Homework #8

Chapter 8, Exercises 1 and 2

1. For each of the following nonlinear systems

- a. Find all of the equilibrium points and describe the behavior of the associated linearized system
- b. Describe the phase portrait for the nonlinear system
- c. Does the linearized system accurately describe the local behavior near the equilibrium points?

(i)
$$x' = \sin x, y' = \cos y$$

$$(x', y') = F(x, y) = (\sin x, \cos y)$$

1. Finding equilibrium points:

$$F(x,y)=(0,0)$$
 when $\sin x=0,\cos y=0$

$$\sin x = 0$$
 whenever $x = 2\pi k, \pi + 2\pi k$, for $k \in \mathbb{Z}$

$$\cos y = 0$$
 whenever $y = -rac{\pi}{2} + 2\pi k, rac{\pi}{2} + 2\pi k$, $k \in \mathbb{Z}$

2. Describe the behavior of the associated linearized system

$$DF_{X_0}=(rac{\partial f_i}{\partial x_j})$$
 , so we have $DF_{X_0}=egin{pmatrix}\cos x_0&0\0&-\sin y_0\end{pmatrix}$, the Jacobian matrix of X evaluated at X_0

We have:

$$(2\pi k_1,\pi/2+2\pi k_2),(2\pi k_1,-\pi/2+2\pi k_2),(\pi+2\pi k_1,\pi/2+2\pi k_2),(\pi+2\pi k_1,-\pi/2+2\pi k_2)$$
 as equilibrium points, where $k_1,k_2\in\mathbb{Z}$

So DF_{X_0} for each of these points respectively are

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

So it seems we have saddles at

- 1. $(2\pi k_1, \pi/2 + 2\pi k_2)$
 - 1. The stable line being the *y*-axis around this point
 - 2. The unstable line being the horizontal line near the point and through $\pi/2+2\pi k_2$

2.
$$(\pi + 2\pi k_1, -\pi/2 + 2\pi k_2)$$

- 1. the stable line is the horizontal line through $-\pi/2 + 2\pi k_2$ near the point
- 2. The unstable line is the vertical line through $\pi + 2\pi k_1$ near the point

and a source at
$$(2\pi k_1, -\pi/2 + 2\pi k_2)$$
, and a sink at $(\pi + 2\pi k_1, \pi/2 + 2\pi k_2)$

- 3. Describe the phase portrait for the nonlinear system
 - 1. Using the intervals at which $\sin x$, $\cos y$ are positive, negative:

- 2. Whenever $x\in (2\pi k,\pi+2\pi k)$, $k\in\mathbb{Z}$ solutions move to the right, and whenever $x\in (\pi+2\pi k,2\pi(k+1))$ solutions move to the left
- 3. Whenever $y \in (-\pi/2 + 2\pi k, \pi/2 + 2\pi k)$, solutions move up, and whenever $y \in (\pi/2 + 2\pi k, 3\pi/2 + 2\pi k)$, solutions move down
- 4. also in the upper half plane, fixing $y=\pi/2+2\pi k$ for some integer k, whenever $x=\pi m$, we have (locally) a saddle (m is even) or a sink, (m is odd)
- 5. In the lower half plane, fixing $y=-\pi/2+2\pi k$ for some integer k, whenever $x=\pi m$, we have (locally) a source (m is even) or a saddle (m is odd)
- 6. It appears that all solutions tend towards some equilibrium point, since
 - 1. for x'.
 - 1. if $\sin x>0$, x must be in $(2\pi k,\pi+2\pi k)$, and continues to increase towards π since x is continuous and $\sin x$ is continuous and positive in this interval, and as $x\to\pi+2\pi k$, $\sin x\to 0$,
 - 2. if $\sin x = 0$, we are done
 - 3. if $\sin x < 0$, x must be in $(\pi + 2\pi k, 2\pi + 2\pi k)$, and continues to decrease towards $\pi + 2\pi k$ since, again, x is continuous and $\sin x$ is continuous and negative in this interval, and as $x \to \pi + 2\pi k$, $\sin x \to 0$
 - 2. for y', we can make the same arguments as above, with the intervals $(-\pi/2+2\pi k,\pi/2+2\pi k)$ and $(\pi/2+2\pi k,3\pi/2+2\pi k)$, to show that all solutions move towards an equilibrium point
- 4. Does the linearized system accurately describe the local behavior near the equilibrium points?
 - 1. Yes, since the linearized system at each equilibrium point is hyperbolic. (The Linearization Theorem)

