THINK BEFORE STARTING THE WRITING OF A PROOF. THINK OF ALL THE NECESSARY COMPONENTS FIRST. THERE IS ENOUGH TIME. $h'(c) = \frac{h(b) - h(a)}{b - a}, \quad \exists c \in (a, b).$

Definitions

- o **Differentiable**: $f: \mathbb{R}^d \to \mathbb{R}$ is differentiable if $f(\boldsymbol{y}) = f(\boldsymbol{x}) + \langle \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle + r(\boldsymbol{y} - \boldsymbol{x}),$
- where $\lim_{oldsymbol{v} o oldsymbol{0}} rac{|r(oldsymbol{v})|}{\|oldsymbol{v}\|} = 0$
- o Spectral norm: $||A||_2 = \sup_{\|\boldsymbol{x}\|=1} ||A\boldsymbol{x}||$ (largest eigenvalue).
- Positive semi-definite: $\forall x \in \mathbb{R}^d$: $x^\top Ax \ge 0$.
- \circ Directional derivative: If f is diff., $\langle \nabla f(x), v \rangle = \lim_{h \to 0} \frac{f(x+hv) f(x)}{h}$
- ∘ B-Lipschitz: $\forall x, y \in \text{dom}(f)$,
- [1] $||f(\mathbf{x}) f(\mathbf{y})|| \le B||\mathbf{x} \mathbf{y}||$.
- [2] If f differentiable, $\|\nabla f(x)\| \leq B$.
- [3] If f convex, $||g|| \le B$, $\forall g \in \partial f(x)$.
- Convex set: $\forall x, y \in X, \lambda \in [0, 1]$: $\lambda x + (1 \lambda)y \in X$.
- Cone: X is a cone if $\forall x \in X, \lambda > 0$: $\lambda x \in X$.
- Convexity: $\forall x, y \in \text{dom}(f)$ and $\forall \lambda \in [0, 1]$,
- [1] $f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda)f(y)$.
- [2] $f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle$
- [3] $\langle \nabla f(\boldsymbol{x}) + \nabla f(\boldsymbol{y}), \boldsymbol{x} \boldsymbol{y} \rangle \ge 0.$
- [4] $\nabla^2 f(x)$ is positive semi-definite.
- o Convexity preservation: Scaling, Sum, Max, and f(Ax + b).
- ∘ *L*-smoothness: $\forall x, y \in \text{dom}(f)$,
- [1] $\|\nabla f(\boldsymbol{x}) \nabla f(\boldsymbol{y})\| \le L\|\boldsymbol{x} \boldsymbol{y}\|$
- [2] $g(x) := \frac{L}{2} ||x||^2 f(x)$ is convex.
- [3] $f(y) \le f(x) + \langle \nabla f(x), y x \rangle + \frac{L}{2} ||x y||^2$ (canonical).
- [4] $\langle \nabla f(\boldsymbol{x}) \nabla f(\boldsymbol{y}), \boldsymbol{x} \boldsymbol{y} \rangle \le L \|\boldsymbol{x} \boldsymbol{y}\|^2$.
- [5] $\|\nabla^2 f(x)\|_2 \leq L$.
- [6] If f is convex and L-smooth, then f is 1/L-strongly convex: $f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{1}{2L} ||\mathbf{x} - \mathbf{y}||^2.$
- [7] Coordinate-wise: $f(x + \lambda e_i) \leq f(x) + \lambda \nabla_i f(x) + \frac{L_i}{2} \lambda^2, \forall \lambda \in \mathbb{R}$. Relations: $[5] \Leftrightarrow [1] \Rightarrow [2] \Leftrightarrow [3] \Leftrightarrow [4]$ (If convex, all \Leftrightarrow).
- Smoothness preservation: Pos. scaling scales, Sum sums. f(Ax + b) has $L||A||_2^2$.
- μ -strong convexity: $\forall x, y \in \text{dom}(f)$,
- [1] $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle + \frac{\mu}{2} ||x y||^2$ (canonical).
- [2] $g(x) := f(x) \frac{\mu}{2} ||x||^2$ is convex.
- [3] $\langle \nabla f(\boldsymbol{x}) \nabla f(\boldsymbol{y}), \boldsymbol{x} \boldsymbol{y} \rangle \ge \mu \|\boldsymbol{x} \boldsymbol{y}\|^2$ (proof: sum [1] for $(\boldsymbol{x}, \boldsymbol{y})$ and $(\boldsymbol{y}, \boldsymbol{x})$).
- [4] μ -SC \Rightarrow PL inequality: $\frac{1}{2} ||\nabla f(\boldsymbol{x})||^2 \ge \mu(f(\boldsymbol{x}) f^*)$.
- Subgradient: $g \in \partial f(x) \Leftrightarrow f(y) \ge f(x) + \langle g, y x \rangle, \forall y \in \text{dom}(f)$.
- o Conjugate function: $f^*(y) := \sup_{x \in \text{dom}(f)} \langle x, y \rangle f(x)$.
- Dual norm: $\|\boldsymbol{y}\|_{\star} := \max_{\|\boldsymbol{x}\| < 1} \langle \boldsymbol{x}, \boldsymbol{y} \rangle$.

Lemmas

- $\circ \frac{\mathrm{d}}{\mathrm{d}x} \frac{f(x)}{g(x)} = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2}.$
- o Cosine theorem: All equivalent formulations,
- [1] $\|\boldsymbol{x} \boldsymbol{y}\|^2 = \|\boldsymbol{x}\|^2 + \|\boldsymbol{y}\|^2 2\langle \boldsymbol{x}, \boldsymbol{y} \rangle$.
- [2] $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \frac{1}{2} (\|\boldsymbol{x}\|^2 + \|\boldsymbol{y}\|^2 \|\boldsymbol{x} \boldsymbol{y}\|^2).$
- [3] $\langle x y, x z \rangle = \frac{1}{2} (\|x y\|^2 + \|x z\|^2 \|y z\|^2).$
- Cauchy-Schwarz:
- [1] $|\langle x, y \rangle| \le ||x|| ||y||$.
- [2] $\left(\sum_{i=1}^{n} a_i b_i\right)^2 \le \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right)$.
- [3] Titu's lemma $(b_i \ge 0)$: $\frac{\left(\sum_{i=1}^n a_i\right)^2}{\sum_{i=1}^n b_i} \le \sum_{i=1}^n \frac{a_i^2}{b_i}$ (proof: $a_i' = \frac{a_i}{\sqrt{b_i}}, b_i' = \sqrt{b_i}$).
- Hölder's inequality (special case): $|\langle x, y \rangle| \leq ||x||_1 ||y||_{\infty}$.
- Parallelogram law: $2\|x\|^2 + 2\|y\|^2 = \|x + y\|^2 + \|x y\|^2$
- $\circ \ \ \text{Jensen's inequality } (\varphi \ \text{convex}, \ a_i \geq 0): \ \varphi\Big(\frac{\sum_{i=1}^m a_i x_i}{\sum_{i=1}^m a_i}\Big) \leq \frac{\sum_{i=1}^m a_i \varphi(x_i)}{\sum_{i=1}^m a_i}$
- $\circ \ \ \text{Fenchel's inequality:} \ \langle \boldsymbol{x}, \boldsymbol{y} \rangle \leq f(\boldsymbol{x}) + f^{\star}(\boldsymbol{x}) \Rightarrow \langle \boldsymbol{x}, \boldsymbol{y} \rangle \leq \frac{1}{2} \big(\|\boldsymbol{x}\|^2 + \|\boldsymbol{y}\|_{\star}^2 \big).$
- Young's inequality $(a, b \ge 0, \frac{1}{p} + \frac{1}{q} = 1)$: $ab \le \frac{a^p}{p} + \frac{b^q}{q}$ $\Rightarrow ||x|| ||y|| \le \frac{1}{2} (||x||^2 + ||y||^2).$
- $\circ \frac{1}{\sqrt{d}} \| \boldsymbol{x} \|_2 \le \| \boldsymbol{x} \|_{\infty} \le \| \boldsymbol{x} \|_2 \le \| \boldsymbol{x} \|_1 \le \sqrt{d} \| \boldsymbol{x} \|_2.$
- ||A||₂ ≤ ||A||_F.

 $\circ \|Ax\| \le \|A\|_2 \|x\|.$

$$h'(c) = \frac{h(b) - h(a)}{b - a}, \quad \exists c \in (a, b)$$

Fund. theorem of calculus (h diff. on [a,b], h' cont. on [a,b]):

$$h(b) - h(a) = \int_a^b h'(t)dt.$$

- $\circ \int_0^1 c dt = c, \quad \int_0^1 t dt = \frac{1}{2}.$
- Subgradient calculus:
- [1] $h(\mathbf{x}) = \alpha f(\mathbf{x}) + \beta g(\mathbf{x}) \Rightarrow \partial h(\mathbf{x}) = \alpha \cdot \partial f(\mathbf{x}) + \beta \cdot \partial g(\mathbf{x}).$
- [2] $h(\mathbf{x}) = f(A\mathbf{x} + \mathbf{b}) \Rightarrow \partial h(\mathbf{x}) = A^{\top} \partial f(A\mathbf{x} + \mathbf{b}).$
- [3] $h(\mathbf{x}) = \max f_i(\mathbf{x}) \Rightarrow \partial h(\mathbf{x}) = \operatorname{conv}(\{\partial f_i(\mathbf{x}) \mid f_i(\mathbf{x}) = h(\mathbf{x})\}).$
- o If f is differentiable at x, then $\partial f(x) \subseteq {\nabla f(x_t)}$.
- o If f is convex, then $\partial f(x) \neq \emptyset$ for all in x in the relative interior.
- o If dom(f) convex and $\partial f(x) \neq \emptyset, \forall x \in dom(f)$, then f is convex.
- If f is concave, the subgradient exists nowhere.
- \circ For $p \geq 1$, $\frac{1}{p} + \frac{1}{q} = 1$, we have dual norms, $\|\cdot\|_{p,\star} = \|\cdot\|_q$.

