

Institute of Stochastics

Stochastic Geometry | Summer term 2020

PD. Dr. Steffen Winter Steffen Betsch, M.Sc.

Work Sheet 4

Instructions for week 4 (May 11th to May 15th):

- Work through Sections 2.1 and 2.2 of the lecture notes.
- Answer the control questions 1) to 5), and solve Problems 1 to 4 of the exercises below.
- Please hand in your solutions to the exercises for correction until the morning of Monday, May 18th. For the procedure, please have a look at the general information in Ilias. The submission of solutions is voluntary.

Control questions to monitor your progress:

- 1) Recall Definition 2.3 of a directed sequence of partitions. Can you imagine a construction for such a directed sequence of partitions in an arbitrary separable metric space (cf. Remark 2.4)?
 - (**Hint:** Contemplate that for any $n \in \mathbb{N}$ the separable metric space has a countable base of its topology consisting of sets of diameter at most 1/n. Construct the required partitions via suitable intersections.)
- 2) Let (X, ρ) be a separable metric space, and let $\mu \in M(X)$ and r > 0. Why does μ have at most finitely many atoms with mass at least r in any bounded set $B \in \mathcal{X}_b$? Conclude from this fact that μ can have at most countably many atoms in X.
- 3) Let (\mathbb{X}, ρ) be a separable metric space, and let $x, x_1, x_2, \ldots \in \mathbb{X}$ such that $x_n \to x$ as $n \to \infty$. Do we have $\sum_{j=1}^{\infty} \delta_{x_j} \in N(\mathbb{X})$?
- 4) In the proof of Corollary 2.10, verify that the stated equivalences do indeed imply that N(X) and $N_s(X)$ are measurable subsets of M(X), that is, N(X), $N_s(X) \in \mathcal{M}(X)$.
- 5) Can you verify that the intensity measure (Definition 2.19) of any random measure is itself a measure on the underlying separable metric space?

Exercises for week 4:

Problem 1 (Measurability of measure-valued functions)

Let $M(\mathbb{X})$ be the set of all locally finite measures on a separable metric space (\mathbb{X}, ρ) with Borel- σ -field $\mathcal{X} = \mathcal{B}(\mathbb{X})$. For $B \in \mathcal{X}$, denote by $\pi_B : M(\mathbb{X}) \to [0, \infty]$ the map $\mu \mapsto \pi_B(\mu) := \mu(B)$. Let $\mathcal{M}(\mathbb{X})$ be the smallest σ -field on $M(\mathbb{X})$ for which all maps π_B , $B \in \mathcal{X}$, are measurable. Furthermore, let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space.

- a) Consider a map $\eta: \Omega \to M(X)$. Show the equivalence of the following statements:
 - (i) η is a random measure on E.
 - (ii) For all sets $B \in \mathcal{X}$, $\eta(B) : \Omega \to [0, \infty]$ is a random variable.
- b) Prove that the mapping $S: M(X) \times M(X) \to M(X), (\mu, \nu) \mapsto \mu + \nu$ is measurable.
- c) Verify that either part a) and part b) imply that the sum of two random measures is itself a random measure.

Problem 2 (Measurability of point processes)

Let X_1, X_2, \ldots be random elements of a separable metric space (\mathbb{X}, ρ) defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ (where the X_j need not be independent and can have different distributions). Let τ be an \mathbb{N}_0 -valued random variable. Prove that

$$\Phi := \sum_{i=1}^{\tau} \delta_{X_j}$$

is a point process, that is, the map $\Phi:\Omega\to \textit{N}(\mathbb{X})$ is measurable.

Note: If X_1, X_2, \ldots are i.i.d. random elements of $\mathbb X$ and τ is independent of $(X_j)_{j \in \mathbb N}$, then the process Φ is the mixed binomial process from Example 2.17.

Problem 3

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be the probability space which underlies the following random elements. Let X_1, X_2 be uniformly distributed over the open unit disc $B^\circ(0,1) := \{x \in \mathbb{R}^2 : \|x\| < 1\}$, let X_3 be uniformly distributed over the discrete set $\{(0,0),(0,1),(1,0),(1,1)\}$, and let X_4 be uniformly distributed over the segment $[-1,1] \times \{0\}$. Define the point process $\Phi := \sum_{j=1}^4 \delta_{X_j}$. Calculate $\mathbb{E} \big[\Phi(B)\big]$ for any $B \in \mathcal{B}(\mathbb{R}^2)$. Apply this knowledge about the intensity measure to calculate

$$\mathbb{E}\left[\int_{[-1,1]^2} \left(x^2 + y^2\right) \Phi(\mathsf{d}(x,y))\right].$$

Problem 4 (Equality in distribution of point processes – A proof of Remark 2.24)

Let Φ and Φ' be point processes on a separable metric space (\mathbb{X}, ρ) . Prove that the following are equivalent:

(iv) For all $m \in \mathbb{N}$ and any $B_1, \ldots, B_m \in \mathcal{X}_b$,

$$(\Phi(B_1),\ldots,\Phi(B_m))\stackrel{d}{=} (\Phi'(B_1),\ldots,\Phi'(B_m)).$$

(iv') For all $m \in \mathbb{N}$ and any pairwise disjoint $B_1, \ldots, B_m \in \mathfrak{X}_b$,

$$(\Phi(B_1),\ldots,\Phi(B_m))\stackrel{d}{=} (\Phi'(B_1),\ldots,\Phi'(B_m)).$$

The solutions to these problems will be uploaded on May 18th.

Feel free to ask your questions about the exercises in the optional MS-Teams discussion on May 14th (09:15 h).