

Analytical treatment

The equations formulated below consider a gradient in the extracellular stiffness in a 1-d strand of tissue using the mechanical bidomain model.

Consider u_x and w_x as the intra- and extra-cellular displacements of the bidomain layer. x being the principal direction of the one-dimensional tissue strand, T being the tension, p and q being the intra- and extra-cellular pressure contributions arising mostly from hydrostatic forces.

The standard equations of the bidomain model are as follows [1]:

$$-\frac{\partial p}{\partial x} + \nu \left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2}\right) + \gamma \frac{\partial^2 u_x}{\partial x^2} + \frac{\partial T}{\partial x} = K(u_x - w_x) \tag{1}$$

$$-\frac{\partial q}{\partial x} + \mu \left(\frac{\partial^2 w_x}{\partial x^2} + \frac{\partial^2 w_x}{\partial y^2}\right) = -K(u_x - w_x) \tag{2}$$

For this problem we consider:

- $\bullet \ \mu = \mu_0 + gx$
- No contributions along the y axis
- p,q and T are constant and hence their gradients are zero along the x axis
- Slope of μ is a constant
- K is same for intra- and extra-cellular displacements

$$\nu \frac{\partial^2 u_x}{\partial x^2} + \gamma \frac{\partial^2 u_x}{\partial x^2} = K(u_x - w_x) \tag{3}$$

$$\mu_0 \frac{\partial^2 w_x}{\partial x^2} + gx \frac{\partial^2 w_x}{\partial x^2} = -K(u_x - w_x) \tag{4}$$

Simplifying the above expression, replacing u_x in equation (2) from (1):

$$u_x = w_x + \frac{\nu}{K} \frac{\partial^2 u_x}{\partial x^2} + \frac{\gamma}{K} \frac{\partial^2 u_x}{\partial x^2} + \gamma \frac{\partial^2 u_x}{\partial x^2}$$
 (5)

$$\therefore \frac{\mu_0}{K} \frac{\partial^2 w_x}{\partial x^2} + x \frac{g}{k} \frac{\partial^2 w_x}{\partial x^2} = -\left(\frac{\nu}{K} \frac{\partial^2 u_x}{\partial x^2} + \frac{\gamma}{K} \frac{\partial^2 u_x}{\partial x^2}\right) \tag{6}$$

Final form the equation can be written as:

$$\frac{\partial^2 w_x}{\partial x^2} \left(\frac{\mu_0}{K} + \frac{gx}{K}\right) + \frac{\partial^2 u_x}{\partial x^2} \left(\frac{\nu}{K} + \frac{\gamma}{K}\right) = 0 \tag{7}$$

Bibliography

[1] Bradley J Roth The Mechanical Bidomain Model: A Review ISRN Tissue Eng. 2013