APPLIED STATISTICAL MODELS IN BIO-ECONOMY

Dissertation

to attain the doctoral degree of the Faculty of Forest Sciences and Forest Ecology Georg-August-Universität Göttingen

Submitted by
Kai Husmann
born on 3 July 1985 in Sulingen

Göttingen, 2017

Referee: Prof. Dr. Jürgen Nagel
 Referee: Prof. Dr. Bernhard Möhring

3. Referee: Prof. Dr. NN

Day of oral examination: XX.XX.2017

Acknowledgements

This thesis is the result of my work at the Department of Ecoinformatics, Biometrics and Forest Growth of the Büsgen Institute of the University of Göttingen between September 2009 and November 2012. It would not have been possible without the support of the following persons, whom I thank herewith.

- Prof. Dr. Joachim Saborowski gave me great support where- and whenever necessary.
- Prof. Dr. Jürgen Nagel acts as a Co-Referee.
- Michael Henke, Robert S. Nuske, Tim Ritter, Dr. Rainer Schulz and Jan C. Thiele enriched my work through fruitful discussions, proofreading and technical support.
- Jan Hansen helped me when problems with the program WaldPlaner 2.0 occured.
- Marco Bender and Jonas Ide helped me through the development of an optimisation algorithm for clustering of sampling points.
- The (former) colleagues at the Department of Ecoinformatics, Biometrics and Forest Growth, PD Dr. Wilfried Hakes, Reinhard Hemmerling, Prof. Dr. Winfried Kurth, Dr. Irina Kuzyakova, Dr. Reinhold Meyer, Yongzhi Ong, Sebastian Schoneberg, Prof. Dr. Dr. h.c. Branislav Sloboda, Dr. Katarína Smoleňová and Ilona Watteler-Spang always helped me and provided a nice atmosphere, which made me enjoying the work.
- The colleagues from the departments of Ecosystem Modelling, Forest Economics and Forest Utilization, Silviculture and Forest Ecology of the Temperate Zones, and Forest Inventory and Remote Sensing made my coming to work gladly.
- My family and friends.

Contents

T	Introduction	1					
2	Zustand und Entwicklung der Rohholzverfügbarkeit in der buchenreichen Mitte Deutschlands 2.1 Einleitung	3 4 4 5 14					
3	Biomass functions and nutrient contents of European beech, oak, sycamore maple and ash and their meaning for the biomass supply chain 3.1 Introduction	17 19 20 20 21 21					
4	Modelling the economically viable wood in the crown of European beech trees 4.1 Introduction	23 26 27 35 40 40					
5	Optimisation of Forest Processes5.1 Introduction5.2 Materials and Methods5.3 Results5.4 Discussion5.5 Conclusions	41 43 43 44 44 44					
6	General Discussion	45					
7	Summary	47					
8	3 Zusammenfassung						
Bi	bliography	51					

Chapter 1

Introduction

Since von Carlowitz (1713) introduced the principle of sustainability to forestry, it plays a central role in there, and over the last centuries it has been further developed and extended. To achieve and maintain sustainability in its different specifications (Speidel, 1984; Schanz, 1996) can be seen as one of the main goals or even the main goal of forestry. A prerequisite for such a sustainable forestry is information on the forest resources, their conditions and changes. This information is usually gained through forest inventories.

Reference example to **chapter 2**.

Figure 1.1: Example Figure.

Kapitel 2

Zustand und Entwicklung der Rohholzverfügbarkeit in der buchenreichen Mitte Deutschlands

Kai Husmann¹ - Veronika Auer² - Ingrid Beitzen-Heineke³ - Hieronymus Bischoff⁴ - Wolf-Georg Fehrensen⁴ - Christoph Fischer¹ - Alexander Gilly² - Holger Pflüger-Grone⁵ - Jürgen Nagel¹ - Hermann Spelmann¹ - Matthias Zscheile²

¹Department of Ecosystem Modelling,

Northwest German Forest Research Institute, Grätzelstrasse 2, 37079 Göttingen, Germany

²Faculty of Wood Technology and Construction, University of Applied Sciences Rosenheim, Hochschulstraße 1, 83024 Rosenheim, Germany

³Niedersächsische Landesforsten, Bienroder Weg 3, 38106 Braunschweig, Germany

⁴Fehrensen GmbH, Graseweg 20, 34346 Hann. Münden, Germany

⁵Hessen-Forst.

Bertha-von-Suttner-Straße 3, 34131 Kassel-Wilhelmshöhe, Germany

Published as:

Mittelfristigem Anstieg folgt stetiger Rückgang - Zustand und Entwicklung der Rohholzverfügbarkeit in der buchenreichen Mitte Deutschlands

Holz-Zentralblatt 37 (2016): 899-901.

2.1 Einleitung

Die Möglichkeit einer langfristigen, kontinuierlichen Holzrohstoffversorgung der Bioökonomie-Clusterregion Halle-Leuna wurde im Verbundprojekt Plan C (Perspektiven
einer zukunftssicheren Logistik angewandt auf die natürliche Rohstoffversorgung in der
Clusterregion, Förderkennziffer: 031A294 A bis H) im Spitzencluster BioEconomy des
Bundesministeriums für Bildung und Forschung analysiert. Im Rahmen dieses Projektes wurde die buchenreiche Mitte Deutschlands als wichtigste Quelle für die nationale
Buchenrohholzversorgung in Bezug auf ihre Rohstoffpotenziale untersucht und Konzepte für eine planbare Buchenholzbereitstellung erarbeitet. Beteiligte Projektpartner
waren die Knauf Deutsche Gipswerke AG, die Georg Fehrensen GmbH, die Holzindustrie Templin GmbH, die DB Schenker Nieten GmbH, die Bruno Reimann GmbH & Co.
KG, die Eickelmann Transport + Logistik GmbH, die Niedersächsischen Landesforsten,
die Landesforsten Thüringen, der Landesbetrieb Hessen-Forst, die Otto-von-GuerickeUniversität Magdeburg und die Nordwestdeutsche Forstliche Versuchsanstalt.

Derzeit sind ca. 15 % der Gesamtwaldfläche Deutschlands mit Rotbuchenbeständen (Fagus sylvatica) bestockt (BMEL, 2014; TI, 2014). Da sich die Landesforstbetriebe zu einer langfristigen, naturnahen Waldbewirtschaftung verpflichtet haben (ML, 2014) und dies auch den waldpolitischen Zielen der Bundesregierung entspricht (BMEL, 2011), wird der Anteil von Misch- und Laubwald, insbesondere von Buchenwäldern, in Zukunft weiter zunehmen. Die ökonomische Bedeutung der Buche für Waldbesitzer und die deutsche Holzindustrie wird demnach stetig ansteigen.

2.2 Methodik

Das Untersuchungsgebiet umfasste Teile der Bundesländer Niedersachsen, Nordrhein-Westfalen, Hessen, Sachsen-Anhalt und Thüringen. Es erstreckte sich vom Niedersächsischen Bergland bis zum Taunus und dem Zentralen Hessischen Spessart, wobei der fichtendominierte Oberharz nicht berücksichtigt wurde. In westöstlicher Ausdehnung verlief die Projektregion von Ostwestfalen bis zur Leipziger-Sandlöss-Ebene.

Datenbasis für die Ermittlung des Holzaufkommens war die 3. Bundeswaldinventur (BWI 3). Hierbei handelt es sich um eine deutschlandweite Großrauminventur mit festen Stichprobepunkten (Traktecken), welche zuletzt zum Stichjahr 2012 durchgeführt wurde. Die Bundeswaldinventur hat neben ihrer Aktualität den Vorteil, dass der Stichprobenumfang in Bezug auf die Fragestellung in der gesamten Projektregion hinreichend groß ist (5039 Waldecken im Projektgebiet) und dass alle Waldbesitzarten berücksichtigt sind (ML, 2014). In Anlehnung an Schmitz et al. (2008) wurden Hochrechnungsalgorithmen für die Datenauswertungssoftware R (R Core Team, 2016) entwickelt und eine spezifische Auswertung des Waldzustandes und der Waldentwicklung der Projektregion auf Basis der BWI durchgeführt. Folgende Zielmerkmale wurden für das Untersuchungsgebiet berechnet: Waldfläche, Baumartenfläche, Vorräte sowie Holzzuwachs und Holznutzung und Flächenübergänge in der zehnjährigen Periode zwischen BWI 2 (Stichjahr 2002) und BWI 3.

Abbildung 2.1: Waldkategorien in der Projektregion nach BWI-Definition (ML, 2014).

Dauerhaft unbestockte Waldflächen, wie Waldwege, Wildwiesen oder im Wald gelegene Moore, werden als Nichtholzboden bezeichnet. Blößen sind vorübergehend unbestockte Waldflächen.

Um das Buchenrohholzaufkommen mit dem Verbrauch der Holzindustrie in Relation zu bringen, wurden der Rohholzbedarf der 42 größten Buchenholzabnehmer aus der Region sowie des internationalen Exports eingeschätzt. Datengrundlage bildete eine Befragung der holzverarbeitenden Betriebe.

Zur Einschätzung der Waldentwicklung und des Rohholzaufkommens wurden in der Waldwachstumssimulationssoftware WaldPlaner der NW-FVA (Hansen & Nagel, 2014) aus den BWI-Daten Modellbestände generiert und bis zum Jahr 2042 fortgeschrieben. Die Parametereinstellungen zur Bestandesbehandlung orientierten sich an vorangegangenen Clusterstudien (Hansen et al., 2008; Wördehoff et al., 2011). In den Schutzgebieten wurde, je nach Schutzstatus, auf Nutzungen verzichtet bzw. es wurden abweichende Behandlungsparameter gewählt, um die spezifischen Nutzungseinschränkungen der Flächen abzubilden. Gleichzeitig wurde unterstellt, dass die gewählten waldbaulichen Regeln und die Nutzungseinschränkungen über die gesamte Simulationsperiode unverändert gelten. Die simulierte Bestandesentwicklung wurde anhand der tatsächlichen Waldentwicklung seit der Vorgängerinventur (BWI 2) validiert.

2.3 Ergebnisse

2.3.1 Waldfläche

Mit einer Waldfläche von gut 1,4 Mio. ha liegt ca. 13 % des deutschen Waldes (TI, 2014) in der untersuchten Projektregion (Abbildung 2.1). Der Bewaldungsanteil in der Projektregion beträgt 31 %. Dies entspricht in etwa dem Bundesdurchschnitt von 32 % (TI, 2014). Der Waldanteil ist jedoch regional unterschiedlich. Er liegt zwischen 17 % im Westen Sachsen-Anhalts und 35 % in Südniedersachsen und Nordhessen.

