Exploring Neural Text Simplification Models

Sergiu Nisioi, Sanja Stajner, Simone Paolo Ponzetto and Liviu P. Dinu 2017

Louis (Yiqing) Luo

July 27th, 2018

Automatic Text Simplification

- ullet want text o simpler text
 - improve accessibility, learning, comprehension, and readibility
 - aid for hearing impaired people
 - pre-processing step for NLP
 - shorter sentences and easier words & grammar than original text

Proposed Strategy

 Strategy: To use global attention and input feeding identical to Neural Machine Translation proposed by Luong

Figure 1: Architecture of the neural simplification $a_t(s) = \frac{\exp h_t^T W_{as} \bar{h}_s}{\sum_{s'} \exp h_t^T W_{as'} \bar{h}_{s'}}$

Model in Detail

Special Embeddings (NTS word2vec)

- For Encoder, word2vec trained on Google News Corpus was used
- For Decoder, combined normal data (Google News corpus) with simplified data (word2vec on training data)
 - representation for each word are concatenated
 - if word is missing in global embeddings, replace with sample from Gaussian distributino with mean 0 and std deviation 0.9

Tuning during testing - Beam search in Input Feeding

- Generate the first k hypotheses at each step ordered by the log-likelihood of the target sentence given the input sentence
- Take the first two candidate hypotheses for each beam size from 512.
- A separate tuning data set (Xu et al. (2016)) used as reference corpus in combination with BLEU and SARI to select best hypothesis for prediction reranking

Figure: Example of beam search (This paper uses word level search instead of character level)

Dataset

- manual and automatic alignments between standard English Wikipedia and Simple English Wikipedia (EWSEW)
- one of the largest freely available resources for text simplification
- replaced with UNK symbols during training
 - At prediction time, we replace the unknown words with the highest probability score from the attention layer

Evaluation

- Used human evaluation criteria to assess output
- grammatically (G) 1-5 scale of the simplification regardless of original sentence
- meaning preservation (M) amount of content preserved on 1-5 scale
- simplicity (S) outputs +2, +1, 0, -1, -2 ranging from much simpler to much more difficult
- correct number of changes, assessed by native or non-native highly fluent English speakers

Results

Compared against:

- the PBSMT system with reranking of n-best outputs (Wubben et al., 2012), which represent the best PBSMT approach to ATS, trained and tuned over the same datasets as our systems;
- the state-of-the-art SBMT system (Xu et al., 2016) with modified tuning function (using SARI) and using PPDB paraphrase database (Ganitkevitch et al., 2013)
- one of the state-of-theart unsupervised lexical simplification (LS) systems that leverages word-embeddings (Glavas and Stajner, 2015).

Results

Approach		Changes		Scores		CADI	BLEU
Approach	Total	Correct	GM	S	SAKI	BLEU	
NTS default (beam 5, hypothesis 1)	36	72.2%	4.92	4.31	+0.46	30.65	84.51
NTS SARI (beam 5, hypothesis 2)	72	51.6%	4.19	3.62	+0.38	37.25	80.69
NTS BLEU (beam 12, hypothesis 1)	44	73.7%	4.77	4.15	+0.92	30.77	84.70
NTS-w2v default (beam 5, hypothesis 1)	31	54.8%	4.79	4.17	+0.21	31.11	87.50
NTS-w2v SARI (beam 12, hypothesis 2)	110	68.1%	4.53	3.83	+0.63	36.10	79.38
NTS-w2v BLEU (beam 12, hypothesis 1)	61	76.9%	4.67	4.00	+0.40	30.67	85.03
PBSMT-R (Wubben et al., 2012)	171	41.0%	3.10	2.71	-0.55	34.07	67.79
SBMT (SARI+PPDB) (Xu et al., 2016)	143	34.3%	4.28	3.57	+0.03	38.59	73.62
LightLS (Unsupervised) (Glavaš and Štajner, 2015)	132	26.6%	4.47	2.67	-0.01	34.96	83.54

Table 2: Human evaluation results (the highest scores by each evaluation criterion are shown in bold).

Results

System	Output
NTS-w2v default	Perry Saturn (with terri) defeated Eddie Guerrero (with
	chyna) to win the WWF European Championship (8:10);
	Saturn pinned Guerrero after a diving elbow drop.
NTS-w2v SARI	Perry Saturn pinned Guerrero to win the WWF Euro-
	pean Championship.
NTS-w2v BLEU	Perry Saturn pinned Guerrero after a diving drop drop.
NTS default	He (with terri) defeated Eddie Guerrero (with chyna) to
	win the WWF European Championship (8:10); Saturn
	pinned Guerrero after a diving elbow drop.
NTS BLEU/SARI	He defeated Eddie Guerrero (with Chyna) to win the WWF
	European Championship (8:10); Saturn pinned Guerrero
	after a diving elbow drop.
LightLS (Glavaš and Štajner, 2015)	Perry Saturn (with terri) defeated Eddie Guerrero (with
	chyna) to win the WWF European Championship (8:10);
	Saturn pinned Guerrero after a swimming shoulder fall.
SBMT (Xu et al., 2016)	Perry Saturn (with terri) beat Eddie Guerrero (with chyna)
	to win the WWF European League (8:10); Saturn pinned
	Guerrero after a diving elbow drop.
PBSMT-R (Wubben et al., 2012)	Perry Saturn with terri and Eddie Guerrero, chyna, to win
	the European Championship then-wwf 8:10); he pinned
	Guerrero after a diving elbow drop.
Original	Perry Saturn (with terri) defeated Eddie Guerrero (with
	chyna) to win the WWF European Championship (8:10);
	Saturn pinned Guerrero after a diving elbow drop.

Table 4: Output examples, differences to the original sentence are shown in bold.