ら

AFFDL-TR-79-3032 · Volume I

ADA U86557

THE USAF STABILITY AND CONTROL DIGITAL DATCOM Volume I, Users Manual

20000 801159

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY - ST. LOUIS DIVISION ST. LOUIS, MISSOURI 63166

APRIL 1979

TECHNICAL REPORT AFFDL-TR-79-3032, Volume I Final Report for Period August 1977 — November 1978

Approved for public release; distribution unlimited.

AIR FORCE FLIGHT DYNAMICS LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

80 7 7 339

Reproduced From Best Available Copy

NOTICE

When government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Bernard 7. Nielaus

V. O. HOEHNE

Acting Branch Chief Control Dynamics Branch Flight Control Division

FOR THE COMMANDER

MORRIS A. OSTGAARD

Acting Chief

Flight Control Division

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify ATHAL/FIGC, W-PAFB, OH 45433 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/24 June 1980 - 860

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)	
19 REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
AFFOLUTR-79-3032_VOLUMENT	a with the same of
AFFDL TR-79-3032_VOL	S. TYPE OF REPORT & PERIOD COVERED
THE USAF STABILITY AND CONTROL DIGITAL DATCOM	August 1977 - November 1978
Volume I, Users Manuals	TENTUNING ONE ALEGET NUMBER
7. AUTHOR(s)	F33615-77-C-3073
John E. Williams and Steven R. Vukelich	3 133013-11-0-3013
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, ASK
McDranell Douglas Astronautics Company-St. Loui P.O. Box 516	1,
St. Louis, Missouri 63166	Task 82190115
II. CONTROLLING OFFICE NAME AND ADDRESS Air Force Flight Dynamics Lab (FGC)	The mirror ont
Wright-Patterson Air Force Base,	Apra 1979
Ohio 45433	317
14. MONITORING AGENCY HAME & ADDMOSTIL Mileson from Controlling Off	Unclassified
(2/321)	15a. DECLASSIFICATION/DOWNGRADING
	SCHEDULE SCHEDULE
6. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribution unlim	ited.
	e esta cultura de la compansión de la comp
7. DISTRIBUTION STATEMENT (of the abetract entered in Block 28, il differe	nt (run Report)
S. SUPPLEMENTARY NOTES	
None.	
DATE DATCOM	
Aerodynamic Stability High Lift and Control	İ
Computer Program	
Fortran	
This report describes a digital computer pi stability, high lift and control, and dynamic di the methods contained in the USAF Stability and 1976). Configuration geometry, attitude, and Mi sistent with those accommodated by the Datcom. option that computes control deflections and act trim at subsonic Mach numbers. Volume I is the	rogram that calculates static erivative characteristics using Control Datcom (revised April ach range capabilities are control program contains a trim rodynamic increments for vehicle

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Program capabilities, input and output characteristics, and example problems.)
Volume II describes program implementation of Datcom methods. Volume III discusses a separate plot module for Digital Datcom.

The program is written in ANSI Fortran IV. The primary deviations from standard Fortran are Namelist input and certain statements required by the CDC compilers. Core requirements have been minimized by data packing and the use of overlays.

User oriented features of the program include minimized input requirements, input error analysis, and various options for application flexibility.

Access	ion For	
DDC T		12
Uname	uzeed	H
Justii	iestion	
By		
	butson/	
Avr		Codes
Dist	specia	•
177		

RE: AFFDL-TR-3032, Vol. I For the microfiche supplement for this document contact: AFWAL/FIGC, ATTN: Mr. J. E. Jenkins, Wright Patterson AFB, 0H 45433

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

This report, "The USAF Stability and Control Digital Datcom," describes the computer program that calculates static stability, high lift and control, and dynamic derivative characteristics using the methods contained in Sections 4 through 7 of the USAF Stability and Control Datcom (revised April 1976). The report consists of the following three volumes:

o Volume I, Users Manual

- 1104517/2
- o Volume II, Implementation of Datcom Methods
- o Volume III, Plot Module

A complete listing of the program is provided as a microfiche supplement.

This work was performed by the McDonnell Douglas Astronautics Company, Box 516, St. Louis, MO 63166, under contract number F33615-77-C-3073 with the United States Air Force Systems Command, Wright-Patterson Air Force Base, OH. The subject contract was initiated under Air Force Flight Dynamics Laboratory Project 8219, Task 82190115 on 15 August 1977 and was effectively concluded in November 1978. This report supersedes AFFDL TR-73-23 produced under contract F33615-72-C-1067, which automated Sections 4 and 5 of the USAF Stability and Control Datcom; AFFDL TR-74-68 produced under contract F33615-73-C-3058 which extended the program to include Datcom Sections 6 and 7 and a trim option; and AFFDL-TR-76-45 that incorporated Datcom revisions and user oriented options under contract F33615-75-C-3043. The recent activity generated a plot module, updated methods to incorporate the 1976 Datcom revisions, and provide additional user oriented features. These contracts, in total, reflect a systematic approach to Datcom automation which commenced in February 1972. Mr. J. E. Jenkins, AFFDL FGC, was the Air Force Project Engineer for the previous three contracts and Mr. B. F. Niehaus acted in this capacity for the current contract. The authors wish to thank Mr. Niehaus for his assistance, particularly in the areas of computer program formulation, implementation, and verification. A list of the Digital Datcom Principal Investigators and individuals who made significant contributions to the development of this program is provided on the following page.

Requests for copies of the computer program should be directed to the Air Force Flight Dynamics Laboratory (FGC). Copies of this report can be obtained from the National Technical Information Service (NTIS).

This report was submitted in April 1979.

PRINCIPAL INVESTIGATORS

J. E. Williams (1975 - Present)
S. C. Murray (1973 - 1975)
G. J. Mehlick (1972 - 1973)
T. B. Sellers (1972 - 1972)

CONTRIBUTORS

E. W. Ellison (Datcom Methods Interpretation)

R. D. Finck

Land of the second

G. S. Washburn (Program Structure and Coding)

TABLE OF CONTENTS

Section	<u>Title</u>	Page
. 1.	INTRODUCTION	1
2.	PROGRAM CAPABILITIES	5
	2.1 Addressable Configurations	5
	2.2 Basic Configuration Data	5
	2.3 Special Configuration Data	13
	2.4 Operational Considerations	14
3.	DEFINITION OF INPUTS	19
	3.1 Input Technique	19
	3.2 Group I Input Data	25
	3.3 Group II Input Data	31
	3.4 Group III Input Data	47
	3.5 Group IV Input Data	73
	3.6 Representative Case Setur	77
4.	BASIC CONFIGURATION MODELING TECHNIQUES	81
	4.1 Component Configuration Modeling	81
	4.2 Multiple Component Modeling	84
	4.3 Dynamic Derivatives	- 86
	4.4 Trim Option	86
	4.5 Substitution of Experimental Data	87
5.	ADDITIONAL CONFIGURATION MODELING TECHNIQUES	89
	5.1 High Lift and Control Configurations	89
	5.2 Power and Ground Effects	89
	5.3 Low-Aspect-Ratio Wing or Wing-Body	90
	5.4 Transverse Jet Control Effectiveness	90
	5.5 Flap Control Effectiveness at Hypersonic Speeds	90
6.	DEFINITION OF OUTPUT	91
	6.1 Static and Dynamic Stability Output	91
	6.2 Digital Datcom System Output	101
7.	EXAMPLE CASES	107
	7.1 Example Problem 1	107
•	7.2 Example Problem 2	110
	7.3 Example Problem 3	113

TABLE OF CONTENTS (Continued)

Section	<u>Title</u> Pag	<u>:e</u>
	7.4 Example Problem 4	Ś
	7.5 Example Problem 5	3
	7.6 Example Problem 6)
	7.7 Example Problem 7	2:
	7.8 Example Problem 8,	•
	7.9 Example Problem 9	5
	7.10 Example Problem 10	7
	7.11 Example Problem 11	•
٠. ١		
Appendic		
A .	NAMELIST CODING RULES	L
В	AIRFOIL SECTION CHARACTERISTIC ESTIMATION TECHNIQUES 135	>
	B.1 Introduction	>
	B.2 Module Methods	5
	B.3 Limitations and Module Defaults 138	3
	B.4 Airfoil Section Designations 149)
С	STORAGE LOCATION OF VARIABLES IN COMMON	5
	C.1 Input and Output Computational Data Blocks 155	,
	C.2 Output Data Blocks	3
	C.3 Flap and Trim Output Data Blocks 160)
D	USER'S KIT	3
Reference	317	,

LIST OF ILLUSTRATIONS

Figure	<u>Title</u>	Page
1	Digital Datcom Modules	2
2	Special Configurations	12
3	Input for Namelist FLTCON - Flight Conditions	27
4	Input for Namelist ØPTINS - Reference Parameters	29
5	Input for Namelist SYNTHS - Synthesis Parameters	33
. 6	Input for Namelist BØDY - Body Geometric Data	35
7	Input for Namelists WGPLNF, HTPLNF, VTPLNF and VFPLNF -	
	Planform Variables	37
8	Input for Namelists WGSCHR, HTSCHR, VTSCHR and VFSCHR -	
	Section Characteristics	39
9	Primary Application Regimes for Subsonic Downwash Methods .	41
10	Transonic Experimental Data Substitution	43
11	Input for Namelist EXPRnn - Experimental Data Input	45
12	Input for Namelist PRØPWR - Propeller Power Parameters	49
13	Input for Namelist JETPWR - Jet Power Parameters	51
14	Input for Namelist GRNDEF - Ground Effect Data	53
15	Input for Namelist TVTPAN - Twin-Vertical Panel Inputs	55
16	Input for Namelist SYMFLP - Symmetrical Flap Deflection	
	Inputs	57
17	Symmetrical Flap Input Definitions	59
18	Jet Flap Input Definitions	60
19	Input for Namelist ASYFLP - Asymmetrical Control	
	Deflection Input	61
20	Input for Namelist LARWB - Low Aspect Ratio Wing, Wirg	
	Body Input	63
21	Input for Namelist TRNJET - Transverse-Jet Control Input	65
22	Input for Namelist HYPEFF - Flap Control at Hypersonic	
	Speeds	67
23	Typical Case Setup	78
24	Typical Stacked Case Setup	79
25	Digital Datcom Static and Dynamic Stability Output	92
26	Example Auxiliary and Partial Output	100

LIST OF ILLUSTRATIONS (Continued)

Figure	<u>Title</u> .	Page
27	Extrapolation Message Interpretation	105
28	Body Modeling and Example Problem 1 Body Data	109
29	Example Problem 2 Wing Planform Approximations	111
30	Airfoil Characteristic Variables, Example Problem 2	112
31	Example Problem 3 Data	115
32	Example Problem 4 Data	117
33	Example Problem 5 Data	119
34	Example Problem 6 Data	121
35	Example Problem 7 Data	123
36	Example Problem 9 Data	126
37	Example Problem 10 Data	128
38 ·	Example Problem 11 Data	130
B-1	Variation of Leading-Edge Radius with Thickness Ratio of	
	Airfoils	141
B-2	Variation of Leading-Edge Sharpness Parameter with Airfoil	
	Thickness Ratio	142
B-3	Airfoil Section Maximum Lift Coefficient of Uncambered	
	Airfoils	143
B-4	Effect of Airfoil Camber Location and Amount of Section	
	Maximum Lift	. 144
B5	Effect of Position of Maximum Thickness or Section Maximum	
	Lift	145
B-6	Effect of Reynolds Number on Section Maximum Lift	145
B-7	Effect of NACA Standard Roughness on Section Maximum Lift .	146
B-8	Typical Variation of Section Maximum Lift with Free-Stream	
•	Mach Number	146
B-9	Graphical Solution for (t/c) Effective	147

LIST OF TABLES

<u>Table</u>	<u>Title</u>	Page
1	Addressable Configurations	6
2	Aerodynamic Output as a Function of Configuration and	
	Speed Regime	7
3	High Lift/Control Device Output	10
4	Digital Datcom Input Summary	21
5	Required Namelists for Analysis of Basic Configurations	22
6	Namelists Required for Additional Analysis of Basic	
	Configurations	23
7	Required Namelists for Analysis of Special Configurations .	24
8	Input Unit Options	24
9	Aspect Ratio Classification	41
10	Input Parameter List Namelist CONTAB	69
11	Symbol Definitions for Namelist CONTAB	70
12	Equations for R ₁ and R ₂	72
13	Airfoil Designation Using the NACA Control Card	76
14	CONERR Error Messages	102
15	Case Error Messages	103
A-1	Correct Namelist Coding	132
A-2	Incorrect Namelist Coding	134

INTRODUCTION

In preliminary design operations, rapid and economical estimations of aerodynamic stability and control characteristics are frequently required. The extensive application of complex automated estimation procedures is often prohibitive in terms of time and computer costs in such an environment. Similar inefficiencies accompany hand-calculation procedures, which can require expenditures of significant man-hours, particularly if configuration trade studies are involved, or if estimates are desired ever a range of flight conditions. The fundamental purpose of the USAF Stability and Control Datcom is to provide a systematic summary of methods for estimating stability and control characteristics in preliminary design applications. Consistent with this philosophy, the development of the Digital Datcom computer program is an approach to provide rapid and economical estimation of aerodynamic stability and control characteristics.

Digital Datcom calculates static stability, high-lift and control device, and dynamic-derivative characteristics using the methods contained in Sections 4 through 7 of Datcom. The computer program also offers a trimoption that computes control deflections and aerodynamic data for vehicle trim at subsonic Mach numbers.

The program has been developed on a modular basis as illustrated in Figure 1. These modules correspond to the primary building blocks referenced in the program executive. The modular approach was used because it simplifies program development, testing, and modification or expansion.

This report is the User's Manual for the USAF Stability and Control Digital Datcom. Potential users are directed to Section 2 for an overview of program capabilities. Section 3 provides input definitions, with basic configuration geometry modeling techniques presented in Section 4. Analyses of special configurations are treated in Section 5. Section 6 discusses the available output data. The appendices discuss namelist coding rules, sirfoil section characteristic estimation methods with supplemental data, and a list of geometric and aerodynamic variables available as supplemental output. A self-contained user's kit is included to aid the user in setting up inputs to the program.

	MAIN PROGRAMS	PERFORMS THE "EXECUTIVE" FUNCTIONS OF ORGANIZING AND DIRECTING THE OPERATIONS PERFORMED BY OTHER PROGRAM COMPONENTS.
S		
ROUTINES	EXECUTIVE SUBROUTINES	PERFORMS USER-ORIENTED NON-METHOD OPERATIONS SUCH AS ORDERING INPUT DATA, LOGIC SWITCHING, INPUT ERROR ANALYSIS, & OUTPUT FORMAT SELECTION.
MASTER		
MAS	UTILITY SUBROUTINES	PERFORMS STANDARD MATHEMATICAL TASKS REPETITIVELY REQUIRED BY METHOD SUBROUTINES.
•		أعاني المرابع والمرابع والمراب

	SUBSONIC	TRANSONIC	SUPERSONIC	SPECIAL CONFIGURATIONS
LES	MODULE 1 CHARACTERISTICS AT ANGLE OF ATTACK MODULE II CHARACTERISTICS	AT ANGLE OF ATTACK MODULE IV	MODULE V CHARACTERISTICS AT ANGLE OF ATTACK MODULE VI	MODULE VII LOW ASPECT RATIO WING-BODY AT SUBSONIC SPEEDS
D MODULES	IN SIDESLIP	CHARACTERISTICS IN SIDESLIP	CHARACTERISTICS IN SIDESLIP	MODULE VIII AERODYNAMIC CONTROL
METHOD	C	EFFECTIVENESS AT HYPERSONIC SPEEDS		
	Н	MODULE IX TRANSVERSE-JET		
	MODULE VII TRIM OPTION	CONTROL EFFECTIVENESS AT HYPERSONIC SPEEDS		

FIGURE 1 DIGITAL DATCOM MODULES

The state of the s

Even though the development of Digital Datcom was purrued with the sole objective of translating the Datcom methods into an efficient, user-oriented computer program, differences between Datcom and Digital Datcom do exist. Such is the primary subject of Volume II, Implementation of Datcom Methods, which contains the correspondence between Datcom methods and program formulation. This volume also defines the program implementation requirements. The listing of the computer program is contained on microfiche as a supplement to this report. Modifications, extensions, and limitations of Datcom methods as incorporated in Digital Datcom are discussed throughout the report. Volume III discusses a separate plot module for Digital Datcom.

Users should refer to Datcom for the limitations of methods involved. However, potential users are forewarned that Datcom drag methods are not recommended for performance. Where more than one Datcom method exists, Volume II indicates which method or methods are employed in Digital Datcom.

The computer program is written in the Fortran IV language for the CDC CYBER 175. Through the use of overlay and data packing techniques, the core requirement is 67,000 octal words for execution on the CYBER 175 with the NOS operating system using the FTN compiler. Central processor time for a case executed on the NOS system depends on the type of configuration, number of flight conditions, and program options selected. Usual requirements are on the order of one to two seconds per Mach number.

Direct all program inquiries to AFFDL FGC, Wright-Patterson Air Force Base, OH 45433; phone (513) 255-4315.

SECTION 2

PROGRAM CAPABILITIES

This section has been prepared to assist the potential user in his decision process concerning the applicability of the USAF Stability and Control Digital Datcom to his particular requirements. For specific questions dealing with method validity and limitations, the user is strongly encouraged to refer to the USAF Stability and Control Datcom document. Much of the flexibility inherent in the Datcom methods has been retained by allowing the user to substitute experimental or refined analytical data at intermediate computation levels. Extrapolations beyond the normal range of the Datcom methods are provided by the program; however, each time an extrapolation is employed, a message is printed which identifies the point at which the extrapolation is made and the results of the extrapolation. Supplemental output is available via the "dump" and "partial output" options which give the user access to key intermediate parameters to aid verification or adjustment of computations. The following paragraphs discuss primary program capabilities as well as selected qualifiers and limitations.

2.1 ADDRESSABLE CONFIGURATIONS

In general, Datcom treats the traditional body-wing-tail geometries including control effectiveness for a variety of high-lift/control devices. High-lift/control output is generally in terms of the incremental effects due to deflection. The user must integrate these incremental effects with the "basic" configuration output. Certain Datcom methods applicable to reentry type vehicles are also available. Therefore, the Digital Datcom addressable geometries include the "basic" traditional aircraft concepts (including canard configurations), and unique geometries which are identified as "special" configurations. Table I summarizes the addressable configurations accommodated by the program.

2.2 BASIC CONFIGURATION DATA

The capabilities discussed below apply to basic configurations, i.e., traditional body-wing-tail concepts. A detailed summary of output as a function of configuration and speed regime is presented in Table 2. Note that transonic output can be expanded through the use of data substitution (Sections 3.2 and 4.5). Typical output for these configurations are presented in Section 6.

TABLE 1 ADDRESSABLE CONFIGURATIONS

CONFIGURATION	PROGRAM REMARKS
BODY	PRIMARILY BODIES OF REVOLUTION, OR CLOSE APPROXIMATIONS, ARE TREATED. TRANSONIC METHODS FOR MOST OF THE AERO-DYNAMIC DATA DO NOT EXIST. THE RECOMMENDED PROCEDURE REQUIRES FAIRING BETWEEN SUBSONIC AND SUPERSONIC DATA USING AVAILABLE DATA AS A GUIDE.
WING, HURIZONTAL TAIL	STRAIGHT TAPERED, CRANKED, OR DOUBLE DELTA PLANFORMS ARE TREATED. EFFECTS OF SWEEP, TAPER AND INCIDENCE ARE INCLUDED. LINEAR TWIST IS TREATED AT SUBSONIC MACH NUMBERS. DIHEDRAL EFFECTS ARE PRESENT IN THE LATERAL- DIRECTIONAL DATA.
	LONGITUDINAL METHODS REFLECT ONLY A MIDWING POSITION. LATERAL-DIRECTIONAL SOLUTIONS CONSIDER HIGH- AND LOW- WING POSITIONS.
WING-BODY-TAIL	THE VARIOUS GEOMETRY COMBINATIONS ARE GIVEN IN TABLE 2. WING DOWNWASH METHODS ARE RESTRICTED TO STRAIGHT- TAPERED PLANFORMS. EFFECTS OF TWIN VERTICAL TAILS ARE INCLUDED IN THE STATIC LATERAL DIRECTIONAL DATA AT SUBSONIC MACH NUMBERS.
NON-STANDARD GEOMETRIES	NON-STANDARD CONFIGURATIONS ARE SIMULATED USING "BASIC" CONFIGURATION TECHNIQUES. STRAKES CAN BE RUN VIA A DOUBLE-DELTA WING. A BODY-CANARD-WING IS INPUT AS A WING-BODY-HORIZONTAL TAIL. THE FORWARD LIFTING SURFACE IS INPUT AS A WING AND THE AFT SURFACE AS A HORIZONTAL TAIL.
SPECIAL CONFIG- URATION	LOW ASPECT RATIO WING OR WING-BODY CONFIGURATIONS (LIFTING BODIES) ARE TREATED AT SUBSONIC SPEEDS. TWO-DIMENSIONAL FLAP AND TRANSVERSE JET EFFECTS ARE ALSO TREATED AT HYPERSONIC SPEEDS.

TABLE 2 AERODYNAMIC OUTPUT AS A FUNCTION OF CONFIGURATION AND SPEED REGIME

- OUTPUT AVAILABLE
 OUTPUT ONLY FOR CONFIGURATIONS WITH STRAIGHT TAPERED SURFACES
 OUTPUT ONLY WITH EXPERIMENTAL DATA IMPUT

	SPEED		STATIC AERODYNAMIC CHARACTERISTIC OUTPUT												DYN	AMIC S	TABL	TY OU	PUT					
CONFIGURATION	REGIME	COs	G	G	C.	Cgg	CA	Q.,	Cme	CYp	Cap	Cip	6.4	•	<u>\$1</u>	Qq	Cag	Q.	Cai	9	Cyp	Cap	Cap	9
3007	SUBSONIC TRANSONIC SUPERSONIC NYPERSONIC	•	•	:	•	•	•	:	• • • •	•	:	:				•. • • • • • • • • • • • • • • • • • • •	:	•	:					•••
MING	SUBSORIC TRANSORIC SUPERSORIC HYPERSORIC	• • •	• 4 0 0	• • • •	•	• 4 0 0	• 400	• • •	• 0 • •	• 00	• 00	• 4 0 0				• 0 0	• 0 0	€ 0.0	• 0 •	•	•	•	•	•
HOMIZONTAL TAIL	SUBSORIC TRANSORIC SUPERSORIC NYPERSORIC	• • •	• 400	• • 0 0	•	• 400	● 400	• • •	• • •	• 00	• 00	• 400				000	• 0 0	• 0 •	• 0 •	• •	•	•	•	
VERTICAL TAIL OR VENTRAL FIN	SURSONIC TRANSONIC SUPERSONIC NYPERSONIC	• • •	•	•	•	•	• ••	••••	• • • •	• 00	• 00	• 00				• • •	•••	•	•••	•	•	•	•	
WHG-800Y	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	• • •	• 400	000	•	000	000	•••	•••	••••	• • • •	000				• 0 •	• 🗆 •	• 0 •	00	•	•	•	•	•
HORIZONTAL TAIL-BODY	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	• • •	• • • •	• 0 0 0	•	• 4 D D	• • • •	• • •	• • •	••••	••••	•••				• 🛮 •	• 🛛 •	• 0 •	00					
VERTICAL TAIL- VENTRAL FIN- BODY	SUBSONIC TRANSONIC ÎL SUPERSONIC HYPERSONIC	• 0 •	• 🗆 •	• • •	•	• • •	• 4••	•		• 00	• 00	• 00				•	•	•••	•					
WING-BODY HORIZONTAL TAIL	SUBSONIC TRANSONIC SUPERSONIC NYPERSONIC	0000	0 4 0 0	0 4 0 0	0	0 4 0 0	0 400	0000	0000	•	•	• 00	0000	0000	0000	000	000	000	000	0	0	0	٥	
	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	• • •	• 400	• 0 0 0	•	• 4 D U	• • • •	• 0	• •	:	:	• 00				• 0 •	•	• 🛭 •	• 0 •	•	•	•	•	
MING BOOY / HORIZONTAL FAIL VERTICAL TAIL VENTRAL FIN	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	0000	0 4 0 0	0 4 0 0	٥	0400	0400	0000	0000	•	•	• 00	0000	0000	0000	000	000	000	000	0	0	0	a	0

- 1. THE EFFECTS OF JET POWER, PROPELLER POWER, AND GROUND PROXIMITY MAY DE OBTAINED FOR THESE CONFIGURATIONS IF THE REQUIRED NAMELISTS ARE INPUT, THE EFFECTS OF POWER AND GROUND EFFECTS ARE INCLUDED ONLY IN THE SUBBONIC LONGITUDHIAL STABILITY RESULTS.
 2. DYNAMIC STABILITY RESULTS ARE THE SAME AS WING-BODY
- THIN VERTICAL TAIL RESULTS MAY BE OBTAINED FOR THESE CONFIGURATIONS IF THE REQUIRED NAMELIST 'S IMPUT. THESE EFFECTS ARE INCLUDED ONLY IN THE SUBSONIC LATERAL STABLITY DATA.
- 4. REFER TO DATCOM HANDBOOK FOR METHOD LIMITATIONS IF OUTPUT IS NOT OBTAINED
- AVAILABLE ONLY IN COMBINATION WITH A WING OR TAIL

2.2.1 Static Stability Characteristics

The longitudinal and lateral-directional stability characteristics provided by the Datcom and the Digital Datcom are in the stability-axis system. Body-axis normal-force and axial-force coefficients are also included in the output for convenience of the user. For those speed regimes and configurations where Datcom methods are available, the Digital Datcom output provides the longitudinal coefficients C_D , C_L , C_m , C_N , and C_A , and the derivatives C_{L_α} , C_{m_α} , C_{γ_β} , C_{n_β} , and C_{ℓ_β} . Output for configurations with a wing and horizontal tail also includes downwash and the local dynamic-pressure ratio in the region of the tail. Subsonic data that include propeller power, jet power, or ground effects are also available. Power and ground effects are limited to the longitudinal aerodynamic characteristics.

Users are cautioned that the Datcom does not rigorously treat aerodynamics in the transonic speed regime, and a fairing between subsonic and supersonic solutions is often the recommended procedure. Digital Datcom uses linear and nonlinear fairings through specific points; however, the user may find another fairing more acceptable. The details of these fairing techniques are discussed in Volume II, Section 4. The partial output option, discussed in Section 3.5, permits the user to obtain the information necessary for transonic fairings. The experimental data input option allows the user to revise the transonic fairings on configuration components, perform parametric analyses on test configurations, and apply better method results (or data) for configuration build-up.

Datcom body aerodynamic characteristics can be obtained at all Mach numbers only for Bodies of revolution. Digital Datcom can also provide subsonic longitudinal data for cambered bodies of arbitrary cross section as shown in Figure 6. The cambered body capability is restricted to subsonic longitudinal-stability solutions.

Straight-tapered and nonstraight-tapered wings including effects of sweep, taper, and incidence can be treated by the program. The effect of linear twist can be treated at subsonic Mach numbers. Dihedral influences are included in lateral-directional stability derivatives and wing wake location used in the calculation of longitudinal data. Airfoil section characteristics are a required input, although most of these characteristics may be generated using the Airfoil Section Module (Appendix B). Users are

advised to be miniful of section characteristics which are sensitive to Reynolds number, particularly in cases where very low Reynolds number estimates are of interest. A typical example would be pretest estimates for small, laminar flow wind tunnels where Reynolds numbers on the order of 100,000 are common.

Users should be aware that the Datcom and Digital Datcom employ turbulent skin friction methods in the computation of friction drag values. Estimates for cases involving significant wetted areas in laminar flow will require adjustment by the user.

Computations of wing-body longitudinal characteristics assume, in many cases, that the configuration is of the mid-wing type. Lateral-directional analyses do account for other wing locations. Users should consult the Datcom for specific details.

Wing-pody-tail configurations which may be addressed are shown in Table 2. These capabilities permit the user to analyze complete configurations, including canard and conventional aircraft arrangements. Component aerodynamic contributions and configuration build-up data are available through the use of the "BUILD" option described in Section 3.5. Using this option, the user can isolate component aerodynamic contributions in a similar fashion to break down data from a wind tunnel where such information is of value in obtaining an overall understanding of a specific configuration.

Twin vertical panels can be placed either on the wing or horizontal tail. Analysis can be performed with both twin vertical tail panels and a conventional vertical tail specified though interference effects between the three panels is not computed. The influence of twin vertical tails is included only in the lateral-directional stability characteristics at subsonic speeds.

2.2.2 Dynamic Stability Characteristics

The pitch, acceleration, roll and yaw derivatives of C_{L_q} , C_{m_q} , $C_{L_{\tilde{\alpha}}}$, $C_{m_{\tilde{\alpha}}}$, C_{p} , C_{γ_p} , C_{n_p} , C_{n_r} , and C_{ℓ_r} are computed for each component and the build-up configurations shown in Table 2. All limitations discussed in Section 7 of the USAF Stability and Control Datcom are applicable to Digital Datcom as well. The experimental data option of the program (Section 4.5) permits the user to substitute experimental data for key parameters involved in dynamic derivative solutions, such as body $C_{L_{\alpha}}$ and wing-body $C_{L_{\alpha}}$. Any improvement in the accuracy of these key parameters will produce significant improvement in

TABLE 3 HIGH LIFT/CONTROL DEVICE OUTPUT

SPEED REGIME CODE

1 = Subsonic

2 = Transonic

3 = Supersonic

Control Device	ΔCL*	ΔC _m	^CD;	^{∆C} L max	(C ^a 8	^C _{Omin}	C ^E M	c _n W	C _E HT	Cha.	c _h *
<u>Jet Flaps</u> Pure Jet Flap	1	1		1	1			٠.			
Jet Flap & Mech. Flap	1	:		1	1						
IBF	1	1		1	1	·					
EBF	1	1		1	1						
Flaps											
Plain	123	1 3	1	1		1				1 3	1 3
Single Slotted	1 2	1	1	1	123	1					
Fowler Slotted	12	1	1	1	1 2;3						
Double Slotted	1 2]1	1	1	123.		· .]	•	1	1
Split	12	1	1								
Leading Edge	12	1	1								
Krueger	12	1			123						
<u>Slats</u>											
Leading Edge	1 2	ון			123						
Spoilers											
Plug							1 2 3	1 3			
Flap							1 2 3	1 3			
Slotted						i	12	ו			
Differential 6											
Horizontal Tails									123		
Wing Ailerons							123	123		·	

Notes: *In addition to straight-tapered planforms, output also available on non-straight-tapered planforms (e.g., doi: 1 delta).

Ailerons are identified as plain flaps in program.

IBF - Internally blown flap

EBF - Externally blown flap

W - Wing

HT - Horizontal tail

the dynamic stability estimates. Use of experimental data substitution for this purpose is strongly recommended.

2.2.3 High-Lift and Control Characteristics

High-lift devices that can be analyzed by the Datcom methods include jet flaps, split, plain, single-slotted, double-slotted, fowler, and leading edge flaps and slats. Control devices, such as trailing-edge flap-type controls and spoilers, can also be treated. In general terms, the program provides the incremental effects of high lift or control device deflections at zero angle of attack.

The majority of the high-lift-device methods deal with subsonic lift, drag, and pitching-moment affects with flap deflection. General capabilities for jet flaps, symmetrically deflected high-lift devices, or trailing-edge control devices include lift, moment, and maximum-lift increments along with drag-polar increments and hinge-moment derivatives. For translating devices the lift-curve slope is al promputed. Asymmetrical deflection of wing control devices can be analyed for rolling and yawing effectiveness. Rolling effectiveness may be obtained for all-movable differentially-deflected horizontal stabilizers. The speed regimes where these capabilities exist are shown in Table 3.

Control modes employing all-movable wing or tail surfaces can also be addressed with the program. This is accomplished by executing multiple cases with a variety of panel incidence angles.

2.2.4 Trim Option

Trim data can be calculated at subsonic speeds. Digital Datcom manipulates computed stability and control characteristics to provide trim output (static $C_{\rm m}$ = 0.0). The trim option is available in two modes. One mode treats configurations with a trim control device on the wing or horizontal tail. Output is presented as a function of angle of attack and consists of control deflection angles required to trim and the associated longitudinal aerodynamic characteristics shown in Table 3. The second mode treats conventional wing-body-tail configurations where the horizontal-tail is all-movable or "flying." In this case, output as a function of angle of attack consists of horizontal-stabilizer deflection (or incidence) angle required to trim; untrimmed stabilizer $C_{\rm L}$, $C_{\rm D}$, $C_{\rm m}$, and hinge-moment coefficients; trimmed stabilizer $C_{\rm L}$, $C_{\rm D}$, and hinge moment coefficients; and total wing-body-tail $C_{\rm L}$

LOW ASPECT RATIO WINGS/WING BODY COMBINATIONS

HYPERSONIC FLAP

TRANSVERSE JET

FIGURE 2 SPECIAL CONFIGURATIONS

and C_{D} . Body-canard-tail configurations may be trimmed by calculating the stability characteristics at a variety of canard incidence angles and manually calculating the trim data. Treatment of a canard configuration is addressed in Table 1.

2.3 SPECIAL CONFIGURATION DATA

The capabilities discussed below apply to the three special configurations illustrated in Figure 2.

2.3.1 Low-Aspect-Ratio Wings and Wing-Body Combinations

Datcom provides methods which apply to lifting reentry vehicles at subsonic speeds. Digital Datcom output provides longitudinal coefficients C_D , C_L , C_m , C_N , and C_A and the derivatives C_{L_α} , C_{m_α} , C_{Y_β} , C_{n_β} , and C_{ℓ_β} .

2.3.2 Aerodynamic Control at Hypersonic Speeds

The USAF Stability and Control Datcom contains some special control methods for high-speed vehicles. These include hypersonic flap methods which are incorported into Digital Datcom. The flap methods are restricted to Mach numbers greater than 5, angles of attack between zero and 20 degrees and deflections into the wind. A two-dimensional flow field is determined and oblique shock relations are used to describe the flow field.

Data output from the hypersonic control-flap methods are incremental normal- and axial-force coefficients, associated hinge moments, and center-of-pressure location. These data are found from the local pressure distributions on the flap and in regions forward of the flap. The analysis includes the effects of flow separation due to windward flap deflection by providing estimates for separation induced-pressures forward of the flap and reattachment on the flap. Users may specify laminar or turbulent boundary layers.

2.3.3 Transverse-Jet Control Effectiveness

Datcom provides a procedure for preliminary sizing of a two-dimensional transverse-jet control system in hypersonic flow, assuming that the nozzle is located at the aft end of the surface. The method evaluates the interaction of the transverse jet with the local flow field. A favorable interaction will produce amplification forces that increase control effectiveness.

The Datcom method is restricted to control jets located on windward ourfaces in a Mach number range of 2 to 20. In addition, the method is invalid for altitudes where mean free paths approach the jet-width dimension. The transverse control jet method requires a user-specified time history of local flow parameters and control force required to trim or maneuver. With these data, the minimum jet plenum pressure is then employed to calculate the nozzle throat diameter and the jet plenum pressure and propellant weight requirements to trim or maneuver the vehicle.

2.4 OPERATIONAL CONSIDERATIONS

There are several operational considerations the user needs to understand in order to take maximum advantage of Digital Datcom.

2.4.1 Flight Condition Control

and any English of The many the second was

Digital Datcom requires Mach number and Reynolds number to define the flight conditions. This requirement can be satisfied by defining combinations of Mach number, velocity, Reynolds number, altitude, and pressure and temperature. The input options for speed reference and atmospheric conditions that satisfy the requirement are given in Figure 3. The speed reference is input as either Mach number or velocity, and the atmospheric conditions as either altitude or freestream pressure and temperature. The speed reference and atmospheric conditions are then used to calculate Reynolds number.

The program may loop on speed reference and atmospheric conditions three different ways, as given by the variable LGGP in Figure 3. In this discussion, and in Figure 3, the speed reference is referred to as Mach number, and atmospheric conditions as altitude. The three options for program looping on Mach number and altitude are listed and discussed below.

- o LGGP = 1 Vary Mach and altitude together. The program executes at the first Mach number and first altitude, the second Mach number and second altitude, and continues for all the flight conditions. In the input data, NMACH must equal NALT and NMACH flight conditions are executed. This option should be selected when the Reynolds number is input, and must be selected when atmospheric conditions are not input.
- o LOGP = 2 Vary Mach number at fixed altitude. The program executes using the first altitude and cycles through each Mach number in the input list, the second altitude and cycles through each Mach number, and continues until each altitude has been selected. Atmospheric conditions must be input for this option and NMACH times MALT flight conditions are executed.

o LOGP = 3 - Vary altitude at fixed Mach number. The program executes using the first Mach number and cycles through each altitude in the input list, the second Mach number and cycles through each altitude, and continues until each Mach number has been selected. Atmospheric conditions must be input for this option and NMACH times NALT flight conditions are executed.

2.4.2 Mach Regimes

Aerodynamic stability methods are defined in Datcom as a function of vehicle configuration and Mach regime. Digital Datcom logic determines the configuration being analyzed by identifying the particular input namelists that are present within a case (see Section 3). The Mach regime is nominally determined according to the following criteria:

Mach Number (M)	Mach Regime
M ≤ 0.6	Subsonic
0.6 < M < 1.4	Transonic
M ≥ 1.4	Supersonic
H ≥ 1.4	Hypersonic
and the hypersonic	
flag is set (see Figure 3)	• . •

These limits were selected to conform with most Datcom methods. However, some methods are valid for a larger Mach number range. Some subsonic methods are valid up to a Mach number of 0.7 or 0.8. The user has the option to increase the subsonic Mach number limit using the variable STMACH described in Section 3.2. The program will permit this variable to be in the range: $0.6 \le \text{STMACH} \le 0.99$. In the same fashion, the supersonic Mach limit can be reduced using the variable TSMACH. The program will permit this variable to be in the range: $1.01 \le \text{TSMACH} \le 1.40$. The program will default to the limits of each variable if the range is exceeded. The Mach regimes are then defined as follows:

Mach Number (M)	Mach Regime
M ≤ STMACH	Subsonic
STMACH < H < TSMACH	Transonic
M ≥ TSMACH	Supersonic
M > TSMACH	Hypersonic
and the hypersonic	
flag is set	4.5

2.4.3 Input Diagnostics

There is an input diagnostic analysis module in Pigital Datcom which scans all of the input data cards prior to program execution. A listing of all input data is given and any errors are flagged. It checks all namelist cards for correct namelist name and variable name spelling, checks the numerical inputs for syntax errors, and checks for legal control cards. The namelist and control cards are described in Section 3.

This module does not "fix up" input errors. It will, however, insert a namelist termination if it is not found. Digital Datcom will attempt to execute all cases as input by the user even if errors are detected.

2.4.4 Airfoil Section Module

The airfoil section module can be used to calculate the required geometric and aerodynamic input parameters for virtually any user defined airfoil section. This module substantially simplifies the user's input preparation. An airfoil section is defined by one of the following methods;

- 1. An airfoil section designation (for NACA, couble wedge, circular arc or hexagonal airfoils),
- 2. Section upper and lower cartesian coordinates, or
- 3. Section mean line and thickness distribution.

The airfoil section module uses Weber's method (References 2 to 4) to calculate the inviscid aerodynamic characteristics. A viscous correction is applied to the section lift curve slope, $c_{\ell_{\alpha}}$. In addition a 5% correlation factor (suggested in Datcom, page 4.1.1.2-2) is applied to bring the results in line with experimental data. The airfoil section module methods are discussed in Appendix B.

The airfoil section is assumed to be parallel to the free stream. Skewed airfoils can be handled by supplying the section coordinates parallel to the free stream. The module will calculate the characteristics of any input airfoil, so the user must determine whether the results are applicable to his particular situation. Five general characteristics of the module should be noted:

1. For subsonic Mach numbers, the module computes the airfoil subsonic section characteristics and the recults can be considered accurate for Mach numbers less than the crest critical Mach number. Near crest critical Mach number, flow mixing due to the upper surface shock will make the boundary layer correction invalid. Compressibility corrections also become invalid. The module also computes the required geometric variables at all speeds, and for transonic and supersonic speeds these are the only required inputs. Mach equals zero data are always supplied.

- 2. Because of the nature of the solution, predictions for an airfoil whose maximum camber is greater than 6% of the chord will lose accuracy. Accuracy will also diminish when the maximum airfoil thickness exceeds approximately 12% of the chord, or large viscous interactions are present such as with supercritical airfoils.
- 3. When section cartesian coordinates or mean line and thickness distribution coordinates are specified, the user must adequately define the leading edge region to prevent surface curve fits that have an infinite slope. This can be accomplished by supplying section ordinates at nondimensional chord stations (X/C) of 0.0, .001, .002, and .003.
- 4. If the leading edge radius is not specified in the airfoil section input, the user must insure that the first and second coordinate points lie on the leading edge radius. For sharp nosed airfoils the user must specify a zero leading edge radius.
- 5. The computational algorithm can be sensitive to the "smoothness" of the input coordinates. Therefore, the user should insure that the input data contains no unintentional fluctuations. Considering that Datcom procedures are preliminary design methods, it is at least as important to provide smoothly varying coordinates as it is to accurately define the airfoil geometry.

2.4.5 Operational Limitations

Several operational limitations exist in Digital Datcom. These limitations are listed below without extensive discussion or justification. Some pertinent operational techniques are also listed.

- o The forward lifting surface is always input as the wing and the aft lifting surface as the horizontal tail. This convention is used regardless of the nature of the configuration.
- o Twin vertical tail methods are only applicable to lateral stability parameters at subsonic speeds.

- o Airfoil section characteristics are assumed to be constant across the airfoil span, or an average for the panel. Inboard and outboard panels of cranked or double-delta planforms can have their individual panel leading edge radii and maximum thickness ratios specified separately.
- o If airfoil sections are simultaneously specified for the same aerodynamic surface by an NACA designation and by coordinates, the coordinate information will take precedence.
- o Jet and propeller power effects are only applied to the longitudinal stability parameters at subsonic speeds. Jet and propeller power effects cannot be applied simultaneously.
- o Ground effect methods are only applicable to longitudinal stability parameters at subsonic speeds.
- o Only one high lift or control device can be analyzed at a time. The effect of nigh lift and control devices on downwash is not calculated. The effects of multiple devices can be calculated by using the experimental data input option to supply the effects of one device and allowing Digital Datcom to calculate the incremental effects of the second device.
- o Jet flaps are considered to be symmetrical high lift and control devices. The methods are only applicable to the longitudinal stability parameters at subsonic speeds.
- o The program uses the input namelist names to define the configuration components to be synthesized. For example, the presence of namelist HTPLNF causes Digital Datcom to assume that the configuration has a horizontal tail.

Should Digital Datcom not provide output for those configurations for which output is expected, as shown in Table 2, limitations on the use of a Datcom method has probably been exceeded. In all cases users should consult the Datcom for method limitations.

SECTION 3

DEFINITION OF INPUTS

The Digital Datcom basic input data unit is the "case." A "case" is a set of input data that defines a configuration and its flight conditions. The case consists of inputs from up to four data groups.

- o Group I inputs define the flight conditions and reference dimensions.
- o Group II inputs specify the basic configuration geometry for conventional configurations, defining the body, wing and tail surfaces and their relative locations.
- o Group III inputs specify additional configuration definition, such as engines, flaps, control tabs, ground effects or twin vertical panels. This input group also defines those "special" configurations that cannot be described using Group II inputs and include low aspect ratio wing and wing-body configurations, transverse jet control and hypersonic flaps.
- o Group IV inputs control the execution of the case, or job for multiple cases, and allow the user to choose some of the special options, or to obtain extra output.

3.1 INPUT TECHNIQUE

Two techniques are generally available for introducing input data into a Fortran computer program: namelist and fixed format. Digital Datcom employs the namelist input technique for input Groups I, II and III since it is the most convenient and flexible for this application. Its use reduces the possibility of input errors and increases the utility of the program as follows:

- --- o Variables within a namelist may be input in any order;
 - o Namelist variables are not restricted to particular card columns;
 - o Only required input variables need be included; and
 - o A variable may be included more than once within a namelist, but the last value to appear will be used.

Namelist rules used in the program and applicable to CDC and IBM systems are presented in Appendix A. The user should adhere to them when preparing inputs for Digital Datcom. To aid the user in complying with the general namelist rules, examples of both correct and incorrect namelist coding are included in Appendix A.

All namelist input variables (and program data blocks) are initialized "UNUSED" (1.0E-60 on CDC systems) prior to case execution. Therefore, omission of pertinent input variables may result in the "UNUSED" value to be used in calculations. However, the "UNUSED" value is often used as a switch for program control, so the user should not indiscriminately use dummy inputs.

All Digital Datcom numeric constants require a decimal point. The Fortran variable names that are implied INTEGERS (name begins with I, J, K, L, M, or N) are declared REAL and must be specified in either "E" or "F" format (X.XXXEYY or X.XXX).

Group IV inputs are the "case control cards." Though they are input in a fixed format, their use has the characteristic of a namelist, since (with the exception of the case termination card) they can be placed in any order or location in the input data. Descriptions and limitations of each of the available control cards are discussed in Section 3.5.

Table 4 defines the namelists and control cards that can be input to the program. Since not all namelist inputs are required to define a particular problem or configuration, those namelists required for various analyses are summarized in Tables 5 through 7. Use of these tables will save time in preparing namelist inputs for a specific problem.

The user has the option to specify the system of units to be used, English or Metric. Tabl: 8 summarizes the systems available, and defines the case control card required to invoke each option. For clarity, the namelist variable description charts which follow have a column titled "Units" using the following nomenclature:

- denotes units of length; feet, inches, meters, or centimeters
- A denotes units of area; ft^2 , in 2 , m^2 , or cm²
- Deg denotes angular measure in degrees, or temperature in degrees
 Rankine or degrees Kelvin
- F denotes units of force; pounds or Newtons
- t denotes units of time; seconds.

Specific input parameters, geometric illustrations, and supporting data are provided throughout the report. To aid the user in reading these figures, the character "O" defines the number zero and the character "Ø" the fifteenth letter in the alphabet.

TABLE 4: DIGITAL DATCOM INPUT SUMMARY

GROUPI		GROU	IP II	GROL	IP 111	GROUP IV	
		NAME	LIST INPUT			CONTROL CAR	D INPUT
REFERENC DEFINI		BASIC CONFI DEFINIT		ADDITIONA CONFIGURATIO	-• - · -	JOB CONTF CARDS	ROL
NAMELIST NAME	PAGE DEFINED	NAMELIST NAME	PAGE DEFINED	NAMELIST NAME	PAGE DEFINED	CONTROL CARD NAME	PAGE DEFINED
FLTCÓN ÓPTINS	27 29	SYNTHS B#DY WGPLNF HTPLNF VTPLNF VFPLNF WGSCHR HTSCHR VTSCHR VFSCHR EXPR	33 35 37 37 37 37 39 39 39 39	PR PWR JET PWR GRNDEF TVTPAN SYMFLP ASYFLP LARWB TRNJET HYPEFF CONTAB	49 51 53 55 57 61 63 65 67 69	NAMELIST SAVE DIM NEXT CASE TRIM DAMP NACA CASEID DUMP DERIV PART BUILD PLOT	73 73 73 73 74 74 75 75 76 77

REQUIRED NAMELISTS FOR ANALYSIS OF BASIC CONFIGURATIONS TABLES

A USE OF THIS NAMELIST IS OPTIONAL EXCEPT WHEN CONFIGURATION IS BODY ALONE OPTIONAL, NOT REQUIRED A OPTIONAL IF NACA CONTROL CARD IS USED

REQUIRED FI	FLTCON	BPTINS	SYNTHS	AQ ∳ 8	WGPLNF	WGPLNF HTPLNF	VTPLNF VFPLNF WGSCHR HTSCHR	VFPLNF	WGSCHR	HTSCHR	VTSCHR	VFSCHR	EXPR-
		∢					,		€	₩	€	₩	€
	•	•	•	•									•
<u> </u>	•	•	•		•	·			•		•		•
<u> </u>	•		•			•			·	•			•
<u></u>		•	•				•	•			•	•	•
}	•	•	٠	•	•				•				•
 	•	•	G	•		•				•			•
BODY-VERTICAL-VENTRAL	•	•	•	•			•	•	•		•	•	•
╀—	•:	•	•	•	•	•	•		•	•			•
+	•	•	•	•	•		•	•	•		•	•	•
BODY-WING-HORIZONTAL- VERTICAL-VENTRAL	•	•	•	•	•	•	•	•	•	•	•	•	•
I													

•NOTE 1) MAXIMUM OF 2 LIFTING SURFACES (CANARDS OR CONVENTIONAL)
2) HIGH LIFT OR CONTROL DEVICES NEUTRAL
3) CLEAN BODIES E.G., NO DUCTS
4) NO EFFECT OF ENGINE POWER ÚR GROUND FROXIMITY

NAMELISTS REQUIRED FOR ADDITIONAL ANALYSIS OF BASIC CONFIGURATIONS TABLE 6

REDUIRED	PROPWR	JETPWR	GRNDEF	TVTPAN	SYMFLP	ASYFLP		A	PLICABL	E CONFI	APPLICABLE CONFIGURATIONS*	•SN:	
ADDITIONAL ANALYSIS		SUBSON	SUBSONIC ONLY				W	8+W	B+W+V	B+W+F	В +W+Н	8+W+H +V	B+W+H +V+F
PROPELLER POWER	•							•	•	•	•	•	•
JET POWER		•						•	•	•	•	•	•
GROUND EFFECTS			•					•	•	•	•	•	•
TWIN VERTICAL TAIL				•				0	•	•	•	•	•
SYMMETRICAL FLAP ON WING					•		•	•	•	•			
SYMMETRICAL FLAP GN HORIZONTAL TAIL					•						•	•	•
ASYMMETRICAL FLAP ON WING				`		•	•	9	•	•			
ASYMMETRICAL FLAP ON HORIZONTAL TAIL				-		•	,				•	•	•
JET FLAP ON WING		•			•		•	•	•	•	•	•	•

*NOTE CONFIGURATION CODES: W - WING ALONE

B+W - WING-BODY

B+W+V - WING-BODY-VERTICAL

B+W+F - WING-BODY-VENTRAL FIN

B+W+H - WING-BODY-HORIZONTAL B+W+H+V - WING-BODY-HORIZONTAL-VERTICAL B+W+H+V+F - WING-BODY-HORIZONTAL-VERTICAL-VENTRAL FIN

TABLE 7
REQUIRED NAMELIST FOR ANALYSIS OF SPECIAL CONFIGURATIONS

REQUIRED NAMELIST	FLTCEN	LARWB	TRNJET	HYPEFF	
CONFIGURATION					
LOW ASPECT RATIO]				
WING & WING BODY (SUBSONIC)	•	•			
FLAT PLATE WITH					Mos, Pos
TRANSVERSE JET (HYPERSONIC)	•		•		
FLAT PLATE WITH					
FLAP CONTROL (HYPERSONIC)	•			•	1
					Gos Vos
•					

TABLE 8 INPUT UNIT OPTIONS

UNITS SYSTEM (LENGTH-FORCE-TIMF, \$-F-T)	CONTROL CARD	GEOMETRY UNITS (1)	SURFACE ROUGHNESS ROUGFC	PRESSURE P (F/A)	TEMPERATURE T _{oo} (DEG)	REYNOLDS NUMBER PER UNIT LENGTH
FOOT-POUND-SECOND	DIM FT	FOOT	INCH	Ib/ft ²	o _R	1/FT
INCH-POUND-SECOND	DIM IN	INCH	INCH	Ib/in ²	o _R	1/FT
METER-NEWTON-SECOND	DIM M	METER	CM ·	N/M ²	oK .	1/M
CENTIMETER-NEWTON-SECOND	DIM CM	CM .	CM	N/CM ²	ρK	1/M

THE DEFAULT SYSTEM OF UNITS IS THE FOOT-POUND-SECOND

3.2 CROUP I INPUT DATA

Namelist input data to define the case flight conditions and reference dimensions are shown in Figures 3 and 4.

Namelist FLTCON, Figure 3, defines the case flight conditions. The user may opt to provide Mach number and Reynolds number per unit length for each case to be computed. In this case, input preparation requires that the user compute Reynolds number for each Mach number and altitude combination he desires to run. However, the program has a standard atmosphere model, which accurately simulates the 1962 Standard Atmosphere for geometric altitudes from -16,404 feet to 2,296,588 feet, that can be used to eliminate the Reynolds number input requirement and provides the user the option to employ Mach number or velocity as the flight speed reference. The user may specify Mach numbers (or velocities) and altitudes for each case and program computations will employ the atmosphere model to determine pressure, temperature, Reynolds number and other required parameters to support method applications.

Also incorporated is the provision for optional inputs of pressure and temperature by the user. The program will override the standard atmosphere and compute flow condition parameters consistent with the pressure and temperature inputs. This option will permit Digital Datcom applications such as wind tunnel model analyses at test section conditions.

The five input combinations which will satisfy the Mach number and Reynolds number requirements are summarized in Figure 3. If the NACA control card is used, the Reynolds number and Mach number must be defined using the variables RNNUB and MACH.

. Other optional inputs include vehicle weight and flight path angle ("WT" and "GAMMA"). These parameters are of particular interest when using the Trim Option (Section 3.5). The trim flight conditions are output as an additional line of output with the trim data and the steady flight lift coefficient is output with the untrimmed data.

Use of the variable LØPP enables the user to run cases at fixed altitude with varying Mach number (or velocity), at fixed Mach number (or velocity) at varying altitudes, or varing speed and altitude together.

Nondimensional aerodynamic coefficients generated by Digital Datcom may be based on user-specified reference area and lengths. These reference parameters are input via namelist OPTINS, Figure 4. If the reference area is not specified, it is set equal to the theoretical planform area of the wing. This wing area includes the fuselage area subtended by the extension of the wing leading and trailing edges to the body center line. The longitudinal reference length, if not specified in OPTINS, is set equal to the theoretical wing mean aerodynamic chord. The lateral reference length is set equal to the wing span when it is not user specified.

Reference parameters contained in @PTINS must be specified for bodyalone configurations since the default reference parameters are based on wing geometry. It is suggested that values near the magnitude of body maximum cross-sectional area be used for the reference area and body maximum diameter for the longitudinal and lateral reference lengths.

The output format generally provides at least three significant digits in the solution when user specified reference parameters are of the same order of magnitude as the default reference parameters. If the user specifies reference parameters that are orders of magnitude different from the wing area or aerodynamic chord, some output data can overflow the output format or print only zeros. This may happen in rare instances and would require readjustment of the reference parameters.

NAMELIST FLTCON

VARIABLE NAME	ARRAY DIMENSION	DEFINITION	UNITS
NMACH	- .	NUMBER OF MACH NUMBERS OR VELOCITIES TO BE RUN, MAXIMUM OF 20	-
MACH	29	VALUES OF FREESTREAM MACH NUMBER	-
VINF	20	VALUES OF FREESTREAM SPEED	1/t
NALPHA	-	NUMBER OF ANGLES OF ATTACK TO BE RUN, MAXIMUM OF 20	-
ALSCHO	20	VALUES OF ANGLES OF ATTACK, TABULATED IN ASCENDING ORDER	DEG
RNNUB 2	20	REYNOLDS NUMBER PER UNIT LENGTH, ρV/μ	1/1/3
NALT &	-	NUMBER OF ATMOSPHERIC CONDITIONS TO BE RUN, MAXIMUM OF 20	- ·
ALT A	20	VALUES OF GEOMETRIC ALTITUDES	
PINF 1	20	VALUES OF FREESTREAM STATIC PRESSURE	F/A
TINF A	20	VALUES OF FREESTREAM TEMPERATURE	DEG
HYPERS	-	=.TRUE. HYPERSONIC ANALYSIS AT ALL MACH NUMBERS > 1.4	-
STMACH	-	UPPER LIMIT OF MACH NUMBERS FOR SUBSONIC ANALYSIS (0.6 < STMACH < 0.99). DEFAULT TO 0.6 IF NOT INPUT	-
TSMACH	-	LOWER LIMIT OF MACH NUMBERS FOR SUPERSONIC ANALYSIS (1.01 < TSMACH < 1.4). DEFAULT TO 1.4 IF NOT INPUT	-
TR	-	DRAG DUE TO LIFT TRANSITION FLAG, FOR REGRESSION ANALYSIS OF WING — BODY CONFIGURATIONS = 0.0 FOR NO TRANSITION, DEFAULT = 1.0 FOR TRANSITION STRIPS OR FUL. LALE FLIGHT.	-
WT	_	VEHICLE WEIGHT	F
GAMMA	<u> </u>	FLIGHT PATH ANGLE	DEG
L ⊕ #P∕Å	41 6 	PROGRAM LOOPING CONTROL 1 VARY ALTITUDE AND MACH TOGETHER, DEFAULT 2 VARY MACH, AT FIXED ALTITUDE 3 VARY ALTITUDE, AT FIXED MACH	-

FIGURE 3 INPUT FOR NAMELIST FLTCON - FLIGHT CONDITIONS

INPUT OPTIONS TO SATISFY THE MACH NUMBER AND REYNOLDS NUMBER INPUT REQUIREMENTS

USER INPUT	PROGRAM COMPUTES 🕏
▲ MACH, RNNUB	
MACH, ALT	PINF, TINF, RNNUB
VINF, ALT	PINF, TINF, MACH, RNNUB
PINF, TINF, VINF	RNNUB, MACH
PINF, TINF, MACH	RNNUB, VINF

A REQUIRED FOR TRANSVERSEJET CONTROL

A EACH ARRAY ELEMENT MUST CORRESPOND TO THE RESPECTIVE MACH NUMBER/FREESTREAM SPEED INPUT, USE LOPP = 1.

⚠ UNITS ARE EITHER 1/FT OR 1/M AS DEFINED IN TABLE 8

A REQUIRED WHEN USING THE NACA CONTROL CARD

SUSER INPUTS FOR THESE VARIABLES WILL TAKE PRECEDENCE

ATMOSPHERIC CONDITIONS ARE INPUT AS EITHER ALTITUDE OR PRESSURE AND

TEMPERATURE

⚠ SEE SECTION 2.4.1, AND EXAMPLE PROBLEM 2 IN SECTION 7

NAMELIST OPTINS

VARIABLE NAME	ARRAY DIMENSION	DEFINITION	UNITS
RØUGFC	-	SURFACE ROUGHNESS FACTOR, EQUIVALENT SAND ROUGHNESS. DEFAULT TO 0.16 X 10 ⁻³ INCHES, OR 0.406 X 10 ⁻³ cm, IF NOT INPUT	J•
SREF	-	REFERENCE AREA. VALUE OF THEORETICAL WING AREA USED BY PROGRAM IF NOT INPUT	A
CBARR	-	LONGITUDINAL REFERENCE LENGTH VALUE OF THEORETICAL WING MEAN AERODYNAMIC CHORD USED BY PROGRAM IF NOT INPUT	1
BLREF	-	LATERAL REFERENCE LENGTH VALUE OF WING SPAN USED BY PROGRAM IF NOT INPUT	

***UNITS ARE EITHER INCHES OR CENTIMETERS AS DEFINED IN TABLE 8**

ROUGHNESS FACTORS FOR USE IN NAMELIST SPTINS

	EQUIVALENT SAND ROUGHNESS			
TYPE OF SURFACE	INCHES	cm		
AERODYNAMICALLY SMOOTH	0	•		
POLISHED METAL OR WOOD	0.02 - 0.08 × 10-3	0.051 - 0.203 X 10-3		
NATURAL SHEET METAL	0.16 X 10-3	0.406 X 10-3		
SMCOTH MATTE PAINT, CAREFULLY APPLIED	0.25 X 10-3	0.635 X 10-3		
STANDARD CAMOUFLAGE PAINT, AVERAGE APPLICATION	0.40 X 1 0 -3	1.016 X 10-3		
CAMOUFLAGE PAINT, MASS-PRODUCTION SPRAY	1.20 X 10 ⁻³	3,048 X 10-3		
DIP-GALVANIZED METAL SURFACE	6 X 10 ⁻³	15.240 X 10-3		
NATURAL SURFACE OF CAST IRON	10 X 10-3	25,400 X 10-3		

FIGURE 4 INPUT FOR NAMELIST OPTINS - REFERENCE PARAMETERS

3.3 GROUP II INPUT DATA

Namelist data to define basic configuration geometry is shown in Figures 5 through 8. Those "special" configurations (Figure 2) are defined using Group III namelists.

