

PolarHT™ HiPerFET IXFN 180N15P **Power MOSFET**

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

V _{DSS}	=	150	V
I _{D25}	=	150	A
$R_{DS(on)}$	≤	11	mΩ
t _{rr}	≤	200	ns

Symbol	Test Conditions	Maximum	Maximum Ratings		
V _{DSS} V _{DGR}	$T_{J} = 25^{\circ} \text{ C to } 175^{\circ} \text{ C}$ $T_{J} = 25^{\circ} \text{ C to } 175^{\circ} \text{ C}; R_{GS} = 1 \text{ M}\Omega$	150 150	V V		
V _{DSS} V _{GSM}	Continuous Transient	±20 ±30	V V		
I _{D25}	T _C =25°C	150	Α		
D(RMS)	External lead current limit	100	Α		
I _{DM}	$T_{\rm C}$ = 25° C, pulse width limited by $T_{\rm JM}$	380	Α		
I _{AR}	T _C =25°C	60	Α		
E _{AR}	T _C =25°C	100	mJ		
E _{AS}	T _C = 25° C	4	J		
dv/dt	$I_{S} \leq I_{DM}$, di/dt ≤ 100 A/ μ s, $V_{DD} \leq V_{DSS}$, $T_{J} \leq 150^{\circ}$ C, $R_{G} = 4$ Ω	10	V/ns		
$\overline{\mathbf{P}_{\scriptscriptstyle D}}$	T _c =25°C	680	W		
T _{JM} T _{stg}		-55 +175 175 -55 +150	°C °C °C		
IVI _d	Mounting torque Terminal connection torque (M4)	1.5/13 1.5/13	Nm/lb.in. Nm/lb.in.		
V _{ISOL}	50/60 Hz $t = 1 \text{ min}$ $I_{ISOL} \le 1 \text{ mA}$ $t = 1 \text{ s}$	2500 3000	V~ V~		
T _L	1.6 mm (0.062 in.) from case for 10 s	300	°C		
Weight		30	g		

V_{DSS} $T_{J} = 25^{\circ} \text{ C to } 175^{\circ} \text{ C}$ V_{DGR} $T_{J} = 25^{\circ} \text{ C to } 175^{\circ} \text{ C}; R_{GS} = 1 \text{ M}\Omega$	150 2 150	V
		V
V _{DSS} Continuous V _{GSM} Transient	±20 ±30	V
I _{D25} Τ _C = 25° C	150	Α
I _{D(RMS)} External lead current limit	100	Α
I_{DM} $T_{C} = 25^{\circ} C$, pulse width limited by	y T _{JM} 380	Α
T_{AR} $T_{C} = 25^{\circ}C$	60	Α
\mathbf{E}_{AR} $T_{C} = 25^{\circ} C$	100	mJ
\mathbf{E}_{AS} $T_{C} = 25^{\circ}C$	4	J
dv/dt $I_S \le I_{DM}$, di/dt ≤ 100 A/μs, $V_{DD} \le T_{J} \le 150$ ° C, $R_G = 4$ Ω	V _{DSS} , 10	V/ns
$T_{\rm c} = 25^{\circ} \text{C}$	680	W
T _J T _{JM} T _{stg}	-55 +175 175 -55 +150	°C °C °C
Mounting torque Terminal connection torque (M4)	1.5/13 1.5/13	Nm/lb.in.
V_{ISOL} 50/60 Hz $t = 1 \text{ min}$ $I_{ISOL} \le 1 \text{ mA}$ $t = 1 \text{ s}$	2500 3000	V~ V~
T _L 1.6 mm (0.062 in.) from case for	10 s 300	°C
Weight	30	g

M	E153432	2		
		s _		
	G _			
			(8))
		1		ľ
	AS.	D.		S
	A		D	,
			_	

miniBLOC, SOT-227 B (IXFN)

G = Gate D = Drain S = Source

Either Source terminal S can be used as the Source terminal or the Kelvin Source (gate return) terminal.

