

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
19 July 2007 (19.07.2007)

PCT

(10) International Publication Number
WO 2007/080127 A2

(51) International Patent Classification:
C12N 15/82 (2006.01) *C12N 15/12* (2006.01)
A01H 5/00 (2006.01) *C12N 15/11* (2006.01)
C12N 5/10 (2006.01)

(74) Agents: DE CLERCQ, Ann et al.; De Clercq, Brants & Partners, E. Gevaertdreef 10a, B-9830 Sint-martens-latem (BE).

(21) International Application Number:
PCT/EP2007/000287

(81) Designated States (*unless otherwise indicated, for every kind of national protection available*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PI, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) International Filing Date: 12 January 2007 (12.01.2007)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

06447008.1	12 January 2006 (12.01.2006)	EP
60/758,191	12 January 2006 (12.01.2006)	US
60/771,160	7 February 2006 (07.02.2006)	US
60/837,910	16 August 2006 (16.08.2006)	US
60/875,362	18 December 2006 (18.12.2006)	US

(84) Designated States (*unless otherwise indicated, for every kind of regional protection available*): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (*for all designated States except US*): DEVGEN N.V. [BE/BE]; Technologiepark 30, B-9052 Zwijnaarde (BE).

Declaration under Rule 4.17:
— of inventorship (Rule 4.17(iv))

(72) Inventors; and
(75) Inventors/Applicants (*for US only*): RAEMAEKERS, Romaan [BE/BE]; Eikelstraat 29, B-9840 De Pinte (BE). KUBLER, Laurent [FR/FR]; 9, Rue De Quesnoy, F-LIN-SELLES 59126 (FR). PLAETINCK, Geert [BE/BE]; Pontstraat 16, B-9820 Bottelare (BE). VANBLEU, Els [BE/BE]; Sint-omerlaan 50, B-8900 Ieper (BE).

Published:
— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHODS FOR CONTROLLING PESTS USING RNAI

(57) Abstract: The present invention concerns methods for controlling insect infestation via RNAi-mediated gene silencing, whereby the intact insect cell(s) are contacted with a double-stranded RNA from outside the insect cell(s) and whereby the double-stranded RNA is taken up by the intact insect cell(s). In one particular embodiment, the methods of the invention are used to alleviate plants from insect pests. Alternatively, the methods are used for treating and/or preventing insect infestation on a substrate or a subject in need of such treatment and/or prevention. Suitable insect target genes and fragments thereof, dsRNA constructs, recombinant constructs and compositions are disclosed.

WO 2007/080127 A2

METHODS FOR CONTROLLING PESTS USING RNAi**Field of the invention**

The present invention relates to the field of double-stranded RNA (dsRNA)-mediated gene silencing in insect species. More particularly, the present invention relates to genetic constructs designed for the expression of dsRNA corresponding to novel target genes. These constructs are particularly useful in RNAi-mediated insect pest control. The invention further relates to methods for controlling insects, methods for preventing insect infestation and methods for down-regulating gene expression in insects using RNAi.

10

Background to the invention

Insect and other pests can cause injury and even death by their bites or stings. Additionally, many pests transmit bacteria and other pathogens that cause diseases. For example, mosquitoes transmit pathogens that cause malaria, yellow fever, encephalitis, and other diseases. 15 The bubonic plague, or black death, is caused by bacteria that infect rats and other rodents. Compositions for controlling microscopic pest infestations have been provided in the form of antibiotic, antiviral, and antifungal compositions. Methods for controlling infestations by pests, such as nematodes and insects, have typically been in the form of chemical compositions that are applied to surfaces on which pests reside, or administered to infested animals in the form of pellets, 20 powders, tablets, pastes, or capsules.

Control of insect pests on agronomically important crops is an important field, for instance insect pests which damage plants belonging to the Solanaceae family, especially potato (*Solanum tuberosum*), but also tomato (*Solanum lycopersicum*), eggplant (*Solanum melongena*), capsicums (*Solanum capsicum*), and nightshade (for example, *Solanum aculeastrum*, *S. bulbocastanum*, *S. 25 cardiophyllum*, *S. douglasii*, *S. dulcamara*, *S. lanceolatum*, *S. robustum*, and *S. triquetrum*), particularly the control of coleopteran pests.

Substantial progress has been made in the last few decades towards developing more efficient methods and compositions for controlling insect infestations in plants. Chemical pesticides have been very effective in eradicating pest infestations.

30 Biological control using extract from neem seed has been shown to work against coleopteran pests of vegetables. Commercially available neem-based insecticides have azadirachtin as the primary active ingredient. These insecticides are applicable to a broad spectrum of insects. They act as insect growth regulator; azadirachtin prevents insects from molting by inhibiting production of an insect hormone, ecdysone.

35 Biological control using protein Cry3A from *Bacillus thuringiensis* varieties tenebrionis and san diego, and derived insecticidal proteins are alternatives to chemical control. The Bt toxin protein is effective in controlling Colorado potato beetle larvae either as formulations sprayed onto the foliage or expressed in the leaves of potatoes.

An alternative biological agent is dsRNA. Over the last few years, down-regulation of genes (also referred to as "gene silencing") in multicellular organisms by means of RNA interference or "RNAi" has become a well-established technique.

RNA interference or "RNAi" is a process of sequence-specific down-regulation of gene expression (also referred to as "gene silencing" or "RNA-mediated gene silencing") initiated by double-stranded RNA (dsRNA) that is complementary in sequence to a region of the target gene to be down-regulated (Fire, A. Trends Genet. Vol. 15, 358-363, 1999; Sharp, P.A. Genes Dev. Vol. 15, 485-490, 2001).

Over the last few years, down-regulation of target genes in multicellular organisms by means of RNA interference (RNAi) has become a well established technique. Reference may be made to International Applications WO 99/32619 (Carnegie Institution) and WO 00/01846 (by Applicant).

DsRNA gene silencing finds application in many different areas, such as for example dsRNA mediated gene silencing in clinical applications (WO2004/001013) and in plants. In plants, dsRNA constructs useful for gene silencing have also been designed to be cleaved and to be processed into short interfering RNAs (siRNAs).

Although the technique of RNAi has been generally known in the art in plants, C. elegans and mammalian cells for some years, to date little is known about the use of RNAi to down-regulate gene expression in insects. Since the filing and publication of the WO 00/01846 and WO 99/32619 applications, only few other applications have been published that relate to the use of RNAi to protect plants against insects. These include the International Applications WO 01/37654 (DNA Plant Technologies), WO 2005/019408 (Bar Ilan University), WO 2005/049841 (CSIRO, Bayer Cropscience), WO 05/047300 (University of Utah Research foundation), and the US application 2003/00150017 (Mesa et al.). The present invention provides target genes and constructs useful in the RNAi-mediated insect pest control. Accordingly, the present invention provides methods and compositions for controlling pest infestation by repressing, delaying, or otherwise reducing gene expression within a particular pest.

Description of the invention

The present invention describes a novel non-compound, non-protein based approach for the control of insect crop pests. The active ingredient is a nucleic acid, a double-stranded RNA (dsRNA), which can be used as an insecticidal formulation, for example, as a foliar spray. The sequence of the dsRNA corresponds to part or whole of an essential insect gene and causes downregulation of the insect target via RNA interference (RNAi). As a result of the downregulation of mRNA, the dsRNA prevents expression of the target insect protein and hence causes death, growth arrest or sterility of the insect.

The methods of the invention can find practical application in any area of technology where it is desirable to inhibit viability, growth, development or reproduction of the insect, or to decrease pathogenicity or infectivity of the insect. The methods of the invention further find practical application where it is desirable to specifically down-regulate expression of one or more target

genes in an insect. Particularly useful practical applications include, but are not limited to, (1) protecting plants against insect pest infestation; (2) pharmaceutical or veterinary use in humans and animals (for example to control, treat or prevent insect infections in humans and animals); (3) protecting materials against damage caused by insects; (4) protecting perishable materials (such 5 as foodstuffs, seed, etc.) against damage caused by insects; and generally any application wherein insects need to be controlled and/or wherein damage caused by insects needs to be prevented.

In accordance with one embodiment the invention relates to a method for controlling insect growth on a cell or an organism, or for preventing insect infestation of a cell or an organism susceptible to insect infection, comprising contacting insects with a double-stranded RNA, wherein 10 the double-stranded RNA comprises annealed complementary strands, one of which has a nucleotide sequence which is complementary to at least part of the nucleotide sequence of an insect target gene, whereby the double-stranded RNA is taken up by the insect and thereby controls growth or prevents infestation.

The present invention therefore provides isolated novel nucleotide sequences of insect 15 target genes, said isolated nucleotide sequences comprising at least one nucleic acid sequence selected from the group comprising:

- (i) sequences represented by any of SEQ ID NOS 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 513, 515, 20 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 25 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476, 2481 or 2486, or the complement thereof,
- (ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOS 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 40 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to

2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476, 2481 or 2486, or the complement thereof, and

- (iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences
5 represented by SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 15 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476, 2481 or 2486, or the complement thereof, or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 49 to 158, 275 to 472, 533 to 575, 621 to 767, 813 to 862, 908 to 1040, 1161 to 1571, 1730 to 2039, 2120 to 2338, 2384 to 2460, or a complement thereof, said nucleic acid sequences being useful for preparing the double stranded RNAs of the invention for controlling insect growth.

"Controlling pests" as used in the present invention means killing pests, or preventing pests to develop, or to grow or preventing pests to infect or infest. Controlling pests as used herein also encompasses controlling insect progeny (development of eggs). Controlling pests as used 25 herein also encompasses inhibiting viability, growth, development or reproduction of the insect, or to decrease pathogenicity or infectivity of the insect. The compounds and/or compositions described herein, may be used to keep an organism healthy and may be used curatively, preventively or systematically to control pests or to avoid insect growth or development or infection or infestation.

30 Particular pests envisaged by the present invention are insect pests. Controlling insects as used herein thus also encompasses controlling insect progeny (such as development of eggs, for example for insect pests). Controlling insects as used herein also encompasses inhibiting viability, growth, development or reproduction of the insect, or decreasing pathogenicity or infectivity of the insect. In the present invention, controlling insects may inhibit a biological activity in an insect, 35 resulting in one or more of the following attributes: reduction in feeding by the insect, reduction in viability of the insect, death of the insect, inhibition of differentiation and development of the insect, absence of or reduced capacity for sexual reproduction by the insect, muscle formation, juvenile hormone formation, juvenile hormone regulation, ion regulation and transport, maintenance of cell membrane potential, amino acid biosynthesis, amino acid degradation, sperm formation, 40 pheromone synthesis, pheromone sensing, antennae formation, wing formation, leg formation,

development and differentiation, egg formation, larval maturation, digestive enzyme formation, haemolymph synthesis, haemolymph maintenance, neurotransmission, cell division, energy metabolism, respiration, apoptosis, and any component of a eukaryotic cells' cytoskeletal structure, such as, for example, actins and tubulins. The compounds and/or compositions described herein,

- 5 may be used to keep an organism healthy and may be used curatively, preventively or systematically to control an insect or to avoid insect growth or development or infection or infestation. Thus, the invention may allow previously susceptible organisms to develop resistance against infestation by the insect organism.

The expression "complementary to at least part of" as used herein means that the
10 nucleotide sequence is fully complementary to the nucleotide sequence of the target over more than two nucleotides, for instance over at least 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or more contiguous nucleotides.

According to a further embodiment, the invention relates to a method for down-regulating expression of a target gene in an insect, comprising contacting said insect with a double-stranded RNA, wherein the double-stranded RNA comprises annealed complementary strands, one of which has a nucleotide sequence which is complementary to at least part of the nucleotide sequence of the insect target gene to be down-regulated, whereby the double-stranded RNA is taken up into the insect and thereby down-regulates expression of the insect target gene.

Whenever the term "a" is used within the context of "a target gene", this means "at least 20 one" target gene. The same applies for "a" target organism meaning "at least one" target organism, and "a" RNA molecule or host cell meaning "at least one" RNA molecule or host cell. This is also detailed further below.

According to one embodiment, the methods of the invention rely on uptake by the insect of double-stranded RNA present outside of the insect (e. g. by feeding) and does not require 25 expression of double-stranded RNA within cells of the insect. In addition, the present invention also encompasses methods as described above wherein the insect is contacted with a composition comprising the double-stranded RNA.

Said double-stranded RNA may be expressed by a prokaryotic (for instance, but not limited to, a bacterial) or eukaryotic (for instance, but not limited to, a yeast) host cell or host organism.

- 30 The insect can be any insect, meaning any organism belonging to the Kingdom Animals, more specific to the Phylum Arthropoda, and to the Class Insecta or the Class Arachnida. The methods of the invention are applicable to all insects that are susceptible to gene silencing by RNA interference and that are capable of internalising double-stranded RNA from their immediate environment. The invention is also applicable to the insect at any stage in its development.
35 Because insects have a non-living exoskeleton, they cannot grow at a uniform rate and rather grow in stages by periodically shedding their exoskeleton. This process is referred to as moulting or ecdysis. The stages between moults are referred to as "instars" and these stages may be targeted according to the invention. Also, insect eggs or live young may also be targeted according to the present invention. All stages in the developmental cycle, which includes metamorphosis in the

pterygotes, may be targeted according to the present invention. Thus, individual stages such as larvae, pupae, nymph etc stages of development may all be targeted.

In one embodiment of the invention, the insect may belong to the following orders: Acari, Araneae, Anoplura, Coleoptera, Collembola, Dermaptera, Dictyoptera, Diplura, Diptera, 5 Embioptera, Ephemeroptera, Grylloblatodea, Hemiptera, Homoptera, Hymenoptera, Isoptera, Lepidoptera, Mallophaga, Mecoptera, Neuroptera, Odonata, Orthoptera, Phasmida, Plecoptera, Protura, Psocoptera, Siphonaptera, Siphunculata, Thysanura, Strepsiptera, Thysanoptera, Trichoptera, and Zoraptera.

In preferred, but non-limiting, embodiments and methods of the invention the insect is 10 chosen from the group consisting of:

- (1) an insect which is a plant pest, such as but not limited to *Nilaparvata* spp. (e.g. *N. lugens* (brown planthopper)); *Laodelphax* spp. (e.g. *L. striatellus* (small brown planthopper)); *Nephrotettix* spp. (e.g. *N. virescens* or *N. cincticeps* (green leafhopper), or *N. nigropictus* (rice leafhopper)); *Sogatella* spp. (e.g. *S. furcifera* (white-backed planthopper)); *Blissus* spp. (e.g. *B. leucopterus leucopterus* (chinch bug)); *Scotinophora* spp. (e.g. *S. vermidulata* (rice blackbug)); *Acrosternum* spp. (e.g. *A. hilare* (green stink bug)); *Parnara* spp. (e.g. *P. guttata* (rice skipper)); *Chilo* spp. (e.g. *C. suppressalis* (rice striped stem borer), *C. auricilius* (gold-fringed stem borer), or *C. polychrysus* (dark-headed stem borer)); *Chilotraea* spp. (e.g. *C. polychrysa* (rice stalk borer)); *Sesamia* spp. (e.g. *S. inferens* (pink rice borer)); *Tryporyza* spp. (e.g. *T. innotata* (white rice borer), 20 or *T. incertulas* (yellow rice borer)); *Cnaphalocrociis* spp. (e.g. *C. medinalis* (rice leafroller)); *Agromyza* spp. (e.g. *A. oryzae* (leafminer), or *A. parvicornis* (corn blot leafminer)); *Diatraea* spp. (e.g. *D. saccharalis* (sugarcane borer), or *D. grandiosella* (southwestern corn borer)); *Narnaga* spp. (e.g. *N. aenescens* (green rice caterpillar)); *Xanthodes* spp. (e.g. *X. transversa* (green caterpillar)); *Spodoptera* spp. (e.g. *S. frugiperda* (fall armyworm), *S. exigua* (beet armyworm), *S. littoralis* 25 (climbing cutworm) or *S. praefica* (western yellowstriped armyworm)); *Mythimna* spp. (e.g. *Mythimna (Pseudaletia) separata* (armyworm)); *Helicoverpa* spp. (e.g. *H. zea* (corn earworm)); *Colaspis* spp. (e.g. *C. brunnea* (grape colaspis)); *Lissorhoptrus* spp. (e.g. *L. oryzophilus* (rice water weevil)); *Echinocnemus* spp. (e.g. *E. squamos* (rice plant weevil)); *Dicladispa* spp. (e.g. *D. armigera* (rice hispa)); *Oulema* spp. (e.g. *O. oryzae* (leaf beetle)); *Sitophilus* spp. (e.g. *S. oryzae* 30 (rice weevil)); *Pachydiplosis* spp. (e.g. *P. oryzae* (rice gall midge)); *Hydrellia* spp. (e.g. *H. griseola* (small rice leafminer), or *H. sasakii* (rice stem maggot)); *Chlorops* spp. (e.g. *C. oryzae* (stem maggot)); *Diabrotica* spp. (e.g. *D. virgifera virgifera* (western corn rootworm), *D. barberi* (northern corn rootworm), *D. undecimpunctata howardi* (southern corn rootworm), *D. virgifera zea* (Mexican corn rootworm); *D. balteata* (banded cucumber beetle)); *Ostrinia* spp. (e.g. *O. nubilalis* (European corn borer)); *Agrotis* spp. (e.g. *A. ipsilon* (black cutworm)); *Elasmopalpus* spp. (e.g. *E. lignosellus* (lesser cornstalk borer)); *Melanotus* spp. (wireworms); *Cyclocephala* spp. (e.g. *C. borealis* (northern masked chafer), or *C. immaculata* (southern masked chafer)); *Popillia* spp. (e.g. *P. japonica* (Japanese beetle)); *Chaetocnema* spp. (e.g. *C. pulicaria* (corn flea beetle)); *Sphenophorus* spp. (e.g. *S. maidis* (maize billbug)); *Rhopalosiphum* spp. (e.g. *R. maidis* (corn leaf aphid)); *Anuraphis* spp. (e.g. *A. maidiradicis* (corn root aphid)); *Melanoplus* spp. (e.g. *M.* 35 40

femurrubrum (redlegged grasshopper) *M. differentialis* (differential grasshopper) or *M. sanguinipes* (migratory grasshopper); *Hylemya* spp. (e.g. *H. platura* (seedcorn maggot)); *Anaphothrips* spp. (e.g. *A. obscurus* (grass thrips)); *Solenopsis* spp. (e.g. *S. milesta* (thief ant)); or spp. (e.g. *T. urticae* (twospotted spider mite), *T. cinnabarinus* (carmine spider mite); *Helicoverpa* spp. (e.g. *H. zea* (cotton bollworm), or *H. armigera* (American bollworm)); *Pectinophora* spp. (e.g. *P. gossypiella* (pink bollworm)); *Earias* spp. (e.g. *E. vittella* (spotted bollworm)); *Heliothis* spp. (e.g. *H. virescens* (tobacco budworm)); *Anthonomus* spp. (e.g. *A. grandis* (boll weevil)); *Pseudatomoscelis* spp. (e.g. *P. seriatus* (cotton fleahopper)); *Trialeurodes* spp. (e.g. *T. abutiloneus* (banded-winged whitefly) *T. vaporariorum* (greenhouse whitefly)); *Bemisia* spp. (e.g. *B. argentifoli* (silverleaf whitefly)); *Aphis* spp. (e.g. *A. gossypii* (cotton aphid)); *Lygus* spp. (e.g. *L. lineolaris* (tarnished plant bug) or *L. hesperus* (western tarnished plant bug)); *Euschistus* spp. (e.g. *E. conspersus* (conspicuous stink bug)); *Chlorochroa* spp. (e.g. *C. sayi* (Say stinkbug)); *Nezara* spp. (e.g. *N. viridula* (southern green stinkbug)); *Thrips* spp. (e.g. *T. tabaci* (onion thrips)); *Frankliniella* spp. (e.g. *F. fusca* (tobacco thrips), or *F. occidentalis* (western flower thrips)); *Leptinotarsa* spp. (e.g. *L. decemlineata* (Colorado potato beetle), *L. juncta* (false potato beetle), or *L. texana* (Texan false potato beetle)); *Lema* spp. (e.g. *L. trilineata* (three-lined potato beetle)); *Epitrix* spp. (e.g. *E. cucumeris* (potato flea beetle), *E. hirtipennis* (flea beetle), or *E. tuberis* (tuber flea beetle)); *Epicauta* spp. (e.g. *E. vittata* (striped blister beetle)); *Phaedon* spp. (e.g. *P. cochleariae* (mustard leaf beetle)); *Epilachna* spp. (e.g. *E. varivertis* (mexican bean beetle)); *Acheta* spp. (e.g. *A. domesticus* (house cricket)); *Empoasca* spp. (e.g. *E. fabae* (potato leafhopper)); *Myzus* spp. (e.g. *M. persicae* (green peach aphid)); *Paratrichiza* spp. (e.g. *P. cockerelli* (psyllid)); *Conoderus* spp. (e.g. *C. falli* (southern potato wireworm), or *C. vespertinus* (tobacco wireworm)); *Phthorimaea* spp. (e.g. *P. operculella* (potato tuberworm)); *Macrosiphum* spp. (e.g. *M. euphorbiae* (potato aphid)); *Thyanta* spp. (e.g. *T. pallidovirens* (redshouldered stinkbug)); *Phthorimaea* spp. (e.g. *P. operculella* (potato tuberworm)); *Helicoverpa* spp. (e.g. *H. zea* (tomato fruitworm)); *Kelisia* spp. (e.g. *K. lycopersicella* (tomato pinworm)); *Limonius* spp. (wireworms); *Manduca* spp. (e.g. *M. sexta* (tobacco hornworm), or *M. quinquemaculata* (tomato hornworm)); *Liriomyza* spp. (e.g. *L. sativae*, *L. trifolii* or *L. huidobrensis* (leafminer)); *Drosophila* spp. (e.g. *D. melanogaster*, *D. yakuba*, *D. pseudoobscura* or *D. simulans*); *Carabus* spp. (e.g. *C. granulatus*); *Chironomus* spp. (e.g. *C. tentans*); *Ctenocephalides* spp. (e.g. *C. felis* (cat flea)); *Diaprepes* spp. (e.g. *D. abbreviatus* (root weevil)); *Ips* spp. (e.g. *I. pini* (pine engraver)); *Tribolium* spp. (e.g. *T. castaneum* (red floor beetle)); *Glossina* spp. (e.g. *G. morsitans* (tsetse fly)); *Anopheles* spp. (e.g. *A. gambiae* (malaria mosquito)); *Helicoverpa* spp. (e.g. *H. armigera* (African Bollworm)); *Acyrthosiphon* spp. (e.g. *A. pisum* (pea aphid)); *Apis* spp. (e.g. *A. mellifera* (honey bee)); *Homalodisca* spp. (e.g. *H. coagulata* (glassy-winged sharpshooter)); *Aedes* spp. (e.g. *Ae. aegypti* (yellow fever mosquito)); *Bombyx* spp. (e.g. *B. mori* (silkworm)); *Locusta* spp. (e.g. *L. migratoria* (migratory locust)); *Boophilus* spp. (e.g. *B. microplus* (cattle tick)); *Acanthoscurria* spp. (e.g. *A. gomesiana* (red-haired cholate bird eater)); *Diploptera* spp. (e.g. *D. punctata* (pacific beetle cockroach)); *Heliconius* spp. (e.g. *H. erato* (red passion flower butterfly) or *H. melpomene* (postman butterfly)); *Curculio* spp. (e.g. *C. glandium* (acorn weevil)); *Plutella* spp.

- (e.g. *P. xylostella* (diamondback moth)); *Amblyomma* spp. (e.g. *A. variegatum* (cattle tick)); *Anteraea* spp. (e.g. *A. yamamai* (silkmoth)); and *Armigeres* spp. (e.g. *A. subalbatus*);
- (2) an insect capable of infesting or injuring humans and/or animals such as, but not limited to those with piercing-sucking mouthparts, as found in Hemiptera and some Hymenoptera and
- 5 Diptera such as mosquitos, bees, wasps, lice, fleas and ants, as well as members of the Arachnidae such as ticks and mites order, class or family of Acarina (ticks and mites) e.g. representatives of the families *Argasidae*, *Dermapyssidae*, *Ixodidae*, *Psoroptidae* or *Sarcoptidae* and representatives of the species *Amblyomma* spp., *Anocentor* spp., *Argas* spp., *Boophilus* spp., *Cheyletiella* spp., *Chorioptes* spp., *Demodex* spp., *Dermacentor* spp., *Dermapyssus* spp.,
- 10 *Haemophysalis* spp., *Hyalomma* spp., *Ixodes* spp., *Lynxacarus* spp., *Mesostigmata* spp., *Notoedres* spp., *Ornithodoros* spp., *Ornithonyssus* spp., *Otobius* spp., *Otodectes* spp., *Pneumonyssus* spp., *Psoroptes* spp., *Rhipicephalus* spp., *Sarcoptes* spp., or *Trombicula* spp.; Anoplura (sucking and biting lice) e.g. representatives of the species *Bovicola* spp., *Haematopinus* spp., *Linognathus* spp., *Menopon* spp., *Pediculus* spp., *Pemphigus* spp., *Phylloxera* spp., or
- 15 *Solenopotes* spp.; Diptera (flies) e.g. representatives of the species *Aedes* spp., *Anopheles* spp., *Calliphora* spp., *Chrysomyia* spp., *Chrysops* spp., *Cochliomyia* spp., *Culex* spp., *Culicoides* spp., *Cuterebra* spp., *Dermatobia* spp., *Gastrophilus* spp., *Glossina* spp., *Haematobia* spp., *Haematopota* spp., *Hippobosca* spp., *Hypoderma* spp., *Lucilia* spp., *Lyperosia* spp., *Melophagus* spp., *Oestrus* spp., *Phaenicia* spp., *Phlebotomus* spp., *Phormia* spp., *Sarcophaga* spp., *Simulium* spp., *Stomoxyx* spp., *Tabanus* spp., *Tannia* spp. or *Tipula* spp.; Mallophaga (biting lice) e.g. representatives of the species *Damalina* spp., *Felicola* spp., *Heterodoxus* spp. or *Trichodectes* spp.; or Siphonaptera (wingless insects) e.g. representatives of the species *Ceratophyllus* spp., spp., *Pulex* spp., or *Xenopsylla* spp; Cimicidae (true bugs) e.g. representatives of the species *Cimex* spp., *Tritominae* spp., *Rhodnius* spp., or *Triatoma* spp.
- 20
- 25 and
- (3) an insect that causes unwanted damage to substrates or materials, such as insects that attack foodstuffs, seeds, wood, paint, plastic, clothing etc.
- (4) an insect or arachnid relevant for public health and hygiene, including household insects and ecto-parasites such as, by way of example and not limitation, flies, spider mites, thrips, ticks, red poultry mite, ants, cockroaches, termites, crickets including house-crickets, silverfish, booklice, beetles, earwigs, mosquitos and fleas. More preferred targets are cockroaches (Blattodea) such as but not limited to *Blatella* spp. (e.g. *Blatella germanica* (german cockroach)), *Periplaneta* spp. (e.g. *Periplaneta americana* (American cockroach) and *Periplaneta australasiae* (Australian cockroach)), *Blatta* spp. (e.g. *Blatta orientalis* (Oriental cockroach)) and *Supella* spp.
- 30
- 35 (e.g. *Supella longipalpa* (brown-banded cockroach); ants (Formicoidea), such as but not limited to *Solenopsis* spp. (e.g. *Solenopsis invicta* (Red Fire Ant)), *Monomorium* spp. (e.g. *Monomorium pharaonis* (Pharaoh Ant)), *Camponotus* spp. (e.g. *Camponotus* spp (Carpenter Ants)), *Lasius* spp. (e.g. *Lasius niger* (Small Black Ant)), *Tetramorium* spp. (e.g. *Tetramorium caespitum* (Pavement Ant)), *Myrmica* spp. (e.g. *Myrmica rubra* (Red Ant)), *Formica* spp (wood ants), *Crematogaster* spp.
- 40 (e.g. *Crematogaster lineolata* (Acrobat Ant)), *Iridomyrmex* spp. (e.g. *Iridomyrmex humilis*

(Argentine Ant)), *Pheidole* spp. (Big Headed Ants), and *Dasymutilla* spp. (e.g. *Dasymutilla occidentalis* (Velvet Ant)); termites (Isoptera and/or Termitidae) such as but not limited to *Amitermes* spp. (e.g. *Amitermes floridensis* (Florida dark-winged subterranean termite)), *Reticulitermes* spp. (e.g. *Reticulitermes flavipes* (the eastern subterranean termite), *Reticulitermes hesperus* (Western Subterranean Termite)), *Coptotermes* spp. (e.g. *Coptotermes formosanus* (Formosan Subterranean Termite)), *Incisitermes* spp. (e.g. *Incisitermes minor* (Western Drywood Termite)), *Neotermes* spp. (e.g. *Neotermes connexus* (Forest Tree Termite)).

In terms of "susceptible organisms", which benefit from the present invention, any organism which is susceptible to pest infestation is included. Pests of many different organisms, for example animals such as humans, domestic animals (such as pets like cats, dogs etc) and livestock (including sheep, cows, pigs, chickens etc.).

In this context, preferred, but non-limiting, embodiments of the invention the insect or arachnid is chosen from the group consisting of:

- (1) Acari: mites including Ixodida (ticks)
- 15 (2) Arachnida: Araneae (spiders) and Opiliones (harvestman), examples include: *Latrodectus mactans* (black widow) and *Loxosceles recluse* (Brown Recluse Spider)
- (3) Anoplura: lice, such as *Pediculus humanus* (human body louse)
- (4) Blattodea: cockroaches including German cockroach (*Blatella germanica*), of the genus Periplaneta, including American cockroach (*Periplaneta americana*) and Australian cockroach (*Periplaneta australasiae*), of the genus Blatta, including Oriental cockroach (*Blatta orientalis*) and of the genus Supella, including brown-banded cockroach (*Supella longipalpa*). A most preferred target is German cockroach (*Blatella germanica*).
- 20 (5) Coleoptera: beetles, examples include: the family of Powderpost beetle (family of Bostrichoidea); *Dendroctonus* spp. (Black Turpentine Beetle, Southern Pine Beetle, IPS Engraver Beetle); Carpet Beetles (*Anthrenus* spp, *Attagenus* spp); Old House Borer (family of Cerambycidae: *Hylotrupes bajulus*); *Anobium punctatum*; *Tribolium* spp (flour beetle); *Trogoderma granarium* (Khapra Beetle); *Oryzaephilus surinamensis* (Toothed Grain Beetle) etc. (Bookworm)
- (6) Dermaptera: family of earwigs
- 25 (7) Diptera: mosquitoes (Culicidae) and flies (Brachycera), examples are: Anophelinae such as *Anopheles* spp. and Culicinae such as *Aedes fulvus*; Tabanidae such as *Tabanus punctifer* (Horse Fly), *Glossina morsitans morsitans* (tsetse fly), drain flies (Psychodidae) and Calyptratae such as *Musca domestica* (House fly), flesh flies (family of Sarcophagidae) etc.
- 30 (8) Heteroptera: bugs, such as *Cimex lectularius* (bed bug)
- (9) Hymenoptera: wasps (Apocrita), including ants (Formicoidea), bees (Apoidea): *Solenopsis invicta* (Red Fire Ant), *Monomorium pharaonis* (Pharaoh Ant), *Camponotus*

spp (Carpenter Ants), *Iasius niger* (Small Black Ant), *tetramorium caespitum* (Pavement Ant), *Myrmica rubra* (Red Ant), *Formica spp* (wood ants), *Crematogaster lineolata* (Acrobat Ant), *Iridomyrmex humilis* (Argentine Ant), *Pheidole spp.* (Big Headed Ants, *Dasymutilla occidentalis* (Velvet Ant) etc.

- 5 (10) Isoptera: termites, examples include: *Amithermes floridensis* (Florida dark-winged subterranean termite), the eastern subterranean termite (*Reticulitermes flavipes*), the *R. hesperus* (Western Subterranean Termite), *Coptotermes formosanus* (Formosan Subterranean Termite), *Incisitermes minor* (Western Drywood Termite), *Neotermes connexus* (Forest Tree Termite) and Termitidae
- 10 (11) Lepidoptera: moths, examples include: *Tineidae* & *Oecophoridae* such as *Tineola bisselliella* (Common Clothes Moth), and *Pyralidae* such as *Pyralis farinalis* (Meal Moth) etc
- (12) Psocoptera: booklice (Psocids)
- (13) Siphonaptera: fleas such as *Pulex irritans*
- 15 (14) Sternorrhyncha: aphids (Aphididae)
- (15) Zygentoma: silverfish, examples are: *Thermobia domestica* and *Lepisma saccharina*

Preferred plant pathogenic insects according to the invention are plant pest and are selected from the group consisting of *Leptinotarsa spp.* (e.g. *L. decemlineata* (Colorado potato beetle), *L. juncta* (false potato beetle), or *L. texana* (Texan false potato beetle)); *Nilaparvata spp.* (e.g. *N. lugens* (brown planthopper)); *Laodelphax spp.* (e.g. *L. striatellus* (small brown planthopper)); *Nephrotettix spp.* (e.g. *N. virescens* or *N. cincticeps* (green leafhopper), or *N. nigropictus* (rice leafhopper)); *Sogatella spp.* (e.g. *S. furcifera* (white-backed planthopper)); *Chilo spp.* (e.g. *C. suppressalis* (rice striped stem borer), *C. auricilius* (gold-fringed stem borer), or *C. polychrysus* (dark-headed stem borer)); *Sesamia spp.* (e.g. *S. inferens* (pink rice borer)); *Tryporyza spp.* (e.g. *T. innotata* (white rice borer), or *T. incertulas* (yellow rice borer)); *Diabrotica spp.* (e.g. *D. virgifera virgifera* (western corn rootworm), *D. barberi* (northern corn rootworm), *D. undecimpunctata howardi* (southern corn rootworm), *D. virgifera zaeae* (Mexican corn rootworm); *Ostrinia spp.* (e.g. *O. nubilalis* (European corn borer)); *Anaphothrips spp.* (e.g. *A. obscurus* (grass thrips)); *Pectinophora spp.* (e.g. *P. gossypiella* (pink bollworm)); *Heliothis spp.* (e.g. *H. virescens* (tobacco budworm)); *Trialeurodes spp.* (e.g. *T. abutiloneus* (banded-winged whitefly) *T. vaporariorum* (greenhouse whitefly)); *Bemisia spp.* (e.g. *B. argentifolii* (silverleaf whitefly)); *Aphis spp.* (e.g. *A. gossypii* (cotton aphid)); *Lygus spp.* (e.g. *L. lineolaris* (tarnished plant bug) or *L. hesperus* (western tarnished plant bug)); *Euschistus spp.* (e.g. *E. conspersus* (conspicuous stink bug)); *Chlorochroa spp.* (e.g. *C. sayi* (Say stinkbug)); *Nezara spp.* (e.g. *N. viridula* (southern green stinkbug)); *Thrips spp.* (e.g. *T. tabaci* (onion thrips)); *Frankliniella spp.* (e.g. *F. fusca* (tobacco thrips), or *F. occidentalis* (western flower thrips)); *Myzus spp.* (e.g. *M. persicae* (green peach aphid)); *Macrosiphum spp.* (e.g. *M. euphorbiae* (potato aphid)); *Blissus spp.* (e.g. *B. leucopterus*

leucopterus (chinch bug)); *Acrosternum* spp. (e.g. *A. hilare* (green stink bug)); *Chilotraea* spp. (e.g. *C. polychrysa* (rice stalk borer)); *Lissorhoptrus* spp. (e.g. *L. oryzophilus* (rice water weevil)); *Rhopalosiphum* spp. (e.g. *R. maidis* (corn leaf aphid)); and *Anuraphis* spp. (e.g. *A. maidiradicis* (corn root aphid)).

5 According to a more specific embodiment, the methods of the invention are applicable for Leptinotarsa species. Leptinotarsa belong to the family of Chrysomelidae or leaf beetles. Chrysomelid beetles such as Flea Beetles and Corn Rootworms and Curculionids such as Alfalfa Weevils are particularly important pests. Flea Beetles include a large number of small leaf feeding beetles that feed on the leaves of a number of grasses, cereals and herbs. Flea Beetles include a
10 large number of genera (e.g., *Attica*, *Apphthona*, *Argopistes*, *Disonycha*, *Epitrix*, *Longitarsus*, *Prodagricomela*, *Systena*, and *Phylloreta*). The Flea Beetle, *Phylloreta cruciferae*, also known as the Rape Flea Beetle, is a particularly important pest. Corn rootworms include species found in the genus *Diabrotica* (e.g., *D. undecimpunctata undecimpunctata*, *D. undecimpunctata howardii*, *D. longicornis*, *D. virgifera* and *D. balteata*). Corn rootworms cause extensive damage to corn and
15 curcubits. The Western Spotted Cucumber Beetle, *D. undecimpunctata undecimpunctata*, is a pest of curcubits in the western U.S. Alfalfa weevils (also known as clover weevils) belong to the genus, *Hypera* (*H. postica*, *H. brunneipennis*, *H. nigrirostris*, *H. punctata* and *H. meles*), and are considered an important pest of legumes. The Egyptian alfalfa weevil, *H. brunneipennis*, is an important pest of alfalfa in the western U.S.

20 There are more than 30 Leptinotarsa species. The present invention thus encompasses methods for controlling Leptinotarsa species, more specific methods for killing insects, or preventing Leptinotarsa insects to develop or to grow, or preventing insects to infect or infest. Specific Leptinotarsa species to control according to the invention include Colorado Potato Beetle (Leptinotarsa decemlineata (Say) and False Potato Beetle (Leptinotarsa juncta (Say)).

25 CPB is a (serious) pest on our domestic potato (*Solanum tuberosum*), other cultivated and wild tuber bearing and non-tuber bearing potato species (e.g. *S. demissum*, *S. phureja* a.o.) and other Solanaceous (nightshades) plant species including:

30 (a) the crop species tomato (several *Lycopersicon* species), eggplant (*Solanum melongena*), peppers (several *Capsicum* species), tobacco (several *Nicotiana* species including ornamentals) and ground cherry (*Physalis* species);

35 (b) the weed/herb species, horse nettle (*S. carolinense*), common nightshade (*S. dulcamara*), belladonna (*Atropa* species), thorn apple (*datura* species), henbane (*Hyoscyamus* species) and buffalo burr (*S. rostratum*).

FPB is primarily found on horse nettle, but also occurs on common nightshade, ground
35 cherry, and husk tomato (*Physalis* species).

The term "insect" encompasses insects of all types and at all stages of development, including egg, larval or nymphal, pupal and adult stages.

The present invention extends to methods as described herein, wherein the insect is
40 *Leptinotarsa decemlineata* (Colorado potato beetle) and the plant is potato, eggplant, tomato, pepper, tobacco, ground cherry or rice, corn or cotton.

The present invention extends to methods as described herein, wherein the insect is *Phaedon cochleariae* (mustard leaf beetle) and the plant is mustard, chinese cabbage, turnip greens, collard greens or bok choy.

5 The present invention extends to methods as described herein, wherein the insect is *Epilachna varivertis* (Mexican bean beetle) and the plant is bean, field bean, garden bean, snap bean, lima bean, mung bean, string bean, black-eyed bean, velvet bean, soybean, cowpea, pigeon pea, clover or alfalfa.

The present invention extends to methods as described herein, wherein the insect is *Anthonomus grandis* (cotton boll weevil) and the plant is cotton.

10 The present invention extends to methods as described herein, wherein the insect is *Tribolium castaneum* (red flour beetle) and the plant is in the form of stored grain products such as flour, cereals, meal, crackers, beans, spices, pasta, cake mix, dried pet food, dried flowers, chocolate, nuts, seeds, and even dried museum specimens.

15 The present invention extends to methods as described herein, wherein the insect is *Myzus persicae* (green peach aphid) and the plant is a tree such as *Prunus*, particularly peach, apricot and plum; a vegetable crop of the families *Solanaceae*, *Chenopodiaceae*, *Compositae*, *Cruciferae*, and *Cucurbitaceae*, including but not limited to, artichoke, asparagus, bean, beets, broccoli, Brussels sprouts, cabbage, carrot, cauliflower, cantaloupe, celery, corn, cucumber, fennel, kale, kohlrabi, turnip, eggplant, lettuce, mustard, okra, parsley, parsnip, pea, pepper, potato, radish, 20 spinach, squash, tomato, turnip, watercress, and watermelon; a field crops such as, but not limited to, tobacco, sugar beet, and sunflower; a flower crop or other ornamental plant.

The present invention extends to methods as described herein, wherein the insect is *Nilaparvata lugens* and the plant is a rice plant.

25 The present invention extends to methods as described herein, wherein the insect is *Chilo suppressalis* (rice striped stem borer) and the plant is a rice plant, barley, sorghum, maize, wheat or a grass.

30 The present invention extends to methods as described herein, wherein the insect is *Plutella xylostella* (Diamondback moth) and the plant is a *Brassica* species such as, but not limited to cabbage, chinese cabbage, Brussels sprouts, kale, rapeseed, broccoli, cauliflower, turnip, mustard or radish.

The present invention extends to methods as described herein, wherein the insect is *Acheta domesticus* (house cricket) and the plant is any plant as described herein or any organic matter.

35 In this context the term "plant" encompasses any plant material that it is desired to treat to prevent or reduce insect growth and/or insect infestation. This includes, *inter alia*, whole plants, seedlings, propagation or reproductive material such as seeds, cuttings, grafts, explants, etc. and also plant cell and tissue cultures. The plant material should express, or have the capability to express, the RNA molecule comprising at least one nucleotide sequence that is the RNA complement of or that represents the RNA equivalent of at least part of the nucleotide sequence of 40 the sense strand of at least one target gene of the pest organism, such that the RNA molecule is

taken up by a pest upon plant-pest interaction, said RNA molecule being capable of inhibiting the target gene or down-regulating expression of the target gene by RNA interference.

The target gene may be any of the target genes herein described, for instance a target gene that is essential for the viability, growth, development or reproduction of the pest. The present 5 invention relates to any gene of interest in the insect (which may be referred to herein as the "target gene") that can be down-regulated.

The terms "down-regulation of gene expression" and "inhibition of gene expression" are used interchangeably and refer to a measurable or observable reduction in gene expression or a complete abolition of detectable gene expression, at the level of protein product and/or mRNA 10 product from the target gene. Preferably the down-regulation does not substantially directly inhibit the expression of other genes of the insect. The down-regulation effect of the dsRNA on gene expression may be calculated as being at least 30%, 40%, 50%, 60%, preferably 70%, 80% or even more preferably 90% or 95% when compared with normal gene expression. Depending on the 15 nature of the target gene, down-regulation or inhibition of gene expression in cells of an insect can be confirmed by phenotypic analysis of the cell or the whole insect or by measurement of mRNA or protein expression using molecular techniques such as RNA solution hybridization, PCR, nuclease protection, Northern hybridization, reverse transcription, gene expression monitoring with a microarray, antibody binding, enzyme-linked immunosorbent assay (ELISA), Western blotting, radioimmunoassay (RIA), other immunoassays, or fluorescence-activated cell analysis (FACS).

20 The "target gene" may be essentially any gene that is desirable to be inhibited because it interferes with growth or pathogenicity or infectivity of the insect. For instance, if the method of the invention is to be used to prevent insect growth and/or infestation then it is preferred to select a target gene which is essential for viability, growth, development or reproduction of the insect, or any gene that is involved with pathogenicity or infectivity of the insect, such that specific inhibition 25 of the target gene leads to a lethal phenotype or decreases or stops insect infestation.

According to one non-limiting embodiment, the target gene is such that when its expression is down-regulated or inhibited using the method of the invention, the insect is killed, or the reproduction or growth of the insect is stopped or retarded. This type of target genes is considered to be essential for the viability of the insect and is referred to as essential genes. 30 Therefore, the present invention encompasses a method as described herein, wherein the target gene is an essential gene.

According to a further non-limiting embodiment, the target gene is such that when it is down-regulated using the method of the invention, the infestation or infection by the insect, the damage caused by the insect, and/or the ability of the insect to infest or infect host organisms 35 and/or cause such damage, is reduced. The terms "infest" and "infect" or "infestation" and "infection" are generally used interchangeably throughout. This type of target genes is considered to be involved in the pathogenicity or infectivity of the insect. Therefore, the present invention extends to methods as described herein, wherein the target gene is involved in the pathogenicity or infectivity of the insect. The advantage of choosing the latter type of target gene is that the insect is 40 blocked to infect further plants or plant parts and is inhibited to form further generations.

According to one embodiment, target genes are conserved genes or insect-specific genes.

In addition, any suitable double-stranded RNA fragment capable of directing RNAi or RNA-mediated gene silencing or inhibition of an insect target gene may be used in the methods of the invention.

5 In another embodiment, a gene is selected that is essentially involved in the growth, development, and reproduction of a pest, (such as an insect). Exemplary genes include but are not limited to the structural subunits of ribosomal proteins and a beta-coatamer gene, such as the CHD3 gene. Ribosomal proteins such as S4 (RpS4) and S9(RpS9) are structural constituents of the ribosome involved in protein biosynthesis and which are components of the cytosolic small
10 ribosomal subunit, the ribosomal proteins such as L9 and L19 are structural constituent of ribosome involved in protein biosynthesis which is localised to the ribosome. The beta coatamer gene in *C. elegans* encodes a protein which is a subunit of a multimeric complex that forms a membrane vesicle coat. Similar sequences have been found in diverse organisms such as *Arabidopsis thaliana*, *Drosophila melanogaster*, and *Saccharomyces cerevisiae*. Related
15 sequences are found in diverse organisms such as *Leptinotarsa decemlineata*, *Phaedon cochleariae*, *Epilachna varivestis*, *Anthonomus grandis*, *Tribolium castaneum*, *Myzus persicae*, *Nilaparvata lugens*, *Chilo suppressalis*, *Plutella xylostella* and *Acheta domesticus*.

Other target genes for use in the present invention may include, for example, those that play important roles in viability, growth, development, reproduction, and infectivity. These target
20 genes include, for example, house keeping genes, transcription factors, and pest specific genes or lethal knockout mutations in *Caenorhabditis* or *Drosophila*. The target genes for use in the present invention may also be those that are from other organisms, e.g., from insects or arachnidae (e.g. *Leptinotarsa* spp., *Phaedon* spp., *Epilachna* spp., *Anthonomus* spp., *Tribolium* spp., *Myzus* spp., *Nilaparvata* spp., *Chilo* spp., *Plutella* spp., or *Acheta* spp.).

25 Preferred target genes include those specified in Table 1A and orthologous genes from other target organisms, such as from other pest organisms.

In the methods of the present invention, dsRNA is used to inhibit growth or to interfere with the pathogenicity or infectivity of the insect.

The invention thus relates to isolated double-stranded RNA comprising annealed
30 complementary strands, one of which has a nucleotide sequence which is complementary to at least part of a target nucleotide sequence of a target gene of an insect. The target gene may be any of the target genes described herein, or a part thereof that exerts the same function.

According to one embodiment of the present invention, an isolated double-stranded RNA is provided comprising annealed complementary strands, one of which has a nucleotide sequence
35 which is complementary to at least part of a nucleotide sequence of an insect target gene, wherein said target gene comprises a sequence which is selected from the group comprising:

(i) sequences which are at least 75% identical to a sequence represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473,
40 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596,

601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to
862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056,
1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097,
1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587,
5 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662,
1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704,
1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095,
2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366,
2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof,
10 and
(ii) sequences comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 1, 3, 5, 7,
9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203,
208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488,
493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605,
15 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868,
873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071,
1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101,
1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597,
1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672,
20 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to
2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102,
2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370,
2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof,
or wherein said insect target gene is an insect orthologue of a gene comprising at least 17
25 contiguous nucleotides of any of SEQ ID NOs 49 to 158, 275 to 472, 533 to 575, 621 to 767, 813 to
862, 908 to 1040, 1161 to 1571, 1730 to 2039, 2120 to 2338, 2384 to 2460, or the complement
thereof.

Depending on the assay used to measure gene silencing, the growth inhibition can be quantified as being greater than about 5%, 10%, more preferably about 20%, 25%, 33%, 50%,
30 60%, 75%, 80%, most preferably about 90%, 95%, or about 99% as compared to a pest organism that has been treated with control dsRNA.

According to another embodiment of the present invention, an isolated double-stranded RNA is provided, wherein at least one of said annealed complementary strands comprises the RNA equivalent of at least one of the nucleotide sequences represented by any of SEQ ID NOs 1, 3, 5,
35 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203,
208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493,
498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609,
621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883,
888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077,
40 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107,

1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617,
1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686,
1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055,
2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338,
5 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471,
2476 or 2481, or wherein at least one of said annealed complementary strands comprises the RNA
equivalent of a fragment of at least 17 basepairs in length thereof, preferably at least 18, 19, 20 or
21, more preferably at least 22, 23 or 24 basepairs in length thereof.

If the method of the invention is used for specifically controlling growth or infestation of a
10 specific insect in or on a host cell or host organism, it is preferred that the double-stranded RNA
does not share any significant homology with any host gene, or at least not with any essential gene
of the host. In this context, it is preferred that the double-stranded RNA shows less than 30%, more
preferably less than 20%, more preferably less than 10%, and even more preferably less than 5%
15 nucleic acid sequence identity with any gene of the host cell. % sequence identity should be
calculated across the full length of the double-stranded RNA region. If genomic sequence data is
available for the host organism one may cross-check sequence identity with the double-stranded
RNA using standard bioinformatics tools. In one embodiment, there is no sequence identity
between the dsRNA and a host sequences over 21 contiguous nucleotides, meaning that in this
context, it is preferred that 21 contiguous base pairs of the dsRNA do not occur in the genome of
20 the host organism. In another embodiment, there is less than about 10% or less than about 12.5 %
sequence identity over 24 contiguous nucleotides of the dsRNA with any nucleotide sequence from
a host species.

The double-stranded RNA comprises annealed complementary strands, one of which has
a nucleotide sequence which corresponds to a target nucleotide sequence of the target gene to be
25 down-regulated. The other strand of the double-stranded RNA is able to base-pair with the first
strand.

The expression "target region" or "target nucleotide sequence" of the target insect gene
may be any suitable region or nucleotide sequence of the gene. The target region should comprise
at least 17, at least 18 or at least 19 consecutive nucleotides of the target gene, more preferably at
30 least 20 or at least 21 nucleotide and still more preferably at least 22, 23 or 24 nucleotides of the
target gene.

It is preferred that (at least part of) the double-stranded RNA will share 100% sequence
identity with the target region of the insect target gene. However, it will be appreciated that 100%
sequence identity over the whole length of the double stranded region is not essential for functional
35 RNA inhibition. RNA sequences with insertions, deletions, and single point mutations relative to the
target sequence have also been found to be effective for RNA inhibition. The terms "corresponding
to" or "complementary to" are used herein interchangeable, and when these terms are used to refer
to sequence correspondence between the double-stranded RNA and the target region of the target
gene, they are to be interpreted accordingly, i.e. as not absolutely requiring 100% sequence
40 identity. However, the % sequence identity between the double-stranded RNA and the target

region will generally be at least 80% or 85% identical, preferably at least 90%, 95%, 96%, or more preferably at least 97%, 98% and still more preferably at least 99%. Two nucleic acid strands are "substantially complementary" when at least 85% of their bases pair.

The term "complementary" as used herein relates to both DNA-DNA complementarity as to 5 DNA-RNA complementarity. In analogy herewith, the term "RNA equivalent" substantially means that in the DNA sequence(s), the base "T" may be replaced by the corresponding base "U" normally present in ribonucleic acids.

Although the dsRNA contains a sequence which corresponds to the target region of the target gene it is not absolutely essential for the whole of the dsRNA to correspond to the sequence 10 of the target region. For example, the dsRNA may contain short non-target regions flanking the target-specific sequence, provided that such sequences do not affect performance of the dsRNA in RNA inhibition to a material extent.

The dsRNA may contain one or more substitute bases in order to optimise performance in RNAi. It will be apparent to the skilled reader how to vary each of the bases of the dsRNA in turn 15 and test the activity of the resulting dsRNAs (e.g. in a suitable *in vitro* test system) in order to optimise the performance of a given dsRNA.

The dsRNA may further contain DNA bases, non-natural bases or non-natural backbone linkages or modifications of the sugar-phosphate backbone, for example to enhance stability during storage or enhance resistance to degradation by nucleases.

20 It has been previously reported that the formation of short interfering RNAs (siRNAs) of about 21 bp is desirable for effective gene silencing. However, in applications of applicant it has been shown that the minimum length of dsRNA preferably is at least about 80-100 bp in order to be efficiently taken up by certain pest organisms. There are indications that in invertebrates such as the free living nematode *C. elegans* or the plant parasitic nematode *Meloidogyne incognita*, these 25 longer fragments are more effective in gene silencing, possibly due to a more efficient uptake of these long dsRNA by the invertebrate.

It has also recently been suggested that synthetic RNA duplexes consisting of either 27-mer blunt or short hairpin (sh) RNAs with 29 bp stems and 2-nt 3' overhangs are more potent inducers of RNA interference than conventional 21-mer siRNAs. Thus, molecules based upon the 30 targets identified above and being either 27-mer blunt or short hairpin (sh) RNA's with 29-bp stems and 2-nt 3'overhangs are also included within the scope of the invention.

Therefore, in one embodiment, the double-stranded RNA fragment (or region) will itself 35 preferably be at least 17 bp in length, preferably 18 or 19bp in length, more preferably at least 20bp, more preferably at least 21 bp, or at least 22 bp, or at least 23 bp, or at least 24 bp, 25 bp, 26 bp or at least 27 bp in length. The expressions "double-stranded RNA fragment" or "double-stranded RNA region" refer to a small entity of the double-stranded RNA corresponding with (part of) the target gene.

Generally, the double stranded RNA is preferably between about 17-1500 bp, even more 40 preferably between about 80 - 1000 bp and most preferably between about 17-27 bp or between about 80-250 bp; such as double stranded RNA regions of about 17 bp, 18 bp, 19 bp, 20 bp, 21 bp,

22 bp, 23 bp, 24 bp, 25 bp, 27 bp, 50 bp, 80 bp, 100 bp, 150 bp, 200 bp, 250 bp, 300 bp, 350 bp, 400 bp, 450 bp, 500 bp, 550 bp, 600 bp, 650 bp, 700 bp, 900 bp, 100 bp, 1100 bp, 1200 bp, 1300 bp, 1400 bp or 1500 bp.

The upper limit on the length of the double-stranded RNA may be dependent on i) the requirement for the dsRNA to be taken up by the insect and ii) the requirement for the dsRNA to be processed within the cell into fragments that direct RNAi. The chosen length may also be influenced by the method of synthesis of the RNA and the mode of delivery of the RNA to the cell. Preferably the double-stranded RNA to be used in the methods of the invention will be less than 10,000 bp in length, more preferably 1000 bp or less, more preferably 500 bp or less, more 10 preferably 300 bp or less, more preferably 100 bp or less. For any given target gene and insect, the optimum length of the dsRNA for effective inhibition may be determined by experiment.

The double-stranded RNA may be fully or partially double-stranded. Partially double-stranded RNAs may include short single-stranded overhangs at one or both ends of the double-stranded portion, provided that the RNA is still capable of being taken up by insects and directing 15 RNAi. The double-stranded RNA may also contain internal non-complementary regions.

The methods of the invention encompass the simultaneous or sequential provision of two or more different double-stranded RNAs or RNA constructs to the same insect, so as to achieve down-regulation or inhibition of multiple target genes or to achieve a more potent inhibition of a single target gene.

20 Alternatively, multiple targets are hit by the provision of one double-stranded RNA that hits multiple target sequences, and a single target is more efficiently inhibited by the presence of more than one copy of the double stranded RNA fragment corresponding to the target gene. Thus, in one embodiment of the invention, the double-stranded RNA construct comprises multiple dsRNA regions, at least one strand of each dsRNA region comprising a nucleotide sequence that is 25 complementary to at least part of a target nucleotide sequence of an insect target gene. According to the invention, the dsRNA regions in the RNA construct may be complementary to the same or to different target genes and/or the dsRNA regions may be complementary to targets from the same or from different insect species.

30 The terms "hit", "hits" and "hitting" are alternative wordings to indicate that at least one of the strands of the dsRNA is complementary to, and as such may bind to, the target gene or nucleotide sequence.

In one embodiment, the double stranded RNA region comprises multiple copies of the nucleotide sequence that is complementary to the target gene. Alternatively, the dsRNA hits more than one target sequence of the same target gene. The invention thus encompasses isolated 35 double stranded RNA constructs comprising at least two copies of said nucleotide sequence complementary to at least part of a nucleotide sequence of an insect target.

The term "multiple" in the context of the present invention means at least two, at least three, at least four, at least five, at least six, etc.

40 The expressions "a further target gene" or "at least one other target gene" mean for instance a second, a third or a fourth, etc. target gene.

DsRNA that hits more than one of the above-mentioned targets, or a combination of different dsRNA against different of the above mentioned targets are developed and used in the methods of the present invention.

Accordingly the invention relates to an isolated double stranded RNA construct comprising at least two copies of the RNA equivalent of at least one of the nucleotide sequences represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or at least two copies of the RNA equivalent of a fragment of at least 17 basepairs in length thereof, preferably at least 18, 19, 20 or 21, more preferably at least 22, 23 or 24 basepairs in length thereof. Preferably, said double-stranded RNA comprises the RNA equivalent of the nucleotide sequence as represented in SEQ ID NO 159 or 160, or a fragment of at least 17, preferably at least 18, 19, 20 or 21, more preferably at least 22, 23 or 24 basepairs in length thereof. In a further embodiment, the invention relates to an isolated double stranded RNA construct comprising at least two copies of the RNA equivalent of the nucleotide sequence as represented by SEQ ID NO 159 or 160.

Accordingly, the present invention extends to methods as described herein, wherein the dsRNA comprises annealed complementary strands, one of which has a nucleotide sequence which is complementary to at least part of a target nucleotide sequence of an insect target gene, and which comprises the RNA equivalents of at least two nucleotide sequences independently chosen from each other. In one embodiment, the dsRNA comprises the RNA equivalents of at least two, preferably at least three, four or five, nucleotide sequences independently chosen from the sequences represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085,

2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or fragments thereof of at least 17 basepairs in length, preferably at least 18, 19, 20 or 21, more preferably at least 22, 23 or 24 basepairs in length thereof.

5 The at least two nucleotide sequences may be derived from the target genes herein described. According to one preferred embodiment the dsRNA hits at least one target gene that is essential for viability, growth, development or reproduction of the insect and hits at least one gene involved in pathogenicity or infectivity as described hereinabove. Alternatively, the dsRNA hits multiple genes of the same category, for example, the dsRNA hits at least 2 essential genes or at 10 least 2 genes involved in the same cellular function. According to a further embodiment, the dsRNA hits at least 2 target genes, which target genes are involved in a different cellular function. For example the dsRNA hits two or more genes involved in protein synthesis (e.g. ribosome subunits), intracellular protein transport, nuclear mRNA splicing, or involved in one of the functions described in Table 1A.

15 Preferably, the present invention extends to methods as described herein, wherein said insect target gene comprises a sequence which is selected from the group comprising:

- (i) sequences which are at least 75% identical to a sequence represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof, and
- (ii) sequences comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to

2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof,

or wherein said insect target gene is an insect orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 49 to 158, 275 to 472, 533 to 575, 621 to 767, 813 to 862, 908 to 1040, 1161 to 1571, 1730 to 2039, 2120 to 2338, 2384 to 2460, or the complement thereof.

The dsRNA regions (or fragments) in the double stranded RNA may be combined as follows:

- 10 a) when multiple dsRNA regions targeting a single target gene are combined, they may be combined in the original order (ie the order in which the regions appear in the target gene) in the RNA construct,
- 15 b) alternatively, the original order of the fragments may be ignored so that they are scrambled and combined randomly or deliberately in any order into the double stranded RNA construct,
- 20 c) alternatively, one single fragment may be repeated several times, for example from 1 to 10 times, e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 times, in the ds RNA construct, or
- 25 d) the dsRNA regions (targeting a single or different target genes) may be combined in the sense or antisense orientation.

In addition, the target gene(s) to be combined may be chosen from one or more of the following categories of genes:

- 20 e) "essential" genes or "pathogenicity genes" as described above encompass genes that are vital for one or more target insects and result in a lethal or severe (e.g. feeding, reproduction, growth) phenotype when silenced. The choice of a strong lethal target gene results in a potent RNAi effect. In the RNA constructs of the invention, multiple dsRNA regions targeting the same or different (very effective) lethal genes can be combined to further increase the potency, efficacy or speed of the RNAi effect in insect control.
- 25 f) "weak" genes encompass target genes with a particularly interesting function in one of the cellular pathways described herein, but which result in a weak phenotypic effect when silenced independently. In the RNA constructs of the invention, multiple dsRNA regions targeting a single or different weak gene(s) may be combined to obtain a stronger RNAi effect.
- 30 g) "insect specific" genes encompass genes that have no substantial homologous counterpart in non-insect organisms as can be determined by bioinformatics homology searches, for example by BLAST searches. The choice of an insect specific target gene results in a species specific RNAi effect, with no effect or no substantial (adverse) effect in non-target organisms.
- 35 h) "conserved genes" encompass genes that are conserved (at the amino acid level) between the target organism and non-target organism(s). To reduce possible effects on non-target species, such effective but conserved genes are analysed and target sequences from the

variable regions of these conserved genes are chosen to be targeted by the dsRNA regions in the RNA construct. Here, conservation is assessed at the level of the nucleic acid sequence. Such variable regions thus encompass the least conserved sections, at the level of the nucleic acid sequence, of the conserved target gene(s).

- 5 i) "conserved pathway" genes encompass genes that are involved in the same biological pathway or cellular process, or encompass genes that have the same functionality in different insect species resulting in a specific and potent RNAi effect and more efficient insect control;
- 10 j) alternatively, the RNA constructs according to the present invention target multiple genes from different biological pathways, resulting in a broad cellular RNAi effect and more efficient insect control.

According to the invention, all double stranded RNA regions comprise at least one strand that is complementary to at least part or a portion of the nucleotide sequence of any of the target genes herein described. However, provided one of the double stranded RNA regions comprises at 15 least one strand that is complementary to a portion of the nucleotide sequence of any one of the target genes herein described, the other double stranded RNA regions may comprise at least one strand that is complementary to a portion of any other insect target gene (including known target genes).

According to yet another embodiment of the present invention there is provided an isolated 20 double stranded RNA or RNA construct as herein described, further comprising at least one additional sequence and optionally a linker. In one embodiment, the additional sequence is chosen from the group comprising (i) a sequence facilitating large-scale production of the dsRNA construct; (ii) a sequence effecting an increase or decrease in the stability of the dsRNA; (iii) a sequence allowing the binding of proteins or other molecules to facilitate uptake of the RNA construct by 25 insects; (iv) a sequence which is an aptamer that binds to a receptor or to a molecule on the surface or in the cytoplasm of an insect to facilitate uptake, endocytosis and/or transcytosis by the insect; or (v) additional sequences to catalyze processing of dsRNA regions. In one embodiment, the linker is a conditionally self-cleaving RNA sequence, preferably a pH sensitive linker or a hydrophobic sensitive linker. In one embodiment, the linker is an intron.

30 In one embodiment, the multiple dsRNA regions of the double-stranded RNA construct are connected by one or more linkers. In another embodiment, the linker is present at a site in the RNA construct, separating the dsRNA regions from another region of interest. Different linker types for the dsRNA constructs are provided by the present invention.

35 In another embodiment, the multiple dsRNA regions of the double-stranded RNA construct are connected without linkers.

40 In a particular embodiment of the invention, the linkers may be used to disconnect smaller dsRNA regions in the pest organism. Advantageously, in this situation the linker sequence may promote division of a long dsRNA into smaller dsRNA regions under particular circumstances, resulting in the release of separate dsRNA regions under these circumstances and leading to more efficient gene silencing by these smaller dsRNA regions. Examples of suitable conditionally self-

cleaving linkers are RNA sequences that are self-cleaving at high pH conditions. Suitable examples of such RNA sequences are described by Borda et al. (Nucleic Acids Res. 2003 May 15;31(10):2595-600), which document is incorporated herein by reference. This sequence originates from the catalytic core of the hammerhead ribozyme HH16.

- 5 In another aspect of the invention, a linker is located at a site in the RNA construct, separating the dsRNA regions from another, e.g. the additional, sequence of interest, which preferably provides some additional function to the RNA construct.

In one particular embodiment of the invention, the dsRNA constructs of the present invention are provided with an aptamer to facilitate uptake of the dsRNA by the insect. The aptamer 10 is designed to bind a substance which is taken up by the insect. Such substances may be from an insect or plant origin. One specific example of an aptamer, is an aptamer that binds to a transmembrane protein, for example a transmembrane protein of an insect. Alternatively, the aptamer may bind a (plant) metabolite or nutrient which is taken up by the insect.

Alternatively, the linkers are self-cleaving in the endosomes. This may be advantageous 15 when the constructs of the present invention are taken up by the insect via endocytosis or transcytosis, and are therefore compartmentalized in the endosomes of the insect species. The endosomes may have a low pH environment, leading to cleavage of the linker.

The above mentioned linkers that are self-cleaving in hydrophobic conditions are particularly useful in dsRNA constructs of the present invention when used to be transferred from 20 one cell to another via the transit in a cell wall, for example when crossing the cell wall of an insect pest organism.

An intron may also be used as a linker. An "intron" as used herein may be any non-coding RNA sequence of a messenger RNA. Particular suitable intron sequences for the constructs of the present invention are (1) U-rich (35-45%); (2) have an average length of 100 bp (varying between 25 about 50 and about 500 bp) which base pairs may be randomly chosen or may be based on known intron sequences; (3) start at the 5' end with -AG:GT- or -CG:GT- and/or (4) have at their 3' end - AG:GC- or -AG:AA.

A non-complementary RNA sequence, ranging from about 1 base pair to about 10,000 base pairs, may also be used as a linker.

30 Without wishing to be bound by any particular theory or mechanism, it is thought that long double-stranded RNAs are taken up by the insect from their immediate environment. Double-stranded RNAs taken up into the gut and transferred to the gut epithelial cells are then processed within the cell into short double-stranded RNAs, called small interfering RNAs (siRNAs), by the action of an endogenous endonuclease. The resulting siRNAs then mediate RNAi via formation of 35 a multi-component RNase complex termed the RISC or RNA interfering silencing complex.

40 In order to achieve down-regulation of a target gene within an insect cell the double-stranded RNA added to the exterior of the cell wall may be any dsRNA or dsRNA construct that can be taken up into the cell and then processed within the cell into siRNAs, which then mediate RNAi, or the RNA added to the exterior of the cell could itself be an siRNA that can be taken up into the cell and thereby direct RNAi.

siRNAs are generally short double-stranded RNAs having a length in the range of from 19 to 25 base pairs, or from 20 to 24 base pairs. In preferred embodiments siRNAs having 19, 20, 21, 22, 23, 24 or 25 base pairs, and in particular 21 or 22 base pairs, corresponding to the target gene to be down-regulated may be used. However, the invention is not intended to be limited to the use
5 of such siRNAs.

siRNAs may include single-stranded overhangs at one or both ends, flanking the double-stranded portion. In a particularly preferred embodiment the siRNA may contain 3' overhanging nucleotides, preferably two 3' overhanging thymidines (dTdT) or uridines (UU). 3' TT or UU overhangs may be included in the siRNA if the sequence of the target gene immediately upstream
10 of the sequence included in double-stranded part of the dsRNA is AA. This allows the TT or UU overhang in the siRNA to hybridise to the target gene. Although a 3' TT or UU overhang may also be included at the other end of the siRNA it is not essential for the target sequence downstream of the sequence included in double-stranded part of the siRNA to have AA. In this context, siRNAs which are RNA/DNA chimeras are also contemplated. These chimeras include, for example, the
15 siRNAs comprising a double-stranded RNA with 3' overhangs of DNA bases (e.g. dTdT), as discussed above, and also double-stranded RNAs which are polynucleotides in which one or more of the RNA bases or ribonucleotides, or even all of the ribonucleotides on an entire strand, are replaced with DNA bases or deoxynucleotides.

The dsRNA may be formed from two separate (sense and antisense) RNA strands that are
20 annealed together by (non-covalent) basepairing. Alternatively, the dsRNA may have a foldback stem-loop or hairpin structure, wherein the two annealed strands of the dsRNA are covalently linked. In this embodiment the sense and antisense stands of the dsRNA are formed from different regions of single polynucleotide molecule that is partially self-complementary. RNAs having this structure are convenient if the dsRNA is to be synthesised by expression *in vivo*, for example in a
25 host cell or organism as discussed below, or by *in vitro* transcription. The precise nature and sequence of the "loop" linking the two RNA strands is generally not material to the invention, except that it should not impair the ability of the double-stranded part of the molecule to mediate RNAi. The features of "hairpin" or "stem-loop" RNAs for use in RNAi are generally known in the art (see for example WO 99/53050, in the name of CSIRO, the contents of which are incorporated herein by
30 reference). In other embodiments of the invention, the loop structure may comprise linker sequences or additional sequences as described above.

The double-stranded RNA or construct may be prepared in a manner known *per se*. For example, double-stranded RNAs may be synthesised *in vitro* using chemical or enzymatic RNA synthesis techniques well known in the art. In one approach the two separate RNA strands may be
35 synthesised separately and then annealed to form double-strands. In a further embodiment, double-stranded RNAs or constructs may be synthesised by intracellular expression in a host cell or organism from a suitable expression vector. This approach is discussed in further detail below.

The amount of double-stranded RNA with which the insect is contacted is such that specific down-regulation of the one or more target genes is achieved. The RNA may be introduced
40 in an amount which allows delivery of at least one copy per cell. However, in certain embodiments

higher doses (e.g., at least 5, 10, 100, 500 or 1000 copies per cell) of double-stranded RNA may yield more effective inhibition. For any given insect gene target the optimum amount of dsRNA for effective inhibition may be determined by routine experimentation.

The insect can be contacted with the double-stranded RNA in any suitable manner, 5 permitting direct uptake of the double-stranded RNA by the insect. For example, the insect can be contacted with the double-stranded RNA in pure or substantially pure form, for example an aqueous solution containing the dsRNA. In this embodiment, the insect may be simply "soaked" with an aqueous solution comprising the double-stranded RNA. In a further embodiment the insect can be contacted with the double-stranded RNA by spraying the insect with a liquid composition 10 comprising the double-stranded RNA.

Alternatively, the double-stranded RNA may be linked to a food component of the insects, such as a food component for a mammalian pathogenic insect, in order to increase uptake of the dsRNA by the insect.

The double-stranded RNA may also be incorporated in the medium in which the insect 15 grows or in or on a material or substrate that is infested by the insect or impregnated in a substrate or material susceptible to infestation by insect.

According to another embodiment, the dsRNA is expressed in a bacterial or fungal cell and the bacterial or fungal cell is taken up or eaten by the insect species.

As illustrated in the examples, bacteria can be engineered to produce any of the dsRNA or 20 dsRNA constructs of the invention. These bacteria can be eaten by the insect species. When taken up, the dsRNA can initiate an RNAi response, leading to the degradation of the target mRNA and weakening or killing of the feeding insect.

Therefore, in a more specific embodiment, said double-stranded RNA or RNA construct is 25 expressed by a prokaryotic, such as a bacterial, or eukaryotic, such as a yeast, host cell or host organism. According to this embodiment, any bacterium or yeast cell that is capable of expressing dsRNA or dsRNA constructs can be used. The bacterium is chosen from the group comprising Gram-negative and Gram-positive bacteria, such as, but not limited to, *Escherichia* spp. (e.g. *E. coli*), *Bacillus* spp. (e.g. *B. thuringiensis*), *Rhizobium* spp., *Lactobacillus* spp., *Lactococcus* spp., etc.. The yeast may be chosen from the group comprising *Saccharomyces* spp., etc.

Some bacteria have a very close interaction with the host plant, such as, but not limited to, symbiotic *Rhizobium* with the Legminosea (for example Soy). Such recombinant bacteria could be 30 mixed with the seeds (for instance as a coating) and used as soil improvers.

Accordingly, the present invention also encompasses a cell comprising any of the nucleotide sequences or recombinant DNA constructs described herein. The invention further 35 encompasses prokaryotic cells (such as, but not limited to, gram-positive and gram-negative bacterial cells) and eukaryotic cells (such as, but not limited to, yeast cells or plant cells). Preferably said cell is a bacterial cell or a yeast cell or an algal cell.

In other embodiments the insect may be contacted with a composition as described further 40 herein. The composition may, in addition to the dsRNA or DNA contain further excipients, diluents or carriers. Preferred features of such compositions are discussed in more detail below.

Alternatively, dsRNA producing bacteria or yeast cells can be sprayed directly onto the crops.

Thus, as described above, the invention provides a host cell comprising an RNA construct and/or a DNA construct and/or an expression construct of the invention. Preferably, the host cell is 5 a bacterial or yeast cell, but may be a virus for example. A virus such as a baculovirus may be utilised which specifically infects insects. This ensures safety for mammals, especially humans, since the virus will not infect the mammal, so no unwanted RNAi effect will occur.

The bacterial cell or yeast cell preferably should be inactivated before being utilised as a biological pesticide, for instance when the agent is to be used in an environment where contact 10 with humans or other mammals is likely (such as a kitchen). Inactivation may be achieved by any means, such as by heat treatment, phenol or formaldehyde treatment for example, or by mechanical treatment.

In a still alternative embodiment, an inactivated virus, such as a suitably modified baculovirus may be utilised in order to deliver the dsRNA regions of the invention for mediating 15 RNAi to the insect pest.

Possible applications include intensive greenhouse cultures, for instance crops that are less interesting from a GMO point of view, as well as broader field crops such as soy.

This approach has several advantages, eg: since the problem of possible dicing by a plant host is not present, it allows the delivery of large dsRNA fragments into the gut lumen of the 20 feeding pest; the use of bacteria as insecticides does not involve the generation of transgenic crops, especially for certain crops where transgenic variants are difficult to obtain; there is a broad and flexible application in that different crops can be simultaneously treated on the same field and/or different pests can be simultaneously targeted, for instance by combining different bacteria producing distinct dsRNAs.

25 Another aspect of the present invention are target nucleotide sequences of the insect target genes herein disclosed. Such target nucleotide sequences are particularly important to design the dsRNA constructs according to the present invention. Such target nucleotide sequences are preferably at least 17, preferably at least 18, 19, 20 or 21, more preferably at least 22, 23 or 24 nucleotides in length. Non-limiting examples of preferred target nucleotide sequences are given in 30 the examples.

According to one embodiment, the present invention provides an isolated nucleotide sequence encoding a double stranded RNA or double stranded RNA construct as described herein.

According to a more specific embodiment, the present invention relates to an isolated 35 nucleic acid sequence consisting of a sequence represented by any of SEQ ID NOs 49 to 158, 275 to 472, 533 to 575, 621 to 767, 813 to 862, 908 to 1040, 1161 to 1571, 1730 to 2039, 2120 to 2338, 2384 to 2460, or a fragment of at least 17 preferably at least 18, 19, 20 or 21, more preferably at least 22, 23 or 24 nucleotides thereof.

A person skilled in the art will recognize that homologues of these target genes can be 40 found and that these homologues are also useful in the methods of the present invention.

Protein, or nucleotide sequences are likely to be homologous if they show a "significant" level of sequence similarity or more preferably sequence identity. Truly homologous sequences are related by divergence from a common ancestor gene. Sequence homologues can be of two types:(i) where homologues exist in different species they are known as orthologues. e.g. the α-globin genes in mouse and human are orthologues.(ii) paralogues are homologous genes in within a single species. e.g. the α- and β-globin genes in mouse are paralogues

- Preferred homologues are genes comprising a sequence which is at least about 85% or 87.5%, still more preferably about 90%, still more preferably at least about 95% and most preferably at least about 99% identical to a sequence selected from the group of sequences represented by SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof. Methods for determining sequence identity are routine in the art and include use of the Blast software and EMBOSS software (*The European Molecular Biology Open Software Suite* (2000), Rice, P., Longden, I. and Bleasby, A. *Trends in Genetics* 16, (6) pp276—277). The term "identity" as used herein refers to the relationship between sequences at the nucleotide level. The expression "% identical" is determined by comparing optimally aligned sequences, e.g. two or more, over a comparison window wherein the portion of the sequence in the comparison window may comprise insertions or deletions as compared to the reference sequence for optimal alignment of the sequences. The reference sequence does not comprise insertions or deletions. The reference window is chosen from between at least 10 contiguous nucleotides to about 50, about 100 or to about 150 nucleotides, preferably between about 50 and 150 nucleotides. "% identity" is then calculated by determining the number of nucleotides that are identical between the sequences in the window, dividing the number of identical nucleotides by the number of nucleotides in the window and multiplying by 100.
- Other homologues are genes which are alleles of a gene comprising a sequence as represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046,

- 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093,
1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582,
1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657,
1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702,
5 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095,
2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368,
2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481. Further preferred homologues are
genes comprising at least one single nucleotide polymorphism (SNIP) compared to a gene
comprising a sequence as represented by any of SEQ ID NO 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21,
10 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247,
249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519,
521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783,
788, 793; 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to
1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087,
15 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571,
1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642,
1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696,
1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080,
2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359,
20 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481.

According to another embodiment, the invention encompasses target genes which are insect orthologues of a gene comprising a nucleotide sequence as represented in any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193,
198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483,
25 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605,
607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873,
878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075,
1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105,
1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612,
30 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684,
1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050,
2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to
2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466,
2471, 2476 or 2481. By way of example, orthologues may comprise a nucleotide sequence as
35 represented in any of SEQ ID NOs 49 to 123, 275 to 434, 533 to 562, 621 to 738, 813 to 852, 908
to 1010, 1161 to 1437, 1730 to 1987, 2120 to 2290, and 2384 to 2438, or a fragment thereof of at
least 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 or 27 nucleotides. A non-limiting list of insect or
arachnida orthologues genes or sequences comprising at least a fragment of 17 bp of one of the
sequences of the invention, is given in Tables 4.

According to another embodiment, the invention encompasses target genes which are nematode orthologues of a gene comprising a nucleotide sequence as represented in any of 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 248. By way of example, nematode orthologues may comprise a nucleotide sequence as represented in any of SEQ ID NOs 124 to 135, 435 to 446, 563 to 564, 739 to 751, 853, 854, 1011 to 1025, 1438 to 1473, 1988 to 2001, 2291 to 2298, 2439 or 2440, or a fragment of at least 17, 18, 19, 20 or 21 nucleotides thereof. According to another aspect, the invention thus encompasses any of the methods described herein for controlling nematode growth in an organism, or for preventing nematode infestation of an organism susceptible to nematode infection, comprising contacting nematode cells with a double-stranded RNA, wherein the double-stranded RNA comprises annealed complementary strands, one of which has a nucleotide sequence which is complementary to at least part of the nucleotide sequence of a target gene comprising a fragment of at least 17, 18, 19, 20 or 21 nucleotides of any of the sequences as represented in SEQ ID NOs 124 to 135, 435 to 446, 563 to 564, 739 to 751, 853, 854, 1011 to 1025, 1438 to 1473, 1988 to 2001, 2291 to 2298, 2439 or 2440, whereby the double-stranded RNA is taken up by the nematode and thereby controls growth or prevents infestation. A non-limiting list of nematode orthologues genes or sequences comprising at least a fragment of 17 bp of one of the sequences of the invention, is given in Tables 5.

According to another embodiment, the invention encompasses target genes which are fungal orthologues of a gene comprising a nucleotide sequence as represented in any of 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339,

2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481. By way of example, fungal orthologues may comprise a nucleotide sequence as represented in any of SEQ ID NOs 136 to 158, 447 to 472, 565 to 575, 752 to 767, 855 to 862, 1026 to 1040, 1475 to 1571, 2002 to 2039, 2299 to 2338, 2441 to 2460, or a fragment of at least 17, 18, 19, 20, 5 21, 22, 23, 24, 25, 26 or 27 nucleotides thereof. According to another aspect, the invention thus encompasses any of the methods described herein for controlling fungal growth on a cell or an organism, or for preventing fungal infestation of a cell or an organism susceptible to fungal infection, comprising contacting fungal cells with a double-stranded RNA, wherein the double-stranded RNA comprises annealed complementary strands, one of which has a nucleotide 10 sequence which is complementary to at least part of the nucleotide sequence of a target gene comprising a fragment of at least 17, 18, 19, 20 or 21 nucleotides of any of the sequences as represented in SEQ ID NOs 136 to 158, 447 to 472, 565 to 575, 752 to 767, 855 to 862, 1026 to 1040, 1475 to 1571, 2002 to 2039, 2299 to 2338, 2441 to 2460, whereby the double-stranded RNA is taken up by the fungus and thereby controls growth or prevents infestation. A non-limiting list of 15 fungal orthologues genes or sequences comprising at least a fragment of 17 bp of one of the sequences of the invention, is given in **Tables 6**.

The term "regulatory sequence" is to be taken in a broad context and refers to a regulatory nucleic acid capable of effecting expression of the sequences to which it is operably linked.

Encompassed by the aforementioned term are promoters and nucleic acids or synthetic 20 fusion molecules or derivatives thereof which activate or enhance expression of a nucleic acid, so called activators or enhancers. The term "operably linked" as used herein refers to a functional linkage between the "promoter" sequence and the nucleic acid molecule of interest, such that the "promoter" sequence is able to initiate transcription of the nucleic acid molecule to produce the appropriate dsRNA.

25 A preferred regulatory sequence is a promoter, which may be a constitutive or an inducible promoter. Preferred promoters are inducible promoters to allow tight control of expression of the RNA molecules. Promoters inducible through use of an appropriate chemical, such as IPTG are preferred. Alternatively, the transgene encoding the RNA molecule is placed under the control of a strong constitutive promoter. Preferably, any promoter which is used will direct strong expression of 30 the RNA. The nature of the promoter utilised may, in part, be determined by the specific host cell utilised to produce the RNA. In one embodiment, the regulatory sequence comprises a bacteriophage promoter, such as a T7, T3, SV40 or SP6 promoter, most preferably a T7 promoter. In yet other embodiments of the present invention, other promoters useful for the expression of RNA are used and include, but are not limited to, promoters from an RNA Pol I, an RNA Pol II or an 35 RNA Pol III polymerase. Other promoters derived from yeast or viral genes may also be utilised as appropriate.

In an alternative embodiment, the regulatory sequence comprises a promoter selected from the well known tac, trc and lac promoters. Inducible promoters suitable for use with bacterial hosts include β-lactamase promoter, E. coli λ phage PL and PR promoters, and E. coli galactose 40 promoter, arabinose promoter and alkaline phosphatase promoter. Therefore, the present invention

also encompasses a method for generating any of the RNA molecules or RNA constructs of the invention. This method comprises the steps of introducing (e.g. by transformation, transfection or injection) an isolated nucleic acid or a recombinant (DNA) construct of the invention in a host cell of the invention under conditions that allow transcription of said nucleic acid or recombinant (DNA) construct to produce the RNA which acts to down regulate a target gene of interest (when the host cell is ingested by the target organism or when a host cell or extract derived therefrom is taken up by the target organism).

5 Optionally, one or more transcription termination sequences or "terminators" may also be incorporated in the recombinant construct of the invention. The term "transcription termination sequence" encompasses a control sequence at the end of a transcriptional unit, which signals 3' processing and poly-adenylation of a primary transcript and termination of transcription. The transcription termination sequence is useful to prevent read through transcription such that the RNA molecule is accurately produced in or by the host cell. In one embodiment, the terminator comprises a T7, T3, SV40 or SP6 terminator, preferably a T7 terminator. Other terminators derived 10 from yeast or viral genes may also be utilised as appropriate.

15 Additional regulatory elements, such as transcriptional or translational enhancers, may be incorporated in the expression construct.

20 The recombinant constructs of the invention may further include an origin of replication which is required for maintenance and/or replication in a specific cell type. One example is when an expression construct is required to be maintained in a bacterial cell as an episomal genetic element (e.g. plasmid or cosmid molecule) in a cell. Preferred origins of replication include, but are not limited to, f1-ori and colE1 ori.

25 The recombinant construct may optionally comprise a selectable marker gene. As used herein, the term "selectable marker gene" includes any gene, which confers a phenotype on a cell in which it is expressed to facilitate the identification and/or selection of cells, which are transfected or transformed, with a recombinant (expression) construct of the invention. Examples of suitable selectable markers include resistance genes against ampicillin (Ampr), tetracycline (Tcr), kanamycin (Kanr), phosphinothricin, and chloramphenicol (CAT) gene. Other suitable marker genes provide a metabolic trait, for example manA. Visual marker genes may also be used and 30 include for example beta-glucuronidase (GUS), luciferase and green fluorescent protein (GFP).

35 In yet other embodiments of the present invention, other promoters useful for the expression of dsRNA are used and include, but are not limited to, promoters from an RNA PolI, an RNA PolII, an RNA PolIII, T7 RNA polymerase or SP6 RNA polymerase. These promoters are typically used for *in vitro*-production of dsRNA, which dsRNA is then included in an antiinsecticidal agent, for example, in an anti-insecticidal liquid, spray or powder.

Therefore, the present invention also encompasses a method for generating any of the double-stranded RNA or RNA constructs of the invention. This method comprises the steps of

- a. contacting an isolated nucleic acid or a recombinant DNA construct of the invention with cell-free components; or

b. introducing (e.g. by transformation, transfection or injection) an isolated nucleic acid or a recombinant DNA construct of the invention in a cell,

under conditions that allow transcription of said nucleic acid or recombinant DNA construct to produce the dsRNA or RNA construct.

5 Optionally, one or more transcription termination sequences may also be incorporated in the recombinant construct of the invention. The term "transcription termination sequence" encompasses a control sequence at the end of a transcriptional unit, which signals 3' processing and polyadenylation of a primary transcript and termination of transcription. Additional regulatory elements, such as transcriptional or translational enhancers, may be incorporated in the expression
10 construct.

The recombinant constructs of the invention may further include an origin of replication which is required for maintenance and/or replication in a specific cell type. One example is when an expression construct is required to be maintained in a bacterial cell as an episomal genetic element (e.g. plasmid or cosmid molecule) in a cell. Preferred origins of replication include, but are not
15 limited to, f1-ori and colE1 ori.

The recombinant construct may optionally comprise a selectable marker gene. As used herein, the term "selectable marker gene" includes any gene, which confers a phenotype on a cell in which it is expressed to facilitate the identification and/or selection of cells, which are transfected or transformed, with an expression construct of the invention. Examples of suitable selectable
20 markers include resistance genes against ampicillin (Ampr), tetracycline (Tcr), kanamycin (Kanr), phosphinothricin, and chloramphenicol (CAT) gene. Other suitable marker genes provide a metabolic trait, for example manA. Visual marker genes may also be used and include for example beta-glucuronidase (GUS), luciferase and Green Fluorescent Protein (GFP).

The present invention relates to methods for preventing insect growth on a plant or for
25 preventing insect infestation of a plant. The plants to be treated according to the methods of the invention encompasses plants selected from the group comprising: alfalfa, apple, apricot, artichoke, asparagus, avocado, banana, barley, beans, beet, blackberry, blueberry, broccoli, brussel sprouts, cabbage, canola, carrot, cassava, cauliflower, a cereal, celery, cherry, citrus, clemantine, coffee, corn, cotton, cucumber, eggplant, endive, eucalyptus, figes, grape, grapefruit,
30 groundnuts, ground cherry, kiwifruit, lettuce, leek, lemon, lime, pine, maize, mango, melon, millet, mushroom, nut aot, okra, onion, orange, an ornamental plant or flower or tree, papaya, parsley, pea, peach, peanut, peat, pepper, persimmon, pineapple, plantain, plum, pomegranate, potato, pumpkin, radicchio, radish, rapeseed, raspberry, rice, rye, sorghum, soy, soybean, spinach, strawberry, sugarbeet, sugarcane, sunflower, sweet poatao, tangerine, tea, tobacco, tomato, a
35 vine, waetermelon, wheat, yams or zucchiniplant; preferably a potato, eggplant, tomato, pepper, tobacco, ground cherry, rice corn or cotton plant), or a seed or tuber (e.g. an alfalfa, apple, apricot, artichoke, asparagus, avocado, banana, barley, beans, beet, blackberry, blueberry, broccoli, brussel sprouts, cabbage, canola, carrot, cassava, cauliflower, a cereal, celery, cherry, citrus, clemantine, coffee, corn, cotton, cucumber, eggplant, endive, eucalyptus, figes, grape, grapefruit,
40 groundnuts, ground cherry, kiwifruit, lettuce, leek, lemon, lime, pine, maize, mango, melon, millet,

mushroom, nut aot, okra, onion, orange, an ornamental plant or flower or tree, papaya., parsley, pea, peach, peanut, peat, pepper, persimmon, pineapple, plantain, plum, pomegranate, potato, pumpkin, radicchio, radish, rapeseed, raspberry, rice, rye, sorghum, soy, soybean, spinach, strawberry, sugarbeet, sugarcane, sunflower, sweet poatao, tangerine, tea, tobacco, tomato, a
5 vine, waetermelon, wheat, yams and zucchini.

The amount of targeted RNA which is taken up, preferably by ingestion, by the target organism is such that specific down-regulation of the one or more target genes is achieved. The RNA may be expressed by the host cell in an amount which allows delivery of at least one copy per cell. However, in certain embodiments higher doses (e.g., at least 5, 10, 100, 500 or 1000 copies
10 per cell of the target organism) of RNA may yield more effective inhibition. For any given target gene and target organism the optimum amount of the targeted RNA molecules for effective inhibition may be determined by routine experimentation.

The target organism can be contacted with the host cell expressing the RNA molecule in any suitable manner, to permit ingestion by the target organism. Preferably, the host cells
15 expressing the dsRNA may be linked to a food component of the target organisms in order to increase uptake of the dsRNA by the target organism. The host cells expressing the dsRNA may also be incorporated in the medium in which the target organism grows or in or on a material or substrate that is infested by a pest organism or impregnated in a substrate or material susceptible to infestation by a pest organism.

20 In alternative embodiments, a suitable extract derived from the host cells expressing the RNA molecule may be utilised in order to achieve down regulation of a target gene in a target organism. Here, the extracts may be derived by any suitable means of lysis of the host cells expressing the RNA molecules. For example, techniques such as sonication, French press, freeze-thaw and lysozyme treatment (see Sambrook and Russell - Molecular Cloning: A laboratory
25 manual - third edition and the references provided therein in table 15-4) may be utilised in order to prepare a crude host cell extract (lysate). Further purification of the extract may be carried out as appropriate provided the ability of the extract to mediate targeted down regulation of target gene expression is not adversely affected. Affinity purification may be utilised for example. It may also be appropriate to add certain components to the extract, to prevent degradation of the RNA
30 molecules. For example, RNase inhibitors may be added to the extracts derived from the host cells expressing the RNA. In one example, the target organism can be contacted with the host cell expressing the RNA in pure or substantially pure form, for example an aqueous solution containing the cell extract. In this embodiment, the target organism, especially pest organisms such as insects may be simply "soaked" with an aqueous solution comprising the host cell extract. In a
35 further embodiment the target organism can be contacted with the host cells expressing the RNA molecule by spraying the target organism with a liquid composition comprising the cell extract.

If the method of the invention is used for specifically controlling growth or infestation of a specific pest, it is preferred that the RNA expressed in the host cell does not share any significant homology with a gene or genes from a non-pest organism, in particular that it does not share any
40 significant homology with any essential gene of the non-pest organism. Thus, the non-pest

organism is typically the organism susceptible to infestation by the pest and which is therefore protected from the pest according to the methods of the invention. So, for example, non-pest species may comprise a plant or a mammalian species. Preferably, the mammalian species is *Homo sapiens*. The non-target species may also include animals other than humans which may be exposed to the organism or substrate protected against infestation. Examples include birds which may feed on protected plants, and livestock and domestic animals such as cats, dogs, horses, cattle, chickens, pigs, sheep etc. In this context, it is preferred that the dsRNA shows less than 30%, more preferably less than 20%, more preferably less than 10%, and even more preferably less than 5% nucleic acid sequence identity with any gene of the susceptible or non-target organism. Percentage sequence identity should be calculated across the full length of the targetted RNA region. If genomic sequence data is available for the organism to be protected according to the invention or for any non-target organism, one may cross-check sequence identity with the targetted RNA using standard bioinformatics tools. In one embodiment, there is no sequence identity between the RNA molecule and a non-pest organism's genes over 21 contiguous nucleotides, meaning that in this context, it is preferred that 21 contiguous nucleotides of the RNA do not occur in the genome of the non-pest organism. In another embodiment, there is less than about 10% or less than about 12.5 % sequence identity over 24 contiguous nucleotides of the RNA with any nucleotide sequence from a non-pest (susceptible) species. In particular, orthologous genes from a non-pest species may be of particular note, since essential genes from the pest organism may often be targeted in the methods of the invention. Thus, in one embodiment, the RNA molecule has less than 12.5% sequence identity with the corresponding nucleotide sequence of an orthologous gene from a non-pest species.

In a further embodiment, the invention relates to a composition for controlling insect growth and/or preventing or reducing insect infestation, comprising comprising at least one double-stranded RNA, wherein said double-stranded RNA comprises annealed complementary strands, one of which has a nucleotide sequence which is complementary to at least part of a nucleotide sequence of an insect target gene.. The invention also relates to a composition comprising at least one of the nucleotide sequence or at least one recombinant DNA construct as described herein. The invention also relates to a composition comprising at least one bacterial cell or yeast cell expressing at least one double stranded RNA or a double stranded RNA construct as described herein; or expressing at least one nucleotide sequence or a recombinant DNA construct as described herein. Optionally, the composition further comprises at least one suitable carrier, excipient or diluent. The target gene may be any target gene described herein. Preferably the insect target gene is essential for the viability, growth, development or reproduction of the insect.

In another aspect the invention relates to a composition as described above, wherein the insect target gene comprises a sequence which is at least 75%, preferably at least 80%, 85%, 90%, more preferably at least 95%, 98% or 99% identical to a sequence selected from the group of sequences represented by any of SEQ ID NOS 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 513, 515, 517, 519,

- 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783,
788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to
1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085,
1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to
5 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637,
1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694,
1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075,
2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354,
2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476, 2481 or 2486, or the
10 complement thereof, or wherein said insect target gene is an insect orthologue of a gene
comprising at least 17 contiguous nucleotides of any of SEQ ID NOS 1, 3, 5, 7, 9, 11, 13, 15, 17,
19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225,
230, 240 to 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508
to 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to
15 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888,
890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077,
1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107,
1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617,
1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686,
20 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055,
2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338,
2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471,
2476, 2481 or 2486, or the complement thereof.

The present invention further relates to a composition comprising at least one double-stranded RNA, at least one double-stranded RNA construct, at least one nucleotide sequence, at least one recombinant DNA construct and/or at least one host cell (e.g. a bacterial or a yeast) expressing a dsRNA of the invention, or a virus encoding a dsRNA of the invention, optionally further comprising at least one suitable carrier, excipient or diluent.

The composition may be in any suitable physical form for application to insects. The composition may be in solid form (such as a powder, pellet or a bait), liquid form (such as a spray) or gel form for example.

According to a most preferred embodiment, the composition is in a form suitable for ingestion by an insect.

The composition may contain further components which serve to stabilise the dsRNA and/or prevent degradation of the dsRNA during prolonged storage of the composition.

The composition may still further contain components which enhance or promote uptake of the dsRNA by the insect. These may include, for example, chemical agents which generally promote the uptake of RNA into cells e.g. lipofectamin etc.

The composition may still further contain components which serve to preserve the viability of the host cell during prolonged storage.

The composition may be in any suitable physical form for application to insects, to substrates, to cells (e.g. plant cells), or to organisms infected by or susceptible to infestation by insects.

In one embodiment, the composition may be provided in the form of a spray. Thus, a 5 human user can spray the insect or the substrate directly with the composition.

The present invention thus relates to a spray comprising a composition comprising at least one bacterial cell or yeast cell expressing at least one double stranded RNA or a double stranded RNA construct as described herein; or expressing at least one nucleotide sequence or a recombinant DNA construct as described herein. More specific, the invention relates to a spray as 10 defined above wherein said bacterial cell comprises at least one of the sequences represented by any of SEQ ID NOS 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476, 2481 or 2486, or a fragment thereof of at least 17 contiguous nucleotides. Preferably, said spray comprises at least one of the sequences represented by any of SEQ ID NOS 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-25 163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 30 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476, 2481 or 2486, or a fragment thereof of at least 17 contiguous nucleotides.

The invention also relates to a spray comprising at least one composition or comprising at least one host cell as described herein, and further at least one adjuvant and optionally at least one surfactant

The effectiveness of a pesticide may depend on the effectiveness of the spray application. Adjuvants can minimize or eliminate many spray application problems associated with pesticide stability, solubility, incompatibility, suspension, foaming, drift, evaporation, volatilization, degradation, adherence, penetration, surface tension, and coverage. Adjuvants are designed to 5 perform specific functions, including wetting, spreading, sticking, reducing evaporation, reducing volatilization, buffering, emulsifying, dispersing, reducing spray drift, and reducing foaming. No single adjuvant can perform all these functions, but different compatible adjuvants often can be combined to perform multiple functions simultaneously. These chemicals, also called wetting agents and spreaders, physically alter the surface tension of a spray droplet. For a pesticide to 10 perform its function properly, a spray droplet must be able to wet the foliage and spread out evenly over a leaf. Surfactants enlarge the area of pesticide coverage, thereby increasing the pest's exposure to the chemical. Surfactants are particularly important when applying a pesticide to waxy or hairy leaves. Without proper wetting and spreading, spray droplets often run off or fail to adequately cover these surfaces. Too much surfactant, however, can cause excessive runoff or 15 deposit loss, thus reducing pesticide efficacy. Pesticide formulations often contain surfactants to improve the suspension of the pesticide's active ingredient. This is especially true for emulsifiable concentrate (EC) formulations.

As used herein the term "adjuvant" means any nonpesticide material added to a pesticide product or pesticide spray mixture to improve the mixing and stability of the products in the spray 20 tank and the application. As further used herein the term "surfactant" means a chemical that modifies surface tension. Surfactants can influence the wetting and spreading of liquids, and can modify the dispersion, suspension, or precipitation of a pesticide in water. There are nonionic surfactants (no electrical charge), anionic surfactants (negative charge), and cationic surfactants (positive charge)

25 In particular embodiments the host cells comprised in the spray are inactivated, for instance by heat inactivation or mechanical disruption (as discussed in greater detail herein).

The nature of the excipients and the physical form of the composition may vary depending upon the nature of the substrate that it is desired to treat. For example, the composition may be a liquid that is brushed or sprayed onto or imprinted into the material or substrate to be treated, or a 30 coating or powder that is applied to the material or substrate to be treated. Thus, in one embodiment, the composition is in the form of a coating on a suitable surface which adheres to, and is eventually ingested by an insect which comes into contact with the coating.

According to a preferred embodiment, the substrate is a plant or crop to be treated against insect pest infestation. The composition is then internalized or eaten by the insect, from where it 35 can mediate RNA interference, thus controlling the insect. The spray is preferably a pressurized/aerosolized spray or a pump spray. The particles may be of suitable size such that they adhere to the substrate to be treated or to the insect, for example to the exoskeleton, of the insect and/or arachnid and may be absorbed therefrom.

In one embodiment, the composition is in the form of a bait. The bait is designed to lure 40 the insect to come into contact with the composition. Upon coming into contact therewith, the

- composition is then internalised by the insect, by ingestion for example and mediates RNAi to thus kill the insect. Said bait may comprise a food substance, such as a protein based food, for example fish meal. Boric acid may also be used as a bait. The bait may depend on the species being targeted. An attractant may also be used. The attractant may be a pheromone, such as a male or female pheremone for example. As an example, the pheromones referred to in the book "Insect Pheremones and their use in Pest Management" (Howse et al, Chapman and Hall, 1998) may be used in the invention. The attractant acts to lure the insect to the bait, and may be targeted for a particular insect or may attract a whole range of insects. The bait may be in any suitable form, such as a solid, paste, pellet or powdered form.
- 5 The bait may also be carried away by the insect back to the colony. The bait may then act as a food source for other members of the colony, thus providing an effective control of a large number of insects and potentially an entire insect pest colony. This is an advantage associated with use of the double stranded RNA or bacteria expressing the dsRNA of the invention, because the delayed action of the RNAi mediated effects on the pests allows the bait to be carried back to the
- 10 colony, thus delivering maximal impact in terms of exposure to the insects.
- 15 Additionally, compositions which come into contact with the insects may remain on the cuticle of the insect. When cleaning, either an individual insect cleaning itself or insects cleaning one another, the compositions may be ingested and can thus mediate their effects in the insect. This requires that the composition is sufficiently stable such that the dsRNA or host cells
- 20 expressing dsRNA remain intact and capable of mediating RNAi even when exposed to external environmental conditions for a length of time, which may be a period of days for example.
- 25 The baits may be provided in a suitable "housing" or "trap". Such housings and traps are commercially available and existing traps may be adapted to include the compositions of the invention. Any housing or trap which may attract an insect to enter it is included within the scope of
- 30 the invention. The housing or trap may be box-shaped for example, and may be provided in pre-formed condition or may be formed of foldable cardboard for example. Suitable materials for a housing or trap include plastics and cardboard, particularly corrugated cardboard. Suitable dimensions for such a housing or trap are, for example, 7-15 cm wide, 15-20 cm long and 1-5 cm high. The inside surfaces of the traps may be lined with a sticky substance in order to restrict
- 35 movement of the insect once inside the trap. The housing or trap may contain a suitable trough inside which can hold the bait in place. A trap is distinguished from a housing because the insect can not readily leave a trap following entry, whereas a housing acts as a "feeding station" which provides the insect arachnid with a preferred environment in which they can feed and feel safe from predators.
- 40 Accordingly, in a further aspect the invention provides a housing or trap for insects which contains a composition of the invention, which may incorporate any of the features of the composition described herein.
- 45 It is contemplated that the "composition" of the invention may be supplied as a "kit-of-parts" comprising the double-stranded RNA in one container and a suitable diluent, excipient or carrier for
- 50 the RNA containing entity (such as a ds RNA or ds RNA construct, DNA construct, expression

construct) in a separate container; or comprising the host cell(s) in one container and a suitable diluent, excipient, carrier or preservative for the host cell in a separate container. The invention also relates to supply of the double-stranded RNA or host cells alone without any further components. In these embodiments the dsRNA or host cells may be supplied in a concentrated form, such as a 5 concentrated aqueous solution. It may even be supplied in frozen form or in freeze-dried or lyophilised form. The latter may be more stable for long term storage and may be de-frosted and/or reconstituted with a suitable diluent immediately prior to use.

The present invention further encompasses a method for controlling growth of a pest organism and/or for preventing infestation of a susceptible organism by the pest organism on a 10 substrate comprising applying an effective amount of any of the compositions and/or sprays as described herein to said substrate.

The invention further encompasses a method for treating and/or preventing a disease or condition caused by a target organism, comprising administering to a subject in need of such treatment and/or prevention, a composition or a spray as described herein, wherein down-15 regulation of expression of the target gene in the target organism caused by the composition or spray is effective to treat and/or prevent the disease caused by the target organism. A preferred target organism is a pest, in particular an insect as described in more detail herein.

The present invention further relates to the medical use of any of the double-stranded RNAs, double-stranded RNA constructs, nucleotide sequences, recombinant DNA constructs or 20 compositions described herein.

Insects and other Arthropods can cause injury and even death by their bites or stings. More people die each year in the United States from bee and wasp stings than from snake bites. Many insects can transmit bacteria and other pathogens that cause diseases. During every major war between countries, more people have been injured or killed by diseases transmitted by insects 25 than have been injured or killed by bullets and bombs. Insects that bite man and domestic animals are mostly those with piercing-sucking mouthparts, as found in Hemiptera and some Diptera. Much of the discomfort from a bite is a result of enzymes that the insect pumps into the victim. Ticks and chiggers are different kinds of mites (Class Arachnida) that feed on blood of animals. Ticks can also transmit viruses and other pathogens that cause diseases, including Lyme disease and Rocky 30 Mountain spotted fever. Other kinds of mites can cause mange on humans, dogs, cats, and other animals. Order Hemiptera includes bed bugs, kissing bugs, and assassin bugs, all of which have beaks for piercing their hosts. The most painful bites among all insects are those of assassin bugs. Kissing bugs are involved in causing Chagas disease in Central and South America. The caterpillars of some moths can "sting." The Diptera are the most important order of insects that 35 affect people. Biting flies include many species of mosquitoes, black flies, biting gnats, horse flies, and others. Many of these biting flies are transmitters of diseases, such as the tse-tse fly that transmits African sleeping sickness. Flies with sponging mouthparts, such as the house fly, also transmit bacteria and other pathogens that cause typhoid fever and other diseases. Screwworms and maggots of both flies are fly larvae that invade living tissue of animals. Mosquitoes transmit 40 pathogens that cause malaria, yellow fever, encephalitis, and other diseases. Malaria is caused by

a protozoan parasite that lives part of its life cycle in the *Anopheles* mosquitoes and part of its cycle in humans. Plague, also known as bubonic plague or black death, is caused by bacteria that infect rats and other rodents. The main transmitter of this disease to humans is the Oriental rat flea (Order Siphonaptera). Many bees, wasps, and ants (Order Hymenoptera) can cause pain and even 5 death by their stinging. Deaths usually are a result of allergic reactions to the venom. Other major stingers include hornets, yellow jackets, and paper wasps. The Africanized honey bee, or "killer" bee is a strain of our domesticated honey bee. The two strains are almost identical in appearance. However, the Africanized strain is much more aggressive and will attack in larger numbers.

In one specific embodiment, the composition is a pharmaceutical or veterinary composition 10 for treating or preventing insect disease or infections of humans or animals, respectively. Such compositions will comprise at least one double-stranded RNA or RNA construct, or nucleotide sequence or recombinant DNA construct encoding the double-stranded RNA or RNA construct, wherein the double-stranded RNA comprises annealed complementary strands, one of which has a nucleotide sequence which corresponds to a target nucleotide sequence of an insect target gene 15 that causes the disease or infection, and at least one carrier, excipient or diluent suitable for pharmaceutical use.

The composition may be a composition suitable for topical use, such as application on the skin of an animal or human, for example as liquid composition to be applied to the skin as drops, gel, aerosol, or by brushing, or a spray, cream, ointment, etc. for topical application or as 20 transdermal patches.

Alternatively, the insect dsRNA is produced by bacteria (e.g. *lactobacillus*) or fungi (e.g. *Sacharomyces* spp.) which can be included in food and which functions as an oral vaccine against the insect infection.

Other conventional pharmaceutical dosage forms may also be produced, including tablets, 25 capsules, pessaries, transdermal patches, suppositories, etc. The chosen form will depend upon the nature of the target insect and hence the nature of the disease it is desired to treat.

In one specific embodiment, the composition may be a coating, paste or powder that can be applied to a substrate in order to protect said substrate from infestation by insects and/or arachnids. In this embodiment, the composition can be used to protect any substrate or material 30 that is susceptible to infestation by or damage caused by the insect, for example foodstuffs and other perishable materials, and substrates such as wood. Houses and other wood products can be destroyed by termites, powder post beetles, and carpenter ants. The subterranean termite and Formosan termite are the most serious pests of houses in the southern United States and tropical regions. Any harvested plant or animal product can be attacked by insects. Flour beetles, grain 35 weevils, meal moths and other stored product pests will feed on stored grain, cereals, pet food, powdered chocolate, and almost everything else in the kitchen pantry that is not protected. Larvae of clothes moths eat clothes made from animal products, such as fur, silk and wool. Larvae of carpet beetles eat both animal and plant products, including leather, fur, cotton, stored grain, and even museum specimens. Book lice and silverfish are pests of libraries. These insects eat the 40 starchy glue in the bindings of books. Other insects that have invaded houses include cockroaches

which eat almost anything. Cockroaches are not known to be a specific transmitter of disease, but they contaminate food and have an unpleasant odor. They are very annoying, and many pest control companies are kept busy in attempts to control them. The most common cockroaches in houses, grocery stores, and restaurants include the German cockroach, American cockroach, 5 Oriental cockroach, and brown banded cockroach.

The nature of the excipients and the physical form of the composition may vary depending upon the nature of the substrate that is desired to treat. For example, the composition may be a liquid that is brushed or sprayed onto or imprinted into the material or substrate to be treated, or a coating that is applied to the material or substrate to be treated.

10 The present invention further encompasses a method for treating and/or preventing insect infestation on a substrate comprising applying an effective amount of any of the compositions or sprays as described herein to said substrate.

The invention further encompasses a method for treating and/or preventing an insect disease or condition, comprising administering to a subject in need of such treatment and/or prevention, any of the compositions or sprays as herein described comprising at least one double-stranded RNA or double stranded RNA construct comprising annealed complementary strands, one of which has a nucleotide sequence which is complementary to at least part of a nucleotide sequence of an insect target gene of the insect that causes the insect disease or condition. According to a more specific embodiment, said composition or spray to be administered comprises 15 and/or expressing at least one bacterial cell or yeast cell expressing at least one double stranded RNA or double stranded RNA construct as described herein; or comprising and/or expressing at least one nucleotide sequence or recombinant DNA construct as described herein, said RNA or nucleotide sequence being complementary to at least part of a nucleotide sequence of an insect target gene of the insect that causes the insect disease or condition.

20 25 In another embodiment of the invention the compositions are used as a insecticide for a plant or for propagation or reproductive material of a plant, such as on seeds. As an example, the composition can be used as an insecticide by spraying or applying it on plant tissue or spraying or mixing it on the soil before or after emergence of the plantlets.

In yet another embodiment, the present invention provides a method for treating and/or 30 preventing insect growth and/or insect infestation of a plant or propagation or reproductive material of a plant, comprising applying an effective amount of any of the compositions or sprays herein described to a plant or to propagation or reproductive material of a plant.

In another embodiment the invention relates to the use of any double-stranded RNA or RNA construct, or nucleotide sequence or recombinant DNA construct encoding the double-stranded RNA or RNA construct, or at least one host cell (e.g. a bacterial or a yeast) expressing a dsRNA of the invention, or a virus encoding a dsRNA described herein, or to any of the compositions or sprays comprising the same, used for controlling insect growth; for preventing insect infestation of plants susceptible to insect infection; or for treating insect infection of plants. Specific plants to be treated for insect infections caused by specific insect species are as described 35 40 earlier and are encompassed by the said use

In a more specific embodiment, the invention relates to the use of a spray comprising at least one host cell or at least one host cell (e.g. a bacterial or a yeast) expressing a dsRNA of the invention, or a virus encoding a dsRNA described herein, or to any of the compositions comprising the same, for controlling insect growth; for preventing insect infestation of plants susceptible to 5 insect infection; or for treating insect infection of plants. Preferably said host cell comprises at least one of the sequences represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 10 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 15 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476, 2481 or 2486, or a fragment thereof of at least 17 contiguous nucleotides.

In a further aspect, the invention also provides combinations of methods and compositions 20 for preventing or protecting plants from pest infestation. For instance, one means provides using a combination of the transgenic approach with methods using double stranded RNA molecules and compositions with one or more Bt insecticidal proteins or chemical (organic) compounds that are toxic to the target pest. Another means provides using the transgenic approach combining methods using expression of double stranded RNA molecules in bacteria or yeast and expression of such Bt 25 insecticidal proteins in the same or in distinct bacteria or yeast. According to these approaches, for instance, one insect can be targeted or killed using the RNAi-based method or technology, while the other insect can be targeted or killed using the Bt insecticide or the chemical (organic) insecticide.

Therefore the invention also relates to any of the compositions, sprays or methods for 30 treating plants described herein, wherein said composition comprises a bacterial cell or yeast expressing said RNA molecule and further comprises a pesticidal agent or comprises a bacterial cell or yeast cell comprising or expressing a pesticidal agent (the bacterial or yeast cell can be the same or different from the first ones mentioned), said pesticidal agent selected from the group consisting of a chemical (organic) insecticide, a patatin, a *Bacillus thuringiensis* insecticidal protein, 35 a *Xenorhabdus* insecticidal protein, a *Photobacterium* insecticidal protein, a *Bacillus laterosporous* insecticidal protein, and a *Bacillus spheacicus* insecticidal protein. Preferably said *Bacillus thuringiensis* insecticidal protein is selected from the group consisting of a Cry1, a Cry3, a TIC851, a CryET170, a Cry22, a binary insecticidal protein CryET33 and CryET34, a binary insecticidal protein CryET80 and CryET76, a binary insecticidal protein TIC100 and TIC101, and a binary 40 insecticidal protein PS149B1.

The spray can be used in a greenhouse or on the field. Typical application rates for bacteria-containing biopesticides (e.g. as an emulsifiable suspension) amount to 25-100 liters/ha (10-40 liters/acre) for water based sprays comprising about 2.5-5 liter of formulated product (emulsifiable suspension) per hectare with the formulated product including about 25% (v/v) of 5 'bacterial cells' plus 75% (v/v) 'other ingredients'. The amount of bacterial cells are measured in units, e.g. one unit is defined as 10^9 bacterial cells in 1ml. Depending on the crop density per hectare and the leaf surface per plant, one liter of formulated product comprises between 0.001 and 10000 units of bacteria, preferably at least 0.001, 0.003, 0.005, 0.007, 0.01, 0.03, 0.05, 0.07, 0.1, 0.3, 0.5, 0.7, more 10 preferably at least 1, 3, 5, 7, 10, 30, 50, 70, 100, 300, 500, 700, or more 15 preferably at least 1000, 3000, 5000, 7000 or 10000 units of bacteria.

