Machine Learning Foundations

(機器學習基石)

Lecture 15: Validation 验证

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

Lecture 14: Regularization

minimizes augmented error, where the added regularizer effectively limits model complexity

Lecture 15: Validation

- Model Selection Problem
- Validation
- Leave-One-Out Cross Validation
- V-Fold Cross Validation

So Many Models Learned

Even Just for Binary Classification

$$\mathcal{A} \in \{ \text{ PLA, pocket, linear regression, logistic regression} \} \\ \times \\ T \in \{ 100, 1000, 10000 \} \\ \times \\ \eta \in \{ 1, 0.01, 0.0001 \} \\ \times \\ \Phi \in \{ \text{ linear, quadratic, poly-10, Legendre-poly-10} \} \\ \times \\ \Omega(\mathbf{w}) \in \{ \text{ L2 regularizer, L1 regularizer, symmetry regularizer} \} \\ \times \\ \lambda \in \{ 0, 0.01, 1 \}$$

in addition to your favorite combination, may need to try other combinations to get a good g

Model Selection Problem

which one do you prefer? :-)

- given: M models $\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_M$, each with corresponding algorithm $\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_M$
- goal: select \mathcal{H}_{m^*} such that $g_{m^*} = \mathcal{A}_{m^*}(\mathcal{D})$ is of low $E_{\mathrm{out}}(g_{m^*})$
- unknown E_{out} due to unknown $P(\mathbf{x}) \& P(y|\mathbf{x})$, as always :-)
- arguably the most important practical problem of ML

how to select? visually?
—no, remember Lecture 12? :-)

Model Selection by Best E_{in}

select by best E_{in} ?

$$m^* = \underset{1 \leq m \leq M}{\operatorname{argmin}} (E_m = \underline{E}_{in}(\mathcal{A}_m(\mathcal{D})))$$

- Φ₁₁₂₆ always more preferred over Φ₁; $\lambda = 0$ always more preferred over $\lambda = 0.1$ —overfitting?
- if A_1 minimizes E_{in} over \mathcal{H}_1 and A_2 minimizes E_{in} over \mathcal{H}_2 ,
 - $\implies g_{m^*}$ achieves minimal E_{in} over $\mathcal{H}_1 \cup \mathcal{H}_2$ 不是太明白这点?
 - \implies 'model selection + learning' pays $d_{VC}(\mathcal{H}_1 \cup \mathcal{H}_2)$
 - —bad generalization?

selecting by E_{in} is dangerous

Model Selection by Best Etest

select by best E_{test} , which is evaluated on a fresh \mathcal{D}_{test} ?

$$m^* = \underset{1 \le m \le M}{\operatorname{argmin}} (E_m = E_{\text{test}}(\mathcal{A}_m(\mathcal{D})))$$

• generalization guarantee (finite-bin Hoeffding):

$$m{\mathcal{E}_{\mathsf{out}}(g_{\mathit{m}^*}) \leq m{\mathcal{E}_{\mathsf{test}}(g_{\mathit{m}^*})} + O\left(\sqrt{rac{\log \mathit{M}}{\mathit{N}_{\mathsf{test}}}}
ight)$$

- -yes! strong guarantee :-)
- but where is D_{test}?—your boss's safe, maybe? :-(

selecting by Etest is infeasible and cheating

Comparison between E_{in} and E_{test}

in-sample error Ein

- calculated from D
- feasible on hand

test error E_{test}

- calculated from $\mathcal{D}_{\text{test}}$
- infeasible in boss's safe
- 'clean' as D_{test} never used for selection before

something in between: E_{val}

- calculated from $\mathcal{D}_{\mathsf{val}} \subset \mathcal{D}$
- feasible on hand
- 'clean' if \mathcal{D}_{val} never used by \mathcal{A}_m before

selecting by E_{val} : legal cheating:-)

For $\mathcal{X}=\mathbb{R}^d$, consider two hypothesis sets, \mathcal{H}_+ and \mathcal{H}_- . The first hypothesis set contains all perceptrons with $w_1\geq 0$, and the second hypothesis set contains all perceptrons with $w_1\leq 0$. Denote g_+ and g_- as the minimum- E_{in} hypothesis in each hypothesis set, respectively. Which statement below is true?

