Boosting algorithms for estimating optimal individualized treatment rules

Duzhe Wang

University of Wisconsin-Madison Department of Statistics

May 7, 2020

Joint work with Haoda Fu and Po-Ling Loh

About me

Research interests

Research interests

Common thread: develop methods/theory to analyze large-scale/complex real world datasets

Major contribution

Major contribution

Nonlinear ITR (our focus today)

Major contribution

 Provide efficient and accurate estimation of the highly nonlinear and complex optimal ITRs that often arise in practice

Why individualized treatment rules?

Why individualized treatment rules?

A motivating example:

- COVID-19 patients are a very heterogeneous population
- No specific antiviral drug has been proven effective
- COVID-19 presents an opportunity for precision medicine to play expanded role in care

Key questions

Key questions

 Business question: how do we build individualized treatment recommendation systems?

Key questions

- Business question: how do we build individualized treatment recommendation systems?
- **Statistical question**: how do we estimate optimal individualized treatment rules?

Outline of the remaining talk

- Background
 - Problem setup
 - Indirect learning
 - Direct learning
- Proposed methods
 - Proposed method I
 - Proposed method II
 - Proposed method III
- Simulation and real data analysis
- Summary

Problem setup

- $\{(X_i, A_i, Y_i), 1 \le i \le n\}$: i.i.d. observations of (X, A, Y)
 - $X \subset \mathcal{X} \subset \mathbb{R}^p$: the vector of patient prognostic variable
 - $A \subset A = \{-1, +1\}$: the choice of treatment given
 - $Y \subset \mathbb{R}$: the patient clinical outcome (with larger being better)
 - Assume $\pi_a(x) = P(A = a | X = x) > 0$
- Individualized treatment rule:

$$\mathcal{D}: \mathcal{X} \to \{-1, +1\}$$

- e.g., $\mathcal{D}(x) = 1$, $\mathcal{D}(x) = \operatorname{sign}(x^T 1)$
- ullet Goal: find $\mathcal{D}^*(x)$ maximizing the conditional expected outcome

$$\mathcal{D}^*(x) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \quad Q(x, a) \coloneqq E(Y|x, a)$$

Indirect learning

Generic method

- $\textbf{ Assume } Q(x,1) \text{ and } Q(x,-1) \text{ are in some specified functional space } \mathcal{F}$
- 2 Estimate Q(x,1) and Q(x,-1)
- 3 Estimated optimal ITR:

$$\widehat{\mathcal{D}}(x) = \operatorname{sign}\left(\widehat{Q}(x,1) - \widehat{Q}(x,-1)\right)$$

Examples of indirect learning

• Q-learning:

$$Q(x,1) = \alpha_1 + \beta_1^T x$$
, $Q(x,-1) = \alpha_{-1} + \beta_{-1}^T x$

$$\left(\hat{\alpha}_{1}, \hat{\beta}_{1}^{T}\right) = \underset{\alpha_{1}, \beta_{1}}{\operatorname{argmin}} \sum_{i: A_{i} = 1} \left(Y_{i} - \alpha_{1} - \beta_{1}^{T} X_{i}\right)^{2}$$

$$\left(\hat{\alpha}_{-1}, \hat{\beta}_{-1}^{T}\right) = \underset{\alpha_{-1}, \beta_{-1}}{\operatorname{argmin}} \sum_{i: A_{i} = -1} \left(Y_{i} - \alpha_{-1} - \beta_{-1}^{T} X_{i}\right)^{2}$$

$$\widehat{\mathcal{D}}(x) = \operatorname{sign}\left(\hat{\alpha}_1 - \hat{\alpha}_{-1} + \left(\hat{\beta}_1^T - \hat{\beta}_{-1}^T\right)x\right)$$

