Database Management Systems (COP 5725)

(Fall 2019)

Instructor: Dr. Markus Schneider

TA: Kyuseo Park

Homework 5

Name:	Weibin Sun
UFID:	59935801
Email Address:	weibin.sun@ufl.edu

Pledge (Must be signed according to UF Honor Code)

On my honor, I have neither given nor received unauthorized aid in doing this assignment.

	Weibin Sun	
Signature		

For scoring use only:

	Maximum	Received
Exercise 1	20	
Exercise 2	25	
Exercise 3	25	
Exercise 4	15	
Exercise 5	15	
Total	100	

Exercise 1 - Normalization [20 points]

Consider the following table which is used to store students and courses records.

UFID	Course_ID	Grade	Student_Name	Department	Tuition Fee	Instructor
4114123	COP01, COP02, COP03	А, А, В	John Smith	CISE	250	James, Andrew, Peter
3124234	BU01, BU02	В, В	Roger Hicks	Business	300	Alan, Alan

Please note that *Tuition Fee* depends on the department.

1. Normalize the table to the 1st Normal Form and explain your answer. [5 points]

A relation schema is in first normal form (1NF) if, and only if, the domains of all its attributes only contain atomic (or indivisible) values .

So, we need to change the intersection of each row and each column contains one and only one atomic value. The result is as follows:

<u>UFID</u>	Course_ID	Grade	Student_Name	Department	Tuition Fee	Instructor
4114123	COP01	A	John Smith	CISE	250	James
4114123	COP02	A	John Smith	CISE	250	Andrew
4114123	COP03	В	John Smith	CISE	250	Peter
3124234	BU01	В	Roger Hicks	Business	300	Alan
3124234	BU02	В	Roger Hicks	Business	300	Alan

2. Explain the criteria for 2nd Normal Form and normalize the table you obtained from the previous part to meet them. Then explain which anomalies can occur with your answer. [5 points]

A relation schema R is in the second normal form (2NF) with respect to a set F of FDs if, and only if, it is in 1NF and every nonprime attribute A in R is fully functionally dependent on every candidate key of R. In other words, it is in 1NF and for every candidate key K of R and for every nonprime attribute A in R the FD $K \rightarrow A$ is left-reduced.

In the table of previous part, the primary keys are UFID and Course ID.

But for the FDs: UFID → Student_Name, UFID → Department, UFID → Tuition Fee and Course_ID → Instructor hold. So it's a violation of the 2NF.

students				
<u>UFID</u>	Student_Name	Department	Tuition Fee	
4114123	John Smith	CISE	250	
3124234	Roger Hicks	Business	300	

courses			
Course_ID	Instructor		
COP01	James		
COP02	Andrew		
COP03	Peter		
BU01	Alan		
BU02	Alan		

take_courses				
<u>UFID</u>	Course_ID	Grade		
4114123	COP01	A		
4114123	COP02	A		
4114123	COP03	В		
3124234	BU01	В		
3124234	BU02	В		

The 2NF still allows transitive dependencies.

Anomalies:

Insertion anomaly: Insert a new department should require a student information.

Update anomaly: If there are one more studnets in a department, a change of the department requires a change for each student in it.

Delete anomaly: If you delete a student's information, you should also delete the department's information.

3. Explain the criteria for 3rd Normal Form and normalize the table you obtained for the previous question to meet them. [5 points]

A relation schema R is in the third normal form (3NF) with respect to a set F of FDs if, and only if, it is in 2NF and no nonprime attribute A in R is transitively dependent on any candidate key of R. In other word, for each FD $X \rightarrow Y$ in F+ with $X \subseteq R$ and $Y \subseteq R$ at least one of the following conditions holds:

- $X \rightarrow Y$ is a trivial FD (i.e., $Y \subseteq X$ holds), or
- X is a superkey of R, or
- Every element of Y X is a prime attribute (i.e., contained in some candidate key) of R

Relation schema $student(\underline{UFID}, Student_Name, Department, Tuition Fee)$ with the additional FD $\{Department\} \rightarrow \{Tuition Fee\}$; both Department and Tuition Fee are nonprime attributes. Thus, we splitting of the schema student into the two 3NF schemas $student(\underline{UFID}, Student_Name, Department)$ and $department_fee(\underline{Department}, Tuition Fee)$ as follows.

