Class Notes

Dustin Leatherman

$May\ 8,\ 2020$

Contents

1	\mathbf{Rev}	riew & Introduction (2020/03/31)	3			
	1.1	Review	3			
		1.1.1 Basis	3			
		1.1.2 Kernel	3			
	1.2	Linear Algebra Review	4			
		1.2.1 Inner Product	4			
		1.2.2 Cauchy-Schwartz Inequality	4			
		1.2.3 Norms	5			
	1.3	Optimization	6			
	1.4	Convex Set	6			
	1.5	Separating Hyper-plane Theorem	7			
2	Why Separating Hyperplane Theorem & Subspace Segmen-					
		on Example $(2020/04/07)$	8			
	2.1	Why is Separating Hyper-plane Theorem true?	8			
		2.1.1 Math Background	8			
		2.1.2 Separating Hyper-plane Theorem	8			
		2.1.3 Why is it true?	9			
		2.1.4 Example	11			
	2.2	Subspace Segmentation Example	11			
3	Spa	rse Representation & Problem P0 . P1 $(2020/04/14)$	13			
	3.1	Big Idea	13			
	3.2	Background	14			
	3.3	Warm-up	15			
	3.4	Getting Ready to Formulate the Problem	16			
	3.1	3.4.1 Problem P0	16			
		3.4.2 Problem P1 (Convex Optimization)	16			

	3.5	Null Space Property of Order s 16 3.5.1 Setting up Notation 16 3.5.2 Definition 17 3.5.3 Theorem 18 3.5.4 Proof 18			
	3.6	Ways to Solve P1			
		3.6.1 Algos			
4	Spa	rse Representation pt 2 $(2020/04/21)$ 21			
	4.1	Historical Perspective			
	4.2	Example - Handwritten Digit Recognition			
		4.2.1 Qualitative Theorem			
	4.3	Solving P1 solves P0. Why?			
	4.4	Adjoint			
	4.5	Restricted Isometry Property (RIP)			
		4.5.1 How to think about RIP?			
		4.5.2 Algorithm			
	4.6	Operator Norm			
		4.6.1 Inner Product			
5	Sparse Representation Pt 3 (2020/04/28) 25				
_	5.1	Expanding on RIP			
	5.2	Expanding on IHT			
	5.3	IHT Proof			
	0.0	5.3.1 How to think about this?			
		5.3.2 Explanation: Why is the theorem true?			
	5.4	Convex Functions			
	5.5	Convex Optimization			
	5.6	Why is convex optimization important?			
0	~	1			
6		dient Descent $(2020/05/05)$ 30			
	6.1	Method of Steepest Descent			
		6.1.1 Warm Up			
		6.1.2 Proving Gradient Descent			
	6.2	Global Convergence			
	6.3	About Gradient Descent			
		6.3.1 Eyample 34			

1 Review & Introduction (2020/03/31)

1.1 Review

Orthogonal: Vectors are orthogonal when the dot product = 0.

1.1.1 Basis

$$\vec{y} = A \vec{x}
(n \times 1) = B\vec{c}$$

$$= \Sigma c_i \vec{b_i} \text{ (most } c_i = 0)$$
(1)

A: Basis Matrix

Properties of a Good Basis

- not all are orthogonal
- Allows for a sparse vector to be used ad the constant vector \vec{c}

Identity Matrices are the worst basis because most coefficients are non-zero.

2-Sparse Vector

$$\vec{c} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 3 \\ 0 \\ 0 \\ 4 \end{bmatrix} \tag{2}$$

Very important!

When dealing with Natural images and a good basis, there is a sparse vector.

1.1.2 Kernel

The kernel of a linear mapping is the set of vectors mapped to the 0 vector. The kernel is often referred to as the **null space**. Vectors should be linearly independent.

$$Ker(A) = \vec{x} \in \mathbb{R}^n : A\vec{x} = \vec{0}$$
 (3)

A must be designed such that the Kernel of A does not contain any s-sparse vector other than $\vec{0}$

Main Idea: For (1), reduce \vec{y} to a K-Sparse matrix to reduce the amount of non-zero numbers.

1.2 Linear Algebra Review

$$\vec{u} = \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \vec{v} = \begin{bmatrix} 1\\1\\2 \end{bmatrix} \tag{4}$$

$$\vec{u}^T \vec{v} = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = 1 + 2 - 2 = 1$$

$$= \vec{u} \cdot \vec{v} \tag{5}$$

$$\vec{u}\,\vec{v}^T_{(3\times1)(1\times3)} = \begin{bmatrix} 1\\2\\-1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2\\2 & 2 & 4\\-1 & -1 & -2 \end{bmatrix}$$
(6)

 $\vec{u} \ \vec{v}^T \neq \vec{u}^T \ \vec{v}$

1.2.1 Inner Product

$$\langle \vec{a}, \vec{b} \rangle = \vec{a} \cdot \vec{b}$$

= $\vec{a}^T \vec{b}$ (7)

1.2.2 Cauchy-Schwartz Inequality

$$\vec{a} = \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1\\2 \end{bmatrix} \tag{8}$$

$$|\langle \vec{a}, \vec{b} \rangle| \le \sqrt{1^2 + 2^2 + (-1)^2} \times \sqrt{1^2 + 1^2 + 2^2}$$

 $|\langle \vec{a}, \vec{b} \rangle| \le ||\vec{a}||_2 ||\vec{b}||_2 \text{ (euclidean/l2-norm)}$
(9)

1.2.3 Norms

Why is the l1 norm preferred for ML opposed to the classic l2 norm? Philosophically,

If we looked at a sphere in 12 norm, the shadow casted would be a circle regardless of the direction of the light.

Looking at a sphere in the l1 norm is shaped as a tetrahedron. The shadow cast by a tetrahedron is different for different angles so observing the shadow provides a lot more context about the sphere.

1. Euclidean/l2

Sphere:
$$||\vec{x}||_2 = \sqrt{(-4)^2 + 3^2} = \sqrt{25} = 5$$

(a) FOIL Given 2 fixed vectors x,y. Consider the l2-norm squared:

$$f(t) = ||x + ty||_2^2$$

$$f(t) = ||x + ty||_{2}^{2}$$

$$= \langle x + ty, x + ty \rangle$$

$$= \langle x, x \rangle + t \langle x, y \rangle + t \langle y, x \rangle + t^{2} \langle y, y \rangle$$

$$= ||x||_{2}^{2} + 2t \langle x, y \rangle + t^{2} ||y||_{2}^{2}$$
(10)

Note: t < x,y > and t < y,x > can be combined because their dot-products are equivalent. $\vec{x} \cdot \vec{y} = \vec{y} \cdot \vec{x}$

When using Machine Learning, don't use 12 norms. Use 11

(b) Derivative

$$\frac{d}{dt}(||x+ty||_2^2) = 2 < x, y > +2t||y||_2^2
=2x^Ty + 2ty^Ty$$
(11)

2. Simplex/l1

Sphere:
$$||\vec{x}||_1 = |-4| + |3| = 7$$

3. Infinity

Sphere:
$$||\vec{x}||_{\infty} = Max|-4|, |3|=4$$

1.3 Optimization

Why is Machine Learning Possible? Is there a theoretical guarantee?