For instance, typical plant density for potato crop plants is approximately 4.5 plants per square meter or 45.000 plants per hectare (planting in rows with spacing between rows at 75 cm and spacing between plants within rows at 30 cm). The present invention thus relates to a spray comprising at least 0.001, 0.003, 0.005, 0.007, 0.01, 0.03, 0.05, 0.07, 0.1, 0.3, 0.5, 0.7, more 15 preferably at least 1, 3, 5, 7, 10, 30, 50, 70, 100, 300, 500, 700, or more preferably at least 1000, 3000, 5000, 7000 or 10000 units of bacteria expressing at least one of the dsRNA molecules or dsRNA constructs described herein.

The invention further relates to a kit comprising at least one double stranded RNA, or double stranded RNA construct, or nucleotide sequence, or recombinant DNA construct, or host 20 cell, or composition or spray as described earlier for treating insect infection in plants. The kit may be supplied with suitable instructions for use. The instructions may be printed on suitable packaging in which the other components are supplied or may be provided as a separate entity, which may be in the form of a sheet or leaflet for example. The instructions may be rolled or folded for example when in a stored state and may then be unrolled and unfolded to direct use of the 25 remaining components of the kit.

The invention will be further understood with reference to the following non-limiting examples.

Brief Description of Figures and Tables

30 **Figure 1-LD:** Survival of *L. decemlineata* on artificial diet treated with dsRNA. Insects of the second larval stage were fed diet treated with 50 μ l of topically-applied solution of dsRNA (targets or gfp control). Diet was replaced with fresh diet containing topically-applied dsRNA after 7 days. The number of surviving insects were assessed at days 2, 5, 7, 8, 9, & 13. The percentage of surviving larvae was calculated relative to day 0 (start of assay). Target LD006: (SEQ ID NO 178); 35 Target LD007 (SEQ ID NO 183); Target LD010 (SEQ ID NO 188); Target LD011 (SEQ ID NO 193); Target LD014 (SEQ ID NO 198); gfp dsRNA (SEQ ID NO 235).

Figure 2-LD: Survival of *L. decemlineata* on artificial diet treated with dsRNA. Insects of the second larval stage were fed diet treated with 50 μ l of topically-applied solution of dsRNA (targets or gfp control). Diet was replaced with fresh diet only after 7 days. The number of surviving

insects was assessed at days 2, 5, 6, 7, 8, 9, 12, & 14. The percentage of surviving larvae was calculated relative to day 0 (start of assay). Target LD001 (SEQ ID NO 163); Target LD002 (SEQ ID NO 168); Target LD003 (SEQ ID NO 173); Target LD015 (SEQ ID NO 215); Target LD016 (SEQ ID NO 220); gfp dsRNA (SEQ ID NO 235).

5 **Figure 3-LD:** Average weight of *L. decemlineata* larvae on potato leaf discs treated with dsRNA. Insects of the second larval stage were fed leaf discs treated with 20 µl of a topically-applied solution (10 ng/µl) of dsRNA (target LD002 or gfp). After two days the insects were transferred on to untreated leaves every day.

10 **Figure 4-LD:** Survival of *L. decemlineata* on artificial diet treated with shorter versions of target LD014 dsRNA and concatemer dsRNA. Insects of the second larval stage were fed diet treated with 50 µl of topically-applied solution of dsRNA (gfp or targets). The number of surviving insects were assessed at days 3, 4, 5, 6, & 7. The percentage of surviving larvae were calculated relative to day 0 (start of assay).

15 **Figure 5-LD:** Survival of *L. decemlineata* larvae on artificial diet treated with different concentrations of dsRNA of target LD002 (a), target LD007 (b), target LD010 (c), target LD011 (d), target LD014 (e), target LD015 (f), LD016 (g) and target LD027 (h). Insects of the second larval stage were fed diet treated with 50 µl of topically-applied solution of dsRNA. Diet was replaced with fresh diet containing topically-applied dsRNA after 7 days. The number of surviving insects were assessed at regular intervals. The percentage of surviving larvae were calculated relative to day 0 (start of assay).

20 **Figure 6-LD.** Effects of *E. coli* strains expressing dsRNA target LD010 on survival of larvae of the Colorado potato beetle, *Leptinotarsa decemlineata*, over time. The two bacterial strains were tested in separate artificial diet-based bioassays: (a) AB301-105(DE3); data points for pGBNJ003 and pGN29 represent average mortality values from 5 different bacterial clones; (b) BL21(DE3); data points for pGBNJ003 and pGN29 represent average mortality values from 5 different and one single bacterial clones, respectively. Error bars represent standard deviations.

25 **Figure 7-LD.** Effects of different clones of *E. coli* strains (a) AB301-105(DE3) and (b) BL21(DE3) expressing dsRNA target LD010 on survival of larvae of the Colorado potato beetle, *Leptinotarsa decemlineata*, 12 days post infestation. Data points are average mortality values for each clone for pGN29 and pGBNJ003. Clone 1 of AB301-105(DE3) harboring plasmid pGBNJ003 showed 100% mortality towards CPB at this timepoint. Error bars represent standard deviations.

30 **Figure 8-LD.** Effects of different clones of *E. coli* strains (a) AB301-105(DE3) and (b) BL21(DE3) expressing dsRNA target LD010 on growth and development of larval survivors of the Colorado potato beetle, *Leptinotarsa decemlineata*, 7 days post infestation. Data points are % average larval weight values for each clone (one clone for pGN29 and five clones for pGBNJ003) based on the data of Table 10. Diet only treatment represents 100% normal larval weight.

Figure 9-LD. Survival of larvae of the Colorado potato beetle, *Leptinotarsa decemlineata*, on potato plants sprayed by double-stranded RNA-producing bacteria 7 days post infestation. Number of larval survivors were counted and expressed in terms of % mortality. The bacterial host strain used was the RNaseIII-deficient strain AB301-105(DE3). Insect gene target was LD010.

5 **Figure 10-LD.** Growth/developmental delay of larval survivors of the Colorado potato beetle, *Leptinotarsa decemlineata*, fed on potato plants sprayed with dsRNA-producing bacteria 11 days post infestation. The bacterial host strain used was the RNaseIII-deficient strain AB301-105(DE3). Data figures represented as percentage of normal larval weight; 100 % of normal larval weight given for diet only treatment. Insect gene target was LD010. Error bars represent standard 10 deviations.

15 **Figure 11-LD.** Resistance to potato damage caused by larvae of the Colorado potato beetle, *Leptinotarsa decemlineata*, by double-stranded RNA-producing bacteria 7 days post infestation. Left, plant sprayed with 7 units of bacteria AB301-105(DE3) containing the pGN29 plasmid; right, plant sprayed with 7 units of bacteria AB301-105(DE3) containing the pGBNJ003 plasmid. One unit is defined as the equivalent of 1 ml of a bacterial suspension at OD value of 1 at 600 nm. Insect gene target was LD010.

20 **Figure 12-LD.** Survival of *L. decemlineata* adults on potato leaf discs treated with dsRNA. Young adult insects were fed double-stranded-RNA-treated leaf discs for the first two days and were then placed on untreated potato foliage. The number of surviving insects were assessed 25 regularly; mobile insects were recorded as insects which were alive and appeared to move normally; moribund insects were recorded as insects which were alive but appeared sick and slow moving – these insects were not able to right themselves once placed on their backs. Target LD002 (SEQ ID NO 168); Target LD010 (SEQ ID NO 188); Target LD014 (SEQ ID NO 198); Target LD016 (SEQ ID NO 220); gfp dsRNA (SEQ ID NO 235).

25 **Figure 13-LD.** Effects of bacterial produced target double-stranded RNA against larvae of *L. decemlineata*. Fifty μ l of an OD 1 suspension of heat-treated bacteria AB301-105 (DE3) expressing dsRNA (SEQ ID NO 188) was applied topically onto the solid artificial diet in each well of a 48-well plate. CPB larvae at L2 stage were placed in each well. At day 7, a picture was taken 30 of the CPB larvae in a plate containing (a) diet with bacteria expressing target 10 double-stranded RNA, (b) diet with bacteria harboring the empty vector pGN29, and, (c) diet only.

35 **Figure 14-LD** Effects on CPB larval survival and growth of different amounts of inactivated *E. coli* AB301-105(DE3) strain harboring plasmid pGBNJ003 topically applied to potato foliage prior to insect infestation. Ten L1 larvae were fed treated potato for 7 days. Amount of bacterial suspension sprayed on plants: 0.25 U, 0.08 U, 0.025 U, 0.008 U of target 10 and 0.25 U of pGN29 (negative control; also included is Milli-Q water). One unit (U) is defined as the equivalent bacterial amount present in 1 ml of culture with an optical density value of 1 at 600nm. A total volume of 1.6 ml was sprayed on to each plant. Insect gene target was LD010.

Figure 15-LD Resistance to potato damage caused by CPB larvae by inactivated *E. coli* AB301-105(DE3) strain harboring plasmid pGBNJ003 seven days post infestation. (a) water, (b) 0.25 U *E. coli* AB301-105(DE3) harboring pGN29, (c) 0.025 U *E. coli* AB301-105(DE3) harboring pGBNJ003, (d) 0.008 U *E. coli* AB301-105(DE3) harboring pGBNJ003. One unit (U) is defined as 5 the equivalent bacterial amount present in 1 ml of culture with an optical density value of 1 at 600nm. A total volume of 1.6 ml was sprayed on to each plant. Insect gene target was LD010.

Figure 1-PC: Effects of ingested target dsRNAs on survival and growth of *P. cochleariae* larvae. Neonate larvae were fed oilseed rape leaf discs treated with 25 µl of topically-applied solution of 0.1 µg/µl dsRNA (targets or gfp control). After 2 days, the insects were transferred onto 10 fresh dsRNA-treated leaf discs. At day 4, larvae from one replicate for every treatment were collected and placed in a Petri dish containing fresh untreated oilseed rape foliage. The insects were assessed at days 2, 4, 7, 9 & 11. (a) Survival of *E. varivestis* larvae on oilseed rape leaf discs treated with dsRNA. The percentage of surviving larvae was calculated relative to day 0 (start of assay). (b) Average weights of *P. cochleariae* larvae on oilseed rape leaf discs treated with 15 dsRNA. Insects from each replicate were weighed together and the average weight per larva determined. Error bars represent standard deviations. Target 1: SEQ ID NO 473; target 3: SEQ ID NO 478; target 5: SEQ ID NO 483 –; target 10: SEQ ID NO 488; target 14: SEQ ID NO 493; target 16: SEQ ID NO 498; target 27: SEQ ID NO 503; gfp dsRNA: SEQ ID NO 235.

Figure 2-PC: Survival of *P. cochleariae* on oilseed rape leaf discs treated with different 20 concentrations of dsRNA of (a) target PC010 and (b) target PC027. Neonate larvae were placed on leaf discs treated with 25 µl of topically-applied solution of dsRNA. Insects were transferred to fresh treated leaf discs at day 2. At day 4 for target PC010 and day 5 for target PC027, the insects were transferred to untreated leaves. The number of surviving insects were assessed at days 2, 4, 7, 8, 9 & 11 for PC010 and 2, 5, 8, 9 & 12 for PC027. The percentage of surviving larvae was calculated 25 relative to day 0 (start of assay).

Figure 3-PC: Effects of *E. coli* strain AB301-105(DE3) expressing dsRNA target PC010 on survival of larvae of the mustard leaf beetle, *P. cochleariae*, over time. Data points for each treatment represent average mortality values from 3 different replicates. Error bars represent standard deviations. Target 10: SEQ ID NO 488

Figure 1-EV: Survival of *E. varivestis* larvae on bean leaf discs treated with dsRNA. 30 Neonate larvae were fed bean leaf discs treated with 25 µl of topically-applied solution of 1 µg/µl dsRNA (targets or gfp control). After 2 days, the insects were transferred onto fresh dsRNA-treated leaf discs. At day 4, larvae from one treatment were collected and placed in a plastic box containing fresh untreated bean foliage. The insects were assessed for mortality at days 2, 4, 6, 8 35 & 10. The percentage of surviving larvae was calculated relative to day 0 (start of assay). Target 5: SEQ ID NO 576; target 10: SEQ ID NO 586; target 15: SEQ ID NO 591; target 16: SEQ ID NO 596; gfp dsRNA: SEQ ID NO 235.

Figure 2-EV: Effects of ingested target dsRNAs on survival of *E. varivestis* adults and resistance to snap bean foliar insect damage. (a) Survival of *E. varivestis* adults on bean leaf treated with dsRNA. Adults were fed bean leaf discs treated with 75 µl of topically-applied solution of 0.1 µg/µl dsRNA (targets or gfp control). After 24 hours, the insects were transferred onto fresh 5 dsRNA-treated leaf discs. After a further 24 hours, adults from one treatment were collected and placed in a plastic box containing potted fresh untreated whole bean plants. The insects were assessed for mortality at days 4, 5, 6, 7, 8, & 11. The percentage of surviving adults was calculated relative to day 0 (start of assay). Target 10: SEQ ID NO 586; target 15: SEQ ID NO 591; target 16: SEQ ID NO 596; gfp dsRNA: SEQ ID NO 235. (b) Resistance to bean foliar damage caused by 10 adults of the *E. varivestis* by dsRNA. Whole plants containing insects from one treatment (see (a)) were checked visually for foliar damage on day 9. (i) target 10; (ii) target 15; (iii) target 16; (iv) gfp dsRNA; (v) untreated.

Figure 1-TC: Survival of *T. castaneum* larvae on artificial diet treated with dsRNA of target 14. Neonate larvae were fed diet based on a flour/milk mix with 1 mg dsRNA target 14. Control was 15 water (without dsRNA) in diet. Four replicates of 10 first instar larvae per replicate were performed for each treatment. The insects were assessed for survival as average percentage means at days 6, 17, 31, 45 and 60. The percentage of surviving larvae was calculated relative to day 0 (start of assay). Error bars represent standard deviations. Target TC014: SEQ ID NO 878.

Figure 1-MP: Effect of ingested target 27 dsRNA on the survival of *Myzus persicae* 20 nymphs. First instars were placed in feeding chambers containing 50 µl of liquid diet with 2 µg/µl dsRNA (target 27 or gfp dsRNA control). Per treatment, 5 feeding chambers were set up with 10 instars in each feeding chamber. Number of survivors were assessed at 8 days post start of bioassay. Error bars represent standard deviations. Target MP027: SEQ ID NO 1061; gfp dsRNA: SEQ ID NO 235.

Figure 1-NL: Survival of *Nilaparvata lugens* on liquid artificial diet treated with dsRNA. 25 Nymphs of the first to second larval stage were fed diet supplemented with 2 mg/ml solution of dsRNA targets in separate bioassays: (a) NL002, NL003, NL005, NL010; (b) NL009, NL016; (c) NL014, NL018; (d) NL013, NL015, NL021. Insect survival on targets were compared to diet only and diet with gfp dsRNA control at same concentration. Diet was replaced with fresh diet containing 30 dsRNA every two days. The number of surviving insects were assessed every day

Figure 2-NL: Survival of *Nilaparvata lugens* on liquid artificial diet treated with different concentrations of target dsRNA NL002. Nymphs of the first to second larval stage were fed diet supplemented with 1, 0.2, 0.08, and 0.04 mg/ml (final concentration) of NL002. Diet was replaced 35 with fresh diet containing dsRNA every two days. The numbers of surviving insects were assessed every day.

Examples

Example 1: Silencing *C.elegans* target genes in *C. elegans* in High Throughput Screening

A *C. elegans* genome wide library was prepared in the pGN9A vector (WO 01/88121) between two identical T7-promoters and terminators, driving its expression in the sense and antisense direction upon expression of the T7 polymerase, which was induced by IPTG.

This library was transformed into the bacterial strain AB301-105 (DE3) in 96 well plate 5. format. For the genome wide screening, these bacterial cells were fed to the nuclease deficient *C. elegans* *nuc-1(e1392)* strain.

Feeding the dsRNA produced in the bacterial strain AB301-105 (DE3), to *C. elegans* *nuc-1* 10. (*e1392*) worms, was performed in a 96 well plate format as follows: *nuc-1* eggs were transferred to a separate plate and allowed to hatch simultaneously at 20 °C for synchronization of the L1 generation. 96 well plates were filled with 100 µL liquid growth medium comprising IPTG and with 10 µL bacterial cell culture of OD₆₀₀1 AB301-105 (DE3) of the *C. elegans* dsRNA library carrying each a vector with a *C. elegans* genomic fragment for expression of the dsRNA. To each well, 4 of the synchronized L1 worms were added and were incubated at 25 °C for at least 4 to 5 days. These experiments were performed in quadruplicate. In the screen 6 controls were used:

- 15 - pGN29 = negative control, wild type
- pGZ1 = *unc-22* = twitcher phenotype
- pGZ18 = chitin synthase = embryonic lethal
- pGZ25 = *pos-1* = embryonic lethal
- pGZ59 = *bli-4D* = acute lethal
- 20 - ACC = acetyl co-enzym A carboxylase = acute lethal

After 5 days, the phenotype of the *C. elegans* *nuc-1* (*e1392*) worms fed with the bacteria producing dsRNA were compared to the phenotype of worms fed with the empty vector (pGN29) and the other controls. The worms that were fed with the dsRNA were screened for lethality (acute or larval) lethality for the parent (Po) generation, (embryonic) lethality for the first filial (F1) 25. generation, or for growth retardation of Po as follows: (i) Acute lethality of Po: L1's have not developed and are dead, this phenotype never gives progeny and the well looks quite empty; (ii) (Larval) lethality of Po: Po died in a later stage than L1, this phenotype also never gives progeny. Dead larvae or dead adult worms are found in the wells; (iii) Lethality for F1: L1's have developed until adult stage and are still alive. This phenotype has no progeny. This can be due to sterility, 30. embryonic lethality (dead eggs on the bottom of well), embryonic arrest or larval arrest (eventually ends up being lethal); (iv) Arrested in growth and growth retardation/delay: Compared to a well with normal development and normal # of progeny.

For the target sequences presented in Table 1A, it was concluded that dsRNA mediated silencing of the *C. elegans* target gene in nematodes, such as *C. elegans*, had a fatal effect on the 35. growth and viability of the worm.

Subsequent to the above dsRNA silencing experiment, a more detailed phenotyping experiment was conducted in *C. elegans* in a high throughput format on 24 well plates. The dsRNA library produced in bacterial strain AB301-105 (DE3), as described above, was fed to *C. elegans* *nuc-1* (*e1392*) worms on 24 well plates as follows: *nuc-1* eggs were transferred to a 40. separate plate and allowed to hatch simultaneously at 20 C for synchronization of the L1

generation. Subsequently 100 of the synchronized L1 worms were soaked in a mixture of 500 µL S-complete fed medium, comprising 5 µg/mL cholesterol, 4 µL/mL PEG and 1mM IPTG, and 500 µL of bacterial cell culture of OD₆₀₀1 AB301-105 (DE3) of the *C. elegans* dsRNA library carrying each a vector with a *C. elegans* genomic fragment for expression of the dsRNA. The soaked L1
5 worms were rolled for 2 hours at 25 C.

After centrifugation and removal of 950 µL of the supernatant, 5 µL of the remaining and resuspended pellet (comprising about 10 to 15 worms) was transferred in the middle of each well of a 24 well plate, filled with a layer of agar LB broth. The inoculated plate was incubated at 25°C for 2 days. At the adult stage, 1 adult worm was singled and incubated at 25°C for 2 days for
10 inspection of its progeny. The other adult worms are inspected *in situ* on the original 24 well plate. These experiments were performed in quadruplicate.

This detailed phenotypic screen was repeated with a second batch of worms, the only difference being that the worms of the second batch were incubated at 20 C for 3 days.

The phenotype of the worms fed with *C. elegans* dsRNA was compared to the phenotype of
15 *C. elegans nuc-1* (e1392) worms fed with the empty vector.

Based on this experiment, it was concluded that silencing the *C. elegans* target genes as represented in Table 1A had a fatal effect on the growth and viability of the worm and that the target gene is essential to the viability of nematodes. Therefore these genes are good target genes to control (kill or prevent from growing) nematodes via dsRNA mediated gene silencing.
20 Accordingly, the present invention encompasses the use of nematode orthologues of the above *C. elegans* target gene, to control nematode infestation, such as nematode infestation of plants.

Example 2: Identification of *D. melanogaster* orthologues

As described above in Example 1, numerous *C. elegans* lethal sequences were identified
25 and can be used for identifying orthologues in other species and genera. For example, the *C. elegans* lethal sequences can be used to identify orthologous *D. melanogaster* sequences. That is, each *C. elegans* sequence can be queried against a public database, such as GenBank, for orthologous sequences in *D. melanogaster*. Potential *D. melanogaster* orthologues were selected that share a high degree of sequence homology (E value preferably less than or equal to 1E-30)
30 and the sequences are blast reciprocal best hits, the latter means that the sequences from different organisms (e.g. *C. elegans* and *D. melanogaster*) are each other's top blast hits. For example, sequence C from *C. elegans* is compared against sequences in *D. melanogaster* using BLAST. If sequence C has the *D. melanogaster* sequence D as best hit and when D is compared to all the sequences of *C. elegans*, also turns out to be sequence C, then D and C are reciprocal best hits.
35 This criterium is often used to define orthology, meaning similar sequences of different species, having similar function. The *D. melanogaster* sequence identifiers are represented in Table 1A.

Example 3: *Leptinotarsa decemlineata* (Colorado potato beetle)

A. Cloning partial gene sequences from *Leptinotarsa decemlineata*

High quality, intact RNA was isolated from 4 different larval stages of *Leptinotarsa decemlineata* (Colorado potato beetle; source: Jeroen van Schaik, Entocare CV Biologische Gewasbescherming, Postbus 162, 6700 AD Wageningen, the Netherlands) using TRIzol Reagent (Cat. Nr. 15596-026/15596-018, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions. Genomic DNA present in the RNA preparation was removed by DNase treatment following the manufacturer's instructions (Cat. Nr. 1700, Promega). cDNA was generated using a commercially available kit (SuperScript™ III Reverse Transcriptase, Cat. Nr. 18080044, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions.

To isolate cDNA sequences comprising a portion of the LD001, LD002, LD003, LD006, LD007, LD010, LD011, LD014, LD015, LD016, LC018 and LD027 genes, a series of PCR reactions with degenerate primers were performed using AmpliTaq Gold (Cat. Nr. N8080240, Applied Biosystems) following the manufacturer's instructions.

The sequences of the degenerate primers used for amplification of each of the genes are given in **Table 2-LD**, which displays *Leptintarsa decemlineata* target genes including primer sequences and cDNA sequences obtained. These primers were used in respective PCR reactions with the following conditions: 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 55°C and 1 minute at 72°C, followed by 10 minutes at 72°C. The resulting PCR fragments were analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR8/GW/topo vector (Cat. Nr. K2500 20, Invitrogen), and sequenced. The sequences of the resulting PCR products are represented by the respective SEQ ID NOs as given in **Table 2-LD** and are referred to as the partial sequences. The corresponding partial amino acid sequence are represented by the respective SEQ ID NOs as given in **Table 3-LD**, where the start of the reading frame is indicated in brackets.

B. dsRNA production of the *Leptinotarsa decemlineata* genes

dsRNA was synthesized in milligram amounts using the commercially available kit T7 Ribomax™ Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5' T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.

For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in **Table 8-LD**. The conditions in the PCR reactions were as follows: 4 minutes at 95°C, followed by 35 cycles of 30 seconds at 95°C, 30 seconds at 55°C and 1 minute at 72°C, followed by 10 minutes at 72°C. The anti-sense T7 template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in **Table 8-LD**. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO₄ precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands

were annealed, DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA for each of the target genes is given in **Table 8-LD**. Table 8-LD displays sequences for preparing ds RNA fragments of *Leptinotarsa decemlineata* target sequences and concatemer sequences, including primer 5 sequences.

C. Screening dsRNA targets using artificial diet for activity against *Leptinotarsa decemlineata*

Artificial diet for the Colorado potato beetle was prepared as follows (adapted from Gelman et al., 2001, J. Ins. Sc., vol. 1, no. 7, 1-10): water and agar were autoclaved, and the remaining 10 ingredients (shown in **Table A** below) were added when the temperature dropped to 55 °C. At this temperature, the ingredients were mixed well before the diet was aliquoted into 24-well plates (Nunc) with a quantity of 1ml of diet per well. The artificial diet was allowed to solidify by cooling at room temperature. Diet was stored at 4 °C for up to three weeks.

15 **Table A: Ingredients for Artificial diet**

Ingredients	Volume for 1 L
water	768ml
agar	14g
rolled oats	40g
Torula yeast	60g
lactalbumin hydrolysate	30g
casein	10g
fructose	20g
Wesson salt mixture	4g
tomato fruit powder	12.5g
potato leaf powder	25g
b-sitosterol	1g
sorbic acid	0.8g
methyl paraben	0.8g
Vanderzant vitamin mix	12g
neomycin sulfate	0.2g
aureomycin	0.130g
rifampicin	0.130g
chloramphenicol	0.130g
nystatin	0.050g
soybean oil	2ml
wheat germ oil	2ml

Fifty μ l of a solution of dsRNA at a concentration of 1 mg/ml was applied topically onto the solid artificial diet in the wells of the multiwell plate. The diet was dried in a laminair flow cabin. Per treatment, twenty-four Colorado potato beetle larvae (2nd stage), with two insects per well, were tested. The plates were stored in the insect rearing chamber at 25 \pm 2 °C, 60 % relative humidity.

5 with a 16:8 hours light:dark photoperiod. The beetles were assessed as live or dead every 1, 2 or 3 days. After seven days, for targets LD006, LD007, LD010, LD011, and LD014, the diet was replaced with fresh diet with topically applied dsRNA at the same concentration (1 mg/ml); for targets LD001, LD002, LD003, LD015, and LD016, the diet was replaced with fresh diet only. The dsRNA targets were compared to diet only or diet with topically applied dsRNA corresponding to a

10 fragment of the GFP (green fluorescent protein) coding sequence (SEQ ID NO 235).

Feeding artificial diet containing intact naked dsRNAs to *L. decemlineata* larvae resulted in significant increases in larval mortalities as indicated in two separate bioassays (Figures 1LD-2LD).

All dsRNAs tested resulted ultimately in 100 % mortality after 7 to 14 days. Diet with or
15 without GFP dsRNA sustained the insects throughout the bioassays with very little or no mortality.

Typically, in all assays observed, CPB second-stage larvae fed normally on diet with or without dsRNA for 2 days and molted to the third larval stage. At this new larval stage the CPB were observed to reduce significantly or stop altogether their feeding, with an increase in mortality as a result.

20 D. Bioassay of dsRNA targets using potato leaf discs for activity against the
Leptinotarsa decemlineata

An alternative bioassay method was employed using potato leaf material rather than artificial diet as food source for CPB. Discs of approximately 1.1 cm in diameter (or 0.95 cm²) were cut out off leaves of 2 to 3-week old potato plants using a suitably-sized cork borer. Treated leaf
25 discs were prepared by applying 20 μ l of a 10 ng/ μ l solution of target LD002 dsRNA or control gfp dsRNA on the adaxial leaf surface. The leaf discs were allowed to dry and placed individually in 24 wells of a 24-well multiplate (Nunc). A single second-larval stage CPB was placed into each well, which was then covered with tissue paper and a multiwell plastic lid. The plate containing the insects and leaf discs were kept in an insect chamber at 28°C with a photoperiod of 16h light/8h
30 dark. The insects were allowed to feed on the leaf discs for 2 days after which the insects were transferred to a new plate containing fresh treated leaf discs. Thereafter, the insects were transferred to a plate containing untreated leaf discs every day until day 7. Insect mortality and weight scores were recorded.

Feeding potato leaf discs with surface-applied intact naked dsRNA of target LD002 to *L. decemlineata* larvae resulted in a significant increase in larval mortalities (i.e. at day 7 all insects were dead; 100 % mortality) whereas control gfp dsRNA had no effect on CPB survival. Target LD002 dsRNA severely affected the growth of the larvae after 2 to 3 days whereas the larvae fed with gfp dsRNA at the same concentration developed as normal (Figure 3-LD).

E. Screening shorter versions of dsRNAs using artificial diet for activity against *Leptinotarsa decemlineata*

This example exemplifies the finding that shorter (60 or 100bp) dsRNA fragments on their own or as concatemer constructs are sufficient in causing toxicity towards the Colorado potato beetle.

LD014, a target known to induce lethality in Colorado potato beetle, was selected for this example. This gene encodes a V-ATPase subunit E (SEQ ID NO 15).

A 100 base pair fragment, LD014_F1, at position 195-294 on SEQ ID NO 15 (SEQ ID NO 159) and a 60 base pair fragment, LD014_F2, at position 235-294 on SEQ ID NO 15 (SEQ ID NO 160) were further selected. See also Table 7-LD.

Two concatemers of 300 base pairs, LD014_C1 and LD014_C2, were designed (SEQ ID NO 161 and SEQ ID NO 162). LD014_C1 contained 3 repeats of the 100 base pair fragment described above (SEQ ID NO 159) and LD014_C2 contained 5 repeats of the 60 base pair fragment described above (SEQ ID NO 160). See also Table 7-LD.

The fragments LD014_F1 and LD014_F2 were synthesized as sense and antisense primers. These primers were annealed to create the double strands DNA molecules prior to cloning. *Xba*I and *Xma*I restriction sites were included at the 5' and 3' ends of the primers, respectively, to facilitate the cloning.

The concatemers were made as 300 base pairs synthetic genes. *Xba*I and *Xma*I restriction sites were included at the 5' and 3' ends of the synthetic DNA fragments, respectively, to facilitate the cloning.

The 4 DNA molecules, i.e. the 2 single units (LD014_F1 & LD014_F2) and the 2 concatemers (LD014_C1 & LD014_C2), were digested with *Xba*I and *Xma*I and subcloned in pBluescriptII SK+ linearised by *Xba*I and *Xma*I digests, resulting in recombinant plasmids p1, p2, p3, & p4, respectively.

Double-stranded RNA production: dsRNA was synthesized using the commercially available kit T7 Ribomax™ Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5' T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.

For LD014_F1, the sense T7 template was generated using the specific T7 forward primer oGBM159 and the specific reverse primer oGBM164 (represented herein as SEQ ID NO 204 and SEQ ID NO 205, respectively) in a PCR reaction with the following conditions: 4 minutes at 95°C, followed by 35 cycles of 30 seconds at 95°C, 30 seconds at 55°C and 1 minute at 72°C, followed by 10 minutes at 72°C. The anti-sense T7 template was generated using the specific forward primer oGBM163 and the specific T7 reverse primer oGBM160 (represented herein as SEQ ID NO 206 and SEQ ID NO 207, respectively) in a PCR reaction with the same conditions as described above. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit; Cat. Nr. 28106, Qiagen) and NaClO₄ precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, Dnase and Rnase treated, and purified by sodium acetate, following the

manufacturer's instructions. The sense strand of the resulting dsRNA is herein represented by SEQ ID NO 203.

For LD014_F2, the sense T7 template was generated using the specific T7 forward primer oGBM161 and the specific reverse primer oGBM166 (represented herein as SEQ ID NO 209 and SEQ ID NO 210, respectively) in a PCR reaction with the following conditions: 4 minutes at 95°C, followed by 35 cycles of 30 seconds at 95°C, 30 seconds at 55°C and 1 minute at 72°C, followed by 10 minutes at 72°C. The anti-sense T7 template was generated using the specific forward primer oGBM165 and the specific T7 reverse primer oGBM162 (represented herein as SEQ ID NO 211 and SEQ ID NO 212, respectively) in a PCR reaction with the same conditions as described above. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO₄ precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, Dnase and Rnase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA is herein represented by SEQ ID NO 208.

Also for the concatemers, separate single 5' T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter. The recombinant plasmids p3 and p4 containing LD014_C1 & LD014_C2 were linearised with XbaI or XmaI, the two linear fragments for each construct purified and used as template for the *in vitro* transcription assay, using the T7 promoters flanking the cloning sites. Double-stranded RNA was prepared by *in vitro* transcription using the T7 RiboMAX™ Express RNAi System (Promega). The sense strands of the resulting dsRNA for LD014_C1 and LD014_C2 are herein represented by SEQ ID NO 213 and 214, respectively.

Shorter sequences of target LD014 and concatemers were able to induce lethality in *Leptinotarsa decemlineata*, as shown in Figure 4-LD.

F. Screening dsRNAs at different concentrations using artificial diet for activity against *Leptinotarsa decemlineata*

Fifty μ l of a solution of dsRNA at serial ten-fold concentrations from 1 μ g/ μ l (for target LD027 from 0.1 μ g/ μ l) down to 0.01 ng/ μ l was applied topically onto the solid artificial diet in the wells of a 24-well plate (Nunc). The diet was dried in a laminair flow cabin. Per treatment, twenty-four Colorado potato beetle larvae (2nd stage), with two insects per well, were tested. The plates were stored in the insect rearing chamber at 25 \pm 2 °C, 60 % relative humidity, with a 16:8 hours light:dark photoperiod. The beetles were assessed as live or dead at regular intervals up to day 14. After seven days, the diet was replaced with fresh diet with topically applied dsRNA at the same concentrations. The dsRNA targets were compared to diet only.

Feeding artificial diet containing intact naked dsRNAs of different targets to *L. decemlineata* larvae resulted in high larval mortalities at concentrations as low as between 0.1 and 10 ng dsRNA/ μ l as shown in Figure 5-LD.

G. Cloning of a CPB gene fragment in a vector suitable for bacterial production of insect-active double-stranded RNA

While any efficient bacterial promoter may be used, a DNA fragment corresponding to an CPB gene target was cloned in a vector for the expression of double-stranded RNA in a bacterial host (See WO 00/01846).

The sequences of the specific primers used for the amplification of target genes are provided in **Table 8-LD**. The template used is the pCR8/GW/topo vector containing any of target sequences. The primers are used in a PCR reaction with the following conditions: 5 minutes at 98°C, followed by 30 cycles of 10 seconds at 98°C, 30 seconds at 55°C and 2 minutes at 72°C, followed by 10 minutes at 72°C. The resulting PCR fragment is analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), blunt-end cloned into *Srf I*-linearized pGNA49A vector (reference to WO00188121A1), and sequenced. The sequence of the resulting PCR product corresponds to the respective sequence as given in **Table 8-LD**. The recombinant vector harboring this sequence is named pGBNJ003.

15 The sequences of the specific primers used for the amplification of target gene fragment LD010 are provided in **Table 8-LD** (forward primer SEQ ID NO 191 and reverse primer SEQ ID NO 190). The template used was the pCR8/GW/topo vector containing the LD010 sequence (SEQ ID NO 11). The primers were used in a PCR reaction with the following conditions: 5 minutes at 98°C, followed by 30 cycles of 10 seconds at 98°C, 30 seconds at 55°C and 2 minutes at 72°C, followed by 10 minutes at 72°C. The resulting PCR fragment was analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), blunt-end cloned into *Srf I*-linearized pGNA49A vector (reference to WO 00/188121A1), and sequenced. The sequence of the resulting PCR product corresponds to SEQ ID NO 188 as given in **Table 8-LD**. The recombinant vector harboring this sequence was named pGBNJ003.

25 **H. Expression and production of a double-stranded RNA target in two strains of *Escherichia coli*: (1) AB301-105(DE3), and, (2) BL21(DE3)**

The procedures described below were followed in order to express suitable levels of insect-active double-stranded RNA of target LD010 in bacteria. An RNaseIII-deficient strain, AB301-105(DE3), was used in comparison to wild-type RNaseIII-containing bacteria, BL21(DE3).

30 *Transformation of AB301-105(DE3) and BL21(DE3)*

Three hundred ng of the plasmid was added to and gently mixed in a 50 µl aliquot of ice-chilled chemically competent *E. coli* strain AB301-105(DE3) or BL21(DE3). The cells were incubated on ice for 20 minutes before subjecting them to a heat shock treatment of 37 °C for 5 minutes, after which the cells were placed back on ice for a further 5 minutes. Four hundred and fifty µl of room temperature SOC medium was added to the cells and the suspension incubated on a shaker (250 rpm) at 37 °C for 1 hour. One hundred µl of the bacterial cell suspension was transferred to a 500 ml conical flask containing 150 ml of liquid Luria-Bertani (LB) broth supplemented with 100 µg/ml carbenicillin antibiotic. The culture was incubated on an Innova 4430 shaker (250 rpm) at 37 °C overnight (16 to 18 hours).

Chemical induction of double-stranded RNA expression in AB301-105(DE3) and BL21(DE3)

Expression of double-stranded RNA from the recombinant vector, pGBNJ003, in the bacterial strain AB301-105(DE3) or BL21(DE3) was made possible since all the genetic components for controlled expression are present. In the presence of the chemical inducer isopropylthiogalactoside, or IPTG, the T7 polymerase will drive the transcription of the target sequence in both antisense and sense directions since these are flanked by oppositely oriented T7 promoters.

The optical density at 600 nm of the overnight bacterial culture was measured using an appropriate spectrophotometer and adjusted to a value of 1 by the addition of fresh LB broth. Fifty ml of this culture was transferred to a 50 ml Falcon tube and the culture then centrifuged at 3000 g at 15 °C for 10 minutes. The supernatant was removed and the bacterial pellet resuspended in 50 ml of fresh S complete medium (SNC medium plus 5 µg/ml cholesterol) supplemented with 100 µg/ml carbenicillin and 1 mM IPTG. The bacteria were induced for 2 to 4 hours at room temperature.

Heat treatment of bacteria

Bacteria were killed by heat treatment in order to minimize the risk of contamination of the artificial diet in the test plates. However, heat treatment of bacteria expressing double-stranded RNA is not a prerequisite for inducing toxicity towards the insects due to RNA interference. The induced bacterial culture was centrifuged at 3000 g at room temperature for 10 minutes, the supernatant discarded and the pellet subjected to 80 °C for 20 minutes in a water bath. After heat treatment, the bacterial pellet was resuspended in 1.5 ml MilliQ water and the suspension transferred to a microfuge tube. Several tubes were prepared and used in the bioassays for each refreshment. The tubes were stored at -20 °C until further use.

25 **I. Laboratory trials to test *Escherichia coli* expressing dsRNA target LD010 against *Leptinotarsa decemlineata***

Two bioassay methods were employed to test double-stranded RNA produced in *Escherichia coli* against larvae of the Colorado potato beetle: (1) artificial diet-based bioassay, and, (2) plant-based bioassay.

30 **Artificial diet-based bioassays**

Artificial diet for the Colorado potato beetle was prepared as described previously in Example 3C. A half milliliter of diet was dispensed into each of the wells of a 48-well multiwell test plate (Nunc). For every treatment, fifty µl of an OD 1 suspension of heat-treated bacteria (which is equivalent to approximately 5×10^7 bacterial cells) expressing dsRNA was applied topically onto the solid diet in the wells and the plates were allowed to dry in a laminair flow cabin. Per treatment, forty-eight 2nd stage Colorado potato beetle larvae, one in each well containing diet and bacteria, were tested. Each row of a plate (i.e. 8 wells) was considered as one replicate. The plates were kept in the insect rearing chamber at 25 ± 2 °C, 60 ± 5 % relative humidity, with a 16:8 hours light:dark photoperiod. After every 4 days, the beetles were transferred to fresh diet containing

topically-applied bacteria. The beetles were assessed as alive or dead every one or three days post infestation. For the survivors, growth and development in terms of larval weight was recorded on day 7 post infestation.

For RNaseIII-deficient *E. coli* strain AB301-105(DE3), bacteria containing plasmid pGBNJ003 and those containing the empty vector pGN29 (reference to WO 00/188121A1) were tested in bioassays for CPB toxicity. Bacteria harboring the pGBNJ003 plasmid showed a clear increase in insect mortality with time, whereas little or no mortality was observed for pGN29 and diet only control (Figures 6a-LD & 7a-LD). The growth and development of Colorado potato beetle larval survivors, 7 days after feeding on artificial diet containing bacteria expressing dsRNA target LD010, was severely impeded (Table 10-LD, Figure 8a-LD, Figure 13-LD).

For *E. coli* strain BL21(DE3), bacteria containing plasmid pGBNJ003 and those containing the empty vector pGN29 were tested against the Colorado potato beetle larvae. Similar detrimental effects were observed on larvae fed diet supplemented with BL21(DE3) bacteria as for the RNaseIII-deficient strain, AB301-105(DE3) (Figures 6b-LD & 7b-LD). However, the number of survivors for the five clones were higher for BL21(DE3) than for AB301-105(DE3); at day 12, average mortality values were approximately 25 % lower for this strain compared to the RNase III deficient strain. Also, the average weights of survivors fed on diet containing BL21(DE3) expressing dsRNA corresponding to target LD010 was severely reduced (Table 10-LD, Figure 8b-LD).

The delay in growth and development of the CPB larvae fed on diet containing either of the two bacterial strains harboring plasmid pGBNJ003 was directly correlated to feeding inhibition since no frass was visible in the wells of refreshed plates from day 4 onwards when compared to bacteria harboring the empty vector pGN29 or the diet only plate. This observation was similar to that where CPB was fed on *in vitro* transcribed double-stranded RNA topically applied to artificial diet (see Example 3D); here, cessation of feeding occurred from day 2 onwards on treated diet.

Plant-based bioassays

Whole potato plants were sprayed with suspensions of chemically induced bacteria expressing dsRNA prior to feeding the plants to CPB larvae. The potato plants of variety "line V" (Wageningen University) were grown from tubers to the 8-12 unfolded leaf stage in a plant growth room chamber with the following conditions: 25 ± 2°C, 60 % relative humidity, 16:8 hour light:dark photoperiod. The plants were caged by placing a 500 ml plastic bottle upside down over the plant with the neck of the bottle firmly placed in the soil in a pot and the base cut open and covered with a fine nylon mesh to permit aeration, reduce condensation inside and prevent larval escape. Fifteen Colorado potato beetle larvae at the L1 stage were placed on each treated plant in the cage. Plants were treated with a suspension of *E. coli* AB301-105(DE3) harboring the pGBNJ003 plasmids (clone 1; Figure 7a-LD) or pGN29 plasmid (clone 1; see Figure 7a-LD). Different quantities of bacteria were applied to the plants: 66, 22, and 7 units, where one unit is defined as 10⁹ bacterial cells in 1 ml of a bacterial suspension at optical density value of 1 at 600 nm wavelength. In each case, a total volume of 1.6 ml was sprayed on the plant with the aid of a

vaporizer. One plant was used per treatment in this trial. The number of survivors were counted and the weight of each survivor recorded.

Spraying plants with a suspension of *E. coli* bacterial strain AB301-105(DE3) expressing target dsRNA from pGBNJ003 led to a dramatic increase in insect mortality when compared to 5 pGN29 control. The mortality count was maintained when the amount of bacteria cell suspension was diluted 9-fold (Figure 9-LD). The average weights of the larval survivors at day 11 on plants sprayed with bacteria harboring the pGBNJ003 vector were approximately 10-fold less than that of pGN29 (Figure 10-LD). Feeding damage by CPB larvae of the potato plant sprayed with bacteria containing the pGBNJ003 plasmid was much reduced when compared to the damage incurred on 10 a potato plant sprayed with bacteria containing the empty vector pGN29 (Figure 11-LD).

These experiments showed that double-stranded RNA corresponding to an insect gene target sequence produced in either wild-type or RNaseIII-deficient bacterial expression systems is toxic towards the insect in terms of substantial increases in insect mortality and growth/development delay for larval survivors. It is also clear from these experiments that an 15 exemplification was provided for the effective protection of plants/crops from insect damage by the use of a spray of a formulation consisting of bacteria expressing double-stranded RNA corresponding to an insect gene target.

J. Testing various culture suspension densities of *Escherichia coli* expressing dsRNA target LD010 against *Leptinotarsa decemlineata*

20 Preparation and treatment of bacterial cultures are described in Example 3J. Three-fold serial dilutions of cultures (starting from 0.25 unit equivalents) of *Escherichia coli* RNaseIII-deficient strain AB301-105(DE3) expressing double-stranded RNA of target LD010 were applied to foliages of the potato plant of variety 'Bintje' at the 8-12 unfolded leaf stage. Ten L1 larvae of the *L. decemlineata* were placed on the treated plants with one plant per treatment. Scoring for insect 25 mortality and growth impediment was done on day 7 (i.e., 7 days post infestation).

As shown in Figure 14-LD, high CPB larval mortality (90 to 100 %) was recorded after 1 week when insects were fed potato plants treated with a topical application by fine spray of heat-inactivated cultures of *E.coli* harboring plasmid pGBNJ003 (for target 10 dsRNA expression) at densities 0.25, 0.08 and 0.025 bacterial units. At 0.008 units, about a third of the insects were 30 dead, however, the surviving insects were significantly smaller than those in the control groups (*E. coli* harboring the empty vector pGN29 and water only). Feeding damage by CPB larvae of the potato plant sprayed with bacteria containing the pGBNJ003 plasmid at concentrations 0.025 or 0.008 units was much reduced when compared to the damage incurred on a potato plant sprayed with bacteria containing the empty vector pGN29 (Figure 15-LD).

35 K. Adults are extremely susceptible to orally ingested dsRNA corresponding to target genes.

The example provided below highlights the finding that adult insects (and not only insects of the larval stage) are extremely susceptible to orally ingested dsRNA corresponding to target genes.

Four targets were chosen for this experiment: targets 2, 10, 14 and 16 (SEQ ID NO 168, 188, 198 and 220, respectively). GFP fragment dsRNA (SEQ ID NO 235) was used as a control. Young adults (2 to 3 days old) were picked at random from our laboratory-reared culture with no bias towards insect gender. Ten adults were chosen per treatment. The adults were prestarved for 5 at least 6 hours before the onset of the treatment. On the first day of treatment, each adult was fed four potato leaf discs (diameter 1.5 cm²) which were pretreated with a topical application of 25 µl of 0.1µg/µl target dsRNA (synthesized as described in Example 3A; topical application as described in Example 3E) per disc. Each adult was confined to a small petridish (diameter 3 cm) in order to make sure that all insects have ingested equal amounts of food and thus received equal doses of 10 dsRNA. The following day, each adult was again fed four treated leaf discs as described above. On the third day, all ten adults per treatment were collected and placed together in a cage consisting of a plastic box (dimensions 30 cm x 20 cm x 15 cm) with a fine nylon mesh built into the lid to provide good aeration. Inside the box, some moistened filter paper was placed in the base. Some (untreated) potato foliage was placed on top of the paper to maintain the adults during the 15 experiment. From day 5, regular assessments were carried out to count the number of dead, alive (mobile) and moribund insects. For insect moribundity, adults were laid on their backs to check whether they could right themselves within several minutes; an insect was considered moribund only if it was not able to turn onto its front.

Clear specific toxic effects of double-stranded RNA corresponding to different targets 20 towards adults of the Colorado potato beetle, *Leptinotarsa decemlineata*, were demonstrated in this experiment (Figure 12-LD). Double-stranded RNA corresponding to a gfp fragment showed no toxicity towards CPB adults on the day of the final assessment (day 19). This experiment clearly showed that the survival of CPB adults was severely reduced only after a few days of exposure to dsRNA when delivered orally. For example, for target 10, on day 5, 5 out of 10 adults were 25 moribund (sick and slow moving); on day 6, 4 out of 10 adults were dead with three of the survivors moribund; on day 9 all adults were observed dead.

As a consequence of this experiment, the application of target double-stranded RNAs against insect pests may be broadened to include the two life stages of an insect pest (i.e. larvae and adults) which could cause extensive crop damage, as is the case with the Colorado potato 30 beetle.

Example 4: *Phaedon cochleariae* (Mustard leaf beetle)

A. Cloning of a partial sequence of the *Phaedon cochleariae* (mustard leaf beetle) PC001, PC003, PC005, PC010, PC014, PC016 and PC027 genes via family PCR

35 High quality, intact RNA was isolated from the third larval stage of *Phaedon cochleariae* (mustard leaf beetle; source: Dr. Caroline Muller, Julius-von-Sachs-Institute for Biosciences, Chemical Ecology Group, University of Wuerzburg, Julius-von-Sachs-Platz 3, D-97082 Wuerzburg, Germany) using TRIzol Reagent (Cat. Nr. 15596-026/15596-018, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions. Genomic DNA present in the RNA preparation was

removed by DNase (Cat. Nr. 1700, Promega) treatment following the manufacturer's instructions. cDNA was generated using a commercially available kit (SuperScript™ III Reverse Transcriptase, Cat. Nr. 18080044, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions.

To isolate cDNA sequences comprising a portion of the PC001, PC003, PC005, PC010, 5 PC014, PC016 and PC027 genes, a series of PCR reactions with degenerate primers were performed using AmpliTaq Gold (Cat. Nr. N8080240, Applied Biosystems) following the manufacturer's instructions.

The sequences of the degenerate primers used for amplification of each of the genes are given in Table 2-PC. These primers were used in respective PCR reactions with the following 10 conditions: 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 55°C and 1 minute at 72°C, followed by 10 minutes at 72°C. The resulting PCR fragments were analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR4/TOPO vector (Cat. Nr. K4530-20, Invitrogen) and sequenced. The sequences of the resulting PCR products are represented by the respective SEQ ID NOs as given in Table 2-PC and 15 are referred to as the partial sequences.

The corresponding partial amino acid sequence are represented by the respective SEQ ID NOs as given in Table 3-PC. Table 3-PC provides amino acid sequences of cDNA clones, and the start of the reading frame is indicated in brackets.

B. dsRNA production of the *Phaedon cochleariae* genes

20 dsRNA was synthesized in milligram amounts using the commercially available kit T7 Ribomax™ Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5' T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.

25 For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in Table 8-PC. Table 8-PC provides details for preparing ds RNA fragments of *Phaedon cochleariae* target sequences, including primer sequences.

The conditions in the PCR reactions were as follows: 1 minute at 95°C, followed by 20 30 cycles of 30 seconds at 95°C, 30 seconds at 60°C and 1 minute at 72°C, followed by 15 cycles of 30 seconds at 95°C, 30 seconds at 50°C and 1 minute at 72°C followed by 10 minutes at 72°C. The anti-sense T7 template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in Table 8-PC.

35 The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO₄ precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the

manufacturer's instructions. The sense strand of the resulting dsRNA for each of the target genes is given in Table 8-PC.

C. Laboratory trials of *Myzus persicae* (green peach aphid) infestation on transgenic *Arabidopsis thaliana* plants

5 **Generation of transgenic plants**

Arabidopsis thaliana plants were transformed using the floral dip method (Clough and Bent (1998) *Plant Journal* 16:735-743). Aerial parts of the plants were incubated for a few seconds in a solution containing 5% sucrose, resuspended *Agrobacterium tumefaciens* strain C58C1 Rif cells from an overnight culture and 0.03% of the surfactant Silwet L-77. After inoculation, plants were 10 covered for 16 hours with a transparent plastic to maintain humidity. To increase the transformation efficiency, the procedure was repeated after one week. Watering was stopped as seeds matured and dry seeds were harvested and cold-treated for two days. After sterilization, seeds were plated on a kanamycin-containing growth medium for selection of transformed plants.

The selected plants are transferred to soil for optimal T2 seed production.

15 **Bioassay**

Transgenic *Arabidopsis thaliana* plants are selected by allowing the segregating T2 seeds to germinate on appropriate selection medium. When the roots of these transgenics are well-established they are then transferred to fresh artificial growth medium or soil and allowed to grow under optimal conditions. Whole transgenic plants are tested against nymphs of the green peach 20 aphid (*Myzus persicae*) to show (1) a significant resistance to plant damage by the feeding nymph, (2) increased nymphal mortality, and/or (3) decreased weight of nymphal survivors (or any other aberrant insect development).

D. Laboratory trials to test dsRNA targets, using oilseed rape leaf discs for activity against *Phaedon cochleariae* larvae

25 The example provided below is an exemplification of the finding that the mustard leaf beetle (MLB) larvae are susceptible to orally ingested dsRNA corresponding to own target genes.

To test the different double-stranded RNA samples against MLB larvae, a leaf disc assay was employed using oilseed rape (*Brassica napus* variety SW Oban; source: Nick Balaam, Sw Seed Ltd., 49 North Road, Abington, Cambridge, CB1 6AS, UK) leaf material as food source. The 30 insect cultures were maintained on the same variety of oilseed rape in the insect chamber at 25 ± 2 °C and 60 ± 5 % relative humidity with a photoperiod of 16h light/8h dark. Discs of approximately 1.1 cm in diameter (or 0.95 cm²) were cut out off leaves of 4- to 6-week old rape plants using a suitably-sized cork borer. Double-stranded RNA samples were diluted to 0.1 µg/µl in Milli-Q water containing 0.05% Triton X-100. Treated leaf discs were prepared by applying 25 µl of the diluted 35 solution of target PC001, PC003, PC005, PC010, PC014, PC016, PC027 dsRNA and control gfp dsRNA or 0.05 % Triton X-100 on the adaxial leaf surface. The leaf discs were left to dry and placed individually in each of the 24 wells of a 24-well multiplate containing 1 ml of gellified 2% agar which helps to prevent the leaf disc from drying out. Two neonate MLB larvae were placed into each well of the plate, which was then covered with a multiwell plastic lid. The plate (one

- treatment containing 48 insects) was divided into 4 replicates of 12 insects per replicate (each row). The plate containing the insects and leaf discs were kept in an insect chamber at 25 ± 2 °C and 60 ± 5 % relative humidity with a photoperiod of 16h light/8h dark. The insects were fed leaf discs for 2 days after which they were transferred to a new plate containing freshly treated leaf discs.
- 5 Thereafter, 4 days after the start of the bioassay, the insects from each replicate were collected and transferred to a Petri dish containing untreated fresh oilseed rape leaves. Larval mortality and average weight were recorded at days 2, 4, 7, 9 and 11.

P. cochleariae larvae fed on intact naked target dsRNA-treated oilseed rape leaves resulted in significant increases in larval mortalities for all targets tested, as indicated in Figure 1(a).

10 Tested double-stranded RNA for target PC010 led to 100 % larval mortality at day 9 and for target PC027 at day 11. For all other targets, significantly high mortality values were reached at day 11 when compared to control gfp dsRNA, 0.05% Triton X-100 alone or untreated leaf only: (average value in percentage \pm confidence interval with alpha 0.05) PC001 (94.4 ± 8.2); PC003 (86.1 ± 4.1); PC005 (83.3 ± 7.8); PC014 (63.9 ± 20.6); PC016 (75.0 ± 16.8); gfp dsRNA (11.1 ± 8.2); 0.05%

15 Triton X-100 (19.4 ± 10.5); leaf only (8.3 ± 10.5).

Larval survivors were assessed based on their average weight. For all targets tested, the mustard leaf beetle larvae had significantly reduced average weights after day 4 of the bioassay; insects fed control gfp dsRNA or 0.05% Triton X-100 alone developed normally, as for the larvae on leaf only (Figure 1(b)-PC).

20 **E. Laboratory trials to screen dsRNAs at different concentrations using oilseed rape leaf discs for activity against *Phaedon cochleariae* larvae**

Twenty-five μ l of a solution of dsRNA from target PC010 or PC027 at serial ten-fold concentrations from 0.1 μ g/ μ l down to 0.1 ng/ μ l was applied topically onto the oilseed rape leaf disc, as described in Example 4D above. As a negative control, 0.05% Triton X-100 only was administered to the leaf disc. Per treatment, twenty-four mustard leaf beetle neonate larvae, with two insects per well, were tested. The plates were stored in the insect rearing chamber at 25 ± 2 °C, 60 ± 5 % relative humidity, with a 16:8 hours light:dark photoperiod. At day 2, the larvae were transferred on to a new plate containing fresh dsRNA-treated leaf discs. At day 4 for target PC010 and day 5 for target PC027, insects from each replicate were transferred to a Petri dish containing abundant untreated leaf material. The beetles were assessed as live or dead on days 2, 4, 7, 8, 9, and 11 for target PC010, and 2, 5, 8, 9 and 12 for target PC027.

Feeding oilseed rape leaf discs containing intact naked dsRNAs of the two different targets, PC010 and PC027, to *P. cochleariae* larvae resulted in high mortalities at concentrations down to as low as 1 ng dsRNA/ μ l solution, as shown in Figures 2 (a) and (b). Average mortality values in percentage \pm confidence interval with alpha 0.05 for different concentrations of dsRNA for target PC010 at day 11, 0 μ g/ μ l: 8.3 ± 9.4 ; 0.1 μ g/ μ l: 100; 0.01 μ g/ μ l: 79.2 ± 20.6 ; 0.001 μ g/ μ l: 58.3 ± 9.4 ; 0.0001 μ g/ μ l: 12.5 ± 15.6 ; and for target PC027 at day 12, 0 μ g/ μ l: 8.3 ± 9.4 ; 0.1 μ g/ μ l: 95.8 ± 8.2 ; 0.01 μ g/ μ l: 95.8 ± 8.2 ; 0.001 μ g/ μ l: 83.3 ± 13.3 ; 0.0001 μ g/ μ l: 12.5 ± 8.2 .

F. Cloning of a MLB gene fragment in a vector suitable for bacterial production of insect-active double-stranded RNA

What follows is an example of cloning a DNA fragment corresponding to an MLB gene target in a vector for the expression of double-stranded RNA in a bacterial host, although any 5 vector comprising a T7 promoter or any other promoter for efficient transcription in bacteria, may be used (reference to WO0001846):

The sequences of the specific primers used for the amplification of target gene fragment PC010 are provided in Table 8-PC. The template used was the pCR8/GW/topo vector containing the PC010 sequence (SEQ ID NO 253). The primers were used in a touch-down PCR reaction with 10 the following conditions: 1 minute at 95°C, followed by 20 cycles of 30 seconds at 95°C, 30 seconds at 60°C with temperature decrease of -0.5 °C per cycle and 1 minute at 72°C, followed by 15 cycles of 30 seconds at 95°C, 30 seconds at 50°C and 1 minute at 72°C, followed by 10 minutes at 72°C. The resulting PCR fragment was analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), blunt-end cloned into Srf I-linearized pGNA49A vector 15 (reference to WO00188121A1), and sequenced. The sequence of the resulting PCR product corresponds to SEQ ID NO 488 as given in Table 8-PC. The recombinant vector harboring this sequence was named pGCDJ001.

G. Expression and production of a double-stranded RNA target in one strain of *Escherichia coli* AB301-105(DE3)

20 The procedures described below are followed in order to express suitable levels of insect-active double-stranded RNA of insect target in bacteria. In this experiment, an RNaseIII-deficient strain, AB301-105(DE3) was used.

Transformation of AB301-105(DE3)

Three hundred ng of the plasmid were added to and gently mixed in a 50 µl aliquot of ice-25 chilled chemically competent *E. coli* strain AB301-105(DE3). The cells were incubated on ice for 20 minutes before subjecting them to a heat shock treatment of 37 °C for 5 minutes, after which the cells were placed back on ice for a further 5 minutes. Four hundred and fifty µl of room temperature SOC medium was added to the cells and the suspension incubated on a shaker (250 rpm) at 37 °C 30 for 1 hour. One hundred µl of the bacterial cell suspension was transferred to a 500 ml conical flask containing 150 ml of liquid Luria-Bertani (LB) broth supplemented with 100 µg/ml carbenicillin antibiotic. The culture was incubated on an Innova 4430 shaker (250 rpm) at 37 °C overnight (16 to 18 hours).

Chemical induction of double-stranded RNA expression in AB301-105(DE3)

Expression of double-stranded RNA from the recombinant vector, pGXXX0XX, in the 35 bacterial strain AB301-105(DE3) was made possible since all the genetic components for controlled expression are present. In the presence of the chemical inducer isopropylthiogalactoside, or IPTG, the T7 polymerase will drive the transcription of the target sequence in both antisense and sense directions since these are flanked by oppositely oriented T7 promoters.

The optical density at 600 nm of the overnight bacterial culture was measured using an appropriate spectrophotometer and adjusted to a value of 1 by the addition of fresh LB broth. Fifty ml of this culture was transferred to a 50 ml Falcon tube and the culture then centrifuged at 3000 g at 15 °C for 10 minutes. The supernatant was removed and the bacterial pellet resuspended in 50 ml of fresh S complete medium (SNC medium plus 5 µg/ml cholesterol) supplemented with 100 µg/ml carbenicillin and 1 mM IPTG. The bacteria were induced for 2 to 4 hours at room temperature.

5 *Heat treatment of bacteria*
Bacteria were killed by heat treatment in order to minimize the risk of contamination of the
10 artificial diet in the test plates. However, heat treatment of bacteria expressing double-stranded
RNA is not a prerequisite for inducing toxicity towards the insects due to RNA interference. The
induced bacterial culture was centrifuged at 3000 g at room temperature for 10 minutes, the
supernatant discarded and the pellet subjected to 80 °C for 20 minutes in a water bath. After heat
treatment, the bacterial pellet was resuspended in a total volume of 50 ml of 0.05% Triton X-100
15 solution. The tube was stored at 4 °C until further use

H. Laboratory trials to test *Escherichia coli* expressing dsRNA target against
10 *Phaedon cochleariae*

Leaf disc bioassays
The leaf-disc bioassay method was employed to test double-stranded RNA from target
20 PC010 produced in *Escherichia coli* (from plasmid pGCDJ001) against larvae of the mustard leaf
beetle. Leaf discs were prepared from oilseed rape foliage, as described in Example 4. Twenty µl
of a bacterial suspension, with an optical density measurement of 1 at 600 nm wavelength, was
pipetted onto each disc. The leaf disc was placed in a well of a 24-multiwell plate containing 1 ml
gellified agar. On each leaf disc were added two neonate larvae. For each treatment, 3 replicates
25 of 16 neonate larvae per replicate were prepared. The plates were kept in the insect rearing
chamber at 25 ± 2 °C and 60 ± 5 % relative humidity, with a 16:8 hours light:dark photoperiod. At
day 3 (i.e. 3 days post start of bioassay), larvae were transferred to a new plate containing fresh
treated (same dosage) leaf discs. The leaf material was refreshed every other day from day 5
onwards. The bioassay was scored on mortality and average weight. Negative controls were leaf
30 discs treated with bacteria harboring plasmid pGN29 (empty vector) and leaf only.

A clear increase in mortality of *P. cochleariae* larvae with time was shown after the insects were fed
on oilseed rape leaves treated with a suspension of RNaseIII-deficient *E. coli* strain AB301-
105(DE3) containing plasmid pGCDJ001, whereas very little or no insect mortality was observed in
the case of bacteria with plasmid pGN29 or leaf only control (Figure 3-PC).

35 *Plant-based bioassays*
Whole plants are sprayed with suspensions of heat-inactivated chemically induced bacteria
expressing dsRNA prior to feeding the plants to MLB. The are grown from in a plant growth room
chamber. The plants are caged by placing a 500 ml plastic bottle upside down over the plant with
the neck of the bottle firmly placed in the soil in a pot and the base cut open and covered with a

fine nylon mesh to permit aeration, reduce condensation inside and prevent insect escape. MLB are placed on each treated plant in the cage. Plants are treated with a suspension of *E. coli* AB301-105(DE3) harboring the pGCDJ001 plasmids or pGN29 plasmid. Different quantities of bacteria are applied to the plants: for instance 66, 22, and 7 units, where one unit is defined as 10^9 bacterial cells in 1 ml of a bacterial suspension at optical density value of 1 at 600 nm wavelength. In each case, a total volume of between 1 and 10 ml is sprayed on the plant with the aid of a vaporizer. One plant is used per treatment in this trial. The number of survivors are counted and the weight of each survivor recorded.

Spraying plants with a suspension of *E. coli* bacterial strain AB301-105(DE3) expressing target dsRNA from pGCDJ001 leads to a dramatic increase in insect mortality when compared to pGN29 control. These experiments show that double-stranded RNA corresponding to an insect gene target sequence produced in either wild-type or RNaseIII-deficient bacterial expression systems is toxic towards the insect in terms of substantial increases in insect mortality and growth/development delay for larval survivors. It is also clear from these experiments that an exemplification is provided for the effective protection of plants/crops from insect damage by the use of a spray of a formulation consisting of bacteria expressing double-stranded RNA corresponding to an insect gene target.

Example 5: *Epilachna varivertis* (Mexican bean beetle)

20 **A. Cloning *Epilachna varivertis* partial gene sequences**

High quality, intact RNA was isolated from 4 different larval stages of *Epilachna varivertis* (Mexican bean beetle; source: Thomas Dorsey, Supervising Entomologist, New Jersey Department of Agriculture, Division of Plant Industry, Bureau of Biological Pest Control, Phillip Alampi Beneficial Insect Laboratory, PO Box 330, Trenton, New Jersey 08625-0330, USA) using TRIzol Reagent (Cat. Nr. 15596-026/15596-018, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions. Genomic DNA present in the RNA preparation was removed by DNase treatment following the manufacturer's instructions (Cat. Nr. 1700, Promega). cDNA was generated using a commercially available kit (SuperScript™ III Reverse Transcriptase, Cat. Nr. 18080044, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions.

30 To isolate cDNA sequences comprising a portion of the EV005, EV009, EV010, EV015 and EV016 genes, a series of PCR reactions with degenerate primers were performed using AmpliTaq Gold (Cat. Nr. N8080240, Applied Biosystems) following the manufacturer's instructions.

The sequences of the degenerate primers used for amplification of each of the genes are given in Table 2-EV, which displays *Epilachna varivertis* target genes including primer sequences and cDNA sequences obtained. These primers were used in respective PCR reactions with the following conditions: for EV005 and EV009, 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 50°C and 1 minute 30 seconds at 72°C, followed by 7 minutes at 72°C; for EV014, 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 53°C and 1 minute at 72°C, followed by 7 minutes at 72°C; for EV010 and EV016, 10 minutes at

95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 54°C and 1 minute 40 seconds at 72°C, followed by 7 minutes at 72°C. The resulting PCR fragments were analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR4/TOPO vector (Cat. Nr. K4530-20, Invitrogen), and sequenced. The sequences of the resulting PCR products are 5 represented by the respective SEQ ID NOs as given in Table 2-EV and are referred to as the partial sequences. The corresponding partial amino acid sequences are represented by the respective SEQ ID NOs as given in Table 3-EV, where the start of the reading frame is indicated in brackets.

B. dsRNA production of the *Epilachna varivertis* genes

10 dsRNA was synthesized in milligram amounts using the commercially available kit T7 Ribomax™ Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5' T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.

15 For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in Table 8-EV.

The conditions in the PCR reactions were as follows: 1 minute at 95°C, followed by 20 cycles of 30 seconds at 95°C, 30 seconds at 60°C and 1 minute at 72°C, followed by 15 cycles of 30 seconds at 95°C, 30 seconds at 50°C and 1 minute at 72°C followed by 10 minutes at 72°C. 20 The anti-sense T7 template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in Table 8-EV. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO₄ precipitation. The generated 25 T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA for each of the target genes is given in Table 8-EV.

C. Laboratory trials to test dsRNA targets using bean leaf discs for activity against 30 *Epilachna varivertis* larvae

The example provided below is an exemplification of the finding that the Mexican bean beetle (MBB) larvae are susceptible to orally ingested dsRNA corresponding to own target genes.

To test the different double-stranded RNA samples against MBB larvae, a leaf disc assay was employed using snap bean (*Phaseolus vulgaris* variety Montano; source: Aveve NV, Belgium) 35 leaf material as food source. The same variety of beans was used to maintain insect cultures in the insect chamber at 25 ± 2 °C and 60 ± 5 % relative humidity with a photoperiod of 16h light/8h dark. Discs of approximately 1.1 cm in diameter (or 0.95 cm²) were cut out off leaves of 1- to 2-week old bean plants using a suitably-sized cork borer. Double-stranded RNA samples were diluted to 1 µg/µl in Milli-Q water containing 0.05% Triton X-100. Treated leaf discs were prepared by applying

25 µl of the diluted solution of target Ev005, Ev010, Ev015, Ev016 dsRNA and control gfp dsRNA or 0.05 % Triton X-100 on the adaxial leaf surface. The leaf discs were left to dry and placed individually in each of the 24 wells of a 24-well multiplate containing 1 ml of gellified 2 % agar which helps to prevent the leaf disc from drying out. A single neonate MBB larva was placed into each 5 well of a plate, which was then covered with a multiwell plastic lid. The plate was divided into 3 replicates of 8 insects per replicate (row). The plate containing the insects and leaf discs were kept in an insect chamber at 25 ± 2 °C and 60 ± 5 % relative humidity with a photoperiod of 16h light/8h dark. The insects were fed on the leaf discs for 2 days after which the insects were transferred to a new plate containing freshly treated leaf discs. Thereafter, 4 days after the start of the bioassay, 10 the insects were transferred to a petriplate containing untreated fresh bean leaves every day until day 10. Insect mortality was recorded at day 2 and every other day thereafter.

Feeding snap bean leaves containing surface-applied intact naked target dsRNAs to *E. varivestis* larvae resulted in significant increases in larval mortalities, as indicated in Figure 1. Tested double-stranded RNAs of targets Ev010, Ev015, & Ev016 led to 100 % mortality after 8 15 days, whereas dsRNA of target Ev005 took 10 days to kill all larvae. The majority of the insects fed on treated leaf discs containing control gfp dsRNA or only the surfactant Triton X-100 were sustained throughout the bioassay (Figure 1-EV).

D. Laboratory trials to test dsRNA targets using bean leaf discs for activity against *Epilachna varivestis* adults

20 The example provided below is an exemplification of the finding that the Mexican bean beetle adults are susceptible to orally ingested dsRNA corresponding to own target genes.

In a similar bioassay set-up as for Mexican bean beetle larvae, adult MBBs were tested against double-stranded RNAs topically-applied to bean leaf discs. Test dsRNA from each target Ev010, Ev015 and Ev016 was diluted in 0.05 % Triton X-100 to a final concentration of 0.1 µg/µl. 25 Bean leaf discs were treated by topical application of 30 µl of the test solution onto each disc. The discs were allowed to dry completely before placing each on a slice of gellified 2 % agar in each well of a 24-well multiwell plate. Three-day-old adults were collected from the culture cages and fed nothing for 7-8 hours prior to placing one adult to each well of the bioassay plate (thus 24 adults per treatment). The plates were kept in the insect rearing chamber (under the same conditions as 30 for MBB larvae for 24 hours) after which the adults were transferred to a new plate containing fresh dsRNA-treated leaf discs. After a further 24 hours, the adults from each treatment were collected and placed in a plastic box with dimensions 30 cm x 15 cm x 10 cm containing two potted and untreated 3-week-old bean plants. Insect mortality was assessed from day 4 until day 11.

All three target dsRNAs (Ev010, Ev015 and Ev016) ingested by adults of *Epilachna varivestis* resulted in significant increases in mortality from day 4 (4 days post bioassay start), as 35 shown in Figure 2(a)-EV. From day 5, dramatic changes in feeding patterns were observed between insects fed initially with target-dsRNA-treated bean leaf discs and those that were fed discs containing control gfp dsRNA or surfactant Triton X-100. Reductions in foliar damage by MBB adults of untreated bean plants were clearly visible for all three targets when compared to gfp

dsRNA and surfactant only controls, albeit at varying levels; insects fed target 15 caused the least damage to bean foliage (Figure 2(b)-EV).

E. Cloning of a MBB gene fragment in a vector suitable for bacterial production of insect-active double-stranded RNA

5 What follows is an example of cloning a DNA fragment corresponding to an MBB gene target in a vector for the expression of double-stranded RNA in a bacterial host, although any vector comprising a T7 promoter or any other promoter for efficient transcription in bacteria, may be used (reference to WO0001846).

10 The sequences of the specific primers used for the amplification of target genes are provided in Table 8-EV. The template used is the pCR8/GW/topo vector containing any of target sequences. The primers are used in a PCR reaction with the following conditions: 5 minutes at 98°C, followed by 30 cycles of 10 seconds at 98°C, 30 seconds at 55°C and 2 minutes at 72°C, followed by 10 minutes at 72°C. The resulting PCR fragment is analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), blunt-end cloned into Srf I-linearized 15 pGNA49A vector (reference to WO00188121A1), and sequenced. The sequence of the resulting PCR product corresponds to the respective sequence as given in Table 8-EV. The recombinant vector harboring this sequence is named pGXXX0XX.

F. Expression and production of a double-stranded RNA target in two strains of *Escherichia coli*: (1) AB301-105(DE3), and, (2) BL21(DE3)

20 The procedures described below are followed in order to express suitable levels of insect-active double-stranded RNA of insect target in bacteria. An RNaseIII-deficient strain, AB301-105(DE3), is used in comparison to wild-type RNaseIII-containing bacteria, BL21(DE3).

Transformation of AB301-105(DE3) and BL21(DE3)

25 Three hundred ng of the plasmid are added to and gently mixed in a 50 µl aliquot of ice-chilled chemically competent *E. coli* strain AB301-105(DE3) or BL21(DE3). The cells are incubated on ice for 20 minutes before subjecting them to a heat shock treatment of 37 °C for 5 minutes, after which the cells are placed back on ice for a further 5 minutes. Four hundred and fifty µl of room temperature SOC medium is added to the cells and the suspension incubated on a shaker (250 rpm) at 37 °C for 1 hour. One hundred µl of the bacterial cell suspension is transferred to a 500 ml 30 conical flask containing 150 ml of liquid Luria-Bertani (LB) broth supplemented with 100 µg/ml carbenicillin antibiotic. The culture is incubated on an Innova 4430 shaker (250 rpm) at 37 °C overnight (16 to 18 hours).

Chemical induction of double-stranded RNA expression in AB301-105(DE3) and BL21(DE3)

35 Expression of double-stranded RNA from the recombinant vector, pGXXX0XX, in the bacterial strain AB301-105(DE3) or BL21(DE3) is made possible since all the genetic components for controlled expression are present. In the presence of the chemical inducer isopropylthiogalactoside, or IPTG, the T7 polymerase will drive the transcription of the target sequence in both antisense and sense directions since these are flanked by oppositely oriented T7 promoters.

The optical density at 600 nm of the overnight bacterial culture is measured using an appropriate spectrophotometer and adjusted to a value of 1 by the addition of fresh LB broth. Fifty ml of this culture is transferred to a 50 ml Falcon tube and the culture then centrifuged at 3000 g at 15 °C for 10 minutes. The supernatant is removed and the bacterial pellet resuspended in 50 ml of 5 fresh S complete medium (SNC medium plus 5 µg/ml cholesterol) supplemented with 100 µg/ml carbenicillin and 1 mM IPTG. The bacteria are induced for 2 to 4 hours at room temperature.

Heat treatment of bacteria

Bacteria are killed by heat treatment in order to minimize the risk of contamination of the artificial diet in the test plates. However, heat treatment of bacteria expressing double-stranded 10 RNA is not a prerequisite for inducing toxicity towards the insects due to RNA interference. The induced bacterial culture is centrifuged at 3000 g at room temperature for 10 minutes, the supernatant discarded and the pellet subjected to 80 °C for 20 minutes in a water bath. After heat treatment, the bacterial pellet is resuspended in 1.5 ml MilliQ water and the suspension transferred to a microfuge tube. Several tubes are prepared and used in the bioassays for each refreshment. 15 The tubes are stored at -20 °C until further use.

G. Laboratory trials to test *Escherichia coli* expressing dsRNA targets against *Epilachna varivestis*

Plant-based bioassays

Whole plants are sprayed with suspensions of chemically induced bacteria expressing 20 dsRNA prior to feeding the plants to MBB. The are grown from in a plant growth room chamber. The plants are caged by placing a 500 ml plastic bottle upside down over the plant with the neck of the bottle firmly placed in the soil in a pot and the base cut open and covered with a fine nylon mesh to permit aeration, reduce condensation inside and prevent insect escape. MMB are placed on each treated plant in the cage. Plants are treated with a suspension of *E. coli* AB301-105(DE3) 25 harboring the pGBNJ001 plasmids or pGN29 plasmid. Different quantities of bacteria are applied to the plants: for instance 66, 22, and 7 units, where one unit is defined as 10⁹ bacterial cells in 1 ml of a bacterial suspension at optical density value of 1 at 600 nm wavelength. In each case, a total volume of between 1 and 10 ml s sprayed on the plant with the aid of a vaporizer. One plant is used per treatment in this trial. The number of survivors are counted and the weight of each 30 survivor recorded.

Spraying plants with a suspension of *E. coli* bacterial strain AB301-105(DE3)-expressing target dsRNA from pGXXX0XX lead to a dramatic increase in insect mortality when compared to pGN29 control. These experiments show that double-stranded RNA corresponding to an insect gene target sequence produced in either wild-type or RNaseIII-deficient bacterial expression 35 systems is toxic towards the insect in terms of substantial increases in insect mortality and growth/development delay for larval survivors. It is also clear from these experiments that an exemplification is provided for the effective protection of plants/crops from insect damage by the use of a spray of a formulation consisting of bacteria expressing double-stranded RNA corresponding to an insect gene target.

Example 6: Anthonomus grandis (Cotton boll weevil)**A. Cloning *Anthonomus grandis* partial sequences**

High quality, intact RNA was isolated from the 3 instars of *Anthonomus grandis* (cotton boll weevil; source: Dr. Gary Benzon, Benzon Research Inc., 7 Kuhn Drive, Carlisle, Pennsylvania 17013, USA) using TRIzol Reagent (Cat. Nr. 15596-026/15596-018, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions. Genomic DNA present in the RNA preparation was removed by DNase treatment following the manufacturer's instructions (Cat. Nr. 1700, Promega). cDNA was generated using a commercially available kit (SuperScript™ III Reverse Transcriptase, Cat. Nr. 18080044, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions.

To isolate cDNA sequences comprising a portion of the AG001, AG005, AG010, AG014 and AG016 genes, a series of PCR reactions with degenerate primers were performed using AmpliTaq Gold (Cat. Nr. N8080240, Applied Biosystems) following the manufacturer's instructions.

The sequences of the degenerate primers used for amplification of each of the genes are given in Table 2-AG. These primers were used in respective PCR reactions with the following conditions: for AG001, AG005 and AG016, 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 50°C and 1 minute and 30 seconds at 72°C, followed by 7 minutes at 72°C; for AG010, 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 54°C and 2 minutes and 30 seconds at 72°C, followed by 7 minutes at 72°C; for AG014, 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 55°C and 1 minute at 72°C, followed by 7 minutes at 72°C. The resulting PCR fragments were analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR8/GW/TOPO vector (Cat. Nr. K2500-20, Invitrogen) and sequenced. The sequences of the resulting PCR products are represented by the respective SEQ ID NOs as given in Table 2-AG and are referred to as the partial sequences. The corresponding partial amino acid sequence are represented by the respective SEQ ID NOs as given in Table 3-AG.

B. dsRNA production of the *Anthonomus grandis* (cotton boll weevil) genes

dsRNA was synthesized in milligram amounts using the commercially available kit T7 Ribomax™ Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5' T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.

For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in Table 8-AG. A touchdown PCR was performed as follows: 1 minute at 95°C, followed by 20 cycles of 30 seconds at 95°C, 30 seconds at 60°C with a decrease in temperature of 0.5°C per cycle and 1 minute at 72°C, followed by 15 cycles of 30 seconds at 95°C, 30 seconds at 50°C and 1 minute at 72°C, followed by 10 minutes at 72°C. The anti-sense T7 template was generated using specific forward and specific T7 reverse

primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in Table 8-AG. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO₄ precipitation.

- 5 The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA for each of the target genes is given in Table 8-AG.

**C. Cloning of a CBW gene fragment in a vector suitable for bacterial production of
10 insect-active double-stranded RNA**

What follows is an example of cloning a DNA fragment corresponding to a CBW gene target in a vector for the expression of double-stranded RNA in a bacterial host, although any vector comprising a T7 promoter or any other promoter for efficient transcription in bacteria, may be used (reference to WO0001846).

- 15 The sequences of the specific primers used for the amplification of target genes are provided in Table 8-AG. The template used is the pCR8/GW/topo vector containing any of target sequences. The primers are used in a PCR reaction with the following conditions: 5 minutes at 98°C, followed by 30 cycles of 10 seconds at 98°C, 30 seconds at 55°C and 2 minutes at 72°C, followed by 10 minutes at 72°C. The resulting PCR fragment is analyzed on agarose gel, purified
20 (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), blunt-end cloned into Srf I-linearized pGNA49A vector (reference to WO00188121A1), and sequenced. The sequence of the resulting PCR product corresponds to the respective sequence as given in Table 8-AG. The recombinant vector harboring this sequence is named pGXXX0XX.

**D. Expression and production of a double-stranded RNA target in two strains of
25 Escherichia coli: (1) AB301-105(DE3), and, (2) BL21(DE3)**

The procedures described below are followed in order to express suitable levels of insect-active double-stranded RNA of insect target in bacteria. An RNaseIII-deficient strain, AB301-105(DE3), is used in comparison to wild-type RNaseIII-containing bacteria, BL21(DE3).

Transformation of AB301-105(DE3) and BL21(DE3)

- 30 Three hundred ng of the plasmid are added to and gently mixed in a 50 µl aliquot of ice-chilled chemically competent *E. coli* strain AB301-105(DE3) or BL21(DE3). The cells are incubated on ice for 20 minutes before subjecting them to a heat shock treatment of 37 °C for 5 minutes, after which the cells are placed back on ice for a further 5 minutes. Four hundred and fifty µl of room temperature SOC medium is added to the cells and the suspension incubated on a shaker (250 rpm) at 37 °C for 1 hour. One hundred µl of the bacterial cell suspension is transferred to a 500 ml conical flask containing 150 ml of liquid Luria-Bertani (LB) broth supplemented with 100 µg/ml carbenicillin antibiotic. The culture is incubated on an Innova 4430 shaker (250 rpm) at 37 °C overnight (16 to 18 hours).
- 35

Chemical induction of double-stranded RNA expression in AB301-105(DE3) and BL21(DE3)

Expression of double-stranded RNA from the recombinant vector, pGXXX0XX, in the bacterial strain AB301-105(DE3) or BL21(DE3) is made possible since all the genetic components for controlled expression are present. In the presence of the chemical inducer isopropylthiogalactoside, or IPTG, the T7 polymerase will drive the transcription of the target sequence in both antisense and sense directions since these are flanked by oppositely oriented T7 promoters.

The optical density at 600 nm of the overnight bacterial culture is measured using an appropriate spectrophotometer and adjusted to a value of 1 by the addition of fresh LB broth. Fifty ml of this culture is transferred to a 50 ml Falcon tube and the culture then centrifuged at 3000 g at 15 °C for 10 minutes. The supernatant is removed and the bacterial pellet resuspended in 50 ml of fresh S complete medium (SNC medium plus 5 µg/ml cholesterol) supplemented with 100 µg/ml carbenicillin and 1 mM IPTG. The bacteria are induced for 2 to 4 hours at room temperature.

Heat treatment of bacteria

Bacteria are killed by heat treatment in order to minimise the risk of contamination of the artificial diet in the test plates. However, heat treatment of bacteria expressing double-stranded RNA is not a prerequisite for inducing toxicity towards the insects due to RNA interference. The induced bacterial culture is centrifuged at 3000 g at room temperature for 10 minutes, the supernatant discarded and the pellet subjected to 80 °C for 20 minutes in a water bath. After heat treatment, the bacterial pellet is resuspended in 1.5 ml MilliQ water and the suspension transferred to a microfuge tube. Several tubes are prepared and used in the bioassays for each refreshment. The tubes are stored at -20 °C until further use.

E. Laboratory trials to test *Escherichia coli* expressing dsRNA targets against *Anthonomus grandis*

Plant-based bioassays

Whole plants are sprayed with suspensions of chemically induced bacteria expressing dsRNA prior to feeding the plants to CBW. The are grown from in a plant growth room chamber. The plants are caged by placing a 500 ml plastic bottle upside down over the plant with the neck of the bottle firmly placed in the soil in a pot and the base cut open and covered with a fine nylon mesh to permit aeration, reduce condensation inside and prevent insect escape. CBW are placed on each treated plant in the cage. Plants are treated with a suspension of *E. coli* AB301-105(DE3) harboring the pGXXX0XX plasmids or pGN29 plasmid. Different quantities of bacteria are applied to the plants: for instance 66, 22, and 7 units, where one unit is defined as 10⁹ bacterial cells in 1 ml of a bacterial suspension at optical density value of 1 at 600 nm wavelength. In each case, a total volume of between 1 and 10 ml s sprayed on the plant with the aid of a vaporizer. One plant is used per treatment in this trial. The number of survivors are counted and the weight of each survivor recorded.

Spraying plants with a suspension of *E. coli* bacterial strain AB301-105(DE3) expressing target dsRNA from pGXXX0XX lead to a dramatic increase in insect mortality when compared to pGN29 control. These experiments show that double-stranded RNA corresponding to an insect

gene target sequence produced in either wild-type or RNaseIII-deficient bacterial expression systems is toxic towards the insect in terms of substantial increases in insect mortality and growth/development delay for larval survivors. It is also clear from these experiments that an exemplification is provided for the effective protection of plants/crops from insect damage by the
5 use of a spray of a formulation consisting of bacteria expressing double-stranded RNA corresponding to an insect gene target.

Example 7: *Tribolium castaneum* (Red flour beetle)

A. Cloning *Tribolium castaneum* partial sequences

10 High quality, intact RNA was isolated from all the different insect stages of *Tribolium castaneum* (red flour beetle; source: Dr. Lara Senior, Insect Investigations Ltd., Capital Business Park, Wentloog, Cardiff, CF3 2PX, Wales, UK) using TRIzol Reagent (Cat. Nr. 15596-026/15596-018, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions. Genomic DNA present in the RNA preparation was removed by DNase treatment following the manufacturer's
15 instructions (Cat. Nr. 1700, Promega). cDNA was generated using a commercially available kit (SuperScript™ III Reverse Transcriptase, Cat. Nr. 18080044, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions.

To isolate cDNA sequences comprising a portion of the TC001, TC002, TC010, TC014 and TC015 genes, a series of PCR reactions with degenerate primers were performed using AmpliTaq Gold (Cat. Nr. N8080240, Applied Biosystems) following the manufacturer's instructions.
20

The sequences of the degenerate primers used for amplification of each of the genes are given in Table 2-TC. These primers were used in respective PCR reactions with the following conditions: 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 50°C and 1 minute and 30 seconds at 72°C, followed by 7 minutes at 72°C (TC001, TC014, TC015); 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 54°C and 2 minutes and 30 seconds at 72°C, followed by 7 minutes at 72°C (TC010); 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 53°C and 1 minute at 72°C, followed by 7 minutes at 72°C (TC002). The resulting PCR fragments were analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR8/GW/TOPO vector (Cat. Nr. K2500-20, Invitrogen), and sequenced. The sequences of the resulting PCR products are represented by the
25 respective SEQ ID NOs as given in Table 2-TC and are referred to as the partial sequences. The corresponding partial amino acid sequences are represented by the respective SEQ ID NOs as given in Table 3-TC.
30

B. dsRNA production of the *Tribolium castaneum* genes

35 dsRNA was synthesized in milligram amounts using the commercially available kit T7 Ribomax™ Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5' T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.

For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in Table 8-TC. The conditions in the PCR reactions were as follows: 1 minute at 95°C, followed by 20 cycles of 30 seconds at 95°C, 30 seconds at 60°C (-0.5°C/cycle) and 1 minute at 72°C, followed by 15 cycles of 30 seconds at 95°C, 30 seconds at 50°C and 1 minute at 72°C, followed by 10 minutes at 72°C. The anti-sense T7 template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in Table 8-TC. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO₄ precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA for each of the target genes is given in Table 8-TC.

C. Laboratory trials to test dsRNA targets, using artificial diet for activity against *Tribolium castaneum* larvae

The example provided below is an exemplification of the finding that the red flour beetle (RFB) larvae are susceptible to orally ingested dsRNA corresponding to own target genes.

Red flour beetles, *Tribolium castaneum*, were maintained at Insect Investigations Ltd. (origin: Imperial College of Science, Technology and Medicine, Silwood Park, Berkshire, UK). Insects were cultured according to company SOP/251/01. Briefly, the beetles were housed in plastic jars or tanks. These have an open top to allow ventilation. A piece of netting was fitted over the top and secured with an elastic band to prevent escape. The larval rearing medium (flour) was placed in the container where the beetles can breed. The stored product beetle colonies were maintained in a controlled temperature room at 25 ± 3 °C with a 16:8 hour light:dark cycle.

Double-stranded RNA from target TC014 (with sequence corresponding to SEQ ID NO - 799) was incorporated into a mixture of flour and milk powder (wholemeal flour: powdered milk in the ratio 4:1) and left to dry overnight. Each replicate was prepared separately: 100 µl of a 10 µg/µl dsRNA solution (1 mg dsRNA) was added to 0.1 g flour/milk mixture. The dried mixture was ground to a fine powder. Insects were maintained within Petri dishes (55 mm diameter), lined with a double layer of filter paper. The treated diet was placed between the two filter paper layers. Ten first instar, mixed sex larvae were placed in each dish (replicate). Four replicates were performed for each treatment. Control was Milli-Q water. Assessments (number of survivors) were made on a regular basis. During the trial, the test conditions were 25 – 33 °C and 20 – 25 % relative humidity, with a 12:12 hour light:dark photoperiod.

Survival of larvae of *T. castaneum* over time on artificial diet treated with target TC014 dsRNA was significantly reduced when compared to diet only control, as shown in Figure 1-TC.

D. Cloning of a RFB gene fragment in a vector suitable for bacterial production of insect-active double-stranded RNA

What follows is an example of cloning a DNA fragment corresponding to an RFB gene target in a vector for the expression of double-stranded RNA in a bacterial host, although any 5 vector comprising a T7 promoter or any other promoter for efficient transcription in bacteria, may be used (reference to WO0001846).

The sequences of the specific primers used for the amplification of target genes are provided in **Table 8-TC**. The template used is the pCR8/GW/topo vector containing any of target sequences. The primers are used in a PCR reaction with the following conditions: 5 minutes at 10 98°C, followed by 30 cycles of 10 seconds at 98°C, 30 seconds at 55°C and 2 minutes at 72°C, followed by 10 minutes at 72°C. The resulting PCR fragment is analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), blunt-end cloned into *Srf I*-linearized pGNA49A vector (reference to WO00188121A1), and sequenced. The sequence of the resulting PCR product corresponds to the respective sequence as given in **Table 8-TC**. The recombinant 15 vector harboring this sequence is named pGXXX0XX.

E. Expression and production of a double-stranded RNA target in two strains of *Escherichia coli*: (1) AB301-105(DE3), and, (2) BL21(DE3)

The procedures described below are followed in order to express suitable levels of insect-active double-stranded RNA of insect target in bacteria. An RNaseIII-deficient strain, AB301-20 105(DE3), is used in comparison to wild-type RNaseIII-containing bacteria, BL21(DE3).

Transformation of AB301-105(DE3) and BL21(DE3)

Three hundred ng of the plasmid are added to and gently mixed in a 50 µl aliquot of ice-chilled chemically competent *E. coli* strain AB301-105(DE3) or BL21(DE3). The cells are incubated on ice for 20 minutes before subjecting them to a heat shock treatment of 37 °C for 5 minutes, after 25 which the cells are placed back on ice for a further 5 minutes. Four hundred and fifty µl of room temperature SOC medium is added to the cells and the suspension incubated on a shaker (250 rpm) at 37 °C for 1 hour. One hundred µl of the bacterial cell suspension is transferred to a 500 ml conical flask containing 150 ml of liquid Luria-Bertani (LB) broth supplemented with 100 µg/ml carbenicillin antibiotic. The culture is incubated on an Innova 4430 shaker (250 rpm) at 37 °C 30 overnight (16 to 18 hours).

Chemical induction of double-stranded RNA expression in AB301-105(DE3) and BL21(DE3)

Expression of double-stranded RNA from the recombinant vector, pGXXX0XX, in the bacterial strain AB301-105(DE3) or BL21(DE3) is made possible since all the genetic components for controlled expression are present. In the presence of the chemical inducer 35 isopropylthiogalactoside, or IPTG, the T7 polymerase will drive the transcription of the target sequence in both antisense and sense directions since these are flanked by oppositely oriented T7 promoters.

The optical density at 600 nm of the overnight bacterial culture is measured using an appropriate spectrophotometer and adjusted to a value of 1 by the addition of fresh LB broth. Fifty

ml of this culture is transferred to a 50 ml Falcon tube and the culture then centrifuged at 3000 g at 15 °C for 10 minutes. The supernatant is removed and the bacterial pellet resuspended in 50 ml of fresh S complete medium (SNC medium plus 5 µg/ml cholesterol) supplemented with 100 µg/ml carbenicillin and 1 mM IPTG. The bacteria are induced for 2 to 4 hours at room temperature.

5 *Heat treatment of bacteria*

Bacteria are killed by heat treatment in order to minimise the risk of contamination of the artificial diet in the test plates. However, heat treatment of bacteria expressing double-stranded RNA is not a prerequisite for inducing toxicity towards the insects due to RNA interference. The induced bacterial culture is centrifuged at 3000 g at room temperature for 10 minutes, the 10 supernatant discarded and the pellet subjected to 80 °C for 20 minutes in a water bath. After heat treatment, the bacterial pellet is resuspended in 1.5 ml MilliQ water and the suspension transferred to a microfuge tube. Several tubes are prepared and used in the bioassays for each refreshment. The tubes are stored at -20 °C until further use.

F. Laboratory trials to test *Escherichia coli* expressing dsRNA targets against

15 *Tribolium castaneum*

Plant-based bioassays

Whole plants are sprayed with suspensions of chemically induced bacteria expressing dsRNA prior to feeding the plants to RFB. The are grown from in a plant growth room chamber. The plants are caged by placing a 500 ml plastic bottle upside down over the plant with the neck of 20 the bottle firmly placed in the soil in a pot and the base cut open and covered with a fine nylon mesh to permit aeration, reduce condensation inside and prevent insect escape. RFB are placed on each treated plant in the cage. Plants are treated with a suspension of *E. coli* AB301-105(DE3) harboring the pGXXX0XX plasmids or pGN29 plasmid. Different quantities of bacteria are applied to the plants: for instance 66, 22, and 7 units, where one unit is defined as 10⁹ bacterial cells in 25 1 ml of a bacterial suspension at optical density value of 1 at 600 nm wavelength. In each case, a total volume of between 1 and 10 ml s sprayed on the plant with the aid of a vaporizer. One plant is used per treatment in this trial. The number of survivors are counted and the weight of each survivor recorded.

Spraying plants with a suspension of *E. coli* bacterial strain AB301-105(DE3) expressing 30 target dsRNA from pGXXX0XX led to a dramatic increase in insect mortality when compared to pGN29 control. These experiments show that double-stranded RNA corresponding to an insect gene target sequence produced in either wild-type or RNaseIII-deficient bacterial expression systems is toxic towards the insect in terms of substantial increases in insect mortality and growth/development delay for larval survivors. It is also clear from these experiments that an 35 exemplification is provided for the effective protection of plants/crops from insect damage by the use of a spray of a formulation consisting of bacteria expressing double-stranded RNA corresponding to an insect gene target.

Example 8: *Myzus persicae* (Green peach aphid)

A. Cloning *Myzus persicae* partial sequences

High quality, intact RNA was isolated from nymphs of *Myzus persicae* (green peach aphid; source: Dr. Rachel Down, Insect & Pathogen Interactions, Central Science Laboratory, Sand Hutton, York, YO41 1LZ, UK) using TRIzol Reagent (Cat. Nr. 15596-026/15596-018, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions. Genomic DNA present in the RNA preparation was removed by DNase treatment following the manufacturer's instructions (Cat. Nr. 1700, Promega). cDNA was generated using a commercially available kit (SuperScript™ III Reverse Transcriptase, Cat. Nr. 18080044, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions.

To isolate cDNA sequences comprising a portion of the MP001, MP002, MP010, MP016 and MP027 genes, a series of PCR reactions with degenerate primers were performed using AmpliTaq Gold (Cat. Nr. N8080240, Applied Biosystems) following the manufacturer's instructions.

The sequences of the degenerate primers used for amplification of each of the genes are given in **Table 2-MP**. These primers were used in respective PCR reactions with the following conditions: for MP001, MP002 and MP016, 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 50°C and 1 minute 30 seconds at 72°C, followed by 7 minutes at 72°C; for MP027, a touchdown program was used: 10 minutes at 95°C, followed by 10 cycles of 30 seconds at 95°C, 40 seconds at 60°C with a decrease in temperature of 1°C per cycle and 1 minute 10 seconds at 72°C, followed by 30 cycles of 30 seconds at 95°C, 40 seconds at 50°C and 1 minute 10 seconds at 72°C, followed by 7 minutes at 72°C; for MP010, 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 54°C and 3 minutes at 72°C, followed by 7 minutes at 72°C. The resulting PCR fragments were analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR8/GW/TOPO vector (Cat. Nr. K2500-20, Invitrogen), and sequenced. The sequences of the resulting PCR products are represented by the respective SEQ ID NOs as given in **Table 2-MP** and are referred to as the partial sequences. The corresponding partial amino acid sequences are represented by the respective SEQ ID NOs as given in **Table 3-MP**.

B. dsRNA production of *Myzus persicae* genes

dsRNA was synthesized in milligram amounts using the commercially available kit T7 Ribomax™ Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5' T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.

For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in **Table 8-MP**. A touchdown PCR was performed as follows: 1 minute at 95°C, followed by 20 cycles of 30 seconds at 95°C, 30 seconds at 55°C (for MP001, MP002, MP016, MP027 and gfp) or 30 seconds at 50°C (for MP010) with a decrease in temperature of 0.5°C per cycle and 1 minute at 72°C, followed by 15 cycles of 30 seconds at 95°C, 30 seconds at 45°C and 1 minute at 72°C followed by 10 minutes at 72°C. The

anti-sense T7 template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in Table 8-MP. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit 5 (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO₄ precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA for each of the target genes is given in Table 8-MP.

10 **C. Laboratory trials of *Myzus persicae* (green peach aphid) infestation on transgenic *Arabidopsis thaliana* plants**

Generation of transgenic plants

15 *Arabidopsis thaliana* plants were transformed using the floral dip method (Clough and Bent (1998) *Plant Journal* 16:735-743). Aerial parts of the plants were incubated for a few seconds in a solution containing 5% sucrose, resuspended *Agrobacterium tumefaciens* strain C58C1 Rif cells from an overnight culture and 0.03% of the surfactant Silwet L-77. After inoculation, plants were covered for 16 hours with a transparent plastic to maintain humidity. To increase the transformation efficiency, the procedure was repeated after one week. Watering was stopped as seeds matured and dry seeds were harvested and cold-treated for two days. After sterilization, seeds were plated 20 on a kanamycin-containing growth medium for selection of transformed plants.

The selected plants are transferred to soil for optimal T2 seed production.

Bioassay

25 Transgenic *Arabidopsis thaliana* plants are selected by allowing the segregating T2 seeds to germinate on appropriate selection medium. When the roots of these transgenics are well-established they are then transferred to fresh artificial growth medium or soil and allowed to grow under optimal conditions. Whole transgenic plants are tested against nymphs of the green peach aphid (*Myzus persicae*) to show (1) a significant resistance to plant damage by the feeding nymph, (2) increased nymphal mortality, and/or (3) decreased weight of nymphal survivors (or any other aberrant insect development).

30 **D. Laboratory trials to test dsRNA targets using liquid artificial diet for activity against *Myzus persicae***

Liquid artificial diet for the green peach aphid, *Myzus persicae*, was prepared based on the diet suitable for pea aphids (*Acyrtosiphon pisum*), as described by Febvay et al. (1988) [Influence of the amino acid balance on the improvement of an artificial diet for a biotype of *Acyrtosiphon pisum* (Homoptera: Aphididae). *Can. J. Zool.* 66: 2449-2453], but with some modifications. The amino acids component of the diet was prepared as follows: in mg/100ml, alanine 178.71, beta-alanine 6.22, arginine 244.9, asparagine 298.55, aspartic acid 88.25, cysteine 29.59, glutamic acid 149.36, glutamine 445.61, glycine 166.56, histidine 136.02, isoleucine 164.75, leucine 231.56, lysine hydrochloride 351.09, methionine 72.35, ornithine (HCl) 9.41, phenylalanine 293, proline

129.33, serine 124.28, threonine 127.16, tryptophane 42.75, tyrosine 38.63, L-valine 190.85. The amino acids were dissolved in 30 ml Milli-Q H₂O except for tyrosine which was first dissolved in a few drops of 1 M HCl before adding to the amino acid mix. The vitamin mix component of the diet was prepared as a 5 x concentrate stock as follows: in mg/L, amino benzoic acid 100, ascorbic acid 5 1000, biotin 1, calcium pantothenate 50, choline chloride 500, folic acid 10, myoinositol 420, nicotinic acid 100; pyridoxine hydrochloride 25, riboflavin 5, thiamine hydrochloride 25. The riboflavin was dissolved in 1 ml H₂O at 50 °C and then added to the vitamin mix stock. The vitamin mix was aliquoted in 20 ml per aliquot and stored at -20 °C. One aliquot of vitamin mix was added to the amino acid solution. Sucrose and MgSO₄.7H₂O was added with the following amounts to the 10 mix: 20 g and 242 mg, respectively. Trace metal stock solution was prepared as follows: in mg/100ml, CuSO₄.5H₂O 4.7, FeCl₃.6H₂O 44.5, MnCl₂.4H₂O 6.5, NaCl 25.4, ZnCl₂ 8.3. Ten ml of the trace metal solution and 250 mg KH₂PO₄ was added to the diet and Milli-Q water was added to a final liquid diet volume of 100 ml. The pH of the diet was adjusted to 7 with 1 M KOH solution. The liquid diet was filter-sterilised through an 0.22 µm filter disc (Millipore).

15 Green peach aphids (*Myzus persicae*; source: Dr. Rachel Down, Insect & Pathogen Interactions, Central Science Laboratory, Sand Hutton, York, YO41 1LZ, UK) were reared on 4- to 6-week-old oilseed rape (*Brassica napus* variety SW Oban; source: Nick Balaam, Sw Seed Ltd., 49 North Road, Abington, Cambridge, CB1 6AS, UK) in aluminium-framed cages containing 70 µm mesh in a controlled environment chamber with the following conditions: 23 ±2 °C and 60 ±5 % 20 relative humidity, with a 16:8 hours light:dark photoperiod.

One day prior to the start of the bioassay, adults were collected from the rearing cages and placed on fresh detached oilseed rape leaves in a Petri dish and left overnight in the insect chamber. The following day, first-instar nymphs were picked and transferred to feeding chambers. A feeding chamber comprised of 10 first instar nymphs placed in a small Petri dish (with diameter 3 cm) covered with a single layer of thinly stretched parafilm M onto which 50 µl of diet was added. The chamber was sealed with a second layer of parafilm and incubated under the same conditions as the adult cultures. Diet with dsRNA was refreshed every other day and the insects' survival assessed on day 8 i.e. 8th day post bioassay start. Per treatment, 5 bioassay feeding chambers (replicates) were set up simultaneously. Test and control (gfp) dsRNA solutions were incorporated 25 into the diet to a final concentration of 2 µg/µl. The feeding chambers were kept at 23 ±2 °C and 60 ±5 % relative humidity, with a 16:8 hours light:dark photoperiod. A Mann-Whitney test was determined by GraphPad Prism version 4 to establish whether the medians do differ significantly 30 between target 27 (MP027) and gfp dsRNA.

In the bioassay, feeding liquid artificial diet supplemented with intact naked dsRNA from 35 target 27 (SEQ ID NO 1061) to nymphs of *Myzus persicae*, using a feeding chamber, resulted in a significant increase in mortality, as shown in Figure 1. Average percentage survivors for target 27, gfp dsRNA and diet only treatment were 2, 34 and 82, respectively. Comparison of target 027 with gfp dsRNA groups using the Mann-Whitney test resulted in an one-tailed P-value of 0.004 which indicates that the median of target 027 is significantly different (P < 0.05) from the expected larger 40 median of gfp dsRNA. The green peach aphids on the liquid diet with incorporated target 27

dsRNA were noticeably smaller than those that were fed on diet only or with gfp dsRNA control (data not presented).

E. Cloning of a GPA gene fragment in a vector suitable for bacterial production of insect-active double-stranded RNA

5 What follows is an example of cloning a DNA fragment corresponding to a GPA gene target in a vector for the expression of double-stranded RNA in a bacterial host, although any vector comprising a T7 promoter or any other promoter for efficient transcription in bacteria, may be used (reference to WO0001846).

10 The sequences of the specific primers used for the amplification of target genes are provided in **Table 8-MP**. The template used is the pCR8/GW/topo vector containing any of target sequences. The primers are used in a PCR reaction with the following conditions: 5 minutes at 98°C, followed by 30 cycles of 10 seconds at 98°C, 30 seconds at 55°C and 2 minutes at 72°C, followed by 10 minutes at 72°C. The resulting PCR fragment is analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), blunt-end cloned into *Srf* I-linearized 15 pGNA49A vector (reference to WO00188121A1), and sequenced. The sequence of the resulting PCR product corresponds to the respective sequence as given in **Table 8-MP**. The recombinant vector harboring this sequence is named pGXXX0XX.

F. Expression and production of a double-stranded RNA target in two strains of *Escherichia coli*: (1) AB301-105(DE3), and, (2) BL21(DE3)

20 The procedures described below are followed in order to express suitable levels of insect-active double-stranded RNA of insect target in bacteria. An RNaseIII-deficient strain, AB301-105(DE3), is used in comparison to wild-type RNaseIII-containing bacteria, BL21(DE3).

Transformation of AB301-105(DE3) and BL21(DE3)

25 Three hundred ng of the plasmid are added to and gently mixed in a 50 µl aliquot of ice-chilled chemically competent *E. coli* strain AB301-105(DE3) or BL21(DE3). The cells are incubated on ice for 20 minutes before subjecting them to a heat shock treatment of 37 °C for 5 minutes, after which the cells are placed back on ice for a further 5 minutes. Four hundred and fifty µl of room temperature SOC medium is added to the cells and the suspension incubated on a shaker (250 rpm) at 37 °C for 1 hour. One hundred µl of the bacterial cell suspension is transferred to a 500 ml 30 conical flask containing 150 ml of liquid Luria-Bertani (LB) broth supplemented with 100 µg/ml carbenicillin antibiotic. The culture is incubated on an Innova 4430 shaker (250 rpm) at 37 °C overnight (16 to 18 hours).

Chemical induction of double-stranded RNA expression in AB301-105(DE3) and BL21(DE3)

35 Expression of double-stranded RNA from the recombinant vector, pGXXX0XX, in the bacterial strain AB301-105(DE3) or BL21(DE3) is made possible since all the genetic components for controlled expression are present. In the presence of the chemical inducer isopropylthiogalactoside, or IPTG, the T7 polymerase will drive the transcription of the target sequence in both antisense and sense directions since these are flanked by oppositely oriented T7 promoters.

The optical density at 600 nm of the overnight bacterial culture is measured using an appropriate spectrophotometer and adjusted to a value of 1 by the addition of fresh LB broth. Fifty ml of this culture is transferred to a 50 ml Falcon tube and the culture then centrifuged at 3000 g at 15 °C for 10 minutes. The supernatant is removed and the bacterial pellet resuspended in 50 ml of 5 fresh S complete medium (SNC medium plus 5 µg/ml cholesterol) supplemented with 100 µg/ml carbenicillin and 1 mM IPTG. The bacteria are induced for 2 to 4 hours at room temperature.

Heat treatment of bacteria

Bacteria are killed by heat treatment in order to minimise the risk of contamination of the artificial diet in the test plates. However, heat treatment of bacteria expressing double-stranded 10 RNA is not a prerequisite for inducing toxicity towards the insects due to RNA interference. The induced bacterial culture is centrifuged at 3000 g at room temperature for 10 minutes, the supernatant discarded and the pellet subjected to 80 °C for 20 minutes in a water bath. After heat treatment, the bacterial pellet is resuspended in 1.5 ml MilliQ water and the suspension transferred to a microfuge tube. Several tubes are prepared and used in the bioassays for each refreshment. 15 The tubes are stored at -20 °C until further use.

G. Laboratory trials to test *Escherichia coli* expressing dsRNA targets against *Myzus persicae*

Plant-based bioassays

Whole plants are sprayed with suspensions of chemically induced bacteria expressing 20 dsRNA prior to feeding the plants to GPA. The are grown from in a plant growth room chamber. The plants are caged by placing a 500 ml plastic bottle upside down over the plant with the neck of the bottle firmly placed in the soil in a pot and the base cut open and covered with a fine nylon mesh to permit aeration, reduce condensation inside and prevent insect escape. GPA are placed on each treated plant in the cage. Plants are treated with a suspension of *E. coli* AB301-105(DE3) 25 harboring the pGXXX0XX plasmids or pGN29 plasmid. Different quantities of bacteria are applied to the plants: for instance 66, 22, and 7 units, where one unit is defined as 10⁹ bacterial cells in 1 ml of a bacterial suspension at optical density value of 1 at 600 nm wavelength. In each case, a total volume of between 1 and 10 ml s sprayed on the plant with the aid of a vaporizer. One plant is used per treatment in this trial. The number of survivors are counted and the weight of each 30 survivor recorded.

Spraying plants with a suspension of *E. coli* bacterial strain AB301-105(DE3) expressing target dsRNA from pGXXX0XX lead to a dramatic increase in insect mortality when compared to pGN29 control. These experiments show that double-stranded RNA corresponding to an insect gene target sequence produced in either wild-type or RNaseIII-deficient bacterial expression 35 systems is toxic towards the insect in terms of substantial increases in insect mortality and growth/development delay for larval survivors. It is also clear from these experiments that an exemplification is provided for the effective protection of plants/crops from insect damage by the use of a spray of a formulation consisting of bacteria expressing double-stranded RNA corresponding to an insect gene target.

Example 9: Nilaparvata lugens (Brown plant hopper)**A. Cloning *Nilaparvata lugens* partial sequences**

From high quality total RNA of *Nilaparvata lugens* (source: Dr. J. A. Gatehouse, Dept.

5 Biological Sciences, Durham University, UK) cDNA was generated using a commercially available kit (SuperScriptTM III Reverse Transcriptase, Cat N°. 18080044, Invitrogen, Rockville, Maryland, USA) following the manufacturer's protocol.

To isolate cDNA sequences comprising a portion of the *Nilaparvata lugens* NL001, NL002, NL003, NL004, NL005, NL006, NL007, NL008, NL009, NL010, NL011, NL012, NL013, NL014, 10 NL015, NL016, NL018, NL019, NL021, NL022, and NL027 genes, a series of PCR reactions with degenerate primers were performed using AmpliTaq Gold (Cat N°. N8080240; Applied Biosystems) following the manufacturer's protocol.

The sequences of the degenerate primers used for amplification of each of the genes are given in **Table 2-NL**. These primers were used in respective PCR reactions with the following 15 conditions: for NL001: 5 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 55°C and 1 minute at 72°C, followed by 10 minutes at 72°C; for NL002: 3 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 55°C and 1 minute at 72°C, followed by 10 minutes at 72°C; for NL003: 3 minutes at 95 °C, followed by 40 cycles of 30 seconds at 95 °C, 1 minute at 61 °C and 1 minute at 72 °C, followed by 10 minutes at 72°C; for NL004: 10 minutes at 95 °C, followed by 40 cycles of 30 seconds at 95 °C, 1 minute at 51 °C and 1 minute at 72 °C; for NL005: 10 minutes at 95 °C, followed by 40 cycles of 30 seconds at 95 °C, 1 minute at 54 °C and 1 minute at 72 °C, followed by 10 minutes at 72°C; for NL006: 10 minutes at 95 °C, followed by 40 cycles of 30 seconds at 95 °C, 1 minute at 55 °C and 3 minute 30 seconds at 72 °C, followed by 10 minutes at 72°C; for NL007: 10 minutes at 95 °C, followed by 40 cycles of 30 seconds at 95 °C, 1 minute at 54 °C and 1 minute 15 seconds at 72 °C, followed by 10 minutes at 72°C; for NL008 & NL014: 10 minutes at 95 °C, followed by 40 cycles of 30 seconds at 95 °C, 1 minute at 53 °C and 1 minute at 72 °C, followed by 10 minutes at 72°C; for NL009, NL011, NL012 & NL019: 10 minutes at 95 °C, followed by 40 cycles of 30 seconds at 95 °C, 1 minute at 55 °C and 1 minute at 72 °C, followed by 10 minutes at 72°C; for NL010: 10 minutes at 95 °C, followed by 40 cycles of 30 seconds at 95 °C, 1 minute at 54 °C and 2 minute 30 seconds at 72 °C, followed by 10 minutes at 72°C; for NL013: 10 minutes at 95 °C, followed by 40 cycles of 30 seconds at 95 °C, 1 minute at 54 °C and 1 minute 10 seconds at 72 °C, followed by 10 minutes at 72°C; for NL015 & NL016: 10 minutes at 95 °C, followed by 40 cycles of 30 seconds at 95 °C, 1 minute at 54 °C and 1 minute 40 seconds at 72 °C, followed by 10 minutes at 72°C; for NL018: 10 minutes at 95 °C, followed by 40 cycles of 30 seconds at 95 °C, 1 minute at 54 °C and 1 minute 35 seconds at 72 °C, followed by 10 minutes at 72°C; for NL021, NL022 & NL027: 10 minutes at 95 °C, followed by 40 cycles of 30 seconds at 95 °C, 1 minute at 54 °C and 1 minute 45 seconds at 72 °C, followed by 10 minutes at 72°C. The resulting PCR fragments were analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR8/GW/topo vector (Cat. Nr. K2500 20,

Invitrogen), and sequenced. The sequences of the resulting PCR products are represented by the respective SEQ ID NOs as given in Table 2-NL and are referred to as the partial sequences. The corresponding partial amino acid sequences are represented by the respective SEQ ID NOs as given in Table 3-NL.

5 **B. Cloning of a partial sequence of the *Nilaparvata lugens* NL023 gene via EST sequence**

From high quality total RNA of *Nilaparvata lugens* (source: Dr. J. A. Gatehouse, Dept. Biological Sciences, Durham University, UK) cDNA was generated using a commercially available kit (SuperScript™ III Reverse Transcriptase, Cat N°. 18080044, Invitrogen, Rockville, Maryland, 10 USA) following the manufacturer's protocol.

