Appendix

Aghiles Djoudi¹², Rafik Zitouni², Nawel Zangar¹ and Laurent George¹

¹LIGM, Univ Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France ²ECE Research Lab Paris, 37 Quai de Grenelle, 75015 Paris, France Email: {aghiles.djoudi, nawel.zangar, laurent.george}@esiee.fr, rafik.zitouni@ece.fr _evaluation_ Nous avons vu en effet plus haut quil a été démontré que la méthode CSMA est plus efficace pour le traitement des faibles trafics, tandis que TDMA est nettement plus appropriée pour supporter les trafics intensesj.

Chirp Spread Spectrum (Proprietary) (CSS) Carrier Frequency (CF) Forward error correction (FEC) Path loss (PL) Link Symmetry (LS) Base Station (BS) CSS Direct Sequence Spread Spectrum (DSSS) Ultra narrow band (UNB) Data Rate (DR) Adaptive Data Rate (ADR) Coding Rate (CR) Bandwidth (BW) Payload size (PS)Signal-to-interference & noise ratio (SINR)

	Sync msg	Sync msg PHY Header PHDR-CRC	PHDR-CRC								PHY Payload								CRC	C
length Sync	msg	Sync msg PHY Header PHDR-CRC	PHDR-CRC		MAC Header							MAC Payload						MIC	CRC Type Polynomial	Polynomial
length Sync	msg	Sync msg PHY Header PHDR-CRC	PHDR-CRC	MType	RFU	Major				1	Frame Header					FPort	Frame Payload	MIC	CRC Type Polynomial	Polynomial
length Sync	msg	Sync msg PHY Header PHDR-CRC	PHDR-CRC	MType	RFU	Major	Dev Address	ddress			FCtrl			FCnt	FOpts	FPort	Frame Payload	MIC	CRC Type	Polynomial
length Sync	msg	Sync msg PHY Header PHDR-CRC MType	PHDR-CRC	MType	RFU	Major	NwkID	NwkAddr	ADR	ADRACKReq	ACK	FPending /RFU	FOptsLen	FCnt	FOpts	FPort	Frame Payload	MIC	CRC Type Polynomial	Polynomial
	_	3	4	5	9	7	∞	6	10	=	12	13	4	15	16	17	81	19	20	21

0) Modulation:

→ Lora: 8 Symbols, 0x34 (Sync Word) → FSK: 5 Bytes, 0xC194C1 (Sync Word)

Sync msg:
PHY Header: It contains:

The Payload length (Bytes)

The Code rate

Optional 16bit CRC for payload

4) Phy Header: CRC It contains CRC of Physical Layer Header 5) MType: is the message type (uplink or a downlink)

whether or not it is a confirmed message (reqst ack)

000 Join Request

001 Join Accept

011 Unconfirmed Data Down 010 Unconfirmed Data Up

■ 100 Confirmed Data Up

101 Confirmed Data Down

■ 110 RFU

111 Proprietary
 RFU: Reserved for Future Use
 Major: is the LoRaWAN version; currently, only a value of zero is valid
 00 LoRaWAN R1

8) **NwkID**: the short address of the device (Network ID): 31th to 25th 9) **NwkAddr**: the short address of the device (Network Address): 24th to 0th 10) **ADR**: Network server will change the data rate through appropriate MAC commands

■ 1 To change the data rate

ADRACKReq: (Adaptive Data Rate ACK Request): if network doesn't respont in 'ADR-ACK-DELAY' time, end-device switch to next lower data rate.

■ 1 if (ADR-ACK-CNT) >= (ADR-ACK-Limit)

■ 0 otherwise

12) ACK: (Message Acknowledgement): If end-device is the sender then gateway will send the ACK in next receive window else if gateway is the sender then end-device will send the ACK in next transmission.

