計算数理基礎(多面体的組合せ論)

担当: 相馬 輔

July 18, 2024

目次

1. 組合せ最適化とは

• 組合せ最適化とは?

・ 組合せ最適化問題を「解く」とは?

• 多項式時間とは?

2. 線形計画の復習

· 主問題·双対問題

• 相補性条件

多面体

3. 整数多面体,完全単模行列

完全単模行列

• 整数多面体

・整数多面体とLPの整数性

目次

1. 組合せ最適化とは

- 組合せ最適化とは?
- ・ 組合せ最適化問題を「解く」とは?
- 多項式時間とは?

2. 線形計画の復習

- 主問題 双対問題
- 相補性条件
- 多面体

3. 整数多面体,完全単模行列

- 完全単模行列
- 整数多面体
- 整数多面体と LP の整数性

組合せ最適化とは

離散的な対象の中から最も良いものを効率的に求める方法論

ネットワーク

マッチング

機械学習•統計

例: 割当問題

割当問題

入力 コスト $c_{ij} \in \mathbb{R}$ $(1 \le i, j \le n)$ 出力 総コスト最小のマッチング

マッチング... どの頂点にも 1 本だけ枝が接続しているような枝部分集合

例:割当問題

割当問題

入力 コスト $c_{ij} \in \mathbb{R}$ $(1 \le i, j \le n)$ 出力 総コスト最小のマッチング

マッチング... どの頂点にも 1 本だけ枝が 接続しているような枝部分集合

例: 巡回セールスマン問題

巡回セールスマン問題

入力 枝コスト $c_{ij} \in \mathbb{R} \ (1 \leq i, j \leq n)$ 出力 各頂点を一度だけ通る閉路で総コスト最小のもの

例: 巡回セールスマン問題

巡回セールスマン問題

入力 枝コスト $c_{ij} \in \mathbb{R} \ (1 \leq i, j \leq n)$ 出力 各頂点を一度だけ通る閉路で総コスト最小のもの

例: 最大被覆問題

最大被覆問題

入力 V: 基地局候補地の集合, $k \in \mathbb{Z}_+$ 出力 $S \subseteq V$ で $|S| \le k$ かつ S に設置したときの被覆範囲が最大となるもの

解をすべて調べて、その中から最適解を選ぶ!

解をすべて調べて、その中から最適解を選ぶ!

巡回セールスマン問題の場合

1 秒間に 10 京 ($=10^{17}$) 通り調べられるとする.

頂点数 n	計算時間 $\approx n!$		
10	3.6×10^{-11} 秒		
20	24 秒		
30	3168万年		

解をすべて調べて、その中から最適解を選ぶ!

巡回セールスマン問題の場合

1 秒間に 10 京 ($=10^{17}$) 通り調べられるとする.

頂点数 n	計算時間 $\approx n!$
10	3.6×10^{-11} 秒
20	24秒
30	3168万年

引用: 『フカシギの数え方』 おねえさんといっしょ! みんなで数えてみよう! https://www.youtube.com/watch?v=Q4gTV4r0zRs

解をすべて調べて、その中から最適解を選ぶ!

巡回セールスマン問題の場合

1 秒間に 10 京 (= 10^{17}) 通り調べられるとする.

頂点数 n	計算時間 $\approx n!$
10	3.6×10^{-11} 秒
20	24秒
30	3168万年

引用: 『フカシギの数え方』 おねえさんといっしょ! みんなで数えてみよう! https://www.voutube.com/watch?v=04gTV4r0zRs

現実的ではないので、より<mark>効率的なアルゴリズム</mark>を研究する必要!

"効率的"って何だろう? 🛂

アルゴリズムの時間計算量

アルゴリズムの時間計算量

入力の大きさnに対して,アルゴリズムが最大で何回の基本演算 (四則演算,大小比較,ビット演算…)を行うかで測る.

アルゴリズムの時間計算量

アルゴリズムの時間計算量

入力の大きさn に対して,アルゴリズムが最大で何回の基本演算(四則演算,大小比較,ビット演算…)を行うかで測る.

多項式時間 高々 n の多項式回の基本演算

例: O(n) 時間, $O(n^2)$ 時間, $O(n \log n)$ 時間, $O(n^{10000})$ 時間

指数時間 $O(2^n)$ 回,もしくはそれより大きい回数の基本演算

アルゴリズムの時間計算量

アルゴリズムの時間計算量

入力の大きさn に対して,アルゴリズムが最大で何回の基本演算 (四則演算,大小比較,ビット演算…)を行うかで測る.

