

Copyright © 2013 John Smith

PUBLISHED BY PUBLISHER

BOOK-WEBSITE.COM

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the "License"). You may not use this file except in compliance with the License. You may obtain a copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

First printing, March 2013

-1	Formulación Química	
1	Formulación Inorgánica	7
1.1	Introducción	7
1.2	Sistemas de Nomenclatura	7
1.2.1	Nomenclatura de Composición	8
1.2.2	Nomenclatura de Sustitución	8
1.2.3	Nomenclatura de Adición	8
1.3	Tipos de Nomenclatura más utilizados	8
1.4	Número de Oxidación y Valencia	9
1.5	Sustancias Binarias	9
1.5.1	Formulación General de Sustancias Binarias	9
1.5.2	Óxidos	9
1.6	Citation	10
1.7	Lists	10
1.7.1	Numbered List	10
1.7.2	Bullet Points	
1.7.3	Descriptions and Definitions	10
2	In-text Elements	11
2.1	Theorems	11
2.1.1	Several equations	11
2.1.2	Single Line	11

2.2	Definitions	11
2.3	Notations	12
2.4	Remarks	12
2.5	Corollaries	12
2.6	Propositions	12
2.6.1 2.6.2	Several equations	12 12
2.7	Examples	12
2.7.1 2.7.2	Equation and Text	13 13
2.8	Exercises	13
2.9	Problems	13
2.10	Vocabulary	13
Ш	Part Two	
3	Presenting Information	17
3.1	Table	17
3.2	Figure	17

Formulación Química

1	Formulación Inorgánica 7
1.1	Introducción
1.2	Sistemas de Nomenclatura
1.3	Tipos de Nomenclatura más utilizados
1.4	Número de Oxidación y Valencia
1.5	Sustancias Binarias
1.6	Citation
1.7	Lists
2	In-text Elements
2.1	Theorems
2.2	Definitions
2.3	Notations
2.4	Remarks
2.5	Corollaries
2.6	Propositions
2.7	Examples
2.8	Exercises
2.9	Problems
2.10	Vocabulary
	•

1.1 Introducción

En el desarrollo de la nomenclatura química han surgido varios sistemas para la construcción de los nombres de los elementos y compuestos químicos. Cada uno de los sistemas tiene su propio conjunto de reglas. Algunos sistemas son de aplicación general; en cambio, otros han surgido de la necesidad de usar sistemas más especializados en áreas determinadas de la química.

En concreto, en lo referente a la química inorgánica, tres son los sistemas principales de nomenclatura: la nomenclatura de composición, la de sustitución y la de adición.

La nomenclatura de adición es quizás la que puede usarse de forma más generalizada en química inorgánica. La nomenclatura de sustitución puede usarse en determinadas áreas. Estos dos sistemas requieren el conocimiento de la estructura de las especies químicas que van a ser nombradas. En cambio, la nomenclatura de composición puede usarse cuando no es necesario aportar información sobre la estructura de las sustancias, o no se conoce, y sólo se indica la estequiometría o composición.

1.2 Sistemas de Nomenclatura

En el desarrollo de la nomenclatura química han surgido varios sistemas para la construcción de los nombres de los elementos y compuestos químicos. Cada uno de los sistemas tiene su propio conjunto de reglas. Algunos sistemas son de aplicación general; en cambio, otros han surgido de la necesidad de usar sistemas más especializados en áreas determinadas de la química. En concreto, en lo referente a la química inorgánica, tres son los sistemas principales de nomenclatura: la nomenclatura de composición, la de sustitución y la de adición. La nomenclatura de adición es quizás la que puede usarse de forma más generalizada en química inorgánica. La nomenclatura de sustitución puede usarse en determinadas áreas. Estos dos sistemas requieren el conocimiento de la estructura de las especies químicas que van a ser nombradas. En cambio, la nomenclatura de composición puede usarse cuando no es necesario aportar información sobre la estructura de las sustancias, o no se conoce, y sólo se indica la estequiometría o composición.

1.2.1 Nomenclatura de Composición

Esta nomenclatura está basada en la composición no en la estructura. Por ello, puede ser la única forma de nombrar un compuesto si no se dispone de información estructural.

El tipo más simple de este tipo de nomenclatura es la llamada estequiométrica. En ella se indica la proporción de los constituyentes a partir de la fórmula empírica o la molecular. La proporción de los elementos o constituyentes puede indicarse de varias formas:

- Utilizando prefijos multiplicativos (Método Sistemático).
- Utilizando números de oxidación de los elementos (Sistema de Stock, mediante números romanos).
- Utilizando la carga de los iones (mediante los números de Ewens-Basset, números arábigos seguido del signo correspondiente)

1.2.2 Nomenclatura de Sustitución

De forma general, en esta nomenclatura se parte del nombre de unos compuestos denominados Hidruros Parentales y se indica, junto con los prefijos de cantidad correspondiente, el nombre de los elementos o grupos que sustituyen a los hidrógenos. Esta nomenclatura es la usada generalmente para nombrar los compuestos orgánicos.

