2018학년도 9월 고2 전국연합학력평가 정답 및 해설

수학 영역

나형 정답

1	2	2	3	3	3	4	1	5	(5)
6	1	7	1	8	4	9	(5)	10	4
11	1	12	2	13	4	14	3	15	3
16	4	17	(5)	18	2	19	(5)	20	2
21	1	22	5	23	16	24	4	25	32
26	28	27	12	28	747	29	512	30	40

해 설

1. [출제의도] 지수 계산하기

$$3 \times 9^{\frac{1}{2}} = 3 \times (3^2)^{\frac{1}{2}} = 3 \times 3 = 9$$

2. [출제의도] 집합의 연산 이해하기 $A^{C} = \{1, 9\}$ 이므로

 A^{C} 의 모든 원소의 합은 1+9=10

3. [출제의도] 함수의 극한값 계산하기

$$\lim_{x \to 4} \frac{(x-4)(x+2)}{x-4} = \lim_{x \to 4} (x+2) = 6$$

4. [출제의도] 로그 계산하기

$$\log_7 49 + \log_7 \frac{1}{7} = \log_7 \left(49 \times \frac{1}{7}\right) = \log_7 7 = 1$$

5. [출제의도] 합성함수 이해하기

 $(f \circ f)(1) = f(f(1)) = f(3) = 5$

6. [출제의도] 절대부등식 이해하기

$$x>0$$
 , $\frac{9}{x}>0$ 이므로 $x+\frac{9}{x}\geq 2\sqrt{x imes\frac{9}{x}}=6$ (단, 등호는 $x=3$ 일 때 성립한다.) 따라서 $x+\frac{9}{x}$ 의 최솟값은 6

7. [출제의도] 충분조건을 이용하여 수학 내적 문제 해결하기

두 조건 p, q의 진리집합을 각각 P, Q라 하면 $P = \{x \mid (x+2)(x-1) < 0\}, \ Q = \{x \mid x \ge \alpha\}$ p는 q이기 위한 충분조건이므로 $P \subset Q$

 $\alpha \leq -2$ 이므로 정수 α 의 최댓값은 -2

8. [출제의도] 함수의 극한 이해하기

$$\lim_{x \to 0+} f(x) = 1$$
, $\lim_{x \to 2-} f(x) = 3$ 이므로
$$\lim_{x \to 0+} f(x) + \lim_{x \to 2-} f(x) = 1 + 3 = 4$$

9. [출제의도] 수열의 극한값 계산하기

$$\lim_{n\to\infty} \frac{2^n + a \times 5^{n+1}}{5^n} = \lim_{n\to\infty} \left\{ \left(\frac{2}{5}\right)^n + 5a \right\} = 5a$$

$$5a = 3$$
이므로 $a = \frac{3}{5}$

10. [출제의도] 연속함수의 정의 이해하기

함수 f(x)가 실수 전체의 집합에서 연속이므로 함수 f(x)는 x=1에서 연속이다.

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} f(x) = f(1)$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (2x^{2} + ax + 1) = a + 3,$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (-3x + b) = -3 + b,$$

$$\lim f(x) = \lim (-3x + b) = -3 + b$$

$$f(1) = 7$$
이므로 $a+3 = -3+b = 7$

a = 4, b = 10따라서 a+b=4+10=14

11. [출제의도] 미분계수 이해하기

함수
$$f(x) = x^2 + 4x - 2$$
 에서 $f(1) = 3$ 이고 $f'(x) = 2x + 4$ 이므로 $f'(1) = 6$
$$\lim_{h \to 0} \frac{f(1+2h) - 3}{h} = \lim_{h \to 0} \frac{f(1+2h) - f(1)}{2h} \times 2$$

12. [출제의도] 유리함수의 성질 이해하기

함수
$$y = \frac{ax+1}{bx+1}$$
의 그래프가

점
$$(2, 3)$$
을 지나므로 $\frac{2a+1}{2b+1} = 3$ ··· ①

함수
$$y = \frac{ax+1}{bx+1}$$
의 그래프의 한 점근선이

직선 y=2이므로

$$y = \frac{ax+1}{bx+1} = \frac{a(x+\frac{1}{b}) - \frac{a}{b} + 1}{b(x+\frac{1}{b})} = \frac{-\frac{a}{b} + 1}{b(x+\frac{1}{b})} + \frac{a}{b}$$

