PRINCIPAIS PROBLEMAS DE OTIMIZAÇÃO EM REDES

DCE692 - Pesquisa Operacional

Atualizado em: 16 de outubro de 2023

Iago Carvalho

Departamento de Ciência da Computação

OTIMIZAÇÃO EM REDES

Problemas em redes são aqueles que podem ser representados como uma rede

- Conjunto de elementos
 - Nós
 - Vértices
- Conexões entre os elementos
 - Arcos
 - Arestas

PRINCIPAIS PROBLEMS EM REDES

Existem diversos problemas de otimização em redes

- Alguns podem ser modelados utilizando programação linear
- Outros utilizam programação inteira
 - São problemas NP-Completos

Aqui nós vamos falar de alguns deles

- 1. Fluxo em redes
 - Fluxo máximo
 - Fluxo de custo mínimo
- 2. Caminho mínimo
- 3. Árvore Geradora Mínima

CAMINHO EM GRAFOS

Estamos interessados em encontrar o caminho entre dois vértices de um grafo

Diversas aplicações práticas

Em grafos não ponderados, podemos utilizar os algoritmos de busca em largura ou de busca em profundidade

- O Busca em largura = percurso em níveis
- Busca em profundidade = percurso em pré-ordem

Entretanto, estes dois algoritmos não lidam com arestas (ou arcos) ponderados

GRAFO NÃO-PONDERADO VS PONDERADO

DEFINIÇÃO DO PROBLEMA DO CAMINHO MÍNIMO

O problema do caminho mínimo é definido sobre um grafo não-orientado ponderado G = (V, E)

 \bigcirc Ou sobre um grafo orientado e ponderado G = (V, A)

Existe uma função w que mapeia cada aresta (ou arco) a um valor real que simboliza o peso da aresta (ou arco)

$$w: E \mapsto \mathbb{R}$$
 ou $w: A \mapsto \mathbb{R}$

7

DEFINIÇÃO DO PROBLEMA DO CAMINHO MÍNIMO

O peso do caminho p

$$p = < v_0, v_1, \dots, v_k >$$

é igual ao somatório dos pesos de suas arestas (ou arcos)

$$W(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

DEFINIÇÃO DO PROBLEMA DO CAMINHO MÍNIMO

O caminho mais curto entre dois vértices $u,v \in V$ pode ser definido como

$$\delta(u,v) = \begin{cases} \min & w(p) : u \stackrel{p}{\sim} v, \text{ se existe caminho entre } u \in v \\ \infty, & \text{caso contrario} \end{cases}$$

Ou seja, o caminho mais curto entre u e v é

$$w(p) = \delta(u, v)$$

9

SUBESTRUTURA ÓTIMA DO CAMINHO MÍNIMO

Seja $p = \langle v_0, v_1, \dots, v_k \rangle$ o caminho mínimo entre os vértices v_0 e v_k

$$\bigcirc$$
 $w(p) = \delta(v_0, v_k)$

Para quaisquer i e j tais que $1 \le i < j \le k$

 \bigcirc Seja $p_{ij} = \langle v_i, v_{i+1}, \dots, v_j \rangle$ o subcaminho entre i e j em p

Temos que $p_{ij} = \delta(v_i, v_j)$

O Isto é, o caminho mínimo entre v_i e v_j é um subcaminho de p

PROBLEMA DO CAMINHO MÍNIMO

Seja
$$G = (N, A)$$
 um grafo

- \bigcirc O conjunto N são os vértices
 - Vértice inicial $s \in N$ e vértice final $t \in N$
- O conjunto *A* são os arcos entre dois vértices

Todo arco a_{ij} possui um custo c_{ij}

O problema é definido utilizando variáveis $x_{ij} > 0$

- Existe uma variável x_{ij} para todo arco $a_{ij} \in A$
- $x_{ij} = 1$ se o arco faz parte do caminho mínimo entre $s \in t$
- $x_{ij} = 0$ caso contrário

A função objetivo do modelo tenta minimizar o custo do caminho entre *s* e *t*

 Isto é equivalente a minimizar o custo das arestas escolhidas

$$\min \ z = \sum_{(i,j) \in A} c_{ij} x_{ij}$$

Temos que garantir a continuidade do caminho

O Deve existir um único fluxo contínuo entre *s* e *t*

Para isto, devemos garantir 3 coisas

- 1. Sai uma unidade de fluxo do vértice s
- 2. Chega uma unidade de fluxo no vértice *t*
- 3. Tudo que chega tem que sair nos outros vértices

$$\sum_{(i,k)\in A} x_{ik} - \sum_{(k,j)\in A} x_{kj} = \begin{cases} 1, & \text{se } k = s \\ -1, & \text{se } k = t \\ 0, & \text{caso contrário} \end{cases}, \forall k \in V$$