Die Wälder der in weiten Teilen durch mesotrophe und eutrophe Lehmböden geprägten Mittelgebirgslandschaft (Gauer, 2012) zeichnen sich durch einen hohen Anteil

Abbildung 2.2: Buchenanteil an den BWI-Waldtrakten in der Projektregion. Die unterschiedlichen Punktgrößen ergeben sich aus den unterschiedlichen Traktabständen. Der Baumartenanteil bezieht sich auf den Hauptbestand, also die Bestandesschicht, auf der der wirtschaftliche Schwerpunkt liegt.

von Laub- und Mischbeständen aus. Mit 36 % liegt der Laubwaldanteil deutlich über dem Nadelwaldanteil, welcher nur 14 % beträgt. Die Hälfte der Waldecken ist demnach mit Mischwäldern bestockt. Lediglich 18 % der Waldfläche in der Region hat nur eine Baumart in der Hauptschicht. Ebenso zeichnen sich die Wälder der Region durch eine starke vertikale Differenzierung aus. Zwei Drittel der Wälder haben mindestens zwei Bestandesschichten.

Im Rahmen der BWI wurden 86 Baumarten unterschieden. Um einen vertretbaren Schätzfehler und somit eine fundierte Aussage zu gewährleisten, wurden diese zu 8 Baumartengruppen (im Folgenden als Baumart bezeichnet) zusammengefasst. Wie aus Abbildung 2.2 hervorgeht, ist die Rotbuche (Fagus sylvatica) am Inventurzeitpunkt die am weitesten verbreitete Baumart in der Projektregion. Mit Ausnahme des Nordostens ist die Projektregion durch eine ganzflächige, homogene Buchenwaldverteilung ohne systematische Muster und ohne regionale Schwerpunkte charakterisiert. Mehr als jeder zweite Waldtrakt weist eine Buchenbeimischung von über 33 % auf. Der Buchenanteil an der gesamten bestockten Holzbodenfläche beträgt 33 %, was einer Fläche von etwa 445.000 ha entspricht. Des Weiteren sind die Baumarten Fichte (Picea spec. in-

kl. Abies spec., 22 %), Eiche (Quercus robur, Quercus petraea und Quercus rubra, 12 %) und Kiefer (Pinus spec., 7 %) in größeren Anteilen in der Projektregion vertreten. Andere Laubbaumarten mit hoher Produktionszeit (ALh), zu denen u. a. Ahorn (Acer spec.) und Esche (Fraxinus excelsior) zählen, sowie andere Laubbaumarten mit niedriger Produktionszeit (ALn), zu denen u. a. Birke (Betula spec.) und Pappel (Populus spec.) gerechnet werden, sind jeweils mit etwa 10 % Flächenanteil vertreten. Lärche (Larix spec.) und Douglasie (Pseudotsuga menziesii) spielen demgegenüber eine untergeordnete Rolle. Die Baumartenzusammensetzung findet sich in dieser Form in allen Eigentumsarten.

Das Mischungsverhältnis der Baumarten hat sich seit 2002 zugunsten der Laubbaumarten verändert. Im Vergleich zur BWI 2 ist die Laubwaldfläche bis 2012 um 52.000 ha angestiegen. Dem Anstieg der Laubwaldfläche steht ein deutlicher Rückgang der Nadelwaldfläche von etwa 40.000 ha gegenüber. Verantwortlich hierfür ist der Flächenverlust der Fichte in Höhe von etwa 35.000 ha und der Kiefer in Höhe von etwa 10.000 ha. Flächenzunahmen (ca. 5.000 ha) sind beim Nadelholz nur bei der Douglasie zu verzeichnen.

2.3.2 Alter des Waldes

Im Altersaufbau (Fig. 2.3) spiegelt sich die Nutzungsgeschichte und natürliche Entwicklung der Wälder in der Projektregion wider. Insbesondere großflächige Erst- und Wiederaufforstungen nach dem zweiten Weltkrieg sowie nach dem Orkan 1972 prägen die Altersklassenstruktur im Nadelwald, da für die Wiederbepflanzung der Freiflächen zu der Zeit überwiegend Nadelbaumarten verwendet wurden (HMUKLV, 2014; ML, 2014). Aufgrund dessen ist mehr als die Hälfte des Nadelwaldes jünger als 60 Jahre. In den Altersklassen 20 bis 60 Jahre dominieren die Nadelbaumarten, während in der Altersklasse 1 bis 20 Jahre sowie dem Jungwuchs unter Schirm die Laubbaumarten deutlich überwiegen. Die Laubbaumanreicherung in den Jungbeständen spiegelt das Umdenken im waldbaulichen Handeln Anfang der 1990er-Jahre nach den Erfahrungen des Waldsterbens wider. Sie wurde relativ schnell flächenwirksam, weil die Orkane im ersten Jahrzehnt der 2000er-Jahre vor allem im Süden der Projektregion zu größeren Flächenverlusten im Nadelholz führten, die häufig mit Laubbaumarten wieder aufgeforstet wurden (HMUKLV, 2014). Unter Berücksichtigung der Voranbauten unter Schirm weisen die Laubbaumarten Buche und Eiche einen sehr ausgeglichenen Altersklassenaufbau auf. Diese Verjüngungsfläche unter Schirm muss für eine vollständige Darstellung der Ausgangssituation unbedingt mit berücksichtigt werden. Da in diesen Fällen zwei Bestandesschichten auf gleicher Fläche stocken, werden die Jungwuchsbestände unter Schirm als überschießende Flächen bezeichnet, welche nicht zum Hauptbestand zählen und somit nicht in die Berechnung der bestockten Waldfläche eingehen. Andernfalls würde die tatsächliche Waldfläche um die Fläche des Jungwuchses überschätzt werden.

Abbildung 2.3: Bestockte Holzbodenfläche nach Altersklasse und Baumartengruppe in der Projektregion. Bei der Jungwuchsfläche unter Schirm wurde kein Baumalter erhoben. Sie wird per Definition der ersten Altersklasse zugeordnet.

2.3.3 Waldeigentum

Mit einem Flächenanteil von jeweils 35 % an der Waldfläche dominieren Privat- (inkl. privatrechtlicher Organisationen) und Landeswald vor dem Körperschaftswald (24 %), also Wald im Eigentum von Städten oder Gemeinden sowie Körperschaften, Anstalten oder Stiftungen öffentlichen Rechts. Bundes- und Treuhandwald spielen eine untergeordnete Rolle. Wald im Landesbesitz, der von Anstalten oder Körperschaften öffentlichen Rechts bewirtschaftet wird, ist als Landeswald definiert. Die Betriebsgröße ist ein wichtiges Strukturmerkmal zur näheren Beschreibung des Privatwaldes, da sie Hinweise auf Organisationsgrad und Leistungsfähigkeit eines Forstbetriebes gibt. Etwa ein Drittel der Privatwaldfläche, also ca. 11 % der Gesamtwaldfläche, ist kleinen Privatforstbetrieben mit einer Betriebsgröße unter 20 ha Betriebsfläche zuzuordnen. Demgegenüber entfallen 60 % des Privatwaldes auf größere Forstbetriebe über 100 ha. Im Vergleich zum Bundesschnitt (TI, 2014) sind die Privatforstbetriebe der Projektregion damit tendenziell größer. In der räumlichen Verteilung der 3 Haupteigentumsarten sowie der Größenklassen im Privatwald bestehen keine regionalen Unterschiede. Jede Eigentumsart und jede Größenklasse im Privatwald ist näherungsweise homogen in der gesamten Projektregion vertreten.

2.3.4 Nachhaltiges, kontinuierliches Holzpotenzial

Nach Speidel (1972) ist die nachhaltige Forstwirtschaft als "Fähigkeit eines Forstbetriebes, kontinuierlich und optimal Holznutzungen, Infrastrukturleistungen und sonstige Güter zum Nutzen der gegenwärtigen und zukünftigen Generationen hervorzubringen"definiert. Während sich die Eingriffe in den jüngeren Altersklassen auf die Pflege der Bestände beschränken, die Zuwächse nur teilweise abgeschöpft und die Holzvorräte dementsprechend aufgebaut werden, führen die Hauptnutzungen in den älteren Altersklassen zu einem mehr oder weniger schnellen Vorratsabbau, um die höherwertigen Stammholzsortimente zu nutzen und die Verjüngung einzuleiten bzw. um über der neuen Waldgeneration den Altholzschirm schrittweise zu räumen. Dieses Nutzungsverhalten spiegelt sich in den zwischen BWI 2 und BWI 3 beobachteten Relationen von Holznutzung zu Holzzuwachs bei der Buche wider (Abbildung 2.4). Während der Holzzuwachs die Nutzung bis zu einem Bestandesalter von 120 Jahren übersteigt, überwiegt die Nutzung ab 140 Jahren deutlich.

Durch das multifunktionale Nachhaltigkeitsverständnis der deutschen Forstbetriebe, wie es auch in den Waldgesetzen verankert ist, werden auf derselben Fläche grundsätzlich Nutz-, Schutz- und Erholungsfunktionen gleichzeitig, aber mit lokal unterschiedlicher Gewichtung verfolgt (Möller, 2007). Dieser integrative Ansatz erfordert, die Wechselwirkungen zwischen Nutzungs- und Naturschutzaspekten flächendeckend abzuwägen und in Einklang zu bringen. In der Projektregion unterliegen annähernd 75 % der Waldfläche mehr oder weniger restriktiven Schutzgebietsauflagen (Abbildung 2.5). Davon sind ca. 10.000 ha der strengsten Schutzkategorie Nationalpark zuzuordnen, wobei die BWI nicht zwischen Kernzonen ohne Nutzung und Entwicklungszonen mit Nutzung unterscheidet. Die Nutzung ist demnach nicht auf der gesamten Fläche ausgeschlossen,

Abbildung 2.4: Durchschnittlicher jährlicher Vorratszuwachs und durchschnittliche jährliche Holznutzung der Buche nach Altersklasse in der gesamten Projektregion für den Zeitraum 2002 bis 2012. Die Holznutzung beinhaltet sowohl gewerbliche als auch private Nutzungen.

jedoch zumindest sehr stark eingeschränkt. Ein Drittel der Waldfläche unterliegt hohen Schutzgebietsauflagen. In diese Kategorie fallen Biosphärenreservate, Naturschutzgebiete und Natura 2000-Flächen. Auf diesen Flächen kann je nach Schutzgebietsart mit einer verminderten Holznutzung gerechnet werden. Ein Nutzungsausschluss ist jedoch in der Regel nicht zu erwarten. Hinzu kommen 560.000 ha auf denen Erholung, Erhaltung des Landschaftsbildes oder Wasserschutz im Vordergrund stehen. Auf diesen Flächen ist nicht von Nutzungseinschränkungen aufgrund des Schutzstatus auszugehen, es muss jedoch teilweise mit erschwerten Erntebedingungen gerechnet werden.

