Agrégation Interne

Le groupe linéaire $GL(E)^1$

1 Énoncé

$-\mathbf{I} - \mathbf{Le}$ groupe linéaire GL(E)

K désigne un corps commutatif.

E est un \mathbb{K} -espace vectoriel de dimension finie $n \geq 1$.

 $\mathcal{L}(E)$ est l'algèbre des endomorphismes de E, GL(E) est le groupe des automorphismes de E.

Pour tout entier $n \geq 1$, $\mathcal{M}_n(\mathbb{K})$ désigne l'algèbre des matrices carrées d'ordre n à coefficients dans \mathbb{K} et $GL_n(\mathbb{K})$ le groupe des matrices inversibles dans $\mathcal{M}_n(\mathbb{K})$.

On note Id [resp. I_n] l'endomorphisme [resp. la matrice] identité.

La notion de déterminant et ses principales propriétés sont supposées acquises.

Le choix d'une base de E permet de réaliser un isomorphisme d'amgèbres de $\mathcal{L}(E)$ sur $\mathcal{M}_n(\mathbb{K})$ et un isomorphisme de groupes de GL(E) sur $GL_n(\mathbb{K})$.

- 1. Soit $u \in \mathcal{L}(E)$. Montrer que les assertions suivantes sont équivalentes :
 - (a) $u \in GL(E)$;
 - (b) $\ker(u) = \{0\}$ (i. e. *u* injectif);
 - (c) $\operatorname{Im}(u) = E$ (i. e. u surjectif);
 - (d) il existe $v \in GL(E)$ tel que $u \circ v = Id$;
 - (e) il existe $w \in GL(E)$ tel que $w \circ u = Id$.
- 2. Le résultat de la question précédente est-il valable en dimension infinie?
- 3. Montrer que l'ensemble :

$$SL(E) = \{u \in \mathcal{L}(E) \mid \det(u) = 1\}$$

est un sous-groupe distingué de GL(E).

4.

- (a) Rappeller la définition du polynôme minimal de $u \in \mathcal{L}(E)$.
- (b) Montrer que les valeurs propres de u sont les racines de son polynôme minimal.
- (c) Montrer que si $u \in GL(E)$, on a alors $u^{-1} \in \mathbb{K}[u]$.
- (d) Montrer que si F est un sous-espace vectoriel de $\mathcal{L}(E)$ contenant Id et stable par la composition des endomorphismes, l'ensemble $G = F \cap GL(E)$ est alors un sous-groupe de GL(E).
- 5. On rappelle que le centre (ou commutateur) Z(G) d'un groupe G est la partie de G formée des éléments de G qui commutent à tous les autres éléments de G, soit :

$$Z(G) = \{ h \in G \mid \forall g \in G, \ gh = hg \}$$

- (a) Déterminer le centre de $\mathcal{L}(E)$.
- (b) Déterminer le centre de GL(E).
- 6. Les groupes $GL_n(\mathbb{R})$ et $GL_n(\mathbb{C})$ peuvent-ils être isomorphes?
- 7. On suppose que $\mathbb{K} = \mathbb{F}_q$ est un corps fini à $q = p^r$ éléments, où $p \geq 2$ est un nombre premier.

^{1.} Le 27/10/2013

(a) Montrer que:

$$\forall n \ge 2, \text{ card } (GL_n(\mathbb{F}_q)) = \prod_{k=1}^n (q^n - q^{k-1}) = q^{\frac{n(n-1)}{2}} \prod_{j=1}^n (q^j - 1)$$

(b) Montrer que:

$$\forall n \ge 2, \text{ card } (SL_n(\mathbb{F}_q)) = q^{n-1} \prod_{k=1}^{n-1} (q^n - q^{k-1}) = q^{\frac{n(n-1)}{2}} \prod_{j=2}^n (q^j - 1)$$

- II - Sous-groupes de GL(E)

- 1. On suppose que le corps \mathbb{K} est de caractéristique différente de 2.
 - (a) Montrer que si G est un sous-groupe multiplicatif fini de GL(E) tel que tout élément de G soit d'ordre au plus égal à 2, alors G est commutatif de cardinal inférieur ou égal à 2^n .
 - (b) En déduire que, si F est un \mathbb{K} -espace vectoriel de dimension finie, alors les groupes multiplicatifs GL(E) et GL(F) sont isomorphes si, et seulement si, $\dim(F) = \dim(E)$.
- 2. Soit G un sous-groupe fini de GL(E) de cardinal $p \geq 2$.
 - (a) Montrer que $v = \frac{1}{p} \sum_{u \in G} u$ est un projecteur.
 - (b) Montrer que $\sum_{u \in G} \operatorname{tr}(u)$ est un entier divisible par p.
 - (c) En supposant que \mathbb{K} est de caractéristique nulle, montrer que si $\sum_{u \in G} \operatorname{tr}(u) = 0$, on a alors $\sum_{u \in G} u = 0$.
- 3. On suppose que le corps K est de caractéristique nulle.
 - (a) Montrer que si $u \in \mathcal{L}(E)$ est nilpotent, 0 est alors valeur propre de u et $\mathrm{Tr}(u) = 0$.
 - (b) Montrer qu'un endomorphisme $u \in \mathcal{L}(E)$ est nilpotent si, et seulement si, $\text{Tr}(u^k) = 0$ pour tout k compris entre 1 et n.
 - (c) Soient G un sous-groupe de GL(E), F le sous-espace vectoriel de $\mathcal{L}(E)$ engendré par G, $\mathcal{B} = (u_i)_{1 \le i \le p}$ une base de F extraite de G et l'application :

