TESTING DOCUMENT

Project: Final DPM Project

Document Version: 1.0

Date: 20/10/2018

Author: Ashish Edit history:

[18/10/2018] Ashish: Created Testing Document [22/10/2018] Ashish: Completed some tests [28/10/2018] Ashish: Added more tests

[30/10/2018] Ashish: Added results from previous tests and made changes to the structure of

the document

[03/11/2018] Ashish: Added test 2, 4 & 6 [05/11/2018] Ashish: Added test 7, 8, & 9 [10/11/2018] Restructuring and more tests [11/11/2018] Added pre-beta demo test

[12/11/2018] Added the Beta demo integration test

Table of contents

- 1.0 Requirements
 - 1.1 Project Requirements
 - 1.2 Testing Requirements
 - 1.3 General Test Procedures
- 2.0 Testing Plan
- 3.0 Tests
- 4.0 Glossary of terms

1.0 Requirements

1.1 Project requirements

see Requirements document

1.2 Testing Requirements

- Each test should note: date, testers, author, hardware version, software version, goal, procedure, expected result, test report, conclusion, action and distribution.
- Each test should have at least 10 trials.
- Weak points should be tested exhaustively
- Testers should have a clear expected outcome for each test.

1.3 General Test Procedures

- Test whether the hardware design is stable when moving and turning.
- Test whether the robot can light localize accurately
- Test whether the robot can ultrasonic localize accurately
- Test whether the robot can correctly detect the color of the ring.
- Test whether the robot can correctly turn to any direction
- Test whether the robot can correctly travel to any coordinate after localization

2.0 Testing Plan

2.1 Hardware

- Hardware stability (Incomplete)
 - The center of gravity needs to be center of the robot so that the robot has equal weight distribution and does not lean on one side, affecting navigation.
- Large EV3 motor performance (Incomplete)
 - The motors need to be accurate when moving around the field at different speeds. The motors that are selected need to be of similar performance to make sure the robot navigates properly.
- Ultrasonic sensor (Incomplete)
 - The ultrasonic sensor must be accurate to ensure the requirements of ultrasonic localization and obstacle avoidance are met
- Light sensor (Incomplete)
 - The light sensor must be accurate to ensure the requirements of light localization and ring color detection are met.

2.2 Software

- Navigation (Incomplete)
 - The navigation algorithm must accurately move the robot to any given coordinate on the field. The accuracy should be such that when the robot relocalizes, it should be at the correct co-ordinate
- Ultrasonic localization (completed)
 - The ultrasonic localization algorithm must have an accuracy of 10 degrees.
- Light localization (completed)
 - The light localization algorithm must have an accuracy of less than 2cm and an angle of less than 5 degrees
- Ring Color detection (Incomplete)
 - The color detection algorithm must accurately determine the color of the ring up to 5cm away from the light sensor.

3.0 Tests

<u>Test 1: Ultrasonic localization I (Falling edge)</u>

Date: 20/10/2018 Tester: Ashish Author: Ashish

Hardware Version: 1.0 **Software Version**: N/A

Goal: Determine if the robot can localize reliably using 2 large EV3 motors and a ultrasonic sensor mounted in the front of the robot.

Procedure: Place the robot facing away from the wall on the left corner tile. Run ultrasonic localization and record the angle.

Expected result: The robot should turn clockwise and detect the wall when it is within 30cm and record it. Then the robot turns anticlockwise till it detects the wall again and record it. The robot will then compute 0 degrees and turn to it.

Test Report: the test was performed 30 times and the results are shown in the table below.

Run	US Angle(degrees)
1	6
2	-2
3	3
4	0
5	-5
6	4
7	-1
8	2
9	4
10	0
Mean:	1
Standard Deviation:	3

Conclusion: The robot always localized within 6 degrees which is within the acceptable margin of error. It should be noted that this test was done when the battery was outputting at 8.0V and accurate localization is not guaranteed for anything less than 8.0V.

Action: No further testing is required unless the hardware configuration is changed.

Distribution: Software Development, Project management

<u>Test 2: Ultrasonic localization II (Falling edge)</u>

Date: 20/10/2018
Tester: Ashish
Author: Ashish

Hardware Version: 1.1 Software Version: N/A

Goal: Determine if the robot can localize reliably using 2 large EV3 motors and an ultrasonic sensor mounted in the front of the robot.

Procedure: Place the robot facing away from the wall on the left corner tile. Run ultrasonic localization and record the angle.

Expected result: The robot should turn clockwise and detect the wall when it is within 30cm and record it. Then the robot turns anticlockwise till it detects the wall again and record it. The robot will then compute 0 degrees and turn to it.

Test Report: the test was performed 10 times and the results are shown in the table below.

Run	US Angle(degrees)
1	10
2	7
3	6
4	8
5	11
6	12
7	3
8	9
9	9
10	5
Mean:	8
Standard Deviation:	2.64

The angles are mostly greater than 5 degrees. The standard deviation is also too large. The robot did not localize with an acceptable margin of error

Conclusion: Ultrasonic localization is not reliable.

Action: This report will be sent to the hardware and software team to make necessary changes.

