

Monte Carlo Integration for Image Synthesis

Thomas Funkhouser Princeton University C0S 526, Fall 2002

Main Sources

Books

- Realistic Ray Tracing, Peter Shirley
- Realistic Image Synthesis Using Photon Mapping, Henrik Wann Jensen

Theses

- Robust Monte Carlo Methods for Light Transport Simulation, Eric Veach
- Mathematical Models and Monte Carlo Methods for Physically Based Rendering, Eric La Fortune

Course Notes

- Mathematical Models for Computer Graphics, Stanford, Fall 1997
- State of the Art in Monte Carlo Methods for Realistic Image Synthesis, Course 29, SIGGRAPH 2001

Outline

- Motivation
- Monte Carlo integration
- Monte Carlo path tracing
- Variance reduction techniques
- Sampling techniques
- Conclusion

Motivation

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

$$L_P = \int_{S} L(x \to e) dA$$

Motivation

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

$$L(x,\vec{w}) = L_e(x,x \to e) + \int_S f_r(x,x' \to x, x \to e) L(x' \to x) V(x,x') G(x,x') dA$$

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

Herf

$$L(x,\vec{w}) = L_e(x,x \to e) + \int_S f_r(x,x' \to x, x \to e) L(x' \to x) V(x,x') G(x,x') dA$$

Motivation

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

$$L_o(x, \vec{w}) = L_e(x, \vec{w}) + \int_{\Omega} f_r(x, \vec{w}', \vec{w}) L_i(x, \vec{w}') (\vec{w}' \bullet \vec{n}) d\vec{w}$$

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

Debevec

$$L_o(x, \vec{w}) = L_e(x, \vec{w}) + \int_{\Omega} f_r(x, \vec{w}', \vec{w}) L_i(x, \vec{w}') (\vec{w}' \bullet \vec{n}) d\vec{w}$$

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

Jenser

$$L_o(x, \vec{w}) = L_e(x, \vec{w}) + \int_{\Omega} f_r(x, \vec{w}', \vec{w}) L_i(x, \vec{w}') (\vec{w}' \bullet \vec{n}) d\vec{w}$$

Challenge

- Rendering integrals are difficult to evaluate
 - Multiple dimensions
 - Discontinuities
 - » Partial occluders
 - » Highlights
 - » Caustics

Drettakis

$$L(x,\vec{w}) = L_e(x,x \to e) + \int_S f_r(x,x' \to x, x \to e) L(x' \to x) V(x,x') G(x,x') dA$$

Challenge

- Rendering integrals are difficult to evaluate
 - Multiple dimensions
 - Discontinuities
 - » Partial occluders
 - » Highlights
 - » Caustics

Jense.

 $L(x,\vec{w}) = L_e(x,x \to e) + \int_S f_r(x,x' \to x, x \to e) L(x' \to x) V(x,x') G(x,x') dA$

Outline

- Motivation
- Monte Carlo integration
- Monte Carlo path tracing
- Variance reduction techniques
- Sampling techniques
- Conclusion

Or we can average
$$\int_{0}^{1} f(x)dx = E(f(x))$$

$$f(x)$$

$$E(f(x))$$

Other Domains $\int_{a}^{b} f(x)dx = \frac{b-a}{N} \sum_{i=1}^{N} f(x_{i})$ $f(x) = \int_{a}^{b} f(x)dx = \int_{a}^{b} f(x_{i}) dx = \int_{a}^{b$

Outline

- Motivation
- Monte Carlo integration
- Monte Carlo path tracing
- Variance reduction techniques
- Sampling techniques
- Conclusion

Simple Monte Carlo Path Tracer

- Step 1: Choose a ray (x, y), (u, v), t; weight = 1
- Step 2: Trace ray to find intersection with nearest surface
- Step 3: Randomly decide whether to compute emitted or reflected light
- Step 3a: If emitted, return weight * Le
- Step 3b: If reflected,
- weight *= reflectance
- Generate ray in random direction
- Go to step 2

Monte Carlo Path Tracing

- Advantages
 - Any type of geometry (procedural, curved, ...)
 - Any type of BRDF (specular, glossy, diffuse, ...)
 - Samples all types of paths (L(SD)*E)
 - Accuracy controlled at pixel level
 - Low memory consumption
 - Unbiased error appears as noise in final image
- Disadvantages
 - Slow convergence
 - Noise in final image

Variance $Var[E(f(x))] = \sum_{i=1}^{N} [f(x_i) - E(f(x))]^2$ E(f(x))

Outline

- Motivation
- Monte Carlo integration
- Monte Carlo path tracing
- Variance reduction techniques
- Sampling techniques
- Conclusion