A partial cDNA sequence, NL023, was amplified from *Nilaparvata lugens* cDNA which corresponded to a *Nilaparvata lugens* EST sequence in the public database Genbank with accession number CAH65679.2. To isolate cDNA sequences comprising a portion of the NL023 gene, a series of PCR reactions with EST based specific primers were performed using 15 PerfectShot™ ExTaq (Cat N°. RR005A, Takara Bio Inc.) following the manufacturer's protocol.

For NL023, the specific primers oGBKW002 and oGBKW003 (represented herein as SEQ ID NO 1157 and SEQ ID NO 1158, respectively) were used in two independent PCR reactions with the following conditions: 3 minutes at 95 °C, followed by 30 cycles of 30 seconds at 95 °C, 30 seconds at 56 °C and 2 minutes at 72 °C, followed by 10 minutes at 72°C. The resulting PCR 20 products were analyzed on agarose gel, purified (QIAquick® Gel Extraction Kit; Cat. N°. 28706, Qiagen), cloned into the pCR4-TOPO vector (Cat N°. K4575-40, Invitrogen) and sequenced. The consensus sequence resulting from the sequencing of both PCR products is herein represented by SEQ ID NO 1111 and is referred to as the partial sequence of the NL023 gene. The corresponding partial amino acid sequence is herein reperesented as SEQ ID NO 1112.

25 **C. dsRNA production of *Nilaparvata lugens* genes**

dsRNA was synthesized in milligram amounts using the commercially available kit T7 Ribomax™ Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5' T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.

30 For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in Table 8-NL. The conditions in the PCR reactions were as follows: for NL001 & NL002: 4 minutes at 94 °C, followed by 35 cycles of 30 seconds at 94 °C, 30 seconds at 60 °C and 1 minute at 72 °C, followed by 10 minutes at 72°C; for 35 NL003: 4 minutes at 94 °C, followed by 35 cycles of 30 seconds at 94 °C, 30 seconds at 66 °C and 1 minute at 72 °C, followed by 10 minutes at 72°C; for NL004, NL006, NL008, NL009, NL010 & NL019: 4 minutes at 95 °C, followed by 35 cycles of 30 seconds at 95 °C, 30 seconds at 54 °C and 1 minute at 72 °C, followed by 10 minutes at 72°C; for NL005 & NL016: 4 minutes at 95 °C, followed by 35 cycles of 30 seconds at 95 °C, 30 seconds at 57 °C and 1 minute at 72 °C, followed

by 10 minutes at 72°C; for NL007 & NL014: 4 minutes at 95 °C, followed by 35 cycles of 30 seconds at 95 °C, 30 seconds at 51 °C and 1 minute at 72 °C, followed by 10 minutes at 72°C; for NL011, NL012 & NL022: 4 minutes at 95 °C, followed by 35 cycles of 30 seconds at 95 °C, 30 seconds at 53 °C and 1 minute at 72 °C, followed by 10 minutes at 72°C; for NL013, NL015, NL018
5 & NL021: 4 minutes at 95 °C, followed by 35 cycles of 30 seconds at 95 °C, 30 seconds at 55 °C and 1 minute at 72 °C, followed by 10 minutes at 72°C; for NL023 & NL027: 4 minutes at 95 °C, followed by 35 cycles of 30 seconds at 95 °C, 30 seconds at 52 °C and 1 minute at 72 °C, followed by 10 minutes at 72°C. The anti-sense T7 template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The
10 sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in **Table 8-NL**. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen). The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the
15 manufacturer's instructions, but with the following modification: RNA pepet is washed twice in 70% ethanol. The sense strand of the resulting dsRNA for each of the target genes is given in **Table 8-NL**.

The template DNA used for the PCR reactions with T7 primers on the green fluorescent protein (gfp) control was the plasmid pPD96.12 (the Fire Lab, <http://genome-www.stanford.edu/group/fire/>), which contains the wild-type gfp coding sequence interspersed by 3 synthetic introns. Double-stranded RNA was synthesized using the commercially available kit T7 RiboMAX™ Express RNAi System (Cat.N°. P1700, Promega). First two separate single 5' T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter. For gfp, the
20 sense T7 template was generated using the specific T7 FW primer oGAU183 and the specific RV primer oGAU182 (represented herein as SEQ ID NO 236 and SEQ ID NO 237 , respectively) in a PCR reaction with the following conditions: 4 minutes at 95 °C, followed by 35 cycles of 30 seconds at 95 °C, 30 seconds at 55 °C and 1 minute at 72 °C, followed by 10 minutes at 72°C. The anti-sense T7 template was generated using the specific FW primer oGAU181 and the specific T7 RV
25 primer oGAU184 (represented herein as SEQ ID NO 238 and SEQ ID NO 239 , respectively) in a PCR reaction with the same conditions as described above. The resulting PCR products were analyzed on agarose gel and purified (QIAquick® PCR Purification Kit; Cat. N°. 28106, Qiagen). The generated T7 FW and RV templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by precipitation with sodium
30 acetate and isopropanol, following the manufacturer's protocol, but with the following modification: RNA pepet is washed twice in 70% ethanol. The sense strands of the resulting dsRNA is herein represented by SEQ ID NO 235.

D. Laboratory trials to screen dsRNA targets using liquid artificial diet for activity against *Nilaparvata lugens*

- Liquid artificial diet (MMD-1) for the rice brown planthopper, *Nilaparvata lugens*, was prepared as described by Koyama (1988) [Artificial rearing and nutritional physiology of the planthoppers and leafhoppers (Homoptera: Delphacidae and Deltoccephalidae) on a holidic diet. JARQ 22: 20–27], but with a modification in final concentration of diet component sucrose: 14.4 %
- 5 (weight over volume) was used. Diet components were prepared as separate concentrates: 10 x mineral stock (stored at 4 °C), 2 x amino acid stock (stored at -20 °C) and 10 x vitamin stock (stored at -20 °C). The stock components were mixed immediately prior to the start of a bioassay to 4/3 x concentration to allow dilution with the test dsRNA solution (4 x concentration), pH adjusted to 6.5, and filter-sterilised into approximately 500 µl aliquots.
- 10 Rice brown planthopper (*Nilaparvata lugens*) was reared on two-to-three month old rice (*Oryza sativa* cv Taichung Native 1) plants in a controlled environment chamber: 27 ± 2 °C, 80 % relative humidity, with a 16:8 hours light:dark photoperiod. A feeding chamber comprised 10 first or second instar nymphs placed in a small petri dish (with diameter 3 cm) covered with a single layer of thinly stretched parafilm M onto which 50 µl of diet was added. The chamber was sealed with a
- 15 second layer of parafilm and incubated under the same conditions as the adult cultures but with no direct light exposure. Diet with dsRNA was refreshed every other 'day' and the insects' survival assessed daily. Per treatment, 5 bioassay feeding chambers (replicates) were set up simultaneously. Test and control (gfp) dsRNA solutions were incorporated into the diet to a final concentration of 2 mg/ml. The feeding chambers were kept at 27 ± 2 °C, 80 % relative humidity,
- 20 with a 16:8 hours light:dark photoperiod. Insect survival data were analysed using the Kaplan-Meier survival curve model and the survival between groups were compared using the logrank test (Prism version 4.0).

Feeding liquid artificial diet supplemented with intact naked dsRNAs to *Nilaparvata lugens* *in vitro* using a feeding chamber resulted in significant increases in nymphal mortalities as shown in

25 four separate bioassays (Figures 1(a)-(d)-NL; Tables 10-NL(a)-(d)) (Durham University). These results demonstrate that dsRNAs corresponding to different essential BPH genes showed significant toxicity towards the rice brown planthopper.

Effect of gfp dsRNA on BPH survival in these bioassays is not significantly different to survival on diet only

30 Tables 10-NL(a)-(d) show a summary of the survival of *Nilaparvata lugens* on artificial diet supplemented with 2 mg/ml (final concentration) of the following targets; in Table 10-NL(a): NL002, NL003, NL005, NL010; in Table 10-NL(b): NL009, NL016; in Table 10-NL(c): NL014, NL018; and in Table 10-NL(d): NL013, NL015, NL021. In the survival analysis column, the effect of RNAi is indicated as follows: + = significantly decreased survival compared to gfp dsRNA control (alpha <

35 0.05); - = no significant difference in survival compared to gfp dsRNA control. Survival curves were compared (between diet only and diet supplemented with test dsRNA, gfp dsRNA and test dsRNA, and diet only and gfp dsRNA) using the logrank test.

E. Laboratory trials to screen dsRNAs at different concentrations using artificial diet for activity against *Nilaparvata lugens*

Fifty μ l of liquid artificial diet supplemented with different concentrations of target NL002 dsRNA, namely 1, 0.2, 0.08, and 0.04 mg/ml (final concentration), was applied to the brown planthopper feeding chambers. Diet with dsRNA was refreshed every other day and the insects' survival assessed daily. Per treatment, 5 bioassay feeding chambers (replicates) were set up simultaneously. The feeding chambers were kept at 27 ± 2 °C, 80 % relative humidity, with a 16:8 hours light:dark photoperiod. Insect survival data were analysed using the Kaplan-Meier survival curve model and the survival between groups were compared using the logrank test (Prism version 4.0).

Feeding liquid artificial diet supplemented with intact naked dsRNAs of target NL002 at different concentrations resulted in significantly higher BPH mortalities at final concentrations of as low as 0.04 mg dsRNA per ml diet when compared with survival on diet only, as shown in **Figure 2-NL** and **Table 11-NL**. **Table 11-NL** summarizes the survival of *Nilaparvata lugens* artificial diet feeding trial supplemented with 1, 0.2, 0.08, & 0.04 mg/ml (final concentration) of target NL002. In the survival analysis column the effect of RNAi is indicated as follows: + = significantly decreases survival compared to diet only control ($\alpha < 0.05$); - = no significant differences in survival compared to diet only control. Survival curves were compared using the logrank test:

F. Cloning of a BPH gene fragment in a vector suitable for bacterial production of insect-active double-stranded RNA

What follows is an example of cloning a DNA fragment corresponding to a BPH gene target in a vector for the expression of double-stranded RNA in a bacterial host, although any vector comprising a T7 promoter or any other promoter for efficient transcription in bacteria, may be used (reference to WO0001846).

The sequences of the specific primers used for the amplification of target genes are provided in **Table 8-NL**. The template used is the pCR8/GW/topo vector containing any of target sequences. The primers are used in a PCR reaction with the following conditions: 5 minutes at 98°C, followed by 30 cycles of 10 seconds at 98°C, 30 seconds at 55°C and 2 minutes at 72°C, followed by 10 minutes at 72°C. The resulting PCR fragment is analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), blunt-end cloned into *Srf* I-linearized pGNA49A vector (reference to WO00188121A1), and sequenced. The sequence of the resulting PCR product corresponds to the respective sequence as given in **Table 8-NL**. The recombinant vector harboring this sequence is named pGXXX0XX.

G. Expression and production of a double-stranded RNA target in two strains of *Escherichia coli*: (1) AB301-105(DE3), and, (2) BL21(DE3)

The procedures described below are followed in order to express suitable levels of insect-active double-stranded RNA of insect target in bacteria. An RNaseIII-deficient strain, AB301-105(DE3), is used in comparison to wild-type RNaseIII-containing bacteria, BL21(DE3).

Transformation of AB301-105(DE3) and BL21(DE3)

Three hundred ng of the plasmid are added to and gently mixed in a 50 μ l aliquot of ice-chilled chemically competent *E. coli* strain AB301-105(DE3) or BL21(DE3). The cells are incubated

- on ice for 20 minutes before subjecting them to a heat shock treatment of 37 °C for 5 minutes, after which the cells are placed back on ice for a further 5 minutes. Four hundred and fifty µl of room temperature SOC medium is added to the cells and the suspension incubated on a shaker (250 rpm) at 37 °C for 1 hour. One hundred µl of the bacterial cell suspension is transferred to a 500 ml 5 conical flask containing 150 ml of liquid Luria-Bertani (LB) broth supplemented with 100 µg/ml carbenicillin antibiotic. The culture is incubated on an Innova 4430 shaker (250 rpm) at 37 °C overnight (16 to 18 hours).

Chemical induction of double-stranded RNA expression in AB301-105(DE3) and BL21(DE3)

- Expression of double-stranded RNA from the recombinant vector, pGXXX0XX, in the 10 bacterial strain AB301-105(DE3) or BL21(DE3) is made possible since all the genetic components for controlled expression are present. In the presence of the chemical inducer isopropylthiogalactoside, or IPTG, the T7 polymerase will drive the transcription of the target sequence in both antisense and sense directions since these are flanked by oppositely oriented T7 promoters.
- 15 The optical density at 600 nm of the overnight bacterial culture is measured using an appropriate spectrophotometer and adjusted to a value of 1 by the addition of fresh LB broth. Fifty ml of this culture is transferred to a 50 ml Falcon tube and the culture then centrifuged at 3000 g at 15 °C for 10 minutes. The supernatant is removed and the bacterial pellet resuspended in 50 ml of fresh S complete medium (SNC medium plus 5 µg/ml cholesterol) supplemented with 100 µg/ml 20 carbenicillin and 1 mM IPTG. The bacteria are induced for 2 to 4 hours at room temperature.

Heat treatment of bacteria

- Bacteria are killed by heat treatment in order to minimise the risk of contamination of the 25 artificial diet in the test plates. However, heat treatment of bacteria expressing double-stranded RNA is not a prerequisite for inducing toxicity towards the insects due to RNA interference. The induced bacterial culture is centrifuged at 3000 g at room temperature for 10 minutes, the supernatant discarded and the pellet subjected to 80 °C for 20 minutes in a water bath. After heat treatment, the bacterial pellet is resuspended in 1.5 ml MilliQ water and the suspension transferred to a microfuge tube. Several tubes are prepared and used in the bioassays for each refreshment. The tubes are stored at -20 °C until further use.

30 **H. Laboratory trials to test *Escherichia coli* expressing dsRNA targets against *Nilaparvata lugens***

Plant-based bioassays

- Whole plants are sprayed with suspensions of chemically induced bacteria expressing 35 dsRNA prior to feeding the plants to BPH. The are grown from in a plant growth room chamber. The plants are caged by placing a 500 ml plastic bottle upside down over the plant with the neck of the bottle firmly placed in the soil in a pot and the base cut open and covered with a fine nylon mesh to permit aeration, reduce condensation inside and prevent insect escape. BPH are placed on each treated plant in the cage. Plants are treated with a suspension of *E. coli* AB301-105(DE3) harboring the pGXXX0XX plasmids or pGN29 plasmid. Different quantities of bacteria are applied

to the plants: for instance 66, 22, and 7 units, where one unit is defined as 10^9 bacterial cells in 1 ml of a bacterial suspension at optical density value of 1 at 600 nm wavelength. In each case, a total volume of between 1 and 10 ml is sprayed on the plant with the aid of a vaporizer. One plant is used per treatment in this trial. The number of survivors are counted and the weight of each survivor recorded.

Spraying plants with a suspension of *E. coli* bacterial strain AB301-105(DE3) expressing target dsRNA from pGXXX0XX led to a dramatic increase in insect mortality when compared to pGN29 control. These experiments show that double-stranded RNA corresponding to an insect gene target sequence produced in either wild-type or RNaseIII-deficient bacterial expression systems is toxic towards the insect in terms of substantial increases in insect mortality and growth/development delay for larval survivors. It is also clear from these experiments that an exemplification is provided for the effective protection of plants/crops from insect damage by the use of a spray of a formulation consisting of bacteria expressing double-stranded RNA corresponding to an insect gene target.

15

Example 10: *Chilo suppressalis* (Rice striped stem borer)

A. Cloning of partial sequence of the *Chilo suppressalis* genes via family PCR

High quality, intact RNA was isolated from the 4 different larval stages of *Chilo suppressalis* (rice striped stem borer) using TRIzol Reagent (Cat. Nr. 15596-026/15596-018, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions. Genomic DNA present in the RNA preparation was removed by DNase treatment following the manufacturer's instructions (Cat. Nr. 1700, Promega). cDNA was generated using a commercially available kit (SuperScript™ III Reverse Transcriptase, Cat. Nr. 18080044, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions.

25 To isolate cDNA sequences comprising a portion of the CS001, CS002, CS003, CS006, CS007, CS009, CS011, CS013, CS014, CS015, CS016 and CS018 genes, a series of PCR reactions with degenerate primers were performed using AmpliTaq Gold (Cat. Nr. N8080240, Applied Biosystems) following the manufacturer's instructions.

The sequences of the degenerate primers used for amplification of each of the genes are 30 given in Table 2-CS. These primers were used in respective PCR reactions with the following conditions: 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 55°C and 1 minute at 72°C, followed by 10 minutes at 72°C. The resulting PCR fragments were analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR4/TOPO vector (Cat. Nr. K2500-20, Invitrogen), and sequenced. The sequences of the 35 resulting PCR products are represented by the respective SEQ ID NOs as given in Table 2-CS and are referred to as the partial sequences. The corresponding partial amino acid sequences are represented by the respective SEQ ID NOs as given in Table 3-CS.

B. dsRNA production of the *Chilo suppressalis* genes

dsRNA was synthesized in milligram amounts using the commercially available kit T7 Ribomax™ Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5' T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.

- 5 For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in Table 8-CS. The conditions in the PCR reactions were as follows: 4 minutes at 95°C, followed by 35 cycles of 30 seconds at 95°C, 30 seconds at 55°C and 1 minute at 72°C, followed by 10 minutes at 72°C. The anti-sense T7
10 template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in Table 8-CS. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO₄ precipitation. The generated
15 T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA for each of the target genes is given in Table 8-CS.

20 **C. Laboratory trials to test dsRNA targets, using artificial diet for activity against *Chilo suppressalis* larvae**

- Rice striped stem borers, *Chilo suppressalis*, (origin: Syngenta, Stein, Switzerland) were maintained on a modified artificial diet based on that described by Kamano and Sato, 1985 (in: Handbook of Insect Rearing. Volumes I & II. P Singh and RF Moore, eds., Elsevier Science Publishers, Amsterdam and New York, 1985, pp 448). Briefly, a litre diet was made up as follows:
25 20 g of agar added to 980 ml of Milli-Q water and autoclaved; the agar solution was cooled down to approximately 55 °C and the remaining ingredients were added and mixed thoroughly: 40 g corn flour (Polenta), 20 g cellulose, 30 g sucrose, 30 g casein, 20 g wheat germ (toasted), 8 g Wesson salt mixture, 12 g Vanderzant vitamin mix, 1.8 g sorbic acid, 1.6 g nipagin (methylparaben), 0.3 g aureomycin, 0.4 g cholesterol and 0.6 g L-cysteine. The diet was cooled down to approx. 45 °C and
30 poured into rearing trays or cups. The diet was left to set in a horizontal laminair flow cabin. Rice leaf sections with oviposited eggs were removed from a cage housing adult moths and pinned to the solid diet in the rearing cup or tray. Eggs were left to hatch and neonate larvae were available for bioassays and the maintenance of the insect cultures. During the trials and rearings, the conditions were 28 ± 2 °C and 80 ± 5 % relative humidity, with a 16:8 hour light:dark photoperiod.
35 The same artificial diet is used for the bioassays but in this case the diet is poured equally in 24 multiwell plates, with each well containing 1 ml diet. Once the diet is set, the test formulations are applied to the diet's surface (2 cm²), at the rate of 50 µl of 1 µg/µl dsRNA of target. The dsRNA solutions are left to dry and two first instar moth larvae are placed in each well. After 7 days, the larvae are transferred to fresh treated diet in multiwell plates. At day 14 (i.e. 14 days post bioassay

start) the number of live and dead insects is recorded and examined for abnormalities. Twenty-four larvae in total are tested per treatment.

An alternative bioassay is performed in which treated rice leaves are fed to neonate larvae of the rice striped stem borer. Small leaf sections of *Indica* rice variety Taichung native 1 are 5 dipped in 0.05 % Triton X-100 solution containing 1 µg/µl of target dsRNA, left to dry and each section placed in a well of a 24 multiwell plate containing gellified 2 % agar. Two neonates are transferred from the rearing tray to each dsRNA treated leaf section (24 larvae per treatment). After 4 and 8 days, the larvae are transferred to fresh treated rice leaf sections. The number of live and dead larvae are assessed on days 4, 8 and 12; any abnormalities are also recorded.

10 **D. Cloning of a SSB gene fragment in a vector suitable for bacterial production of insect-active double-stranded RNA**

What follows is an example of cloning a DNA fragment corresponding to an SSB gene target in a vector for the expression of double-stranded RNA in a bacterial host, although any vector comprising a T7 promoter or any other promoter for efficient transcription in bacteria, may be 15 used (reference to WO0001846).

The sequences of the specific primers used for the amplification of target genes are provided in Table 8-CS. The template used is the pCR8/GW/topo vector containing any of target sequences. The primers are used in a PCR reaction with the following conditions: 5 minutes at 98°C, followed by 30 cycles of 10 seconds at 98°C, 30 seconds at 55°C and 2 minutes at 72°C, 20 followed by 10 minutes at 72°C. The resulting PCR fragment is analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), blunt-end cloned into *Srf* I-linearized pGNA49A vector (reference to WO00188121A1), and sequenced. The sequence of the resulting PCR product corresponds to the respective sequence as given in Table 8-CS. The recombinant vector harboring this sequence is named pGXXX0XX.

25 **E. Expression and production of a double-stranded RNA target in two strains of *Escherichia coli*: (1) AB301-105(DE3), and, (2) BL21(DE3)**

The procedures described below are followed in order to express suitable levels of insect-active double-stranded RNA of insect target in bacteria. An RNaseIII-deficient strain, AB301-105(DE3), is used in comparison to wild-type RNaseIII-containing bacteria, BL21(DE3).

30 **Transformation of AB301-105(DE3) and BL21(DE3)**

Three hundred ng of the plasmid are added to and gently mixed in a 50 µl aliquot of ice-chilled chemically competent *E. coli* strain AB301-105(DE3) or BL21(DE3). The cells are incubated on ice for 20 minutes before subjecting them to a heat shock treatment of 37 °C for 5 minutes, after which the cells are placed back on ice for a further 5 minutes. Four hundred and fifty µl of room 35 temperature SOC medium is added to the cells and the suspension incubated on a shaker (250 rpm) at 37 °C for 1 hour. One hundred µl of the bacterial cell suspension is transferred to a 500 ml conical flask containing 150 ml of liquid Luria-Bertani (LB) broth supplemented with 100 µg/ml carbenicillin antibiotic. The culture is incubated on an Innova 4430 shaker (250 rpm) at 37 °C overnight (16 to 18 hours).

Chemical induction of double-stranded RNA expression in AB301-105(DE3) and BL21(DE3)

Expression of double-stranded RNA from the recombinant vector, pGXXX0XX, in the bacterial strain AB301-105(DE3) or BL21(DE3) is made possible since all the genetic components for controlled expression are present. In the presence of the chemical inducer 5 isopropylthiogalactoside, or IPTG, the T7 polymerase will drive the transcription of the target sequence in both antisense and sense directions since these are flanked by oppositely oriented T7 promoters.

The optical density at 600 nm of the overnight bacterial culture is measured using an appropriate spectrophotometer and adjusted to a value of 1 by the addition of fresh LB broth. Fifty 10 ml of this culture is transferred to a 50 ml Falcon tube and the culture then centrifuged at 3000 g at 15 °C for 10 minutes. The supernatant is removed and the bacterial pellet resuspended in 50 ml of fresh S complete medium (SNC medium plus 5 µg/ml cholesterol) supplemented with 100 µg/ml carbenicillin and 1 mM IPTG. The bacteria are induced for 2 to 4 hours at room temperature.

Heat treatment of bacteria

15 Bacteria are killed by heat treatment in order to minimise the risk of contamination of the artificial diet in the test plates. However, heat treatment of bacteria expressing double-stranded RNA is not a prerequisite for inducing toxicity towards the insects due to RNA interference. The induced bacterial culture is centrifuged at 3000 g at room temperature for 10 minutes, the supernatant discarded and the pellet subjected to 80 °C for 20 minutes in a water bath. After heat 20 treatment, the bacterial pellet is resuspended in 1.5 ml MilliQ water and the suspension transferred to a microfuge tube. Several tubes are prepared and used in the bioassays for each refreshment. The tubes are stored at -20 °C until further use.

F. Laboratory trials to test *Escherichia coli* expressing dsRNA targets against *Chilo suppressalis*

25 Plant-based bioassays

Whole plants are sprayed with suspensions of chemically induced bacteria expressing dsRNA prior to feeding the plants to SSB. The are grown from in a plant growth room chamber. The plants are caged by placing a 500 ml plastic bottle upside down over the plant with the neck of the bottle firmly placed in the soil in a pot and the base cut open and covered with a fine nylon 30 mesh to permit aeration, reduce condensation inside and prevent insect escape. SSB are placed on each treated plant in the cage. Plants are treated with a suspension of *E. coli* AB301-105(DE3) harboring the pGXXX0XX plasmids or pGN29 plasmid. Different quantities of bacteria are applied to the plants: for instance 66, 22, and 7 units, where one unit is defined as 10⁹ bacterial cells in 1 ml of a bacterial suspension at optical density value of 1 at 600 nm wavelength. In each case, a 35 total volume of between 1 and 10 ml s sprayed on the plant with the aid of a vaporizer. One plant is used per treatment in this trial. The number of survivors are counted and the weight of each survivor recorded.

Spraying plants with a suspension of *E. coli* bacterial strain AB301-105(DE3) expressing target dsRNA from pGXXX0XX lead to a dramatic increase in insect mortality when compared to

pGN29 control. These experiments show that double-stranded RNA corresponding to an insect gene target sequence produced in either wild-type or RNaseIII-deficient bacterial expression systems is toxic towards the insect in terms of substantial increases in insect mortality and growth/development delay for larval survivors. It is also clear from these experiments that an exemplification is provided for the effective protection of plants/crops from insect damage by the use of a spray of a formulation consisting of bacteria expressing double-stranded RNA corresponding to an insect gene target.

Example 11: *Plutella xylostella* (Diamondback moth)

10 **A. Cloning of a partial sequence of the *Plutella xylostella***

High quality, intact RNA was isolated from all the different larval stages of *Plutella xylostella* (Diamondback moth; source: Dr. Lara Senior, Insect Investigations Ltd., Capital Business Park, Wentloog, Cardiff, CF3 2PX, Wales, UK) using TRIzol Reagent (Cat. Nr. 15596-026/15596-018, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions. Genomic DNA present in the RNA preparation was removed by DNase treatment following the manufacturer's instructions (Cat. Nr. 1700, Promega). cDNA was generated using a commercially available kit (SuperScript™ III Reverse Transcriptase, Cat. Nr. 18080044, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions.

To isolate cDNA sequences comprising a portion of the PX001, PX009, PX010, PX015, PX016 genes, a series of PCR reactions with degenerate primers were performed using Amplitaq Gold (Cat. Nr. N8080240, Applied Biosystems) following the manufacturer's instructions.

The sequences of the degenerate primers used for amplification of each of the genes are given in Table 2-PX. These primers were used in respective PCR reactions with the following conditions: 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 50°C and 25 1 minute and 30 seconds at 72°C, followed by 7 minutes at 72°C (for PX001, PX009, PX015, PX016); 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 54°C and 2 minute and 30 seconds at 72°C, followed by 7 minutes at 72°C (for PX010). The resulting PCR fragments were analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR8/GW/TOPO vector (Cat. Nr. K2500-20, Invitrogen) and sequenced. 30 The sequences of the resulting PCR products are represented by the respective SEQ ID NOs as given in Table 2-PX and are referred to as the partial sequences. The corresponding partial amino acid sequence are represented by the respective SEQ ID NOs as given in Table 3-PX.

B. dsRNA production of the *Plutella xylostella* genes

dsRNA was synthesized in milligram amounts using the commercially available kit T7 35 Ribomax™ Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5' T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.

For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the

sense template for each of the target genes are given in Table 8-PX. The conditions in the PCR reactions were as follows: 1 minute at 95°C, followed by 20 cycles of 30 seconds at 95°C, 30 seconds at 60°C (-0.5°C/cycle) and 1 minute at 72°C, followed by 15 cycles of 30 seconds at 95°C, 30 seconds at 50°C and 1 minute at 72°C, followed by 10 minutes at 72°C. The anti-sense T7
5 template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in Table 8-PX. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO₄ precipitation. The generated
10 T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA for each of the target genes is given in Table 8-PX.

**C. Laboratory trials to test dsRNA targets, using artificial diet for activity against
15 *Plutella xylostella* larvae**

Diamond-back moths, *Plutella xylostella*, were maintained at Insect Investigations Ltd. (origin: Newcastle University, Newcastle-upon-Tyne, UK). The insects were reared on cabbage leaves. First instar, mixed sex larvae (approximately 1 day old) were selected for use in the trial. Insects were maintained in Eppendorf tubes (1.5 ml capacity). Commercially available Diamond-
20 back moth diet (Bio-Serv, NJ, USA), prepared following the manufacturer's instructions, was placed in the lid of each tube (0.25 ml capacity, 8 mm diameter). While still liquid, the diet was smoother over to remove excess and produce an even surface.

Once the diet has set the test formulations are applied to the diet's surface, at the rate of 25 µl undiluted formulation (1 µg/µl dsRNA of targets) per replicate. The test formulations are
25 allowed to dry and one first instar moth larva is placed in each tube. The larva is placed on the surface of the diet in the lid and the tube carefully closed. The tubes are stored upside down, on their lids such that each larva remains on the surface of the diet. Twice weekly the larvae are transferred to new Eppendorf tubes with fresh diet. The insects are provided with treated diet for the first two weeks of the trial and thereafter with untreated diet.

30 Assessments are made twice weekly for a total of 38 days at which point all larvae are dead. At each assessment the insects are assessed as live or dead and examined for abnormalities. Forty single larva replicates are performed for each of the treatments. During the trial the test conditions are 23 to 26 °C and 50 to 65 % relative humidity, with a 16:8 hour light:dark photoperiod.

35 D. Cloning of a DBM gene fragment in a vector suitable for bacterial production of insect-active double-stranded RNA

What follows is an example of cloning a DNA fragment corresponding to a DBM gene target in a vector for the expression of double-stranded RNA in a bacterial host, although any

vector comprising a T7 promoter or any other promoter for efficient transcription in bacteria, may be used (reference to WO0001846).

The sequences of the specific primers used for the amplification of target genes are provided in Table 8-PX. The template used is the pCR8/GW/topo vector containing any of target sequences. The primers are used in a PCR reaction with the following conditions: 5 minutes at 98°C, followed by 30 cycles of 10 seconds at 98°C, 30 seconds at 55°C and 2 minutes at 72°C, followed by 10 minutes at 72°C. The resulting PCR fragment is analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), blunt-end cloned into *Srf I*-linearized pGNA49A vector (reference to WO00188121A1), and sequenced. The sequence of the resulting PCR product corresponds to the respective sequence as given in Table 8-PX. The recombinant vector harboring this sequence is named pGXXX0XX.

E. Expression and production of a double-stranded RNA target in two strains of *Escherichia coli*: (1) AB301-105(DE3), and, (2) BL21(DE3)

The procedures described below are followed in order to express suitable levels of insect-active double-stranded RNA of insect target in bacteria. An RNaseIII-deficient strain, AB301-105(DE3), is used in comparison to wild-type RNaseIII-containing bacteria, BL21(DE3).

Transformation of AB301-105(DE3) and BL21(DE3)

Three hundred ng of the plasmid are added to and gently mixed in a 50 µl aliquot of ice-chilled chemically competent *E. coli* strain AB301-105(DE3) or BL21(DE3). The cells are incubated on ice for 20 minutes before subjecting them to a heat shock treatment of 37 °C for 5 minutes, after which the cells are placed back on ice for a further 5 minutes. Four hundred and fifty µl of room temperature SOC medium is added to the cells and the suspension incubated on a shaker (250 rpm) at 37 °C for 1 hour. One hundred µl of the bacterial cell suspension is transferred to a 500 ml conical flask containing 150 ml of liquid Luria-Bertani (LB) broth supplemented with 100 µg/ml carbenicillin antibiotic. The culture is incubated on an Innova 4430 shaker (250 rpm) at 37 °C overnight (16 to 18 hours).

Chemical induction of double-stranded RNA expression in AB301-105(DE3) and BL21(DE3)

Expression of double-stranded RNA from the recombinant vector, pGXXX0XX, in the bacterial strain AB301-105(DE3) or BL21(DE3) is made possible since all the genetic components for controlled expression are present. In the presence of the chemical inducer isopropylthiogalactoside, or IPTG, the T7 polymerase will drive the transcription of the target sequence in both antisense and sense directions since these are flanked by oppositely oriented T7 promoters.

The optical density at 600 nm of the overnight bacterial culture is measured using an appropriate spectrophotometer and adjusted to a value of 1 by the addition of fresh LB broth. Fifty ml of this culture is transferred to a 50 ml Falcon tube and the culture then centrifuged at 3000 g at 15 °C for 10 minutes. The supernatant is removed and the bacterial pellet resuspended in 50 ml of fresh S complete medium (SNC medium plus 5 µg/ml cholesterol) supplemented with 100 µg/ml carbenicillin and 1 mM IPTG. The bacteria are induced for 2 to 4 hours at room temperature.

Heat treatment of bacteria

Bacteria are killed by heat treatment in order to minimise the risk of contamination of the artificial diet in the test plates. However, heat treatment of bacteria expressing double-stranded RNA is not a prerequisite for inducing toxicity towards the insects due to RNA interference. The 5 induced bacterial culture is centrifuged at 3000 g at room temperature for 10 minutes, the supernatant discarded and the pellet subjected to 80 °C for 20 minutes in a water bath. After heat treatment, the bacterial pellet is resuspended in 1.5 ml MilliQ water and the suspension transferred to a microfuge tube. Several tubes are prepared and used in the bioassays for each refreshment. The tubes are stored at -20 °C until further use.

10 F. Laboratory trials to test *Escherichia coli* expressing dsRNA targets against *Plutella xylostella*

Plant-based bioassays

Whole plants are sprayed with suspensions of chemically induced bacteria expressing dsRNA prior to feeding the plants to DBM. They are grown from in a plant growth room chamber. 15 The plants are caged by placing a 500 ml plastic bottle upside down over the plant with the neck of the bottle firmly placed in the soil in a pot and the base cut open and covered with a fine nylon mesh to permit aeration, reduce condensation inside and prevent insect escape. DBM are placed on each treated plant in the cage. Plants are treated with a suspension of *E. coli* AB301-105(DE3) harboring the pGXXX0XXplasmids or pGN29 plasmid. Different quantities of bacteria are applied to 20 the plants: for instance 66, 22, and 7 units, where one unit is defined as 10^9 bacterial cells in 1 ml of a bacterial suspension at optical density value of 1 at 600 nm wavelength. In each case, a total volume of between 1 and 10 ml is sprayed on the plant with the aid of a vaporizer. One plant is used per treatment in this trial. The number of survivors are counted and the weight of each survivor recorded.

25 Spraying plants with a suspension of *E. coli* bacterial strain AB301-105(DE3) expressing target dsRNA from pGXXX0XX lead to a dramatic increase in insect mortality when compared to pGN29 control. These experiments show that double-stranded RNA corresponding to an insect gene target sequence produced in either wild-type or RNaseIII-deficient bacterial expression systems is toxic towards the insect in terms of substantial increases in insect mortality and 30 growth/development delay for larval survivors. It is also clear from these experiments that an exemplification is provided for the effective protection of plants/crops from insect damage by the use of a spray of a formulation consisting of bacteria expressing double-stranded RNA corresponding to an insect gene target.

35 Example 12: *Acheta domesticus* (House cricket)

A. Cloning *Acheta domesticus* partial sequences

High quality, intact RNA was isolated from all the different insect stages of *Acheta domesticus* (house cricket; source: Dr. Lara Senior, Insect Investigations Ltd., Capital Business Park, Wentloog, Cardiff, CF3 2PX, Wales, UK) using TRIzol Reagent (Cat. Nr. 15596-026/15596-

018, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions. Genomic DNA present in the RNA preparation was removed by DNase treatment following the manufacturer's instructions (Cat. Nr. 1700, Promega). cDNA was generated using a commercially available kit (SuperScript™ III Reverse Transcriptase, Cat. Nr. 18080044, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions.

To isolate cDNA sequences comprising a portion of the AD001, AD002, AD009, AD015 and AD016 genes, a series of PCR reactions with degenerate primers were performed using AmpliTaq Gold (Cat. Nr. N8080240, Applied Biosystems) following the manufacturer's instructions.

The sequences of the degenerate primers used for amplification of each of the genes are given in Table 2-AD. These primers were used in respective PCR reactions with the following conditions: 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 50°C and 1 minute and 30 seconds at 72°C, followed by 7 minutes at 72°C. The resulting PCR fragments were analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR8/GW/topo vector (Cat. Nr. K2500 20, Invitrogen) and sequenced. The sequences of the resulting PCR products are represented by the respective SEQ ID NOs as given in Table 2-AD and are referred to as the partial sequences. The corresponding partial amino acid sequence are represented by the respective SEQ ID NOs as given in Table 3-AD.

B. dsRNA production of the *Acheta domesticus* genes

dsRNA was synthesized in milligram amounts using the commercially available kit T7 Ribomax™ Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5' T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.

For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in Table 8-AD. The conditions in the PCR reactions were as follows: 1 minute at 95°C, followed by 20 cycles of 30 seconds at 95°C, 30 seconds at 60°C (-0.5°C/cycle) and 1 minute at 72°C, followed by 15 cycles of 30 seconds at 95°C, 30 seconds at 50°C and 1 minute at 72°C, followed by 10 minutes at 72°C. The anti-sense T7 template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in Table 8-AD. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO₄ precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA for each of the target genes is given in Table 8-AD.

C. Laboratory trials to test dsRNA targets, using artificial diet for activity against *Acheta domesticus* larvae

House crickets, *Acheta domesticus*, were maintained at Insect Investigations Ltd. (origin: Blades Biological Ltd., Kent, UK). The insects were reared on bran pellets and cabbage leaves. Mixed sex nymphs of equal size and no more than 5 days old were selected for use in the trial.

Double-stranded RNA is mixed with a wheat-based pelleted rodent diet (rat and mouse standard diet, B & K Universal Ltd., Grimston, Aldbrough, Hull, UK). The diet, BK001P, contains the following ingredients in descending order by weight: wheat, soya, wheatfeed, barley, pellet binder, rodent 5 vit min, fat blend, dicalcium phosphate, mould carb. The pelleted rodent diet is finely ground and heat-treated in a microwave oven prior to mixing, in order to inactivate any enzyme components.

All rodent diet is taken from the same batch in order to ensure consistency. The ground diet and dsRNA are mixed thoroughly and formed into small pellets of equal weight, which are allowed to dry overnight at room temperature.

Double-stranded RNA samples from targets and gfp control at concentrations 10 µg/µl were applied in the ratio 1 g ground diet plus 1 ml dsRNA solution, thereby resulting in an application rate of 10 mg dsRNA per g pellet. Pellets are replaced weekly. The insects are provided with treated pellets for the first three weeks of the trial. Thereafter untreated pellets are provided. Insects are maintained within lidded plastic containers (9 cm diameter, 4.5 cm deep), ten per container. Each arena contains one treated bait pellet and one water source (damp cotton wool ball), each placed in a separate small weigh boat. The water is replenished *ad lib* throughout the experiment.

Assessments are made at twice weekly intervals, with no more than four days between assessments, until all the control insects had either died or moulted to the adult stage (84 days). At each assessment the insects are assessed as live or dead, and examined for abnormalities. From day 46 onwards, once moulting to adult has commenced, all insects (live and dead) are assessed as nymph or adult. Surviving insects are weighed on day 55 of the trial. Four replicates are performed for each of the treatments. During the trial the test conditions are 25 to 33 °C and 20 to 25 % relative humidity, with a 12:12 hour light:dark photoperiod.

D. Cloning of a HC gene fragment in a vector suitable for bacterial production of insect-active double-stranded RNA

What follows is an example of cloning a DNA fragment corresponding to a HC gene target in a vector for the expression of double-stranded RNA in a bacterial host, although any vector comprising a T7 promoter or any other promoter for efficient transcription in bacteria, may be used (reference to WO0001846).

The sequences of the specific primers used for the amplification of target genes are provided in Table 8-AD. The template used is the pCR8/GW/topo vector containing any of target sequences. The primers are used in a PCR reaction with the following conditions: 5 minutes at 98°C, followed by 30 cycles of 10 seconds at 98°C, 30 seconds at 55°C and 2 minutes at 72°C, followed by 10 minutes at 72°C. The resulting PCR fragment is analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), blunt-end cloned into Srf I-linearized pGNA49A vector (reference to WO00188121A1), and sequenced. The sequence of the resulting

PCR product corresponds to the respective sequence as given in Table 8-AD. The recombinant vector harboring this sequence is named pGXXX0XX.

E. Expression and production of a double-stranded RNA target in two strains of *Escherichia coli*: (1) AB301-105(DE3), and, (2) BL21(DE3)

5 The procedures described below are followed in order to express suitable levels of insect-active double-stranded RNA of insect target in bacteria. An RNaseIII-deficient strain, AB301-105(DE3), is used in comparison to wild-type RNaseIII-containing bacteria, BL21(DE3).

Transformation of AB301-105(DE3) and BL21(DE3)

10 Three hundred ng of the plasmid are added to and gently mixed in a 50 µl aliquot of ice-chilled chemically competent *E. coli* strain AB301-105(DE3) or BL21(DE3). The cells are incubated on ice for 20 minutes before subjecting them to a heat shock treatment of 37 °C for 5 minutes, after which the cells are placed back on ice for a further 5 minutes. Four hundred and fifty µl of room temperature SOC medium is added to the cells and the suspension incubated on a shaker (250 rpm) at 37 °C for 1 hour. One hundred µl of the bacterial cell suspension is transferred to a 500 ml

15 conical flask containing 150 ml of liquid Luria-Bertani (LB) broth supplemented with 100 µg/ml carbenicillin antibiotic. The culture is incubated on an Innova 4430 shaker (250 rpm) at 37 °C overnight (16 to 18 hours).

Chemical induction of double-stranded RNA expression in AB301-105(DE3) and BL21(DE3)

20 Expression of double-stranded RNA from the recombinant vector, pGXXX0XX, in the bacterial strain AB301-105(DE3) or BL21(DE3) is made possible since all the genetic components for controlled expression are present. In the presence of the chemical inducer isopropylthiogalactoside, or IPTG, the T7 polymerase will drive the transcription of the target sequence in both antisense and sense directions since these are flanked by oppositely oriented T7 promoters.

25 The optical density at 600 nm of the overnight bacterial culture is measured using an appropriate spectrophotometer and adjusted to a value of 1 by the addition of fresh LB broth. Fifty ml of this culture is transferred to a 50 ml Falcon tube and the culture then centrifuged at 3000 g at 15 °C for 10 minutes. The supernatant is removed and the bacterial pellet resuspended in 50 ml of fresh S complete medium (SNC medium plus 5 µg/ml cholesterol) supplemented with 100 µg/ml

30 carbenicillin and 1 mM IPTG. The bacteria are induced for 2 to 4 hours at room temperature.

Heat treatment of bacteria

Bacteria are killed by heat treatment in order to minimise the risk of contamination of the artificial diet in the test plates. However, heat treatment of bacteria expressing double-stranded RNA is not a prerequisite for inducing toxicity towards the insects due to RNA interference. The 35 induced bacterial culture is centrifuged at 3000 g at room temperature for 10 minutes, the supernatant discarded and the pellet subjected to 80 °C for 20 minutes in a water bath. After heat treatment, the bacterial pellet is resuspended in 1.5 ml MilliQ water and the suspension transferred to a microfuge tube. Several tubes are prepared and used in the bioassays for each refreshment. The tubes are stored at -20 °C until further use.

F. Laboratory trials to test *Escherichia coli* expressing dsRNA targets against
Acheta domesticus

Plant-based bioassays

Whole plants are sprayed with suspensions of chemically induced bacteria expressing
5 dsRNA prior to feeding the plants to HC. The are grown from in a plant growth room chamber. The plants are caged by placing a 500 ml plastic bottle upside down over the plant with the neck of the bottle firmly placed in the soil in a pot and the base cut open and covered with a fine nylon mesh to permit aeration, reduce condensation inside and prevent insect escape. HC are placed on each treated plant in the cage. Plants are treated with a suspension of *E. coli* AB301-105(DE3) harboring
10 the pGXXX0XX plasmids or pGN29 plasmid. Different quantities of bacteria are applied to the plants: for instance 66, 22, and 7 units, where one unit is defined as 10^9 bacterial cells in 1 ml of a bacterial suspension at optical density value of 1 at 600 nm wavelength. In each case, a total volume of between 1 and 10 ml s sprayed on the plant with the aid of a vaporizer. One plant is used per treatment in this trial. The number of survivors are counted and the weight of each
15 survivor recorded.

Spraying plants with a suspension of *E. coli* bacterial strain AB301-105(DE3) expressing target dsRNA from pGXXX0XX leads to a dramatic increase in insect mortality when compared to pGN29 control. These experiments show that double-stranded RNA corresponding to an insect gene target sequence produced in either wild-type or RNaseIII-deficient bacterial expression
20 systems is toxic towards the insect in terms of substantial increases in insect mortality and growth/development delay for larval survivors. It is also clear from these experiments that an exemplification is provided for the effective protection of plants/crops from insect damage by the use of a spray of a formulation consisting of bacteria expressing double-stranded RNA corresponding to an insect gene target.

Table 1A

<i>C. elegans</i> Id	<i>D. melanogaster</i> Id	Description	devgen RNAi screen
B0250.1	CG1263	large ribosomal subunit L8 protein.	Acute lethal or lethal
B0336.10	CG3661	large ribosomal subunit L23 protein.	Acute lethal or lethal
B0336.2	CG8385	ADP-ribosylation factor.	Acute lethal or lethal
B0464.1	CG3821	Putative aspartyl(D) tRNA synthetase.	Acute lethal or lethal
C01G8.5	CG10701	Ortholog of the ERM family of cytoskeletal linkers	Acute lethal or lethal
C01H6.5	CG33183	Nuclear hormone receptor that is required in all larval molts	Acute lethal or lethal
C02C6.1	CG18102	Member of the DYNamin related gene class	Acute lethal or lethal
C03D6.8	CG6764	Larger ribosomal subunit L24 protein (Rpl24p)	Acute lethal or lethal
C04F12.4	CG6253	rpl-14 encodes a large ribosomal subunit L14 protein.	Acute lethal or lethal
C04H5.6	CG10689	Product with RNA helicase activity (EC:2.7.7.-) involved in nuclear mRNA splicing, via spliceosome which is a component of the spliceosome complex	Embryonic lethal or sterile
C13B9.3	CG14813	Delta subunit of the coatomer (COP1) complex	Acute lethal or lethal
C17H12.14	CG1088	Member of the Vacuolar H ATPase gene class	Acute lethal or lethal
C26E6.4	CG3180	DNA-directed RNA polymerase II	Acute lethal or lethal
F23F12.6	CG16916	Triple A ATPase subunit of the 26S proteasome's 19S regulatory particle (RP) base subcomplex	Acute lethal or lethal
F57B9.10	CG10149	Member of the proteasome Regulatory Particle, Non-ATPase-like gene class	Acute lethal or lethal
K11D9.2	CG3725	sarco-endoplasmic reticulum Ca[2+] ATPase homolog	Embryonic lethal or sterile
T20G5.1	CG9912	Clathrin heavy chain	Acute lethal or lethal
T20H4.3	CG5394	Predicted cytoplasmic prolyl-tRNA synthetase (Prtrs)	Acute lethal or lethal
T21E12.4	CG7507	Cytoplasmic dynein heavy chain homolog	Acute lethal or lethal
C05C10.3	CG1140	Orthologue to the human gene 3-OXOACID COA TRANSFERASE	Acute lethal or lethal
C09D4.5	CG2746	Ribosomal protein L19, structural constituent of ribosome involved in protein biosynthesis which is localised to the ribosome	Acute lethal or lethal
C09E10.2	CG31140	Orthologue of diacylglycerol kinase involved in movement, egg laying, and synaptic transmission, and is expressed in neurons.	Acute lethal or lethal
C13B9.3	CG14813	Delta subunit of the coatomer (COP1)	Acute lethal or lethal

C14B9.7	CG12775	Large ribosomal subunit L21 protein (RPL-21) involved in protein biosynthesis	Acute lethal or lethal
C15H11.7	CG30382	Type 6 alpha subunit of the 26S proteasome's 20S protease core particle (CP)	Acute lethal or lethal
C17E4.9	CG9261	Protein involved with Na ⁺ /K ⁺ - exchanging ATPase complex	Embryonic lethal or sterile
C17H12.14	CG1088	V-ATPase E subunit	Acute lethal or lethal
C23G10.4	CG11888	Non-ATPase subunit of the 26S proteasome's 19S regulatory particle base subcomplex (RPN-2)	Acute lethal or lethal
C26D10.2	CG7269	Product with helicase activity involved in nuclear mRNA splicing, via spliceosome which is localized to the nucleus	Acute lethal or lethal
C26E6.4	CG3180.	RNA polymerase II 140kD subunit (RP1140), DNA-directed RNA polymerase activity (EC:2.7.7.6) involved in transcription from Pol II promoter which is a component of the DNA-directed RNA polymerase II, core complex	Acute lethal or lethal
C26F1.4	CG15697	Product with function in protein biosynthesis and ubiquitin in protein degradation.	Acute lethal or lethal
C30C11.1	CG12220	Unknown function	Acute lethal or lethal
C30C11.2	CG10484	Member of the proteasome Regulatory Particle, Non-ATPase-like gene class	Acute lethal or lethal
C36A4.2	CG13977	cytochrome P450	Acute lethal or lethal
C37C3.6	CG33103	Orthologous to thrombospondin, papilin and lacunin	Acute lethal or lethal
C37H5.8	CG8542	Member of the Heat Shock Protein gene class	Acute lethal or lethal
C39F7.4	CG3320	Rab-protein 1 involved in cell adhesion	Acute lethal or lethal
C41C4.8	CG2331	Transitional endoplasmic reticulum ATPase TER94, Golgi organization and biogenesis	Growth delay or arrested in growth
C42D8.5	CG8827	ACE-like protein	Acute lethal or lethal
C47E12.5	CG1782	Ubiquitin-activating enzyme, function in an ATP-dependent reaction that activates ubiquitin prior to its conjugation to proteins that will subsequently be degraded by the 26S proteasome.	Acute lethal or lethal
C47E8.5	CG1242	Member of the abnormal DAuer Formation gene class	Acute lethal or lethal
C49H3.11	CG5320	Small ribosomal subunit S2 protein.	Acute lethal or lethal

C52E4.4	CG1341	Member of the proteasome Regulatory Particle, ATPase-like gene class	Acute lethal or lethal
C56C10.3	CG8055	Carrier protein with putatively involved in intracellular protein transport	Growth delay or arrested in growth
CD4.6	CG4904	Type 1 alpha subunit of the 26S proteasome's 20S protease core particle (CP).	Acute lethal or lethal
D1007.12	CG9282	Large ribosomal subunit L24 protein.	Acute lethal or lethal
D1054.2	CG5266	Member of the Proteasome Alpha Subunit gene class	Acute lethal or lethal
D1081.8	CG6905	MYB transforming protein	Acute lethal or lethal
F07D10.1	CG7726	Large ribosomal subunit L11 protein (RPL-11.2) involved in protein biosynthesis.	Acute lethal or lethal
F11C3.3	CG17927	Muscle myosin heavy chain (MHC B)	Acute lethal or lethal
F13B10.2	CG4863	Large ribosomal subunit L3 protein (rpl-3)	Acute lethal or lethal
F16A11.2	CG9987	Methanococcus hypothetical protein 0682 like	Acute lethal or lethal
F20B6.2	CG17369	V-ATPase B subunit	Growth delay or arrested in growth
F23F12.6	CG16916	Triple A ATPase subunit of the 26S proteasome's 19S regulatory particle (RP) base subcomplex (RPT-3)	Acute lethal or lethal
F25H5.4	CG2238	Translation elongation factor 2 (EF-2), a GTP-binding protein involved in protein synthesis	Growth delay or arrested in growth
F26D10.3	CG4264	Member of the Heat Shock Protein gene class	Acute lethal or lethal
F28C6.7	CG6846	Large ribosomal subunit L26 protein (RPL-26) involved in protein biosynthesis	Embryonic lethal or sterile
F28D1.7	CG8415	Small ribosomal subunit S23 protein (RPS-23) involved in protein biosynthesis	Acute lethal or lethal
F29G9.5	CG5289	Member of the proteasome Regulatory Particle, ATPase-like gene class	Acute lethal or lethal
F32H2.5	CG3523	Mitochondrial protein	Acute lethal or lethal
F37C12.11	CG2986	Small ribosomal subunit S21 protein (RPS-21) involved in protein biosynthesis	Acute lethal or lethal
F37C12.4	CG7622	Large ribosomal subunit L36 protein (RPL-36) involved in protein biosynthesis	Acute lethal or lethal

F37C12.9	CG1527	Small ribosomal subunit S14 protein (RPS-14) involved in protein biosynthesis	Acute lethal or lethal
F38E11.5	CG6699	'beta' (beta-prime) subunit of the coatomer (COP1) complex	Acute lethal or lethal
F39B2.6	CG10305	Small ribosomal subunit S26 protein (RPS-26) involved in protein biosynthesis	Acute lethal or lethal
F39H11.5	CG12000	Member of the Proteasome Beta Subunit gene class	Acute lethal or lethal
F40F8.10	CG3395	Ribosomal protein S9 (RpS9), structural constituent of ribosome involved in protein biosynthesis which is a component of the cytosolic small ribosomal subunit	Acute lethal or lethal
F42C5.8	CG7808	Small ribosomal subunit S8 protein (RPS-8) involved in protein biosynthesis	Acute lethal or lethal
F49C12.8	CG5378	Member of the proteasome Regulatory Particle, Non-ATPase-like gene class	Acute lethal or lethal
F53A3.3	CG2033	Small ribosomal subunit S15a protein.	Acute lethal or lethal
F53G12.10	CG4897	Large ribosomal subunit L7 protein (rl-7)	Acute lethal or lethal
F54A3.3	CG8977	Unknown function	Acute lethal or lethal
F54E2.3	CG1915	Product with salimimus (sis), myosin-light-chain kinase activity (EC:2.7.1.117) involved in mitotic chromosome condensation which is localized to the nucleus	
F54E7.2	CG11271	Small ribosomal subunit S12 protein (RPS-12) involved in protein biosynthesis	Acute lethal or lethal
F55A11.2	CG4214	Member of the SYNtaxin gene class	Acute lethal or lethal
F55A3.3	CG1828	Transcription factor	Acute lethal or lethal
F55C10.1	CG11217	Ortholog of calcineurin B, the regulatory subunit of the protein phosphatase 2B	Acute lethal or lethal
F56F3.5	CG2168	rps-1 encodes a small ribosomal subunit S3A protein.	Acute lethal or lethal
F57B9.10	CG10149	Member of the proteasome Regulatory Particle, Non-ATPase-like gene class	Acute lethal or lethal
F58F12.1	CG2968	ATP synthase	Acute lethal or lethal
F59E10.3	CG3948	Zeta subunit of the coatomer (COP1) complex	Acute lethal or lethal
JC8.3	CG3195	Large ribosomal subunit L12 protein (rl-12)	Acute lethal or lethal
K01G5.4	CG1404	Putative RAN small monomeric GTPase (cell adhesion)	Acute lethal or lethal
K04F10.4	CG18734	Subtilase	Acute lethal or lethal

K05C4.1	CG12323	Member of the Proteasome Beta Subunit gene class	Acute lethal or lethal
K07D4.3	CG18174	Putative proteasome regulatory particle, lid subcomplex, rpn11	Acute lethal or lethal
K11D9.2	CG3725	Sarco-endoplasmic reticulum Ca[2+] ATPase	Embryonic lethal or sterile; Acute lethal or lethal
M03F4.2	CG4027	An actin that is expressed in body wall and vulval muscles and the spermatheca.	Acute lethal or lethal
R06A4.9	CG1109	six WD40 repeats	Acute lethal or lethal
R10E11.1	CG15319	Putative transcriptional cofactor	Acute lethal or lethal
R12E2.3	CG3416	Protein with endopeptidase activity involved in proteolysis and peptidolysis	Acute lethal or lethal
F10C1.2	CG10119	Member of the Intermediate Filament, B gene class	Embryonic lethal or sterile
F35G12.8	CG11397	Homolog of the SMC4 subunit of mitotic condensin	Embryonic lethal or sterile
F53G12.1	CG5771	GTPase homologue	Embryonic lethal or sterile
F54E7.3	CG5055	PDZ domain-containing protein	Embryonic lethal or sterile
H28O16.1	CG3612	ATP synthase	Growth delay or arrested in growth
K12C11.2	CG4494	Member of the SUMO (ubiquitin-related) homolog gene class	Embryonic lethal or sterile
R12E2.3	CG3416	Member of the proteasome Regulatory Particle, Non-ATPase-like gene class	Acute lethal or lethal
R13A5.8	CG6141	Ribosomal protein L9, structural constituent of ribosome involved in protein biosynthesis which is localised to the ribosome	Acute lethal or lethal
T01C3.6	CG4046	rps-16 encodes a small ribosomal subunit S16 protein.	Acute lethal or lethal
T01H3.1	CG7007	proteinlipid protein PPA1 like protein	Acute lethal or lethal
T05C12.7	CG5374	Cytosolic chaperonin	Acute lethal or lethal
T05H4.6	CG5605	eukaryotic peptide chain release factor subunit 1	Acute lethal or lethal
T10H9.4	CG17248	N-syaptobrevin; v-SNARE, vesicle-mediated transport, synaptic vesicle	
T14F9.1	CG17332	ATPase subunit	Growth delay or arrested in growth
T20G5.1	CG9012	Clathrin heavy chain	Acute lethal or lethal
T21B10.7	CG7033	t-complex protein 1	Embryonic lethal or sterile
W09B12.1	CG17907	Acetylcholinesterase	
T27F2.1	CG8264	Member of the mammalian SKIP (Ski interacting protein) homolog gene	Acute lethal or lethal

		class	
ZC434.5	CG5394	predicted mitochondrial glutamyl-tRNA synthetase (GluRS)	Acute lethal or lethal
B0511.6	CG6375	helicase	Embryonic lethal or sterile
DY3.2	CG10119	Nuclear lamin; LMN-1 protein	Growth delay or arrested in growth
R13G10.1	CG11397	homolog of the SMC4 subunit of mitotic condensin	Wild Type
T26E3.7	CG3612	Predicted mitochondrial protein.	Growth delay or arrested in growth
Y113G7A.3	CG1250	GTPase activator, ER to Golgi protein transport, component of the Golgi stack	Acute lethal or lethal
Y43B11AR.4	CG11276	Ribosomal protein S4 (Rps4), structural constituent of ribosome involved in protein biosynthesis which is a component of the cytosolic small ribosomal subunit	Acute lethal or lethal
Y46G5A.4	CG5931	Y46G5A.4 gene	Acute lethal or lethal
Y71F9AL.17	CG7961	Alpha subunit of the coatomer (COP1) complex	Acute lethal or lethal
Y76B12C.7	CG10110	Gene cleavage and polyadenylation specificity factor	Embryonic lethal or sterile
Y37D8A.10	CG1751	Unknown function	Embryonic lethal or sterile
CG7765	C06G3.2	Member of the Kinesin-Like Protein gene class	Embryonic lethal or sterile
CG10922	C44E4.4	RNA-binding protein	Embryonic lethal or sterile
CG4145	F01G12.5	alpha-2 type IV collagen	Embryonic lethal or sterile
CG13391	F28H1.3	predicted cytoplasmic alanyl-tRNA synthetase (AlaRS)	Growth delay or arrested in growth
CG7765	R05D3.7	Member of the UNCoordinated gene class	Embryonic lethal or sterile
CG7398	R06A4.4	Member of the Importin Beta family gene class	Embryonic lethal or sterile
CG7436	T17E9.2	Unknown function	Embryonic lethal or sterile
CG2666	T25G3.2	putative chitin synthase	Embryonic lethal or sterile
CG17603	W04A8.7	TATA-binding protein associated factor TAF1L (TAF1 250)	Embryonic lethal or sterile

Table 1-LD

Target ID	Dm identifier	SEQ NO NA	SEQ ID NO AA	Function (based on Flybase)
LD001	CG11276	1	2	Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis which is a component of the cytosolic small ribosomal subunit
LD002	CG8055	3	4	Carrier protein with putatively involved in intracellular protein transport
LD003	CG3395	5	6	Ribosomal protein S9 (RpS9), structural constituent of ribosome involved in protein biosynthesis which is a component of the cytosolic small ribosomal subunit
LD006	CG3180	7	8	RNA polymerase II 140kD subunit (Rpl140), DNA-directed RNA polymerase activity (EC:2.7.7.6) involved in transcription from Pol II promoter which is a component of the DNA-directed RNA polymerase II, core complex
LD007	CG7269	9	10	Helicase at 25E (Hel25E), also known in FlyBase as Dbp25F, Hel, l(2)25Eb and l(2)k11511, pre-mRNA splicing factor activity involved in nuclear mRNA splicing, via spliceosome which is localized to the nucleus
LD010	CG1250	11	12	GTPase activator, ER to Golgi protein transport, component of the Golgi stack
LD011	CG1404	13	14	Tutative RAN small monomeric GTPase (cell adhesion)
LD014	CG1088	15	16	V-ATPase E subunit
LD015	CG2331	17	18	Transitional endoplasmic reticulum ATPase TERR94, Golgi organization and biogenesis
LD016	CG17369	19	20	V-ATPase B subunit
LD018	CG1915	21	22	Sallimus (sis), myosin-light-chain kinase activity (EC:2.7.1.117) involved in mitotic chromosome condensation which is localized to the nucleus
LD027	CG6699	23	24	Beta-coatamer protein, subunit of a multimeric complex that forms a membrane vesicle coat

Table 1-PC

Target ID	Dm Identifier	SEQ ID NO NA	SEQ ID NO AA	Function (based on Flybase)
PC001	CG11276	247	248	Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis which is a component of the cytosolic small ribosomal subunit
PC003	CG3395	249	250	Ribosomal protein S9 (RpS9), structural constituent of ribosome involved in protein biosynthesis

PC005	CG2746	251	252	which is a component of the cytosolic small ribosomal subunit
PC010	CG1250	253	254	Ribosomal protein L19, structural constituent of ribosome involved in protein biosynthesis which is localised to the ribosome
PC014	CG1088	255	256	GTPase activator, ER to Golgi prot transport, component of the Golgi stack
PC016	CG17369	257	258	V-ATPase B subunit
PC027	CG6699	259	260	Beta-coatamer protein, subunit of a multimeric complex that forms a membrane vesicle coat

Table 1-EV

Target ID	Dm Identifier	SEQ ID NO NA	SEQ ID NO AA	Function (based on Flybase)
EV005	CG2746	513	514	Ribosomal protein L19, structural constituent of ribosome involved in protein biosynthesis which is localised to the ribosome
EV009	CG9261	515	516	Protein involved with Na+/K+ - exchanging ATPase complex
EV010	CG1250	517	518	GTPase activator, ER to Golgi prot transport, component of the Golgi stack
EV015	CG2331	519	520	Transitional endoplasmic reticulum ATPase TER94, Golgi organization and biogenesis
EV016	CG17369	521	522	V-ATPase B subunit

Table 1-AG

Target ID	Dm Identifier	SEQ ID NO NA	SEQ ID NO AA	Function (based on Flybase)
AG001	CG11276	601	602	Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis which is a component of the cytosolic small ribosomal subunit
AG005	CG2746	603	604	Ribosomal protein L19, structural constituent of ribosome involved in protein biosynthesis which is localised to the ribosome
AG010	CG1250	605	606	GTPase activator, ER to Golgi prot transport, component of the Golgi stack
AG014	CG1088	607	608	V-ATPase E subunit

Table 1-TC

Target ID	Dm Identifier	SEQ ID NO NA	SEQ ID NO AA	Function (based on Flybase)
TC001	CG11276	793	794	Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis which is a component of the cytosolic small ribosomal subunit
TC002	CG8055	795	796	Protein with putatively involved in intracellular protein transport
TC010	CG1250	797	798	GTPase activator, ER to Golgi prot transport, component of the Golgi stack
TC014	CG1088	799	800	V-ATPase E subunit
TC015	CG2331	801	802	Transitional endoplasmic reticulum ATPase TER94, Golgi organization and biogenesis

Table 1-MP

Target ID	Dm Identifier	SEQ ID NO NA	SEQ ID NO AA	Function (based on Flybase)
MP001	CG11276	888	889	Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis which is a component of the cytosolic small ribosomal subunit
MP002	CG8055	890	891	Carrier protein with putatively involved in intracellular protein transport
MP010	CG1250	892	893	GTPase activator, ER to Golgi prot transport, component of the Golgi stack
MP016	CG17369	894	895	V-ATPase B subunit
MP027	CG6699	896	897	Beta-coatamer protein, subunit of a multimeric complex that forms a membrane vesicle coat

Table 1-NL

Target ID	Dm Identifier	SEQ ID NO NA	SEQ ID NO AA	Function (based on Flybase)
NL001	CG11276	1071	1072	Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis which is a component of the cytosolic small ribosomal subunit

NL002	CG8055	1073	1074	Protein with putatively involved in intracellular protein transport
NL003	CG3395	1075	1076	Ribosomal protein S9 (Rps9), structural constituent of ribosome involved in protein biosynthesis which is a component of the cytosolic small ribosomal subunit
NL004	CG6141	1077	1078	Ribosomal protein L9, structural constituent of ribosome involved in protein biosynthesis which is localised to the ribosome
NL005	CG2746	1079	1080	Ribosomal protein L19, structural constituent of ribosome involved in protein biosynthesis which is localised to the ribosome
NL006	CG3180	1081	1082	RNA polymerase II 140kD subunit (Rpl140), DNA-directed RNA polymerase activity (EC:2.7.7.6) involved in transcription from Pol II promoter which is a component of the DNA-directed RNA polymerase II, core complex
NL007	CG7269	1083	1084	Helicase at 25E (Hel25E), also known in FlyBase as Dbp25F, Hel, l(2)k11511, pre-mRNA splicing factor activity involved in nuclear mRNA splicing, via spliceosome which is localized to the nucleus
NL008	CG3416	1085	1086	Protein with endopeptidase activity involved in proteolysis and peptidolysis which is a component of the proteasome regulatory particle, lid subcomplex (<i>sensu Eukarya</i>)
NL009	CG9261	1087	1088	Protein Involved with Na+/K+- exchanging ATPase complex
NL010	CG1250	1089	1090	GTPase activator, ER to Golgi prot. transport, component of the Golgi stack
NL011	CG1404	1091	1092	Putative RAN small monomeric GTPase (cell adhesion)
NL012	CG17248	1093	1094	N-synaptobrevin; v-SNARE, vesicle-mediated transport, synaptic vesicle
NL013	CG18174	1095	1096	Putative proteasome regulatory particle, lid subcomplex, rpn11
NL014	CG1088	1097	1098	V-ATPase E subunit
NL015	CG2331	1099	1100	Transitional endoplasmic reticulum ATPase TER94, Golgi organization and biogenesis
NL016	CG17369	1101	1102	V-ATPase B subunit
NL018	CG1915	1103	1104	Sallimus (<i>sis</i>), myosin-light-chain kinase activity (EC:2.7.1.117) involved in mitotic chromosome condensation which is localized to the nucleus
NL019	CG3320	1105	1106	Rab-protein 1 involved in cell adhesion
NL021	CG10110	1107	1108	Gene cleavage and polyadenylation specificity factor

Table 1-CS

NL022	CG10689	1109	1110	Product with RNA helicase activity (EC:2.7.7.-) involved in nuclear mRNA splicing, via spliceosome which is a component of the spliceosome complex
NL023	CG17907	1111	1112	Acetylcholinesterase
NL027	CG6699	1113	1114	Beta-coatomer protein

Target ID	Dm Identifier	SEQ ID NO NA	SEQ ID NO AA	Function (based on Flybase)
CS001	CG11276	1682	1683	Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis which is a component of the cytosolic small ribosomal subunit
CS002	CG8055	1684	1685	Carrier protein with putatively involved in intracellular protein transport
CS003	CG3395	1686	1687	Ribosomal protein S9 (RpS9), structural constituent of ribosome involved in protein biosynthesis which is a component of the cytosolic small ribosomal subunit
CS006	CG3180	1688	1689	RNA polymerase II 140kD subunit (Rpl140), DNA-directed RNA polymerase activity (EC:2.7.7.6) involved in transcription from Pol II promoter which is a component of the DNA-directed RNA polymerase II, core complex
CS007	CG7269	1690	1691	Helicase at 25E (Hel25E), also known in FlyBase as Dbp25F, Hel, l(2)25Eb and l(2)k11511, pre-mRNA splicing factor activity involved in nuclear mRNA splicing, via spliceosome which is localized to the nucleus
CS009	CG9261	1692	1693	Protein Involved with Na+/K+- exchanging ATPase complex
CS011	CG1404	1694	1695	Tutative RAN small monomeric GTPase (cell adhesion)
CS013	CG18174	1696	1697	Putative proteasome regulatory particle, lid subcomplex, rpn11
CS014	CG1088	1698	1699	V-ATPase E subunit
CS015	CG2331	1700	1701	Transitional endoplasmic reticulum ATPase TER94, Golgi organization and biogenesis
CS016	CG17369	1702	1703	V-ATPase B subunit
CS018	CG1915	1704	1705	Sallimus (sis), myosin-light-chain kinase activity (EC:2.7.1.117) involved in mitotic chromosome condensation which is localized to the nucleus

Table 1-PX

Target ID	Dm identifier	SEQ ID NO AA	SEQ ID NO AA	Function (based on Flybase)
PX001	CG11276	2100	2101	Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis which is a component of the cytosolic small ribosomal subunit
PX009	CG9261	2102	2103	Protein involved with Na+/K+ - exchanging ATPase complex
PX010	CG1250	2104	2105	GTPase activator, ER to Golgi prot transport, component of the Golgi stack
PX015	CG2331	2106	2107	Transitional endoplasmic reticulum ATPase TER94, Golgi organization and biogenesis
PX016	CG17369	2108	2109	V-ATPase B subunit

Table 1-AD

Target ID	Dm identifier	SEQ ID NO AA	SEQ ID NO AA	Function (based on Flybase)
AD001	CG11276	2364	2365	Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis which is a component of the cytosolic small ribosomal subunit
AD002	CG8055	2366	2367	Carrier protein with putatively involved in intracellular protein transport
AD009	CG9261	2368	2369	Protein involved with Na+/K+ - exchanging ATPase complex
AD015	CG2331	2370	2371	Transitional endoplasmic reticulum ATPase TER94, Golgi organization and biogenesis
AD016	CG17369	2372	2373	V-ATPase B subunit

Table 2-LD

Target ID	Primer Forward 5' → 3'	Primer Reverse 5' → 3'	cDNA Sequence (sense strand)
LD001	SEQ ID NO: 25 GGCCCCAAGAA GCATTGAAAGC G	SEQ ID NO: 26 TAGCGGATGGT GCGDCCRTCT G	SEQ ID NO: 1 GGCCCCAAGCAAGGATTGAAGGCTTTGAATGCCCAAAGCATGGATGTTGATAATTGG GAGGTGTTTCGCACCTCTACAGGACCTCACAAATTGGGAGAGTCTTGGCCCTTG GGTGATCTTACGTAACCGATGAAAGTACTAAGGTAACGGCAAGTTACTAAGATTG TTATGCCAAAGGTTAACGATGGAAAAGTGGACCGACTCCAATTACCCCTGCTGG GTTTATGGATGTTATTACCATGGAAAAACTGGTAATTCCGACTCATCTATGATGTTAA

			AGGACGATTGCAGTCATCGTATTACTGCTGAGGAAGCAAAAGTACAACATGCAAAAGTC AGGAGGATGCCAAACTGGCCCAAAGGAATTCCCTCATAGTGACACACGACGGCCGACC ATCCGGCTA
LD002	SEQ ID NO: 27 GAGCGGCCAT GCAAGCVCTBA ARMRRAG	SEQ ID NO: 28 GCAATGTCACTC CATCAKRTCRT GCAC	SEQ ID NO: 3 GCAATGTCACTCATGTCGTTACATTGTCACGTCAGTTTATGGCTTCTTAAG AGCTTCAGCTGCATTTCATAGATTCCAATACTGTGGTGTCTACTAGCTCCCTCCAGAG CTTCTCGTGAAGTCAATAGTAGTTAAAGTGCCTATCTATTGCAACTGATTTCATAATC GCITCTTCCCGCTTCAGCGCTTGCATGGCCGCT
LD003	SEQ ID NO: 29 TCGGTCTTCTC GAAGACNTAYG TKAC	SEQ ID NO: 30 CAGGTCTTCC TCTTKACRCGD CC	SEQ ID NO: 5 CAGGITCTCTCTGACCGGTCAGGGGACCCACCAAGGAATGGGAGATTGAGCGAGAA GTCAATATGCTCTGGAAATCAAGTCTCACAAATGAAGCTGGAAATTTCACGACCTGCTAC GAACCCCTGATATGCTCTTGCAGGACCGACACGAGATGATGGATTGATTGATTGCAAGGCC CAACTTGAAAACCTTGTGTTGGAGACGTCGGTCAAGAAATTCTCAATCTTCAAACCCAAAGA GTAATCAAGCTTCAATACCGGTTCATACCGGTTCTCATCCAAACACTCCAAATACGCACCAACCGACGAAG GCAATTGCGCTCAAAACAAACCTGCGCTGATCTTCTTCCAAAGTCAGAAGTCTCTGGCAG CTTTACCGATTTTGCAAGGTATACTTGACTGCCAACACTTCAGTTGCTTCAAGACCA TATTCTCCATGATTTCAACTCTGATCAAGACGTGCTTTCATAAAGTGCCTGGGA
LD006	SEQ ID NO: 31 GGAGCGAGAC TACAACAYKA YRGYTGCC	SEQ ID NO: 32 CTCGAAACTGCT CYTCYTGATCR CC	SEQ ID NO: 7 GGAGCGAGACTACACAACTATGGCTGGAGGTGTTGCTCTGGTGTGGAAATAC ATCGACACTCTTGAAGAAGAAACTGTCATGATTGCGATGAAATCTGAGGATCTGGCAGG ACAAAGAAATTATGCTTATTGTACGGACCTACACCCACTGCGAAATCCACCCGGCCATGATCTT GGCGGTTGC CGCTCTTATACCTTCCCCTGATCATAACCGAGCCAAAGGAACACCTAC CAGAGCGCTATGGGTAAAGCTATGGGGTCTACATTACGAATTTCCACGTGGGGATG GACACCCCTGGCCACGTGCTATACCCGCACAAACCTCTGGTACTACCAAGGTCTATG GAGACTGGTTGGGGTCAAGAATTACAGCGGGTCAACAGTATACTGCTATTGCTT ATACTGGTTATAATCAAGAATTCTGTTATTCTGAACGGTCTGTGGAAAGAGGATT TCCGATCCGTGTTTATCGTTCTATAAAGATGCCGATCGAAAGCGAATTGGCGATCAAG AAGAGCGAGTCGAG
LD007	SEQ ID NO: 33 CCGAAGAAGGA YGTSAAGGGYA C	SEQ ID NO: 34 CGATGCAAGTA GGTGTCKGART CYTC	SEQ ID NO: 9 CGAAGAAGGGATGTGAAGGGTACTTACGTATCCATACACAGTTCAAGGCTTCAGAGATT TATTGAAACCGAAATTCTAAGGCTATAGTTGACTGGGTTTGAACACCCCTTCAGAAGTT CAGCACGAAATGATTCCCTCAAGCTGTCATGGCATGGACATTTCATGGCAAGCCAAATCTGG TATGGGCAAAACGGCAACTGGGACACTGCAACAAATTGAACCCAGGGGACAAT GTTGTTTACGTTGGGTGATGTGTCACACTCGTGAACACTGGCTTCAAAATCAGCAAAAGAGTA CGAGAGGTTCAAGTAAATATGCCCCAGTGTCAAGGTGGCGTCTTTGGAGGAATGGCCT

		<p>ATTGGCTAACCGATGAAGAAGTATTGAAAAACAAATGTCCAACACATTTGGGGGACGCCCTG GGCGTATTGTTGGCCTTGTCAAGTCTAGGAAGCTAGTCCTCAAGAACCTGAAACACTTCAT TCTTGATGAGTGGATAAAATGTTGAAGACTTGGATGATGAGGAGACGTCAGTCACACTCAGCAAAGAAA TACAGAAACACCCCTCACACCAAGTGTGAATGCAAGTGTCAAGTGTCAAGTGTCAAGTGTCAAGTGTCAAG TCAGGGCCGGTGTGCAAGAAGATGCAAGTGTCAAGTGTCAAGTGTCAAGTGTCAAGTGTCAAGTGTCAAG CCAATTGACGTTGCACGGATTACAACAGCATTACGTTAACCTAAAGAAAATGAAAAGAAAT AAAAAATTATTGAGTTGCTCGATGTTCTCGAATTGGCACAGTTGACTGAACAGAATTCCCAGCCATAGGAA GTTTCAAAAGGTGTGCTGACTGAACAGAATTGACGAGGTTGTCGGTATGACGAGTTGAAAGGATTTCCA TTCACAGAGGAATGGACCGAAAGAGGGTTGTCGGTATGACGAGTTGAAAGGATTTCCA GAAGAGAAATTGGTAGCTACGAATCTTGGCGTGGCATGGACACCTACTTGCATCG ATTGTCCTCAACTATGATATGCCAGGGACTCCGACACCTACTTGCATCG</p>
		<p>SEQ ID NO: 11 CTCTCAAGGATTCTGGATGTCCTGGCTTGGCTTGGCTGATAGGGTT GATTACCTTGGGAAGATGGTCCAAAGTGCACGAACACTTGGTACCCGAGGGCTGAGCAAATC TTACGTTTCCGAGGGACGAAAGACCTCAAGCTCAGTAAGCAAGTCAACACCAGGACAACCCATGAGGCT GGCAGAGGCCAGTAAGTGTCTCAACCTGCTCAGTAAGCAGGGTCCCTCAACCCATCTCGAAA GGAGCACTCCAGCAAGCTCCAGCCACAGGAAGCAGGGTCCCTCAACCCATGAGGCT TGGGACATGAACCTCACTGATCTTATTGGAGAGTTGCAAAAGAGACCCATGGCCTGTCACC AAGGCAAATGCGCCCTTAGATGCGACAGCTTATCGATAGCCATTGGGTTGTTGGA GTGCACATACGCCAAATACTGGTGCAGGGTCAATGCTTATTCGTTGAGGACCTTGTCTCAA GGCCCTGGTCAAGTGTCAAGTGTCAATGACGAAACCTATCACGATCTCACACGACATCC AAAAAGACAATGCCAAATACATGAAGAAAGCAATCAAGCAACTATGATAATTAGCGATGAGA GCAGCAACGAATGGCACTGCGTTGACATATACTCGCCCTTGGATCAGACAGGATTGA TGGAGATGAAACAGTGTGTAATTCAAGGGGGACATATGGTCATGGGGAACACTCGTTCAA TTCTTCCCTGTTCAAGCAACGTTCAAGCCTCAGCGCATATTTCGAAAAGATCAGAAAACGAGCTGA AGATGGGATTAATGGTAAACTCTGAGGGTTCAAGTGTCCAGGGTGAATTCAAGGAGG GTATGGGATCTTGTGTTCTGTTGAAATGTAAGGAAATCTCTTGGTCCGACACCGAAATAGGA ATGGGTAACACGGTCAGTGGAAAAATGTTACGGTAACCTCCAAGTACTACCATGGCTTGT TCTTCGAGGTGTCACCCAACATCCGCTCCCATACCTCAAGGGGGAAAGGGGCTGCATAC AGTTCACTACGCAATACAGCATGCTAGTGGCCAGAAAGGGATCTCGAGTAACGACAGTGTG TAGAAACTGGCCGATGCTTCCGCTAATATACATCATGTCAGTGTGGATTCGATCAGGAG GCAGGCCGCACTGATATGGCGAGGGATGGOAGTTACAGAGGGAAATCAGAGGATAGCC GATGTTTGGATGGTCGATAGGATGTTGATACTGCTGTGCCAGAAATTGGGAATA ACAAGGACGACCCGAATTCTGGCTTGGCGAAAACCTTACGCCCTACCCGAGTTCAT GTACCGATTGAGAAGGTACAGTTCTGCAGGTGTTAACATTCTCCGACGAAAGCT TTCTACAGGCACATGCTTATGCAGGAAAGACTCAGTCGCTGATCATGATCCAGCGA TACTCTACAGCTACAGTTCAATGGACCCAGAACCTGTGCTTTGGATACAGGATTCATC</p>
LD010	SEQ ID NO: 35 CTCTCAAGGAT TCKYTRCARAT GTC	SEQ ID NO: 36 CGCCATTGGGC RATGGTYCKC C

			CAACCCGATAGAATTCTGCTCATGGACACCGTTCCAGATTCTGATATTCCATGGCGAAAC CATGCCCAATGGCG
LD011	SEQ ID NO: 37 CCCACCTTCAA GTGYGTRYTRG TCGG	SEQ ID NO: 38 GTGGAAGCAG GGCWGGCATK GCRAC	SEQ ID NO: 13 GTGGAAGCAGGGCTGGGACAAATTCTAGATTGGGATCACCAATAAGCTTCCTAG CTAGCCATAGGAAAGGCCTCAAGTTAGTTAGATTGGCAGAGATCATAGTACTGC AAATTCTTCTTCCATGAAAGACAATACCTTCGCTTTACTTTCTGCTTGTGTCACCT TGTTCCCGAAAGTACTATCGGATATTTCACAGACTCTGACAAGATCTGTGCCAATT GGTACATTCTGTATGTAACTCTGGAAGTTACATCAAAATGATAATTAGCACACTGTCCCTG ATGTAATAATCCATCAGGGAGACACCAAAACTCTCCTGACCCGAGTGTCCCATACATG AACCAGAATTGGCCCCCTGTTGATGGAAGAACCTCAACTCCCAAAGTAG CTACATATCTTTCAAAATTCAACAGTCATATGACGTTTCACAAATGTCGTTCCAGTAC CTCCATCTCCGACCAACACACACTTGAAGTGGG
LD014	SEQ ID NO: 39 CGCAGATCAAR CAYATGATGGC	SEQ ID NO: 40 CGGATCTCGG GCASMRYTGC	SEQ ID NO: 15 CGCAGATCAAGCATATGATGGCTTCATTGAAACAAGAGGCAAACGGAAAGAAGAAT CGATGCCAAGGCCGAGGAAGAAATTAAATATGAAAAGGGGCCCTTGTTCAGCAACAGT CTCAAGATTATGGAATTATGAGAAGAAAGAGAAACAGGTCGAACCTCCAGAAAAAAATCCA ATCGTCTAACATGTTGAATCAGGCTCGATTGAAAGTATTGAAAGTTAGGGAAAGATCAGTT CGTACCGTACTAGAGGGCGGTAACAGACTGGTCAAGGACCCAGGAAAGAATGTT TATTCCCAAAATCTGGAAAGGCCTCATTTGCGGGGATTATATCAGTTTGTGAAAGAATG TACCATTCGAGTTGGCCCCAGGACCGGAAACTGGTCAAATCCATCATCCACCGTACG ACAAGTAAAGATGCCACCCGGTAAGGACATCCATGAAATTGACGAAATCCAT GTCCTCAAGAAACCACGGGGGAAATCGACCTGCTGGCGAGAAAACAAATCAAGATCAG CAATACTATGGGGCTCGTGGAGCTGATTTCGGCAACTTCTGCCCGAGATCCG
LD014_F1			SEQ ID NO: 159 TCTAGAATGTTGAATCAGGCTCGATTGAAAGTATTGAAAGATCACGTTCTGTA CCGTACTAGGGGGCGGTAAACGACTTGGTCAGGTACAAACGCCCGGG
LD014_F2			SEQ ID NO: 160 TCTAGAAAGATCACGTTGTAACCGTACTAGAGGGGGCTAAACGACTTGGTCAGGTCA CAAACGCCGGG
LD014_C1			SEQ ID NO: 161 TCTAGAATGTTGAATCAGGCTCGATTGAAAGTATTGAAAGATCACGTTCTGTA CCGTACTAGGGGGCGGTAAACGACTTGGTCAGGTACAAACGCCGGCT CGATTGAAAGTATTGAAAGGTTAGGGAAAGATCACGTTCTGTAACAGGAGGGCGGT AACGACTGGTCAGGTACAAACGATGTTGAATCAGGCTCGATTGAAAGGTT AGGGAAAGATCACGTTGTAACCGTACTAGAGGGGGCTAAACGACTTGGTCAGGTACA

		AACGGCCCGGG	
		SEQ ID NO: 162	
		TCTAGAAAGATCACGTTCGTACCGTACTAGAGGAGGGCGTAACGACTTGGTCAGGGTCAAACGAAGATCACGTTGTACCGTACTAGAGGAGGGCGTAACGACTTGGTCAGGGTCAAACGAAGATCACGTTGTACCGTACTAGAGGAGGGCGTAACGACTTGGTCAGGGTCAAACGAAGATCACGTTGTACCGTACTAGAGGAGGGCGTAACGACTTGGTCAGGGTCAAACGCCGGG	
LD014_C2		SEQ ID NO: 17	
		GAATGGCATCAAGTTCATCGATAAAGATGATCGGCCGGAGAGTTTGTCAAGCTTCTCAA AAGCTTGGCAAGTTACTCTCAGACTGCAGCTGGAGTTGCTCATGATCTCGGGCGTT TATCAAGAAGAACGCCAGTCATTAGCCACGGCGAGAACATCAGGGTCTAAC GTACCCAGGGGACCATACAGCAGTACAGCCCTAGGGGCTTACGCCGATAGCCTGAA GAGCGATGGATGGCG	
LD015	SEQ ID NO: 41 CGCCATCCRTC GCTSTCAAGG C	SEQ ID NO: 42 GCAATGGCATT AAKYTCRTCR TG	
		SEQ ID NO: 44 GGAATAGGATGGGATG GGTRATRTCGT CG	
LD016	SEQ ID NO: 43 GACTGTGTCIG GTGTRAAACGG WCC	SEQ ID NO: 19 CGTTAGGTTCAACACGGGGGCACTTCAAGATGGTAGCTAAATCGGTGTCATGTA ACCTGGAAACACGAGGACCCGGACCTCTCTGGAGCAGATACTCAAGCAAGC TTCTGCATACGAAGACATATCTGCAAGATGACCAAGACGTCTTCACATTGTAAGCC AGAAATTGGCAGCTGTCAAAGGCCAGACGAGGTGTAATAATTCTTCATGTTAGGATGTT TGCCAAATTCAAGAACGGCAGACATTCTCCATAGAACCGTTCTCGAAATCTCTTC AGAAACCTTAAGCTGTTCCATGTTAACACCCATAGCAGCGAAAAACATAGCAAAAGTTATCTTC ATGATCATCAAGTACAGATTACCGGAATTCTGACTAAACCAGCTGTCTACAGATCTGG CAGCAATTCTATTGTAGGGAGAACAGCTGAGGAGGAAATGGGGATCTTGACCCAG CAATGGAGGTTCAAGTCATAAGCTTAATACCCGCTGGATCATTCTCTGAGTATA CGGGACCAAGGGATTGATGGTGGCTGATCCAAAGGTTCTTCAGGCAAAATTGG GGACCTTTGTCGATGGTTTCTGATCCATTGAAAAACACGTCCTCAACATATCTTCAGAAC AGGAGTCCCAAATACTCTCTGAACTGAAACCACAGCTGACTTCAGAACTTGTCCCAG GTGCCCTGAAACACTGAAACCACAGCTTGAACCCACTGACTTCCAGAACTTGTCCCAG GTATAGTGCCTAGCCAGTTGAGTTGAGTGTCACTGGAAACTTAACATCT TCCAGGATTACCAAGGGACCGTTCACCCAGACAGTC	
LD018	SEQ ID NO: 45 CACCTGGTTCA AGRATGGVCAR MG	SEQ ID NO: 46 GTGCATGGTA CCAHSCHGCRT C	
		SEQ ID NO: 21 CACCTGGTTCAAGGATGGGAGGATAACGGAGTGGCAGAAAATCGAGAGGCACCTTCTC GAACAACCAAGCCTCTTGGGTTAAAACAGCCAGTCITGAGACTGGGACACTACAC TTTGGGGGGAGAACCCCTCAAGGCTGCAATAGTGTCACTGCTTACTAGCCATAGAACCG	

			GTAACCACCCAGGAAGGGTTGATCCACGAGTCCACCTTCAGCAGCAACAGACCGAAATG GAGCAAATCGACACCAAGAACCTGGCCCTAACTCTGTCAAGGGTTGCCGGGATAGA GACGTGACCGAGGGCAAGATGACCCGCTTGACTGTGCGTCACITGGCTGTCCCTATCA GACGTGACATGGTACATAAACGGTGCACAAGTCACCCAGGACGACCAACCAAGATTGG TTAACGGAATCCGGAAACCATGCCCTGATGATCACCCACCGTGAAGAACGACTCAGGAG TAGTGACCTGCGTCCAGGAACAGGGGAAACCTCTCCAGTGCACACCTTAACG TCATCGAAAAGGAACAGTAGTGCGCCCCAAGTTCTGGAGAGATTACAGTCACAGT GGCAGAAGGAGAAACCAAGTGTCTCTGCGCGCTAGAGCTGTTGGCACGCGGGAC TCACTTGGCAGAGGGACGGGACGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG GACGGTGGAGCCTACTTGAATATCTGAGGGCCAAGGCCAAGGGCCAC GATGCAAC
LD027	SEQ ID NO: 47 CCATGCTGGC GAYAARCCVTA C	SEQ ID NO: 48 GGTATAGATGA ARCARTCDCCV ACCCA	SEQ ID NO: 23 CATGGTGGGATAAACCATACTTGATATGGGGAGGATGGGAGGAAATCTGG GACTATCAAACAAACAAAGTGTCCAAACCTGGAAAGAACGCCCCAAACGTAACCGCG GTTTGGTTCACCCCTGAACTACCTGTGGCTCTCACAGGCAGCGAAGATGGTACCGTTAGAG TTGGCATACGAATAACACAGATTAGAGAATTGGTGAATTATGGGTTGAGAGAGTGTG GACCATTTGTTGCTGAAGGGTTCGAATAATGTTCTCTGGGTATGACGAGGGCAGTATA TTAGTGAAAGTGGAAAGAAGAACGGCAAGTTAGATGGGCTAGTGGGGTAAATAAA TTGGGCAAGGCACCTGGGAATTACAACAAAGCTAAATTGGGAGGCTGTCTCTGTA AAATAAGAGATGGGGAGCGTTTACCTGTCTCTGTAAGAATATGGGAGGATGTGAAATA CCCTCAAACAAATCCAACATAATCGGAATGGAAAGATTGGTAGTATGGGGAGACGGGAA TATATCATTACACGGGATGGCTCTACGGAAACAAGGCTTTGGAAAGGGCTCAAGAGGTTG TCTGGGCTCAGGACTCCAGCGAGTATGCCATTCCGAGTCTGGTCCACAATTGGGATATT CAAAAACITCAAAGAAAGGAAGAACCTCAAGTGGATTTCAGCGGGAGGAATCTACGGG GGTTTCTCTGGGATAATCGGTGTCGGTTAACGTTTACGATTGGGAAACCTGGGA CTTGGTGAAGACGATGAATACACGGAGGGGGTTTATGGTCTGAGCTGGAAATA GTCGTCTCGCAACGGAGGAGCAGCTACTCATCTTCTTCTATGATGGGAGGTTGTTGAG AGGCCAGGAGAACATCAAGTGGCAGAGGATGGGCTTGGAGGACTGTTGGGAGACT GGGAAATGAACGAGTCTGTCGAACAGGTCTGGGAGACTGTTTCATCTATAACC

Table 2-PC

Target ID	Primer Forward 5' → 3'	Primer Reverse 5' → 3'	cDNA Sequence (sense strand)
PC001	SEQ ID NO: 261 CATTGAAAGCG	SEQ ID NO: 262 CTTCGTGCCCT	CATTTGAAGCGTTAGCTGGCTCCAAAGCATGGATGTTGGGAGACTGTTGGTCACTATAACC

TTTWRMYGCC CC	TGCCRATKATR AABACG	SEQ ID NO: 263 TCGGTCTCTC GAAGACNTAYG TKAC	SEQ ID NO: 264 CCCTGGTTCTT CTTVRRRTCT TCCCT	SEQ ID NO: 249 CTCGTCCCATCCACCGGGCCCTCACAAAGTTGCGCGAATCCCTGGCTTACTAGTGATTTCCTCGTAAC AGGCTGAAGTATGCCCTAACAAACAGTGAAGTCACATAAAATTGTCAAGGAAAGGTTGATCAAAGT TGATGTTAAAGTGAGGACTGATTCTAAATTACCGTCTGGATGTCATTACTATTGAGAA GACTGTTGAGATTTCCTGGTGTGATCTATGATGTTAAAGGAAGATTGTCGACCGTATTACAGC TGAGGAAATAACAAGTGAAGGAGTCCAAACTGGTCCCAGAAAGGAAATCCCAT TTTGTTGTAACACATGATGGCAGAACCTTCGTTACCTGACCTAACATCAAAGTGAATGACACA ATTCAAAATGGAAATTGCTACATCTAAATTCTTGACTACATCAAATTGTAATCTGGCAACCTCTGC ATGATCACGGGGAGG	SEQ ID NO: 251 CCCTAGACGTCCCTATGAAAAGGCCGTCTGGATCAGGAATTGAAAATTATCGGGGCCCTTGGTT TACGAAACAAACGTGAAGTGTGGAGAGTAAAGTACACTTGGCTAAATCCGTAAGGCTGCTGCTG GAACGTCTCACCTAGAAGAAAAAGGCCCTAAAGGATGTTGAAGGTATGACTCTACGTC TTTGGTGGCGAATTGGTGTGTTGATGAGAAACGGTGTGATTGTTGGTGTGAAAGTGAAGA TTGAAGGATTCTGGAAAGAAGGCTCCAAACTCAGGTGTTCAAATCTGGTCTGGCAAAAGTCAATT CATCATGCTTAGAGTACTGATTAGGCAGAGACACATCCGGGGTGGCAAGCAGGTGGTGAACATCC CCTCGTTCATCGTGGGCTGGACTCGCAGAAAGCACATCGACITCTCCCTGAAGTGCCTTGG GGTGGCGACCTGGCGTGTCAA
PC005	SEQ ID NO: 265 TGGGATGCGG CAARAAGG TBGG	SEQ ID NO: 266 TCC TGCTTCTT SGYRGCRATW CGYTC	SEQ ID NO: 253 TCGCGATGCGGCAAAAGAAGGTTGGATCCAATGAAATCAACGAAATCGCCAACACCAA CTCAAGACAAACATCCGTTAAGCTCATCAAGGATGGTCTTATCATCAAGAAGGCCAGTGGCAGTAC ACTCTAGGGGGCGTGTACGGCAAGAACACTGAAGGCCAGAAAGGGAAAGGGCAAGG GAAAGAGGAAAGGGTACGGCAAATGCCGTATGCCCTCAAAGGAAACTCTGGGTCAGGGCAGTGC GGTCCCTCAGGGGCCCTCCCTCAAAGGAAAGGCTCAGGGAGGCCAAAGAAAATCGACCGCCATCTTACCA CGCCCCGTACATGAAAGCGAAGGGTAACGTGTTTCAAGAACAGGGTCCCTATGGAGTACATC CACAAAGAAGGGCAGAGAAGGCCAGGGCAAAAGATGCTGTGACCAGGCTAACGCCAGGAGA TTGAAGGTGAAGCAGGCCAGGGAAACGTAGGGAAAGGCGTATCGGCCACCAAGAACGAGG	SEQ ID NO: 253 TCGCGATGCGGCAAAAGAAGGTTGGATCCAATGAAATCAACGAAATCGCCAACACCAA CTCAAGACAAACATCCGTTAAGCTCATCAAGGATGGTCTTATCATCAAGAAGGCCAGTGGCAGTAC ACTCTAGGGGGCGTGTACGGCAAGAACACTGAAGGCCAGAAAGGGAAAGGGCAAGG GAAAGAGGAAAGGGTACGGCAAATGCCGTATGCCCTCAAAGGAAACTCTGGGTCAGGGCAGTGC GGTCCCTCAGGGGCCCTCCCTCAAAGGAAAGGCTCAGGGAGGCCAAAGAAAATCGACCGCCATCTTACCA CGCCCCGTACATGAAAGCGAAGGGTAACGTGTTTCAAGAACAGGGTCCCTATGGAGTACATC CACAAAGAAGGGCAGAGAAGGCCAGGGCAAAAGATGCTGTGACCAGGCTAACGCCAGGAGA TTGAAGGTGAAGCAGGCCAGGGAAACGTAGGGAAAGGCGTATCGGCCACCAAGAACGAGG	
PC010	SEQ ID NO: 267 CTCTCAAGGAT TCKYTRCARAT GTC	SEQ ID NO: 268 CGCCATTGGG CRATGGTYTCK CC	SEQ ID NO: 253 CTCTCAAGGATTCTTGGCAGATGTCGCTTACCGGCCAACCGGCTTGTGATTGGATTGATC ACGTTGGAAAATGGTGCAGGAAAGTCCAGGAAACTGGGTACCGGAAAGTGCAGTACGTTG TCTGGTGGAAACGAAAGATCTCACCGCCAAAGCAAGTCCAGGAGATGTTGGCATTGGAAAGGGTC ACCAAATCCCCAACACAGGCCAGGGCAACCTGGGGCCAGAAATCCCCAAGCTGCC TGTACCCACGGGGAGCAGATTCTTGCAAGGCCGTGTCAAATGGGACATGAACTTGAAGATCTG ATCGGGGAGTTGGCAGAAAAGACCCCTGGCCGTACATCAGGGCAAAAGACCTCTTAAAGTCCACAG GGCAGGCAATTGTCATCGCTGCGGCTCTTAAATGCACTTCCGAATACGGGGGGCAGATTGAAG CATGATATTCTTAGGGGACCATGCTCTCAGGGTCCGGCCAGGGTGAACGACGAAATTGAAG CAGCCCATCAGGTCCTCATGACATCACAAAGAACATGCCAAGTACATGAAGAAGGCTATCAA	SEQ ID NO: 253 CTCTCAAGGATTCTTGGCAGATGTCGCTTACCGGCCAACCGGCTTGTGATTGGATTGATC ACGTTGGAAAATGGTGCAGGAAAGTCCAGGAAACTGGGTACCGGAAAGTGCAGTACGTTG TCTGGTGGAAACGAAAGATCTCACCGCCAAAGCAAGTCCAGGAGATGTTGGCATTGGAAAGGGTC ACCAAATCCCCAACACAGGCCAGGGCAACCTGGGGCCAGAAATCCCCAAGCTGCC TGTACCCACGGGGAGCAGATTCTTGCAAGGCCGTGTCAAATGGGACATGAACTTGAAGATCTG ATCGGGGAGTTGGCAGAAAAGACCCCTGGCCGTACATCAGGGCAAAAGACCTCTTAAAGTCCACAG GGCAGGCAATTGTCATCGCTGCGGCTCTTAAATGCACTTCCGAATACGGGGGGCAGATTGAAG CATGATATTCTTAGGGGACCATGCTCTCAGGGTCCGGCCAGGGTGAACGACGAAATTGAAG CAGCCCATCAGGTCCTCATGACATCACAAAGAACATGCCAAGTACATGAAGAAGGCTATCAA	

		ACATTAGGATCACTGGCAATGGCAGCTGCCAACACAGCOATTGCATCGACATTACTCCGTGCG CCCTGGGATCAGACGGGACTGTGGAGATGAAGCAGTGCCTGAATTCCACCGGAGGGCACATGG TCATGGGCATTCTCAATTCCCTCTCAAAACAAACCTTCCAGGAGTTCTCAAAGACC CGAAGAACCGACCTCAAGATGGCGTTCAACGCCAACCTGGAGGTGAAGTGTTCCAGGGAGITAA AGTCCAAGGGGCATGGCTGTGGCTTAACCGATTCGGGCCATACCCAGGGAGGGCTGCA GAACTAGGCATGGGAATACTGTGAGTGGAAACTTTGCACGTTGGCCGAGCTACTGTGG CGCTGTTCTCGAGGTGGTTAACCGATTCAGCACCGGAGCGGGCAAAGGAGGATCAAGTGACCAAGATG TCCAGACTCATACCCAGATACTGGCAGCGAGCGGGCAAAGGAGGATCAAGTGACCAAGATG CTAGAAATTGGGGGACGCTACTGCCAACATCCACCAATTAGCCTGGCTGACCAAGAAGC GGGGCAGTGGTGTGATGGCCCGAATGGCCGGTACAAGGGGGAATCGGACGAGACTCCCGACGT GCTCAGATGGGTGGACAGGGATGTTGATCAGGTGGCTGTGCCAGAAGTTGGAGAGTACAATAAGAC GATCCGAATTGCTTCAGGTTGGGGAGAACCTCAAGTCTGTATTCGGCAGTTCACTGACCATTTGAG ACGGTCGAGTTCTGCAAGTGGTCAATAATTCTCCCTGATGAAACGTCGTTTATAGGCACATGC TGATGGTGGAGGTTGACCTAGTCAGTCAGTCAGTCAGTCAGTCAGTTGACAGTTACAGTACAGCTCA ACGGGCCGGCCGGCCTGTTGGACACAAGCTCTATCAGCCGGATAGAAATCCTGCTCA GGACACTTTCTTCAGATACTCATTTCCATGGAGACCAATTGCCCCAATGGCG	SEQ ID NO: 255	
PC014	SEQ ID NO: 269 GCAGATCAAR CAYATGATGGC	SEQ ID NO: 270 CGGATCTCGG GCASMARYTG C	CTGATGTTCAAAAACAATCAACACATGATGGCTTCAATTGAAACAAGGCCAATGAGAAAGCA GAAGAAAATTGATGCCAAGGCCAGGGAGGAATTCAACATGAAAGGGGCGTTGGTCCAGCAAC AGACTCAAGATCATGGACTACAGGATGTTGAATTCAAGGCTCGTGAAGGTGCTGAAAGTGAGAGGAGGACCATGTCAG CAGTCCCTCAATTGTTGAATTCAAGGCTCGTGAAGGTGCTGAAAGTGAGAGGAGGACCATGTCAG AGCAGTCCTGGAGGGATGCTCGTAAAGTGCTGGAGAAGCAACCAAGGAAAGAAATCTCC CAAATTGGAGAGCCTAAATCCTACAAGGGACTGTTCCAGGTGTTGAGAAGGGAGGTGACGGTCC GGTAGAGACCCGAAGACAGGGACCTGGTCAGGTCCATCCTGCCAACAGTGCCTGCCAAATACA AGGAGGCCACGGGCAAAGGACATCCTACTCAAGGGTGACGATGAGTCGACCTGTCTCAGGAGAT CACGGAGGGTCAAGTGGCTGCTCGCTAGAAAGATAAAGATCAAGGAGACACAGATGGAGGCT AGGTTGGATCTGATCGCTCA	SEQ ID NO: 257
PC016	SEQ ID NO: 271 GACTGTCTG GTGTRAACGG WCC	SEQ ID NO: 272 GGAAATAGGAT GGGTRATRTC GTCG	GGAAATAGGATGGGTGATGTCGTTGGCATAGTCAGATGGGATCTGCGTGATGGAGCG TTGGGGCCCTCCACAGGACGGGGGGCAGATGGTGGCCAGATGGTGTGATGCGTAAACCG GGGAAACCCCTACGGGGGGCAGTCTCGAGGGGGCAGACACCTCAAGGCAADGGCTCCGG TACGAGACATGTCGGTCAAGATGACAGCAGCAGTGGCTCGATGGTGGATCGTGGCAAGTTCG CGCGTCAGAGGCCAACAGGGGGTGAATGAGTCGCTGATGGTGGATCGTGGCAAGTTCG AGAACAGACACAGTCCTCATCGAGCCGTTCTGAAAGTCCCTGCTGAAGAACCTGGAGTT TCCATGTTGACACCCATAGCAGCAAAACACAATAGCAAAGTTGCTCATCCAGCACAGA CTTGGCAGGTACTTGTACCAAGGCCAGGGCTGCCCTACAAATCTGGCTGCAATCTCATTTGGGG AGCCCCAGGGGGAGAAGATGGAAATCTCTGGCCATAGGTTGGCTGATCACGTCGATGG	SEQ ID NO: 257

			CCGTGATCCCAGTCGGATTCTTCCCGGGATAAATACGGGACCCAGGGTTGATGGCTGTCC TTGGATGTCGAGGTAGTCCTCAGCCAGGATGGGGACCTTATCAATGGGTTCTGATCAT TGAAGACACGTCGCCAGCATCTCTGATACTGGAGTTAGAAATCTCCAGTGAACTCAC ACCGTGTCTTAGCATCAATACCTGATGCCCTCAAATACCTGAAACAATGCCCTTGATCCACTG ACCTCCAAAACCTGTCAGATCGTAGGTGTCATGCCAATTGGAGCTGGACAATTTCATTGAAAT TTTGGAAACCTGACATCCTCAGAAATGACCGTAGGTGTCGTTACACCGACAGTC
PC027	SEQ ID NO: 273 GGGCCAACCA CWSYGAATRC AG	SEQ ID NO: 274 TGTGCCACCC TAGTRCGRTG YTC	SEQ ID NO: 259 GGCCAAGCACAGTGAATACTGAAAGCTTAACCTGAAAGGACTACCTGAAATCAG AGATGGAGAACGTTGCCAGTCAAGTAAGGACATGGAGCATGGAGATTACCCACAAACA ATCCAACACAACCCCCAATGGGGGTTGTGTAGTGTGTTGGTGTGAGAATACATAATACAC GGCTATGGCCCTCGTAACAAAGCATTGGTAGCGCTCAAGAAATTGATGGCAGGACTCC AGTGAATATGGCATTCGGGAATCCGGATTCACCAATTCAAGAAATTCAAGAAAGAAAAAA GAATTTCAGTCAGTCCGACTTTGGTGGCCGAAGGGAAATGGTGGTTCTGTTGGTGAATCAG TGCTGGCTTAGCTTCTATGACTGGGAAACGCTTGGAGTTAGTAAGGCTTAAGGAAATACAGCT AGAGCTATCTACTGGTCAGATACTGGCAAGTGGCAAGTGGTGTACCTGAAAGATAAGCTATTCTAT ATTGTCCTATGACTCTGACCAAGTCCAGAAAAGCTAGAGATAACAACCAAGTGGCGAAAGATGGAG TGGAGGGTGCCTTGTGCTCTAGTTGAGAATAAATGAACTCCGTAAGAACAGGTCTTGGTAGGA GACTGCTTCTATTACACAAACGGCAGTCACCCGTATCAACTACTTGTGGGGTTGTAATTGGTAC TATTGCACATCTGGACCGCTCTCTATATGTCCTGGCTATGTACCTAGATGACAGGTTATACT TGGTGTATAAAAGAGTTAGGAGTAGTCAGCTATCAATTGCTTATTCTGTACTCGAAATTCAGACTG CAGTCATGCGACGAGACTTCCCAACGGCTGATCGAGTTGCCCTCAATTCCAAAAGAACATCGC ACTAGGGTGGCAACA

Table 2-EV

Target ID	Primer Forward 5' → 3'	Primer Reverse 5' → 3'	cDNA Sequence (sense strand)
EV005	SEQ ID NO: 523 TGGATGCC CAARAARAAGG TBTGG	SEQ ID NO: 524 TCCTGCTCTT SGYRGCRATW CGYTC	SEQ ID NO: 513 TCGATGCCCAAGAAGAAGGTTGGCTGATCCCTAATGAAATAACTGAAATTGCTAAATACA AACTCTAGACAAAAACATCGCAAAACTGATTAAGATGGCTTATTATTAAGGCTCTGCTGCG GTGCATTCTCGTGCACGTACGCAAAATACTGAAGCCCGCAGGAAAGGTCGTCAATTGTG GATTGGTAAAGGAAAGGAACCTGCAAAATGCTAGGATGCCCAGAAAGGAATTGGATTCAA CGTATGAGAGTTCTCGAAGGGTATTGAAGAAATATAGGGAAAGCTAAGAAATTGATAGGCA TTTATACCAAGCTTATATGAAAGCTAAGGGAAATGTATTCAAGAAATAAGAGAGTAATGAT GAGACTATCCATAAAAAGAAGGGGGAGAACGCTAACAAAGATGCTCAATGATCAAGCT GATGCAAGGAGGCTGAAAGTCAAAGAGGCCAGTGAAGAGGCCAGTCACAGTC

EV009	SEQ ID NO: 525 GGCCCGTGGT CAGAAYATYWA YAAC	AAGAACGAGGA SEQ ID NO: 515 CCAACTCTCGATCCAAGCATTCCAAAATACAGGGACTGAAGAACATAATAAGGAACAACCC AGGAATGGGTTTAGGCCAATGCCGACAACAAACGAAAGAACGAAAGTACCCCTGATTGGTTACAG GGTTCTAATAAAACAACATCGAAAATGGAAAATGAATCTCCCTCATATTAGACAAGTAT TACACTCCCGAAAAATAGAAAAGGGAAATATTCCAGTAAGGCCTGTTCATACGGAGAAA ATTGATTAGGGGACAAGTATGTGATGTAGATGTGAGGAATGGGAGCCGTGCAACCCCGGAA AATCATTGATTGATTACCTCAGAAAATCGCCCTGTATATTCTGAAGCTGAACAGGGATATATGGA TGGGAACCCGGAGTACTACAAACGATCCAAATGATCTCCAGATGATAATGCCGAGTCAGTTGA AGGACCATATACGGTTAAATAACCAATCCAGTGGAGAAAATACCGCTCGGGTAACATGC GCAGGGTAAAAATCGGGAGACGTGGAGTACTGGGGCCCTGTGAAGTATTACCCATCTTCC AGGGATTCCCCGGTTACTATTTCATATTGAAAGGGTACACTAAGTCCATTATTGG CGGTACAATTCAAGAGAACGGGTGTCGGTATTGTTAAATAATCGAGTGCAAGGGTGGGCT GC	SEQ ID NO: 517 CTGGGGCCACATGGTCATGGGATTCAACTCTTCACITCTCAAAACAAACATTCAAC GAGTATTTCGAAAGATTCCAATGGAGCTGAAGATTCCTCAACGCCATTAGAAGTG AAATGTTCTGAGAACCTAAAGTACAAGGATGTTCTGTTCTGTTCTCTTAATGTCAA GCTTAAGTCAAGGCAACTACGGTTGCCTTATTTCGAAAGTTGTTAATCGAGCAGCACCC ATTCCCTCAAGGGGGAGTGGATGCAATTCAATTACGCAATTCAAGTGGTCA GAAAAAAATAAGGGTAACTACAATAGCAAGAAATGGGGGGATGCCACTGCAAATTTCACC ATATTAGCGCTGGCTTTGACGAACAAACTGGGGCTGTTTAATGGGGAGGATCGCTGTATAT AGAGCAGAAACTGATGAGAGTTCAAGATGTTCTCAGATGGGTTGACAGAAATGTTGATACGATT GTGTCAAGAAATTGGAGAATAACAAAAGTGAACCAACAGCTTCAGGCTCAAGTGAAAAT TCAGCCTTATTCACAGTTTATGATCATCTAAGTCGTTCCCAATTTCACAAGTGTTCATAAAT TTCACCCAGATGAAACCTTCATTCTATAGGCACATGTTGATGAGGGAAAGTGCACATCAG
EV010	SEQ ID NO: 527 CGGCTGACGT GGAAYGKTKGG CC	SEQ ID NO: 528 CGGGTATTCT CGRAAYTTCTG GC	SEQ ID NO: 519 CTGGGCTTTGAGGTTGTTCAAGGGCTCCAAAGGGGTATTCTCCCTTACG AAGTGGTCTGTTCTGAGAACCTAAAGTACAAGGATGTTCTGTTCTGTTCTCT GCTTAAGTCAAGGCAACTACGGTTGCCTTATTTCGAAAGTTGAGCAAGCTGGGG ATTTCCTCAAGGGGGAGTGGATGCAATTCAATTACGCAATTCAAGTGGTCA GAAAAAAATAAGGGTAACTACAATAGCAAGAAATGGGGGGATGCCACTGCAAATTTCACC ATATTAGCGCTGGCTTTGACGAACAAACTGGGGCTGTTTAATGGGGAGGATCGCTGTATAT AGAGCAGAAACTGATGAGAGTTCAAGATGTTCTCAGATGGGTTGACAGAAATGTTGATACGATT GTGTCAAGAAATTGGAGAATAACAAAAGTGAACCAACAGCTTCAGGCTCAAGTGAAAAT TCAGCCTTATTCACAGTTTATGATCATCTAAGTCGTTCCCAATTTCACAAGTGTTCATAAAT TTCACCCAGATGAAACCTTCATTCTATAGGCACATGTTGATGAGGGAAAGTGCACATCAG
EV015	SEQ ID NO: 529 CGCTGTCGGCAR GCRAARATGG	SEQ ID NO: 530 CGATCAAAGC GWCCRAAVCG ACG	SEQ ID NO: 519 CGCCCATCCGGCTGGCTGTTCAAGGGCTCCAAAGGGGTATTCTCCCTTACG GGCCTCCCGGACGGGGAAAACGCTGATGCCAGGGGGTTGCCAACGAAACTGGCT TCCTCCTCCATCAATGGGGGGAGATTAGGCAAGCTGGGGGAGAAATCCGGAGCAA TCCTAGAAAGGGCTTTGAGAGGGCTGATAAAAACACTCTCTGCAATCATCTTATCGACGAAATT AGACGCAATCGCTCCCAAGGGGAGACTCATGGTAGAGGATCGCTGTC CCAACGTGGACTTTGATGGACGGCATGAAGAAAAGTCCCATGTTGATGGGGCC AGGAACAGGGCCCAATTCCATGCCACCTGCACTAGACGTTGGGGGATTGAGAGAGA TCGACATCGGTATCCCCGACGCTACTGGAAAGTAACTAGAAGTACTCGAAATACACACAAAC

