

BI

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10027539 A

(43) Date of publication of application: 27.01.98

(51) Int. CI

H01J 1/30 G09G 3/22

(21) Application number: 08180377

(22) Date of filing: 10.07.96

(71) Applicant:

SHARP CORP

(72) Inventor:

OTANI NOBORU

(54) FERROELECTRIC COLD CATHODE AND ITS DRIVING METHOD

(57) Abstract:

PROBLEM TO BE SOLVED: To make controllable the emission area and amount of electrons emitted and the spread of the emitted electrons by providing a portion where an insulating film intervenes between a ferroelectric and an upper electrode and a portion where the ferroelectric makes contact with the upper electrode to form an electron emitting window.

SOLUTION: This ferroelectric cold cathode has lower and upper electrodes 2, 3 placed respectively at the bottom and top of a ferroelectric 1, and has between the ferroelectric 1 and the electrode 3 a portion where an insulating film 4 is formed and a portion where the ferroelectric 1 makes contact with the electrode 3, with an electron emitting window formed in the portion where they make contact. Electron emission by the polarization reversal of the ferroelectric is known to start to occur from an applied pulse voltage that is about twice the resisting electric field of the ferroelectric or greater. Thus when a driving pulse voltage 6 is applied to the electrode 3, an effective voltage applied to the ferroelectric 1 during drive is lowered enough under wiring where the ferroelectric 1 and the film 4 form

double layers, so that electron emission is not started, while electron emission can be effected only from the electron emitting window.

COPYRIGHT: (C)1998,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-27539

(43)公開日 平成10年(1998) 1月27日

(51) Int.Cl. ⁸	-	識別記号	庁内整理番号	FΙ		技術表示箇所
H01J	1/30			H01J	1/30	Α
G 0 9 G	3/22		4237-5H	G 0 9 G	3/22	
•		•				

審査請求 未請求 請求項の数6 OL (全 6 頁)

		
(21)出願番号	特顏平8-180377	(71)出顧人 000005049
		シャープ株式会社
(22)出願日	平成8年(1996)7月10日	大阪府大阪市阿倍野区長池町22番22号
		(72) 発明者 大谷 昇
		大阪府大阪市阿倍野区長池町22番22号 シ
		ャープ株式会社内
		(74)代理人 弁理士 梅田 膀
	·	

(54) 【発明の名称】 強誘電体冷陰極及びその駆動方法

(57)【要約】

【課題】 本発明は、放出電子の放出面積や放出量等の 制御や放出電子の広がりの抑制が可能で、低電圧駆動の 強誘電体冷陰極及びその駆動方法を提供することを目的 としている。

【解決手段】 強誘電体1が下部電極2と上部電極3とに挟持されて構成される強誘電体冷陰極において、強誘電体1と上部電極3との間に絶縁膜4を介する部分と、強誘電体1と上部電極3とが接して電子放出窓5を成す部分とを備えて構成する。

1

【特許請求の範囲】

【請求項1】 強誘電体が下部電極と上部電極とに挟持されて構成される強誘電体冷陰極において、

強誘電体と上部電極との間に絶縁膜を介する部分と、強 誘電体と上部電極とが接して電子放出窓を成す部分とを 備えたことを特徴とする強誘電体冷陰極。

【請求項2】 強誘電体が下部電極と上部電極とに挟持されて構成される強誘電体冷陰極において、

上部電極として第1の上部電極と第2の上部電極を備え、強誘電体と第1の上部電極との間に第1の絶縁膜を 10 介する部分と、強誘電体と第1の上部電極とが接して電子放出窓を成す部分とを備え、前記強誘電体と第1の上部電極との間に第1の絶縁膜を介する部分の第1の電極上に第2の絶縁膜を介して第2の上部電極を設けたことを特徴とする強誘電体冷陰極。

【請求項3】 強誘電体が下部電極と上部電極とに挟持されて構成される強誘電体冷陰極において、

上部電極として第1の上部電極と第2の上部電極と第3 の上部電極とを備え、強誘電体と第1の上部電極との間 に第1の絶縁膜を介する部分と、強誘電体と第1の上部 電極とが接して電子放出窓を成す部分とを備え、前記強 誘電体と第1の上部電極との間に第1の絶縁膜を介する 部分の第1の電極上に第2の絶縁膜を介して第2の上部 電極を設け、更に該第2の上部電極上に第2の絶縁膜を 介して第3の上部電極を設けたことを特徴とする強誘電 体冷陰極。

【請求項4】 請求項1から3のいずれか1項に記載の 強誘電体冷陰極において、前記絶縁膜の誘電率が100 以上であることを特徴とする強誘電体冷陰極。

【請求項5】 請求項2に記載の強誘電体冷陰極の駆動 方法であって、前記第2の上部電極に正の電界を印加す ることを特徴とする強誘電体冷陰極の駆動方法。

【請求項6】 請求項3に記載の強誘電体冷陰極の駆動方法であって、前記第2の上部電極に正の電界を印加し、前記第3の上部電極に負の電界を印加することを特徴とする強誘電体冷陰極の駆動方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、印刷装置等の画像 形成装置や平面ディスプレイなどに応用される電子を放 40 出する強誘電体冷陰極及びその駆動方法に関するもので ある。

[0002]

【従来の技術】従来より、Pb(Zr, Ti)O3(以下PZTと称す)や(Pb, La)(Zr, Ti)O3(以下PLZTと称す)などの強誘電体は、自発分極を有する材料であり、高速パルス印加による分極反転によって、数A/cm²以上の放出電流密度が得られることが知られている。

