

Spacecraft Attitude Dynamics

prof. Franco Bernelli

WIT THE ATHOFFEE OF

Disturbance Torques – SRP and air drag

Solar RADIATION PRESURE

DEPENDS ON ORIGINATION AND POSITION WITH THE

SUN

Force due to atmospheric drag – inertial frame

The drag force on an Earth orbiting spacecraft is It is not the same order or the shoopheric drag - the rule of continum sensely usics one or precise any new - we need to strody the Where input dynamics of the distribution of porticles in a natural of porticles in a natural dynamics for the carbinal $\bar{F}_i = -\frac{1}{2}\rho C_D v_{rel}^2 \frac{\mathbf{v}_{rel}}{\|\mathbf{v}_{rel}\|} A_{cross}$ dynamics rule

 $\rho(h,t)$ atmospheric density

 \mathbf{v}_{rel} relative speed

 A_{cross} cross sectional area perpendicular to \mathbf{v}_{rel}

 $C_D \approx 2.2, 1.5 < C_D < 2.6$ drag coefficient (LEO) \(\) for a flot place and it take in account for some therms smilted in the equation. flat plate drag coefficient

Air density example data set

 $\bar{F}_i = -\frac{1}{2}\rho C_D v_{rel}^2 \frac{\mathbf{v}_{rel}}{\|\mathbf{v}_{rel}\|} A_{cross}$ (a need to be compress orceast for 3 surface of calcular softenile.

							COD (CCC	0-, 0-0	_	
altit. (km)	10	20	30	40	50	60	70	80	90	100
density (g/cm³)	4,02e-04	8,34e-05	1,57e-05	3,18e-06	8,37e-07	2,33e-07	5,86e-08	1,40e-08	2,99e-09	5,17e-10
altit. (km)	110	120	130	140	150	160	170	180	190	200
density (g/cm ³)	8,42e-11	1,84e-11	7,36e-12	3,78e-12	2,19e-12	1,37e-12	9,00e-13	6,15e-13	4,32e-13	3,10e-13
altit. (km)	210	220	230	240	250	260	270	280	290	300
density (g/cm ³)	2,27e-13	1,68e-13	1,26e-13	9,58e-14	7,35e-14	5,68e-14	4,43e-14	3,48e-14	2,75e-14	2,18e-14
altit. (km)	310	320	330	340	350	360	370	380	390	400
density (g/cm³)	1,74e-14	1,40e-14	1,13e-14	9,10e-15	7,39e-15	6,02e-15	4,92e-15	4,03e-15	3,31e-15	2,72e-15
altit. (km)	410	420	430	440	450	460	470	480	490	500
density (g/cm³)	2,25e-15	1,86e-15	1,54e-15	1,28e-15	1,07e-15	8,89e-16	7,43e-16	6,22e-16	5,22e-16	4,39e-16
altit. (km)	510	520	530	540	550	560	570	580	590	600
density (g/cm ³)	3,71e-16	3,13e-16	2,66e-16	2,26e-16	1,93e-16	1,65e-16	1,41e-16	1,22e-16	1,05e-16	9,14e-17
altit. (km)	610	620	630	640	650	660	670	680	690	700
density (g/cm ³)	7,96e-17	6,97e-17	6,12e-17	5,41e-17	4,79e-17	4,27e-17	3,82e-17	3,44e-17	3,10e-17	2,82e-17
altit. (km)	710	720	730	740	750	760	770	780	790	800
density (g/cm ³)	2,57e-17	2,35e-17	2,16e-17	1,99e-17	1,84e-17	1,71e-17	1,59e-17	1,49e-17	1,39e-17	1,31e-17
altit. (km)	810	820	830	840	850	860	870	880	890	900
density (g/cm ³)	1,23e-17	1,16e-17	1,10e-17	1,04e-17	9,86e-18	9,37e-18	8,91e-18	8,48e-18	8,09e-18	7,72e-18
altit. (km)	910	920	930	940	950	960	970	980	990	1000
density (g/cm³)	7,37e-18	7,04e-18	6,74e-18	6,45e-18	6,18e-18	5,92e-18	5,68e-18	5,44e-18	5,22e-18	5,02e-18

Atmospheric density model

$$\rho(h,t) = \rho_0 \exp\left[-\frac{h - h_0}{H}\right]$$

 ho_0 reference density

 h, h_0 actual and reference altitude

H scale height

TABLE 7-4. Exponential Atmospheric Model. Although a very simple approach, this method yields moderate results for general studies. Source: Wertz, 1978, 820, which uses the U.S. Standard Atmosphere (1976) for 0 km, CIRA-72 for 25–500 km, and CIRA-72 with $T_{\infty} = 1000$ K for 500–1000 km. The scale heights have been adjusted to maintain a piecewise-continuous formulation of the density.