Optimality lemmas (assume convexity)

The constrained and non-differentiable cases are useful when the update rule contains

- o x^* is a local minimum: $\exists \epsilon > 0$ such that $f(x^*) \le f(y), \forall y : ||x^* y|| \le \epsilon$.
- $\circ \nabla f(\mathbf{x}^*) = \mathbf{0}.$
- Constrained: $\langle \nabla f(\boldsymbol{x}^{\star}), \boldsymbol{x} \boldsymbol{x}^{\star} \rangle \geq 0, \forall \boldsymbol{x} \in X.$
- Non-differentiable: $\mathbf{0} \in \partial f(\mathbf{x}^{\star})$.

Common tricks

- Rearrange the update rule for an equality. E.g., $\nabla f(x_t) = \frac{x_t x_{t+1}}{\gamma_t}$
- Define $h(t) \coloneqq f({m x} + t({m y} {m x}))$, where $h'(t) =
 abla f({m x} + t({m y} {m x}))^{ op}({m y} {m x})$ and use with FTOC: $f(y) - f(x) = \int_0^1 \nabla f(x + t(y - x))^\top (y - x) dt$. Or, mean-value theorem: $\exists c \in (0,1) : \nabla f(\boldsymbol{x} + c(\boldsymbol{y} - \boldsymbol{x}))^{\top}(\boldsymbol{y} - \boldsymbol{x}) = f(\boldsymbol{y}) - f(\boldsymbol{x}).$
- Projection is non-expansive: $\|\Pi_X({m x}) \Pi_X({m y})\| \le \|{m x} {m y}\|.$
- $\circ \min_{1 \le t \le T} f(\boldsymbol{x}_t) f^* \le \frac{\sum_{t=1}^T \gamma_t (f(\boldsymbol{x}_t) f^*)}{\sum_{t=1}^T \gamma_t}.$
- $ilde{oldsymbol{
 u}}$ Telescoping sum inequality: $\sum_{t=1}^T \|oldsymbol{x}_t oldsymbol{x}^\star\|^2 \|oldsymbol{x}_{t+1} oldsymbol{x}^\star\| \leq \|oldsymbol{x}_1 oldsymbol{x}^\star\|^2.$
- Any monotone and bounded sequence has a limit.
- $\circ \max\{a, b\} \le a + b \text{ if } a, b \ge 0.$
- $\circ \sum_{t=1}^{T} \frac{1}{\sqrt{t}} = \mathcal{O}(\sqrt{T}), \quad \sum_{t=1}^{T} \frac{1}{t} = \mathcal{O}(\log T).$
- $||x|| = ||x y + y|| \le ||x y|| + ||y||.$
- $\circ \|x y\| \le \|x\| + \|y\| \Rightarrow \|x\| \ge \|x y\| \|y\|.$
- $0 \quad 1 x \le \exp(-x), \forall x \ge 0 \Rightarrow (1 x)^y \le \exp(-xy), \forall x \ge 0, y \in \mathbb{R}.$

- When showing convexity, make sure to show that the domain is a convex set.
- \circ If f is convex and want to use the subgradient, state that it exists bc of convexity.
- o If something is obviously false, still provide a counterexample.
- \circ Keep in mind divisions by 0. For example, when dividing by norm. Then, the gradient is not defined \Rightarrow Use subgradient.
- Structure of a proof:
- [1] State what needs to be shown exactly and mark by (\star) .
- [2] State the assumptions of the question and their implications (think about which implications are relevant to the proof).
- [3] Proof should follow easily: "Hence, (*) holds and the proof is concluded.".
- o If need to show that something does not exist, generally need to use a proof by contradiction that assumes that it does exist.
- \circ If γ_t is timestep-dependent, generally need to use induction.

Expectation and variance for SGD

- $\circ \operatorname{Var}[X] := \mathbb{E}[(X \mathbb{E}[X])^2]$
- $\circ \operatorname{Var}[X] = \mathbb{E}[X^2] \mathbb{E}[X]^2$
 - $\Rightarrow \mathbb{E}\|\nabla f(\boldsymbol{x}_t,\boldsymbol{\xi}_t)\|^2 = \|\nabla F(\boldsymbol{x}_t)\|^2 + \mathbb{E}\|\nabla f(\boldsymbol{x}_t,\boldsymbol{\xi}_t) \nabla F(\boldsymbol{x}_t)\|^2 \leq \|\nabla F(\boldsymbol{x}_t)\|^2 + \sigma^2.$
 - Law of total expectation: $\mathbb{E}[X] = \mathbb{E}_Y[\mathbb{E}_X[X \mid Y]].$
 - Law of total var.: $Var[Y] = \mathbb{E}_X[Var_Y[Y \mid X]] + Var_Y[\mathbb{E}_X[Y \mid X]].$
 - $\circ \operatorname{Var}[X Y] = \operatorname{Var}[X] + \operatorname{Var}[Y] 2 \cdot \operatorname{Cov}(X, Y).$
- $\circ \operatorname{Var}[\alpha X] = \alpha^2 \operatorname{Var}[X], \operatorname{Var}[X + \beta] = \operatorname{Var}[X].$

Risk minimization

Unknown distribution P. We only have access to samples $X_1, \ldots, X_n \sim P$. We want to explain data source X through these samples by minimizing risk.

• Expected risk: $\ell(H) := \mathbb{E}_X[\ell(H, X)]$.

• Empirical risk: $\ell_n(H) := \frac{1}{n} \sum_{i=1}^n \ell(H, X_i)$.

 $\hbox{$\circ$ $ \textbf{Probably approximately correct (PAC): Let $\epsilon,\delta>0$, $\tilde{H}\in\mathcal{H}$ is PAC if, with probability at least $1-\delta$, $\ell(\tilde{H})\leq\inf_{H\in\mathcal{H}}\ell(H)+\epsilon$.}$

 \circ Weak law of large numbers (WLLM): Let $H \in \mathcal{H}$ be fixed. For any $\delta, \epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that for $n \geq n_0$, $|\ell_n(H) - \ell(H)| \leq \epsilon$ with probability at least $1 - \delta$.

o Assume that for any $\delta, \epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that for $n \geq n_0$, $\sup_{H \in \mathcal{H}} |\ell_n(H) - \ell(H)| \leq \epsilon$ with probability at least $1 - \delta$. (WLLM holds uniformly for all hypotheses.) Then, an approximate empirical risk minimizer \tilde{H}_n ($\ell_n(\tilde{H}_n) \leq \inf_{H \in \mathcal{H}} \ell_n(H) + \epsilon$) is PAC for expected risk minimization, meaning $\ell(\tilde{H}_n) \leq \inf_{H \in \mathcal{H}} \ell(H) + 3\epsilon$ with probability at least $1 - \delta$.

$$\ell(\tilde{H}_n) \overset{\text{uniform WLLM}}{\leq} \ell_n(\tilde{H}_n) + \epsilon \overset{\text{emp. risk min.}}{\leq} \inf_{H \in \mathcal{H}} \ell_n(H) + 2\epsilon \overset{\text{uniform WLLM}}{\leq} \square$$

 \circ Empirical risk minimization ($\ell_n(H_n)$: empirical, training; $\ell(H_n)$: expected, validation): We want generalization and learning,

o (Low $\ell_n(H_n)$, High $\ell(H_n)$): Overfitting (theory is too complex).

o (High $\ell_n(H_n)$, High $\ell(H_n)$): Underfitting (theory is too simple).

o (Low $\ell_n(H_n)$, Low $\ell(H_n)$): Learning.

 $\circ (\ell_n(H_n) \approx \ell(H_n))$: Generalization.

o Regularization: Punish complex hypotheses.

 $\begin{array}{ll} \circ \text{ W.h.p. we do not have high } \ell_n(H_n)\text{, low }\ell(H_n)\text{, because }\ell_n(H_n) & \leq \\ \inf_{H \in \mathcal{H}}\ell_n(H) + \epsilon \leq \ell_n(\tilde{H}) + \epsilon \leq \ell(\tilde{H}) + 2\epsilon \leq \ell(\tilde{H}_n) + 3\epsilon. \end{array}$

Non-linear programming

Optimization problem:

ninimize f_0

subject to $f_i(\boldsymbol{x}) \leq 0, \quad i \in [m]$

 $h_j(\mathbf{x}) = 0, \quad j \in [p].$

• Problem domain: $X = \left(\bigcap_{i=0}^m \operatorname{dom}(f_i)\right) \cap \left(\bigcap_{j=1}^p \operatorname{dom}(h_j)\right)$.

o Convex program: All f_i are convex and all h_j are affine with domain \mathbb{R}^d .

o Lagrangian: $L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \coloneqq f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i f_i(\boldsymbol{x}) + \sum_{j=1}^p \nu_j h_j(\boldsymbol{x}).$

• Lagrange dual function: $g(\lambda, \nu) := \inf_{x \in X} L(x, \lambda, \nu)$.