Distribution: Software Development, Hardware Development, Project management

<u>Test 3: Light localization I (2 light sensors)</u>

Date: 20/10/2018 Tester: Ashish Author: Ashish

Hardware Version: 1.0 Software Version: N/A

Goal: Determine if the robot can light localize reliably.

Procedure: Place the robot facing away from the wall on the left corner tile. Run the ultrasonic localization and record the angle. After ultrasonic localization finishes run the light localization and record angle and the distance.

Expected result: The values should be close to zero.

Test Report: the test was performed 10 times and the results are shown in the table below

Run	US Angle(degrees)	Euclidean error(cm)	Final Angle(degrees)	
1	6	0.1	2	
2	-2	1.3	-3	
3	3	0.4	4	
4	0	0.6	1	
5	-5	1.5	-2	
6	4	1.1	6	
7	-1	0.1	-4	
8	2	1.9	5	
9	4	0.3	3	
10	0	1	2	
Mean:	1	0.8	1	
Standard Deviation:	3	0.6	3	

Conclusion: The robot always localized within 5 degrees and 2cm from (0,0) which is within the acceptable margin of error. It should be noted that this test was done when the battery was outputting at 8.0V and accurate localization is not guaranteed for anything less than 8.0V.

Action: No further testing is required unless the hardware configuration is changed.

Distribution: Software Development, Project management

<u>Test 4: Light localization I (2 light sensors)</u>

Date: 20/10/2018 Tester: Ashish Author: Ashish

Hardware Version: 1.1 Software Version: N/A

Goal: Determine if the robot can light localize reliably.

Procedure: Place the robot facing away from the wall on the left corner tile. Run the ultrasonic localization and record the angle. After ultrasonic localization finishes run the light localization and record angle and the distance.

Expected result: The values should be close to zero.

Test Report: the test was performed 10 times and the results are shown in the table below

Run	US Angle(degrees)	Euclidean error(cm)	Final Angle(degrees)	
1	10	FAILED	FAILED	
2	7	1.0	3	

3	6	FAILED	FAILED
4	8	1.6	2
5	11	FAILED	FAILED
6	12	3.2	2
7	3	FAILED	FAILED
8	9	FAILED	FAILED
9	9	2.1	3
10	5	1.9	2
Mean:	8	N/A	N/A
Standard Deviation:	2.64	N/A	N/A

When testing the light localization, the light sensor failed to detect lines in 5 out of the 10 trials and therefore failed the test.

Conclusion: Light localization is not reliable. The tests need to be done again when the software or/and hardware have been changed.

Action: This report will be sent to the hardware and software team to make necessary changes.

Distribution: Software Development, Hardware Development, Project management

<u>Test 5: Ring color detection</u>

Date: 22/10/2018 Tester: Ashish Author: Ashish

Hardware Version: N/A Software Version: N/A

Goal: To record the RGB values of each ring.

Procedure: Place the light sensor 2 cm away from the ring. Run the ring color detection test. Press any button on the robot and record the RGB values that are printed on the console. Collect 18 samples of RGB values. Repeat same procedure for the other 3 rings.

Expected result: The RGB values should give a gaussian distribution.

Test Report: The test was performed 18 times for each of the 4 rings. The mean and standard deviation was calculated using the following formulas:

$$mean = \frac{\sum_{i=0}^{n} Si}{n}$$
 $stddev = \sqrt{\sum_{i=0}^{n} \frac{(Si-mean)^2}{n-1}}$

The tables and graphs below show the results:

For the blue ring:

	R	G	В	
1	11.76471	54.90196	53.92157	
2	21.56863	92.15687	61.76471	
3	7.843138	33.33334	29.41176	
4	16.66667	73.52941	62.7451	
5	19.60784	84.31373	54.90196	
6	23.52941	106.8628	93.13726	
7	27.45098	112.7451	95.09804	
8	26.47059	113.7255	85.29412	
9	12.7451	66.66667	50	
10	21.56863	96.07843	72.54903	
11	10.78431	50.98039	39.21569	
12	28.43137	110.7843	100.9804	
13	30.39216 124.5098	124.5098	112.7451	
14	34.31373	133.3333	112.7451	
15	30.39216	116.6667	103.9216	
16	23.52941	100.9804	90.19608	
17	19.60784	86.27451	72.54903	
18	20.58824	93.13726	74.5098	
Mean	21.51416	91.72113	75.87146	
STD.dev	7.237454	26.37606	26.37606	

For the green ring:

	R	G	В
1	43.13726	82.35294	14.70588
2	35.29412	66.66667	12.7451
3	61.76471	124.5098	18.62745
4	63.72549	126.4706	24.5098
5	43.13726	85.29412	14.70588
6	11.76471	27.45098	3.921569
7	26.47059	55.88236	6.862745
8	51.96079	105.8824	20.58824
9	33.33334	68.62746	11.76471

10	29.41176	56.86275	10.78431	
11	55.88236	117.6471	19.60784	
12	22.54902	50	7.843138	
13	34.31373	69.60785	11.76471	
14	30.39216	59.80392	10.78431	
15	47.05882	96.07843	15.68628	
16	37.2549	77.45098	12.7451	
17	74.5098	148.0392	24.5098	
18	26.47059	54.90196	8.82353	
19	9.803922	23.52941	1.960784	
Mean	38.85449	78.79257	13.31269	
STD.dev	16.79279	32.88598	6.104473	