Examples of indirect learning

• Q-learning:

$$Q(x,1) = \alpha_1 + \beta_1^T x, \quad Q(x,-1) = \alpha_{-1} + \beta_{-1}^T x$$

$$(\hat{\alpha}_1, \hat{\beta}_1^T) = \underset{\alpha_1, \beta_1}{\operatorname{argmin}} \sum_{i: A_i = 1} (Y_i - \alpha_1 - \beta_1^T X_i)^2$$

$$(\hat{\alpha}_{-1}, \hat{\beta}_{-1}^T) = \underset{\alpha_{-1}, \beta_{-1}}{\operatorname{argmin}} \sum_{i: A_i = -1} (Y_i - \alpha_{-1} - \beta_{-1}^T X_i)^2$$

$$\widehat{\mathcal{D}}(x) = \operatorname{sign}\left(\widehat{\alpha}_1 - \widehat{\alpha}_{-1} + \left(\widehat{\beta}_1^T - \widehat{\beta}_{-1}^T\right)x\right)$$

• ℓ_1 -PLS (Qian and Murphy, '11):

$$Q(X,A) = (1,X^T,A,AX^T)\theta$$

$$\hat{\theta} = \underset{\theta \in \mathbb{R}^{2n+2}}{\operatorname{argmin}} \sum_{i=1}^{n} \left\{ Y_i - \left(1, X_i^T, A_i, A_i X_i^T \right) \theta \right\}^2 + \lambda \|\theta\|_1$$

$$\widehat{\mathcal{D}}(x) = \operatorname{sign}\left((0, 0, 2, 2x^T)\widehat{\theta}\right)$$

Direct learning

Generic method

- **1** Note $\mathcal{D}^*(x) = \operatorname{sign}(f^*(x))$. Assume $f^*(x) \in \mathcal{F}$
- 2 Estimate $f^*(x)$: $\hat{f}(x) = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{i=1}^n L(X_i, A_i, Y_i, f(X_i))$
- Stimated optimal ITR:

$$\widehat{\mathcal{D}}(x) = \operatorname{sign}(\widehat{f}(x))$$

Direct learning

Generic method

- ① Note $\mathcal{D}^*(x) = \operatorname{sign}(f^*(x))$. Assume $f^*(x) \in \mathcal{F}$
- 2 Estimate $f^*(x)$: $\hat{f}(x) = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{i=1}^n L(X_i, A_i, Y_i, f(X_i))$
- Stimated optimal ITR:

$$\widehat{\mathcal{D}}(x) = \mathrm{sign}(\widehat{f}(x))$$

Proposition

$$f^*(x) = \underset{g}{\operatorname{argmin}} E\left\{\frac{1}{\pi_A(X)}(2YA - g(X))^2\right\},$$

and

$$f^* = \underset{g}{\operatorname{argmin}} \quad E\left\{Y\frac{\phi(Ag(X))}{\pi_A(X)}\right\},$$

where $\phi(x) = (1 - x)_+$ is the hinge loss.

Examples of direct learning

• D-learning (Qi et al. '19):

$$f^*(x) = \alpha^* + (\beta^*)^T x$$

$$\left(\hat{\alpha}, \hat{\beta}^{T}\right) = \underset{\alpha, \beta}{\operatorname{argmin}} \sum_{i=1}^{n} \frac{1}{\pi_{A_{i}}\left(X_{i}\right)} \left(2Y_{i}A_{i} - \alpha - \beta^{T}X_{i}\right)^{2}$$

$$\widehat{\mathcal{D}}(x) = \operatorname{sign}(\widehat{\alpha} + \widehat{\beta}^T x)$$

Examples of direct learning

• D-learning (Qi et al. '19):

$$f^*(x) = \alpha^* + (\beta^*)^T x$$

2

$$(\hat{\alpha}, \hat{\beta}^T) = \underset{\alpha, \beta}{\operatorname{argmin}} \sum_{i=1}^n \frac{1}{\pi_{A_i}(X_i)} (2Y_i A_i - \alpha - \beta^T X_i)^2$$

