Universidade do Estado de Santa Catarina Centro de Ciências Tecnológicas - CCT Departamento de Matemática

Geometria Analítica - Cônicas

Prof. Francielle Kuerten Boeing

- 1. Determine a equação do conjunto de pontos P(x,y) que são equidistantes da reta x=-2 e do ponto (0,2).
- 2. Calcular o valor de k para que a parábola $x = ky^2$ tenha foco no ponto (3,0).
- 3. Escreva as equações reduzidas das parábolas com vértice na origem, dados:
 - (a) o foco (8,0);
 - (b) dois pontos da parábola (6, 18) e (-6, 18).
- 4. Determine a equação de uma parábola de vértice na origem, que passa por P(-3,2) e cujo eixo de simetria é o eixo x.
- 5. Determine a equação do conjunto de pontos P(x,y) que são equidistantes da reta y=3 e do ponto F(0,0). Represente geometricamente.
- 6. Determine a equação da parábola que passa pelos pontos P(0, -6), Q(3, 0) e R(4, 10).
- 7. Determine a equação da parábola que passa pelos pontos P(-2,3), Q(-5,-3) e R(0,-1).
- 8. Determine a equação do conjunto de pontos P(x,y) cuja soma das distâncias a $F_1(1,0)$ e a $F_2(3,0)$ é igual a 5. Represente geometricamente.
- 9. Os vértices de uma elipse são os pontos (4,0) e (-4,0) e seus focos são os pontos (3,0) e (-3,0). Determine a equação dessa elipse.
- 10. Determine a equação da circunferência C com centro C(4, -1) passa pelo foco da parábola $x^2 + 16y = 0$. Mostre que C é tangente à diretriz da parábola.
- 11. Esboce a região do plano dada pela inequação: $4x^2 + 9y^2 40x 54y + 145 < 0$.
- 12. Determine a equação do conjunto de pontos P(x, y) cujo módulo da diferença das distâncias a $F_1(-1, -5)$ e a $F_2(5, -5)$ é igual a $3\sqrt{2}$. Represente geometricamente.
- 13. Escreva a equação reduzida das curvas abaixo, identifique-as e represente-as geometricamente.

(a)
$$2y^2 + 5x + 8y - 7 = 0$$

(b)
$$x^2 + 4y^2 + 2x - 12y + 6 = 0$$
.

(c)
$$x^2 - 20x + y + 100 = 0$$

(d)
$$x^2 - y^2 - 6x = 0$$

(e)
$$x^2 + 16y^2 - 6x - 7 = 0$$

(f)
$$x^2 + y^2 + 2x + 10y + 26 = 0$$

(g)
$$-x^2 + y^2 - 6x - 2y - 8 = 0$$

(h)
$$2x^2 + 2y^2 - 2x + 6y + 3 = 0$$

14. Determine a equação da parábola que contém os vértices da hipérbole $x^2 - 4y^2 + 24y - 40 = 0$ e que passa pelo ponto $P(-1, \frac{3}{4})$.

- 15. Considere os pontos $A=(4,1)\,$ e B=(3,2). Determine as equações e os principais elementos das duas hipérboles que possuem B como vértice imaginário, A como vértice e reta focal paralela a um dos eixos coordenados.
- 16. Determine a equação da hipérbole equilátera com focos nos pontos $(-\sqrt{8},0)$ e $(\sqrt{8},0)$
- 17. Determine a equação reduzida da cônica em que um dos vértices é o foco da parábola de equação $y^2 + 2y 8x + 25 = 0$, um dos focos é o vértice desta mesma parábola e além disso o centro da cônica está sobre a diretriz dessa parábola.
- 18. Descreva e represente geometricamente as curvas a seguir.

(a)
$$x = 3 - \sqrt{3 - y^2 - 2y}$$

(b)
$$x = 4 - \sqrt{y}$$

(c)
$$y = -1 - \sqrt{2x+4}$$

(d)
$$y = -2 - \frac{3}{2}\sqrt{-x^2 + 2x + 3}$$

(e)
$$x = 2\sqrt{y^2 - 1}$$

(f)
$$x = -4 - \frac{\sqrt{2 + y^2 - 2y}}{2}$$

19. Identifique as curvas e explicite a variável y.

(a)
$$2y^2 + 4y - x + 2 = 0$$

(b)
$$x^2 + y^2 = 2y$$

(c)
$$x^2 + 4x - y^2 + 6y - 6 = 0$$

(d)
$$x^2 - y^2 - 4x + 2y + 3 = 0$$

20. Identifique as curvas e explicite a variável x.

(a)
$$2x^2 + 16x + 3y^2 - 30y + 87 = 0$$

(b)
$$x^2 + y^2 = 2y$$

(c)
$$x^2 + 4x - y^2 + 6y - 6 = 0$$

(d)
$$x^2 - y^2 - 4x + 2y + 3 = 0$$

Respostas ou Sugestões:

1.
$$(y-2)^2 = 4(x+1)$$
.

