Exercici 15.

Demostreu que si p és un nombre natural primer, aleshores, per a $1 \le k \le p-1$, p divideix el nombre combinatori $\binom{p}{k}$. Es certa aquesta propietat si p no és primer?

Solució 15.

Primer de tot, desenvolupem $\binom{p}{k}$:

$$\binom{p}{k} = \frac{p!}{k! \times (p-k)!} = \frac{1 \times 2 \times 3 \times \ldots \times (k-1) \times k \times (k+1) \times \ldots \times (p-1) \times p}{(1 \times 2 \times 3 \times \ldots \times (k-1) \times k) \times (p-k)!}$$

Podem cancelar els nombres que tenim comuns a dalt i a baix, així, ens queda:

$$\binom{p}{k} = \frac{(k+1)\times\ldots\times(p-1)\times p}{(p-k)!} = \frac{(k+1)\times\ldots\times(p-1)\times p}{1\times2\times3\times\ldots\times(p-k-1)\times(p-k)}$$

Com es té $1 \le k \le p-1$, és obvi que sempre p-k < p. Aleshores, com p és primer, no pot ser cancelat per cap nombre del denominiador ni producte d'ells, ja que p només podria ser cancelat per ell mateix.

Com no pot ser cancelat, és obvi que el resultat de $\binom{p}{k}$ es podrà escriure com $m \times p$ (on $m \in \mathbb{N}$) i clarament $p \mid m \times p$.

Hem demostrat doncs $p \mid \binom{p}{k}$.

En el cas que p no fos primer, aquesta propietat no es compliria sempre, ja que p o algún factor de p podria ser cancelat per algún dels nombres de (p-k)! o el producte d'ells. En el següent exemple es veu un cas en que aixó succeeix:

$$\binom{6}{3} = \frac{6!}{3! \times (6-3)!} = \frac{4 \times 5 \times 6}{2 \times 3} = 4 \times 5 = 20$$

i, clarament $6 \nmid 20$.