- 1 If $E_{in}(g_+) < E_{in}(g_-)$, then g_+ is the minimum- E_{in} hypothesis of all perceptrons in \mathbb{R}^d .
- 2 If $E_{\text{test}}(g_+) < E_{\text{test}}(g_-)$, then g_+ is the minimum- E_{test} hypothesis of all perceptrons in \mathbb{R}^d .
- The two hypothesis sets are disjoint.
- 4 None of the above

For $\mathcal{X}=\mathbb{R}^d$, consider two hypothesis sets, \mathcal{H}_+ and \mathcal{H}_- . The first hypothesis set contains all perceptrons with $w_1\geq 0$, and the second hypothesis set contains all perceptrons with $w_1\leq 0$. Denote g_+ and g_- as the minimum- E_{in} hypothesis in each hypothesis set, respectively. Which statement below is true?

- 1 If $E_{in}(g_+) < E_{in}(g_-)$, then g_+ is the minimum- E_{in} hypothesis of all perceptrons in \mathbb{R}^d .
- ② If $E_{\text{test}}(g_+) < E_{\text{test}}(g_-)$, then g_+ is the minimum- E_{test} hypothesis of all perceptrons in \mathbb{R}^d .
- The two hypothesis sets are disjoint.
- 4 None of the above

Reference Answer: 1

Note that the two hypothesis sets are not disjoint (sharing ' $w_1 = 0$ ' perceptrons) but their union is all perceptrons.

Validation Set \mathcal{D}_{val}

$$E_{\text{in}}(h) \qquad \qquad E_{\text{val}}(h)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

- $\mathcal{D}_{val} \subset \mathcal{D}$: called **validation set**—'on-hand' simulation of test set 如果P-K分布 , 那么怎么取部分P使得部分
- to connect E_{val} with E_{out} : max(K) max
- to make sure \mathcal{D}_{val} 'clean': feed only $\mathcal{D}_{\text{train}}$ to \mathcal{A}_m for model selection

$$E_{\mathsf{out}}(\underline{g_m^-}) \leq E_{\mathsf{val}}(\underline{g_m^-}) + O\left(\sqrt{\frac{\log M}{K}}\right)$$

Model Selection by Best E_{val}

$$m^* = \underset{1 \le m \le M}{\operatorname{argmin}}(E_m = E_{\text{val}}(\mathcal{A}_m(\mathcal{D}_{\text{train}})))$$

generalization guarantee for all m:

$$E_{\mathsf{out}}(\underline{g_m^-}) \leq E_{\mathsf{val}}(\underline{g_m^-}) + O\left(\sqrt{\frac{\log M}{K}}\right)$$

heuristic gain from N – K to N:

$$E_{ ext{out}}\left(\underbrace{oldsymbol{g_{m^*}}}_{\mathcal{A}_{m^*}(\mathcal{D})}
ight) \leq E_{ ext{out}}\left(\underbrace{oldsymbol{g_{m^*}}}_{\mathcal{A}_{m^*}(\mathcal{D}_{ ext{train}})}
ight)$$

-learning curve, remember? :-)

$$E_{ ext{out}}(g_{m^*}) \leq E_{ ext{out}}(g_{m^*}^-) \leq E_{ ext{val}}(g_{m^*}^-) + O\left(\sqrt{\frac{\log M}{K}}\right)^{2}$$

Validation in Practice

use validation to select between \mathcal{H}_{Φ_5} and $\mathcal{H}_{\Phi_{10}}$

- in-sample: selection with E_{in}
- optimal: cheating-selection with E_{test} 虚线
- sub-g: selection with E_{val} and report $g_{m^*}^-$ 不重新做的结果
- full-g: selection with E_{val} and report g_{m^*} $-E_{\text{out}}(g_{m^*}) \leq E_{\text{out}}(g_{m^*}^-)$ indeed

why is sub-g worse than in-sample some time?

