

Pró-Reitoria de Graduação - ProGrad

Plano de Ensino – 3º. Quadrimestre / 2024

Caracterização da Disciplina					
Cód. da Disciplina:	MCZA006-17	Nome da Disciplina:	Comput. Evol. e Conex.		
Cód. da Turma:	NA1MCZA006-17SA	3°. 19h – 21h 6°. 21h –	– 23h		

Créditos (T-P-E-I): (4-0	0-0-4) Carga horária:	48h	Prática:	0h	
--------------------------	-----------------------	-----	----------	----	--

Docente: Hugo Puertas de Araújo

Objetivos Gerais:

- ◆ Apresentar os conceitos fundamentais de Computação Evolutiva;
- ◆ Apresentar os conceitos fundamentais de Inteligência de Enxame;
- ◆ Apresentar os conceitos fundamentais de Redes Neurais Artificiais;

Ementa:

Algoritmos Bioinspirados: Redes Neurais Artificiais, Computação Evolutiva, Inteligência de Enxame.

Conteúdo programático:

#	Aula	Conteúdo
1	1. out. 2024	Apresentação da matéria / Motivação
	4. out. 2024	Reposição em 24/01/2025
2	8. out. 2024	Introdução aos Algoritmos Bioinspirados
3	11. out. 2024	GA – Algoritmos Genéticos
4	15. out. 2024	GA – Estratégias Evolutivas
5	18. out. 2024	GA – Programação Evolucionária
6	22. out. 2024	GA – Programação genética
7	25. out. 2024	GA – Evoluindo RNA's
8	29. out. 2024	SI – Inteligência de Enxame: Introdução
9	1. nov. 2024	SI – Comportamento emergente em sistemas complexos
10	5. nov. 2024	SI – Algoritmo tipo 'Colônia de formigas'
11	8. nov. 2024	Revisão para a P1
12	12. nov. 2024	Prova P1
	15. nov. 2024	Reposição em 30/01/2025
13	19. nov. 2024	SI – Algoritmo tipo 'Colméia de abelhas'
14	22. nov. 2024	SI – Particle Swarm Optimization – PSO
15	26. nov. 2024	NN – Introdução às Redes Neurais Artificiais
16	29. nov. 2024	NN – Modelos de neurônios e topologias de redes
17	3. dez. 2024	NN – Treinamento de RNA's e solução de problemas
18	6. dez. 2024	NN – Transformers e LLMs

Pró-Reitoria de Graduação - ProGrad

Plano de Ensino – 3°. Quadrimestre / 2024

19	10. dez. 2024	NN – Redes Neurais de Disparo – SNNs	
20	13. dez. 2024	Revisão para a P2	
21	17. dez. 2024	Prova P2	
22	20. dez. 2024	Prova Sub	
23	24. jan. 2025	Vistas de provas	
24	30. jan. 2025	Prova REC	

Bibliografia:

Básica:

- 1. BRAGA, A. P.; CARVALHO, A. C. P. L. F.; LUDERMIR, T. B. Redes neurais artificiais: teoria e aplicações. Rio de Janeiro, RJ: LTC, 2000.
- 2. HAYKIN, S. Redes neurais: princípios e prática. 2. ed. Porto Alegre, RS: Bookman, 1999.
- 3. MITCHELL, M. An introduction to genetic algorithms. Cambridge, USA: MIT Press, 1996.

Complementar:

- 1. BITTENCOURT, G. Inteligência artificial ferramentas e teorias. 3. ed. Florianópolis, SC: UFSC, 2006.
- 2. DAVIS, L. Handbook of genetic algorithms. New York, USA: Van Nostrand Reinhold, 1991.
- 3. GOLDBERG, D. Genetic algorithms in search, optimization and machine learning. Reading, USA: Addison-Wesley, 1989.
- 4. JANG, J.; SUN, C.; MIZUTANI, E. Neuro fuzzy & soft computing a computational approach to learning & machine intelligence. Upper Saddle River, NJ: Prentice Hall, 1997.
- 5. MICHALEWICZ, Z. Genetic algorithms+data structures=evolution programs. New York, USA: Springer,1994.

Critério de avaliação:

Nota_final = Prova P1 (30%) + Prova P2 (30%) + Trabalho Final (35%) + Participação (5%)

Cálculo do conceito a partir da nota:

$$0 \le F \le 4.5$$
; $4.5 \le D \le 6.0$; $6.0 \le C \le 7.5$; $7.5 \le B \le 9.0$; $9.0 \le A$;

A Prova Substitutiva é fechada, i.e., somente tem direito a ela quem perdeu uma das Provas.

O Exame de Recuperação será realizado no dia 02/05/2024, quinta-feira. O Conceito Final será composto pela Prova de Recuperação (50%) e pela Nota Final do quadrimestre (50%).

Estarão habilitados para a avaliação de recuperação os alunos que obtiverem conceito final **D** ou **F** na conclusão de todas as atividades e avaliações aplicadas no período letivo regular, obedecendo às regras indicadas na Resolução CONSEPE nº. 182, de 23 de outubro de 2014.