Unter Berücksichtigung der Schutzgebietskulisse sowie der Altersausstattung des Waldes in der Projektregion betrug der jährliche Holzzuwachs der Buche nach BWI-Berechnungen in der Periode 2002 bis 2012 durchschnittlich 3,9 Mio. Vfm Jahr⁻¹. Demgegenüber stand die durchschnittliche jährliche Nutzung, welche ebenfalls über die BWI-Daten berechnet werden konnte, von 3,8 Mio. Vfm Jahr⁻¹. Trotz des rechnerischen Abzugs des nicht-nutzbaren Holzzuwachses vom Gesamtzuwachs lag der Zuwachs in der Bilanz der 10-jährigen Periode von 2002 bis 2012 noch leicht über der Nutzung. Der Gesamtzuwachs inkl. aller Altersklassen und Schutzgebietskategorien betrug 4,8 Mio. Vfm Jahr⁻¹. Das durchschnittlich genutzte Holzvolumen von 3,8 Mio. Vfm Jahr⁻¹ entspricht, nach Abzug von Rinde und Ernterückständen, einem Rohholzvolumen von 3,5 Mio. Efm Jahr⁻¹. Dieses lässt sich mit BWI Daten nicht nach Sortimenten für bestimmte Holzverwendungen aufschlüsseln. Aus diesem Grunde fand im Rahmen des Projektes eine Befragung und Einschätzung des Einschnitts der wichtigsten buchenholzverarbeitenden Betriebe statt, die ihr Rohholz aus der Projektregion beziehen. Darüber hinaus

Waldfläche: 1.434.001 ha

Abbildung 2.5: Schutzgebietsauflagen der Waldflächen in der Projektregion.

wurden die Exportmengen eingeschätzt. Die Analyse zeigte, dass durch die buchenholzverarbeitenden Betriebe sowie den nationalen und internationalen Holzexport jährlich ca. 1 Mio. Efm Jahr⁻¹ Stammholz (inkl. Palettenholz) und 1 Mio. Efm Jahr⁻¹ Industrieholz aus der Projektregion aufgenommen wurden. Dies entsprach etwa 60 % der tatsächlichen jährlich eingeschlagenen Rohholzmenge. Es ist davon auszugehen, dass die restlichen 1,5 Mio. Efm Jahr⁻¹ nahezu komplett energetisch verwendet wurden. Diese Einschätzung deckt sich in etwa mit den Ergebnissen einer Umfrage von knapp 10.000 Haushalten in ganz Deutschland durch die Universität Hamburg (Mantau, 2012), wonach deutschlandweit im Jahr 2010 knapp ein Drittel des Waldlaubholzaufkommens im Durchschnitt direkt energetisch genutzt wurde.

2.3.5 Entwicklung des Rohholzvorrates und des Rohholzpotenzials

Im Folgenden wird nicht nur das Rohholzpotenzial, sondern auch die prognostizierte Waldentwicklung in Vorratsfestemetern angegeben. Dies hat gegenüber einer reinen flächigen Betrachtung den Vorteil, dass Bäume aller Bestandesschichten berücksichtigt sind und sich keine rechnerischen Schwierigkeiten durch überschießende Flächen ergeben. Ferner bewirkt jeder Vorratsaufbau und -abbau auch eine Veränderung der Bestandesdichte und somit des Gesamtvorrates. Bei einer flächigen Betrachtung wären Veränderungen der Bestandesdichte nicht ersichtlich. Der Gesamtholzvorrat der Projektregion ist demnach eine abstrakte Kennzahl, aus welcher sich wesentliche Rückschlüsse auf Produktivität, nachhaltige Nutzungsmöglichkeiten und die wirtschaftliche Leistungsfähigkeit der Forstbetriebe in der Projektregion ableiten lassen. Die Vorratsberechnungen 2002 und 2012 basieren auf BWI Daten, die Vorratsprognosen ab 2022

auf Waldentwicklungssimulationen.

Zwischen 2002 bis 2012 nahm der Buchenvorrat in allen Ländern der Projektregion um insgesamt ca. 13 Mio. Vfm zu. Der Vorratsaufbau war im Landeswald stärker ausgeprägt als im Privat- und Körperschaftswald. Im Vergleich der Baumarten Fichte und Kiefer ergab sich ein inhomogenes Bild. In Niedersachsen und Thüringen gab es, bedingt durch den jüngeren Altersaufbau, einen Vorratsaufbau, in Hessen und Nordrhein-Westfalen einen etwa gleichstarken Vorratsabbau. Obwohl es nennenswerte Flächenverluste bei diesen Baumarten gab (siehe Kapitel Waldfläche), blieb der Vorrat der Fichte und Kiefer zwischen 2002 und 2012 aufgrund des hohen Flächenanteils der zuwachsstarken Altersklassen unverändert.

Die Simulationsergebnisse (Abbildung 2.7) lassen einen kontinuierlichen Anstieg des Gesamtvorrates bei der Buche erwarten. Er ist im Jahr 2042 unter der Annahme unveränderter waldbaulicher Vorgaben voraussichtlich etwa 25 % höher als 2002. Während die Vorräte der Eiche und der ALn stagnieren, steigt der Vorrat bei den ALh stetig an. Der Gesamtvorrat von Fichte und Kiefer nimmt bis einschließlich 2022 leicht ab. Ab 2022 wächst ein Großteil dieser Nadelholzbestände in die Hiebsreife und der Vorrat nimmt ab diesem Zeitpunkt bis zum Ende der Simulation stetig ab. Bis zum Jahr 2042 wird der Holzvorrat der Fichten- und Kiefernbestände voraussichtlich um jeweils ein Drittel zurückgehen. Trotz einer Verdreifachung ihres Vorrates spielt die von einem niedrigen Ausgangsvorrat kommende Douglasie auch 2042 weiterhin nur eine untergeordnete Rolle in der Projektregion. Dieser Vorratszuwachs ist fast ausschließlich durch den hohen Zuwachs der bereits etablierten, zum Start der Simulation überwiegend jungen Bestände begründet. Die Lärche spielt ebenfalls nur eine untergeordnete Rolle in der Region. Ihr Vorrat stagniert auf einem relativ niedrigen Niveau. Der Gesamtholzvorrat wird in den kommenden Jahren voraussichtlich zunächst stagnieren und ab 2032 leicht sinken.

Der laufende jährliche Holzzuwachs je ha der Fichte liegt im bundesdeutschen Durchschnitt über alle Altersklassen etwa 50 % über dem laufenden jährlichen Zuwachs der Buche (TI, 2014). Die Waldumwandlung von Fichten- in Buchen- und in Mischbestände wird demnach nicht nur zu einer Verringerung der durchschnittlichen Bevorratung in der Projektregion führen, sondern langfristig auch das Zuwachsniveau und somit das Rohholzpotenzial insgesamt senken. Das voraussichtliche Nutzungspotenzial der Buche stagniert zunächst bis 2031 auf einem Niveau von ca. 4 Mio. Vfm und steigt danach auf 4,8 Mio. Vfm an. Der Vorratsabbau in den vorratsreichen Nadelholzaltbeständen wird im Simulationszeitraum zu einer Erhöhung des Fichten Rohholzaufkommens führen. Hierbei wird vor allem hiebsreifes Stammholz aus den Endnutzungen anfallen.

Das gesamte Nutzungspotenzial in der Projektregion steigt deshalb in der Simulationsperiode stetig um etwa 3 % je Jahrzehnt an. Hierbei werden neben unveränderten waldbaulichen Konzepten auch das Ausbleiben von Großschadereignissen oder Ausweitungen der Schutzgebietskulisse unterstellt.

Abbildung 2.6: Entwicklung des Gesamtvorrates nach Baumartengruppe in der Projektregion. Die Gesamtvorräte der Jahre 2002 und 2012 wurden aus den BWI Daten berechnet. Die Vorräte ab 2022 wurden mit der Waldwachstumssimulationssoftware WaldPlaner prognostiziert.

Abbildung 2.7: Simulierte Entwicklung des Rohholzeinschlags nach Baumartengruppe in der Projektregion. Die Vorräte wurden mit der Waldwachstumssimulationssoftware WaldPlaner prognostiziert.

2.4 Konsequenzen für die Nutzung von Buchenholz

In der vorgestellten Projektregion hat die Laubholzwirtschaft eine große Bedeutung. Das Buchenrohholzpotenzial ist nicht nur hoch, sondern aufgrund des hohen Buchenwaldanteils (Abbildung 2.2) und dessen relativ ausgeglichenen Altersklassenaufbaus (Abbildung 2.3) gut sortiert. Ohne lange Transportwege sind alle holzwirtschaftlich relevanten Rohholzdimensionen verfügbar.

Da die Wertschöpfung beim Stammholz am höchsten ist, zielt die Buchenwirtschaft auf eine möglichst hohe Stammholzausbeute ab (Nagel & Spellmann, 2008). Dieses Stammholzpotenzial steht in den vorratsreichen Altholzbeständen der Projektregion zur Verfügung und ein nachhaltiger Nachschub ist durch die ausreichenden Flächen der mittleren Altersklassen zwischen 81 und 100 Jahren auch in Zukunft sichergestellt. Des Weiteren ist das Potenzial der schwächeren Holzsortimente, insbesondere bei der Buche, nicht zu unterschätzen. Industrieholz als Koppelprodukt der Stammholzernte und als Vornutzungsmaterial aus den jüngeren Beständen unter 80 Jahren gewährleistet die Rohstoffversorgung der Zellstoff- und Holzwerkstoffindustrie sowie der Heizkraftwerke und des Hausbrandes mit schwächer dimensionierten Sortimenten. Die homogene räumliche Verteilung der Eigentumsarten mit relativ großen Privatwaldbetrieben lässt auf

eine effektive Laubrohholzbereitstellung mit geringen regionalen Unterschieden schließen. Nicht zuletzt aus diesem Grund sind auch viele der deutschen Laubholzsägewerke in dieser laubbaumreichen Region konzentriert (Ochs et al., 2007).

