This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 6 December 2001 (06.12.2001)

PCT

English

English

(10) International Publication Number WO 01/92512 A2

(51) International Patent Classification⁷: C12N 15/10, 15/11, 15/82, C07H 21/00, C12N 5/10, A01H 5/00, C12Q 1/68

(21) International Application Number: PCT/US01/17672

(22) International Filing Date: 1 June 2001 (01.06.2001)

(25) Filing Language:

(26) Publication Language:

(30) Priority Data:

60/208,538 1 June 2000 (01.06.2000) US 60/244,989 30 October 2000 (30.10.2000) US 09/818,875 27 March 2001 (27.03.2001) US

(71) Applicant (for all designated States except US): UNI-VERSITY OF DELAWARE [US/US]; 210 Hullihen Hall, Newark, DE 19716 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KMIEC, Eric, B. [US/US]; 18 Crossan Court, Landenberg, PA 19350 (US). GAMPER, Howard, B. [US/US]; 904 Locust Street, Philadelphia, PA 19107 (US). RICE, Michael, C. [US/US]; 802 Washington Crossing Road, Newtown, PA 18940 (US). KIM, Jungsup [KR/US]; 3 Chase Hall, Newark, DE 19711 (US).

(74) Agents: HALEY, James, F., Jr. et al.; Fish & Neave, 1251 Avenue of the Americas, New York, NY 10020 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,

GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designationsAE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG)

as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for the following designationsAE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA,

[Continued on next page]

(54) Title: TARGETED CHROMOSOMAL GENOMIC ALTERATIONS IN PLANTS USING MODIFIED SINGLE STRANDED OLIGONUCLEOTIDES

(57) Abstract: Presented are methods and compositions for targeted chromosomal genomic alterations with modified single-stranded oligonucleotides. The oligonucleotides of the invention have modified nuclease-resisant termini comprising LNA, phosphorothioate linkages or 2'-O-Me base analogues or combinations of such modifications.

- UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG)
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG)
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC,

EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG)

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/92512 PCT/US01/17672

TARGETED CHROMOSOMAL GENOMIC ALTERATIONS IN PLANTS USING MODIFIED SINGLE STRANDED OLIGONUCLEOTIDES

Field Of The Invention

The technical field of the invention is oligonucleotide-directed repair or alteration of plant genetic information using novel chemically modified oligonucleotides.

Background Of The Invention

A number of methods have been developed specifically to alter the genomic information of plants. These methods generally include the use of vectors such as, for example, T-DNA, carrying nucleic acid sequences encoding partial or complete portions of a particular protein which is expressed in a cell or tissue to effect the alteration. The expression of the particular protein then results in the desired phenotype. See, for example, United States Patent 4,459,355 which describes a method for transforming plants with a DNA vector and United States Patent 5,188,642 which describes cloning or expression vectors containing a transgenic DNA sequence which when expressed in plants confers resistance to the herbicide glyphosate. The use of such transgene-containing vectors adds one or more exogenous copies of a gene in a usually random fashion at one or more integration sites of the plant's genome at some variable frequency. The introduced gene may be foreign or may be derived from the host plant. Any gene which was originally present in the genome, which may be, for example, a normal allelic variant', mutated, defective, and/or functional copy of the introduced gene, is retained in the genome of the host plant.

20

25

15

5

10 .

These methods of gene alteration are problematic in that complications which can compromise the vigor, productivity, yield, etc. of the plant may result. One such problem is that insertion of exogenous nucleic acid at random location(s) in the genome can have deleterious effects. The random nature of this insertion and/or the use of exogenous promoters can also cause the timing, location or strength of expression of the introduced transgene to be inappropriate or unpredictable. Another problem with such systems includes the addition of unnecessary and unwanted genetic material to the genome of the recipient, including, for example, T-DNA ends or other vector remnants, exogenous control sequences required to allow production of the transgene protein, which control sequences may be

exogenous or native to the host plant and/or the transgene, and reporter genes or resistance markers. Such remnants and added sequences may have presently unrecognized consequences, for example, involving genetic rearrangements of the recipient genomes. In addition, concerns have been raised with consumption, especially by humans, of plants containing such exogenous genetic material.

5

More recently, simpler systems involving poly- or oligo- nucleotides have been described for use in the alteration of genomic DNA. These chimeric RNA-DNA oligonucleotides, requiring contiguous RNA and DNA bases in a double-stranded molecule folded by complementarity into a double hairpin conformation, have been shown to effect single basepair or frameshift alterations, for example, for mutation or repair of plant, animal or fungal genomes. See, for example, WO 99/07865 and U.S. Patent 5,565,350. In the chimeric RNA-DNA oligonucleotide, an uninterrupted stretch of DNA bases within the molecule is required for sequence alteration of the targeted genome while the obligate RNA residues are involved in complex stability. Due to the length, backbone composition, and structural configuration of these chimeric RNA-DNA molecules, they are expensive to synthesize and difficult to purify. Moreover, if the RNA-containing strand of the chimeric RNA-DNA oligonucleotide is designed so as to direct gene alteration, a series of mutagenic reactions resulting in nonspecific base alteration can result. Such a result reduces the utility of such a molecule in methods designed for targeted gene alteration.

15

10

Alternatively, other oligo- or poly- nucleotides have been used which require a triplex forming, usually polypurine or polypyrimidine, structural domain which binds to a DNA helical duplex through Hoogsteen interactions between the major groove of the DNA duplex and the oligonucleotide. Such oligonucleotides may have an additional DNA reactive moiety, such as psoralen, covalently linked to the oligonucleotide. These reactive moieties function as effective intercalation agents, stabilize the formation of a triplex and can be mutagenic. Such agents may be required in order to stabilize the triplex forming domain of the oligonucleotide with the DNA double helix if the Hoogsteen interactions from the oligonucleotide/target base composition are insufficient. See, e.g., U.S. Patent 5,422,251. The utility of these oligonucleotides for directing targeted gene alteration is compromised by a high frequency of nonspecific base changes.

25

20

In more recent work, the domain for altering a genome is linked or tethered to the triplex forming domain of the bi-functional oligonucleotide, adding an additional linking or tethering functional domain to the oligonucleotide. See, e.g., Culver et al., Nature Biotechnology 17: 989-93 (1999). Such chimeric or triplex forming molecules have distinct structural requirements for each of the different domains of the complete poly- or oligo-nucleotide in order to effect the desired genomic alteration in either episomal or chromosomal targets.

Other genes, e.g. CFTR, have been targeted by homologous recombination using duplex fragments having several hundred basepairs. See, e.g., Kunzelmann et al., <u>Gene Ther.</u> 3:859-867 (1996). Similar efforts to target genes by homologous recombination in plants using large fragments of DNA had some success. See Kempin et al., <u>Nature</u> 389:802-803 (1997). However, the efficiency and reproducibility of the published homologous recombination approach in plants has severely limited the widespread use of this method.

Earlier experiments to mutagenize an antibiotic resistance indicator gene by homologous recombination used an unmodified DNA oligonucleotide rather than larger fragments of DNA, wherein the oligonucleotide had no functional domains other than a region of complementary sequence to the target. See Campbell et al., New Biologist 1: 223-227 (1989). These experiments required large concentrations of the oligonucleotide, exhibited a very low frequency of episomal modification of a targeted exogenous plasmid gene not normally found in the cell and have not been reproduced. However, as shown in examples herein, we have observed that an unmodified DNA oligonucleotide can convert a base at low frequency which is detectable using the assay systems described herein.

15

20

5

10

Oligonucleotides designed for use in the targeted alteration of genetic information are significantly different from oligonucleotides designed for antisense approaches. For example, antisense oligonucleotides are perfectly complementary to and bind an mRNA strand in order to modify expression of a targeted mRNA and are used at high concentration. As a consequence, they are unable to produce a gene conversion event by either mutagenesis or repair of a defect in the chromosomal DNA of a host genome. Furthermore, the backbone chemical composition used in most oligonucleotides designed for use in antisense approaches renders them inactive as substrates for homologous pairing or mismatch repair enzymes and the high concentrations of oligonucleotide required for antisense applications can be toxic with some types of nucleotide modifications. In addition, antisense oligonucleotides must be complementary to the mRNA and therefore, may not be complementary to the other DNA strand or to genomic sequences that span the junction between intron sequence and exon sequence.

25

Artificial chromosomes can be useful for the screening purposes identified herein. These molecules are man-made linear or circular DNA molecules constructed from essential cis-acting DNA sequence elements that are responsible for the proper replication and partitioning of natural chromosomes (Murray et al., 1983). The essential elements are: (1) Autonomous Replication Sequences (ARS), (2) Centromeres, and (3) Telomeres.

30

Yeast artificial chromosomes (YACs) allow large segments of genomic DNA to be cloned and modified (Burke et al., Science 236:806; Peterson et al., Trends Genet. 13:61 (1997); Choi, et al., Nat.

10

15

20

25

30

Genet., 4:117-223 (1993), Davies, et al., Biotechnology 11:911-914 (1993), Matsuura, et al., Hum. Mol. Genet., 5:451-459 (1996), Peterson et al., Proc. Natl. Acad. Sci., 93:6605-6609 (1996); and Schedl, et al., Cell, 86:71-82 (1996)). Other vectors also have been developed for the cloning of large segments of genomic DNA, including cosmids, and bacteriophage P1 (Sternberg et al., Proc. Natl. Acad. Sci. U.S.A., 87:103-107 (1990)). YACs have certain advantages over these alternative large capacity cloning vectors (Burke et al., Science, 236:806-812 (1987)). The maximum insert size is 35-30 kb for cosmids, and 100 kb for bacteriophage P1, both of which are much smaller than the maximal insert size for a YAC.

An alternative to YACs are cloning systems based on the *E. coli* fertility factor that have been developed to construct large genomic DNA insert libraries. They are bacterial artificial chromosomes (BACs) and P-1 derived artificial chromosomes (PACs) (Mejia et al., Genome Res. 7:179-186 (1997); Shizuya et al., Proc. Natl. Acad. Sci. 89:8794-8797 (1992); Ioannou et al., Nat. Genet., 6:84-89 (1994); Hosoda et al., Nucleic Acids Res. 18:3863 (1990)). BACs are based on the *E. coli* fertility plasmid (F factor); and PACs are based on the bacteriophage P1. These vectors propagate at a very low copy number (1-2 per cell) enabling genomic inserts up to 300 kb in size to be stably maintained in recombination deficient hosts. The PACs and BACs are circular DNA molecules that are readily isolated from the host genomic background by classical alkaline lysis (Birnboim et al., Nucleic Acids Res. 7:1513-1523 (1979)). In addition, BACs have been developed for transformation of plants with high-molecular weight DNA using the T-DNA system (Hamilton, Gene 24:107-116 (1997); Frary & Hamilton, Transgenic Res. 10: 121-132 (2001)).

A need exists for simple, inexpensive oligonucleotides capable of producing targeted alteration of genetic material such as those described herein as well as methods to identify optimal oligonucleotides that accurately and efficiently alter target DNA.

Summary Of The Invention

Novel, modified single-stranded nucleic acid molecules that direct gene alteration in plants are identified and the efficiency of alteration is analyzed both *in vitro* using a cell-free extract assay and *in vivo* using a yeast system and a plant system. The alteration in an oligonucleotide of the invention may comprise an insertion, deletion, substitution, as well as any combination of these. Site specific alteration of DNA is not only useful for studying function of proteins *in vivo*, but it is also useful for creating plants with desired phenotypes, including, for example, environmental stress tolerance, improved nutritional value, herbicide resistance, disease resistance, modified oil production, modified starch production, and altered floral morphology including selective sterility. As described herein,

oligonucleotides of the invention target directed specific gene alterations in genomic double-stranded DNA in cells. The target genomic DNA can be nuclear chromosomal DNA as well as plastid or mitochondrial chromosomal DNA. The target DNA can also be a transgene present in the plant cell, including, for example, a previously introduced T-DNA. For screening purposes, the target plant DNA can also be extrachromosomal DNA present in plant or non-plant cells in various forms including, e.g., mammalian artificial chromosomes (MACs), PACs from P-1 vectors, yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), plant artificial chromosomes (PLACs), as well as episomal DNA, including episomal DNA from an exogenous source such as a plasmid or recombinant vector. Many of these artificial chromosome constructs containing plant DNA can be obtained from a variety of sources, including, e.g., the Arabidopsis Biological Resource Center (ABRC) at the Ohio State University, and the Rice Genome Research Program at the MAFF DNA bank in Ibaraki, Japan. The target DNA may be transcriptionally silent or active. In a preferred embodiment, the target DNA to be altered is the non-transcribed strand of a genomic DNA duplex. In a more preferred embodiment, the target DNA to be altered is the non-transcribed strand of a transcribed gene of a genomic DNA duplex.

15

20

25

30

5

10

The low efficiency of targeted gene alteration obtained using unmodified DNA oligonucleotides is believed to be largely the result of degradation by nucleases present in the reaction mixture or the target cell. Although different modifications are known to have different effects on the nuclease resistance of oligonucleotides or stability of duplexes formed by such oligonucleotides (see, e.g., Koshkin et al., J. Am. Chem. Soc., 120:13252-3), we have found that it is not possible to predict which of any particular known modification would be most useful for any given alteration event, including for the construction of gene alteration oligonucleotides, because of the interaction of different as yet unidentified proteins during the gene alteration event. Herein, a variety of nucleic acid analogs have been developed that increase the nuclease resistance of oligonucleotides that contain them, including, e.g., nucleotides containing phosphorothioate linkages or 2'-O-methyl analogs. We recently discovered that single-stranded DNA oligonucleotides modified to contain 2'-O-methyl RNA nucleotides or phosphorothioate linkages can enable specific alteration of genetic information at a higher level than either unmodified single-stranded DNA or a chimeric RNA/DNA molecule. See, for example, copending applications United States application no. 60/208,538, United States application no. 60/244,989, United States application no. 09/818,875, international application no. PCT/US01/09761 and Gamper et al., Nucleic Acids Research 28: 4332-4339 (2000), the disclosures of which are incorporated herein in their entirety by reference. We also found that additional nucleic acid analogs which increase the nuclease resistance of oligonucleotides that contain them, including, e.g., "locked nucleic acids" or "LNAs", xylo-

10

15

20

LNAs and L-ribo-LNAs; see, for example, Wengel & Nielsen, WO 99/14226; Wengel, WO 00/56748; Wengel, WO 00/66604; and Jakobsen & Koshkin, WO 01/25478 also allow specific targeted alteration of genetic information.

The assay allows for determining the optimum length of the oligonucleotide, optimum sequence of the oligonucleotide, optimum position of the mismatched base or bases, optimum chemical modification or modifications, optimum strand targeted for identifying and selecting the most efficient oligonucleotide for a particular gene alteration event by comparing to a control oligonucleotide. Control oligonucleotides may include a chimeric RNA-DNA double hairpin oligonucleotide directing the same gene alteration event, an oligonucleotide that matches its target completely, an oligonucleotide in which all linkages are phosphorothiolated, an oligonucleotide fully substituted with 2'-O-methyl analogs or an RNA oligonucleotide. Such control oligonucleotides either fail to direct a targeted alteration or do so at a lower efficiency as compared to the oligonucleotides of the invention. The assay further allows for determining the optimum position of a gene alteration event within an oligonucleotide, optimum concentration of the selected oligonucleotide for maximum alteration efficiency by systematically testing a range of concentrations, as well as optimization of either the source of cell extract by testing different plants or strains, or testing cells derived from different plants or strains, or plant cell lines. Using a series of single-stranded oligonucleotides, comprising all RNA or DNA residues and various mixtures of the two, several new structures are identified as viable molecules in nucleotide conversion to direct or repair a genomic mutagenic event. When extracts from mammalian, plant and fungal cells are used and are analyzed using a genetic readout assay in bacteria, single-stranded oligonucleotides having one of several modifications are found to be more active than a control RNA-DNA double hairpin chimera structure when evaluated using an in vitro gene repair assay. Similar results are also observed in vivo using yeast, mammalian and plant cells. Molecules containing various lengths of modified bases were found to possess greater activity than unmodified single-stranded DNA molecules.

25 <u>Detailed Description Of The Invention</u>

The present invention provides oligonucleotides having chemically modified, nuclease resistant residues, preferably at or near the termini of the oligonucleotides, and methods for their identification and use in targeted alteration of plant genetic material, including gene mutation, targeted gene repair and gene knockout. The oligonucleotides are preferably used for mismatch repair or alteration by changing at least one nucleic acid base, or for frameshift repair or alteration by addition or deletion of at least one nucleic acid base. The oligonucleotides of the invention direct any such alteration,

including gene correction, gene repair or gene mutation and can be used, for example, to introduce a polymorphism or haplotype or to eliminate ("knockout") a particular protein activity. For example, gene alterations that knockout a particular protein activity can be obtained using oligonucleotides designed to convert a codon in the coding region of the protein to a stop codon, thus prematurely terminating translation of the protein. Oligonucleotides that introduce stop codons in the open-reading-frame of the protein are one embodiment of the invention. Generally, oligonucleotides that introduce stop codons early in the open-reading-frame of the protein are preferred. If the open-reading-frame contains more than one methionine, oligonucleotides that introduce stop codons after the second methionine are preferred. Additionally, if the gene exhibits alternative splice sites, oligonucleotides that introduce stop codons in exons after the alternative splice site are preferred. The following table provides examples of codons that can be converted to stop codons by altering a single oligonucleotide. A skilled artisan could readily identify other codons that can be converted to stop codons by altering one, two or three of the base pairs in a given codon. Similarly, a skilled artisan could readily identify codons that can be converted to stop codons by a frameshift mutations that inserts or deletes one or two base pairs in the open-reading-frame. It is also understood that more than one stop codon can be generated in a single open-reading-frame and that these stop codons can be adjacent in the sequence or separated by intervening codons. Where more than one stop codon is introduced into a single open-reading-frame, such alterations can be generated by a single or multiple oligonucleotides and can be generated simultaneously or by sequential mutagenesis of the target nucleic acid.

^	\sim
_	"
۷.	v

5

10

15

Original codons*	Corresponding stop codon
GGA (glycine), AGA (arginine), CGA (arginine), TTA (leucine),	TGA
T <u>C</u> A (serine), TG <u>T</u> (cysteine), TG <u>G</u> (tryptophan), TG <u>C</u> (cysteine)	
AAG (lysine), GAG (glutamate), CAG (glutamine), TTG (leucine),	TAG
T <u>C</u> G (serine), T <u>G</u> G (tryptophan), TA <u>T</u> (cysteine), TA <u>C</u> (tyrosine)	
AAA (lysine), GAA (glutamate), CAA (glutamine), TIA (leucine),	TAA
T <u>C</u> A (serine), TA <u>T</u> (cysteine), TA <u>C</u> (tyrosine)	

^{*}The amino acid encoded by the original codon is shown in parentheses and the base targeted for alteration to convert the codon to the corresponding stop codon is underlined and in bold

10

15

20

25

30

The oligonucleotides of the invention are designed as substrates for homologous pairing and repair enzymes and as such have a unique backbone composition that differs from chimeric RNA-DNA double hairpin oligonucleotides, antisense oligonucleotides, and/or other poly- or oligo-nucleotides used for altering genomic DNA, such as triplex forming oligonucleotides. The single-stranded oligonucleotides described herein are inexpensive to synthesize and easy to purify. In side-by-side comparisons, an optimized single-stranded oligonucleotide comprising modified residues as described herein is significantly more efficient than a chimeric RNA-DNA double hairpin oligonucleotide in directing a base substitution or frameshift mutation in a cell-free extract assay.

We have discovered that single-stranded oligonucleotides having a DNA domain surrounding the targeted base, with the domain preferably central to the poly- or oligo-nucleotide, and having at least one modified end, preferably at the 3' terminal region, are able to alter a target genetic sequence and with an efficiency that is higher than chimeric RNA-DNA double hairpin oligonucleotides disclosed in US Patent 5,565,350. Preferred oligonucleotides of the invention have at least two modified bases on at least one of the termini, preferably the 3' terminus of the oligonucleotide. Oligonucleotides of the invention can efficiently be used to introduce targeted alterations in a genetic sequence of DNA in the presence of human, animal, plant, fungal (including yeast) proteins and in cells of different types including, for example, plant cells, fungal cells including S. cerevisiae, Ustillago maydis, Candida albicans, and mammalian cells. Particularly preferred are cells and cell extracts derived from plants including, for example, experimental model plants such as Chlamydomonas reinhardtii, Physcomitrella patens, and Arabidopsis thaliana in addition to crop plants such as cauliflower (Brassica oleracea), artichoke (Cynara scolymus), fruits such as apples (Malus, e.g. domesticus), mangoes (Mangifera, e.g. indica), banana (Musa, e.g. acuminata), berries (such as currant, Ribes, e.g. rubrum), kiwifruit (Actinidia, e.g. chinensis), grapes (Vitis, e.g. vinifera), bell peppers (Capsicum, e.g. annuum), cherries (such as the sweet cherry, Prunus, e.g. avium), cucumber (Cucumis, e.g. sativus), melons (Cucumis, e.g. melo), nuts (such as walnut, Juglans, e.g. regia; peanut, Arachis hypogeae), orange (Citrus, e.g. maxima), peach (Prunus, e.g. persica), pear (Pyra, e.g. communis), plum (Prunus, e.g. domestica), strawberry (Fragaria, e.g. moschata or vesca), tomato (Lycopersicon, e.g. esculentum); leaves and forage, such as alfalfa (Medicago, e.g. sativa or truncatula), cabbage (e.g. Brassica oleracea), endive (Cichoreum, e.g. endivia), leek (Allium, e.g. porrum), lettuce (Lactuca, e.g. sativa), spinach (Spinacia, e.g. oleraceae), tobacco (Nicotiana, e.g. tabacum); roots, such as arrowroot (Maranta, e.g. arundinacea), beet (Beta, e.g. vulgaris), carrot (Daucus, e.g. carota), cassava (Manihot, e.g. esculenta), turnip (Brassica, e.g. rapa), radish (Raphanus, e.g. sativus), yam (Dioscorea, e.g. esculenta), sweet potato (Ipomoea batatas); seeds, including oilseeds.

BNSDOCID: <WO___0192512A2_I_>

such as beans (Phaseolus, e.g. vulgaris), pea (Pisum, e.g. sativum), soybean (Glycine, e.g. max), cowpea (Vigna unguiculata), mothbean (Vigna aconitifolia), wheat (Triticum, e.g. aestivum), sorghum (Sorghum e.g. bicolor), barley (Hordeum, e.g. vulgare), corn (Zea, e.g. mays), rice (Oryza, e.g. sativa), rapeseed (Brassica napus), millet (Panicum sp.), sunflower (Helianthus annuus), oats (Avena sativa), chickpea (Cicer, e.g. arietinum); tubers, such as kohlrabi (Brassica, e.g. oleraceae), potato (Solanum, e.g. tuberosum) and the like; fiber and wood plants, such as flax (Linum e.g. usitatissimum), cotton (Gossypium e.g. hirsutum), pine (Pinus sp.), oak (Quercus sp.), eucalyptus (Eucalyptus sp.), and the like and ornamental plants such as turfgrass (Lolium, e.g. rigidum), petunia (Petunia, e.g. x hybrida), hyacinth (Hyacinthus orientalis), carnation (Dianthus e.g. caryophyllus), delphinium (Delphinium, e.g. ajacis), Job's tears (Coix lacryma-jobi), snapdragon (Antirrhinum majus), poppy (Papaver, e.g. nudicaule), lilac (Syringa, e.g. vulgaris), hydrangea (Hydrangea e.g. macrophylla), roses (including Gallicas, Albas, Damasks, Damask Perpetuals, Centifolias, Chinas, Teas and Hybrid Teas) and ornamental goldenrods (e.g. Solidago spp.). Such plant cells can then be used to regenerate whole plants according to methods described herein or any method known in the art. The DNA domain of the oligonucleotides is preferably fully complementary to one strand of the gene target, except for the mismatch base or bases responsible for the gene alteration event(s). On either side of the preferably central DNA domain, the contiguous bases may be either RNA bases or, preferably, are primarily DNA bases. The central DNA domain is generally at least 8 nucleotides in length. The base(s) targeted for alteration in the most preferred embodiments are at least about 8, 9 or 10 bases from one end of the oligonucleotide.

20

25

30

15

5.

10

According to certain embodiments, one or both of the termini of the oligonucleotides of the present invention comprise phosphorothioate modifications, LNA backbone (including LNA derivatives and analogs) modifications, or 2'-O-methyl base analogs, or any combination of these modifications. Oligonucleotides comprising 2'-O-methyl or LNA analogs are a mixed DNA/RNA polymer. The oligonucleotides of the invention are, however, single-stranded and are not designed to form a stable internal duplex structure within the oligonucleotide. The efficiency of gene alteration is surprisingly increased with oligonucleotides having internal complementary sequence comprising phosphorothioate modified bases as compared to 2'-O-methyl modifications. This result indicates that specific chemical interactions are involved between the converting oligonucleotide and the proteins involved in the conversion. The effect of other such chemical interactions to produce nuclease resistant termini using modifications other than LNA (including LNA derivatives or analogs), phosphorothioate linkages, or 2'-O-methyl analog incorporation into an oligonucleotide can not yet be predicted because the proteins

10

15

20

involved in the alteration process and their particular chemical interaction with the oligonucleotide substituents are not yet known and cannot be predicted.

In the examples, oligonucleotides of defined sequence are provided for alteration of genes in particular plants. Provided the teachings of the instant application, one of skill in the art could readily design oligonucleotides to introduce analogous alterations in homologous genes from any plant. Furthermore, in the tables of these examples, the oligonucleotides of the invention are not limited to the particular sequences disclosed. The oligonucleotides of the invention include extensions of the appropriate sequence of the longer 120 base oligonucleotides which can be added base by base to the smallest disclosed oligonucleotides of 17 bases. Thus the oligonucleotides of the invention include for each correcting change, oligonucleotides of length 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, or 120 with further single-nucleotide additions up to the longest sequence disclosed. In some embodiments, longer nucleic acids of up to 240 bases which comprise the sequences disclosed herein may be used. Moreover, the oligonucleotides of the invention do not require a symmetrical extension on either side of the central DNA domain. Similarly, the oligonucleotides of the invention as disclosed in the various tables for alteration of particular plant genes contain phosphorothioate linkages, 2'-O-methyl analog or LNA (including LNA derivatives and analogs) or any combination of these modifications just as the assay oligonucleotides do.

The present invention, however, is not limited to oligonucleotides that contain any particular nuclease resistant modification. Oligonucleotides of the invention may be altered with any combination of additional LNAs (including LNA derivatives and analogs), phosphorothioate linkages or 2'-O-methyl analogs to maximize conversion efficiency. For oligonucleotides of the invention that are longer than about 17 to about 25 bases in length, internal as well as terminal region segments of the backbone may be altered. Alternatively, simple fold-back structures at each end of a oligonucleotide or appended end groups may be used in addition to a modified backbone for conferring additional nuclease resistance.

The different oligonucleotides of the present invention preferably contain more than one of the aforementioned backbone modifications at each end. In some embodiments, the backbone modifications are adjacent to one another. However, the optimal number and placement of backbone modifications for any individual oligonucleotide will vary with the length of the oligonucleotide and the particular type of backbone modification(s) that are used. If constructs of identical sequence having

30

phosphorothioate linkages are compared, 2, 3, 4, 5, or 6 phosphorothioate linkages at each end are preferred. If constructs of identical sequence having 2'-O-methyl base analogs are compared, 1, 2, 3 or 4 analogs are preferred. The optimal number and type of backbone modifications for any particular oligonucleotide useful for altering target DNA may be determined empirically by comparing the alteration efficiency of the oligonucleotide comprising any combination of the modifications to a control molecule of comparable sequence using any of the assays described herein. The optimal position(s) for oligonucleotide modifications for a maximally efficient altering oligonucleotide can be determined by testing the various modifications as compared to control molecule of comparable sequence in one of the assays disclosed herein. In such assays, a control molecule includes, e.g., a completely 2'-O-methyl substituted molecule, a completely complementary oligonucleotide, or a chimeric RNA-DNA double hairpin.

Increasing the number of phosphorothioate linkages, LNAs or 2'-O-methyl bases beyond the preferred number generally decreases the gene repair activity of a 25 nucleotide long oligonucleotide. Based on analysis of the concentration of oligonucleotide present in the extract after different time periods of incubation, it is believed that the terminal modifications impart nuclease resistance to the oligonucleotide thereby allowing it to survive within the cellular environment. However, this may not be the only possible mechanism by which such modifications confer greater efficiency of conversion. For example, as disclosed herein, certain modifications to oligonucleotides confer a greater improvement to the efficiency of conversion than other modifications.

20

25

5

10

15

Efficiency of conversion is defined herein as the percentage of recovered substrate molecules that have undergone a conversion event. Depending on the nature of the target genetic material, e.g. the genome of a cell, efficiency could be represented as the proportion of cells or clones containing an extrachromosomal element that exhibit a particular phenotype. Alternatively, representative samples of the target genetic material can be sequenced to determine the percentage that have acquired the desire change. The oligonucleotides of the invention in different embodiments can alter DNA two, three, four, five, six, seven, eight, nine, ten, twelve, fifteen, twenty, thirty, and fifty or more fold more than control oligonucleotides. Such control oligonucleotides are oligonucleotides with fully phosphorothiolated linkages, oligonucleotides that are fully substituted with 2'-O-methyl analogs, a perfectly matched oligonucleotide that is fully complementary to a target sequence or a chimeric DNA-RNA double hairpin oligonucleotide such as disclosed in US Patent 5,565,350.

30

In addition, for a given oligonucleotide length, additional modifications interfere with the ability of the oligonucleotide to act in concert with the cellular recombination or repair enzyme machinery

10

15

20

which is necessary and required to mediate a targeted substitution, addition or deletion event in DNA. For example, fully phosphorothiolated or fully 2-O-methylated molecules are inefficient in targeted gene alteration.

The oligonucleotides of the invention as optimized for the purpose of targeted alteration of genetic material, including gene knockout or repair, are different in structure from antisense oligonucleotides that may possess a similar mixed chemical composition backbone. The oligonucleotides of the invention differ from such antisense oligonucleotides in chemical composition, structure, sequence, and in their ability to alter genomic DNA. Significantly, antisense oligonucleotides fail to direct targeted gene alteration. The oligonucleotides of the invention may target either strand of DNA and can include any component of the genome including, for example, intron and exon sequences. The preferred embodiment of the invention is a modified oligonucleotide that binds to the non-transcribed strand of a genomic DNA duplex. In other words, the preferred oligonucleotides of the invention target the sense strand of the DNA, i.e. the oligonucleotides of the invention are complementary to the non-transcribed strand of the target duplex DNA. The sequence of the non-transcribed strand of a DNA duplex is found in the mRNA produced from that duplex, given that mRNA uses uracil-containing nucleotides in place of thymine-containing nucleotides.

Moreover, the initial observation that single-stranded oligonucleotides comprising these modifications and lacking any particular triplex forming domain have reproducibly enhanced gene alteration activity in a variety of assay systems as compared to a chimeric RNA-DNA double-stranded hairpin control or single-stranded oligonucleotides comprising other backbone modifications was surprising. The single-stranded molecules of the invention totally lack the complementary RNA binding structure that stabilizes a normal chimeric double-stranded hairpin of the type disclosed in U.S. Patent 5,565,350 yet is more effective in producing targeted base conversion as compared to such a chimeric RNA-DNA double-stranded hairpin. In addition, the molecules of the invention lack any particular triplex forming domain involved in Hoogsteen interactions with the DNA double helix and required by other known oligonucleotides in other oligonucleotide-dependant gene conversion systems. Although the lack of these functional domains was expected to decrease the efficiency of an alteration in a sequence, just the opposite occurs: the efficiency of sequence alteration using the modified oligonucleotides of the invention is higher than the efficiency of sequence alteration using a chimeric RNA-DNA hairpin targeting the same sequence alteration. Moreover, the efficiency of sequence alteration or gene conversion directed by an unmodified oligonucleotide is many times lower as compared to a control chimeric RNA-DNA molecule or the modified oligonucleotides of the invention targeting the

30

same sequence alteration. Similarly, molecules containing at least 3 2'-O-methyl base analogs are about four to five fold less efficient as compared to an oligonucleotide having the same number of phosphorothioate linkages.

The oligonucleotides of the present invention for alteration of a single base are about 17 to about 121 nucleotides in length, preferably about 17 to about 74 nucleotides in length. Most preferably, however, the oligonucleotides of the present invention are at least about 25 bases in length, unless there are self-dimerization structures within the oligonucleotide. If the oligonucleotide has such an unfavorable structure, lengths longer than 35 bases are preferred. Oligonucleotides with modified ends both shorter and longer than certain of the exemplified, modified oligonucleotides herein function as gene repair or gene knockout agents and are within the scope of the present invention.

Once an oligomer is chosen, it can be tested for its tendency to self-dimerize, since self-dimerization may result in reduced efficiency of alteration of genetic information. Checking for self-dimerization tendency can be accomplished manually or, preferably, using a software program. One such program is Oligo Analyzer 2.0, available through Integrated DNA Technologies (Coralville, IA 52241) (http://www.idtdna.com); this program is available for use on the world wide web at

http://www.idtdna.com/program/oligoanalyzer/

oligoanalyzer.asp.

For each oligonucleotide sequence input into the program, Oligo Analyzer 2.0 reports possible self-dimerized duplex forms, which are usually only partially duplexed, along with the free energy change associated with such self-dimerization. Delta G-values that are negative and large in magnitude, indicating strong self-dimerization potential, are automatically flagged by the software as "bad". Another software program that analyzes oligomers for pair dimer formation is Primer Select from DNASTAR, Inc., 1228 S. Park St., Madison, WI 53715, Phone: (608) 258-7420 (http://www.dnastar.com/products/PrimerSelect.html).

If the sequence is subject to significant self-dimerization, the addition of further sequence flanking the "repair" nucleotide can improve gene correction frequency.

Generally, the oligonucleotides of the present invention are identical in sequence to one strand of the target DNA, which can be either strand of the target DNA, with the exception of one or more targeted bases positioned within the DNA domain of the oligonucleotide, and preferably toward the middle between the modified terminal regions. Preferably, the difference in sequence of the oligonucleotide as compared to the targeted genomic DNA is located at about the middle of the oligonucleotide sequence. In a preferred embodiment, the oligonucleotides of the invention are complementary to the non-transcribed

15

5

10

20

25

strand of a duplex. In other words, the preferred oligonucleotides target the sense strand of the DNA, i.e. the oligonucleotides of the invention are preferably complementary to the strand of the target DNA the sequence of which is found in the mRNA.

The oligonucleotides of the invention can include more than a single base change. In an oligonucleotide that is about a 70-mer, with at least one modified residue incorporated on the ends, as disclosed herein, multiple bases can be simultaneously targeted for change. The target bases may be up to 27 nucleotides apart and may not be changed together in all resultant plasmids in all cases. There is a frequency distribution such that the closer the target bases are to each other in the central DNA domain within the oligonucleotides of the invention, the higher the frequency of change in a given cell. Target bases only two nucleotides apart are changed together in every case that has been analyzed. The farther apart the two target bases are, the less frequent the simultaneous change. Thus, oligonucleotides of the invention may be used to repair or alter multiple bases rather than just one single base. For example, in a 74-mer oligonucleotide having a central base targeted for change, a base change event up to about 27 nucleotides away can also be effected. The positions of the altering bases within the oligonucleotide can be optimized using any one of the assays described herein. Preferably, the altering bases are at least about 8 nucleotides from one end of the oligonucleotide.

The oligonucleotides of the present invention can be introduced into cells by any suitable means. According to certain preferred embodiments, the modified oligonucleotides may be used alone. Suitable means, however, include the use of polycations, cationic lipids, liposomes, polyethylenimine (PEI), electroporation, biolistics, microinjection and other methods known in the art to facilitate cellular uptake. For plant cells, biolistic or particle bombardment methods are typically used. According to certain preferred embodiments of the present invention, isolated plant cells are treated in culture according to the methods of the invention, to mutate or repair a target gene. Alternatively, plant target DNA may be modified *in vitro* or in another cell type, including for example, yeast or bacterial cells and then introduced into a plant cell as, for example, a T-DNA. Plant cells thus modified may be used to regenerate the whole organism as, for example, in a plant having a desired targeted genomic change. In other instances, targeted genomic alteration, including repair or mutagenesis, may take place *in vivo* following direct administration of the modified, single-stranded oligonucleotides of the invention to a subject.

The single-stranded, modified oligonucleotides of the present invention have numerous applications as gene repair, gene modification, or gene knockout agents. Such oligonucleotides may be advantageously used, for example, to introduce or correct multiple point mutations. Each mutation leads to the addition, deletion or substitution of at least one base pair. The methods of the present invention

25

5

10

15

20

10

15

20

25

30

offer distinct advantages over other methods of altering the genetic makeup of an organism, in that only the individually targeted bases are altered. No additional foreign DNA sequences are added to the genetic complement of the organism. Such agents may, for example, be used to develop plants with improved traits by rationally changing the sequence of selected genes in isolated cells and using these modified cells to regenerate whole plants having the altered gene. See, e.g., U.S. Patent 6,046,380 and U.S. Patent 5,905,185 incorporated herein by reference. Such plants produced using the compositions of the invention lack additional undesirable selectable markers or other foreign DNA sequences. Targeted base pair substitution or frameshift mutations introduced by an oligonucleotide in the presence of a cell-free extract also provides a way to modify the sequence of extrachromosomal elements, including, for example, plasmids, cosmids and artificial chromosomes. The oligonucleotides of the invention also simplify the production of plants having particular modified or inactivated genes. Altered plant model systems such as those produced using the methods and oligonucleotides of the invention are invaluable in determining the function of a gene and in evaluating drugs. The oligonucleotides and methods of the present invention may also be used to introduce molecular markers, including, for example, SNPs, RFLPs, AFLPs and CAPs.

The purified oligonucleotide compositions may be formulated in accordance with routine procedures depending on the target. For example, purified oligonucleotide can be used directly in a standard reaction mixture to introduce alterations into targeted DNA *in vitro* or where cells are the target as a composition adapted for bathing cells in culture or for microinjection into cells in culture. The purified oligonucleotide compositions may also be provided on coated microbeads for biolistic delivery into plant cells. Where necessary, the composition may also include a solubilizing agent. Generally, the ingredients will be supplied either separately or mixed together in single-use form, for example, as a dry, lyophilized powder or water-free concentrate. In general, dosage required for efficient targeted gene alteration will range from about 0.001 to 50,000 µg/kg target tissue, preferably between 1 to 250 µg/kg, and most preferably at a concentration of between 30 and 60 micromolar.

For cell administration, direct injection into the nucleus, biolistic bombardment, electroporation, liposome transfer and calcium phosphate precipitation may be used. In yeast, lithium acetate or spheroplast transformation may also be used. In a preferred method, the administration is performed with a liposomal transfer compound, e.g., DOTAP (Boehringer-Mannheim) or an equivalent such as lipofectin. The amount of the oligonucleotide used is about 500 nanograms in 3 micrograms of DOTAP per 100,000 cells. For electroporation, between 20 and 2000 nanograms of oligonucleotide per million cells to be electroporated is an appropriate range of dosages which can be increased to improve

efficiency of genetic alteration upon review of the appropriate sequence according to the methods described herein. For biolistic delivery, microbeads are generally coated with resuspended oligonucleotides, which range of oligonucleotide to microbead concentration can be similarly adjusted to improve efficiency as determined using one of the assay methods described herein, starting with about 0.05 to 1 microgram of oligonucleotide to 25 microgram of 1.0 micrometer gold beads or similar microcarrier.

Another aspect of the invention is a kit comprising at least one oligonucleotide of the invention. The kit may comprise an additional reagent or article of manufacture. The additional reagent or article of manufacture may comprise a delivery mechanism, cell extract, a cell, or a plasmid, such as one of those disclosed in the Figures herein, for use in an assay of the invention. Alternatively, the invention includes a kit comprising an isogenic set of cells in which each cell in the kit comprises a different altered amino acid for a target protein encoded by a targeted altered gene within the cell produced according to the methods of the invention.

Brief Description Of The Drawings

15

20

5

10

Figure 1. Flow diagram for the generation of modified single-stranded oligonucleotides. The upper strands of chimeric oligonucleotides I and II are separated into pathways resulting in the generation of single-stranded oligonucleotides that contain (A) 2'-O-methyl RNA nucleotides or (B) phosphorothioate linkages. Fold changes in repair activity for correction of kan^s in the HUH7 cell-free extract are presented in parenthesis. HUH7 cells are described in Nakabayashi et al., Cancer Research 42: 3858-3863 (1982). Each single-stranded oligonucleotide is 25 bases in length and contains a G residue mismatched to the complementary sequence of the kan^s gene. The numbers 3, 6, 8, 10, 12 and 12.5 respectively indicate how many phosphorothioate linkages (S) or 2'-O-methyl RNA nucleotides (R) are at each end of the molecule. Hence oligo 12S/25G contains an all phosphorothioate backbone, displayed as a dotted line. Smooth lines indicate DNA residues, wavy lines indicate 2'-O-methyl RNA residues and the carat indicates the mismatched base site (G). Figure 1(C) provides a schematic plasmid indicating the sequence of the kan chimeric double-stranded hairpin oligonucleotide (left) and the sequence the tet chimeric double-stranded hairpin oligonucleotide used in other experiments. Figure 1(D) provides a flow chart of a kan experiment in which a chimeric double-stranded hairpin oligonucleotide is used.

30

25

Figure 2. Genetic readout system for correction of a point mutation in plasmid pKsm4021.

A mutant kanamycin gene harbored in plasmid pKsm4021 is the target for correction by oligonucleotides.

The mutant G is converted to a C by the action of the oligo. Corrected plasmids confer resistance to kanamycin in *E.coli* (DH10B) after electroporation leading to the genetic readout and colony counts.

Figure 3: Target plasmid and sequence correction of a frameshift mutation by chimeric and single-stranded oligonucleotides. (A) Plasmid pT^sΔ208 contains a single base deletion mutation at position 208 rendering it unable to confer tet resistance. The target sequence presented below indicates the insertion of a T directed by the oligonucleotides to re-establish the resistant phenotype. (B) DNA sequence confirming base insertion directed by Tet 3S/25G; the yellow highlight indicates the position of frameshift repair.

Figure 4. DNA sequences of representative kan' colonies. Confirmation of sequence alteration directed by the indicated molecule is presented along with a table outlining codon distribution. Note that 10S/25G and 12S/25G elicit both mixed and unfaithful gene repair. The number of clones sequenced is listed in parentheses next to the designation for the single-stranded oligonucleotide. A plus (+) symbol indicates the codon identified while a figure after the (+) symbol indicates the number of colonies with a particular sequence. TAC/TAG indicates a mixed peak. Representative DNA sequences are presented below the table with yellow highlighting altered residues.

Figure 5. Gene correction in HeLa cells. Representative oligonucleotides of the invention are co-transfected with the pCMVneo(')FlAsH plasmid (shown in Figure 9) into HeLa cells. Ligand is diffused into cells after co-transfection of plasmid and oligonucleotides. Green fluorescence indicates gene correction of the mutation in the antibiotic resistance gene. Correction of the mutation results in the expression of a fusion protein that carries a marker ligand binding site and when the fusion protein binds the ligand, a green fluorescence is emitted. The ligand is produced by Aurora Biosciences and can readily diffuse into cells enabling a measurement of corrected protein function; the protein must bind the ligand directly to induce fluorescence. Hence cells bearing the corrected plasmid gene appear green while "uncorrected" cells remain colorless.

Figure 6. *Z-series imaging of corrected cells*. Serial cross-sections of the HeLa cell represented in Figure 5 are produced by Zeiss 510 LSM confocal microscope revealing that the fusion protein is contained within the cell.

