

# **Stochastic Process**

# sup (pun intended)

Author: Zhi Wang

Institute: University of Science and Technology of China

Date: Last modified on May 23, 2024

# **Contents**

| 0.1     | Introduction                   | 1  |
|---------|--------------------------------|----|
| Chapter | 1 Discrete Time Martingale     | 2  |
| Chapter | 2 Discrete Time Markov Process | 3  |
| Chapter | 3 Brownian Motion              | 4  |
| 3.1     | Basics and Existence           | 4  |
| 3.2     | Strong Markov Property         | 4  |
| Chapter | 4 Continuous Time Martingale   | 6  |
| 4.1     | Basics                         | 6  |
| 4.2     | Optional Stopping Time         | 7  |
| Chapter | 5 Continuous Markov Processes  | 10 |
| 5.1     | Basics                         | 10 |

# 0.1 Introduction

# **Chapter 1 Discrete Time Martingale**

# **Chapter 2 Discrete Time Markov Process**

# **Chapter 3 Brownian Motion**

## 3.1 Basics and Existence

The upshot: Brownian paths are Holder continuous. With probability one, Brownian paths are not Lipschitz continuous (and hence not differentiable) at any point.

# 3.2 Strong Markov Property

Same definition for the stopping time as in martingales. The related  $\sigma$ -field is defined the same as well. We always denote BM by  $B_t$  and stopping time by T or S unless otherwise specified.

## **Example 3.1First hitting time**

$$T_a = \inf\{t \ge 0 : B_t = a\}$$

is a stopping time, where a is non-negative

but:

#### Example 3.2

$$T_a = \sup\{t \ge 0 : B_t = a\}$$

is NOT a stopping time, the intuitive explanation is that it makes use of info after time t by requiring the motion to not hit a after time t.

What's the relation between  $\mathcal{F}_T$  and BM?

#### **Proposition 3.1**

$$B_s 1_{\{s \le t\}} \in \mathcal{F}_T$$

A more important construction would be the following. Again, we've seen this type of generalization  $t \to T$ .

#### **Proposition 3.2**

 $B_T$  is  $\mathcal{F}_T$ -measurable, it is defined to be 0 on  $\{T = \infty\}$ .

**Proof** Classic approximation:

$$B_T = \lim_{n \to \infty} \sum_{i=-1}^{\infty} 1_{\{\frac{i}{2^n} \le T < \frac{i+1}{2^n}\}} B_{\frac{i}{2^n}}$$

**Remark** We can have a sequence of stopping times  $\{T_n\}$  decreasing monotonously to T, with a similar approximation as above. We'll use this in the proof of SMP and other occasions along with typical theorybuilding tools such as DCT and MCT.

Now we are ready to state SMP.

## **Theorem 3.1 (Strong Markov Property)**

Let T be a stopping time, assume  $P(T < +\infty) > 0$ ,  $\forall t \ge 0$ :

$$B_t^{(T)} = 1_{\{T < +\infty\}} (B_{T+t} - B_T)$$

then  $\{B_t^{(T)}|t\geq 0\}$  is a BM independent of  $\mathcal{F}_T$  (under  $\mathbb{P}(\cdot|T<\infty)$ ). Furthermore,

$$\mathbb{E}[f(B_{T+t})1_{\{T<+\infty\}}|\mathcal{F}_T] = \mathbb{E}[f(x+B_t)]|_{x=B_T} \cdot 1_{\{T<+\infty\}}$$

when T is essentially finite:

$$\mathbb{E}[f(B_{T+t})|\mathcal{F}_T] = \mathbb{E}[f(x+B_t)]|_{x=B_T}$$

**Proof** For the first part, it suffices to prove that the finite-dimensional distribution of  $\{B_t^{(T)}|t\geq 0\}$  is the same as the expected BM, so it boils down to computing an expectation. Do that using  $T_n\to T$  from the last remark.

Then use monotone class theorem and the expectation identity above to prove that:

$$\mathbb{E}[F(B_T, B_t^{(T)}) 1_{\{T < +\infty\}}] = \mathbb{E}[1_{\{T < +\infty\}} \mathbb{E}[F(x, B_t)]|_{x = B_T}]$$

which makes SMP obvious.

A lot of theorems involving stopping times are proven by discretizing T first, then taking the limit (usually of the expectations). Equivalently, breaking up the sample space into a countable disjoint union, where  $T_n$  is constant on each piece.

