МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Организация ЭВМ и систем»

Тема: Трансляции, отладка и выполнение программ на языке Ассемблера

Студент гр.0382	Литягин С.М.
Преподаватель	Ефремов М.А.

Санкт-Петербург

2021

Цель работы.

Изучить основные принципы трансляции, отладки и выполнения программ на языке Ассемблера.

Задание.

Часть 1.

1. Просмотреть программу hello1.asm, которая формирует и выводит на экран приветствие пользователя с помощью функции ОС MSDOS, вызываемой через прерывание с номером 21H (команда Int 21h).

Выполняемые функцией действия и задаваемые ей параметры - следующие:

- обеспечивается вывод на экран строки символов, заканчивающейся знаком "\$";
- требуется задание в регистре ah номера функции, равного 09h, а в регистре dx смещения адреса выводимой строки;
 - используется регистр ах и не сохраняется его содержимое.
- 2. Разобраться в структуре и реализации каждого сегмента программы. Непонятные фрагменты прояснить у преподавателя. Строку-приветствие преобразовать в соответствии со своими личными данными.
 - 3. Загрузить файл hello1.asm из каталога Задания в каталог Masm.
- 4. Протранслировать программу с помощью строки >masm hello1.asm
- с созданием объектного файла и файла диагностических сообщений (файла листинга). Объяснить и исправить синтаксические ошибки, если они будут обнаружены транслятором. Повторить трансляцию программы до получения объектного модуля.
- 5. Скомпоновать загрузочный модуль с помощью строки >link hello1.obj
 - с созданием карты памяти и исполняемого файла hello1.exe.

6. Выполнить программу в автоматическом режиме путем набора строки >hello1.exe

убедиться в корректности ее работы и зафиксировать результат выполнения в протоколе.

7. Запустить выполнение программы под управлением отладчика с помощью команды

>afdpro hello1.exe

8. Записать начальное содержимое сегментных регистров CS, DS, ES и SS. Выполнить программу в пошаговом режиме с фиксацией используемых регистров и ячеек памяти до и после выполнения каждой команды.

Часть 2.

Выполнить пункты 1 - 7 части 1 настоящего задания применительно к программе hello2.asm, приведенной в каталоге Задания, которая выводит на экран приветствие пользователя с помощью процедуры WriteMsg, а также использует полное определение сегментов. Сравнить результаты прогона под управлением отладчика программ hello1 и hello2 и объяснить различия в размещении сегментов.

Выполнение работы.

Часть 1.

- 1. Была загружена программа hello1.asm в каталог MASM.
- 2. Была просмотрена и изучена программа hello1.asm, а также преобразована строка-приветствие в соответствии с личными данными.
- 3. Была выполнена трансляция программы hello1.asm с помощью masm.exe. Получен объектный файл hello1.obj и файл листинга hello1.lst. Ошибок и предупреждений в ходе трансляции не возникло.
- 4. Был скомпанован исполняемый файл hello1.exe объектного файла с помощью link.exe.
- 5. Был выполнен исполняемый файл hello1.exe в автоматическом режиме. В результате вывелось: "Semyon Lityagin, a student of group 0382, welcomes you".

б. Был произведен запуск исполняемого файла hello1.exe с помощью отладчика AFDPRO. Результаты выполнения части 1 представлены в табл. 1.
 Таблица 1 – Результаты выполнения части 1.

Начальные значения (CS) = 1A0B, (DS) = 19F5, (ES) = 19F5, (SS) = 1A05.