Figure 7. Hygromycin-eGFP target plasmids. (A) Plasmid pAURHYG(ins)GFP contains a single base insertion mutation between nucleotides 136 and 137, at codon 46, of the Hygromycin B coding sequence (cds) which is transcribed from the constitutive ADH1 promoter. The target sequence presented below indicates the deletion of an A and the substitution of a C for a T directed by the oligonucleotides to re-establish the resistant phenotype. (B) Plasmid pAURHYG(rep)GFP contains a

10

5

15

20

25

base substitution mutation introducing a G at nucleotide 137, at codon 46, of the Hygromycin B coding sequence (cds). The target sequence presented below the diagram indicates the amino acid conservative replacement of G with C, restoring gene function.

Figure 8. Oligonucleotides for correction of hygromycin resistance gene. The sequence of the oligonucleotides used in experiments to assay correction of a hygromycin resistance gene are shown. DNA residues are shown in capital letters, RNA residues are shown in lowercase and nucleotides with a phosphorothioate backbone are capitalized and underlined.

Figure 9. *pAURNeo(-)FIAsH plasmid*. This figure describes the plasmid structure, target sequence, oligonucleotides, and the basis for detection of the gene alteration event by fluorescence.

Figure 10. pYESHyg(x)eGFP plasmid. This plasmid is a construct similar to the pAURHyg(x)eGFP construct shown in Figure 7, except the promoter is the inducible GAL1 promoter. This promoter is inducible with galactose, leaky in the presence of raffinose, and repressed in the presence of dextrose.

Figure 11. pBI-HygeGFP plasmid. This plasmid is a construct based on the plasmids pBI101, pBI 101.2, pBI101.3 or pBI 121 available from Clontech in which HygeGFP replaces the beta-glucuronidase gene of the Clontech plasmids. The different Clontech plasmids vary by a reading frame shift relative to the polylinker, or the presence of the Cauliflower mosaic virus promoter.

The following examples are provided by way of illustration only, and are not intended to limit the scope of the invention disclosed herein.

20

25

5

10

15

EXAMPLE 1 Assay Method For Base Alteration And Preferred Oligonucleotide Selection

In this example, single-stranded and double-hairpin oligonucleotides with chimeric backbones (see Figure 1 for structures (A and B) and sequences (C and D) of assay oligonucleotides) are used to correct a point mutation in the kanamycin gene of pK^sm4021 (Figure 2) or the tetracycline gene of $pT^s\Delta208$ (Figure 3). All kan oligonucleotides share the same 25 base sequence surrounding the target base identified for change, just as all tet oligonucleotides do. The sequence is given in Figures 1C and Figure 1D. Each plasmid contains a functional ampicillin gene. Kanamycin gene function is restored when a G at position 4021 is converted to a C (via a substitution mutation); tetracycline gene function is restored when a deletion at position 208 is replaced by a C (via frameshift mutation). A separate plasmid, pAURNeo(-)FIAsH (Figure 9), bearing the kan^s gene is used in the cell culture experiments. This plasmid was constructed by inserting a synthetic expression cassette containing a neomycin phosphotransferase

10

15

20

25

30

(kanamycin resistance) gene and an extended reading frame that encodes a receptor for the FIAsH ligand into the pAUR123 shuttle vector (Panvera Corp., Madison, WI). The resulting construct replicates in *S. cerevisiae* at low copy number, confers resistance to aureobasidinA and constitutively expresses either the Neo+/FIAsH fusion product (after alteration) or the truncated Neo-/FIAsH product (before alteration) from the ADH1 promoter. By extending the reading frame of this gene to code for a unique peptide sequence capable of binding a small ligand to form a fluorescent complex, restoration of expression by correction of the stop codon can be detected in real time using confocal microscopy.

Additional constructs can be made to test additional gene alteration events or for specific use in different expression systems. For example, alternative comparable plant plasmids or integration vectors such as, e.g. those based on T-DNA, can be constructed for stable expression in plant cells according to the disclosures herein. Such constructs would use a plant specific promoter such as, e.g., cauliflower mosaic virus 35S promoter, to replace the promoters directing expression of the neo, hyg or aureobasidinA resistance gene disclosed herein, including for example, in Figures 7B, 9 and 10 herein. Moreover, the green fluorescent protein (GFP) sequence used herein may be modified to increase expression in plant cells such as Arabidopsis and the other plants disclosed herein as described in Haseloff et al., Proc. Natl.Acad. Sci. 94(6): 2122-7 (1997), Rouwendal et al. Plant Mol. Biol. 33(6): 989-99 (1997) and Hu et al. FEBS Lett. 369(2-3): 331-4 (1995). Codon usage for optimal expression of GFP in plants results from increasing the frequency of codons with a C or a G in the third position from 32 to about 60%. Specific constructs are disclosed and can be used as follows with such plant specific alterations.

We also construct three mammalian expression vectors, pHyg(rep)eGFP, pHyg(Δ)eGFP, pHyg(ins)eGFP, that contain a substitution mutation at nucleotide 137 of the hygromycin-B coding sequence. (rep) indicates a T137→G replacement, (Δ) represents a deletion of the G137 and (ins) represents an A insertion between nucleotides 136 and 137. All point mutations create a nonsense termination codon at residue 46. We use pHYGeGFP plasmid (Invitrogen, CA) DNA as a template to introduce the mutations into the hygromycin-eGFP fusion gene by a two step site-directed mutagenesis PCR protocol. First, we generate overlapping 5' and a 3' amplicons surrounding the mutation site by PCR for each of the point mutation sites. A 215 bp 5' amplicon for the (rep), (Δ) or (ins) was generated by polymerization from oligonucleotide primer HygEGFPf (5'-AATACGACTCACTATAGG-3') to primer Hygrepr (5'GACCTATCCACGCCCTCC-3'), HygΔr (5'-GACTATCCACGCCCTCC-3'), or Hyginsr (5'-GACATTATCCACGCCCTCC-3'), respectively. We generate a 300bp 3' amplicon for the (rep), (Δ) or (ins) by polymerization from oligonucleotide primers Hygrepf (5'-CTGGGATAGGTCCTGCGG-3'), HygΔf

(5'-CGTGGATAGTCCTGCGG-3'), Hyginsf (5'-CGTGGATAATGTCCTGCGG-3'), respectively to primer HygEGFPr (5'-AAATCACGCCATGTAGTG-3'). We mix 20 ng of each of the resultant 5' and 3' overlapping amplicon mutation sets and use the mixture as a template to amplify a 523 bp fragment of the Hygromycin gene spanning the KpnI and RsrII restriction endonuclease sites. We use the Expand PCR system (Roche) to generate all amplicons with 25 cycles of denaturing at 94°C for 10 seconds, annealing at 55°C for 20 seconds and elongation at 68°C for 1 minute. We digest 10 µg of vector pHYGeGFP and 5 µg of the resulting fragments for each mutation with KpnI and RsrII (NEB) and gel purify the fragment for enzymatic ligation. We ligate each mutated insert into pHYGeGFP vector at 3:1 molar ratio using T4 DNA ligase (Roche). We screen clones by restriction digest, confirm the mutation by Sanger dideoxy chain termination sequencing and purify the plasmid using a Qiagen maxiprep kit.

Oligonucleotide synthesis and cells. Chimeric oligonucleotides and single-stranded oligonucleotides (including those with the indicated modifications) are synthesized using available phosphoramidites on controlled pore glass supports. After deprotection and detachment from the solid support, each oligonucleotide is gel-purified using, for example, procedures such as those described in Gamper et al., Biochem. 39, 5808-5816 (2000) and the concentrations determined spectrophotometrically (33 or 40 µg/ml per A₂₆₀ unit of single-stranded or hairpin oligomer). HUH7 cells are grown in DMEM, 10% FBS, 2mM glutamine, 0.5% pen/strep. The *E.coli* strain, DH10B, is obtained from Life Technologies (Gaithersburg, MD); DH10B cells contain a mutation in the RECA gene (*rec*A).

Cell-free extracts. Although this portion of this example is directed to mammalian systems, similar extracts from plants can be prepared as disclosed elsewhere in this application and used as disclosed in this example. We prepare cell-free extracts from HUH7 cells or other mammalian cells, as follows. We employ this protocol with essentially any mammalian cell including, for example, H1299 cells (human epithelial carcinoma, non-small cell lung cancer), C127I (immortal murine mammary epithelial cells), MEF (mouse embryonic fibroblasts), HEC-1-A (human uterine carcinoma), HCT15 (human colon cancer), HCT116 (human colon carcinoma), LoVo (human colon adenocarcinoma), and HeLa (human cervical carcinoma). We harvest approximately 2x10⁸ cells. We then wash the cells immediately in cold hypotonic buffer (20 mM HEPES, pH7.5; 5 mM KCl; 1.5 mM MgCl₂; 1 mM DTT) with 250 mM sucrose. We then resuspend the cells in cold hypotonic buffer without sucrose and after 15 minutes we lyse the cells with 25 strokes of a Dounce homogenizer using a tight fitting pestle. We incubate the lysed cells for 60 minutes on ice and centrifuge the sample for 15 minutes at 12000xg. The cytoplasmic fraction is enriched with nuclear proteins due to the extended co-incubation of the fractions following cell breakage.

20

5

10

15

25

10

15

20

25

30

We then immediately aliquote and freeze the supernatant at -80°C. We determine the protein concentration in the extract by the Bradford assay.

We also perform these experiments with cell-free extracts obtained from fungal cells, including, for example, *S. cerevisiae* (yeast), *Ustilago maydis*, and *Candida albicans*. For example, we grow yeast cells into log phase in 2L YPD medium for 3 days at 30°C. We then centrifuge the cultures at 5000xg, resuspend the pellets in a 10% sucrose, 50 mM Tris, 1mM EDTA lysis solution and freeze them on dry ice. After thawing, we add KCl, spermidine and lyticase to final concentrations of 0.25 mM, 5 mM and 0.1 mg/ml, respectively. We incubate the suspension on ice for 60 minutes, add PMSF and Triton X100 to final concentrations of 0.1 mM and 0.1% and continue to incubate on ice for 20 minutes. We centrifuge the lysate at 3000xg for 10 minutes to remove larger debris. We then remove the supernatant and clarify it by centrifuging at 30000xg for 15 minutes. We then add glycerol to the clarified extract to a concentration of 10% (v/v) and freeze aliquots at -80°C. We determine the protein concentration of the extract by the Bradford assay.

Reaction mixtures of 50 µl are used, consisting of 10-30 µg protein of cell-free extract, which can be optionally substituted with purified proteins or enriched fractions, about 1.5 µg chimeric double-hairpin oligonucleotide or 0.55 µg single-stranded molecule (3S/25G or 6S/25G, see Figure 1), and 1 µg of plasmid DNA (see Figures 2 and 3) in a reaction buffer of 20 mM Tris, pH 7.4, 15 mM MgCl₂, 0.4 mM DTT, and 1.0 mM ATP. Reactions are initiated with extract and incubated at 30°C for 45 min. The reaction is stopped by placing the tubes on ice and then immediately deproteinized by two phenol/chloroform (1:1) extractions. Samples are then ethanol precipitated. The nucleic acid is pelleted at 15,000 r.p.m. at 4°C for 30 min., is washed with 70% ethanol, resuspended in 50 µl H₂0, and is stored at -20°C. 5 µl of plasmid from the resuspension (~100 ng) was transfected in 20 µl of DH10B cells by electroporation (400 V, 300 μF, 4 kΩ) in a Cell-Porator apparatus (Life Technologies). After electroporation, cells are transferred to a 14 ml Falcon snap-cap tube with 2 ml SOC and shaken at 37°C for 1 h. Enhancement of final kan colony counts is achieved by then adding 3 ml SOC with 10 µg/ml kanamycin and the cell suspension is shaken for a further 2 h at 37°C. Cells are then spun down at 3750 x g and the pellet is resuspended in 500 µl SOC. 200 µl is added undiluted to each of two kanamycin (50 µg/ml) agar plates and 200 µl of a 10⁵ dilution is added to an ampicillin (100 µg/ml) plate. After overnight 37°C incubation, bacterial colonies are counted using an Accucount 1000 (Biologics). Gene conversion effectiveness is measured as the ratio of the average of the kan colonies on both plates per amp colonies multiplied by 10⁻⁵ to correct for the amp dilution.

10

15

20

25

30

The following procedure can also be used. 5 µl of resuspended reaction mixtures (total volume 50 µl) are used to transform 20 µl aliquots of electro-competent DH10B bacteria using a Cell-Porator apparatus (Life Technologies). The mixtures are allowed to recover in 1 ml SOC at 37°C for 1 hour at which time 50 µg/ml kanamycin or 12 µg/ml tetracycline is added for an additional 3 hours. Prior to plating, the bacteria are pelleted and resuspended in 200 µ1 of SOC. 100 µl aliquots are plated onto kan or tet agar plates and 100 µl of a 10⁻⁴ dilution of the cultures are concurrently plated on agar plates containing 100 µg/ml of ampicillin. Plating is performed in triplicate using sterile Pyrex beads. Colony counts are determined by an Accu-count 1000 plate reader (Biologics). Each plate contains 200-500 ampicillin resistant colonies or 0-500 tetracycline or kanamycin resistant colonies. Resistant colonies are selected for plasmid extraction and DNA sequencing using an ABI Prism kit on an ABI 310 capillary sequencer (PE Biosystems).

Chimeric single-stranded oligonucleotides. In Figure 1 the upper strands of chimeric oligonucleotides I and II are separated into pathways resulting in the generation of single-stranded oligonucleotides that contain (Figure 1A) 2'-O-methyl RNA nucleotides or (Figure 1B) phosphorothicate linkages. Fold changes in repair activity for correction of kan^s in the HUH7 cell-free extract are presented in parenthesis. Each single-stranded oligonucleotide is 25 bases in length and contains a G residue mismatched to the complementary sequence of the kan^s gene.

Molecules bearing 3, 6, 8, 10 and 12 phosphorothioate linkages in the terminal regions at each end of a backbone with a total of 24 linkages (25 bases) are tested in the kan⁵ system. Alternatively, molecules bearing 2, 4, 5, 7, 9 and 11 in the terminal regions at each end are tested. The results of one such experiment, presented in Table 1 and Figure 1B, illustrate an enhancement of correction activity directed by some of these modified structures. In this illustrative example, the most efficient molecules contained 3 or 6 phosphorothioate linkages at each end of the 25-mer; the activities are approximately equal (molecules IX and X with results of 3.09 and 3.7 respectively). A reduction in alteration activity may be observed as the number of modified linkages in the molecule is further increased. Interestingly, a single-strand molecule containing 24 phosphorothioate linkages is minimally active suggesting that this backbone modification when used throughout the molecule supports only a low level of targeted gene repair or alteration. Such a non-altering, completely modified molecule can provide a baseline control for determining efficiency of correction for a specific oligonucleotide molecule of known sequence in defining the optimum oligonucleotide for a particular alteration event.

The efficiency of gene repair directed by phosphorothioate-modified, single-stranded molecules, in a length dependent fashion, led us to examine the length of the RNA modification used in

the original chimera as it relates to correction. Construct III represents the "RNA-containing" strand of chimera I and, as shown in Table 1 and Figure 2A, it promotes inefficient gene repair. But, as shown in the same figure, reducing the RNA residues on each end from 10 to 3 increases the frequency of repair. At equal levels of modification, however, 25-mers with 2'-O-methyl ribonucleotides were less effective gene repair agents than the same oligomers with phosphorothioate linkages. These results reinforce the fact that an RNA containing oligonucleotide is not as effective in promoting gene repair or alteration as a modified DNA oligonucleotide.

Repair of the kanamycin mutation requires a G→C exchange. To confirm that the specific desired correction alteration was obtained, colonies selected at random from multiple experiments are processed and the isolated plasmid DNA is sequenced. As seen in Figure 4, colonies generated through the action of the single-stranded molecules 3S/25G (IX), 6S/25G (X) and 8S/25G (XI) respectively contained plasmid molecules harboring the targeted base correction. While a few colonies appeared on plates derived from reaction mixtures containing 25-mers with 10 or 12 thioate linkages on both ends, the sequences of the plasmid molecules from these colonies contain nonspecific base changes. In these illustrative examples, the second base of the codon is changed (see Figure 3). These results show that modified single-strands can direct gene repair, but that efficiency and specificity are reduced when the 25-mers contain 10 or more phosphorothioate linkages at each end.

In Figure 1, the numbers 3, 6, 8, 10, 12 and 12.5 respectively indicate how many phosphorothioate linkages (S) or 2'-O-methyl RNA nucleotides (R) are at each end of the examplified molecule although other molecules with 2, 4, 5, 7, 9 and 11 modifications at each end can also be tested. Hence oligo 12S/25G represents a 25-mer oligonucleotide which contains 12 phosphorothioate linkages on each side of the central G target mismatch base producing a fully phosphorothioate linked backbone, displayed as a dotted line. The dots are merely representative of a linkage in the figure and do not depict the actual number of linkages of the oligonucleotide. Smooth lines indicate DNA residues, wavy lines indicate 2'-O-methyl RNA residues and the carat indicates the mismatched base site (G).

Correction of a mutant kanamycin gene in cultured mammalian cells. Although this portion of this example is directed to cultured mammalian cells, comparable methods may be used using cultured plant cells or protoplasts of those cells from the plant species disclosed herein. The experiments are performed using different eukaryotic cells including plant and mammalian cells, including, for example, 293 cells (transformed human primary kidney cells), HeLa cells (human cervical carcinoma), and H1299 (human epithelial carcinoma, non-small cell lung cancer). HeLa cells are grown at 37°C and 5% CO₂ in a humidified incubator to a density of 2 x 10⁵ cells/ml in an 8 chamber slide (Lab-Tek). After replacing the

10

5

15

20

25

10

15

20

25

30

regular DMEM with Optimem, the cells are co-transfected with 10 µg of plasmid pAURNeo(-)FIAsH and 5 μg of modified single-stranded oligonucleotide (3S/25G) that is previously complexed with 10 μg lipofectamine, according to the manufacturer's directions (Life Technologies). The cells are treated with the liposome-DNA-oligo mix for 6 hrs at 37°C. Treated cells are washed with PBS and fresh DMEM is added. After a 16-18 hr recovery period, the culture is assayed for gene repair. The same oligonucleotide used in the cell-free extract experiments is used to target transfected plasmid bearing the kan^s gene. Correction of the point mutation in this gene eliminates a stop codon and restores full expression. This expression can be detected by adding a small non-fluorescent ligand that bound to a C-C-R-E-C-C sequence in the genetically modified carboxy terminus of the kan protein, to produce a highly fluorescent complex (FIAsH system, Aurora Biosciences Corporation). Following a 60 min incubation at room temperature with the ligand (FIAsH-EDT2), cells expressing full length kan product acquire an intense green fluorescence detectable by fluorescence microscopy using a fluorescein filter set. Similar experiments are performed using the HygeGFP target as described in Example 2 with a variety of mammalian cells, including, for example, COS-1 and COS-7 cells (African green monkey), and CHO-K1 cells (Chinese hamster ovary). The experiments are also performed with PG12 cells (rat pheochromocytoma) and ES cells (human embryonic stem cells).

Summary of experimental results. Tables 1, 2 and 3 respectively provide data on the efficiency of gene repair directed by single-stranded oligonucleotides. Table 1 presents data using a cell-free extract from human liver cells (HUH7) to catalyze repair of the point mutation in plasmid pkan^sm4021 (see Figure 1). Table 2 illustrates that the oligomers are not dependent on MSH2 or MSH3 for optimal gene repair activity. Table 3 illustrates data from the repair of a frameshift mutation (Figure 3) in the tet gene contained in plasmid pTetΔ208. Table 4 illustrates data from repair of the pkan^sm4021 point mutation catalyzed by plant cell extracts prepared from canola and musa (banana). Colony numbers are presented as kan^r or tet and fold increases (single strand versus double hairpin) are presented for kan^r in Table 1.

Figure 5A is a confocal picture of HeLa cells expressing the corrected fusion protein from an episomal target. Gene repair is accomplished by the action of a modified single-stranded oligonucleotide containing 3 phosphorothicate linkages at each end (3S/25G). Figure 5B represents a "Z-series" of HeLa cells bearing the corrected fusion gene. This series sections the cells from bottom to top and illustrates that the fluorescent signal is "inside the cells".

Results. In summary, we have designed a novel class of single-stranded oligonucleotides with backbone modifications at the termini and demonstrate gene repair/conversion

activity in mammalian and plant cell-free extracts. We confirm that the all DNA strand of the RNA-DNA double-stranded double hairpin chimera is the active component in the process of gene repair. In some cases, the relative frequency of repair by the novel oligonucleotides of the invention is elevated approximately 3-4-fold in certain embodiments when compared to frequencies directed by chimeric RNA-DNA double hairpin oligonucleotides.

This strategy centers around the use of extracts from various sources to correct a mutation in a plasmid using a modified single-stranded or a chimeric RNA-DNA double hairpin oligonucleotide. A mutation is placed inside the coding region of a gene conferring antibiotic resistance in bacteria, here kanamycin or tetracycline. The appearance of resistance is measured by genetic readout in *E.coli* grown in the presence of the specified antibiotic. The importance of this system is that both phenotypic alteration and genetic inheritance can be measured. Plasmid pKsm4021 contains a mutation (T→G) at residue 4021 rendering it unable to confer antibiotic resistance in *E.coli*. This point mutation is targeted for repair by oligonucleotides designed to restore kanamycin resistance. To avoid concerns of plasmid contamination skewing the colony counts, the directed correction is from G→C rather than G→T (wild-type). After isolation, the plasmid is electroporated into the DH10B strain of *E.coli*, which contains inactive RecA protein. The number of kanamycin colonies is counted and normalized by ascertaining the number of ampicillin colonies, a process that controls for the influence of electroporation. The number of colonies generated from three to five independent reactions was averaged and is presented for each experiment. A fold increase number is recorded to aid in comparison.

20

15

5

10

The original RNA-DNA double hairpin chimera design, e.g., as disclosed in U.S. Patent 5,565,350, consists of two hybridized regions of a single-stranded oligonucleotide folded into a double hairpin configuration. The double-stranded targeting region is made up of a 5 base pair DNA/DNA segment bracketed by 10 base pair RNA/DNA segments. The central base pair is mismatched to the corresponding base pair in the target gene. When a molecule of this design is used to correct the kan's mutation, gene repair is observed (I in Figure 1A). Chimera II (Figure 1B) differs partly from chimera I in that only the DNA strand of the double hairpin is mismatched to the target sequence. When this chimera was used to correct the kan's mutation, it was twice as active. In the same study, repair function could be further increased by making the targeting region of the chimera a continuous RNA/DNA hybrid.

30

25

Frame shift mutations are repaired. By using plasmid pT^sΔ208, described in Figure 1(C) and Figure 3, the capacity of the modified single-stranded molecules that showed activity in correcting a point mutation, can be tested for repair of a frameshift. To determine efficiency of correction of the mutation, a chimeric oligonucleotide (Tet I), which is designed to insert a T residue at position 208, is

10

15

20

used. A modified single-stranded oligonucleotide (Tet IX) directs the insertion of a T residue at this same site. Figure 3 illustrates the plasmid and target bases designated for change in the experiments. When all reaction components are present (extract, plasmid, oligomer), tetracycline resistant colonies appear. The colony count increases with the amount of oligonucleotide used up to a point beyond which the count falls off (Table 3). No colonies above background are observed in the absence of either extract or oligonucleotide, nor when a modified single-stranded molecule bearing perfect complementarity is used. Figure 3 represents the sequence surrounding the target site and shows that a T residue is inserted at the correct site. We have isolated plasmids from fifteen colonies obtained in three independent experiments and each analyzed sequence revealed the same precise nucleotide insertion. These data suggest that the single-stranded molecules used initially for point mutation correction can also repair nucleotide deletions.

Comparison of phosphorothioate oligonucleotides to 2'-O-methyl substituted oligonucleotides. From a comparison of molecules VII and XI, it is apparent that gene repair is more subject to inhibition by RNA residues than by phosphorothioate linkages. Thus, even though both of these oligonucleotides contain an equal number of modifications to impart nuclease resistance, XI (with 16 phosphorothioate linkages) has good gene repair activity while VII (with 16 2'-O-methyl RNA residues) is inactive. Hence, the original chimeric double hairpin oligonucleotide enabled correction directed, in large part, by the strand containing a large region of contiguous DNA residues.

Oligonucleotides can target multiple nucleotide alterations within the same template. The ability of individual single-stranded oligonucleotides to correct multiple mutations in a single target template is tested using the plasmid pKsm4021 and the following single-stranded oligonucleotides modified with 3 phosphorothioate linkages at each end (indicated as underlined nucleotides): Oligo1 is a 25-mer with the sequence TTCGATAAGCCTATGCTGACCCGTG corrects the original mutation present in the kanamycin resistance gene of pKsm4021 as well as directing another alteration 2 basepairs away in the target sequence (both indicated in boldface); Oligo2 is a 70-mer with the 5'-end sequence TTCGGCTACGACTGGGCACAACAGACAATTGGC with the remaining nucleotides being completely complementary to the kanamycin resistance gene and also ending in 3 phosphorothioate linkages at the 3' end. Oligo2 directs correction of the mutation in pKsm4021 as well as directing another alteration 21 basepairs away in the target sequence (both indicated in boldface).

We also use additional oligonucleotides to assay the ability of individual oligonucleotides to correct multiple mutations in the pKsM4021 plasmid. These include, for example, a second 25-mer that alters two nucleotides that are three nucleotides apart with the sequence 5'-

30

10

15

20

25

TTGTGCCCAGTCGTATCCGAATAGC-3'; a 70-mer that alters two nucleotides that are 21 nucleotides apart with the sequence 5'-CATCAGAGCAGCCAATTGTCTGTTGTGCCCAGTCGTAGCCGAA TAGCCTCTCCACCCAAGCGGCCGGAGA-3'; and another 70-mer that alters two nucleotides that are 21 nucleotides apart with the sequence 5'-

GCTGACAGCCGGAACACGGCGGCATCAGAGCAGCCAATTGTCTGTTGTGCCCAGTCGTAGCCGAAT AGCCT-3'. The nucleotides in the oligonucleotides that direct alteration of the target sequence are underlined and in boldface. These oligonucleotides are modified in the same way as the other oligonucleotides of the invention.

We assay correction of the original mutation in pK⁵m4021 by monitoring kanamycin resistance (the second alterations which are directed by Oligo2 and Oligo3 are silent with respect to the kanamycin resistance phenotype). In addition, in experiments with Oligo2, we also monitor cleavage of the resulting plasmids using the restriction enzyme Tsp509l which cuts at a specific site present only when the second alteration has occurred (at ATT in Oligo2). We then sequence these clones to determine whether the additional, silent alteration has also been introduced. The results of an analysis are presented below:

•	Oligo1 (25-mer)	Oligo2 (70-mer)
Clones with both sites changed	9	7
Clones with a single site changed	0	2
Clones that were not changed	4	1

Nuclease sensitivity of unmodified DNA oligonucleotide. Electrophoretic analysis of nucleic acid recovered from the cell-free extract reactions conducted here confirm that the unmodified single-stranded 25-mer did not survive incubation whereas greater than 90% of the terminally modified oligos did survive (as judged by photo-image analyses of agarose gels).

Plant extracts direct repair. The modified single-stranded constructs can be tested in plant cell extracts. We have observed gene alteration using extracts from multiple plant sources, including, for example, Arabidopsis, tobacco, banana, maize, soybean, canola, wheat, spinach as well as spinach chloroplast extract or extracts made from other plant cells disclosed herein. We prepare the extracts by grinding plant tissue or cultured cells under liquid nitrogen with a mortar and pestle. We extract 3 ml of the ground plant tissue with 1.5 ml of extraction buffer (20 mM HEPES, pH7.5; 5 mM KCl;

1.5 mM MgCl₂; 10 mM DTT; and 10% [v/v] glycerol). Some plant cell-free extracts also include about 1% (w/v) PVP. We then homogenize the samples with 15 strokes of a Dounce homogenizer. Following homogenization, we incubate the samples on ice for 1 hour and centrifuge at 3000 x g for 5 minutes to remove plant cell debris. We then determine the protein concentration in the supernatants (extracts) by Bradford assay. We dispense 100 μ g (protein) aliquots of the extracts which we freeze in a dry ice-ethanol bath and store at -80°C.

We describe experiments using two sources here: a dicot (canola) and a monocot (banana, *Musa acuminata* cv. Rasthali). Each vector directs gene repair of the kanamycin mutation (Table 4); however, the level of correction is elevated 2-3 fold relative to the frequency observed with the chimeric oligonucleotide. These results are similar to those observed in the mammalian system wherein a significant improvement in gene repair occurred when modified single-stranded molecules were used. Tables are attached hereto.

10

Table I

Gene repair activity is directed by single-stranded oligonucleotides.

Oligonucleotide	Plasmid	Extract (ug)	kan ^r colonies	Fold increase
I	pK ^S m4021	10	300	
I	1	20	418	1.0x
\mathbf{II}	1	10	537	
II		20	748	1.78x
Ш		10	3	
Ш		20	5	0.01x
IV	1	10	112	
IV		20	96	0.22x
V		10	217	
V		20	342	0.81x
VI	ļ	10	6	
VI		20	39	0.093x
VII		10	0	***************************************
VII		20	0	0x
VIII	. [10	. 3	
VIII	1	20	5	0.01x
IX	ļ	10	936	
IX	•	20	1295	3.09x
X		10	1140	
X		20	1588	3.7x
XI	l	10	480	
XI		20	681	1.6x
XII	į	10	18	
XII		20	25	0.059x
XIII		10	0	
XШ		20	4	0.009x
•	(A <u>F</u>)	20	0	
I	V	-	0 .	

Plasmid pK m4021 (1µg), the indicated oligonucleotide (1.5 µg chimeric oligonucleotide or 0.55 µg single-stranded oligonucleotide; molar ratio of oligo to plasmid of 360 to 1) and either 10 or 20 µg of HUH7 cell-free extract were incubated 45 min at 37°C. Isolated plasmid DNA was electroporated into *E. coli* (strain DH10B) and the number of kan^r colonies counted. The data represent the number of kanamycin resistant colonies per 10⁶ ampicillin resistant colonies generated from the same reaction and is the average of three

experiments (standard deviation usually less than +/- 15%). Fold increase is defined relative to 418 kan^r colonies (second reaction) and in all reactions was calculated using the 20µg sample.

Table II

Modified single-stranded oligomers are not dependent on MSH2 or MSH3 for optimal gene repair activity.

A. Oligonucleotide	Plasmid	Extract	<u>kan^r colonies</u>
IX (3S/25G)		HUH7	637
X (6S/25G)		HUH7	836
IX	ļ	MEF2 ^{-/-}	781
X		MEF2	676
IX	1	MEF3-	582
X	ĺ	MEF3	530
. IX		MEF"	. 332
X		MEF**	497
•	İ	MEF2 ^{-/-}	. 10
•	1	MEF3 ⁴	5
-	. ↓	MEF**	14 .

Chimeric oligonucleotide (1.5 µg) or modified single-stranded oligonucleotide (0.55 µg) was incubated with 1µg of plasmid pK*m4021 and 20µg of the indicated extracts. MEF represents mouse embryonic fibroblasts with either MSH2 (2^{-/-}) or MSH3 (3^{-/-}) deleted.

MEF^{-/-/-} indicates wild-type mouse embryonic fibroblasts. The other reaction components were then added and processed through the bacterial readout system. The data represent the number of kanamycin resistant colonies per 10⁶ ampicillin resistant colonies.

Table III

Frameshift mutation repair is directed by single-stranded oligonucleotides

<u>Oligonucleotide</u>	Plasmid	Extract	tet ^r colonies
Tet IX (3S/25A; 0.5 μg)	pT ⁴ Δ208 (1μg)		- 0
		20µg	0
Tet IX (0.5 μg)		1	48
Tet IX (1.5 μg)	[130
Tet IX (2.0 μg)	,		68
Tet I (chimera; 1.5 µg)	▼	★	48

Each reaction mixture contained the indicated amounts of plasmid and oligonucleotide. The extract used for these experiments came from HUH7 cells. The data represent the number of tetracycline resistant colonies per 10⁶ ampicillin resistant colonies generated from the same reaction and is the average of 3 independent experiments. Tet I is a chimeric oligonucleotide and Tet IX is a modified single-stranded oligonucleotide that are designed to insert a T residue at position 208 of pT⁴Δ208. These oligonucleotides are equivalent to structures I and IX in Figure 2.

Table IV

Plant cell-free extracts support gene repair by single-stranded oligonucleotides

Oligonucleotide	Plasmid	Extract	kan' colonies
II (chimera)	pK ^S m4021	30µg Canola	337
IX (3S/25G)		Canola	763
X (6S/25G)		Canola	882
II		Musa	203
IX		Musa	. 343
X		Musa	746
•		Canola	0
•	1	Musa	0
IX		- Canola	. 0
X	1	- Musa	0

Canola or Musa cell-free extracts were tested for gene repair activity on the kanamycin-sensitive gene as previously described in (18). Chimeric oligonucleotide II (1.5 µg) and modified single-stranded oligonucleotides IX and X (0.55µg) were used to correct pK^Sm4021. Total number of kan^r colonies are present per 10⁷ ampicillin resistant colonies and represent an average of four independent experiments.

Table V

Gene repair activity in cell-free extracts prepared from yeast (Saccharomyces cerevisiae)

-type	Plasmud	Chimeric Oligo		SS Oligo Kan /amp' x 10°
4	pKan*m4021	lµg		0.36
4			346	0.81
•		Bril		10.72
•			346	17.41
APMS1		1µg		2.02
	>		341	3.23

In this experiment, the kan' gene in pKan' 4021 is corrected by either a chimeric double-hairpin oligonucleotide or a single-stranded oligonucleotide comaining three thioate linkages at each end (3S/25G).

EXAMPLE 2 Yeast Cell Targeting Assay Method for Base Alteration and Preferred Oligonucleotide Selection

In this example, single-stranded oligonucleotides with modified backbones and double-hairpin oligonucleotides with chimeric, RNA-DNA backbones are used to measure gene repair using two episomal targets with a fusion between a hygromycin resistance gene and eGFP as a target for gene repair. These plasmids are pAURHYG(rep)GFP, which contains a point mutation in the hygromycin resistance gene (Figure 7), pAURHYG(ins)GFP, which contains a single-base insertion in the hygromycin resistance gene (Figure 7) and pAURHYG(Δ)GFP which has a single base deletion. We also use the plasmid containing a wild-type copy of the hygromycin-eGFP fusion gene, designated pAURHYG(wt)GFP, as a control. These plasmids also contain an aureobasidinA resistance gene. In pAURHYG(rep)GFP, hygromycin resistance gene function and green fluorescence from the eGFP protein are restored when a G at position 137, at codon 46 of the hygromycin B coding sequence, is converted to a C thus removing a premature stop codon in the hygromycin resistance gene coding region. In pAURHYG(ins)GFP, hygromycin resistance gene function and green fluorescence from the eGFP protein are restored when an A inserted between nucleotide positions 136 and 137, at codon 46 of the hygromycin B coding sequence, is deleted and a C is substituted for the T at position 137, thus correcting a frameshift mutation and restoring the reading frame of the hygromycin-eGFP fusion gene.

We synthesize the set of three yeast expression constructs pAURHYG(rep)eGFP, pAURHYG(Δ)eGFP, pAURHYG(ins)eGFP, that contain a point mutation at nucleotide 137 of the hygromycin-B coding sequence as follows. (rep) indicates a T137→G replacement, (Δ) represents a deletion of the G137 and (ins) represents an A insertion between nucleotides 136 and 137. We construct this set of plasmids by excising the respective expression cassettes by restriction digest from pHyg(x)EGFP and ligation into pAUR123 (Panvera, CA). We digest 10 μg pAUR123 vector DNA, as well as, 10 μg of each pHyg(x)EGFP construct with Kpnl and Sall (NEB). We gel purify each of the DNA fragments and prepare them for enzymatic ligation. We ligate each mutated insert into pHygEGFP vector at 3:1 molar ratio using T4 DNA ligase (Roche). We screen clones by restriction digest, confirm by Sanger dideoxy chain termination sequencing and purify using a Qiagen maxiprep kit.

We use this system to assay the ability of five oligonucleotides (shown in Figure 8) to support correction under a variety of conditions. The oligonucleotides which direct correction of the mutation in pAURHYG(rep)GFP can also direct correction of the mutation in pAURHYG(ins)GFP. Three of the four oligonucleotides (HygE3T/25, HygE3T/74 and HygGG/Rev) share the same 25-base sequence surrounding the base targeted for alteration. HygGG/Rev is an RNA-DNA chimeric double hairpin

20

15

5

10

25

oligonucleotide of the type described in the prior art. One of these oligonucleotides, HygE3T/74, is a 74-base oligonucleotide with the 25-base sequence centrally positioned. The fourth oligonucleotide, designated HygE3T/74 α , is the reverse complement of HygE3T/74. The fifth oligonucleotide, designated Kan70T, is a non-specific, control oligonucleotide which is not complementary to the target sequence. Alternatively, an oligonucleotide of identical sequence but lacking a mismatch to the target or a completely thioate modified oligonucleotide or a completely 2-0-methylated modified oligonucleotide may be used as a control. Alternatively, oligonucleotides containing one, two, three, four, five, six, eight, ten or more LNA modifications on at least one of the two termini (and preferrably the 3' terminus) may be used in different embodiments.

10

15

20

25

5

Oligonucleotide synthesis and cells. We synthesized and purified the chimeric, doublehairpin oligonucleotides and single-stranded oligonucleotides (including those with the indicated modifications) as described in Example 1. Plasmids used for assay were maintained stably in yeast (Saccharomyces cerevisiae) strain LSY678 MAT at low copy number under aureobasidin selection. Plasmids and oligonucleotides are introduced into yeast cells by electroporation as follows: to prepare electrocompetent yeast cells, we inoculate 10 ml of YPD media from a single colony and grow the cultures overnight with shaking at 300 rpm at 30°C. We then add 30 ml of fresh YPD media to the overnight cultures and continue shaking at 30°C until the OD_{600} was between 0.5 and 1.0 (3-5 hours). We then wash the cells by centrifuging at 4°C at 3000 rpm for 5 minutes and twice resuspending the cells in 25 ml ice-cold distilled water. We then centrifuge at 4°C at 3000 rpm for 5 minutes and resuspend in 1 ml ice-cold 1M sorbitol and then finally centrifuge the cells at 4°C at 5000 rpm for 5 minutes and resuspend the cells in 120 µl 1M sorbitol. To transform electrocompetent cells with plasmids or oligonucleotides, we mix 40 µl of cells with 5 µg of nucleic acid, unless otherwise stated, and incubate on ice for 5 minutes. We then transfer the mixture to a 0.2 cm electroporation cuvette and electroporate with a BIO-RAD Gene Pulser apparatus at 1.5 kV, 25 μ F, 200 Ω for one five-second pulse. We then immediately resuspend the cells in 1 ml YPD supplemented with 1M sorbitol and incubate the cultures at 30°C with shaking at 300 rpm for 6 hours. We then spread 200 µl of this culture on selective plates containing 300 µg/ml hygromycin and spread 200 μ l of a 10^5 dilution of this culture on selective plates containing 500 ng/mlaureobasidinA and/or and incubate at 30°C for 3 days to allow individual yeast colonies to grow. We then count the colonies on the plates and calculate the gene conversion efficiency by determining the number of hygromycin resistance colonies per 10⁵ aureobasidinA resistant colonies.

30

Frameshift mutations are repaired in yeast cells. We test the ability of the oligonucleotides shown in Figure 8 to correct a frameshift mutation in vivo using LSY678 yeast cells

containing the plasmid pAURHYG(ins)GFP. These experiments, presented in Table 6, indicate that these oligonucleotides can support gene correction in yeast cells. These data reinforce the results described in Example 1 indicating that oligonucleotides comprising phosphorothioate linkages facilitate gene correction much more efficiently than control duplex, chimeric RNA-DNA oligonucleotides. This gene correction activity is also specific as transformation of cells with the control oligonucleotide Kan70T produced no hygromycin resistant colonies above background and thus Kan70T did not support gene correction in this system. In addition, we observe that the 74-base oligonucleotide (HygE3T/74) corrects the mutation in pAURHYG(ins)GFP approximately five-fold more efficiently than the 25-base oligonucleotide (HygE3T/25). We also perform control experiments with LSY678 yeast cells containing the plasmid pAURHYG(wt)GFP. With this strain we observed that even without added oligonucleotides, there are too many hygromycin resistant colonies to count.

5

10

15

20

25

30

We also use additional oligonucleotides to assay the ability of individual oligonucleotides to correct multiple mutations in the pAURHYG(x)eGFP plasmid. These include, for example, one that alters two basepairs that are 3 nucleotides apart is a 74-mer with the sequence 5'CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGGTACGTCCTGCGGGGTAAATAGCTGCGCCGATG
GTTTCTAC-3'; a 74-mer that alters two basepairs that are 15 nucleotides apart with the sequence 5'CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGATACGTCCTGCGGGGTAAACAGCTGCGCCGATG
GTTTCTAC-3'; and a 74-mer that alters two basepairs that are 27 nucleotides apart with the sequence 5'CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGATACGTCCTGCGGGGTAAATAGCTGCGCCGACG
GTTTCTAC. The nucleotides in these oligonucleotides that direct alteration of the target sequence are underlined and in boldface. These oligonucleotides are modified in the same ways as the other oligonucleotides of the invention.

Oligonucleotides targeting the sense strand direct gene correction more efficiently. We compare the ability of single-stranded oligonucleotides to target each of the two strands of the target sequence of both pAURHYG(ins)GFP and pAURHYG(rep)GFP. These experiments, presented in Tables 7 and 8, indicate that an oligonucleotide, HygE3T/74 α , with sequence complementary to the sense strand (i.e. the strand of the target sequence that is identical to the mRNA) of the target sequence facilitates gene correction approximately ten-fold more efficiently than an oligonucleotide, HygE3T/74, with sequence complementary to the non-transcribed strand which serves as the template for the synthesis of RNA. As indicated in Table 7, this effect was observed over a range of oligonucleotide concentrations from 0-3.6 μ g, although we did observe some variability in the difference between the two oligonucleotides (indicated in Table 7 as a fold difference between HygE3T/74 α and HygE3T/74).

10 -

15

Furthermore, as shown in Table 8, we observe increased efficiency of correction by HygE3T/74 α relative to HygE3T/74 regardless of whether the oligonucleotides were used to correct the base substitution mutation in pAURHYG(rep)GFP or the insertion mutation in pAURHYG(ins)GFP. The data presented in Table 8 further indicate that the single-stranded oligonucleotides correct a base substitution mutation more efficiently than an insertion mutation. However, this last effect was much less pronounced and the oligonucleotides of the invention are clearly able efficiently to correct both types of mutations in yeast cells. In addition, the role of transcription is investigated using plasmids with inducible promoters such as that described in Figure 10.

Optimization of oligonucleotide concentration. To determine the optimal concentration of oligonucleotide for the purpose of gene alteration, we test the ability of increasing concentrations of Hyg3T/74 α to correct the mutation in pAURHYG(rep)GFP contained in yeast LSY678. We chose this assay system because our previous experiments indicated that it supports the highest level of correction. However, this same approach could be used to determine the optimal concentration of any given oligonucleotide. We test the ability of Hyg3T/74 α to correct the mutation in pAURHYG(rep)GFP contained in yeast LSY678 over a range of oligonucleotide concentrations from 0-10.0 μ g. As shown in Table 9, we observe that the correction efficiency initially increases with increasing oligonucleotide concentration, but then declines at the highest concentration tested.

Tables are attached hereto.

Table 6

Correction of an insertion mutation in pAURHYG(ins)GFP by HygGG/Rev, HygE3T/25 and HygE3T/74

Oligonucleotide Tested	Colonies on	Colonies on	Correction
	Hygromycin	Aureobasidin (/105)	Efficiency
HygGG/Rev	3	157	0.02
HygE3T/25	64	147	0.44
HygE3T/74	280	174	1.61
Kan70T	0	_	_

Table 7

An oligonucleotide targeting the sense strand of the target sequence corrects more efficiently.

