Problemas Tema 3

Problema 2. Repaso Cache

			Bloque de	Conjunto	Acierto/		Lectura 1	48	Esc	rikura	MP
-	Tipo	@	memoria	de MC	Fallo	5(1)	no ©	tamaño	S[/No	0	tames
R	byte	8890	889	1	Fallo	27	8890	16	No	-	
	word		€ C 5	1	Acierto	No	-	-	51	EC51	2
	byte		EC6	2	Acierto	No	-	-	Sí	ECES	1
	Mord		23 D	1	Fallo	No	-	-		2303	2
	byte		АВА	2	Fallo	No	~	-	ST	A8 A 4	1
	Mord		ABA	2	Fallo	Sí	ABAS	16	No	-	- 1
			23 D	1	Fallo	5,1	23.06	16	No	-	- ,
R	byte			1	Acierto	No	6		51	EC57	2
W	word	EC57	EC 5 .			No			No	-	_
R	byte	EC 68	EC6	2	Acierto	140					
R	Mord	8899	889	1	Fallo	5;	8890	16	No	-	-

conjunto	0	conjunto		Conjunto	2	conjunto	3
EC8	1	EC5	0	E C 6	1	EC7	1
AB 4	0	889	1	ABA	0	-	0

16 bytes/bloque

TAG # conj. MC # byte

$$2 \oplus$$
 # byte

10 2 4

Problema 4. Repaso Cache

a) Alternativa 1 (escritura inmediata sin asignación)

tma =
$$0.8 (0.9 * 10 + 0.1(10 + 100 + 10)) + 0.2 * 80 = 32.8 \text{ ns}$$
 $\underset{\text{accesss}}{\Longrightarrow}$ 32800 ns

Alternativa 2 (escritura retardada con asignación)

tma =
$$0.85 * 10 + 0.15(0.3333(2 * 100 + 2 * 10) + 0.6666(100 + 2 * 10)) = 31.5 \text{ ns}$$

$$\underset{1000}{\Longrightarrow} 31500 \text{ ns}$$

- b) La alternativa 1, ya que tiene mejor/mayor tasa de aciertos.
- c) tamaño de un bloque > tamaño de una palabra.

Problema 5. Repaso Cache

a)
$$TmaI = thit + taxamiss \times teachineris$$

= 1 + 0,04 × 10

= 1.4 cicles

b) $TmaD = 1 + 0.1 (0.2 \times 20 + 0.8 \times 15) = 2.6$ cicles

c) $Tma = \frac{1.4 \times 1 + 2.6 \times 0.6}{1.6} = 1.85$ cicles

d) $CPI = CPI ideal + CPI mem$

= $CPI ideal + nref (Tma - thit)$

= 1.5 + 1.6 (1.85 - 1)

= 2.86 cicles

 $Texee = N \times CPI \times Te$

= 1 × 2.86 × 10

= 28.6 ns

Problema 7. Repaso Memoria Virtual

1 página = 8192 byte	es	LRU de	I TLB
		+ recently used	recently used
	(a) M[0], página 0, MISS	0	
iteración 0 (i = 0)	(b) M[8192], página 1, MISS + HIT	1, 0	
	(c) M[16384], página 2, MISS	2, 1, 0	
	(a) M[2048], página 0, HIT	0, 2, 1	
iteración 1 (i = 512)	(b) M[10240], página 1, HIT + HIT	1, 0, 2	
	(c) M[18432], página 2, HIT	2, 1, 0	
	(a) M[4096], página 0, HIT	0, 2, 1	
iteración 2 (i = 1024)	(b) M[12288], página 1, HIT + HIT	1, 0, 2	
	(c) M[20480], página 2, HIT	2, 1, 0	

- for (int i = 0; i < 512000; i += 512) { ... }
 hacemos 4 accesos a memoria (1 movl + 2 addl + 1 movl)
 4000 accesos
- iteración 0: 3 MISS y 1 HIT; de la iteración 1 a la 4: 1 MISS y 15 HIT (cada 4 iteraciones se repetirá el patrón)
- Fallos de TLB = 3 + [999 / 4] * 1 = 252 \implies Aciertos de TLB = 3748

