마 শ 效

南 大 学 考 试 卷 (B 卷) 东

课 程 名 称 概 率 统 计 及 过 程 考试学期 20-21-2 得分

适用专业		<u>'</u>	全校				考试时间长度		120 分钟
	题号	1		三	四	五.	六	七	八
	得分								

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \, \text{表示标准正态分布的分布函数},$$

$$\Phi(-1.65) = 0.05; \Phi(-1.96) = 0.025; \Phi(1) = 0.8413; \Phi(2) = 0.9772$$

$$T_n \sim t(n)$$
 $P(T_{24} \ge 2.064) = 0.025; P(T_{24} \ge 1.711) = 0.05;$
 $P(T_{25} \ge 2.060) = 0.025; P(T_{25} \ge 1.708) = 0.05;$

$$K_n \sim \chi^2(n)$$
 $P(K_{24} \ge 39.36) = 0.025; P(K_{24} \ge 12.40) = 0.975;$
 $P(K_{25} \ge 40.65) = 0.025; P(K_{25} \ge 13.12) = 0.975;$

- 一、选择题(每题 2', 共 10')
 - 1) 设 A,B 为两随机事件, 且 P(A)=0.4, P(B)=0.5, P(AUB)=0.7。

下列命题正确的是

-)
- A) A 和 B 互不相容;
- B) $A \subset B$:
- C) *A*和 *B*相互独立; D) 以上三个选项均不正确。
- 2) 随机变量 $X \sim N(3, a^2)$, P(3 < X < 4) = 0.2, P(X < 2) = (
 - A) 0.3;

B) 0.2;

C) 0.1;

- D) 0.5.
- 3) 下列二元函数中, 可以作为连续型随机变量的联合概率密度是 ()

A)
$$f(x,y) = \begin{cases} \sin(x) & 0 < x < \pi/2, 0 < y < 1 \\ 0 & 其他 \end{cases}$$
B)
$$f(x,y) = \begin{cases} \sin(x) & 0 < x < \pi/2, 0 < y < \frac{1}{2} \\ 0 & 其他 \end{cases}$$

C)
$$f(x,y) = \begin{cases} 1 - \cos(x) & 0 < x < \pi/2, 0 < y < 1 \\ 0 & \text{#th} \end{cases}$$

D)
$$f(x,y) = \begin{cases} 1 - \cos(x) & 0 < x < \pi, 0 < y < \frac{1}{2} \\ 0 & \text{#th} \end{cases}$$

姓名

自觉

锹

函数为_

10 小时,	则该灯泡的平均使用时间为		·	()
(A)	100 小时;	(B) 110) 小时;		
(C)	100.01 小时;	(D) 90	小时。		
	本 X 服从正态分布 $N(m,n),\; X_1,X_2,,X_{19}$ 是和样本方差。下列结论中不正确的是	是来自该总	总体的样本,	\bar{X} , S^2	分别表示样
(A)	$\frac{18S^2}{n} \sim \chi^2(18);$	(B)	$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2$	$^{2}(n -$	1);
(C)	$\bar{X} - m \sim N(0, \frac{n}{19})$	(D)	$ar{X}和S^2$ 互不	相关。)
二、填充	E题(每空格 2', 共 26')				
1)	设事件 A 和 B 互不相容, P(A)=0.5; P(B A	AUB)=0.2	$_{\bullet}$,则 $P(B)=$		
2)	设一批产品的次品率为 0.2。从该批产品	中任取3	件,逐个检	查。核	金查结果为其
	中有两件次品的概率是	o			
3)	设随机变量 X 服从泊松分布,均值为 10	EX(X +	+ 12) = <u> </u>	0	
4)	设过程 $\{B_t, t \geq 0\}$ 是 $\sigma^2 = 1$ 的维纳过程,见	$ UP(B_2 +$	$B_3 < -3) = $		°
5)	随机变量 X, Y 的联合分布律为: P(X=6,	,Y=3)=0.2	2; P(X=6,Y=4)=0.3;	
	P(X=12,Y=3)=0.4; P(X=12,Y=4)=0.1。 则	$E\left(\frac{X}{Y}\right) = \underline{\hspace{1cm}}$.0
6)	若随机变量 X,Y 满足,DX=12,DY=4,相关	系数 r=0.	1,则 D(3X-Y	()= <u></u>	0
7)	设随机变量序列{Xn,n=1,2,}独立同于 f((x),			
	$f(x) = \begin{cases} e^{-x} & x > 0 \\ 0 & \cancel{\sharp} \cancel{\succeq} \end{cases}$ $0 = \frac{1}{n} (X_1^2 + X_2^2 +)$	$\dots + X_n^2$	<i>p</i> ∘		
8)	设总体 X 服从几何分布 $G(0.6)$ 。 $X_1, X_2,$., <i>X</i> ₁₀ 是来	光此该总体的	样本,	$ar{X}$ 表示样
	本均值, 则 $E(\bar{X}) =$ 。				
9)	设过程 $\{N(t),t\geq 0\}$ 为 $\lambda=1$ 的泊松过程,	则 <i>P(N(</i> 1)=1 N(2)=	= 3) =	
10)	随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{3}{7}x^2, & 1 < 0, \\ 0, & 1 \end{cases}$	< x < 2 其他	则 $Y = 3x - 2$	1的密点	度

