1.	In this question you must show all stages of your working.	
	Solutions relying entirely on calculator technology are not acceptable.	
	The air pressure, $P \text{kg/cm}^2$, inside a car tyre, t minutes from the instant when the tyre developed a puncture is given by the equation	
	$P = k + 1.4e^{-0.5t} \qquad t \in \mathbb{R} \qquad t \geqslant 0$	
	where k is a constant.	
	Given that the initial air pressure inside the tyre was 2.2 kg/cm ²	
	(a) state the value of k .	(1)
	From the instant when the tyre developed the puncture,	
	(b) find the time taken for the air pressure to fall to 1 kg/cm ² Give your answer in minutes to one decimal place.	(3)
	(c) Find the rate at which the air pressure in the tyre is decreasing exactly 2 minutes from the instant when the tyre developed the puncture. Give your answer in kg/cm² per minute to 3 significant figures.	
	Give your answer in kg/em per immate to 3 significant figures.	(2)

. The owners of a nature reserve decided to increase the area of the reserve covered by tree	es.
Tree planting started on 1st January 2005.	
The area of the nature reserve covered by trees, A km ² , is modelled by the equation	
$A = 80 - 45e^{ct}$	
where c is a constant and t is the number of years after 1st January 2005.	
Using the model,	
(a) find the area of the nature reserve that was covered by trees just before tree planting started.	(4)
	(1)
On 1st January 2019 an area of $60 \mathrm{km}^2$ of the nature reserve was covered by trees.	
(b) Use this information to find a complete equation for the model, giving your value of <i>c</i> to 3 significant figures.	(4)
	(4)
On 1st January 2020, the owners of the nature reserve announced a long-term plan to have $100 \mathrm{km}^2$ of the nature reserve covered by trees.	
(c) State a reason why the model is not appropriate for this plan.	(1)
	(1)

3. The temperature, θ °C, of a cup of tea t minutes after it was placed on a table in a room, is modelled by the equation

$$\theta = 18 + 65e^{-\frac{t}{8}} \qquad t \geqslant 0$$

Find, according to the model,

(a) the temperature of the cup of tea when it was placed on the table,

(1)

(b) the value of t, to one decimal place, when the temperature of the cup of tea was 35 °C.

(3)

(c) Explain why, according to this model, the temperature of the cup of tea could not fall to 15 °C.

(1)

Figure 2

The temperature, μ °C, of a second cup of tea t minutes after it was placed on a table in a different room, is modelled by the equation

$$\mu = A + Be^{-\frac{t}{8}} \qquad t \geqslant 0$$

where A and B are constants.

Figure 2 shows a sketch of μ against t with two data points that lie on the curve.

The line *l*, also shown on Figure 2, is the asymptote to the curve.

Using the equation of this model and the information given in Figure 2

(d) find an equation for the asymptote l.

(4)

Water is being heated in an electric kettle. The temperature, θ °C, of the water t seco after the kettle is switched on, is modelled by the equation	nds
$\theta = 120 - 100e^{-\lambda t}, \qquad 0 \leqslant t \leqslant T$	
(a) State the value of θ when $t = 0$	(1)
Given that the temperature of the water in the kettle is 70° C when $t = 40$,	
(b) find the exact value of λ , giving your answer in the form $\frac{\ln a}{b}$, where a and b integers.	are
megers.	(4)
When $t = T$, the temperature of the water reaches $100 ^{\circ}$ C and the kettle switches off.	
(c) Calculate the value of <i>T</i> to the nearest whole number.	(2)

A company plans to extract oil from an oil field.

The daily volume of oil V, measured in barrels that the company will extract from this oil field depends upon the time, t years, after the start of drilling.

The company decides to use a model to estimate the daily volume of oil that will be extracted. The model includes the following assumptions:

- The initial daily volume of oil extracted from the oil field will be 16 000 barrels.
- The daily volume of oil that will be extracted exactly 4 years after the start of drilling will be 9000 barrels.
- The daily volume of oil extracted will decrease over time.

The diagram below shows the graphs of two possible models.

- (a) (i) Use model A to estimate the daily volume of oil that will be extracted exactly 3 years after the start of drilling.
 - (ii) Write down a limitation of using model A.

(2)

- (b) (i) Using an exponential model and the information given in the question, find a possible equation for model *B*.
 - (ii) Using your answer to (b)(i) estimate the daily volume of oil that will be extracted exactly 3 years after the start of drilling.

(5)

Question 5 continued

6.	A quantity of ethanol was heated until it reached boiling point.	
	The temperature of the ethanol, θ °C, at time t seconds after heating began, is modelled by the equation	
	$\theta = A - Be^{-0.07t}$	
	where A and B are positive constants.	
	Given that	
	• the initial temperature of the ethanol was 18 °C	
	• after 10 seconds the temperature of the ethanol was 44°C	
	(a) find a complete equation for the model, giving the values of <i>A</i> and <i>B</i> to 3 significant figures.	
		(4)
	Ethanol has a boiling point of approximately 78°C	
	(b) Use this information to evaluate the model.	(2)