에서
$$\frac{a}{b} = 2$$
 ... ①

①, ①에 의하여
$$a=3b+1$$
, $a=2b$
따라서 $a=-2$, $b=-1$ 이므로 $a^2+b^2=5$

13. [출제의도] 급수와 일반항 사이의 관계

$$\sum_{n=1}^{\infty} \left(2a_n - 5b_n\right)$$
이 수렴하므로

$$\lim \left(2a_n - 5b_n\right) = 0$$

$$\lim_{n \to \infty} a_n = 5$$
이므로 $\lim_{n \to \infty} b_n = 2$

$$n \to \infty$$
 따라서 $\lim b_n (a_n + 2b_n) = 2 \times (5+4) = 18$

14. [출제의도] 등비수열의 성질을 이용하여 수학 내적 문제 해결하기

x에 대한 다항식 $x^3 - ax + b$ 를 x - 1로 나눈 나머지가 57 이므로

나머지 정리에 의하여

$$1 - a + b = 57$$

$$b = a + 56$$
 ... \bigcirc

$$1, a, b$$
가 이 순서대로 등비수열을 이루므로 $a^2 = b$... ①

①, ⓒ에 의하여

$$a^2 = a + 56$$

$$a^2 - a - 56 = (a+7)(a-8) = 0$$

내적 문제 해결하기

$$a = -7$$
 또는 8

공비는
$$a$$
이고 양수이므로 $a=8$, $b=a^2=64$ 따라서 $\frac{b}{a}=\frac{64}{8}=8$

$$\log_a a^2 b^3 = \log_a a^2 + \log_a b^3 = 2 + 3\log_a b = 3$$

이므로 $\log_a b = \frac{1}{3}$
따라서 $\log_b a = \frac{1}{\log_a b} = 3$

16. [출제의도] 수열의 합을 이용하여 수학 내적 문제 해결하기

직선 x = n이

두 곡선
$$y=\sqrt{x}$$
, $y=-\sqrt{x+1}$ 과 만나는 점은
각각 $A_n(n, \sqrt{n})$, $B_n(n, -\sqrt{n+1})$

$$T_n = \frac{1}{2} n \left(\sqrt{n} + \sqrt{n+1} \right)$$
이므로

$$\sum_{n=1}^{24} \frac{n}{T_n} = \sum_{n=1}^{24} \frac{2}{\sqrt{n} + \sqrt{n+1}}$$
$$= 2\sum_{n=1}^{24} (\sqrt{n+1} - \sqrt{n})$$
$$= 2 \times (5-1) = 8$$

17. [출제의도] 지수법칙을 이용하여 수학 내적 문제 해결하기

$$2^{\frac{4}{a}}=100$$
 에서 $2^4=100^a$ 이므로 $2^4=10^{2a}$ $25^{\frac{2}{b}}=10$ 에서 $25^2=10^b$ 이므로 $5^4=10^b$ 지수법칙에 의하여 $10^{2a+b}=10^{2a}\times 10^b=2^4\times 5^4=10^4$ 따라서 $2a+b=4$

18. [출제의도] 여러 가지 수열의 합을 이용하여

$$\begin{split} &1 \cdot 2n + 3 \cdot (2n-2) + 5 \cdot (2n-4) \\ &+ \cdots + (2n-1) \cdot 2 \\ &= \sum_{k=1}^{n} \left(\boxed{2k-1} \right) \{2n - (2k-2)\} \\ &= \sum_{k=1}^{n} \left(\boxed{2k-1} \right) \{2(n+1) - 2k\} \\ &= 2(n+1) \sum_{k=1}^{n} \left(\boxed{2k-1} \right) - 2 \sum_{k=1}^{n} (2k^2 - k) \\ &= 2(n+1) \{n(n+1) - n\} \\ &- 2 \left\{ \frac{n(n+1)(2n+1)}{3} - \frac{n(n+1)}{2} \right\} \\ &= 2(n+1)n^2 - \frac{1}{3}n(n+1) \left(\boxed{4n-1} \right) \\ &= \frac{n(n+1)(2n+1)}{3} \\ & \text{olth.} \end{split}$$

$$f(k) = 2k-1$$
, $a = 3$, $g(n) = 4n-1$
그러므로 $f(3) \times g(3) = 5 \times 11 = 55$

19. [출제의도] 함수의 미분가능성 이해하기

ㄱ.
$$f(1) = \frac{1}{2} \le 1$$
 이므로 $g(1) = f(1) = \frac{1}{2}$

- ㄴ. (i) $f(x) \le x$ 인 경우 $g(x) = f(x) \le x$ (ii) f(x) > x인 경우 g(x) = x(i), (ii)에 의하여
- 모든 실수 x에 대하여 $g(x) \leq x$ \Box . 함수 y = g(x)의 그래프는 다음과 같다.

