Espacios Vectoriales

Tema 1

Razonar si los siguientes sistemas de vectores constituyen, o no, un subespacio vectorial. En caso afirmativo, encontrar su expresión como subespacio engendrado por un sistema de vectores.

1.- {
$$(x,y,z) \in R^3 / 2x - y + 3z = 0$$
}

2.-
$$\{(x,y) \in R^2 / x. y = 0\}$$

3.-
$$\{A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2x2}(R) \ t. \ q. \det A = 0\}$$

4.- Determinar el valor de x para que el vector $(1,x,5) \in \mathbb{R}^3$ pertenezca al subespacio <(1,2,3),(1,1,1)>

5.- Determinar si los conjuntos de polinomios $A = \{p(x) \in P_2(x) / p(0) = 0, p'(0) = 0\}$ $y \in P_2(x) / p(0) = 0, p'(0) = 1\}$ son subespacios de $P_2(x)$.

6.- Obtener las ecuaciones paramétricas del subespacio $M = \{(x_1, x_2, x_3, x_4)/x_1 + 5x_2 - 2x_3 - x_4 = 0; 2x_1 + x_2 + 2x_3 + x_4 = 0\}$

7.- Dados los subespacios S y T

$$S = \{(x_1, x_2, x_3, x_4) / x_1 - x_2 = 0\}$$
 $T = L < (1,1,2,1), (2,3,-1,1) >$

Obtener bases de $S, T, S \cap T y S + T$

Analizar para qué valores de "a" los siguientes vectores son linealmente independientes:

$$8.-\begin{pmatrix}0&a&0\\0&1&0\end{pmatrix} \quad \begin{pmatrix}0&1&0\\0&a&0\end{pmatrix} \quad \begin{pmatrix}0&1&0\\0&a&a\end{pmatrix}$$

9.-
$$x^2 + 3x + 1$$
, $2 - x$ $y + 1 + ax + x^2$

- 10.- Se considera la matriz $A = \begin{pmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$ Hallar la dimensión y una base del subespacio $U = \{X \in M_{2x2}(R) \ / \ XA = 0\}$.
- 11.- En el espacio vectorial R^4 , calcular
- a) una base que contenga al vector (1,2,1,1)
- b) una base que contenga a los vectores (1,1,0,0), (0,0,2,2) y (0,3,3,0)
- 12.- Dadas B= $\{e_1, e_2, e_3\}$ y B' = $\{2e_1 + 3e_2, e_1 + e_3, -e_2 + e_3\}$ a)Si las coordenadas de un vector u respecto a B son (1,2,3), ; cuáles son las coordenadas del vector u respecto a B'?)
- b) Si las coordenadas de un vector u respecto a B' son (-2,1,0), ¿ cuáles son las coordenadas del vector u respecto a B?
- 13.- Sea el espacio $P_3(x)$ con bases $B = (1, x, x^2, x^3)$, $B' = (1+x, x+x^2, x^2-x^3, 1+2x^3)$ y $B'' = (1, 1+x, 1+x+x^2, 1+x+x^2+x^3)$.
- a) Hallar la matriz de cambio de base para pasar de B a B'.
- b) Hallar la matriz de cambio de base para pasar de B a B".
- c) Hallar la matriz de cambio de base para pasar de B' a B".
- d) Sea el polinomio $p(x) = x^3 2x$. Hallar sus coordenadas con respecto a B, B' y B''.
- 14.- En el espacio vectorial $P_2(x)$ se consideran las bases

$$B_1 = \{1 + x + x^2, x + 2x^2, 1 + x\} y$$

$$B_2 = \{1 + 2x + 3x^2, \alpha + (\alpha - 1)x - 2x^2, 2 + 2x\}$$

Se pide:

- a) Calcular el valor de α para que el polinomio p(x) de coordenadas (1,1,0) en la base B₂ tenga coordenadas (1,0,3) en la base B₁
- b) Para el valor de α calculado en el apartado anterior, determinar el conjunto W de polinomios de $P_2(x)$ que tienen las mismas coordenadas en B_1y B_2 . ¿Es W un subespacio vectorial de $P_2(x)$?
- c) En caso afirmativo, calcular unas ecuaciones implícitas en base B_1 de un subespacio suplementario de W en $P_2(x)$

15.- (Examen Final álgebra 2022)

