Cambridge (CIE) A Level Chemistry

Arenes

Contents

- * Reactions of Arenes
- * Electrophilic Substitution of Arenes
- * Location of Halogenation on Arenes
- * Directing Effects of Substituents on Arenes

Reactions of Arenes

Reactions of Arenes

- Arenes are very stable compounds due to the **delocalisation of** π **electrons** in the ring
 - This is because the negative charge is spread out over the molecule instead of being confined to a small area
- During chemical reactions such as substitution reactions, this delocalised ring is maintained
 - Addition reactions however, disrupt the aromatic stabilisation
- Benzene undergoes a wide range of reactions including combustion -(complete and incomplete) and the following reactions:
 - Halogenation
 - Nitration
 - Friedel-Craft's alkylation
 - Friedel-Craft's acylation
 - Complete Oxidation
 - Hydrogenation

Halogenation

- Halogenation reactions are examples of electrophilic substitution reactions
- Arenes undergo **substitution** reactions with chlorine (Cl₂) and bromine (Br₂) in the presence of anhydrous AICI₃ or AIBr₃ catalyst respectively to form halogenoarenes (aryl halides)
 - The chlorine or bromine acts as an **electrophile** and replaces a hydrogen atom on the benzene ring
 - The catalyst is required for the reaction to take place, due to the stability of the benzene structure

Halogenation of benzene

Arenes undergo substitution reactions with halogens to form aryl halides

- Alkylarenes such as methylbenzene undergo halogenation on the 2 or 4 positions
- This is due to the **electron-donating** alkyl groups which activate these positions
 - Phenol (C_6H_5OH) and phenylamine ($C_6H_5NH_2$) are also activated in the 2 and 4 positions
- The halogenation of alkylarenes, therefore, results in the formation of **two products**

Halogenation of alkylarenes

Alkylarenes are substituted on the 2 or 4 position

■ Multiple substitutions occur when excess halogen is used

Halogenation of alkylarenes using an excess of halogen

In the presence of excess halogen, multiple substitutions occur

Nitration

- Another example of a substitution reaction is the **nitration** of arenes
- In these reactions, a nitro (-NO₂) group replaces a hydrogen atom on the arene
- The benzene is reacted with a mixture of concentrated nitric acid (HNO₃) and concentrated sulfuric acid (H_2SO_4) at a temperature between 25 and 60 $^{\circ}C$

Nitration of benzene

Your notes

During nitration, a hydrogen atom is replaced by an NO_2 group

• Again, due to the **electron-donating** alkyl groups in alkylarenes, nitration of methylbenzene will occur on the 2 and 4 position

Nitration of alkylarenes

Alkylarenes are nitrated on the 2 or 4 position

Friedel-Crafts reactions

- Friedel-Crafts reactions are also **electrophilic substitution** reactions
- Due to the aromatic stabilisation in arenes, they are often **unreactive**
- To use arenes as **starting materials** for the synthesis of other organic compounds, their structure, therefore, needs to be changed to turn them into more reactive compounds
- Friedel-Crafts reactions can be used to substitute a hydrogen atom in the benzene ring for an **alkyl group** (Friedel-Crafts alkylation) or an **acyl group** (Friedel-Crafts acylation)
- Like any other electrophilic substitution reaction, the Friedel-Crafts reactions consist of three steps:
 - 1. Generating the electrophile
 - 2. Electrophilic attack on the benzene ring
 - 3. Regenerating aromaticity of the benzene ring

Examples of Friedel-Crafts alkylation and acylation reactions

During alkylation, an alkyl / R group is substituted on the benzene ring and during acylation, an acyl / RCO group is substituted on the benzene ring

Friedel-Crafts alkylation

- In this type of Friedel-Crafts reaction, an **alkyl chain** is substituted into the benzene ring
- The benzene ring is reacted with a chloroalkane in the presence of an AICl₃ catalyst
- An example of an alkylation reaction is the reaction of benzene with chloropropane (CH₃CH₂CH₂CI) to form propylbenzene

