SY31 - TD 03: Incertitude de mesure

Exercice 1

On a mesuré les deux composantes d'une force $\vec{F} = (F_x, F_y)$ avec les incertitudes σ_x et σ_y , et une masse m avec l'incertitude σ_m . On a obtenu :

—
$$F_x = 0.8 \text{ N et } \sigma_x = 0.05 \text{ N}$$

—
$$F_y = 1.4 \text{ N}$$
 et $\sigma_y = 0.05 \text{ N}$

—
$$m = 0.185 \text{ Kg et } \sigma_m/m = 0.5\%$$

On souhaite calculer l'incertitude absolue sur l'accélération σ_a et l'incertitude relative σ_a/a . On rappelle que :

$$a = \frac{\sqrt{F_x^2 + F_y^2}}{m}$$

Exercice 2

On a relevé la série de mesures suivantes :

Entrée : x	2.02	2.66	3.72	5.73	8.97	9.08
Sortie: y	9.29	10.40	10.89	16.27	22.88	23.16

- 1. Tracer les points (x, y) observés.
- 2. On suppose une relation linéaire y = ax + b, calculer les coefficients a et b par la méthode des moindres carrés et tracer la droite des moindres carrés.
- 3. Donner une estimation de la variance du bruit de mesure.
- **4.** Estimer les coefficients a et b par la méthode des moindres carrés pondérés. (On se limitera à deux itérations)
- 5. On apprend que la relation théorique entre x et y est : y = 2x + 5. Comparer les erreurs d'estimation des coefficients a et b, aux différentes itérations de la méthode des moindres carrés pondérés.