For the yellow ring:

	R	G	В	
1	117.6471	80.39216	18.62745	
2	127.451	83.33334	20.58824	
3	88.2353	59.80392	12.7451	
4	56.86275	39.21569	7.843138	
5	51.96079	35.29412	6.862745	
6	104.902	66.66667	16.66667	
7	108.8235	67.64706	19.60784	
8	96.07843	64.70589	14.70588	
9	110.7843	76.47059	15.68628	
10	156.8628	105.8824	22.54902	
11	146.0784	93.13726	24.5098	
12	66.66667	40.19608	12.7451	
13	77.45098 50.98039		11.76471	
14	78.43137	49.01961	11.76471	
15	83.33334	50.98039	15.68628	
16	89.21569	54.90196	15.68628	
17	129.4118	84.31373	19.60784	
18	176.4706	118.6275	25.4902	
Mean	115.6437	75.70333	17.94544	
STD.dev	38.39451	25.98696	5.541675	

For the orange ring:

	R	G	В
1	178.431	59.832	18.645
2	142.156	45.004	16.667
3	155.882	50.876	15.628
4	164.709	58.853	19.784
5	98.022	31.355	7.8138
6	121.568	42.186	11.471
7	107.841	36.251	9.822
8	85.912	25.402	6.845
9	147.048	50.345	13.749
10	157.841	45.804	21.563
11	94.165	26.479	11.771
12	144.177	44.115	14.588
13	156.868	156.868 44.115	
14	175.492	58.853	22.502
15	125.492	36.251	15.628
16	172.54	62.751	19.684
17	129.418	44.115	10.781
18	150.984	48.922	18.625
Mean	139.326	44.464	15.198
STD.dev	27.884	10.607	4.492

Conclusion: The test results shows that we can use the RGB values to detect the color of the ring accurately.

Action: The test report will be sent to the software team to make an accurate ring detection algorithm using the results.

Distribution: Software Development, Project management

Test 6: Ultrasonic accuracy test

Date: 3/11/2018 Tester: Ashish Author: Ashish

Hardware Version: 1.0 **Software Version**: N/A

Goal: To determine which ultrasonic sensor is the best for our use case

Procedure: Place the robot one grid length away from the wall and then 2 grid lengths away from the wall. Press any button on the robot to record the distance from the ultrasonic sensor

Expected result: The sensors will read the distance from the wall and display the results on the console. The distances read from the sensors should have an error of less than 2cm.

Test Report: The test was done 30 times for each grid length for each sensor and the data is in the table below:

Trial	1st Sensor			2nd Se	ensor		3rd Se	ensor	
	Distan (30.48		Distance (60.96cm)	Distan (30.48		Distance (60.96cm)	Distan (30.48		Distance (60.96cm)
1	30		60	30		61	32		61
2	31		60	30		61	31		63
3	32		61	29		59	32		63
4	31		61	32		63	31		62
5	31		61	31		61	33		60
6	31		61	31		63	29		60
7	31		61	30		61	29		62
8	31		61	31		63	33		62
9	32		60	29		61	34		60
10	33		60	32		60	29		63
11	31		61	32		62	30		62
12	32		61	31		62	32		61
13	31		61	30		60	33		62
14	31		61	31		62	29		62
15	30		61	31		62	32		62

16	32	61	32	61	32	63
17	31	62	32	62	31	61
18	33	60	29	62	32	62
19	32	61	31	61	30	61
20	32	61	31	63	34	62
21	31	61	32	62	31	59
22	32	61	31	61	33	64
23	31	62	31	62	31	63
24	31	61	31	63	34	61
25	33	61	31	62	34	61
26	31	60	33	62	32	61
27	33	61	32	62	31	63
28	31	61	32	60	34	63
29	31	60	33	63	31	62
30	30	60	32	61	32	60
Mean	31.4	60.8	31.1	61.6	31.7	61.7
STD.dev	0.84063468	0.54160256	1.04403065	1.0198039	1.55241747	1.15902257

From the data, all the sensors produced values close to the actual distance from the wall therefore we had to look at the standard deviation to decide on what sensor to choose. The first sensor had the smallest standard deviation.

Conclusion: We decided to choose the first sensor for ultrasonic localization

Action: The report is to be sent to the hardware team to make the changes to the robot

Distribution: Hardware development, Project Management

Test 7: Light Poller

Date: 5/11/2018 Tester: Ashish Author: Ashish

Hardware Version: 1.1

Software Version: N/A

Goal: To determine the light differential required to accurately detect the lines on the board.

Procedure: Place robot in the middle of the tile and run data acquisition test. The robot moves forward and reads the values from the light sensors. The values are displayed on the console. Record the values and plot a scatter graph.

Expected result: The graph should show when the lines are detected by the sensor.

Test Report: The robot went over 3 lines and the graphs below show the results.

The dips in the graph are when the sensor detects the lines.

Conclusion: A differential of 100 would allow the light sensor to accurately detect lines

Action: This report will be sent to the software team to make necessary changes.

