Резонанс напряжений (3.2.2)

Стеценко Георгий, Б02-312

1 Цель работы

Исследование резонанса напряжений в последовательном колебательном контуре с изменяемой ёмкостью, получение амплитудно частотных и фазово-частотных характеристик, определение основных па раметров контура.

2 Теоретические сведения

При анализе цепей переменного тока вводится понятие комплексной амплитуды, которая позволяет связать напряжение и ток при установившихся гармонических колебаниях в цепи. Пусть мгновенные значения тока и напряжения на некотором элементе равны:

$$i = I_A \cos(\omega t), \ u = U_A \cos(\omega t + \varphi)$$

Тогда можно ввести комплексные ток и напряжение, равные соответственно:

$$\hat{I} = I_A e^{j\omega t}, \hat{U} = U_A e^{j(\omega t + \varphi)}$$

Тогда $i = \operatorname{Re} \hat{I}$, $u = \operatorname{Re} \hat{U}$, и элемент описывается своим импедансом, равным соответственно:

$$\hat{Z} := \frac{\hat{U}}{\hat{I}}$$

Для идеальных сопротивления R, индуктивности L и ёмкости C известны стандартные формулы импеданса, которые получаются из уравнений $u_R = i_R \cdot R, \ u_L = L \frac{\mathrm{d} i_L}{\mathrm{d} t}, \ i_C = C \frac{\mathrm{d} u_C}{\mathrm{d} t}$:

$$\hat{Z_R} = R$$

$$\hat{Z_C} = \frac{1}{j\omega C} = -j\frac{1}{\omega C}$$

$$\hat{Z_L} = j\omega L$$

В любой момент времени выполнены законы Кирхгофа для мгновенных значений тока и напряжения, а значит, они выполнены и в комплексном смысле. Поэтому при расчётах RLC-цепей можно использовать комплексные аналоги вещественных формул для расчёта цепей из сопротивлений. К примеру, при последовательном соединении трёх элементов с импедансами \hat{Z}_1 , \hat{Z}_2 , \hat{Z}_3 эквивалентный импеданс участка будет равен $\widehat{Z}_{123} = \hat{Z}_1 + \hat{Z}_2 + \hat{Z}_3$.

Изобразим векторную диаграмму напряжений в последовательном RLC-участке (Puc.~1). Поймём, что $\hat{Z}_R(\omega)=\mathrm{const},~\hat{Z}_L(\omega)>0$ и возрастает, $\hat{Z}_C(\omega)<0$ и возрастает, то есть существует такое ω_0 , что $\widehat{Z}_{RLC}=R+0j$. Так как $\mathrm{Re}~(\hat{U})\equiv |\hat{I}|R,~|\hat{U}|\geq |\hat{I}|R,$ и минимум достигается при $\omega=\omega_0$. Он и называется резонансом напряжений.

Резонанс напряжений определяется из условия $\hat{Z_C} = -\hat{Z_L}$, то есть:

Рис. 1: Векторная диаграмма напряжений

$$\omega_0 = \sqrt{\frac{1}{LC}} \tag{1}$$

Цепь содержит в себе неидеальные элементы — резисторы, катушки индуктивности, и конденсаторы. Обсудим, какие особенности это вносит в наш эксперимент.

(а) Катушка индуктивности

Катушка индуктивности имеет некоторую межвитковую ёмкость C_L , а так же сопротивление обмотки R_L . Для нашей катушки известно, что собственная частота резонанса $\nu_L \sim 1 \mathrm{MHz}$, то есть реактивная составляющая импеданса может быть выражена через эффективную индуктивность $L(\omega) = L_{stat}(1 - (\nu/\nu_0)^2)$. Мы же будем работать в диапазоне $\nu \leq 50 \mathrm{kHz} \ll \nu_L$, и посему будем пренебрегать межвитковой ёмкостью, и, соответственно, изменением эффективной индуктивности. Тем не менее, мы будем учитывать активную составляющую импеданса катушки.

(b) **Конденсатор**

Полипропиленовые конденсаторы в данной работе в рабочем диапазоне частот имеют пренебрежимо малые индуктивности. Однако, необходимо учесть так назвываемое эквивалентное последовательное сопротивление R_S , обусловленное, в основном, сопротивлением материала обкладок.

Таким образом, эквивалентные параметры цепи $R_{\Sigma} = R + R_L + R_S, \ L_{\Sigma} = L, \ C_{\Sigma} = C.$

Нам так же понадобится понятие добротности колебательного контура, определяемое как $Q:=\omega_0\frac{W}{P_d}$, где ω_0 — собственная (резонансная) частота, W — энергия, запасённая в системе, P_d — рассеиваемая мощность. Знаем, что при слабом затухании $W=\frac{1}{2}LI_A^2$, $P_d=\frac{1}{2}I_A^2R$, $\omega_0=\frac{1}{\sqrt{LC}}$, тогда по определению:

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} \quad (Q \gg 1) \tag{2}$$

Несложно далее получить, что при $Q\gg 1$, если ширина пика на уровне $1/\sqrt{2}$ от максимума равна $\Delta\omega$, то $Q\approx \frac{\omega_0}{\Delta\omega}$.