student				
<u>UFID</u>	Student_Name	Department		
4114123	John Smith	CISE		
3124234	Roger Hicks	Business		

department_fee			
<u>Department</u>	Tuition Fee		
CISE	250		
Business	300		

courses			
Course_ID	Instructor		
COP01	James		
COP02	Andrew		
COP03	Peter		
BU01	Alan		
BU02	Alan		

take courses				
<u>UFID</u>	Course_ID	Grade		
4114123	COP01	A		
4114123	COP02	A		
4114123	COP03	В		
3124234	BU01	В		
3124234	BU02	В		

4. Explain if the tables you obtained for the previous question is in BCNF and, if not, normalize it to BCNF. [5 points]

Yes. Because for each left-reduced FD $X \to Y$ in F+ with $X \subseteq R$ and $Y \subseteq R$, $X \to Y$ is a trivial FD (i.e., $Y \subseteq X$ holds), or X is a candidate key of R, which satisfies the two conditions for the BCNF.

Exercise 2 – Normal Forms [25 points]

Consider the relation schema R = (A, B, C, D, E) for the following questions.

- 1. Assume we have the following functional dependencies:
 - $AB \rightarrow C$
 - $C \rightarrow D$
 - $B \rightarrow E$

Briefly explain if the relation R is in 2NF. If not, what modifications can be made to normalize it into 2NF? [5 points]

No. Check the attributes that are not in the right-hand sides of F: AB. AB^+ =ABCDE, which is candidate key. So the FDs $\underline{AB} \rightarrow C$ holds. But the FDs: B \rightarrow E also hold, we know that attribute E is partially functionally dependent on AB. Therefore, R is not in 2NF.

In order to normalize it, we can divide R into two schema:

$$R1(A, B, C, D)$$
 with FDs: $AB \rightarrow C, C \rightarrow D$

$$R2(\underline{B}, E)$$
 with FD: $B \rightarrow E$.

Both schemas satisfy the 2NF.

- 2. Is R in 2NF with the following functional dependencies? If not, normalize it. [5 points]
 - $A \rightarrow BC$
 - $AD \rightarrow E$
 - $B \rightarrow C$

No. Check the attributes that are not in the right-hand sides of F: AD. AD+ =ABCDE, so candidate key is AD. In particular the FDs AD \rightarrow E hold. But the FDs: A \rightarrow BC also hold, so BC is partially functionally dependent on any candidate key of R, which violates the 2NF.

In order to normalize, we can split R into two schema:

$$R1(A, B, C)$$
 with FDs: $A \rightarrow BC, B \rightarrow C$

$$R2(A, D, E)$$
 with FD: $AD \rightarrow E$

Both schemas satisfy the 2NF.

3. Are the relations from the answer of question 2 in 3NF? If not, normalize it. [5 points]

No. Relation schema R1(\underline{A} , B, C) with the FDs: A \rightarrow BC and B \rightarrow C hold, but B and C are nonprime attributes. Thus it not satisfies 3NF.

In order to normalize it, we can split R1(A, B, C) into two schema:

$$R11(\underline{A}, B)$$
 with FD: $A \rightarrow B$

$$R12(\underline{B}, C)$$
 with FD: $B \rightarrow C$

$$R2(A, D, E)$$
 with FD: $AD \rightarrow E$

Therefore, (ADE), (AB), (BC) form 3NF.

- 4. Briefly explain if the relation R is in 2NF. [2 points].
 - $A \rightarrow BCDE$
 - $BC \rightarrow ADE$
 - $D \rightarrow E$

Further, is R in 3NF? If not, what modifications can be made to normalize it into 3NF? [3 points]

Answer:

It is 2NF. By using the Armstrong's Axioms, we can get **A**+=ABCDE, B+=B, C+=C, D+=DE, E+=E, **BC**+=ABCDE, BD+=BDE, BE+=BE, CD+=CDE, CE+=CE, DE+=DE. So, the candidate keys are A and BC.

A is a key of single attribute, so it satisfies the 2NF. For BC, since we can compute that $B^+ = B$ and $C^+ = C$, we cannot find a partial functional dependency. Therefore, R is in 2NF.

