Vérification des Processus Décisionnels de Markov pondérés

Florent Delgrange

UMONS

Faculté des Sciences

Mab2 Science Informatique

Préliminaires LTL CTL PCTL PCTL PRCTL Références

Table des matières

- 1. Préliminaires
 - 1.1 Système de transition
 - 1.2 Chemins et Traces de TS
- 2. ITI
 - 2.1 Intuition
 - 2.2 Syntaxe
 - 2.3 Sémantique
- CTL
 - 3.1 Intuition
 - 3.2 Syntaxe
 - 3.3 Sémantique
 - 3.4 LTL vs CTL
- 4. PCTI

- 4.1 MC
 - .2 Intuition
- 4.3 Syntaxe
- 4.4 Sémantique
- 4.5 Comparaison de logiques
- 5. PRCTI
 - 51 WMC
 - 5.2 Intuition
 - 5.3 Syntaxe
 - 5.4 Sémantique
 - 5.5 MDP et stratégies
 - 5.6 PRCTL pour les MDPs
 - 5.7 PRCTI dans Storm

Système de transition

Definition (Système de transition)

Un système de transition (noté TS, pour transition system) est un tuple $\mathcal{T} = (S, A, \rightarrow, AP, L)$ où

- S est un ensemble d'états.
- A est un ensemble d'actions,
- $\rightarrow \subseteq S \times A \times S$ est une relation de transition,
- AP est un ensemble de propositions atomiques et
- $L: S \to 2^{AP}$ est une fonction d'étiquetage.

Système de Transition

- Idée : Graphe orienté
 - noeuds : états du système
 - arcs : transitions du système
- État : décrit les informations d'un système à un certain moment de son comportement.
- Transition: si un état a plus d'une transition sortante, alors le comportement du système est non-déterministe, i.e.,
 l'évolution du système requiert la sélection d'une transition.
- Étiquetage : L(s) est l'ensemble des étiquettes a ∈ AP de l'état s.
- Pas d'états terminaux!

Système de transition

Système de Transition

Exemple

Figure - Distributeur de boissons [1]

- $S = \{pay, select, beer, soda\}$
- A = {insert_coin, τ, get_soda, get_beer}

AP = { paid, drink }

Préliminaires

Chemins

Un chemin d'un système de transition est une succession d'état possible résultant de l'exécution de ce système.

• Idée : pas d'états terminaux ⇒ chemins infinis.

Definition (Chemin d'un TS)

Soit $\mathcal{T} = (S, A, \rightarrow, AP, L)$, un TS. $\pi = S_0 S_1 S_2 S_3 \dots$ est un *chemin* (infini) de \mathcal{T} ssi pour tout $i \in \mathbb{N}$, il existe une action $\alpha \in A$ telle que $S_i \xrightarrow{\alpha} S_{i+1}$, avec $S_i, S_{i+1} \in S$. L'ensemble des chemins (infinis) $\pi = S_0 S_1 \dots$ commençant en l'état S (i.e., tels que $S_0 = S$) est dénoté par Paths(S). **Préliminaires**

Traces

Les traces d'un système de transition sont des mots infinis sur l'alphabet 2^{AP} formés lors de l'exécution du système.

Definition (Traces)

Soit $\mathcal{T} = (S, A, \rightarrow, AP, L)$, un TS. La trace du chemin $\pi = s_0 s_1 \dots$ est donné par

$$trace(\pi) = L(s_0)L(s_1)...$$

Dès lors, soit $S \in S$, un état de T, les traces du système provenant de l'état S est donné par

$$Traces(s) = \{trace(\pi) \mid \pi \in Paths(s)\}$$

Préliminaires

Chemins et Traces

Exemple

Figure - Distributeur de boissons [1]

- $\pi = pay \ select \ soda \ pay \ select \ beer \cdots \in Paths(pay)$
- Ø{paid}{paid, drink}Ø{paid}{paid, drink}···= trace(π) ∈
 Traces(paid)

éliminaires **LTL** CTL PCTL PRCTL Références

Table des matières

- Préliminaires
 - 1.1 Système de transition
 - 1.2 Chemins et Traces de TS
- 2. LTL
 - 2.1 Intuition
 - 2.2 Syntaxe
 - 2.3 Sémantique
- CTL
 - 3.1 Intuition
 - 3.2 Syntaxe
 - 3.3 Sémantique
 - 3.4 LTL vs CTL
- 4. PCTI

- 41 MC
- 1.2 Intuition
- 4.3 Syntaxe
- 4.4 Sémantique
- 4.5 Comparaison de logiques
- 5 PRCTI

