

§11.7

Dr. Basilio

Jutline

Guiding Questions

Intro

Testing Series Toolbox

§11.7: Strategies for Testing Series

Ch 11: Infinite Sequences and Series
Math 5B: Calculus II

Dr. Jorge Eduardo Basilio

Department of Mathematics & Computer Science Pasadena City College

Class #22 Notes

May 14, 2019 Spring 2019

Outline

§11.7

Dr. Basilio

Outline

estion

tro

ting S

Testing Series Toolbox

Introduction

Guiding Questions

Guiding Questions for §11.7

§11.7 Dr. Basilio

Guiding Questions

Intro

Testing Series Toolbox

Guiding Question(s)

• What are strategies for Testing Series?

Introduction

§11.7

Dr. Basilio

Outline

Guiding Questions

Intro

Testing Series Toolbox

- Similar to integration (where we studies many techniques), we have many techniques for determining whether a series converges or diverges.
- In this section, we'll develop a testing series toolbox.

Testing Series Toolbox

Testing Series Toolbox

Memorize all the series tests! Pay close attention to the conditions needed.

- Tool #1 Try Test for Divergence First
- Tool #2 Is it a geometric series or p-series? Is it a alternating series?
 - Keep in mind the algebraic rules you can apply to convergent series. Try apply them to get a Geometric series into the correct form.
- Tool #3 Does the "Squint Test" give you a series you know to C or D
 (p-series, geometric series, or alternating series)? If YES, then use the
 Limit Comparison Test (or the Ratio Test)
- Tool #4 Is $\sqrt[n]{|a_n|}$ easy to analyze? Try the Root Test.
- Tool #5 Is $\left| \frac{a_{n+1}}{a_n} \right|$ easy to analyze? Try the Ratio Test.
- Tool #6 Does the series have positive terms?
 - Are there easy comparison? Try the Comparison Test.
 - Is there a positive, decreasing f(x) with $f(n) = a_n$ and $\int f(x) dx$ doable? Try the Integral Test.

§11.7

Dr. Basilio

Outline

uiding Juestions

Intro

Testing Series Toolbox

Testing Series Toolbox

-SERIES

GEOMETRIC SERIES Does $a_n = ar^{n-1}$, $n \ge 1$?

ALTERNATING SERIES

 $=(-1)^{n-1}b_n, b_n \ge 0$?

TAYLOR SERIES

COMPARISON TEST Pick (b.). Does \(b., converge? \)

o finite & a. b. > 00

INTEGRAL TEST

ROOT TEST

LIMIT COMPARISON TEST Pick $\{b_n\}$. Does $\lim \frac{a_n}{c} - c >$

uous, positive & decreasing on

um? May have to use partial fractions, properties

of logarithms, etc. to nut into appropriate form

SERIES CONVERGENCE/DIVERGENCE FLOW CHART

VES \longrightarrow Is $b_{n+1} \le b_n \& \lim b_n = 0$?

Is x in interval of convergence

f(x)dx converge?

Dr. Basilio

Testing Series Toolbox

2. $\sum_{n=1}^{\infty} \frac{n-1}{n^2+n}$

5. $\sum_{n=0}^{\infty} \frac{(-3)^{n+1}}{2^{3n}}$

6. $\sum_{n=1}^{\infty} \left(\frac{3n}{1+8n} \right)^n$

7. $\sum_{n=0}^{\infty} \frac{1}{n\sqrt{\ln(n)}}$

8. $\sum_{k=1}^{\infty} \frac{2^k k!}{(k+2)!}$

a. Diverge

a. Diverges

a. Converge

a_n Diverges

an Diverges a. Abs. Com a. Diverges

a. Abs. Conv

Σ a_n Diverges

- 15. $\sum_{n=0}^{\infty} \frac{n!}{2 \cdot 5 \cdot 8 \cdot \cdots \cdot (3n+2)}$
- 28. $\sum_{n=0}^{\infty} \frac{e^{1/n}}{n^2}$ 29. $\sum_{n=0}^{\infty} \frac{\tan^{-1}(n)}{n\sqrt{n}}$

30. $\sum_{j=1}^{\infty} (-1)^{j} \frac{\sqrt{j}}{j+5}$

31. $\sum_{k=0}^{\infty} \frac{5^k}{3^k + 4^k}$

32. $\sum_{n=1}^{\infty} \frac{(2n)^n}{n^{2n}}$

16. $\sum_{n=1}^{\infty} \frac{n^2 + 1}{n^3 + 1}$

33. $\sum_{i=1}^{\infty} \frac{\sin(1/n)}{\sqrt{n}}$

- 34. $\sum_{n=0}^{\infty} \frac{1}{n + n \cos^2(n)}$ 35. $\sum_{n=1}^{\infty} \left(\frac{n}{n+1} \right)^{n^2}$

36. $\sum_{n=2}^{\infty} \frac{1}{(\ln(n))^{\ln(n)}}$

13. $\sum_{n=0}^{\infty} \frac{3^n n^2}{n!}$

- 38. $\sum_{n=0}^{\infty} (\sqrt[n]{2} 1)$

6/6