Scalable Feature Learning for Networks

Aditya Grover, Jure Leskovec KDD '16: Proceedings of the 22nd ACM SIGKDD

21.03.02 논문 리뷰, 이보현

INDEX 4x

- 1. INTRODUCTION
- 2. RELATED WORK
- 3. FEATURE LEARNING FRAMEWORK
- 4. EXPERIMENTS
- 5. DISCUSSION AND CONCLUSION

1. INTRODUCTION

• 기존 feature representation learning 학습의 문제점

feature representation learning

: 그래프의 feature(특징)을 잘 표현하는 임베딩 벡터를 얻는 것이 목표

< 기존 feature representation learning 학습 방법(비지도 학습) >

접근법	종류	문제점
Dimensionality Reduction	Laplacian eigenmaps	고유값 분해로 인한 시간 소요가 큼. 과적합(overfitting)으로 인한 후속과제 성능 저조
노드 간 연결성 기반 기술	Deep walk, Line	효율적인 알고리즘이지만, <mark>그래프 고유의 연결 패턴</mark> 이 잘 반영 되지 않은 접근 방법

1. INTRODUCTION

• 기존 feature representation learning 학습의 문제점

그래프 고유의 연결 패턴

: 그래프에서 가까이에 위치하는 노드들이 유사한 경우

Structural equivalence

: 그래프에서 비슷한 이웃 구조를 가진 노드들이 유사한 겸우

- -> 실제 세상의 그래프는 이 두 패턴(homophily, structural equivalence)이 혼합되어 나타남.
- -> feature representation learning 과정에 이를 반영할 필요가 있음

목표: 그래프에 삼관 없이, flexible 하고 general 한 feature representation learning 방법 제시

Word2vec

Word2Vec

Skip-gram — Embedding input data

 가점
 : 어느 한 단어로 부터 가까이에 위치하는 단어들은 높은 유사도를 가진다.

Node2Vec

Sampling --- Embedding

- 가점 : 어느 한 노드로부터 sampling 된 노드들은 높은 유 사도를 가진다.
- 그래프는 순서가 있는 데이터가 아님
- Sampling Strategy: 유사 노드를 선택하는 밤법

• Node2vec 목적 함수

로그 가늠도 최대화 (maximizes the log-probability)

U 노드를 임베딤 벡터로 표현했을 때, U 노드의 유사 노드가 그 근처에서 관찰될 확률 $\sum_{u \in V} \log \frac{Pr(N_S(u)|f(u))}{f(u)}.$ s라는 Sampling Strategy 밤법으로 u 노드의 feature 표현 sampling된 노드 U의 유사 노드들 (임베딤 벡터)

가점

1. Conditional independence

: 한 노드가 주어졌을 때, 다른 노드들이 관찰 될 확률은 독립적

$$Pr(N_S(u)|f(u)) = \prod_{n_i \in N_S(u)} Pr(n_i|f(u)).$$

2. Symmetry in feature space: 노드 간의 관계는 임베딩 공간에서도 유지됨.

$$Pr(n_i|f(u)) = \frac{\exp(f(n_i) \cdot f(u))}{\sum_{v \in V} \exp(f(v) \cdot f(u))}.$$

• Node2vec 목적 함수

가정에 의한 목적 함수 간단화

$$\max_{f} \sum_{u \in V} \left[-\log Z_u + \sum_{n_i \in N_S(u)} f(n_i) \cdot f(u) \right]$$

$$Z_u = \sum_{v \in V} \exp(f(u) \cdot f(v))$$

최적화 진행

- Negative sampling
 - 노드 수가 많을 겸우 Z_u 계산량이 크므로, k개의 노드만 뽑아 정규화 진행.
 - 노드의 연결성에 비례한 확률로 negative sample 뽑힘.
- SGA(stochastic gradient ascent)
 - 확률적 겸사 증가법으로 최적의 feature 계산

3. FEATURE LEARNING

Sampling Strategy – 2nd order Random walk

- 2nd order Random walk : p, q 파라미터에 의한 임의보행
- 전이 확률 현재 임의 보행 과정: t -> v -> ?

$$P(c_i = x \mid c_{i-1} = v) = \begin{cases} \frac{\pi_{vx}}{Z} & \text{if } (v, x) \in E\\ 0 & \text{otherwise} \end{cases}$$

$$\pi_{oldsymbol{vx}} = lpha_{oldsymbol{pq}}(t,x) \cdot \underline{w_{oldsymbol{vx}}}$$
고점 엔지 가중치

(static edge weights)

동학 편함 (Search Bias)
$$lpha_{pq}(t,x)=egin{cases} rac{1}{p} & ext{if } d_{tx}=0 \\ 1 & ext{if } d_{tx}=1 \\ rac{1}{q} & ext{if } d_{tx}=2 \end{cases}$$

If, p = q = 1: DeepWalk

- 탐색 편향(Search bias)

노드+에서 노드v로 임의 보행한 후, 다음 노드로 전이 될 확률은 노드 +로 부터의 거리에 의해 편향 됨 -> 2nd order Markovian.