3

$$\widehat{\mathcal{D}}(x) = \operatorname{sign}(\widehat{\alpha} + \widehat{\beta}^T x)$$

• Outcome weighted learning (Zhao et al. '12):

1

$$f^*(x) = \alpha^* + (\beta^*)^T x$$

2

$$\left(\hat{\alpha}, \hat{\beta}\right) = \underset{\alpha, \beta}{\operatorname{argmin}} \quad \frac{1}{n} \sum_{i=1}^{n} \frac{Y_{i}}{\pi_{A_{i}}\left(X_{i}\right)} \left(1 - A_{i}\left(\alpha + \beta^{T}X_{i}\right)\right)_{+} + \lambda \|\beta\|^{2}$$

3

$$\widehat{\mathcal{D}}(x) = \operatorname{sign}(\widehat{\alpha} + \widehat{\beta}^T x)$$

Our motivation

Nonlinear ITR (our focus today)

Our motivation

Nonlinear ITR (our focus today)

• **Motivation**: how can we use indirect and direct learning frameworks to accurately estimate highly nonlinear optimal ITRs?

Proposed method I: nonparametric version of Q-learning

Key ideas

• Additive regression trees: assume

$$Q(x,1) = \sum_{t=1}^{K} b_1^{(t)}(x),$$

and

$$Q(x,-1) = \sum_{t=1}^{K} b_{-1}^{(t)}(x),$$

where $b_1^{(t)}(x)$ and $b_{-1}^{(t)}(x)$ are regression trees

Use boosting algorithm to estimate regression trees sequentially

XGBoost algorithm

Take $A_i = 1$ group as an example:

• 1st iteration:

Estimation of $b_1^{(1)}$

• Fit a tree to the training data (X_i, Y_i) :

$$\hat{f} = \underset{f}{\operatorname{argmin}} \sum_{i:A_i=1} (Y_i - f(X_i))^2 + J(f),$$

where f is a regression tree, J(f) is the cost complexity of a regression tree,

$$J(f) = \gamma |T| + \frac{1}{2} \lambda ||w||_2^2$$

2 Shrinkage:

$$\hat{b}_1^{(1)} = \eta \hat{f},$$

where $0 < \eta < 1$

XGBoost algorithm

• *t*-th iteration:

Estimation of $b_1^{(t)}$

1 Fit a tree to the training data (X_i, Y_i) :

$$\hat{f} = \underset{f}{\operatorname{argmin}} \sum_{i:A_i=1} [Y_i - (\hat{Y}_i^{(t-1)} + f(X_i))]^2 + J(f),$$

where $\hat{Y}_i^{(t-1)} = \sum_{k=1}^{t-1} \hat{b}_1^{(k)}(X_i)$ is the estimated outcome value of X_i after (t-1)-th iteration

Shrinkage:

$$\hat{b}_1^{(t)} = \eta \hat{f}$$

• Output the boosted model:

$$\widehat{Q}(x,1) = \sum_{t=1}^{K} \hat{b}_{1}^{(t)}(x)$$

How do we fit a regression tree?

• Decide optimal leaf weights: for a fixed tree structure T, let $I_j = \{i | q(X_i) = j\}$ be the instance set of leaf j. Then

$$w_{j}^{*} = \frac{2\sum_{i \in I_{j}} (Y_{i} - \hat{Y}_{i}^{(t-1)})}{2|I_{j}| + \lambda}$$

How do we fit a regression tree?