The namelist SYNTHS defines the basic configuration synthesis parameters. The user has the option to apply a scale factor to his geometry which permits full scale configuration dimensions to be input for an analysis of a wind tunnel model. The program will use the scale factor to scale the input data to model dimensions. The variable used is "SCALE."

The body configuration is defined using the namelist BØDY (Figure 6). The variable METHØD enables the user to select either the traditional Datcom methods for body $C_{\rm L}$, $C_{\rm m}$ and $C_{\rm D}$ at low angles of attack (default), or Joergensen's method, which is applicable from zero to 180 degrees angle of attack. Joergensen's method can be used by selecting "METHØD=2" subsonically or supersonically. Users are encouraged to consult the Datcom for details concerning these methods. Digital Datcom will accept an arbitrary origin for the body coordinate system, i.e., body station "zero" is not required to be at the fuselage nose.

The planform geometry of each of the cerodynamic surfaces are input using the namelists WGPLNF, HTPLNF, VTPLNF and VFPLNF shown in Figure 7. The section aerodynamic characteristics for these surfaces are input using either the section characteristics namelists WGSCHR, HTSCHR, VTSCHR and VFSCHR (Figure 8) and/or the NACA control card discussed in Section 3.5. Airfoil characteristics are assumed constant for each panel of the planform.

The USAF Datcom contains three methods for the computation of forward lifting surface downwash field effects on aft lifting surface aerodynamics. They are given in detail in Section 4.4 of Datcom, and their regimes of primary applicability are summarized in Figure 9. The user is cautioned not to apply the empirically based subsonic Method 2 outside the bounds listed in Figure 9. Method 1 is recommended as an optional approach for the bw/bh regime of 1.0 to 1.5. By default, Digital Datcom selects Method 3 for bw/bh less than 1.5 and Method 1 for span ratios greater than or equal to 1.5. Using the variable DWASH in namelist WGSCHR, the user has the option of applying Method 1 or 2. Method 2 is applicable at subsonic Mach numbers and span ratios of 1.25 to 3.6.

Aspect ratio classification is required to employ the Datcom straight tapered wing solutions for wing or tail lift in the subsonic and transonic Mach regimes. Classification of lifting surface aspect ratio as either high or low results in the selection of appropriate methods for computation. The USAF Datcom uses a classification parameter, which depends upon planform taper ratio and leading edge sweep (Table 9). It also notes an overlap regime where the user may employ either the low or high aspect ratio methods. Digital Datcom allows the user to specify the aspect ratio method to be used in this overlap regime using the parameter ARCL in the section namelists. High aspect ratio methods are automatically selected for unswept, untapered wings with aspect ratios of 3.5 or more if ARCL is not input.

Transonically, several parameters need to be defined to obtain the panel lift characteristics. Those required variables are summarized in Figures 10 and 11 and are input using the experimental data substitution namelist EXPRnn. Additionally, intermediate data may be available, for example $C_{\ell\beta}/C_L$ which requires experimental data to complete. By use of the experimental data input namelist EXPRnn, data can be made available to complete these second-level computations, as shown in Figure 10.

The namelist EXPRnn can also be used to substitute selected configuration data with known test results for some Datcom method output and build a new configuration based on existing data. This option is most useful for theoretically expanding a wind tunnel test data base for analysis of nontested configurations.

NAMELIST SYNTHS

ENGINEERING Symbol	VARIABLE NAME	ARRAY DIMENSION	DEFINITION	UNITS
×cg	XCG	-	LONGITUDINAL LOCATION OF CG. (MOMENT REF. CENTER)	1
² cg	ZCG	_	VERTICAL LOCATION OF CG RELATIVE TO REFERENCE PLANE	1
xW	XW	_	LONGITUDINAL LOCATION OF THEORETICAL WING APEX	1
₹W	ZW	-	VERTICAL LOCATION OF THEORETICAL WING APEX RELATIVE TO REFERENCE PLANE	,
iw ·	ALIW	-	WING ROOT CHORD INCIDENCE ANGLE MEASURED FROM REFERENCE PLANE	DEG
Æ ×H	хн	-	LONGITUDINAL LOCATION OF THEORETICAL HORIZONTAL TAIL APEX	2
∕ 2∆z _H	ZH	-	VERTICAL LOCATION OF THEORETICAL HORIZONTAL TAIL APEX RELATIVE TO REFERENCE PLANE	,
'н	ALIH	-	HORIZONTAL TAIL ROOT CHORD INCIDENCE ANGLE MEASURED FROM REFERENCE PLANE	DEG
×v	χV	- -	LONGITUDINAL LOCATION OF THEORETICAL VERTICAL TAIL APEX	1
xv _F	XVF	-	LONGITUDINAL LOCATION OF THEORETICAL VENTRAL FIN APEX	1
zv	zv	-	VERTICAL LOCATION OF THEORETICAL VERTICAL TAIL APEX	1
zv _F	ZVF		VERTICAL LOCATION OF THEORETICAL VENTRAL TAIL APEX	1
'F	SCALE	-	VEHICLE SCALE FACTOR (MULTIPLIER TO INPUT DIMENSIONS)	-
	VERTUP	-	VERTUP = .TRUE. VERTICAL PANEL ABOVE REF PLANE (DEFAULT)	-
		-	VERTUP = .FALSE. VERTICAL PANEL BLEOW REF PLANE	-
⚠ ×HG	HINAX	-	LONGITUDINAL LOCATION OF HORIZONTAL TAIL HINGE AXIS	Ì

FIGURE 5 INPUT FOR NAMELIST SYNTHS - SYNTHESIS PARAMETERS

POSSIBLE SUPERSONIC AND HYPERSONIC BODY CONFIGURATIONS

NOTES:

NOSE AND TAIL SEGMENTS MAY BE CONICAL (AS SHOWN) OR OGIVAL.

DIAMETERS $\mathbf{d}_{N},\mathbf{d}_{1},$ and \mathbf{d}_{2} are computed from linear interpolation of inputs \mathbf{x}_{i} vs r

FIGURE 6 INPUT FOR NAMELIST BODY - BODY GEOMETRIC DATA

NLY REQUIRED FOR SUBSONIC ASYMMETRIC BODIES

OT REQUIRED IN SUBSONIC SPEED REGIME

YPERSONIC SPEED REGIME ONLY

VLY ONE VARIABLE IS REQUIRED

IF ONE VARIBLE IS INPUT THE OTHER TWO ARE COMPUTED FROM IT, ASSUMING A CIRCULAR CROSS-SECTION

IF TWO VARIABLES ARE INPUT, THE THIRD IS CALCULATED AS FOLLOWS:

S AND P INPUT, R = $\sqrt{S/\pi}$

P AND R INPUT, $S = \pi R^2$

S AND R'INPUT, P = $2\pi R$ WHERE R = $\sqrt{S/m}$ OR INPUT R, WHICHEVER IS THE LARGEST

RING)L	VARIABLE NAME	ARRAY DIMENSION	DEFINITION	UNITS
	NX		NUMBER OF LONGITUDINAL BODY STATIONS AT WHICH DATA IS SPECIFIED, MAXIMUM OF 20.	-
) x	20	LONGITUDINAL DISTANCE MEASURED FROM ARBITRARY LOCK	1
	<u>Á</u> ŝ	20	CROSS SECTIONAL AREA AT STATION x;	A
	4 P	20	PERIPHERY AT STATION x;	
	 A R**	20	PLANFORM HALF WIDTH AT STATION X;	
	♠ P ♠ R** ↑ ZU	20	z — Z-COORDINATE AT UPPER BODY SURFACE AT STATION x; (POSITIVE WHEN ABOVE CENTERLINE)	1
	∆ ZL	20	z Z-COORDINATE AT LOWER BODY SURFACE AT STATION x; (NEGATIVE WHEN BELOW CENTERLINE)	1
	∕ 2 BN Ø SE	-	BNOSE = 1.0 CONICAL NOSE, BNOSE = 2.0 OGIVE NOSE	_
	A BTAIL	-	BTAIL = 1.0 CONICAL TAIL, STAIL = 2.0 OGIVE TAIL OMIT FOR PRT = 0	-
	Æ BLN	_	LENGTH OF BODY NOSE	
	A BLA	-	LENGTH OF CYLINDRICAL AFTERBODY SEGMENT $I_A = 0.0$ For nose alone or nose-tail configurations	,
	∕3∖ os	_	NOSE BLUNTNESS DIAMETER, ZERO FOR SHARP NOSEBODIES	
	ITYPE*	-	= 1. STRAIGHT WING, NO AREA RULE = 2. SWEPT WING, NO AREA RULE	-
		į.	= 3. SWEPT WING, AREA RULE	
	METH Ó D	-	SET TO 2.0 IF NOT INPUT = 1. USE EXISTING METHODS (DEFAULT) = 2. USE JORGENSEN METHOD	-

) IN CALCULATION OF TRANSONIC DRAG DIVERGENCE MACH NUMBER, DATCOM FIGURE 4.5.3.1–19 EQUIVALENT RADIUS AT TRANSONIC AND SUPERSONIC MACH NUMBER, $R_{EQ} = \sqrt{s/\pi}$

2

NAMELISTS WGPLNF, HTPLNF, VTPLNF, AND VFPLNF

and the second s

WHEN THE PARTY OF
INDICATES EXPOSED PARAMETER

INPUTS NOT REQUIRED FOR STRAIGHT TAPERED PLAKFORM

ONLY REQUIRED FOR SUPERSONIC AND HYPERSONIC SPEED REGIMES. ONE VALUE REQUIRED FOR EACH MACH NO. VALUES MUST CORRESPOND TO MACH ARRAY. IF NOT INPUT, PROGRAM WILL ATTEMPT TO CALCULATE.

ATA I	OR	ENGINEERING	VARIABLE	ARRAY		
NF	V7PLNF VFPLNF	SYMBOL	NAME	DIMENSION	DEFINITION	UNIT
	•	ધ	ÇHROTP	-	TIP CHORD	1
	•	b* _o /2	<u> </u>	-	SEMI-SPAN OUTBOARD PANEL	1
	•	b*/2	SSPNE	_	SEMI-SPAN EXPOSED PANEL	L
•	•	P/S	SSPN	-	SEMI-SPAN THEORETICAL PANEL FROM THEORETICAL ROOT CHORD	L
•	•	G	⚠ CHRDBP	-	CHORD AT BREAKPOINT	L
	•	C _f	CHADR	-	ROOT CHORD	L
	•	(A _{x/c}) _i	SAVSI	– .	INBOARD PANEL SWEEP ANGLE	DEG
)	•	(Λ _{x/c}) ₀	⚠ SAVS•	<u> </u>	OUTBOARD PANEL SWEEP ANGLE	DEG
	•	x/c	CHSTAT	-	REFERENCE CHORD STATION FOR INBOARD AND OUTBOARD PANEL SWEEP ANGLES, FRACTION OF CHORD	~
ì		θ	TWISTA	-	TWIST ANGLE, NEGATIVE LEADING EDGE ROTATED DOWN (FROM EXPOSED ROOT TO TIP)	DEG
٠ ((b/2) _{[a}	<u></u> SSPNDD	-	SEMI-SPAN OF OUTBOARD PANEL WITH DIHEDRAL	1
'		Γ_{i}	DHDADI	-	DIHEDRAL ANGLE OF INBOARD PANEL (IFI; =I; ONLY INPUT I)	DEG
· f		r _o	DHDAD∳	-	DIHEDRAL ANGLE OF OUTBOARD PANEL	DEG
	•		TYPE	-	= 1.0 STRAIGHT TAPERED PLANFORM	-
ı	l	Ì			= 2.0 DOUBLE DELTA PLANFORM (ASPECT RATIO < 3)	
- 1	•				= 3.0 CRANKED PLANFORM (ASPECT RATIO >3)	
		S _{H(B)}	<u>∕</u> SHB	20	PORTION OF FUSELAGE SIDE AREA THAT LIES BETWEEN MACH LINES ORIGINATING FROM LEADING AND TRAILING EDGES OF HORIZONTAL TAIL EXPOSED ROOT CHORD	A
		S _{ext}	<u>∕</u> SEXT	20	PORTION OF EXTENDED FUSELAGE SIDE AREA THAT LIES BETWEEN MACH LINES ORIGINATING FROM LEADING AND TRAILING EDGES OF HORIZONTAL TAIL EXPOSED ROOT CHORD	A
		l _P	Æ RLPH	20	$S_{ext} = S_{H(B)} + 2\Delta S$ LONGITUDINAL DISTANCE BETWEEN CG AND CENTROID OF $S_{H(B)}$, POSITIVE AFT OF CG	Ł
	•	S _{V(WB)}	∕ SVWB	20	PORTION OF EXPOSED VERTICAL PANEL AREA THAT LIES BETWEEN MACH LINES EMANATING FROM LEADING AND	A
	•	S _{V(B)}	Æ svb	20	TRAILING EDGES OF WING EXPOSED ROOT CHORD AREA OF EXPOSED VERTICAL PANEL NOT INFLUENCED BY WING OR HORIZONTAL TAIL	A
	•	S _{V(HB)}	<u>∕</u> х svнв	20	PORTION OF EXPOSED VERTICAL PANEL AREA THAT LIES SETWEEN MACH LINES EMANATING FROM LEADING AND TRAILING EDGES OF HORIZONTAL TAIL EXPOSED ROOT CHORD	A

NAMELISTS WGSCHR, HTSCHR, VTSCHR AND VFSCHR

1 .		FOR							TS PI	
WGSCHR	HTSCHR	VTSCHR, VFSCHR	ENGINEERING Symbol	VARIABLE NAME	ARRAY DIMENSIC'+	DEFINITION	SUBSONIC	TRANSONIC	SUPERSONIC	HYPERSONIC
•	•	•	t/c	TØVC	-	MAXIMUM AIRFOIL SECTION THICKNESS, FRACTION OF CHORD	•		•	
•	•		Δγ	DELTAY	-	DIFFERENCE BETWEEN AIRFOIL ORDINATES AT 3.0 AND .15% CHORD, PERCENT CHORD	•	•	•	•
•	•	•	(x/c)MAX	XØVC	-	CHORD LOCATION OF MAXIMUM AIRFOIL THICKNESS, FRACTION OF CHORD	•	•		
•	•		Cli	CLI		AIRFOIL SECTION DESIGN LIFT COEFFICIENT		=		
•	•		Œ;	ALPHAI	_	ANGLE OF ATTACK AT SECTION DESIGN LIFT COEFFICIENT, DEG	•	-		
•	•	•	Cla	CLALPA 🛕	20	AIRFOIL SECTION LIFT CURVE SLOPE $\frac{dC_1}{d_{\alpha}}$, per deg.	-			
•	•		Cimax	CLMAX 4	20	AIRFOIL SECTION MAXIMUM LIFT COEFFICIENT				
•	•		C _{ma}	CMO OR CMØ	-	SECTION ZERO LIFT PITCHING MOMENT COEFFICIENT	•			
•	•	•	(RLE);	LERI	-	AIRFOIL LEADING EDGE RADIUS FRACTION OF CHORD		•	•	•
•	•	•	(RLE)	LERØ 🛐	1	R _{LE} FOR OUTBOARD PANEL FRACTION OF CHORD	•	•	•	•
0	0	<u> </u>		CAMBER=TRUE		CAMBERED AIRFOIL SECTION FLAG				
3	0	•	(t/c) ₀	TØVCØ/3		VC FOR OUTBOARD PANEL	0	•	ि	0
•	•	•	(x/c)MAX ₀	XØVCØ 3	-	(x/c)MAX FOR OUTBOARD PANEL	•	0	0	0
•	•		(C _{mo}) _o	CMOT OR A	-	C _{mo} FOR OUTBOARD PANEL	•	•	0	0
•			(CIMAX)M=0	CLMAXL		AIRFOIL MAXIMUM LIFT COEFFI- CIENT AT MACH EQUAL ZERO	•	•		
•	•		(Cla)M=0	CLAMO OR Clamp	-	AIRFOIL SECTION LIFT CURVE SLOPE AT MACH EQUAL ZERO, PER DEG		•		
•	•	•	(t/c)eff	TCEFF	-	PLANFORM EFFECTIVE THICKNESS RATIO, FRACTION OF CHORD		-	-	•
•	•	•	K	KSHARP &	-	WAVE-DRAG FACTOR FOR SHARP- NOSED AIRFOIL SECTION, NOT INPUT FOR ROUND NOSED AIRFOILS				•
•			-	SLØPE &	6	AIRFOIL SURFACE SLOPE AT 0,20,40 60, 80, AND 100% CHORD, DEG. POSI- TIVE WHEN THE TANGENT INTER- SECTS THE CHORD PLANE FORWARD OF THE REFERENCE CHORD POINT		•	•	•
•	•	•		ARCL	-	ASPECT RATIO CLASSIFICATION (SEE TABLE 9)	0	0	0	<u></u>

FIGURE 8	INPUT FOR	NAMELISTS WGSCHR, HTSCHR	VTSCHR AND
	VFSCHR -	SECTION CHARACTERISTICS	

INPUTS FOR NAMELIST ## 305 34 ## 405 50				,	_
HISCHARIA AND SOM A				}	
• • (y/c) _{r13x} • • CL _d • • X _c /C • • Y _u /C • • Y _m /C					
• • CL _d • • X _C /C • • Y _U /C • • Y _M /C	•	•		X _{ac} /C	
• • CL _d • • X _C /C • • Y _U /C • • Y _M /C	•				
• • • X _c /C • • Y _u /C • • Y _m /C	•	•			
Yu/C Yu/C Yu/C	•	•		CLd	
Yu/C Yu/C Yu/C	•	•			
Yu/C Yu/C Yu/C	•	•	•		
• • • YL/C	•	•	•	X _{c/C}	
• • • Ym/C	•	•	•	·	
• • •	•	•	•		
• • tc/C	•	•	•		-
	•	•	•	tc/C	-

REQUIRED INPUT
OPTIONAL INPUT
REQUIRED INPUT, USER SI
OPTIONAL INPUT, COMPUT

1 43			,			_
			i		S PE REGI	. 1
VARIABLE NAME	ARRAY DIMENSION	DEFINITION	SUBSONIC	TRANSONIC	SUPERSONIC	HYPERSONIC
XAC 🕸	20	SECTION AERODYNAMIC CENTER, FRACTION OF CHORD (SEE VOL II FOR DEFAULT)	o		. 0	
DWASH <u>2</u>	-	SUBSONIC DOWNWASH METHOD FLAG 1. USE DATCOM METHOD 1 2. USE DATCOM METHOD 2 3. USE DATCOM METHOD 3 SUPERSONIC, USE DATCOM METHOD 2 IF DWASH = 1 OR 2 (SEE FIGURE 9)	0		0	
YCM	-	AIRFOIL MAXIMUM CAMBER, FRACTION OF CHORD				
CLO 🔨	-	CONICAL CAMBER DESIGN LIFT COEFFICIENT FOR M = 1.0 DESIGN. SEE-NACA RM A55G19 (DEFAULT TO 0.0)	•	•	•	•
TYPEIN	<u>-</u>	TYPE OF AIRFOIL SECTION COORDI- NATES INPUT FOR AIRFOIL SECTION MODULE = 1.0 UPPER AND LOWER SURFACE COORDINATES (YUPPER AND YLOWER) = 2.0 MEAN LINE AND THICKNESS DIS- TRIBUTION (MEAN AND THICK)	0	0	0	0
NPTS	-	NUMBER OF SECTION POINTS INPUT, MAX. = 50	0	0	0	0
xcero A	50	ABSCISSAS OF INPUT POINTS, TYPEIN = 1.0 OR 2.0, XCØRD(1) = 0.0 XCØRD(NPTS) = 1.0 REQUIRED	0	0	٥	0
YUPPER	50	ORDINATES OF UPPER SURFACE, TYPEIN = 1.0 FRACTION OF CHORD, AND REQUIRES YUPPER(1) = 0.0 YUPPER(NPTS) = 0.0	0	0	0	0
YLØWER	50	ORDINATES OF LOWER SURFACE, TYPEIN = 1.0 FRACTION OF CHORD, AND REQUIRES YLOWER(1) = 0.0 YLOWER(NPTS) = 0.0	0	Ú	0	0
MEAN	50	ORDINATES OF MEAN LINE, TYPEIN = 2.0 FRACTION OF CHORD, AND REQUIRES MEAN(1) = 0.0 MEAN(NPTS) = 0.0	0	0	0	0
THICK	50	THICKNESS DISTRIBUTION, TYPEIN = 2.0 FRACTION OF CHORD, AND REQUIRES THICK(1) = 0.0 THICK(NPTS) = 0.0	0	0	0	0

WAVE-DRAG FACTORS FOR SHARP NOSE AIRFOILS

BASIC WING AIRFOIL SECTION	KSHARP	SECTION
BICONVEX	<u>16</u> 3	
DOUBLE WEDGE	c/x _t	X(
HEYAGONAL	c(c-x2)	-x1x2x3

TOFF - PLANFORM EFFECTIVE THICKNESS RATIO. FOR STRAIGHT TAPERED PLANFORMS, TCEFF = TOVC. FOR NONSTRAIGHT PLANFORMS:

SEE DATCOM SECTIONS 4.3.21 AND 4.3.2 (LINEAR REGRESSION METHODS) IF SET LESS THAN ZERO WILL BYPASS THE REGRESSION METHODS

INPUT ONLY FOR CONFIGURATIONS WITH A HORIZONTAL TAIL

NOT REQUIRED FOR STRAIGHT TAPERED PLANFORMS

ARRAY ELEMENTS MUST CORRESPOND TO THE MACH OR VINF

ARRAY (NAMELIST FLTCON)

⚠ ARRAY ELEMENTS MUST CORRESPOND TO THE XC#RD ARRAY ONLY CALCULATED FOR SUPERSONIC AIRFOILS

USING NACA CARD.

A SEE SECTION B.3.2 FOR INPUT RECOMMENDATIONS

BUPPLIED OR COMPUTED BY AIRFOIL SECTION MODULE IF AIRFOIL DEFINED WITH NACA CARD OR SECTION COORDINATES TED BY AIRFOIL SECTION MODULE IF AIRFOIL DEFINED WITH NACA CARD OR SECTION COORDINATES

And the State of t

TABLE 9 ASPECT RATIO CLASSIFICATION "ARCL"

BORDER-LINE RANGE:

(C₁ + 1) COS A_{LE}

< A.<

(C1 + 1) COS ALE

"ARCL" CAN BE SET IN NAMELISTS WGSCHR, HTSCHR, VTSCHR AND VFSCHR TO SELECT EITHER LOW OR HIGH ASPECT RATIO METHODS. WHEN "ARCL" IS NOT SET, AND "A" IS IN THE BORDER-LINE RANGE, THE FOLLOWING CRITERIA ARE USED:

 $A < \frac{3.5}{(C_1 + 1) \cos \Lambda}_{LE}$

"LOW ASPECT RATIO"

 $A > \frac{3.5}{(C_1 + 1) \cos \Lambda LE}$

"HIGH ASPECT RATIO"

SEE DATCOM SECTION 4.1.3.3

METHOD 1 b_m/b_b≥1.5

 $\frac{\text{METHOD 2} (\text{EMPIRICAL METHOD})}{1.25 \leq \frac{b_{\text{W}}/b_{\text{h}}}{\leq} 3.6}$

METHOD 3 (CANARD METHOD)

bw/bh≤1.0

METHOD IN RANGE 1.0 \leq b, w/b, \leq 1.5 can be selected using variable "DWASH" IN NAMELIST WGSCHR

FIGURE 9 PRIMARY APPLICATION REGIMES FOR SUBSONIC DOWNWASH METHODS IN DATCOM

DEFINING THE TRANSONIC WING AND HORIZONTAL TAIL LIFT CURVE

NOTES:

- 1. If a_0 and a_{\perp} are input using expr the linear lift region is defined.
- 2. If $\alpha C_{L_{\mbox{\scriptsize MAX}}}$ And $C_{L_{\mbox{\scriptsize MAX}}}$ are also input using EXPR The complete lift curve is defined.
- 3. IF THE COMPLETE LIFT CURVES FOR THE WING AND HORIZONTAL TAIL ARE DEFINED AND BOTH SURFACES HAVE STRAIGHT TAPERED PLANFORMS, ALL DATA DESIGNATED IN TABLE 2 THAT REQUIRE EXPERIMENTAL DATA INPUT ARE CALCULATED.
- 4. IF THE BODY LIFT CURVE IS INPUT AT TRANSONIC MACH NUMBERS, CONFIGURATION DATA INVOLVING THE BODY ARE SIGNIFICANTLY IMPROVED.

FIGURE 10 TRANSONIC EXPERIMENTAL DATA SUBSTITUTION

TRANSONIC DATA AVAILABLE WITH EXPERIMENTAL DATA SUBSTITUTION

GIVEN	DATA CALCULATED
NONE	VERT. COQ
	W-8 CL
	H-B CL
	W-8-H, W-8-V, & W-8-H-V CDO
WING CL VS a	WING CD, CN, CA, CLB
	W-B CO.CN.CA.CA
	W-S-V CD. CL. CN. CA
HORIZ. C _L VS a	HORIZ. C. CN, CA, C
:	H-8 CO. CN. CA. C
· BODY C _L VS a	B-V CL, CN, CA
W-B CLVSa	
HORIZ. CL & CD VSa	W-8-T C ₀
a/q_ & e VS. a	
W-B CL VS a	
HORIZ. CL VS a	W-B-T CL
q/q , e, & de/da VS a	

A THE PARTY OF THE

NAMELIST EXPR

ENGINEERING Symbol	VARIABLE NAME	ARRAY DIMENSION	DEFINITION		
(CL_)	CLAB	20	BODY LIFT CURVE SLOPE VS ANGLE OF ATTACK, PER DEGREE		
(C _m)	CMAB	20	BODY PITCHING MOMENT SLOPE VS ANGLE OF ATTACK, PER DEGREE		
[(Cn.)_	CDB	- 20	BODY DRAG COEFFICIENT VS ANGLE OF ATTACK		
[(U)	CLB	20	BODY LIFT COEFFICIENT VS ANGLE OF ATTACK		
(Cm)B	CMB	20	BODY PITCHING MOMENT COEFFICIENT VS ANGLE OF ATTACK		
(CL_)	CLAW	20	WING LIFT CURVE SLOPE VS ANGLE OF ATTACK, PER DEGREE		
(Cmax W	CMAW	20	WING PITCHING MOMENT SLOPE VS ANGLE OF ATTACK, PER DEGREE		
(CD)	CDW	20	WING DRAG COEFFICIENT VS ANGLE OF ATTACK		
(CL_)	CLW	20	WING LIFT COEFFICIENT VS ANGLE OF A TACK		
(C _{mj})W	CMW	20	WING PITCHING MOMENT COEFFICIENT VS ANGLE OF ATTACK		
(CL")	CLAH	20	HORIZONTAL TAIL LIFT CURVE SLOPE VS ANGLE OF ATTACK, PER DEGREE		
(C ^{Ma})	CMAH	20	HORIZONTAL TAIL PITCHING MOMENT SLOPE VS ANGLE OF ATTACK, PER DEGREE		
(CD)H	CDH	20	HORIZONTAL TAIL DRAG COEFFICIENT 1/3 ANGLE OF ATTACK		
(C ^L)"	CLH	20	HORIZONTAL TAIL LIFT COEFFICIENT VS ANGLE OF ATTACK		
(C ^m)H	CMH	20	HORIZONTAL TAIL PITCHING MOMENT COEFFICIENT VS ANGLE OF ATTACK		
(C _D)	CDV	-	VERTICAL TAIL ZERO LIFT DRAG COEFFICIENT		
(CL)V	CLAWB	20	WING-BODY LIFT CURVE SLOPE VS ANGLE OF ATTACK, PER DEGREE		
(Cm ⁴ WB	CMAWB	20	WING-BODY PITCHING MOMENT SLOPE VS ANGLE OF ATTACK, PER DEGREE		
(CD) wa	CDWB	20	WING-BODY DRAG COEFFICIENT VS ANGLE OF ATTACK		
(CL) wa	CLWB	20	WING-BODY LIFT COEFFICIENT VS ANGLE OF ATTACK		
(C_)	CMWB	20	WING-BODY PITCHING MOMENT COEFFICIENT VS ANGLE OF ATTACK		
4/4	DEODA	20	DOWNWASH GRADIENT VS ANGLE OF ATTACK		
•	EPSL \$N	20	DOWNWASH ANGLE VS ANGLE OF ATTACK, DEGREES		
4H/4L	QOQINF	20	RATIO OF HORIZONTAL TAIL DYNAMIC PRESSURE TO THE FREE STREAM VALUE VS ANGLE OF ATTACK		
(~) _* 🛕	ALP#W	-	WING ZERO LIFT ANGLE OF ATTACK, DEG		
(*) A	ALPLW	-	WING ANGLE OF ATTACK WHERE LIFT BECOMES NON-LINEAR DEG		
(CLMAX), (A)	ACLMW	-	WING ANGLE OF ATTACK FOR MAX, LIFT, DEG		
(CLMAY) Z	CLINW		WING MAX. LIFT COEFFICIENT		
(4), <u>A</u>	ALPOH		HORIZONTAL TAIL ZERO LIFT ANGLE OF ATTACK, DEG		
(-)H	ALPLH		HORIZONTAL TAIL ANGLE OF ATTACK WHERE LIFT BECOMES NON-LINEAR, DEG		
(CLMAX) A	ACLINH	-	HORIZONTAL TAIL ANGLE OF ATTACK FOR MAX, LIFT, DEG		
(CLMAX)H A	CLINH	-	HORIZONTAL TAIL MAX. LIFT COEFFICIENT		

NOTE: 1 EXPERIMENTAL DATA PARAMETERS MUST BE BASED ON THE REFERENCE AREA AND LENGTHS AS USED BY DIGITAL DATCOM. SEE FIGURE 4 FOR DEFINITION OF DIGITAL DATCOM REFERENCE PARAMETERS.

FIGURE 11 INPUT FOR NAMELIST EXPRIN- EXPERIMENTAL DATA INPUT

REQUIRED TO SUPPORT TRANSONIC SECOND LEVEL METHODS, USED OPLY AT TRANSONIC MACH NUMBERS. THE USE OF THESE PARAMETERS IS SHOWN IN FIGURE 9.

³ EACH EXPERIMENTAL DATA NAMELIST REPRESENTS DATA FOR ONE MACH NUMBER. THE LAST TWO DIGITS OF THE NAMELIST NAME CORRESPONDS TO THE MACH NUMBER SEQUENCE IN NAMELIST FLTCPA, FIGURE 3. HAMELIST EXPRO1 PROVIDES EXPERIMENTAL DATA FOR THE FIRST MACH NUMBER, EXPRO2 THE SECOND, EXPRIS THE FIFTEENTH, ETC. ALL SIX CHARACTERS IN THE NAMELIST NAME MUST BE SPECIFIEW.

3.4 GROUP III INPUT DATA

The namelists required for additional or "special" configuration definition are presented in Figures 12 through 22, and Tables 10 through 12. Specifically, the namelists PRØPWR, JETPWR, GRNDEF, TVTPAN, ASYFLP and CØNTAB enable the user to "build upon" the configuration defined through Group II inputs. The remaining namelists LARWB, TRNJET and HYPEFF define "stand alone" configurations whose namelists are not used with Group II inputs.

The inputs for propellor power or jet power effects are made through namelists PROPWR and JETPWE, respectively. The number of engines allowable is one or two and the engines may be located anywhere on the configuration. The configuration must have a body and a wing defined and, optionally, a horizontal tail and a vertical tail. Since the Datcom method accounts for incremental aerodynamic effects due to power, configuration changes required to account for proper placement of the engine(s) on the configuration (e.g., pylons) are not taken into account.

Twin vertical panels, defined by namelist TVTPAN, can be defined on either the wing or horizontal tail. Since the method only computes the incremental lateral stability results, "end-plate" affects on the longitudinal characteristics are not calculated. If the twin vertical panels are present on the horizontal tail, and a vertical tail or ventral fin is specified, the mutual interference among the panels is not computed.

Inputs for the high lift and control devices are made with the namelists SYMFLP, ASYFLP and CQNTAB. In general, the eight flap types defined using SYMFLP (variable FTYPE) are assumed to be located on the most aft lifting surface, either horizontal tail or wing if a horizontal tail is not defined. Jet flaps, also defined using SYMFLP, will always be located on the wing, even with the presence of a horizontal tail. Control tabs (namelist CONTAB) are assumed to be mounted on a plain trailing edge flap (FTYPE=1); therefore, for a control tab analysis namelists CONTAB and SYMFLP (with FTYPE=1) must both be input. For ASYFLP namelist inputs, the spoiler and aileron devices (STYPE of 1., 2., 3. or 4.) are defined for the wing, even with the presence of a horizontal tail, whereas the all-moveable horizontal tail (STYPE=5.0) is, of course, a horizontal tail device.

PROPELLER POWER EFFECT METHODS ARE ONLY APPLICABLE TO LONGITUDINAL STABILITY PARAMETERS IN THE SUBSONIC SPEED REGIME.

1	ARIABLE ARRAY NAME DIMENSION	DEFINITION	UNITS
n NE t'c TH x'p PH ZT PH RP PR KN (bp)0.3Rp BW (bp)0.6Rp BW (bp)0.9Rp BW NB N\$	ETLP - ENGSP - ISTCP - ISTCP - INCLOC -	ANGLE OF INCIDENCE OF ENGINE THRUST AXIS, NUMBER OF ENGINES (1 OR 2) _{2 T} THRUST COEFFICIENT = P _{OO} V _O Z S _{REF} AXIAL LOCATION OF PROPELLER HUB VERTICAL LOCATION OF PROPELLER HUB PROPELLER RADIUS EMPIRICAL NORMAL FORCE FACTOR BLADE WIDTH AT 0.3 PROPELLER RADIUS BLADE WIDTH AT 0.9 PROPELLER RADIUS NUMBER OF PROPELLER BLADES PER ENGINE BLADE ANGLE AT 0.75 PROPELLER RADIUS LATERAL LOCATION OF ENGINE .TRUE. COUNTER ROTATING PROPELLER	DEG - L L L L L L L L L L L L L L L L L L

 \bigwedge K_N IS NOT REQUIRED AS INPUT IF (b_p)'s ARE INPUT AND CONVERSELY (b_p)'s ARE NOT REQUIRED IF K_N IS INPUT. (SEE SECTION 4.6.1 OF DATCOM)

FIGURE 12 INPUT FOR NAMELIST PROPERLOR POWER PARAMETERS

NAMELIST JETPWR

JET POWER EFFECT METHODS ARE ONLY APPLICABLE TO LONGITUDINAL STABILITY PARAMETERS IN THE SUBSONIC SPEED REGIME.

JET POWER INPUTS ARE REQUIRED FOR EXTERNALLY BLOWN JET FLAP (EBF) CONFIGURATIONS. NOT REQUIRED PURE JET FLAPS OR INTERNALLY BLOWN FLAPS (IBF)

EBF JET FLAP INPUTS	JET POWER INPUTS	ENGINEERING SYMBOL	NAME	ARRAY DIMENSION	DEFINITION	UNITS
•	•	ΙT	AIETLI	-	ANGLE OF INCIDENCE OF ENGINE THRUST	DEG
	•	0	NENGSJ	-	NUMBER OF ENGINES (1 OR 2)	-
1 1	•	Te	THSTCJ	-	THRUST COEFFICIENT - P. VE SREF	-
ļ	•	× _{IN} .	JIALOC -		AXIAL LOCATION OF JET ENGINE INLET	1
•	•	20	JEVLOC	-	VERTICAL LOCATION OF JET ENGINE EXIT	1
•	•	X ₀	JEAL OC	-	AXIAL LOCATION OF JET ENGINE EXIT	1
1 1	•	A j	JINLTA	-	JET ENGINE INLET AREA	A
•	•	0)	JEANGL	-	JET EXIT ANGLE	DEG
	•	۲۷ (JEVEL.	-	JET EXIT VELOCITY	Lit
] [•	Tee	AMBTMP	-	AMBIENT TEMPERATURE	DEG
i	•	TJ	JESTMP	-	JET EXIT STATIC TEMPERATURE	DEG
•	•]	77	ÆLLØC .	-	LATERAL LOCATION OF JET ENGINE	<i>[1]</i>
	•	P'e j	JETOTP	-	JET EXIT TOTAL PRESSURE	F/A
i i	•	Pen	AMBSTP	-	AMBIENT STATIC PRESSURE	F/A
•	•	A)	ÆRAD	-	RADIUS OF JET EXIT	L

FIGURE 13 INPUT FOR NAMELIST JETPWR - JET POWER PARAMETERS

NAMELIST GRNDEF

GROUND EFFECT METHODS ARE ONLY APPLICABLE TO LONGITUDINAL STABILITY PARAMETERS IN THE SUBSONIC SPEED REGIME.

ENGINEERING SYMBOL	VARIABLE NAME	ARRAY DIMENSION	DEFINITION	UNITS
N _H H	NGH GRDHT	- 10	NUMBER OF GROUND HEIGHTS TO BE RUN VALUES OF GROUND HEIGHTS. GROUND HEIGHTS EQUAL ALTITUDE OF REF. PLANE RELATIVE TO GROUND	- 1

FIGURE 14 INPUT FOR NAMELIST GRNDEF - GROUND EFFECT DATA

NAMELIST TVTPAN

EFFECTS OF TWIN VERTICAL PANELS ONLY REFLECTED IN SUBSONIC LATERAL STABILITY RESULTS

ENGINEERING Symbol	EERING VARIABLE ARRAY BOL NAME DIMENSION		DEFINITION			
b√,	BVP	-	VERTICAL PANEL SPAN ABOVE LIFTING SURFACE	,		
by	BV	-	VERTICAL PANEL SPAN			
2r ₁	BDV .	-	FUSELAGE DEPTH AT QUARTER CHORD-POINT OF VERTICAL PANEL MEAN AERODYNAMIC CHORD			
b _H .	BH	-	DISTANCE BETWEEN VERTICAL PANELS			
Sv	SV	_	PLAN FORM AREA OF ONE VERTICAL PANEL			
∲ TE	VPHITE	-	TOTAL TRAILING-EDGE ANGLE OF VERTICAL PANEL AIRFOIL SECTION			
	JP VLP -		DISTANCE PARALLEL TO LONG. AXIS BETWEEN THE CG AND THE QUARTER CHORD POINT OF THE MAC OF THE PANEL. POSITIVE IF AFT OF CG.	1		
Zp	2.19	-	DISTANCE IN THE 2 DIRECTION BETWEEN THE CG AND THE MAC OF THE PANEL, POSITIVE FOR PANEL ABOVE CG.	2		

FIGURE 15 INPUT FOR NAMELIST TVTPAN - TWIN-VERTICAL PANEL INPUT

The same of the sa

ENGR SYN

TENGTE

tanigrE

Cłi

c_{2,} c_{2,} Δ∆c,

ELLIPTIC NOSE FLAP NTYPE = 2.8

CLASSIFICATION OF PLANT FLAP NOSE SHAPES

HTYPE - 3.8

CONTROL BALANCE INPUT VARIABLES

FIGURE 16 INPUT FOR NAMELIST SYMFLP - SYMETRICAL FLAP DEFLECTION INPUTS

		,			Т									T
M30L	VARIABLE NAME	ARRAY DIMENSION	DEFINITION	UNITS	β,	SINC	FOWN SIONED	COUBIC LAPS	Sp. C. St. OTTEO	LE ADIN.	LEADING EDGE	FRIII	JE JE FLAD	Ser /
	FTYPE	-	- 1.0 PLAIN FLAPS - 2.0 SINGLE SLOTTED FLAPS - 3.0 FOWLER FLAPS - 4.0 DOUBLE SLOTTED FLAPS - 5.0 SPLIT FLAPS - 6.0 LEADING EDGE FLAP - 7.0 LEADING EDGE SLATS - 8.0 KRUEGER	_	•	•	•	•	•	•	•		• (2)	
	NDELTA	-	NJMBER OF FLAP OR SLAT DEFLECTION ANGLES, MAX 9	-	•	•	•	•	•	•	•	•	•	
	DELTA	9	FLAP DEFLECTION ANGLE MEASURED STEAMWISE	DEC	•	•	•	•	•	•	•	•		ı
/2)	PHETE	-	TANGENT OF AIRFOIL TRAILINE EDGE ANGLE	-			1				1			ı
/2)	PHETEP	_	BASED ON ORDINATES AT 90 AND 99 PERCENT CHORD TANGENT OF AIRFOIL TRAILING EDGE ANGLE BASED ON		•	•	•		•					
"			ORDINATES AT 95 AND 99 PERCENT CHORD	-	•	•	•	•	•		l		1 /	ı
	CHROFI	-	FLAP CHORD AT INBOARD END OF FLAP, MEASURED	1		ł	1		1	1	•		1 7	i
		1	PARALLEL TO LONGITUDINAL AXIS	1.	•	•	•	•	•	•	•	•	•	ĺ
	CHRDF®	j -	FLAP CHORD AT OUTBOARD END OF FLAP, MEASURED PARALLEL TO LONGITUDINAL AXIS	1		•	•	•	•	•	•	•		
	SPANFI	-	SPAN LOCATION OF INBOARD END OF FLAP, MEASURED PERPENDICULAR TO VERTICAL PLANE OF SYMMETRY	1										
	SPANF 0	-	SPAN LOCATION OF OUTBOARD END OF FLAP. MEASURED PERPENDICULAR TO VERTICAL PLANE OF SYMMETRY	,		•								
	CPRMEI	9	TOTAL WING CHORD AT INBOARD END OF FLAP (TRANS- LATING DEVICES ONLY) MEASURED PARALLEL TO LONGITUDINAL AXIS	1										
	CPRME 0	9	TOTAL WING CHORD AT OUTBOARD END OF FLAP (TRANS- LATING DEVICES ONLY) MEASURED PARALLEL TO LONGITUDINAL AXIS	1		•	•	•			•	•		
	CAPINB	9		1	ļ	l	1	•	ı		1			ı
•]	CAPOUT	9		1 2	J]		•						İ
- 1	DØBDEF	9		1		i	l	•				ļ	1 I	İ
j	DOBCIN	-	·			1		•					l i	l
- 1	DØBCØT	_		1	İ			•	1					İ
ı	SCLO	9	INCREMENT IN SECTION LIFT COEFFICIENT DUE TO DEFLECTING FLAP TO THE ANGLE δ_f	1	}						j			
	SCMD	9	INCREMENT IN SECTION PITCHING MOMENT COEFFICIENT DUE TO DEFLECTING FLAP TO ANGLE &;											i
	. св	_	AVERAGE CHORD OF THE BALANCE			İ								
ĺ	TC	_	AVFRAGE THICKNESS OF THE CONTROL AT HINGE LINE	1		1							. 1	
			= 1.0 ROUND NOSE FLAP											
	NTYPE	-	= 2.0 ELLIPTIC NOSE FLAP = 3.0 SHARP NOSE FLAP = 1.0 PURE JET FLAP	-	•									
	JETFLP	-	= 2.0 IBF = 3.0 EBF	-										
	•		= 4.0 COMBINATION MECHANICAL AND PURE JET FLAP									ı		
- 1	CMU		TWO-DIMENSIONAL JET EFFLUX COEFFICIENT] - [ŀ	ŀ		
	DELJET	9	JET DEFLECTION ANGLE	DEG							- 1	1	• 1	
	EFFJET	9	EBF EFFECTIVE JET DEFLECTION ANGLE	DEG				1					• 1	
- 1	<u>-</u>		Source of East, or Middle	1 1							- 1		1	

'IONAL FOR ALL FLAP TYPES CHANICAL FLAP TYPE IF JETFLP • 4

2

$$tan(\phi_{TE}/2) = 1/2 \left[\frac{Y_{90} - Y_{99}}{9} \right]$$

$$\tan (\phi_{TE}/2) = 1/2 \left[\frac{Y_{95} - Y_{99}}{4} \right]$$

FIGURE 17 SYMMETRICAL FLAP INPUT DEFINITIONS

FIGURE 18 JET FLAP INPUT DEFINITIONS

$$\tan(\frac{4}{TE/2}) = 1/2 \left[\frac{y_{90} - y_{99}}{9} \right]$$

SPOILER-SLOT-DEFLECTOR

FIGURE 19 INPUT FOR NAMELIST ASYFLP - ASYMMETRICAL CONTROL DEFLECTION INPUT

				VARI PER C					:D
ENGINEERING SYMBOL	VARIABLE NAME	ARRAY DIMENSION	DEFINITION	UNITS	FLAP SPOILER ON WING	PLUG SPOILER ON WING	SPOILER-SLOT-DEFLECTOR ON WING	PLAIN FLAP AILERON	ALL MOVEABLE HORIZONTAL TALL
			= 1.0 FLAP SPOILER ON WING		•		П		Γ
	STYPE	-	= 2.0 PLUG SPOILER ON WING = 3.0 SPOILER-SLOT-DEFLECTION ON WING = 4.0 PLAIN FLAP AILERON	-			•	•	
	NOELTA	-	= 5.0 DIFFERENTIALLY DEFLECTED ALL MOVEABLE HORIZONTAL TAIL NUMBER OF CONTROL DEFLECTION ANGLES; REQUIRED FOR ALL CONTROLS, MAX. OF 9	-	•	•	•	•	•
b y	SPANFI	-	SPAN LOCATION OF INBOARD END OF FLAP OR SPOILER CONTROL, MEASURED PERPENDICULAR TO VERTICAL PLANE OF SYMMETRY	1	•	•	•	•	
	SPANF.	-	SPAN LOCATION OF OUTBOARD END OF FLAP OR SPOILER CONTROL, MEASURED TO PERPENDICULAR TO VERTICAL PLANE OF SYMMETRY	1	•	•	•	•	
en(PTE/2)	PHETE DELTAL	9	TANGENT OF AIRFOIL TRAILING EDGE ANGLE BASED ON ORDINATES AT x/c = 0.90 AND 0.99 DEFLECTION ANGLE FOR LEFT HAND PLAIN FLAP AILERON OR LEFT HAND PANEL ALL MOVEABLE HORIZONTAL TAIL, MEASURED IN	DEG	•	•	•		•
∂ _R	DELTAR	9	VERTICAL PLANE OF SYMMETRY DEFLECTION ANGLE FOR RIGHT HAND PLAIN FLAP AILERON OR RIGHT HAND PANEL ALL MOVEABLE HORIZONTAL TAIL, MEASURED IN	DEG				•	
e _f	CHRDFI	-	VERTICAL PLANE OF SYMMETRY ALLERON CHORD AT INBOARD END OF PLAIN FLAP AILERON,	1				•	•
લ્	CHROF#	-	MEASURED PARALLEL TO LONGITUDINAL AXIS AILERON CHORD AT OUTBOARD END OF PLAIN FLAP AILERON, MEASURED PARALLEL TO LONGITUDINAL AXIS	L				•	
<u>\$4</u>	DELTAD	9	PROJECTED HEIGHT OF DEFLECTOR, SPOILER-SLOT-DEFLECTOR CONTROL; FRACTION OF CHORD	-					
후	DELTAS	9	PROJECTED HEIGHT OF SPOILER, FLAP SPOILER, PLUG SPOILER AND SPOILER-SLOT-DEFLECTOR CONTROL; FRACTION OF CHORD	-	•	•	•		
4	XSØC	- 1	DISTANCE FROM WING LEADING EDGE TO SPOILER LIP MEASURED PARALLEL TO STREAMWISE WING CHORD, FLAP AND PLUG SPOILERS;	-					
*	XSPRME	-	FRACTION OF CHORD DISTANCE FROM WING LEADING EDGE TO SPOILER HINGE LINE MEASURED PARALLEL TO STREAMWISE WING CHORD, FLAP SPOILER, PLUG SPOILER AND SPOILER-SLOT-DEFLECTOR CONTROL;	-					
<u>b.</u>	НЅФС	8	FRACTION OF CHORD PROJECTED HEIGHT OF SPOILER MEASURED FROM AND NORMAL TO AIRFOIL MEAN LINE, FLAP SPOILER, PLUG SPOILER AND SPOILER-	_	•				
I		- 1	SLOT-REFLECTOR; FRACTION OF CHORD		•	•			

* 1.2 x

,

2

SHARP LEADING EDGE

INPUT PARAMETER - $\delta_{\pmb{e}_{\underline{1}}}$ NOT REQUIRED IF LEADING EDGE IS ROUND

 δ_{01} = EFFECTIVE WEDGE ANGLE OF SHARP LEADING EDGE WING, PERPENDICULAR TO LEADING EDGE ATC,/3 FROM NOSE, DEGREES

ROUND LEADING EDGE

INPUT PARAMETERS: $\binom{R_1}{3}$ LE) b and δ_L (NOT REQUIRED IF LEADING EDGE IS SHARF).

 $\binom{R_1}{3}$ LE) b = EFFECTIVE RADIUS OF ROUND LEADING EDGE WING, PERPENDICULAR TO LEADING EDGE AT $c_7/3$ FROM NOSE, DEGREES DIVIDED BY SURFACE SPAN

 δ_L = LOWER SURFACE ANGLE OF ROUND LEADING EDGED WING, PERPENDICULAR TO WING LEADING EDGE AT c_r /3 FROM NOSE, DEGREES

FIGURE 20 INPUT FOR NAMELIST LARWB - LOW ASPECT RATIO WING, WING-BODY INPUT

BASE LUCATION DESICNATOR

ENGINEERING VARIABLE SYMBOL NAME		ARRAY DIMENSION	DEFINITION	UNITS
^Z base	ZB	-	VERTICAL DISTANCE BETWEEN CENTROID OF BASE AREA AND BODY REF PLANE	,
S	SREF	-	PLANFORM AREA USED AS REFERENCE AREA	A
$\delta_{\mathbf{e_1}}$.	DELTEP	-	SHARP LEADING EDGE PARAMETER	DEG
, S _F	SFRØNT	· _	PROJECTED FRONTAL AREA PERPENDICULAR TO ZERO	
•		1	NORMAL FORCE REF PLANE	A
A	AR	-	ASPECT RATIO OF SURFACE	i –
(R _{1/3 LE)/b}	R3LE08	_]	ROUND LEADING EDGE PARAMETER	-
δ <u>լ</u>	DELTAL	-	ROUND LEADING EDGE PARAMETER	DEG
r _B	L	-	LENGTH OF BODY USED AS LONGITUDINAL REF LENGTH	2
Swet	SWET	-	WETTED AREA, EXCLUDING BASE AREA	, A
P	PERBAS	-	PERIMETER OF BASE	1
S _b	SBASE	_ [BASE AREA	A
n _b	нв	-	MAXIMUM HEIGHT OF BASE	1
o _n	88	- 1	MAXIMUM SPAN OF BASE USED AS LATERAL REF LENGTH	1
BASE LOCATION	BLF	- (.TRUE. PORTIONS OF BASE ARE AFT OF NON-LIFTING SURFACE	-
DESIGNATOR	ĺ	ſ	.FALSE. TOTAL BATT OF LIFING SURFACE	
c _m	XCG		LONGITUDINAL LOCATION OF CG FROM NOSE	1
9"	THETAD	- i	WING SEMI-APEX ANGLE	DEG
NOSE BLUNTNESS	ROUNDN	-	.TRUE ROUNDED NOSE	-
DESIGNATOR	i	ļ	.FALSE POINTED NOSE	
Ses .	SBS	_	PROJECTED SIDE AREA OF CONFIGURATION	A
SBS).2/B	SBSLB	-	PROJECTED SIDE AREA OF CONFIGURATION FORWARD OF .2.18	A
centroid _{SBS}	XCENSB	_	DISTANCE FROM NOSE OF VEHICLE TO CENTROID OF	
3BS	I		PROJECTED SIDE AREA	1
centroidw	XCENW	_ /	DISTANCE FROM NOSE OF CONFIGURATION TO CENTROID OF	

NAMELIST TRNJET

ENGINEERING SYMBOL	VARIABLE NAME	ARRAY DIMENSION	DEFINITION	UNITS
	NT	-	NUMBER OF TIME HISTORY VALUES, MAXIMUM OF 10	-
t	TIME	10 -	TIME HISTORY	t
F _c	FC	10	TIME HISTORY OF CONTROL FORCE REQUIRED TO TRIM	F
(Leo	ALPHA LAMNRJ	10 10	TIME HISTORY OF ATTITUDE TIME HISTORY OF BOUNDARY LAYER, WHERE - TRUE.—BOUNDARY LAYER IS LAMINAR AT JET - FALSE.—BOUNDARY LAYER IS TURBULERT AT JET	DEG -
b	SPAN	-	SPAN OF NOZZLE NORMAL TO FLOW DIRECTION	1
ý	PHE	-	INCLINATION OF NOZZLE CENTER LINE RELATIVE TO AN AXIS NORMAL TO SURFACE	DEG
M,	ME	-	NOZZLE EXIT MACH NUMBER	_
l _{ap}	ISP	-	JET VACUUM SPECIFIC IMPULSE	t
e e	cc		NOZZLE DISCHARGE COEFFICIENT	-
γ. ′	GP	-	SPECIFIC HEAT RATIO OF PROPELLANT	-
L	LFP	-	DISTANCE OF NOZZLE FROM PLATE LEADING EDGE	1

FIGURE 21 INPUT FOR NAMELIST TRAJET - TRANSVERSE-JET CONTROL INPUT

NAMELIST HYPEFF

ENGINEER SYMBOL			DEFINITION			
ALT	ALITD	-	ALTITUDE	L		
XHL	XHL	-	DISTANCE TO CONTROL HINGE LINE MEASURED FROM THE LEADING EDGE	1		
T _W /Too	Tiv éT I	-	RATIO OF WALL TEMPERATURE TO THE FREE STREAM STATIC TEMPERATURE	-		
q	CF HNDLTA	<u>-</u>	CONTROL CHORD LENGTH NUMBER OF FLAP DEFLECTION ANGLES (MAXIMUM OF 10)			
δį	HDELTA 10		CONTROL DEFLECTION ANGLE, POSITIVE TRAILING EDGE DOWN	DEG		
	LAMNR	-	= .TRUE.—BOUNDARY LAYER AT HINGE LINE IS LAMINAR = .FALSE.—BOUNDARY LAYER AT HINGE LINE IS TURBULENT	-		

FIGURE 22 INPUT FOR NAMELIST HYPEFF - FLAP CONTROL AT HYPERSONIC SPEEDS

NAMELIST CONTAB

TABLE 10 INPUT PARAMETER LIST NAMELIST CONTAB

ENGR Symbol	VARIABLE NAME	DIM.	DEFINITION	CONTROL TAB	TRIM TAB	UNITS
	TTYPE	-	= 1 TAB CONTROL = 2 TRIM TAB = 3 BOTH	x x	X X	·
(Ĉ _{fi}) _{tc}	CFITC	-	INBOARO CHORD,	×	^	l
(Cfo)tc	CFØTC	- -	CONTROL TAB OUTBOARD CHORD,			l
(bi) _{tc}	BITC	-	CONTROL TAB INBOARD SPAN LOCATION	x x		L
(bo) _{(C}	вфтс	-	CONTROL TAB OUTBOARD SPAN LOCATION	x		l
(C _{fi}) _{tt}	CFITT	- -	CONTROL TAB INBGARD CHORD, TRIM TAB		x	1
(C _b)tt	СЕФТТ	-	OUTBOARD CHORD, TRIM TAB		x	l
(b _i) _{tt}	BITT		INBOARD SPAN LOCATION TRIM TAB		x	1
(b _o) _{tt}	вфтт	-	OUTBOARD SPAN LOCATION, TRIM TAB		x	1
B ₁ B ₂ B ₃	B1 B2 B3	- -		x		1/DEG 1/DEG 1/DEG
B ₄ D ₁	B4 D1	_ _	SEE TABLE 11	x	×	1/DEG 1/DEG
D ₂ .	02 03	-	FOR DEFINITIONS	v	v	1/DEG 1/DEG 1/ £
Gc _{max} k R _L	GCMAX KS AL	-		X	x	F/A-DEG
η β Δ r	BGR DELR	- -		х х х		- -

1 IF THE SYSTEM HAS A SPRING, KS INPUT, THEN FREE STREAM DYNAMIC PRESSURE IS REQUIRED

TABLE 11 SYMBOL DEFINITION

$$A_{c} = \frac{S_{tc} \overline{S}_{tc}}{\overline{S}_{c} \overline{C}_{c}}$$

B₁ =
$$(\partial C_{h_c}/\partial \delta_c)_{\delta_{tc}, a_s, \delta_{tt}}$$
 = $(C_{h_{\delta}})_c$, 1/Deg (Datcom Section v.1.6.2)

$$B_2 = (\partial C_{h_c}/\partial \delta_{tc}) \delta_{c'} a_{s'} \delta_{tt}$$
, 1/Deg, user input.

B₃ =
$$\left(\frac{\partial C_{h_c}}{\partial a_s}\right) \delta_{c'} \delta_{tc'} \delta_{tt}$$
, $\left(\frac{C_{h_a}}{c'}\right)_{c'}$ 1/Deg (Datcom Section 6.1.6.1)

B₄ =
$$(\partial C_{h_c}/\partial \delta_{tt})\delta_{c'}\delta_{tc'}a_s$$
, 1/Deg, user input.

surface mean aerodynamic chord (movable surfaces are defined by their area aft of the hinge line, and the MAC is of that area)

$$D_1 = (\partial C_{h_{tc}}/\partial \delta_c) \delta_{tc'} a_s$$
, 1/Deg (User Input)

D₂ =
$$(\partial C_{h_{tc}}/\partial \delta_{tc})\delta_{c'a_{s}}$$
 = $(C_{h_{\delta}})_{tc}$, 1/Deg (Datcom Section 6.1.6.2)

D₃ =
$$\left(\frac{\partial C_{h_{tc}}}{\partial a_{s}}\right) \delta_{c'} \delta_{tc}$$
 = $\left(C_{h_{a}}\right)_{tc}$, 1/Deg (Datcom Section 6.1.6.1)

F_c control-column force (pull force is positive)

$$G_{c_{max}} = \frac{1}{57.3 \left(\frac{\partial x_c}{\partial \delta_c}\right)_{max}}$$
maximum stick gearing user input.

If $R_L = 0$, $G_{c_{max}}$ also is zero. In this case input $G_{tc_{max}} = G_{c_{max}} * \Delta_r$.

$$k = -\left(\frac{\partial M_{tc}}{\partial \delta_{tc}}\right)_{spring} \frac{1}{S_{tc}\overline{c}_{tc}}$$
 tab spring effectiveness

TABLE 11 SYMBOL DEFINITION (CONT'D)

- q local dynamic pressure
- R₁, R₂ shorthand notation for tab and main surface hinge moments and key linkage parameters, obtained from Table 12
- R_L aerodynamic boost link ratio, user input. (R_L \geq 0). To input R_L = ∞ , set R_L < 0.
- S() surface area (movable surfaces are defined by their area aft of the hinge line)
- as angle of attack of the surface to which the main control surface is attached, Deg
- $\beta = \left(\frac{\partial \delta_{tc}}{\partial \delta_{c}}\right) \text{ with } k = \infty \text{ control-tab gear ratio}$ free
- ⁸() surface deflection, positive for trailing edge down or to the left, Deg
- $\Delta_{\rm f}=-\delta_{\rm tc_{max}}/\delta_{\rm c_{max}}$ for a maximum control deflection (the value of $\Delta_{\rm f}$ is positive because $\delta_{\rm tc_{max}}$ and $\delta_{\rm c_{max}}$ Will have opposite signs), user input. When R_L = 0, $\Delta_{\rm f}$ = 1.0.