3 Методика измерений

В работе используются: осциллограф, 2 вольтметра, генератор, RLC-контур с источником питания.

Последовательный контур подключен к источнику напряжения, на который подается сигнал с генератора. На puc.~2 изображена эквивалентная схема установки. Напряжения снимаются вольтметрами 1 и 2 со всей цепи и с конденсатора соответственно. Напряжение резистора R в цепи $R=3.50~\Omega$.

В начале были промерены все режимы RLCчерного ящика, и найдены резонансные частоты. Изменения напряжения менее чем на 1% проигнорированы, из данных получены соответствующие параметры

Рис. 2: Схема установки

контура. Далее сняты АЧХ и ФЧХ колебательного контура, и проведены дальнейшие сравнения полученных зависимостей.

Как известно, при вынужденных колебаниях в колебательном контуре устанавливается вынуждающая частота. Источник питания работает на OpAmp, поэтому его рабочая частота в точности совпадает с частотой генератора. Таким образом, погрешностью определения частоты можно пренебречь.

4 Результаты измерений и обработка данных

	e 1 TT	77 77	0 T.	7 77			D 0	D 0	D 0	T 4
C_n , nF	f_{0n}, kHz	U_C, V	\mathscr{E}, V	$L, \mu H$	Q	ρ, Ω	R_{Σ}, Ω	$R_{S_{max}}, \Omega$	R_L, Ω	I, .mA
24.8	32.43	1.39	0.05	971.17	27.8	197.88	7.12	0.198	3.62	7.02
33.2	28.00	1.23	0.05	973.16	24.6	171.21	6.96	0.171	3.46	7.18
47.6	23.41	1.06	0.05	971.03	21.2	142.83	6.74	0.142	3.24	7.42
57.5	21.29	0.97	0.05	971.90	19.4	130.01	6.70	0.130	3.20	7.46
68.0	19.58	0.90	0.05	971.64	18.0	119.54	6.64	0.120	3.14	7.53
81.6	19.78	0.91	0.05	793.41	18.2	98.61	5.42	0.099	1.92	9.23
102.8	15.92	0.76	0.05	972.21	15.2	97.25	6.40	0.097	2.90	7.82
Среднее значение			971.85			·		3.26		
Случайная погрешность			0.71					0.23		

Таблица 1: Результаты измерения резонансных частот

Отметим, что измерения 6-го контура, очевидно, являются выбросом (см. столбец L в табл. 1), соответственно надписи на рабочем блоке, и они проигнорированы при дальнейшей обработке.

Так как значения
$$L$$
 получаются из ур. (1), $\varepsilon(L) = \sqrt{\varepsilon(C)^2 + 2\varepsilon(f_0)^2}$. Так как $\varepsilon(f_0)$ мало, $\varepsilon(L) \approx \varepsilon(C) \lesssim \frac{0.1}{24.8} \approx 0.2\%$. Тогда $\sigma(L) = \sqrt{\sigma(L)_{\text{сл}}^2 + \sigma(L)_{\text{ст}}^2} \approx 2.1 \ \mu\text{H}$. Тогда $L = (972 \pm 3) \ \mu\text{H}$.

Теперь перейдём к измерениям на контурах с 1-м и 5-м конденсаторами при постоянном \mathscr{E} . Сырые данные к АЧХ и ФЧХ можно найти в **Приложении 1**. Здесь они приведены не будут для улучшения читаемости. Кроме того, на графиках АЧХ не будут отображены кресты погрешностей, так как они слишком малы, чтобы занимать значимое пространство на графике.

Рис. 3: Сводный график АЧХ для контуров с 1-м и 5-м конденсаторами

По графику видно, что при прочих равных большая ёмкость конденсатора увеличивает период колебаний в контуре, но при этом уменьшает его добротность (меньшее напряжение при резонансе), что соответствует уравнениям (1) и (2).

Рис. 4: АЧХ 1-го колебательного контура с уровнем $-3.5~\mathrm{dB}$

Рис. 5: АЧХ 5-го колебательного контура с уровнем $-3.5~\mathrm{dB}$

По ширине резонансного пика на уровне в -3.5 dB найдем добротности контуров.

$$Q_1 = \frac{1}{38.3 \cdot 10^{-3}} \approx 26.1$$

$$Q_5 = \frac{1}{59.9 \cdot 10^{-3}} \approx 16.7$$

Перейдём к АЧХ.