Imagine A is the set of all dogs and B is the set of all Cats

If the sets are convex and do not overlap, there exists a line between them which acts as a divider for determining whether a new pic belongs in A or B.

1.4 Convex Set

A set is convex if whenever X and Y are in the set, then for $0 \le t \le 1$ the points (1-t)x + ty must also be in the set.

 $\bullet \ \# + ATTR_{I\!A\!T\!E\!X} \colon scale {=} 0.5$

1.5 Separating Hyper-plane Theorem

Let C and D be 2 convex sets that do not intersect. i.e. the sets are **disjoint**. Then there exists a vector $\vec{a} \neq 0$ and a number $\underline{\mathbf{b}}$ such that.

$$a^T x \le b \forall x \in C$$

and

$$a^T x \ge b \forall x \in D$$

The Separating Hyper-plane is defined as x: $a^Tx = b$ for sets C, D. This is the theoretical guarantee for ML

vector a is perpendicular to the plane b.

2 Why Separating Hyperplane Theorem & Subspace Segmentation Example (2020/04/07)

2.1 Why is Separating Hyper-plane Theorem true?

2.1.1 Math Background

Let
$$x = d - c$$
, $y = u - d$

1. Square of the \$l₂\$-norm is the inner product

$$||x||_2^2 = \langle x, x \rangle = x^T x$$

$$(d-c)^T(d-c) = ||d-c||_2^2$$

2. Expansion of Vectors

$$||x + ty||_{2}^{2}$$

$$= \langle x + ty, x + ty \rangle$$

$$= ||x||_{2}^{2} + 2t\langle x, y \rangle + t^{2}||y||_{2}^{2}$$
(12)

3. Derivative of vector products

$$\frac{d}{dt}(\|x + ty\|_2^2) = 2x^T y + 2ty^T y$$

$$\frac{d}{dt}(\|x + ty\|_2^2)|_{t=0} = 2x^T y$$

$$\frac{d}{dt}(\|d + t(u - d) - c\|_2^2)|_{t=0} = 2(d - c)^T(u - d)$$

2.1.2 Separating Hyper-plane Theorem

C, D are convex disjoint sets. Thus there exists a vecto $\vec{a} \neq 0$ and a number b such that

$$a^T x \le b, \forall x \in C$$

and

$a^Tx \geq b, \forall x \in D$

 $x: a^T x = b$ is the separating hyper-plane for C,D. When b=0, then inconclusive answer.

2.1.3 Why is it true?

$$\vec{a}^T \vec{x} \le b \text{ on side C}$$

$$\vec{a^T} \vec{x} > \text{ on side D}$$
(13)

Goal: Prove \vec{a} exists as that means a separating hyperplane exists.

$$dist(C, D) = min \|\vec{u} - \vec{v}\|_2 |\vec{u} \in C, \vec{v} \in D = \|\vec{c} - \vec{d}\|_2$$

where $\|\vec{u} - \vec{v}\|_2$ is the euclidean distance.

Let
$$\vec{a} = \vec{d} - \vec{c}$$
, $b = \frac{1}{2}(\|\vec{d}\|_2^2 - \|\vec{c}\|_2^2)$

We will show that

$$f(\vec{x}) = a^T x - b$$

has the property that

$$f(\vec{x}) \le 0, \ \forall \vec{x} \in C$$

and

$$f(\vec{x}) \ge 0, \ \forall \vec{x} \in D$$

Note:
$$(\vec{d} - \vec{c})^T \frac{1}{2} (\vec{d} + \vec{c}) = \frac{1}{2} (\|\vec{d}\|_2^2 - \|\vec{c}\|_2^2)$$

What does showing something mean?

Let us show that $F(\vec{x}) \geq 0$, $\forall \vec{x} \in D$ (Argue by Contradiction)

Suppose $\exists \vec{u} \in D$ such that $f(\vec{x}) < 0$

$$f(\vec{u}) = (\vec{d} - \vec{c})^T [\vec{u} - \frac{1}{2} (\vec{d} + \vec{c})] = (\vec{d} - \vec{c})^T \vec{u} - \frac{1}{2} (\|\vec{d}\|_2^2 - \|\vec{c}\|_2^2)$$

Subtract 0

$$f(u) = (d - c)^{T} [u - d + \frac{1}{2} ||d - c||]$$

$$\begin{array}{l} u - \frac{1}{2}d + \frac{1}{2}c \\ u - d + \frac{1}{2}d - \frac{1}{2}c \end{array}$$

$$f(u) = (d - c)^{T} (u - d) + \frac{1}{2} ||d - c||_{2}^{2}$$

Now we observe that

$$\frac{d}{dt}(\|d + t(u - d) - c\|_2^2)|_{t=0} = 2(d - c)^T(u - d) < 0$$

and so for some small t > 0,

$$||d + t(u - d) - c||_2^2 < ||d - c||_2^2$$

 $g^{\prime}(t) < 0$ means decreasing. Thus g(t) < g(0). Let's call point p = d + t(u - d) Then

$$||p-c||_2^2 < ||d-c||_2^2$$

This is a contradiction. Both d and u are in set D. Thus by the definition of convexity, p = (1 - t)d + tu

D is a convex set so p must also be in D. This situation is impossible since d is the point in D that is closest to c.

2.1.4 Example

Let
$$f(\vec{x}) = a^T x - b$$

2.2 Subspace Segmentation Example

Machine Learning is learning the Basis A. If we can deduce that a vector \vec{x} is a linear combination of A, then a vector is a subspace of Basis A and we

know that it belongs to A.

$$V_1 = (x, y, z) \in R^3 : z = 0$$

 $V_2 = (x, y, z) \in R^3 : x = 0, y = 0$

 V_i is the affine variety (it is also a Ring, Module)

Apply a Veronase map with degree 2 to lift up from 3 to 6 dimensions.

$$\nu_n \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x^2 \\ y^2 \\ z^2 \\ xy \\ xz \\ yz \end{bmatrix}, \nu_n : R^3 \to R^6$$

$$z_1 = (3, 4, 0), z_2 = (4, 3, 0),$$

$$z_3 = (2, 1, 0), z_4 = (1, 2, 0),$$

$$z_5 = (0, 0, 1), z_6 = (0, 0, 3), z_7 = (0, 0, 4)$$
(14)