SUBSCRIPTS

- c main control surface
- s surface to which the main control surface is attached, i,e, horizontal tail, vertical tail, or wing
- tc control tab
- tt trim tab

TABLE 12 EQUATIONS FOR R1 AND R2

(DATCOM TABLE 6.3.4-b)

(EATCOM TABLE 8.5.4-0)					
SPECIFIC TYPE OF SYSTEM	LINKAGE		GE	R ₁	R ₂
GEARED TAB	-	000	F.	. 0	1
PURE DIRECT CONTROL	-	•	0	0	1
GEARED SPRING TAB	F	F	F	$\frac{(R_{L} + \Delta_{r})}{R_{L} + \frac{B_{2}}{A_{c}D_{2}} - \frac{k}{qD_{2}}(R_{L} - \beta)}$	$\frac{-(k/qD_2)(R_L + \Delta_7)}{R_L + \frac{B_2}{A_cD_2} - \frac{k}{qD_2} (R_L - \beta)}$
SPRING TAB	F	F	0	$\frac{(R_{L} + \Delta_{r})}{R_{L} + \frac{8_{2}}{A_{c}D_{2}} - \frac{k}{qO_{2}}(R_{L})}$	$R_{L} + \frac{\frac{-(k/qD_{2})(R_{L} + \Delta_{r})}{B_{2}}}{A_{c}D_{2}} - \frac{k}{qD_{2}} (R_{L})$
PLAIN LINKED TAB	F	0	G	$\frac{(R_L + \Delta_r)}{R_L + \frac{B_2}{A_c D_2}}$	0
GEARED FLYING TAB	0	F	F	$\frac{\Delta_r}{\frac{8_2}{A_c U_2} + \frac{k}{q O_2} \beta}$	$\frac{-(k/qD_2)\Delta_7}{\frac{8_2}{A_cD_2}+\frac{k}{qD_2}\beta}$
SPRING FLYING TAB	0	F	0	$\frac{\Delta_{r}}{\frac{82}{A_{c}D_{2}}}$	(k/qD ₂) Δ _τ
PURE FLYING TAB	0	0	0	Δ ₇ <u>B2</u> <u>Ac02</u>	0

[•] F DENOTES FINITE VALUE

3.5 GROUP IV INPUT DATA

Case control cards are provided to give the user case control and optional input/output flexibility.

All Datcom control cards must start in card Column 1. The control card name cannot contain any embedded blanks, unless the name consists of two words; they are then separated by a single blank. All but the case termination card (NEXT CASE) may be inserted anywhere within a case (including the middle of any namelist). Each control card is defined below and examples of their usage are illustrated in the example problems of Section 7.

3.5.1 Case Control

NAMELIST - When this card is encountered, the content of each applicable namelist is dumped for the case in the input system of units. This option is recommended if there is doubt about the input values being used, especially when the SAVE option has been used.

SAVE - When this control card is present in a case, input data for the case are preserved for use in the following case. Thus, data encountered in the following case will update the saved data. Values not input in the new case will remain unchanged. Use of the SAVE card allows minimum inputs for multiple case jobs. The total number of appearances of all namelists in consecutive SAVE cases cannot exceed 300; this includes multiple appearances of the same namelist. An error message is printed and the case is terminated if the 300 namelist limit is exceeded. Note, if both SAVE and NEXT CASE cards appear in the last input case, the last case will be executed twice.

The NACA, DERIV and DIM control cards are the only control cards affected by the SAVE card; i.e., no other control cards can be saved from case to case.

DIM FT When any of these cards are encountered, the input and output data are specified in the stated system of units. (See Table 8.) DIM FT is the default.

NEXT CASE - When this card is encountered, the program terminates the reading of input data and begins execution of the case. Case data are destroyed following execution of a case, unless a SAVE card is present. The presence of this card behind the last input case is optional.

3.5.2 Execution Control

TRIM - If this card is included in the case input, trim calculations will be performed for each subsonic Mach number within the case. A vehicle may be trimmed by deflecting a control device on the wing or horizontal tail or by deflecting an all-movable horizontal stabilizer.

<u>DAMP</u> - The presence of this card in a case will provide dynamicderivative results (for addressable configurations) in addition to the standard static-derivative output (see Figure 25).

NACA - This card provides an NACA airfoil section designation (or supersonic airfoil definition) for use in the airfoil section module. It is used in conjunction with, or in place of, the airfoil section characteristics namelists, Figure 8. The airfoil section module calculates the airfoil section characteristics designated in Figure 8, and is executed if either a NACA control card is present or the variable TYPEIN is defined in the appropriate section characteristic namelist (WGSCHR, HTSCHR, VTSCHR or VFSCHR). Note that if airfoil coordinates and the NACA card are specified for the same aerodynamic surface, the airfoil coordinate specification will be used. Therefore, if coordinates have been specified in a previous case and the SAVE option is in effect, TYPEIN must be set equal to "UNUSED" for the presence of an NACA card to be recognized for that aerodynamic surface. The airfoil designated with this card will be used for both panels of cranked or doubledelta lanforms.

I work of this control card and the required parameters are given below.

Card Column	Input(s)	Purpose
l thru 4	M.CA	The unique letters NACA
•		designate that an airfoil
		is to be defined
.5	Any delimeter	
6	W, H, V, or F	Planform for which the
		airfoil designation
		applies;
		Wing (W), Horizontal Tail
		(H), Vertical Tail (V), or
•		Ventral Fin (F)

7	Any delimeter	,
8	1, 4, 5, 6, S	Type of airfoil section;
		l-series (1), 4-digit (4),
		5-digit (5), 6-series (6),
		or supersonic (S)
9	Any delimeter	
10 thru 80	Designation	Input designation; columns
	•	are free-field (blanks are
		ignored)

Only fifteen (15) characters are accepted in the airfoil designation. The vocabulary consists of the numbers zero (0) through nine (9), the letter "A", and the characters ",", ".", "-", and "=". Any characters input that are not in the vocabulary list will be interpreted as the number zero (0).

Section designation input restrictions inherent to the Airfoil Section Module are presented in Table 13.

3.5.3 Output Control

<u>CASEID</u> - This card provides a case identification that is printed as part of the output headings. This identification can be any user defined case title, and must appear in card columns 7 through 80.

<u>DUMP NAME1, NAME2 ...</u> - This card is used to print the contents of the named arrays in the foot-pound-second system of units. The arrays that can be listed and definition of their contents are given in Appendix C. For example, if the control card read was "DUMP FLC, A" the flight conditions array FLC and the wing array A would be printed prior to the conventional output. If more names are desired than can fit in the available space on one card, additional dump cards may be included.

<u>DUMP CASE</u> - This card is similar to the "DUMP NAME1, ..." control card. When this card is present in a case, all the arrays (defined in Appendix C) that are used during case execution are printed prior to the conventional output. The values in the arrays are in the foot-pound-second system of units.

<u>DUMP INPT</u> - This card is similar to the "DUMP CASE" card except that it forces a dump of all input data blocks used for the case.

<u>DUMP IØM</u> - This card is similar to the "DUMP CASE" card except that all the output arrays for the case are dumped.

TABLE 13 AIRFOIL DESIGNATION USING THE NACA CONTROL CARD

INPUT NACA	NACA SERIES	
DESIGNATION	AIRFOIL	RESTRICTIONS
0012 0012.25	4-DIGIT 4-DIGIT	NONE NONE (NOTE: THICKNESS CAN BE FRACTIONAL ONLY FOR 4-DIGIT SERIES)
23118	5-DIGIT	NONE
2406—32	4-DIGIT Modified	POSITION OF MAXIMUM THICKN ESS MUST BE AT 20, 30, 40, 50 OR 60% CHORD
43006—6 <u>5</u>	5-DIGIT Modified	POSITION OF MAXIMUM THICKNESS MUST BE AT 20, 30, 40, 50 OR 60% CHORD
1 <u>6</u> –212	1-SERIES	X FOR MINIMUM PRESSURE MUST BE .6, .8 OR .9
64-005 64-205 A=0.6 63A005 652A215 A=0.6 65,2A215 A=0.6	6-SERIES	X FOR MINIMUM PRESSURE MUST BE .3, .4, .5 OR .6 (NOTE: THE PROGRAM DOES NOT DISTINGUISH BETWEEN A 64, 2—210 AND A 64 ₂ —210. DIFFERENCE IN COORDINATES BETWEEN THE TWO DESIGNATIONS IS NEGLIGIBLE)
\$-3-30.0-2.5-40.1 ①②③④	SUPERSONIC	1 SECTION TYPE 1 = DOUBLE WEDGE 2 = CIRCULAR ARC 3 = HEXAGONAL 2 DISTANCE FROM L.E. TO MAX THICKNESS, % CHORD 3 MAX. THICKNESS, % CHORD 4 FOR HEXAGONAL SECTIONS, LENGTH OF SURFACE AT CONSTANT THICKNESS, % CHORD (NOTE: ALL PARAMETERS CAN BE EXPRESSED TO 0.1%; "—" DELIMETER MUST BE USED)

<u>DUMP ALL</u> - This card is similar to the "DUMP CASE" card. Its use dumps all program arrays, even if not used for the case.

<u>DERIV RAD</u> - This card causes the static and dynamic stability derivatives to be output in radian measure. The output will be in degree measure unless this flag is set. The flag remains set until a DERIV DEG control card is encountered, even if "NEXT CASE" cards are subsequently encountered.

DERIV DEG - This card causes the static and dynamic stability derivatives to be output in degree measure. The remaining characteristics of this control card are the same as the DERIV RAD card. DERIV DEG is the default.

<u>PART</u> - This card provides auxiliary and partial outputs at each Mach number in the case (see Section 6.1.8). These outputs are automatically provided for all cases at transonic Mach numbers.

<u>BUILD</u> - This control card provides configuration build-up data. Conventional static and dynamic stability data are output for all of the applicable basic configuration combinations shown in Table 2.

<u>PLØT</u> - This control card causes data generated by the program to be written to logical unit 13, which can be retained for input to the Plot Module (described in Volume III). The form of this plot file is described in Section 5 of Volume III.

3.6 REPRESENTATIVE CASE SETUP

Figures 23 and 24 illustrate a typical case setup utilizing the namelists and control cards described. Though namelists (and control cards) may appear in any order (except for NEXT CASE), users are encouraged to provide inputs in the data groups outlined in this section in order to avoid one of the most common input errors - neglecting an important namelist input. The user's kit (Appendix D) has been designed to assist the user in eliminating many common input errors, and its use is encouraged.

FIGURE 24 TYPICAL "STACKED CASE" SETUP

BASIC CONFIGURATION MODELING TECHNIQUES

4.1 COMPONENT CONFIGURATION MODELING

Use of the Datcom methods requires engineering judgement and experience to properly model a configuration and interpret results. The same holds true in the use of the Digital Datcom program. As a convenience to the user, the program performs intermediate geometric computations (e.g., area and aspect ratio) required in method applications. The user can retrieve the values used for key geometric parameters by means of the PART and/or DUMP options, Section 3.5. The geometric inputs to the Digital Datcom program are relatively simple except for the judgement required in best representing a particular configuration. This section describes are geometry modeling techniques to appropriately model a configuration.

4.1.1 Body Modeling

The basic body geometry parameters required (regardless of speed regime) consist of the longitudinal coordinates, x_1 , with corresponding planform half widths, R_1 , peripheries, P_1 , and/or cross-sectional areas, S_1 . These values are usually used in a linear sense (e.g., the trapezo dal rule is used to integrate for planform area, $S_p = 2 \int_0^{x_n} R_1 \, dx$). This implies that body-shape parameters are linearly connected. However, geometric derivatives, such as $(dS/dx)_1$, are obtained from quadratic interpolations. Proper modeling techniques which reflect a knowledge of method implementation, when used in conjunction with the PART and DUMP options, greatly enhance the program capability and accuracy.

Body methods for lift-curve slope, pitching-moment slope and drag coefficient in the transonic, supersonic, and hypersonic speed regimes require the body to be synthesized from a combination of body segments. The body segments consist of a nose segment, an afterbody segment, and a tail segment. However, in these speed regimes, lift and pitching-moment coefficients versus angle of attack are defined as functions of the body planform characteristics, and therefore are not necessarily a function of the body-segment parameters.

The program performs the configuration synthesis computations as described below. The body input parameters R, P, and S (defined in Figure 6) can reflect actual body contours. Digital Datcom will interpolate the R

respectively. Using the shape parameters B_{nose} and B_{tail} it will synthesize an "equivalent" body from the various possibilities shown in Figure 6. For example, in the center body $X = {}^{\ell}_{N}$ to $X = {}^{\ell}_{N} + {}^{\ell}_{a}$ will be treated as a cylinder with a fineness ratio of $2{}^{\ell}_{a}/(d_{N}+d_{1})$, the nose will be the shape specified by B_{nose} with a fineness ratio of ${}^{\ell}_{N}/d_{N}$, etc. Thus, it is up to the user to choose ${}^{\ell}_{N}$, ${}^{\ell}_{a}$, ${}^{\ell}_{a}$, ${}^{\ell}_{n}$, and ${}^{\ell}_{a}$ to derive a reasonable approximation of the actual body.

Digital Datcom requires synthesized body configurations to be either nose-alone, nose-afterbody, nose-afterbody-tail, or nose-tail (see Figure 6). The shape of the body segments is restricted as follows: nose and tail shapes must be either an ogive or cone, afterbodies must be cylindrical while tails may be either boattailed or flared. Additional body namelist inputs are required to define these body segments and consist of nose- and tail-shape parameters BNØSE and BTAIL and nose and afterbody length parameters BLN and BLA. In the hypersonic speed regime, the effects of nose bluntness may be obtained by specifying DS, the nose bluntness diameter

For an example of inputs for BLN ($^{\ell}N$) and BLA ($^{\ell}A$) is required in speed regimes other than subsonic, the reader is directed to Figure 6. Body diameters at the various segment intesections, d_N , d_1 , and d_2 , are obtained from linear interpolation. The tail length, $^{\ell}A$ BT, is obtained by subtracting segments $^{\ell}N$ and $^{\ell}A$ from the total body length.

Most Digital Datcom analyses assume bodies are axisymmetric. Users may obtain limited results for cambered bodies of arbitrary cross section by specifying the BØDY namelist optional inputs Z_U and Z_L . This option is restricted to the longitudinal stability results in the subsonic speed regime. At speeds other than subsonic, Z_U and Z_L values are ignored and axisymmetric body results are provided. It is recommended that the reference plane for Z_U and Z_L inputs be chosen near the base area centroid.

The body modeling example problem (Section 7, problem 1) was selected specifically to illustrate modeling techniques and relevant program operations. They include:

- o Choice of longitudinal coordinates X_i that reflect body curvature and critical body intersections, i.e., wing-body intersection, and body segmentation, if required.
- o Subsonic cambered body modeling.

o Use of the DUMP option so that key parameters can be obtained with the aid of Appendix C.

4.1.2 Wing/Tail Modeling

The state of the s

Input data for wings, horizontal tail, vertical tails and ventral fins have been classified as either planform data or as section characteristic data, as shown in Figures 7 and 8 of Section 3. Twin-vertical panel planform input data is shown in Figure 15.

Classification of nonstraight-tapered wings and horizontal tails as either cranked (aspect ratio > 3) or double delta (aspect ratio < 3) is relevant to only the subsonic speed regime. In this speed regime, the appropriate lift and drag prediction methods depend on the classification of the lifting surface. Digital Datcom executes subsonic analyses according to the user-specified classification regardless of the surface aspect ratio. However, if the surface is inappropriately designated, a warning message is printed.

Dihedral angle inputs are used primarily in the lateral stability methods. The longitudinal stability methods reflect only the effects of dihedral in the downwash and ground effect calculations. The direct effects of dihedral on the primary lift of horizontal surfaces are not defined in Datcom and are therefore not included in Digital Datcom.

Digital Datcom wing or horizontal tail alone analysis requires the exposed semispan and the theoretical semispan to be set to the same value in namelist WGPLNF and HTPLNF. The input wing root chord should be consistent with the chosen semispan. The reference parameters in namelist OPTINS should be used to specify reference parameters corresponding to other than the theoretical wing planform. If the reference parameters are not specified, they are evaluated using the theoretical wing inputs and the reference area is set as the wing theoretical area, the longitudinal reference length as the wing mean aerodynamic chord, and the lateral reference length is set as the wing span.

Horizontal tail input parameters SVWB, WVB, and SVHB, as well as vertical tail input parameters SHB, SEXT, and RLPH, are required only for the supersonic and hypersonic speed regimes. They are used in calculation of lateral-stability derivatives. If these data are not input, the program will calculate them, but will fail if any part of the exposed root chord lies off of the body; lateral stability calculations are not performed if this occurs.

Two-dimensional airfoil section characteristic data for wings and tails are input via namelists WGSCHR, HTSCHR, VTSCHR, and VFSCHR, or may be calculated using the airfoil section module. On occasion, the section characteristics cannot be explicitly defined because airfoil sections either vary with span (an average airfoil section may be specified), or the planform is not straight tapered and has different airfoil sections between the panels. In such circumstances, inputs should be estimated after reviewing existing airfoil test data. Sensitivity of program results to the estimated section characteristics can be readily evaluated by performing parametric studies utilizing the SAVE and NEXT CASE options defined in Section 3.5. Users are warned that airfoil sensitivities do exist for low Reynolds numbers, i.e., on the order of 100,000. These namelists can ilso be used to specify the aspect ratio criteria using "ARCL" (Table 9).

Planform geometry, section characteristic parameters, and synthesis dimensions for twin vertical panels are input via namelist TVTPAN. The effects of such panels are reflected in only the subsonic lateral-stability output. The panels may be located either on the wing or on the horizontal tail.

4.2 MULTIPLE COMPONENT MCDELING

Combinations of aerodynamic components must be synthesized in namelist SYNTHS. However, the program makes no cross checks in assembly of components for configuration analysis. The user must confirm the geometry inputs to assure consistency of dimensions and component locations in total configuration representation.

4.2.1 Wing-Body/Tail-Body Modeling

Body values employed in wing-body computations are not the same as body-alone results but are obtained by performing body-alone analysis for that portion of the body forward of the exposed root chord of the wing. User supplied body data, input via the namelist EXPRnn, will be used in lieu of the "nose segment" data calculated. Carryover factors are a function of the ratio of body diameter to wing span, as obtained from the wing input data, i.e., the body diameter is taken as twice the difference of the exposed semispan and the theoretical semispan. Hence, the body radius input in namelist BØDY does not affect the interference parameters.

4.2.2 Wing-Body-Tail Modeling

A conventional "aircraft" configuration is modeled using the body, wing, horizontal tail, and vertical tail modeling techniques previously described. Wing downwash data are required to complete analysis of configurations with a wing and horizontal tail. Subsonic and supersonic downwash data are calculated for straight-tapered wings. For other wing planforms, or at transonic Mach numbers, the downwash data (q_H/q_{oo}) , ϵ , and $d\epsilon/d\alpha$) must be supplied using the experimental data substitution option, though two alternatives are suggested:

- a. Actual data, or from a wing-body-tail configuration which has an "equivalent" struight tapered wing, or
- b. Defining an "equivalent" straight tapered wing and substituting the wing-body results obtained from the previous Digital Datcom run to obtain the best analytical estimate of the configuration.

Body-canard-wing configurations are simulated using the standard body-wing-tail inputs. The forward surface (canard) is input as the wing, and the aft lifting surface as the horizontal tail. Digital Datcom checks the relative span of the wing and horizontal tail to determine if the configuration is a conventional wing-body-tail or a canard configuration.

4.2.3 Configuration Build-up Considerations

Section 3.5 describes multiple case control cards which simplify inputs for parametric and configuration build-ups. There are a few items to keep in mind. The effect of omitting an input variable or setting its value to zero may not be the same, since all inputs are initialized to "UNUSED," 1.0E-60 for CDC computers. However, the "UNUSED" value may be used to give the effect of an input variable being omitted. For example, if "KSHARP" in namelist WGSCHR was specified in a previous SAVE case, a subsequent case could specify "KSHARP = 1.0E-60" (for CDC computers) which would result in KSHARP being omitted in the subsequent case. In many places Digital Datcom uses the presence of a namelist for program control. For example, the program assumes a body has been input if the namelist BØDY exists in a case. The effects of a presence of a namelist, through case input or a SAVE card, cannot be eliminated even if all input values are set to "UNUSED." The only exception to this rule involves high-lift and control input. Either namelist SYMFLP or ASYFLP may be specified in a case, but not both. In a case

sequence involving namelist SYMFLP and a SAVE card, followed by another case where ASYFLP is specified, the ASYFLP analysis will be performed and the previous SYMFLP input ignored.

4.3 DYNAMIC DERIVATIVES

Digital Datcom computes dynamic derivatives for body, wing, wing-body, and wing-body-tail configurations for subsonic, transonic, and supersonic speeds. In addition, body-alone derivatives are available at hypersonic speeds. There is no special namelist input associated with dynamic derivatives. Use of the DAMP control card discussed in Section 3.5 will initiate computation. If experimental data are input, the dynamic derivative methods will employ the relevant experimental data. Dynamic derivative solutions are provided for basic geometry only, and the effects of high-lift and control devices are not recognized.

The experimental data option of the program permits the user to substitute experimental data for key static stability parameters involved in dynamic derivative solutions such as body C_L , wing-body C_L , etc. Any improvement in the accuracy of these parameters will produce significant improvement in the dynamic stability estimates. Use of experimental data substitution for this purpose is strongly recommended.

4.4 TRIM OPTION

Digital Datcom provides a trim option that allows users to obtain longitudinal trim data. Two types of capability are provided: control device on wing or tail (Section 3.4) and the all-movable horizontal stabilizer. Trim with a control device on the wing or tail is activated by the presence of the namelist SYMFLP (Section 3.4) and TRIM control card (Section 3.5) in the same case. Output consists of aerodynamic increments associated with each flap deflection; similar output is provided at trim deflection angles. The trim output is generated as follows: the undeflected total configuration moment at each angle of attack is compared with the incremental moments generated from SYMFLP input. Once the incremental moment is matched, the corresponding deflection angle is the trim deflection angle. The trim deflection is then used as the independent variable in table look-ups for the remaining increments, such as C_L and $C_{D_{\frac{1}{2}}}$. The user should specify a liberal range of flap deflection angles when using the control device trim option.

4.5 SUBSTITUTION OF EXPERIMENTAL DATA

Users have the option of substituting certain experimental data that will be used in lieu of Digital Datcom results. The experimental data are used in subsequent configuration analyses, e.g., body data are used in the wing-body and wing-body-tail calculations. Experimental data are input via namelist EXPRnn, Figure 11. All specified parameters must be based on the same reference area and length used by Digital Datcom.

In the transonic Mach regime, some Datcom methods are available that require user supplied data to complete the calculations. For example, Datcom methods are given that define wing $C_{L_{\rm c}}/C_{L}$ and $C_{D_{\rm c}}/C_{L}^2$ although methods are not available for $C_{\rm L}$. If the wing lift coefficient is supplied using experimental data substitution, $C_{\rm c}$ and $C_{\rm D}$ can be calculated at each angle of attack for which $C_{\rm L}$ is given. The additional transonic data that can be calculated, and the "experimental" data required, are defined in Figure 10.

SECTION 5

ADDITIONAL CONFIGURATION MODELING TECHNIQUES

5.1 HIGH-LIFT AND CONTROL CONFIGURATIONS

Control-device input data for symmetrical and asymmetrical deflections are contained in namelist SYMFLP and ASYFLP, respectively. Analysis is limited to either symmetrical or asymmetrical results in any one case. Multiple case runs involving SAVE cards, may interchange symmetrical and asymmetrical analyses from case to case. Only one control device, on either the wing or horizontal tail, may be analyzied per case. If a wing or wingbody case is run, flap input automatically refers to the wing geometry. However, if a wing-body-horizontal-tail case is input, flap input data refer to the horizontal tail. Multiple-device analysis must be performed manually by using the experimental-data input option. Symmetrical and asymmetrical flap analyses (namelists SYMFLP and ASYFLP) are not performed in the hypersonic speed regime (hypersonic flap effectiveness inputs are made via namelist HYPEFF). No distinction is made between high lift devices and control devices within the program. For instance, trim data may be obtained with any device for which the pitching moment increment is output, with the exception of leading edge flaps. Jet flap analysis assumes the flaps are on the wing and the increments are for a wing-body configuration.

5.2 POWER AND GROUND EFFECTS

Input parameters required to calculate the effects of propeller power, jet power, and ground proximity on the subsonic longitudinal-stability results are input via namelists PRØPWR, JETPWR, and GRNDEF. The effects of power or ground proximity on the subsonic longitudinal stability results may be obtained for any wing-body or wing-body-horizontal tail-and/or vertical-tail configuration. Output consists of lift, drag, and pitching moment coefficients that include the effects of power or ground proximity. Ground effect output may be obtained at a maximum of ten different ground heights. It should be noted that the effects of ground height usually become negligible when the ground height exceeds the wing span.

The effects of ground proximity on a wing-body configuration with symmetrical flaps can be calculated for as many as nine flap deflections at each ground height. The required data are input via namelists GRNDEF and SYMFLP.

5.3 LOW-ASPECT-RATIO WING OR WING-BODY

The Datcom provides special methods to analyze low aspect ratio wing and wing-body combinations (lifting-body vehicles) in the subsonic speed regime. Parameters required to calculate the subsonic longitudinal and lateral results for lifting bodies are input via namelist LARWB. Digital Datcom output provides longitudinal coefficients C_L , C_D , C_N , C_A , and C_m and the derivatives C_{L_α} , C_{m_α} , C_{Y_R} , and C_{Q_α} .

5.4 TRANSVERSE-JET CONTROL EFFECTIVENESS

A flat plate equipped with a transverse-jet control system and corresponding input data requirements for namelist TRNJET is shown in Figure 21. The free stream Mach number, Reynolds number, and pressure are defined via namelist FLTCON, Figure 3. Estimates for the required control force can be made on the assumption that the center of pressure is at the nozzle. The predicted center of pressure location is calculated by the program and obtained by dumping the JET array. If the calculated center of pressure location disagrees with the assumption, a refinement of input data may be necessary.

5.5 FLAP CONTROL EFFECTIVENESS AT HYPERSONIC SPEEDS

A flat plate with a flap control is shown in Figure 22 along with input namelist HYPFLP. Force and moment data are predicted assumming a two-dimensional flow field. Oblique shock relations are used in describing the flow field.

SECTION 6

DEFINITION OF OUTPUT

Digital Datcom results are output at the Mach numbers specified in namelist FLTCON. At each Mach number, output consists of a general heading, reference parameters, input error messages, array dumps, and specific aerodynamic characteristics as a function of angle of attack and/or flap deflection angle. Separate output formats are provided for the following sets of related aerodynamic data: static longitudinal and lateral stability, dynamic derivatives, high lift and control, trim option, transverse-jet effectiveness, and control effectiveness at hypersonic speeds. Since computer output is limited symbolically, definitions for the output symbols used within the related output sets are given. The Datcom engineering symbol follows the output symbol notation when appropriate. Unless otherwise noted, all results are presented in the stability axis coordinate system.

6.1 STATIC AND DYNAMIC STABILITY OUTPUT

The primary outputs of Digital Datcom are the static and dynamic stability data for a configuration. An example of this output is shown in Figure 25. Definitions of the output notations are given below.

6.1.1 General Headings

Case identification information is contained in the cutput heading and consists of the following: the version of Datcom from which the program methodologies are derived, the type of vehicle configuration (e.g. body alone or wing-body) for which aerodynamic characteristics are output, and supplemental user-specified case identification information if the CASEID control card is used.

6.1.2 Reference Parameters

Reference parameters and flight-condition output are defined as follows:

- o MACH NUMBER Mach at which output was calculated. This parameter is user-specified in namelist FLTCON, or calculated from the altitude and velocity inputs.
- o ALTITUDE Altitude (if user input) at which Reynolds number was calculated. This optional parameter is user specified in namelist FLTCON.

AUTOMNTED STABILLIY MAD CONTROL HETHODS PER APRIL, 1976 VERSION OF DATCON CHARACTERISTICS AT ANGLE OF ATTACK AND IN SIDESLIP HING-DODY COMFIGURATION

5	9			
F. CENTER UERT	0.00		5	5.5326-04 5.5326-04 7.126-03 7.236-03 7.146-03 7.6196-03
1 <u>8</u>	9		Ū	5.532E-04 -5.532E-04 -1.12E-03 -2.229E-03 -4.31E-03 -4.619E-03 -4.67E-03
SIONS NOMENT HORIZ FT	2.600			
REFERENCE DIMENSIONS REFERENCE LENGTH NOMENI LONG. LAT. MOREI FT FT FT	3.000		2	- 1 . 602E - 1
	Ä	DEGREE 1		
FEBER 986	. 622	2	3	1.7626-03
8-		AT 1 UE	•	7
AEF. AREA FT882	2.250	BERIUNTIVE (PER	Ş	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	••		5	**************************************
			_	~~~~~~~~ ~~~~~~~~~~
1 2 3 L	£-06		3	20-30-30-30-30-30-30-30-30-30-30-30-30-30
REVIOL DS MUIBER 1/FT	2600E + 06	•		222233
¥			X	
TEPERATURE BEG R			5	00000N 00000N 00000N
•				
COMBITIONS PRESSURE LB/FIREZ			3	
			5	20000000000000000000000000000000000000
11.1947 11.77 EC			J	• • • • • • • • • • • • • • • • • • • •
MELOC!			ಕ	767 KR 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
MACH ALTITUDE UEL				CZCZBZZZZZ
ALTITUBE FT				666666
MUNICH	3		A. P. S.	********

AUTOMATED STABILLTY AND CONTROL HETHODS PER APRIL 1 'S VERSION OF DATCON BYWANIC BERIVATIVES WING-BODY CONFIGURATION

MACH	MACH ALTITUDE VEL	8	5 T	FLIGHT CONDITIONS	TEMPERATURE	T. C. E.	RE YNOL DS			METERENCE DIMENSIONS	ENCE DIM	ENSIONS NOMENT	REF.	MEF. CENTER
	t	71/SEC	3	LBAFTOOZ	966 #		141	F1 2 2 2	e ne	1000. FT . FT		# T T		2 2 2
009			. •			DVMMIC	9-MANIC DERIUATIVES (PER DEGREE)	2.25U	مما	220	3.000	2.600	_	0.000
		2	9	•	ACCELERATION	ION		9NI 1704	: 1 1	****				į
2	9		2	•	CLAB		3	8		•	5		5	
8.8	3.60-62	•	3.010E-02			rg.	-5.150E-	13 -4.200E-04	.	1.7106-05		•	-6.158E-04	E-0*
8		-			-	•	-5.1506-03	83 4.277E-04	*0-	-1.68VE-05	-6.000E-05	46-65 46-65	6.15BE-0	£-0*
3							-5.163E-0	•	ş	-3.751E-05		·6-0*	1.233	.233E-03
							- 1755-E	_	Ş	-1 . 1 30E -04	_	7396-04	2.454E-0	E-03
20.71							7.87	_	Ş	-4.015E-04	-5.252E-04	2E-04	3.6:96-0	E-03
3							3.0076-0	•	ő	-9.0436-04		2E-04	4.472E-0	E-03
							-1.16%-03	_	ç	-1.702E-03	-9.1546-04	*E-0*	4.908E-03	£-03
							9.1766-04	04 B.727E-03	-03	-2.2246-03		1E-0	4.846E-03	E-03

EES NOW PRINTES LINEN NO DATCON NETHODS EXIST

FIGURE 25 DIGITAL DATCOM STATIC AND DYNAMIC STABILITY OUTPUT

- o VELOCITY Freestream velocity (if user input) at which Mach number and Reynolds number was calculated. This optional parameter is user specified in namelist FLTCØN.
- o PRESSURE Freestream atmospheric pressure at which output was calculated (function of altitude). This parameter can also be user specified in namelist FLTCON.
- o TEMPERATURE Freestream atmospheric temperature at which output was calculated (function of altitude). This parameter can also be user specified in namelist FLTCON.
- o REYNOLDS NO. This flight condition parameter is the Reynolds number per unit length and is user-specified (or computed) in namelist FLTCON.
- o REF. AREA Digita! vatcom aerodynamic characteristics are based on this reference area. It is either user-specified in namelist OPTINS or is equal to the planform area of the theoretical wing.
- o REFERENCE LENGTH LONG. The Digital Datcom pitching moment coefficient is based on this reference length. It is either user-specified in namelist ØPTINS or is equal to the mean aerodynamic chord of the theoretical wing.
- o REFERENCE LENGTH LAT. The Digital Datcom yawing-moment and rolling moment derivatives are based on this reference length.

 It is either user-specified in namelist OPTINS or is set equal to the wing span.
- $^{\rm O}$ MOMENT REF. CENTER The moment reference center location for vehicle moments (and rotations). It is user-specified in namelist SYNTHS and output as $X_{\rm CG}$ (HORIZ) and $Z_{\rm CG}$ (VERT).
- o ALPHA This is the angle-of-attack array that is user specified in namelist FLTCON. The angles are expressed in degrees.

6.1.3 Static Longitudinal and Lateral Stability

Not all of the static aerodynamic characteristics shown in Figure 25 are calculated for each combination of vehicle configuration and speed regime, because Datcom methods are not always available. Aerodynamic characteristics that are available as output from Digital Datcom are presented in Table 2 as a function of vehicle configuration and speed regime. Additional constraints are imposed on some derivatives; the user should consult the

Methods Summary in Section 1 of the USAF Stability and Control Datcom Handbook. The stability derivatives are expressed per degree or per radian at the users option (see Section 3.5).

- o CD C_D Vehicle drag coefficient based on the reference area and presented as a function of angle of attack. If Datcom methods are available to calculate C_{D_O} but not to calculate C_D versus α , the value of C_{D_O} is printed as output at the first alpha. C_D is positive when the drag is an aft acting load.
- o CL C_L Vehicle lift coefficient based on the reference area and presented as a function of angle of attack. C_L is positive when the lift is an up acting load.
- o CM $C_{\rm m}$ Vehicle pitching-moment coefficient based on the reference area and longitudinal reference length and presented as a function of angle of attack. Positive pitching moment causes a nose-up vehicle rotation.
- o CN C_N Vehicle (body axis) normal-force coefficient based on the reference area and presented as a function of angle of attack. $C_N^{\frac{1}{12}}$ is positive when the normal force is in the +Z direction. Refer to Figure 5 for Z-axis definition.
- o CA C_A Vehicle (body axis) axial-force coefficient based on the reference area and presented as a function of angle of attack. C_A is positive when the axial force is in the +X direction. Refer to Figure 5 for X-axis definition.
- o XCP $X_{C ext{-}p}$. The distance between the vehicle moment reference center and the center of pressure divided by the longitudinal reference length. Positive $X_{C ext{-}p}$ is a location forward of the center of gravity. If output is given only for the first angle of attack, or for those cases where pitching moment (C_m) is not computed, the value(s) define the aerodynamic-center location; i.e., $X_{C ext{-}p}$. $= dC_m/dC_L = (X_{CG}-X_{aC})/\overline{c}$.
- o CLA $C_{L_{\alpha}}$ Derivative of lift coefficient with respect to alpha. If $C_{L_{\alpha}}$ is output versus angle of attack, these values correspond to numerical derivatives of the lift curve. When a single value of $C_{L_{\alpha}}$ is output at the first angle of attack, this output is the linear-lift-region derivative. $C_{L_{\alpha}}$ is based on the reference area.

- o CMA $C_{m_{\alpha}}$ Derivative of the pitching-moment coefficient with respect to alpha. If $C_{m_{\alpha}}$ is output versus angle of attack, the values correspond to numerical derivatives of the pitching-moment curve. When a single value of $C_{m_{\alpha}}$ is output at the first angle of attack, this output is the linear-lift-region derivative. $C_{m_{\alpha}}$ is basea on the reference area and longitudinal reference length.
- o CYB C_{Y_β} Derivative of side-force coefficient with respect to sideslip angle. When C_{Y_β} is defined independent of the angle of attack, output is printed at the first angle of attack. C_{Y_β} is based on the reference area.
- o CNB $C_{n_{\beta}}$ Derivative of yawing-moment coefficient with respect to sideslip angle. When $C_{n_{\beta}}$ is defined independent of angle of attack, output is printed at the first angle of attack. $C_{n_{\beta}}$ is based on the reference area and lateral reference length.
- o CLB $C_{\ell_{\beta}}$ Derivative of rolling-moment coefficient with respect to sideslip angle presented as a function of angle of attack. $C_{\ell_{\beta}}$ is based on the reference area and lateral reference length.
- o Q/QINF q_H/q_{∞} Ratio of dynamic pressure at the horizontal tail to the freestream value presented as a function of angle of attack. When a single value of q_H/q_{∞} is output at the first angle of attack, this output is the linear-lift-region value.
- o EPSLON €H Downwash angle at horizontal tail expressed in degrees.

 Downwash angle has the same algebraic sign as the lift coefficient.

 Positive downwash implies that the local angle of attack of the horizontal tail is less than the free-stream angle of attack.
- o D(EPSLON)/D(ALPHA) ∂ε/∂α Derivative of downwash angle with respect to angle of attack. When a single value of D(EPSLON)/D(ALPHA) is output at the first angle of attack, it corresponds to the linear-lift-region derivative.

6.1.4 Dynamic Derivatives

Not all of the dynamic derivatives shown in Figure 25 are calculated for each combination of vehicle configuration and speed regime because of Datcom limitations. Aerodynamic characteristics that are available as output from Digital Datcom are presented in Table 2 as a function of vehicle configuration and speed regime. See the Datcom Handbook, Section 1, for additional

restrictions. Dynamic stability derivatives are expressed per degree or per radian at the users option (see Section 3.5).

- o CLQ C_{L_q} = $\partial C_L/\partial (q\bar{c}/2V_{\infty})$ Vehicle pitching derivative based on the product of reference area and longitudinal reference length.
- o CMQ $C_{m_q} = \partial C_m/\partial (q\bar{c}/2V_{\infty})$ Vehicle pitching derivative based on the product of reference area and the square of the longitudinal reference length.
- c CLAD $C_{L_{\alpha}} = \partial C_{L}/\partial(\alpha c/2V_{\infty})$ Vehicle acceleration derivative based on the product of reference area and longitudinal reference length.
- o CMAD $C_{m_{\dot{\alpha}}} = \partial C_m/\partial (\dot{\alpha}\bar{c}/2V_{\infty})$ Vehicle acceleration derivative based on the product of reference area and the square of the longitudinal reference length.
- o CLP $C_{\ell_p} = \partial C_{\ell}/\partial (pb/2V_{\infty})$ Vehicle rolling derivative based on the product of reference area and the square of the lateral reference length.
- o CYP $C_{Y_p} = \partial C_Y/\partial (pb/2V_{\infty})$ Vehicle rolling derivative based on the product of reference area and lateral reference length.
- o CNP C_{n_p} = $\partial C_n/\partial (pb/2V_{\infty})$ Vehicle rolling derivative based on the product of reference area and the square of the lateral reference length.
- o CNR $C_{n_r} = \partial C_n/\partial (rb/2V_{\infty})$ Vehicle yawing derivative based on the product of reference area and the square of the lateral reference length.
- o CLR $C_{\ell_T} = \partial C_{\ell}/\partial (rb/2V_{\infty})$ Vehicle rolling derivative based on the product of reference area and the square of the lateral reference length.

6.1.5 High Lift and Control

This output consists of two basic categories: symmetrical deflection of high lift and/or control devices, and asymmetrical control surfaces. The high lift/control data follow the same sign convention as the static aerodynamic coefficients. Available output is presented in Table 3 as a function of speed regime and control type. Users are urged to consult the Datcom for limitations and constraints imposed upon these characteristics. Output obtained from symmetrical flap analysis are as follows.

- o DELTA δ_f Control-surface streamwise deflection angle. Positive trailing edge down. Values of this array are user-specified in namelist SYMFLP.
- o D(CL) Δ C_L Incremental lift coefficient in the linear-lift angle-of-attack range due to deflection of control surface. Based on reference area and presented as a function of deflection angle.
- o D(CM) ΔC_m Incremental pitching-moment coefficient due to control surface deflection valid in the linear lift angle-of-attack range. Based on the product of reference area and longitudinal reference length. Output is a function of deflection angle.
- o D(CL MAX) Δ C_{Lmax} Incremental maximum-lift coefficient. Based on reference area and presented as a function of deflection angle.
- o D(CD MIN) $\Delta C_{D_{\min}}$ Incremental minimum drag coefficient due to control or flap deflection. Based on reference area and presented as a function of deflection angle.
- o D(CDI) ΔCD₁ Incremental induced-drag coefficient due to flap deflection based on reference area and presented as a function of angle-or-attack and deflection angle.
- o (CLA)D $(C_{L_{\alpha}})_{\delta}$ Lift-curve slope of the deflected, translated surface based on reference area and presented as a function of deflection angle.
- o (CH)A C_{h_α} Control-surface hinge-moment derivative due to angle of attack based on the product of the control surface area and the control surface chord, S_cC_c . A positive hinge moment will tend to rotate the flap trailing edge down.
- o (CH)D $C_{h_{\delta}}$ Control-surface hinge-moment derivative due to control deflection based on the product of the control surface area and the control surface chord. A positive hinge moment will tend to rotate the flap trailing edge down.

Output obtained from asymmetrical control surfaces are given below. Left and right are related to a forward facing observer:

o DELTAL - δ_L - Left lifting surface streamwise control deflection angle. Positive trailing edge down. Values in this array are user-specified in namelist ASYFLP.

- o DELTAR $^{\delta}$ R Right lifting-surface streamwise control deflection angle. Positive trailing edge down. Values in this array are user-specified in namelist ASYFLP.
- o XS/C x_8/c Streamwise distance from wing leading edge to spoiler lip. Values in this array are input via namelist ASYFLP, Figure 19.
- o ${\rm HS/C} {\rm h_g/c}$ Projected height of spoiler measured from and normal to airfoil mean line. Values in this array are input via namelist ASYFLP.
- o DD/C δ_d /c Projected height of deflector for spoiler-slot-deflector control. Values in this array are input via namelist ASYFLP.
- o DS/C $\delta_{\rm g}/c$ Projected height of spoiler control. Values in this array are input via namelist ASYFLP.
- o (CL) ROLL C_{ℓ} Incremental rolling moment coefficient due to asymmetrical deflection of control surface based on the product of reference area and lateral reference length. Positive rolling moment is right wing down.
- o CN $C_{\rm n}$ Incremental yawing-moment coefficient due to asymmetrical deflection of control surface based on the product of reference area and lateral reference length. Positive yawing moment is nose right.

6.1.6 Trim Option

The Digital Datcom trim option provides subsonic longitudinal characteristics at the calculated trim deflection angle of the control device. The trim calculations assume unaccelerated flight; i.e., the static pitching moment is set to zero without accounting for any contribution from a non-zero pitch rate. Trim output is also provided for an all-movable horizontal stabilizer at subsonic speeds. These data include untrimmed stabilizer coefficients C_D , C_L , C_m , and the hinge moment coefficient; stabilizer trim incidence and trimmed stabilizer coefficients C_D , C_L , C_m , and the hinge-moment coefficient; wing-body-tail C_D and C_L with stabilizer at trim deflection angle. Additional Digital Datcom symbols used in output are as follows:

o HM - Stabilizer hinge-moment coefficient based on the product of reference area and longitudinal reference length. Positive hinge moment will tend to rotate the stabilizer leading edge up and trailing edge down. ALIHT - Stabilizer incidence required to trim expressed in degrees.
 Positive incidence, or deflection, is trailing edge down.

The all-movable horizontal stabilizer trim output is presented as a function of angle of attack

6.1.7 Control at Hypersonic Speeds

Two types of control analyses are available at hypersonic speeds. They are transverse-jet control and flap effectiveness.

Data output from the hypersonic flap methods are incremental normal- and axial-force coefficients, associated hinge moments, and center-of-pressure location. These data are found from the local pressure distributions on the flap and in regions forward of the flap. The analysis includes the effects of flow separation due to windward flap deflection. This is done by providing estimates for separation induced-pressures forward of the flap and reattachement on the flap. The users may specify laminar or turbulent boundary layers.

The transverse control jet method requires a user-specified time history of local flow parameters and control force required to trim or maneuver. With these data, the minimum jet plenum pressure necessary to induce separation is calculated. This minimum jet plenum pressure is then employed to calculate the nozzle throat diameter and the jet plenum pressure and propellant weight requirements to trim or maneuver the vehicle. Typical output can be seen in example problem 10.

6.1.8 Auxiliary and Partial Output

Auxiliary outputs consist of drag breakdown data, and basic configuration geometric properties. Partial outputs consist of component and vortex interference factors, effect of geometric parameters (e.g., dihedral and wing twist) on static and dynamic characteristics, canard effective downwash, data for transonic fairings and intermediate data that require user supplied data to complete (e.g. C_{ℓ_S}/C_L). Typical output is shown in Figure 26.6.1.9 Effective Downwash

Datcom methods for configurations where the forward lifting-surface span is less than 1.5 times the aft lifting-surface span do not explicitly provide estimates for either the downwash angle or gradiant. However, Digital Datcom provides "effective" values for these quantities. The canard effective downwash angle and gradient are defined as downwash data required to produce the correct wing-body-tail lift characteristics when applied to conventional

AUTOMATED STADILITY AND CONTROL METHODS PER AFRIL 1974 VERSION OF COMPIGURATION AUXILITARY AND PARTIAL COMPIGURATION MINISTRATION AND AUTOMATION COPPIGURATION BUILDUP, EXAMPLE PROBLEM 3, CASE 1 VELOCITY PRESSURE TEMPERATURE REVNOLDS REF. RINGHERS REF. RINGHERS REF. RINGHERS REF. RINGHERS REF. REFERENCE DIMENSIONS REPERFNCE LENGTH POMENT REP. CENTER LONG. LAT. 19812 VERT FT FT FT FT FT FT. .024 3,000 4,600 0.000 MINDER ALTITUDE PT/SEC .800 BASIC BODY PROPERTIES ZERO LIFT DRAG PASE DRAG .7579E-04 .1689E-04 TRICTION DRAG PRESSURE DRAG .1689E-Cz XCG RELATIVE TO THEORETICAL LEADING EDGE MAC-BASIC PLANFORM PROPERTIES QUARTER CHORD SWEEP QUARTER CHORD ZERO LIFT PRICTION COEPFICIENT Y (MAC) WING TOTAL THEORITICAL . 460E+01 .61>E+00 . #46E+0C 24598+01 . J984E+01 45,000 TOTAL EXPOSED .755E+00 474E+01 .5778-02 . 337E-04 HORIZONTAL TAIL TOTAL THEORITICAL TOTAL EXPOSED .307E+00 .434E+01 .45092+00 .3982E+01 .604 .144E-04 . 3474E+01 VERTICAL TAIL TOTAL THEORITICAL TOTAL EXPOSED .366E+00 *** NA PRINTED WHEN NETHOD NOT APPLICABLE AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM CONFIGURATION AUXILIARY AND PARTIAL OUTPUT MING-ADDY-VERTICAL TAIL-HORIZONTAL TAIL CONFIGURATION CONFIGURATION PULLDUP, EXAMPLE PROBLEM 3, CASE 1 REFERENCE DIMENSIONS REPERENCE LENGTH MOMENT LONG. LAT. MORIST FT FT FT .844 3.000 2.66 VELOCITY PRESSURE TEMPERATURE MOMENT REP. CENTER HORIZ VERT REYNOLDS NUMBER 1/FT 6.4000E+06 REF. AREA FT/SEC LR/FT**4 DEG R 4.430 K-B(W) = 1.484E-01 K-R(H) = 1.986E-01 CLA-W(B) = 5.578E-G2 CLA-H(B) = 1.039E-02 K-W(B) = 1.112E+CC K-H(B) = 1.184E+CC XAC/C-B(W) = 4.828E-01 XAC/C-B(W) = 3.035E-01 REFERENCE DIMENSIONS MOMENT REF. CENTER HORIZ VERT FT FT 4.600 0.000 MEYNOLDS NUMBER 1/FT 6.4000E+96 REFERENCE LENGTH LONG. LAT. FT FT .844 J.000 MACH MIMBER ALTITUDE *** WINC DATA FAIRING *** *** CDL/CL*** .1977E+00 **CDL/CL*** .1977E+00 **CDL/CL*** .1977E+00 **CDL/CL*** .1977E+00 **CDL/CL*** .1977E+00 **CDL/CL*** .198E-04 **FORCE BREAK MACH NUMBER (WITH SWEEP) = .9534E+00 **MACH(A) = 1.645 **CLB/CL]*** .4967E-01 **CLB/CL]*** .4967E-01 **CLB/CL]*** .4967E-01 **CLB/CL]*** .4967E-01 **CLB/CL]*** .4967E-01 LIFT-CURVE-SLOPE INTERPOLATION TABLE CL-ALPHA .486RE-01 .5719E-01 .5384E-01 .4967E-01 MACH .750 .955 1.045 *** WING-BODY DATA PAIRING *** -.4718E-04 (CLB/CL)M=1.4 = -.4033E-04 CLR/CL - -.7436E-02 (CLB/CL) HPB = -.4718E-04 (CNA)M=1.4 = .9530E-01 *** HORIZONTAL TAIL DATA PAIRING *** CDL/CL**2 = .237E**00 FORCE BREAK HACH NUMBER (ZERO SWEEP) = .738E**00 MACK(A) = 1.054 CLA(A) = .1347E**01 CLB/CL = -.4345E**02 FORCE BREAK HACH NUMBER (WITH SWEEP) = .746E**01 ACCEP/CL) M=0.6 = .462CE**02 (CLB/CL) M=1.4 = -.496E**03 .90388+00 LIPT-CURVE-SLOPE INTERPOLATION TABLE MACH .750 .984 1.054 1.124 CL-ALPHA .8234E-02 .1401E-01 .1327E-01

FIGURE 26 EXAMPLE AUXILIARY AND PARTIAL OUTPUT

*** BODY-WING-HORIZONTAL TAIL DATA FAIRING ***
DRAG DIVERGENCE MACH NUMBER * .931
MACH CDO .1714F-01
.7CC .177.FF-01

*** HORISONTAL TAIL-BODY DATA FAIRING ***
[CLB/CL)MFB = -.9-13E-03 (CLB/CL)M-1.4 = -.1559E-03

(CNA)M=1.4 - .1197E-01

CLB/CL + -. 12758-04

configuration equations. The effective downwash gradient, $d\epsilon/da$, is found by equating the right hand sides of Datcom equations 4.5.1.1-a and 4.5.1.1-b. The effective downwash angle, ϵ , is found by equating the right hand sides of Datcom equations 4.5.1.2-a and 4.5.1.2-b.

6.2 DIGITAL DATCOM SYSTEM OUTPUT

Execution of Digital Datcom will produce a series of messages and data in addition to the results previously discussed. This information falls into three categories: input diagnostics and error analysis, extrapolation warning messages, and Airfoil Section Module output. In addition to these outputs, an optional listing of the case input namelist data is available by using the NAMELIST control card (see Section 3.5).

Additional output may be obtained by using the DUMP and PART control cards. When the DUMP option is exercised, the contents of user specified data blocks are output prior to the conventional aerodynamic characteristics output. A list of the arrays and variables stored in each data block is presented in Appendix C.

6.2.1 Input Error Analysis

An input diagnostic module (CØNERR) checks all data in the input stream prior to execution of any other Digital Datcom module. This module checks all namelist and control cards and flags any errors. CØNERR headings and error messages are designed to be self explanatory. All input cards are listed and any cards containing errors have the appropriate message written immediately to the right of the card. An explanation of the seven messages that can be generated by CØNERR are given in Table 14. CØNERR will not correct any errors and the program will attempt to execute each case using the data as input by the user.

Prior to case execution, additional input error analysis is conducted to insure that all namelists essential to the case are present. This analysis will abort only those cases missing an essential namelist. The messages that can be produced by this analysis are given in Table 15.

6.2.2 Extrapolation Messages

Extrapolation messages are produced when the independent variable range of the Datcom figures (nomagraphs/design charts) have been exceeded. These mesages identify the number of the figure involved, the independent variable values currently being used, the resultant value of the dependent variable, the type of extrapolation that was used to generate the dependent variable,

TABLE 14 CONERR ERROR MESSAGES

roops weeklik	EXPLANATION
ERKON PLOCACE.	NAMELIST MANE NOT RECOGNIZED.
DDED	NAMELIST TERMINATION NOT FOUND.
** ERROR ** NO NAMELIST NAME FOLLOWING \$	FIRST MAMELIST CARD DOES NOT CONTAIN A MAMELIST MAME.
** ERROR ** H*A N*B H*C N*D N*E H*F	ERROR FOUND ON THE CARD, N* DENOTES THE NUMBER OF OCCURRENCES OF EACH ERROR
	B - MISSING EQUAL SIGN FOLLOWING VARIABLE HAME C - NON-ARRAY VARIABLE HAS AN ARRAY DESIG-
	NATION, (N) D RON-ARRAY HAS MULTIPLE VALUES ASSIGNED E - ASSIGNED VALUES EXCEED ARRAY DIMENSION C - COUTAN FRROM
	COLITROL CARD NOT RECOGNIZED.
** ILLEGAL CONTROL CARD	OH A HIMD CARD. "N" ARRAY NAMES WERE
** ERROR ** N INCORRECT ARRAY HAMES	INCORRECT
** ERROR ** INCURRECT LIFTING SURFACE DESIGNATION ON NACA CARD	COLUMN 6 OF THE NACA CARD DOES NOT CONTAIN W. H. V OR F.

TABLE 15 CASE ERROR MESSAGES

MESSAGE	EXPLANATION
ERROR ** FLAP INBOARD EDGE, SPANI=XXX, IS INSIDE THE BODY AS DEFINED BY SSPN AND SSPNE. SPANI IS REDEFINED, SPANI=SSPN-SSPNE=XXX.	THE FLAP INBOARD FLAP STATION, b ₁ /2, DEFINED IN NAMELIST SYMFLP OR ASYFLP LIES INSIDE THE BODY AS DEFINED BY THE TOTAL SPAN AND EXPOSED SPAN, b/2 AND b*/2, IN THE PLANFORM NAMELIST.
ERROR-FLIGHT CONDITIONS NOT PRESENT- MISSING NAME FLTCON*	NAMELIST "FLTCØN" NOT INPUT
ERROR-SYNTHESIS DATA MISSING-MISSING NAME *SYNTHS*	NAMELIST "SYNTHS" NOT INPUT
ERROR-WING PLANFORM PRESENT BUT SECTION CHARACTERISTICS ABSENT-MISSING NAME *WGSCHR*	NAMELIST "WGSCHR" OR "NACA-W" CONTROL CARD NOT INPUT
ERROR-WING SECTION CHARACTERISTICS PRESENT BUT PLANFORM ABSENT-MISSING NAME *WGPLNF*	NAMELIST "WGPLNF" NOT INPUT
ERROR-HORIZONTAL TAIL PLANFORM PRESENT BUT SECTION CHARACTERISTICS ABSENT-MISSING NAME *HTSCHR*	NAMELIST "HTSCHR" OR ""ACA-H" CONTROL CARD
ERROR-HORIZONTAL TAIL SECTION CHARACTERISTICS PRESENT BUT PLANFORM ABSENT-MISSING NAME *HTPLNF*	NAMELIST "HTPLNF" NOT INPUT
ERROR-VERTICAL TAIL PLANFORM PRESENT BUT SECTION CHARACTERISTICS ABSENT-MISSING NAME *VTSCHR*	NAMELIST "VTSCHR" OR "NACA-V" CONTROL CARD NOT INPUT
ERROR-VERTICAL TAIL SECTION CHARACTERISTICS PRESENT BUT PLANFORM ABSENT-MISSING NAME *VTPLNF*	NAMELIST "VTPLNF" NOT INPUT
ERROR-VENTRAL FIN PLANFORM PRESENT BUT SECTION CHARACTERISTICS ABSENT-MISSING NAME *VFSCHR*	NAMELIST "VFSCHR" OR "NACA-F" CONTROL CARD NOT INPUT
ERROR-VENTRAL FIN SECTION CHARACTERISTICS PRESENT BUT PLATFORM ABSENT-MISSING NAME *VFPLNF*	NAMELIST "VFPLNF" NOT INPUT
THIS CASE ABORTED FOR THE ABOVE REASON(S), ALL NAMES REFER TO NAMELIST NAMES	THIS CASE WILL NOT BE EXECUTED, THE NEXT CASE WILL BE ATTEMPTED.

and the name of the table look-up routine and the subroutine that contains the figure. They are printed primarily to alert users when the normal limit of Datcom figures has been exceeded so that the user can determine the credibility of the results. The messages are listed at the end of the case output. Extrapolation message interpretation is illustrated in Figure 27. The extrapolation messages are written to a computer system "scratch tape" as they are generated. At the conclusion of the case they are read and sorted by figure number within each program overlay. In this way all extrapolations for a single figure produced in a method module are output together for convenience. Note that these extrapolation messages are not necessarily output in their order of occurance in the program.

6.2.3 Airfoil Section Module

The Airfoil Section Module is executed whenever airfoil section characteristics are to be calculated. Output consists of section coordinates and a listing of the calculated section characteristics.

The following example is a hypothetical extrapolation warning message created to illustrate the Digital Datcom technique.

EXTRAPOLATION HESSAGE SUMMARY

DUERLAY FIGURE NUMBER

SUBROUTINES

FINAL RESULT

TYPE OF EXTRAPOLATION (LOWER UPPER) FIGURE LIMITS (LOWER UPPER)
INDEPENDENT VARIABLES

23 5.1.2.1-27 TLINGX SUPLAT

1 03813E-02

LAST VAL QUADRTIC E+00 B.00E+01 -2.00E+01 B.31203E+00 ## 6.24 1.00E+00

LINEAR 6 00E+01 6.24200E+01 **

QUADRTIC LAST VAL LAST VAL 1.00E+00 5.58603E-01

Datcom figure 5.1.2.1-27 is used to aid the extrapolation message interpretation.

Step 1. Associate the Datcom figure variables with the Digital Datcom variables X1, X2, X3, by comparing lower and upper limit values with the limits shown on the Datcom figure. In this example:

X1 corresponds to A

X2 corresponds to $\Lambda c_{/2}$

X3 corresponds to λ

Step 2. From Step 1 determine the variable that relates the sub-figures (a), (b), and (c) (i.e. λ or X3). If this variable lies within the table limits, interpolation between two of the figures may be required. In this example X3 = .559. Thus interpolation is performed between figures (a) and (b).

Step 3. Extrapolate the variables according to the type of extrapolation given in the message. In this example figures (a) and (b) are extrapolated on variables X1(A) and X2($\Lambda_{c/2}$). Since the extrapolation technique is general, only figure (b) extrapolation will be demonstrated.

FIGURE 27 EXTRAPOLATION MESSAGE INTERPRETATION

Cutout A shows a dashed curve added to figure (b) illustrating the quadratically extrapolated Xl variable to 8.31. Next, the dashed curve is extrapolated quadratically with a solid line to the X2 value of 62.4.

Step 4. Figure (a) is extrapolated as outlined above. The extrapolated values for figures (a) and (b) are then used to interpolate yielding the final result of -.0138.

CUTOUT A

This extrapolation information is written to logical unit 12 for processing by overlay 57. The format is as follows:

Line 1: Overlay number, number of four character words for figure number, and number independent variables.

Line 2: Subroutines and figure number

Lines 3-5: Extrapolation data for each independent variable: Independent variable; lower limit; upper limit; type of extrapolation, lower and upper, where

-1 = not required
0 = use last value

1 = linear
2 = quadratic

Line 6: Final result

Line 7: End of extrapolation messages mark (written from overlay 57 prior to dump of extrapolation messages). Used to signify end of extrapolation messages for the case.

FIGURE 27 EXTRAPOLATION MESSAGE INTERPRETATION (CONCLUSION)

SECTION 7

EXAMPLE PROBLEMS

Eleven sample problems have been selected to illustrate the modeling techniques described in Section 4 as well as the use of the input namelist and control cards.

