Linearizability via Order Extension Theorems

Ana Sokolova Of SALZBURG

Dagstuhl, 25.5.2018

 Part I: Concurrent data structures correctness and performance

 Part II: Order extension results for verifying linearizability

Concurrent Data Structures Correctness and Relaxations

Google

Christoph Kirsch

Andreas Haas Google

Michael Lippautz

Andreas Holzer Google

Data structures

Queue FIFO

Stack LIFO

Pool unordered

Concurrent data structures

Queue FIFO

Stack LIFO

Pool unordered

Semantics of concurrent data structures

Sequential specification = set of legal sequences

e.g. queue legal sequence enq(1)enq(2)deq(1)deq(2)

Consistency condition = e.g. linearizability / sequential consistency

e.g. the concurrent history above is a linearizable queue concurrent history

Consistency conditions

there exists a legal sequence that preserves precedence order

Linearizability [Herlihy, Wing '90]

consistency is about extending partial orders to total orders t1: $enq(2)^2 - deq(1)^3$ t2: $enq(1) - deq(2)^4$

Sequential Consistency [Lamport'79]

there exists a legal sequence that preserves per-thread precedence (program order)

Performance and scalability

Relaxations allow trading

correctness for performance

provide the for better-performing implementations

Relaxing the Semantics

Quantitative relaxations Henzinger, Kirsch, Payer, Sezgin, S. POPL13

- Sequential specification = set of legal sequences
- Consistency condition = e.g. linearizability / sequential consistency

Local linearizability
Haas, Henzinger, Holzer,..., S, Veith CONCUR16

Lead to scalable implementations

e.g. k-FIFO, k-Stack

locally linearizable distributed implementation

local inserts / global removes

Performance

(a) Queues, LL queues, and "queue-like" pools

Performance

(a) Queues, LL queues, and "queue-like" pools

Performance

(a) Queues, LL queues, and "queue-like" pools

Linearizability via Order Extension Theorems

joint work with

foundational results for verifying linearizability

Inspiration

As well as Reducing Linearizability to State Reachability [Bouajjani, Emmi, Enea, Hamza] ICALP15 + ...

Queue sequential specification (axiomatic)

s is a legal queue sequence

- 1. **s** is a legal pool sequence, and
- 2. $enq(x) <_{s} enq(y) \land deq(y) \in s$

 $deq(x) \in \mathbf{s} \wedge deq(x) <_{\mathbf{s}} deq(y)$

Queue linearizability (axiomatic)

Henzinger, Sezgin, Vafeiadis CONCUR13

h is queue linearizable

- 1. **h** is pool linearizable, and
- 2. $enq(x)(<_h)enq(y) \land deq(y) \in h \Rightarrow deq(x) \in h \land deq(y)(<_h)deq(x)$

precedence order

Data independence => verifying executions where each value is enqueued at most once is sound

Reduction to assertion checking = exclusion of "bad patterns"

Value v dequeued without being enqueued deg ⇒ v

Value v dequeued before being enqueued deg ⇔ v eng(v)

Value v dequeued twice deg ⇒ v deg ⇔ v

Value v₁ and v₂ dequeued in the wrong order

eng(
$$v_1$$
) eng(v_2) deg $\Rightarrow v_2$ deg $\Rightarrow v_1$

Dequeue wrongfully returns empty

Linearizability verification

Data structure

- signature Σ set of method calls including data values
- sequential specification $S \subseteq \Sigma^*$, prefix closed

identify sequences with total orders

Sequential specification via violations

Extract a set of violations V. relations on Σ , such that $\mathbf{s} \in S$ iff \mathbf{s} has no violations

it is easy to find a large CV, but difficult to find a small representative

 $\mathcal{P}(\mathbf{s}) \cap V = \emptyset$

Linearizability ver lication

Find a set of violations CV such that: every interval order with no CV violations extends to a total order with no V violations.

