

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                                  = 75000 \text{ N/mm}^2
Ν
          = 39700 N
                                                                                                                                                         G
                                                  M_{\star}
                                                            = -1400000 Nmm
                                                                                                     \sigma_{a}
                                                                                                               = 200000 \text{ N/mm}^2
          = 1370000 Nmm
M,
                                                            = -1180000 Nmm
                                                                                                     \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                        \sigma_{\text{mises}} =
                                                                                                      \tau(M,) =
y_{\mathsf{G}}
                                                             =
                                                                                                      σ
v<sub>o</sub>
A
J<sub>xx</sub>
                                                  α
                                                             =
                                                                                                      \sigma_{l}
                                                  \sigma(N) =
          =
                                                                                                      \sigma_{\text{II}}
                                                  \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                                  = 75000 \text{ N/mm}^2
Ν
          = 41400 N
                                                                                                                                                         G
                                                  M_{\star}
                                                            = -900000 Nmm
                                                                                                     \sigma_{a}
                                                                                                               = 200000 \text{ N/mm}^2
          = 1360000 Nmm
M,
                                                            = -1230000 Nmm
                                                                                                     \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                         \sigma_{\text{mises}} =
                                                                                                      \tau(M,) =
y_{\mathsf{G}}
                                                             =
                                                                                                      σ
v<sub>o</sub>
A
J<sub>xx</sub>
                                                  α
                                                             =
                                                                                                      \sigma_{l}
                                                  \sigma(N) =
          =
                                                                                                      \sigma_{\text{II}}
                                                  \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                               = 75000 \text{ N/mm}^2
Ν
        = 48300 N
                                                                                                                                      G
                                            M_{\star}
                                                     = -1150000 Nmm
                                                                                         \sigma_{a}
                                                                                                  = 200000 \text{ N/mm}^2
M,
        = 1090000 Nmm
                                                     = -1460000 Nmm
                                                                                         \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                      \sigma_{\text{mises}} =
                                                                                         \tau(M,) =
y_{\mathsf{G}}
                                                     =
                                                                                         σ
v<sub>o</sub>
A
J<sub>xx</sub>
                                            α
                                                     =
                                                                                         \sigma_{l}
                                            \sigma(N) =
        =
                                                                                         \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10
                                                                                                                                                                04.06.10
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                                  = 75000 \text{ N/mm}^2
Ν
          = 33700 N
                                                                                                                                                        G
                                                  M_{\star}
                                                            = -1100000 Nmm
                                                                                                     \sigma_{a}
                                                                                                               = 200000 \text{ N/mm}^2
M,
          = 1110000 Nmm
                                                            = -1480000 Nmm
                                                                                                     \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                        \sigma_{\text{mises}} =
                                                                                                     \tau(M,) =
y_{\mathsf{G}}
                                                            =
                                                                                                     σ
v<sub>o</sub>
A
J<sub>xx</sub>
                                                  α
                                                            =
          =
                                                                                                     \sigma_{l}
                                                  \sigma(N) =
          =
                                                                                                     \sigma_{\text{II}}
                                                  \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                       = 75000 \text{ N/mm}^2
Ν
         = 38600 N
                                                                                                                                              G
                                               M_{\star}
                                                        = -1360000 Nmm
                                                                                              \sigma_{a}
                                                                                                        = 200000 \text{ N/mm}^2
M,
         = 1290000 Nmm
                                                        = -1130000 Nmm
                                                                                              \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                              \tau(M,) =
y_{\mathsf{G}}
                                                        =
                                                                                              σ
                                               α
                                                        =
                                                                                              \sigma_{l}
J_{xx}
                                               \sigma(N) =
         =
                                                                                              \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                       = 75000 \text{ N/mm}^2
Ν
         = 40200 N
                                                                                                                                              G
                                               M_{\star}
                                                        = -877000 Nmm
                                                                                              \sigma_{a}
                                                                                                        = 200000 \text{ N/mm}^2
         = 1280000 Nmm
M,
                                                        = -1170000 Nmm
                                                                                              \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                               \tau(M,) =
y_{\mathsf{G}}
                                                        =
                                                                                               σ
                                                        =
                                                                                               \sigma_{l}
                                               \sigma(N) =
         =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                      = 75000 \text{ N/mm}^2
Ν
         = 46900 N
                                                                                                                                             G
                                               M_{\star}
                                                       = -1120000 Nmm
                                                                                              \sigma_{a}
                                                                                                       = 200000 \text{ N/mm}^2
         = 1030000 Nmm
M,
                                                        = -1390000 Nmm
                                                                                              \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                              \tau(M,) =
y_{\mathsf{G}}
                                                        =
                                                                                              σ
                                               α
                                                        =
                                                                                              \sigma_{l}
                                               \sigma(N) =
         =
                                                                                              \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                       = 75000 \text{ N/mm}^2
Ν
         = 32700 N
                                                                                                                                              G
                                               M_{\star}
                                                        = -1070000 Nmm
                                                                                              \sigma_{a}
                                                                                                        = 200000 \text{ N/mm}^2
M,
         = 1050000 Nmm
                                                        = -1410000 Nmm
                                                                                              \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                               \tau(M,) =
y_{\mathsf{G}}
                                                        =
                                                                                               σ
                                                        =
                                                                                               \sigma_{l}
                                               \sigma(N) =
         =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                                  = 75000 \text{ N/mm}^2
Ν
          = 39900 N
                                                                                                                                                         G
                                                  M_{\star}
                                                            = -1380000 Nmm
                                                                                                     \sigma_{a}
                                                                                                               = 200000 \text{ N/mm}^2
M,
          = 1370000 Nmm
                                                            = 1160000 Nmm
                                                                                                     \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                        \sigma_{\text{mises}} =
                                                                                                      \tau(M,) =
y_{\mathsf{G}}
                                                            =
                                                                                                      σ
v<sub>o</sub>
A
J<sub>xx</sub>
                                                  α
                                                            =
                                                                                                      \sigma_{l}
                                                  \sigma(N) =
          =
                                                                                                      \sigma_{\text{II}}
                                                  \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                               = 75000 \text{ N/mm}^2
Ν
        = 41600 N
                                                                                                                                      G
                                            M_{\star}
                                                     = -888000 Nmm
                                                                                         \sigma_{a}
                                                                                                  = 200000 \text{ N/mm}^2
        = 1360000 Nmm
M,
                                                     = 1210000 Nmm
                                                                                         \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                      \sigma_{\text{mises}} =
                                                                                         \tau(M,) =
y_{\mathsf{G}}
                                                     =
                                                                                         σ
v<sub>o</sub>
A
J<sub>xx</sub>
                                            α
                                                     =
                                                                                         \sigma_{l}
                                            \sigma(N) =
        =
                                                                                         \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10
                                                                                                                                                                04.06.10
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                      = 75000 \text{ N/mm}^2
Ν
         = 48200 N
                                                                                                                                             G
                                               M_{\star}
                                                       = -1120000 Nmm
                                                                                              \sigma_{a}
                                                                                                       = 200000 \text{ N/mm}^2