The paragraphs below describe each of the example problems selected for illustrating the program setup of the configurations described in Sections 4 and 5. The input data for each example problem is presented, and the complete output is presented in the microfiche supplement to this report.

7.1 EXAMPLE PROBLEM 1

Figure 28 shows three body configurations along with selected X coordinates where shape parameters would be specified. Notice the concentration of points used to define curvature and abrupt changes in body contours. Configuration (c) is chosen as the Problem I example to illustrate the body alone analysis at all speed regimes. Subsonic body analyses are obtained for an approximate axisymmetric body and for a cambered body.

A summary of the four cases in problem 1 is given below:

Case No.	Configuration	Mach No.	Comments
1	Bod y	0.60	Axisymmetric solution
2	Bod y	0.60	Cambered solution
. 3	Bod y	0.9,1.40,2.5	Supersonic analysis at Mach No. 1.4 and 2.5
4	Bod y	2.5	Hypersonic analysis

This problem illustrates the use of the CASEID, DUMP CASE, SAVE, and NEXT CASE control cards.

```
$FLTCON NMACH=1.0, MACH(1)=0.60, NALPHA=11., ALSCHD(1)=-6.0,-4.0,-2.0,0.0,2.0,
       4.0,8.0,12.0,16.0,20.0,24.0,RNNUB(1)=4.28E6$
    SOPTINS SREF=8.85, CBARR=2.46, BLREF=4.28$
    $SYNTHS XCG=4.14, ZCG=-0.20$
    $BODY NX=10.0,
       X(1)=0.0,0.258,0.589,1.26,2.26,2.59,2.93,3.59,4.57,6.26,
S(1)=0.0,0.080,0.160,0.323,0.751,0.883,0.939,1.032,1.032,1.032,
P(1)=0.0,1.00,1.42,2.01,3.08,3.34,3.44,3.61,3.61,3.61$
$BODY BNOSE=1.,BLN=2.59,BLA=3.67$
CASEID APPROXIMATE AXISYMMETRIC BODY SOLUTION, EXAMPLE PROBLEM 1, CASE 1
SAVE
DUMP CASE
NEXT CASE
   $BODY ZU(1) =-.595,-.476,-.372,-.138,0.200,.334,.343,.343,.343,.343,
ZL(1)=-.595,-.715,-.754,-.805,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.868,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,-.886,
SAVE
NEXT CASE
   $FLTCON NMACH=3.0, MACH(1)=0.90,1.40,2.5,RNNUB(1)=6.4E6,9.96E6,17.8E6$
CASEID ASYMMETRIC (CAMBERED) BODY SOLUTION, EXAMPLE PROBLEM 1, CASE 3
NEXT CASE
   $FLTCON NMACH=1.0,MACH(1)=2.5,RNNUB(1)=17.86E6,HYPERS=.TRUE.$
$BODY DS=0.05
CASEID HYPERSONIC BODY SOLUTION, EXAMPLE PROBLEM 1, CASE 4
NEXT CASE
```


FIGURE 28 BODY MODELING AND EXAMPLE PROBLEM 1 BODY DATA

7.2 EXAMPLE PROBLEM 2

Wing alone models for straight-tapered and nonstraight-tapered planforms are shown in Figure 29. The root and tip airfoil sections differ as shown in in Figure 30; therefore average values of section data are used where appropriate. Calculation and determination of section input characteristics are from the procedure and figures of Appendix B. These input variables are also summarized in Figure 30. The configuration analysis consists of:

Case No.	Configuration	Mach No.	Comments
1	Exposed wing	0.6,0.9,1.40	Straight-tapered-wing
	•	2.5	dump A array
2	Exposed wing	0.60	Cranked wing
3	Exposed wing	0.60	Double delta

This problem also illustrates the control of program looping using the variable LØØP in namelist FLTCØN to obtain the flight conditions. Note that cases 2 and 3 use the same inputs to FLTCØN, but LØØP is changed from 2 to 3.

```
SFLTCON NMACH=4.8, MACH(1) =8.68,8.98,1.49,2.58,LOOP=1.,NALT=4.8,
  ALT(1)=0.,2000.,40000.,90000.,HYPERS=.FALSE.,
  NALPHA=11.,ALSCHD(1)=-6.8,-4.8,-2.8,0.8,2.8,4.
                                                          .8.6.12.6.16.4.28.8.24.85
 $0PTINS SREF=8.85, CBARR=2.46, BLREF=4.28$
 $$YNTH$ XW=3.61,ZW=-.8F,ALIW=2.8,XCG=4.14$
 $WGPLNF CHRDTP=0.64,SSPNE=1.59,SSPN=1.59,CHRDR=2.90,SAVSI=55.0,CHSTAT=0.0,
  SWAFP=8.8, TWISTA=8.8, SSPNDD=8.8, DHDADI=8.8, DHDADO=8.8, TYPE=1.86
 $MGSCHR DELTAY=2.85,XOVC=0.40,CLI=0.127,ALPHAI=0.123,CLALPA(1)=.1335,
  TOVC=#.11,
  CLMAX(1)=1.195,CHO=-.0262,LERI=.0134,CAMBER=.TRUE.,CLAMO=.105,TCEFF=0.0550
CASEID STRAIGHT TAPERED EXPOSED WING SOLUTION, EXAMPLE PROBLEM 2, CASE 1
SAVE
DUMP A
NEXT CASE
SFLTCON NMACH=2.0, MACH(1)=0.60,2.5,LOOP=2.,NALT=2.,ALT(1)=0.,90000.8
 $$YNTHS XW=2.497,ZW=-.71$
$WGPLNF $$PNOP=1.11,CHRDBP=2.24,CHRDR=4.61,SAV$I=75.1;SAV$0=55.6;TYPE=3.6$
$WGSCHR TOVC=.16,LERI=6.611,LERO=.6158,TOVCO=6.12,XOVCO=6.46,CHOT=-.6262$
CASEID EXPOSED CRANKED WING SOLUTION, EXAMPLE PROBLEM 2, CASE 2
SAVE
NEXT CASE
 SFLTCON LOOP=3.5
SHGPLNF TYPE=2.05
CASEID EXPOSED DOUBLE DELTA WING SOLUTION, EXAMPLE PROBLEM 2, CASE 3
```


I maria.

REFER TO INPUT NAMELIST WGSCHR FIGURE 8
ROOT AIRFOIL= NACA 1412-64

ENGINEERING	VARIARIE	VALUE OF VARIABLE	ABLE	
SY-180L	NAME	CRANKET, OR DOUBLE DELTA	STRAIGHT TAPERED	COMMENTS
۲,د	TÔVC	0.10	0.11 A	SEE APPENDIX B
(L/c) ⁰	төлсф	0.12	NA	
(x/c) • HAX	xovc	0.40	0.40	
(x/c)t MAX	фэлфх	0.40	N	-
RLE	LERI	0.011	0.0134 A	
(RLE)	LERO	0.0158	NA	
۸۷	DELTAY	2.85	2.85	
3,	CLALPA	0.1335	.1335	
C MAX	CLMAX	1.195	1.195	
5	3	0.127	0.127	
,	ALPHAI	0.123	0.123	
ູ້	OH C	-0.0262	-0 0262	
(C)	CINOT	-0 0262	NA	
CAMBER	CAMBER	CAMBER = TRUE	CAMBER = TRUE	
(c, ka) = 0	CLAMO	0.105	0.105	
(VC)EFF	TCEFF	0.065	0.055	
				-

 Δ straight tapered values equal average of cranked or double delta values

FIGURE 30 AIRFOIL CHARACTERISTIC VARIABLES, EXAMPLE PROBLEM 2

The second

7.3 EXAMPLE PROBLEM 3

Pertinent data for Example Problem 3 are presented in Figure 31. The problem consists of a wing-body-horizontal tail-vertical-tail configuration analyzed at a subsonic and transonic Mach numbers. Results are obtained for various combinations of the vehicle components by using the BUILD cotion. The second case utilizes experimental body and wing-body data to update subsequent Digital Datcom configuration analyses. The remaining cases illustrate the use of the twin vertical panel, propeller power and jet power inputs. A summary of the various configurations analyzed is presented below.

Case	No.	Configuration
1		Wing + body + vertical-tail + horizontal-tail
		configuration buildup
2		Wing + body + vertical-tail + horizontal-tail
		with body and wing-body experimental data
3		Wing + body + vertical-tail + horizontal-
		tail + twin-vertical-panels with body and
		wing body experimental data
4		Wing + body + vertical-tail + horizontal-
		tail + twin-vertical-panel + propeller
		power with body and wing-body experimental
		data
5		Wing + body + vertical-tail + horizontal-
		tail + twin-vertical-tail + jet power with
		body and wing-body experimental data

```
BUILD
  $FLTCON NMACH=2.0, MACH(1)=.60,.80, NALPHA=9.0, ALSCHD(1)=-2.0,0.0,2.0,
    4.0,8.0,12.0,16.0,20.0,24.0,RNNUB(1)=2.28E6,3.04E6$
  $PLTCON NMACH=3.0, MACH(1)=0.60,0.80,1.5, RNNUB(1)=4.26E6.6.4E6.
    9.96E6.5
  $OPTINS SREF=2.25,CBARR=0.822,BLREF=3.00$
  $$YNTH$ XCG=2.60, ZCG=0.0, XW=1.70, ZW=0.0, ALIW=0.0, XH=3.93.
    ZH=0.0, ALIH=0.0, XV=3.34, VERTUP=. TRUE.$
  $BODY NX=10.0, BNOSE=2.0, BTAIL=1.0, BLN=1.46, BLA=1.97
   X(1)=0.0,.175,.322,.530,.850,1.460,2.50,3.43,3.97,4.57,
S(1)=0.0,.00547,.0220,.0491,.0872,.136,.136,.136,.0993,.0598,
P(1)=0.0,.262,.523,.785,1.04,1.305,1.305,1.305,1.12,.866,
  R(1)=0.0,.0417,.0833,.125,.1665,.208,.208,.208,.178,.138$
$WGPLNF CHRDTP=0.346,SSPNE=1.29,SSPN=1.50,CHRDR=1.16,SAVSI=45.0,CHSTAT=0.25,
   SWAFP=0.0,TWISTA=0.0,SSPNDD=0.0,DHDADI=0.0,DHDADO=0.0,TYPE=1.0$
  $WGSCHR TOVC=.060,DELTAY=1.30,XOVC=0.40,CLI=0.0,ALPHAI=0.0,CLALPA(1)=0.131,
   CLMAX(1)=.82,CMO=0.0,LERI=.0025,CLAMO=.105$
  $VTPLNF CHRDTP=.420,SSPNE=.63,SSPN=.849,CHRDR=1.02,SAVSI=28.1,
  CHSTAT=.25, SWAFP=0.0, TWISTA=0.0, TYPE=1.0$
$VTSCHR TOVC=.09, XOVC=0.40, CLALPA(1)=0.141, LERI=.0075$
  SWGSCHR CLMAXL=0.78$
  $HTPLNF CHROTP=.253,SSPNE=.52,SSPN=.67,CHRDR=.42,SAVSI=45.0,CHSTAT=0.25,
   SWAPP=0.0, TWISTA=0.0, SSPNDD=0.0, DHDADI=0.0, DHDADO=0.0, TYPE=1.0$
  $HTSCHR TOVC=0.060,DELTAY=1.30,XOVC=0.40,CL1=0.0,ALPHA1=0.0,CLALPA(1)=.131,
   CLMAX(1)=0.82,CMO=0.0,LERI=.0025,CLAMO=.105$
CASEID CONFIGURATION BUILDUP, EXAMPLE PROBLEM 3, CASE 1
 SAVE
 NEXT CASE
  $EXPRO1 CLAWB(1)=.0575,CHAWB(1)=-.0050,

CDWB(1)=.015,.014,.015,.019,.064,.141,.216,.302,.410,

CLWB(1)=-.115,0.0,.115,.23,.47,.65,.76,.81,.90,

CMWB(1)=.010,0.0,-.010,-.020,-.038,-.002,-.013,-.013,-.020,
   CLAB(1)=.0J2,CMAB(1)=.0039,
  CDB(1)=.012,.010,.012,.013,.014,.016,.020,.030,.047,

CLB(1)=-.004,0.0,.004,.008,.012,.020,.060,.085,.10,

CMB(1)=-.0078,.0078,.020,.038,.060,.083,.110,.140,.165,$

$EXPRO2 CLAWB(1)=.06,CLAB(1)=.002,CMAB(1)=.0039,
   ALPOW-0.0, ALPLW-8.8, ACLMW-12.01, CLMW-1.39,
   ALPOH=0.0, ALPLH=6.2, ACLMH=10.10, CLMH=1.02, $
CASEID INCLUDES BODY AND WING-BODY EXPERIMENTAL DATA, EXAMPLE PROBLEM 3, CASE 2
SAVE
NEXT CASE
$TVTPAN BVP=0.40,BV=.60,BDV=.36,BH=1.10,SV=.360,VPHTTE=20.0,VLP=1.04,ZP=0.0$
CASEID INCLUDES BODY AND WING-BODY EXPERIMENTAL DATA, EXAMPLE PROBLEM 3, CASE 3
SAVE
NEXT CASE
 $FLTCON NMACH=1.0, MACH(1) = .6, RNNUB(1) = 2.28E6S
$PROPWR AIETLP=2.0,NENGSP=1.0,THSTCP=0.15,PHALOC=0.0,PHVLOC=0.0,PRPRAD=0.40,
ENGFCT=70.0,NOPBPE=4.0,BAPR75=18.0,YP=0.0,CROT=.PALSE.$
CASEID INCLUDES BODY AND WING-BODY EXPERIMENTAL DATA, EXAMPLE PROBLEM 3, CASE 4
SAVE
NEXT CASE
 $FLTCON NHACH=1.0, MACH(1)=.6, RNNUB(1)=2.28E6$
 $JETPWR AIETLJ=2.0, NENGSJ=1.0, THSTCJ=.35, JIALOC=0.0, JEVLOC=0.0, JEALOC=0.5,
  JINLTA=3.0, JEANGL=15.0, JEVELO=4000., AMBTMP=500., JESTMP=2000., JELLOC=0.0,
   JETOTP=5000.,AMBSTP=500.,JERAD=2.0$
CASEID INCLUDES BODY AND WING-BODY EXPERIMENTAL DATA, EXAMPLE PROBLEM 3, CASE 5
MEXT CASE
```

FLIGHT CONDITIONS: MACH NUMBERS = 0.60, 0.80

REYNOLDS NUMBERS PER FT = 2.28 x 10⁶, 3.04 x 10⁶

SCHEDULED ANGLES OF ATTACK = -2.0, 0.0, 2.0, 4.0, 8.0, 12.0, 16.0, 20.0, 24.0

REFERENCE PARAMETERS: REFERENCE AREA = 2.25 LONG. REF. LENGTH = 0.822

LATERAL REF. LENGTH = 0.022

	WING	HOR!ZONTAL TAIL	VERTICAL TAIL
SEMISPAN	1.50	0.67	0.849
EXPOSED SEMISPAN	1.29	0.52	0.630
ct	0.346	0.253	_ 0.42
c _R	1.16	0.420	1.02
^ _{1€/4}	45 ⁰	45 ⁰	28.1
AIRFOIL	NACA 65A006	NACA 65A006	NACA 63A009

REFER TO INPUT DATA FOR BODY AND PROPELLER POWER DATA.

EXPERIMENTAL DATA

MACH = 0.60 (CL_{α})_B = 0.002, (Cm_{α})_B = 0.6039, (CL_{α})_{WB} = 0.0575, (Cm_{α})_{WB} = -0.005

 $\frac{\text{MACH} = 0.80}{\text{(CL}_{\alpha})_{\text{BB}}} = 0.002, \text{ (Cm}_{\alpha})_{\text{B}} = 0.0039,$

ALPHA	(CD)B	(CL)B	(C _m) _B	(CD)WB	(CF)MB	(Cm)WB	(CD)B
-2	0.012	-0.004	-0.0078	0.015	-0.115	0.010	0.012
Ō	0.010	0.0	0.0078	0.014	0.0	0.0	0.010
2	0.012	0.004	0.020	0.015	0,115	-0.010	0.012
4	0.013	0.008	0.038	0.019	0.23	-0.020	0.013
8	0.014	0.012	0.060	0.064	0.47	-0.038	0.014
12	0.016	0.020	0.083	0.141	0.65	-0.002	0.916
16	0.020	0.060	0.110	0.216	0.76	+0.013	0.020
20	0.030	0.085	0.140	0.302	0.81	-0.013	0.032
24	0.047	0.100	0.165	0.410	0.90	-0,020	0.050

FIGURE 31 EXAMPLE PROBLEM 3 DATA

7.4 EXAMPLE PROBLEM 4

Pertinent information for Example Problem 4 is presented in Figure 32. In this example a wing-body-canard configuration is analyzed in the subsonic speed regime (Case 1). Canard and wing section data are calculated using the Airfoil Section Module (Appendix B). Case 2 illustrates the use of the supersonic airfoil option of the Airfoil Section Module, nonzero body nose ordinate, vehicle scale factor, and use of metric inputs. Note that since the NACA control cards are being used, RNNUB and MACH must be used to define the flight conditions.

```
$FLTCON NMACH=1.0,MACH(1)=0.60,NALPHA=5.,ALSCHD(1)=0.0,5.0,10.0,15.0,20.0,
    RNNUB(1)=3.1E6S
  $OPTINS SREF=694.2, CBARR=18.07, BLREF=45.6$
   $SYNTHS XCC=36.68,2CG=0.0$
   $BODY NX=19.0, BNOSE=2.0, BTAIL=2.0, BLN=30.0, BLA=0.0,
   X(1)=0.0,2.01,5.49,8.975,12.47,15.97,19.47,22.89,26.49,30.0,33.51,37.02,
     40.53,44.03,47.53,51.02,54.52,57.99,60.0,
   S(1)=0.0,2.89,7.42,11.32,14.64,17.36,1°.49,21.0,21.91,22.20,21.90,
21.0,19.49,17.36,14.64,12.33,7.42.2.89,0.0,
P(1)=0.0,1.84,4.72,7.21,9.32,11.05,12.41,13.36,13.94,14.14,13.94,
13.36,12.41,11.05,9.32,7.21,4.72,1.84,0.0,
   R(1) = 0.0, .293, .752, 1.15, 1.48, 1.76, 1.97, 2.13, 2.22, 2.25, 2.22, 2.13, 1.97, 1.76, 1.48, 1.15, .752, .293, 0.0,$
 NACA-W-6-65AUU4
 NACA-H-6-65A004
  SWGPLNF CHSTAT=0.0.
   SWAFP=0.0,TWISTA=0.0,SSPNDD=0.0,DHDADI=0.0,DHDADO=0.0,TYPE=1.0$
  $SYNTHS XW=8.064, ZW=0.0, ALIW=0.0$
  SWGPLNF CHRDTP=0.0,SSPNE=6.205,SSPN=8.J1,CHRDR=13.87,SAVSI=60.0$
  $5YNTHS XH=29.42,ZH=0.0,ALIH=0.0$
  $HTPLNF SSPNE=21.34,SSPN=22.82,CHRDR=26.62,SAVSI=38.52,CHSTAT=0.0,
   CHRDTP=3.80.
   SWAFP=0.0, TWISTA=0.0, SSPNDD=0.0, DHDADI=0.0, DHDADO=0.0, TYPE=1.0, SHB(1)=73.5,
SEXT(1)=73.5, RLPH(1)=17.3$
CASFID BODY PLUS WING PLUS CANARD, EXAMPLE PROBLEM 4, CASE 1
NEXT CASE
DIM M
  $FLTCON NMACH=1.0,MACH(1)=2.00,NALPHA=5.,ALSCHD(1)=0.0,5.0,10.0,15.0,20.0,
RNNUB(1)=6.56E6,NALT=1.,ALT(1)=27400.$
  $OPTINS SREF=64.4933,CBARR=5.5077,BLREF=13.9111$
$SYNTHS XCG=12.1800,2CG=0.0,SCALE=0.30$
  $BODY NX=19.0, BNOSE=2.0, BTAIL=2.0, BLN=9.144, BLA=0.0,
  X(1)=1.0,1.613,2.67_,3.736,4.801,5.868,6.934,8.004,9.074,10.144,11.214,
12.284,13.354,14.420,15.487,16.551,17.618,18.675,19.288,
S(1)=0.,.268,.689,1.052,1.360,1.513,1.811,1.951,2.036,2.062,2.085,
  1.951,1.811,1.613,1.360,1.053,.689,.268,0.,
P(1)=0.,.561,1.439,2.198,2.841,3.368,3.783,4.072,4.249,4.310,4.249,
4.072,3.783,3.368,2.841,2.198,1.439,.561,0.
   R(1)=0.,.089,.229,.351,.451,.536,.600,.649,.677,.686,.677,.649,.600,
.536,.451,.351,.229,.089,0.$
NACA-W-S-3-30.0-2.5-20.0
NACA-H-S-1-50.0-2.5
$WGPLNF CHSTAT=0.0
   SWAFP-0.0,TWISTA-0.0,SSPNDD-0.0,DHDADI-0.0,DHDADO-0.0,TYPE-1.0$
 $SYNTHS XW=3.4579, ZW=0.0, ALIW=0.0$
 $WGPLNF CHRDTP=0.0,SSPNE=1.8913,SSPN=2.4414,CHRDR=4.2276,SAVSI=60.0$
$SYNTHS XH=9.9672,ZH=0.0,ALIH=0.0$
 $HTPLNF SSPNE=6.5044,SSPN=6.9555,CHRDR=8.1138,SAVSI=38.52,CHSTAT=0.0,
  CHRDTP=1.1582
   SWAFP=G.O.TWISTA=O.O.SSPNDD=O.O.DHDADI=O.O.DHDADO=O.O.TYPE=1.O.SHB(1)=6.8283,
  SEXT(1)=6.8284,RLPH(1)=14.4170$
CASEID BODY PLUS WING PLUS CANARD, EXAMPLE PROBLEM 4, CASE 2
NEXT CASE
```


REFERENCE DATA

REFERENCE AREA = 694.2 LONGITUDINAL REF. LENGTH = 18.07 LATERAL REF. LENGTH = 45.64

FLIGHT CONDITION DATA

MACH NUMBER = 0.60 REYNOLDS NO./FT = 3.1 x 10⁶ SCHEDULED ANGLES OF ATTACK = 0.0, 5.0, 10.0, 15.0, 20.0

BODY DATA

X	S	P	<u>R</u>
0.0	0.0	0.0	0.0
2.01	2.89	1.84	0,293
5.49	7.42	4.72	0.752
8.975	11.32	7.21	1.15
12.47	14.64	9.32	1.48
15.97	17.36	11.05	1.76
19.47	19.49	12.41	1.97
22.98	21.0	13.36	2.13
26.49	21.91	13.94	2.22
30.0	22.20	14.14	2.25
33.51	21.90	13.94	2.22
37.02	21.0	13.36	2.13
40.53	19.49	12.41	1.97
44.03	17.36	11.05	1.76
47.53	14.64	9.32	1.48
51.02	11.33	7.21	1.15
54.52	7.42	4.72	0.752
57.99	2.89	1.84	0.293
60.0	0.0	0.0	0.0

WING AND CANARD DATA

AIRFOIL NACA 65A004

FIGURE 32 EXAMPLE PROBLEM 4 DATA

7.5 EXAMPLE PROBLEM 5

The wing-body portion of the configuration used in Example Problem 3 is modified by attaching plain trailing-edge flaps to the wing. This example problem is used to illustrate partial outputs and dynamic derivative input and output. A summary of Example Problem 5 analysis is as follows:

Case No.	Configuration	Mach No.	Comments
1	Body + wing	0.60	PART, DAMP, DUMP DYN
2	Body + wing +	0.60	DUMP FCM
	plain trailing-		
	edge flaps		

The Digital Datcom output data, including a dump of the DYN and FCM common arrays, are presented in the microfiche supplement. The flap configuration is shown in Figure 33.

```
DIM FT
PART
  $FLTCON NALPHA=9.0, ALSCHD(1) =-2.0, 0.0, 2.0, 4.0, 8.0,
   12.0,16.0,20.0,24.0$
  $FLTCON NMACH=1.0, MACH(1)=0.60, RNNUB(1)=4.26E6$
 SOPTINS SREF=2.25,CBARR=0.822,BLREF=3.00$
 $SYNTHS XCG=2.60,2CG=0.0,XW=1.70,2W=0.0,ALIW=0.0$
 $BODY NX=10.0, BNOSE=2.0, BTAIL=1.0, BLN=1.46, BLA=1.97
   x(1)=0.0,.175,.322,.530,.85,1.46,2.50,3.43,3.97,4.57,
 R(1)=0.0,.0417,.0833,.125,.1665,.208,.208,.208,.178,.138$
$WGPLNF CHROTP=0.346,SSPNE=1.29,SSPN=1.50,CHRDR=1.16,SAVSI=45.0,CHSTAT=.25,
   SWAFP=0.0,TWISTA=0.0,SSPNDD=0.0,DHDADI=0.0,DHDADO=0.0,TYPE=1.0$
 SWGSCHR TOVC=.060, DELTAY=1.30, XOVC=0.40, CL1=0.0, ALPHA1=0.0, CLALPA(1)=0.131,
 CLMAX(1)=.82,CN0=0.0,LERI=0.0025,CLAHO=.105$
$WGSCH: CLMAXL=.8,TCEFF=.03$
CASEID BODY-WING DAMPING DERIVATIVES, EXAMPLE PROBLEM 5, CASE 1
SAVE
DUMP DYN
NEXT CASE
 $$YMFLP NDELTA=6.0,DELTA(1)=0.,10.,20.,30.,40.,60.,PHETE=.0522,CHRDFI=.2094,
CHRDFO=.1554,SPANFI=.208,SPANFO=.708,FTYPE=1.0,CB=.01125,TC=.0225,
PHETEP=.0391,NTYPE=1.$
CASEID PLAIN FLAPS ON WING, EXAMPLE PROBLEM 5, CASE 2
DUMP FCM
NEXT CASE
```

. on the later was

FLIGHT CONDITIONS: MACH NUMBER = 0.60

REYNOLDS NUMBERS PER FT = 4.26 x 106

SCHEDULED ANGLES OF ATTACK = -2.0, 0.0, 2.0, 4.0, 8.0, 12.0, 16.0, 20.0, 24.0

REFERENCE PARAMETERS: REFERENCE AREA = 2.25

LONG. REF. LENGTH = 0.822 LATERAL REF. LENGTH = 3.00

FIGURE 33 EXAMPLE PROBLEM 5 DATA

7.6 EXAMPLE PROBLEM 6

The wing-body configuration of Example Problem 5 to used to illustrate aileron and spoiler input and output data. Figure 34 shows the geometry.

```
$FLTCON NALPHA=9.0, ALSCHD=-2.0, 0.0, 2.0, 4.0, 8.0,
 12.0,16.0,20.0,24.0$
$FLTCON NHACH=1.0,MACH(1)=0.60,RNNUB(1)=4.26E6,$
  $OPTINS SREF=2.25, CBARR=0.822, BLREF=3.00$
 $$YNTHS XCG=2.60,2CG=0.0,XW=1.70,ZN=0.0,ALIN=0.0$
$BODY NX=10.0,BNOSE=2.0,BTAIL=1.0,BLN=1.46,BLA=1.97,
X(1)=0.0,.175,.322,.530,.85,1.46,2.50,3.43,3.97,4.57,
   R(1)=0.0,.0417,.0833,.125,.1665,.208,.208,.298,.178,.138$
 $WGPLNF CHRDTP=0.346,$SPNe=1.29,$SPN=1.50,CHRDR=1.16,$AVSI=45.0.CHSTAT=.25,
  SWAFF=0.0,TWISTA=0.0,SSPNDD=0.0,DHDADI=0.0,DHDADO=0.0,TYPE=1.0$
 $WGSCHR TOVC=.060, DELTAY=1.30 XOVC=0.40, CLI=0.0, ALPHAI=0.0, CLALPA(1)=0.131, CLMAX(1)=.82, CHO=0.0, LERI=0.0025, CLAHO=.105$
$ASYFLP DELTAL(1)=5.,10.,20.,30.,40., DELTAR(1)=-2.,-5.,-10.,-15.,-20.,
   STYPE=4.0,
  NDELTA=5., CHRDFI=.1116, CHRDFO=.0692, SPANFI=1.108, SPANFO=1.50, PHETE=. C522$
CASEID PLAIN FLAP AILERON, EXAMPLE PROBLEM 6, CASE 1
SAVE
NEXT CASE
 $ASYFLP STYPE=3.0, DELTAD(1)=.0130,.0261,.0380,.0513,.0630,.0750,
  DELTAS(1) =.013,.0261,.038,.0513,.063,.075,
  XSOC(1)=.6980,
   .6955,.6880,.6638,.6456,.6250,XSPRME=.55,HCOC(1)=.0357,.0710,.0956,.1162,
.1365,.1359$
CASEID SPOILER-SLOT-DEPLECTOR ON WING, EXAMPLE PROBLEM 6, CASE 2
NEXT CASE
```

FLIGHT CONDITIONS: MACH NUMBER = 0.60

REYNOLDS NUMBERS PER FT = 4.26 x 106

SCHEDULED ANGLES OF ATTACK = -2.0, 0.0, 2.0, 4.0, 8.0, 12.0, 16.0, 20.0, 24.0

REFERENCE PARAMETERS: REFERENCE AREA = 2.25

LONG. REF. LENGTH = 0.822 LATERAL REF. LENGTH = 3.00

FIGURE 34 EXAMPLE PROBLEM 6 DATA

7.7 EXAMPLE PROBLEM 7

The wing-body-tail configuration of Example Problem 3 is used to illustrate trim control with an elevator on the horizontal tail. In addition, the effect of plain trailing-edge flaps on the wing (see Example Problem 5) is included via experimental data input to illustrate a procedure for multiple high-lift and control device analysis. The wing high lift increment output is used to update wing-body undeflected totals via namelist EXPRnn.

The geometry is sketched in Figure 35.

\$PLTCON NMACH=1.0, MACH(1)=.60, NALPHA=9.0, ALSCHD(1)=-2.0, 0.0, 2.0, 4.0, 8.0, 12.0,16.0,20.0,24.0,RNNUB(1)=2.28E6\$
\$OPTINS SREP=2.25,CBARR=0.822,BLREF=3.0\$ \$\$YNTH\$ XCG=2.60,ZCG=0.0,XW=1.70,ZW=0.0,ALIW=0.0,XH=3.93,ZH=0.0,ALIH=0.0, XV=3.34, VERTUP=. TRUE.\$ SBODY NX=10. x(1)=0.0,.175,.322,.530,.85,1.46,2.50,3.43,3.97,4.57, R(1) = 0.0, .0417, .0833, .125, .1665, .208, .208, .208, .178, .138\$WGPLNF CHROTP=0.346, \$\$PNE=1.29, \$\$PN=1.50, CHROR=1.16, \$AVSI=45.0, CHSTAT=.25, SWAFP-0.0, TWISTA-0.0, SSPNDD-0.0, DHDADI-0.0, DHDADO-0.0, TYPE-1.0\$ SWGSCHR TOVC=.060, DELTAY=1.30, XOVC=0.40, CLI=0.0, ALPHAI=0.0, CLALPA(1)=0.131, CLMAX(1) = .82, CMO=0.0, LERI=0.0025, CLAMO=.105\$ \$WGSCHR CLMAXL=0.78\$ \$VTPLNF CHRDTP=.420,SSFNE=.63,SSPN=.849,CHRDR=1.02,SAVSI=28.1, CHSTAT -. 25, SWAFP = 0.0, TWISTA = 0.0, TYPE=1.0\$ \$VTSCHR TOVC=.09,XOVC=0.40,CLALPA(1)=0.141,LERI=.0075\$ \$HTPLNF CHRDTP=.253,SSPNE=.52,SSPN=.67,CHRDR=.42,SAVSI=45.0,CHSTAT=0.25, SWAFP=0.0, TWISTA=0.0, SSPNDD=0.0, DHDADI=0.0, DHDADO=0.0, TYPE=1.0\$ SHTSCHR TOVC=0.060, DELTAY=1.30, XOVC=0.40, CLI=0.0, ALPHAI=0.0, CLALPA(1)=.131, CLMAX(1)=0.82, CMO=0.0, LERI=.0025, CLAMO=.105\$ \$\$YMPLP FTYPE=1.0,NDELTA=9.,DELTA(1)=-60.,-40.,-20.,-10.,0.,10., 20.,40.,60.,PHETE=.0522,PHETEP=.0523,SPANFI=.18,SPANFO=.670,CHRDFI=.075,CHRDF0=.051,CB=.0038,TC=.0076,NTYPE=1.0,\$ SEXPROL CLWB(1) = .09,.204,.330,.450,.690,.895,1.070,1.180,1.174\$ CASEID INCLUDES HIGH LIFT EFFECT ON WING, EXAMPLE PROBLEM 7 NEXT CASE

FLIGHT CONDITIONS: MACH NUMBER = 0.60

REYNOLDS NUMBERS PER FT = 2.28 x 10⁶

SCHEDULED ANGLES OF ATTACK = -2.0, 0.0, 2.0, 4.0, 8.0. 12.0, 16.0, 20.0, 24.0

REFERENCE PARAMETERS: REFERENCE AREA = 2.25

LONG. REF. LENGTH = 0.822 LATERAL REF. LENGTH = 3.00

	WING	HOR!ZONTAL TAIL	VERTICAL TAIL
SEMISPAN	1.50	0.67	0.849
EXPOSED SEMISPAN	1.29	0.52	0.630
c, .	0.346	0.253	0.42
c _R	1.16	3.420	1.02
^c/4	45 ⁰	45 ⁰	28.1
AIRFOIL	NACA 65A006	NACA 65A006	NACA 63A009

PLAIN FLAP EFFECT ADDED AS EXPERIMENTAL DATA SUBSTITUTION

FIGURE 35 EXAMPLE PROBLEM 7 DATA

7.8 EXAMPLE PROBLEM 8

The all-movable horizontal tail trim case s illustrated using the configuration of Example Problem 3. Note that shinge-axis distance is specified in namelist SYNTHS and a TRIM control card is present in the case.

\$FLTCON NMACH=1.0, MACH(1)=0.60, NALPHA=9.0, ALSCHD(1)=-2.0,0.0,2.0,4.0,8.0, 12.0,16.0,20.0,24.0,RNNUB(1)=2.28E6\$
SOPTINS SREF=2.25,CBARR=0.822,BLREF=3.00\$ \$\$YNTHS XCG=2.60,ZCG=0.0,XW=1.70,ZW=0.0,ALIW=0.0,XH=3.93,ZH=0.0,ALIH=0.0, XV=3.34, VERTUP=.TRUE.\$ \$SYNTHS HINAX=4.271\$ \$BCDY NX=10.0, x(1) = 0.0, .175, .322, .530, .85, 1.46, 2.50, 3.43, 3.97, 4.57,R(1)=0.0,.0417,.0833,.125,.1665,.208,.208,.208,.178,.138\$ SWGPLNF CHRDTP=0.346,SSPNe=1.29,SSPN=1.50,CHRDR=1.16,SAVSI=45.0,CHSTAT=.25, SWAFP-0.0-DADADHO, O.0-IDADHC, O.0-DDAY3-0.0-DTIVET. O.0-TALWIT. O SWGSCHR TOVC-.060, DELTAY-1.30, XOVC-0.40, CLI-0.0, ALPHAI-0.0, CLALPA(1)-0.131, CLMAX(1)=.82,CMO=0.0,LERI=0.0025,CLAMO=.105\$ SWGSCHR CLMAXL=0.785 SVTPLNF CHROTP=.420,SSPN=.63,SSPN=.849,CHRDR=1.02,SAVSI=28.1, CHSTAT=.25,SWAFP=0.0,TWISTA=0.0,TYPE=1.0\$ \$VTSCHR TOVC=.09,XOVC=0.40,CLALPA(1)=0.141,LERI=.0075\$ \$HTPLNF CHRDTP=.253,SSPNE=.52,SSPN=.67,CHRDR=.42,SAVSI=45.0,CHSTAT=0.25, SWAFP=0.0, TWISTA=0.0, SSPNDD=0.0, DHDADI=0.0, DHDADO=0.0, TYPE=1.0\$ \$HTSCHR TOVC=0.060, DELTAY=1.30, XOVC=0.40, CLI=0.0, ALPHAI=0.0, CLALPA(1)=.131, CLMAX(1)=0.82,CMO=0.0,LERI=.0025,CLAMO=.105\$ CASEID ALL MOVEABLE HORIZONTAL TAIL . EXAMPLE PROBLEM 8 TRIM NEXT CASE

7.9 EXAMPLE PROBLEM 9

Problem 9 consists of a lifting body configuration with a delta planform, sharp leading edge, and symmetrical diamond cross section. Pertinent data for this problem are shown in Figure 36.

\$FLTCON NMACH=1.3.MACH(1)=.26,NALPHA=6.0,ALBCHD(1)=-5.0,0.0,5.0,10.0,15.0,20.0,RNNUB(1)=1.16E6\$
\$LARWB IB=0.0,SREF=.989,DELTEP=90.0,SFRONT=.307,AR=1.076,L=1.915,SWET=2.28,PERBAS=2.38,SBASE=0.307,HB=.595,BB=1.03,BLF=.FALSE.,XCG=1.44,THETAD=15.0,ROUNDN=.FALSE.,SBS=.57,SBSLB=.0228,XCENSB=1.277,XCENW=1.277\$
CASEID LIFTING BODY WITH SHARP LEADING EDGE, EXAMPLE PROBLEM 9
NEXT CASE

FIGURE 36 EXAMPLE PROBLEM 9 DATA

7.10 EXAMPLE PROBLEM 10

This problem demonstrates the analysis of the transverse control jet in hypersonic flow located on a flat plate, as shown in Figure 37.

\$FLTCON MACH(1)=10.0,NMACH=1.0,RNNUB(1)=1.E7,PINF(1)=10.,HYPERS=.TRUE.\$ \$TRNJET TIME(1)=1.,2.,3.,4.,5.,FC(1)=1000.,2000.,1000.,500.,200.,NT=5., ALPHA(1)=0.,3.,6.,9.,13.,LAMNRJ(1)=.FALSE.,.FALSE.,.FALSE.,.FALSE.,.FALSE.,. .TRUE.,ME=2.39,ISP=225.,SPAN=2.0,PHE=30.,GP=1.2,CC=90.,LFP=10.\$ CASEID TRANSVERSE-JET SIZING, EXAMPLE PROBLEM 10 DUMP JET NEXT CASE

FIGURE 37 EXAMPLE PROBLEM 10 DATA

7.11 EXAMPLE PROBLEM 11

The use of a hypersonic control flap is demonstrated in this example. Pertinent geometry data is shown in Figure 38.

SFLTCON NMACH=1.,MACH(1)=10.,MALPHA=5.,ALSCHD(1)=0.,5.,10.,15.,20.,
LMHUB(1)=1.06E5,HYPERS=.TRGZ.\$
SOFTIMS SREF=1.,CBARR=1.\$
\$MYPEFF ALITD=150000.,XHL=8.,TMOTI=3.122,CF=2.0,HDELTA(1)=0.,2.,4.,6.,
1J.,12.,16.,20.,25.,30.,LAMMR=.TRUE.,HNDLTA=10.\$
CASEID FLAT PLATE WITH FLAP IN MYPERSONIC FLOM, EXAMPLE PROSLEN 11
MEXT CASE

FIGURE 38 EXAMPLE PROBLEM 11 DATA

APPENDIX A

NAMELIST CODING RULES

Digital Datcom utilizes the namelist input technique because it is more convenient and flexible than formatted input. The namelist coding rules that follow are compatible with both CDC and IBM computer systems. The input Jiagnostic analysis module (CØNERR) tests all of the input and flags any violations of these rules, but it does not correct input errors. Digital Datcom will always execute the data as input by the user regardless of the errors sensed by CØNERR.

- 1. Namelist input data may appear in any card column from 2 to 80. Column 1 cannot be used (control cards are the only exception to this rule).
- 2. Namelist names cannot contain imbedded blanks and must be preceded by a \$ (& on IBM systems). The \$ must appear in Column 2 and the name begins in Column 3. A blank must follow the namelist name.
- Namelist data sets are terminated by a \$ or \$END (&END on IBM systems).
- 4. Variable values are specified using one of the two following forms:

 vname = c,

or aname = c_1 , c_2 , c_3 , ..., c_n , where: vname is a variable name,

*

aname is an array name, and

c, c₁, c₂, c₃, ..., c_n are numeric constants

Variable names cannot contain imbedded blanks.

- 5. Each input constant must be immediately followed by a comma (no blanks) and must not contain imbedded blanks.
- 6. Namelist variables may be in any order.
- 7. Not all namelist variables need be input.
- 8. Namelist variables may appear more than once in a namelist data set.

 The last value will be used.
- 9. Multiple occurrences of the same constant in a namelist variable array can be represented in the form K*C, where K is the number of successive occurrences and C is the numeric constant. The repetition factor, K, must be an unsigned integer followed by an asterisk.

TABLE A-1 CORRECT NAMELIST CODING

- 10. On CDC systems, if all the elements of an array are not specified, the array name must be subscripted with the index for the first element to be filled; i.e., aname (i)=C₁, C₁₊₁,..., C_n, where i is the index corresponding to C₁. Array dimensions for all namelist variables in Digital Datcom are specified for each namelist name in Section 3 of this report.
- 11. Each card that is to be continued must end with constant followed by a comma.
- 12. All Digital Datcom numeric constants should specify a decimal point. All variables, except logical variables are declared type "REAL".

Examples illustrating these rules are shown in Tables A-1 and A-2. Each namelist rule is designated by its number.

TABLE A-2 INCORRECT NAMELIST CODING

MACHE.3, 1.2, 5.0 NALPHA=6., ALSCHD(1)=0., 2., 4., 6., 10., 15. \$ INTERPRETED BY A COMMA. (10) ENTIRE ARRAY NOT FILLED. SURSCRIPT MISSING.	ALL INPUTS MUST SPECIFY A DECIMAL POINT.	BLREF=3.00, CBARR=0.750 3 NO TERMINATION \$	0, BLN=1,46, BLA=1,97, X(1)=0, ,175, ,322, ,53 (1)=0, ,0417, ,08, ,125, ,17,3*,208, ,178, ,138\$	EL!ST NAME. FOR CONTINUATION	
1 2 S FLTCON N MACH=3, MACH=3, 1.2, 5. BLANKS NOT ALLOWER (10)	T) COLUMN ONE CANNOT BE USED	BLANKS NOT ALLOWED (3)	\$BØDYNX=1C., BNØSE=2.0, BTA1L=1.0, BLN= \$ 1.3, 2.5, 3.57, 3.97, 4.57, R(1)=0.,	2) SPACE HUST FOLLOW NAMELIST NAME. 1) COLUMN ONE CANNOT BE USED.	

APPENDIX B

AIRFOIL SECTION CHARACTERISTICS ESTIMATION TECHNIQUES

B.1 INTRODUCTION

The Airfoil Section Module enables the user to specify the wing, horizontal tail, vertical tail, and/or ventral fin airfoil section characteristics by either specifying the NACA designation or the section coordinates. The use of this module can eliminate the need of defining most of the airfoil section characteristics for the namelists WGSCHR, HTSCHR, VTSCHR, and VFSCHR.

The module was written to maintain user flexibility. The user can supply data for any section characteristic and utilize the module to supply the remaining parameters. User supplied data will always take precedence.

This module can calculate the section characteristics of virtually an unlimited number conventional shaped airfoils, whereas, Datcom methods exist for only a limited number of airfoil sections.

B.2 MODULE METHODS

B.2.1 Geometric Properties

User inputs, either by NACA designation or airfoil geometry coordinates (see Sections 2.4 and 3.5), are used to calculate the airfoil upper and lower surface cartesian coordinates, and thickness and camber line distribution. Surface coordinates are determined from the NACA designation using the methods of Kinsey and Bowers, Reference 5. These coordinates are then used to calculate the Digital Datcom namelist input variables Δy , $(x/c)_{max}$ and $(t/c)_{max}$. The leading edge radius (R_{LE}) is calculated internally for NACA specified sections, and has been left as a user input for other sections. However, the module will calculate R_{LE} using the input section coordinates if the variable is not input. Figures B-1 and B-2 are reproduced from Datcom (Datcom Figures 2.2.1-7 and 2.2.1-8) and presents R_{LE} and Δy for several standard airfoils.

B.2.2 Aerodynamic Section Characteristics

The pressure distribution about the airfoil is calculated in incompressible, inviscid flow by the method of singularities (References 2-4). The distribution of the singularities is derived from a conformal transformation of thirty-two fixed points on the airfoil to points equally spaced

about a circle in a transformed plane. Since the solution for inviscid flow about a circle is known, the velocities about the airfoil are calculated by an inverse transformation (back into the physical plane).

In order to adequately define the airfoil shape and ensure a smooth continuous geometric interpolation for the transformation, a curve describing the airfoil surface is constructed. This curve is constructed by fitting the overall geometry by a left-hand parabola joined to a series of cubic curves, and finally a right-hand parabola. This technique yields a function which is continuous and has continuous derivatives everywhere.

The velocity and pressure distribution derived from the conformal transformation analysis are used to calculate the airfoil section ideal aerodynamic parameters for Digital Datcom. They are also used to calculate the remaining section aerodynamic parameters at the zero-lift angle of attack for the user specified Mach and Reynolds numbers. The viscous correction to section lift curve slope, from Kinsey and Bowers (Reference 5), is given as follows:

$$\frac{c_{\ell_{cl}}}{(c_{\ell_{cl}})^{\text{Theoretical}}} = 1 - [\ell_{n}(\text{Re}/10^{5})]^{n} \{.232 + 1.785 \text{ TAN}(\tau_{a}/2) - 2.95 \text{ TAN}^{2}(\tau_{a}/2) \}$$

 $n = -1 + (5/2) TAN(\tau_a/2)$

Re = Reynolds Number

 T_{90} = Thickness at X = .9c

Tgg = Thickness at X = .99c

In addition to the viscous correction, a 5% correlation factor (suggested in Datcom, page 4.1.1.2-2) is applied to bring the results in line with experimental data.

The airfoil section maximum lift, $c_{\ell_{max}}$, is calculated using the Datcom method (Datcom Section 4.1.1.4). The equation for charge is:

 $c_{\ell_{max}} = (c_{\ell_{max}})_{base} + \Delta_1 c_{\ell_{max}} + \Delta_2 c_{\ell_{max}} + \Delta_3 c_{\ell_{max}} +$

∆4 c_{lmax} + ∆5 c_{lmax} Individual terms are discussed below.

 $(c_{\ell_{max}})_{base}$ is obtained from Figure B-3 as a function of Δy and position of maximum thickness. The Δ y parameter for a cambered airfoil is the same as that of the corresponding uncambered airfoil, that is, the uncambered airfoil having the same thickness distribution. The $(c_{\ell_{max}})_{base}$ value is for uncambered airfoils with smooth leading edges at 9 x 106 Reynolds number and low speed conditions.

 $^{\Delta}$ 1 c $_{\ell_{max}}$ accounts for the effect of camber for airfoils having the maximum thickness at 30 percent chord. Figure B-4 gives this parameter as a function of percent camber and maximum camber location.

 $^{\Delta}$ 2 c_{2 max} amounts to an increment by which $^{\Delta}$ 1 c_{2 max} must be adjusted for airfoils with maximum thickness located at a position other than 30 percent chord (if maximum thickness is at 30 percent chord or Δ_1 $c_{\ell_{max}}$ is zero, Δ_2 c_{ℓ_{max}} is zero), presented in Figure B-5.

 Δ_{3} c_{lmax}, presented in Figure B-6, gives the list increment due to Reynolds number for Reynolds numbers other than 9 x 106.

 Δ 4 c_{lmax}, shown in Figure B-7, gives the lift increment due to roughness. The roughness in this case is the standard NACA roughness and is presented by 0.011 inch grit applied over the first 8 percent of chord. The curve is only an indication of roughness effect. Actual roughnesses vary considerably, and the effects may be quite different from those shown. As a result, this parameter is not calculated.

 Δ_{5} c_{lmax} is a correction for Mach numbers greater than approximately 0.2. No generalized charts for Mach effects are available in Datcom, therefore, this parameter is not calculated by Digital Datcom. The lift increment due to Mach number should be obtained from test data of similar airfoils when available. Figure B-8 shows representative effects on selected airfoils.

As a possible alternate to the above procedure, $c_{\ell_{max}}$ for standard airfoils at Mach numbers ≤ 0.20 and a Reynolds number of nine million are given in Datcom Section 4.1.1.4. These coefficients need be corrected only for Reynolds number, roughness, and Mach number.

B.3 LIMITATIONS AND MODULE DEFAULTS

B.3.1 Crest Critical Conditions

When calculating the airfoil section characteristics of user defined or NACA airfoils, the transonic crest critical conditions are computed (Niedling, Reference 6).

The crest critical Mach number is precisely defined as that free stream Mach number for which local sonic flow is first reached at the airfoil surface crest on the assumption of shock free flow. Its significance is founded on its relation to the drag rise Mach number.

If the user requests data for subsonic Mach numbers greater than the crest critical Mach number, airfoil section data at the crest critical Mach number are used.

B.3.2 Limitations on Geometry

When specifying the airfoil geometry by cartesian coordinates or thickness/camber distribution, the user should input data near the airfoil leading edge to prevent the surface curve-fits from calculating an infinite slope. This is easily accomplished by supplying data at X-stations 0., 0.001, 0.002, and 0.003. The user should note that results degrade with increasing camber or thickness. Generally, accuracy may deteriorate for cambers greater than 6% chord or maximum thickness greater than 12% chord. B.3.3 Transonic and Supersonic Airfoils

The inputs for transonic and supersonic airfoils consist primarily of geometry inputs. If an airfoil is defined by coordinates or the NACA card,

all of the required inputs execpt for TCEFF are computed. Procedures for computing specific section data are given below.

Namelist variable TCEFF is the effective thickness ratio of the planform expressed as a fraction of chord. For straight tapered planforms it equals the mean thickness ratio. For nonstraight tapered planforms, the effective thickness ratio is defined in terms of the basic planform and is given by

TCEFF =
$$\begin{bmatrix} \int_{0}^{b/2} (\frac{t}{c})^{2} c dy \\ \int_{0}^{b/2} c dy \end{bmatrix}^{1/2} = \begin{bmatrix} \int_{0}^{b/2} (\frac{t}{c})^{2} c dy \\ \frac{s}{2} \end{bmatrix}^{1/2}$$

The basic planform is the straight-tapered planform obtained by extending the leading and trailing edges of the outboard panel into the vehicle center-line. TCEFF is used to calculate wave drag in the supersonic and hypersonic regimes. A graphical procedure for determining TCEFF is summarized in Figure B-9. Section (t/c) is assumed to be $(t/c)_{EFF}$ of the planform by the ASM if it is not user defined.

Namelist variable KSHARP is a wave-drag factor for sharp nosed airfoils and should not be specified for round-nosed airfoils. For wings with variable thickness ratios, KSHARP should be defined for the section at the mean chord. This parameter is used to calculate wave drag for sharp-nosed airfoils in the supersonic and hypersonic speed regimes. Values of KSHARP for several sharp-nosed airfoils are presented in Figure 8.

Namelist variable SLOPE is the angle between the chord plane and the local tangent at the airfoil surface at 0, 20, 40, 60, 80 and 100 percent chord expressed in degrees. Angles are positive when the local tangents intersect the chord plane ahead of the reference chord point for the tangent. SLOPE parameters are used to calculate supersonic downwash effects and thus are required only for configurations which have a horizontal tail. For cambered airfoils, the upper-surface slopes should be used if the tail is above the wing and conversely lower-surface slopes should be used in the tail is below the wing. Configurations with wing and tail located at the same z-location should have lower surface values specified. If the combination of SLOPE, angle of attack, and Mach number results in a detached

shock, no wing-body-tail results will be generated and an appropriate message will be output. Reflexed trailing edges are not permitted. This variable is automatically computed for a user specified airfoil, either by coordinates or use of the "NACA" card.

FIGURE B-1 VARIATION OF LEADING-EDGE RADIUS WITH THICKNESS RATIO OF AIRFOILS

FIGURE B-2 VARIATION OF LEADING-EDGE SHARPNESS PARAMETER WITH AIRFOIL THICKNESS RATIO

FIGURE B-3 AIRFOIL SECTION MAXIMUM LIFT COEFFICIENT OF UNCAMBERED AIRFOILS

FIGURE B-4 EFFECT OF AIRFOIL CAMBER LOCATION AND AMOUNT ON SECTION MAXIMUM LIFT

FIGURE B-4 EFFECT OF AIRFOIL CAMBER LOCATION AND AMOUNT ON SECTION MAXIMUM LIFT (CONCLUDED)

FIGURE B-5 EFFECT OF POSITION OF MAXIMUM THICKNESS ON SECTION MAXIMUM LIFT

FIGURE B-6 EFFECT OF REYNOLDS NUMBER ON SECTION MAXIMUM LIFT

FIGURE B-7 EFFECT OF NACA STANDARD ROUGHNESS ON SECTION MAXIMUM LIFT

FIGURE B-8 TYPICAL VARIATION OF SECTION MAXIMUM LIFT WITH FREE-STREAM MACH NUMBER

BASIC WING

FIGURE B-9 GRAPHICAL SOLUTION FOR (t/c)effective

FIGURE B-9 GRAPHICAL SOLUTION FOR (t/c) EFFECTIVE (CONCLUDED)

B.4 AIRFOIL SECTION DESIGNATIONS

This section has been included to acquaint the user with the section geometric definitions, and the NACA designation scheme (reprinted from Datcom Section 2.2.1). The airfoil section module has been written to conform as closely to these designations as possible. Exceptions to the NACA designation scheme are described in Section 3.5.

BASIC SYMMETRIC AIRFOIL

- c = chord of airful section
- x = distance along chord measured from 1.e.
- y sordinate at some value of x (measured normal to and from the chord line for symmetric airfoils, measured normal to and from the mean line for cambered airfoils)
- y(x: thickness distribution of airfoil
 - t = 2y max = maximum thickness of airfoil
- x, = position of maximum thickness
- t.e.r. =leading-edge radius
- Φ_{TE} = trailing-edge angle (included angle between the tangents to the upper and lower surfaces at the trailing edge)

CAMBER MEAN LINE

- (yc) max maximum ordinate of mean line
- y_(x) = shape of mean line
- x,y_) = mosition of maximum camber
- # slope of i.e.r. through i.e. equals the slope of the mean line at the i.e.
- section lift coefficient
- og design section lift coefficient

AIRFOIL SECTION DESIGNATION

"CLARK Y" AIRFOIL (NOT PROGRAMMED IN DIGITAL DATCOM)

FLAT ---

* = 10% CHORD FOR ANY THICKNESS

NACA 4-DIGIT SERIES AIRFOILS

"Dash" numbers (numbers following a dash placed after the standard notation) are expressed only when i.e.r. and/or x, are different from normal.

FIRST DASH NO.	1.0.2.	SECOND DASH NO.	*, (% CHORD)
0	Sharp	. 2	30
8	1 Normal	8	#0 (Normal)
•	Normal	. 4	40
•	A × Normal		\$0

GERMAN NOTATION OF NACA 4-DIGIT AND 8-DIGIT SERIES AIRFOILS

NACA S-DIGIT SERIES AIRFOIL

NACA I- SERIES AIRFOILS

NACA 4- SERIES AIRFOILS

THIS PAGE IS BEST QUALITY PRACTICABLE TROW COPY FURNISHED TO DDC

152

To increase or decrease the airfull thickness

THIS PAGE IS BEST QUALITY PRACTICABILE PROCE CULK FULLISHED TO DOG

NACA T- SERIES AIRFOILS (NOT PROGRAMMED IN DIGITAL DATCOM).

APPENDIX C

STORAGE LOCATION OF VARIABLES IN COMMON

Pertinent related variables are stored in data blocks. These variables may be obtained as output by utilizing the "DUMP" option discussed in Section 3.5. Location of variables stored in each data block are defined in this Appendix. The index that follows describes the types of variables stored in each data block, program common block, and page numbers for a detailed definition of the contents. The data block names refer to the names output from the program when the DUMP option is used.

All page, section, equation and figure references refer to the USAF Stability and Control Datcom, revised April 1976. The column titled "Overlay" defines the program overlay where the particular variable is calculated and set in the data block. The common blocks and overlay structure are discussed in Volume II.

C.1 INPUT AND COMPUTATIONAL DATA BLOCKS

DATA BLOCK	PAGE	PROGRAM COMMON BLOCK	DESCRIPTION OF VARIABLES STORED IN ARRAY
A	162	WINGD	Wing planform geometric parameters
AHT	166	HTDATA	Horizontal tail planform geometric parameters
AVF	170	VTDATA	Ventral fin geometric parameters
AVT	174	VTDATA	Vertical tail geometric parameters
В	178	WINGD	Flight condition parameters and subsonic wing lift variables
BD	179	BDATA	Subsonic body parameters
BDIN	182	BØDYIN	Body inputs via namelist BØDY
внт	183	HTDATA	Flight condition parameters and subsonic horizontal tail lift variables
C	184	Whaerø	Subsonic wing pitching moment parameters
CHT	187	WHAERØ	Subsonic horizontal tail pitching moment parameters
D	190	WHAERØ	Subsonic wing drag variables
DHT	192	WHAERØ	Subsonic horizontal tail drag variables
DVF	194	Whaerø	Subsonic ventral fin drag parameters
DVT	196	WHAERØ	Subsonic vertical tail drag parameters
DWA	198	SUPDW	Supersonic downwash variables

DATA		PROGRAM	
BLOCK	PAGE	COMMON BLOCK	DESCRIPTION OF VARIABLES STORED IN ARRAY
DYN	199	PØWR	Dynamic derivative variables for all speed regimes and configurations
DYNH	203	BDATA	Dynamic derivative variables for all speed regimes and horizontal tail and horizontal tail body configurations
F	207	FLAPIN	Symmetrical and jet flap inputs via namelist SYMFLP Asymmetrical flap inputs via namelist ASYFLP Transverse jet inputs via namelist TRNJET Hypersonic flap inputs via namelist HYPEFF
FACT	212	WHWB	Subsonic wing and horizontal tail parameters
FCM	213	Supwh	Subsonic high-lift and control pitching moment variables
FHG	214	SUPDW	Subsonic high-lift and control hinge moment variables
FLA	216	PØWR	Subsonic high-lift and control asymmetrical deflection variables
FLC	217	FLGTCD	Flight condition variables input via namelist FLTCØN
FLP	218	PØWR	Subsonic high-lift and control lift coefficient variables
GR	220	SUPWH	Ground effect variables
нв	222	WHWB	Subsonic horizontal tail-body variables
HTIN	223	HTI	Horizontal tail inputs via namelists HTPLNF and HTSCHR
HYP	225	BDATA	Hypersonic control effectiveness parameters
JET	226	SUPDW	Transverse-jet control parameters
LB	227	SUPDW	Low aspect ratio wing and wing-body parameters
LBIN	230	PØWER	Low aspect ratio wing-body inputs via namelist LARWB
ØPTI	231	øptiøn .	Case reference dimensional input via namelist <pre>pTINS</pre>
PW	232	PØWR	Power effect variables, propeller power Power effect variables, jet power
PWIN	238	PØWER	Power effect variables input via namelists PRØPWR or JETPWR
SBD	239	SUPBØD	Supersonic body variables
SECD	242	LEVEL 2	Transonic second level method parameters
SHB	244	SUPWB	Supersonic horizontal tail-body variables

DATA		PROGRAM .	
BLOCK	PAGE	COMMON BLOCK	DESCRIPTION OF VARIABLES STORED IN ARRAY
SLA	245	SBETA	Supersonic sideslip variables, all configura- tions
SLAH	246	SBETA	Supersonic sideslip variables, horizontal tail and horizontal tail-body configurations
SLG	247	SUPWH	Supersonic wing variables
SPR	250	PØWR	Supersonic high-lift and control variables
STB	252	SBETA	Subsonic sideslip variables, all configurations
STBH	255	SBETA	Subsonic sideslip variables, horizontal tail and horizontal tail-body configurations
STG	258	SUPWH	Supersonic horizontal tail variables
STP	261	WBHCAL	Supersonic wing body horizontal tail variables
SWB	262	SUPWB	Supesonic wing-body variables
SYNA	263	SYNTSS	Synthesis dimensions input via namelist SYNTHS
TCD	264	SUPDW	Supersonic spanwise loading coefficient parameters and high-lift and control drag variables
TRA	265	SBETA	Transonic longitudinal and lateral directional stability variables
TRAH	. 268	SBETA	Transonic longitudinal and lateral directional stability variables for horizontal tail and horizontal tail body configurations
TRM	271	PØWR	Subsonic trim variables for control device on wing or tail
TRM2	272	PØWR	Subsonic trim variables for an all movable horizontal stabilizer
TRN	273	PØWR	Transonic high-lift and control variables
TVT	274	VTI	Twin vertical panel inputs via namelist TVTPAN
VFIN	275	VTI	Ventral fin inputs via namelist VFPLNF and VFSCHR
VTIN	277	VTI	Vertical tail inputs via namelists VTPLNF and VTSCHR
WB .	279	WHWB	Subsonic wing-body variables
WBT	280	WBHCAL	Subsonic wing-body-horizontal tail parameters
WGIN	281	WINGI	Wing inputs via namelists WGPLNF and WGSCHR

C.2 OUTPUT DATA BLOCKS

The output data blocks contain the output results from the program. There exists an output array for each configuration summarized as follows:

OUTPUT DATA BLOCK	PROGRAM COMMON BLOCK	CONFIGURATIONS/"ALUES
BØDY	IBØDY	Body Alone
WING	IWING	Wing Alone
HT	IHT	Horizontal Tail Alone
VT	IVT	Vertical Tail Alone
VF	IVF	Ventral Fin Alone
₿₩	IBW	Body-Wing
ВН	IBH	Body-Horizontal Tail
BV	IBV	Body-Vertical Tail-Ventral Fin*
BWH	IBWH	Body-Wing-Horizontal Tail
BWV	IBWV	Body~Wing-Vertical Tail- Ventral Fin*
BWHV	IBWHV	Body-Wing-Horizontal Tail- Vertical Tail-Ventral Fin*
PØWR	IPØWER	Power Increments
DWSH	IDWASH	Downwash values

^{*}Configuration can include (1) Vertical Tail Only, (2) Ventral Fin Only, or (3) both, depending upon the configuration.

