Probability Reference

Combinatorics and Sampling

• A **permutation** is an *ordered* selection. The number of permutations of k items picked from a list of n items, without replacement, is

$$P(n,k) := \underbrace{n(n-1)(n-2)\cdots(n-k+1)}_{k \text{-factors}} = \frac{n!}{(n-k)!} =: (n)_k$$

When selecting with replacement, the number of possibilities is n^k .

• A **combination** is an *unordered* selection. The number of combinations of k items chosen from a list of n different items, without replacement, is

$$C(n,k) := \frac{P\left(n,k\right)}{k!} =: \binom{n}{k} = \underbrace{\frac{n(n-1)(n-2)\cdots(n-k+1)}{k(k-1)(k-2)\cdots1}}_{\text{k-factors, numerator, and denominator}} = \frac{n!}{k!(n-k)!}$$

The number of ways to select k objects from n different items with replacement is

(This is also the number of nonnegative integer solutions of the equation $x_1 + x_2 + \cdots + x_n = k$ and the number of ways to distribute k identical objects into n distinct boxes.)

• The number of distinct ways of distributing n objects into k distinct classes of size n_1, n_2, \ldots, n_k , without replacement and with no order within each class, is

$$\binom{n}{n_1, n_2, \dots, n_k} := \frac{n!}{n_1! n_2! \cdots n_k!}$$
, where $n_1 + n_2 + \dots + n_k = n$

• Binomial Theorem:

$$(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k}$$

• Multinomial Theorem:

$$(a_1 + a_2 + \dots + a_k)^n = \sum \binom{n}{n_1, n_2, \dots, n_k} a_1^{n_1} a_2^{n_2} \cdots a_k^{n_k},$$

where the sum is taken over all nonnegative integer values of n_1, n_2, \dots, n_k for which $n_1 + n_2 + \dots + n_k = n$.

• Stirling's Formula: $n! \doteq \sqrt{2\pi n} (n/e)^n$ or more accurately

$$n! \doteq \sqrt{2\pi} \left(n + \frac{1}{2} \right)^{n + (1/2)} e^{-n}$$

• Binomial coefficient identities:

• Some useful series:

$$\sum_{k=1}^{n} k = \frac{1}{2} n (n+1)$$

$$\sum_{k=1}^{n} r^{k} = \frac{r^{m} - r^{n+1}}{1 - r}$$

$$\sum_{k=0}^{\infty} r^{k} = \frac{1}{1 - r}, \text{ for } |r| < 1$$

$$\sum_{k=0}^{\infty} \frac{x^{k}}{k!} = e^{x}$$

$$\sum_{k=1}^{\infty} \frac{x^{k}}{k} = -\log(1 - x), \text{ for } |x| < 1$$

$$\sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} = \cosh x$$

$$\sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!} = \sinh x$$

$$(1 - t)^{-n} = \sum_{k=0}^{\infty} {n+k-1 \choose k} t^{k} = \sum_{k=0}^{\infty} {n+k-1 \choose n-1} t^{k}, |t| < 1$$

Probability

If \mathcal{A} , \mathcal{B} , and \mathcal{C} are **events** (defined as subsets of the **sample space** \mathcal{S} of all possible outcomes of an experiment) then Pr is a **probability measure**, when the following are true:

- (i) $0 \le \Pr(\mathcal{A}) \le 1$, (ii) $\Pr(\bigcup_{1}^{\infty} \mathcal{A}_i) = \sum_{i=1}^{\infty} \Pr(\mathcal{A}_i)$, for pairwise disjoint \mathcal{A}_i ; (iii) $\Pr(\mathcal{S}) = 1 \Leftrightarrow \Pr(\emptyset) = 0$.
- The complement of an event is defined to be $\mathcal{A}' = \{x : x \notin \mathcal{A}\}$, then $\Pr(\mathcal{A}') = 1 \Pr(\mathcal{A})$ is the **Law of Complements**; $\Pr(\mathcal{A} \cup \mathcal{B}) = \Pr(\mathcal{A}) + \Pr(\mathcal{B}) \Pr(\mathcal{A} \cap \mathcal{B})$ is the **Principle of Inclusion-Exclusion**.
- Conditional probability of A given B,

$$\Pr\left(\mathcal{A}|\mathcal{B}\right) := \frac{\Pr\left(\mathcal{A} \cap \mathcal{B}\right)}{\Pr\left(\mathcal{B}\right)}, \text{ when } \Pr\left(\mathcal{B}\right) > 0;$$

this implies $\Pr(A \cap B) = \Pr(A|B) \Pr(B) = \Pr(B|A) \Pr(A) = \Pr(B \cap A)$.

• The events A_1, A_2, \ldots, A_n are **independent** if

$$\Pr\left(\mathcal{A}_{r_1} \cap \mathcal{A}_{r_2} \cap \cdots \cap \mathcal{A}_{r_k}\right) = \Pr\left(\mathcal{A}_{r_1}\right) \Pr\left(\mathcal{A}_{r_2}\right) \cdots \Pr\left(\mathcal{A}_{r_k}\right),\,$$

for $\{r_1, r_2, \ldots, r_k\}$ any subset of 1:n. This implies that $\mathcal{A}_{i_1}^{\#}, \mathcal{A}_{i_2}^{\#}, \ldots, \mathcal{A}_{i_s}^{\#}$ are independent, where $\mathcal{A}^{\#}$ can be either \mathcal{A} or \mathcal{A}' , separately for each set as k=2:n.

• If $\mathfrak{B} = \{\mathcal{B}_k, k = 1 : n\}$ is a **partition** of the sample space \mathcal{S} , meaning $\mathcal{B}_i \cap \mathcal{B}_j = \emptyset$ for $i \neq j$ and $\bigcup_{i=1}^n \mathcal{B}_i = \mathcal{S}$, then the **Law of Total Probability** says

$$\Pr\left(\mathcal{A}\right) = \sum_{i=1}^{n} \Pr\left(\mathcal{A}|\mathcal{B}_{i}\right) \Pr\left(\mathcal{B}_{i}\right),$$

and Bayes' formula is

$$\Pr\left(\mathcal{B}_{k}|\mathcal{A}\right) = \frac{\Pr\left(\mathcal{A}|\mathcal{B}_{k}\right)\Pr\left(\mathcal{B}_{k}\right)}{\sum_{i=1}^{n}\Pr\left(\mathcal{A}|\mathcal{B}_{i}\right)\Pr\left(\mathcal{B}_{i}\right)}$$

Discrete Random Variables

- 1. X has probability mass function pmf f(x) if (i) $f(x) \ge 0$, (ii) $\sum f(x) = 1$, (iii) $f(x_k) = \Pr(X = x_k)$.
- 2. X has cumulative distribution function cdf F(x) if $F(x) := \Pr(X \le x) = \sum_{y \le x} f(y)$; $\Pr(a < x \le b) = F(b) F(a)$; $f(x_k) = F(x_k) F(x_{k-1})$.