1.2.3 Nomenclatura de Adición

Esta nomenclatura se desarrolló originalmente para nombrar los compuestos de coordinación. Así, se considera que el compuesto consta de un átomo central o átomos centrales con ligandos asociados, cuyo número se indica con los prefijos multiplicativos correspondientes.

Los tres sistemas de nomenclatura pueden proporcionar nombres diferentes, pero sin ambigüedades, para un compuesto dado. La elección entre los tres sistemas depende de la clase de compuesto inorgánico que se trate y el grado de detalle que se desea comunicar.

1.3 Tipos de Nomenclatura más utilizados

A continuación pasaremos a detallar los tipos de nomenclatura mas empleados en Química Inorgánica, independientemente que estos sistemas sean de Composición, Sustitución o Adición

Nomenclatura de Stock Se nombra el compuesto seguido de la valencia del elemento central entre paréntesis y en números romanos, si hiciera falta.

Nomenclatura Sistemática Se nombra la fórmula del compuesto químico utilizando prefijos para nombrar los subíndices de la fórmula. Dichos prefijos son:

Prefijo	Cantidad	Prefijo	Cantidad
mono-	1	hexa-	6
di-	2	hepta-	7
tri-	3	octa-	8
tetra-	4	nona-	9
penta-	5	deca-	10

Cuadro 1.1: Prefijos Nomenclatura Sistemática

Noemnclatura Tradicional La Nomenclatura Tradicional es un tipo de nomenclatura en desuso, aunque se sigue utilizando masivamente en Oxoácidos, Oxisales y Oxisales Ácidas. Consiste

en nombrar el compuesto usando una serie de prefijos y sufijos para indicar la valencia del elemento central. Dichos Prefijos y Sufijos son:

Cuadro 1.2: Prefijos y Sufijos de la Nomenclatura Tradicional

Nomenclatura de Adición La Nomenclatura de Adición consiste en nombrar los compuestos como adición de iones. Se utiliza sobre todo en Oxoácidos, Oxisales y Oxisales Ácidas

1.4 Número de Oxidación y Valencia

Se denomina valencia a la capacidad combinatoria que tiene un elemento cuando forma compuestos químicos. Normalmente las valencias se comparten entre familias de elementos, aunque hay excepciones. El número de oxidación es igual que la valencia pero con signo menos cuando el elemento actúa como anión y positivo cuando actúa como catión.

1.5 Sustancias Binarias

Se definen las sustancias binarias como aquellas formadas por dos tipos de elementos. Son sustancias binarias los óxidos, hidruros y sales binarias.

1.5.1 Formulación General de Sustancias Binarias

Las sustancias binarias se formulan siempre siguiendo las siguientes normas:

1. Se escriben los símbolos de los elementos que forman el compuesto:

PbO

2. Se intercambian las valencias de los elementos:

 Pb_2O_4

3. Se simplifica si se puede:

$$Pb_{\cancel{1}}O_{\cancel{4}} \rightarrow PbO_2$$

1.5.2 Óxidos

Se denominan así a las combinaciones del oxígeno con otro elemento, metálico o no metálico, a excepción de los halógenos.

En estos compuestos, el número de oxidación del oxígeno es -2, mientras que el otro elemento actúa con número de oxidación positivo. Se nombran siguiendo las Nomenclaturas Sistemáticas y de Stock.

Para hallar la valencia del elemento central se utiliza la siguiente fórmula:

$$Val(M) = \frac{2 \cdot y}{x}$$

Fórmula	Nomenclatura Sistemática	Nomenclatura de Stock
FeO	(Mon)óxido de Hierro	Óxido de Hierro (II)
Fe_2O_3	Trióxido de dihierro	Óxido de Hierro (III)
K_2O	Óxido de dipotasio	Óxido de Potasio ¹
P_2O_5	TPentaóxido de difósforo;	Óxido de Fósforo (V)
Cu_2O	(Mon)óxido de dicobre	Óxido de Cobre (I)

Cuadro 1.3: Ejemplos de Óxidos

1.6 Citation

This statement requires citation [book_key]; this one is more specific [article_key].

1.7 Lists

Lists are useful to present information in a concise and/or ordered way².

1.7.1 Numbered List

- 1. The first item
- 2. The second item
- 3. The third item

1.7.2 Bullet Points

- The first item
- The second item
- The third item

1.7.3 Descriptions and Definitions

Name Description Word Definition Comment Elaboration

²Footnote example...