 - 5.2 Intuition
 - 5.3 Syntaxe
 - 5.4 Sémantique
 - 5.5 MDP et stratégies
 - 5.6 PRCTI pour les MDPs
 - 5.7 PRCTI dans Storm

Logique temporelle linéaire (LTL)

- L'exactitude des systèmes réactifs dépend des exécutions + de l'équité du système
- La logique temporelle permet de traiter ces aspects
 - → temps "réel" (discret!)
- Temps linéaire ⇒ logique basée sur les chemins du système
 - → à chaque étape, un seul successeur est possible
- → LTL ≈ langage qui a pour but de vérifier des propriétés sur les exécutions d'un système

Logique temporelle linéaire (LTL): intuition

Soit $\mathcal{T} = (S, A, \rightarrow, AP, L)$, LTL est formée par ...

- 1. des propositions atomiques $a \in AP$.
- 2. des combinaisons booléennes de formules : $\neg \phi$, $\phi \land \psi$, $\phi \lor \psi$ et
- 3. des opérateurs temporels : soit $\pi = s_0 s_1 s_2 s_3 \cdots \in Paths(\mathcal{T})$

Syntaxe

Syntaxe

Soit *AP*, un ensemble de propositions atomiques, les *formules* LTL sont formées selon la grammaire suivante :

$$\phi ::= true \mid a \mid \phi \wedge \psi \mid \neg \phi \mid \bigcirc \phi \mid \phi U \psi$$

où $a \in AP$

Note : $\phi U \psi$ requiert l'apparition de ψ dans le chemin ; ϕ indéfiniment n'est pas suffisant !

Syntaxe

Syntaxe

Opérateurs dérivés :

eventually always

 $\Diamond \phi \equiv true \, U \, \psi$

 $\Box \phi \equiv \neg \Diamond \neg \phi$

Ordre de précédence :

- 1. parenthèses
- opérations unaires (¬, ○)
- 3. opérations binaires :
 - 3.1 U (assosiatif par la droite, e.g., $\phi_1 U \phi_2 U \phi_3 \equiv \phi_1 U (\phi_2 U \phi_3)$)
 - 3.2 A

Combinaisons de modalités temporelles :

- $\Box \Diamond \phi$ "infiniment souvent ϕ "
- ◊□φ "éventuellement toujours φ"

liminaires LTL CTL PCTL PCTL PRCTL Référence

Syntaxe

Combinaisons de modalités temporelles

Exemple (infiniment souvent)

Figure - Distributeur de boissons [1]

Pour toute trace de l'éxécution du système depuis pay, i.e.,
 ∀σ ∈ Traces(pay), pour toute position dans σ, le label drink doit apparaître dans le futur.

Exemple (éventuellement toujours)

∀σ ∈ Traces(s), il y a toujours un moment où on voit toujours a, mais plus b
 ⇔ ◊□(a ∧ ¬b)

Sémantique

Soient $\mathcal{T} = (S, A, \rightarrow, AP, L)$ et ϕ , une formule LTL sur AP, la propriété LT induite par ϕ est le langage de mots

$$Words(\phi) = \{ \sigma = A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega} \mid \sigma \models \phi \}$$

où ⊨ est la plus petite relation satisfaisant

$$\sigma \models true$$

$$\sigma \models a \qquad ssi \ a \in A_0$$

$$\sigma \models \phi \land \psi \qquad ssi \ \sigma \models \phi \text{ et } \sigma \models \psi$$

$$\sigma \models \neg \phi \qquad ssi \ \sigma \not\models \phi$$

$$\sigma \models \bigcirc \phi \qquad ssi \ \sigma[1:] = A_1 A_2 \dots \models \phi$$

$$\sigma \models \phi U \psi \qquad ssi \ \exists j \ge 0, \ \sigma[j:] \models \psi \text{ et } \forall 0 \le i < j, \ \sigma[i:] \models \phi$$

Sémantique

Soit $s \in S$,

- $\forall \pi \in Paths(s), \pi \models \phi ssi trace(\pi) \models \phi$
- $s \models \phi$ ssi $\forall \pi \in Paths(s), \pi \models \phi$

Exemple

Figure - [2]

éliminaires LTL **CTL** PCTL PRCTL Références

Table des matières

- Préliminaires
 - 1.1 Système de transition
 - 1.2 Chemins et Traces de TS
- 2. ITI
 - 2.1 Intuition
 - 2.2 Syntaxe
 - 2.3 Sémantique
- 3. CTL
 - 3.1 Intuition
 - 3.2 Syntaxe
 - 3.3 Sémantique
 - 3.4 LTL vs CTL
- 4. PCTI