Another formulation of the weaker Markov property given in *Durrett* is:

#### Theorem 3.2

If  $s \geq 0$  and Y is bounded and C-measurable, then for all  $x \in \mathbb{R}^d$ ,

$$\mathbb{E}_x(Y \circ \theta_s | \mathcal{F}_{s+}) = \mathbb{E}_{B_s}[Y]$$

you have to go to *Durrett* to demystify the notations.

#### Theorem 3.3 (Reflection Principle)

 $\circ$ 

Next, we study  $S_t = \sup_{0 \le s \le t} B_s$ . It has a surprisingly neat law.

## **Proposition 3.3**

 $\forall a \geq 0, b \in (-\infty, a],$ 

$$P(S_t \ge a, B_t \le b) = P(B_t \ge 2a - b)$$

Moreover, the law of  $S_t$  is the same as  $|B_t|$ .

**Proof** Draw the path and use reflection principle.

#### **Corollary 3.1**

 $T_a$  and  $\frac{a^2}{B_1^2}$  have the same law/distribution, where  $a \neq 0$ . Moreover,  $T_0 = 0$ .

 $\odot$ 

**Proof** Translate from  $T_a$  to  $S_t$ , to  $|B_t|$ , to  $\sqrt{t}|B_1|$ , finally to  $tB_1^2$ . We end up with,

$$P(T_a > t) = P(\frac{a^2}{B_1^2} > t)$$

The  $T_0$  case makes use of the fact that the zero set of a BM has no isolated points, thus  $T_0 = \inf\{t > 0 : B_t = 0\} = \inf\{t \geq 0 : B_t = 0\} = 0$ .

# **Chapter 4 Continuous Time Martingale**

## 4.1 Basics

We start off by defining a different kind of continuous filtration.

#### **Definition 4.1**

$$\mathcal{F}_{s+} = \bigcap_{t>s} \mathcal{F}_t$$

We say that  $\mathcal{F}_t$  is right-continuous at time  $t \geq 0$  if  $\mathcal{F}_{t+} = \mathcal{F}_t$ .

 $\{\mathcal{F}_t\}$  is said to be complete if all negligible sets (not necessarily measurable in  $\mathcal{F}$ ) are in  $\mathcal{F}_0$ .

Of course, we can take the completion of a filtration by throwing in all the negligible sets. So the *usual* condition means completeness and right-continuity.

**Definition 3.10** An adapted real-valued process  $(X_t)_{t\geq 0}$  such that  $X_t \in L^1$  for every  $t\geq 0$  is called

- a martingale if, for every  $0 \le s < t$ ,  $E[X_t \mid \mathscr{F}_s] = X_s$ ;
- a supermartingale if, for every  $0 \le s < t$ ,  $E[X_t \mid \mathscr{F}_s] \le X_s$ ;
- a submartingale if, for every  $0 \le s < t$ ,  $E[X_t \mid \mathscr{F}_s] \ge X_s$ .

Figure 4.1: Continuous martingale

The most frequently used continuous martingales include:  $B_t, B_t^2 - t, exp(\theta B_t - \frac{\theta^2 t}{2})$ . The problem is, a random continuous martingale is not always right-continuous! Surely, we seek its modifications below.

# **Proposition 3.15**

(i) (Maximal inequality) Let  $(X_t)_{t\geq 0}$  be a supermartingale with right-continuous sample paths. Then, for every t>0 and every  $\lambda>0$ ,

$$\lambda P\Big(\sup_{0\leq s\leq t}|X_s|>\lambda\Big)\leq E[|X_0|]+2E[|X_t|].$$

(ii) (Doob's inequality in  $L^p$ ) Let  $(X_t)_{t\geq 0}$  be a martingale with right-continuous sample paths. Then, for every t>0 and every p>1,

$$E\Big[\sup_{0 < s < t} |X_s|^p\Big] \le \left(\frac{p}{p-1}\right)^p E[|X_t|^p].$$

Note that part (ii) of the proposition is useful only if  $E[|X_t|^p] < \infty$ .