• Fallos de TLB = 500 * 3 = 1500; Aciertos de TLB = 500 * 4 + 500 = 2500

Problema 7. Repaso Memoria Virtual

Dado el siguiente código escrito en ensamblador x86:

Suponiendo que la memoria utiliza páginas de tamaño 8KB y que utilizamos un TLB de 4 entradas (reemplazo LRU), responde a las siguientes preguntas:

a) Para cada uno de los accesos (etiquetas a, b, c), indica a qué página de la memoria virtual se accede en cada una de las 17 primeras iteraciones.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
а	0	0	0	0	1	1	1	1	2	2	2	2	3	3	3	3	4
b	1	1	1	1	2	2	2	2	3	3	3	3	4	4	4	4	5
С	2	2	2	2	3	3	3	3	4	4	4	4	5	5	5	5	6

- b) Calcula la cantidad de aciertos de TLB, en todo el bucle: $3 + 4 + 8 + \dots$

Suponiendo que la memoria utiliza páginas de tamaño 4KB y que utilizamos un TLB de 4 entradas (reemplazo LRU), responde a las siguientes preguntas:

d) Para cada uno de los accesos (etiquetas a, b, c), indica a qué página de la memoria virtual se accede en cada una de las 17 primeras iteraciones.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
a	0	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
b	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10
C	4	4	5	5	6	6	7	7-	8	8	9	9	10	10	11	11	12

- e) Calcula la cantidad de aciertos de TLB, en todo el bucle: 2500
- f) Calcula la cantidad de fallos de TLB, en todo el bucle: ...!.500......

Problema 8. Repaso Memoria Virtual

dirección	lógica	VPN	desplazamiento	dirección física	fallo de	lectura	escritura	Página ree	mplazada
(hexa	1)	(hexa)	(hexa)	(hexa)	página	disco	disco	VPN	PPN
escritura	F458	7	1458	7458	Х	X			
escritura	8666	4	0666	4666		75			
lectura	1BBF	0	1BBF	1BBF	X	X		2	0
escritura	5C44	2	1C44	3C44	X	Х		3	1
lectura	6600	3	0600	6600	x	Х	Х	7	3
lectura	4000	2	0000	2000					

Contenido final de la Tabla de Páginas

VPN	Р	М	PPN
0	1	0	0
1	0		
2	1	1	1
3	1	0	3
4	1	1	2
5	0		
6	0		
7	0		

Contenido final de Memoria

página física	página lógica
0	0
1	2
2	4
3	3

Problema 9. Caches petites i simples

Caché diverta . 73 (octol) = 38 (hexa) = 0011 1011

8 blocs =>
$$\# linia MC$$
3 bits . 55 (octol) = 2D (hexa) = 0010 1101
5

• 43 (octal) = 23 (hexa) = 0010
$$\frac{0011}{3}$$
 • 45 (octal) = 0100 $\frac{0101}{5}$

• 13 (octal) = 0000
$$\frac{1011}{3}$$
 • 15 (octal) = 0000 $\frac{1101}{5}$

4 conjunts =>
$$\#$$
 conj. MC
2 bits 2) 55 => Miss, conjunt 1 (via 0)

$$40)$$
 rs => HiT $11)$ 45 \Rightarrow HiT $12)$ 73 \Rightarrow HIT

Cache directa + VC

5)
$$73 \Rightarrow Miss Mc, 3 \Rightarrow Mc 3: 73$$

HiT Vc, 0 Vc 0: 43

6) 45
$$\Rightarrow$$
 HiT, 5 7) 13 \Rightarrow Miss, 3 \Rightarrow VC 1: 35
FIFO 73
(Fuera la que lleva + biempo)

8) 43
$$\Rightarrow$$
 Miss Mc, 3 \Rightarrow Mc 3: 43 \Rightarrow VC 0: 13

q) 73 =>
$$\frac{\text{Miss Mc, 3}}{\text{HiT Vc, 1}}$$
 => $\frac{\text{Mc}}{\text{Vc}}$ 3 : 73

