

"RESULTANT WAVE METHOD"

CAN WRITE H IN TERMS OF E

$$\Gamma = \frac{\Gamma_{12} + \Gamma_{23} e^{2i\phi_2}}{1 + \Gamma_{12}\Gamma_{23} e^{2i\phi_2}} \quad ; \quad \phi_2 = \frac{2\pi \cos 4\theta_2 N_2 d_2}{\lambda_0}$$

FOR MULTIPLE LAYERS, TRANSFER MATRIX METHOD IS EASIEST

$$\begin{pmatrix}
E_{zx}(0) \\
H_{zy}(0)
\end{pmatrix} = \begin{pmatrix}
\cos \phi_{z} & -i p_{z} \sin \phi_{z} \\
-\frac{i}{p_{z}} \sin \phi_{z} & \cos \phi_{z}
\end{pmatrix}
\begin{pmatrix}
E_{zx}(d_{z}) \\
H_{zy}(d_{z})
\end{pmatrix} = |M_{z}\begin{pmatrix}
E_{zx}(d_{z}) \\
H_{zy}(d_{z})
\end{pmatrix}$$

$$= |M_{z}| \begin{pmatrix}
E_{zx}(d_{z}) \\
H_{zy}(d_{z})
\end{pmatrix}$$

$$= |M_{z}| M_{3} \begin{pmatrix}
E_{3x}(d_{3}) \\
H_{3y}(d_{3})
\end{pmatrix}$$

$$= |M_{z}| M_{3} \begin{pmatrix}
E_{3x}(d_{3}) \\
H_{3y}(d_{3})
\end{pmatrix}$$

$$= |M_{z}| M_{3} \begin{pmatrix}
E_{3x}(d_{3}) \\
H_{3y}(d_{3})
\end{pmatrix}$$

$$= |M_{z}| M_{3} \begin{pmatrix}
E_{3x}(d_{3}) \\
E_{3x}(d_{3})
\end{pmatrix}$$

HOW THU OR THICK CAN THE LAYERS BE ?

$$\frac{d_1 \int \frac{1}{n_1}}{\frac{1}{d_1} \frac{1}{2} \frac{1}{n_2}} \Rightarrow \phi_2 = \frac{4\pi n_2 \cos \theta_2 d_2}{\lambda_0} = \pi \cdot m$$

$$\frac{d_1 \int \frac{1}{n_1}}{\frac{1}{n_2} \frac{1}{n_2}} = \pi \cdot m$$

$$\cos \theta_2 d_2 = \frac{\lambda_0}{4n_0} \quad \text{for } m = 1$$

... GET A BANDASS

$$R = \left| \frac{h_1 - h_2}{h_1 + N_2} \right|^2$$

BRAGG REFLECTOR

FABRY PEROT CAVITY

hy >

MULTILAYER STRUCTURES

HIGH REFLECTIVITY

ELECTRONS IN SOLDS

e wave

TO LONGER HAVE

PHASE COPPESPONDENCE BETWEEN THESE TWO POINTS

Imm-THEK WINDOW

FOR) = 0.5 mm => ~ 1000 periods IN THE WANDOW

- · ALL RAYS WILL NO LONGER BE //
 - · PHASES OF ALL SINUSOIDS WILL BE SLIGHTY DIFFERENT

SUDERPOSITION OF SINUSORS OF PHYSES WILL BE ZERO VARIOUS

- NEGLECT PHASE INFORMATION

IF STRUCTURE IS MUCH LARGER THAN) OR IF SURFACE IS "ROUGH", WE CAN ASSUME PHASE INFO

IS LOST AND NEGLECT WAVE EFFECTS.

The Ton RULE OF THUMB WHAT?

WRONG UNTS.

WRONG UNTS.

1/1 IS NOT enough

N 101 1.6.)

* The BNOT enough

WHAT IF THINFILM & THEK FILM SYSTEM

=> COMBINE SWOLE LAYER FILM AND WINDOW FORMULA

PLANCK'S LAW DERIVATION

WAVES IN A CAUTTY, FOR HOMOG. BC'S

=> STANDING WAVE SOLUTIONS

$$k_x^2 + k_y^2 + k_z^2 = \frac{\omega^2}{C^2}$$

$$k_x = \pm \frac{2\pi}{\lambda_x} = \pm \frac{2\pi n_x}{L_x}$$

$$K_{x} = \pm \frac{z\pi n_{y}}{L_{y}}$$

$$K_{z} = \pm \frac{z\pi n_{z}}{L_{z}}$$

$$K_{z} = \pm \frac{z\pi n_{z}}{L_{z}}$$

M CORRESPONDS TO VIBRATION "MODE"

3 dirs, so many modes can Exist AT SAME TIME FOR AGIVEN FREQ. (DEGENERACY)

FOR ONE MODE, ENERGY (AT FREQ W)

BOLIZMANN STATISTICS GIVES

$$P(E_n) = A \exp\left(\frac{-E_n}{k_{BT}}\right)$$

GEOM. SERIES

$$\sum_{n=0}^{\infty} A \exp\left(\frac{-t_{N}}{k_{N}}\right) = 1$$

$$A = 1 - \exp\left(-\frac{\hbar\omega}{k_BT}\right)$$

$$\langle h \rangle = \sum_{n} P_{n}(E_{n}) = \frac{1}{\exp\left(\frac{\hbar w}{k_{B}T}\right) - 1}$$
"BOSE - EWSTEW DIST."

SO, HOW MANY MODES?

e.g.,
$$\frac{2\pi n_{\chi}}{L_{\chi}} = \frac{\omega}{c} \rightarrow n_{\chi} \frac{\omega}{2\pi c} L_{\chi} \left(\frac{1}{2\pi c} \ln s \right)$$

TE & TIM WAVE

$$\omega \rightarrow \omega + \Delta \omega$$

$$\Delta N = \# \text{ of modes}$$

$$\Delta N = \# \text{ OF MODES} = \frac{\text{SHELL}}{\text{TOTAL VOL}} = \frac{\Delta k_x \Delta k_y \Delta k_z}{8\pi^3/4} \cdot Z$$

$$k^{2} = \frac{\omega^{2}}{C^{2}} = \frac{\forall k^{2} \Delta k}{\pi^{2}}$$

$$\frac{\Delta N}{\Delta \omega} = \frac{\forall k^{2} \Delta k}{\pi^{2}} = \frac{\forall (\frac{\omega}{c})^{2}}{\pi^{2}} \cdot \frac{1}{c} = \frac{\forall \omega^{2}}{\pi^{2} c^{3}} = D(\omega)$$

$$U = \hbar \omega \langle n \rangle \cdot D(\omega) = \frac{\hbar \omega}{exp(\frac{\hbar \omega}{k_B T}) - 1} \cdot \frac{\omega^2}{\pi^2 c^3} \left[\frac{J}{m^3} \right]$$

INTENSITY

THUS

$$I_{\infty} = \frac{U \cdot c}{4\pi} = \frac{\hbar w^3}{c^2 4\pi^3 \left(e^{\frac{4\pi}{16}} - 1\right)}$$

$$I_{\lambda} = \frac{4\lambda}{\Delta w} I_{w}$$

WHEN TO USE RAY VS. WAVE

A VS. RONGHNESS SIZE