Continuous Random Variables

- 1. X has probability density function pdf f(x) if (i) $f(x) \ge 0$, (ii) $\int_{-\infty}^{\infty} f(x) dx = 1$, (iii) $\Pr(a < x \le b) = \int_{-\infty}^{b} f(x) dx$.
- 2. X has cdf F(x) if $F(x) := \int_{-\infty}^{x} f(\xi) d\xi$; $\Pr(a \le X < b) = F(b) F(a)$; $f(x) = \frac{dF}{dx}$.
- 3. The median \tilde{x} satisfies $F(\tilde{x}) = \frac{1}{2}$ and the p^{th} percentile x_p satisfies $F(x_p) = p$. The interquartile range is $IQR := x_{0.75} x_{0.25}$ and the interdecile range is $IDR := x_{0.90} x_{0.10}$

Discrete and Continuous cdfs

F(x) is (i) nondecreasing, (ii) $\lim_{x \to -\infty} F(x) = 0$, (iii) $\lim_{x \to \infty} F(x) = 1$, and (iv) F(x) is right continuous.

Independent and Exchangeable Random Variables

The rvs X_1, X_2, \dots, X_n are **independent** if and only if the joint pf is the product of the marginals, i.e.,

$$f(x_1, x_2, \dots, x_n) = f_1(x_1) f_2(x_2) \cdots f_n(x_n)$$

The rvs X_1, X_2, \ldots, X_n are **exchangeable** if and only if the joint pf is invariant under interchanges of its arguments, i.e.,

$$f(x_1, x_2, \dots, x_n) = f(x_{i_1}, x_{i_2}, \dots, x_{i_n}),$$

for any permutation $(i_1, i_2, ..., i_n)$ of 1:n. Independent and identically distributed (iid) rvs are exchangeable, but independence and exchangeability, although overlapping in some areas, are distinct concepts. For instance, independence *does not* imply exchangeability. *Nor* does exchangeability imply independence.

Expectation Values

By "definition," the **expectation** of a function of a rv is

$$E(g(X)) := \begin{cases} \sum_{\text{range}(X)} g(x)f(x), & X \text{ discrete,} \\ \int_{-\infty}^{\infty} g(x)f(x) dx, & X \text{ continuous.} \end{cases}$$

For rvs of the mixed type with **probability function** pf $f(x) = \alpha f_{\text{disc}}(x) + (1 - \alpha) f_{\text{cont}}(x)$, you can *only* define the moments

$$E(X^{k}) = \alpha \sum_{\text{discrete}(X)} x^{k} f_{\text{disc}}(x) + (1 - \alpha) \int_{\text{continuous}(X)} x^{k} f_{\text{cont}}(x) dx$$

1. r^{th} moment is $\mu_r' := E(X^r)$; the mean is $\mu := E(X)$; r^{th} central moment is $\mu_r := E(X - \mu)^r$; r^{th} absolute deviation is $\nu_r := E(|X - \mu|^r)$;

the variance is $\operatorname{var}(X) := \sigma^2 := \mu_2 = E(X - \mu)^2 = E(X^2) - \mu^2$.

$$\mu_r = \mu'_r - {r \choose 1} \mu \mu'_{r-1} + {r \choose 2} \mu^2 \mu'_{r-2} + \dots + (-1)^{r-1} (r-1) \mu^r$$

$$\mu'_r = \mu_r + \binom{r}{1} \mu \mu_{r-1} + \binom{r}{2} \mu^2 \mu_{r-2} + \dots + \binom{r}{r-2} \mu^{r-2} \mu_2 + \mu^r$$

- 2. Coefficient of skewness is $\gamma_{1} := E\left(\left(X \mu\right) / \sigma\right)^{3}$ and coefficient of excess is $\gamma_{2} = E\left(\left(X \mu\right) / \sigma\right)^{4} 3$.
- 3. $E\left(\sum a_k X_k\right) = \sum a_k E\left(X_k\right)$; var $\left(\sum a_k X_k\right) = \sum a_k^2 \operatorname{var}(X_k) + 2\sum \sum_{j < k} a_j a_k \operatorname{cov}(X_j, X_k)$. The **covariance** and **correlation** are defined by:

$$cov(X_j, X_k) := E\left((X_j - \mu_j)(X_k - \mu_k)\right) = E\left(X_j X_k\right) - \mu_j \mu_k =: \sigma_{jk}; \quad \rho_{jk} := corr(X_j, X_k) = \frac{\sigma_{jk}}{\sigma_j \sigma_k}$$
$$cov\left(\sum a_i X_i, \sum b_j X_j\right) = \sum a_i b_i \operatorname{var}(X_i) + \sum_{i < j} \left(a_i b_j + a_j b_i\right) \operatorname{cov}(X_i, X_j)$$

4. Conditional expectations: E(Y) = E(E(Y|X)) and

$$var(Y) = E(var(Y|X)) + var(E(Y|X)),$$

where
$$\operatorname{var}(Y|X) := E\left(\left(Y - E(Y|X)\right)^2 | X\right)$$
.