Distribution: Software development, Project Manager

Test 8: Ring detection

Date: 5/11/2018
Tester: Ashish
Author: Ashish

Hardware Version: 1.1 **Software Version**: N/A

Goal: To determine the reliability of ring color detection.

Procedure: Run color detection test. Place a ring 2cm, 4cm and 6cm away from the light sensor and press any button on the robot. Record the color displayed on the console. Repeat 15 times and get the probability of the correct color detection. Repeat for all the rings.

Expected result: The rings should accurately detect the color for 2cm and 4cm but may not correctly detect the ring for 6cm because the light sensor does not work accurately at that distance.

Test Report: The tables below show the results:

Distance (2cm)						
		Ring				
	Blue	Green	Yellow	Orange		
Trial						
1	Blue	Green	Yellow	Orange		
2	Blue	Green	Yellow	Orange		
3	Blue	Green	Yellow	Orange		
4	Blue	Green	Yellow	Orange		
5	Blue	Green	Yellow	Orange		
6	Blue	Green	Yellow	Orange		
7	Blue	Green	Yellow	Yellow		
8	Blue	Green	Yellow	Orange		

9	Blue	Green	Orange	Orange
10	Blue	Green	Yellow	Orange
11	Blue	Green	Yellow	Orange
12	Blue	Blue	Yellow	Orange
13	Blue	Green	Yellow	Orange
14	Blue	Green	Yellow	Orange
15	Blue	Green	Yellow	Orange
Accuracy	100%	93.33%	93.33%	93.33%

Distance (4cm)				
			Ring	
	Blue	Green	Yellow	Orange
Trial				
1	Blue	Green	Orange	Orange
2	Blue	Green	Orange	Orange
3	Blue	Blue	Yellow	Orange
4	Blue	Green	Yellow	Orange
5	Blue	Green	Yellow	Orange
6	Blue	Green	Yellow	Orange
7	Blue	Green	Yellow	Orange
8	Blue	Green	Yellow	Orange
9	Blue	Green	Yellow	Orange
10	Blue	Green	Yellow	Yellow
11	Blue	Green	Yellow	Orange
12	Blue	Green	Yellow	Orange
13	Blue	Green	Yellow	Orange
14	Blue	Green	Yellow	Orange
15	Blue	Green	Yellow	Orange
Accuracy	100%	93.33%	86.67%	93.33%

Distance (6cm)					
	Ring				
	Blue	Green	Yellow	Orange	
Trial					
1	Blue	Green	Orange	Orange	
2	Blue	Green	Yellow	Yellow	
3	Blue	Green	Yellow	Orange	
4	Blue	Green	Yellow	Orange	
5	Blue	Green	Yellow	Orange	

6	Blue	Green	Orange	Orange
7	Blue	Blue	Yellow	Orange
8	Blue	Blue	Yellow	Yellow
9	Blue	Green	Yellow	Orange
10	Blue	Green	Yellow	Orange
11	Blue	Green	Yellow	Orange
12	Blue	Green	Yellow	Orange
13	Blue	Green	Orange	Orange
14	Blue	Blue	Yellow	Orange
15	Blue	Green	Yellow	Orange
Accuracy	100%	80.00%	80.00%	86.67%

The accuracy of the detection was always 80% or above. As expected the at 6cm the results are not as accurate as the 2cm.

Conclusion: Ring detection reliable. It is recommended that the light sensor come at least 2cm to the ring before trying to detect for accurate result.

Action: This report will be sent to the software team and hardware team to make necessary changes.

Distribution: Software development, Project Management

Test 9: Odometer

Date: 5/11/2018
Tester: Ashish
Author: Ashish

Hardware Version: 1.1 Software Version: N/A

Goal: To determine the reliability of the odometer.

Procedure: Place the robot in the middle of the left tile and run the square driver from lab 2. The robot will travel in a square and return to the starting position like shown in the diagram below. Measure the resulting Xs and Ys distances with respect to the starting position of the robot and record the X and Y values shown on the odometer. Compute the Euclidean error, mean value and standard deviation.

Expected Results: The Euclidean error should be smaller than 2cm.

Test Report: The test was performed 30 times and the results are shown in the table below:

Trial	Xs	Ys	X	Υ	Error
1	-0.40	0.10	0.21	0.38	0.64
2	0.30	-1.50	-0.63	-0.72	1.24
3	0.30	-1.20	0.45	-0.37	0.84
4	-0.10	0.20	0.34	0.21	0.42
5	0.40	0.20	0.61	-0.04	0.37
6	-0.20	-0.60	-0.17	0.64	1.20
7	0.30	0.70	0.06	-0.67	1.35
8	0.00	0.10	0.29	0.07	0.27
9	0.30	0.60	0.48	-0.35	0.92
10	0.10	0.80	-0.30	0.06	0.82
11	0.80	0.30	0.24	-0.60	1.07
12	0.20	-0.40	0.40	-0.52	0.20
13	0.60	0.00	0.36	0.29	0.36
14	-0.30	-0.20	-0.10	-0.09	0.20
15	0.10	1.00	0.11	-0.28	1.26
16	-0.10	0.10	-0.42	-0.66	0.88