10) 55 => Miss, 5 =>
$$\frac{\text{VC}}{\text{FifO}}$$
 0: 1/3 45

11) 45
$$\Rightarrow$$
 Miss Mc, 5 \Rightarrow MC 5: 43
VC 0: 55

12) 73 => Hit, 3 13) 15 => Miss, 5 =>
$$\frac{\sqrt{e}}{1}$$
 1: 4/3

14) 43 => Miss, 3 =>
$$\frac{VC}{FiF0}$$
 0: $\frac{56}{73}$

b) No, perque la línia que porta que semps a la VC és la que porta (FIFO) més temps sense ser utilitzada (CRU).

c)
$$CPI_{ideal} = \frac{12.10^9 \text{ cicles}}{10.10^9 \text{ loss}} = 1.2 \text{ c/i}$$

e) Cicles = N × CPI = N × (CPI ideal + CPI mem)
$$= 10.10^{9} (1.2 + 0.3 \times 0.1 \times 10)$$

$$= 1.5 \cdot 10^{10} \text{ cicles}$$

3.9 h) Cicles =
$$40 \cdot 10^{9} (1.2 + 0.3 \times 0.05 \times 9)$$
 = $4.335 \cdot 10^{30}$ cicles

i) Texe = $4.335 \cdot 40^{10} \times 12 \cdot 40^{11}$ = 460.2×10^{11}

j) Cicles = $40 \cdot 40^{11} (1.2 + 0.3 \times 0.06 \times 10)$ = $4.38 \cdot 40^{40}$ cicles

k) Texe = $4.33 \cdot 10^{10} \times 14 \cdot 10^{11}$ = 454.8×10^{10}

k) Perquè els accessos que s'han de fev a la victim caché tenen una fenaliteatió médicional d'un cicle p(fvc1 FMc)

P(Fallar a MC) = 0.1

P(Fallar a MC) = 0.1

P(FMC) x P(FVC1 FMC)

P(FMC) x FVC) = P(FMC) x P(FVC1 FMC)

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = $0.6 = 0.1 \times P(FVC1 FMC)$

P(FVC1 FMC) = 0.6

Problema 10. Predicción de vía

Problema 10. Predicción de vía

a) Calculad la potencia media dinámica (debida a conmutación), la potencia media estática (debida a fugas) y la potencia media total.

P conm = $CV^2F = 5x10^{-9}F * (1.2V)^2 * 2x10^9Hz = 14.4 W$ P fuga = IV = 3A * 1.2 V = 3.6 WP total = 14.4W+3.6W = 18W

b) Calculad el numero de conjuntos, el de bloques de cache, el de vías y el de bloques por vía.

 2^{17} bytes / 2^6 bytes/bloque = 2^{11} bloques = 2048 bloques 2048 bloques / 2 bloques/cjto = 1024 cjtos 2-asociativa -> 2 vias 1024 cjtos -> 1024 bloques/via

- Dibujad una dirección indicando claramente los campos usados para seleccionar el byte dentro del bloque, seleccionar el conjunto de la cache y los bits usados como etiqueta.
- TAG (32) | Cjto (10) | byte (6) |
- d) Calculad el tamaño en bits de la memoria de datos y el de la memoria de etiquetas de una vía.

1 via -> 1024 bloques

M datos = 1024 bloq * 64 bytes/bloq * 8bits/byte = 524288 bits

M etiq = 1024 bloq * 32 bits/bloq = 32768 bits

e) Calculad la potencia media estática (debida a fugas) de la cache. bits totales = 557056 bits

I fuga = 557056 bits * $3x10^{-6}$ A/bit = 1,671 A

P fuga = I*V*#vias = 1,671 A * 1,2 V * 2 vias = 4 W

f) Calculad los MFLOPS de la implementación paralela.

Mflops = $2*10^9$ flop / 5 s $*10^{-6}$ MFLOPS/flop = **400 MFLOPS**

g) Calculad el CPI de la implementación paralela y el CPI que obtendríamos con una memoria ideal (CPI_{ideal}) en donde todos los accesos tardan 1 ciclo.