Amount of Oligonucleotide (µg)	Colonies per hy	gromycin plate
	HygE3T/74	HygE3T/74a
0	0	0
0.6	24	128 (8.4x)*
1.2	69	140 (7.5x)*
2.4	62	167 (3.8x)*
3.6	29	367 (15x)*

^{*} The numbers in parentheses represent the fold increase in efficiency for targeting the non-transcribed strand as compared to the other strand of a DNA duplex that encodes a protein.

15

Table 8

Correction of a base substitution mutation is more efficient than correction of a frame shift mutation.

Oligonucleotide Tested (5 µg)	Plasmid tested (co	ntained in LSY678)
	pAURHYG(ins)GFP	pAURHYG(rep)GFP
HygE3T/74	72	277
HygE3T/74α	1464	2248
Kan70T	0	0

Table 9

Optimization of oligonucleotide concentration in electroporated yeast cells.

Amount (µg)	Colonies on hygromycin	Colonies on aureobasidin (/10 ⁵)	Correction efficiency
0	0	67	. 0
1.0	5	64	0.08
2.5	47	30	1.57
5.0	199	33	6.08
7.5	383	39	9.79
10.0	191	33	5.79

Example 3 Cultured Cell Manipulation

Although disclosure in this example is directed to use of stem cells or human blood cells and microinjection, the microinjection procedures may also be used with cultured plant cells or protoplasts using any plant species, including those disclosed herein. Mononuclear cells are isolated from human umbilical cord blood of normal donors using Ficoll Hypaque (Pharmacia Biotech, Uppsala, Sweden) density centrifugation. CD34+ cells are immunomagnetically purified from mononuclear cells using either

5

10

15

the progenitor or Multisort Kits (Miltenyi Biotec, Auburn, CA). Lin⁻CD38⁻ cells are purified from the mononuclear cells using negative selection with StemSep system according to the manufacturer's protocol (Stem Cell Technologies, Vancouver, CA). Cells used for microinjection are either freshly isolated or cryopreserved and cultured in Stem Medium (S Medium) for 2 to 5 days prior to microinjection. S Medium contains Iscoves' Modified Dulbecco's Medium without phenol red (IMDM) with 100 µg/ml glutamine/penicillin/streptomycin, 50 mg/ml bovine serum albumin, 50 µg/ml bovine pancreatic insulin, 1 mg/ml human transferrin, and IMDM; Stem Cell Technologies), 40 µg/ml low-density lipoprotein (LDL; Sigma, St. Louis, MO), 50 mM HEPEs buffer and 50 µM 2-mercaptoethanol, 20 ng/ml each of thrombopoietin, fit-3 ligand, stem cell factor and human IL-6 (Pepro Tech Inc., Rocky Hill, NJ). After microinjection, cells are detached and transferred in bulk into wells of 48 well plates for culturing.

35 mm dishes are coated overnight at 4° C with 50 µg/ml Fibronectin (FN) fragment CH-296 (Retronectin; TaKaRa Biomedicals, Panvera, Madison, WI) in phosphate buffered saline and washed with IMDM containing glutamine/penicillin/streptomycin. 300 to 2000 cells are added to cloning rings and attached to the plates for 45 minutes at 37° C prior to microinjection. After incubation, cloning rings are removed and 2 ml of S Medium are added to each dish for microinjection. Pulled injection needles with a range of 0.22 µm to 0.3 µm outer tip diameter are used. Cells are visualized with a microscope equipped with a temperature controlled stage set at 37° C and injected using an electronically interfaced Eppendorf Micromanipulator and Transjector. Successfully injected cells are intact, alive and remain attached to the plate post injection. Molecules that are flourescently labeled allow determination of the amount of oligonucleotide delivered to the cells.

For *in vitro* erythropoiesis from Lin⁻CD38⁻ cells, the procedure of Malik, 1998 can be used. Cells are cultured in ME Medium for 4 days and then cultured in E Medium for 3 weeks. Erythropoiesis is evident by glycophorin A expression as well as the presence of red color representing the presence of hemoglobin in the cultured cells. The injected cells are able to retain their proliferative capacity and the ability to generate myeloid and erythoid progeny. CD34+ cells can convert a normal A (β^A) to sickle T (β^S) mutation in the β -globin gene or can be altered using any of the oligonucleotides of the invention herein for correction or alteration of a normal gene to a mutant gene. Alternatively, stem cells can be isolated from blood of humans having genetic disease mutations and the oligonucleotides of the invention can be used to correct a defect or to modify genomes within those cells.

Alternatively, non-stem cell populations of cultured cells can be manipulated using any method known to those of skill in the art including, for example, the use of polycations, cationic lipids,

20

15

5

10

30

liposomes, polyethylenimine (PEI), electroporation, biolistics, calcium phosphate precipitation, or any other method known in the art.

Biolistic delivery of oligonucleotide into plant cells may be accomplished according to the following method. One milliliter of packed cell volume of plant cell suspensions are subcultured onto plates containing solid medium [with Murashige and Skoog salts from Gibco/BRL, 500 mg/liter Mes, 1 mg/liter thiamin, 100 mg/liter myo-inositol, 180 mg/liter KH2PO4, 2.21 mg/liter 2,4-dichlorophenoxyacetic acid (2,4-D), and 30 g/liter sucrose (pH 5.7) and having 8 g/liter agar-agar from Sigma added before autoclaving]. By using a helium-driven particle gun such as that from BioRad and following manufacturers directions, oligonucleotides may be introduced to cells after precipitation onto 1 micrometer or comparable gold microcarriers (Bio-Rad). To precipitate onto microcarriers, 35 microliters of a particle suspension (60 mg of microcarriers per ml of 100% ethanol) is transferred to a 1.5 ml microcentrifuge tube, which is agitated on a vortex mixer. Then 40 microliter of resuspended oligonucleotide (60 ng/microliter water) is added; then 75 microliter of ice-cold 2.5 M CaCl2 is added; then 75 microliter of icecold 0.1 M spermidine is added. The tube is mixed vigorously or a vortex mixer for 10 min at room temperature. The particles are allowed to settle for 10 min and are centrifuged at 11,750 g for 30 sec. The supernatant is removed and the particles are resuspended in 50 microliter of 100% ethanol. An aliquot of 10 microliter of the resuspended particles are applied to each macro-projectile which is used to bombard each plate once at 900 psi (1 psi = 6.89 kPa) with a gap distance (distance from power source to macroprojectile) of 1 cm and a target distance (distance from microprojectile launch site to target material) of 10 cm.

An alternative method of delivery can be used as follows. Cultured cells are suspended in liquid N6 medium and then plated on a VWR Scientific glass fiber filter. About 0.4 microgram of oligonucleotide are precipitated with 15 microliter of 2.5 mM CaCl2 and 5 microliter of 0.1 M spermidine onto 25 microgram of 1.0 micrometer gold particles. Microprojectile bombardment is performed by using a Bio-Rad PDS-1000 He particle delivery system or comparable machine following manufacturers instructions. Alterations in oligonucleotide concentrations can be employed to determine the optimum concentration of oligonucleotide according to the procedures described herein for any particular oligonucleotide of the invention.

Alternatively, the oligonucleotide of the invention may be delivered to a plant cell by electroporation of a protoplast derived from a plant part. The protoplasts may be formed by enzymatic treatment of a plant part, particularly a leaf, according to techniques such as those in Gallois et al., Methods in Molecular Biology 55: 89-107 by Humana Press. Such conditions for electroporation use

30

25

5

10

15

about 3×10^5 protoplasts in a total volume of about 0.3 ml with a concentration of oligonucleotide of between 0.6 to 4 microgram per ml.

EXAMPLE 4

Plant Cells

5

The oligonucleotides of the invention can also be used to repair or direct a mutagenic event in plants and animal cells. Although little information is available on plant mutations amongst natural cultivars, the oligonucleotides of the invention can be used to produce "knock out" mutations by modification of specific amino acid codons to produce stop codons (e.g., a CAA codon specifying Gln can be modified at a specific site to TAA; a AAG codon specifying Lys can be modified to UAG at a specific site; and a CGA codon for Arg can be modified to a UGA codon at a specific site). Such base pair changes will terminate the reading frame and produce a defective truncated protein, shortened at the site of the stop codon

15

10

. Alternatively, frameshift additions or deletions can be directed into the genome at a specific sequence to interrupt the reading frame and produce a garbled downstream protein. Such stop or frameshift mutations can be introduced to determine the effect of knocking out the protein in either plant or animal cells.

For introduction of a T-DNA, including the T-DNA in the plasmid of Figure 11, into a plant cell, *Agrobacterium tumefaciens* is used. These techniques are routine standard techniques known in the art. For example, one method follows. We transform *A. tumefaciens* is transformed by electroporation (using a BioRad Gene PulserTM). Competent *A. tumefaciens* is prepared using a method similar to that of preparing competent *E. coli* by suspending a freshly grown culture three times in ice-cold water and a final resuspension in 10% glycerol. Electroporation conditions are a 0.2 cm gap cuvette at a setting of 25 μ F, 200 Ω and 2.5 kV.

25

20

A. tumefaciens containing a plasmid with a T-DNA is then used to introduce the T-DNA into a plant cell using routine standard techniques known in the art. For example, we transform Arabidopsis by vacuum infiltration or by dipping flowers in an Agrobacterium solution containing a surfactant, e.g. L-77. Seeds are then collected, grown and screened for presence of the T-DNA. Alternatively, Agrobacterium can be used to transform callus tissue and the callus tissue can then be used to regenerate transformed plants.

30

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. Although the foregoing invention has been described in some

detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

Notes on the tables presented below:

Each of the following tables presents, for the specified gene, a plurality of mutations that are known to confer a relevant phenotype and, for each mutation, the oligonucleotides that can be used to correct the respective mutation site-specifically in the genome according to the present invention.

The left-most column identifies each alteration or mutation and the phenotype that the alteration/mutation confers.

For most entries, the mutation/alteration is identified at both the nucleic acid and protein level. At the amino acid level, mutations are presented according to the following standard nomenclature. The centered number identifies the position of the mutated codon in the protein sequence; to the left of the number is the wild type residue and to the right of the number is the mutant codon. Terminator codons are shown as "TERM". At the nucleic acid level, the entire triplet of the wild type and mutated codons is shown.

The middle column presents, for each mutation, four oligonucleotides capable of repairing the mutation site-specifically in the genome or in cloned DNA including DNA in artificial chromosomes, episomes, plasmids, or other types of vectors. The oligonucleotides of the invention, however, may include any of the oligonucleotides sharing portions of the sequence of the 121 base sequence. Thus, oligonucleotides of the invention for each of the depicted targets may be 18, 19, 20 up to about 121 nucleotides in length. Sequence may be added non-symmetrically.

All oligonucleotides are presented, per convention, in the 5' to 3' orientation. The nucleotide that effects the change in the genome is underlined and presented in bold.

The first of the four oligonucleotides for each mutation is a 121 nt oligonucleotide centered about the repair/altering nucleotide. The second oligonucleotide, its reverse complement, targets the opposite strand of the DNA duplex for repair/alteration. The third oligonucleotide is the minimal 17 nt domain of the first oligonucleotide, also centered about the repair/alteration nucleotide. The fourth oligonucleotide is the reverse complement of the third, and thus represents the minimal 17 nt domain of the second.

The third column of each table presents the SEQ ID NO: of the respective repair oligonucleotide.

10

5

15

20

30

10

15

20

Example 5

Engineering herbicide resistant plants

Chemical weed control is an important tool of modern agriculture and many herbicides have been developed for this purpose. Their use has resulted in substantial increases in the yields of many crops, including, for example, maize, soybeans, and cotton. Thus while the use of fertilizers and new high-yielding crop varieties have contributed greatly to the "green revolution," chemical weed control has also been at the forefront of technological achievement.

Herbicides having broad-spectrum activity are particularly useful because they obviate the need for multiple herbicides targeting different classes of weeds. The problem with such herbicides is that they typically also affect crops which are exposed to the herbicide. One way to overcome this is to generate plants which are resistant to one or more broad-spectrum herbicides. Such herbicide-tolerant plants may reduce the need for tillage to control weeds, thereby effectively reducing soil erosion and can reduce the quantity and number of different herbicides applied in the field.

Common herbicides used, for example, include those that inhibit the enzyme 5-enolpyruvyl-3-phosphoshikimic acid synthase (EPSPS), for example N-phosphonomethyl-glycine (e.g. glyphosate), those that inhibit acetolactate synthase (ALS) activity, for example the sulfonylureas and related herbicides, and those that inhibit dihydropteroate synthase, for example methyl[(4-aminophenyl)sulfonyl]carbamate (e.g. Asulam). Herbicide-tolerant plants can be produced by several methods, including, for example, introducing into the genome of the plant the ability to degrade the herbicide, the capacity to produce a higher level of the targeted enzyme, and/or expressing an herbicide-tolerant allele of the enzyme.

The attached tables disclose exemplary oligonucleotides base sequences which can be used to generate site-specific mutations in plant genes that confer herbicide resistance.

Table 10
Genome-Altering Oligos Conferring Glyphosate Resistance

5	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	Glyphosate Resistance EPSPS . Arabidopsis thaliana Gly97Ala	AAGCGTCGGAGATTGTACTTCAACCCATTAGAGAAATCTCCGGTC TTATTAAGCTTCCTGCCTCCAAGTCTCTATCAAATCGGATCCTGC TTCTCGCTGCTCTGTCTGAGGTATATATCAC	4341
10	GGC-GCC	GTGATATACCTCAGACAGAGCAGCGAGAAGCAGGATCCGATT TGATAGAGACTTGGAGGCAGGAAGCTTAATAAGACCGGAGATTT CTCTAATGGGTTGAAGTACAATCTCCGACGCTT	4342
		GCTTCCTG <u>C</u> CTCCAAGT ACTTGGAG <u>G</u> CAGGAAGC	4343
	Glyphosate Resistance		4344
	EPSPS Brassica napus	AAGCTTCAGAGATTGTGCTTCAACCAATCAGAGAAATCTCGGGTC TCATTAAGCTACCCGCATCCAAATCTCTCCCAATCGGATCCTCC TTCTTGCCGCTCTATCTGAGGTACATATACT	4345
15	Gly93Ala GGA-GCA	AGTATATGTACCTCAGATAGAGCGGCAAGAAGGAGGATCCGATT GGAGAGAGATTTGGAT <u>G</u> CGGGTAGCTTAATGAGACCCGAGATTT CTCTGATTGGTTGAAGCACAATCTCTGAAGCTT	4346
		GCTACCCG <u>C</u> ATCCAAAT	4347
		ATTTGGAT <u>G</u> CGGGTAGC	4348
	Glyphosate Resistance EPSPS 1 Nicotiana tabacum	AGCCCAACGAGATTGTGCTGCAACCCATCAAAGATATATCAGGC ACTGTTAAATTGCCTGCTTCTAAATCCCTTTCCAATCGTATTCTCC TTCTTGCTGCCCTTTCTAAGGGAAGGACTGT	4349
20	Gly95Ala GGT-GCT	ACAGTCCTTCCCTTAGAAAGGGCAGCAAGAAGGAGAATACGATT GGAAAGGGATTTAGAAGCAGGCAATTTAACAGTGCCTGATATATC TTTGATGGGTTGCAGCACAATCTCGTTGGGCT	4350
		ATTGCCTG <u>C</u> TTCTAAAT	4351
		ATTTAGAA <u>G</u> CAGGCAAT	4352
	Glyphosate Resistance EPSPS 2 Nicotiana tabacum	ATTGTTTCCTTGGTACGAAATGTCCTCCTGTTCGAATTGTCAGCA AGGGAGGCCTTCCCGCAGGGAAGGTAAAGCTCTCTGGATCAATT AGCAGCCAGTACTTGACTGCTCTGCT	4353
25	Gly62Ala GGA-GCA	GCCATAAGCAGAGCAGTCAAGTACTGGCTGCTAATTGATCCAGA GAGCTTTACCTTCCCTGCGGGAAGGCCTCCCTTGCTGACAATTC GAACAGGAGGACATTTCGTACCAAGGAAACAAT	4354
		CCTTCCCG <u>C</u> AGGGAAGG	4355
		CCTTCCCT <u>G</u> CGGGAAGG	4356
	Glyphosate Resistance EPSPS	ATTGTTTCCTTGGCACTGACTGCCCACCTGTTCGTGTCAATGGAA	4357
	Zea mays	TCGGAGGCTACCTGCTGGCAAGGTCAAGCTGTCTGGCTCCATC AGCAGTCAGTACTTGAGTGCCTTGCTGATGGC	
	Gly168Ala	GCCATCAGCAAGGCACTCAAGTACTGACTGCTGATGGCCAGA	4250
30	GGT-GCT	CAGCTTGACCTTGCCAGCAGTACTGACTGCTGATGGAGCCAGA CAGCTTGACCTTGCCAGCAGGTAGCCCTCCGATTCCATTGACAC GAACAGGTGGCCAGTGCCAAGGAAACAAT	4358

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
	GCTACCTG <u>C</u> TGGCAAGG	4359
	CCTTGCCA <u>G</u> CAGGTAGC	4360
Glyphosate Resistance EPSPS Oryza sativa	ACTGTTTCCTTGGCACTGAATGCCCACCTGTTCGTGTCAAGGGA ATTGGAGGACTTCCTGCTGGCAAGGTTAAGCTCTCTGGTTCCAT CAGCAGTCAGTACTTGAGTGCCTTGCTGATGGC	4361
Gly115Ala GGT-GCT	GCCATCAGCAAGGCACTCAAGTACTGACTGCTGATGGAACCAGA GAGCTTAACCTTGCCAGCAGGAAGTCCTCCAATTCCCTTGACAC GAACAGGTGGGCATTCAGTGCCAAGGAAACAGT	4362
	ACTTCCTG <u>C</u> TGGCAAGG	4363
	CCTTGCCA <u>G</u> CAGGAAGT	4364
Glyphosate Resistance EPSPS Petunia x hybrida	AGCCTTCTGAGATAGTGTTGCAACCCATTAAAGAGATTTCAGGCA CTGTTAAATTGCCTGCCTCTAAATCATTATCTAATAGAATTCTCCT TCTTGCTGCCTTATCTGAAGGAACAACTGT	4365
Gly93Ala GGC-GCC	ACAGTTGTTCCTTCAGATAAGGCAGCAAGAAGGAGAATTCTATTA GATAATGATTTAGAGGCAGCAATTTAACAGTGCCTGAAATCTCT TTAATGGGTTGCAACACTATCTCAGAAGGCT	4366
	ATTGCCTG <u>C</u> CTCTAAAT	4367
	ATTTAGAG <u>G</u> CAGGCAAT	4368
Glyphosate Resistance EPSPS Lycopersicon	AACCCCATGAGATTGTGCTAGNACCCATCAAAGATATATCTGGTA CTGTTAAATTACCCGCTTCGAAATCCCTTTCCAATCGTATTCTCCT TCTTGCTGCCCTTTCTGAGGGAAGGACTGT	4369
esculentum Gly97Ala GGT-GCT	ACAGTCCTTCCCTCAGAAAGGGCAGCAAGAAGGAGAATACGATT GGAAAGGGATTTCGAAGCGGGTAATTTAACAGTACCAGATATATC TTTGATGGGTNCTAGCACAATCTCATGGGGTT	4370
	ATTACCCG <u>C</u> TTCGAAAT	4371
	ATTTCGAA <u>G</u> CGGGTAAT	4372
Glyphosate Resistance EPSPS Lolium rigidum	ATTGTTTCCTTGGCACTGACTGCCCACCTGTTCGKATCAACGGCA TTGGAGGGCTACCTGCTGGCAAGGTTAAGCTGTCTGGTTCCATC AGCAGCCAATACTTGAGTTCCTTGCTGATGGC	4373
Gly107Ala GGT-GCT	GCCATCAGCAAGGAACTCAAGTATTGGCTGCTGATGGAACCAGA CAGCTTAACCTTGCCAGCAGGTAGCCCTCCAATGCCGTTGATCG AACAGGTGGGCAGTCAGTGCCAAGGAAACAAT	4374
	GCTACCTG <u>C</u> TGGCAAGG	4375
	CCTTGCCA <u>G</u> CAGGTAGC	4376

10

15

Table 11

Genome-Altering Oligos Conferring Imidazolinone and Sulfonylurea Herbicide Resistance

	Phenotype, Gene, Plant & Targeted		
5	Alteration	Altering Oligos	SEQ ID NO:
	Sulfonylurea Resistance ALS <i>Arabidopsis thaliana</i>	AGCGGATTAGCCGATGCGTTGTTAGATAGTGTTCCTCTTGTAGCA ATCACAGGACAAGTCTCTCGTCGTATGATTGGTACAGATGCGTTT CAAGAGACTCCGATTGTTGAGGTAACGCGTT	4377
10	Pro197Ser CCT-TCT	AACGCGTTACCTCAACAATCGGAGTCTCTTGAAACGCATCTGTAC CAATCATACGACGAGAGACTTGTCCTGTGATTGCTACAAGAGGAA CACTATCTAACAACGCATCGGCTAATCCGCT	4378
		GACAGGAGAGAGTGTG	4379
	Cultonylura	ACGACGAG <u>A</u> GACTTGTC	4380
15	Sulfonylurea Resistance ALS <i>Arabidopsis thaliana</i>	AGCGGATTAGCCGATGCGTTGTTAGATAGTGTTCCTCTTGTAGCA ATCACAGGACAAGTCCAGCGTCGTATGATTGGTACAGATGCGTTT CAAGAGACTCCGATTGTTGAGGTAACGCGTT	4381
10	Pro197Gln CCT-CAG	AACGCGTTACCTCAACAATCGGAGTCTCTTGAAACGCATCTGTAC CAATCATACGACG <u>CT</u> GGACTTGTCCTGTGATTGCTACAAGAGGAA CACTATCTAACAACGCATCGGCTAATCCGCT	4382
		ACAAGTCC <u>AG</u> CGTCGTC	4383
		TACGACG <u>CT</u> GGACTTGT	4384
20	Sulfonylurea Resistance ALS <i>Arabidopsis thaliana</i>	AGCGGATTAGCCGATGCGTTGTTAGATAGTGTTCCTCTTGTAGCA ATCACAGGACAAGTCCAAACGTCGTATGATTGGTACAGATGCGTTT CAAGAGACTCCGATTGTTGAGGTAACGCGTT	4385
	Pro197Gln CCT-CAA	AACGCGTTACCTCAACAATCGGAGTCTCTTGAAACGCATCTGTAC CAATCATACGACG <u>TT</u> GGACTTGTCCTGTGATTGCTACAAGAGGAA CACTATCTAACAACGCATCGGCTAATCCGCT	4386
		ACAAGTCC <u>AA</u> CGTCGTA	4387
	lasta p	TACGACG <u>TT</u> GGACTTGT	4388
25	Imidazolinone Resistance ALS Arabidonsis thelians	GACCTTACCTGTTGGATGTGATTTGTCCGCACCAAGAACATGTGT TGCCGATGATCCCGA <u>AC</u> GGTGGCACTTTCAACGATGTCATAACGG AAGGAGATGGCCGGATTAAATACTGAGAGAT	4389
	Arabidopsis thaliana Ser653Asn AGT-AAC	ATCTCTCAGTATTTAATCCGGCCATCTCCTTCCGTTATGACATCGT TGAAAGTGCCACCGTTCGGGATCATCGGCAACACATGTTCTTGGT GCGGACAAATCACATCCAACAGGTAAGGTC GATCCCGAACGGTGGCA	4390
		TGCCACCGTTCGGGATC	4391
ļ		TOUROUGITOGGGATO	4392

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ II NO:
lmidazolinone Resistance ALS	GACCTTACCTGTTGGATGTGATTTGTCCGCACCAAGAACATGTGT TGCCGATGATCCCGAATGGCGCACTTTCAACGATGTCATAACGG AAGGAGATGGCCGGATTAAATACTGAGAGAT	4393
<i>Arabidopsis thaliana</i> Ser653Asn AGT-AAT	ATCTCTCAGTATTTAATCCGGCCATCTCCTTCCGTTATGACATCGT TGAAAGTGCCACCATTCGGGATCATCGGCAACACATGTTCTTGGT GCGGACAAATCACATCCAACAGGTAAGGTC	4394
	GATCCCGA <u>AT</u> GGTGGCA	4395
	TGCCACC <u>AT</u> TCGGGATC	4396
Sulfonylurea Resistance ALS	TCCGCGCTCGCCGACGCGCTGCTCGACTCCGATGGTCG CCATCACGGGCCAGGTCTCCCGCCGCATGATCGGCACCGACGC CTTCCAGGAGACGCCCATAGTCGAGGTCACCCGCT	4397
Oryza sativa Pro171Ser CCC-TCC	AGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGTG CCGATCATGCGGCGGGAGACCTGGCCCGTGATGGCGACCATCG GGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGGA	4398
	GCCAGGTC <u>T</u> CCCGCCGC	4399
	GCGGCGGAGACCTGGC	4400
Sulfonylurea Resistance ALS	CCGCGCTCGCCGACGCGCTGCTCGACTCCGATGGTCGC CATCACGGGCCAGGTCCAACGCCGCATGATCGGCACCGACGCC TTCCAGGAGACGCCCATAGTCGAGGTCACCCGCTC	4401
Oryza sativa Pro171Gln CCC-CAA	GAGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGT GCCGATCATGCGGCG <u>TT</u> GGACCTGGCCCGTGATGGCGACCATCG GGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGG	4402
	CCAGGTCC <u>AA</u> CGCCGCA	440
	TGCGGCG <u>TT</u> GGACCTGG	440
Sulfonylurea Resistance ALS	CCGCGCTCGCCGACGCGCTGCTCGACTCCGATGGTCGC CATCACGGGCCAGGTCCAGCGCCGCATGATCGGCACCGACGCC TTCCAGGAGACGCCCATAGTCGAGGTCACCCGCTC	440
Oryza sativa Pro171Gln CCC-CAG	GAGCGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGT GCCGATCATGCGGCGCTGGACCTGGCCCGTGATGGCGACCATC GGGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGG	440
	CCAGGTCC <u>AG</u> CGCCGCA	440
	TGCGGCG <u>CT</u> GGACCTGG	440
Imidazolinone Resistance ALS	GGCCATACTTGTTGGATATCATCGTCCCGCACCAGGAGCATGTGC TGCCTATGATCCCAAATGGGGGCGCATTCAAGGACATGATCCTGG ATGGTGATGGCAGGACTGTGTATTAATCTAT	440
Oryza sativa Ile627Asn ATT-AAT	ATAGATTAATACACAGTCCTGCCATCACCATCCAGGATCATGTCCT TGAATGCGCCCCCATTTGGGATCATAGGCAGCACATGCTCCTGGT GCGGGACGATGATATCCAACAAGTATGGCC	441
	GATCCCAA <u>A</u> TGGGGGCG	441

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID
		CGCCCCATTTGGGATC	4412
	Sulfonylurea Resistance ALS	TCCGCGCTCGCCGACGCGCTGCTCGATTCCGTCCCCATGGTCGC CATCACGGGACAGGTGTCGCGACGCATGATTGGCACCGACGCCT TCCAGGAGACGCCCATCGTCGAGGTCACCCGCT	4413
5	Zea mays Pro165Ser CCG-TCG	AGCGGGTGACCTCGACGATGGGCGTCTCCTGGAAGGCGTCGGTGCCAATCATGCGTCGCGACCATGGCGACCATGGGGACGGAATCGAGCAGCGCGCGTCGGCGAGCGCGGA	4414
		GACAGGTG <u>T</u> CGCGACGC	4415
		GCGTCGCG <u>A</u> CACCTGTC	4416
10	Sulfonylurea Resistance ALS	CCGCGCTCGCCGACGCGCTGCTCGATTCCGTCCCCATGGTCGCC ATCACGGGACAGGTGCAGCGACGCATGATTGGCACCGACGCCTT CCAGGAGACGCCCATCGTCGAGGTCACCCGCTC	4417
10	Zea mays Pro165GIn CCG-CAG	GAGCGGTGACCTCGACGATGGGCGTCTCCTGGAAGGCGTCGG TGCCAATCATGCGTCGC <u>T</u> GCACCTGTCCCGTGATGGCGACCATG GGGACGGAATCGAGCAGCGCGCGGGGGGGGGG	4418
		ACAGGTGC <u>A</u> GCGACGCA	4419
		TGCGTCGC <u>T</u> GCACCTGT	4420
15	Imidazolinone Resistance ALS	GGCCGTACCTCTTGGATATAATCGTCCCACACCAGGAGCATGTGT TGCCTATGATCCCTAATGGTGGGGGCTTTCAAGGATATGATCCTGG ATGGTGATGGCAGGACTGTGTACTGATCTAA	4421
	Zea mays Ser621Asn AGT-AAT	TTAGATCAGTACACAGTCCTGCCATCACCATCCAGGATCATATCCT TGAAAGCCCCACCATTAGGGATCATAGGCAACACATGCTCCTGGT GTGGGACGATTATATCCAAGAGGTACGGCC	4422
		GATCCCTA <u>AT</u> GGTGGGG	4423
		CCCCACCATTAGGGATC	4424
20	Imidazolinone Resistance ALS	GGCCGTACCTCTTGGATATAATCGTCCCACACCAGGAGCATGTGT TGCCTATGATCCCTAACGGTGGGGGCTTTCAAGGATATGATCCTGG ATGGTGATGGCAGGACTGTGTACTGATCTAA	4425
	Zea mays Ser621Asn AGT-AAC	TTAGATCAGTACACAGTCCTGCCATCACCATCCAGGATCATATCCT TGAAAGCCCCACCGTTAGGGATCATAGGCAACACATGCTCCTGGT GTGGGACGATTATATCCAAGAGGTACGGCC	4426
		GATCCCTA <u>AC</u> GGTGGGG	4427
	·	CCCCACC <u>GT</u> TAGGGATC	4428
25	Sulfonylurea Resistance ALS	TCCGCGCTCGCCGACGCCCTCCTCGACTCCCCATGGTGGC CATCACGGGGCAGGTC <u>T</u> CGCGCCGCATGATCGGCACGGACGCC TTCCAGGAGACGCCCATCGTCGAGGTCACCCGCT	4429
30	Lolium multiflorum Pro167Ser CCG-TCG	AGCGGGTGACCTCGACGATGGGCGTCCCTGGAAGGCGTCCGTGCCGATCATGCCGCGCGAGACCATGGCGATGGAGGGGGGGG	4430

Phenotype, Gene, Plant & Targeted Alteration	Aftering Oligos	SEQ ID
	GGCAGGTC <u>T</u> CGCGCCGC	4431
	GCGGCGCG <u>A</u> GACCTGCC	4432
Sulfonylurea Resistance ALS	CCGCGCTCGCCGACGCCCTCCTCGACTCCATCCCCATGGTGGCC ATCACGGGGCAGGTCCAGCCCCGCATGATCGGCACGCCCT TCCAGGAGACGCCCATCGTCGAGGTCACCCGCTC	4433
Lolium multiflorum Pro167Gln CCG-CAG	GAGCGGTGACCTCGACGATGGGCGTCTCCTGGAAGGCGTCCG TGCCGATCATGCGGCGCTGGACCTGCCCCGTGATGGCCACCATG GGGATGGAGTCGAGGAGGGCGTCGGCGAGCGCGG	4434
CCG-CAG	GCAGGTCCAGCCGCA	4435
	TGCGGCGC <u>T</u> GGACCTGC	4436
Imidazolinone Resistance ALS	CTGGGCCATACTTGTTGGATATCATCGTCCCTCACCAGGAGCATG TGCTGCCTATGATCCCTAACGGTGGTGCTTTCAAGGACATTATCA TGGAAGGTGATGGCAGGATTTCGTATTAAAC	4437
Lolium multiflorum Ser623Asn	GTTTAATACGAAATCCTGCCATCACCTTCCATGATAATGTCCTTGA AAGCACCACCGTTAGGGATCATAGGCAGCACATGCTCCTGGTGA GGGACGATGATATCCAACAAGTATGGCCCAG	4438
AGC-AAC	GATCCCTAACGGTGGTG	4439
	CACCACCG <u>T</u> TAGGGATC	4440
Sulfonylurea Resistance ALS	TCCGCGCTCGCCGACGCTCTCCTCGACTCCATCCCCATGGTCGC CATCACGGGCCAGGTCTCACGCCGCATGATCGGCACGGACGCGT TCCAGGAGACGCCCATAGTGGAGGTCACGCGCT	4441
Hordeum vulgare Pro68Ser CCA-TCA	AGCGCGTGACCTCCACTATGGGCGTCTCCTGGAACGCGTCCGTG CCGATCATGCGGCGTGAGACCTGGCCCGTGATGGCGACCATGG GGATGGAGTCGAGGAGAGCGTCGGCGAGCGCGGA	4442
	GCCAGGTC <u>T</u> CACGCCGC	4443
	GCGGCGTG <u>A</u> GACCTGGC	4444
Sulfonylurea Resistance ALS	CCGCGCTCGCCGACGCTCTCCTCGACTCCCATCCCCATGGTCGCC ATCACGGGCCAGGTCCAACGCCGCATGATCGGCACGGACGCGTT CCAGGAGACGCCCATAGTGGAGGTCACGCGCTC	444
Hordeum vulgare Pro68Gln CCA-CAA	GAGCGCGTGACCTCCACTATGGGCGTCTCCTGGAACGCGTCCGT GCCGATCATGCGGCGTTGGACCTGGCCCGTGATGGCGACCATGG GGATGGAGTCGAGGAGCGTCGGCGAGCGCGG	444
COA-OAA	CCAGGTCCACCACACACACACACACACACACACACACACA	444
	TGCGGCGT <u>T</u> GGACCTGG	444

	Phenotype, Gene,		
	Plant & Targeted	Altering Oligos	SEQID
	Alteration		NO:
	Imidazolinone Resistance	CCCAGGGCCGTACCTGCTGGATATCATTGTCCCGCATCAGGAGC	4449
	ALS	ACGTGCTGCCTATGATCCCAAACGGTGGTGCTTTCAAGGACATGA TCATGGAGGTGATGGCAGGACCTCGTACTGA	
5	Hordeum vulgare Ser524Asn	TCAGTACGAGGTCCTGCCATCACCCTCCATGATCATGTCCTTGAA	4450
J	AGC-AAC	AGCACCACCGTTTGGGATCATAGGCAGCACGTGCTCCTGATGCG GGACAATGATATCCAGCAGGTACGGCCCTGGG	
		GATCCCAA <u>A</u> CGGTGGTG	4451
		CACCACCG <u>T</u> TTGGGATC	4452
	Sulfonylurea	AGTGGTCTCGCTGATGCAATGCTCGATAGTATCCCTCTCGTGGCG	4453
•	Resistance ALS	ATCACTGGTCAAGTCTCTCGTCGGATGATCGGTACCGATGCTTTC	1400
10	Gossypium hirsutum	CAGGAAACTCCAATTGTTGAGGTAACAAGGT	
	Pro186Ser	ACCTTGTTACCTCAACAATTGGAGTTTCCTGGAAAGCATCGGTACCGATCATCCGACGAGAGACTTGACCAGTGATCGCCACGAGAGGG	4454
	ССТ-ТСТ	ATACTATCGAGCATTGCATCAGCGAGACCACT	
		GTCAAGTC <u>T</u> CTCGTCGG	4455
		CCGACGAG <u>A</u> GACTTGAC	4456
	Sulfonylurea	GTGGTCTCGCTGATGCAATGCTCGATAGTATCCCTCTCGTGGCGA	4457
15	Resistance ALS	TCACTGGTCAAGTCCAACGTCGGATGATCGGTACCGATGCTTTCC	
	Gossypium hirsutum	AGGAAACTCCAATTGTTGAGGTAACAAGGTC GACCTTGTTACCTCAACAATTGGAGTTTCCTGGAAAGCATCGGTA	4450
`	Pro186Gin	CCGATCATCCGACGTTGGACTTGACCAGTGATCGCCACGAGAGG	4458
	CCT-CAA	GATACTATCGAGCATTGCATCAGCGAGACCAC	
		TCAAGTCC <u>AA</u> CGTCGGA	4459
	6 15	TCCGACG <u>TT</u> GGACTTGA	4460
20	Sulfonylurea Resistance	GTGGTCTCGTGATGCTCGATGCTCCTCTCGTGGCGA	4461
-0	ALS	TCACTGGTCAAGTCCAGCGTCGGATGATCGGTACCGATGCTTTCC AGGAAACTCCAATTGTTGAGGTAACAAGGTC	
	Gossypium hirsutum	GACCTTGTTACCTCAACAATTGGAGTTTCCTGGAAAGCATCGGTA	4462
	Pro186Gln	CCGATCATCCGACGCTGGACTTGACCAGTGATCGCCACGAGAGG	1402
	CCT-CAG	GATACTATCGAGCATTGCATCAGCGAGACCAC	
		TCAAGTCC <u>AG</u> CGTCGGA	4463
).E		TCCGACG <u>CT</u> GGACTTGA	4464
25	Imidazolinone Resistance	GACCTTACTTGTTGGATGTGATTGTCCCACATCAAGAACATGTCCT	4465
	ALS	GCCTATGATCCCCAATGGAGGCGCTTTCAAAGATGTGATCACAGA GGGTGATGGAAGAACACAATATTGACCTCA	1
	Gossypium hirsutum	TGAGGTCAATATTGTGTTCTTCCATCACCCTCTGTGATCACATCTT	4466
30	Ser642Asn	TGAAAGCGCCTCCA <u>T</u> TGGGGATCATAGGCAGGACATGTTCTTGAT	7700
3 U	AGT-AAT	GTGGGACAATCACATCCAACAAGTAAGGTC	
		GATCCCCA <u>A</u> TGGAGGCG	4467

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID
	CGCCTCCA <u>T</u> TGGGGATC	4468
Sulfonylurea Resistance ALS	TCTGGTCTTGCTGATGCACTTCTTGACTCAGTCCCTCTTGTCGCC ATTACTGGGCAAGTTTCCCGGCGTATGATTGGTACTGATGCTTTTC AAGAGACTCCAATTGTTGAGGTAACTCGAT	4469
Amaranthus retroflexus Pro192Ser	ATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTACC AATCATACGCCGGGAAACTTGCCCAGTAATGGCGACAAGAGGGA CTGAGTCAAGAAGTGCATCAGCAAGACCAGA	4470
CCC-TCC	GGCAAGTT <u>T</u> CCCGGCGT	4471
	ACGCCGGGAAACTTGCC	4472
Sulfonylurea Resistance ALS	CTGGTCTTGCTGATGCACTTCTTGACTCAGTCCCTCTTGTCGCCA TTACTGGGCAAGTTCAACGGCGTATGATTGGTACTGATGCTTTTC AAGAGACTCCAATTGTTGAGGTAACTCGATC	4473
Amaranthus retroflexus Pro192Gln	GATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTAC CAATCATACGCCG <u>TT</u> GAACTTGCCCAGTAATGGCGACAAGAGGGA CTGAGTCAAGAAGTGCATCAGCAAGACCAG	4474
CCC-CAA	GCAAGTTC <u>AA</u> CGGCGTA	· 4475
	TACGCCG <u>TT</u> GAACTTGC	4476
Sulfonylurea Resistance ALS	CTGGTCTTGCTGATGCACTTCTTGACTCAGTCCCTCTTGTCGCCA TTACTGGGCAAGTTCAGCGGCGTATGATTGGTACTGATGCTTTTC AAGAGACTCCAATTGTTGAGGTAACTCGATC	4477
Amaranthus retroflexus Pro192GIn	GATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTAC CAATCATACGCCG <u>CT</u> GAACTTGCCCAGTAATGGCGACAAGAGGG ACTGAGTCAAGAAGTGCATCAGCAAGACCAG	4478
CCC-CAG	GCAAGTTC <u>AG</u> CGGCGTA	4479
	TACGCCG <u>CT</u> GAACTTGC	4480
Imidazolinone Resistance ALS	GACCGTATCTGCTGGATGTAATCGTACCACATCAGGAGCATGTGC TGCCTATGATCCCTAACGGTGCCGCCTTCAAGGACACCATAACAG AGGGTGATGGAAGAAGGGCTTATTAGTTGGT	4481
Amaranthus retroflexus Ser652Asn	ACCAACTAATAAGCCCTTCTTCCATCACCCTCTGTTATGGTGTCCT TGAAGGCGGCACCGTTAGGGATCATAGGCAGCACATGCTCCTGA TGTGGTACGATTACATCCAGCAGATACGGTC	4482
AGC-AAC	GATCCCTA <u>A</u> CGGTGCCG	4483
	CGGCACCGTTAGGGATC	4484

10

15

20

. 25

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	Sulfonylurea Resistance ALS 1	AGCGGCCTCGCTGACGCGCTACTGGATAGCGTCCCCATTGTTGC TATAACAGGTCAAGTGTCACGTAGGATAGGTACTGATGCTTTT CAGGAAACTCCTATTGTTGAGGTAACTAGAT	4485
5	Nicotiana tabacum Pro194Ser CCA-TCA	ATCTAGTTACCTCAACAATAGGAGTTTCCTGAAAAGCATCAGTACC TATCATCCTACGTGACACTTGACCTGTTATAGCAACAATGGGGAC GCTATCCAGTAGCGCGTCAGCGAGGCCGCT	4486
		GTCAAGTG <u>T</u> CACGTAGG CCTACGTG <u>A</u> CACTTGAC	4487
			4488
	Sulfonylurea Resistance ALS 1	GCGGCCTCGCTGACGCGCTACTGGATAGCGTCCCCATTGTTGCT ATAACAGGTCAAGTGCAACGTAGGATGATAGGTACTGATGCTTTT CAGGAAACTCCTATTGTTGAGGTAACTAGATC	4489
10	Nicotiana tabacum Pro194Gln CCA-CAA	GATCTAGTTACCTCAACAATAGGAGTTTCCTGAAAAGCATCAGTAC CTATCATCCTACGT <u>T</u> GCACTTGACCTGTTATAGCAACAATGGGGA CGCTATCCAGTAGCGCGTCAGCGAGGCCGC	4490
		TCAAGTGC <u>A</u> ACGTAGGA	4491
		TCCTACGT <u>T</u> GCACTTGA	4492
15	Imidazolinone Resistance ALS 1	GGCCATACTTGTTGGATGTGATTGTACCTCATCAGGAACATGTTTT ACCTATGATTCCCAATGGCGGAGCTTTCAAAGATGTGATCACAGA GGGTGACGGGAGAAGTTCCTATTGAGTTTG	4493
	Nicotiana tabacum Ser650Asn AGT-AAT	CAAACTCAATAGGAACTTCTCCCGTCACCCTCTGTGATCACATCTT TGAAAGCTCCGCCATTGGGAATCATAGGTAAAACATGTTCCTGAT GAGGTACAATCACATCCAACAAGTATGGCC	4494
		GATTCCCA <u>A</u> TGGCGGAG	4495
		CTCCGCCA <u>T</u> TGGGAATC	4496
20	Sulfonylurea Resistance ALS 2	AGTGGCCTCGCGGACGCCCTACTGGATAGCGTCCCCATTGTTGC TATAACCGGTCAAGTGTCACGTAGGATGATCGGTACTGATGCTTTT CAGGAAACTCCGATTGTTGAGGTAACTAGAT	4497
	Nicotiana tabacum Pro191Ser CCA-TCA	ATCTAGTTACCTCAACAATCGGAGTTTCCTGAAAAGCATCAGTACC GATCATCCTACGTGACACTTGACCGGTTATAGCAACAATGGGGAC GCTATCCAGTAGGGCGTCCGCGAGGCCACT	4498
		GTCAAGTG <u>T</u> CACGTAGG	4499
		CCTACGTG <u>A</u> CACTTGAC	4500
25	Sulfonylurea Resistance ALS 2	GTGGCCTCGCGGACGCCCTACTGGATAGCGTCCCCATTGTTGCT ATAACCGGTCAAGTGCAACGTAGGATGATCGGTACTGATGCTTTT CAGGAAACTCCGATTGTTGAGGTAACTAGATC	4501
30	Nicotiana tabacum Pro191Gln CCA-CAA	GATCTAGTTACCTCAACAATCGGAGTTTCCTGAAAAGCATCAGTAC CGATCATCCTACGT <u>T</u> GCACTTGACCGGTTATAGCAACAATGGGGA CGCTATCCAGTAGGGCGTCCGCGAGGCCAC	4502
		TCAAGTGC <u>A</u> ACGTAGGA	4503

