Homework8

Qi'ao Chen 21210160025

November 19, 2021

Exercise 1. Let M be a substructure of N. Let $\bar{a} \in M^n$ be a tuple and $\varphi(x_1, \dots, x_n)$ be a quantifier-free formula. Show that $M \models \varphi(\bar{a}) \Leftrightarrow N \models \varphi(\bar{a})$

Proof. M is a substructure of N, then the inclusion map $i:M\to N$ is an embedding.

First we prove that for any term $t(\bar{x})$, $t^M(\bar{a})=t^N(\bar{a})$ by induction on the complexity of term t.

If t is a constant c, then $c^N = i(c^M) = c^M$.

If t is a variable v_i , then $t^M(\bar{a}) = a_i = t^N(\bar{a})$.

If t is of the form $f(t_1(\bar{x}),\ldots,t_n(\bar{x}))$, then, for all $i=1,\ldots,n$, $t_i^M(\bar{a})=t_i^N(\bar{a})$ by induction. Because i is an embedding, then $f^M(b_1,\ldots,b_n)=i(f^M(b_1,\ldots,b_n))=f^N(i(b_1),\ldots,i(b_n))=f^N(b_1,\ldots,b_n)$. Hence $f^M=f^N\mid M^n$

$$\begin{split} t^{M}(\bar{a}) &= f^{M}(t_{1}^{M}(\bar{a}), \dots, t_{n}^{M}(\bar{a})) \\ &= f^{N}(t_{1}^{N}(\bar{a}), \dots, t_{n}^{N}(\bar{a})) \\ &= t^{N}(\bar{a}) \end{split}$$

Then we prove the exercise by induction on the complexity of $\varphi(\bar{x})$. If φ is of the form $t_1(\bar{x})=t_2(\bar{x})$. Then

$$\begin{split} M \vDash t_1(\bar{a}) &= t_2(\bar{a}) \Leftrightarrow t_1^M(\bar{a}) = t_2^M(\bar{a}) \\ &\Leftrightarrow t_1^N(\bar{a}) = t_2^N(\bar{a}) \\ &\Leftrightarrow N \vDash t_1(\bar{a}) = t_2(\bar{a}) \end{split}$$

If φ is of the form $R(t_1(\bar{x}), \dots, t_m(\bar{x}))$, then

$$\begin{split} M &\vDash R(t_1(\bar{a}), \dots, t_m(\bar{a})) \Leftrightarrow (t_1^M(\bar{a}), \dots, t_m(\bar{a})) \in R^M \\ &\Leftrightarrow (i(t_1^M(\bar{a})), \dots, i(t_m^N(\bar{a}))) \in R^N \\ &\Leftrightarrow (t_1^M(\bar{a}), \dots, t_m^N(\bar{a})) \in R^N \\ &\Leftrightarrow (t_1^N(\bar{a}), \dots, t_n^N(\bar{a})) \in R^N \\ &\Leftrightarrow N \vDash R(t_1(\bar{a}), \dots, t_m(\bar{a})) \end{split}$$

If φ is of the form $\neg \psi$, then

$$M \vDash \varphi(\bar{a}) \Leftrightarrow M \nvDash \psi(\bar{a}) \Leftrightarrow N \nvDash \psi(\bar{a}) \Leftrightarrow N \vDash \varphi(\bar{a})$$

If φ is of the form $\psi_1 \wedge \psi_2$, then

$$\begin{split} M \vDash \varphi(\bar{a}) \Leftrightarrow M \vDash \psi_1(\bar{a}) \text{ and } M \vDash \psi_2(\bar{a}) \\ N \vDash \psi_1(\bar{a}) \text{ and } N \vDash \psi_2(\bar{a}) \\ N \vDash \varphi(\bar{a}) \end{split}$$

Exercise 2. Let M be an ω -saturated elementary extensions of $(\mathbb{R},+,\cdot,-,0,1,\leq)$. Suppose that $a\in M$. Show that there is $b\in M$ s.t. $b>a^n$ for all positive integers n.

