Pseudomodular Surfaces

Elise Weir

Advised by Dr. Morwen Thistlethwaite University of Tennessee, Knoxville

4/27/2016

References

- [1] K. Conrad, $SL_2(\mathbb{Z})$, http://www.math.uconn.edu/ kconrad/blurbs/grouptheory/SL(2,Z).pdf.
- [2] D.D. Long and A.W. Reid, *Pseudomodular surfaces*, J. Reine Angew. Math. vol. 552 (2002) pp. 77-100.
- [3] H.M. Hilden, M.-T. Lozano, and J.-M. Montesinos, *A characterization of arithmetic subgroups of* $SL(2,\mathbb{R})$ *and* $SL(2,\mathbb{C})$, Math. Nachr. vol. 159 (1992) pp. 245-270.
- [4] C. Series, *The modular surface and continued fractions*, J. London Math. Soc. vol. 31 (1985), pp. 69-80.

$PSL(2,\mathbb{Z})$

Definition.

The modular group $PSL(2,\mathbb{Z})$ is the quotient of

$$SL(2,\mathbb{Z}) = \left\{ \left(egin{array}{cc} a & b \ c & d \end{array}
ight) \middle| \ a,b,c,d \in \mathbb{Z} \ \ ext{and} \ \ ad-bc=1
ight\}$$

by its center $\{\pm I\}$.

$PSL(2,\mathbb{Z})$

Definition.

The modular group $PSL(2,\mathbb{Z})$ is the quotient of

$$\mathit{SL}(2,\mathbb{Z}) = \left\{ \left(egin{array}{cc} \mathsf{a} & \mathsf{b} \ \mathsf{c} & \mathsf{d} \end{array}
ight) \middle| \ \mathsf{a},\mathsf{b},\mathsf{c},\mathsf{d} \in \mathbb{Z} \ \mathsf{and} \ \mathsf{ad} - \mathsf{bc} = 1
ight\}$$

by its center $\{\pm I\}$.

The modular group acts on $\mathbb{H} = \{z \in \mathbb{C} | Im(z) > 0\}$ by fractional linear transformations:

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \cdot z = \frac{az+b}{cz+d}$$

Cusps of $PSL(2,\mathbb{Z})$

Proposition 1.

For every element of $\mathbb{Q} \cup \infty$, there is a parabolic element of $PSL(2,\mathbb{Z})$ fixing it.

Cusps of $PSL(2,\mathbb{Z})$

Proposition 1.

For every element of $\mathbb{Q} \cup \infty$, there is a parabolic element of $PSL(2,\mathbb{Z})$ fixing it.

Proof Idea

Use the following elements of the modular group to reduce denominators:

$$T=\left(egin{array}{cc} 1 & 1 \ 0 & 1 \end{array}
ight)$$
, translation by 1 to the right, and $S=\left(egin{array}{cc} 0 & -1 \ 1 & 0 \end{array}
ight)$, negative inversion.

$$S=\left(egin{array}{cc} 0 & -1 \ 1 & 0 \end{array}
ight)$$
, negative inversion.

Generators of $PSL(2, \mathbb{Z})$

Theorem 2.

$$S=\left(egin{array}{cc} 0 & -1 \ 1 & 0 \end{array}
ight)$$
 and $T=\left(egin{array}{cc} 1 & 1 \ 0 & 1 \end{array}
ight)$ generate PSL $(2,\mathbb{Z})$.

Generators of $PSL(2,\mathbb{Z})$

Theorem 2.

$$S=\left(egin{array}{cc} 0 & -1 \ 1 & 0 \end{array}
ight)$$
 and $T=\left(egin{array}{cc} 1 & 1 \ 0 & 1 \end{array}
ight)$ generate PSL $(2,\mathbb{Z})$.

Lemma 3.

Every $z \in \mathbb{H}$ has an element of its $PSL(2,\mathbb{Z})$ -orbit in

$$\mathcal{F} = \{ z \in \mathbb{H} | |Re(z)| \le 1/2, |z| \ge 1 \}.$$

Generators of $PSL(2, \mathbb{Z})$

Theorem 2.

$$S=\left(egin{array}{cc} 0 & -1 \ 1 & 0 \end{array}
ight)$$
 and $T=\left(egin{array}{cc} 1 & 1 \ 0 & 1 \end{array}
ight)$ generate PSL $(2,\mathbb{Z})$.

Lemma 3.