			ATGAAATTGGCTGACCGATGTAGATTGGAACAGACTGCCGCAGAGACTCACGGTCATGTAG GIGCTGAECTGGCTTCTTGTGCTCAGAGGCTGCCCTGCAACAAAATTAGAGAAAAAATGGAC CTCATCGACTTAGATGATGAGCAGATCGATGCCGAAGTCCTAATTCTCGGCAGTTACCGTACCAT GAGAACTTCCGTTACGCCATGTCTAAAGCAGTCGCCAGTTGGCGAAGAACCGTCGT
EV016	SEQ ID NO: 531 GTTCAACGGC GAYATYCTGCG	SEQ ID NO: 532 CGGCATAGTC AGAATSGGRAT CTG	SEQ ID NO: 521 GACTGTGCTGGTGTGAAACGGACCGTTGGGATAGTGTAAAGTTCAAAATTAA ACGAAATTGATCACGGCTCAAGTTATCAGATGGAACAGTTAGGTCTGGACAAGTTGGAAAGTC ATGGGACAGAAGGGCGTTGTCAGTGGAAAGCCTATCGATAAAGGGCCCAATCTTAGCTGAAGAATTTC CTTATGTGAAATTACGGAGATACTTAAGGAAAGCCTATCGATAAAGGGCCCAATCTTAGCTGAAGAATTTC TGACATTCAAGGTCAACCTATAAACTCCTGGCTCGTATCTATGCCAGAAGAAATGATCCAGA CTGGTATTCTCGCGATTGATGTGATGAATTTCATGCCAGAGGACAAAGATTCCNAATTTC CTGGAGCTGGTTAACGCCAGAAATCTGCTCAATCTGAGAATCTGAGAAGCTGGGTTGTC AAAATCCCAGGGAAATCTGCTCTTAGATGATCATGAAGACAACCTTGTATGGCTCTA TAGGGGTGTCATAATGAAACAGGCCAGATTCTCAAGCAAGATTGAAAGAATGGCTCTA TGGAAAATGTTGCCCTATTGAACTGGCCAATGATCCTACCATTTGAAAGAATTATAAAC CCCGTTGACTTTAACAGGGCTGAAATTATGGCATATCAATGTGAGAAGCATGTTAGTC ATATTGACTGACATGTCACTTATGCTGAGGCTTGGTGAAGGTTGCTGAGGTATCTGCTGCT

Table 2-AG

Target ID	Primer Forward 5' → 3'	Primer Reverse 5' → 3'	cDNA Sequence (sense strand)
AG001	SEQ ID NO: 611 CATTGAAAGCG TTWRYGCYC C	SEQ ID NO: 612 CGCTTGTCCC GCTCTCNGC RAT	SEQ ID NO: 601 CATTGAAGCGTTGGCTGCCCAAGCATGGATGTTGGACAAATTGGGGGTGIGTTCGCC CCAGGGCCTCCACCGGGCACACAAGCTCAGGAGTCCCCTTCCTGGTAA CAGGTGAAGTAGGCCCTGACAAACTGTGAGGTGACCAAGATCGTTATGAGACTTAAAG GTCGAGCGCAAGTCAGGACTGATCCTAACTATCCTGCTGGATTATGGATGTGATCACCATTGA AAAAACTGGTGAATTCTCCGTTGATCTATGATGTTAAGGGAGATTCACTTACAGGATCAC TGCTGAAAGGAAATTACAATGTCAGGAAAGTCGGCAAGGTGCAACCGGACCAAAAGGTATT CATTCTGGTCACCCACGATGGTAGGACCAATTGGTACCCCTGACCCAAATGATCAAGGTAACCGAC ACCATCCAACCTGAAATCGCCACCTCAAAGATCCCTGGACTTTATCAAAATTGCAATCGGGCAACTT GTGGATGATCACCGGAGGGAAATTGGGTAGAGTGGGAACGGTAGTGAACAGGGAAAGGCA TCCGGGATCATTCCGATATTGTCACATTAAGGAACGCTAAATGATCACCGTGGTCACTAGATTAA ACAACGTATTCTGTCATCGGTTAACGGAAAGCTTCTGTCCTGCAAGGGCAAGGGAGT GAAACTGTCCCATCGCT

AG005	SEQ ID NO: 613 GGTCTGGTTGG ATCCHAATGAA ATCAAAYGA	SEQ ID NO: 614 TCCTGCTTCTT SGYRGCRATW CGYTC	SEQ ID NO: 603 GGTCTGGTTGGATCCAATGAAATGAGATTGCCAACACCAACTCGAGGC AATTGATCAAGGATGGTTGTATCATTAAAGAACCGGTTGGCAGTGCA AAAAACACAGAAAGCTCGAGGAAGGGCACTGCCGGTTCGGTAAGAGG AACGCTCGTATGCCCTCAAAGGAACTATGGATCCAAAGGATGCCG AAAAATACAGGGAAAGGCCAAAAGATCGACAGGCATCTGTACATGA GGGTACGTGTTCAAGAACAGAGGTGTTGATGGAATACATCCACAA GCCCGTGCCTAAGGATGTTGCCGACCAAGTAAAGGCCAGAACAGG TGAGGAGGGGAAAGGGTATGCCCGGAAGAGCAGGA
AG010	SEQ ID NO: 615 CTGGCGGCCA CATGSTBATGG	SEQ ID NO: 616 CGCCATTGGG CRATGGTYTC CC	SEQ ID NO: 605 CTGGCGGCCACATGCTTATGGAGACTCTTCAATTGTCGTTCAA GTGTTCGCGAAGGCCGAATGGACATTGAAAGATGGCTTCAACGGT GCTCTAGGGAAATTAAAGTCAAGGGGTTATTGGCTCATGGCTAA TTGGTAGCGGACACGGAAATTAGGGCATGGCAATGGGGTCA CTAGCACGCGATGGCCTGTTTCGAGGTGGTCAATCAGCATT TGGTAGAGGATGTTACAGTTTATTACACAATATCAGCAGTGG TGACCGAGGATAGCGAGAAATTGGGGGAGCGGATGGGGAA TGATCAGGAACGTTGGCGGGTGATTATGGGGGATGGCTGTT GAGTCCCCGATGTTTAAGATGGSTCGATGGATGCTGATTG ATAACAAAGATGACCCAGGATCCTTCAGAATTAGGAGAAA ACCACCTAAGGGATCCAGTTGGTCAACAAATTGTTCAAGT GGCATATGCTTATGAGGGAGATTGACACAGTCCCTGATA TACAGTTTAATGGTCCTCCGGAGGCCGTTTGTGGACAC TCTGCTTATGGACACGTTTCCAGATATTGATTGAT TCTGCTTATGGACACGTTTCCAGATATTGATTGAT
AG014	SEQ ID NO: 617 CGCAGATCAAR CAYATGATGGC	SEQ ID NO: 618 GAACITGGGG TTGABGTTSCG DCC	SEQ ID NO: 607 CGCAGATCAAGCATTGATGCCATTGAGCAAGAGGGCT TGCCCAAGGGGGAAAGAATTAAACATTGAAAGGGGGCCTTG ATCATGGAAATACATTGAGAAGGAGGAAGCAAGTGA CATGCTGAACCAAGCCCCTCTTAAGGTTCTGAAAGTCC ATGAGGGCTGCAAGAAGGCTGGTGAAGTCACCAAGGG ATCTTGATCCTTCAGGGACTCTACAGCTTTCGAGG CAAGACAGAACCTTAGTCCTAACATCAGTGTG GCCGAGATGTAACCTGTCATCGATGACGAAA CGAACCTTTGTGCAAAACAAAATTAAAGGTCTG TTTCGCAACAGTTGGTCCGAAATCCGTAACGG TTTCGCAACAGTTGGTCCGAAATCCGTAACGG TTTCGCAACATCAACCCGCAAGT
AG016	SEQ ID NO: 619	SEQ ID NO: 620	SEQ ID NO: 609

	GTTCTGGAGG ATATGYTGGY CG	GGAAATAGGAT GGGTRATRTC GTCG	GTTCTGGAGGATAATGTTGGGCCGAGTGTTCAGGGATCAGGAAAACCCATTGACA AACTCCTAGGCCGAAGATTCTGGACATCCAAGGTCAAACCCATCAACCGCATGGT CCGGAAATGATCCAGGCCGTATCTCCGCCATCGACGTGATGAACCTCCATCGCG CAAATAATCCCATTTCTCGGGGGTTACCGGCACAACTGGGAAATTCGACGATC ACAGGGCCGGTTAGTCAAACTGGGGCAAAATCGGTTACCGGCACAACTGGC ATCGTGTTCGGCCCATGGGAAACGGCTCTTCAAGCAGGACTTCGAAG AAAACGGTTCCATGGAGAACGTTGTCACATGGGAAACCCGGCCGTTCTCT ATCATCACGCCCGTGGCTCTGACCGCCGGCTGTTGGCTTAATGGCC GCTGGTTATCTTAACGTGATAATGCTCTTACGCCGGAGGCTTGCGTGA AAGAAGTACCCGGACGTGGTGGTTACATGTACACCGATTGGCCACCAATTAGA AAGAGCCGGTGGCTGGTTGAGGGTAGAAACGGTTCCATACCCAGATTCC AACGAGCACATCACCCATCTCTATTCC
--	--------------------------------	-----------------------------------	--

Table 2-TC

Target ID.	Primer Forward 5' → 3'	Primer Reverse 5' → 3'	cDNA Sequence (sense strand) 5' → 3'
TC001	SEQ ID NO: 803 GGCCCCAAGA AGCATTGAAAG CG	SEQ ID NO: 804 CGCTTGTCCC GCTCCTCNGC RAT	SEQ ID NO: 793 GGCCCCAAGAAGCATTGAAAGCTCTCAATGCGCCCAAGCATGGATGTTGGATAAAC GGGGGTGTGTTTGCCTCTGGCCCTCCACCGGCCCAAGCTACGGGAGTGCCTAC TTGGTTATCTCTGGAAACAGGCTGAAGTGCCTTGACCAACTCAGAAGTGA GATTGTTATGCAAAAGATTGATTAAGGTTGACTATTGAGAAAACGGCTTA GCGGGTTTCAAGGTTGACTATTGAGAAAACGGCTTA ATGTTAAGGGAAAGTTGCAAAATCCATGCCTTAAGGGCCAATAAAATTG CAAAGTGAAGAAGTACAGACAGGGCCCAAGGGCACTCCCTCTTGGTGA GACGGCACTTACAGATACCCAGACCCATGATAAAGTGAATGACCAATTGGAG TGCACTTCAAAATTCTGATTTTTACAAATTGAGTCGGTAATTGGTATGATTACT GAGGTCGTAACTTGGGGGTGTCGGTACAGTGGTGAACCCGGAGAACGT TTGGACATCGTTCATATAAAGGATGCAAAATGGGCACACC
TC002	SEQ ID NO: 805 CAGGAGTTCC GGARRMBAAR ATMGA	SEQ ID NO: 806 GCAATGTCATC CATCAKRTCRT GTAC	SEQ ID NO: 795 CAGGAGTTCCGTGAGGCTAAATCGACCAAGGATCCTCACAGCGAAGAAAA GAAAAACAAACGAGGGCCATCCAGGGCATCAAGAGGAAGAAACGGCTAC TCCAGCAGATCGTGGCACCCCTCAGACCATCGAGATGCAAGGGGAGGG GGCAGAACACCAACAGGCCGACTCAAACGATGAAAAACGATGAAAGCAG TGCCCCACCTCAACATGGATGTTGATGAGGTACATGACATGATGGATGACATTG
TC010	SEQ ID NO: 807	SEQ ID NO: 808	SEQ ID NO: 797

GCATTCTGGCG TGGTCGATCG	TGCCGGAAGT TCTCRTAYTCK GGC	AAAATTCCGGGAATAACAACAAAGCCGACCCCTAACAGTTTCGTTGAGGTGAAAAACTTCAGT CTCTATCCCCAATTCTAGTACCAATTGGCCGGCTCCAAATTCTCCAAAGTTTCAACA CCCAGCAGAACCTCGTTACCGCACATGCTGATGGGGAGAACCTCACCCCTGAACCCCGTCC CTCATTATGATGCCAGGCAATTGTAACGTTAACCTTCAACGCCCTGGATTCCTCATGGACACATTTC TCCTCGACACTAGTTCGATTCACGGATGGATTCCTCATGGACACATTTC TTGATTTCACGGGTGAGAGACAATCGCCCCAATGGAGGAACCTCAAGTACAGGACATGCC GAATACGAGAACTTCGGCA
TC014	SEQ ID NO: 809 GAGAAAGCCG ARGARATYGT GC	SEQ ID NO: 799 GAACCTGGG TTGABTTSCG DCC
TC015	SEQ ID NO: 811 GGATGAACCTAC AGCTBTTCCGH GG	SEQ ID NO: 812 CGATCAAAGC GWCCRAAVCG ACG

Table 2-MP

Target ID	Primer Forward 5' → 3'	Primer Reverse 5' → 3'	cDNA Sequence (sense strand) 5' → 3'
MP001	SEQ ID NO: 898 GGCCCCAAGAA GCATTTGAAGC G	SEQ ID NO: 899 CGCTTGTCCC GCTCCTCNCG RAT	SEQ ID NO: 888 GGCCCCAAGAAAGCATTGAAAGCGGTTAAACGCCACCCAAAGCATGGATGTTGGACAAATCGGG GGGTGCTTCGCTCCACGTCAGTCCAGCACAAAACCTTCGTAATCACTACCCGTTATT GATCTCTTGCCTAATCGTTGAAAGTGGCAACTTAACTGGCCAGTGGCTTAATTCAGCCGGTTTTAT GCAAAGGATTAATCAAGGTTGATGGCCAAGTCCGGTACCGAACCTTAATTATCCAGCCGGTTTTAT GGATGTTATATCTATCCAAAGAACCCAGTGAGGCACCTTAGATTGATCTATGATGAAAGGGTGC TTTCAACCATCCACAGAATTACTCCTGAAGAAGCAAATAACAAGTTGTGTAAGTAAGAGGGT ACAAACTGGACCCAAAGGTGTGCCATTAACTACTCATGATGGCGTACTATTGCTACCC TGACCTTAACATCAAGGTTATGACACTATTAGATACGATATTGATCATCTAAATTTGGAT CATATCCGGTTGAAACTGGAAACCTTGTCATGATAACTGGAGGTGGCAATTAGGGCTGTT GGTATTGTTACCAACAGGGAAAGACATCCAGGATCTTTGATATTGTTACATTAAGGATGCA AATGAACATATTGCTACCCGGATGAAACAATGTTTTATTGAAAAGGTCAAAGAAACT ACATTCTACCAAGGGAAAGGGAGTTAAATTGACTAT
MP002	SEQ ID NO: 900 GAGTTCTTAA GTAAGTATTC GGTGG	SEQ ID NO: 901 GCAATGTCATC CATCAKRTRCT GTAC	SEQ ID NO: 890 GAGTTCTTAAAGTATTGGTGGCAAAAAGGAAGAGAACCATCAACCGAAGAT CGATACAAAAGGCTTCGATCCACTGAAGAGATGCTGATAAAGAAACAAGAATTTTAGAAAAAA AAATTGAAACAGAAGTAGCCATTAGGGTAAGAACAGGTACCGAACAAATTAGCCCAAAATTGATGGTACCATGTTAA AAGCATTGAAAGCGTAAGAACAGGTACCGAACAAATTAGCCCAAAACTTCGTTGACATGTTAA CTATTGAAACAAACAGGGGGAGGCATTAGGAAGGTGCCAACACAAATACAGCAGTATTGACTACC ATGAAAACATGCAAGCAGTCAGCTCAAAACATGAAATGTTGATGTTGACAT GATCTGATGGATGACATTGC
MP010	SEQ ID NO: 902 GTGGGCTGCATA CAGTTCTTAC GCAG	SEQ ID NO: 903 CGGGGCTGCT CCATGAAAYASY TG	SEQ ID NO: 892 GTGGGCTGCATAAGTTCAAGCAGTATCAACATTCCAGTGGCTATAACGAATTAGAGTC CCACATTAGCTAGGAATTGGCGAGACCCCTGTTAGAATACTGATGTTAGTGTGCTGCATTG ATCAAGAAGCATTGCGTTTAATGGCTCGTATGGTAGTGAACCGTGTGAAACTGAGGATA GTCCAGATGTTGATGGCTGGCTGATCTGTAAGCTTGTGTCAAAATTGGTGTGTT ATCAAAAAGATGATCCAATAGTTCCGATTGCCGAAACCTCAGTTTATCCACAGTTCAT GTATCAATTAAAGAAGGTCTCAATTCTACAAGTTTTAAATAGTCCTGATGAAAACATCATATT ATAGGCACATGTTGATGGCTGAAGATGTTACCCAAAGGTTAATCATGATACAGCCAAATTCTGT ATAGCTATAGTTTAATGGTAGGGCCAGAACCTGTACTTTGGATAACCAAGTAGTTCAACCTGTA AAAATATTGATGGACACATTTTCATATTGATATTCCATGGAGACTATTGCTCAAT

			GGAGAGCAATGGGATTTCAAAATAGACCCAGAGTATAGTAACCTCAAGCAGTTGCTTCAGGCC CGTTGATGATGCTCAGGAAATTCTCAAAACTCGATTCCCCTGCTGGTATTGACACAG AACAAAGTGGTAGTCAGGAAGATTACTATGCAAAGTAACCCATCTCAAACACAATAAA TATGTATGCTTATGGGGGTGATGGTGGAGCACCAAGTTGCACAGATGATGTAAGCTTGCAG CTGTTCATGGGAGCAGGGCG	
MP016	SEQ ID NO: 904 GTGTCGGAGG ATATGYTGGY CG	SEQ ID NO: 905 GGAATAGGAT GGGTRATRTC GTCG	SEQ ID NO: 894 GTGTCGGGATATGTTGGCCGGTTCAATGGCAGTTGGAAAGCCGATAGATAAGGACC TCCTATTGGCTGAAGATTATTGGATATTGAAGGCCAACCTTATTACCTACTCCAGAACAA TATCCCTCAAGAAATGATTCAAACTGGTATTTCAGCTTATTGATCATGAACTCTATTGCTCGTG GACAAGAAAAATTCCAATATTTCAGCTGCGGTTAACACATAATGAGATTGCTGCTCAAATTG TAGACAAAGCTGGCTCGTTAAACCTGGTAAATCAGTCTCTGACGATCATGAAGAACAA GCTATAGTATTGCTGCTATGGGTGTTAATATGAAACGCCGATTCTTAAACAGATTGTT AGGAAAAATGGTTCAATGGGAAATGGTGTGTTGTTGTTGAAATTAGCTTAATGCTTACTATTGA GGTATCATTACACCACGCTTAACTGCTGTTAACCTGCTGTTAACATGAGTTAGCTTACCAATG CATGCTTCTAGTTATTAACTGACATGAGTTCATATGCTGAAGCTTCAAGAGAAGTTCTGCTG CTCGTGAAGAAAGTACCTGGCGTGTGGTTCCCTGGTTACATGTACACCGATTAGCTACAA TTTATGAAACGTGCTGGGGGTGTTAGAAGGAAATGGTTCTATCACACAAATACCTATTAA CTATGCCCTAACGAGCACATCCCCATCCCTATTCC	
MP027	SEQ ID NO: 906 CGCCGATTAC AAAACAARACB TG	SEQ ID NO: 907 GGGATACTGT CACAYYTCDCC CRCC	SEQ ID NO: 896 CGCCGATTACAAAGACATTAGAAGGCCATGCTCAAAATATTCTGC TGTGTTGTTCCATCCGAACACTCCCATCGTGTAACTGGCTCAGAAAGTGGTACCGTCAGAA TTGGCATTCTGGTACTTATCGATTAACTCATCAAAACTATGGTTGAAACGTGTATGGAC AAATCTGGCTTACGGGGATCTAATAATGTTAGCTCTAGGTTATGATGAAGGAAAGTATAATGGT TAAAGTGGTGTGTAAGAGGCCAGCAATGTCATGGAATGTTCAATGGTATGTTCAATGGTAA CACGTCATAGTGAATTCAACAAAGCTAACCTAACGGATGCTTCAAGGAGGCCAAA TCAAAGATGGTGAACGTTTACCAATACAGTTAAAGACATGGGTAGCTGGAATTATCCAC AGTCAATATCTCATATACTGGTAAGTTTGTAGTATGTTGATGGAGAGTATTAT ATATACATCAATGGCTTTCGCTTAAGCATTGGTCAATGTTCAACATCAAAGTTTAAAGAAAA AAAGTCCTTAAACCGAAAGGGGCTTATGTTGGAAAATGGTAACCTAGTTGAGGTTATTGTTGAG ATCTGTTACTGGGTTGGCTTATGTTGGAGAATTAGTATGTCCTGCCACAGATGAAGC ACAACCTAAACATGTTTACGTTTGCAGGTCTGGAGTCAATGTTGCTGCAAGAGCACTCCAAATT ATACTTATTTACGTTTGCAGGTCAATGTTACTTAGTGTGCTTAAAGGAAAGTTGAAA GCTAGTCCTGATGGCTTGAAGATGCCCATTGAGTTAGGAGAAGTTCAAGAAGTGTAAA ACTGGCTATGGGGTGTGATTGCTTATTACACCAATGGAGTAATGTTACACTATTATG TTGGGGTGAAGTTGAGCTTACAGTATCC	

Table 2-NL

Target ID	Primer Forward 5' → 3'	Primer Reverse 5' → 3'	cDNA Sequence (sense strand) 5' → 3'
NL001	SEQ ID NO: 1117 GAAATCATGGAT GTGGACAAATT GG	SEQ ID NO: 1118 ACTGAGCTTACAC CCTTGGCCC	SEQ ID NO: 1071 GAAATCATGGATGGGACAATACTGGGAGAATCTCCACCTGTCATATTTGGCTAATCGGCTCAAG TCCACACAAAGCTGGAGAATCTCCACCTGTCATATTTGGCTAATCGGCTCAAG TACGCTTAACCTGTAAGTGAAAGTGAAAGTGAAAGTGAAAGTGAAAGTGAAAGTGAAAT ACGGCAAAGTGAGGACTGACCTGACCTGAACTATCCCTGCAGGTTATGGACGTTTACCATC CGAAAAGACAAACGAGTTCTCGTTGACTATGATGTTAAGGGACGTTTACCATC CACAGGATCACAGCTGAAGAAGCTAAGTACAAGCTGCAAGTGAAAGTGAAAGGGTTCA ACAGGACCCAAGGGCATCCATTGACACTCACGATGGACGCCACATCAGGAT CCAGACCCCTGGTAAAAGTCATGACACCATCCAAATTGACATGCCACATCCAAA TCATGGGACTTCATCAGATTGACTCTGGTAACCTGTGTATGATCAGTACTGGAGGTCGTA CTTGGGTCTGTGGGCACTGTGGTGAACAGGGAGCGACACCCGGGGTCTTTCGACA TGTGCAACATCAAGGACGTTGGACACACTTGGCCACTTAGGTGAACAAACGTTT CATCATGGCAAGGGTAGTAAAGCATACGTTGTCCTGCCAACGGCAAGGGTGTGAA GCTCAGT
NL002	SEQ ID NO: 1119 GATGAAAAGGG CCCTACACTG GC	SEQ ID NO: 1120 CTGATCCACATCCA TGTTGTGATGAG	SEQ ID NO: 1073 GATGAAAAGGGCCCTACAACACTGGGAAGGCCATTCAAGAAACTACGGGAAACAGAGGAA ATGCTGATAAAAGAAACAAAGACTTTTAGAAAAGAAAATTGAAAGTTGAAATTGGAGTTGC CAGGAAGGAATGGAAACAAAACAAAAGGCCGATCCAGGCACTCAAAAGGGAAAGAA GAGGTATGAAAGCAATTGCAAGCAGATGGAACGTTTCAAAATTGAGATGCA GAGAGGGCCCTGAGGGAGOCACACGAAACCGAAACGTTGACTGCAAACTATGAAGA ACCGAGGAGATGCTCTCAAGGGCTCATCAACACATGGATGGATCAG
NL003	SEQ ID NO: 1121 TCCGCGTCGTC CTTACGAGAAG GC	SEQ ID NO: 1122 TTGACGGGACCA GTCGGCCAC	SEQ ID NO: 1075 TCCGCGTCGTCCTTACGAGAAGGCACGTTCTGAACAGGGAGTTGAAGATCATCGGAGA GTATGGGACTTCGGTAACAAGCGTGGAGGTGAGCTGGAAAGGACCAAGGGAAAG TCGTAAGGGCCGCTCGTGAGCTGTTGAAAGGACCAAGGGAAAG TGAGGTAAAGGGCCCTGCTGGCTGGGCTGTTGGAGTTGAGCTGGTT GAATGAAGGCTCGATTACGTCAGTTGGGTTAAAGATTGAAGATTCTTGAAACGGTGTCT ACAGACTCAGGTGACAAACTGGTCAAGTCATCCATCACGCCGGTGTACT CATCAGACAAAGACATATCAGAGTGGCAAAACAGTGAACATTCCGAGCTTGTG GTGGCCGCTGGAGCTGGCAGAACATTGACTTCTCGCTGAAGTGGCCGTTCCGGGG TGGCCGACCTGGTGGGTCAA
NL004	SEQ ID NO: 1123	SEQ ID NO: 1124	SEQ ID NO: 1077

	TGAAGGTGGAG AARGGTTYGGM WCMAAG	GTCGTCCTCDGA HACRTAVAGACC	AAGGAGTGGCTGTAAGAACTGTCGCTCACATCGAAACATGCTGAAGGA GTCACAAAGGGATTCTGTACAAGATGCCGCTGTACGCCATTCCCCATCAAC TGTGTGACGACCGAGAACAACTCTGTGATCGAGGTGCGTAACTCCCTGGCGAGAAG TACATCCGACGGTGAGGTGCGCCGGCTCACITACCAACTCGACAAAGCA GAAGGAGCAGCTCATCGTCAAGGAAACAGCATAGGGACGTGTCAGGCT CCCTCATCCAAACAGTCACAAACAGTGAAGAACAGGATATTCTGGAC	SEQ ID NO: 1126 SEQ ID NO: 1125 SEQ ID NO: 1125 SEQ ID NO: 1127 SEQ ID NO: 1128 SEQ ID NO: 1129	SEQ ID NO: 1079 SEQ ID NO: 1081 SEQ ID NO: 1081 SEQ ID NO: 1083
NL005		TCCTGCTCTTSGY RGCRATWCGYT	AGCTGATCAAAGACGGCTTATCATAAAGAACCGGGTTGCAGTACATTCAAGGAG CGTTCTGAAAAAACACTGAAAGCCAGGGAGGAAAGGAGACATTGGGGCTTGTAAAGAG GAAAGGTACAGCCAACGCCCGTATGCCAACAAAGGGTCTATGGGTGAATGTTATGCG TGTCTTGAGAAGACTGTTGAAAAAATAACAGAACAGTAAGAAAATCGACAGGCTATCTG TACCATCACCTTACAGTAAAGGCTAAGGGTAACGTTTCAAGAACAGGTTGATTGA TGGAGTTACATTCAAGAACAGGCGAACAGAACGAAAGAACGAAATGAAGATGTTGAACGACC AGGCTGAAGCTCGCAGACAAAGGTCAGGAGGCCAAGGAAGGGAA		
NL006		RITTKACVGCATC GYTGGC	AAGTGCTTGTCAAGTGGGTGTTGGAGTACATTGACACCCCTGGAGGGAGACG ACCAGTAGCGATGTCGGGATGACCGTACGGCAGTCCACGGCTGCTGCGCTACTGT ATTATTCCCTTCCCGATCACAAACCAAACTGCAAGGAGCTATCGAGGCTATGG GGAAACAGGGCAGTGGGGTGTACATCACAAACTGACCGTGGAAAGGAGCAGCT GCTCACGGTGTGTTCTACCCGACAAGCCACTGGTACCCACTGCTCCATGGAGTAC CTGGGCTTCAGGGAGCTTCTGCCGGCATCAACTCTGTTGGCTGCCATCGGCTGTGCTAC ACTGGATAACAGGGAGGACAGTGTCAATTCTCAAGGCCCTGGCTGTGAGGCG ATTCTTCAAGATGGTTTCTCGATCTTACAAAGATGCGAGAAATGCAAGGCTATGG GACCAAGAGGAGCAATTGAGAACGCCAACAGACAGCTGTCAGGGAAATGAGGAA TGCCATTATTGACAAATTGGACAGATGTGCATCATGCTCCGGATATGATGAGGAGCT GGTGACGGATGTGGTTATTGGCAAAACCATAAACACTGCCGGATATGATGAGGAGCT GAAGGTACAACAAAGGGTTACAGAACAGAGATGCCAGTACTTCTGGTAACAGT GAGACGGGAATCGAGTCAGGTGCGTATGCCAGATTGGGATAAGTTGCTTCC TGCAAAAATTGCGCCAAAAGGAACGTTGGAAATACAGTATGTCAGGACATGCC CGACATGGCCATGTCAGGAGGAAATTATTATCAATTCCITCACGCTATCCC ACAAGCGAGGGAAATCGCACGGGATATTATTATCAATTCCITCACGCTATCTCGTA TGACAATTGGCCATTAAATTGAGTGTCTCCAAGGAAAGGTGTCGTCGAACAAGGGCG		
NL007					AGATAGGTGACGCCAGGCCGTTCAAC

	CGGTGTCATTCAACAGTTCGG TGTCKGARTCYTC ACAGYTCGGG	TTTCAGAGATTCCTCTGAAACCTGAAATTGGAGGAATCCTTGACTGTGGTTTG AACATCCATCTGAAGTACAACATGAATGCATTCCCAAGCTGACTTGGAAATGGACAT ATTGGTCAAGCGAAATCCGGTATGGGAAAAGTGGCATT CAGCAAATTAACCAACTGACAACCAAGTCAGTGTATTGGTCATGTCATAACAGAG AGCTTGCATTCCAATCAGCAAAGAGTATGAACGATTTCGAAATATGTCAGTGCAG ATGTTGGAACTGTTAGATATGCGAAGAGTGTGCAAGGAAATTCCGAAACAGCCG CACAGCAAACAAAGTCATGATGTCAGTGCACACTCTCAGGAAAGAAATTTCGTCAGTGCAG GCAAGAAATTCAATGCAAGATCCATGGAAAGTGTACGGTTGACCGAGGCCAAGCTGA CGCITCACGGCCCTGCGAGCAGCACTATGTCAAACTCAAAGAAAACGAAACAAAA AGTTATTGAAATTACTTGACATACCTTGAAATTCACCGGTTGTTATATTGTAAGTCA GTGAGCGCTGCATGGCCCTATCGCAACTCCTAACAGAGCAGAACCTCCCTGCACTG GCTATTCAACCGTGGCATGACACAAAGAACGATTGAAGAAATATCAAGAGTTCAAAAG AGTTCTAAAGGGAATTGGTAGAACGAATCTGTTGGCAGAGGAATGGATATTGA GAGAGTCACATTGATTCACATTGACATGCTCCT	SEQ ID NO: 1132 GGGCAATTGATCGT TBGTYTTCA CTTYAAYCGKAT G	SEQ ID NO: 1085 GGAGGGATAGAAAACCAGAAAACGAGGTTGTTGGATGCTGGAGACCT GGGGGTATTAGATGTTCAAAACAGTTTGCAGTTCCATTGATGAGGAGCAGAAAG AAAAGAAATGTTGGTTCTTAGACCATGATTACTTGGAAACATGTTGGGATGTTCAA GAAAGTTAATGCTAGAGAAAAGGTTGGTTGGTACCATACTGGACCCAACCTCCA CCAAAACGATGTTGCAATCAATGAGTTGTTGTTACTGTCACACTGTTCTTA GTCATAATGATGCCAACGCTTAAGATTGGTCTACACTACAGGGCATACAGAGTC GTTGAAGAAATCCATGATGATGATGATGTCGCCAACATCAAACATTGATGATGA GTGAGATTGGGAGAAGAGGCTGAGGAATTGGGTTGAAACATCTGTTGAGAGAC ATCAAAGATAACAAAGTCGGGTCACGTCAAGCGCTCACAAATCAGCTGATGGGC TTGAAGGGCTTGCATCTGCAATTACAGGATATGCGAGACTATTGAATCAGGTTGTC AAGGAAGTTGCCAATGAACCATCAAATGTTTACCAACTGCAAGACATCTCAACCT TCTACGGGATATCGGCCACGGCAATTGTTAGACTGGCTCAG	SEQ ID NO: 1087 TGCGACTATGATCGACCGCCGGGACCGGGTCAGGTGTGCGACGTCAG CTGGTTCCCTGCACCTCTGAGAACAAATTCAACTACCATCAATCGAGCCCTTGTGTT TTCTCAACTGAACAAAGATAATTGGTGGCAACCCGGAGTACTACAATGAGACTGAAG GCTTCCAGATAATGCCAGGTGACCTCAAGCGACACATTGCCAACAGAAAGAGTA TCAACAAAGCTGTTATGCAAACAAATCTGGATAACCTGGGAAGGGTCCCTCTAGA
NL008	SEQ ID NO: 1131 GGGTGGATCA CTTYAAYCGKAT G	SEQ ID NO: 1132 GGGCATTGATCGT TBGTYTTCA CTTYAAYCGKAT G	SEQ ID NO: 1085 GGAGGGATAGAAAACCAGAAAACGAGGTTGTTGGATGCTGGAGACCT GGGGGTATTAGATGTTCAAAACAGTTTGCAGTTCCATTGATGAGGAGCAGAAAG AAAAGAAATGTTGGTTCTTAGACCATGATTACTTGGAAACATGTTGGGATGTTCAA GAAAGTTAATGCTAGAGAAAAGGTTGGTTGGTACCATACTGGACCCAACCTCCA CCAAAACGATGTTGCAATCAATGAGTTGTTGTTACTGTCACACTGTTCTTA GTCATAATGATGCCAACGCTTAAGATTGGTCTACACTACAGGGCATACAGAGTC GTTGAAGAAATCCATGATGATGATGATGTCGCCAACATCAAACATTGATGATGA GTGAGATTGGGAGAAGAGGCTGAGGAATTGGGTTGAAACATCTGTTGAGAGAC ATCAAAGATAACAAAGTCGGGTCACGTCAAGCGCTCACAAATCAGCTGATGGGC TTGAAGGGCTTGCATCTGCAATTACAGGATATGCGAGACTATTGAATCAGGTTGTC AAGGAAGTTGCCAATGAACCATCAAATGTTTACCAACTGCAAGACATCTCAACCT TCTACGGGATATCGGCCACGGCAATTGTTAGACTGGCTCAG	SEQ ID NO: 1134 CGGCCAAAGGACT SARRADCCCT AC	SEQ ID NO: 1087 TGCGACTATGATCGACCGCCGGGACCGGGTCAGGTGTGCGACGTCAG CTGGTTCCCTGCACCTCTGAGAACAAATTCAACTACCATCAATCGAGCCCTTGTGTT TTCTCAACTGAACAAAGATAATTGGTGGCAACCCGGAGTACTACAATGAGACTGAAG GCTTCCAGATAATGCCAGGTGACCTCAAGCGACACATTGCCAACAGAAAGAGTA TCAACAAAGCTGTTATGCAAACAAATCTGGATAACCTGGGAAGGGTCCCTCTAGA
NL009	SEQ ID NO: 1133 GGGCCGTGGTC AGAAYATWAYA AC	SEQ ID NO: 1134 CGGCCAAAGGACT SARRADCCCT AC	SEQ ID NO: 1085 GGAGGGATAGAAAACCAGAAAACGAGGTTGTTGGATGCTGGAGACCT GGGGGTATTAGATGTTCAAAACAGTTTGCAGTTCCATTGATGAGGAGCAGAAAG AAAAGAAATGTTGGTTCTTAGACCATGATTACTTGGAAACATGTTGGGATGTTCAA GAAAGTTAATGCTAGAGAAAAGGTTGGTTGGTACCATACTGGACCCAACCTCCA CCAAAACGATGTTGCAATCAATGAGTTGTTGTTACTGTCACACTGTTCTTA GTCATAATGATGCCAACGCTTAAGATTGGTCTACACTACAGGGCATACAGAGTC GTTGAAGAAATCCATGATGATGATGATGTCGCCAACATCAAACATTGATGATGA GTGAGATTGGGAGAAGAGGCTGAGGAATTGGGTTGAAACATCTGTTGAGAGAC ATCAAAGATAACAAAGTCGGGTCACGTCAAGCGCTCACAAATCAGCTGATGGGC TTGAAGGGCTTGCATCTGCAATTACAGGATATGCGAGACTATTGAATCAGGTTGTC AAGGAAGTTGCCAATGAACCATCAAATGTTTACCAACTGCAAGACATCTCAACCT TCTACGGGATATCGGCCACGGCAATTGTTAGACTGGCTCAG	SEQ ID NO: 1087 TGCGACTATGATCGACCGCCGGGACCGGGTCAGGTGTGCGACGTCAG CTGGTTCCCTGCACCTCTGAGAACAAATTCAACTACCATCAATCGAGCCCTTGTGTT TTCTCAACTGAACAAAGATAATTGGTGGCAACCCGGAGTACTACAATGAGACTGAAG GCTTCCAGATAATGCCAGGTGACCTCAAGCGACACATTGCCAACAGAAAGAGTA TCAACAAAGCTGTTATGCAAACAAATCTGGATAACCTGGGAAGGGTCCCTCTAGA	

NL010	SEQ ID NO: 1135 CGGCTGACGTG GAAYGTTGGC C	SEQ ID NO: 1136 TGCCGGAAAGTTCTC RTAYTCKGGC	CAAGGAGAATGGAGGGAGATCCAGTACATCCCTAGACAGGGATTCCGGCTACTT CTACCCCTTAACATACTGCC	SEQ ID NO: 1089 (amino terminus) GTCCAGTGCAGTGGAAAGCCACAGGCTTGTGTTCCCGTGGATGTCATCAACC TTGGAAGGAGAGACCTGATCTAACCGCCGTGATCTAACAGTGGCCAAAGCTAT AATACTGTCGTGCAATTCTGAATCCATTGTCGAATGCCAAAGTCGACTATCGAGCCAAAGCT GGGTCTGCAACITTTGTTCCAGGAAATCCTTCCCTCAAAATGCAAGCTATTTC GGAGCAGCATCAACAGAACACTGATAACCTTCATTTCCACCATGAAATACATCATT GGAGCAGCATCAACAGAACACTGATAACCTTCATTTCCACCATGAAATACATCATT ACCCAGAGGCAAACGATGCCCGCATGTCGTTGGAGCTTGAAGGACTCACTGCAAGATGTCGCTGCTGC CGACAGGAGGAGCTGGAGCTTGAAGGACTCACTGCGTCACTACCGTGGCAAATGGTCAAGGTGACAGAGC CCCCCAATGCACTCATCGGTCTCATCACGTTGGCAAATGGTCAAGGTGACAGAGC TGGCTGCGACGGCTGCTCGAAGAGCTACGTGTTCCGGTGGGTGAAGGACCTGACT GCCAAGGAGATCCAGGACATGTCGTTGGCAAGATGCCGCCGCTCACAGATTCTCA CATGCAACAGGGCAATTCCGGGGCTCCCTCCGACCTGTCACAGATTGCAAAAGAGA GCCITGTCGAAGTGGATATGAGTTAACGTGATCTGCTGGGGAAATTGCAAAAGAGA TCCATGGAAATGGGCTCAGGGCAAGAGACCTCTCCGATCTACTGGAGTTGCAATTGTC CATGGCAGTTGGTCTCGAGTGCACA	SEQ ID NO: 1115 (carboxy terminus) CGTTGAACGTGAAAGGGCTCGTGTGTGTCAGAGACACTGACATTGGCTGGGGCCACCT CTCAATGAAAATGTCGGCCTTCACTCCACACACAACACTTGTGCATTCTTCGAAGT TGTCACACAGCACGAGCCAAATCCCACAGGGAGAAAGGGATGCATCCAATTCTAT TACCGAAATACCAACATTCCAGTGGCAGAGAAGGGATACTGTCACACCAACCTGCA AAACTGGCGAGATGGGAGCACCAACCTGCAACACATCACTGCGGCTTCGACCCAG AGGCAGGAGGCCGTGCTGATGGCCCGCATGGTGTGCACTGGCCGGAGACTGACGAT GGACCTGACGTCATGGCTGGGCTGACCGCATGCTCATCCGTCTCTGTCAGAGGTTCT GGTAATAACAGTAAGGGATGACCCCTAACAGTTCCGCTGCCAGGAGAACCTCACCTT ATCCGCAGTTCACTGACCATCTGGCTGATGCCAAATTCTTCGAAGTGTCAACAACAG TCTTGATGAAAACATCTTACTACAGGCACATCTTACTACAGCTACAGCTCAATGGTCCCGAGCCAG TTGATTATGATCCAGGCCGATTGTACAGCTACAGCTACAGCTCAATGGGATCTGGGATCTGGCTACCATGGAGACACATT CCAAATTCTCATTTCCATGGAGACGATTCAACCOGACAGAACTTGTGACACATT GACAT	SEQ ID NO: 1091 AGATGGTTGGTACCGGCAAAACTACATTGTCAAACGACATCTTACCGGAGAATTGAA AAGAAGTATGTTGCCACCCCTGGAGTTGAAGTTCACACAAACA GAGGTGTGATTAGGTCAATGTCAGCTGGCAGACAGCTGGGTGAAAGTTGGTGGAA
NL011	SEQ ID NO: 1137 CCCACTTCAAG TGYGTRYTRGTC GG	SEQ ID NO: 1138 CGCTCTCTCGAT CTGYDSTSCTGCC				

			CTTCGTGATGGATAATTACATTCAAGGACATGGCCATTAGTTTGCACGGTAAACGT CAAGAGTCACCTACAAGAACGTCCCCAACTGGCACAGAGATTAGGGTTTGC AAAACATTCCCATTGTACTATGGGGCAACAAAGTAGACATCAAGGACAGGAAGTCAA GCCCAAGAGCATAGCTTCCATAGGAAGAACCTCAGTACTAGACATCAGTGC GAAAGGCAACTAACATTGAGAACGCCGTTCCGTGTTGGAAAGAAGCTGATCGG TGACCCCCAACCTGGAGTTGCCATGCCATGCCATGCCATGCCATGCCATGCC GGACCCCCAAT	SEQ ID NO: 1093 GCAGCAGACGCCAGGACAGGTTAGACGAGGTTGCGATAATAAGAAAACCGTTGA GAAAGTATTGGAGAGGGATCAAAAACCTACATCGAAATTGGATGATCGAGCTCTA CAGCAAGGGCCTCACAGTTGAACAGCAAGCTGGCAAAACTCAAGAGGAATTG
NL012	SEQ ID NO: 1139 GCAGGGCGCAGG TBGBGARGT	SEQ ID NO: 1140 GAATTTCCTCTTSA GYTTBCCVGC	SEQ ID NO: 1142 GCCCTTGACAGAYT GDAUTVGGATC	SEQ ID NO: 1095 CGCAGAGCAAGTCTACATCTCTCACTGGCTTATTGAAAATGCTTAAGCAGGGTGC GCCGGTGTCCCATGGAAGTTATGGCCTAATGCTGGCGAATTGCTAGACGACTAC ACTGTGCGTGTCTATTGATGTTATCGCTATGCCACAGGTGGAACGGGAGTGAGTGTG GAGGCTGTAGACCCCCGGTGTGTTCAAGCGAAGATGTTGGACATGCTAAAGCAGACGG ACGGCCCGAGATGGTGGCTGGTACACTCGCACCCGGCTGGCTGG CTGTGGGGTGTGACATCAACACGCCAGGAGGCTCGAGCAACTATCCAAGAGGC CGTTGCCGTGTCGTC
NL013	SEQ ID NO: 1141 CAGATGCCGCC GTBGTDGAYAC	SEQ ID NO: 1142 GCCCTTGACAGAYT GDAUTVGGATC	SEQ ID NO: 1142 GCCCTTGACAGAYT GDAUTVGGATC	SEQ ID NO: 1097 TTTCATTGAGCAAGGCCAATGAGAAAGGCCAGAGGATCGATGCCAAGGGCAGGA AGAATTCAACATTGAAAAGGGAGGTCTCGTACAGGCCAGGGCTTAAATCATGGA GTACTATGACAGGAAAGAGAACAGCAGGGTCTGGAAGGCACTGAAGGTGCGGA CATGCTGAACCAAGGGCTCTGGAAGGTAACCGAAACCCAGCCAAAGT GTGTGCTGAAGAAATCCGAAGAACGGCTCTGCAAGGACTCTGCAAGCTGCTAGAA ACAAGGAAGTCCTCAGTATCTAAATTGTCAGGGCTGACGTGAGTGTGAGGGCA CGTAGTACTGCGGTGCGGAGGGCTGACGTGAGTGTGAGGGCAATTGTTGGCT CATGCGGAAGGAGTACCGCAAGATGACGCCAAAGAGGTGGTGAAGCTGGAC GCTGACAACTCCCTGGCCGAGACGTTGGAGGCCGCTGAGTTGTCGCCGCAA CGGGCCGCACTCAAGATCCCCAACACCCCTCGAGTCCAGGCTCATCTCCAGCA ACTTGTGCCGAGATTAGAGTGGCTCTT
NL014	SEQ ID NO: 1143 CGCAGATCAAR CAYATGATGGC	SEQ ID NO: 1144 GAACCTGGGGTTGA BGTTS CGDCC	SEQ ID NO: 1144 GAACCTGGGGTTGA BGTTS CGDCC	SEQ ID NO: 1097 TTTCATTGAGCAAGGCCAATGAGAAAGGCCAGAGGATCGATGCCAAGGGCAGGA AGAATTCAACATTGAAAAGGGAGGTCTCGTACAGGCCAGGGCTTAAATCATGGA GTACTATGACAGGAAAGAGAACAGCAGGGTCTGGAAGGCACTGAAGGTGCGGA CATGCTGAACCAAGGGCTCTGGAAGGTAACCGAAACCCAGCCAAAGT GTGTGCTGAAGAAATCCGAAGAACGGCTCTGCAAGGACTCTGCAAGCTGCTAGAA ACAAGGAAGTCCTCAGTATCTAAATTGTCAGGGCTGACGTGAGTGTGAGGGCA CGTAGTACTGCGGTGCGGAGGGCTGACGTGAGTGTGAGGGCAATTGTTGGCT CATGCGGAAGGAGTACCGCAAGATGACGCCAAAGAGGTGGTGAAGCTGGAC GCTGACAACTCCCTGGCCGAGACGTTGGAGGCCGCTGAGTTGTCGCCGCAA CGGGCCGCACTCAAGATCCCCAACACCCCTCGAGTCCAGGCTCATCTCCAGCA ACTTGTGCCGAGATTAGAGTGGCTCTT
NL015	SEQ ID NO: 1145 GCCGCAAGGAG ACBGTvTGC	SEQ ID NO: 1146 GTCCGTGGGAYTC RGCHGCAATC	SEQ ID NO: 1099 ATTGTGCTGTCTGACCGAGACATGTCGGTTGAAAAGATCCGGATGAATCGAGTGGTC AGGAAGAATCTGCGAGTGCSCATTGTCGATCCAGCCTGGCCAGAC GTCAAGTATGGAAAGCGTATCCATGTGCTGCCATTGATGATAACCGTGTGAGGGTCTTA	

			ACGGCCACGCTCAAGGTCAACAAAGTCAGGGCTCAAGACTCCGGCACTACACGGCT GCTTGCTGAAAATCCGCAAGGATGTAACGTGCTCCTCAAGCTTACCTAGCTGCCGAATCA GCTGGCACTCAAGATAACAGGATACAGGATACAGTGAACAGCAATACAGCGAACAGGGGGAGAC GACAGAGGGGTGAGCAGCGAACAGAATGCTGGCACACGAAACTTTGCGGTGCGGG CCGATCGGACGGGAGCGGAGGCAAGATGACGGGGTTGACTGCCGACTGACGGG CCGACCCCTACCCGGACGTGGCTGGCATCAACGGCAACAGGGCTGACGACG CCACGGCACAAAGATCCTCGTCAACCGAGTCTGGCAACCAACTCGCTCATGATCACCGGG TCACTCGCTTGGACCCACGGAGTGGTGGCTGTATTGGCCGCAACAAAGGCTGGCGAA ACCTCATTCAGTGCACITGAATGTGATCGAGAAACTGGTTGGGGCGCGAAA TTTGTGGAGAGATTGACAAGTGAAATGTGAAGGAGGGTAGGCCGGTTGTGCTGAG CGCACGGCTGTCACCCGTGGCAACCTGTTCCAAGAAATAACATGGCAAGAGGACGGGCC CGATCCAGTGGGACCGAGCGTAGTCTGTTGTGACGGGACTGACAGCGACGGCTG GACATCCCGTACCGGAAGGGCTCG
NL019	SEQ ID NO: 1151 GTCCTGTCCTGCT GCTVMGWTTYG C	SEQ ID NO: 1152 CCTTGATCTCHGC MGCCCATBGTG C	SEQ ID NO: 1105 CGATGACACATACAGAAAATTACATTGACCTAGTGGTAGATTAAAGATTAGAA CAATAGATCTCGATGGAAAAACCATAAAGCTTCAGATTGGGACACGGGGCCAGG AGCGGGTTCCGGCACGATCACATCGAGCTACACGGGGCCACGGCATATTG GGTAGCAGACTGCAACCGACCAGGAGTCGTCGTTCAACAAACCTCAAACAGGGCTCGAGGA GATTGACCGCTACGCCCTGTGATAATGTCACAAACACTGCTGTGGCAACAAAGTGTGA TCAGACCAACAAAGGTCGTCGACTATACACAGGCTAAGGAATACGCCGACCAAGCT GGGCATTCGGTCTGGAGACGTCGGCGGAAGAACGGGACCAATGTGGAGCGGGCT TCAT
NL021	SEQ ID NO: 1153 CTCAATCAAGAGC GTYCCHCCTRAY GG	SEQ ID NO: 1154 GGAATTGCSAGV CGDGADCC	SEQ ID NO: 1107 CGTCAGTCTCAATTCTGTACCGGATATCAGCACCGTTCAAGGCCACAAAGG AACGTGAAGATAACGCTTGGGGCACAGGGCTGTTTCATTCACACGAACGACT GTGATCTCACTGAAGGGAGGAACACTATGTTCTAACTCTCTATTCCGATAGTATGC GCAGTGTGAGGAGTTTCATCTGGAGAAAGCTGCTGCCAGTGCTTGTGACTACTGTAT CTGTGTTGTGAGGAGAACTATCTGTTCCGCTGTTGAAACTCTACTGTG CTCAGGTTTACTGAGAAGGAATTGAACCTGATTGAGCCGAGGGCATCGAAAGCTCA CAGTCCCAGAAATCCGGCCAAGGAAGAAAAGCTGGATACTTGGAGATTGGCA TCTGACCGTCACTGAAATAACGGGACCTGGATGAACTGAAAGTGTATGGCAGTGA AAACCTCTATGCCAATTGCAATTTCATCATAATTC
NL022	SEQ ID NO: 1155 GGGTGCTCAAG TAYATGACBGBAY GG	SEQ ID NO: 1156 CAGTTCATGCTTR TANGCCCCANGC	SEQ ID NO: 1109 TACATTGACAGAGAAATCCTTTCGGAGCAGATCTGAATCTTACAGTGTATGATA ATTGATGAAGCTCACGGAGGGACGTTGCAACACTGATATACTGTTGGTTGGTAAA GATGTCGCCGATTAGACCTGACTTGAAGCTGCTATATCAAGGCCACACTGGAT

		<p>GCTCAGAAATTCTCCGAGTTTTCGACCGATGCCCACTTCAGGATTCCGGGGT AGATTTCGGTGGACATCTACTACACAAGGGCCGAGGTGACTACGGGCA TGTGTCTGTTTCGATCCTGAGATCCACGCCACTCAGCCGCTGGAGACATCCGGC TTCCCTACCGGTCAAGGAGGATCGAAACCTGCCAGGGAGCTGCAGGACAGAGT GCGAGGCTGGCTCGTATCAAGGAGCTGCTCATATTGCCGTCATACTTACGCCAACCT ACCAGTGATATGCAAGGCAAAGATTTCGCCACTCCACCAATGCTAGAAAGGTA GTATTGGCCACAAATTTCGAGAAACCTCATGGACCATCGACAATAATCTACGTGA TTGATCCCTGGTTTGTAGCGAAATACTCAATTCAAGGACTGGAAATGGAAATCGCT TGTGTAGTGCCCTGTTCAAGGCAATGCCAATCAGCGAGCAGGGGGGGGAC GGGTGGGGGGGGGCAAGTGCTTCCGTCGTACACCG</p>
NL023	SEQ ID NO: 1157 CGGAGCCTCT CTCAGGAACGC	<p>SEQ ID NO: 1158 GAAAGCACACGCT GTTGCTCTGG</p> <p>CGGGAGCCTCTCTCAGGAACGCCAGCAGGAAATGAAAGGAAATCCTCGGGTCGCA TGCACTCACAGCGATCCTCTAATCGTGCAGACTCATAGGGTCAGTGAGAGGAATCT CGAAGACCGCTCTCGGACGGAGGTCACGGTGTAAACCGGTTCCGGTGGAA CCTCCCCATCGGTCGGTTGGCAATTCCGTAACCGGTTCCGGTGCACCCGTGGCACCG CGTTCTGATGCGAACCGCGCTTCCCACACAGCTGCTACCCAGGAACGGTACCGAGTATT CCCGGCCTCGAGGGAGGGAAATGTGGAAATCCGAATACGAATTGTCGGAAAGATT TCCTGATTTGAACATATGGGTGGCGACCCGGTTGAGAAATCCGACACAGGCCAACAG CGAGGAAATAACCAAGAGCGAAGGTGGGGGTGCTGATCTGGCCGGGG GTTACATGAGCGGACAGCTACACTGGACGCTGTACCGATGTCGACATGGTGGCCGG ACAGAGTGACGTCATCGTGCCTCATCGAGTACCGAGTGGGTGCGTTGGCTTCCTC TACCTCGCACAGGACCTGGCTCGAGGGAGGGGGGGGGGGGGGGGGGGGGGG TCTGGGACCAGGCCCTGGCATCGGCTGGCTCAAGGACAACATGGCCCTTGGGA GGCGATCCGAACTCATGACCGCTCTGGGAGTGGCTGGGATCTGTGAAG CATCCACCTGGTATCACCGATAACTCGCGGCCTAGCGCTGTCGACATCGCAGTC AGGAACGATGAACGACCGTGAACCTCATGACGGGGGAACGGGGGAAATCG CCAAGGAGCCTCATGGACACTGGGCTGCAACTCGTGTCTCTGACCGAGGCTCC AGTCCGGCTCATGTCCTGATGGGATCAGTGAGGCAAAAGATCATCTCGTGCAGCAA TGGAAACAGCTACTCGGGCATTCTGGGACTTCCGTCCTGCCACCCACATCGAGGGCATT TTCCCTGCCAAACATCCCTCGATCTGCTCAAGGAAAGGGGACTTCAAGGACACTGAA ATACTCATCGGCAAGTAATCGGGATGAGGGTACCTACTTCATATTGTACGATTTCATCG ACTTCTTCCAAAAAGACGGGGCGAGTTCTTGCAAAAGAGATAAGTTCTAGACATCAT CAACACAAATTTCAGAAATATGACGAAAATTGAGGGGAAGCTATCATTCAGTAC ACAGATTGGGAGCATGTTATGGATGGTTATCTGAACCAAAAATGATCGGAGATGTG GTGGTGAATTACTTCATCTGGACAAATCATTCTGGACAGGGCAATTGGCAGAGG ATGAAAAGAAGGTGATTACTTCTTCACCCAGAGAACCGTACAAGTTATGGGG CGAGTGGATGGGAGTCATGGCATGGAGATGAAATAGAAATACGTTTGGTCATCCCTC</p>

		AACATGTCGGCTGCAATTCAATGCTAGGGAAAGGGATCTCAGTCTGGAAATAATGCCA GCTTACTCTAGGTTGCATTGACAGGTAACACAGTGCCGTGATGACGTGAATTGGCCTA TCTACTCCAAGGACCAGCCGAGTATTACATTTCATGGGAGACTTCGGCACAG GCAGAGGAGCCAGAGAACAGGGTGTCTTC
SEQ ID NO: 1113	SEQ ID NO: 1160	AGAAGACGGCACGGTGGTATTGGCACTCGGGCACCTACAGGCTGGAGTCCTCGC TGAAATTATGGCCTCGAAAGAGTGTGGACCAATTGGCTGCATGCAGGGATCCAACAAATG TGCGCTCTTGGCTACGAGCAAGGGCAGCATAATTGGTGAAGGGGGTGGGAGGCCG GCCATCTCGATGGATGTGAACGGTGAAGAAGATTGTGGGGCCACTCGGAGAT ACAACAGGTCAACCTCAAGGCCATGCCGGAGGGCTCGAAATCAAAGATGGGAAC GACTGCCGGTGCCTGTAAGGATATGGGCACTGTGTAAGGATATTCGGAGCACCATCG CTCATAACTCCAACGGCAGATTCTAGTCGTTGGAGATGGAGTTACATAATTCA CACATCAATTGGCTAAGAAAATAAGGCCAAAGAGTTCAATTGGCTGGCCCAAGAGTTCAATTGGGG ACAGGACTCGTCCGAGGTGCTATCAGAGAAGGAACATCCACTGTCAAAAGTTCAAA ACATTCAAAGAAAAGAAATCATTCAAGCCAGAATTGGGTGAGAGCATATTGGGG GCTACACTGTGGAGTTGTGGTGTCTGACTGGCGCTGTACGACTGGGAGACCC TGGAGGCTGTGGCTGGCATGGAGTCAACGGAAACAGGTTGTGGAGAGTT GGGGAGCTGGGGCTGGCCACTGTGACTCTTGTGCTCCGGTGTACGAGGAT ACAGGGCCGTGCTCGCTGACGGGAGCAGCCGGTGAACGGGAGCTGACGGC GTCGAGGATGCAATTGGAGGTCCCTGGTGAAGTGGTGAAGTAAAACGTGATTG
NL027	SEQ ID NO: 1159	GGCGATCGTKYT VACKGGCTC

Table 2.CS

Target ID	Primer Forward 5' → 3'	Primer Reverse 5' → 3'	cDNA Sequence (sense strand)
CS001	SEQ ID NO: 1706 CATTGAAAGCGT TTWRMYYCYCC	SEQ ID NO: 1707 CTTCGTGCCCTT GCCRATKATTRAA BACG	SEQ ID NO: 1682 TAAAGCATGGATGTTGGACAAACTGGGTTGGCGGTACGGCCGGTGGACCCGG CCCCCACAAAGTGGCGGAGTGGCTTCCTCAGGAACCCGGCTCAA GTACGCGCTCACGGAAATGAAGTGCCTTAAGATTAAAGCAGCGACTTATCAAGTTG ACGGCAAAAGTCAGGAGACGGCATATCCGGCTGGATTATGGATGTTTCCATT GAAAAGAGAAATGAAGCTGTTCCGGCTTTATGATGTTAAAGGAGATTACTACAC CGTATTACTCTGAGGGCTAAATAAACAGGTGCAAGGTGGTGGCGGAGC GGCCCCAAAGAACGTGCCTTACCTGGTGACCCACGGACGGCACCGTGGGATACCCC GACCCCACTCATCAAGGACTCCATCCAGGACTCAACGGACTTCGACATCGCCAC TGACCTTCATCAAGTTGAATCTGTGTAACCTAATGATGAC GGGGCGTEGGACCATTGTTGTCGGAGGGACATCCCGGGTTCCTTGACACIGTG GGGGCGTEGGACCATTGTTGTCGGAGGGACATCCCGGGTTCCTTGACACIGTG

CS002	SEQ ID NO: 1708 GAGTTTCTTTAG TAAAGTATTTCGG TGG	SEQ ID NO: 1709 GCAATGTCAATCC ATCAKRTCRTGTA C	CATATACGGGACTCCACCGGACATACCTTCGCTACCGAAGTGAACACAACGTGTTCATATAACGGCAAGGGCACGAAAG
CS003	SEQ ID NO: 1710 CAGGAGTTGAR RATHATYGGHSA RTA	SEQ ID NO: 1711 CAGGGTTCTTCCT CTTKACRGDCC	GAGGTCTTAAAGTAAATTCAGGCTTAACTGGGAAAGAAGGAGGTTATTGCAAGGAAACATGGGAAAGAACCTAAGAGGTTATTGCAA TAAGGCTGCCGCAACAAAGCGTGAAGCTGGCTCACACTCGAGGAAAGAACCTAAGAGGTTATTGCAA GTTAATGCTCTCCCTCGTCTGGCTGAAGTGGGAAAGGAGGATCGGTGTTGGATGAGAAGCAGATGA AGCTCGATATTGTACTCGGTCTGAAGATGGGACITCTGGAAACGTCGTCAGACT CAGGTGTTCAAGGCTGGTCTAGCTTAAGTCTATCCATCATGCCCGTATTCTTATCAGACA GAGGCACATGGTCTCCGGCAAGCAAGTGTGAACATCCCCTCGTCACTCGTGCAGCTGGGCT GAECTCTGGCAAGCACATTGACTCTCGCTGAAGTCTCGCTGGGGGGCGCG
CS006	SEQ ID NO: 1712 ACCTGCCAAGG AATGMGVAYG C	SEQ ID NO: 1713 GAGATCTTCTGC ACRTTKACVGCA C	SEQ ID NO: 1684 ACCTGCCAAGGAATGAGGAACCGCTTGTATGACAATTGGATGATGTTATAATTGCG ACAGGGGATTCTCGTGTATCTGGTACGGATGTAGTCATTGGAAAAACTATAACTTTGCCAG AAAACGATGATGAGCTGGCTGAAGGAACATCAAGGACGATACAGTAAGGAGATGCGCTCTAC ATTCTGGCGAAAACAGTGAAGACTGGTATTGTTGACCAAGTTATGCTTACACTTAACAGCG AAGGATACAAAATTGGTAAATAACGCTGTGAGAATCTGTGAGAATCCACAAATTGGAGAC AAATTGGCTTCTCGTCTGGTCAAAAGGGACTGTGTGTTTCATTAATAGGCAAGAAGA TATGCCCTTCACTGTGAAGGGATGACCCAGATATTATCATCAATTCCACATGCTATCCC CTCTCGTATGACAATTGGTCACTGTGATTGAAATTCAAGGTAAAGTCTCCCAATAAA AGGTGAAATTAGGTGATGCTACACCATTAAACGATGCTGCAACGTGCGAGAAGATCTC
CS007	SEQ ID NO: 1714 CGGTGTCCATT ACAGYTCGG TC	SEQ ID NO: 1715 CGATGCAAGTAG GTGTCKGARTCY TC	SEQ ID NO: 1690 TTTCAGAGATTCTTGGAAACCAAGATTGGGGCTATCGTCGATTGGGTTTCG AGCACCCCTCAAGGTTCAACATGAATGTTCCCCAAGCTGTTTGGGAATTGGATATT CTTTGTCAAGCTAAATCCGGAAATGGAAAAACCCGCCGTATTGTTAGCAACACTGC AACAGCTAGAACCTCAAGAAACCTAGTTACGTATTGAAATGCTCCAAATTGAGGGTTCTCTAAATATGGCTGGTTAG CTCGCTTCCAATAAGCAAGGAATATGAGGGTTCTCTAAATATGGCTGGTTAG AGTATCTGATTCTTGGGGATGCCAAATTGAGAAGTATTGAAAGACAG

			CCTGCCGACATCGTTGGTACTCCCTGGAGAATTAGCATTGGCTTAAACAACAAAG AACTGAATTAAAACACCTGAAACACTTCATCTGGATGAAATGTGACAAAAATGCTTGA TCTCTAGACATGAGACGTGATGTGCAAGAAAATATTCAAGAACACCCCTCACGGTAAGC AGGTCTATGATGTTCTGAAACATTGAGTAAGGAGATCAGACCAGTCGTGAAGAAATT ATGCAAGATCCATGGAAAGTTATGGATGATGAAGCTAACTTACATTGCACGGTT GCAGCAACATTATGTTAAACTCAAGGAAATAAGAAATGAAAGTTATTGAACTTT GGATGTACTGGAGTTCAACCAAGTTGTCATATTGTAAAGTCAGTGAGCCTGCATAG CTCTCGCACACAGCTGCTGACAGACCAAAACTTCCCAGCTATTGGTATAACCCGAAATATG ACTCAAGATGAGGCGTCTCCGCTATCAGCAGACCAAAACTTCCCAGCTATTGGTATAACCCGAAATATG TGTGCGACAAATCTTTGGACGGGTATGGACATTGAAAGAGTCAACATAGTCTTC ATTATGACATGCCG	
CS009	SEQ ID NO: 1716 CCTCGTTGCCAT YTGYWTKTGG	SEQ ID NO: 1717 CTGGATTCTCTC CCTCGCAMGAHA CC	CCTCGTTGCCATTGTATTGGACGTTCTGCAGCGCTGGGACTCACGGGAGGCCATG TGGCAGCTGGACGAGAGCATCATGGCACCACCCGGGCTCGGCTCGGCCACCG CCGGCAGAGGGTCGCCAGCAGCGTCACTGGTATAAGGAAACGACCCCAACAGCCAA CAATTCTGGGTGCAAGAAACCTCCAACTTCTAACCGCGTACAAACAGAGACGGTAAGA AAGCAGGAGCAGGCCAGAACATCCACAACCTGTAATTTCAAACTGCTCCTCGGCCG TAAGGTGTGCGACGTGGACATCGGGCCTGGAGTCCCTGTGTAGGGACAAGGACTTT GGATACCAACAGTCCACGCCCTGCACTTCTCAAACCTCAAAAGATCTTCGGTGGA GGCGCACTTCTACAAAGCTCCGACGCCCTGCCAACACTGACATGCCCGACGACTTGAA GGAGCACATGAGGAATTGACAGCGTAGATAAGAAATTATCTAAACATGGTATGGGTG CTTGGAGGGAGAGAATCCAG	SEQ ID NO: 1692
CS011	SEQ ID NO: 1718 GGCTCCGGCAA GACVACMTTYGT C	SEQ ID NO: 1719 GTGGAAGCAGGG CWGGCATKGCRAC	GGCTCCGGCAAAGACGGACCTTGTCAAAACGACACTTGACTIONGAGACTTGCAGAAAG ATGTCGCCACATTAGGTGTCGAGGTGATCCCTTAGTATTGATCACAAGAAAGTTGGTGT ATAAGGTTTAATGTATGGGATACTGCTGGCAAGAAAAGTTGGTGTCTCGAGATG GTTACTATATCAAAAGGTCAATGTGCACTCATGTTGCAATGTAACGTTCTGTGTCACC TACAAAAAAATGTAACCCAAACTGGCACAGAGATTAGTGCAGAGTCTGTGAAGGCATTCCAAT TGTCTTGTGCGCAACAAAGTAGATACTAAGGAGACAGAAAAGTCAAAGCAAAACTATTG TTTCCACAGAAAAGAACCTTCAAGTATTGACATCTGCCAACAGTCAAACATACAATT TCGAGAAAACCTTCTGGTAGGGTGTAGCGAGAAAAGTTGATGGTAACCTAGAGTT GTGCCATGCCCTGCTCCAC	SEQ ID NO: 1694
CS013	SEQ ID NO: 1720 GGATCGTCTGC TAMGWYTWGGA GG	SEQ ID NO: 1721 CTATGGTGTCCA GCATSGCGC	GGCTCCGGCAAACAGGTATACATCTGCTTGGGCCCTGTT GAAGATGTTAAACACGGGGCGCGCGGTITCCAATGGAAAGTTATGGGACTTTATGTTA GGTGAATTGTGTGATGATTACACGGTGTGTCATAGACGTATTGGCATGCCATGCCCTCAAC	SEQ ID NO: 1696

CS014		SEQ ID NO: 1722	ATGGCACTGAG CGAYGCHGATG	SEQ ID NO: 1698	TGGCACAGGAGTGTGGTTGAAGCTGTAGATCCCTGTCCTCCAAGCAAAGATGTTGGAT ATGTTGAAGCAAAACTGAGCACCCTGAGATGTAAGTGGATGTTAATCTGGAGTCGACATTAACTCAGGAGTCTTCGAAAGCTTG TCTGAACGTGCTGTAGCTGTAGTTGATGCCATTAGTCTGTCAAGGGC
		SEQ ID NO: 1723	GAACCTGGGTT GABGTTSGDCC	SEQ ID NO: 1700	TTCAAAAAGCAGATCAAGCCATATGATGGCCTCATCGAACACAAGGGCTAATGAAAAAGGCC GAGGAATATCGATGCAAAGGCCGAAGAGGAATTCAACATTGAAAAGGCCGCTGGTG CAGCAGCAGCGGGCTCAAGATCATGGAATAACTACGAAAAGAAAAGAAAGTGGAAC TCCAGAAAAAGATCCAAATCTTGAACATGCTGAATCAAGGCCGCTGGTG GTGGGTGAGGGACCGTACGCAACGTCTGACGAGGCTCGCAAGGGCTCGTACAGGCC GTGCCCCAAAGAACGTGAAACCTTACAGATCTGCTGGTACGGCTCGTACAGGCC TATTCCAGCTCATGGAACCCCAAGTAACAGTTCGCGTTAGCGGGGACGTCTCC AGTACAGTCCATATTGGGCAAGGAGCAGGAGTACAGTAAAGCAAGAACATCAAGAAGGAC GTTCAATTGAAGATCGAACACCGAGAAATTCCCTGCCCGATACTTGTGGGGAGTGG ACTTATTGCTGTAGAGGGGTATTAAAGATCGCAACACTCTGGAGTCTGCTGG CTGTGATAGCCCCAAACAACTGTTGCCGAAATACGTACCGCATTTGTC
		SEQ ID NO: 1724	GCCGCAAGGAG ACBGTVTGC	SEQ ID NO: 1725	ATCGTGTCTTCAGACGATAACTGCCCGATGAGAAAGATGCCGATGAAACCGCGTCG GAACAACCTGGCTGTAGCCCTGTCAGACATAGTCTCCATAGCGCCCTTGTGTC CAAATATGGGAAACGGGTACATATTGCCCATGATTCTGCTGGGGTGTGACTG GCGATGACACATTGATGGTTCGGGGCGTATTGCACTGTCGCTGCCGACACAGT GACCTATCAAACGAGAGGAAGAAAGAACGCCCTAAACGCCGTAGGGTAGC ATCGGGGTGCTGTGTAACAGCTCGCTCAGATCAAAGAGATGGTGGAGTTGCC GGCATCCGGCTGCTGTCAGGCAATTGGTGAAGCGGCCACGTGGAAATCTCATGTA TGGCCGGCTGGTACCGGCAAACACTCTCATTTCTGATCAACCGGGGGAGATCATG GCATTCTCTCTGATCAAGGGGGAGATCATGTCCTAAACTCGGGGAGTCCG AATCGAAACCTTCGCAAGGCATTGAGGAAGCGGACAAGAACCTCCC CATCGATGTAACCTGGATGCCCATCGCACAAAGAGGGAGAAAGACTC GCGTCGTATTGGTGTGCAACTACTCTATGGATGGAATGAAAGTC TGATCGTAATGCCGCCACCAACCGTCCGAATTGATCGACCCCCGGCTA
		SEQ ID NO: 1726	GTTCACCGGGC AYATYCTGCG	SEQ ID NO: 1702	AGGATGGAAGCGGGGATACGTTGAGCATCTCTGGGAAGATACGGAGCAGCTC CAGCCGATGTCAGGCAACTCGAATACTGTGGTTCTCTGAGTGTGATGA AGTTCTCTCGAACTTGGAGGAACTCGAGGTAGACATCGTGGGGTCA
CS016		SEQ ID NO: 1727	GTGCGCGAGGTA GAAYTCKGC	SEQ ID NO: 1700	AGGATGGAAGCGGGGATACGTTGAGCATCTCTGGGAAGATACGGAGCAGCTC CAGCCGATGTCAGGCAACTCGAATACTGTGGTTCTCTGAGTGTGATGA AGTTCTCTCGAACTTGGAGGAACTCGAGGTAGACATCGTGGGGTCA

CS018	SEQ ID NO: 1728 GCTCCGGTCTACA THCARCCNGAR GG	SEQ ID NO: 1729 GTGCATCGGTAC CAHSCHGCRTC	SEQ ID NO: 1704 GCTCCGGTCTACATTAGCCGGGAAGGGCTCCCTGTACCTGCTCAGCAATCCCAACAGCCA GCAGAGTTACCGGCCACGTCAAGCGAGGCGTCAAGAACACAAATCCTACAGGCCACGCAAGG GTACACCACCTCGGAACAGCCAAGCACAGACAGAAGGGTACACCAAGGGTACACCAAGGGTCC GACTACTCTCCACGGGACGACTTAAGGGTGATACTCGTAATACAGAAGCTCCCTCGAG AAGTTTCGTTCAAGGGAAATCCCATCAGCAAGCGGTACATTGGCGAGACAGACATTCAAGAT CAGCACGGGAGGTGCGACAAGTCTCGGGTGTGACCCCTCTCTAAAGATAGGCCAAAG CCTAGGAATTCCAAGCTCGAGGAGGGAGGCCAGCTCAAGTTCAAGTGCAGGTGTC GGTAACCCGGGCCACGGGGTGTCAAGGGTCAAGAACAAATACCTAGGGTAAGAAACACACA AACAAAACACGAAATCGTCAAGCACATAATCAGCAAGCTTGGCTGAAAAAATCTTAACGGGATGCG AAAGTCTGTAACTGGCAACATACACGTTGTCAGGAGTGCCTCAAGAACACTTACGCCAAAGATCAAAATC CATCGGCATACCTGGCCGGTGGAGTGCCTCAAGAACACTTACGCCAAAGATCAAAATC ACAATACTAAATGGACAATCAAGCTTCAAGAACAGCTTCAAGAACAGTAGAAGTTAAATGAAA AAGCTCTCGGCTCCGCAATTCTGTAAGAGTCTGCAGAACGCGCGATGTAACGGAGGGAA AATGACGCGATTTCGATTGCCGCGTCAAGGGAGACCTTACCCAGAGACGATTATWATCAATAAG ATTAACGGATAAGACAAATTGCGAGACGATTATWATCAATAAGGATTATTAGTAAACGAAATCTGTGT AATCATGCACTTATGATTACAAACGTCGATCTCAGTGTAGTGGCGTAGTATCATGTATA GCAAGCAACAAGACGGGGGAAACTTCGTTCACTGTAGGCTGAACTGTGATAGAGAAGG AGCAAGTGGTGGCTCCCAAATTCTGAGGCGGTTCAAGCACGCGCTCAACGTGCGGGAGG GCGAGCCCCGGTGCAGCTGCAACGCCAACGCCCTACGCCAACGCCATCACACA

Table 2-px

			CCTGCTCAGATCCTGTAGGCAGGGCTGGTCCTGTCAGGGCCCCGGAAATCCGGTGT TGGACGACCAGAAGAACATTGCCATGTTGCCATTCAAGCAGACTGGCAATGGAGAACGGTGGCATGGAGA ACGTCTGTCGTTCTGAACCTGGCAATTGGCAACTGACCCGACCATGGAGGATTATCAC GCCGAGGTTGGCTGACTGCTGGCGAGTTGGCTACCCAGTGGCTGGAGAAACA CGTGTGGTAATCTTGACCGACATGTCCTCATACGGGGAGGCTCTTCGTTGAAGTG TCAGCGCCCGTGAGGAGGTGCCCCGAGCAGTGGTTCCAGGGTTACATGTA CACGGATTGGCACAATCTACGAGGGCGGGAGTGGAGGCTGAGGGCCGCAACGAC GCTCCATCACCGAGATCCCACCTGACCATGCCAACGACATCACCCACC CCATCCCCGACTGACCGGGTACATCACGTAGGGACAGATCTACGTGGACCGTC AGCTGACAACACAGGGCAGATCTACCCGGGGTGAATGTGCTCCCGTGGCTATCTC GTCTCATGAAGTGGCCATCGAGGGCATGACCCAGGAAGGACACTCCGAC GTGTCACAACCAACTGTACGGTGTACGCCCATGGCAAGGAGTGGAGGAGGAG GAAGGCGGGTGGTGGGGAGGGCGCTCACGCCGACCGACCTGCTCTACCTCG AGTTCTCACCAAGTTGAGAACACTCATCACACAGGGAGACTACGAGAAC GCACAGTGGTTCGAGTGGCTGGACATCGGCTGGAGATCTGGTATCTCCCCA AGGAGATG
--	--	--	---

Table 2-AD

Target ID	Primer Forward 5' → 3'	Primer Reverse 5' → 3'	cDNA Sequence (sense strand) 5' → 3'
AD001	SEQ ID NO: 2374 GGCCCCAAGAAC TTGAAAGCG	SEQ ID NO: 2375 CGCTTGTCCCC CTCCCTNGCRA T	SEQ ID NO: 2364 GGCCCOAAGAACATTGAAAGCGTAAATGCTCTAAAGCATGGATGTTGGACAA ACTGGAGGAGTATTCGCTCCCTGCCCAAGTACTGCCCAACAAATTGGCTGAA TGTTCACCTTGGTGAATTCTGGCTGGTTCATGGTACGGGACTTATCAAGGTGCTGAGAAGT GAAGTAACGAAGATTGGTATGAGTGGTGAAGAAGGGCGTTCAAACTGAGAAGTGGAG CGATCCGAAATTATCCCGCTGGTGTATGAGTGGTGAAGAAGGGCGTTCAAACTGAGAAGTGGAG AGTTCTCAGGGCTGGTGTATGAGTGGTGAAGAAGGGCGTTCAAACTGAGAAGT GCAGAAGAACCCAAGTACAAGCTGTGCAAGGTCAAGGAGAGTCAAACTGGCCAA AAGGATTCCATTGGTGAACCATGATGGCGTAACTATCCGTTATCCTGACCC GTCATTAAGTTAATGACTCAATCCAATTGGATATTGCCACTTGTAAAATCATGGAC CACATCAGATTGATCTGGCAACCTGTGATGATTACTGGTGAAGCTAACCTGGG TCGAGTGGGAGCTGGTAGTCGAGAACGTCACCCAGGCTGGTGTATTTGATATTGTT CATATCAAGGATAACCCAAAGGACATACTTTGCCACAAAGATTGAATAATGTATTCTAC ATTGGAAAAGCTACAAAGCCTTACATTTCAATTGCCAAAGGGTAAGGGTGTGAAATT GAGTATCGCCGAGGAGGGGACAGC

AD002	SEQ ID NO: 2376 GAGTTTCTTAGTAA AGTATTCGGTGG	SEQ ID NO: 2377 GCAATGTCATCC ATCAKRTCRTGT AC	SEQ ID NO: 2366 GAGTTCTTAGTAAGTATTCCGGTGGAAAGAATGGAAAGGCTCCGACCCTG GTGAGGCCATTAGAAAACACTCAGAGAAATGTTAATCAAAGAACGAGAA TTTTAGAGAAGAAAATCGAACAAAGAAATCAATGTTGCAAAAGAAAATGGAA ATAAAGGGAGCTGCTATTCAAGCTCTGAAGGAAAGAGGTATGAAAACAATT GCAGCAATTGATGGCACCTTATCCACAAATTGAAATGCAAGAGAAGCTTGGGG GTGCTTAATCACTAATACAGCTGATTACAAACAATGAAATCAGCAGCAGTCCC AAGCAGCTCATCAGCACATGGATGTGGACAAGGTACATGACCTGATGGATGACATT GC
AD009	SEQ ID NO: 2378 GAGTCCTAGCCGCV YTSGTKGC	SEQ ID NO: 2379 CTGGATTCTCTC CCTCGCAMGAH ACC	SEQ ID NO: 2368 GAGTCCCTAGCCGCTTGGCTGAGTAGTTGATTCTCTTCTATGTCACATCACCCTGGAT CCTCGTATTCCACCTGGCAGTTAGGAACTGAGCTTCTTCTATGTCACATCACCCTGGCT AGGTTTCCGCCATTGCAAGAATGGCTGATGACTTCCGGTCAGTGGACAGACCCCTTGATGAAATTCT GTGGAAACAGATCGTGTACAAGACTCCTGGCTGACCCCTGGTCAGAACATCCACAAC GCTGTGTACAAGACTGAGCTGAGGAAAGGCCAAAGAAAGGCCAAAGTGGCAATGTCACATCACAAGAAT GTGACTATGATAAGGCCCAAAAGAAAGGCCAAAGTGGCAATGTCACATCACCCTGGCT TGGCATCCCTGATTCAAGAGAACTACAAAGGCTCCATTGATCCCTGAATACATAATGAGGTAC ATTCACTAAGCTCAACAGATCTACAATTGATCCCTGAATACATAATGAGGTAC GAATTGGCTGAGGAGATGCCAGAAGGACTGAGCAAGTACATCCACAAACCTGGAC AGTAACAACTCGAGGGAGATAACACGCTGGTGGGGTGTGGTGGGGAGAGAAT CCAG
AD015	SEQ ID NO: 2380 GGATGAACTACAGC TBTTCCGHGG	SEQ ID NO: 2381 GTCCGTGGGAY TCRGCHGCAAT C	SEQ ID NO: 2370 GGATGAACTACAGCTTCCGAGGAGATACAGTTCCTTAAGGAAAAAGGAGGA AAGAAACACTGATGCAATAGCTGTTACGCAACAAATTGAGTACATGTCCTGATGGAAAATAAGAA TGAATGAGTTGAGCTGTTAGTACGCAACAAATTGAGTACATGTCCTGATGGAAAATAAGAA AACCTTGTCTGATGTTAGTACGCAACAAATTGAGTACATGTCCTGATGGAAAATAAGAA CAGTTGAAGGACTAACCGGGATTGGTTGAGGTGTACTTAAACCCGTTATTGTTGTTGGGTATGCG GAAGCATAACCGACCATTCAACAAAGATGATGCGTTATTGTTGTTGGGTATGCG AGCAGTGAATTCAAAGTAGTGGAAACAGATCCCTACCCATATTGTAATTGTTGCTCC TGATACGTTATTCACTGTGAAGGTGATCCAATTGAGTACATTGGGGTGGCAAAACAGCTAGCACAG CATTAATGCTGTTGTTATGATGACATTGGGGTGGCAAAACAGCTAGCACAG ATCAAGGAAATGGGAATTGCCATTACGGCACCCAGTCTCTTAAGGCTATTGG TGTTAAGGCCACCGAGGGAAATACTGCTGATGGACCCCCCTGGAACTGGTAAACC CTCATGGCCAGGGCTGTGGCTAATGAAACTGGTGCATTCTTCTTAAATAATGGT CCTGAAATTATGAGCAAGCTGGCTGGTGAATCTGAAAGCAACTTACGTAAGGCATT TGAAGAAGCTGATAAGAATGCTCCGGCAATTATTTATTGATGAACTAGATGCAAT

		TGCCCTAAAGAAAAAACTCATGGAGGGTGAACGTCGATAGTTCAACACTAATGGATGGTCTGAAGCAAAGTTCACATGTTATTGTTATGGCTGCCAACATAGACCCAACTCTATTGATGGTGCCTTGCCCTTGCAAGATTGATAGGAATTGATAITGGATACCAAGATGCCACTGGTGAATTCCTGGAAATTCTCGTATCCATACAAAGAAATGAAGTTAGCTGATGATGTGATTGGAACAGATTGAGCCGAATCACCAGGAC
AD016	SEQ ID NO: 2382 GTTCACCGGGCAYA TYCTGCG	SEQ ID NO: 2383 GGAATAGGATG GGTRATTCGT CG

Table 3-1D

Target ID	cDNA SEQ ID NO	Corresponding amino acid sequence of cDNA clone
LD001	1	SEQ ID NO: 2 (frame +1) GPKKHLKRNLNAPKAWMIDKLGGVFAPRPRSTGPHKLRESPLVIFLRNRLKYALTNSEVTKIVMQRLIKVDGKVRTDSNPAGFMDVITEKTGEFFRLIYDVKGRFAVHRITAEEAKYKLICKVRMRMQTGPKGIPFIVTHDGRTRIR
LD002	3	SEQ ID NO: 4 (frame -3) AMQALKRKKRLEKNQLQIDGTLTTIELQREALLEGASTNTTLESMKNAEAALKKAAHKNLDVDNVHDMMDDI
LD003	5	SEQ ID NO: 6 (frame -2) PPRPEKARLDQELKIIGEYGLRNKREWRVKYTLAKIRKAARELLTLEEKDQRRLFEGNALLRLVRIGVLDETRMKLDYVLGKIEDFLERRLQTQVFKLGLAKSIHHARVLRQRHIVRQVNNIPSFIVRLDSQKHDIFSLKSFFGGGRPGRVKRKNL

LD006	7	SEQ ID NO: 8 (frame +1) HNYGWQVLVASGVVEYDTEEETVMIAINPDLRQDKEAYACTTHTCHEIHPAMILGVCASIIPFPDHNQSPPNT YQSAMGKQAMGYYITNFHVRMDTLAHLVLYYPHKPLVTTTRSMYEYLRFRELPAGINSIVAIACYTGYNQEDSVILNAS AVERGFFRSVFYRSYKDAESKRIGDQEEQFE
LD007	9	SEQ ID NO: 10 (frame +1) PKKDVKGTYYSHSSGFDRFLLKPEILRAIVDCGFEHPSEVQHECIPQAVIDGMILCQAKSGMKTAVFVILATLQLQQL EPADNVYYVLYMCHTRELAFQISKEYERFSKYMPSVKVGVFGGMPIANDEEVLKNCCKPHIVVGTPGRIIALVKSRL KLVLKNLKHIFILDECOKMELLDMMRDRDQEIRRNTPHTKQVMMFSATSKEIRPVCKKFMQDPMEVYVDEAKLTL HGLQQQHYVKLKENEKNNKKLFEELLDLEFNQVWIFVKSIVQRCVALAQLLTEQNFPAGIHRGMDQKERLSRYEQFKD FIQKRILVATNLFGRMIDIERVNIVFNYYDMPEDSDTYLH
LD010	11	SEQ ID NO: 12 (frame +1) VKCSRELUKGQGIGSCVSLNVKNPLVSDTEIGMGNTVQWKMCVTPTSTTMALFFEVNQHSAPIPOGGRCQFIT QYQHASGQKRIVRTVARNWADASANIHVSAGFDQEAAVIMARMAVYRAESDDSPDVLRWVDRMLJRLCQKF GEYNKDDPPNSFRLGENFSLYPQFMYHLRRSQFLQVFNNSPDETSFYRHLMLREDLTQSILMIQPLYSYSFNGPP EPVLLDTSSIQPDRILLMDTFFQILFHGETIAQW
LD011	13	SEQ ID NO: 14 (frame -1) PTFKCVLVGDGGTGKTFVKRHMTGEFEKRYVATLGVEVHPLVFHTNRGPFRNWDTAGQEKFGGLRDGYYIQC GOCAIMFDVTSRVTVYKVNPNWHRDLVRVCENIPIVLCGNKVDFIKDRKVAKSIVFHRKKNLQYYDISAKSNYNEFK PFLWLARKLIGDPNLEFVAMPALLP
LD014	15	SEQ ID NO: 16 (frame +3) GIKHMMMAFIEQEANEKAEEFNIKEKGRVLQQQRQLKIMEYYEKKEKEQVLEQKKIOSSNMLNQARLKVLKV REDHVVRTVLEEARKRLGQVTNDQGKYSQILESILQLGQLYQLFEKDVTIRVPQDRELVKSIIPVTNKYKDATGKDI HLKIDDEIHLSQETTGIDLLAQKNKIKISNTMEARLELISQQLPEI
LD015	17	SEQ ID NO: 18 (frame -1) RHPSLFKAIGVKPPRGILLYGPPGTGKTLIARA VANETGAFFLINGPEIMS KLAGESSESNL RKA FEADKNSPAIFI DELDAL
LD016	19	SEQ ID NO: 20 (frame -2) TVSGVNGPLVILEDVKFPKYNEIVQLKADGTIRSGQVLEVSGSKAVVQVFEGTSGSIDAKNTACEFTGDI LRTPVSE DMLGRVFNNSGKPIDKGPPILAEDFLDIQGQPINPWSRYPEEMIOTGITAIDVMNSIARGQKPIFSAAGLPHNEIAA CICROAGLYKIPGKSVLDDHEDNFIAVFAAMGVNMETARFFKODFEENGSMENVCLFLNLANDPTIERIITPRAL AAEFLAYQCEKHLVLTDMSSYAEALREVSAAREEVPGRRGGFPGYMYTDLATIYERAGRVEGRNGSITQIILT TMP NDDITHPI

LD018	21	SEQ ID NO: 22 (frame +2) TWFKDGQRITESQKYESTFSNNQASLRVKQAQEDSGHHTLLAENPQGCIVSSAYLAIEPVTTQEGLIHESTFKQQ QTEMEQIDTSKTLAPNFYRVCGRDRDVTGKMTFDCRTVGRPYDPDVWYINGRQVTDDHNHKLVNESGNHALM ITTVSRNDSGVATCVRNKTGETSFQCNLNVIKEEQVWAPKFVERFTVNVAAEGEPVSLRARAVGTPVPRITWQR DGAPLASGPDVRIADGGASTLNISRAKASDAAWYRC
LD027	23	SEQ ID NO: 24 (frame +1) HGGDKPILSGADDRLVKIWDYQNKTCVQTELEGAQNVTAVCFHPELPAVLTGSEDGTVRVWHTNTHRLENCLN YGFERWTICLGSNNVSLGYDEGSILVKVGREEPAVSMADASGGKIIWARHSELQQANLKALPEGGEIRDGERL PVSVKDMGACEIYPQTIOHNPNNGRFVVVCGDEYIYTAMALRNKAFGSAQEFWWAQDSSEYAIRESGSTIRIFKN FKERKNFKSDFSAEGLYYGGFLGIKSVSGLTFYDWETLDLVRRIEOPRAVYWSDSGKLVCLATEDSYFILSYDSEQ VQKARENQVAEDGVEAAFDVLGEMNESVRTGLWVGDCFYT

Table 3-PC

Target ID	cDNA SEQ ID NO	Corresponding amino acid sequence of cDNA clone
PC001	247	SEQ ID NO: 248 (frame +1) AWMLDKLGGVFAPRPRSTGPHKLRESLPLVIFLNRNLKYALTNSEVTKIVMQRLIKVDGKVRDTSNYPAGFMDVITIE KTGEFFRLIYDVKGRFAVHRITAEAKYKLCKVRRVQTGPKGIPFLVTHDGRTRYPDPNIKVNDTIQMELATSKILDY IKFES
PC003	249	SEQ ID NO: 250 (frame +2) P R R P Y E K A R L D Q E L K I G A F G L R N K R E V W R V K Y T L A K I R K A A R E L L T L E E K P K R L F E G N A L L R R L V R I G V U D E N R M K L D Y V L G L K I E D F L E R R L Q T Q V F K S G L A K S I H H A R V L I R Q R H I R V R K Q V V N I P S F I V R L D S Q K H I D F S L K S P F G G G R P G R V
PC005	251	SEQ ID NO: 252 (frame +3) P N E I N E A N T S R Q N I R K L I K D G L I K K P V A V H S R A R V R K N T E A R R K G R K G T A N A R M P Q K E L W V Q R M R V L R R L K K Y R E A K K I D R H L Y H A L Y M K A K G N V F R N K R V L M E Y I H K K K A E K A R A K M L S D Q A N A R R L K V Q A R E R E
PC010	253	SEQ ID NO: 254 (frame +3) L K D S L Q M S I S L L P P N A L I G L I T F G K M V Q V H E L G T E G C S K S Y V F C G T K D L T A K Q V O E M L G I G K G S P N P Q Q Q P G Q P G R P G Q N P Q A A P V P P G S R F L Q P V S K C D M N L T D L I G E L Q K D P W P V H Q G K R P L R S T G A O L S I A V G L L E C T Y P N T G G R I M I F L G G P C S Q Q G P Q V L N D D L K Q P R S H H D I H K D N A K Y M K K A I K H Y D H L A M R A A T N S H C I D I Y S C A L D Q T G L M E M K Q C C N S T G G H M V M G D S F N S S L F K Q T F Q R V F S K D P K N D L K M A F N A T L E V K C S R E L K V Q G G I G S C V S L N V K S P L V S D T E L G M G N T V Q W K L C T A P S S T V A L F E V V N Q H S A P I P Q G G R G C I Q L I T Q Y Q H A S G Q R R I R V T I A R N W A D A T A N I H H I S A G F D Q E A A V V M A R M A G Y K A E S D E T P D V L R W V D R M L U R L C Q K F G E Y N K D D P N S F R L G E N F S L Y P Q F M Y H L R

		RSQFLQVFNNSPDETSFYRHMLMREDLTQSLSIMQPILYSYSFNGPPPEPVLLDTSSIOPDRILLMDTFFQILIFHGETI AQW
PC014	255	SEQ ID NO: 256 (frame +3) DVQKQIKHMMMAFIEQEANKEAEEFNEIDAKAAEEFNIKGLVQQQRLKIMIYYEKKEKQVELQKKQISSNMLNQARLK VIKV/REDHVRAVLEDARKSLGEVTKDQGKYSQILESLIQGLFQLFEKEVT/RVRPQDRDLVRVSILPNVAAKYKDA TGKDILLKVDDDESHLSQEITGGVVDLLAQQKNKIKISNTMEARDLIA
PC016	257	SEQ ID NO: 258 (frame +2) LVILEDVKFKPFNEIVQLKLADGTLRSGQVLEVSQSKAVY/QVFEGTSQIDAKNTVCEFTGDLRTPVSEDMIGRVPN GSGKPIDKGPKPILAEDYLDIQGQPINPWSRIYPEEMIQTGTITADVMNSIARGQKIPFSAAAGLPHNEIAAQICRQAGL VKVPGKSVLDDHEDNFNAIVFAAMGVNMETARFFKQDFEENGSMENVCFLNLANDPTIERIIIPRLALTAAEFLAYQ CEKHVLVLTDMSSYAEALREVSAAREEVPGRGFPGYMYTDLATIYERAGRVEGRNGSUTQPILTMP
PC027.	259	SEQ ID NO: 260 (frame +1) QANLKVLPEGAEIRDGERLPVTKDMGACEIYPOTIQHNPNGRFVV/CGDGEYIYTAMALRNKAFFGSAQEFFFVWA QDSSEYAIRESGSTIRKFKEKKNFKSDFGAEGIYGGFLLGVKSVSGLAFYDWETLELVRRIEIOPRAIYWSDSG KLVCLATEDSFILSYDSQVQKARDNNQVAEDGVEAAFDVLGEINESVRTGLWVGDCFCIYTNAVNRNINYFVGHEL VTAHLDRLPLVLGYPVRDDRLLVTDKELGVVSYXIAICTRISDCSHATRLPNG'SSIAFNSK

Table 3-EV

Target ID	cDNA SEQ ID NO	Corresponding amino acid sequence of cDNA clone
EV005	513	SEQ ID NO: 514 (frame +3) RCGKKVWLDPNEITEANTNSRQNIRKLICKDGLIUKPKAVHSRARVVRKNTTEARRKGRCFGKRGKGTANARMPRK ELWIQRMRVIRRLLKKYREAKKIDRHLYHALYMKAKGNVFKNKRVMMDYIHKKKAEKARTKMLNDQADARRLKVK ARKRREERIATKKO
EV008	515	SEQ ID NO: 516 (frame +1) PTLDPSIPKYRTTEESIIGTNPGMGRPMDPDNNEESTLWLOGSNKTNYEKWKMNLLSYLDKYYTPGKIEKGKGNIPVKRC SYGEKLIRGQVCDVVRKWEPCRTPENHFDYLRNAPCIFLKNRNYIYGWEPEYYNDPNOLPDDMPQQQLKDHYRNITNP VERNTWWVTCAGENPADVEYLGPVKYYPSPFQGFYYFPYLNSEGYSPLLAQFKRPVSGIWINIECKAWA
EV010	517	SEQ ID NO: 518 (frame +3) GGHMVMGDSFNSSLFKQTTFQRRVFSKDSNGDLKMSNAILEVKCSRELKVQGGIGPCVSLNVKNPLVSDEIGMGNT VQVKLCSSLSPSTTVVALFFEVNQHAAPIPOQGGRGCQFITQYQHSSGQQKKIRVTIARNWADATANIIHISAGFDEQT AAVLMARIAVYRAETDESSDVLRWVDRMLIRLCQKFEYNKDDTNSFRLENFSLYPQFMYHRRSQFLQVFNNSP DETSFYRHMLMREDRNQ

EV015	519	SEQ ID NO: 520 (frame +1) RHPSLFKAIGVKPPRGILLYGPPGTGKTLIARAVANETGAFFLINGPEIMSKLAGESSESNLRKAFFEADKNSPAIFI LDAAPKREKTHGEVERRVSQQLTLMGMKKSSHVIVMAATNRPNSIDPALRRFGRFDRDIGHIPDATGRLEVRLI KNMKLADDVDEQIAAETHGHVGADLASLCSEALAQIREKMDLIDDDQIDAELSLAVTMENFRYAMSCKSSPA LRETV
EV016	521	SEQ ID NO: 522 (frame +2) TSGVNGPLVILDSVKFPKNEIVQLKLSDGTV/RSQQVLEVSGQKAVVQ/FEGTSGIDAKNTLCFTGDILRTPVSED MLGRVNGSSGPIDKGPPILAEDFLDQGQPINPWSRIYPEEMIQTGISADVMNSIARGQKIPISAAGLPHNEIAAQIC ROAGLVKIPGKSVLDDHEDNFAIVFAAMGVNMETARFFKQDFEEINGSMENVCLFLNANDPTIERIITPRLTAAEFM AYQCEKHKVLVLTDMSSYEALEVSAA

Table 3-AG

Target ID	cDNA SEQ ID NO	Corresponding amino acid sequence of cDNA clone
AG001	601	SEQ ID NO: 602 (frame +1) HLKRAAPKAIVMLDKLGGVFAPRPSGPHKLRESLPLVIFLNRNRLKYALTNTCEVTKIVMQRQLIKVDGKVVRTDPNYPAG FMDVITEKTGEFFRLIYDVKGRFTTHRITAEAKYKLLCK/VKQVTGPKGIPFLVTHDGRTRYPDPMIKVNDTQLEIATS KIDFIKFESGNLCMTGGRLGRVGTvVNRRHGPSFDIVHIRDANDHVFATRLNNVFGKGSKAFVSLPRGKGVK LSIA
AG005	603	SEQ ID NO: 604 (frame +2) VWLDPNEINEIANTNSRQNIRKLKDGLIICKPVAVHSRARVRKNTTEARRKGRRHCGFGKRKGTTANARMPQKELWIQR MRVLRRLKKYREAKKIDRHLYHALYMKAKGNVFKRNKRVLMEYHKKKAERAKMLADQANARRQKVQVP*EEG RAYRREEAG
AG010	605	SEQ ID NO: 606 (frame +3) GGHMLMGDSFNSSLFKQTFRQVFAKDQNGHLMKAFTNGTLEVKCSRELKVQGGIGSCVSLNVKSPLVADTEIGMGN TVQWKMKCTFNPSTTMALFFVVNQHSAPIPGGGRGCIQFITQYQHSSGQRRIRVTIARNWADASANIHISAGFDQ ERAIVIMARMAYRAETDESVDLVRWVDRMLIRLCQKFGEYNKDDQASFRLLGENFSLYPQFMYHRRSQFLQVFNN SPDETSFYRHLMREDLTQSLSMIPLYSYSFNGGPPEPVLLDTSSIQPDRILLMDTFFQUILFHGETIAQW
AG014	607	SEQ ID NO: 608 (frame +3) QIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQLRKIMEYYEKKEKQVELCKKIOSSSNMLNQARLKVIKRE DHVRAVLDEARKKLGEVTRDQGKYAQILESLILQGLYQLFEANVTVRVRPQDRTLVLQSVLPTIAKYRDVTGRDVHLS IDDETQLOSESVTGGIELLKQNKIKVONTLEARLDLISQQLVPIQRNALFGRNINRKF
AG016	609	SEQ ID NO: 610 (frame +1)

	VSEDMLGRVFNNGSGKPIDKGPPILAEDFLDIQGQPINPVWSRYPEEMIQTGISAIDVMNSIARGQQKIPFSAAGLPHNEIA AQICRQAGLVKLPGKSVIDDHEDNFAIVFAAMGVNMETARFFKQDFEENGSMENVCFLNLANDPTIERIITPRLLATA AEFLAYQCEKHKVLVILTDMSSYAEALREVSAAREEVPGRRGGFPGYMTDLATIYERAGRVEGRNGSITQIPLTMPND DITHPI
--	--

Table 3-TC

Target ID	cDNA SEQ ID NO	Corresponding amino acid sequence of cDNA clone
TC001	793	SEQ ID NO: 794 (frame +1) GPKKHLKRNLNAPKAWMILDKLGGVFAPRPSTGPHKLRESLPLVIFLRNRLKYALTNSEVTKIVMORLIKVGDKVVRTD PNYPAGFMDVVTIEKTGEFFRLIYDVKGRFTIHRITGEAAKYKLCKVKVQQTGPKGIPFLVTRDGRTIRYPDPMKVN DTIQLEIATSKLDIFKFESENLCMITGGRNLRGVGTUVSRERHPGSFIDVHKDANGHTFATRLNNVFIIGKGSKPYV SLPRGKGKVLSI
TC002	795	SEQ ID NO: 796 (frame +1) QEFLAKIDQEILTAKKNASKNKRRAAIQAIKRKRYEKQLOQIDGTLSTIEMOREALEGANINTAVLKTMKNAADAL KNAHLMNDVDDEVHDMMDDI
TC010	797	SEQ ID NO: 798 (frame +3) PEVLVFGHVVLVEPVPLGDCLTVENQNLEKCVHEKDPIGLNGTSVEEDGFRGAVENTITVQNRDHNETLGEVLPH QHVAVERGLWVGIVENLEELGAQMWHLEGIETEVFTQTETTVRVVFWFAEF
TC014	799	SEQ ID NO: 800 (frame +1) EKAAEIDAKAEEEFNIEKGRILVQQQRKIMYEYYKEKKEKPVELQKKIOSSSNMLNQARLKVLKVREDHVNVLDDARK RLGEITNDQARYSQLLESLILQSLYQYLGISDELFFENIVVRVROQDRSIIOQGLPVVATKYRDTATGKDVKHLKIDDES HPSETTGGVVLYAQKGKIKIDNTLEARLDLIAQQLVPEIRTAFLGRNNRKF
TC015	801	SEQ ID NO: 802 (frame +2) DELQLFRGDTVLLKGKRRKETKTCIVLADENCPCDEKIRMNRIVRNNLVRRLSDVWNIQPCPDVVKYGKRIHVLPIDDTV EGLVGNLFEVVLPKFYFLEAYRPIHKGDVFIVRGGMRAVEFKVWEPSPYCIVAPDTVIHCDGDPKREEEEAEALNA VGYDDIGGCRKQLAQIKEMVELPLRHPSLFKAIGVKPPRGILLYGPPGTGKTLIARAVANETGAFFLINGPEIMSKL AGESESNLRKAFEEADKNSPAIIfELDAIAPKREKTHGEVERRIVSOLLTLMDGMKSSSHVIVMAATNRPNSIDPA LRRFGRFD

Table 3-MP

Target ID	cDNA SEQ ID NO	Corresponding amino acid sequence of cDNA clone
MP001	888	SEQ ID NO: 889 (frame +1) GPKKHLKRNLNAPKAWLMDKSGGVFAPRPSTGPHKLRESPLLIFLRNRLKYALTGAEVTKIVMORLIKVGKVRDNPYPAQKFMDVISIQTSEHFRILYDVKGRTITHRITPEAKYKLCKVKRVQTPKGVPFLTTDGRTRYPDPNIKVNDTIRYDIASSSKILDHIREFTGNLCMTGGGRNLGRVGIINTNRERHPGSFDIVHKDANEHIFATRMNNVFIIGKQKNYISLPRSKGVKL
MP002	890	SEQ ID NO: 891 (frame +2) SFFSKVFGGKIKEEKPLRSTEEMLIKKOEFLEKKIEQEVAIAKKNGTTNKRAALQALKRKRYEQQLAQIDGMLTIEQQREALEGANTNTAVLTMIKTAADALKSAHQNMNVDDVHDLMDI
MP010	892	SEQ ID NO: 893 (frame +3) GCQFIFTIQYQHSSSGYKRIYVTTLARNWADPVQNMMMHVSAAFDQEASAV/LMARMVVNRAETEDSPDVMRW/ADRTLIRLCQKFGDYQKDDPNSFRLPENFSLYPQFMYHLLRSQFLQYFNNNSPDETSYYRHMLMREDVTQSLSIMIQPILYSYSFNGRPEPVLLDTSSIOPDKLIMDTFFHILFHGETIAQWRAMDYQNREPEYSNLKQOLQAPVDDAQEILKTRFPMPRYIDTECGGSOARFLLCKVNPSQTHNNMYAYGG*WWSTSFSFDR*CKLAHVGA
MP016	894	SEQ ID NO: 895 (frame +1) VSEDMGLRUVNGSGKPIDKGPPILAEDYLDIEGQPINPYSRTPQEMIQTGISAIDIMNSIARGQKIPFSAAGLPHNEIAAQICRQAGLVKKPGKSVLDDHEDNFNAIVFAAMGVNMETARRFKQDFEENGSMENVCLFLNLANDPTIERIITPLALTAAEFLAYQCEKKHVLVILTDMSSYAEALREVSAAREEVPGRRGFPGYMTDLATIYERAGRVEGRNGSITQPILTMPNDDITHP
MP027	896	SEQ ID NO: 897 (frame +3) PITKTRRVFRH'KAMILKIFLUYCFHPELPIVLTGSEDGTVRIWHSGYLERWNTICLRLGSNNVALGYDEGSIMVKVYGREPAMSMDVHGGKIVWARHSEIOQANLKAMLQAEGAEIKDGERLPIQVKDMGSCIEYPQSHNPNGRFLVVCGDGELYIYTSMALRNKAQDFWWSDSEYAIRESNSTIKVFKNFKEKKSFKPEGGADGFGYLLGVKSVTGLALYDWENGNLVRRIETQPKHVFWSSEGELEVCLATEAYFILRFDVNVLSAARASNYEAASPDGLEDAFEILGEVQEWWKTGLWVGDCFIYTNGVNRINYVGEVTVS

Table 3-NL

Target ID	cDNA SEQ ID NO	Corresponding amino acid sequence of cDNA clone
NL001	1071	SEQ ID NO: 1072 (frame +2) KSWMLDKLGGVYAPRPSSTGPHKLRESLPLVIFLRNRLKYALTNCCEVKIVMQRLIKVDGKVRTDPNYPAGFMDVVQIEKTNEFFRLIYDVKGGRFTIHRITAEEAKYKLCKVKRVQTGPKGIPFLTTHDGRTRYPDPLVKVNNDTIQLDIATSKIMDFIRFDSGNLCMTGGGRNLGRVGTVNRRHPSFEDIVHKDVLIGHTFATRNNVFIGKGSKAYVSLPKGKVLS
NL002	1073	SEQ ID NO: 1074 (frame +1) DEKGPITGEAIQKLRETEEMIKKQDFLEKKIEVEIGVARKNGTKNKRAAIQALKRKRYEKQLQQIDGTLSTIEMQREALEGANTNTAVLQTMKNAADALKAAAHQHMDVQ
NL003	1075	SEQ ID NO: 1076 (frame +2) PRRPYEKARLEQELKIIGEYGLRNKREWWRVKYALAKIRKAARELLTLEEKDQKRLFEGNALLRRLVRLVGRVLDEGRMKLDYVLGKIEDFLERLRLQTQVYKLGLAKSIHARVLURQHIVRVRQVVNIPSFVVRLDSQKHIDFSLKSPFGGRRPGRV
NL004	1077	SEQ ID NO: 1078 (frame +1) KELAAVRTVCSHENMLKGVTKGFLYKMRAYAHFPINCUTENNSVIEVRNFLGEKYIRRVRMAPGVTVTNSTKQKDELIVEGNISVEDVSRSAALIQQSTTVKNKDIRKFLD
NL005	1079	SEQ ID NO: 1080 (frame +1) LDPNINEINANTSRSQSRKLIKDGLIUKKPKVAVHSRARVRKNTTEARRKGRHKCGFKRKGTANARMPQKVLUVNRMRLVRRLKKYRQDKKKDRHLHYHLYMKAKGVFKNKRVLMEEFHKKKAECARMKMLNDQAEARRQKVKEAKKRRE
NL006	1081	SEQ ID NO: 1082 (frame +3) VLVSSGVVEYDTLEEETTMIAMSPDDLQDKEYAYCTTYTCIEHPAMILGVCASIIPPDHNOQSPRNTYQSAMGKQAMGVYTINFHVRMDTLAHLVLFYHPKPLVTTSRSMELYRFRELPAGINSVVAIACYTGYNQEDSVILNASAVERGFFRSVFFRSYKDAESKRIGDQEERKFPTRQTQCGMIRNAYDKLDDDGIIAPGLRVSGDDVWIGKTITLPONDDELEGTTKRFTKRDASTFLRNSETGIVDQYMLTLNSEGYKFCRKVRSVRIPPIQGDKFASRHGQKGTGCIQYRQEDMPFTSEGIAPIIDINPHAIPSRMTİGHİIECLQGKVSSNKGEIGDATPFN
NL007	1083	SEQ ID NO: 1084 (frame +2) FRDFLKPEILRAIDCGFEHHPSEVQHECIPQAVLGMDILCQAQSGMGKTAVFVLTATLQQIEPTDNGVSVLVMCHTRELAFQISKEKEYERFSKCMNPNIKVGVFFFGLPIQDDEETLKLNCPIHIVGTPGRILALVRNKKLDLKHFLVDECDKMLELLDMRRDVOEIRNTPHSKQVMMSATLSKERPVCKKFMQDPMEVYVDEAKUTLHGGLQHQHYV/LKENEKNNKLFELLDILEFNQVVIIFVKSVQRCMALSOLLTEQNFPAAVHRCGMTOEERLKQYEFKEFLKRILVATNLFGRGMDIERVNIVNYDMP
NL008	1085	SEQ ID NO: 1086 (frame + 1) GRIENQKRVVGVLLGCWRPGGVLDVSNSFAVPFDEDDEKKNWWFLDHDXLENMFGMFKV/NAREKVVGWYHTGPKL

NL009	1087	HONDVAINELIRRCPNCVLIIDAKPKDGLPTEAYRVVEIHDGSPTSKTFEHVMSEIGAEAEEGVEHLLRDIDTT VGSLSQRTVNQMLGKGLHLQLQDMRDYLNQVVEGKLPMNHQIVYQLAQDIFNLNPDIHGNGFVDSL
		SEQ ID NO: 1088 (frame +1) CDYDRPPGRGQVCDVDVKNWFPCPTSENINFNYHQSSPCVFKLKNLKGWQPEYYNETEGFPDNMPGDLKRHIAQQKSI
NL010	1089	NKLFMQTWTCEGEGPLDKENAGEIQYPRQGFGFYYPYTN A SEQ ID NO: 1090 (amino terminus end) (frame +2) SSRLEATRLVWPVGCLYQPLKERPDLPVQYDPVLCTRNTCRAILNPLCQVDRYAKLWVCNFQCFQQRNPFPQQYAISEQ HQPAEELIPSFSSTIEVHTRAQTMPPMFVLW/DTCLDDDEELGALKDSLOMSLQMLSPNALLGUTFGKM/QVHELGCDGCSK SYVFRGVKDOLTAQIQDMLGIGKMAAAAPQPMQQRIPGAAPSAPVNRFLQPVGKCDMSLTDLIGELQRDGPWNVAQGKR PLR STGVALSIAVGILECT
	1115	SEQ ID NO: 1116 (carboxy terminus end) (frame +3) LNWKGSQCVSDTDIGLGGTSQWKMCRAFTHTTCAFFEVVNQHAAPQGGGRGCQIFITQYQHSSGQRRIRVTIARNWA DASTNLAHISAGFDQEAGAVLMARMVVRAETDDGPDMVRWADRMLIURLCQRFGYESKDDPNSSLRLENFTLYPQFM YHRRSQFLQVNNSPDETSYRHILMREDLTQSLIMQPILYSYSFNGPPEPVLDTSQQPDRILLMDTFFQILFHGETI A
NL011	1091	SEQ ID NO: 1092 (frame +2) DGGTGKTTFKRHLTGEFEKKVYATLGVEVHPLVFHTNRGVIRFNWDTAGQEKFGLRDGYYIQQCAIIMFDVTSRV TYKNVPNSNWHRDLVRCENIPIVLCGNKVDIKDRKVKAKSIVFHRKKNLQYYDISAKSNYNFEKPFLWLAKKLIGDPNLEFV AMPALLPPEVTPMDPQX
NL012	1093	SEQ ID NO: 1094 (frame +2) QQTAQAVQDEVVDMKTKNVEKVLERDQKSELDDRADALQQGASQEQQAGKLKRKF
NL013	1095	SEQ ID NO: 1096 (frame +2) AEQVYISSLLKMLKHGRAGGVPMEVWGLMLGEFYVDDYTVRVIDVFAMPQSGTGVSVEAVDPVFOAKMFLDKMLKQTGR PEMVGWYHSHPGFGCWLSGVDINTQESFEQLSKRAVAVV
NL014	1097	SEQ ID NO: 1098 (frame +2) FIEQEANEKAEEIDAKAEEEFNIEKGRLVQHQLKIMEYYDRKEKQVELQKQISSLNNQARLKALKVREDHVRVSLEE SRKRLEGEVTRNPARYKEVQLQYLVQGLLQLLESNVLRVR EADVSUIEGIVGSCAEQYAKMTGEVAAAETCGGVELFARNGRKIPNTLESRLDLSQQQLVPEIRVALF
NL015	1099	SEQ ID NO: 1100 (frame +1) IVLSDETCPFEKIRMNRRVRLSDIVSIQPCPDVKYGGKRIHVLPIDDTEVEGLTGNLFEVYLKPFLEYRPIHKDDA FIVRGGMRAVEFKVVEDPSPYCIVAPDTVIHCEGDPKREDEEEDAANAVGYYDGGCRKQLAQIKEMVELPLRHPSLFK AIGVKPPRGILLYGPPGTGKTLIARAVANETGAFFFLINGPEIMSKLAGESESNLRKAFAEADKNAPAIIFIDEIDAIAPKRE KTHGEVERRIVSQLLTMDGLKQSSHIVVMAATNRPNSIDAALRRGFRDFREIDGPDATGRLEVLRIHTKNMKLAADDV

