

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии

ОТЧЕТ ПО ПРОИЗВОДСТВЕННОЙ ПРАКТИКЕ

Студент	Сальников Михаил Алексеевич		
Группа	ИУ7-44Б		
Тип практики	Технологическая		
Название предприятия	ООО «Рубитех»		
Студент		/ Сальников М.А. /	
	подпись, дата	фамилия, и.о.	
Руководитель практики			
от кафедры		<u>/ Куров А.В.</u> /	
	подпись, дата	фамилия, и.о.	
Руководитель практики			
от принимающей организаци	и	/ Мишин О.Н.	
	подпись, дата	фамилия, и.о.	
Оценка			

СОДЕРЖАНИЕ

ОПРЕДЕЛЕНИЯ	4
введение	5
дневник прохождения практики	6
Календарные сроки практики	6
Руководитель практики от МГТУ им. Н.Э. Баумана	6
Руководитель практики от кафедры	6
Руководитель практики от организации	6
Дневник практики	6
Краткое заключение руководителя практики от принимающей	
организации	7
Краткое заключение руководителя от МГТУ им. Н.Э. Баумана	7
1. ХАРАКТЕРИСТИКА ПРЕДПРИЯТИЯ	8
2. ХАРАКТЕРИСТИКА ПРЕДМЕТНОЙ ОБЛАСТИ	9
3. ХОД РАБОТЫ	11
3.1 Используемый технологический стек	11
3.2 Установка и настройка операционной системы	11
3.3 Развертывание серверов	12
3.4 Объединение серверов в кластер	12
3.5 Обеспечение отказоустойчивости	14
ЗАКЛЮЧЕНИЕ	15
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	16

ОПРЕДЕЛЕНИЯ

SQL – декларативный язык программирования, применяемый для создания, модификации и управления данными в реляционной базе данных, управляемой соответствующей системой управления базами данных.

PostgreSQL – свободная объектно-реляционная система управления базами данных.

Виртуальная машина — это программная система, имитирующая компьютер, позволяющая запускать программы для другой операционной системы на текущей или создавать изолированные среды для программ и операционных систем.

Сервер — выделенный или специализированный компьютер для выполнения сервисного программного обеспечения.

Кластер – группа серверов, работающих вместе как единое целое для предоставления услуг СУБД.

Узел кластера — физический сервер или виртуальная машина с установленным сервером СУБД и кластерным программным обеспечением.

Отказоустойчивость — способность системы продолжать функционировать и предоставлять доступ к данным даже в случае отказа одного или нескольких ее компонентов.

Репликация — это процесс, под которым понимается копирование данных из одного источника на другой и наоборот.

IP-адрес — уникальный числовой идентификатор устройства в компьютерной сети, работающей по протоколу IP.

UNIX-подобная ОС — это операционная система, которая работает на основе принципов и архитектуры Unix.

ВВЕДЕНИЕ

Цель практики

Приобрести практический опыт, развить трудолюбие, целеустремленность, ответственность и деловые качества. Изучить нюансы разработки программных систем в реальных производственных условиях, освоить навыки самостоятельной и командной работы, развивая свои творческие способности.

Задачи практики

- развитие навыков анализа профессионально-технической информации;
- ознакомление с правилами и регламентами работы организации прохождения практики и с технологиями, применяемыми в работе;
- ознакомление с общими сведения об архитектуре PostgreSQL;
- получение навыков установки, базовой настройки и управления сервером;
- получение представления о резервном копировании и репликации;
- получение представления об устройстве отказоустойчивого кластера
 PostgreSQL и утилитах для его развертывания.

Результат

Развернут отказоустойчивый кластер PostgreSQL, состоящий из 3-х серверов.

Индивидуальное задание

В рамках производственной практики необходимо:

Ознакомиться с операционной системой Red Hat Enterprise Linux и произвести ее установку. Изучить соответствующий технологический стек (PostgreSQL, Pacemaker, Corosync) и способы развертывания кластера. Развернуть отказоустойчивый кластер PostgreSQL, состоящий из 3-х серверов.

ДНЕВНИК ПРОХОЖДЕНИЯ ПРАКТИКИ

Календарные сроки практики

По учебному плану

Начало 01.07.2024г., окончание 21.07.2024г.

