

#### MITSUBISHI RF POWER MOS FET

# RD00HVS1

Silicon MOSFET Power Transistor 175MHz,0.5W

### **DESCRIPTION**

RD00HVS1 is a MOS FET type transistor specifically designed for VHF/UHF RF amplifiers applications.

### **FEATURES**

•High power gain Pout>0.5W, Gp>20dB @Vdd=12.5V,f=175MHz

#### **APPLICATION**

For output stage of high power amplifiers in VHF/UHF Band mobile radio sets.



### **ABSOLUTE MAXIMUM RATINGS**

(Tc=25°C UNLESS OTHERWISE NOTED)

| SYMBOL  | PARAMETER               | CONDITIONS       | RATINGS     | UNIT |
|---------|-------------------------|------------------|-------------|------|
| VDSS    | Drain to source voltage | Vgs=0V           | 30          | V    |
| VGSS    | Gate to source voltage  | Vds=0V           | +/-10       | V    |
| Pch     | Channel dissipation     | Tc=25°C          | 3.1         | W    |
| Pin     | Input Power             | Zg=Zl=50Ω        | 20          | mW   |
| ID      | Drain Current           | -                | 200         | mA   |
| Tch     | Channel Temperature     | -                | 150         | °C   |
| Tstg    | Storage temperature     | -                | -40 to +125 | °C   |
| Rth j-c | Thermal resistance      | Junction to case | 40          | °C/W |

Note: Above parameters are guaranteed independently.

#### **ELECTRICAL CHARACTERISTICS**

(Tc=25deg.C, UNLESS OTHERWISE NOTED)

| SYMBOL | PARAMETER                       | CONDITIONS                                | LIMITS |     |      | UNIT |
|--------|---------------------------------|-------------------------------------------|--------|-----|------|------|
| OTMBOL | TAVAMETER                       | CONDITIONS                                | MIN    | TYP | MAX. |      |
| IDSS   | Zero gate voltage drain current | V <sub>DS</sub> =17V, V <sub>GS</sub> =0V | ı      | ı   | 25   | uA   |
| Igss   | Gate to source leak current     | VGS=10V, VDS=0V                           | ı      | ı   | 1    | uA   |
| Vth    | Gate threshold Voltage          | VDS=12V, IDS=1mA                          | 1      | 2   | 3    | V    |
| Pout   | Output power                    | VDD=12.5V, Pin=5mW,                       | 0.5    | 0.8 | -    | W    |
| ηD     | Drain efficiency                | f=175MHz,ldq=50mA                         | 50     | 60  | -    | %    |

Note: Above parameters, ratings, limits and conditions are subject to change.

#### MITSUBISHI RF POWER MOS FET

# RD00HVS1

Silicon MOSFET Power Transistor 175MHz,0.5W

### TYPICAL CHARACTERISTICS













#### MITSUBISHI RF POWER MOS FET

# RD00HVS1

Silicon MOSFET Power Transistor 175MHz,0.5W

## TYPICAL CHARACTERISTICS















#### MITSUBISHI RF POWER MOS FET

# RD00HVS1

Silicon MOSFET Power Transistor 175MHz,0.5W

## **TEST CIRCUIT(f=175MHz)**



L1: Enameled wire 4Turns,D:0.43mm,2.46mmO.D L2:LQG11A68N(68nH,murata)

L3: Enameled wire 9Turns, D:0.43mm, 2.46mm O.D

L4: Enameled wire 7Turns, D:0.43mm, 2.46mm O.D

C1,C2:1000pF,0.022uF in parallel

Note:Board material-glass epoxi substrate

Micro strip line width=1.0mm/50 OHM,er:4.8,t=0.6mm

## TEST CIRCUIT(f=520MHz)



Note: Board material- Glass epoxy copper-clad laminates FR-4 Micro strip line width=1mm,50 OHM, er:4.8, t=0.6mm C1, C2:1000pF, O. 022uF in parallel W:Line width=1.0mm



