

Microsoft Build

May 6-8, 2019

Data Architect's guide for successful Open Source patterns in Azure w/ Spark, Hive, Kafka & HBase.

Ashish Thapliyal Principal Program Manager, Azure HDInsight

A customer journey!

- Walk through actual customer journey while architecting a large data lake in Azure using HDInsight
- Why HDInsight?
- Not starting from zero, already have Hadoop cluster running onprem
- · Multiple use cases: Batch, Real Time processing, Data science & Bl
- · Challenges, tradeoffs & tips & tricks

The Azure Data Landscape

- 100% Apache Open Source
- The most popular open source frameworks
- Part of the Hortonworks HDP distribution

Managed

- 99.9% availability SLA
- Cluster Health Monitoring
- Integration with Azure Log Analytics
- Highly optimized for Azure

Secure & Compliant

- Role based access control
- Azure AD & Kerberos based authentication
- Strong VNET and service endpoint support
- The most trusted and compliant platform

Productive

 Special extensions for advanced debugging and diagnostics

Lift & Shift

- Move workloads from on-prem or other clouds without code changes
- Curated application platform for wide variety of use cases

Solution architecture

Many things to figure out

OSS Framework choices & tradeoffs

1. ETL technology choices

	Spark	Pig	Hive
Designed for	ETL	ETL	Data warehousing
Adoption	High, increasing	Low, decreasing	Stable
Number of connectors	Highest	High	High
Languages	Python, R, Scala, Java, SQL	Pig	SQL
Performance	High	Medium	Medium

2. Streaming engine technology choices

	Spark Structured Streaming	Storm	
Adoption	High, increasing	Decreasing	
Event processing guarantee	Exactly once	At least once	
Throughput	High	Low	
Processing Model	Micro Batch	Real-Time	
Latency	High	Low	
Event time support	Yes	Yes	
Languages	Python, R, Scala, Java, SQL	Java	

3.Interactive Query technology choices

Capability	Hive LLAP	Spark SQL	Presto	
Interactive Query Speed	High	High	Medium	
Scale	High	High	Low	
Caching	Yes	Yes	Early Support	
Result Caching	Yes	No	No	
Intelligent Cache Eviction	Yes	No	No	
Materialized Views	Yes	No	No	
Complex Fact to Fact Joins	Yes	Yes	No	
Transactions	Yes	No	No	
Query Concurrency	High	Low	Low	
Row , Column level security	Yes [Apache Ranger+ AAD]	Medium	Medium	
Rich end user Tools	Yes	Yes	Yes	
Language Support	SQL, UDF	SQL, Scala, Python	SQL	
Data Source Connector	Storage Handlers	Data Sources	High number of @ashishth	

How about Metastore?

Tip: Spark & Hive Metastore

Azure HDInsight 3.6 with Hadoop 2.6

- Spark executors talk directly to Hive Metastore
- Reliability and compatibility issues
- Cannot take advantage of the native query engine

Azure HDInsight 4.0 with Hadoop 3.x

- New Hive Warehouse Connector
- Apache Arrow based communication between Spark executors and Hive LLAP
- Smart predicate pushdown
- Transactional access to Hive tables from Spark

Hive Metastore migration tool: https://azure.microsoft.com/en-us/blog/hdinsight-metastore-migration-tool-open-source-release-now-available/

4. Data pipeline orchestration technology choices

	ADF	Airflow	Oozie
Service management	Azure PaaS	laaS VM	HDInsight
Code	JSON	Python	Java
GUI	ADF V2 has great UX	Good UX	Below Average UX
Community	Microsoft	Growing (10893 Stars)	Declining (454 Stars)
On-demand clusters	Yes	No, but extensible	No
Extensibility	Custom action-only	Full, graph + actions	Custom action-only
Pipeline definition	JSON/UX	Python/ UX	XML/UX
Devops-first design	Yes	Yes	Yes
Pipeline monitoring	Yes	Yes	Yes
Scheduling	Event, Time	Event	Event, Time

Storage & Security

Storage selection: 3 key topics

Data Qty	Network Bandwi	Network Bandwidth					
	45 Mbps (T3)	100 Mbps	1 Gbps				
1 TB	2 days	1 day	2 hours				
10 TB	22 days	10 days	1 day				
35 TB	76 days	34 days	3 days				
80 TB	173 days	78 days	8 days				
100 TB	216 days	97 days	10 days				
200 TB	1 year	194 days	19 days				
500 TB	3 years	1 year	49 days				
1 PB	6 years	3 years	97 days				
2 PB	12 years	5 years	194 days				