M,
         = 1080000 Nmm
                                                        = 1410000 Nmm
                                                                                              \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                              \tau(M,) =
y_{\mathsf{G}}
                                                        =
                                                                                              σ
                                               α
                                                        =
         =
                                                                                              \sigma_{l}
J_{xx}
                                               \sigma(N) =
         =
                                                                                              \sigma_{\text{II}}
                                               \sigma(M_x)=
```

04.06.10

Calcolo degli sforzi in * con forze baricentriche essendo * il punto A di AB

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 \text{ N/mm}^2
                                                                                                                                                                = 75000 \text{ N/mm}^2
Ν
         = 33500 N
                                                                                                                                                       G
                                                  M_{\star}
                                                           = -1070000 Nmm
                                                                                                    \sigma_{a}
                                                                                                              = 200000 \text{ N/mm}^2
M,
         = 1100000 Nmm
                                                            = 1440000 Nmm
                                                                                                    \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                       \sigma_{\text{mises}} =
                                                                                                    \tau(M,) =
y_{\mathsf{G}}
                                                            =
                                                                                                    σ
v<sub>o</sub>
A
J<sub>xx</sub>
                                                  α
                                                            =
         =
                                                                                                    \sigma_{l}
                                                  \sigma(N) =
         =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                        = 75000 \text{ N/mm}^2
Ν
         = 38900 N
                                                                                                                                               G
                                               M_{\star}
                                                        = -1350000 Nmm
                                                                                               \sigma_{a}
                                                                                                        = 200000 \text{ N/mm}^2
         = 1300000 Nmm
M,
                                                        = -1100000 Nmm
                                                                                               \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                               \tau(M,) =
y_{\mathsf{G}}
                                                                                               σ
                                                         =
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                       = 75000 \text{ N/mm}^2
Ν
        = 40500 N
                                                                                                                               G
                                          M_{\star}
                                                  = -868000 Nmm
                                                                                    \sigma_{a}
                                                                                            = 200000 \text{ N/mm}^2
M,
        = 1290000 Nmm
                                                  = -1140000 Nmm
                                                                                    \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                              \sigma_{\text{mises}} =
                                                                                    \tau(M,) =
y_{\mathsf{G}}
                                                                                    σ
                                                                                    \sigma_{l}
                                          \sigma(N) =
                                                                                    \sigma_{\text{II}}
                                          \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10
                                                                                                                                                       04.06.10
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                       = 75000 \text{ N/mm}^2
Ν
         = 47300 N
                                                                                                                                              G
                                               M_{\star}
                                                        = -1110000 Nmm
                                                                                              \sigma_{a}
                                                                                                        = 200000 \text{ N/mm}^2
         = 1030000 Nmm
M,
                                                        = -1360000 Nmm
                                                                                              \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                              \tau(M,) =
y_{\mathsf{G}}
                                                        =
                                                                                              σ
                                                        =
                                                                                              \sigma_{l}
                                               \sigma(N) =
         =
                                                                                              \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                       = 75000 \text{ N/mm}^2
Ν
         = 32900 N
                                                                                                                                              G
                                               M_{\star}
                                                        = -1060000 Nmm
                                                                                              \sigma_{a}
                                                                                                        = 200000 \text{ N/mm}^2
M,
         = 1050000 Nmm
                                                        = -1380000 Nmm
                                                                                              \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                               \tau(M,) =
y_{\mathsf{G}}
                                                                                               σ
                                                        =
                                                                                               \sigma_{l}
                                               \sigma(N) =
         =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                         = 75000 \text{ N/mm}^2
Ν
         = 58900 N
                                                                                                                                                G
                                                M_{\star}
                                                         = -3280000 Nmm
                                                                                                \sigma_{a}
                                                                                                         = 200000 \text{ N/mm}^2
M,
         = 1920000 Nmm
                                                         = -1400000 Nmm
                                                                                                \sigma(M_{,,})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                \tau(M,) =
y_{\mathsf{G}}
                                                                                                σ
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                          = 75000 \text{ N/mm}^2
Ν
         = 62500 N
                                                                                                                                                G
                                                M_{\star}
                                                         = -2230000 Nmm
                                                                                                \sigma_{a}
                                                                                                         = 200000 \text{ N/mm}^2
M,
         = 2000000 Nmm
                                                         = -1500000 Nmm
                                                                                                \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                \tau(M,) =
y_{\mathsf{G}}
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                         = 75000 \text{ N/mm}^2
Ν
         = 71400 N
                                                                                                                                                G
                                               M_{\star}
                                                        = -2710000 Nmm
                                                                                               \sigma_{a}
                                                                                                         = 200000 \text{ N/mm}^2
M,
         = 1540000 Nmm
                                                         = -1720000 Nmm
                                                                                               \sigma(M_{,,})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                \tau(M,) =
y_{\mathsf{G}}
                                                                                                σ
                                                                                                \sigma_{l}
                                               \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                         = 75000 \text{ N/mm}^2
Ν
         = 50700 N
                                                                                                                                                G
                                                M_{\star}
                                                         = -2760000 Nmm
                                                                                                \sigma_{a}
                                                                                                         = 200000 \text{ N/mm}^2
M,
         = 1640000 Nmm
                                                         = -1810000 Nmm
                                                                                                \sigma(M_{,,})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                \tau(M,) =
y_{\mathsf{G}}
                                                                                                σ
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                         = 75000 \text{ N/mm}^2
Ν
         = 57700 N
                                                                                                                                                G
                                                M_{\star}
                                                        = -3230000 Nmm
                                                                                                \sigma_{a}
                                                                                                         = 200000 \text{ N/mm}^2
M,
         = 1800000 Nmm
                                                         = -1330000 Nmm
                                                                                                \sigma(M_{,,})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                \tau(M,) =
y_{\mathsf{G}}
                                                                                                σ
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                          = 75000 \text{ N/mm}^2
Ν
         = 61200 N
                                                                                                                                                G
                                                M_{\star}
                                                         = -2200000 Nmm
                                                                                                \sigma_{a}
                                                                                                         = 200000 \text{ N/mm}^2
M,
         = 1880000 Nmm
                                                         = -1420000 Nmm
                                                                                                \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                \tau(M,) =
y_{\mathsf{G}}
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                         = 75000 \text{ N/mm}^2
Ν
         = 70000 N
                                                                                                                                                G
                                                M_{\star}
                                                        = -2670000 Nmm
                                                                                                \sigma_{a}
                                                                                                         = 200000 \text{ N/mm}^2
         = 1450000 Nmm
M,
                                                         = -1650000 Nmm
                                                                                                \sigma(M_{,,})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                \tau(M,) =
y_{\mathsf{G}}
                                                                                                σ
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                         = 75000 \text{ N/mm}^2
Ν
         = 49600 N
                                                                                                                                                G
                                                M_{\star}
                                                         = -2710000 Nmm
                                                                                                \sigma_{a}
                                                                                                         = 200000 \text{ N/mm}^2
M,
         = 1540000 Nmm
                                                         = -1720000 Nmm
                                                                                                \sigma(M_{,,})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                \tau(M,) =
y_{\mathsf{G}}
                                                                                                σ
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                         = 75000 \text{ N/mm}^2
Ν
         = 59300 N
                                                                                                                                                G
                                                M_{\star}
                                                         = -3220000 Nmm