5. When X and Y are independent rvs,

$$var(XY) = var(X) var(Y) + E^{2}(X) var(Y) + E^{2}(Y) var(X)$$

Generating Functions

- Moment generating function, mgf: $M_X(t) := E\left(e^{tX}\right), M_X^{(n)}(0) = \mu'_n, M_{aX+b}(t) = e^{bt}M_X(at), \mu = M'_X(0), \sigma^2 = M''_X(0) (M'_X(0))^2.$
- Cumulant generating function, cgf: $K_X(t) := \log(M_X(t))$, $K_X'(0) = \mu$, $K_X''(0) = \sigma^2$, $K_X'''(0) = E(X \mu)^3$, the r^{th} cumulant is $\kappa_r = K_X^{(r)}(0) = E(X \mu)^r$.
- Factorial generating function, fgf: $P_X(s) := E\left(s^X\right), P_X^{(r)}(1) = \mu_{[r]} := E\left(X(X-1)\cdots(X-r+1)\right).$
- $\bullet \ \ \mathbf{Characteristic} \ \ \mathbf{function}, \ \mathrm{cf:} \ \ \varphi_X(\omega) := E\left(e^{i\omega X}\right), \ \varphi_X^{(n)}(0) = i^n\mu_n', \ \varphi_{aX+b}(\omega) = e_X^{ibt}\varphi(a\omega).$

Order Statistics

A random sample of size n is a set $\{X_1, X_2, \ldots, X_n\}$ of independent and identically distributed (iid) rvs. The **order statistics** of the random sample are defined to be $X_{(1;n)} \leq X_{(2;n)} \leq \cdots \leq X_{(n;n)}$. We assume they are drawn from a population with pdf f(x) and cdf F(x).

1. The pdf and cdf of $Y = X_{(r,n)}$ are given by

$$g_r(y) = \binom{n}{r-1, 1, n-r} [F(y)]^{r-1} f(y) [1 - F(y)]^{n-r},$$

$$G_r(y) = \sum_{i=r}^{n} \binom{n}{i} [F(y)]^i [1 - F(y)]^{n-i}$$

The joint pdfs of two order statistics, $Y_r = X_{(r;n)} \le Y_s = X_{(s;n)}$ are given by

$$g_{r,s}(y_r, y_s) = \binom{n}{r-1, 1, s-r-1, 1, n-s} \left[F(y_r) \right]^{r-1} f(y_r) \left[F(y_s) - F(y_r) \right]^{s-r-1} f(y_s) \left[1 - F(y_s) \right]^{n-s}, y_r \le y_s$$

and the pdf of all the order statistics is

$$g(y_1, y_2, \dots, y_n) = n! f(y_1, y_2, \dots, y_n)$$
 for $y_1 \le y_2 \le \dots \le y_n$

2. The pdf and cdf of the range, $R := X_{(n:n)} - X_{(1:n)}$, are given by

$$f_R(r) = n(n-1) \int_{-\infty}^{\infty} \left[F(x+r) - F(x) \right]^{n-2} f(x) f(x+r) dx,$$
$$F_R(r) = n \int_{-\infty}^{\infty} \left[F(x+r) - F(x) \right]^{n-1} f(x) dx$$

Transformation of Variables

• If Y = u(X) is a smooth one-to-one transformation, then

$$G(y) = \Pr\left(Y \leq y\right) = \Pr\left(u(X) \leq y\right) = \Pr\left(X \leq u^{-1}(y)\right) = F\left(u^{-1}(y)\right)$$

The corresponding pdf is the derivative: $g(y) = f(x(y)) \left| \frac{dx}{dy} \right|$. If the transformation is not one-to-one, break up its support into a union of intervals over each of which it is one-to-one and apply the previous formula to each piece and sum the result. E.g.,

$$Y = X^2, G(y) = \Pr\left(Y \le y\right) = \Pr\left(X^2 \le y\right) = \Pr\left(-\sqrt{y} \le X \le \sqrt{y}\right) = F\left(\sqrt{y}\right) - F\left(-\sqrt{y}\right),$$

so that

$$g(y) = \frac{1}{2\sqrt{y}} \left(f\left(\sqrt{y}\right) + f\left(-\sqrt{y}\right) \right)$$

For discrete rvs, the pmf is $g(y_k) = F(u^{-1}(y_k)) - F(u^{-1}(y_{k-1})) = f(u^{-1}(y_k)).$

You should know that for any continuous rv, both U = F(X) and V = 1 - F(X) are Unif(0,1).

• If $\mathbf{Y} := [Y_1, Y_2, \dots, Y_n] = [u_1(X_1, X_2, \dots, X_n), \dots, u_n(X_1, X_2, \dots, X_n)]$ is a smooth invertible multivariate transformation, then use the **Jacobian Change of Variable Theorem** to write,

$$g(y_1, y_2, \dots, y_n) = f(x_1(\mathbf{y}), x_2(\mathbf{y}), \dots, x_n(\mathbf{y})) \left| \frac{\partial (x_1, x_2, \dots, x_n)}{\partial (y_1, y_2, \dots, y_n)} \right|,$$

where the **Jacobian** is defined to be

$$\frac{\partial(x_1, x_2, \dots, x_n)}{\partial(y_1, y_2, \dots, y_n)} := \det \begin{bmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} & \dots & \frac{\partial x_1}{\partial y_n} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} & \dots & \frac{\partial x_2}{\partial y_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial x_n}{\partial y_1} & \frac{\partial x_n}{\partial y_2} & \dots & \frac{\partial x_n}{\partial y_n} \end{bmatrix}$$

• For sums of independent rvs, use the mgf result: If $S = X_1 + X_2 + \cdots + X_n$, then

$$M_S(t) = M_{X_1}(t)M_{X_2}(t)\cdots M_{X_n}(t),$$

which for the iid case reduces to $M_S(t) = M_X^n(t)$.

• Also for sums of random variables, the pdf, f(s), of the sum is related to the pdfs of the individual X_i , $p_i(x)$, via the convolution product $f = p_1 * p_2 * \cdots * p_n$, where the product is defined recursively by

$$(p_1 * p_2)(x) := \int_{-\infty}^{\infty} p_1(x - y) p_2(y) dy,$$

 $p_1 * p_2 = p_2 * p_1$, and $p_1 * (p_2 * p_3) = (p_1 * p_2) * p_3$. This is usually not very useful except for distributions for which f(s) can be more easily calculated other ways, e.g., mgfs. (See the last section of this reference sheet.)