- 4.1 MC
 - .2 Intuition
- 4.3 Syntaxe
- 4.4 Sémantique
- 4.5 Comparaison de logiques

temporelles en branchements

- 5. PRCTI
 - 5.1 WMC
 - 5.2 Intuition
 - 5.3 Syntaxe
 - 5.4 Sémantique
 - 5.5 MDP et stratégies
 - 5.6 PRCTL pour les MDPs
 - 5.7 PRCTI dans Storm

Logique d'arbre de calculs (CTL)

- Notion d'arbre d'exécution = arbre de calcul
- Dépliage infini du système considérant toutes les possibilités de branchement

Arbre de calculs

Arbre de calculs depuis l'état so?

Est-ce que toutes les exécutions ont toujours la possibilité d'atteindre éventuellement {b}?

Quantificateurs

- LTL : $S \models \phi$ signifie que tous les chemins commençant en S satisfont ϕ
 - Quantification explicite!
 - $-s \models \forall \phi$
- CTL : on peut considérer seulement certains chemins
 - Existe-t-il un chemin satisfaisant ϕ commençant en S?

$$-s \models \exists \phi \iff \underbrace{s \not\models \forall \neg \phi}_{\mathsf{LTL}: s \not\models \neg \phi}$$

liminaires LTL **CTL P**CTL PCTL PRCTL Référence

Intuition

Quantificateurs

Motivation

Est-ce que toutes les exécutions ont toujours la possibilité d'atteindre éventuellement {b}?

- LTL:
 - $s_0 \models \Box \Diamond b$ ne fonctionne pas!
 - requiert que tous les chemins du système de transition atteignent $\{b\}$ $(s_0^{\omega} \not\models \Diamond b)$
 - → On ne parle pas de possibilité d'atteindre {b}
- Pas expressible en LTL

Quantificateurs

Motivation

Est-ce que toutes les exécutions ont toujours la possibilité d'atteindre éventuellement {b}?

- → Besoin de quantificateurs
 - CTL:
 - s₀ |= ∀□∃◊b
 - Pour tout chemin commençant en S_0 , à chaque étape, il existe un chemin qui peut atteindre b.

CTL vs LTL

Comparaison intuitive

- LTL:
 - chemins + traces
 - temps linéaire
 - chaque point a un seul futur possible
- CTL:
 - arbre de calculs + comportement des branchements
 - temps en branchements
 - chaque noeud de l'arbre a plusieurs futurs possibles

- Formules d'états
- Assertions de propositions atomiques dans des états ainsi que leur structure de branchement
 - propositions atomiques $a \in AP$
 - combinaisons booléennes de formules : $\neg \Phi$, $\Phi \land \Psi$, $\Phi \lor \Psi$
 - quantification de chemins via des formules de chemins

CTL

Intuition

• Formules de chemins

Formules de chemins

Formules LTL ≠ formules de chemin CTL! En effet, les formules de chemin CTL...

- ne peuvent pas être combinées avec des connecteurs booléens
- ne permettent pas l'imbrication des modalités temporelles Exemple :

$$s \models \forall \Box \exists \Diamond b$$
 correct $s \models \forall \Box \Diamond b$ incorrect

Syntaxe

Syntaxe

Soit AP, un ensemble de propositions atomiques.

 Les formules d'états CTL sont formées selon la grammaire suivante :

$$\Phi ::= true \mid a \mid \Phi \wedge \Psi \mid \neg \Phi \mid \exists \phi \mid \forall \phi$$

où $a \in AP$ et ϕ est une formule de chemin.

 Les formules de chemins CTL sont formées selon la grammaire suivante :

$$\phi ::= \bigcirc \Phi \mid \Phi U \Psi$$

où Φ et Ψ sont des formules d'états.

Sémantique

Soient $\mathcal{T} = (S, A, \rightarrow, AP, L)$, un TS et $S \in S$, un état de \mathcal{T} . $S \models \Phi$ ssi la formule Φ tient dans l'état S, i.e.,

$$s \models true$$

 $s \models a$ ssi a est un label de s , i.e., $a \in L(s)$
 $s \models \Phi \land \Psi$ ssi $s \models \Phi$ et $s \models \Psi$
 $s \models \neg \Phi$ ssi $\exists \pi \in Paths(s), \pi \models \phi$
 $s \models \forall \phi$ ssi $\forall \pi \in Paths(s), \pi \models \phi$

Sémantique

Soient $\mathcal{T} = (S, A, \rightarrow, AP, L)$, un TS et $\pi = s_0 s_1 s_2 \cdots \in Paths(s)$, un chemin.

