Variational Open-Domain Question Answering

Valentin Liévin ¹² Andreas Geert Motzfeldt ¹ Ida Riis Jensen ¹ Ole Winther ¹²³⁴

Open-Domain Question Answering (ODQA)

- LLMs are limited by the implicit knowledge they possess
 - Incomplete, flawed, out of date etc.
- Retrieval-augmented models:
 - Augmenting LMs with external knowledge bases indexed with a retrieval mechanism
 - Popular for ODQA (e.g. REALM (Guu et al. 2020))
- This paper:
 - Proposes a probabilistic framework for retrievalaugmented tasks with end-to-end learning
 - Based on Rényi divergence variational inference

REALM: Retrieval-Augmented Language Model Pre-Training. Guu, K., Lee, K., Tung, Z., Pasupat, P., and Chang, M. (2020)

Reader-Retrieval Model

For a question and answer $\mathbf{q}, \mathbf{a} \in \Omega$ (Ω is the space of sequences of tokens)

and a corpus of N documents $\mathbb{D} := \{\mathbf{d}_1, \dots, \mathbf{d}_N\} \in \Omega^N$

the reader-retrieval model is given by:

$$p_{\theta}(\mathbf{a}|\mathbf{q}) := \sum_{\mathbf{d} \in \mathbb{D}} \underbrace{p_{\theta}(\mathbf{a}|\mathbf{d}, \mathbf{q})}_{\text{reader}} \underbrace{p_{\theta}(\mathbf{d}|\mathbf{q})}_{\text{retriever}}$$

(where both reader and retriever are BERT models)

Reader-Retrieval Model with Traditional VI

$$p_{\theta}(\mathbf{a}|\mathbf{q}) := \sum_{\mathbf{d} \in \mathbb{D}} \underbrace{p_{\theta}(\mathbf{a}|\mathbf{d}, \mathbf{q})}_{\text{reader}} \underbrace{p_{\theta}(\mathbf{d}|\mathbf{q})}_{\text{retriever}}$$

Traditional variational inference:

• Estimate $p_{\theta}(\mathbf{a}|\mathbf{q})$ by drawing samples from an approximate posterior (a "static retriever")

$$r_{\phi}(\mathbf{d}|\mathbf{a},\mathbf{q})$$

and evaluating the ELBO

$$\mathcal{L}_{\text{ELBO}}(\mathbf{a}, \mathbf{q}) := \log p_{\theta}(\mathbf{a}, \mathbf{q}) - \mathcal{D}_{\text{KL}}(r_{\phi}(\mathbf{d}|\mathbf{a}, \mathbf{q})||p_{\theta}(\mathbf{d}|\mathbf{a}, \mathbf{q}))$$

$$\leq \log p_{\theta}(\mathbf{a}, \mathbf{q})$$

But the authors suggest that Rényi divergence VI may be better...

Variational Rényi Bound (RVB)

• A generalisation of the ELBO with a parameter $\alpha \in [0,1)$

$$\mathcal{L}_{\alpha}(\mathbf{a}, \mathbf{q}) := \frac{1}{1 - \alpha} \log \mathbb{E}_{r_{\phi}(\mathbf{d}|\mathbf{a}, \mathbf{q})} \left[w_{\theta, \phi}^{1 - \alpha}(\mathbf{a}, \mathbf{q}, \mathbf{d}) \right]$$
$$w_{\theta, \phi}(\mathbf{a}, \mathbf{q}, \mathbf{d}) := \frac{p_{\theta}(\mathbf{a}, \mathbf{d}|\mathbf{q})}{r_{\phi}(\mathbf{d}|\mathbf{a}, \mathbf{q})}$$

• Can be extended for $\alpha=1$

$$\mathcal{L}_{\alpha=1}(\mathbf{a}, \mathbf{q}) := \lim_{\alpha \to 1} \mathcal{L}_{\alpha}(\mathbf{a}, \mathbf{q}) = \mathcal{L}_{\mathrm{ELBO}}(\mathbf{a}, \mathbf{q})$$

Gives a lower bound on the marginal task log-likelihood

$$\mathcal{L}_{\alpha=0}(\mathbf{a}, \mathbf{q}) = \log p_{\theta}(\mathbf{a}|\mathbf{q})$$

$$\mathcal{L}_{\alpha \geq 0}(\mathbf{a}, \mathbf{q}) \leq \log p_{\theta}(\mathbf{a}|\mathbf{q})$$

