DEVOIR SURVEILLÉ n°7

Durée: 4 heures

L'usage de calculatrices est interdit

PTSI - PT ATTINUAL OF THE PROPERTY OF THE PRO

AVERTISSEMENT

La **présentation**, la lisibilité, l'orthographe, la qualité de la **rédaction**, **la clarté et la précision** des raisonnements entreront pour une **part importante** dans **l'appréciation des copies**. En particulier, les résultats non justifiés ne seront pas pris en compte. Les candidats sont invités à encadrer les résultats de leurs calculs.

Problème d'analyse

L'objectif de cet exercice est de démontrer la convergence de l'intégrale de Dirichlet :

$$I = \int_0^{+\infty} \frac{\sin t}{t} dt$$

et de calculer sa valeur. On considère la fonction $f:[0,+\infty[\times]0,+\infty[\to\mathbb{R}$ définie par :

$$\forall (x,t) \in [0,+\infty[\times]0,+\infty[, \quad f(x,t) = \frac{\sin(t)}{t}e^{-xt}.$$

On définit également la fonction $u:[0,+\infty[\times]0,+\infty[\to\mathbb{R} \text{ par }:$

$$\forall (x,t) \in [0, +\infty[\times]0, +\infty[, \quad u(x,t) = -\frac{x\sin(t) + \cos(t)}{1 + x^2}e^{-xt}.$$

Partie I - Préliminaires

- 1. Démontrer que pour tout $t \in \mathbb{R}$, $|\sin(t)| \leq 1$.
- 2. Soit x > 0. Montrer que la fonction $t \mapsto f(x,t)$ est intégrable sur $]0, +\infty[$.
- 3. En utilisant par exemple une intégration par parties, montrer que l'intégrale $\int_1^{+\infty} \frac{\sin t}{t} dt$ est convergente si et seulement si l'intégrale suivante est convergente :

$$\int_{1}^{+\infty} \frac{-\cos(t)}{t^2} dt.$$

En déduire que l'intégrale I converge.

4. Soit $x \ge 0$. Montrer que $t \mapsto u(x,t)$ est une primitive de la fonction $t \mapsto \sin(t)e^{-xt}$ sur $]0,+\infty[$. Dans la suite de l'exercice, on définit la fonction $F:[0,+\infty[\to\mathbb{R} \text{ par } :$

$$\forall x \in [0, +\infty[, F(x)] = \int_0^{+\infty} f(x, t) dt.$$

Partie II - Calcul de F sur $]0, +\infty[$

- 4. Montrer que $|F(x)| \leq \frac{1}{x}$ pour tout x > 0. En déduire la limite de F en $+\infty$.
- 5. Soit a > 0. Montrer que la fonction F est dérivable sur $[a, +\infty[$ et que l'on a :

$$\forall x \in [a, +\infty[, F'(x)] = -\int_0^{+\infty} \sin(t)e^{-xt}dt.$$

- 6. En déduire que la fonction F est dérivable sur $]0, +\infty[$ et déterminer une expression de F'(x) pour tout $x \in]0, +\infty[$ sans signe intégral.
- 7. Conclure que:

$$\forall x > 0, \quad F(x) = \frac{\pi}{2} - \arctan(x).$$

Partie III - Conclusion

On considère les fonctions $F_1:[0,1]\to\mathbb{R}$ et $F_2:[0,1]\to\mathbb{R}$ définies par :

$$\forall x \in [0,1], \quad F_1(x) = \int_0^1 f(x,t)dt \text{ et } F_2(x) = \int_1^{+\infty} f(x,t)dt.$$

- 7. Montrer que la fonction F_1 est continue sur [0,1].
- 8. Soit $x \in [0,1]$. Montrer que la fonction $t \mapsto \frac{u(x,t)}{t^2}$ est intégrable sur $[1,+\infty[$ et que :

$$F_2(x) = \frac{x\sin(1) + \cos(1)}{1 + x^2}e^{-x} + \int_1^{+\infty} \frac{u(x,t)}{t^2}dt.$$

- 9. Montrer que la fonction F_2 est continue sur [0,1].
- 10. En déduire que la fonction F est continue en 0, puis déterminer la valeur de l'intégrale I.