• Weak Lagrange duality ($\lambda \ge 0$, x is feasible): $g(\lambda, \nu) \le f_0(x)$.

 \circ Lagrange dual problem (convex program, even if primal is not): maximize $g(\pmb{\lambda}, \pmb{\nu})$

subject to

 $\lambda \geq 0$.

• If a convex program has a feasible solution \bar{x} that is a Slater point $(f_i(\bar{x}) < 0, \forall i \in [m])$, then $\max_{\lambda \geq 0, \nu} g(\lambda, \nu) = \inf_{x \in X} f_0(x)$.

• **Zero duality gap**: Feasible solutions \tilde{x} and $(\tilde{\lambda}, \tilde{\nu})$ have zero duality gap if

 $f_0(\tilde{x}) = g(\tilde{\lambda}, \tilde{\nu}) \ (\Rightarrow \tilde{x} \text{ is a minimizer of primal}).$ o KKT necessary: Zero duality gap $\Rightarrow \tilde{\lambda} f_i(\tilde{x}) = 0, \forall i \in [m]$ (complementary)

slackness) and $\nabla_x L(\tilde{x}, \tilde{\lambda}, \tilde{\nu}) = 0$ (vanishing Lagrangian gradient).

 \circ KKT sufficient: Convex program, complementary slackness, and vanishing Lagrangian gradient \Rightarrow Zero duality gap.

Complementary slackness $(f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})) \Rightarrow L$ is convex in x and gradient is zero, so \tilde{x} is a global minimizer.

Program maybe not solvable, but if Slater point, then a solution exists

Only need to show that the KKT conditions are satisfied.

Gradient descent

 $\circ \ \ \textbf{Update rule} : \ \boldsymbol{x}_{t+1} = \boldsymbol{x}_t - \gamma \nabla f(\boldsymbol{x}_t).$

1st-order convexity on $(x^\star, x_t) \Rightarrow \nabla f(x_t) = \frac{x_t - x_{t+1}}{\gamma} \Rightarrow$ Cosine theorem $\Rightarrow x_t - x_{t+1} = \gamma \nabla f(x_t) \Rightarrow$ Telescoping sum.

 $\quad \text{Sufficient decrease } (L\text{-smooth, } \gamma := \frac{1}{L}) \colon f(\boldsymbol{x}_{t+1}) \leq f(\boldsymbol{x}_t) - \frac{1}{2L} \|\nabla f(\boldsymbol{x}_t)\|^2.$

Smoothness on $(x_{t+1}, x_t) \Rightarrow x_{t+1} - x_t = -\frac{1}{L} \nabla f(x_t)$.

 $\circ \ \ \textbf{Convergence results} : \ (\|\boldsymbol{x}_0 - \boldsymbol{x}^\star\| \leq R)$

 $\circ \ \big(B\text{-Lipschitz, convex, } \gamma \coloneqq \frac{R}{B\sqrt{T}}\big) \ \tfrac{1}{T} \textstyle \sum_{t=0}^{T-1} (f(\boldsymbol{x}_t) - f^\star) \leq \frac{RB}{\sqrt{T}}.$

Apply bounds to VA and find γ by 1st-order optimality.

 \circ (L-smooth, convex, $\gamma \coloneqq \frac{1}{L}$) $f(\boldsymbol{x}_T) - f^\star \le \frac{L}{2T} \|\boldsymbol{x}_0 - \boldsymbol{x}^\star\|^2$

Sufficient decrease to bound gradients of VA with telescoping sum.

 $\circ \ \left(L\text{-smooth, } \mu\text{-SC, } \gamma \coloneqq \tfrac{1}{L}\right) f(\boldsymbol{x}_T) - f^\star \leq \tfrac{L}{2} \left(1 - \tfrac{\mu}{L}\right)^T \|\boldsymbol{x}_0 - \boldsymbol{x}^\star\|^2$

Use μ -SC to strengthen VA bound for squared norm \Rightarrow Upper bound "noise" with $f^\star \leq f(x_{t+1})$ and SD \Rightarrow Smoothness on (x^\star, x_T) .

Accelerated gradient descent:

$$egin{aligned} m{y}_{t+1} &= m{x}_t - rac{1}{L}
abla f(m{x}_t) \ m{z}_{t+1} &= m{z}_t - rac{t+1}{2L}
abla f(m{x}_t) \ m{x}_{t+1} &= rac{t+1}{t+3} m{y}_{t+1} + rac{2}{t+3} m{z}_{t+1}. \end{aligned}$$

Projected gradient descent

• **Update rule** $(X \subset \mathbb{R}^d \text{ is closed and convex})$:

$$\mathbf{y}_{t+1} = \mathbf{x}_t - \gamma \nabla f(\mathbf{x}_t)$$

$$\mathbf{x}_{t+1} = \prod_{\mathbf{x}} \mathbf{x}_t(\mathbf{x}_{t+1}) := \operatorname{argmin} \|\mathbf{x}_t\|$$

$$x_{t+1} = \Pi_X(y_{t+1}) := \underset{x \in X}{\operatorname{argmin}} ||x - y_{t+1}||^2.$$

o **Projection onto** ℓ_1 -ball can be done in $\mathcal{O}(d \log d)$.

1. $(\boldsymbol{x} \in X, \boldsymbol{y} \in \mathbb{R}^d)$: $\langle \boldsymbol{x} - \Pi_X(\boldsymbol{y}), \boldsymbol{y} - \Pi_X(\boldsymbol{y}) \rangle \leq 0$.

Constrained 1st-order optimality \Rightarrow Rearrange.

2. $(\boldsymbol{x} \in X, \boldsymbol{y} \in \mathbb{R}^d)$: $\|\boldsymbol{x} - \Pi_X(\boldsymbol{y})\|^2 + \|\boldsymbol{y} - \Pi_X(\boldsymbol{y})\|^2 \le \|\boldsymbol{x} - \boldsymbol{y}\|^2$.

Cosine theorem on (1).

 \circ If $oldsymbol{x}_{t+1} = oldsymbol{x}_t$, then $oldsymbol{x}_t = oldsymbol{x}^\star$.

Use (1) and $x_{t+1} = x_t$ to show that 1st-order optimality holds.

• Projected SD: $f(x_{t+1}) \le f(x_t) - \frac{1}{2L} \|\nabla f(x_t)\|^2 + \frac{L}{2} \|y_{t+1} - x_{t+1}\|^2$.

Smoothness on $(\boldsymbol{x}_{t+1}, \boldsymbol{x}_t) \Rightarrow \nabla f(\boldsymbol{x}_t) = L(\boldsymbol{y}_{t+1} - \boldsymbol{x}_t) \Rightarrow$ Cosine theorem $\Rightarrow \boldsymbol{y}_{t+1} - \boldsymbol{x}_t = -\frac{1}{L} \nabla f(\boldsymbol{x}_t)$.

П

 $\gamma := (L ext{-smooth, convex, } \gamma := rac{1}{L}) : f(m{x}_T) - f^\star \le rac{L}{2T} \|m{x}_0 - m{x}^\star\|^2.$

VA with additional term $(y_{t+1}$ instead of x_{t+1} and use (2)) and bound gradients with projected SD. Additional terms cancel.

Coordinate descent

 \circ Update rule: $oldsymbol{x}_{t+1} = oldsymbol{x}_t - \gamma_i
abla_i f(oldsymbol{x}_t) oldsymbol{e}_i, \quad i \in [d].$

 \circ Coordinate-wise SD: $f(\boldsymbol{x}_{t+1}) \leq f(\boldsymbol{x}_t) - \frac{1}{2L_i} |\nabla_i f(\boldsymbol{x}_t)|^2$.

CW smoothness with $\lambda = rac{abla_i f(m{x}_t)}{L_i}$ such that $m{x}_{t+1} = m{x}_t + \lambda m{e}_i.$

 \circ Convergence results (μ -PL, \mathcal{L} -CS, $\bar{L}=rac{1}{d}\sum_{i=1}^{d}L_i$, $\gamma_i:=rac{1}{L_i}$):

 $\circ \ \, \left(L\text{-smooth, } \mu\text{-PL, } i \sim \text{Unif}([d])\right) \\ \mathbb{E}[f(\boldsymbol{x}_T) - f^\star] \leq \left(1 - \frac{\mu}{dL}\right)^T (f(\boldsymbol{x}_0) - f^\star).$

 $\mathsf{CW} \; \mathsf{SD} \Rightarrow \mathbb{E}_i[\cdot \mid \boldsymbol{x}_t] \Rightarrow \mathsf{Use} \; \mathsf{sample} \; \mathsf{prob.} \; \Rightarrow \mathsf{PL} \Rightarrow \mathbb{E}_{\boldsymbol{x}_t} \; \mathsf{(LoTE)}.$

 $\circ \left(\mu\text{-PL}, i \sim \operatorname{Cat}(L_1/\sum_{j=1}^d L_j, \dots, L_d/\sum_{j=1}^d L_j)\right)$

 $\mathbb{E}[f(\boldsymbol{x}_T) - f^*] \le \left(1 - \frac{\mu}{dL}\right)^T (f(\boldsymbol{x}_0 - f^*)).$

Same as above with different probabilities. $\bar{L}:=rac{1}{d}\sum_{i=1}^{d}L_{i}.$

 $\begin{array}{l} \circ \; \left(L\text{-smooth, } \mu_1\text{-SC w.r.t. } \ell_1 \Rightarrow \mu_1\text{-PL w.r.t. } \ell_\infty, \, i \in \operatorname{argmax}_{j \in [d]} |\nabla_j f(\boldsymbol{x}_t)|\right) \\ f(\boldsymbol{x}_T) - f^\star \leq \left(1 - \frac{\mu}{dL}\right)^T (f(\boldsymbol{x}_0) - f^\star) \\ f(\boldsymbol{x}_T) - f^\star \leq \left(1 - \frac{\mu_1}{L}\right)^T (f(\boldsymbol{x}_0) - f^\star). \end{array}$

CW SD $\Rightarrow \ell_{\infty}$ because of update rule \Rightarrow PL.

