : 2
- (4) Multiplier chaque partie entre elles :2sin(2x)*cos(2x)*2 = 4sin(2x)cos(2x)

1.5.12 Remarques

- Toute fonction dérivable en a est continue en a
- Si la fonction f est dérivable en a et admet un extremum en a, alors f'(a) = 0

1.5. DÉRIVÉES

29

1.6 Intégrales

1.6.1 Introduction

Soient a < b deux éléments de \mathbb{R} . Le sous-ensemble fini et ordonné

$$\sigma = \{x_0 = a, x_1, \dots, x_{n-1}, x_n = b\} \text{ avec } a < x_1 < \dots < x_{n-1} < b\}$$

est appelé une **subdivision** de l'intégrale [a;b].

Somme de Riemann supérieure

Soit $\sigma = \{x_0, x_1, ..., x_n\}$ une subdivision de [a, b] et $f : [a, b] \to \mathbb{R}$ une fonction continue.

On nomme somme de Riemann Supérieure le nombre :

$$\bar{S}_{\sigma}(f) = \sum_{k=1}^{n} f(t_k)(x_k - x_{k-1})$$

avec
$$f(t_k) = \sup\{f(t), t_k \in [x_{k-1}, x_k]\}$$

Somme de Riemann inférieure

Soit $\sigma = \{x_0, x_1, ..., x_n\}$ une subdivision de [a, b] et $f : [a, b] \to \mathbb{R}$ une fonction continue.

On nomme somme de Riemann Inférieure le nombre :

$$\underline{S}_{\sigma}(f) = \sum_{k=1}^{n} f(t_k)(x_k - x_{k-1})$$

avec
$$f(t_k) = \inf\{f(t), t_k \in [x_{k-1}, x_k]\}$$

Intégrale Bornée

Soit $\underline{S}(f)$, $\bar{S}(f)$, deux nombres réels tels que :

$$\begin{split} \underline{\mathbf{S}}(f) &= \inf\{\underline{\mathbf{S}}_{\sigma}(f) : \sigma \text{ subdivision de } [a,b]\} \\ &\quad \text{et} \\ \bar{S}(f) &= \inf\{\bar{S}_{\sigma}(f) : \sigma \text{ subdivision de } [a,b]\} \end{split}$$

Soient a < b deux éléments de \mathbb{R} et $f:[a,b]\to\mathbb{R}$ une fonction continue. Par définition, le nombre réel $\underline{S}(f)=\bar{S}(f)$ est appelé l'**intégrale** de la fonction f sur [a,b] et on écrit :

$$\underline{S}_{\sigma}(f) = \bar{S}_{\sigma}(f) = \int_{a}^{b} f(x) dx$$

1.6.2 Primitives d'une fonction

Définition. Soit f une fonction définie sur un intervalle I (une partie de \mathbb{R}). Une fonction dérivable F est une **primitive** de f sur I si $F'(x) = f(x) \forall x \in I$.

On désigne généralement par $\int f(x)dx$ l'ensemble des primitives de f sur I. On l'appelle **intégrale indéfinie** de f.

Intégrer une fonction f sur un intervalle I c'est chercher toutes les primiteives de f sur I.

Si F est primitive de f sur I, alors toute primitive de f est de la forme $\mathbf{F}(\mathbf{x}) + \mathbf{c}$, avec $c \in \mathbb{R}$. On convient d'écrire :

$$\int f(x)dx = F(x) + c, \quad c \in \mathbb{R}$$

Théorème fondamental du calcul intégral

Soient a < b deux éléments de \mathbb{R} et $f:[a,b]\to\mathbb{R}$ une fonction continue. Alors, si $F:[a,b]\to\mathbb{R}$ est une primitive on écrit :

$$F(b) - F(a) = \int_a^b f(x) dx$$

on utilise aussi la notation:

$$\int_a^b f(x)dx = F(x)|_a^b$$

1.6.3 Intégration par parties

Soient I un intervalle ouvert, $a,b\in I$ et $f,g:I\to\mathbb{R}$ deux fonctions telles que f,g soient dérivables sur I, et f',g' sont continues sur I. Alors :

$$\int_{a}^{b} f(x)g'(x)dx = f(x)g(x)|_{a}^{b} - \int_{a}^{b} f'(x)g(x)dx$$

ou plus généralement :

$$u * v = \int u * v' + \int u' * v$$

on peut le montrer en intégrant :

$$(u*v)' = u'*v + u*v'$$

1.6.4 Changement de variable

Soit I un intervalle réel, $\varphi:[a,b]\to I$ une fonction dérivable avec la dérivée intégrable, et $f:I\to\mathbb{R}$ une fonction continue. Alors :

$$\int_{a}^{b} f(\varphi(t))\varphi'(t)dt = \int_{\varphi(a)}^{\varphi(b)} f(x)dx$$

