

INTRODUÇÃO À COMPUTAÇÃO E SISTEMAS DE INFORMAÇÃO

Bancos de Dados

Lattes - linkedin euristenhojr@gmail.com http://www.unichristus.edu.br/ Euristenho Queiroz de Oliveira Júnior Especialista em Engenharia de Software MSc em Engenharia de Software

AGENDA

1. Apresentação

2. Livros

3. Acordo de Convivência 4. História do banco de dados

5. Finalidade

6. Práticas

7. Próxima Aula

8. Referências

Apresentação

FORMAÇÃO ACADÊMICA

- Graduado em Telemática/Telecomunicações IFCE (2002 2008)
- Especialista em Engenharia de Software FA7 (2011 2013)
- MSc em Engenharia de Software UFPE (2011 2015)

CURRÍCULO PROFISSIONAL

- Atuei 4 anos na empresa privada
- 10 anos no ambiente Público
- Atualmente Líder Técnico de 45 Projetos de Tecnologia na SEPOG/PMF

Apresentação

DOCÊNCIA

- Professor Substituto das Disciplinas de Sistemas de Informação FA7 (2011 - 2012)
- Professor da Especialização em Sistemas WEB FJN (2011 - 2012)
- Professor de Bancas de graduação em Sistemas de Informações FA7 (2012)
- Professor dos Cursos de Tecnologia da Unifanor (2015 2018)
- Professor do Curso de Tecnologia da Unichristus (2018 Atual)

Livros

 Sistemas de Informação Gerenciais - 11^a Ed. 2014 -Laudon, Kenneth C.; Jane P. Laudon - Pearson

Sistemas de Informação - o Uso Consciente da Tecnologia
 Para o Gerenciamento - 2ª Ed. 2012 - Batista, Emerson de O.

Ementa

- Fundamentos de computação, arquiteturas de computadores e sistemas operacionais. Ambientes de processamento automatizado de informações.
- Evolução das profissões e características do profissional de sistemas de informação.
- Conceitos básicos: dado, informação e conhecimento.
- Computador e seus elementos básicos.
- Internet e Redes de Computadores modelos e usos.
- Fundamentos de sistemas de informação.
- Classificação dos sistemas de informação.
- Conceitos e usos da Segurança de dados.
- Etapas da Especificação e do projeto de sistemas de informação.

Dicas de Convivência

- Horários
- Conversas
- Dúvidas
- Celular
- Avaliações

Questionamentos

• O ser humano sempre desejou registrar acontecimentos de sua vida.

Uso de associação para contar (1 pedra = 1 ovelha)

- Evolução da Matemática, Contabilidade, Economia.
- Dinheiro, títulos, cheques, promissórias, etc.

- O papel sempre foi o meio mais usado para armazenar dados.
- Grandes volumes são difíceis de manter e manusear.
- Muito tempo para recuperar a informação desejada.

- Surgimento de calculadoras, máquinas tabuladoras, computadores elétricos.
- Arquivos em papel passaram ao meio eletrônico.

Banco de Dados

- Base de dados (BD): conjunto de dados que se relacionam entre si.
- Dados: factos conhecidos que têm algum significado e que podem ser guardados.
- Universo: parte do mundo real sobre o qual os dados guardados na base de dados dizem respeito.
 - * Empresa: empregados, departamentos, projetos, ...
 - ★ Universidade: alunos, professores, unidades curriculares, inscrições, horários, ...
 - ★ Contactos: nomes, endereços, telefones, ...
 - ★ Bancos: clientes, contas, movimentos, todas as transações, ...
 - ★ Companhia Aérea: reservas, horários, frota, ...
 - ★ Vendas: clientes, produtos, compras, ...

Banco de Dados

Aplicações de Banco de Dados

- Bancos
- Linhas Aéreas
- Universidades
- Operadoras de Cartão de Crédito
- Telecomunicações
- Vendas
- Comércio On-Line
- Indústria
- Recursos Humanos

Redundância e Inconsistência de dados

- Mesma informação em vários arquivos separados.
- Inconsistência (dados atualizados em um arquivo e desatualizados em outro arquivo).

Dificuldade de acesso a dados

- Antigamente as consultas tinham que ser escritas no código fonte do programa. Qualquer novo relatório demoraria um longo tempo até que o programador fizesse uma rotina para obter o resultado.
- Os SGBDs permitem fazer consultas através de linguagens como SQL.

Problema de Integridade

- Muitas vezes é preciso satisfazer restrições de consistência (validação).
- Ex. IDADE POSITIVA, saldo acima de R\$ 50,00, etc.

Problemas de Atomicidade

- Quando uma operação requer a execução de diversas etapas.
 Se uma delas falhar, pode-se criar inconsistência dos dados.
- A atomicidade garante que se algo der errado, tudo será desfeito até deixar como se nunca tivesse iniciado a operação.
- o Ex. Transferência bancárias de A para B. Sem atomicidade pode acontecer de debitar em A e não creditar em B.

Anomalias de acesso concorrente

- Grande parte dos sistemas comerciais são acessados por diversos usuários simultaneamente. É necessário que haja um mecanismo para impedir ou controlar a manipulação de um mesmo dados por mais de uma pessoa no mesmo momento.
- Ex. Venda de 1 unidade de produto por dois vendedores simultaneamente.
- Problemas de Segurança
 - Nem todos os usuários podem acessar ou excluir dados.

Backup e Recuperação

 Softwares são fáceis de comprar e instalar, porém os dados não podem ser comprados. Uma organização deve dar a devida importância a seus dados. Eles são tão importantes (ou até mais) que seus recursos humanos, recursos financeiros e ambiente físico.

