Laboratorium 3

Diagramów aktywności/czynności

Cel laboratorium

Budowa diagramów aktywności/czynności reprezentujących scenariusze wybranych przypadków użycia. W oparciu o zdefiniowane elementy z poprzednich laboratorium należy zaproponować diagramy aktywności dla wybranych scenariuszy przypadków użycia projektowanego systemu.

Diagram aktywności (ang. Activity Diagram) to rodzaj diagramu UML, który przedstawia przepływ czynności i decyzji w procesie lub systemie. Służy do modelowania procesów biznesowych, algorytmów, przepływu pracy w aplikacjach oraz logiki działania systemu. Diagram ten jest szczególnie użyteczny do wizualizacji dynamicznych aspektów systemu, takich jak sekwencja kroków wykonywanych przez użytkownika lub automatyczne procesy wykonywane przez system.

Zastosowanie diagramu aktywności

Diagram aktywności znajduje zastosowanie w wielu przypadkach:

- Modelowanie procesów biznesowych pozwala zrozumieć i analizować kroki wykonywane w danym procesie biznesowym.
- Projektowanie systemów opisuje sekwencję czynności i interakcję pomiędzy różnymi elementami systemu.
- Specyfikowanie algorytmów wizualizacja kroków algorytmu, co ułatwia jego zrozumienie i analizę.
- Analiza przypadków użycia pokazuje szczegóły działania przypadków użycia, w tym interakcje pomiędzy aktorami a systemem.
- Zarządzanie przepływem pracy modelowanie przepływu pracy w ramach złożonych procesów.

Notacja diagramu aktywności

Notacja diagramu aktywności obejmuje kilka podstawowych elementów:

- Stan początkowy (Initial Node) symbolizuje początek działania procesu, przedstawiony jako czarny okrąg.
- Stan końcowy (Final Node) symbolizuje zakończenie procesu, przedstawiony jako czarny okrąg otoczony pierścieniem.
- Akcja (Action Node) reprezentuje pojedynczą czynność wykonywaną w procesie, zazwyczaj przedstawioną jako prostokąt z zaokrąglonymi rogami.
- Przepływ sterowania (Control Flow) strzałka wskazująca sekwencję wykonywania czynności.
- Węzeł decyzyjny (Decision Node) rozgałęzienie procesu, przedstawione jako romb. Pozwala na wybór jednej z kilku ścieżek w zależności od warunku.
- Węzeł łączenia (Merge Node) punkt, w którym różne ścieżki procesu łączą się, przedstawiony również jako romb.

- Węzeł synchronizacji (Fork Node i Join Node) odpowiednio rozdziela proces na kilka równoległych czynności lub synchronizuje równoległe działania. Przedstawiony jako gruba pozioma lub pionowa linia.
- Obiekt (Object Node) reprezentuje dane, które są wykorzystywane lub przetwarzane w trakcie działania procesu, przedstawiony jako prostokąt.
- Pętla (Loop Node) blok, który pokazuje iteracyjne wykonanie czynności, zazwyczaj oznaczony odpowiednią adnotacją.
- Swimlane (Basen/pas) podział diagramu na sekcje, które reprezentują różne role, jednostki organizacyjne lub komponenty systemu.

Elementy te, używane w odpowiedniej kombinacji, pozwalają na precyzyjne modelowanie złożonych procesów i przepływów w systemach, uwzględniając sekwencyjność, równoległość i warunkowe wykonanie czynności. Stosowane połączenie między tymi elementami to Control Flow. Na Rysunku 1 przedstawiono wybrane notacje diagramu aktywności.

Rysunek 1. Najważniejsze notacje diagramu aktywności

Dobre praktyki tworzenia diagramów aktywności obejmują zachowanie prostoty i czytelności, używanie opisowych nazw, grupowanie powiązanych czynności w pod aktywności oraz unikanie nadmiernego skomplikowania. Diagramy te często uzupełniają inne diagramy UML, takie jak diagramy przypadków użycia, stanu i sekwencji, stanowiąc cenne narzędzie w analizie i projektowaniu systemów, pozwalające na efektywne komunikowanie dynamicznych aspektów systemu różnym interesariuszom projektu.

Diagram czynności – przykłady

Na Rysunku 2-4 przedstawiono przykłady diagramów aktywności dla wybranych scenariuszy przypadków użycia.

Rysunek 2. Diagram aktywności dla UC008 Dodawanie rezerwacji

Rysunek 3. Diagram aktywności UC009 Usuwanie rezerwacji

Na Rysunku 4 przedstawiono diagram aktywności dla procesy zakupowego w sklepie internetowym, który umożliwia wynajem pojazdu. Diagram ten podzielony jest na dwie partycje: "Klient" i "Sklep". Partycja aktywności (ang. activity partition) jest to część diagramu czynności, która grupuje czynności realizowane przez konkretny byt (osoba albo aplikacja). Jest to diagram aktywności UML, który ilustruje przepływ czynności i decyzji w procesie zakupu. Opis poszczególnych kroków czynności przedstawiono poniżej:

- 1. Proces rozpoczyna się od "Użytkownika na stronie".
- 2. Klient uruchamia koszyk ("Uruchomienie koszyka"), co prowadzi do wyświetlenia koszyka przez sklep.
- 3. Następnie pojawia się decyzja "Czy zmiany w koszyku?":
 - Jeśli tak, klient dokonuje "Zmiany produktów w koszyku", co skutkuje "Aktualizacją danych w koszyku" po stronie sklepu.
 - Jeśli nie, proces przechodzi do "Zatwierdzenia koszyka".
- 4. Po zatwierdzeniu koszyka, sklep sprawdza "Czy suma zamówienia>0?":
 - Jeśli tak, wyświetla "Wyświetlenie formularza z danymi klienta".
 - Jeśli nie, wyświetla "Wyświetlenie skróconego formularza".
- 5. Klient wypełnia formularz ("Wypełnienie formularza").
- 6. Sklep przeprowadza "Walidację danych".
- 7. Jeśli dane są poprawne, proces przechodzi do "Zapisanie formularza".
- 8. Jeśli nie, sklep wyświetla "Wyświetlenie listy pól do poprawy", a klient musi ponownie wypełnić formularz.
- 9. Po zapisaniu formularza, proces rozdziela się na dwa równoległe działania:
 - "Utworzenie konta użytkownika" po stronie sklepu.
 - "Rezerwacja pojazdu" (co sugeruje, że może to być sklep z wypożyczalnią pojazdów).
- 10. Proces kończy się stanem "Utworzone konto".

Rysunek 4. Diagram aktywności - przykład

Diagram ten przedstawia kompleksowy proces zakupowy, uwzględniając różne scenariusze i interakcje między klientem a systemem sklepu internetowego, z naciskiem na obsługę koszyka, wprowadzanie danych klienta i finalizację zamówienia.