CLAIMS

1	1. (currently amended) In a spread-spectrum receiver, a method for processing a received		
2	analog spread-spectrum signal, comprising:		
3	determining whether to attenuate the received analog spread-spectrum signal;		
4	based on the attenuation determination, selectively attenuating the received analog spread-		
5	spectrum signal to generate a selectively attenuated analog spread-spectrum signal;		
6	digitizing the selectively attenuated analog spread-spectrum signal to generate a digital spread-		
7	spectrum signal;		
8	filtering the digital spread-spectrum signal in an attempt to compensate for interference in the		
9	received analog spread-spectrum signal to generate a filtered digital spread-spectrum signal; and		
10	de-spreading the filtered digital spread-spectrum signal to generate a de-spread digital signal,		
11	wherein <u>:</u>		
12	the attenuation determination is based on the amplitude of the digital spread-spectrum		
13	signal prior to the interference-compensation filtering and the de-spreading; and		
14	the attenuation determination is independent of any determination of bit error rate.		
1	2. (original) The invention of claim 1, wherein the filtering attempts to compensate for off-		
2	channel interference in the received analog spread-spectrum signal.		
1	3. (original) The invention of claim 1, wherein the selectively attenuated analog spread-		
2	spectrum signal has a negative signal-to-noise ratio (SNR).		
1	4. (original) The invention of claim 1, wherein:		
2	the received analog spread-spectrum signal is attenuated when the amplitude of the digital		
3	spread-spectrum signal is greater than an upper threshold; and		
4	the received analog spread-spectrum signal is not attenuated when the amplitude of the digital		
5	spread-spectrum signal is less than a lower threshold, wherein the upper threshold is greater than the		
6	lower threshold.		
1	5. (original) The invention of claim 4, wherein the upper threshold is greater than the lower		
2	threshold by an amount greater than the level of selective attenuation in order to provide hysteresis in the		
3	attenuation determination.		

1	6. (original) The invention of claim 1, wherein:		
2	the received analog spread-spectrum signal is a radio frequency (RF) signal; and		
3	further comprising:		
4	converting the RF signal to an intermediate frequency (IF) prior to the digitization; and		
5	converting the IF signal to baseband after digitization.		
1	7. (original) The invention of claim 6, wherein the filtering and the de-spreading are		
2	implemented at baseband.		
1	8. (original) The invention of claim 1, wherein:		
2	the filtering attempts to compensate for off-channel interference in the received analog spread-		
3	spectrum signal;		
4	the selectively attenuated analog spread-spectrum signal has a negative signal-to-noise ratio		
5	(SNR);		
6	the received analog spread-spectrum signal is attenuated when the amplitude of the digital		
7	spread-spectrum signal is greater than an upper threshold;		
8	the received analog spread-spectrum signal is not attenuated when the amplitude of the digital		
9	spread-spectrum signal is less than a lower threshold;		
10	the upper threshold is greater than the lower threshold by an amount greater than the level of		
11	selective attenuation in order to provide hysteresis in the attenuation determination;		
12	the received analog spread-spectrum signal is a radio frequency (RF) signal;		
13	further comprising:		
14	converting the RF signal to an intermediate frequency (IF) prior to the digitization; and		
15	converting the IF signal to baseband after digitization; and		
16	the filtering and the de-spreading are implemented at baseband.		
1	9. (currently amended) A spread-spectrum receiver, comprising:		
2	a variable attenuator adapted to selectively attenuate a received analog spread-spectrum signal to		
3	generate a selectively attenuated analog spread-spectrum signal;		
4	an analog-to-digital converter (ADC) adapted to digitize the selectively attenuated analog spread-		
5	spectrum signal to generate a digital spread-spectrum signal;		
6	an interference-compensation filter adapted to filter the digital spread-spectrum signal in an		

attempt to compensate for interference in the received analog spread-spectrum signal to generate a

7

8

filtered digital spread-spectrum signal;