		LEX
NL016	1101	SEQ ID NO: 1102 (frame +2) TPVSEDMGRVFGNSGKPIDKGPPILAEDYLDIQGQPINPWSRIVPEEMIQTGISAIDVMNSIARGQKIPFSAAGGLPHNEIA AQICRQAGLVKLPGKSVDSEDNFAIVFAAMGVNMETARFFKQDFEENGSMENVCFLNLANDPTERIITPRLATAAE FLAYQCEKHLVLITMDMSSYAEALREVSAREEVPGRRGFPGMYTDLATIYERAGRVEGRNGSIT
NL018	1103	SEQ ID NO: 1104 (frame +2) MQMPVPRPQESTQQFIRSEKTTYSNGFTTIEDFKVDTEYRLREVFSFRESLIRRNLHEADMQMISTVDRALGPPSAP HIIQQKPRNSKIQEGGDAVFSIKLSANPKRVLWFKNGQRIGQTQKHQASYSNQTTAHLVNKVSAODSGHHTLAENPQ GCTVSSAYLAVEASAGTQDTGYSEQYSRQEVEETTEAVDSSKMLAPNFVRVPADRDASEGKMTTRFDRCRVTGRYPDVA WFINGQQVADDATHKILVNESGNHSLMITGVTRLDHGUVGCIAERNKAGETSFQCNLNIEKELVVAAPKFVERFAQVNVK EGEPVVLSARAVGTPVPRITWQKDGAPIOQSGPSVSLFVGGGATSDIPIYAKAS
NL019	1105	SEQ ID NO: 1106 (frame +2) DDTYTESYISTIGVDFKIRTDLGKTIKLQIWDTAGQERFRRTITSSYYRGAHGIIVYDCTDQESFNNLHQWLLEEIDRYAC DNVNHLVGNGKCDQTNKKVWDYTQAKEYADQLGIPFILETSAKNATNVEAF
NL021	1107	SEQ ID NO: 1108 (frame +2) VSLNSVTDISTTFKIRLPQENVKITLEGAQACFISHERLVLISLKGGELYVLTLYSDSMRSVRSFHLEKAASVLTTCICVCEE NYFLGSRLGNSSLRFTKEKLNLIEPRAIESSQSQNPAKKKKLTLGDWMASDVTEIRDDELEVYGETQTSMIAQSYI F
NL022	1109	SEQ ID NO: 1110 (frame +2) TLHREFLSEPDLOSSYVMIIDEAHERTLHTDILGLVKDVARFRPDLKLUISSATLDAQKFSEFFDDAPIFRIPGRRFPVDIY YTKAFAEADYVDACVSILQIHATQPLGDLVFLTGOEEETCQELLQDRVRRLGPRIKELLLPVSNLPSDMQAKIFLPTPP NARKVVLATNIAETSLTIDNIIYVIDPGFCQKNNFNNSRTGMESLNUVVPVSKASAANQRAGRAVRAGKCFRLYT
NL023	1111	SEQ ID NO: 1112 (frame +2) RSFSQERQHEEMKESSGRMHHSDFLIVETHSGHVRGISKTVLGREVHVF TGIFPAKPKPLFRKPVPVDPWHGVLD TALPNSCYQERYEYFPGECEEMWNPNNTNLSEDCLYLNWVPHRLRIRHTRANSEENPKRAKVPVLWYGGYMSGTA TLDVYDADMVAATSVDIVASMQYRVGAFGFLYLAQDLPRGSEAEPMGNGLWDQALAIRWLKDNIAAFGGDPELMTLFG ESAGGGGSVSIHLSPTRGLARRGIMOSGTMNAPWSFMTAERAETIAKTLDDCGCNSLLTDAPSRVMSCMRSVEAKII SVQQWNNSYSGILGLPSAPTDGIFLPKHPDLKKEGDFQDTEILGSNQDEGTYFLYDFIGFFQKDGPSFLQRDKFLDINT IFKNMTKIERAIIFOYTDWEHVMDGYNQKMGIDVVGDYFFCPTNHFQAQFAEHGKVVYYFTTQRTSTSILVGEWMG VMHGDEIEYVFGHPLNMSLQFNARERDLSLRIMQASRFALTGKPVDDVNWIPIYSKDQPQYYIFNAETSGTGRGPRA TACAF
NL027	1113	SEQ ID NO: 1114 (frame +2) PIVLTGSEDGTVRIWHSGTYRLESSLYGLERVWTICCMRGSSNNVALGYDEGSIMVKVGREEPAINSMDVNGEKIWARH SEIQQVNKLAMPEEGVEIKDGERLPVAKMGSCEIYPTQIAHNPNNGRFLVVCGDGEYIHTSMVLRINKAFGSAQEFIGW

Table 3-CS

Target ID	cDNA SEQ ID NO	Corresponding amino acid sequence of cDNA clone
CS001	1682	SEQ ID NO: 1683 (frame +1) KAWMILDKLGGVYAPRPSTGPHKLRECLPLVIFLRNRLKYALTGTNEVLKIVKQRLIKVGDGVTRDPTYPAGFMDV SIEKTNLNFRLLYDVKGGRFTIHRITPPEEAKYKLCKVRRVATGPKNVPYLVTHDGRTVRYPDPIKVNDISIQLDIATSK IMDFIKFESGNLCMTGGRNGLRGTVSRERHPSFDIVHRSRHTFATRLNVFIIGKGTAKAYSLPRGKGVR LT
CS002	1684	SEQ ID NO: 1685 (frame +1) SFFSKVFGKKEEKGPSTHEAIQKLRETEELLQQKFELRKIDTELQTAARKHGTKNKRAAAALKRKKRYEKQLT QIDGTLTQLEAQREALEGANTQVINTMRDAATAMRLAHKDIDVDKVHDLMDDI
CS003	1686	SEQ ID NO: 1687 (frame +1) GLRNKREWWRVKYTLARIRKAAREELLTLEEKDPKRULFEQNALLRRLVRIGVLDKQMQLDYVLGLKIEDFLERRLQ TQVFKAFLAGKSIHHARILQRHIIVRKQVVNIPSFIVRDOSGKHIDFSLKSPFGGGRP
CS006	1688	SEQ ID NO: 1689 (frame +1) TCQGMNRNALYDKLDDGIIAPGIRVSGDDVWIGKTITLPENDDELEGTSRRYSKRDASTFLRNSETGIVDQVMTL NSEGYKFCKIRVSVRIPQIGDKFASRHGQKGTCIQYRQEDMPFTCEGLTPDIINPHAPSRTIGHLECIQGK VSSNKGEGIDATPFNDAVNVQKI
CS007	1690	SEQ ID NO: 1691 (frame +3) SEISCWNRFWGLSSIAVSSTLQKFNMMNVFPKLFWEWIFFVKAKGSMGKTAVFVLAHQLEPSENHVYVLVMC HTRELAFQISKEYERFSKYMAGVRVSVFFGGMPIQKDEEVLKTAFCHVVGTPGRIALVNKKLNKHLKHFIELD ECDKMLESDMRRDVQEIFRNTPHGKQVMMFSATLSKEIRPVCKKFMQDPMEVYDDEAKLTLHGLQHQHYVKL KENEKNKKLFELLDVLEFNQVVIFVKSVQRCIALAQLLTDQNFPAIGHNMQTQDERLRSRYQQFKDFQKRILVATN LFGRGMDIERVNIVFYDMP
CS009	1692	SEQ ID NO: 1693 (frame +1) LVAICIWTFQRLDSREPMMQLDSEIIGTNPGLGFRPTPEEVASSVWYKGNDPNSQQFWVQETSNFLTAYKRD GKKAGAGQNIHNCDFKLPPAGKVCDVDISAWSPCVEDKHFGYHKSTPCIFLKLNKIFGWRPHFYNSSDLPTD MPDDLKEHIRMNTAYDKNYLNMMWVSCGEGENP

CS013	1694	SEQ ID NO: 1695 (frame +1) GSGKTTFVKRHLTGEFEKRYVATLGVEVHPLVFHTNRCPIRFNWWDTAGQEKFGGLRGGYYIQGQCAIMFDVT SRVTYKNVPNWHRDLYVRVCEGIPIVLGNKVKDIKDRKVAKTIVFRKKNLQYYDISAKSNYNFEKPFLWLARKLI GDGNLEFVAMQPCFH
CS013	1696	SEQ ID NO: 1697 (frame +2) DAPVVDATAEQVYISSALLKMLKHGRAGVPMEMVMGLMLGEFVDDYTVRVIDVFAMPQTGTGSVEAVDPVFQA KMLDMLLKQTGRPEMV/GWYHSHPGFCWLSGVVDINTQQSFEALSERAVAVVDPVQK
CS014	1698	SEQ ID NO: 1699 (frame +2) QKQIKHMMAFIEQEANEKAEEEFNIEKGRILVCQQQLKIMEYYKEKKQVELQKKIQQSSNMLNQARLKVL LKVRREDHVRNVLDARKLAEVPKDVKLYTDLVLTWQALFQLMEPTVTVRVRQADVSLSVQSLGKAQQDYKA KIKKDVLQKLIDTENSPLPADTCGGVELAARGRIKISNTLESRLEIAQQLPEIRTAFL
CS015	1700	SEQ ID NO: 1701 (frame +1) IVLSDDNCPDEKIRMNRVVRNNLRVRLSDIVSIAPCPVKYKGKRVHLPIDSVEGLTGNLFEVYLKPYFMEA YRPI HRDDDFMVRGGMRAVEFKV/ETDPSPYCIV/APDTVIHCEGDPIKREEEEALNAVGYDDIGGCRKQLAQIKEMV ELPLRHPSLFKAIGVKPPRGILMYGPPGTGKTLIARAVANETGAFFLINGPEIMSKLAGESESNLRKAFEADKN SPAIIFIDELDAIAPKREKTHGEVERRIVSQLTLMDGMKSSHIVMAATNRPNSIDPAL
CS016	1702	SEQ ID NO: 1703(frame -3) TPVSEDMILGRVNGSGKPIDKGPPILAEDFLDIQGQPINPWSPYPEEMIQTGISAIDVMSARGKIPFSAAGLP HNEIAAQICRQAGLVIPGKSVLDDHEDNFAIVAAMGVNIMETARFFKQDFEENGSMENYCLFLNLANDPTIERII TPRLALTAEFLAYOCCEKHVLVILTDMSSYAAELREVSAAREEVPGRRGFPGYMYTDLATIYERAGRVEGRNGSI TQIPILTMPPNDITHPIPDLTGITEGQIYVDRQLHNRCQIYPPVNVLPSLSRLLMKSAIGEGMTRKDHSVDVNQLYAC YAIGKDVQAMKAWGEEALTPDDLLYLEFLTKFEKNFITQGNYENRTVFESDLIGWQLLRIFPKEMLKRPASI
CS018	1704	SEQ ID NO: 1705 (frame +2) SVYIQPEGVPVPAQQSQQQSYRHVSSEVEHKSYGTOGTTSEQTQTKQTQKVAYTNGSDYSSTDDFKVDTFEY RLLREVSFRESITKRYIGETDQISETEVOKSLGVUTPPKIAQKPRNSKLQEGADAQFOVQI SGNPRPRVSWFKNG QRIVNSNKHEIVTTHNQTILVRVNTQKSDTGYNTLAENPNCGVUTSAYLAVESPQETYGQDHKSQYIMDNQQT AVEERERVENEKALAPQFVRCQDRDTEGKMTRFDCRVTGRPYPEVTWFINDRQIRDYXHKILVNESCNHAL MITNVDSLDSGVVSCIARNKTGETSFQCRLNIEKEQVAPKFVERFSTLNVRGEVPLHARAVGTPPRITWQ KDGVQVIPNPELRINTEGGASTLDIPRAKASDAGWYRC

Table 3-PX

Target ID	cDNA SEQ ID NO	Corresponding amino acid sequence of cDNA clone
PX001	2100	SEQ ID NO: 2101 (frame + 1) GPKHLKRLNAPRAWMILDKLGGVYAPRPSTGPHKLRECPLVLFLQPPQVRAQRORGAEDEAAPHQGGRQGPH RPHPGWHLGCCVD'KDQ*AVPSDLRCEGTLLHPPHHSRGQQVQAVQEARGDGPQERAVHDAQRPHAAALPRP AHQGQRHLHPARHRLQDHGHQVRLR*PVHDHGRA*LGASGHHRVPREAPRELHRPHQGHRTLRRHQVEQRV HHRQGHE
PX009	2102	SEQ ID NO: 2103 (frame + 3) TLIWyKGTYGDSYKYWENQLIDFLSVYKKKGQTAGAGQNIFNCDFRNPPPHGKVCVDIRGWEPICDENHFSFHKS SPCFIKLNKIYGVWREFEYNDTANLPEAMPVDSLQTHIRNITAFNRDYANMWWVWSCHGETPADKENIGPVRYLPYPGFP GYFYPYENAEGYLSPLVAHLERPTGIVINECKAWA
PX010	2104	SEQ ID NO: 2105 (frame + 3) GCIOFITQYQHSSSGQRRRVVTAVARNWGDAAANLHHISAGFDQEAAAV/MARLVVYRAEQEDGPDVLRWILDRMLIR LCQKFGEYAKDDPNNSFRLESENFSLYPQFMYHLLRSQFLQVFNNNSPDETTFYRHMLMREDLTQSLSIMIQPLYSYSFG GAPEPVLLDTSSIOPDRILLMDTFFQIIYHGETMAQWRLRYQDMAEYENFKOLLRAPVDDAQEILQTRFPVPRYIDT EHGGSQARFLLSKVNPSCITHNNMYAYGGAMPIPSADGGAPVLTDDVSLSQVFMEQP
PX015	2106	SEQ ID NO: 2107 (frame + 3) RKETVCIVLSDPNCPDEKIRMNRVVRNLRVRLSDIVIACPSVKYGKRVHILPIDSVEGLTGNLFEVYLKPYFMEA YRPIHDDTFMVRGGMRAVEFKVVETDPSPYCIVAPDTVIHCEGEPIKRREEEEALNAVGYDDIGGCRKQLAQIKEMV ELPLRHPSLFLKAIGVKPPRGILMYGPPGTGKTLIARAVANETGAFFLINGPEIMSKLAGESESNLRKAEEADKNSPA ILIDEELDAI
PX016	2108	SEQ ID NO: 2109 (frame + 2) FTGDILRTPVSEDMILGRIFNGSGKPIDKGPPILAEYDIQGQINPWSRIYPEEMIQTGISAI'DVMNSIARGGKIPIFSA AGLPHNEIAAQICRQAGLVKPGKSVLDDHEDNFAIVFAAMGVNMETARFFKQDFEENGSMENVCLFLNLANDPTIE RUITPRLATAEFLAYQCEKHVLVILTDMSSYAEALREVSAAREEVPGRRGFPGYMYTDLATIYERAGRVEGRNGSIT QIPLTMPPNDITHPIPDLTGYITEGGIVYDROLHNQIYPPVNVLPSLSRLMKSAIGEGMTRKDHSDVSNQLYACYAIG KDQAMKAVVGEEARLPODILYLEFLTKFEKNFITQGSYENRTVFESLDIGWQPLRFPKEM

Table 3-AD

Target ID	cDNA SEQ ID NO	Corresponding amino acid sequence of cDNA clone
AD001	2364	SEQ ID NO: 2365 (frame +1) GPKKHLKRUNAPKAWMIDLGGVFAPRPSTGPFLKRECLPLVIFLNRRLKYALTNTCEVTKIVMQLIKVGKVRRTDPNYPAGFMDWVTEKTGEFFRLVYDVKGRTIHRISAAEAKYKLCKVRRVQTGPKGIPFLVTHDGRTRYPDPVVKVNDSIQLDIATCKIMDHRFESGNLCMTGGRNLGRVGTvSRHPSFDIVHKTDTQGHTFATRLLNNVFIIGKATKPYISLPGKGVVKLSIAEERDK
AD002	2366	SEQ ID NO: 2367 (frame +2) SFFSKVFGKKDGKAPTTGEAIIQKLRETEEMLIKQEFLEKIEKQEVNAVKKNGTKNKRRAIQALRKKKRYEKQALQAQIDGTLSTIEMQREALLEGANTNTAVLQTMKSAADALKAAAHQHMDVDKVHDLMDDI
AD009	2368	SEQ ID NO: 2369 (frame +3) VLAALVAVCLWVFFFQTLDRPRIWTQLDSSIIGTSPPGLGFRPMEDSNVESTLTIWYRGTDRDDFROWTDTLDEFIAYKTPGKTPGRQQNIHNCDYOKPPKKGQVQCNVDIKNNWHPQCIQENHNYHKSSPCIFIKLKINYNWIPEYYNESTNLPEQMPEDLKQYIHNLSENNNSREMINTWWVSCGENP
AD015	2370	SEQ ID NO: 2371 (frame +2) DELQLFRGDTVLLKGKRRKETTCIVLSDTCPDGKIRMKMRNVVRNINLRVRLSDVSVOPCPDVKYGKRIHVLPIDDITVEGLTNLIFEVYLKPYFLAEYRPHKDDAFIVRGGMRAVEFKVYETDPSPYCIVAPDTVIHCEGDPKIREEEEEEEALNAVYDDIGCRKQLAQIKEMVELPLRHPSLFAIGVKPRGILLYGPPGTGKTLUARAVANETGAFFFLINGPEIMSKLAGESENRLRKAEEADKNAPAIIFDELDIAPKREKTHGEVERRIVSQLLTMDGKQSSHIVVMAATNRPNSIDGALLRRGFDREIDIGIPDATGRLLEIRHTKNMKLAADDVDEQIAEESHG
AD016	2372	SEQ ID NO: 2373 (frame +2) FTGDILRVPVSEDMLGRTTFNGSGIPIDGGPPIVAAETYLDVQGMMPINQTRIYPEEMIQTGISTIDVUMTSIARGQKIPIFSGAGLPNHEIAAQICRQAGLQYQHKENKDDFAIVFAAMGVNMETARRFKREFAQTGACMVFLNLANDPTIERIIPTRLPTVAEFLAYQCNKHLVIMTDMTSYAEALREVSAAREEVPGRRGFPGYMYTDLSTIYERAGRQVGRPGSITQIPITMPNDRTHP

Table 4 LD

Target ID	SEQ ID NO	Sequences*	Example GI-number and species
LD001	49	GGCCCCAAGAACATTGAAAGCGTTT	3101175 (<i>Drosophila melanogaster</i>), 92477283 (<i>Drosophila erecta</i>)
LD001	50	AATGCCCAAAAGCATGGATGTTGGATAAA TTGGGAGGTGT	70909480 (<i>Carabus granulatus</i>), 77325294 (<i>Chiranthus tentans</i>), 900945 (<i>Ctenocephalides felis</i>), 60297219 (<i>Diaprepes abbreviatus</i>), 37951951 (<i>Ips pini</i>), 75735533 (<i>Tribolium castaneum</i>), 22039624 (<i>Ctenocephalides felis</i>)
LD001	51	GAAGTTACTAAGATTGTTATGCA	33368080 (<i>Glossina morsitans</i>)
LD001	52	ATTGAAAAAAACTGGTGAATTTCGG	60297219 (<i>Diaprepes abbreviatus</i>)
LD001	53	ACACACGACGGCCGCACCATCCGCT	27555937 (<i>Anopheles gambiae</i>), 33355008 (<i>Drosophila yakuba</i>), 22474232 (<i>Helicoverpa armigera</i>), 3738704 (<i>Manduca sexta</i>)
LD001	54	ACACACGACGGCCGCACCATCCGCTA	92477283 (<i>Drosophila erecta</i>)
LD001	55	CCCAAAGCATTGAAAGCGTTT	92954810 (<i>Drosophila ananassae</i>), 92231605 (<i>Drosophila willistoni</i>)
LD002	56	GCAATGTCATCCATCATGTCGTG	17861597 (<i>Drosophila melanogaster</i>), 92223378 (<i>Drosophila willistoni</i>), 92471309 (<i>Drosophila erecta</i>)
LD003	57	CAGGTTCTCTCTTGACGGTCCAGG	24975810 (<i>Anopheles gambiae</i>), 3478578 (<i>Antherea yamamai</i>), 42764756 (<i>Armigeres subalbatus</i>), 24661714 (<i>Drosophila melanogaster</i>), 68267151 (<i>Drosophila simulans</i>), 33355000 (<i>Drosophila yakuba</i>), 49532931 (<i>Plutella xylostella</i>), 7652910 (<i>Spodoptera frugiperda</i>), 92959651 (<i>Drosophila ananassae</i>), 92467993 (<i>Drosophila erecta</i>)
LD003	58	TTGAGCGAGAAGTCAAATGCTTCT	49558930 (<i>Boophilus microplus</i>)
LD003	59	TTCCAAGAAAATCTTCAATCTTCAAAACCCAA	62238687 (<i>Diabrotica virgifera</i>), 76169907 (<i>Diptoptera punctata</i>), 67872253 (<i>Drosophila pseudoobscura</i>), 55877642 (<i>Locusta migratoria</i>), 66548956 (<i>Apis mellifera</i>)

LD003	60	TTCATCCAACACTCCAATACG	22040140 (<i>Ctenocephalides felis</i>)
LD003	61	AAGAGCATGGCTTCAAAACACT	2459311 (<i>Antheraea yamamai</i>)
LD003	62	AGTTCCTGGCAGCTTACGGATT	76169907 (<i>Diptroptera punctata</i>)
LD003	63	CCACACTTCACTGTTGTTCT	57963684 (<i>Heliconius melpomene</i>)
LD003	64	CCGTATGAAAGCTTGATTACGT	108742527 (<i>Gryllus rubens</i>), 108742525 (<i>Gryllus pennsylvanicus</i>), 108742523 (<i>Gryllus veletis</i>), 108742521 (<i>Gryllus bimaculatus</i>), 108742519 (<i>Gryllus firmus</i>), 109194897 (<i>Myzus persicae</i>)
LD003	65	AGGAACAAAACGTGAAGTGTGGCG	109194897 (<i>Myzus persicae</i>)
LD006	66	AGCGCTATGGTAAGCAAGCTATGGG	27819970 (<i>Drosophila melanogaster</i>)
LD006	67	TGTTATACTGGTTATAATCAAAGAAT	55801622 (<i>Acyrthosiphon pisum</i>), 66535130 (<i>Apis mellifera</i>)
LD007	68	GAAGTTCAAGCACGAATGTATTCC	50563603 (<i>Homalodisca coagulata</i>)
LD007	69	CAAGCAAGTGTATGATGTTCAGTGCCAC	50563603 (<i>Homalodisca coagulata</i>)
LD007	70	TGCAAAATTCA TGCAAGATCC	21068658 (<i>Chironomus tentans</i>)
LD007	71	AAATGAAAAAATAAAAAATT	49201437 (<i>Drosophila melanogaster</i>)
LD007	72	CAGAATTCCCAGCCATAGGAAT	678895225 (<i>Drosophila pseudoobscura</i>)
LD007	73	AGCAAGTTCAAAGATTCCAGAAG	77848709 (<i>Aedes aegypti</i>)
LD007	74	TTCCAATCAGCAAAGAGTACGAG	91083250 (<i>Tribolium castaneum</i>)
LD010	75	TACCCGCAGTTCATGTACCAT	29558345 (<i>Bombyx mori</i>)
LD010	76	CAGTCGCTGATCATGATCCAGCC	49559866 (<i>Boophilus microplus</i>)
LD010	77	CTCATGGACACGTTCTTCAGAT	60293559 (<i>Homalodisca coagulata</i>)
LD010	78	GGGCTGCATACAGTTCATCAC	92971011 (<i>Drosophila mojavensis</i>)
LD010	79	CCGGCAGTTCATGTACCAATTG	92958825 (<i>Drosophila ananassae</i>)
LD010	80	GACAATGCCAAATACATGAAAGAA	92921253 (<i>Drosophila virilis</i>)

LD010	81	TTCGATCAGGGAGGCAGCCAGTG	92921253 (<i>Drosophila virilis</i>)
LD011	82	AGCAGGGCTGGCATGGCGACAA	28317118 (<i>Drosophila melanogaster</i>)
LD011	83	TTCCTCAAAGTTGTAGTTAGATTGGC	37951963 (<i>IPS pini</i>)
LD011	84	TACTGCAAATTCTTCTCTCTATG	55883846 (<i>Locusta migratoria</i>)
LD011	85	GGTACATTCTGTATGTAACCT	67885713 (<i>Drosophila pseudoobscura</i>)
LD011	86	TCAAACATGATAAATAGCACACTG	68771114 (<i>Acanthoscurria gomesiana</i>)
LD011	87	TCTCTGACCGGGCAGTGTCCCCATA	17944197 (<i>Drosophila melanogaster</i>), 77843537 (<i>Aedes aegypti</i>), 94469127 (<i>Aedes aegypti</i>), 24664595 (<i>Drosophila melanogaster</i>)
LD011	88	GCTACTTTGGGAGTTGAAGTCCATCC	101410627 (<i>Plodia interpunctella</i>)
LD011	89	TAACTACAACCTTTGAGAAGGCCCTTCCT	90813103 (<i>Nasonia vitripennis</i>)
LD011	90	AAGTTGGTGGTCTCCGTGATGG	84267747 (<i>Aedes aegypti</i>)
LD014	91	GCAGATCAAGCATATGATGGC	9732 (<i>Manduca sexta</i>), 90814338 (<i>Nasonia vitripennis</i>), 87266590 (<i>Choristoneura fumiferana</i>)
LD014	92	ATCAAGCATATGATGGCTTTCATTGA	75470953 (<i>Tribolium castaneum</i>), 76169390 (<i>Diptera punctata</i>)
LD014	93	AATATTGAAAAAGGGGCCCTTGT	78055682 (<i>Heliconius erato</i>)
LD014	94	CAACGGTCTCAAGATTATGGAATA	37659584 (<i>Bombyx mori</i>)
LD014	95	ATTATGGAATTATTGAGAAGAAAAGA	66556286 (<i>Apis mellifera</i>)
LD014	96	AACAAAATCAAGATCAGCAATACT	25958976 (<i>Curculio glandium</i>)
LD016	97	ATGTCGTCGTGGGCATAGTCA	27372076 (<i>Spodoptera littoralis</i>)
LD016	98	GTAGCTAAATCGGTACATGTAACCTGG AAACCACGACG	27372076 (<i>Spodoptera littoralis</i>), 55797015 (<i>Acyrthosiphon pisum</i>), 73615307 (<i>Aphis gossypii</i>), 4680479 (<i>Aedes aegypti</i>), 9713 (<i>Manduca sexta</i>), 76555122 (<i>Spodoptera frugiperda</i>), 237458 (<i>Heliothis virescens</i>), 53883819 (<i>Plutella xylostella</i>), 22038926 (<i>Ctenocephalides felis</i>), 101403537 (<i>Plodia interpunctella</i>), 92969578 (<i>Drosophila grimshawi</i>), 91829127

			(<i>Bombyx mori</i>)
LD016	99	GCAGATAACCTACGCAAAGCTTC	62239897 (<i>Diabrotica virgifera</i>)
LD016	100	GGATCGTTGGCCAAATTCAAGAACAGGCCA	67882712 (<i>Drosophila pseudoobscura</i>), 92985459 (<i>Drosophila grimshawi</i>)
LD016	101	TTCATAGAACCGTTCTTCGAAATCCTG	4680479 (<i>Aedes aegypti</i>), 27372076 (<i>Spodoptera littoralis</i>)
LD016	102	GCTGTTCCATGTTAACACCCAT	49558344 (<i>Boophilus microplus</i>)
LD016	103	TCCATGTTAACACCCATAGCAGCGA	62238871 (<i>Diabrotica virgifera</i>)
LD016	104	CTACAGATCTGGCAGCAATTTCATTGTG	22038926 (<i>Ctenocephalides felis</i>), 16898595 (<i>Ctenocephalides felis</i>)
LD016	105	GGCAGACCAGCTGCAGAGAAAAAT	22038926 (<i>Ctenocephalides felis</i>), 16898595 (<i>Ctenocephalides felis</i>)
LD016	106	GAGAAAATGGGGATCTTCTGACCAACGAGCA ATGAGTTCATCACGTC	4680479 (<i>Aedes aegypti</i>), 9713 (<i>Manduca sexta</i>), 22038926 (<i>Ctenocephalides felis</i>), 16898595 (<i>Ctenocephalides felis</i>), 67877903 (<i>Drosophila pseudoboscurea</i>), 10763875 (<i>Manduca sexta</i>), 76554661 (<i>Spodoptera frugiperda</i>), 77905105 (<i>Aedes aegypti</i>), 50562965 (<i>Homalodisca coagulata</i>), 27372076 (<i>Spodoptera littoralis</i>)
LD016	107	ATGAGTTCATCACGTCAATAGC	9713 (<i>Manduca sexta</i>), 237458 (<i>Heliothis virescens</i>), 76554661 (<i>Spodoptera frugiperda</i>), 22474331 (<i>Helicoverpa armigera</i>)
LD016	108	GTCGGATCATTCTCAGGATAGATACGG GACCACGGATTGATTGGTGACCCCTGGATG TCCAAGAAGTCTTCAGCCAAAATTGGGGA CCTTGTGTC	16898595 (<i>Ctenocephalides felis</i>), 22038926 (<i>Ctenocephalides felis</i>), 50562965 (<i>Homalodisca coagulata</i>), 49395165 (<i>Drosophila melanogaster</i>), 6901845 (<i>Bombyx mori</i>), 92931000 (<i>Drosophila virilis</i>)
LD016	109	ATGGGGACCTTGTGCGATGGG	10763875 (<i>Manduca sexta</i>)

LD016	110	ATGGGTTTCCCTGATCCATTGAAAACACGGTC CCAACATATCCTCAGAAACAGGAGTCCTCA AAAATCTCCTGTGAATTACAAGGGGTGTT TTGGCGTCGATTCTGTATGCCCTCGAA CACTTGAAACCACAGCTT	49395165 (<i>Drosophila melanogaster</i>), 55905051 (<i>Locusta migratoria</i>)
LD016	111	ACAGCTTTGACCCACTGACCTCCAG	21642266 (<i>Amblyomma variegatum</i>)
LD016	112	GACCCACTGACTTCCAGAACCTGTCGGAA CGTATAGTGCATCAGCCAGTTGAGT	49395165 (<i>Drosophila melanogaster</i>)
LD016	113	GGACCGTTCACACCAGAACAGT	24646342 (<i>Drosophila melanogaster</i>)
LD016	114	GACTGTCTGGTGAACGGTCTCT	103769163 (<i>Drosophila melanogaster</i>), 92048971 (<i>Drosophila willistoni</i>)
LD016	115	TTCTCTTGAATACTCTGTGAA	84116133 (<i>Dermatophagoides farinae</i>)
LD016	116	GACTGTGTVGGTGAACGGTCC	24646342 (<i>Drosophila melanogaster</i>)
LD016	117	GCTCGTCGTTCCAGTTACATGTAC ACGGATT	92231646 (<i>Drosophila willistoni</i>), 91755555 (<i>Bombyx mori</i>), 84228226 (<i>Aedes aegypti</i>)
LD016	118	TGACAGCTGCCGAATTCTTGGC	92231646 (<i>Drosophila willistoni</i>)
LD018	119	CAAGTCACCGACGACCAACCAA	91080016 (<i>Tribolium castaneum</i>)
LD018	120	ATCGCGATTGACGGTGGAGCC	91080016 (<i>Tribolium castaneum</i>)
LD027	121	AGACGATCGGGTGGTAAATACT	66501387 (<i>Apis mellifera</i>)
LD027	122	GATATGGGAGCATGTGAAATATA	77326476 (<i>Chironomus tentans</i>)
LD027	123	TTAGAGAATTGTTGAATTAT	90129719 (<i>Bicyclus anynana</i>)

Table 4-PC

Target ID	SEQ ID NO	Sequence *	Example G-number and species
PC001	275	AAAATTGTCATGCCAAAGGGTTGAT	37952206 (<i>ips pini</i>)

PC001	276	AAAGCATGGATGTTGGACAAA	38994282 (<i>Antheraea mylitta</i>) 109978109 (<i>Gryllus pennsylvanicus</i>) 55904580 (<i>Locusta migratoria</i>)
PC001	277	AAAGCATGGATGTTGGACAAAATT	31366663 (<i>Toxoptera citricida</i>)
PC001	278	AAAGCATGGATGTTGGACAAAATTGGG	60311985 (<i>Papilio dardanus</i>)
PC001	279	AAAGCATGGATGTTGGACAAAATTGGGGGTGT	37951951 (<i>Ips pini</i>)
PC001	280	AAATACAAAGTGTGTAAGTAA	84647793 (<i>Myzus persicae</i>)
PC001	281	AAGCATGGATGTTGGACAAAATTGGGGGTGT	70909486 (<i>Mycetophagus quadripustulatus</i>)
PC001	282	ATGGATGTCAATTACTATTGAGAA	25957367 (<i>Carabus granulatus</i>)
PC001	283	CATCAAATTGAATCTGGCAACCT	37952206 (<i>Ips pini</i>)
PC001	284	CATGATGGCAGAACCATTCGTTA	60303405 (<i>Julodis onopordi</i>)
PC001	285	CCAAAGCATGGATGTTGGACAA	90138164 (<i>Spodoptera frugiperda</i>)
PC001	286	CCATTGGTAAACACATGATGG	11011915 (<i>Apis mellifera</i>)
PC001	287	CCCCAAAGCATGGATGTTGGACAA	50565112 (<i>Homalodisca coagulata</i>)
PC001	288	CCCCAAAGCATGGATGTTGGACAA	103790417 (<i>Heliconius erato</i>)
PC001	289	CCCCAAAGCATGGATGTTGGACAAATT	101419954 (<i>Plodia interpunctella</i>)
PC001	290	CCCCAAAGCATGGATGTTGGACAAATTGGG	73612809 (<i>Aphis gossypii</i>)
PC001	291	CCCCAAAGCATGGATGTTGGACAAATTGGGGGT	77329254 (<i>Chironomus tentans</i>)
PC001	292	CCCCAAAGCATGGATGTTGGACAAATTGGGGGTGTCTTCGC	60305420 (<i>Mycetophagus quadripustulatus</i>)
PC001	293	CGTTACCCGTACCCCAACATCAA	846477993 (<i>Myzus persicae</i>)
PC001	294	GCAAAATACAAGTGTGAAAGTAA	73613065 (<i>Aphis gossypii</i>)
PC001	295	GCAATGGATGTTGGACAAATTGGG	83662334 (<i>Myzus persicae</i>)
PC001	296	GCATGGATGTTGGACAAATTGGGG	92969396 (<i>Drosophila grimshawi</i>)
PC001	297	GCATGGATGTTGGACAAATTGGGGGT	67885868 (<i>Drosophila pseudoobscura</i>)
PC001	298	GCATGGATGTTGGACAAATTGGGGGTGTCT	23956479 (<i>Biphyllus lunatus</i>)
PC001	299	GCTCCCAAAGCATGGATGTTGGAA	90814901 (<i>Nasonia vitripennis</i>)
PC001	300	GCTCCCAAAGCATGGATGTTGGACAA	110260785 (<i>Spodoptera frugiperda</i>)
PC001	301	GCTCCCAAAGCATGGATGTTGGACAA	76551269 (<i>Spodoptera frugiperda</i>)
PC001	302	GCTCCCAAAGCATGGATGTTGGACAAATTGGG	56085210 (<i>Bombyx mon</i>)
PC001	303	GGTCCCAAAGGAATCCCAATTGGT	22474232 (<i>Helicoverpa armigera</i>)
PC001	304	GGTGTCTTGGCCCCCTGTCCA	50565112 (<i>Homalodisca coagulata</i>)
PC001	305	GTGAAGTCACTAAAATTGTCATGCAAAG	82375022 (<i>Acyrthosiphon pisum</i>)
			25956820 (<i>Biphyllus lunatus</i>)

PC001	306	TCCACGGGCCCTCACAAAGTTGCG	58371410 (<i>Lonomia obliqua</i>)
PC001	307	TCCCCAAAGCATGGATGTTGGA	110263957 (<i>Spodoptera frugiperda</i>)
PC001	308	TGCTCCCCAAGCATGGATGTTGGACAA	48927129 (<i>Hydropsyche sp.</i>)
PC001	309	TGGATGTTGGACAAATTGGGGGTGCT	90814560 (<i>Nasonia vitripennis</i>)
PC003	310	AAAATTGAAGATTTCCTGGAA	108742519 (<i>Gryllus firmus</i>)
PC003	311	AACAAACGTGAAGTGGAGAGT	109978291 (<i>Gryllus pennsylvanicus</i>)
PC003	312	AAGTCGGCCCTTCGGGGGGCCG	62083482 (<i>Lysiphebus testaceipes</i>)
PC003	313	ACTTCTCCCCTGAAGTGCCTTCGG	56150446 (<i>Rhynchosciara americana</i>)
PC003	314	AGATTGTTGAAGGTAATGCACTCT	57963755 (<i>Heliconius melpomene</i>)
PC003	315	ATCCGTAAGCTGCTCGTGAA	77884026 (<i>Aedes aegyptii</i>)
PC003	316	ATCGACTTCTCCCTGAAGTCGCC	92992453 (<i>Drosophila mojavensis</i>)
PC003	317	ATCGACTTCTCCCTGAAGTCGCCCT	60298816 (<i>Diaphorina citri</i>)
PC003	318	ATGAAGCTGATTATGTTGGGTCGTGAAAAATTGAAGATTCT	33373689 (<i>Glossina morsitans</i>)
PC003	319	TGAAAGA	92987113 (<i>Drosophila grimshawi</i>)
PC003	320	ATTGAAGATTCTTGGAAAGA CACATCGACTTCTCCCTGAAGTC	1899548 (<i>Drosophila melanogaster</i>)
PC003	321	CAGAAGCACATCGACTTCTCCCTGAAGTCGCCCTCG	71539459 (<i>Diaphorina citri</i>)
PC003	322	CAGAAGCACATCGACTTCTCCCTGAAGTCGCCCTCGGGG	62240069 (<i>Diabrotica virgifera</i>)
PC003	323	CGACTTCTCCCTGAAGTCGCC	71550961 (<i>Oncometopia nigricans</i>)
PC003	324	CAGAAGCACATCGACTTCTCCCTGAAGTCGCCCTCG	68267151 (<i>Drosophila simulans</i>)
PC003	325	CGACTTCTCCCTGAAGTCGCC	33355000 (<i>Drosophila yakuba</i>)
PC003	326	CGACTTCTCCCTGAAGTCGCC	2152719 (<i>Drosophila melanogaster</i>)
PC003	327	CGACTTCTCCCTGAAGTCGCC	107324644 (<i>Drosophila melanogaster</i>)
PC003	328	CGACTTCTCCCTGAAGTCGCC	154613111 (<i>Drosophila melanogaster</i>)
PC003	329	CGACTTCTCCCTGAAGTCGCC	38624772 (<i>Drosophila melanogaster</i>)
PC003	330	CGACTTCTCCCTGAAGTCGCC	92959651 (<i>Drosophila ananassae</i>)
PC003	331	CGACTTCTCCCTGAAGTCGCCCTCG	92981958 (<i>Drosophila mojavensis</i>)
PC003	332	CGACTTCTCCCTGAAGTCGCC	76552467 (<i>Spodoptera frugiperda</i>)
PC003	333	CGACTTCTCCCTGAAGTCGCC	60296953 (<i>Diaprepes abbreviatus</i>)
PC003	334	CGACTTCTCCCTGAAGTCGCC	77329341 (<i>Chironomus tentans</i>)
PC003	335	CGACTTCTCCCTGAAGTCGCC	60312414 (<i>Papilio dardanus</i>)
PC003	336	CGACTTCTCCCTGAAGTCGCC	22040140 (<i>Ctenocephalides felis</i>)
PC003	337	CGACTTCTCCCTGAAGTCGCC	18883211 (<i>Anopheles gambiae</i>)

PC003	332	TGGCAGAAGCACATCGACTTCCCTGAAGTCGCCCTTCGG	92963738 (<i>Drosophila grimshawi</i>)
PC003	333	TCTCCCTGAAGTCGCCCTTCGG	38047836 (<i>Drosophila yakuba</i>) 27260897 (<i>Spodoptera frugiperda</i>)
PC003	334	TGAAAATTGAAGATTCTTGGAA	61646980 (<i>Acyrtosiphon pisum</i>) 73615225 (<i>Aphis gossypii</i>) 83661890 (<i>Myzus persicae</i>) 37804775 (<i>Rhopalosiphum padi</i>) 30049209 (<i>Toxoptera citricida</i>)
PC003	335	TGAAAATTGAAGATTCTTGGAAAAGA	90813959 (<i>Nasonia vitripennis</i>)
PC003	336	TGGACTCGCAGAACATCGACTTCTCCCT	25959408 (<i>Meladema coriacea</i>)
PC003	337	TGGCTAAATCCGTAAGCTGC	76169907 (<i>Diplopiera punctata</i>)
PC003	338	TGGGTCTGAAAATTGAAGATTCTTGGAA	34788046 (<i>Callosobruchus maculatus</i>)
PC003	339	TTCTCCCTGAAGTCGCCCTTCGG	107331362 (<i>Drosophila melanogaster</i>) 110240861 (<i>Spodoptera frugiperda</i>)
PC003	340	TTGGGTCTGAAAATTGAAGATTCTTGGAAAAG	37952462 (<i>Ips pini</i>)
PC003	341	GGTGCGCAAGCAGGGTTGGTAAC	110887729 (<i>Argas monolakensis</i>)
PC005	342	CTCCTCAAAAAAGTACAGGGGGCCAAGAA	63512537 (<i>Ixodes scapularis</i>)
PC005	343	AAAAAGAAGGTGTGGATCC	33491424 (<i>Trichoplusia ni</i>)
PC005	344	AAAAAGAAGGGTGGGGATCCAAAATGAAATCAA	91759273 (<i>Bombyx mori</i>) 55908261 (<i>Locusta migratoria</i>)
PC005	345	AAAAGAAGGGTGGGGATCCAATGAAATCA	101414616 (<i>Plodia interpunctella</i>)
PC005	346	ACACCAAACTCAAGACAAAACAT	25957531 (<i>Cicindela campestris</i>)
PC005	347	ACACCAAACTCAAGACAAAACATCCGTAAC	25958948 (<i>Curculio glandium</i>)
PC005	348	AACTCAAGACAAAACATCCGTAAC	60314333 (<i>Panorpa cf. vulgaris APV-2005</i>)
PC005	349	AAGAACACTGAAGCCAGAAGGAAGGGCATTGTGG	25958948 (<i>Curculio glandium</i>)
PC005	350	AATGAAAATCAACGAAAATCGCCAAACAC	92979160 (<i>Drosophila grimshawi</i>) 92232072 (<i>Drosophila willistoni</i>)
PC005	351	ATGGAGTACATCCACAAGAAGAAGGC	15454802 (<i>Drosophila melanogaster</i>)
PC005	352	CAAGATGCTGTCTGACCAGGC	67872905 (<i>Drosophila pseudoobscura</i>)
PC005	353	CGCCTCCCTCAAAAAGTACAGGGAGGC	75471260 (<i>Tribolium castaneum</i>)
PC005	354	C GTATCGCCACCAAGAAGGCAG	68267374 (<i>Drosophila simulans</i>)
PC005	355	CTGTACATGAAAAGCGAAGGGTAA	25957246 (<i>Carabus granulatus</i>)
PC005	356	GAACAAAGAGGGTCCCTTATGGAG	90977107 (<i>Aedes aegypti</i>)

PC005	357	GAACAAAGGGTCCATTATGGAGTACATCCA	40544432 (<i>Tribolium castaneum</i>)
PC005	358	GAGCGTATGCCACCAAGAAGCA	92480972 (<i>Drosophila erecta</i>)
PC005	359	GAGTACATCCACAAGAAGGC	33354497 (<i>Drosophila yakuba</i>)
PC005	360	GATCCAAATGAAATCAGAAAT	15516174 (<i>Drosophila melanogaster</i>)
PC005	361	GCCAAACACCAACTCAAGACAAAAACATCCG	56149737 (<i>Rhynchosciara americana</i>)
PC005	362	GCCAAACACCAACTCAAGACAAAAACATCCGTAAGCTCAT	103019061 (<i>Tribolium castaneum</i>)
PC005	363	GCCAAAAAGGAAAGGTGGATGCCAAATGAAATCA	56149737 (<i>Rhynchosciara americana</i>)
PC005	364	GGGTCCCTTATGGAGTACATCCACAAAGAA	101417042 (<i>Plodia interpunctella</i>)
PC005	365	TGGATGCCGGCAAAAAGAAGGT	67885759 (<i>Drosophila pseudoobscura</i>)
PC005	366	TGGTGGGATCCAAATGAAATCAACGAAAT	56149531 (<i>Rhynchosciara americana</i>)
PC005	367	TTGGATCCAAATGAAATCAACGAAAT	15355452 (<i>Apis mellifera</i>)
PC010	368	CCGCAGTTCATGTACCATTTG	83662749 (<i>Myzus persicae</i>)
PC010	369	CTGATGGAGATGAAGGAGTGTGCAATTTC	110985444 (<i>Apis mellifera</i>)
PC010	370	GACGTGCTCAGATGGTGGACAG	111158439 (<i>Myzus persicae</i>)
PC010	371	GCCCAGGCTCTGTGTTGGA	92952825 (<i>Drosophila ananassae</i>)
PC010	372	GCCACATGCTGATGCCGTGAGGAT	58395529 (<i>Anopheles gambiae</i> str. PEST)
PC010	373	GGGCACATGGTCATGGCGATTTC	561512422 (<i>Rhynchosciara americana</i>)
PC014	374	AAGATCATGGAGTACTACGAGAA	92939820 (<i>Drosophila virilis</i>)
PC014	375	ACGAGAAAAGGAGAACGAAAG	83937570 (<i>Lutzomyia longipalpis</i>)
PC014	376	ATGGAGTACTACGGAAAAAGGAGCAAGT	3337934 (<i>Drosophila melanogaster</i>)
PC014	377	CAAAAACAATCAAACACATGATGGC	85577611 (<i>Aedes aegypti</i>)
PC014	378	CTCAAGATCATGGAGTACTACGA	677838315 (<i>Drosophila pseudoobscura</i>)
PC014	379	CTCAAGATCATGGAGTACTACGA	92928915 (<i>Drosophila virilis</i>)
PC014	380	GAACAAGAAGCCAAATGAGAAAGC	82574001 (<i>Acyrthosiphon pisum</i>)
PC014	381	GACTCAAGATCATGGAGTACT	111160670 (<i>Myzus persicae</i>)
PC014	382	GATGTTCAAAAACACATGATGCC	53884266 (<i>Plutella xylostella</i>)
PC014	383	TACTACGGAAAAAGGAGAACG	55692554 (<i>Drosophila yakuba</i>)
PC014	384		92942301 (<i>Drosophila ananassae</i>)
PC014	385		92476196 (<i>Drosophila erecta</i>)
PC014	386		53884266 (<i>Plutella xylostella</i>)
PC014	387		111160670 (<i>Myzus persicae</i>)
PC014	388		112432414 (<i>Myzus persicae</i>)
PC014	389		73618588 (<i>Aphis gossypii</i>)
PC014	390		622239529 (<i>Diabrotica virgifera</i>)

PC014	384	TTCATTGAAACAAGGCCAATGA	15357365 (<i>Apis mellifera</i>)
PC016	385	ACACGGACCCGGCGCGCTCGTAAT	75710699 (<i>Tribolium castaneum</i>)
PC016	386	ACCAGCACGTGCTTCTGCACCTGGTAGGCCAAGAACATTGGC	92048971 (<i>Drosophila willistoni</i>)
PC016	387	AGCACGTGCTTCTGCACGGTAGGC	92985459 (<i>Drosophila grimshawi</i>)
PC016	388	ATACGGCACCAACGGGGTTGATCGG	18868609 (<i>Anopheles gambiae</i>)
			31206154 (<i>Anopheles gambiae</i> str. PEST)
			2921501 (<i>Culex pipiens</i>)
			62239897 (<i>Diabrotica virgifera</i>)
PC016	389	ATCGGTGTAACATGTAACCGGGAAACC	92957249 (<i>Drosophila ananassae</i>)
			92477818 (<i>Drosophila erecta</i>)
			92965644 (<i>Drosophila grimshawi</i>)
			24646342 (<i>Drosophila melanogaster</i>)
			67896654 (<i>Drosophila pseudoobscura</i>)
			75710699 (<i>Tribolium castaneum</i>)
PC016	390	ATCGTTGCCAAGTTCAAGAACAG	92950254 (<i>Drosophila ananassae</i>)
PC016	391	CACGTGCTTCTGCACCTGGTAGGCCAAGAA	4680479 (<i>Aedes aegypti</i>)
PC016	392	CCAGTCTGATCATTTCTCTGGGG	67884189 (<i>Drosophila pseudoobscura</i>)
PC016	393	CCAGTCTGATCATTTCTCTGGGGATA	92940287 (<i>Drosophila virilis</i>)
PC016	394	CGCTCGATGGTGGATCTGGGCAAGTTCAAGAACAA	2921501 (<i>Culex pipiens</i>)
PC016	395	CGCTCGATGGTGGATCTGGGCAAGTTCAAGAACAGACA	92477818 (<i>Drosophila erecta</i>)
		CACGTCTCCAT	15061308 (<i>Drosophila melanogaster</i>)
PC016	396	CGTCGCTTCTCGCACTGGTAGGCCAAGAA	13752998 (<i>Drosophila melanogaster</i>)
PC016	397	CTGGCAGTTCCATGTTGACACCCATAGC	16898595 (<i>Ctenocephalides felis</i>)
PC016	398	CTTAGCATCAAATACCTGATGT	61646107 (<i>Acyrthosiphon pisum</i>)
PC016	399	GACATGTCGGTCAAGATGACCAAGCACGTC	9713 (<i>Manduca sexta</i>)
PC016	400	GACATGTCGGTCAAGATGACCAAGCACGTCCTCTCGCACTG	92933153 (<i>Drosophila virilis</i>)
PC016	401	GACATGTCGGTCAAGATGACCAAGCACGTCCTCTCGCACTG	2921501 (<i>Culex pipiens</i>)
		GTA	
PC016	402	GAAGCCGTTCTCTCGAAGTCCCTG	237458 (<i>Heliothis virescens</i>)
PC016	403	GATGACCGACGACGTGCTTCTCGACTC	18883474 (<i>Anopheles gambiae</i>)
PC016	404	GATGACCGACGACGTGCTTCTCGACTC	92477818 (<i>Drosophila erecta</i>)
PC016	405	GATGACCGACGACGTGCTTCTCGACTGGTAGGCCAAGAA	15061308 (<i>Drosophila melanogaster</i>)
			67883622 (<i>Drosophila pseudoobscura</i>)

PC016	406	GATGACCAAGCACGTGCTTCTGGCACTGGTAGGCCAAGAAATT GGC	31206154 (Anopheles gambiae ssp. PEST)
PC016	407	GATGGGGATCTGCGTGATGGA	101403557 (Plodia interpunctella)
PC016	408	GATGGGGATCTGCGTGATGGGCCCTCCAC	53883819 (Plutella xylostella)
PC016	409	GGAATAGGATGGGTGATGTCGTTGGCATAGT	110240379 (Spodoptera frugiperda)
PC016	410	GGAATAGGATGGGTGATGTCGTTGGCATAGTCA	27372076 (Spodoptera littoralis)
PC016	411	GGATCGTTGGCCAAGTTCAAGAA	91757299 (Bombyx mori)
PC016	412	GGATCGTTGGCCAAGTTCAAGAACAA	103020368 (Tribolium castaneum)
PC016	413	GGATCGTTGCCAAGTTCAAGAACAG	237458 (Heliothis virescens)
PC016	414	GGATGGGTGATGTCGTTGGGCAT	101403557 (Plodia interpunctella)
PC016	415	GGCAGTTCCATGTTGACACCCATAGC	4680479 (Aedes aegypti)
PC016	416	GCGATAGTCAAAGATGGGGATCTG	52924977 (Drosophila virilis)
PC016	417	GTCCTGGATCATTTCTGGGATA	52966144 (Drosophila grimshawi)
PC016	418	GTTGATGGATGGCTCGATGGTGGATCGTTGGCAAGTTCAA GAACAGACACACGGTTCTCCAT	15514750 (Drosophila melanogaster)
PC016	419	GTTGATACGTAAACGGGGAAACC	52924977 (Drosophila virilis)
PC016	420	GTTCATGGTGGACACCCATAGC	91826756 (Bombyx mori)
PC016	421	TCAATGGGTTTCTGTATCCATTGAA	49395165 (Drosophila melanogaster) 99009492 (Leptinotarsa decemlineata)
PC016	422	TCATCCAGCACAGACTTGCAG	10763875 (Manduca sexta)
PC016	423	TCATCCAGCACAGACTTGCAGG	9713 (Manduca sexta)
PC016	424	TCCATGTTGACACCCATAGCAGC	52962756 (Drosophila ananassae)
PC016	425	TCCATGTTGACACCCATAGCAGAAACAC	60295607 (Homalodisca coagulata)
PC016	426	TCGAAGTCTCTGGATCTGGCAAGTCAAGAACAGACAC T	101403557 (Plodia interpunctella)
PC016	427	TGATGGTGGATCTGGCAAGTCAAGAACAGACAC	4680479 (Aedes aegypti)
PC016		TCGGATCGTTGGCCAAGTCAAGAACAGACAC T	2793275 (Drosophila melanogaster)
PC016	428	TCGGATCGTTGGCCAAGTCAAGAACAGACAC T	90137502 (Spodoptera frugiperda)
PC016	429	TCGTTGGCCAAGTCAAGAACAG	53883819 (Plutella xylostella)
PC016	430	TGGGTGATGTCGTTGGGCAT	110240379 (Spodoptera frugiperda)
PC016	431	TTCTCGCACTGGTAGGCCAAGAA	27372076 (Spodoptera littoralis)
PC016	432	TTCTCTTGGAAAGTCCTGCTTGAAGAACCTGGC	9713 (Manduca sexta)
PC016	433	TTGGCCAAGTTCAAGAACAGACAC T	55905051 (Locusta migratoria)

PC016	434	GTTCCATGTTGACACCCATAGCAGCAA	84116133 (Dermatophagoïdes farinæ)
-------	-----	-----------------------------	------------------------------------

Table 4-EV

Target ID	SEQ ID NO	Sequence *	Example GI-number and species
EV005	533	AAGCGGACGTGAAGAGCGTATCGC	76553206 (<i>Spodoptera frugiperda</i>)
EV005	534	ATTAAGATGGTCTTATTATTAA	15355452 (<i>Apis mellifera</i>)
EV005	535	CATAAGGCCACGTGAAGAGCGTATCGC	33491424 (<i>Trichoplusia ni</i>)
EV005	536	GTCGTCATTGTGGATTGGTAAAG	60314333 (<i>Panorpa cf. vulgaris</i> APV-2005)
EV005	537	TGGATGGCCAAGAAGAAAGGT	15048930 (<i>Drosophila melanogaster</i>)
EV005	538	TGGGCAAGAAGAAAGGTGG	93002524 (<i>Drosophila mojavensis</i>)
EV005	539	TTGGATTGGAAAAAGGAA	92930455 (<i>Drosophila virilis</i>)
EV010	540	CAAGTGTCAATAATTCA	92044532 (<i>Drosophila willistoni</i>)
EV010	541	CATTCTATAGGCACATGGATG	60306723 (<i>Sphaerius</i> sp.)
EV010	542	CTGGGCCACATGGCATGG	83937567 (<i>Lutzomyia longipalpis</i>)
EV015	543	ACAGGGCCAATTCCATCGACCC	29558345 (<i>Bombyx mori</i>)
EV015	544	AGAGAAAAATGGACCTCATCGAC	92476940 (<i>Drosophila erecta</i>)
EV015	545	CGCCATCCGCTGTTCAAGGGATCGG	82977931 (<i>Drosophila grimshawi</i>)
EV015	546	CTGGCAGTACCATGGAGAACCTCCGTTACGCCATG	2871327 (<i>Drosophila melanogaster</i>)
EV015	547	GTGATCGTGTGCGGCCACGAA	92947821 (<i>Drosophila ananassae</i>)
EV015	548	GTGATCGTGTGCGGCCACGAA	62239128 (<i>Diabrotica virgifera</i>)
EV015	549	TGATGGACGGCATGAAGAAAAG	18866954 (<i>Anopheles gambiae</i>)
EV016	550	ATATGGAAACAGCCAGATTCT	62239128 (<i>Diabrotica virgifera</i>)
EV016	551	ATGATCCAGACTGGTATTCTGC	18887285 (<i>Anopheles gambiae</i>)
EV016	552	ATTGATGTGATGAATTCCATTGCC	83423460 (<i>Bombyx mori</i>)
EV016	553	GAAATGATCCAGACTGGTATTCTGC	91086234 (<i>Tribolium castaneum</i>)
EV016	554	GAAGAAATGATCCAGACTGGTAT	109193659 (<i>Myzus persicae</i>)
EV016	555	GAATGTTGTGTGAACGG	92938857 (<i>Drosophila virilis</i>)
			55905051 (<i>Locusta migratoria</i>)
			50562965 (<i>Homalodisca coagulata</i>)
			92969748 (<i>Drosophila mojavensis</i>)
			2286639 (<i>Drosophila melanogaster</i>)
			92042621 (<i>Drosophila willistoni</i>)

EV016	556	GATATGGGGTCGTGTTAA	92969748 (<i>Drosophila mojavensis</i>)
EV016	557	GATCCATTACCATGAAAGAATTAT	98011193 (<i>Leptinotarsa decemlineata</i>)
EV016	558	GTTCTGAAGATATGTTGGTGT	76554661 (<i>Spodoptera frugiperda</i>)
EV016	559	GTTCTGGTGAAACGGACCG	22474331 (<i>Helicoverpa armigera</i>)
EV016	560	TCTGAAGATATGTTGGTGT	27372076 (<i>Spodoptera littoralis</i>)
EV016	561	TGGCATATCAATGTAAGAACCA	60336595 (<i>Homalodisca coagulata</i>)
EV016	562	TTGAACTTGGCAATGATCCTACCAT	91827863 (<i>Bombyx mori</i>)

Table 4-AG

Target ID	SEQ ID NO	Sequence *	Example GI-number and species
AG001	621	AAAACCTGGTAATTCTCCGGTTGAT	37953169 (<i>Ips pini</i>)
AG001	622	AAAGCATGGATGTTGGACAAA	98994282 (<i>Antheraea mylitta</i>)
AG001	623	AAAGCATGGATGTTGGACAAATTGG	108978109 (<i>Gryllus pennsylvanicus</i>)
AG001	624	AAAGCATGGATGTTGGACAAATTGG	55904580 (<i>Locusta migratoria</i>)
AG001	625	AAAGCATGGATGTTGGACAAATTGGGGGT	31366663 (<i>Toxoptera citricida</i>)
AG001	626	AAATACAAATTGTGCAAAGTCCG	60311985 (<i>Papilio dardanus</i>)
AG001	627	AACTTGTGCATGATCACCGGAG	37951951 (<i>Ips pini</i>)
AG001	628	AAGCATGGATGTTGGACAAATTGGGG	109195107 (<i>Myzus persicae</i>)
AG001	629	AAGCATGGATGTTGGACAAATTGGGGGTGTT	25958703 (<i>Curculio glandium</i>)
AG001	630	ACTGGTGAATTCTCCGTTGAT	22039624 (<i>Clenocephalides felis</i>)
AG001	631	ATTGAAAAAAACTGGTAATTCTTCGTTGATCTATGATGTTA	112433559 (<i>Myzus persicae</i>)
AG001	632	CCTAAAGCATGGATGTTGGACAA	70909486 (<i>Mycetophagus quadripustulatus</i>)
AG001	633	CCCCTAAAGCATGGATGTTGGACAA	77327303 (<i>Chironomus tentans</i>)
AG001	634		22039624 (<i>Clenocephalides felis</i>)
AG001	635	CCCCTAAAGCATGGATGTTGGACAAATT	90138164 (<i>Spodoptera frugiperda</i>)
AG001			48927129 (<i>Hydropsyche sp.</i>)
AG001			76551269 (<i>Spodoptera frugiperda</i>)
AG001			91835558 (<i>Bombyx mori</i>)
AG001			103783745 (<i>Heliconius erato</i>)
AG001			101419954 (<i>Plodia interpunctella</i>)
AG001			73619372 (<i>Aphis gossypii</i>)

AG001	636	CCCAAAGCATGGATGTTGGACAAATTGGG	77329254 (<i>Chironomus tentans</i>)
AG001	637	CCCAAAGCATGGATGTTGGACAAATTGGGG	22474232 (<i>Helicoverpa armigera</i>)
AG001	638	CCCAAAGCATGGATGTTGGACAAATTGGGGT	84647382 (<i>Myzus persicae</i>)
AG001	639	CCCAAAGCATGGATGTTGGACAAATTGGGGGT	84647995 (<i>Myzus persicae</i>)
AG001	640	CTGGATTCAATGGATGTGATCA	60305420 (<i>Mycetophagus quadripustulatus</i>)
AG001	641	GAATTCTTCGTTGATCTATGATGT	27617172 (<i>Anopheles gambiae</i>)
AG001	642	GCATGGATGTTGGACAAATTGGG	50565112 (<i>Homalodisca coagulata</i>)
AG001	643	GCATGGATGTTGGACAAATTGGGG	7049326 (<i>Oncometopia nigricans</i>)
AG001	644	GCATGGATGTTGGACAAATTGGGGTG	92969396 (<i>Drosophila grimshawi</i>)
AG001	645	GCATGGATGTTGGACAAATTGGGGTGTGTTCGCCCC	93929731 (<i>Drosophila mojavensis</i>)
AG001	646	GCCCCCAAAGCATGGATGTTGGACAA	93929731 (<i>Drosophila virilis</i>)
AG001	647	GCTGGATTCAATGGATGTGATC	677885868 (<i>Drosophila pseudoobscura</i>)
AG001	648	GGATCATTGATATTGTCACAT	90814901 (<i>Nasonia vitripennis</i>)
AG001	649	GGCAACTTGTGCATGATCACCGGAGG	25956479 (<i>Biphyllus lunatus</i>)
AG001	650	TACAAATTGTGCAAAGTCGGCAA	50565112 (<i>Homalodisca coagulata</i>)
AG001	651	TATCCCTGCTGGATTCAATGGATGT	103775903 (<i>Heliconius erato</i>)
AG001	652	TCACCAATTAAAAAACCTGGTAATTCTTC	113017118 (<i>Bemisia tabaci</i>)
AG001	653	TGCAATGATCACCGGAGGCCAGGA	25958703 (<i>Curculio glandium</i>)
AG001	654	TGCATGATCACCGGAGGCCAGGA	56161193 (<i>Rhynchosciara americana</i>)
AG001	655	TGGATGTTGGACAAATTGGGGTGT	40934103 (<i>Bombyx mori</i>)
AG001	656	TGTGCATGATCACCGGAGGCCAG	62083410 (<i>Lysiphlebus testaceipes</i>)
AG001	657	TGTGCATGATCACCGGAGGCCAG	3478550 (<i>Antherea yamamai</i>)
AG001	658	AAGATCGACAGGCCATCTGTACATGAAGGC	14627585 (<i>Drosophila melanogaster</i>)
AG001	659	AAGATCGACAGGCCATCTGTACATGAAGGC	33355008 (<i>Drosophila yakuba</i>)
AG001	660	AAGGGTAACGTGTTCAAGAACAA	90814560 (<i>Nasonia vitripennis</i>)
AG001	661	TGTGCATGATCACCGGAGGCCAG	92949859 (<i>Drosophila ananassae</i>)
AG001	662	TGTGCATGATCACCGGAGGCCAG	92999306 (<i>Drosophila grimshawi</i>)
AG005	663	AAGATCGACAGGCCATCTGTACACAG	677842487 (<i>Drosophila pseudoobscura</i>)
AG005	664	AAGATCGACAGGCCATCTGTACACAG	83935651 (<i>Utzomyia longipalpis</i>)
AG005	665	AAGGGTAACGTGTTCAAGAACAA	76552995 (<i>Spodoptera frugiperda</i>)
AG005	666	AAGGGTAACGTGTTCAAGAACAA	18932248 (<i>Anopheles gambiae</i>)
	667		60306606 (<i>Sphaerius sp.</i>)

AG005	661	AAGGGTAACGTGTTCAAGAACAAAG	18953735 (<i>Anopheles gambiae</i>) 25957811 (<i>Cicindela campestris</i>) 60311920 (<i>Euclidia glyphica</i>)
AG005	662	AAGGGTAACGTGTTCAAGAACAGAGT	25958948 (<i>Curculio glandium</i>) 90812513 (<i>Nasonia giraulti</i>)
AG005	663	ACAAGGAAGGAGGTGAGGAAGGC	60311700 (<i>Euclidia glyphica</i>)
AG005	664	ATCAAGGATGGTTTGATCATTAA	25957811 (<i>Cicindela campestris</i>)
AG005	665	ATGGAATAACATCCACAAAGAAGAAG	56149737 (<i>Rhynchosciara americana</i>)
AG005	666	CAAAACATCCGTAATTGATCAAGGGATGGT	60314333 (<i>Panorpa cf. vulgaris</i> APV-2005)
AG005	667	CAAAACATCCGTAATTGATCAAGGGATGGTTGATCAT	25958948 (<i>Curculio glandium</i>)
AG005	668	CAAGGGTAACGTGTTCAAGAA	476608 (<i>Drosophila melanogaster</i>) 36048300 (<i>Drosophila yakuba</i>)
AG005	669	CAAGGGTAACGTGTTCAAGAACAAAG	92946023 (<i>Drosophila ananassae</i>) 2871633 (<i>Drosophila melanogaster</i>) 68267374 (<i>Drosophila simulans</i>) 33354497 (<i>Drosophila yakuba</i>) 83937096 (<i>Lutzomyia longipalpis</i>)
AG005	670	CATCTGTACCCACGCCCTGTACATGAAGGC	101417042 (<i>Plodia interpunctella</i>)
AG005	671	GAAGGAAGGGCTGAGAACGGCCCG	40874303 (<i>Bombyx mori</i>)
AG005	672	GACAGGGCATCTGTACACGCCCTGTACATGAAGGC	90135865 (<i>Bicyclus anynana</i>)
AG005	673	GAGAAGGGCCGTGCCAAAGATGTTG	82572137 (<i>Acrythosiphon pisum</i>)
AG005	674	GATCCAATGAAATCAATGAGATTGC	60312128 (<i>Papilio dardanus</i>)
AG005	675	GCTCGTATGCCCTCAAAAGGAACATATGG	25957246 (<i>Carabus granulatus</i>)
AG005	676	GGTAACGTGTTCAAGAACAAAG	4447348 (<i>Drosophila melanogaster</i>)
AG005	677	GGTAACGTGTTCAAGAACAAAG	18948649 (<i>Anopheles gambiae</i>)
AG005	678	TACATCCACAAAGAACGGCTGAGAAC	2871633 (<i>Drosophila melanogaster</i>)
AG005	679	TACCAGGCCCTGTACATGAAGGC	10764114 (<i>Manduca sexta</i>)
AG005	680	TCAATGAGATTGCCAACACCAAACTC	83935651 (<i>Lutzomyia longipalpis</i>)
AG005	681	TGATCAAGGATGGTTGATCAT	77642775 (<i>Aedes aegypti</i>) 27615052 (<i>Anopheles gambiae</i>) 92982271 (<i>Drosophila grimshawi</i>) 67886961 (<i>Drosophila pseudoobscura</i>)
AG005	682	TGATCAAGGATGGTTGATCATTAAGAA	92042883 (<i>Drosophila willistoni</i>)

AG005	683	TGGTGGATCCAATGAAATCA	40867709 (<i>Bombyx mori</i>) 101417042 (<i>Plodia interpunctella</i>)
AG005	684	TGGTGGATCCAATGAAATCAA	15355452 (<i>Apis mellifera</i>) 63662749 (<i>Myzus persicae</i>)
AG005	685	TGGTGGATCCAATGAAATCAAATGAGAT	63013469 (<i>Bombyx mori</i>) 55908261 (<i>Locusta migratoria</i>)
AG005	686	TGTACCCGCCCTGTACATGAAGGC	23573622 (<i>Spodoptera frugiperda</i>)
AG005	687	TGATCAAGGATGGTTGATCA	113019292 (<i>Bemisia tabaci</i>)
AG005	688	TGATCAAGGATGGTTGATCAT	61674956 (<i>Aedes aegypti</i>)
AG005	689	TTGATGGAATACATCCACAAGAAGGCC	41576849 (<i>Culicoides sonorensis</i>)
AG005	690	AGGAATGCGTGCTTGAGGGTCT	92225847 (<i>Drosophila willistoni</i>)
AG005	691	AAGGCCAACGGTAACGTGTTCAAGAACAAAG	110887217 (<i>Argas monolakensis</i>)
AG010	692	CGTTTGTGTCAAAAGTTGGAGATA	110887217 (<i>Argas monolakensis</i>)
AG010	693	GATGTTTAAAGATGGTCGGATCG	78539702 (<i>Glossina morsitans</i>)
AG010	694	TTTTACAGGCCATATGCCATTAGGGAAAGATT	110759793 (<i>Apis mellifera</i>)
AG010	695	TTTTTCGAGGTGGTCATCAGCACCTGGC	55902158 (<i>Locusta migratoria</i>)
AG014	696	AACATGCTGAACCAAGCCCCGT	92925934 (<i>Drosophila virilis</i>)
AG014	697	AACATGCTGAACCAAGCCCCGT	75466802 (<i>Tribolium castaneum</i>)
AG014	698	AAGATCATGGAATACTATGAGAAAGAA	87266590 (<i>Choristoneura fumiferana</i>)
AG014	699	AAGATCATGGAATACTATGAGAAAGGGAGAA	103779114 (<i>Heliconius erato</i>)
AG014	700	ATGAAAAAGGGAGAAATTGATGC	101403826 (<i>Plodia interpunctella</i>)
AG014	701	ATGGAATACTATGAGAAAGAGGA	81520950 (<i>Lutzomyia longipalpis</i>)
AG014	702	CAATCCTCAACATGCTGAACCA	62239529 (<i>Diabrotica virgifera</i>)
AG014	703	CAGATCAAGGCATATGATGGCCTCAT	16901350 (<i>Ctenocephalides felis</i>)
AG014	704	CGAGATCAAGCATATGATGGCCTCAT	53148472 (<i>Pluteella xylosteella</i>)
AG014	705	CGGGAAGAAGAATTAAACATTGAAAAAGGG	87266590 (<i>Choristoneura fumiferana</i>) 9732 (<i>Manduca sexta</i>) 90814338 (<i>Nasonia vitripennis</i>)
AG016	706	AACGACGACATACCACCATCCTATTC	50558386 (<i>Homalodisca coagulata</i>) 71552170 (<i>Oncometopia nigricans</i>) 110248186 (<i>Spodoptera frugiperda</i>) 27372076 (<i>Spodoptera littoralis</i>)

AG016	707	AACGGTTCCATGGAGAACGTTGTG	2921501 (Culex pipiens) 92950254 (Drosophila ananassae) 110240379 (Spodoptera frugiperda)
AG016	708	AACGGTTCCATGGAGAACGTTGTGTC	24646342 (Drosophila melanogaster)
AG016	709	AACGGTTCCATGGAGAACGTTGTGTCCTTGAA	91829127 (Bombyx mori)
AG016	710	ATGATCCAGACCGGTATCTCCGC	22474040 (Helicoverpa armigera)
AG016	711	ATGCCGGAACCGACGACATACCCCATCC	31206154 (Anopheles gambiae str. PEST)
AG016	712	CAATGCGAGAAACAGTGTGGT	9713 (Manduca sexta)
AG016	713	CGGCACAAGGAAATCGCCGCCAAAT	75469507 (Tribolium castaneum)
AG016	714	CGTTTCTTCAAGCAGACTTCGA	83937868 (Lutomyia longipalpis)
AG016	715	CTTGGACATCCAAGGTCAACCCATCAACCCATGGTC	104530890 (Belgica antarctica)
AG016	716	GAAATGATTCCAGACCGGTATCTC	2921501 (Culex pipiens) 92866144 (Drosophila grimshawi)
AG016	717	GAAATGATTCCAGACCGGTATCTCGCCATCGACGTGAAAC TC	31206154 (Anopheles gambiae str. PEST)
AG016	718	GAAGAAATGATCCAGACCGGTATCTCGCCATCGACGTGAAAC TC	75469507 (Tribolium castaneum)
AG016	719	GAAGAAATGATCCAGACCGGTATCTCGCCATCGACGTGAAAC TC	22038926 (Ctenocephalides felis)
AG016	720	GACATCCAAAGGTCAACCCATCAA	16898595 (Ctenocephalides felis)
AG016	721	GCCCCTTCTCAAGCAGGGACTTCGA	31206154 (Anopheles gambiae str. PEST)
AG016	722	GCGGCCAAATCTGTAGACAGGC	60295607 (Homalodisca coagulata)
AG016	723	GGATCAGGAAAACCCATTGACAAAGGTCC	49395165 (Drosophila melanogaster) 99009492 (Leptinotarsa decemlineata)
AG016	724	GGTTACATGTACACCGATTGGC	91829127 (Bombyx mori)
			77750765 (Aedes aegypti)
			9713 (Manduca sexta)
			110248186 (Spodoptera frugiperda)
			27372076 (Spodoptera littoralis)
AG016	725	GGTTACATGTACACCGATTGGCCACCAT	92231646 (Drosophila willistoni)
AG016	726	GGTTACATGTACACCGATTGGCCACCATTTACGAA	92460250 (Drosophila erecta)
AG016	727	GTGTGGAGGATATGTTGGCCCG	24646342 (Drosophila melanogaster) 55694673 (Drosophila yakuba)
AG016	728	TACATGTAACCCGATTGGCCACCAT	31206154 (Anopheles gambiae str. PEST)
AG016	729	TTCAACCGGATCAGGAAAACCCATTGACAAAGGTCC	99010653 (Leptinotarsa decemlineata)

AG016	730	TTC CCCC GGT TAC AT GT AC ACC GATT TGG CCAC	2921501 (<i>Culex pipiens</i>) 75710699 (<i>Tribolium castaneum</i>)
AG016	731	TTC CCCC GGT TAC AT GT AC ACC GATT TGG CCAC AT	62239897 (<i>Diabrotica virgifera</i>) 92957249 (<i>Drosophila ananassae</i>) 92477149 (<i>Drosophila erecta</i>) 67896654 (<i>Drosophila pseudoobscura</i>)
AG016	732	TTC CCCC GGT TAC AT GT AC ACC GATT TGG CCAC ATT A	92989578 (<i>Drosophila grimshawi</i>)
AG016	733	TTC CCCC GGT TAC AT GT AC ACC GATT TGG CCAC ATT AC GA	103744758 (<i>Drosophila melanogaster</i>)
AG016	734	TTC GCC CA TCG GT TCG CGCC AT GGG GT	31206154 (<i>Anopheles gambiae</i> str. PEST)
AG016	735	TCT TCA AGC AGG ACT TCG AA GA	9713 (<i>Manodua sexta</i>)
AG016	736	TTC TTG AA TTT GG CC AA CG AT CC	92972277 (<i>Drosophila grimshawi</i>)
AG016	737	TTC TTG AA TTT GG CC AA CG AT CC ACC AT CG AG	99011193 (<i>Leptinotarsa decemlineata</i>)
AG016	738	GCC GA ATT TTT GG CT TA AT CA AT G	67839381 (<i>Drosophila pseudoobscura</i>) 84116133 (<i>Dermatophagooides farinae</i>)

Table 4-TC

Target ID	SEQ ID NO	Sequence *	Example GI-number and species
TC001	813	AAAGCATGGATGTTGGATAAA	70909480 (<i>Carabus granulatus</i>) 16898765 (<i>Ctenocephalides felis</i>) 60298000 (<i>Diaprepes abbreviatus</i>)
TC001	814	AATTG TG TAT GATTACTGGAGG	553904576 (<i>Locusta migratoria</i>)
TC001	815	ACTGGAGGTGCTTAACCTGGGGGTGT	60298000 (<i>Diaprepes abbreviatus</i>)
TC001	816	ATGATTACTGGAGGTGTAACTTGGGGGTGT	73619372 (<i>Aphis gossypii</i>) 37804548 (<i>Rhopalosiphum padi</i>)
TC001	817	ATGCCAAAGATTGATTAAGTTGACGG	70909478 (<i>Biphiylus lunatus</i>)
TC001	818	ATTAAGTTGACGGAAAAGTT	110763874 (<i>Apis mellifera</i>)
TC001	819	ATTGAGAAAAACTGGGGAATTCTTCG	37892206 (<i>Ips pini</i>)
TC001	820	ATTGTTATGCAAAGATTGATTAAGTTGACGGAAAAGT	70909486 (<i>Mycetophagus quadripustulatus</i>)
TC001	821	CCAAGAACGATTGAGGGTCT	553904580 (<i>Locusta migratoria</i>)
TC001	822	CCAAGAACGATTGAGGGTCTC	83935971 (<i>Lutzomyia longipalpis</i>)
TC001	823	GGCCCCAAGCATGGATGGTGG	103790417 (<i>Heliconius erato</i>) 101419954 (<i>Plodia interpunctella</i>)

TC001	824	GGCCCCAAGAACGCATTGAAGCGT	14700642 (<i>Drosophila melanogaster</i>)
TC001	825	TGATTACTGGAGGTGGTAACCTGGGGGTGTT	73612212 (<i>Aphis gossypii</i>)
TC001	826	TGTATGATTACTGGAGGTGGTAACCTGGGGGTGTT	70909478 (<i>Biphyllus lunatus</i>)
TC001	827	TGTGATTATGATGTTAAGGGAA	77325485 (<i>Chironomus tentans</i>)
TC001	828	TGTGTTATGATTACTGGAGGTGTTAA	60305816 (<i>Mycetophagus quadripustulatus</i>)
TC002	829	AAAAAACAAACAGAGGGCCATCAGGGC	18920284 (<i>Anopheles gambiae</i>)
TC002	830	ATCGACCAAGAGATCCTCACAGCGAAACACGGCTCGAAA ACAAACGAGGGCCATCAGGCC	75717966 (<i>Tribolium castaneum</i>)
TC002	831	CTCCAGCAGATCGATGGCACCTT	92475657 (<i>Drosophila erecta</i>) 13763220 (<i>Drosophila melanogaster</i>)
TC002	832	TCAGAGGAAGAAACGCTACGAAAAGCAGTCAGCAGATGCGATC GATGGCACCTCAGCACCATCGAGATGCGAGGGAGGCCCT CGAGGGGCCAACACCAACACAGCCGTACTCAAAACGATGA AAACCGCAGCGACGCCCTCAAAATGCCAACCTCAACATG GATGTTGATGAGGT	75717966 (<i>Tribolium castaneum</i>)
TC010	833	AACCTCAAGTACCGAGACATGCCGA	90973566 (<i>Aedes aegypti</i>)
TC010	834	AGCCGGATTGTACAGTTATA	92944620 (<i>Drosophila ananassae</i>)
TC010	835	ATGGACACATTTCGAAATT	33427937 (<i>Glossina morsitans</i>)
TC010	836	ATGGACACATTTCGAAATTGGATTTCCACGG	56151768 (<i>Rhynchosciara americana</i>)
TC010	837	CAAGTACCGAGACATGCCGA	18911059 (<i>Anopheles gambiae</i>)
TC010	838	CACATGCTGATGGGGAGGACCTC	67893321 (<i>Drosophila pseudoobscura</i>)
TC010	839	CCTCAAGTACCGAGACATGCCGA	67893324 (<i>Drosophila pseudoobscura</i>)
TC010	840	TCAAGTACCGAGACATGCCGA	67893321 (<i>Drosophila pseudoobscura</i>)
TC010	841	TTCATGTTACCAATTGGGGCTC	92952825 (<i>Drosophila ananassae</i>)
TC014	842	AAAATTCAAGTCGTCAAACATGCTGAA	76169390 (<i>Diptroptera punctata</i>)
TC014	843	ACATGCTGAACCAAAGCCCGT	87266590 (<i>Choristoneura fumiferana</i>) 103779114 (<i>Heliconius erato</i>)
TC014	844	CACAGCAACTTGTGCCAGAAAT	92923718 (<i>Drosophila virilis</i>)
TC014	845	GAGAAAGCCGAAGAACATCGATGC	77325830 (<i>Chironomus tentans</i>)
TC014	846	GCCCCGCAAAACGTCGGGGAA	922232132 (<i>Drosophila willistoni</i>)
TC014	847	TAAAAGTGGTGAAGACCACGT	58371699 (<i>Lonomia obliqua</i>)
TC015	848	ACACTGATGGACGGCATGAAGAA	78531609 (<i>Glossina morsitans</i>)
TC015	849	ATCGGGGGTTGCGAAACAACT	6904417 (<i>Bombyx mori</i>)

Table 4-MP

TC015	850	CCCGATGAGAAGATCCGGATGAA	833922984 (<i>Lutzomyia longipalpis</i>)
TC015	* 851	CTGCCCGATGAGAAGATCCG	92948836 (<i>Drosophila ananassae</i>)
TC015	852	AACGAAAACGGGTGCTTCTCTT	84116975 (<i>Dermatophagoides farinae</i>)

Target ID	SEQ ID NO	Sequence *	Example GI-number and species
MP001	908	AAAGCATGGATGTTGGACAAA	98994282 (<i>Antheraea mylitta</i>) 108789768 (<i>Bombyx mori</i>) 109978109 (<i>Gryllus pennsylvanicus</i>) 55604580 (<i>Locusta migratoria</i>)
MP001	909	AAAGCATGGATGTTGGACAAAAT	77325485 (<i>Chironomus tentans</i>) 37951951 (<i>Ips pini</i>) 60311985 (<i>Papilio dardanus</i>) 30031258 (<i>Toxoptera citricida</i>)
MP001	910	AAGAACGATTGAAAGCGTTAACGCACC	36568572 (<i>Manduca sexta</i>)
MP001	911	AAGCATTGAAAGCGTTAACGC	103190417 (<i>Heliconius erato</i>) 22474232 (<i>Helicoverpa armigera</i>)
MP001	912	AAGCATTGAAAGCGTTAACGCACC	25957217 (<i>Carabus granulatus</i>)
MP001	913	AAGTCCGTACCGACCTTAATTATCCAGC	46994131 (<i>Acyrthosiphon pisum</i>)
MP001	914	ACGCACCCAAAGCATTGGATGTT	46999037 (<i>Acyrthosiphon pisum</i>)
MP001	915	ACTATTAGATACGATATTGCA	46998791 (<i>Acyrthosiphon pisum</i>)
MP001	916	ACTGGACCCAAAGGTGTGCCATTTTAACCTACTCATGATGGC	46997137 (<i>Acyrthosiphon pisum</i>)
MP001	917	AGAACGATTGAAAGCGTTAAA	27620566 (<i>Anopheles gambiae</i>)
MP001	918	AGAACGATTGAAAGCGTTAACGCACC	98994282 (<i>Antheraea mylitta</i>)
MP001	919	AGAACGATTGAAAGCGTTAACGCACCCAAAGCATGATGAT	73619191 (<i>Aphis gossypii</i>)
MP001	920	TGGACAAAT	46998791 (<i>Acyrthosiphon pisum</i>)
MP001	921	AGTAAGGGAGTTAAATTGACTA	29553519 (<i>Bombyx mori</i>)
MP001	922	ATGGATGTTATCTATCCAAAAGACCAGTGAGCACTTTAGAT	46998791 (<i>Acyrthosiphon pisum</i>)
MP001	923	TGATCTATGATGTGAAAGGTGTTTCAC	469989037 (<i>Acyrthosiphon pisum</i>)
MP001	924	CAAAAGACCAGTGAGCACTTAGATTGAT	30031258 (<i>Toxoptera citricida</i>)

MP001	925	CACAGAATTACTCCTGAAGAAC	73619191 (<i>Aphis gossypii</i>)
MP001	926	CACAGAATTACTCCTGAAGAAAAATACAAAG	46998791 (<i>Acyrthosiphon pisum</i>)
MP001	927	CATCCAGGATCTTGTATAATTGTTCACATTAA	30031258 (<i>Toxoptera citricida</i>)
MP001	928	CATCCAGGATCTTGTATAATTGTTCACATTAAAGGATGCCAAATG	31364848 (<i>Toxoptera citricida</i>)
MP001	929	CATCTAAAATTTGGATCATATCGTTGAAACTGGAAACTT	37804548 (<i>Rhopalosiphum padi</i>)
MP001	930	CATTGAAAGCGTTAAACGCACC	46998791 (<i>Acyrthosiphon pisum</i>)
MP001	931	CATTGAAAGCGTTAAACGCACCCAAAGGATGGATGTT	30031258 (<i>Toxoptera citricida</i>)
MP001	932	CCAAGGCACTGGATGGTTGGACAA	46998791 (<i>Acyrthosiphon pisum</i>)
MP001	933	CCAAGGAGTAAGGGAGTTAAATTGACTA	90138164 (<i>Spodoptera frugiperda</i>)
MP001	934	CCCAGGCACTGGATGGTTGGAC	73615238 (<i>Aphis gossypii</i>)
MP001	935	CCCAGGCACTGGATGGTTGGACAA	31364848 (<i>Toxoptera citricida</i>)
MP001	936	CCCAGGCACTGGATGGTTGGACAA	108789768 (<i>Bombyx mori</i>)
MP001	937	CCCAGGCACTGGATGGTTGGACAAAT	50565112 (<i>Homalodisca coagulata</i>)
MP001	938	CGTCCAAAGCACGGTCCACACAAACT	48927129 (<i>Hydropsyche sp.</i>)
MP001	939	CTGGAAACTTGTGCATGATAACTGGAGG	76551269 (<i>Spodoptera frugiperda</i>)
MP001	940	GAAAGACATCCAGGATCTTTGATATTGTCACATTAAAGGATGCAAAT	56085210 (<i>Bombyx mori</i>)
MP001	941	CAAATGAAACATATTGTCACCCGGATGAAACAATGTTTTAT	103792451 (<i>Heliconius erato</i>)
MP001	942	TATTGGAAAAGGTCAAAGAACATACATTCTCTACCAAG	101419954 (<i>Plodia interpunctella</i>)
MP001	943	GATCATATCGTTGAAACTGGAAACTTGTGCATGAT	22474095 (<i>Helicoverpa armigera</i>)
MP001	944	GCAACCCAAAGCATGGATGGACAAAT	47537863 (<i>Acyrthosiphon pisum</i>)
MP001	945	GGATCTTTGATATTGTCACAT	78524585 (<i>Glossina morsitans</i>)
MP001	946	GGATCTTTGATATTGTCACATTAAAGGATGCCAAATGAAACATA	46997137 (<i>Acyrthosiphon pisum</i>)
		TTTTTGCTAC	73614725 (<i>Aphis gossypii</i>)
			31364848 (<i>Toxoptera citricida</i>)
			70909486 (<i>Mycetophagus quadripustulatus</i>)
			77329254 (<i>Chironomus tentans</i>)
			60305420 (<i>Mycetophagus quadripustulatus</i>)
			60303405 (<i>Julodis onopordi</i>)
			73619191 (<i>Aphis gossypii</i>)

MP001	947	GGCCCCAAGAACATTGAAAGCGTTAA	14693528 (<i>Drosophila melanogaster</i>)
MP001	948	GGCGGTGTTGGTATTGGTACCAACAG	31365398 (<i>Toxoptera citricida</i>)
MP001	949	GGGGGTGTTGGTATTGGTACCAACAGGAAAG	73612212 (<i>Aphis gossypii</i>) 37804548 (<i>Rhopalosiphum padi</i>)
MP001	950	GGTACAAACTGGACCCAAAGG	60297572 (<i>Diaprepes abbreviatus</i>)
MP001	951	GTTTTTATTGGAAAAGGTCAAAGAACTACATTTCTCT	73619191 (<i>Aphis gossypii</i>) 31364848 (<i>Toxoptera citricida</i>)
MP001	952	TGAAGTATGGCACTTACTGGTGC	73619191 (<i>Aphis gossypii</i>)
MP001	953	TGAAAGTAAGGAGGGTACAAACTGGACCCAAAGGTGT	73619191 (<i>Aphis gossypii</i>)
MP001	954	TGTGAAAGTAAAGGGTACAAACTGGACCCAAAGGTGT	30031258 (<i>Toxoptera citricida</i>)
MP001	955	TCTTGCGFAATCGTTGAAGTATGCCACTTACTGGTGCAGAA	46998791 (<i>Acyrthosiphon pisum</i>)
MP001	956	GTACCAAGATTGTCACTGAAAGATTAAATCAGGTTGATGGC	73615060 (<i>Aphis gossypii</i>)
MP001	957	AAAGTCGTACCGACCTTAATTCCAGC	37804548 (<i>Rhopalosiphum padi</i>)
MP002	958	TTGGAAAAAGGTCAAAAGAAACTACATTCTCT	47537017 (<i>Acyrthosiphon pisum</i>)
MP002	959	TTGGATCATATCCGTTGAAACACTAAATAACGAGCTGCATTGCAAGC	15363283 (<i>Apis mellifera</i>)
MP002	960	AAAAAAATGGTACAACATAAAACGAGCTGCATTGCAAGC	47537017 (<i>Acyrthosiphon pisum</i>)
MP002	961	AGAAAAACGGTAGGAAACAAACAA	47537017 (<i>Acyrthosiphon pisum</i>)
MP002	962	ACAAAGAATTTTAGAAAAAAATGAAACAAGAAGTAGGGATA	47537017 (<i>Acyrthosiphon pisum</i>)
MP002	963	GC	47537017 (<i>Acyrthosiphon pisum</i>)
MP010	964	CAAATTGGTACCATGTTAACATTGAAACAAACAGCG	47537017 (<i>Acyrthosiphon pisum</i>)
MP010	965	GAAGATGGGATACAAAAGCTTCGATCCAC	47537017 (<i>Acyrthosiphon pisum</i>)
MP010	966	GAGTTCTTGTAAAGTATTGGTGG	110762684 (<i>Apis mellifera</i>)
MP010	967	AAAAGATGATCCAATAGTT	110759793 (<i>Apis mellifera</i>)
MP010	968	AAAATATTGGTACACATTTCATATTGATATTGATATTCCA	47520567 (<i>Acyrthosiphon pisum</i>)
MP010	969	ATAAGTCCTGATGAAACATCATATTATAG	47520567 (<i>Acyrthosiphon pisum</i>)
MP010	970	CAAAAGATGATCCAAATAGTTCCGATGCCAGAAAACCTCA	47520567 (<i>Acyrthosiphon pisum</i>)
MP010	971	GTTTATATCCACAGTTCATGATCATTTAAGAAGGTCTCAATT	47520567 (<i>Acyrthosiphon pisum</i>)
MP010	972	CTCAAGTTAA	47520567 (<i>Acyrthosiphon pisum</i>)
MP010	973	CCAAATTCTGTTAGCTATAGTTTAATGGTAGGCCAGAACCTG	47520567 (<i>Acyrthosiphon pisum</i>)
MP010	974	TACTTTGGATACCAG	55814942 (<i>Acyrthosiphon pisum</i>)
MP010	975	CCATCTCAAAACATATAATAATGTTATGGAGG	55814942 (<i>Acyrthosiphon pisum</i>)
MP010	976	CTCAAAAACCTCGATTCCCAATGCCCTCGGTATTGACACAGAA	55814942 (<i>Acyrthosiphon pisum</i>)

		CAAGGGTAGTCAGGCAAGATTTTACTATGCCAAG-T	
MP010	973	GGTGTATGGGACCCAGTTGACAGATGTAAGCTTG CA	55814942 (Acythosiphon pisum)
MP010	974	GTCGGCTGCATAACAGTTCATTACGCCAGTA	28571527 (Drosophila melanogaster)
MP010	975	TAATGGCTCGTATGGTAGTGAACCGTGCATAACTGA	47520567 (Acythosiphon pisum)
MP010	976	TATAGGCCACATGTTGATGCGTGAAGAT	40924332 (Bombyx mori)
MP010	977	TGGGCTGATCGTACGCCTATACGGCTTGTGTCAC	47520567 (Acythosiphon pisum)
MP010	978	TTAGCTAGGAATTGGGGCAGACCCCTGTT	47520567 (Acythosiphon pisum)
MP016	979	AAACAAGAATTGGGGAAAATGG	35508791 (Acythosiphon pisum)
MP016	980	AACCTGGTAAATCAGTTCCTTGA	35508791 (Acythosiphon pisum)
MP016	981	AACGACGACATCACCCATCCTATTC	110240379 (Spodoptera frugiperda) 27372076 (Spodoptera littoralis)
MP016	982	AATTAGCTTAATGATCCTACTATTGA	15366446 (Apis mellifera)
MP016	983	ACTATGCCATAACGACGACATCACCCATCC	237458 (Heliothis virescens)
MP016	984	ATAGTATTGCTGCTATGGGTGTTAATATGAAAC	30124460 (Toxoptera citricida)
MP016	985	CAAATTGTAGACAAGCTGGTCT	103020368 (Tribolium castaneum)
MP016	986	CATGAAGACAATTGGCTATAGTATTGCTGCTATGGGTGTTA	35508791 (Acythosiphon pisum)
MP016	987	CGCATAGATAAAGGACCTCCTATTGGCTGAAGATTATTGG ATATTGAAGGCCAACCTATTAACTCCATA	35508791 (Acythosiphon pisum)
MP016	988	CCTATTGGCTGAAGATTAT	55905051 (Locusta migratoria)
MP016	989	CGTATCATACCACCGCTTAAACTGCTGCTGAATTTT TAGCTTA	30124460 (Toxoptera citricida)
MP016	990	CGTCCTGCTTTAACTGCTGCTGAATTGGCTTAACT	35508791 (Acythosiphon pisum)
MP016	991	GAAGAAGTACCTGGGTCTGTGTTCCCTGGTTACATGTAC AC	30124460 (Toxoptera citricida)
MP016	992	GAAGGAAGAAATGGTCTATCACACAAATACCTTAACTA TGCCTAA	30124460 (Toxoptera citricida)
MP016	993	GAAGGAAGAAATGGTCTATCACACAAATACCTTAACTA TGCCTAA	73615307 (Aphis gossypii)
MP016	994	GATTTAGCTACAATTGTAACAG	30124460 (Toxoptera citricida)
MP016	995	GCCAGATTCTTTAAACAAAGATTGAGGAAATGG	30124460 (Toxoptera citricida)
MP016	996	GCTATGGGTGTTAAATGAAAC	75469507 (Tribolium castaneum)
MP016	997	GCTGCAGGTTACCAACATAATGAGATTGCTCAAAATTG	35508791 (Acythosiphon pisum)

MP016	998	GCTGGCCGTAGAAGGAAATGGTTCTATCACACAAATA CCTATTAACTATGCCTAACGA	55813096 (Acyrthosiphon pisum)
MP016	999	GGTTACATGTACACCGATTAGCTACAATTATGAACG	55813096 (Acyrthosiphon pisum) 73615307 (Aphis gossypii)
MP016	1000	GTGGACAAAAATTCCAATATTTC	55813096 (Acyrthosiphon pisum)
MP016	1001	GTGTGGAGGATATGTTGGGCC	924760250 (Drosophila erecta) 22886639 (Drosophila melanogaster) 55684673 (Drosophila yakuba)
MP016	1002	GTTCCTGAATTAGCTAATGATCTACTATTGA	82563007 (Acyrthosiphon pisum)
MP016	1003	TCAATGGAGAATGTTGTTCTTGAAATTAGCTAATGATC CTACTATTGA	35508791 (Acyrthosiphon pisum) 30124460 (Toxoptera citricida)
MP016	1004	TCAGCTTATGATATCATGAACTCTATTGCTCGTGACAAAAAA TTCGAATAATTTC	35508791 (Acyrthosiphon pisum)
MP016	1005	TCATATGCTGAAGCTTTAAGAGAAGTTCTGCTGCTCC	30124460 (Toxoptera citricida)
MP016	1006	TCCAGAACATATCCTCAAGAAAATGATTCAAACCTGGTAT	35508791 (Acyrthosiphon pisum)
MP016	1007	TCTATTGCTCGTGGACAAAAAAATTCC	110764393 (Apis mellifera)
MP016	1008	TGTGAAAGCATGTCCTAGTTAACTGACATGAGTTCAT ATGCTGAAGGCTTTAAGAGAAGTTCTGCTGCTGAGAAG TACCTGGCGTCGTTCCCC	55813096 (Acyrthosiphon pisum)
MP016	1009	TTAACCTGACATGAGTCATATGCTGAAGCTTTAAGAGAAGTTT CTGCTGCTCGTGAAGAAGTACCTGG	73615307 (Aphis gossypii)
MP027	1010	TTTTAAAAATTAAAGAAAAAAA	47522167 (Acyrthosiphon pisum)

Table 4-NL

Target ID	SEQ ID NO	Sequence *	Example GI-number and species
NL001	1161	CTGAAGAAGCTAAGTACAAGCT	16566724 (Spodoptera frugiperda)
NL001	1162	TTCTCCGTTGATCTATGTTAA	16900870 (Ctenocephalides felis)
NL001	1163	CAGCTGAAGAAGCTAAGTACAA	16900870 (Ctenocephalides felis), 56199521 (Culicoides sonorensis)
NL001	1164	GAGTTCTCCGTTGATCTATGATGTTAA	16900945 (Ctenocephalides felis)
NL001	1165	AAGTACAAGCTGTGCAAAGTGAAG	22474232 (Helicoverpa armigera)

NL001	1166	TTCGACATCGTGCACATCAAGGAC	22474232 (<i>Helicoverpa armigera</i>)
NL001	1167	ATCACAGCTGAAGAACCTAAGTACAAG	25956820 (<i>Biphyllus lunatus</i>)
NL001	1168	TGTGTATGATCACTGGGGTCGTA	25957367 (<i>Carabus granulatus</i>)
NL001	1169	AACGTTTTCATCATCGGCCAAG	27613698 (<i>Anopheles gambiae</i>)
NL001	1170	CCAAAATCATGGACTTCATCA	3738704 (<i>Manduca sexta</i>)
NL001	1171	TGATCTATGATGTTAACGGACG	3738704 (<i>Manduca sexta</i>)
NL001	1172	CATGGATGTGGACAAATTGGG	37951951 (<i>Ips pini</i>), 60305420 (<i>Mycetophagus quadripustulatus</i>), (<i>Drosophila pseudoobscura</i>), 678885868 (<i>Drosophila tentans</i>), 77321575 (<i>Chironomus tentans</i>), 25956479 (<i>Biphyllus lunatus</i>), 22474232 (<i>Helicoverpa armigera</i>); (<i>Helicoverpa armigera</i>);
NL001	1173	TTTGCCACTAGGTTGAACACGT	37953169 (<i>Ips pini</i>)
NL001	1174	GCAGCGTCTCATCAAGGGTGA CGCCAA	48927129 (<i>Hydropsyche sp.</i>)
NL001	1175	AAGGGACGTTTCACCATCCAC	50818668 (<i>Heilonius melpomene</i>)
NL001	1176	AA CCT GTGTATGATCACTGGAGG	60293875 (<i>Homalodisca coagulata</i>)
NL001	1177	ACTAACTGTGAAGTGAAGAAAATTGT	60293875 (<i>Homalodisca coagulata</i>)
NL001	1178	TTCTTCCGTTGATCTATGATGT	60293875 (<i>Homalodisca coagulata</i>) (<i>Oncometopia nigricans</i>)
NL001	1179	TGATGATCACTGGGGTCGTAACCTGGC	60297219 (<i>Diaprepes abbreviatus</i>)
NL001	1180	CATGGATGTGGACAAATTGGGTGG	60311985 (<i>Papilio dardanus</i>)
NL001	1181	GCTGAAGAACGCTAACGACAAG	68758383 (<i>Acanthoscurria gomesiana</i>)
NL001	1182	GGAGGTCGTAACCTGGGTG	77327303 (<i>Chironomus tentans</i>)
NL001	1183	TATGATGTTAACGGACGTTTACCCAT	77327303 (<i>Chironomus tentans</i>)
NL001	1184	CATGGATGTGGACAAATTGGG	93002561 (<i>Drosophila grimshawi</i>) 93001617 (<i>Drosophila mojavensis</i>) 92939328 (<i>Drosophila virilis</i>) 112433559 (<i>Myzus persicae</i>)

NL001	1185	CTGAAGAAGCTAAGTACAAGCT	90814922 (<i>Nasonia vitripennis</i>)
NL001	1186	GAAGAACGCTAAGTACAAGCTGTG	110264122 (<i>Spodoptera frugiperda</i>)
NL001	1187	TTGCACAGCTTGACTTAGCTTCTC	90820001 (<i>Graphocephala altropunctata</i>)
NL001	1188	AAGTACAAGCTGTGCAAAGTGAAG	90134075 (<i>Bicyclus anynana</i>)
NL001	1189	ATGATCACTGGAGGTGCGTAACCTGGTCG	112350104 (<i>Helicoverpa armigera</i>)
NL001	1190	GGTCGTAACCTGGTCGTTGGG	113017118 (<i>Bemisia tabaci</i>)
NL001	1191	TTCGACATCGTGCACATCAAGGAC	109978109 (<i>Glyllus pennsylvanicus</i>)
NL001	1192	ACATCGTGCACATCAAGGACG	112350104 (<i>Helicoverpa armigera</i>)
NL003	1193	CAGGAGTTGAAGATCATCGGAGAGTATGG	909818111 (<i>Aedes aegyptii</i>)
NL003	1194	CGTAAGGCCGCTCGTGAAGCTG	15457393 (<i>Drosophila melanogaster</i> , <i>Spodoptera frugiperda</i>)
NL003	1195	AAGGTAACGCCCTGCTGCGTCG	1797555 (<i>Drosophila melanogaster</i>)
NL003	1196	CAGGAGTTGAAGATCATCGGAGAGTA	18863433 (<i>Anopheles gambiae</i>)
NL003	1197	GCCAAGTCCATCCATCACGCCCG	2459311 (<i>Antheraea yamamai</i>), 49532931 (<i>Plutella xylostella</i>)
NL003	1198	AAGTCCATCCATCACGCCCGT	33354488 (<i>Drosophila yakuba</i>), 60312414 (<i>Papilio dardanus</i>)
NL003	1199	TGTTGAAAGTAACGCCCTGCT	33528372 (<i>Trichoplusia ni</i>)
NL003	1200	CAGGAGTTGAAGATCATCGGAGA	34788046 (<i>Callosobruchus maculatus</i>)
NL003	1201	GTGGCCCTGACTCGCAGAACCAT	35505798 (<i>Acyrthosiphon pisum</i>), 56772256 (<i>Drosophila virilis</i>)
NL003	1202	GAGTTGAAGATCATCGGAGAGTA	38624772 (<i>Drosophila melanogaster</i>)
NL003	1203	TTGGGTTAAAAATTGAAGATTTC	4158332 (<i>Bombyx mori</i>)
NL003	1204	TCGCAGAACGACATTGACTTCTC	56150446 (<i>Rhynchosciara americana</i>)
NL003	1205	AGAATGAAGCTCGATTACGTC	56772256 (<i>Drosophila virilis</i>)
NL003	1206	TTTGTGGTCCCCGACTCG	60306665 (<i>Sphaerius sp.</i>)
NL003	1207	AGAAGCACATTGACTTCTCGCTGAAGTC	60312414 (<i>Papilio daidalus</i>)
			63514675 (<i>Ixodes scapularis</i>)

NL003	1208	TCGCAGAAGCACATTGACTTCTCGCT	70979521 (<i>Anopheles albimanus</i>)
NL003	1209	CTCATCAGACAAAGACATATCAGAGT	71536734 (<i>Diaphorina citri</i>)
NL003	1210	TTGAAGATCATCGGAGAGTATGG	73612658 (<i>Aphis gossypii</i>)
NL003	1211	AAAATTGAAGATTCCCTTGAA	75467497 (<i>Tribolium castaneum</i>)
NL003	1212	CAGAAGCACATTGACTTCTCGCT	77730066 (<i>Aedes aegyptii</i>)
NL003	1213	CGTAAGGCCGCTCGTAGCTG	24661714 (<i>Drosophila melanogaster</i>)
NL003	1214	GCGTGTGATGGACTTGGACTTGGCAA	90813959 (<i>Nasonia vitripennis</i>)
NL003	1215	GCCAAGTCCATCCATCAAGCCCCG	92467983 (<i>Drosophila erecta</i>)
NL003	1216	GCCAAGTCCATCCATCAAGCCCCGT	112349903 (<i>Helicoverpa armigera</i>)
NL003	1217	CTCATCAGACAAAGACATATCAGAGT	110671455 (<i>Diaphorina citri</i>)
NL003	1218	CAGGAGTTGAAGATCATCGGAGAGA	86464397 (<i>Acyrthosiphon pisum</i>)
NL003	1219	CAGGAGTTGAAGATCATCGGAGAGTATGG	92938865 (<i>Drosophila virilis</i>)
NL003	1220	GAGTTGAAGATCATCGGAGAGTA	101417830 (<i>Plodia interpunctella</i>)
NL003	1221	TCGCAGAACGACATTGACTTCTC	110254389 (<i>Spodoptera frugiperda</i>)
NL003	1222	TTGAAGATCATCGGAGAGTATGG	112984021 (<i>Bombyx mori</i>)
NL003	1223	CAGAAGGCACATTGACTTCTCGCTGAA	93002641 (<i>Drosophila mojavensis</i>)
NL003	1224	CTCCGTAACAAGCGTGGGGTGTGG	92938865 (<i>Drosophila virilis</i>)
NL003	1225	CGTAACAAAGCGTGGGGTGTGG	111158779 (<i>Mizus persicae</i>)
NL003	1226	GTCAAATAACGCCCTGGCCAAGAT	92232387 (<i>Drosophila willistoni</i>)
NL004	1227	TACGCCATTCCCCATCAACTGTGT	92232387 (<i>Drosophila willistoni</i>)
NL004	1228	TGCTCTCACATCGAAAAACATG	110558371 (<i>Drosophila ananassae</i>)
NL004	1229	AACTTCCCTGGGGAGAAAGTACATC	930011117 (<i>Drosophila grimshawi</i>)
NL004	1230	GCGGTGTACGCCATTCCCCATCAAAC	14994663 (<i>Spodoptera frugiperda</i> , xylostella)
NL004	1231	GTGTACGCCATTCCCCATCAAACGTGTGAC	22039837 (<i>Ctenocephalides felis</i>)
NL004	1232	GTGTACGCCATTCCCCATCAAACGTGTG	25959088 (<i>Meladema coriacea</i>)
NL004	1233	ATGGTGGCGTGTACGCCATT	25959088 (<i>Meladema coriacea</i>)

NL004	1234	TCAGCTGCCCTCATCCAACAGTC	33491496 (<i>Trichoplusia ni</i>)
NL004	1235	AAGGATAATTCTGAAATTCTGGGA	37952094 (<i>Ips pini</i>), 56199511 (<i>Culicoides sonorensis</i>)
NL004	1236	GCCCCATTTCCCCATCAACTGTGT	42766318 (<i>Armigeres subalbatus</i>)
NL004	1237	AACTTCCTGGCGAGAAGTACAT	49547659 (<i>Rhipicephalus appendiculatus</i>)
NL004	1238	AAGAACAAAGGATATTCCGTAATTCTGGGA	56152793 (<i>Rhynchosciara americana</i>)
NL004	1239	AACTTCCTGGCGAGAAGTACATCCG	58079798 (<i>Amblyomma americanum</i>), 49554219 (<i>Boophilus microplus</i>)
NL004	1240	CATTCCCCATCAACTGTGTGAC	60312171 (<i>Papilio dardanus</i>)
NL004	1241	CGTAACTTCTGGCGAGAAGTACATCCG	63516417 (<i>Ixodes scapularis</i>)
NL004	1242	AGATCAGCTGCCCTCATCCAACA	71539722 (<i>Diaphorina citri</i>)
NL004	1243	GTGTACGCCATTCCCCATCAACTGTGT	24583601 (<i>Drosophila melanogaster</i>)
NL004	1244	TACGGCCAATTCCCCATCAACTGT	113017826 (<i>Bemisia tabaci</i>)
NL004	1245	TACGGCCATTCCCCATCAACTGTGT	110263092 (<i>Spodoptera frugiperda</i>)
NL004	1246	GCCCCATTCCCCATCAACTGTGT	94468811 (<i>Aedes aegypti</i>)
NL004	1247	ACACAGTTGATGGGAAATGGGC	90136736 (<i>Bicyclius anynana</i>)
NL004	1248	GCCCCATTCCCCATCAACTGTGT	110671493 (<i>Diaphorina citri</i>)
NL004	1249	GTCACACAGTTGATGGGAAATGGGC	110249018 (<i>Spodoptera frugiperda</i>)
NL004	1250	CCATTCCCCATCAACTGTGT	87266195 (<i>Chortiorneura fumiferana</i>)
NL005	1251	AAGGGTAACGTATTCAAGAACAGCG	90981351 (<i>Aedes aegypti</i>)
NL005	1252	AAGGGTAACGTATTCAAGAACAG	1900283 (<i>Drosophila melanogaster</i>)
			25956594 (<i>Biphyllus lunatus</i>)
NL005	1253	CGTGTATTGATGGAGTTCAATTCA	30124405 (<i>Toxoptera citricida</i>), 60294294 (<i>Homalodisca coagulata</i>), 71046487 (<i>Oncometopia nigricans</i>), 73612243 (<i>Apolis gossypii</i>)
NL005	1254	AAAGGTCAAGGAGGCCAAGAAG	67875089 (<i>Drosophila pseudoobscura</i>)
NL005	1255	AAAGATGTTGAACGACCAGGCTGAAGC	77324118 (<i>Chiromomus tentans</i>)
NL005	1256	ACGTTACCCCTAGCCTTCATGTGA	90812513 (<i>Nasonia giraulti</i>)
NL005	1257	AAGGGTAACGTATTCAAGAACAGCG	45552830 (<i>Drosophila melanogaster</i>)
NL005	1258	CGTGTATTGATGGAGTTCAATTCA	112433619 (<i>Myzus persicae</i>)

NL005	1259	AGGTCAAGGAGGCCAAGGAAGC	92941126 (<i>Drosophila virilis</i>)
NL005	1260	ACGTTACCCCTTAGCCTCATGTA	90812513 (<i>Nasonia giraulti</i>)
NL005	1261	AAGGGTAACGGTATTCAAGAAACAGCG	45532830 (<i>Drosophila melanogaster</i>)
NL006	1262	AGTCCCAGGAACACCTATCAG	21464337 (<i>Drosophila melanogaster</i>)
NL006	1263	ATTATTCCCTCCCCGATCACAA	24646762 (<i>Drosophila melanogaster</i>)
NL006	1264	CACGCTATCCCATCTCGTATGACAATTGG	24646762 (<i>Drosophila melanogaster</i>)
NL006	1265	TACAAGITCTGCAAATTCGAGT	49573116 (<i>Boophilus microplus</i>)
NL006	1266	ATGACAATTGGCCATTAAATTGAAATG	50564037 (<i>Homalodisca coagulata</i>)
NL006	1267	ACTTACACGCACTGCGAGATCCA	58384759 (<i>Anopheles gambiae str. PEST</i>)
NL006	1268	GGTGTGGTGAGTACATTGACAC	58384759 (<i>Anopheles gambiae str. PEST</i>)
NL006	1269	ATTATTCCCTCCCCGATCACAA	24646762 (<i>Drosophila melanogaster</i>)
NL006	1270	AGTCCCAGGAACACCTATCAG	22026793 (<i>Drosophila melanogaster</i>)
NL006	1271	CACGCTATCCCATCTCGTATGACAATTGG	24646762 (<i>Drosophila melanogaster</i>)
NL006	1272	TCTCGTATGACAATTGGCCATT	93000469 (<i>Drosophila mojavensis</i>)
NL007	1273	GCAAACAAAGTCATGATGTTCAAG	15354019 (<i>Apis mellifera</i>)
NL007	1274	GGTATGGAAAAACTGCTGTATTGTGTT	15354019 (<i>Apis mellifera</i>)
NL007	1275	GAATGCATTCCCTCAAGCTGTA	21068658 (<i>Chironomus tentans</i>)
NL007	1276	TGCAAGAAAATTCATGCAAGATCC	21068658 (<i>Chironomus tentans</i>)
NL007	1277	TTCCAAAATCAGCAAAGGTATGA	2890413 (<i>Drosophila melanogaster</i>)
NL007	1278	GATGACGGAGGCCAAGCTGACGCT	49536419 (<i>Rhipicephalus appendiculatus</i>)
NL007	1279	TGTGGTTTGTAAACATCCATCTGAAGTACAACA	603086907 (<i>Hister sp.</i>)
NL007	1280	GAAAACGAAAAGAACAAAAAG	77642464 (<i>Aedes aegypti</i>)
NL007	1281	GGTATGGAAAAACTGCTGTATTGTGTT	110759359 (<i>Apis mellifera</i>)
NL007	1282	GAAAACAAGTCATGATGTTCAAG	110759359 (<i>Apis mellifera</i>)
NL007	1283	CTGCAGCAGCACTATGTCAAACTCAA	90137538 (<i>Spodoptera frugiperda</i>)
NL007	1284	GAAAACGAAAAGAACAAAAAG	94468805 (<i>Aedes aegypti</i>)
NL008	1285	TGCCAAGCCTAAAGATTGGG	60315277 (<i>Dysdera erythrina</i>)
NL008	1286	ATGTTCAAGAAAAGTTAATGCTAGAGA	60336214 (<i>Homalodisca coagulata</i>)