Validation

reasoning of validation:

这是一个窘境,拿太多去训练对右边好,拿太好去训 练去测试好左边

 $E_{\text{out}}(g) \approx \text{(small } K\text{)}$

 $E_{\text{out}}(g^-) \approx E_{\text{val}}(g^-)$ (large K)

- large K: every E_{val} ≈ E_{out}, but all g_m^- much worse than g_m
- small K: every $g_m \approx g_m$, but E_{val} far from E_{out}

practical rule of thumb: $K = \frac{1}{2}$

For a learning model that takes N^2 seconds of training when using N examples, what is the total amount of seconds needed when running the whole validation procedure with $K = \frac{N}{5}$ on 25 such models with different parameters to get the final g_{m^*} ?

- $0 6N^2$
- $2 17N^2$
- $3 25N^2$
- $4 26N^2$

For a learning model that takes N^2 seconds of training when using N examples, what is the total amount of seconds needed when running the whole validation procedure with $K = \frac{N}{5}$ on 25 such models with different parameters to get the final g_{m^*} ?

- $0.6N^2$
- $2 17N^2$
- $3 25N^2$
- $4 26N^2$

Reference Answer: (2)

To get all the g_m^- , we need $\frac{16}{25}N^2 \cdot 25$ seconds. Then to get g_{m^*} , we need another N^2 seconds. So in total we need $17N^2$ seconds.

再训练一波的意思

Extreme Case: K = 1

reasoning of validation:

K表示的是留下来的资料

- take K=1? $\mathcal{D}_{\text{val}}^{(n)}=\{(\mathbf{x}_n,y_n)\}$ and $\mathbf{E}_{\text{val}}^{(n)}(\mathbf{g}_n^-)=\operatorname{err}(\mathbf{g}_n^-(\mathbf{x}_n),y_n)=\mathbf{e}_n$
- make e_n closer to $E_{\text{out}}(g)$?—average over possible $E_{\text{val}}^{(n)}$

$$E_{\text{loocv}}(\mathcal{H}, \mathcal{A}) = \frac{1}{N} \sum_{n=1}^{N} e_n = \frac{1}{N} \sum_{n=1}^{N} \text{err}(g_n^{-}(\mathbf{x}_n), y_n)$$

后面将说明这样的Eout是满足条件的

hope:
$$E_{loocv}(\mathcal{H}, \mathcal{A}) \approx E_{out}(g)$$

Illustration of Leave-One-Out

Theoretical Guarantee of Leave-One-Out Estimate

does $E_{loocv}(\mathcal{H}, \mathcal{A})$ say something about $E_{out}(g)$? yes, for average E_{out} on size-(N-1) data

$$\begin{split} \mathcal{E}_{\mathcal{D}} E_{\text{loocv}}(\mathcal{H}, \mathcal{A}) &= \mathcal{E}_{\mathcal{D}} \frac{1}{N} \sum_{n=1}^{N} e_{n} &= \frac{1}{N} \sum_{n=1}^{N} \mathcal{E}_{\mathcal{D}} e_{n} \\ &= \frac{1}{N} \sum_{n=1}^{N} \sum_{\mathcal{D}_{n}(\mathbf{x}_{n}, \mathbf{y}_{n})}^{\text{hhtsolvesses}} \operatorname{err}(g_{n}^{-}(\mathbf{x}_{n}), \mathbf{y}_{n}) \\ &= \frac{1}{N} \sum_{n=1}^{N} \sum_{n=1}^{N} \mathcal{E}_{\text{out}}(g_{n}^{-}) \underbrace{\text{pull}}_{\mathbf{y}, \mathbf{y}}^{\text{hosteristics}} \\ &= \frac{1}{N} \sum_{n=1}^{N} \overline{E_{\text{out}}}(N-1) \underbrace{= \overline{E_{\text{out}}}(N-1)}_{\text{Exalt}} \end{split}$$

expected $E_{\text{loocv}}(\mathcal{H}, \mathcal{A})$ says something about expected $E_{\text{out}}(g^-)$ —often called 'almost unbiased estimate of $E_{\text{out}}(g)$ '

Leave-One-Out in Practice

Consider three examples $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_3, y_3)$ with $y_1 = 1$, $y_2 = 5$, $y_3 = 7$. If we use E_{loocv} to estimate the performance of a learning algorithm that predicts with the average y value of the data set—the optimal constant prediction with respect to the squared error. What is E_{loocv} (squared error) of the algorithm?

