Chap 21 – Data Structures for Disjoint Sets

21.1 Disjoint-set operations

21.2 Linked-list representation of disjoint sets

21.3 Disjoint-set forests

*21.4 Analysis of union by rank with path compression

21.1 Disjoint-set operations

- Disjoint-set data structures
 - Also known as "union find"
 - Maintain a collection

$$\mathcal{S} = \{S_1, S_2, \dots, S_n\}$$

of disjoint dynamic (changing over time) sets.

 Each set is identified by a representative, which is some member of the set.

21.1 Disjoint-set operations

- Disjoint-set operations
 - Make-Set(x)

 Make a new set $S_x = \{x\}$, and add S_x to S.
 - UNION(x, y)If $x \in S_x$, $y \in S_y$ then $S = S - S_x - S_y \cup (S_x \cup S_y)$
 - Representative of new set is any member of $S_x \cup S_y$, often the representative of one of S_x and S_y .
 - Destroy S_x and S_y (since sets must be disjoint).
 - FIND-SET(x)
 Return representative of set containing x.

21.1 Disjoint-set operations

- Disjoint-set application
 - Compute connected components

```
CONNECTED-COMPONENTS (G)
```

for each vertex $v \in G.V$

 $\mathsf{MAKE}\text{-}\mathsf{SET}(v)$

for each edge $(u, v) \in G.E$

if FIND-SET $(u) \neq \text{FIND-SET}(v)$ then UNION(u, v)

Check if two vertices are in the same component, once

CONNECTED-COMPONENTS has preprocessed the graph

SAME-COMPONENT(u, v)

if FIND-SET(u) == FIND-SET(v) then return true

else return false

- Linked-list representation
 - Each set is a singly linked list represented by a set object.
 - Each set object has a head (pointer to the representative)
 and a tail.
 - Each node contains
 - a set member
 - a pointer to the set object
 - a list pointer

- Implementations of disjoint-set operations
 - \circ Make-Set(x)
 - Create a singleton list
 - \circ FIND-SET(x)
 - Follow the pointer back to the set object
 - Then, follow the head pointer to the representative
 - \circ Union(x, y)

Simple implementation

 Always append y's list onto the end of x's list (use x's tail pointer to find the end)

- Implementations of disjoint-set operations
 - \circ Union(x, y)
 - The representative of x's list becomes the representative of the resulting set.
 - Need to update the pointer back to the set object for every node on y's list.

Weighted-union heuristic

- Always append the smaller list to the larger list.
- Break ties arbitrarily.
- Faster than simple implementation, if y's list is longer than x's list.

- Implementations of disjoint-set operations
 - Example on simple implementation

Implementations of disjoint-set operations
 Simple implementation

- Consider a sequence of $m (\ge n)$ operations on n elements
- Worst case: $\Theta(n^2)$

MAKE-SET
$$(x_1)$$
 ... MAKE-SET (x_n) ... $\Theta(n)$, n elements

$$\mathsf{UNION}(x_2,x_1)\;\mathsf{UNION}(x_3,x_2)\;...\;\mathsf{UNION}(x_n,x_{n-1})$$

$$\cdots \sum_{k=1}^{n-1} \text{\# of objects updated} = \sum_{k=1}^{n-1} k = \Theta(n^2)$$

Total time =
$$\Theta(n) + \Theta(n^2) = \Theta(n^2)$$

Amortized cost per operation

$$=\Theta(n^2)/m=\Theta(n)$$
 : $m=2n-1$

- Implementations of disjoint-set operations
 Weighted-union heuristic
 - THEOREM 21.1

With weighted union, a sequence of $m \ge n$ operations on n elements takes $O(m + n \lg n)$ time \Rightarrow amortized cost per operation $= O(1 + \frac{n}{m} \lg n) = O(1 + \lg n)$

Proof

Each Make-Set and Find-Set still takes O(1) time, and there are O(m) of them.

CLAIM If an object is updated k times, the resulting set has $\geq 2^k$ objects.

- Implementations of disjoint-set operations
 - **THEOREM** 21.1 (Cont'd)

Basis: k=1

the object's smaller set has ≥ 1 object

 \Rightarrow the resulting set has $\geq 2^1$ objects

Induction step

the object has already been updated k times

- \Rightarrow the object's smaller set has $\geq 2^k$ objects by IH
- \Rightarrow the resulting set has $\geq 2^{k+1}$ objects

Now, $n \ge$ the size of the resulting set $\ge 2^k \Rightarrow \lg n \ge k$ Thus, total number of updates for n objects $\le n \lg n$.

- Forest-of-trees representation
 - Each set is a rooted tree.
 - The root is the representative.
 - Each node points to its parent (the root is its own parent).