Адрес	Символический	16-ричный код	Содержимое	регистров и
команды	код команды	команды	ячеек памяти	
			До	После
			выполнения	выполнения
0010	MOV AX, 1A07	B8071A	(AX) = 0000	(AX) = 1A07
			(IP) = 0010	(IP) = 0013
0013	MOV DS, AX	8ED8	(DS) = 19F5	(DS) = 1A07
			(IP) = 0013	(IP) = 0015
0015	MOV DX, 0000	BA0000	(DX) = 0000	(DX) = 0000
			(IP) = 0015	(IP) = 0018
0018	MOV AH, 09	B409	(AX) = 1A07	(AX) = 0907
			(IP) = 0018	(IP) = 001A
001A	INT 21	CD21	(IP) = 001A	(IP) = 001C
001C	MOV AH, 4C	B44C	(AX) = 0907	(AX) = 4C07
			(IP) = 001C	(IP) = 001E
001E	INT 21	CD21	(IP) = 001E	(IP) = 001E

Часть 2.

Для программы hello2.asm были применены те же действия, что и для hello1.asm. После запуска hello2.exe на экран было выведено: "Hello Worlds! \n Student from 0382 — Lityagin Semyon". Также был произведен запуск исполняемого файла с помощью отладчика AFDPRO. Результаты выполнения части 2 представлены в табл. 2.

Таблица 2 — Результаты выполнения части 2. Начальные значения (CS) = 1A05, (DS) = 19F5, (ES) = 19F5, (SS) = 1A09.

Адрес	Символический	16-ричный код	Содержимое	регистров и
команды	код команды	команды	ячеек памяти	
			До	После
			выполнения	выполнения
0005	PUSH DS	1E	(SP) = 0018	(SP) = 0016
			(IP) = 0005	(IP) = 0006
			Stack +0 0000	Stack +0 19F5
0006	SUB AX, AX	2BC0	(AX) = 0000	(AX) = 0000
			(IP) = 0006	(IP) = 0008
0008	PUSH AX	50	(SP) = 0016	(SP) = 0014
			(IP) = 0008	(IP) = 0009
			Stack +0 19F5	Stack +0 0000
			Stack +2 0000	Stack +2 19F5
0009	MOV AX, 1A07	B8071A	(AX) = 0000	(AX) = 1A07
			(IP) = 0009	(IP) = 000C
000C	MOV DS, AX	8ED8	(DS) = 19F5	(DS) = 1A07
			(IP) = 000C	(IP) = 000E
000E	MOV DX, 0000	BA0000	(DX) = 0000	(DX) = 0000
			(IP) = 000E	(IP) = 0011
0011	CALL 0000	E8ECFF	(SP) = 0014	(SP) = 0012
			(IP) = 0011	(IP) = 0000
			Stack +0 0000	Stack +0 0014
			Stack +2 19F5	Stack +2 0000
			Stack +4 0000	Stack +4 19F5
0000	MOV AH, 09	B409	(AX) = 1A07	(AX) = 0907
			(IP) = 0000	(IP) = 0002

0002	INT 21	CD21	(IP) = 0002	(IP) = 0004
0004	RET	C3	(SP) = 0012	(SP) = 0014
			(IP) = 0004	(IP) = 0014
			Stack +0 0014	Stack +0 0000
			Stack +2 0000	Stack +2 19F5
			Stack +4 19F5	Stack +4 0000
0014	MOV DX, 0010	BA1000	(DX) = 0000	(DX) = 0010
			(IP) = 0014	(IP) = 0017
0017	CALL 0000	E8E6FF	(SP) = 014	(SP) = 0012
			(IP) = 0017	(IP) = 0000
			Stack +0 0000	Stack +0 001A
			Stack +2 19F5	Stack +2 0000
			Stack +4 0000	Stack +4 19F5
0000	MOV AH, 04	B409	(IP) = 0000	(IP) = 0002
0002	INT 21	CD21	(IP) = 0002	(IP) = 0004
0004	RET	C3	(SP) = 0012	(SP) = 0014
			(IP) = 0004	(IP) = 001A
			Stack +0 001A	Stack +0 0000
			Stack +2 0000	Stack +2 19F5
			Stack +4 19F5	Stack +4 0000
001A	RET Far	СВ	(SP) = 0014	(SP) = 0018
			(CS) = 1A0B	(CS) = 19F5
			(IP) = 001A	(IP) = 0000
			Stack +2 19F5	Stack +2 0000
0000	INT 20	CD20	(IP) = 0000	(IP) = 0005

Выводы.