Ciclos totales = $5 \text{ s} * 2 \text{x} 10^9 \text{ Hz} = 10 \text{x} 10^9 \text{ ciclos CPI}$ paralela = $10 \text{x} 10^9 \text{ ciclos} / 4 \text{x} 10^9 \text{ instr} = 2.5 \text{ c/i}$ Cilos perdidos mem = $0.1 \text{ fallos/acceso} * 10^9 \text{ accesos} * 20 \text{ ciclos/fallo} = 2 \text{x} 10^9 \text{ ciclos}$ Ciclos ideal = $10 \text{x} 10^9 \text{ ciclos} - 2 \text{x} 10^9 \text{ ciclos} = 8 \text{x} 10^9 \text{ ciclos}$ CPI ideal = $8 \text{x} 10^9 \text{ ciclos} / 4 \text{x} 10^9 \text{ instr} = 2 \text{ c/i}$

h) Calculad la energía dinámica consumida por un acceso a la cache. Para simplificar asumiremos que todos los accesos consumen lo mismo sean acierto o fallo, la energía extra consumida en acceder a memoria principal en caso de fallo está fuera de los objetivos de este problema.

1 acceso cache -> 2 vias etiquetas + 2 vias datos Energia = 2*5 nJ + 2*25 nJ = **60 nJ**

i) Calculad la potencia (dinámica) media consumida en acceder a la cache

 10^9 accesos / 5 segundos = 0,2x 10^9 accesos/s Potencia = energia /t = 0,2x 10^9 accesos/s* 60x 10^{-9} J = 12 J/s = 12 W

j) Calculad la potencia media total (estática+dinámica) consumida por el sistema CPU-cache.

P_total = P_CPU + P_cache fugas + P_cache conmut = 18 W + 4 W + 12 W = 34 W

k) Calculad la energía total consumida para ejecutar el benchmark y la eficiencia en MFLOPS/Watt.

E = P*t = 34W * 5s = 170 J Eficiencia = 400 MFLOPS / 34 W = 11,76 MFLOPS/W

I) Calculad el tiempo de ejecución y los MFLOPS de la implementación serie.

Ciclos = cíclos ideal + ciclos perdidos fallos + ciclos perdidos aciertos = 10×10^9 ciclos + 0,9 aciertos/acceso * 10^9 accesos * 1 ciclos/acierto = 10.9×10^9 ciclos / 2×10^9 Hz = 5,45 s Mflops = 2×10^9 flop / 5,45 s * 10^{-6} MFLOPS/flop = **367** MFLOPS

m) Calculad la energía consumida por un acceso a la cache.

1 acceso -> 2 vias etiquetas + 1 via datos E = 2 * 5 nJ + 25 nJ = **35 nJ** (en los fallos nos podriamos ahorrar el acceso a datos, pero lo damos por bueno)

n) Calculad la potencia (dinámica) media consumida en acceder a la cache

 10^9 accesos / 5,45 segundos = 0,183x10⁹ accesos/s Potencia = energía /t = 0,183x10⁹ accesos/s * 35x10⁻⁹ J = 6,42 J/s = **6,42 W**

o) Calculad la potencia media total consumida por el sistema CPU-cache.

P_total = P_CPU + P_cache_fugas + P_cache_conmut = 18 W + 4 W + 6,42 W = 28,42 W

p) Calculad la energía total consumida para ejecutar el benchmark y la eficiencia en MFLOPS/Watt.

E = P*t = 28,42 W * 5,45s = 155 J Eficiencia = 367 MFLOPS / 28,42 W = **12,91 MFLOPS/W**

q) ¿Puede darse al caso de que un acierto del predictor de vía sea fallo de cache? ¿porqué?

r) Calculad la potencia media estática (debida a fugas) del predictor y compárala con la de la cache (se calcula de la misma forma ya que se ha empleado el mismo tipo de memoria estática).

```
I fuga = 8192 \text{ bits } * 3x10^{-6} \text{ A/bit} = 24,6 \text{ mA P}
fuga = 1 * V = 24,6x10^{-3} \text{ A} * 1,2 V = 29,5 \text{ mW}
(es mucho menor, miliwatios vs watios)
```

s) Calculad el tiempo de ejecución y los MFLOPS de la implementación con predictor de vía.

```
Ciclos = ciclos ideal + ciclos perdidos fallos cache + cíclos perdidos fallo predictor = 10x10^9 ciclos + 0,2 aciertos/acceso * 10^9 accesos * 1 ciclos/acierto = 10,2*10^9 ciclos Texe = 10,2*10^9 ciclos / 2x10^9 Hz = 5,1 s Mflops = 2*10^9 flop / 5,1 s *10^{-6} MFLOPS/flop = 392 MFLOPS
```