Altitude h _{ellp} (km)	Base Altitude h _o (km)	Nominal Density ρ _o (kg/m ³)	Scale Height H (km)	Altitude h _{ellp} (km)	Base Altitude h _o (km)	Nominal Density $\rho_o (\text{kg/m}^3)$	Scale Height <i>H</i> (km)
0-25	0	1.225	7.249	150-180	150	2.070 × 10 ⁻⁹	22.523
25-30	25	3.899×10^{-2}	6.349	180-200	180	5.464×10^{-10}	29.740
30-40	30	1.774×10^{-2}	6.682	200-250	200	2.789×10^{-10}	37.105
40-50	40	3.972×10^{-3}	7.554	250-300	250	7.248×10^{-11}	45.546
50-60	50	1.057×10^{-3}	8.382	300-350	300	2.418×10^{-11}	53.628
60-70	60	3.206×10^{-4}	7.714	350-400	350	9.158×10^{-12}	53.298
70-80	70	8.770×10^{-5}	6.549	400-450	400	3.725×10^{-12}	58.515
80-90	80	1.905×10^{-5}	5.799	450-500	450	1.585×10^{-12}	60.828
90-100	90	3.396×10^{-6}	5.382	500-600	500	6.967×10^{-13}	63.822
100-110	100	5.297×10^{-7}	5.877	600-700	600	1.454×10^{-13}	71.835
110-120	110	9.661×10^{-8}	7.263	700-800	700	3.614×10^{-14}	88.667
120-130	120	2.438×10^{-8}	9.473	800-900	800	1.170×10^{-14}	124.64
130-140	130	8.484×10^{-9}	12.636	900-1000	900	5.245×10^{-15}	181.05
140-150	140	3.845×10^{-9}	16.149	1000-	1000	3.019×10^{-15}	268.00

Eq. (7-31) requires knowledge of the actual altitude, found by subtracting the Earth's radius (6378.137 km) from the satellite's given radius ($h_{ellp} = 747.2119$ km). Now, if we use values from Table 7-4, Eq. (7-31) becomes

$$\rho = 3.614 \times 10^{-14} \exp \left[-\frac{747.2119 - 700}{88.667} \right] = 2.1219854 \times 10^{-14} \frac{\text{kg}}{\text{m}^3}$$

Note that the units in the exponential cancel (all are km), and the result is less than the base value at 700 km, as we would expect.

Relative orbital velocity in the inertial frame 📜

$$\mathbf{v}_{orbit} = \frac{d\vec{R}}{dt}$$
$$\mathbf{v}_{atmosphere}$$
$$= \omega_{Earth} \times \vec{R}$$

Dependent on the orbit that we define

$$\mathbf{v}_{rel} = \begin{bmatrix} \dot{x} + \omega_{\oplus} y \\ \dot{y} - \omega_{\oplus} x \\ \dot{z} \end{bmatrix} \qquad \begin{bmatrix} \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\ \omega_{Earth} = \begin{bmatrix} 0 & 0 & \omega_{\oplus} \end{bmatrix} \\$$

$$\overline{\Lambda} = \overline{\Lambda} \vee \left\{ \begin{cases} \frac{1}{2} \left(-\frac{1}{2} \times \lambda + \frac{1}{2} \right) \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{cases} \right\} = \left\{ \begin{array}{c} 0 \\ + \cos \lambda \\ -\cos \lambda \end{array} \right\}$$

$$R = \frac{a(1 - e^2)}{1 + e\cos\theta}$$

$$\dot{\theta} = \frac{n(1 + e\cos\theta)^2}{(1 - e^2)^{3/2}}$$

 $\omega_{\bigoplus} = 0.000072921 rad/sec$

Relative velocity in body fixed coordinates

Torque due to atmospheric drag

The aerodynamic force acting on a flat surface is defined by:

$$\bar{F}_i = -\frac{1}{2}\rho C_D v_{rel}^2 \frac{\mathbf{v}_{rel}^b}{\|\mathbf{v}_{rel}^b\|} (\widehat{N}_{bi}. \frac{\mathbf{v}_{rel}^b}{\|\mathbf{v}_{rel}^b\|}) A_i$$

$$T_{aero} = -\sum_{i=1}^{n} \bar{r}_i \times \frac{1}{2} \rho C_D v_{rel}^2 \frac{\mathbf{v}_{rel}^b}{\|\mathbf{v}_{rel}^b\|} (\widehat{N}_{bi} \cdot \frac{\mathbf{v}_{rel}^b}{\|\mathbf{v}_{rel}^b\|}) A_i$$