Figure 4.2: Maximal inequality for continuous martingale

#### **Definition 4.2 (up-crossing number)**

 $M_{ab}^f(I)$ 

### \*

#### Lemma 4.1

 $f: \mathbb{Q} \to \mathbb{R}$ , assume that  $\forall t \in \mathbb{Q}$ :

- f is bounded on  $\mathbb{Q} \cap [0, t]$ .
- $M_{ab}^f(\mathbb{Q} \cap [0,t]) < \infty$ , for  $\forall a < b$ .

Then both the right and left limits of f exist and both can be achieved by taking limits in the rationals.

s. <sub>(^)</sub>

**Remark** We can take g(t) = f(t+) to right-continuify a function like f, serving as a pathway from discrete martingale to continuous martingale.

So we want to control the up-crossing number. We can verify that for almost every  $w \in \Omega$ , X(w) is a path satisfying the conditions in the last lemma (by using 4.2 in the proof).

#### Theorem 4.1

Assume that  $\mathscr{F}_t$  is right-continuous and complete, let X be a supermartingale s.t.  $t \to \mathbb{E}[X_t]$  is right continuous, then X has a right continuous modification  $\overline{X}$  which is a  $\mathscr{F}_t$ -supermartingale. Modification means that  $\forall t \geq 0, \mathbb{P}(X_t = \overline{X_t}) = 1$ .

**Remark** if X is a martingale, then  $\overline{X}$  is also a martingale.

Actually, the modification is *continue* à *droite avec des limites* à *gauche*. The upshot is quite simple: it's safe to assume right continuity.

# 4.2 Optional Stopping Time

We assume right continuity throughout the rest of this chapter. The leading question in this section is: When does  $\mathbb{E}[X_T] = \mathbb{E}[X_0]$  hold? We call the limit of a uniformly integrable martingale (UIM)  $Y_t$  by  $Y_{\infty}$ .

## **Theorem 4.2 (Discrete Doob stopping time)**

Let  $Y_n$  be a UIM,  $M \leq N$  be stopping times, then

$$Y_M = \mathbb{E}[Y_N | \mathscr{F}_M]$$

**Proof** 

$$\mathbb{E}[Y_T] = \sum \mathbb{E}[Y_n | T = n] = \sum \mathbb{E}[\mathbb{E}[Y_\infty | \mathscr{F}_n] 1_{T=n}] = \sum \mathbb{E}[Y_\infty 1_{T=n}]$$

which then evaluates to

$$\mathbb{E}[Y_{\infty}] = \mathbb{E}[Y_0] = \mathbb{E}[Y_T] \tag{4.1}$$

Now we're ready to verify

$$\mathbb{E}[Y_M 1_A] = \mathbb{E}[Y_N 1_A]$$

Then define  $T = M1_A + N1_A^c$ , verify that T is a stopping time and then use identity 4.1.

Then the main actor in this section.

 $\Diamond$ 

#### **Theorem 4.3 (Continuous Doob stopping time)**

Let  $X_t$  be a path-right-continuous UIM,  $S \leq T$  be stopping times, then

$$X_S = \mathbb{E}[X_T | \mathscr{F}_S]; X_S, X_T \in L_1$$

In particular,

$$\mathbb{E}[X_{\infty}] = \mathbb{E}[X_0] = \mathbb{E}[X_T]$$

and

$$X_S = \mathbb{E}[X_\infty | \mathscr{F}_S]$$

**Proof** Discretize X with  $Y_k = X_{\frac{k}{2^n}}$ , S and T with their usual discrete counterparts that decrease to them (see the remark of 3.2). We then use thm 4.2 on these objects, so

$$\mathbb{E}[X_{T_n}1_A] = \mathbb{E}[X_{S_n}1_A]$$

Now we want  $L_1$  convergence, which is given by a.s. convergence and the following uniform bound

$$\sup \mathbb{E}[|X_{S_n}|] \leq \mathbb{E}[|X_{\infty}|] < \infty$$

because UIM ensures that  $X_{\infty}$  is in  $L_1$ . Finally, take the limit, proving that  $X_{S_n} \to X_S \in L_1$  and  $\mathbb{E}[X_T 1_A] = \mathbb{E}[X_S 1_A]$ .