 t) Calculad la energía consumida por un acceso en que el predictor acierta y uno en que el predictor falla (tener en cuenta la energía consumida por el acceso al predictor). Calcular también la energia media consumida por acceso.

```
acierto predictor -> predictor + 1 via etiquetas + 1 via datos fallo predictor -> predictor + 2 vias etiquetas + 2 vias datos E acierto = 1 \text{ nJ} + 5 \text{nJ} + 25 \text{ nJ} = 31 \text{ nJ} E fallo = 1 \text{nJ} + 10 \text{ nJ} + 50 \text{nJ} = 61 \text{ nJ} E media = 0.8 * 31 \text{ nJ} + 0.2 * 61 \text{ nJ} = 37 \text{ nJ}
```

u) Calculad la potencia (dinámica) media consumida en acceder a la cache 10^9 accesos / 5,1 segundos = 0.196×10^9 accesos/s

```
Potencia = energía /t = 0,196 \times 10^9 accesos/s * 37 \times 10^{-9} J = 7,25 J/s = 7,25 W
```

- v) Calculad la potencia media total consumida por el sistema CPU-cache (acuérdate de las fugas del predictor). P_total = P_CPU + P_cache_fugas + P_pred_fugas + P_cache&pred_conmut = 18 W + 4 W + 0,03W + 7,25 W = 29,28 W
- w) Calculad la energía total consumida para ejecutar el benchmark y la eficiencia en MFLOPS/Watt.

```
E = P*t = 29,28 W * 5,1s = 149 J
Eficiencia = 392 MFLOPS / 29,28 W = 13,39 MFLOPS/W
```

x) Calculad la ganancia en eficiencia energética de la implementación serie sobre la paralela y la de predicción de vía sobre la serie.

```
serie/paralelo = 12,91 / 11,76 = 1,098 = 9,8%
Pvia/serie = 13,39 / 12,91 = 1,037 = 3,7%
```

Problema 11. Caches segmentadas

te = 0,6 ms

tacceso = 0.6 x 2 = 1.2 ns

X3

 $t_c = 0.5 \text{ ns}$ $t_c = 0.5 \text{ ns}$

X4

tc = 0.5 ns

tacceso = 0.5 x 4 = 2 ns

c)
$$f_{x1} = \frac{1}{t_{c_{x1}}} = 1.82 \text{ GHz}$$
 $f_{x3} = \frac{1}{t_{c_{x3}}} = 2 \text{ GHz}$

$$CPI_{\times 4} = 0.6 \times 5 + 0.2 \times 4 + 0.2 (4+1) = 4.8 c/i$$

$$CPI_{X3} = 0.6 \times 5 + 0.2 \times 4 + 0.2 (4+3) = 5.2 c/1$$

e)
$$T_{\text{exe} \times 1} = 2.10^{9} \times 4.8 \times 0.55 \cdot 10^{-9} = 5.28 \text{ s}$$
 $T_{\text{exe} \times 3} = 2.10^{9} \times 5.2 \times 0.5 \cdot 10^{-9} = 5.2 \text{ s}$
 $S_{\text{peedup}} = \frac{5.28}{5.2} = 1.015 \quad (1.5 \text{ e/e})$

$$f) \quad \text{CPI} = \text{CPI ideal} + \text{CPI mem} = 4.8 + 0.2 \times 0.1 \times 60$$

$$= 6 \text{ c/i}$$

$$\text{Texe}_{x1} = 2.10^{9} \times 6 \times 0.55 \cdot 10^{-9} = 6.6 \text{ s}$$

$$\text{CPI} = 5.2 + 0.2 \times 0.1 \times 60 = 6.4 \text{ c/i}$$

$$\text{Texe}_{x3} = 2.10^{9} \times 6.4 \times 0.5 \cdot 10^{-9} = 6.4 \text{ s}$$

Speedup =
$$\frac{6.6}{6.4}$$
 = 1.03125 (3.125 %)

Problema 12. Cache no bloqueante.