Every $z \in \mathbb{H}$ has an element of its $PSL(2,\mathbb{Z})$ -orbit in

$$\mathcal{F} = \{ z \in \mathbb{H} | |Re(z)| \le 1/2, |z| \ge 1 \}.$$

Proof Idea

For $\gamma \in PSL(2,\mathbb{Z})$, move $\gamma(2i)$ back into \mathcal{F} using some $g \in G$.

$$\mathcal{F} = \{z \in \mathbb{H} | | Re(z)| \leq 1/2, |z| \geq 1\}$$

$$\mathcal{F} = \{z \in \mathbb{H} | | Re(z)| \leq 1/2, |z| \geq 1\}$$

$$\mathcal{F} = \{z \in \mathbb{H} | |Re(z)| \le 1/2, |z| \ge 1\}$$

We'll start by transforming the fundamental region \mathcal{F} into an ideal triangle with vertices $\{0,1,\infty\}$.

Alter \mathcal{F} by:

• chopping off the left half and translating it right 1,

Alter \mathcal{F} by:

- chopping off the left half and translating it right 1, and
- ullet taking the image under Id, $U=\left(egin{array}{cc} 0 & -1 \ 1 & -1 \end{array}
 ight)=ST^{-1}$, and U^2

Definition 4.

The Farey Tesselation $\mathcal T$ is the images of the ideal triangle with vertices $\{0,1,\infty\}$ under the action of $PSL(2,\mathbb Z)$ by fractional linear transformations.

Main Theorem: Existence of Pseudomodular Groups

Theorem 5.

There is a finite coarea discrete group $\Gamma \leq PSL(2,\mathbb{Q})$ not commensurable with the modular group whose cusp set is precisely $\mathbb{Q} \cup \{\infty\}$. We call groups that satisfy these properties **pseudomodular**.

Definition 6.

Let $u^2, \tau \in \mathbb{Q}$, $0 < u^2 < \tau - 1$. Then $\Delta(u^2, 2\tau) := \langle g_1, g_2 \rangle$, where

$$g_1:=\frac{1}{D}\left(\begin{array}{cc}\tau-1 & u^2\\ 1 & 1\end{array}\right),\ g_2:=\frac{1}{D}\left(\begin{array}{cc}u & u\\ 1/u & \frac{\tau-u^2}{u}\end{array}\right)$$

and $D = \sqrt{\tau - u^2 - 1}$.

Definition 6.

Let $u^2, \tau \in \mathbb{Q}$, $0 < u^2 < \tau - 1$. Then $\Delta(u^2, 2\tau) := \langle g_1, g_2 \rangle$, where

$$g_1:=\frac{1}{D}\left(\begin{array}{cc}\tau-1 & u^2\\ 1 & 1\end{array}\right),\ g_2:=\frac{1}{D}\left(\begin{array}{cc}u & u\\ 1/u & \frac{\tau-u^2}{u}\end{array}\right)$$

and $D = \sqrt{\tau - u^2 - 1}$.

Then
$$g_1g_2^{-1}g_1^{-1}g_2=\begin{pmatrix} -1 & -2\tau \\ 0 & -1 \end{pmatrix}$$
, right translation by 2τ .

Theorem 7.

The group $\Delta(5/7,6)$ is pseudomodular.

Note

 $\Delta(5/7,6)$ is not commensurable with $SL(2,\mathbb{Z})$ because $tr(g_2^2)=39/5\notin\mathbb{Z}$. See [3].

Note

 $\Delta(5/7,6)$ is not commensurable with $SL(2,\mathbb{Z})$ because $tr(g_2^2)=39/5\notin\mathbb{Z}$. See [3].

Proof Idea

Cover $\mathbb Q$ with intervals where a group element always reduces the denominator of rationals inside that interval, called **killer intervals**.

Lemma 8.

If $\Delta(u^2, 2\tau)$ is such that $[0, 2\tau]$ can be covered by killer intervals, then its cusp set is $\mathbb{Q} \cup \{\infty\}$.

Lemma 8.

If $\Delta(u^2, 2\tau)$ is such that $[0, 2\tau]$ can be covered by killer intervals, then its cusp set is $\mathbb{Q} \cup \{\infty\}$.

7.4. Killer intervals for $\Delta(5/7,6)$.

```
\{(0:7), (1/7:125), (5/28:1), (5/21:1), (2/7:25), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/154:5), (45/155:5), (45/155:5), (45/155:5), (45/155:5), (45/155:5), (45/155:5), (45/155:5), (45/155:5), (45/155:5), (45/155:5), (45/155:5), (45
(40/133:1), (5/16:7), (30/91:1),
(55/161:1), (130/371:1), (55/156:7), (3190/9023:1),
(255/721:25), (5735/16212:1),
(635/1792:1), (5/14:25), (35/97:7), (120/329:1),
(235/637:1), (115/308:1), (45/119:5), (155/406:1), (65/168:1),
(20/49:1), (3/7:25), (10/21:1), (85/161:1), (15/28:5), (65/119:1),
(55/98:1), (4/7:25), (5/7:1), (6/7:125),
(25/28:1), (13/14:5), (125/133:1), (20/21:5), (75/77:1), (125/126:1),
(1:175), (50/49:1), (270/259:1), (300/287:1), (1550/1477:1),
(125/119:25), (2825/2688:1), (2525/2401:1), (325/308:1),
(15/14:5), (25/23:7), (100/91:1), (125/112:1), (8/7:5),
(25/21:1), (5/4:7), (9/7:5), (10/7:1), (11/7:1), (12/7:5), (13/7:1),
(2:7), (15/7:1), (16/7:5), (17/7:1), (18/7:25), (37/14:1), (19/7:5),
(58/21:1), (453/161:1), (2033/721:1), (79/28:25), (1917/679:1),
(337/119:1), (20/7:5), (3:7)
```