- return parameter, p
 - p 값이 크면 (>max(q, 1)) 새로운 노드로 임의 보행
 - p 값이 작으면 (< min(q, 1)) 노드 재 방문율 증가, 시작 노드로 부터 가까이 임의 보행
- In-out parameter, q
 - q 값이 크면 (>1) 이전 노드로 부터 가까이서 임의 보햄 -> BFS
 - q 값이 작으면 (<1) 이전 노드로 부터 멀리서 임의 보햄 -> DFS

Sampling Strategy – q parameters

- In-out parameter, q
 - q 값이 크면 (>1) 이전 노드로 부터 가까이서 임의 보행 -> BFS
 - BFS : 너비 우선 탐색
 - 미시적 관점에서 임의 보행
 - Structural equivalence 반염된 feature learning 결과를 얻음
 - q 값이 작으면 (<1) 이전 노드로 부터 멀리서 임의 보햄 -> DFS
 - DFS : 깊이 우선 탐색
 - 거시적 관점에서 임의 보행
 - Homophily 반염된 feature learning 결과를 얻음

<u 노드로 부터의 BFS, DFS sampling strategy로 임의 보행>

3. FEATURE LEARNING

Sampling Strategy – q parameters

< 왜 BFS는 structure equivalence, DFS는 homophily를 반염하게 될까?>
- 논문에서 언급 된 내용 아니고 되고셜, 아닐 수 있음

시작 노드 s로부터 BFS, DFS 관점에 서 3개의 노드를 방문할 때, 방문 가능 한 경우를 살펴보자

BFS

시작 노드 s로부터 가까울 수록 방문 회수가 커짐 -> 위치에 따라 유사 노드 정의

-> structure equivalence

각 노드의 방문 회수를 표시

• 방문회수의 상대적인 비교에 따라 유사한 노드로 간주

DFS

전체 노드의 방문 회수 동일

-> 시작 노드를 기점으로 연결된 노드는 유사 노드

-> homophily

node2vec

임의 보행의 장점 (Benefits of random walks)

- 1. 메모리 효율섬
 - 모든 노드의 인접한 노드들을 저장하는 공간 복잡도 O(IEI)
 - 2^{nd} order random walk 시, 각 노드의 이웃 노드간 삼호 연결섬을 저장하는 공간 복잡도 $O(a^2|V|)$ α = 그래프 평균 연결섬
- 2. 시간 효율성
 - 임의 보행 결과를 재 사용함으로서 샘플링 속도 증가
 - 예시: 길이 5의 임의 보행 결과 -> 길이 3의 임의 보행 결과로 재사용
 - $N_s(u) = \{s_4, s_5, s_6, s_8, s_9\}$
 - $N_s(u) = \{s_4, s_5, s_6\}$
 - $N_s(S_4) = \{s_5, s_6, s_8\}$
 - $N_s(S_5) = \{s_6, s_8, s_9\}$

Case Study: Les Misérables network

• Graph : 레미제라블 소설 속 등장 인물과 인물 간의 관계

• Node : 등장 인물

• Edge : 함께 등장하는 인물

• **결과**: 비슷한 feature 끼리 같은 색상으로 표현

- 소설 속 삼호 작용이 많은(같이 등장하는) 인물들끼리 분류 됨
- Homophily 가중 결과
- p = 1, q = 0.5

- 소설 속 비슷한 역할(메인 캐릭터, 서브 캐릭터, 씬 사이의 연결 캐릭터)끼리 분류 됨
- Structural equivalence 가중 결과
- p = 1, q = 2
- 의미 : Node2Vec 밤법으로 Homophily, Structural equivalence 모두 표현 가능함 입증

4. EXPERIMENTS

Multi-label classification / Link prediction

• 비교 feature representation learning 학습 방법 : Spectral Clustering, DeepWalk, LINE, node2vec

< Multi-label classification 결과 >
 -> 전반적으로 node2vec 이 최삼의 성과를 보임

Op	Algorithm	Dataset		
		Facebook	PPI	arXiv
	Common Neighbors	0.8100	0.7142	0.8153
	Jaccard's Coefficient	0.8880	0.7018	0.8067
	Adamic-Adar	0.8289	0.7126	0.8315
	Pref. Attachment	0.7137	0.6670	0.6996
	Spectral Clustering	0.5960	0.6588	0.5812
(a)	DeepWalk	0.7238	0.6923	0.7066
	LINE	0.7029	0.6330	0.6516
	node2vec	0.7266	0.7543	0.7221
	Spectral Clustering	0.6192	0.4920	0.5740
(b)	DeepWalk	0.9680	0.7441	0.9340
	LINE	0.9490	0.7249	0.8902
	node2vec	0.9680	0.7719	0.9366
	Spectral Clustering	0.7200	0.6356	0.7099
(c)	DeepWalk	0.9574	0.6026	0.8282
	LINE	0.9483	0.7024	0.8809
	node2vec	0.9602	0.6292	0.8468
	Spectral Clustering	0.7107	0.6026	0.6765
(d)	DeepWalk	0.9584	0.6118	0.8305
	LINE	0.9460	0.7106	0.8862
	node2vec	0.9606	0.6236	0.8477

〈Link prediction 결과 〉

-> Hadamard 밤법(edge feature 표현) 안점적(노란색 구간)
-> 그 중에서 node2vec이 최상의 성과를 보임

5. DISCUSSION AND CONCLUSION

DISCUSSION AND CONCLUSION

- Node2Vec
 - 2개의 파라미터 p, q 로 임의 보햄 밤법을 유연하게 조절할 수 있음(Homophily, Structural equivalence)
 - 노드 수 증가에 따른 feature representation learning 학습 속도도 선형적으로 증가
 - 노이즈가 있는 그래프 데이터에도 robust한 성능
 - Multi-label classification 과 Link prediction 에서 무수한 섬능을 보임

References

- 논문
 - Aditya Grover, Jure Leskovec (2016) node2vec: Scalable Feature Learning for Networks. KDD '16: Proceedings of the 22nd ACM SIGKDD
- 블로그
 - https://2hyes.tistory.com/145
- 감의 자료
 - CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University
 - 부스트 캠프 Al Tech Week5(그래프) 교육 자료 신기점 교수님, 네이버 커넥트 재단

Q&A