 $\frac{1}{\sqrt{d}} \|\boldsymbol{x} - \boldsymbol{y}\|_2 \le \|\boldsymbol{x} - \boldsymbol{y}\|_1 \le \|\boldsymbol{x} - \boldsymbol{y}\|_2 \Rightarrow \frac{\mu}{d} \le \mu_1 \le \mu.$

Nonconvex functions

П

 \circ (*L*-smooth, $\gamma := \frac{1}{L}$, $\exists x^*$): $\frac{1}{T} \sum_{t=0}^{T-1} \|\nabla f(x_t)\|^2 \le \frac{2L}{T} (f(x_0) - f^*)$.

SD does not require convexity. Rewrite with telescoping sum.

 $\Rightarrow \lim_{t\to\infty} \|\nabla f(\boldsymbol{x}_t)\| = 0.$

o Trajectory analysis: Optimize $f(x) := \frac{1}{2} \left(\prod_{k=1}^d x_k - 1 \right)^2$.

 $\circ \frac{\partial f(x)}{\partial x_i} = \left(\prod_k x_k - 1\right) \prod_{k \neq i} x_k \ (\nabla f(x) = 0 \text{ if 2 dims are 0 or all 1}).$

 $\circ \ \frac{\partial^2 f(\mathbf{x})}{\partial x_i^2} = \left(\prod_{k \neq i} x_k\right)^2.$

 $\circ \ \tfrac{\partial^2 f(\mathbf{x})}{\partial x_i \ \partial x_j} = 2 \prod_{k \neq i} x_k \prod_{k \neq j} x_k - \prod_{k \neq i,j} x_k, \text{ if } i \neq j.$

o c-balanced: Let x > 0, $c \ge 1$. x is c-balanced if $x_i \le c \cdot x_j, \forall i, j \in [d]$.

o If ${m x}_t$ is c-balanced, $\gamma>0$, then ${m x}_{t+1}$ is c-balanced and ${m x}_{t+1}\geq {m x}_t.$

 \circ If $m{x}$ is c-balanced, then for any $I\subseteq [d]$, we have

$$\prod_{k \notin I} x_k \le c^{|I|} \left(\prod_{k=1}^d x_k \right)^{1-|I|/d} \le c^{|I|}.$$

 \circ Let $oldsymbol{x}$ be c-balanced and $\prod_k x_k \leq 1$, then

$$\|\nabla^2 f(\mathbf{x})\|_2 \le \|\nabla^2 f(\mathbf{x})\|_F \le 3dc^2.$$

Thus, f is smooth along the whole trajectory of GD with $L=3dc^2$.

- \circ Convergence $(\gamma:=rac{1}{3dc^2},\ m{x}_0>m{0}\ ext{and}\ c ext{-balanced},\ \delta \leq \prod_k x_{0,k}<1)$ $f(m{x}_T) \leq \left(1-rac{\delta^2}{3c^4}
 ight)^T f(m{x}_0).$
- o δ decays polynomially in d, so we must start $\mathcal{O}(1/\sqrt{d})$ from $\boldsymbol{x}^{\star}=\mathbf{1}$.

Frank-Wolfe

- \circ Linear minimization oracle: $\mathrm{LMO}_X(g) := \mathrm{argmin}_{oldsymbol{z} \in X} \langle g, oldsymbol{z} \rangle$. If $g = \mathbf{0}$, any $oldsymbol{z}$ minimizes.
- Update rule: $x_{t+1} = (1 \gamma_t)x_t + \gamma_t s_t$, $s_t = \text{LMO}_X(\nabla f(x_t))$.
- $\circ \ \ \text{If} \ X=\operatorname{conv}(\mathcal{A}) \text{, then } \operatorname{LMO}_X(\boldsymbol{g}) \in \mathcal{A} \text{: Easy optimization problem in } \mathcal{O}(|\mathcal{A}|).$
- o Advantages: (1) Iterates are always feasible if X is convex, (2) No projections, (3) Iterates \boldsymbol{x}_T have simple sparse representations as convex combination of $\{\boldsymbol{x}_0, \boldsymbol{s}_0, \dots, \boldsymbol{s}_{T-1}\}$: $\boldsymbol{x}_T = \left(\prod_{t=0}^{T-1} 1 \gamma_t\right) \boldsymbol{x}_0 + \sum_{t=0}^{T-1} \gamma_t \left(\prod_{\tau=t+1}^{T-1} 1 \gamma_\tau\right) \boldsymbol{s}_t$.
- o ℓ_1 -ball LMO: $LMO(\boldsymbol{g}) = -\mathrm{sgn}(g_i)\boldsymbol{e}_i, i \in \mathrm{argmax}_{j \in [d]} |g_i|$.
- $\quad \text{O Luality gap: } g(\boldsymbol{x}) \coloneqq \langle \nabla f(\boldsymbol{x}), \boldsymbol{x} \boldsymbol{s} \rangle, \boldsymbol{s} = \mathrm{LMO}_X(\nabla f(\boldsymbol{x})).$
- $\quad \text{Opper bound of optimality gap (Convex): } g(\boldsymbol{x}) \geq f(\boldsymbol{x}) f^{\star}.$

$$g(\boldsymbol{x}) = \langle \nabla f(\boldsymbol{x}), \boldsymbol{x} - \boldsymbol{s} \rangle \ge \langle \nabla f(\boldsymbol{x}), \boldsymbol{x} - \boldsymbol{x}^{\star} \rangle \ge f(\boldsymbol{x}) - f^{\star}.$$

- o Descent lemma: $f(\boldsymbol{x}_{t+1}) \leq f(\boldsymbol{x}_t) \gamma_t g(\boldsymbol{x}_t) + \gamma_t^2 \frac{L}{2} \|\boldsymbol{s}_t \boldsymbol{x}_t\|^2$.
- Convergence (*L*-smooth, convex, *X* is compact, $\gamma_t = \frac{2}{t+2}$): $f(x_T) f^* \leq \frac{2L}{T+1} \mathrm{diam}(X)^2$.

Lemma
$$-f^* \Rightarrow \text{Use } g(\boldsymbol{x}) \geq f(\boldsymbol{x}) - f^* \Rightarrow \text{Rearrange and induction}.$$

 \circ Affine equivalence: (f,X) and (f',X') are affinely equivalent if f'(x)=f(Ax+b) and $X'=\{A^{-1}(x-b)\mid x\in X\}$. Then,

$$\nabla f'(\boldsymbol{x}') = A^{\top} \nabla f(\boldsymbol{x}), \quad \boldsymbol{x} = A^{-1}(\boldsymbol{x} - \boldsymbol{b})$$
$$\text{LMO}_{X'}(\nabla f'(\boldsymbol{x}')) = A^{-1}(\boldsymbol{s} - \boldsymbol{b}), \quad \boldsymbol{s} = \text{LMO}_{X}(\nabla f(\boldsymbol{x})).$$

o Curvature constant:

$$C_{(f,X)} := \sup_{\substack{\boldsymbol{x}, \boldsymbol{s} \in X, \gamma \in (0,1] \\ \boldsymbol{y} = (1-\gamma)\boldsymbol{x} + \gamma \boldsymbol{s}}} \frac{1}{\gamma^2} (f(\boldsymbol{y}) - f(\boldsymbol{x}) - \langle \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle).$$

• Affine invariant convergence: $f(x_T) - f^\star \leq \frac{4C_{(f,X)}}{T+1}$.

Descent lemma w.r.t. $C_{(f,X)}$ by setting $m{x} = m{x}_t, m{s} = \mathrm{LMO}_X(\nabla f(m{x}_t))$ in the supremum

 \circ Convergence of $g(\boldsymbol{x}_t)$: $\min_{1 \leq t \leq T} g(\boldsymbol{x}_t) \leq \frac{27/2 \cdot C_{(f,X)}}{T+1}$.