Problema 12. Cache no bloqueante.

a) Calculad el CPI de P en el procesador IDEAL (CPI_{IDEAL})

 $CPI_{IDEAL} = 5x10^9 \text{ cíclos } / 2x10^9 \text{ instrucciones} = 2,5 \text{ ciclos } / \text{ instrucción}$

b) Calculad el número medio de ciclos transcurridos entre 2 fallos.

 $5x10^9$ ciclos / $50x10^6$ fallos = 100 ciclos entre fallos

c) Calculad el CPI de P en el procesador B (CPI_B)

 $CPI_B = 4 \text{ s} * 2 \times 10^9 \text{ Hz} / 2 \times 10^9 \text{ instrucciones} = 4 \text{ ciclos / instrucción}$

d) Calculad el tiempo de penalización por fallo de cache (Tpf) en ciclos.

ciclos_B = ciclos_{IDEAL} + Tpf * numero de fallos Tpf = $(8x10^9 - 5x10^9)$ ciclos / $50x10^6$ fallos = 60 ciclos / fallo

e) Calculad la probabilidad de que se produzca un segundo fallo durante el servicio de un fallo anterior

probabilidad de fallar en un ciclo es p = 1/100 (inversa del tíempo medio entre fallos) probabilidad de tener un fallo en 60 ciclos (intervalo de servicio de F1) es 1 - probabilidad de no fallar en ningún ciclo(repetimos un proceso independiente 60 veces con probabilidad p) P(fallo en el intervalo) = $1 - (1 - p)^{60} = 1 - (1 - 1/100)^{60} = 0.453$

f) ¿Puede producirse un tercer fallo?

No, a partir del segundo deja de ejecutar instrucciones.

Si se produce un segundo fallo durante el intervalo de servicio de un fallo anterior, este se puede producir en cualquiera de los ciclos que dura el servicio, con la misma probabilidad. Es decir, se trata de una distribución de probabilidad *uniforme discreta* (dado de 60 caras).

 g) Calculad cuantos ciclos se pierden como máximo y como mínimo en función de en que ciclo del intervalo se produce el segundo fallo.

en el 1º 59 ciclos, en el último 0 ciclos

h) Calculad el número medio de ciclos perdidos debido al segundo fallo (repasa cual es el valor medio esperado en una distribución de probabilidad uniforme discreta, o sea un dado numerado de 0 a 59)

Número medio de ciclos perdidos = (0+59)/2 = 29,5 ciclos/fallo

i) Calculad el numero de ciclos necesario para ejecutar P en el procesador N (con cache no bloqueante)

```
 \begin{array}{c} ciclos_N = ciclos_{IDEAL} + ciclos_{MEM} \ (ciclos \ esperando \ a \ memoria) \\ ciclos_{MEM} = \# fallos * probabilidad de 2º fallo * ciclos perdidos 2º fallo \\ ciclos_N = 5x10^9 \ ciclos + 50x10^6 \ fallos * 0,453 * 29,5 \ ciclos/fallo = 5,67 \ x10^9 \ ciclos \\ \end{array}
```

j) Calculad la ganancia (speedup) del procesador N sobre el BGuany = $4s / (5,67 \times 10^9 \text{ ciclos} / 1,9 \times 10^9 \text{ Hz})$ = 1,34

El procesador con cache no bloqueante es un 34% más rápido que el que tiene cache bloqueante a pesar de funcionar a menor frecuencia

Problema 13. Continuación anticipada, Transferencia en desorden

a)
$$t_c = \frac{1}{f} = \frac{1}{2 \cdot 10^9} = 5 \cdot 10^{-10} \text{ s}$$

$$T_{\text{exe}} = \frac{\text{ciclos}}{f} \Rightarrow \text{ciclos} = 2 \times 2 \cdot 10^9 = 4 \cdot 10^9 \text{ ciclos}$$

b) ciclos penalitación =
$$5 + 4 + 1 = 10$$
 ciclos

(latencia) (bus) (lectura l4 + envío data)

Texe = $te \times ciclos = te \cdot (ciclos ideal + hv \times taxa mirs \times ciclos pinely)$

= $5 \cdot 10^{-10} \cdot (4 \cdot 10^9 + 10^9 \times 0.2 \times 10)$

c)	ciclo	1	2	3 4	5	6	7	8	4	10		,
	CPU							DATO				
	L1	Miss					carga	carpa				
	12			LATENO	A		TO	T1				