 $\pi \models \phi$ ssi π satisfait ϕ , i.e.,

$$\pi \models \Phi \qquad \text{ssi } S_0 \models \Phi$$

$$\pi \models \bigcirc \Phi \qquad \text{ssi } S_1 \models \Phi$$

$$\pi \models \Phi U \Psi \qquad \text{ssi } \exists j \in \mathbb{N}, \ S_j \models \Psi \text{ et } \forall 0 \leq i < j, \ S_i \models \Phi$$

$$\pi \models \Diamond \Phi \qquad \text{ssi } \exists j \in \mathbb{N}, \ S_j \models \Phi$$

$$\pi \models \Box \Phi \qquad \text{ssi } \forall j \in \mathbb{N}, \ S_i \models \Phi$$

Satisfiabilité

Definition (Ensemble de satisfaction)

Soient $\mathcal{T} = (S, A, \rightarrow, AP, L)$, un TS et Φ , une formule d'état CTL sur AP. L'ensemble de satisfaction du TS \mathcal{T} est donné par

$$Sat_{\mathcal{T}}(\Phi) = \{ s \in S \mid s \models \Phi \}$$

LTL vs CTL

LTL vs CTL

LTL et CTL sont incomparables!

Exprimable en ...

- CTL mais pas LTL :
 ∀□∃◊a (voir exemple)

En effet, $\Diamond \Box a \not\equiv \forall \Diamond \forall \Box a$!

- ♦□a assure que a sera atteint éventuellement en tout point.
- $\forall \Diamond \forall \Box a$ affirme que pour toute exécution, un état s est éventuellement atteint, tel que $s \models \forall \Box a$

LTL vs CTL

LTL vs CTL

Exemple

• $AP = \{a\}$

- S₀ satisfait la formule LTL ◊□a car chaque chemin commençant en S₀ reste éventuellement toujours en S₀ ou en S₂, tous les deux étiquettés avec a.
- s_0 ne satisfait pas la formule CTL $\forall \Diamond \forall \Box a$. Prenons le chemin s_0^{ω} . $s_0^{\omega} \not\models \Diamond \forall \Box a$

LTL vs CTL

LTL vs CTL

Exemple

$$s_0^{\omega} \not\models \Diamond \forall \Box a$$

- $\pi = s_0 s_1 ... \models \Diamond \Phi \iff \exists j \in \mathbb{N}, s_j \models \Phi$
- $s \models \forall \Box a \iff \forall \pi = s_0 s_1 s_2 \cdots \in Paths(s), a \in L(s_i) \forall i \in \mathbb{N}$

Le chemin

$$s_0^* s_1 s_2^{\omega}$$

passe par un état $\neg a$ (i.e., par s_1).

→ Il n'existe pas d'états dans le chemin s_0^ω qui va satisfaire $\forall \Box a$ car $s_0 \not\models \forall \Box a$

<u>Éliminaires</u> LTL CTL **PCTL** PRCTL Références

Table des matières

- Préliminaires
 - 1.1 Système de transition
 - 1.2 Chemins et Traces de TS
- 2. ITI
 - 2.1 Intuition
 - 2.2 Syntaxe
 - 2.3 Sémantique
- CTL
 - 3.1 Intuition
 - 3.2 Syntaxe
 - 3.3 Sémantique
 - 3.4 LTL vs CTL
- 4. PCTL

- 4.1 MC
- 4.2 Intuition
- 4.3 Syntaxe
- 4.4 Sémantique
- 4.5 Comparaison de logiques

temporelles en branchements

- 5. PRCTI
 - 5.1 WMC
 - 5.2 Intuition
 - 5.3 Syntaxe
 - 5.4 Sémantique
 - 5.5 MDP et stratégies
 - 5.6 PRCTL pour les MDPs
 - 5.7 PRCTI dans Storm

•oooooooo

Definition (Chaîne de Markov à temps discret)

Une chaîne de Markov à temps discret, notée MC (pour Markov Chain), est un modèle probabiliste défini par un tuple $\mathcal{M} = (S, \Delta, AP, L)$ où :

- S est un ensemble dénombrable d'états,
- $\Delta: S \times S \rightarrow [0,1] \cap \mathbb{Q}$ est une fonction de transition telle que

$$\forall s \in S, \sum_{s' \in S} \Delta(s, s') = 1$$

où $\Delta(s, s')$ est la probabilité de passer de l'état s à l'état s',

- AP est un ensemble de propositions atomiques et
- $L: S \to 2^{AP}$ est une fonction d'étiquetage.

