Homework #6

MEMS 0051 - Introduction to Thermodynamics

Assigned February 22nd, 2019 Due: March 1st, 2019

Problem #1

- 1. Calculate the Carnot efficiency of a heat engine operating between the following reservoir temperature combinations:
 - a) T_H =500 [K]. T_L =250 [K]
 - b) T_H =1,000[K]. T_L =300 [K]
 - c) T_H =600 [K]. T_L =50 [K]
 - d) T_H =205 [K]. T_L =105 [K]
- 2. Based on your previous calculations, how is Carnot efficiency affected by raising T_H ? What about raising T_L ?

Problem #2

Assume a cyclic heat engine extracts energy (\dot{Q}_H) from a hot temperature reservoir having a temperature of 350 [°C] and the machine. If heat is rejected from the same machine and a cold temperature reservoir (Q_L) having a temperature of 30 [°C], what can be said about the possibility of the machine for the following cases?

- a) $\dot{Q}_H = 12 \text{ [kW]}, \ \dot{Q}_L = 6 \text{ [kW]}$ b) $\dot{Q}_H = 45 \text{ [kW]}, \ \dot{Q}_L = 13 \text{ [kW]}$
- c) $\dot{Q}_H = 30 \text{ [kW]}, \dot{Q}_L = 5 \text{ [kW]}$
- d) $\dot{Q}_{H} = 2 \text{ [kW]}, \dot{Q}_{L} = 1 \text{ [kW]}$ e) $\dot{Q}_{H} = 21 \text{ [kW]}, \dot{Q}_{L} = 8 \text{ [kW]}$

Problem #3

200 [g] of liquid water at 35 [°C] is put into ice trays and left in a refrigerator at atmospheric pressure. Said refrigerator works in a Carnot cycle between a cold temperature reservoir at -8 [°C] and a hot temperature reservoir at 35 [°C]. The refrigerator motor-compressor has a power rating of 800 [W]. Assuming the water is the only substance being cooled, how many seconds will it take to turn the water into ice? Assume a constant specific heat of 4.1855 [kJ/(kg K)].

Problem #4

Consider N₂ in a piston-cylinder undergoing a Carnot cycle between temperature reservoirs at 300 [K] and 1,000 [K]. The isothermal compression process results in the specific volume shrinking from 2.0 [m³/kg] to 0.5 [m³/kg]. You may treat this gas as ideal. Since u_2 - u_1 = $C_{\forall O}(T_2$ - $T_1)$ isn't a good approximation at temperatures as high as 1,000 [K], use the tabulated values in Table A.8 to determine changes in internal energy.

- a) Draw this cycle on a $P-\nu$ diagram. Label the low and high temperature isotherms, and also label the two given specific volumes.
- b) Calculate the Carnot efficiency of this cycle.
- c) Determine the heat added during the isothermal expansion (q_H) and the heat rejected during the isothermal compression (q_L) .
- d) Determine the changes in internal energy for the adiabatic expansion and the adiabatic compression processes.
- e) Determine the net work done by this cycle. Shade the net work on your $P-\nu$ diagram.