NL008	1287	GAGTTGGTGGTTCTTTGGGATG	66522334 (<i>Apis mellifera</i>)
NL008	1288	TTTCAACAGTTGCAGTTCC	7575289 (<i>Tribolium castaneum</i>)
NL008	1289	GAGTTGGTGGTTCTTTGGGATG	110762109 (<i>Apis mellifera</i>)
NL010_1	1290	AAGGACCTGACTGCCAAGCAG	2761430 (<i>Drosophila melanogaster</i>)
NL010_1	1291	GCCAAGCAGATCCAGGACATG	49559867 (Boophilus microplus)
NL010_1	1292	TGCTCGAAAGAGCTACGTGTTCCG	49559867 (Boophilus microplus)
NL010_1	1293	AAGAGCTAACGGTCCGGGGC	92043082 (<i>Drosophila willistoni</i>)
NL010_1	1294	AAGGACCTGACTGCCAAGCAG	92481328 (<i>Drosophila erecta</i>)
NL010_2	1295	ATGGACACATTTTCCAAATTCTCAT	28571527 (<i>Drosophila melanogaster</i>)
NL010_2	1296	ACCGCAGTATTCAACCCGACA	33427937 (<i>Glossina morsitans</i>)
NL010_2	1297	TATTGATGGACACATTTCACCA	47520567 (<i>Acyrthosiphon pisum</i>)
NL010_2	1298	TTCAACAAACAGTCCTGATGAAAC	47520567 (<i>Acyrthosiphon pisum</i>)
NL010_2	1299	ATGGACACATTTTCCAAATT	55881325 (<i>Locusta migratoria</i>)
NL010_2	1300	CCGCAGTTCATGTACCATCTGCG	56151768 (<i>Rhynchosciara americana</i>)
NL010_2	1301	ATGGACACATTTTCCAAATT	75736992 (<i>Tribolium castaneum</i>)
NL011	1302	AAGAAGTATGTTGCCACCCCTGG	6932015 (<i>Anopheles gambiae</i>)
NL011	1303	GACATCAAAGGACAGGAAAGTCAGGCCAAGAGC	29558345 (<i>Bombyx mori</i>)
NL011	1304	CACTACAACCTTCGAGAACGCCCTGTGG	91086194 (<i>Tribolium castaneum</i>)
NL011	1305	TACAAGAACGTTCCCAAACGGCA	21640529 (<i>Amblyomma variegatum</i>)
NL011	1306	ATAGT	25959135 (<i>Meladema coriacea</i>)
NL011	1307	CAACTACAACCTTCGAGAACCTTCAGTACTACGA	37951963 (<i>Ips pini</i>)
NL011	1308	TACAAGAACGTTCCCAAACGGCA	25959135 (<i>Meladema coriacea</i>)
NL011	1309	AACAAAGTAGACATCAAGGACAGGAAAGTCAA	3114090 (<i>Drosophila melanogaster</i>)
NL011	1309	AACAAAGTAGACATCAAGGACAGGAAAGTCAA	37951963 (<i>Ips pini</i>)
NL011	1309	AACAAAGTAGACATCAAGGACAGGAAAGTCAA	40544671 (<i>Tribolium castaneum</i>)
NL011	1309	AACAAAGTAGACATCAAGGACAGGAAAGTCAA	49565237 (<i>Boophilus microplus</i>)
NL011	1309	AACAAAGTAGACATCAAGGACAGGAAAGTCAA	49538692 (<i>Rhipicephalus appendiculatus</i>)
NL011	1309	AACAAAGTAGACATCAAGGACAGGAAAGTCAA	76552920 (<i>Spodoptera frugiperda</i>)

NL011	1310	CCCAACTGGCACAGAGATTAGTG	78230577 (<i>Heliconius erato/himera mixed EST library</i>)
NL011	1311	GATGGTGGTAACGGGAAACTAC	78538667 (<i>Glossina morsitans</i>)
NL011	1312	TACAAGAACCTCCCAACTGGCAC	84267747 (<i>Aedes aegypti</i>)
NL011	1313	AACAAAGTAGACATCAAGGACAGGAAAGTCAA	110263840 (<i>Spodoptera frugiperda</i>)
NL011	1314	TTGACTTTCCCTGCTTGATGTC	90136305 (<i>Bicyclus anynana</i>)
NL011	1315	GACATCAAGGACAGGAAAGTCAAAGGC	90813103 (<i>Nasonia vitripennis</i>)
NL011	1316	AGGAAGAAGAACCTTCAGTACTACGA	91091115 (<i>Tribolium castaneum</i>)
NL011	1317	GATGTCGTAGTACTGAAGGTTCTT	90136305 (<i>Bicyclus anynana</i>)
NL011	1318	CACTACAACCTCGAGAAGCCGTTCTGTGG	90977910 (<i>Aedes aegypti</i>)
NL011	1319	CCAACCTGGAGTTCTGCCATGCC	92465523 (<i>Drosophila erecta</i>)
NL011	1320	GAATTGAAAAGAAAGTATGTTGC	113015058 (<i>Bemisia tabaci</i>)
NL011	1321	CTCAGTAGCATGACATCAGTGCGAA	110086408 (<i>Amblyomma cajennense</i>)
NL011	1322	AGCAACTACAACCTCGAGAAGGC	110086408 (<i>Amblyomma cajennense</i>)
NL011	1323	AAGCTGATCGGTGACCCCAACCTGGAGTT	110086408 (<i>Amblyomma cajennense</i>)
NL012	1324	CACAGTTTGAACAGCAAGCTGG	29552409 (<i>Bombyx mori</i>)
NL012	1325	GCAGCAGACGGCAGGGACAGGTAGA	77823921 (<i>Aedes aegypti</i>)
NL012	1326	CACAGTTTGAACAGCAAGCTGG	94435913 (<i>Bombyx mori</i>)
NL013	1327	CAAGCGAAGATGTTGGACATGCT	15536506 (<i>Drosophila melanogaster</i>)
NL013	1328	ATGGTGGTGGCTGGTACCACTGGCACCC	49547019 (<i>Rhipicephalus appendiculatus</i>)
NL013	1329	GTGGTGGCTGGTACCACTCGCACCC	58079586 (<i>Amblyomma americanum</i>)
NL013	1330	GTGGGCTGGTACCACTCGCACCC	82848521 (<i>Boophilus microplus</i>)
NL013	1331	AAGATGTGGACATGCTAAAGCAGACAGG	92229701 (<i>Drosophila willistoni</i>)
NL013	1332	TGTCGGGTGTCGACATCAACAC	92962655 (<i>Drosophila ananassae</i>)
NL013	1333	GTTCGGCATGGAAGTTATGGGC	112433067 (<i>Myzus persicae</i>)
NL013	1334	GTGGGCTGGTACCACTCGCACCC	110085175 (<i>Amblyomma cajennense</i>)
NL014	1335	GAGATCGATGCCAAGGCCGAGGA	1033187 (<i>Drosophila melanogaster</i>)
NL014	1336	GAATTCAACATTGAAAAAGGA	16900951 (<i>Ctenocephalides felis</i>)
NL014	1337	GAAGAATTCAACATTGAAAAGGG	47518467 (<i>Acyrthosiphon pisum</i>)
NL014	1338	GAAGCCAATGAGAAAAGCCGAAAGA	47518467 (<i>Acyrthosiphon pisum</i>)
NL014	1339	TGTCAAAACATGCTGAACCAAGC	61954844 (<i>Tribolium castaneum</i>)

NL014	1340	TTTCATTGAGCAAGAACCCAATGA	62239529 (<i>Diabrotica virgifera</i>), 76169390 (<i>Diptera punctata</i>), 61954844 (<i>Tribolium castaneum</i>), 16900951 (<i>Ctenocephalides felis</i>)
NL014	1341	CAAGAAGCCAATGAGAAAGCCGA	111160670 (<i>Myzus persicae</i>)
NL014	1342	TTTCATTGAGCAAGAACCCAATGA	91092061 (<i>Tribolium castaneum</i>)
NL014	1343	AGAAAGCCAATGAGAAAGCCGA	112432414 (<i>Myzus persicae</i>)
NL014	1344	TCGTCAAAACATGCTGAACCAAGC	91092061 (<i>Tribolium castaneum</i>)
NL014	1345	GCCAATGAGAAAGCCGAAGAGATCGATGCCAA	93001435 (<i>Drosophila grimshawi</i>)
NL014	1346	AAAGCCGAAGAGATCGATGCCAA	92936169 (<i>Drosophila virilis</i>)
NL014	1347	GAAGATCGATGCCAAGGGCGAGGA	24644299 (<i>Drosophila melanogaster</i>)
NL014	1348	GAAGAATTCAACATTTGAAAAGGG	864433006 (<i>Acyrthosiphon pisum</i>)
NL014	1349	GAAGAATTCAACATTTGAAAAGGGAGGCT	111160670 (<i>Myzus persicae</i>)
NL014	1350	AAAGAATTCAACATTTGAAAAGGG	90881999 (<i>Graphocephala atropunctata</i>)
NL015	1351	GAGGTGCTGCGCATCCACACCAA	111158385 (<i>Myzus persicae</i>)
NL015	1352	ATCCATGTGCTGCCCATTTGATGA	18887285 (<i>Anopheles gambiae</i>)
NL015	1353	CAIGTGCTGCCCATTTGATGAT	21641659 (<i>Amblyomma variegatum</i>)
NL015	1354	CTGGCCATCACACCAAGAACATGAAGTTGG	22039735 (<i>Ctenocephalides felis</i>)
NL015	1355	TTCTTCTCCCTCATCAACGGACC	22474136 (<i>Helicoverpa armigera</i>)
NL015	1356	GAGATGGTGGAGTTGCCGCTG	49555586 (<i>Rhipicephalus appendiculatus</i>)
NL015	1357	CAAGATCAAAGAGATGGTGGAG	583171722 (<i>Lonomia obliqua</i>)
NL015	1358	ATCAAACGGAACCCGAGATTATG	929417821 (<i>Drosophila ananassae</i>)
NL015	1359	ATGAAGATGATGGCGGTGCGTT	929417821 (<i>Drosophila ananassae</i>)
NL015	1360	CCGGCCCATCATCTCATCGATGAG	92470977 (<i>Drosophila erecta</i>)
NL015	1361	ATCATCTTCATCGATGAGCTGGACGC	92480997 (<i>Drosophila erecta</i>)
NL015	1362	CAGCTGCTGACGCTGATGGACGG	99007898 (<i>Leptinotarsa decemlineata</i>)
NL015	1363	ATCGACATGGCATTCGGATGCCACCGG	92941440 (<i>Drosophila virilis</i>)
NL016	1364	TCTATGGAGAACGTTGCTGTTCTTGAAC	92947321 (<i>Drosophila ananassae</i>)
NL016	1365	TACCCAGTGGAGAACGACGTGCT	27372076 (<i>Spodoptera littoralis</i>)
NL016	1366	ATGGAGAACGTTGCTGTTCTTGAACCTGGC	2921501 (<i>Culex pipiens</i>)
NL016	1367	CGTGGCCAGAAAATCCCCATCTT	31206154 (<i>Anopheles gambiae s.l. PEST</i>)
NL016			3945243 (<i>Drosophila melanogaster</i>)

NL016	1368	TGGCCTACCAGTGCAGAACGACGTG	4680479 (<i>Aedes aegypti</i>)
NL016	1369	TGCCACCATCTACAGGGCGCGG	53883819 (<i>Plutella xylostella</i>)
NL016	1370	ATGGAGAACGTGCGCTGTTCTTGAA	67883622 (<i>Drosophila pseudoobscura</i>)
NL016	1371	CCCGAGGAATGATCCAGACTGG	67883622 (<i>Drosophila pseudoobscura</i>)
NL016	1372	TGGCCTACCAGTGCAGAACGACGTGCT	67883622 (<i>Drosophila pseudoobscura</i> , (<i>Anopheles gambiae</i> str. PEST))
NL016	1373	GAGGAGGTGCCGGCGTCGTGTTCCCCGG TTACATGTACACCGAT	67896654 (<i>Drosophila pseudoobscura</i>)
NL016	1374	GAGGGTCGCAACGGCTCCATCAC	67896654 (<i>Drosophila pseudoobscura</i>)
NL016	1375	GAGGTGCCGGCCGTGTTCCCCGGTTAC ATGTACACCGAT	75710699 (<i>Tribolium castaneum</i>)
NL016	1376	ATGGAGAACGTGCGCTGTTCTTGAAAC	76554661 (<i>Spodoptera frugiperda</i>)
NL016	1377	TGGCCTACCAGTGCAGAACGACGTGCTCGTCA TCCT	9992660 (<i>Drosophila melanogaster</i>)
NL016	1378	CGTCTGGTTCCCCGGTTACATGTACACCGAT	9992660 (<i>Drosophila melanogaster</i> , pipliens), 62236897 (<i>Diabrotica virgifera</i>)
NL016	1379	TGGTCGGTATCTATCCGAGGAAATGATCCAG AC	92999374 (<i>Drosophila grimshawi</i>)
NL016	1380	TGGTCGGTATCTATCCGAGGAAATGATCCAG ACTGG	92940538 (<i>Drosophila virilis</i>)
NL016	1381	TCTATGGAGAACGTGCGCTGTTCTTGAAC	92938622 (<i>Drosophila virilis</i>)
NL016	1382	ATGGAGAACGTGCGCTGTTCTTGAAC	92950254 (<i>Drosophila ananassae</i>)
NL016	1383	AACGTGCGCTGTTCTTGAAC	90137502 (<i>Spodoptera frugiperda</i>)
NL016	1384	TGGCCTACCAGTGCAGAACGACGTGCT	92946927 (<i>Drosophila ananassae</i>)
NL016	1385	TGGCCTACCAGTGCAGAACGACGTGCTCGTCA TCCT	24646342 (<i>Drosophila melanogaster</i>) 92231646 (<i>Drosophila willistoni</i>)
NL016	1386	GCCTACCAGTGCAGAACGACGTGCT GAGGAGGTGCCGGCGTCGTGTTCCCCGG	107256717 (<i>Drosophila melanogaster</i>) 92985459 (<i>Drosophila grimshawi</i>)
NL016	1387	TTACATGTACAC	92938622 (<i>Drosophila virilis</i>)

NL016	1388	GAGGAGGTGGGGGGCGTCGGTTCCCCGG TTACATGTACACCGAT	92477818 (<i>Drosophila erecta</i>)
NL016	1389	GAGGTGGGGGGCGTCGGTTCCCCGGTTAC ATGTACACCGAT	91090030 (<i>Tribolium castaneum</i>)
NL016	1390	CGTCGTGGTTCCCCGGTTACATGTACACCGAT	104530890 (<i>Belgica antarctica</i>)
NL016	1391	CGTCGTGGTTCCCCGGTTACATGTACACCGAT	92981037 (<i>Drosophila grimshawi</i>)
NL016	1392	CGGGGGTCCCCGGTTACATGTACACCGAT	24646342 (<i>Drosophila melanogaster</i>)
NL016	1393	ATGGGTGTACATGTAAACGGGGAAACCA	92957249 (<i>Drosophila ananassae</i>)
NL016	1394	CGTCCGGCGCGCTCGTAGATGGT	103744758 (<i>Drosophila melanogaster</i>)
NL016	1395	GAGGGTGCAGAACGGGCTCCATCAC	91829127 (<i>Bombyx mori</i>)
NL018	1396	CGGACGTGGCCTGGTTCATCA	92957249 (<i>Drosophila ananassae</i>)
NL019	1397	GTGGTGTACGACTGCACCGGACGGAGTCGGTTC AACAAC	92479742 (<i>Drosophila erecta</i>)
NL019	1398	GAAAGTTACATCAGTACCATGGTGT	84343006 (<i>Aedes aegypti</i>)
NL019	1399	CACCGACCAGGAGTCGGTCAACAAAC	113018639 (<i>Bemisia tabaci</i>)
NL019	1400	AGTACCATGGTGTAGATTAAAAAT	85857059 (<i>Aedes aegypti</i>)
NL019	1401	ATGGGTGTAGATTAAAAATTAG	91087112 (<i>Tribolium castaneum</i>)
NL019	1402	GGTGTAGATTAAAAATTAGAAC	78542465 (<i>Glossina morsitans</i>)
NL019	1403	GGTGTAGATTAAAAATTAGAACAAAT	92232411 (<i>Drosophila willistoni</i>)
NL019	1404	GTCTTAATTAAAAATTCAACAC	90986845 (<i>Aedes aegypti</i>)
NL019	1405	TGGGACACGCCGCCAGGAG	92043152 (<i>Drosophila willistoni</i>)
NL019	1406	TGGGACACGCCGCCAGGAGCG	91091115 (<i>Tribolium castaneum</i>)
NL019	1407	TGGGACACGCCGCCAGGAGCGGT	90982219 (<i>Aedes aegypti</i>)
NL019	1408	GACCAAGCTGGCATTCCGTTCT	94433465 (<i>Bombyx mori</i>)
NL019	1409	ATTGGGTGTAGATTAAAAATT	10708384 (<i>Amblyomma americanum</i>)
NL019	1410	TGGGACACGCCGCCAGGAGCGGT	18864397 (<i>Anopheles gambiae</i>)
NL019	1411	CAGGGGGGTTCGGCACGATCAC	18888926 (<i>Anopheles gambiae</i>)
NL019	1412	ATTGGGTGTAGATTAAAAATTAGAAC	21640713 (<i>Amblyomma variegatum</i>)
NL019	1413	ATTGGGTGTAGATTAAAAATTAG	22039832 (<i>Ctenocephalides felis</i>)
NL019	1414	TGGGACACGCCGCCAGGAG	33378174 (<i>Glossina morsitans</i>)
			3738872 (<i>Manduca sexta</i>), 25959135 (<i>Meladema coriacea</i>), 40542849 (<i>Tribolium castaneum</i>), 67840088 (<i>Drosophila pseudoobscura</i>)

NL019	1415	TGGGACACAGGCCAGGGCGGT	4161805 (<i>Bombyx mori</i>)
NL019	1416	GATGACACATACACAGAAAGTTACATCAGTAC	50562545 (<i>Homalodisca coagulata</i> , <i>Oncometopia nigricans</i>)
NL019	1417	ACGGCCGGCCAGGCGGGTCCG	58377591 (<i>Anopheles gambiae</i> str. PEST)
NL019	1418	AGTACCAATTGGTGTAGATTTAAAAAT	61954135 (<i>Tribolium castaneum</i>)
NL019	1419	TAAGGCTTCAGATTTGGACAC	68758530 (<i>Acanthoscurria gomesiana</i>)
NL019	1420	ATTTGGGACACAGGCCAGGAGGA	77667315 (<i>Aedes aegypti</i>)
NL019	1421	GTGGTGTACGACTGCACCGACCCAGGAGTCGGTTC AACAAAC	77705629 (<i>Aedes aegypti</i>)
NL019	1422	GGTGTAGATTAAAAATTAGAACAT	77890715 (<i>Aedes aegypti</i>)
NL019	1423	TGGGACACAGGCCAGGAGCG	82851662 (<i>Boophilus microplus</i>), 49536894 (<i>Rhipicephalus appendiculatus</i>)
NL022	1424	TCTTCCTCACCGGTCAAGGAGAT	6928515 (<i>Anopheles gambiae</i>)
NL022	1425	AAATTCTCCGAGTTTCGACGATGC	91082872 (<i>Tribolium castaneum</i>)
NL022	1426	TTCTCTACCCGGTCAGGGAGAT	90976120 (<i>Aedes aegypti</i>)
NL022	1427	TAGTATTGGCCACAAATTGGCAGA	92042565 (<i>Drosophila willistoni</i>)
NL023	1428	TATTTGAACATATGGGTGCCGCA	20384669 (<i>Plutella xylostella</i>)
NL023	1429	GAGGGAGAGAAAATGTGGAATCC	22085301 (<i>Helicoverpa armigera</i>)
NL023	1430	CGGAAGATTGTCTGTATTGAA	27531022 (<i>Apis mellifera</i>)
NL023	1431	GATTCGGTTTGCAGAACCTCC	57929927 (<i>Anopheles gambiae</i> str. PEST)
NL023	1432	GGTGCCTTCGGCTTCCCTCTACCT	58380563 (<i>Anopheles gambiae</i> str. PEST)
NL023	1433	CAATTCAATGCTAGGGAAAGG	110759012 (<i>Apis mellifera</i>)
NL023	1434	GAGGGAGAGAAAATGTGGAATCC	55793188 (<i>Helicoverpa assulta</i>)
NL023	1435	CGGAAGATTGTCTGTATTGAA	58585075 (<i>Apis mellifera</i>)
NL023	1436	GACGTCATCGTCGCCCATGCA	91077117 (<i>Tribolium castaneum</i>)
NL027	1437	GGAGACCCTGGAGCTGGTGC	49543279 (<i>Rhipicephalus appendiculatus</i>)

Table 4-CS

Target ID	SEQ ID NO	Sequence *	Example GI-number and species
CS001	1730	AAAGCATGGATGTTGGACAAA	73619372 (<i>Aphis gossypii</i>); 77325485 (<i>Chironomus tentans</i>); 22474232 (<i>Helicoverpa armigera</i>); 37951951 (<i>Ips pini</i>); 60305420 (<i>Mycetophagus quadripustulatus</i>); 84647995 (<i>Myzus persicae</i>)
CS001	1731	AAAGCATGGATGTTGGACAACT	40877657 (<i>Bombyx mori</i>); 103783745 (<i>Heliconius erato</i>); 55904580 (<i>Locusta migratoria</i>); 101413238 (<i>Ploidia interpunctella</i>)
CS001	1732	AACCGGGCTCAAGTACGGCGCTCAC	22474232 (<i>Helicoverpa armigera</i>)
CS001	1733	AACCGGGCTCAAGTACGGCGCTCACCGG	90134075 (<i>Bicyclus anynana</i>)
CS001	1734	AAGATCATGGACTTCATCAAGTT	90134075 (<i>Bicyclus anynana</i>)
CS001	1735	ACCAGATTGAACAACGTGTTCAT	71536878 (<i>Diaphorina citri</i>) 3658573 (<i>Manduca sexta</i>)
CS001	1736	ATCATGGACTTCATCAAGTTGAATC	103783745 (<i>Heliconius erato</i>)
CS001	1737	CAAGATCATGGACTTCATCAAGTT	3478550 (<i>Antithaea yamamai</i>)
CS001	1738	CCCCAACAGTTGGCGAGTGCG	63011732 (<i>Bombyx mori</i>)
CS001	1739	CCCGCTGGATTATGGATGTTGT	101403940 (<i>Ploidia interpunctella</i>)
CS001	1740	CCTCCAAGATCATGGACTTCATCAAGTT	22474232 (<i>Helicoverpa armigera</i>)
CS001	1741	CCTGCCGGCTGGTGATCTTCCT	27597800 (<i>Anopheles gambiae</i>)
CS001	1742	CGACGGGGCCCAAAGAACGTGCC	22474232 (<i>Helicoverpa armigera</i>)
CS001	1743	CTCATCAAGGTCAACGACTCC	103783745 (<i>Heliconius erato</i>) 112350001 (<i>Helicoverpa armigera</i>) 101418268 (<i>Ploidia interpunctella</i>)
CS001	1744	CTCATCAAGGTCAACGACTCCATCCAGCTCGAC	3738704 (<i>Manduca sexta</i>)
CS001	1745	CTCATCAAGGTCAACGACTCCATCCAGCTCGAC ATGCCACCT	53884106 (<i>Plutella xylostella</i>)
CS001	1746	CTGCCGGCTGGTGATCTTCCTC	27603050 (<i>Anopheles gambiae</i>)
CS001	1747	GACCCCACATATCCCGCTGGATT	103783745 (<i>Heliconius erato</i>)
CS001	1748	GCAGGGACTTCAAAAGTTGA	109978109 (<i>Gryllus pennsylvanicus</i>)

CS001	1749	GCATGGATGGGACAAACTGGG	67899746 (<i>Drosophila pseudoobscura</i>)
CS001	1750	GCCACCTCCAAGATCATGGACTTAT	110259010 (<i>Spodoptera frugiperda</i>)
CS001	1751	GCGCGTGGCACGGCCCCAAGAACGTGCC	53884106 (<i>Plutella xylostella</i>)
CS001	1752	GCTGGATTATGGATGGTTGTT	29553519 (<i>Bombyx mori</i>)
CS001	1753	GGCTCAAGTAGCGCGCTCACCGG	5498893 (<i>Antherea yamamai</i>)
CS001	1754	GTGGGCACCATCGTGTCCCAGAG	3953837 (<i>Bombyx mandarina</i>)
CS001	1755	GTGGGCACCATCGTGTCCCAGAGCG	53884106 (<i>Plutella xylostella</i>)
CS001	1756	GTGGGCACCATCGTGTCCCAGAGCACGCC	3478550 (<i>Antherea yamamai</i>)
CS001	1757	TAAAGCATGGATGGTGGACAA	22474232 (<i>Helicoverpa armigera</i>)
CS001	1758	TAAAGCATGGATGGTGGACAA	58371410 (<i>Lonnia obliqua</i>)
CS001	1759	TAAAGCATGGATGGTGGACAAACT	60311985 (<i>Papilio dardanus</i>)
CS001	1760	TAAAGCATGGATGGTGGACAAACTGGG	31366663 (<i>Toxopista citricida</i>)
CS001	1761	TACAAGCTGTGCAAGGTGGGGGGGGGAC	109978109 (<i>Cylilus pennsylvanicus</i>)
CS001	1762	TACAAGCTGTGCAAGGTGGGGGGGGGAC	98994282 (<i>Antherea mylitta</i>)
CS001	1763	TACCCGACCCACTCATCAAGGT	98993531 (<i>Antherea yamamai</i>)
CS001	1764	TGAACACGGTTCATAATCGG	5498893 (<i>Antherea yamamai</i>)
CS001	1765	TGGCGAGTGCGCTGGCTGGT	90134075 (<i>Bicyclus anynana</i>)
CS001	1766	TGTATGATCACGGGAGGGCGTAACCTGGG	98993531 (<i>Antherea mylitta</i>)
CS001	1767	TGTATGATCACGGGAGGGCGTAACCTGGG	22474232 (<i>Helicoverpa armigera</i>)
CS001	1768	TGTATGATCACGGGAGGGCGTAACCTGGG	60311445 (<i>Euclidia glyphica</i>)
CS001	1769	TGTGCAAGGTGGGGGGGGGGGGGG	3953837 (<i>Bombyx mandarina</i>)
CS001	1770	CAAG	91826697 (<i>Bombyx mori</i>)
CS002	1771	TTGAAACAAACGTGTTCATATACTGGCAAGGGCAG	3478550 (<i>Antherea yamamai</i>)
CS002	1772	AA	3953837 (<i>Bombyx mandarina</i>)
CS002	1773	ATTGAGGCCAAAGGAAAGCGCTAGAAGG	40915191 (<i>Bombyx mori</i>)
CS002	1774	CACGATCTGATGGATGACATTG	91849872 (<i>Bombyx mori</i>)
CS002	1775	GAGTTCTTAGTAAAGTATTGGTGG	33498783 (<i>Anopheles gambiae</i>)
CS002	1776	TATGAAAAGCAGCTAACCCAGAT	110762684 (<i>Apis mellifera</i>)
CS002	1777		49552807 (<i>Rhipicephalus appendiculatus</i>)

CS003	1775	AGGCACATCCGTGTCGCCAAGGA	10707186 (<i>Amblyomma americanum</i>)
CS003	1776	AAGATTGAGGACTTCTGGAA	60295192 (<i>Homalodisca coagulata</i>)
CS003	1777	AAGCACATTGACTTCTCGCTGAA	92219983 (<i>Drosophila willistoni</i>)
CS003	1778	ATCAGACAGGGCACATCCGTGT	27260897 (<i>Spodoptera frugiperda</i>)
CS003	1779	ATCCGTAAGGGCTGCCGTGAG	101413529 (<i>Plodia interpunctella</i>)
CS003	1780	ATCCGTAAGGGCTGCCGTGAGCTG	92042852 (<i>Drosophila willistoni</i>)
CS003	1781	ATCCGTAAGGCTGCCGTGAGCTGCT	92959651 (<i>Drosophila ananassae</i>)
CS003	1782	ATCCGTAAGGGCTGCCGTGAGCTGCTCAC	112349903 (<i>Helicoverpa armigera</i>)
CS003	1783	CACATCCGTGTCGGCAAGCAAG	90138123 (<i>Spodoptera frugiperda</i>)
CS003	1784	CACATCCGTGTCGGCAAGCAAGT	60306665 (<i>Sphaerius sp.</i>)
CS003	1785	CACATCCGTGTCGGCAAGCAAGTT	77329341 (<i>Chironomus tentans</i>)
CS003	1786	CGCAAACAAGCGTGAGCTGTGG	60306676 (<i>Sphaerius sp.</i>)
CS003	1787	CGTGTCCGCAAGCAAGTTGTGAACATCCC	92473214 (<i>Drosophila erecta</i>)
CS003	1788	CTCGCTGAAGTCTCGTTCGGGGGGCG	67888665 (<i>Drosophila pseudoobscura</i>)
CS003	1789	CTCGGTCTGAAGATTGAGGACTT	90134575 (<i>Bicyclus anynana</i>)
CS003	1790	CTGGACTCTGGCAAGCACATTGACTTCTC	29553137 (<i>Bombyx mori</i>)
CS003	1791	GACTTCTCGCTGAAGTCTCGTTCGGGGGGGG	3986375 (<i>Antheraea yamamai</i>)
CS003	1792	GACTTCTCGCTGAAGTCTCGTTCGGGGGGGG	112349903 (<i>Helicoverpa armigera</i>)
CS003	1793	GAGGAGAAAAGACCCCTAACAGGGTTATTCGAAGG	49532931 (<i>Plutella xylostella</i>)
CS003	1794	GATCCGTAAGGGCTGCCGTGA	29553137 (<i>Bombyx mori</i>)
CS003	1795	GATCCGTAAGGGCTGCCGTGAGCTGCT	58371398 (<i>Lonomia obliqua</i>)
CS003	1796	GATTATGTACTCGGTCTGAAGATTGAGGACTT	60312414 (<i>Papilio dardanus</i>)
CS003	1797	GGTCITGAAGATTGAGGACTTCTGGAA	49532931 (<i>Plutella xylostella</i>)
CS003	1798	GTGTTGGAGGGTGAAGTACAGGCT	37952462 (<i>Ips pinii</i>)
CS003	1799	GTGTTCAAGGGCTGCTAGCTAAGTC	67568544 (<i>Anoplophora glabripennis</i>)
CS003			67843629 (<i>Drosophila pseudoobscura</i>)
CS003			56772258 (<i>Drosophila virilis</i>)
CS003			101413529 (<i>Plodia interpunctella</i>)
CS003			2699490 (<i>Drosophila melanogaster</i>)
CS003			60312414 (<i>Papilio dardanus</i>)
CS003			78230982 (<i>Heliconius erato/himera mixed EST library</i>)

CS003	1800	GTTGGGATGAGAAGCAGATGAAGCTCGATTAT GT	112349903 (<i>Helicoverpa armigera</i>)
CS003	1801	TGAAGATTGGGACTTCTTGGAA	3986375 (<i>Antherea yamamai</i>)
CS003	1802	TGGACTCTGGCAAGCACATTGACCTTCTC	78230982 (<i>Heliconius erato/himera mixed EST library</i>)
CS003	1803	TGGATGAGAAGCAGATGAAGCT	60312414 (<i>Papilio dardanus</i>)
CS003	1804	TGGTCTCCGCACAAAGCGTGAGCT	76552467 (<i>Spodoptera frugiperda</i>)
CS003	1805	TGGTCTCCGCACAAAGCGTGAGGTGTGG	33528372 (<i>Trichoplusia ni</i>)
CS006	1806	CGTATGACAATTGGTCACCTGTATTGA	91831926 (<i>Bombyx mori</i>)
CS006	1807	GAAGATATGCCCTTCACTTGTGAAGG	558016222 (<i>Acyrthosiphon pisum</i>)
CS006	1808	GGAAAAAACTATAACTTTGCCAGAAAA	40926289 (<i>Bombyx mori</i>)
CS006	1809	GGTGTATGCTACACCATTAAACGATGCTGT	31366154 (<i>Toxopista citricida</i>)
CS006	1810	TCTCGTATGACAATTGGTCACTTGAT	49201759 (<i>Drosophila melanogaster</i>)
CS006	1811	C TG TCAAC GT GG CAG AAG AT CTC	49573116 (<i>Bioophilus microplus</i>)
CS007	1812	TGGATGAAATGTGACACAAAATGCTT GAA	84114516 (<i>Blomia tropicalis</i>)
CS007	1813	TTTATGCAAGATCCTATGGAAAGT	84114516 (<i>Blomia tropicalis</i>)
CS007	1814	AAATTATGCAAGATCCTATGGAAAGTTATGT	78525380 (<i>Glossina morsitans</i>)
CS007	1815	AATATGACTCAAGATGAGCGTCT	90137538 (<i>Spodoptera frugiperda</i>)
CS007	1816	ATGACTCAAGATGAGGTCTCTCCCG	103792212 (<i>Heliconius erato</i>)
CS007	1817	ATGCAAGATCCTATGGAAAGTTA	77336752 (<i>Chironomus tentans</i>)
CS007	1818	ATGCAAGATCCTATGGAAAGTTATGT	77873166 (<i>Aedes aegypti</i>)
CS007	1819	CGCTATCAGCTAACAGATTCCAGAAG	77873166 (<i>Aedes aegypti</i>)
CS007	1820	AAAAATGAAAAGAATAAGAAG	110759359 (<i>Apis mellifera</i>)
CS007	1821	GAAGTTCAACATGAATGTATTCC	78525380 (<i>Glossina morsitans</i>)
CS007	1822	GATGAGGCCTCTTCCCGCTATCA	110759359 (<i>Apis mellifera</i>)
CS007	1823	TGCCAAATTGAGAAAGATGAAGAAGT	40932719 (<i>Bombyx mori</i>)
CS007	1824	TGTAAGAAATTATGCAAGATC	110759359 (<i>Apis mellifera</i>)
CS009	1825	AGGTGTGGCAGCTGGACATCA	45244844 (<i>Bombyx mori</i>)
CS009	1826	GACTTGAAGGGAGCACATCAGGAA	92460383 (<i>Drosophila erecta</i>)
CS009	1827	GCCCAGAACATCCACAACTGTGA	29534871 (<i>Bombyx mori</i>)
CS009	1828	TCTTGGCAGGGAGAATCCA	29534871 (<i>Bombyx mori</i>)
CS011	1829	AAA ACT ATT GTTTCCACAGAAAAAGAA	111005781 (<i>Apis mellifera</i>)
CS011	1830	ATCAAGGACAGAAAAGTCAGAAC	86465126 (<i>Bombyx mori</i>)
			78230577 (<i>Heliconius erato/himera mixed EST library</i>)

CS011	1831	A T C T G G C C A A G T C A A A C T A C A A	101406907 (<i>Pioidia interpunctella</i>)
CS011	1832	C A A T G T G C C A T C A T C A T G T T C G A	110242457 (<i>Spodoptera frugiperda</i>)
CS011	1833	C C C A A C T G G C A C A G A G A T T T A G T G C G	78230577 (<i>Heliconius erato/himera mixed EST library</i>)
CS011	1834	G A C A C T T G A C T G G A G A G T C G A G A A A A G A T A	101410627 (<i>Pioidia interpunctella</i>)
CS011	1835	G A T A T C A A G G A C A G A A A A G T C A A	60312108 (<i>Papilio dardanus</i>)
CS011	1836	G C C C A A G T C A A A C T A C A A T T T C G A	67873076 (<i>Drosophila pseudoobscura</i>)
CS011	1837	G C T G G C C A A G A G A A A A G T T T G G T G T	111031693 (<i>Apis mellifera</i>)
CS011	1838	G G C C A A G A A A A A G T T T G G T C T C C G	84267747 (<i>Aedes aegypti</i>)
CS011	1839	T A C A A A A A T G T A C C C A A C T G G C A	92963426 (<i>Drosophila grimshawi</i>)
CS011	1840	T A C A A A A A T G T A C C C A A C T G G C A C A G A G A	37951963 (<i>Ips pini</i>)
CS011	1841	T A T G G G A T A C T G C T G C C C A A G A A	60312108 (<i>Papilio dardanus</i>)
CS011	1842	T A T G G G A T A C T G C T G C C C A A G A A A	40929360 (<i>Bombyx mori</i>)
CS011	1843	T G G G A T A C T G C T G G C C A A G A A	110749704 (<i>Apis mellifera</i>)
CS011	1844	T G T G C C O A T C A T C A T G T T C G A T G T	73618835 (<i>Aphis gossypii</i>)
CS011	1845	T T G A C T G G A G A G T T C C G A G A A A	112432160 (<i>Myzus persicae</i>)
CS011			84346664 (<i>Aedes aegypti</i>)
CS011			90136305 (<i>Bicyclus anynana</i>)
CS011			78230577 (<i>Heliconius erato/himera mixed EST library</i>)
CS011			60312108 (<i>Papilio dardanus</i>)
CS011	1846	T T G A C T G G A G A G T T C C G A G A A A A	86465126 (<i>Bombyx mori</i>)
CS011	1847	T G G G A T A C T G C T G G C C A A G A A	1102622261 (<i>Spodoptera frugiperda</i>)
CS013	1848	G A T C C C A T T C A T G T C T G T C A A G G G	21639295 (<i>Sarcopeltis scabiei</i>)
CS013	1849	T T C C A A G C C A A A G A T G T T G A T A T G T G A A	3626535 (<i>Drosophila melanogaster</i>)
CS014	1850	A A A A A G A T C C A A T C T T C G A A C A T G C T G A A	112433067 (<i>Myzus persicae</i>)
CS014	1851	A A A C A A G T G G A A C T C C A G A A A A A	103775905 (<i>Heliconius erato</i>)
CS014	1852	A A A G T G C G T G A G G G A C C A C G T A C G	101403826 (<i>Pioidia interpunctella</i>)
CS014	1853	A A G A T C A G G A A C A C T C T G G A G T C	87266590 (<i>Choristoneura fumiferana</i>)
CS014	1854	A A G A T C A G G A A C A C T C T G G A G T C T C G	3738660 (<i>Manduca sexta</i>)
CS014	1855	A A G A T C C A A T C T T C G A A C A T G C T G A T G	58371699 (<i>Lonomia obliqua</i>)
CS014	1856	A A G A T C C A A T C T T C G A A C A T G C T G A A	91848497 (<i>Bombyx mori</i>)
CS014	1857	A A G C A G A T C A A G C A T A T G A T G G C T T C A T C G A A	77790417 (<i>Aedes aegypti</i>)
			91756466 (<i>Bombyx mori</i>)
			90814338 (<i>Nasonia vitripennis</i>)

		CA	
CS014	1858	AAGCAGATCAAGCATATGATGGCCTCATCGAA	87265590 (Choristoneura fumiferana)
CS014	1859	CAAAGGGC	
CS014	1860	ATGATGCCCTCATCGAACAAAGAGGC	111158385 (Myzus persicae)
CS014	1861	CAGATCAAGCATATGATGGCCTCATCGA	98993392 (Antheraea mylitta)
CS014	1862	CAGCAGGGCTCAAAGATCATGGATACTA	91758466 (Bombyx mori)
CS014	1863	CATATGATGCCCTCATCGAACAAAGAGGC	103775905 (Heliconius erato)
CS014	1864	CTCAAAGTGGTGAGGACCACGT	
CS014	1865	CTCAAGATCATGGAAATACTACGA	53884266 (Plutella xylostella)
CS014	1866	GAAATCGATGCAAAGGCCGAAGAGGGAGTTCAA	101403826 (Plodia interpunctella)
CS014	1867	GAAACTCCAGAAAAAGATCCAATTC	101403826 (Plodia interpunctella)
CS014	1868	GAAACTCCAGAAAAAGATCCAATTCGAAACATG	103775905 (Heliconius erato)
CS014	1869	GAGGAAATTCGATGCCAAAGGCCGA	15088680 (Drosophila melanogaster)
CS014	1870	GCCGAAGAGGGAGTCAAACATTGAAAAAGG	103775905 (Heliconius erato)
CS014	1871	GCGCCTGGCTGAGGTGCCAA	76551032 (Spodoptera frugiperda)
CS014	1872	GCCCCCTGGTGCAGCAGCAGC	87265590 (Choristoneura fumiferana)
CS014	1873	GGCTCAAAGATCATGGATACTA	76551032 (Spodoptera frugiperda)
CS014	1874	GGCTCAAAGATCATGGATACTACGA	
CS014	1875	TACAAAAAGAAAGAAACAAGT	33374540 (Glossina morsitans)
CS014	1876	TGAAGGTGCTCAAAGTGGTGAGGA	92976185 (Drosophila grimshawi)
CS014	1877	TTCAAAAGCAAGATCAAGCATATGATGCCCTCA	92994742 (Drosophila mojavensis)
CS014	1878	TCGAACAAAGAGGC	3738660 (Manduca sexta)
CS015	1879	AACGGGGGGAGATCATGTC	92480997 (Drosophila erecta)
CS015	1880	AACTGCCCCGATGAGAAGATCCG	91086234 (Tribolium castaneum)
CS015	1881	ATCTTCATCGATGAACCTGGATGC	56152379 (Rhynchosciara americana)
CS015	1882	CATATATTGCCCATGATGATT	58371642 (Lonomia obliqua)
CS015	1883	CTCATGTATGGCCGCCGTGGTACCGG	83423460 (Bombyx mori)
CS015	1883	CTGCCCGATGAGAACATGCCATGAAACCG	92948836 (Drosophila ananassae)

CS015	1884	GAGAAGATCCGCATGAACCGGGT	4691131 (<i>Aedes aegypti</i>) 92466521 (<i>Drosophila erecta</i>) 15070638 (<i>Drosophila melanogaster</i>)
CS015	1885	GTACATATTTGCCCATTGAT	90133859 (<i>Bicyclus anynana</i>)
CS015	1886	TCATCGCACGTGATCGTAATGGC	22474136 (<i>Helicoverpa armigera</i>)
CS015	1887	TTCATGGTTGGGGGGCATG	29551125 (<i>Bombyx mori</i>)
CS016	1888	AAATCGGGTGTACATGAACTGGAAACCA CG	55797015 (<i>Acyrtosiphon pisum</i>) 73615307 (<i>Aphis gossypii</i>)
CS016	1889	AAGTTGTCCTCGTGGTGTCCA	91826756 (<i>Bombyx mori</i>)
CS016	1890	ACAGATCTGGGGCAATTTC	18950388 (<i>Anopheles gambiae</i>) 31206154 (<i>Anopheles gambiae str. PEST</i>)
CS016	1891	ACAGCCTTCATGGCCTGCACGTCCTT	76169888 (<i>Diplopelta punctata</i>) 92953069 (<i>Drosophila ananassae</i>) 92477149 (<i>Drosophila erecta</i>) 8809 (<i>Drosophila melanogaster</i>) 55694467 (<i>Drosophila yakuba</i>)
CS016	1892	ACATCAGAGTGGCCTTGGGGTCAT	55694467 (<i>Drosophila yakuba</i>) 110248186 (<i>Spodoptera frugiperda</i>)
CS016	1893	ACCGAACGTGTTCTCACACTGGTA	91829127 (<i>Bombyx mori</i>)
CS016	1894	ACCTCCTCACGGGGGGGACAC	237458 (<i>Heliothis virescens</i>) 27372076 (<i>Spodoptera littoralis</i>)
CS016	1895	ACGACAGGCCCTCATGGCCTGCACGT CTT	67896654 (<i>Drosophila pseudoobscura</i>)
CS016	1896	ACGTAGATCTGTCCCTCAGTGAT GTA	53883819 (<i>Plutella xylostella</i>)
CS016	1897	AGAGCCTCGCGTAGCGAAGACATGTC	53883819 (<i>Plutella xylostella</i>)
CS016	1898	AGCAATGGAGTTCATCACGTC	60295607 (<i>Homalodisca coagulata</i>)
CS016	1899	AGCAGCTGCCAGCCGATGTCCAG	92953069 (<i>Drosophila ananassae</i>) 92477149 (<i>Drosophila erecta</i>) 55694467 (<i>Drosophila yakuba</i>) 112349870 (<i>Helicoverpa armigera</i>) 237458 (<i>Heliothis virescens</i>) 9713 (<i>Manduca sexta</i>) 110242332 (<i>Spodoptera frugiperda</i>)

CS016	1900	AGCATCTCCTGGGAAGATAACG	63005818 (<i>Bombyx mori</i>) 92967975 (<i>Drosophila mojavensis</i>) 92938394 (<i>Drosophila virilis</i>) 92231846 (<i>Drosophila willistoni</i>) 237458 (<i>Heliothis virescens</i>)
CS016	1901	AGGCCTTCCTCACCGACAGCCCTCATGGC CTG	4680479 (<i>Aedes aegypti</i>)
CS016	1902	ATACCACTCTGGATCATTCCTCAGG	60295607 (<i>Homalodisca coagulata</i>)
CS016	1903	ATACGGGACCCAGGGGGTGTGGCTG	92953552 (<i>Drosophila ananassae</i>)
CS016	1904	ATAGCGGGAGATACCAGTCTGGATCAT	237458 (<i>Heliothis virescens</i>) 76554661 (<i>Spodoptera frugiperda</i>)
CS016	1905	ATCTGGGGGGCAATTTCGTTGTG	83937369 (<i>Lutzomyia longipalpis</i>)
CS016	1906	ATGGCAGACTTCATGAGACGA	55894053 (<i>Locusta migratoria</i>)
CS016	1907	ATGGTGGCAAATCGGTACATGTAACC	92965644 (<i>Drosophila grimshawi</i>)
CS016	1908	ATGGTGGCAAATCGGTACATGTAACCT	92969578 (<i>Drosophila grimshawi</i>)
CS016	1909	ATGGTGGCAAATCGGTACATGTAACCTGG GAAACCACG	92231646 (<i>Drosophila willistoni</i>)
CS016	1910	ATTCAGAACAGGCCACACGTTCTCCATGGAGCC GTTCTCTCGAAGTCCCTGCTTGAAGAA	67841091 (<i>Drosophila pseudoobscura</i>)
CS016	1911	ATTGGGGGACCTTTGTCATGGTTTCC	49395165 (<i>Drosophila melanogaster</i>) 99009492 (<i>Leptinotarsa decemlineata</i>)
CS016	1912	CACACGTTCTCCATGGAGCCGTTCTCGAAG TCC TGCTTGAAGAA	924477818 (<i>Drosophila erecta</i>)
CS016	1913	CACTGGTAGGCCAAGAACCTCAGC	4680479 (<i>Aedes aegypti</i>)
CS016	1914	CATCTCCTGGGAAGATAACG	16899457 (<i>Ctenocephalides felis</i>) 9713 (<i>Manduca sexta</i>)
CS016	1915	CCCTCACCGATGGCAGACTTCAT	4680479 (<i>Aedes aegypti</i>) 9294977 (<i>Drosophila virilis</i>) 110248186 (<i>Spodoptera frugiperda</i>)
CS016	1916	CCGATGGCAGACCTTCATGAGACG	71049259 (<i>Oncometopia nigricans</i>)
CS016	1917	CCGTCTCCATGTTCACACCCATGGGGCGAAC ACGATGGC	33547658 (<i>Anopheles gambiae</i>)
CS016	1918	CCGTTCTCGAAGTCCTGCTTGAAGAA	31206154 (<i>Anopheles gambiae</i> str. PEST) 8809 (<i>Drosophila melanogaster</i>)

CS016	1919	CCGTTCTCCTCGAAAGTCCTGCTTGAAGAAC	101403557 (<i>Pioidia interpunctella</i>)
CS016	1920	CGAGCAATGGAGTTCATCACGTGATAGCGGA	27372076 (<i>Spodoptera littoralis</i>)
CS016	1921	GATACCACTGGATCAT	
CS016		CGGGCCGTCTCCATGTTCACACCCATGGGC	31206154 (<i>Anopheles gambiae</i> str. PEST)
CS016	1922	GAACACGATGGC	
CS016	1923	CGTCCGGCACCTCCACGGGGGGGACA	18883474 (<i>Anopheles gambiae</i>)
CS016		C	31206154 (<i>Anopheles gambiae</i> str. PEST)
CS016	1924	CTACAGATCTGGCGGCAATTTC	97113 (<i>Manduca sexta</i>)
CS016			110248186 (<i>Spodoptera frugiperda</i>)
CS016	1925	CTACAGATCTGGCGGCAATTTC	91826756 (<i>Bombyx mori</i>)
CS016	1926	CTCGTAGATGGTGGCCAATC	97113 (<i>Manduca sexta</i>)
CS016	1927	CTCGTAGATGGTGGCCAATCGGGTGTACATGTA	27372076 (<i>Spodoptera littoralis</i>)
CS016	1928	AC	237458 (<i>Heliothis virescens</i>)
CS016		CTCGTAGATGGTGGCCAATCGGGTGTACATGTA	76554661 (<i>Spodoptera frugiperda</i>)
CS016		ACC	53883819 (<i>Plutella xylostella</i>)
CS016	1929	AC	18883474 (<i>Anopheles gambiae</i>)
CS016			31206154 (<i>Anopheles gambiae</i> str. PEST)
CS016			92953069 (<i>Drosophila ananassae</i>)
CS016	1930	GAACAGGGCACACGTTCTCCATGGA	92477818 (<i>Drosophila erecta</i>)
CS016	1931	GA	8809 (<i>Drosophila melanogaster</i>)
CS016			67886654 (<i>Drosophila pseudoobscura</i>)
CS016			97113 (<i>Manduca sexta</i>)
CS016			110248186 (<i>Spodoptera frugiperda</i>)
CS016	1932	G	27372076 (<i>Spodoptera littoralis</i>)
CS016	1933	TT	92962756 (<i>Drosophila ananassae</i>)
CS016	1934	GAGATACCACTGTGGTTCTGTAGTT	87266757 (<i>Choristoneura fumiferana</i>)
CS016			97113 (<i>Manduca sexta</i>)
CS016			97113 (<i>Manduca sexta</i>)
CS016			929869748 (<i>Drosophila mojavensis</i>)
CS016			92935139 (<i>Drosophila virilis</i>)
CS016	1935	GATGAAGTTCTCGAACTTGG	2921501 (<i>Culex pipiens</i>)

			4680479 (<i>Aedes aegypti</i>) 31266154 (<i>Anopheles gambiae</i> str. PEST) 92933069 (<i>Drosophila ananassae</i>) 9247149 (<i>Drosophila erecta</i>) 8809 (<i>Drosophila melanogaster</i>) 67896654 (<i>Drosophila pseudoobscura</i>) 55694467 (<i>Drosophila yakuba</i>) 11249870 (<i>Helicoverpa armigera</i>) 237458 (<i>Heliothis virescens</i>)
CS016	1936	GATGAAGTTCTCGAACTTGGTGGAACTC	76555122 (<i>Spodoptera frugiperda</i>)
CS016	1937	GATGAAGTTCTCGAACTTGGTGGAACTC GAGGTAGAGCA	101403557 (<i>Plodia interpunctella</i>) 53883819 (<i>Plutella xylostella</i>)
CS016	1938	GATGGGGATCTGCG TGATGGA	104530890 (<i>Belicea antarctica</i>)
CS016	1939	GCACACGTTCTCCATGGAGCCGTTCTC	91829127 (<i>Bombyx mori</i>)
CS016	1940	GCCAAATGGGTACATGTAAACCTGGAAACCA GTTCGGTCCGGG	237458 (<i>Heliothis virescens</i>)
CS016	1941	GCCAAGAACCTAGCAGCAGTC	83937868 (<i>Lutzomyia longipalpis</i>)
CS016	1942	GCCGTTCTCATGTTCACACCCCA	92965644 (<i>Drosophila grimshawi</i>)
CS016	1943	GCCGTTCTCATGTTCACACCCAT	11249870 (<i>Helicoverpa armigera</i>) 237458 (<i>Heliothis virescens</i>) 110248186 (<i>Spodoptera frugiperda</i>)
CS016	1944	GCCTGCACGTCTTACCGATGGCTAGCA	39675733 (<i>Anopheles gambiae</i>) 31206154 (<i>Anopheles gambiae</i> str. PEST)
CS016	1945	GCCTTCATGGCTGACAGTCCTT	2921501 (<i>Culex pipiens</i>)
CS016	1946	GCCTTCATGGCTGACAGTCCTTACCGATGGC GTAGCA	2921501 (<i>Culex pipiens</i>) 92965644 (<i>Drosophila grimshawi</i>)
CS016	1947	GCGGCCAACACGATGGCAAAGTT	77905105 (<i>Aedes aegypti</i>)
CS016	1948	GCGGCCAACACGATGGCAAAGTTGTCCTCGTG	67896654 (<i>Drosophila pseudoobscura</i>)
CS016	1949	GCGTACAGCTGGTGGAAACATC	110248186 (<i>Spodoptera frugiperda</i>)
CS016	1950	GAATAGGATGGTGTATGTCGGTGGCAT AGT	27372076 (<i>Spodoptera littoralis</i>)
CS016	1951	GGAATAGGATGGTGTATGTCGGTGGCAT AGTCA	

CS016	1952	GGATGGGTGATGTCGGTGGCAT	101403557 (<i>Plodia interpunctella</i>)
CS016	1953	GGCAGACCCGCCAGCGGAGAAAATGGGGATCTT	67841091 (<i>Drosophila pseudoobscura</i>)
CS016	1954	GGCATAGTCAGATGGGGATCTG	92924977 (<i>Drosophila virilis</i>)
CS016	1955	GCCCCCTCCATGTTAACACCCATGGC	101403557 (<i>Plodia interpunctella</i>)
CS016	1956	GGGGGGTAGATCTGTCGTGGTG	2921501 (<i>Culex pipiens</i>) 92985644 (<i>Drosophila grimshawi</i>) 92924977 (<i>Drosophila virilis</i>)
CS016	1957	GGGGGGTAGATCTGTCGTGGAGCTGAGC	237458 (<i>Heliothis virescens</i>) 110248186 (<i>Spodoptera frugiperda</i>)
CS016	1958	GGGAAGATAACGGAGCAAGCTGCCA	60386551 (<i>Homalodisca coagulata</i>)
CS016	1959	GGGTTGATGGGCTGTCCTGGATGTCCAA	76554661 (<i>Spodoptera frugiperda</i>) 27372076 (<i>Spodoptera littoralis</i>)
CS016	1960	GGTTTCCAGAGCCGGTTGAATAC	62238871 (<i>Diabrotica virgifera</i>)
CS016	1961	GTGATGAAGTTCTCTCGAACTTGGT	87266757 (<i>Choristoneura fumiferana</i>)
			31206154 (<i>Anopheles gambiae</i> str. PEST) 92477149 (<i>Drosophila erecta</i>) 8809 (<i>Drosophila melanogaster</i>) 67886554 (<i>Drosophila pseudoobscura</i>) 92936364 (<i>Drosophila virilis</i>) 92231646 (<i>Drosophila willistoni</i>) 55694467 (<i>Drosophila yakuba</i>)
CS016	1962	GTGCGGGTTCTCGTAGTTGCCCTG	2921501 (<i>Culex pipiens</i>) 75469507 (<i>Tribolium castaneum</i>)
			101403557 (<i>Plodia interpunctella</i>)
CS016	1963	GTGGCCAATCGGTACATGTAAACC	237458 (<i>Heliothis virescens</i>) 53883819 (<i>Plutella xylostella</i>)
CS016	1964	GTGTACATGTAAACCTGGAAACCAACG	237458 (<i>Manduca sexta</i>)
CS016	1965	GTGTACATGTAAACCTGGAAACCAACGTCG	10763875 (<i>Manduca sexta</i>)
CS016	1966	GTGTACATGTAAACCTGGAAACCAACGTCGTC	92969578 (<i>Drosophila grimshawi</i>)
CS016	1967	TCAGAGTGGTCTTGGGGTCAT	76554661 (<i>Spodoptera frugiperda</i>)
CS016	1968	TCAGCAAGGATTGGGGACCTTTGTC	
CS016	1969	TCCTCACGGGACGACAGCCCTCATGGCCTG	
CS016	1970	TCCTCACGGTAGATAACGGGACCA	

CS016	1971	TCCTCAGGGTAGATAACGGGACCAGGGTTGAT GGGCTG	22474040 (Helicoverpa armigera) 237458 (Heliothis virescens) 9713 (Manduca sexta)
CS016	1972	TCGAAGTCTGCTGGAAAGAACCC	9713 (Manduca sexta)
CS016	1973	TCGTAGATGGGGCAAATCGGTGTACATGTA CC	622239897 (Diabrotica virgifera)
CS016	1974	TCGTAGATGGGGCAAATCGGTGTACATGTA CCTGGGAAACACCG	4680479 (Aedes aegypti)
CS016	1975	TCTACGTAGATCTGTCCTCAGTGATGTA	101403557 (Plodia interpunctella)
CS016	1976	TGCACGTCCTTACCGATGGCGTAGCA	9713 (Manduca sexta) 75710699 (Tribolium castaneum)
CS016	1977	TGGGTGATGTCGTCGTTGGCAT	53883819 (Phulella xylostella)
CS016	1978	TGGTAGGCCAAGAACCTCAGCAGC	9713 (Manduca sexta)
CS016	1979	TTCAAGAACAGGCCACACGTTCTCCAT	18883474 (Anopheles gambiae) 31206154 (Anopheles gambiae str. PEST) 92933153 (Drosophila virilis) 27372076 (Spodoptera littoralis)
CS016	1980	TTCAAGAACAGGCCACACGTTCTCCATGG	92960254 (Drosophila ananassae) 7654661 (Spodoptera frugiperda)
CS016	1981	TTCTGACGACTGGTAGGCCAAGAA	18883474 (Anopheles gambiae)
CS016	1982	TTCTCCTCGAAAGTCCTGCTTGAAGAA	83937868 (Lutzomyia longipalpis)
CS016	1983	TTGAGGCATCTCTGGGAAAGATAACG	92477149 (Drosophila erecta) 8809 (Drosophila melanogaster) 67896654 (Drosophila pseudoobscura) 112349870 (Helicoverpa armigera)
CS016	1984	TTGAGGCATCTCTGGGAAAGATAACGGAGCA	83928466 (Lutzomyia longipalpis)
CS016	1985	TTGAGGCATCTCTGGGAAAGATAACGGAGCA CTGCCA	50559098 (Homalodisca coagulata) 71049239 (Oncometopia nigricans)
CS016	1986	TTGAGGCATCTCTGGGAAAGATAACGGAGCA CTGCCAGGCCATGTC	87266757 (Choristoneura fumiferana)
CS018	1987	TCCGACTACTCTCCACGGAC	31659029 (Anopheles gambiae)

Table 4-PX

Target ID	SEQ ID NO	Sequence *	Example GI-number and species
PX001	2120	AACAAACGTGTTCATCATGGCAAGGGCACCAA	112350001 (<i>Helicoverpa armigera</i>)
PX001	2121	AACGTGTTCATCATGGCAAGG	27562760 (<i>Anopheles gambiae</i>)
PX001	2122	AACGTGTTCATCATGGCAAGG	58378595 (<i>Anopheles gambiae</i> str. PEST)
PX001	2123	AACGTGTTCATCATGGCAAGG	42764924 (<i>Armigeres subalbatus</i>)
PX001	2124	AACGTGTTCATCATGGCAAGG	71048604 (<i>Oncometopia nigricans</i>)
PX001	2125	AACGTGTTCATCATGGCAAGG	112783858 (<i>Anopheles funestus</i>)
PX001	2126	AACTTGGGGCGAGTGGCACCATCGTGTC	90132259 (<i>Bicyclus anynana</i>)
PX001	2127	AACTTGGGGCGAGTGGCACCATCGTGTC	112350001 (<i>Helicoverpa armigera</i>)
PX001	2128	AAGATCGTGAAGCAGGCCCTCATCAAGGTGGACGGCAAGGT	112350001 (<i>Helicoverpa armigera</i>)
		AAGGTCCGCACCGACCCACCTA	14627585 (<i>Drosophila melanogaster</i>)
PX001	2129	AAGTACAAGCTGTGCAAGGGT	5498893 (<i>Antheraea yamamai</i>)
			90132259 (<i>Bicyclus anynana</i>)
			92969396 (<i>Drosophila grimshawi</i>)
			50818668 (<i>Heliconius melipomene</i>)
			58371410 (<i>Lonomia obliqua</i>)
PX001	2130	ACAAACGTGTTCATCATGGCAAGGGCACCAA	103783745 (<i>Heliconius erato</i>)
PX001	2131	ACGGCAAGGTCCGCACCGACCC	77890923 (<i>Aedes aegypti</i>)
PX001	2132	ACGGCGCACGCTGGCTACCCCGACCCGGCTCATCAAGGTC	101413238 (<i>Plodia interpunctella</i>)
PX001	2133	ACGTGTTCATCATGGCAAGGGCAC	109509107 (<i>Culex pipiens</i>)
PX001	2134	AGGAGGCCAAGTACAAGCTGTGCAAGGT	27566312 (<i>Anopheles gambiae</i>)
PX001	2135	AGGAGGCCAAGTACAAGCTGTGCAAGGT	67889891 (<i>Drosophila pseudoobscura</i>)
			92944919 (<i>Drosophila ananassae</i>)
			67886177 (<i>Drosophila pseudoobscura</i>)
			92045792 (<i>Drosophila willistoni</i>)
PX001	2136	AGGAGGCCAAGTACAAGCTGTGCAAGGTG	92929731 (<i>Drosophila virilis</i>)
PX001	2137	CAACGTGTTCATCATGGCAA	109509107 (<i>Culex pipiens</i>)
PX001	2138	CAACGTGTTCATCATGGCAAGGGCA	55816641 (<i>Drosophila yakuba</i>)
PX001	2139	CACACCTTCCGCCACCGAGTTGAACAACGTGTT	3988403 (<i>Antheraea yamamai</i>)
PX001	2140	CCCCAAGAAGCATTGAAAGCG	2886669 (<i>Drosophila melanogaster</i>)
PX001	2141	CCGAGGAGGCCAAGTACAAGT	92944919 (<i>Drosophila ananassae</i>)

PX001	2142	CCGAGGGGCCAAGTACAAGCTGTGCAAGGT	15480750 (<i>Drosophila melanogaster</i>)
PX001	2143	CCGCACAAAGCTGCGGAGTGCCTGCCGCT	22474232 (<i>Helicoverpa armigera</i>)
PX001	2144	CGAGGGGCCAACGAACTGCC	112350001 (<i>Helicoverpa armigera</i>)
PX001	2145	CGAGGGGCCAACGTAACAGCT	58378595 (<i>Anopheles gambiae</i> str. PEST)
PX001	2146	CGAGGGGCCAACGTAACAGCTG	18914191 (<i>Anopheles gambiae</i>)
PX001	2147	CGAGTGGGCCACCATCGTGTCCCCGGAG	3986403 (<i>Antheraea yamamai</i>)
PX001	2148	CGCTAACCCGACCCGCTCATCAAAGGTCAACGACTCC	112350001 (<i>Helicoverpa armigera</i>)
PX001	2149	CGCTTCACCATCCACCGCATCAC	103783745 (<i>Heliconius erato</i>)
PX001	2150	CGGCAACGAGGTGCTGAAGATGCT	90132259 (<i>Bicyclus anynana</i>)
PX001	2151	CGTAACTTGGGGGAGTGGGCAC	60311985 (<i>Papilio dardanus</i>)
PX001	2152	CTACCCGGCTGGATTATGGATGT	42764924 (<i>Armigeres subaltaus</i>)
PX001	2153	CTCATCAAGGTCAACGGACTCC	103783745 (<i>Heliconius erato</i>)
PX001	2154	CTCATCAAGGTCAACGGACTCCATCCAGCTCGACAT	3738704 (<i>Manduca sexta</i>)
PX001	2155	GAACGGCAAGGTCCGACCGAC	109509107 (<i>Culex pipiens</i>)
PX001	2156	GAACGGCAAGGTCCGACCGACCC	77758638 (<i>Aedes aegypti</i>)
PX001	2157	GAAGGGGCCAAGTACAAGCTGTCAAGGT	67841491 (<i>Drosophila pseudoobscura</i>)
PX001	2158	GAAGGGCCAAGTACAAGCTGTCAAGGTG	56772971 (<i>Drosophila virilis</i>)
PX001	2159	GAAGGCCCAAGTACAAGCTGTGCAA	112350001 (<i>Helicoverpa armigera</i>)
PX001	2160	GAAGGCCCAAGTACAAGCTGTGCAAGGTG	98993531 (<i>Antheraea mylitta</i>)
PX001	2161	GCCAAGTACAAGCTGTGCAAGGT	67838306 (<i>Drosophila pseudoobscura</i>)
PX001	2162	GCCCCAAAGAACGATTGTGAAAGCG	109978109 (<i>Gryllus pennsylvanicus</i>)
PX001	2163	GCGCGTGGGAGCGGCCCAA	2151718 (<i>Drosophila melanogaster</i>)
PX001	2164	GCGGTGGGAGCGGCCCAA	5498893 (<i>Antheraea yamamai</i>)
PX001	2165	GAAGGCCAAGTACAAGCTGTGCAAGGT	3986403 (<i>Antheraea yamamai</i>)
PX001	2166	GACCCCAAAGAACGATTGTGAAAGCG	92942537 (<i>Drosophila ananassae</i>)
PX001	2167	GGGGGGGTGTACGGGGGGGG	4459798 (<i>Drosophila melanogaster</i>)
PX001	2168	GTCCGCCACCGACCCACCTACCC	98994282 (<i>Antheraea mylitta</i>)
PX001	2169	GTGGGCCACCATCGTGTCCCCGGAGAG	92472430 (<i>Drosophila erecta</i>)
PX001	2170	TCAAGGGGACGGCAAGGTCCGCACCGACCC	55854272 (<i>Drosophila yakuba</i>)
PX001	2171	TGATCTACGATGTGAAGGGACG	3953837 (<i>Bombyx mandarina</i>)
			29554802 (<i>Bombyx mori</i>)
			92944919 (<i>Drosophila ananassae</i>)
			83935965 (<i>Lutzomyia longipalpis</i>)

PX001	2172	TTCATGGATGTTGTGGATTGAAAAA	90132259 (<i>Bicyclus anynana</i>)
PX001	2173	GCTGGATTATGGATGGTGTG	10707240 (<i>Amblyomma americanum</i>)
PX001	2174	AAGCAGCGCCCTCATCAAGGTGGACGGCAAGGTCCGCACCGA	49545866 (<i>Rhipicephalus appendiculatus</i>)
PX009	2175	AACATCTTCAAATGTGACTTC	93001544 (<i>Drosophila mojavensis</i>)
PX009	2176	TGATCAAACATCGAGTCAAAGC	110755556 (<i>Apis mellifera</i>)
PX009	2177	TTCITGAAGCTGAATAAGATCT	103750396 (<i>Drosophila melanogaster</i>)
PX010	2178	CAGTTCCITGCCAGGTCTTCAACAA	71553175 (<i>Oncopeltis nigriceps</i>)
PX010	2179	CCATCAGGGACGGTGGGCCGCCGGTG	90139187 (<i>Spodoptera frugiperda</i>)
PX010	2180	CCGGCAGTTCATGTAACCACCTGGCCGCTCGCAGTTC	67893194 (<i>Drosophila pseudoobscura</i>)
PX010	2181	CGAACACGCTTCCGTCGTGGAGAACCTTCAG	29558345 (<i>Bombyx mori</i>)
PX010	2182	GCCCTGTGCCAGAAGTTGGGGAGTAGG	58395529 (<i>Anopheles gambiae</i> str. PEST)
PX010	2183	CTGGCGCCGCTCGCAGTTCCCTGCAAGGT	18872210 (<i>Anopheles gambiae</i>)
PX010	2184	CTGTACCCGCAGTTCAATGTACCA	29558345 (<i>Bombyx mori</i>)
PX010	2185	GACGTGCTGGGCTGGACCG	29558345 (<i>Bombyx mori</i>)
PX010	2186	GACGTGCTGGCAAGTGTTCATGGAGCA	18872210 (<i>Anopheles gambiae</i>)
PX010	2187	GAGTAGAGAAACTTCAAGCAGCTGCTGC	77886140 (<i>Aedes aegypti</i>) 18872210 (<i>Anopheles gambiae</i>) 49376735 (<i>Drosophila melanogaster</i>) 67893324 (<i>Drosophila pseudoobscura</i>)
PX010	2188	GGCGGGCCGATGCCGATACCATC	91757875 (<i>Bombyx mori</i>)
PX010	2189	GTGGCTGCAATACAGTTCAATTACGAGTACCAAGCAC	28571527 (<i>Drosophila melanogaster</i>)
PX010	2190	TGCGAGTTCTGCAGGTCTTCAACAA	92932090 (<i>Drosophila virilis</i>)
PX010	2191	TGCGGGCGCTGGCAGTTCCCTGCAGGGCTTCAACAA	67893324 (<i>Drosophila pseudoobscura</i>)
PX010	2192	TGCGGGCGCTGGCAGTTCCCTGCAGGGCTTCAACAAACTCGCCC	92952825 (<i>Drosophila ananassae</i>)
PX010	2193	TTCATGACCCACCTGGCCGCCGCTCGCAGTTCTGCAGGTCTTC	28571527 (<i>Drosophila melanogaster</i>)
PX010	2194	AACAACCTGGGACACCTTCTTCCA	82842646 (<i>Boophilus microplus</i>)
PX015	2195	CACCGCGACGACACGTTCATGGTGCGGGGG	58371643 (<i>Lonomia obliqua</i>)
PX015	2196	CAGATCAAGGGAGATGGGGAG	92480997 (<i>Drosophila erecta</i>) 58371722 (<i>Lonomia obliqua</i>)
PX015	2197	CCCGACGAGAAAGATCCGCATGAA	67873606 (<i>Drosophila pseudoobscura</i>)

PX015	2198	CCCGACGGAAAGATCGGCATGAACGGCT	15070733 (<i>Drosophila melanogaster</i>)
PX015	2199	CCGACGAGAAGATCCGCATGAACCGCGT	92459970 (<i>Drosophila erecta</i>)
PX015	2200	CGCAAGGAGACCGGTGTCATGGCT	67873606 (<i>Drosophila pseudoobscura</i>)
PX015	2201	GAACGAGAAAGATCCGCATGAACCGG	18914444 (<i>Anopheles gambiae</i>)
PX015	2202	GAACGAGAAAGATCCGCATGAACCGCGT	4691131 (<i>Aedes aegypti</i>)
PX015	2203	GCGCAGATCAAGGAGATGGTGAGCT	99007898 (<i>Leptinotarsa decemlineata</i>)
PX015	2204	GGCATGCCGCCATGGCTGAGTTC	6901917 (<i>Bombyx mori</i>)
PX015	2205	GTGCGGGGGCATGGCGGCC	67891252 (<i>Drosophila pseudoobscura</i>)
PX015	2206	TCAAGGAGATGGGGAGCTGC	27819993 (<i>Drosophila melanogaster</i>)
PX015	2207	TGAAGCCGTACTTCATGGAGGC	29559940 (<i>Bombyx mori</i>)
PX015	2208	TGCCGCAAGCAGCTGGCCAGATCAAGGAGATGGT	18914444 (<i>Anopheles gambiae</i>)
PX015	2209	TGGAGGGGTACCGGGCCATCCAC	18914444 (<i>Anopheles gambiae</i>)
PX016	2210	AAGGACCACTCCGACGTGTCAA	101406307 (<i>Plodia interpunctella</i>)
PX016	2211	AAGGACGTGCAGGGATGAAGGC	112349870 (<i>Helicoverpa armigera</i>)
			110248186 (<i>Spodoptera frugiperda</i>)
			4680479 (<i>Aedes aegypti</i>)
			31206154 (<i>Anopheles gambiae</i> str. PEST)
			92953069 (<i>Drosophila ananassae</i>)
			92477149 (<i>Drosophila erecta</i>)
			24646340 (<i>Drosophila melanogaster</i>)
			67900295 (<i>Drosophila pseudoobscura</i>)
			55694467 (<i>Drosophila yakuba</i>)
			112349870 (<i>Helicoverpa armigera</i>)
			237458 (<i>Heliothis virescens</i>)
PX016	2212	ACCAAGTTGAGAAAGAACCTTCATC	87266757 (<i>Chrysoneura fumiferana</i>)
			9713 (<i>Manduca sexta</i>)
			92940287 (<i>Drosophila virilis</i>)
			67880606 (<i>Drosophila pseudoobscura</i>)
			31206154 (<i>Anopheles gambiae</i> str. PEST)
PX016	2213	ACCAAGTTGAGAAAGAACCTTCATCAC	104530890 (<i>Belgica antarctica</i>)
PX016	2214	ACCGCCAGGGTCTCAAGCAGGACTTCGA	92231646 (<i>Drosophila willistoni</i>)
PX016	2215	ACCGGGCATATTCTGGCACGCCGCTC	75713096 (<i>Tribolium castaneum</i>)
PX016	2216	AGCAGGGACTTCGAGGAACGG	
PX016	2217	ATCACGGAGATCCCCATCCTGACCATGCC	
PX016	2218	ATCTTGACCGACATGCTTCATACGC	
PX016	2219	ATGACCAGGAAGGACCACTCCGACGT	

PX016	2220	ATGCCCAACGACGACATCACCA	101406307 (<i>Plodia interpunctella</i>) 76555122 (<i>Spodoptera frugiperda</i>) 27372076 (<i>Spodoptera littoralis</i>)
PX016	2221	CAGAAGATCCCCATCTCCGGCGGTCTGCCCAAA CGA	92460896 (<i>Drosophila erecta</i>) 24646340 (<i>Drosophila melanogaster</i>) 27372076 (<i>Spodoptera frugiperda</i>)
PX016	2222	CAGGACTTCGAGGAGAACGGTTCCATGGAGAACGT	2921501 (<i>Culex pipiens</i>) 76554661 (<i>Culex pipiens</i>)
PX016	2223	CCAAGTTGGAGAAAGAACCTCATC	2921501 (<i>Culex pipiens</i>)
PX016	2224	CCCATCAACCCGTGGTCCCCGTATCTACCCGGAGGA	2921501 (<i>Culex pipiens</i>)
PX016	2225	CCCGACTTGACCGGGTACATCACTGAGGGACAGATCTACGT	101406307 (<i>Plodia interpunctella</i>)
PX016	2226	CCCGGACGACGACTGGTTCCAGTTACATGTACAC	91829127 (<i>Bombyx mori</i>)
PX016	2227	CCTGGACATCCAGGGCAGCCCCATCAACCC	91090030 (<i>Tribolium castaneum</i>)
PX016	2228	CGACGTGGTTTCCCAGGTTACATGTACACGGATTGGC	237458 (<i>Heliothis virescens</i>)
PX016	2229	CGTCTCATGAAGTCCGCCATCGG	91829127 (<i>Bombyx mori</i>)
PX016	2230	CGTCTCATGAAGTCCGCCATCGGAGAGGGCATGACC	237458 (<i>Heliothis virescens</i>)
PX016	2231	CCTGGTCAGGAAGATCCCCATCTTCTCCGC	27372076 (<i>Spodoptera littoralis</i>)
PX016	2232	CCTGGTCAGGAAGATCCCCATCTTCTCCGC	76554661 (<i>Spodoptera frugiperda</i>)
			55797015 (<i>Acyrtosiphon pisum</i>) 4680479 (<i>Aedes aegypti</i>) 73615307 (<i>Aphis gossypii</i>) 92231646 (<i>Drosophila willistoni</i>) 9713 (<i>Manduca sexta</i>) 76555122 (<i>Spodoptera frugiperda</i>) 27372076 (<i>Spodoptera littoralis</i>)
PX016	2233	CGTGGTTCCCAGGTTACATGTACAC	
PX016	2234	CGTGGTTCCCAGGTTACATGTACACGGATTGGCCACAAATC TACGAGCGGGGGCG	101406307 (<i>Plodia interpunctella</i>)
PX016	2235	CTACGAGAACCGCACAGTGTCCAGTC	112350031 (<i>Helicoverpa armigera</i>) 237458 (<i>Heliothis virescens</i>) 76555122 (<i>Spodoptera frugiperda</i>)

PX016	2236	CTGCGTATCTCCCCAAGGAGAT	63005818 (<i>Bombyx mori</i>) 92477149 (<i>Drosophila erecta</i>) 24646340 (<i>Drosophila melanogaster</i>) 56773982 (<i>Drosophila pseudoobscura</i>) 92935600 (<i>Drosophila virilis</i>) 92220609 (<i>Drosophila willistoni</i>) 112350031 (<i>Helicoverpa armigera</i>) 237458 (<i>Heliothis virescens</i>) 9713 (<i>Manduca sexta</i>)
PX016	2237	CTGTACGGGTGCTACGCCATCGGG	9713 (<i>Manduca sexta</i>)
PX016	2238	CTGTTCTTGAACTTGGCAATGGA	16898595 (<i>Ctenocephalides felis</i>)
PX016	2239	CTGTTCTTGAACTTGGCCAAATGACCC	27372076 (<i>Spodoptera littoralis</i>)
PX016	2240	GACAACCTGGCCATCGTGTTCGGC	92950254 (<i>Drosophila ananassae</i>)
PX016	2241	GACAACCTGGCCATCGTGTTCGGCGC	92477818 (<i>Drosophila erecta</i>) 24646340 (<i>Drosophila melanogaster</i>) 237458 (<i>Heliothis virescens</i>) 9713 (<i>Manduca sexta</i>) 76554661 (<i>Spodoptera frugiperda</i>)
PX016	2242	GACAACCTGGCCATCGTGTTCGGCGCATGGG	31206154 (<i>Anopheles gambiae str. PEST</i>)
PX016	2243	GAACCGTCAGCTGCACAAAGGCCA	50564193 (<i>Homalodisca coagulata</i>)
PX016	2244	GAACCTGGCTCTACCTCGAGTTC	112349870 (<i>Helicoverpa armigera</i>)
PX016	2245	GAACGTGATGAACTCCATGCCCG	237458 (<i>Heliothis virescens</i>)
PX016	2246	GAACGTGATGAACTCCATGCCGTGG	22474040 (<i>Helicoverpa armigera</i>)
PX016	2247	GAGAACGGGTCATGGAGAACGT	91829127 (<i>Bombyx mori</i>)
PX016	2248	GAGGAGATGATCCAGACTGGTATCTCCGCTAT	237458 (<i>Heliothis virescens</i>) 76554661 (<i>Spodoptera frugiperda</i>)
PX016	2249	GAGGAGATGATCCAGACTGGTATCTCCGCTATCGACGTGATG AACTCCAT	27372076 (<i>Spodoptera littoralis</i>)
PX016	2250	GAGGGAGGGCTCACGCCGACGAC	9713 (<i>Manduca sexta</i>)
PX016	2251	GAGTTCTGGCCTACCAAGTGCAGAA	4680479 (<i>Aedes aegypti</i>)
PX016	2252	GCCAGGGTTCTCAAGGAGCTCGAGGAGAACGG	101403557 (<i>Plodia interpunctella</i>)
PX016	2253	GCCCCGTGGTCAGAAAGATCCCCAT	67877903 (<i>Drosophila pseudoobscura</i>)
PX016	2254	GCCCCGTGGTCAGAAAGATCCCCATCTTCTC	6901845 (<i>Bombyx mori</i>)

PX016	2255	GCCCCGGTGGTCAAGAACATCCCATTCTCCGGCGC	92950254 (<i>Drosophila ananassae</i>)
PX016	2256	GCCGAGTTCTGGCTTACCAAGTCGGAGAA	24646340 (<i>Drosophila melanogaster</i>)
PX016	2257	GCCGAGTTCTGGCTTACCAAGTCGGAGAAACACGTGTTGGT	110240379 (<i>Spodoptera frugiperda</i>)
PX016	2258	GCCGCCCGTGAGGAGGTGCCGGACG	31206154 (<i>Anopheles gambiae</i> str. PEST)
PX016	2259	GCCTACCAGTGCAGAACACGTGTTGGTAATCTTGACCGAC	9713 (<i>Manduca sexta</i>) 110240379 (<i>Spodoptera frugiperda</i>)
PX016	2260	GGCAGATCTTACCCGGCGGTGAA	101406307 (<i>Plodia interpunctella</i>)
PX016	2261	GGCGAGGAGGGCGCTCACGCCGACGA	31206154 (<i>Anopheles gambiae</i> str. PEST)
PX016	2262	GGTCAGAAAGATCCCCATCTCTC	31206154 (<i>Anopheles gambiae</i> str. PEST)
PX016	2263	GTTACATGTTACACGGATTGGCAC	60295607 (<i>Homalodisca coagulata</i>)
PX016	2264	GTGGTGGGGAGGGGGCTCACGCC	92924977 (<i>Drosophila virilis</i>)
PX016	2265	GTTCACCGGGCGATATTCTGCG	112349870 (<i>Helicoverpa armigera</i>)
PX016	2266	GTTCACCGGGCGATATTCTGGCAC	92997483 (<i>Drosophila grimshawi</i>)
PX016	2267	TACCAAGTGGAGAAACACGTGTTGGT	92950254 (<i>Drosophila ananassae</i>)
PX016	2268	TACGCCATGGCAAGGACGTGCAAGGGATGAAGGC	92048971 (<i>Drosophila willistoni</i>)
PX016	2269	TCCATCACGGAGATCCCCATCCT	237458 (<i>Heliothis virescens</i>)
PX016	2270	TCGGGCAAGCCCCATGGACAAGGG	87266757 (<i>Choristoneura fumiferana</i>) 101406307 (<i>Plodia interpunctella</i>)
PX016	2271	TCTACAGGGCGGCCGGAGTC	92460896 (<i>Drosophila erecta</i>)
PX016	2272	TCTCGTCTCATGAAGTCCGCCATCGG	24646340 (<i>Drosophila melanogaster</i>)
PX016	2273	TGACTGCTGGCAGATTCTGGCCTACCAAGTGGAGAAACAC	22474040 (<i>Helicoverpa armigera</i>) 237458 (<i>Heliothis virescens</i>)
PX016	2274	TGCACAAACAGGGCAGATCTACCC	33528180 (<i>Trichoplusia ni</i>)
PX016	2275	TGCGTATCTCCCAAGGGAGAT	9713 (<i>Manduca sexta</i>) 27372076 (<i>Spodoptera littoralis</i>)
			62239897 (<i>Diabrotica virgifera</i>)
			16900620 (<i>Ctenocephalides felis</i>)
			92967975 (<i>Drosophila mojavensis</i>)

PX016	2276	TGCTACGGCATGGCAAGGACGGCAGGCC	31206154 (Anopheles gambiae str. PEST) 92953069 (Drosophila ananassae) 92477149 (Drosophila erecta) 24646340 (Drosophila melanogaster) 67898824 (Drosophila pseudoobscura) 55694467 (Drosophila yakuba)
PX016	2277	TGCTCTACCTCGAGTTCCCTCACCAAGTTCGAGAACGAACTTCA TC	76555122 (Spodoptera frugiperda)
PX016	2278	TGTCTGTTCTGAACCTGGCCAA	4680479 (Aedes aegypti) 92477818 (Drosophila erecta) 24646340 (Drosophila melanogaster)
PX016	2279	TGTCCTGTTGAACTTGGCCAATGA	558905051 (Locusta migratoria)
PX016	2280	TGTTCTTGAAACTTGGCCAATGA	91090030 (Tribolium castaneum)
PX016	2281	TTCAACGGCTCCGGCAAGCCCCAT	76554661 (Spodoptera frugiperda)
PX016	2282	TTCAACGGCTCCGGCAAGCCCCATCGACAAAGGG	4680479 (Aedes aegypti) 31206154 (Anopheles gambiae str. PEST) 67877903 (Drosophila pseudoobscura)
PX016	2283	TTCGAGGGAAACGGTTCCATGGAGAA	67877903 (Drosophila grimshawi)
PX016	2284	TTCGAGGGAAACGGTTCCATGGAGAACGT	92972277 (Drosophila grimshawi)
PX016	2285	TTCTTCAAGCAGGACTTCGAGGAGAA	92950254 (Drosophila ananassae)
PX016	2286	TTCTTCAAGCAGGACTTCGAGGAGAACGG	83937868 (Lutzomyia longipalpis)
PX016	2287	TTCTTCAAGCAGGACTTCGAGGAGAACGGTTC	92477818 (Drosophila erecta)
PX016	2288	TTCTTCAAGCAGGACTTCGAGGAGAACGGTTCCATGGAGAAC GT	31206154 (Anopheles gambiae str. PEST) 24646340 (Drosophila melanogaster)
PX016	2289	TTCTTGAACCTGGCCAAATGACCC	9713 (Manduca sexta)
PX016	2290	TTCTTGGCCTACCAGTGCAGAGAA	31206154 (Anopheles gambiae str. PEST) 67883622 (Drosophila pseudoobscura) 92231646 (Drosophila willistoni)

Table 4-AD

Target ID	SEQ ID NO	Sequence *	Example GI-number and species
AD001	2384	AAAGCATGGATGGACAAA	73619372 (<i>Aphis gossypii</i>); 77325485 (<i>Chironomus tentans</i>); 22474232 (<i>Helicoverpa armigera</i>); 37951951 (<i>Ips pini</i>); 60305420 (<i>Mycetophagus quadripustulatus</i>); 84647995 (<i>Myzus persicae</i>)
AD001	2385	AAAGCATGGATGGACAAACT	94432102 (<i>Bombyx mori</i>); 103790417 (<i>Heliconius erato</i>); 55904580 (<i>Locusta migratoria</i>); 101419954 (<i>Ploidia interpunctella</i>)
AD001	2386	AAAGGTATTCCATTCTGGGACCCATGATGGCC GTACTATCCGTTATCCTGACCCAGTCATTAAAGT	109978109 (<i>Gryllus pennsylvanicus</i>)
AD001	2387	AACTGTGAAGTAACGAAAGATTGTTATGAGCGACT TATCAAAGTTGA	109978109 (<i>Gryllus pennsylvanicus</i>)
AD001	2388	AAGAAGCATTGGAAGCGTTAA	3658572 (<i>Manduca sexta</i>)
AD001	2389	AAGGGTAAGGGTGTGAAATTGGAGTAT	109978109 (<i>Gryllus pennsylvanicus</i>)
AD001	2390	AATGTATTICATCATTGGAAAAAGC	55904577 (<i>Locusta migratoria</i>)
AD001	2391	AGAAGCATTGAAAGCGTTAA	98994282 (<i>Antheraea mylitta</i>)
AD001	2392	AGAAGCATTGAAAGCGTTAAATGC	73619372 (<i>Aphis gossypii</i>)
AD001	2393	AGTACTGGCCCCACAATTGCG	27620566 (<i>Anopheles gambiae</i>)
AD001	2394	AGTGCAGAAGAAGCCAACGTAACAAGCT	109978109 (<i>Gryllus pennsylvanicus</i>)
AD001	2395	ATCGCCGAGGGGGACAAGC	109978109 (<i>Gryllus pennsylvanicus</i>)
AD001	2396	CAAGGACATACCTTTGCCACAAGATTGAATAATGT ATTCATCATGGAAA	3953837 (<i>Bombyx mandarina</i>)
AD001	2397	CAGAAGAACCCAAAGTACAAGCT	94432102 (<i>Bombyx mori</i>)
AD001	2398	CATGATGGCCGTACTATCCGTTA	109978109 (<i>Gryllus pennsylvanicus</i>)
AD001	2399	CATGATGGCCGTACTATCCGTTATCCCTGACCC	42764924 (<i>Armigeres subalbatus</i>)
AD001	2400	CATTGAAAGCGTTAAATGCTCC	73613065 (<i>Aphis gossypii</i>)
			31365398 (<i>Toxoptera citricida</i>)
			27557322 (<i>Anopheles gambiae</i>)

AD001	2401	CCTAAAGCATGGATGTTGGAC	773241536 (<i>Chironomus tentans</i>)
AD001	2402	CCTAAAGCATGGATGTTGGACAA	58371410 (<i>Lonomia obliqua</i>)
AD001	2403	CCTAAAGCATGGATGTTGGACAA	60311985 (<i>Papilio dardanus</i>)
AD001	2404	CCTAAAGCATGGATGTTGGACAACT	30031258 (<i>Toxoptera citricida</i>)
AD001	2405	CGTACTATCCGTTATCCTGACCC	98999282 (<i>Antheraea mylitta</i>)
AD001	2406	GAATGTTAACCTTGGTATTTCGCAATCG GCT	37804548 (<i>Rhopalosiphum padi</i>)
AD001	2407	GCGAAAGGAAGGCCAAGTACAAGCT	109978109 (<i>Gryllus pennsylvanicus</i>)
AD001	2408	GCATGGATGTTGGACAAACTCGG	37953169 (<i>Ips pini</i>)
AD001	2409	GCTGGTTTCATGGATGTTGTCACT	83935968 (<i>Lutzomyia longipalpis</i>)
AD001	2410	GGCCCCAAGAACGATTGAAGCGTTAA	109978109 (<i>Gryllus pennsylvanicus</i>)
AD001	2411	GGTTTCATGGATGTTGTCACT	14693528 (<i>Drosophila melanogaster</i>)
AD001	2412	TATGATGTGAAAGGCCGTTTCAACAATTCAACAGAAT	25956683 (<i>Circulio glandium</i>)
AD001	2413	TCATTGCCAACGGTAAGGGT	109978109 (<i>Gryllus pennsylvanicus</i>)
AD001	2414	TGGATATTGCCACTGTAAAAATCATGGACACATC AGATTGAAATCTGG	77324972 (<i>Chironomus tentans</i>)
AD001	2415	TTAAATGCTCCCTAAAGCATGGATGTTGGACAACT	109978109 (<i>Gryllus pennsylvanicus</i>)
AD001	2416	TTTGAATCTGGCAACCTGTGTATGAT	60311985 (<i>Papilio dardanus</i>)
AD001	2417	TTTGATATTGTTCAATTCAGGATAAC	109978109 (<i>Gryllus pennsylvanicus</i>)
AD002	2418	AAGAAAAATCGAACAAAGAAATC	55902553 (<i>Locusta migratoria</i>)
AD002	2419	CAGCACATGGATGTTGGACAAAGGT	67899569 (<i>Drosophila pseudoobscura</i>)
AD002	2420	GAGTTCTTTAGTAAAGTATTGGTGG	110762684 (<i>Apis mellifera</i>)
AD009	2421	CACTACAACCTACCAAAAGAGC	84222228 (<i>Aedes aegypti</i>)
AD009	2422	CAGAACATCCACAAACTGTGACT	18941376 (<i>Anopheles gambiae</i>)
AD009	2423	GGTGGGGTGTGCGAGGG	29534871 (<i>Bombyx mori</i>)
AD009	2424	TGGATCCCTGAATACTACAATGA	83926368 (<i>Lutzomyia longipalpis</i>)
AD015	2425	GAGCAGTAGAATTCAAAGTAGT	83926506 (<i>Lutzomyia longipalpis</i>)
AD015	2426	GCAATTATATTATTGATGAA	99012451 (<i>Leptinotarsa decemlineata</i>)
AD015	2427	TCACCATATTGTTGTTGCT	83936542 (<i>Lutzomyia longipalpis</i>)
AD015	2428	TTGTCCTGATGTTAAGTATGG	31366806 (<i>Toxoptera citricida</i>)
AD016	2429	ACGATGCCAACGACCATACCCATCC	84114691 (<i>Blomia tropicalis</i>)
AD016			101406307 (<i>Plodia interpunctella</i>)

AD016	2430	ATGCCAACGACGACATCACCCA	53983819 (<i>Pluteella xylostella</i>)
AD016	2431	ATGCCAACGACGACATCACCATCCTATT	110240379 (<i>Spodoptera frugiperda</i>) 27372076 (<i>Spodoptera littoralis</i>)
AD016	2432	CAGAAAGATCCCCATCACTTCTCGG	91827264 (<i>Bombyx mori</i>) 22474331 (<i>Helicoverpa armigera</i>) 60295607 (<i>Homalodisca coagulata</i>)
AD016	2433	CGGCTCCATCACTCAAGATCCCCAT	67896654 (<i>Drosophila pseudoobscura</i>)
AD016	2434	GCCAAAGACCCCACCATCGAG	101406307 (<i>Plodia interpunctella</i>)
AD016	2435	GCCCCGTTCGGAGGACATGCTGGG	83937868 (<i>Lutzomyia longipalpis</i>) 75473525 (<i>Tribolium castaneum</i>)
AD016	2436	GGCAGAAAGATCCCCATCTTCTC	2286803 (<i>Drosophila melanogaster</i>)
AD016	2437	GTTGACGGGGATATTCTGCG	92997483 (<i>Drosophila grimshawi</i>)
AD016	2438	GTTCACCGGGATATTCTGCGC	92853552 (<i>Drosophila ananassae</i>) 92042621 (<i>Drosophila willistoni</i>)

Table 5-LD

Target ID	SEQ ID No	Sequences*	Example GI-number and species
LD001	124	AAGAAGCATTGAAAGCGTTTG	8005678 (<i>Meloidogyne incognita</i>), 9829015 (<i>Meloidogyne javanica</i>)
LD003	125	GTTCCTCCTTGACCGCGTCC	7710484 (<i>Zelidzia punctata</i>)
LD003	126	GCAGGCTTTACGGATTTGCCAA	32183696 (<i>Meloidogyne chitwoodi</i>)
LD003	127	TTTCAACTCCTGATICAAGACGT	1662318 (<i>Brugia malayi</i>), 31229562 (<i>Wuchereria bancrofti</i>)
LD006	128	GCTATGGGTAAGCAAGCTATGGG	520506 (<i>Caenorhabditis elegans</i>)
LD007	129	AAAGAAATAAAAATTATTGA	17539725 (<i>Caenorhabditis elegans</i>)
LD007	130	AAGCAAGTGTATGATGTTCAGTGC	7143515 (<i>Globodera pallida</i>)
LD014	131	ATGATGGCTTCAATTGAACAAAGA	10122191 (<i>Haemonchus contortus</i>)
LD015	132	AACGCCCGAGTCTCATTAAGCCAC	20064339 (<i>Meloidogyne hapla</i>)
LD016	133	TTTGGGGTGGATTCCCTGATG	71999357 (<i>Caenorhabditis elegans</i>)
LD016	134	GTGTACATGTAACCTGGAAACC	13418283 (<i>Necator americanus</i>)
LD016	135	GTGTACATGTAACCTGGAAACCAGC	10819046 (<i>Haemonchus contortus</i>)

Table 5-PC

Target ID	SEQ ID NO	Sequence *	Example Gi-number and species
PC001	435	ATGGATGGGACAAATTGGG	7143612 (<i>Globodera rostochiensis</i>)
PC003	436	GCTAAAATCCGTAAGCTGCTCGTGAAC	9831177 (<i>Strongyloides stercoralis</i>)
PC003	437	GAGTAAAGTACACTTGGCTAA	28914459 (<i>Haemonchus contortus</i>)
PC003	438	AAAATCCGTAAGCTGCTCGTGAAC	32185135 (<i>Meloidogyne chitwoodi</i>)
PC003	439	CTGGACTCGAGAACATCGACTT	51334250 (<i>Radopholus similis</i>)
PC003	440	CGTCTGGATCAGGAATTGAAA	61115845 (<i>Litomosoides sigmodontis</i>)
PC005	441	TGTTGGATCCAATGAAATCAA	5430825 (<i>Onchocerca volvulus</i>)
PC005	442	GTGTGGTTGGATCCAAATGAAATCAA	6845701 (<i>Brugia malayi</i>); 45215079 (<i>Wuchereria bancrofti</i>)
PC014	443	CACATGATGGCTTTCATTGAACAGAAC	10122191 (<i>Haemonchus contortus</i>)
PC014	444	TACGGAAAAAAGGAGAACAGT	21265518 (<i>Ostertagia ostertagi</i>)
PC016	445	GTCGGATCATTCCTCGGGATAAT	18081287 (<i>Globodera rostochiensis</i>)
PC016	446	CCAGTCTGGATCATTCCTCGGGATA	108937716 (<i>Bursaphelenchus mucronatus</i>); 108962248 (<i>Bursaphelenchus xylophilus</i>)

Table 5-EV

Target ID	SEQ ID NO	Sequence *	Example Gi-number and species
EV005	563	TTAAAGATGGCTTATTATCAA	21819186 (<i>Trichinella spiralis</i>)
EV016	564	GCTATGGGTGTCATAATGGAAAC	54554020 (<i>Xiphinema index</i>)

Table 5-AG

Target ID	SEQ ID NO	Sequence *	Example Gi-number and species
AG001	739	GCTGGATTCAATGGATGTGATCA	15666884 (<i>Ancylostoma ceylanicum</i>)
AG001	740	ATGGATGGACAAATTGGG	18081843 (<i>Globodera rostochiensis</i>)
AG001	741	TTCATGGATGTGATCACCATTGA	27002091 (<i>Ascaris suum</i>)
AG005	742	GTCTGGTTGGATCCAAATGAAATCAATGA	2099126 (<i>Onchocerca volvulus</i>)
AG005	743	GGATCCAAATGAAATCAATGA	2099309 (<i>Onchocerca volvulus</i>)
AG005	744	TGATCAAAGGATGGTTGATCAT	2130916 (<i>Brugia malayi</i>)
AG005	745	TGGTGGATCCAATGAAATCAATGA	6845701 (<i>Brugia malayi</i>)
AG005	746	CCAAGGGTAACGGTTCAAGAACAG	29964728 (<i>Heteroderma glycines</i>)

AG005	747	TGGTGGATCCAAATTGAAATCAATGA	45215079 (<i>Wuchereria bancrofti</i>)
AG005	748	TGGATCCAAATTGAAATCAATGA	61116961 (<i>Litomosoides sigmodontis</i>)
AG014	749	GAAGAATTAAACATTGAAAAGGG	10122191 (<i>Haemonchus contortus</i>)
AG014	750	GAATTAAACATTGAAAAGGCCG	28252967 (<i>Trichurus vulpis</i>)
AG016	751	GGTTACATGTACACCGATTGGC	54552787 (<i>Xiphinema index</i>)

Table 5-TC

Target ID	SEQ ID NO	Sequence *	Example GI-number and species
TC014	853	ATCATGGAATTACCGAGAACAA	6562343 (<i>Heterodera schachtii</i>); 15769883 (<i>Heterodera glycines</i>)
TC015	854	AACGGTCCCCGAAATTATGAGTAAATT	108966476 (<i>Bursaphelenchus xylophilus</i>)

Table 5-MP

Target ID	SEQ ID NO	Sequence *	Example GI-number and species
MP001	1011	GATCTTTGATATTGTTCACATTA	13099294 (<i>Strongyloides ratti</i>)
MP001	1012	ACATCAGGATCTTTGATATTGTTCAC	15275671 (<i>Strongyloides ratti</i>)
MP001	1013	TCTTTGATATTGTTCACATTA	32183548 (<i>Meloidogyne chitwoodi</i>)
MP016	1014	TATTGCTCGTGGACAAAAAAAT	98332367 (<i>Strongyloides stercoralis</i>)
MP016	1015	TCTGCTGCTCGTGGAAAGAAGTACCTGG	13418283 (<i>Necator americanus</i>)
MP016	1016	GCTGAAGATTATTGGATATT	20064440 (<i>Meloidogyne hapia</i>)
MP016	1017	GGTTTACACACATAATGAGATTGCTGC	20064440 (<i>Meloidogyne hapia</i>)
MP016	1018	AAGAAATGATTCAAACCTGGTATTCAGCTATTGAT	31545172 (<i>Strongyloides ratti</i>)
MP016	1019	TATTGCTCGTGGACAAAAATTCCAAT	31545172 (<i>Strongyloides ratti</i>)
MP016	1020	GTTTCTGCTGCTGTGAAGAAGT	31545172 (<i>Strongyloides ratti</i>)
MP016	1021	C GTGGTTCCCTGGTTACATGTACAC	31545172 (<i>Strongyloides ratti</i>)
MP016	1022	CCTGGTTACATGTACACCGATT	54552787 (<i>Xiphinema index</i>)
MP027	1023	TTTAAAAAATTAAAGAAAAAA	27540724 (<i>Meloidogyne hapla</i>)
MP027	1024	CTATTATGTTGGGGTGAAGTTGT	34026304 (<i>Meloidogyne arenaria</i>)
MP027	1025	AAAGTTTTAAAAATTTTAAA	34028538 (<i>Meloidogyne javanica</i>)

Table 5-NL

Target ID	SEQ ID No	Sequence *	Example GI-number and species
NL001	1438	AGTACAAGGCTGTGCAAAGTGAAGA	18087933 (<i>Globodera rostochiensis</i>), 54547517 (<i>Globodera pallida</i>)
NL001	1439	ATGGATGTTGGACAAATTGGGTGG	7143612 (<i>Globodera rostochiensis</i>)
NL001	1440	TGGATGTTGGACAAATTGGGTGG	72235910 (<i>Meloidogyne incognita</i>)
NL001	1441	AGTACAAGGCTGTGCAAAGTGAAGA	111164813 (<i>Globodera rostochiensis</i>)
NL003	1442	AGTCATCCATCACGCCCGTGT	6081031 (<i>Pristionchus pacificus</i>)
NL003	1443	CTCCGTAACAAAGGGTGAGGTGTGG	5815927 (<i>Pristionchus pacificus</i>)
NL003	1444	GAATCGCAGAACGCACATTGACTTCTC	5815618 (<i>Pristionchus pacificus</i>)
NL003	1445	GCAGAAGGCACATTGACTTCTC	6081031 (<i>Pristionchus pacificus</i>)
NL003	1446	GCCAAGTCCATCCATCACGCC	6081133 (<i>Pristionchus pacificus</i>)
NL003	1447	GCCAAGTCCATCCATCACGCCGTGT	1783663 (<i>Pristionchus pacificus</i>)
NL003	1448	TCGGAGAACACATTGACTTCTC	10804008 (<i>Ascaris suum</i>)
NL003	1449	TCGGAGAACACATTGACTTCTGCTGAA	18688550 (<i>Ascaris suum</i>)
NL003	1450	GCCAAGTCCATCCATCACGCCGTGT	91102596 (<i>Pristionchus pacificus</i>)
NL003	1451	GAATCGCAGAACACATTGACTTCTC	91102596 (<i>Pristionchus pacificus</i>)
NL003	1452	CTCCGTAACAAAGCGTGAGGTGTGG	91102596 (<i>Pristionchus pacificus</i>)
NL004	1453	AAGAACAGGATATTCTGTAAATT	3785829 (<i>Onchocerca volvulus</i>), 6200728 (<i>Litomosoides sigmodontis</i>)
NL004	1454	AAGAACAGGATATTCTGTAAATTCTGGGA	21056283 (<i>Ascaris suum</i>), 2978237 (<i>Toxocara canis</i>)
NL004	1455	CCGTGTACGCCATTCCCCATCAAC	1783477 (<i>Pristionchus pacificus</i>)
NL004	1456	TACGCCATTCCCCATCAAC	2181209 (<i>Haemonchus contortus</i>)
NL007	1457	CAACATGAATGCATTCTCAAGC	39747064 (<i>Meloidogyne paraensis</i>)
NL007	1458	GAAGTACAACATGAATGCAATTCC	6721002 (<i>Onchocerca volvulus</i>)
NL007	1459	GCTGTATTGTGTTGGCGACA	27541378 (<i>Meloidogyne hapla</i>)
NL008	1460	AGAAAAGGGGGGGGGTGTGTA	108958003 (<i>Bursaphelenchus mucronatus</i>)
NL011	1461	GGACCTTCGTGATGGATAATTACATTCAGGGACAATG	33138488 (<i>Meloidogyne incognita</i>)
NL011	1462	CAACTACAACATTGAGGAAGGCC	108984057 (<i>Bursaphelenchus xylophilus</i>)
NL014	1463	GAAGAATTCAACATTGAAAAGGG	11927908 (<i>Haemonchus contortus</i>)

NL014	1464	GAGCAAGAACCAATGAGAAAGC	108955855 (Bursaphelenchus mucronatus)
NL014	1465	TTTCATTGAGCAAGAACCAATGAGAAAGCGAAGA	108919738 (Bursaphelenchus xylophilus)
NL015	1466	ATGAGCAAATTGGCGGGCAGTGGAG	18090737 (Globodera rostochiensis)
NL015	1467	CACACCAAGAACATGAAGTGGCTGA	68278872 (Caenorhabditis remanei)
NL015	1468	CAGGAAATCTGTTCGAAGTGT	45564676 (Meloiodogyne incognita)
NL015	1469	CTGGCGAGATCAAAGAGATGGT	18090737 (Globodera rostochiensis)
NL015	1470	TGGCGCAGATCAAAGAGATGGT	27428872 (Heterodera glycines)
NL016	1471	TATCCCGAGGAAATGATCCAGAC	18081287 (Globodera rostochiensis)
NL016	1472	CGTATCTATCCCAGGGAAATGATCCAGACTGGAAATTTC	108957716 (Bursaphelenchus mucronatus)
NL023	1473	TGGATGGGAGTCATGCATGGA	108967248 (Bursaphelenchus xylophilus)
NL023			13959786 (Nippostrongylus brasiliensis)

Table 5-CS

Target ID	SEQ ID NO	Sequence *	Example GI-number and species
CS001	1988	ATACAAGCTGTGCAAGGTGCG	10803803 (Trichuris muris)
CS003	1989	AAGCACATTGACTTCTCGCTGAA	18850138 (Ascaris suum)
CS003	1990	CGCAACAAGCGTGAGGTGTGG	40305701 (Heterodera glycines)
CS003	1991	CGTCTCCAGACTCAGGTGTTCAAG	91102965 (Nippostrongylus brasiliensis)
CS011	1992	TTTAATGTATGGGATACTGCTGG	9832495 (Strongyloides stercoralis)
CS011	1893	CACTTGAATGGAGAGTTCGAGAAA	18082874 (Globodera rostochiensis)
CS011	1994	CTCGTGTACACTACAAAAATGTACC	71182695 (Caenorhabditis remanei)
CS011	1995	CACTTGAATGGAGAGTTCGAGAA	108987391 (Bursaphelenchus xylophilus)
CS013	1996	TAGGTGAATTGGTGTGATGATTA	40305096 (Heterodera glycines)
CS014	1997	AAGAAAAGGAAACAAAGTGGAAACT	51871231 (Xiphinema index)
CS016	1998	GTGTACATGTAACCTGGAAACCACG	10819046 (Haemonchus contortus)
CS016	1999	GTGTACATGTAACCTGGAAACCAC	13418283 (Necator americanus)
CS016	2000	GCCAAATCGGTGACATGTAACC	54552787 (Xiphinema index)
CS016	2001	AAGTTCTTCTCGAAGCTGGTGGAAACTC	111163626 (Globodera rostochiensis)

Table 5-PX

Target ID	SEQ ID NO	Sequence *	Example GI-number and species
PX001	2291	CTCGACATGCCAACCTGCAAG	11069004 (<i>Haemonchus contortus</i>); 27770634 (<i>Teladorsagia circumcincta</i>)
PX001	2292	GACGGCAAGGTCGGCACCGAC	32320500 (<i>Heterodera glycines</i>)
PX001	2293	CCGGCCTGGATTCAATGGATGT	51334233 (<i>Radopholus similis</i>)
PX001	2294	ATCAAAGTGGACGGCAAGGTCGGCAC	108959807 (<i>Bursaphelenchus xylophilus</i>)
PX001	2295	ACAAACGTGTTCATCGGCAA	111166840 (<i>Globodera rostochiensis</i>)
PX016	2296	CGTGGTTCCAGGTACATGTACAGGGATTGGC	10819046 (<i>Haemonchus contortus</i>)
PX016	2297	GGTTTCCCAGGTTACATGTACAC	13418283 (<i>Necator americanus</i>)
PX016	2298	GAGTTCCCTCACCAAGTTCGAGAAGAACTT	111163626 (<i>Globodera rostochiensis</i>)

Table 5-AD

Target ID	SEQ ID NO	Sequence *	Example GI-number and species
AD015	2439	ATAAAATGGTCTGAAATTATGAA	9832193 (<i>Strongyloides stercoralis</i>)
AD016	2440	GTCAACATGGAGACGGGGCGCTT	30220804 (<i>Heterodera glycines</i>)

Table 6-LD

Target ID	SEQ ID NO	Sequences *	Example GI-number and species
LD001	136	TAGCGGATGGTGGCCGTCGTG	54625255 (<i>Phlebiopsis gigantea</i>)
LD003	137	TTCCAAGAAATCTTCAATCTCTAAA	50284437 (<i>Candida glabrata CBS 138</i>)
LD007	138	GAECTGGGTTTGAACACCCTTCAGAAAGTTCA	110463173 (<i>Rhizopus oryzae</i>)
LD007	139	TGTCAAGCCAAATCTGGTATGGG	110463173 (<i>Rhizopus oryzae</i>)
LD011	140	GGCTTCTCAAAAGTTGTAGTTA	48898288 (<i>Aspergillus flavus</i>)
LD011	141	CCATCACGGAGACCAAAACTT	60673229 (<i>Alternaria brassicicola</i>)
LD011	142	AAAGGCCTCTCAAAAGTTGTAGTTA	58157923 (<i>Phytophthora infestans</i>)
LD011	143	TGTGCTTATTATCATGTTGTATGT	110458937 (<i>Rhizopus oryzae</i>)
LD011	144	ACTGCCGGTCAGGGAGAAGTTGG	90638500 (<i>Thermomyces lanuginosus</i>)
LD011	145	AATACAACCTTGTAGAAGCCTTTCCCT	90549582 (<i>Lentinula edodes</i>), 90381505 (<i>Amorphotheca resinae</i>)

LD011	146	CAGGAGAAAGTTGGTGTCTCCG	90544763 (<i>Gloeophyllum trabeum</i>)
LD011	147	ACCACAAAACCTCTCTGACC	90368069 (<i>Aureobasidium pullulans</i>)
LD011	148	GGTCAGGAGAAGTTGGTGTCTCCG	90355148 (<i>Coprinopsis cerea</i>)
LD016	149	GCAGCAATTTCATTGTGAGGCCAGAC	50285562 (<i>Candida glabrata</i> CBS 138)
LD016	150	ATGGAGTTCATCACGTCAATAGC	68419480 (<i>Phytophthora parasitica</i>)
LD016	151	GGTCTGCCTCACAAATGAAATTGCTGCCAGAT	85109950 (<i>Neurospora crassa</i>)
LD016	152	CTATTGTTTCGCTGCATGGGTAAACATG	50423336 (<i>Debaromyces hansenii</i>), 90540142 (<i>Gloeophyllum trabeum</i>)
LD016	153	ATGAACTCCATTGCTCGTGATCCGTT	84573655 (<i>Aspergillus oryzae</i>)
LD016	154	ATAGGAATCTGGTGATGGATCCGTT	90562068 (<i>Leucosporidium scottii</i>), 90359845 (<i>Aureobasidium pullulans</i>)
LD016	155	TCCTGTTCTGAAGATAATGTTGGG	90388021 (<i>Cunninghamella elegans</i>)
LD016	156	TTTGAAGATTGAAGATTCTTGGAACG	50284437 (<i>Candida glabrata</i> CBS 138), 110468393 (<i>Rhizopus oryzae</i>), 90388644 (<i>Cunninghamella elegans</i>), 90376235 (<i>Amorphotheca resiniae</i>)
LD027	157	TCACAGGCCAGGAAGATGGTACC	90546087 (<i>Gloeophyllum trabeum</i>)
LD027	158	TTCTTTGAAGTTTGAAATAT	50292600 (<i>Candida glabrata</i> CBS 138)

Table 6-PC

Target ID	SEQ ID NO	Sequence *	Example GI-number and species
PC001	447	CCCTGCTGGTTTCATGGATGTCAT	110469463 (<i>Rhizopus oryzae</i>)
PC003	448	ATTGAAGATTTCCTGGAAAGAAG	50294437 (<i>Candida glabrata</i> CBS 138)
PC003	449	TTGAAGATTTCCTGGAAAGAAG	50310014 (<i>Kluveromyces lactis</i> NRRL Y-1140)
PC003	450	CTTCTTTCCAAGAAAATCTCAA	622611 (<i>Saccharomyces cerevisiae</i>)
PC003	451	GAECTCGCAGAAGCACATCGACTT	109744873 (<i>Allomyces macrogyrus</i>); 59284959 (<i>Blastocladiella emersonii</i>); 90623359 (<i>Corynascus heterothallicus</i>); 29427071 (<i>Verticillium dahliae</i>)
PC003	452	GACTCGCAGAAGCACATCGACTT	59298648 (<i>Blastocladiella emersonii</i>); 90565029 (<i>Leucosporidium scottii</i>)
PC003	453	TCGCAGAAGCACATCGACTTC	47032157 (<i>Mycosphaerella graminicola</i>)
PC003	454	CAGAAGCACATCGACTTC	34332427 (<i>Ustilago maydis</i>)