Por fim, devemos dizer que todas as variáveis são reais e positivas

$$x_{ij} > 0$$
 $(i,j) \in A$

O modelo completo de programação linear do caminho mínimo pode ser descrito como

$$\min \ z = \sum_{(i,j) \in A} c_{ij} x_{ij}$$

$$\sum_{(i,k) \in A} x_{ik} - \sum_{(k,j) \in A} x_{kj} = \begin{cases} 1, & \text{se } k = s \\ -1, & \text{se } k = t \\ 0, & \text{caso contrário} \end{cases}, \forall k \in V$$

$$x_{ij} > 0 \qquad (i,j) \in A$$

ÁRVORE

Sega G = (V, E) um grafo não-orientado e ponderado

Uma árvore T = (V, E') é um subgrafo induzido de G tal que

- *T* é conexo
- |E'| = |V| 1

Uma árvore geradora mínima (AGM) é a árvore de menor custo total

Assim como no problema do caminho mínimo, considere que \boldsymbol{w} que mapeia cada aresta a um valor real que simboliza o peso da aresta

$$w: E \mapsto \mathbb{R}$$

O peso de uma árvore geradora T é definido como $\sum_{e \in E'} w_e$

Existe um número exponencial de diferentes árvores geradoras em um grafo

- \bigcirc Para ser mais preciso, existem n^{n-2} diferentes AGMs
- Enumerar todas elas é um problema #*p*-Completo

O problema da árvore geradora mínima consiste em encontrar a AGM de menor peso dentre todas as possíveis árvores

- O Problema pode ser resolvido em tempo polinomial
- Subestrutura ótima

Em outras palavras, consiste em encontrar a combinação de arestas cuja AGM resultante tenha o menor peso possível

APLICAÇÕES

Diversos problemas práticos são modelados como AGMs

- O Tabela de roteamento em redes de computadores
- Modelar uma rede de comunicações
- Análise de clusters
- Desenho de circuitos VLSI (microprocessadores)
- Taxonomia
- Problema base para diversos outros algoritmos e problemas em grafos

Seja G = (N, E) um grafo

○ O conjunto *N* são os vértices e *E* são as arestas

A formulação mais simples para AGM utiliza arcos

- \bigcirc Para toda aresta $e_k \in E$ que conecta os vértices $i \in N$ e $j \in N$
- O Definimos um par de variáveis a_{ij} e a_{ji}
- O Definimos um conjunto de arcos *A*

Todo arco a_{ij} possui um custo c_{ij}

 \bigcirc Custo é reflexivo: $a_{ij} = a_{ji}$

O problema é definido utilizando variáveis $x_{ij} > 0$

- \bigcirc Existe uma variável x_{ij} para todo arco a_{ij}
- $x_{ij} = 1$ se o arco faz parte da árvore geradora mínima
- $x_{ij} = 0$ caso contrário

Além disso, variáveis de fluxo $y_{ij}^p > 0$ adicionais são utilizadas

- \bigcirc Existem p variáveis y_{ij} para todo arco a_{ij}
- y_{ijp} determina a quantidade de fluxo entre os vértices $i \in N$ e $j \in N$

A função objetivo do modelo minimiza o custo da árvore geradora

 Isto é equivalente a minimizar o custo das arestas escolhidas

$$\min \ z = \sum_{(i,j) \in A} c_{ij} x_{ij}$$

Temos que garantir a conectividade da árvore

 Deve existir um único fluxo contínuo entre um vértice especial r e todos os outros vértices do grafo

Para isto, devemos garantir 2 coisas

- 1. Saem |V| 1 unidades de fluxo do vértice r
- 2. Chega uma unidade de fluxo em cada outro vértice

Isto implica que existem |V|-1 caminhos na árvore

O Existe um caminho de *r* para todos os outros vértices

$$\sum_{(i,k)\in A} y_{ik}^p - \sum_{(k,j)\in A} y_{kj}^p = \begin{cases} 1, & \text{se } k = r \\ -1, & \text{se } k = p \\ 0, & \text{caso contrário} \end{cases} \forall k \in V, \ p \in V \setminus \{r\}$$

Devemos conectar as variáveis x e y do modelo de tal forma que x_{ij} assume um valor sempre maior ou igual a y_{ij}^p , para todo $p \in V \setminus \{r\}$

- \bigcirc Fazemos isto pois $\sum_{p \in V} y_{ij}^p$ pode ser maior que 1
- \bigcirc Entretanto, x_{ij} nunca será maior do que 1

$$x_{ij} \ge y_{ij}^p, \quad \forall (i,j) \in A, \quad p \in V \setminus \{r\}$$

Também devemos garantir uma árvore só pode ter |V|-1 arestas

$$\sum_{(i,j)\in A} x_{ij} \leq |V| - 1$$

Por fim, devemos dizer que todas as variáveis são reais e positivas

$$x_{ij} > 0$$
 $(i,j) \in A$

$$y_{ij}^p \geq 0, \qquad \forall (i,j) \in A, \quad p \in V \setminus \{r\}$$

$$\min \ z = \sum_{(i,j) \in A} c_{ij} x_{ij}$$

$$\sum_{(i,j) \in A} x_{ij} \le |V| - 1$$

$$x_{ij} \ge y_{ij}^p, \qquad \forall (i,j) \in A, \quad p \in V \setminus \{r\}$$

$$\sum_{(i,k)\in A} y_{ik}^p - \sum_{(k,j)\in A} y_{kj}^p = \begin{cases} 1, & \text{se } k = r \\ -1, & \text{se } k = p \\ 0, & \text{caso contrário} \end{cases} \forall k \in V, p \in V \setminus \{r\}$$

$$x_{ij} \ge 0$$
, $y_{ij}^p \ge 0$, $\forall (i,j) \in A$, $p \in V \setminus \{r\}$

PRÓXIMA AULA: EXERCÍCIOS