Computer Graphics -Introduction

Junjie Cao @ DLUT Spring 2018

http://jjcao.github.io/ComputerGraphics/

Computer Graphics

- One of the "core" computer science disciplines:
 - Algorithms and Theory
 - Artificial Intelligence
 - Computer Architecture
 - Computer Graphics
 - Computer Security
 - Computer Systems
 - Computer Vision
 - Databases
 - Machine Learning
 - Networks
 - Software Engineering

Context

- History
- Applications
- What is CG
- Administrative Stuff
- Topics
- Trends

Computer Graphics vs. Vision

What is computer graphics?

• The use of computers to synthesize and manipulate visual information.

The use of computers to synthesize and manipulate sensory information.

(touch)

Computer Vision

ROI

Image Computer Vision Story

Computer Graphics

Action!

Story

Computer Graphics

Image

Related to many Disciplines

What Is Computer Graphics?

Modeling

Computer Image Synthesis Viewing Modeling

- How to represent real environments
 - Geometry: curves, surfaces, volumes
 - Photometry: light, color, reflectance
- How to build these representations
 - Interactive: sculpt it
 - Algorithmic: let it grow (fractals, extraction)
 - Scanning: via 3D sensing

Modeling: Interactive

Modeling: Scanning

- David
 - 480 individually aimed scans
 - 2 billion polygons
 - 7,000 color images
 - 32 gigabytes
 - 30 nights of scanning
 - 22 people

Modeling: Algorithmic and Procedural

fractals

Rendering

- What is an image?
 - Distribution of light energy on 2D "film"
- How do we represent and store images?
 - Sampled array of "pixels": p[x,y]
- How do we generate images from scenes?
 - Input: 3D description of scene, camera
 - Project to camera's viewpoint
 - Illumination (position, direction, color, brightness)

Realistic lighting environments

Hardware

• Example: NVIDIA GeForce 6800

Game => High performance computing => Deep learning

Applications

A watched flower never blooms, but an untended willow grows.

and System

Architecture

Computer

Graphics

Animation

Image

Synthesis

Animation

- Model how things move
- Temporal change of
 - Objects (position, orientation, size, shape, color, etc.)
 - Camera (position, direction, angle, focus, etc.)
 - Illumination (position, direction, color, brightness)
- Represent motion
 - Sequence of stills
 - Parameter curves

Physically-based simulation of motion

Uses Of Graphics

- Special effects
- Feature animation
- Computer Games
- Virtual environments
- Visualization (science, business, cartography, ...)
- Design
- Interaction

3D Computer Graphics Pipeline

Emerging Fields

Goals in Computer Graphics

Creating a new reality (not necessarily scientific) Practical, aesthetically pleasing, in real time

Synthetic images indistinguishable from reality Practical, scientifically sounds, in real time

Computing Illustrations

Pixar

Figure 2: Style templates created from character reference.

Appealing female avatars from 3D body scans: Perceptual effects of stylization, 2016

Non-Photorealistic Rendering (NPR)

SIGGRAPH & SIGGRAPH Asia

- Main computer graphics event
- Twice a year
- up to 30K attendees

Academia, industry, artists

SIGGRAPH & SIGGRAPH Asia

• SIGGRAPH 2017 Technical Papers Preview Trailer

几何、图形、图像密不可分

- PDE method for Image processing
- Image interpolation
- Geometry Image
- Mesh filtering
- Segmentations
- Compression
-

Administrative Stuff

Course Information On-Line

- http://jjcao.github.io/ComputerGraphics/
 - Schedule (slides, readings)
 - Assignments (details, due dates)
 - Software (libraries, tutorial, links)
- https://piazza.com/
 - Submit assignments
 - Forum, Q/A

The team

- Instructor
 - Junjie Cao, jjcao@dlut.edu.cn, http://jjcao.github.io
- Assistants

Prerequisites/What Is It I Expect?

- Coding
 - C/C++
 - Preferably some previous OpenGL exposure
 - Data structures, algorithms
- Math
 - Linear Algebra
 - Differential Equations
- Keeping up with the text(s) is very important

Textbooks

- Interactive Computer Graphics ("Angel")
 - A top-down approach with OpenGL, 6th Edition, Edward Angel, Addison-Wesley
- OpenGL Programming Guide ("Red Book")

Grading

Classroom Test + Exercises 30%

 Assignments 70%: Document + Compilable code + Executable files (Submit after deadline: -10%)

Assignment 1: 20 %

Assignment 2: 25 %

Assignment 3: 25 %

Two students a team

Document in A4 & electronic: functions (required + optional)

RF1

Text description;
Code segment for the function
Image illustration;

RF2

Text description;
Code segment for the function
Image illustration;

OF₁

Text description;
Code segment for the function
Image illustration;

Code in electronic:

- I can open *.sln and build it successfully and without modify setting and anything outside the folder.
- Compress whole folder into a zip
- Run packing.bat before compression
- Good function name and proper comments

Exe in electronic:

- A folder with exe, dll, and input data.
- Compress whole folder into a zip.