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEC NC
	TCCTACGT <u>T</u> GCACTTGA	450
Imidazolinone Resistance ALS 2	GGCCATACTTGTTGGATGTGATTGTACCTCATCAGGAACATGTTCT ACCTATGATTCCCAATGGCGGGGCTTTCAAAGATGTGATCACAGA GGGTGACGGGAGAAGTTCCTATTGACTTTG	450
<i>Nicotiana tabacum</i> Ser647Asn AGT-AAT	CAAAGTCAATAGGAACTTCTCCCGTCACCCTCTGTGATCACATCTT TGAAAGCCCCGCCATTGGGAATCATAGGTAGAACATGTTCCTGAT GAGGTACAATCACATCCAACAAGTATGGCC	450
	GATTCCCA <u>A</u> TGGCGGGG	45
	CCCCGCCATTGGGAATC	45
Sulfonylurea Resistance ALS	AGTGGTCTTGCTGATGCTTTATTAGACAGTGTTCCAATGGTTGCTA TTACTGGTCAAGTT <u>T</u> CCAGGAGAATGATTGGAACAGATGCGTTTCA AGAAACCCCTATTGTTGAGGTAACACGTT	45
Xanthium spp. Pro175Ser CCC-TCC	AACGTGTTACCTCAACAATAGGGGTTTCTTGAAACGCATCTGTTCC AATCATTCTCCTGGAACTTGACCAGTAATAGCAACCATTGGAACA CTGTCTAATAAAGCATCAGCAAGACCACT	45
	GTCAAGTT <u>T</u> CCAGGAGA	45
	TCTCCTGG <u>A</u> AACTTGAC	45
Sulfonylurea Resistance ALS	GTGGTCTTGCTGATGCTTTATTAGACAGTGTTCCAATGGTTGCTAT TACTGGTCAAGTTCAAAGGAGAATGATTGGAACAGATGCGTTTCA AGAAACCCCTATTGTTGAGGTAACACGTTC	45
Xanthium spp. Pro175Gln CCC-CAA	GAACGTGTTACCTCAACAATAGGGGTTTCTTGAAACGCATCTGTTC CAATCATTCTCCTTTGAACTTGACCAGTAATAGCAACCATTGGAAC ACTGTCTAATAAAGCATCAGCAAGACCAC	45
	TCAAGTTC <u>AA</u> AGGAGAA	45
	TTCTCCT <u>TT</u> GAACTTGA	45
Sulfonylurea Resistance ALS	GTGGTCTTGCTGATGCTTTATTAGACAGTGTTCCAATGGTTGCTAT TACTGGTCAAGTTC <u>AG</u> AGGAGAATGATTGGAACAGATGCGTTTCA AGAAACCCCTATTGTTGAGGTAACACGTTC	45
Xanthium spp. Pro175Gln CCC-CAG	GAACGTGTTACCTCAACAATAGGGGTTTCTTGAAACGCATCTGTTC CAATCATTCTCCT <u>CT</u> GAACTTGACCAGTAATAGCAACCATTGGAAC ACTGTCTAATAAAGCATCAGCAAGACCAC	45
	TCAAGTTC AG AGGAGAA	4
	TTCTCCT <u>CT</u> GAACTTGA	4:
Imidazolinone Resistance ALS	GGGCCTTACTTGTTGGATGTGATCGTGCCCCATCAAGAACATGTG TTGCCCATGATCCCGAATGGTGGAGGTTTCATGGATGTGATCACC GAAGGCGACGGCAGAATGAAATATTGAGCTT	4
Xanthium spp. Ala631Asn GCT-AAT	AAGCTCAATATTTCATTCTGCCGTCGCCTTCGGTGATCACATCCAT GAAACCTCCACCATTCGGGATCATGGGCAACACATGTTCTTGATG GGGCACGATCACATCCAACAAGTAAGGCCC	4

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
		TGATCCCG <u>AA</u> TGGTGGA	4523
		TCCACCA <u>TT</u> CGGGATCA	4524
	Sulfonylurea Resistance ALS	TCCGGGTTTGCTGATGCTTTGCTCGATTCCGTTCCACTGGTGGCG ATCACGGGCAGGTGTCGCGGCGAATGATTGGGACGGATGCTTT TCAGGAGACTCCTATTGTTGAGGTAACACGGT	4525
5	Bassia scoparia Pro189Ser CCG-TCG	ACCGTGTTACCTCAACAATAGGAGTCTCCTGAAAAGCATCCGTCC CAATCATTCGCCGCGACACCTGCCCCGTGATCGCCACCAGTGGA ACGGAATCGAGCAAAGCATCAGCAAACCCGGA	4526
		GGCAGGTG <u>T</u> CGCGGCGA	4527
		TCGCCGCG <u>A</u> CACCTGCC	4528
40	Sulfonylurea Resistance ALS	CCGGGTTTGCTGATGCTTTGCTCGATTCCGTTCCACTGGTGGCGA TCACGGGGCAGGTGCAGGCGCGAATGATTGGGGACGGATGCTTTT CAGGAGACTCCTATTGTTGAGGTAACACGGTC	4529
10	Bassia scoparia Pro189Gln CCG-CAG	GACCGTGTTACCTCAACAATAGGAGTCTCCTGAAAAGCATCCGTC CCAATCATTCGCCGCTGCACCTGCCCCGTGATCGCCACCAGTGG AACGGAATCGAGCAAAGCATCAGCAAACCCGG	4530
		GCAGGTGC <u>A</u> GCGGCGAA	4531
		TTCGCCGCTGC	4532
15	Imidazolinone Resistance ALS	GACCTTACCTGCTTGATGTGATTGTACCTCATCAGGAGCATGTGC TGCCTATGATTCCTAATGGTGCAGCCTTCAAGGATATCATTAACGA AGGTGATGGAAGAACAAGTTATTGATGTTC	4533
	Bassia scoparia Ser649Asn AGT-AAT	GAACATCAATAACTTGTTCTTCCATCACCTTCGTTAATGATATCCTT GAAGGCTGCACCATTAGGAATCATAGGCAGCACATGCTCCTGATG AGGTACAATCACATCAAGCAGGTAAGGTC	4534
		GATTCCTA <u>A</u> TGGTGCAG	4535
		CTGCACCA <u>T</u> TAGGAATC	4536
20	Sulfonylurea Resistance ALS 1	AGCGGGTTAGCAGACGCGATGCTTGACAGTGTTCCTCTTGTCGC CATTACAGGACAGG	4537
	Brassica napus Pro182Ser CCT-TCT	ACCTCGTTACCTCAACGATTGGTGTCTCTTGGAAGGCGTCAGTAC CGATCATCCGGCGAGAGACCTGTCCTGT	4538
		GACAGGTC <u>T</u> CTCGCCGG	4539
		CCGGCGAG <u>A</u> GACCTGTC	4540

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	Sulfonylurea Resistance ALS 1	GCGGGTTAGCAGACGCGATGCTTGACAGTGTTCCTCTTGTCGCC ATTACAGGACAGG	4541
5	Brassica napus Pro182Gln CCT-CAA	GACCTCGTTACCTCAACGATTGGTGTCTCTTGGAAGGCGTCAGTA CCGATCATCCGGCG <u>TT</u> GGACCTGTCCTGTAATGGCGACAAGAGG AACACTGTCAAGCATCGCGTCTGCTAACCCGC	4542
		ACAGGTCC <u>AA</u> CGCCGGA	4543
		TCCGGCG <u>TT</u> GGACCTGT	4544
	Sulfonylurea Resistance ALS 1	GCGGGTTAGCAGACGCGATGCTTGACAGTGTTCCTCTTGTCGCC ATTACAGGACAGG	4545
10	Brassica napus Pro182Gln CCT-CAG	GACCTCGTTACCTCAACGATTGGTGTCTCTTGGAAGGCGTCAGTA CCGATCATCCGGCG <u>CT</u> GGACCTGTCCTGTAATGGCGACAAGAGG AACACTGTCAAGCATCGCGTCTGCTAACCCGC	4546
	001 0/10	ACAGGTCC <u>AG</u> CGCCGGA	4547
		TCCGGCG <u>CT</u> GGACCTGT	4548
15	Imidazolinone Resistance ALS 1	GACCATACCTGTTGGATGTGATATGTCCGCACCAAGAACATGTGT TACCGATGATCCCAAATGGTGGCACTTTCAAAGATGTAATAACAGA AGGGGATGGTCGCACTAAGTACTGAGAGAT	4549
	Brassica napus Ser638Asn AGT-AAT	ATCTCTCAGTACTTAGTGCGACCATCCCCTTCTGTTATTACATCTT TGAAAGTGCCACCATTTGGGATCATCGGTAACACATGTTCTTGGT GCGGACATATCACATCCAACAGGTATGGTC	4550
	1.0171	GATCCCAA <u>A</u> TGGTGGCA	4551
		TGCCACCA <u>T</u> TTGGGATC	4552
20	Sulfonylurea Resistance ALS 2	CAGCGGGTTAGCAGACGCGATGCTTGACAGTGTTCCTCTTGTCG CCATTACAGGACAGG	4553
	Brassica napus Pro126Ser CCC-TCC	CCTCGTTACCTCAACGATTGGTGTCTCTTGGAAGGCGTCAGTACC GATCATCCGGCGAGGAACCTGTCCTGT	4554
		GGACAGGT <u>T</u> CCTCGCCG	4555
		CGGCGAGG <u>A</u> ACCTGTCC	4556
25	Sulfonylurea Resistance ALS 2	AGCGGGTTAGCAGACGCGATGCTTGACAGTGTTCCTCTTGTCGC CATTACAGGACAGG	4557
30	Brassica napus Pro126Gln CCC-CAG	ACCTCGTTACCTCAACGATTGGTGTCTCTTGGAAGGCGTCAGTAC CGATCATCCGGCGAGTGACCTGTCCTGT	4558
		GACAGGTC <u>A</u> CTCGCCGG	4559

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
		CCGGCGAG <u>T</u> GACCTGTC	4560
	Imidazolinone Resistance ALS 2	GACCATACCTGTTGGATGTGATATGTCCGCACCAAGAACATGTGT TACCGATGATCCCAAAGTGGGGCACTTTCAAAGATGTAATAACAGA AGGGGATGGTCGCACTAAGTACTGAGAGAT	4561
5	Brassica napus Ser582Asn AGT-AAT	ATCTCTCAGTACTTAGTGCGACCATCCCCTTCTGTTATTACATCTT TGAAAGTGCCACCATTTGGGATCATCGGTAACACATGTTCTTGGT GCGGACATATCACATCCAACAGGTATGGTC	4562
		GATCCCAA <u>A</u> TGGTGGCA	4563
		TGCCACCATTTGGGATC	4564
40	Sulfonylurea Resistance ALS 3	AGCGGGTTAGCCGACGCGATGCTTGACAGTGTTCCTCTCGCCCATCACAGGACAGGTCTCTCGCCGGATGATCGGTACTGACGCGTTCCAAGAGACGCCAATCGTTGAGGTAACGAGGT	4565
10	Brassica napus Pro179Ser CCT-TCT	ACCTCGTTACCTCAACGATTGGCGTCTCTTGGAACGCGTCAGTAC CGATCATCCGGCGAGAGACCTGTCCTGT	4566
		GACAGGTCTCTCGCCGG	4567
		CCGGCGAG <u>A</u> GACCTGTC	4568
15	Sulfonylurea Resistance ALS 3	GCGGGTTAGCCGACGCGATGCTTGACAGTGTTCCTCTCGCC ATCACAGGACAGG	4569
	Brassica napus Pro179GIn CCT-CAA	GACCTCGTTACCTCAACGATTGGCGTCTCTTGGAACGCGTCAGTA CCGATCATCCGGCG <u>TT</u> GGACCTGTCCTGTGATGGCGACGAGAGG AACACTGTCAAGCATCGCGTCGGCTAACCCGC	4570
		ACAGGTCC <u>AA</u> CGCCGGA	4571
		TCCGGCG <u>TT</u> GGACCTGT	4572
20	Sulfonylurea Resistance ALS 3	GCGGGTTAGCCGACGCGATGCTTGACAGTGTTCCTCTCGTCGCC ATCACAGGACAGG	4573
	Brassica napus Pro179Gln CCT-CAG	GACCTCGTTACCTCAACGATTGGCGTCTCTTGGAACGCGTCAGTA CCGATCATCCGGCG <u>CT</u> GGACCTGTCCTGTGATGGCGACGAGAGG AACACTGTCAAGCATCGCGTCGGCTAACCCGC	4574
		ACAGGTCC <u>AG</u> CGCCGGA	4575
		TCCGGCG <u>CT</u> GGACCTGT	4576
25	Imidazolinone Resistance ALS 3	GACCGTACCTGTTGGATGTCATCTGTCCGCACCAAGAACATGTGT TACCGATGATCCCAAATGGTGGCACTTTCAAAGATGTAATAACCG AAGGGGATGGTCGCACTAAGTACTGAGAGAT	4577
30	Brassica napus Ser635Asn AGT-AAT	ATCTCTCAGTACTTAGTGCGACCATCCCCTTCGGTTATTACATCTT TGAAAGTGCCACCATTTGGGATCATCGGTAACACATGTTCTTGGT GCGGACAGATGACATCCAACAGGTACGGTC	4578

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	GATCCCAA <u>A</u> TGGTGGCA	4579
	TGCCACCA <u>T</u> TTGGGATC	4580
Sulfonylurea Resistance	TCCGCGCTCGCCGACGCGCTGCTCGACTCCGATGGTCG CCATCACGGGCCAGGTCTCCCGCCGCATGATCGGCACCGACGC CTTCCAGGAGACGCCCATAGTCGAGGTCACCCGCT	4581
ALS <i>Oryza sativa</i> Pro171Ser CCC-TCC	AGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGTG CCGATCATGCGGCGGGAGACCTGGCCCGTGATGGCGACCATCG GGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGGA	4582
	GCCAGGTCICCCGCCGC	4583
	GCGGCGGAGACCTGGC	4584
Sulfonylurea Resistance ALS	CCGCGCTCGCCGACGCGCTGCTCGACTCCGATGGTCGC CATCACGGGCCAGGTCCAACGCCGCATGATCGGCACCGCC TTCCAGGAGACGCCCATAGTCGAGGTCACCCGCTC	4585
Oryza sativa Pro171Gln CCC-CAA	GAGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGT GCCGATCATGCGGCG <u>TT</u> GGACCTGGCCCGTGATGGCGACCATCG GGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGG	4586
CCC-C/A	CCAGGTCC <u>AA</u> CGCCGCA	4587
	TGCGGCG <u>TT</u> GGACCTGG	4588
Sulfonylurea Resistance	CCGCGCTCGCCGACGCGCTGCTCGACTCCGATGGTCGC CATCACGGGCCAGGTCCAGCGCCGCATGATCGGCACCGCC TTCCAGGAGACGCCCATAGTCGAGGTCACCCGCTC	4589
ALS Onyza sativa Pro171Gln CCC-CAG	GAGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGT GCCGATCATGCGGCGCTGGACCTGGCCCGTGATGGCGACCATC GGGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGG	4590
000 0/10	CCAGGTCC <u>AG</u> CGCCGCA	4591
	TGCGGCG <u>CT</u> GGACCTGG	4592
Imidazolinone Resistance ALS	GGCCATACTTGTTGGATATCATCGTCCCGCACCAGGAGCATGTGC TGCCTATGATCCCAAATGGGGGCGCATTCAAGGACATGATCCTGG ATGGTGATGGCAGGACTGTGTATTAATCTAT	4593
Oryza sativa Ser627Asn AGT-AAT	ATAGATTAATACACAGTCCTGCCATCACCATCCAGGATCATGTCCT TGAATGCGCCCCCATTTGGGATCATAGGCAGCACATGCTCCTGGT GCGGGACGATGATATCCAACAAGTATGGCC	4594
1401-441	GATCCCAA <u>A</u> TGGGGGCG	459
	CGCCCCATTTGGGATC	459

10

15

	Phenotype, Gene,		
	Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	Sulfonylurea Resistance ALS Zea mays	TCTGCGCTCGCAGACGCGTTGCTCGACTCCGTCCCCATGGTCGC CATCACGGGACAGGTGTCGCGACGCATGATTGGCACCGACGCCT TTCAGGAGACGCCCATCGTCGAGGTCACCCGCT	4597
5	Pro165Ser CCG-TCG	AGCGGGTGACCTCGACGATGGGCGTCTCCTGAAAGGCGTCGGTG CCAATCATGCGTCGCGACACCTGTCCCGTGATGGCGACCATGGG GACGGAGTCGAGCAACGCGTCTGCGAGCGCAGA GACAGGTGTCGCGACGC	
		GCGTCGCGACGC GCGTCGCGACACCTGTC	4599
	Sulfonylurea	<u>- l</u>	4600
10 ·	Resistance ALS Zea mays	CTGCGCTCGCAGACGCGTTGCTCGACTCCCCATGGTCGCC ATCACGGGACAGGTGCAGCGACGCATGATTGGCACCGACGCCTT TCAGGAGACGCCCATCGTCGAGGTCACCCGCTC	4601
,	Pro165Gln CCG-CAG	GAGCGGGTGACCTCGACGATGGGCGTCTCCTGAAAGGCGTCGGT GCCAATCATGCGTCGCTGCACCTGTCCCGTGATGGCGACCATGG GGACGGAGTCGAGCAACGCGTCTGCGAGCGCAG	4602
		ACAGGTGC <u>A</u> GCGACGCA	4603
		TGCGTCGC <u>T</u> GCACCTGT	4604
15	Imidazolinone Resistance ALS	GGCCGTACCTCTTGGATATAATCGTCCCGCACCAGGAGCATGTGT TGCCTATGATCCCTAATGGTGGGGGCTTTCAAGGATATGATCCTGG ATGGTGATGGCAGGACTGTGTATTGATCCGT	4605
	Zea mays Ser621Asn AGT-AAT	ACGGATCAATACACAGTCCTGCCATCACCATCCAGGATCATATCC TTGAAAGCCCCACCATTAGGGATCATAGGCAACACATGCTCCTGG TGCGGGACGATTATATCCAAGAGGTACGGCC	4606
		GATCCCTAATGGTGGGG	4607
		CCCCACCATTAGGGATC	4608
20	Sulfonylurea Resistance ALS	AGTGGTCTCGCTGATGCAATGCTCGATAGTATCCCTCTCGTGGCG ATCACTGGTCAAGTCTCTCGTCGGATGATCGGTACCGATGCTTTC CAGGAAACTCCAATTGTTGAGGTAACAAGGT	4609
	Gossypium hirsutum Pro186Ser CCT-TCT	ACCTTGTTACCTCAACAATTGGAGTTTCCTGGAAAGCATCGGTAC CGATCATCCGACGAGAGACCTGACCAGTGATCGCCACGAGAGGG ATACTATCGAGCATTGCATCAGCGAGACCACT	4610
ı		GTCAAGTCTC <u>T</u> CGTCGG	4611
05		CCGACGAGAG <u>A</u> CTTGAC	4612
25	Sulfonylurea Resistance ALS Gossypium himutum	GTGGTCTCGCTGATGCAATGCTCGATAGTATCCCTCTCGTGGCGA TCACTGGTCAAGTCCAACGTCGGATGATCGGTACCGATGCTTTCC AGGAAACTCCAATTGTTGAGGTAACAAGGTC	4613
30	Gossypium hirsutum Pro186Gln CCT-CAA	GACCTTGTTACCTCAACAATTGGAGTTTCCTGGAAAGCATCGGTA CCGATCATCCGACGTTGGACCTGACCAGTGATCGCCACGAGAGG GATACTATCGAGCATTGCATCAGCGAGACCAC	4614
[TCAAGTCC <u>AA</u> CGTCGGA	4615

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ IE
	TCCGACG <u>TT</u> GGACTTGA	4616
Sulfonylurea Resistance ALS	GTGGTCTCGCTGATGCAATGCTCGATAGTATCCCTCTCGTGGCGA TCACTGGTCAAGTCCAGCGTCGGATGATCGGTACCGATGCTTTCC AGGAAACTCCAATTGTTGAGGTAACAAGGTC	4617
Gossypium hirsutum Pro186Gln CCT-CAG	GACCTTGTTACCTCAACAATTGGAGTTTCCTGGAAAGCATCGGTA CCGATCATCCGACG <u>CT</u> GGACTTGACCAGTGATCGCCACGAGAGG GATACTATCGAGCATTGCATCAGCGAGACCAC	4618
001-0A0	TCAAGTCC <u>AG</u> CGTCGGA	4619
	TCCGACG <u>CT</u> GGACTTGA	4620
Imidazolinone Resistance ALS	GACCTTACTTGTTGGATGTGATTGTCCCACATCAAGAACATGTCCT GCCTATGATCCCCAATGGAGGGGCTTTCAAAGATGTGATCACAGA GGGTGATGGAAGAACACAATATTGACCTCA	4621
Gossypium hirsutum Ser642Asn AGT-AAT	TGAGGTCAATATTGTGTTCTTCCATCACCCTCTGTGATCACATCTT TGAAAGCCCCTCCATTGGGGATCATAGGCAGGACATGTTCTTGAT GTGGGACAATCACATCCAACAAGTAAGGTC	4622
7.01 7011	GATCCCCAATGGAGGGG	4623
	CCCCTCCATTGGGGATC	4624
Sulfonylurea Resistance ALS	TCTGGTCTTGCTGATGCACTTCTTGACTCAGTCCCTCTTGTCGCC ATTACTGGGCAAGTTTCCCGGCGTATGATTGGTACTGATGCTTTTC AAGAGACTCCAATTGTTGAGGTAACTCGAT	462
Amaranthus powellii Pro192Ser CCC-TCC	ATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTACC AATCATACGCCGGGAAACTTGCCCAGTAATGGCGACAAGAGGGA CTGAGTCAAGAAGTGCATCAGCAAGACCAGA	4626
	GGCAAGTT <u>T</u> CCCGGCGT	462
	ACGCCGGG <u>A</u> AACTTGCC	462
Sulfonylurea Resistance ALS	CTGGTCTTGCTGATGCACTTCTTGACTCAGTCCCTCTTGTCGCCA TTACTGGGCAAGTTCAACGGCGTATGATTGGTACTGATGCTTTTC AAGAGACTCCAATTGTTGAGGTAACTCGATC	462
Amaranthus powellii Pro192Gln CCC-CAA	GATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTAC CAATCATACGCCG <u>TT</u> GAACTTGCCCAGTAATGGCGACAAGAGGGA CTGAGTCAAGAAGTGCATCAGCAAGACCAG	463
	GCAAGTTC <u>AA</u> CGGCGTA	463
	TACGCCG <u>TT</u> GAACTTGC	463
Sulfonylurea Resistance ALS	CTGGTCTTGCTGATGCACTTCTTGACTCAGTCCCTCTTGTCGCCA TTACTGGGCAAGTTCAGCGGCGTATGATTGGTACTGATGCTTTTC AAGAGACTCCAATTGTTGAGGTAACTCGATC	463
Amaranthus powellii Pro192Gln CCC-CAG	GATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTAC CAATCATACGCCG <u>CT</u> GAACTTGCCCAGTAATGGCGACAAGAGGG ACTGAGTCAAGAAGTGCATCAGCAAGACCAG	463

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	GCAAGTTC <u>AG</u> CGGCGTA	4635
	TACGCCG <u>CT</u> GAACTTGC	4636
Imidazolinone Resistance ALS	GACCGTATCTGCTGGATGTAATCGTACCACATCAGGAGCATGTGC TGCCTATGATCCCTAACGGTGCCGCCTTCAAGGACACCATAACAG AGGGTGATGGAAGAAGGGCTTATTAGTTGGT	4637
Amaranthus powellii Ser652Asn AGC-AAC	ACCAACTAATAAGCCCTTCTTCCATCACCCTCTGTTATGGTGTCCT TGAAGGCGGCACCGTTAGGGATCATAGGCAGCACATGCTCCTGA TGTGGTACGATTACATCCAGCAGATACGGTC	4638
	GATCCCTA <u>A</u> CGGTGCCG	4639
	CGGCACCG <u>T</u> TAGGGATC	4640

Table 12

Genome-Altering Oligos Conferring Porphyric Herbicide Resistance

E			
5	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	Porphyric Herbicide Resistant PPO	TCTTGCGCCCTCTTTCTGAATCTGCTGCAAATGCACTCTCAAAACT ATATTACCCACCAATGGCAGCAGTATCTATCTCGTACCCGAAAGA AGCAATCCGAACAGAATGTTTGATAGATGG	4641
10	Arabidopsis thaliana Val365Met GTT-ATG	CCATCTATCAAACATTCTGTTCGGATTGCTTCTTTCGGGTACGAGA TAGATACTGCTGCCATTGGTGGGTAATATAGTTTTGAGAGTGCATT TGCAGCAGATTCAGAAAGAGGGCGCAAGA	4642
		CCCACCA <u>A</u> T <u>G</u> GCAGCAG	4643
		CTGCTGC <u>C</u> A <u>T</u> TGGTGGG	4644
	Porphyric Herbicide Resistant PPO	TATTACGTCCTCTTTCGGTTGCCGCAGCAGATGCACTTTCAAATTT CTACTATCCCCCAATGGGAGCAGTCACAATTTCATATCCTCAAGAA GCTATTCGTGATGAGCGTCTGGTTGATGG	4645
15	Nicotiana tabacum Val376Met GTT-ATG	CCATCAACCAGACGCTCATCACGAATAGCTTCTTGAGGATATGAA ATTGTGACTGCTCCCATTGGGGGGATAGTAGAAATTTGAAAGTGCA TCTGCTGCGGCAACCGAAAGAGGACGTAATA	4646
	GII-AIG	TCCCCAATGGGAGCAG	4647
		CTGCTCC <u>C</u> A <u>T</u> TGGGGGA	4648
20	Porphyric Herbicide Resistant PPO	TGTTGCGTCCGCTTTCGTTGGGTGCAGCAGATGCATTGTCAAAAT TTTATTATCCTCCGATGGCAGCTGTATCAATTTCATATCCAAAAGA CGCAATTCGTGCTGACCGGCTGATTGATGG	4649
20	Cichorium intybus Val383Met GTT-ATG	CCATCAATCAGCCGGTCAGCACGAATTGCGTCTTTTGGATATGAA ATTGATACAGCTGCCATCGGAGGATAATAAAATTTTGACAATGCAT CTGCTGCACCCAACGAAAGCGGACGCAACA	4650
	GIT-ATO	TCCTCCGATGGCAGCTG	4651
		CAGCTGC <u>C</u> A <u>T</u> CGGAGGA	4652
25	Porphyric Herbicide Resistant PPO	TCCTTCGTCCACTTTCAGATGTCGCCGCAGAATCTCTTTCAAAATT TCATTATCCACCAATGGCAGCTGTGTCACTTTCCTATCCTAAAGAA GCAATTAGATCAGAGTGCTTGATTGACGG	4653
	Spinacia oleracea Val390Met GTT-ATG	CCGTCAATCAAGCACTCTGATCTAATTGCTTCTTTAGGATAGGAAA GTGACACAGCTGCCATTGGTGGATAATGAAATTTTGAAAGAGATTC TGCGGCGACATCTGAAAGTGGACGAAGGA	4654
	GII-AIG	TCCACCAATGGCAGCTG	4655
		CAGCTGC <u>C</u> A <u>T</u> TGGTGGA	4656

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ I
Porphyric Herbicide Resistant PPO Zea mays Val363Met GTT-ATG	TTTTGCGTCCACTTTCAAGCGATGCTGCAGATGCTCTATCAAGATT CTATTATCCACCGATGGCTGCTGTAACTGTTTCGTATCCAAAGGAA GCAATTAGAAAAGAATGCTTAATTGATGG	4657
	CCATCAATTAAGCATTCTTTTCTAATTGCTTCCTTTGGATACGAAAC AGTTACAGCAGCCATCGGTGGATAATAGAATCTTGATAGAGCATC TGCAGCATCGCTTGAAAGTGGACGCAAAA	4658
	TCCACCGATGGCTG	4659
	CAGCAGC <u>C</u> A <u>T</u> CGGTGGA	466
Porphyric Herbicide Resistant PPO	TCTTGCGGCCACTTTCAAGTGATGCAGCAGATGCTCTGTCAATATT CTATTATCCACCAATGGCTGCTGTAACTGTTTCATATCCAAAAGAA GCAATTAGAAAAGAATGCTTAATTGACGG	466
Oryza sativa Val364Met GTT-ATG	CCGTCAATTAAGCATTCTTTTCTAATTGCTTCTTTTGGATATGAAAC AGTTACAGCAGCCATTGGTGGATAATAGAATATTGACAGAGCATCT GCTGCATCACTTGAAAGTGGCCGCAAGA	466
	TCCACCAATGGCTGCTG	466
	CAGCAGC C A <u>T</u> TGGTGGA	466
Porphyric Herbicide Resistant PPO	CTGGTCAAGGAGCAGGCGCCGCCGCCGCGAGGCCCTGGGCT CCTTCGACTACCCGCCGATGGGCGCGCGTGACGCTGTCGTACCCG CTGAGCGCCGTGCGGGAGGAGCGCAAGGCCTCGG	466
Chlamydomonas reinhardtii Val389Met	CCGAGGCCTTGCGCTCCCCGCACGCGCTCAGCGGTACGA CAGCGTCACGGCGCCCA <u>T</u> CGGCGGGTAGTCGAAGGAGCCCAGG GCCTCGGCGGCGCGGC	4666
GTG-ATG	ACCCGCCGATGGGCGCC	466
	GGCGCCCA <u>T</u> CGGCGGGT	466

5

10

15

Table 13
Genome-Altering Oligos Conferring Triazine Resistance

Phenotype, Gene, Plant & Targeted **SEQID Altering Oligos** Alteration NO: 25 Triazine Resistant AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 4669 D1 Protein ${\tt TTTCCAATATGCTA} \underline{{\tt C}} {\tt TTTCAACAATTCTCGTTCTTTACATTTCTTCTT}$ Arabidopsis thaliana AGCGGCTTGGCCGGTAGTAGGTATTTG Ser264Thr CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAAATGTAAAGAA 4670 **AGT-ACT** CGAGAATTGTTGAAAGTAGCATATTGGAAAATCAATCGGCCAAAAT AACCGTGAGCAGCTACAATGTTGTAAGTTT

Phenotype, Gene, Plant & Targeted	Altering Oligos	SEQID NO:
Alteration	AZAZOGIACITICAACA	4671
	ATATGCTACTTCAACA	4672
	TGTTGAAAGTAGCATAT	4673
Triazine Resistant	AAACTTATAACATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT	7010
01 Protein	CTTCCAATATGCTACTTCAACAACTCTCGTTCGTTACACTTCTTCC	
Nicotiana tabacum	TAGCTGCTTGGCCTGTAGTAGGTATCTG CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA	4674
Ser264Thr	CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA	
AGT-ACT	TAACCATGAGCGGCTACGATGTTATAAGTTT	
•	ATATGCTACTTTCAACA	4675
		4676
	TGTTGAAAGTAGCATAT	4677
Triazine Resistant	AAACTTATAATATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT	7011
D1 Protein	CTTCCAATATGCTACTATCTC	
Populus deltoides	TAGCTGCTTGGCCTGTAGTAGGAGGAATGTAAAGAG	4678
Ser264Thr	CAGATACCTACTACAGGCCAAGCAGCTAAGAAGAAATGTAAAGAG CGAGAGTTGTTAAAAGTAGCATATTGGAAGATCAATCGGCCAAAAT	
AGT-ACT	AACCATGAGCGGCTACGATATTATAAGTTT	
	ATATGCTACTTTTAACA	4679
		4680
	TGTTAAAAGTAGCATAT	4681
Triazine Resistant	AAACTTATAATATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT CTTCCAATATGCTACTTTCAACAACTCTCGTTCGTTACACTTCTTCC	
D1 Protein	TAGCTGCTTGGCCTGTAGTAGGTATCTG	
Petunia x hybrida	CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA	4682
Ser264Thr	CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA	
AGT-ACT	TAACCATGAGCGGCTACGATATTATAAGTTT	
	ATATGCTACTTTCAACA	4683
	TGTTGAAA <u>G</u> TAGCATAT	4684
	AAACTTATAATATCGTAGCTGCTCATGGTTATTTTGGCCGATTGAT	468
Triazine Resistant	CTTCCAATATGCTACTTTCAACAATTCTCGTTCTTTACATTTCTTCC	
D1 Protein	TAGCTGCTTGGCCTGTAGTAGGTATCTG	
Magnolia pyramidata Ser264Thr	CACATACCTACTACAGGCCAAGCAGCTAGGAAGAAAIGIAAAGAA	468
AGT-ACT	CGAGAATTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAAT	
1/101/101	AACCATGAGCAGCTACGATATTATAAGTTT	400
	ATATGCTACTTTCAACA	468
	TGTTGAAAGTAGCATAT	468
Triazine Resistant	LAAACCTATAATATIGTAGCAGCTCATGGTTATITTGGCCGATTGAT	468
D1 Protein Medicago sativa Ser264Thr AGT-ACT	CTTCCAATATGCTACTTTCAACAACTCTCGTTCTTTACATTCTTCC	
	TACCTCCTTCCCTGTAGTAGGTATCTG	400
	CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAA	469
	CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA	
	TAACCATGAGCTGCTACAATATTATAGGTTT	469
1	ATATGCTACTTTCAACA	703

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ NO
	TGTTGAAA G TAGCATAT	469
Triazine Resistant D1 Protein Glycine max Ser264Thr	AAACCTATAATATTGTAGCTGCTCATGGTTATTTTGGCCGATTGAT CTTCCAATATGCAACCTTTCAACAATTCTCGTTCTTTACATTTCTTCT TAGCTGCTTGGCCTGTAGTAGGTATTTG	469
AGT-ACT	CAAATACCTACTACAGGCCAAGCAGCTAAGAAGAAATGTAAAGAA CGAGAATTGTTGAAAGTTGCATATTGGAAGATCAATCGGCCAAAAT AACCATGAGCAGCTACAATATTATAGGTTT ATATGCAACTTTCAACA	
	TGTTGAAA <u>G</u> TTGCATAT	469
Triazine Resistant		469
D1 Protein Brassica napus Gly264Thr	AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT CTTCCAATATGCTACTTTCAACAATTCTCGTTCTTTACATTTCTTCT TAGCGGCTTGGCCGGTAGTAGGTATTTG	469
GĞT-ACT	CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAATGTAAAGAA CGAGAATTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAAT AACCGTGAGCAGCTACAATGTTGTAAGTTT ATATGCTACTTTCAACA	4698
	TGTTGAAAGTAGCATAT	4699
Triazine Resistant		4700
D1 Protein Oryza sativa Ser264Thr	AAACTTATAATATTGTGGCCGCTCATGGTTATTTTGGCCGATTAAT CTTCCAATATGCTACTTTAACAACTCTCGTTCTTTACACTTCTTCT TGGCTGCTTGGCCTGTAGTAGGGATTTG	4701
AGT-ACT	CAAATCCCTACTACAGGCCAAGCAGCCAAGAAGAAGAAGAAGAACCATGAGCGCCAACATTATAAGTTT AACCATGAGCGCCCACAATATTATAAGTTT	4702
	ATATGCTAAAACTTAACA	4703
Triazine Resistant	TGTTAAAA G TAGCATAT	4704
O1 Protein Zea mays Ser264Thr	AGACTTATAATATTGTGGCTGCTCACGGTTATTTTGGTCGATTAAT CTTCCAATATGCTACTTCAACAATTCTCGTTCTTTACACTTCTTCT TGGCTGCTTGGCCTGTAGTAGGGATCTG CAGATCCCTACTACACCCCAACCAACCAACCAACCAACCA	4705
AGT-ACT	CAGATCCCTACTACAGGCCAAGCAGCCAAGAAGAAGAAGAACGAGAATTGTTGAAAGAACGAGCATATTGGAAGATTAATCGACCAAAATAACCGTGAGCAGCCACAATATTATAAGTCTACTTCAACA	4706
	TGTTGAAAGTAGCATAT	4707
riazine Resistant		4708
01 Protein Arabidopsis thaliana Ger264Thr	AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT TTTCCAATATGCTACTTCAACAATTCTCGTTCTTTACATTTCTTCTT AGCGGCTTGGCCGGTAGTAGGTATTTG	4709
	CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAATGTAAAGAA CGAGAATTGTTGAAAGTAGCATATTGGAAAATCAATCGGCCAAAAT AACCGTGAGCAGCTACAATGTTGTAAGTTT ATATGCTACTTTCAACA	4710
		4711
	TGTTGAAAGTAGCATAT	4712

10

15

20

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
Triazine Resistant D1 Protein Nicotiana tabacum Ser264Thr AGT-ACT	AAACTTATAACATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT CTTCCAATATGCTACTTCCAACAACTCTCGTTCGTTACACTTCTTCC TAGCTGCTTGGCCTGTAGTAGGTATCTG	4713
	CAGATACCTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA TAACCATGAGCGGCTACGATGTTATAAGTTT	4714
	ATATGCTA <u>C</u> TTTCAACA	4715
	TGTTGAAA G TAGCATAT	4716
Triazine Resistant D1 Protein	AAACTTATAATATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT CTTCCAATATGCTACTTTAACAACTCTCGCTCTTTACATTTCTTCT TAGCTGCTTGGCCTGTAGTAGGTATCTG	4717
Populus deltoides Ser264Thr AGT-ACT	CAGATACCTACAGGCCAAGCAGCTAAGAAGAAATGTAAAGAG CGAGAGTTGTTAAAAGTAGCATATTGGAAGATCAATCGGCCAAAAT AACCATGAGCGGCTACGATATTATAAGTTT	4718
	ATATGCTACTTTTAACA	4719
	TGTTAAAAGTAGCATAT	4720
Triazine Resistant D1 Protein	AAACTTATAATATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT CTTCCAATATGCTACTTTCAACAACTCTCGTTCGTTACACTTCTTCC TAGCTGCTTGGCCTGTAGTAGGTATCTG	4721
Petunia x hybrida Ser264Thr AGT-ACT	CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA TAACCATGAGCGGCTACGATATTATAAGTTT	4722
	ATATGCTACTTTCAACA	4723
	TGTTGAAAGTAGCATAT	4724
Triazine Resistant D1 Protein Magnolia pyramidata	AAACTTATAATATCGTAGCTGCTCATGGTTATTTTGGCCGATTGAT CTTCCAATATGCTACTTTCAACAATTCTCGTTCTTTACATTTCTTCC TAGCTGCTTGGCCTGTAGTAGGTATCTG	4725
Ser264Thr AGT-ACT	CAGATACCTACAGGCCAAGCAGCTAGGAAGAATGTAAAGAA CGAGAATTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAAT AACCATGAGCAGCTACGATATTATAAGTTT	4726
	ATATGCTACTTTCAACA	4727
	TGTTGAAAGTAGCATAT	4728
Triazine Resistant D1 Protein	AAACCTATAATATTGTAGCAGCTCATGGTTATTTTGGCCGATTGAT CTTCCAATATGCTACTTTCAACAACTCTCGTTCTTTACATTTCTTCC TAGCTGCTTGGCCTGTAGTAGGTATCTG	4729
Medicago sativa Ser264Thr AGT-ACT	CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAA CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA TAACCATGAGCTGCTACAATATTATAGGTTT	4730
	ATATGCTACTTTCAACA	4731
	TGTTGAAAGTAGCATAT	4732

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ NO
Triazine Resistant D1 Protein Glycine max	AAACCTATAATATTGTAGCTGCTCATGGTTATTTTGGCCGATTGAT CTTCCAATATGCAACCTTTCAACAATTCTCGTTCTTTACATTTCTTCT TAGCTGCTTGGCCTGTAGTAGGTATTTG	473
Ser264Thr AGT-ACT	CAAATACCTACTACAGGCCAAGCAGCTAAGAAGAATGTAAAGAA CGAGAATTGTTGAAAGTTGCATATTGGAAGATCAATCGGCCAAAAT AACCATGAGCAGCTACAATATTATAGGTTT	473
	ATATGCAA <u>C</u> TTTCAACA TGTTGAAA G TTGCATAT	473
Triazine Resistant		473
D1 Protein Brassica napus	AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT CTTCCAATATGCT <u>AC</u> TTTCAACAATTCTCGTTCTTTACATTTCTTCT TAGCGGCTTGGCCGGTAGTAGGTATTTG	473
Gly264Thr GGT-ACT	CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAATGTAAAGAA CGAGAATTGTTGAAA <u>G</u> TAGCATATTGGAAGATCAATCGGCCAAAAT AACCGTGAGCAGCTACAATGTTGTAAGTTT	473
	ATATGCT <u>AC</u> TTTCAACA	473
	TGTTGAAA <u>GT</u> AGCATAT	474
Triazine Resistant D1 Protein Oryza sativa	AAACTTATAATATTGTGGCCGCTCATGGTTATTTTGGCCGATTAAT CTTCCAATATGCTACTTTTAACAACTCTCGTTCTTTACACTTCTTCT TGGCTGCTTGGCCTGTAGTAGGGATTTG	474
Ser264Thr AGT-ACT	CAAATCCCTACTACAGGCCAAGCAGCCAAGAAGAAGAAGAACGAGTGTTAAAAGAACGAGAGATTAATCGGCCAAAATACCATGAGCGGCCACAATATTATAAGTTT	474
	ATATGCTA <u>C</u> TTTTAACA	474
	TGTTAAAA G TAGCATAT	474
Triazine Resistant D1 Protein Zea mays	AGACTTATAATATTGTGGCTGCTCACGGTTATTTTGGTCGATTAAT CTTCCAATATGCTACTTTCAACAATTCTCGTTCTTTACACTTCTTCT TGGCTGCTTGGCCTGTAGTAGGGATCTG	474
Ser264Thr AGT-ACT	CAGATCCCTACTACAGGCCAAGCAGCCAAGAAGAAGAACGAAC	474
	ATATGCTA <u>C</u> TTTCAACA	474
	TGTTGAAAGTAGCATAT	474
Triazine Resistant D1 Protein Arabidopsis thaliana	AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT TTTCCAATATGCTACTTTCAACAATTCTCGTTCTTTACATTTCTTCTT AGCGGCTTGGCCGGTAGTAGGTATTTG	474
Ser264Thr AGT-ACT	CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAAATGTAAAGAA CGAGAATTGTTGAAAGTAGCATATTGGAAAATCAATCGGCCAAAAT AACCGTGAGCAGCTACAATGTTGTAAGTTT	475
•	ATATGCTA <u>C</u> TTTCAACA	475
	TGTTGAAA <u>G</u> TAGCATAT	475