$$\varphi: G \to \mathbb{K}^p$$

$$u \mapsto (\operatorname{tr}(u \circ u_1), \cdots, \operatorname{tr}(u \circ u_p))$$

Montrer que si u, v dans G sont tels que $\varphi(u) = \varphi(v)$, on a alors:

$$\begin{cases} \forall w \in G, \ \operatorname{tr}(u \circ v^{-1} \circ w) = \operatorname{tr}(w) \\ \forall k \ge 1, \ \operatorname{tr}\left((u \circ v^{-1})^k\right) = n \end{cases}$$

et en déduire que $u \circ v^{-1} - Id$ est nilpotent.

- (d) En gardant les notations de la question précédente et en supposant que tous les éléments de G sont diagonalisables, montrer que φ est injective.
- (e) Montrer que si G est un sous-groupe de GL(E) tel que tous ses éléments sont diagonalisables et tr(G) est fini, il est alors fini.

2

4. Pour $\mathbb{K} = \mathbb{C}$, montrer qu'un sous-groupe G de GL(E) est fini si, et seulement si, il est d'exposant fini (c'est-à-dire qu'il existe $m \in \mathbb{N}^*$ tel que $u^m = Id$ pour tout $u \in G$). Ce résultat est un théorème de Burnside.

- III - Topologie sur
$$GL(E)$$
 ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$)

Pour cette partie, on suppose que $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$ et l'espace E est muni d'une norme quelconque (en dimension finie, elles sont toutes équivalentes).

On rappelle que toute application linéaire $u \in \mathcal{L}(E)$ est continue et que l'on définit une norme sur $\mathcal{L}(E)$ en posant :

$$\forall u \in \mathcal{L}(E), \|u\| = \sup_{\substack{x \in E \\ \|x\|=1}} \|u(x)\| = \sup_{x \in E \setminus \{0\}} \frac{\|u(x)\|}{\|x\|}$$

- 1. Montrer que GL(E) est un ouvert dense de $\mathcal{L}(E)$.
- 2. Le résultat de la question précédente est-il encore valable en dimension infinie ? ($\mathcal{L}(E)$ désignant l'espace des applications linéaires continues de E dans E muni de la norme usuelle.)
- 3. Montrer qu'il existe une base de $\mathcal{L}(E)$ formée d'isomorphismes.
- 4. Montrer que, pour $\mathbb{K} = \mathbb{C}$, GL(E) est connexe par arcs.
- 5. Le résultat précédent est-il valable pour $\mathbb{K} = \mathbb{R}$?

6.

- (a) Montrer que toute matrice $A \in GL_n(\mathbb{R})$ peut s'écrire de manière unique $A = \Omega S$ où Ω est une matrice orthogonale et S une matrice symétrique définie positive.
- (b) Montrer que l'application $(\Omega, S) \longmapsto \Omega S$ réalise un homéomorphisme de $\mathcal{O}_n(\mathbb{R}) \times \mathcal{S}_n^{++}(\mathbb{R})$ sur $GL_n(\mathbb{R})$.
- (c) Montrer que l'ensemble $\mathcal{O}_n(\mathbb{R})$ des matrices réelles orthogonales est compact dans $\mathcal{M}_n(\mathbb{R})$.
- (d) Montrer que $\mathcal{O}_n(\mathbb{R})$ est un sous-groupe compact maximal de $GL_n(\mathbb{R})$, c'est-à-dire que $\mathcal{O}_n(\mathbb{R})$ est compact et que si G est sous-groupe compact de $GL_n(\mathbb{R})$ qui contient $\mathcal{O}_n(\mathbb{R})$, alors $G = \mathcal{O}_n(\mathbb{R})$.
- (e) Montrer que toute matrice $A \in \mathcal{M}_n(\mathbb{R})$ peut s'écrire $A = \Omega S$ où Ω est une matrice orthogonale et S une matrice symétrique positive. Une telle décomposition est-elle unique?