                                                                                                \sigma_{a}
                                                                                                         = 200000 \text{ N/mm}^2
M,
         = 1890000 Nmm
                                                         = 1340000 Nmm
                                                                                                \sigma(M_{,,})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                \tau(M,) =
y_{\mathsf{G}}
                                                                                                σ
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 \text{ N/mm}^2
                                                                                                                                                        = 75000 \text{ N/mm}^2
Ν
         = 62800 N
                                                                                                                                               G
                                               M_{\star}
                                                        = -2190000 Nmm
                                                                                               \sigma_{a}
                                                                                                        = 200000 \text{ N/mm}^2
M,
         = 1980000 Nmm
                                                        = 1430000 Nmm
                                                                                               \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                               \tau(M,) =
y_{\mathsf{G}}
                                                                                               σ
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                          = 75000 \text{ N/mm}^2
Ν
         = 71700 N
                                                                                                                                                 G
                                                M_{\star}
                                                         = -2650000 Nmm
                                                                                                \sigma_{a}
                                                                                                          = 200000 \text{ N/mm}^2
M,
         = 1510000 Nmm
                                                         = 1650000 Nmm
                                                                                                \sigma(M_{,,})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                \tau(M,) =
y_{\mathsf{G}}
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                         = 75000 \text{ N/mm}^2
Ν
         = 50800 N
                                                                                                                                                G
                                               M_{\star}
                                                        = -2690000 Nmm
                                                                                               \sigma_{a}
                                                                                                         = 200000 \text{ N/mm}^2
M,
         = 1610000 Nmm
                                                         = 1720000 Nmm
                                                                                               \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                \tau(M,) =
y_{\mathsf{G}}
                                                                                                σ
                                                                                                \sigma_{l}
                                               \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                         = 75000 \text{ N/mm}^2
Ν
         = 58200 N
                                                                                                                                                G
                                               M_{\star}
                                                        = -3180000 Nmm
                                                                                               \sigma_{a}
                                                                                                         = 200000 \text{ N/mm}^2
M,
         = 1780000 Nmm
                                                         = -1280000 Nmm
                                                                                               \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                \tau(M,) =
y_{\mathsf{G}}
                                                                                                σ
                                                                                                \sigma_{l}
                                               \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 61800 N	M _×	= -2160000 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
M_t	= 1860000 Nmm	M_{v}	= -1360000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y'	σ_{mise}	es=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.ve}$	_{en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                         = 75000 \text{ N/mm}^2
Ν
         = 70600 N
                                                                                                                                                G
                                                M_{\star}
                                                         = -2620000 Nmm
                                                                                                \sigma_{a}
                                                                                                         = 200000 \text{ N/mm}^2
M,
         = 1420000 Nmm
                                                         = -1570000 Nmm
                                                                                                \sigma(M_{,,})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                \tau(M,) =
y_{\mathsf{G}}
                                                                                                σ
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                          = 75000 \text{ N/mm}^2
Ν
         = 50100 N
                                                                                                                                                G
                                                M_{\star}
                                                         = -2670000 Nmm
                                                                                                \sigma_{a}
                                                                                                         = 200000 \text{ N/mm}^2
M,
         = 1520000 Nmm
                                                         = -1650000 Nmm
                                                                                                \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                \tau(M,) =
y_{\mathsf{G}}
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 \text{ N/mm}^2
                                                                                                                                     = 75000 \text{ N/mm}^2
Ν
        = 48200 N
                                                                                                                             G
                                         M_{\star}
                                                 = -1860000 Nmm
                                                                                   \sigma_{a}
                                                                                           = 200000 \text{ N/mm}^2
M,
        = 2050000 Nmm
                                                 = -2090000 Nmm
                                                                                   \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                             \sigma_{\text{mises}} =
                                                                                   \tau(M,) =
y_{\mathsf{G}}
                                                                                   σ
                                         α
                                                                                   \sigma_{l}
                                         \sigma(N) =
        =
                                                                                   \sigma_{\text{II}}
                                         \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10
                                                                                                                                                     04.06.10
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 \text{ N/mm}^2
                                                                                                                                                      = 75000 \text{ N/mm}^2
Ν
         = 50900 N
                                                                                                                                             G
                                               M_{\star}
                                                       = -1200000 Nmm
                                                                                              \sigma_{a}
                                                                                                       = 200000 \text{ N/mm}^2
M,
         = 2040000 Nmm
                                                        = -2180000 Nmm
                                                                                              \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                              \tau(M,) =
y_{\mathsf{G}}
                                                                                              σ
                                               α
                                                                                              \sigma_{l}
                                               \sigma(N) =
         =
                                                                                              \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 \text{ N/mm}^2
                                                                                                                                              = 75000 \text{ N/mm}^2
Ν
        = 58500 N
                                                                                                                                      G
                                            M_{\star}
                                                     = -1540000 Nmm
                                                                                         \sigma_{a}
                                                                                                  = 200000 \text{ N/mm}^2
M,
        = 1650000 Nmm
                                                     = -2590000 Nmm
                                                                                         \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                      \sigma_{\text{mises}} =
                                                                                         \tau(M,) =
y_{\mathsf{G}}
                                                                                         σ
v<sub>o</sub>
A
J<sub>xx</sub>
                                                     =
                                                                                         \sigma_{l}
                                            \sigma(N) =
        =
                                                                                         \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10
                                                                                                                                                                04.06.10
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 \text{ N/mm}^2
                                                                                                                                                       = 75000 \text{ N/mm}^2
Ν
         = 41300 N
                                                                                                                                              G
                                               M_{\star}
                                                        = -1480000 Nmm
                                                                                              \sigma_{a}
                                                                                                        = 200000 \text{ N/mm}^2
         = 1670000 Nmm
M,
                                                        = -2650000 Nmm
                                                                                              \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                               \tau(M,) =
y_{\mathsf{G}}
                                                                                               σ
                                                                                               \sigma_{l}
                                               \sigma(N) =
         =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 \text{ N/mm}^2
                                                                                                                                                                  = 75000 \text{ N/mm}^2
Ν
          = 47100 N
                                                                                                                                                        G
                                                  M_{\star}
                                                            = -1830000 Nmm
                                                                                                     \sigma_{a}
                                                                                                               = 200000 \text{ N/mm}^2
          = 1980000 Nmm
M,
                                                            = -2020000 Nmm
                                                                                                     \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                        \sigma_{\text{mises}} =
                                                                                                     \tau(M,) =
y_{\mathsf{G}}
                                                                                                     σ
v<sub>o</sub>
A
J<sub>xx</sub>
                                                  α
                                                            =
                                                                                                     \sigma_{l}
                                                  \sigma(N) =
          =
                                                                                                     \sigma_{\text{II}}
                                                  \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                      = 75000 \text{ N/mm}^2
Ν
        = 49600 N
                                                                                                                              G
                                          M_{\star}
                                                 = -1180000 Nmm
                                                                                    \sigma_{a}
                                                                                            = 200000 \text{ N/mm}^2
        = 1960000 Nmm
M,
                                                  = -2110000 Nmm
                                                                                    \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                              \sigma_{\text{mises}} =
                                                                                    \tau(M,) =
y_{\mathsf{G}}
                                                                                    σ
                                          α
                                                                                    \sigma_{l}
                                          \sigma(N) =
        =