Plug the sample points into the Veronase map to produce a matrix L

solve for \vec{c} , where $\vec{c}^T L = \vec{0}$

$$ec{c_1} = egin{bmatrix} 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \end{bmatrix}, ec{c_2} = egin{bmatrix} 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \end{bmatrix}$$

Rank(L) = 4 (since there are 4 linearly independent rows)

$$q_1(X) = \vec{c}^T \nu_n(X)$$

$$= xz$$

$$q_2(X) = \vec{c}_2^T \nu_n(X)$$

$$= yz$$

$$(15)$$

We have:

$$q_1(X) = xz$$
 $V_1 = (z = 0)$
 $q_2(X) = yz$ $V_2 = (x = 0, y = 0)$ (16)

Observe:

$$V_1 \cup V_2 = ((x, y, z) \in \mathbb{R}^3 : q_1(X) = 0, q_2(X) = 0)$$

Construct the Jacobian matrix
$$J(Q)(X) = \begin{bmatrix} \frac{\partial q_1}{\partial x} & \frac{\partial q_1}{\partial y} & \frac{\partial q_1}{\partial z} \\ \frac{\partial q_2}{\partial x} & \frac{\partial q_2}{\partial y} & \frac{\partial q_2}{\partial z} \end{bmatrix} = \begin{bmatrix} z & 0 & x \\ 0 & z & y \end{bmatrix}$$

1. When
$$z = z_1 = (3, 4, 0), J(Q)(z_1) = \begin{bmatrix} 0 & 0 & 3 \\ 0 & 0 & 4 \end{bmatrix}$$

When
$$z = z_3 = (2, 1, 0), J(Q)(z_3) = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

The right null space of
$$J(Q)(z_1)$$
 has basis $\vec{b}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\vec{b}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

2. When
$$z = z_5 = (0, 0, 1), J(Q)(z_5) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

When
$$z = z_7 = (0, 0, 4), J(Q)(z_7) = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \end{bmatrix}$$
 The right null space of

$$J(Q)(z_5)$$
 has basis $\vec{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

$$C = [\vec{c}_1 | \vec{c}_2]$$

Sparse Representation & Problem P0. P1 (2020/04/14)3

3.1Big Idea

Your Data is a vector $x \in \mathbb{R}^N$ where all vectors are column vectors. Each x is s-sparse i.e. each vector has at most s non-zero entries. Let s = 5000. We don't know where the non-zero entries are located.

$$\begin{array}{l} \operatorname{Let} A \\ (m \times N) \end{array}, \ m < N \\ N = 100,000, \ m = 20,000 \\ \operatorname{Short} + \operatorname{Wide Matrix}$$

This is the opposite of the kinds of matrices seen in Linear Regression which are tall and skinny.

What if we can design a matrix $A \in \mathbb{R}^{m \times N}$ so that for each s-sparse $\vec{x} \in \mathbb{R}^N$, you can store \vec{y} instead? $(A\vec{x} = \vec{y})$

Q: Is there a way to get back \vec{x} from \vec{y} ? We observe \vec{y} .

A: Yes!

Properties of A

- A cannot be the 0 matrix.
- if \vec{x}_1 is s-sparse and $\vec{x} \neq 0$, what if \vec{x}_1 is in ker(A)? No! that would return $\vec{0}$ which means we cannot reconstruct the original matrix since there are multiple vectors in Ker(A).

Using Techniques from 1955

1. Is \vec{x} the inverse of \vec{y} or psuedo-inverse, or Moore-Penrose inverse, or . . .?

$$\vec{y} = A\vec{x}$$

$$A^{\#}\vec{v} = A^{\#}A\vec{x} \text{ where } A^{\#}A = I$$
(17)

Doesn't work! This is because there is no way to guarantee that \vec{x} is a s-sparse vector.

1. Can we use gradient descent to solve for \vec{x} to minimize $\|\vec{y} - A\vec{x}\|_2$ No! Why?

pick any vector $\vec{v} \in Ker(A)$. $\vec{y} = A(\vec{x} + \vec{v})$ however, $(\vec{x} + \vec{v})$ may not be sparse.

New math was needed to solve this problem so it was created in 2005 by Donoho, Candes, and Tao using the l_1 -norm instead of the euclidean norm (l_2) .

3.2 Background

$$\|\vec{x} + \vec{y}\| \le \|x\|_1 + \|y\|_1$$

For a norm to be valid, it must uphold the **Triangle Inequality**. \vec{a} is one side of a triangle, \vec{b} is a second side, third side, . . .

$$|\vec{a} + \vec{b}| \leq |\vec{a}| + |\vec{b}|$$

$$||\vec{x} + \vec{y}||_{1} \leq ||\vec{x}||_{1} + ||\vec{y}||_{1}$$

$$||\vec{x} + \vec{y}||_{2} \leq ||\vec{x}||_{2} + ||\vec{y}||_{2}$$

$$||\vec{x} + \vec{y}||_{2} \leq ||\vec{x}||_{\infty} + ||\vec{y}||_{\infty}$$
(18)

It also must be distributive:

If $\vec{x}_1 + \vec{x}_2 = \vec{y}$, then $(\vec{x}_1 + \vec{x}_2) \cdot \vec{a} = \vec{y} \cdot \vec{a}$ for any \vec{a}

$$\langle \vec{x}_1 + \vec{x}_2, \vec{a} \rangle = \langle \vec{y}, \vec{a} \rangle \rightarrow \langle \vec{x}_1, \vec{a} \rangle + \langle \vec{x}_2, \vec{a} \rangle = \langle \vec{y}, \vec{a} \rangle$$

3.3 Warm-up

$$A = [\vec{a}_1 | ... | \vec{a}_N] || \vec{a}_j ||_2 = 1 = \langle \vec{a}_j, \vec{a}_j \rangle$$

Let
$$\vec{v} \in Ker(A)$$
, $\vec{v} \neq \vec{0}$, $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \dots \\ v_N \end{bmatrix}$

Assume \vec{a}_j are unit vectors. Pick i = 3 observations.

1. Multiply by 1. Be Sneaky.

$$v_i = v_i \langle \vec{a}_i, \vec{a}_i \rangle$$

2. $\vec{v} \in Ker(A)$

$$v_1 a_1 + v_2 a_2 + \dots + v_n a_n = \vec{0}$$

$$\rightarrow \langle v_1 a_1 + \dots + v_N a_N, a_i \rangle = \langle \vec{0}, a_i \rangle$$

$$\rightarrow \langle v_1 a_1, a_i \rangle + \dots + \langle v_N a_N, a_i \rangle = \langle \vec{0}, a_i \rangle$$
(19)

Keep $v_3\langle a_3, a_i\rangle$ on the left side. Move everything to the other side. Thus,

$$v_i = \langle v_i a_i, a_i \rangle = -\sum_{j=1, j \neq i} v_j \langle a_j, a_i \rangle$$

Since i = 3, $v_3 \langle a_3, a_i \rangle = v_i$

$$|v_i| \le \sum_{j=1,ji} |v_j| \cdot |\langle a_j, a_i \rangle|$$

What is the absolute value of a single number in Ker(A)? There is a relation between v_i and the rest of the entries in \vec{v} .