■ 1 if confirmed data message

• 0 otherwise

13) FPending↓/RFU↑: (Only in downlink), if gateway has more data pending to be send then it asks end-device to open another

receive window ASAP

■ 0 otherwise

■ 1 to ask for more receive windows

14) FOptsLen: is the length of the FOpts field in bytes \(\tilde{a} \) 0000 to 1111
 15) FCnt: 2 type of frame counters

FCntUp: counter for uplink data frame, MAX-FCNT-GAP

■ FCntDown: counter for downlink data frame, MAX-FCNY-GAP 16) FOpts: is used to piggyback MAC commands on a data message 17) FPort: a multiplexing port field

0 the payload contains only MAC commands
 1 to 223 Application Specific

18) FRMPayload: (Frame Payload) Encrypted (AES, 128 key length) Data 19) MIC: is a cryptographic message integrity code

we computed over the fields MHDR, FHDR, FPort and the encrypted FRMPayload

20) **CRC**: (only in uplink), **CCITT** $x^{16} + x^{12} + x^5 + 1$ **EXECUTE:** BM $x^{16} + x^{15} + x^5 + 1$

Characteristics	$CF_{[Hz]}$	6LoWPAN	LoRaWAN	SigFox	NB-IoT	INGENU	TELENSA
	2.4G	O-QPSK	-	-	QSPSK↓		2-FSK
Modulation	915M	BPSK	LoRa	BPSK↑,GFSK↓	QSPSK n-tone	RPMA↑, CDMA↓	2-FSK
	868M	BPSK	LoRa/GFSK	BPSK↑,GFSK↓	/4-QPSK 1-tone		2-FSK
$Chwidth_{[KHz]}$			500 - 125		180		
	2.4G	16	-	-	-	40	X
Channels	915M	10	64+8↑, 8↓	X	X	X	X
	868M	1	10	360+40	X	X	X
CE	2.4G	X	-	-	-	X	ISM
$\mathrm{CF}_{[MHz]}$	915M	902-929	902-928	902	X	X	915M
	868M	868-868.6	863-870 and 780	868.18-868.22	X	X	868M/430M
	2.4G	5M	-	-	200K	1M	X
$\mathrm{BW}_{[Hz]}$	915M	2M	125K-500K	X	X	X	X
[***]	868M	600M	125K-250K	0.1K-1.2K	X	X	X
	2.4G	250M	-	-	-	78K↑, 19,5K↓	X
$\mathrm{DR}_{[bps]}$	915M	40M	980-22K	X	234.7↓, 204.8↑	X	X
[ops]	868M	20M	LoRa: 0.3K-37.5K	0.1K↑,0.6K↓	X	X	62.5↑, 500↓
			FSK: 50K	,			
	2.4G	-85	-	_	-	X	X
$CR_{[dBm]}$	915M	-92	×	X	×	X	X
~[aDm]	868M	-92	-137	-137	X	X	X
	2.4G	† - -	10,	10.	1	• 1	•
$ChipR_{[chip/s]}$	915M						
Chip[chip/s]	868M						
Range	2.4G				1		
Kange	915M						
	868M	10-100 m	5-15 Km	10-50 Km	1Km	15-? Km	1Km-?
Handover	2.4G	X	J-13 Kiii	10-30 Kili	-	X	X X
Halluovei	915M	X	<u> </u>	X	X	X	X
	868M	X	Multi BS	Multi BS	X	X	X
msg/day	2.4G	X		Multi DS		X	X
msg/uay	915M	X	_ X	X	_ X		x
	868M	X	Unlimited	140↑,4↓	Unlimited	X	x
PL B	2.4G	X				X	
PL D	915M		- V	- V	- V	X	X
		X	X 51 242	X 12★ 9	X 1600B	*	X
Coding/Consoding	868M	X	51 - 243	12↑,8↓		10KB	X
Coding/Spreading		DSSS	CSS	UNB	X	DSSS	UNB
Proprietary		X	X	/	X	X	X
Topology		X	Star, Stars	Star	Х	Star, Tree	Star
ADR		X	✓	X	X	✓ 	X
Security		X	AES 128b	X	Х	AES 256B	X
LS		X	✓	X	X	X	X
FEC		X	AES 128b	X	X	✓	X
Battery		1-2 years	<10 years	<10 years	<10 years		
Cost		Free	35e	25e	1020e		
Standar		IETF	LoRa Alliance		3GPP		
Duplex			Half		Half		
Mob support			High,Simple		High,complex		
Mob latency			Low		High (1.6-10s)		
$Tx_{[dBm]}$			+14 - +27		20/23		
Real-Time			Class C		X		
Scalability			1M↑, 100K↓		55 k		
$Linkbudget_{[dB]}$			157		154		
$Sensitivity_{[dBm]}$			-124 - (-134)		-141		
Multi-hop supporter			X		X		
Addressing			Broadcast↑, Unicast↓		Unicast↑, Both↓		
Peak current			32 mA		120300 mA		
Sleep current			1 A		5 A		
-							
					1		
		1	<u> </u>	<u> </u>	1	<u> </u>	1

