

Programming Task 2: Spline Movement

Softwaredevelopment for Industrial Robotics

Marcel Grotzke, Gabriel Kögler, Henri Hamann

30.01.2014

Table of content

- 1. Fundamentals
- 2. Spline Approximation
- 3. Spline Interpolation

1. Fundamentals - What are splines?

Origin:

- First reference in 1946 [1]
- Suitable to describe curved lines → CAD (curves & freeform surfaces)
- i.e. rollercoaster, automobile and shipbuilding, high-speed railways

<u>Definition:</u>

- k knots¹ as base
- k-1 continuous, smooth², polynomial segments of degree³ n
- commonly used splines with degree=3 (cubic) $\rightarrow ax^3+bx^2+cx+d$

¹ knot = Knotenpunkt, o. Stützpunkt

 $^{^{2}}$ order = Grad

³ smooth = stetig

1. Fundamentals - Splines have to be...

...continuous:

 Function plot does not jump (to get an ongoing spline)

...smooth:

every argument is calculable
 (no infinity¹/overshooting)

...differentiable:

need for calculating the spline conditions

1. Fundamentals - Why Splines?

Typical Problem: Set of data points

→ ad hoc approach: one (global) polynomial passing every point

But: Increasing number of points means increasing error at interval boundary, too.

→ better use another interpolation technique, like i.e. <u>spline interpolation</u>

1. Fundamentals - Splines can...

...interpolate the given input points:

 The given input points are part of the spline.

...approximate the given input points:

 The given input points are not part of the spline (i.e. *b-spline*).

Approach:

Linear combination of all segments:

(1)
$$\mathbf{x}(t) = \sum_{i=0}^{n} N_{i,k}(t) \cdot \mathbf{d}_i$$

With:

- Given: n+1 control points $D = (d_0...d_n)$ (so called *de Boor points*)
- Basis function N_{i,k}(t)
- Order k (degree = k-1)
- Time variable t represents the position on the spline
- Knot vector $\mathbf{t_i} = (t_0, ..., t_n, ...t_{n+k})$ (mathematical construct)

Feature:

De Boor points influence spline's shape

Single polynomial:

- Calculated with recursive equation
- Order k is a sum from 2 splines with Order k-1
- recursive definition:

(2)
$$N_{i,1}(t) = \begin{cases} 1 & \text{für } t_i \le t < t_{i+1} \\ 0 & \text{sonst} \end{cases}$$

$$N_{i,k}(t) = \frac{t - t_i}{t_{i+k-1} - t_i} N_{i,k-1}(t) + \frac{t_{i+k} - t}{t_{i+k} - t_{i+1}} N_{i+1,k-1}(t)$$

for
$$k>1$$
 and $i=0,...,n$

Workaround:

• Calculate the segments considering the knot vector $\mathbf{t}_i = (t_0, \dots, t_n, \dots, t_{n+k})$

- b-spline of order k = 2
- polynom of degree 1

order 2 order 2 order 3

- b-spline of order k = 3
- polynom of degree 2

- b-spline of order k = 4
- polynom of degree 3

Knot vector **t**_i:

• $t_i = (t_0, ..., t_n, ..., t_{n+k})$

condition: $t_i \le t_{i+1}$

Uniform knot vector:

$$t_i = t_{i-1} + delta_t$$

 $t_i = t_{i-1} + delta_t$ (delta_t = constant)

example:

$$delta t = 1$$
:

delta_t = 1;
$$t_i = (t_0, t_1, t_2, t_3) = (0, 1, 2, 3)$$

Non-uniform:

delta_t != constant

knot vector represents a wheigt for the basis functions

$$N_{i,k}(t) = \underbrace{\frac{t - t_i}{t_{i+k-1} - t}} N_{i,k-1}(t) + \underbrace{\frac{t_{i+k} - t}{t_{i+k} - t_{i+1}}} N_{i+1,k-1}(t)$$

 Factorises the influence of the de Boor points

Demonstration of B-spline movement

(our case)

3. Spline Interpolation

<u>System of equations:</u> every segment has one equation!

k knots & order= $n \rightarrow (k-1)$ polynomial equations with (n+1) variables.

- \rightarrow total amount of variables = (n+1) * (k-1).
- \rightarrow with order = 3 $\rightarrow ax^3 + bx^2 + cx + d \rightarrow n = 4$.
- \rightarrow amount of variables = 4(k-1) = 4k-4
- → need for conditions to solve system of equations.