Newton's method

- Update rule: $x_{t+1} = x_t \nabla^2 f(x_t)^{-1} \nabla f(x_t)$ (affine invariant).
- \circ Interp: (1) Adaptive gradient descent, (2) Min. 2nd-order Taylor approx. at x_t :

$$oldsymbol{x}_{t+1} \in \operatorname*{argmin}_{oldsymbol{x} \in \mathbb{R}^d} f(oldsymbol{x}_t) +
abla f(oldsymbol{x}_t)^ op (oldsymbol{x} - oldsymbol{x}_t) + rac{1}{2} (oldsymbol{x} - oldsymbol{x}_t)^ op
abla^2 f(oldsymbol{x}_t) (oldsymbol{x} - oldsymbol{x}_t).$$

 $\begin{array}{l} \circ \ \ \mathbf{Convergence} \ (\|\nabla^2 f(\boldsymbol{x})^{-1}\| \leq \frac{1}{\mu}, \ \|\nabla^2 f(\boldsymbol{x}) - \nabla^2 f(\boldsymbol{y})\| \leq B\|\boldsymbol{x} - \boldsymbol{y}\|) \\ \|\boldsymbol{x}_{t+1} - \boldsymbol{x}^\star\| \leq \frac{B}{2\mu}\|\boldsymbol{x}_t - \boldsymbol{x}^\star\|^2. \end{array}$

 $\begin{array}{l} \boldsymbol{x}_{t+1} - \boldsymbol{x}^\star \leq \boldsymbol{x}_t - \boldsymbol{x}^\star + H(\boldsymbol{x}_t)^{-1}(\nabla f(\boldsymbol{x}^\star) - \nabla f(\boldsymbol{x}_t)) \Rightarrow h(t) := \nabla f(\boldsymbol{x} + t(\boldsymbol{x}^\star - \boldsymbol{x})) \\ \text{with fundamental theorem of calculus} \Rightarrow \text{Take norm of both sides and simplify} \\ \text{using } \|A\boldsymbol{x}\| = \|A\|_2 \|\boldsymbol{x}\| \text{ and assumptions.} \end{array}$

- $\circ\,$ Ensure bounded inverse Hessians by requiring strong convexity over X.
- \circ If $\|x_0 x^*\| \le \frac{\mu}{B}$, then $\|x_T x^*\| \le \frac{\mu}{B} \left(\frac{1}{2}\right)^{2^T 1}$.

Quasi-Newton methods

- $\circ\,$ Time complexity of Hessian is $\mathcal{O}(d^3) \Rightarrow \mathsf{Approximate}$ by H_t
- Secant condition: $\nabla f(x_t) \nabla f(x_{t-1}) = H_t(x_t x_{t-1})$.
- o **Idea**: We wanted Hessian to fluctuate little in regions of fast conv. \Rightarrow Update $H_t^{-1} = H_{t-1}^{-1} + E_t$ while minimizing $\|AEA^\top\|_F^2$ for some invertible A.
- $\circ \ H := H_{t-1}^{-1}, \ H' := H_t^{-1}, \ E := E_t, \ \pmb{\sigma} := \pmb{x}_t \pmb{x}_{t-1}, \ \pmb{y} := \nabla f(\pmb{x}_t) \nabla f(\pmb{x}_{t-1}), \\ \pmb{r} := \pmb{\sigma} H\pmb{y}. \ \text{Convex program:}$

minimize
$$\frac{1}{2}\|AEA^\top\|_F^2$$
 subject to
$$Ey=r \qquad \qquad \text{(secant condition)}$$

$$E^\top-E=0. \qquad \qquad \text{(symmetry)}$$

Greenstadt method $(\mathcal{O}(d^2))$: Solving (with Lagrange multipliers) yields

$$E^{\star} = \frac{1}{\boldsymbol{y}^{\top} M \boldsymbol{y}} \left(\boldsymbol{\sigma} \boldsymbol{y}^{\top} M + M \boldsymbol{y} \boldsymbol{\sigma}^{\top} - H \boldsymbol{y} \boldsymbol{y}^{\top} M - M \boldsymbol{y} \boldsymbol{y}^{\top} H \right.$$
$$\left. - \frac{1}{\boldsymbol{y}^{\top} M \boldsymbol{y}} \left(\boldsymbol{y}^{\top} \boldsymbol{\sigma} - \boldsymbol{y}^{\top} H \boldsymbol{y} \right) M \boldsymbol{y} \boldsymbol{y}^{\top} M \right)$$

for some matrix parameter M (induced by A).

- $\text{ BFGS: Set } M = H' \text{: } E^\star = \frac{1}{y^\top \sigma} \Big(-H y \sigma^\top \sigma y^\top H + \Big(1 + \frac{y^\top H y}{y^\top \sigma} \Big) \sigma \sigma^\top \Big).$ Equivalent update: $H' = \Big(I \frac{\sigma y^\top}{y^\top \sigma} \Big) H \Big(I \frac{y \sigma^\top}{y^\top \sigma} \Big) + \frac{\sigma \sigma^\top}{y^\top \sigma}.$
- L-BFGS ($\mathcal{O}(md)$): Recursive BFGS and only go down m steps.

Subgradient method

- Until now, we have only considered non-smooth (and hence differentiable) functions

 Generalize notion of gradient.
- \circ Update rule: $x_{t+1} = \Pi_X(x_t \gamma_t g_t), \quad g_t \in \partial f(x_t).$
- Lemma (Convex): $\|x_{t+1} x^*\|^2 \le \|x_t x^*\|^2 2\gamma_t(f(x_t) f^*) + \gamma_t^2 \|g_t\|^2$.

Norm of update rule $-x^* \Rightarrow \Pi_X$ is non-expansive \Rightarrow Cosine theorem \Rightarrow Subgradient definition on (x^*, x_t) (exists because of convexity).

 $\circ \text{ (Convex): } \min_{1 \le t \le T} f(\boldsymbol{x}_t) - f^{\star} \le \frac{\|\boldsymbol{x}_1 - \boldsymbol{x}^{\star}\|^2 + \sum_{t=1}^T \gamma_t^2 \|\boldsymbol{g}_t\|^2}{2\sum_{t=1}^T \gamma_t}.$

Rearrange "descent" lemma \Rightarrow Sum and divide by $\sum_{t=1}^{T} \gamma_t$.

 $\circ \ (\mu\text{-SC}, \ B\text{-Lipschitz}, \ \gamma_t := \frac{2}{\mu(t+1)}): \ \min_{1 \le t \le T} f(\boldsymbol{x}_t) - f^\star \le \frac{2B^2}{\mu(T+1)}.$

Adapt "descent" lemma with μ -SC \Rightarrow Def. of γ_t and $||g_t|| \leq B$.

Mirror descent

- \circ Exploit non-Euclidean geometry of convex set X.
- $\circ \ \ \textbf{Bregman divergence} : \ Let \ \omega : \Omega \to \mathbb{R} \ \ be \ \ continuously \ \ differentiable \ on \ \Omega \ \ and \ \ 1-SC \ \ w.r.t. \ \ some \ norm \ \|\cdot\|. \ \ Then,$

$$V_{\omega}(\boldsymbol{x}, \boldsymbol{y}) := \omega(\boldsymbol{x}) - \omega(\boldsymbol{y}) - \langle \nabla \omega(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle.$$

- \circ Properties: $V_{\omega}(\boldsymbol{x}, \boldsymbol{y}) \geq 0$; $V_{\omega}(\boldsymbol{x}, \boldsymbol{y})$ is convex in \boldsymbol{x} ; $V_{\omega}(\boldsymbol{x}, \boldsymbol{y}) = 0$ iff $\boldsymbol{x} = \boldsymbol{y}$; and $V_{\omega}(\boldsymbol{x}, \boldsymbol{y}) \geq \frac{1}{2} \|\boldsymbol{x} \boldsymbol{y}\|^2$.
- \circ 3-point id.: $V_{\omega}(x, z) = V_{\omega}(x, y) + V_{\omega}(y, z) \langle \nabla \omega(z) \nabla \omega(y), x y \rangle$.
- o Update rule: $x_{t+1} \in \operatorname{argmin}_{x \in X} V_{\omega}(x, x_t) + \langle \gamma_t g_t, x \rangle, g_t \in \partial f(x_t)$. This is a generalization of subgradient descent.
- $\circ \ \ \textbf{Lemma:} \ \ \gamma_t(f(\boldsymbol{x}_t) f^\star) \leq V_\omega(\boldsymbol{x}^\star, \boldsymbol{x}_t) V_\omega(\boldsymbol{x}^\star, \boldsymbol{x}_{t+1}) + \frac{\gamma_t^2}{2} \|\boldsymbol{g}_t\|_\star^2.$

Rearrange update rule constrained optimality condition \Rightarrow 3PI \Rightarrow $-V_{\omega}(\boldsymbol{x}_{t+1}, \boldsymbol{x}_t) \leq -\frac{1}{2}\|\boldsymbol{x}_t - \boldsymbol{x}_{t+1}\|^2 \Rightarrow$ [Subgradient on $(\boldsymbol{x}^*, \boldsymbol{x}_t)] \cdot \gamma_t$ ($\pm \boldsymbol{x}_{t+1}$ in inner product) and bound with prev. \Rightarrow Young's inequality: $\langle \gamma_t \boldsymbol{g}_t, \boldsymbol{x}_t - \boldsymbol{x}_{t+1} \rangle \leq \frac{1}{2}\|\boldsymbol{x}_t - \boldsymbol{x}_{t+1}\|^2 + \frac{1}{2}\|\gamma_t \boldsymbol{g}_t\|_{\star}^2$.

