PANEL DATA ANALYSIS: LINEAR MIXED-EFFECT MODELS

datascience@berkeley

Theory

 For hierarchical data with a single level of grouping, we can formulate the classical LMM at a given level of a grouping factor as follows

$$\mathbf{y_i} = \mathbf{X_i}\boldsymbol{\beta} + \mathbf{Z_i}\mathbf{b_i} + \boldsymbol{\epsilon_i}$$

where y_i, X_i, β , and are the vectors of continuous responses, the design matrix, and the vector of residual errors for group i, i = 1, 2, ..., n, and Z_i and b_i are the matrix of covariates and the corresponding vector of random effects:

$$\mathbf{Z_{i}} \equiv \begin{pmatrix} z_{i1}^{(1)} & z_{i1}^{(2)} & \cdots & z_{i1}^{(q)} \\ \vdots & \vdots & \ddots & \vdots \\ z_{in_{i}}^{(1)} & z_{in_{i}}^{(2)} & \cdots & z_{in_{i}}^{(q)} \end{pmatrix}$$

where each of the columns in $\mathbf{Z_i}$ can be more compactly represented as $(\mathbf{z^{(k)}_i})$ and $\mathbf{b_i} \equiv (b_{i1}, \dots, b_{iq})^T$

• Similar to the design matrix X_i , the matrix Z_i contains known values of q covariates, with corresponding unobservable effects b_i

Importantly,
$$\mathbf{b_i} \sim N_q(\mathbf{0}, \mathbf{D})$$
, $\epsilon_i \sim N_{n_i}(\mathbf{0}, \mathbf{R_i})$ with $\mathbf{b_i} \perp \epsilon_i$

- That is, the residual errors ϵ_i for the same group are independent of the random effects b_i .
- Also assume that vectors of random effects and residual errors for different groups are independent of each other: $b_i \perp \epsilon_{i'}$ for $i \neq i'$

$$\mathcal{D} = \sigma^2 D_i$$
 and $\mathcal{R}_i = \sigma^2 R_i$

where σ^2 s an unknown scale parameter. In general, we will assume that D and R_i are positive-definite, unless stated otherwise

- In addition to the fixed-effects parameters \mathbf{b} for the covariates used in constructing the design matrix $\mathbf{X_i}$, the proposed model includes two random components: the within-group residual errors and the random effects $\mathbf{b_i}$ for the covariates included in the matrix $\mathbf{Z_i}$. The presence of fixed and random effects of known variables gives rise to the name of this class of models.
- Some authors, researchers, partitioners refer to the proposed framework as a two-level or two-stage model. Following authors such as Pinheiro and Bates (2000), we will refer it to as a single-level linear mixed model.
- The framework established so far can easily be extended to multilevel grouped data.
- For instance, a model for data with two levels of grouping, with observations grouped into N first-level groups (indexed by $i=1,\ldots,N$), each with n_i second-level (sub-)groups (indexed by $j=1,\ldots,n_i$) containing n_{ij} observations, can be written as

$$egin{align*} \mathbf{y}_{ij} &= oldsymbol{X}_{ij}oldsymbol{eta}_i + oldsymbol{Z}_{1,ij}\mathbf{b}_{ij} + oldsymbol{Z}_{2,ij}\mathbf{b}_{ij} + oldsymbol{arepsilon}_{ij} \ \mathbf{b}_{ij} \sim \mathcal{N}_{q_1}(\mathbf{0}, \mathcal{D}_1), \quad \mathbf{b}_{ij} \sim \mathcal{N}_{q_2}(\mathbf{0}, \mathcal{D}_2), \quad ext{and} \quad oldsymbol{arepsilon}_{ij} \sim \mathcal{N}_{n_{ij}}(\mathbf{0}, \mathcal{R}_{ij}). \end{split}$$

where the random vectors \mathbf{b}_i , \mathbf{b}_{ii} , and $\boldsymbol{\varepsilon}_{ii}$ are independent of each other.

- In this setup, $\mathbf{b_i}$ are the random effects associated with the first-level groups, while $\mathbf{b_{ij}}$ are the random effects, independent of the first-level random effects, associated with the second-level groups. The design matrices $\mathbf{Z_{1,ij}}$ and $\mathbf{Z_{2,ij}}$ could be identical. Following *Pinheiro and Bates* (2000), we refer this model as a *two-level LMM*.
- It follows that, for the classical LMMs, the conditional distribution, $f_{y|b}(y_i|b_i)$, of y_i given b_i is multivariate normal, with the mean and variance defined as:

$$\mathrm{E}(\mathbf{y}_i|\mathbf{b}_i) \equiv \boldsymbol{\mu}_i = X_i \boldsymbol{\beta} + Z_i \mathbf{b}_i$$
 $\mathrm{Var}(\mathbf{y}_i|\mathbf{b}_i) = \sigma^2 \boldsymbol{R}_i,$ with $\boldsymbol{\mu}_i \equiv (\mu_{i1}, \dots, \mu_{i,n_i})'$ $\mathrm{E}(y_{ij}|\mathbf{b}_i) \equiv \mu_{ij} = \mathbf{x}'_{ij} \boldsymbol{\beta} + \mathbf{z}'_{ij} \mathbf{b}_i$ where $\mathbf{x}_{ij} \equiv (x_{ii}^{(1)}, \dots, x_{ii}^{(p)})'$ and $\mathbf{z}_{ij} \equiv (z_{ii}^{(1)}, \dots, z_{ij}^{(q)})'$ are column vectors.