卷无

效

如

- 12) 设某总体服从 N(m,1),有来自该总体的容量为 16 的简单随机样本,样本均值为 5,基于该样本的 m 的置信区间长度小于 0.8225,则该置信区间的置信度满足。
- 13) 设总体 X 的概率密度为 $f(x) = \frac{1}{b}e^{-x/b}$, $0 < x < +\infty$, (b > 0)为未知参数。若 2, 3, 4, 2.3, 1.7 是来自该总体的简单随机样本的观测值,则 b 的矩估计值为
- 三、(一)(5') 设随机变量 X 和 Y 相互独立, $X \sim U[-2,1], Y \sim N(-1,4)$ 。定义随机过程 Z(t) = X + Yt, t > 0

求 Z(t)的均值函数和自相关函数

(二) (10') 设一齐次 Markov 链 $\{X_n, n \ge 0\}$ 的状态空间为 $\{1, 2, 3\}$ 。 其一步转移概率矩阵

$$P = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0.4 & 0.4 & 0.2 \\ 0.3 & 0.2 & 0.5 \\ 0.3 & 0.4 & 0.3 \end{bmatrix},$$

初始分布为, $p_1(0) = \frac{1}{3}$, $p_2(0) = \frac{1}{3}$, $p_3(0) = \frac{1}{3}$ 。

(1)求 $P{X_2 = 2, X_4 = 1}$; (2)说明该链存在平稳分布,并求之。

线

蓝

姓名

小小

四、(10') 设某单位库存一批购自同一厂家的电脑内存条。这批产品 40%的可能性购自甲厂家,30%的可能性购自乙厂家,30%的可能性购自丙厂家。已知甲厂家产品的次品率为5%;乙厂家产品的次品率为5%;丙厂家产品的次品率为10%。现随机的从仓库中随机抽取两个内存条。(1)求抽出两个均为次品的概率;(2)若已知抽到的两个内存条都是次品,求这批内存条是购自丙厂家的概率。.

五、(10')设随机变量 X 和 Y 相互独立。 X 服从指数分布 e(2), Y 服从均匀分布 U[0,2]。 令 Z=X+Y,求随机变量 Z 的概率密度函数 $f_Z(z)$ 。

六、(9') 抛投一枚均匀的骰子 200 次。试用中心极限定理近似计算 200 次出现的点数之和 不超过 720 的概率(可使用标准正态的分布的分布函数 $\Phi(x)$ 表示相关概率)。

七、(10')设总体 X 的概率分布律为

$$P(X = x) = \theta^{-\frac{x-4}{3}} (1-\theta)^{\frac{x-1}{3}}, x = 1,4; 0 < \theta < 1$$

其中 θ 为未知参数。 $X_1,...X_n$ 为来自该总体的样本。(1)求参数 θ 的最大似然估计量 $\hat{\theta}$; (2) $\hat{\theta}$ 是否是 θ 的无偏估计量,说明理由。.

八、 (10')设总体 X 服从正态分布 N (u, σ^2),u 和 σ^2 未知。 现有来自该总体样本容量为 25 的样本,其样本均值为-15,样本标准差为 4。 (1)试检验 H₀: u=-14, v.s. H₁: u<-14(检验水平 α = 0.05); (2)求 σ^2 的置信度为 95%的置信区间。