2.1 Theorems

This is an example of theorems.

2.1.1 Several equations

This is a theorem consisting of several equations.

Theorem 2.1.1 — Name of the theorem. In $E = \mathbb{R}^n$ all norms are equivalent. It has the properties:

$$|||\mathbf{x}|| - ||\mathbf{y}||| \le ||\mathbf{x} - \mathbf{y}||$$
 (2.1)

$$\left|\left|\sum_{i=1}^{n} \mathbf{x}_{i}\right|\right| \leq \sum_{i=1}^{n} \left|\left|\mathbf{x}_{i}\right|\right| \quad \text{where } n \text{ is a finite integer}$$

$$(2.2)$$

2.1.2 Single Line

This is a theorem consisting of just one line.

Theorem 2.1.2 A set $\mathcal{D}(G)$ in dense in $L^2(G)$, $|\cdot|_0$.

2.2 Definitions

This is an example of a definition. A definition could be mathematical or it could define a concept.

Definition 2.2.1 — **Definition name**. Given a vector space E, a norm on E is an application,

denoted $||\cdot||$, E in $\mathbb{R}^+ = [0, +\infty[$ such that:

$$||\mathbf{x}|| = 0 \Rightarrow \mathbf{x} = \mathbf{0} \tag{2.3}$$

$$||\mathbf{x}|| = 0 \Rightarrow \mathbf{x} = \mathbf{0}$$

$$||\lambda \mathbf{x}|| = |\lambda| \cdot ||\mathbf{x}||$$
(2.3)

$$||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}|| \tag{2.5}$$

2.3 Notations

Notation 2.1. Given an open subset G of \mathbb{R}^n , the set of functions φ are:

- 1. Bounded support G;
- 2. Infinitely differentiable;

a vector space is denoted by $\mathcal{D}(G)$.

2.4 Remarks

This is an example of a remark.

The concepts presented here are now in conventional employment in mathematics. Vector spaces are taken over the field $\mathbb{K} = \mathbb{R}$, however, established properties are easily extended to $\mathbb{K} = \mathbb{C}$.

2.5 **Corollaries**

This is an example of a corollary.

Corollary 2.5.1 — Corollary name. The concepts presented here are now in conventional employment in mathematics. Vector spaces are taken over the field $\mathbb{K} = \mathbb{R}$, however, established properties are easily extended to $\mathbb{K} = \mathbb{C}$.

Propositions 2.6

This is an example of propositions.

2.6.1 **Several equations**

Proposition 2.6.1 — Proposition name. It has the properties:

$$|||\mathbf{x}|| - ||\mathbf{y}||| \le ||\mathbf{x} - \mathbf{y}|| \tag{2.6}$$

$$\left|\left|\sum_{i=1}^{n} \mathbf{x}_{i}\right|\right| \leq \sum_{i=1}^{n} \left|\left|\mathbf{x}_{i}\right|\right| \quad \text{where } n \text{ is a finite integer}$$
(2.7)

2.6.2 Single Line

Proposition 2.6.2 Let $f, g \in L^2(G)$; if $\forall \varphi \in \mathcal{D}(G)$, $(f, \varphi)_0 = (g, \varphi)_0$ then f = g.

2.7 **Examples**

This is an example of examples.

2.8 Exercises

2.7.1 Equation and Text

■ Example 2.1 Let $G = \{x \in \mathbb{R}^2 : |x| < 3\}$ and denoted by: $x^0 = (1,1)$; consider the function:

$$f(x) = \begin{cases} e^{|x|} & \text{si } |x - x^0| \le 1/2\\ 0 & \text{si } |x - x^0| > 1/2 \end{cases}$$
 (2.8)

The function f has bounded support, we can take $A = \{x \in \mathbb{R}^2 : |x - x^0| \le 1/2 + \varepsilon\}$ for all $\varepsilon \in [0; 5/2 - \sqrt{2}[$.

2.7.2 Paragraph of Text

■ Example 2.2 — Example name. Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

2.8 Exercises

This is an example of an exercise.

Exercise 2.1 This is a good place to ask a question to test learning progress or further cement ideas into students' minds.

2.9 Problems

Problem 2.1 What is the average airspeed velocity of an unladen swallow?

2.10 Vocabulary

Define a word to improve a students' vocabulary.

Vocabulary 2.1 — Word. Definition of word.

Part Two

3	Presenting Information	17
3.1	Table	
3.2	Figure	

3.1 Table

Treatments	Response 1	Response 2	
Treatment 1	0.0003262	0.562	
Treatment 2	0.0015681	0.910	
Treatment 3	0.0009271	0.296	

Cuadro 3.1: Table caption

3.2 Figure

Placeholder Image

Figura 3.1: Figure caption