Storage Transfer options

Network Transfer with TLS

- Over Internet
- Express Route
- Data Box online Transfer
- Shipping data offline
- Data Box offline data transfer

Azure Data Box: offline transfer options

Available for small, medium, or large migrations

PRODUCTS	CAPACITY	DESCRIPTION
Data Box Disk	8 TB, up to 40 TB	USB 3.1 SSD disks Order up to 5 in each pack
Data Box	100 TB	Ruggedized, self-contained appliances
Data Box Heavy	1 PB	raggealzea, sell contained appliances

Storage Options with HDInsight

	Туре	Latency (Consistency of latency)	Workloads	Bandwidth	Key Benefits
ADLS Gen 2	Hierarchical	10-50ms (Medium)	HDInsight 3.6 & 4.0	Unconstrained	Atomic Rename, File Folder level ACL's
Standard BLOB	Object Store	10-50ms (Medium)	HDInsight 3.6 & 4.0	Unconstrained	Mature
Premium BLOB	Object Store	~5ms (High)	HBase in Preview	Unconstrained	Fast
Premium Managed Disks	Hierarchical	~5ms (High)	Kafka, HBase in preview	Based on disk	Consistent latency
ADLS Gen 1	Hierarchical	10-100ms (Low)	HDInsight 3.6(No HBase)	High	Atomic Rename, File Folder level ACL's

Storage Options with HDInsight

	Туре	Latency (Consistency of latency)	Workloads	Bandwidth	Key Benefits
ADLS Gen 2	Hierarchical	10-50ms (Medium)	HDInsight 3.6 & 4.0	Unconstrained	Atomic Rename, File Folder level ACL's
Standard BLOB	Object Store	10-50ms (Medium)	HDInsight 3.6 & 4.0	Unconstrained	Mature
Premium BLOB	Object Store	~5ms (High)	HBase in Preview	Unconstrained	Fast
Premium Managed Disks	Hierarchical	~5ms (High)	Kafka, HBase in preview	Based on disk	Consistent
ADLS Gen 1	Hierarchical	10-100ms (Low) Don't use ADLS Gen 1	HDInsight 3.6(No HBase) for any new proj	High ects	Atomic Rename, File Folder level ACL's

Low latency small writes (HBase use case)

Low latency workload HBase/ Small write

Remote store write path challenges with Write Ahead Log

How about Reads?

Introducing support for Premium Blob

Performance (YCSB)

Cluster Type	Operation	Row Size	# ops	#Region Servers	Region Server Node Size	#Clients	Throughput	Avg Latency (ms)	Run Time (min)
Standard	Write	1KB	107,374,182	4	Standard_D4_V2	2	37,958	0.417	47
Premium WAL	Write	1KB	107,374,182	4	Standard_D4_V2	2	57,812	0.271	31
Standard	Small Write	100 Bytes	1,073,741,824	4	Standard_DS4_V2	2	84,910	0.186	210
Premium WAL	Small Write	100 Bytes	1,073,741,824	4	Standard_DS4_V2	2	701,234	0.016	25
Standard	Read	100 Bytes	925,075	4	Standard_D4_V2	2	256	62	60
Premium WAL & Premium Blob	Read	100 Bytes	33,503,676	4	Standard_D4_V2	2	9,306	1.7	60
Standard	Large Read	1K	945,682	4	Standard_D4_V2		262	61	60
Premium WAL & Premium Blob	Large Read	1K	24,846,209	4	Standard_D4_V2	2	6901	2.3	60 @ashi s

Remote Storage: Caching considerations

Remote Storage: Caching Options

Workload	Caching Options	Key benefits
Spark	Spark IO Cache	Up to ~8 to 10x perf improvements
HBase & Phoenix	Bucket cache	Up 5-10x perf gains on recently read or written data
Hive + LLAP	LLAP Intelligent cache/Result Cache	Up to ~4-100X gain on cached data

HDInsight IO Cache

- Significant Spark performance speed up with IO cache (up to 9X perf gains)
- Automatic cache resource management
- DRAM + Temp SSD makes large cache

Security

Azure HDInsight: Enterprise Grade Security

Defense in Depth

Azure HDInsight Network Security

Securing Data sources with Virtual Network Service Endpoints

- Create VNet, a subnet and enable service endpoint
- Restrict network access to Storage & SQL
- Create HDInsight cluster within subnet
- Create NSG rules to control inbound access to HDInsight cluster

Azure HDInsight: Authentication & Access Control

Authentication:

- Supports identities managed in Azure Active Directory (AAD)
- Clusters are joined to Active Directory
 Domain Services (ADDS) based Kerberos
 Domain Controllers.
- On-premise corporate identities are synced to AAD and ADDS via AD Federation Services.

