

IMAGE RESTORATION

university of groningen

Image restoration

Process of removing or reducing image degradations which occur during image formation.

Image restoration

SUMMARY:

- Summary of frequency domain filtering
- Linear degradation model
- Linear restoration model
- Linear shift-invariant systems
- Inverse filter
- Parametric Wiener filter

1

Image degradation

Degrading factors:

- blurring produced by the optical system or object motion during acquisition
- noise from electronic and optical devices.

Restoration

- Noise only: spatial filtering, frequency filtering
- Linear shift-invariant (LSI) degradations

Noise only filtering

Degraded image g(x, y):

$$g(x,y) = f(x,y) + \eta(x,y)$$

- Mean filter: $\widehat{f}(x,y) = \frac{1}{mn} \sum_{(s,t) \in S_{xy}} g(s,t)$
- Median filter: $\widehat{f}(x,y) = \mathrm{median}_{(s,t) \in S_{xy}} g(s,t)$
- Bandreject frequency domain filters

Noise models

Gaussian; Rayleigh; Gamma; Exponential; Uniform; Impulse (shot noise).

5

Linear shift-invariant systems

A linear shift-invariant (LSI) system 0 maps an input signal f(t) to an output signal g(t), denoted as $f(t) \stackrel{0}{\to} g(t)$, satisfying:

• Linearity: if $f_1(t) \stackrel{\circ}{\to} g_1(t)$ and $f_2(t) \stackrel{\circ}{\to} g_2(t)$, then, for arbitrary constants a,b,

$$a f_1(t) + b f_2(t) \stackrel{\circ}{\rightarrow} a g_1(t) + b g_2(t)$$

• Shift invariance: if $f(t) \stackrel{\circ}{\to} g(t)$, then for each time shift T,

$$f(t-T) \stackrel{\circ}{\to} g(t-T)$$

6

.

Convolution

• Output of a LSI system is given by the convolution of the input with a kernel h(t):

$$g(t) = (h * f)(t) = \int_{-\infty}^{\infty} h(t - s) f(s) ds$$

- ullet Filter kernel h(t) is called the impulse response function or in 2-D point spread function.
- The Fourier transform $H(\mu)$ is called the transfer function.

university of groningen

Linear restoration model

Deconvolution: compute an estimate $\widehat{f}(x,y)$ of the ideal image by using a reconstruction kernel r(x,y):

$$\widehat{f}(x,y) = (r * g)(x,y)$$

Linear shift-invariant degradations

• Degraded image g(x,y) is convolution of ideal image f(x,y) by kernel h(x,y) plus noise $\eta(x,y)$:

$$g(x,y) = (h * f)(x,y) + \eta(x,y).$$

In frequency domain:

$$G(u, v) = H(u, v)F(u, v) + N(u, v)$$

• Finite images of size $N \times N$:

$$\mathbf{g} = \mathbf{H}\,\mathbf{f} + \mathbf{n}$$

where $\mathbf{g}, \mathbf{f}, \mathbf{n}$ are column vectors of length $M \times N$, and \mathbf{H} is an $MN \times MN$ convolution matrix.

9

Constrained least squares restoration

ullet Solution Estimated solution $\widehat{\mathbf{f}}$ should satisfy the model equation:

$$\left\|\mathbf{g} - \mathbf{H}\widehat{\mathbf{f}}\right\|^2 = \left\|\mathbf{n}\right\|^2$$

• Constraints: introducing a matrix Q such that the term

$$\left\|\mathbf{Q}\,\widehat{\mathbf{f}}\right\|^2$$

is minimized.

Minimization problem and solution

Minimize

$$\mathcal{E}(\widehat{\mathbf{f}}) = K \left\| \mathbf{Q} \, \widehat{\mathbf{f}} \right\|^2 + \left(\left\| \mathbf{g} - \mathbf{H} \widehat{\mathbf{f}} \right\|^2 - \left\| \mathbf{n} \right\|^2 \right)$$

where K is a constant, called the regularization parameter, which determines the relative weight of both terms

• Least squares solution:

$$\widehat{\mathbf{f}} = \left(\mathbf{H}^t \mathbf{H} + K \mathbf{Q}^t \mathbf{Q}\right)^{-1} \mathbf{H}^t \mathbf{g}$$

Wiener filter

Assume ${\bf f}$ and ${\bf n}$ to be random vectors with zero mean and covariance matrices ${\bf R}_f=\mathbb{E}({\bf f}\,{\bf f}^t)$ for the signal and ${\bf R}_n=\mathbb{E}({\bf n}\,{\bf n}^t)$ for the noise. Let ${\bf Q}$ be the noise-to-signal ratio ${\bf Q}=\left(\frac{{\bf R}_n}{{\bf R}_f}\right)^{\frac{1}{2}}$ and let K=1.

$$\widehat{\mathbf{f}} = \left(\mathbf{H}^t \mathbf{H} + \mathbf{R}_f^{-1} \mathbf{R}_n\right)^{-1} \mathbf{H}^t \mathbf{g}$$

Inverse filter

• Put K=0 in formula for least squares solution:

$$\mathbf{\hat{f}} = (\mathbf{H}^t \mathbf{H})^{-1} \mathbf{H}^t \mathbf{g} = \mathbf{H}^{-1} \mathbf{g}$$
$$= \mathbf{H}^{-1} (\mathbf{H} \mathbf{f} + \mathbf{n}) = \mathbf{f} + \mathbf{H}^{-1} \mathbf{n}$$

Expressed in the frequency domain:

$$\widehat{F}(u,v) = F(u,v) + \frac{N(u,v)}{H(u,v)}$$

This is the 'inverse' filter.

ullet This filter is useless in practice: small values in H(u,v) amplify the noise.

13

Parametric Wiener filter

Minimum norm least squares solution:

$$\widehat{\mathbf{f}} = \left(\mathbf{H}^t \mathbf{H} + K \mathbf{I}\right)^{-1} \mathbf{H}^t \mathbf{g}$$

or, expressed in the frequency domain:

$$\widehat{F}(u,v) = \left[\frac{H^*(u,v)}{\left|H(u,v)\right|^2 + K}\right] G(u,v)$$

This is the Parametric Wiener filter or Pseudo-inverse filter.

 ${\it K}$ is the regularization parameter.

Case K = 0: inverse filter.

14

12

Example

(a): Original. (b): Degraded image. (c): Inverse filtering. (d): Pseudo-inverse filtering (K = 0.01).