Das um alters- und schutzstatusbedingte Nutzungseinschränkungen bereinigte, nachhaltig nutzbare Buchenrohholzpotenzial der Projektregion wurde zwischen 2002 und 2012 fast komplett genutzt, wobei knapp drei Viertel der anfallenden Menge von der Säge- und Holzwerkstoffindustrie aufgenommen wurde. Die Unternehmen der Holzindustrie nutzen den zur Verfügung stehenden Holzzuwachs im Laubholz demnach zurzeit sehr effektiv. Größere zusätzliche Nutzungspotenziale lassen sich bei der Buche kurzfristig allenfalls durch eine Intensivierung der Holznutzung in den Beständen über 140 Jahren erschließen. In diesen Altholzbeständen ist oft kein weiterer Anstieg der Wertschöpfung zu erwarten. Jedoch muss gerade in diesen Altholzbeständen berücksichtigt werden, dass die Verjüngung der nächsten Waldgeneration sichergestellt ist und dass naturschutzfachliche Aspekte beachtet werden. Weitere Nutzungspotenziale für die Holzwerkstoff- und ggf. die Chemieindustrie liegen im Energieholzbereich. Wenn die Wertschöpfungskette einen konkurrenzfähigen Holzpreis oberhalb des lokal sehr unterschiedlichen Energieholzpreises erlaubt, könnten Teile des bisher direkt energetisch genutzten Holzvolumens einer höherwertigeren Verwendung zugeführt werden und je nach Nutzungsform durch Kaskadennutzung teilweise am Ende der Produktlebensdauer energetisch verwendet werden (Rüther et al., 2007). Die angespannte Konkurrenzsituation beim Buchenindustrieholz, welche sich durch die hohe Nachfrage nach Holz als Energieträger (Mantau, 2012) und der Etablierung neuer Geschäftsfelder, wie der Bioökonomie (McCormick & Kautto, 2013), begründet, spiegelt sich in der Verdopplung des jährlich durchschnittlichen Buchenindustrieholzpreises in Deutschland seit 2005 wider (DE-STATIS, 2016). Aufgrund dieses stetigen Anstiegs setzen die Industrieholzverbraucher in der Projektregion immer stärker auf internationalen Holzimport und Altholzankauf. Der milde Winter, die Verfügbarkeit von Landschaftspflegeholz und die niedrigen Olund Gaspreise führen aktuell zu einer Verringerung der Nachfrage nach Industrieholz als Energieträger. Zurzeit ist neben einer Entspannung auch ein Überhang an heimischem Buchenindustrieholz zu beobachten. Dieses spiegelt sich jedoch noch nicht im Jahresdurchschnitt der Holzpreisstatistiken wider.

Viele der erntereifen Kiefern- und Fichtenreinbestände werden im Simulationszeitraum voraussichtlich zu Laubbaum- oder Mischbeständen überführt. Dieser Trend lässt sich seit 2002 aus den BWI Daten ablesen (Fischer & Husmann, 2016) und wird voraussichtlich in der Simulationsperiode noch andauern (ML, 2004; BMEL, 2011). Die prognostizierte Verschiebung des Vorrates hin zu mehr Laubbaumarten (Abbildung 2.7) spiegelt also die Konsequenzen aus der aktuellen Waldpolitik wider. Da der Volumenzuwachs in Laubbaumbeständen meist deutlich geringer als in Nadelbaumbeständen ist, tragen die neubegründeten Laub- und Mischwälder im Durchschnitt weniger zum Vorratsaufbau bei als die reinen Nadelwälder, aus denen sie hervorgegangen sind. In der Projektregion verläuft der Vorratsaufbau der Buche deshalb langsamer als der Vorratsabbau der Fichte und Kiefer, was zur Stagnation und letztlich zur leichten Abnahme des gesamten Holzvorrates in der Projektregion führen wird.

Da sich die Struktur des Holzmarkts in der Vergangenheit stetig verändert hat (Ochs

et al., 2007) und durch die Etablierung neuer Geschäftsfelder auch aktuell im Wandel ist (McCormick & Kautto, 2013), gestalten sich Prognosen über die Zukunft des Holzmarktes sehr schwierig. Aus diesem Grunde wurden keine Annahmen zur Entwicklung der Holznachfragemenge getroffen. Aus den Auswertungen wurde lediglich klar, dass das Holzpotenzial zwischen 2002 und 2012 weitestgehend ausgeschöpft wurde. Durch die mittelfristige Erhöhung des Nadelholzangebots wird sich das Gesamtrohholzpotenzial zunächst erhöhen. Bedingt durch den fortschreitenden Umbau der Nadelholzbestände in Misch- oder Laubholzbeständen folgt diesem voraussichtlichen mittelfristigen Anstieg jedoch ein stetiger Rückgang des Rohholzangebotes. In der Projektregion Bei zukünftigen Investitionen oder Fördermaßnahmen muss deshalb unbedingt beachtet werden, dass die sich abzeichnende Erhöhung des gesamten Rohholzangebots nur eine zeitlich begrenzte Phase ist. Die Implementation zusätzlicher Schutzgebiete würde das Rohholzpotenzial zusätzlich reduzieren.

Danksagung

Dem Bundesministerium für Bildung und Forschung danken wir für die Förderung des Projektes im Rahmen des Spitzenclusters *BioEconomy*. Die Nutzung der BWI Daten wurde uns dankenswerterweise von den zuständigen Ministerien der Länder Hessen, Niedersachsen, Nordrhein-Westfalen, Sachsen-Anhalt und Thüringen bewilligt. Für die Datenbereitstellung danken wir den Ministerien sowie dem Thünen-Institut Eberswalde.

Chapter 3

Biomass functions and nutrient contents of European beech, oak, sycamore maple and ash and their meaning for the biomass supply chain

Kai Husmann 1 - Sabine Rumpf 2 - Jürgen Nagel 2

¹Department of Forest Economics and Forest Management, University of Göttingen, Büsgenweg 3, 37077 Göttingen, Germany

²Northwest German Forest Research Institute, Grätzelstraße 2, 37079 Göttingen, Germany

Published in: Journal of Cleaner Production. (DOI: X) 3. Biomass functions and nutrient contents of European beech, oak, sycamore maple and ash and their meaning for the biomass supply chain

Figure 3.1: Example 1.

Abstract

Abstract.

Keywords

Biomass function - Nutrient content - Long-living tree species - Biomass supply chain - Site sustainability

Highlights

The effectivity of the biomass supply chain depends on reliable biomass estimation. The wood potential of long-living tree species is recently often unused. Biomass models for sycamore maple and ash can help gathering this potential.

3.1 Introduction

Introduction.

Further text.

3.2 Materials and Methods

Examples can be found in Mandallaz (2008) see also (Gregoire & Valentine, 2008; Mandallaz, 2008).

3.2.1 Data sampling and sample processing

$$\widehat{\overline{Y}}_{2st} = \sum_{h=1}^{L} w_h \frac{1}{n_h} \sum_{i=1}^{n_h} y_{hi} = \sum_{h=1}^{L} w_h \overline{y}_h$$
 (3.1)

Example Equation 3.1 shows an unbiased estimator.

3.2.2 Biomass functions

Biomass functions.

3.2.3 Sensitivity analysis

Sensitivity.

3.2.4 Nutrient contents

Sensitivity.

3.3 Results

3.3.1 Biomass functions

Biomass functions.

3.3.2 Sensitivity analysis

Sensitivity.

3.3.3 Nutrient contents

Nutrient.

3. Biomass functions and nutrient contents of European beech, oak, sycamore maple and ash and their meaning for the biomass supply chain

3.4 Discussion

3.4.1 Biomass functions

Biomass functions.

3.4.2 Sensitivity analysis

Sensitivity.

3.4.3 Nutrient contents

Nutrients.

3.5 Conclusions

Conclusion

Acknowledgements

We would like to thank the German Science Foundation (DFG) for financial support of this study (Sachbeihilfe SA 415/5-1) and Dr. Böckmann of the Lower Saxony Forest Planning Office for his kind provision of the inventory data. Moreover, we would like to thank two anonymous reviewers for their helpful comments.

Chapter 4

Modelling the economically viable wood in the crown of European beech trees

Kai Husmann 1 - Bernhard Möhring 1

¹Department of Forest Economics and Forest Management, University of Göttingen, Büsgenweg 3, 37077 Göttingen, Germany

Published in:

Forest Policy and Economics.

(DOI: 10.1016/j.forpol.2017.01.009)

Abstract

Long-term forest development programs in Germany aim on an increase of close-tonature broadleaf forest stands. This means that the economic importance of European beech is expected to increase. The economic potential of a tree basically consists of the stem as well as the economically viable wood volume in the crown. Due to the high morphological variability of European beech crowns, taper models are often not satisfactory for predicting the economically viable wood volume arising from crowns. Prediction models with a higher precision are recently still lacking. Aim of this study is thus the development of prediction model for the economically viable crown wood volume of European beech trees.

We determined the distribution of the wood volume in the crown over the branch diameters using the multistage "randomized branch sampling" method (RBS). The tree-specific wood volume distribution on the branch diameters were used to cluster all sampled trees into 3 groups. Additionally, we developed a method able to distinguish between economically viable and unviable crown branches. Basing on the RBS measurements as well as revenues and processing costs, we modeled the economically viable wood volume from the crown for each tree. To calculate the wood volume under bark, we parameterized a bark thickness function from disk samples of the trees.

We showed that the European beech crowns could be clustered into 3 groups differing in their wood volume distribution. The economically viable wood volume in the crown significantly depended on this grouping parameter as well as diameter at breast height (DBH). By contrast, the total amount of wood in the crown only depended on DBH. The differing viable wood volumes in the crowns were thus explained by different wood distributions and not by differing total crown wood volume. To make the results applicable in practice forestry, the modeling results were used to develop a regression formula able to predict the economically viable wood volume in the crown depending on the DBH and the crown type. As the crown type can also be predicted via measurable tree covariates, the regression model of the viable wood volume in the crown can be used as a support tool for the management of European beech stands. Sensitivity analysis quantifies how harvest revenues and costs translate into different viable tree volume.

Keywords

Economically optimal wood cut, Crown morphology, European beech, viable crown wood, wood allocation, forest management

Highlights

- Morphological measurements of 163 European beech tree crowns via "RBS" method.
- Distinguishing the economically viable from the whole crown wood.