PC005	455	CTTATGGAGTAGCATCCACAA	98997063 (<i>Spizellomyces punctatus</i>)
PC005	456	AAGAAGGAAGGCGAGAGGCCA	84572408 (<i>Aspergillus oryzae</i>)
PC010	457	GTGTTCAATAATTCTCCGTATGA	50288722 (<i>Candida glabrata CBS 138</i>)
PC010	458	ATTTCCATGGAGAACATTGC	70990481 (<i>Aspergillus fumigatus</i>)
PC010	459	GGCAGAAATCCCCAAGCTGCC	90631635 (<i>Thermomyces lanuginosus</i>)
PC014	460	AATACAAGGACGCCACCGCA	30384561 (<i>Magnaporthe grisea</i>)
PC016	461	ATGCCCAACGAGCACATCACCA	59281308 (<i>Blastocladiella emersonii</i>)
PC016	462	TGGGTGATGTCGTTGGCAT	389353161 (<i>Hypocretea jecorina</i>)
PC016	463	GTTTCCCCGGTTACATGTACAC	34447668 (<i>Cryphonectria parasitica</i>)
PC016	464	ACTATGCCAACGAGCACATCAC	34447668 (<i>Cryphonectria parasitica</i>)
PC016	465	CCGGGCACCTCTCTCGAGGGCC	389353161 (<i>Hypocretea jecorina</i>)
PC016	466	CCGACCACATCGAGGCATCATCAC	59281308 (<i>Blastocladiella emersonii</i>)
PC016	467	TTCTTGAACTTGGCCAACGATCC	502885562 (<i>Candida glabrata CBS 138</i>)
PC016	468	TGTTCTTGAACTTGGCCCAACGA	66999391 (<i>Phaeosphaeria nodorum</i>)
PC016	469	GCTATGGGTGCAACATGGAAACTGC	110463410 (<i>Rhizophorus oryzae</i>)
PC016	470	TGCATATGGGTGCAACATGGGA	71006197 (<i>Ustilago maydis</i>)
PC016	471	CITATTGTGTTGGCTGCTATGGGTGT	68488910 (<i>Candida albicans</i>)
PC016	472	TACGAGGGCGGGTCGGTGGGA	90347883 (<i>Coprinopsis cinerea</i>)

Table 6-EV

Target ID	SEQ ID NO	Sequence *	Example GI-number and species
EV010	565	TTCAATAATTCCACCAAGATGAAAC	50405834 (<i>Debaromyces hansenii</i>)
EVO15	566	CGATGCCCTGAACAGCGGAGG	22502898 (Gibberella zeae)
EVO15	567	GTTACCATGGAGAACATTCCGTTA	67900533 (<i>Aspergillus nidulans FGSC A4</i>)
EVO15	568	GTTACCATGGAGAACATTCCGTTACGCC	70820241 (<i>Aspergillus niger</i>)
EVO15	569	ACCATGGAGAACCTCCGTTACGCC	84573628 (<i>Aspergillus oryzae</i>)
EVO15	570	ATGGAGAACCTCCGTTACGCC	71002727 (<i>Aspergillus fumigatus</i>)
EVO16	571	TCTGAAGATATGTTGGTGTGT	90396765 (<i>Cunninghamella elegans</i>)
EVO16	572	CAAAAGATTCCAATTTCCTCTGCA	50306984 (<i>Kluuyeromyces lacticis NRRL Y-1140</i>)
EVO16	573	CCCCACAAATGAAATCGCTGCTCAAAT	68001221 (<i>Schizosaccharomyces pombe</i> 972h ^r)
EVO16	574	ATCGTTTCGCCGCTATGGGTGT	58271359 (<i>Cryptococcus neoformans</i> var.)
EVO16	575	TTCAAGCAAGATTGAAAGAAATGG	50285562 (<i>Candida glabrata CBS 138</i>)

Table 6-AG

Target ID	SEQ ID NO	Sequence *	Example GI-number and species
AG001	752	CGTAACAGGTTGAAGTACGGCCCT	16931515 (Coccidioides posadasii)
AG001	753	AAGGTGCAAGGCCAAAGTCAGGACTGAT	33515688 (Cryptococcus neoformans var.)
AG001	754	CCATTCTGGTCACCCACGATG	38132640 (Hypocrea jecorina)
AG001	755	ATCAAGGTAAACGACACCATC	56939474 (Puccinia graminis f. sp.)
AG005	756	TGTACATGAAGGCCAAGGGTAACGTGTTCAAGAACAG	98997063 (Spizellomyces punctatus)
AG005	757	CCAAGGGTAACGTGTTCAAGAACAAAG	109744763 (Allomyces macrogyrus); 59297716 (Blastocladiella emersonii)
AG005	758	AAGGGTAACGTGTTCAAGAACAAAG	109741162 (Allomyces macrogyrus)
AG005	759	CAAAGAAAGGCAGAGAAGGC	67903433 (Aspergillus nidulans F GSC A4)
AG005	760	CAAAGAAAGGCAGAGAAGGC	4191107 (Emericella nidulans)
AG005	761	AAGAAAGAAGGGCTGAGAAGGGC	66909252 (Phaeosphaeria nodorum)
AG005	762	CAAAACATCCGTAATAATTGATCAAGGATGGTT	21649803 (Conidiobolus coronatus)
AG016	763	TTCGCCGCCATGGGTGTCAAC	50554108 (Yarrowia lipolytica)
AG016	764	ATGGGTGTCAACATGAAACCGC	90639144 (Trametes versicolor)
AG016	765	TGGAAACCGCCCGTTCTTCA	85109950 (Neurospora crassa)
AG016	766	GTTTACATGTACACCGATTG	32169825 (Mucor circinelloides)
AG016	767	GTCAAGATGGGAATCTGGGTGATGGA	38353161 (Hypocrea jecorina)

Table 6-TC

Target ID	SEQ ID NO	Sequence *	Example GI-number and species
TC001	855	AACAGGGCTGAAGTATGCCCTTGACC	90545567 (Gloeophyllum trabeum)
TC015	856	TTCATCGTCCGGTGGCATG	46122304 (Gibberella zeae PH-1)
TC015	857	AGTTTACCGGTACTGGAGG	50310636 (Kluyveromyces lactis NRRL Y-1140)
TC015	858	CCTCCAGGTACCGGTAAAACCTT	85114224 (Neurospora crassa)
TC015	859	CCTCCAGGTACCGGTAAAACCTT	50290674 (Candida glabrata CBS 138)
TC015	860	ATTAAGTTTACCGGTACCTGGAGG	3356460 (Schizosaccharomyces pombe)
TC015	861	GGTGCTTCTCTCTTAATCAA	21649889 (Conidiobolus coronatus)
TC015	862	ATCAACGGTCCCAGAATTATG	82610024 (Phanerochaete chrysosporium)

Table 6-MP

Target ID	SEQ ID NO	Sequence *	Example GI-number and species
MP002	1026	AATTTTTAGAAAAAAATTG	68026454 (Schizosaccharomyces pombe 972h-)
MP010	1027	GTCACCACATTAGCTTAGGAAT	48564349 (Coccidioides posadasii)
MP016	1028	AAGAAATGATTCAAACACTGGTAT	90396765 (Cunninghamella elegans)
MP016	1029	AAGAAATGATTCAAACACTGGTATTT	110463410 (Rhizopus oryzae)
MP016	1030	CATGAACCTTATGCTCGTGG	50285562 (Candida glabrata CBS 138)
MP016	1031	GCTGCATATGGGTGTTAATATGGA	90348219 (Coprinopsis cinerea)
MP016	1032	TGCTATGGGTGTTAATATGAAAC	90396964 (Cunninghamella elegans)
MP016	1033	CCTACTATTGAGGTATCATTAC	90524974 (Geomyces paniorum)
MP016	1034	GAAGTTCTCTGCTCGTGAAGGAAGTACCTGG	90396313 (Cunninghamella elegans)
MP016	1035	GTTTCTGCTGCTGCTGAAAGT	32169825 (Mucor circinelloides)
MP016	1036	GTGTAACATGTAACOAGGGAAAACCACG	45392344 (Magnaporthe grisea)
MP016	1037	CCTGGTTACATGTACCCGATT	32169825 (Mucor circinelloides)
MP016	1038	GGTTACATGTACCCGATTAA	47067814 (Eremothecium gossypii)
MP016	1039	CCTATTTTAACATGCTTAACGA	90396313 (Cunninghamella elegans)
MP027	1040	ACTCTCCATCACCACTACTA	60673889 (Alternaria brassicicola)

Table 6-NL

Target ID	SEQ ID NO	Sequence *	Example GI-number and species
NL001	1474	CCAAAGGCCAAGGGTGTGAAGCTCA	30418788 (Magnaporthe grisea)
NL001	1475	TCTCTGCCCAAGGGCAAGGGTGT	22500378 (Gibberella zeae), 46128672 (Gibberella zea PH-1), 70662358 (Gibberella moniliformis), 7100466 (Aspergillus fumigatus)
NL001	1476	TCTGCCCAAGGGCAAGGGTGT	14664368 (Fusarium sporotrichioides)
NL001	1477	TCTCTGCCCAAGGGCAAGGGTGT	50550366 (Yarrowia lipolytica)
NL001	1478	TCTCTGCCCAAGGGCAAGGGTGT	71000466 (Aspergillus fumigatus)
NL001	1479	CTGCCCAAGGGCAAGGGTGTGAAG	9245959 (Gibberella zeae)
NL003	1480	ATGAAGGCTCGATTACGTCTTGG	90545367 (Gloeophyllum trabeum)
NL003	1481	CGTAAGGGCCGGCTGTGAGCTG	24446627 (Paracoccidioides brasiliensis)
			10229753 (Phytophthora infestans)

NL003	1482	CGTAAGGGGCTCGTGAGCTGTTGAC	58082846 (<i>Phytophthora infestans</i>) 21393181 (<i>Pratylenchus penetrans</i>), 34330401 (<i>Ustilago maydis</i>)
NL003	1483	GACTCGCAGAACATTGACTT	46346864 (<i>Paracoccidioides brasiliensis</i>)
NL003	1484	TGAAGCTCGATTACGTCTTGG	58113938 (<i>Phytophthora infestans</i>)
NL003	1485	TGGCCAAGTCCATCCATCACGCCGTGT	58127885 (<i>Phytophthora infestans</i>)
NL004	1486	CGTAACCTCCCTGGCGAGAAG	90366381 (<i>Aureobasidium pullulans</i>)
NL003	1487	ATGAAGCTCGATTACGTCTTGG	90353540 (<i>Coprinopsis cinerea</i>)
NL003	1488	TCGGTTGGCCAAAGTCCATCCA	71012467 (<i>Ustilago maydis</i>)
NL003	1489	GACTCGCAGAACATTGACTT	90616286 (<i>Ophiostoma piliferum</i>)
NL003	1490	GACTCGCAGAACATTGACTTCTC	15771856 (<i>Gibberella zeae</i>), 28426217 (<i>Verticillium dahliae</i>), 30399888 (<i>Magnaporthe grisea</i>), 34330394 (<i>Ustilago maydis</i>), 3994591 (<i>Magnaporthe grisea</i> 70-15), 46108543 (<i>Gibberella zeae</i> PH-1), 70660620 (<i>Gibberella moniliiformis</i>)
NL004	1491	TACGCCCATTTCCCCATCAAC	90615722 (<i>Ophiostoma piliferum</i>)
NL004	1492	CGTGTACGCCATTCCCCATCAAC	90367324 (<i>Aureobasidium pullulans</i>) 9037222 (<i>Cryptococcus laurentii</i>) 10965277 (<i>Fusarium oxysporum</i> f. sp.) 9053559 (<i>Geomyces pannorum</i>) 4610843 (<i>Gibberella zeae</i> PH-1) 90566138 (<i>Leucosporidium scottii</i>) 3994591 (<i>Magnaporthe grisea</i> 70-15) 110115733 (<i>Saitoella complicata</i>) 110081735 (<i>Tuber borchii</i>) 71021510 (<i>Ustilago maydis</i>) 50554552 (<i>Yarrowia lipolytica</i>)
NL004	1493	TACGCCCATTTCCCCATCAAC	90640952 (<i>Trametes versicolor</i>)
NL004	1494	TACGCCCATTTCCCCATCAACTG	90615722 (<i>Ophiostoma piliferum</i>)
NL004	1495	CGTGTACGCCATTCCCCATCAAC	90615722 (<i>Ophiostoma piliferum</i>)
NL005	1496	AAAAAGGTCAAGGAGGCCAAGA	14662414 (<i>Fusarium sporotrichioides</i>)
NL005	1497	TTCAAGAACAAAGCGTGTATTGATGGA	90395804 (<i>Cunninghamella elegans</i>)
NL005	1498	TTCAAGAACAAAGCGTGTATTGATGGGT	90542353 (<i>Gloeophyllum trabeum</i>)
NL006	1499	CCTGGAGGAGGAGACGACCAT	70998563 (<i>Aspergillus fumigatus</i>)
NL006	1500	TCCCATCTCGTATGACAATTGG	68471154 (<i>Candida albicans</i>)

NL006	1501	ATGGTGTCTCCTCCAGG	70998503 (Aspergillus fumigatus)
NL006	1502	TCCCATCTGTATGACAATTGG	68471154 (Candida albicans) 50425488 (Debaromyces hansenii)
NL007	1503	CAAGTCATGTTCACTGCAAC	70984614 (Aspergillus fumigatus)
NL007	1504	TGACGCTTCACGGCCTGCAGCAG	10229203 (Phytophthora infestans)
NL007	1505	CAAGTCATGATGTTCAACTGCAAC	70984614 (Aspergillus fumigatus)
NL010_2	1506	CAATTCTTGCAAGTGTCAACAA	68478799 (Candida albicans)
NL010_2	1507	TTCAACAAACAGTCCTGATGAAAC	21649260 (Conidiobolus coronatus)
NL010_2	1508	TTCTTGCAAGTGTTCACAAAC	47031965 (Mycosphaerella graminicola)
NL011	1509	AAGAACGTTCCAACACTGGCAC	68132303 (Trichophyton rubrum)
NL011	1510	ACAAGAACGTTCCAACACTGGCA	68132303 (Trichophyton rubrum)
NL011	1511	ACCTACAAGAACGTTCCCAACT	68132303 (Trichophyton rubrum)
NL011	1512	ACCTACAAGAACGTTCCCAACTGGCAC	70674996 (Gibberella moniliiformis)
NL011	1513	CAACTACAACACTCGAGAACCC	22500425 (Gibberella zaeae), 34331122 (Ustilago maydis), 46108433 (Gibberella zea PH-1), 47029512 (Mycosphaerella graminicola), 56236507 (Setosphaeria turicensis), 62926335 (Fusarium oxysporum f. sp.), 70674996 (Gibberella moniliiformis), 70992714 (Aspergillus fumigatus)
NL011	1514	CAAGAACGTTCCAACACTGGCAC	68132303 (Trichophyton rubrum)
NL011	1515	CACCTACAAGAACGTTCCAACAC	68132303 (Trichophyton rubrum)
NL011	1516	CCTACAAGAACGTTCCAACCTG	68132303 (Trichophyton rubrum)
NL011	1517	CTACAAGAACGTTCCAACACTGG	68132303 (Trichophyton rubrum)
NL011	1518	GCAACTACAACCTCGAGAAGCC	22505588 (Gibberella zaeae)
NL011	1519	TACAAGAACGTTCCAACCTGGC	68132303 (Trichophyton rubrum)
NL011	1520	TCACCTACAAGAACGTTCCAAC	68132303 (Trichophyton rubrum)
NL011	1521	TCACCTACAAGAACGTTCCAAC	68132303 (Trichophyton rubrum)
NL011	1522	TCACCTACAAGAACGTTCCAAC	30405871 (Magnaporthe grisea)
NL011	1523	TCACCTACAAGAACGTTCCAAC	13903601 (Blumeria graminis f. sp.), 3140444 (Emericella nidulans), 34331122 (Ustilago maydis), 49096317 (Aspergillus nidulans FGSC A4)
NL011	1524	TGGGACACAGCTGGCCAGAAA	14180743 (Magnaporthe grisea), 39950145 (Magnaporthe grisea 70-15)

NL011	1525	TTCGAGAAGCCCTGTCGG	38056576 (<i>Phytophthora sojae</i>), 45244260 (<i>Phytophthora nicotiana</i>), 58091236 (<i>Phytophthora infestans</i>)
NL011	1526	TTCGAGAAGCCCTCCTGTGGCG	58090083 (<i>Phytophthora infestans</i>)
NL011	1527	TGGACACAGCTGCCAGGGAAA	39950145 (<i>Magnaporthe grisea</i> 70-15)
NL011	1528	TATTACATTCAAGGGACAATGCG	110134999 (<i>Taphrina deformans</i>)
NL011	1529	TCACACTACAAGAACGTTCCCAACTGGCAC	84573903 (<i>Aspergillus oryzae</i>) 90355199 (<i>Coprinopsis cinerea</i>) 90624693 (<i>Corynascus heterothallicus</i>) 90638800 (<i>Thermomyces lanuginosus</i>)
NL011	1530	ACCTACAAAGAACGTTCCCAACTGGCAC	113544700 (<i>Cordyceps bassiana</i>) 85114463 (<i>Neurospora crassa</i>)
NL011	1531	TACAAGAACGTCCCCAACACTGGCA	110269748 (<i>Hypocrea lixii</i>)
NL011	1532	TACAAGAACGTCCCCAACACTGGCA	110456937 (<i>Rhizopus oryzae</i>)
NL011	1533	AGGAAGAAGAACCTTCAAGTACT	90557551 (<i>Leucosporidium scottii</i>)
NL011	1534	AAGAAGAACCTTCAGTACTACAGA	113551594 (<i>Cordyceps bassiana</i>)
NL011	1535	AAGAAAGAACCTTCAGTACTACGACATC	90036917 (<i>Trichophyton rubrum</i>)
NL011	1536	AAGAACCTTCAGTACTACGACATC	90624693 (<i>Corynascus heterothallicus</i>)
NL011	1537	GGCTTCTCGAAAGTTGAGTTGC	89975123 (<i>Hypocrea lixii</i>)
			70992714 (<i>Aspergillus fumigatus</i>)
			90368808 (<i>Aureobasidium pullulans</i>)
			90629512 (<i>Corynascus heterothallicus</i>)
			109656121 (<i>Fusarium oxysporum</i> f. sp.)
			90532849 (<i>Geomyces pannorum</i>)
			110272576 (<i>Hypocrea lixii</i>)
			47029512 (<i>Mycosphaerella graminicola</i>)
			85114463 (<i>Neurospora crassa</i>)
			90617165 (<i>Ophiostoma piliferum</i>)
			90036917 (<i>Trichophyton rubrum</i>)
NL011	1538	CAACTACAACCTCGAGAACCC	92233975 (<i>Gibberella zaeae</i>)
NL011	1539	GGCTTCTCGAAAGTTGAGTTG	49069733 (<i>Ustilago maydis</i>)
NL013	1540	CCCGAGATGGTGGGGCTACCA	58134950 (<i>Phytophthora infestans</i>)
NL013	1541	GGTACCACTCGCACCCGGGGCTT	
NL013	1542	GTGGGCTGGTACCACTGGCACCCGGGGCTTCGG	38062327 (<i>Phytophthora sojae</i>)
NL013	1543	TGGTACCACTCGCACCCGGGGCTT	58084933 (<i>Phytophthora infestans</i>)

NL013	1544	CCCGAGATGGTGGCTGGTACCA	71006643 (<i>Ustilago maydis</i>) 10181857 (<i>Aspergillus niger</i>), 22505190 (<i>Gibberella zaeae</i>), 30394634 (<i>Magnaporthe grisea</i>), 33507832 (<i>Cryptococcus neoformans</i> var.), 37773467 (<i>Emericella nidulans</i>), 39940093 (<i>Magnaporthe grisea</i> 70-15), 46122304 (<i>Gibberella zaeae</i> PH-1), 47032030 (<i>Mycosphaerella graminicola</i>), 49106059 (<i>Aspergillus nidulans</i> FGSC A4)
NL015	1545	ATCCACCCAAGAACATGAAG	21649889 (<i>Contidiobolus coronatus</i>) 46122304 (<i>Gibberella zaeae</i> PH-1)
NL015	1546	CACACCAAGAACATGAAGTTGG	9036978 (<i>Cryptococcus laurentii</i>) 46122304 (<i>Gibberella zaeae</i> PH-1)
NL015	1547	GCCCTCTCTCTCATCAACGG	70820941 (<i>Aspergillus niger</i>) 58260307 (<i>Cryptococcus neoformans</i> var.) 85691122 (<i>Encephalitozoon cuniculi</i> GB-M1)
NL015	1548	TTGGAGGCTGCAGAAAGCAGCT	46122304 (<i>Gibberella zaeae</i> PH-1) 39940093 (<i>Magnaporthe grisea</i> 70-15) 85082882 (<i>Neurospora crassa</i>) 50555821 (<i>Yarrowia lipolytica</i>)
NL015	1549	GCCTTCTCTCTCATCAACGG	110272618 (<i>Hypocrea lixii</i>) 30418452 (<i>Magnaporthe grisea</i>), 39942327 (<i>Magnaporthe grisea</i> 70-15)
NL015	1550	ATCCACACCAAGAACATGAAG	39942327 (<i>Magnaporthe grisea</i> 70-15), 45392344 (<i>Magnaporthe grisea</i>)
NL015	1551	CACACCAAGAACATGAAGTTGGC	90367610 (<i>Aureobasidium pullulans</i>) 39942327 (<i>Magnaporthe grisea</i> 70-15)
NL016	1552	CATGAACTCGATTGCTCGTGG	90562068 (<i>Leucosporidium scotii</i>) 39942327 (<i>Magnaporthe grisea</i> 70-15)
NL016	1553	CCACCATCTACGAGGCCGGACG	39934078 (<i>Phytophthora sojae</i>)
NL016	1554	CATGAACTCGATTGCTCGTGG	39934078 (<i>Phytophthora sojae</i>)
NL016	1555	CATGTGGTAGGGATGACGAG	38056576 (<i>Phytophthora sojae</i>), 40545332 (<i>Phytophthora nicotianae</i>), 58083674 (<i>Phytophthora infestans</i>)
NL016	1556	CCACCATCTACGAGGCCGGACG	29426828 (<i>Verticillium dahliae</i>), 38057141 (<i>Phytophthora sojae</i>)
NL019	1557	CAGATTGGGACACGGCCGGCAGAGCG	90643518 (<i>Trametes versicolor</i>)
NL019	1558	GACAGGAGTCGTTCAACAAC	
NL019	1559	TGGGACACGGCCGGCCAGGGAG	
NL019	1560	TGGGACACGGCCGGCCAGGGAG	
NL019	1561	TGGGACACGGCCGGCCAGGGAG	
NL019	1562	TTCTGGAGACGTGGCGAAGAACGC	

NL019	1563	CAGATTTGGACAAGGCCAGGAGCG	90616605 (<i>Ophiostoma piliferum</i>)
NL019	1564	TGGGACACGGCCAGGAGAG	110272626 (<i>Hypocrella lixii</i>)
NL019	1565	TGGGACACGGCCAGGAGAG	50550714 (<i>Yarrowia lipolytica</i>)
NL019	1566	TGGGACACGGCCAGGAGCGGTT	70981934 (<i>Aspergillus fumigatus</i>)
NL019	1567	TGGGACACGGCCAGGAGGGTTCCG	50553761 (<i>Yarrowia lipolytica</i>)
NL022	1568	CAGGCAAAAGATTTCCTGCCA	58124185 (<i>Phytophthora infestans</i>)
NL022	1569	GGCAAGTGCCTCCGTCTGTACAC	58124872 (<i>Phytophthora infestans</i>)
NL023	1570	GGATGACCAAAAACGTTATTCT	46137132 (<i>Gibberella zeae PH-1</i>)
NL023	1571	AGAAATACGTTTGGTCATCC	46137132 (<i>Gibberella zeae PH-1</i>)

Table 6-CS

Target ID	SEQ ID NO	Sequence *	Example GI-number and species
CS003	2002	TGGTCTCGCAACAGCGTGAG	46356829 (<i>Paracoccidioides brasiliensis</i>)
CS003	2003	GGTCTCGCAACAGCGTGAG	71012467 (<i>Ustilago maydis</i>)
CS003	2004	TGGTCTCGCAACAGCGTGAGGT	5832048 (<i>Botryotinia fuckeliana</i>)
CS003	2005	TGGTCTCGCAACAGCGTGAGGT	40545704 (<i>Sclerotinia sclerotiorum</i>)
CS003	2006	GGTCTCGCAACAGCGTGAGGT	21907821 (<i>Colletotrichum trifolii</i>); 90623359 (<i>Corynascus heterothallicus</i>); 94331331 (<i>Pyrenopeziza omphalodes</i>); 29427071 (<i>Verticillium dahliae</i>)
CS003	2007	TGGTCTCGCAACAGCGTGAGGTG	27439041 (<i>Chaetomium globosum</i>); 47032270 (<i>Mycosphaerella graminicola</i>)
CS003	2008	CGCAACAAGCGTGAGGTG	7100428 (<i>Aspergillus fumigatus</i>); 67537265 (<i>Aspergillus nidulans FGSC A4</i>); 70825441 (<i>Aspergillus niger</i>); 84573806 (<i>Aspergillus oryzae</i>); 3773212 (<i>Emmericella nidulans</i>); 90632673 (<i>Thermomyces lanuginosus</i>); 34332427 (<i>Ustilago maydis</i>)
CS006	2009	TCCCCTCTGATGACAATTGGT	68011927 (<i>Schizosaccharomyces pombe</i> 972h-)
CS007	2010	ATTAGCTTGACAAAGAATA	50305206 (<i>Kluyveromyces lactis</i> NRRL Y-1140)
CS007	2011	GAGGCACCCCTCAGGAAGTTCAACAA	90553133 (<i>Lentinula edodes</i>)
CS011	2012	TGGGATACTGCTGCCAAAGAA	90385536 (<i>Amorphotheca resinae</i>); 68475609 (<i>Candida albicans</i>); 50304104 (<i>Kluyveromyces</i>

			lactic NRRL Y-1140); 85105150 (<i>Neurospora crassa</i>)
CS011	2013	AAGTTGGTGGTCTCCGAGATGGTTACTA	90355199 (<i>Coprinopsis cinerea</i>)
CS011	2014	CAATGTGCCATCATCATGTTCGA	15276938 (<i>Gliomus intraradicis</i>)
CS011	2015	CATCATCATGTTGAGATGTAAC	28268268 (<i>Chaetomium globosum</i>)
CS011	2016	CACTTGACTGGAGAGTTGGAGAA	90368808 (<i>Aureobasidium pullulans</i>); 34331122 (<i>Ustilago maydis</i>)
CS011	2017	TGAAGGGTTCTTTCTGTGGAA	6831345 (<i>Pneumocystis carinii</i>)
CS013	2018	GGATGGTACCACTCGCATCCTGG	109651225 (<i>Fusarium oxysporum f. sp.</i>)
CS015	2019	AACGAGAGGAAGAAGAAGAAG	39944615 (<i>Magnaporthe grisea</i> 70-15)
CS015	2020	AGGGCCTCTTCTTCTTCCTCTC	14662870 (<i>Fusarium sporotrichioides</i>)
CS015	2021	TAGGGCTTCTTCTTCTTCCTC	85112692 (<i>Neurospora crassa</i>)
CS015	2022	GAGATGGTGCAGTTGGCTCTA	71005073 (<i>Ustilago maydis</i>)
CS016	2023	GCTGAAGACTTTGGACATC	30418452 (<i>Magnaporthe grisea</i>)
CS016	2024	CCTCACCAAGTTGGAGAAGAACATTC	90566317 (<i>Leucosporidium scottii</i>)
CS016	2025	GTCGTGGTGAGGAAGGCCIG	84573655 (<i>Aspergillus oryzae</i>)
CS016	2026	TCCTCACCGGACAGACGCCCTCATGGCC	29427786 (<i>Verticillium dahliae</i>)
CS016	2027	GATGTTTCCAACCAGCTGTACGCC	90368806 (<i>Aureobasidium pullulans</i>)
CS016	2028	GGCGGTACAGCTGGTTGGAAACATC	29427786 (<i>Verticillium dahliae</i>)
CS016	2029	TGATGTTCCAACCAGCTGTACGCC	46107507 (<i>Gibberella zeae</i> PH-1)
CS016	2030	ATGGCAGACTTCATGAGACGAGA	29427786 (<i>Verticillium dahliae</i>)
CS016	2031	ATGCCCAAACGACATCACCCA	59281308 (<i>Blastocladiella emersonii</i>)
CS016	2032	TGGGTGATGTGTCGTTGGCAT	38353161 (<i>Hypocrealecorina</i>)
CS016	2033	ACTATGCCAAACGAGACATCAC	34447668 (<i>Cryphonectria parasitica</i>)
CS016	2034	GGTTACATGTACACCGATTG	32169825 (<i>Mucor circinelloides</i>)
CS016	2035	CCCAGGGTTACATGTACACCGATT	47067814 (<i>Eremothecium gossypii</i>)
CS016	2036	ACACCAACGTTGGCCTTGACT	68488910 (<i>Candida albicans</i>)
CS016	2037	GCCATGGGTGAACATGGAGAC	82608508 (<i>Phanerochaete chrysosporium</i>)
CS016	2038	GACGACACGGAGAACATTGCCATGTTCG	59277641 (<i>Blastocladiella emersonii</i>)
CS016	2039	AAGATCCCCATTTCGGCTGC	90348219 (<i>Coprinopsis cinerea</i>)

Table 6-PX

Target ID	SEQ ID NO	Sequence *	Example GI-number and species
PX001	2299	CTCATCAAGGTTGGACGGCAAAGGT	850050580 (<i>Neurospora crassa</i>)
PX001	2300	TGGTGGGGACCTGGCGTCACCTTGA	70788092 (<i>Gibberella moniliformis</i>)
PX001	2301	GACGGCAAGGTCCGCCACCGCAC	109745014 (<i>Allomyces macrogyrus</i>); 60673542 (<i>Alternaria brassicicola</i>); 90368699 (<i>Aureobasidium pullulans</i>); 59299145 (<i>Blastocladiella emersonii</i>); 27438899 (<i>Chetomium globosum</i>); 90623992 (<i>Corynascus</i> <i>heterothallicus</i>); 89975695 (<i>Hypocreales</i> lxxi); 99039195 (<i>Lepidosphaeria maculans</i>); 39970560 (<i>Magnaporthe grisea</i>); 47731115 (<i>Metarrhizium</i> <i>anisopliae</i>); 9036859 (<i>Trichophyton rubrum</i>); 29427127 (<i>Verticillium dahliae</i>)
PX001	2302	GACGGCAAGGTCCGCCACCGCAC	70823112 (<i>Aspergillus niger</i>); 90633197 (<i>Thermomyces lanuginosus</i>)
PX001	2303	AAGGTCTGGCACCGACCCACTACCC	71015993 (<i>Ustilago maydis</i>)
PX001	2304	CGCTTCACCATCCACCGCATCAC	90639458 (<i>Trametes versicolor</i>)
PX001	2305	CGAGGGCCAAAGTACAAGCTG	781177454 (<i>Chaelomium cupreum</i>); 27438899 (<i>Chaelomium globosum</i>)
PX001	2306	GAGGCCAAGTACAAGCTGTGCAAGGT	109745014 (<i>Allomyces macrogyrus</i>)
PX001	2307	GCCAAGTACAAGCTGTGCAAG	45923813 (<i>Coccidioides posadasii</i>)
PX001	2308	CCCGACCCGGCTCATCAAGGTCAACGAC	781177454 (<i>Chaelomium cupreum</i>)
PX001	2309	CGACATGTCACATCAAGGAC	82603501 (<i>Phanerochaete chrysosporium</i>)
PX001	2310	CGGCACAAAGCTGGCGAGTGCCCTGCCGCTC	109745014 (<i>Allomyces macrogyrus</i>)
PX010	2311	TTCGACCGAGGGGGCCCTCCTG	90542152 (<i>Gloeophyllum trabeum</i>)
PX010	2312	CACCACCGCCGCCCTCCTG	84578035 (<i>Aspergillus oryzae</i>)
PX010	2313	TGCAGGTCTTCAACAAACTCGCCCCGACGA	39978050 (<i>Magnaporthe grisea</i>)
PX010	2314	TTCAACAAACTCGCCCCGACGA	90618424 (<i>Corynascus heterothallicus</i>)
PX015	2315	CATGGCGGCCGTGAGITCAAGGTGGT	59282860 (<i>Blastocladiella emersonii</i>)
PX015	2316	GCATTCTCTCTCATCAACGG	68323226 (<i>Coprinopsis cinerea</i>)
PX015	2317	ATCAAAGGGCCCCGAGATCATGTC	85082882 (<i>Neurospora crassa</i>)
PX015	2318	TGGCAAGGGGTTGGAGGAGC	71002727 (<i>Aspergillus fumigatus</i>)
PX016	2319	CCTCACCAAGTTGGAGAACCTTC	905666317 (<i>Leucosporidium scotii</i>)

PX016	2320	GAGGAGATGATCCAGACTGGTAT	90639144 (<i>Trametes versicolor</i>)
PX016	2321	GAGGAGATGATCCAGACTGGTATCTC	58271359 (<i>Cryptococcus neoformans</i>)
PX016	2322	ATGAACTCCATGCCGTGGTCAAGAATCCC	90545177 (<i>Gloeophyllum trabeum</i>)
PX016	2323	GTCAGAAGATCCCACATCTTCCGCC	9651842 (<i>Emericella nidulans</i>)
PX016	2324	CAGAAGATCCCCATCTTCCGCC	70825597 (<i>Aspergillus niger</i>); 90611576 (<i>Ophiostoma piliferum</i>); 90639144 (<i>Trametes versicolor</i>)
PX016	2325	CAGAAGATCCCCATCTTCCGCC	67540123 (<i>Aspergillus nidulans</i>)
PX016	2326	CAGAAGATCCCCATCTTCCGCCGCCGG	59233275 (<i>Blastocladiella emersonii</i>)
PX016	2327	AAGATCCCCATCTTCTCCGCCGCCGTCT	34447668 (<i>Cryphonectria parasitica</i>)
PX016	2328	CCCATCTCTCCGCCGCCGTCTGCC	90621827 (<i>Corynascus heterothallicus</i>)
PX016	2329	GGTCTGCCAACAGGATTGCTGC	90387610 (<i>Aureobasidium pullulans</i>); 66909391 (<i>Phaeosphaeria nodorum</i>)
PX016	2330	TTCGCCGCCATGGGAGTCAACATGGGAGAC	90562163 (<i>Leucosporidium scotii</i>)
PX016	2331	ACCGCCAGGTTCTCAAGCAGGA	47067814 (<i>Eremothecium gossypii</i>)
PX016	2332	CTGTTCTGAACTGGCCAATGA	90545177 (<i>Gloeophyllum trabeum</i>)
PX016	2333	GGTTACATGTACACGGATTG	34447668 (<i>Cryphonectria parasitica</i>); 90545177 (<i>Gloeophyllum trabeum</i>); 39942327 (<i>Magnaporthe grisea</i>); 82608506 (<i>Phanerochaete chrysosporium</i>); 71006197 (<i>Ustilago maydis</i>)
PX016	2334	GGCAAGGCCATCGACAAGGGGCC	59233275 (<i>Blastocladiella emersonii</i>)
PX016	2335	ATGGGGTGGGTGATGTGTTGGCATGGTCA	38353161 (<i>Hypocreahieronica</i>)
PX016	2336	ACCATGCCAACGACGACATCACCCACCC	59281308 (<i>Blastocladiella emersonii</i>)
PX016	2337	TGCACAAACAGGCAGATCTACCC	107889579 (<i>Encephalitozoon cuniculi</i>)
PX016	2338	CCGTCGGCTATCTCGTCTCATGAA	48521040 (<i>Coccidioides posadasii</i>)

Table 6-AD

Target ID	SEQ ID NO	Sequence *	Example GI-number and species
AD001	2441	CCCGCTGGTTCATGGATGTT	58259586 (<i>Cryptococcus neoformans</i>)
AD001	2442	GACAACATCCATGAAACCGGGGG	21649877 (<i>Canidiobolus coronatus</i>)
AD001	2443	TTCATGGATGTTGTCACCATGG	90616000 (<i>Ophiostoma piliferum</i>)
AD001	2444	GAAGAAGCCAAGTACAAGCTCTG	110469512 (<i>Rhizophus oryzae</i>)
AD001	2445	AAGAAGCCAAGTACAAGCTCTG	110469518 (<i>Rhizophus oryzae</i>)

AD001	2446	GCCAAAGTACAAGCTCTGCAAGGT	98996590 (<i>Spizellomyces punctatus</i>)
AD001	2447	GCCAAAGTACAAGCTCTGCAAGGTCA	109743729 (<i>Allomyces macrogyrus</i>)
AD001	2448	AGTACAAAGCTCTGCAAGGTCA	710004666 (<i>Aspergillus fumigatus</i>); 675377247 (<i>Aspergillus nidulans</i>); 70823112 (<i>Aspergillus niger</i>); 40886470 (<i>Emeocilla nidulans</i>)
AD015	2449	TATGGACCCCCCTGGAACTGGTAAGAACCG	46349704 (<i>Paracoccidioides brasiliensis</i>)
AD016	2450	TGCCCGTGTCGAGGACATGCTGGGGCG	1097433222 (<i>Allomyces macrogyrus</i>)
AD016	2451	TGCCCGTGTCGAGGACATGCTGGGGCGC	59283275 (<i>Blastocadiella emersonii</i>)
AD016	2452	CG GTCCGAGGGACATGCTGGGGCGCA	90612905 (<i>Ophiostoma piliferum</i>)
AD016	2453	ATGGGCCTCAACATGGAGACGGGC	59277641 (<i>Blastocadiella emersonii</i>)
AD016	2454	TGGAGACGGGGCGCTCTTCA	90611376 (<i>Ophiostoma piliferum</i>)
AD016	2455	TTCCCTCAACCTGGCCAACGACCCCCAC	90611376 (<i>Ophiostoma piliferum</i>)
AD016	2456	ACCATGGAGGGCATCATACCCCCGGCGCTCGC	59281308 (<i>Blastocadiella emersonii</i>)
AD016	2457	TCCACCATCTACAGGGCGCTGG	90368806 (<i>Aureobasidium pullulans</i>)
AD016	2458	CTGACGATGCCCAACGACGACATCAC	90611301 (<i>Ophiostoma piliferum</i>)
AD016	2459	ATGCCCAACGACGACATCACCA	59281308 (<i>Blastocadiella emersonii</i>)
AD016	2460	TGGGTGATGTCGTTGGGCAT	38353161 (<i>Hypocreafectorina</i>)

Table 7-LD

Target ID	SEQ ID NO and DNA Sequence (sense strand) 5' → 3' of fragments and concatemer constructs
L014_F1	SEQ ID NO: 159 TCTAGAAATGTTGAATCAGGGCTCGATTGAAGGTATTGAAAGTCACTAGGGTACCGTACTAGGGAGGTTAGGGAAAGATCAGTTCTGTAACGGTCAAAGTATTGAAGGTTAGGGAAAGATCA CGACTTGGTCAGGTCAAAACGGATGTTGAATCAGGGCTCGATTGAAGGTAGGGAAAGATCAGTTCTGATTTGAATCAGGGCTCGATTGAAGGTTAGGGAAAGATCA GAGGAGGGCGCGTAAACGACTTGGTCAGGTCAAACAAACGATGTTGAATCAGGGCTCGATTGAAGGTTAGGGAAAGATCA CGTTCCGTACCGTACTAGGGAGGGCGTAAACGACTTGGTCAGGTCAAACAAACGCCGGG
L014_F2	SEQ ID NO: 160 TCTAGAAAAGATCACGTTCTGTAACCGTACTAGGGAGGGCGTAAACGACTTGGTCAGGTCAAACGCCGGG
L014_C1	SEQ ID NO: 161 TCTAGAAATGTTGAATCAGGGCTCGATTGAAGGTATTGAAAGTCACTAGGGTACCGTACTAGGGAGGTTAGGGAAAGATCAGTTCTGTAACGGTCAAAGTATTGAAGGTTAGGGAAAGATCA CGACTTGGTCAGGTCAAAACGGATGTTGAATCAGGGCTCGATTGAAGGTAGGGAAAGATCAGTTCTGATTTGAATCAGGGCTCGATTGAAGGTTAGGGAAAGATCA GAGGAGGGCGCGTAAACGACTTGGTCAGGTCAAACAAACGATGTTGAATCAGGGCTCGATTGAAGGTTAGGGAAAGATCA CGTTCCGTACCGTACTAGGGAGGGCGTAAACGACTTGGTCAGGTCAAACAAACGCCGGG
L014_C2	SEQ ID NO: 162 TCTAGAAAAGATCACGTTCTGTAACCGTACTAGGGAGGGCGTAAACGACTTGGTCAGGTCAAACAAACGAAAGATCACGTTCTGTAACGGTCAAACAAACGCCGGG

ACTAGAGGAGGGCCGTTAAACGGACTTGGTCAGGTCAACAACGAAGATCACGTTGACTAGAGGGGGCGTAAACGACTTGGTCAGGTCAACAAACGCCGGG
GGTCAGGTCAACAACGAAGATCACGTTGACTAGAGGGGGCGTAAACGACTTGGTCAGGTCAACAAACGCCGGG
TTCGTACCGTACTAGAGGGGCCGTTAAACGACTTGGTCAGGTCAACAAACGCCGGG

Table 8-LD

Target ID	Primers Forward 5' → 3'	Primers Reverse 5' → 3'	dRNA DNA Sequence (sense strand) 5' → 3'
LD001	SEQ ID NO: 164 GGTAAATACGACTC ACTATAGGGCCCC AAGAACGATTGAA GCG	SEQ ID NO: 165 CCTTGGGCCAGT TTGCATC	SEQ ID NO: 163 GCCGCCAAGAACGATTGAAGGGTTGAATGCCCAAAAGCATGGATGTTGG ATAAATTGGAGGTGTTTGCACACTGCCCATCTACAGGACCTCACAAATTG CGAGAGTCTTGCCTGGTGAATCTCCTACGTAACCCGATTGAAGATGCTTT GACTAACAGCGGAAGTTACAAGATTGTTATGCAAAGGTAACTAAAGTAGATG GAAAAGTGAGGGACCGACTCCAAATTACCTGCCTGGTTATGGATGTTATTACC ATTGAAAAGACTGGTAATTGTTCCGACTCATCTATGATGTTAAAGGACGATT GGAGTGCATGTTTACTCTGCTGAGGAAGCAAAACTGCAAAGTCAAAGTCAG GAGGATGCAAACGGCCCAAAG
	SEQ ID NO: 166 GGCCCACAAAGCA TTTGAAGCG	SEQ ID NO: 167 GGGTAAATACGACTC ACTATAGGCCTTG GGGCCAGTTGCAT C	
	SEQ ID NO: 169 GGTAAATACGACTC ACTATAGGGTCCAC GTCCCAAAGTTTATG GGC	SEQ ID NO: 170 AAGCGATTAGAAAA AAATCAGTTGC	SEQ ID NO: 168 GTCCACGTCACAAGTTTTATGGGCTTCAAGAGCTTCAGCTGCAATTTCAT AGATTCCAATACTGTGGTGTACTAGCTCCAGCTCGTTCTCGTGAAT GTTCAAATAGTAGTTAAAGTGCATCTATTGCAACTGATTTTCTAAATCGCTT
LD002	SEQ ID NO: 171 GTCCACGTCAAAGT TTTTATGGGC	SEQ ID NO: 172 GGGTAAATACGACTC ACTATAGGAAGCGA TTAGAAAAAAATCAG TTGC	SEQ ID NO: 173 GGT GACCACCGAAATGGAGATTGAGCGAGAAGTCATAATGCTTCTGGGA ATCAAGTCTCACAAATGAAAGCTTGGAAATTACGACCTGCTTACGAAACCTGA TATGTCCTTGACGGACAGCACCGAGCATGGATTGATTGCAAGGCC AACTTGAAAACACTTGTGTGGAGACGTGTTCCAGAAATCTTCATCTTCAA CCAAGACGCTTAATCAAGCTTCATACGGGTTCATCCAAACACTCCAAATAGGCAC CAACCGACCAAGAACCTGCGCTCAAAACACGAGGATTGCGCTGATCTTCTCT
	SEQ ID NO: 174 GGTAAATACGACTC ACTATAGGGCCAGG CGACCTTATGAAA GGC	SEQ ID NO: 175 GGTGACCAACCG AATGGGAG	SEQ ID NO: 177 GGGTAAATACGACTC ACTATAGGGGTGAC
	SEQ ID NO: 176 GGTGACCAACCG AATGGGAG		

	SEQ ID NO: 191 GCTTGTGCCCG AATGC	SEQ ID NO: 192 GGTAATACGACTC ACTATAGGCTATCG GGTTGGATGAACT CG	AGCCGGCAGTAAGTGCTCAACCTGGCTCCTCAACAAACCGGACAACCCATGAGG CCTGGAGCACTCCAGCAAGCTCCACTGCCAACCTCACTGATCTTATTGGAGAGTTGCAAAGA CCATCTCGAAATTCGACATGAACCTCACTGATCTTATTGGAGAGTTGCAAAGA GCCCATGGCTGTCCACCAAGGCAAATGGGCCCTTAGATCGACCCGGACA GCTTTATCGATAAGCCATTGGGGAGTGCACATAAGCCAAATACTGGTGC CAGGGTCATGCTTATTGTTGGAGGACCTGGCTCAAGGCCCTGGTCAGTC TTGAATGATGATCTGAAGCAACCTATCAGATCTCACCAAGGACATCCAAAAGA CAATGCCAAATACATGAAGAAAGGAAATCAAGCACTGATAATTAGCGATGA GAGCAGCAACGAATGGCCACTGGTTGACATAATTCTAGCGCTTGGATCA GACAGGGATTGATGGAGATGAAACAGTGTGTTAATTCAACAGGGGGACATATG GTCATGGGGCACTCGTCAATTCTCCCTGTTCAAGGAAACAGTTCAGCGCAT ATTTCGAAAGAATCAGAAAGGAAACGAGGCTGAAGATGGCATTAATGGTACTCTGG AGGTCAAGTGTTCCAGGGAGTTGAAAATTCAAGGGGGTATTGGATCTTGT TTCCGTGAATGTGAAGAACTTCTGGGGAGCACCATACTGGAAATTAGGAATGGGTA ACACGGTCCAGTGGAAATGTGTAACCTCAAGTACTACCTGGCCT GTTCTTCGAGGTGTCGTCACCAACATTCCGCTCCATACCTCAAGGGGGAGG GCCTGCATACAGTTCATCACGCAATATCAGCATGCTAGTGGCCAGAAAGGAA TCGAGTAACGACAGTGCTAGAAACTGGGCCGATGCTAGTGGCTAATATACAT CATGTCAGTGCTGGATTGATCAGGGGGAAATCAGGAGATAGCCCTGATGTTTGAGATGGG TGGCAGTTAACAGGGGAATCAGGAGATGCTGTGCCAGAAATTGGGGAAATAACAAAGGAC CGATAGGATGTTGATACGTCAGCTACAGCTCACGCTCACAGTTCAGTTCAATGGAC GACCCGAATTGTTCCGGCTGGGGAAAACCTCAGCCTCTACCCGGAGTTCA TGTAACCATTTGAGAAGGTACAGTTCCTGAGGTGTTAACAAATTCTCCCGAC GAAACAGTCCCTTCTACAGGCACATGCTTATGCCGAAGAACCTCACGGAGTCGC TGATCATGATGCCAGCGATACTCTACAGCTACAGTTCAGTTCAATGGACCCAGAA CCTGCTTTGGATACGAGTTCCATCAACCCGATAG	SEQ ID NO: 193 GCGATAGGAAAGGCTTCTCAAAAGTTGAGTTAGATTGGCAGAGATACTAG TACTGCAAATTCTCTCCCTATGAAAGACAAATACTTTGCTTTTACTTTCTGT CTTTGATGTCACCCCTTGTCCGCAAAGTACTATCGGGATATTTCACAGACTC TGACAAGAGATCTGTGCCAATTGGTACATTGGTATGTAACTCTGGAGTTA CATCAAACATGATAATGACACTGCCCCTGAAATGTAATTCATCACGGAGA CCACCAAACCTCTCCGTGACCGGGCAAGTGTCCCATACATTGAAACCGAATAGGGC CCCTGTTGATGGAAAGGACCAAGGGATGGACTTCAACCTCCAAAGTAGCTACA TATCCTTTTCAAAATTCCACCGTACATGACGTTTCAAAATGTCGTTTTCC
LD011	SEQ ID NO:194 GGGTAATACGACTC ACTATAGGCCATA GGAAAGGCCCTCTCA AAG	SEQ ID NO: 195 GGAAAAACGACATT TGTGAAACGTC	SEQ ID NO: 197 GCGTAATACGACTC ACTATAGGGAAAAA ACGACATTGTGAAA CGTC	
LD014	SEQ ID NO:199 GCCATAGGAAAAGG TTCTGAAAG	SEQ ID NO: 200	SEQ ID NO: 198	

	GGTAAATACGACTC ACTATAGGTTTCAATT GAACAAGGGCAA CG	GCGAAATTCAGCTCC AGACGAGC	SEQ ID NO: 202 GGGTAAATACGACTC ACTATAGGCGAAA TCAGCTCCAGACGA GC	TTTCATTGAACAAGGGCAAACGAAAAGGCCAGAAGAAATCGATGCCAAGGCC GAGGAAGAATTAAATTTGAAGGGGCCCTTGTTCAGCAACAAACGTCCAA GATTATGGAAATTATGGAAAGAAACAGGTGAAACTCCAGAAAAAA TCAAATCGTCTAACATTGTAATGGCTACTAGGAGGGCGCTAAACGACTGGTCAGG TCACAAACGACCCAGGGAAAATTCCAAATCTGGAAAGGCCCTCATTTTGCAAG GGATTATATCGCTTTTGAGAAAGATGTTACCCATTGAGTTGGCCCCAGGA CGAGAACTGGTCAAATCCATCATCCCCACCGTCACGAAACAAGATAAAAGATG CCACGGTAAGGACATCCATCTGAAAATTGATGACGAAATCCATCTGTC GAACACCAGGGGAATTCGACCTGCTGGCGAGAAAACAAAAATCAAGATCA GCAAATACTATGGGGCTCGTCTGGAGCTGATTTCGC
LD014_F1	SEQ ID NO: 204 GGGTAAATACGACTC ACTATAGGATGTTGA ATCAGGGCTCGATTG	SEQ ID NO: 205 CGTTTGTGACCTGA CCAAGTC	SEQ ID NO: 203 ATGTTGAATCAGGCTCGATTGAAAGGTATTGAGGGTAGGGAGACTCACGTTGC TACCGTACTAGAGGAGGCCGCTGCTGAGCTGATTTCGC	SEQ ID NO: 208 AAGATCACGTTCTGACTCGTACTAGAGGAGGCCGCTAAACGACTTTGGTCAGGT CACAAACG
	SEQ ID NO: 206 ATGTTGAATCAGGC TCGATTG	SEQ ID NO: 207 GGGTAAATACGACTC ACTATAGGCGTTGT GACCTGACCAAGTC		SEQ ID NO: 210 CGTTTGTGACCTGA CCAAG
LD014_F2	SEQ ID NO: 209 GGGTAAATACGACTC ACTATAGGAAGATC ACGTTGTTACCGTC C	SEQ ID NO: 210 GGGTAAATACGACTC ACTATAGGCGTTGT GACCTGACCAAG	SEQ ID NO: 212 GGGTAAATACGACTC ACTATAGGCGTTGT GACCTGACCAAG	SEQ ID NO: 213 ATGTTGAATCAGGCTCGATTGAAAGTATTGAGGGTAGGGAGACTCACGTT GTACCGTACTAGAGGAGGCCGCTAAACGACTTTGGTCAGGTCAAAACGATG TGAATCAGGCTCGATTGAAAGTATTGAGGGTAGGGAGACTCACGTTGTAC GTACTAGAGGAGGCCGCTAAACGACTTTGGTCAGGTCAAAACGATGTTGAAT CAGGGCTCGATTGAAAGTATTGAGGGTAGGGAGACTCACGTTGTACCGTACT
LD014_C1				

L0014_C2		AGAGGAGGGCCGTAAACGACTTGGTCAGGTACAAACGC SEQ ID NO: 214 AAAGATCACCGTTCGTACCGTACTAGAGGGCCGTAACGACTTGGTCAGGTACCGTACTAGAGGGCCGTAACGACTTGGTCAGGTACAAACGAAAGATCACCGTACTAGAGGGCCGCTAAACGACTTGGTCAGGTACAAACGAAAGATCACGTACGGTACCGTACTAGAGGAGGCCGTAACGACTTGGTCAGGTACAAACGAAAGATCACGTACGGTACCGTACTAGAGGAGGCCGTAACGACTTGGTCAGGTACAAACGACTTGGTCAGGTACAAACG
L0015	SEQ ID NO: 216 GGCTAATACGACTC ACTATAGGCCGG AGAGTTTGTCAGC SEQ ID NO: 218 CGCCGGAGAGTTT TGTCAGC	SEQ ID NO: 217 CTATGGCGTGAAAG CCCCC SEQ ID NO: 219 GGGTAAATACGACTC ACTATAGGCTATCG GGGTGAAGCCCC SEQ ID NO: 220 GGCATAGTCATAATAGGAATCTGGGTGATGGATCCGGTTACGTCCCTTCACACCG GCCGGCACGGTTCATAGATGGTAGCTAAATGGGTGACATGTAAACCTGGAAA CCACGACGACCCAGGCACTCTCTGGCAAGCAGATACTCAGGAAAGCTT CTGCCATACGAAAGACATATCTGTCAAGATGACCAAGACGCTGCTTCACATTGG TAAGCCAAGAACATTGGCAAGCTGGCAAGCAGGAGACATTTCTCCATAGAAC AATGGTAGGATGTTGGCAAATTCAAGAACAGGAGACATTTCTCCATAGAAC CGTTCTCTCGAAATCTGTGTTGAAGAACCTAGCTTTCCATGTTAACACCCA TAGCAGCGAAACAAATAGCAAGTTATCTTCATGTCATCAAGTACAGATTAC CAGGAATCTGTGACTAAACCAGCCTGCTACAGATCTGGCAGCAATTCTATTG TGAGGGCAGAACCGAGCTGCAAGAAAATGGGGATCTTCTGACCAAGGCAATGG AGTTCATCACGTCAATAGCTGTAATAACCCGTCGGATCATTTCTCAGGATAG ATACGGGACACCGGATTTGATTGGTTGACCTGGATGTCACGCTTCAGGAAAGTCTTCAG CCAAAATTGGGGACCTTTGTCGATGGTTTCCTGATCCATTGAAAACACGT CCAAACATACTTCAGAAACAGGGAGTCCCTCAAAATATCTCCCTGTAATTCAAA GCGGTGTTTGGCGTGCATTCCCTGATGTGCCCCCTGAAACACITGAACCCACAG CTTTGACCCACTGACTTCAGAACAATTGTCGCCATTAGTGCCATTAGGCC AGTTTGAGTTGTACGATTCTATTGACTTGGGAAACTTAACATCTTCAGGAGT ACC
L0016	SEQ ID NO: 221 GGCTAATACGACTC ACTATAGGCCATA GTCAATATAGGAATC TGGGTG SEQ ID NO: 222 GGTAATCCTCGAAG ATGTTAAGTTCC SEQ ID NO: 224 GGGTAAATACGACTC ACTATAGGGTTAAT CCTCGAAGATGTTA AGTTCC SEQ ID NO: 223 GGCATAGTCAAATA GGAATCTGGGTG	SEQ ID NO: 222 GGCATAGTCATAATAGGAATCTGGGTGATGGATCCGGTTACGTCCCTTCACACCG GCCGGCACGGTTCATAGATGGTAGCTAAATGGGTGACATGTAAACCTGGAAA CCACGACGACCCAGGCACTCTCTGGCAAGCAGATACTCAGGAAAGCTT CTGCCATACGAAAGACATATCTGTCAAGATGACCAAGACGCTGCTTCACATTGG TAAGCCAAGAACATTGGCAAGCTGGCAAGCAGGAGACATTTCTCCATAGAAC AATGGTAGGATGTTGGCAAATTCAAGAACAGGAGACATTTCTCCATAGAAC CGTTCTCTCGAAATCTGTGTTGAAGAACCTAGCTTTCCATGTTAACACCCA TAGCAGCGAAACAAATAGCAAGTTATCTTCATGTCATCAAGTACAGATTAC CAGGAATCTGTGACTAAACCAGCCTGCTACAGATCTGGCAGCAATTCTATTG TGAGGGCAGAACCGAGCTGCAAGAAAATGGGGATCTTCTGACCAAGGCAATGG AGTTCATCACGTCAATAGCTGTAATAACCCGTCGGATCATTTCTCAGGATAG ATACGGGACACCGGATTTGATTGGTTGACCTGGATGTCACGCTTCAGGAAAGTCTTCAG CCAAAATTGGGGACCTTTGTCGATGGTTTCCTGATCCATTGAAAACACGT CCAAACATACTTCAGAAACAGGGAGTCCCTCAAAATATCTCCCTGTAATTCAAA GCGGTGTTTGGCGTGCATTCCCTGATGTGCCCCCTGAAACACITGAACCCACAG CTTTGACCCACTGACTTCAGAACAATTGTCGCCATTAGTGCCATTAGGCC AGTTTGAGTTGTACGATTCTATTGACTTGGGAACTTAACATCTTCAGGAGT ACC

LD018	<p>SEQ ID NO: 226 GCGTAATACTGACTC ACTATAGGGAGTC GCAGAAATACGAGA GCAC</p> <p>SEQ ID NO: 228 GGAGTCGCAGAAAT ACGAGAGCAC</p>	<p>SEQ ID NO: 227 GTAGAGGGCTCCACC GTCAATCGC</p> <p>SEQ ID NO: 229 GCGTAATACTGACTC ACTATAGGGTAGAG GCTCCACCGTCAAT CGC</p>	<p>SEQ ID NO: 225 GGAGTCGCAGAAATACGAGGACCAACTTCTCGAACCAAGCCTCTTGGAGG GTTAAAACAAGGCCAGCTGAGGACTCGGGACACTACACTTGTTGGGGAGA ACCCCTCAAGGGCTGCATAGTGTCACTGTCTTAAGCCATAGAACCGGTAACC ACCCAGGAAGGGTTGATTCACAGGACTGCAACCTTAAGCAGAACAGACCCGAA TGAGGCAAATTCGACACAGCAAGACCTTGGCCTTAACCTTCGTCAGGGTTG CGGGGATAGAGACGTGACCGAGGGCAAGATGACCTTCGACTGTCGCGT CACTGGTGTGTCCTTATCAGACTGACATGGTACATAAACGGTGGACAAGTCA CGACGACCAACCAACCCAAACCAAGATTGGTAAACGAATCCGGAAACCATGCCC GATGATCACACCCGGTGAAGCAGACTCAGGAGTAGTGAACCTTCCAGTGCATCGAA CGGAACAAGACGGGAGAACCTCCTCCAGTGCACCTTAACGTCATCGAA AAGGAACACAGTAGTCGGGCCAACGTTCTGAGAGATTACACAGTCACAG TGGCAGAAGGAGAACCACTTCAGGAGGGACGGGGCCCTAGCCAGGGCGG TCCCGCGAATTCAGTGGCAGAGGGTCTCTGGCGCTAGAGCTGGCAGGGCGG GACGGTTCGCATCGCGATTGACGGTTGGAGCGCTCTAC</p> <p>SEQ ID NO: 230 GGGAGGAGACGATCGGTTGGTTAAAATCTGGACTATCAAACAAAGCTGTT GTCACAAACCTTGGAAAGGACACGCCAAAAGCTAACCCGGGTTGTTCCACC CTGAACACTACTGTGGCTCTCACAGGCAGGAAAGATGGTACCGGTTAGAGTTG GCATACGAAATACACACAGATTAGAGAAATTGTTGAATTATGGGTTGAGAGAG TGTTGACCAATTGTTGCTTAAGGGTTGCAATAATGTTCTCTGGGGTATGAC GAGGGCAGTATTAGTGAAGATTGGAGAGAACCGGGCAGTTAGTATG ATGCCAGTGGCGGTAAAATAATTGGCAAGGGCACTGGAAATTACAAACAAGC TAATTGAAAGGGGCTGCCAGAAGGTGGAGAAAATAAGAGATGGGGAGCGTTA CCTGTCCTGTAAAAGATAGGGAGATTGCGTGTGAAATATAACCTCTCAAAACAATCCA ACATAATCCGAATGGGAAGTTCAGGCTCTACGGAAACAAGGCTTGGAGCGCAATT TTTACACAGGGATGGCTCAGGGAATGGGAGCTGGGTTCCACAA GCTGGGCTCAGGACTCCAGCGAGTGCATTGGCAATTGGGAGCTGGGTTCCACAA TTCCGGATATTCAAACCTTCAAAGAAAGGAACGTTCAAGTGGGATTGTT GGGAAGGAATCTACGGGGTTCTCTGGGGATTAAATCGGTGTCGGGGTT TAACGTTTACGATTGGAAAACCTTGGACITGGGAGACGGATTGAAATACAA CCGAGGGGGGTTATTGGCTGACAGTGGAAAATTAGTCGTCAGTGGGAAACCGG AGGACAGGCACTTCAACTCCTTCTTATGATTGGAGGCAAGTTCAAGGGCCAG GAGAACAAATCAAGTCGAGGGATGGCTAGGGCTTGGATGTTGCGA</p>
LD027	<p>SEQ ID NO: 231 GCGTAATACTGACTC ACTATAGGGAGC AGACGATGGTTGG</p> <p>SEQ ID NO: 233 GGAGGCAGACGATC GGTTGG CC</p>	<p>SEQ ID NO: 232 TCGGGACAGACTCGT TCATTCCC</p> <p>SEQ ID NO: 234 GCGTAATACTGACTC ACTATAGGTGCGAC AGACTCGTTCAATT CC</p>	<p>SEQ ID NO: 230 GGGAGGAGACGATCGGTTGGTTAAAATCTGGACTATCAAACAAAGCTGTT GTCACAAACCTTGGAAAGGACACGCCAAAAGCTAACCCGGGTTGTTCCACC CTGAACACTACTGTGGCTCTCACAGGCAGGAAAGATGGTACCGGTTAGAGTTG GCATACGAAATACACACAGATTAGAGAAATTGTTGAATTATGGGTTGAGAGAG TGTTGACCAATTGTTGCTTAAGGGTTGCAATAATGTTCTCTGGGGTATGAC GAGGGCAGTATTAGTGAAGATTGGAGAGAACCGGGCAGTTAGTATG ATGCCAGTGGCGGTAAAATAATTGGCAAGGGCACTGGAAATTACAAACAAGC TAATTGAAAGGGGCTGCCAGAAGGTGGAGAAAATAAGAGATGGGGAGCGTTA CCTGTCCTGTAAAAGATAGGGAGATTGCGTGTGAAATATAACCTCTCAAAACAATCCA ACATAATCCGAATGGGAAGTTCAGGCTCTACGGAAACAAGGCTTGGAGCGCAATT TTTACACAGGGATGGCTCAGGGAATGGGAGCTGGGTTCCACAA GCTGGGCTCAGGACTCCAGCGAGTGCATTGGCAATTGGGAGCTGGGTTCCACAA TTCCGGATATTCAAACCTTCAAAGAAAGGAACGTTCAAGTGGGATTGTT GGGAAGGAATCTACGGGGTTCTCTGGGGATTAAATCGGTGTCGGGGTT TAACGTTTACGATTGGAAAACCTTGGACITGGGAGACGGATTGAAATACAA CCGAGGGGGGTTATTGGCTGACAGTGGAAAATTAGTCGTCAGTGGGAAACCGG AGGACAGGCACTTCAACTCCTTCTTATGATTGGAGGCAAGTTCAAGGGCCAG GAGAACAAATCAAGTCGAGGGATGGCTAGGGCTTGGATGTTGCGA</p>

gp	SEQ ID NO: 236 GCGTAATAAGCACT ACTATAGGAGATAC CCAGATCATATGAAA CGG	SEQ ID NO: 237 CAATTGTGTCCAAG AATGTTTC	SEQ ID NO: 235 AGATACCCAGATCATATGAAAACGGCATGACTTTCAAGAGTGCATGCCGA AGTTATGTAACAGGAAAGAAACTATTTTCAAAAGATGACGGGAACATACAAGA CACGTAAGTTAACAGTCGGTACTAACTAACCATACATATTAAATTTCAG GTGCTGAAGTCAAAGTTGAAGGTGATAACCCCTGTTAATAGAAATGAGTTAAA GTATTGATTAAAGAAGATGGAAAACATTCTGGACACAAATTG
	SEQ ID NO: 238 AGATACCCAGATCA TATGAAACGG	SEQ ID NO: 239 GCGTAATAAGCACT ACTATAGGCAATTG TGTCAGAAATTG CC	

Table 8-PC

Target ID	Primers Forward 5' → 3'	Primers Reverse 5' → 3'	dsRNA DNA Sequence (sense strand)
PC001	SEQ ID NO: 474 SCATGGATGGTGG CAAATTGGG	SEQ ID NO: 475 GCGTAATAAGCACT ACTATAGGAGATTCA AATTGTATGTAGTC AGAATTTTAG	SEQ ID NO: 473 GCATGGATGTTGGACAAATTGGGGGGTCTGCCCCCTGCTGCTTC CCTCCACAAGTTGGCGGAATCCCTGCCCTAGTAACTGCTGTAACAGGCTGAA GTATGCCCTAACAAAGCTGAAAGTCATAAAATTGTCATGCAAAAGGTTGATCAAG TTGATGGTAAAGTGAGGACTGATTCTAAATTACCCCTGCTGGTTCATGGATGTCATT ACTATTGAGAAGACTGGTGAATTTCGGTCTGATCTGATGTTAAAGGAAATT TGCTGTGCACCGTATTACAGCTGTAAGGGCCAATAACAGTTGTAAGTAAGG AGAGTCCAACACTGGTCCCACAGGAATCCCATTTGGTAACACATGATGGCAGAA CCATTGTTACCCCTGACCCCAACATCAAAGTGAAATGACACAAATTCAAATTGAAATT GCTACATCTAAATTCTTGACTACATCAAATTGAAATCT
	SEQ ID NO: 476 GCGTAATAAGCACT ACTATAGGCACTGG ATGTTGGACAAATTG GG	SEQ ID NO: 477 AGATTCAAATTGAT GTAGTCAGAAATT AG	
PC003	SEQ ID NO: 479 CCCTAGACGTCCT ATGAAAAGGCC	SEQ ID NO: 480 GCGTAATAAGCACT ACTATAGGTTGACA CGGCCAGGTGGC CACC	SEQ ID NO: 478 CCCTAGACGTCCTGAAAGGCCGCTGGATCAGGAATTGAAAAATTATCGGC GCCTTGGTTACGAAACAAACGTTGAAGTGTGGAGAGTAAAGTACACTTGGCTA AAATCCGTAAGCTGCTGTAACCTGCTGAAACTGCTCACCCCTGAAGAAAAGGCTAAAG ATTGTTGAAGGTAATGCACTTACGTCATTGTTGGCTGGAATTGGTCTGGATG AGAACAGGATGAAGCTTGAATTATGTTGGCTGAAATTGAAGATTCTTGGAA AGAAGGGCTCCAACACTCAGGTGTTCAAATCTGGTCAAAATCTGGTCAATTTCATCATG CTAGAGTACTGATTAGGCAGAGACACATCCGGTGGCAGAGCAGGTTGGAACA TCCCCTGTTCATCGTGGCTGGACTCGCAGAAGCACATCGACTTCCCTGTC GTCGCCCTTGGGGTGGGGACCTGGCCGACCTGGCGTGTCAA
	SEQ ID NO: 481 GCGTAATAAGCACT ACTATAGGCCCTAG ACGTCCCTATGAAA AGGCC	SEQ ID NO: 482 TTGACACGGCCAG TCGGCCACC	

PC005	SEQ ID NO: 484 ATCCTAATGAAATCA ACGAAATGCC	SEQ ID NO: 485 GGTAAATCGACTC ACTATAGGTCCCTA CGTTCCTGGCTG CTTC	SEQ ID NO: 483 ATCCTAATGAAATCA ACGAAATGCC	SEQ ID NO: 486 GGTAAATCGACTC ACTATAGGTACCTAA TGAAATCAACGAAAT GCC
	SEQ ID NO: 487 TTCCCTACGTTCCCT GCCCTGCTTC	SEQ ID NO: 488 GGGTAAATCGACTC ACTATAGGTGGAA AATGAGGATCTGGAA AGAAAAG	SEQ ID NO: 489 GCTCAGCCATTAC CGCCCAACGC	SEQ ID NO: 490 GGTAAATCGACTC ACTATAGGTGGAA AATGAGGATCTGGAA AGAAAAG
PC010	SEQ ID NO: 491 GGTAAATCGACTC ACTATAGGCTCAG CCTATTACGCCCA ACGCG	SEQ ID NO: 492 ATGGAAAATGAGGTAT CTGGAAAGAAAG	SEQ ID NO: 493 GCTCAGCCATTAC CGCCCAACGC	SEQ ID NO: 488 GCTCAGCCATTAC CGCCCAACGC
	SEQ ID NO: 494 GGGAAATGAGGTAT CTGGAAAGAAAG	SEQ ID NO: 495 GCTCAGCCATTAC CGCCCAACGC	SEQ ID NO: 496 GCTCAGCCATTAC CGCCCAACGC	SEQ ID NO: 488 GCTCAGCCATTAC CGCCCAACGC

			ATGATCCAGGCCATTGGTACAGTTACAGCTTCAACGGCCCCGAGCCTGT TGTTGACACAAGCTCTATTCAAGGATAGAATCCTGCATGGACACTTCTTC CAGATACTCATTTCCAT
PC014	SEQ ID NO: 494 CTGATGTTCAAAAAAC AAATCAAACACATG	SEQ ID NO: 495 GGTAAATACGACTC ACTATAGGTGAGCG ATCAGATCCAACCTA GCCTCC	SEQ ID NO: 493 CTGATGTTCAAAAACAAATTCAAACACATGATGGCTTICATTGAACAAGAACG GAGAAGCAGAAGAAAATTGATGCCAAGGGAGGAATTCAACATTGAAAGAAAG GGGGTTGGTCCAGCAACAGAGACTCAAGATCTGAAGTACTACAGAAGAAAGGA GAAGCAAGTCGAACITCAAAGAAAATTCAAGCTCTAAATATTGTAATCAGGCTC GTTTGAAGGTGCTGTGAAAGTGAAGGAGAGGAGGAGGAGGAGGAGGAGGAGGATG CTCGTAAAGTCTTGGTAAGTAACCAAGGAAAGGAAAGGAAAGGAAAGGAAAGGAA GAGAGCCTAACTCTACAAGGACTGTTCCAGGCTGTTGAGGACCTGGTCAAGTGCCT CGCGTGAGACGGCAAGACAGGGACCTGGTCAAGTGCCTGCACAGTGCCT GCCAAATAACAAGGAGCCACCGCAACCGGAAAGACATCTACTCAAGGTGGACGATGAG TGCACACTGTCAGGAGATCACCGGAGGGTCAAGGAGGCTGATTGCTGCTCAGAAGAAC AAGATCAAGATCAGCAACAGATGGAGGCTAGGTTGGATCTGATGCTCA
PC016	SEQ ID NO: 499 ACTGGTCATTCTTGA GGATGTCAGT	SEQ ID NO: 500 GGTAAATACGACTC ACTATAGGTGGC ATAGTCAGATGGG GATCTGC	SEQ ID NO: 498 ACTGGTCATTCTTGTAGGATGTCAAGTTCCAAAATTCAATGAAATTGTCAGCAGCTCA AATTGGCAGATGGAACCTACGATCTGGACAAGTTGGAGTCAGTGATGATCAA GGCAGTTGGTCAAGGTTAGGGCACATCAGGATTGATGCTAAGAACACGGTG TGTGAGTTCACTGGAGATATTCTAAAGAACCTCCAGATCTAGAAGATATGCTGGGAC GTGTCTTCATAATGATCAGGAAAACCCATTGATAAAGGTCCCCCTGGATCTGGCTGA GGACTACCTCGACATCCAAGGAGACAGCCGATCAACCCGGTGGCTGGTATTTATCCC GAGGAAATGATCCAGACTGGGATCAAGGGCCATOGACGTGATGAACCTCTATGCCA GAGGCCAGAAGATTCCGATCTCTCCGGCGCTGGCTGCCCCACAAATGAGATTG GAGTGGACCATGAGACAATTGGGAGGCTGGCTGGTCAAGTACCTGGCAAGTGTGCT GGAACATGCCAGGTTCTCAAGGAGACTTGGCCAACGATCCGACCATTCGAGGCGCATCAGC GTGTGTCGTTCTGAACCTGGCTCTGACGGCCGGGAATTCTGGCCTACCGATGCGAGGAGCAG CGCGTTGGCTCTGACGGCCGGGAATTCTGGCCTACCGATGCGAGGCGTTGCGTGAAGGTG TGCTGGTCATCTGACCGACATGTGCTGTAACGGGGTTCCGGGTTACATGTACA CTGCCGCTCGAGAAGAAGTGCCGGCTAGGGGTTCCGGGTTACATGTACA CCGATCTGGCCACCATTAAGGGGGGGTGGAGGGGGTGGAGGAGTTACCCACAAACGGC TCCATCACGGCAGATCCCCATCTTGACTATGCCAA
PC027	SEQ ID NO: 504 CAAGCTAACTTGAAGA GTACTACCGAGAAGG	SEQ ID NO: 505 GGTAAATACGACTC ACTATAGGTGGG	SEQ ID NO: 503 CAAGCTAACTTGAAGTACTACCGAGAAGGCTGAATCAGAGATGGAGAACGTT TGCCAGTCACAGTAAAGGACATGGGAGCATGGGAGATTTACCCACAAACAAATCCA

		ATTGAAGGCAATACT CGATCAG	ACACAACCCAAATGGGGGGTTGTAGGGTTGTGATGGAGAATACATAATA TACACGGCTATGCCCTTCAGTGAATATGCCATTCGGATCCAGAATTTGTATG GGCACAGGACTCCAGTGAATATGCCATTCGGATCCACCATTCGAATC TTCAAGAACATTCAAGAAAAAAAAGAACATTCAAGTCGACCTTGGCCGAGGAAT CTATGGGGTTCTCTGGGTGAATTCAGTTCTGGCTTAGCTTCTATGACT GGGAAACGCTTGAGTTAGTAAGGGCATTGAAATACAGCCTAGAGCTATCTACTG GTCAGATAGTGGCAAGTTGTATGCCCTGCTACCGAAGATAGCTATTTCATATTG CCTATGACTCTGACCAAGTCCAGAAAGCTAGAGATAACAAACCAAGTTGCTGAAGA TGGAGTGGAGGCTGCCTTGTGTCCTAGGTGAAATAATGAAATCCGTAAGAAC GGTCTTGGGTAGGAGACTGCTTCATTACACAACCGACTAACCGTATCAA CTTGTGGGGTTGGTGAATTGTAACATTGCACTCTGGACCGTCCCTATATGTC TGGGCTATGTAACTAGAGATGACAGGTTATACTTGGTTGATAAAGAGTTAGGAGA GTCAGSCTATCNATTGCTTATTCGACTGAGTTATCAGACTGAGATTGCGAGTOATGCGAC GAGACTTCCCACGGCTGATCGAGTTGCCCTCAATTCCAAAAA
	SEQ ID NO: 506 GCGTAATACGACTC ACTATAGGCAAGCT AACTTAGGAAAGT CCAGAAGG	SEQ ID NO: 507 TTTTGGATTGAAAG CAAACTCGATCAG	

Table 8-EV

Target ID	Primers Forward 5' → 3'	Primers Reverse 5' → 3'	dsRNA DNA Sequence (sense strand)
EV005	SEQ ID NO: 577 GACAAAAACATCCGC AAACTG	SEQ ID NO: 578 GCGTAATACGACTC ACTATAGGCTCTT GCATCAGCTTGTATC	SEQ ID NO: 576 GACAAAAACATCCGC GTGCATTCTCGTGCACGTGTAAGGCAAAAATACTGAAAGCCCCCAGGAAGGGTGC ATTGGGATTCTGTAAGGAACTGCAAATGCTAGGATGCCGAGAA ATTAGGATTCAACGTTATGAGAGTTCTCAGAAGGTTATTGAAAGAA CTAAGAAAATTGATAGGCATTATACCATGCTTATAATGAAAGCTAA GTTACAAAGATAAGAGATAATGATGGACTATTCATAAAGGGGAGAA AGCACGTACAAAGATGCTCAATGATCAAGCTGATGCAAGGAG
	SEQ ID NO: 579 GCGTAATACGACTC ACTATAGGACAAA ACATCCGCACACTG	SEQ ID NO: 580 CTCCCTGCGATCAGC TTGATC	
EV009	SEQ ID NO: 582 CAGGACTGAGAAT CTATAATAGG	SEQ ID NO: 583 GCGTAATACGACTC ACTATAGGCTGGAA AGATGGGTAATACTC	SEQ ID NO: 581 CAGGACTGAGAATCTATAATAGGAAACCCAGGAATGGGGTTTAGGCCAATG CCGACAAACAAAGGAAGATACCCGTATTGGTTACAGGGTTCTAA CTAGGAAAATGAAAAATGAAATCCTCTCATATTAGACAGTTACACTCCCC GAAAAATGAAAAGGGAAAATTCCAGTAAGCCGCTGTTCATACGGAGAAAATTG ATTAGGGGACAAGTGTGATGTGAGGAAATGGAGCCGTGACCCCC GAAAATCATTTGATTACCTCAGAAATGCCCTTGTATATTCTGAAGCTGAACAG
	SEQ ID NO: 584 GCGTAATACGACTC ACTATAGGAGAC	SEQ ID NO: 585	

	TGAAGAATCTATAAT AGG	CTGGAAAAGATGGGT AAATACCTTC	GATATATGGATGGGAACCGGAGTACTACAACGATCCAAATGATGTTCCAGATGAT ATGCCGCAGCAGTTGAAGGGACCATATACTGTTATAATATCACCAATCCAGTGGAGA GAAATACCGTCTGGTAACATGCGCAGGTGAAATCCGGCAGCTGGAGTACTT
EV010	SEQ ID NO: 587 CCAATGGAGACTTG AAGATGTC	SEQ ID NO: 588 CGTAATACGACTC ACTATAGCTCCCT CATCAACATGTGC	SEQ ID NO: 586 CCAATGGAGACTTGAAAGTGAAGCTGCTTCAACGCCCATATTAGAAGTGAAGTGTCTTAGA GAACTTAAAGTACAAGGGGTATAGGTCCTTGTGCTCTAAATGTCAAAAATTC TCITGTTCTGATTAGAAATAGGCATGGGTAACACAGTTCAGTGGAAACTGTGTA GCTTAAGTCCAAGCACTACGGTGCCTTATTTTCAAGGTTGTTAATCAGCATGCA GCACCCATTCCCTAAGGGGAGCTGGATGCTTATTACTCAATAATCAGC ATTCAAGTGGTCAGAAAAAAATAAGGGTAACTACAA TAGCAAGAAATTGGGGGA TGCCACTGCAAATTTCACCATATTAGCGCTGGCTTGTACGAACAAACTCGGGCT GTTTTAAATGGCGAGGATCGCTGTATAATAGCGAGAAACTGTGAGAGTTCAGATG TTCTCAGATGGGTTGACAGAAATGTTGATACGATTGTCAGAAATTGGAGAATAT AACAAAGATGACACCAACAGCTTCAGGCTCAGTCAAACCTTCAGCTTAAATCCACA GTTTATGTTATCATCTACGTCGTTCCCATAATTCTACAAAGTGTTCATAATTACCCAGA TGAAAACTTCACTTCTATAGGCACTGTTGATGAGGGAG
EV015	SEQ ID NO: 592 GTTAAGCCTCCAAAG GGTTATTC	SEQ ID NO: 593 GCGTAATACGACTC ACTATAGGGAGCAC AAAGAACGCAAGTC AG	SEQ ID NO: 591 GTTAAGCCTCCAAAGGGGTATTCTCCTTACGGGOCCTCCGGCACGGGAAACG CTGATGCCAGGGCCGTTGCCAACGAAACTGGTGCGETCTCTTCCTCATCAATG GCCCGAGATTAGGCAAGGCTGGCGGAGAAATCCGAGAGCAATCTTAAAGG GTTTGAAGAGGGCTGATAAAACTCTCTGCAATCATCTTATCGACGAATTAGAC GCAATGCTCCAAAGCGCAGAAAGACTCATGGTGGAGTGAAGACGATCGTC TCCCAACTGTGACTTTGATGGAGCAGCAGTGAAGAAAGTTCCCATGTATCGTGA TGGCGGCCAGAACAGGCCCAATTTCATCGACCCCTGCACTCAGACTTGGCC GATTGAGAGAGATCGACATGGTATCCCCGAGCCTAGTGAAGATTAGAAGT ACTCGAAATACACACCAAAACATGAAATTGGCTGACGATGTAGATTGGAAACAGA TTGGCGCAGAGACTCACGGTCATGAGGTGCTGACTTGGCTTCTTGGCTC
EV016	SEQ ID NO: 597 GGTGATCCCTGATA GTGTTAAG	SEQ ID NO: 598 GGGTAATACGACTC ACTATAGGCCTCAG CATAAGATGACATG	SEQ ID NO: 596 GGTGAATCCTGATACTGTTAAGTTCAAAATTGTAACAGCTCAAGTT ATCAGATGGAAACAGTTAGGCTGGACAAGTTGGAGTCAGTGGACAGAAAGGG GTTGTCAGTTTGAAGGCACCTCCGGAAATTGATGCTAAAAACACTTTATGTGA ATTACAGGGAGATATCTTAAGAAGCTCAGTGTGAAGATAATTGGCTGTTGTT TTAATGGATCTGAAAGCCATCGATAAAGGGCCCAATCTTAGCTGAAGATT CTTGACATTCAAGGTCAACCTATAAAATCTGGTCTGTATCTATCCAGAAGAAAT GATCCAGACTGGTATTCTCGGATGTGATGAAATTCCATTGCCAGAGGACAAA
	SEQ ID NO: 599 CGGTAAATACGACTC ACTATAGGGGTGAT CCTTGATAGTGTAA	SEQ ID NO: 600 CCTCAGCATAAGAT GACATG	

	G		AGATTCCAATTTCCTGCAAGCTGGTTACCCCCAACATGAAATCGCTGGTCAAATC TGTAGACAAGCTGGCTTGCAAAATCCAGGGAAATCTGTCATTGATGATCATGA AGACAACATTGCTATCGTTTCGGCGCATGGGTCAATATGAAACAGGCCAGAT TCTTCAGCAAGATTGAAAGAATGCTCTATGGAAAATGTTGCTTACATTGACTTAA AACTTGGCAATGATCCTACCAATTGAAAGATTAAACCCCGTTGACTTAAAC AGCGGCTGAATTATGGCATATCAATGTTAGCATATTGACTGAGG ACATGTCATCTTATGCTGAGG
--	---	--	---

Table 8-AG

Target ID	Primers Forward 5' → 3'	Primers Reverse 5' → 3'	dsRNA DNA Sequence (sense strand) 5' → 3'
AG001	SEQ ID NO: 769 CGCTAATACTGACTC ACTATAGGCATGG ATGTTGGACAAATTG G	SEQ ID NO: 770 GATTCAGTTGGAT GGTGTG	SEQ ID NO: 768 GCATGGATGTTGACAAATTGGGGGGTGTTCGCCCCCAGGGCCCTCACCGGG CCACACAAGCTCAGGGAGTCCCTCATTAGTGTATTTCCTGGTAACAGGGTTGAA GTACGGCCCTGACAAACTGTGAGGTGACCAAGATCGTTATGAGACTTATTAAAG GTCGAGCGGCAAAGTCAGGACTGATCCCTAACTATCCTGCTGATTATGATGIGA TCACCAATTGAAAAAACCTGGTGAATTCTCCGTTGATCTATGATGTTAAGGGAAAGA TTCACTATTACAGGATCACTGCTGAAGAACAAATAACAAATTGCAAGTCCG CAAGGTGCAAAACGGACCAAAAGGTATTCCATTCTGGTCAACCCAGATGGTAGG ACCATTAGGTACCCGTACCCAATGATCAAGGTAACAGACACATCCAACCTGGAAA TC
AG005	SEQ ID NO: 774 CGCTAATACTGACTC ACTATAGGCACAC CAAACCTGAGGGAAA AC	SEQ ID NO: 775 CCTTTGCCCTCTGG CGTTAG	SEQ ID NO: 773 CAACACCAACTCGAGGCCAAACATCCGTAATTGATCAAGGATGGTTGATCATTAA AGAAAACGGTGGCAGTGCACITCTAGGGCTCGTGTCCGTAAAAACACAGAAGCTC GCAGGAAGGGAAGGCACTGCGGTTCGTAAGAGGGAAAGGTACAGGCGAACGCTC GTATGCCCTAAAGGAACATATGGATCCAAGGATGCGTGTCTTGGGGCTCTCCT GAAAAAAATACAGGGAAGGCCAAAAGATCGACAGGCATCTGTACCAACGCCCTGTAC ATGAAGGCCAAGGGTAACGTGTTCAAGAACAGAGGTGTGATGGAATACATCC ACAAGGAAGGGCTGAGAACGGCCGTGCAAGAACAGAGGTGTGGCCAAAGATGGTGG CCAGAAGGCAAAGG
AG010	SEQ ID NO: 779 CGCTAATACTGACTC ACTATAGGCACACT TCCAAAGGGTTC	SEQ ID NO: 780 GAAGGTGCCGG CATCTTTC	SEQ ID NO: 778 CAAACCTTCCAAGGGTGTGCGAAGGGACCAATGGACATTGAAGATGGCTT TCAACCGGTACTTTGGAGGTGAAGTGGCTCTAGGGAAATTAAAGTTCAGGGGTAT TGGCTCATGCGTGTGCGCTAAATGTAAGTCCTTGGTAGCGGACACGGAAATA

G	SEQ ID NO: 782 GCGTAATACTGACTC ACTATAGGGAAAGG TGCCTGGTCATCTTG	SEQ ID NO: 784 GCGTAATACTGACTC ACTATAGGGAAAGG GCCGAGGAATTGAG TG	SEQ ID NO: 785 CAACTGTGCGAAA TCAGGTTCC	SEQ ID NO: 787 GCGTAATACTGACTC ACTATAGGGCAACTG TTGCAGAAATCAGGT CC	SEQ ID NO: 790 CGACCGGGCTCTTC GTAAAATG ACC	SEQ ID NO: 792 GCGTAATACTGACTC ACTATAGGGACCC GCTCTTCTGTAATG AGGAAAAC	SEQ ID NO: 788 GTGTCAACGGATCAG ATTCTTGGACATCCA AGGGATCCCATT CGATCACGGAGACA ACCGCCCCGTTCT GTCCTCTGAAATT GTATCTTAACCTG CAGAGAAGTAGC GCCACCATTTAGGA
	SEQ ID NO: 781 CAAACCTTCCAAAGG GGTGTTCG	SEQ ID NO: 786 GAAAAGGCCGAGGA ATTGATG	SEQ ID NO: 783 GAAAAGGCCGAGGA ATTGATG	SEQ ID NO: 789 GCGTAATACTGACTC ACTATAGGGTGTTC AACGGATCAGGAAA ACC	SEQ ID NO: 791 GTGTTCAACGGATC AGGAAAAC	SEQ ID NO: 785 GAAAGGCCGAGGA ATTGATG	GGCATGGGAAATGGCAATGGAAAGATGTGCACCTTCAACCCCTAGCACCGACCG ATGGGGCTTTTCGAGGTGGTCATAAGCTTATTACAGTTATTACAAATATCAGCACTGAGTGGCCAAAGGAG GATAAGGGTGACGACGATAGCGAAATTGGGGAGCACTGGGGAATATTGGGGTATTATGGCCGGAT CCACATCAGCGGGGTTCTGATCAGGAACGTGGCGGTATTAGGGTCGAT GGCTGTTATAGAGCGGAGACCGATGAGAGTCCCGATGTTTAAGATGGGTCGAT CGGATGCTGATTCTGTTGTGTCAAAAGTTGGAGAATAACAAAGATGACCGAG CATCCCTTC
AG014							GGCGCCTTGTGCAACAAAGATTGAAGATCTGGAATACTATGAGAAGAAGGA GAAGCGAAGTGCAGACTACAAAGAAAAATTCAATCTCCAACTGCTGAACCAAGCC CGTCCTTAAGGGTTCTGAAAAGTCCGGCGAAAGATCATGTTAGAGCTGTATTGGATGAGG CTCGCGAAGAAGCTGGTGAAGTCAACCGGGATCAAGGCAAAATAATGCCCAAGATTCT GGAAATCTTTGATCTTCAGGGACTCTACCCGCTTTCGAGGCAAAACGTGACCGTA CGCGTCGCCCAAAAGACAGAAACCTTAGTCCAAATCAGTGTGCCAACATCGCAA CCAATACCGTACCGTACCGGCCGAGATGTACACCTGTACATCGATGACGAAAC TCAAACGTGTCGGAATCCGTAACCGGGGAAATCGAACCTTGTGCAAAACAAA ATTAAGGTCTGCAACACCCCTGGAGGGAACGTTTGACCTGATTTCGCAACAGTTG
AG016							GTGTCAACGGATCAG ATTCTTGGACATCCA AGGGATCCCATT CGATCACGGAGACA ACCGCCCCGTTCT GTCCTCTGAAATT GTATCTTAACCTG CAGAGAAGTAGC GCCACCATTTAGGA

Table 8-TC

Target ID	Primers Forward	Primers Reverse	dsRNA DNA Sequence (sense strand)
TC001	SEQ ID NO: 864 GGGTAATACGACTC ACTATAGGTGCGA AACAGGCTGAAGTA TGC	SEQ ID NO: 865 GGTGTGCCATTG CATCCT	SEQ ID NO: 863 CTGCGAAACAGGCTGAAGTATGCCATTGACCAACTCAGAAGTGACGAAGATGTTA TGCAAAGATTGATTAAGTGTGACTATTGAGAAAAGTGGGAATTCTCCGCTTGATT GGTTTCATGGATGTTGACTATTGAGAAAAGTGGGAATTCTCCGCTTGATT ATGATGTTAACGGAAAGGTTACAATCCATGCATTACTGGAGAAGGGCAAATA TAAATTGTCAAAGTGAGGAAAGTACAGAACGGCCCAAGGGCATTCCCTCTTGA GTGACCCGGGACGGACCCATCAGATACCCAGAACCTTGAAAATTCTTGATT GACACCTCAAATTGGAGATTGGAGATTGCCACTCGAAAATTCTTGATT TCGGTAAATTGTTGATGATTACTGGAGTTGTAACCTGGGGGGTGCGGTACAG TGGTAGGCCAGAACGTCAACCCAGGGTCTTGACATCGTTCATATTAGGATGC AAATGGGCACACC
TC002	SEQ ID NO: 869 GGGTAATACGACTC ACTATAGGCATCCAT GTTGAGGTGGGCA	SEQ ID NO: 870 CTTGTGAACAGCG GCCATC	SEQ ID NO: 868 CATCCATGTTAGGGGGCATTGGGGCGTCCGGCTGCGTTTCATGTTT GAGTACGGCTGTTGTTGGCCCCCTCGAGGGCCTGCATCTCGAT GGTGCCTGGGTGCCATCGATCTGCTGGAGCTGCTTGTGTTGAGCT TTGATGGCCTGGATGGCCGCTGTTCACAAAG
	SEQ ID NO: 871 CATCCATGTTGAGG TGGGCA	SEQ ID NO: 872 GGGTAATACGACTC ACTATAGGCTTGTG AACAGGGGCCATC	
TC010	SEQ ID NO: 874 GGGTAATACGACTC ACTATAGGTGTC CATTGCGCCGCTC	SEQ ID NO: 875 ATGTCCTGGTACTT GAGGGTTCTCC	SEQ ID NO: 873 ATGTCCTGGTACTTGGGGGATTGGTCTCACCGTGGAAAATCA AAATTGGAAAAATGTGTCCTCATGAGAAGGATCCGATGGGGTTGAATGAAACTAGT GTGAGGAGGGACGGGTTCAAGGGGGCGTTGAAAACATAACTGTACAAAATCGG CTGGATCATATAATGAGACITGGGTGAGGTCTGGAGTTGTTGAGGTT AACAGGAGTCTGCTGGGAGTTGTTGAAAACITGGGAATTGGGAGT AAATGGTACAT
TC014	SEQ ID NO: 879 GGGTAATACGACTC	SEQ ID NO: 880 ACAAGGGCCGTACGA	SEQ ID NO: 878 CAACAGGCGCTGAAGATCATGAAATTACGAGAAAGAAGGGAAAACCGGGGGAAAT

	ACTATAGGCAACAG CGCTTGAAGATCAT GG	ATTCTCGG SEQ ID NO: 882 GCGTAATACGACTC ACTATAGGACAAGG CCGTACGAATTCT GG	TGGAGAAGAAAATTCAAGTCGTCAAACATGCTGAAACCAAGCCCCGTTGAAAAGTATA AAAGTGGTGAAAGACCACGTCACAAATGCTGATGACGCCGCCAAACGCTGCT GGGAAATCACCAATGACCAAGGGAGATTCAACACTTTGGAGTCTCTTATCC CGAGACTCTACCAAGTACTTGGGAATCAGTGATGAGTTGTTGAGAACAAATA TGGAGAGTCAGGAAACAGAACAGGAGATATCCAGGGCATTCTCCAGTGT TGCGACGAAATACAGGGACGCCACTGGTAAAGACGTTCATCTTAAATTCGACGAT GAGGCCACTGCCATCGAAACCCGGAGGAGTGGTTGTATGCGCAAAG GGTAAATCAAGATTGACAACACCTGGAGGCTGTTGGATTAAATGCAACAGCA ACTTGTGCCAGAAATTCTGTAACGGCTTGT
TC015	SEQ ID NO: 884 GCGTAATACGACTC ACTATAGGATAAC AGTGGTGTGAAAG GGAAAG	SEQ ID NO: 885 TCGGATTGCCGGC TAATTAC SEQ ID NO: 887 GCGTAATACGACTC ACTATAGGTCGGAT TCGGCGGCTTAATT AC	SEQ ID NO: 883 CGATACAGTTGCTGAAAGGGAAAGGGGGGAAAGAGACCGTCTGCATTGTGCT GGCGACGAAACACTGCCCGATGAGAAGATCCGGATGAAACAGGATGTCAGGAA TAATCTACGGGTTAGGCTCTGACGTCGTTGATCCAGGCTGCTGCAGGCTG AAATACGGAAATCTCTCGAGGATCCACGTTGGCTACTTAAACCAATACCTCC GTCGAAAGTGGAAACGGGACGTTTTCATGTCGTTGGCATGCGAGCCGTTGAATTC AATCCACAAAGGGGACGTTGGAAACCGTCAACCATATTGATTCGTCGCCCG AAAGGGTGGAAACGGGACGTTGGAAACAGGAGAAGAGGAGGAAAGCCTTGAACG TCCATTGTGACGGGCGATQCGATCAAAGGAGAAGAGGAGGAAACACTTCGACAA CCGTCGAAATTACCTCTACGGCCACCGTGCCTGACGCTTGTACGGACCTCC AATGTCGAAATTACCTCTACGGCCACCGTGCCTGACGCTTGTACGGACCTCC CCACACGTTGGATTCCTCTGACGTTGGCAACGAAACCGGTTGGCTTTCTTAAT CACGTTGCACTGGCCAAACGAAACCGGTTGGCTTTCTTAATCAACGGTCCC AATTATGATAATTAGCGGGAAATCCGA

Table 8-MP

Target ID	Primers Forward	Primers Reverse	dsRNA DNA Sequence (sense strand)
MP001	5' → 3' SEQ ID NO: 1042 GCGTAATACGACTC ACTATAGGTTAA CGCACCCAAAGCAT GG	5' → 3' SEQ ID NO: 1043 CAATACCAACACGC CCTAAATTGC SEQ ID NO: 1045 GCGTAATACGACTC ACTATAGGCAATAC SEQ ID NO: 1044 TTGTGTAAGGTTAAC ATGTGAAAGGTGCTT TTGTGTAAGGTTAAC TTGTGTAAGGTTAAC TTGTGTAAGGTTAAC	5' → 3' SEQ ID NO: 1041 GTTAAACGCAACCCAAAGCATGGATGGTGGACAAATCGGGGGGTGCTTCGCTC ACGTCCAAGCACGGGTCCACACAAACTCGTGAATCACTACCGTTATTGATCTCT TGCGTAATCGTTGAAGTATGCACTACTGGTGGCGAAGTCACCAAGATTGTCATG CAAAGATTAAATCAAGGTTGATGGCAAAGTCCGTAACGGACCTTAATTCCAGGCC GTTTATGGATTTATATCAAGGTTGAGCATTAGATGATCTATG ATGTGAAAGGTGCTT TTGTGTAAGGTTAAC ATGTGAAAGGTGCTT TTGTGTAAGGTTAAC TTGTGTAAGGTTAAC TTGTGTAAGGTTAAC

	GTTTAAACGCCACCC AAGGATG	CAAGAGGCCCTAAA TTGC	TCATGATGGCCGTACTATTGCTTACCCCTGACCCTAACATCAAGGTTAATGACACTA TTAGATACGATATTGCATCATCTAAATTTGGATCATATCGGTTGGCAATTAGGGTGTGGTATTG ACTTGTGCATGATAACTGGGGTCGCAATTAGGGTGTGGTATTG
MP002	SEQ ID NO: 1047 GCGTAATACTGACTC ACTATAGGGTGGC AAAAAGGAAGGAA GG	SEQ ID NO: 1048 GCTGATTAAAGTGC ATCTGCTGC	SEQ ID NO: 1046 GGTGCaaaaaaaGGAGAGAAGGGACCATCAACCGAAGATGGGATACAAAAAGCTT CGATCCACTGAAGAGATGGCTGATAAAGAAACAAGAATTTTAGAAAAAAATTGGA ACAAGGAAGTAGGGATAGCCaaaaaaaATGGTACAACTAATAACCGAGGTGCAATTG CAAGCATTGAAACGCGTAAGAACCGGTACGAACAAACAATTAGCCCCAAATTGATGTTA CCATGTTAACTATTGAACAAACAGCGGGAGGGCATAGAAGGTGCCAACACAATAC AGCAGTATTGACTACCATTGACACTGAGCAGATGCACATTAAATCAGC
MP010	SEQ ID NO: 1052 GCGTAATACTGACTC ACTATAGGCAGACC CTGTTCAAGAATATG	SEQ ID NO: 1053 GCATTGGGAATCGA GTTTGTAG	SEQ ID NO: 1051 CAGACCCCTGTTAGAATATTGATGCGATTTAGTGCTGTTAGTGTAAGTGAAGAACGGCATCT GCCGTTTAAATGGCTCGTGTGGCTGATGCTGACCGTGTGCAAAACTGAGGATAGTCCAG ATGTGATGCGGTGGCTGATGCTGACCGTGTGCAAAATTGGTGT TATCAAAAGGATGATCCAATAGTTAAGAAGGGTCTCAATTTCACAAAGTTTAAATAATAGTCCT CAGTGTATGATGATCATTATAGGGCACATGTTGATGGTGAAGATGTTACCCAAAGTT GATGAAACATCATTATAGGGCACATGTTGATGGTGAAGATGTTACCCAAAGTT AATCATGATACAGGCCAATTGCTGATAGCTATAGTTAATGTTAGTGTAGCCAGAACCTG TACTTTGGATACAGTAGTATTCAACCGTACATAAAATTATTGATGGACACATTTT TCCATTATTTGATATTCCATGGAGAGACTATTGCTCAATGGAGAGCAATTGGATTAT CAAATAAGCAGCAGTAGTAACTCTAACCTGATAGTAACTCTAACCTGATAGTAACTCTAAC ATGCTCAGGAAATTCTCAAAACTCGATTCCCAATGC
MP016	SEQ ID NO: 1054 CAGACCCCTGTTCA GATATG	SEQ ID NO: 1055 GCGTAATACTGACTC ACTATAGGGCATTC GGAATCGAGTTTG AG	SEQ ID NO: 1056 CAGACCCCTGTTAGAATATTGATGCGATTTAGTGCTGTTAGTGTAAGTGAAGAACGGCATCT GCCGTTTAAATGGCTCGTGTGGCTGATGCTGACCGTGTGCAAAACTGAGGATAGTCCAG ATGTGATGCGGTGGCTGATGCTGACCGTGTGCAAAATTGGTGT TATCAAAAGGATGATCCAATAGTTAAGAAGGGTCTCAATTTCACAAAGTTTAAATAATAGTCCT CAGTGTATGATGATCATTATAGGGCACATGTTGATGGTGAAGATGTTACCCAAAGTT GATGAAACATCATTATAGGGCACATGTTGATGGTGAAGATGTTACCCAAAGTT AATCATGATACAGGCCAATTGCTGATAGCTATAGTTAATGTTAGTGTAGCCAGAACCTG TACTTTGGATACAGTAGTATTCAACCGTACATAAAATTATTGATGGACACATTTT TCCATTATTTGATATTCCATGGAGAGACTATTGCTCAATGGAGAGCAATTGGATTAT CAAATAAGCAGCAGTAGTAACTCTAACCTGATAGTAACTCTAACCTGATAGTAACTCTAAC ATGCTCAGGAAATTCTCAAAACTCGATTCCCAATGC
MP027	SEQ ID NO: 1062 GCGTAATACTGACTC	SEQ ID NO: 1063 CCAAAAATAACCATCT	SEQ ID NO: 1061 SEQ ID NO: 1061

	ACTATAGGGCTCGT TTGTTCCATCCAGA AC	GCTCCACC	GCTCGTTGTTCCATCCAGAAACTTCCCATCGTGTAACTGGCTCAGAAGATGGT CCGTAGAATTGGCATTCTGGTACTATCGATTAGAACTTCATTAACCTAAACTATGG TTAGAACGTGTATGGACAATCTGTTGCTTACGGGGATCTAATAATGTAGCTCTAG TTATGATGAAGGAAGTATAATGGTTAAAGCTGTTGGCAGTCATAGTGAAGAAATTCA AACCTTAAGGGATGCTCAAGCAGAAGGGCCGAAATCAAAGATGGTGAAACGTT TACCAAACAAGTTAAAGACATGGTAGCTGTGAATAATTCCACAGTCATAATCT CATATACTCGAATGGTAGATTTAGTAGATGTGTGATGGAGAGTATTATATA ACATCAATGGCTTGGCTTAATAAAGCATTTGGCTCCGCTCAGGATTGGTATGGTC TTCTGATTTCCTGAGTATGCCATTAGAGAAAATTCTCTACAAATCAAAGTTTAA TTTAAAGAAAAAAAGCTTTAAACCGAGAAGGTGGAGCAGATGGTATTGG
NL001	SEQ ID NO: 1573 GGTAATACTGACTCA CTATAGGGAAATCAT GGATGTTGGACAAAT TGG	SEQ ID NO: 1574 ACTGAGCTTCACA CCCTTGGCC	Primers Forward 5' → 3' Primers Reverse 5' → 3'

Table 8-NL

NL001	SEQ ID NO: 1573 GGTAATACTGACTCA CTATAGGGAAATCAT GGATGTTGGACAAAT TGG	SEQ ID NO: 1574 ACTGAGCTTCACA CCCTTGGCC	Primers Forward 5' → 3' Primers Reverse 5' → 3'	dsRNA DNA Sequence 5' → 3'
	SEQ ID NO: 1575 GAAATCATGGATGTT GGACAAATTGG	SEQ ID NO: 1576 GGTAATACTGACT CACTATGGACTG AGCTTCACACCT TGGCC		GAAATCATGGATGTTGGACAAAGCTGTTCCGTTGATCTATGATGTTAAGGGAC GGTCACACAAAGCTGCGAGAACTCTCCCACCTTGTCAATTGTAATCGGGCT CAAGTAGCCTTAACTAACCTGTGAAGAAAATTGTGATGCGGGTCTCATCA AGGTTGACGGCAAAGTGGGACTGACCCCAACTATCCTGCAGGTTATGGACGT TGTCAAATCGAAAAAGACAAACGAGTCTTCGGTTGATCTATGATGTTAAGGGAC GTTTCACCATCCACAGGATCACAGCTGAAGAAGCTAAGTACAAGCTGTGCAAAGT GAAGGAGGGTTGACAGGACCCCAAGGGCATTCACTTGTGACCCCTAGTAAAAGTC CGCACCCACATCCAAAATCATGGACTTCATCAGATTGGACTCTGGTAACCTGTGT ACATGCCACATCCAAAATCATGGACTTCATCAGATTGGACTCTGGTAACCTGTGT ATGATCACTGGGGGTCTTGCACATCGGCACATCAAGGACGGTGTGGGACACACTT CGACACCCGGGTCTTGCACATCGGCACATCAAGGACGGTGTGGGACACACTT TTGCACACTAGGTTGAAACAACGTTTCAATCATCGGCACAGGGTAGTAAGGCATACGT GTCTCTGCCAAGGGCAAGGGTAGTGAAGCTCACT
NL002	SEQ ID NO: 1578 GGTAATACTGACTCA CTATAGGGAAATGAAA GGCCCTACAACTGG C	SEQ ID NO: 1579 CTGATCCACATCC ATGTGTTGATGAG		SEQ ID NO: 1577 GATGAAAAGGGCCCTACAACTGGGAAGGCCATTCAAGAAACTACGGCAAACAGAG GAAATGCTGATAAAAGAAAAGAACAGACTTTTAGAAAAGAAAATTGAAAGTTGAA AGTTGCCAGGAAGAATGGAAACAAAAAAACAAAAAGAGCCGGATCCAGGCACTCAA AGGAAGAAGGGTATGAAAAGCAATTGAGCAGATCGATGGAACGTTATCAACAA TTGAGATGCGAGAGGGCCTCGAAGGAGCCAAACAGGAATACGGCAGAA

	SEQ ID NO: 1580 GATGAAAAGGGCCT ACAACTGGC	GCGTAATAACGACT CACTATAGGCTGA TCCACATCCATGT GTTGATGAG	AAACTATGAAGAACGGCAGATGCTCTCAAAGGGGTCATCAACACATGGATGT GGATTCAG
NL003	SEQ ID NO: 1583 GGGTAATAACGACTCA CTATAGGTTCCGGTC GTCCTTAGAGAAGG C	SEQ ID NO: 1584 TTGACGCCGACCAG GTCGGCCAC	SEQ ID NO: 1582 TCCGGTCTCTTACGAGAACGGCACGCTCGAACAGGAGTTGAAGATCATCGG AGAGTATGGACTCCGTAACAAAGCTGAGGTGGAGAGTCAAATACGGCCCTGGC CAAGATTCTGTAAGGCCGCTCGTGACTCTGGAAAGAACAGGACAGAA ACGTTTGTGTTGAAGGTAAGGCCCTGCTGCGCTGGCTGGCTGGGTATTGGAGTGTG GACGAAGGAAGAATGAAGCTCGATTACGTCCTGGTTAAAATTGAAGATTTCT TGAAACGTCGTCAGACTCAGACTCAGGTGACAAACTCGTTGGCCAAGTCCATCCAT CACGCCCGTGTACTCATCAGACAAGACATATCAGAGTGCACAAACAGTAGTGA ACATTCGGAGCTTGTTGGACTCGCAGAACATTGACTCTCGCT GAAGTCGCCGTTGGCCGACCTGGTGGTCAA
NL004	SEQ ID NO: 1585 TCCGGTCTGTCCTTA CGAGAAGGC	GGGTAATAACGACT CACTATAGGTTGA CGCGACCGAGTC GCCAC	SEQ ID NO: 1586 GGGTTGTTGACTGT TGGATGAGG
	SEQ ID NO: 1588 GGGTAATAACGACTCA CTATAGGGGAGTGG CTGCTGTAAGAACTG	SEQ ID NO: 1589 GGGTTGTTGACTGT TGGATGAGG	SEQ ID NO: 1587 GGAGTTGGCTGCTGTAAGAACCTGCTCTCACATCGAAAACATGCTGAAGGGGA GTCAACAAAGGGATTCTGTACAAGATGGTGCCTGTAACCTCCCACATCA ACTGTTGACGACCGAGAACAACTCTGTGATCGAGGTGGCTAACCTCTGGCG AGAAAGTACATCGACGGGGTGAAGGATGGCGCCCCGGCGTCACCTGTTACCAACTCGA CAAAGCAGAAGGACGAGCTCATCGTGAAGGAAACAGCATAGGAACGTGTCAA GATCAGCTGCCCTCATCCAACAGTCACAAACAG
	SEQ ID NO: 1590 GGAGTTGGCTGCTGT AGAAACTG	GGGTAATAACGACT CACTATAGGCTGT TGGTACTGTTGG ATGAGG	SEQ ID NO: 1591 GGGTTGTTGACTGT TGGATGAGG
NL005	SEQ ID NO: 1593 GGGTAATAACGACTCA CTATAGGGGAAACA CAAATTCACGTCAAAG C	SEQ ID NO: 1594 CCTTCGCTCTTG GCCTCTTGAC	SEQ ID NO: 1592 CGCAAAACAAATTCAACGTCAGGAAAGCTGATCAAAGACGGCTCTTATC ATCAAGAAACCGGTTGCACTACATTCACTGCTGGCTGGTTGGTAAAGGAAAGGTACAGGCCAACG CCAGGAGGAAAGGCCAGAACATTGGCTTGGTAAAGGAAAGGTATGGTGTCTTGAGAAGACT CCCGTATGCCACAAAGGTTCTATGGGTGAATCTGTTGGTAAAGGAAAG GTGAAAAAAATACAGACAAGATAAGAAAATCGACAGGGCATCTGTAACATCACCTT ACATGAAGGCTAAGGGTAACGTTATTAAGAACAAAGCTGTTGAGGTTCAATT CATAGAAAGAAGGGGAGAACAGGAAGAATGAAGATGTTGAACGACCGGTGAA GCTCGCAGACAAAGGTCAAGGAGGCCAAAGGGCAAGGCGAAGG
NL006	SEQ ID NO: 1598	SEQ ID NO: 1599	SEQ ID NO: 1597

	CGGTAATAGCA CTATAGGGCTTGT GTCAAGTGTGTGG	CGAGATGGGATA CGTGAGG	SEQ ID NO: 1601 GGTAAATACGACT CACTATAGGGAG ATGGGATAGCGTG AGG	GTGCCCTGTCAGTGGAGTACATTGACACCCCTGGAGGAGGAGC ACCATGATAGGGATGTCGGCACTGGAGATCCACCCGGCATGATA GCCTCTATTATTCCTACACGGCACTGGAGATCCACCCGGATGTC GCGCTATGGGGAAACAGGGGATGGGGTGTACATCACCAACTTCA TGGACACGGCTGGCTCACGGTGTCTACGGGACAAGGCCACTGG GCTCATGGAGTACCTGGCTTACGGGAGCTTCCTGCCGGCATCA TCGGCATCGGCCCTGCTACACTGGATAACACCAGGGAGACAGT CTCCGCTGTCAGGCGGGATTCTCAGATCGTTTCTTCGATCTTCA GCAGAATCGAAGGGTATTGGGACCAATGGGAATGACAAATTGG CAGACGTGTCAAGGGAAATGAGGAATTGCCATTGACGATGATGG TCATTGCTCCGGTCTGAGAGTGTCTGGTGCAGATGGTTATTGG AACACTGCCGATAATGATGACGAGCTGGAAAGTACAACAAAGGG AGAGATGCCAGTACTTCTGGTAACAGTAGAGACGGGAATTCG TGTTAACCTTGAACCTGGGTTACAAAGTCTGAGTTGGCTCTGTG CGTATCCCCGAGATTGGCGATAAGTTGGCTTCCCGATGCCAAAAG GTGGAAATACAGTATCGTCAAGAGGACATGCCATTACAAGGGAG GGATAATTATCAATCCICACGGCTATCCCATCTCG	SEQ ID NO: 1602 CCACGGGTGAATAG CCACTGC	SEQ ID NO: 1604 GGTAAATAGCA CTATAGGGAGAGCA ATCCCTTGACTGTGG	SEQ ID NO: 1606 GGTAAATACGACT CACTATAGGCCAC GGTGAATAGCCCT ACTGTGG	TGAGGCAATCCTTGACTGTGGTTGAAAGTCACTCCATCTGA ATTCTCAAGGCTGTACTTGGAAATGGACATATTGTCAGGAAATTC GAAAAGCTGGCTGTATTGGTGCATGGTCAAGGGGACATTACGG CAAGGAACTGCAAGGATTTCCAATATGTAAGGTTGGAGTTCTCG AGAGATGAACGATTTCCAATATGTAAGGTTGGAGCTTCA GGGACTGCCGATTCAAGGGGATGGGAGACGTTGAAATTTGAA CTGTGGTTGAACACCCGGACGAATTGGGTACGCAACAAGAAGCTGG CCTCAAGCATCTCAAGGACTTTGCTCTGACGAAATTGTTGGAACT TAGATATGCGAAGAGATGTGCAGGAATTTCGAAACACGGCCAC AGTCATGATGTTCACTGCACACTCTCAGCAAGAAATTGTC TCATGCAAGATCCGATGGAAAGTGTACGTTGATGACGAGGCA CGGCCTGCAGCAGCACTATGTCAAACTCAAAGAAAAGAAC TTTGAATTACTTGACATCTGAATTCAACCAGGTTGTTATTG CAGGGCTGCATGGCCCTATGCCAACTCCTAACAGAGCAG GCTATTCAACCGTGG	SEQ ID NO: 1607 GATGCTGGAGAACCTGGAGGTATTAGATGTTCAAAACAGTT GCTTCAGGTTGCAGTCCATT
NL007	SEQ ID NO: 1603 GGTAAATAGCA CTATAGGGAGAGCA ATCCCTTGACTGTGG	SEQ ID NO: 1604 CCACGGGTGAATAG CCACTGC	SEQ ID NO: 1606 GGTAAATACGACT CACTATAGGCCAC GGTGAATAGCCCT ACTGTGG	SEQ ID NO: 1608 GGTAAATAGCA ACTGTGG	SEQ ID NO: 1609 GAGGGAGTCTACA				
NL008	SEQ ID NO: 1608 GGTAAATAGCA ACTGTGG	SEQ ID NO: 1609 GAGGGAGTCTACA			SEQ ID NO: 1607 GATGCTGGAGAACCTGGAGGTATTAGATGTTCAAAACAGTT GCTTCAGGTTGCAGTCCATT				