                                                                                    \sigma_{\text{II}}
                                          \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10
                                                                                                                                                      04.06.10
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Ν	= 57200 N	M _v	= -1510000 Nmm	σ_{a}	= 240 N/mm ²	G	= 75000 1	N/mm ²
		^			•	ч	- 750001	N/ 111111
M,	= 1590000 Nmm	M_{v}	= -2510000 Nmm	Ε	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M,	<i>'</i>	σ_{mis}	es=	
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.v}$	en=	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{I}	=	r_{v}	=	
J_xx	=	σ(N)	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M ₃	x)=	σ_{tres}	_{ca} =			
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10							04.06.10	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                      = 75000 \text{ N/mm}^2
Ν
        = 40300 N
                                                                                                                              G
                                         M_{\star}
                                                 = -1460000 Nmm
                                                                                   \sigma_{a}
                                                                                            = 200000 \text{ N/mm}^2
M,
        = 1610000 Nmm
                                                  = -2560000 Nmm
                                                                                   \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                              \sigma_{\text{mises}} =
                                                                                    \tau(M,) =
y_{\mathsf{G}}
                                                                                    σ
                                         α
                                                  =
                                                                                    \sigma_{l}
                                         \sigma(N) =
        =
                                                                                    \sigma_{\text{II}}
                                         \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10
                                                                                                                                                      04.06.10
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 240 \text{ N/mm}^2
                                                                                                                                              = 75000 \text{ N/mm}^2
Ν
        = 48400 N
                                                                                                                                      G
                                            M_{\star}
                                                    = -1850000 Nmm
                                                                                         \sigma_{a}
                                                                                                  = 200000 \text{ N/mm}^2
        = 2060000 Nmm
M,
                                                     = -2060000 Nmm
                                                                                         \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                      \sigma_{\text{mises}} =
                                                                                         \tau(M,) =
y_{\mathsf{G}}
                                                                                         σ
v<sub>o</sub>
A
J<sub>xx</sub>
                                            α
                                                                                         \sigma_{l}
                                            \sigma(N) =
        =
                                                                                         \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10
                                                                                                                                                                04.06.10
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                      = 75000 \text{ N/mm}^2
Ν
        = 51100 N
                                                                                                                              G
                                          M_{\star}
                                                  = -1200000 Nmm
                                                                                    \sigma_{a}
                                                                                            = 200000 \text{ N/mm}^2
M,
        = 2040000 Nmm
                                                  = -2160000 Nmm
                                                                                    \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                              \sigma_{\text{mises}} =
                                                                                    \tau(M,) =
y_{\mathsf{G}}
                                                                                    σ
                                                                                    \sigma_{l}
                                          \sigma(N) =
        =
                                                                                    \sigma_{\text{II}}
                                          \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10
                                                                                                                                                       04.06.10
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 240 \text{ N/mm}^2
                                                                                                                                              = 75000 \text{ N/mm}^2
Ν
        = 58800 N
                                                                                                                                      G
                                            M_{\star}
                                                     = -1520000 Nmm
                                                                                         \sigma_{a}
                                                                                                  = 200000 \text{ N/mm}^2
M,
        = 1650000 Nmm
                                                     = -2550000 Nmm
                                                                                         \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                      \sigma_{\text{mises}} =
                                                                                         \tau(M,) =
y_{\mathsf{G}}
                                                                                         σ
v<sub>o</sub>
A
J<sub>xx</sub>
                                                     =
                                                                                         \sigma_{l}
                                            \sigma(N) =
        =
                                                                                         \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10
                                                                                                                                                                04.06.10
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 240 \text{ N/mm}^2
                                                                                                                                      = 75000 \text{ N/mm}^2
Ν
        = 41500 N
                                                                                                                              G
                                         M_{\star}
                                                 = -1470000 Nmm
                                                                                   \sigma_{a}
                                                                                            = 200000 \text{ N/mm}^2
        = 1670000 Nmm
M,
                                                 = -2610000 Nmm
                                                                                   \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                             \sigma_{\text{mises}} =
                                                                                    \tau(M,) =
y_{\mathsf{G}}
                                                                                    σ
                                                                                    \sigma_{l}
                                         \sigma(N) =
        =
                                                                                    \sigma_{\text{II}}
                                         \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10
                                                                                                                                                      04.06.10
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 \text{ N/mm}^2
                                                                                                                                                       = 75000 \text{ N/mm}^2
Ν
         = 47300 N
                                                                                                                                              G
                                               M_{\star}
                                                        = -1820000 Nmm
                                                                                              \sigma_{a}
                                                                                                        = 200000 \text{ N/mm}^2
M,
         = 1980000 Nmm
                                                        = -1990000 Nmm
                                                                                              \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                              \tau(M,) =
y_{\mathsf{G}}
                                                                                              σ
                                                                                              \sigma_{l}
                                               \sigma(N) =
         =
                                                                                              \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                      = 75000 \text{ N/mm}^2
Ν
        = 49900 N
                                                                                                                              G
                                          M_{\star}
                                                 = -1170000 Nmm
                                                                                    \sigma_{a}
                                                                                            = 200000 \text{ N/mm}^2
M,
        = 1970000 Nmm
                                                  = -2080000 Nmm
                                                                                    \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                              \sigma_{\text{mises}} =
                                                                                    \tau(M,) =
y_{\mathsf{G}}
                                                                                    σ
                                          α
                                                                                    \sigma_{l}
                                          \sigma(N) =
        =
                                                                                    \sigma_{\text{II}}
                                          \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10
                                                                                                                                                      04.06.10
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                       = 75000 \text{ N/mm}^2
Ν
        = 57500 N
                                                                                                                               G
                                          M_{\star}
                                                  = -1500000 Nmm
                                                                                    \sigma_{a}
                                                                                            = 200000 \text{ N/mm}^2
M,
        = 1590000 Nmm
                                                  = -2460000 Nmm
                                                                                    \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                               \sigma_{\text{mises}} =
                                                                                    \tau(M,) =
y_{\mathsf{G}}
                                                                                    \sigma_{l}
                                          \sigma(N) =
        =
                                                                                    \sigma_{\text{II}}
                                          \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10
                                                                                                                                                       04.06.10
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                                   = 75000 \text{ N/mm}^2
Ν
          = 40500 N
                                                                                                                                                         G
                                                   M_{\star}
                                                            = -1450000 Nmm
                                                                                                      \sigma_{a}
                                                                                                                = 200000 \text{ N/mm}^2
M,
          = 1610000 Nmm
                                                            = -2520000 Nmm
                                                                                                      \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                         \sigma_{\text{mises}} =
                                                                                                      \tau(M,) =
y_{\mathsf{G}}
                                                                                                      σ
v<sub>o</sub>
A
J<sub>xx</sub>
                                                   α
                                                             =
                                                                                                      \sigma_{l}
                                                   \sigma(N) =
          =
                                                                                                      \sigma_{\text{II}}
                                                   \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 \text{ N/mm}^2
                                                                                                                                                         = 75000 \text{ N/mm}^2
Ν
         = 47400 N
                                                                                                                                                G
                                                M_{\star}
                                                         = -2250000 Nmm
                                                                                                \sigma_{a}
                                                                                                         = 200000 \text{ N/mm}^2
M,
         = 1990000 Nmm
                                                         = 1450000 Nmm
                                                                                                \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
y_{\mathsf{G}}