Why "=" becomes \leq

For example, if -2 = 3 + (-5), then

3.4 Getting Ready to Formulate the Problem

3.4.1 Problem P0

Find the s-sparse $\vec{x} \in R^N$ such that $\vec{y} = A\vec{x}$.

Ex. Problem 1 HW 1.

Find a 2-sparse vector $\vec{x} \in R^8$ such that $\vec{y} = A\vec{x}$.

There are $\binom{8}{2}$ 2-sparse vectors. (28).

Imagine N = 100,000 and s = 5000. Not feasible to try all sparse-vectors.

3.4.2 Problem P1 (Convex Optimization)

Given $A \in \mathbb{R}^{m \times N}$ and measurement $\vec{y} = \mathbb{R}^m$, solve the optimization problem,

$$\min_{x \in R^N} ||x||_1$$

subject to constraint $y = A\vec{x}$

Find a condition on matrix A, so that solving P1 will recover the s-sparse vector $x \in \mathbb{R}^N$

3.5 Null Space Property of Order s

3.5.1 Setting up Notation

Let $\vec{v} \in Ker(A), \ \vec{v} \neq \vec{0}$

Let the set of indices, where $\vec{v}[j] \neq 0$ to be S.

e.g.
$$\vec{x} = \begin{bmatrix} 0 \\ 0 \\ 2 \\ 2 \\ 3 \\ 0 \\ 4 \end{bmatrix}$$

 $S = \{3, 5, 7\}$ (non-zero indices. Also called the support vector of \vec{v}).

|S| = s (number of elements. i.e. sparsity)

 $\bar{S} = \{1, 2, 4, 6\}$ (complement. i.e zero indices)

$$ec{v} = egin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ -2 \\ 2 \end{bmatrix}, ec{v}_S = egin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 2 \\ 0 \\ 2 \end{bmatrix}, \ ec{v}_{ar{S}} = egin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ -2 \\ 0 \end{bmatrix}$$

$$\vec{v} = \vec{v}_S + \vec{v}_{\bar{S}}$$

3.5.2 Definition

Let A be a $m \times N$ matrix.

Let S be a subset or $\{1, 2, 3, ..., N\}$. Suppose N = 50, and $S = \{3, 5, 7\}$

1. We say that a matrix A satisfies the null space property with respect to a set S if

$$\|\vec{v}_S\|_1 < \|\bar{S}\|, |\forall \vec{v} \in Ker(A)$$

2. If it satisfies the null space property with respect to any set S of size s where S is a subset of $\{1, 2, 3, ..., N\}$. s < N

If a matrix satisfies this property, what does it buy us?

If a matrix A satisfies the Null Space property of order s, then solving problem P1 will solve P0. i.e. you can recover any s-sparse vector \vec{x} from the measurement y where $\vec{y} = A\vec{x}$

If A has a small coherence, then it satisfies the Null Space Property of order s.

Let
$$A = [\vec{a}_1 | ... | \vec{a}_N]$$

$$\mu_1 = \max_{j \neq k} |\langle \vec{a}_j, \vec{a}_k \rangle|$$

Assume \vec{a}_j has l_2 -norm equal to 1.

3.5.3 Theorem

Same assumptions as above.

Suppose $\mu_1 \cdot s + \mu_1 \cdot (s-1) < 1$

The matrix satisfies the Null Space property of order s.

Remarks

- 1. $\mu_1(2s-1) < 1$ if true, then A satisfies NSP of order s. It is not a necessary condition. It is a sufficient condition.
- 2. From the warm up, if we fix an index i, then for $\vec{v} \in Ker(A)$,

$$|v_i| \le \sum_{j=1, j \ne i} |v_j| \cdot |\langle \vec{a}_j, \vec{a}_i \rangle| \tag{20}$$

1. Note that $|v_i|$ is just one term in $||v||_1$ because

$$||v||_1 = |v_1| + |v_2| + \dots$$

3.5.4 **Proof**

Given A is an $m \times N$ matrix. $A = [\vec{a}_1|...|\vec{a}_N]$.

Suppose
$$\|\vec{a}_i\| = 1$$
, $\mu_1 \cdot s + \mu_1 \cdot (s-1) < 1$

Show that NSP of order s holds.

i.e.

$$\|\vec{v}_S\| < \|\vec{v}_{\bar{S}}\|, \forall \vec{v} \in ker(A)|\{\vec{0}\}\}$$

and for every set

$$S \subset \{1, 2, 3, ..., N\} \text{with} |S| = s$$

Let
$$\vec{v} = Ker(A)$$

$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \dots \\ v_n \end{bmatrix}$$

$$A\vec{v} = v_1\vec{a}_1 + \dots + v_N\vec{a}_N = \vec{0}$$

Let $S \subset \{1, 2, \dots, N\}, \ |S| = s$. Pick any $\vec{a}_i, i \in S$
Then $v_i = v_i \langle \vec{a}_i, \vec{a}_i \rangle$. Also, $v_1 \langle \vec{a}_i, \vec{a}_i \rangle + \dots + v_N \langle \vec{a}_N, \vec{a}_i \rangle = 0$

sum over all $i \in S$ to get $\|\vec{v}_S\|_1 = \sum_{i \in S} |v_i|$

This adds up all the inequalities for one inequality to rule them all.

$$\leq \sum_{i \in S} \sum_{l \in \bar{S}} |v_l| \cdot |\langle \vec{a}_l, \vec{a}_i \rangle| + \sum_{i \in S} \sum_{j \in S, j \neq i} |v_j| \cdot |\langle \vec{a}_j, \vec{a}_i \rangle|
= \sum_{l \in \bar{S}} |v_l| \sum_{i \in S} |\langle \vec{a}_l, \vec{a}_i \rangle| + \sum_{j \in S} |v_j| \sum_{i \in S, i \neq j} |\langle \vec{a}_j, \vec{a}_i \rangle|
\leq \sum_{l \in S} |v_l| \mu_1 \cdot s + \sum_{j \in S} |v_j| \mu_1 (s - 1)
\|\vec{v}_S\|_1 \leq \mu_1 \cdot s \|\vec{v}_{\bar{S}}\| + \mu_1 (s - 1) \|\vec{v}_{\bar{\S}}\|$$
(22)

$$(1 - \mu_1(s-1)) \|\vec{v}_{\bar{S}}\| < \mu_1 \cdot s \|\vec{v}_S\|$$

Since $\mu_1(s-1) + \mu_1(s) < 1$ by hypothesis, so $1 - \mu_1(s-1) \ge \mu_1(s)$ and hence $\|\vec{v}_S\|_1 < \|\vec{v}_{\bar{S}}\|_1$

3.6 Ways to Solve P1

There are 8 algos to solve P1. The worst performing one is Linear programming.