Total torque on a rigid body

$$T_{aero} = \begin{cases} -\frac{1}{2} \rho C_D v_{rel}^2 \sum_{i=1}^n \bar{r}_i \times \frac{\mathbf{v}_{rel}^b}{\|\mathbf{v}_{rel}^b\|} \sum_{i=1}^n (\widehat{N}_{bi} \cdot \frac{\mathbf{v}_{rel}^b}{\|\mathbf{v}_{rel}^b\|}) A_i & \widehat{N}_{bi} \cdot \frac{\mathbf{v}_{rel}^b}{\|\mathbf{v}_{rel}^b\|} > 0 \\ 0 & \widehat{N}_{bi} \cdot \frac{\mathbf{v}_{rel}^b}{\|\mathbf{v}_{rel}^b\|} < 0 \end{cases}$$

Shuttlecock concept

CubeSat - air drag control

Force due to solar radiation pressure

	Justice from the fire a cont	the center body with the Sin. Radiation reflected	14 Depends on the temporature Earth radiation
Altitude from the surface	Direct solar radiation	Radiation reflected	Earth radiation
(Km) of the Earth	(W/m²)	by the Earth (W/m²)	(W/m²)
500	1358	600	150
1000	1358	500	117
2000	1358	300	89
4000	1358	180	62
8000	1358	75	38
15000	1358	30	14
30000	1358	12	3
60000	1358	7	2

The average pressure due to radiation can be evaluated as

$$P = \frac{F_e}{c}$$

where c is the speed of light and F_e is the power per unit surface.

direction of the Robinstian from the Earth and make any its modules. for at east zero kin it should be unided

$$\rho_s + \rho_d + \rho_a = 1$$

. The equivalent force from the same discribed of 3.

We can use a combinetion of these effects and the total of the sadiation that is refleted Differ and absorb should be soon of the total incoming sociation.

Force due to solar radiation pressure (from the Sun)

Force on a flat panel

$$\bar{F}_i = -PA \left[\rho_a(\hat{S} \cdot \hat{N}) \hat{S} + 2\rho_s(\hat{S} \cdot \hat{N})^2 \hat{N} + \rho_d(\hat{S} \cdot \hat{N}) (\hat{S} + \frac{2}{3} \hat{N}) \right]$$

$$\bar{F}_i = -PA(\hat{S} \cdot \hat{N}) \left[(1 - \rho_s)\hat{S} + (2\rho_s(\hat{S} \cdot \hat{N}) + \frac{2}{3}\rho_d)\hat{N} \right]$$

$$\bar{F}_i = -PA_i(\hat{S}_b \cdot \hat{N}_{bi}) \left[(1 - \rho_s)\hat{S}_b + (2\rho_s(\hat{S}_b \cdot \hat{N}_{bi}) + \frac{2}{3}\rho_d)\hat{N}_{bi} \right]$$

Torque due to solar radiation pressure

$$\bar{F}_i = -PA_i(\hat{S}_b \cdot \widehat{N}_{bi}) \left[(1 - \rho_s)\hat{S}_b + (2\rho_s(\hat{S}_b \cdot \widehat{N}_{bi}) + \frac{2}{3}\rho_d)\widehat{N}_{bi} \right]$$

Modelling the Sun in body coordinate

At the corporetries with be done in the primped exis from the ware the tarque in the principal exis frame will be the input of $\hat{S}_b = A_{B/N} \hat{S}_i$ the system.

For a rigid body we have

$$T_{SRP} = \sum_{i=1}^{n} \bar{r}_i \times \bar{F}_i$$

HOTE

There is a differe between

the wainer force and the

writing Torque become the

geometry home a recelly deportant

stall

$$T_{SRP} = \begin{cases} \sum_{i=1}^{n} \bar{r}_{i} \times \bar{F}_{i} & \hat{S}_{b} \cdot \hat{N}_{b} > 0 \\ 0 & \hat{S}_{b} \cdot \hat{N}_{b} < 0 \end{cases}$$

Maximum SRP Force and corresponding torque

$$\bar{F}_i = -PA(\hat{S} \cdot \hat{N}) \left[(1 - \rho_s)\hat{S} + (2\rho_s(\hat{S} \cdot \hat{N}) + \frac{2}{3}\rho_d)\hat{N} \right]$$

then

$$\bar{F}_i = -PA\left[(1 + \rho_s) + \frac{2}{3}\rho_d \right] \hat{N}$$

$$T_{SRP} = \sum_{i=1}^{n} \bar{r}_{i} \times \bar{F}_{i}$$

Exploiting SRP for attitude control - CubeSail

Hoirg a soil is a way to generate some torque.

IKAROS - reflectivity control devices

Basic control logic - o we are intercented in seeing what loppus for the Torque

Future concepts for attitude control with SRP

$$\bar{F}_i = -PA_i(\hat{S}_b \cdot \hat{N}_{bi}) \left[(1 - \rho_s)\hat{S}_b + (2\rho_s(\hat{S}_b \cdot \hat{N}_{bi}) + \frac{2}{3}\rho_d)\hat{N}_{bi} \right]$$