【0003】ここで、従来の電子ビームを放出する強誘 50

2

電体冷陰極として、H.Gundel等により報告されているものについて、その概略構成図である図5を用いて説明する(J.Appl.Phys.69(2),pp975,1991参照)。図5に示すように、この強誘電体冷陰極は、強誘電体101が下部電極102と上部櫛形電極103とによって挟持された構造である。下部電極102と上部櫛形電極103との間に交番電界106を印加すると、強誘電体101内部に印加された電界を打ち消すような向きに分極が生じ、この分極が印加交番電界106の変化に伴って反転され、強電界が生じる。そして、強誘電体101に対して107V/cm2以上の強電界を印加すると、強誘電体101の電子が上部櫛形電極103により引き出され外界に放出される。

【0004】上記の強誘電体冷陰極は、素子構造が簡単であり、比較的低真空(10⁻¹mTorr以上)でも電子放出が可能であることから、印刷装置等の画像形成装置や平面ディスプレイへの応用が提案されている。

[0005]

【発明が解決しようとする課題】しかしながら、上記の 従来の強誘電体冷陰極では、強誘電体上に直接金属配線 を形成して動作させると、配線下の強誘電体全体で反転 し電子放出が起こり、電子放出部を限定することができ ないため、電子放出面積及び電子放出量を制御すること ができなかった。さらに、例えばディスプレイへ応用し たような場合には、配線電極下の強誘電体での分極反転 により発生した電子放出のために、配線部の電子放出に よる蛍光体発光が生じ、表示品質の低下を招くという問 題があった。また、印刷装置等の画像形成装置に応用し たものの場合でも、潜像形成において同様のような問題 が発生した。

【0006】このような問題は、強誘電体を加工して配線すれば回避できる。しかしながら、PZT等の複合金属酸化物は、RIE等のドライエッチングが困難であること、加工エッジ部分での漏れ電流の増大すること、プロセスの複雑化等の別の問題が発生した。

【0007】また、PZTセラミックスを利用した強誘 電体冷陰極の場合、電子放出を得るためのパルス電圧は 150~300Vと高く、デバイス応用のためには駆動 電圧の低減が必要である。

[0008] また、強誘電体冷陰極からの電子放出は、 強誘電体及び電極表面の散乱による広がり角があり、こ の放出電子の広がりを抑制できないために、平面ディス プレイ応用等での高画質を得ることができなかった。

【0009】本発明は、上記のような課題を解決するためになされたものであって、放出電子の放出面積や放出量等の制御や放出電子の広がりの抑制が可能で、低電圧駆動の強誘電体冷陰極及びその駆動方法を提供することを目的としている。

[0010]

【課題を解決するための手段】上記課題を解決するた

10

め、本発明では、強誘電体が下部電極と上部電極とに挟 持されて構成される強誘電体冷陰極において、強誘電体 と上部電極との間に絶縁膜を介する部分と、強誘電体と 上部電極とが接して電子放出窓を成す部分とを備えて構 成している。

【0011】また、本発明では、強誘電体が下部電極と 上部電極とに挟持されて構成される強誘電体冷陰極にお いて、上部電極として第1の上部電極と第2の上部電極 を備え、強誘電体と第1の上部電極との間に第1の絶縁 膜を介する部分と、強誘電体と第1の上部電極とが接し て電子放出窓を成す部分とを備え、強誘電体と第1の上 部電極との間に第1の絶縁膜を介する部分の第1の電極 上に第2の絶縁膜を介して第2の上部電極を設けて構成 している。

【0012】また、本発明では、強誘電体が下部電極と 上部電極とに挟持されて構成される強誘電体冷陰極にお いて、上部電極として第1の上部電極と第2の上部電極 と第3の上部電極とを備え、強誘電体と第1の上部電極 との間に第1の絶縁膜を介する部分と、強誘電体と第1 の上部電極とが接して電子放出窓を成す部分とを備え、 前記強誘電体と第1の上部電極との間に第1の絶縁膜を 介する部分の第1の電極上に第2の絶縁膜を介して第2 の上部電極を設け、更に該第2の上部電極上に第2の絶 縁膜を介して第3の上部電極を設けて構成している。

【0013】さらに、本発明では、上記の強誘電体冷陰極において、絶縁膜の誘電率を100以上としている。

【0014】また、本発明では、強誘電体が下部電極と 上部電極とに挟持されて構成される強誘電体冷陰極において、上部電極として第1の上部電極と第2の上部電極 を備え、強誘電体と第1の上部電極との間に第1の絶縁 夏を介する部分と、強誘電体と第1の上部電極とが接し て電子放出窓を成す部分とを備え、強誘電体と第1の上 部電極との間に第1の絶縁膜を介する部分の第1の電極 上に第2の絶縁膜を介して第2の上部電極を設けて構成 した強誘電体冷陰極の駆動方法として、第2の上部電極 に正の電界を印加することとしている。

【0015】また、本発明では、強誘電体が下部電極と上部電極とに挟持されて構成される強誘電体冷陰極において、上部電極として第1の上部電極と第2の上部電極と第3の上部電極とを備え、強誘電体と第1の上部電極との間に第1の絶縁膜を介する部分と、強誘電体と第1の上部電極とが接して電子放出窓を成す部分とを備え、前記強誘電体と第1の上部電極との間に第1の絶縁膜を介する部分の第1の電極上に第2の絶縁膜を介して第2の上部電極を設け、更に該第2の上部電極上に第2の絶縁膜を介して第3の上部電極を設けて構成した強誘電体冷陰極の駆動方法として、第2の上部電極に正の電界を印加し、第3の上部電極に負の電界を印加することとしている。