Múltiplas Interfaces para o usuário

- o Linguagem de consultas;
- Interface de programação;
- Formulários parametrizáveis;
- Interfaces de menus;
- Interfaces de texto para usuários autônomos (ex. outros sistemas)
- Interfaces gráficas;
- o Interfaces Web;

Atomicidade

É algo indivisível. Ou tudo o que está em uma transação deve ser realizado com sucesso, ou nada deve ser realizado. Pelo menos nada deva ser considerado como realizado. Sem a atomicidade fica difícil se não impossível manter as outras características, por isso a transação é importante.

Consistência

O banco de dados deve ter uma transação terminada em estado consistente, ou seja, deve respeitar todas as regras impostas no banco de dados para todos os envolvidos na transação.

Isolamento

Uma transação não pode interferir em outra enquanto está em atividade. Só após sua conclusão é que o seu resultado ficará disponível para outras transações.

Durabilidade

Ao final da transação o resultado deve permanecer no banco de dado, aconteça o que acontecer.

Banco de Dados: Níveis de Abstração

Nível físico:

★ Descreve como um registo é armazenado.

Nível lógico:

★ Descreve os dados armazenados na BDs, assim como as relações entre os dados.

Nível das vistas:

★ Fornecem uma "visão" dos dados, possivelmente ocultando alguma informação.

Banco de Dados: Instâncias e Esquemas

- Instância refere-se ao conteúdo de uma BDs num dado instante.
 - ★ Análogo a uma atribuição de valor de uma variável.
- Esquema:
 - ★ Descreve os dados armazenados na BDs, assim como as relações entre os dados.
- Nível das vistas:
 - ★ Fornecem uma "visão" dos dados, possivelmente ocultando alguma informação.

CADEIRA	CodCad	Nome	Docente
	12347	Bases de Dados	José Aguiar Mota
Ī	34248	Álgebra	Maria das Dores
32439		Introdução aos Computadores	Carlos Duarte

ALUNO	NumMec	Nome	Curso
	798764544	João Pinto	CC
	345673451	Carlos Semedo	ERSI
	487563546	Maria Silva	EG
	452212348	Pedro Costa	MAT

INSCRIÇÃO	NumMec	CodCad
	798764544	12347
	345673451	12347
	798764544	34248
	452212348	32439

Modelo de Dados

- ★ Conjunto de conceitos que descrevem a estrutura da BD.
 - o relações entre dados
 - semântica dos dados
- ★ Conjunto de restrições que a BD deve obedecer.
 - Restrições dos dados

Exemplos:

- ★ Modelos Entidade-Relações
- ★ Modelo Relacional
- ★ Modelo de dados baseado em objectos
- ★ Modelo de dados semi-estruturados (XML)
- ★ Outros modelos: hierárquico, rede, etc.

- Modelo Conceptual: permite que os utilizadores percebam melhor os dados, envolvem conceitos como entidades, atributos, relacionamentos.
 - ★ Modelos ER, EER, ODL, UML.
- Modelo Lógico: tipo de modelo normalmente utilizado pelos SGBDs.
 - ★ Modelos relacional, hierárquico, rede.
- Modelo Físico: tipo de modelo que descreve como os dados estão organizados e guardados no computador.
 - ★ Formato dos registos, ordem dos registos, caminhos para acesso aos dados.

Fase I: Requisitos e análise

- ★ Entrevistas com os potenciais utilizadores da BD.
- ★ Compreender e documentar os seus requisitos.

Fase II: Desenho conceptual (ou modelação)

- ★ Definir um modelo de dados conceptual que inclua a descrição das entidades da BD, dos atributos das entidades, dos relacionamentos entre entidades e das possíveis restrições.
- ★ Evitar detalhes de implementação.

Fase III: Desenho lógico (ou implementação)

- ★ Mapear o modelo de dados conceptual no modelo de dados lógico concreto.
- ★ Implementação da BD usando um SGBD.

Fase IV: Desenho físico

- ★ Mapear o modelo de dados lógico no modelo de dados físico.
- ★ Estruturas em memória e organização dos ficheiros da BD (ficheiros de índices).

Independente do SGBD

★ Fase I: Requisitos e análise

★ Fase II: Desenho conceptual

★ Fase III: Desenho lógico

Dependente do SGBD

★ Fase III: Desenho lógico

★ Fase IV: Desenho físico

Banco de Dados: Arquitetura

- Arquitectura de 2 camadas:
 - ★ a aplicação acede diretamente à camada de dados da BDs.
- Arquitectura de 3 camadas:
 - ★ uma camada lógica medeia a interação entre a aplicação cliente e a BDs, possibilitando, em princípio, alterar a BDs sem afectar grandemente a aplicação.

DDL - Data Definition Language - Linguagem de Definição de Dados.

São os comandos que interagem com os objetos do banco.

São comandos DDL : CREATE, ALTER e DROP

DML - Data Manipulation Language - Linguagem de Manipulação de Dados.

São os comandos que interagem com os dados dentro das tabelas.

São comandos DML : INSERT, DELETE e UPDATE

DQL - Data Query Language - Linguagem de Consulta de dados.

São os comandos de consulta.

São comandos DQL : SELECT (é o comando de consulta)

Aqui cabe um parenteses. Em alguns livros o SELECT fica na DML em outros tem esse grupo próprio.

DTL - Data Transaction Language - Linguagem de Transação de Dados.

São os comandos para controle de transação.

São comandos DTL : BEGIN TRANSACTION, COMMIT E ROLLBACK

DCL - Data Control Language - Linguagem de Controle de Dados.

São os comandos para controlar a parte de segurança do banco de dados.

São comandos DCL : GRANT, REVOKE E DENY.

Dúvidas

Referências

Sistemas de Informação Gerenciais, Kenneth C. Laudon e Jane P. Laudon, 11ª edição.