Proof. Let $\varphi_n(x,y)$ be

$$\neg y = x \land \underbrace{x \cdot x \cdot \dots \cdot x}_{n \text{ times}} \le y$$

Let $\Sigma(x)=\{\varphi_n(a,x)\mid n\in\mathbb{N}_+\}$. For any finite $\Sigma_0(x)\subseteq\Sigma(x)$, it's equivalent to $\varphi_N(a,x)$ for some sufficient large N. But since $\mathbb{R}\vDash\forall x\exists y\varphi_n(x,y)$ and M is an elementary extension of \mathbb{R} , $M\vDash\forall x\exists y\varphi_n(x,y)$ and hence there is a $b_a\in M$ such that $M\vDash\varphi_N(a,b)$.

Hence $\Sigma(x)$ is finitely satisfiable and there is $p \in S_n(a)$ with $p \supseteq \Sigma$. Then M being ω -saturated implies that p(x) is realised by $b \in M$ and therefore $M \models \Sigma(b)$. So for any positive $n, b > a^n$.

Exercise 3. Let K be a field and $x,y\in K$ be elements. Show that $xy=0\Leftrightarrow (x=0\lor y=0)$

Proof. \Rightarrow . If both x and y are nonzero. Then as xy = 0, $1 = y^{-1}x^{-1}xy = 0$, which violates the axiom of field.

 \Leftarrow . For any $a \in K$,

$$0 = 0 \cdot a + (-0 \cdot a) = (0 + 0) \cdot a + (-0 \cdot a) = 0 \cdot a + 0 \cdot a + (-0 \cdot a) = 0 \cdot a$$

and similarly $a \cdot 0 = 0$.

Exercise 4. Let a, b be positive integers. Let g be the greatest common divisor of a and b. Show that g = ax + by for some $x, y \in \mathbb{Z}$.

Proof. Let $I = \{ax + by : x, y \in \mathbb{Z}\}$. For any ax + by, $ax' + by' \in I$, $ax + by + ax' + by' = a(x + x') + b(y + y') \in I$. $(ax + by)(ax' + by') = a(axx' + bxy' + aby) + by' \in I$. $0 = a \cdot 0 + b \cdot 0 \in I$. Hence I is an ideal.

Then $I=n\mathbb{Z}$ for some $n\geq 0$ by Theorem 15. Then $n=ax_n+by_n$ for some $x_n,y_n\in\mathbb{Z}$ which implies $g\mid n$. But as $a,b\in n\mathbb{Z}$, we have $n\mid a$ and $n\mid b$, and so $n\leq g$. Thus n=g and $I=g\mathbb{Z}$. Therefore g=ax+by for some $x,y\in\mathbb{Z}$

Exercise 5. If $x, y, n \in \mathbb{Z}$ and n > 0, then $x \equiv y \mod n$ means $x - y \in n\mathbb{Z}$. Show that \equiv is an equivalence relation

Proof. $x - x = 0 \in n\mathbb{Z}$, therefore $x \equiv x$.

If $x \equiv y$, then $x - y \in n\mathbb{Z}$ and hence $y - x = (-1)(x - y) \in n\mathbb{Z}$.

If $x\equiv y$ and $y\equiv z$, then $x-y,y-z\in n\mathbb{Z}$. There is $a,b\in \mathbb{Z}$ such that x-y=na and y-z=nb. Since $x-z=(x-y)+(y-z)=n(a+b)\in n\mathbb{Z}$, $x\equiv z$

Exercise 6. Suppose that $x \equiv x' \mod n$ and $y \equiv y' \mod n$. Show that $xy \equiv x'y' \mod n$

Proof. There is $a,b\in\mathbb{Z}$ such that x-x'=an and y-y'=bn. We have x'=x-an, y'=y-bn and x'y'=xy+n(abn-bx-ay). Hence $x'y'-xy\in n\mathbb{Z}$

Exercise 7. Suppose that p is a prime and $x \not\equiv 0 \mod p$. Show that there is y s.t. $xy \equiv 1 \mod p$

Proof. Since $x \not\equiv 0 \mod p$, $p \nmid x$ and so x and p is coprime and there is $m, n \in \mathbb{Z}$ such that mx + pn = 1. Thus $mx - 1 \in p\mathbb{Z}$ and so $mx \equiv 1 \mod p$