多項式時間 高々 n の多項式回の基本演算

例: O(n) 時間, $O(n^2)$ 時間, $O(n \log n)$ 時間, $O(n^{10000})$ 時間

指数時間 $O(2^n)$ 回,もしくはそれより大きい回数の基本演算

「最大で」・・・アルゴリズムにとって**最も苦手**な入力を与えたときにかかる計算量を考える.(最悪時計算量)

目次

1. 組合せ最適化とは

組合せ最適化とは?

組合せ最適化問題を「解く」とは?

・ 多項式時間とは?

2. 線形計画の復習

· 主問題·双対問題

• 相補性条件

多面体

3. 整数多面体,完全単模行列

• 完全単模行列

• 整数多面体

主奴グ四件

整数多面体とLPの整数性

線形計画 (LP)

LP は以下の標準形で書くことができる:

maximize
$$\sum_{j=1}^n c_j x_j$$
 subject to $\sum_{j=1}^n a_{ij} x_j \leq b_i$ $(i=1,\ldots,m)$ $x_j \geq 0$ $(j=1,\ldots,n)$

線形計画 (LP)

LP は以下の標準形で書くことができる:

maximize
$$\sum_{j=1}^n c_j x_j$$
 subject to $\sum_{j=1}^n a_{ij} x_j \leq b_i$ $(i=1,\ldots,m)$ $x_j \geq 0$ $(j=1,\ldots,n)$

 $\begin{array}{ll} \text{maximize} & c^\top x \\ \text{subject to} & Ax \leq b \\ & x \geq 0 \end{array}$

- A: m × n 行列
- b: m 次元ベクトル
- c: n 次元ベクトル
- x: n 次元決定変数

双対問題・強双対定理

主問題 (P)

 $\begin{array}{ll} \text{maximize} & c^\top x \\ \text{subject to} & Ax \leq b \\ & x \geq 0 \end{array}$

双対問題 (D)

 $\begin{array}{ll} \text{minimize} & b^\top y \\ \text{subject to} & A^\top y \geq c \\ & y \geq 0 \end{array}$

双対問題・強双対定理

主問題 (P)

 $\begin{array}{ll} \text{maximize} & c^\top x \\ \text{subject to} & Ax \leq b \\ & x \geq 0 \end{array}$

双対問題 (D)

 $\begin{array}{ll} \text{minimize} & b^\top y \\ \text{subject to} & A^\top y \geq c \\ & y \geq 0 \end{array}$

定理 (強双対定理)

主問題 (P) と双対問題 (D) がともに実行可能ならば,主問題 (P) に最適解 x^* ,双対問題 (D) に最適解 y^* が存在して $c^\top x^* = b^\top y^*$ が成り立つ.

相補性条件

定理 (相補性条件)

主問題 (P) の実行可能解 x と双対問題 (D) の実行可能解 y に対し,x と y がそれぞれの最適解 $\iff (A^\top y - c)^\top x = 0$ かつ $(b - Ax)^\top y = 0$

主問題 (P)

 $\max \ c^{\top} x$

s.t. $Ax \le b$ x > 0

双対問題 (D)

nin $b^ op y$

s.t. $A^{\top}y \geq c$

 $y \ge 0$

相補性条件

定理 (相補性条件)

主問題 (P) の実行可能解 x と双対問題 (D) の実行可能解 y に対し,x と y がそれぞれの最適解 $\iff (A^\top y - c)^\top x = 0$ かつ $(b - Ax)^\top y = 0$

証明

実行可能解 (x,y) に対して,

$$c^\top x \le (A^\top y)^\top x = y^\top (Ax) \le y^\top b$$

が常に成り立つ(弱双対性).

主問題 (P)

 $\max \ c^{\top}x$

s.t. $Ax \le b$ $x \ge 0$

双対問題 (D)

min $b^{ op}$

s.t. $A^{\top}y \geq c$

$$y \ge 0$$

相補性条件

定理 (相補性条件)

主問題 (P) の実行可能解 x と双対問題 (D) の実行可能解 y に対し,x と y がそれぞれの最適解

$$\iff (A^{\mathsf{T}}y-c)^{\mathsf{T}}x=0$$
 かつ $(b-Ax)^{\mathsf{T}}y=0$

証明

実行可能解(x,y)に対して,

$$c^{\top}x \le (A^{\top}y)^{\top}x = y^{\top}(Ax) \le y^{\top}b$$

が常に成り立つ(弱双対性). (x,y) が最適解ならば,強双対定理から $c^{\top}x=y^{\top}b$ なので,途中の不等号はすべて等号.

$$c^{\mathsf{T}}x = (A^{\mathsf{T}}y)^{\mathsf{T}}x, \quad y^{\mathsf{T}}(Ax) = y^{\mathsf{T}}b$$

が成り立つ. 移項すると相補性条件が出る. 逆も同様.