- Categorization of European beech crowns into morphological types.
- Development of a viable crown timber prediction model for forest management.

4.1 Introduction

Although European beech (Fagus sylvatica L.) forests have been identified as the dominant forest communities in the potential natural vegetation of Germany (FANC, 2010), with 1,680,072 ha, they currently only account for 15 % of Germany?s forest stand cover (TI, 2014). Long-term ecological forest development programs result in a general increase in deciduous tree species with a focus on European beech (MFACP, 2004). The economic importance of European beech will thus further increase.

Traditionally the objective of European beech management is to maximize valuable stem wood (Nagel & Spellmann, 2008). Especially under the perspective of modern utilization methods like bio-economics (Hildebrandt et al., 2014) and the increasing demand for fuel wood (Mantau, 2012), the economic importance of smaller branches of European beech is expected to increase. Thus a large proportion of the economic potential lies in smaller branches. Under certain conditions, further economic potential can be found in the tree stump and foliage (Miettinen et al., 2014). For a suitable management of European beech stands, it is necessary to assess the economically viable wood cut fully (Möhring, 1997). Therefore, as well as predicting the wood from the sympodial stem, it is also necessary to predict the economically viable wood cut in the sympodial crown. In the complex crowns of broadleaf trees, the economically viable wood can be substantially smaller than the whole wood volume. For this purpose, a model able to distinguish the economically viable wood volume from the whole wood volume in the crown is needed. For the stem volume prediction, there are many different and sophisticated tariff and other functions available. Cubic taper models exist, providing an adequate prediction of the economic potential of coniferous trees and the stems of deciduous trees (Kuzelka & Marusak, 2012). However, those taper functions do not account for the complex sympodial form above the crown base of broadleaf tree species where the wood volume is not allocated around a throughout stem axis. They are therefore imprecise in predicting the wood volume arising above the crown base. They are usually calibrated for a minimum small-end diameter threshold of 7 cm. This small-end diameter can lack economic interpretation.

The aim of this study is to develop a parametric, practically usable prediction model of the economically viable wood volume in the crown of European beech trees. For this purpose, 163 beech trees were felled. Using the multistage "Randomized Branch Sampling" (RBS) method (Gaffrey & Saborowski, 1999), a sound sample of branches was measured from each tree. The measurements were taken to examine the tree individual distribution of the wood volume in the crown on the crown branches. To develop tree individual morphological covariates, the sampled trees were clustered into groups with differing wood volume distribution. A multinomial regression model enables the prediction of this covariate via measurable tree attributes. We additionally developed a

-	ary seaces	cres or the sa	impred trees.	I IIO Balli
		DBH [cm]	height [m]	age [a]
	min	8.0	13.1	21
	mean	35.4	25.3	85
	median	34.8	26.0	80
	max	78.3	38.5	180

Table 4.1: Summary statistics of the sampled trees. The sample size was 163.

model, which predicts the viable wood volume from the measured wood volume distribution. This viable wood volume does not depend on freely selected but on economically justified small-end diameters. We developed a method to classify economically viable and unviable branches in European beech crowns via a break-even analysis. Then only the wood volumes of viable branches were estimated via RBS. The modeled economically viable wood volume thus depends on the size of the tree and the volume distribution in the crown. To calculate the wood volume under bark, we parameterized a new bark thickness function from disk samples of the trees. To make the results applicable in forest practice, we performed a regression analysis with the modeled economically viable wood volume and further tree covariates. To ensure the applicability, we only used practically measurable tree attributes. The regression model represents a new approach for modeling the economic potential of European beech crowns and therefore a novel decision support tool for forest management operations.

4.2 Materials and Methods

The dataset for this study comprised measurements from a destructive sample of 163 European beech trees sampled using the multistage RBS method (Gaffrey & Saborowski, 1999; Jessen, 1955). These data were compiled from 2 existing databases at the Northwest German Forest Research Station and the Baden-Württemberg Forest Research Centre.

4.2.1 Selection of trees

The data were collected during 2009 and 2014. Altogether 163 trees were destructively sampled. In order to cover as many growth zones as possible, the sample plots were distributed throughout Germany (Figure 4.1). To ensure representation of the entire relevant diameter range, we chose up to 3 forest sites with different stand ages within these growth zones. All selected sites were high forests under standard management regimes. Depending on the area size of the plot, 2 - 4 sample trees were selected. In addition to the morphological measurements via RBS, DBH and tree height were measured (Table 4.1).

Figure 4.1: Sample site locations. Source of the background map: FACG (2014).

Table 4.2: Summary statistics of disks for bark thickness measurements.

	single	le bark 1	thickness	[mm]	disk	$_{ m diamete}$	r over bar	$^{\mathrm{c}}\mathrm{k}$ [cm]
\overline{N}	min	mean	median	max	min	mean	median	max
149	0.6	3.0	2.4	9.0	1.0	18.0	12.0	64.2

4.2.2 Selection of disks

To subtract bark from the wood volume, stem and branch disks for bark thickness measurement were taken from 37 trees of the NW-FVA study (Table 4.2). Up to 6 disks were randomly selected using the importance sampling method (Gregoire & Valentine, 2008). The proxy function, which is necessary for calculation of the sampling probability, was derived by the volume distribution of the branch diameters over the approximated tree height (which were both measured for volume estimation via RBS anyway). The selection probability of the disks was thus proportional to their disk diameter. Diameter and the bark thickness of the disks were measured at 4 directions of the selected disks directly after extraction.

4.2.3 Selection of branches

The estimation of the wood volume in the crown was based on the RBS method of multistage probability sampling. RBS is an unbiased method of probability sampling

used for estimating specific tree parameters by measurable auxiliary variables (Jessen, 1955; Gaffrey & Saborowski, 1999). In our application, RBS enables estimation of the wood volume in the crown or in specific parts of the crown by measuring only a sample of branch segments instead of measuring all branch segments in the crown. Only relatively few measurements of branch diameters and branch segment lengths have to be taken for an accurate estimate of the whole wood volume in the crown or the wood volume of specific crown parts.

RBS is based on the knowledge of the conditional probability q_{lj} of choosing the j-th out of n "branches" at a "node" l in the crown instead of choosing another branch of this node. The probability q_{lj} can be calculated by an auxiliary variable instead of the (complicated measurable) target variable itself (Gregoire et al., 1995; Gregoire & Valentine, 2008; Valentine et al., 1984). Instead of measuring the volume of all branches at a node, in our case, we only had to measure the base diameters d_{lj} of the branches to calculate q_{lj} and the volume of one branch. As West (1999) examined an allometric coefficient of 2.67 between branch volume and branch base diameter, the branch base diameter to the power of 2.67 is expected to provide efficient estimates. In our study, the conditional probability has been selected to be

$$q_{lj}(d) = d_{lj}^{2.67} / \sum_{j=1}^{n_l} d_{lj}^{2.67}$$
(4.1)

Thus once all branch base diameters d_{li} at a node were recorded, one of the branches can be randomly chosen with probability q_{lj} . Only the "segment" volume of this chosen branch has to be measured, where a "segment" is defined as the part of the branch between 2 nodes (Gregoire & Valentine, 2008). We chose the formula for a conical frustum (Equation 4.2) to calculate the segment volume v_{lj} via the branch base diameter d_{lj} , the base diameter at the following node d_{lj+1} and the segment length h_{lj} . The volume of the following node d_{lj+1} was also measured and added to the segment volume v_{lj} .

$$v_{lj} = \frac{h_{lj}\pi}{12} \left(d_{lj}^2 + d_{lj}d_{lj+1} + d_{lj+1}^2 \right)$$
(4.2)

The crown base, which is the height where the throughout stem ends and the sympodial crown starts, represented the first node of the RBS procedure. To have a measurable criterion, we defined the crown base to be the tree height where a branch base diameter was > 1/5 of the stem diameter at that height. A whole RBS path thus consisted of a succession of randomly selected branch segments from the crown base up to one shoot bud. Along the path all branch base diameters and all segment volumes were measured. In order to get an idea of the variation, 3 random and distinct RBS paths were obtained for each of the 163 sampled trees.

4.2.4 Estimation of wood volume in the stem and in the crown

The calculation method for the point estimates of the volumes as well as for the estimated variance is described in the literature (e. g. Gregoire & Valentine, 2008). The stem form was assessed by section-wise diameter measurements at certain tree heights up to the crown base. The sum of these section volumes, also calculated by the conical frustum formula (Equation 2), gave the whole stem volume from the ground up to the crown base.

4.2.5 Economically viable wood volume in the crown

Crown type differentiation

To calculate the volume distribution according to the branch diameters in individual tree crowns, the cumulative wood volume amount $\hat{V}_i(d)$ in the crown was calculated from the crown base up to each recorded branch base diameter (d) along each RBS path. This distribution was normalized by dividing the predicted cumulative crown volume below $\hat{V}_i(d)$ [m3] by the whole wood volume from the crown $\hat{V}_i(0)$ [m3] (Equation 4.3) and by dividing the base diameter of every branch d_{ij} by the maximum diameter found d_{max} . F(d) thus denotes the wood volume amount over branch diameter in the crown.

$$F(d) = \frac{\widehat{V}_i(d)}{\widehat{V}} \tag{4.3}$$

The diameter where half of the wood volume amount was located above (below respectively) was interpreted as the median branch diameter of a tree crown. This median volume branch diameter $F(d_{0.5})$ was easily interpolated from the generated diameter distribution for every RBS path, where $d_{0.5}$ denotes the branch diameter for which $F(d_{0.5}) = 0.5 * F(d_{max})$. The same appears for the lower $F(d_{0.25})$ and upper quantile $F(d_{0.75})$. The curve trend of F(d) over branch diameter thus indicates whether most of the wood volume is located in relatively small or in larger branches. Generally, there were 3 types of volume distribution in the data (Fig. 4.2). The first type showed a high share of volume in relatively small branch dimensions (left). The median branch diameter of these trees was close to the lower quantile. In the balanced type (center), half of the wood volume was found above a branch diameter that was approximately half the size of the largest diameter of the respective tree. In the third type (right), major part of wood volume was allocated in the larger branch diameter range. The median diameter was close to the upper quantile.