It is not 3NF. Because the FD: $D \rightarrow E$ hold, we can compute that $D^+ = DE$, and D is not a candidate key. Thus, it violates 3NF.

To because 3NF, we can split R(A, B, C, D, E) into two schema:

 $R1(\underline{A}, B, C, D)$ with FDs: $A \rightarrow BCD, BC \rightarrow AD$

 $R2(\underline{D}, E)$ with FD: $D \rightarrow E$

- 5. Assume we have the following functional dependencies:
 - $AB \rightarrow D$
 - $C \rightarrow E$
 - $E \rightarrow C$
 - $C \rightarrow A$
 - $A \rightarrow C$

We decompose R into schemas R1(ABC) and R2(ABDE). Show whether it is dependency preserving by using one of the algorithms that covered in the lecture. [5 points]

Using algorithm 2:

For $AB \rightarrow D$: Result = AB

Round 1: OldResult = AB

For R1(ABC), $C = CalculateAttributeClosure(F, AB) \cap R1 = ABC$

Result = ABC

For R2(ABDE), C = CalculateAttributeClosure(F, AB) \cap R2 = ABDE

Result = $ABCDE \neq OldResult$

Round 2: OldResult = ABCDE

For R1(ABC), $C = CalculateAttributeClosure(F, ABC) \cap R1 = ABC$

Result = ABCDE

For R2(ABDE), C = ClaculateAttributeClosure(F, ABDE) \cap R2 = ABDE

Result = ABCDE = OldResult

 $D \cap Result = D$

```
For C \rightarrow E: Result = C
```

Round 1: OldResult = C

For R1(ABC), $C = CalculateAttributeClosure(F, C) \cap R1 = AC$

Result = AC

For R2(ABDE), C = CalculateAttributeClosure(F, A) \cap R2 = AE

 $Result = ACE \neq OldResult$

Round 2: OldResult = ACE

For R1(ABC), $C = CalculateAttributeClosure(F, AC) \cap R1 = AC$

Result = ACE

For R2(ABDE), $C = CalculateAttributeClosure(F, AE) \cap R2 = AE$

Result = ACE = OldResult

 $E \cap Result = E$

For $E \rightarrow C$: Result = E

Round 1: OldResult = E

For R1(ABC), C = CalculateAttributeClosure(F, \emptyset) \cap R1 = \emptyset

Result = E

For R2(ABDE), $C = CalculateAttributeClosure(F, E) \cap R2 = AE$

Result = $AE \neq OldResult$

Round 2: OldResult = AE

For R1(ABC), $C = CalculateAttributeClosure(F, A) \cap R1 = AC$

Result = ACE

For R2(ABDE), C = ClaculateAttributeClosure(F, AE) \cap R2 = AE

Result = $ACE \neq OldResult$

Round 3: OldResult = ACE

For R1(ABC), $C = CalculateAttributeClosure(F, AC) \cap R1 = AC$

Result = ACE

For R2(ABDE), C = ClaculateAttributeClosure(F, AE) \cap R2 = AE

Result = ACE = OldResult

 $C \cap Result = C$

For $C \rightarrow A$: Result = C

Round 1: OldResult = C

For R1(ABC), $C = CalculateAttributeClosure(F, C) \cap R1 = AC$

Result = AC

For R2(ABDE), $C = CalculateAttributeClosure(F, A) \cap R2 = AE$

Result = $ACE \neq OldResult$

Round 2: OldResult = ACE

For R1(ABC), $C = CalculateAttributeClosure(F, AC) \cap R1 = AC$

Result = ACE

For R2(ABDE), $C = ClaculateAttributeClosure(F, AE) \cap R2 = AE$

Result = ACE = OldResult

 $A \cap Result = A$

For $A \rightarrow C$: OldResult = A

Round 1: OldResult = A

For R1(ABC), $C = CalculateAttributeClosure(F, A) \cap R1 = AC$

Result = AC

For R2(ABDE), $C = CalculateAttributeClosure(F, A) \cap R2 = AE$

Result = $ACE \neq OldResult$

Round 2: OldResult = ACE

For R1(ABC), $C = CalculateAttributeClosure(F, AC) \cap R1 = AC$

Result = ACE

For R2(ABDE), $C = ClaculateAttributeClosure(F, AE) \cap R2 = AE$

Result = ACE = OldResult

 $C \cap Result = C$

Therefore, it is dependency preserving.