 $\circ \text{ (Convex): } \min_{1 \leq t \leq T} f(\boldsymbol{x}_t) - f^\star \leq \frac{V_\omega(\boldsymbol{x}^\star, \boldsymbol{x}_0) + \frac{1}{2} \sum_{t=1}^T \gamma_t^2 \|\boldsymbol{g}_t\|_\star^2}{\sum_{t=1}^T \gamma_t}$

Easily follows from above lemma by summing, dividing by summed $\gamma_t,$ and telescoping sum.

Smoothing

- \circ Nesterov smoothing: $f_{\mu}(x) := \max_{y \in \text{dom}(f^{\star})} \langle x, y \rangle f^{\star}(y) \mu \cdot d(y)$, where d is 1-SC and non-negative.
- $\begin{array}{l} \circ \ f_{\mu} \ \text{is} \ 1/\mu\text{-smooth and approximates} \ f \ \text{by} \ f(\boldsymbol{x}) \mu D^2 \ \leq \ f_{\mu}(\boldsymbol{x}) \ \leq \ f(\boldsymbol{x}), \\ D^2 := \max_{\boldsymbol{y} \in \text{dom}(f^{\star})} d(\boldsymbol{y}). \end{array}$
- $\circ\,$ Applying GD to f_μ converges faster than subgradient descent.
- \circ Moreau-Yosida smoothing: $f_{\mu}(m{x}) \coloneqq \min_{m{y} \in \mathrm{dom}(f^{\star})} f(m{y}) rac{1}{2\mu} \|m{x} m{y}\|_2^2$.
- $\circ \ f_{\mu}$ is $1/\mu$ -smooth and minimizes exactly: $\min f(m{x}) = \min f_{\mu}(m{x})$.
- $\circ \
 abla f_{\mu}(m{x}) = rac{1}{\mu}(m{x} ext{prox}_{\mu f}(m{x}))$ (found by Danshkin's theorem).

Proximal algorithms

- o Proximal operator: $\operatorname{prox}_{\mu f}(\boldsymbol{x}) := \operatorname{argmin}_{\boldsymbol{y} \in \operatorname{dom}(f)} f(\boldsymbol{y}) + \frac{1}{2\mu} \|\boldsymbol{x} \boldsymbol{y}\|^2$.
- $\circ \ \, \textbf{Minimizer:} \ \, \boldsymbol{x}^{\star} = \operatorname{prox}_{\mu f}(\boldsymbol{x}^{\star}), \quad \forall \mu.$
- $\hspace{0.5cm} \circ \hspace{0.5cm} \textbf{Non-expansiveness:} \hspace{0.5cm} \| \mathrm{prox}_{\mu f}(\boldsymbol{x}) \mathrm{prox}_{\mu f}(\boldsymbol{y}) \| \leq \| \boldsymbol{x} \boldsymbol{y} \|, \quad \forall \boldsymbol{x}, \boldsymbol{y}. \\$
- o **Proximal point algorithm**: Apply gradient descent to Moreau-Yosida f_{μ} : $x_{t+1} = \mathrm{prox}_{\lambda_t f}(x_t)$.
- \circ (Convex): $f(x_{T+1}) f^* \leq \frac{\|x_1 x^*\|^2}{2\sum_{t=1}^T \lambda_t}$

Subgradient optimality: $-\frac{x_{t+1}-x_t}{\lambda_t}\in\partial f(x_{t+1})\Rightarrow$ Subgradient exists because of convexity \Rightarrow Subgradient definition \Rightarrow Cosine theorem \Rightarrow Sum over timesteps and use that it is a descent method.

o **Proximal gradient method**: Consider F(x) := f(x) + g(x) with differentiable f (both are convex): $x_{t+1} = \operatorname{prox}_{\gamma_t g}(x_t - \gamma_t \nabla f(x_t))$.

 \circ (f is L-smooth, $\gamma_t := \frac{1}{L}$): $F(\boldsymbol{x}_{T+1}) - F^\star \leq \frac{L \|\boldsymbol{x}_1 - \boldsymbol{x}^\star\|^2}{2T}$.

Subgradient optimality: $\frac{1}{\gamma_t}(x_t - x_{t+1} - \gamma_t \nabla f(x_t)) \in \partial g(x_{t+1}) \Rightarrow \text{Subgradient}$ exists because of convexity \Rightarrow Subgradient definition \Rightarrow Cosine theorem \Rightarrow $-\langle \nabla f(x_t), x_{t+1} - x \rangle = -\langle \nabla f(x_t), x_{t+1} - x_t \rangle - \langle \nabla f(x_{t+1}), x_t - x \rangle \Rightarrow$ Smoothness, convexity, and definition of γ_t .

Stochastic optimization

- o Optimization problem: $\min_{x \in \mathbb{R}^d} F(x) := \mathbb{E}_{\xi}[f(x, \xi)].$
- o Unbiased gradient: $\mathbb{E}_{\boldsymbol{\xi}}[\nabla f(\boldsymbol{x},\boldsymbol{\xi}) \mid \boldsymbol{x}] = \nabla F(\boldsymbol{x})$ (typical assumption).
- Update rule: $\boldsymbol{\xi}_t \sim P$, $\boldsymbol{x}_{t+1} = \boldsymbol{x}_t \gamma_t \nabla f(\boldsymbol{x}_t, \boldsymbol{\xi}_t)$.
- Bounded variance: $\mathbb{E}\|\nabla f(\boldsymbol{x}_t, \boldsymbol{\xi}_t) \nabla F(\boldsymbol{x})\|^2 \leq \sigma^2$.

$$\begin{array}{ll} \circ \ \, \big(L\text{-smooth, bounded variance, random output, } \gamma := \min \Big\{ \frac{1}{L}, \frac{\gamma_0}{\sigma \sqrt{T}} \Big\} \big) : \\ \mathbb{E} \| \nabla F(\hat{\boldsymbol{x}}_T) \|^2 & \leq \ \, \frac{\sigma}{\sqrt{T}} \Big(\frac{2(F(\boldsymbol{x}_1) - F^\star)}{\gamma_0} + L \gamma_0 \Big) \, + \, \frac{2L(F(\boldsymbol{x}_1) - F^\star)}{T} \text{, where } \\ \hat{\boldsymbol{x}}_T \sim \mathrm{Unif} (\{\boldsymbol{x}_1, \dots, \boldsymbol{x}_T\}). \end{array}$$

Smoothness of F on $(\boldsymbol{x}_{t+1}, \boldsymbol{x}_t)$ in $\mathbb{E} \Rightarrow$ Update rule: $\boldsymbol{x}_{t+1} - \boldsymbol{x}_t = -\gamma_t \nabla f(\boldsymbol{x}_t, \boldsymbol{\xi}_t)$ $\Rightarrow \mathbb{E}[X^2] + \mathbb{E}[X]^2 + \operatorname{Var}[X] : \mathbb{E}\|\nabla f(\boldsymbol{x}_t, \boldsymbol{\xi}_t)\|^2 = \|\nabla F(\boldsymbol{x}_t)\|^2 + \mathbb{E}\|\nabla f(\boldsymbol{x}_t, \boldsymbol{\xi}_t) - \nabla f(\boldsymbol{x}_t, \boldsymbol{\xi}_t)\|^2$ $\nabla F(\boldsymbol{x}_t)\|^2 \leq \|\nabla F(\boldsymbol{x}_t)\|^2 + \sigma^2 \Rightarrow \gamma_t \leq \frac{1}{L} \Rightarrow \text{Rearrange} \Rightarrow \text{Use definition of } \hat{\boldsymbol{x}}_T$ $\Rightarrow \text{Telescoping sum} \Rightarrow \text{Definition of } \gamma_t \Rightarrow \max\{a,b\} \leq a+b \text{ if } a,b \geq 0.$

 $\circ \ \left(L\text{-smooth, } \mathbb{E}\|\nabla f(\boldsymbol{x},\boldsymbol{\xi})\|^2 \, \leq \, B^2\right) \, \mathbb{E}[F(\hat{\boldsymbol{x}}_T) - F^\star] \, \leq \, \frac{R^2 + B^2 \sum_{t=1}^T \gamma_t^2}{2 \sum_{t=1}^T \gamma_t}, \text{ where }$ $\hat{\boldsymbol{x}_t} \coloneqq \frac{\sum_{t=1}^T \gamma_t \boldsymbol{x}_t}{\sum_{t=1}^T \gamma_t} \text{ and } \|\boldsymbol{x}_1 - \boldsymbol{x}^\star\| \le R.$

Squared norm of update rule– x^* \Rightarrow Cosine theorem \Rightarrow Law of total expectation to bound inner product \Rightarrow Convexity of F \Rightarrow Telescoping sum \Rightarrow Jensen's

$$\begin{split} & \circ \ \left(\mu\text{-SC, } \mathbb{E} \|\nabla f(\boldsymbol{x}, \boldsymbol{\xi})\|^2 \leq B^2, \, \gamma_t \coloneqq \frac{\gamma}{t}, \, \gamma > \frac{1}{2\mu} \right) \\ & \mathbb{E} \|\boldsymbol{x}_T - \boldsymbol{x}^\star\|^2 \leq \frac{\max\{\frac{\gamma^2 B^2}{2\mu\gamma - 1}, \|\boldsymbol{x}_1 - \boldsymbol{x}^\star\|^2\}}{T}. \end{split}$$