we build CV iteratively from V

Ana

legal sequence

concurrent history

Pool without empty removals

Pool sequential specification (axiomatic)

- **s** is a legal pool (without empty removals) sequence iff
- 1. $rem(x) \in \mathbf{S} \implies ins(x) \in \mathbf{S} \land ins(x) <_{\mathbf{S}} rem(x)$

V violations rem(x) <s ins(x)

Pool linearizability (axiomatic)

- **h** is pool (without empty removals) linearizable iff
- 1. $\operatorname{rem}(x) \in \mathbf{h} \implies \operatorname{ins}(x) \in \mathbf{h} \land \operatorname{rem}(x) \not<_{\mathbf{h}} \operatorname{ins}(x)$

CV violations = V violations

Queue without empty removals

Queue sequential specification (axiomatic)

s is a legal queue (without empty removals) sequence iff

- 1. $deq(x) \in \mathbf{s} \Rightarrow enq(x) \in \mathbf{s} \land enq(x) <_{\mathbf{s}} deq(x)$
- 2. $enq(x) <_{s} enq(y) \land deq(y) \in S \Rightarrow deq(x) \in S \land deq(x) <_{s} deq(y)$

V violations $deq(x) <_{s} enq(x)$ and $enq(x) <_{s} enq(y) \land$ $deq(y) <_{s} deq(x)$

Queue linearizability (axiomatic)

h is queue (without empty removals) linearizable iff

- 1. $rem(x) \in \mathbf{h} \implies ins(x) \in \mathbf{h} \land rem(x) \not<_{\mathbf{h}} ins(x)$
- 2. $enq(x) <_{\mathbf{h}} enq(y) \land deq(y) \in \mathbf{h} \Rightarrow deq(x) \in \mathbf{h} \land deq(y) <_{\mathbf{h}} deq(x)$

CV violations = V violations

Pool

infinite inductive violations

V violations

 $rem(x) <_s ins(x)$

and

 $ins(x) <_{s} rem(\bot) <_{s} rem(x)$

Pool sequential specification (axiomatic)

- **s** is a legal pool (with empty removals) sequence iff
- 1. $rem(x) \in \mathbf{s} \implies ins(x) \in \mathbf{s} \land ins(x) <_{\mathbf{s}} rem(x)$
- 2. $\operatorname{rem}(\bot) <_{\mathbf{s}} \operatorname{rem}(X) \Rightarrow \operatorname{rem}(\bot) <_{\mathbf{s}} \operatorname{ins}(X) \wedge \operatorname{ins}(X) <_{\mathbf{s}} \operatorname{rem}(\bot) \Rightarrow \operatorname{rem}(X) <_{\mathbf{s}} \operatorname{rem}(\bot)$

2. ICHI(\pm) < SICHI(λ) \rightarrow ICHI(\pm) < SIHS(λ) \wedge IHS(λ) < SICHI(\pm) \rightarrow ICHI(λ) < SICHI(\pm

Pool linearizability (axiomatic)

h is pool (with empty removals) linearizable

- 1. $rem(x) \in \mathbf{h} \Rightarrow ins(x) \in \mathbf{h} \land rem(x) \not<_{\mathbf{h}} ins(x)$
- 2.

infinitely many CV violations

 $\operatorname{ins}(x_1) <_{\mathbf{h}} \operatorname{rem}(\bot) \land \operatorname{ins}(x_2) <_{\mathbf{h}} \operatorname{rem}(x_1) \land \dots \land \operatorname{ins}(x_{n+1}) <_{\mathbf{h}} \operatorname{rem}(x_n) \land \operatorname{rem}(\bot) <_{\mathbf{h}} \operatorname{rem}(x_{n+1})$

It works for

- Pool without empty removals
- Queue without empty removals
- Priority queue without empty removals
- Pool
- Queue

Priority que

Thank You!

But not yet for Stack: infinite CV violations without clear inductive structure

Exploring the space of data structures for problematic cases