Дата прибытия на практику «01» июля 2024г.

Дата выбытия с места практики «21» июля 2024г.

Руководитель практики от МГТУ им. Н.Э. Баумана

Апальков Фёдор Станиславович

Ассистент

Руководитель практики от кафедры

Куров Андрей Владимирович

Доцент кафедры, заместитель заведующего кафедрой ИУ7 МГТУ им. Н.Э.

Баумана

Ученое звание – кандидат технических наук

Руководитель практики от организации

Должность Начальник отдела корпоративных хранилищ данных

Фамилия Мишин

Имя Олег

Отчество Николаевич

Дневник практики

Дата	Список заданий и поручений				
28.06	Участие в собрании практикантов. Получение на руки				
	заполненных Приложения 2 к Договору.				
1.07	Отметка прибытия на предприятие. Подписание Приложения 2				
	принимающей стороной. Прохождение необходимых				
	инструктажей. Получение индивидуального задания.				
02.07 -	Выполнение индивидуальных заданий				
18.07					
21.07	Предоставление отчета по практике.				

Краткое за	ключение ру	/ково	дителя практики от принимающей организации
В процессо	е прохожден	ия пра	актики студент проявил следующие качества:
Работоспо	собность		
Ответстве	нность		
Умение	работать	c	профессионально-технической информацией:
Считаю в		——	ить качество работы практиканта на
			· «»2024г
Краткое за	ключение ру	/ково;	«
Студент в качества:	в процессе п	прохо	ождения практики продемонстрировал следующие
Исполните	ельность		
Умение пл	анировать д	еятелі	ьность
			ить качество работы практиканта на

1. ХАРАКТЕРИСТИКА ПРЕДПРИЯТИЯ

ООО «Рубитех» — системный интегратор и ИТ-партнер корпораций, системообразующих организаций, государства. Компания реализует комплексные проекты по импортозамещению, обеспечению информационной безопасности, проектированию и внедрению центров обработки данных, созданию корпоративных хранилищ, внедрению сетевой инфраструктуры, внедрению мультимедиа.

Компания успешно создает и развивает собственные ИТ-продукты для цифровизации бизнеса. В частности, платформу автоматизации контакт-центров, а также комплексные решения в сфере информационной безопасности.

Также у компании есть собственный сервисный центр, тестовая лаборатория и команда экспертов, оказывающих услуги по техническому сопровождению информационных систем и ИТ-инфраструктуры в ситуации ухода производителей с российского рынка.

Компания осуществляет разработки по следующим направлениям:

- системы и средства защиты информации;
- распределенные системы хранения данных;
- высоконагруженные системы обработки данных;
- комплексные решения, объединяющие программное обеспечение и оборудование.

2. ХАРАКТЕРИСТИКА ПРЕДМЕТНОЙ ОБЛАСТИ

Отказоустойчивый кластер PostgreSQL представляет собой группу серверов, работающих совместно для обеспечения непрерывной доступности базы данных. В случае отказа одного из серверов, другие серверы в кластере автоматически берут на себя его работу, гарантируя бесперебойное функционирование приложения, которое использует данную базу данных. Данная технология часто используется в критически важных приложениях, таких как банковские системы, системы электронной коммерции, системы управления данными.

Ключевые компоненты отказоустойчивого кластера PostgreSQL:

- PostgreSQL свободная реляционная система управления базами данных (СУБД).
- Расетакет инструмент управления кластером с высокой доступностью. Он обеспечивает автоматическое обнаружение и восстановление сбоев, переключая работу между узлами кластера;
- Согозупс сервис, отвечающий за синхронизацию состояний узлов кластера и их коммуникацию. Он обеспечивает согласованность данных между серверами кластера;

Преимущества использования отказоустойчивого кластера PostgreSQL:

- обеспечение непрерывной доступности базы данных, минимизируя влияние сбоев на работу приложения;
- защита от потери данных, так как данные реплицируются на нескольких серверах;
- распределение нагрузки на несколько серверов, что позволяет увеличить производительность;
- обеспечение централизованного управления, упрощая администрирование.

Red Hat Enterprise Linux является стабильной и надежной Unix-подобной операционной системой, которая оптимально подходит для развертывания отказоустойчивых кластеров PostgreSQL, так как она предоставляет все необходимые пакеты, инструменты и документацию.