Squared norm of update rule– x^\star \Rightarrow Cosine theorem \Rightarrow μ -SC to get $\mathbb{E}\langle \nabla f(\boldsymbol{x}_t, \boldsymbol{\xi}_t), \boldsymbol{x}_t - \boldsymbol{x}^* \rangle > \mu \cdot \mathbb{E} ||\boldsymbol{x}_t - \boldsymbol{x}^*||^2 \Rightarrow \text{Recursion.}$

- $\begin{array}{l} \circ \ \ \, \text{Adaptive method:} \ \ g_t = \nabla f(\boldsymbol{x}_t, \boldsymbol{\xi}_t), \ m_t = \phi_t(\boldsymbol{g}_1, \ldots, \boldsymbol{g}_t), \ V_t = \psi_t(\boldsymbol{g}_1, \ldots, \boldsymbol{g}_t), \\ \hat{\boldsymbol{x}}_t = \boldsymbol{x}_t \alpha_t V_t^{-1/2} \boldsymbol{m}_t, \ \boldsymbol{x}_{t+1} = \operatorname{argmin}_{\boldsymbol{x} \in X} \Big\{ (\boldsymbol{x} \hat{\boldsymbol{x}}_t)^\top V_t^{-1/2} (\boldsymbol{x} \hat{\boldsymbol{x}}_t) \Big\}. \end{array}$
 - \circ SGD: $m_t = g_t$, $V_t = I$.
 - \circ AdaGrad: $m{m}_t = m{g}_t$, $V_t = rac{\mathrm{diag}(\sum_{ au=1}^t m{g}_ au^2)}{\iota}$.
 - o Adam: $m_t = (1 \alpha) \sum_{\tau}^t \alpha^{t-\tau} g_{\tau}$, $V_t = (1 \beta) \operatorname{diag} \left(\sum_{\tau=1}^t \beta^{t-\tau} g_{\tau}^2 \right)$. Recursively: $m_t = \alpha m_{t-1} + (1 - \alpha) g_t$, $V_t = \beta V_{t-1} + (1 - \beta) \operatorname{diag}(g_t^2)$.

Variance reduction

- SGD requires more iterations due to high variance ⇒ Reduce variance.
- Finite-sum optimization: $\min_{\boldsymbol{x} \in \mathbb{R}^d} F(\boldsymbol{x}) \coloneqq \frac{1}{n} \sum_{i=1}^n f_i(\boldsymbol{x})$.
- If we want to estimate $\theta=\mathbb{E}[X]$, we can also estimate $\boldsymbol{\theta}$ as $\mathbb{E}[X-Y]$ if and only if $\mathbb{E}[Y]=0$. Furthermore, $\mathrm{Var}[X-Y] \leq \mathrm{Var}[X]$ if Y is highly positively correlated with X. Specifically, if $\mathrm{Cov}(X,Y) > \frac{1}{2}\mathrm{Var}[Y]$, the variance will be reduced.
- Let $\alpha \in [0,1]$, we estimate θ by $\hat{\theta}_{\alpha} = \alpha(X-Y) + \mathbb{E}[Y]$. We then have $\mathbb{E}[\hat{\theta}_{\alpha}] = \alpha \mathbb{E}[X] + (1 - \alpha)\mathbb{E}[Y]$

$$\operatorname{Var}[\hat{\theta}_{\alpha}] = \alpha^2(\operatorname{Var}[X] + \operatorname{Var}[Y] - 2 \cdot \operatorname{Cov}(X, Y)).$$

Implication: Trade-off between bias and variance, where $\alpha=1$ makes the estimator unbiased, but the variance decreases when α decreases.

o SGD estimates $\nabla F(x_t)$ by $\nabla f_{i_t}(x_t)$, but VR estimates the full gradient by $g_t := \alpha(\nabla f_{i_t}(\boldsymbol{x}_t) - Y) + \mathbb{E}[Y],$

such that g_t satisfies the VR property: $\lim_{t\to\infty} \mathbb{E} \|g_t - \nabla F(x_t)\|^2 = 0$.

- o **Key idea**: If x_t is not too far away from previous iterates $x_{1:t-1}$, we can leverage previous gradient information to construct positively correlated control variates Y
 - o **Stochastic Average Gradient (SAG)**: Keep track of the latest gradients $m{v}_i^t$ for all points $i \in [n]$: $\mathcal{O}(nd)$ storage requirement. Estimate full gradient by average of these: $m{g}_t = rac{1}{n} \sum_{i=1}^n m{v}_i^t$. Each iteration we update $m{v}_i^t$ by

$$egin{aligned} oldsymbol{v}_i^t = egin{cases}
abla f_{it}(oldsymbol{x}_t) & i = i_t \\ oldsymbol{v}_i^{t-1} & i
eq i_t. \end{cases}$$

Thus, we have $\alpha=\frac{1}{n}$, $Y=oldsymbol{v}_{i_1}^{t-1}$, and $\mathbb{E}[Y]=oldsymbol{g}_{t-1}$,

$$\boldsymbol{g}_t = \frac{1}{n} \left(\nabla f_{i_t}(\boldsymbol{x}_t) - \boldsymbol{v}_{i_t}^{t-1} \right) + \boldsymbol{g}_{t-1}.$$

Problem: (1) $\mathcal{O}(nd)$ storage, (2) biased $\alpha \neq 1$. Advantage: $\mathcal{O}((n + \kappa_{\max} \log \frac{1}{\epsilon}))$ iteration complexity, where $\kappa_{\max} = \max_{i \in [n]} \frac{L_i}{\mu}$.

- \circ SAGA: Unbiased version of SAG, because it sets lpha=1: $m{g}_t=
 abla f_{i_t}(m{x}_t)-m{v}_{i_t}^{t-1}+$ $oldsymbol{g}_{t-1}.$ But, it still enjoys the same benefits.
- Stochastic variance reduced gradient (SVRG): Build covariates based on a fixed reference point $ilde{x}$ that is periodically updated every m-th iteration:

 $g_t = \nabla f_{i_t}(\boldsymbol{x}_t) - \nabla f_{i_t}(\tilde{\boldsymbol{x}}) + \nabla F(\tilde{\boldsymbol{x}}).$ Problem: (1) $\mathcal{O}(n+2m)$ gradient evaluations per epoch, (2) More hyperparameters. Advantages: (1) Unbiased, (2) $\mathcal{O}(d)$ memory cost, (3) Same iteration complexity as SAG(A).

Min-max optimization

- Optimization problem: $\min_{x \in X} \max_{y \in Y} \phi(x, y)$.
 - **Saddle point**: $(\boldsymbol{x}^{\star}, \boldsymbol{y}^{\star})$ is a saddle point if

 $\phi(\pmb{x}^\star, \pmb{y}) \leq \phi(\pmb{x}^\star, \pmb{y}^\star) \leq \phi(\pmb{x}, \pmb{y}^\star), \quad \forall \pmb{x} \in X, \pmb{y} \in Y.$ Interpretation: No player has the incentive to make a unilateral change, because it can only get worse. Game theory: Nash equilibrium.

Global minimax point: $({m x}^\star, {m y}^\star)$ is a global minimax point if

$$\phi(\boldsymbol{x}^*, \boldsymbol{y}) \le \phi(\boldsymbol{x}^*, \boldsymbol{y}^*) \le \max_{\boldsymbol{y}' \in Y} \phi(\boldsymbol{x}, \boldsymbol{y}'), \quad \forall \boldsymbol{x} \in X, \boldsymbol{y} \in Y.$$

Interpretation: x^{\star} is the best response to the best response. Game theory: Stack-

- $\max_{\boldsymbol{y} \in Y} \min_{\boldsymbol{x} \in X} \phi(\boldsymbol{x}, \boldsymbol{y}) \le \min_{\boldsymbol{x} \in X} \max_{\boldsymbol{y} \in Y} \phi(\boldsymbol{x}, \boldsymbol{y}).$
- Saddle point lemma: (x^\star,y^\star) is a saddle point iff $\max_{m{y}\in Y}\min_{m{x}\in X}\phi(m{x},m{y})=$ $\min_{\boldsymbol{x} \in X} \max_{\boldsymbol{y} \in Y} \phi(\boldsymbol{x}, \boldsymbol{y})$ and $(\boldsymbol{x}^{\star}, \boldsymbol{y}^{\star})$ are the arguments.
- **Minimax theorem**: If X and Y are closed convex sets, one of them is bounded, and ϕ is a continuous C-C function, then there exists a saddle point in $X \times Y$.
- Duality gap: $\hat{\epsilon}(\boldsymbol{x}, \boldsymbol{y}) := \max_{\boldsymbol{y}' \in Y} \phi(\boldsymbol{x}, \boldsymbol{y}') \min_{\boldsymbol{x}' \in X} \phi(\boldsymbol{x}', \boldsymbol{y}) \ge 0.$
- Saddle point by duality gap If $\hat{\epsilon}(x,y)=0$, then (x,y) is a saddle point and if $\hat{\epsilon}(x,y)\leq \epsilon$, then (x,y) is an ϵ -saddle point.
- Gradient descent ascent (GDA): $x_{t+1} = \Pi_X(x_t \gamma \nabla_x \phi(x_t, y_t))$, $\mathbf{y}_{t+1} = \Pi_Y(\mathbf{y}_t + \gamma \nabla_{\mathbf{y}} \phi(\mathbf{x}_t, \mathbf{y}_t)).$