This is one of the Algos

3.6.1 Algos

$$A = \begin{bmatrix} 1 & 1 \end{bmatrix} \vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$a_{11} = a_{12} = 1$$

$$Q = \begin{bmatrix} \frac{1}{w_1} & 1 \\ 0 & \frac{1}{w_2} \end{bmatrix}$$

1. Minimize $\|\vec{x}_1\|$ subject to $\vec{y} = A\vec{x}$

$$\vec{y} = (AA^{T})(AA^{T})^{-1}\vec{y}
\vec{y} = A(A^{T}(AA^{T})^{-1}\vec{y})$$
(23)

Why not let $\vec{x} = (A^T (AA^T)^{-1} \vec{y})$ maybe we can do better. $\vec{y} = AQA^T (AQA^T) \vec{y}$ Why not let $\vec{x} = (QA^T (AQA^T)^{-1} \vec{y})$ How to choose Q?

- 1. $min \sum_{i=1}^{N} W_i x_i^2$ subject to $\vec{y} = A\vec{x}$ This is not the \$l₁\$-norm but it would be if $w_i = \frac{1}{|x_i|}$. solve 2. then substitute w_i
- 2. min: $w_1x_1^2 + w_2 + x_2^2$ subject to $y = a_{11}x_1 + a_{12}x_2$ $f(x_1) = w_1x_1^2 + w_2(y - x_1)^2$ $f'(x_1) = 0$ solve for x_1 $2w_1x_1 + 2(y - x_1)(-1)w_2 = 0$ $x_1 = \frac{w_2}{w_1 + w_2}y$, $x_2 = \frac{w_1}{w_1 + w_2}v$

$$AQA^{T} = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{w_{1}} & 0 \\ 0 & \frac{1}{w_{2}} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$= \frac{w_{1} + w_{2}}{w_{1}w_{2}}$$

$$(24)$$

$$QA^{T}(AQA^{T})^{-1}y = \begin{bmatrix} \frac{1}{w_{1}} \\ \frac{1}{w_{2}} \end{bmatrix} \frac{w_{1}w_{2}}{w_{1} + w_{2}}y$$
 (25)

4 Sparse Representation pt 2 (2020/04/21)

4.1 Historical Perspective

Why is the visual system so powerful? Hypothesis is our brain uses sparse representation of Visual Data.

Let a picture $\vec{y} = c_1 \vec{b}_1 + ... + c_n \vec{b}_n$

so that most c_i are zero.

Sparse representation used to be called Sparse Coding.

Robust Facial Recognition uses Sparse Subspace Clustering.

Given 19 x 19 images, let $Y = [\vec{Y}_1|...|\vec{Y}_{45}], \ \vec{y}_i \in R^{361}$

19 * 19 = 361

Given Y, solve for matrix C

$$Y = YC, \ diag(C) = \vec{0}$$

Since we don't want $Y_i = Y_i$, that is why the constraint $diag(C) = \vec{0}$ is introduced. It ensures that a group of vectors can be a linear combination of others.

Each column of C is sparse since we want all column vectors to be a linear combination of a smaller set of columns.

4.2 Example - Handwritten Digit Recognition

Given 28 x 28 images, Let $B = [\vec{y}_1|...|\vec{y}_{4000}]$ where each $\vec{y}_j \in R^{784}$

- 800 images of 0, 1-800
- 800 images of 1, 801-1600
- 800 images of 2, 1601-2400
- 800 images of 3, 2401-3200
- 800 images of 8, 3201-4000

Let \vec{f} be a new image of 2. Solve for X such that $\vec{f} = B\vec{x}$ Assume \vec{x} is 20-sparse.

We would like to see the only **non-zero** entries at position 1601-2400.

Columns outside the range may be non-zero as well. There is a 95% probability that a digit will be 2, 5% it will be another digit.

4.2.1 Qualitative Theorem

Given $A^{m \times N}$ with $m \ll N$. If A is a Gaussian random matrix, then with overwhelming high probability, it satisfies some Exact Recovery Condition for s-sparse Vectors.

For most large undetermined systems of linear equations, the minimal l_1 -norm solution is also the sparsest solution.

Topics of Research:

- Theory of Random Matrices
- Banach Spaces

4.3 Solving P1 solves P0. Why?

PO

Find the s-sparse $\vec{x} \in R^N$ such that $\vec{y} = A\vec{x}$.

Ρ1

 $\overline{A} \in R^{m \times N}$ and measurement $\vec{y} \in R^m$. Solve optimization problem,

$$\min_{x \in R^N} ||x||_1$$

subject to the constraint $y = A\vec{x}$

Suppose $\vec{y} = A\vec{x}$ and $\vec{y} = A\vec{z}$. Suppose \vec{x} is a sparse vector and \vec{z} is **not**.

We want to show that $\|\vec{x}\|_1 < \|\vec{x}\|_1$ - Null Space property of order S

 $\|\vec{x}\|_1 = \|\vec{x} - \vec{z}_S + \vec{z}_S\|_1 - \vec{z}$ restricted to some Set S. (Subtract 0 so we can use triangle inequality).

Let
$$\vec{v} = \vec{x} - \vec{z}$$
, $\vec{v} \in Ker(A)$
 $A(\vec{x} + \vec{z}) = A\vec{v} = \vec{0}$

$$\|\vec{x}\|_1 \le \|\vec{x} - \vec{z}_S\|_1 + \|z_S\|_1 \tag{26a}$$

$$= \|\vec{v}_S\|_1 + \|\vec{z}_S\|_1 \tag{26b}$$

$$< \|\vec{z}_S\|_1 + \|\vec{v}_{\bar{S}}\|_1$$
 via Null Space Property (26c)

$$= \| -\vec{z}_{\bar{S}} \|_1 + \|z_S\|_1 \qquad \|x_{\bar{s}}\|_1 = 0 \text{ since x is sparse}$$
 (26d)

$$= \|\vec{z}\|_1 \tag{26e}$$

4.4 Adjoint

Let $T\colon V\to W$. For example, T can be a matrix from R^3 to R^2 . In this case, V is R^3 and W is R^2

We write T^* for the adjoint of T.

$$\forall x \in V, \ \forall y \in W, \ \langle Tx, y \rangle = \langle x, T^*y \rangle$$

Horrible way to think of it, when T is a matrix, the adjoint is the same as the transpose.

Q: When A is an orthogonal matrix, what is A^*A ? I

Hint: each column has \$l₂\$-norm 1, distinct cols are perpendicular.