Definitions and Results

- If X_n has cdf $F_n(x)$ for $n = 1 : \infty$ and if for some cdf F(x) we have $\lim_{n \to \infty} F_n(x) = F(x)$ for all values of x at which F(x) is continuous, then the sequence $\{X_n\}$ converges in distribution to X, which has cdf F(x), and we write $X_n \stackrel{d}{\to} X$.
- If X_n has mgf $M_n(t)$, X has mgf M(t), and there is an a > 0 such that $\lim_{n \to \infty} M_n(t) = M(t)$ for all $t \in (-a, a)$, then $X_n \stackrel{d}{\to} X$.
- We say the sequence $\{X_n\}$ converges stochastically to a constant c if the limiting distribution puts all its mass at the atom $\{c\}$, written $X_n \stackrel{P}{\to} c$.
- The sequence $\{X_n\}$ converges in probability to X if $\lim_{n\to\infty} \Pr(|X_n X| < \varepsilon) = 1$, for any $\varepsilon > 0$. This is written as $X_n \stackrel{P}{\to} X$.
- If $\Omega_0 := \{\omega : \lim_{n \to \infty} X_n(\omega) = X \text{ exists} \}$ and $\Pr(\Omega_0) = 1$, then we say that X_n converges almost surely and we write $X_n \stackrel{\text{a.s.}}{\to} X$.
- Slutsky's Theorem says: (a) If $X_n \stackrel{P}{\to} X$, then $X_n \stackrel{d}{\to} X$. (b) If $X_n \stackrel{P}{\to} c$, then $g(X_n) \stackrel{P}{\to} g(c)$, whenever g is continuous at c. (c) If $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{P}{\to} c$, then (i) $X_n + Y_n \stackrel{d}{\to} X + c$, (ii) $X_n Y_n \stackrel{d}{\to} X c$, (iii) $X_n / Y_n \stackrel{d}{\to} X / c$. (d) If $X_n \stackrel{d}{\to} X$, then for any continuous function g(y), $g(X_n) \stackrel{d}{\to} g(X)$.
- Central Limit Theorem: (Form 1) If $X_1, X_2, ..., X_n$ are iid from a distribution with mean μ and variance $\sigma^2 < \infty$, then

$$\lim_{n \to \infty} Z_n := \lim_{n \to \infty} \frac{\sum_{1}^{n} X_i - n\mu}{\sigma \sqrt{n}} = Z \sim \mathcal{N}(0, 1)$$

(Form 2) If as above, then

$$\lim_{n \to \infty} Z_n := \lim_{n \to \infty} \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} = Z \sim \mathcal{N}(0, 1)$$

(Berry-Esseen Bound) If, in addition, $(E|X_i|)^{2+\delta} = \gamma^{2+\delta} < \infty$, for some $\delta \in (0,1]$, then there is a constant c_{δ} such that

$$\sup \left\{ \left| \Pr \left(\bar{X} - \mu < z \frac{\sigma}{\sqrt{n}} \right) - \Phi \left(z \right) \right| : x \in \mathbb{R} \right\} \le \frac{c_{\delta}}{n^{\delta/2}} \left(\frac{\gamma}{\sigma} \right)^{2+\delta}$$

The $\delta = 1$ case is most often cited: $(E|X_i|)^3 = \gamma^3$ yields

$$\sup \left\{ \left| \Pr \left(\bar{X} - \mu < z \frac{\sigma}{\sqrt{n}} \right) - \Phi \left(z \right) \right| : x \in \mathbb{R} \right\} \le \frac{c_1}{\sqrt{n}} \left(\frac{\gamma}{\sigma} \right)^3,$$

and $c_1 \leq 1.322$.

Special Discrete Random Variables

1. $\mathcal{B}in(n,p)$, **Binomial**: X = # successes in n, a fixed number of independent Bernoulli trials with constant $p = \Pr(\text{Success}) =: 1 - q$.

$$b(x; n, p) = \binom{n}{x} p^x q^{n-x}, \ x = 0:n;$$

 $\mu = np; \ \sigma^2 = npq; \ \mu_{(r)} = (n)_r p^r; \quad M_X(t) = (pe^t + q)^n.$

2. $\mathcal{H}yper(n, N, k)$, **Hypergeometric**: X = # defectives in sampling n items without replacement from a set of N items of which D are defectives.

$$h(x; n, N, D) = \frac{\binom{D}{x} \binom{N-D}{n-x}}{\binom{N}{n}}, \quad x = \max\{0, n+D-N\} : \min\{D, n\}$$

$$\mu = n\left(\frac{D}{N}\right); \quad \sigma^2 = \left(\frac{N-n}{N-1}\right)n\left(\frac{D}{N}\right)\left(1-\frac{D}{N}\right); \quad \mu_{[r]} = \frac{n^{[r]}D^{[r]}}{N^{[r]}}$$

3. $Pois(\theta)$, **Poisson**: X = # of occurrences of events occurring "randomly and independently" in a time T and at a rate λ when $\theta = \lambda T$.

$$p(x;\theta) = \frac{\theta^x}{x!}e^{-\theta}, \ x = 0:\infty; \quad \mu = \sigma^2 = \theta; \quad \mu_2' = \theta(1+\theta)$$

$$\mu_{[r]} = \theta^r; \quad M_X(t) = \exp\left\{\theta\left(e^t - 1\right)\right\}$$

The **Law of Rare Events** tells us that the limit of $\mathcal{B}in(n,p)$ as $n \to \infty$, $p \to 0$, and $np = \theta$ is $\mathcal{P}ois(\theta)$.

4. $\mathcal{B}in^*(r,p)$, Negative Binomial: X=# of trials until r^{th} success, or $N\mathcal{B}in(r,p)$: Y=# failures until r^{th} success =X-r.

$$b^{*}(x;r,p) = {x-1 \choose r-1} p^{r} q^{x-r}, \ x = r : \infty; \quad \mu_{X} = \frac{r}{p}; \quad \sigma_{X}^{2} = \frac{rq}{p^{2}};$$

$$f(y) = {-r \choose y} p^{r} (-q)^{y} = {r+y-1 \choose y} p^{r} q^{y}, \ y = 0 : \infty; \quad \mu_{Y} = \frac{rq}{p}; \quad \sigma_{Y}^{2} = \frac{rq}{p^{2}};$$

$$M_{X}(t) = \frac{p^{r}}{(e^{-t} - q)^{r}}; \quad M_{Y}(t) = \frac{p^{r}}{(1 - qe^{t})^{r}}$$

- (a) $\mathcal{G}eo(p)$, **Geometric**: X = # of trials until the first success. This is $\mathcal{B}in^*(1,p)$. So, $f(x;p) = q^{x-1}p$, for $x = 1 : \infty$. $\mu = \frac{1}{p}$, $\sigma^2 = \frac{q}{p^2}$, $M_X(t) = p\left(e^{-t} q\right)^{-1}$.
- 5. $\mathcal{M}ult(\mathbf{n}, \mathbf{p})$, **Multivariate**: $X_i = \#$ of occurences falling into category i when the probability of having an outcome in each category is the same for each independent trial.

$$\Pr\left(\mathbf{X} = \mathbf{x}\right) = \binom{n}{\mathbf{x}} \mathbf{p}^{\mathbf{x}} := \binom{n}{x_1, x_2, \dots, x_k} p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k}, \ \sum_{i=1}^k x_i = n \text{ and } \sum_{i=1}^k p_i = 1,$$

and $E(X_i) = np_i$, $var(X_i) = np_i(1 - p_i)$, and $cov(X_i, X_j) = -np_ip_j$ for $i \neq j$.