Рис. 6: ФЧХ 1-го колебательного контура с уровнями (0.5 ± 0.25)

Рис. 7: ФЧХ 5-го колебательного контура с уровнями (0.5 ± 0.25)

Погрешность определения фазы составляет $\approx \pm 1\%$ (отношение сдвига синусоид на экране осциллографа с точностью ± 0.1 дел. к длине полуволны ≈ 10 дел.), что примерно равно вертикальному размеру маркера на графике, поэтому кресты погрешности не наносятся.

Для этих данных получаются следующие значения добротностей:

$$Q_1 = \frac{1}{39.5 \cdot 10^{-3}} \approx 25.3$$

$$Q_5 = \frac{1}{61.0 \cdot 10^{-3}} \approx 16.4$$

Рис. 8: Полученные результаты для зависимости R_L от частоты

Здесь погрешность R_L определеяется двумя наиболее важными погрешностями: случайной (посчитана в maбn. 1) и небольшим значением R_S , верхняя граница которого определялась из заводских характеристик. Таким образом, $\sigma(R_L) \approx \sqrt{\sigma(R_L)_{\rm cn}^2 + R_{S_{max}}^2}$.

5 Обсуждение результатов

	Высота пика	АЧХ	ФЧХ	Среднее	$\Delta(Q)_{max}$
Q_1	27.8	26.1	25.3	26.4	2.5
Q_5	18.0	16.7	16.4	17.0	1.6

Как видно из таблицы, разброс полученных значений добротности не превышает 10%, что является хорошим результатом для величины приблизительного характера.

По графику $R_L(f)$ (рис. 8) видно, что крайние значения R_L достоверно не совпадают со средним, при этом прослеживается линейный тренд на увеличение сопротивления с частотой. Объяснением этому явлению может служить влияние скин-эффекта, который увеличивает эффективное сопротивление единицы длины проводника из-за «вытеснения» плотности тока из центра провода.

6 Выводы

Поставленные цели работы достигнуты. С высокой точностью измерена индуктивность контура $L=(972\pm3)~\mu\mathrm{H}$. Сняты АЧХ и ФЧХ контуров при разных ёмкостях, разными способами с хорошей повторяемостью оценена добротность контуров. Обнаружена возрастающая зависимость активной части импеданса катушки индуктивности от частоты.

7 Приложение 1

Таблица 2: АЧХ, данные

RI	$\overline{LC_1}$	RLC_5			
f, kHz	U_C, V	f, kHz	U_C, V		
20.0	0.0853	10.0	0.0715		
24.0	0.1165	13.0	0.0943		
27.0	0.1705	15.0	0.1268		
28.0	0.2044	16.0	0.1565		
29.0	0.2572	17.0	0.2081		
29.5	0.2964	17.5	0.2507		
30.0	0.3502	18.0	0.3163		
30.5	0.4285	18.3	0.3753		
30.8	0.4947	18.6	0.4590		
31.1	0.5843	18.9	0.5822		
31.4	0.7099	19.1	0.6928		
31.6	0.8178	19.2	0.7521		
31.8	0.9611	19.3	0.8089		
32.0	1.1336	19.4	0.8593		
32.2	1.3010	19.5	0.8915		
32.3	1.3578	19.6	0.8984		
32.4	1.3826	19.7	0.8791		
32.5	1.3712	19.8	0.8388		
32.8	1.1853	19.9	0.7862		
33.0	1.0216	20.0	0.7319		
33.2	0.8730	20.1	0.6734		
33.4	0.7547	20.2	0.6180		
33.7	0.6130	20.5	0.4808		
34.0	0.5105	20.8	0.3840		
34.5	0.3948	21.1	0.3160		
35.0	0.3195	21.4	0.2663		
35.5	0.2671	21.7	0.2294		
36.0	0.2288	22.3	0.1782		
36.5	0.1997	23.0	0.1402		
37.0	0.1768	24.0	0.1063		
38.0	0.1433	26.0	0.0705		
39.0	0.1201	28.0	0.0459		
42.0	0.0800				
45.0	0.0597				

Таблица 3: ФЧХ, данные

RL	$\overline{C_1}$	RLC_5			
f, kHz	φ_C/π	f, kHz	U_C, V		
30.7	0.110	17.7	0.090		
31.0	0.124	18.0	0.112		
31.3	0.163	18.3	0.135		
31.6	0.203	18.6	0.168		
31.9	0.282	18.8	0.191		
32.1	0.346	19.0	0.247		
32.2	0.390	19.2	0.304		
32.3	0.442	19.3	0.341		
32.4	0.494	19.4	0.385		
32.5	0.546	19.5	0.433		
32.6	0.592	19.6	0.494		
32.7	0.632	19.7	0.551		
32.9	0.711	19.8	0.602		
33.1	0.760	19.9	0.648		
33.4	0.813	20.0	0.690		
33.7	0.851	20.3	0.779		
34.0	0.890	20.6	0.835		
		20.9	0.869		
		21.2	0.880		

