G2 and Sgr A*: A cosmic fizzle at the Galactic Center

Brian Morsony

University of Maryland

Collaborators:

Jared Workman, Brandon Gracey, DooSoo Yoon

Questions

- Why didn't we see anything spectacular from G2?
- What is G2?

Simulate different cloud structures

• Morsony et al. submitted, arXiv:1508.00384

Simulations Setups

- Start with a cloud 5 years before periapsis
- Orbit from Gillessen et al. 2013
- Gravity from Sgr A* only
- Background co-moving with cloud
- Include cooling
- Resolution of 1.2e14 cm ~ 1 mas ~ 8 AU
- Accretion radius of 1 pixel

4 Cloud Profiles

Norm Density

Why didn't we see anything spectacular?

Accretion rates

Sgr A* accretion rate - Norm

Sgr A* accretion rate

Total

Cloud only

Sgr A* cumulative accretion

Total

Cloud only

Why didn't we see anything spectacular?

- Not much change in accretion rate
- True for different background density/ velocity, accretion radius, cooling
- Cloud accounts for ~ 20% of material accreted after periapsis
- More extended cloud leads to more accretion, but still a small change overall

What is G2?

• Model emission from our simulations

Cloud Br-Gamma

Norm Br-Gamma

R2 Br-Gamma

Br-Gamma Size

Br-Gamma Size

Cloud Br-Gamma vs. Data

Br-Gamma Velocity vs. Data

Br-Gamma FWHM vs. Data

Cloud Bolometric vs. Data

Cloud Bolometric vs. Data

Cloud X-ray vs. Data

What is G2?

- Can't explain all observations with one simple model
- Need extended gas for Br-gamma FWHM increase, spatial extent
- Need compact source for narrow postperiapsis emission, constant L' band luminosity
- Can be dense core, DSO, star

Conclusions

- Why didn't we see anything spectacular?
 - Cloud is not massive enough, doesn't get close enough to significantly change accretion
- What is G2?
 - Seems to need an extended gas component and a compact component

Norm Br-Gamma

Norm Temperature

R2 Density

R2 Temperature

Sgr A* accretion rate

Sgr A* accretion rate