BNSDOCID: <WO___0192512A2_I_>

10

15

20

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
Triazine Resistant D1 Protein Picea abies	AAACCTACAATATTGTGGCTGCTCACGGTTATTTCGGCCGATTGAT CTTCCAGTATGCTACTTTCAACAACTCCCGTTCTTTACATTTCTTCT TAGCTGCTTGGCCCGTAGCAGGTATCTG	4753
Ser264Thr AGT-ACT	CAGATACCTGCTACGGGCCAAGCAGCTAAGAAGAAATGTAAAGAA CGGGAGTTGTTGAAAGTAGCATACTGGAAGATCAATCGGCCGAAA TAACCGTGAGCAGCCACAATATTGTAGGTTT	4754
	GTATGCTA <u>C</u> TTTCAACA	4755
	TGTTGAAA <u>G</u> TAGCATAC	4756
Triazine Resistant D1 Protein Vicia faba	AAACCTATAATATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT CTTCCAATATGCTACTTTCAACAATTCTCGCTCTTTACATTTCTTCC TAGCTGCTTGGCCTGTAGTAGGTATCTG	4757
Ser264Thr AGT-ACT	CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAG CGAGAATTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAAT AACCGTGAGCAGCTACAATATTATAGGTTT	4758
	ATATGCTA <u>C</u> TTTCAACA	4759
	TGTTGAAA G TAGCATAT	4760
Triazine Resistant D1 Protein Hordeum vulgare	AGACTTATAATATTGTGGCTGCTCATGGTTATTTTGGCCGATTAAT CTTCCAATATGCTACTTCAACAACTCTCGTTCTTTACACTTCTTCT TGGCTGCTTGGCCTGTAGTAGGAATCTG	4761
Ser264Thr AGT-ACT	CAGATTCCTACTACAGGCCAAGCAGCCAAGAAGAAGTGTAAAGAA CGAGAGTTGTTGAAAGTAGCATATTGGAAGATTAATCGGCCAAAAT AACCATGAGCAGCCACAATATTATAAGTCT	4762
	ATATGCTACTTTCAACA	4763
	TGTTGAAAGTAGCATAT	4764
Triazine Resistant D1 Protein Triticum aestivum	AAACTTATAATATTGTGGCTGCTCATGGTTATTTTGGCCGATTAAT CTTCCAATATGCTACTTCAACAACTCTCGTTCTTTACACTTCTTCT TGGCTGCTTGGCCTGTAGTAGGAATCTG	4765
Ser264Thr AGT-ACT	CAGATTCCTACTACAGGCCAAGCAGCCAAGAAGAAGTGTAAAGAA CGAGAGTTGTTGAAAGTAGCATATTGGAAGATTAATCGGCCAAAAT AACCATGAGCAGCCACAATATTATAAGTTT	4766
	ATATGCTA <u>C</u> TTTCAACA	4767
	TGTTGAAA <u>G</u> TAGCATAT	4768
Triazine Resistant D1 Protein Vigna unguiculata	AAACTTATAATATTGTAGCTGCTCATGGTTATTTTGGCCGATTAATC TTCCAATATGCAACTTTCAACAATTCTCGTTCTTTACATTTCTTCCT AGCTGCTTGGCCTGTAGTAGGTATTTG	4769
Ser264Thr AGT-ACT	CAAATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAA CGAGAATTGTTGAAAGTTGCATATTGGAAGATTAATCGGCCAAAAT AACCATGAGCAGCTACAATATTATAAGTTT	4770
	ATATGCAACTTTCAACA	4771
	TGTTGAAAGTTGCATAT	4772

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	Triazine Resistant D1 Protein Lotus japonicus	AAACCTATAATATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT CTTCCAATATGCAACTTTCAACAACTCTCGTTCTTTACACTTCTTCT TAGCTGCTTGGCCTGTTGTAGGTATCTG	4773
5	Ser264Thr AGT-ACT	CAGATACCTACAACAGGCCAAGCAGCTAAGAAGAAGTGTAAAGAA CGAGAGTTGTTGAAAGTTGCATATTGGAAGATCAATCGGCCAAAAT AACCGTGAGCAGCTACAATATTATAGGTTT	4774
		ATATGCAACTTCCATAT	4775
	Triazine Resistant	TGTTGAAAGTTGCATAT	4776
	D1 Protein Sinapis alba	AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT CTTCCAATATGCTACTTTCAACAATTCTCGTTCTTTACATTTCTTCT TAGCGGCTTGGCCGGTAGTAGGTATTTG	4777
10	Ser264Thr AGT-ACT	CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAAATGTAAAGAA CGAGAATTGTTGAAA <u>G</u> TAGCATATTGGAAGATCAATCGGCCAAAAT AACCGTGAGCAGCTACAATGTTGTAAGTTT	4778
		ATATGCTA <u>C</u> TTTCAACA	4779
		TGTTGAAA <u>G</u> TAGCATAT	4780
	Triazine Resistant D1 Protein Pisum sativum	AAACCTATAATATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT CTTCCAATATGCTACTTTCAACAATTCTCGCTCTTTACATTTCTTCC TAGCTGCTTGGCCTGTAGTAGGTATCTG	4781
15	Ser264Thr AGT-ACT	CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAG CGAGAATTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAAT AACCGTGAGCAGCTACAATATTATAGGTTT	4782
		ATATGCTA <u>C</u> TTTCAACA	4783
		TGTTGAAA <u>G</u> TAGCATAT	4784
	Triazine Resistant D1 Protein Spinacia oleracea	AAACTTATAATATCGTAGCTGCTCATGGTTATTTTGGTCGATTGAT CTTCCAATATGCTACTTTCAACAACTCTCGTTCTTTACACTTCTTCT TAGCTGCTTGGCCTGTAGTAGGTATTTG	4785
20	Ser264Thr AGT-ACT	CAAATACCTACTACAGGCCAAGCAGCTAAGAAGAAGTGTAAAGAA CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGACCAAAAT AACCATGAGCAGCTACGATATTATAAGTTT	4786
		ATATGCTA <u>C</u> TTTCAACA	4787
		TGTTGAAA <u>G</u> TAGCATAT	4788
	Triazine Resistant D1 Protein Nicotiana debneyi	AAACTTATAACATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT CTTCCAATATGCTACTTTCAACAACTCTCGTTCGTTACACTTCTTCC TAGCTGCTTGGCCTGTAGTAGGTATCTG	4789
25	Ser264Thr AGT-ACT	CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA TAACCATGAGCGGCTACGATGTTATAAGTTT	4790
		ATATGCTA <u>C</u> TTTCAACA	4791
		TGTTGAAA <u>G</u> TAGCATAT	4792

BNSDOCID: <WO___0192512A2_I_>

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
Triazine Resistant	AAACTTATAATATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT	4793
D1 Protein	CTTCCAATATGCTACTTTCAACAACTCTCGTTCGTTACACTTCTTCC TAGCTGCTTGGCCTGTAGTAGGTATCTG	
Solanum nigrum Ser264Thr AGT-ACT	CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA TAACCATGAGCGGCTACGATATTATAAGTTT	4794
	ATATGCTACTTTCAACA	4795
	TGTTGAAA <u>G</u> TAGCATAT	4796
Triazine Resistant D1 Protein Nicotiana	AAACTTATAACATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT CTTCCAATATGCTACTTCAACAACTCTCGTTCGTTACACTTCTTCC TAGCTGCTTGGCCTGTAGTAGGTATCTG	4797
plumbaginifolia Ser264Thr AGT-ACT	CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA TAACCATGAGCGGCTACGATGTTATAAGTTT	4798
1401-401	ATATGCTACTTTCAACA	4799
	TGTTGAAA G TAGCATAT	4800

Example 6 Engineering male- or female-sterile plants

Flower development in distantly related dicot plant species is increasingly better understood and appears to be regulated by a family of genes which encode regulatory proteins. These genes include, for example, AGAMOUS (AG), APETALA1 (AP1), and APETALA3 (AP3) and PISTILLATA (PI) in Arabidopsis thaliana, and DEFICIENS A (DEFA), GLOBOSA (GLO), SQUAMOSA (SQUA), and PLENA (PLE) in Antirrhinum majus. Genetic studies have shown that the DEFA, GLO and AP3 genes are essential for petal and stamen development. Sequence analysis of these genes revealed that the gene products contain a conserved MADS box region, a DNA-binding domain. Using these clones as probes, MADS box genes have also been isolated from other species including tomato, tobacco, petunia, Brassica napus, and maize.

Altering the expression of these genes results in altered floral morphology. For example, mutations in *AP3* and *PI* result in male-sterile flowers because petals develop in place of stamens.

The attached tables disclose exemplary oligonucleotide base sequences which can be used to generate site-specific mutations that confer altered floral structures in plants.

Table 14
Oligonucleotides to produce male-sterile plants

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
Male-sterile AP3 Arabidopsis thaliana	TTGTCCTCTCCACCAAATCTCTTCAACAAAAGATTAAACAAAGAGA GAAGAATATGGCGTGAGGGAAGATCCAGATCAAGAGGATAGAGAA CCAGACAAACAGACAAGTGACGTATTCAA	4801
Arg3Term AGA-TGA	TTGAATACGTCACTTGTCTGTTTGTCTGGTTCTCTATCCTCTTGATC TGGATCTTCCCTCACGCCATATTCTTCTCTCTTTGTTTAATCTTTTT GTTGAAGAGATTTGGTGGAGAGGACAA	4802
	ATATGGCG <u>T</u> GAGGGAAG	4803
	CTTCCCTC <u>A</u> CGCCATAT	4804
Male-sterile AP3 <i>Arabidopsis thaliana</i>	TCTCCACCAAATCTCTTCAACAAAAGATTAAACAAAGAGAGAG	4805
Lys5Term AAG-TAG	TTCTCTTTGAATACGTCACTTGTCTGTTTGTCTGGTTCTCTATCCTC TTGATCTGGATCTACCCTCTCGCCATATTCTTCTCTCTTTGTTTAAT CTTTTTGTTGAAGAGATTTGGTGGAGA	4806
	CGAGAGGG <u>T</u> AGATCCAG	4807

30

5

10

15

20

	CTGGATCT <u>A</u> CCCTCTCG	4808
Male-sterile AP3 Arabidopsis thaliana	CCAAATCTCTTCAACAAAAGATTAAACAAAGAGAGAAGAATATGG CGAGAGGGAAGATC <u>T</u> AGATCAAGAGGATAGAGAACCAGACAAACA GACAAGTGACGTATTCAAAGAGAAGGAATG	4809
GIn7Term CAG-TAG	CATTCCTTCTCTTTGAATACGTCACTTGTCTGTTTGTCTGGTTCTCT ATCCTCTTGATCTAGATCTTCCCTCTCGCCATATTCTTCTCTCTTTG TTTAATCTTTTTGTTGAAGAGATTTGG	4810
	GGAAGATC <u>T</u> AGATCAAG	4811
	CTTGATCT <u>A</u> GATCTTCC	4812
Male-sterile AP3 Arabidopsis thaliana	CTCTTCAACAAAAGATTAAACAAAGAGAGAAGAATATGGCGAGAG GGAAGATCCAGATC <u>T</u> AGAGGATAGAGAACCAGACAAACAGACAAG TGACGTATTCAAAGAGAAGGAATGGTTTAT	4813
Lys9Term AAG-TAG	ATAAACCATTCCTTCTCTTTGAATACGTCACTTGTCTGTTTGTCTGG TTCTCTATCCTCTAGATCTGGATCTTCCCTCTCGCCATATTCTTCTC TCTTTGTTTAATCTTTTTGTTGAAGAG	4814
	TCCAGATC <u>T</u> AGAGGATA	4815
	TATCCTCT <u>A</u> GATCTGGA	4816
Male-sterile AP3 Brassica oleracea	AGAGGGAAGATCCAGATCAAGAGGATAGAGAACCAGACCAACCGA CAAGTGACGTATTCT <u>T</u> AGAGAAGAAATGGTTTGTTCAAGAAAGCTC ACGAGCTTACAGTTTTATGTGATGCTAGGG	4817
Lys23Term AAG-TAG	CCCTAGCATCACATAAAACTGTAAGCTCGTGAGCTTTCTTGAACAA ACCATTTCTTCTCT <u>A</u> AGAATACGTCACTTGTCGGTTGGTCTGGTTC TCTATCCTCTTGATCTGGATCTTCCCTCT	4818
	CGTATTCT <u>T</u> AGAGAAGA	4819
	TCTTCTCT <u>A</u> AGAATACG	4820
Male-sterile AP3 Brassica oleracea	GGGAAGATCCAGATCAAGAGGATAGAGAACCAGACCAACCGACAA GTGACGTATTCTAAGTGAAGAAATGGTTTGTTCAAGAAAGCTCACG AGCTTACAGTTTTATGTGATGCTAGGGTTT	4821
Arg24Term AGA-TGA	AAACCCTAGCATCACATAAAACTGTAAGCTCGTGAGCTTTCTTGAA CAAACCATTTCTTCACTTAGAATACGTCACTTGTCGGTTGGTCTGG TTCTCTATCCTCTTGATCTGGATCTTCCC	4822
	ATTCTAAG <u>T</u> GAAGAAAT	4823
	ATTTCTTC <u>A</u> CTTAGAAT	4824
Male-sterile AP3 Brassica oleracea	AAGATCCAGATCAAGAGGATAGAGAACCAGACCAACCGACAAGTG ACGTATTCTAAGAGA <u>T</u> GAAATGGTTTGTTCAAGAAAGCTCACGAGC TTACAGTTTTATGTGATGCTAGGGTTTCGA	4825
Arg25Term AGA-TGA	TCGAAACCCTAGCATCACATAAAACTGTAAGCTCGTGAGCTTTCTT GAACAAACCATTTCATCTCTTAGAATACGTCACTTGTCGGTTGGTC TGGTTCTCTATCCTCTTGATCTGGATCTT	4826
	CTAAGAGA <u>T</u> GAAATGGT	4827
	ACCATTTCATCTCTTAG	4828

	Male-sterile AP3 Brassica oleracea	TCAAGAGGATAGAGAACCAGACCAACCGACAAGTGACGTATTCTA AGAGAAGAAATGGTTAGTTCAAGAAAGCTCACGAGCTTACAGTTTT ATGTGATGCTAGGGTTTCGATTATCATGTT	4829
5	Leu28Term TTG-TAG	AACATGATAATCGAAACCCTAGCATCACATAAAACTGTAAGCTCGT GAGCTITCTTGAACTAACCATTTCTTCTCTTAGAATACGTCACTTGT CGGTTGGTCTGTTCTCTATCCTCTTGA	4830
		AAATGGTT <u>A</u> GTTCAAGA	4831
	Mole eta-ile	TCTTGAACTAACCATTT	4832
	Male-sterile AP3 Brassica napus Tyr21Term	GGCTCGAGGGAAGATCCAGATTAAGAGGATAGAGAACCAAACAAA	4833
10	TAC-TAG	AGCATCACAGAGAACAGAGAGCTCGTGTGCTTTCTTGAACAAACC ATTTCTTCTCTTGGACTAGGTGACCTGCTGTTTGTTTGGTTCTCTA TCCTCTTAATCTGGATCTTCCCTCGAGCC	4834
		GTCACCTA <u>G</u> TCCAAGAG	4835
	NACL AND THE	CTCTTGGA <u>C</u> TAGGTGAC	4836
	Male-sterile AP3 Brassica napus	CGAGGGAAGATCCAGATTAAGAGGATAGAGAACCAAACAACAGG CAGGTCACCTACTCC <u>T</u> AGAGAAGAAATGGTTTGTTCAAGAAAGCAC ACGAGCTCTCTGTTCTCTGTGATGCTAAAG	4837
15	Lys23Term AAG-TAG	CTTTAGCATCACAGAGAACAGAGAGCTCGTGTGCTTTCTTGAACAA ACCATTTCTTCTCTAGGAGTAGGTGACCTGCCTGTTTGTT	4838
		CCTACTCC <u>T</u> AGAGAAGA	4839
•		TCTTCTCT <u>A</u> GGAGTAGG	4840
	Male-sterile AP3 Brassica napus	GGGAAGATCCAGATTAAGAGGATAGAGAACCAAACAACAGGCAG GTCACCTACTCCAAG <u>T</u> GAAGAAATGGTTTGTTCAAGAAAGCACACG AGCTCTCTGTTCTCTGTGATGCTAAAGTTT	4841
20	Arg24Term AGA-TGA	AAACTTTAGCATCACAGAGAACAGAGAGCTCGTGTGCTTTCTTGAA CAAACCATTTCTTCACTTGGAGTAGGTGACCTGCCTGTTTGTT	4842
		ACTCCAAG <u>T</u> GAAGAAAT	4843
		ATTTCTTC <u>A</u> CTTGGAGT	4844
	Male-sterile AP3 Brassica napus	AAGATCCAGATTAAGAGGATAGAGAACCAAACAACAGGCAGG	4845
25	Arg25Term AGA-TGA	TGGAAACTTTAGCATCACAGAGAACAGAGAGCTCGTGTGCTTTCTT GAACAAACCATTTCATCTCTTGGAGTAGGTGACCTGCCTG	4846
		CCAAGAGA <u>T</u> GAAATGGT	4847
		ACCATTTC <u>A</u> TCTCTTGG	4848

	Male-sterile	GGAGAGAAGGAAGCTGGAAGAAGAAACAAGAGCAGTAGTGGT	4849
	DEFA Antirrhinum majus	AGTGGTTCGATGGCT <u>T</u> GAGGGAAGATCCAGATTAAGAGGATAGAG AACCAAACAACAGGCAGGTCACCTACTCCA	
5	Arg3Term CGA-TGA	TGGAGTAGGTGACCTGCCTGTTTGTTTGGTTCTCTATCCTCTTAAT CTGGATCTTCCCTCAAGCCATCGAACCACTACCACTACTGCTCTTG TTTTCTTCTTCCAGCTTTCCTTTC	4850
		CGATGGCT <u>T</u> GAGGGAAG	4851
		CTTCCCTC <u>A</u> AGCCATCG	4852
	Male-sterile DEFA Antirrhinum majus	AAAGGAAAGCTGGAAGAAGAAACAAGAGCAGTAGTGGT TCGATGGCTCGAGGGTAGATCCAGATTAAGAGGATAGAGAACCAA ACAAACAGGCAGGTCACCTACTCCAAGAGAA	4853
10	Lys5Term AAG-TAG	TTCTCTTGGAGTAGGTGACCTGCCTGTTTGTTTGGTTCTCTATCCT CTTAATCTGGATCTACCCTCGAGCCATCGAACCACTACCACTACTG CTCTTGTTTTCTTCTTCCAGCTTTCCTTT	4854
		CTCGAGGG <u>T</u> AGATCCAG	4855
		CTGGATCT <u>A</u> CCCTCGAG	4856
	Male-sterile DEFA Antirrhinum majus	AAGCTGGAAGAAGAAACAAGAGCAGTAGTGGTAGTTGGTTCGATG GCTCGAGGGAAGATCTAGATTAAGAGGATAGAGAACCAAACAAA	4857
15	Gln7Term CAG-TAG	CATTTCTTCTTGGAGTAGGTGACCTGCCTGTTTGTTTGGTTCTC TATCCTCTTAATCTAGATCTTCCCTCGAGCCATCGAACCACTACCA CTACTGCTCTTGTTTTCTTCTTCCAGCTT	4858
		GGAAGATC <u>T</u> AGATTAAG	4859
		CTTAATCT <u>A</u> GATCTTCC	4860
	Male-sterile DEFA Antirrhinum majus	GAAGAAGAAACAAGAGCAGTAGTGGTAGTGGTTCGATGGCTCGA GGGAAGATCCAGATT <u>T</u> AGAGGATAGAGAACCAAACAAACAGGCAG GTCACCTACTCCAAGAGAAAAATGGTTTGT	4861
20	Lys9Term AAG-TAG	ACAAACCATTTCTTCTTGGAGTAGGTGACCTGCCTGTTTGTT	4862
		TCCAGATT <u>T</u> AGAGGATA	4863
		TATCCTCT <u>A</u> AATCTGGA	4864
	Male-sterile AP3 Nicotiana tabacum	TCAGTAATTCTTAAGATCTCAAACTTTGAGCAAAAAGAAAAAAAA	4865
25	Lys5Term AAG-TAG	TTCTCTTAGAATAAGTGACTTGTCTGTTTGTTTGGTTCTCTATTCTC TTGATCTGGATCTACCCACGAGCCATAGTTTTTTTTTT	4866
		CTCGTGGG <u>T</u> AGATCCAG	4867
		CTGGATCT <u>A</u> CCCACGAG	4868

	Male-sterile	IATICHTA CATOTO A A A COMPONIO DE LA COMPONIO DEL COMPONIO DE LA COMPONIO DE LA COMPONIO DEL COMPONIO DE LA COMPONIO DEL COMPONIO DEL COMPONIO DE LA COMPONIO DEL COMPONIO DE LA COMPONIO DE LA COMPONIO DE LA COMPONIO DE LA COMPONIO DEL COMPONIO DE LA COMPONIO DE	
	AP3 Nicotiana tabacum Gln7Term	ATTCTTAAGATCTCAAACTTTGAGCAAAAAGAAAAAAAAA	4869
5	CAG-TAG	CATTTCTCTCTTAGAATAAGTGACTTGTCTGTTTGTTTGGTTCTCT ATTCTCTTGATCTAGATCTTCCCACGAGCCATAGTTTTTTTT	4870
	·	GGAAGATC <u>T</u> AGATCAAG	4871
	Male-sterile	CTTGATCTAGATCTTCC	4872
	AP3 Nicotiana tabacum Lys9Term	AAGATCTCAAACTTTGAGCAAAAAGAAAAAAAAAAACTATGGCTCGTG GGAAGATCCAGATC <u>T</u> AGAGAATAGAGAACCAAACAAACAAGACAAGT CACTTATTCTAAGAGAAGAAATGGACTTT	4873
10	AAG-TAG	AAAGTCCATTTCTCTCTTAGAATAAGTGACTTGTCTGTTTGG TTCTCTATTCTCTAGATCTGGATCTTCCCACGAGCCATAGTTTTTT TTCTTTTTGCTCAAAGTTTGAGATCTT	4874
		TCCAGATC <u>T</u> AGAGAATA	4875
		TATTCTCT <u>A</u> GATCTGGA	4876
	Male-sterile AP3 Nicotiana tabacum	ATCTCAAACTTTGAGCAAAAAGAAAAAAAAAAACTATGGCTCGTGGGA AGATCCAGATCAAG <u>T</u> GAATAGAGAACCAAACAAACAGACAAGTCAC TTATTCTAAGAGAAAGAAATGGACTTTTCA	4877
15	Arg10Term AGA-TGA	TGAAAAGTCCATTTCTTCTCTTAGAATAAGTGACTTGTCTGTTTGTT	4878
		AGATCAAG <u>T</u> GAATAGAG	4879
		CTCTATTC <u>A</u> CTTGATCT	4880
	Male-sterile AP3 Medicago sativa	GGCTCGAGGAAAGATCCAGATCAAGAGAATAGAGAACACAACGAA CAGACAAGTAACTTAGTCAAAACGAAGGGATGGTCTTTTCAAGAAG GCCAATGAGCTCACTGTTCTTTGTGATGCT	4881
20	Tyr21Term TAC-TAG	AGCATCACAAAGAACAGTGAGCTCATTGGCCTTCTTGAAAAGACCA TCCCTTCGTTTTGACTAAGTTACTTGTCTGTTCGTTGTGTCTCTAT TCTCTTGATCTGGATCTTTCCTCGAGCC	4882
		GTAACTTA <u>G</u> TCAAAACG	4883
•		CGTTTTGA <u>C</u> TAAGTTAC	4884
	Male-sterile AP3 Medicago sativa	CTCGAGGAAAGATCCAGATCAAGAGAATAGAGAACACAACGAACA GACAAGTAACTTACT G AAAACGAAGGGATGGTCTTTTCAAGAAGGC CAATGAGCTCACTGTTCTTTGTGATGCTAA	4885
25	Ser22Term TCA-TGA	TTAGCATCACAAAGAACAGTGAGCTCATTGGCCTTCTTGAAAAGAC CATCCCTTCGTTTTCAGTAAGTTACTTGTCTGTTCGTTGTGTTCTCT ATTCTCTTGATCTGGATCTTTCCTCGAG	4886
		AACTTACT <u>G</u> AAAACGAA	4887
		TTCGTTTTCAGTAAGTT	4888

	Male-sterile AP3 <i>Medicago sativa</i>	CGAGGAAAGATCCAGATCAAGAGAATAGAGAACACAACGAACAGA CAAGTAACTTACTCATAACGAAGGGATGGTCTTTTCAAGAAGGCCA ATGAGCTCACTGTTCTTTGTGATGCTAAGG	4889
5	Lys23Term AAA-TAA	CCTTAGCATCACAAAGAACAGTGAGCTCATTGGCCTTCTTGAAAAG ACCATCCCTTCGTTATGAGTAAGTTACTTGTCTGTTCGTTGTGTTCT CTATTCTCTTGATCTGGATCTTTCCTCG	4890
		CTTACTCA <u>T</u> AACGAAGG	4891
		CCTTCGTT <u>A</u> TGAGTAAG	4892
	Male-sterile AP3 <i>Medicago sativa</i>	GGAAAGATCCAGATCAAGAGAATAGAGAACACAACGAACAGACAA GTAACTTACTCAAAATGAAGGGATGGTCTTTTCAAGAAGGCCAATG AGCTCACTGTTCTTTGTGATGCTAAGGTTT	4893
10	Arg24Term CGA-TGA	AAACCTTAGCATCACAAAGAACAGTGAGCTCATTGGCCTTCTTGAA AAGACCATCCCTTCATTTTGAGTAAGTTACTTGTCTGTTCGTTGTGT TCTCTATTCTCTTGATCTGGATCTTTCC	4894
		ACTCAAAA <u>T</u> GAAGGGAT	4895
		ATCCCTTC <u>A</u> TTTTGAGT	4896
	Male-sterile DEF4 Solanum tuberosum	GGCTCGTGGTAAGATCCAGATCAAGAAAATAGAAAACCAAACAAA	4897
15	Tyr21Term TAT-TAG	AGCATCACAAAGAACTGTAAGTTCATTAGCCTTCTTGAATAGCCCA TTTCTTCTCTTTGACTAAGTCACTTGCCTATTTGTTTGGTTTTCTATT TTCTTGATCTGGATCTTACCACGAGCC	4898
		GTGACTTA G TCAAAGAG	4899
٠		CTCTTTGA <u>C</u> TAAGTCAC	4900
	Male-sterile DEF4 Solanum tuberosum	CTCGTGGTAAGATCCAGATCAAGAAAATAGAAAACCAAACAAA	4901
20	Ser22Term TCA-TGA	TTAGCATCACAGTOTTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOT	4902
		GACTTATT <u>G</u> AAAGAGAA	4903
		TTCTCTTT <u>C</u> AATAAGTC	4904
	Male-sterile DEF4 Solanum tuberosum	CGTGGTAAGATCCAGATCAAGAAAATAGAAAACCAAACAAA	4905
25	Lys23Term AAG-TAG	CTTTAGCATCACAAAGAACTGTAAGTTCATTAGCCTTCTTGAATAGC CCATTTCTTCTCTATGAATAAGTCACTTGCCTATTTGTTTG	4906
		CTTATTCA <u>T</u> AGAGAAGA	4907
		TCTTCTCTATGAATAAG	4908

	Male-sterile	GGTAAGATCCAGATCAAGAAAATAGAAAACCAAACAAATAGGCAAG	4909
	DEF4 Solanum tuberosum	TGACTTATTCAAAGTGAAGAAATGGGCTATTCAAGAAGGCTAATGA	
	Arg24Term	ACTTACAGTTCTTTGTGATGCTAAAGTTT	
5	AGA-TGA	AAACTTTAGCATCACAAAGAACTGTAAGTTCATTAGCCTTCTTGAAT	4910
J	AGA-1GA	AGCCCATTTCTTCACTTTGAATAAGTCACTTGCCTATTTGTTTG	
		TTCTATTTTCTTGATCTGGATCTTACC	
		ATTCAAAG <u>T</u> GAAGAAAT	4911
		ATTTCTTC <u>A</u> CTTTGAAT	4912
	Male-sterile	GCTAATGAACTTACTGTTCTTTGTGATGCTAAAGTTTCAATTGTTAT	4913
	AP3	GATTTCTAGTACT <u>T</u> GAAAACTTCATGAGTTTATAAGTCCCTCTATCA	
	Lycopersicon	CGACCAAACAATTGTTCGATCTGTACC	
40	esculentum	GGTACAGATCGAACAATTGTTTGGTCGTGATAGAGGGACTTATAAA	4914
10	Gly27Term	CTCATGAAGTTTTC <u>A</u> AGTACTAGAAATCATAACAATTGAAACTTTAG	
	GGA-TGA	CATCACAAAGAACAGTAAGTTCATTAGC	
		CTAGTACT <u>T</u> GAAAACTT	4915
		AAGTTTTC <u>A</u> AGTACTAG	4916
	Male-sterile	AATGAACTTACTGTTCTTTGTGATGCTAAAGTTTCAATTGTTATGAT	4917
	AP3	TTCTAGTACTGGA <u>T</u> AACTTCATGAGTTTATAAGTCCCTCTATCACGA	1017
	Lycopersicon	CCAAACAATTGTTCGATCTGTACCAGA	
15	esculentum	TCTGGTACAGATCGAACAATTGTTTGGTCGTGATAGAGGGACTTAT	4918
	Lys28Term	AAACTCATGAAGTT <u>A</u> TCCAGTACTAGAAATCATAACAATTGAAACTT	
	AAA-TAA	TAGCATCACAAAGAACAGTAAGTTCATT	
		GTACTGGA <u>T</u> AACTTCAT	4919
		ATGAAGTT <u>A</u> TCCAGTAC	4920
	Male-sterile	ACTGTTCTTTGTGATGCTAAAGTTTCAATTGTTATGATTTCTAGTAC	4921
	AP3	TGGAAAACTTCAT <u>T</u> AGTTTATAAGTCCCTCTATCACGACCAAACAAT	
20	Lycopersicon	TGTTCGATCTGTACCAGAAGACTATTG	
	esculentum	CAATAGTCTTCTGGTACAGATCGAACAATTGTTTGGTCGTGATAGA	4922
	Glu31Term GAG-TAG	GGGACTTATAAACT <u>A</u> ATGAAGTTTTCCAGTACTAGAAATCATAACAA	İ
	GAG-TAG	TTGAAACTTTAGCATCACAAAGAACAGT	
		AACTTCAT <u>T</u> AGTTTATA	4923
		TATAAACT <u>A</u> ATGAAGTT	4924
25	Male-sterile	ATTGTTATGATTTCTAGTACTGGAAAACTTCATGAGTTTATAAGTCC	4925
25	AP3	CTCTATCACGACCTAACAATTGTTCGATCTGTACCAGAAGACTATT	
	Lycopersicon	GGAGTTGATATTTGGACTACTCACTATG	
	esculentum Lys40Term	CATAGTGAGTAGTCCAAATATCAACTCCAATAGTCTTCTGGTACAG	4926
	AAA-TAA	ATCGAACAATTGTTAGGTCGTGATAGAGGGGACTTATAAACTCATGA	
	1,22,21,562	AGTTTTCCAGTACTAGAAATCATAACAAT	
		TCACGACC <u>T</u> AACAATTG	4927
		CAATTGTT <u>A</u> GGTCGTGA	4928

	Male-sterile	IGGGGCGGGGAAGATTGAGATAAAGCGGATCGAGAACGCCACCA	4929
	AP3	ACAGGCAGGTGACCTAGTCCAAGCGCCGGTCGGGGATCATGAAG	
	Triticum aestivum	AAGGCGCGGAGCTCACCGTGCTCTGCGACGCC	
	Tyr21Term	GGCGTCGCAGAGCACGGTGAGCTCCCGCGCCTTCTTCATGATCC	4930
5	TAC-TAG	CCGACCGGCGCTTGGACTAGGTCACCTGCCTGTTGGTGGCGTTC	
		TCGATCCGCTTTATCTCAATCTTCCCCCGCCCC	
		GTGACCTA <u>G</u> TCCAAGCG	4931
		CGCTTGGA <u>C</u> TAGGTCAC	4932
	Male-sterile	CGGGGAAGATTGAGATAAAGCGGATCGAGAACGCCACCAACAG	4933
	AP3	GCAGGTGACCTACTCC <u>T</u> AGCGCCGGTCGGGGATCATGAAGAAGG	
	Triticum aestivum	CGCGGGAGCTCACCGTGCTCTGCGACGCCCAGG	
	Lys23Term	CCTGGGCGTCGCAGAGCACGGTGAGCTCCCGCGCCTTCTTCATG	4934
10	AAG-TAG	ATCCCCGACCGGCGCTAGGAGTAGGTCACCTGCCTGTTGGTGGC	1
		GTTCTCGATCCGCTTTATCTCAATCTTCCCCCG	4005
		CCTACTCC <u>T</u> AGCGCCGG	4935
		CCGGCGCT <u>A</u> GGAGTAGG	4936
	Male-sterile	TTGAGATAAAGCGGATCGAGAACGCCACCAACAGGCAGGTGACCT	4937
	AP3	ACTCCAAGCGCCGGTAGGGGGATCATGAAGAAGGCGCGGGAGCTC	
	Triticum aestivum	ACCGTGCTCTGCGACGCCCAGGTCGCCATCAT	
	Ser26Term	ATGATGGCGACCTGGGCGTCGCAGAGCACGGTGAGCTCCCGCGC	4938
15	TCG-TAG	CTTCTTCATGATCCCC <u>T</u> ACCGGCGCTTTGGAGTAGGTCACCTGCCT	
		GTTGGTGGCGTTCTCGATCCGCTTTATCTCAA	4000
		GCGCCGGT <u>A</u> GGGGATCA	4939
		TGATCCCC <u>T</u> ACCGGCGC	4940
	Male-sterile	CGGATCGAGAACGCCACCAACAGGCAGGTGACCTACTCCAAGCG	4941
	AP3	CCGGTCGGGGATCATG <u>T</u> AGAAGGCGCGGGAGCTCACCGTGCTCT	
	Triticum aestivum	GCGACGCCCAGGTCGCCATCATCATGTTCTCCT	
	Lys30Term	AGGAGAACATGATGATGGCGACCTGGGCGTCGCAGAGCACGGTG	4942
20	AAG-TAG	AGCTCCCGCGCCTTCTACATGATCCCCGACCGGCGCTTGGAGTA	
		GGTCACCTGCCTGTTGGTGGCGTTCTCGATCCG	40.40
		GGATCATG <u>T</u> AGAAGGCG	4943
		CGCCTTCT <u>A</u> CATGATCC	4944
	Male-sterile	GGGGCGCGCAAGATCGAGATCAAGCGGATCGAGAACGCCACCA	4945
	Silky1	ACCGCCAGGTGACCTAGTCCAAGCGCCGGACGGGGATCATGAAG	
	Zea mays	AAGGCACGCGAGCTCACCGTGCTCTGCGACGCC	40.15
	Tyr21Term	GGCGTCGCAGAGCACGGTGAGCTCGCGTGCCTTCTTCATGATCC	4946
25	TAC-TAG	CCGTCCGGCGCTTGGACTAGGTCACCTGGCGGTTGGTGGCGTTC	
		TCGATCCGCTTGATCTCGATCTTGCCGCGCCCC	4047
		GTGACCTA <u>G</u> TCCAAGCG	4947
		CGCTTGGA <u>C</u> TAGGTCAC	4948
	——————————————————————————————————————		

	Male-sterile Silky1 Zea mays	CGCGGCAAGATCGAGATCAAGCGGATCGAGAACGCCAACCG CCAGGTGACCTACTCC <u>T</u> AGCGCCGGACGGGGATCATGAAGAAGG CACGCGAGCTCACCGTGCTCTGCGACGCCCAGG	4949
5	Lys23Term AAG-TAG	CCTGGGCGTCGCAGAGCACGGTGAGCTCGCGTGCCTTCTTCATG ATCCCCGTCCGGCGCTAGGAGTAGGTCACCTGGCGGTTGGTGGC GTTCTCGATCCGCTTGATCTCGATCTTGCCGCG	4950
		CCTACTCC <u>T</u> AGCGCCGG	4951
		CCGGCGCT <u>A</u> GGAGTAGG	4952
	Male-sterile Silky1 Zea mays	CGGATCGAGAACGCCACCAACCGCCAGGTGACCTACTCCAAGCG CCGGACGGGGATCATGTAGAAGGCACGCGAGCTCACCGTGCTCT GCGACGCCCAGGTCGCCATCATCATGTTCTCCT	4953
10	Lys30Term AAG-TAG	AGGAGAACATGATGATGGCGACCTGGGCGTCGCAGAGCACGGTG AGCTCGCGTGCCTTCTACATGATCCCCGTCCGGCGCTTGGAGTAG GTCACCTGGCGGTTGGTGGCGTTCTCGATCCG	4954
		GGATCATG <u>T</u> AGAAGGCA	4955
		TGCCTTCT <u>A</u> CATGATCC	4956
	Male-sterile Silky1 Zea mays	ATCGAGAACGCCACCAACCGCCAGGTGACCTACTCCAAGCGCCGGACCGGGGATCATGAAGTAGGCACGCGAGCTCACCGTGCTCTGCGACGCCCAGGTCGCCATCATCATGTTCTCCTCCA	4957
15	Lys31Term AAG-TAG	TGGAGGAGAACATGATGATGGCGACCTGGGCGTCGCAGAGCACG GTGAGCTCGCGTGCCTACTTCATGATCCCCGTCCGGCGCTTGGA GTAGGTCACCTGGCGGTTGGTGGCGTTCTCGAT	4958
		TCATGAAG <u>T</u> AGGCACGC	4959
		GCGTGCCT <u>A</u> CTTCATGA	4960
	Male-sterile AP3 Oryza sativa	GCTAGCTGCATTGTCCGGCGAGAGAGATAGCTGCTGCAGGGGGC GGCCATGGGGAGGGGCTAGATCGAGATCAAGCGGATCGAGAACG CGACCAACAGGCAGGTGACCTACTCGAAGCGCC	4961
20	Lys5Term AAG-TAG	GGCGCTTCGAGTAGGTCACCTGCCTGTTGGTCGCGTTCTCGATCC GCTTGATCTCGATCTAGCCCCCTCCCCATGGCCGCCCCCTGCAGC AGCTATCTCTCTCGCCGGACAATGCAGCTAGC	4962
		GGAGGGC <u>T</u> AGATCGAG	4963
		CTCGATCTAGCCCCTCC	4964
	Male-sterile AP3 Oryza sativa	TGCATTGTCCGGCGAGAGAGATAGCTGCTGCAGGGGGGCGGCCAT GGGGAGGGCAAGATC <u>T</u> AGATCAAGCGGATCGAGAACGCGACCA ACAGGCAGGTGACCTACTCGAAGCGCCGCACGG	4965
25	Glu7Term GAG-TAG	CCGTGCGCGCTTCGAGTAGGTCACCTGCCTGTTGGTCGCGTTCT CGATCCGCTTGATCTAGATCTTGCCCCTCCCCATGGCCGCCCCCT GCAGCAGCTATCTCTCTCGCCGGACAATGCA	4966
		GCAAGATC <u>T</u> AGATCAAG	4967
		CTTGATCTAGATCTTGC	4968

15

20

	Male-sterile AP3 Oryza sativa	GTCCGGCGAGAGATAGCTGCTGCAGGGGGGGCGGCCATGGGGA GGGGCAAGATCGAGATCTAGCGGATCGAGAACGCGACCAACAGG CAGGTGACCTACTCGAAGCGCCGCACGGGGATCA	4969
5	Lys9Term AAG-TAG	TGATCCCGTGCGGCGCTTCGAGTAGGTCACCTGCCTGTTGGTC GCGTTCTCGATCCGCTAGATCTCGATCTTGCCCCTCCCCATGGCC GCCCCCTGCAGCAGCTATCTCTCTCGCCGGAC	4970
		TCGAGATC <u>T</u> AGCGGATC	4971
	·	GATCCGCT <u>A</u> GATCTCGA	4972
	Male-sterile AP3 Oryza sativa	GAGAGATAGCTGCTGCAGGGGGGCGCCATGGGGAGGGGCAAGA TCGAGATCAAGCGGATCTAGAACGCGACCAACAGGCAGGTGACCT ACTCGAAGCGCCGCACGGGGATCATGAAGAAGG	4973
10	Glu12Term GAG-TAG	CCTTCTTCATGATCCCCGTGCGGCGCTTCGAGTAGGTCACCTGCC TGTTGGTCGCGTTCTAGATCCGCTTGATCTCGATCTTGCCCCTCC CCATGGCCGCCCCTGCAGCAGCTATCTCTC	4974
		AGCGGATC <u>T</u> AGAACGCG	4975
		CGCGTTCTAGATCCGCT	4976

Table 15
Oligonucleotides to produce male-sterile plants

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
Male-sterile AG Arabidopsis thaliana	TCTGTACTAATCAAATTTTGCCCTAAACGTTTTTGGCTTTGGAGCA GCAATCACGGCGTAGCAATCGGAGCTAGGAGGAGATTCCTCTCC CTTGAGGAAATCTGGGAGAGGGAAAGATCGAA	4977
Tyr35Term TAC-TAG	TTCGATCTTTCCTCTCCCAGATTTCCTCAAGGGAGAGGAATCTCCT CCTAGCTCCGATTGCTACGCCGTGATTGCTGCTCCAAAGCCAAAA ACGTTTAGGGCAAAATTTGATTAGTACAGA	4978
	ACGGCGTA <u>G</u> CAATCGGA	4979
	TCCGATTG <u>C</u> TACGCCGT	4980
Male-sterile AG Arabidopsis thaliana	CTGTACTAATCAAATTTTGCCCTAAACGTTTTTGGCTTTGGAGCAG CAATCACGGCGTACTAATCGGAGCTAGGAGGAGATTCCTCCCT TGAGGAAATCTGGGAGAGGAAAGATCGAAA	4981
Gln36Term CAA-TAA	TTTCGATCTTTCCTCCCAGATTTCCTCAAGGGAGAGGAATCTCC TCCTAGCTCCGATTAGTACGCCGTGATTGCTGCTCCAAAGCCAAA AACGTTTAGGGCAAAATTTGATTAGTACAG	4982
	CGGCGTACTAATCGGAG	4983
	CTCCGATTAGTACGCCG	4984

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	Male-sterile AG Arabidopsis thaliana	ACTAATCAAATTTTGCCCTAAACGTTTTTGGCTTTGGAGCAGCAAT CACGGCGTACCAAT A GGAGCTAGGAGGAGATTCCTCCCTTGA GGAAATCTGGGAGAGGAAAGATCGAAATCAA	4985
5	Ser37Term TCG-TAG	TTGATTTCGATCTTTCCTCTCCCAGATTTCCTCAAGGGAGAGGAAT CTCCTCCTAGCTCCTATTGGTACGCCGTGATTGCTGCTCCAAAGC CAAAAACGTTTAGGGCAAAATTTGATTAGT	4986
-		GTACCAAT <u>A</u> GGAGCTAG	4987
	Mole eterile	CTAGCTCCTATTGGTAC	4988
	Male-sterile AG Arabidopsis thaliana	TAATCAAATTTTGCCCTAAACGTTTTTGGCTTTGGAGCAGCAATCA CGGCGTACCAATCG <u>T</u> AGCTAGGAGGAGATTCCTCTCCCTTGAGGA AATCTGGGAGAGAGAAGATCGAAATCAAAC	4989
10	Glu38Term GAG-TAG	GTTTGATTTCGATCTTTCCTCTCCCAGATTTCCTCAAGGGAGAGGA ATCTCCTCCTAGCTACGATTGGTACGCCGTGATTGCTGCTCCAAA GCCAAAAACGTTTAGGGCAAAATTTGATTA	4990
		ACCAATCG <u>T</u> AGCTAGGA	4991
•		TCCTAGCT <u>A</u> CGATTGGT	4992
	Male-sterile AG Brassica napus	CTCTCCCACTTCTTTTCGGTGGTTATTCATTTGGTGACGATATCA CAGAAGCAATGGAT <u>T</u> AAGGTGGGAGTAGTCACGATGCAGAGAGTA GCAAGAAGATAGGTAGAGGGAAGATAGAGA	4993
15	Glu3Term GAA-TAA	TCTCTATCTTCCCTCTACCTATCTTCTTGCTACTCTCTGCATCGTG ACTACTCCCACCTTAATCCATTGCTTCTGTGATATCGTCACCAAAT GAATAAACCACCGAAAAGAAGTGGGAGAG	4994
		CAATGGAT <u>T</u> AAGGTGGG	4995
		CCCACCTT <u>A</u> ATCCATTG	4996
	Male-sterile AG Brassica napus	TATTCATTTGGTGACGATATCACAGAAGCAATGGATGAAGGTGGG AGTAGTCACGATGCA <u>T</u> AGAGTAGCAAGAAGATAGGTAGAGGGAAG ATAGAGATAAAGAGGATAGAGAACACAA	4997
20	Glu11Term GAG-TAG	TTGTTGTGTTCTCTATCCTCTTTATCTCTATCTTCCCTCTACCTATC TTCTTGCTACTCTATCGTCATCGTGACTACTCCCACCTTCATCCATTG CTTCTGTGATATCGTCACCAAATGAATA	4998
		ACGATGCATAGAGTAGC	4999
		GCTACTCTATGCATCGT	5000
	Male-sterile AG Brassica napus	GGTGACGATATCACAGAAGCAATGGATGAAGGTGGGAGTAGTCA CGATGCAGAGAGTAGC <u>T</u> AGAAGATAGGTAGAGGGAAGATAGAGAT AAAGAGGATAGAGAACAACAAATCGTCAAG	5001
25	Lys14Term AAG-TAG	CTTGACGATTTGTTGTGTTCTCTATCCTCTTTATCTCTATCTTCCCT CTACCTATCTTCTAGCTACTCTCTGCATCGTGACTACTCCCACCTT CATCCATTGCTTCTGTGATATCGTCACC	5002
		AGAGTAGC <u>T</u> AGAAGATA	5003
		TATCTTCTAGCTACTCT	5004