Example

```
cg2017-HW1-name1-name2 >
   bin
  output
readme.docx
```

计算机图形学作业

(二)计算顶点价并赋予颜色

小组成员

刻~* 学号: ******

字~* 学号: ******

计算顶点价

首先需要给 mesh 增加 VPropHandleT<int>类型的 Valence 属性,这个属性存储了 vertex 的 valence. 也就是1-环烷域的顶点板。为了求得 Valence. 我们设计两层基于放代码的循环. 外徵环違历 mesh 上的每个 vertex, 内循环造历一环领域的每个 vertex, 从而得到顶点的价。 值得注意的是,我们可以利用 ct.c. 11 标准的 auto 自动获取进代器类型。由不需要详细知道它是 Mesh Various 还是 Mesh Various buts

·1. 概述(Introduction)

1. 读入并显示网络:DecimaterGui.exe bunny.obj

3. 显示顶点价:右键菜单 成者 快捷键:??

-2. 必要功能(Required Functions)

.1.1. 如何使用本程序。

.2.1. RF1: 顶点价的计算

2.1.1. 描述

.2.1.2. Code

计算顶点价(自动)

.2.1.3. 示意

.2.2. RF2: 顶点价的可视化

.2.2.1. 描述

定义的顶点价映射函数是:

valence_cdor= { green, valence = [3,5] red, valence (5,8] purple, else

.2.2.2. Code

.2.2.3. 示意

·3. 可选功能(Optional Functions)

3.1. OF1: ···

Academic Integrity

- Do not copy any parts of the assignments from anyone
- Do not look at other student's code
- Collaboration only for the project
- Don't cheat, okay?

Assignment Policies

- Programming Assignments
 - Hand in via Piazza
 - Functionality and features
 - Style and documentation
 - Artistic impression
- Academic integrity policy applied rigorously

Assignment 1 – Height field

input (source image)

output (height field)

Assignment 2 – Simulating a Roller Coaster

Assignment 3 – Ray tracing

Other

• 留一个联系人,确定上机时间。

Introduction

- What is Computer Graphics?
 - Applications
 - History
 - Relations with other Disciplines
- Administrative Stuff
- Course Overview
- Research Trends

Topics / Course Overview

- Theory / Computer Graphics Disciplines
 - Image Processing: how to edit images
 - Modeling: how to represent objects
 - Rendering: how to create images of objects
 - Animation: how to control and represent motion
- Practice: OpenGL graphics library

OpenGL Basics

- Primitives and attributes
 - Text & fonts
- Color
- Viewing
- Control functions
 - Clients & servers
 - Event driven programming
- [Angel, Ch. 2]

Objects & Transformations

- Linear algebra review
- Coordinate systems and frames
- Rotation, translation, scaling
- Homogenous coordinates
- OpenGL transformations
- [Angel, Ch. 3]

Viewing and Projection

- Orthographic projection
- Perspective projection
- Camera positioning
- Projection in OpenGL
- Hidden surface removal
- [Angel, Ch. 4]

Curves & Surfaces

- Recall 3D calculus
- Explicit representation: triangular mesh
- Implicit representation
- Parametric curves & surfaces
 - Hermite curves and surfaces
 - Bézier curves and surfaces
 - Splines
- Curves and surfaces in OpenGL
- [Angel, Ch. 10]

Light & Shading

- Light sources
- Ambient, diffuse, and specular reflection
- Normal vectors
- Material properties in OpenGL
- Radiosity
- [Angel, Ch. 5]

Tobian R. Metoc

Rendering

- Clipping
- Bounding boxes
- Hidden-surface removal
- Line drawing
- Scan conversion
- Anti-aliasing
- [Angel, Ch. 6]

Textures and Pixels

- Texture mapping
- OpenGL texture primitives
- Bump maps
- Environment maps
- Opacity and blending
- Image filtering
- [Angel, Ch. 7]

Hierarchical Models

- Re-using objects
- Animations
- OpenGL routines
- Parameters and transformations
- [Angel, Ch. 8]

Advanced rendering - Ray Tracing

- Basic ray tracing [Angel, Ch. 11]
- Motion blur
- Soft shadows
- Local vs global illumination
- Interreflections
- Radiosity equation
- Solution methods

More Advanced Rendering - Radiosity

- Local vs global illumination
- Interreflections
- Radiosity equation
- Solution methods
- [Angel Ch. 13.4-5]

Animation

- Traditional Animation
- Keyframe Animation
- Computer Animation

Physically Based Models

- Particle systems
- Spring forces
- Cloth
- Collisions
- Constraints
- Fractals
- [Angel, Ch. 9]

Image Processing

- Filters
- Dithering
- Blending
- Display Color Models

"Wildcard" Lectures

- Realtime 3D Reconstruction
- Geometry Processing
- Graphics & Machine Learning
- Data-Driven Modeling

• ...

Trends

From Offline to Realtime

Unreal Engine Kite Demo (Epic Games 2015)

From Graphics to Vision

From Graphics to Fabrication

From Production to Consumers

online shopping

In Laptop, Tablet, Smartphone

Realtime Facial Animation

Snappers Facial Rig for Maya (also available for 3dsMax) by snappers mocaps

Acknowledgements

- Lecture based on material from:
 - CSCI 420: Computer Graphics FS 2015, by Hao Li, execllent slides and assignments: image 2 height fields, Simulating a Roller Coaster, ray tracing
 - Computer Graphics: 15-462/662 Fall 2016 Carnegie Mellon University @ CMU
 - CS 148 Introduction to Computer Graphics and Imaging (Fall 2015) @ stanford
 - 6.837 Computer Graphics (fall 2011) @ MIT

Thanks