The arrangement of the output arrays is as follows:

	arrays Is as IOIIO	78:
OUTPUT DATA BLOCKS	ARRAY ELEMENTS	CONTAINS
BODY, WING, HT, VT, VF, BW,	1-20	CD vs a
BH, BV, BWH, BWV, BWHV	21-40	C _L vs a
	41-60	C _m vs a
	61-80	C _N vs a
	81-100	CA vs x
	101-120	C _{L a} vs a
	121-140	C _m vs a
	141-160	C _m vs a
	161-180	C _n vs .
	181-200	$C_{n \beta} vs x$ $C_{\ell \beta} vs \alpha$
	201-220	C _{Lq} vs 1
	221-240	C _{mq} vs α
	241-260	C _L vs a
	261-280	C _m vs a
	281-300	C _{lp} vs a
	301-320	Cyp vs a
	321-340	C _{np} vs a
	341-360	Cnr vs a
	361-380	C _{lr} vs a
GWR (Power Increments)	1-20	
	1-20	ΔC _D vs a
	21-40	ΔC_{L} vs α
:	41-60	ΔC_{m} vs α
	61-80	ΔC _N vs α
	81-100	ACA vs a
_	101-120	ΔC _{L α} vs α
	121-140	$\Delta C_{m_{\alpha}}$ vs α
	141-160	Δ _{Cyβ} vs α

OUTPUT DATA BLOCKS	ARRAY ELEMENTS	CONTAINS
	161-180	ΔC_{n_o} vs α
	181-200	$\Delta C_{n_{\beta}} vs \alpha$ $\Delta C_{\ell_{\beta}} vs \alpha$
DWSH (Downwash Data)	1-20	q _H /q _∞ vs α
	21-40	€Vβα
	41-60	∂ € / ∂ α vs α

C.3 FLAP AND TRIM OUTPUT DATA BLOCKS

When running flap or trim cases, the output results are stored in output data blocks which can be seen by using the "DUMP" control card. To conserve program core, these results are stored in the dynamic derivative portion of the configuration data blocks. The arrangement of these output arrays is as follows:

SYMMETRICAL FLAPS

OUTPUT DATA BLOCKS	ARRAY ELEMENTS	CONTAINS
BØDY	1-200	ΔC_{D_T} vs α , δ
WING	1-10	ΔC _L vs δ
WING	11-20	$\Delta C_{\mathbf{m}}$ vs δ
WING	21-30	$\Delta c_{L_{max}}$ vs δ
WING	31-40	ΔC _{Dmin} vs δ
WING	41-50	(ΔC _{Lα}) vs δ
WING	51-60	Ch ws 6
WING	61-70	Ch ovs o

CONTROL TABS

OUTPUT DATA BLOCKS	ARRAY ELEMENTS	CONTAINS
BW	1-10	CFC, FC vs 6
BH .	1-10	ChC vs &
BV	1-10	ChC vs 6
BWH	1-10	Δch _{CG} vs δ
BWHA	1-10	Tt vs &

ASYMMETRICAL FLAPS

OUTPUT	DATA	BLOCKS	ARRAY ELEMENTS	CONTAINS
•	BØDY		1-200	Cn vs a, 6
	WING		1-200	Cr ve a, 6
	HT		1-10	δ L-SR
	HT		11-20	C vs &
	HT	•	21-31	Cn ve 6

TRIM WITH CONTROL DEVICES

OUTPUT DATA BLOCKS	ARRAY ELEMENTS	CONTAINS
HT	1-20	CLuntrimmed vs 6
HT	21-40	Cpuntrismed vs 6
HT	41-60	Cmuntrimmed vs 6
VT	1-20	δ _{Trim} vs δ
VT	21-40	ΔcLT-i- Vs δ
VT	41-60	ΔCL VS &
VT	61-80	Δc _D , vs δ
VT	81-100	Acorate vs &
VT .	101-120	Ch vs 6
VT	121-140	aTrim C _h vs &

ALL MOVABLE HORIZONTAL TAIL TRIM

OUTPUT DA	TA BLOCKS	ARRAY ELEMENTS	CONTAINS
HT	1	1-20	Muntrismed vs a
HT		21-40	δ _{Trim} vs α
HT	Tail Alone	41-60	C _{DTrim} ws a
HT		61-80	CLT. VE Q
HT		81-100	Carria ve a
HT		101-120	Myrim vs a
VT	Full	1-20	Cowstrin vs a
VT	Configuration	21-40	C _{LWBTTrim} vs a

WING PLANFORM GEOMETRIC PROPERTIES VARIABLE DEFINITION OF DATA BLOCK "A"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVE	RLAY
1	ARIPE	s,*	•	Exposed inboard wing area	1	18
2	ARØPE	Sø*		Exposed outboard wing area	l i	18
3	ARØVAL	s_*		Exposed wing area		18
4	ARREF	sr	·	Theoretical wing area	2,	18
5	ASPIPE	A,*		Exposed inboard wing aspect rati	þ2,	18
6	ASPØPE	Ag*	,	Exposed outboard wing aspect ratio	2,	18
7	ASPØVL	A*		Exposed wing aspect ratio	2,	18
8		(/c/x)		Wing chord station where Λ=0	1 '	21
9		₽W .		Wing maximum overall length	1	21
10	CHRDRE	c_*	•	Exposed wing root chord	1	18
11 .	GAMMA .	Y	١.	tan ⁻¹ (h _H /£ ₂)	1 1	21
12		h _H	4.4.1	4.4.1 - sketch (a)	2,	21
- 13	Print FL	AG - (DNPWB	т)			
14	Canard (logical)				
15	MACIPE	c,*		Exposed wing inboard MAC	2,	18
16	MACØE	c *		Exposed wing MAC	2,	18
17	MACØPE	cg*		Exposed wing outboard MAC	2,	18
18	NDTCP	σπ		Effective exposed wing aspect ratio	2,	18
19	SPTIPE	r _b *		A(23)/A(21)	2,	18
20		LEFF	4.4.1	4.4.1 - sketch (a)	9	
21	SSPNBØ	b /2		Semi-span of inboard theoretical panel	2,	18
22		£3	· .	p. 4.4.1-5	2,	21
23	SSPNEX	b */2	!	Semi-span of inboard exposed panel	2,	18
24		² 2	4.4.1	4.4.1 - sketch (a)	2,	21
25	TRATIP	λ		Theoretical wing inboard taper ratio	2,	18
26	TRTIPE	λ _l *		Exposed wing inboard taper ratio	2,	18
27	TRTØE	λ w *		Exposed wing taper ratio	2,	18
28	TRTØPE	λg*		Exposed wing outboard taper	2,	18

VARIABLE DEFINITION OF DATA BLOCK "A"

LOCATIO	N VARIABLE	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVE	PLAY
29	LENGTH	l*		Exposed wing maximum overall length	2,	18
30	XCNTEX	x*		X distance from wing apex to 50% wing MAC	2,	18
31	YCNTEX	y*		Exposed wing Y distance from body to MAC of total wing	2,	18
32	YCNTIE	y,*		Exposed inboard panel Y distance from body to inboard MAC	2,	18
33	YCNTØE	Ÿø*		Exposed outboard panel Y-dis- tance from body to outboard MAC	2,	18
34	SAE000	۸٥*		Exposed wing LE sweep angle, degrees; effective LE sweep angle for non-straight wings	2,	18
35		۸٥*		Angle in radians	2,	18
36		SIN Ao*		Trignometric sine of Λ_0 *	2,	18
37		cos n _o *		Trignometric cosine of 10 *	2,	18
38		TAN Ao*		Trignometric tangent of Λ_0 *	2,	18
39		([*] 0*) _T		Test value used in Sub. ANGLES	2,	18
40-45	SAE025	Λ*.25		Exposed wing quarter chord sweep	2,	18
46-51	SAE050	^* ₋₅₀		Exposed wing half chord sweep	2,	18
52-57	SAE 100	۸*1.00		Exposed wing T.E. sweep	2,	18
58-63	SA1000	(_V ₀)		Inboard panel LE sweep	2,	18
64-69	SA1025	(Λ _{•25})ι	÷	Inboard panel quarter chord sweep	2,	18
70-75	SA1050	(A _{.50}),		Inboard panel half chord sweep	2.,	18
76-81	SAI 100	(A _{1.00})		Inboard panel T.E. sweep	2,	18
82-87	SAØ000	(₀)		Outboard panel L.E. sweep	2,	18
88-93	SAØ025	(A.25)ø		Outboard panel quarter chord sweep	2,	18
94-99	SAØ050	(A _{.50})ø	1	Outboard panel half chord sweep	2,	18
100-105	SAØ100	(A _{1.00})ø		Outboard panel T.E. sweep	2,	18
106-111	SAVSI	(_M)		User specified inboard panel sweep	2, 1	18
112-117	SAVSØ	(A _m)ø		User specified outboard panel sweep	2, 1	8

VARIABLE DEFINITION OF DATA BLOCK "A"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
118		λr		Overall taper ratio	2, 18
119	ARIP	s		Area of inboard panel	2, 19
120		1	•	Overall aspect ratio	2, 18
121	CBARI	4 اه اه د		Inboard panel theoretical MAC	2, 18
122	CBARR	c c	!	Wing mean aerodynamic chord	2, 18
123	cı .	c,	4.1.3.4	Aspect ratio classification	2, 18
124		(1+C ₁)×		Aspect ratio classification	2
		cos A _{LE}			
125		A(128)/A(1	24)	Aspect ratio classification	2
126		(α _ο) _{m=0}		Inviscid zero lift angle of attack	o
127		(a _{CLmax}) M=0		Inviscid max lift angle of attack	0
128				AR classification factor	2
129	RNFS	R _e		Reynolds number of wing	ŋ
130		R _f ₹		Y distance from vehicle center- line to MAC or inboard panel	2, 18
131	CLALPA	C α		User defined C ₂	0
132	CLMAX	c _e ^{~α}		User defined C _{lmax}	0
133		C ₂ max		Y distance from vehicle center line to MAC of outboard panel	2, 18
134	ALPHA0	α _O		Zero lift angle of attack	15
135	DAOØT	Δα ₀ /θ	:	Change in α_0 due to wing twist	15
136		\overline{Y}_{R}		Y distance from vehicle center line to total wing MAC	2, 18
137	AOMØAO	$(\alpha_{0M})/\alpha_{0}$	4.1.3.1	Figure 4.1.3.1-5	15
	SWAFP	Λ _{AF}			1,2,15
144		ΔαClmax	4.1.3.4	Figure 4.1.3.4-21b	15
145		Lmax'	4.1.3.4	Figure 4.1.3.4-21a	15
146		C _{lmax} C _{lmax} (A(145))			15

VARIABLE DEFINITION OF DATA BLOCK "A"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
147-152	ALCLMX	(ae)CLmax		$(\alpha_{C_{Lmax}} - \alpha_0)$, degrees	15
153-158	AEJ	(a _e) _J	·	$(\alpha_1 - \alpha_0)$, degrees	15
159		c ₂	4.1.3.4	Figure 4.1.3.4-24b	15
160		(1+C ₂)x	4.1.3.4		15,24
161		AtanA _{LE}		X distance from wing apex to wing MAC quarter chord	2, 18
162	СИВ	n _B		b _h */b*	2, 18
163	•	A		Inboard theoretical panel	2, 18
164		ΔΥ'		Geometric parameters for fic-	2, 18
165		(b ₀ */2)'		ticious outboard panel of straight tapered wing; used to	2, 18
166		c ^P ,		calculate wing pitching moments	2, 18
167		(s _ø *)'			2, 18
168		ا (A <mark>ø</mark> *)	·		2, 18
169		(λ <mark>g</mark> *)'			2, 18
170		n			31
171		(CLa),		Inboard panel lift curve slope	15.
172		(CLa)		Outboard panel lift curve slope	15
173		ΔX _{CG}			24 27
174	TØVC	(t/c)		User defined thickness ratio of inboard panel, or total wing	2, 18
1 7 5 - 180	SATCM	^(Λ) t/c max		Wing sweep at the maximum thick- ness chord station	2, 18
181-186	SATCMØ	[(A) max] _d		Outboard panel sweep of the max- imum thickness chord station	2, 18
187-192	SATCMI	[(A) t/c max],		Inboard panel sweep of the max- imum thickness chord station	2, 18
193		ℓ _H		XH-Xw-crw cos (alu)	2, 21
194		L _H		$A(193)+(\overline{X}_R)_H \cos^{\prime}(\alpha_{H})$	2, 21
195		x _R	1	X distance from wing apex to LE of total wing MAC	2, 18

HORIZONTAL TAIL PLANFORM GEOMETRIC PROPERTIES VARIABLE DEFINITION OF DATA BLOCK "AHT"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVER	ILAY
1	ARIPE	S,*		Exposed inboard H.T. area	2,	18
2	ARØPE	Sa*	,	Exposed outboard H.T. area	2,	18
3	ARØVAL	S _r *	·	Exposed H.T. area	2,	18
4	ARREF	s		Theoretical H.T. area	2,	18
5	ASPIPE	A _I *		Exposed inboard H.T. aspect ratio	2,	18
6	ASPØPE	Ag*		Exposed outboard H.T. aspect ratio	2,	18
7 8 - 9	ASPØVL	A _w * UNUSED		Exposed H.T. aspect ratio	2,	18
10 11-14	CHRDRE	C A UNUSED	;	Exposed H.T. root chord	2,	18
15	MACIPE	c,*	,	Exposed H.T. Inboard MAC	2,	18
16	MACØE	c _w *		Exposed H.T. MAC	2,	1
17	MACØPE	c _ø *		Exposed H.T. outboard MAC	2,	18
18	NDTCP	σ*		Effective exposed H.T. aspect ratio	2,	18
19 20	SPTIPE	r _b **		AHT(23)/AHT(21)	2,	18
21	SSPNBØ	b _b /2		Semi-span of imboard theoretical panel	2,	18
22		UNUSED	Í			
23	SSPNEX	b _b */2		Semi-span of inboard exposed panel	2,	18
24		UNUSED	İ	r		
25	TRATIP	λ,		Theoretical H.T. inboard taper ratio	2,	18
26	TRTIPE	λ,*	ĺ	Exposes H.T. inboard taper ratio	2, 1	18
27	TRTØE	λ , *		Exposed H.T. taper ratio	2, 1	8
28	TRTØPE	λ ø *		Exposed H.T. outboard taper ratio	2, 1	8
29	LENGTH	2*		Exposed H.T. maximum overall length	2, 1	8
30	XCNTEX	X*		X distance from H.T. apex to 50% wing MAC	2, 1	δ

VARIABLE DEFINITION OF DATA BLOCK "AHT"

LOCATION	VARIASI E NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVE	RLAY
31	YCNTEX	Ÿ*		Exposed H.T. Y distance from body to MAC of total H.T.	2,	18
32	YCNTIE	₹,,*	:	Exposed inboard panel Y distance from body to inboard MAC	2,	18
33	YCNTØE	₹ø*		Exposed outboard panel Y dis- tance from body to outboard MAC	2,	18
34	SAE000	^o*		Exposed H.T. LE sweep angle, degrees; effective LE sweep angle for non-straight wings	2,	18
35		^o*		Angle in radians	2,	18
36		SIN AO		Trignometric sine of 10 *	2,	18
37		cos Ao*		Trignometric cosine of Λ_{Ω}^{*}	2,	18
38		TAN Ao*		Trignometric tangent of Λ_0^*	2,	18
39	ĺ	(Λ ₀ *) _τ		Test value used in Sub. ANGLES	2,	18
40-45	SAE025	۸*،25		Exposed H.T. quarter chord sweep	2,	18
46-51	SAE050	Λ*.50		Exposed h.T. half chord sweep	2,	18
52-57	SAE 100	Λ*1.00		Exposed H.T. TE sweep	2,	18
58-63	SA1000	(A ₀)		Inboard panel LE sweep	2,	18
64-69	SA1025	(A _{.25})		Inboard panel quarter chord sweep	2,	18
70-75	SA1050	(A _{.50}),		Inboard panel half chord sweep	2,	18
76-81	SA 1 100	(A _{1.00})		Inboard panel TE sweep	2,	18
82-87	SAØ000	$(\Lambda_0)_{\sigma}$		Outboard panel LE sweep	2,	18
88-93	SAØ025	(A _{.25}) ø		Outboard panel quarter chord sweep	2,	18
94-99	SAØ050	(A _{.50}) _ø		Outboard panel half chord sweep	2,	18
100-105	SAØ100	(A _{1.00})ø		Outboard panel TE sweep	2,	18
106-111	SAVSI	(V ^m) 1		User specified inboard panel sweep	2,	18
112-117	SAVSØ	(∧ _m)g		User specified outboard panel sweep	2,	18
118		λ _r	,	Overall taper ratio	2,	18
119	ARIP	s,		Area of exposed inboard panel	2,	18
120		A _w	,	Overall aspect ratio	2,	18
121	CBARI	<u>c</u> "	,	Inboard panel theoretical MAC	2,	18

VARIABLE DEFINITION OF DATA BLOCK "AHT"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVER	AY
122	CBARR	c _r		H.T. mean aerodynamic chord	2,	18
123	CI	C,	4.1.3.4	Aspect ratio classification	2,	18
124		(1+6 ₁)x		Aspect ratio classification	2	
		cos A _{LE}			İ	
125		AHT (128)/	AHT (124)	Aspect ratio classification	2	
126		(α ₀) _{M=0}		Inviscid zero lift angle of attack	0	
127		(α _{CLmax}) M=0		Inviscid max lift angle of attack	0	
128		п0		AR classification factor	2	
129	RNFS	R _f		Reynolds number of H.T.	0	
130		₹,		Y distance from vehicle center line to MAC of inboard panel	2, 1	8
131	CLALPA	Cea		User defined C _L	0	ı
132	CLMAX	C _£		User defined C _L max	0	ı
133		Y g		Y distance from vehicle center line to MAC of outboard panel	2, 1	8
134	ALPHAO	α ₀		Zero lift angle of attack	16	1
135	DAOØT	Δα0/0		Change in α_0 due to wing twist	16	١
136		Ÿ _R		Y distance from vehicle center line to total wing MAC	2, 1	8
137	AOMØAO	(a0M)/a0	4.1.3.1	Figure 4.1.3.1-5	16	ı
138-143	SWAFP	AFI			1,2,1	6
144		ΔαC _L max	4.1.3.4	Figure 4.1.3.4-21b	16	I
145		Lmax		Figure 4.1.3.4-21a	16	
146		C _L max C _L x Max AHT(145)	,		16	
	ALCLMX	(ae)CLmax		$(\alpha_{C_{L_{max}}} - \alpha_0)$, degrees	16	
	AEJ	(a _e) _J	[(α _j - α ₀), degrees	16	
159	ł	c ₂	4.1.3.4	Figure 4.1.3.4-24b	16	I
160		(1+c ₂) x	4.1.3.4		16	
		AtanA _F				

VARIABLE DEFINITION OF DATA BLOCK "AHT"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVE	RLA
161		X _R		X distance from H.T. apex to H.T. MAC quarter chord	2,	18
162	CNB	n _B		b _b */b*	2,	18
163		A		Inboard theoretical panel aspect ratio	2,	18
164		ΔΥΙ		Geometric parameters for fic-	2,	18
165		(b ₀ */2)'		ticious outboard panel of straight tapered H.T.; used to	2,	18
166		C _b '		calculate H.T. pitching moments	2,	18
167		(Sg*)'			2,	18
168		(A _a *)*	•		2.	18
169		(λ g *)'			2.	18
170		n			33	i
171		(CLa),		Inboard panel lift curve slope	16	
172		(CLa)		Outboard panel lift curve slope	16	,
173		ΔX _{CG}			2,	22
174	TØVC	(t/c)		User defined thickness ratio of inboard panel, or total wing	2,	- 1
	SATCM	(Λ) t/c max		H.T. sweep at the maximum thick- ness chord station	2,	18
81-186	SATCMØ	[(A) t/c max] _d	·	Outboard panel sweep at the max- imum thickness chord station	2,	18
87-192	SATCHI	[(A) t/x max]		inboard panel sweep at the max- imum thickness chord station	2,	18
93-194		UNUSED				
195		x _R		X distance from H.T. apex to LE of total H.T. MAC	2,	18
	l		I			
	1		İ			
	l					
-			İ			
	I					ı

VENTRAL FIN PLANFORM GEOMETRIC PROPERTIES VARIABLE DEFINITION OF DATA BLOCK "AVF"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVE	RLAY
1	ARIPE	S ₁ *		Exposed inboard V.F. area	2,	18
2	ARØPE	Sø*		Exposed outboard V.F. area	2,	18
3	ARØVAL	Sr*		Exposed V.F. area	2,	18
4	ARREF	S		Theoretical V.F. area	2,	18
5	ASPIPE	A _I *		Exposed inboard V.F. aspect ratio	2,	18
6	ASPØPE	Ag*		Exposed outboard V.F. aspect ratio	2,	18
7	ASPØVL	A _u *		Exposed V.F. aspect ratio	2,	18
8-9		UNUSED				
10	CHRDRE	C _r *		Exposed V.F. root chord	2,	18
11-14		UNUSED			1	
15	MACIPE	c,*		Exposed V.F. inboard MAC	2,	18
16	MACØE	c,*		Exposed V.F. MAC	2,	18
17	MACØPE	c _ø *		Exposed V.F. outboard MAC	2,	18
18	NDTCP	σ*		Effective exposed V.F. aspect ratio	2,	18
19	SPTIPE	r _b *		AVF(23)/AVF(21)	2,	18
20		UNUSED		•		
21	SSPNBØ	ь _ь /2		Semi-span of inboard theoretical panel	2,	18
22		UNUSED				
23	SSPNEX	b _b */2		Semi-span of inboard exposed panel	2,	18
24		UNUSED				
25		λ _l		Theoretical V.F. inboard taper ratio	2,	18
26	TRTIPE	λ,*		Exposed V.F. inboard taper ratio	2,	18
27	TRTØE	λ*	İ	Exposed V.F. taper ratio	2,	18
28	TRTØPE	λ g *		Exposed V.F. outboard taper ratio	2,	18
29	LENGTH	* .		Exposed V.F. maximum overall length	2,	18
30	XCNTEX	X*		X distance from V.F. apex to 50% V.F. MAC	2,	18

VARIABLE DEFINITION OF DATA BLOCK "AVF"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	CVI	ERLAY
31	YCNTEX	∀ *		Exposed V.F. Y distance from body to MAC of total V.F.	2,	18
32	YCNTIE	₹,*		Exposed inboard panel Y distance from body to inboard MAC	2,	18
33	YCHTØE	Ÿ g *		Exposed outboard panel Y dis- tance from body to outboard MAC	2,	18
34	SAE000	^o*		Exposed V.F. LE sweep angle, degrees; effective LE sweep angle for non-straight wings	2,	18
35		Λ ₀ *		Angle in radians	2,	18
36		SIN AO*		Trignometric sine of Λ_0 *	2,	18
37		cos Ao*	,	Trignometric cosine of 10#	2,	18
38	Ì	TAN AO*		Trignometric tangent of 10.	2,	18
39		(Λ ₀ *) _T		Test value used in Sub. ANGLES	2,	18
40-45	SAE025	۸*۰.75		Exposed V.F. quarter chord sweep	2,	18
46-51	SAE050	^*.50		Exposed V.F. half chord sweep	2,	18
52-57	SAE 100	^*1.00		Exposed V.F. TE sweep	2,	18
58-63	SA1000	(v ⁰)		Inboard panel LE sweep	2,	18
64-69	SA1025	(A ₋₂₅)	·	inboard panel quarter chord sweep	2,	18
70-75	SA 1050	(A _{.50}) ₁		Inboard panel half chord sweep	2,	18
76-81	SA 1 100	(A _{1.00})		Inboard panel TE sweep	2,	18
82-d7	SAØOOO	$(\Lambda_0)_{\emptyset}$		Outboard panel LE sweep	2,	18
88-93	SAØ025	(A _{.25})ø	·	Outboard panel quarter chord sweep	2,	18
94-99	SAØ050	(A _{.50})ø		Outboard panel half chord sweep	2,	18
100-105	3AØ100	(A1.00)ø		Outboard panel TE sweep	2,	18
106-111	SAVSI	(A _m) ₁		User specified inboard panel sweep	,2,	18
112-117	SAVSØ	(A _m)ø		User specified outboard panel sweep	,2,	18
118		λ _r		Overall taper ratio	2,	18
119	ARIP	s	l	· •	2,	
120	•	<u>^</u>	ľ		2,	1
121	CBARI	c,		Inboard panel theoretical MAC	2,	18

VARIABLE DEFINITION OF DATA BLOCK "AVF"

Г		VARIABLE	ENGINEERING	DATES		T-	
Ľ	OCATION	NAME	SYMBOL	PATCOM REFERENCE	COMMENTS/DEFINITIONS	OVER	RLAY
	122	CBARR	C _r		V.F. mean aerodynamic chord	2,	18
	123	C1	C,	4,1.3.4	Aspect ratio classification	2,	18
	124		(1+c ₁) x		Aspect ratio classification	2	
			cos A _{LE}				
	125	l	AVT (128)	AVT (124)	Aspect ratio classification	2	
	126		$(\alpha_0)_{M=0}$		Inviscid zero lift angle of attack	0	İ
	127		(α _{CLmax}) M=0		Inviscid max lift angle of attack	C	
1	128		10		AR classification factor	2	
1	129	RNFS	R _f		Reynolds number of V.F.	0	ž
1	30		Ϋ́,		Y distance from vehicle center line to MAC of inboard panel	2,	18
1	31	CLALPA	Cla		User defined C _{La}	0	1
J	32	CLMAX	Clmay		User defined C _{lmax}	0	
	33		Yø		Y distance from vehicle center	2,	18
•	36 4-137		Y UNUSED		line to MAC of cutboard panel	2,	18
1	8-143	SWAFP				1,2	
14	4-160		AF1 UNUSED			, <u> </u>	ı
1	61	,	\overline{X}_{R}		Distance from V.F. apex to V.F. MAC quarter chord	2,	18
1	62	CNB	n _B		Ŀ _ь */ь*	2,	18
1	63	·	A		Inboard theoretical panel aspect ratio	2,	18
] 1	64	j	ΔΥΙ	j	Geometric parameters for fic-	2,	18
ŀ	65		(b ₀ */2) •		ticious outboard panel of straight tapered V.F.; used to	2, 1	18
ŧ	66		c ^P ,	Ì	calculate wing pitching moments	2, 1	18
ŀ	57	. [(Sg*)'	1		2, 1	ध
	58	1	(A _Ø *)'			2, 1	B
	59	ļ	(λ _Ø *)'		·	2, 1	β
170)-173		UNUSED	.			

VARIABLE DEFINITION OF DATA BLOCK "AVF"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVER	LAY
174	TØVC	(t/c)		User defined thickness ratio of inboard panel, or total V.F.	2,	18
175-180	SATCH	(A) t/c max		V.F. sweep at the maximum thick- ness chord : ation	2,	18
181-186	SATCHØ	[(A) t/c max]g		Outboard panel sweep at the max- imum thickness chord station	2,	18
187-192	SATCHI	[(A) _{t/s} max]		Inboard panel sweep at the max- imum thickness chord station	2,	18
193-194 195		UNUSED X _R		X distance from V.F. apex to LE of total V.F. MAC	2,	18
·						
			·	·		

VERTICAL TAIL PLANFORM GEOMETRIC PROPERTIES VARIABLE DEFINITION OF DATA BLOCK "AVT"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVE	RLAY
1	ARIPE	S ₁ *	:	Exposed inboard V.T. area	2,	18
2	ARØPE	Sø*	, .	Exposed outboard V.T. area	2,	18
3	ARØVAL	S _r *	,	Exposed V.T. area	2,	18
4	ARREF	.s _r		Theoretical V.T. area	2,	18
5	ASPIPE	A *		Exposed inboard V.T. aspect ratio	2,	18
6	ASPØPE	Ag*		Exposed outboard V.T. aspect ratio	2,	18
7	ASPØVL	A _w *		Exposed V.T. aspect ratio	2,	18
8-9		UNUSED				
10	CHRDRE	C _r *		Exposed V.T. root chord	2,	18
11-14		UNUSED -				
•	MACIPE	c _j *		Exposed V.T. inboard MAC	1	18
16	MACØE	c _w *	:	Exposed V.T. MAC	1	18
17	MACØPE	cø*		Exposed V.T. outboard MAC	l '	18
18.	NDTCP	σ*		Effective exposed V.T. aspect ratio	2,	18
19	SPTIPE	r _b *	*	AVT (23) /AVT (21)	2,	18
20		UNUSED				
- 21	SSPNBØ	ե _b /2		Semi-span of inboard theoretical panel	2,	18
22		UNUSED				
23	SSPNEX	b _b */2		Semi-span of inboard exposed panel	2,	18
24		UNUSED				ſ
25		λ _I		Theoretical V.T. inboard taper ratio	2,	18
26	TRTIPE	λ,*	,	Exposed V.T. inboard taper ratio	2,	18
27	TRTØE	λ,*		Exposed V.T. taper ratio	2,	18
28	TRTØPE	λ <mark>g</mark> *	·	Exposed V.T. outboard taper ratio	2,	18
29	LENGTH	2*		Emposed V.T. maximum overall length	2,	18
· 30	XCNTEX	Χ̈÷		X distance from V.T. apex to 50% V.T. MAC	2,	18

VARIABLE DEFINITION OF DATA BLOCK "AVT"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVE	RLAY
31	YCNTEX	γ *		Exposed V.T. Y distance from body to MAC of total V.T.	2,	18
32	YCNTIE	₹,*		Exposed inboard panel Y distance from body to inboard MAC	2,	18
33	YCNTØE	Ÿg [⋆]		Exposed outboard panel Y distance from body to outboard MAC	2,	18
34	SAE000	^o*		Exposed V.T. LE sweep angle, degrees; effective LE sweep angle for non-straight V.T.	2,	18
35		Λο*		Angle in radians	2,	18
36		SIN Ao*		Trignometric sine of An*	2,	18
37		cos Ao*		Trignometric cosine of An#	2,	18
38		TAN AO*		Trignometric tangent of 10*	2,	18
39	į	(Λ ₀ *) _Τ		Test value used in Sub. ANGLES	2,	18
40-45	SAE025	۸* .25		Exposed V.T. quarter chord sweep	2,	18
46-51	SAE050	Λ*.50		Exposed V.T. half chord sweep	2,	18
52-57	SAE 100	Λ*1.00		Exposed V.T. TE sweep	2,	18
58-63	SA 1000	(A ₀)		inboard panel LE sweep	2,	18
64-69	SA1025	(A .25) I		Inboard panel quarter chord sweep	2,	18
70-75	SA1050	(A ₅₀)		Inboard panel half chord sweep	2,	18
76-81	SA1 100	(A _{1.00})		Inboard panel TE sweep	2,	18
82-87	SAØOOO	(A _O) ø		Outboard panel LE sweep	2,	18
88-93	SAØ025	(A _{.25})ø		Outboard panel quarter chord sweep	2,	18
94-99	SAØ050	(A 50) ø		Outboard panel half chord sweep	2,.	18
100-105	SAØ100	(A _{1.00})ø		Outboard panel TE sweep	2,	18
106-111	SAVSI	(V ^m) !		User specified inboard canel sweep	,2,	18
112-117	SAVSØ	(A _m) ø		User specified outboard panel sweep	,2,	18
118]	λ _r		Overall taper ratio	2,	18
119	ARIP	s,	Ì	Area of exposed inboard panel	2,	18
120		Aw	i	Overall aspect ratio	2,	18
121	CBARI	c,		Inboard panel theoretical MAC	2,	18

VARIABLE DEFINITION OF DATA BLOCK "AVT"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLA
122	CBARR	c _r		V.T. mean aerodynamic chord	2, 18
123	C1	c ₁	4.1.3.4	Aspect ratio classification	2, 18
124		(1+c ₁) x		Aspect ratio classification	2.
		cos A _{LE}			
125	1	, ;	AVT (124)	Aspect ratio classification	2
126		(a ₀) _{M=0}		Inviscid zero lift angle of attack	0
127		(α _{CL_{max}) M=0}		Inviscid max lift angle of attack	0
128				AR classification factor	2
129	RNFS	R _f		Reynolds number of V.T.	0
130		₹,	·.	Y distance from vehicle center line to MAC of inboard panel	2, 18
131	CLALPA	Cla		User defined C ₂	0
132	CLMAX	C _{Lmax}		User defined C _{lmax}	0
133		Ÿ _Ø		Y distance from vehicle center	2, 18
136 134-137		Y UNUSED	.]	line to MAC of outboard panel	2. 18
138-143	SWAFP	1			
144-160	SWALL	AF1 UNUSED			1,2
161		₹ _R		Distance from V.T. apex to V.T. MAC quarter chord	2, 18
162	CNB	n _B	ĺ	b _h */b*	2, 18
163		A	:	Inboard theoretical panel aspect ratio	· 1
164		ΔΥΙ	. [Geometric parameters for fic-	2, 18
165		(b ₀ */2)!		ticious outboard panel of straight tapered V.T.; used to	2, 18
166		c ^P ,	, . I	calculate wing pitching moments	2, 18
167		(Sø*)'	1	·	2, 18
168		(Ag*)	ĺ		2, 18
169	Ì	(λ _g *) •	}		2, 18
70-173	l	UNUSED	į		- 1
				1 m	

VARIABLE DEFINITION OF DATA BLOCK "AVT"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVER	LAY
174	тøvс	(t/c)		User defined thickness ratio of inboard panel, or total V.T.	2,	18
175-180	SATCH	$^{(\Lambda)}$ t/c max		V.T. sweep at the maximum thick- ness chord station	2,	18
181-186	SATCMØ	[(A) t/c max]g		Outboard panel sweep at the max- imum thickness chord station	2,	18
187-192	SATCMI	[(A) _{t/c} max]		Inboard panel sweep at the max- imum thickness chord station	2,	18
193-194		UNUSED		•		
195		X _R		X distance from V.T. apex to LE of total V.T. MAC	2,	18
 - -						
				-	i	
, i				·		
					: .	
					1	
,						
			,		:	-
					•	
				and the second of the second o	*	- 1

FLIGHT CONDITIONS AND SUBSONIC WING AERODYNAMICS VARIABLE DEFINITION OF DATA BLOCK "B"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLA
1	MACH	М		Mach number	0
. 2	BETA	β		Mach number parameter	0
3-22		[c _{Lw})]		Incompressible wing lift coefficient	0
23-42	ALSCHD	α		ascho + ai	2, 4
43	ACCLMX	α _{CLmax}		Maximum lift angle of attack	15
44	CCLMAX	CL _{max}		Maximum lift coefficient	15
45	CNAARF	(CNaa) REF	4.1.3.3	Increment in C _N at C _{Lmax} , Ref.	15
46		(CDO) W		Wing zero lift drag coefficient	3
47		(c _{mo}) _w		Wing zero lift pitching moment coefficient	31
48		(c _{Lα}) _{M=0}		Wing incompressible lift curve slope	0
49	ALPHØM	αø _M	1	Wing zero lift angle of attack at Mach	15
		1			
İ					
1		1	İ		
			1		
			.]		j
			İ	•	
			l		
		1			- (
ŀ		ļ			
					1
- 1	Ì		1	1	
1	ļ		1	·]	
				·	

SUBSONIC BODY PARAMETERS

VARIABLE DEFINITION OF DATA BLOCK "BD"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLA
1		^ℓ B		Total body length	4,6,
2		X _{Bmax}		X distance from body nose to max cross section area	i -
3		S _{max}		Body maximum cross sectional	4,6
4		Sinose			6
5		lnose			2,6
6		So	4.2.1.1	Body cross-sectional area at X	6
7		x _o	4.2.1.1	X station where flow ceases to be potential	6
8		(X-/4)H			10
9		K ₂ -K ₁	4.2.1.1	Figure 4.2.1.1-20a	6
10		(C _{Do}) _B		Body zero lift drag coefficient	6
11 12-29		UNUSED		X _{nose} - X-station of body nose	1
30		(L _{AF}) _H			10
31		(L _{NF}) _H			10
32		UNUSED			
33		Xcg=XM		X _C G	, l
34-54		UNUSED			
55 56		(l/R)B		Body max. cross. area	4,6 4,6
57		S _B		Body base area	4,6
58		s _b (∆x) _H		body base dica	10,28
59		(c _{DF}) _{DB}		Body zero lift skin friction drag coefficient based on S _{max}	4,6
60		с _{оь}		Body zero lift base drag coef- ficient based on S _{Ref}	4,6
61		c _{Do}		Body zero lift drag coefficient based on S _{Ref}	4,6
62		(C _m)		Body zero lift pitching moment coefficient	ι.7
63		$(\Delta X_{AC})_{H}$			10,28
64	·	(Z _{AC}) _H			10,28

VARIABLE DEFINITION OF DATA BLOCK "BD"

OCATION	VARIABLE NAME	ENGINEERING SYMROL	DATCOM REFERENCE	COMMENTS / DEFINITIONS	OVERLA
65		X _w	·		1
66		ΔX _w		Distance from wing apex to LE o wing exposed root chord	f 2,20
.67		ΔX _{CG}	,	x _{cg} -x _w -\Delta x _w	2
68		ZWE			2
69		X _{AC}		1	0
70		ZAC	·		0
71		(AXAC)W			0
72		L _{NF}	=		0
73		LAF			0
74		z _w			1
75		(2B/dB)		Body fineness ratio	4,6
76		n	4.2.1.2	Figure 4.2.1.2-35a	6
77		(a;)w		User defined wing incidence	1
78	į	sin (a;)W			2
79		cos (a,)			2
80		tan (a;)			2
81		ا م			1,4
82		Z _{CG}		Used defined Z _{CG}	1
83		X _ _/4			0,20
84		(AXCG)H			10,28
85		(d _b) _{max}		Max body diameter	4,6
86		d _b		Base diameter	4,6
87		d _B		Body diameter	2
88		$\int_{x_0}^{b} n c_{d_c} dx$	4.2.1.2	Eqn. 4.2.1.2-a	6
89		ΔX _H		Distance from H.T. apex to LE	
90		LBR T		of HT exposed root chord	4,6
91		(R _L) _B	1		4,6
92		c _{fB}		Body skin friction coefficient	4,6
93		SS		Body wetted area	6
94	NALPHA	3			4,6

VARIABLE DEFINITION OF DATA BLOCK "BD"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
95-114		(c _{Da}) _{WB}			10
115-134		(CmCNV) JBA			4
135-154		(CqC) J (CmCMA) JBW	4.2.1.2	Figure 4.2.1.2-35b	6
155-174		(CLP)		Potential flow lift term	6
175-194		-dS/dX	,	·	6
195-214		(CLV)		Vortex lift term	6
215-234		(cDF)		·	4,6
235-254		(C _{mCNP}) JBA			4
255-274		a _R			2,20,
275	ļ	s _P		Body Planform Area	25
276-295		(c _{DN}) _{WB}		C_{D} , C_{L} and C_{m} of body segment	4,6,
296-315	:	(CLN)WB		from nose tip to leading edge	19
316-335		(c _{mN}) _{WB}	·	of exposed wing	
336-355		(c _{Di:}) _{HB}			
356-375		(CLN)HB		CD, CL and Cm of body segment	4,6,
376-395		(C _{mN}) _{HB}		from nose tip to leading edge	19
525		(b/2-b*/2)		of exposed H.T.	
535 536 - 660		UNUSED			7,20
661-680					,
681-700		(C _{NV}) _{JBA}			4
701-720	XØL	(CNP) JBA			4
721-740	ZPØL	X/L _{Ref}	Į		4
741-760	ZP	Z'/L _{Ref}	Ì	· ·	4
761					10,28
762		(X _{AC}) _H			10,28
,,,,		z _{HE}			10,20
				·	
,					
.					
			İ		

BODY INPUT VARIABLES

VARIABLE DEFINITION OF DATA BLOCK "BDIN"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	ÖVERLAY
1	NX			Input via NAMELIST BODY	
2-21	Х	x,		·	
22-41	ŗ	s,			
42-61	Р	P	· .		
62-81	R	R			
82-101	ZU	Z _u ;			
102-121	ZL	ZLi			
122	BNOSE				
123	BTAIL				
124	BLN	² N		·	
125	BLA	² A			
126	DS	d _s		. ↓	
127	TYPE			V	
128	METHOD		·		
				·	
				·	
	ł	1			
			,	,	
			·		
				·	
				-	ļ
		·			
			, 		

FLIGHT CONDITIONS AND SUBSONIC HORIZONTAL TAIL AERODYNAMICS VARIABLE DEFINITION OF DATA BLOCK "BHT"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1	MACH	м		Mach number	0
2	BETA	в		Mach number parameter	0
3-22		(c ^{LM}))	٠.	Incompressible HT lift coeffici-	0
23-42	ALSCHD	a		ascho + ai	2,10, 16
43	ACCLMX	aC _{Lmax}		Maximum lift angle of attack	16
44	CCLMAX	CLmax		Maximum lift coefficient	16
45	CNAARF	(CNag) Ref	4.1.3.3	Increment in CN at CL . ref.	16
46		(CDO)		HT zero lift drag coefficient	5
47		(c ^{mo}) ^A		HT zero lift pitching moment coefficient	33
48		(CLa) M=0	·	HT incompressible lift curve slope	0
49	ALPHON	°g _M		HT zero lift angle of attack at Mach	16
		·			
j					
1					
1					
	l				
					·
1					
		• .			
	[
					·
				·	
		,			
					\$

SUBSONIC WING PITCHING MOMENT PARAMETERS VARIABLE DEFINITION OF DATA BLOCK "C"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	CVERLA
1		c _{mo} , c _{moR}	4.1.4.1	User defined zero lift C _m	31
2	i	CWOTIP	4.1.4.1	User defined zero lift C _m of outboard panel	31
3		CWOW CWOM	0	Figure 4.1.4.1-7	31
4		ΔC _{mo} /θ	4.1.4.1	C _{mo} change due to unit wing twist	31
5		c _{mo}	4.1.4.1	c _{mo}	31
6			4.1.4.2	Distance from wing apex to the a.c. in root chords	31
7		qc"\qc"	4.1.4.2	Eqn. 4.1.4.2-c	31
8	j		4.1.4.2		31
9		Aw tan Am	4.1.4.3		31
10			4.1.4.3		31
11	1	B∕tan A≜	4.1.4.3		31
12].	Ay tan Aoi	4.1.4.3	inboard panel	31
13			4.1.4.3	Inboard panel	31
14		B/tan Aos	4.1.4.3	Inboard panel	31
15			4.1.4.3	Outboard panel	31
16			4.1.4.3	Outboard panel	31
17			4.1.4.3	Outboard panel	31
18	1		4.1.4.3	Inboard panel	31
19		(Xac/cr)g	4.1.4.3	Outboard panel	31
20		(Xac) 1/cr			31
21	1	o l		Eqn. 4.1.4.3-f	31
22	(x _P /C _r) 1	4.1.4.3	Wing normalized X _{CP} at 90 degrees angle of attack	31
23			4.1.4.3	Figure 4.1.4.3-21b	31
24		1+C3)A x 4	1.1.4.3		31
25		an Aa (X _{CP} /C _r) ₂ 4	1.1.4.3	Figure 4.1.4.3-21b & -22a	31
26		x_{CP}/c_{c}		Figure 4.1.4.3~21a	
27	(•	Eqn. 4.1.4.3-b	31

VARIABLE DEFINITION OF DATA BLOCK "C"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
28		sina _{CLmax}	4.1.4.3	α _{CLmax} from 4.1.3.4	31
29		tanacLmax	4.1.4.3		31
30		(x _{cP} /c _r)	4.1.4.3	Eqn. 4.1.4.3-c	31
		ref			
31		sin α,	4.1.4.3		31
32		cos a	4.1.4.3	i ·	31
33		tan α,	4.1.4.3	·	31
34		A cos An	4.1.4.3	1	31
35		tana,/	4.1.4.3		31
		tanας. Lmax		·	1 1
36		α _{Ref}	4.1.4.3		31
37	·	NS1	4.1.4.3	Aspect ratio index, Figure	31
38		Δ(X _{CP} /C _p) ₄	4.1.4.3		31
39		4(XCP/C)			31
40	,	CP P3	4.1.4.3	Stability index, Figure 4.1.4.3-22b	31
41		A(X _{CP} /C _r)	4.1.4.3		31
42			4.1.4.3		31
43		Δ(X _{CP} /C _r) /Δα	4.1.4.3		31
44			4.1.4.3	·	31
45		(X _{CP} /C _r) _J	4010743		
46	į	I I	4.1.4.3		31
		/tan α			
47	TEMP2	tan ac _{Lma} ,	4.1.4.3		31
İ		/tan a ref			
48	1	c / c	4.1.4.3		31
49		(X _{CP} /C _r)	4.1.4.3		31
50		(x _{CP} /C _r) ₃	4.1.4.3		31

VARIABLE DEFINITION OF DATA BLOCK "C"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
51		(x _{CP} /c _r) ₄	4.1.4.3		31
	·	·			
			·		
	·				
			ļ		

SUBSONIC HORIZONTAL TAIL PITCHING MOMENT PARAMETERS

VARIABLE DEFINITION OF DATA BLOCK "CHT"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERL
1.		c _{mo} , c _{moR}	4.1.4.1	User defined zero lift C _m	33
2	·	CWOLIB	4.1.4.1	User defined zero lift C _m of outboard panel	33
3		(C _{mo}) _M /(Cm	o) _{M=0}	Figure 4.1.4.1-7	33
4		ΔC _{mo} /θ	4.1.4.1	C _{mo} change due to unit HT twist	33
5		c _{mo}	4.1.4.1	c _{mo}	33
6			4.1.4.2	Distance from HT apex to the	33
7		qc"\qc"	4.1.4.2	Eqn. 4.1.4.2-c	33
8			4.1.4.2		33
9		A _w tan ∧⇔	4.1.4.3		33
10	1		4.1.4.3		33
11	I	β/tan Λ#	4.1.4.3		33
12		Ai tan Aoi	4.1.4.3	Inboard panel	33
13		tan A _{OI} /B	4.1.4.3	Inboard panel	33
14		β/tan Λ _{Ol}	4.1.4.3	Inboard panel	33
15	[y 09 1	4.1.4.3	Outboard panel	33
16		tan A of /B	4.1.4.3	Outboard panel	33
17		8/tan A		Outboard panel	33
18	<u> </u>	(X _{ac} /c _r),	4.1.4.3	inboard panel	33
19	1	(Xac/cr)g		Outboard panel	33
20	1	(Xac) /cr	4.1.4.3		33
21		o l		Eqn. 4.1.4.3-f	33
22		(X _{CP} /C _r)	4.1.4.3	HT normalized X _{CP} at 90 degrees angle of attack	33
23			1.1.4.3	Figure 4.1.4.3-21b	33
24			1.4.3		33
25		(x _{CP} /c _P) 1 4	.1.4.3	Figure 4.1.4.3-21b & -22a	33
26		x _{cp} /c _p /1 4		Figure 4.1.4.3-21a	33
27		- · · · ·		Eqn. 4.1.4.3-6	33
	С	Max		· · · · · · · · · · · · · · · · · · ·	

VARIABLE DEFINITION OF DATA BLOCK "CHT"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
28		sina _{CLmax}	4.1.4.3	α _{CLmax} from 4.1.3.4	33
29		tancC _{Lmax}	4.1.4.3		33
30		(x _{cP} /c _r)	4.1.4.3	Eqn. 4.1.4.3-c	33
		ref			
31		sin α	4.1.4.3		33
32		cos α	4.1.4.3		33
33		tan α	4.1.4.3		33
34	·	A cos A	4.1.4.3	·	33
35]	tan /	4.1.4.3		33
	(tanacLmax			
36		Ref	4.1.4.3		33
37		, NO	4.1.4.3	Aspect ratio index, Figure 4.1.4.3-24a	33
38		A(XCP/Cr)	4.1.4.3		33
39		A(XCP/C)			33
40			4.1.4.3	Stability index, Figure	33
41	} ·	A(X _{CP} /C _r)	4.1.4.3		33
42		Δα	4.1.4.3		33
. 43		Δ(X _{CP} /C _r)	4.1.4.3		. 33
	į	. /Δα			
44		(XCP/CL)	4.1.4.3		33
45		UNUSED			
46		tan ac _{Lma}	4.1.4.3		33
		/tan α		·	
47	TEMP2	tan ac _{Lmax}	4.1.4.3		33
•		/tan gref			
48		c _r /c̄	4.1.4.3		33
49		(x _{CP} /c _r) ^a ref	4.1.4.3	·	33
50		(X _{CP} /C _r) ₃	4.1.4.3		33

VARIABLE DEFINITION OF DATA BLOCK "CHT"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
51		(x _{CP} /c _r) ₄	4.1.4.3		33
		α _{ref}			1
·					1
	÷				
				·	·
		,			
·				,	
			!		
.]					
}					
1					. [
					.
į		. [İ
					j
1					}
			1		
Ì					ł
		į			l
			1		

SUBSONIC WING DRAG PARAMETERS VARIABLE DEFINITION OF DATA BLOCK "D"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLA
1		R'			3
2		2/k		A(16)/ROUGFC	3
3		s*/s _r		Ratio of exposed wing to reference areas	3
4 .		Rø	4.1.5.2	Figure 4.1.5.2~53	3
5	. ,	R	4.1.5.2	Figure 4.1.5.2-53	3
6		$(R_V)_{g}$			3
7		(R _V)			3
8		(RLER)		A(201) * (RLER) Ø	3
9		(RLER)		A(201)*(RLER)	3
10		Cf		Wing skin friction coefficient	3
11		Cfj		Inboard panel skin friction coefficient	3
12		c _{fø}		Outboard panel skin friction coefficient	3
13		R _{LS}	4.1.5.1	Figure 4.1.5.1-28b	3
14		R			3
15		(R ₂),		•	3
16		(R _L)g			3
17		RN			3
18		(RN)		Inboard panel Reynolds number	3
19		(RN)		Outboard panel Reynolds number	3
20		c ^{DO}		Wing zero lift drag coefficient	3
21		(c _{D0})		Inboard panel C _{DC}	3
22		(c _{DO}) _g		Outboard panel C _{DO}	3
23	ĺ	(R _{LS})		Inboard panel R _{LS}	3
24	ĺ	(R _{LS}) _Ø		Outboard panel R _{LS}	3
25	Ì	(R _{LS})ø	,		3
26		RLER			3
27	1	R _V	1	· .	3
28	.	Al/cos ALE	ĺ		3
29			4.1.5.2	Figure 4.1.5.2-53	.3
30		e		Figure 4.1.5.2-i	3

VARIABLE DEFINITION OF DATA BLOCK "D"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
31	ВА	βА			3
32	BW	βW			3
33		V		•	3
34		CDL			3
35		CDJ		Wing drag coefficient	3
36-55		(CDL)	ı	Wing induced drag coefficient	3
·		·	·		
	ļ Į	<u> </u>			
!					
				•	
			,	. •	
			,		
		,			
			·		
	:				
		<u> </u>			

SUBSONIC HORIZONTAL TAIL DRAG PARAMETERS VARIABLE DEFINITION OF DATA BLOCK "DHT"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1		R¹			5
2		2/k		AHT (16) /ROUGFC	5
3		s*/s _r		Ratio of exposed HT to refer- ence areas	5
. 4		Rø	4.1.5.2	Figure 4.1.5.2-53	5
5		R	4.1.5.2	Figure 4.1.5.2-53	5
6		(R _V) _Ø			5
7		(R _V)			5
8	ļ	(R _{LER})		AHT (201) * (RLER)	5
9		(RLER)	1	AHT (201) * (RLER)	5
10	·	c _f	:	HT skin friction coefficient	5
11		Cfl		Inboard panel skin friction coefficient	5
12		Cfø		Outboard panel skin friction coefficient	5
13		R _{LS}	4.1.5.1	Figure 4.1.5.1-28b	5
14	,	RL			5
15		(R ₂)			5
16		(R ₂)g	,		5
17		RN			5
18		(RN)		inboard panel Reynolds number	5
19	· 1	(RN)		Outboard panel Reynolds number	5
20		CDO		HT zero lift drag coefficient	5
21	į	(c _{DO})		Inboard panel C _{FO}	5
22	1	(c ₀₀)		Outboard panel C _{DO}	5
25	. !	(R _{LS})		Inboard panel R _{LS}	5
24		(R _{LS})	ļ	Outboard panel R _{LS}	5
25	1	(VCDF)	1	·	5
26		RLER	j	AHT (201) * (RLER)	5
27	-	R _V			5
28	1	AA/cos ALE]		5
29		í		Figure 4.1.5.2-53	5
30		e. '	4.1.5.2	Figure 4.1.5.2-i	5

VARIABLE DEFINITION OF DATA BLOCK "DHT"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DFFINITIONS	OVERLAY
31	ВА	вА .			5
32	BW	βW			5
33		V			5
34		CDL			5
35		CDJ		HT drag coefficient	5
36~55	 - -	(c ^{DF})	·	HT induced drag coefficient	5
	_				
İ	· '.				
ļ					
		٠			
			Į.		
	İ				
	I				1
1	i				
1		j			
ł	1	-] [
.		1			
*			1		
			I		1 1

SUBSONIC VENTRAL FIN DRAG PARAMETERS

VARIABLE DEFINITION OF DATA BLOCK "DVF"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLA'
1		R.			8
2		1/k		AVF (16) / ROUGEC	8
3		s*/s _r		Ratio of exposed VF to reference areas	8
4		Rø	4.1.5.2	Figure 4.1.5.2-53	8
5		R	4.1.5.2	Figure 4.1.5.2-53	8
6		(R _V) _d			8
7		(R _V)			8
8		(RLER)			8
9		(RLER)		1	8
10		Cf		V.F. skin friction coefficient	8
11		CfI		Inboard panel skin friction coefficient	8
12		Cfg		Outboard panel skin friction coefficient	8
13	•	RLS	4.1.5.1	Figure 4.1.5.1-28b	8
14		R			8
15		(R ₂)		·	8
16		(R ₂) _d			6
17		RN			8
18		(RN)		Inboard panel Reynolds number	8
19		(RN)		Outboard panel Reynolds number	8
20		c _{DO}		VF zero lift drag coefficient	8
21		(CDO)		inboard panel C _{DO}	8
22		(c _{DO}) _g	ſ	Outboard panel C _{DO}	6
23		(R _{LS})		Inboard panel R _{LS}	8
24	1	(R _{LS})ø	·	Outboard panel R _{LS}	8
25	J	(VCDF)	j		8
26	j	RLER	ĺ		8
27		R _V	j		8
28	1	AA/cos ALE	İ		8
29	J		4.1.5.2	Figure 4.1.5.2-53	8
30		e	4.1.5.2	Figure 4.1.5.2-i	8

VARIABLE DEFINITION OF DATA BLOCK "DVF"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
31 32 33 34 35 36-55	BA BW	BA BW V CDL CDJ		VF drag coefficient VF induced drag coefficient	8 8 8 8 8
		·			

SUBSONIC VERTICAL TAIL DRAG PARAMETERS VARIABLE DEFINITION OF DATA BLOCK "DVT"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
		RI			8
2		٤/k		AVT(16)/ROUGFC	8
3		s*/s _r		Ratio of exposed VT to refer-	8
4	,	Rø	4.1.5.2	Figure 4.1.5.2-53	8
5		R	4.1.5.2	Figure 4.1.5.2-53	8
6		(R _V) _a			8
7		(R _V)	,		8
8		(R _{LER})ø			8
9		(R _{LER})			Ą
10		Cf		V.T. skin friction coefficient	8
11		Cfi		Inboard panel skin friction coefficient	8
12	٠.	Cfg		Outboard panel skin friction coefficient	8
13		R _{LS}	4.1.5.1	Figure 4.1.5.1-28b	8
14		R			8
15		(R ₂)			8
16		(R ₂) _g			8
17		RN			8
18		(RN)	,	Inboard panel Reynolds number	8
19		(RN)		Outboard panel Reynolds number	8
20		c _{DO}		VT zero lift drag coefficient	8
21		(c _{DO})	_	Inboard panel C _{DO}	- 8
22	. :	(c _{DO}) _a		Outboard panel CDO	8
23		(R _{LS})		Inboard panel R _{LS}	8
24		(R _{LS})ø		Outboard panel R _{LS}	8
25		(VCDF)		23	8
26		RLER		·	8
27		R _V			8
28		V Αλ/cos Λ _{LE}			8
29	•	R	4.1.5.2	Figure 4.1.5.2-53	8
30		e	4.1.5.2	Figure 4.1.5.2-i	8

VARIABLE DEFINITION OF DATA BLOCK "DVT"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
31 32 33 34 35 36-55	BA BW	βΑ βW V C _{DL} C _{DJ} (C _{DL})		VT drag coefficient VT induced drag coefficient	8 8 8 8 8
		·			