Texe =
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$

e)	ciclo	7 2	3	4	5	6	7	8	9	10	11	12	,
	CPU						DATO						

$$T_{\text{exe}} = 5.10^{-10} (4.10^9 + 10^9 \times 0.2 \times 6) = 2.6 \text{ s}$$

Speedup =
$$\frac{3}{2.6}$$
 = 1.1538 (15,38 %)

Problema 14. Prefetch

		3 - asoci	ativa		ques / conj.				
		LRU	and self-our end	26	bytes / blog	o electrical no			
		12 6109	ues	La	# byte				
		64 byt	er / bloque	TA	6 # con). MC	# byte		
			e de foit) e-reuneres	8	2		6		
							and the second	bytes	byt
)	1.	POPULATION OF THE PARTY OF THE	bloove de	TAG	Conjunto	A/F	bloque	eseviture MP	lech M
)	Tipo		haemovia	0.4	0	F	280 (AC)	θ	64
	L	8128	2 C 4	81				. 0	64
			2 C 5	B-1	1	F	281 (Ac)	0	
	L	B145	205		2	F	2BZ (AC)	64	64
	L	BIAF	2 C 6	8 1			283 (AC)	64	64
		21-1	2 C 7	81	3	F	203 ()	Title"	
	L	B1 C4		43	2	A)-\	0	0
	E	4387	10 €		0	F	10C (43)	64	64
	L	1108	044	11		F	10 € (43)	θ	64
	E	1199	0 4 6	11	2	A	_	0	0
	L	11 AA	046	11	2	A			
	-								
			0 otto	2)	LRU con)	1 odnu	3) [RU conju	-
1)		LRU con)			B 1	0		B-1	0
		+ 1 B1	0			1		13	0
		13	1		13	1		43	0
		43	7		43				
	ER.	a conjun	3	5)	Hi+ € =>	DB = 1	6)	LRU conj	unto (
-)	EK.	8-1	0		RU conjunto	2		11	0
		13	0		43	1		B 1	0
		43	0		81	0		13	1
,					13	0			
	LR	u conjunt	2 00						
		11	D→ Miss E						
		B-1	0						
		13	0						
		17							

A la cache anterior le añadimos un *buffer de prefetch* de una entrada. En este *buffer* se hace prebúsqueda hardware del bloque **i+1** cuando se accede (tanto en acierto como en fallo) al bloque **i**, siempre que el **i+1** no esté ya en la cache o en el *buffer*. En este último caso, no se realiza *prefetch*.

b) Rellenad la siguiente tabla (mismas referencias que la anterior) indicando, para cada referencia, el número de bloque de memoria que le corresponde, la etiqueta (TAG), a qué conjunto de MC va a parar, si se produce acierto o fallo en la cache (A/F), el número de bytes leídos de MP (si se lee de MP), el número de bytes escritos en MP (si se escribe en MP), el bloque de MP que se encuentra en el buffer (si procede), si se produce acierto o fallo (A/F) en el buffer y el bloque que se prebusca de MP (si procede).

tipo	dirección (hex)	bloque de memoria (hex)	TAG (hex)	conjunto MC	Cache ¿acierto o fallo?	bytes escritura MP	bytes lectura MP	bloque actual buffer	Buffer ¿acierto o fallo?	bloque prefetch buffer
LECT	B12B	204	B1	0	F	Ð	128	-	F	205
LECT	B145	2 c 5	81	1	F	0	64	205	Α	206
LECT	B1AF	206	в 1	2	F	64	164	206	А	707
LECT	B1C4	207	81	3	F	64	64	207	А	208
ESCR	4387	10E	43	2	Α	0	0	208	-	-6-
LECT	1108	044	11	0	F	64	128	208	F	045
ESCR	1199	046	11	2	F	0	128	045	F	043
LECT	11AA	046	11	2	Α	0	0	047	-	19