# Corollary 4.1 (Continuous Doob stopping time without *UIM* condition)

 $X_t$  is path-right-continuous, not UIM, but S and T are now bounded. Then

$$X_S = \mathbb{E}[X_T | \mathscr{F}_S]$$

**Proof** Let a be a common bound, stop  $X_t$  with time a, this new martingale is UIM and then apply 4.3.

#### **Corollary 4.2**

 $X_t$  is path-right-continuous and UIM, T is a stopping time. Then

$$X_{t \wedge T} = \mathbb{E}[X_T | \mathscr{F}_t]$$

Namely,  $Y_t = X_{t \wedge T}$  is closed by  $X_T$ , and UIM is preserved.

**Proof** 

$$\mathbb{E}[X_{t \wedge T} 1_A] = \mathbb{E}[X_t 1_{A \cap \{t < T\}}] + \mathbb{E}[X_T 1_{A \cap \{T < t\}}]$$

$$\mathbb{E}[X_T 1_A] = \mathbb{E}[X_T 1_{A \cap \{t \le T\}}] + \mathbb{E}[X_T 1_{A \cap \{T \le t\}}]$$

it suffices to show

$$\mathbb{E}[X_t 1_{A \cap \{t \le T\}}] = \mathbb{E}[X_T 1_{A \cap \{t \le T\}}] \tag{4.2}$$

notice that  $A \cap \{t \leq T\} \in \mathscr{F}_t \cap \mathscr{F}_T = \mathscr{F}_{t \wedge T}$  and by thm 4.3, we have

$$X_{t \wedge T} = \mathbb{E}[X_T | \mathscr{F}_{t \wedge T}]$$

which proves 4.2.

We have an arsenal now, so let's shoot some birds.

**Example 4.1** Let  $B_t$  be a BM starting from 0, set a < 0 < b,  $T_a$  and  $T_b$  be first hitting time resp. Lastly, let  $T = T_a \wedge T_b$ . We're interested in:

- $\mathbb{P}(T_a < T_b)$
- $\mathbb{E}[T], \mathbb{E}[T_a], \mathbb{E}[T_b]$

 $B_{t \wedge T}$  is bounded, thus by DCT

$$\mathbb{E}[B_T] = \mathbb{E}[B_0] = 0 = a\mathbb{P}(T_a < T_b) + b\mathbb{P}(T_a > T_b)$$

we can obtain  $\mathbb{P}(T_a < T_b)$  along with

$$\mathbb{P}(T_a < T_b) + \mathbb{P}(T_a > T_b) = 1$$

Same thing for the second part, but use  $B_t^2 - t$  this time and stop it with T.

$$\mathbb{E}[T] = \lim_{t \to \infty} \mathbb{E}[B_{t \wedge T}^2] = \mathbb{E}[B_T^2] = -ab$$

Maybe a bit surprisingly,  $\mathbb{E}[T_a] = \infty$ , proven by taking  $b \to \infty$  in  $\mathbb{E}[T]$ .

We finish this section a stopping time theorem for supermartingales.

#### Theorem 4.4

Let  $X_t$  be a nonnegative supermartingale,  $S \leq T$ , then

$$X_S \ge \mathbb{E}[X_T | \mathscr{F}_S]; X_S, X_T \in L_1$$

**Proof** 

$$sup\mathbb{E}[|X_t|] = sup\mathbb{E}[X_t] \le \mathbb{E}[X_0] < \infty$$

i.e. uniformly bounded in  $L_1$ , so  $X_t$  converges  $X_{\infty} \in L_1$  a.s.

Step 1: assume that  $S \leq T \leq a$ , then use the same old  $S_n$  and  $T_n$ , since  $sup\mathbb{E}[|X_{S_n}|] < \infty$ , we have convergence in  $L_1$  and take the limit on the discrete version  $\mathbb{E}[|X_{S_n}|] \geq \mathbb{E}[|X_{T_n}|]$ , which produces

$$\mathbb{E}[|X_S|] \ge \mathbb{E}[|X_T|]$$

Step 2: without boundedness, by Fatou's lemma

$$\mathbb{E}[|X_S|] \leq \mathbb{E}[liminf|X_{S \wedge a}|] \leq liminf\mathbb{E}[|X_{S \wedge a}|] \leq \mathbb{E}[|X_0|]$$

So  $X_S, X_T \in L_1$ . With a similar T as in 4.2, we have

$$\mathbb{E}[|X_{S \wedge a}|1_A] \geq \mathbb{E}[|X_{T \wedge a}|1_A]$$

which then produces

$$\mathbb{E}[|X_S|1_{A\cap\{S\leq a\}}] \ge \mathbb{E}[|X_{T\wedge a}|1_{A\cap\{S\leq a\}}]$$

treat LHS with DCT and RHS with Fatou's lemma, then it's done.