Characteristics	$ $ $CF_{[Hz]}$	ZigBee	LoRaWAN	SigFox	NB-IoT	INGENU	TELENSA
	2.4G	O-QPSK					
Modulation	915M	BPSK					
	868M	BPSK					
	2.4G	16					
Channels	915M	10					
	868M	1					
CE	2.4G	2.4835					
$\mathrm{CF}_{[MHz]}$	915M	902, 928					
	868M	868, 868.6					
	2.4G						
$\mathrm{BW}_{[Hz]}$	915M						
[]	868M						
	2.4G	250 kbps					
$\mathrm{DR}_{[b/s]}$	915M	40 kbps					
[0/0]	868M	20 kbps					
		1					
	2.4G						
${ m CR}_{[dBm]}$	915M						
[aD III]	868M						
	2.4G	2M					
$ChipR_{[chip/s]}$	915M	600K					
1 [0,000/0]	868M	300K					
Handover	2.4G						
	915M						
	868M						
msg/day	2.4G						
<i>.</i>	915M						
	868M						
PL B	2.4G						
	915M						
	868M						
Coding							
Proprietary							
Topology							
ADR							
Security							
LS							
FEC							
Range							
Battery							
Cost							
Standar	IEEE 802.15.4						
Stanuar	1000 002.13.4						l

Table II. LPWAN Characteristics berder_reseaux_2014

Standard	802.15.4k	802.15.4g	Weightless-W	Weightless-N	Weightless-P	DASH 7 Alliance
Modulation	DSSS, FSK	MR-[FSK, OFDMA,	16-QAM, BPSK,	UNB DBPSK	GMSK,	GFSK
		OQPSK]	QPSK, DBPSK		offset-QPSK	
BW	ISM S UB -GH Z, 2.4GHz	ISM S UB -GH Z,	TV white spaces	ISM S UB -GH Z EU	S UB -GH Z ISM	UB -GH Z 433MHz,
		2.4GHz	470-790MHz	(868MHz), US (915MHz)	or licensed	868MHz, 915MHz
DR	1.5 bps-128 kbps	4.8 kbps-800 kbps	1 kbps-10 Mbps	30 kbps-100 kbps	200 bps-100kbps	9.6,55.6,166.7 kbps
Range	5 km (URBAN)	up to several kms	5 km (URBAN)	3 km (URBAN)	2 km (URBAN)	0-5 km (URBAN)
MAC	CSMA/CA, CSMA/CA or A	CSMA/CA	TDMA/FDMA	slotted A LOHA	TDMA/FDMA	CSMA/CA
	LOHA with PCA					
Topology	star	tar, mesh,	star	star	star	tree, star
		peer-to-peer				
PL	2047B	2047B	>10B	20B	>10B	256B
Security	AES 128b	AES 128b	AES 128b	AES 128b	AES 128/256b	AES 128b
Forward error	✓	✓	✓	X	✓	✓
correction						

Phy protocol	IEEE 802.15.4	BLE	EPCglobal	Z-Wave	LTE-M	ZigBee
Standard		IEEE 802.15.1				IEEE 802.15.4, ZigBee Alliance
BW(MHz)	868/915/2400	2400	860-960	868/908/2400	700-900	
MAC	TDMA, CSMA/CA	TDMA	ALOHA	CSMA/CA	OFDMA	
DR (bps)	20/40/250 K	1024K	varies 5-640K	40K	1G (up), 500M (down)	
Throughput				9.6, 40, 200kbps		
Scalability	65K nodes	5917 slaves	-	232 nodes	-	
Range	10-20m	10-100m				
Addressing	8 16bit	16bit				