Special Continuous Random Variables

The **indicator function** is defined by

$$I_{(a,b)}(x) = \begin{cases} 1, & x \in (a,b) \\ 0, & x \notin (a,b) \end{cases}$$

1. Unif(a,b), Uniform: $f(x;a,b) = \frac{1}{b-a}I_{(a,b)}(x)$; $\mu = \tilde{x} = \frac{1}{2}(a+b)$; $\sigma^2 = \frac{1}{12}(b-a)^2$;

$$M_X(t) = \frac{e^{bt} - e^{at}}{t(b-a)}; \ \mu'_r = \frac{b^{r+1} - a^{r+1}}{(b-a)(r+1)}; \ \gamma_1 = 0; \ \gamma_2 = -\frac{6}{5}$$

2. $\mathcal{N}(\alpha, \beta^2)$, Gaussian or Normal: $n(x; \alpha, \beta^2) = \frac{1}{\beta} \phi\left(\frac{x-\alpha}{\beta}\right) := \frac{1}{\sqrt{2\pi\beta^2}} \exp\left\{-\frac{1}{2}\left(\frac{x-\alpha}{\beta}\right)^2\right\}$,

$$\mu=\tilde{x}=\alpha;\quad \sigma^2=\beta^2;\quad \gamma_1=0;\; \gamma_2=0;\; M_X(t)=\exp\left(\alpha t+\frac{1}{2}\beta^2 t^2\right)$$

For the standard normal, $Z \sim \mathcal{N}(0,1)$, the pdf is

$$\phi\left(z\right) = \frac{1}{\sqrt{2\pi}}e^{-z^{2}/2}$$

3. $\log \mathcal{N}(\alpha, \beta)$, log Normal: $\mu = \exp\left(\alpha + \frac{1}{2}\beta^2\right)$; if $\omega = e^{\beta^2}$, then $\sigma^2 = \omega(\omega - 1)e^{2\alpha}$; $\gamma_1 = (\omega + 2)\sqrt{\omega - 1}$, $\gamma_2 = \omega^4 + 2\omega^3 + 3\omega^2 - 6$, $\tilde{x} = e^{\alpha}$; $\mu'_r = \exp\left(r\alpha + \frac{1}{2}r^2\beta^2\right)$

$$f(x; \alpha, \beta) = \frac{1}{x\sqrt{2\pi\beta^2}} \exp\left\{-\frac{1}{2\beta^2} \left(\log x - \alpha\right)^2\right\} I_{(0,\infty)}(x)$$

4. $inv\mathcal{G}(\alpha,\beta)$, inverse Gaussian or inverse Normal: $\mu=\alpha,\,\sigma^2=\alpha^3\beta,\,\gamma_1=3\sqrt{\alpha\beta},\,\gamma_2=15\alpha\beta,$

$$f(x; \alpha, \beta) = \frac{1}{\sqrt{2\pi\beta x^3}} \exp\left\{-\frac{(x-\alpha)^2}{2\alpha^2\beta x}\right\} I_{(0,\infty)} \text{ when } \alpha > 0 \text{ and } \beta > 0$$

and the mgf is

$$M_X\left(t\right) = \exp\left\{\frac{1}{\alpha\beta}\left[1 - \sqrt{\beta\left(1 + \alpha^2 t\right)}\right]\right\}; \ \kappa_r = (2r - 3)!!\alpha^{2r - 1}\beta^{r - 1}$$

where the **semifactorial** is defined by

$$(2r)!! = 2 \cdot 4 \cdot 6 \cdot \dots \cdot (2r)$$

 $(2r-1)!! = 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2r-1)$

5. $Cauchy(\alpha, \beta)$, Cauchy: $f(x) = \frac{\beta}{\pi} \frac{1}{\beta^2 + (x - \alpha)^2}$; $\beta > 0$, μ and σ^2 do not exist but $\tilde{x} = \alpha$ and the characteristic function

$$\varphi_X(\omega) = \exp\left(i\alpha\omega - \frac{|t|}{\beta}\right)$$

is the only generating function that exists. The parameter β is one half the interquartile range, i.e., $\beta = \frac{1}{2}IQR = \frac{1}{2}\left(Q_3 - Q_1\right) = \frac{1}{2}\left(x_{0.75} - x_{0.25}\right)$.

6. $\mathcal{E}xp(\beta) = \mathcal{G}am(1,\beta)$, Exponential: $f(x) = \beta^{-1}e^{-x/\beta} I_{(0,\infty)}(x), \ \beta > 0, \quad \mu = \beta; \quad \sigma^2 = \beta^2; \quad \mu'_r = \beta^r r!;$

$$M_X(t) = (1 - \beta t)^{-1}.$$

This is the distribution of the time until the next occurrence of a random event.

7.
$$\mathcal{G}am(\alpha,\beta)$$
, Gamma: $f(x;\alpha,\beta) = \frac{1}{\beta^{\alpha}\Gamma(\alpha)}x^{\alpha-1}e^{-x/\beta}I_{(0,\infty)}(x)$, $\alpha,\beta>0$, $\mu=\alpha\beta$; $\sigma^2=\alpha\beta^2$; $\gamma_1=2/\sqrt{\alpha}$, $\gamma_2=6/\alpha$,
$$\mu'_r=\frac{\Gamma(r+\alpha)}{\Gamma(\alpha)}\beta^r; \ M_X(t)=(1-\beta t)^{-\alpha}$$

If α is a positive integer, then this is the distribution of the time until the α^{th} occurrence of a random event.