3. ХОД РАБОТЫ

В ходе был изучен язык программирования SQL, получены навыки работы с операционной системой Red Hat Enterprise Linux и с системой управления базами данных PostgreSQL. Был развернут отказоустойчивый кластер PostgreSQL, состоящий из 3-х серверов.

3.1 Используемый технологический стек

Для решения задачи были использованы:

- PostgreSQL;
- SQL;
- Pacemaker;
- Corosync;
- Red Hat Enterprise Linux.

3.2 Установка и настройка операционной системы

На главном сервере был скачан установщик операционной системы Red Наt Enterprise Linux и произведена соответствующая установка, в процессе которой были выставлены все необходимые настройки для корректной работы.

Рисунок 1 – Установленная операционная система

Рисунок 2 – Установленные Corosync и Pacemaker

3.3 Развертывание серверов

Все серверы были развернуты на виртуальных машинах с установленной операционной системой Red Hat Enterprise Linux необходимым И технологическим стеком. На главном сервере была инициализирована оригинальная СУБД, а на остальных – ее резервные копии. Настройка серверов включала редактирование конфигурационных файлов СУБД и изменение сетевых параметров.

3.4 Объединение серверов в кластер

В системе были авторизованы три заранее развернутых сервера. Авторизация проводилась посредством указания IP-адресов серверов в конфигурационных файлах системы и связки Corosync-Pacemaker.

```
[misha@localhost ~]$ sudo cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
192.168.56.101 node1
192.168.56.102 node2
192.168.56.103 node3
```

Рисунок 3 – Содержимое конфигурационного файла системы

```
[user@node1 ~]$ sudo pcs cluster auth node1 node2 node3 -u hacluster
Password:
node1: Authorized
node3: Authorized
node2: Authorized
[user@node1 ~]$
```

Рисунок 4 – Авторизация серверов в кластере

```
[user@node1 ~]$ sudo pcs cluster start --all
node1: Starting Cluster (corosync)...
node2: Starting Cluster (corosync)...
node3: Starting Cluster (corosync)...
node1: Starting Cluster (pacemaker)...
node3: Starting Cluster (pacemaker)...
node2: Starting Cluster (pacemaker)...
[user@node1 ~]$
```

Рисунок 5 – Запуск кластера

```
[user@node2 ~]$ sudo pcs cluster status
Cluster Status:
  Stack: corosync
  Current DC: node3 (version 1.1.20-5.el7_7.2-3c4c782f70) - partition with quorum
  Last updated: 17-07 17:00:38 2024
  Last change: 17-07 17:00:24 2024 by hacluster via crmd on node3
  3 nodes configured
  0 resources configured

PCSD Status:
  node2: Online
  node3: Online
  node1: Online
[user@node2 ~]$
```

Рисунок 6 – Кластер запущен

3.5 Обеспечение отказоустойчивости

Утилиты Pacemaker и Corosync, работая в паре, обеспечивают отказоустойчивость, переключая ресурсы кластера между его отдельными узлами при потере соединения без проблем для текущего пользователя.

```
[user@node2 ~]$ sudo pcs resource show
Master/Slave Set: super-pgsql-master [super-pgsql]
   Masters: [ node3 ]
   Slaves: [ node1 node2 ]
Resource Group: master-group
   vip-master (ocf::heartbeat:IPaddr2): Started node3
```

Рисунок 7 – Статус настроенного кластера

ЗАКЛЮЧЕНИЕ

В ходе прохождения производственной практики были получены:

- навыки работы с Unix-подобными операционными системами;
- навыки работы с операционной системой Red Hat Enterprise Linux;
- навыки работы с языком программирования SQL;
- навыки работы с системой управления базами данных PostgreSQL и утилитами Corosync/Pacemaker.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Комаров В. И. «Путеводитель по базам данных» М.: ДМК Пресс, 2024. 520 с.
- 2. Рогов Е. В. «PostgreSQL 16 изнутри» М.: ДМК Пресс, 2024. 664 с.
- 3. Левшин И. В., Лузанов П. В., Рогов Е. В. «Postgres. Первое знакомство» 6-е издание, переработанное и дополненное, 2023.