17	0.60	-0.30	-0.02	-0.15	0.62
18	0.60	-0.80	-0.10	-0.27	0.86
19	-0.30	-0.10	0.30	-0.73	0.86
20	0.00	-0.10	0.07	-0.41	0.30
21	0.00	-0.70	0.44	-0.73	0.46
22	-0.80	-0.50	0.05	-0.51	0.87
23	-0.30	0.30	-0.42	-0.64	0.98
24	-0.30	-0.30	0.00	-0.33	0.31
25	0.10	-0.10	-0.33	-0.77	0.82
26	-0.40	-0.20	-0.20	-0.15	0.19
27	-0.60	-0.10	-0.47	-0.35	0.25
28	-0.70	-0.20	-0.17	0.37	0.79
29	-0.60	-0.30	-0.25	-0.05	0.44
30	-0.30	-0.60	-0.41	-0.44	0.20
	Mean			-0.26	0.67
	Standard deviation	n	0.33	0.37	0.36

The mean values and Euclidean error were all below 2 cm.

Conclusion: The odometer is reliable in the current hardware configuration as the error is in the acceptable margin. It should be noted that this test was done when the battery was outputting at 8.0V and accurate localization is not guaranteed for anything less than 8.0V.

Action: No further testing for odometer is required in this current hardware configuration.

Distribution: Software development, Project management

Test 10: Navigation I

Date: 5/11/2018

Tester: Ashish

Author: Ashish

Hardware Version: 1.1 Software Version: N/A

Goal: Determine if the robot can navigate from one point to another reliably.

Procedure: Place the robot at (1,1) point on the 8x8 grid. The robot must travel to 5 different waypoints. The robot must stop and beep after reaching every waypoint. The waypoints are (3,2), (3,6), (5,7), (4,5), (4,1). The waypoints are in the picture below

Expected result: The results should be close to the actual x, y and theta which are 182.88cm, 60.96cm and 180 degrees

Test Report: The test was done 30 times and the results are shown in the table below:

Trial	Measured X (cm)	Measured Y (cm)	Odometer X (cm)	Odometer Y (cm)	Error
1	180.10	59.49	182.30	62.01	3.35
2	182.30	61.70	180.80	58.01	3.98
3	185.30	60.10	181.80	61.45	3.75
4	183.10	62.65	182.60	59.49	3.20
5	180.80	60.75	178.90	61.68	2.12
6	182.50	62.10	180.80	60.78	2.15
7	182.50	60.61	179.20	62.89	4.01
8	181.90	60.84	183.40	63.65	3.19
9	181.40	62.00	181.80	63.00	1.08
10	184.00	62.90	179.80	62.33	4.24
11	182.30	61.40	180.30	61.72	2.03
12	182.90	61.85	185.40	61.68	2.51

13	183.10	58.82	182.90	62.37	3.56
14	185.10	58.39	181.40	61.11	4.59
15	184.00	62.00	181.10	61.02	3.06
16	180.60	59.16	183.20	61.02	3.20
17	182.80	58.67	181.70	61.41	2.95
18	183.00	62.08	183.10	58.96	3.12
19	184.40	58.24	182.80	62.43	4.49
20	180.30	62.70	184.00	63.00	3.71
21	180.90	60.42	183.90	60.16	3.01
22	181.60	61.01	181.40	62.10	1.11
23	182.20	57.38	180.80	57.21	1.41
24	181.20	60.24	181.10	60.20	0.11
25	184.90	60.64	181.70	62.78	3.85
26	182.30	61.84	182.10	61.41	0.47
27	183.30	62.52	183.50	60.09	2.44
28	182.90	60.15	182.20	62.37	2.33
29	181.40	62.87	181.70	62.55	0.44
30	177.40	62.14	180.30	63.13	3.06
Mean	182.22	60.92	181.87	61.87	3.01
STD.dev	1.833	1.833	1.444	1.713	0.407

The mean error is 3.01 which is above the acceptable margin of error. The cause of the improper navigation stems from the lack of rigidity in the ring collector part of the robot.

Conclusion: Minor modifications are required on the ring collector section of the robot for accurate navigation

Action: This report will be sent to the hardware team to improve the design of the robot and software to rework the code accordingly.

Distribution: Hardware Development, Software development, Project management

Test 11: Hardware stability I

Date: 5/11/2018 Tester: Ashish Author: Ashish

Hardware Version: 1.1 Software Version: N/A

Goal: Determine whether the hardware design is stable enough when the robot is moving and turning. Also check if the robot can move reliably while the rings are loaded.

Procedure: Place the robot on the ground and the stability test is run. The robot moves forward, backwards and turns. The robot is tested for each direction for speeds of 50, 100, 200 and 300. Turns are tested for 90, 180, 270 and 360. This should be repeated with 0 rings, 1 ring and 4 rings.

Expected result: The robot should remain stable and adding weights should not make it any less stable.

Test Report: Each of the tests were done 5 times for a total of 120 trials. The robot was stable when there were no rings loaded. After adding one ring the turning of the robot was slightly affected because the center of gravity changed. After adding 4 rings the robot stopped turning properly.