Exercise 3 – Lossless Join Decomposition [25 points]

1. For the relation schema R = (ABCDEF) and functional dependencies F = {AB → C, AC → B, AD → E, B → D, BC → A, E → F}, determine whether the following decomposition is lossless. Also, determine if it is dependency preserving.

 $P = \{R1(AB), R2(BC), R3(ABDE), R4(EF)\} [10 points]$

Apply the chase test:

PPT me those					
A	В	С	D	Е	F
a	ь	c1	d1	e1	f1
a2	ь	c	d2	e2	f2
a	ь	c3	d	e	f3
a4	b4	c4	d4	e	f

Apply $AB \rightarrow C$:

A	В	C	D	Е	F
a	ь	c1	d1	e1	f1
a2	ь	c	d2	e2	f2
a	ь	c1	d	e	f3
a4	b4	c4	d4	e	f

Apply $AC \rightarrow B$:

A	В	С	D	E	F
a	ь	c1	d1	e1	f1
a2	ь	c	d2	e2	f2
a	ь	c1	d	e	f3
a4	b4	c4	d4	e	f

Apply $AD \rightarrow E$:

A	В	С	D	Е	F
a	ь	c1	d1	e1	f1
a2	ь	c	d2	e2	f2
a	ь	c1	d	e	f3
a4	b4	c4	d4	e	f

Apply $B \rightarrow D$:

A	В	С	D	Е	F
a	ь	c1	d	e1	f1
a2	ь	c	d	e2	f2
a	ь	c1	d	e	f3
a4	b4	c4	d4	e	f

Apply BC \rightarrow A:

117					
A	В	C	D	E	F
a	ь	c1	d	e1	f1
a2	ь	c	d	e2	f2
a	ь	c1	d	e	f3
a4	b4	c4	d4	e	f

Apply $E \rightarrow F$:

11 /					
A	В	C	D	E	F
a	ь	c1	d	e1	f1
a2	ь	c	d	e2	f2
a	ь	c1	d	e	f
a4	b4	c4	d4	e	f

Apply $AD \rightarrow E$:

A	В	С	D	Е	F
a	ь	c1	d	e	f1
a2	b	c	d	e2	f2
a	ь	c1	d	e	f
a4	b4	c4	d4	e	f

We cannot find 1 row with all unsubscripted variables, so it is not a lossless decomposition.

We can check the FD: $AB \rightarrow C$, $AC \rightarrow B$ and $BC \rightarrow A$ are not fit into any relations, so it is not dependency preserving.

2. Consider the relation schema R = (ABCDE).

a. For the functional dependencies $F = \{AB \rightarrow C, C \rightarrow E, B \rightarrow D, E \rightarrow A\}$, is P $\{R1 (BCD), R2 (ACE)\}$ a lossless decomposition? Show all the steps. [5 points]

Using the chase test:

A	В	С	D	Е
a1	ь	c	d	e1
a	b2	c	d2	e

Apply $AB \rightarrow C$:

A	В	С	D	E
al	ь	c	d	e1
a	b2	c	d2	e

Apply $C \rightarrow E$:

A	В	С	D	Е
al	ь	c	d	e
a	b2	С	d2	e

Apply $B \rightarrow D$:

A	В	C	D	E
al	ь	c	d	e
a	b2	c	d2	e

Apply $E \rightarrow A$:

A	В	С	D	E
a	ь	c	d	e
a	b2	c	d2	e

The first row is fully unsubscripted, so it is a lossless decomposition.

b. For the functional dependencies $F = \{A \rightarrow CD, B \rightarrow CE, E \rightarrow B\}$, give a lossless-join decomposition of R into BCNF. [5 points]

Step 1: Decomposition by $A \rightarrow CD$. R1 = (A, B, E), R2 = (A, C, D).

Step 2: Decomposition of R1 by $E \rightarrow B$. R11 = (A, E), R12 = (B, E).