[0016] 本発明によれば、強誘電体上に電子放出窓 50

を備えた構成としているので、電子放出を電子放出窓部だけに限定することができ、強誘電体上に直接形成されていない配線金属下の強誘電体において分極反転が発生せず、配線下からの電子放出は起こらない。これにより、電子放出面積及び電子放出量を制御することが可能となる。従って、例えばディスプレイ応用の場合、発光部以外の蛍光体への電子放出によって発光することを防止でき、表示品質を向上させることができ、このことは印刷装置等の画像形成装置においても同様の作用を奏する。

【0017】また、第2の上部電極により電子引き出し電界を印加することにより、強誘電体からの電子放出電圧を低減することができ、素子の駆動電圧の低減が可能となる。さらに、電子引き出し電界強度を変化させれば、同一パルス電圧での電子放出量を制御することができる。

【0018】また、第3の上部電極に負の電界を印加することにより、放出電子の広がりを抑制することができ、高画質の平面ディスプレイや、転写精度に優れた印刷装置等の画像形成装置を実現することが可能となる。 【0019】

【発明の実施の形態】以下、本発明の実施の形態について、図面を参照して説明する。本発明の強誘電体冷陰極

は複数の冷陰極の集合体により構成されるものである が、以下では単一の素子構造を示す図を用いる。

【0020】図1は、本発明の第1の実施形態の強誘電体冷陰極の概略断面図である。図1に示すように、この強誘電体冷陰極は、強誘電体1の下部、上部のそれぞれに下部電極2、上部電極3が配置され、そして強誘電体1と上部電極3との間に絶縁膜4が形成されている部分と、強誘電体1と上部電極3とが接する部分により電子放出窓が構成されている。なお、図1は強誘電体冷陰極の断面構造を示したものであるが、実際には、絶縁膜4及び上部電極3が電子放出窓周囲を囲むように形成されているものである。

【0021】強誘電体の分極反転による電子放出は、強誘電体の抗電界のほぼ2倍以上の印加パルス電圧から起こり始めることが知られている。したがって、この第1の実施形態の強誘電体冷陰極において、上部電極3に駆動パルス電圧6を印加すると、強誘電体1と絶縁膜4との2重層となっている配線下、即ち強誘電体1と上部電極3との間に絶縁膜4が形成されている部分では、駆動時に強誘電体1にかかる実効電圧が低下し電子放出に至らず、電子放出窓のみからの電子放出を行うことができる。

[0022] 次に、第2の実施形態として、図2に示すように、上記第1の強誘電体冷陰極の上部電極3上に第2の絶縁膜14を介して第2の上部電極13を設けたものについて説明する。なお、図2も強誘電体冷陰極の断

面構造を示したものであるが、実際には、絶縁膜4、上部電極3、第2の絶縁膜14、及び第2の上部電極13 が電子放出窓周囲を囲むように形成されているものである。

[0023] この第2の実施形態の強誘電体冷陰極の第2の上部電極13に、正のバイアス電界7を印加すると、この第2の上部電極13が電子引き出し電極として作用し、電子放出量を増大させることができる。また、駆動パルス電圧6を低減しても、上記第1の実施形態のものとほぼ同じ電子放出量を得ることができ、駆動電圧の低減を図ることもできる。さらに、駆動パルス電圧6を一定とし、第2の上部電極13へ印加する正のバイアス電界7を制御することにより、電子放出量の制御を行うことが可能となる。

【0024】次に、第3の実施形態として、図3に示すように、上記第2の強誘電体冷陰極の第2の上部電極13上に第3の絶縁膜24を介して第3の上部電極23を設けたものについて説明する。なお、図3も強誘電体冷陰極の断面構造を示したものであるが、実際には、絶縁膜4、上部電極3、第2の絶縁膜14、第2の上部電極13、第3の絶縁膜24、及び第3の上部電極23が電子放出窓周囲を囲むように形成されているものである。【0025】この第3の実施形態の強誘電体冷陰極の第3の上部電極23に、負のバイアス電界8を印加すると、この第3の上部電極23が静電レンズとして作用し、放出電子の広がりを制御することが可能となる。

[0026] なお、上記の第1~3の実施形態において、絶縁膜4としては、SiO2やSiN等の誘電体膜を用いることができるが、これらの誘電体膜は誘電率が比較的に低い(例えばSiO2が4程度)。これに対して、強誘電体1の誘電率は一般に高く(例えばPZTが1000程度)、強誘電体1と絶縁膜4とが積層された部分での強誘電体の実効電圧を1/2とするには、絶縁膜厚として数nmの厚さが要求される。例えば、SiO2とPZTとの組み合わせでは、1μm厚のPZT膜に対しSiO2膜厚が4nmとなってしまうが、このような極薄膜で強誘電体上に耐圧及び耐リーク性に優れたものを形成するのは困難である。したがって、絶縁膜4としては、誘電率が100以上の高誘電体膜が望ましく、具体的な材料としてはSrTiO3やBaSrTiO3等が挙げられる。

【0027】また、上記第 $1\sim3$ の実施形態の強誘電体 冷陰極の強誘電体1としては、PZT, PLZT, Sr Bi_2Ta_2Og , $BaTiO_3$ などの複合金属酸化物によ り構成することができる。また、上部電極3, 13, 23には、Pt, Au, A1等の金属材料を用いることが できる。

[0028]