SUPERSONIC DOWNWASH VARIABLES VARIABLE DEFINITION OF DATA BLOCK "DWA"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1	масн	М		Mach number	21
2	BETA	β		Mach number parameter	21
3	x(1)	2X ₁ /β _{bw}	4.4.1	·	21
4	X(2)	2X ₂ /β _{bw}	4.4.1		21
5	Y(1)	2Y ₁ /bw	4.4.1		21
6	Y(2)	2Y ₂ /bw	4.4.1		21
7	Z(1)	2Z ₁ /bw	4.4.1		21
8	Z(2)	2Z ₂ /bw	4.4.1		21
9-28	ALPHA	α _j + α _i			21
29-68	ZE	(2Z/bw) Eff]4.4.1		21
69-70	DHB	1,2 [2h/αβ _{bw}]	4.4.1		21
71-108 109-128	UNUSED DEPAVG	1,2 (∂ε/∂α) _J AVG	4.4.1		21
129-168	SDW	(θε/θα) _{1,2}	4.4.1		21
169-188	CLANL	CLa J			21
189-208	м	(w ⁷) ^H		Mach number at horizontal tail	21
209	ZWAKEC	Zw/cr	·		21
210-229	ZC	z, '			- 21
230	DELQØ	(Δq/q) _Ø			21
231	DLE	+α _J -δ _{LE}	·		21
232	DELTAZ	ΔZ			21
233	XSUR	XSurvey	4.4.1	X at survey plane	21
234	THETA	θ	4.4.1	Shock wave angle, Figure 4.4.1-73	21
235 " . "	DELTE	δ _{TE}			21
236	THETE	θ _{TE}			21
237	JDETCH				21
				· I	
]	·	

DYNAMIC DERIVATIVE VARIABLES

VARIABLE DEFINITION OF DATA BLOCK "DYN"

VARIABLE DEFINITION OF DATA BLOCK DYN							
LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS / DEFINITIONS	OVERI AY		
1	CMQMFB	(c _{mq}) _{Mfb}	7.1.1.2	Eqn. 7.1.1.2-b	43		
2	CMQ2	(c _{mq}) _{M=.2}	7.1.1.2	Low speed wing pitching derivative (M=.2)	43		
3 .	ļ.	UNUSFD					
4	CLG	Cr ^a	7.1.4.1	Figure 7.1.4.1-6	43		
5	F8N	F ₈ (N)	7.1.4.2	Figure 7.1.4.2-9	43		
6	CMØG	c _{mog}	7.1.4.1	Figure 7.1.4.1-6	43		
7	CMADPP	C ii g	7.1.4.2	Eqn. 7.1.4.2-b	43		
8	F6N	F ₆ (N)	7.1.4.2	Figure 7.1.4.2-9	43		
9	EPPBC	EβC	7.1.1.1	Figure 7.1.1.1-8	43		
10	GBC	GBC	7.1.1.1	Figure 7.1.1.1-8	43		
11	CLQPWH	CLa	7.1.1.1	Eqn. 7.1.1-d	43		
12	F3II	F3(N)	7.1.1.1	Figure 7.1.1.1-9	43		
13	F4N	F4(N)	7.1.1.1	Figure 7.1.1.1-9	43		
14	XACCRB	X _{ac} /c _r	7.1.1.1	From section 4.1.4.2	43,44, 54		
15	CLQWPP	BCLa	7.1.1.1	Figure 7.1.1.1-10 (a-c)	43		
16	CLAD2	(CL _a) ₂	7.1.4.1	Eqn. 7.1.4.1-c; Figures 7.1.4.1-8(a-f)	44		
17	F5N	F ₅ (N)	7.1.4.2	Figure 7.1.1.2-8	43		
18	F7N	F ₇ (N)	7.1.4.2	Figure 7.1.1.2-8	43		
19	FIIN	F ₁₁ (N)	7.1.4.2	Figure 7.1.1.2-8	43		
20	CMQPWH	C _{mq}	7.1.1.2	C _{ma} referenced to body axes with	43		
		,		the origin at the wing a.c.			
21		W=0 (qc ^m \qc ^r)		Inviscid derivative of $C_{ m m}$ due to $C_{ m L}$	43		
22	CLADI	(c _{Lå}) ₁	7.1.4.1	Eqn. 7.1.4.1-c; Figures 7.1.4.1-8(a-f)	44		
23	FIN	F ₁ (N)	7.1.4.1	Figure 7.1.4.1-7	44		
24	F2N	F ₂ (N)	7.1.4.1	Figure 7.1.4.1-7	44		
25	F3X	53(N)	7.1.4.1	Figure 7.1.4.1-7	44		
26	CMAD1	(c _m ,)	7.1.4.2	Figures 7.1.4.2-13a thru 13p	44		
27	CMAD2	(c _{må}) ₂	7.1.4.2		44		
					i i		

VARIABLE DEFINITION OF DATA BLOCK "DYN"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
28	LAMN	N	·	Nose taper ratio	46
29	LAMA	Α		Afterbody taper ratio	46
30	LAMF	F	· ·	Flare section taper ratio	46
31	CNQPN	(CNa)	7.2.1.1	Hypersonic nose C _{Na}	46
32	CNQPA	(c _{Nq}) _A	7.2.1.1	Hypersonic afterbody C _{Na}	46
33	CNQPF	(CNg) F	7.2.1.1	Hypersonic flare C _{Na}	46
34	เหต		7.2.1.1	Nose distance to moment ref axis	46
35	NA		7.2.1.1	Afterbody distance to moment ref axis	46
36	NF		7.2.1.1	Flare distance to moment ref axis	46
37	CMQPN	(c _{mg}) _N	7.2.1.2	Hypersonic nose C _{ma}	46
38	CMQPA	(c _{mg}) _A	7.2.1.2	Hypersonic afterbody C _{mo}	46
39	CMQPF	(c _{mq}) _F	7.2.1.2	Hypersonic flare C _{mq}	46
40	VB	V _B	7.2.1.2	Body Volume	46
41	CMON	(C _{mq}) _N	7.2.1.2	Eqn. 7.2.1.2-c, nose	46
42	CMQA	(C _{mq}) _A	7.2.1.2	Eqn. 7.2.1.2-c, afterbody	46
43	CMQF	(c _{ma}) _F	7.2.1.2	Eqn. 7.2.1.2-c, flare	46
44 *	ALSD	(α) c _L =0			45
45	CLACLØ	(cLa)c, =0	7.1.2.2	Obtained from method of 4.1.3.2	45
46	CNPCLM		7.1.2.3	Eqn. 7.1.2,3-b	45
47-66	CLA	C _{L'\alpha}		Wing, wing-body lift curve slope	45
67	ZEE	Z	7.1.2.2	Vertical distance between C.G. and wing root chord	45
68	CLPCLP	$\begin{array}{c} 7 \\ 7 \\ 7 \\ 7 \end{array}$	7.1.2.2	Dihedral effect, eqn. 7.1.2.2-b	45
69	CLPCL2	(Crb) CDF	7.1.2.2	Figure 7.1.2.2-24	45
70	BAØK	CL ²	7.1.2.2	Figure 7.1.2.2-20	45
71	BCLPCL		7.1.2.2	Figure 7.1.2.2-20	45
	·	C_=0			

VARIABLE DEFINITION OF DATA BLOCK "DYN"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
72-91	DCLPD	(AC _{Lo}) _{DRAC}	7.1.2.2	Eqn. 7.1.2.2-c	45
92	CNPCLØ	(c _{np} /c _L)	7.1.2.3	Eqn. 7.1.2.3-c	45
93	BEE	$\begin{bmatrix} c_L = M = 0 \\ M = C \\ M = $	7.1.2.1	Modified Mach number parameter	45
94	CDO	C _{Do}		Zero lift drag coefficient	45
95	CNPTHE	ΔC _{np} /θ	7.1.2.3	Figure 7.1.2.3-12	45
96-115	DCLDA	a/aα(C _L tan α)	7.1.2.1		45
116-135	DCDDA	3/3α(C _D - C _{DO})	7.1.2.1	Terms of eqn. 7.1.2.1-d	45
136-155	DCADA	9/9α(C _L ² /	7.1.2.1		45
156-175	KAY	πA) Κ	7.1.2.1	Dimensionless correction factor	45
176	CLPG	(c ₂₀) ₇₌₆ =	7.1.2.1	Roll damping without dihedral	45
177	DCYPG	(ACYP) 4	7.1.2.1	Increment in C _{Yp} due to ⁷	45
178	TRANS	P.	7.1.2.1	Intermediate table lookup values	45
179	CHANGE		7.1.2.1	for Figure 7.1.2.1-9	45
180	CYPCLM	[(CYp/CL),	7.1.2.1	Zero lift (dC _{Yp} /dC _L) at Mach	45
		C_=O	,	_	
181	TRADE				45
182	CNRCLZ	c _{nr} /c _L ²	7.1.3.3	Figure 7.1.3.3-6	45
183	CNRCDO	c _{nr} /c _{Do}	7.1.3.3	Figure 7.1.3.3-7	45
184-203	CDØØ	c _{DO}	7.1.3.3	C _{DO} vs C _L	45
204	TRENS		7.1.2.1	Intermediate table lookup values	45
205	CHENGE		7.1.2.1	for Figure 7.1.2.1-10	45
206	CYPA	CYP/a	7.1.2.1	Cγ _p as f(α)	45
207	CNPTAS	$(C_{np}/\alpha)/$	7.1.2.3	Figure 7.1.2.3-14	45
1		tan A _{LE}			- 1
208	CNPAI	$(C_{np}/\alpha)_1$	7.1.2.3	Terms of eqn. 7.1.2.3-f	45
209	CNPA2	$(C_{n_p}/\alpha)_2$	7.1.2.3		45

VARIATION DEFINITION OF DATA BLOCK "DYN"

LOCATION	VARIABLE NAME	FNGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
210	CNPA3	$(c_{n_p}/\alpha)_3$	7.1.2.3	Term of eqn. 7.1.2.3-f	45
211	CNPA	(c_{n_D}/α)	7.1.2.3	Result of eqn. 7.1.2.3-f	45
		BODY AXES	,	•	
212	CNPAE	(C _{np} /α)	7.1.2.3	Eqn. 7.1.2.3-e	45
		Total			
213	CNPBA	(C _{ηρ} /α)	7.1.2.3	Result of eqn. 7.1.2.3-g	45
		. 1	٠.		
			٠		
		N.			1
					.]
					l
					•
		. 1			
			·		
•.					1
	ł				
l					
	.		. 1	-	İ
	Ì				
			I		-
1	I			<u> </u>	
	·	·			ł
	. 1	1	Ì		•

HORIZONTAL TAIL DYNAMIC DERIVATIVE VARIABLES

VARIABLE DEFINITION OF DATA BLOCK "DYNH"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLA
1	CMQMFB	(c _{mq}) _{Mfb}	7.1.1.2	Eqr. 7.1.1.2-6	43
2	CMQ2	(C _{mq}) _{M=.2}	7.1.1.2	Low speed H.T. pitching derivative (M=.2)	43
3		UNUSED			
4	CLG	CLg	7.1.4.1	Figure 7.1.4.1-6	43
5	F8N	F ₈ (N)	7.1.4.2	Figure 7.1.4.2-9	43
6	CMØG	C _{mog}	7.1.4.1	Figure 7.1.4.1-6	43
7	CMADPP	Cma	7.1.4.2	Eqn. 7.1.4.2-b	43
8	F6N	F ₆ (N)	7.1.4.2	Figure 7.1.4.2-9	43
9	EPPBC	E _{BC}	7.1.1.1	Figure 7.1.1.1-8	43
10	GBC	G _{BC}	7.1.1.1	Figure 7.1.1.1-8	43
11	CLQPWH	cLa	7.1.1.1	Eqn. 7.1.1.1-d	43
12	F3N	F3(N)	7.1.1.1	Figure 7.1.1.1-9	43
13	F4N	F ₄ (N)	7.1.1.1	Figure 7.1.1.1-9	43
1,4	XACCRB	X _{ac} /cr	7.1.1.1	From section 4.1.4.2	43,44, 54
15	CLQWPP	βC _{La}	.7.1.1.1	Figure 7.1.1.1-10 (a-c)	43
16	CLAD2	(CL _a) ₂	.7.1.4.1	Eqn. 7.1.4.1-c; Figures 7.1.4.1-8(a-f)	44
17 -	F5N	F ₅ (N)	7.1.4.2	Figure 7.1.1.2-8	43
18	F7N	F ₇ (N)	7.1.4.2	Figure 7.1.1.2-8	43
19	FIIN	F ₁₁ (N)	7.1.4.2	Figure 7.1.1.2-8	43
20	CMQPWH	C _{mq}	7.1.1.2	C _{ma} referenced to body axes with	43
		,		the origin at the wing a.c.	
21		W=0 (qc ^w \qc ^r)		Inviscid derivative of $C_{\overline{\mathbf{m}}}$ due to $C_{\overline{\mathbf{l}}}$	43
22	CLADI	(c _{Lα}) ₁	7.1.4.1	Eqn. 7.1.4.1-c; Figures 7.1.4.1-8(a-f)	44
23	FIN	F, (N)	7.1.4.1	Figure 7.1.4.1-7	44
24	F2N	F ₂ (N)	7.1.4.1	Figure 7.1.4.1-7	44
25	F3X	F ₃ (N)	7.1.4.1	Figure 7.1.4.1-7	44
26	CMAD1	α ι	7.1.4.2	Figures 7.1.4.2-13a thru 13p	44
27	CMAD2		7.1.4.2		44

VARIABLE DEFINITION OF DATA BLOCK "DYNH"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
28	LAMN	N		Nose taper ratio	46
29	LAMA	Ä		Afterbody taper ratio	46
30	LAMF	F		Flare section taper ratio	46
31	CNQPN	(c _{Ng}) _N	7.2.1.1	Hypersonic nose C _{Na}	46
32	CNOPA	(CNg)A	7.2.1.1	Hypersonic afterbody C _{Ng}	46
33	CNQPF	(c _{Ng}) _F	7.2.1.1	Hypersonic flare C _{Na}	46
34	NN		7.2.1.1	Nose distance to moment ref axis	46
35	NA		7.2.1.1	Afterbody distance to moment ref axis	46
36	NF		7.2.1.1	Flare distance to moment ref axis	46
37	CMQPN	(C _{mq} ') _N	7.2.1.2	Hypersonic nose C _{ma}	46
38	CMQPA	(C _{mq}) _A	7.2.1.2	Hypersonic afterbody C _{ma}	46
.39	CMQPF	(Cmg) F	7.2.1.2	Hypersonic flare C _{ma}	46
40		UNUSED		,	
41	CMQN	(c _{mq}) _N	7.2.1.2	Eqn. 7.2.1.2-c, nose	46
42	CMQA	(c _{mq})'A	7.2.1.2	Eqn. 7.2.1.2-c, afterbody	46
43	CMQF	(C _{ma}) _F	7.2.1.2	Eqn. 7.2.1.2-c, flare	46
44	ALSD	(α) _{CL} =0			45
45	CLACLØ	(c _{La}) _{c, =0}	7.1.2.2	Obtained from method of 4.1.3.2	45
46	CNPCLM	C「=0 (qc ^{ub} \g ^{C「})	7.1.2.3	Eqn. 7.1.2.3-b	45
47-66	CLA	CLa		H.T., H.Tbody lift curve slope	45
67	ZEE	Ž	7.1.2.2	Vertical distance setween C.G. and wing root chord	45
68	CLPCLP	$\begin{pmatrix} 7 \begin{pmatrix} \alpha & 0 \end{pmatrix} \\ 0 = 7 \begin{pmatrix} \alpha & 0 \end{pmatrix} \end{pmatrix}$	7.1.2.2	Dihedral effect, eqn. 7.1.2.2-b	45
69	CLPCL2	$\begin{pmatrix} c_{\ell_{\rho}} \end{pmatrix} \begin{pmatrix} c_{\ell_{\rho}} \end{pmatrix} \begin{pmatrix} c_{\ell_{\rho}} \end{pmatrix} \begin{pmatrix} c_{\ell_{\rho}} \end{pmatrix}$	7.1.2.2	Figure 7.1.2.2-24	45
70	BAØK		7.1.2.2	Figure 7.1.2.2-20	45
71	BCLPCL	(βC _{2ρ} /K)	7.1.2.2	Figure 7.1.2.2-20	45
		C ^r =0			

VARIABLE DEFINITION OF DAIA BLOCK "DYNH"

70.01	NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
72-91	DCLPD	(۵C _{گو})	7.1.2.2	Eqn. 7.1.2.2-c	45
92	CNPCLØ.	(c _{np} /c _L)	7.1.2.3	Eqn. 7.1.2.3-c	45
93	BEE .	C _L =M=0 []-M ² cos ² (A _{c/4})]1/	2 ⁷ •1•2•1	Modified mach number parameter	45
94	CDO	c _{Do}	•	Zero lift drag coefficient	45
95	CNPTHE	ΔC _{np} /θ	7.1.2.3	Figure 7.1.2.3-12	45
96-115	DCLDA	a/aα(C tan α)	7.1.2.1		45
116-135	DCDDA	· .	7.1.2.1	Terms of eqn. 7.1.2.1-d	45
135-155	DCADA	θ/∂α (C _L ² / πA)	7.1.2.1		45
156-175	КАҮ	κ΄	7.1.2.1	Dimensionless correction factor	45
176	CLPG	(c _{%p}) _{7=C} L=	7.1.2.1	Roll damping without dihedral	45
177	DCYPG	(Δ ₄ γ ₂ ΔΔ)	7.1.2.1	Increment in Cyp due to 7	45
178	TRANS		7.1.2.1	Intermediate table lookup values	45
179	CHANGE		7.1.2.1	for Figure 7.1.2.1-9	45
180	CYPCLM	[(CY _P /C _L) _M	7.1.2.1	Zero lift (dC _{Yp} /dC _L) at Mach	45
		c ^r =0			
i	TRADE	2			45
		'''	7.1.3.3	Figure 7.1.3.3-6	45
	CNRCDO	c _{nr} /c _{DO}	7.1.3.3	Figure 7.1.3.3-7	45
184-203	CDØØ	c _{DO}	7.1.3.3	C _{DO} vs C _L	45
	TRENS			Intermediate table lookup values	45
205	CHENGE		7.1.2.1	for Figure 7.1.2.1-10	45
206	CYPA	Cyp/a	7.1.2.1	C_{Y_p} as $f(\alpha)$	45
207	CNPTAS	$(c_{n_p}/\alpha)/$	7.1.2.3	Figure 7.1.2.3-14	45
		tan A _{LE}	1		
208	CNPAI	$(c_{np}/\alpha)_1$	ز.1.2	Terms of eqn. 7.1.2.3-f	45
209 0	CNPA2	$(C_{n_p}/\alpha)_2$	7.1.2.3		45

VARIABLE DEFINITION OF DATA BLOL "DYNH"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
210	CNPA3	(C _{np} /a) ₃	7.1.2.3	Term of eqn. 7.1.2.3-f	45
211	CNPA	$(C_{n_p}/\alpha)^2$	7.1.2.3	Result of eqn. 7.1.2.3-f	45
		BODY AXES			
212	CNPAE	(C _{np} /α)	7.1.2.3	Eqn. 7.1.2.3-e	45
		Total		Maria de la companya de la companya de la companya de la companya de la companya de la companya de la companya	
213	CNPBA	(C _{np}) _{BA}			45
				·	
				·	
	·				
,					
				·	
			•		
-			\		
1					

SYMMETRICAL AND JET FLAPS INPUT VARIABLES VARIABLE DEFINITION OF DATA BLOCK "F"

	LOCATION	VARIABLE NAME	ENGINEERING SY'ABOL	LATCOM REFERENCE	COMMENTS/DEFINITIONS	CVERLAY
	1-10	DELTA	6 Flap		Input via NAMELIST SYMFLP	
	11	PHETE	tan (¢ TE/2)		1	
l	12	CHRDFI	Cfi			
ı	13	CHRDFØ	Cfg			
1	14	SPANFI	b,			
1	15	SPANFØ	bø			
ļ	16	NDELTA			\	
1	17	FYTPE				
- [18		UNUSED			1
1	19-28	SCLD	ΔC ₂	•		
	29-38	SCMD	ΔCmf			1
	39-48	CPRME I	c;		}	
	49-58	CPRMEØ	cå	Į	}	1 1
	59	CB	c _P		}	
l	60	TC	t/c			1
	61	PHETEB	$tan(\phi_{TE}/2)$			
	62	NT"PE				}
1	63	CMU	c_{μ}			
	64-73	DELJET	δJet	}		
	74	JETFLP	ļ			
- (75-84	EFFJET	(8 jet Eff	}		
	85-94	CAPINB	C,	ļ	·	
}	95-104	CAPØUT	a			
ţ	05-114	DØBDEF	Flap 2			
1	•	DARCIN	((2)		· ·	1 1
•	116	DØBCØT	(c ₂) _Ø		}	
1	118	CFITC	10)			
)	}	CFOTC	(C _{fi}) _{tc}			
1	119		$(\varepsilon_{fo})_{tc}$			
ł	120	BITC	(b _i) _{tc}			
	121	ВОТС	(b _o) _{tc}			1.

VARIABLE DEFINITION OF DATA BLOCK "F"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE		СОМ	MENTS/	DEFINI	IONS		OVERLAY
122	CFITT	(C _{f,}) _{tt}		Input	via I	NAMEL !	ST SY	1FLP		
123	CFOTT.	(C _f ') _{tt}				İ				
124	ВІТТ	(b ₂)				1				
125	вотт	(c _f) _{tt} (b _i) _{tt} (b _o) _{tt}						.•		
126	81					1		•		
127	B2				•					
128	83									
129	В4									
130	DI									
131	D2					1				
132	D3					•				
133	GCMTC	(G _{CMAX})tc								
134	GCMTT	(G _{CMAX}) _{tt}								
135	κs	k.	·							
136	RL	RL		•						
137	BGR	β				J				
138	DELR	Δr				•				
									!	
·										
			·							
				Ī						
i										

ASYMMETRICAL FLAPS

VARIABLE DEFINITION OF DATA BLOCK "F"

LOCATION	VARIABLE NAME	ENG!HEERING SYMBOL	DATGOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1-10	DELTAD	⁸ d/c		Input via NAMELIST ASYFLP	
11	PHETE	tan ($\phi_{TE}^{1}/2$)			
12	CHRDFI	Cfi			
13	CHRDFØ	Cfø			
1:4	SPANFI	ь			
15	SPANFØ	Ьø	,		
16	NDELTA				
17		UNUSED			
18	STYPE		,		
19-28	DELTAL	δ			
29-38	DELTAR	δ _R		·	
39-48	DELTAS	δs/c			1 . [
49-58	XSØC	X _{S/c}			
59	XSPRME	X's/c	·	· •	
60-69	HSØC	h _{S/c}		†	
				· ·	
	1	İ		i .	
					1 1
ĺ					
	ĺ				
	ļ Ļ				
·				·	1 1
			,		
	<u> </u>				1

TRANSVERSE JET

VARIABLE DEFINITION OF DATA BLOCK "F"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1-10	TIME	t		Input via NAMELIST TRNJET	
11	NT				
12-21	FC	F _c		·	
22-31	ALPHA	α_			
32	ME	Me			
33	158	I _{SP}			
34	SPAN	b			
35	PHE	ф			
36	GP	Υ	,		
37	CC '	С			
- 38	LFP	L .			
39-48	LAMNRJ			V	
			·		
	·				
·			•		-

HYPERSONIC FLAP

VARIABLE DEFINITION OF DATA BLOCK "F"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1	ALITD	h		Input via NAMELIST HYPEFF	
2	XHL	X _{HL}			
3	TWØTI	τ,/Τ			
4	CF	C _f			
5-14	HDELTA	δ _f		· .	
15	LAMNR] . '			
16	HNDLTA			₩	
				\$	
	l		.*		
			· }	: :	
			••		
	1		<u> </u>	•	
				·	
			. •		
		i.			
•					
			ĺ		
			·		:
			ļ · · ·		
		į			
					•
	1				
					;
					,
					_2

SUBSONIC WING AND HORIZONTAL TAIL PARAMETERS

VARIABLE DEFINITION OF DATA BLOCK "FACT"

	LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DECINITIONS	OVERLAY
	1		(b/2-b*/2) /(b/2)		Exposed wing to total wing span ratio	7
	2-21		IVB(w)	4.3.1.3	Vortex interference factor for body vortex on wing panel	7
	22-41		¹ /2παVr	4.3.1.3	Non-dimensional vortex strength	7
	42-61	·	I _{Vw} (H)	4.4.1	Vortex interference factor for wing on horizontal tail	10
	62-81		a	4.4.1	Eqn. 4.4.1-c,d	9
	82-101		b _v	4.4.1	Eqn. 4.4.1-e	9
	102-121		ε		Canard effective Jownwash angle	10,28
	22-141		(dε/dα) _e		Canard effective downwash gradient	10,28
	142		(b/2-b*/2) /(b/2) _{H.T.}		Exposed H.T. to total H.T. span ratio	7
	43-162		^{1 V} в(н)	4.3.1.3	Vortex interference factor for body vortex on horizontal panel	7
]1	63-182		(⁷ /2παVr) H.T.	4.3.1.3	Non-dimensional vortex strength of H.T.	7
						1
					1	
	1	·				
	.	1				
				Ì		
	1		·	f		
]				
					1	
			4		1	

SUBSONIC HIGH LIFT AND CONTROL PITCHING MOMENT VARIABLES

VARIABLE DEFINITION OF DATA BLOCK "FCM"

	NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1	SWEEPB	۸			37
2-5	BØC	(b/c) _K			37
6	CAVG	CAVG	6.1.5.1	Average wing chord	37
7-20	ETAK	η _K	6.1.5.1	Spanwise station ratio	37
21-34	CLEALD	(c _l) _K /			37
		(αδ)δ _{AVG}			
35-48	GDINBD	(G/8)	6.1.5.1	Inboard panel spanwise loading coefficient	37
49-62	GDØUTB	(G/δ) _Ø	6.1.5.1	Outboard panel spanwise loading coefficient	37
63-72	ALPDEL	^(αδ) AVG	6.1.5.1	Flap effectiveness derivative average	37
73-86	СК	c _K	6.1.5.1	Actual chord at station K	37
87-100	DELTGD	(G/8) _Ø - (G/8)	6.1.5.1	Increment in spanwise loading coefficient	37
101-114	кк	K	6.1.5.1	Figure 6.1.5.1-26A	37
115-128	XLE	(X _{LE}) _K		·	37
129-142	CFØC	(c _{f/c}) _K	6.1.5.1	Flap chord to wing chord ratio at station K	37
143-282	DXCP	ΔX _{CP}		·	37
283-287	DELCL	ΔC ₂		·	
				·	
		ĺ		•	
	ŀ	ĺ			
	į				
-[İ		l

SUBSONIC HIGH LIFT AND CONTROL HINGE MOMENT VARIABLES VARIABLE DEFINITION OF DATA BLOCK "FHG"

LOCATION	VARIABLE NAME	ENGITIEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1	CLATHY	(C _{la}) Theor	6.1.3.1	From Figure 4.1.1.2-8b	36
2	CHATHY	(c _{hα}) _{Theor}	6.1.3.1	Figure 6.1.3.1-11b	36
3	CHACHT	cha/cha	6.1.3.1	Figure 6.1.3.1-7b	36
4		Theor	у .		
4	CHAP	c _h å	6.1.3.1	Egn. 6.1.3.1-a	36
5	CHAPP	c _{h'd}	6.1.3.1	Eqn. 6.1.3.1-b	36
6	CHAMAC	(cha)M	6.1.3.1	p. 6.1.3.1-5	36
7	BRATIS	l lia n	6.1.3.1	Balance ratio, Eqn. 6.1.3.1-d	36
8	СНВСНА	(c _{hα}) _{Balan}	6.1.3.1	Figure 6.1.3.1-8	36
		C _{ha}	CE		
9	СНАРРВ	lc	6.1.3.1	p. 6.1.3.1-4	36
:	CHDCHT	1	e 6.1.3.2	 Figure 6.1.3.2-7B	36
10	CHDCHI	Ch _o /Ch _o Theory		,	
11	CHDTHY	· ·	6.1.3.2	Figure 6.1.3.2-7A	36
	CHDP	Cho Theory	6.1.3.2	Eqn. 6.1.3.2-a	36
12 13	CHDPP	Chi Chi	6.1.3.2		36
ני , 14	CHDMAC		6.1.3.2	}	36
15	CHBCHD	(c _{ho}) _M		Figure 6.1.3.2-8	36
17	Cilocilo	(Chô) Balar	ce		1
16	CHDPPB	(Crn)			36
17	DCHAØK	(C _{hy}) _{Balar} ΔC _{hα}	ce 6.1.6.1	Figure 6.1.6.1-15A	36
			.,		
		cos $\Lambda_{c/4}$			·
18	CBØCF	c¦/c¦	 		36
19	CFØCAP	c'/c'		,	36
20	B2	B ₂	6.1.6.1	Figure 6.1.6.1-16	36
21	KALPHA	κ _α	6.1.6.1	Figure 6.1.6.1-15B	36
22	DELCHA	ΔC _{hα}			36
23	CØSHL	cos (A _{HL})	·	Cosine of hinge line sweep	36
24	KDELTA	K _δ	6.1.6.2	1	36
		. °			
			J	·	I

VARIABLE DEFINITION OF DATA BLOCK "FHG"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
25	DCHDØK	ΔCh _δ (C _{ℓδ} B ₂ K _δ cosΛ _{c/4} co	6.1.6.2	Figure 6.1.6.2-9A	36
26-35	DCHD	ΔChδ			36
·					
·					
		·			

SUBSONIC HIGH LIFT AND CONTROL AS MMETRICAL DEFLECTION VARIABLES VARIABLE DEFINITION OF DATA BLOCK "FLA"

	LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCUM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
		SWEEPB	Λ _β			52
	2	BCLØKI	[BC 1/K]	6.2.1.1	Figure 6.2.1.1-23(a-c)	52
	3	BCLØKØ	[BC1 /K]	6.2.1.1	Figure 6.2.1.1-23(a-c)	52
	4	BCLDØK	BCL./K	6.2.1.1		52
	5	CLDPRM	CÉ	6.2.1.1	Eqn. 6.2.1.1-a	52
	6-15	ÇLDL	(C2,)	,	Left wing lift effectiveness	52
·	16-25	CLDR	(Clo)R		Right wing lift effectiveness	52
	26-35	KFACTR	K¹ .	6.2.1.1	Figure 6.1.1.1-40	52
I	36	SBACKI	۸s	6.2.1.1	Spoiler sweep-back	52
-	37.	THETAI	θs	6.2.1.1	See sketch (g)	52
	38	DELETØ	(A) a	6.2.1.1	Eqn. 6.2.1.1-e, Outboard	52
1	39	DELETI	(A 1)	6.2.1.1	Eqn. 6.2.1.1-e, Inboard	52
Į	40	ETALEFF	ⁿ lEff	6.2.1.1	Eqn. 6.2.1.1-d, Inboard	52
I	41	ETAØEFF	ⁿ øEff	6.2.1.1	Eqn. 6.2.1.1-d, Outboard	52
	42	BCLDI	[BC 28/K]	6.2.1.1		52
ſ	43	BCLDØ	[BC 16/K]	6.2.1.1		52
	44	. [UNUSED			}
1	45	KYAW	к	6.2.2.1	Figure 6.2.2.1-9	52
		j	}	j		
1		j	j.			-
l	}		1			1
1				1		1
	1	1	1]
	.	1	. 1			1
			- [1		
	- 1	1				1
	1.	1				1
l		l				l
						İ
	1	1				
		1	1	. {		1
L						l

FLIGHT CONDITION INPUT VARIABLES

VARIABLE DEFINITION OF DATA BLOCK "FLC"

1 NMACH 2 NALPHA 3-22 MACH M 23-42 ALSCHD α 43-62 RNNUB ρV/ν 63 NGH 64-73 GRDHT h 74-93 PINF P 94 STMACH 95 TSMACH 96 TR 97-116 ALT 117-136 TINF T 117-136 T 117-136	
2 NALPHA 3-22 MACH M 23-42 ALSCHD α 43-62 RNNUB ρV/ν 63 NGH 64-73 GRDHT h 74-93 PINF P 94 STMACH 95 TSMACH 96 TR 97-116 ALT 117-136 TINF T 00 10 11 11 11 11 11 11 11 1	
23-42 ALSCHD Q 43-62 RNNUB PV/V 63 NGH 64-73 GRDHT h 74-93 PINF P 94 STMACH 95 TSMACH 96 TR 97-116 ALT 117-136 TINF T 0	
43-62 RNNUB ρV/ν 63 NGH 64-73 GRDHT h 74-93 PINF P _ω 94 STMACH 95 TSMACH 96 TR 97-116 ALT 117-136 TINF T _ω	
63 NGH 64-73 GRDHT h 74-93 PINF P 94 STMACH 95 TSMACH 96 TR 97-116 ALT 117-136 TINF T 90	·
64-73 GRDHT h 74-93 PINF P 94 STMACH 95 TSMACH 96 TR 97-116 ALT 117-136 TINF T 600	
74-93 PINF P _∞ 94 STMACH 95 TSMACH 96 TR 97-116 ALT 117-136 TINF T _∞	
94 STMACH	
94 STMACH	1
96 TR 97-116 ALT 117-136 TINF T _∞	1 1
97-116 ALT 117-136 TINF T _∞	
117-136 TINF T _w	1 1
117-136 TINF T_	
	1 1
137-156 VINF V.	1 1
157 WT	
158 GAMMA Y	
159 NALT	
160 LØØP	1 1
	1 1
and the second of the second o	
	1 1
	1 1
	1 1

SUBSONIC HIGH LIFT AND CONTROL LIFT COEFFICIENT VARIABLES VARIABLE DEFINITION OF DATA BLOCK "FLP"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS / DEFINITIONS	OVERLAY
1-5	ETA	n _K	6.1.5.1	Dimensionless span station	36
6-10	CHRD	c _K	6.1.5.1	Chord of wing at n _k	36
11-15	CF	c _{fK}	6.1.5.1	Flap chord at n _K	36
16-19	ALDAVG	(ú δ) AVG	6.1.4.1	Figure 6.1.4.1-8, flap effect- iveness derivative	36
20-23	DKB	K _B			36
24-27	SWF	Swf		Wing area affected by flap	36
28-32	CP	c _K i	6.1.5.1	Extended wing chord at station k;C ¹	36
33	CLØCLT	C _{La} /C _{La} THEORY	4.1.1.2	Figure 4.1.1.2-8A	36
34-38	CLDØCT	[C _{Lo} /C _{Lo} Theory] _k	6,1,1,1	Figure 6.1.1.1-25B	36
39-43	CLDTHY	(C _{Lo}) THEORY _K	6.1.1.1	Figure 6.1.1.1-25A	36
44-53	DELCL2	(ΔC ₂) c _f /c=	6.1.1.1	Figure 6.1.1.1-31A	36
54-58	DALPDE	(Δα/δ) _K	6.1.1.1	Figure 5.1.1.1-32A	36
59	TRANSL	"		Flag for translating devices	40
60	DELN4	∆n/4			36
61	CFØCA	(C _f /C) _{AVG}		Average flap chord to wing chord ratio	36
62-66	CFØC	(c _f /c) _K		Flap chord to wing chord ratio vs n _K	36
67-70	ADCADS	(α _δ) _C , /	6.1.4.1	Figure 6.1.4.1-8	36
71-80	CFACT	(C'/C-1) × S _{wf} /S _R			36
81-90	DSCLMX	ΔC _k max	İ	Increment is section max lift	36
91-100	RK2	K ₂			36
101	RK1	κ,	Í		36
102	DCLMAB	(ΔC _{2max}) BASE	6.1.1.3	Figure 6.1.1.3-7	36

VARIABLE DEFINITION OF DATA BLOCK "FLP"

LOCATION	VARIABLE NAMÉ	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
103	RK3	К ₃		·	36
104	KSWEEP	K	6.1.4.3	Figure 6.1.4.3-7	36
105-109	ALPHAD	(αδ) _K	6.1.4.1	Insert of Figure 6.1.4.1-8	36
110-149	DELCLA	(AC 2) AVG		Average flapped wing lift increment	36
150-189	ALDAG	(ab)AVG	6.1.5.1	Average of flap effectiveness derivative	36
			·		
				·	
				·	
	·				

GROUND EFFECT VARIABLES

VARIABLE DEFINITION OF DATA BLOCK "GR"

FOCÝLION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLA
1	DX	ΔΧ			11
2	DXØB2	ΔX/(b/2)		1	111
3	H75CR	h.750 _R	4.7.1	See insert of Figure 4.7.1-19	11
4	HW	h	4.7.1	Figure 4.7.1-19	11
5	HWØ82	h(b/2)	4.7.1	Figure 4.7.1-19	11
6	HWCR4	hc _R /4	4.7	Height of wing root chord quar- ter chord above ground	11
7	HWCØCR	h(C _R /4/C _R)			11
8	HWMACX	HC,			11
9	HWMAC4	н	4.7.1	Height of wing quarter chord above ground	11
10	HTMACX	H _{HCL}			31
11	HTMAC4	H	4.7.1	Height of HT quarter chord MAC above ground	11
12	R	r	4.7.1	Figure 4.7.1-16	1'
13	SIGMA	σ	4.7.1	Prandtl interference coefficient Figure 4.7.1-19	11
14	HWØCBR	h/c _R			11
15	T	τ	4.7.1	Parameter accounting for the reduction of longitudinal velocity; Figure 4.7.1-20	11
16	GRDHT	H _G			11
17-36	DALPHA	(AaJ) GWB	4.7.1	Eqn. 4.7.1-a	11
37-56	ALPHWG	(a) GWB		(α _J -Δα _G)	11
57	K	K	4.7.1	Parameter accounting for effective wing thickness; Figure 4.7.1-22	$\frac{11}{2}$
58	x	X	4.7.1	Figure 4.7.1-14	1:
59	BWØB	ь"/ь	4.7.1	Figure 4.7.1-18a	11
60	BEFF	** *	4.7.1	Effective wing span; Eqn.4.7.1-c	11
61-80	DOWASH		4.7.1	Eqn. 4.7.1-b	11
81-100	CLHT	(CLHT)		$[(c_L)_{WBT} - (c_L)_{WB}]$	11
01-120	ALPHAT	(a ¹)e ^{H1}	j	[α]- (Δε]) []	11
21-140	BW	B HT	4.7.1	Figure 4.7.1-21	11

VARIABLE DEFINITION OF DATA BLOCK "GR"

	NAME	ENGINEERING SYMPOL	REFERENCE	COMMENTS / DEFINITIONS	OVERLAY
141-160	LØLØMI	L/L ₀ -1	4.7.1	Parameter accounting for effect of image bound vortex in lift; Figure 4.7.1-15	11
161-180	CLHTG	(CLHTJ) G			11
181-200	DCLWBG	A(CLWB,)G		$[(c_{LWB})_G - (c_{LWB})]$	11
201		n-X _{ac} /c _R	4.7.3	see eqn. 4.7.3-c	11
202-221	DCMWBG	V(CWMB)		[(c _{mWB}) _G -(c _{mWB})]	11
222-241	CLØCØS	57.3 CLW		WD G WD	11
		2πcos ² Λ _c /4			
242	LH	^ℓ H	4.7.3	Distance from c.g. to quarter chord MAC of HT	11
243	LHØCBR	ℓ _H /c _R			11
244-263	DCLHTG	Δ(CLHTJ)G		[(C _{LHT}) _G - (C _{LHT});	11
264-283	DCMHTG	∇(C ^{mH⊥}),		Increment in C of HT due to ground effects	11
284-303	DCDLWG	Δ(CDJ)G		Increment in C _D due to ground effects	i i
				·	
ļ					
[
İ					
ľ					
l					
	·				i
	l	Į			Ì
			j		
]		j			/
1					j

SUBSONIC HORIZONTAL TAIL-BODY VARIABLES VARIABLE DEFINITION OF DATA BLOCK "YB"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1		UNUSED		·	
2		K _{H(B)}		Interference factor of HT on body	- 7
3	,	K _{B (H)}		Interference factor of body on HT	7
4		(CL _a) _{H(B)}		Lift curve slope of HT in presence of body	7
5 .		(cr") B(H)		Lift curve slope of body in presence of HT	7
6	·	(c ₀ 0) HB		HT-body zero-lift drag	7.
7		k _{H(B)}	,	. 1	7
8		k _B (H)	'		7
9		(CL;)H(B)			7
10	,	(CL;)B(H)			7
11		(CL;)HB		·	7
12	,	(X _{ac} /c) _{HB}			7
13	·	(X _{ac} /c) _{B(H}		·	7,25
14		(XI /cre)			7,25
15		(X'ac/cre)			7,25
16		C _m OHB		HT-body zero-lift pitching momen	
17	·	(CDO) WB		HT-body zero lift drag coefficient	7
18		R _{WB}			7
19	·	RLB		·	7
20		(C _{Lmax}) _{WB}	*	HT-body maximum lift	7
21		(ac _{Lmax}) WB		HT-body angle of attack of max lift	7
22		-		HB(20)*B(44)	7
23				HB(21)*B(43)	7
24-39		UNUSED	·		
	·				

HORIZONTAL TAIL INPUT VARIABLES VARIABLE DEFINITION OF DATA BLOCK "HTIN"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1	CHRDTP	C _t		Input via NAMELIST HTPLMF	
2	SSPNØP	ە ₀ */2			
3	SSPNE	b*/2			
4	SSPN	b/2			
5	CHRDBP	c _P			
6	CHRDR	C _r			
7	SAVSI	(v ^{X/C}) ¹			j.
8	SAVSØ	(v ^{x/c}) ^a			1 1
9	CHSTAT	X/C		·	
10		UNUSED			
111	TWISTA	θ			1 1
12	SSPNDD	(b/2) 7 ₀	!		
13	DHDADI	7			1 1
14	DHDADØ	7		1	
15	TYPE			₹ .	1 1
16	TØVC	t/c		Input via NAMELIST HTSCHR	
17	DELTAY	ΔΥ			
18	XØVC	(x/c) _{max}			
19	CLI	C _L			
20	ALPHAI	α,			
21-40	CLALPA	Cla			
41-60	CLMAX	C _{Lmax}			
61	CMØ	_ma	i		1 1
62	LERI	(R _{LE})	İ		1 1
63	LERØ	(R _{LE})ø		·	
64	CAMPER				
65	TØVCØ	(L/C)g			
66	xøvcø	(x/c) _{max}			
67	J.,J.	'omo'Ø		']]
68	CLIMAXL	(C ₂ max) M=Q			1 1
69	CLAMØ	(C ₂₀) _{M=0}		I	

VARIABLE DEFINITION OF DATA BLOCK "HTIN"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
70 71	TCEFF KSHARP	(t/c) _{Eff} K		Input via NAMELIST HTSCHR	
72 - 91	XAC	X ac ARCL			
93 94	YCM CLD	(Y/C) _{max} (C _L) _{Design}			,
95 - 114 115-134	RLPH SHB	(Transonic ^L P S _{H(B)})		
135-154	SEXT	Sext			·
			,		

HYPERSONIC CONTROL EFFECTIVENESS PARAMETERS VARIABLE DEFINITION OF DATA BLOCK "HYP"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1-20	PAØPI	P _α /P _∞	6.3.1	Local pressure ratio upstream of interaction	42
21-40	TAØTI	τα/τω	6.3.1	Local temperature ratio upstream of interaction	42
41-60	MALP	M _α	6.3.1	Local Mach number upstream of interaction	`42
61-80	RAØRI	R _α /R _∞	6.3.1	Local Reynolds number ratio upstream of interaction	42
			,	·	
			·	·	
•					
					}
•					
	1		<u> </u>		1

TRANSVERSE JET CONTROL PARAMETERS

VARIABLE DEFINITION OF DATA BLOCK "JET"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1 2 3 4 5 6 7-16 17-26	QINF CFØ VEØA FJMAX PJMAX DT XCP K	q _∞ Cfg V _E /a (F _{JO}) _{max} (P _{JC}) _{max} d _t X _{CP} K		Free stream dynamic pressure Nozzle throat diameter, inches Amplification factor	47 47 47 47 47 47 47
1/-20					

LOW ASPECT RATIO WING AND WING-BODY PARAMETER

VARIABLE DEFINITION OF DATA BLOCK "LB"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1	ALPHA0	αN _O	4.8.1.1	Angle of attack for zero normal force	14
2-21	ALPHAP	α¦	5.5.2.2	(a- a _{NO})	14
22	KCCA20	J	5.5.2.2	Egn. 5.5.2.2-a	14
23	DKCKCC		5.5.2.2	$\begin{bmatrix} K_{\beta}^{1}/C_{N}^{1} & CAL \end{bmatrix}_{20}$ Figure 5.5.2.2-13 $\Delta \begin{bmatrix} (K_{\beta}/C_{N}^{1})_{20} \\ (K_{\beta}^{1}/C_{N}^{1})_{Cal} \end{bmatrix}_{20}$	14
24	KCKCC2		5.5.2.2	Figure 5.5.2.2-12 $\frac{(K_{2\beta}^{1}/C_{N}^{1})_{20}}{[(K_{2\beta}^{1}/C_{N}^{1})_{Cal}]_{20}}$	14
25	KYCN20		5.5.1.2	Figure 5.5.1.2-8 [Any ₈ /C _N ²] ₂₀	14
26	KLBCNØ		5.5.2.1	Figure 5.5.2.1-8a (K _{2.8Ng} /C _N) Δ	14
27	DKLCNB		5.5.2.1	Figure 5.5.2.1-8 \[\begin{pmatrix} \K_{j_1}^{\begin{pmatrix} \K_{j_1}^{\begin{pmatrix} \\ \Lambda \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	14
28	CNACO	(C _{NαCAL})	5.5.2.2		14
29	CNC 20	(C _{NCal})	5.5.2.2		14
30	ACNAO	Cai	5.5.2.2	$\left[c_{N\alpha}^{\prime}/c_{N\alpha}^{\prime}\right]_{NO}$	14
31	ACNA20		5.5.2.2	[CN _{\alpha} /CN _{\alpha} Cal NO (CN/CN _{Cal}) 20	14
32	z	z		tai	14
33	CN20	(CN) 20		1	14
34	CNAO	$(c_{N\alpha})_{NO}$			14
35-54	ALPAPR	(a _i) _J		Radians	14
55-74	CNP	(c ^N) J		Wing, wing-body C _N referenced to zero normal force reference plane	14
75	SHAPEP			2S _B /πL (HB+BB)	14
76	CPBØPS			$c_{P_{BNO}}/[c_{P_N}/2\sqrt{\pi S_B}]$	14

VARIABLE DEFINITION OF DATA BLUCK "LB"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
77	DKLCNØ		5.5.2.1	Figure 5.5.2.1-8a K! /C!1 Δ βNO	14
78	KNBNØ	K'n _β NO	5.5.3.1	Eqn. 5.5.3.1-a	14
79	XCPXC	,,,,	5.5.3.1	Figure 5.5.3.1-6 (X _{CP}) _P /X _{Centroid} SBS	14
80	KYBNØ	KYBNO	5.5.1.1	Figure 5.5.1.1-6	14
81		UNUSED			
82	DX			X _{CG} /C _R -X _{CP} /C _R	14
83	CPB0	$C_{P_{B_{NO}}}\left(\frac{SB}{SR}\right)$			14
84	RN	R _f L			14
85	LØK	L/ROUGFC		,	14
86	CF	C _f		·	14
87	СХОР	(C'X)NO			14
88	SFØSR	S _F /S _R			14
89	GEØPAR	, r	5.5.1.2	2(A)(S _F) [R _{1/3} LE]	14
90	DCXCXC	٠.	,	(ΔC*/ΔC* Cal) ₂₀	14
91	ACX			[.349(A+2)]*LB(90)	14
92	SHAPEB	BB ² /(HBVS)	ATT	14
93	CP20Ø0	CPE20/CPBN	l .		14
94	ACPB0	1 620 PN)	C _{PBNO} (CP20Ø0-1)	14
95-114	СХР	(c ^X) ⁷		Wing, wing-body C _A referenced to zero normal force reference plane	14
115	СМО	c _{mo}			14
116	XCPØC	X _{CP} /C _R	•		14
117	BLUNTP	Cr		$1-\left[\frac{4 \tan \theta D}{A}\right]$	14
118	XØCRD	(x _{CP} /c _R)		•	14
119	XØCRB	$\Delta(X_{CB}/C_B)$			14
120	XØCRT	Δ(X _{CP} /C _R) _B Δ(X _{CP} /C _R) _t			14
121-140	СМР	(c _m) _j			

VARIABLE DEFINITION OF DATA BLOCK "LB"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
141-160	күв	(κ _{Υβ}) '	5.5.1.2	Wing, wing-body side force derivative vs α!	14
161-180	KNB	(K _n)' _J	5.5.3.2	Wing, wing-body yawing moment derivative vs α^{ϵ}	14
181-200	KLB	(K _{LB});	5.5.2.2	Wing, wing-body rolling moment derivative vs α'	14
		·		·	
	•				
			, :		
		·			
				·	
				•	
	ĺ				
· .					

LOW ASPECT RATIO WING-BODY INPUTS

VARIABLE DEFINITION OF DATA BLOCK "LBIN"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1	ZB	ZB		input via NAMELIST LARWB	
2	SREF	Scof=Splan			
3	DELTEP	δ _E			
4	SFRØNT	δ _E S _F			
5	AR	A			
6	R3LEØB	(R _{1/3LE})/b			
7	DELTAL	δ _L			
8	L	L _B		· · ·	
9	SWET	S _{Wet}	i		
10	PERBAS	Р			
11	SBASE	s _B			. }
12	НВ	h _B			1 1
13	BB	ьВ			1 1
14	BLF				
15	XCC	X _{CG}]]
16	THETAD	θ			1 1
17	RØUNDN				} }
18	SBS	SBS			
19	SBSLB	(SBS).22B			1
20	XCENSB	(XCentroid)			1 1
21	XCENW	(X _{Centroid})	M S	*	
			<u> </u>	•	
	1	·	j		
		<u></u>		•	1 1
	. [ļ	ĺ		1 1
İ	l		İ		
Į	. [
}]		-		
			-	•	
			1		1 1

REFERENCE DIMENSIONAL DATA

VARIABLE DEFINITION OF DATA BLOCK "OPTN"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1 2 3 4	SREF CBARR RØUGFC BLREF	S _{Ref} c K b _{Ref}		Input via NAMELIST ØPTINS	
!					
			\		
		٠.			
		,			

POWER EFFECT VARIABLES: PROPELLER POWER

VARIABLE DEFINITION OF DATA BLOCK "PW"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1-20	DCLT	(AC _L) _T	4.6.1	Increment in lift due to thrust, Eqn. 4.6.1-c	13
21	XBARP	\overline{X}_{p}			13
22	DEUDA	∂ε"\9 α	4.6.1	Eqn. 4.6.1-m	13
23-42	DCLNP	(ACL) NP	4.6.1	Eqn. 4.6.1-1	13
43-62	DCLQ	(δς ^Γ) α	4.6.1	Eqn. 4.6.1-t	13
63-82	DCLAW	(ΔC _L) _{Δα} ,	4.6.i	Eqn. 4.6.1-s	13
83-102	DCLHQ	(VerH) d	, '		13
103-122	DCMNP	(ACm)Np	4.6.3	Eqn. 4.6.3-b	13
123	DCMQ	(ΔC _m) ^{(P}	4.6.3	Eqn. 4.6.3-j	13
124-143	DCML '	(ΔC _m) _L	4.6.3	Eqn. 4.6.3-e	13
144-163	DCMHQ	(ΔC _{mH}) _α	4.6.3	Eqn. 4.6.3-j	13
164-183	DCMHE	(ΔC _{mH}) _ε	4.6.3	Eqn. 4.6.3-1	13
184	SINAPX	11		_	13
185	PRPRD2	R _P ²	4.6.1	Square of propeller radius	13
186	CTI	CT;			13
187	BST1Ø2	b*/2	4.6.1	Eqn. 4.6.1-0	13
188	SSTRI	Sģ	4.6.1	Eqn. 4.6.1-p	13
189	BSTØ12	ь <u>ё</u> ,/2	4.6.1	Eqn. 4.6.1-0	13
190	СТІН	CTiH			13
191	SSTØI	Sö,	4.6.1	Egn. 4.6.1-p	13
192	SRATIO	siw/srw	4.6.1	See eqn. 4.6.1-s	13
193	CNAP80	$[(c_{N\alpha})_{P}]$	4.6.1	Figure 4.6.1-25a	13
	,	KN=80.7			
194	CNAP	(C _{Na}) _P	4.6.1	Eqn. 4.6.1-e	13
195	Cl	c,	4.6.1	Figure 4.6.1-26	13
196	C2	t ₂	4.6.1	Figure 4.6.1-26	13
197	DEPDAP	θε <mark>ρ</mark> /θα ρ	4.6.1	Eqn. 4.6.1-j	13
198	SRTPC	S _c T _c /πR _p ²	4.6.1	Eqn. 4.6.1-r	13
199	F	f	4.6.1	Propeller_inflow_factor	13
200	COMBOI		4.6.4	$n_{E}^{F(C_{N_{\alpha}})} \frac{\alpha_{P}}{57.3} \left(\frac{\pi R_{P}^{2}}{S_{r}} \right) \cos \alpha_{T}$	13
199		\ \f		Propeller inflow factor $n_{E}F(C_{N_{\alpha}})\frac{\alpha_{P}}{57.3}\left(\frac{\pi R_{P}^{2}}{S_{r}}\right)\cos \alpha_{T}$	

POWER EFFECT VARIABLES: PROPELLER POWER VARIABLE DEFINITION OF DATA BLOCK "PW"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
201	СФИВФ	·			13
202	CØSAIH	cos α _{iH}			13
203	SIØSRH	s _{iH} /s _{rH}		·	13
204	SIH	(S;) _H			13
205	DCDØS	(\DC_D_O)_S	4.6.4	Eqn. 4.6.4-a,b	13
206	CDØPØW	(CDO) Power	4.6.4	Eqn. 4.5.4-d	13
l		on	٠		
207	RPNØB				i3
208	AAK '	k		·	13
209	EBRØEP	- ε/ε _p	4.6.4	See Eqn. 4.6.4-i	13
210	DCMT	(AC _m) _T	4.6.3	Eqn. 4.6.3-a	13
211	ASTARI	ΑŸ			13
212	TRPSTI	λ			13
213	XBRSRR	x ;			13
214	ALPHAT	ατ	4.6.4	p. 4.6.4-3	13
215	ALPHAP	α _p	4.6.4	p. 4.6.4-4	13
216	EP	ερ	4.6.4		13
217	SINAP	sin α _P			13
218	zs	zs			13
219	BIØ2	b ₁ /2			13
220	CØSAT	cos a _T		·	13
221	SINAT	sin a _T			13
222	SI	s		: 	13
223	TRI	λ _i		·	13
224	CBARLI	\overline{c}_1			13
225	SWEEPA	Λ ² 25/i			13
226	TRPSI	*			13
227	SCAPI	S		1	13
228	TRSØI	λ			13
229	CBSRØI	0;			13
230	CØSSWA	cos A		1	13
	1	<u> </u>	<u> </u>	<u> </u>	<u></u> _

POWER EFFECT VARIABLES: PROPELLER POWER VARIABLE DEFINITION OF DATA BLOCK "PW"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLA
231	ATØVCA				13
232	CHØIN			<u>;</u>	13
233	CMØ2	}			13
234	CMOØVA	•			13
235	CMOTE				13
236	CMOI				13
237	BS1				13
238	BS2				13
239	BS3		<u>.</u>		13
240	AKI	κ ₁		Nacelle or fuselage empirical factor	13
241	DELALP	Δα			13
242	DXHMAC	ΔXH) 	·	13
243	ZHEFF	ZHEFF		Vertical distance from HT mac quarter chord to the slipstream center line	13
244	ZHØRP	ZHEFF/RP		·	13
245	DQHØQI	ΔqH/d [∞]			13
246	ZHT	Z _H T		Vertical distance from the pro- peller thrust axes to HT mac quarter chord	13
247	ZHTØRP	ZHT/Rp			13
248	XCP	X _{CP}			13
249	DLH	Δ2 _H	İ		13
250	CNP	CNP		Propeller normal force coef- ficient	13
251	CLP	CLP		Propeller lift coefficient	13
252	EBAR	ε		Effective downwash over wing span	13
253	CLWW	CLU			13
254	CDLRAT	(CDL) Power		Power on to power off CDL ratio	13
		(CDL) Power	·		

POWER EFFECT VARIABLES: PROPELLER POWER

VARIABLE DEFINITION OF DATA BLOCK "PH"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEF NITIONS	OVERLAN
255	CDLPØW	(C _{DL}) _{Power}			13
256 257	EPØWR YTEMP	Epower on	· ·	Power on downwash angle	13 13
258 259-278	STEP1 DCLHE	(ΔC _{LH}) _ε			13
279-285	ARGCS	-, -			
				·	
				ı	
	·				
-					,
·					

POWER EFFECT VARIABLES. <u>JET POWER</u>

VARIABLE DEFINITION OF DATA BLOCK "P!"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1	ATP	α ₇ '			30
2-21	CDLT	(AC,)_	4.6.1	Eqn. 4.6.1-c (vs α _T)	30
22	XBARIN	_ X _{IN}		'	30
23	XINØCR	$\frac{\overline{x}_{1N}/\overline{c}_{r}}{c}$			30
24	DEUDA	∂ε <mark>"</mark> /9α	4.4.1	Eqn. 4.6.1-m	30
25	EPSLØN	E		<u> </u>	30
. 26	ATJ	(a _T)	4.6.1	Eqn. 4.6.1-a	30
27-46	DCLNJ	(∆C_)N	4.6.1	Eqn. 4.6.1-y	30
47	XEP	Xi n		Longitudinal distance from HT mac quarter chord to jet exit	30 .
48	ZJP	zj		Vertical distance from jet ex- haust axes to HT mac quarter chord	30
49	XJP	χţ		Longitudinal distance from jet wake origin to jet exit	30
50	XHP	Х <mark>Н</mark>		Longitudinal distance from HT mac quarter chord to jet wake origin	30
51	AIN	a		Free stream speed of sound	30
52	VIN	٧ _∞		Free stream speed	30
53	LINGTJ	τ∞/τ,			30
54	VJPØVI	V;/V∞	4.6.1	Figure 4.6.1-29	30
55	ZJPØRJ	ZJ/R	4.6.1	Figure 4.6.1-30(a-c)	30
56	DE	Δε		Downwash increment	30
57	ZJPØBH	z'j/b _H			30
58	YTØB2H	Y _T /(b/2) _H			30
59	DEBØDE	Δε/Δε	4.6.1	Figure 4.6.1-28	30
60	ZJPXHP	zj/xh			30
61	SRTPCØ	srt/(XH)			30
62	ZJDEXH	ZJΔε/XH			30
63	CØMP1	4			30
64	PTEØPI	PTe/P∞			30
65	RJPØRJ	R'J/RJ	4.6.1	Figure 4.6.1-32a	30

POWER EFFECT VARIABLES: <u>JET POWER</u> VARIABLE DEFINITION OF DATA BLOCK "PM"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEHINITIONS	OVERLAY
66	RJP	R j		Radius of equivalent jet orifice	30
67	DXPØRJ	ΔX¹/R	4.6.1	Figure 4.6.1-32b	30
68	DXP	ΔΧ'		•	30
69	XEPC	ΧĖ			30
70	XHPC	XH			30
71	ZTP	Z !			30
72	ZJPRJP	Z'j/R'j			30
73-92	DCLHE	(ΔCLH)ε	,		30
93	ZBART	ZT			30
94-113	DCMT	(ΔC_m) _T	4.6.3	Eqn. 4.6.3-a	30
114	XL) x,			30
115-134	DCMNJ	(ΔC _m) _N	4.6.3	Eqn. 4.6.3-n	30
135	DLH	Δ2 _H "J			30
136-155	DCME	(ΔC _m) _e	4.6.3	Eqn. 4.6.3-0	30

PROPELLER AND JET POWER INPUTS

VARIABLE DEFINITION OF DATA BLOCK "PWIN"

