STATS 2107 Statistical Modelling and Inference II Lecture notes Chapter 6: Bayesian statistics

Jono Tuke

School of Mathematical Sciences, University of Adelaide

Semester 2 2017

Frequentist statistics

The purpose of statistical inference is to make conclusions about an unknown parameter, θ , on the basis of data y_1, y_2, \dots, y_n , assumed to be observations from some distribution, $f(\mathbf{y}; \theta)$.

Some key concepts are

- Estimation,
- Hypothesis tests,
- Confidence intervals.

Bayesian statistics

In Bayesian inference, it is assumed that **prior** to observing the data, we have some knowledge of the parameter θ . This knowledge is expressed as a probability distribution, $(p(\theta))$.

The distribution $p(\theta)$ is called the **prior distribution**.

For example, if θ is the mean height of Australian adult males, measured in cm, what prior distributions could we consider?

Posterior distribution

The conditional distribution

$$p(\theta|\mathbf{y})$$

is called the posterior distribution.

Bayes' theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^c)P(A^c)}$$

Bayes' theorem

$$p(\theta|\mathbf{y}) = rac{p(\theta)p(\mathbf{y}|\theta)}{\int p(\theta)p(\mathbf{y}|\theta)d\theta}$$

Approximation

$$p(\theta|\mathbf{y}) \propto p(\theta)p(\mathbf{y}|\theta)$$

The fundamental principle of Bayesian inference

All conclusions about θ are made from the posterior distribution $p(\theta|\mathbf{y})$.

Example

Haemophilia is a X-chromosome linked, recessive disorder.

Suppose a woman has a haemophiliac brother, her father is normal, and her mother is a carrier.

Let

$$\theta = egin{cases} 1 & \text{if the woman is a carrier} \\ 0 & \text{otherwise}. \end{cases}$$

It follows from genetic considerations that the prior distribution is

$$p(\theta) = egin{cases} rac{1}{2} & ext{if } \theta = 1, \\ rac{1}{2} & ext{if } \theta = 0. \end{cases}$$

Suppose the woman has two sons, of which neither have haemophilia. Find the probability the woman as a carrier.

Bayesian prediction

Consider the prior distribution, $p(\theta)$, and data, \mathbf{y} , with likelihood $p(\mathbf{y}|\theta)$.

Suppose a new observation Y_0 is to be made.

The predictive distribution for Y_0 is just the conditional distribution,

$$p(y_0|\mathbf{y}).$$

If Y_0 and \boldsymbol{Y} are conditionally independent given θ ,

$$egin{aligned} p(y_0|oldsymbol{y}) &= \int p(y_0, heta|oldsymbol{y})d heta \ &= \int p(y_0| heta)p(heta|oldsymbol{y})d heta \ &= \int p(y_0| heta)p(heta|oldsymbol{y})d heta. \end{aligned}$$

Example (continued)

Suppose the woman has a third son. Given that the first two sons are not haemophiliacs, what is the probability that the third son is not a haemophiliac?

Bayesian estimation

Bayesian point estimation

Suppose a point estimate of $\boldsymbol{\theta}$ is required. Three possible quantities are

Posterior mode:

$$\hat{\theta} = argmax_{\theta}p(\theta|\mathbf{y})$$

Posterior mean:

$$E(\theta|\mathbf{y}) = \int \theta p(\theta|\mathbf{y}) d\theta$$

Posterior median:

$$ilde{ heta}$$
 such that $P(heta \leq ilde{ heta} | extbf{ extit{y}}) = rac{1}{2}$

Note: When the posterior mean is used, the posterior variance $var(\theta|\mathbf{y})$ can be used as a measure of accuracy.

Bayesian credible interval

An interval ℓ,u is said to be a $100(1-\alpha)\%$ Bayesian credible interval if

$$P(\ell < \theta < u | \mathbf{y}) = 1 - \alpha.$$

Note this statement is a simple statement of (posterior) probability rather than the more complicated statement of confidence.

Example: Beta - Binomial

Suppose we wish to make inference about a binomial success probability $\boldsymbol{\theta}.$

The data are $Y|\theta \sim Bin(n, \theta)$.

Consider the prior distribution $\theta \sim Beta(\alpha, \beta)$.

Find the posterior distribution.

Beta distribution

$$p(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} \text{ for } 0 < \theta < 1.$$

Estimates

► The posterior mode is

$$\hat{\theta} = \frac{\alpha + y - 1}{\alpha + \beta + n - 2}.$$

▶ The posterior mean is

$$E(\theta|x) = \frac{\alpha + y}{\alpha + \beta + n}.$$

Estimates

The posterior variance is

$$var(\theta|x) = \frac{(\alpha+y)(\beta+n-y)}{(\alpha+\beta+n+1)(\alpha+\beta+n)^2}.$$

Estimates

► The posterior median can be found numerically. For example, in R,

```
qbeta(0.5,alpha+x,beta+n-x)}.
```

The Bayesian credible interval can be found numerically. For example, in R:

```
lower <- qbeta(0.025,alpha+x,beta+n-x)}
upper <- qbeta(0.975,alpha+x,beta+n-x)}.</pre>
```

Notes

The posterior mean

$$\hat{\theta} = \frac{\alpha + y}{\alpha + \beta + n}$$

can be seen to lie between the prior mean

$$\frac{\alpha}{\alpha + \beta}$$

and the ordinary maximum likelihood estimator:

- ▶ When *n* is large relative to $\alpha + \beta$, the posterior mode will be close to y/n.
- ▶ When *n* is small relative to $\alpha + \beta$, the posterior mode will be close to $(\alpha 1)/(\alpha + \beta 2)$.