- Implementation of disjoint-set operations
 - MAKE-SET(x): Create a single-node tree
 - FIND-SET(x): Follow pointers to the root
 - UNION(x, y): Make one root a child of the other root.
 Not so good Could get a linear chain of nodes

Implementation of disjoint-set operations

1st heuristic: Union by rank

- Idea: Make the root of the smaller tree into a child of the root of the larger tree
- Don't actually use the size of a tree. Use rank.
- For each node, maintain a *rank* that is an upper bound on the height of the node.
- Make the root with the smaller rank into a child of the root with the larger rank
- Alone, union by rank yields a running time of $\Theta(m \lg n)$. (See Ex. 21.4-4 and 21.3-3)

Implementation of disjoint-set operations

1st heuristic: Union by rank

```
\circ Make-Set(x)
  x.p = x
  x.rank = 0
\circ LINK(x, y)
  if x.rank > y.rank then y.p = x
  else x.p = y
       // If equal, choose y as parent and increment its rank
       if x.rank == y.rank then
          y.rank = y.rank + 1
```

- Implementation of disjoint-set operations
 1st heuristic: Union by rank
 - UNION(x, y)LINK(FIND-SET(x), FIND-SET(y))
 - FIND-SET(x) if $x. p \neq x$ then return FIND-SET(x. p) return x. p // or, x
 - Comment
 So far, with the union-by-rank heuristic alone,
 the *rank* of a node = the height of the node.

Implementation of disjoint-set operations

2nd heuristic: Path compression

 Make all nodes visited during FIND-SET on the trip to the root direct children of the root

• Alone, path compression gives a worst-case running time of $\Theta(n+f(1+\log_{2+f/n}n))$, if there are n MAKE-SETs and f FIND-SETs.

- Implementation of disjoint-set operations
 Both heuristics: Union by rank + Path compression
 - Modify FIND-SET as follows.
 The other operations remain unchanged.
 - FIND-SET(x)

 if $x. p \neq x$ then x. p = FIND-SET(x. p)return x. p
 - Path compression doesn't change any ranks
 - \Rightarrow the *rank* of a node \ge the height of the node

Implementation of disjoint-set operations

Both heuristics: Union by rank + Path compression

• With both heuristics, the worst-case running time is $O(m\alpha(n))$, where $\alpha(n)$ grows very slowly. (Sec. 21.4)

$$\alpha(n) = \begin{cases} 0, & n = 0,1,2 \\ 1, & n = 3 \\ 2, & n = 4,5,6,7 \\ 3, & 8 \le n \le 2047 \\ 4, & 2048 \le n \le A_4(1) \end{cases}$$

where $A_4(1) \gg 10^{80}$ = the estimated # of atoms in the observable universe

• Thus, $\alpha(n) \leq 4$ for all practice purposes.

21.4 Analysis of union by rank with path compression

- A very quickly growing function
 - ∘ For $k \ge 0, j \ge 1$, define

$$A_k(j) = \begin{cases} j+1, & k=0 \\ A_{k-1}^{(j+1)}(j), & k \ge 1 \end{cases}$$

where

$$A_{k-1}^{(j+1)}(j) = \underbrace{(A_{k-1} \circ \cdots \circ A_{k-1})}_{j+1 \text{ times}}(j)$$

- **LEMMA** $A_1(j) = 2j + 1$
- LEMMA $A_2(j) = 2^{j+1}(j+1) 1$
- Example

$$A_0(1) = 2, A_1(1) = 3, A_2(1) = 2^2 \cdot 2 - 1 = 7$$

21.4 Analysis of union by rank with path compression

- A very quickly growing function
 - Example

$$A_{3}(1) = A_{2}^{(2)}(1) = A_{2}(A_{2}(1)) = A_{2}(7)$$

$$= 2^{8} \cdot 8 - 1 = 2^{11} - 1$$

$$= 2047$$

$$A_{4}(1) = A_{3}^{(2)}(1) = A_{3}(A_{3}(1)) = A_{3}(2047)$$

$$= A_{2}^{(2048)}(2047)$$

$$\Rightarrow A_{2}(2047)$$

$$= 2^{2048} \cdot 2048 - 1 = 2^{2059} - 1$$

$$> (2^{10})^{205}$$

$$> (10^{3})^{205} = 10^{615} \gg 10^{80}$$

21.4 Analysis of union by rank with path compression

A very slowly growing function

• Define the inverse of $A_k(n)$ by

$$\alpha(n) = \min\{k : A_k(1) \ge n\}$$

• From the above values of $A_k(1)$, we see that

$$A_0(1) = 2 \ge n$$
 $\Rightarrow \alpha(n) = 0, n = 0,1,2$
 $A_1(1) = 3 \ge n$ $\Rightarrow \alpha(n) = 1, n = 3$
 $A_2(1) = 7 \ge n$ $\Rightarrow \alpha(n) = 2, n = 4,5,6,7$
 $A_3(1) = 2047 \ge n \Rightarrow \alpha(n) = 3, 8 \le n \le 2047$
 $A_4(1) = x \ge n$ $\Rightarrow \alpha(n) = 4, 2048 \le n \le x = A_4(1)$