Printed Pa		Sub Code: EIT072										
Paper Id:	113714	Roll No.										

B TECH (SEM VII) THEORY EXAMINATION 2018-19 THEORY OF AUTOMATA AND FORMAL LANGUEGES

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt *all* questions in brief.

 $2 \times 10 = 20$

- a. Define finite automata.
- b. Write the regular expression for the language: $L = \{a^m b^m (n+m) \text{ is even}\}.$
- c. Design a Turing Machine which accepts the string over {0,1} containing even number of 1's
- d. Draw a derivation Tree for the string abaaba. Choose productions accordingly.
- e. Define Pushdown Automata.
- f. Check out the string **abbcbba** will be accepted by PDA for (wcw^R) or not.
- g. What is regular expression?
- h. Explain Deterministic PDA?
- i. What do you mean by DFA?
- j. Prove that recursively enumerable languages are closed under intersection.

SECTION B

2. Attempt any *three* of the following:

 $10 \times 3 = 30$

- a. Construct a DFA equivalent to the language that contains the string with 011 as substring..
- b. State and prove My-hill Nerode Theorem.
- c. Does the PCP with two lists x = (1,10,10111) and y = (111,0,10) have a PCP solution?
- d. Construct a CFG for language containing at least one occurrence of double a.
- e. Construct a PDA for the language $L = \{a^p b^q c^m | p+m=q\}$

SECTION C

3. Attempt any *one* part of the following:

 $10 \times 1 = 10$

(a) Using Pumping Lemma for context free Language; prove that the following language is not context free

 $L=\{a^p| P \text{ is a prime number}\}$

(b) Construct a grammar generating $L=\{wewT | w \text{ belongs to } \{a,b\}^*\}$

4. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) Convert the Given CFG into GNF where $V=\{S,X\}$, $T=\{0,1\}$ and P is given by :S $\rightarrow XX|0,X\rightarrow SS|1$
- b) Find the Chomsky Normal form equivalent to $S \rightarrow aAbB$, $A \rightarrow aA|a$, $B \rightarrow bB|b$

5. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) Convert the following Grammar to PDA that accepts the language: $S \rightarrow 0S1 \mid ^{\wedge}$, $A \rightarrow bS \mid aS \mid a$
- (b) Show that CFG G with production $S \rightarrow SS|(S)|^{\wedge}$ is ambiguous.

6. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) Construct a Turing Machine for reversing a given string
- (b) Design a Turing machine to multiply two positive integers.

7. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) Construct a DFA accepting all strings over {a,b} such that the number of 1's in w is 3 mod 4.
- (b) Construct a mealy machine for regular expression (0+1)*(00+11).