Table IV. IoT cloud platforms and their characteristics al-fuqaha_internet_24

	802.15.4	802.15.4e	802.15.4g	802.15.4f
CF	2.4Ghz (DSSS + oQPSK)	2.4Ghz (DSSS + oQPSK, CSS+DQPSK	2.4Ghz (DSSS + oQPSK, CSS+DQPSK	2.4Ghz (DSSS + oQPSK,CSS+DQPSK)
)	
	868Mhz (DSSS + BPSK)	868Mhz (DSSS + BPSK)	868Mhz (DSSS + BPSK)	868Mhz (DSSS + BPSK)
	915Mhz (DSSS + BPSK)	915Mhz (DSSS + BPSK)	915Mhz (DSSS + BPSK)	915Mhz (DSSS + BPSK) 3~10Ghz (BPM+BPSK
)
DR	Upto 250kbps	Upto 800kbps	Up to 800kbps	
Differences	-	Time sync and channel hopping	Phy Enhancements	Mac and Phy Enhancements
PL	127 bytes	N/A	Up to 2047 bytes	N/A
Range	1 75+ m	1 75+ m	Upto 1km	N/A
Goals	General Low-power	Industrial segments	Smart utilities	Active RFID
	Sensing/Actuating			
Products	Many	Few	Connode (6LoWPAN)	LeanTegra PowerMote

Table V. IEEE 802.15.4 standards sarwar_iot_2015

Feature	Wi-Fi	802.11p	UMTS	LTE	LTE-A
Channel MHz	20	10	5	1.4, 3, 5, 10, 15, 20	<100
Frequency band(s) GHz	2.4 , 5.2	5.86-5.92	0.7-2.6	0.7-2.69	0.45-4.99
BR Mb/s	6-54	327	2	<300	<1000
Range km	<0.1	<1	<10	<30	<30
Capacity	Medium	Medium	×	✓	✓
Coverage	Intermittent	Intermittent	Ubiquitous	Ubiquitous	Ubiquitous
Mobility support km/h	X	Medium	✓	<350	<350
QoS support	EDCA Enhanced Distributed Channel	EDCA Enhanced Distributed Channel	QoS classes and bearer	QCI and bearer	QCI and bearer
	Access	Access	selection	selection	selection
Broadcast/multicast support	Native broadcast	Native broadcast	Through MBMS	Through eMBMS	Through eMBMS
V2I support	/	✓	1	✓	/
V2V support	Native (ad hoc)	Native (ad hoc)	X	Х	Through D2D
Market penetration	✓	X	✓	✓	✓
DR	<640 kbps	250 kbps	106424 kbps	✓	✓

Table VI. An example table.

Spreading Factor (SF)/BW		125k	Hz				250k	Нz			500k	Нz	
-	varsier_capacity_2017		[3]	[4]									
-	Sensitivity	BR	Rx wind	SINR	PS	Sensitivity	BR	Rx wind	SINR	Sensitivity	BR	Rx wind	SINR
-	[dBm]	[kb/s]	[ms]	[dB]	Byte	[dBm]	[kb/s]	[ms]	[dB]	[dBm]	[kb/s]	[ms]	[dB]
6	-118				242+13	-115				-111			
7	-123	5.468	5.1	-7.5	242+13	-120				-116			
8	-126	3.125	10.2	-10	242+13	-123				-119			
9	-129	1.757	20.5	-12.5	115+13	-125				-122			
10	-132	0.976	41.0	-15	51+13	-128				-125			
11	-133	0.537	81.9	-17.5	51+13	-130				-128			
12	-136	0.293	163.8	-20	51+13	-133				-130			

Table VII. Receiver sensitivity [dBm]

DK		Modulation		PS	BK
	SF	BW [kHz]	CR	Byte	x kbit/s
0	12	125	4/6	51+13	0.25
1	11	125	4/6	51+13	0.44
2	10	125	4/5	51+13	0.98
3	9	125	4/5	115+13	1.76
4	8	125	4/5	242+13	3.125
5	7	125	4/5	242+13	5.47
6	7	125	4/5	242+13	11
7		125	4/5	242+13	50

REFERENCES

Others

- [1] H. A. A. Al-Kashoash and A. H. Kemp, Comparison of 6LoWPAN and LPWAN for the Internet of Things, Australian Journal of Electrical and Electronics Engineering, vol. 13, no. 4, Oct. 2016.
- [2] W. Ayoub, A. E. Samhat, F. Nouvel, M. Mroue, and J.-C. Prevotet, Internet of Mobile Things: Overview of LoRaWAN, DASH7, and NB-IoT in LPWANs Standards and Supported Mobility, *IEEE Commun. Surv. Tutorials*, vol. 21, no. 2, 22–2019.
- [3] LoRaWANő for Developers | LoRa AllianceTM.
- [4] All About LoRa and LoRaWAN, Aug. 2019.