REDES SOCIAIS

Entrega: Medidas de Centralidade

Aluno(s): Isabella Rocha de Oliveira

Data: 03/10/2018

Considerando o grafo Renaissance, estudado anteriormente em sala de aula, conceitos importantes como o de medidas de centralidade foram apresentados e verificados na rede em questão.

Valores de betweenness e closeness para cada família, seguindo as fórmulas clássicas e considerando a utilização de geodésica com transferência são conhecidos, porém é interessante analisar como a mudança do tipo de trajetória e do tipo de difusão interferem nas medidas de centralidade da rede. O objetivo deste estudo é verificar se esses tipos de modificações podem alterar as medidas de centralidade se comparados com uma geodésica com transferência.

Essas respostas podem ser obtidas a partir de simulações aliadas à testes de hipótese como o t-student. Para isso, 100 simulações foram realizadas, tanto para closeness quanto para betweenness, para todas as 15 famílias da rede, para todos os 4 tipos de trajetória associados aos 2 diferentes tipos de difusão.

Os p-valores tanto de closeness quanto de betweenness de cada família foram obtidos comparando as amostras usando geodésica com transferência (que aqui será usado como benchmark) e todas as outras 7 combinações de trajeto e difusão que serão analisadas neste estudo (geodésica com duplicação, caminho com transferência, caminho com duplicação, trilha com transferência, trilha com duplicação, passeio com transferência e passeio com duplicação).

Definindo um nível de significância de 5%, a hipótese nula é a seguinte: Quando consideramos outros tipos de trajetória e outros tipos de difusão, os nós com maior closeness simulado e betweenness simulado são necessariamente os nós com maior closeness e betweenness segundo as fórmulas clássicas. (que correspondem ao uso de geodésica e transferência na simulação). A hipótese alternativa é a negação desta.

A **Tabela 1** refere-se aos resultados do p-valor do closeness de todas as famílias usando a trajetória geodésica com transferência e cada uma das 7 outras

combinações de trajetória e difusão. Nela é possível observar que, com exceção da comparação entre geodésicas, modificando a difusão de transferência para duplicação, todas as outras modificações de trajetória e difusão obtiveram p-valor significativamente menor do que o aceitável pelo nível de significância estipulado anteriormente, para todas as diferentes famílias. Desta forma, a hipótese nula apenas é confirmada no caso em que apenas a difusão é modificada. Quando a trajetória é modificada, com qualquer um dos dois tipos de difusão, a hipótese é rejeitada. Isso indica que a difusão pode não interferir na medida de centralidade closeness e também que quando consideramos outros tipos de trajetória associadas ao mesmo ou a outros tipos de difusão, os nós com maior closeness simulado e betweenness simulado não são necessariamente os nós com maior closeness e betweenness segundo as fórmulas clássicas. Uma observação a ser considerada é que, para a família Barbadori, o p-valor entre as simulações de geodésica duplicação e transferência não pode ser obtida curiosamente sem motivo aparente, tendo em vista que os valores de closeness obtidos nas 100 simulações de ambas as difusões foram valores maiores que 0 e menores que 1.

A Tabela 2 refere-se aos resultados do p-valor do betweenness de todas as famílias usando a trajetória geodésica com transferência e cada uma das 7 outras combinações de trajetória e difusão. Nela é possível observar que, com a família Salviati, diferente das outras famílias que não obtiveram p-valores maiores do que o nível de significância estipulado anteriormente, houveram p-valores iguais a 1 para a comparação do benchmark com a difusão transferência para os trajetos caminho e trilha, ou seja, nesses dois casos o betweenness da família Salviati não mudou ao modificar o trajeto de geodésica para caminho ou trilha. A partir destes valores a hipótese nula seria corroborada porém todos os outros p-valores obtidos para esta medida de centralidade são menores do que o nível de significância, por isso a hipótese nula é rejeitada também para a medida de centralidade betweenness, ou seja, isto indica que a modificação do trajeto e da difusão, comparado com o benchmark não necessariamente manterá o betweenness das famílias inalterados, ou garantirá que as famílias com maiores betweenness permanecerão nessa posição após as modificações. Outra observação a ser considerada é que, para as famílias Ginori, Lambertes, Pazzi e Acciaiuol, o p-valor entre as simulações de geodésica duplicação, caminho transferência e trilha transferência não puderam ser obtidos. Isso deu-se porque os valores de betweenness obtidos nas 100 simulações de cada uma dessas famílias com cada uma dessas combinações de difusão e trajeto deram 0. Desta forma, é impossível obter os p-valores com essas amostras.