8.
$$\chi_n^2 = \mathcal{G}am(n/2, 2)$$
, Chi-Square: $f(x; n) = \frac{1}{2^{n/2}\Gamma(n/2)} x^{(n/2)-1} e^{-x/2} I_{(0,\infty)}(x)$, for $n > 0$; $\mu = n$;

$$\sigma^2 = 2n; \text{ Mode} = n-2; \ \ \mu_r' = \frac{2^r \Gamma\left(\frac{n}{2} + r\right)}{\Gamma\left(\frac{n}{2}\right)}; \ \ \gamma_1 = \sqrt{\frac{8}{n}}, \ \gamma_2 = \frac{12}{n}; \ M_X(t) = (1-2t)^{-n/2}$$

9.
$$\mathcal{B}eta(\alpha,\beta)$$
, **Beta**: $f(x;\alpha,\beta) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}I_{(0,1)}(x)$ for $\alpha,\beta > 0$; $\mu = \frac{\alpha}{\alpha+\beta}$;

$$\sigma^2 = \frac{\alpha\beta}{(\alpha+\beta+1)(\alpha+\beta)^2}; \ \mu'_r = \frac{B(\alpha+r,\beta)}{B(\alpha,\beta)} = \prod_{k=0}^{r-1} \left(\frac{\alpha+k}{\alpha+\beta+k}\right)$$

10.
$$Weib(\alpha, \beta)$$
, Weibull: $f(x; \alpha, \beta) = \alpha \beta x^{\beta-1} \exp\left(-\alpha x^{\beta}\right) I_{(0,\infty)}(x)$; $\mu = \alpha^{-1/\beta} \Gamma\left(1 + \frac{1}{\beta}\right)$;

$$\mu_r' = \alpha^{-r/\beta} \Gamma\left(1 + \frac{r}{\beta}\right); \ \sigma^2 = \alpha^{-2/\beta} \left\{ \Gamma\left(1 + \frac{2}{\beta}\right) - \Gamma^2\left(1 + \frac{1}{\beta}\right) \right\}$$

11. $\mathcal{L}ap(\alpha,\beta)$, Laplace or Double Exponential: $f(x;\alpha,\beta) = \frac{1}{2\beta} \exp\{-|x-\alpha|/\beta\}; \mu = \tilde{x} = \alpha;$

$$\sigma^2 = 2\beta^2$$
; $\gamma_1 = 0$; $\gamma_2 = 3$; $\mu_{2r} = (2r)! \, \beta^r$; $M_X(t) = \frac{e^{\alpha t}}{1 - \beta^2 t^2}$

12. $\mathcal{L}ogist(\alpha, \beta)$, Logistic:

$$f\left(x;\alpha,\beta\right) = \frac{e^{-(x-\alpha)/\beta}}{s\left(1 + e^{-(x-\alpha)/\beta}\right)^{2}}; \quad F\left(x;\alpha,\beta\right) = \frac{1}{1 + e^{-(x-\alpha)/\beta}}$$

$$\mu = \alpha, \ \sigma^2 = \frac{1}{3}\pi^2\beta^2, \ \gamma_1 = 0, \ \gamma_2 = 1.2,$$

$$M_X(t) = e^{\alpha t}B(1 - \beta t, 1 + \beta t) \text{ where } B \text{ is the beta function}$$

13. $v\mathcal{M}(\alpha,\kappa)$, von Mises: $f(x;\alpha,\kappa) = \frac{1}{2\pi I_0(\kappa)} \exp(\kappa\cos(x-\alpha)) I_{(-\pi,\pi)}(x)$, where $I_0(\kappa)$ is the modified Bessel function of order 0 and $\kappa > 0$; $\mu = \tilde{x} = \alpha$;

$$\sigma^{2} = 1 - \frac{I_{1}(\kappa)}{I_{0}(\kappa)}; \ cf = \varphi_{X}(\omega) = \frac{I_{|\omega|}(\kappa)}{I_{0}(\kappa)}e^{i\omega\alpha};$$

Some limits are

$$\lim_{\kappa \to 0} f(x; \alpha, \kappa) = \frac{1}{2\pi} I_{(-\pi, \pi)}(x); \lim_{\kappa \to \infty} f(x; \alpha, \kappa) = \frac{1}{\sqrt{2\pi/\kappa}} \exp\left\{-\frac{\kappa}{2} (x - \alpha)^2\right\}$$
$$\lim_{\kappa \to 0} v \mathcal{M}(\alpha, \kappa) = \mathcal{U}nif(-\pi, \pi); \lim_{\kappa \to \infty} v \mathcal{M}(\alpha, \kappa) = \mathcal{N}(\alpha, 1/\kappa^2)$$

14. $\operatorname{Par}(m,\alpha)$, Pareto: $f(x;m,\alpha) = \frac{\alpha m^{\alpha}}{x^{\alpha+1}} I_{(m,\infty)}(x)$, with m and α both positive.

$$\mu = \frac{m\alpha}{\alpha - 1}, \text{ for } \alpha > 1; \ \tilde{x} = m2^{1/\alpha}; \ \sigma^2 = \frac{m^2\alpha}{(\alpha - 1)(\alpha - 2)}, \text{ for } \alpha > 2$$
$$\mu'_r = \frac{m^n\alpha}{\alpha - n} \text{ for } n < \alpha$$

15.
$$\mathcal{E}xtr(\alpha,\beta)$$
, Extreme Value: $cdf = F(x;\alpha,\beta) = \exp\{-e^{-(x-\alpha)/\beta}\}$, for $\beta > 0$.

$$\mu = \alpha + \beta \gamma$$
, $\sigma^2 = \frac{1}{6}\pi\beta^2$, $\tilde{x} = \alpha - \beta \log(\log 2)$, $M_X(t) = e^{\alpha t}\Gamma(1 - \beta t)$, for $t < 1/\beta$

16. t_n , t-distribution: $t_n = \frac{\mathcal{N}(0,1)}{\sqrt{\frac{\chi_n^2}{n}}}$ when numerator and denominator are independent and n > 0;

$$f(x;n) = \frac{\left(1 + \frac{x^2}{n}\right)^{-(n+1)/2}}{\sqrt{n}B\left(\frac{1}{2},\frac{n}{2}\right)}; \quad \mu = 0; \quad \sigma^2 = \frac{n}{n-2}; \ \gamma_1 = 0 \text{ for } n = 4:\infty, \text{ and } \gamma_2 = \frac{6}{n-4} \text{ for } n = 5:\infty$$

 t_n only has moments up to order n-1, hence, the mgf does not exist.

