

TEWA 1: Advanced Data Analysis

Lecture 04

Lei Zhang

Social, Cognitive and Affective Neuroscience Unit (SCAN-Unit)

Department of Cognition, Emotion, and Methods in Psychology

https://github.com/lei-zhang/tewa1_univie

Bayesian warm-up?

Example I: discrete

Joint probability:

$$P(X=0,Y=1) =$$

$$\sum_{x,y} P(X=x,Y=y) = 1$$

rain

X

			/				
			1	0			
cold	Y	1	0.5	0.1			
		0	0.1	0.3			

Marginal probability:

$$P(Y = 1) =$$

$$P(X = 0) =$$

Conditional probability:

$$P(X=1|Y=1) =$$

$$P(X = x) = \sum_{y} P(X = x, Y = y)$$

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$
$$= \frac{P(X = x, Y = y)}{\sum_{x} P(X = x, Y = y)}$$

Example I: continuous

cognitive model

statistics

computing

joint distribution

The "co-distribution" of x and y.

mariginal distribution

The density of x- (or y-) values, without knowing the other's value.

conditional distribution

The probability distribution of x, given that we know the value of y.

Bayes' theorem

cognitive model

statistics

$$p(A,B) = p(B,A)$$

$$p(A,B) = p(A|B)p(B)$$

$$p(B,A) = p(B|A)p(A)$$

$$p(A|B)p(B) = p(B|A)p(A)$$

$$p(A \mid B) = \frac{p(B \mid A)p(A)}{p(B)}$$

Linking Data and Parameter

cognitive model

statistics

Linking Data and Parameter

cognitive model

statistics

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$$

cognitive model

statistics

computing

Linking Data and Parameter

Likelihood

How plausible is the data given our parameter is true?

Prior

How plausible is our parameter before observing the data?

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$$

Posterior

How plausible is our parameter given the observed data?

Evidence

How plausible is the data under all possible parameters?

- This is the "Model"
- Data is fixed, ϑ varies
- Not a probability distribution
 - the sum is not "one"

$$Pr(X = 0 \mid \theta) = Pr(T, T \mid \theta) = Pr(T \mid \theta) \times Pr(T \mid \theta) = (1 - \theta)^{2}$$

$$Pr(X = 1 \mid \theta) = Pr(H, T \mid \theta) + Pr(T, H \mid \theta) = 2 \times Pr(T \mid \theta) \times Pr(H \mid \theta) = 2\theta(1 - \theta)$$

$$Pr(X = 2 \mid \theta) = Pr(H, H \mid \theta) = Pr(H \mid \theta) \times Pr(H \mid \theta) = \theta^{2}.$$

L(theta | Data)

Probability of coin	Number of heads, X					
landing heads up, θ	0	1	2	Total		
0.0	1.00	0.00	0.00	1.00		
0.2	0.64	0.32	0.04	1.00		
0.4	0.36	0.48	0.16	1.00		
0.6	0.16	0.48	0.36	1.00		
0.8	0.04	0.32	0.64	1.00		
1.0	0.00	0.00	1.00	1.00		
Total	2.20	1.60	2.20			

Watch this video!

What is $p(\vartheta)$?

cognitive model

statistics

computing

Lambert (2018)

discrete parameters

$$p\left(\theta \mid D\right) = rac{p\left(D \mid \theta\right)p\left(\theta\right)}{\sum_{\theta^{*}} p\left(D \mid \theta^{*}\right)p\left(\theta^{*}\right)}$$

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$$

continuous parameters

$$p(\theta \mid D) = \frac{p(D \mid \theta)p(\theta)}{\int p(D \mid \theta^*)p(\theta^*)d\theta^*}$$

cognitive model

statistics

computing

Why the Bayes' theorem is important?

"Probability is orderly opinion and inference from data is nothing other than the revision of such opinion in the light of relevant new information."

Eliezer S. Yudkowsky

BINOMIAL MODEL

- You are curious how much of the surface is covered in water.
- You will toss the globe up in the air.
- You will record whether or not the surface under your right index finger is water (W) or land (L).
- You might observe: W L W W W L W L W
- \rightarrow 6/9 = 0.666667?
- Is it right? If not, what to do next?