• Decide optimal leaf weights: for a fixed tree structure T, let $I_j = \{i | q(X_i) = j\}$ be the instance set of leaf j. Then

$$w_j^* = \frac{2\sum_{i \in I_j} (Y_i - \hat{Y}_i^{(t-1)})}{2|I_j| + \lambda}$$

 Split finding algorithm for estimating tree structure T: Chen and Guestrin, '16

Summary of Algorithm I

Algorithm I (W. and Fu, '20)

Input: data set $\{(X_i, Y_i, A_i)\}_{i=1}^n$, number of iterations K, learning rate η , maximum of tree depth d

- 1 Train bst.plus1 = XGBoost($\{(X_i, Y_i); A_i = 1\}, K, \eta, d$)
- Train bst.minus1 = XGBoost($\{(X_i, Y_i); A_i = -1\}, K, \eta, d$)
- The estimated optimal ITR is

$$\widehat{\mathcal{D}}(x) = \operatorname{sign}(\mathsf{bst.plus1}(x) - \mathsf{bst.minus1}(x))$$

Proposed method II: nonparametric version of D-learning

Key ideas

- Assume $f^*(x) = \sum_{t=1}^{K} b^{(t)}(x)$ where $b^{(t)}$ are regression trees
- ullet Use boosting algorithm to estimate $b^{(t)}$ sequentially

Key ideas

- Assume $f^*(x) = \sum_{t=1}^{K} b^{(t)}(x)$ where $b^{(t)}$ are regression trees
- Use boosting algorithm to estimate $b^{(t)}$ sequentially
- t-th iteration of XGBoost:

Estimation of $b^{(t)}$

• Fit a tree to the training data $(X_i, 2Y_iA_i)$:

$$\hat{f} = \underset{f}{\operatorname{argmin}} \sum_{i=1}^{n} \frac{1}{\pi_{A_{i}}\left(X_{i}\right)} \left[2Y_{i}A_{i} - \left(\hat{Y}_{i}^{\left(t-1\right)} + f\left(X_{i}\right)\right)\right]^{2} + J\left(f\right)$$

Shrinkage:

$$\hat{b}^{(t)}=\eta\hat{f}$$

Summary of Algorithm II

Algorithm II (W. and Fu, '20)

Input: data set $\{(X_i, A_i, Y_i)\}_{i=1}^n$, number of iterations K, shrinkage parameter η and maximum tree depth d.

- Train bst = XGBoost($\{X_i, 2Y_iA_i\}, K, \eta, d$) with weighted quadratic loss
- 2 The estimated optimal ITR is

$$\widehat{\mathcal{D}}(x) = \operatorname{sign}(\operatorname{bst}(x))$$

Proposed method III: nonparametric **refined** version of outcome weighted learning

Key ideas

Fisher consistency theorem (W. and Fu, '20)

Assume $Y = \mu(X) + \delta(X) \times A + \varepsilon$. Then we have

$$\mu = \underset{g}{\operatorname{argmin}} \quad E\left\{\frac{1}{\pi_A(X)}(Y - g(X))^2\right\}.$$

Furthermore, let

$$f^{**} = \underset{f}{\operatorname{argmin}} \quad E\left\{\frac{|Y - \mu(X)|}{\pi_A(X)}\phi\left(Af(X) \times \operatorname{sign}(Y - \mu(X))\right)\right\},$$

where $\phi(x) = \log(1 + e^{-2x})$. Then we have

$$\mathcal{D}^*(x) = \operatorname{sign}(f^{**}(x)).$$

- Assume $f^{**}(x) = \sum_{t=1}^{K} b^{(t)}(x)$ where $b^{(t)}$ are regression trees
- Use boosting algorithm to estimate $b^{(t)}$ sequentially

Key ideas

Before XGBoost:

Estimation of $\mu(x)$

- **1** Assume $\mu(x) = \alpha_0 + \alpha^T x$
- 2 Estimate α_0 and α : $\hat{\alpha}_0$, $\hat{\alpha} = \underset{\alpha_0, \alpha}{\operatorname{argmin}} \sum_{i=1}^n \frac{1}{\pi_{A_i}(X_i)} \left(Y_i \alpha_0 \alpha^T X_i \right)^2$
- **3** Estimate $\mu(x)$: $\hat{\mu}(x) = \hat{\alpha}_0 + \hat{\alpha}^T x$

Key ideas

Before XGBoost:

