

DISEÑO DIGITAL VLSI

Clase 1 - PRESENTACIÓN

Roberto Giovanni Ramírez-Chavarría

rg.unam.sysid@gmail.com

Facultad de Ingeniería, UNAM

Semestre 2020-1

DISEÑO DIGITAL VLSI (1535)

- Teoría: Viernes 10:00 a 13:00 hrs. 8 créditos
- Salón B-404
- Lab: Jueves 9:00 a 11:00 hrs.
- Salón P-003
- Séptimo semestre Ing. en Computación
- Departamento de Ingeniería en Computación

Objetivo del curso

El alumno diseñará sistemas digitales de muy alta escala de integración (VLSI) empleando tecnologías modernas con base en arquitecturas de dispositivos lógicos programables (FPGAs), lenguajes de descripción y modelado de hardware (VHDL) y ambientes integrados de desarrollo.

Temario

- Sistemas digitales y VLSI
- Diseño e implementación de máquinas de estados finitos (FSM)
- 3 Arquitectura de dispositivos lógicos programables
- 4 Diseño digital VLSI con lenguajes de descripción de hardware
- 5 Implementación de sistemas digitales con herramientas CAD

RGRCH DISEÑO DIGITAL VLSI 4/17

Antecedentes

- Diseño Digital Moderno
- Circuitos Eléctricos
- Dispositivos Electrónicos
- Programación
- Sistemas y Señales

RGRCH DISEÑO DIGITAL VLSI 5 / 17

Motivación

Sistemas Embebidos, Inteligencia Artificial, Control Automático Internet of the Things (IoT), Aeroespacial, Biomédica, Robótica ...

RGRCH DISEÑO DIGITAL VLSI 6 / 17

Motivación

Actualidad

Antigüedad

- Flexibilidad de diseño
- Reconfiguración
- Velocidad de procesamiento
- Aplicaciones robustas

RGRCH DISEÑO DIGITAL VLSI 7/17

Expectativas del curso

Que el alumno

- Refuerce los conceptos de Electrónica Digital
- ② Diseñe y construya sistemas digitales confiables y robustos
- Sintetice y aplique en forma práctica el Diseño Electrónico en casos prácticos reales
- 4 Emplee tecnologías de vanguardia

RGRCH DISEÑO DIGITAL VLSI 8 / 17

Semblanza del profesor

Dr. Roberto Giovanni Ramírez-Chavarría

Formación:

Doctorado (2019)

Ingeniería Eléctrica - Instrumentación (UNAM)

Maestría (2015)

Ingeniería Eléctrica - Instrumentación (UNAM)

Licenciatura (2013)

Ingeniero en Computación - Hardware (UNAM)

RGRCH DISEÑO DIGITAL VLSI 9/17

Semblanza del profesor

Dr. Roberto Giovanni Ramírez-Chavarría

Experiencia:

Investigador Posdoctoral (a partir de 2019) Instituto de Ingeniería - UNAM

Profesor de Asignatura A (a partir de 2014) DIE, DCB - UNAM

Ayudante de profesor A (2013-2014) DIE - UNAM

Semblanza del profesor

Dr. Roberto Giovanni Ramírez-Chavarría

Líneas de investigación y desarrollo tecnológico:

- Instrumentación y Medición
- Procesamiento de Señales
- Identificación y modelad de sistemas dinámicos
- Control Automático
- Sistemas embebidos
- Machine Learning

Aplicaciones:

- Ingeniería Biomédica
- Energía
- Automotriz
- Control de Procesos

RGRCH DISEÑO DIGITAL VLSI 11 / 17

Aseosoria y contacto

Dr Roberto Giovanni Ramírez-Chavarría

Ubicación:

Ciudad Universitaria, CD MX. Lunes a Viernes de 9:00 a 19:00 hrs.

En la FI, durante las horas de clase o común acuerdo.

Por correo electrónico

RGRCH DISEÑO DIGITAL VLSI 12 / 17

Evaluación

Exámenes Parciales	30%
Prácticas (Lab.)	30%
Proyecto final	30%
Tareas	10%

Políticas del curso:

Escala

 Las calificaciones mayor o igual x.5 suben al siguiente número entero.

Exentos

- Calificación final mayor o igual que 6.
- Aprobar los 2 de exámenes parciales.
- Entregar al menos el 75% de las prácticas.
- Entregar proyecto final.

Aprobar el curso

- Entregar proyecto final.
- Aprobar el laboratorio.
- Respeto y tolerancia.

Forma de trabajo

Las prácticas y el proyecto se realizarán de acuerdo al avance del contenido del curso. Deberán entregarse en forma física en el salón de clase y un video demostrativo. En equipos de máximo **3 personas**.

** No es posible cambiar de equipo durante el semestre

Material y software:

- Tarjeta de Desarrollo basada en FPGA (Xilinx, Altera, Lattice).
- IDE para desarrollo en leguaje VHDL

RGRCH DISEÑO DIGITAL VLSI 14 / 17

Bibliografía recomendada

- Tocci, Ronald J., Sistemas Digitales: Principios y Aplicaciones, Prentice Hall, 2007.
- Brown, Stephen and Vranesic, Zvonko, Fundamentos de lógica digital con diseño VHDL, McGrawHill, 2004.
- Unsalan, Cem and Tar Bora, Digital System Design with FPGA, McGrawHill, 2017.
- Mano, Morris, Diseño Digital, Pearson Prentice Hall, 2003.
- Roth, Charles, Digital System Design using VHDL, PWS Publishing, 1998.

RGRCH DISEÑO DIGITAL VLSI 15 / 17

TAREA 1

1. Comprar o conseguir tarjeta de desarrollo

2. ENVIAR CORREO ELECTRÓNICO AL PROFESOR

Asunto: Diseño Digital Digital VLSI 2020-1

Contenido: Nombre y No. de cuenta. Fotografía con la tarjeta de desarrollo a utilizar y captura de pantalla con IDE instalado.

Fecha límite: Viernes 16 de agosto de 2019.

RGRCH DISEÑO DIGITAL VLSI 16 / 17

Gracias!

Contact: https://rgunam.github.io

rg.unam.sysid@gmail.com

RGRCH DISEÑO DIGITAL VLSI 17/17