Chaînes de Markov

MC.

- Les MCs sont des modèles déterministes
- L'idée des chemins d'une MC est la même que pour les TSs :

Definition (Chemin dans une MC)

Un chemin (infini) $\pi = s_0 s_1 s_2 \cdots \in S^{\omega}$ est une séquence d'états de la MC $\mathcal{M} = (S, \Delta, AP, L)$ où $\forall i \in \mathbb{N}, \Delta(s_i, s_{i+1}) > 0$. Paths(s) est l'ensemble des chemins de \mathcal{M} qui commencent en l'état $s \in S$. Intuition

Logique en arbre de calculs probabiliste (PCTL)

- CTL probabiliste
- Logique temporelle en branchements pour exprimer les propriétés d'états des MCs.
- Logique proche de CTL pour les systèmes probabilistes.

Intuition

CTL vs PCTL

- CTL:
 - Chemins quantifiés en utilisant ∀ et ∃
- PCTL:

Chemins quantifiés en utilisant leur probabilité, avec $\mathcal{P}_{J}(\phi)$ où $J \subseteq [0, 1]$ et ϕ est une formule de chemin

$$s \models \mathcal{P}_{I}(\phi) \text{ ssi } \mathbb{P}_{s}(\{\pi \in Paths(s) \mid \pi \models \phi\}) \in J$$

+ PCTL inclus additionnellement le until borné $U^{\leq n}$

0000000

Syntaxe

Soit AP, un ensemble de propositions atomiques.

 Les formules d'états PCTL sont formées selon la grammaire suivante :

$$\Phi ::= true \mid a \mid \Phi \wedge \Psi \mid \neg \Phi \mid \mathcal{P}_{l}(\phi)$$

où $a \in AP$, $J \subseteq [0, 1]$ et ϕ est une formule de chemin.

 Les formules de chemins PCTL sont formées selon la grammaire suivante :

$$\phi ::= \bigcap \Phi \mid \Phi U \Psi \mid \Phi U^{\leq n} \Psi$$

où Φ et Ψ sont des formules d'états et $n \in \mathbb{N}$.

Sémantique

Soient $\mathcal{M} = (S, A, \Delta, AP, L)$, une MC et $s \in S$, un état de \mathcal{M} . $s \models \Phi$ ssi la formule Φ tient dans l'état s, i.e.,

$$s \models true$$

 $s \models a$ ssi a est un label de s , i.e., $a \in L(s)$
 $s \models \Phi \land \Psi$ ssi $s \models \Phi$ et $s \models \Psi$
 $s \models \neg \Phi$ ssi $s \not\models \Phi$
 $s \models \mathcal{P}_{I}(\phi)$ ssi $\mathbb{P}_{S}(\phi) \in J$

où $\mathbb{P}_s(\phi) = \mathbb{P}_s(\{\pi \in Paths(s) \mid \pi \models \phi\})$ et \mathbb{P}_s est la mesure de probabilité sur le σ -algèbre dont les résultats sont les chemins commençant en s, i.e., Paths(s)

Sémantique

```
Soient \mathcal{M} = (S, A, \Delta, AP, L), une MC et \pi = S_0 S_1 S_2 \cdots \in Paths(s), un chemin. \pi \models \phi ssi \pi satisfait \phi, i.e.,
```

$$\pi \models \Phi \qquad \text{ssi } S_0 \models \Phi$$

$$\pi \models \bigcirc \Phi \qquad \text{ssi } S_1 \models \Phi$$

$$\pi \models \Phi U \Psi \qquad \text{ssi } \exists j \in \mathbb{N}, \ S_j \models \Psi \text{ et } \forall 0 \leq i < j, \ S_i \models \Phi$$

$$\pi \models \Phi U^{\leq n} \Psi \qquad \text{ssi } \exists 0 \leq j \leq n, \ S_j \models \Psi \text{ et } \forall 0 \leq i < j, \ S_i \models \Phi$$

$$\pi \models \Diamond \Phi \qquad \text{ssi } \exists j \in \mathbb{N}, \ S_j \models \Phi$$

$$\pi \models \Box \Phi \qquad \text{ssi } \forall j \in \mathbb{N}, \ S_i \models \Phi$$

Satisfiabilité

L'ensemble de satisfaction d'une MC est essentiellement défini de la même façon que pour les TSs.