Estimation of $\mu(x)$

- **1** Assume $\mu(x) = \alpha_0 + \alpha^T x$
- 2 Estimate α_0 and α : $\hat{\alpha}_0$, $\hat{\alpha} = \underset{\alpha_0, \alpha}{\operatorname{argmin}} \sum_{i=1}^n \frac{1}{\pi_{A_i}(X_i)} \left(Y_i \alpha_0 \alpha^T X_i \right)^2$
- **3** Estimate $\mu(x)$: $\hat{\mu}(x) = \hat{\alpha}_0 + \hat{\alpha}^T x$
 - t-th iteration of XGBoost:

Estimation of $b^{(t)}$

• Fit a tree to the training data:

$$\hat{f} = \underset{f}{\operatorname{argmin}} \sum_{i=1}^{n} \frac{|Y_i - \hat{\mu}(X_i)|}{\pi_{A_i}(X_i)} \phi\left(A_i \left(\hat{Y}_i^{(t-1)} + f(X_i)\right) \times \operatorname{sign}\left(Y_i - \hat{\mu}(X_i)\right)\right) + J(f)$$

2 Shrinkage: $\hat{b}^{(t)} = \eta \hat{f}$

Summary of Algorithm III

Algorithm III (W. and Fu, '20)

Input: data set $\{(X_i, A_i, Y_i)\}_{i=1}^n$, number of iterations K, shrinkage parameter η and maximum tree depth d.

- **1** Estimate the common effect μ .
- ② Train bst = XGBoost($\{X_i, \operatorname{sign}(Y_i \hat{\mu}(X_i))A_i\}, K, \eta, d$) with weighted deviance loss
- Output the estimated optimal ITR:

$$\widehat{\mathcal{D}}(x) = \operatorname{sign}\left(\operatorname{bst}(x)\right)$$

Comparison of three algorithms

	Nonparametric	Indirect learning	Direct learning	Regression	Classification
Algorithm I	✓	✓		✓	
Algorithm II	✓		✓	✓	
Algorithm III	✓		✓		\

Simulation and real data analysis

Performance measures

For a data set $\{(X_i, A_i, Y_i), 1 \le i \le n\}$,

• Misclassification rate:

$$\frac{1}{n}\sum_{i=1}^n I(\mathcal{D}^*(X_i) \neq \mathcal{D}(X_i))$$

Value function:

$$V(\mathcal{D}) = E^{\mathcal{D}}(Y) = E\left\{Y\frac{I(A = \mathcal{D}(X))}{\pi_A(X)}\right\}$$

$$\widehat{V}(\mathcal{D}) = \frac{\frac{1}{n} \sum_{i=1}^{n} \frac{Y_i}{\pi_{A_i}(X_i)} I(\mathcal{D}(X_i) = A_i)}{\frac{1}{n} \sum_{i=1}^{n} \frac{I(\mathcal{D}(X_i) = A_i)}{\pi_{A_i}(X_i)}}$$

Simulation settings

- Generate each component of $X_i \in \mathbb{R}^{10}$ independently from U(-1,1)
- Generate A_i from $\{-1,1\}$ with $P(A_i = -1) = P(A_i = 1) = 0.5$
- \bullet Generate Y_i from the model

$$Y_i = 1 + 2X_{1i} + X_{2i} + 0.5X_{3i} + \delta(X_i) \times A_i + \varepsilon_i$$

where $\varepsilon_i \sim N(0,1)$. X_{1i}, X_{2i} and X_{3i} are the first, second and third components of X_i

Polynomial-type optimal ITR:

$$\delta(X_i) = 0.2 + X_{1i}^2 + X_{2i}^2 - X_{3i}^2 - X_{4i}^2$$

Simulation results

- Algorithm I vs. Q-learning/ ℓ_1 -PLS: Algorithm I wins
- Algorithm II vs. D-learning: Algorithm II wins
- Algorithm III vs. OWL-Linear/OWL-RBF: Algorithm III wins
- Overall, Algorithm I and Algorithm III outperform Algorithm II