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                          = 75000 \text{ N/mm}^2
Ν
         = 51000 N
                                                                                                                                                 G
                                                M_{\star}
                                                         = -1560000 Nmm
                                                                                                \sigma_{a}
                                                                                                          = 200000 \text{ N/mm}^2
M,
         = 2070000 Nmm
                                                         = 1600000 Nmm
                                                                                                \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
y_{\mathsf{G}}
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                     = 75000 \text{ N/mm}^2
Ν
         = 56800 N
                                                                                                                                            G
                                              M_{\star}
                                                       = -1800000 Nmm
                                                                                             \sigma_{a}
                                                                                                      = 200000 \text{ N/mm}^2
M,
         = 1580000 Nmm
                                                       = 1730000 Nmm
                                                                                             \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                             \sigma_{l}
                                              \sigma(N) =
                                                                                             \sigma_{\text{II}}
                                              \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 \text{ N/mm}^2
                                                                                                                                                         = 75000 \text{ N/mm}^2
Ν
         = 40800 N
                                                                                                                                                G
                                                M_{\star}
                                                        = -1850000 Nmm
                                                                                                \sigma_{a}
                                                                                                         = 200000 \text{ N/mm}^2
M,
         = 1670000 Nmm
                                                         = 1850000 Nmm
                                                                                                \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
y_{\mathsf{G}}
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 \text{ N/mm}^2
                                                                                                                                                         = 75000 \text{ N/mm}^2
Ν
         = 45300 N
                                                                                                                                                G
                                                M_{\star}
                                                         = -2130000 Nmm
                                                                                                \sigma_{a}
                                                                                                         = 200000 \text{ N/mm}^2
M,
         = 1810000 Nmm
                                                         = 1280000 Nmm
                                                                                                \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
y_{\mathsf{G}}
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 \text{ N/mm}^2
                                                                                                                                                        = 75000 \text{ N/mm}^2
Ν
         = 48600 N
                                                                                                                                               G
                                               M_{\star}
                                                        = -1460000 Nmm
                                                                                               \sigma_{a}
                                                                                                         = 200000 \text{ N/mm}^2
M,
         = 1870000 Nmm
                                                        = 1400000 Nmm
                                                                                               \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                               \tau(M,) =
y_{\mathsf{G}}
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```

04.06.10

Calcolo degli sforzi in * con forze baricentriche essendo * il punto A di EA

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 240 \text{ N/mm}^2
                                                                                                                                                    = 75000 \text{ N/mm}^2
Ν
         = 54300 N
                                                                                                                                           G
                                              M_{\star}
                                                       = -1710000 Nmm
                                                                                            \sigma_{a}
                                                                                                     = 200000 \text{ N/mm}^2
M,
         = 1440000 Nmm
                                                       = 1520000 Nmm
                                                                                            \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                             \sigma_{l}
                                              \sigma(N) =
                                                                                             \sigma_{\text{II}}
                                              \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 \text{ N/mm}^2
                                                                                                                                                         = 75000 \text{ N/mm}^2
Ν
         = 38900 N
                                                                                                                                               G
                                               M_{\star}
                                                        = -1750000 Nmm
                                                                                               \sigma_{a}
                                                                                                         = 200000 \text{ N/mm}^2
M,
         = 1520000 Nmm
                                                         = 1630000 Nmm
                                                                                               \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                \tau(M,) =
y_{\mathsf{G}}
                                                                                                \sigma_{l}
                                               \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                          = 75000 \text{ N/mm}^2
Ν
         = 47100 N
                                                                                                                                                 G
                                                M_{\star}
                                                         = -2210000 Nmm
                                                                                                \sigma_{a}
                                                                                                          = 200000 \text{ N/mm}^2
M,
         = 1950000 Nmm
                                                         = 1420000 Nmm
                                                                                                \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
y_{\mathsf{G}}
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 \text{ N/mm}^2
                                                                                                                                                         = 75000 \text{ N/mm}^2
Ν
         = 50800 N
                                                                                                                                                G
                                               M_{\star}
                                                        = -1540000 Nmm
                                                                                               \sigma_{a}
                                                                                                         = 200000 \text{ N/mm}^2
M,
         = 2030000 Nmm
                                                         = 1570000 Nmm
                                                                                               \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{mises}} =
y_{\mathsf{G}}
                                                                                                \sigma_{l}
                                               \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                     = 75000 \text{ N/mm}^2
Ν
         = 56300 N
                                                                                                                                            G
                                              M_{\star}
                                                       = -1760000 Nmm
                                                                                             \sigma_{a}
                                                                                                      = 200000 \text{ N/mm}^2
                                                       = 1680000 Nmm
M,
         = 1540000 Nmm
                                                                                             \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                             \sigma_{l}
                                              \sigma(N) =
                                                                                             \sigma_{\text{II}}
                                              \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 \text{ N/mm}^2
                                                                                                                                                         = 75000 \text{ N/mm}^2
Ν
         = 40500 N
                                                                                                                                                G
                                                M_{\star}
                                                        = -1810000 Nmm
                                                                                                \sigma_{a}
                                                                                                         = 200000 \text{ N/mm}^2
M,
         = 1630000 Nmm
                                                         = 1820000 Nmm
                                                                                                \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
y_{\mathsf{G}}
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 \text{ N/mm}^2
                                                                                                                                                          = 75000 \text{ N/mm}^2
Ν
         = 44900 N
                                                                                                                                                G
                                                M_{\star}
                                                         = -2080000 Nmm
                                                                                                \sigma_{a}
                                                                                                         = 200000 \text{ N/mm}^2
         = 1760000 Nmm
M,
                                                         = 1240000 Nmm
                                                                                                \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
y_{\mathsf{G}}
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 \text{ N/mm}^2
                                                                                                                                                        = 75000 \text{ N/mm}^2
Ν
         = 48300 N
                                                                                                                                               G
                                               M_{\star}
                                                        = -1440000 Nmm
                                                                                               \sigma_{a}
                                                                                                         = 200000 \text{ N/mm}^2
M,
         = 1830000 Nmm
                                                        = 1370000 Nmm
                                                                                               \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                               \tau(M,) =
y_{\mathsf{G}}
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 \text{ N/mm}^2
                                                                                                                                                    = 75000 \text{ N/mm}^2
Ν
         = 53700 N
                                                                                                                                           G
                                              M_{\star}
                                                       = -1660000 Nmm
                                                                                            \sigma_{a}
                                                                                                      = 200000 \text{ N/mm}^2
M,
         = 1390000 Nmm
                                                       = 1480000 Nmm
                                                                                            \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                             \sigma_{l}
                                              \sigma(N) =
                                                                                             \sigma_{\text{II}}
                                              \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 \text{ N/mm}^2
                                                                                                                                                    = 75000 \text{ N/mm}^2
Ν
         = 38600 N
                                                                                                                                           G
                                              M_{\star}
                                                      = -1710000 Nmm
                                                                                            \sigma_{a}
                                                                                                     = 200000 \text{ N/mm}^2
M,
         = 1480000 Nmm
                                                       = 1590000 Nmm
                                                                                            \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                            \tau(M,) =
                                                                                            \sigma_{l}
                                              \sigma(N) =
                                                                                            \sigma_{\text{II}}
                                              \sigma(M_x)=
```