	GTATAGGGATGCTGG AGACCTGGAGGTG	AAATTGCCG	GATGAGGGACGACA AAGAAAAGAAATGTTGGTCTTAGACCATGATTCTGGAAAA CATGTTGGGATGTTCAAGAAAAGTTAATGCTAGAGAAAAGTTGGTGGTAC CATACTGGACCCAAACTCCACCAAAACGATGTTGCAATCAATGAGTTGATTGCTG TTACTGTCCAACACTGTGTCCTAGTCATAATCGATGCCAAGCCTAAAGATTGGTGC TACCTACAGAGCATAAGAGTCGTTGAAGAAATCCATGATGATGGATCGCCAAC ATCAAAAACATTGAAACATGTGATGAGTGGAGATTGGGAGAAGGGCTGAGGG ATTGGCGTTGAACATCTGTTGAGAGACATCAAAGATAACAAAGCTGGGTCACTGT CACAGCGCGTCACAAATCAAGCTGATGGCTTGAGGGCTTGAAGGGCTTGCATCTGCAATTACA GGATATGCGAGACTATTGAAATCAGGTTGTAACCTAGGTTGTCGAAGGAAAAGTTGCCAATGAACCAT CAAATCGTTACCAACTGCAAGACATCTTCAACCTCTACCCGATATCGGCCACCG CAATTGGTAGACTCGCTC	SEQ ID NO: 1611 GGGTAATAACGACTCA CTATAGGGGACTAT GATCGACCGCC	SEQ ID NO: 1612 GTGTAAGGGTAGA AGTAGGCCG	SEQ ID NO: 1614 GGGACTATGATCGACCGCGGGACGGGTCAGGTGTGCCACGTCGACGTCAG AACTGGTTTCCCTGCACCTCTGAGAACAAATTCAACTACCAATCGAGGCCCTTG TGTTTTCTCACAACACTGAACAAAGATAATTGTTGCAACCGGAGTACTACAATGAGA CTGAAGGCTTCCAGATAATATGCCAGGTGACCTCAAGGGACACATTGCCCAACA GAAGAGTATCAACAAAGCTGTTATGCCAAACAAACTCTGGATAACITTCGAAAGGAGAG GGTCTCTAGACAAGGAGAATGCAGGGAGATCCAGTACATCCCTAGACAGGGAG TTCCGGGCTACTTCTACCCCTACAC							
NL009	SEQ ID NO: 1613 GCGTAATAACGACTCA CTATAGGGGACTAT GATCGACCGCC	SEQ ID NO: 1616 GGGTAATAACGACT CACTATAGGGTGT AAGGGTAGAGTA GCCCG	SEQ ID NO: 1615 GCGACTATGATCGAC CGCC	SEQ ID NO: 1617 GCGTAATAACGACTCA CTATAGGGCCTGTT TCCCAGTTGGATGTC	SEQ ID NO: 1619 GCAACTCCAGTAG ATCGGAGGGTC	SEQ ID NO: 1612 GCGACTATGATCGAC CACTATAGGGCAA CTCCAGTAGATCG GAGGGTC	SEQ ID NO: 1617 GCTTGTGTCGCGGATGTCGTTGCTGAAAGGAGACCTGATCTAC CGCCCTGTCAGATCGATCCAGTCAGTTCTTGTACTAGGAATACITGTGTTGCAATTCTG AATCCATTGTCGCAAGTCCGACTATCGAGCCAAAGCTATGGTCTGCAACCTTTGTT CCAGAGGAATCTCTTCCACATCGAAATTCAGGCTATTTGGAGGAGTCAACCA GCAGAAACTGATAACCTTCATTTCCAGCTGCTGGTGGACACATGTCGGAGACGAGGAGG GATGCCGGCGATGTTCTGTCGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG GGGAGCTTGAAGGACTCACTGCAAGATGTCAGATGTCAGATGTCAGATGTCAG ACTCATCGGTCTCATCAGGTTGGCAAATGGTGCAGGGTGCAGGCTGGCTGC GACGGCTGCTGCAAGGGCTACGTGTCGCTGGGATGTCAGATGTCAGATGTCAG CAGATCCAGGACATGTCAGATGTCAGATGTCAGATGTCAGATGTCAGATGTCAG CAACAGGCGCATTCGGGGCGCTCCCTGGCAACCTGTCAGATGTCAGATGTCAG CTGTGGAAAAGTGCAGATACTGAGTTAACTGATCTGCTGGGAATTTGCAAGAGA TCCATGGAAATGTTGGCTCAGGGCAAGGAGACCTCTCCGATCTACTGGAGTTGC	SEQ ID NO: 1621 GGGTAATAACGACT CACTATAGGGCAA CTCCAGTAGATCG GAGGGTC	SEQ ID NO: 1620 GCTTGTGTCGCGGATGTC GGATGTC	SEQ ID NO: 1622 GCGACTATGATCGAC CACTATAGGGCAA CTCCAGTAGATCG GAGGGTC	SEQ ID NO: 1623 GCGACTATGATCGAC CACTATAGGGCAA CTCCAGTAGATCG GAGGGTC	SEQ ID NO: 1624 GCGACTATGATCGAC CACTATAGGGCAA CTCCAGTAGATCG GAGGGTC	SEQ ID NO: 1622 GCGACTATGATCGAC CACTATAGGGCAA CTCCAGTAGATCG GAGGGTC
NL010	SEQ ID NO: 1618 GCGTAATAACGACTCA CTATAGGGCCTGTT TCCCAGTTGGATGTC	SEQ ID NO: 1621 GGGTAATAACGACT CACTATAGGGCAA CTCCAGTAGATCG GAGGGTC	SEQ ID NO: 1620 GCTTGTGTCGCGGATGTC GGATGTC	SEQ ID NO: 1622 GCGACTATGATCGAC CACTATAGGGCAA CTCCAGTAGATCG GAGGGTC	SEQ ID NO: 1623 GCGACTATGATCGAC CACTATAGGGCAA CTCCAGTAGATCG GAGGGTC	SEQ ID NO: 1624 GCGACTATGATCGAC CACTATAGGGCAA CTCCAGTAGATCG GAGGGTC	SEQ ID NO: 1622 GCGACTATGATCGAC CACTATAGGGCAA CTCCAGTAGATCG GAGGGTC						
NL011	SEQ ID NO: 1623	SEQ ID NO: 1624	SEQ ID NO: 1622	SEQ ID NO: 1623	SEQ ID NO: 1624	SEQ ID NO: 1622	SEQ ID NO: 1623						

	CCCACTTCAAGTGY GTRYTRGTGG	GTCCATTGTGACC TCGGGAGG	GTTGCCACCCCTTGAGGTTGAAGTTACCCCCCTTGATTTCACACAAACAGAGGGTG TGATTTAGGTTCAATGTTGGACACAGTGGCAGCATGGCAGCATTTGACGTAACGTC GAGTCACCTAACAGAACGTTCCCAACTGGCACAGAGATTAGTAGGGTTGCGA AAACATTCCCATTGTACTATCAGGGACAACAAAGTAGACATCAAGGACAGGAAACT AAGGCCAAGAGCATAGTCCTCCATAGGAAGAAACCTTCAGTACTAGACATCA GTGGAAAAGCAACTACAACCTCGAGAAGGCCGTTCCGTGGTTGGCAAAGAAAGCT GATGGTGAACCCAACTGGAGTTGGCTGCCTCCACGGTGGCCATGCCAATGGAC GGTCACAAATGGAC
SEQ ID NO: 1625	GTGCCACCCCTGGAA GTTGAAG	SEQ ID NO: 1626 GCGTAATACTGACT CACTATGGGTCC ATTGTGACCTCGG GAGG	SEQ ID NO: 1627 GAATTTCCTCTGA GTTTGCAGCTTG
NL012	SEQ ID NO: 1628 GCGTAATACTGACTCA CTATGGGCAGGAGA CGCAGGACAGGTAG	SEQ ID NO: 1629 GCGTAATACTGACT CACTATGGGAAT TTCCCTCTTGAGTT GCCAGGCTTG	SEQ ID NO: 1627 GCAGCAGACGCAGGGCACAGGTAGACCGAGGTTGTCGATATAATGAAAACAAACGTT GAGAAAGTATTGGAGAGGGATCAAACACTATCAGAATTGGATGATCGAGGAGAT CTCTACAGCAAGGCGCTTACAGTTGAACAGCAAGCTGGCAAACCTCAAGAGGA ATTC
SEQ ID NO: 1630	GCAGCAGACGCAGGC ACAGGTAG	SEQ ID NO: 1631 GCGTAATACTGACT CACTATGGGAAT TTCCCTCTTGAGTT GCCAGGCTTG	
NL013	SEQ ID NO: 1633 GCGTAATACTGACTCA CTATGGGCAGGAGC AAGTCTACATCTTC	SEQ ID NO: 1634 GGCAACGGCTCTC TTGGATAG	SEQ ID NO: 1632 CGCAGAGCAAGTCTACATCTCTTCACTGGCCTTAATGAAATGCTTAAGGCACGGTC CGCCGGGTTCTCCATGGAAAGTTATGGCCTAATGCTGGGAATTGTTGAGAC ACTACACTGTGGTGTCAATTGCTGTATGATGTTGGCTATGCCACAGTGAGGAGT GAGTTGGAGGCTGTAGACCCGGTGTGGCAAGGAAGATGTTGGACATGCTAAAG GCAGACAGGACGGCCGGCAGATGGTGGGCTGTACCACTCGCACCCGGCT TGGCTGGCTGGCTGGCTGGGAGCTCAACACGGAGGAGCTTGAGCAAC TATCCAAGAGGAGGCCGTTGG
SEQ ID NO: 1635	CGCAGAGCAAGTCTA CATCTCTTC	SEQ ID NO: 1636 GCGTAATACTGACT CACTATGGGGCA ACGGCTCTCTGG ATAG	
NL014	SEQ ID NO: 1638 GCGTAATACTGACTCA CTATGGCATTGAGC AAGAAGCCAATGAG	SEQ ID NO: 1639 GAGCGCGACTCTA ATCTCGG	SEQ ID NO: 1637 CATTGAGCAAGAAGCCAATGAGAAAGGCCAAGGAGATCGATGCCAAGGCCAGGA AGAAATTCAACATTGAAAAGGGAAAGGCTGTACAGGACCCAGGCTTAAATTCATG GAGTACTATGACAGGAAAGAGAAGGAGGAGCTGAGGCTCCAGAAAAAAATCCAATCG CAAACATGCTGAACCCAAGCGCGTCTGAAGGGACTGAGGCTTGGGGAAGATCAGC TGAGAAGTGTGCTCGAAGAAACGTTGGAGAAGTAACCCAGAAACCC AGCCAAGTACAAGGAAGTCTCCAGTATCTAAATTGTCAGTCAATTGTCAGCTG
	SEQ ID NO: 1640	SEQ ID NO: 1641 GCGTAATACTGACT	

	CATTGAGCAAGAAGC CAATGAG	CACTATAAGGGAGC GGCAACTCTAAATCT CGG	SEQ ID NO: 1644 GGCCAAAAGGGCCT AAGGGC	SEQ ID NO: 1642 CTGGAGTGCCCTTGTCCGCACATTGTCGATCCAGCCTGGCTGACCTGAGCTGAG ATGGAAAGCGTATCCCATGTGCTGCCATTGATGATAACCGTTGAGGGTCTTACAGG AAATCTGTTGAAAGTGTATTGAAGCCATACCTCTGGAAAGCATACGGCCAAATTCT ACAAGGATGATGTCATTCAATTGTCGGGAGGTATGAGAGCCATACCTCTGGAAAGCATACGGCCAAATTCT GGTTGAAACAGATCCATGCCCTACTGCAAGCAGACCCGTCAATCCAT TGTGAGGGAGAACCCCATCAAACGTGAGGATGAAGAAGACGCAAGCAGAAACGCAAG GGCTACAGACGACATTGGAGGCTGCAAGAAAGCAGCTGGGAGATCAAAGAGATG GTGGAGTTGCCGCTGAGACATCCCAAGTCTGTTCAAGGCATGGGGA CCACGAGGCCATCCCTGCTGACCCACCGGGAAACGGGAAAGACGTTGATAGCG CGGCCGTCGCCAACGAAACGGGGCCCTCTCCCTCATCAACGGACCCGAG ATTATGAGCAAATTGGCCCCGGAGTGGGAGAGTAACCTCTGGCAAAGCTTTCGAG GAAGGGACAAAAACGCAACGGCCATCATCTTCATCGATGAGCTGGACGCAATC GCGGCCAAAACCGGAGAACGACGGGAGGTTGGCGACGCACTGTTGCGCA GCTGCTGACGCTGTGATGGACGGTCTCAAGCAGAGCTGCACTGATGTTGATGGC CGCCACCAATCGGCCCAACTCGATCGATGCGCTTAGGGCTTGGCTTGGCC
NL015	GGTAAATACGACTCA CTATGGCTGCGAGT GGCTTGTCCG	GGGTAAATACGACT CACTATAGGGCC AAAGGCCCTAACG GC	SEQ ID NO: 1645 GGGTAAATACGACT CACTATAGGGCC AAAGGCCCTAACG GC	SEQ ID NO: 1646 GGGTAAATACGACT CACTATAGGGCC AAAGGCCCTAACG GC
NL016	GGGTAAATACGACTCA CTATGGGACGCCAG TATCAGAAGACATGC	GATGGAGGCCGTTG CGACC	SEQ ID NO: 1648 GGGTAAATACGACT CTATGGGACGCCAG TATCAGAAGACATGC	SEQ ID NO: 1647 GATGGAGGCCGTTG CGACC
NL018	GGGTAAATACGACT GACGCCAGTATCAGA AGACATGC	SEQ ID NO: 1650 GGGTAAATACGACT CACTATAGGGATG GAGCCGTTGCGAC C	SEQ ID NO: 1651 GGGTAAATACGACT CACTATAGGGATG GAGCCGTTGCGAC C	SEQ ID NO: 1652 GGGTAAATACGACT GACGCCAGTATCAGAAGACATGC TACGGCCGAGGGCTGAGAGGTGTCGTCATCCTCAACGGACATGAGCTCC GTCGTGGTTTCCCCTGGTTACATGTCACCGATCTGGCCACACATCTAGAGCGCGC

	GCGTAATACTGACTCA CTATGGGCAAATGC CTGTGCCACGC	GCAATACAGCCGA CCACTCCG	SEQ ID NO: 1655 GCGTAATACTGACT CACTATGGGCAA TACAGGCCAC TCCG	GCAAATGGCTGTGCCACGCCACAATTAGAAAGCACACAACAGTTTATTCGATGC GAGAAAACAACATACTCGAATGGATTCAACCACATTGAGGAGGACTTCAAAGTAG ACACTTCGAAATACCGTCTTCTGGCGAGGGTGTGTTCCGGGAATCTCTGTATCG AAACTACTTGCACTGGGACATGCGATGTGCGACGGTGGACCGAGGCAATT GGGTCCCCCCTGGGCCACACATCCAGCAGAAGCCGGCAACTCAAATCCA GGAGGGGGGGCGATGCCGCTTTCOATCAAGCTCAGGGCAACCCCAAGGCC GCTGGTCTGGTCAAGAACGGTCAGGCCATGGTCAGACGAGCAGAACACAGGC CTCCOACTCCCAATCGACGGCCACGCTCAAGGTCACAAAGTCAGGGCTCAAGAC TCCGGCCACTACACGCTGCTGGCTGAAATCCGCAAGGATGTACTGTCTCAG CTTACCTAGCTGTCGAATCGCTGGACTCAAGGATACAGGATACAGTGAGCAATA CAGCAGACAAGGGTGGAGACGACAGGGCGGTGGACAGCAGGGCAAGATGAG CACCGAACATTGTTGACTGCCGTTGCGGCGATCGCGACGGCAAGGCG CGCGGTTGACTGCCGTTGACGCGGCGACCTACCCGGACGCTGGCATTCCG ATCAACGGCCACAGGGTGGCTGACGGGGCACAAAGATCCCTGTCACAGCAG TCTGGCAACCACTCGCTCATGTCACCGGGTCACTCGCTTGGACCGAGGAGTGC GTGGCTGTATTGC	SEQ ID NO: 1656 GCGTAATACTGACT CACTATGGGCAA TACAGGCCAC TCCG	GCAAATGGCTGTGCCACGCCACAATTAGAAAGCACACAACAGTTTATTCGATGC GAGAAAACAACATACTCGAATGGATTCAACCACATTGAGGAGGACTTCAAAGTAG ACACTTCGAAATACCGTCTTCTGGCGAGGGTGTGTTCCGGGAATCTCTGTATCG AAACTACTTGCACTGGGACATGCGATGTGCGACGGTGGACCGAGGCAATT GGGTCCCCCCTGGGCCACACATCCAGCAGAAGCCGGCAACTCAAATCCA GGAGGGGGGGCGATGCCGCTTTCOATCAAGCTCAGGGCAACCCCAAGGCC GCTGGTCTGGTCAAGAACGGTCAGGCCATGGTCAGACGAGCAGAACACAGGC CTCCOACTCCCAATCGACGGCCACGCTCAAGGTCACAAAGTCAGGGCTCAAGAC TCCGGCCACTACACGCTGCTGGCTGAAATCCGCAAGGATGTACTGTCTCAG CTTACCTAGCTGTCGAATCGCTGGACTCAAGGATACAGGATACAGTGAGCAATA CAGCAGACAAGGGTGGAGACGACAGGGCGGTGGACAGCAGGGCAAGATGAG CACCGAACATTGTTGACTGCCGTTGCGGCGATCGCGACGGCAAGGCG CGCGGTTGACTGCCGTTGACGCGGCGACCTACCCGGACGCTGGCATTCCG ATCAACGGCCACAGGGTGGCTGACGGGGCACAAAGATCCCTGTCACAGCAG TCTGGCAACCACTCGCTCATGTCACCGGGTCACTCGCTTGGACCGAGGAGTGC GTGGCTGTATTGC
NL019	SEQ ID NO: 1658 GCGTAATACTGACTCA CTATGGGCTTCAGA TTGGGACACGGC	SEQ ID NO: 1659 GAACGGCCTGCTCC ACATTGG	SEQ ID NO: 1661 GCGTAATACTGACT CACTATGGGAAAC GCCTGCTCCACAT TGG	SEQ ID NO: 1657 GCTTCAGATTGGGACACGGCGGGCAGGGCAGGGCATCTGGGCTACATCGAG CTACTACCGGGGGCGCCACGGCATCTGGGCTACATCGAGCTGACCGAGGAG GTCGGTCAACAAACCTCAAAACAGTGGCTCGAGGAGATTGACCGCTACGGCCTGTGAT AATGTCACAAACACTGCTGCGTGGCAACAAAGTGTGAGCAACAAAGGGTCG TCGACTATACAGGGCTAAGGAATACGGCCGACCGAGCTGGCATTCCG GACGGCTGGCGAAAGAACGGGACCAAATGTGGAGCAGGGTTC	SEQ ID NO: 1662 GCTCAAGTCTCAATTCTGTCACCGGATATCAGCACACAGTTCTCAAGGCCACAG AGAACGTTGAAGATAACGCTTGAGGGCGCACAGGCCCTGTTCTATTCAACAGGAACG ACTTGTGATCTCACTGAAGGGGGAGGAACACTCTATGTTCTAACTCTCTTCCGATA GTATGGCGAGTGTGAGGGTTTCATCTGGGAAAGCTGGCTGCCAGTGTCTTGAC TACTTGATCTGTTGCTGGAGGAACATCTGTTCTGGTTCCGGCTCTGGAA ACTCACTGTTGCTCAGGTTACTGAGAAGGAATTGAACTCTGATTGAGCCGAGGGC CATCGAAAGCTCACAGTCCCAGAATCGGGCAAGAAGAAAGCTGGATACTTGG GGAGATTGGATGGCATCTGACGTCACGTGAAAGTACGGGACCTGGATGAACCTAGAAG	
NL021	SEQ ID NO: 1663 GCGTAATACTGACTCA CTATGGGCTCAGTC TCAATTCTGTCACCG	SEQ ID NO: 1664 CTTCTAGTTCATCC AGGTGCG	SEQ ID NO: 1666 GCGTAATACTGACT CACTATGGCTTCT AGTTCATCCAGGT CGCG	SEQ ID NO: 1665 CGTCAGTCTCAATTCT GTCAACCG		

NL022	SEQ ID NO: 1668 GGTAAATCGACTCA CTATGGCTACGAG AGAACGTTGCACAC	SEQ ID NO: 1669 CAGACGGAAAGCAC TTGCCG	SEQ ID NO: 1667 CTACAGGAGACGTTGCACACTGATACTGTGGTGAAGATGTCGC CCGATTAGACACTGACTTGAAAGCTGCTCATATAAGCGCCACACTGGATGCTCAG AAATTCTCCGAGTTTTTCGACGATGACCCATCTTCAGGTTCCAGGTTCCGGCGTAGATT TCCCGTGGACATCTACTACACAAAGGCCGGGAGGCTGACTACCTGGAGACATCTGGT TGTCTGTTGATTCCTGAGATCCACGCCACTCAAGCGCTGGAGACATCTGGT TTCCCTCACCGGTGGGTCTGGAGGAGATCGAAACCTGCGAGGAGCTGCTGAGACAGA GTGGCAGGGCTGGGTCTCGTATCAAGGAGGCTGCTCATATTGCCGTCATTCCA ACCTACCCAGTGATATGCAAGGCAAAGATTCTGCCACACTCGACAAATGCTAG AAAGGTAGTATTGCCACAAATATTGCGAGAAACCTCATTAACCTTAATTCAAGGACTGGA TCTACGTGATTGATTCCTGTTTGTAAAGCGAGATAACTTAATTCAAGGACTGGA ATGGAAATCGCTGTTGTAGTGCCCTGTTCAAGGGCATCGGCCAATCGCGAGCAG GGCGGGGGGAGCGGGGGGGCAAGTGTCTCCGICCTG
NL023	SEQ ID NO: 1673 GGTAAATCGACTCA CTATGGCTCTCGG ACGGGAGGTCC	SEQ ID NO: 1674 GCAATGTTGCCCT GAGCCAGC	SEQ ID NO: 1672 GTCCCTGGACGGGGGGTCCACGTGTTACCGGGATTCCGGTTGGCAAACCTCCC ATCGGTTCCGTTGGCGATTCCGTAACCGGGTCCGGTGCACGGGGT CTGGATGGGAGCGCGCTTCCCAACAGCTGCTACCGAAGGGTACGAGTATTTC CGGGGCTTCGAGGGAGGAAATGTTGAACATATGGTGGAAATCCGAATGGTGGGAAGATT GTCTGTATTGGAAATAACCGGAAAGGGGAAAGGTGCGGGTGTCTGATCTGGATCTACGG CAGGGAGGAATAACCGGAAAGGGGAAAGGTGCGGGTGTACGATGCTGACATGGT CGGGGGTACATGAGCGGGCACAGCTACACTGGACCGTGTACGATGCTGACATGGT GGGCTTCCCTCACCTGCCACAGGACTGTCGCTCCATGCGAGTACCGAGTCCCATGG GCAACATGGGGCTCTGGGACCGGGCCCTGGCATCCGCTGGCTCAAGGACAACA TTGC
NL024	SEQ ID NO: 1675 GTCCTCGGACGGGG GTCC	SEQ ID NO: 1676 GGTAAATCGACT CACTATAGGGCA TGTGTCCTTGA CCAGC	SEQ ID NO: 1673 GTCCCTGGACGGGGTCCACGTGTTACCGGGATTCCGGTTGGCAAACCTCCC ATCGGTTCCGTTGGCGATTCCGTAACCGGGTCCGGTGCACGGGGT CTGGATGGGAGCGCGCTTCCCAACAGCTGCTACCGAAGGGTACGAGTATTTC CGGGGCTTCGAGGGAGGAAATGTTGAACATATGGTGGAAATCCGAATGGTGGGAAGATT GTCTGTATTGGAAATAACCGGAAAGGGGAAAGGTGCGGGTGTCTGATCTGGATCTACGG CAGGGAGGAATAACCGGAAAGGGGAAAGGGGAAAGGTGCGGGTGTACGATGCTGACATGGT CGGGGGTACATGAGCGGGCACAGCTACACTGGACCGTGTACGATGCTGACATGGT GGGCTTCCCTCACCTGCCACAGGACTGTCGCTCCATGCGAGTACCGAGTCCCATGG GCAACATGGGGCTCTGGGACCGGGCCCTGGCATCCGCTGGCTCAAGGACAACA TTGC
NL027	SEQ ID NO: 1678 GGTAAATCGACTCA CTATGGAGAACG GCACGGTGG	SEQ ID NO: 1679 CAATCCAGTTTA CAGTTCTGTC	SEQ ID NO: 1677 AGAAGACGGCACGGTGGCTATTGGCACTCGGGCACCTACAGGCTGAGTCCTC GCTGAATTATGGCTCGAAAGAGTGTGGGACCATTTGCTGCAATGGGAGGATCCAC AATGTTGGCTCTGGCTACGACGAAGGGCAGCATGGTGAAGGGGGGGGGGG GAGGGGGCCATCTCGATGGATGTGAACGGTGAAGGATTGGTGGGGGGGGGG TCGGAGATAACAGGTCACCTCAAGGGGCTTAAGGATATGGGAGGCTGTGAATA GATGGCGAACGGACTGCCGGTCAAGGGCCATGGGAGGCTGTGAATA CGCGAGACCATCGCTCATTAATCCCAACGGCAGATTCCCTAGTCGTTGGAGATG GAGAGTACATAATTCCACACATCAATGGTGTCAAGAAAATAAGGGGTTGGCTCGG CCAAGAGTTCAATTGGGACAGGACTCGTCCGAGTATGCTATCAGAGAAGGAACA TCCACTGTCAAAGTATTCAAAGAAAACCTCAAGGGCAAGGAAATT

		GGTGCCTGAGAGCATATTGGGGGGCTACCTGGCTGGAGTTGGTCGGTTGTGGAC TGGCGCTGTACGACTGGAGACCCCTGGAGCTGGTGCATCGAGATCCAC CGAACACAGTGACTGGTGGAGAGTGGGGAGCTGGCCTGGCCACTGAT GACTCTACTTTGTGCTCCGCTACGAGCACAGGCCGCTGCGTGCACGGAC GCCGGTGACGACGGCTGTACGCCGGACGGCTGAGGATGATTCGAGGTCCCT GGTGAAGTGACGAAACTGTAAAAACTGGATTG
--	--	---

Table 8-CS

Target ID	Primers Forward 5' → 3'	Primers Reverse 5' → 3'	dsRNA DNA Sequence (sense strand)
CS001	SEQ ID NO: 2041 TAAAGCATGGATGTT GGACAAACTGGG SEQ ID NO: 2043 GGTAATAAGCACTC ACTATAGGTTAACG ATGGATGTTGGACA AACTGGG	SEQ ID NO: 2042 GCGTAATAACGACTC ACTATAAGGGTGA TCGCACGCCCTTC C	SEQ ID NO: 2040 TAAGGCATGGATGTTGGACAAACTGGGGTGGCGTGTACGGCGCCGGCGTCGAC CGGCCCCCACAAGTGGCAGGTGCGCTACCGGAAAATGAAGTGCCTAAAGTAAAGCAGCGACT GCTCAAGTACGGCGCTACCGGAAAATGAAGTGCCTAAAGTAAAGCAGCGACT ATCAAAGTTGACGGCCAAGTCAGACAGACCCACATACTCCGCTGGATTATAG ATGTTGTTCCATTGAAAAGACAAATGAGCTGTTCCGTCCTTATATGTCAG GCAGATTACTATTACCGTATTACTCTGAGGGGGCTAAATACAAGCTGTGCAAG GTGGGGCGCGTGGGACGGGGCCCAGAACGTCGCTTAACCTGGTGAACCCACGA CGGACGGCACCGTGCATAACCCGACCCACTCATCAAGGTCAACGACTCCATCCA GCTCGACATCGCCACCTCAAGATCATGGACTTCATCAAGTTGAATCTGGTAAC CTATGTATGATCGACGGGAGGGCGTAACTTGGGGCGCTGGCACCACATCGTGTCC CGCGAGCGACATCCGGGCTTCGACATCGTGCATAACGGGACTCCACCGGA CATACCTTCGCTACCAAGATTGAACAAACGTTTCATAATCGGCAAGGGCACGAAAG CGTACATCTCGCTGCCGCGGGCAAGGGCGTGCAGCTCAC
CS002	SEQ ID NO: 2046 CAAGAAGGGAGGAGA AGGGTCCATCAAC SEQ ID NO: 2048 GGCTAATAAGCACTC ACTATAGGCAAGAA GGAGGAGAAGGGTC CATCAAC	SEQ ID NO: 2047 GCGTAATAACGACTC ACTATAAGGCTTGTCT ACATCGATATCCCTG TGGG SEQ ID NO: 2049 GGCTAATAAGCACTC ACTATAGGCAAGAA GGAGGAGAAGGGTC CATCAAC	SEQ ID NO: 2045 CAAGAAGGGAGAAGGGTCCATCAACACAGGAAGCTATAACAGAAATTACCGC ACGGAGAGGTTATTGCGAGAAACAGAGTTCTAGAGGAAAGATCGACACTG AATTACAAACGGCGGAGAAAACATGGCACAAAGATAAGAGAGCTGCCATTGG ACTGAAGGGCAAGAGCGTTATGAAAGCAGCTTACCCAGATTGATGGCAGC ACCCAAATTGAGGGCCAAAGGGAAAGGGCTAGAAGGAGCTAACACAAATACACAG GTGCTTAACACTATGCGAGATGCTGCTACCGCTATGAGACTCGCCCCACAAGGATA TCGATGTAGACAAG

CS003	SEQ ID NO: 2051 TGGTCTCCGCAACA AGCGTGAGG	SEQ ID NO: 2052 GCGTAATACTGACTC ACTATAGCGAACG GAGACTCGCGAG AAGTCA	SEQ ID NO: 2050 GGTCTCCGCAACAAGCGTGAAGGTGTGGAGGGATTACACGGCTGGCCAGGAT CGTAAGGGTGCCGTGAGCTGCTCACACTCGAGGAGAAAAGACCCCTAAGAGGTT ATTGAAAGGTAATGCTCTCCCTGCTGCTGATTAGTACTCGGTCTGAAGATTGAGACTTCGGTCTGGAAAC GTCGTCTCCAGACTCAGGTGGTCAAGGCTGGTCTAGCTAAGTCTATCCATCATGC CGTATTCTTATCAGACAGAGGCACATCCGTGTCGCCAAGCAAGTGTGAACATC CCTTCGTTCATCGTGGGGCTGACTCTGCCAAGCACATTGACTTCGCTGAAGT
CS006	SEQ ID NO: 2056 GGATGATGATGGTA TAATTGACCCAGGG	SEQ ID NO: 2057 GCGTAATACTGACTC ACTATAGGGTTAAA TGGTGTAGCATCAC CTATTTCAC	SEQ ID NO: 2055 GGATGATGATGGTATAATTGCAACCGGGATTCTGGTGAAGCTGATGAGCTGGTCTGGAAAC ATTGAAAAAAACTATAACCTTGCAGAAAACGATGATGAGCTGGAAACATCAA GACGATACAGTAAGAGAGATGCCCTCTACATTCTTGCGAAAACAGTGAAGCTGGTATT GTTGACCAAGTTATGCTTACACITAACCGGAAGGATACAAATTGTTGAAATACAG TGTGAGATCTGTGAGAATCCCAAAATTGGAGACAAATTGCTCTCGTCATGGTC AAAAGGGGACTCTGGTTATTCAATATAGGCAAGAAGATAGCCCTTCACITGTGAA GGATTGACACCAGATTATCATCAATCOACATGCTATCCCCTCGTATGACAAT TGGTCACTGTATTGAATGTTCAAGGTAGGTTCTCTCAAATAAAGGTGAATAAG GTGATGCTACACCTTAACG
CS008	SEQ ID NO: 2058 GCGTAATACTGACTC ACTATAGGGATGAA TGATGGTATAATTGC ACCAGGG	SEQ ID NO: 2059 CGTTAAATGGGTGTA GCATCACCTATTCA CC	SEQ ID NO: 2060 GGATGATGATGGTATAATTGCAACCGGGATTCTGGTGAAGCTGATGAGCTGGTCTGGAAAC ATTGAAAAAAACTATAACCTTGCAGAAAACGATGATGAGCTGGAAACATCAA GACGATACAGTAAGAGAGATGCCCTCTACATTCTTGCGAAAACAGTGAAGCTGGTATT GTTGACCAAGTTATGCTTACACITAACCGGAAGGATACAAATTGTTGAAATACAG TGTGAGATCTGTGAGAATCCCAAAATTGGAGACAAATTGCTCTCGTCATGGTC AAAAGGGGACTCTGGTTATTCAATATAGGCAAGAAGATAGCCCTTCACITGTGAA GGATTGACACCAGATTATCATCAATCOACATGCTATCCCCTCGTATGACAAT TGGTCACTGTATTGAATGTTCAAGGTAGGTTCTCTCAAATAAAGGTGAATAAG GTGATGCTACACCTTAACG
CS007	SEQ ID NO: 2061 CTTGGTGAACCCAG AGATTGGGGC	SEQ ID NO: 2062 GCGTAATACTGACTC ACTATAGGGGGCAT GTCATAATTGAAAGAC TATGTTGACTC	SEQ ID NO: 2060 GGTGTGAACCCAGGATTGAGGGCTATCGTGAATTGGGGTTTCGAGCACCCCT TCGAAGATCTGAACTGAATGATGTTTCCCCAAAGCTGTTGGAAATGGATATTCTTGG TCAAAGGTTAAATCCGGAAATGGAAAAACCGCCGTTGGTATGCAACACTGCAA CAGCTAGAAACCTTAGAAAACCATGTTAACATGTTAACATGTTGCTCTAAATATGGCTGGT ACTCGCTTCCAAATAAGCAAGGAATATGAGAGGTTCTCTAAATATGGCTGGT TTAGAGTATCTGTTGGGGATGCCATTGAAAGTTGAAAGTAAAGGATATTG AAGACAGCCTGCCGACATCGTGTGGTACTCTGGCAGAATATTGAGATTG TTAACACAAGAAACTGGAATTAAAACACTGAAACCTCATCTCTGGTGAATGTT GACAAAAATGCTTGAATCTAGACATGAGACAGTGTGTCAGGAAATATTGAGGA ACACCCCTCACGGTAAGCAGGTCATGATGTTTCTGCAACATTGAGTAAGGAGAT CAGACCAAGCTGTAAGAAATTATGCAAGATCCATTGGAAAGTTATGTTGAGTATG AAGCTAACCTTACATTGCAACGGTTGCAGCAACATTATGTTAAACACTCAAGGAAAT GAAAGAATAAGAAGTTATTGAAACCTTGGATGTAACCTTGGGAGTTCAACCAAGTTG CATATTGTTAAAGTCAAGTGTGAGCGCTGCAATAGCTCGCACAGCTGTCAGACAG

			CAAAACITGCCAAGCTATTGGTATACACCGAAATATGACTCAAGATGAGGGCTCTC CCGCATATCAGCAGTTCAAGATTTCCAGAAGGGATCCTTGTGCGACAAATCTT TTGACGGGGTATGGACATTGAAAGTCACATAG GACATGCCG
CS009	SEQ ID NO: 2066 ACGTTTCTGCAGCG GCTGGACTC	SEQ ID NO: 2067 GCGTAATACTGACTC ACTATAGGATAATT CTTATGTTACGCTGT CATATTCTG	SEQ ID NO: 2065 ACGTTTCTGCAGGGCTGGA ACTATGGCACA ACCCCCGGCTGGCTGG CAGCAGCGTCATCTGGTATAAGGCAACGAC CAAGAAACCTCAAC CTTAACCGCGTACAAAC CAGGCCAGAACATCC GTCGACGTGACAT ATACACAAGTCC AGGCCGCACTTCT ACAACAGCTCC AGGCCGACTCT TTGAAGGGAGCAC ATCAGGAATATG GACAGCGTACAGATA AGAATTATC
CS011	SEQ ID NO: 2071 CGACACTTGACTGG AGAGTTGAGA	SEQ ID NO: 2072 GCGTAATACTGACTC ACTATAGGCTCTAG GTTACCATCACC GTA TCAACT	SEQ ID NO: 2070 CGACACTTGACTGGAGAGTT TGCACTCCCTAGTATT CCACAAATAGGGCC CTATAAGGTTAATG GTTATGGGAT ACTGCTGGCAAGAAA GTTGGTACTATCC AATGTGCCATCAT CTGTCACCT AACTGGC CACAGAGATTAG GTGAGTC GTAAGGC CATTCCA GCAACAAAGTAG GATACTCAG TATTATGACAT CTCTGG GAAACCC CTGGTTAGCG GAGAAAGTTGAT GGTAACCTAGAG
CS013	SEQ ID NO: 2076 TGCGGAACAGGGTAT ACATCTCGTCTTTGG	SEQ ID NO: 2074 GCGTAATACTGACTC ACTATAGGCGACAC TTGACTGGAGAGTT CGAGA	SEQ ID NO: 2075 TGCGGAACAGGGTAT ACATCTCGTCTTTGG GCGCCGGTGT TCCAATG AAGTTGGACTT ATGTTAGGTG CATAGAC TCAGAC
CS014	SEQ ID NO: 2081 CAGATCAAGGCATAT GATGGCCCTCATCG	SEQ ID NO: 2079 GCGTAATACTC ACAGSTATA GTCTTGG	SEQ ID NO: 2080 AGATCAAGGCATAT GATGGCCCTTA AGAAGGGCTAA TGAAGAGCCGAGA

A	SEQ ID NO: 2083 GGTAAATACGACTC ACTATAGGCAGATC AAGCATATGATGCC CTTCATCGA	TGGGGTACGTATTTCGGGGC SEQ ID NO: 2084 GAACAAATGCGGTC GTATTTGGGGC	AATCGATGCAAAGGGCCGAAAGAGGGAGTTCAACATTGAAAAAGGGGGCCTGGTGA GCAGCAGGGCTCAAGATCATGGAATACTACGAAAAGAAAGAGAAACAAAGTGGAA CTCCAGAAAAAGATCCCAATCTTCGAACATGCTGAATCAAGGCCGCTGCAAGGGC TCAAAGTGCCTGAGGGCACGTAACGTTCTGACGGAGGCTCGCAAGGGC TGGCTGAGGTGCCAAAGACGTGAAACTTACAGATCTGGTCAAGGCTGCG CGTACAAGGCCCTATTCCAGCTCATGGAACCCACAGTAACAGTTGGCTTAGGCAG GCGGACGCTCTCCATTAGTACAGTCCATTGGCAAGGCACAGCAGGATTACAAAG CAAAGATCAAGAAGGGACGTTCAATTGAAAGATCGAACCCGAGAAATTCCCTGCC CGATACITGGGGAGTTGGAAACTTATTGCTGCTAGGGCTGATAGCCCACAAACTGTTGCC AACACTCTGGGAGTCTCGTCTGGAGCTGATAGCCCACAAACTGTTGCC GTACCGCATTGGTC
CS015	SEQ ID NO: 2086 ATCGTGCTTCAGA CGATAACTGCC SEQ ID NO: 2088 GGTAAATACGACTC ACTATAGGATCGT CTTTCAGACGATAAC TGCCCC	SEQ ID NO: 2087 GGTAAATACGACTC ACTATAGGCCATTAC GATCACGTGCGAT ACTTC SEQ ID NO: 2089 CCATTACGATCAC TGGCATGACTTC	SEQ ID NO: 2085 ATCGTGCTTCAGACGATAACTGCCGATGAGAAGATCCGGCATGAAACCGCGTGC TGGGAAACAAACTTGGCTGTTACGCCCTGTCAGACATAGCTCCATAGGCCCTTGT ATCGGTCAAATATGGGAAACGGGTACATATATTGGGAAACCTGATGATTCTGTGAG GGTTGACTGAAATTATTGGAAGTCTACTTGAAGTCTACTTGAACCCATTACTTC TGCGCCTATCCATCGCGATGACACATTGATGGTGGGGGATGAGGGCTGT TGAATTCAAAGTGGTGGAGACTGATGCCGTTGGCTGGCGTATTGCATCGTGC ACAGTGATACACTGGGAAAGGAGACCCATTCAAAACGAGAGGAAGAAAGGC CTAAACGCGTAGGGTACGACGACATCGGTTGGCTGTGTTAAACAGCGCTG ATCAAAGAGATGGTCAAGGCTCTAAGGCATCCGTCGAGTTGGCTGGCTGG GTGTGAAGCCGCCACGTTGAATCCTCATGTTGGCGCTGTTGGCTGG CTCTCATGGCTGGCGAGTTGGCTTAATGAAACTGGTGCATTCTCTTGATCA GGGCGGGAGATCATGTCACAAACTCGGGGGAGTCCGAATCGAACCTTCGA GCATTGGAGGAAGGGACAAAGAACCTCCCCGGCTATAATCTTCATCGATGA ATGCCATCGCACCAAAAGGGAGAAGACTCACGGTGAAGTGGAGCTGTT TGTCGCAACTTACTCTTATGGATGGAATGAAAGTCACTGGCAGTGTATTC ATGG
CS016	SEQ ID NO: 2091 AGGATGGAAGGG GATACGTTTGTAG	SEQ ID NO: 2092 GGTAAATACGACTC ACTATAGGCCACCC CTGTCTCCGAAGAC ATGTT SEQ ID NO: 2093 GGTAAATACGACTC ACTATAGGAGGATG GAAGGGGGATACG	SEQ ID NO: 2090 AGGATGGAAGGGGGATACGTTGAGCTCTCTGGGGAAAGATACGGGAGCAG TGCCAGCCGATGTCAGCGACTCGAATACTGTGGGGTTCTCGTAGTTGCC TGATGAAGTTCTCTCGAACCTGGTGGAGGAACCTCGAGGTAGGG TGTCAGGGCTTCCCTACCGGACGACAGCCCTCATGGCCCTGACG GGTAGCAGGGTACAGCTGGGGAAACATGAGGTGGCTGGGGTCATT CCCTCACCGATGGCAGACCTCATGAGACGAGACAGGGAGCTACG GGGGGGTAGATCTGTCTGGAGGCTGACGGTCTACGTTAGATCTG TGATGTAGGCCGTTAAATGGGGAAATAGGATGGGTGATGTCGTTGG TGATGTAGGCCGTTAAATGGGGAAATAGGATGGGTGATGTCGTTGG TGATGTAGGCCGTTAAATGGGGAAATAGGATGGGTGATGTCGTTGG

	TTTGAG	GAAGACATGTT	<p>CAAGATGGGGATCTGGTGTATGGATCCCTTCTACACGCCCGGCTC TCGTAGTGGGGAAATCGGTGTACATGTAACCTGGAAACCACGTCGTCG GGCAACCTCTCACGGGGGGACACTCACGCAGGCCCTCCGGTACGAAGA CATGTCAGTCAGATTACCAAGCACGACTGTTCTCACACTGGTAGGCCAAGAAC GCAGCAGTCAGGCCAACCTGGTGTATGATTCTCTCAATAAGTGGATCGTTG CCAGATTCAAGAACAGGCCACAGTTCCATGGAGCCGTTCTCGAAGTCC CTTGAAAGAACCGGGGGCCGCTCCATGTTCACACCCATGGGGGAAACACGATGG AAAGTTGTCCTCGTGGTCGTCAGCACAGATTGGGGGATCTTACAAGACCG GCTTGCCTACAGATCTGGGGCAATTCTGGTGTGGAGCCAG AAAATGGGATCTTGGCCGGCAGGCAATGGAGITCATCACGTCGATAGCCGAGA TACCAAGTCTGGATCATTTCTCAGGGTAGATAACGGGACCAGGGTTGATGGGCT GTCCCTGGATGTCCAAGAAAAGTCTTCAGGAAAGTGGGGGACCTTGTCAATGG TTTCCAGAGCCGTTGAATACGGGACCCAAACATGTCAGGAGACGGGGTGC</p>
CS018			<p>SEQ ID NO: 2095 CGCTCTGTACTCTGCTCAGCAATCCCACAGCAGAGTTACCGCCACGTCAG CGAGAGCGTCAAACAAATCCCTACGGCACGCCAAAGGTACACCACTTGGAAACA GACOAAAGCACAGAACAGAAAGGGTGGGTACACCAACGGTTCCGACTACTCTCCAC GGACGACTTAAGGTGATACTGTTGAAATACAGATCTCCGAGAAGTTCGTTG AGGGAAATCCATACGAAGCGGGTACATGGGGAGACAGACGACTCTCCGAGC GAGGTGCGACAAGTGTCTCGGTGTGGTGAACCCCTCTAAAGATAGCACAAAAGCCTA GGAATTCCCAAGCTGCGAGGAGGGAGCCGACGCTCAGTTCAAGTGCAGCTGTGG GTAACCCGGGGCACGGGTGTATGTTCAAGAACGGGAGGATAGTCAG CGAACAAACAGAAATCGTCAAGCACATAATCAAACAAATACCTAGGGTAAGAAC ACACAAAAGTCGATACTGGCAACTACAGTTGGCTGAAAATCCFAACGGAT GCGTGTCACTCGGCATACCTGGCCTGGAGTCGCTCAAGAAACCTTACGGCC AAGATCATAAATCACAATACATAATGGACAATCAGAACAAACAGCTGTAGAAGAAAAG GTAGAAGGTTAAAGGGGGAAATGACGCGATTGATTGCTGAGGAGTCTGGCAAGAC GCGATGTAACGAGGGGGAAATTCGCTCCGCAATTCTCGTAAGAGTCTGGCAAGAC CTTAACCCAGAAGTCACGTTGTTCATTAACGAATGACAATTCGACCTTATGATT CATAAGATATTAGTAAACGAATCGTGAATCATGGACAATCAGAACAAACAGCTGTAGAAGAAAAG CTCACTGATAGTGGCGTAGTATCATGTTATGACGCAACAGAACGGGAAACT CGTTTCAGTGTAGGCTGAACGTGATAGAGAAGGAGCAAGTGGCTCCAAATT CGTGGAGCGGGTTCAGCACGCTCAACGTGGGAGGGGAGGCCGAGCTGC ACGGGCGGCCGTCGGCACGCCCTACGCCACGCAATCACATGGAGAAGGACGGC GTTCAAGTTAACCCAAATCAGAGGCTACGAGCTACGAAATAACCGAAGGTTGGGGCTCG CGCTG</p>
			<p>SEQ ID NO: 2096 CGTCCCTGTACCTG CTCAGCAATCCCC SEQ ID NO: 2098 CGCTTAATCGGACTC ACTATAGGCGTCCC TGTACCTGTCAGC AATCCCC</p>

Table 8-PX

Target ID	Primers Forward 5' → 3'	Primers Reverse 5' → 3'	dsRNA DNA Sequence (sense strand) 5' → 3'
PX001	SEQ ID NO: 2340 GCGTAATACTGACTC ACTATAGGCAGGT GCTGAAGATCGTGA AG	SEQ ID NO: 2341 CTTGGCGATGATGAA ACACGTTG	SEQ ID NO: 2339 CGAGGTGCTGAAGATCGTGAAGCAGGCCCTCATCAAGGTGGACGCCAGGTCGC CACCGACCCCCA CCTAACCGGGCTGGATTCA TGGATTTGTGATTGAAAGAAC AATGAGCTGTTCCGCTGTGATCTACGATGTGAAGGGACGGCTCACCATCCACCGCA TCAC TCCCAGAGGGCCAAAGTACAAGCTGTGCAAGGTGAAGGCCAGTGGCGAC GGCCCAAGAACG TGCCGTACATCGTGACGCCAAACGGCCGAC CCGAACCCGCTCATCAAGTCAACGACTCCATCCAGCTGACATCGCCACCTG AAGATCATGGACATCATCAAGTTGACTCAGGTAACCTGTGATGATCACGGGAG GGCGTAAC TTGGCGAGTGGCACCATCGTGTCCCGGAGAGGCAACCCGG AGCTCGACATCGTCCACATCAAGGACACCACATGTGTCACCGGACACACCTTGC TGAACAAACGTTGTTCATCATCGGAAAG
PX009	SEQ ID NO: 2345 GCGTAATACTGACTC ACTATAGGCAGCTA CAAGTATTGGAGA ACCAG	SEQ ID NO: 2346 TGTGATCACTATGC CGGT CCT	SEQ ID NO: 2344 CAGCTACAAGTATTGGAGAACCGCTCATTTGTCAGTATAAGAA AGGGTCAGACAGCGGGTGGCTGGTCAAGAACATCTTCACACTG CGCCCCCACACGGCAAGGTGTGCGACGTGGACATCGGGGCTGGAGCC ATTGATGAGAACCCACTCTCTTCCACAAAGTCTTGCCCTG GAATAAGATCTACGGCTGGCTCCAGAGTTCTACAACCGAAC GAAGCCATGCCCGTGGACTTGCGAGAACCCACATTCTGTAAC GAGACTATGCGAACATGGTGGGGTGTGTCACGGCGAGAC AAGGAGAACATGGCCGGTGCCTACCTGCCCTACCCGGCT TTCTACCCGTACCGAGAACGCCGAGGGGTATCTGAGCCC TTGGAGAGGCCGAGGCCATAGTGTATCAACA
PX010	SEQ ID NO: 2350 GCGTAATACTGACTC ACTATAGGACCGAC ACTCTAGTGGACAA CGTC	SEQ ID NO: 2351 CTGTATCAATGTACC GGGGCAC	SEQ ID NO: 2349 ACCA GCACTCTAGTGGACAAACGTCGGGTTGGTCACCACTGTGCGCGCAATT GGGGCGACGGAGCCAAACTTACACCA CATATCGGGGCTTCGACCCAGGAG GCGGGGGGGGGGGTGTGATGGCTGGCTGGCTGACCCGATGCTCATAG ACGGGGCCGACGTGCTGGCTGGCTGGCTGGCTGGCTGGAG AGTTTGGGGAGTACCGCAAGGACGCCGAACAGCTCCGGTCTGTGGAGAA TCAGGCGTGTACCCGGAGTCA GTTACCCACCTGCGCTGCAGTTCTGCAGGT CTTCACAAACTGCCCCGAGGACCCACTCTACAGACACATGCTGAG GACCGTACCCCATCCCTCATGATCCAGCGATCCTACTCGTACAGCT GAGGGCGCCGAACCCGGTGTAGACACAGCTCCATCCAGGCC GAGCCAGCTCCATCCAGGCCGACCG
	SEQ ID NO: 2352 ACCAGAACCTCTAGT GGACAAGCTC	SEQ ID NO: 2353 GCGTAATACTGACTC ACTATAGGCTGTATC AATGTACCGGGCA C	

			TCCTGGCTCATGGACCCITCTTCCAGATCCCTCATCTACCATTGGAGGACAATGGC GCAATGGCGCGCTCTCCGCTACCAAGACATGGTGAATGAGAACTTCAAGCA GCTGCTGGAGGCCGTGGACGACGGCAGAGATCTGCAGACAGGTTCC CCGTCGCCGGTACATTGATAACAG
PX015	SEQ ID NO: 2355 GCGTAATACGACTC ACTATAGGAGCAG AAGATCCGGCATGAA CC	SEQ ID NO: 2356 GATGATGGCCGGAG AGTTCTTG	SEQ ID NO: 2354 GACGAGAAGATCCGCATGAAACC CGGTCCGGAAACAAACTCTGGGAGTGGCCTG TCAGACATTTGTCCTCCATCGCTCCCTGGCGTCACTGGAAAGTACGGCAAGAGAGTTC ATATTCTGCCCATTTGATGACTCTGTGGGGTTGACTGGAAAACCTGTTGCGAACAGC TACCTGAAGCCGTTACTCTGAGCTGACTCTGTGGGGTTGACTGGAAAACCTGTTGCGAACAGC TTCTATGTCGGGGGACTCTGATGTCATGTCGGGGGGACACGGTCAATTGTCAGGGAGA GCCGATTAAACGCGAGGAAGAGGAGGGCTCAACGCCTGCGTCAAGCCTGCGTCAAGC CATCGGGGGGGTCCGGCAAGCAGCTGAGGAGGAGGAGGAGGAGGAGGAGGAGG CGCTGGCCACCCCTCGCTGTTCAAGGGCCATGGGCAAGGGGGAGGGGGAGGGGG ATACTGATGTAACGG GCTAATGAGACGGGGGGCAATTCTCTCTCATCAACGGGGGGAGGATCATGTCGA AACTCGCCGGTGAATCCGAGTCGAAACCTGCGCAAGGGCTTCGAGGGGGGAGA AGAACATCTCGGCCATCATC
PX016	SEQ ID NO: 2360 GCGTAATACGACTC ACTATAGGCTGGGT CGTATTTCAACGG CTC	SEQ ID NO: 2361 AGTGATGTACCCGG TCAAGTCG	SEQ ID NO: 2359 CTGGGTGTATTTCGCAAGGGCTCCGGCAAGGCCATCGACAAGGGGGCCCCGATC CTGGCGGAGGAGGAGTACCTGAGCATCCAGGGCGACATCCAGGGCCATCAACCCGGTGGCCGGT ATCTACCCGGAGGAGGAGTACCTGAGCATCCAGGGTGGTATCTCGCTATCGACGTGATGAACCT CCATCGCCCGTGGTCAAGAGATCCCATCTCTCGCGGGCTGTCGCCCAACA ACGAGATTGCTGCTCAGATCTGAGGGCTGGTCTGTCAGGCTGGTCTGTCAGGCTGG ATCCGGTGTGGAGCAGGACCCATCGGCAACTTGGCCATGGCTGGCCATGG AGTCACACATGGAGACCGCAGGGTCTGCTGTCAGGAGCTGGAGGAAACGGTTC CATGGAGAACGCTGCTGCTGTCAGGAGCTGGCCATGGCAATGACCCGACCATTGAGAGG ATTATCACGGCCGAGGTGGCCTGACTGTGCCAGTTGGCCTAACCGAGTGC GAGAAACACGTTGGTAATCTTGACCGACATGTCTTCATACGGGGGGCTCTTC GTGAAGTGTCAAGCCGGCGGGAGGAGTGGGGGAGCTGGTTCCAGGTT ACATGTAACCGGATTGGCCACAATCTACGAGGGGGAGTGGAGG GCAAGGGCTCACTCACGGAGATCCCACATCCCTGACCCATGCCAACGACATCA CCCCCCCCATCCCCGACTGTACGGGGTACATCACT

Table 8-AD

Target ID	Primers Forward 5' → 3'	Primers Reverse 5' → 3'	dsRNA DNA Sequence (sense strand)
AD001	SEQ ID NO: 2462 GCGTAATACGACTC ACTATAGGGCTCT AAAGCATGGATGTT GG SEQ ID NO: 2464 GCTCCTAAAGCATG GATGTTGG	SEQ ID NO: 2463 CAATATCAAACGAG CCTGGGTG SEQ ID NO: 2465 GCGTAATACGACTC ACTATAGGCAATA AACAGGAGCTGGGT G	SEQ ID NO: 2461 GCTCTAAAGCATGGATGGACAAACTCGGAGGATTTCGCTCCCTGCCAG TACTGGCCCCACAATTGGCTGAATGTTACCTTGGTGAATTTCCTGCATCG GCTAAGTATGCTCTGACGAACGTGAAAGTGTGAAAGTGTGAAAGGACTAT CAAAGTTGACGGCAAGGTGGCAACGGATGGTGGATTATCCGGCTGGTGTGAAAGGC TITGTCACCAATTGAGAAGACTGGAGAGTTCTCAGGCTGGTGTATGATGTCAG CGTTTCACAAATTCAAGAAATTAGTGAGAAGGCCAAGTACAAGCTGCAAGGTC AGGAGAGTTCAACACTGGGCCAAAGTATTCCATTCTGGTGAACCCATGATGGCCG TACTATCGTTTATCCTGACCCAGTCATTAAGTGAATGACTCAATTGGATAATT GCCACTTGTAAAATCATGGACCCACATCAGATTGAATCTGGCAACCTGTGTATGATT ACTGGTGGACGTAACCTGGTCGAGTGGGACTGTTGAGTCGAGAACGTCACC CAGGCTCGTTGATATTG
AD002	SEQ ID NO: 2467 GCGTAATACGACTC ACTATAGGGAAAGAA AGATGGAAAGGCTC CGAC	SEQ ID NO: 2468 CATCCATGTCG TGAGCTGC SEQ ID NO: 2470 GCGTAATACGACTC ACTATAGGCAATCC GTGCTGATGAGCT C	SEQ ID NO: 2466 GAAGAAAGATGAAAGGCTCCGACCAACTGGTGAGGCCATTCAAGAAA CAGAAGAAATGTTTAATCAAAAGCAGGAATTTTAGAAAGAAAATGAA TCAATGTTGCAAAGAAAATGGAACGAAAATAAGCGAGCTGCTATT AAAGAAAAAGGGTATGAAAACAAATTGAGGAAATTGAGGTTGCTAAT TTGAAATGCAAAGAGAAGCTTGGAGGGTGTAAATACTAAACAGCTGTATT CACAAATGAGCCAGATGCCCTTAAAGCAGCTCATGCCACATGATG CAATGAAATCAGCAGGTCATGAGCTGATGCCCTTAAAGCAGCTCATGCCACATGATG
AD009	SEQ ID NO: 2472 GCGTAATACGACTC ACTATAGGGCTCT TCCAGACACTGGAT CCTC	SEQ ID NO: 2473 CGTGTTCATCCTCC CGAGTTG SEQ ID NO: 2475 GCGTAATACGACTC ACTATAGGGTGT CATCTCCCTCGAGT TG	SEQ ID NO: 2471 GTCTCTCCAGACACTGGATCCTCGTATTCCCACCTGGCAGTTAGATTCTCTATC ATTGGCACATCACCTGGCTCTAGGTTCCGCCAATGCCAGAAGATGCAATGTA GTCACACTCTCATCTGGTACCCGGTGGAAACAGATCGTGTATGACTTCCGTCAG ACACCCCTTGATGAATTCTGTGTGTTACAAGACTCTCTGGTCTGACCCCTGGTCAAG GTCAGAAACATCACAACACTGGTACTATGATAAGCCAAAGAAAGGCCAAGTTGC AATGTTGGACATCAAGAAATTGGCATCCCTGCAATTCAAGGAAATCAACTACAC AAGAGCTCTCCATGCAATTCAAGGCTCAACAAAGATCTCAAAATTGGATCCCTGAA TACTACAATGAGGATACGAAATTGCGCTGAGCAGATGCCAGAAGACCTGAAGCAGTA CATCCACAAACCTGGAGAGTAAACACTGGAGGAGATGAGCTGAACACG
AD015	SEQ ID NO: 2477 GCGTAATACGACTC	SEQ ID NO: 2478 AGAATTCAAGGCC	SEQ ID NO: 2476

	<p>ACTATAAGGGTTGAA GGACTTAACCGGGAA TTTG</p> <p>SEQ ID NO: 2480 GGCTTAATACGACTC ACTATAGGAGAATT CAAGGGGACCAAGTG G</p>	<p>GTGGAAGGACTAACCCTGGGAAATTGTTGAGGGTACTTAAACGGTACTTTCTCTCGAA GCATACCGACCCATTACAAGATGATGCGTTTATTGTTGTTGTTGCTCTGAGCA GTGAATTCAAAGTAGTGGAAAACAGATCCTTCACCATATTGTTGCTCTGATA CTGTTATTCACTGTGAAGGTGATCCAATAAAACGTTGAAAGGAAAGAAGGATTA ATGCTGTTGGTTATGATGACATTGGGGTTGCCAAAACAGCTAGCACAGATCAAG GAAATGGTGGAAATTGCCATTACGGGACCCCCAGTCTTAAGGCTATTGGTTAAAG CACCCGAGGGGAA TACTGCTGATGGACCCCCCTGGAACTGGTAAACCCCTCATGG CAGGGCTGTGGCTAATGAAACTGGTCATTCTCTTTAATAATTGGTCTGGAAATT ATGAGGAAAGCTTGGCTGGTAAGAACCTTGTAAAGCAACTTACTGTAAGGAAAGCT GATAAGAAATTGCTCCGGCAATTATATTGTAACACTAGATGCAATTGGCCCTAAAA GAGAAAAAAACTCATGGAGAGGGTGGAAACGTGTCATAGTTTACAACACTAACTTTAA TGGATGGTCTGAAGGCAAAGTTCACTGTTACATGTTATTGTTATGGCTGCACAAATTAGACCCA ACTCTATTGATGGTGCCTTGCGCCGCTTGGCAGATTGATAGGGAAATTGATATTG GTATACCCAGATGCCACTGGTCGCCCTGAAATTCT</p>	<p>SEQ ID NO: 2481 ACCCGGAAAGAAAATGATCCAGACGGGGATCTCGACCATCGACGTGATGACGTCATC GGCGGAGGGCAGAAAGATCCCCATCTCTCGGGCAGGGCTGGCAGCACACAGAGA TCGCTGCGCAGATCTGCCATCGTGGCGAGCGGGCTGGCTGGCAGCACAGAGA CGACCTTCGCCATCGTGGCGGATGGGTCACATGGAGACGGGGCGCTTC TTCAAGCGCGAGTTGCCAGACGGGGCGGTGCAACCTGGAGCTGGCTGTTCCCTCAACC TGGCCCAACGGGACCCACATCGAGGCCATACCCCGCGCTTGGCTTACCGGT GGCCGAGTTCCTGGCTACCGGCTACCAAGGCGCTGCTGTCATGACCGGACA TGACCTCCCTACGGGGAGGGCTGGCTGCGAGGTGAGGCCGCGGGCTGCTGTCATGACCGACA CTGGGGCAAGAGGCCTTCCAGGGCTACAT</p>
AD016	<p>SEQ ID NO: 2482 GGCTTAATACGACTC ACTATAGGACCCGG AAGAAATGATCCAG AC</p> <p>SEQ ID NO: 2484 ACCCGGAAAGAAAATG ATCCAGAC</p>	<p>ATGTTAGCCCTGGAA GCCCTTC</p> <p>SEQ ID NO: 2485 GGCTTAATACGACTC ACTATAGGATGTTAG CCTGGGAAAGGCTCT TC</p>	<p>SEQ ID NO: 2483 ATGTTAGCCCTGGAA GCCCTTC</p>

Target ID	Hairpin Sequence 5' → 3'	SEQIDNO: 240
LD0002		GCCCTTGCAATGTCATCCCATCATGTCTGTACATTGTCACAGTCCAAAGTTTAAGGGCTTCTTAAGAGCTTCAGCTGCATTTCAT AGATTCCAATACTGTGGTGTTCGTACTAGCTCCAGAGCTCTCGTTGAAGTTCAATAGTAGTTAAAGTGCCTCTGGCCATCTATTGCAACT GATTTTTCTAATCGGCTTCTTCGGCCTTCAGGCTTGCATGGCCGCTCAAGGGCGAATTCCAGCTTCTGTACAAAGTGGTATATC ACTAGTGCAGGGCCCTGCAGGTGACCTATGGTCGACTAGTGTATGGCTAGTGTCAAGTGTCAAGSGCTGA CCTGCAAACACGTTAAATGCTAAAGAGTTAGAATAATATGAGACACGTTAACCTGGATAAGATAAGCTGTAATAACCCGAGTTAAACT CATTAACTAATCACCTCTAGATATAATCAAAATTGACAAATTGCTAAATGTTCAAGAGTAGGGCTAACTTCAAGTGTAAAATCTTATATTIC

Table 9-1D

	<p>TACAATGTTCAAAAGAACAGTGGCATCTAAACCCCTATGGCCATCAAATTCAAGCCTGATCCGGAGATTTCAGGAG CTAAGGAAGCTAAATGGGAAAAAATCACTGGATAACCACCGTTGATATACTCCCATGGCATCTGGATAATTACGCCCTTACGGTGGATATTACGCCCTTAAAGACGTTAAGCAAAATAAGCACAAGTT CAGTCAGTTGCTCAATGTAACCTATAACCAAGACCGTTGAGTGAATGCTCATCCGGAAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGTGATA TTATCCGGCCCTTATTCACATTCTGGCCCTGATGAATGCTCATCCGGAAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGTGATA TGGGATAGTGGTCAACCCCTGGTACACGGTTTCCATGAGGAAACTGAAAGCTGGCTGGGTTACGGTGAAGATGGCTGGGTTTCAAGGTTTATGAGAATATGTT GGCAGTTCTACACATATTCCGCAAGATGTTGAGTTTACCCAGTGGCTGAGTGGCTGGGTTACGGTGAAGATGGCTGGGTTTCAAGGTTTATGAGAATATGTT TTCGGTCTCAGGCCAATCCCTGGGTTACAGGTTTACGGTGAAGATGGCTGGGTTACGGTGAAGATGGCTGGGTTTCAAGGTTTATGAGAATATGTT GGGCAAAATATTATACCGCAAGGGGACAAGGGTGGCTGAGTGGCTGGGAGTACGGTGAAGATGGCTGGGTTTCAAGGTTTATGAGAATATGTT AGTTTCTACACATATTCCGCAAGATGTTGAGTTTACCCAGTGGCTGAGTGGCTGGGTTACGGTGAAGATGGCTGGGTTTCAAGGTTTATGAGAATATGTT GTCTCAGGCCAATCCCTGGGTTACAGGTTTACGGTGAAGATGGCTGGGTTACGGTGAAGATGGCTGGGTTTCAAGGTTTATGAGAATATGTT GCAAAATATTATACCGCAAGGGGACAAGGGTGGCTGAGTGGCTGGGAGTACGGTGAAGATGGCTGGGTTTCAAGGTTTATGAGAATATGTT GAATGCTTAATGAAATTACAACAGTACTGGATGAGTGGCTGAGTGGCTGGGAGTACGGTGAAGATGGCTGGGTTTCAAGGTTTATGAGAATATGTT</p>
L0016	<p>SEQIDNO: 241</p> <p>GCCCCTTGGGGAGACTACAACAACCTATGGCTGGGGAGTTGGTTCTGGCTGGGGAAATACATGGACACTCTTGAAAGAGA AACTGTCATGATTGGCATGAACTCCTGAGGATCTGGGAGTCTGGGAGTCTGGGAGAAAGAATATGCTTATTGTCAGGACCTACACCCACTGCGAAAATCCAC CGGGCCATGATCTGGGCGTTGGCGCTTATTATACCTTCCCGATCATAAACCGAGGCCAAAGGAACACCTACCCAGGGCCTATG GGTAAGCGCAAGCTATGGGGTCTACATTAGAATTCCACGTGGGATGGACACCCCTGGGGCAGTGGCTATACTACCCGCAAAACCT CTGGTCAACTACCAAGGGCTATGGGATCTGGGTTAGGATCTGGGTTAGGATCTGGGTTAGGATCTGGGTTAGGATCTGGGTTAGGATCTGGGTTAGGATCTGG GTTATAATCAAGAAAGATTCTGTTATTCTGAACCGCTCTGCTGTTGAAAGGGGATTTCGGATCCTGTTTACCGGTTTACCAAAAGTGGTATATCACA GCCGAATGCAAGGGAAATTGGGATCAAGGAAGGGCAAGTTCGAGAAGGGCAATTCCACAGGTTGGGTTAGGATCTGGCAGGGGGCCTGGACACTAGTGTATGGCTGACCTG GTGGGGCCGGCTGGAGGTCGACCATTGGTCGACCTGGGAGCTGGGACTAGTGTATGGCTGTTAGGCTGTTAGGCTGTTAGGCTGTTAGGCTG CAAACAGCTTAATGCTAAGAAGTTGAGTATAATATCAAACTTGGACAATTTCGCAATTGGCTTAAGGTTATGAAATAAGGCTTAAGGCTAATGTT AACTAATACTCACCTCTAGGTATAATATCAAACTTGGCCAATTGGCTTAAGGCTTAAGGCTAATGTT ATGTTCAAAAGAAAACAGTGGCATCTAAACCCCTATGGCCATCAAAATTCAAATGAAACGCTAAGCTGATCCGGGAGATTTCAGGAGCTAA GGAAGCTAAAATGGGAAATTGAGGAAACTTACCTGGATAACCACGGTTGATATACTGGCTGGGTTAGGCTGTTAGGCTGTTAGGCTGTTAGGCTG CAGTTGCTCAATGTTACCTAACCAAGACGGTTCAAGCTGGGATATTACGGGCTGGATATTACGGGCTGGGTTAGGCTGTTAGGCTGTTAGGCTG CCGGGCTTATTACCTCTGGCCGCTGATGAATGCTCATCCGGAAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGTGATAGG GATAGTGTTCACCCCTGGTACACGGTTTCCATGAGGAAACTGAAAGCTGGGTTAGGCTGTTAGGCTGTTAGGCTGTTAGGCTGTTAGGCTG AGTTTCTACACATATTCCGCAAGATGTTGAGTTTACCCAGTGGCTGGGTTACGGTGAAGATGGCTGGGTTTCAAGGTTTATGAGAATATGTT GTCTCAGGCCAATCCCTGGGTTACAGGTTTACGGTGAAGATGGCTGGGTTACGGTGAAGATGGCTGGGTTTCAAGGTTTATGAGAATATGTT GCAAAATATTATACCGCAAGGGGACAAGGGTGGCTGAGTGGCTGGGAGTACGGTGAAGATGGCTGGGTTTCAAGGTTTATGAGAATATGTT GAATGCTTAATGAAATTACAACAGTACTGGGATGAGTGGCTGGGAGTACGGTGAAGATGGCTGGGTTTCAAGGTTTATGAGAATATGTT</p>

Table 9-PC

Target ID	Hairpin Sequence 5' → 3'
PC001	<p>SEQ ID NO: 508</p> <p>AGATTCAAATTGATGTAGTCAAGAAATTCTAGCAATTTCACATTGATGGGGTCAGGGTAACGA ATGGTTCTGCCATCATGTTACCAAAAATGGGATTCTCTGGACTCTCCCTTACTTACACAACCTGTATTGTTGCCTCT CAGCTGTAATACCGGTACAGCAAATCTCCTTAACATCATAGATCAGACGAAAAAATTCAACCGTCTTCAATAGTAATGACATCCA TGAAACCAGCAGGGTAATTGAAATCAGTCGCTCACTTAACATCAACCTTGATGACAATTAGTGACITCACTGTGTTGT AAGGGCATACITCAGGCCGTTACGAAGGAAAATCACTAAAGGCAGGGATTGGCGAACCTTGAGGCCGTTTGATGAGCAACCTAGTGCGGGCC GAAGACACCCCCCAATTGTCACAACTCCATGCAAGGGGGAATTGGACCCAGCTTGTACAAGTGTCAGTGCAAGCTGACCTGAAACACGTT GCCTGAGGTGACCAATGGTGCACCTGAGGGGGCACTAGTGTATGCTGTTATTCAGTGTCAGTGCAAGCTGACCTGAAACACGTT AAATGCTAAGAAGTTAGAATATGTAGACAGCTTAACTGGTATATGATAAGCTGTAAATAACCGAGATAAACTCATTAACCTAATATCAC CTCTAGAGTATAATTAATCAAATTGACAAATTGACTTTCAAGAGTAGGCTTAAGCTGCTAAAGCCTGATCCGGGAGATTTCAGGGAGCTAAAGAAA CAGTTGCACTAAACCCCTATGCCATCAAAATTCAATGAAACGCTAAAGCCTGATCCGGGAGATTTCAGGGAGCTAAAGAAAATGG AGAAAAAAATACITGIAATACCACCGTTGATAATGCCCAATGGCATCGTAAAGAACATTTGAGGCAATTTCAGGGCTTATTCCGGCTTATTCAAC CCTATAACCGACCCGTTAGCTGGATATTACGGCTTAAAGACCGTAAGGACAAGAAATTCAGGACAAGGTTATCCGGCTTATTCAAC TTCTTGCCGGCTGATGAATGCTCATCCGGTAACGGCTGGATGGCTGAGCTGGTGAATACCGGATGGCTGATGTTCTACACATATTG TACACCGTTTCCATGAGGAAACTCTGGCTTATTCGCTGAGTTGGCTTAAGGGTTATTGAGAAATATGTTCTGCTCAAGCCAAATCCCTGGGT CAAGATGTCGCTGATGCCGCTGATGCCGTTGATTTGATTAAACCTGGCCAATATGACAACCTTCTGCCCTTCAAGGCAATTGCTCAGGGCA GAGTTTCAACCAACTGGCCAATATGACAACCTTCTGCCCTTCAAGGCAATTGCTCAGGGCAATATGCTTCAAGGCAATTGCTCAGGGCA CAAGGTGCAATGAGGGGGGGGTAACCGGTAACCAACTAAAGATCGGTGTGATACAAAACCTATCTCATTAAGGTTATGCTAAATAAGCAATTTTACCCACTAAG ACTGCGATGAGGGCAGGGGGGGGTAACCGGTTGATCGGTGTGATACAAAACCTATCTCATTAAGGTTATGCTAAATAAGCAATTTTACCCACTAAG ATTCAACCATCAAGAAAAAGCCAATTTATGCTACTCTAAGGAAAACCTCAATCTCATTAAGGTTATGCTAAATAAGCAATTTTACCCACTAAG TGTCATCTACTAAACCAACTAAACTCAAGCACACAGGATATAATTGGGGATCAGCTCAAATCATAGAAACCTACAGTGAAGACACAGAAAGCCG CGTGACCAAGATAAAACATAACTCAAGCACACAGGATATAATTGGGGATCAGCTCAAATCATAGAAACCTACAGTGAAGACACAGAAAGCCG TAAGAAGGGCAAGAGTATGAAACCTTACCTCATTTCCATGAGGGTGTGCTTCTGATCAGGGGGGGGATATCACCACACTTTGACAAGAAA GCTGGGGTCAATTGCCCTTGCATGGATGTTGGACAAATTGGGGGGTCTGGCCCTCGTCCATCACAAGGTTGCG CGAATCCCTGCCTTACTGATTTCCTGTAACAGGGTGAAGTATGCCCTTACAACACAGTGAAGTCACTAAATTGTCATGCCAAAGGTT GATCAAAGTTGATGTTAAAGTGAGGACTGATTACCCCTGCTGATGTTCAATTACCCCTGCTGTTCATGGATGTCATTACTATTGAGAAGACTGGGGA CCGTCTGATCTATGATGTTAAAGGAAGATTGCTGTCACCGTATTACAGCTGAAGGGCAAAATAACAGTTGTAAGTAAGGAG TCCAAAACCTGGTCCAAAGGAATTCCATTGGTAACACATGAGGCAACCATTCGTTACCCCTGACCCCCAACATCAAGTGAATGAC ACAATTCAAATGAAATTGCTACATCTAAATAATTGACTACATCTAAATTGTACT</p>
PC010	<p>SEQ ID NO: 509</p> <p>CTCTCAAGGATTCTTGCAGATGCTCGCTCAGCTTACCGCCAAACGGGTGATTGATCACAGTTGGCAAGGTC CACGAACTGGGTACCGAAGGCTGAGTCAGTCAGTGTGGAAACGAAAGATCTCACCGCCAAGTCAGTGTGGCAAGGAGATGTTG</p>

280

Table 9-MP

	MP010	SEQ ID NO: 1068 ATGAAAACGTGAGCCAGATGCACCTAAATCAGC CAGACCCCTGTTCAGAATATGTCATTTGCTGCAATTGCTGAGGATGGAGATGCCAGATGTGATGGCTTCAAA TGCTGAGAACAATAGTTCGGATTGCCAGAAAAACTTCAGTTATCCACAGTTCAATTCTACGCTTCAATTGGTCA GATGATCCAAATAGTTCCGATTGCCAGAAAAACTTCAGTTATCCACAGTTCAATTCTACGCTTCAATTGGTCA TTAAATAATAGTCCTGATGAAACATCATATTAGCACATGTTGATGCTGAAGATGTTACCCAAAGTTAAC CTGTATAGCTATAGTTTAATGGTAGGCCAGAACCTGTACCTTGGTATACCAGTATTCAACCTGATAAAAATT ATTITCCATATTGATATTCCATGGAGAGACTATTGCTCAATTGGCAATTGGCAATTGATTCAAATAGC AGCAGTTGGCTCAAGCCCCCGTTGATGCTCAGGAAAAATTCTCAAAACTCTGATTCCCAAATGCAAGGGGA TGTAACAAAGTGGTGAATACTAGTGCGGGCCCTGCAAGGTGACCCATATGGTGCACCTGCAAGGGCCACT ATGTCAGTGTGTCAAGCTGACCTGCAAAACAGTTAAATGCTAAGAAGTTAGAAATAATGAGACACGTTAAC AAATAACCGAGTATAAAACTCATTAACCTCTAGAGTATAATAATCAAATTCGACAATTGCA GTAAAATCTTTATATTCTACAATGTTCAAAAGAAACAGTTGCACTCAAACCCCTATGGCCATCAA CGCGGAGATTTCAGGGACTAAGGAAGCTAAATGGAGAAAAAAATCACTGGATAACCCACGGTTG AGAACACATTGGGCAATTCTCAGTCAGTTGCTCAATGTACCTTAAACCAAGACCGTTG AGAAAATAACGACAAGTTTATCCGGCCCTTACCCCTG GACGGTAGGCTGGTATGGGATAGTGGCAGTTCCGGCAGTT AATACCAACGAGATTGTTTCACCCATTGTTCTGCA GTTATTGAGAAATTGTTCTGCACTGGGCAACTGGG TCGCCCGCGTTTCAACCAAAATTCCGCAAGGGG GTGATGGCTTCCATGTCGGCAGAACTTACCCACTAAAGCTGAGTGG GCTTAATATGACTCTCAAAATAAGCTCATACCAACA GAAAACCTCACTAAAGAAGACGATTAGAGTTTACCAAGA CCTAATCTCATTAAGTTATGCTAAATAAGCATAATT TATATTGGTGCTCAAATCATGAAACACTTACAGTGAAGAC TTCCATGAGGTTGGCTTCTGATCCGGGGATATCACCAC TTTGAGAAATTCTCTGAGCATCATCAACGGGGCTTGAAGCA GCTTGGTACTATCTGGTCTATTGATAATTCCATTGCT CTCCATTGAGCAATAGTCCTCCATGGAAATATC TCCAAGAAGTACAGGGTCTGGCCTACCAATT CATCAACATGTCCTATAATATGATGTTCA TGGATAAAACTGGGACTATTATGGATCAT ACGATCAGCCCAACGCAATCACATCTGGACTATC TGATCAAAATGAGCACTAACATGCATCATATTCTGAAACGGG SEQ ID NO: 1069 GTTTCAATGGCAGTGGAAAGCCGATAGATAAGGACCTC ATACTCCAGAACATATCCCAAGAAATGATTCAAAACTGGTATT AATAATTTCAGCTGAGGTTACCCACATAATGAGATT TTGCTGAAGTTCTGGCAATCAGCTTCAATTGATACT ACGATCAGCCCAACGCAATCACATCTGGACTATC TGATCAAAATGAGCACTAACATGCATCATATTCTGAAACGGG CT
--	-------	---

CAATGGCATCGTAAAGAACATTGGGCAATTTCAGTCAGTCAGTTGCTCAATGTAACCTATAACCAGACCGTTCAAGCTGGATTTACGGCT
 TTTAAAGACCGTAAGAACATAAGGCCAAGTAACTTATCCGGCCTTATTCACTTCTGGCCCTGTGATGAATGCTCATCCGGAAATTC
 CGTATGGCAATGAAAGACGGTGGCTGGTGAATGGGATAGTGTTCACCCCTGTTACACCGTAAACTTCCATGAGCAAACCTGG
 CATCGGCCTGGAGTGAATACCAACGACGATTCCGGCAGTTCTACACATATTCGCAAGATGTOGGGTGTTACGGTGAACCTGG
 CCTATTTCCTAAAGGGTTTATTGAGAATATGTTTCTGTCAGCCAATTCCTGGTAGTTACCAAGTGGTGAATTGGTGAATT
 AATATGGACAACCTCTGCCCGTTTCAACATGGGAAATATTATAGCGAAGGGACAAGGTGCTGATGCCGCTGGGAATT
 GTTCATCATGCCGTCGTGATGGCTCCATGTCGGCAGAATGCTTAATGTAATTACAACAGTACTGCCGATGAGTGGCAGGGGG
 TAAACGCGTGGATCAGCTCAATAAAGTCTCATACCAACAAAGTGCCTAACCCATTCAACCATCAAGAAAAGCCAAA
 TTATGCTACTCTAAGGAAACCTCACTAAAGAACGGATTAGAGTGTGTTTACCAAGAAATTCTGTCATCTTAACTAAAGAT
 CGGTGATAACAAACCTAATTCGTTAAATAAGCATATTACAGTGAAAGACACAGAAAGCCTAACCTTGTACAAGAAAGCTGG
 GCACACAGGCAATAATTGGCTCAAAATCAAGGTTGCTGATCCGGGGATATCACCAACTTGTACAAGAAAGCTGGTGA
 AACCTTACCTCATCATTTCCATGAGGTTGCTTACTGGCTTAACTGGCTCAGAAGATGGTACCGTCAGAATTGGCAATT
 GCTCGTTGTTCCATCCGAACCTCCCATGTTAACTGGCTTAACTGGCTTAACTGGCTTAACTGGCTTAACTGG
 TAGAATCATCATTAACATGGGATCTAATGGTATGGACAATCTGGCTTACGGGATCTAAATGGTATGGTATGG
 GGAAGTATAATGGTTAAAGTTGGCTGAAAGGCCAATGGATGTTCAATGGGTAATAATTGGTGGCACTG
 GAAATTCAACAAGCTAACCTTAAGCGATGCTCAAGCAGAAGGGGGAAATCAAAAGATGGTGAACGTTTACCAATACAAGTTAAAG
 ACATGGGTAGCTGTGAAATTATCCACAGTCATAATCTCAATAATCGAACATTGGTAGATTTCGAGTTG
 ATATATAACATCAATTGGCTTGGCTAATAAAGCATTGGCTCCGGCTAGGATTGGTGAATTCTGAGTAGCTTGG
 AAATTCTTCTACAATCAAAGTTTTAAAGAAAAAAATTAAAGGCTTAAACCAGAAGGGCAGATGGTATTTGG

Table10-LD

bioassay	bacterial host strain	treatment	no. of survivors	total weight	average weight / larvae
I AB309-105		diet only	8*	1.0245	0.1281
	pGN29	8*	1.0124	0.1266	
	pGBNJ003 clone 1	4	0.0273	0.0068	
	pGBNJ003 clone 2	1	0.0091	0.0091	
	pGBNJ003 clone 3	25	0.7113	0.0285	
	pGBNJ003 clone 4	12	0.1379	0.0115	
	pGBNJ003 clone 5	12	0.1808	0.0151	
		diet only	8*	1.0435	0.1304
	pGN29	8*	1.1258	0.1407	
	pGBNJ003 clone 1	33	0.5879	0.0178	
II BL21(DE3)	pGBNJ003 clone 2	42	0.8034	0.0191	
	pGBNJ003 clone 3	33	0.3441	0.0104	
	pGBNJ003 clone 4	21	0.1738	0.0083	
	pGBNJ003 clone 5	33	0.3628	0.0120	

Tables 10-NL (a)

RNAi	Mean % survival (days post start)									Survival analysis ¹
	0	1	2	.3	4	5	6	7	8	
gfp	100	98	90	82	68	60	44	32	20	-
diet only	100	98	96	86	74	68	58	54	38	-
NL002	100	98	90	76	68	34	6	0	0	+
NL003	100	98	74	48	36	22	12	2	0	+
NL005	100	100	74	56	40	20	16	6	4	+
NL010	100	96	74	56	48	30	18	12	8	+

= Data were analysed using Kaplan-Meier survival curve analysis

	Chi squared	P value	Sig. Dif. ²
diet versus:			
NL002	29.06	<0.0001	Yes
NL003	39.59	<0.0001	Yes
NL005	29.55	<0.0001	Yes
NL010	21.04	<0.0001	Yes
gfp dsRNA versus:			
NL002	15.09	0.0001	Yes
NL003	22.87	<0.0001	Yes
NL005	15.12	<0.0001	Yes
NL010	8.838	0.0029	Yes
diet versus gfp dsRNA	4.030	0.0447 (~0.05)	No

alpha < 0.05

Tables 10-NL (b)

RNAi	Mean % survival (days post start)									Survival analysis ¹
	0	1	2	3	4	5	6	7	8	
gfp	100	96	84	82	76	70	54	50	44	-
diet only	100	96	88	82	76	70	54	50	44	-
NL009	100	94	75	63	42	30	24	22	14	+
NL016	100	94	84	78	54	44	36	18	14	+

= Data were analysed using Kaplan-Meier survival curve analysis

	Chi squared	P value	Sig. Dif. ²
diet versus:			
NL009	11.98	0.0005	Yes
NL016	8.98	0.0027	Yes
gfp dsRNA versus:			
NL009	13.69	0.0002	Yes
NL016	11.37	0.0007	Yes
diet versus gfp dsRNA	0.03317	0.8555	No

alpha < 0.05

Tables 10-NL (c)

RNAi	Mean % survival (days post start)									Survival analysis ¹
	0	1	2	3	4	5	6	7	8	
gfp	100	92	84	78	72	62	58	56	48	-
diet only	100	84	72	68	64	58	52	42	42	-
NL014	100	86	68	60	46	32	24	18	14	+
NL018	100	82	70	54	40	30	18	14	12	+

= Data were analysed using Kaplan-Meier survival curve analysis

	Chi squared	P value	Sig. Dif. ²
diet versus:			
NL014	8.088	0.0045	Yes
NL018	10.47	0.0012	Yes
gfp dsRNA versus:			
NL014	14.55	0.0001	Yes
NL018	17.64	<0.0001	Yes
diet versus gfp dsRNA	0.6548	0.4184	No

alpha < 0.05

Tables 10-NL (d)

RNAi	Mean % survival (days post start)										Survival analysis ¹
	0	1	2	3	4	5	6	7	8	9	
gfp	100	96	84	84	72	68	68	66	66	62	-
diet only	100	96	86	82	74	72	70	70	66	58	-
NL013	100	94	82	68	50	40	30	28	20	20	+
NL015	100	100	72	30	18	12	8	6	6	6	+
NL021	100	100	84	58	50	44	40	34	34	22	+

= Data were analysed using Kaplan-Meier survival curve analysis

	Chi squared	P value	Sig. Dif. ²
diet versus:			
NL013	15.73	<0.0001	Yes
NL015	39.44	<0.0001	Yes
NL021	12.75	0.0004	Yes
gfp dsRNA versus:			
NL013	16.42	<0.0001	Yes
NL015	39.15	<0.0001	Yes
NL021	14.1	0.0002	Yes
diet versus gfp dsRNA	0.1031	0.7481	No

alpha < 0.05

Table 11-NL

NL002 RNAi	Mean % survival (days post start)								Survival analysis ¹
	0	1	2	3	4	5	6	7	
diet only	100	100	96	90	86	78	78	78	-
1 µg/µl	100	84	80	44	26	8	6	6	+
0.2 µg/µl	100	84	60	12	8	4	2	2	+
0.08 µg/µl	100	84	62	18	14	6	6	6	+
0.04 µg/µl	100	84	48	24	22	22	22	22	+

¹ = Data were analysed using Kaplan-Meier survival curve analysis

	Chi squared	P value	Sig. Dif. ²
diet versus:			
NL002 1 µg/µl	57.53	<0.0001	Yes
NL002 0.2 µg/µl	74.54	<0.0001	Yes
NL002 0.08 µg/µl	64	<0.0001	Yes
NL002 0.04 µg/µl	39.49	<0.0001	Yes

² alpha < 0.05

Claims

1. An isolated nucleotide sequence comprising a nucleic acid sequence selected from the group comprising:

(i) sequences represented by any of SEQ ID NOS 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476, 2481 or 2486, or the complement thereof,

(ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476, 2481 or 2486, or the complement thereof, and

(iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647,

1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476, 2481 or 2486, or the complement thereof,

or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 49 to 158, 275 to 472, 533 to 575, 621 to 767, 813 to 862, 908 to 1040, 1161 to 1571, 1730 to 2039, 2120 to 2338, 2384 to 2460, or a complement thereof.

2. A double stranded ribonucleotide sequence produced from the expression of a polynucleotide sequence of claims 1, wherein ingestion of said ribonucleotide sequence by a plant insect pest inhibits the growth of said insect pest.
3. The ribonucleotide sequence of claim 2, wherein ingestion of said sequence inhibits expression of a nucleotide sequence substantially complementary to said sequence.
4. A composition comprising a ribonucleotide sequence according to claim 2 or 3 and further comprising at least one adjuvant and optionally at least one surfactant.
5. A composition comprising at least one double-stranded RNA, one strand of which has a nucleotide sequence which is complementary to at least a part of a nucleotide sequence selected from the group of sequences as defined in claim 1, and optionally further comprising at least one suitable carrier, excipient or diluent.
6. A cell transformed with a polynucleotide comprising a nucleic acid sequence as defined in claim 1, optionally operably linked to a regulatory sequence.
7. The cell of claim 6 wherein said cell is a prokaryotic cell, such as a gram-positive or gram-negative bacterial cell; or wherein said cell is an eukaryotic cell, such as a yeast cell or an algal cell.
8. The cell of claim 7 wherein said cell is a bacterial cell.
9. The cell of claim 7 wherein said cell is a yeast cell.
10. A composition comprising at least one bacterial cell or yeast cell comprising at least one polynucleotide as defined in claim 1.
11. The composition of claim 10 wherein said bacterial or yeast cell is inactivated or killed, for instance by heat treatment or mechanical treatment.
12. A composition comprising at least one bacterial or yeast cell expressing at least one double-stranded RNA, one strand of which has a nucleotide sequence which is complementary to at least a part of a nucleotide sequence selected from the group of sequences as defined in claim 1, and optionally further comprising at least one suitable carrier, excipient or diluent.
13. The composition of any of claims 5, or 10 to 12, said composition further comprising at least one pesticidal agent selected from the group consisting of a chemical insecticide, a pyrethrin, a *Bacillus thuringiensis* insecticidal protein, a *Xenorhabdus* insecticidal protein, a *Photobacterium*

insecticidal protein, a *Bacillus laterosporous* insecticidal protein, and a *Bacillus spheariicus* insecticidal protein, said pesticidal agent being active against the same plant insect pest as defined in claim 2, or wherein said pesticidal agent is active against one or more other plant insect pests.

14. The composition of any of claims 10 to 12, wherein said at least one bacterial or yeast cell further comprises or further expresses at least one pesticidal agent selected from the group consisting of a chemical insecticide, a patatin, a *Bacillus thuringiensis* insecticidal protein, a *Xenorhabdus* insecticidal protein, a *Photorhabdus* insecticidal protein, a *Bacillus laterosporous* insecticidal protein, and a *Bacillus spheariicus* insecticidal protein, said pesticidal agent being active against the same plant insect pest as defined in claim 2, or wherein said pesticidal agent is active against one or more other plant insect pests.

15. A composition of any of claims 5, or 10 to 12, further comprising at least one further bacterial or yeast cell comprising or expressing at least one pesticidal agent selected from the group consisting of a chemical insecticide, a patatin, a *Bacillus thuringiensis* insecticidal protein, a *Xenorhabdus* insecticidal protein, a *Photorhabdus* insecticidal protein, a *Bacillus laterosporous* insecticidal protein, and a *Bacillus spheariicus* insecticidal protein, said pesticidal agent being active against the same plant insect pest as defined in claim 2, or wherein said pesticidal agent is active against one or more distinct plant insect pests.

16. The composition of any of claims 13 to 15 wherein said *Bacillus thuringiensis* insecticidal protein is selected from the group consisting of a Cry1, a Cry3, a TIC851, a CryET170, a Cry22, a binary insecticidal protein CryET33 and CryET34, a binary insecticidal protein CryET80 and CryET76, a binary insecticidal protein TIC100 and TIC101, and a binary insecticidal protein PS149B1.

17. The composition of any of claims 13 to 16 as an agent for killing insects.

18. The composition of any of claims 13 to 16 for use as a medicament for preventing or treating a human or animal body from infestation by insects.

19. A spray comprising at least one composition according to any of claims 10 to 18 and optionally further comprising at least one adjuvant and at least one surfactant.

20. A housing or trap or bait for a pest containing a composition as defined in any of claims 10 to 18.

21. Use of a composition of any of claims 10 to 18, a spray of claim 19 or a housing, trap or bait of claim 20 for killing or inhibiting growth of an insect chosen from the group comprising comprising *Leptinotarsa* spp. (e.g. *L. decemlineata* (Colorado potato beetle), *L. juncta* (false potato beetle), and *L. texana* (Texan false potato beetle)), and

- wherein said nucleic acid in said composition comprises a polynucleotide, or
 - wherein a bacterium or a yeast cell in said composition comprises or expresses a polynucleotide,
- said polynucleotide having a nucleotide sequence selected from the group comprising:

(i) sequences represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160 to 163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 246, or 2486, or the complement thereof,

(ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160 to 163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 246, or 2486, or the complement thereof, and

(iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160 to 163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 246, or 2486, or the complement thereof,

or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 49 to 158, or the complement thereof.

22. Use of a composition of any of claims 10 to 18, a spray of claim 19 or a housing, trap or bait of claim 20 for killing or inhibiting growth of an insect chosen from the group comprising *Phaedon* spp. (e.g. *P. cochleariae* (mustard leaf beetle)), and

- wherein said nucleic acid in said composition comprises a polynucleotide, or
- wherein a bacterium or a yeast cell in said composition comprises or expresses a polynucleotide,

said polynucleotide having a nucleotide sequence selected from the group comprising:

(i) sequences represented by any of SEQ ID NOs 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 512, or the complement thereof,

(ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 512, or the complement thereof, and

(iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 512, or the complement thereof,

or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 275 to 472, or the complement thereof.

23. Use of a composition of any of claims 10 to 18, a spray of claim 19 or a housing, trap or bait of claim 20 for killing or inhibiting growth of an insect chosen from the group comprising *Epilachna* spp. (e.g. *E. varivestis* (mexican bean beetle)), and

- wherein said nucleic acid in said composition comprises a polynucleotide, or
- wherein a bacterium or a yeast cell in said composition comprises or expresses a polynucleotide,

said polynucleotide having a nucleotide sequence selected from the group comprising:

- (i) sequences represented by any of SEQ ID NOs 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591 or 596, or the complement thereof,
- (ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591 or 596, or the complement thereof, and

(iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591 or 596, or the complement thereof,

or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 533 to 575, or the complement thereof.

24. Use of a composition of any of claims 10 to 18, a spray of claim 19 or a housing, trap or bait of claim 20 for killing or inhibiting growth of an insect chosen from the group comprising *Anthonomus* spp. (e.g. *A. grandis* (boll weevil)), and

- wherein said nucleic acid in said composition comprises a polynucleotide, or
- wherein a bacterium or a yeast cell in said composition comprises or expresses a polynucleotide,

said polynucleotide having a nucleotide sequence selected from the group comprising:

(i) sequences represented by any of SEQ ID NOs 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783 or 788, or the complement thereof,

(ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783 or 788, or the complement thereof, and

(iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783 or 788, or the complement thereof,

or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 621 to 767, or the complement thereof.

25. Use of a composition of any of claims 10 to 18, a spray of claim 19 or a housing, trap or bait of claim 20 for killing or inhibiting growth of an insect chosen from the group comprising *Tribolium* spp. (e.g. *T. castaneum* (red floor beetle)), and

- wherein said nucleic acid in said composition comprises a polynucleotide, or
- wherein a bacterium or a yeast cell in said composition comprises or expresses a polynucleotide,

said polynucleotide having a nucleotide sequence selected from the group comprising:

(i) sequences represented by any of SEQ ID NOs 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878 or 883, or the complement thereof,

(ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878 or 883, or the complement thereof, and

(iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878 or 883, or the complement thereof,

or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 813 to 862, or the complement thereof.

26. Use of a composition of any of claims 10 to 18, a spray of claim 19 or a housing, trap or bait of claim 20 for killing or inhibiting growth of an insect chosen from the group comprising *Myzus* spp. (e.g. *M. persicae* (green peach aphid)), and

- wherein said nucleic acid in said composition comprises a polynucleotide, or
- wherein a bacterium or a yeast cell in said composition comprises or expresses a polynucleotide,

said polynucleotide having a nucleotide sequence selected from the group comprising:

(i) sequences represented by any of SEQ ID NOs 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, or 1066 to 1070, or the complement thereof,

(ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, or 1066 to 1070, or the complement thereof, and

(iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, or 1066 to 1070, or the complement thereof,

or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 908 to 1040, or the complement thereof.

27. Use of a composition of any of claims 10 to 18, a spray of claim 19 or a housing, trap or bait of claim 20 for killing or inhibiting growth of an insect chosen from the group comprising comprising *Nilaparvata* spp. (e.g. *N. lugens* (brown planthopper)), and

- wherein said nucleic acid in said composition comprises a polynucleotide, or
- wherein a bacterium or a yeast cell in said composition comprises or expresses a polynucleotide,

said polynucleotide having a nucleotide sequence selected from the group comprising:

(i) sequences represented by any of SEQ ID NOs 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672 or 1677, or the complement thereof,

(ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOS 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672 or 1677, or the complement thereof, and

(iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOS 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672 or 1677, or the complement thereof,

or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOS 1161 to 1571, or the complement thereof.

28. Use of a composition of any of claims 10 to 18, a spray of claim 19 or a housing, trap or bait of claim 20 for killing or inhibiting growth of an insect chosen from the group comprising *Chilo* spp. (e.g. *C. suppressalis* (rice striped stem borer), *C. auricilius* (gold-fringed stem borer), or *C. polychrysus* (dark-headed stem borer)), and

- wherein said nucleic acid in said composition comprises a polynucleotide, or
- wherein a bacterium or a yeast cell in said composition comprises or expresses a polynucleotide,

said polynucleotide having a nucleotide sequence selected from the group comprising:

(i) sequences represented by any of SEQ ID NOS 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090 or 2095, or the complement thereof,

(ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOS 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090 or 2095, or the complement thereof, and

(iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOS 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090 or 2095, or the complement thereof,

or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOS 1730 to 2039, or the complement thereof.

29. Use of a composition of any of claims 10 to 18, a spray of claim 19 or a housing, trap or bait of claim 20 for killing or inhibiting growth of an insect chosen from the group comprising *Plutella* spp. (e.g. *P. xylostella* (diamondback moth)), and

- wherein said nucleic acid in said composition comprises a polynucleotide, or

- wherein a bacterium or a yeast cell in said composition comprises or expresses a polynucleotide,

said polynucleotide having a nucleotide sequence selected from the group comprising:

(i) sequences represented by any of SEQ ID NOS 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354 or 2359, or the complement thereof,

(ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOS 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354 or 2359, or the complement thereof, and

(iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOS 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354 or 2359, or the complement thereof.

or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOS 2120 to 2338, or the complement thereof.

30. Use of a composition of any of claims 10 to 18, a spray of claim 19 or a housing, trap or bait of claim 20 for killing or inhibiting growth of an insect chosen from the group comprising comprising *Acheta* spp. (e.g. *A. domesticus* (house cricket)), and

- wherein said nucleic acid in said composition comprises a polynucleotide, or

- wherein a bacterium or a yeast cell in said composition comprises or expresses a polynucleotide,

said polynucleotide having a nucleotide sequence selected from the group comprising:

(i) sequences represented by any of SEQ ID NOS 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof,

(ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOS 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof, and

(iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOS 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof,

or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOS 2384 to 2460, or the complement thereof.

31. Use of a composition of any of claims 10 to 18, a spray of claim 19, or a housing, trap or bait of claim 20 in a pharmaceutical or veterinary application.

32. A method for preventing insect growth on a plant or for preventing insect infestation of a plant comprising applying a composition of any of claims 10 to 18 or a spray of claim 19 to said plant.

33. A method for improving yield, comprising applying to a plant an effective amount of a composition of any of claims 10 to 18 or a spray of claim 19.

34. The method of claim 32 or 33 wherein said plant is chosen from the group comprising alfalfa, apple, apricot, artichoke, asparagus, avocado, banana, barley, beans, beet, blackberry, blueberry, broccoli, brussel sprouts, cabbage, canola, carrot, cassava, cauliflower, a cereal, celery, cherry, citrus, clemintine, coffee, corn, cotton, cucumber, eggplant, endive, eucalyptus, figes, grape, grapefruit, groundnuts, ground cherry, kiwifruit, lettuce, leek, lemon, lime, pine, maize, mango, melon, millet, mushroom, nut aot, okra, onion, orange, an ornamental plant or flower or tree, papaya, parsley, pea, peach, peanut, peat, pepper, persimmon, pineapple, plantain, plum, pomegranate, potato, pumpkin, radicchio, radish, rapeseed, raspberry, rice, rye, sorghum, soy, soybean, spinach, strawberry, sugarbeet, sugarcane, sunflower, sweet poatao, tangerine, tea, tobacco, tomato, a vine, waetermelon, wheat, yams and zucchini.

34. The method according to any of claims 32 to 34 wherein said insect is selected from the group comprising *Leptinotarsa* spp. (e.g. *L. decemlineata* (Colorado potato beetle), *L. juncta* (false potato beetle), or *L. texana* (Texan false potato beetle)); *Lema* spp. (e.g. *L. trilineata* (three-lined potato beetle)); *Epitrix* spp. (e.g. *E. cucumeris* (potato flea beetle), *E. hirtipennis* (flea beetle), or *E. tuberis* (tuber flea beetle)); *Epicauta* spp. (e.g. *E. vittata* (striped blister beetle)); *Epilachna* spp. (e.g. *E. varivestis* (mexican bean beetle)); *Phaedon* spp. (e.g. *P. cochleariae* (mustard leaf beetle)); *Nilaparvata* spp. (e.g. *N. lugens* (brown planthopper)); *Laodelphax* spp. (e.g. *L. striatellus* (small brown planthopper)); *Nephrotettix* spp. (e.g. *N. virescens* or *N. cincticeps* (green leafhopper), or *N. nigropictus* (rice leafhopper)); *Sogatella* spp. (e.g. *S. furcifera* (white-backed planthopper)); *Acheta* spp. (e.g. *A. domesticus* (house cricket)); *Blissus* spp. (e.g. *B. leucopterus leucopterus* (chinch bug)); *Scotinophora* spp. (e.g. *S. vermidulata* (rice blackbug)); *Acrosternum* spp. (e.g. *A. hilare* (green stink bug)); *Parnara* spp. (e.g. *P. guttata* (rice skipper)); *Chilo* spp. (e.g. *C. suppressalis* (rice striped stem borer), *C. auricilius* (gold-fringed stem borer), or *C. polyphemus* (dark-headed stem borer)); *Chilotraea* spp. (e.g. *C. polyphemus* (rice stalk borer)); *Sesamia* spp. (e.g. *S. inferens* (pink rice borer)); *Tryporyza* spp. (e.g. *T. innotata* (white rice borer), or *T. incertulas* (yellow rice borer)); *Cnaphalocrocis* spp. (e.g. *C. medinalis* (rice leafroller)); *Agromyza* spp. (e.g. *A. oryzae* (leafminer), or *A. parvicornis* (corn blot leafminer)); *Diatraea* spp. (e.g. *D. saccharalis* (sugarcane borer), or *D. grandiosella* (southwestern corn borer)); *Narnaga* spp. (e.g. *N. aenescens* (green rice caterpillar)); *Xanthodes* spp. (e.g. *X. transversa* (green caterpillar)); *Spodoptera* spp. (e.g. *S. frugiperda* (fall armyworm), *S. exigua* (beet armyworm), *S. littoralis* (climbing cutworm), or *S. praefica* (western yellowstriped armyworm)); *Mythimna* spp. (e.g. *Mythimna* (*Pseudaletia*) *separata* (armyworm)); *Helicoverpa* spp. (e.g. *H. zea* (corn earworm)); *Colaspis* spp. (e.g. *C. brunnea* (grape colaspis)); *Lissorhoptrus* spp. (e.g. *L. oryzophilus* (rice water weevil)); *Echinocnemus* spp. (e.g. *E. squamos* (rice plant weevil)); *Dicladispa* spp. (e.g. *D. armigera* (rice hispa)); *Oulema* spp. (e.g. *O. oryzae* (leaf beetle)); *Sitophilus* spp. (e.g. *S. oryzae* (rice weevil)); *Pachydiplaxis* spp. (e.g. *P. oryzae* (rice gall midge)); *Hydrellia* spp. (e.g. *H. griseola* (small rice leafminer), or *H. sasakii* (rice stem maggot)); *Chlorops* spp. (e.g. *C. oryzae* (stem

maggot)); *Diabrotica* spp. (e.g. *D. virgifera virgifera* (western corn rootworm), *D. barberi* (northern corn rootworm), *D. undecimpunctata howardi* (southern corn rootworm), *D. virgifera zea* (Mexican corn rootworm); *D. balteata* (banded cucumber beetle)); *Ostrinia* spp. (e.g. *O. nubilalis* (European corn borer)); *Agrotis* spp. (e.g. *A. ipsilon* (black cutworm)); *Elasmopalpus* spp. (e.g. *E. lignosellus* (lesser cornstalk borer)); *Melanotus* spp. (wireworms); *Cyclocephala* spp. (e.g. *C. borealis* (northern masked chafer), or *C. immaculata* (southern masked chafer)); *Popillia* spp. (e.g. *P. japonica* (Japanese beetle)); *Chaetocnema* spp. (e.g. *C. pulicaria* (corn flea beetle)); *Sphenophorus* spp. (e.g. *S. maidis* (maize billbug)); *Rhopalosiphum* spp. (e.g. *R. maidis* (corn leaf aphid)); *Anuraphis* spp. (e.g. *A. maidiradicis* (corn root aphid)); *Melanoplus* spp. (e.g. *M. femur-rubrum* (redlegged grasshopper) *M. differentialis* (differential grasshopper) or *M. sanguinipes* (migratory grasshopper)); *Hylemya* spp. (e.g. *H. platura* (seedcorn maggot)); *Anaphothrips* spp. (e.g. *A. obscurus* (grass thrips)); *Solenopsis* spp. (e.g. *S. milesta* (thief ant)); or spp. (e.g. *T. urticae* (twospotted spider mite), *T. cinnabarinus* (carmine spider mite); *Helicoverpa* spp. (e.g. *H. zea* (cotton bollworm), or *H. armigera* (American bollworm)); *Pectinophora* spp. (e.g. *P. gossypiella* (pink bollworm)); *Earias* spp. (e.g. *E. vittella* (spotted bollworm)); *Heliothis* spp. (e.g. *H. virescens* (tobacco budworm)); *Anthonomus* spp. (e.g. *A. grandis* (boll weevil)); *Pseudatomoscelis* spp. (e.g. *P. seriatus* (cotton fleahopper)); *Trialeurodes* spp. (e.g. *T. abutiloneus* (banded-winged whitefly) *T. vaporariorum* (greenhouse whitefly)); *Bemisia* spp. (e.g. *B. argentifolii* (silverleaf whitefly)); *Aphis* spp. (e.g. *A. gossypii* (cotton aphid)); *Lygus* spp. (e.g. *L. lineolaris* (tarnished plant bug) or *L. hesperus* (western tarnished plant bug)); *Euschistus* spp. (e.g. *E. conspersus* (conspicuous stink bug)); *Chlorochroa* spp. (e.g. *C. sayi* (Say stinkbug)); *Nezara* spp. (e.g. *N. viridula* (southern green stinkbug)); *Thrips* spp. (e.g. *T. tabaci* (onion thrips)); *Frankliniella* spp. (e.g. *F. fusca* (tobacco thrips), or *F. occidentalis* (western flower thrips)); *Emoiasca* spp. (e.g. *E. fabae* (potato leafhopper)); *Myzus* spp. (e.g. *M. persicae* (green peach aphid)); *Paratrhoiza* spp. (e.g. *P. cockerelli* (psyllid)); *Conoderus* spp. (e.g. *C. falli* (southern potato wireworm), or *C. vespertinus* (tobacco wireworm)); *Phthorimaea* spp. (e.g. *P. operculella* (potato tuberworm)); *Macrosiphum* spp. (e.g. *M. euphorbiae* (potato aphid)); *Thyanta* spp. (e.g. *T. pallidovirens* (redshouldered stinkbug)); *Phthorimaea* spp. (e.g. *P. operculella* (potato tuberworm)); *Helicoverpa* spp. (e.g. *H. zea* (tomato fruitworm)); *Keiferia* spp. (e.g. *K. lycopersicella* (tomato pinworm)); *Limonius* spp. (wireworms); *Manduca* spp. (e.g. *M. sexta* (tobacco hornworm), or *M. quinquemaculata* (tomato hornworm)); *Liriomyza* spp. (e.g. *L. sativae*, *L. trifolii* or *L. huidobrensis* (leafminer)); *Drosophila* spp. (e.g. *D. melanogaster*, *D. yakuba*, *D. pseudoobscura* or *D. simulans*); *Carabus* spp. (e.g. *C. granulatus*); *Chironomus* spp. (e.g. *C. tentans*); *Ctenocephalides* spp. (e.g. *C. felis* (cat flea)); *Diaprepes* spp. (e.g. *D. abbreviatus* (root weevil)); *Ips* spp. (e.g. *I. pini* (pine engraver)); *Tribolium* spp. (e.g. *T. castaneum* (red flour beetle)); *Glossina* spp. (e.g. *G. morsitans* (tsetse fly)); *Anopheles* spp. (e.g. *A. gambiae* (malaria mosquito)); *Helicoverpa* spp. (e.g. *H. armigera* (African Bollworm)); *Acyrthosiphon* spp. (e.g. *A. pisum* (pea aphid)); *Apis* spp. (e.g. *A. mellifera* (honey bee)); *Homalodisca* spp. (e.g. *H. coagulata* (glassy-winged sharpshooter)); *Aedes* spp. (e.g. *Ae. aegypti* (yellow fever mosquito)); *Bombyx* spp. (e.g. *B. mori* (silkworm)); *Locusta* spp. (e.g. *L. migratoria* (migratory locust)); *Boophilus* spp. (e.g. *B. microplus* (cattle tick)); *Acanthoscurria* spp. (e.g. *A.*

gomesiana (red-haired chocolate bird eater)); *Diploptera* spp. (e.g. *D. punctata* (pacific beetle cockroach)); *Heliconius* spp. (e.g. *H. erato* (red passion flower butterfly) or *H. melpomene* (postman butterfly)); *Curculio* spp. (e.g. *C. glandium* (acorn weevil)); *Plutella* spp. (e.g. *P. xylostella* (diamondback moth)); *Amblyomma* spp. (e.g. *A. variegatum* (cattle tick)); *Anteraea* spp. (e.g. *A. yamamai* (silkmoth)); and *Armigeres* spp. (e.g. *A. subalbatus*).

34. A method for preventing insect growth on a substrate comprising applying a composition of any of claims 10 to 18 or a spray of claim 19 to said substrate.

35. A method for treating and/or preventing a disease or a condition caused by a target organism, comprising administering to a subject in need of such treatment and/or prevention, a composition of any of claims 10 to 18 or a spray of claim 19.

FIGURE 1-LD

FIGURE 2-LD

2/24

FIGURE 3-LD

FIGURE 4-LD

FIGURE 5-LD (a)

FIGURE 5-LD (b)

FIGURE 5-LD (c)

FIGURE 5-LD (d)

5/24

FIGURE 5-LD (e)

FIGURE 5-LD (f)

6/24

FIGURE 5-LD (g)

FIGURE 5-LD (h)

7/24

FIGURE 6-LD (a)

FIGURE 6-LD (b)

8/24

FIGURE 7-LD (a)

FIGURE 7-LD (b)

9/24

FIGURE 8-LD (a)

FIGURE 8-LD (b)

10/24

FIGURE 9-LD

FIGURE 10-LD

11/24

FIGURE 11-LD

12/24

FIGURE 12-LD

FIGURE 13-LD (a)

FIGURE 13-LD (b)

FIGURE 13-LD (c)

FIGURE 14-LD

FIGURE 15-LD (b)

FIGURE 15-LD (d)

FIGURE 15-LD (a)

FIGURE 15-LD (c)

FIGURE 1-PC (a)

FIGURE 1-PC (b)

FIGURE 2-PC (a)

FIGURE 2-PC (b)

18/24

FIGURE 3-PC

FIGURE 1-EV

FIGURE 2-EV (a)

FIGURE 2-EV (b)

FIGURE 1-TC

FIGURE 1-MP

FIGURE 1-NL (a)

FIGURE 1-NL (b)

FIGURE 1-NL (c)

FIGURE 1-NL (d)

FIGURE 2-NL