Importance-Weighted RVB (IW-RVB)

RVB is usually intractable

$$\mathcal{L}_{\alpha}(\mathbf{a}, \mathbf{q}) := \frac{1}{1 - \alpha} \log \mathbb{E}_{r_{\phi}(\mathbf{d}|\mathbf{a}, \mathbf{q})} \left[w_{\theta, \phi}^{1 - \alpha}(\mathbf{a}, \mathbf{q}, \mathbf{d}) \right] \quad \text{(RVB)}$$

 So we often use the importance-weighted RVB:

$$\hat{\mathcal{L}}_{lpha}^{K}(\mathbf{a}, \mathbf{q}) := rac{1}{1 - lpha} \log rac{1}{K} \sum_{i=1}^{K} w_{ heta, \phi}^{1 - lpha}(\mathbf{a}, \mathbf{q}, \mathbf{d}_i)$$
 (IW-RVB)
$$\mathbf{d}_1, \dots, \mathbf{d}_K \overset{\mathrm{iid}}{\sim} r_{\phi}(\mathbf{d} | \mathbf{a}, \mathbf{q})$$

• For which we still have: $\mathcal{L}_{\mathrm{ELBO}}(\mathbf{a},\mathbf{q}) \leq \hat{\mathcal{L}}_{\alpha}^K(\mathbf{a},\mathbf{q}) \leq \log p_{\theta}(\mathbf{a},\mathbf{q})$

The RVB & IW-RVB

- The idea is that we can control α to improve our model's training
- Evaluating the IW-RVB (and its gradient w.r.t. heta) has $\mathcal{O}(N)$ complexity
 - Requires importance weights for every document in the corpus

$$w_{\theta,\phi}(\mathbf{a}, \mathbf{q}, \mathbf{d}) := \frac{p_{\theta}(\mathbf{a}, \mathbf{d}|\mathbf{q})}{r_{\phi}(\mathbf{d}|\mathbf{a}, \mathbf{q})}$$

- ullet This is problematic in ODQA applications, where N is often very large
- Solution: use priority sampling instead of regular importance sampling

Priority Sampling

• Main point: priority sampling allows us to sample K documents (and corresponding importance weights s_i) without computing sums over the whole corpus

$$(\mathbf{d}_1, s_1), \dots, (\mathbf{d}_K, s_K) \overset{\text{priority}}{\sim} r_{\phi}(\mathbf{d}|\mathbf{a}, \mathbf{q})$$

- Such that for a function $h(\mathbf{d})$ we have a consistent estimator $\sum_{i=1}^K s_i h(\mathbf{d}_i) \approx \mathbb{E}_{r_{\phi}(\mathbf{d}|\mathbf{a},\mathbf{q})}[h(\mathbf{d})]$
- We have N documents, each weighted by $x_i \coloneqq r_\phi(\mathbf{d}_i|\mathbf{a},\mathbf{q})$
- 1. Sample random weights $u_1, \ldots, u_N \stackrel{\text{iid}}{\sim} \text{Uniform}(0, 1]$
- 2. Generate "priorities" x_i/u_i
- 3. Let τ be the (K+1) th largest priority
- 4. Select the K items with the largest priorities, return these alongside their corresponding importance weights $s_i := \max(x_i, \tau)$

Variational Open-Domain (VOD) Objective

• So instead of IW-RVB ($\mathcal{O}(N)$) due to importance sampling):

$$\hat{\mathcal{L}}_{\alpha}^{K}(\mathbf{a}, \mathbf{q}) := \frac{1}{1 - \alpha} \log \frac{1}{K} \sum_{i=1}^{K} w_{\theta, \phi}^{1 - \alpha}(\mathbf{a}, \mathbf{q}, \mathbf{d}_{i})$$
$$\mathbf{d}_{1}, \dots, \mathbf{d}_{K} \stackrel{\text{iid}}{\sim} r_{\phi}(\mathbf{d}|\mathbf{a}, \mathbf{q})$$