함수 g(x)는 x < 0, 0 < x < 2, x > 2 에서 미분가능하므로 x=0, x=2에서의 미분가능성을 조사해보면

(i) x = 0 일 때,

$$\lim_{h \to 0^{-}} \frac{g(0+h) - g(0)}{h} = \lim_{h \to 0^{-}} \frac{h - 0}{h} = 1$$

$$\lim_{h \to 0+} \frac{g(0+h) - g(0)}{h} = \lim_{h \to 0+} \frac{\frac{1}{2}h^2 - 0}{h} = 0$$
이므로 함수 $g(x)$ 는 $x = 0$ 에서 미분가능하지

않다. (ii) $x = 2 \, \text{일} \, \text{ m}$,

$$\lim_{h \to 0-} \frac{g(2+h) - g(2)}{h} = \lim_{h \to 0-} \frac{\frac{1}{2}(2+h)^2 - 2}{h}$$

$$\lim_{h \to 0+} \frac{g(2+h) - g(2)}{h} = \lim_{h \to 0+} \frac{(2+h) - 2}{h}$$

이므로 함수 g(x)는 x=2에서 미분가능하지

따라서 실수 전체의 집합에서 함수 g(x)가 미분 가능하지 않은 점의 개수는 2이다. 그러므로 옳은 것은 기, ㄴ, ㄷ

20. [출제의도] 등비급수를 활용하여 수학 내적 문제 해결하기

다음은 그림 R_1 이다.

두 부채꼴의 호 MA, 호 DM 과 선분 AD 에 모두 접하는 원의 중심을 (), 반지름의 길이를

$$\overline{\mathrm{BO}}^2 = \overline{\mathrm{BM}}^2 + \overline{\mathrm{OM}}^2$$
 이旦로 $(1+r)^2 = 1^2 + (1-r)^2$ $r = \frac{1}{4}, \ S_1 = \left(\frac{1}{4}\right)^2 \pi = \frac{\pi}{16}$

$$4^{n-1}$$
 4^{n-1} 16 다음은 그림 R_{n+1} 의 일부이다. $(n \ge 1)$

그림 R_n 에서 새로 그려진 각 부채꼴에 내접하는 직사각형 중 한 꼭짓점을 B로 하는 직사각형을 $A_nBC_nD_n$ 이라 하고, 직사각형 $A_nBC_nD_n$ 내부의 두 부채꼴의 호와 선분 A_nD_n 에 모두 접하는 원의 중심을 \mathcal{O}_n , 반지름의 길이를 r_n , 선분 BC_n 의 중점을 M_n 이라 하자.

 $\overline{C_{n+1}} M_n$

 $\overline{\mathbf{A}_{n+1}\mathbf{B}} = l$ 이라 하면

$$\overline{A_{n+1}B}: \overline{BC_{n+1}}=1:2$$
이므로 $\overline{BC_{n+1}}=2l, \ \overline{BD_{n+1}}=\sqrt{5}\,l$ 또한, $\overline{BD_{n+1}}=\overline{BM_n}=\sqrt{5}\,l$ 이고 삼각형 $O_{n+1}BM_{n+1}$ 과 삼각형 $O_{n}BM_{n}$ 은 닮음이므로 $\overline{BM_{n+1}}:\overline{BM_n}=\overline{BO_{n+1}}:\overline{BO_n}$ $l:\sqrt{5}\,l=(l+r_{n+1}):(\sqrt{5}\,l+r_n)$ $r_{n+1}=\frac{1}{\sqrt{5}}r_n$ 그림 R_n 에서 새로 그려진 원 한 개의 넓이를

 a_n 이라 하면 $a_{n+1}=rac{1}{5}a_n$ 그림 R_{n+1} 에서 새로 그려진 원의 개수는 그림 R_n 에서 새로 그려진 원의 개수의 2배이므로 S_n 은 첫째항이 $\frac{\pi}{16}$ 이고 공비가 $\frac{2}{5}$ 인 등비수열의 첫째항부터 제n항까지의 합이다.