Example of a Friedel-Crafts alkylation reaction

STEP 1: GENERATING THE ELECTROPHILE

CHLOROPROPANE

STEP 2: ELECTROPHILIC ATTACK

STEP 3: RESTORING AROMATICITY

Alkylation reactions of benzene follow the 3 steps of electrophile generation, electrophilic attack and regeneration of aromaticity

Friedel-Crafts acylation

- In the Friedel-Crafts acylation reaction, an **acyl group** is substituted into the benzene ring
 - An acyl group is an alkyl group containing a carbonyl, C=O group
- The benzene ring is reacted with an acyl chloride in the presence of an AlCl₃ catalyst
- An example of an acylation reaction is the reaction of methylbenzene with propanoyl chloride to form an acyl benzene
 - Note that the acyl group substitutes on the 4 position due to the -CH₃ group on the benzene

Example of a Friedel-Crafts acylation reaction

STEP 1: GENERATING THE ELECTROPHILE

PROPANOYL CHLORIDE

STEP 2: ELECTROPHILIC ATTACK

$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_2CH_3
 CH_3
 CH_3
 CH_3

STEP 3: RESTORING AROMATICITY

$$\begin{array}{c} CH_{3} \\ + [AlCl_{4}]^{-} \\ \end{array} \begin{array}{c} CH \\ + HCl + AlCl_{3} \\ C = O \\ CH_{2}CH_{3} \end{array}$$

Acylation reactions of benzene follow the same 3 steps of electrophile generation, electrophilic attack and regeneration of aromaticity

Complete oxidation

- Normally, alkanes are not **oxidised** by **oxidising agents** such as potassium manganate(VII) (KMnO₄)
- However, the presence of the benzene ring in alkyl arenes affects the properties of the alkyl side-chain
- The alkyl side-chains in alkyl arenes are **oxidised** to **carboxylic acids** when **refluxed** with alkaline potassium manganate(VII) and then acidified with dilute sulfuric acid (H_2SO_4)
 - For example, the complete oxidation of **ethylbenzene** forms **benzoic acid**

Oxidation of alkylarenes

The complete oxidation of alkyl side chains in arenes gives a carboxylic acid

Hydrogenation

- The hydrogenation of benzene is an addition reaction
- Benzene is **heated** with **hydrogen gas** and a **nickel** or **platinum catalyst** to form cyclohexane

Hydrogenation of benzene

Hydrogenation of benzene results in a loss of aromaticity

• The same reaction occurs when **ethylbenzene** undergoes hydrogenation to form cycloethylbenzene

Hydrogenation of methylbenzene

Hydrogenation of alkylarenes also results in a loss of aromaticity

Summary of Reactions of Arenes Table

Reaction	Conditions	Products
Halogenation	Cl_2 with an AICl $_3$ catalyst Br_2 with an AIBr $_3$ catalyst	Aryl halide
Nitration	A mixture of concentrated H ₂ SO ₄ and concentrated HNO ₃ Temperature between 25 °C and 60 °C	Nitroarene
Friedel-Crafts alkylation	Halogenoalkane and anhydrous AlCl ₃ catalyst	Alkylbenzene
Freidel-Crafts acylation	Acyl chloride and anhydrous AlCl ₃ catalyst	Acylbenzene
Complete oxidation	Hot, alkaline KMnO $_4$ and then dilute acid	Benzoic acid
Hydrogenation	Heating with hydrogen and Pt / Ni catalyst	Cyclohexane

Electrophilic Substitution of Arenes

Electrophilic Substitution of Arenes

- The **electrophilic substitution** reaction in arenes consists of **three steps**:
 - 1. Generation of an electrophile
 - 2. Electrophilic attack
 - 3. Regenerating aromaticity

Generation of an electrophile

- The **delocalised** π system is extremely stable and is a region of **high electron density**
- Consequently, the first step of an electrophilic substitution reaction involves the generation of an electrophile
 - The electrophile can be a positive ion or the positive end of a polar molecule
- There are numerous electrophiles which can react with benzene:

Table of electrophiles commonly used with benzene

Reaction type	Electrophile*
halogenation	X ⁺ , e.g. CI ⁺
nitration	NO ₂ ⁺
Friedel-Craft's alkylation	R ⁺
Friedel-Craft's acylation	R-C=O ⁺

- Typically electrophiles cannot simply be added to the reaction mixture
 - The electrophile is produced in situ, by adding appropriate reagents* to the reaction mixture

Electrophilic attack

- A pair of electrons from the benzene ring is donated to the electrophile to form a covalent bond
- This disrupts the aromaticity in the ring as there are now only four π electrons and there is a positive charge spread over the five carbon atoms

Regenerating aromaticity

- In the **final step** of electrophilic substitution, the aromaticity of the benzene ring system is restored
- Your notes

- This happens by **heterolytic cleavage** of the C-H bond
 - This means that the electrons in this bond go into the benzene π bonding system

Electrophilic substitution mechanism

- The halogenation and nitration of arenes are both examples of electrophilic substitution reactions
 - A hydrogen atom is replaced by a halogen atom or a nitro (-NO₂) group

Bromination and nitration of benzene

During bromination, a hydrogen atom is substituted by a bromine atom and during nitration, a hydrogen atom is substituted by a nitro group

Step 1: Generating the Br+ and NO₂+ electrophiles

- For the **halogenation** reaction:
 - This is achieved by reacting the halogen with a halogen carrier
 - The halogen molecules form a **dative bond** with the halogen carrier by donating a lone pair of electrons from one of its halogen atoms into an empty 3p orbital of the halogen carrier

Step 1 of the halogenation of arenes

$$\begin{array}{c} \text{DATIVE COVALENT} \\ \text{BOND} \\ \\ \text{Br} \xrightarrow{\delta^{+}} \text{Br} & \text{AlBr}_{3} \longrightarrow \text{Br}^{+} + [\text{AlBr}_{4}]^{-} \\ \\ & \xrightarrow{\text{ELECTROPHILE}} \end{array}$$

During bromination, an AlBr₃ halogen carrier catalyst is used and during chlorination an AICI₃ halogen carrier catalyst is used

- For the **nitration** reaction:
 - The electrophile NO₂+ion is generated by reacting it with concentrated nitric acid (HNO_3) and concentrated sulfuric acid (H_2SO_4)

Step 1 of the nitration of arenes

STEP 1: GENERATING THE ELECTROPHILE

HNO₃ +
$$2H_2SO_4$$
 \longrightarrow NO_2^+ + $2HSO_4^-$ + H_3O^+

ELECTROPHILE

During nitration, concentrated nitric acid and concentrated sulfuric acid react to form the NO₂⁺ electrophile

Step 2: Electrophilic attack by the Br+ and NO₂+ electrophiles

- Once the electrophile has been generated, it will carry out an electrophilic attack on the benzene ring
 - The nitrating mixture of HNO_3 and H_2SO_4 is **refluxed** with the arene at 25 60 °C
- A pair of electrons from the benzene ring is donated to the electrophile to form a covalent bond
 - This disrupts the aromaticity in the ring as there are now only four π electrons and there is a **positive charge** spread over the five carbon atoms

Step 2 of the halogenation of arenes

STEP 2: ELECTROPHILIC ATTACK

A pair of electrons from the benzene ring is donated to the Br⁺ electrophile to form a covalent bond causing a loss in aromaticity

Step 2 of the nitration of arenes

A pair of electrons from the benzene ring is donated to the NO₂⁺ electrophile to form a covalent bond causing a loss in aromaticity

Step 3: Regenerating / restoring aromaticity

- In the **final step** of the reaction, this aromaticity is restored by **heterolytic cleavage** of the C-H bond
 - This means that the bonding pair of electrons goes into the benzene π bonding system

Step 3 of the halogenation of arenes

STEP 3: RESTORING AROMATICITY

Step 3 of the nitration of arenes

In both reactions, the C-H bond of the substituted carbon atom breaks and the electrons go back into the benzene π bonding system, restoring aromaticity