Example 9.

Example 9.

•
$$g_1^{-1}g_2^{-1} = \frac{1}{3} \begin{pmatrix} 7\sqrt{7/5} & -4\sqrt{5/7} \\ -2\sqrt{35} & \sqrt{35} \end{pmatrix}$$
 takes $1/2$ to ∞ .

Example 9.

•
$$g_1^{-1}g_2^{-1} = \frac{1}{3} \begin{pmatrix} 7\sqrt{7/5} & -4\sqrt{5/7} \\ -2\sqrt{35} & \sqrt{35} \end{pmatrix}$$
 takes $1/2$ to ∞ .

• For
$$p,q \in \mathbb{Z}$$
, $(g_1^{-1}g_2^{-1}) \cdot \frac{p}{q} = \frac{-49p + 20q}{35(2p-q)}$.

Example 9.

•
$$g_1^{-1}g_2^{-1} = \frac{1}{3} \begin{pmatrix} 7\sqrt{7/5} & -4\sqrt{5/7} \\ -2\sqrt{35} & \sqrt{35} \end{pmatrix}$$
 takes $1/2$ to ∞ .

- For $p, q \in \mathbb{Z}$, $(g_1^{-1}g_2^{-1}) \cdot \frac{p}{q} = \frac{-49p + 20q}{35(2p q)}$.
- Consider the interval |35(2p-q)| < |q| where $g_1^{-1}g_2^{-1}$ strictly decreases denominators:

Example 9.

•
$$g_1^{-1}g_2^{-1} = \frac{1}{3} \begin{pmatrix} 7\sqrt{7/5} & -4\sqrt{5/7} \\ -2\sqrt{35} & \sqrt{35} \end{pmatrix}$$
 takes $1/2$ to ∞ .

- For $p,q \in \mathbb{Z}$, $(g_1^{-1}g_2^{-1}) \cdot \frac{p}{q} = \frac{-49p + 20q}{35(2p-q)}$.
- Consider the interval |35(2p-q)| < |q| where $g_1^{-1}g_2^{-1}$ strictly decreases denominators:

$$\left(\frac{1}{2} - \frac{1}{2 \cdot 35}, \frac{1}{2} + \frac{1}{2 \cdot 35}\right)$$

Definition 10.

Hyperbolic elements of a discrete subgroup of $PSL(2,\mathbb{C})$ which fix points in the rationals are **special hyperbolics**.

Definition 10.

Hyperbolic elements of a discrete subgroup of $PSL(2,\mathbb{C})$ which fix points in the rationals are **special hyperbolics**.

Example 11.

 $\Delta(3/4,4)$ has a collection of killer intervals which miss only 1/2 and 3/2 in [0,2].

Definition 10.

Hyperbolic elements of a discrete subgroup of $PSL(2,\mathbb{C})$ which fix points in the rationals are **special hyperbolics**.

Example 11.

 $\Delta(3/4,4)$ has a collection of killer intervals which miss only 1/2 and 3/2 in [0,2].

This reflects the fact that the group has special hyperbolics fixing these two points!

Definition 10.

Hyperbolic elements of a discrete subgroup of $PSL(2,\mathbb{C})$ which fix points in the rationals are **special hyperbolics**.

Example 11.

 $\Delta(3/4,4)$ has a collection of killer intervals which miss only 1/2 and 3/2 in [0,2].

This reflects the fact that the group has special hyperbolics fixing these two points!

Example 12.

 $\Delta(1,6)$ is commensurable with $PSL(2,\mathbb{Z})$.

A pseudo-Farey Tesselation of \mathbb{H}

Take the fundamental domain $\mathcal{Q}_{(u^2,2\tau)}$ formed by the vertex set $\{-1,0,u^2,\infty\}$ and act by $\Delta(u^2,2\tau)$.