BNSDOCID: <WO__0192512A2_l_>

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ NO
Male-sterile AG Brassica napus	GACGATATCACAGAAGCAATGGATGAAGGTGGGAGTAGTCACGAT GCAGAGAGTAGCAAGTAGATAGGTAGAGGGAAGATAGAGATAAAG AGGATAGAGAACAACAAATCGTCAAGTAA	500
Lys15Term AAG-TAG	TTACTTGACGATTTGTTGTGTTCTCTATCCTCTTTATCTCTATCTTC CCTCTACCTATCTACTTGCTACTCTCTGCATCGTGACTACTCCCAC CTTCATCCATTGCTTCTGTGATATCGTC	500
	GTAGCAAG <u>T</u> AGATAGGT	500
	ACCTATCT <u>A</u> CTTGCTAC	500
Male-sterile AG Lycopersicon	CAACCAAAAACTTAAAAATCTTCTCTTTCCTTTCCTTACAAGGTGA AGTAATGGACTTC <u>T</u> AAAGTGATCTAACCAGAGAGATCTCACCACAA AGGAAACTAGGAAGGGGGAAAATTGAGA	500
esculentum Glu4Term CAA-TAA	TCTCAATTTTCCCCCTTCCTAGTTTCCTTTGTGGTGAGATCTCTCT GGTTAGATCACTTTAGAAGTCCATTACTTCACCTTGTAAGGAAAGG AAAGAGAAGATTTTTAAGTTTTTTGGTTG	501
CAN-1AA	TGGACTTC <u>T</u> AAAGTGAT	501
	ATCACTTT <u>A</u> GAAGTCCA	501
Male-sterile AG Lycopersicon	AAAATCTTCTCTTTCCTTTCCTTACAAGGTGAAGTAATGGACTTCC AAAGTGATCTAACCTGAGAGATCTCACCACAAAGGAAACTAGGAA GGGGGAAAATTGAGATCAAAAGGATCGAAA	501
esculentum Arg9Term AGA-TGA	TTTCGATCCTTTGATCTCAATTTTCCCCCTTCCTAGTTTCCTTTGT GGTGAGATCTCTCAGGTTAGATCACTTTGGAAGTCCATTACTTCAC CTTGTAAGGAAAGGA	50
AGA-1GA	ATCTAACC <u>T</u> GAGAGATC	50′
	GATCTCTC <u>A</u> GGTTAGAT	50
Male-sterile AG Lycopersicon	ATCTTCTCTTTCCTTACAAGGTGAAGTAATGGACTTCCAAA GTGATCTAACCAGATAGATCTCACCACAAAGGAAACTAGGAAGGG GGAAAATTGAGATCAAAAGGATCGAAAACA	50 ⁻
esculentum Glu10Term GAG-TAG	TGTTTCGATCCTTTTGATCTCAATTTTCCCCCTTCCTAGTTTCCTT TGTGGTGAGATCTATCTGGTTAGATCACTTTGGAAGTCCATTACTT CACCTTGTAAGGAAAGGA	50 ⁻
	TAACCAGA <u>T</u> AGATCTCA	50
	TGAGATCT <u>A</u> TCTGGTTA	50
Male-sterile AG Lycopersicon	CTTTCCTTTCCAAGGTGAAGTAATGGACTTCCAAAGTGATCT AACCAGAGAGATCTGACCACAAAGGAAACTAGGAAGGGGGAAAAT TGAGATCAAAAGGATCGAAAACACGACGAA	50
esculentum Ser12Term TCA-TGA	TTCGTCGTGTTTTCGATCCTTTTGATCTCAATTTTCCCCCTTCCTA GTTTCCTTTGTGGTCAGATCTCTCTGGTTAGATCACTTTGGAAGTC CATTACTTCACCTTGTAAGGAAAGGA	50
IONION	AGAGATCTGACCACAAA	50

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
		TTTGTGGT <u>C</u> AGATCTCT	5024
	Male-sterile NAG1 <i>Nicotiana tabacum</i> Gln4Term	GTACTCTCTATTTCATCTTCCAACCCTTTCTTTCCTTACCAGGTGA AAGTATGGACTTCTAAAGTGATCTAACAAGAGAGAGTCTCTCCACAA AGGAAACTGGGAAGAGAGAAGATTGAGA TCTCAATCTTTCCTCTTCCCAGTTTCCTTTGTGGAGAGATCTCTCT	5025 5026
5	CAA-TAA	TGTTAGATCACTTTAGAAGTCCATACTTTCACCTGGTAAGGAAAGA AAGGGTTGGAAGATGAAAATAGAGAGTAC TGGACTTCTAAAGTGAT	5007
		ATCACTTTAGAAGTCCA	5027 5028
	Male-sterile NAG1 Nicotiana tabacum	ATCTTCCAACCCTTTCTTTCCTTACCAGGTGAAAGTATGGACTTCC AAAGTGATCTAACATGAGAGATCTCTCCACAAAGGAAACTGGGAA GAGGAAAGATTGAGATCAAACGGATCGAAA	5029
10	Arg9Term AGA-TGA	TTTCGATCCGTTTGATCTCAATCTTTCCTCTTCCCAGTTTCCTTTGT GGAGAGATCTCTCACTTAGATCACTTTGGAAGTCCATACTTTCAC CTGGTAAGGAAAGAAAGGGTTGGAAGAT	5030
		ATCTAACA <u>T</u> GAGAGATC GATCTCTC <u>A</u> TGTTAGAT	5031
	Male-sterile NAG1 <i>Nicotiana tabacum</i>	TTCCAACCCTTTCTTTCCTTACCAGGTGAAAGTATGGACTTCCAAA GTGATCTAACAAGATAGATCTCTCCACAAAGGAAACTGGGAAGAG GAAAGATTGAGATCAAACGGATCGAAAACA	5032 5033
15	Glu10Term GAG-TAG	TGTTTCGATCCGTTTGATCTCAATCTTTCCTCTTCCCAGTTTCCTT TGTGGAGAGATCTATCTTGTTAGATCACTTTGGAAGTCCATACTTT CACCTGGTAAGGAAAGAAAGGGTTGGAA	5034
		TAACAAGA <u>T</u> AGATCTCT	5035
	Male-sterile NAG1 Nicotiana tabacum	AGAGATCTATCTTGTTA CTTTCCTTACCAGGTGAAAGTATGGACTTCCAAAGTGATCTAACAA GAGAGATCTCTCCATAAAGGAAACTGGGAAGAGGAAAGATTGAGA TCAAACGGATCGAAAACACAACGAATCGTC	5036 5037
20	GIn14Term CAA-TAA	GACGATTCGTTGTGTTTTCGATCCGTTTGATCTCAATCTTTCCTCT TCCCAGTTTCCTTTATTGGAGAGATCTCTCTTGTTAGATCACTTTGG AAGTCCATACTTTCACCTGGTAAGGAAAG	5038
		TCTCTCCATAAAGGAAA	5039
	Male-sterile	TTTCCTTT <u>A</u> TGGAGAGA GCCTATGAAAACAAACCCAACACGGTCCTGGACGCTGATGCCCAA	5040
	AG Rosa hybrida Gly22Term	AGAAGATTGGGAAGGTGAAAGATCGAGATCAAGCGGATCGAAAAC ACCACCAATCGTCAAGTCACCTTCTGCAAAA	5041
25	GGA-TGA	TITTGCAGAAGGTGACTTGACGATTGGTGGTGTTTTCGATCCGCT TGATCTCGATCTTTCACCTTCCCAATCTTCTTTGGGCATCAGCGTC CAGGACCGTGTTGGGTTTGTTTTCATAGGC	5042
		TGGGAAGGTGAAAGATC	5043
		GATCTTTC <u>A</u> CCTTCCCA	5044

BNSDOCID: <WO__0192512A2_I_>

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
Male-sterile AG Rosa hybrida	TATGAAAACAAACCCAACACGGTCCTGGACGCTGATGCCCAAAGA AGATTGGGAAGGGGATAGATCGAGATCAAGCGGATCGAAAACAC CACCAATCGTCAAGTCACCTTCTGCAAAAGGC	5045
Lys23Term AAG-TAG	GCCTTTGCAGAAGGTGACTTGACGATTGGTGGTGTTTTCGATCC GCTTGATCTCGATCTATCCCCTTCCCAATCTTCTTTGGGCATCAGC GTCCAGGACCGTGTTGGGTTTGTTTTCATA	5046
	GAAGGGA <u>T</u> AGATCGAG	5047
	CTCGATCTATCCCCTTC	5048
Male-sterile AG Rosa hybrida	AACAAACCCAACACGGTCCTGGACGCTGATGCCCAAAGAAGATTG GGAAGGGGAAAGATCTAGATCAAGCGGATCGAAAACACCACCAAT CGTCAAGTCACCTTCTGCAAAAGGCGCAATG	5049
Glu25Term GAG-TAG	CATTGCGCCTTTTGCAGAAGGTGACTTGACGATTGGTGGTGTTTT CGATCCGCTTGATCTAGATCTTTCCCCTTCCCAATCTTCTTTGGGC ATCAGCGTCCAGGACCGTGTTGGGTTTGTT	5050
	GAAAGATCTAGATCAAG	5051
	CTTGATCTAGATCTTTC	5052
Male-sterile AG	CCCAACACGGTCCTGGACGCTGATGCCCAAAGAAGATTGGGAAG GGGAAAGATCGAGATCTAGCGGATCGAAAACACCACCAATCGTCA AGTCACCTTCTGCAAAAGGCGCAATGGTTTGC	5053
Rosa hybrida Lys27 AAG-TAG	GCAAACCATTGCGCCTTTTGCAGAAGGTGACTTGACGATTGGTGG TGTTTTCGATCCGCTAGATCTCGATCTTTCCCCTTCCCAATCTTCT TTGGGCATCAGCGTCCAGGACCGTGTTGGG	5054
	TCGAGATC <u>T</u> AGCGGATC	5055
	GATCCGCT A GATCTCGA	5056
Male-sterile far Antirrhinum maius	CAATTGCCTGTTTTTATTTTTTTTTTTTTTTTTTTTTTT	5057
GIn7Term CAA-TAA	TCCGTTTGATCTCGATCTTTCCTCTCCCGATTTTCCTCTCGGGCGA TACCTCGGTCGATTAATCGCTTAGAGACGCCATTTCTACTTAGTCA AAAAGAAAAAAAAAA	5058
	TAAGCGATTAATCGACC	5059
	GGTCGATTAATCGCTTA	5060
Male-sterile far Antirrhinum majus	GTTTTTTTTTTTTTTTTTGACTAAGTAGAAATGGCGTCTCTAAG CGATCAATCGACCTAGGTATCGCCCGAGAGGAAAATCGGGAGAG GAAAGATCGAGATCAAACGGATCGAAAACA	5061
Glu10Term GAG-TAG	TGTTTCGATCCGTTTGATCTCGATCTTTCCTCCCGATTTTCCT CTCGGGCGATACCTAGGGTCGATTGATCGCTTAGAGACGCCATTTC TACTTAGTCAAAAAGAAAAAAAAAA	5062
	AATCGACCTAGGTATCG	5063
	CGATACCTAGGTCGATT	5064

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	Male-sterile far Antirrhinum majus	TTTCTTTTTGACTAAGTAGAAATGGCGTCTCTAAGCGATCAATCGA CCGAGGTATCGCCCTAGAGGAAAATCGGGAGAGGAAAGATCGAG ATCAAACGGATCGAAAACAAAAC	5065
5	Glu14Term GAG-TAG	GTTGATTTGTTTTCGATCCGTTTGATCTCGATCTTTCCTCTC CCGATTTCCTCTAGGGCGATACCTCGGTCGATTGATCGCTTAGA GACGCCATTTCTACTTAGTCAAAAAGAAA	5066
	•	TATCGCCC <u>T</u> AGAGGAAA TTTCCTCT <u>A</u> GGGCGATA	5067
	Male-sterile far	TTTGACTAAGTAGAAATGGCGTCTCTAAGCGATCAATCGACCGAG GTATCGCCCGAGAGGTAAATCGGGAGAGGAAAGATCGAGATCAA	5068 5069
10	Antirrhinum majus Lys16Term AAA-TAA	ACGGATCGAAAACAAACAAATCAACAGGTTA TAACCTGTTGATTTGTTTTGT	5070
		CCGAGAGGTAAATCGGG	5071
		CCCGATTT <u>A</u> CCTCTCGG	5072
	Male-sterile AG Cucumis sativus	TGTCCAAGCATTATCAGTCACCACTCACAAGAATGATTAAGGAAGA AGGAAAGGGTAAGTAGCAAATAAAGGGGATGTTCCAGAATCAAGA AGAGAAGATGTCAGACTCGCCTCAGAGGAA	5073
15	Leu21Term TTG-TAG	TTCCTCTGAGGCGAGTCTGACATCTTCTCTTCTTGATTCTGGAACA TCCCCTTTATTTGCTACTTACCCTTTCCTTCTTCCTTAATCATTCTT GTGAGTGGTGACTGATAATGCTTGGACA	5074
		GGGTAAGT <u>A</u> GCAAATAA	5075
	M. I	TTATTTGC <u>T</u> ACTTACCC	5076
	Male-sterile AG Cucumis sativus	TCCAAGCATTATCAGTCACCACTCACAAGAATGATTAAGGAAGAAG GAAAGGGTAAGTTG <u>T</u> AAATAAAGGGGGATGTTCCAGAATCAAGAAG AGAAGATGTCAGACTCGCCTCAGAGGAAGA	5077
20	GIn22Term CAA-TAA	TCTTCCTCTGAGGCGAGTCTGACATCTTCTTCTTGATTCTGGAA CATCCCCTTTATTTACAACTTACCCTTTCCTTCCTTAATCATTC TTGTGAGTGGTGACTGATAATGCTTGGA	5078
		GTAAGTTG <u>T</u> AAATAAAG	5079
		CTTTATTT <u>A</u> CAACTTAC	5080
•	Male-sterile AG Cucumis sativus	CATTATCAGTCACCACTCACAAGAATGATTAAGGAAGAAGGAAAG GGTAAGTTGCAAATA <u>T</u> AGGGGATGTTCCAGAATCAAGAAGAAG ATGTCAGACTCGCCTCAGAGGAAGATGGGAA	5081
25	Lys24Term AAG-TAG	TTCCCATCTTCCTCTGAGGCGAGTCTGACATCTTCTTCTTGATT CTGGAACATCCCCTATATTTGCAACTTACCCTTTCCTTCTTCCTTA ATCATTCTTGTGAGTGGTGACTGATAATG	5082
		TGCAAATA <u>T</u> AGGGGATG	5083
		CATCCCCTATATTTGCA	5084

BNSDOCID: <WO___0192512A2_I_>

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
Male-sterile AG Cucumis sativus	CCACTCACAAGAATGATTAAGGAAGAAGGAAAGGGTAAGTTGCAA ATAAAGGGGATGTTCTAGAATCAAGAAGAAGATGTCAGACTCG CCTCAGAGGAAGATGGGAAGAGAGAAGATTG	5085
Gln28Term CAG-TAG	CAATCTTTCCTCTTCCCATCTTCCTCTGAGGCGAGTCTGACATCTT CTCTTCTTGATTCTAGAACATCCCCTTTATTTGCAACTTACCCTTTC CTTCTTCCTTAATCATTCTTGTGAGTGG	5086
	GGATGTTC <u>T</u> AGAATCAA	5087 5088
	TTGATTCTAGAACATCC	
Male-sterile AG Zea mays	CCACCACCACCACCACCACCACCACCATGCTCAACATGAT GACTGATCTGAGCTGAG	5089
Cys10Term TGC-TGA	CCTGTCGCCGAGCCCGTCGGCGCCGCCACCTGCTCCTTG ACCTTGGACGACGGCCCTCAGCTCAG	5090
	CTGAGCTGAGGGCCGTC	5091
	GACGGCCCTCAGCTCAG	5092
Male-sterile AG Zea mays	ACCACCACCACCACCACCACCATGCTCAACATGATGACTGATC TGAGCTGCGGGCCGTAGTCCAAGGTCAAGGAGCAGGTGGCGCCGCCGACGGCCCGACGGCGACAGGCAGG	5093
Ser13Term TCG-TAG	TGCCCTGCCTGTCGCCGGAGCCCGTCGGCGCCGCCACCT GCTCCTTGACCTTGGACTACGGCCCGCAGCTCAGATCAGTCATCA TGTTGAGCATGGTGGTGGTGGTGGTGGTGGT	5094
	CGGGCCGTAGTCCAAGG	5095
	CCTTGGACTACGGCCCG	509
Male-sterile AG Zea mays	CACCACCACCACACCATGCTCAACATGATGACTGATCTGAGC TGCGGGCCGTCGTCCTAGGTCAAGGAGCAGGTGGCGGCGCGCCCCGACGGGCTCCGGCGACAGGCAGG	5097
Lys15Term AAG-TAG	TCCCCTGCCCTGCCTGTCGCCGAGCCCGTCGGCGCCGCCGCCCCCCCC	5098
	CGTCGTCCTAGGTCAAG	509
	CTTGACCT <u>A</u> GGACGACG	510
Male-sterile AG Zea mays	CACCACCACACCATGCTCAACATGATGACTGATCTGAGCTGCGGG CCGTCGTCCAAGGTC <u>T</u> AGGAGCAGGTGGCGGCGCGCCGACGG GCTCCGGCGACAGGCAGGGGCAGGGGAGAGGCA	510
Lys17Term AAG-TAG	TGCCTCTCCCCTGCCCTGCCTGTCGCCGGAGCCCGTCGGCGCCCGCC	510
	CCAAGGTCTAGGAGCAG	510
	CTGCTCCTAGACCTTGG	510

10

15

20

25

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
Male-sterile AG <i>Zea mays</i> Arg4Term	TCCTACCTTTCTCCTTCAGACCTCAAAATCTGTGTGATAGGAACA AGAGCATGCACATCTGAGAAGAGGGGGCTACACCATCCACAGTAA CAGGCATCATGTCGACCCTGACTTCGGCGG	5105
CGA-TGA	CCGCCGAAGTCAGGGTCGACATGATGCCTGTTACTGTGGATGGT GTAGCCTCCTCTTCTCAGATGTGCATGCTCTTGTTCCTATCACACA GATTTTGAGGTCTGAAGGAGAAAAGGTAGGA	5106
	TGCACATC <u>T</u> GAGAAGAG CTCTTCTC A GATGTGCA	5107
Male-sterile	<u> </u>	5108
AG Zea mays Glu5Term	TACCTTTCTCCTTCAGACCTCAAAATCTGTGTGATAGGAACAAGA GCATGCACATCCGATAAGAGGAGGCTACACCATCCACAGTAACAG GCATCATGTCGACCCTGACTTCGGCGGGGC	5109
GAA-TAA	GCCCGCCGAAGTCAGGGTCGACATGATGCCTGTTACTGTGGAT GGTGTAGCCTCCTCTTATCGGATGTGCATGCTCTTGTTCCTATCA CACAGATTTTGAGGTCTGAAGGAGAAAAGGTA	5110
	ACATCCGA <u>T</u> AAGAGGAG	5111
Male-sterile	CTCCTCTTATCGGATGT	5112
AG Zea mays Glu6Term	CTTTTCTCCTTCAGACCTCAAAATCTGTGTGATAGGAACAAGAGCA TGCACATCCGAGAA <u>T</u> AGGAGGCTACACCATCCACAGTAACAGGCA TCATGTCGACCCTGACTTCGGCGGGGCAGC	5113
GAG-TAG	GCTGCCCGCCGAAGTCAGGGTCGACATGATGCCTGTTACTGTG GATGGTGTAGCCTCCTATTCTCGGATGTGCATGCTCTTGTTCCTA TCACACAGATTTTGAGGTCTGAAGGAGAAAAG	5114
	TCCGAGAA <u>T</u> AGGAGGCT	5115
	AGCCTCCT <u>A</u> TTCTCGGA	5116
Male-sterile AG Zea mays Glu7Term	TTCTCCTTCAGACCTCAAAATCTGTGTGATAGGAACAAGAGCATGC ACATCCGAGAAGAGTAGGCTACACCATCCACAGTAACAGGCATCA TGTCGACCCTGACTTCGGCGGGGCAGCAGA	5117
GAG-TAG	TCTGCTGCCCGCCGAAGTCAGGGTCGACATGATGCCTGTTACT GTGGATGGTGTAGCCTACTCTTCTCGGATGTGCATGCTCTTGTTC CTATCACACAGATTTTGAGGTCTGAAGGAGAA	5118
·	GAGAAGAGTAGGCTACA	5119
Male-sterile	TGTAGCCT <u>A</u> CTCTTCTC	5120
AG Oryza sativa	GCTGGGTCAGGATCGTCGGCGGCGGGGGGGGGGGGGGGG	5121
Lys5Term AAG-TAG	GGCGCTTGCAGAAGGTCACCTGCCGGTTCGTCGTTCTCGATC CGCTTTATCTCGATCTACCCCCTCCCCATCTTCTCGCTGCTCCCC GCCGCCACCGCCGACGATCCTGACCCAGC	5122
	GGAGGGG <u>T</u> AGATCGAG	5123
	CTCGATCTACCCCCTCC	5124

BNSDOCID: <WO___0192512A2_I_>

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
Male-sterile AG Oryza sativa	TCAGGATCGTCGGCGGCGGTGGCGGGGGGGGGAGCAGGAGA TGGGGAGGGGGAAGATCTAGATAAAGCGGATCGAGAACACGACG AACCGGCAGGTGACCTTCTGCAAGCGCCGCAATG	5125
Glu7Term GAG-TAG	CATTGCGGCGCTTGCAGAAGGTCACCTGCCGGTTCGTCGTTC TCGATCCGCTTTATCTAGATCTTCCCCCTCCCCATCTTCTCGCTG CTCCCCGCCGCCACCGCCGACGATCCTGA	5126
	GGAAGATC <u>T</u> AGATAAAG	5127
	CTITATCTAGATCTTCC	5128
Male-sterile AG	TCGTCGGCGCGGTGGCGGCGGGGAGCAGCGAGAAGATGGGG AGGGGGAAGATCGAGATATAGCGGATCGAGAACACGACGAACCG GCAGGTGACCTTCTGCAAGCGCCGCAATGGCCTCC	5129
Oryza sativa Lys9Term AAG-TAG	GGAGGCCATTGCGCAGCGCGCGCTTGCCGGTTCGTC GGAGGCCATTGCGGCGCTTGCAGAAGGTCACCTGCCGGTTCGTC GTGTTCTCGATCCGCTATATCTCGATCTTCCCCCCCCCC	5130
	TCGAGATATAGCGGATC	5131
	GATCCGCTATATCTCGA	5132
Male-sterile AG	GCGGTGGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	5133
Oryza sativa Glu12Term GAG-TAG	CCTTCTTCAGGAGGCCATTGCGGCGCTTGCAGAAGGTCACCTGC CGGTTCGTCGTGTTCTAGATCCGCTTTATCTCGATCTTCCCCCTC CCCATCTTCTCGCTGCTCCCCGCCGCCACCGC	5134
	AGCGGATCTAGAACACG	5135
	CGTGTTCTAGATCCGCT	5136

Table 16
Oligonucleotides to produce male-sterile plants

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
Male-sterile Pl Cucumis sativus	GGGAAGAGGGAAAATAGAAATAAAAAGAATAGAGAACTCAAGCAAT AGACAAGTTACATA G TCAAAGAGAAGAAATGGTATCATCAAAAAAG CCAAAGAAATTACTGTTCTTTGCGATGCT	5137
Tyr21Term	AGCATCGCAAAGAACAGTAATTTCTTTGGCTTTTTTGATGATACCAT TTCTTCTCTTTGACTATGTAACTTGTCTATTGCTTGAGTTCTCTATTC TTTTTATTTCTATTTTCCCTCTTCCC	5138

10

15

20

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
	GTTACATAGTCAAAGAG .	5139
	CTCTTTGA <u>C</u> TATGTAAC	5140
Male-sterile PI Cucumis sativus	GAAGAGGGAAAATAGAAATAAAAAGAATAGAGAACTCAAGCAATAG ACAAGTTACATATT <u>G</u> AAAGAGAAGAAATGGTATCATCAAAAAAGCC AAAGAAATTACTGTTCTTTGCGATGCTCA	5141
Ser22Term TCA-TGA	TGAGCATCGCAAAGAACAGTAATTTCTTTGGCTTTTTTGATGATACC ATTTCTTCTCTTT <u>C</u> AATATGTAACTTGTCTATTGCTTGAGTTCTCTAT TCTTTTTATTTCTATTTTCCCTCTTC	5142
	TACATATT <u>G</u> AAAGAGAA	5143
	TTCTCTTT <u>C</u> AATATGTA	5144
Male-sterile Pl Cucumis sativus	AGAGGGAAAATAGAAATAAAAAGAATAGAGAACTCAAGCAATAGAC AAGTTACATATTCATAGAGAAGAAATGGTATCATCAAAAAAGCCAAA GAAATTACTGTTCTTTGCGATGCTCAAG	5145
Lys23Term AAG-TAG	CTTGAGCATCGCAAAGAACAGTAATTTCTTTGGCTTTTTTGATGATA CCATTTCTTCTCT <u>A</u> TGAATATGTAACTTGTCTATTGCTTGAGTTCTC TATTCTTTTATTTCTATTTTCCCTCT	5146
	CATATTCA <u>T</u> AGAGAAGA	5147
	TCTTCTCT <u>A</u> TGAATATG	5148
Male-sterile Pl Cucumis sativus	GGGAAAATAGAAATAAAAGAATAGAGAACTCAAGCAATAGACAAG TTACATATTCAAAG <u>T</u> GAAGAAATGGTATCATCAAAAAAGCCAAAGAA ATTACTGTTCTTTGCGATGCTCAAGTTT	5149
Arg24Term AGA-TGA	AAACTTGAGCATCGCAAAGAACAGTAATTTCTTTGGCTTTTTTGATG ATACCATTTCTTCACTTTGAATATGTAACTTGTCTATTGCTTGAGTT CTCTATTCTTTTTATTTCTATTTTCCC	5150
	ATTCAAAG <u>T</u> GAAGAAAT	5151
	ATTTCTTC <u>A</u> CTTTGAAT	5152
Male-sterile Pl Malus domestica	GGGACGTGGGAAGGTTGAGATCAAGAGGATTGAGAACTCAAGTAA CAGGCAGGTGACCTAGTCCAAGAGGGAGGAATGGGATTATCAAGAA GGCAAAGGAGATCACTGTTCTATGTGATGCT	5153
Tyr21Term TAC-TAG	AGCATCACATAGAACAGTGATCTCCTTTGCCTTCTTGATAATCCCA TTCCTCCTCTTGGACTAGGTCACCTGCCTGTTACTTGAGTTCTCAA TCCTCTTGATCTCAACCTTCCCACGTCCC	5154
	GTGACCTA <u>G</u> TCCAAGAG	5155
·	CTCTTGGA <u>C</u> TAGGTCAC	5156

10

15

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
Male-sterile	CGTGGGAAGGTTGAGATCAAGAGGATTGAGAACTCAAGTAACAGG CAGGTGACCTACTCCTAGAGGAGGAATGGGATTATCAAGAAGGCA AAGGAGATCACTGTTCTATGTGATGCTAAAG	5157
Malus domestica Lys23Term AAG-TAG	CTTTAGCATCACTGTTCTATOTCATCGTTCTTGCCTTCTTGATAATC CCATTCCTCCTCTAGGAGCAGGTCACCTGCCTGTTACTTGAGTTCT CAATCCTCTTGATCTCAACCTTCCCACG	5158
	CCTACTCCTAGAGGAGG	5159
	CCTCCTCTAGGAGTAGG	5160
Male-sterile Pl Malus domestica	AGGATTGAGAACTCAAGTAACAGGCAGGTGACCTACTCCAAGAGG AGGAATGGGATTATCTAGAAGGCAAAGGAGATCACTGTTCTATGTG ATGCTAAAGTATCTCTTATCATTTATTCTA	5161
Lys30Term AAG-TAG	TAGAATAAATGATAAGAGATACTITAGCATCACATAGAACAGTGATC TCCTTTGCCTTCTAGATAATCCCATTCCTCCTCTTGGAGTAGGTCA CCTGCCTGTTACTTGAGTTCTCAATCCT	5162
	GGATTATC <u>T</u> AGAAGGCA	5163
	TGCCTTCTAGATAATCC	5164
Male-sterile Pl Malus domestica	ATTGAGAACTCAAGTAACAGGCAGGTGACCTACTCCAAGAGGAGG AATGGGATTATCAAGTAGGCAAAGGAGATCACTGTTCTATGTGATG CTAAAGTATCTCTTATCATTTATTCTAGCT	5165
Lys31Term AAG-TAG	AGCTAGAATAAATGATAAGAGATACTTTAGCATCACATAGAACAGT GATCTCCTTTGCCTACTTGATAATCCCATTCCTCCTCTTGGAGTAG GTCACCTGCCTGTTACTTGAGTTCTCAAT	5166
	TTATCAAG <u>T</u> AGGCAAAG	5167
	CTTTGCCT <u>A</u> CTTGATAA	5168
Male-sterile globosa	CATTITIACAATAGTTATCTGCAAACAAAAACAAGAGAGAAAAAACAA AAACAAAAAAATGTGAAGAGGAAAAATTGAGATCAAAAGAATTGAG AACTCAAGCAACAGGCAGGTTACTTACT	5169
Antirrhinum majus Gly2Term GGA-TGA	AGTAAGTAACCTGCCTGTTGCTTGAGTTCTCAATTCTTTTGATCTCA ATTTTTCCTCTTCACATTTTTTTGTTTTTGTTTTTCTCTCTTGTTTTTG TTTGCAGATAACTATTGTAAAAAATG	5170
	AAAAATG <u>T</u> GAAGAGGA	517
	TCCTCTTCACATTTTTT	517
Male-sterile globosa	TTTTACAATAGTTATCTGCAAACAAAAACAAGAGAGAAAAAAAA	517
Antirrhinum majus Arg3Term AGA-TGA	TTGAGTAAGTAACCTGCCTGTTGCTTGAGTTCTCAATTCTTTTGATC TCAATTTTTCCTCATCCCATTTTTTTTGTTTTTGTTTTCTCTCTTGTT TTTGTTTGCAGATAACTATTGTAAAA	517

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
		AAATGGGA <u>T</u> GAGGAAAA	5175
		TTTTCCTCATCCCATTT	5176
	Male-sterile globosa Antirrhinum majus	TACAATAGTTATCTGCAAACAAAAACAAGAGAGAAAAAAAA	5177
5	Gly4Term GGA-TGA	TCTTTGAGTAAGTAACCTGCCTGTTGCTTGAGTTCTCAATTCTTTTG ATCTCAATTTTTCATCTTCCCATTTTTTTGTTTTTGTTTTTCTCTCTT GTTTTGTTTGCAGATAACTATTGTA	5178
		TGGGAAGA <u>T</u> GAAAAATT	5179
		AATTITTC <u>A</u> TCTTCCCA	5180
	Male-sterile globosa <i>Antirrhinum majus</i>	AATAGTTATCTGCAAACAAAACAAGAGAGAAAAAAAAAA	5181
10	Lys5Term AAA-TAA	TTCTCTTTGAGTAAGTAACCTGCCTGTTGCTTGAGTTCTCAATTCTT TTGATCTCAATTTATCCCCATTTTTTTGTTTTTGTTTTTCTCT CTTGTTTTTGCAGATAACTATT	5182
		GAAGAGGA <u>T</u> AAATTGAG	5183
		CTCAATTT <u>A</u> TCCTCTTC	5184
	Male-sterile Pl Zea mays	GCTGAGCTCTTGCTGCCCTTGGATCTGTTTGGGAGTGGAGAACGC AGTATGGGGCGCGCCTAGATCAAGATCAAGAGGATCGAGAACTCT ACCAACCGGCAGGTGACCTTCTCCAAGCGCC	5185
15	Lys5Term AAG-TAG	GGCGCTTGGAGAAGGTCACCTGCCGGTTGGTAGAGTTCTCGATCC TCTTGATCTTGATCTAGCCGCCCCCATACTGCGTTCTCCACTCC CAAACAGATCCAAGGGCAGCAAGAGCTCAGC	5186
		GGCGCGGC <u>T</u> AGATCAAG	5187
		CTTGATCT <u>A</u> GCCGCGCC	5188
	Male-sterile PI Zea mays	CTCTTGCTGCCCTTGGATCTGTTTGGGAGTGGAGAACGCAGTATG GGGCGCGGCAAGATCTAGATCAAGAGGATCGAGAACTCTACCAAC CGGCAGGTGACCTTCTCCAAGCGCCGGGCCG	5189
20	Lys7Term AAG-TAG	CGGCCCGGCGCTTGGAGAAGGTCACCTGCCGGTTGGTAGAGTTC TCGATCCTCTTGATCTAGATCTTGCCGCGCCCCATACTGCGTTCTC CACTCCCAAACAGATCCAAGGGCAGCAAGAG	5190
		GCAAGATC <u>T</u> AGATCAAG	5191
		CTTGATCT <u>A</u> GATCTTGC	5192

BNSDOCID: <WO__0192512A2_I_>

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
Male-sterile Pl	CTCTTGCTGCCCTTGGATCTGTTTGGGAGTGGAGAACGCAGTATG GGGCGCGGCAAGATCTAGATCAAGAGGATCGAGAACTCTACCAAC CGGCAGGTGACCTTCTCCAAGCGCCGGGCCG	5193
Zea mays Lys9Term AAG-TAG	CGCCCGGCGCTTGGAGAAGGTCACCTGCCGGTTGGTAGAGTTC TCGATCCTCTTGATCTAGATCTTGCCGCGCCCCATACTGCGTTCTC CACTCCCAAACAGATCCAAGGGCAGCAAGAG	5194
	GCAGATC <u>T</u> AGATCAAG	5195
	CTTGATCTAGATCTTGC	5196
Male-sterile	GATCTGTTTGGGAGTGGAGAACGCAGTATGGGGCGCGGCAAGAT CAAGATCAAGAGGATCTAGAACTCTACCAACCGGCAGGTGACCTT CTCCAAGCGCCGGGCCGG	5197
Zea mays Glu12Term GAG-TAG	CCTTCTTGACCAGTCCGGCCCGGCGCTTGGAGAAGGTCACCTGC CGGTTGGTAGAGTTCTAGATCCTCTTGATCTTGATCTTGCCGCGC CCCATACTGCGTTCTCCACTCCCAAACAGATC	5198
	AGAGGATC <u>T</u> AGAACTCT	5199
	AGAGTTCTAGATCCTCT	5200
Male-sterile PI Zea mays	GCTGAGCTCTTGCTGCCCTTGAATCTGTTAGGGAGTGGAGAACGG AGTATGGGGCGCGGCTAGATCGAGATCAAGAGGATCGAGAACTCT ACCAACCGGCAGGTGACCTTCTCCAAGCGCC	5201
Lys5Term AAG-TAG	GGCGCTTGGAGAAGGTCACCTGCCGGTTGGTAGAGTTCTCGATCC TCTTGATCTCGATCTAGCCGCGCCCCCATACTCCGTTCTCCACTCC CTAACAGATTCAAGGGCAGCAAGAGCTCAGC	5202
	GGCGCGGC <u>T</u> AGATCGAG	520
	CTCGATCT <u>A</u> GCCGCGCC	520
Male-sterile PI	CTCTTGCTGCCCTTGAATCTGTTAGGGAGTGGAGAACGGAGTATG GGGCGCGGCAAGATCTAGATCAAGAGGATCGAGAACTCTACCAAC CGGCAGGTGACCTTCTCCAAGCGCCGGGCCG	520
Zea mays Glu7Term GAG-TAG	CGGCCGGCGCTTGGAGAAGGTCACCTGCCGGTTGGTAGAGTTC TCGATCCTCTTGATCTAGATCTTGCCGCGCCCCATACTCCGTTCTC CACTCCCTAACAGATTCAAGGGCAGCAAGAG	520
	GCAAGATCAAGATTCAAGGGGATGGATCAAG	520
	CTTGATCTAGATCTTGC	520
Male-sterile Pl	CTGCCTTGAATCTGTTAGGGAGTGGAGAACGGAGTATGGGGCG CGGCAAGATCGAGATCTAGAGGATCGAGAACTCTACCAACCGGCA GGTGACCTTCTCCAAGCGCCGGGCCGG	
Zea mays Lys9Term AAG-TAG	CCAGTCCGGCCGCGCTTGGAGAAGGTCACCTGCCGGTTGGTA GAGTTCTCGATCCTCTAGATCTCGATCTTGCCGCGCCCCATACTC CGTTCTCCACTCCCTAACAGATTCAAGGGCAG	521

Phenotype, Gene Plant & Targeted Alteration	Altering Oligos	SE
	TCGAGATC <u>T</u> AGAGGATC	5
	GATCCTCT <u>A</u> GATCTCGA	5
Male-sterile Pl Zea mays	AATCTGTTAGGGAGTGGAGAACGGAGTATGGGGCGCGCAAGAT CGAGATCAAGAGGATC <u>T</u> AGAACTCTACCAACCGGCAGGTGACCTT CTCCAAGCGCCGGGCCGG	5
Glu12Term GAG-TAG	CCTTCTTGACCAGTCCGGCCCCGGCGCTTGGAGAAGGTCACCTGC CGGTTGGTAGAGTTCTAGATCCTCTTGATCTCGATCTTGCCGCGC CCCATACTCCGTTCTCCACTCCCTAACAGATT	5
	AGAGGATC <u>T</u> AGAACTCT	
	AGAGTTCT <u>A</u> GATCCTCT	5
Male-sterile Pl Oryza sativa	TTGCTGCTAAGCTAGCTGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGA	5
Lys5Term AAG-TAG	TGCGCTTGGAGAAGGTCACCTGGCGGTTGGTGGAGTTCTCGATCC TCTTGATCTCGATCTACCCGCGCCCCATCCCGCCTCCTCCTC CTCCTCCTTCCTCCAGCTAGCTTAGCAGCAA	5
	GGCGCGG <u>T</u> AGATCGAG	5
	CTCGATCT <u>A</u> CCCGCGCC	5
Male-sterile Pl O <i>ryza sativa</i>	CTAAGCTAGCTGGAGGAAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG	5
Glu7Term GAG-TAG	CGCTCCTGCGCTTGGAGAAGGTCACCTGGCGGTTGGTGGAGTTC TCGATCCTCTTGATCTAGATCTTCCCGCGCCCCATCCCGCCTCCT CCTCCTCCTCCTCCTCCAGCTAGCTTAG	5
	GGAAGATC <u>T</u> AGATCAAG	5
	CTTGATCT <u>A</u> GATCTTCC	5
Male-sterile PI <i>Oryza sativa</i>	TAGCTGGAGGAGGAGGAGGAGGAGGAGGGGGGGGGGGGG	5
Lys9Term AAG-TAG	GGATCCCGCTCCTGCGCTTGGAGAAGGTCACCTGGCGGTTGGTG GAGTTCTCGATCCTCTAGATCTCCAGCCCCCCATCCCG CCTCCTCCTCCTCCTCCTCCAGCTA	5
L	TCGAGATC <u>T</u> AGAGGATC	5
	GATCCTCT <u>A</u> GATCTCGA	5

10

15

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
Male-sterile Pl Oryza sativa	GAAGGAGGAGGAGGAGGAGGCGGGATGGGGCGCGGGAAGA TCGAGATCAAGAGGATC <u>T</u> AGAACTCCACCAACCGCCAGGTGACCT TCTCCAAGCGCAGGAGCGGGATCCTCAAGAAGG	5229
Glu12Term GAG-TAG	CCTTCTTGAGGATCCCGCTCCTGCGCTTGGAGAAGGTCACCTGGCGGTTGGTGGAGATCTCACCTGCTCTTGATCTCGATCTTCCCGCGCCCCATCCCGCCTCCTCCTCCTCCTCCTCCTCCTCCTCCTCCTCC	5230
	AGAGGATC <u>T</u> AGAACTCC	5231
	GGAGTTCT <u>A</u> GATCCTCT	5232

Example 7

Engineering plants for abiotic stress tolerance

Environmental stresses, such as drought, increased soil salinity, soil contamination with heavy metals, and extreme temperature, are major factors limiting plant growth and productivity. The worldwide loss in yield of three major cereal crops, rice, maize, and wheat due to water stress (drought) has been estimated to be over ten billion dollars annually and many currently marginal soils could be brought into cultivation if suitable plant varieties were available.

Physiological and biochemical responses to high levels of ionic or nonionic solutes and decreased water potential have been studied in a variety of plants. It is known, for example, that increasing levels of alcohol dehydrogenase can confer enhances flooding resistance in plants. There are also several possible mechanisms to enhance plant salt tolerance. For example, one mechanism underlying the adaptation or tolerance of plants to osmotic stresses is the accumulation of compatible, low molecular weight osmolytes such as sugar alcohols, special amino acids, and glycinebetaine. Such accumulation can be engineered, for example, by removing feedback inhibition on 1-pyrroline-t-carboxylate synthetase, which results in accumulation of proline. Additionally, recent experiments suggest that altering the expression or activity of specific sodium or potassium transporters can confer enhanced salt tolerance.

Plant tolerance of contamination by heavy metals such as lead and aluminum in soils has also been investigated and one mechanism underlying tolerance is the production of dicarboxylic acids such as oxalate and citrate. In addition, individual genes involved in heavy metal sensitivity have been identified.

The attached tables disclose exemplary oligonucleotide base sequences which can be used to generate site-specific mutations that confer stress tolerance in plants.