# **Chapter 5 Continuous Markov Processes**

We discuss Continuous Markov Processes in this chapter.

#### 5.1 Basics

Let  $(E, \epsilon)$  be a measure space, which will be the value space, here  $\epsilon$  is a  $\sigma$ -algebra.

#### **Definition 5.1 (Markov process)**

An E-valued Markov process satisfies:

- $X_t \in \mathscr{F}_t, \forall t \geq 0$ .
- for any bounded measurable function f on E, s < t

$$\mathbb{E}[f(X_t)|\mathscr{F}_s] = \mathbb{E}[f(X_t)|\sigma(X_s)]$$

One can replace the filtration in the definition with  $\sigma(X_s, s \le t)$ , that's the more usual definition.

# **Definition 5.2 (transition kernel)**

If Q is a mapping  $E \times \epsilon \rightarrow [0,1]$  s.t.

- fix any  $x \in E$ ,  $Q(x, \cdot)$  is a probability on  $(E, \epsilon)$ .
- fix any  $A \in \epsilon$ ,  $Q(\cdot, A)$  is a  $\epsilon$ -measurable function .

then Q is a transition kernel. (from E to  $\epsilon$ )

#### **Definition 5.3 (transition semi-group)**

A collection of transition kernels  $Q_t$  s.t.

- $Q_0(x,\cdot)$  is the dirac measure  $\delta_x$ .
- $Q_{t+s}(x,A) = \int_E Q_t(y,A)Q_s(x,dy)$ . (CK)
- $(t,x) \to Q_t(x,A)$  is measurable for any fixed A.

is called a transition semi-group.

**Remark** how to make sense of (CK)? Define a bounded linear op  $Q_t$  on  $B_b(E)$ :

$$Q_t(f)(x) = \int_E f(y)Q_t(x,\cdot)$$

then (CK) essentially says:  $Q_{s+t}f = Q_t(Q_sf)$ , which is also where the name *semi-group* comes from.

Now we're interested in processes that have these transition semi-groups.

#### **Definition 5.4 (Markov process with transition semi-group)**

the additional condition is  $\forall f \in B_b(E)$ 

$$\mathbb{E}[f(X_{s+t})|\mathscr{F}_t] = \mathbb{Q}_s(f)(X_t)$$

One should verify that this condition implies the second point in the original definition. Moreover, for any time-homogeneous Markov process X, we can construct  $Q_t(x, A) = \mathbb{E}[1_A(X_{s+t})|X_s = x]$  (need to show it's independent in s), then X is a Markov process with transition semi-group.

Next, we compute the finite dimensional distribution of  $X_t$ .  $0 \le t_0 < t_1 < \cdots < t_p$ , consider

 $(X_{t_0}, \cdots, X_{t_p})$  and suppose the law of  $X_0$  is  $\gamma$ , then we claim

$$\mathbb{P}(X_{t_0} \in A_0, \cdots, X_{t_p} \in A_p) = \int \gamma(dx_0) \int_{A_0} Q_{t_0}(x_0, dx_1) \cdots \int_{A_p} Q_{t_p - t_{p-1}}(x_p, dx_{p-1})$$
 (5.1)

read this chain of integrals from right to left. Note that by definition  $Q_t(X_0, A) = Q_t 1_A(X)$ , so  $Q_t(X_0, A) = \mathbb{E}[1_A(X_t)|\sigma(X_0)]$ , which implies the p = 0 case, then do induction to prove 5.1.

Remark Suppose  $Q_t$  is a transition semi-group, then 5.1 is a sufficient and necessary condition for  $X_t$  to be a Markov process with  $Q_t$ .

Example 5.1 Let

$$Q_t(x, dy) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{|x-y|^2}{2t}} dy$$

be a Gaussian measure with mean x and standard deviation t. Then B.M is a  $\mathbb{R}$ -valued Markov process with  $Q_t$ , this can be proven by checking its finite dimensional distribution and the last remark.

We can consider the converse.

**Aim:** given a transition semi-group, find a probability triplet and an E-valued sto process  $X_t$  s.t.  $X_t$  is a Markov process with  $Q_t$ .