Par définition, la transformation

$$x = \varphi(t)$$
 avec $t \in I$

est appelé un changement de variable.¹

Règles de Bioche

Les règles de Bioches sont des règles utiles pour les changement de variables dans des intégrales contenant des fonctions trigonométriques. Soit l'intégrale

$$\int_a^b f(x)dx$$
, telle que $f(x) = \frac{P(\sin(x),\cos(x))}{Q(\sin(x),\cos(x))}$

avec P et Q des polynômes a deux variables, à coefficients réels. On pose de plus

$$\omega(t) = f(x)dx$$

Ainsi:

- si $\omega(-t) = \omega(t)$, un bon changement de variable est : $\varphi(t) = \cos(t)$
- si $\omega(\pi t) = \omega(t)$ un bon changement de variable est : $\varphi(t) = \sin(t)$
- si $\omega(\pi + t) = \omega(t)$ un bon changement de variable est : $\varphi(t) = tan(t)$
- si deux de ces trois précédents points sont vraies, un bon changement de variable est : $\varphi(t) = \cos(2t)$
- dans les autres cas, un bon changement de variable est : $\varphi(t) = tan(t/2)$

Remarque. Il est important de se rappeler de changer dx par dt, que l'on determine avec :

$$\frac{dt}{dx} = \varphi(t)'$$

¹Il est nécéssaire de regarder des exemples afin de mieux comprendre le fonctionnement de cette méthode.

1.6.5 Primitives de fonctions élémentaires

f(x)	$\int f(x)dx$
a	$ax + c c \in \mathbb{R}$
$x^q q \in \mathbb{Q} \setminus \{-1\}$	$\frac{x^{q+1}}{q+1} + c c \in \mathbb{R}$
$\frac{1}{x}$	$ \ln x + c c \in \mathbb{R} $
e^x	$e^x + c c \in \mathbb{R}$
$\ln x a \neq 1, a > 0, x > 0$	$x(\ln x - 1) + c c \in \mathbb{R}$
cos(x)	$sin(x) + c c \in \mathbb{R}$
sin(x)	$-cos(x) + c c \in \mathbb{R}$

1.6.6 Primitives de fonctions particulières

f(x)	$\int f(x)dx$
$\frac{1}{a^2 + x^2} a \neq 0$	$\frac{1}{a}Arctg(\frac{x}{a}) + c c \in \mathbb{R}$
$a^x a \neq 1, a > 0$	$\frac{a^x}{\ln(a)} + c c \in \mathbb{R}$
$log_a x a \neq 1, a > 0, x > 0$	$x(log_a x - log_a e) + c c \in \mathbb{R}$

1.6.7 Règles d'intégration

Soit f et g deux fonctions admettant une primitive sur un intervalle I

$$\int \lambda f(x) dx = \lambda \int f(x) dx \quad \lambda \in \mathbb{R}$$

$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$$

$$\int (f(x) - g(x)) dx = \int f(x) dx - \int g(x) dx$$

$$\int g(f(x)) * f'(x) dx = G(f(x)) + c \quad c \in \mathbb{R}$$
 Où G est une primitive de g .

1.7 Applications des dérivées

TODO (? -; pas forcément utile pour le BA1)

1.8 Equations Différentielles

TODO

Chapitre 2

Algèbre Linéaire

2.1 Equations linéaires en algèbre linéaire

2.1.1 Systèmes d'équations linéaires

Une équation est dite **linéaire** d'inconnues $x_1, x_2, ..., x_n$ si on peut l'arranger de la forme :

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = b$$

avec b et les **coefficients** $a_1, ..., a_n$ des nombres réels ou complexe dont on connaît (en général) la valeur. n est strictement positif.

On appelle **solution** du système toute liste $(s_1, s_2, ..., s_n)$ de nombres qui transforme chaque équation en une égalité vraie quand on substitue $s_1, ..., s_n$ respectivement à $x_1, ..., x_n$.

On appelle **ensemble des solutions** l'ensemble de toutes les solutions posssibles du système linéaire.

On dit de deux systèmes qui partagent le même ensemble de solutions qu'ils sont **équivalents** (toute solution d'un système est solution du second et viceversa).

Un système est dit **compatible** (ou consistant) si il adment au minimum une solution.

Dans le cas inverse, on le dit **incompatible (ou incosistant)** si il ne possède pas de solution.

2.1.2 Notation matricielle

On peut présenter les informations importantes dans un tableau appelé **matrice**. Par exemple, étant donné le système :

$$ax_1 + bx_2 + cx_3 = u$$

 $dx_1 + ex_2 + fx_3 = v$
 $gx_1 + hx_2 + ix_3 = w$

on peut représenter la matrice des coefficients du système

$$M = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$

ainsi que la matrice complète (ou matrice augmentée) du système :

$$M = \begin{pmatrix} a & b & c & u \\ d & e & f & v \\ g & h & i & w \end{pmatrix}$$