2.
$$k = \frac{1}{12}$$

3. (a)
$$y^2 = 32x$$

(b)
$$x^2 = 2y$$

4.
$$3y^2 + 4x = 0$$

5.
$$x^2 = 6\left(y - \frac{3}{2}\right)$$

6.
$$y = 2x^2 - 4x - 6$$
 ou $40x + y^2 - 14y - 120 = 0$

7.
$$y^2 + 2x - y - 2 = 0$$
 ou $5y + 4x^2 + 18x + 5 = 0$

8.
$$\frac{(x-2)^2}{\frac{25}{4}} + \frac{y^2}{\frac{21}{4}} = 1$$

9.
$$\frac{x^2}{16} + \frac{y^2}{7} = 1$$

10.
$$(x-4)^2 + (y+1)^2 = 25$$

11.
$$\frac{(x-5)^2}{9} + \frac{(y-3)^2}{4} < 1 \text{ (pontos no interior da elipse)}$$

12.
$$\frac{(x-2)^2}{\frac{9}{2}} - \frac{(y+5)^2}{\frac{9}{2}} = 1$$

13. .

- (a) Parábola com V(3, -2)
- (b) Elipse com $C\left(-1,\frac{3}{2}\right)$
- (c) Parábola com V(10,0)
- (d) Hipérbole com C(3,0)
- (e) Elipse com C(3,0)
- (f) Ponto P(-1, -5)
- (g) Hipérbole degenerada Duas retas: y = 4 + x e y = -2 x
- (h) Circunferência com $C\left(\frac{1}{2}, -\frac{3}{2}\right)$

14.
$$y = \frac{3x^2}{4}$$

15.
$$H_1: (x-3)^2 - (y-1)^2 = 1$$
 e $H_2: (y-2)^2 - (x-4)^2 = 1$

16.
$$\frac{x^2 - y^2}{4} = 1$$

17.
$$\frac{(x-1)^2}{16} + \frac{(y+1)^2}{12} = 1$$

18. .

- (a) Ramo da circunferência $(x-3)^2 + (y+1)^2 = 4$ com $x \le 3$.
- (b) Ramo da parábola $y = (x 4)^2$ com $x \le 4$.
- (c) Ramo da parábola $(y+1)^2 = 2(x+2)$ com $y \le -1$.
- (d) Ramo da elipse $\frac{(x-1)^2}{4} + \frac{(y+2)^2}{9} = 1 \text{ com } y \le -2.$
- (e) Ramo da hipérbole $-\frac{x^2}{4} + y^2 = 1 \text{ com } x \ge 0$
- (f) Ramo da hipérbole $4(x+4)^2 (y-1)^2 = 1 \text{ com } x \le -4.$

19. .

- (a) Parábola com V(0,-1) e concavidade voltada para direita; $y=-1\pm\sqrt{\frac{x}{2}}$.
- (b) Circunferência com C(0,1) e raio 1; $y=1\pm\sqrt{1-x^2}$.
- (c) Hipérbole $(x+2)^2 (y-3)^2 = 1$ com C(-2,3) e eixo real x = -2; $y = 3 \pm \sqrt{(x+2)^2 1} = 3 \pm \sqrt{x^2 + 4x + 3}$.
- (d) Duas retas $y = 1 \pm (x 2)$

20. .

(a) Elipse
$$\frac{(x+4)^2}{10} + \frac{(y-5)^2}{\frac{20}{3}} = 1 \text{ com } C(-4,5); \ \ x = -4 \pm \sqrt{\frac{-3y^2 + 30y - 55}{2}}.$$

- (b) Circunferência com C(0,1) e raio 1; $x=\pm\sqrt{2y-y^2}$.
- (c) Hipérbole $(x+2)^2 (y-3)^2 = 1$ com C(-2,3) e eixo real x = -2; $x = -2 \pm \sqrt{(y-3)^2 + 1} = -2 \pm \sqrt{y^2 6y + 10}$.
- (d) Duas retas $x = 2 \pm (y 1)$