て、上記第2の実施形態(図2参照)の強誘電体1としてPZT強誘電体膜を用いたものについて、その製造方法から説明する。

【0029】Si基板表面に熱酸化SiO2形成し、その上にRFスパッタ法により膜厚10nmのTi薄膜と下部電極2である膜厚200nmのPt電極膜とを順次形成した。

[0030] そして、この基板上に、ゾルゲル法により、スピン塗布 (3000 r p m×20秒)、仮焼成 (400℃×30分)、本焼成 (650℃×20秒)をそれぞれ順次繰り返し、約800 n m の強誘電体1であるPZT強誘電体膜を形成した。

【0031】その後、絶縁膜4としてSrTiO3膜を採用し、RFスパッタ法により基板温度400℃、RFスパッタパワー200W、スパッタガスに酸素100%を用い、ガス圧2mTorrという条件で、膜厚約50nmのものを形成した。それから、電子放出窓5を形成するために、SrTiO3膜のパターニングを行った。このパターニングは、通常のフォトリソグラフィ、ウエットエッチング(エッチング液:塩酸(HC1)とバッファードフッ素(BHF)と水との混合液)により、2mm×2mmの窓を形成したものである。

【0032】このようにして形成した絶縁膜4上に、上部電極3として膜厚50nmのPt膜をEB蒸着法により形成し、次いで、第2の絶縁膜14として膜厚300nmのSiO2膜をRFスパッタ法により形成した。そして、電子放出窓5を形成するため、上記と同様に、フォトリソグラフィ、ウエットエッチング(エッチング液:BHF)により、SiO2膜のパターニングを行っ30 た。

【0033】さらに、この第2の絶縁膜14上に、フォトレジストをマスクとしたリフトオフ法により、膜厚200nmのPt膜をEB蒸着法を用いて成膜し、電子放出窓5を有するように第2の上部電極13を形成し、本実施例の強誘電体冷陰極の作製を完了した。

【0034】次に、上記のようにして作製した強誘電体 冷陰極の電気特性の評価について、説明する。本実施例 の強誘電体冷陰極を真空槽中に配置し、10⁻⁵Torr まで排気し、コレクターとしてPt板と蛍光板を用い て、素子駆動を行った。その駆動は、図2に示すよう に、上部電極3をグランドに接地し、下部電極2に0か ら20Vの正のバイアス電圧(駆動パルス電圧6)を印 加した。このときに、蛍光板での蛍光体発光による発光 パターンの評価を行った結果、電子放出窓5以外に輝点 は見られず、配線下の電子放出が抑止されていることが 確認された。

[0035] 次いで、電子放出特性及びバイアス電界 (正のバイアス電界7) による電子放出特性の依存性を 測定した結果を図4に示す。図4から、第2の上部電極 13への正のバイアス電界7の増加と伴い、電子放出開 始電圧が低下していることがわかる。また、以上の結果 から、駆動電圧を一定とすれば、第2の上部電極13へ の正のバイアス電界7により電子放出量を制御可能であ ることが判る。

【0036】なお、上記第1の実施例において、下部電極2が素子全面に形成されているが、本発明はこれに限定されるものではなく、駆動素子を選択するためのストライプ状電極にするなど、実際の応用デバイスに応じて適宜設計自由なものである。

【0037】次に、上記第3の実施形態に対応する第2の実施例として、上記第1の実施例の第2の上部電極13上に、上記第1の実施例と同様にして、SiO2膜から成る第3の絶縁層24とPt膜から成る第3の上部電極23とを順次形成した第2の実施例について説明する。

【0038】この第2の実施例の強誘電体冷陰極について、図3に示すように、第3の上部電極23に-20~0Vの負のバイアス電界8を印加し、その他は上記第1の実施例と同様に電気的接続を行った同様の方法で、電気特性の評価を行った。ただし、ここで、アノードには20蛍光板を用いた。その評価の結果、蛍光板での蛍光体発光パターンは、第3の上部電極23への負のバイアス電界8の印加電圧を、負方向に上げる(0Vから-20Vへと下げていく)ことにより、放出電子が収束する様子が観察され、静電レンズとして作用するレンズ効果が確認された。

[0039]

【発明の効果】以上のように、本発明によれば、強誘電体冷陰極による電子放出領域は電子放出窓だけに限定され、強誘電体上に直接形成されていない配線金属下での 30 強誘電体の分極反転が発生していないので、配線下からの電子放出は起こらない。これにより、放出電子量制御性に優れた強誘電体冷陰極を実現することができる。

【0040】また、強誘電体を加工することなく平面構造の強誘電体エミッタを形成することができ、冷陰極作製プロセスを簡略化することができる。

【0041】したがって、本発明の強誘電体冷陰極を用いれば、発光部分以外の蛍光体への電子放出によって発

【図1】

生していた表示品質の低下がない高品質な平面ディスプレイや、転写精度に優れた印刷装置等の画像形成装置を 実現することが可能となる。

8

【0042】さらに、本発明によれば、電子引き出し電界印加電極として、第2の上部電極を設けることにより、強誘電体からの電子放出のために印加するパルス電圧を低減することができ、素子の駆動電圧の低減を図ることができる。また、電子引き出し電界強度、即ち第2の上部電極への印加電界強度を変化させることにより、同一パスル電圧での電子放出量を制御することが可能となる。

[0043] さらに、本発明によれば、第3の上部電極を設けることにより、放出電子の広がりを抑制することができ、高画質な平面ディスプレイや転写精度に優れた印刷装置等の画像形成装置を実現することが可能となる。