Features

- · International standard package
- Encapsulating epoxy meets UL 94 V-0, flammability classification
- miniBLOC with Aluminium nitride isolation
- Fast recovery diode
- Unclamped Inductive Switching (UIS) rated
- ¹ Low package inductance
 - easy to drive and to protect

Symbol Test Conditions $(T_J = 25^{\circ} C, \text{ unless otherwise specified})$			Ch Min.	aracteri Typ.	istic Va Max	
V _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$		150			V
V _{GS(th)}	$V_{DS} = V_{GS}$, $I_{D} = 4 \text{ mA}$		2.5		5.0	V
I _{GSS}	$V_{GS} = \pm 20 V_{DC}, V_{DS} = 0$				±100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0 V$	T _J = 150° C			25 500	μA μA
R _{DS(on)}	V_{GS} = 10 V, I_{D} = 90 A Pulse test, t ≤300 µs, duty	cycle d ≤ 2 %			11	mΩ

Advantages

- ^I Easy to mount
- Space savings
- High power density

DS99241E(01/06) © 2006 IXYS All rights reserved

Symbo	ol	Test Conditions (T = 25° C	Characteristic Values 5° C, unless otherwise specified)		
		(1, 25 0	Min.	Typ.	Max.
g_{fs}		V_{DS} = 10 V; I_{D} = 90 A, pulse test	55	86	S
C _{iss})			7000	pF
Coss	}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		2250	pF
\mathbf{C}_{rss}	J			515	pF
t _{d(on)})			30	ns
t _r		V_{GS} = 10 V, V_{DS} = 0.5 V_{DSS} , I_{D} = 90 A		32	ns
$\mathbf{t}_{d(off)}$		$R_{\rm G}$ = 3.3 Ω (External)		150	ns
t _f)			36	ns
$\mathbf{Q}_{g(on)}$)			240	nC
\mathbf{Q}_{gs}	}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 90 \text{ A}$		55	nC
\mathbf{Q}_{gd}	J			140	nC
$R_{\scriptscriptstylethJC}$					0.22° CW
R_{thCS}				0.05	° C/W

Source-Drain Diode

Characteristic Values (T, = 25°C, unless otherwise specified)

Symbo	l	Test Conditions	Min.	typ.	Max.	
Is		$V_{GS} = 0 V$			180	Α
I _{sm}		Repetitive			380	Α
V _{SD}		$I_F = I_S$, $V_{GS} = 0$ V, Pulse test, t ≤300 µs, duty cycle d≤ 2 %			1.5	V
t _{rr} Q _{RM} I _{RM}	}	$I_F = 25 \text{ A}$ -di/dt = 100 A/ μ s $V_R = 100 \text{ V}, V_{GS} = 0 \text{ V}$		0.6	200	ns μC Α

SOT-227B Outline

MYZ	INCHES		MILLIMETERS		
2114	MIN	MAX	MIN	MAX	
Α	1.240	1.255	31.50	31.88	
В	.307	.323	7.80	8.20	
С	.161	.169	4.09	4.29	
D	.161	.169	4.09	4.29	
E	.161	.169	4.09	4.29	
F	.587	.595	14.91	15.11	
G	1.186	1.193	30.12	30.30	
Н	1.496	1.505	38.00	38.23	
J	.460	.481	11.68	12.22	
K	.351	.378	8.92	9.60	
L	.030	.033	0.76	0.84	
М	.496	.506	12.60	12.85	
N	.990	1.001	25.15	25.42	
0	.078	.084	1.98	2.13	
Р	.195	.235	4.95	5.97	
Q	1.045	1.059	26.54	26.90	
R	.155	.174	3.94	4.42	
S	.186	.191	4.72	4.85	
Т	.968	.987	24.59	25.07	
U	002	.004	-0.05	0.1	

Fig. 1. Output Characteristics @ 25°C

Fig. 3. Output Characteristics @ 150°C

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = 90A$ Value vs. Drain Current

Fig. 2. Extended Output Characteristics @ 25°C

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 90A$ Value vs. Junction Temperature

Fig. 6. Drain Current vs. Case Temperature

Fig. 7. Input Admittance

Fig. 9. Source Current vs. Source-To-Drain Voltage

Fig. 11. Capacitance

Fig. 8. Transconductance

Fig. 10. Gate Charge

Fig. 12. Forward-Bias Safe Operating Area

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 13. Maximum Transient Thermal Resistance