15

10

5

Table 17
Genome-Altering Oligos Conferring Stress Tolerance

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ I NO:
Salt Tolerance P5CS Arabidopsis thaliana	CGTCTTTTTGTGTGGTAGTTGGATGTGACGGTTGCTCAAATGCTT GTGACCGATAGCAGT <u>GC</u> TAGAGATAAGGATTTCAGGAAGCAACTT AGTGAAACTGTCAAAGCGATGCTGAGGATGA	523
Phe128Ala TTT-GCT	TCATCCTCAGCATCGCTTTGACAGTTTCACTAAGTTGCTTCCTGAA ATCCTTATCTCTAGCACTGCTATCGGTCACAAGCATTTGAGCAACC GTCACATCCAACTACCACAAAAAGACG	523
	ATAGCAGT <u>GC</u> TAGAGAT	523
	ATCTCTA <u>GC</u> ACTGCTAT	523
Salt Tolerance P5CS 1 Brassica napus	GAGACTATGTTTGACCAGCTGGATGTGACGGCTGCTCAGCTGCTG GTGAATGACAGTAGT <u>GC</u> CAGAGACAAGGAGTTCAGGAAGCAACTT AATGAGACAGTGAAGTCCATGCTTGATTTGA	523
Phe128Ala TTC-GCC	TCAAATCAAGCATGGACTTCACTGTCTCATTAAGTTGCTTCCTGAA CTCCTTGTCTCTG <u>GC</u> ACTACTGTCATTCACCAGCAGCTGAGCAGC CGTCACATCCAGCTGGTCAAACATAGTCTC	523
	ACAGTAGT <u>GC</u> CAGAGAC	523
	GTCTCTG GC ACTACTGT	524
Salt Tolerance P5CS 2 Brassica napus	GAGACTATGTTTGACCAGATGGATGTGACGGTGGCTCAAATGCTG GTGACTGATAGCAGTGTCAGAGATAAGGATTTCAGGAAGCAACTT AGTGAGACAGTCAAAGCTATGCTGAAAATGA	524
Phe129Ala TTC-GCC	TCATTTCAGCATAGCTTTGACTGTCTCACTAAGTTGCTTCCTGAA ATCCTTATCTCTGACACTGCTATCAGTCACCAGCATTTGAGCCACC GTCACATCCATCTGGTCAAACATAGTCTC	524
	ATAGCAGT <u>G</u> TCAGAGAT	524
	ATCTCTGA <u>C</u> ACTGCTAT	524
Salt Tolerance P5CS Oryza sativa Phe128Ala TTT-GCT	GATATGTTGTTTAACCAACTGGATGTCTCGTCATCTCAACTTCTTG TCACCGACAGTGATGCTGAGAACCCAAAGTTCCGGGAGCAACTCA CTGAAACTGTTGAGTCATTATTAGATCTTA	524
	TAAGATCTAATAATGACTCAACAGTTTCAGTGAGTTGCTCCCGGAA CTTTGGGTTCTCA <u>GC</u> ATCACTGTCGGTGACAAGAAGTTGAGATGA CGAGACATCCAGTTGGTTAAACAACATATC	524
	ACAGTGAT <u>GC</u> TGAGAAC	52
	GTTCTCA GC ATCACTGT	52

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
	Salt Tolerance P5CS Medicago sativa	GATATTTTGTTTAGTCAGCTGGATGTGACATCTGCTCAGCTTCTTG TTACTGACAATGAT <u>GC</u> TAGAGACCAAGATTTTAGAAAGCAACTTTC TGAAACTGTGAGATCACTTCTAGCACTAA	5249
5	Phe128Ala TTT-GCT	TTAGTGCTAGAAGTGATCTCACAGTTTCAGAAAGTTGCTTTCTAAA ATCTTGGTCTCTA <u>GC</u> ATCATTGTCAGTAACAAGAAGCTGAGCAGAT GTCACATCCAGCTGACTAAACAAAATATC	5250
		ACAATGAT <u>GC</u> TAGAGAC GTCTCTA GC ATCATTGT	5251 5252
	Salt Tolerance P5CS Actinidia deliciosa	GATACATTGTTTAGTCAGCTGGATGTGACATCAGCTCAGCTACTC GTTACTGATAATGATGCTAGGGATCCAGAATTCAGGAAGCAACTTA CTGAAACTGTAGAATCACTATTGAATTTGA	5253
10	Phe128Ala TTT-GCT	TCAAATTCAATAGCACTATTGAATTTGA TCAAATTCAATAGCACTATTGAATTTGA TCTGGATCCCTAGCATCACTATCAGTAACGAGTAGCTGAGCTGAT GTCACATCCAGCTGACTAAACAATGTATC	5254
	·	ATAATGAT <u>GC</u> TAGGGAT	5255
		ATCCCTAGCATCATTAT	5256
	Salt Tolerance P5CS Cichorium intybus	GACACACTCTTCAGTCAACTGGATGTGACATCAGCACAGCTTCTT GTAACAGATAATGACGCCAGAAGTCCAGAATTTAGAAAAACAACTTA CTGAAACAGTCGATTCTTTATTATCTTATA	5257
15	Phe122Ala TTC-GCC	TATAAGATAATAAAGAATCGACTGTTTCAGTAAGTTGTTTTCTAAAT TCTGGACTTCTG <u>GC</u> GTCATTATCTGTTACAAGAAGCTGTGCTGAT GTCACATCCAGTTGACTGAAGAGGTGTGTC	5258
		ATAATGAC <u>GC</u> CAGAAGT	5259
		ACTTCTG <u>GC</u> GTCATTAT	5260
	Salt Tolerance' P5CS Lycopersicon	GATTCTTTGTTCAGTCAGTTGGATGTGACATCAGCTCAGCTTCTGG TGACTGATAATGACGCTAGAGATCCAGATTTTAGGAGACAACTCAA TGACACAGTAAATTCGTTGCTTTCTCTAA	5261
20	esculentum Phe128Ala TTT-GCT	TTAGAGAAAGCAACGAATTTACTGTGTCATTGAGTTGTCTCCTAAA ATCTGGATCTCTA <u>GC</u> GTCATTATCAGTCACCAGAAGCTGAGCTGA TGTCACATCCAACTGACTGAACAAAGAATC	5262
		ATAATGAC <u>GC</u> TAGAGAT	5263
		ATCTCTA <u>GC</u> GTCATTAT	5264
	Salt Tolerance P5CS Vigna unguiculata	GATACCATGTTCAGCCAGCTTGATGTGACTTCTTCCCAACTTCTTG TGAATGATGGATTTGCTAGGGATGCTGGCTTCAGAAAACAACTTTC GGACACAGTGAACGCGTTATTAGATTTAA	5265
25	Phe162Ala TTT-GCT	TTAAATCTAATAACGCGTTCACTGTGTCCGAAAGTTGTTTTCTGAA GCCAGCATCCCTA <u>GC</u> AAATCCATCATTCACAAGAAGTTGGGAAGA AGTCACATCAAGCTGGCTGAACATGGTATC	5266
		ATGGATTT <u>GC</u> TAGGGAT	5267

BNSDOCID: <WO___0192512A2_i_>

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	ATCCCTA GC AAATCCAT	5268
Salt Tolerance P5CS Mesembryanthemum	GACACCTTGTTTAGTCAGTTGGATCTGACTGCTGCTCAGCTGCTT GTGACGGACAACGACGCTAGAGATCCAAGTTTTAGAACACAACTA ACTGAAACAGTGTATCAGTTGTTGGATCTAA	5269
crystallinum Phe125Ala TTT-GCT	TTAGATCCAACAACTGATACACTGTTTCAGTTAGTTGTGTTCTAAAA CTTGGATCTCTA <u>GC</u> GTCGTTGTCCGTCACAAGCAGCTGAGCAGCA GTCAGATCCAACTGACTAAACAAGGTGTC	5270
	ACAACGAC <u>GC</u> TAGAGAT	5271
. ,	ATCTCTA <u>GC</u> GTCGTTGT	5272
Salt Tolerance P5CS Vitis vinifera	GACACATTATTTAGCCAGCTGGATGTGACATCAGCTCAGCTTCTT GTGACTGATAATGATGCTAGGGATGAAGCTTTCCGAAATCAACTTA CTCAAACAGTGGATTCATTGTTAGCTTTGA	5273
Phe130Ala TTT-GCT	TCAAAGCTAACAATGAATCCACTGTTTGAGTAAGTTGATTTCGGAA AGCTTCATCCCTA GC ATCATTATCAGTCACAAGAAGCTGAGCTGAT GTCACATCCAGCTGGCTAAATAATGTGTC	5274
	ATAATGAT <u>GC</u> TAGGGAT	5275
	ATCCCTA GC ATCATTAT	5276
Salt Tolerance P5CS Vigna aconitifolia	GATACGCTGTTCACTCAGCTCGATGTGACATCGGCTCAGCTTCTT GTGACGGATAACGATGCTCGAGATAAGGATTTCAGGAAGCAGCTT ACTGAGACTGTGAAGTCGCTGTTGGCGCTGA	5277
Phe129Ala TTT-GCT	TCAGCGCCAACAGCGACTTCACAGTCTCAGTAAGCTGCTTCCTGA AATCCTTATCTCGAGCATCGTTATCCGTCACAAGAAGCTGAGCCG ATGTCACATCGAGCTGAGTGAACAGCGTATC	5278
	ATAACGAT <u>GC</u> TCGAGAT	5279
	ATCTCGA <u>GC</u> ATCGTTAT	5280
Salt Tolerance HKT1 Arabidopsis thaliana	AGAGATGTTCTTAGTTCCAAAGAAATCTCACCTCTCACTTTCTCCG TCTTCACAACAGTTGTCACGTTTGCAAACTGCGGATTTGTCCCCAC GAATGAGAACATGATCATCTTTCGCAAAA	5281
Ser207Val TCC-GTC	TTTTGCGAAAGATGATCATGTTCTCATTCGTGGGGACAAATCCGCA GTTTGCAAACGTGACAACTGTTGTGAAGACGGAGAAAGTGAGAGG TGAGATTTCTTTGGAACTAAGAACATCTCT	5282
	CAACAGTT <u>GT</u> CACGTTT	5283
	AAACGTG <u>AC</u> AACTGTTG	5284
Salt Tolerance HKT1 Arabidopsis thaliana	CGAATGAGAACATGATCATCTTTCGCAAAAACTCTGGTCTCATCTG GCTCCTAATCCCTCTAGTACTGATGGGAAACACTTTGTTCCCTTGC TTCTTGGTTTTGCTCATATGGGGACTTTA	5285
Gln237Leu CAA-CTA	TAAAGTCCCCATATGAGCAAAACCAAGAAGCAAGGGAACAAAGTG TTTCCCATCAGTACTAGAGGGATTAGGAGCCAGATGAGACCAGAG TTTTTGCGAAAGATGATCATGTTCTCATTCG	5286

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
		AATCCCTC <u>T</u> AGTACTGA	5287
		TCAGTACT <u>A</u> GAGGGATT	5288
	Salt Tolerance	AGTCTCTAGAAGGAATGAGTTCGTACGAGAAGTTGGTTGG	5289
	HKT1	TGTTTCAAGTGGTGAGTTCGCGACACACCGGAGAAACTATAGTAG	
	Arabidopsis thaliana	ACCTCTCTACACTTTCCCCAGCTATCTTGGT	
5	Asn332Ser AAT-AGT	ACCAAGATAGCTGGGGAAAGTGTAGAGGAGGTCTACTATAGTTTCT	5290
J	1 AN 1 - AU 1	CCGGTGTGTCGCGAACTCACCACTTGAAACAACGATCCAACCAA	
		AGTGGTGAGTTCGCGAC	5291
		GTCGCGAACTCACCACT	5292
	Salt Tolerance	AGAGATGTGCTAAAGAAGAAAGGTCTCAAAATGGTGACCTTTTCC	5292
	HKT1	GTCTTCACCACCGTGGTGACCTTTGCCAGATTGTGGGGTTTGTCCCG	5293
	Eucalyptus	ACCAATGAAAACATGATTATCTTCAGCAAAA	
	camaldulensis	TTTTGCTGAAGATAATCATGTTTTCATTGGTCGGGACAAACCCACA	5294
10	Ser256Val	ACTGGCAAAGGTC <u>AC</u> CACGGTGGTGAAGACGGAAAAGGTCACCA	
	TCG-GTG	TTTTGAGACCTTTCTTTAGCACATCTCT	
	·	CCACCGTG <u>GT</u> GACCTTT	5295
		AAAGGTC <u>AC</u> CACGGTGG	5296
	Salt Tolerance	CCAATGAAAACATGATTATCTTCAGCAAAAACTCTGGCCTCCTCCT	5297
	HKT1	GATTCTCATCCCTC <u>T</u> GGCCCTTCTTGGGAACATGCTGTTCCCATC	
4.5	Eucalyptus	GAGCCTACGTTTGACGCTTTGGCTCATCGG	
15	camaldulensis Gln286Leu	CCGATGAGCCAAAGCGTCAAACGTAGGCTCGATGGGAACAGCAT	5298
	CAG-CTG	GTTCCCAAGAAGGGCCAGGAGGATGAGAATCAGGAGGAGGCCA	
	CAG-016	GAGTTTTTGCTGAAGATAATCATGTTTTCATTGG CATCCCTCTGGCCCTTC	5200
			5299
		GAAGGCC <u>A</u> GAGGGATG	5300
	Salt Tolerance	AATCGTTGAATGGACTAAGCTCCTGTGAGAAAATCGTGGGCGCGC	5301
	HKT1	TGTTTCAGTGCGTGA <u>G</u> CAGCAGACATACCGGCGAGACGGTCGTC	
20	Eucalyptus	GATCTGTCCACAGTTGCTCCCGCCATCTTGGT	
	camaldulensis	ACCAAGATGGCGGGAGCAACTGTGGACAGATCGACGACCGTCTC	5302
	Asn381Ser AAC-AGC	GCCGGTATGTCTGCTGCTCACGCACTGAAACAGCGCGCCCACGA	
	/*/0-//00	TTTTCTCACAGGAGCTTAGTCCATTCAACGATT GTGCGTGAGCAGCAGAC	5303
		_	
		GTCTGCTG <u>C</u> TCACGCAC	5304

BNSDOCID: <WO___0192512A2_I_>

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
Salt Tolerance HKT1 Oryza sativa	AAAGCTCCACTGAAGAAGAAAGGGATCAACATTGCACTCTTCTCAT TCTCGGTCACGGTCGTCCGTTTGCGAATGTGGGGCTCGTGCCG ACAAATGAGAACATGGCAATCTTCTCCAAGA	5305
Ser238Val TCC-GTC	TCTTGGAGAAGATTGCCATGTTCTCATTTGTCGGCACGAGCCCCA CATTCGCAAACGAGACGACCGTGACCGAGAATGAGAAGAGTGCA ATGTTGATCCCTTTCTTCAGTGGAGCCTTT	5306
	TCACGGTC <u>GT</u> CTCGTTT	5307
	AAACGAG <u>AC</u> GACCGTGA	5308
Salt Tolerance HKT1 Oryza sativa	CAAATGAGAACATGGCAATCTTCTCCAAGAACCCGGGCCTCCTCC TCCTGTTCATCGGCCTGATTCTTGCAGGCAATACACTTTACCCTCT CTTCCTAAGGCTATTGATATGGTTCCTGGG	5309
Gln268Leu CAG-CTG	CCCAGGAACCATATCAATAGCCTTAGGAAGAGAGGGGTAAAGTGTA TTGCCTGCAAGAATCAGGCCGATGAACAGGAGGAGGAGGCCCGG GTTCTTGGAGAAGATTGCCATGTTCTCATTTG	5310
	CATCGGCC <u>T</u> GATTCTTG	5311
	CAAGAATC <u>A</u> GGCCGATG	5312
Salt Tolerance HKT1 Oryza sativa	CAGTCTTTGATGGACTCAGCTCTTACCAGAAGATTATCAATGCATT GTTCATGGCAGTGAGCGCAAGGCACTCGGGGGAGAACTCCATCG ACTGCTCACTCATCGCCCCTGCTGTTCTAGT	5313
Asn363Ser AAC-AGC	ACTAGAACAGCAGGGGCGATGAGTGAGCAGTCGATGGAGTTCTC CCCCGAGTGCCTTGCGCTCACTGCCATGAACAATGCATTGATAAT CTTCTGGTAAGAGCTGAGTCCATCAAAGACTG	5314
	GGCAGTGAGCGCAAGGC	5315
	GCCTTGCG <u>C</u> TCACTGCC	5316
Salt Tolerance HKT1 <i>Triticum aestivum</i>	GTGCCCCACTGAACAAGAAAGGGATCAACATCGTGCTCTTCTCAC TATCAGTCACCGTTGTCTCCTGTGCGAATGCAGGACTCGTGCCCA CAAATGAGAACATGGTCATCTTCTCAAAGAA	5317
Ala240Val GCC-GTC	TTCTTTGAGAAGATGACCATGTTCTCATTTGTGGGCACGAGTCCT GCATTCGCACAGGAGACAACGGTGACTGATAGTGAGAAGAGCAC GATGTTGATCCCTTTCTTGTTCAGTGGGGCAC	5318
	CACCGTTG <u>T</u> CTCCTGTG	5319
	CACAGGAG <u>A</u> CAACGGTG	5320
Salt Tolerance HKT1 <i>Triticum aestivum</i>	CAAATGAGAACATGGTCATCTTCTCAAAGAATTCAGGCCTCTTGTT GCTGCTGAGTGGCCTGATGCTCGCAGGCAATACATTGTTCCCTCT CTTCCTGAGGCTACTGGTGGTTCCTGGG	5321
Gln270Leu CAG-CTG	CCCAGGAACCACACCAGTAGCCTCAGGAAGAGAGGGAACAATGT ATTGCCTGCGAGCATCAGGCCACTCAGCAGCAACAAGAGGCCTG AATTCTTTGAGAAGATGACCATGTTCTCATTTG	5322
	GAGTGGCCTGATGCTCG	5323

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
		CGAGCATC <u>A</u> GGCCACTC	5324
	Salt Tolerance HKT1 Triticum aestivum	CAGTCTTTGATGGGCTCAGCTCTTATCAGAAGACTGTCAATGCATT CTTCATGGTGGTGAGTGCGAGGCACTCAGGGGAGAATTCCATCG ACTGCTCGCTCATGTCCCCTGCCATTATAGT	5325
5	Asn365Ser AAT-AGT	ACTATAATGGCAGGGGACATGAGCGAGCAGTCGATGGAATTCTCC CCTGAGTGCCTCGCACCACCATGAAGAATGCATTGACAGTC TTCTGATAAGAGCTGAGCCCATCAAAGACTG	5326
		GGTGGTGAGTGCGAGGC	5327
	Francisc Toloron	GCCTCGCACTCACCACC	5328
	Freezing Tolerance proline oxidase precursor	TTTTTTTGTTTTCGTTTTCAAAAACAAAATCTTTGAATTTTATGGCA ACCCGTCTTCTCTGAACAAACTTTATCCGGCGATCTTACCGTTTAC CCGCTTTTAGCCCGGTGGGTCCTCCCA	5329
10	Arabidopsis thaliana Arg7Term CGA-TGA	TGGGAGGACCCACCGGGCTAAAAGCGGGTAAACGGTAAGATCGC CGGATAAAGTTTGTTCAAGAAGAAGACGGGTTGCCATAAAATTCAAA GATTTTGTTTTTGAAAACGAAAAAAAAAA	5330
		GTCTTCTCTGAACAAAC	5331
		GTTTGTTC <u>A</u> GAGAAGAC	5332
	Freezing Tolerance proline oxidase precursor	TCAAAAACAAAATCTTTGAATTTTATGGCAACCCGTCTTCTCAGAA CAAACTTTATCCGGTGATCTTACCGTTTACCCGCTTTTAGCCCGGT GGGTCCTCCCACCGTGACTGCTTCCACCG	5333
15	Arabidopsis thaliana Arg13Term CGA-TGA	CGGTGGAAGCAGTCACGGTGGGAGGACCCACCGGGCTAAAAGC GGGTAAACGGTAAGATCAACGATAAAGTTTGTTCTGAGAAGACG GGTTGCCATAAAATTCAAAGATTTTGTTTTTGA	5334
		TTATCCGGTGATCTTAC	5335
		GTAAGATC <u>A</u> CCGGATAA	5336
20	Freezing Tolerance proline oxidase precursor	AAAATCTTTGAATTTTATGGCAACCCGTCTTCTCCGAACAACTTTA TCCGGCGATCTTA <u>G</u> CGTTTACCCGCTTTTAGCCCGGTGGGTCCTC CCACCGTGACTGCTTCCACCGCCGTCGTC	5337
	Arabidopsis thaliana Tyr15Term TAC-TAG	GACGACGCCGGTGGAAGCAGTCACGGTGGGAGGACCCACCGGG CTAAAAGCGGGTAAACGCTAAGATCGCCGGATAAAGTTTGTTCGG AGAAGACGGGTTGCCATAAAATTCAAAGATTTT	5338
		CGATCTTA G CGTTTACC	5339
		GGTAAACG <u>C</u> TAAGATCG	5340

BNSDOCID: <WO__0192512A2_I_>

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEC
Freezing Tolerance proline oxidase precursor	CTTTGAATTTTATGGCAACCCGTCTTCTCCGAACAACTTTATCCG GCGATCTTACCGTT <u>A</u> ACCCGCTTTTAGCCCGGTGGGTCCTCCCAC CGTGACTGCTTCCACCGCCGTCGTCCCGGA	534
Arabidopsis thaliana Leu17Term TTA-TAA	TCCGGGACGACGGCGGTGGAAGCAGTCACGGTGGGAGGACCCA CCGGGCTAAAAGCGGGTTAACGGTAAGATCGCCGGATAAAGTTTG TTCGGAGAAGACGGGTTGCCATAAAATTCAAAG	53
	TTACCGTTAACCCGCTT	53
	AAGCGGGT <u>T</u> AACGGTAA	53
Freezing Tolerance proline oxidase precursor	CCGGTGGGTCCTCCCACCGTGACTGCTTCCACCGCCGTCGTCCC GGAGATTCTCTCCTTTTGACAACAAGCACCGGAACCACCTCTTCA CCACCCAAAACCCACCGAGCAATCTCACGATG	53
Arabidopsis thaliana Gly42Term GGA-TGA	CATCGTGAGATTGCTCGGTGGGTTTTGGGTGGTGAAGAGGTGGT TCCGGTGCTTGTTGTCAAAAGGAGAAATCTCCGGGACGACGGC GGTGGAAGCAGTCACGGTGGGAGGACCCACCGG	53
	TCTCCTTTTGACAACAA	53
	TTGTTGTC A AAAGGAGA	53
Lead Tolerance cyclic nucleotide- regulated ion channel	ACATGAAGCAGTGAAATCTCTGTTTGTATTGAATCTTATTAGTCTCA AACTATGAATTTCTGACAAGAGAAGTTTGTAAGGTCAGTGTTCCAG ATTTGTCTCATTGAATTCTAAGTCGTGA	53
Arabidopsis thaliana Arg4Term CGA-TGA	TCACGACTTAGAATTCAATGAGACAAATCTGGAACACTGACCTTAC AAACTTCTCTTGTCAGAAATTCATAGTTTGAGACTAATAAGATTCAA TACAAACAGAGATTTCACTGCTTCATGT	53
	TGAATTTCTGACAAGAG	53
	CTCTTGTC <u>A</u> GAAATTCA	53
Lead Tolerance cyclic nucleotide- regulated ion channel	TGAAGCAGTGAAATCTCTGTTTGTATTGAATCTTATTAGTCTCAAAC TATGAATTTCCGATAAGAGAAGTTTGTAAGGTCAGTGTTCCAGATT TGTCTCATTGAATTCTAAGTCGTGAAGC	53
Arabidopsis thaliana Gln5Term CAA-TAA	GCTTCACGACTTAGAATTCAATGAGACAAATCTGGAACACTGACCT TACAAACTTCTCTTATCGGAAATTCATAGTTTGAGACTAATAAGATT CAATACAAACAGAGATTTCACTGCTTCA	53
	ATTTCCGA <u>T</u> AAGAGAAG	5
	CTTCTCTT <u>A</u> TCGGAAAT	5
Lead Tolerance cyclic nucleotide- regulated ion channel	AGCAGTGAAATCTCTGTTTGTATTGAATCTTATTAGTCTCAAACTAT GAATTTCCGACAATAGAAGTTTGTAAGGTCAGTGTTCCAGATTTGT CTCATTGAATTCTAAGTCGTGAAGCTTA	5
Arabidopsis thaliana Glu6Term GAG-TAG	TAAGCTTCACGACTTAGAATTCAATGAGACAAATCTGGAACACTGA CCTTACAAACTTCTATTGTCGGAAATTCATAGTTTGAGACTAATAA GATTCAATACAAACAGAGATTTCACTGCT	5:

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
		TCCGACAA <u>T</u> AGAAGTTT	5359
		AAACTTCT <u>A</u> TTGTCGGA	5360
5	Lead Tolerance cyclic nucleotide- regulated ion channel Arabidopsis thaliana Lys7Term AAG-TAG	AGTGAAATCTCTGTTTGTATTGAATCTTATTAGTCTCAAACTATGAA TTTCCGACAAGAG <u>T</u> AGTTTGTAAGGTCAGTGTTCCAGATTTGTCTC ATTGAATTCTAAGTCGTGAAGCTTAATT	5361
		AATTAAGCTTCACGACTTAGAATTCAATGAGACAAATCTGGAACAC TGACCTTACAAACT <u>A</u> CTCTTGTCGGAAATTCATAGTTTGAGACTAA TAAGATTCAATACAAACAGAGATTTCACT	5362
		GACAAGTAGTTTGTA	5363
•		TACAAACT <u>A</u> CTCTTGTC	5364
10	Lead Tolerance cyclic nucleotide- regulated ion channel Arabidopsis thaliana Gln12Term CAA-TAA	CATTGAATTCTAAGTCGTGAAGCTTAATTCGATTCTTCACTTTC TCGGATCAGGTTTTAAGATTGGAAGTCGGATAAGACTTCCTCCGA CGTGGAATATTCCGGTAAAAACGAGATTC	5365
		GAATCTCGTTTTTACCGGAATATTCCACGTCGGAGGAAGTCTTATC CGACTTCCAATCTT <u>A</u> AAACCTGATCCGAGAAAGTGAAGAAGAATC GAATTAAGCTTCACGACTTAGAATTCAATG	5366
		TCAGGTTT <u>T</u> AAGATTGG	5367
		CCAATCTT <u>A</u> AAACCTGA	5368
15	Lead Tolerance cyclic nucleotide-gated calmodulin-	TGGAAGTCAATCCCCCACGTTGAGCAGGTTGATGCATTGGCTAAA GTTATGAATCACCGC <u>T</u> AAGACGAGTTTGTGAGGTTTCAGGATTGG AAATCAGAGAGAAGCTCTGAGGGAAATTTTC	5369
	binding ion channel (CBP4) Nicotiana Tabacum	GAAAATTTCCCTCAGAGCTTCTCTCTGATTTCCAATCCTGAAACCT CACAAACTCGTCTTAGCGGTGATTCATAACTTTAGCCAATGCATCA ACCTGCTCAACGTGGGGGATTGACTTCCA	5370
20	Gln5Term CAA-TAA	ATCACCGC <u>T</u> AAGACGAG	5371
		CTCGTCTT <u>A</u> GCGGTGAT	5372
25	Lead Tolerance cyclic nucleotide-gated calmodulin-	TCAATCCCCCACGTTGAGCAGGTTGATGCATTGGCTAAAGTTATG AATCACCGCCAAGACTAGTTTGTGAGGTTTCAGGATTGGAAATCA GAGAGAAGCTCTGAGGGAAATTTTCATGCTA	5373
	binding ion channel (CBP4) Nicotiana Tabacum Gly7Term GAG-TAG	TAGCATGAAAATTTCCCTCAGAGCTTCTCTCTGATTTCCAATCCTG AAACCTCACAAACT <u>A</u> GTCTTGGCGGTGATTCATAACTTTAGCCAAT GCATCAACCTGCTCAACGTGGGGGATTGA	5374
		GCCAAGAC <u>T</u> AGTTTGTG	5375
		CACAAACT <u>A</u> GTCTTGGC	5376

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
	Lead Tolerance cyclic nucleotide-gated calmodulin-	GAGCAGGTTGATGCATTGGCTAAAGTTATGAATCACCGCCAAGAC GAGTTTGTGAGGTTTTAGGATTGGAAATCAGAGAGAAGCTCTGAG GGAAATTTTCATGCTAAAGGTGGAGTCCACC	5377
5	binding ion channel (CBP4) Nicotiana Tabacum	GGTGGACTCCACCTTTAGCATGAAAATTTCCCTCAGAGCTTCTCTC TGATTTCCAATCCTAAAACCTCACAAACTCGTCTTGGCGGTGATTC ATAACTTTAGCCAATGCATCAACCTGCTC	5378
	Gln12Term	TGAGGTTT <u>T</u> AGGATTGG	5379
	CAG-TAG	CCAATCCT <u>A</u> AAACCTCA	5380
10	Lead Tolerance cyclic nucleotide-gated calmodulin-	TGATGCATTGGCTAAAGTTATGAATCACCGCCAAGACGAGTTTGT GAGGTTTCAGGATTG <u>T</u> AAATCAGAGAGAAGCTCTGAGGGAAATTT TCATGCTAAAGGTGGAGTCCACCGAAGTAAA	5381
	binding ion channel (CBP4) Nicotiana Tabacum	TTTACTTCGGTGGACTCCACCTTTAGCATGAAAATTTCCCTCAGAG CTTCTCTCTGATTTACAATCCTGAAACCTCACAAACTCGTCTTGGC GGTGATTCATAACTTTAGCCAATGCATCA	5382
15	Trp14Term	CAGGATTG <u>T</u> AAATCAGA	5383
	TGG-TGA	TCTGATTT <u>A</u> CAATCCTG	5384
	Lead Tolerance cyclic nucleotide- gated calmodulin-	GATGCATTGGCTAAAGTTATGAATCACCGCCAAGACGAGTTTGTG AGGTTTCAGGATTGGTAATCAGAGAGAAGCTCTGAGGGAAATTTT CATGCTAAAGGTGGAGTCCACCGAAGTAAAG	5385
20	binding ion channel (CBP4) Nicotiana Tabacum	CTITACTTCGGTGGACTCCACCTTTAGCATGAAAATTTCCCTCAGA GCTTCTCTCTGATTACCAATCCTGAAACCTCACAAACTCGTCTTGG CGGTGATTCATAACTTTAGCCAATGCATC	5386
	Lys15Term	AGGATTGG <u>T</u> AATCAGAG	5387
	AAA-TAA	CTCTGATTACCAATCCT	5388
25	Lead Tolerance calmodulin binding transport protein	CTTGAAGAATTGATCTACCACTCTTAGCTGCTAACTGTTCGCCTGG TGGAGATAATGATGTAAAGAGAGGACAGATATGTTAGATTTCAGGA CTGCAAATCAGAGCAATCTGTTATCTCAG	5389
30	Hordeum vulgare Glu2Term GAA-TAA	CTGAGATAACAGATTGCTCTGATTTGCAGTCCTGAAATCTAACATA TCTGTCCTCTCTTACATCATTATCTCCACCAGGCGAACAGTTAGC AGCTAAGAGTGGTAGATCAATTCTTCAAG	5390
30	UAA-TAA	TAATGATG <u>T</u> AAAGAGAG	5391
		CTCTCTTT <u>A</u> CATCATTA	5392

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
,	Lead Tolerance calmodulin binding transport protein Hordeum vulgare	GAAGAATTGATCTACCACTCTTAGCTGCTAACTGTTCGCCTGGTG GAGATAATGATGGAA <u>T</u> GAGAGGACAGATATGTTAGATTTCAGGAC TGCAAATCAGAGAATCTGTTATCTCAGAGA	5393
5	Arg3Term AGA-TGA	TCTCTGAGATAACAGATTGCTCTGATTTGCAGTCCTGAAATCTAAC ATATCTGTCCTCTCATTCCATCATTATCTCCACCAGGCGAACAGTT AGCAGCTAAGAGTGGTAGATCAATTCTTC TGATGGAATGAGAGGAC	5394
		GTCCTCTCATTCCATCA	5395 5396
	Lead Tolerance calmodulin binding transport protein	GAATTGATCTACCACTCTTAGCTGCTAACTGTTCGCCTGGTGGAG ATAATGATGGAAAGA <u>T</u> AGGACAGATATGTTAGATTTCAGGACTGCA AATCAGAGCAATCTGTTATCTCAGAGAACG	5397
10	Hordeum vulgare Glu4Term GAG-TAG	CGTTCTCTGAGATAACAGATTGCTCTGATTTGCAGTCCTGAAATCT AACATATCTGTCCTATCTTTCCATCATTATCTCCACCAGGCGAACA GTTAGCAGCTAAGAGTGGTAGATCAATTC	5398
		TGGAAAGA <u>T</u> AGGACAGA TCTGTCCT <u>A</u> TCTTTCCA	5399
	Lead Tolerance	1	5400
15	calmodulin binding transport protein	ATCTACCACTCTTAGCTGCTAACTGTTCGCCTGGTGGAGATAATG ATGGAAAGAGAGGCTGGATATGTTAGATTTCAGGACTGCAAATCA GAGCAATCTGTTATCTCAGAGAACGCAGTTT	5401
	Hordeum vulgare Arg6Term AGA-TGA	AAACTGCGTTCTCTGAGATAACAGATTGCTCTGATTTGCAGTCCTG AAATCTAACATATCAGTCCTCTCTTTCCATCATTATCTCCACCAGG CGAACAGTTAGCAGCTAAGAGTGGTAGAT	5402
		GAGAGACTGATATGTT	5403
	Lead Tolerance	AACATATCAGTCCTCTC	5404
20	calmodulin binding transport protein	CCACTCTTAGCTGCTAACTGTTCGCCTGGTGGAGATAATGATGGA AAGAGAGGACAGATAGGTTAGATTTCAGGACTGCAAATCAGAGCA ATCTGTTATCTCAGAGAACGCAGTTTCACCA	5405
	Hordeum vulgare Tyr7Term TAT-TAG	TGGTGAAACTGCGTTCTCTGAGATAACAGATTGCTCTGATTTGCAG TCCTGAAATCTAACCTATCTGTCCTCTCTTTCCATCATTATCTCCAC CAGGCGAACAGTTAGCAGCTAAGAGTGG	5406
		GACAGATA <u>G</u> GTTAGATT	5407
0.5	0.4.00	AATCTAAC <u>C</u> TATCTGTC	5408
25	2,4-DB resistance 3-ketoacyl-CoA thiolase	ATCCTTCTCTGAGAAAAAACAACAGATCCGAATTTTATCTTTAATCA GCCGGAAAAAATGTAGAAAGCGATCGAGAGACAACGCGTTCTTCT TGAGCATCTCCGACCTTCTTCTTCTT	5409
30	Arabidopsis thaliana Glu2Term GAG-TAG	AAGAAGAAGAAGAAGGTCGGAGATGCTCAAGAAGAACGCGTTGTC TCTCGATCGCTTTCTACATTTTTTCCGGCTGATTAAAGATAAAATTC GGATCTGTTGTTTTTCTCAGAGAAGGAT	5410

10

15

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
Aiteration	AAAAAATGTAGAAAGCG	5411
	CGCTTTCT <u>A</u> CATTTTT	5412
2,4-DB resistance 3-ketoacyl-CoA	CTTCTCTGAGAAAAAACAACAGATCCGAATTTTATCTTTAATCAGC CGGAAAAAATGGAG <u>T</u> AAGCGATCGAGAGACAACGCGTTCTTCTTG AGCATCTCCGACCTTCTTCTTCTTCGC	5413
thiolase A <i>rabidopsis thaliana</i> Lys3Term AAA-TAA	GCGAAGAAGAAGAAGAAGGTCGGAGATGCTCAAGAAGAACGCGT TGTCTCTCGATCGCTTACTCCATTTTTTCCGGCTGATTAAAGATAA AATTCGGATCTGTTTTTTTCTCAGAGAAG	5414
A-17A	AAATGGAG <u>T</u> AAGCGATC	5415
	GATCGCTT <u>A</u> CTCCATTT	5416
2,4-DB resistance 3-ketoacyl-CoA thiolase	GAAAAAACAACAGATCCGAATTTTATCTTTAATCAGCCGGAAAAAA TGGAGAAAGCGATC <u>T</u> AGAGACAACGCGTTCTTCTTGAGCATCTCC GACCTTCTTCTTCTTCTCGCACAATTACG	5417
Arabidopsis thaliana Glu6Term GAG-TAG	CGTAATTGTGCGAAGAAGAAGAAGAAGGTCGGAGATGCTCAAGAA GAACGCGTTGTCTCTAGATCGCTTTCTCCATTTTTTCCGGCTGATT AAAGATAAAATTCGGATCTGTTGTTTTTTC	5418
GAG-TAG	AAGCGATC <u>T</u> AGAGACAA	5419
	TTGTCTCT <u>A</u> GATCGCTT	5420
2,4-DB resistance 3-ketoacyl-CoA	AAAACAACAGATCCGAATTTTATCTTTAATCAGCCGGAAAAAATGG AGAAAGCGATCGAGTGACAACGCGTTCTTCTTGAGCATCTCCGAC CTTCTTCTTCTTCTCGCACAATTACGAGG	5421
thiolase Arabidopsis thaliana Arg7Term AGA-TGA	CCTCGTAATTGTGCGAAGAAGAAGAAGAAGAAGGTCGGAGATGCTCAA GAAGAACGCGTTGTCACTCGATCGCTTTCTCCATTTTTTCCGGCT GATTAAAGATAAAATTCGGATCTGTTGTTTT	5422
7.67.1 67.1	CGATCGAGTGACAACGC	5423
	GCGTTGTC <u>A</u> CTCGATCG	5424
2,4-DB resistance 3-ketoacyl-CoA thiolase	ACAACAGATCCGAATTTTATCTTTAATCAGCCGGAAAAAATGGAGA AAGCGATCGAGAGA <u>T</u> AACGCGTTCTTCTTGAGCATCTCCGACCTT CTTCTTCTTCGCACAATTACGAGGCTT	5425
Arabidopsis thaliana Gln8Term CAA-TAA	AAGCCTCGTAATTGTGCGAAGAAGAAGAAGAAGGTCGGAGATGCT CAAGAAGAACGCGTTATCTCTCGATCGCTTTCTCCATTTTTTCCGG CTGATTAAAGATAAAATTCGGATCTGTTGT	5426
CAA-TAA	TCGAGAGATAAATTCGGATCTCTTCT	5427
	AACGCGTTATCTCTCGA	5428

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
	2,4-DB resistance glyoxysomal beta- ketoacyol-thiolase	GAGAGACAAAGAGTTCTTCTTGAACATCTCCGTCCTTCTTCTTCTT CCTCTCACAGCTTT <u>T</u> AAGGCTCTCTCTCTGCTTCAGCTTGCTTGGC TGGGGACAGTGCTGCGTATCAGAGGACCT	5429
5	precursor Brassica napus Glu26Term	AGGTCCTCTGATACGCAGCACTGTCCCCAGCCAAGCAAGC	5430
	GAA-TAA	ACAGCTTT <u>T</u> AAGGCTCT	5431
		AGAGCCTT <u>A</u> AAAGCTGT	5432
10	2,4-DB resistance glyoxysomal beta- ketoacyol-thiolase	TTGAACATCTCCGTCCTTCTTCTTCTTCCTCTCACAGCTTTGAAGG CTCTCTCTCTGCTT <u>G</u> AGCTTGCTTGGCTGGGGACAGTGCTGCGTA TCAGAGGACCTCTCTCTATGGAGATGATGT	5433
	precursor Brassica napus Ser32Term	ACATCATCTCCATAGAGAGAGGTCCTCTGATACGCAGCACTGTCC CCAGCCAAGCAAGCT <u>C</u> AAGCAGAGAGAGAGCCTTCAAAGCTGTG AGAGGAAGAAGAAGAAGACGGACGAGATGTTCAA	5434
	TCA-TGA	CTCTGCTT <u>G</u> AGCTTGCT	5435
		AGCAAGCT <u>C</u> AAGCAGAG	5436
15	2,4-DB resistance glyoxysomal beta- ketoacyol-thiolase	TCTCCGTCCTTCTTCTTCCTCTCACAGCTTTGAAGGCTCTCTC TCTGCTTCAGCTTGATTGGCTGGGGACAGTGCTGCGTATCAGAG GACCTCTCTATGGAGATGATGTAGTCATT	5437
20	precursor Brassica napus Cys34Term	AATGACTACATCATCTCCATAGAGAGAGGTCCTCTGATACGCAGC ACTGTCCCCAGCCAA <u>T</u> CAAGCTGAAGCAGAGAGAGAGCCTTCAAA GCTGTGAGAGGAAGAAGAAGAAGAAGAAGAAGA	5438
	TGC-TGA	TCAGCTTG <u>A</u> TTGGCTGG	5439
		CCAGCCAA <u>T</u> CAAGCTGA	5440
	2,4-DB resistance glyoxysomal beta- ketoacyol-thiolase	TCCGTCCTTCTTCTTCCTCTCACAGCTTTGAAGGCTCTCTCT	5441
25	precursor Brassica napus Leu35Term	ACAATGACTACATCATCTCCATAGAGAGAGGGTCCTCTGATACGCA GCACTGTCCCCAGCCTAGCAAGCTGAAGCAGAGAGAGAGCCTTC AAAGCTGTGAGAGAAGAAGAAGAAGAAGACGACGA	5442
	TTG-TAG	AGCTTGCT <u>A</u> GGCTGGGG	5443
		CCCCAGCC <u>T</u> AGCAAGCT	5444

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
	2,4-DB resistance glyoxysomal beta- ketoacyol-thiolase	TCACAGCTTTGAAGGCTCTCTCTCTGCTTCAGCTTGCTTG	5445
5	precursor Brassica napus Tyr42Term	TAGTGCAGTCCTATGTGCCGCAACAATGACTACATCATCTCCATA GAGAGAGGTCCTCTGCTACGCAGCACTGTCCCCAGCCAAGCAAG	5446
	TAT-TAG	GCTGCGTAGCAGGAC	5447
		GTCCTCTG <u>C</u> TACGCAGC	5448
10	2,4-DB resistance 3-ketoacyl-CoA thiolase B	CAACAGACAGCAAGTGTTGCTCCAGCATCTCCGCCCTTCTAATTC TTCTTCTCACAATTAGGAGTCCGCTCTTGCCGCATCAGTATGTGCT GCAGGGGATAGCGCCGCATATCATAGGGCT	5449
	Mangifera indica Tyr25Term TAC-TAG	AGCCCTATGATATGCGGCGCTATCCCCTGCAGCACATACTGATGC GGCAAGAGCGGACTCCTAATTGTGAGAAGAAGAATTAGAAGGGC GGAGATGCTGGAGCAACACTTGCTGTCTGTTG	5450
		CACAATTA <u>G</u> GAGTCCGC	5451
		GCGGACTC <u>C</u> TAATTGTG	5452
15	2,4-DB resistance 3-ketoacyol-CoA thiolase B	AACAGACAGCAAGTGTTGCTCCAGCATCTCCGCCCTTCTAATTCTT CTTCTCACAATTACTAGTCCGCTCTTGCCGCATCAGTATGTGCTG CAGGGGATAGCGCCGCATATCATAGGGCTT	5453
	Magnifera indica Glu26Term GAG-TAG	AAGCCCTATGATATGCGGCGCTATCCCCTGCAGCACATACTGATG CGGCAAGAGCGGACTAGTAATTGTGAGAAGAAGAATTAGAAGGG CGGAGATGCTGGAGCAACACTTGCTGTCTGTT	5454
		ACAATTAC <u>T</u> AGTCCGCT	5455
		AGCGGACT <u>A</u> GTAATTGT	5456
20	2,4-DB resistance 3-ketoacy\ol-CoA thiolase B	TCCAGCATCTCCGCCCTTCTAATTCTTCTCACAATTACGAGTC CGCTCTTGCCGCATGAGTATGTGCTGCAGGGGATAGCGCCGCAT ATCATAGGGCTTCTGTTTATGGAGACGATGT	5457
25	Mangifera indica Ser32Term TCA-TGA	ACATCGTCTCCATAAACAGAAGCCCTATGATATGCGGCGCTATCC CCTGCAGCACATACTCATGCGGCAAGAGCGGACTCGTAATTGTGA GAAGAAGAATTAGAAGGGCGGAGATGCTGGA	5458
	.5/(15/	TGCCGCATGAGTATGTG	5459
		CACATACT <u>C</u> ATGCGGCA	5460