主問題 (P)

 $\max \ c^{\top} x$

s.t. $Ax \le b$ $x \ge 0$

双対問題 (D)

min $b^{ op}y$

 $\text{s.t.} \quad A^\top y \geq c$

 $y \ge 0$

多面体と端点

LP の実行可能領域

$$P = \{x \in \mathbb{R}^n : Ax \le b, \ x \ge 0\} = \{x \in \mathbb{R}^n : \begin{bmatrix} A \\ -I \end{bmatrix} x \le \begin{bmatrix} b \\ 0 \end{bmatrix} \}$$

$$\tilde{A}$$

$$\tilde{b}$$

は多面体 (polyhedron) と呼ばれる凸集合.

補題

多面体 P の端点を x とする.このとき,次を満たす大きさ n の行部分集合 S が存在する.

- $ilde{A}$ から S に対応する行を抜き出した部分行列 $ilde{A}_S$ は正則
- x は線形方程式 $(\tilde{A}_S)x = \tilde{b}_S$ の(一意)解.ここで, \tilde{b}_S は b から S に対応する行を抜き出したベクトル.

P:

$$\begin{cases} x_1 + 2x_2 \le 6 \\ 2x_1 + x_2 \le 6 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases}$$

で定まる \mathbb{R}^2 の多面体

$$\tilde{A} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ -1 & 0 \\ 0 & -1 \end{bmatrix}, \ \tilde{b} = \begin{bmatrix} 6 \\ 6 \\ 0 \\ 0 \end{bmatrix}$$

目次

1. 組合せ最適化とは

- 組合せ最適化とは?
- 組合せ最適化問題を「解く」とは?
- ・ 多項式時間とは?

2. 線形計画の復習

- · 主問題·双対問題
- 相補性条件
- 多面体

3. 整数多面体,完全单模行列

- 完全単模行列
- 整数多面体
- 整数多面体とLPの整数性

LPを使った組合せ最適化問題の解法?

- □ IP の 0-1 制約を落として得られる LP を解く
- むし 0−1 成分の LP 最適解が得られたら、それは元の IP の最適解でもあるので、問題が解けた(ラッキー!)

これがうまくいくための十分条件は? → **完全単模行列**

重み付き二部マッチング問題

入力 G=(V;E): 二部グラフ,枝重み w_e $(e\in E)$ 出力 G の最大重みマッチング M

重み付き二部マッチング問題

入力 G=(V;E): 二部グラフ,枝重み w_e $(e \in E)$ 出力 G の最大重みマッチング M

maximize
$$\sum_{e \in E} w_e x_e$$
 subject to $\sum_{e \in \delta(i)} x_e \leq 1 \quad (i \in V)$ $x_e \in \{0,1\} \quad (e \in E)$

max	$w^{\top}x$	
s.t.	$x_{14} + x_{15}$	≤ 1
	$x_{24} + x_{25}$	≤ 1
	x_{34}	≤ 1
	$x_{14} + x_{24} + x_{34}$	≤ 1
	$x_{15} + x_{25}$	≤ 1
	$x_{14}, x_{15}, x_{24}, x_{25}, x_{34}$	$\in \{0,1\}$

重み付き二部マッチング問題

入力 G=(V;E): 二部グラフ,枝重み w_e $(e \in E)$ 出力 G の最大重みマッチング M

LP 定式化

maximize
$$\sum_{e \in E} w_e x_e$$
 subject to $\sum_{e \in \delta(i)} x_e \leq 1 \quad (i \in V)$ $x_e \geq 0 \qquad (e \in E)$

実は,係数行列の完全単模性により**常に** 0-1 の LP 最適解をもつ!

max	$w^{ op}x$	
s.t.	$x_{14} + x_{15}$	≤ 1
	$x_{24} + x_{25}$	≤ 1
	x_{34}	≤ 1
	$x_{14} + x_{24} + x_{34}$	≤ 1
	$x_{15} + x_{25}$	≤ 1
	$x_{14}, x_{15}, x_{24}, x_{25}, x_{34}$	$\in \{0, 1$

完全単模行列

定義 (完全単模行列)

 $m \times n$ 行列 A が完全単模行列 $\stackrel{\mathsf{def}}{\Longleftrightarrow} A$ のすべての小行列式 $\in \{0,\pm 1\}$

例

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & -1 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 1 \end{bmatrix}$$

補題

二部マッチングの LP の係数行列 A は完全単模行列.

補題

二部マッチングの LP の係数行列 A は完全単模行列.