Definition (Ensemble de satisfaction)

Soient $\mathcal{M} = (S, A, \Delta, AP, L)$, une MC et Φ , une formule d'état PCTL sur AP. L'ensemble de satisfaction de la MC \mathcal{M} est donné par

$$Sat_{\mathcal{M}}(\Phi) = \{ s \in S \mid s \models \Phi \}$$

Sémantique

Remarque

Soient $\mathcal{M} = (S, \Delta, AP, L)$, une MC, $T \subseteq S$, un sous-ensemble d'états de \mathcal{M} et Φ une formule PRCTL.

La pseudo-formule $\Diamond T$ est équivalente à la formule de chemin $\Diamond \Phi$ telle que

$$T = Sat_{\mathcal{M}}(\Phi)$$

Exemple:

Supposons que AP contienne l'ensemble des étiquetages naturels de \mathcal{M} , i.e., $S \subseteq AP$ et que $\forall s, s' \in S$ tels que $s \neq s'$, que $s \in L(s)$ et que $s \notin L(s')$, alors

$$\Phi ::= \neg (\bigwedge_{S \in T} \neg S)$$

Comparaison de logiques temporelles en branchements

PCTL vs CTL

$$s \models \mathcal{P}_{=1}(\Diamond \Phi) \implies s \models \forall \Diamond \Phi$$

La probabilité que tous les chemins satisfassent une formule de chemin PCTL avec une probabilité de 1 ne signifie pas que tous les chemins satisfassent la formule de chemin CTL correspondante!

$$s \models \mathcal{P}_{>0}(\Box \Phi) \iff s \models \exists \Box \Phi$$

Le fait qu'un chemin satisfasse une formule de chemin CTL n'implique pas forcément que la probabilité des chemins satisfaisant la formules PCTL correspondante soit non-nulle!

00000000000

PCTL vs CTL

Exemple

- $s_0 \models \mathcal{P}_{=1}(\Diamond b)$, mais $s \not\models \forall \Diamond b$
- $s_0 \models \exists \Box a$, mais $s \not\models \mathcal{P}_{>0}(\Box a)$

éliminaires LTL CTL PCTL **PRCTL** Références

Table des matières

- Préliminaires
 - 1.1 Système de transition
 - 1.2 Chemins et Traces de TS
- 2. ITI
 - 2.1 Intuition
 - 2.2 Syntaxe
 - 2.3 Sémantique
- CTL
 - 3.1 Intuition
 - 3.2 Syntaxe
 - 3.3 Sémantique
 - 3.4 LTL vs CTL
- 4. PCTI

- 4.1 MC
 - .2 Intuition
- 4.3 Syntaxe
- 4.4 Sémantique
- 4.5 Comparaison de logiques
- 5. PRCTL
 - 5.1 WMC
 - 5.2 Intuition
 - 5.3 Syntaxe
 - 5.4 Sémantique
 - 5.5 MDP et stratégies
 - 5.6 PRCTL pour les MDPs
 - 5.7 PRCTI dans Storm

Chaînes de Markov pondérées

Definition (Chaîne de Markov pondérée)

Une chaîne de Markov pondérée (WMC, pour weighted Markov chain) \mathcal{M} est une chaîne de Markov enrichie par une fonction de poids. \mathcal{M} est définie par le tuple (S, Δ, AP, L, w) tel que :

- S, Δ , AP et L sont définis comme pour une MC classique et
- $W: S \times S \to \mathbb{N}^{>0}$ est la fonction de poids associant à chaque transition un coût strictement positif.

Chaînes de Markov pondérées

Exemple

Figure – Système équipé de panneaux solaires produisant de l'énergie (*kJ*) en fonction du climat.

Chaînes de Markov pondérées

Soient $\mathcal{M} = (S, \Delta, AP, L, w)$, une WMC, $s \in S$, un état de \mathcal{M} , $T \subseteq S$, un sous-ensemble d'états cibles et $\pi \in Paths(s)$.

- $TS^T(\pi)$, la somme tronquée de π , est le coût du chemin π jusqu'à atteindre (pour la première fois) un état de T
- $\mathbb{E}_{s}(\lozenge T) = \mathbb{E}_{s}(\{TS^{T}(\pi) \mid \pi \in Paths(s)\})$ est l'espérance de la longueur des chemins (en terme de coût) pour que $s \models \mathcal{P}_{=1}(\lozenge T)$, i.e., le coût de $s \models \mathcal{P}_{=1}\lozenge T$ (en d'autres cas, cette espérance est infinie)
- $\mathbb{P}_S(\lozenge_{\leq l}T) = \mathbb{P}_S(\{\pi \in Paths(s) \mid TS^T(\pi) \leq l\})$ est la probabilité que les chemins $\pi_{\in Paths(s)} \models \lozenge T$ avec un coût (i.e., une somme tronquée) inférieure à $l \in \mathbb{N}$.