As there were 3 paths per tree, the tree individual median diameter was calculated by the median of the 3 median branch diameters. The lower and upper quartiles were created in the same way. We thus generated 3 tree individual continuous variables. These enabled a clustering of the trees into 3 crown types which differ in their wood volume amount. As the crown types based on the volume distribution in the crowns, they should represent groups with different economically viable wood volumes. We chose

Figure 4.2: Cumulative crown wood volume over relative branch diameter for 3 exemplary trees. For each tree all 3 RBS paths are displayed. The diameters where half of the timber volume is located above, respective below (the median relative branch diameter) are marked by vertical lines.

the "k-means" cluster algorithm (R Core Team, 2016), which minimizes the withincluster Euclidean distance among observations and group means by the sum-of-squares method (Wagstaff et al., 2001), to cluster the data into 3 morphological crown types.

The median tree diameter as well as the quantile tree diameters are not measurable in practice. To differentiate a beach crown into 1 of the 3 mentioned groups in forest management, it is thus necessary to predict the crown type by other tree attributes. A multinomial logistic regression method (Hutcheson & Moutinho, 2008) was parameterized to predict the crown type clusters from practically measurable morphological tree variables x_i (equation 4). In this case, the x_i are the DBH, the tree height, the tree height at crown base and the ratio of the base diameters at crown base. The ratios of the branch diameters at crown base were calculated by dividing the 2nd largest base diameter at the crown base by the respective largest branch diameter.

We fitted a log odd model with J=3 categories to a probability function which predicts the probability that an individual tree is belonging to a crown type category j rather than to the reference category j'=1 by j=4 variables.

$$\log\left(\frac{P(Y=j)}{P(Y=j')}\right) = \beta_{j0} + \beta_{j1}x_1 + \beta_{j2}x_2 + \dots + \beta_{ji}x_i$$
 (4.4)

The probability of an individual to belong to group j in relation to the reference is therefore calculated as

$$P(Y = j) = \frac{\exp(\beta_0 + \beta_{j1}x_1 + \beta_{j2}x_2 + \dots + \beta_{jk}x_k)}{1 + \exp(\beta_0 + \beta_{j1}x_1 + \beta_{j2}x_2 + \dots + \beta_{jk}x_k)} = \frac{\exp(\mathbf{x}_i' \mathbf{\beta}_j)}{1 + \exp(\mathbf{x}_i' \mathbf{\beta}_j)}$$

and the probability of an individual to belong to group j considering all groups calculates as

$$P(Y = j) = \frac{exp(\mathbf{x}_{i}'\mathbf{\beta}_{j})}{1 + \sum_{s=1, s \neq j'}^{J} exp(\mathbf{x}_{i}'\mathbf{\beta}_{s})}$$

where crown type 1 represented the reference category j'. The model was fitted with the R package "NNET" (Venables & Ripley, 2002). The significance of a variable was examined by linear discriminant analysis. For model quality testing we predicted the crown type with our model and compared the result with the actual crown classification by the k-means analysis. This classification was performed by a leave-one-out cross-validation (R package "MASS"; Venables & Ripley, 2002) and an in-sample reclassification.

Modelling the economically viable wood volume in the crown

As biasedness of the point and the variance estimate do not depend on the number of stages, RBS also allows the volume estimation of specific parts in the crown (Cancino & Saborowski, 2005). We used this property to estimate the tree individual viable wood volume in the crown only. For this, we programmed a model that distinguished the economically viable from economically unviable branches in the RBS sample (Algorithm 1). After running the algorithm, only the economically viable branches were then used to estimate the wood volume via the RBS method. The predicted wood volume after application of the separation algorithm thus reflected the economically viable wood

volume in the crown.

Algorithm 1: Pseudocode of the of the economically viable wood volume distinguishing model where N_{paths} is the number of paths per tree (in this study always 3) and $N_{structures}$ is the number of branch structures per path.

```
initialization of processing costs and revenue by the user
aggregation of the RBS knots and branch segments into structures
for i in (1:N_{paths}) do
   for j in (1:N_{structures}) do
       if volume of structure_{ij} * revenue > processing costs then
           if economical viability of structure_{ij-1} = TRUE then
               economical viability of structure \downarrow_{ij} \leftarrow TRUE
               small-end\ diameter_{i} \leftarrow end\ diameter\ of\ structure_{ij}
           else
               if volume of structure_{ij} * revenue > processing costs * 2 then
                   economical viability of structure_{ij} \leftarrow TRUE
                   small-end\ diameter_{i} \leftarrow end\ diameter\ of\ structure_{ij}
                   economical viability of structure_{ij} \leftarrow FALSE
           end
           economical\ viability\ of\ structure_{ij} \leftarrow FALSE
        end
    end
end
crown\ timber\ volume \leftarrow RBS\ estimation\ of\ the\ viable\ structures
variance \leftarrow RBS estimation of the viable structures
small-end\ diameter \leftarrow mean(small-end\ diameter_1,\ ...,\ small-end\ diameter_{N_{naths}})
return (crown timber volume, variance, small-end diameter)
```

To distinguish viable from unviable branches, each RBS node and subsequent selected branch segment were aggregated into one "branch structure". In the event that many nodes occurred in close succession (no branch segments in between), they were regarded as one large node and aggregated with the following node and branch segment to form a large branch structure.

Each of the branch structures were then, starting at the crown base, successively rated in terms of revenue and cost. The revenue was calculated by multiplying wood volume [m³] (under bark) by timber price [€m⁻³]. The cost associated with any one branch structure was assumed to be constant per processing step and was interpreted as marginal cost (Möhring, 1997) of processing this branch structure. Whenever a branch structure had a positive marginal return, it was additionally proofed if the former branch structure was viable. If this was the case, the branch structure was labeled

to be economically viable. A branch segment is thus only considered as economically viable if its piece-volume is large enough to have a positive marginal return. If a former branch structure was unviable, the processing costs doubled, because the continuation of processing thereafter would require an additional cut. Each RBS path of every crown thus had a specific break-even point (Starr & Tapiero, 1975) after which further processing would result in lower marginal returns. The small-end diameter of this last viable branch structure was recorded. The model was programmed in the statistical programming language R (R Core Team, 2016).

After neglecting the unviable branch structures, the tree individual viable wood volume from the crown as well as the variance were estimated by means of RBS. The final small-end diameter of an individual tree was defined as the mean of the end diameter of all 3 paths.

The model (Algorithm 1) thus needed timber price $[\in m^{-3}]$ (under bark) and marginal costs $[\in \text{processing step}^{-1}]$ as input parameters. It was parameterized with commonly used values to ensure realistic results. The revenue was set to $50 \in m^{-3}$ (under bark) to reflect the common price for industrial wood in Germany in 2016 (Degenhard, 2016). The fixed cost parameter was based on the European beech wages table from the forest entrepreneurs association (Haarhaus, 2012), which assumes an 125 % entrepreneur fee and 19 % value added tax. Based on the assumptions that each node occurring represented one processing step and that the costs of each were constant, the costs amounted to $0.35 \in \text{processing step}^{-1}$. The model outputs were the economically viable wood from the crown (under bark) $[m^3]$ and small-end diameter [mm].

$$y = \beta \prod_{i=1}^{k} x_i^{\alpha_i}$$

$$\leftrightarrow \log(y) = \log(\beta) + \sum_{i=1}^{k} \alpha_i \log(x_i)$$

$$(4.5)$$

The modeled viable wood volumes were used to parameterize an allometric growth model (Equation 4.5) with k covariates. This parametric regression model allows forecasting of the economically viable crown wood volume by measurable covariates and is therefore easily applicable in forest management. For this purpose, sets of results, differing in their parameterization of input variables, were generated with the viable wood volume prediction model (Algorithm 1). The revenue as well as the cost input parameters were firstly set to the common parameter combination ($50 \in m^{-3}$, 0.35 \in step⁻¹) and then separately changed by 20 %. Altogether, there were 9 result sets generated where each set of results involved 163 datasets. Because there were void datasets, whenever the algorithm assigned no viable wood volume in the crown, the data reduced to 1347 datasets. The regression analysis was composed of the covariates DBH, tree height, tree height at crown base, crown width, diameter ration at crown base and tree age as well as crown type, revenue scenario and cost scenario, which both functioned as dummy variable. The dependent variable was the modeled economically

viable wood volume in the crown. The significance analysis and the model parameterization were performed by a "Generalized Linear Model" (R Package "stats"; R Core Team, 2016). Proof of the significant impact of the covariates on α was not possible due to insufficient crown type 3 observations in larger DBH dimensions. The significance analysis was thus performed on β . Linearity and homoscedasticity were achieved by a Gamma distributed log-link function (Wood, 2006).

4.2.6 Allometric relationships

In the metabolic scaling theory, the relationship between two plant organs (y and x, see also Equation 4.5) can be described by a power law (Huxley, 1932; Niklas, 1994). This power law interprets the intraspecific relationship between plant organs for a given species. The variability of the relationship describes the strength of the allometry (Pretzsch, 2010; West et al., 1997). Allometric model are thus useful to investigate the relationship between variables of economic interest and further tree attributes.

To consider the assumption of allometric regressions (Stumpf & Porter, 2012), we transformed the data by taking the natural logarithm. The relationships were regressed with the "standardized major axis" method (R package "SMATR"; Warton et al., 2012). The retransformation bias was estimated and corrected from the residual standard error of the log linear model (Sprugel, 1983).

4.3 Results

4.3.1 Prediction of bark thickness

To subtract the bark from the wood volume, models for the double bark thickness over branch diameter are necessary. The predicted double bark thickness enabled the bark subtraction from both sides of the RBS diameter measurements. The commonly used double bark thickness model of Altherr et al. (1978) was parameterized with stem and branch disks of diameters above 7 cm. As the wood volume model in this study should be able to predict smaller branches as well, parameterization of an own bark thickness model became necessary. In addition, comparison of the observed bark thickness to the predicted bark thickness with the equation by Altherr et al. (1978) revealed that application of the Altherr model would have led to an overestimation of the bark thickness. The estimated double bark thickness with the function by Altherr et al. (1978) was 1.4 mm higher than with the new parameterized function for branches with a diameter of 10 cm. For branches with diameter of 30 cm, the difference amounted to 3.1 mm.

The double bark thickness regression equation was calculated via a "Generalized Additive Mixed Model" (Wood, 2006) using the untransformed normally distributed identity link function. A linear curve trend was found in the bark thickness model (Fig 4.3). There were multiple measurements in one tree (see section 4.2.2). To exclude regional as well as tree specific influences, the tree id was considered a random effect.

Figure 4.3: Double bark thickness over disk diameter (over bark) and the fitted linear bark thickness model.