証明 $k \times k$ 小行列式 = $0, \pm 1$ であることを,k に関する帰納法で示す.

k=1 のときは、A の成分は 0,1 なので明らか、k>1 とし、 $k\times k$ 小行列 A' を考える.

補題

二部マッチングの LP の係数行列 A は完全単模行列.

証明 $k \times k$ 小行列式 = $0, \pm 1$ であることを,k に関する帰納法で示す.

k=1 のときは、A の成分は 0,1 なので明らか、k>1 とし、 $k\times k$ 小行列 A' を考える.

• A' にゼロ列が含まれる場合: $\det A' = 0$ より成立.

補題

二部マッチングの LP の係数行列 A は完全単模行列.

証明 $k \times k$ 小行列式 = $0, \pm 1$ であることを,k に関する帰納法で示す.

k = 1 のときは、A の成分は 0,1 なので明らか、k > 1 とし、 $k \times k$ 小行列 A' を考える.

- A' にゼロ列が含まれる場合: $\det A' = 0$ より成立.
- A' に 1 が 1 つだけ含まれる列がある場合: 余因子展開すれば, $(k-1) \times (k-1)$ 小行列 A'' を用いて, $\det A' = \pm \det A''$.帰納法の仮定より $\det A'' \in \{0,\pm 1\}$ なので OK.

	x_{14}	x_{15}	x_{24}	x_{25}	x_{34}
1	1	1	0	0	0 -
2	0	0	1	1	0
3	0	0	0	0	1
4	1	0	1	0	1
5	0	1	0	1	0

補題

二部マッチングの LP の係数行列 A は完全単模行列.

証明 $k \times k$ 小行列式 = $0, \pm 1$ であることを,k に関する帰納法で示す.

k=1 のときは,A の成分は 0,1 なので明らか.k>1 とし, $k\times k$ 小行列 A' を考える.

- A' にゼロ列が含まれる場合: $\det A' = 0$ より成立.
- A' に 1 が 1 つだけ含まれる列がある場合: 余因子展開すれば, $(k-1)\times(k-1)$ 小行列 A'' を用いて, $\det A'=\pm \det A''$.帰納法の仮定より $\det A''\in\{0,\pm 1\}$ なので OK.
- A' のどの列にも 1 が 2 つ含まれる場合: 左側の頂点に +1,右側の頂点に -1 をおいた行ベクトル v を考えると, vA'=0.よって,A' は正則ではないので, $\det A'=0$.

整数多面体

定義 (整数多面体)

全ての端点が整数ベクトルである多面体を整数多面体と呼ぶ.

完全単模行列と整数多面体

定理

完全単模行列 A と整数ベクトル b が定める多面体 $P=\{x\in\mathbb{R}^n:Ax\leq b,\,x\geq 0\}$ は整数多面体.

完全単模行列と整数多面体

定理

完全単模行列 A と整数ベクトル b が定める多面体 $P=\{x\in\mathbb{R}^n:Ax\leq b,\,x\geq 0\}$ は整数多面体.

証明

x を P の端点とする. x は, (\tilde{A}, \tilde{b}) から n 行を抜き出して得られる正則行列 A' と部分ベクトル b' に対して,線形方程式 A'x=b' の解 $x=(A')^{-1}b'$ として得られる.

完全単模行列と整数多面体

定理

完全単模行列 A と整数ベクトル b が定める多面体 $P=\{x\in\mathbb{R}^n:Ax\leq b,\,x\geq 0\}$ は整数多面体.

証明

x を P の端点とする. x は, (\tilde{A}, \tilde{b}) から n 行を抜き出して得られる正則行列 A' と部分ベクトル b' に対して,線形方程式 A'x=b' の解 $x=(A')^{-1}b'$ として得られる. クラーメルの公式より,

$$(A')_{ij}^{-1} = \frac{\Delta_{j,i}A'}{\det A'} \in \{0, \pm 1\}$$

 $\times \Delta_{j,i}A' = A'$ の (j,i) 余因子 b' は整数ベクトルなので, $(A')^{-1}b'$ も整数ベクトル.

完全単模行列とLPの整数性

定理

Aが完全単模行列,bが整数ベクトルである主問題 (P) を考える.もし (P) が最適解をもつならば,(P) に**整数ベクトル**の最適解が存在する.

完全単模行列とLPの整数性

定理

Aが完全単模行列,bが整数ベクトルである主問題 (P) を考える.もし (P) が最適解をもつならば,(P) に**整数ベクトル**の最適解が存在する.

証明

前定理より,(P) の実行可能領域 P は整数多面体である.いま,(P) が最適解をもつので,特に P の端点である最適解が存在する.整数多面体の定義より,これは整数ベクトル.