Addition reactions of arenes

- The delocalisation of electrons (also called aromatic stabilisation) in arenes is the main reason why arenes predominantly undergo substitution reactions over addition reactions
- In substitution reactions, the **aromaticity** is restored by **heterolytic cleavage** of the C-H bond
- In addition reactions, on the other hand, the aromaticity is **not restored** and is in some cases completely lost
 - The **hydrogenation** of arenes is an example of an addition reaction during which the aromatic stabilisation of the arene is completely lost
 - The cyclohexane formed is **energetically less stable** than the benzene

Location of Halogenation on Arenes

Halogenation in Arenes

- Arenes will undergo substitution reactions with halogens to form aryl halides
 - This reaction is also called a **halogenation** reaction
- Depending on the reaction conditions, halogenation can occur:
 - In the aromatic ring
 - In the side chain

Halogenation in the aromatic ring

• Halogenation of alkylarenes in the aromatic ring will occur when a halogen and anhydrous halogen carrier catalyst (such as AIBr₃ or AICl₃) is used

Halogenation of alkylarenes in the aromatic ring

A halogen carrier catalyst is used to generate the electrophile for the halogenation of alkylarenes

- Aryl halides are less reactive than halogenoalkanes as the carbon-halogen bond in aryl halides is stronger
- This is due to the partial overlap of the lone pairs on the halogen atom with the π system in the benzene ring
- The carbon-halogen bond, therefore, has a partial double bond character

The lack of reactivity in alkylarenes / aryl halides

Aryl halides are unreactive due to the partial double bond character of the carbonhalogen bond

Halogenation in the side chain

- Halogenation of alkylarenes in the side chain will occur when the halogen is passed into boiling alkylarene in the presence of ultraviolet (UV) light
 - This is a **free-radical substitution** reaction

Halogenation of an alkylarene side chain

Halogenation of alkylarenes in the side chain is an example of a free-radical substitution reaction

• If excess halogen is used, all hydrogen atoms on the alkyl side-chain will be substituted by the halogen atoms

Halogenation of an alkylarene side chain using excess halogen

In excess halogen, all hydrogen atoms on the alkyl side-chain will be replaced

• Note that no substitution into the benzene ring occurs under these conditions

Directing Effects of Substituents on Arenes

The Directing Effects of Substituents on **Arenes**

- Arenes readily undergo **electrophilic substitution** of one of their hydrogen atoms with another species
- Substituents that are already present on the arenes can affect where the substitution of the hydrogen atom on the arene takes place
 - These groups are said to **direct** substitution reactions to different **ring positions**

Electron-withdrawing & electron-donating groups

- The substituents on the arenes can either be **electron-withdrawing** or **electron**donating groups
- Electron-withdrawing substituents remove electron density from the π system in the benzene ring making it less reactive
 - These groups **deactivate** attack by electrophiles and **direct** the incoming electrophile to attack the 3 and/or 5 positions
 - For example, the nitro group in nitrobenzene is an electron-withdrawing group
 - Upon bromination of nitrobenzene, the bromine electrophile will be directed to the 3 and/or 5 position
 - The products are 3-bromonitrobenzene and 5-bromonitrobenzene
- Electron-donating substituents **donate** electron density **into** the π system of the benzene ring making it more reactive
 - These groups activate attack by electrophiles and direct the incoming electrophile to attack the 2, 4 and/or 6 positions
 - For example, the methyl group in methylbenzene is an electron-donating group
 - Upon bromination of methylbenzene, the bromine electrophile will be directed to the 2 and/or 4 position
 - The products are 2-bromomethylbenzene and 4-bromomethylbenzene

Electron-withdrawing & electron-donating substituents table

	Substituents	Activated positions
Electron withdrawing	-NO ₂	3 and / or 5
	-COOH	

	-COR	
Electron donating	-R	2, 4 and / or 6
	-OH	
	-NH ₂	

