Problem 1 : Let k and d be positive in-	
tegers. Prove that there exists a positive	
integer N such that for every odd integer	
n>N, the digits in the base- $2n$ represen-	
tation of n^k are all greater than d .	

positive integers k such that $1 \quad \sum_{n=1}^{n} (n)^{k}$

Problem 5: Determine, with proof, all