(ii)
$$x' = x(x^2 + y^2)$$
, $y' = y(x^2 + y^2)$

In polar coordinates:

$$x' = (r\cos\theta)' = r'\cos\theta - r(\sin\theta)\theta' = r^3\cos\theta$$

$$y' = (r \sin \theta)' = r' \sin \theta + r(\cos \theta)\theta' = r^3 \sin \theta$$

 \Longrightarrow

$$r' = r^3$$

$$\theta' = 0$$

- 1. Finding equilibrium points:
 - 1. Know we have one at (0,0)

2.
$$x' = 0$$
 when $x^3 + xy^2 = 0$

1.
$$x^3 = -xy^2$$

2. if $x \neq 0$, we arrive at a contradiction:

1. if
$$x < 0 \implies x^3 < 0$$
, but $-xy^2 > 0$

- 3. Trying to find an equilibrium point where $y \neq 0$ gives $y^3 = -yx^2$, which gives a similar contradiction as above.
- 4. Alternatively, easy to see that for any nonzero r, r'
 eq 0

1. if
$$r > 0$$
, $r' > 0$

2. if
$$r < 0$$
, $r' < 0$

- 5. The only equilibrium point is (0,0)
- 2. Describing the behavior of the associated linearized system

1.
$$DF_X=egin{pmatrix} 3x^2+y^2 & 2yx \ 2xy & 3y^2+x^2 \end{pmatrix}$$

2. Since the equilibrium point is (0,0), we drop all nonlinear terms and get the system

3.
$$X' = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} X$$

- 4. every point is an equilibrium point
- 3. Describe the phase portrait of the nonlinear system
 - 1. straight rays are invariant: all solutions that start on a straight ray stay on that ray since $\theta'=0$
 - 2. all solutions move away from origin, except for the equilibrium point at the origin
 - 1. for any
- 4. No: no matter how close we get to origin, we will always find solutions moving away from the origin, since for any $r \neq 0$, $r' \neq 0$, when r < 1, r increases slowly at first then faster. This is due to the linearized system at the equilibrium point being nonhyperbolic

(iii)
$$x' = x + y^2, y' = 2y$$

- 1. Finding equilibrium points
- 2. y'=2y=0 if and only if y=0

3. so
$$x' = x + (0)^2 = 0$$
 iff $x = 0$

- 4. Our only equilibrium point is (0,0)
- 5. Describe the behavior of the associated linearized system

1.
$$DF_X = \begin{pmatrix} 1 & 2y \\ 0 & 2 \end{pmatrix}$$

- 2. Near equilibrium point (0,0) : $DF_0=\begin{pmatrix} 1 & 0 \ 0 & 2 \end{pmatrix}$
- 3. We have a source near equilibrium, with all solutions eventually tending away from origin tangent to the y-axis
- 6. Describe the phase portrait for the nonlinear system
 - 1. for solutions starting at point $(x_0,0)$ for some $x_0\in\mathbb{R}$
 - 1. these solutions stay on the x-axis (invariant)
 - 2. and depending on the sign of x:
 - 1. if x > 0, solution moves to the right
 - 2. x < 0, solution moves to the left
 - 2. if $y_0 \neq 0$,
 - 1. if y < 0, y continues to decrease and solutions move down
 - 2. if y > 0, y continues to increase and solutions move up
 - 3. No matter what x is, eventually the solution will keep moving right
 - 1. obvious for $x \geq 0$, since x' > 0 making x > 0
 - 2. even if x < 0, y^2 grows faster than |x|, so eventually, $y^2 > |x|$ and x' > 0
 - 4. Finding the flow of the nonlinear system

$$\begin{array}{c} 1.\ y=y_0e^{2t}\ x_h(t)=\alpha e^t\\ 2.\ x_p(t)=\beta e^{4t}\\ 3.\ x_p'(t)=4\beta e^{4t}=\beta e^{4t}+y_0^2e^{4t}\\ 4.\ \beta=\frac{y_0^2}{3}\\ 5.\ x(t)=(x_0-\frac{y_0^2}{3})e^t+\frac{y_0^2}{3}e^{4t}\\ 5.\ x(t)=(x_0-\frac{y_0^2}{3})e^t+\frac{y_0^2}{3}e^{3t}e^t=(x_0-\frac{y_0^2}{3}+\frac{y_0^2}{3}e^{3t})e^t\\ 1.\ \mathrm{and}\ x_0-\frac{y_0^2}{3}+\frac{y_0^2}{3}e^{3t}\to+\infty\ \mathrm{as}\ t\to+\infty, \mathrm{since}\ e^{3t}\ \mathrm{grows}\ \mathrm{without}\ \mathrm{bound}\\ 2.\ \mathrm{so}\ x(t)\to+\infty\\ 3.\ \frac{dy}{dx}=\frac{2y_0e^{2t}}{(x_0-y_0^2/3)e^t+(4y_0^2/3)e^{4t}}=\frac{2y_0}{(x_0-y_0^2/3)e^t+(4y_0^2/3)e^{2t}}\ \mathrm{and}\ \mathrm{as}\ t\to\infty,\ \frac{dy}{dx}\to0, \end{array}$$