Conclusion: The ring collection section of the robot needs to be altered to be more rigid. Counter weights are also required on the back of the robot to balance the robot once the rings have been collected by the robot

Action: This report will be sent to the hardware team to immediately change hardware design so it supports rings and move at the same time and the structure as a whole is more rigid.

Distribution: Hardware Development, Project management

<u>Test 12: Hardware stability II (Pre-beta demo)</u>

Date: 11/11/2018 Tester: Ashish Author: Ashish

Hardware Version: 1.1 Software Version: N/A

Goal: Determine whether the hardware design is stable enough when the robot is moving and turning. Also check if the robot can move reliably while the rings are loaded, paying close attention to the flaws experienced in Test 11.

Procedure: The robot is placed on the ground and the stability test is run. The robot moves forward, backwards and turns. The robot is tested for each direction for speeds of 50, 100, 200

and 300. Turns are tested for 90, 180, 270 and 360. This should be repeated with 0 rings, 1 ring and 4 rings.

Expected result: The robot should remain stable and adding weights should not make it any less stable.

Test Report: Each of the tests were done 5 times for a total of 120 trials. The robot was stable when there were no rings loaded. After 1 ring or even 4 rings were added to the robot, it could still move properly around the board. The ring collection section of the robot is very rigid and does not flex at all even when 4 rings are on it.

Conclusion: Flaws from the previous hardware stability tests have all been fixed.

Action: No further testing for hardware stability is required for this hardware configuration.

Distribution: Hardware Development, Project management

Test 13: localization III (Pre-Beta Demo)

Date: 11/11/2018
Tester: Ashish
Author: Ashish

Hardware Version: 1.1

Software Version: Beta Demo

Goal: Determine if the robot can first localize with the ultrasonic sensor and then light localize reliably.

Procedure: Place the robot facing away from the wall on the left corner tile. Run the ultrasonic localization and record the angle. After ultrasonic localization finishes run the light localization and record angle and the distance. Measure the time the robot takes to complete localization and record it. Test the robot at different starting angles to test for worst case scenarios (time wise).

Expected result: The angles and error values should be close to zero whereas, the time to complete localization should be less than 30 seconds.

Test Report: the test was performed 40 times and the results are shown in the table below:

Trial	US Angle (deg)	Euclidean Error (cm)	Final Angle (deg)	Time (seconds)

1 4 1.7 3 2 5 0.9 2 3 3 0.3 3 4 4 2.0 2 5 3 1.4 1 6 5 1.5 1 7 6 1.5 2 8 2 0.3 1 9 5 1.3 2 10 5 1.0 0 11 0 1.2 2 12 0 1.1 4 13 7 2.8 2 14 4 2.0 1 15 4 -0.4 3 16 3 1.9 2 17 3 3.3 2 18 4 0.4 3 19 3 3.0 2	26 26 26 26 26 26 27 27 27 27 27 27 27 28
3 3 0.3 3 4 4 2.0 2 5 3 1.4 1 6 5 1.5 1 7 6 1.5 2 8 2 0.3 1 9 5 1.3 2 10 5 1.0 0 11 0 1.2 2 12 0 1.1 4 13 7 2.8 2 14 4 2.0 1 15 4 -0.4 3 16 3 1.9 2 17 3 3.3 2 18 4 0.4 3	26 26 26 26 26 27 27 27 27 27
4 4 2.0 2 5 3 1.4 1 6 5 1.5 1 7 6 1.5 2 8 2 0.3 1 9 5 1.3 2 10 5 1.0 0 11 0 1.2 2 12 0 1.1 4 13 7 2.8 2 14 4 2.0 1 15 4 -0.4 3 16 3 1.9 2 17 3 3.3 2 18 4 0.4 3	26 26 26 26 27 27 27 27 27 27
5 3 1.4 1 6 5 1.5 1 7 6 1.5 2 8 2 0.3 1 9 5 1.3 2 10 5 1.0 0 11 0 1.2 2 12 0 1.1 4 13 7 2.8 2 14 4 2.0 1 15 4 -0.4 3 16 3 1.9 2 17 3 3.3 2 18 4 0.4 3	26 26 26 27 27 27 27 27 27
6 5 1.5 1 7 6 1.5 2 8 2 0.3 1 9 5 1.3 2 10 5 1.0 0 11 0 1.2 2 12 0 1.1 4 13 7 2.8 2 14 4 2.0 1 15 4 -0.4 3 16 3 1.9 2 17 3 3.3 2 18 4 0.4 3	26 26 27 27 27 27 27 27
7 6 1.5 2 8 2 0.3 1 9 5 1.3 2 10 5 1.0 0 11 0 1.2 2 12 0 1.1 4 13 7 2.8 2 14 4 2.0 1 15 4 -0.4 3 16 3 1.9 2 17 3 3.3 2 18 4 0.4 3	26 27 27 27 27 27 27
8 2 0.3 1 9 5 1.3 2 10 5 1.0 0 11 0 1.2 2 12 0 1.1 4 13 7 2.8 2 14 4 2.0 1 15 4 -0.4 3 16 3 1.9 2 17 3 3.3 2 18 4 0.4 3	26 27 27 27 27 27 27
9 5 1.3 2 10 5 1.0 0 11 0 1.2 2 12 0 1.1 4 13 7 2.8 2 14 4 2.0 1 15 4 -0.4 3 16 3 1.9 2 17 3 3.3 2 18 4 0.4 3	27 27 27 27 27 27
10 5 1.0 0 11 0 1.2 2 12 0 1.1 4 13 7 2.8 2 14 4 2.0 1 15 4 -0.4 3 16 3 1.9 2 17 3 3.3 2 18 4 0.4 3	27 27 27 27 27
11 0 1.2 2 12 0 1.1 4 13 7 2.8 2 14 4 2.0 1 15 4 -0.4 3 16 3 1.9 2 17 3 3.3 2 18 4 0.4 3	27 27 27 27
12 0 1.1 4 13 7 2.8 2 14 4 2.0 1 15 4 -0.4 3 16 3 1.9 2 17 3 3.3 2 18 4 0.4 3	27 27 27
13 7 2.8 2 14 4 2.0 1 15 4 -0.4 3 16 3 1.9 2 17 3 3.3 2 18 4 0.4 3	27 27
14 4 2.0 1 15 4 -0.4 3 16 3 1.9 2 17 3 3.3 2 18 4 0.4 3	27
15 4 -0.4 3 16 3 1.9 2 17 3 3.3 2 18 4 0.4 3	
16 3 1.9 2 17 3 3.3 2 18 4 0.4 3	28
17 3 3.3 2 18 4 0.4 3	
18 4 0.4 3	28
	28
19 3 3.0 2	28
	28
20 3 -0.1 3	28
21 5 1.9 1	28
22 2 0.9 2	28
23 1 1.6 2	28
24 4 2.0 3	28
25 4 1.5 4	28
26 5 0.4 3	29
27 4 1.0 1	29
28 5 1.2 2	29
29 5 2.1 1	29
30 6 1.1 1	29
31 5 1.4 1	29
32 1 1.5 3	29
33 5 1.9 1	