【図面の簡単な説明】

【図1】本発明による第1の実施形態の概略構造を示す要部断面図である。

20 【図2】本発明による第2の実施形態の概略構造を示す 要部断面図である。

【図3】本発明による第3の実施形態の概略構造を示す要部断面図である。

【図4】第2の実施形態に対応する第1の実施例の電子 放出特性及び第2の上部電極に印加するバイアス電界に よる電子放出特性の依存性を測定した結果を示す図であ

【図5】従来の強誘電体冷陰極の概略構造を示す要部断 面図である。

【符号の説明】

- 1 強誘電体
- 2 下部電極
- 3, 13, 23 上部電極
- 4, 14, 24 絶縁層
- 5 電子放出窓
- 6 駆動パルス電圧
- 7 正のバイアス電界
- 8 負のバイアス電界

[図2]

【図3】

【図5】

[図4]

* NOTICES *

Japan Patent Office is not responsible for any lamages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

Claim(s)]

Claim 1] Ferroelectric cold cathode characterized by having the portion which the portion which minds an insulator ayer between a ferroelectric and an up electrode, and a ferroelectric and an up electrode touch in the ferroelectric cold athode from which a ferroelectric is pinched and constituted by a lower electrode and the up electrode, and a complishes an electron emission aperture.

Claim 2] Ferroelectric cold cathode which is characterized by providing the following and from which a ferroelectric spinched and constituted by a lower electrode and the up electrode. The portion which is equipped with the 1st up electrode and the 2nd up electrode as an up electrode, and minds the 1st insulator layer between a ferroelectric and the st up electrode. It has the portion which a ferroelectric and the 1st up electrode touch and accomplishes an electron mission aperture, the 2nd insulator layer is minded on the 1st [of the portion which minds the 1st insulator layer etween the aforementioned ferroelectric and the 1st up electrode, and it is the 2nd up electrode. Claim 3] Ferroelectric cold cathode which is characterized by providing the following and from which a ferroelectric spinched and constituted by a lower electrode and the up electrode. The portion which is equipped with the 1st up lectrode, the 2nd up electrode, and the 3rd up electrode as an up electrode, and minds the 1st insulator layer between a erroelectric and the 1st up electrode. a 1st [of the portion which is equipped with the portion which a ferroelectric and 1st up electrode touch and accomplishes an electron emission aperture, and minds the 1st insulator layer between a aforementioned ferroelectric and the 1st up electrode] electrode top -- the 2nd insulator layer -- minding -- the 2nd p electrode -- preparing -- further -- this -- a 2nd up electrode top -- the 2nd insulator layer -- minding -- the 3rd up lectrode

Claim 4] Ferroelectric cold cathode characterized by the dielectric constant of the aforementioned insulator layer being 00 or more in ferroelectric cold cathode given in any 1 term of claims 1-3.

Claim 5] The drive method of the ferroelectric cold cathode which is the drive method of ferroelectric cold cathode coording to claim 2, and is characterized by impressing positive electric field to the up electrode of the above 2nd. Claim 6] The drive method of the ferroelectric cold cathode characterized by being the drive method of ferroelectric old cathode according to claim 3, impressing positive electric field to the up electrode of the above 2nd, and npressing negative electric field to the up electrode of the above 3rd.

[ranslation done.]

NOTICES *

rapan Patent Office is not responsible for any lamages caused by the use of this translation.

- .This document has been translated by computer. So the translation may not reflect the original precisely.
- ".**** shows the word which can not be translated.
- .In the drawings, any words are not translated.

DETAILED DESCRIPTION

Detailed Description of the Invention

The technical field to which invention belongs] this invention relates to the ferroelectric cold cathode which emits the lectron applied to image formation equipments, flat-surface displays, etc., such as a printer, and its drive method. 30021

Description of the Prior Art] Conventionally, ferroelectrics, such as Pb(Zr, Ti) O3 (Following PZT is called) and O(Zr Pb, La), Ti) 3 (Following PLZT is called), are material which has spontaneous polarization, and it is known by the olarization reversal by high-speed pulse impression that two or more several A/cm emission current density will be btained.

lectron beam using drawing 5 which is the outline block diagram (J. Appl.Phys.69(2), pp975, 1991 references). As nown in drawing 5, this ferroelectric cold cathode is the structure where the ferroelectric 101 was pinched by the ower electrode 102 and the up Kushigata electrode 103. If an alternating electric field 106 is impressed between the ower electrode 102 and the up Kushigata electrode 103, polarization arises in sense which negates the electric field appressed to the ferroelectric 101 interior, this polarization will be reversed with change of the impression alternating ectric field 106, and strong electric field will arise. And if two or more 107 V/cm strong electric field are impressed to ferroelectric 101, the electron of a ferroelectric 101 will be pulled out by the up Kushigata electrode 103, and will be nitted to the external world.

1004] The above-mentioned ferroelectric cold cathode is simple for element structure, and comparatively, also by the w vacuum (10 to 1 or more mTorrs), since electron emission is possible, the application to image formation [uipments and flat-surface displays, such as a printer, is proposed.

roblem(s) to be Solved by the Invention] However, if direct metal wiring was formed on a ferroelectric and it was ade to operate, since it could not be reversed with the whole ferroelectric under wiring, electron emission was not le to happen and the electron emission section was not able to be limited, electron emission area and the amount of ectron emission were uncontrollable by the above-mentioned conventional ferroelectric cold cathode. Furthermore, nen it applied, for example to a display, fluorescent substance luminescence by the electron emission of the wiring ction arose for the electron emission generated by polarization reversal with the ferroelectric under a wiring ectrode, and there was a problem of causing deterioration of display quality. Moreover, although applied to image mation equipments, such as a printer, in latent-image formation, a problem which is the same occurred also in the se.

906] Such a problem is avoidable, if a ferroelectric is processed and it wires. However, another problems, such as mplication of that dry etching, such as RIE, is difficult, that the leakage current in a processing edge portion creases, and a process, generated compound metallic oxides, such as PZT.