As we found heteroscedasticity, we weighted our data by a power function, which was parameterized by the model residuals over the fitted values.

The model (Table 4.3) represented a valid method for subtracting bark from both sides of every morphological RBS diameter measurement. The volume calculation after bark subtraction via RBS thus predicts the volume under bark. This was also done for the section-wise stem diameter measurements to predict the stem wood volume under bark.

4.3.2 Economically viable wood volume in the crown

Crown type differentiation

All calculated and measured crown morphology variables and tree metadata, including mean coefficient of variation for the data estimated by the RBS method, are summarized in Table 4.4. The crown type classification analyses were based on the median branch diameter and the branch diameter quartiles. The other tree variables were then used to parameterize a prediction model for the crown type classes.

The trees were clustered into 3 groups, where 50 trees were assigned to the first (bulk of volume in smaller branches), 69 to the second (balanced volume allocation) and 44 to

Table 4.3: Summary statistics of the linear double bark thickness [mm] regression model. Independent variable is the diameter over bark [cm] (fresh).

variable	coefficient	standard error	t-value	p-value
intercept	1.87804	0.25	7.42	<2*10-16
$\operatorname{diameter}$	0.23253	0.01	16.06	< 2*10-16
observations	149			
AIC	565.0			
model range [cm]	0 - 65			

Table 4.4: Summary statistics of all used variables, c. v. = coefficient of variation.

· ·			,				
variable		unit	min	median	mean	max	c. v.
diameter at breast height	DBH	[cm]	8.0	34.8	35.4	78.3	_
tree height	H	[m]	13.1	26.0	25.3	38.5	-
whole tree wood volume	V_t	$[\mathrm{m}^3]$	0.05	1.46	2.25	11.70	0.07
crown wood volume	$\hat{V}_i(0)$	$[\mathrm{m}^3]$	0.01	0.64	1.21	9.20	0.22
tree wood volume (u. b.)	V_{tub}	$[\mathrm{m}^3]$	0.04	1.36	2.11	10.98	0.07
crown wood volume (u. b.)	V_{cub}	$[\mathrm{m}^3]$	0.01	0.59	1.12	8.62	0.22
median branch diameter	$F(d_{0.5})$	$[\mathrm{m}^3]$	23	138	152	406	-
height at crown base	CB	[m]	1.6	10.9	10.8	21.1	-
diameter ratio at crown base	DR	-	0.2	0.4	0.4	0.9	-

the third (bulk of volume in larger branches) crown type. As median and quantile tree diameters cannot be measured practically but the model shall be applicable in forest management, the influence of measurable variables on the crown types was assessed. The influence of tree attributes on the crown type was tested by linear discriminant analysis (Venables & Ripley, 2002), analysis of variance and deviance (Chambers & Hastie, 1992) as well as analysis of Akaike Information Criterion (Akaike, 1981). Only significant variables and interactions were chosen as regression parameters (Table 5). The analysis of variance revealed the significance of the diameter ratio at crown base DR. Deviance of the residuals (310.3 without DR) as well as AIC (330.0 without DR) were also substantially improved by this variable. Due to their high linear correlation with the significant variables, tree age and crown width were insignificant. The model is applied by plugging the coefficients of Table 4.5 into Equation 4.4.

Modelling the economically viable wood volume in the crown

Table 4.6 shows that crown type 3 crowns yielded more economically viable wood volume than the other two types for trees with similar DBH. The percentage volume of economically viable wood modeled in relation to the whole wood volume from the crown was considerably different among the crown types. Especially crowns of type 3 differed from the other 2 types. The small-end diameter of the trees did not differ between the diameter-crown type-groups from Table 6. In all DBH-crown type-groups, except

Table 4.5: Summary statistics of the multi-nominal logistic crown type prediction model with independent variables DBH [cm], tree height (H) [m], height at crown base (CB) [m] and branch diameter ratio at crown base (DR) including the results of the leave-one-out cross-validation (c.-v.) and the within-model reclassification (w.-m.).

	crowi	n type 2	crow	crown type 3		
	coefficient	standard error	coefficient	standard error		
$\overline{\hspace{1.5cm}}$ intercept	10.3679421	0.005	20.39087	0.011		
DBH	-0.4522104	0.105	-0.8534910	0.164		
H	-0.2423880	0.096	-0.3248841	0.130		
CB	-0.1208192	0.083	-0.2971321	0.108		
DR	-20.1534122	0.006	-31.3965027	0.005		
DBH*H	0.0156519	0.003	0.0244615	0.004		
DBH*DR	0.7159227	0.179	0.5762532	0.368		
H*DR	0.6833604	0.143	1.0091659	0.242		
DBH*H*DR	-0.0266986	0.005	-0.0218313	0.007		
	163					
	312.0					
	276.9					
proportion of correct classified crown types (cv.)			0.50			
proportion of correct classified crown types (wm.)			0.56			

Table 4.6: Proportion of economically viable crown wood in beech crowns according to the whole crown wood (each under bark). n. d. = no data.

				DBH-int	erval [cm			
crown type	[0-10)	[10-20)	[20-30)	[30-40)	[40-50)	[50-60)	[60-70)	[70-80)
1	n .d.	0.19	0.35	0.57	0.71	0.74	0.84	0.80
2	0.00	0.25	0.42	0.65	0.72	0.71	0.84	0.80
3	0.08	0.27	0.57	0.77	0.88	0.86	0.89	n. d.

for the groups below 20 cm, the group mean of the small-end diameter was randomly scattering around 10 cm. Trees in the groups below 20 cm DBH usually don?t show crown branches with a base diameter of 10 cm. Their group mean small-end diameter was not calculated.

The model output data revealed that the return per m³ substantially differs between the crown types (Figure 4.4). Trees with crowns of the type 3 showed in mean highest returns per m³ while crowns of the type 1 were by trend lowest marginal returns over the entire observed diameter range.

4.3.3 Allometric relationships

Allometric relationships.

Figure 4.4: Marginal return divided by volume (under bark) versus DBH differentiated by crown types.

4.4 Discussion

4.4.1 Estimation of bark thickness

Estimation of bark thickness.

4.4.2 Economically viable wood volume in the crown

Viable.

Crown type differentiation

Crown types.

Modelling the economically viable wood volume in the crown

Modelling the economically viable wood volume in the crown.

4.4.3 Allometric relationships

Allometric relationships.

4.5 Conclusions and outlook

Conclusion.

Acknowledgements

We would like to thank the German Science Foundation (DFG) for financial support of this study (Sachbeihilfe SA 415/5-1) and Dr. Böckmann of the Lower Saxony Forest Planning Office for his kind provision of the inventory data. Moreover, we would like to thank two anonymous reviewers for their helpful comments.

Optimisation of Forest Processes

Kai Husmann¹

¹Department of Forest Economics and Forest Management, University of Göttingen, Büsgenweg 3, 37077 Göttingen, Germany

²Northwest German Forest Research Institute, Grätzelstraße 2, 37079 Göttingen, Germany

Published in: Journal of Cleaner Production. (DOI: X)

Abstract

Abstract.

Keywords

Keywords

5.1 Introduction

Introduction.

5.2 Materials and Methods

Examples can be found in Mandallaz (2008) see also (Gregoire & Valentine, 2008; Mandallaz, 2008).

5.2.1 Data sampling and sample processing

$$\widehat{\overline{Y}}_{2st} = \sum_{h=1}^{L} w_h \frac{1}{n_h} \sum_{i=1}^{n_h} y_{hi} = \sum_{h=1}^{L} w_h \overline{y}_h$$
 (5.1)

Example Equation 5.1 shows an unbiased estimator.

5.2.2 Biomass functions

Biomass functions.

5.2.3 Sensitivity analysis

Sensitivity.

5.2.4 Nutrient contents

Sensitivity.

5.3 Results

5.3.1 Biomass functions

Biomass functions.

5.3.2 Sensitivity analysis

Sensitivity.

5.3.3 Nutrient contents

Nutrient.

5.4 Discussion

5.4.1 Biomass functions

Biomass functions.

5.4.2 Sensitivity analysis

Sensitivity.

5.4.3 Nutrient contents

Nutrients.

5.5 Conclusions

Conclusion

Acknowledgements

We would like to thank the German Science Foundation (DFG) for financial support of this study (Sachbeihilfe SA 415/5-1) and Dr. Böckmann of the Lower Saxony Forest Planning Office for his kind provision of the inventory data. Moreover, we would like to thank two anonymous reviewers for their helpful comments.

General Discussion

The present thesis aims at further increasing the efficiency of double sampling for stratification (2st) in repeated forest inventories.

Summary

Summary.

Zusammenfassung

Zusammenfassung.

Bibliography

- Akaike, H. (1981). Likelihood of a model and information criteria. *Journal of Econometrics*, (16), 3–14.
- Altherr, E., Unfried, P., & Hrahetzky, V. (1978). Statistische Rindenbeziehungen als Hilfsmittel zur Ausformung und Ausmessung unentrindeten Stammholzes, volume 90 of Mitteilungen der Forstlichen Versuchs- und Forschungsanstalt Baden-Würtemberg.
- BMEL (2011). Waldstrategie 2020. Bonn. Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz.
- BMEL (2014). Der Wald in Deutschland Ausgewählte Ergebnisse der dritten Bundeswaldinventur. Berlin.
- Cancino, J. & Saborowski, J. (2005). Comparison of randomized branch sampling with and without replacement at the first stage. Silva Fennica, 39(2), 201–216.
- Chambers, J. M. & Hastie, T. J. (1992). Statistical models in S. Boca Raton, Fla.: Chapman & Hall/CRC.
- Degenhard, M. (2016). Holzmarkt Schnittholznachfrage stabilisiert.
- DESTATIS (2016). Statistisches Bundesamt Deutschland GENESIS-Online.
- FACG (2014). Shapefile Germany with federal states. Federal Agency for Cartography and Geodesy.
- FANC (2010). Map of potential natural vegetation in Germany. Federal Agency for Nature Conservation.
- Fischer, C. & Husmann, K. (2016). Flächen-Übergangsmatrizen als erweiterte Auswertung der Bundeswaldinventur: Darstellung am Beispiel der Veränderung der Bestockungszusammensetzung in Niedersachsen (under review). Allgemeine Forst- und Jagdzeitung.
- Gaffrey, D. & Saborowski, J. (1999). RBS, ein mehrstufiges Inventurverfahren zur Schätzung von Baummerkmalen I. Schätzung von Nadel- und Asttrockenmassen bei 66-jährigen Douglasien. Allgemeine Forst- und Jagdzeitung, (170. Jg 10-11), 177–183.
- Gauer, J. (2012). Waldökologische Naturräume Deutschlands Forstliche Wuchsgebiete und Wuchsbezirke. Braunschweig: Thünen Institut.