따라서
$$\lim_{n\to\infty} S_n = \frac{\frac{\pi}{16}}{1-\frac{2}{\pi}} = \frac{5}{48}\pi$$

21. [출제의도] 수열의 합을 이용하여 추론하기

등차수열 $\{a_n\}$ 의 첫째항을 a, 공차를 d라 하면 조건 (가)에 의하여

$$\frac{a_1 + a_2 + a_3 + \cdots + a_{2n-1} + a_{2n}}{a_1 + a_2 + a_3 + \cdots + a_{n-1} + a_n} = p \ (p \ \columnwdef)$$

$$\frac{2n\{2a+(2n-1)d\}}{2} = p$$

$$\frac{n\{2a+(n-1)d\}}{2}$$

4a+4dn-2d=2ap+dnp-dp(4d - dp)n + (4a - 2d - 2ap + dp) = 0 ... (\bigstar) (★)이 자연수 n에 대한 항등식이므로 4d - dp = 0, 4a - 2d - 2ap + dp = 0 $d \neq 0$ 이므로 p = 4, d = 2a $a_n = a + (n-1) \times 2a = a(2n-1)$ 조건 (나)에서

$$\sum_{n=1}^{\infty} \frac{2}{(2n+1)a_n} = \sum_{n=1}^{\infty} \frac{1}{a} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right)$$

$$= \frac{1}{a} \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{2k-1} - \frac{1}{2k+1} \right)$$

$$= \frac{1}{a}$$

$$\frac{1}{a} = \frac{1}{10} \ \text{이므로} \ a = 10 \ , \ d = 20$$
 따라서 $a_n = 20n-10 \ \text{이므로} \ a_{10} = 190$

22. [출제의도] 수열의 극한값 계산하기

$$\lim_{n \to \infty} \frac{10n^2 - 3n}{2n^2 + 1} = \lim_{n \to \infty} \frac{10 - \frac{3}{n}}{2 + \frac{1}{n^2}} = 5$$

23. [출제의도] 부분집합의 성질 이해하기

집합 $A = \{1, 2, 3, 6\}$ 이므로 n(A) = 4따라서 집합 A의 모든 부분집합의 개수는 $2^4 = 16$

24. [출제의도] 역함수 이해하기

함수
$$f(x)=3x-7$$
에서

$$f^{-1}(5) = k$$
라 하면

$$f(k) = 3k - 7 = 5$$
이므로 $k = 4$

따라서
$$f^{-1}(5) = 4$$

25. [출제의도] 등비수열 이해하기

등비수열 $\{a_n\}$ 의 공비를 r(r>0)이라 하면 $a_3 \times a_4 = a_5$ 에서 $\frac{1}{2}r^2 \times \frac{1}{2}r^3 = \frac{1}{2}r^4$ r=2이므로 $a_7=\frac{1}{2}\times 2^6=32$

26. [출제의도] 곱의 미분법을 이용하여 수학 내적 문제 해결하기

 $\lim_{x\to 1} \frac{f(x)-2}{x-1} = 12$ 에서 극한값이 존재하고 $x \rightarrow 1$ 일 때, (분모) $\rightarrow 0$ 이므로 (분자) $\rightarrow 0$ $\lim \{f(x)-2\}=0$ 에서 f(1)=2 이다.

$$\lim_{x \to 1} \frac{f(x) - 2}{x - 1} = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(1) = 12$$

$$g'(x) = 2xf(x) + (x^2 + 1)f'(x) \cap \Box \Box \Box$$

$$g'(1) = 2f(1) + 2f'(1)$$

$$= 2 \times 2 + 2 \times 12 = 4 + 24 = 28$$

27. [출제의도] 거듭제곱근의 성질 이해하기

 $(\sqrt{2\sqrt[3]{4}})^n = 2^{\frac{6}{6}}$ 이 자연수가 되도록 하는 자연수 n은 6의 배수이다. n=6일 때, $2^5=32$ n=12일 때, $(2^5)^2=2^{10}=1024$ n=18일 때, $(2^5)^3=2^{15}=32768$ $(\sqrt{2\sqrt[3]{4}})^n = 2^{\frac{6}{6}}$ 이 네 자리 자연수가 되어야