• We use the VOD objective ($\mathcal{O}(K)$) because of priority sampling):

$$\hat{L}_{\alpha}^{K}(\mathbf{a}, \mathbf{q}) := \frac{1}{1 - \alpha} \log \sum_{i=1}^{K} s_{i} \hat{v}_{\theta, \phi}^{1 - \alpha}(\mathbf{a}, \mathbf{q}, \mathbf{d}_{i})$$

$$(\mathbf{d}_{1}, s_{1}), \dots, (\mathbf{d}_{K}, s_{K}) \stackrel{\text{priority}}{\sim} r_{\phi}(\mathbf{d} | \mathbf{a}, \mathbf{q})$$

$$\hat{v}_{\theta, \phi} \approx w_{\theta, \phi}$$

Technical details:

$$\hat{v}_{\theta,\phi} := p_{\theta}(\mathbf{a}|\mathbf{q}, \mathbf{d}_i)\zeta(\mathbf{d}_i) \left(\sum_{j=1}^K s_j \zeta(\mathbf{d}_j)\right)^{-1} \approx w_{\theta,\phi}$$

1 reader evaluation
$$\zeta(\mathbf{d}) \propto \frac{p_{\theta}(\mathbf{d}|\mathbf{q})}{r_{\phi}(\mathbf{d}|\mathbf{a},\mathbf{q})} \longleftarrow \begin{array}{l} \text{1 retriever and} \\ \text{approx. posterior} \\ \text{approx. posterior} \end{array}$$

evaluation per document

Q: How are we actually modelling the retriever(s)?

• Via score functions, $f_{\theta}:\Omega^2\to\mathbb{R}$ and $f_{\phi}:\Omega^3\to\mathbb{R}$ for retriever and approx. posterior respectively

$$f_{\theta}(\mathbf{d}, \mathbf{q}) = \mathrm{BERT}_{\theta}(\mathbf{d})^{T} \mathrm{BERT}_{\theta}(\mathbf{q})$$
$$f_{\phi}(\mathbf{a}, \mathbf{q}, \mathbf{d}) := f_{\phi}^{\mathrm{ckpt}}(\mathbf{d}, [\mathbf{q}; \mathbf{a}]) + \tau^{-1} (\mathrm{BM25}(\mathbf{q}, \mathbf{d}) + \beta \cdot \mathrm{BM25}(\mathbf{a}, \mathbf{d}))$$

- BERT (language model)
- BM25 (bag-of-words document ranking algorithm)

(where $f_\phi^{\rm ckpt}$ is a saved version of $f_\theta({f d},{f q})$ at a certain point in training and initially $f_\phi^{\rm ckpt}=0$)

Q: How are we actually modelling the retriever(s)?

Then softmax over the scores to get distributions

$$p_{\theta}(\mathbf{d}|\mathbf{q}) := \frac{\mathbb{1}[\mathbf{d} \in \mathcal{T}_{\phi}] \exp f_{\theta}(\mathbf{d}, \mathbf{q})}{\sum_{\mathbf{d}' \in \mathcal{T}_{\phi}} \exp f_{\theta}(\mathbf{d}', \mathbf{q})} \qquad r_{\phi}(\mathbf{d}|\mathbf{a}, \mathbf{q}) := \frac{\mathbb{1}[\mathbf{d} \in \mathcal{T}_{\phi}] \exp f_{\phi}(\mathbf{a}, \mathbf{q}, \mathbf{d})}{\sum_{\mathbf{d}' \in \mathcal{T}_{\phi}} \exp f_{\phi}(\mathbf{a}, \mathbf{q}, \mathbf{d}')}$$

- \mathcal{T}_{ϕ} is the set of P documents with highest $f_{\phi}(\mathbf{a}, \mathbf{q}, \mathbf{d})$ scores, which we can put in cache:
 - ullet So in priority sampling, we only sample K from P documents ($K < P \ll N$)
 - Good for memory management
 - Also serves as an "exploration/exploitation threshold"
- The reader is modelled with BERT in a similar way, with softmax over a scoring function $g_{\theta}:\Omega^2\to\mathbb{R}$

$$g_{\theta}(\mathbf{d}, \mathbf{q}_j) = \operatorname{Linear}_{\theta}(\operatorname{BERT}_{\theta}([\mathbf{d}; \mathbf{q}_j]))$$

$$p_{\theta}(\mathbf{a}_{\star} | \mathbf{D}, \mathbf{Q}) := \frac{\exp g_{\theta}(\mathbf{d}_{\star}, \mathbf{q}_{\star})}{\sum_{j=1}^{M} \exp g_{\theta}(\mathbf{d}_j, \mathbf{q}_j)}$$