Q: When A is an orthogonal matrix, why is $||Ax||_2 = ||x||_2$ for every vector x? (This is known as an isometry)

$$||Ax||_2^2 = \langle Ax, Ax \rangle = \langle x, A^*Ax \rangle = \langle x, x \rangle = ||x||_2^2$$

This shows that $||Ax||_2^2$ is not too different than $||x||_2^2$

4.5 Restricted Isometry Property (RIP)

 $A \in \mathbb{R}^{m \times N}$ satisfies the restricted isometry property of order s and level δ_s $(0 < \delta_s \le 1)$

$$(1 - \delta_s) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \delta_s) \|x\|_2^2$$
, \forall s-sparse $x \in \mathbb{R}^N$

Any s columns of the matrix A are **nearly** orthogonal to each other.

Q: What can we say about $|\langle (I-A^*A)x,x\rangle|$ when vector is s-sparse? This is a small number.

Let $u, v \in \mathbb{R}^N$ and $S \in \{1, 2, 3, ..., N\}, |S| = s$ What can we say about the following?

$$|\langle u, (I - A * A)v \rangle|$$

We would like to be able to say $|\langle u, (I - A^*A)v \rangle| \le \delta_t ||u||_2 ||v||_2$

4.5.1 How to think about RIP?

Suppose A satisfies the restricted isometry property of order s.

Intuition: **Hopefully**, the matrix A^*A behaves like the Identity Matrix. $(I - A^*A)$ is small.

If you take some s-sparse vector \vec{x} and multiply it by $I - A^*A$, hopefully, the resulting vector will also be small.

4.5.2 Algorithm

Consider the following vectors,

$$\vec{x}_1 = \begin{bmatrix} 10 \\ -20 \\ 3 \\ -4 \\ 5 \\ -6 \\ -7 \\ 8 \\ 4 \end{bmatrix}, \ \vec{x}_2 = \begin{bmatrix} 10 \\ -20 \\ 0 \\ 0 \\ 0 \\ -7 \\ 8 \\ 0 \end{bmatrix}$$

Hard Threshold

 $\tau_s(\vec{x})$ is the vector that keeps the sentries that are the largest in Absolute Value.

Example: When s = 4, $\tau_s(\vec{x}_1) = \vec{x}_2$

 $\tau_s(\cdot)$ is an operator that takes a vector and will output a sparse vector.

$$\vec{u}_n = \vec{x}_n + A^*(\vec{y} - A\vec{x}_n), \text{ where } \vec{y} = A\vec{x}$$
 (27a)

$$= \vec{x}_n + (A^* A \vec{x} - A^* A \vec{x}_n) \tag{27b}$$

$$= (I - A^*A)\vec{x}_n + A^*A\vec{x} \tag{27c}$$

- expect \vec{u}_n close to \vec{x}
- however, \vec{u}_n may not be sparse. Thus use $\tau_s(\cdot)$ Iterative Hard Thresholding

$$\vec{x}_{n+1} = \tau_x(\vec{x}_n + A^*(\vec{y} - A\vec{x}_n))$$

4.6 Operator Norm

$$||A|| = \max_{x \neq 0} \frac{||Ax||_2}{||x||_2}$$

How much influence does A have on a vector x? Shrink, stretch, compress?

Describes how big a matrix is. If A is 2 x 3, then take $\vec{x} \in \mathbb{R}^3, \ x \neq 0$ What is

$$||A|| = max\{||Ax||_2 \colon ||x||_2 = 1\}$$

4.6.1 Inner Product

Let A be a matrix . The inner product of two vectors Ax and y has this property,

$$|\langle Ax, y \rangle| \le ||A|| \cdot ||x||_2 ||y||_2$$

Where ||A|| is the operator norm of A.

By Cauchy-Schwartz Inequality,

$$\|\langle Ax, y \rangle\| \le \|Ax\|_2 \cdot \|y\|$$

By def,

$$||Ax|| \le ||A|| \cdot ||x||_2$$

Thus,

$$\|\langle Ax, y \rangle\| \le \|A\| \cdot \|x\|_2 \cdot \|y\|_2$$

5 Sparse Representation Pt 3 (2020/04/28)

5.1 Expanding on RIP

Expanding upon RIP

Any S columns of the matrix A are nearly orthogonal to each other.

5.2 Expanding on IHT

Expanding upon the IHT Algorithm,

 $\tau_x(\cdot)$ is an non-linear operator that outputs a sparse matrix. The operator is non-linear because it does not *change* the dimensions on the vector. i.e. $\mathbb{R}^n \to \mathbb{R}^n$. You will not be able to find a matrix that will return the same output as this operator.

$$\tau_s(\vec{x}_1) = x_2$$

Which means both \vec{x}_1 and \vec{x}_2 have an inner product.

The IHT algorithm is described below:

$$\vec{u}_n = \vec{x}_n + A^*(\vec{y} - A\vec{x}_n)$$
, where $\vec{y} = A\vec{x}$ (28a)

$$= \vec{x}_n + (A^* A \vec{x} - A^* A \vec{x}_n) \tag{28b}$$

$$= (I - A^*A)\vec{x}_n + A^*A\vec{x}$$
 (28c)

We expect \vec{u}_n is close to \vec{x} .

What does it mean for a matrix A to be small? matrix A is small when $A\vec{x}$ is small.

5.3 IHT Proof

Suppose A satisfies RIP of order 3s with

$$\delta_{3s} < \frac{1}{2}$$

 δ_{3s} : relaxation.

3s: every 3s columns need to be orthogonal

 $\frac{1}{2}$: how far from orthogonality the difference can be.

Then the sequence $\{\vec{x}_n\}$ defined by

$$\vec{x}_{n+1} = \tau_S(\vec{x}_n + A^*(\vec{y} - A\vec{x}_n))$$

will converge to \vec{x}

Note: 3s-sparse vectors and s-sparse vectors are **not** the same.

5.3.1 How to think about this?

u and v are 2s-sparse.

Let S_1 be the support of u. Meaning $S_1 = \{j : u(j) \neq 0\}$

Let S_2 be the support of v.