- Conditionally on the (unknown) values of the random effects b_i , the mean value of the dependent-variable vector y_i is defined by a linear combination of the vectors of the X- and Z-covariates included, as columns, in the group-specific design matrices X_i and Z_i , corresponding to the fixed effects \$ and random effects b_i .
- Moreover, the conditional variance-covariance matrix of y_i is equal to the variance-covariance matrix of the residual errors ϵ_i

Maximum-Likelihood Estimation

$$\ell_{\scriptscriptstyle ext{Full}}(oldsymbol{eta}, oldsymbol{\sigma}^2, oldsymbol{ heta}) \equiv -rac{N}{2} \log(\sigma^2) - rac{1}{2} \sum_{i=1}^{N} \log[\det(oldsymbol{V}_i)]$$

$$-\frac{1}{2\sigma^2}\sum_{i=1}^N(\mathbf{y}_i-X_i\boldsymbol{\beta})'V_i^{-1}(\mathbf{y}_i-X_i\boldsymbol{\beta})$$

$$egin{aligned} \widehat{oldsymbol{eta}}(oldsymbol{ heta}) &\equiv \left(\sum_{i=1}^N X_i' V_i^{-1} X_i
ight)^{-1} \sum_{i=1}^N X_i' V_i^{-1} \mathbf{y}_i, \ \widehat{oldsymbol{\sigma}}_{\scriptscriptstyle{\mathrm{ML}}}^2(oldsymbol{ heta}) &\equiv \sum_{i=1}^N \mathbf{r}_i' V_i^{-1} \mathbf{r}_i/n, \end{aligned}$$

where
$$\mathbf{r}_i \equiv \mathbf{r}_i(\boldsymbol{\theta}) = \mathbf{y}_i - X_i \widehat{\boldsymbol{\beta}}(\boldsymbol{\theta})$$
.

$$\widehat{m{\sigma}}_{\scriptscriptstyle{ ext{REML}}}^2(m{ heta}) \equiv \sum_{i=1}^N \mathbf{r}_i' V_i^{-1} \mathbf{r}_i/(n-p)$$

This leads to a log-profile-restricted-likelihood function, which only depends on θ :

$$\ell_{\text{\tiny REML}}^*(\boldsymbol{ heta}) \equiv -rac{n-p}{2}\log\left(\sum_{i=1}^N\mathbf{r}_i'\mathbf{r}_i
ight) - rac{1}{2}\sum_{i=1}^N\log[\det(\boldsymbol{V}_i)]$$
 $-rac{1}{2}\log\left[\det\left(\sum_{i=1}^N\boldsymbol{X}_i'\boldsymbol{V}_i^{-1}\boldsymbol{X}_i
ight)
ight].$

To sum up, we have:

$$\mathcal{Y} \sim \mathcal{N}(\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{o}, \sigma^2 \boldsymbol{W}^{-1})$$

$$(\mathcal{Y}|\mathcal{B} = \boldsymbol{b}) \sim \mathcal{N}(\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{Z}\boldsymbol{b} + \boldsymbol{o}, \sigma^2\boldsymbol{W}^{-1})$$

 $\mathcal{B} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$ a parameterized $q \times q$ variance-covariance matrix, $\mathbf{\Sigma}_{\mathbf{0}}$

As a variance-covariance matrix, Σ must be positive semidefinite.

$$oldsymbol{\Sigma}_{oldsymbol{ heta}} = \sigma^2 oldsymbol{\Lambda}_{oldsymbol{ heta}} oldsymbol{\Lambda}_{oldsymbol{ heta}}^ op$$
 ,

a relative covariance factor, Λ_{θ} , which is a $q \times q$ matrix.

Final Remarks:

- This formulation of linear mixed models allows for a relatively compact expression for the profiled log-likelihood of θ
- The matrices associated with random effects, Z and Λ_{θ} , typically have a sparse structure with a sparsity pattern that encodes various model assumptions.
- More on the details on the structure and how to represent it efficiently can be found in the assigned readings, R demo, or the live sessions.
- The setup above is very general. The interface provided by lme4's lmer function is less general than the model described.
- To take advantage of the entire range of possibilities, one may have to use the modular functions or explore the experimental flexLambda branch of lme4 on Github

Berkeley school of information