Training Intuition from the RVB

• Ultimately, using $\alpha=0$ should give us a tighter bound on the marginal log-likelihood, since

$$\mathcal{L}_{\alpha=0}(\mathbf{a}, \mathbf{q}) = \log p_{\theta}(\mathbf{a}|\mathbf{q})$$

- But, a looser bound may be better at the start of training, e.g. the ELBO/RVB $_{\alpha=1}$:
 - Encourages knowledge transfer from approx. posterior to retriever

$$\nabla_{\theta_{RETR}} \mathcal{L}_{\alpha=1}(\mathbf{a}, \mathbf{q}) = -\nabla_{\theta} D_{KL} \left(r_{\phi}(\mathbf{d}|\mathbf{a}, \mathbf{q}) || p_{\theta}(\mathbf{d}|\mathbf{q}) \right)$$

This is useful if we set the initial approx. posterior to a domain specific baseline:

$$f_{\phi}^{\text{ckpt}} = 0 \implies f_{\phi}(\mathbf{a}, \mathbf{q}, \mathbf{d}) = \tau^{-1}(\text{BM}25(\mathbf{q}, \mathbf{d}) + \beta \cdot \text{BM}25(\mathbf{a}, \mathbf{d}))$$

 Also maximises the answer likelihood independently of the retriever (in expectation over the approx. posterior)

$$\nabla_{\theta_{\mathbf{R}_{\mathbf{E}},\mathbf{D}}} \mathcal{L}_{\alpha=1}(\mathbf{a},\mathbf{q}) = \mathbb{E}_{r_{\phi}(\mathbf{d}|\mathbf{a},\mathbf{q})} \left[\nabla_{\theta} \log p_{\theta}(\mathbf{a}|\mathbf{d},\mathbf{q}) \right]$$

Training Procedure

- So, for the first T training steps we move from $\alpha=1$ to $\alpha=0$
 - Allows for initial knowledge distillation from BM25 to the retriever $p_{\theta}(\mathbf{d}|\mathbf{q})$
 - Then able to train on tighter bound
- At each iteration we use $r_{\phi}(\mathbf{d}|\mathbf{a},\mathbf{q})$ (fixed) to sample K documents, then we evaluate the VOD objective & gradients to update θ
- Every T steps we update $r_\phi(\mathbf{d}|\mathbf{a},\mathbf{q})$ by setting $f_\phi^{\mathrm{ckpt}}=f_\theta$

Evaluation on Multiple-Choice Q&A

• Given a question **q** and each potential answer **a**, evaluate 10 Monte Carlo estimates of the VOD and choose most likely answer.

$$\hat{L}_{\alpha}^{K}(\mathbf{a}, \mathbf{q}) := \frac{1}{1 - \alpha} \log \sum_{i=1}^{K} s_{i} \hat{v}_{\theta, \phi}^{1 - \alpha}(\mathbf{a}, \mathbf{q}, \mathbf{d}_{i})$$

$$(\mathbf{d}_1, s_1), \dots, (\mathbf{d}_K, s_K) \overset{\text{priority}}{\sim} r_{\phi}(\mathbf{d}|\mathbf{a}, \mathbf{q})$$

Experiments

Table 3. Open-domain question answering accuracy.

			MedMCQA		USMLE	
Method	Params.	Finetuning	Valid.	Test	Valid.	Test
VOD BioLinkBERT+BM25	110M	MedMCQA	51.6	55.3	_	_
VOD BioLinkBERT+BM25	110 M	USMLE	_	_	41.0	40.4
VOD 2×BioLinkBERT	220M	MedMCQA	58.3	62.9	47.2	46.8
VOD 2×BioLinkBERT	220M	USMLE	_		45.8	44.7
VOD 2×BioLinkBERT	220M	${\sf MedMCQA} {\rightarrow} {\sf USMLE^{\star}}$	_	_	53.6	55.0
Disjoint PubMedBERT+DPR ¹	220M	MedMCQA	43.0	47.0	_	_
Disjoint PubMedBERT+BM25 ²	110 M	USMLE	_	_	_	38.1
Disjoint BioLinkBERT+BM25 ³	110 M	USMLE	_	_	_	40.0
Disjoint BioLinkBERT-L+BM25 ³	340M	USMLE			_	44.6
Reader only PubMedGPT ⁴	2.7B	MedMCQA+USMLE	_	50.3	_	_
Reader only Galactica ⁵	120B	MedMCQA	52.9	_	_	44.4
Reader only Codex 5-shot CoT ⁶	175B	Ø	59.7	62.7	_	60.2
Reader only FLAN-PaLM ⁷	540B	Ø	_	56.5	_	60.3
Reader only Med-PaLM ⁷	540B	MedMCQA+USMLE	_	57.6	_	<u>67.6</u>
Random Uniform			25.0	25.0	25.0	25.0
Human Passing score ⁶			50.0	50.0	60.0	60.0
Human Merit candidate ⁶			90.0	90.0	87.0	87.0