- **1** 0
- 2 <u>56</u> 9
- $\frac{60}{9}$
- **4** 14

Consider three examples $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_3, y_3)$ with $y_1 = 1$, $y_2 = 5$, $y_3 = 7$. If we use E_{loocv} to estimate the performance of a learning algorithm that predicts with the average y value of the data set—the optimal constant prediction with respect to the squared error. What is E_{loocv} (squared error) of the algorithm?

- **①** 0
- 2 56 9
- $\frac{60}{9}$
- **4** 14

Reference Answer: (4)

This is based on a simple calculation of $e_1 = (1-6)^2$, $e_2 = (5-4)^2$, $e_3 = (7-3)^2$.

Disadvantages of Leave-One-Out Estimate

Computation

$$E_{\text{loocv}}(\mathcal{H}, \mathcal{A}) = \frac{1}{N} \sum_{n=1}^{N} e_n = \frac{1}{N} \sum_{n=1}^{N} \text{err}(g_n^{-}(\mathbf{x}_n), y_n)$$

- N 'additional' training per model, not always feasible in practice
- except 'special case' like analytic solution for linear regression

有直接公式避免训练 K长时间

Stability—due to variance of single-point estimates

 E_{loocv} : not often used practically

V-fold Cross Validation

how to decrease computation need for cross validation?

- essence of leave-one-out cross validation: partition $\mathcal D$ to N parts, taking N-1 for training and 1 for validation orderly
- V-fold cross-validation: random-partition of \mathcal{D} to V equal parts,

take V-1 for training and 1 for validation orderly

$$E_{\text{cv}}(\mathcal{H}, \mathcal{A}) = \frac{1}{V} \sum_{v=1}^{V} E_{\text{val}}^{(v)}(g_v^-)$$

• selection by E_{cv} : $m^* = \underset{1 < m < M}{\operatorname{argmin}} (E_m = E_{cv}(\mathcal{H}_m, \mathcal{A}_m))$

practical rule of thumb: V = 10

Final Words on Validation

'Selecting' Validation Tool

- V-Fold generally preferred over single validation if computation allows
- 5-Fold or 10-Fold generally works well:
 not necessary to trade V-Fold with Leave-One-Out

Nature of Validation

- all training models: select among hypotheses
- all validation schemes: select among finalists
- all testing methods: just evaluate

validation still more optimistic than testing

do not fool yourself and others :-), report test result, not best validation result

For a learning model that takes N^2 seconds of training when using N examples, what is the total amount of seconds needed when running 10-fold cross validation on 25 such models with different parameters to get the final g_{m^*} ?

- $1 \frac{47}{2} N^2$
- $247N^2$
- $\frac{407}{2}N^2$
- $407N^2$

For a learning model that takes N^2 seconds of training when using N examples, what is the total amount of seconds needed when running 10-fold cross validation on 25 such models with different parameters to get the final g_{m^*} ?

- $1 \frac{47}{2} N^2$
- $247N^2$
- $\frac{407}{2}N^2$
- $407N^2$

Reference Answer: (3)

To get all the $E_{\rm cv}$, we need $\frac{81}{100}N^2 \cdot 10 \cdot 25$ seconds. Then to get g_{m^*} , we need another N^2 seconds. So in total we need $\frac{407}{2}N^2$ seconds.

Summary

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

Lecture 14: Regularization

Lecture 15: Validation

- Model Selection Problem dangerous by E_{in} and dishonest by E_{test}
- Validation select with $E_{\text{val}}(\mathcal{D}_{\text{train}})$ while returning $\mathcal{A}_{m^*}(\mathcal{D})$
- Leave-One-Out Cross Validation

huge computation for almost unbiased estimate

- V-Fold Cross Validation reasonable computation and performance
- next: something 'up my sleeve'