Construction: define

$$\Omega = \{ f | f : \mathbb{R}^+ \to E \}$$

let  $X_t$  be the coordinate process  $X_t(w) = w(t)$ , with  $\mathscr{F}_t = \sigma(X_s, s \leq t)$ . Given some discrete time points  $\{t_0, \cdots, t_p\}$  and a distribution  $\gamma$  on  $(E, \epsilon)$ , let  $\mu_{\gamma}^I(A_0 \times \cdots \times A_p)$  be the RHS of 5.1, where  $\mu_{\gamma}^I$  is a measure on  $(E^I, \epsilon)$ . We then verify the consistency condition on  $\mu_{\gamma}^I$ , and get a probability measure on  $(E^{R^+}, \mathscr{F}_{\infty}) = (\Omega, \mathscr{F}_{\infty})$ .

If X is a fixed  $x \in E$ , denote  $X_t = X_t^x$ . Recall that

$$Q_t f(x) = \int_E f(y)Q_t(x, dy)$$

The transition kernels are related to  $X_t$  via finite distribution 5.1. Since the law of  $X_t^x$  equals  $Q_t(x,\cdot)$ , one can check

$$Q_t f(x) = \mathbb{E}[f(X_t^x)]$$

Then we switch to discuss some related quantities from semi-group/functional analysis theory.

#### **Definition 5.5 (Resolvant)**

Let  $\lambda > 0$ , define a linear operator  $R_{\lambda} : B_b(E) \to B_b(E)$  with

$$R_{\lambda}f(x) = \int_{0}^{\infty} e^{-\lambda t} Q_{t}f(x) dx$$

A few simple facts on the resolvant:

- $R_{\lambda}$  is bounded,  $||R_{\lambda}|| \leq \frac{1}{\lambda}$ .
- if  $0 \le f \le 1, 0 \le \lambda R_{\lambda} \le 1$ .
- If  $\lambda, \mu > 0$ , we have this identity  $R_{\lambda}f R_{\mu}f + (\lambda \mu)R_{\lambda}R_{\mu}f = 0$ .

The following lemma makes use of resolvant and connect continuous Markov process (M.P.) with martingales, which will later be used to understand the *paths* of a M.P..

#### Lemma 5.1

Let  $X_t$  be a M.P. with  $Q_t$ ,  $h \in B_b(E)$ ,  $h \ge 0$ ,  $\lambda > 0$ , then  $Y_t = e^{-\lambda t} R_{\lambda} h(X_t)$  is a supermartingale.

**Proof** 

$$\begin{split} \mathbb{E}[Y_{s+t}|\mathscr{F}_s] &= e^{-(s+t)\lambda} \mathbb{E}[R_{\lambda}h(X_{t+s})|\mathscr{F}_s] \\ &= e^{-(s+t)\lambda}Q_t R_{\lambda}h(X_s) \\ &= e^{-(s+t)\lambda}Q_t \int_0^{\infty} e^{-\lambda s}Q_s h(x) ds \\ &= e^{-(s+t)\lambda} \int_0^{\infty} e^{-\lambda s}Q_{s+t}h(x) ds \\ &= e^{-(s+t)\lambda} \int_t^{\infty} e^{-\lambda \nu + \lambda t}Q_{\nu}h(x)\nu \\ &\leq e^{-(s+t)\lambda} \int_0^{\infty} e^{-\lambda \nu + \lambda t}Q_{\nu}h(x)\nu \\ &= e^{-(s+t)\lambda}e^{\lambda t}R_{\lambda}h(x) \\ &= e^{-s\lambda}R_{\lambda}h(x) \end{split}$$

We'd love for  $R_{\lambda}h(x)$  to continuous, so we can pass around continuity later. This motivates the following definition.