17. $F_{m,n}$, F-distribution: $F_{m,n} = \frac{\chi_m^2/m}{\chi_n^2/n}$, when numerator and denominator are independent.

$$f(x; m, n) = \frac{m^{m/2} n^{n/2}}{B\left(\frac{m}{2}, \frac{n}{2}\right)} x^{(m-2)/2} (n + mx)^{-(m+n)/2} I_{(0,\infty)}(x);$$

$$\mu = \frac{n}{n-2}; \quad \sigma^2 = \frac{2n^2(m+n-2)}{m(n-2)^2(n-4)}$$

18. $\mathcal{N}_2(\mu_1, \mu_2; \sigma_1^2, \sigma_2^2; \rho)$, Bivariate normal:

$$f(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2}Q\right\},$$

where

$$Q := \frac{1}{1-\rho^2} \left[\left(\frac{x_1 - \mu_1}{\sigma_1} \right)^2 - 2\rho \left(\frac{x_1 - \mu_1}{\sigma_1} \right) \left(\frac{x_2 - \mu_2}{\sigma_2} \right) + \left(\frac{x_2 - \mu_2}{\sigma_2} \right)^2 \right]$$

Then $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$, $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$, $X|y \sim \mathcal{N}\left(\beta_x, \sigma_1^2(1-\rho^2)\right)$, and $Y|x \sim \mathcal{N}\left(\beta_y, \sigma_2^2(1-\rho^2)\right)$, where

$$\beta_x = \mu_1 + \rho \frac{\sigma_1}{\sigma_2} (y - \mu_2)$$
 and $\beta_y = \mu_2 + \rho \frac{\sigma_2}{\sigma_2} (x - \mu_1)$

Also

$$M_{X_1,X_2}(t_1,t_2) = \exp\left\{\mu_1 t_1 + \mu_2 t_2 + \frac{1}{2} \left(\sigma_1^2 t_1^2 + 2\rho \sigma_1 \sigma_2 t_1 t_2 + \sigma_2^2 t_2^2\right)\right\}$$

19. $\chi_n^{\prime 2}(\delta)$ Noncentral chi-square : If $Z_1, Z_2, \dots Z_n$ are independent $\mathcal{N}(\mu_k, \sigma_k^2)$, then

$$\chi_{n}^{\prime2}\left(\delta\right)=\sum_{k=1}^{n}\left(\frac{X_{k}}{\sigma_{k}}\right)^{2} \text{ where } \delta:=\sum_{k=1}^{n}\left(\frac{\mu_{k}}{\sigma_{k}}\right)^{2} \text{ is the noncentrality parameter}$$

The pdf is

$$f(x; n, \delta) = \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{\lambda}{2}\right)^k e^{-\delta/2} \frac{x^{(n/2)+k-1}e^{-x/2}}{2^{(n/2)+k}\Gamma\left(\frac{n}{2}+k\right)} I_{(0,\infty)} \text{ for } \delta > 0, \ n = 1 : \infty$$

 $\mu = E(X) = n + \delta$, var $(X) = 2(n + 2\delta)$, $M(t) = (1 - 2t)^{-n/2} \exp \{\delta t / (1 - 2t)\}$, $\kappa_r = 2^{r-1} (r - 1)! (n + r\delta)$

$$\mu_r' = 2^r \Gamma\left(r + \frac{n}{2}\right) \sum_{k=0}^{\infty} {r \choose k} \frac{\left(\delta/2\right)^k}{\Gamma\left(k + \frac{n}{2}\right)}$$

20. $t_n'(\delta)$ Noncentral $t: t_n'(\delta) := \left(\mathcal{N}(\delta, 1)\right) / \sqrt{\chi_n^2/n}$ and the pdf is

$$f\left(x;n\right) = \frac{n^{n/2}}{\Gamma\left(n/2\right)} \frac{e^{-\delta/2}}{\sqrt{\pi} \left(n + x^2\right)^{(n+1)/2}} \sum_{k=0}^{\infty} \Gamma\left(\frac{n+k+1}{2}\right) \left(\frac{\delta^k}{k!}\right) \left(\frac{2x^2}{n+x^2}\right)^{k/2} I_{(0,\infty)}$$

$$\mu = \delta \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \sqrt{\frac{n}{2}} \text{ for } n > 1, \text{ } \operatorname{var}\left(X\right) = \frac{n\left(1+\delta^2\right)}{n-2} - \frac{\mu^2 n}{2} \frac{\Gamma^2\left(\left(n-1\right)/2\right)}{\Gamma^2\left(n/2\right)} \text{ for } n > 2$$

21. $F'_{m,n}(\delta)$ Noncentral $F: F'_{m,n}(\delta) = \chi'^2_m(\delta)/\chi^2_n$ and the pdf is

$$f\left(x;m,n,\delta\right) = e^{-\delta/2} \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{\delta}{2}\right)^k \frac{\Gamma\left(\frac{1}{2}\left(m+n+2k\right)\right)}{\Gamma\left(\frac{1}{2}\left(m+2k\right)\right)\Gamma\left(\frac{n}{2}\right)} \frac{x^{(m+2k)/-1}}{(1+x)^{(m+n+2k)/2}} I_{(0,\infty)}$$

$$\mu = \frac{(m+\delta)n}{(n-2)m} \text{ for } n > 2, \text{ var}(X)^2 = \frac{(m+\delta)^2 + 2(m+\delta)n}{(n-2)(n-4)m^2} - \frac{(m+\delta)^2 n^{2^2}}{(n-2)^2 m} \text{ for } n > 4$$

AdditionTheorems, Division Statements, Miscellaneous Relations

Each of the following sums are of independent rvs of the type indicated.