LOCATION	VARIABLE NAME	ENGINEFRING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1	ALETLP	α¡Τ		Input via NAMELIST PRØPWR	
2	NENGSP	n _E			
3	THSTOP	T' c			
4	PHALØC	X _P '			
5	PhVLØC	z _T		·	
6	PRPRAD	R _P			
7	ENGLOT	K _N	,		
8	BWAPR3	(0 _P)0.3 R _P	e .		
9	BWAPR6	(b _P)0.6 R _P		·	
10	BWAPR9	(b _p)0.9 R _p			
11	NØPBFE	N _B .			
12	BAPR75	(β _P) _{0.75R_P}		. ₹	
13	AIETLJ	αiT		Input via NAMELIST JETPWR	1
14	NENGSJ	n _E			
15	THSTCJ	T' _c		•	
16	JIALØC	XIN			
17	JEVLØC	Z _e			
18	JEALØC	X _e			
19	JINLTA	AIN			
20	JEANGL	e,			
21	JEVELØ	٧٦			
22	AMBTMP	T			
23	JESTMP	J			
24	JELLØC	YT		·	
25	JETØTP	PTe	·		
26	AMBSTP	P _∞		. ↓	
27	JERAD	RJ		Input via NAMELIST PRØPNR	{ {
28	ур Срат	YP		Tiput via innice is i the wi	
29	CRØT			,	

SUPERSONIC BODY VARIABLES VARIABLE DEFINITION OF DATA BLOCK "SBD"

LOCATI	ON VARIABLE	ENGINEERII SYMBOL	NG DATCOM REFERENC	E COMMENTS/DEFINITIONS	OVER
1	RLBP	L'B			
2	RLB	L _B		·	19,
3	RLBT	^L BT			19,
4	DN	dn			19,
5	ום	d ₁	4.2.1.1	p. 4.2.1.1-4	19,
6	D2	d ₂	4.2.1.1	p. 4.2.1.1-4	19,
7	BETA	В		Mach number parameter	19,
8	FA	f _A	*	Afterbody fineness ratio	19
9	FB	f _B		Body fineness ratio	19
10	FN	f _N		Nose fineness ratio	19
11	XCPLB	X _{CP} /L _B	4.2.2.1	Figure 4.2.2.1-24	19,2
12	CMAØC	(c _m a) 00-0	j	Eqn. 4.2.2.1-24	19
13	DELCMA	ΔC _{mα}		Eqn. 4.2.2.1-d	19
14	THETAB				19
15	DELCNA	^θ Boattail ΔC _{Nα}			. 19
16	TUSTAF	N _α θ	4.2.1.1	p. 4.2.1.1-4	19
17	CNAØC.	flare	,	p. 4.2.1.1-4	19
18	CNA	(C _{Nα}) _{OC-C}		Rody name 1 6	19
19	SB	S _b		Body normal force slope, per de	9 19,26
20	SP	S _P		Body base area	19
21-40	ALSCHR	ρ α _J		Body planform area	19
41-60	MC	MCJ	·	M - •	19
61-8ñ	CDC	C"	4.2.1.2	M sin α	19
31-100	CFLØW C	C _{dcJ}		Canan (1)	19
	-	d _c S _p Sin ² a	7.2.1.2	Cross flow lift term; eqn. 4.2.1.2-c	19
01	XCPBLB X	r	4.2.2.1		
02	THETAF	GP' ~BT	1.2.201	Figure 4.2.2.1-24	19
03	CMAP	c _{ma}			19
04		NUSED	1		19
05	хс	x _c	1	Centroid of planform area	
06	VB	V _E	1		19
1		Ē	<u> </u>	Body volume	19

VARIABLE DEFINITION OF DATA BLOCK "SBD"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLA
107	CDN2P	(CDN2) or			19
	[(c _{DA})	i I		
108	CDN2	CDN2			19
109		UNUSÉD			
110	CMA	C _{ma}		Body pitching moment slope	19,26
1111	SS	SS		Body wetted area	19,26
112	RNB	R _{LB}			19
113	RLCØFF	Rec			19,26
114	CF	Cf		Body skin friction coefficient	19
115	CDF	Cdf		Body skin friction drag coef- ficient	19,26
116	CDANF	CDANC Th	•		19
117	CDANC	CDANC		·	19
118	CDAB				19
119	CDA	c _{DA}			19
120	DMAX	d max			19
121	CDD				19
122	СРВ	€ _{Pb} '			19
123	CDB	c ^{DP}			19
124	CDØ	CDO		Body zero lift drag coefficient	19,26
125	CNANF				26
126	XCPLN	X _{CP} /L _B	4.2.2.1	Figure 4.2.2.1-24	26
127	THETAN	e _N			26
128	CNAN	$(c_{N_{\alpha}})_{N}$		Nose normal force slope	26
129	CMAN	(c _{ma}) _N		Nose pitching moment slope	26
130	THETAA	θ _A			26
131	CNAAF				26
132	CMAAF	[26
133	CNAA	$(c_{N_{\alpha}})_{A}$ $(c_{m_{\alpha}})_{A}$		Afterbody normal force slope	26
134	CMAA	(C _{ma}) _A		Afterbody pitching moment slope	26
135	THETAT	θВ	I		26
136	CNATF				26

VARIABLE DEFINITION OF DATA BLOCK "SBD"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLA
137	CMATF				26
138	CNAT	(c _{Na}) _B		Body normal force slope	26
139	CMAT	(c _{ma} ; B		Body pitching moment slope	26
140	K	K	4.2.1.2	Eqn. 4.2.1.2-j	26
41-160	THETA	θ _N			26
161-180	LX	(e _x) _N		, Xu.	26
81-200	INTGCN	A N		$\int_{1}^{1} (K_{\theta J})^{N} r^{N} d \left(\frac{x^{B}}{2} \right)$	26
01-220	INTGCM	· .		$\int_{1}^{0} (K^{\theta 1})^{N} L^{N} (r^{X})^{N} d(\frac{r^{N}}{x^{N}})$	26
	ŀ			0, 41, N, N, X, N, 5B	26
221	RNN	R _N		<u> </u>	26
222	CFINC CFCØCF	Cf Inc		1.	26
223	1	Cfc/Cf			26
224	CDPN	(C _{DP})-N			26
225	CDPA	(C _{DP}) _A			26
226	CDPT	(C _{DP}) _B			26
227 228	CDP	C _{DP}			19,2
229		(C _{NαN}) WB			19,2
225	İ	(CNaN) HB		<u>}</u> .	
		ĺ			
		ł			
					1
-	5m = 1	· · · · · · · · · · · · · · · · · · ·		••	
	1 .		:		
			•		
					1
					1

SECOND LEVEL METHOD DATA PARAMETERS VARIABLE DEFINITION OF DATA BLOCK "SECD"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1		(C ₂ /C _L) _W	5.1.2.1		35
2		(C ₂₈ /C _L) _W	5.1.2.1		35
3	·	(C _L ,/C _L) _H	ا.2.1.د		35
4		(C _{LB} /C _L) _H	5.1.2.1		35
5		(C _{LR} /C _L)WB	5.2.2.1	·	35
6		(C _{LB} /C _L) _{WB}	5.2.2.1		35
7		(C _{LB} /C _L) _{HB}	5.2.2.1		35
8		(Clβ/CL) HB	5.2.2.1		35
9		W=1.4B	4.1.3.2		35
10		(C _{Nα}) _{HB} M=1.4	4.1.3.2		35
11		(C _{DO}) _{WBT}	4.5.3.1		35
12		(C _{DO}) _{WBT}	4.5.3.1		.35
- 13		(C _{DO}) _{WBT} M=1.1	4.5.3.1		35
14		(C _{DO}) _{WBT}	4.5.3.1		35
15	DØNE			Flag if methods complete	35
16	DØL2			Flag if methods applicable	35
17		(c _{DL} /c _L ²)	4.1.5.2	·	35
18		(CLB/CL)W	5.1.2.1	Eqn. 5.1.2.1-c	35
19		$(c_{D_L}/c_L^2)_H$	4.1.5.2		35
20		(c _{DL} /c _L ²) _W (c _{£β} /c _L) _W (c _{DL} /c _L ²) _H (c _{£β} /c _L) _H	5.1.2.1	Eqn. 5.1.2.1-c	35

VARIABLE DEFINITION OF DATA BLOCK "SECD"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
21 22 23		(c _{&B} /c _L) _{WB} (c _{&B} /c _L) _{HB}	5.2.2.1 5.2.2.1 4.5.3.1	Eqn. 5.2.2.1-d Eqn. 5.2.2.1-d Drag divergence Mach number	35 35 35

SUPERSONIC HORIZONTAL TAIL-BODY VARIABLES VARIABLE DEFINITION OF DATA BLOCK "SHB"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1		UNUSED	·		
2	KKWB	k _{HB}			20
3	XACN	(X _{ac}) _N			20
4	CDØWB	(c _{DO}) _{HB}		HT-body zero lift drag coef- ficient	20
5	DD	d _{Body}		·	20,25
6	BETA	β	•	Mach number parameter	20
7	CLABW	(CLa) B(H)		·	20
8	XACBW	$(X_{ac}/c_r)_B$	H)		20,25
و .	FA	l f			20
10	CLI	C _{La} ;			20
- 11	KBW	K _B (H)			20,25
12-31	IVBW	IVB(H)			20
32	RKBW	J (, j	4.3.1.2	Figure 4.3.1.2-11	20,25
33	CLAWB	(CLa)H(B)			20
34	FN	f _N			20
35	KWB	К _{Н (<u>в</u>)}		·	20,25
36	XAC	X _{ac} /c			20
37	KKBW	k _B (H)			20
38	RLAP	٤ a		·	20
39	XACA		4.3.2.1	Figure 4.3.2.1-37	20,25
40-59	GAMMA	⁷ /2παν(r)		•	20
		cre/2		·	
60	TRINØ				20,25
61	XCPLN	(X _{CP} /C _r) _N	•		20
					1 . }
					1
			• ,		

SUPERSONIC PANEL SIDESLIP VARIABLES VARIABLE DEFINITION OF DATA BLOCK "SLA"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1	масн	М		Mach number	23,32
2	BETA	β		Mach number parameter	23,32
3	Х	х			23
4	DIHEQ	Γ		Equivalent dihedral angle	23
5	QBC	Equiv.	5.1.1.1	Figure 5.1.1.1-6	23
6	EBC	E ¹¹ (βC)	7.1.1.1	Figure 7.1.1.1-8	23
7	CLPTØA	(C _{Lp})Theo/	7.1.2.2	Figure 7.1.2.2-25	23
8	CLP	c _l p A			23
9	CLBD	(c _l _β) _r	!		23
10	zw	Z _w			23
11	RKI	K,	5.2.1.1	Figure 5.2.1.1-7	23
12	RNN	R _L		•	23
13	RKRL	K _R	5.2.3.1	Figure 5.2.3.1-9	23
14	RH1	h _l			23
15	RH2	h ₂			23
16	SBS	S _{BS}		Projected side area of body	23
17	RKN	K ^N	5.2.3.1	Figure 5.2.3.1-8	23
18	ZVP	Z'			23
19	CLBZW	(ACLB) Zw			23
20	DCLB	ΔClβ			23
21	RKHBHL	(K _H (B)) _{HL}	5.3.1.1	Figure 5.3.1.1-25 (ØØ)	23
22	RKHB	K _H (B)			23
23	DCYHWB	(VCAb) H (MB	,		23
24	RKV₩B	K _v (MB)	5.3.1.1	Figure 5.3.1.1-25 (B-P)	23
25	RKVB	[K., /p.)	5.3.1.1	Figure 5.3.1.1-25A	23
26	RKPVWB	K.			23
27	DCYBV	V(B) VW(B) (ΔC _V)			23
28	RKVHB	` ' 'β' V (WB) 5.3.1.1	Figure 5.3.1.1-25 (8-P)	23
29	ZP	K _{v(HB)} Z _P			23
30	RLP	[₽] P		·	23
31	CNAV	~P (c _{Nα}) _v			32

SUPERSONIC HORIZONTAL TAIL PANEL SIDESLIP VARIABLES VARIABLE DEFINITION OF DATA BLOCK "SLAH"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLA
ì	MACH	м		Mach number	23,32
2	BETA	β		Mach number parameter	23,32
3	x	X			23
4	DIHEQ	7 Equiv.		Equivalent dihedral angle	23
5	QBC	1/Q _(BC)	5.1.1.1	Figure 5.1.1.1-6	23
6	EBC	E''(βC)	7.1.1.1	Figure 7.1.1.1-8	23
7	CLPTØA	(C _{Lp})Theo/	7.1.2.2	Figure 7.1.2.2-25	23
8	CLP	C _{lp} A			23
9	CLBD	(crb)			23
10	ZW	Zw			23
11	RKI	κ̈́	5.2.1.1	Figure 5.2.1.1-7	23
12	RNN	R _L		•	23
13	RKRL	K _R	5.2.3.1	Figure 5.2.3.1-9	23
14	RH1	h ₁ ^x			23
15	RH2	h ₂		·	23
16	SBS	SBS		Projected side area of body	23
17	RKN	KN	5.2.3.1	Figure 5.2.3.1-8	23
18	ZWP	Z,i	,		23
19	CLBZW	(ACLB)Z			23
20	DCLB	ΔC _{LB} w			23
21-31	·	UNUSED			
	1			· ·	1
			·	·	
•				· ·	:
-	****				
	ŀ		,)
,					
,		}			
-		,			
	ĺ				

The state of the second second second second second second

SUPERSONIC WING VARIABLES

VARIABLE DEFINITION OF DATA BLOCK "SLG"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1	BETA	β		Mach number parameter	18,27
2	BOVERT	β/tanλ _{LE}	4.1.3.2		18,27
3.	CNIINT	$c_{N_{\alpha}}/(c_{N_{\alpha}})$	4.1.3.2		27
		Theory			
4	BCNA	βC _{Nα}	4.1.3.2	·	27
5	CNTHRY	(CNa), Theor	4.1.3.2		27
6	CNAA	CNa/A	4.1.3.2		27
7	CNA1	c _{Na}	4.1.3.2	Wing normal force slope, per radian	27
8	DELTYT	ΔΥ_	4.1.3.2		27
9	DELTDT	δ⊥.	4.1.3.2	Semi-wedge angle measured per- pendicular to wing LE	27
10	TLE 192	tan A _{LE} / 1.9	2		27
11	E	E			27
12	СС	С	. , .		27
13-32	CNAAA	(c _{N aa}) j	4.1.5.5		27
33-52	ALPHAJ .	α,			27
53-72	CDL	(c ^{DF}) ⁷			27
73	A2	A ₂	4.1.3.2		27
74	S2	s ₂	4.1.3.2	·	27
75	CNAAAP	C _N '	4.1.3.3		27
76	XACCRI	(X _{ac} /C _r)		Inboard panel	27
77	CNTBV	(CN a) BM			27
-0	V40000	Theory		0.46.5.5	27
78 70	XACCRO	(Xac/cr)ø		Outboard pane:	18
79	CDW	CDM		Wing zero lift drag coefficient	18
80	CDØ	CDC		wing zero filt drag coefficient	18
81	DRAGC	$ \begin{array}{c c} & C_{DL} & P \\ \hline & C_{L} & P+1 \end{array} $			
82	P	P			18
83	CFØ	c _{fg}		Outboard panel	18
84	CFI	cfj		Inboard panel	18

VARIABLE DEFINITION OF DATA BLOCK "SLG"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
85	RNØ	Rcø		Outboard panel	18
86	RNI	R _C ,		Inboard panel	18
87	CDF	CDf			18
88	ÇF	c _f			18
89	RLCØFF	Rec			18
90	RNN	Rg.			18
91:	CNAØ	(c _{Na})g		Outboard panel	27
92	CNAI	(c _{Na})		Inboard panel	27
93	RMACH	(MT) =0			27
94	DETACH	μ=υ	·		27
95-114		UNUSED		-	
115	DETANG	α÷			2.7
116	CNAAST	C _{Nau}	4.1.3.3		27
117	DETALP	Δα			27
118	CRBW	(c _r) _{BW}			27
119	SBW	SBW			27
120	ARBW	ABW			27
121	TAPBW	λ _{BW}			27
122	CLEBW	(CLE) BW	•.		27
123	CRGLV	(c _r) _g		Glove component	27
124	SGLV	Sg	4.1.3.2	Glove component	27
125	ARGLV	Ag	4.1.3.2	Glove component	27
126	BE	b _E	4.1.3.2	Extension component	27
127	CNT	$(C_{N_{\alpha}}/A)_{1}$	4.1.3.2		27
128	CN2	(CNa/A)2	4.1.3.2		27
129	CNAE	(c _{Na}) _E	4.1.3.2	Extension component	27
130	CNAGLV	(c _{Ha})g	4.1.3.2	Glove component	27
131	CNABW	(CNa) BM	4.1.3.2	•	27
132	CLEGLV	(CLE)	4.1.3.2	Glove component	27
133	RKL	K _L			27
134	XACCR	x _{ac} /c			20,27

VARIABLE DEFINITION OF DATA BLOCK "SLG"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
135	DCMCL	qc ^m /qc ^N			27
136	CMA	C _{Mrt}	• • .		27
137	CNCNTI	[CN2/CNC		Inboard panel	27
138 139	CNCNTØ	[CNG/CNG THEO]		Outboard panel	27
139	CNATI	(CN THEO)		Inboard panel	27
140	CNATØ	(CNaTHEO)		Outboard panel	27
141	RKT.	K ^T			27
•					
~					
	İ				
				·	
				•	
					1
			•		
		·			
-	1				
			İ		
		<u> </u>	1		

SUPERSONIC HIGH LIFT AND CONTROL VARIABLES VARIABLE DEFINITION OF DATA BLOCK "SPR"

LOCATION	VARIABLE	ENGINEERING		COMMENTS, DEFINITIONS	OVERLAY
	BETA	SYMBOL	REFERENCE	Mach number parameter	41,53
2	CI	C ₁	6.1.3.1	2/8; p. 6.1.3.1-7	41.53
3	C2	1	6.1.3.1	$(2.4M^4-4B^2)/(2B^4)$; p. 6.1.3.1-7	41,53
4	LAMHL	C ₂	0.1.3.1	Hinge line sweep, deg	41,53
5	PHITE	[∧] HL		TE cross section angle perpen-	41,53
2	PHILE	ФΤΕ		dicular to hinge line, deg	ננ,וד
6	К3	К ₃	6.1.3.2	$1-(c_2/c_1)(\frac{SPR(5)}{57.3})$	41,53
7	SF	SF		Total flap area	41,53
8	CLRLF	CLS		TE plain flap rolling effective- ness	53
9	кнв	k _{H(B)}	4.3.1.2	Figure 4.3.1.2-12A	53
10	квч	к _В (н)	4.3.1.2	Figure 4.3.1.2-12A	53
11	YHS	Δ ^H			53
12	BCLD1	$c_{L_{\delta}}$	6.1.4.1	see p. 6.1.4.1-11	41,53
13	BCLD2	CL		•	41,53
14	TANHL	tan A _{HL}		_	41,53
15	κı	к,		K ₃ (1+R _F +R _F ²)	41
16	K2	κ ₂		$K_3(tan \Lambda_{HL})$	41
17	BCMD1	C _m ı			41,53
18	ECHC1	c _h s	6.1.3.2	Eq.:. 6.1.3.2-e	41,53
19	CMDT	c _m		TE flaps pitching moment effec- tiveness	41
20	CLD	c _L _δ	6.1.4.1	TE flaps lift coefficient effectiveness	41
21-30		UNUSED		·	
31	CHRD(1)			Wing chord at innermost flap station	41
32	TLEOB	•			41,53
33	THLOB	1			41,53
34	TTEOB	j			41,53
35	TRTOFL			Flap taper ratio	41
36	со			Wing chord at inboard location of flaps	41

VARIABLE DEFINITION OF DATA BLOCK "SPR"

LOCATION	VARIABLE 1:AME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
37-44	PAM1- PAM8			Pressure area moments calculated from wing tip	41
45-52	FAM1- PAM8		·	Pressure area moments calculated from wing root	41
53	CHAT	(C _{ha}) _{t/c=0}	· -	Hinge moment effectiveness for flat sided controls	41
54	CHAF	(C _{ha}) _{Flat}		Hinge moment derivative for flat sided controls	41
55	AMA	Ma		Area moment about hinge line	41
56	CHDELF	³ h _δ	·	Hinge moment derivative for flat sided controls	41
57-59	CMD1- CMD3	ΔC _{mδ}			41
				·	
	·	·		·	
				·	
			·		
				·	
			,		
				,	
		į			
		. 1			
					1
	1				l
	.				I

SUBSONIC PANEL SIDESLIP VARIABLES VARIABLE DEFINITION OF DATA BLOCK "STB"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1		Z _w	5.2.2.1	Vertical distance from center line to the root chord quarter chord	29
2	·	η_{r}			29
3		$\eta_{ $		•	29
4		Z'u			29
5		(CLa) v	5.3.1.1	Method of 4.1.3.2	17
6	٠.	(A) _{TVT}	5.3.1.1	Isolated panel geometric aspect ratio	17
7		i K	5.3.1.1	Figure 5.3.1.1-25	17
8		κ _f	5.2.2.1	Fuselage-length-effect correction factor Figure 5.2.2.1-26	17
9		X.			29
10		c _v	5.3.1.1	Figure 5.3.1.1-22b	29
11		l _p		Horizontal distance from the CG to quarter chord MAC of VT	29
12		Z p		Vertical distance from center line to MAC of VT	29
13		ΔC _{2β}			17
14		C ₂ BZ			17
15	1	K _N	5.2.3.1	Figure 5.2.3.1-8	17
16-35		(CYβ)L.S.		Low speed value for C_{Y_B} vs. α	17
36-55	1	(CY /CL)M		Cy _β /C _L at mach vs. α	17
56		KRL	5.2.3.1	Figure 5.2.3.1-9	17
57	I	к,			17
58		$(c_{\ell_{\alpha}})_{TOT}$			17
59				Average height of fuselage above wing root chord	29
60		h ₂	5.2.3.1	Figure 5.2.3.1-8	29
61		- '	5.2.3.1	Figure 5.2.3.1-8	29
62			5.2.3.1	Projected side area of body	29
63	- 1	1	5.2.2.1	Fuselage length	29
64	YA311		5.1.2.1	Inboard panel, Figure 5.1.2.1-31	17

VARIABLE DEFINITION OF DATA BLOCK "STB"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVEPLA
65	YA31Ø	(#Cie/K7)@	5.1.2.1	Outboard panel, Figure 5.1.2.1-31	17
66	YA30A	K _m (5.1.2.1	Figure 5.1.2.1-30a	17
67	YA29	c _{aa} /r	5.1.2.1	Figure 5.1.2.1-29	1.7
68	YA27		5.1.2.1	Figure 5.1.2.1-27	17
69	YA30A		5.1.2.1	Figure 5.1.2.1-30b	17
	_	tan (c/4)			
70	YA28B	I "D LAI	5.1.2.1	Figure 5.1.2.1-28b	17
71	YA28A	K _m _A	5.1.2.1	Figure 5.1.2.1-28a	17
72		[d _B [Body diameter	29
73		(CYB) TVTEF	-		17
.74		(CY TVT (WE	3н)		17
		V(CYB)TVTE	f		
75		(A _{Eff}) _v /			17
76-95		(c _{ng} /c _L ²)	5.1.3.1	Low speed Cng/CL2	17
96-115		c ₂₈ *			17
116		(A _{Eff})	5.3.1.1	Eqn. 5.3.1.1-a	17
117		(1+aσ/aβ)× q _v /q _ω	5.4.1	Sidewash term	17
118	j		5.3.1.1	Figure 5.3.1.1-22d	17
119		KH	5.3.1.1	Figure 5.3.1.1-22c	17
120			5.3.1.1	Figure 5.3.1.1-22a	17
121	1	A _{V(HB)} /	5.3.1.1	Figure 5.3.1.1-22b	17
122		(a) v ^A		Effective dihedral angle	29
123-125	ļ	UNUSED			
126	-	1	5.1.2.1	Outboard panel, Figure 5.1.2.1-28b	17

VARIABLE DEFINITION OF DATA BLOCK "STB"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
127		V(CrB/cf)	5.1.2.1	Inboard panel, Figure 5.1.2.1-28b	17
128		(c ₂₈ /c _L)'	5.1.2.1	Outboard panel, Figure 5.1.2.1-27	17
129		(C _{i,2} /C _L) '	5.1.2.1	Outboard panel, Figure 5.1.2.1-28b	17
130			5.1.2.1	Outboard panel, Figure 5.1.2.1-28a	17
131		(Cig/CL)g	5.1.2.1	Outboard panel C _{lg} /C ratio	17
132		(c; 2/c]) (c; 2/2)	5.1.2.1	Inboard panel, Figure 5.1.2.1-27	17
133	·	(C _{lg} /C _L) _{A1}	5.1.2.1	Inboard panel, Figure 5.1.2.1-28b	17
134		A.	5.1.2.1	Inboard panel, Figure 5.1.2.1-28a	17
135		(c ₂₈ /c _L),	5.1.2.1	Inboard panel Clg/C ratio	17
			• 1		
1	1)
			1		
			1		
					1
1		1			1
	1				
	1				
	1		· {		
	-	1	{	ta di kacamatan da kacamatan da kacamatan da kacamatan da kacamatan da kacamatan da kacamatan da kacamatan da k	
. [1		1		. [

SUBSONIC HORIZONTAL TAIL PANEL SIDESLIP VARIABLES VARIABLE DEFINITION OF DATA BLOCK "STBH"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1		Z _w	5.2.2.1	Vertical distance from center line to the root chord quarter chord	29
2		η_{ζ_i}		'	29
3		$\eta_{\nabla g=1}$			29
4		Z _W			29
5		(CLa)VF	5.3.1.1	Method of 4.1.3.2	17
6		-4 11	UNUSED	·	
. 7		к	5.3.1.1	Figure 5.3.1.1-25	17
8	,	К _f	5.2.2.1	Fuselage-length-effect correction factor Figure 5.2.2.1-26	17
9		χ .			,29
10		C _v	5.3.1.1	Figure 5.3.1.1-22b	29
11		r _b		Horizontal distance from the CG to quarter chord MAC of VF	29
12		z _p		Vertical distance from center line to MAC of VF	29
13		ΔC _{2g}			17
14		CLBZ.			17
15		K _N	5.2.3.1	Figure 5.2.3.1-8	17
16-35		(CYB)L.S.		Low speed value for C_{Y_g} vs. α	17
36-55		(CYB/CL)M		Cyβ/CLg at mach vs. α	17
56		KR	5.2.3.1	Figure 5.2.3.1-9	17
57		к,			17
58		(C _{la}) _{TOT}	!		17
·59		horω	5.2.3.1	Average height of fuselage above wing root chord	29
60		h ₂	5.2.3.1	Figure 5.2.3.1-8	29
61		h ₁	5.2.3.1	Figure 5.2.3.1-8	29
62		S _{BS}	5.2.3.1	Projected side area of body	29
63		l _f	5.2.2.1	Fuselage length	29
64	YA311	(βC _{&R} /K ⁷)	5.1.2.1	Inboard panel, Figure 5.1.2.1-31	17

VARIABLE DEFINITION OF DATA BLOCK "STBH"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS / DEFINITIONS	OVERLAY
65	YA31Ø	(βC _{LB} /KT)	5.1.2.1	Outboard panel, Figure 5.1.2.1-31	17
66	YA30A		5.1.2.1	Figure 5.1.2.1-30a	17
67	YA29	C _{LB} /7	5.1.2.1	Figure 5.1.2.1-29	17
68	YA27	(C _{lβ} /C _L) Λc/2	5.1.2.1	Figure 5.1.2.1-27	17
69	YA 3 0A	ΔC _{Lβ} /(θ	5.1.2.1	Figure 5.1.2.1-30b	17
70	YA283	tan A _{c/4}) (C _{lg} /C _L) _A	5.1.2.1	Figure 5.1.2.1-28b	17
71	YA28A	κ _m Λ	5.1.2.1	Figure 5.1.2.1-28a	17
72		d _B		Body diameter	29
73		UNUSED			
74		UNUSED	}		
75	·	UNUSED			
76 - 95	:	(c _{ng} /c _L ²)	5.1.3.1	Low speed C _{ng} /C _L ²	17
96-115	• *	C _{LB} #			17
116			5.3.1.1	Eqn. 5.3.1.1-a	17
117		(1+3σ/3β)× q _y /q _w	5.4.1	Sidewash term	17
118		k	5.3.1.1	Figure 5.3.1.1-22d	17
119		КН	5.3.1.1	Figure 5.3.1.1-22c	17
120		A _{V(B)} /A _v	5.3.1.1	Figure 5.3.1.1-22a	17
121		A _{V (HB)} /	5.3.1.1	Figure 5.3.1.1-22b	17
122		A _V (B) 7*	·	Effective dihedral angle	29
123-125 126		UNUSED $\Delta(C_{\mathcal{L}_{\beta}}/C_{L})_{g}$	5.1.2.1	Outboard panel,Figure 5.1.2.1-28b	17

VARIABLE DEFINITION OF DATA BLOCK "STBH"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
127		V(C ^{FB} \C ^F)	5.1.2.1	Inboard panel, Figure 5.1.2.1-28b	-17
128		(C _{lβ} /C _L)'	5.1.2.1	Outboard panel, Figure 5.1.2.1-27	17
129		(C _{LB} /C _L)'	5.1.2.1	Outboard panel, Figure 5.1.2.1-28b	17
130			5.1.2.1	Outboard panel, Figure 5.1.2.1-28a	17
131		(C _{lb} /C _L)ø	5.1.2.1	Outboard panel $C_{oldsymbol{\ell}_{oldsymbol{eta}}}/C_{oldsymbol{L}}$ ratio	17
132		(c _{&\$} /c _L)	5.1.2.1	Inboard panel, Figure 5.1.2.1-27	17
133		(c _{lb} /c _l) _A	5.1.2.1	Inboard panel, Figure 5.1.2.1-28b	17
134		(K _m V) 1	5.1.2.1	Inboard panel, Figure 5.1.2.1-28a	17
135		(c _{lb} /c _l) _l	5.1.2.1	Inboard panel $C_{\ell_{oldsymbol{eta}}}/C_{oldsymbol{L}}$ ratio	17
	·				
]			;		
		ĺ			
]	j	j			
					}
			Ì		
	,				

SUPERSONIC HORIZONTAL TAIL VARIABLES VARIABLE DEFINITION OF DATA BLOCK "STG"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
	вета	β		Mach number parameter	22
2	BOVERT	β/tanΛ _{LE}	4.1.3.2	·	22
3	CNNNT	cNa/(cNa)	4.1.3.2		22
	}	Theory			
4	BCNA	βC _{Nα}	4.1.3.2		22
5	CNTHRY	(c _{Nα}) Theor	4.1.3.2		22
6	CNAA	CNa/A	4.1.3.2		22
7	CNAI	C _{Na}	4.1.3.2	HT normal force slope, per radian	22
8	DELTYT	ΔΥ_	4.1.3.2		22
9	DELTOT	δ.L.	4.1.3.2	Semi-wadge angle measured per- pendicular to HT LE	22
10	TLE 192	tan A E / 1.9	2	·	22
11	E	E			22
12	СС	С			22
13-32	CNAAA	(c _{Naa})	4.1.3.3		22
33-52	ALPHAJ	α			22
53-72	CDL	(c _{DL})		. •	22
73	A2	A ₂	4.1.3.2		22
74	S2	S ₂	4.1.3.2		22
75	CNAAAP	C _N αα (X _{ac} /C _r)	4.1.3.3		22
76	XACCRI	(X _{ac} /c̃ _r)		Inboard panel	22
77	CNTBW	(C _{Nα}) _{BW} Theory			22
78	XACCRØ	(x _{ac} /c _r)g		Outboard panel	22
79	CDW	CDW			22
80	c _{Dø}	c _{DO}		HT zero lift drag coefficient	22
8	DRAGC	πA CDL P	h		22
		c_{L}^{2}			
82	Р	P			22
83	CFØ	c _{fø}		Outboard panel	22
84 \	CFI	Cfi		Inboard panel	22

VARIABLE DEFINITION OF DATA BLOCK "ST3"

LOCATION	VARIABLE BAAK	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
85	RNØ	^R Cø		Outboard panel	22
86	RNI	R _C		Inboard panel	22
87	CDF	c _{Df}			22
88	CF	Cf		·	22
89	RLCØFF	R _{lc}			22
90	RNN .	. ~c Rℓ			22
91	CNAØ	(c _{Na}) _ø		Outboard panel	22
92	CNAI	$(c_{N_{\alpha}})_{1}$		Inboard panel	22
93	RMACH	$(M_{\perp})_{\alpha=0}$	•	·	22
94	DETACH	- α=0			22
95-114		UNUSED			
115	DETANG	α*			22
116	CNAAST	CNaa	4.1.3.3		22
117	DETALP	ναα Δα			22
118	CRBW	(c _r) _{BW}			22
119	SBW	SBW			22
120	ARBW	A _{BW}			22
121	TAPBW	λ _{BW}			22
122	CLEBW	(CLE) BM			22
123	CRGLV	(c _r) _q		Glove component	22
124	SGLV	S g	4.1.3.2	Glove component	22
125	ARGLV	A g	4.1.3.2	Glove component	2?
126	BE	P E	4.1.3.2	Extension component	22
127	CNI	(c _{N_{\alpha}/A)₁}	4.1.3.2		22
128	CN2	$(c_{N_{\alpha}}/A)_{2}$	4.1.3.2		22
129	CNAE	$(c_{N_{\alpha}})_{E}$	4.1.3.2	Extension component	22
130	CNAGLV	(c _{Na}) _g	4.1.3.2	Glove component	22
131	CNABW	(c _{Na}) _{BW}	4.1.3.2		22
132	CLEGLV	(CLE)	4.1.3.2	Glove component	22
133	RKL	K S			22
134	XACCR	x ac / C			22

VARIABLE DEFINITION OF DATA BLOCK "STG"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
135	DCMCL	dc™/d∪ ^N			22
136	CMA	c _{Ma}			22
137	CNCNTI	[C _{N_{\alpha}/C_{N_{\alpha} THEO]}}	· ·	Inboard panel	22
138	CNCNTØ	[CNa/CNa		Outboard panel	22
139		THEO JØ			-
139	CNATI	(CNOTHEC)		Inboard panel	22 22
140	CNATØ	NaTHEC / Ø		Outboard panel	
141	RKT	Κ⊥			22
			•		
				·	
					·
	-				
-					

SUPERSONIC WING-BODY-HORIZONTAL TAIL PARAMETERS VARIABLE DEFINITION OF DATA BLOCK "STP"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OYERLAY
1	CDø	(c _{Dø}) _V			20
2-21	СМАН .	(c _m a) _T	, .	•	28
22-41	CLTB	LLTB.			28
42-61	CDAWB	(CDa) WB		·	28
62	DD	(4P)H		·	28
63	TRING				28
64	RKBW		4.3.1.2	Figure 4.3.1.2-11	28
65	KBW	^К в (н)			28
66	KWB	K _H (B)			?8
67	CLAHB	(CLa)H(B)			28
68	CLABH -	$(C_{L_{\alpha}})_{B(H)}$			28
69	YT	-4 5(1)	4.4.1	Figure 4.4.1-67	28
70	RCREØ2	r _H			28
71-90	IVWH	10M(H)			28
91-110	DELTAT	ΔT			28
111-130	GAMMA -	(⁷ /2παVr) _τ			28
131	KKBW	k _{B (H)}			28
132	KKWB	k _H (B)			28
133-152	IVBH	1 _{VB} (H)			28
153	DXACWB	(AXac)WB			28
154	CDØWBT	(CDg) WBH			28
155	CDØWBV	(CDg) WBHV		·	28
156	CDØVF	(C _{D0}) _{VF}			
		DO AL			
		ĺ			
			İ		
				•	
			}		
	<u></u>		<u> </u>		

SUPERSONIC WING-BODY VARIABLES VARIABLE DEFINITION OF DATA BLOCK "SWB"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1		UNUSED			
2	KKWB	k _{w(B)}	,		20,35
3	XACN	(x _{ac}) _N			20
4	CDØMB	(c ⁰⁰) M8		Wing-body zero lift drag coef- ficient	20
5	DD -	d _{Body}		·	20,25
6	BETA	В		Mach number parameter	20
7	CLABW	(CLa) B(W)			20
8	XACBW	(X ac /c r) B(υ λ		20,25
9	FA	f	w)	·	20
10	CLI	c _{£a} ;			20
111	KBW	K _B (W)			20,25
12-31	IVBW	1 Ve (W)			20
32	RKBW	((()	4.3.1.2	Figure 4.3.1.2-11	20,25
33	CLAWB	(CLa)W(B)			20
34	FN	f _N			20
35	KWB	K _{W(B)}			20,25
36	XAC	X _{ac} /c _r		·	20
37	KKBW	k _B (w)			20,35
36	RLAP	£ a			20
39	XACA		4.3.2.1	Figure 4.3.2.1-37	20,25
40-59	GAMMA	⁷ /2παν(r)		·	20
		cre/2			
60	TRINØ				20,25
61	XCPLN	(X _{CP} /C _r) _N			20
					-
					1 1
]. [

SYNTHESIS PARAMETERS

VARIABLE DEFINITION OF DATA BLOCK "SYNA"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	WERLAY
1	XCG .	x _{cg}		Input via NAMELIST SYNTHS	
2	XW	X			
. 3	ZW	Z _w]	
4	ALIW	(a;)w			
5	ZCG	Z _C G			
6	хн	XH			
7	ZH	Z _H			
. 8	ALIH	(a ₁) _H			
9	ΧV	, x _V			
10	VERTUP				-
11	HINAX	ļ			
12	XVF				
13	SCALE				
14	ZV			• • •	
15	ZVF	,4			İ
		,		· .	
			į		
		1 .			
} 	Í	1			
		 			
]	· ·] [
				1	
				·	
	I	F	1	1	

SUPERSONIC SPANWISE LOADING COEFFICIENT PARAMETERS AND HIGH-LIFT AND CONTROL DRAG VARIABLES

VARIABLE DEFINITION OF DATA BLOCK "TCD"

LOCATION	VARIABLE NAME	ENGINEERING SYMBO:	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1-14	CDI	(G/δ)	6.1.5.1	Inboard panel spanwise loading coefficient	37
15-28	CDØ	(G/8) _Ø	6.1.5.1	Outboard panel spanwise loading coefficient	37
29-42	GDFULL	(G/8)	6.1.5.1	Panel spanwise loading coeffici- ent	37
43	GDIH	$(G/\delta)_{\eta} = .92^{l_1}$	6.1.5.1	Spanwise loading coefficient at η	37
44	GD2H	(G/δ) _{η=}	6.1.5.1	1	37
45	GD3H	$.707$ $(G/\delta)_{\eta=0}$	6.1.5.1		37
46	GD4H	$(G/\delta)_{\eta} =$	6.1.5.1		37
47	KPRM	0,0 K!	6.1.7	Figure 6.1.7-24	38
48 49-58	DELCDF	UNUSED AC df	6.1.7	Figure 6.1.7-22	38
				·	
			·		·

TRANSONIC LONGITUDINAL AND LATERAL-DIRECTIONAL STABILITY VARIABLES

VARIABLE DEFINITION OF DATA BLOCK "TRA"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	REFERENCE	COMMENTS/DEFINITIONS	OVERLA
1	CLA14	(CLa) M=1.	4.1.3.2	Lift curve slope at M=1.4	24
2	ZWC	Z _W /c _w	Í		35
3	K	k			24
4	MACH	М		Mach number	24
5	MFBØ	(M _{fb}) ₁₌₀	4.1.3.2	Zero sweep force break Mach No. Figure 4.1.3.2-53a	24
6	MFB	М _{fb}	4.1.3.2	Force break Mach No., Figure 4.1.3.2-53b	24
7	AØC	a/c	4.1.3.2		24
8	CFBCT	CL _{afb}) _T	4.1.3.2	Figure 4.1.3.2-54a	24
9	BETAFB	β _{FB}		F.rce break mach parameter	24
10	CLAFBT	(CLafb)T	4.1.3.2	Total wing (C _{Lafh})	24
11	AC	Z/cwfb	4	fb	35
12	CLAFB	(CLa) fb	4.1.3.2	Lift curve slope at M _{fb}	24
13	CLAA	(cr ^a),	4.1.3.2	Lift curve slope at Ma=M _{fb} +.07	24
14	вфС	b/c	4.1.3.2		24
15	CLAB	(CLa)	4.1.3.2	Lift curve slope at Mb=Mfb+.14	24
16-20	MT	MT	'	Mach interpolation in transonic	24
21-25	CLAMT	(CL _a) _{MT}		Lift curve slope interplation table at M _T	24
26	DJ	ارة	-		35
27	C1	c,	4.1.3.4	Aspect ratio classification	24
28	ARATIØ	A(128)	4.1.3.4		24
29	BU4	(1+C ₁)× cos Λ (1+C ₁)A;×	4.1.3.4		24
		cos A _o			
30	CLMAX6	(C _{Lmax}) M=.6	4.1.3.4		24
31	ACLBA5	(a _{CLmax}) Base	4.1.3.4	Figure 4.1.3.4-25a	24

VARIABLE DEFINITION OF DATA BLOCK "TRA"

LOCATION	VARIABLE	ENGINEERING	DATCOM	COMMENTS / DEFINITIONS	OVERLA
	NAME	SYMBOL	REFERENCE	COMMENTS/ DEFINITIONS	OVERLA
32	DACMA6	(Δα _{CLmax}) M=.6	4.1.3.4	Figure 4.1.3.4-21b	24
33	C3	c ₃	4.1.3.4	Figure 4.1.3.4-26b	24
34	DALCM	ΔαCLmax	4.1.3.4	Figure 4.1.3.4-21b	24
35	DCLMAX	Luc Lmax	4.1.3.4	Figure 4.1.3.4-22	24
36	ALCLM6	(aclmax M=.6	4.1.3.4		24
37	ALCLMT	αC ^r max	4.1.3.4	Wing angle of attack for max lift	24
38	CLMAXT	CLmax	4.1.3.4	Wing max lift coefficient	24
39	RLCØFF	R ₂			24
40	RNN	R _N			24
41	RL	·L		1	24
42	CF	c _f		Skin friction coefficient	24
43-57	CDW2	CDWM			24
58-66		UNUSED			
67	CDW	CDM			24
68	CDF	CDf			24
69	DQØQ	Δq,'ι'ο			35
70	CLAW6	[(c _{Lα}) _W]			24
71	CLAWB	CLaM(B)		·	25
72 73	CLABW CDOWB	(CDO) MB Crab(M)		·	25
74	CMOWB	(CMC)UB			
75 76	CDOWBT CDBB	(CDO) WBT			35 24
77	CDWB	D _{DW}			24
78		(CDO) Body		Body zero lift drag coefficient	24
79	CDFB	(CDf) Body		Friction drag coefficient	24
80	CDPB	(CDP) Body	ľ	Pressure drag coefficient	24
81	CDBFIG	CDb/(db/d)2		•	24
82		dCN/dM)	1		
		N L.			24

VARIABLE DEFINITION OF DATA BLOCK "TRA"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERI AY
83-88	XMV				25
89-94	XACV	x _{ac} /c			25
95	XACW	$x_{ac}^{-1}/(c/4)$			25
96	DELXAC	ΔX _{ac} /¢	4.4.2	Figure 4.4.2-28	25
97-104	XACP				25
105	XAC				25
106	XACBW	(x_{ac}/\overline{C}_r)			25
107	XACWB	(X_{ac}/\overline{C}_r) $W(B)$			25
108		UNUSED			
					-

TRANSONIC LONGITUDINAL AND LATERAL-DIRECTIONAL STABILITY VARIABLES OF HORIZONTAL TAIL

DEFINITION OF DATA BLOCK "TRAH"

	V	ARIABLE DEI	- INTITUM OF	DATA BLOCK "TRAH"	
LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1	CLA14	(CLa) M=1.4	4.1.3.2	Lift curve slope at M=1.4	24
2		UNUSED		• ,	
3	К	k			24
4	MACH	м		Mach number	24
5	MFBØ	(M _{fb}) _{Λ=0}	4.1.3.2	Zero sweep force break Mach No. Figure 4.1.3.2-53a	24
6	MFB	М _{fb}	4.1.3.2	Force break Mach No., Figure 4.1.3.2-53b	24
7	AØC	a/c	4.1.3.2		.24
8	CFBCT	CLafb/	4.1.3.2	Figure 4.1.3.2-54a	24 -
•	BETAFB	(CLafb)T		Force break mach parameter	24
9	CLAFBT	β _{FB}	4.1.3.2	Total wing (CLafh)	24
10	CLAFBI	(C _{Lafb})T	7.1.7.5	- fb	.
11	CLAFB	l	4.1.3.2	Lift curve slope at M _{fb}	24
12	CLAFB	$(c_{L_{\alpha}})_{fb}$	4.1.3.2	Lift curve slope at Ma=Mfb+.07	24
13 14	BØC	(C _{Lα}) _a b/c	4.1.3.2	a 15	24
	CLAB		4.1.3.2	Lift curve slope at Mb=Mfb+.14	24
15 16 - 20	MT	(C _{Lα}) _b		Mach interpolation in transonic	24
16-25	CLAMT	M _T (C _{Lα}) _{MT}	·	Lift curve slope interpolation table at M _T	24
26	•	UNUSED	1	'	
27	l ci	c,	4.1.3.4	Aspect ratio classification	24
28	ARATIØ	(128) (1+C ₁) ×	4.1.3.4		24
29	BU4	cos ^ (1+C ₁)A*×	4.1.3.4		24
		cos A _o			
30	CLMAX6	(C _{Lmax}) M=.6	4.1.3.4		24
31	ACLBA5	(a _{CLmax})	4.1.3.4	Figure 4.1.3.4-25a	24

VARIABLE DEFINITION OF DATA BLOCK "TRAH"

Name	LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32	DACMA6	(Δα _{CLmax}) M=.6	4.1.3.4	Figure 4.1.3.4-21b	24
34	33	с3	C ₃	4.1.3.4	Figure 4.1.3.4-26b	24
36	34	DALCM	Δας	4.1.3.4	Figure 4.1.3.4-21b	24
36	35	DCLMAX	12C max	4.1.3.4	Figure 4.1.3.4-22	24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	36	ALCLM6	(ac _{Lmax})	4.1.3.4		24
39	37	ALCLMT	1	4.1.3.4		24
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	38	CLMAXT	CLmax	4.1.3.4	H.T. max lift coefficient	24
40	39	RLCØFF				24
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	RNN				24
43-57 CDW2 CDWM CDWM CDW CDW CDW CDW CDW CDW CDW CDW CDW CDW CDW CDW CDW CDW CDW CDW CDWB	41	RL	• •			24
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		CF	C _f		Skin friction coefficient	24
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	CDW2				24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		_	1 1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 ' 1		i " I			2.4
70 CLAW6 $\begin{bmatrix} (CL_{\alpha})_{W} \end{bmatrix}$ $M=.6$ 71 CLAWB $\begin{bmatrix} CL_{\alpha W}(B) \\ CL_{\alpha W}(B) \end{bmatrix}$ 72 CLABW $\begin{bmatrix} CL_{\alpha B}(W) \\ (CD_{\alpha})_{WB} \end{bmatrix}$ 73 CDOWB $\begin{bmatrix} CD_{\alpha} \\ CD_{\alpha} \end{bmatrix}$ 74 CMOWB $\begin{bmatrix} CM_{\alpha} \\ CD_{\beta} \end{bmatrix}$ 75 CDBB $\begin{bmatrix} CD_{\beta} \\ CD_{\beta} \end{bmatrix}$ 77 CDWB $\begin{bmatrix} DD_{W} \\ CD_{\alpha} \end{bmatrix}$ 78 CDØB $\begin{bmatrix} CD_{\alpha} \\ CD_{\beta} \end{bmatrix}$ 79 CDFB $\begin{bmatrix} CD_{\beta} \\ CD_{\beta} \end{bmatrix}$ 80 CDPB $\begin{bmatrix} CD_{\beta} \\ CD_{\beta} \end{bmatrix}$ 80 CDPB $\begin{bmatrix} CD_{\beta} \\ CD_{\beta} \end{bmatrix}$ 80 Pressure drag coefficient 24 84) i	_				24
71 CLAWB $C_{Law}(B)$ 72 CLABW $C_{Lag}(w)$ 73 CDOWB $(C_{D_0})_{wB}$ 74 CMOWB $(C_{M_0})_{wB}$ 75 CDBB C_{D_b} 77 CDWB D_{D_w} 78 CDØB $(C_{D_0})_{Body}$ 79 CDFB $(C_{D_f})_{Body}$ 80 CDPB $(C_{D_p})_{Body}$ 70 Pressure drag coefficient 24	} ` }	· ·	5 .		·	35
72 CLABW CDOWB $(CD_O)_{WB}$ CMOWB $(CM_O)_{WB}$ UNUSED CD_D Body $(CD_D)_{Body}$ Pressure drag coefficient 24 CDPB $(CD_D)_{Body}$ Pressure drag coefficient 24	70	CLAW6	M=.6		·	24
72 CLABW CDOWB $CDOWB$	71	CLAWB	CLaW(B)		·	25
74 $CMOWB$ $(CM_O)_{WB}$ $UNUSED$ $CDBB$ $CDBB$ CDB			Crab(1)			1 1
75 76 $CDBB$ $CDBB$ $CDBB$ CDB C	74	CMOWB	(CMC) WB			
77 CDWB D_{D_W} 24 78 CDØB $(C_{DO})_{Body}$ Body zero lift drag coefficient 24 79 CDFB $(C_{Df})_{Body}$ Friction drag coefficient 24 80 CDPB $(C_{DP})_{Body}$ Pressure drag coefficient 24	75	CORR	TINUSED I		·	,
78 $CDBB = \begin{pmatrix} (C_{DO})_{Body} \\ (C_{Df})_{Body} \\ CDPB = \begin{pmatrix} (C_{Df})_{Body} \\ (C_{Df})_{Body} \\ (C_{Dp})_{Body} \end{pmatrix}$ 80 Body zero lift drag coefficient 24 Pressure drag coefficient 24	!		DP DP			1
79 CDFB $(CD_f)_{Body}$ Friction drag coefficient 24 80 CDPB $(CD_p)_{Body}$ Pressure drag coefficient 24	. 1	1	(co.)		Body zeró lift drag coefficient	
80 CDPB $(C_{DP})_{Body}$ Pressure drag coefficient 24	1		(Co.)		•	1
81 CDBFIG Co. / (d. /d) 2	1	ì	(Cnn)			1
		,	Cn. / (d. /d)	2		
82 DCNA $(dC_N/dM)_1$.	1		(qc"\qw)'			24

VARIABLE DEFINITION OF DATA BLOCK "TRAH"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
83-88	XMV				25
89-94	XACV	x/c:			25
95	XACW	$\begin{array}{c} x_{ac}/c \stackrel{*}{\underline{r}} \\ x_{ac}/(c/4) \end{array}$			25
96	DELXAC	ΔX _{ac} /C#	4.4.2	Figure 4.4.2-28	25
97-104	XACP			·	25
105	XAC		·		25
106	XACBW	(x_{ac}/\overline{C}_r) B(W)			25
107	XACWB	(x_{ac}/\overline{C}_r) W(B)			25
108	CDØH	CDOH(W)		·	35
				·	
			,		

SUBSONIC TRIM VARIABLES FOR CONTROL DEVICE ON WING OR TAIL VARIABLE DEFINITION OF DATA BLOCK "TRM"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1-20	ALPHA	۵٦−٤٦			38
21	NTRIM				38
22	TSTØP			=1, for lack of control moment =2, for α>α _{CLmax}	38
					·
			,	•	
				:	

SUBSONIC TRIM VARIABLES FOR AN ALL MOVABLE HORIZONTAL STABILIZER VARIABLE DEFINITION OF DATA BLOCK "TRM2"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLA
1-20 21 22	CLT NTRIM TSTØP	(C _{LTB}) _T		=1, for lack of control moment =2, for $\alpha > \alpha C_{\text{Lmax}}$	38 38 38
			·		
	÷				
22 44					

TRANSONIC HIGH LIFT AND CONTROL VARIABLES

VARIABLE DEFINITION OF DATA BLOCK "TRN"

LOCATION	VARIABLE NA:AE	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS / DEFINITIONS	OVERLAY
1	ENCEPE	η_{CP}			40
2	YH	YH .			40
3	ETAQRS	η(q _H /q)		Tail effectiveness for body mounted horizontal tails	40
4	CLDELC	c _l		Rolling effectiveness of horizontal tail M < 1	40
5	CLDALC	c _l		Rolling effectiveness of horizontal tail, $M \ge 1$	40
6	КВН		·	•	
7	кнв				
			,		
				·	
				·	
			·		
				·	

TWIN VERTICAL TAIL INPUTS VARIABLE DEFINITION OF DATA BLOCK " TV"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1	BVP	b' _V		Input via NAMELIST TVTPAN	
2	BV	ρΛ			
3	BDV	2r1			
4	вн	ЬН		·	
5	sv	s _v			
6	VPHITE	ø _{TE}			
7	VI.P	^L P		· •	
8	ZP	l _P Z _P		*	
			•		
				·	
	,				
		,			
·					
	,			1	

VENTRAL FIN INPUT VARIABLES VARIABLE DEFINITION OF DATA BLOCK "VFI"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1	CHRDTP	c _t		Input via NAMELIST VFPLNF	
2	SSPNØP	b */2			
3	SSPNE	b*/2			
4	SSPN	b/2	·		
5	CHRDBP	c ^P			
6	CHRDR	c _r			
7	SAVSI	(_A x/c) ₁			
8	SAVSØ	(VX/C)			
9	CHSTAT	X/C			
10		UNUSED			
11	TWISTA	θ			
12	SSPNDD	(b/2) ₇₀	·		
13	DHDAD	7		i ·	
14	DHDADØ	7			
. 15	TYPE				
16	TØVC	t/c .		Input via NAMELIST VFSCHR	
17	DELTAY	ΔΥ			
18	XØVC	(X/C) _{max}			
19	CLI	C ₂			
20	ALPHAI	α			
21-40	CLALPA	Cla			
41-60	CLMAX	C _{Lmax}			
61	CMØ	mø .	,		
62	LERI	(R _{LE})	1		
63	LERØ	(R _{LE})ø			
64	CAMBER				
65	TØVCØ	(t/c)g			
66	XØVCØ	(x/c) max o	,		
67	CMØT	'`mo'ø			
68	CLMAXL	(C Lmax) M=0			
69	CLAMØ	(C ₂) _{M=0}			

VARIABLE DEFINITION OF DATA BLOCK "VFIN"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM PEFERENCE	COMMENTS/DEFINITIONS	OVER: AY
70 71 72-91 92 93-94 95-114 115-134	TCEFF KSHARP XAC ARCL SVWB SVB SVB	(t/c) _{Eff} K X _{ac} UNUSED S _V (WB) S _V (B) S _V (HB)		Input via NAMELIST VFSCHR	
				•	

VERTICAL TAIL INPUT VARIABLES

VARIABLE DEFINITION OF DATA BLOCK "VTIN"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1	CHRDTP	C,		Input via NAMELIST VTPLNF	
2	SSPNØ?	bo*/2		•	1
3	SSPNE	b*/2		·	
4	SSPN	b/2		·	
5	CHRDBP	C _D			1
6	CHRDR	c _r			
7	SAVSI	(_A x/c) ₁			
8	SAVSØ	(\(\lambda/c\)\(\rapprox\)			
9	CHSTAT	X/C			!
10		UNUSED			
11	TWISTA	θ		·	
12	SSPNDD	(b/2)7 ₀			
13	DHEADI	7			
14	DHDAD9	7		1	
15	TYPE			· V	
16"	TUVC	t/c		Input via MAMELIST VTSCHR	
. 17	DELTAY	ΔΥ			
18	XØVC	(X/C) _{max}			
19	CLI	C _L			i .
20	ALPHAI	α			1
21-40	CLALPA	Cea		i i	1
41-60	CLMAX	C ₂ max		[1
61	CMØ	C _{mg}			1
62	LERI	(RLE)			1
63	LERØ	(R _{LE})			1
64	CAMBER	ļ			j
65	TØVCØ	(t/c) _g			
66	xøvcø	(x/c) xem	{ 		
67	CMØT	"Cmo'E			
68	CLMAXL	(C _{emax}) _{M=0}		I	
69	CLAMØ	(C _{La}) _{M=0}			

VARIABLE DEFINITION OF DATA BLOCK "VTIN"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
70 71 72-91 92	TCEFF KSHARP XAC ARCL	(t/c) _{Eff} K X _{ac}		Input via NAMELIST VTSCHR	
93-94 9 5- 114 115-134 135-154	CWV2 BV2 BHV2	UNUSED SV(WB) SV(B) SV(HB)		Y Y	
		·			
·					

SUBSONIC WING-BODY VARIABLES VARIABLE DEFINITION OF DATA BLOCK "MB"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVER: AY
1		UNUSED			
2		K _W (B)		Interference factor of wing on body	7
3		K _{B(W)}		interference factor of body on wing	7
4		(c _{La}) _{W(B)}	,	Lift curve slope of wing in presence of body	7
5		(CLa) B(W)		Lift curve slope of body in presence of wing	7
6		(c ₀₀) _{WB}	•	Wing-body zero-lift drag	7
7		k _{W(B)}			7
8		k _B (w)			7
9		(CL;)W(B)			7
10		(CL!) B(N)			7
11		(CLI) WB			7
12		(Xac/c) WB			7
13		(xac/c) B(W	,	,	7,25
14		(X / cre) B			7,25
15		(X'cre)			7,25
16		CmowB	4.3.2.1	Wing-body zero-lift pitching mom	ent 7
17		(c _{oo}) _{ws}		Wing-body zero lift drag coefficient	7
18		R _{VB}			7
19		RLB			7
20		(CL _{max}) _{WB}		Wing-body maximum lift	7
21		(αC _{Lmax}) WB		Wing-body angle of attack of max lift	7
22	ł	\		wB (20) #B (44)	7
23				WB(21)	7
24-39		UNUSED			

SUBSONIC WING-BODY-TAIL PARAMETERS

VARIABLE DEFINITION OF DATA BLOCK "WBT"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERI	AY
1		K _H (B)		Interference factor for H.T. in presence of body	10	
2		K _B (H)		Interference factor for body in presence of H.T.	10	,
3		(C ^{La})H(B)		H.T. lift curve slope in presence of body	10	
4	·	(CLa) B(H)		Body lift curve slope in presence of H.T.	10	
5	[UNUSED			1	1
6-25	ľ	(c _{LH})		·	10	ĺ
26-45	·	(ACLT)		Eqn. 4.5.1.2-b, third term	10	
46-65		(^C /2πανε)_		Non-dimensional vortex strength of tail	10	
66		(CDO) VTA	İ	VERTICAL & VENTRAL CD	10	1
67		(CDO) WBHV		-0	10	1
68-87		I VB (H)	·	Interference factor for body on H.T.	10	
88-107		(C _{mc}) _T			10	I
108	•	ry			10	1
109		(XH) =/4			10	ł
110-129		(CLTB)		Lift of tail in presence of body	10	
130-149		[cra (H)]		Effect of body vortices on tail	10	
150	AKHBI				10	
151	AKBHI				10	
152-155		UNUSED		1		
	·					ı
-			l	1		
-		1	ł			-
1			f	İ		
	·		1	i		l
l	Ī	-				
- 1	ł		Ì			

WING INPUT VARIABLES

VARIABLE DEFINITION OF DATA BLOCK "WGIN"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY
1	CHRDTP	C _t		Input via NAMELIST WGPLNF	
2	SSPNØP	bo*/2			
3	SSPNE	b∻/2			
4	SSPN	b/2			
5	CHRDBP	С			
6	CHRDR	C _r			
7	SAVSI	(VX/C) I			
8	SAVSØ	(vx/c) a		. }]
9	CHSTAT	X/C			
10		UNUSED			
11	TWISTA	θ			
12	SSPNDD	(b/2) ₇₀			
13	DHDADI	7			
14	DHDADØ	7 0			
15	TYPE			Y	
16	тøvс	t/c		Input via NAMELIST WGSCHR	
17	DELTAY	ΔΥ	!		
18	xøvc	(X/C) _{max}		· I	
19	CLI	C ₂		}	
20	ALPHAI	α,			
21-40	CLALPA	C _{La}			
41-60	CLMAX	C _L max			
61	CMØ	C _{mø}			
62	LERI	(R _{LE})			
63	LERØ	(KLE)Ø			
64	CAMBER			ļ	
65	TØVCØ	(t/c) _ø			
66	XØVCØ	(x/c) _{max} o			
67	CHØT	(c _{mo})			
68	CLIMXL	(C _{½max})M=0		į.	
69	CLAMØ	$(c_{x_{\alpha}})_{M=0}$		↑ · · · ↑	

VARIABLE DEFINITION OF DATA BLOCK "WGIN"

LOCATION	VARIABLE NAME	ENGINEERING SYMBOL	DATCOM REFERENCE	COMMENTS/DEFINITIONS	OVERLAY	
70 71	TCEFF KSHARP	(t/c) _{Eff}		Input via NAMELIST WGSCHR		
72-91 92	XAC ARCL	Xac				
93	YCH	(Y/C) _{max}				
94	CLD	(C _L) Design (Transonic) •			
95-100	SLØPE	δ _h		7		
101	DWASH					
·						
	•					
		·				
		·				
		·				
	;					
1						

APPENDIX D

USER KIT

This section contains printed coding sheets of all inputs for Digital Datcom. These sheets can either be used as a quick check of inputs, or copied and used directly by users.