04.06.10

Calcolo degli sforzi in * con forze baricentriche essendo * il punto A di EA

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                       = 75000 \text{ N/mm}^2
Ν
         = 39300 N
                                                                                                                                              G
                                               M_{\star}
                                                        = -1370000 Nmm
                                                                                               \sigma_{a}
                                                                                                        = 200000 \text{ N/mm}^2
M,
         = 1380000 Nmm
                                                        = 1140000 Nmm
                                                                                               \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                               \tau(M,) =
y_{\mathsf{G}}
                                                                                               σ
                                                        =
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 \text{ N/mm}^2
                                                                                                                                                       = 75000 \text{ N/mm}^2
Ν
         = 41800 N
                                                                                                                                              G
                                               M_{\star}
                                                        = -896000 Nmm
                                                                                               \sigma_{a}
                                                                                                        = 200000 \text{ N/mm}^2
M,
         = 1370000 Nmm
                                                        = 1210000 Nmm
                                                                                               \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                               \tau(M,) =
y_{\mathsf{G}}
                                                                                               σ
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                       = 75000 \text{ N/mm}^2
Ν
        = 47300 N
                                                                                                                               G
                                          M_{\star}
                                                  = -1110000 Nmm
                                                                                    \sigma_{a}
                                                                                            = 200000 \text{ N/mm}^2
M,
        = 1100000 Nmm
                                                  = 1370000 Nmm
                                                                                    \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                              \sigma_{\text{mises}} =
                                                                                    \tau(M,) =
y_{\mathsf{G}}
                                                                                    σ
                                                                                    \sigma_{l}
                                          \sigma(N) =
                                                                                    \sigma_{\text{II}}
                                          \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10
                                                                                                                                                       04.06.10
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 \text{ N/mm}^2
                                                                                                                                                          = 75000 \text{ N/mm}^2
Ν
         = 33500 N
                                                                                                                                                 G
                                                M_{\star}
                                                         = -1080000 Nmm
                                                                                                \sigma_{a}
                                                                                                          = 200000 \text{ N/mm}^2
M,
         = 1120000 Nmm
                                                         = 1430000 Nmm
                                                                                                \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                 \tau(M,) =
y_{\mathsf{G}}
                                                                                                 σ
                                                                                                \sigma_{\text{I}}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 \text{ N/mm}^2
                                                                                                                                                       = 75000 \text{ N/mm}^2
Ν
         = 38400 N
                                                                                                                                              G
                                               M_{\star}
                                                        = -1350000 Nmm
                                                                                              \sigma_{a}
                                                                                                        = 200000 \text{ N/mm}^2
M,
         = 1320000 Nmm
                                                        = 1080000 Nmm
                                                                                              \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                               \tau(M,) =
y_{\mathsf{G}}
                                                                                               σ
                                               α
                                                        =
                                                                                               \sigma_{l}
J_{xx}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```

04.06.10

Calcolo degli sforzi in * con forze baricentriche essendo * il punto E di EA

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                          = 75000 \text{ N/mm}^2
Ν
         = 40600 N
                                                         = 881000 Nmm
                                                                                                                                                 G
                                                M_{\star}
                                                                                                \sigma_{a}
                                                                                                          = 200000 \text{ N/mm}^2
         = 1310000 Nmm
M,
                                                         = 1140000 Nmm
                                                                                                \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                \tau(M,) =
y_{\mathsf{G}}
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                       = 75000 \text{ N/mm}^2
Ν
         = 46200 N
                                                                                                                                              G
                                               M_{\star}
                                                        = -1100000 Nmm
                                                                                               \sigma_{a}
                                                                                                        = 200000 \text{ N/mm}^2
         = 1060000 Nmm
M,
                                                        = 1310000 Nmm
                                                                                               \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                               \tau(M,) =
y_{\mathsf{G}}
                                                                                               σ
                                               α
                                                        =
                                                                                               \sigma_{l}
J_{xx}
                                               \sigma(N) =
         =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 240 \text{ N/mm}^2
                                                                                                                                      = 75000 \text{ N/mm}^2
Ν
        = 32700 N
                                                                                                                              G
                                          M_{\star}
                                                 = -1070000 Nmm
                                                                                    \sigma_{a}
                                                                                            = 200000 \text{ N/mm}^2
        = 1070000 Nmm
                                                  = 1360000 Nmm
M,
                                                                                    \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                              \sigma_{\text{mises}} =
                                                                                    \tau(M,) =
y_{\mathsf{G}}
                                                                                    σ
                                                  =
                                                                                    \sigma_{l}
                                          \sigma(N) =
                                                                                    \sigma_{\text{II}}
                                          \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10
                                                                                                                                                      04.06.10
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                          = 75000 \text{ N/mm}^2
Ν
         = 39100 N
                                                                                                                                                 G
                                                M_{\star}
                                                         = -1330000 Nmm
                                                                                                \sigma_{a}
                                                                                                          = 200000 \text{ N/mm}^2
         = 1360000 Nmm
M,
                                                         = 1110000 Nmm
                                                                                                \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
y_{\mathsf{G}}
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 \text{ N/mm}^2
                                                                                                                                                        = 75000 \text{ N/mm}^2
Ν
         = 41600 N
                                                                                                                                               G
                                               M_{\star}
                                                        = -874000 Nmm
                                                                                               \sigma_{a}
                                                                                                        = 200000 \text{ N/mm}^2
         = 1360000 Nmm
M,
                                                        = 1190000 Nmm
                                                                                               \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                               \tau(M,) =
y_{\mathsf{G}}
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 \text{ N/mm}^2
                                                                                                                                                       = 75000 \text{ N/mm}^2
Ν
         = 46900 N
                                                                                                                                              G
                                               M_{\star}
                                                        = -1080000 Nmm
                                                                                              \sigma_{a}
                                                                                                        = 200000 \text{ N/mm}^2
         = 1080000 Nmm
M,
                                                        = 1330000 Nmm
                                                                                              \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                               \tau(M,) =
y_{\mathsf{G}}
                                                                                               σ
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```

04.06.10

Calcolo degli sforzi in * con forze baricentriche essendo * il punto A di EA

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 240 \text{ N/mm}^2
                                                                                                                                                       = 75000 \text{ N/mm}^2
Ν
         = 33300 N
                                                                                                                                              G
                                               M_{\star}
                                                        = -1050000 Nmm
                                                                                              \sigma_{a}
                                                                                                        = 200000 \text{ N/mm}^2
M,
         = 1100000 Nmm
                                                        = 1390000 Nmm
                                                                                              \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                               \tau(M,) =
y_{\mathsf{G}}
                                                                                               σ
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                        = 75000 \text{ N/mm}^2
Ν
         = 38100 N
                                                                                                                                               G
                                               M_{\star}
                                                        = -1310000 Nmm
                                                                                               \sigma_{a}
                                                                                                        = 200000 \text{ N/mm}^2
M,
         = 1300000 Nmm
                                                        = 1050000 Nmm
                                                                                               \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                               \tau(M,) =
y_{\mathsf{G}}
                                                                                               σ
                                                         =
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 \text{ N/mm}^2
                                                                                                                                                         = 75000 \text{ N/mm}^2
Ν
         = 40500 N
                                                                                                                                                G
                                                M_{\star}
                                                        = -857000 Nmm
                                                                                                \sigma_{a}
                                                                                                         = 200000 \text{ N/mm}^2
         = 1300000 Nmm
M,
                                                         = 1120000 Nmm
                                                                                                \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
y_{\mathsf{G}}
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```

