Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2343 – Arquitectura de Computadores

Ayudantía T10

a.k.a. por qué sirve simular las cosas

a.k.a. por qué sirve hacer las tareas para preparar el examen

Profesor: Jürgen Heysen

Hans Löbel

- a) Describa detalladamente qué pasa si se intenta ejecutar un archivo ejecutable binario del computador básico, en un computador x86 de 16 bits. (1 pto.)
- b) Un disassembler es un programa que transforma código binario ejecutable en assembly. Describa como funcionaría un disassembler para el computador básico. ¿Es posible obtener el assembly original a partir de un programa ubicado en la memoria de instrucciones? (2 ptos.)
- c) Describa detalladamente un mecanismo para generar un archivo ejecutable en x86, a partir del resultado de un assembler para el computador básico. Describa claramente cómo trabaja cada una de las transformaciones intermedias. (3 ptos.)

- ¿Qué utilidad práctica tiene esta pregunta?
- ¿Haber simulado qué cosa nos podría ayudar a contestar fácilmente esta pregunta?

Una imagen en escala de grises se define por su tamaño en pixeles y la profundidad de cada uno de estos, *i.e.* la cantidad de valores distintos que puede tomar un pixel. En base a esto, conteste las siguientes preguntas:

- a) Dada una memoria con bus de direccionamiento y palabras de 1 byte, ¿cómo almacenaría en ella una imagen en escala de grises de 5 × 5 pixeles y 16 bits de profundidad? (0.75 ptos.)
- b) Obtenga una expresión para la dirección de memoria del elemento (i, j) de la imagen del ejercicio anterior, donde (1, 1) corresponde a las cordenadas del pixel superior izquierdo. Asumiendo que la imagen está almacenada en la memoria a partir de la dirección 0x6E, calcule la dirección de memoria del pixel ubicado en (3, 4). (0.75 ptos.)
- c) Una imagen en colores se diferencia de una imagen en escala de grises en que cada uno de los pixeles posee ahora 3 valores de intensidad distintos, uno para cada color (RGB). Esto es análogo a tener 3 imágenes de escala de grises distintas, donde cada una describe la distribución de intensidad para un color. ¿Como almacenaría una imagen en colores de 7 × 7 pixeles y 1 byte de profundidad por color en una memoria igual a la descrita anteriormente? (1.5 ptos.)
- d) ¿Por qué no sirve esta misma memoria para almacenar una imagen en color de 7 × 7 pixeles y 2 bytes de profundidad por color? Indique el problema y una posible solución. (1 pto.)
- e) Obtenga una expresión para la dirección de memoria del elemento (i, j, k) de una imagen en colores, donde i, j es la ubicación del pixel y k es uno de los tres canales de color. (2 ptos.)
- ¿Qué utilidad práctica tiene esta pregunta?
- ¿Tiene relación con alguna de las tareas anteriores?

- a) Indique para qué se utilizan bits de paridad en los computadores. (0.5 ptos.)
- b) Imagine que tiene un computador x86 cuya memoria posee bit de paridad para cada palabra y detecta un error en la lectura. ¿Qué podría hacer el computador frente a este caso? (1 pto.)
- c) ¿Qué modificaciones tendría que hacer al computador básico para que funcione con bit de paridad sobre Input/Output? Sea lo más detallado posible. (3 ptos.)
- d) Para una comunicación que utiliza bit de paridad entre un computador y un I/O: ¿Qué factor limita la velocidad de transferencia? (1.5 ptos.)
 - ¿Qué utilidad práctica tiene esta pregunta?
 - ¿Tiene relación con alguna de las tareas anteriores?

De acuerdo a la documentación de **Java**, una implementación de la **JVM** (*Java Virtual Machine*) debe implementar una máquina de *stack* virtual de 32-bits que ejecuta el *bytecode* de Java que produce el compilador. Además, la **JVM** debe administrar el espacio de memoria de datos que utilizan los procesos e implementar alguna forma de liberar direcciones que ya no se utilizan. Al respecto, indique:

- a) ¿Qué ventajas le entrega este diseño respecto a una máquina de registros? (1 pto.)
- b) ¿Qué desventajas produce esto de cara al usuario? (2 ptos.)
- c) ¿Es posible crear un *chip* que cumpla las especificaciones de la JVM? ¿Por qué? (3 ptos.)
 - ¿Qué utilidad práctica tiene esta pregunta?
 - ¿Tiene relación con alguna de las tareas anteriores?
 - (Opinión de JH) Es importante poder relacionar los contenidos del curso y emplearlos en situaciones "cotidianas" y/o reales.

Se desea modificar el computador básico a nivel de microarquitectura e ISA. Para los siguientes puntos detalle las modificaciones que haría. Debe utilizar diagramas de componentes, conexiones y tablas de opcodes e instrucciones cuando corresponda.

- a) Permitir al computador la ejecución de dos operaciones aritméticas-lógicas iguales, pero con distintos argumentos, de manera simultánea, *i.e.* el proceso debe tomar solo un ciclo del *clock*. (1.5 ptos.)
- b) Permitir la autoprogramabilidad manteniendo memorias de datos e instrucciones separadas. (1.5 ptos.)
- c) (Solo microarquitectura) Agregar un registro que cumpla las mismas funciones que el BP de la arquitectura x86. (1.5 ptos.)
- d) (Solo microarquitectura) Agregar una FPU y dos registros dedicados solo a operaciones de punto flotante. Los resultados de la FPU deben poder almacenarse tanto en estos registros como en la memoria de datos. (1.5 ptos.)

- Acá claramente no tiene sentido preguntarse por la utilidad práctica de este ejercicio (a menos que uno trabaje en hardware).
- ¿Haber hecho qué cosa podría ayudar a resolver este ejercicio?
- (opinión de HL) Quien no hizo nada de diseño de hardware en las tareas, no entiende bien la materia del curso.

Al parecer, las tareas sí tenían utilidad para aprender los contenidos del curso

- Ejercicios de T10 (y T11), son versiones modificadas de ejercicios de exámenes e interrogaciones anteriores.
- Históricamente, notas del examen del curso no salvan ni hunden a nadie (en promedio).
- Esto se debe a que el examen no varía mayormente en cuanto al tipo de pregunta y contenido de estas, comparado con las interrogaciones.
- Históricamente, casi nadie obtiene un "morado" en examen o promedio final: o se aprueba, o se reprueba por un margen claro.

Algunos avisos para terminar el curso

• T10

- Se corre para el viernes a las 23:59.
- Si se pasan y entregan antes del examen, 1.0 ptos. de descuento
- Si entregan el martes después del examen, 2.0 ptos. de descuento.

• T11

- Se publicará miércoles en la noche, entrega jueves 29/11 a las 23:59.
- El jueves en cátedra habrá ayudantía sobre T11 y dudas restantes de T10.

• T12

- Con inscripción hasta el martes 27/11 a las 23:59.
- Si la hacen, borran las 2 peores notas
- Si se inscriben y no la hacen, tienen un 1.0 y sólo se borra la peor nota.

POR FAVOR, RESPONDAN LA ENCUESTA DE EVALUACIÓN DOCENTE

- Idealmente ahora.
- Si no, háganlo cuando tengan una visión más clara de su opinión del curso.
- Vamos a seguir hinchándolos igualmente con esto.

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2343 – Arquitectura de Computadores

Ayudantía T10

a.k.a. por qué sirve simular las cosas

a.k.a. por qué sirve hacer las tareas para prepara el examen

Profesor: Jürgen Heysen

Hans Löbel