<u>Lemma</u> 7.1. The spectrum of the matrix valued multiplication operator M_{D} where $p: X \to M(n)$ is bounded is given by $\sigma(M_{D}) = \overline{\cup_{x \in X} \sigma(p(x))}$.

<u>Proof.</u> It remains to show that $0 \notin \overline{U_{x \in X} \sigma(p(x))}$ implies $0 \notin \sigma(M_p)$. Since det p(x) is the product of n eigenvalues (according to their multiplicity) of p(x) the hypothesis implies that

 $d := \inf\{|\det p(x)| : x \in X\} > 0$. By Formula 4.12 in Chapter I of Kato (1966) we obtain

 $\|p(x)^{-1}\| \le \gamma \cdot \|p(x)\|^{n-1} \cdot |\det p(x)|^{-1} \le \gamma/\alpha \cdot \|M_p\|^{n-1}$

for every $x\in X$ and a constant γ depending only on the norm chosen on \mathbb{C}^n . Therefore $x+p(x)^{-1}$ defines a bounded continuous function on X which obviously yields the inverse of M_p , i.e., $0\notin\sigma(M_p)$.

Theorem 7.2. Let $A = M_q$ be a matrix multiplication operator on $C_0(X,\mathbb{C}^n)$ generating a strongly continuous semigroup $(T(t))_{t\geq 0} = (e^{tq(\cdot)})_{t\geq 0}$. Then the Weak Spectral Mapping Theorem of the form

(7.2)
$$\sigma(T(t)) = \overline{\exp(t \cdot \sigma(A))}$$

is valid.

<u>Proof.</u> By the Spectral Inclusion Theorem 6.2 we always have $\exp(t_\sigma(A)) \subset \sigma(T(t))$. Since T(t) is a matrix multiplication operator with a bounded function we obtain from Lemma 7.1

$$\sigma(T(t)) = \overline{\bigcup_{x \in X} \sigma(\exp(tq(x)))} = \overline{\bigcup_{x \in X} \exp(t\sigma(q(x)))} \subset \overline{\exp(t\sigma(A))},$$

which proves the assertion.

Corollary 7.3. The growth bound $\omega(A)$ and the spectral bound s(A) coincide for matrix multiplication semigroups.

Remark. The above results remain valid for other Banach spaces of \mathbb{C}^n -valued functions such as $\mathbb{L}^p(X,\mathbb{C}^n)$, $1 \le p < \infty$.

The example given at the beginning of this section can be generalized in a different way. In fact, $A(x_n) := (inx_n)$ on $E = c_0$ generates a bounded group, and we will show that this property too ensures that the Weak Spectral Mapping Theorem (7.2) holds. Without any boundedness assumption on $(T(t))_{t \in \mathbb{R}}$ this result cannot be true (see [Hille-Phillips (1957), Sec.23.16] or [Wolff(1981)]).