Steps of (Bayesian) Modeling?

cognitive model

statistics

computing

Think about how the data might arise.

It can be descriptive or even causal.

Educate your model by feeding it with data.

Bayesian Update:

update the prior, in light of data, to produce posterior the updated posterior then becomes the prior of next update

Compare model with reality. Revise your model.

cognitive model
statistics
computing

A Data Story of the Globe

- The true proportion of water covering the globe is ϑ .
- A single toss of the globe has a probability ϑ of producing a water (W) observation.
- It has a probability $(I \vartheta)$ of producing a land (L) observation.
- Each toss of the globe is independent of the others.

statistics computing

think about the likelihood function (of Binomial):

$$p(\theta \mid D) = \frac{p(D \mid \theta)p(\theta)}{\int p(D \mid \theta^*)p(\theta^*)d\theta^*}$$

$$p(w \mid N, \theta) = \begin{vmatrix} N \\ w \end{vmatrix} \theta^w (1 - \theta)^{N-w}$$

N: total number of observations w: number of water

: proportion of water

unknown (parameter) 21

Update

cognitive model

statistics

- order doesn't matter
- 2/3 is most likely
- others are not ruled out

Impact of Prior

statistics computing

cognitive model

statistics computing

discrete parameters

$$p\left(heta \mid D
ight) = rac{p\left(D \mid heta
ight)p\left(heta
ight)}{\sum_{ heta^*} p\left(D \mid heta^*
ight)p\left(heta^*
ight)}$$

continuous parameters

$$p(\theta \mid D) = \frac{p(D \mid \theta)p(\theta)}{\int p(D \mid \theta^*)p(\theta^*)d\theta^*}$$

cognitive model

statistics

computing

Binomial Model - Grid Approximation

compute likelihood at each value in grid
likelihood <- dbinom(w, size = N, prob = theta_grid)</pre>

compute product of likelihood and prior
unstd.posterior <- likelihood * prior

standardize the posterior, so it sums to 1
posterior <- unstd.posterior / sum(unstd.posterior)</pre>

$$p(\theta \mid D) = \frac{p(D \mid \theta)p(\theta)}{\int p(D \mid \theta^*)p(\theta^*)d\theta^*}$$

$$p(w \mid N, heta) = \left| egin{array}{c} N \ w \end{array} \right| heta^w (1 - heta)^{N-w}$$

Binomial Model - Grid Approximation

20 points posterior probability 0.10 -0.05 -0.00 -0.25 0.00 0.50 0.75 1.00 probability of water

cognitive model

statistics

cognitive model

statistics

computing

```
Exercise VII
```

.../BayesCog/02.binomial_globe/_scripts/binomial_globe_grid.R

TASK: run a grid approximation with grid_size = 50

How do I know which likelihood to use?

cognitive model

statistics

computing

The distribution zoo

What if I have multiple parameters?

grid approximation for 2 parameters?
5 parameters?
10 parameters?

$$p(\theta \mid D) = \frac{p(D \mid \theta)p(\theta)}{\int p(D \mid \theta^*)p(\theta^*)d\theta^*}$$

$$p(data) = \int_{\mathsf{All}\theta_1} \int_{\mathsf{All}\theta_2} p(data, \theta_1, \theta_2) \mathrm{d}\theta_1 \mathrm{d}\theta_2$$

$$\begin{split} p(data) &= \int_{\mu_1} \int_{\sigma_1} \dots \int_{\mu_{100}} \int_{\sigma_{100}} & \underbrace{p(data \mid \mu_1, \sigma_1, ..., \mu_{100}, \sigma_{100})}_{\text{likelihood}} \times \underbrace{p(\mu_1, \sigma_1, ..., \mu_{100}, \sigma_{100})}_{\text{prior}} \\ & \text{d}\mu_1 \text{d}\sigma_1 ... \text{d}\mu_{100} \text{d}\sigma_{100}, \end{split}$$

- Analytical solutions (often does not exist)
- Grid approximation (takes too long)
- Markov Chain Monte Carlo

$$p(\theta \mid D) \propto p(D \mid \theta) p(\theta)$$

AN JEST 101

Happy Computing!