Temporal and Spatial pattern of Vulnerability to Flash-Flood in Texas

Team 4

Who we are

Team Leader:
 Matthew Li
Team Member:
 Connor West
 Alexander Starkes
 Zachary Litton
 Evan Ferguson

Outline

Introduction & Research motivation

Objective/Hypotheses

Dataset & Technical solutions

Working Plan

Expected Outcomes

Introduction & Research motivation

- Flash-Flood
 - Difficult to monitor
 - Rapid
 - Small-scaled
 - Hazard
- Vulnerability
 - Risk = Hazard * Exposure * Vulnerability
 - Easy to control

Objective/Hypotheses

- Hourly-Damage
 - In temporal pattern (in one year)
 - In spatial pattern (among cities)
 - Comparison of peak values
 - Lower terrain -> high vulnerability
 - Rainy season -> high vulnerability

Dataset & Technical Solution

- Dataset
 - Data provided by authority agency
 - E.g. TX_Flashflood2000-2019
- Technical Solution
 - Python
 - ArcPy programming

Working Plan

- Phase 1: Average damage calculation
 - Develop a set of algorithm to calculate the average hourly damage of each flashflood
- Phase 2: Classification
 - Classify the results based on their disaster level.
- Phase 3: Eliminate interference
 - o Compare the results with the exposure of corresponding event.
 - City scale, population density, GDP, etc.
- Phase 4: Summarize & conclude
 - Develop a set of parameter and indices that could represent the vulnerability.

Expected Outcome

- Algorithms
 - Calculate hourly-damage caused by certain disasters.
- Statistics
 - o Parameter and indices that could represent the level of vulnerability.

Thanks for Your Attention! Any Question?