Problema 17. DRAM

e)
$$V = 1.5 \text{ V}$$

Memoria inactiva => I defuga = 200 mA

Desde ACT a PRE, + 100 mA

Transferencia de datos, + 500 mA

 $\frac{7+2}{25} \times 300 \cdot 10^{3} \text{ A} \times 1.5 \text{ V} = 0.162 \text{ W}$
 $\frac{8}{25} \times 800 \cdot 10^{3} \text{ A} \times 1.5 \text{ V} = 0.096 \text{ W}$
 $\frac{8}{25} \times 200 \cdot 10^{3} \text{ A} \times 1.5 \text{ V} = 0.096 \text{ W}$
 $\frac{8}{25} \times 200 \cdot 10^{3} \text{ A} \times 1.5 \text{ V} = 0.096 \text{ W}$
 $\frac{8}{25} \times 200 \cdot 10^{3} \text{ A} \times 1.5 \text{ V} = 0.096 \text{ W}$
 $\frac{8}{25} \times 200 \cdot 10^{3} \text{ A} \times 1.5 \text{ V} = 0.096 \text{ W}$
 $\frac{8}{25} \times 200 \cdot 10^{3} \text{ A} \times 1.5 \text{ V} = 0.096 \text{ W}$
 $\frac{8}{25} \times 200 \cdot 10^{3} \text{ A} \times 1.5 \text{ V} = 0.096 \text{ W}$
 $\frac{8}{25} \times 200 \cdot 10^{3} \text{ A} \times 1.5 \text{ V} = 0.096 \text{ W}$
 $\frac{8}{25} \times 200 \cdot 10^{3} \text{ A} \times 1.5 \text{ V} = 0.096 \text{ W}$
 $\frac{8}{25} \times 200 \cdot 10^{3} \text{ A} \times 1.5 \text{ V} = 0.096 \text{ W}$
 $\frac{8}{25} \times 200 \cdot 10^{3} \text{ A} \times 1.5 \text{ V} = 0.096 \text{ W}$
 $\frac{8}{25} \times 200 \cdot 10^{3} \text{ A} \times 1.5 \text{ V} = 0.096 \text{ W}$
 $\frac{8}{25} \times 200 \cdot 10^{3} \text{ A} \times 1.5 \text{ V} = 0.096 \text{ W}$

Problema 18. Cache Multinivell, DRAM

3.18) To = 40 ns

N = 5.10° inter.

CP) ideal = 4.8 c/i

b) Access = in each of distributions?

That's coun instructions?

That's coun instructions?

C) Equality to Fallada = 43 cicles

d) Thus = thit + taxamis × teff
= 4 + 0.4 × 43
= 2.3 cicles
$$\rightarrow$$
 23 ns

To = 40 ns

Problema 19. Detección y corrección de errores

- a) MTTF = $\frac{10^9}{25000}$ = 40000 horas de media para 1 fallo cada Mbit
- b) 10^6 bits, 40000 horas \implies 1 bit, $4*10^{10}$ horas

MTTF $_{\rm bit}$ > MTTF $_{\rm Mbit}$: tienen que pasar más horas (más improbable) para que haya un fallo en un bit que para que haya uno en 10^6 bits

$$4*10^{10}$$
 horas * $\frac{1 \text{ día}}{24 \text{ horas}}$ * $\frac{1 \text{ año}}{365 \text{ días}}$ * $\frac{1 \text{ millón de años}}{10^6 \text{ años}} = 4.57 \text{ millones de años}$

- c) 1 Mbit, 40000 horas \implies 131072 Mbits (16 GB), 0.305 horas
- d) MTTF = 0.305 * 20000 = 6100 horas
- e) $\frac{1}{6100}$ fallos/hora * $\frac{24 \text{ horas}}{1 \text{ día}}$ * 500000 servidores = 1968 DIMMs
- f) $\frac{70 \text{ MJ}}{1 \text{ chip}} * \frac{18 \text{ chips}}{1 \text{ DIMM}} * \frac{1968 \text{ DIMMs}}{1 \text{ día}} * \frac{365 \text{ días}}{1 \text{ año}} = 905 * 10^6 \text{ MJ/año}$

$$\frac{50 \text{ g de CO2}}{1 \text{ MJ}} * \frac{905 * 10^6 \text{ MJ}}{1 \text{ año}} * \frac{1 \text{ tonelada de CO2}}{10^6 \text{ gramos de CO2}} = 45250 \text{ toneladas de CO2/año}$$