D07] Moreover, in the case of the ferroelectric cold cathode using PZT ceramics, the pulse voltage for obtaining extron emission is as high as 150-300V, and reduction of driver voltage is required for it for device application. D08] Moreover, the electron emission from ferroelectric cold cathode had an angle of divergence by dispersion on a roelectric and the front face of an electrode, and since the breadth of this emission electron was not able to be pressed, high definition in flat-surface display application etc. was not able to be obtained.

309] this invention is made in order to solve the above technical problems, and control of the discharge area of the ussion electron, a burst size, etc. and suppression of the breadth of the emission electron are possible, and it aims at ering the ferroelectric cold cathode and its drive method of a low-battery drive.

00107

Means for Solving the Problem] In order to solve the above-mentioned technical problem, in the ferroelectric cold athode from which a ferroelectric is pinched and constituted by a lower electrode and the up electrode, the portion which minds an insulator layer between a ferroelectric and an up electrode, and a ferroelectric and an p electrode touch, and accomplishes an electron emission aperture has and consists of this inventions.

- D011] Moreover, it sets to the ferroelectric cold cathode from which a ferroelectric is pinched and constituted from this avention by a lower electrode and the up electrode. The portion which is equipped with the 1st up electrode and the nd up electrode as an up electrode, and minds the 1st insulator layer between a ferroelectric and the 1st up electrode, It as the portion which a ferroelectric and the 1st up electrode touch and accomplishes an electron emission aperture, and the 2nd up electrode is prepared and constituted through the 2nd insulator layer on the 1st [of the portion which minds to 1st insulator layer between a ferroelectric and the 1st up electrode] electrode.
- 0012] Moreover, it sets to the ferroelectric cold cathode from which a ferroelectric is pinched and constituted from this invention by a lower electrode and the up electrode. The portion which is equipped with the 1st up electrode, the 2nd p electrode, and the 3rd up electrode as an up electrode, and minds the 1st insulator layer between a ferroelectric and it is up electrode, It has the portion which a ferroelectric and the 1st up electrode touch and accomplishes an electron mission aperture. a 1st [of the portion which minds the 1st insulator layer between the aforementioned ferroelectric and the 1st up electrode] electrode top -- the 2nd insulator layer -- minding -- the 2nd up electrode -- preparing -- in the 3rd up electrode is prepared and constituted through the 2nd insulator layer on the 2nd up electrode 1013] Furthermore, in this invention, the dielectric constant of an insulator layer is made or more into 100 in the pove-mentioned ferroelectric cold cathode.
- 1014] Moreover, it sets to the ferroelectric cold cathode from which a ferroelectric is pinched and constituted from this evention by a lower electrode and the up electrode. The portion which is equipped with the 1st up electrode and the ad up electrode as an up electrode, and minds the 1st insulator layer between a ferroelectric and the 1st up electrode, It is the portion which a ferroelectric and the 1st up electrode touch and accomplishes an electron emission aperture. It supposed that positive electric field are impressed to the 2nd up electrode as the drive method of the ferroelectric old cathode which prepared and constituted the 2nd up electrode through the 2nd insulator layer on the 1st [of the ortion which minds the 1st insulator layer between a ferroelectric and the 1st up electrode] electrode.
- 1015] Moreover, it sets to the ferroelectric cold cathode from which a ferroelectric is pinched and constituted from this vention by a lower electrode and the up electrode. The portion which is equipped with the 1st up electrode, the 2nd pelectrode, and the 3rd up electrode as an up electrode, and minds the 1st insulator layer between a ferroelectric and e 1st up electrode, It has the portion which a ferroelectric and the 1st up electrode touch and accomplishes an electron nission aperture. The 2nd up electrode is prepared through the 2nd insulator layer on the 1st [of the portion which inds the 1st insulator layer between the aforementioned ferroelectric and the 1st up electrode] electrode. furthermore this -- it is supposed that positive electric field are impressed to the 2nd up electrode as the drive method of the rroelectric cold cathode which prepared and constituted the 3rd up electrode through the 2nd insulator layer on the 1st up electrode, and negative electric field are impressed to the 3rd up electrode
- 016] Since it is considering as the composition equipped with the electron emission aperture on the ferroelectric cording to this invention, electron emission can be limited only to an electron emission window part, polarization versal does not occur in the ferroelectric under the wiring metal which is not directly formed on the ferroelectric, and e electron emission from under wiring does not happen. This becomes possible to control electron emission area and e amount of electron emission. It follows, for example, in display application, it can prevent emitting light by the extron emission to fluorescent substances other than a light-emitting part, display quality can be raised, and this does e same operation so also in image formation equipments, such as a printer.
- 017] Moreover, by impressing electronic drawer electric field by the 2nd up electrode, the electron emission voltage om a ferroelectric can be reduced and reduction of the driver voltage of an element is attained. Furthermore, if extronic drawer field strength is changed, the amount of electron emission in the same pulse voltage is controllable. 118] Moreover, by impressing negative electric field to the 3rd up electrode, the breadth of a discharge electron can suppressed and it becomes possible to realize image formation equipments, such as a high-definition flat-surface splay and a printer excellent in imprint precision.
- mbodiments of the Invention] Hereafter, the form of operation of this invention is explained with reference to a awing. Although the ferroelectric cold cathode of this invention is constituted by the aggregate of two or more cold hode, below, drawing showing single element structure is used.
-)20] Drawing 1 is the outline cross section of the ferroelectric cold cathode of the 1st operation form of this

)19]

nvention. As shown in <u>drawing 1</u>, the lower electrode 2 and the up electrode 3 are arranged at each of the lower part of a ferroelectric 1, and the upper part, and this ferroelectric cold cathode has the portion which the portion by which he insulator layer 4 is formed between the ferroelectric 1 and the up electrode 3, and a ferroelectric 1 and the up lectrode 3 touch, and the electron emission aperture is constituted by the portion which a ferroelectric 1 and the up lectrode 3 touch. In addition, in fact, although <u>drawing 1</u> shows the cross-section structure of ferroelectric cold athode, it is formed so that an insulator layer 4 and the up electrode 3 may surround the circumference of an electron mission aperture.

