A	A Paul A. B 201 20 10 関い音 よなをし、L答 B. E.
基礎数学(毎日) 第 10 回小テスト 学籍番号	氏名
注意 (1) 解を導きだす経過をできるだけ丁寧に記述すること。 (2) 字が粗暴な解答も減点の対象とする。 (3) 最終的に導き出した答えを右側の四角の中に記入せよ。 (4) <u>すべて解答できた者</u> は途中退席しても構わない。 (5) 問題と解答は http://www.math.sie.dendai.ac.jp/hiroyas	中で (で) ~ (で) の来るだけが S動師の計画器の よりま
1 次の定積分を求めなさい。(各9点)	
(1) $\int_{-2}^{1} (2x+1)dx = \left[\chi^{2} + \chi \right]_{-2}^{1} =$	(1+1)-(4-1)=2-2=0
(無司名) 上下之中東土間(
(2) $\int_0^2 (x^2 - 3x + 2) dx = \left[\frac{1}{3} \sqrt{3} - \frac{3}{2} \right]$	$(2 + 2)^{2} = \frac{8}{3} - 6 + 4 = \frac{2}{3}$
= [(-a-a+21dos	2-2+2-2
	() (2) (2) 3 =
	71 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(3) $\int_{-1}^{1} (2x^3 + x) dx = \left[\frac{1}{2} \chi^4 + \frac{1}{2} \chi^2 \right]$	$\int_{-1}^{1} = \left(\frac{1}{2} + \frac{1}{2}\right) - \left(\frac{1}{2} + \frac{1}{2}\right)$
\$2 1 1 2 0	(3)
(4) $\int_{-2}^{2} (x^2 + 2) dx = \left[\frac{1}{3} x^3 + 2 x \right]_{-2}^{3}$	$=\left(\frac{8}{3}+4\right)-\left(-\frac{8}{3}-4\right)$
$\stackrel{\scriptstyle 2}{\sim} 2 \times \left(\frac{8}{3} + 4\right)$	$=2 \times \frac{20}{3} = \frac{40}{3}$ (4) $\frac{40}{3}$
2 関数 $f(x) = x^2 - 2x + 4$ について以下の間に答えな	さい. (各9点)
(1) 不定積分 $\int f(x) dx$ を求めなさい.	= 2x2+2x-4
	-2 (a + a - 2)
	$\frac{1}{3}\chi^{3} - \chi^{2} + 4\chi + C$
(2) $F(1) = 3$ を満たす $f(x)$ の原始関数 $F(x)$ を求めな	: ** 1.
F(x) = - \alpha^3 - \alpha^2 \land \land \alpha^2	· d · tax Fixita fixia原始関数
である。まなるもの下	C 2 MK 2 W / C / C / C / C / C / C / C / C / C /
Et) 3 & 12.47	

(1) 図 A の斜線部の面積を表す式を次の (ア) ~ (オ) の中からすべて選びなさい.

$$(\mathcal{P})\int_{a}^{b}f(x)\,dx$$

$$(\mathcal{A}) - \int_0^b f(x) dx$$

(ウ)
$$\int_a^c f(x) dx - \int_c^b f(x) dx$$

(イ)
$$-\int_a^b f(x) dx$$
 (ウ) $\int_a^c f(x) dx - \int_c^b f(x) dx$ (エ) $\int_c^b f(x) dx - \int_a^c f(x) dx$

(2) (1)を参考にして図Bの斜線部の面積を表す式を書きなさい。

4 次の2つの関数に対して, (i) 2つのグラフの交点のx座標を求めなさい. (ii) 2つのグラフで囲まれる図形の面 積 S を定積分の式で表しなさい。(iii) 定積分を計算し,S の値を求めなさい。(各 15 点)

(1)
$$y = x^2 - x + 1$$
, $y = -2x + 3$

(ii)
$$5 = \int_{-2}^{1} (-2x+3) - (x^2 + 1) dx$$

$$=$$
 $\chi^2 + \chi - 2$

$$= \lim_{x \to \infty} \int_{-2}^{1} (-\chi^2 - \chi + 2) d\chi = \lim_{x \to \infty} \frac{2}{2}$$

(2)
$$y = -x^2 - 3x + 4$$
, $y = x^2 - x$

(ii)
$$S = \int_{1}^{4} (-x^{2}-3x+4) - (x^{2}-x) dx$$

(i)
$$0 = (\chi^2 - \chi) - (-\chi^2 - 3\chi + 4)$$

$$\int_{2}^{2} \left(-x^{2} - 3x + 4 \right) - (x)$$

$$= \int_{2}^{4} \left(-2x^{2} - 2x + 4 \right) dx$$

$$=(-\frac{9}{3}-1+4)-(\frac{16}{3}-4-8)$$

$$=-\frac{19}{3}+3+12=9$$

$$s = \frac{1}{(11)} \left(-2x^2 - 2x + 4 \right) dx$$

12 x 2-x