04.06.10

Calcolo degli sforzi in * con forze baricentriche essendo * il punto A di EA

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                        = 75000 \text{ N/mm}^2
Ν
         = 45800 N
                                                                                                                                               G
                                               M_{\star}
                                                        = -1060000 Nmm
                                                                                               \sigma_{a}
                                                                                                        = 200000 \text{ N/mm}^2
M,
         = 1040000 Nmm
                                                        = 1270000 Nmm
                                                                                               \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                               \tau(M,) =
y_{\mathsf{G}}
                                                                                               σ
                                                         =
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                          = 75000 \text{ N/mm}^2
Ν
         = 32500 N
                                                                                                                                                 G
                                                M_{\star}
                                                         = -1030000 Nmm
                                                                                                \sigma_{a}
                                                                                                          = 200000 \text{ N/mm}^2
         = 1060000 Nmm
M,
                                                         = 1320000 Nmm
                                                                                                \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
y_{\mathsf{G}}
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```

04.06.10

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                     = 75000 \text{ N/mm}^2
Ν
         = 56300 N
                                                                                                                                            G
                                              M_{\star}
                                                       = -1950000 Nmm
                                                                                                       = 200000 \text{ N/mm}^2
M,
         = 2130000 Nmm
                                                       = 2450000 Nmm
                                                                                             \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                              \tau(M,) =
y_{\mathsf{G}}
                                                                                              σ
                                                                                              \sigma_{l}
                                              \sigma(N) =
                                                                                              \sigma_{\text{II}}
                                              \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                    = 75000 \text{ N/mm}^2
Ν
        = 61700 N
                                                                                                                            G
                                         M_{\star}
                                                 = -1380000 Nmm
                                                                                           = 200000 \text{ N/mm}^2
        = 2220000 Nmm
M,
                                                 = 2740000 Nmm
                                                                                   \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                            \sigma_{\text{mises}} =
                                                                                   \tau(M,) =
y_{\mathsf{G}}
                                                                                   σ
                                                                                   \sigma_{l}
                                         \sigma(N) =
                                                                                   \sigma_{\text{II}}
                                         \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10
                                                                                                                                                    04.06.10
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

r doordative. rappresentate randamento delle teno: tangenziati.									
Ν	= 67200 N	M_{x}	= -1500000 Nmm	σ_{a}	= 240 N/mm ²	G	= 75000 N	N/mm ²	
M_{t}	= 1650000 Nmm	M_{v}	= 2880000 Nmm	E	$= 200000 \text{ N/mm}^2$				
x_{G}	=	J_{xy}	=	$\sigma(M_y)$	•	σ_{mise}	es=		
y_{G}	=	J_{u}	=	$\tau(M_t)$	=	$\sigma_{st.ve}$	_{en} =		
u_o	=	J_v	=	σ	=	θ_{t}	=		
V_{o}	=	α	=	τ	=	r_u	=		
Α	=	J_t	=	σ_{I}	=	r_{v}	=		
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=		
J_{yy}	=	σ(M ₃	·()=	σ_{tresc}	a=				
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10								04.06.10	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                      = 75000 \text{ N/mm}^2
Ν
         = 49200 N
                                                                                                                                             G
                                               M_{\star}
                                                       = -1580000 Nmm
                                                                                                       = 200000 \text{ N/mm}^2
         = 1760000 Nmm
M,
                                                        = 3150000 Nmm
                                                                                              \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                              \tau(M,) =
y_{\mathsf{G}}
                                                                                              \sigma_{l}
                                               \sigma(N) =
                                                                                              \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                    = 75000 \text{ N/mm}^2
Ν
        = 55200 N
                                                                                                                            G
                                         M_{\star}
                                                 = -1900000 Nmm
                                                                                           = 200000 \text{ N/mm}^2
        = 2070000 Nmm
M,
                                                 = 2340000 Nmm
                                                                                   \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                            \sigma_{\text{mises}} =
                                                                                   \tau(M,) =
y_{\mathsf{G}}
                                                                                   σ
                                                                                   \sigma_{l}
                                         \sigma(N) =
                                                                                   \sigma_{\text{II}}
                                         \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10
                                                                                                                                                     04.06.10
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                      = 75000 \text{ N/mm}^2
Ν
         = 60400 N
                                                                                                                                             G
                                              M_{\star}
                                                       = -1350000 Nmm
                                                                                                       = 200000 \text{ N/mm}^2
         = 2160000 Nmm
M,
                                                       = 2620000 Nmm
                                                                                             \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                              \tau(M,) =
y_{\mathsf{G}}
                                                                                              σ
                                                                                              \sigma_{l}
                                              \sigma(N) =
                                                                                              \sigma_{\text{II}}
                                              \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                      = 75000 \text{ N/mm}^2
Ν
         = 65800 N
                                                       = -1460000 Nmm
                                                                                                                                             G
                                               M_{\star}
                                                                                                       = 200000 \text{ N/mm}^2
         = 1610000 Nmm
M,
                                                        = 2750000 Nmm
                                                                                              \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                              \tau(M,) =
y_{\mathsf{G}}
                                                                                              \sigma_{l}
                                               \sigma(N) =
                                                                                              \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                       = 75000 \text{ N/mm}^2
Ν
        = 48100 N
                                                                                                                               G
                                          M_{\star}
                                                  = -1540000 Nmm
                                                                                    \sigma_{a}
                                                                                             = 200000 \text{ N/mm}^2
        = 1710000 Nmm
M,
                                                  = 3010000 Nmm
                                                                                    \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                               \sigma_{\text{mises}} =
                                                                                     \tau(M,) =
y_{\mathsf{G}}
                                                                                     \sigma_{l}
                                          \sigma(N) =
                                                                                     \sigma_{\text{II}}
                                          \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10
                                                                                                                                                        04.06.10
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

r doordative. rappresentate randamente delle tene. tangenzian.									
Ν	= 56300 N	M_x	= -1940000 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	= 75000 N	√mm²	
M_t	= 2110000 Nmm	M_{v}	= 2450000 Nmm	E	= 200000 N/mm ²				
x_{G}	=	J_{xy}	=	$\sigma(M_y)$)=	σ_{mise}	es=		
y_{G}	=	J_{u}	=	$\tau(M_t)$	=	$\sigma_{st.ve}$	en=		
u_o	=	J_v	=	σ	=	θ_{t}	=		
V_{o}	=	α	=	τ	=	r_u	=		
Α	=	J_t	=	σ_{I}	=	r_{v}	=		
J_xx	=	σ(N)	=	σ_{II}	=	r_{o}	=		
J_{yy}	=	$\sigma(M_s)$	·)=	σ_{tresc}	a=				
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10								04.06.10	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

