

Departamento de Engenharia Informática e de Sistemas

Sistemas Digitais

2023/2024

Introdução aos Sistemas Digitais

Definição de sistema

Um **sistema** pode ser definido como sendo um conjunto de dispositivos/ componentes que são interligados como um todo, para desempenharem uma determinada função.

Particularmente, um **sistema digital** é uma combinação de dispositivos/ componentes, projectado para manipular grandezas físicas representadas em formato digital.

Um **dispositivo** é um circuito que desempenha uma função simples, sendo constituído por vários **componentes**.

Por exemplo, um processador é um sistema digital constituído por diversos dispositivos – *memórias*, *registos*, *somadores*, ... – os quais são por sua vez constituídos por vários componentes – *resistências*, *díodos*, *transístores*, ...

Um sistema comunica com o exterior por meio de sinais:

- Através dos sinais de entrada (ou entradas) recebe informação do exterior
- Através dos sinais de saída (ou saídas) envia informação para o exterior

Sistemas Digitais 2023/2024

Sinais analógicos / digitais

Um sinal analógico (e, em geral, qualquer grandeza analógica) é aquele que pode tomar um número infinito de valores ao longo do tempo, ou seja, é aquele que varia de forma contínua.

Um **sinal digital** é aquele que tem um número finito de valores possíveis e varia de valores por saltos.

Sinal Analógico:

- ▶ Medido continuamente no tempo
- As medições são valores reais

Sinal Digital:

 Medições discretas com valores racionais

10, 8, 2, 0, 3, 9, 9, 4, 0, 1, 7, 9, 7, 2, 0, 4, 9, 9, 4, 0,...

Sistemas digitais binários

Os sistemas digitais são **binários** quando se baseiam em circuitos digitais cujos sinais de entrada e de saída assumem, em cada instante, um de dois únicos valores possíveis.

Normalmente esses valores representam-se por 0 e 1 (embora sem significado numérico).

Representação física da informação binária

Em termos físicos, a **informação binária** presente nas entradas e saídas dos circuitos que constituem o sistema digital, é normalmente representada por **dois níveis de tensão**: o valor **1** associado a um dos níveis e o valor **0** ao outro.

A associação não é forçosamente feita desta forma Na prática, como se verá posteriormente, os valores 0 e 1 correspondem, não a **níveis**, mas a **gamas** de tensão. A figura seguinte mostra valores típicos de tensão de um circuito digital.

Sistema de numeração binário e códigos binários

Um sistema de numeração é composto por:

- ▶ Base b e.g. Base = 16
- ▶ Alfabeto Ordenado conjunto de b símbolos distintos (dígitos) e.g. [0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F]
- Número representado por uma sequência de dígitos e.g. N(b) <> ... d₂ d₁ d₀, d₋₁ d₋₂ ...
- Valor do Dígito função do símbolo e da posição na sequência (peso). e.g. v₂ = d₂ b²

Exemplos:

S.N. :	Decimal	Binário	Octal	Hexadecimal
	28886 ₁₀	101011102	5270 ₈	A32C ₁₆

Exemplos com várias bases

Base 10	0	1	2	3	4	5	6	7	8	9
	10	11	12	13	14	15	16	17	18	19
Base 4	0	1	2	3	10	11	12	13	20	21
	22	23	30	31	32	33	100	101	102	103
Base 3	0	1	2	10	11	12	20	21	22	100
	101	102	110	111	112	120	121	122	200	201
Base 2	0	1	10	11	100	101	110	111	1000	1001
	1010	1011	1100	1101	1110	1111	10000	10001	10010	10011
Base	0	1	2	3	4	5	6	7	8	9
16	Α	В	С	D	Е	F	10	11	12	13

Equivalente Decimal - Representação no sistema decimal de um número na base b.

$$N_{(10)} = \sum_{-\infty}^{+\infty} d_i b^i = \dots + d_2 b^2 + d_1 b^1 + d_0 b^0 + d_{-1} b^{-1} + \dots$$

Exemplos:

► S.N.: Binário Decimal

$$10101110_2 \rightarrow (2^7 + 0 + 2^5 + 0 + 2^3 + 2^2 + 2^1 + 0)_{10} \rightarrow 174_{10}$$

► S.N.: Hexadecimal Decimal

$$A32C_{16} \rightarrow (10x16^3 + 3x16^2 + 2x16^1 + 12x16^0)_{10} \rightarrow 41772_{10}$$