Thus, (A, E), (B, E) and (A, C, D) form a decomposition into BCNF.

c. For the functional dependencies $F = \{A \rightarrow CD, B \rightarrow CE, E \rightarrow B\}$, give a lossless-join decomposition of R into 3NF preserving functional dependencies. [5 points]

Step 1: Computation of a minimal cover: The given FDs are already the minimal cover

Step 2: Generation of relation schemas from the FDs

From A \rightarrow CD, we obtain: $R_1 = (A, C, D), F_1 = \{A \rightarrow CD\}$

From B \rightarrow CE, we obtain: $R_2 = (B, C, E), F_2 = \{B \rightarrow CE, E \rightarrow B\}$

From $E \to B$, we obtain: $R_3 = (B, E)$, $F_3 = \{E \to B\}$, but E, B are in R2.

Step 3: Check if a relation schema contains a candidate key

The candidate keys are AB and AE. There is no relation has a candidate key, so we add $R_4 = (A, B)$.

Step 4: We can have that $R_3 \subseteq R_2$

Step 5: So we have the decomposition $R_1 = ACD$, $R_2 = BCE$, $R_3 = AB$.

Therefore, (A, C, D), (B, C, E), (A, B) can form BCNF.

Exercise 4 - Normalization [15 points]

Suppose we have a relation schema R(A, B, C, D, E, F, G) and a set of functional dependencies $F = \{BCD \rightarrow A, BC \rightarrow E, A \rightarrow F, F \rightarrow G, C \rightarrow D, A \rightarrow G, A \rightarrow B\}$. Decompose R into 3NF by using the 3NF synthesis algorithm. Show all steps and argue precisely. Is this decomposition also in BCNF? If so, why? If not, why not? [15 points]

Step 1: Computation of a minimal cover: $\{BC \rightarrow AE, A \rightarrow BF, F \rightarrow G, C \rightarrow D\}$

Step 2: Generation of relation schemas from the FDs

From BC \rightarrow AE, we obtain: R1 = ABCE, F1 = {BC \rightarrow AE, A \rightarrow B}

From A \rightarrow BF, we obtain: R2 = ABF, F2 = {A \rightarrow BF}

From $F \rightarrow G$, we obtain R3 = FG, F3 = $\{F \rightarrow G\}$

From $C \rightarrow D$, we obtain R4 = CD, $F4 = \{C \rightarrow D\}$

Step 3: Check if a relation schema contains a candidate key

The candidate keys are AC and BC, and the R1 contains AC and BC. Therefore, we don't need to add extra schemas.

Step 4: So we have the decomposition R1 = ABCE, R2 = ABF, R3 = FG, R4 = CD.

The decomposition is not in BCNF, since for R1 = ABCE, the FD A \rightarrow B holds, but A is not a superkey.

Exercise 5 – Integrity Constraints [15 points]

Consider the following tables:

```
CREATE TABLE PRODUCT
(MAKER VARCHAR2 (50),
MODEL VARCHAR2(50),
TYPE VARCHAR2(30));
CREATE TABLE DESKTOP
(MODEL VARCHAR2 (50) NOT NULL,
SPEED NUMBER (8),
RAM VARCHAR2 (30),
HD VARCHAR2 (30),
PRICE NUMBER(8));
CREATE TABLE LAPTOP
(MODEL VARCHAR2 (50) NOT NULL,
SPEED NUMBER(8),
RAM VARCHAR2 (30),
HD VARCHAR2(30),
SCREEN VARCHAR2 (30),
PRICE NUMBER(8));
CREATE PRINTER
(MODEL VARCHAR2 (50) NOT NULL,
COLOR VARCHAR2 (30),
TYPE VARCHAR2 (30),
PRICE NUMBER(8));
```

1. Write a check condition to ensure that no manufacturer of desktops also makes laptops. [3 points]

2. Write a check condition to ensure that a manufacturer of a desktop also makes a laptop with at least the same processor speed. [4 points]

```
Create assertion speed_constraint
check (
Not Exists (
Select x.maker
From (Select product.maker, desktop.speed
From product, desktop
Where product.model = desktop.model) x,
(select product.maker, laptop.speed
From product, laptop
Where product.model = laptop.model) y
Where x.maker = y.maker and x.speed > y.speed));
```

3. Create a trigger that checks that there is no lower priced desktop with the same speed when the price of a desktop is updated. [4points]

4. Create a trigger that checks if the model number exists in the *Product* table when a new printer is inserted. [4 points]