No attempt has been made to so gle out those variables which must be defined (or, conversely, not input) because of the enormous number of variable input combinations available. It is the responsibility of the user to assure that his data deck follows the description and limitations described in this user's manual, the method implementation manual (Volume II) and the Datcom.

In using these sheets, the limitations and requirements of namelist inputs (discussed in Appendix A) and of each namelist/control card (Section 3) should be observed. Through each variable is assigned a separate line on these coding sheets, they are not required to appear on separate punched cards. They may be written as multiple variables per card, as shown in the example problems, as long as the namelist coding rules given in Appendix A are observed.

GROUP I INPUTS

NUMBER OF MACH NUMBERS OR VELOCITIES TO BE RUN FREESTREAM MACH NUMBERS (NMACH VALUES)

FREESTREAM VELOCITIES (NMACH VALUES)

NUMBER OF ANGLES OF ATTACK TO BE RUN ANGLES OF ATTACK (NALPHA VALUES)

REYNOLDS NUMBER PER UNIT LENGTH (NMACH VALUES)

NUMBER OF ALTITUDES TO BE RUN GEOMETRIC ALTITUDES (NALT VALUES)

FREESTREAM STATIC PRESSURE (NALT VALUES)

FREESTREAM STATIC TEMPERATURE (NALT VALUES)

.TRUE. FOR HYPERSONIC ANALYSIS FOR M ≥ 1.4

UPPER MACH LIMIT FOR SUBSONIC ANALYSIS

LOWER MACH LIMIT FOR SUPERSONIC ANALYSIS

DRAG DUE TO LIFT TRANSITION FLAG

VEHICLF WEIGHT

FLIGHT PATH ANGLE

LOOP CONTROL: (1) VARY h & M, (2) VARY M, (3) VARY h

(FOR LOOP = 1, NALT MUST EQUAL NMACH)

EQUIVALENT SAND ROUGHNESS OF SURFACE REFERENCE AREA LONGITUDINAL REFERENCE LENGTH LATERAL REFERENCE LENGTH

A STATE OF THE PROPERTY OF THE PARTY OF

112 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
\$ FLTCON
NMACH=
MACH(1)=
VINF(1)=
NA LPHA=
ALSCHD(1)=
RNNUB(1)=
NALTE
the state of the s
PINF(1)=
and the state of t
TINF(1)=
HYPERS=
STMACH=
T.SMACH=
TR=
WT=
GAMMA=
LOOP=
\$.END
2007 1015
\$ØPTINS RØUGFC=
SREF=
CBARR=
BLREF=
\$END

31-40

NOTES: Leave Unused Columns Blank

All inputs require decimal point, either -X.XXX

Refer to users manual (Volume I) for complete variables.

Column 1 must be blank. See Appendix B of Volucoding rules.

41-50	51-60	61-70	71-80
012345678901	23456789	61-70 9.0.1.2.3.4.5.6.7.8.9	71-80 0 1 2 3 4 5 6 7 8 9 0
	4.1 4.4 4.4 · ·		
			
	 		
}			
	<u> </u>		
			
		 	
_			·
		· <u></u>	<u> </u>
		المستعد للمالية الرام والاستعاد	. <u> </u>
		 	
	 		
		 	
			
		<u> </u>	
			أحيصينين
			أحال ويواني والمراجع والمراجع
			
		 	
	 		
			
	 	 	
·			
	<u> </u>	,	
			إحسم حمس
			<u></u>

LXXX or -X.XXE-YY.

lete description of all

Volume I for namelist

2

GROUP II INPUTS

LONGITUDINAL C.G. LOCATION (MRC)
VERTICAL C.G. LOCATION
LONGITUDINAL LOCATION OF THEORETICAL WING APEX
VERTICAL LOCATION OF THEORETICAL WING APEX
WING ROOT INCIDENCE
LONGITUDINAL LOCATION OF THEORETICAL H.T. APEX
VERTICAL LOCATION OF THEORETICAL H.T. APEX
H.T. ROOT INCIDENCE
LONGITUDINAL LOCATION OF THEORETICAL V.T. APEX
VERTICAL LOCATION OF THEORETICAL V.T. APEX
VERTICAL LOCATION OF THEORETICAL V.T. APEX
VERTICAL LOCATION OF THEORETICAL V.T. APEX
VERTICAL LOCATION OF THEORETICAL V.F. APEX
SCALE FACTOR
TRUE.FOR V.T. ABOVE REF. PLANE
LONGITUDINAL LOCATION OF H.T. HINGE AXIS

NUMBER OF LONGITUDINAL STATIONS
LONGITUDINAL DISTANCE OF EACH STATION (NX VALUES)

CRGSS-SECTIONAL AREA AT EACH STATION (NX VALUES)

LENGTH OF PERIPHERY AT EACH STATION (NX VALUES)

PLANFORM HALF-WIDTH AT EACH STATION (NX VALUES)

UPPER BODY SURFACE Z COORDINATES (NX VALUES)

LONER BODY SURFACE Z COORDINATES (NX VALUES)

MOSE TYPE: (1) CONICAL (2)OGIVE
TAIL TYPE: (1) CONICAL (2)OGIVE
BODY NOSE LENGTH
BODY CYCLINDRICAL SECTION LENGTH
NOSE BLUNTNESS DIAMETER
MD CALCULATION TYPE
NETHOD TYPE: (1) EXISTING (2) JOERGENSON

1-10	11-20	21-30 3
11213141516171819101	112 3 4 5 6 7 8 9 0	INSTRUCTION OF STREET
\$SYNTHS XCG=		**************************************
ZCG=		
XW=		
Z.W=		
ALIW=		
XH=		
ZH=		
ALIH=		
XV=		
XVF=		
ZV=		
ZVF=		
SCALE-		
VERTUP-		
HIHAX-		
3570		
\$8.00Y		
NX=	 	
X(1.)=		
S(1)=		
P(1)=		
R(1)=		
Z.U.(].).=	 	
Z.L(1)=	 	
BNOSE =		
STAILE.		
BLN=		
BLA=	A A A A A A A A A A A A A	
D.S=		
ITYPE-		
METHOD=		
SEND		
-	 	
MATRO.		A-7

NOTES: Leave Unused Columns Blank

All imputs require decimal point,

Refer to users manual (Yolume I) variables.

Column 1 must be blank. See Appen coding rules.

31-40 41-50 51-60 61-70 71- 213-4-5-6-7-8-9-01-12-314-5-6-7-8-9-0-1-2-314-5-6-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8	80 6 7 8 9 0
Annual Control of the	
<u>*************************************</u>	
}	
<u> </u>	
<u></u>	
<u> </u>	
<u>#</u>	
, <u>Tarangan kanggan kan kanggan kanggan kanggan kan kanggan kanggan kanggan kanggan kanggan kanggan kanggan kang</u>	إحسب
	
yana di katan katan katan katan katan katan katan katan katan katan katan katan katan katan katan katan katan k	
	~~~~
<u> </u>	

mint, either -X.XXX or -X.XXE-YY.

me I) for complete description of all

Appendix B of Volume I for namelist

2

#### GROUP II INPUTS (cratinued)

TIP CHORD
OUTBOARD PANEL SEMI-SPAN
EXPOSED PANEL SEMI-SPAN
THEORETICAL PANEL SEMI-SPAN
CHORD AT BREAK-POINT
ROOT CHORD
INBOARD PANEL SWEEP ANGLE
OUTBOARD PANEL SWEEP ANGLE
REFERENCE CHORD STATION FOR SWEEP ANGLES INPUT
TWIST ANGLE
OUTBOARD PANEL SEMI-SPAN WITH DIHEDRAL
INBOARD PANEL SEMI-SPAN WITH DIHEDRAL
INBOARD PANEL DIHEDRAL ANGLE
OUTBOARD PANEL DIHEDRAL ANGLE
OUTBOARD PANEL DIHEDRAL ANGLE
PLANFORM TYPE: (1) STRAIGHT (2) DOUBLE DELTA (3) CRANKED

TIP CHORD
OUTBOARD PANEL SEMI-SPAN
EXPOSED PANEL SEMI-SPAN
THEORETICAL PANEL SEMI-SPAN
CHORD AT BREAK-POINT
ROOT CHORD
IKBOARD PANEL SWEEP ANGLE
OUTBOARD PANEL SWEEP ANGLE
REFERENCE CHORD STATION FOR SWEEP ANGLES INPUT
TWIST ANGLE
OUTBOARD PANEL SEMI-SPAN WITH DIHEDRAL
INBOARD PANEL SEMI-SPAN WITH DIHEDRAL
INBOARD PANEL DIHEDRAL ANGLE
OJTBOARD PANEL DIHEDRAL ANGLE
PLANFORM TUPE: (1) STRAIGHT (2) DOUBLE DELTA (3) CRANKED
FUSELAGE AREA BETWEEN MACH LINES

#### EXTENDED FUSELAGE AREA BETWEEN MACH LINES

LONGITUDINAL DISTANCE FROM C.G. TO CENTROID OF FUSELAGE AREA BETWEEN MACH LINES

1-10	11	-20	21 - 30		31-40
1151919191919	0 1 2 3 4	567690	123456	7 8 9 0 1	2 3 4 5 6 7 8
SWGPLNF					
CHRDTP		_			
SSPNOP=					<del>-                                    </del>
SSPN=					
CHRDUP=			<del></del>	-	
CHRDR=		-	<del></del>		-
SAVSI=		***			_
SAVSØ=	<del></del>	-		-	
CHSTATE	<del></del>				
TWISTA=			<del></del>	***	
SSPNDD=					
DHDAD I =					
DHDADO=					
TYFE=					<del></del>
SEND					<del></del>
		<del></del>	<del></del>		<del> </del>
SHIPLNE					ر موسال الركار
CHRDTP=		<del></del>		<del></del>	<del></del>
5 \$ P:10 P=		<del></del>		<del></del>	<del></del>
SSPME ==	<del></del>				
SSPN=	<del> </del>			<del></del>	
CHRDSP=					******
CHRDR=				<del></del>	<del></del>
SAVS !=					
SAVSØ=					
CHSTAT=					
TWISTA=					
SSPNDD=					
DHDAD I =					
DHDADØ=					
TYPE=			<u></u>		
SHB(1)=		سسس	<del></del>		
S.E.X.T.(1)=	<u> </u>		<del></del>		
1011111			<del></del>		
RLPH(1)=					
\$ENO	ميعتميمين		<del></del>	-	
			<del> </del>	-	
<del></del>					
<u>سميم شيم مسموما</u> مصحوم		<del></del>		<del></del>	
NOTES	: LORVE	unused (	olumns Bla	Λk	i

NOTES: Leave Unused Columns Blank

All inputs require decimal point, either Refer to users manual (Yolume I) for co variables.

Column 1 must be blank. See Appendix 8 coding rules.

1-40	41-50	51-60		61-70	71-80
567850	112345678	90123456	890	61-70 1 2 3 4 5 6 7 8 9 0	1234567890
				1543 575 573 573 573	· · · · · · · · · · · · · · · · · · ·
		<del></del>			
<del></del>			<del></del>		
	<del></del>		<del></del>		
			<u> </u>	<del> </del>	
	_	<del></del>			
		<del> </del>		<del></del>	<del></del>
		<del> </del>			
			<u> </u>		
		<del></del>	<del></del>		
	<del></del>	<del>*************</del>			
V.		<del></del>	<b>X</b>		
		<del></del>			
-					
			<del></del>		
		***			<del></del>
		<del> </del>		<del> </del>	
		<del> </del>			
	<del></del>	<del></del>		<del></del>	
		<del> </del>			
	<del> </del>				
	<del></del>			<del></del>	
					i
		<u> </u>		<del> </del>	
		<u> </u>			
<del></del>		<del></del>		<del></del>	
		<del></del>		<del></del>	
			• • • •		
		<del> </del>		<del> </del>	
					·

either -X.XXX or -X.XXE-YY.
for complete description of all
dix B of Yolume I for namelist

2-

ı

Ϋ.

Between the comment of the second of the second

Ŋ.

92.

#### ERCUP II INPUTS (continued)

TIP CHORD

CUTBCARD PANEL SEMI-SPAN

EXPOSED PANEL SEMI-SPAN

THECRETICAL PANEL SEMI-SPAN

CHORD AT BREAK-POINT

ROOT CHORD

INCOARD PANEL SWEEP ANGLE

CUTBCARD PANEL SWEEP ANGLE

CUTBCARD PANEL SWEEP ANGLE

REFERENCE CHORD STATION FOR SWEEP ANGLES INPUT

PLANFORM TYPE: (1) STRAIGHT (2) DOUBLE DELTA (3) CRANKED

EXPOSED PANEL AREA BETWEEN MACH LINES OF WING

EXPOSED PANEL AREA NOT INFLUENCED BY WING OR H.T.

EXPOSED PANEL AREA BETWEEN MACH LINES OF H.T.

TIP CHCRO

OUTBOARD PANEL SEMI-SPAN
EXPOSED PANEL SEMI-SPAN
THEORETICAL PANEL SEMI-SPAN
CHCRD AT BREAK-POINT
RCOT CHORD
INECARD PANEL SWEEP ANGLE
CUTDOARD PANEL SWEEP ANGLE
CUTDOARD PANEL SWEEP ANGLE
REFERENCE CHORD STATION FOR SWEEP ANGLE INPUT
PLANFORM TYPE: (1) STRAIGHT (2) DOUBLE DELTA (3) CRANKED
EXPOSED PANEL AREA BETWEEN MACH LINES OF WING

EXPOSED PANEL AREA NOT INFLUENCED BY WING OR H.T.

EXPOSED PANEL AREA BETWEEN MACH LINES OF H.T.

12.3.5.3.6.1.6.3.6.1.6.3.6.1.6.3.6.1.6.3.6.1.6.3.6.1.6.3.6.1.6.3.6.1.6.1
SVTPLNF
CHRUTP=
SSPI OP=
SSPHE=
SSPN=
CHROBP=
CHRDR=
SAVSI=
SAVSØ=
CHSTAT=
TYPE=
SVW8(1)=
5 v B ( 1 ) =
SVHB(1)=
<u> </u>
SVFPLNF
SVFPLNF
CHRDTP=
SSPNOP=
SSPNE=
55?N=
CHRD8 F=
CHRDR=
SAVS i =
SAVSQ=
CHSTAT=
TYPE=
SVWB(1 FF
SVB(1)=
رورد «مادان <u>و در در در در در در در در در در در در در </u>
SYHB(1)=
\$.END

MOTES: Leave Unused Columns Blank

All imputs require decimal point

Refer to users manual (Yolume I) variables.

Column I must be blank. See Appe coding rules.

	31-40	41-50	51-60	61-70	71-60
890	1234567890	41-50 1 2 3 4 5 6 7 8 9 0	1234567890	1234567850	1234567890
	***************************************		<del></del>		
		<del></del>			
-		<del></del>	<del></del>		
	<del></del>	<del> </del>	<del></del>		
	<del></del>	<del> </del>	<del></del>	<del></del>	
	<del></del>	<del></del>		<del> </del>	
	<del> </del>	<del> </del>			
	<del> </del>	<del></del>			
			<del></del>		<del></del>
	<del> </del>	<del></del>	<del></del>		<del></del>
	<del></del>	<del> </del>		<del></del>	
		<del></del>		<del></del>	
		<del></del>	<del></del>	<del></del>	
		· <del></del>		<del></del>	
		<del></del>			
	<u></u>				
			- <u></u>		
	<del></del>	<del></del>			
		<del></del>			
	<del> </del>		<del></del>		
ححم					
					لسيسيي

fmal point, either -X.XXX or -X.XXE-YY.

(Volume I) for complete description of all

. See Appendix B of Volume I for namelist

2



MAXIMUM THICKNESS (INBOARD PANEL)
DIFFERENCE IN ORDINATES AT 6.00% AND 0.15% CHORD
CHORD LOCATION AT MAXIMUM THICKNESS (INBOARD PANEL)
DESIGN LIFT COEFFICIENT
ANGLE OF ATTACK AT DESIGN LIFT COEFFICIENT
SECTION LIFT-CURVE-SLOPE (NHACH VALUES)

# SECTION MAXIMUM LIFT COEFFICIENT (NMACH VALUES)

SECTION ZERO LIFT PITCHING MOMENT COEFFICIENT (INBOARD PANEL) LEADING EDGE RADIUS (INBOARD PANEL) LEADING EDGE RADIUS (OUTBOARD PANEL) .TRUE. IF CAMBERED AIRFOIL MAXIMUM THICKNESS (OUTBOARD PANEL)
CHORD LOCATION AT MAXIMUM THICKNESS (OUTBOARD PANEL) SECTION ZERO LIFT PITCHING MOMENT COEFFICIENT (OUTBOARD PANEL) MAXIMUM LEFT COEFFICIENT AT MACH EQUALS ZERO SECTION LIFT CURVE-SLOPE AT MACH EQUALS ZERO PLANFORM EFFECTIVE THICKNESS RATIO SHARP-NOSED AIRFOILS WAVE-DRAG FACTOR SURFACE SLOPE AT 0%, 20%, 40%, 60%, 80%, and 100% CHORD ASPECT RATIO CLASSIFICATION FACTOR SECTION AERODYNAMIC CENTER DATCOM METHOD FOR DOWNWASH: 1, 2 OR 3 MAXIMUM AIRFOIL CAMBER CONICAL CAMBER DESIGN LIFT COEFFICIENT TYPE OF AIRFOIL COORDINATES: (1) COORDINATES (2) MEAN THICK MUMBER OF SECTION INPUT POINTS (50 MAX) ABSCISSAS OF INPUT POINTS (NPTS VALUES) UPPER SURFACE ORDINATES (NPTS VALUES)

LOWER SURFACE ORDINATES (NPTS VALUES)

MEAN LINE ORDINATES (NPTS VALUES)

THICKNESS DISTRIBUTION ORDINATES (NPTS VALUES)

12345678901234567890123456789012345678901234567890
\$WG.S.C.H.R
, røvc =
DELTAY=
XØVC=
Cl!=
ALPHAI=
CLALPA(1)=
CLMAX (1)=
CMØ=
LERI=
LERØ=
CAMBER=
TOVCO=
XØVCØ=
CMOT=
CLMAX L=
CLAMØ=
TCE FF=
KSHARP=
SLOPE(1)=
ARCL=
XAC(1)=
DWASH=
YCM=
CLD=
TYPEIN=
NPTS=
XCORD(1)=0.
YUPPER(1)=0.,
Y L, OWER (1) = 0.,
MEAN(1,)=0
THICK(1)=0.,
\$ END
NOTES: Leave Housed Columns 83

11-20

31-40

1-10

NOTES: Leave Unused Columns Blank

All inputs require decimal point, either -X.X Refer to users manual (Volume I) for complet variables.

Column 1 must be blank. See Appendix B of Yo coding rules.

1-40	41~50	51~60	61-70	71-80
1-40 3 6 7 8 9 0	1234557893	234,567890	12345670.901	71-80 2 3 4 5 6 7 8 9 0
				<del></del>
				أحمصيم
		معاملات والمساور والمساور		
		<del> </del>		
			<del></del>	******
				استستين
				لسيست
			<del></del>	
				<del></del>
			<del></del>	
	-			
			4- <del>دا در اساسهٔ به اساسهٔ در استان دارد به در در</del>	
			<del>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</del>	
-				<del></del>
				_
				المستعمد والمستعمد
-	<u> </u>			
-			<del></del>	
سسبي				
-				

fther -X.XXX or -X.XXE-YY.
pr complete description of all
fx 8 of Yolume I for namelist

MAXIMUM THICKNESS (INBOARD PANEL)
DIFFERENCE IN ORDINATES AT 6.00% AND 0.15% CHORD
CHORD LOCATION AT MAXIMUM THICKNESS (INBOARD PANEL)
DESIGN LIFT COEFFICIENT
ANGLE OF ATTACK AT DESIGN LIFT COEFFICIENT
SECTION LIFT-CURVE-SLOPE (NMACH VALUES)

## SECTION MAXIMUM LIFT COEFFICIENT (NMACH VALUES)

SECTION ZERO LIFT PITCHING MOMENT COEFFICIENT (INBOARD)
LEADING EDGE RADIUS (INBOARD PANEL)
LEADING EDGE RADIUS (OUTBOARD PANEL)
.TRUE. IF CAMBERED AIRFOIL
MAXIMUM THICKNESS (OUTBOARD PANEL)
CHORD LOCATION AT MAXIMUM THICKNESS (OUTBOARD PANEL)
SECTION ZERO LIFT PITCHING MOMENT COEFFICIENT (OUTBOARD)

SECTION LIFT-CURVE-SLOPE AT MACH EQUALS ZERO PLANFORM EFFECTIVE THICKNESS RATIO SHARP-NOSED AIRFOILS WAVE-DRAG FACTOR

ASPECT RATIO CLASSIFICATION FACTOR SECTION AERODYNAMIC CENTER

MAXIMUM AIRFOIL CAMBER
CONICAL CAMBER DESIGN LIFT COEFFICIENT
TYPE OF AIRFOIL COORDINATES: (1) COORDINATES (2) MEAN & THICK
NUMBER OF SECTION INPUT POINTS (50 MAX)
ABSCISSAS OF INPUT POINTS (NPTS VALUES)

UPPER SURFACE ORDINATES (NPTS VALUES)

LOWER SURFACE ORDAINTES (NPTS VALUES)

MEAN LINE ORDINATES (NPTS VALUES)

THICKNESS DISTRIBUTION ORDINATES (NPTS VALUES)

บลงเปลายายเกาะเราะเกาะเกาะเกาะเกาะเกาะเกาะเกาะเกาะเกาะเก
I SHISCHR
10VC=
DELTAY=
XØVC=
DELTAY= XOVC= CLI=
ALPHAI=
CLALPA(1)=
CLMAX(1)=
CMØ=
LERI=
LEROZ
CAMBER=
1QVC0=
X Ø V C Ø =
CMQT=
CLAMO=
TCEFF=
KSHARP=
ARCL=
XAC(1)=
YCM=
CLD*
TYPEIN=
NPTS=
XCORD(1)=0
WILLIAM 1977
YUPPER(1)=0.,
Y.L ØWER ( 1 ) = 0
7. L. W. C. K. (1. ) - 0
MEAN(1)=0.,
MEAN, I. J V
THICK(1)=0
SEND

31-40

1-10

NOTES: Leave Unused Columns Blank ...

All inputs require decimal point, either -X.X Refer to users manual (Yolume I) for complet variables.

Column 1 must be blank. See Appendix B of Yo coding rules.

ale Sale and Sales

18.9.0   2 3 4.5.6.7.8.9.0   2.2.3.4.5.6.7.8.9 0   2.2 3 4.5.6.7.8.9.0   1.2 3 4.5.6.7.8.9.0   1.2 3 4.5.6.7.8.9.0	5 7	41-50	51-60	61-70	71-60
	0.8.9.0	1234567890	1234567890	1 2 3 4 5 6 7 8 9 0	1 2 3 4 5 6 7 8 9 0
		<del></del>	<del></del>		
		<del></del>			
				<del></del>	
				<del></del>	
		<del></del>			<del></del>
				<del> </del>	
	سمست	<u> </u>			
	تعمد		<u> </u>		
		<del> </del>			
	-				<u></u>
					<u> </u>
				<u> </u>	
				<del> </del>	لحجميم
				<del></del>	
				<u> </u>	

er -X.XXX or -X.XXE-YY.

complete description of all

B of Volume I for namelist

HRYIMM THICKNESS (INBOARD PANEL)

CHORD LOCATION AT MAXIMUM THICKNESS (INBOARD PANEL)

SECTION LIFT-CURVE-SLOPE (NMACH VALUES)

LEADING EDGE RADIUS (INBOARD PANEL) LEADING EDGE RADIUS (OUTSOARD PANEL)

MAXIMUM THICKNESS (OUTBOARD PANEL) CHORD LOCATION AT MAXIMUM THICKNESS (OUTBOARD PANEL)

PLANFORM EFFECTIVE THICKNESS RATIO SHARP-MOSED AIRFOILS WAVE-DRAG FACTOR

ASPECT RATTO CLASSIFICATION FACTOR

TYPE OF AIRFOIL COOPDINATES: (1) COORDINATES (2) MEAN & THICK MUMBER OF SECTION INPUT POINTS (50 MAX) ABSCISSAS OF INPUT POINTS (NPTS VALUES)

UPPER SURFACE ORDINATES (NPTS VALUES)

LOWER SURFACE ORDINATES (NPTS VALUES)

MEAN LINE ORD. MATES (MPTS VALUES)

THICKNESS DISTRIBUTION ORDINATES (NPTS VALUES)

Company of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	
MENDIO 1 0 3 0 1 C 3 7 3 0 7 8 9 0 1 Z 3 7 5 7 8 9 0 1 Z 3 7 8	ساخطند
Part SCHR	
1213/013/01/01/23 4/36/74 90 123/01/33/01/23 4/3 \$V I SCH R TOVC =	
1	
XQVC=	
CLALPA(1)=	
to the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th	
######################################	
<del> </del>	
(	
I F P Ora	
<del>randialalalalalana andra andra andra andra andra andra andra andra andra andra andra andra andra andra andra a</del>	
₹ <b>Ø</b> Υ <b>C</b> Ø=	
XØVCØ=	
and the second second second second second second second second second second second second second second second	
YCEFF= RSHARP=	
·	
KSHARF=	
ARCL=	-
Andria 180 (1811) and the Andria Andria Andria Andria Andria Andria Andria Andria Andria Andria Andria Andria	
<del>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</del>	
TYPEIN= NPTS=	
NPTS=	
XCORD(1)=0	_
<del></del>	_
Andreas de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della company	
YUPPER(1)=0	
YLOWER(1)=0.	_
****	
MEAN(1)=0.,	
THICK(1)=0.,	
SIND	-
Tell the same and a second as a second as a second as a second as a second as a second as a second as a second	
	سمخد
COST A AMERICA AND A AND AND AND AND AND AND AND AND	

All inputs require decimel point, either Refer to users manual (Volume I) for cel vertables.

Column 1 must be blank. See Appendix B & coding rules.

31-40	41-30	51-60	61-70	71-80
1 3 6 7 8 9 0	41-30 11-21314-5-6-7-8-9-0	1.2.3.4.5.6.7.8.9.0	1,2,3,4,5,6,7,8,9,0	1,234567890
			<del> </del>	
	<u> </u>			
	<del> </del>			
		<del></del>		
		<del></del>		
		<del></del>		
	<del> </del>			
	<del></del>			····
		<del> </del>		<u> </u>
		<del></del>		
		<del></del>	<del></del>	
·		<del> </del>		
		<del></del>	<del></del>	
		<del></del>		
		<del> </del>		
		<del> </del>		
		**************************************		
		* . * . * . * . * . * . * . * . * . * .		
		<u> </u>		
		**************************************	<del> </del>	
		<del>*************************************</del>	<u> </u>	
		<u> </u>		
		<u> </u>	<del></del>	
		<del> </del>		<u> </u>
		<del> </del>	<del></del>	<u> </u>
		<del></del>	<del></del>	<del></del>
		<del></del>		

either -X.XXX or -X.XXE-YY.

for complete description of all

idix B of Volume I for namelist

MAXIMUM THICKNESS (INBOARD PANEL)	
CHORD LOCATION AT MAXIMUM THICKNESS (INBOARD PANEL)	
	-
SECTION LEFT-CURVE-SLOPE (NMACH VALJES)	
	-
LEADING EDGE RADIUS (INBOARD PANEL) LEADING EDGE RADIUS (OUTBOARD PANEL)	F
·	
MAXIMUM THICKNESS (OUTBOARD PANEL) CHORD LOCATION AT MAXIMUM THICKNESS (OUTBOARD PANEL)	
	F
NAMEON PERFORMS THEORY OF THE	
PLANFORM EFFECTIVE THICKNESS RATIO SHARP-NOSED AIRFOILS WAVE-DRAG FACTOR	
ASPECT RATIO CLASSIFICATION FACTOR	-
,	
TYPE OF AIRFOIL COORDINATES: (1) COORDINATES (2) MEAN & THICK	
NUMBER OF SECTION INPUT POINTS (50 MAX) ABSCISSAS OF INPUT POINTS (NPTS VALUES)	-
UPPER SURFACE ORDINATES (NPTS VALUES)	F
LOWER SURFACE ORDINATES (NPTS VALUES)	
	上
MEAN LINE ORDINATES (NPTS VALUES)	i.

THICKNESS DISTRIBUTION ORDINATES (NPTS VALUES)

1-10 12345678901	11-20	21-30	31-40
3V F S C H R	2:3:4:5,6:718;	9:0:1:2.3:4.5:6.7.6	9 0 1 12 3 5 5 15 1
\$VFSCHR TOVC=	<del></del>	<del></del>	
XQ_C=			
		<del> </del>	
CLALPA(1)	والمعاجبين		<u></u>
<u> </u>		<del> </del>	*****
	<del></del> -	<del></del>	<del></del>
LERI=			
LERØ=	* . * . * . * . * . * . * . * . * . * .	<del> </del>	
TOVC -		<del> </del>	
1 Φ ∨ C ψ = X Φ ∨ C Φ =	<del></del>	** * * * * * * * * * * * * * * * * * * *	
	*** * * * * * * * * * * * * * * * * *	<del></del>	
***			
TCEFF=			
KSHARP=	<del></del>		
ARCL=	<del> </del>	<del> </del>	
.–ಇಡಿಟ್ಒ್ಲ		<del></del>	<del></del>
	<del></del>	<del>* * * * * * * * * * * * * * * * * * * </del>	
TYPEIN=		<del></del>	
NPTS= XCORD(1)=		<del> </del>	
	<u> </u>	· · · · · · · · · · · · · · · · · · ·	<del></del>
YUPPER(1)	=.0		
YLOWER(1)	=0.,		
·			
MEAN(1)=0	<u></u>	· · · · · · · · · · · · · · · · · · ·	<del></del>
THICK(1)=	0.		****
			<del></del>
\$ END			<del></del>

NOTES: Leave Unused Columns Blank

All inputs require decimal point, either Refer to users manual (Volume I) for co variables.

Column 1 must be blank. See Appendix B coding rules.

5 7	41-50	51-60	61-70	71-80
7 8 9 0	123456789	51-60 2.1[2[3[4]5[6]7]8[9[0	1234567890	1234567890
			<del></del>	
	<del> </del>		<del></del>	
		<del> </del>	<del> </del>	
				<del></del>
				لسسبسسا
			<del></del>	
				ليستسيب
,				
	<del></del>			
	<del></del>	<del> </del>	<del></del>	
	<del></del>		<del></del>	
	<del> </del>	<del></del>	<del></del>	
			<del></del>	<del></del>
				<del></del>
			<del></del>	
	<u> </u>			
			<u> </u>	
			<u> </u>	
				لمحمد محمد
				لتستييب
<del></del>				
	<u> </u>			
		<del></del>		
			<del> </del>	
			<del> </del>	
-		<del></del>	<del></del>	* * * * * * * * * * * * * * * * * * *
			<del></del>	
			<del></del>	
		<del> </del>	<del></del>	<del></del>
	<u> </u>			

her -X.XXX or -X.XXE-YY.

complete description of all

8 of Volume I for namelist

MACH SEQUENCE IN COLUMNS 7 AND 8 BODY Cm VS. BOOY CD YS. a 800Y CL VS. . BODY CITY VS. . WINE CL. VS.a MINE CITY VS. . MING CD VS. . WING CL YS. a WING CH VS. . H.T. CL VS. . M.T. CITE VS. . M.T. CD YS. a M.T. C. VS. a M.T. Cm VS. . VERTICAL TAIL CD WING-BODY C, VS.º a HING-BODY C WING-BOOY CITE VS. e WING-BODY CD YS. a WING-BODY CL VS. a

1-10	11-20	21-30	31-40
1234567890	1234567890	1234567890	1.23.4567.890
SEXPR			
CLAB(1)-	<del></del>	<u> </u>	
			<del> </del>
CMAB(1)-	<del> </del>	<del> </del>	
COB(1)-	<del></del>	سسسس	
		<del></del>	
CLB(1)=	<del></del>		<del></del>
	<del></del> -	<del></del>	
CM8 (1)=	* * * * * * * * * * * * *		
CLAW(1)=			
· · · · · · · · · · · · · · · · · · ·			
CMAW(1),-			
CDW(1)=	<del>* * * * * * * * * * * * * * * * * * * </del>	<del></del>	<del> </del>
			<del></del>
CLW(1)-	****	<del></del>	<del> </del>
	<del>*************************************</del>	<del></del>	
CMW(1)-			* * * * * * * * * * * * * * * * * * * *
			******
CLAH(1)-			
	<del> </del>		****
CMAH(1)=	<del> </del>		
CDH(1)=	<del> </del>		
CONTIN	<del></del>	<del> </del>	<del></del>
CLH(1)-	<del></del>	<del></del>	<del></del>
	<del></del>	****	<del></del>
CMH (1)=			<del></del>
CDV-	<u> </u>		
CLAWB(1)-			
CMAWB (1)-	<del></del>	<del></del>	
	<del></del>		<del></del>
CDW8 (1)-	<del></del> -	<del></del>	<del></del>
	<del></del>		
CLW8(1)=			**************************************

NOTES: Leave Unused Columns Blank

All inputs require decimal point, either -X.XX Refer to users manual (Volume I) for complete variables.

Column 1 must be blank. See Appendix 8 of Volcoding rules.

41-80
41-50 51-60 61-70 71-80 43-617:8-9:0, 1-2-3-4-5-67:8-9:0(1)2 3;4-5-6;7:8-9:0(1)2 3 4 5:617:8-9:0
2131211.10.21471.12.314.1319.141310111111111111111111111111111111111
<u> </u>
<del> </del>
edentura pain tartartententententententententententententent
<del>, de la completa de la desta de la colo</del> nida de la colonida de la colonida de la colonida de la colonida de la c
<del></del>
<del>ada da da da da da da da da da da da da </del>
and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
AND THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPER
And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa
And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

r -X.XXE-YY.
scription of all

I for assalist

# GROUP II IMPUTS (EXPR--, continued)

WING MOOY CITYS &

De/De VS. a

WING ab

WING ac

WING CL

WING CL

WING CL

WING CL

WING CL

WING CL

WING CL

WING CL

WING CL

WING CL

WING CL

WING CL

WING CL

WING CL

WING CL

WING CL

WING CL

WING CL

WAX

1-10 [12]3]4]5]6 7 6 9 0	11-20	21-30	ODEANCIENCIANOS:
115131413167.0.3	ALDERY SERVICE MANAGEMENT	0123456749	011/2/3/4/3/5/7/19/26
CAWB (1)	<del></del>	<u> </u>	<del> </del>
المرسوب والمساحد			
DEODAIL	<u> </u>	<u> </u>	
EPSLON	<u>1)</u>		<u> </u>
OGOINE	1.).		
E			
ALPOW-			
ALPLW-			
ALPLW-	****		
CLMW-	****	<del>* * * * * * * * * *</del> *	
ALPOH-	<del></del>	<del></del>	
ALPLH	<del></del>	<del></del>	
ACLMH-	<del>****</del>		
ALPLH- ACLMH- CLMH-	<del></del>		
SEND	<del></del>	<del> </del>	
	<del>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</del>		
	<del></del>	<del></del>	
	<del>*************************************</del>		<del> </del>
<del></del>	*****		
<del> </del>			
			<u> </u>
		<del></del>	<del></del>
<del></del>			***
<del></del>	<del></del>		<del> </del>

NOTES: Leave Unused Columns Blank

All inputs require decimal point, either -X.
Refer to users manual (Volume I) for comple
variables.

Column 1 must be blank. See Appendix 8 of coding rules.

	41-50	51-60	61-70	71-80
11110		<u> </u>	0[6[6]2]9[4]9[6]4]0	11234567890
			<del> </del>	
			<del> </del>	
	<del> </del>		<del></del>	
		<del></del>	<u> </u>	
	<del> </del>	<del> </del>		
		<del> </del>	<del> </del>	
			<u> </u>	
			<u> </u>	
-		<u> </u>	<del></del>	
	<del> </del>			
				<u> </u>
		<del> </del>		
	<del></del>			
	<del></del>			
-	<del> </del>			
-				
				<u> </u>

er -X.XXX or -X.XXE-YY.

complete description of all

3 of Volume I for namelist

#### **CROUP III INPUTS**

ENGINE THRUST AXIS INCIDNECE
NUMBER OF EIGINES
THRUST COEFFICIENT
AXIAL LOCATION OF PROPELLOR HUB
VERTICAL LOCATION OF PROPELLOR HUB
PROPELLOR RADIUS
EMPIRICAL NORMAL FORCE FACTOR
BLADE WIDTH AT 0.3 PROPELLOR RADIUS
BLADE WIDTH AT 0.6 PROPELLOR RADIUS
BLADE WIDTH AT 0.9 PROPELLOR RADIUS
BLADE WIDTH AT 0.9 PROPELLOR RADIUS
NUMBER OF PROPELLOR BLADES (PER ENGINE)
BLADE ANGLE AT 0.75 PROPELLOR RADIUS
LATERAL LOCATION OF ENGINE
.TRUE. FOR COUNTER-ROTATING PROPELLOR (COUNTER-CLOCKWISE)

ENGINE THRUST LINE INCIDENCE NUMBER OF ENGINES
THRUST COEFFICIENT
AXIAL LOCATION OF INLET
VERTICAL LOCATION OF EXIT
AXIAL LOCATION OF EXIT
INLET AREA
EXIT ANGLE
EXIT VELOCITY
AMBIENT TEMPERATURE
EXIT STATIC TEMPERATURE
LATERAL LOCATION OF ENGINE
EXIT TOTAL PRESSURE
EXIT RADIUS

1-10		21-30	31-40	
1234567890	1234567890	123456789	012345678	9.0 1 2 3
S.P.R.O.PWR	<del></del>			
ALETUP=	<del> </del>			
NENGS P =	<del> </del>		<u> </u>	
THSTCP=				
PHALOC-				
PHYLOC-				
PRPRAD=				
ENG FCT=				
BWAPR3=				
BWAPR6=				
BWAPR9=				
NOPBPE =				
BAPR 7.5 =				
Y P=				
CRØT=				
SEND				
\$ JETPWE				
AIETLJ=		<del></del>	**************************************	
NENGS J=		<del> </del>	<del></del>	<del></del>
THSTCJ=		<del></del>	<del></del>	
JIALOC -		<del></del>	<del>*                                    </del>	
JEVLOC-		<del></del>	<del></del>	
JEALOC=	<del></del>	<del></del>	<del></del>	<del></del>
JINLTA-	<del></del>	<del></del>	<del></del>	
JEANGL=	<del></del>	<del></del>	<del></del>	
JEVELØ-		<del></del>		فسسب
AMBTMP=	<del></del>	<del></del>	<del></del>	
JESTMP-	<del></del>	<del></del>	<del></del>	
JELLOC=		<del></del>	<del></del>	بسسسن
JETOTP=		<del></del>		
AMBSTP-		<del></del>	<del></del>	<del></del>
JERAD-		<del></del>	<del></del>	
SEND	-	<del></del>	<del></del>	
	<del></del>	<del></del>		<u> </u>
<del></del>	<del></del>			<del></del>
	<del> </del>	<del> </del>	<del></del>	
****	<del></del>			إسسب
<del></del>	<del></del>			<u> </u>
<del>* * * * * * * * * * *</del> * * * * * * * *				<u></u>
MATES.	<del></del>			<u> </u>

NOTES: Leave Unused Columns Blank

All inputs require decimal point, either -X.XXX or

Refer to users manual (Volume I) for complete des variables.

Column 1 must be blank. See Appendix B of Volume coding rules.

Commence of the second

41-	-50	51-60	61-70	71-80
9.0112345	6789012	3.4.5.6.7.0.90	61-70 1,2,3,4,5,6,7,8,9,0	71-80 1 2 3 4 5 6 7 8 9 0
		_		
	<del> </del>			
	<del> </del>		<del></del>	
			<del></del>	
			<del></del>	
			<del></del>	
			<del></del>	
	<del></del>			
<del></del>	<del>*************************************</del>			
		<del></del>	<del> </del>	
	<del></del>			
	<del></del>		<del></del>	
	<del></del>		<del></del>	
	<del></del>		· · · · · · · · · · · · · · · · · · ·	
	<u> </u>			
			<del> </del>	
			<del> </del>	
			<del> </del>	
			<del></del>	
	<del></del>			
			<del> </del>	
		<del></del>	<del> </del>	
			<del></del>	

-X.XXX or -X.XXE-YY.

Plete description of all

f Volume I for namelist

NUMBER OF GROUND HEIGHTS TO RUN GROUND HEIGHTS (NGH VALUES)

VERTICAL PANEL SPAN ABOVE LIFTING SURFACE VERTICAL PANEL SPAN FUSELAGE DEPTH AT VERTICAL PANEL 0.25 MAC DISTANCE BETHEEN VERTICAL PANELS PLANFORM AREA OF ONE VERTICAL PANEL TRAILING EDGE ANGLE OF VERTICAL PANEL SECTION LONGITUDINAL DISTANCE FROM C.G. TO 0.25 MAC VERTICAL DISTANCE FROM C.G. TO 0.25 MAC

YERTICAL DISTANCE FROM BASE CENTROID TO REFERENCE PLANE PLANFORM AREA (USED AS REFERENCE AREA) EFFECTIVE WEDGE ANGLE (SHARP LEADING EDGE) PROJECTED FRONTAL AREA SURFACE ASPECT AREA ROUND LEADING EDGE PARAMETER ROUND LEADING EDGE PARAMETER BODY LENGTH (USED AS LONGITUDINAL REFERENCE LENGTH)
WETTED AREA EXCLUDING BASE AREA BASE PERIMETER BASE AREA BASE MAXIMUM HEIGHT BASE SPAN (USED AS LATERAL REFERENCE LENGTH)
.TRUE. FOR PORTIONS OF BASE AFT OF NON-LIFTING SURFACE LONGITUDINAL LOCATION OF C.G. WING SEMI-APEX ANGLE .TRUE. FOR ROUNDED NOSE CONFIGURATION PROJECTED SIDE AREA PROJECTED SIDE AREA FORWARD OF 0.2 BODY LENGTH LONGITUDINAL DISTANCE FROM NOSE TO CENTROID OF SBS LONGITUDINAL DISTANCE FROM NOSE TO CENTROID OF PLANFORM AR

	170	11-20 21-30 31-4
	1234567890	123456789012345678901121314156
	3GRNDE F	
	NGH=	
	GROHT (1)	
	SEND	
	STVTPAN	
٠	BVP-	<del></del>
٠	BV=	<del></del>
	BDV=	<del></del>
	BH-	<del> </del>
	SV-	<del></del>
	VPHITE-	<del></del>
	VLP=	
	Z P =	<del></del>
		<del></del>
	SEND	<del>and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of </del>
	711.5	
	SLARWB	<del> </del>
	ZB=	
	SREF=	<del></del>
	DELTEP-	<del></del>
	SFRONT=	
	AR-	**************************************
	R3LEØB=	
	DELTAL-	
	SWET =	
	PERBAS=	
٠.	SBASE =	
	H8=	
	8.8.=	
	B.L.F.=	
	XCG =	
	THETAD=	
٠	ROUNDN=	
- 1	5.8.5	
	S.B.S.L.B. =	
ı	XCENS B=	
REA	XCENW=	
	SEND	
•		Leave Heread Calaman Bland

11-20

21-30

NOTES: Leave Unused Columns Blank

All inputs require decimal polit, either to users manual (Volume ) for a variables.

Column 1 must be blank. See A Lendix & coding rules.

1-40	41-50	51-60	61-70	71-80
1-40 5 6 7 8:9 0	1234567890	51-60 1,2,3,4,5,6,7,8[9[0	1234567890	1234567890
			<del></del>	
	<u> </u>			
	<u> </u>			
<u></u>				
				l
			<u> </u>	
	<del></del>			
			<del> </del>	
		<del></del>	<del></del>	
		·		
-				
			<del></del>	
		<del> </del>		
				<del> </del>
		<del> </del>		
			<del> </del>	
	<u> </u>		<del> </del>	
	_			
		<u> </u>		
		<del></del>		<del></del>
		<u> </u>	<del> </del>	
			<u> </u>	

ither -X.XXX or -X.XXE-YY.
or complete description of all

ix 8 of Volume I for namelist

CONTROL SURFACE TYPE NUMBER OF DEFLECTION ANGLES, 9 MAX DEFLECTION ANGLES (NDELTA VALUES)

TARGENT OF AIRFOIL T.E. AT 90% AND 99% CHORD TAMGENT OF AIRFOIL T.E. AT 95% AND 99% CHORD FLAP CHORD (INBOARD END)
FLAP CHORD (OUTBOARD END)
SPAN LOCATION OF INBOARD FLAP END
SPAN LOCATION OF OUTBOARD FLAP END
WING CHORD AT INBOARD FLAP END (NDELTA VALUES)

WING CHORD AT OUTBOARD FLAP END (NDELTA VALUES)

INCREMENTAL SECTION LIFT DUE TO FLAP DEFLECTION

INCREMENTAL SECTION PITCHING MOMENT DUE TO FLAP DEFLECTION

AVERAGE CHORD OF BALANCE
AVERAGE THICKNESS OF CONTROL AT HINGE LINE
FLAP MOSE SHADE: (1) ROUND (2) ELLIPTICAL (3) SHARP
TYPE OF JET FLAP: (1) PURE JET (2) IBF (3) EBF (4) COMB
TWO DIMENSIONAL JET EFFLUX COEFFICIENT
JET DEFLECTION ANGLES (NDELTA VALUES)

EBF EFFECTIVE JET DEFLECTION ANGLES (NDELTA VALUES)

1-10 1 2 3 4 5 617 8		11-20	21-3	0	31-40	
1181314151617.8	90123	4567890	1 2 3 4 5 6	7890	1 2 3 4 5 6 7	89.01
SSYMPLE	<u> </u>					
FTYPE-		التعاميد			<del></del>	
NDELTA	\ <u> </u>					
DELTA	<u> </u>					
PHETE-						<del></del>
CHRDF						
CHRDFC	<del></del>					
SPANF	<del>/</del>				<del></del>	
SPANFO						
CPRME	711-		<del></del>			
C.F.KME!	ستسلسك		<del></del> -		<del></del>	
CPRMED	711-		<del>~~~~</del>		<del> </del>	
- C.V. N.V. L.W		<del> </del>	<del></del>			<del></del>
CAPINE	717-	<del> </del>	**************************************			
		<del></del>	<del></del>		<del></del>	
CAPOUT	(1)-		<del></del>		<del></del>	
						******
DOBDEF	(1) =		<del></del>			
DOBCIN						
DØBCØT	=					
SCLD(1	) =					
					A	
SCMD(1	) =					
CB=						مسم
TC=						محست
NTYPE=					<u> </u>	ضيي
JETFLP:	<u>-                                      </u>					
CMU=	<del>,</del>					
DELJET	<u></u>					ممسم
EFFJET	<del>;,,,</del>		<del></del>			مسمعي
F	سنسل		<del></del>			
SEND						مسب
1.55.00	<del></del>					مبند
<del></del>						
<del></del>				<del></del>		
		<del></del>	<del></del>		<del></del>	

MOTES: Leave Unused Columns Blank

All inputs require decimal point, either -X.XI

Refer to users manual (Volume 1) for complete variables.

Column 1 must be blank. See Appendix B of Volcoding rules.

41-50	51-60	61-70	71-80
123456789	51-60 901234567690	1234567890	1234567890
<del></del>			
<del></del>			
<del></del>			
<del></del>			
<del></del>	<del> </del>		
<del></del>			
		<del></del>	
			<u> </u>
	<del> </del>		
<del></del>			
	<del> </del>		<del>*************************************</del>
<del></del>		<del></del>	
		<u></u>	
	<u> </u>		
		<u> </u>	
	_		
		<u></u>	
			<u> </u>
<del> </del>			
		<del> </del>	
<del> </del>		<del> </del>	
	<del></del>		<del> </del>
		<del></del>	

X.XXX or -X.XXE-YY.

lete description of all

'Volume I for namelist

COMTROL SURFACE TYPE
NUMBER OF CONTROL DEFLECTIONS, 9 MAX
SPA ( LOCATION OF INBOARD END OF CONTROL SURFACE
SPAN LOCATION OF OURBOARD END OF CONTROL SURFACE
TANJENT OF AIRFOIL T.E. AT 90% AND 99% CHORD
LEFT HAND CONTROL DEFLECTION ANGLES (NDELTA VALUES)

RIGHT HAND CONTROL DEFLECTION ANGLES (NDELTA VALUES)

AILERON CHORL AT INBOARD FLAP STATION
AILERON CHORD AT OUTBOARD FLAP STATION
RPOJECTED HEIGHT OF DEFLECTOR (NDELTA VALUES)

PROJECTED HEIGHT OF SPOILER (NDELTA VALUES)

DISTANCE FROM WING L.E. TO SPOILER LIP (NDELTA VALUES)

DISTANCE FROM WING L.E. TO SPOILER HINGE LINE PROJECTED SPOILER HEIGHT

			31-40 41-50
1-10	11-20	7(-30 172131415 6 7 8 9 0	31-40 A1-50 011234367890123456
\$ASY FL P	534201030		
STYPE=			**************************************
NDELTA=			
SPANFI	<del> </del>		
SPANTO=			And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
PHETE=			
PHETE=	) =		And the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little and the second little
			the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
DELTAR	) =		the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
CHRDF1=			
CHRDFO=			
DELTADIT	)=		
			The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
DELTAS	)=		
X S Ø C (1) =		<u> </u>	
X S P R M E =			وميقا سيفسية بينتي والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستقيم والمستق
H50C(1)=			
		-	and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t
SEND			
Lanaman	لبحة مضمطسيسيف فبسيا ميضايف		
			The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon
<u> </u>			
		<del></del>	
· [			
·	<del></del>		
<del></del>			
<del></del>			
		Caliman Blank	

NOTES: Leave Unused Columns Blank

All inputs require decimal point, either -X.XXX or -X.3 Refer to users manual (Volume I) for complete descript

Column 1 must be blank. See Appendix B of Yolume I for coding rules.

51-60	6	1-70		71-80
51-60 901234567890	1234	5 6 7 8 9	0123	4567890
		<del></del>		
			<del></del>	
				<del></del>
				<del></del>
<del></del>				
<del></del>				
			تمست	
			<del></del>	
			<del></del>	
				<del></del>
<del></del>				
/ <del></del>				
-				

t-YY. on of all

namelist

CONTROL TAB TYPE: (1) TAB (2) TRIM (3) BOTH CONTROL TAB INBOARD CHORD CONTROL TAB OUTBOARD CHORD SPAN LOCATION OF INBOARD CONTROL TAB END TRIM TAB INBOARD CHORD TRIM TAB INBOARD CHORD TRIM TAB OUTBOARD CHORD SPAN LOCATION OF INBOARD TRIM TAP END SPAN LOCATION OF OUTBOARD TRIM TAB END Cha CONTROL SURFACE

Cha CONTROL SURFACE

Cha TRIM TAB
Cha TRIM TAB
Cha TRIM TAB
MAXIMUM STICK GEARING
TAB SPRING EFFECTIVENESS
AERODYNAMIC BOOST LINK RATIO
CONTROL TAB GEAR RATIO

-6 tc. Tax Comax

	1-10	11-20	21-30	31-40
	1234567890	11-20 1 2 3 4 5 6 7 8 9 0	21-30 1 2 3 4 5 6 7 8 9 0 1	23456
	S.C.ONTAB	*		
	TTYPE=	4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4		
	CFITC=			
į	CFØTC=			
	RITC=			
1	BOIC=			
Ì	CFITT=			
ı	CFOTT=			
	8 1 T T =			
1	8Ø11=			
١	81=			
ı	B 2 =			
1	B 3 =			
Ì	B.4.=			
ı	D1=			
I	D 2 =			
I	D3 =		· · · · · · · · · · · · · · · · · · ·	
Ī	GCMAX=			
Ī	K.S.=			
I	R.L.=			
I	BGR=			*
ſ	DELR=			
ſ	\$ END		<del></del>	
ſ			<del>*************************************</del>	
Ī			<del></del>	<del></del>
ľ			<del></del>	<del></del>
ľ			<del>***********</del>	
r				<del></del>
ſ				<del></del>
C	4-4-4-4-4-4-4-4-4			<del></del>
[				
Γ				
I	4			
Γ				<del></del>
L				<del> </del>
Ĺ				
Ĺ				
Ľ				
				<del> </del>

NOTES: Leave Unused Columns Blank

All inputs require decimal point, either Refer to users manual (Volume I) for com variables.

Column i must be blank. See Appendix B o coding rules.

31-40	41-50	51-60	61-70	71-80
4567890	123456789	51-60 0_1,2,3_4,5,6,7,8,9,0	1,2,3,4,5,6,7,8,90	1234567890
	<del></del>	<del></del>		
<del></del>		<del></del>		
	<del> </del>	<del> </del>		
			<u> </u>	
استستانيت				
	<del></del>			
-				
	<del></del>			
		<del></del>		
		<del></del>		
		<del></del>	· · · · · · · · · · · · · · · · · · ·	
			<u> </u>	
			<del></del>	
		<del> </del>		
	-	<del></del>	<del> </del>	
		<del> </del>		
		<del> </del>		

either -X.XXX or -X.XXE-YY.

for complete description of all

dix B of Volume I for namelist

## GROUP IV INPUTS

PRINT NAMELIST INPUTS
SAVE CASE DATA FOR NEXT CASE

SYSTEM OF UNITS (EX. DIM M)

COMPUTE TRIM CHARACTERISTICS COMPUTE DYNAMIC DERIVATIVES

DEFINE WING DESIGNATION DEFINE H.T. DESIGNATION DEFINE V.T. DESIGNATION DEFINE V.F. DESIGNATION

CASE TITLE (EX. CASEID CASE 1)
DUMP COMPUTATIONAL DATA ARRAYS (EX. DUMP A, B)

DERIVATIVE ANGULAR UNITS (EX. DERIV RAD)

PRINT PARTIAL OUTPUT
COMPUTE CONFIGURATION BUILD-UP
STORE SELECTED PARAMETERS FOR PLOTTING

DID OF CASE INPUTS

1-10	11-20	21-30	1234567890
1234567890	1234567890	21-30	1,234567890
NAMELIST.		<u> </u>	<del> </del>
SAVE			
			<u> </u>
DIM			
TRIM			
TRIM			
,			
NACA-W-			
NACA-H-			
NACA-V-			
NACA-W- NACA-H- NACA-Y- NACA-F-		عصيب المقدقية بيابيشين	
	<del></del>		
CASEID			
CASE I D	<del> </del>	<u> </u>	
	<del> </del>	· · · · · · · · · · · · · · · · · · ·	**************************************
DERIV			
	<del></del>		· · · · · · · · · · · · · · · · · · ·
PART	<del></del>	<del></del>	<del>* * * * * * * * * * * * * * * * * * * </del>
BUILD	<del></del>	<del></del>	<del> </del>
PART BUILD PLOT	<del></del>	<del></del>	<del></del>
	<del></del>		***********
NEXT CASE	<del></del>		****
			<del></del>
	<del></del>		<del>* * * * * * * * * * * * * * * * * * * </del>
	<del></del>	<del> </del>	* * * * * * * * *
<del></del>	<del></del>	<del></del>	<del></del>
	<del></del>	<del></del>	
<del></del>	<del></del>	<del> </del>	<del></del>
<del>***********</del>	<del> </del>	<del> </del>	<del></del>
****	<del></del>	<del></del>	<del></del>
<del></del>	<del></del>	<del></del>	
<del>* * * * * * * * * * * * * * * * * * * </del>	<del> </del>		<del></del>
<del> </del>	<del></del>	<del></del>	<del></del>
<del></del>		<del></del>	<del></del>
<del></del>			<del></del>
<del></del>	<del> </del>	<del></del>	
<del> </del>	<del> </del>		
		<del> </del>	
	<del> </del>	<del> </del>	

NOTES: Leave Unused Columns Blank

ALL CONTROL CARDS START IN COLUMN CNE
BLANKS MAY NOT APPEAR IN CONTROL CARD NAMES EN
WHERE SPECIFIED
SEE SECTION 3.5 OF VOLUME I FOR DESCRIPTION OF
CONTROL CARDS

0	41-50	51-60 90123456789	61-70	71-80
7890	2345678	90123456789	0 1 2 3 4 5 6 7 8 9 0	7.34567890
		<del> </del>	<del> </del>	
		<u> </u>		
	<del></del>			
			<del></del>	
سمسيميه		<del></del>		
فتطلعيه		<del> </del>	<del></del>	
		<del></del>	<del></del>	<del></del>
		<del> </del>	<del> </del>	
		<del></del>	<del> </del>	
		<del></del>	<u> </u>	
	<del></del>	<del> </del>	<del> </del>	
-				
		<u> </u>		
		<del> </del>	<del> </del>	
-			<del></del>	
		<del> </del>	<del></del>	**************************************
		<del> </del>	<del> </del>	
	<del></del>	<del></del>	<del> </del>	
			<del></del>	
			**************************************	
			** *** *** *** **** **** **** **** **** ****	
_	<del></del>		<del>*************************************</del>	
-				

I NAMES EXCEPT
PTION OF ALL

2

beatomic

#### REFERENCES

- 1. McDonnell Douglas Corp.: USAF Stability and Control Datcom. Air Force Flight Dyn. Lab., U.S. Air Force, Oct. 1960. (Revised April 1976).
- Weber, J.: The Calculation of the Pressure Distribution Over the Surface of Two-Dimensional and Swept Wings with Symmetrical Aerofoil Sections.
   ARC R&M 2918, 1953.
- 3. Weber, J.: The Calculation of the Pressure Distribution on the Surface of Thick Cambered Wings and the Design of Wings with Given Pressure Distribution. ARC R&M 3026, 1955.
- 4. Powell, B. J.: The Calculation of the Pressure Distribution on a Thick Cambered Aerofoil at Subsonic Speeds Including the Effects of the Boundary Layer. NPL Aero Report 1238, 1967.
- 5. Kinsey, D. W. and Bowers, D. L.: A Computerized Procedure to Obtain Coordinates and Section Characteristics of NACA Designated Airfoils.

  AFFDL-TR-71-87, November 1971.
- 6. Niedling, L. G.: A Computer Program for the Prediction of Airfoil Characteristics in Subsonic and Transonic Flow. McDonnell Douglas Aircraft Company, Transonic Wing Design No. 8, 1969.
- 7. Abbott, I. H.; von Doenhoff, A. E.; and Stivers, L. S., Jr.: Summary of Airfoil Data. NACA TR-824, 1945.