3021] It is known that the electron emission by polarization reversal of a ferroelectric will begin to be generated by the wice [about / more than] as many impression pulse voltage of a ferroelectric as anti-electric field. Therefore, in the erroelectric cold cathode of this 1st operation form, if the driving pulse voltage 6 is impressed to the up electrode 3 In the portion in which the insulator layer 4 is formed between the bottoms 3 of wiring used as the double layer of a erroelectric 1 and an insulator layer 4, i.e., a ferroelectric 1 and an up electrode, the effective voltage built over a erroelectric 1 at the time of a drive falls, and it does not result in electron emission, but electron emission only from an lectron emission aperture can be performed.

)022] Next, as 2nd operation gestalt, as shown in <u>drawing 2</u>, what formed the 2nd up electrode 13 through the 2nd isulator layer 14 on the up electrode 3 of the ferroelectric cold cathode of the above 1st is explained. In addition, in ict, although <u>drawing 2</u> also shows the cross-section structure of ferroelectric cold cathode, it is formed so that an isulator layer 4, the up electrode 3, the 2nd insulator layer 14, and the 2nd up electrode 13 may surround the reumference of an electron emission aperture.

1023] If the positive bias electric field 7 are impressed to the 2nd up electrode 13 of the ferroelectric cold cathode of us 2nd operation gestalt, this 2nd up electrode 13 can act as an electronic drawer electrode, and the amount of electron nission can be increased. Moreover, even if it reduces the driving pulse voltage 6, the almost same amount of electron nission as the thing of the operation gestalt of the above 1st can be obtained, and reduction of driver voltage can also aimed at. Furthermore, it becomes possible to control the amount of electron emission by seting driving pulse oltage 6 constant and controlling the positive bias electric field 7 impressed to the 2nd up electrode 13.

024] Next, as 3rd operation gestalt, as shown in <u>drawing 3</u>, what formed the 3rd up electrode 23 through the 3rd sulator layer 24 on the 2nd [of the ferroelectric cold cathode of the above 2nd] up electrode 13 is explained. In ldition, in fact, although <u>drawing 3</u> also shows the cross-section structure of ferroelectric cold cathode, it is formed so at an insulator layer 4, the up electrode 3, the 2nd insulator layer 14, the 2nd up electrode 13, the 3rd insulator layer, and the 3rd up electrode 23 may surround the circumference of an electron emission aperture.

025] If the negative bias electric field 8 are impressed to the 3rd up electrode 23 of the ferroelectric cold cathode of is 3rd operation gestalt, this 3rd up electrode 23 will act as an electrostatic lens, and will become possible controlling the breadth of the emission electron.

926] In addition, although dielectric films, such as SiO2 and SiN, can be used as an insulator layer 4 in the 1-3rd ove-mentioned operation gestalten, for these dielectric films, a dielectric constant is a low (SiO2 is about four) in mparison. On the other hand, in order for the dielectric constant of a ferroelectric 1 to set to one half the effective ltage of the ferroelectric in the portion to which the laminating of a ferroelectric 1 and the insulator layer 4 was ried out highly (PZT is about 1000) generally, the thickness of several nm is required as insulating thickness. For ample, although SiO2 thickness will be set to 4nm to the PZT film of 1-micrometer ** in the combination of SiO2 d PZT, it is difficult to form the thing excellent in pressure-proofing and leak-proof nature on a ferroelectric by such ra-thin film. Therefore, as an insulator layer 4, 100 or more high dielectric films have a desirable dielectric constant, 1 SrTiO3 and BaSrTiO3 grade are mentioned as a concrete material.

127] Moreover, as a ferroelectric 1 of the ferroelectric cold cathode of the operation gestalt of the above 1-3rds, npound metallic oxides, such as PZT, PLZT, SrBi2Ta2O9, and BaTiO3, can constitute. Moreover, metallic terials, such as Pt, Au, and aluminum, can be used for the up electrodes 3, 13, and 23.

cample] Hereafter, the more concrete example of this invention is explained with reference to a drawing. First, what id the PZT ferroelectric film as a ferroelectric 1 of the operation gestalt (refer to drawing 2) of the above 2nd is plained from the manufacture method as the 1st example.

29] It formed in Si substrate front face thermal oxidation SiO2, and Ti thin film of 10nm of thickness and Pt ctrode layer of 200nm of thickness which is the lower electrode 2 were formed one by one by RF spatter on it.
30] And on this substrate, by the sol gel process, spin application (3000rpmx 20 seconds), temporary baking (400 ree-Cx 30 minutes), and book baking (650 degree-Cx 20 seconds) was repeated successively, respectively, and the Γ ferroelectric film which is about 800nm ferroelectric 1 was formed.

0031] Then, SrTiO3 film was adopted as an insulator layer 4, 100% of oxygen was used for the substrate temperature of 400 degrees C, RF spatter power 200W, and spatter gas by RF spatter, and the thing of about 50nm of thickness was ormed on the conditions of gas pressure 2mTorr. And in order to form the electron emission aperture 5, patterning of irTiO3 film was performed. This patterning forms a 2mmx2mm aperture by the usual photolithography and wet tching (etching reagent: mixed liquor of a hydrochloric acid (HCl), a buffered fluorine (BHF), and water).