### MITSUBISHI RF POWER MOS FET

# RD00HVS1

Silicon MOSFET Power Transistor 175MHz,0.5W

## RD00HVS1 S-PARAMETER DATA (@Vdd=7.2V, Id=50mA)

| Freq. | S     | 11     | S      | 21    | S12   |       | S22   |        |
|-------|-------|--------|--------|-------|-------|-------|-------|--------|
| [MHz] | (mag) | (ang)  | (mag)  | (ang) | (mag) | (ang) | (mag) | (ang)  |
| 100   | 1.004 | -35.2  | 13.480 | 158.7 | 0.027 | 66.7  | 0.928 | -24.7  |
| 150   | 0.987 | -51.9  | 12.911 | 147.1 | 0.039 | 56.1  | 0.889 | -36.5  |
| 175   | 0.972 | -59.7  | 12.500 | 141.6 | 0.043 | 50.7  | 0.865 | -42.0  |
| 200   | 0.957 | -67.1  | 12.035 | 136.2 | 0.048 | 45.6  | 0.843 | -47.2  |
| 250   | 0.929 | -80.1  | 11.030 | 126.6 | 0.054 | 37.5  | 0.796 | -56.4  |
| 300   | 0.898 | -91.5  | 10.055 | 118.7 | 0.058 | 30.2  | 0.754 | -64.4  |
| 350   | 0.875 | -101.4 | 9.157  | 111.3 | 0.060 | 23.7  | 0.716 | -71.5  |
| 400   | 0.857 | -110.0 | 8.322  | 104.9 | 0.062 | 18.2  | 0.688 | -77.6  |
| 450   | 0.844 | -117.3 | 7.642  | 99.3  | 0.063 | 13.3  | 0.668 | -83.4  |
| 500   | 0.831 | -124.1 | 6.991  | 93.9  | 0.063 | 8.5   | 0.652 | -88.7  |
| 550   | 0.824 | -130.0 | 6.432  | 89.5  | 0.064 | 4.8   | 0.640 | -93.3  |
| 600   | 0.815 | -135.0 | 5.963  | 84.9  | 0.063 | 1.1   | 0.633 | -97.9  |
| 650   | 0.810 | -139.9 | 5.480  | 80.7  | 0.062 | -2.3  | 0.627 | -102.1 |
| 700   | 0.809 | -144.1 | 5.103  | 77.0  | 0.061 | -5.4  | 0.626 | -105.9 |
| 750   | 0.807 | -148.1 | 4.769  | 73.1  | 0.060 | -8.6  | 0.625 | -109.6 |
| 800   | 0.806 | -151.8 | 4.420  | 69.9  | 0.058 | -11.0 | 0.627 | -113.4 |
| 850   | 0.808 | -155.1 | 4.161  | 66.8  | 0.056 | -13.5 | 0.630 | -116.8 |
| 900   | 0.808 | -158.0 | 3.900  | 63.1  | 0.054 | -16.2 | 0.634 | -120.0 |
| 950   | 0.810 | -161.1 | 3.639  | 60.3  | 0.053 | -17.8 | 0.639 | -123.3 |
| 1000  | 0.811 | -163.9 | 3.466  | 57.7  | 0.051 | -20.0 | 0.645 | -126.4 |
| 1050  | 0.814 | -166.5 | 3.254  | 54.1  | 0.048 | -22.1 | 0.654 | -129.3 |
| 1100  | 0.817 | -168.9 | 3.045  | 51.9  | 0.046 | -23.5 | 0.661 | -132.1 |

## RD00HVS1 S-PARAMETER DATA (@Vdd=12.5V, Id=50mA)

| Freq. | S     | 11     | S      | 21    | S12   |       | S22   |        |
|-------|-------|--------|--------|-------|-------|-------|-------|--------|
| [MHz] | (mag) | (ang)  | (mag)  | (ang) | (mag) | (ang) | (mag) | (ang)  |
| 100   | 1.005 | -33.4  | 13.343 | 160.0 | 0.024 | 68.3  | 0.898 | -22.6  |
| 150   | 0.995 | -49.7  | 12.874 | 149.0 | 0.034 | 57.9  | 0.865 | -33.1  |
| 175   | 0.980 | -57.5  | 12.525 | 143.6 | 0.038 | 53.2  | 0.845 | -38.0  |
| 200   | 0.967 | -64.6  | 12.108 | 138.3 | 0.042 | 47.8  | 0.826 | -42.9  |
| 250   | 0.943 | -77.5  | 11.193 | 129.0 | 0.047 | 39.3  | 0.781 | -51.3  |
| 300   | 0.916 | -88.9  | 10.249 | 121.2 | 0.052 | 32.3  | 0.743 | -58.9  |
| 350   | 0.891 | -98.7  | 9.403  | 113.9 | 0.054 | 26.2  | 0.709 | -65.6  |
| 400   | 0.877 | -107.6 | 8.582  | 107.3 | 0.056 | 20.6  | 0.681 | -71.5  |
| 450   | 0.862 | -115.0 | 7.916  | 101.9 | 0.057 | 15.7  | 0.661 | -77.0  |
| 500   | 0.852 | -121.9 | 7.273  | 96.4  | 0.057 | 11.2  | 0.644 | -82.0  |
| 550   | 0.844 | -128.1 | 6.706  | 91.9  | 0.057 | 7.5   | 0.633 | -86.6  |
| 600   | 0.835 | -133.3 | 6.224  | 87.3  | 0.058 | 3.4   | 0.625 | -91.2  |
| 650   | 0.828 | -138.3 | 5.755  | 83.0  | 0.056 | 0.2   | 0.619 | -95.2  |
| 700   | 0.824 | -142.7 | 5.358  | 79.3  | 0.056 | -2.5  | 0.618 | -99.0  |
| 750   | 0.823 | -146.8 | 5.024  | 75.4  | 0.054 | -5.8  | 0.616 | -102.9 |
| 800   | 0.820 | -150.6 | 4.671  | 72.0  | 0.053 | -8.4  | 0.615 | -106.6 |
| 850   | 0.821 | -153.9 | 4.398  | 68.9  | 0.051 | -10.5 | 0.618 | -110.1 |
| 900   | 0.822 | -157.2 | 4.134  | 65.2  | 0.050 | -13.3 | 0.622 | -113.2 |
| 950   | 0.823 | -160.2 | 3.853  | 62.3  | 0.048 | -15.2 | 0.628 | -116.5 |
| 1000  | 0.822 | -163.1 | 3.677  | 59.7  | 0.047 | -17.2 | 0.633 | -119.8 |
| 1050  | 0.826 | -165.9 | 3.459  | 56.3  | 0.044 | -19.5 | 0.640 | -122.9 |
| 1100  | 0.828 | -168.4 | 3.241  | 53.9  | 0.042 | -20.2 | 0.646 | -125.7 |



## MITSUBISHI RF POWER MOS FET

# RD00HVS1

Silicon MOSFET Power Transistor 175MHz,0.5W

| Keep safety first in your circuit designs!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap. |
| warning !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Do not use the device at the exceeded the maximum rating condition. In case of plastic molded devices, the exceeded maximum rating condition may cause blowout, smoldering or catch fire of the molding resin due to extreme short current flow between the drain and the source of the device. These results causes in fire or injury.                                                                                                                                                                                                    |