Let S be the union of S_1 and S_2 . Assume |S|=3s If A satisfies RIP of order 3s. Then $|\langle u, (I-A^*A)v \rangle| \leq \delta_{3s} \|u\|_2 \cdot \|v\|_2$

$$\|\langle u, (I - A^*A)\rangle\| \le \|u\|_2 \|v(I - A^*A)\|_2$$
 (29a)

$$\leq ||u||_2 ||v\delta_{3s}||_2$$
 (29b)

$$\leq \delta_{3s} \|u\|_2 \|v\|_2 \tag{29c}$$

5.3.2 Explanation: Why is the theorem true?

We want to find a constant λ , $0 \le \lambda < 1$ s.t.

$$||x_{n+1} - x||_2 \le \lambda ||x_n - x||_2, \ \forall \ n = 1, 2, 3, \dots$$

Why?

$$||x_4 - x||_2 \le \lambda ||x_3 - x||_2$$

$$||x_3 - x||_2 \le \lambda ||x_2 - x||_2$$

$$||x_2 - x||_2 \le \lambda ||x_1 - x||_2$$
(30)

Therefore,

$$||x_4 - x||_2 \le \lambda^{n-1} ||x_1 - x||_2 \tag{31}$$

In general,

$$||x_{n+1} - x||_2 \le \lambda^{n-1} ||x_1 - x||_2 \tag{32}$$

as $n \to \infty$, $\lambda \to 0$ (because $\lambda < 1$)

$$\vec{x}_{n+1} = \tau_S(\vec{x}_n + A^*(\vec{y} - A\vec{x}_n))$$

and

$$x_{n+1} = \tau_S(u_n)$$

 x_{n+1} , x are s-sparse.

<u>Key Observation</u>: Which one $(x_{n+1} \text{ or } x)$ is a better approximation to u_n ?

 x_{n+1} Thus,

$$||u_n - x_{n+1}||_2^2 \le ||u_n - x||_2^2 \tag{33}$$

What is $u_n - x$?

$$u_n - x = x_n + A^*A(x - x_n) - x$$
 (34a)

$$= (I - A^*A)x_n + (A^*A - I)x$$
 (34b)

$$=(I-A^*A)(x_n-x) \tag{34c}$$

What is $u_n - x_{n+1}$?

$$||u_{n} - x_{n+1}||_{2}^{2} = ||u_{-}x_{n+1} - (x - x)||_{2}^{2},$$
subtract 0
$$= ||(u_{n} - x) - (x_{n+1} - x)||_{2}^{2},$$
square of 12 norm os inner product
$$(35b)$$

$$= \langle (u_{n} - x) - (x_{n+1} - x), (u_{n} - x) - (x_{n+1} - x) \rangle$$

$$(35c)$$

$$= ||u_n - x||_2^2 - 2\langle u_n - x, x_{n+1} - x \rangle + ||x_{n+1} - x||_2^2$$
 (35d)

From the above two formulas, we getattr

$$-2\langle u_n - x, x_{n+1} - x \rangle + ||x_{n+1} - x||_2^2 \le 0$$
(36)

This is the same as

$$||x_{n+1} - x||_2^2 \le 2\langle u_n - x, x_{n+1} - x \rangle$$

What is $u_n - x$?

$$u_n - x = (I - A^*A)(x_n - x)$$

$$\langle u_n - x, x_{n+1} - x \rangle = \langle (I - A^*A)(x_n - x), x_{n+1} - x \rangle$$

Thus,

$$u = x_{n-x}, \ v = x_{n+1} - x$$

Why? $x_n - x$ is 2s-sparse and $x_{n+1} - x$ is also 2s-sparse. We have shown that

$$\langle u_n - x, x_{n+1} - x \rangle < \delta_{3s} ||x_n - x||_2 \cdot ||x_{n+1} - x||_2$$

$$||x_{n+1} - x||_2^2 \le 2\delta_{3s} ||x_n - x||_2 \cdot ||x_{n+1} - x||_2 ||x_{n+1} - x||_2 \le 2\delta_{3s} \cdot ||x_n - x||_2$$
(37)

The hypothesis is $\delta_{3s} < \frac{1}{2}$ and so $0 \le \lambda < 1$

$$||x_{n+1} - x||_2 \le \lambda ||x_n - x||_2 \tag{38}$$

Explanation succeeded

5.4 Convex Functions

Pick any norm, $\|\cdot\|_1$, $\|\cdot\|_2$

We have the triangle inequality

$$||x + y|| \le ||x|| + ||y|| \tag{39}$$

Suppose we define f(x) = ||x|| for any $x \in \mathbb{R}^d$ and $0 \le \theta \le 1$.

$$f(\theta x = (1 - \theta)y) = \| + (1 - \theta)y\| \le \|\theta x\| + \|(1 - \theta)y\|$$

= \theta\| \text{ } \text{

Hence, $f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y)$ so f(x) is a convex function.

5.5 Convex Optimization

Suppose you have a convex function defined over a convex set C, and you want to find the minimum of the function over the set C.

What do you have? A convex optimization problem!

Let f(x) be a convex function over R^d . Minimize f(x) subject to Ax = b. The domain D is the set of $x \in R^d$ such that Ax = b.

If Ax = b, and Ay = b, then A(tx + (1 - t)y) = b. Thus D is a convex set.

If x and y are both in D, then the line segment joining x and y is entirely in D.

5.6 Why is convex optimization important?

Fundamental property of Convex optimization:

Any <u>local minimum</u> of a convex function f over a convex set C must also be a global minimum of f over C.

6 Gradient Descent (2020/05/05)

6.1 Method of Steepest Descent

Let $x \in \mathbb{R}^3$, $y \in \mathbb{R}^3$. these are column vectors in \mathbb{R}^3

$$f(x) = f(x_1, x_2, x_3)$$

$$f(y) = f(y_1, y_2, y_3)$$

$$G(y) = G(y_1, y_2, y_3)$$
(41)

 $\nabla f(x)$ is a gradient vector. The convention is that the gradient is a **row** vector.

$$G(y) = f(y) - \nabla f(x)y$$

$$\nabla f(x) = = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3}\right)$$

$$\nabla f(x)y = \frac{\partial f}{\partial x_1}y_1 + \frac{\partial f}{\partial x_2}y_2 + \frac{\partial f}{\partial x_3}y_3$$

$$= \left[\frac{\partial f}{\partial x_1} \quad \frac{\partial f}{\partial x_2} \quad \frac{\partial f}{\partial x_3}\right] \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$
(42)

6.1.1 Warm Up

$$\nabla G(y) = \nabla [f(y) - \nabla f(x)y] = \nabla f(y) - \nabla f(x)$$

We assume

$$f(x) - f(y) - \nabla f(y)(x - y) \le \frac{b}{2} ||x - y||_2^2$$

This assumption drives from Taylor's Theorem where the Hessian Matrix (Matrix of 2ND Derivatives) is bounded by the largest Eigenvalue.

For any given x, consider the function

$$G(y) = f(y) - \nabla f(x)y$$

G is convex.

