

C5. Les réseaux convolutionnels

Advanced Machine Learning (MLA)

Kévin Bailly

kevin.bailly@sorbonne-universite.fr

http://people.isir.upmc.fr/bailly/

Limites des réseaux MLP

Comment traiter des images de grande dimension ?

```
class MnistNet(Model):
 def __init__(self):
     super(MnistNet, self).__init__()
     self.flatten = Flatten()
     self.fc1 = Dense(120, activation='relu')
     self.fc2 = Dense(80, activation='relu')
     self.fc3 = Dense(10, activation='softmax')

 def call(self, x):
     x = self.flatten(x)
     x = self.fc1(x)
     x = self.fc2(x)
     return self.fc3(x)
```

Combien de paramètres pour la première couche cachée ?

28 x 28 x 120 = 94080

Le nombre de paramètre explose pour des images de plus grande résolution en RGB - Ex : 640x480x3x120 = 11M !!

Limites des réseaux MLP

Comment conserver la structure spatiale ?

Un MLP donne-t-il les mêmes résultats sur les deux bases de données
 ?

Le codage vectoriel (flatten) ne tient pas compte de la structure 2D

→ la structure locale n'est pas prise en compte!

Limites des réseaux MLP

Comment être moins sensible au faibles variations

Les réseaux à convolution (CNN)

- Les CNN visent à répondre à ces limitations
 - Connexions locales : un neurone est connecté à une sous région (patches locaux)
 - Conservation d'une information spatialement structurée (réponse à des motifs locaux)

Les réseaux à convolution (CNN)

- Les CNN visent à répondre à ces limitations
 - Connexions locales : un neurone est connecté à une sous région (patches locaux)
 - Poids partagés : même opération répliquée sur tout les neurones
 - Réduction du nombre de paramètres
 - Convolution avec des filtres appris

Convolutions

 Chaque neurone (vert foncé) ne « voit » qu'une portion de l'image (bleu foncé)

$$h^{n}(i,j) = \left(h^{n-1} * w_{k}\right)(i,j) = \sum_{n=-\frac{d-1}{2}}^{\frac{d-1}{2}} \sum_{m=-\frac{d-1}{2}}^{\frac{d-1}{2}} h^{n-1}(i+n,j+m) * w(n,m)$$

Corrélation croisée

• On applique une non-linéarité (ex. ReLU) sur tous les pixels la carte d'activation

Convolutions

 Chaque neurone (vert foncé) ne « voit » qu'une portion de l'image (bleu foncé)

$$h^{n}(i,j) = \left(h^{n-1} * w_{k}\right)(i,j) = \sum_{n=-\frac{d-1}{2}}^{\frac{d-1}{2}} \sum_{m=-\frac{d-1}{2}}^{\frac{d-1}{2}} h^{n-1}(i+n,j+m) * w(n,m)$$

Corrélation croisée

Convolutions

- Une image est un tenseur de taille [h*w*c]
- Les convolutions sont calculées pour chaque canal c puis sommées

Les réseaux à convolution (CNN)

- Les CNN visent à répondre à ces limitations
 - Connexions locales : un neurone est connecté à une sous région (patches locaux)
 - Poids partagés : même opération répliquée sur tout les neurones
 - Et l'invariance aux faibles variations ??

Equivariance

 Les poids partagés (noyaux) n'assurent pas une invariance à la translation mais une equivariance

 Comment introduire une invariance aux transformations spatiales 2D ??

L'étape de Pooling

Un pooling spatial (local) des cartes de réponses

- Réduit la dimension des cartes d'activation
- Assure une invariances au faibles translations
- Il existe plusieurs type de pooling (maxpool, meanpool, random...

Réseau CNN

 Vue globale d'un réseau CNN pour des problèmes de classification

[Mathworks : Introducing Deep Learning with MATLAB]

LeNet-5

Architecture :

- 3 couches de convolution C1, C3 et C5 : taille des filtres ?
- 2 couches de « average pooling » : taille ?
- 1 couche complètement connectée (FC, fully connceted) F6
- Fonction d'activation : tanh

LeNet-5: spécificités

- 1 couche de sortie « atypique » : 10
 fonctions gaussiennes (RBF)
- Couches S2 -> C3 partiellement connectées
 - → Réduction du nombre de paramètres
 - → Décorrélation des cartes

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0																
$rac{1}{2}$	X	\mathbf{X}		1		\mathbf{X}	\mathbf{X}	\mathbf{X}			\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		\mathbf{X}
2	X	\mathbf{X}	\mathbf{X}	٦	لم		\mathbf{X}	\mathbf{X}	\mathbf{X}			\mathbf{X}		\mathbf{X}	\mathbf{X}	\mathbf{X}
3		\mathbf{X}	\mathbf{X}	\mathbf{X}			\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}			\mathbf{X}		\mathbf{X}	\mathbf{X}
4			\mathbf{X}	\mathbf{X}	\mathbf{X}			\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		\mathbf{X}	\mathbf{X}		\mathbf{X}
5				\mathbf{X}	\mathbf{X}	\mathbf{X}			\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		\mathbf{X}	\mathbf{X}	X

Stride, padding et dilation

Stride

- Augmente le pas de l'opérateur de convolution
- Effet ?
- Réduction de la taille de la carte d'activation

Padding

Ajoute un bord à l'image (généralement 0)

Conserve la taille de l'image d'origine

Dilation

- Réduit la taille
- \sim (conv + pool)

https://github.com/vdumoulin/conv_arithmetic

Effet du padding

Champs réceptifs

Partion de l'image qui a un impact sur la décision d'un seul neurone

- Comment évolue le champs réceptif avec la profondeur du réseau ?
 - Il augmente (même sans pooling)
- Est-il préférable d'augmenter la profondeur du réseau ou la largeur des filtres ? Pourquoi ?
 - Augmenter la profondeur limite le nombre de paramètres

Champs réceptifs

Certain réseaux utilisent des convolution 1x1 pourquoi ??

- Permet de compresser l'information entre les canaux
- Pour les réseaux très profonds, séparer les convolutions spatiales et inter-canaux permet de limiter le nombre de paramètres (ex: GoogLeNet)

AlexNet (2012)

- Premier réseaux CNN à remporter LSVRC (Challenge ImageNet)
 - Top 5 test error rate : 15.4%
- 7 couches
- ReLU (plus rapide à entrainer) + Dropout (meilleure généralisation)
- Augmentation de données (translations réflexions-, patches)
- Gradient stochastique + momentum + weight decay
- 2 architectures en parallèle pour la répartion sur GPU

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

VGG Net 2014

- % Erreur sur ImageNet : 7.3
- 16 couches
- Mais des filtres plus petit
 (3x3) au lieu de (11x11) et
 (5x5) pour les 1ère c. AlexNet
 - 3 (3x3) ~ 1(7,7)
- Deep and simple !!

			onfiguration		
A	A-LRN	В	C	D	Е
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
		e)			
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
		max	pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
			pool		conv3-512

GoogLeNet 2015

- Microsoft ResNet (2015)
 - 152 couches avec

