Opérateur	Nom	Description	Table de vérité
٦	Négation « Non »	La négation de p, notée $\neg p$ et qui se lit « non p », est également un énoncé booléen qui est vrai lorsque p est faux et qui est faux lorsque p est vrai.	$\begin{array}{c c} p & \neg p \\ \hline 0 & 1 \\ \hline 1 & 0 \end{array}$
٨	Conjonction « ET »	La proposition composée notée $p \land q$, qui se lit « p et q », est vraie si les deux propositions p et q sont vraies et elle est fausse dans les autres cas.	$ \begin{array}{c cccc} p & q & p \land q \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 0 \\ \hline 1 & 0 & 0 \\ \hline 1 & 1 & 1 \end{array} $
V	Disjonction « OU »	La proposition composée notée $p \lor q$, qui se lit « p ou q », est vraie si au moins l'une des deux propositions simples est vraie et elle est fausse lorsque les deux sont fausses.	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
⊕	Disjonction exclusive « OU exclusif »	La proposition composée notée $p\oplus q$, qui se lit « p ou exclusif q », est vraie si une seule des deux propositions simples est vraie et elle est fausse dans les autres cas.	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
→	Conditionnelle « Si _ alors »	La proposition composée notée $p \to q$, qui se lit « si p alors q », est fausse lorsque la proposition p est vraie et que la proposition q est fausse, et elle est vraie dans tous les autres cas.	$ \begin{array}{c cccc} p & q & p \to q \\ \hline 0 & 0 & 1 \\ \hline 0 & 1 & 1 \\ \hline 1 & 0 & 0 \\ \hline 1 & 1 & 1 \end{array} $
\leftrightarrow	Biconditionnelle « Si et seulement SI »	La proposition composée notée $p\leftrightarrow q$, qui se lit « p si et seulement si q », est vraie lorsque les deux propositions ont la même valeur de vérité ; elle est fausse dans les autres cas.	$ \begin{array}{c cccc} p & q & p \leftrightarrow q \\ \hline 0 & 0 & 1 \\ \hline 0 & 1 & 0 \\ \hline 1 & 0 & 0 \\ \hline 1 & 1 & 1 \end{array} $

Opérateur	Nom	Description	Table de vérité
	Réciproque	Soit $p \to q$ une conditionnelle, la conditionnelle $q \to p$ est appelée conditionnelle réciproque	
	Contraposée	Soit $p \to q$ une conditionnelle, la conditionnelle $\neg p \to \neg q$ est appelée conditionnelle contraposée .	
	Tautologie	Une tautologie, notée t, est un énoncé composé qui est toujours vrai quelle que soit la valeur de vérité de ses composantes. L'énoncé $p\ \lor \neg p$ est une tautologie, comme sa table de vérité, donnée ci-contre permet de le constater.	$ \begin{array}{c c c c} p & \neg p & p \lor \neg p \\ \hline 0 & 1 & 1 \\ \hline 1 & 0 & 1 \end{array} $
\Rightarrow	Implication logique	Soit P et Q deux énoncés composés. On dit que P implique logiquement Q si l'énoncé P \rightarrow Q est une tautologie. On note alors P \Rightarrow Q.	
≡ ⇔	Équivalence logique	Soit P et Q deux énoncés composés. On dit que P et Q sont logiquement équivalents si l'énoncé $P\leftrightarrow Q$ est une tautologie. On note alors $P \Leftrightarrow Q$ ou $P \equiv Q$	