Tabelas

Geodésica Duplicação	Caminho Duplicação	Caminho Transferência	Trilha Duplicação	Trilha Transferência	Passeio Duplicação	Passeio Transferência	família
1	9.407337e-159	1.994616e-120	1.483678e-153	3.106774e-114	3.320238e-170	1.165834e-242	ginori
1	8.255463e-148	1.362651e-128	6.325978e-148	1.131750e-112	2.135216e-172	3.620041e-251	lambertes
1	7.627082e-195	3.805744e-129	2.239382e-193	3.295474e-114	2.483247e-200	2.752298e-272	albizzi
1	1.726178e-179	6.711368e-112	2.941602e-176	5.256951e-110	5.622117e-190	3.414122e-278	guadagni
1	9.325216e-167	2.293694e-109	6.969305e-156	3.595234e-90	5.408388e-176	1.712364e-242	pazzi
1	6.348346e-183	2.706529e-105	3.910967e-181	1.777299e-115	7.783228e-196	2.571581e-273	salviati
1	1.099828e-187	1.465040e-119	1.167328e-188	2.715369e-120	1.395930e-201	4.592659e-286	medici
1	4.997341e-184	4.830500e-132	1.020938e-184	1.706402e-144	2.056316e-191	6.252087e-283	tornabuon
1	1.205374e-169	5.445568e-114	5.594788e-162	2.739577e-123	9.869232e-194	1.132577e-265	bischeri
1	4.883603e-184	3.782068e-137	1.048491e-190	9.259027e-143	7.087154e-192	8.348489e-286	ridolfi
1	3.693265e-162	4.395394e-102	5.670341e-164	1.445657e-116	9.208510e-171	6.439546e-249	acciaiuol
1	2.178128e-179	1.378439e-130	2.125908e-190	6.378094e-129	7.141925e-180	6.425662e-280	strozzi
1	3.423524e-159	9.108914e-131	1.161727e-168	9.315803e-110	1.430956e-182	3.316666e-260	peruzzi
NaN	2.662083e-166	8.834622e-128	1.905155e-161	4.256259e-111	5.488821e-174	2.277900e-272	barbadori
1	4.275516e-171	1.346451e-97	1.755015e-173	4.927671e-121	1.359158e-179	3.317557e-265	castellan

Tabela 1. Comparação entre os p-valores de closeness simulado usando *geodésicas* com *transferência* e todas as outras combinações possíveis utilizando geodésica, caminho, trilha e passeio como trajetória e transferência e duplicação como difusão.

Geodésica Duplicação	Caminho Duplicação	Caminho Transferência	Trilha Duplicação	Trilha Transferência	Passeio Duplicação	Passeio Transferência	família
NaN	6.420203e-207	NaN	1.379784e-207	NaN	5.731358e-153	5.816019e-143	ginori
NaN	3.061968e-201	NaN	1.610392e-212	NaN	2.732883e-158	2.758713e-140	lambertes
4.538210e-177	1.560458e-198	1.800322e-12	1.381473e-194	7.670453e-55	8.338916e-163	9.680053e-170	albizzi
9.967997e-227	1.327160e-223	3.206590e-117	5.247058e-218	1.102914e-113	3.366255e-175	3.508904e-161	guadagni
NaN	6.694490e-173	NaN	3.007487e-175	NaN	1.181825e-142	2.076910e-125	pazzi
0.000000e+00	4.923718e-174	1.000000e+00	2.964148e-172	1.000000e+00	1.916718e-148	1.812138e-139	salviati
2.933923e-291	1.267055e-204	3.081211e-100	7.934366e-204	7.480459e-118	2.025198e-184	3.096933e-172	medici
1.995914e-107	1.911051e-222	7.509486e-135	1.494418e-224	1.070835e-130	4.433436e-184	4.680930e-173	tornabuon
4.286880e-186	2.529202e-228	4.045657e-151	1.243378e-213	3.179682e-134	2.072999e-180	1.369880e-154	bischeri
1.939640e-146	9.081253e-240	5.401003e-153	3.900005e-226	1.068041e-133	1.045237e-187	7.038151e-159	ridolfi
NaN	1.532328e-200	NaN	1.607179e-189	NaN	1.201791e-153	7.761785e-146	acciaiuol
3.615358e-114	2.621123e-230	4.431201e-161	2.745690e-219	5.533691e-144	5.653217e-185	6.724555e-153	strozzi
2.170985e-58	4.810491e-221	1.792938e-146	8.983377e-209	1.048823e-140	5.724055e-170	1.530460e-142	peruzzi
1.600860e-253	4.937536e-210	1.727188e-95	1.692292e-210	1.216535e-113	2.031209e-172	5.479560e-150	barbadori
1.631022e-202	6.075597e-222	2.826276e-163	5.791677e-209	6.881677e-148	8.451850e-176	1.205243e-149	castellan

Tabela 2. Comparação entre os p-valores de betweenness simulado usando *geodésicas* com *transferência* e todas as outras combinações possíveis utilizando geodésica, caminho, trilha e passeio como trajetória e transferência e duplicação como difusão.