9	a digital processor adapted to de-spread the filtered digital spread-spectrum signal to generate a				
10	de-spread digital signal; and				
11	a controller adapted to control the variable attenuator based on the amplitude of the digital				
12	spread-spectrum signal prior to the interference-compensation filter and the digital processor, wherein the				
13	selectively att	enuated analog spread-spectrum signal has a negative signal-to-noise ratio (SNR).			
1	10.	(original) The invention of claim 9, wherein the filter is adapted to attempt to			
2	compensate for	or off-channel interference in the received analog spread-spectrum signal.			
1	11.	(canceled)			
1	12.	(original) The invention of claim 9, wherein:			
2	the co	ontroller is adapted to control the variable attenuator to attenuate the received analog			
3	spread-spectro	um signal when the amplitude of the digital spread-spectrum signal is greater than an upper			
4	threshold; and	i de la companya de			
5	the co	ontroller is adapted to control the variable attenuator not to attenuate the received analog			
6	spread-spectrum signal when the amplitude of the digital spread-spectrum signal is less than a lower				
7	threshold, wh	erein the upper threshold is greater than the lower threshold.			
1	13.	(original) The invention of claim 12, wherein the upper threshold is greater than the			
2	lower thresho	ld by an amount greater than the level of selective attenuation in order to provide hysteresis			
3	in the attenua	tion determination.			
1	14.	(original) The invention of claim 9, wherein:			
2	the re	ceived analog spread-spectrum signal is a radio frequency (RF) signal; and			
3	furthe	er comprising:			
4		a mixer adapted to convert the RF signal to an intermediate frequency (IF) prior to the			
5	digitization; and				
6		a digital downconverter adapted to convert the IF signal to baseband after digitization.			
1	15.	(original) The invention of claim 14, wherein the filter and the digital processor are			
2	adapted to ope	erate at baseband.			

Serial No. 10/766,347 -4- Andrew 1168 (1052.045)

1	16. (currently amended) The invention of claim 9, wherein:		
2	the filter is adapted to attempt to compensate for off-channel interference in the received analog		
3	spread-spectrum signal;		
4	the selectively attenuated analog spread-spectrum signal has a negative signal-to-noise ratio		
5	(SNR);		
6	the controller is adapted to control the variable attenuator to attenuate the received analog		
7	spread-spectrum signal when the amplitude of the digital spread-spectrum signal is greater than an upper		
8	threshold;		
9	the controller is adapted to control the variable attenuator not to attenuate the received analog		
10	spread-spectrum signal when the amplitude of the digital spread-spectrum signal is less than a lower		
11	threshold;		
12	the upper threshold is greater than the lower threshold by an amount greater than the level of		
13	selective attenuation in order to provide hysteresis in the attenuation determination;		
14	the received analog spread-spectrum signal is a radio frequency (RF) signal;		
15	further comprising:		
16	a mixer adapted to convert the RF signal to an intermediate frequency (IF) prior to the		
17	digitization; and		
18	a digital downconverter adapted to convert the IF signal to baseband after digitization;		
19	and		
20	the filter and the digital processor are adapted to operate at baseband.		
1	17. (canceled)		
1	18. (previously presented) The invention of claim 1, wherein the attenuation determination		
2	is based on the amplitude of the digital spread-spectrum signal in a time domain.		
1	19. (previously presented) The invention of claim 6, wherein the attenuation determination		
2	is based on the amplitude of the digital IF signal.		
1	20. (previously presented) The invention of claim 1, wherein:		
2	the received analog spread-spectrum signal is attenuated when the amplitude of the digital		
3	spread-spectrum signal is greater than a first threshold;		

23. (new) In a spread-spectrum receiver, a method for processing a received analog spread-spectrum signal, comprising:

determining whether to attenuate the received analog spread-spectrum signal;

1

2

3

4

5

based on the attenuation determination, selectively attenuating the received analog spreadspectrum signal to generate a selectively attenuated analog spread-spectrum signal;

6	digitizing the selectively attenuated analog spread-spectrum signal to generate a digital spread-
7	spectrum signal;
8	filtering the digital spread-spectrum signal in an attempt to compensate for interference in the
9	received analog spread-spectrum signal to generate a filtered digital spread-spectrum signal; and
10	de-spreading the filtered digital spread-spectrum signal to generate a de-spread digital signal,
11	wherein:
12	the attenuation determination is based on the amplitude of the digital spread-spectrum
13	signal prior to the interference-compensation filtering and the de-spreading; and
14	the attenuation determination is further based on a priori knowledge of maximum
15	expected interference-to-carrier ratio.

Serial No. 10/766,347 -7- Andrew 1168 (1052.045)