Access Control:

- Apache Ranger based access control and auditing
- Ranger plugins for Hive, Spark, Kafka and HBase.

ADLS Gen2/BLOB Store

Ranger + ADLS Gen 2 Auth Scenarios in HDInsight

Scenario	Authorizing Component
Yarn: Submit-App	Apache Ranger: Yarn Plugin
Hive Operations: Select , Drop, index, Lock, Read,	Apache Ranger: Hive Plugin
Write, Masking, Row level filter on Hive Database,	ı
Table & Columns	
Create/ Alter Table with storage location	Apache Ranger + ADLS Gen 2 ACL's
reference	
Spark SQL access with Hive Metastore	Apache Ranger: Hive Plugin
HBase Access Policies	Apache Ranger/ HBase plugin
Kafka Access Policies	Apache ranger/ Kafka Plugin
Access Azure Data Lake Storage Gen2 using the	ADLS Gen 2 ACLs
Spark DataFrame API	
Access Azure Data Lake Storage Gen2 using the	ADLS Gen 2 ACLs
RDD API	
HDFS operations: Mkdir, ls, put, copyFromLocal,	ADLS Gen 2 ACLs
get, cat, mv, cp etc	
Running Map Reduce jobs	ADLS Gen 2 ACLs

Resiliency: The power of embracing failures

What can go wrong?

Failures of cluster create and scaling operations

Azure HDInsight: Highly Available End-points

Highly Available APIs:

Livy – Spark job submission and interactive session management

Yarn – cluster resource management, Yarn job submission

Ambari – cluster management

Oozie – Oozie workflow scheduling and coordination (legacy APIs, ADF is recommended as a replacement)

Catastrophic Failures and Disasters

What they did?

- 1. Implemented retry logic for cluster create and scale operations
- 2. Additional measures for scale down:

Drastic scale down of cluster can get into name node in safe mode

hdfs dfsadmin -D 'fs.default.name=hdfs://mycluster/' -safemode get # A report that shows the

details of HDFS state: hdfs dfsadmin -D 'fs.default.name=hdfs://mycluster/' -report # Get HDFS

out of safe mode hdfs dfsadmin -D 'fs.default.name=hdfs://mycluster/' -safemode leave # Get

HDFS into safe mode hdfs dfsadmin -D 'fs.default.name=hdfs://mycluster/' -safemode enter

DR options by workloads

Workload	DR Option
Spark / Hive	Manual, Partner solution
HBase	HBase replication, Snapshot export, Import Export, Copy Tables
Kafka	Mirror Maker

HA & DR

DR options by workloads

Workload	DR Option
Spark / Hive	Manual, Partner solution
HBase	HBase replication, Snapshot export, Import Export, Copy Tables
Kafka	Mirror Maker

More Resources

Spark/ Hive HA & DR https://github.com/anagha-microsoft/hdi-spark-dr

Kafka HA & DR https://github.com/anagha-microsoft/hdi-kafka-dr HBase Backup, Replication https://docs.microsoft.com/en-us/azure/hdinsight/hbase/apache-hbase-backup-replication

Monitoring

HDInsight Monitoring options

- View cluster metrics like CPU, memory, and disk usage at a glance in real time
- Identify malfunctioning components with Ambari alerts
- Monitor queue capacities, jobs, and view associated OSS logs

- See gateway requests to monitor cluster stress and cluster size to monitor costs
- Apply filters and chart splitting to extract important data
- Set up alert rules to receive notifications and trigger actions for key metrics

- Organizes cluster metrics and OSS log records into queryable tables
- Create custom dashboards to surface all the metrics you need from multiple clusters on a single pane of glass

Thank You!

Migrating to Azure HDInsight Guide!

Motivation and benefits covers the benefits of migrating on-premises Hadoop ecosystem components to HDInsight and how to plan for the migration.

<u>Architecture best practices</u> provides best practices for the architecture of HDInsight systems and addresses different types of workloads.

<u>Infrastructure best practices</u> goes into detailed recommendations for managing the infrastructure of HDInsight clusters.

Storage best practices gives recommendations for data storage in HDInsight systems.

<u>Data migration best practices</u> provides recommendations for data migration to HDInsight.

<u>Security and DevOps best practices</u> gives recommendations for security and DevOps in HDInsight systems.

https://azure.microsoft.com/en-us/blog/migrating-on-premises-hadoop-infrastructure-to-azure-hdinsight/