3032] Thus, on the formed insulator layer 4, Pt film of 50nm of thickness was formed by EB vacuum deposition as an p electrode 3, and, subsequently SiO2 film of 300nm of thickness was formed by RF spatter as the 2nd insulator layer 4. And in order to form the electron emission aperture 5, a photolithography and wet etching (etching reagent: BHF) erformed patterning of SiO2 film like the above.

1033] Furthermore, on this 2nd insulator layer 14, by the lift-off method which used the photoresist as the mask, Pt lm of 200nm of thickness was formed using EB vacuum deposition, the 2nd up electrode 13 was formed so that it night have the electron emission aperture 5, and production of the ferroelectric cold cathode of this example was ampleted.

Next, evaluation of the electrical property of the ferroelectric cold cathode produced as mentioned above is replained. The ferroelectric cold cathode of this example has been arranged in a vacuum tub, it exhausted to 10-5Torr, and the element drive was performed, using Pt board and a fluorescent screen as a collector. As shown in drawing 2, we drive grounded the up electrode 3 to the gland, and impressed the positive bias voltage (driving pulse voltage 6) of DV to the lower electrode 2 from 0. As a result of evaluating the luminescence pattern by fluorescent substance minescence with a fluorescent screen at this time, the luminescent spot was not seen other than electron emission perture 5, but it was checked that the electron emission under wiring is inhibited.

1035] Subsequently, the result which measured the dependency of the electron emission characteristic and the electron nission characteristic by bias electric field (positive bias electric field 7) is shown in <u>drawing 4</u>. It turns out that it llows with the increase in the positive bias electric field 7 from <u>drawing 4</u> to the 2nd up electrode 13, and electron nission starting potential is falling. Moreover, driver voltage is understood fixed, then that it can control the amount electron emission by the positive bias electric field 7 to the 2nd up electrode 13 from the above result.

036] in addition, an actual application device, such as this invention not being limited to this and using it as the tipe-like electrode for choosing a driver element in the 1st example of the above, although the lower electrode 2 is rmed all over the element, -- responding -- suitably -- a design -- it is free

937] Next, the 2nd example which formed the 1st example of the above, the 3rd insulating layer 24 which consists of 22 film similarly, and the 3rd up electrode 23 which consists of Pt film one by one at the 2nd [of the 1st example of 2 above] up electrode 13 top is explained as the 2nd example corresponding to the operation gestalt of the above 3rd.

)38] About the ferroelectric cold cathode of this 2nd example, as shown in <u>drawing 3</u>, the negative bias electric field of -20-0V were impressed to the 3rd up electrode 23, and others are the same methods which performed electrical tallation like the 1st example of the above, and evaluated the electrical property. However, the fluorescent screen s used for the anode here. As a result of the evaluation, signs that it was completed by the emission electron were served by what the fluorescent substance luminescence pattern in a fluorescent screen raises the applied voltage of negative bias electric field 8 to the 3rd up electrode 23 in the negative direction for (it lowers from 0V to -20V), and lens effect of acting as an electrostatic lens was checked.

fect of the Invention] As mentioned above, since polarization reversal of the ferroelectric under the wiring metal ich the electron emission field by ferroelectric cold cathode is limited only to an electron emission aperture, and is directly formed on the ferroelectric has not occurred according to this invention, the electron emission from under ing does not happen. Thereby, the ferroelectric cold cathode excellent in the amount controllability of emission extron is realizable.

- 40] Moreover, the ferroelectric emitter of the planar structure can be formed without processing a ferroelectric, and old cathode production process can be simplified.
- 41] Therefore, if the ferroelectric cold cathode of this invention is used, it will become possible to realize image nation equipments, such as a quality flat-surface display without deterioration of the display quality generated by electron emission to fluorescent substances other than a light-emitting part part, and a printer excellent in imprint cision.
- 42] Furthermore, as an electronic drawer electric-field impression electrode, by preparing the 2nd up electrode, the se voltage impressed for the electron emission from a ferroelectric can be reduced, and, according to this invention, action of the driver voltage of an element can be aimed at. Moreover, it becomes possible by changing electronic

rawer field strength, i.e., the impression field strength to the 2nd up electrode, to control the amount of electron mission in the same PASURU voltage.

0043] Furthermore, according to this invention, by preparing the 3rd up electrode, the breadth of the emission electron an be suppressed and it becomes possible to realize image formation equipments, such as a printer excellent in a high efinition flat-surface display or imprint precision.

[ranslation done.]

NOTICES *

apan Patent Office is not responsible for any lamages caused by the use of this translation.

.This document has been translated by computer. So the translation may not reflect the original precisely.

.**** shows the word which can not be translated.

.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

Brief Description of the Drawings]

<u>Drawing 1</u>] It is the important section cross section showing the outline structure of the 1st operation gestalt by this ivention.

<u>Orawing 2</u>] It is the important section cross section showing the outline structure of the 2nd operation gestalt by this evention.

<u>Orawing 3</u>] It is the important section cross section showing the outline structure of the 3rd operation gestalt by this evention.

<u>Drawing 5</u>] It is the important section cross section showing the outline structure of the conventional ferroelectric cold thode.

Description of Notations]

Ferroelectric

Lower Electrode

13, 23 Up electrode

14, 24 Insulating layer

Electron Emission Aperture

Driving Pulse Voltage

Positive Bias Electric Field

Negative Bias Electric Field

ranslation done.]