r dollative. rappresentare randamente delle tene. tangenzian.									
Ν	= 61700 N	M_x	= -1380000 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	= 75000 N	l/mm ²	
M_t	= 2210000 Nmm	M_{v}	= 2740000 Nmm	E	= 200000 N/mm ²				
x_{G}	=	J_{xy}	=	$\sigma(M_{v})$)=	σ_{mise}	.s=		
y_{G}	=	J_{u}	=	$\tau(M_t)$	=	$\sigma_{\text{st.ve}}$	_n =		
u_o	=	J_v	=	σ	=	θ_{t}	=		
V_{o}	=	α	=	τ	=	r_u	=		
Α	=	J_t	=	σ_{l}	=	r_{v}	=		
J_xx	=	σ(N)	=	σ_{II}	=	r_{o}	=		
J_{yy}	=	$\sigma(M_{y})$	r)=	σ_{tresc}	a=				
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10								04.06.10	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	r addition rapprocentary randaments delig to the tangenziam								
Ν	= 67200 N	M_{x}	= -1490000 Nmm	$\sigma_{\rm a}$	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$		
M_t	= 1640000 Nmm	M_{v}	= 2870000 Nmm	E	= 200000 N/mm ²				
\mathbf{x}_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=		
y_{G}	=	J_{u}	=	τ(M	t) =	$\sigma_{st.v}$	_{ven} =		
u_o	=	J_v	=	σ	=	θ_{t}	=		
V_{o}	=	α	=	τ	=	r_u	=		
Α	=	J_t	=	σ_{I}	=	r_v	=		
J_xx	=	σ(N		σ_{II}	=	r_{o}	=		
J_{yy}	=	σ(M	=(_x	σ_{tres}	sca=				

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                         = 75000 \text{ N/mm}^2
Ν
         = 49100 N
                                                                                                                                                G
                                               M_{\star}
                                                        = -1570000 Nmm
                                                                                               \sigma_{a}
                                                                                                         = 200000 \text{ N/mm}^2
         = 1740000 Nmm
M,
                                                         = 3140000 Nmm
                                                                                               \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                \tau(M,) =
y_{\mathsf{G}}
                                                                                                σ
                                                                                                \sigma_{l}
                                               \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                    = 75000 \text{ N/mm}^2
Ν
        = 55100 N
                                                                                                                            G
                                         M_{\star}
                                                 = -1890000 Nmm
                                                                                          = 200000 \text{ N/mm}^2
        = 2060000 Nmm
M,
                                                 = 2340000 Nmm
                                                                                  \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                            \sigma_{\text{mises}} =
                                                                                   \tau(M,) =
y_{\mathsf{G}}
                                                                                   σ
                                         α
                                                                                   \sigma_{l}
                                         \sigma(N) =
                                                                                   \sigma_{\text{II}}
                                         \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10
                                                                                                                                                    04.06.10
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                    = 75000 \text{ N/mm}^2
Ν
        = 60400 N
                                                                                                                            G
                                         M_{\star}
                                                 = -1340000 Nmm
                                                                                          = 200000 \text{ N/mm}^2
M,
        = 2140000 Nmm
                                                 = 2610000 Nmm
                                                                                  \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                            \sigma_{\text{mises}} =
                                                                                   \tau(M,) =
y_{\mathsf{G}}
                                                                                   σ
                                         α
                                                                                   \sigma_{l}
                                         \sigma(N) =
                                                                                   \sigma_{\text{II}}
                                         \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10
                                                                                                                                                    04.06.10
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                      = 75000 \text{ N/mm}^2
Ν
         = 65700 N
                                                        = -1460000 Nmm
                                                                                                                                             G
                                               M_{\star}
                                                                                                       = 200000 \text{ N/mm}^2
M,
         = 1590000 Nmm
                                                        = 2750000 Nmm
                                                                                              \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                              \tau(M,) =
y_{\mathsf{G}}
                                                                                              \sigma_{l}
                                               \sigma(N) =
                                                                                              \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                     = 75000 \text{ N/mm}^2
Ν
        = 48100 N
                                                                                                                             G
                                         M_{\star}
                                                 = -1530000 Nmm
                                                                                           = 200000 \text{ N/mm}^2
        = 1690000 Nmm
M,
                                                 = 3000000 Nmm
                                                                                   \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                             \sigma_{\text{mises}} =
                                                                                   \tau(M,) =
y_{\mathsf{G}}
                                                                                   \sigma_{l}
                                         \sigma(N) =
                                                                                   \sigma_{\text{II}}
                                         \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10
                                                                                                                                                     04.06.10
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                     = 75000 \text{ N/mm}^2
Ν
         = 56300 N
                                                                                                                                            G
                                              M_{\star}
                                                       = -1950000 Nmm
                                                                                                       = 200000 \text{ N/mm}^2
M,
         = 2130000 Nmm
                                                       = 2450000 Nmm
                                                                                             \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                              \tau(M,) =
y_{\mathsf{G}}
                                                                                              σ
                                                                                              \sigma_{l}
                                              \sigma(N) =
                                                                                              \sigma_{\text{II}}
                                              \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                     = 75000 \text{ N/mm}^2
Ν
        = 61700 N
                                                                                                                             G
                                         M_{\star}
                                                 = -1380000 Nmm
                                                                                           = 200000 \text{ N/mm}^2
        = 2220000 Nmm
M,
                                                 = 2740000 Nmm
                                                                                   \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                            \sigma_{\text{mises}} =
                                                                                   \tau(M,) =
y_{\mathsf{G}}
                                                                                   \sigma_{l}
                                         \sigma(N) =
                                                                                   \sigma_{\text{II}}
                                         \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10
                                                                                                                                                     04.06.10
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                                      = 75000 \text{ N/mm}^2
Ν
         = 67200 N
                                                                                                                                             G
                                               M_{\star}
                                                       = -1500000 Nmm
                                                                                                       = 200000 \text{ N/mm}^2
         = 1650000 Nmm
M,
                                                        = 2880000 Nmm
                                                                                              \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                              \tau(M,) =
y_{\mathsf{G}}
                                                                                              \sigma_{l}
                                               \sigma(N) =
                                                                                              \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 240 N/mm<sup>2</sup>
                                                                                                                                       = 75000 \text{ N/mm}^2
Ν
        = 49200 N
                                                                                                                               G
                                          M_{\star}
                                                  = -1580000 Nmm
                                                                                    \sigma_{a}
                                                                                             = 200000 \text{ N/mm}^2
        = 1760000 Nmm
M,
                                                  = 3150000 Nmm
                                                                                    \sigma(M_{v})=
\mathbf{x}_{\mathsf{G}}
                                                                                                                               \sigma_{\text{mises}} =
                                                                                     \tau(M,) =
y_{\mathsf{G}}
                                                                                     \sigma_{l}
                                          \sigma(N) =
                                                                                     \sigma_{\text{II}}
                                          \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.10
                                                                                                                                                        04.06.10
```