В ходе работы были изучены основные принципы трансляции, отладки и выполнения программ на языке Ассемблера.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: hello1.asm

```
; HELLO1.ASM - упрощенная версия учебной программы лаб.раб. N1
                   по дисциплине "Архитектура компьютера"
      ******************
     ; Назначение: Программа формирует и выводит на экран приветствие
                 пользователя с помощью функции ДОС "Вывод строки"
                  (номер 09 прерывание 21h), которая:
                  - обеспечивает вывод на экран строки символов,
                    заканчивающейся знаком "$";
                  - требует задания в регистре ah номера функции=09h,
                    а в регистре dx - смещения адреса выводимой
                    строки;
                  - использует регистр ах и не сохраняет его
                    содержимое.
*****************
       DOSSEG
                                                 ; Задание сегментов
под ДОС
       .MODEL SMALL
                                                    ; Модель памяти-
SMALL (Малая)
       .STACK 100h
                                                  ; Отвести под Стек
256 байт
       .DATA
                                                   ; Начало сегмента
данных
    Greeting LABEL BYTE
                                                ; Текст приветствия
       DB 'Semyon Lityagin, a student of
                                              group 0382, welcomes
you',13,10,'$'
       .CODE
                                         ; Начало сегмента кода
       mov ax, @data
                                              ; Загрузка в DS адреса
начала
       mov ds, ax
                                          ; сегмента данных
       mov dx, OFFSET Greeting
                                          ; Загрузка в dх смещения
                                         ; адреса текста приветствия
     DisplayGreeting:
       mov ah, 9
                                              ; # функции ДОС печати
строки
       int
           21h
                                                   ; вывод на экран
приветствия
       mov ah, 4ch
                                           ; # функции ДОС завершения
программы
            21h
                                            ; завершение программы и
       int
выход в ДОС
       END
```

Название файла: hello2.asm

; HELLO2 - Учебная программа N2 лаб.раб.#1 по дисциплине "Архитектура компьютера"

```
Программа использует процедуру для печати строки
      ТЕКСТ ПРОГРАММЫ
EOFLine EQU '$'
                          ; Определение символьной константы
                          ; "Конец строки"
; Стек программы
ASSUME CS:CODE, SS:AStack
         SEGMENT STACK
AStack
          DW 12 DUP('!') ; Отводится 12 слов памяти
AStack
        ENDS
; Данные программы
DATA
         SEGMENT
; Директивы описания данных
         DB 'Hello Worlds!', OAH, ODH, EOFLine
GREETING DB 'Student from 0382 - Lityagin Semyon$'
         ENDS
; Код программы
          SEGMENT
; Процедура печати строки
WriteMsg PROC NEAR
               AH, 9
         mov
          int 21h ; Вызов функции DOS по прерыванию
          ret
WriteMsg ENDP
; Головная процедура
Main
         PROC FAR
                       ;\ Сохранение адреса начала PSP в стеке
          push DS
         sub AX,AX ; > для последующего восстановления по push AX ;/ команде ret, завершающей процедуюу.
                         ;/ команде ret, завершающей процедуру.
          mov AX, DATA
                                    ; Загрузка сегментного
          mov DS, AX
                                    ; регистра данных.
          mov DX, OFFSET HELLO ; Вывод на экран первой
          call WriteMsg
                                    ; строки приветствия.
          mov DX, OFFSET GREETING; Вывод на экран второй
          call WriteMsg
                                    ; строки приветствия.
         ret
                                    ; Выход в DOS по команде,
                                    ; находящейся в 1-ом слове PSP.
         ENDP
Main
CODE
         ENDS
         END Main
```