34	7	0.1	3	30
35	5	1.6	2	30
36	5	1.1	3	30
37	5	0.5	3	30
38	6	1.1	0	30
39	5	0.6	2	30
40	3	1.7	2	30
Mean	4	1.3	2	28
STD.dev	1.544	0.792	0.942	1.387

The mean of the final angle is 2 degrees and and the mean Euclidean error is 1.3 which is in the acceptable margin of error. The mean time taken for localization is 28 seconds.

Conclusion: The robot always localized within 2 degrees and less than 2cm which is within the acceptable margin of error. The average time for localization was 28 seconds which is below the required 30 seconds. It should be noted that this test was done when the battery was outputting at 7.8V or higher and accurate localization is not guaranteed for anything less than 7.8V.

Action: No further tests are required for localization unless the hardware configuration is changed.

Distribution: Software Development, Project management

Test 14: Navigation II

Date: 11/11/2018

Tester: Ashish

Author: Ashish

Hardware Version: 1.1 Software Version: N/A

Goal: Determine if the robot can navigate from one point to another reliably and to also check if the flaws from the previous navigation tests have been fixed.

Procedure: Place the robot at (1,1) point on the 8x8 grid. The robot must travel to 5 different waypoints. The robot must stop and beep after reaching every waypoint. The waypoints are (3,2), (3,6), (5,7), (4,5), (4,1). The waypoints are in the picture below

Expected result: The results should be close to the x, y and theta

Test Report: Test was performed 30 times and the results are shown in the table below:

Trial	Measured X (cm)	Measured Y (cm)	Odometer X (cm)	Odometer Y (cm)	Error
1	178.3	59.4	182.4	61.0	4.36
2	186.7	61.4	185.8	62.5	1.41
3	179	60.4	179.6	60.5	0.57
4	181.2	60.6	181.9	61.0	0.85
5	180.5	60.9	184.9	61.1	4.38
6	181.1	60.0	181.4	60.6	0.67
7	180.2	60.2	181.4	59.5	1.44
8	186.7	61.5	181.6	61.0	5.18
9	179.8	61.9	181.9	60.1	2.72
10	181.2	61.6	178.1	61.7	3.14
11	180.7	60.8	182.5	61.9	2.14
12	179.7	62.2	181.6	60.7	2.44
13	181.1	59.8	179.9	62.3	2.81
14	181.3	62.3	182.5	61.4	1.46

STD.dev	2.274	0.963	1.949	0.888	0.33
Mean	180.9	60.9	181.5	61.1	0.58
30	180.9	59.3	176.3	61.2	5.02
29	182.8	61.2	183.4	61.3	0.62
28	179.9	61.7	178.2	60.5	2.07
27	178	61.0	180.9	59.4	3.34
26	183.2	60.9	179.3	59.6	4.15
25	179.8	62.8	184.1	61.4	4.55
24	183.5	61.0	179.7	61.5	3.87
23	180.1	59.7	182.7	62.5	3.80
22	181.4	59.3	181.6	60.8	1.50
21	176.3	60.3	181.9	60.8	5.58
20	183.5	61.4	180.3	62.1	3.27
19	179.9	61.4	181.6	62.3	1.90
18	180.4	60.6	182.1	62.7	2.68
17	178.2	63.1	182.5	61.6	4.52
16	183.1	60.8	181.5	59.9	1.79
15	178.6	60.7	182.4	61.4	3.83

The mean error is 0.58 which is within the acceptable margin of error. There was also no flexing in the ring collection section of the robot.