Does not guarantee convergence in C-C setting (consider $\phi(x,y)=xy$).

$$\begin{array}{lll} \circ \; (\textit{L}\text{-smooth, } \mu\text{-SC-SC, } \gamma \; := \; \frac{\mu}{4L^2}) \colon \| \bm{x}_T \; - \; \bm{x}^\star \|^2 \; + \; \| \bm{y}_T \; - \; \bm{y}^\star \|^2 \; \leq \\ \left(1 - \frac{\mu^2}{4L^2} \right)^T (\| \bm{x}_1 - \bm{x}^\star \|^2 + \| \bm{y}_1 - \bm{y}^\star \|^2). \end{array}$$

Add $\mu\text{-SC-SC}$ definitions together \Rightarrow Use L-smoothness for a bound \Rightarrow Use update rule in $\|x_{t+1} - x^\star\|^2 + \|y_{t+1} - y^\star\|^2 \Rightarrow$ Non-expansiveness of projection \Rightarrow Rearrange \Rightarrow Cosine theorem \Rightarrow Bound inner products using SC-SC and

Extragradient method (EG):
$$\begin{aligned} \boldsymbol{x}_{t+1/2} &= \Pi_X(\boldsymbol{x}_t - \gamma \nabla_{\boldsymbol{x}} \phi(\boldsymbol{x}_t, \boldsymbol{y}_t)) \\ \boldsymbol{y}_{t+1/2} &= \Pi_Y(\boldsymbol{y}_t + \gamma \nabla_{\boldsymbol{y}} \phi(\boldsymbol{x}_t, \boldsymbol{y}_t)) \\ \boldsymbol{x}_{t+1} &= \Pi_X(\boldsymbol{x}_t - \gamma \nabla_{\boldsymbol{x}} \phi(\boldsymbol{x}_{t+1/2}, \boldsymbol{y}_{t+1/2})) \\ \boldsymbol{y}_{t+1} &= \Pi_Y(\boldsymbol{y}_t + \gamma \nabla_{\boldsymbol{y}} \phi(\boldsymbol{x}_{t+1/2}, \boldsymbol{y}_{t+1/2})). \end{aligned}$$

- \circ (L-smooth, C-C, $\gamma \leq rac{1}{2L}$): $\hat{\epsilon}(ar{m{x}},ar{m{y}}) \leq rac{D_X^2 + D_Y^2}{2\sqrt{T}}$, where $ar{m{x}} = rac{1}{T}\sum_{t=1}^T m{x}_{t+1/2}$, $ar{m{y}} = rac{1}{T} \sum_{t=1}^T m{y}_{t+1/2}, ext{ and } D_Z = \max_{m{z}, m{z}' \in Z} \|m{z} - m{z}'\|.$
- $\begin{array}{l} \text{$\scriptstyle (L$-smooth, μ-SC-SC, $\gamma := \frac{1}{8L})$:} \\ \|\boldsymbol{x}_{t+1} \boldsymbol{x}^\star\|^2 + \|\boldsymbol{y}_{t+1} \boldsymbol{y}^\star\|^2 \leq \big(1 \frac{\mu}{4L}\big) \big(\|\boldsymbol{x}_t \boldsymbol{x}^\star\|^2 + \|\boldsymbol{y}_t \boldsymbol{y}^\star\|^2\big). \end{array}$
- Optimistic gradient descent ascent (OGDA):

$$egin{aligned} oldsymbol{x}_{t+1/2} &= \Pi_X(oldsymbol{x}_t - \gamma
abla_{oldsymbol{x}} \phi'(oldsymbol{x}_{t-1/2}, oldsymbol{y}_{t-1/2})) \ oldsymbol{y}_{t+1/2} &= \Pi_Y(oldsymbol{y}_t + \gamma
abla_{oldsymbol{x}} \phi(oldsymbol{x}_{t-1/2}, oldsymbol{y}_{t-1/2})) \ oldsymbol{x}_{t+1} &= \Pi_X(oldsymbol{x}_t - \gamma
abla_{oldsymbol{x}} \phi(oldsymbol{x}_{t+1/2}, oldsymbol{y}_{t+1/2})) \ oldsymbol{y}_{t+1} &= \Pi_Y(oldsymbol{y}_t + \gamma
abla_{oldsymbol{y}} \phi(oldsymbol{x}_{t+1/2}, oldsymbol{y}_{t+1/2})). \end{aligned}$$

o In the case $X=Y=\mathbb{R}^d$, this can be seen as negative momentum: $\boldsymbol{x}_{t+1} = \boldsymbol{x}_t - 2\gamma \nabla_{\boldsymbol{x}} \phi(\boldsymbol{x}_t, \boldsymbol{y}_t) + \gamma \nabla_{\boldsymbol{x}} \phi(\boldsymbol{x}_{t-1}, \boldsymbol{y}_{t-1})$

$$y_{t+1} = y_t + 2\gamma \nabla_y \phi(x_t, y_t) - \gamma \nabla_y \phi(x_{t-1}, y_{t-1}).$$

Proximal point algorithm:

$$(\boldsymbol{x}_{t+1}, \boldsymbol{y}_{t+1}) \in \operatorname*{argmin}_{\boldsymbol{x} \in X} \operatorname*{argmax}_{\boldsymbol{y} \in Y} \phi(\boldsymbol{x}, \boldsymbol{y}) + \frac{1}{2\gamma} \|\boldsymbol{x} - \boldsymbol{x}_t\|^2 - \frac{1}{2\gamma} \|\boldsymbol{y} - \boldsymbol{y}_t\|^2.$$

Variational inequalities

- Generalizes all of the above to mapping $F:\mathcal{Z}\to\mathbb{R}^d$. Goal: Find $m{z}^\star\in\mathcal{Z}$, such that $\langle F(\boldsymbol{z}^{\star}), \boldsymbol{z} - \boldsymbol{z}^{\star} \rangle \geq 0, \forall \boldsymbol{z} \in \mathcal{Z}$
- Monotone operator: $\langle F(\boldsymbol{x}) F(\boldsymbol{y}), \boldsymbol{x} \boldsymbol{y} \rangle \geq 0$.
- μ -strongly monotone: $\langle F(\boldsymbol{x}) F(\boldsymbol{y}), \boldsymbol{x} \boldsymbol{y} \rangle \ge \mu \|\boldsymbol{x} \boldsymbol{y}\|^2$.
- VI strong solution (Stampacchia): $\langle F(z^*), z z^* \rangle \ge 0, \forall z \in \mathcal{Z}$.
- VI weak solution (Minty): $\langle F(z), z z^* \rangle \ge 0, \forall z \in \mathcal{Z}$.
- If F is monotone, then strong \Rightarrow weak. If F is continuous, then weak \Rightarrow strong.
- Convex minimization can be cast as VI problem by defining $F = \nabla f$ for a convex function. Min-max problems can be cast as VI problem by defining $F = [\nabla_{\boldsymbol{x}}\phi, -\nabla_{\boldsymbol{y}}\phi]$ for a convex-concave ϕ .
- Extragradient method:

$$\begin{aligned} \boldsymbol{z}_{t+1/2} &= \Pi_{\mathcal{Z}}(\boldsymbol{z}_t - \gamma_t F(\boldsymbol{z}_t)) \\ \boldsymbol{z}_{t+1} &= \Pi_{\mathcal{Z}}(\boldsymbol{z}_t - \gamma_t F(\boldsymbol{z}_{t+1/2})). \end{aligned}$$

 \circ (*L*-smooth, monotone, $\gamma:=\frac{1}{\sqrt{2L}}$): $\max_{m{z}\in\mathcal{Z}}\langle F(m{z}), ar{m{z}}-m{z}
angle \leq \frac{\sqrt{2}LD_Z^2}{T}$, where $\bar{\boldsymbol{z}} = \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{z}_{t+1/2}.$

Optimality condition w.r.t. $oldsymbol{z}_{t+1/2} \Rightarrow \text{Rewrite using cosine theorem} \Rightarrow \text{Optimality condition}$ mality condition w.r.t. $oldsymbol{z}_{t+1}$ (set $oldsymbol{z}=oldsymbol{z}_{t+1}$ in the other optimality condition) \Rightarrow Use previous and Cauchy-Schwarz to bound $2\gamma \langle F(m{z}_{t+1/2}), m{z}_{t+1/2} - m{z}
angle$ $2\gamma \langle F(\boldsymbol{z}_{t+1/2}), \boldsymbol{z}_{t+1/2} - \boldsymbol{z}_{t+1} \rangle + 2\gamma \langle F(\boldsymbol{z}_{t+1/2}), \boldsymbol{z}_{t+1} - \boldsymbol{z} \rangle \Rightarrow \mathsf{Smoothness} \text{ and }$ $\gamma = \frac{1}{L} \Rightarrow$ Young's inequality: $\|x\| \cdot \|y\| \le \frac{1}{2} \|x\|^2 + \frac{1}{2} \|y\|^2 \Rightarrow$ Use monotonicity and sum over all timesteps.