Diskrete Strukturen I

Wintersemester 2018/2019

Dauer: 120 Minuten

Es waren 5 Aufgaben zu bearbeiten

1 Aufgabe

1. Rekursions-Schema für die Josephus Nummern

- 2. Alle natürlichen Zahlen n mit J(n) = 1 bestimmen und per Induktion beweisen
- 3. Alle natürlichen Zahlen n mit J(n) = n bestimmen und per Induktion beweisen

2 Aufgabe

- 1. Rekursions-Schema der Fibonacci-Zahlen angeben
- 2. $f_{n+m} = f_{m+1} \cdot f_n + f_m \cdot f_{n-1}$ für $m \ge 1$ per Induktion beweisen
- 3. Mit dieser Formel $f_{2n} = f_{n+1}^2 f_{n-1}^2$ beweisen

3 Aufgabe

Beweisen der folgenden Aussagen:

- 1. $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$
- 2. $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$
- 3. $(A \setminus B) \cup (B \setminus C) \cup (C \setminus A) = (A \cup B \cup C) \setminus (A \cap B \cap C)$

4 Aufgabe

Beweisen oder Gegenbeispiel angeben:

- 1. $F \to G$ ist Tautologie und F ist Tautologie \Rightarrow G ist Tautologie
- 2. $F \to G$ ist erfüllbar und F ist erfüllbar \Rightarrow G ist erfüllbar
- 3. $F \to G$ ist Tautologie und F ist erfüllbar \Rightarrow G ist erfüllbar

Des weiteren sollte Modell erläutert werden, Tautologie und erfüllbar definiert werden.

5 Aufgabe

- 1. Definition von der Kongruenz bezüglich m
 über $\mathbb N$ und zeigen das es sich um eine Äquivalenz
relation handelt
- 2. Definition der Teilerrelation über $\mathbb N$ und zeigen das es sich um eine Halbordnung handelt

6 Sonderaufgabe

- 1. Definition von Id_M, R^{-1} und $R \circ S$
- 2. Beweisen: R
 transitiv $\Leftrightarrow R \circ R \subseteq R$
- 3. Beweisen: $Id_M \subseteq R \wedge R \circ R^{-1} \subseteq R \Leftrightarrow R$ ist Äquivalenz
relation