A pseudo-Farey Tesselation of \mathbb{H}

Take the fundamental domain $\mathcal{Q}_{(u^2,2\tau)}$ formed by the vertex set $\{-1,0,u^2,\infty\}$ and act by $\Delta(u^2,2\tau)$.

Relating the pseudo-Farey and Farey Tesselations

Since $\Delta(1,6)$ is commensurable with $PSL(2,\mathbb{Z})$, the previous construction yields the usual Farey tessellation if we include the geodesic from 0 to ∞ :

Relating the pseudo-Farey and Farey Tesselations

Since $\Delta(1,6)$ is commensurable with $PSL(2,\mathbb{Z})$, the previous construction yields the usual Farey tessellation if we include the geodesic from 0 to ∞ :

Image by Hyacinth (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia

Classifying $\Delta(u^2, 2\tau)$

Table 5.1. $2\tau = 4$

$0 < u^2 \le 1$	structure	$0 < u^2 \le 1$	structure
1	arithmetic	1/9	special fixing 1/3
1/2	arithmetic	2/9	special fixing 1/3
1/3	arithmetic	4/9	special fixing 2/3
2/3	arithmetic	5/9	special fixing 1/3
1/4	special fixing 1/2	7/9	special fixing 1/3
3/4	special fixing 1/2	8/9	special fixing 2/3
1/5	arithmetic	1/10	special fixing 7/2
2/5	pseudomodular	3/10	special fixing 1/5
3/5	pseudomodular	7/10	special fixing 1/2
4/5	arithmetic	9/10	special fixing 6/5
1/6	special fixing 3/2	1/11	conjectural pseudomodular
5/6	special fixing 1/2	2/11	conjectural pseudomodular
1/7	conjectural pseudomodular	3/11	pseudomodular
2/7	conjectural pseudomodular	4/11	conjectural pseudomodular
3/7	pseudomodular	5/11	conjectural pseudomodular
4/7	conjectural pseudomodular	6/11	conjectural pseudomodular
5/7	conjectural pseudomodular	7/11	conjectural pseudomodular
6/7	conjectural pseudomodular	8/11	conjectural pseudomodular
1/8	special fixing 1/2	9/11	conjectural pseudomodular
3/8	special fixing 1/2	10/11	conjectural pseudomodular
5/8	special fixing 1/2		
7/8	special fixing 1/2		

Classifying $\Delta(u^2, 2\tau)$

Table 5.2. $2\tau = 6$

$0 < u^2 \le 1$	structure	$0 < u^2 \le 1$	structure
1	arithmetic	1/9	special fixing -100/117
1/2	arithmetic	2/9	special fixing 545/1521
1/3	special fixing 1	4/9	special fixing -52/9
2/3	special fixing 1/3	5/9	special fixing -5/16
1/4	special fixing -5/8	7/9	special fixing 29/9
3/4	special fixing 3/2	8/9	special fixing -205/9
1/5	arithmetic	1/10	special fixing 5/52
2/5	special fixing 1/7	3/10	special fixing 1/2
3/5	conjectural pseudomodular	7/10	special fixing 1/2
4/5	conjectural pseudomodular	9/10	special fixing 6/5
1/6	special fixing -1/35	1/11	conjectural pseudomodular
5/6	special fixing -17/24	2/11	special fixing -266/4717
1/7	special fixing -37/14	3/11	undecided
2/7	conjectural pseudomodular	4/11	special fixing 1/5
3/7	special fixing 3/4	5/11	special fixing -1778/741
4/7	special fixing 2/7	6/11	special fixing 69/11
5/7	pseudomodular	7/11	special fixing 149/136
6/7	special fixing 5/3	8/11	special fixing -79/93
1/8	special fixing 1/14	9/11	conjectural pseudomodular
3/8	special fixing -15/2	10/11	special fixing 1/3
5/8	special fixing 7/4		
7/8	special fixing 1/2		

The End!

Questions?

References

- [1] K. Conrad, $SL_2(\mathbb{Z})$, http://www.math.uconn.edu/ kconrad/blurbs/grouptheory/SL(2,Z).pdf.
- [2] D.D. Long and A.W. Reid, *Pseudomodular surfaces*, J. Reine Angew. Math. vol. 552 (2002) pp. 77-100.
- [3] H.M. Hilden, M.-T. Lozano, and J.-M. Montesinos, *A characterization of arithmetic subgroups of* $SL(2,\mathbb{R})$ *and* $SL(2,\mathbb{C})$, Math. Nachr. vol. 159 (1992) pp. 245-270.
- [4] C. Series, *The modular surface and continued fractions*, J. London Math. Soc. vol. 31 (1985), pp. 69-80.

Thanks!

A special thanks goes to my advisor

Dr. Morwen Thistlethwaite

and to the rest of my committee

Dr. James Conant and Dr. Marie Jameson