[STAT409] Homework 2

1. In the multiple linear regression model:

$$\mathbf{v} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$

where the definition of vectors are given in the lecture note.

(a) Show that LSE of β , the minimizer of $S(\beta)$ is given by

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}. \tag{1}$$

(b) Prove the following decomposition (a.k.a ANOVA decomposition) in the multiple linear regression.

$$\underbrace{(\mathbf{y} - \bar{\mathbf{y}})^T (\mathbf{y} - \bar{\mathbf{y}})}_{\text{SST}} = \underbrace{(\mathbf{y} - \hat{\mathbf{y}})^T (\mathbf{y} - \hat{\mathbf{y}})}_{\text{SSE}} + \underbrace{(\hat{\mathbf{y}} - \bar{\mathbf{y}})^T (\hat{\mathbf{y}} - \bar{\mathbf{y}})}_{\text{SSR}}$$

2. In the simple linear regression $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$ where $\epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$, we have the following OLS slope esitmators:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x}_n)(y_i - \bar{y}_n)}{\sum_{i=1}^n (x_i - \bar{x}_n)^2},\tag{2}$$

- (a) Compute $E(\hat{\beta}_1)$ and $Var(\hat{\beta}_1)$.
- (b) It is well known that $\hat{\beta}_1$ is normally distributed when ϵ_i 's are normaly distributed. Justify this.
- 3. For a given $y_1, \dots, y_n \stackrel{iid}{\sim} F$, show that the sample median is the minimizer of $A_n(c)$ where

$$A_n(c) = \frac{1}{n} \sum |y_i - c|$$

(hint: You may use the fact that the derivative of |x| is simply sign(x) and ignore its nondifferentiability at x = 0.)

- 4. Suppose $X_1 \sim Binomial(n_1, \theta)$ and $X_2 \sim Binomial(n_2, \theta)$ are independent random variables.
 - (a) Write down the log likelihood of θ , denoted by $\ell(\theta)$.
 - (b) Compute the maximum likelihood estimator of θ , denoted by $\hat{\theta}$.
 - (c) Compute the information of θ :

$$I(\theta) = E\left[\left\{\frac{\partial \ell(\theta)}{\partial \theta}\right\}^2\right] = -E\left[\frac{\partial^2 \ell(\theta)}{\partial \theta^2}\right]$$