Example

In a study of premature births conducted at Johns Hopkins, it was found that of 39 babies, born at 25 weeks gestation, 31 survived for at least 6 months.

Let θ be the probability of survival.

Assuming an uninformative U(0,1) prior for θ , calculate the posterior mode and posterior mean.

Conjugate priors

Definition

A family of prior distributions $\mathcal{P} = \{p(\theta)\}$ is said to be conjugate to a family of likelihoods, $\mathcal{L} = \{p(\mathbf{x}|\theta)\}$ if the posterior distribution always satisfies

$$p(\theta|\mathbf{x}) \in \mathcal{P}$$
.

In the case of observations from a binomial distribution with a Beta prior, the posterior distribution is also a Beta distribution.

Hence the Beta distribution is a conjugate prior for the binomial distribution, since the posterior distribution is a Beta distribution.

Conjugate priors are mathematically convenient but there is no reason that a conjugate prior is scientifically justified.

Normal data and conjugate prior

Suppose y_1, y_2, \ldots, y_n are IID $N(\mu, \sigma^2)$ observations with σ^2 known.

Consider the prior, $\mu \sim N(\mu_0, \tau^2)$.

Show that the posterior distribution $p(\mu|\mathbf{y})$ is

$$\mu | \mathbf{y} \sim N \left(\frac{n\tau^2 \bar{\mathbf{y}} + \sigma^2 \mu_0}{n\tau^2 + \sigma^2}, \frac{\tau^2 \sigma^2}{n\tau^2 + \sigma^2} \right).$$

Alternative derivation

lf

$$\blacktriangleright \mu \sim N(\mu_0, \tau^2),$$

$$V | \bar{Y} | \mu \sim N(\mu, \sigma^2/n)$$

it follows that the joint distribution of (μ, \bar{X}) is

$$\begin{pmatrix} \mu \\ \bar{Y} \end{pmatrix} \sim \textit{N}_2 \left(\begin{pmatrix} \mu_0 \\ \mu_0 \end{pmatrix}, \begin{pmatrix} \tau^2 & \tau^2 \\ \tau^2 & \tau^2 + \sigma^2/\textit{n} \end{pmatrix} \right)$$

Using the formula for the conditional distribution from a multivariate normal, we obtain

E
$$(\mu|ar y)=\mu_0+rac{ au^2}{ au^2+\sigma^2/p}(ar y-\mu_0)=rac{n au^2ar y+\sigma^2\mu_0}{n au^2+\sigma^2}$$

and

and hence,

 $var(\mu|\bar{y}) = \tau^2 - \frac{\tau^4}{\tau^2 + \sigma^2/n} = \frac{\tau^2 \sigma^2}{n\tau^2 + \sigma^2},$

 $\mu | \mathbf{y} \sim N \left(\frac{n\tau^2 \bar{\mathbf{y}} + \sigma^2 \mu_0}{n\tau^2 + \sigma^2}, \frac{\tau^2 \sigma^2}{n\tau^2 + \sigma^2} \right).$

Itivariate normal, we obtain
$$\tau^2 = n\tau^2 \bar{\mathbf{v}} + \sigma^2$$

Trade-off between prior and data

The trade-off between prior information and data can be seen explicitly.

- ▶ If n = 0, the posterior distribution reduces to the prior, $N(\mu_0, \tau^2)$.
- ▶ If $\tau^2 \to \infty$, the posterior distribution becomes $N(\bar{y}, \sigma^2/n)$.
- ▶ If $\tau^2 \to 0$, the posterior distribution becomes $N(\mu_0, 0)$. So $\mu = \mu_0$ with probability 1.

Estimates as linear combinations

▶ The posterior mean can also be expressed as a linear combination of the prior mean μ_0 and the sample mean, \bar{y} ,

$$E(\mu|\mathbf{y}) = w\mu_0 + (1-w)\bar{y}$$
 where $w = \frac{\sigma^2/n}{\tau^2 + \sigma^2/n}$.

 The posterior variance can also be expressed as a linear combination,

$$var(\mu|\mathbf{y}) = w^2 \tau^2 + (1-w)^2 \sigma^2/n.$$

► The prior distribution has a data equivalent interpretation:

The information in the prior specification $\mu \sim N(\mu_0, \tau^2)$ is roughly the same as what would be provided in a sample with sample mean $\bar{y} = \mu_0$ and standard error $se(\bar{y}) = \tau$.