• Problem: variance decreases with 1/N More samples removes noise SLOWLY

Variance Reduction Techniques

- Importance sampling
- Stratified sampling
- Metropolis sampling
- Quasi-random

$$\int_{0}^{1} f(x)dx = \frac{1}{N} \sum_{i=1}^{N} f(x_{i})$$

Importance Sampling

• Put more samples where f(x) is bigger

$$\int_{\Omega} f(x)dx = \frac{1}{N} \sum_{i=1}^{N} Y_{i}$$
$$Y_{i} = \frac{f(x_{i})}{p(x_{i})}$$

Importance Sampling

• This is still "unbiased"

$$E[Y_i] = \int_{\Omega} Y(x) p(x) dx$$
$$= \int_{\Omega} \frac{f(x)}{p(x)} p(x) dx$$
$$= \int_{\Omega} f(x) dx$$
for all N

Importance Sampling

• Zero variance if $p(x) \sim f(x)$

$$p(x) = cf(x)$$

$$Y_i = \frac{f(x_i)}{p(x_i)} = \frac{1}{c}$$

$$Var(Y) = 0$$

Less variance with better importance sampling

• This is still unbiased

$$E_k(f(x))$$

$$F_N = \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$
$$= \frac{1}{N} \sum_{k=1}^{M} N_i F_i$$

Stratified Sampling

• Less overall variance if less variance in subdomains

$$Var[F_N] = \frac{1}{N^2} \sum_{k=1}^{M} N_i Var[F_i]$$

Outline

- Motivation
- Monte Carlo integration
- Monte Carlo path tracing
- Variance reduction techniques
- Sampling techniques
- Conclusion

Basic Monte Carlo Path Tracer

- Step 1: Choose a ray (x, y), (u, v), t
- Step 2: Trace ray to find intersection with nearest surface
- Step 3: Randomly decide whether to compute emitted or reflected light
- Step 3a: If emitted, return weight * Le
- Step 3b: If reflected,
- weight *= reflectance
- Generate ray in random direction
- Go to step 2

Sampling Techniques

- Problem: how do we generate random points/directions during path tracing?
 - Non-rectilinear domains
 - Importance (BRDF)
 - Stratified

Combining Multiple PDFs

- Balance heuristic
 - Use combination of samples generated for each PDF
 - Number of samples for each PDF chosen by weights
 - Near optimal

Monte Carlo Extensions

- Unbiased
 - Bidirectional path tracing
 - Metropolis light transport
- · Biased, but consistent
 - Noise filtering
 - Adaptive sampling
 - Irradiance caching

Monte Carlo Extensions

- Unbiased
 - Bidirectional path tracing
 - Metropolis light transport
- Biased, but consistent
 - Noise filtering
 - Adaptive sampling
 - Irradiance caching

RenderPark

Monte Carlo Extensions

- Unbiased
 - Bidirectional path tracing
 - Metropolis light transport
- · Biased, but consistent
 - Noise filtering
 - Adaptive sampling
 - Irradiance caching

Heinrich

Monte Carlo Extensions

- Unbiased
 - Bidirectional path tracing
 - Metropolis light transport
- Biased, but consistent
 - Noise filtering
 - Adaptive sampling
 - Irradiance caching

Unfiltered

Filtered

Jensen

Monte Carlo Extensions

- Unbiased
 - Bidirectional path tracing
 - Metropolis light transport
- Biased, but consistent
 - Noise filtering
 - Adaptive sampling
 - Irradiance caching

ixed

Adaptive

Monte Carlo Extensions

- Unbiased
 - Bidirectional path tracing
 - Metropolis light transport
- Biased, but consistent
 - Noise filtering
 - Adaptive sampling
 - Irradiance caching

Summary

- Monte Carlo Integration Methods
 - Very general
 - Good for complex functions with high dimensionality
 - Converge slowly (but error appears as noise)
- Conclusion
 - Preferred method for difficult scenes
 - Noise removal (filtering) and irradiance caching (photon maps) used in practice

Programming Assignment #1

More Information

• Books

- Realistic Ray Tracing, Peter Shirley
- Realistic Image Synthesis Using Photon Mapping, Henrik Wann Jensen

Theses

- Robust Monte Carlo Methods for Light Transport Simulation, Eric Veach
- Mathematical Models and Monte Carlo Methods for Physically Based Rendering, Eric La Fortune

Course Notes

- Mathematical Models for Computer Graphics, Stanford, Fall 1997
- State of the Art in Monte Carlo Methods for Realistic Image Synthesis, Course 29, SIGGRAPH 2001