7.	The amount of an antibiotic in the bloodstream, from a given dose, is modelled by the formula	
	$x = De^{-0.2t}$	
	where x is the amount of the antibiotic in the bloodstream in milligrams, D is the dose given in milligrams and t is the time in hours after the antibiotic has been given.	
	A first dose of 15 mg of the antibiotic is given.	
	(a) Use the model to find the amount of the antibiotic in the bloodstream 4 hours after the dose is given. Give your answer in mg to 3 decimal places.	
	(2)	
	A second dose of 15 mg is given 5 hours after the first dose has been given. Using the same model for the second dose,	
	(b) show that the total amount of the antibiotic in the bloodstream 2 hours after the second dose is given is 13.754 mg to 3 decimal places.	
	(2)	
	No more doses of the antibiotic are given. At time <i>T</i> hours after the second dose is given, the total amount of the antibiotic in the bloodstream is 7.5 mg.	
	(c) Show that $T = a \ln \left(b + \frac{b}{e} \right)$, where a and b are integers to be determined.	
	(4)	

estion 7 continued		

8.	The mass, m grams, of a radioactive substance, t years after first being observed, is modelled by the equation	
	$m = 25e^{-0.05t}$	
	According to the model,	
	(a) find the mass of the radioactive substance six months after it was first observed,	
		(2)
	(b) show that $\frac{dm}{dt} = km$, where k is a constant to be found.	(2)

9.	Coffee is poured into a cup.	
	The temperature of the coffee, H °C, t minutes after being poured into the cup is modelled by the equation	
	$H = Ae^{-Bt} + 30$	
	where A and B are constants.	
	Initially, the temperature of the coffee was 85 °C.	
	(a) State the value of A.	(1)
	Initially, the soffee year engline at a note of 7.5°C non-minute	(1)
	Initially, the coffee was cooling at a rate of 7.5 °C per minute.	
	(b) Find a complete equation linking H and t , giving the value of B to 3 decimal places.	(3)

Question 9 continued	

10.	A scientist is studying the number of bees and the number of wasps on an island.	
	The number of bees, measured in thousands, N_b , is modelled by the equation	
	$N_b = 45 + 220 \mathrm{e}^{0.05t}$	
	where t is the number of years from the start of the study.	
	According to the model,	
	(a) find the number of bees at the start of the study,	(1)
	(b) show that, exactly 10 years after the start of the study, the number of bees was increasing at a rate of approximately 18 thousand per year.	(2)
	The area 1 and 6 area and area 1 and	(3)
	The number of wasps, measured in thousands, N_w , is modelled by the equation $N_w = 10 + 800 e^{-0.05}$	
	$N_w = 10 + 800 \mathrm{e}^{-0.05t}$	
	where t is the number of years from the start of the study.	
	When $t = T$, according to the models, there are an equal number of bees and wasps.	
	(c) Find the value of T to 2 decimal places.	(4)

Question 10 continued

. A scientist is studying the growth of two different populations of bacteria.	
The number of bacteria, N , in the first population is modelled by the equation	
$N = Ae^{kt}$ $t \geqslant 0$	
where A and k are positive constants and t is the time in hours from the start of the students.	dy.
Given that	
• there were 1000 bacteria in this population at the start of the study	
• it took exactly 5 hours from the start of the study for this population to double	
(a) find a complete equation for the model.	(1)
	(4)
(b) Hence find the rate of increase in the number of bacteria in this population exactly 8 hours from the start of the study. Give your answer to 2 significant figures.	
o hours from the start of the stady. Give your answer to 2 significant figures.	(2)
The number of bacteria, M , in the second population is modelled by the equation	
$M = 500e^{1.4kt} \qquad t \geqslant 0$	
where k has the value found in part (a) and t is the time in hours from the start of the s	tudy.
Given that <i>T</i> hours after the start of the study, the number of bacteria in the two difference populations was the same,	ent
(c) find the value of <i>T</i> .	
	(3)

2. A rare species of primrose is being studied. The population, P , of primroses at time t after the study started is modelled by the equation	years
$P = \frac{800e^{0.1t}}{1 + 3e^{0.1t}}, \qquad t \geqslant 0, t \in \mathbb{R}$	
(a) Calculate the number of primroses at the start of the study.	(2)
(b) Find the exact value of t when $P = 250$, giving your answer in the form $a \ln(b)$ when a and b are integers.	
(c) Find the exact value of $\frac{dP}{dt}$ when $t = 10$. Give your answer in its simplest form.	(4) (4)
(d) Explain why the population of primroses can never be 270	(1)

estion 12 continued		

3. The value of a car, $\pounds V$, can be modelled by the equation	
$V = 15700e^{-0.25t} + 2300 \qquad t \in \mathbb{R}, \ t \geqslant 0$	
where the age of the car is t years.	
Using the model,	
(a) find the initial value of the car.	(1)
Given the model predicts that the value of the car is decreasing at a rate of £500 per year at the instant when $t = T$,	r
(b) (i) show that	
$3925e^{-0.25T} = 500$	
(ii) Hence find the age of the car at this instant, giving your answer in years and months to the nearest month.	
(Solutions based entirely on graphical or numerical methods are not acceptable.)) (6)
The model predicts that the value of the car approaches, but does not fall below, $\pounds A$.	
(c) State the value of A .	(1)
(d) State a limitation of this model	(1)
(d) State a limitation of this model.	(1)

estion 13 continued	I		