- Gregoire, T. G. & Valentine, H. (2008). Sampling Strategies for Natural Ressources and the Environment. Chapman & Hall/CRC. Boca Raton, London, New York.
- Gregoire, T. G., Valentine, H. T., & Furnival, G. M. (1995). Sampling Methods to Estimate Foliage and Other Characteristics of Individual Trees. *Ecology*, 76(4), 1181.
- Haarhaus, M., Ed. (2012). AfL-Info 12/13. Richtpreise, Tarife, Kalkulationen, Adressen. Wiegersen-Sauensiek.
- Hansen, J., Ludwig, A., Spellmann, H., Nagel, J., Möhring, B., von Lüpke, N., & Schmidt-Walter, P. (2008). Rohholzpotenziale und ihre Verfügbarkeit in Hessen. Veröffentlichungen der NW-FVA und der Abteilung für Forstökonomie der Georg-August-Universität Universität Göttingen. Göttingen: NW-FVA.
- Hansen, J. & Nagel, J. (2014). Waldwachstumskundliche Softwaresysteme auf Basis von TreeGrOSS-Anwendung und theoretische Grundlagen. Göttingen: Niedersächsische Staats-und Universitätsbibliothek.
- Hildebrandt, J., Bezama, A., & Thrän, D. (2014). Establishing a robust sustainability index for the assessment of bioeconomy regions. In 2014 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE) (pp. 1-4).
- HMUKLV (2014). Hessen Bäume, Wälder, Lebensräume: ausgewählte Ergebnisse der dritten Bundeswaldinventur (BWI 3) für Hessen Deutsche Digitale Bibliothek. Wiesbaden: Hessisches Ministerium für Umwelt, Klimaschutz, Landwirtschaft und Verbraucherschutz.
- Hutcheson, G. D. & Moutinho, L. (2008). Statistical Modeling for Management. London: SAGE Publications.
- Huxley, J. (1932). Problems of relative growth. New York: Dial Press.
- Jessen, R. J. (1955). Determining the Fruit Count on a Tree by Randomized Branch Sampling. *Biometrics*, 11(1), 99–109. ArticleType: research-article / Full publication date: Mar., 1955 / Copyright © 1955 International Biometric Society.
- Kuzelka, K. & Marusak, R. (2012). Spline representation of irregular and malformed stem profiles of broadleaved tree species in White Carpathian Mountains. *Beskydy*, 5(2), 111–120.
- Mandallaz, D. (2008). Sampling Techniques for Forest Inventories. Chapman & Hall/CRC. Boca Raton, London, New York.
- Mantau, U. (2012). Holzrohstoffbilanz Deutschland, Entwicklungen und Szenarien des Holzaufkommens und der Holzverwendung 1987 bis 2015. Hamburg.
- McCormick, K. & Kautto, N. (2013). The Bioeconomy in Europe: An Overview. Sustainability, 5(6), 2589–2608.

- MFACP (2004). Langfristige ökologische Waldentwicklung- Richtlinie zur Baumartenwahl, volume 54 of Aus dem Walde - Schriftenreihe Waldentwicklung Niedersachsen. Wolfenbüttel. Lower Saxony Ministry of Food, Agriculture and Consumer Protection.
- Miettinen, J., Ollikainen, M., Nieminen, T. M., Ukonmaanaho, L., Laurén, A., Hynynen, J., Lehtonen, M., & Valsta, L. (2014). Whole-tree harvesting with stump removal versus stem-only harvesting in peatlands when water quality, biodiversity conservation and climate change mitigation matter. Forest Policy and Economics, 47, 25–35.
- ML (2004). Langfristige ökologische Waldentwicklung- Richtlinie zur Baumartenwahl, volume 54 of Aus dem Walde Schriftenreihe Waldentwicklung Niedersachsen. Wolfenbüttel: Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft. Niedersächsisches Ministerium für Ernährung, Landwirtschaft und Verbraucherschutz.
- ML (2014). Der Wald in Niedersachsen: Ergebnisse der Bundeswaldinventur 3. Hannover: Niedersächsisches Ministerium für Ernährung, Landwirtschaft und Verbraucherschutz, 1 edition.
- Möhring, B. (1997). Betriebswirtschaftliche Probleme und Chancen. $AFZ/Der\ Wald$, (2), 67–71.
- Möller, W. (2007). Umweltrecht Planung, Wald, Naturschutz, Jagd, Wasser, Boden, Immissionen, Abfall u.a. Kommentare: Bundesrecht und exemplarisch niedersächsisches Landesrecht mit verbundenem Nutzungsrecht, Europarecht. Selbstverlag des Autors, 4b., überarb. u. erw. aufl. edition.
- Nagel, R.-V. & Spellmann, H. (2008). Wachstum, Behandlung und Ertrag von Reinbeständen der Rotbuche (Fagus sylvatica L.) in Nordwestdeutschland. In Ergebnisse angewandter Forschung zur Buche, volume 3 of Beiträge aus der Nordwestdeutschen Forstlichen Versuchsanstalt (pp. 221–265). Göttingen: Universitätsverlag Göttingen.
- Niklas, K. J. (1994). Plant allowetry: the scaling of form and process. Chicago [u.a.]: Univ. of Chicago Press.
- Ochs, T., Duschl, C., & Seintsch, B. (2007). Struktur und Rohstoffbedarf der Holzwirtschaft. *Holz-Zentralblatt*, 133(12), 269–271.
- Pretzsch, H. (2010). Re-Evaluation of Allometry: State-of-the-Art and Perspective Regarding Individuals and Stands of Woody Plants. In U. Lüttge, W. Beyschlag, B. Büdel, & D. Francis (Eds.), *Progress in Botany* 71, number 71 in Progress in Botany (pp. 339–369). Springer Berlin Heidelberg.
- R Core Team (2016). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

- Rüther, B., Hansen, J., Ludwig, A., Spellmann, H., Nagel, J., Möhring, B., & Dieter, M. (2007). Clusterstudie Forst und Holz Niedersachsen, volume 1 of Beiträge aus der Nordwestdeutschen Forstlichen Versuchsanstalt. Göttingen: Universitätsdrucke Göttingen.
- Schanz, H. (1996). Forstliche Nachhaltigkeit, volume 4 of Schriften aus dem Institut für Forstökonomie der Universität Freiburg.
- Schmitz, F., Polley, H., Hennig, P., Dunger, K., & Schwitzgebel, F. (2008). Die zweite Bundeswaldinventur BWI2. Inventur und Auswertungsmethoden zu den Bundeswaldinventuren 2001 bis 2002 und 1986 bis 1988. Braunschweig: vTI (von Thünen Institut).
- Speidel, G. (1972). Planung im Forstbetrieb: Grundlagen und Methoden der Forsteinrichtung. Hamburg, Berlin: Paul Parey.
- Speidel, G. (1984). Forstliche Betriebswirtschaftslehre. Paul Parey, Hamburg und Berlin, 2 edition.
- Sprugel, D. G. (1983). Correcting for Bias in Log-Transformed Allometric Equations. *Ecology*, 64(1), 209–210. ArticleType: research-article / Full publication date: Feb., 1983 / Copyright © 1983 Ecological Society of America.
- Starr, M. K. & Tapiero, C. S. (1975). Linear Breakeven Analysis Under Risk. Operational Research Quarterly (1970-1977), 26(4), 847.
- Stumpf, M. P. H. & Porter, M. A. (2012). Critical Truths About Power Laws. *Science*, 335(6069), 665–666.
- TI (2014). Third National Forest Inventory Database.
- Valentine, H. T., Tritton, L. M., & Furnival, G. M. (1984). Subsampling Trees for Biomass, Volume, or Mineral Content. Forest Science, 30(3), 673–681.
- Venables, W. & Ripley, B. (2002). *Modern Applied Statistics with S.* New York: Springer, 4th edition.
- von Carlowitz, H.-C. (1713). Sylvicvltvra Oeconomica, Oder Haußwirthliche Nachricht und Naturmäßige Anweisung Zur Wilden Baum-Zucht. Johann Friedrich Braun, Leipzig.
- Wagstaff, K., Rogers, S., Schroedl, S., & Cardie, C. (2001). Constrained K-Means clustering with background knowledge. *Proceedings of the 18th International Conference on Machine Learning*, (pp. 577–584).
- Warton, D. I., Duursma, R. A., Falster, D. S., & Taskinen, S. (2012). smatr 3- an R package for estimation and inference about allometric lines. Methods in Ecology and Evolution, 3(2), 257–259.

- West, G. B. (1999). The Fourth Dimension of Life: Fractal Geometry and Allometric Scaling of Organisms. *Science*, 284(5420), 1677–1679.
- West, G. B., Brown, J. H., & Enquist, B. J. (1997). A General Model for the Origin of Allometric Scaling Laws in Biology. *Science*, 276(5309), 122–126.
- Wood, S. N. (2006). Generalized Additive Models: An Introduction with R. Chapman & Hall/CRC.
- Wördehoff, R., Spellmann, H., Evers, J., & Nagel, J. (2011). Kohlenstoffstudie Forst und Holz Niedersachsen, volume 6 of Beiträge aus der Nordwestdeutschen Forstlichen Versuchsanstalt. Göttingen: Univ.-Verl. Göttingen.

Curriculum Vitae

Personal Details

Name Kai Husmann
Date of Birth 03.07.1985
Place of Birth Sulingen
Nationality German

Education

since $10/2016$	Master Student (M.Sc.) University of Göttingen, Applied Statistics
since $04/2014$	Ph.D. Student University of Göttingen, Forest Sciences and Forest Ecology
10/2010 – 01/2013	Master of Science (M.Sc.) University of Göttingen, Study Focus: Forest Ecosystem Analysis and Information Processing
10/2007 – 09/2010	Bachelor of Science (B.Sc.) University of Göttingen, Forest Sciences and Forest Ecology
2006	A levels (Abitur) Gymnasium Sulingen

Professional Experience

since $01/2017$	Researcher Department of Forest Economics and Forest Management, Büsgen Institute, University of Göttingen
02/2013 - 12/2016	Researcher Department of Forest Growth, Section of Growth Modelling and Computer Science, Northwest German Forest Research Institute