Problème de géométrie

Notations

Dans tout le sujet, l'espace \mathbb{R}^3 est muni de sa structure euclidienne usuelle et d'un repère orthonormé direct $(O; \vec{i}, \vec{j}, \vec{k})$. On note $E = \mathscr{C}^1(\mathbb{R}^3, \mathbb{R})$ et $F = \mathscr{C}^0(\mathbb{R}^3, \mathbb{R})$. Pour toute fonction f de E, on note ∇f son gradient. On définit la fonction φ sur E par : $\forall f \in E, \varphi(f) = \nabla f$.

Partie I

- 1. Démontrer que $\varphi: f \mapsto \nabla f$ est une application linéaire sur E à valeurs dans F.
- 2. (a) Soit $f \in E$ solution du système d'équations aux dérivées partielles :

$$\forall (x,y,z) \in \mathbb{R}^3, \frac{\partial f}{\partial x}(x,y,z) = 0; \frac{\partial f}{\partial y}(x,y,z) = 0; \frac{\partial f}{\partial z}(x,y,z) = 0.$$

Montrer que f est constante sur \mathbb{R}^3 .

(b) Déterminer le noyau de φ . φ est-elle injective?

MATHÉMATIQUES

- 3. (a) Énoncer le théorème de Schwarz pour les fonctions $f:(x,y,z)\mapsto f(x,y,z)$ à 3 variables.
 - (b) Soit $V:(x,y,z)\mapsto (P(x,y,z),Q(x,y,z),R(x,y,z))$ une fonction de classe \mathcal{C}^1 appartenant à l'image de φ . Démontrer que :

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \quad ; \quad \frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y} \quad ; \quad \frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}.$$

- 4. On pose, pour tout (x, y, z) de \mathbb{R}^3 , $V(x, y, z) = (1 + y^2 + y^2 z^2, xy(1 + z^2), xy^2 z)$.
 - (a) Justifier qu'il n'existe pas de fonction f telle que $\nabla f = V$. Qu'en déduit-on pour la fonction φ ?
 - (b) Déterminer toutes les fonctions f telles que $\forall (x, y, z) \in \mathbb{R}^3, \nabla f(x, y, z) = xV(x, y, z)$.

Partie II

Dans cette partie, $\vec{u} = (1, 1, 1)$ désigne toujours le vecteur $\vec{i} + \vec{j} + \vec{k}$.

Soit f une fonction non nulle de E. On note S la surface d'équation f(x, y, z) = 0. On suppose que les fonctions f choisies dans la suite sont telles que la surface S est non vide et qu'au moins un point de S est régulier. En un tel point, on rappelle que le gradient est normal au plan tangent à S en ce point.

Nous allons nous intéresser à quelques fonctions f de E telles que en tout point régulier M de S, le vecteur normal au plan tangent à S en M est orthogonal au vecteur \vec{u} .

- 1. (a) Donner la définition d'un point régulier M_0 de S puis donner une équation du plan tangent à S en ce point M_0 . On notera (x_0, y_0, z_0) les coordonnées de M_0 .
 - (b) Lorsque f est définie par $\forall (x, y, z) \in \mathbb{R}^3$, $f(x, y, z) = x^2 + 2y^2 z^2 2$ et M_0 est le point de coordonnées (1, -1, 1), donner une équation du plan tangent à S au point M_0 . Cette fonction f répond-t-elle au problème?
- 2. (a) Soit F_1 la fonction définie par $\forall (x,y,z) \in \mathbb{R}^3, F_1(x,y,z) = (y-z)^2 \alpha$ où $\alpha \in \mathbb{R}_+^*$. La fonction $f = F_1$ répond-elle au problème? Montrer que la surface $F_1 = 0$ est la réunion de deux plans.
 - (b) Soit g une fonction non nulle de classe C^1 sur \mathbb{R}^2 à valeurs dans \mathbb{R} . Vérifier que la fonction f, définie par $\forall (x,y,z) \in \mathbb{R}^3$, f(x,y,z) = g(x-y,x-z) répond au problème.
 - (c) La fonction F_1 est-elle de la forme précédente?
- 3. Soit S la surface paramétrée par : $\varphi(\lambda, t) = (\cos t + \lambda, \sin t + \lambda, \lambda)$.
 - (a) Justifier que la normale au plan tangent en un point régulier de S est orthogonale à \vec{u} .
 - (b) Démontrer qu'une équation cartésienne de S est : $(x-z)^2 + (y-z)^2 = 1$.
 - (c) Donner la nature et les éléments caractéristiques de l'intersection de S avec le plan Π_a d'équation z = a où $a \in \mathbb{R}$.
 - (d) Soit $\Gamma_1 = S \cap \Pi$ où Π est le plan d'équation x + y + z = 0. On considère les vecteurs $\vec{e_3} = \frac{\vec{u}}{\|\vec{u}\|}$, $\vec{e_1} = \frac{1}{\sqrt{2}}(\vec{k} - \vec{i})$, et $\vec{e_2} = \vec{e_3} \wedge \vec{e_1}$. On note P la matrice de passage de $(\vec{i}, \vec{j}, \vec{k})$ à $(\vec{e_1}, \vec{e_2}, \vec{e_3})$.