- The data was collected from a randomized, double-blind, parallel-group Phase III trial (Charbonnel, Matthews et al., '04)
- Compare drug efficacy of gliclazide and pioglitazone
- Among 1247 patients, 624 patients received gliclazide and 623 received pioglitazone
- 21 pretreatment covariates, e.g., BMI and blood pressure
- Primary efficacy endpoint: change of HbA1c level during 52 weeks
- Perform a 10-fold cross validation to obtain the predicted optimal treatment for each patient

- The data was collected from a randomized, double-blind, parallel-group Phase III trial (Charbonnel, Matthews et al., '04)
- Compare drug efficacy of gliclazide and pioglitazone
- Among 1247 patients, 624 patients received gliclazide and 623 received pioglitazone
- 21 pretreatment covariates, e.g., BMI and blood pressure
- Primary efficacy endpoint: change of HbA1c level during 52 weeks
- Perform a 10-fold cross validation to obtain the predicted optimal treatment for each patient
- Estimated value results:

Method	Algorithm I	Algorithm II	Algorithm III	Q-learning	I1-PLS	D-learning	OWL- Linear	OWL- RBF
Estimated value	1.447	1.422	1.448	1.369	1.428	1.416	1.360	1.363

- Hypothesis testing:
 - Welch's t-test

 μ_1 : average reduction of HbA1c for Group 1 μ_2 : average reduction of HbA1c for Group 2

 $H_0: \mu_1 = \mu_2$ $H_A: \mu_1 > \mu_2$

Group 1: patients whose assigned treatments were same with the estimated optimal ones

Group 2: remaining patients

- Hypothesis testing:
 - Welch's t-test

 μ_1 : average reduction of HbA1c for Group 1 μ_2 : average reduction of HbA1c for Group 2

Group 1: patients whose assigned treatments were same with the estimated optimal ones

Group 2: remaining patients

Results:

Method	Algorithm I	Algorithm II	Algorithm III	Q-learning	I1-PLS	D-learning	OWL- Linear	OWL- RBF
Proportion of significant p-values	0.71	0.37	0.69	0	0.44	0.29	0	0.04
Median of p-values	0.022	0.082	0.022	0.500	0.060	0.095	0.637	0.584

Significant: p-value<0.05

Summary

Takeaway points:

- Modelled the conditional mean of clinical outcome and the decision rule via additive regression trees
- Applied boosting technique to estimate each single tree sequentially
- Our approaches are very useful when the underlying optimal ITR is highly nonlinear and complex

Summary

Takeaway points:

- Modelled the conditional mean of clinical outcome and the decision rule via additive regression trees
- Applied boosting technique to estimate each single tree sequentially
- Our approaches are very useful when the underlying optimal ITR is highly nonlinear and complex
- Statistical aspects of ITR are well established. But making ITR a reality needs collaboration with doctors, engineers, regulators, and enterprise leaders. Together we can save lives

Reference

 D. Wang and H. Fu (2020). Boosting algorithms for estimating optimal individualized treatment rules. arXiv:2002.00079

Reference

 D. Wang and H. Fu (2020). Boosting algorithms for estimating optimal individualized treatment rules. arXiv:2002.00079

Thank you and stay safe!

Value function

Value function of ITR D:

$$V(\mathcal{D}) = \mathbb{E}^{\mathcal{D}}(Y) = \int Y dP^{\mathcal{D}} = \int P \frac{dP^{\mathcal{D}}}{dP} dP = E \left[Y \frac{I(A = \mathcal{D}(X))}{\pi_A(X)} \right]$$

Optimal ITR satisfies

$$\mathcal{D}^* = \underset{\mathcal{D}}{\operatorname{argmax}} V(\mathcal{D})$$

Simulation pipeline

Real data analysis pipeline