28. [출제의도] 등차수열과 등비수열의 성질을 이용하여 추론하기

수열 $\{a_n\}$ 은 $a_1 = 88 \ge 65$

하므로 n=12

 $a_n \geq 65$ 인 경우 $a_{n+1} = a_n - 3$ 이므로

 $a_n = -3n + 91 \ge 65 \text{ odd} \quad n \le \frac{26}{3} = 8.666 \cdots$

$$\begin{cases} a_9 = a_8 - 3 = 67 - 3 = 64 \\ a_9 = \frac{1}{2} a_9 & (n > 0) \end{cases}$$

$$\sum_{n=1}^{15} a_n = \sum_{n=1}^{8} a_n + \sum_{n=9}^{15} a_n$$

$$= \frac{8 \times (a_1 + a_8)}{2} + \frac{a_9 \times \left(1 - \frac{1}{2^7}\right)}{1 - \frac{1}{2}}$$

$$= \frac{8 \times (88 + 67)}{2} + \frac{64 \times \left(1 - \frac{1}{2^7}\right)}{1 - \frac{1}{2}}$$

$$= 620 + 127 = 747$$

29. [출제의도] 함수의 극한을 이용하여 수학 내적 문제 해결하기

점 C 는 선분 AB 의 중점이므로 $C\left(\frac{3}{2}t, \frac{\sqrt{2}}{2}t\right)$ 직선 AB 의 기울기가 $-\sqrt{2}$ 이므로 점 C 를 지나고 직선 AB 에 수직인 직선을 l 이라 하면 직선 l의 방정식은

$$y = \frac{\sqrt{2}}{2} \left(x - \frac{3}{2} t \right) + \frac{\sqrt{2}}{2} t$$
 점 D 는 직선 l 과 직선 $x = 2t$ 의 교점이므로

점 D 의 좌표는 D
$$\left(2t, \frac{3\sqrt{2}}{4}t\right)$$

$$f(t) = \overline{\text{CD}} = \sqrt{\left(2t - \frac{3}{2}t\right)^2 + \left(\frac{3\sqrt{2}}{4}t - \frac{\sqrt{2}}{2}t\right)^2}$$
$$= \frac{\sqrt{6}}{4}t$$

$$\lim_{t \to 4} \frac{t^2 - 16}{f(t) - \sqrt{6}} = \lim_{t \to 4} \frac{t^2 - 4^2}{\frac{\sqrt{6}}{4}t - \sqrt{6}}$$

$$= \lim_{t \to 4} \frac{4(t - 4)(t + 4)}{\sqrt{6}(t - 4)}$$

$$= \lim_{t \to 4} \frac{4(t + 4)}{\sqrt{6}}$$

$$= \frac{16\sqrt{6}}{3}$$

$$k = \frac{16\sqrt{6}}{3}$$
 이므로 $3k^2 = 512$

30. [출제의도] 함수의 연속성을 활용하여 수학 내적 문제 해결하기

함수 f(x)는 곡선 $y=ax^2+bx$ 에 따라 다음과 같이 6 가지의 그래프의 개형을 갖는다.

3

조건 (γ) 를 만족시키는 함수 f(x)의 그래프의 개형은 ⑤가 유일하다.

(i) 곡선 $y = ax^2 + bx$ 의 꼭짓점의 y 좌표는 -4이므로

$$y=ax^2+bx=a\Big(x+rac{b}{2a}\Big)^2-rac{b^2}{4a}$$
 에서
$$-rac{b^2}{4a}=-4\qquad \cdots \label{eq:constraint}$$
 (ii) 조건 (나)에 의하여

곡선 $y = ax^2 + bx$ 는 점 $\left(\frac{2}{3}, -3\right)$ 을 지나고, 꼭짓점의 x좌표 $-\frac{b}{2a}$ 는 $\frac{2}{3}$ 보다 크다.

4a+6b=-27 $-\frac{b}{2a}>\frac{2}{3}$ ①, ①에 의하여

 $b^2 + 24b + 108 = (b+6)(b+18) = 0$

$$\begin{cases} a = \frac{9}{4} \\ b = -6 \end{cases} \quad \text{EL} \begin{cases} a = \frac{81}{4} \\ b = -18 \end{cases}$$

ⓒ에 의하여 $a = \frac{9}{4}$, b = -6이고 $-\frac{b}{2a} = \frac{4}{3}$

$$f(x) = \begin{cases} -3x(x+2) & (x<0) \\ \left| \frac{9}{4}x^2 - 6x \right| & (x \ge 0) \end{cases}$$

f(x) = 4인 $x_1 \stackrel{\circ}{\circ} \frac{4}{3}$ 이므로 $g(4) = \frac{4}{3}$ $30 \times g(4) = 30 \times \frac{4}{3} = 40$