Figure 1. Parameter efficiency. Answering accuracy of baseline methods and of VOD (BioLinkBERT backbone) on MedMCQA.

- Better results on MedMCQA (entry-level med-student knowledge) than USMLE (trained medical professional knowledge)
 - "BERT-sized model may not be sufficient for handling reasoning-intensive questions"

Experiments

Table 4. Zero-shot accuracy on MMLU (%).

Task	Subcategory	Unified QA	GPT-3	VOD
medical_genetics	health	40.0	40.0	76.0
high_school_psychology	psychology	<u>70.0</u>	61.0	60.6
college_biology	biology	40.0	45.0	<u>59.7</u>
anatomy	health	43.0	46.0	58.5
clinical_knowledge	health	57.0	50.0	58.5
professional_medicine	health	43.0	38.0	57.4
nutrition	health	48.0	50.0	56.5
high_school_biology	biology	53.0	48.0	55.2
college_medicine	health	43.0	<u>47.0</u>	46.8
human_aging	health	55.0	50.0	44.4
virology	health	43.0	44.0	42.2
professional_psychology	psychology	<u>49.0</u>	45.0	42.2
Average	-	48.7	47.0	<u>54.8</u>

Trained on MedMCQA only and evaluated on MMLU

Ablation Study

• Better performance when trained on VOD (interpolating α from 1 to 0) than with IWB ($\alpha=0$) and ELBO ($\alpha=1$)

Ablation Study

• Better performance when trained on VOD (interpolating α from 1 to 0) than with IWB ($\alpha=0$) and ELBO ($\alpha=1$)

- Larger *P* leads to:
 - Smaller effective sample size (measure of importance sampling quality, higher is generally better)
 - Slower learning
 - Better end performances

Re-purposing MCQA Retrievers for Sematic Search

 Using the trained VOD retriever to teach a query-only retriever "student" model by minimising:

$$L_{\text{DISTILL.}} = D_{\text{KL}} \left(\underbrace{r_{\phi}(\mathbf{d} \mid [\mathbf{q}; \mathbf{a}_{\star}])}_{\text{MCQA Teacher}} \parallel \underbrace{p_{\theta}(\mathbf{d} \mid \mathbf{q})}_{\text{Student}} \right)$$

$$\underbrace{question + answer}_{\text{(question only)}}$$

- MRR = 100 * mean reciprocal rank (of first document with correct "disease concept" label)
- Hit@20 = fraction of queries for which correct document is in top-20 returned articles

Table 5. Retrieval performances on the FindZebra benchmark for a BioLinkBERT retriever trained using VOD on MedMCQA and one trained using task-specific distillation, with and without coupling with a BM25 score during evaluation.

Method	Distillation	MRR	Hit@20
VOD	X	27.8	56.9
VOD	✓	31.7	58.1
VOD + BM25	✓	<u>38.9</u>	<u>64.1</u>
BM25	_	26.4	48.4
FINDZEBRA API	_	30.1	59.3

Conclusion

- Good results, authors hope more attention will be given to Rényi divergence VI in NLP
- VOD could be used in areas other than the ODQA presented here:
 - Generative and extractive ODQA outside of multiple-choice ODQA
 - Retrieval-augmented language modelling: retrieve one document per input token
 - Fusion-in-Decode (FiD): using a reader model that takes in multiple documents
- Authors want more training (on larger datasets) and to use larger models than BERT
- "Additional theoretical analysis is required" to investigate bias induced in VOD objective via self-normalised priority sampling.

$$s_i := \bar{s}_i / \sum_{j \in \mathbb{S}} \bar{s}_j$$