Conditions: Are given by spline's behavior!

- Every knot is part of one segment $\rightarrow p_i(x_i)=y_i \rightarrow k$ conditions
- Segment's contact points $\rightarrow p_i(x_{i+1}) = p_{i+1}(x_{i+1}) \rightarrow k-2$ conditions
- Same in first derivation $\rightarrow p_i(x_{i+1}) = p_{i+1}(x_{i+1}) \rightarrow k-2$ conditions
- Same in second derivation $\rightarrow p_i^{\prime\prime}(x_{i+1}) = p_{i+1}^{\prime\prime}(x_{i+1}) \rightarrow k-2$ conditions $(4k-6) < (4k-4) \rightarrow \text{we still need two conditions!}$

Last two conditions:

- Define the behavior at the spline's start and end point (i.e. slope)
- Arbitrary decision $\rightarrow p_0'(x_0)=0 \& p_k'(x_k)=0$

3. Spline Interpolation

With polynomial s_i between point (x_i, y_i) and point (x_{i+1}, y_{i+1})

$$s_i(x) = a_i (x - x_i)^3 + b_i (x - x_i)^2 + c_i (x - x_i) + d_i$$

- → only one polynomial is active for one input
- Length of the interval $h_i = x_{i+1} x_i$, where polynomial s_i is "active"

3. Spline Interpolation

- Calculation of parameter a_i, b_i, c_i and d_i through curvature k_i
 - → curvature is second derivative of a function

$$a_i = \frac{\kappa_{i+1} - \kappa_i}{6h_i}$$
 $b_i = \frac{\kappa_i}{2}$ $c_i = \frac{y_{i+1} - y_i}{h_i} - \frac{h_i}{6}(2\kappa_i + \kappa_{i+1})$ $d_i = y_i$

- Through conditions for spline we can derive this function

$$\frac{2\kappa_{i} + \kappa_{i-1}}{6}h_{i-1} + \frac{y_{i} - y_{i-1}}{h_{i-1}} \stackrel{!}{=} -\frac{2\kappa_{i} + \kappa_{i+1}}{6}h_{i} + \frac{y_{i+1} - y_{i}}{h_{i}}$$

→ this leads to a tridiagonal linear equation system

Many thanks for your attention!

www.ovgu.de

bibliography

- 1) Schoenberg: Contributions to the problem of approximation of equidistant data by analytic functions, Quart. Appl. Math., vol. 4, pp. 45-99 and 112-141, 1946.
- 2) Wikipedia: *Polynominterpolation*. Abgerufen am 25.01.14.
- 3) Wikipedia: *Spline*. Abgerufen am 18.01.14.
- 4) Moritz Lenz: Splinefunktionen und ihre Anwendung. 2003.
- 5) Schneider: Splines. TU Chemniz. Gefunden auf <a href="http://www- user.tu-chemnitz.de/~uro/teaching/SS2002numerik/misc/Splines.pdf. Abgerufen am 15.01.2014.
- 6) Theisel: Computer Aided Geometric Design: B-Spline. Visual Computing, University of Magdeburg, 2013.

<u>Another approach:</u>

Spline with degree=n is a linear combination from 2 splines with $degree=n-1 \rightarrow recursive definition.$

$$\mathbf{x}(t) = \sum_{i=0}^{n} N_{i,k}(t) \cdot \mathbf{d}_i$$

 \rightarrow input: {Set of points | (x_i, y_i, z_i) }

$$C(u) = \sum_{i=1}^{n-p} P_i N_{i,p,\tau}(u) \qquad N_{i,0,\tau}(u) = \begin{cases} 1, & u \in [\tau_i, \tau_{i+1}[\\ 0, & \text{sonst} \end{cases}$$

$$N_{i,p,\tau}(u) = \frac{u - \tau_i}{\tau_{i+p} - \tau_i} N_{i,p-1,\tau}(u) + \frac{\tau_{i+p+1} - u}{\tau_{i+p+1} - \tau_{i+1}} N_{i+1,p-1,\tau}(u)$$

A. Fundamentals - Splines definition

Piecewise polynomial calculation of data set $\{(x_i, y_i), i = 0, 1, ..., n\}$