- 1. so the solutions move away from origin tangentially to the x-axis
- 7. The linearized system accurately describes the local behavior near the equilibrium point at origin in an appropriately small neighborhood of origin: solutions tend away towards origin and in a really small neighborhood, the term in x(t), $(y_0^2/3)(e^{4t}-e^t)$ will be really small, and x(t) will look more like x_0e^t . Also, since the linearized system is hyperbolic, the linearization theorem states that the nonlinear flow is conjugate to the flow of the linearized system in a neighborhood of X_0

(iv)
$$x' = y^2, y' = y$$

- 1. Find equilibrium points
 - 1. equilibrium points: (x,0), for any $x\in\mathbb{R}$
- 2. Describe the behavior of the associated linearized system

1.
$$DF_{(x,0)}=egin{pmatrix} 0 & 0 \ 0 & 1 \end{pmatrix}$$
 (note this is for any x)

2. every point on the x-axis is an equilibrium point

3.
$$X(t)=\left(egin{array}{c} x_0 \ 0 \end{array}
ight)+\left(egin{array}{c} 0 \ y_0 \end{array}
ight)e^t$$

1.
$$x(t) = x_0, y(t) = y_0 e^t$$

- 4. vertical lines are invariant, since $x^\prime(t)=0$ for all t
- 5. and if $y_0 < 0$, the solution moves down, if $y_0 > 0$, the solution moves up as $t \to \infty$
- 3. The phase portrait for the nonlinear system:
 - 1. all points (x,0) are equilibrium points
 - 2. all solutions move to the right as long as $y \neq 0$:

1.
$$x' = y^2 > 0$$
, so x is always increasing

- 3. in the upper plane, solutions move up and to the right initially, but y is always positive since y'=y>0 is always increasing, and as y increases, $y^2\to\infty$ faster than $y\to\infty$, so eventually all solutions will tend tangentially to the x-axis
- 4. In the lower plane, solutions move down and to the right initially, but for the same reason as above, (y<0, so y' is decreasing, so y^2 is increasing towards ∞) all solutions will tend tangentially to the x-axis as $t\to\infty$
- 4. Does the linearized system accurately describe the local behavior near the equilibrium points?
 - 1. We still have equilibrium points on the x-axis in either system

- 2. and solutions in the upper/lower move away from the x-axis in both systems similarly in a small neighborhood (up/down away from x-axis)
- 3. and in a small enough neighborhood, y^2 will be really small so x won't change much, but y'=y is still the same as in the linear system, so the solutions look similar in both linear and nonlinear systems in a really small neighborhood
- 4. Being picky, the difference is that as long as $y \neq 0$, the solution will begin to curve towards the right as t increases, although it seems that it could be possible to find a neighborhood small enough that the curves look like vertical lines.

(v)
$$x' = x^2, y' = y^2$$

1. Find equilibrium points

1.
$$x^2 = 0$$
, $y^2 = 0$, so the only equilibrium is $(0,0)$

2. Describe the behavior of the associated linearized system

1.
$$DF_0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

- 2. every point is an equilibrium point
- 3. Describe the phase portrait for the nonlinear system
 - 1. x' > 0, y' > 0 for all $x, y \in \mathbb{R} \setminus \{0\}$, solutions are always increasing if
 - 2. when x = y, x' = y', so x, y are increasing at the same rate and remain equal
 - 1. the line y = x is invariant
 - 3. solutions on the x or y axes stay on the x or y axes
 - 1. $x \neq 0$, y = 0, then x' > 0, y' = 0 and vice versa
 - 2. solutions on the x-axis move to the right
 - 3. solutions on the y-axis move up
 - 4. Starting within a reasonable neighborhood around origin,
 - 1. solutions in the 4th quadrant (lower right) will always tend away from origin tangentially to the x- axis

1.
$$x > 0$$
, $x' > 0$, $x \to \infty$

2.
$$y < 0$$
, $y' > 0$, $y \to 0$, $y' \to 0$

2. solutions in the 3rd quadrant (lower left) will always tend towards origin.