Chaînes de Markov pondérées

Exemple

$$TS^{\{Fn\}}(E \cdot Ln \cdot Ln \cdot Mn \cdot Fn \dots)$$
$$= 5 + 3 + 3 + 2 = 13$$

- $\mathbb{E}_E(\lozenge\{Fn\}) = 25kJ$
- $1 \mathbb{P}_E(\lozenge_{\leq 7}\{Fn\}) = \mathbb{P}_E(\lozenge_{\geq 8}\{Fn\}) = 1 0.14 = 0.86$

Intuition

PRCTL Intuition

- PCTL + Espérence des "rewards" (≈coûts) des chemins.
- Inclus un until borné par le coûts des chemins en terme de somme tronquée.

Syntaxe

Syntaxe

Soit AP, un ensemble de propositions atomiques.

• Les *formules d'états* PRCTL sont formées selon la grammaire suivante :

$$\Phi ::= true \mid a \mid \Phi \wedge \Psi \mid \neg \Phi \mid \mathcal{P}_{J}(\phi) \mid \mathcal{E}_{R}(\Phi)$$

où $a \in AP, J \subseteq [0, 1], R \in [0, +\infty[\cap \mathbb{N}]$ (bornes d'espérances du coût des chemins) et ϕ est une formule de chemin.

 Les formules de chemins PRCTL sont formées selon la grammaire suivante :

$$\phi ::= \bigcirc \Phi \mid \Phi U \Psi \mid \Phi U^{\leq n} \Psi \mid \Phi U_{\leq r} \Psi$$

où Φ et Ψ sont des formules d'états et $n, r \in \mathbb{N}$.

Sémantique

Soient $\mathcal{M}=(S,A,\Delta,AP,L)$, une MC, $s\in S$, un état de \mathcal{M} et $\pi=s_0s_1s_2\cdots\in Paths(s)$, un chemin de \mathcal{M} . La sémantique de PRCTL est la même que celle de PCTL, à l'exception que

$$s \models \mathcal{E}_{R}(\Phi)$$
 ssi $\mathbb{E}_{s}(\Diamond \Phi) \in R$
 $\pi \models \Phi U_{\leq r} \Psi$ ssi $\exists j \in \mathbb{N}, s_{j} \models \Psi, \forall 0 \leq i < j, s_{i} \models \Phi \text{ et}$
 $TS^{Sat_{\mathcal{M}}(\Psi)}(\pi) \leq r$

Note : la définition de l'ensemble de satisfaction d'une WMC PRCTL est identique à celle de PCTL

Processus Décisionnel de Markov et Stratégie

- Un processus décisionnel de Markov (MDP, pour Markov decision process) est un modèle probabiliste non-déterministe.
- $\mathcal{M} = (S, A, \Delta, AP, L, w)$
 - Actions: A
 - Fonction de transition : Δ : $S \times A \times S$ → $[0, 1] \cap \mathbb{Q}$
- Chemins de $\mathcal{M}: \pi = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} s_3 \dots$
 - $S_i \xrightarrow{\alpha_i} S_{i+1}$ pour tout $i \in \mathbb{N}$
 - $\mathcal{H}(\mathcal{M})$: histoires de \mathcal{M} , i.e., l'ensemble des préfixes des chemins de \mathcal{M}
- Stratégies de \mathcal{M} , σ : $\mathcal{H}(\mathcal{M}) \rightarrow A$
- Les décisions d'un MDP \mathcal{M} , régulées par une stratégie σ , induisent une MC \mathcal{M}^{σ}

MDP et stratégies

Processus Décisionnel de Markov

Exemple

•
$$\mathcal{M} = (S, A, \Delta, w)$$

•
$$\sigma: S \to A$$

$$-\sigma(s)=\beta$$

$$-\sigma(t) = \sigma(u) = \gamma$$

$$\pi = s \xrightarrow{\beta} t \xrightarrow{\gamma} s \xrightarrow{\beta} u \xrightarrow{\gamma} \dots \in Paths(s)$$

$$\pi = s t s u \dots \in Paths(s) \text{ est un chemin de } \mathcal{M}^{\sigma}$$

S LTL CTL PCTL PCTL PRCTL Références

MDP et stratégies

Processus Décisionnel de Markov

Soient $\mathcal{M} = (S, A, \Delta, AP, L, w)$, un MDP, $s \in S$, un état de \mathcal{M} et $T \subseteq S$, un sous-ensemble d'états cibles.