 $G(y) == G_x(y)$ because G depends on x. Suppose x is the minimizer of G(y)

$$G(x) \le G(y - \frac{1}{h}\nabla G(y))$$

and

$$\nabla G(y) = \nabla [f(y) - \nabla f(x)y] = \nabla f(y) - \nabla f(x)$$

We assume f(x) is C^1 and satisfies the condition:

$$\forall x, \ y, \ f(x) - f(y) \le \nabla f(y)(x - y) + \frac{b}{2} ||x - y||_2^2$$

 C^1 : continuously differentiable.

$$G(y-a) - G(y)$$

Let $x = y - a, a = \frac{1}{b} \nabla G(y)$

When making an assumption, make an assumption that allows you to learn something interesting.

$$\leq \nabla G(y)(x-y) + \frac{b}{2} \|x-y\|_{2}^{2}$$

$$= \nabla G(y)(-a) + \frac{b}{2} \|x-y\|_{2}^{2}$$

$$= \nabla G(y)(-\frac{1}{b} \nabla G(y)^{T}) + \frac{b}{2} \frac{1}{b^{2}} \|\nabla G(y)\|_{2}^{2}$$

$$(43)$$

We just demonstrated

$$G(y - \frac{1}{b}\nabla G(y)) - G(y)$$

$$\leq \nabla G(y)(-\frac{1}{b}\nabla G(y)^{T}) + \frac{b}{2}\frac{1}{b^{2}}\|\nabla G(y)\|_{2}^{2}$$
(44)

6.1.2 Proving Gradient Descent

$$\nabla G(y) = \nabla [f(y) - \nabla f(x)y] = \nabla f(y) - \nabla f(x)$$

$$\to f(x) - f(y) - \nabla f(x)(x - y) \tag{45a}$$

$$= f(x) - \nabla f(x)x - (f(y) - \nabla f(x)y)$$
(45b)

$$=G(x) - G(y) \tag{45c}$$

$$\leq G(y - \frac{1}{b}\nabla G(y)) - G(y) \tag{45d}$$

$$\leq \nabla G(y)(-\frac{1}{b}\nabla G(y)^{T}) + \frac{b}{2} \frac{1}{b^{2}} \|\nabla G(y)\|_{2}^{2} \tag{45e}$$

$$= -\frac{1}{2h} \|\nabla G(y)\|_2^2 \tag{45f}$$

$$= -\frac{1}{2b} \|\nabla f(x) - \nabla f(y)\|_{2}^{2}$$
 (45g)

(45h)

[g] says

$$f(x) - f(y) - \nabla f(x)(x - y) \le -\frac{1}{2b} \|\nabla f(x) - \nabla f(y)\|_2^2$$

We define a sequence of vectors

$$x_{k+1} = x_k - \frac{1}{b}g_k$$

$$x_{k+1} = x_k - \frac{1}{b}\nabla f(x_k)$$

Using $1_{\overline{bis}\mathbf{Bold}.Theoldstyleupdatedthestepateachiterationwhichresultsinlessiterationsbutmorecompute}$. $h = \frac{1}{h}$

Let us write

$$d_k = x_k - x^*$$

How far the current estimate is from the minimum

$$\delta_k = f(x_k) - f(x^*) \tag{46}$$

Actual Error

Thus,

$$d_{k+1} = x_{k+1} - x^*$$

Apply [g] with $x = x_k$, $y = x^*$

$$f(x_k) - f(x^*) - g_k^T(x_k - x^*) \le -\frac{1}{2b} \|\nabla f(x_k) - \nabla f(x^*)\|_2^2$$

$$\to \delta_k \le g_k^T d_k - \frac{1}{2b} \|g_k\|_2^2$$
(47)

because $g_k = \nabla f(x_k)$ and $d_k = x - x^*$

G: scalar everything else: vector

Look Closer!

$$x_{k+1} - x_k = -\frac{1}{b}g_k$$

$$<= \text{Using } x_{k+1} - \frac{1}{b}g_k
g_k = -b(x_{k+1} - x_k)$$

$$\delta_k \le g_k^T d_k - \frac{1}{2h} \|g_k\|_2^2 \tag{48a}$$

$$= -b(x_{k+1} - x_k)^T d_k - \frac{b}{2} ||x_{k+1} - x_k||_2^2$$
(48b)

$$= -\frac{b}{2}(\|x_{k+1} - x_k\|_2^2 + 2(x_{k+1} - x_k)^T d_k)$$
(48c)

$$= -\frac{b}{2}(\|d_{k+1} - d_k\|_2^2 + 2(d_{k+1} - d_k)^T d_k)$$
(48d)

$$= \frac{b}{2} (\|d_k\|_2^2 + \|d_{k+1}\|_2^2) \tag{48e}$$

$$= ||d_{k+1} - d_k||_2^2 + 2(d_{k+1} - d_k)^T d_k$$
(48f)

$$= (\langle d_{k+1}, d_{k+1} \rangle - 2\langle d_{k+1}, d_k \rangle + \langle d_k, d_k \rangle) + (2d_{k+1}^T d_k - d_k^T d_k)$$
 (48g)

why [f]?

To summarize,

$$\delta_k \le \frac{b}{2} (\|d_k\|_2^2 - \|d_{k+1}\|_2^2)$$

$$\sum_{i=1}^{n} \delta_i \le \frac{b}{2} (\|d_0\|_2^2 - \|d_n\|_2^2 \le \frac{b}{2} \|d_0\|_2^2)$$

What do we know about convergent series?

If $\sum_{k=1}^{\infty} \delta_k$ is convergent, then $\delta_k \to 0$ as $k \to \infty$

6.2 Global Convergence

Start with any x_0 . We define the sequence of vectors

$$x_{k+1} = x_k - \frac{1}{b}g_k$$

$$x_{k+1} = x_k - \frac{1}{b}\nabla f(x_k)$$

Then,
$$f(x_k) - f(x^*) \to 0$$
 as $k \to \infty$

We can pick N as large as we want,

$$\sum_{k=0}^{N} \delta_k \le \frac{b}{2} \|d_0\|_2^2$$

Recall that $g_k == \nabla f(x_k)$ and $g_{k+1} == \nabla f(x_{k+1})$

We can also show that $||g_{k+1}|| \le ||g_k||$

The length of the gradient vectors are monotone decreasing.

6.3 About Gradient Descent

Gradient Descent is *not* a single method. It is a large collection of methods.

1. Steepest Descent with a constant step size

$$x_{k+1} = x_k - h\nabla f(x_k)$$

2. Use a different step size at each iteration

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

6.3.1 Example

Select α_k to minimize $f(x_k - d_k g_k)$, where $g_k = \nabla f(x_k)$. Lots of algorithms to choose α_k

We assume f(x) is C^1 and satisfies

$$f(x) - f(y) \le \nabla f(y)(x - y) + \frac{b}{2}||x - y||_2^2$$

If we assume f is convex, differentiable, and its gradient vector satisfies the Lipshitz Condition

$$\|\nabla f(x) - \nabla f(y)\| \le b\|x - y\|$$

for any two points x, y, then the condition (*) is true.