 $En P_3(x)$, espacio vectorial de los polinomios de grado menor o igual que 3, se consideran los subespacios

$$S_1 = \{p(x) \in P_3(x)/p(0)$$

= 0 y las tangentes a $p(x)$ en los puntos de abscisas 1 y
- 1 son paralelas $\}$

$$S_2 = \{p(x) \in P_3(x) / p(2) = 0\}$$

- a) Calcular la dimensión y obtener una base de cada uno de esos dos subespacios
- b) Calcular el subespacio $S_1 \cap S_2$, una base del mismo y razonar si $S_1 + S_2$ es o no una suma directa.
- c) Si p(x) es un vector de $S_1 \cap S_2$, calcular cuáles son sus coordenadas en la base $B = \{1 + x, x + x^2, x^2 + x^3, x^3\}$
- d) Demostrar, utilizando la matriz de cambio de base apropiada, que las coordenadas en la base canónica del vector obtenido en c) son efectivamente las mismas.

16.- (Examen Parcial Álgebra 2022)

Si $P_2(x)$ es el espacio vectorial de los polinomios de grado menor o igual que 2 y p(x) es un polinomio de grado exactamente 2

- a) Demostrar que tanto $B=\{p(x), p'(x), p''(x)\}$ como $B'=\{p(x), p(x)+p'(x), p'(x)+p''(x)\}$ son bases de $P_2(x)$
- b) Analizar si $S = \{x(x a)/a \in R\}$ es un subespacio vectorial de $P_2(x)$
- c) Si p(x) pertenece a S y tiene raíz -1, obtener las coordenadas de $q(x)=x^2+x+2$ en la base B'
- d) Demostrar, utilizando la matriz de cambio de base apropiada, que el vector obtenido en c) es precisamente q(x).

17.- Consideramos los subespacios V y W de R^4 :

 $V \equiv generado por (1,2,3,4) y (-1,0,1,-1)$

$$W \equiv \{(x, y, z, t)) / 2x + 5y - z - t = 0\}$$

- a) Obtener una base de W
- b) Obtener las ecuaciones paramétricas, implícita y una base de $V \cap W$
- c) Razonar si la suma V+W es una suma directa
- d) Coordenadas del vector (-1,1,1,2) respecto de la base de V formada por los vectores de V dados en el enunciado

18.- **(Examen noviembre 2009 ICAI)** En el espacio vectorial $P_3(x)$ (polinomios de grado menor o igual que 3 con coeficientes reales), consideramos

V={
$$p(x) \in P_3(x)/p'(x) \in L < 1 + x^2, x^3 >$$
}
W={ $p(x) \in P_3(x)/p'(x) = p''(x)$ }

- a) Calcular una base y las ecuaciones implícitas de V y W en la base canónica de $P_3(x)$
- b) Calcular las ecuaciones paramétricas y una base de $V \cap W$
- c) ¿Pertenece el polinomio p(x)=1 a V? ¿y pertenece a $V \cap W$?

En caso afirmativo, calcular sus coordenadas en las bases de V y de

 $V \cap W$ obtenidas anteriormente.

- 19.- $P_n(x)$ es el espacio vectorial de polinomios de grado menor o igual que n con coeficientes reales; se pide:
- a) Demostrar que el polinomio x^n y sus n primeras derivadas conforman una base de $P_n(x)$
- b) Estudiar si los vectores

 $1 + 3x + 5x^2$, $-1 + 2x^2y + 3x + x^2$ son linealmente independientes

c) Si V=L<1 +
$$x^2$$
, 1 - x^2 >

¿Pertenecen los polinomios $p(x) = 1 + 5x^2$ y r(x) = 1 + x a V?

d)Si W=L<1 +
$$3x$$
 + $5x^2$, -1 + $2x^2$ y 3 + $3x$ + x^2 >

Calcular $V \cap W \gamma V + W$

20.- Sean los espacios vectoriales $E = F = R^2$

Calcular una base del espacio vectorial producto ExF asociada a la base canónica de \mathbb{R}^2

21.- E es un espacio vectorial de dimensión 3 y B= $\{e_1, e_2, e_3\}$ es una base de E.

Sea V el subespacio de E engendrado por $\{u_1, u_2\}$ siendo

$$u_1 = e_1 - e_2$$
 y $u_2 = e_1 + e_2$

Calcular una base del espacio vectorial cociente.

22.- Obtener una base del espacio vectorial cociente R^4 módulo V siendo V el subespacio generado por los vectores (1,0,1,1), (1,2,1,1) y (2,2,2,2)