- E^{min}_S(◊T) est l'espérance minimale de la longueur des chemins commençant en S (en terme de somme tronquée) de M
 - i.e., l'espérance de la longueur des chemins commençant en 5 dans la MC induite par la stratégie qui minimise l'espérance de la longueur des chemins de M.
- $\mathbb{P}_s^{\max}(\lozenge_{\leq I}T)$ est la probabilité maximale d'atteindre T depuis s avec un coût inférieur à l dans M
 - i.e., la probabilité d'atteindre T avec un coût inférieure à I dans la MC induite par la stratégie qui maximise cette probabilité dans M.

PRCTL pour les MDPs

PRCTL pour les MDPs

Pour se référer aux MCs induites par ces stratégies, la syntaxe de PRCTL est essentiellement identique, à l'exception des formules d'états suivantes :

- On ne parle plus de $\mathcal{P}_{J}(\phi)$, mais plutot de $\mathcal{P}_{J}^{\mathsf{max}}(\phi)$
- On ne parle plus de $\mathcal{E}_R(\phi)$, mais plutot de $\mathcal{E}_R^{\sf min}(\phi)$

où $J \subseteq [0, 1], R \in [0, +\infty[\cap \mathbb{N}] \text{ et } \phi \text{ est une formule de chemin.}$

PRCTL dans Storm

PRCTL dans Storm

Exemple

```
mdp
 2
     module classic
 5
     s: [0..2] init 0;
     [beta] s=0 \rightarrow 0.5 : (s'=1) +
           0.5:(s'=2);
     [gamma] s=1 \rightarrow 1 : (s'=0);
     [alpha] s=2 \rightarrow 1 : (s'=2):
     [qamma] s=2 -> 1 : (s'=0);
10
11
12
     endmodule
13
14
     label "t" = s=1;
15
     rewards "weights"
16
       [alpha] true : 5;
17
18
       [beta] true : 3;
       [gamma] true : 2;
19
     endrewards
20
```


PRCTL dans Storm

PRCTL dans Storm

Time for model checking: 0.008s.

Exemple

$$s_0 \models \mathcal{E}_{\leq 10}^{\min}(\lozenge t)$$

```
>> storm --prism resources/simple_mdp.prism --prop "Rmin<=10 [F \"t\"]"
Storm 1.2.0
Model type: MDP (sparse)
States: 3
Transitions: 5
Choices: 4
Reward Models: weights
State Labels: 3 labels
  * deadlock -> 0 item(s)
  * init -> 1 item(s)
  * t -> 1 item(s)
Choice Labels: none
Model checking property R[exp]min<=10 [F "t"] ...
Result (for initial states): true
```

PRCTL dans Storm

PRCTL dans Storm

Time for model checking: 0.007s.

Exemple (requête)

$$s_0 \models \mathcal{E}_{=?}^{\min}(\lozenge t)$$

```
>> storm --prism resources/simple_mdp.prism --prop "Rmin=? [F \"t\"]"
Storm 1.2.0
Model type: MDP (sparse)
States: 3
Transitions: 5
Choices: 4
Reward Models: weights
State Labels: 3 labels
  * deadlock -> 0 item(s)
  * init -> 1 item(s)
  * t -> 1 item(s)
Choice Labels: none
Model checking property R[exp]min=? [F "t"] ...
Result (for initial states): 8
```

000000000000000

PRCTL dans Storm

PRCTL dans Storm

Exemple

$$s_0 \models \mathcal{P}_{\geq 0.7}^{\max}(\lozenge_{\leq 8}t)$$

>> storm --prism resources/simple_mdp.prism --prop "Pmax>=0.7 [F{\"weights\"}<=8 \"t\"]"

Model checking property Pmax>=7/10 [true Urew{"weights"}<=8 "t"] ... Result (for initial states): true

Time for model checking: 0.000s.

$$s_0 \models \mathcal{P}_{-2}^{\max}(\lozenge_{\leq 8}t)$$

>> storm --prism resources/simple_mdp.prism --prop "Pmax=? [F{\"weights\"}<=8 \"t\"]"

Model checking property Pmax=? [true Urew{"weights"}<=8 "t"] ... Result (for initial states): 0.75 Time for model checking: 0.010s.s. liminaires LTL CTL PCTL PRCTL Références

References I

- [1] Christel Baier et Joost-Pieter Katoen. *Principles of model checking*. MIT Press, 2008. isbn: 978-0-262-02649-9.
- [2] Mickael Randour. *Formal verification of computer systems*. ULB, 2016.