1.
$$\sum Bin(n_k, p) = Bin(\sum n_k, p)$$

2.
$$\sum_{1}^{n} \mathcal{G}eo(p) = \mathcal{B}in^{*}(n,p)$$

3.
$$\sum Pois(\lambda_k) = Pois(\sum \lambda_k)$$

4.
$$\sum_{1}^{n} \mathcal{E}xp(\beta) = \mathcal{G}am(n,\beta)$$

5.
$$\sum_{1}^{n} \mathcal{G}am(\alpha_k, \beta) = \mathcal{G}am(\sum \alpha_k, \beta)$$

6.
$$\sum a_k \mathcal{N}(\mu_k, \sigma_k^2) = \mathcal{N}\left(\sum a_k \mu_k, \sum a_k^2 \sigma_k^2\right)$$

7.
$$\chi_1^2 = \{\mathcal{N}(0,1)\}^2$$

8.
$$\sum \chi_{n_k}^2 = \chi_{\sum n_k}^2$$

9.
$$\sum \chi_{n_k}^{\prime 2} = \chi_{\sum n_k}^{\prime 2}$$

10.
$$X_1, \ldots, X_n \text{ iid } \mathcal{N}(\mu, \sigma^2) \Leftrightarrow \bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n}) \text{ independent of } (n-1) \frac{S^2}{\sigma^2} \sim \chi^2(n-1)$$

11. If
$$X, Y$$
 iid $\mathcal{N}(0, 1)$ then

(a)
$$\frac{X}{|X|} \sim Cauchy(0,1) = t_1$$

(b)
$$\frac{X+Y}{Y-Y} \sim Cauchy(0,1)$$

(c)
$$U = \frac{XY}{\sqrt{X^2 + Y^2}} \sim \mathcal{N}\left(0, \frac{1}{\sqrt{2}}\right)$$
 independent of $V = \frac{X^2 - Y^2}{X^2 + Y^2}$ which is also normal.

12.
$$X_1, \ldots, X_n \text{ iid } \mathcal{U}nif(0,1) \Rightarrow X_{(r,n)} \sim \mathcal{B}eta(r, n-r+1)$$

13.
$$X \sim Unif(0,1) \Rightarrow -2 \log X \sim \chi^2(2)$$

14.
$$X_1, X_2, \dots, X_n \text{ iid } \mathcal{E}xp(\beta) \Rightarrow X_{(1;n)} \sim \mathcal{E}xp(\beta/n)$$

15.
$$X \sim \mathcal{G}am(\alpha, \beta) \Rightarrow \frac{2X}{\beta} \sim \chi^2_{2\alpha}$$

16.
$$X \sim \chi_m^2$$
 independent of $Y \sim \chi_n^2 \Rightarrow \frac{X}{X+Y} \sim \mathcal{B}eta\left(\frac{m}{2}, \frac{n}{2}\right)$

17.
$$F \sim F_{m,n} \Rightarrow \frac{(m/n)F}{1+(m/n)F} \sim F_{m/2,n/2}$$

18.
$$X \sim \mathcal{B}eta(\alpha_1, \beta_1)$$
 independent of $Y \sim \mathcal{B}eta(\alpha_2, \beta_2)$
$$\begin{cases} \alpha_1 = \alpha_2 + \beta_2 \Rightarrow XY \sim \mathcal{B}eta(\alpha_2, \beta_1 + \beta_2) \\ \alpha_2 = \alpha_1 + \beta_1 \Rightarrow XY \sim \mathcal{B}eta(\alpha_1, \beta_1 + \beta_2) \end{cases}$$

19.
$$(X,Y) \sim \mathcal{N}_2(0,0;1,1;\rho) \Rightarrow \frac{Y}{X} \sim Cauchy(0,1)$$

20.
$$X \sim N\mathcal{B}in(r,p)$$
 and $Y \sim \mathcal{B}in(n,p) \Rightarrow \Pr(X \leq n) = \Pr(Y \geq r)$. In terms of cdfs, this is $F_X(n;r,p) = 1 - F_Y(r;n,p)$

21.
$$X \sim \mathcal{G}am(n,\beta)$$
 and $Y \sim \mathcal{P}ois(1/\beta) \Rightarrow \Pr(X \leq x; n,\beta) = 1 - \Pr(Y \leq n-1; x,\beta)$. In terms of cdfs, this is $F_X(x; n,\beta) = 1 - F_Y(n-1; x,\beta)$

- 22. $X \sim \log \mathcal{N}(\alpha_1, \beta_1)$ and $Y \sim \log \mathcal{N}(\alpha_2, \beta_2)$ independent, then $XY \sim \log \mathcal{N}(\alpha_1 + \alpha_2, \beta_1 + \beta_2)$ and $X/Y \sim \log \mathcal{N}(\alpha_1 \alpha_2, \beta_1 \beta_2)$
- 23. For any continuous rv X with cdf F(x), the r^{th} order statistic $X_{(r;n)}$ has cdf $G_r(y) = H(F(y); r, n-r+1)$, where H is the cdf of a $\mathcal{B}eta(r, n-r+1)$ rv.
- 24. Gamma function: $\Gamma(\alpha+1) = \alpha\Gamma(\alpha) := \int_0^\infty t^{\alpha}e^{-t}dt$; $\Gamma(1) = 1$; $\Gamma(n+1) = n!$ when n is a nonnegative integer, and $\Gamma(\frac{1}{2}) = \sqrt{\pi}$
- 25. $\int_0^\infty t^{\alpha} e^{-\beta t} dt = \frac{\Gamma(\alpha+1)}{\beta^{\alpha+1}}, \ \beta > 0$
- 26. Incomplete gamma function: $\gamma(a, x) := \int_0^x t^{a-1} e^{-t} dt$ for a > 0 and x > 0. $P(a, x) := \gamma(a, x) / \Gamma(a)$ is the cdf of the gamma distribution. The corresponding tail probability is

$$\frac{\Gamma\left(a,x\right)}{\Gamma\left(a\right)} := 1 - \frac{\gamma\left(a,x\right)}{\Gamma\left(a\right)} = \frac{1}{\Gamma\left(a\right)} \int_{x}^{\infty} t^{a-1} e^{-t} dt$$

- 27. Beta function: $B(\alpha,\beta) := \int_0^1 t^{\alpha-1} (1-t)^{\beta-1} dt = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$, for $\alpha > 0$, $\beta > 0$
- 28. Incomplete beta function: $B_x(\alpha,\beta) := \int_0^x t^{\alpha-1} (1-t)^{\beta-1} dt$. $I_x(\alpha,\beta) := B_x(\alpha,\beta)/B(\alpha,\beta)$ is the cdf of the beta distribution.