Conclusion: Flaws from the previous navigation test have been fixed and the errors are also in the acceptable margin of error. It should be noted that this test was done when the battery was outputting at 7.8V or higher and accurate localization is not guaranteed for anything less than 7.8V.

Action: No further testing is require unless the hardware configuration is changed

Distribution: Software Development, Project management

Test 15: Ring Grabbing I (Pre-beta demo)

Date: 11/11/2018 Tester: Ashish Author: Ashish

Hardware Version: 1.1 Software Version: N/A

Goal: Determine if the robot can grab the robot successfully.

Procedure: Place the robot on the one grid intersection behind the tree and run the ring grabber test. The Robot will go straight, collect the ring and back off. Record the number of time the ring is successfully collected by the robot.

Expected result: The robot will successfully collect the ring.

Test Report: The test was run 20 times and the results are shown in the table below:

Trial	Ring grabbed
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	No
10	Yes
11	Yes
12	Yes
13	Yes
14	No
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes

The ring collection algorithm has a 90% success rate. The robot only failed when the it was not positioned properly before the program was started.

Conclusion: The ring collection algorithm is good enough to be used in the beta demo.

Action: Further testing may be required to get the ring to be grabbed at all times.

Distribution: Software Development, Project management

<u>Test 16: Odometry Reliability II (Pre-beta demo)</u>

Date: 11/11/2018 Tester: Ashish Author: Ashish

Hardware Version: Beta Demo Version **Software Version**: Beta demo Version

Goal: Determine if the change in hardware configuration has changed odometry.

Procedure: Place the robot in the middle of the left tile and run the square driver from lab 2. The robot will travel in a square and return to the starting position like shown in the diagram below. Measure the resulting Xs and Ys distances with respect to the starting position of the robot and record the X and Y values shown on the odometer. Compute the Euclidean error, mean value and standard deviation.

Expected result: The error values should be as close to zero as possible.

Test Report: The test was done 30 times and the results are shown in the table below:

Trial	Xs	Ys	Х	Υ	Error
1	0.87	0.60	-0.01	0.81	0.91
2	0.70	0.34	0.67	1.21	0.87
3	0.36	0.71	0.76	0.08	0.74
4	0.38	0.47	0.35	1.28	0.81
5	0.51	-0.13	0.77	1.33	1.48
6	0.05	1.07	0.65	0.37	0.92
7	0.09	0.26	0.62	0.39	0.54
8	0.94	0.97	0.50	-0.25	1.29
9	0.99	-0.73	0.67	-0.09	0.72
10	0.17	0.31	-0.09	0.03	0.39
11	0.22	0.23	0.44	0.82	0.63
12	1.53	2.03	-0.50	0.73	2.41
13	0.61	-0.08	-0.42	0.20	1.07
14	0.33	1.02	0.17	0.56	0.49
15	0.96	0.37	1.83	0.17	0.89
16	0.63	-0.15	1.05	0.44	0.72
17	0.65	0.40	-0.71	0.75	1.40
18	0.25	0.70	0.75	0.17	0.72
19	0.48	-0.27	0.43	0.13	0.41
20	0.86	-0.65	0.87	0.33	0.98
21	0.43	-0.36	-0.44	0.08	0.98
22	1.84	-0.24	0.95	0.24	1.01
23	1.05	-0.02	0.24	1.29	1.54
24	1.06	0.30	0.51	-0.16	0.72
25	0.12	0.99	0.65	0.26	0.91
26	0.16	0.47	1.17	0.36	1.01
27	0.34	1.25	0.73	0.84	0.56
28	-0.34	1.05	0.52	0.32	1.13
29	0.94	1.47	1.26	0.84	0.70
30	0.29	0.50	0.99	-0.56	1.27
Mean	0.58	0.43	0.51	0.43	0.07
STD.dev	0.455	0.621	0.550	0.467	0.180

The results show that odometry is still in the acceptable margin of error

Conclusion: The change in hardware configuration did not affect the odometry. It should be noted that this test was done when the battery was outputting at 7.8V or higher and accurate odometer values are not guaranteed for any voltage less than 7.8V.

Action: No further testing is required unless the hardware configuration is changed.

Distribution: Software Development, Project management

Test 17: Integration Test (Beta demo)

Date: 12/11/2018 Tester: Ashish Author: Ashish

Hardware Version: 1.1 **Software Version**: N/A

Goal: Determine if the robot can successfully localize, navigate and collect a ring.

Procedure: The robot is placed at corner 1 and the beta demo program is run. The robot localizes, then navigates to (2.4,2), then navigates to (2.4, 6), then to (4,7). Then the robot moves forward to grab the ring. Once the ring is collected the robot moves back and shuts down.

Expected result: The robot should successfully collect the ring.

Test Report: The results of the beta demo are shown in the table below:

Conclusion: The results conclude that the robot fails to properly navigate to coordinate (4,7) 60% of the time thereby failing to always to grab the ring

Action: This report will be sent to the software team to fix navigation of the robot

Distribution: Software Development, Project management