## **Definition 5.6 (Feller's semi-group)**

Let E be a locally compact metric space, let  $f \in C_0(E)$ , i.e. f vanishes at infinity. We say that  $Q_t$  is a Feller semi-group if

- $\forall f \in \mathcal{C}_0(E)$ , we have  $Q_t f \in \mathcal{C}_0(E), \forall t \geq 0$ .
- $\forall f \in \mathcal{C}_0(E), ||Q_t f f|| \to 0 \text{ as } t \to 0.$

Example 5.2 the transition semi-group of a B.M. is a Feller semi-group. Again, let

$$Q_t(x, dy) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{|x-y|^2}{2t}} dy$$

then  $Q_t f$  is a convolution

$$Q_t f(x) = \int \frac{1}{\sqrt{2\pi t}} e^{-\frac{|y|^2}{2t}} f(x - y) dy$$

since  $\frac{1}{\sqrt{2\pi t}}e^{-\frac{|y|^2}{2t}}$  is concentrated around zero, the convolution can be decomposed into deux parts as per usual. To see why the second point holds, notice that the measure  $\frac{1}{\sqrt{2\pi t}}e^{-\frac{|x-y|^2}{2t}}dy \to \delta_x$  as  $t \to \infty$ . More concretely,

$$Q_t f(x) - f(x) = \int \frac{1}{\sqrt{2\pi t}} e^{-\frac{|y|^2}{2t}} (f(x - y) - f(x)) dy$$

since  $Q_t f \in \mathcal{C}_0(E)$ ,  $\sup_t \sup_{|x|>R_0} |Q_t f(x)| \leq \epsilon$ , for some  $R_0$ . It suffices to prove

$$\lim_{t \to 0} \sup_{|x| \le R_0} |Q_t f(x) - f(x)| = 0$$

then it's basic

$$\begin{aligned} |Q_t f(x) - f(x)| &= |\int \frac{1}{\sqrt{2\pi t}} e^{-\frac{|y|^2}{2t}} (f(x - y) - f(x)) dy| \\ &= |\int_{[-\delta, \delta]} \frac{1}{\sqrt{2\pi t}} e^{-\frac{|y|^2}{2t}} (f(x - y) - f(x)) dy + \int_{|y| \ge \delta} \frac{1}{\sqrt{2\pi t}} e^{-\frac{|y|^2}{2t}} (f(x - y) - f(x)) dy| \\ &\le \epsilon + 2||f|| \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi t}} e^{-\frac{|y|^2}{2t}} dy = \epsilon + Ce^{-\frac{\delta^2}{4t}} \end{aligned}$$

which tends to zero.

Recall that  $Q_t$  is a compression operator so the map  $t \to Q_t f$  given  $f \in \mathcal{C}_0(E)$  is uniformly continuous.

Especially  $\int_0^T e^{-\lambda t} Q_t f(x) dx = P_T f \in \mathcal{C}_0(E), P_T f \to R_\lambda f$  in sup norm, thus by completeness,  $R_\lambda f \in \mathcal{C}_0(E)$ ,  $R_\lambda : \mathcal{C}_0(E) \to \mathcal{C}_0(E)$ .

So far, we haven't established the continuity of  $R_{\lambda}$ , but at least it's mapping spaces correctly.

### **Proposition 5.1**

Let  $D = \{R_{\lambda}f : f \in \mathcal{C}_0(E)\}$ , then

- D is independent of  $\lambda$ ,
- D is dense.

**Proof** use this identity  $R_{\lambda}f - R_{\mu}f + (\lambda - \mu)R_{\lambda}R_{\mu}f = 0$  for the first point, and  $||Q_tf - f|| \to 0$  for the second point.

I don't know why but we gotta introduce a different thingy here.

#### **Definition 5.7**

$$D(L) = \{ f \in \mathcal{C}_0(E) : \lim_{t \to 0} \frac{Q_t f - f}{t} \text{ exists in } \mathcal{C}_0(E) \}$$

and  $Lf = \lim_{t\to 0} \frac{Q_t f - f}{t}$  defined on D(L).

It's easy to see that  $Q_t$  maps D(L) to itself, and  $LQ_tf = Q_tLf$ , namely  $\frac{dQ_tf}{dt} = Q_t(Lf)$ .

# **Proposition 5.2**

$$Q_t f - f = \int_0^t Q_s(Lf) ds$$

**Proof**  $\frac{dQ_tf}{dt} = Q_t(Lf).$ 

## **Proposition 5.3**

- $R_{\lambda}f \in D(L)$ , and D(L) is dense in  $C_0$ .
- $R_{\lambda}(\lambda L)f = f$  and  $(\lambda L)R_{\lambda}f = f$ . Notice they are defined on different subspace, so it doesn't mean  $R_{\lambda}$  and  $\lambda L$  are commutative, but we do denote  $R_{\lambda} = (\lambda L)^{-1}$ .

**Proof** omitted.