1.
$$y < 0$$
, but $y' > 0$, so $y \to 0$ and $y' \to 0$,

2. also,
$$x < 0$$
, $x' > 0$, $x \to 0$, $x' \to 0$

- 3. solutions in the 2nd quadrant (upper left) will tend away from origin tangentially to the y-axis
- 4. solutions in the 1st quadrant (upper right)
 - 1. will tend away from origin tangentially to the y-axis if x is small enough
 - 2. will stay on y = x if it starts on y = x
 - 3. will tend away from origin tangentially to the x- axis if x is large enough
- 4. Does the linearized system accurately describe the local behavior near equilibrium points?
 - 1. No, the linear system has equilibrium points everywhere
 - 2. but in the nonlinear system, we have in any neighborhood of origin
 - 1. if $x \neq 0$, y = 0, no matter how small x is, the solution moves to the right
 - 2. if $x = 0, y \neq 0$, solutions move up

3. basically as long as $x,y\neq 0$, they won't be an equilibrium point and that is not shown in the linearized system

2. Find the global change of coordinates that linearizes the system

$$x' = x + y^2$$

$$y' = -y$$

$$z' = -z + y^2$$

$$y(t) = y_0 e^{-t}$$

$$y^2 = y_0^2 e^{-2t}$$

Solving for x(t):

$$x_h(t) = \alpha e^t$$
, homogeneous

$$x_n(t) = \beta e^{-2t}$$
, particular solution

$$x_p'(t) = -2\beta e^{-2t} = \beta e^{-2t} + y_0^2 e^{-2t}$$

$$x_p'(t) = -3\beta e^{-2t} = y_0^2 e^{-2t}$$

$$\beta = -\frac{y_0^2}{3}$$

$$lpha=x_0+rac{y_0^2}{3}$$

$$x(t)=(x_0+rac{y_0^2}{3})e^t-rac{y_0^2}{3}e^{-2t}$$

Solving for z(t):

$$z_h(t) = lpha e^{-t}$$

$$z_n(t) = \beta e^{-2t}$$

$$z'_n(t) = -2\beta e^{-2t} = -\beta e^{-2t} + y_0^2 e^{-2t}$$

$$-eta e^{-2t} = y_0^2 e^{-2t}$$

$$eta = -y_0^2 \implies z_p(t) = -y_0^2 e^{-2t}$$

$$lpha + eta = lpha - y_0^2 = z_0$$
 , $lpha = z_0 + y_0^2$

$$z(t) = (z_0 + y_0^2)e^{-t} - y_0^2e^{-2t} = z_h(t) + z_p(t)$$

for an equilibrium point:

$$x' = 0 \implies x + y^2 = 0$$

$$y' = 0 \implies -y = 0 \implies x = 0$$

$$z' = 0 \implies -z + y^2 = 0 \implies -z = 0$$

our only equilibrium point is origin

So:

lines on the y- axis are going to tend towards the equilibrium point

since
$$y_0 e^{-t} o 0$$

and similarly, lines on the z-axis are going to tend towards the equilibrium point

$$e^{-t}, e^{-2t}
ightarrow 0$$
 , and so $z(t)
ightarrow 0$

x(t) however is going to blow up unless $x_0+rac{y_0^2}{3}=0$

then for any (x_0,y_0) satisfying $x_0+rac{y_0^2}{3}=0$

we have
$$x(t)=-rac{y_0^2}{3}e^{-2t}{}=-y^2/3$$
 for all of t

$$y(t) = y_0 e^{-t}$$

so all solutions with initial conditions on the curve $x+y^2/3=0$ will remain on the curve for all time and tend towards origin as $t\to\infty$

Similarly:

$$z_0 + y_0^2 = 0$$

$$z(t) = -y_0^2 e^{-2t} \equiv z + y^2 = 0$$

so all solutions starting on $z+y^2=0$ will remain on the curve for all time and tend towards origin since $z(t)-y_0^2e^{-2t}\to 0$ $t\to\infty$

$$y(t) \to 0$$
 as $t \to \infty$

so introducing u, v, w variables

$$u = x + y^2/3$$

$$v = y$$

$$w = z + y^2$$

so the system becomes in these new coordinates:

$$u'=rac{\partial u}{\partial x}rac{\partial x}{\partial t}+rac{\partial u}{\partial y}rac{\partial y}{\partial t}=x'+2yy'/3=x+y^2-2y^2/3=x+rac{1}{3}y^2=u$$

$$v' = u' = -v = -v$$

$$w' = z' + 2yy' = -z + y^2 - 2y^2 = -(z + y^2) = -w$$

the change of variables

$$\Phi(x,y,z)=(x+rac{y^2}{3},y,z+y^2)$$