MATHÉMATIQUES

- i. Sans calcul, donner la nature de l'endomorphisme de \mathbb{R}^3 canoniquement associé à P. On ne demande pas les éléments caractéristiques.
- ii. Démontrer qu'un système d'équations de la courbe Γ_1 dans le repère $(O, \vec{e_1}, \vec{e_2}, \vec{e_3})$ est $\begin{cases} 5X^2 + 2\sqrt{3}XY + 3Y^2 = 2 \\ Z = 0 \end{cases}$ où (X, Y, Z) désignent les coordonnées d'un point M dans le repère $(O, \vec{e_1}, \vec{e_2}, \vec{e_3})$.
- iii. Faire rapidement l'étude de Γ_1 et préciser sa nature.
- iv. Tracer Γ_1 dans le repère $(O, \vec{e_1}, \vec{e_2})$. On prendra une unité égale à 6cm.

Partie III

Dans cette partie, $\vec{u} = (2, 1, 0)$ désigne le vecteur de \mathbb{R}^3 égal à $2\vec{i} + \vec{j}$.

1. Déterminer tous les plans P dont la normale est orthogonale au vecteur \vec{u} . On donnera une équation cartésienne de ces plans.

Dans la suite de cette partie, g est une fonction de classe C^1 sur \mathbb{R}^2 à valeurs dans \mathbb{R} et S est la surface d'équation z = g(x, y) i.e. z - g(x, y) = 0.

L'objectif de cette partie est de déterminer les fonctions g telles que en tout point régulier de S, la normale à S est orthogonale au vecteur \vec{u} puis on s'intéressera à l'une de ces fonctions en particulier.

- 2. Démontrer que tous les points de S sont réguliers.
- 3. Démontrer que si h est une fonction de classe \mathcal{C}^1 sur \mathbb{R} , alors la fonction g définie par $\forall (x,y) \in \mathbb{R}^2$, g(x,y) = h(x-2y) est solution du problème.
- 4. (a) Démontrer que si une fonction g répond au problème alors g est solution de l'équation aux dérivées partielles :

$$(Eq_1): 2\frac{\partial g}{\partial x} + \frac{\partial g}{\partial y} = 0.$$

(b) On considère la fonction δ définie de \mathbb{R}^2 vers \mathbb{R}^2 par :

$$\forall (x,y) \in \mathbb{R}^2, \delta(x,y) = (x_1,y_1) = (x-2y,y).$$

Démontrer que δ est une bijection de \mathbb{R}^2 dans \mathbb{R}^2 . Justifier que δ et δ^{-1} sont de classe \mathcal{C}^1 sur \mathbb{R}^2 .

- (c) Soit g une solution au problème posé. Justifiez qu'il existe une fonction g_1 de classe \mathcal{C}^1 sur \mathbb{R}^2 telle que $g = g_1 \circ \delta$.
- (d) Calculer les dérivées partielles de g en fonction de celles de g_1 .
- (e) Démontrer que g est solution de (Eq_1) si et seulement si g_1 est solution d'une équation aux dérivées partielles simple (Eq_2) à préciser.
- (f) Résoudre (Eq_2) puis (Eq_1) .