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	2,4-DB resistance 3-ketoacyl-CoA thiolase B	TCTCCGCCCTTCTAATTCTTCTTCTCACAATTACGAGTCCGCTCTT GCCGCATCAGTATGAGCTGCAGGGGGATAGCGCCGCATATCATAG GGCTTCTGTTTATGGAGACGATGTGGTGATT	5461
5	Mangifera indica Cys34Term TGT-TGA	AATCACCACATCGTCTCCATAAACAGAAGCCCTATGATATGCGGC GCTATCCCCTGCAGC <u>T</u> CATACTGATGCGGCAAGAGCGGACTCGT AATTGTGAGAAGAAGAATTAGAAGGGCGGAGA	5462
		TCAGTATG <u>A</u> GCTGCAGG	5463
		CCTGCAGC <u>T</u> CATACTGA	5464
	2,4-DB resistance 3-ketoacyl-CoA thiolase B	TCACAATTACGAGTCCGCTCTTGCCGCATCAGTATGTGCTGCAGG GGATAGCGCCGCATAGCATA	5465
10	Mangifera indica Tyr42Term TAT-TAG	AAGTGCAGTACGATGAGCTGCCACAATCACCACATCGTCTCCATA AACAGAAGCCCTATGCTATG	5466
	ļ	GCCGCATAGCGC	5467
		GCCCTATG <u>C</u> TATGCGGC	5468
15	2,4-DB resistance 3-ketoacyl-CoA thiolase	GAAGGCGATCAACAGGCAGAGCATTTTGCTACATCATCTCCGGCC TTCTTCTTCCGCTTAGACAAATGAATCTTCGCTCTCTGCATCGGTT TGTGCAGCTGGGGATAGTGCTTCGTATCAA	5469
•	Cucumis sativus Tyr22Term TAC-TAG	TTGATACGAAGCACTATCCCCAGCTGCACAAACCGATGCAGAGAG CGAAGATTCATTTGTCTAAGCGGAAGAAGAAGGCCGGAGATGATG TAGCAAAATGCTCTGCCTGTTGATCGCCTTC	5470
		TCCGCTTA <u>G</u> ACAAATGA	5471
		TCATTTGT <u>C</u> TAAGCGGA	5472
20	2,4-DB resistance 3-ketoacyl-CoA thiolase	ATCAACAGGCAGAGCATTTTGCTACATCATCTCCGGCCTTCTTCTT CCGCTTACACAAATTAATCTTCGCTCTCTGCATCGGTTTGTGCAGC TGGGGATAGTGCTTCGTATCAAAGGACAT	5473
	Cucumis sativus Glu25Term GAA-TAA	ATGTCCTTTGATACGAAGCACTATCCCCAGCTGCACAAACCGATG CAGAGAGCGAAGATT <u>A</u> ATTTGTGTAAGCGGAAGAAGAAGGCCGG AGATGATGTAGCAAAATGCTCTGCCTGTTGAT	5474
	·	ACACAAAT <u>T</u> AATCTTCG	5475
		CGAAGATT <u>A</u> ATTTGTGT	5476

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ NO
2,4-DB resistance 3-ketoacyl-CoA thiolase	GGCAGAGCATTTTGCTACATCATCTCCGGCCTTCTTCTTCCGCTTA CACAAATGAATCTTAGCTCTCTGCATCGGTTTGTGCAGCTGGGGA TAGTGCTTCGTATCAAAGGACATCGGTGTT	547
Cucumis sativus Ser27Term TCG-TAG	AACACCGATGTCCTTTGATACGAAGCACTATCCCCAGCTGCACAA ACCGATGCAGAGAGCTAAGATTCATTTGTGTAAGCGGAAGAAGAA GGCCGGAGATGATGTAGCAAAATGCTCTGCC	547
	TGAATCTT <u>A</u> GCTCTCTG	547
	CAGAGAGC <u>T</u> AAGATTCA	548
2,4-DB resistance 3-ketoacyl-CoA thiolase	TGCTACATCATCTCCGGCCTTCTTCTTCCGCTTACACAAATGAATC TTCGCTCTCTGCATAGGTTTGTGCAGCTGGGGATAGTGCTTCGTA TCAAAGGACATCGGTGTTTGGAGATGATGT	548
Cucumis sativus Ser31Term TCG-TAG	ACATCATCTCCAAACACCGATGTCCTTTGATACGAAGCACTATCCC CAGCTGCACAAACCTATGCAGAGAGCGAAGATTCATTTGTGTAAG CGGAAGAAGAAGGCCGGAGATGATGTAGCA	548
	CTCTGCATAGGTTTGTG ·	548
	CACAAACC <u>T</u> ATGCAGAG	548
2,4-DB resistance 3-ketoacyl-CoA thiolase	TCATCTCCGGCCTTCTTCTTCCGCTTACACAAATGAATCTTCGCTC TCTGCATCGGTTTGAGCAGCTGGGGATAGTGCTTCGTATCAAAGG ACATCGGTGTTTGGAGATGATGTCGTGATT	548
Cucumis sativus Cys33Term TGT-TGA	AATCACGACATCATCTCCAAACACCGATGTCCTTTGATACGAAGCA CTATCCCCAGCTGCTCAAACCGATGCAGAGAGCGAAGATTCATTT GTGTAAGCGGAAGAAGAAGCCCGGAGATGA	548
	TCGGTTTGAGCAGCTGG	548
	CCAGCTGC <u>T</u> CAAACCGA	548
2,4-DB resistance 3-ketoacyl-CoA thiolase	GAAGGCAATCAACAGGCAGAGCATTCTGCTACATCATCTCCGGCC TTCATCTTCGGCTTAGAGCCATGAATCTTCGCTCTCTGCATCGGTT TGTGCAGCTGGGGATAGTGCGTCGTATCAA	548
Cucurbita sp. Tyr22Term TAT-TAG	TTGATACGACGCACTATCCCCAGCTGCACAAACCGATGCAGAGAGCGAAGATTCATGGCTCTAAGCCGAAGATGAAGGCCGGAGATGATGATGCAGAAGATGAAGCCGAAGATGATGATTGCCTTC	549
	TCGGCTTA <u>G</u> AGCCATGA	549
	TCATGGCTCTAAGCCGA	549

10

15

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	2,4-DB resistance 3-ketoacyl-CoA thiolase	ATCAACAGGCAGAGCATTCTGCTACATCATCTCCGGCCTTCATCTT CGGCTTATAGCCATTAATCTTCGCTCTCTGCATCGGTTTGTGCAG CTGGGGATAGTGCGTCGTATCAAAGAACGT	5493
5	Cucurbita sp. Glu25Term GAA-TAA	ACGTTCTTTGATACGACGCACTATCCCCAGCTGCACAAACCGATG CAGAGAGCGAAGATTAATGGCTATAAGCCGAAGATGAAGGCCGG AGATGATGTAGCAGAATGCTCTGCCTGTTGAT	5494
		ATAGCCAT <u>T</u> AATCTTCG	5495
		CGAAGATT <u>A</u> ATGGCTAT	5496
	2,4-DB resistance 3-ketoacyl-CoA thiolase	GGCAGAGCATTCTGCTACATCATCTCCGGCCTTCATCTTCGGCTT ATAGCCATGAATCTTAGCTCTCTGCATCGGTTTGTGCAGCTGGGG ATAGTGCGTCGTATCAAAGAACGTCGGTGTT	5497
10	Cucurbita sp. Ser27Term TCG-TAG	AACACCGACGTTCTTTGATACGACGCACTATCCCCAGCTGCACAA ACCGATGCAGAGAGCTAAGATTCATGGCTATAAGCCGAAGATGAA GGCCGGAGATGATGTAGCAGAATGCTCTGCC	5498
		TGAATCTTAGCTCTCTG	5499
		CAGAGAGCTAAGATTCA	5500
15	2,4-DB resistance 3-ketoacyl-CoA thiolase	TGCTACATCATCTCCGGCCTTCATCTTCGGCTTATAGCCATGAATC TTCGCTCTCTGCATAGGTTTGTGCAGCTGGGGATAGTGCGTCGTA TCAAAGAACGTCGGTGTTTGGAGATGATGT	5501
	Cucurbita sp. Ser31Term TCG-TAG	ACATCATCTCCAAACACCGACGTTCTTTGATACGACGCACTATCCC CAGCTGCACAAACCTATGCAGAGAGCGAAGATTCATGGCTATAAG CCGAAGATGAAGGCCGGAGATGATGTAGCA	5502
		CTCTGCAT <u>A</u> GGTTTGTG	5503
		CACAAACC <u>T</u> ATGCAGAG	5504
20	2,4-DB resistance 3-ketoacyl-CoA thiolase	TCATCTCCGGCCTTCATCTTCGGCTTATAGCCATGAATCTTCGCTC TCTGCATCGGTTTGAGCAGCTGGGGATAGTGCGTCGTATCAAAGA ACGTCGGTGTTTGGAGATGATGTCGTGATA	5505
	Cucurbita sp. Cys33Term TGT-TGA	TATCACGACATCATCTCCAAACACCGACGTTCTTTGATACGACGCA CTATCCCCAGCTGCTCAAACCGATGCAGAGAGCGAAGATTCATGG CTATAAGCCGAAGATGAAGGCCGGAGATGA	5506
		TCGGTTTG <u>A</u> GCAGCTGG	5507
_		CCAGCTGCTCAAACCGA	5508
25	2,4 DB resistance Pex14 Arabidopsis thaliana	TCATAGTCTCTTTTGCCGCTTGGATTCTTCCAAGGTTAGTGAGCTG CTATGGCAACTCATTAGCAAACGCAACCTCCTTCCGATTTTCCCG CTCTTGCCGATGAAAATTCCCAGATTCCAG	5509
	Gln5Term CAG-TAG	CTGGAATCTGGGAATTTTCATCGGCAAGAGCGGGAAAATCGGAAG GAGGTTGCGTTTGCTAATGAGTTGCCATAGCAGCTCACTAACCTT GGAAGAATCCAAGCGGCAAAAGAGACTATGA	5510

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	CAACTCAT <u>T</u> AGCAAACG	5511
	CGTTTGCT <u>A</u> ATGAGTTG	5512
2,4 DB resistance Pex14 Arabidopsis thaliana	TAGTCTCTTTTGCCGCTTGGATTCTTCCAAGGTTAGTGAGCTGCTA TGGCAACTCATCAGTAAACGCAACCTCCTTCCGATTTTCCCGCTC TTGCCGATGAAAATTCCCAGATTCCAGGTT	5513
GIn6Term CAA-TAA	AACCTGGAATCTGGGAATTTTCATCGGCAAGAGCGGGAAAATCGG AAGGAGGTTGCGTTTACTGATGAGTTGCCATAGCAGCTCACTAAC CTTGGAAGAATCCAAGCGGCAAAAGAGACTA	5514
	CTCATCAG <u>T</u> AAACGCAA	5515
	TTGCGTTTACTGATGAG	5516
2,4 DB resistance Pex14 Arabidopsis thaliana	CTTTTGCCGCTTGGATTCTTCCAAGGTTAGTGAGCTGCTATGGCA ACTCATCAGCAAACGTAACCTCCTTCCGATTTTCCCGCTCTTGCC GATGAAAATTCCCAGATTCCAGGTTCAATTT	5517
Gln8Term CAA-TAA	AAATTGAACCTGGAATCTGGGAATTTTCATCGGCAAGAGCGGGAA AATCGGAAGGAGGTT <u>A</u> CGTTTGCTGATGAGTTGCCATAGCAGCTC ACTAACCTTGGAAGAATCCAAGCGGCAAAAG	5518
	AGCAAACG <u>T</u> AACCTCCT	5519
	AGGAGGTT <u>A</u> CGTTTGCT	5520
2,4 DB resistance Pex14 Arabidopsis thaliana	GCTGCTATGGCAACTCATCAGCAAACGCAACCTCCTTCCGATTTT CCCGCTCTTGCCGATTAAAAATTCCCAGATTCCAGGTTCAATTTACA CCTTCTAATCATTATTTCTTAATTTTTCTT	5521
Glu19Term GAA-TAA	AAGAAAATTAAGAAATAATGATTAGAAGGTGTAAATTGAACCTGG AATCTGGGAATTTT <u>A</u> ATCGGCAAGAGCGGGAAAATCGGAAGGAG GTTGCGTTTGCTGATGAGTTGCCATAGCAGC	5522
	TTGCCGAT <u>T</u> AAAATTCC	5523
	GGAATTTT <u>A</u> ATCGGCAA	5524
2,4 DB resistance Pex14 Arabidopsis thaliana	GCAACTCATCAGCAAACGCAACCTCCTTCCGATTTTCCCGCTCTT GCCGATGAAAATTCCTAGATTCCAGGTTCAATTTACACCTTCTAAT CATTATTTCTTAATTTTTCTTTGGTGGATT	5525
Gln22Term CAG-TAG	AATCCACCAAAGAAAAATTAAGAAATAATGATTAGAAGGTGTAAATT GAACCTGGAATCTAGGAATTTTCATCGGCAAGAGCGGGAAAATCG GAAGGAGGTTGCGTTTGCTGATGAGTTGC	5526
	AAAATTCC <u>T</u> AGATTCCA	5527
	TGGAATCT <u>A</u> GGAATTTT	5528

10

15

Example 8

Production of albino mutants for the analysis of photosynthetic processes

Plant productivity is limited by resources available and the ability of plants to harness these resources. The conversion of light to chemical energy, which is then used to synthesize carbohydrates, fatty acids, sugars, amino acids and other compounds, requires a complex system which combines the light harvesting apparatus of pigments and proteins. The value of light energy to the plant can only be realized when it is efficiently converted into chemical energy by photosynthesis and fed into various biochemical processes. Significant effort has therefore been directed at studying photosynthetic processes in plants in order to improve productivity and/or the efficiency of photosynthesis. The analysis of the photosynthetic process is substantially aided by the ability to produce albino plants.

The attached table discloses exemplary oligonucleotide base sequences which can be used to generate site-specific mutations in genes involved in starch metabolism.

Table 18
Oligonucleotides to produce albino plants

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ NO
White leaves Immutans Arabidopsis thaliana	TTCTTTCCTGTGAAATTATCTGCTCAAATCTTTGGTTCCTGACGGAG ATGGCGGCGATTTGACGCATCTCCTCTGGTACGTTGACGATTTCA CGGCCTTTGGTTACTCTTCGACGCTCTAG	552
Ser5Term TCA-TGA	CTAGAGCGTCGAAGAGTAACCAAAGGCCGTGAAATCGTCAACGTA CCAGAGGAGATGCCTCAAATCGCCGCCATCTCCGTCAGGAACCAA AGATTTGAGCAGATAATTTCACAGGAAAGAA	553
	GGCGATTT <u>G</u> AGGCATCT	553
	AGATGCCT <u>C</u> AAATCGCC	553
White leaves Immutans Arabidopsis thaliana	GCTCAAATCTTTGGTTCCTGACGGAGATGGCGGCGATTTCAGGCA TCTCCTCTGGTACGTAGACGATTTCACGGCCTTTGGTTACTCTTCG ACGCTCTAGAGCCGCCGTTTCGTACAGCTC	553
Leu12Term TTG-TAG	GAGCTGTACGAAACGGCGGCTCTAGAGCGTCGAAGAGTAACCAAA GGCCGTGAAATCGTCTACGTACCAGAGGAGATGCCTGAAATCGCC GCCATCTCCGTCAGGAACCAAAGATTTGAGC	553
	TGGTACGT <u>A</u> GACGATTT	553
	AAATCGTC <u>T</u> ACGTACCA	553
White leaves Immutans Arabidopsis thaliana	TTTGGTTCCTGACGGAGATGGCGGCGATTTCAGGCATCTCCTCTG GTACGTTGACGATTTGACGGCCTTTGGTTACTCTTCGACGCTCTAG AGCCGCCGTTTCGTACAGCTCCTCTCACCG	553
Ser15Term TCA-TGA	CGGTGAGAGGAGCTGTACGAAACGGCGCTCTAGAGCGTCGAAG AGTAACCAAAGGCCGTCAAATCGTCAACGTACCAGAGGAGATGCC TGAAATCGCCGCCATCTCCGTCAGGAACCAAA	553
	GACGATTT <u>G</u> ACGGCCTT	553
·	AAGGCCGT <u>C</u> AAATCGTC	554
White leaves Immutans <i>Arabidopsis thaliana</i>	GCGGCGATTTCAGGCATCTCCTCTGGTACGTTGACGATTTCACGG CCTTTGGTTACTCTTTGACGCTCTAGAGCCGCCGTTTCGTACAGCT CCTCTCACCGATTGCTTCATCATCTTCCTC	554
Arg22Term CGA-TGA	GAGGAAGATGATGAAGCAATCGGTGAGAGGAGCTGTACGAAACG GCGGCTCTAGAGCGTCAAAGAGTAACCAAAGGCCGTGAAATCGTC AACGTACCAGAGGAGATGCCTGAAATCGCCGC	554
	TTACTCTT <u>T</u> GACGCTCT	55
	AGAGCGTC A AAGAGTAA	554

5

10

20

	White leaves	TCAGGCATCTCCTCTGGTACGTTGACGATTTCACGGCCTTTGGTTA	TECAP
	Immutans	CTCTTCGACGCTCTTGAGCCGCCGTTTCGTACAGCTCCTCTCACC	5545
	Arabidopsis thaliana	GATTGCTTCATCATCTTCCTCTCTCTCTC	ļ
	Arg25Term	GAGAAGAGAGGAAGATGATGAAGCAATCGGTGAGAGGAGCTG	
5	AGA-TGA	TACGA A CGCCGCTCA A CACCCA CACTA A COA A A CACCA	5546
		TACGAAACGCCGGCTCAAGACCTAACCAAAGGCCG	,
		TGAAATCGTCAACGTACCAGAGGAGATGCCTGA	
		GACGCTCTTGAGCCGCC	5547
		GGCGGCTC <u>A</u> AGAGCGTC	5548
	White leaves	GATTCTTGTGGGAAGGAAGGAAGGATCAAGAATGGCGATTTCGATTT	5549
	Immutans	CTGCTATGAGTTTTTGAACCTCAGTTTCTTCATATTCTTGTTTTAGA	00.0
	Lycopersicon	GCTAGGAGTTTTGAGAAGTCATCAGTTT	i
	esculentum	AAACTGATGACTTCTCAAAACTCCTAGCTCTAAAACAAGAATATGAA	5550
10	Gly11Term	GAAACTGAGGTTCAAAAACTCATAGCAGAAATCGAAATCGCCATTC	0000
	GGA-TGA	TTGATCCTTCCTTCCCACAAGAATC	
	16	TGAGTTTT <u>T</u> GAACCTCA	5551
		TGAGGTTC <u>A</u> AAAACTCA	
	White leaves		5552
	Immutans	GTGGGAAGGAAGAATCAAGAATGGCGATTTCGATTTCTGCTA	5553
	1	TGAGTTTTGGAACCTGAGTTTCTTCATATTCTTGTTTTAGAGCTAGG	
15	Lycopersicon	AGTTTTGAGAAGTCATCAGTTTTATGCAA	
15	esculentum	TTGCATAAAACTGATGACTTCTCAAAACTCCTAGCTCTAAAACAAGA	5554
	Ser13Term	ATATGAAGAAACTCAGAAACTCATAGCAGAAATCGAAATC	
	TCA-TGA	GCCATTCTTGATCCTTCCTTCCCAC	
		TGGAACCT <u>G</u> AGTTTCTT	5555
		AAGAAACT <u>C</u> AGGTTCCA	5556
	White leaves	AAGAAGGATCAAGAATGGCGATTTCGATTTCTGCTATGAGTTTTGG	5557
	Immutans	AACCTCAGTTTCTTGATATTCTTGTTTTAGAGCTAGGAGTTTTGAGA	5557
20	Lycopersicon	AGTCATCAGTTTTATGCAATTCCCAGAA	
	esculentum	TTCTGGGAATTGCATAAAACTGATGACTTCTCAAAACTCCTAGCTC	5558
	Ser16Term	TAAAACAAGAATAT <u>C</u> AAGAAACTGAGGTTCCAAAACTCATAGCAGA	2226
	TCA-TGA	AATCGAAATCGCCATTCTTGATCCTTCTT	1
		AGTTTCTTGATATTCTT	5550
			5559
		AAGAATAT <u>C</u> AAGAAACT	5560
	White leaves	AGGATCAAGAATGGCGATTTCGATTTCTGCTATGAGTTTTGGAACC	5561
25	Immutans	TCAGTTTCTTCATAGTCTTGTTTTAGAGCTAGGAGTTTTGAGAAGTC	0001
	Lycopersicon	ATCAGTTTTATGCAATTCCCAGAACCCA	
i	esculentum	TGGGTTCTGGGAATTGCATAAAACTGATGACTTCTCAAAACTCCTA	5562
-	Tyr17Term	GCTCTAAAACAAGACTATGAAGAAACTGAGGTTCCAAAACTCATAG	JJU2
	TAT-TAG	CAGAAATCGAAATCGCCATTCTTGATCCT	
		TCTTCATAGTCTTGTTT	5563
		AAACAAGACTATGAAGA	
1		The state of the s	5564

White leaves Immutans Lycopersicon esculentum Cys19Term TGT-TGA White leaves Immutans Capsicum annuum TCA-TGA White leaves Immutans Capsicum annuum Ser17Term TCA-TGA White leaves Immutans Capsicum annuum Ser17Term TCA-TGA AAAAATCAAGAATGCGAATTTCAATCAACAAAATGGGTTCTTGAACTT AAGAAACTCAAGTTCGA AAAAATCAAGAATGGCGATTTCCATATCTGCTATGACTTTCGAACTTCAACCAAGAACCCATTTTTTTT	565 566 567 568 5570 5571 5572
Lycopersicon esculentum Cys19Term TGT-TGA White leaves Immutans Capsicum annuum TCA-TGA White leaves Immutans CGCCATTCTGAAAACCCATTCTTCAAAACTGATGCATAAATCAAGAACCCATTCTTGAATTCAAGAAACTGAGATTCCATAATCAAGAATTGCAAAAACTCAAGAATTGCAAAAATCGCATTTTTTCA-TGA White leaves Immutans Capsicum annuum TCA-TGA White leaves Immutans CGCCATTCTTGATTTTTTTTTTTTTTTTTTTTTTTTTTT	567 568 569 5570
Seculentum Cys19Term TGT-TGA White leaves Immutans Capsicum annuum TCA-TGA White leaves Immutans TCA-TGA White leaves Immutans TCA-TGA White leaves Immutans TCA-TGA White leaves Immutans Capsicum annuum TCA-TGA White leaves Immutans Capsicum annuum TCA-TGA White leaves Immutans Capsicum annuum Capsicum annuum TCA-TGA White leaves Immutans Capsicum annuum TCA-TGA White leaves Immutans Capsicum annuum Capsicum annuum TCA-TGA White leaves Immutans Capsicum annuum TCA-TGA White leaves Immutans Capsicum annuum TCA-TGA AAAATCAAGAATGCGATTTCCATATCTGCTATGAGTTTTCGAACT AGTGAAAATGAGAATTCTATTTTCACT AGTGAAAATCAAGAATGAGAATTCAAACAAAATGGGTTCTTGGAATTGCACA AAAATCCTGAATTCTATTTTCACT AGTGAAAATAGAGAATTCAAACAAAATGGGTTCTTGGAATTGCACA AAAATGCTGAAATATCAAGAAAGAAACTGAAGTTCGAAAAACTCATAGC AGATATGGAAATCGCCATTCTTGATTTTT TTCTTCTTGATATTCAGC AGATATTGAAACAAAACTGAAGTTCGAAAACTCATAGC AGATATTGGAAATCGCCATTCTTGATTTTTTTTTT	567 568 569 5570
TGT-TGA CYS19Term TGT-TGA TGT-TGA TCATAGCAGAAATCGAAATCGCCATTCTT TATTCTTGATTTAGAGC GCTCTAAATCAAGAATA White leaves Immutans Capsicum annuum Ser13Term TCA-TGA White leaves Immutans CGCCATTCTTGATTTCATATTCAGCATTTTTTTTCATATTCAGCATTTTTTTCATATTCAGCATTTTTTTT	568 569 5570 5571 5572
TGT-TGA TCATAGCAGAAATCGAAATCGCCATTCTT TATTCTTGATTTAGAGC GCTCTAAATCAAGAATA White leaves Immutans Capsicum annuum Ser13Term TCA-TGA White leaves Immutans CGCCATTCTTGATTTTTTTTTTTTTTTTTTTTTTTTTTT	568 569 5570 5571 5572
TATTCTTGATTTAGAGC GCTCTAAATCAAGAATA White leaves Immutans Capsicum annuum TCA-TGA White leaves Immutans Capsicum annuum TCA-TGA White leaves Immutans TCA-TGA TC	568 569 5570 5571 5572
White leaves Immutans Capsicum annuum TCA-TGA White leaves Immutans Capsicum annuum TCA-TGA White leaves Immutans Capsicum annuum TCA-TGA White leaves Immutans TCA-TGA White leaves Immutans Capsicum annuum TCA-TGA White leaves Immutans Capsicum annuum TCA-TGA CAGTTTCTCTTGATTTTTTTATCACAAAAAATGCTGAAT AAAAATCAAGAATGCGATTTCATATCAGAAATTCAAAAATGCAAAATTCAAAAATGCAAAATTCAAAAATTCAAAAAATCAAGAATTCAAAAATCAAGAATTCAAAAAATCAAGAATTCAAAAATCAAGAATTCAAAAAATCAAGAATTCAAAAAATCAAGAATTCAAAAAATCAAGAATTCAAAAAAATCAAGAATTCAAAAAAAA	5569 5570 5571 5572
White leaves Immutans Capsicum annuum Ser13Term TCA-TGA White leaves Immutans Capsicum annuum Ser13Term TCA-TGA White leaves Immutans Capsicum annuum TCA-TGA TCA-TGA TCA-TGA White leaves Immutans Capsicum annuum Ser17Term TCA-TGA AAAAATCAAGAATGCGATTTCATATCAGCAGTTTTGTAAT AAAAATCAAGAATGCGTTCTTGGAATTGCACAAAAATGCTGAAT ATGAAGAAACTCAAGTTCGAAAACTCATAGCAGATATGGAAAT CGCCATTCTTGATTTTTTTATCGGACGCG TCGAACTTGAGTTCTT AAGAAACTCAAGTTCGA White leaves Immutans Capsicum annuum Ser17Term TCA-TGA AGTGAAAATAGAGAATTCTATTTTCACT AGTGAAAATAGAGAATTCTAATCTGCAATTCCAAGAACCC ATTTTGTTTGAATTCTCTATTTTCACT AGTGAAAATAGAGAATTCAACAAAATGGGTTCTTGGAATTGCACA AAAATGCTGAAATTCAAGAAACAAAATGGGTTCTTGGAATTGCACA AAAATGCTGAAAATCGCCATTCTTGATTTTT TTCTTCTTGATATTCAG 55 56 57 57 58 58 59 69 60 60 60 60 60 60 60 60 6	5569 5570 5571 5572
Immutans Capsicum annuum Ser13Term TCA-TGA White leaves Immutans Capsicum annuum TCA-TGA White leaves Immutans Capsicum annuum TCA-TGA CAGAAAATCAAAAATGCGATTTTTTTTTTTTTTTT	5570 5571 5572
Immutans Capsicum annuum Ser13Term TCA-TGA White leaves Immutans Capsicum annuum Ser17Term TCA-TGA GAGTTTCGAACTCAAGATTCTTGAATTC GAATTCAACAAAATGGGTTCTTGGAATTGCACAAAAATGGAAAT CGCCATTCTTGATTTTTTTATCGGACTCATAGCAGATATGGAAAT CGCCATTCTTGATTTTTTTATCGGACTGAGTTTCGAACT AAGAAACTCAAGATTCGA White leaves Immutans Capsicum annuum Ser17Term TCA-TGA TCA-TGA GAGTTTCGAACTTGAGTTTCTTTTATCGGAATTGCACAAAATTGGAACT AAAAATCAAGAATGGCGATTTCCATATCTGCTATGAGTTTTCGAACT TCAGTTTCTTCTTGATTTTTCACT AGTGAAAATTGAATTCTCTATTTTCACT AGTGAAAATAGAGAATTCAAACAAAATGGGTTCTTGGAATTGCACA AAAATGCTGAATATCAAGAAACTGAAGTTCGAAAACTCATAGC AGATATGGAAATCGCCATTCTTGATTTTT TTCTTCTTGATATTCAG 55 TTCTTCTTGATATTCAG 56 TCGAACTTGAACTTCTCATTTTCACT TCA-TGA TCA-TGA TCA-TGA TCA-TGA TCA-TGA TCA-TGA TCA-TGA TCA-TGA TCA-TGA TCTTCTTGATTTTCACT TTCTTCTTGATTTTTCACT TTCTTCTTGATTTTTCACT TTCTTCTTGATTTTTTTTTT	5571 5572
TCA-TGA Capsicum annuum Ser13Term TCA-TGA TCA-TGA White leaves Immutans Capsicum annuum Capsicum annuum Capsicum annuum TCA-TGA White leaves Immutans Capsicum annuum TCA-TGA Capsicum annuum TCA-TGA AAAAATCAAGAATGGCGATTTCATATCTGCTATGAGTTTCGAACT TCAGTTTCTTCTTGATTTTTTCACT AGTGAAAATCAGAATGCCATTTTCACT AGTGAAAATCAGAATCCTCTATTTTCACT AGTGAAAATCAGAATCCTCTATTTTCACT AGTGAAAATGAGAATCCAAAAATGGGTTCTTGGAATTGCACA AAAATGCTGAATATCAAGAAACTGAAGTTCGAAAAACTCATAGC AGATATGGAAATCGCCATTCTTGATTTTT TTCTTCTTGATATTCAG AGATATGGAAATCGCCATTCTTGATTTTT TTCTTCTTGATATTCAG AGATATTGGAAATCGCCATTCTTGATTTTT TTCTTCTTGATATTCAG AGATATTGGAAATCGCCATTCTTGATTTTT TTCTTCTTGATATTCAG ATTTCTTCTTGATATTCAG AGATATTGGAAATCGCCATTCTTGATTTTT ATTCCTTCTTGATATTCAG AGATATTGGAAATCGCCATTCTTGATTTTT ATTCTTCTTCTTGATATTCAG ATTTCTTCTTGATATTCAG AGATATTGGAAATCGCCATTCTTGATTTTT ATTCTTCTTCTTGATATTCAG ATTTCTTCTTCTTGATATTCAG AAAATCGCTGATATTCAG AAAATTCTTCTTTGATTTTTT AAAAATCGCTGATATTCAG AAAATCGCTGATATTCAG AAAATTCTTCTTTGATTTTT AAAAATCGCTGATATTCAG AAAATTCTTCTTTGATTTTT AAAAATCGCTGATATTCAG AAAATTCTTCTTTTGATTTTT AAAAATCGCTGATATTCAG AAAATTCTTCTTTTTTTTTT	5571 5572
Ser13Term TCA-TGA GAATTCAAACAAAATGGGTTCTTGGAATTGCACAAAAATGCTGAAT ATGAAGAAGAAACTCAAGTTCGAAAACTCATAGCAGATATGGAAAT CGCCATTCTTGATTTTTTTATCGGACGCG TCGAACTTGAGTTCTT AAGAAACTCAAGTTCGA White leaves Immutans Capsicum annuum Ser17Term TCA-TGA AAAATCAAGAATGGCGATTTCATTTTGTGCAATTCCAAGAACCC ATTTTGTTTGAATTCTCTATTTTCACT AGTGAAAATGAGAAATTCAAGAAAATGGGTTCTTGGAATTGCACA AAAATGCTGAAATTCAAGAAAAAATGGGTTCTTGGAATTGCACA AAAATGCTGAAATTCAAGAAGAAACTGAAGTTCGAAAACTCATAGC AGATATGGAAAATCGCCATTCTTGATTTTT TTCTTCTTGATTTCAG 55	5571 5572
TCA-TGA ATGAAGAAGAACTCAAGTTCGAAAACTCATAGCAGATATGGAAAT CGCCATTCTTGATTTTTTATCGGACGCG TCGAACTTGAGTTCTT AAGAAACTCAAGTTCGA White leaves Immutans Capsicum annuum Ser17Term TCA-TGA TCA-TGA AAAATCAAGAATGGCGATTTCCATATCTGCTATGAGTTTTCGAACT AGTGAAAATCTCTTTTTTCACT AGTGAAAATCAAGAATCCAAAAATGGGTTCTTGGAATTGCACA AAAATGCTGAAATTCAAACAAAATGGGTTCTTGGAATTGCACA AAAATGCTGAAATTCAAGAAGAAACTCAAAACTCATAGC AGATATGGAAATCGCCATTCTTGATTTTT TTCTTCTTGATATTCAG 55	5572
CGCCATTCTTGATTTTTTTATCGGACGCG TCGAACTTGAGTTTCTT AAGAAACTCAAGTTCGA White leaves Immutans Capsicum annuum Ser17Term TCA-TGA TCA-TGA TCA-TGA CGCCATTCTTGATTTTTTTTTTTCACT AAAAATCAAGAATGGCGATTTCCATATCTGCTATGAGTTTTCGAACT TCAGTTTCTTCTTGATTTTTCACT AGTGAAAATAGAGAATTCAAACAAAATGGGTTCTTGGAATTGCACA AAAATGCTGAATATCAAGAAAACTGAAGTTCGAAAACTCATAGC AGATATGGAAATCGCCATTCTTGATTTTT TTCTTCTTGATATTCAG 55 AAAATGCTGAATATCAAGAAAACTGAAGTTCGAAAACTCATAGC AGATATGGAAATCGCCATTCTTGATTTTT TTCTTCTTGATATTCAG 55 AAAAATCTTTTTTTTTTTTTTTTTTTTTTTTTTT	5572
TCGAACTTGAGTTTCTT AAGAAACTCAAGTTCGA White leaves Immutans Capsicum annuum Ser17Term TCA-TGA TCA-TGA TCAGTTTCTTGAATTCTCATATTCTGCAATTCCAAGAACCC AGATATGGAAATAGAGAATTCAAACAAAATGGGTTCTTGGAATTGCACA AAAATGCTGAATATCAAGAAAAATGGGTTCTTGGAATTGCACA AAAATGCTGAATATCAAGAAAACTGAAGTTCGAAAACTCATAGC AGATATGGAAATCGCCATTCTTGATTTTT TTCTTCTTGATATTCAG TCA-TGA AAAATGCTGAATATCAAGAAAACTGAAGTTCGAAAACTCATAGC AGATATGGAAATCGCCATTCTTGATTTTT TTCTTCTTGATATTCAG 55	5572
White leaves Immutans Capsicum annuum Ser17Term TCA-TGA TCA-TGA AAAAATCAAGAATGGCGATTTCCATATCTGCTATGAGTTTTCGAACT AGTGAAAATCATGATTTTCACT AGTGAAAATGAGAATTCTCTATTTTCACT AGTGAAAATAGAGAATTCAAACAAAATGGGTTCTTGGAATTGCACA AAAATGCTGAATATCAAGAAAAATGGGTTCTTGGAATTGCACA AGATATGGAAATCGCCATTCTTGATTTTT TTCTTCTTGATATTCAG 55	
White leaves Immutans Capsicum annuum Ser17Term TCA-TGA TCA-TGA TCA-TGA TCA-TGA TCTTCTTGATATTCAGCATTTTTGGAATTCCAAGAACCC AGATATGGAAATAGAGAATTCAAACAAAATGGGTTCTTGGAATTGCACA AAAATGCTGAATATCAAGAAAATGGGTTCTTGGAATTGCACA AAAATGCTGAATATCAAGAAGAAACTGAAGTTCGAAAACTCATAGC AGATATGGAAATCGCCATTCTTGATTTTT TTCTTCTTGATATTCAG AAAATGCTGATATTCAG TCA-TGA AAAATGCTGAATATCAAGAAAACTGAAGTTCGAAAACTCATAGC AGATATGGAAATCGCCATTCTTGATTTTT TTCTTCTTGATATTCAG	5573
Immutans Capsicum annuum Ser17Term TCA-TGA TCA-TGA TCAGTTTCTTGATATTCAGCATTTTTGTGCAATTCCAAGAACCC ATTTTGTTTGAATTCTCTATTTTCACT AGTGAAAATAGAGAATTCAAGAAAATGGGTTCTTGGAATTGCACA AAAATGCTGAAATAGAGAAACTGAAGATTCGAAAACTCATAGC AGATATGGAAATTCAAGAATTCAAGAAAATTGCACAAAAATTGCACAAAAATTGCACAAAAATTGCACAAAAATTGCACAAAAATTGCACAAAAATTGCACAAAAATTGCACAAAAATTGCACAAAAATTGCACAAAAATTGCACAAAAATTGCAAGAATTCAAGAATTGCAATTTTTCACTTTGAATTTTTCACTTTGAATTTTTTTT	0073
Capsicum annuum Ser17Term TCA-TGA ATTTTGTTTGAATTCTCTATTTTCACT AGTGAAAATAGAGAATTCAAACAAAATGGGTTCTTGGAATTGCACA AAAATGCTGAATATCAAGAAAACTGAAGTTCGAAAACTCATAGC AGATATGGAAATCGCCATTCTTGATTTTT TTCTTCTTGATATTCAG ATTTTGTTTGAATTCACT AGTGAAAATGCAAAACTCAAAACTCAAAGC AGATATGGAAATCGCCATTCTTGATTTTT TTCTTCTTGATATTCAG 5:	
Ser17Term TCA-TGA AGTGAAAATAGAGAATTCAAACAAAATGGGTTCTTGGAATTGCACA AAAATGCTGAATATCAAGAAAACTGAAGTTCGAAAACTCATAGC AGATATGGAAATCGCCATTCTTGATTTTT TTCTTCTTGATATTCAG 5	
TCA-TGA AAAATGCTGAATATCAAGAAGAACTGAAGTTCGAAAACTCATAGC AGATATGGAAATCGCCATTCTTGATTTTT TTCTTCTTGATATTCAG 5:	
TCA-TGA AAAATGCTGAATATCAAGAAGAAACTGAAAACTCATAGC AGATATGGAAATCGCCATTCTTGATTTTT TTCTTCTTGATATTCAG 5	5574
AGATATGGAAATCGCCATTCTTGATTTTT TTCTTCTTGATATTCAG 5	
TTCTTCTT <u>G</u> ATATTCAG 5	
CTGAATAT <u>C</u> AAGAAGAA 5	5575
	5576
INVINITA ISSUES IL AACAAN CICCAN INCONTRACTOR CONTRACTOR 5577	
Immutans TTCTTCTTCATATTGAGCATTTTTGTGCAATTCCAAGAACCCATTTT	
Capsicum annuum GTTTGAATTCTCTATTTTCACTTAGGAA	
20 Ser19Term TTCCTAAGTGAAAATAGAGAATTCAAACAAAATGGGTTCTTGGAATT 5	5578
TCA-TGA GCACAAAATGCTCAATATGAAGAAGAAACTGAAGTTCGAAAACTC	
ATAGCAGATATGGAAATCGCCATTCTTG	
TTCATATTGAGCATTTT 5	5579
	5580
	5581
1///hita leaves 10.04A1 110.0A1A1 01001A10A0111100/V01110A1A1 01001A10A0111100/V01110A1A1	JUJ 1
Immutans TATTCAGCATTTTAGTGCAATTCCAAGAACCCATTTTGTTTG	
Capsicum annuum TCTATTTTCACTTAGGAATTCTCATAG	
The interpretation of the interpretation of	5582
TTG-TAG CTTGGAATTGCACTAAAATGCTGAATATGAAGAAACTGAAGTT	5582
CGAAAACTCATAGCAGATATGGAAATCG	5582
AGCATTTTAGTGCAATT	_
	5582 5583 5584

	White leaves	TTCCATATCTGCTATGAGTTTTCGAACTTCAGTTTCTTCTTCATATT	L COC
	Immutans	CAGCATTTTGTGAATTCCAAGAACCCATTTTGTTTGAATTCTCTA	5585
	Capsicum annuum	TTTTCACTTAGGAATTCTCATAGAACT	. !
_	Cys22Term	AGTTCTATGAGAATTCCTAAGTGAAAATAGAGAATTCAAACAAA	5586
5	TGC-TGA	GGTTCTTGGAATT <u>T</u> CACAAAAATGCTGAATATGAAGAAGAAACTGA	
		AGTTCGAAAACTCATAGCAGATATGGAA	
		TTTTTGTG <u>A</u> AATTCCAA	5587
		TTGGAATT <u>T</u> CACAAAA	5588
	White leaves	TTCGGCACGAGGAGAAGGAGCAGACCGAGGTGGCCGTCGAGG	5589
	Immutans	AGTCCTTCCCCTTCAGG <u>T</u> AGACGGCTCCTCCTGACGAGCCACTGG	
	Oryza sativa	TCACCGCCGAGGAGAGCTGGGTGGTTAAGCTCG	
10	Glu22Term	CGAGCTTAACCACCCAGCTCTCCTCGGCGGTGACCAGTGGCTCG	5590
10	GAG-TAG	TCAGGAGGAGCCGTCTACCTGAAGGGGAAGGACTCCTCGACGGC	
		CACCTCGGTCTCCCTCCTCGTGCCGAA	
		CCTTCAGG <u>T</u> AGACGGCT	5591
		AGCCGTCT <u>A</u> CCTGAAGG	5592
	White leaves	GAGCAGACCGAGGTGGCCGTCGAGGAGTCCTTCCCCTTCAGGGA	5593
	Immutans	GACGGCTCCTCCTGACTAGCCACTGGTCACCGCCGAGGAGAGCT	
	Oryza sativa	GGGTGGTTAAGCTCGAGCAGTCCGTGAACATTT	
4.5	Glu28Term	AAATGTTCACGGACTGCTCGAGCTTAACCACCCAGCTCTCCTCGG	5594
15	CAG-TAG	CGGTGACCAGTGGCTAGTCAGGAGGAGCCGTCTCCCTGAAGGGG	
		AAGGACTCCTCGACGGCCACCTCGGTCTGCTC	
		CTCCTGAC <u>T</u> AGCCACTG	5595
		CAGTGGCT <u>A</u> GTCAGGAG	5596
	White leaves	GTCGAGGAGTCCTTCCCCTTCAGGGAGACGGCTCCTCCTGACGA	5597
	Immutans	GCCACTGGTCACCGCCTAGGAGAGCTGGGTGGTTAAGCTCGAGC	
	Oryza sativa	AGTCCGTGAACATTTTCCTCACGGAGTCAGTCA	
20	Glu34Term GAG-TAG	TGACTGACTCCGTGAGGAAAATGTTCACGGACTGCTCGAGCTTAA	5598
20	GAG-TAG	CCACCCAGCTCTCCTAGGCGGTGACCAGTGGCTCGTCAGGAGGA	
		GCCGTCTCCCTGAAGGGGAAGGACTCCTCGAC	
		TCACCGCC <u>T</u> AGGAGAGC	5599
		GCTCTCCT <u>A</u> GGCGGTGA	5600
	White leaves	GAGGAGTCCTTCCCCTTCAGGGAGACGGCTCCTCCTGACGAGCC	5601
	Immutans	ACTGGTCACCGCCGAGTAGAGCTGGGTGGTTAAGCTCGAGCAGT	ŀ
	Oryza sativa Glu35Term	CCGTGAACATTTTCCTCACGGAGTCAGTCATCA	
25	GAG-TAG	TGATGACTGACTCCGTGAGGAAAATGTTCACGGACTGCTCGAGCT	5602
20	JOAG-TAG	TAACCACCCAGCTCTACTCGGCGGTGACCAGTGGCTCGTCAGGA	
		GGAGCCGTCTCCCTGAAGGGGAAGGACTCCTC	
		CCGCCGAG <u>T</u> AGAGCTGG CCAGCTCT <u>A</u> CTCGGCGG	5603

Immutans Oryza sativa Trp37Term TGG-TGA White leaves Immutans White leaves Immutans Triticum aestivum Trp22Term TGG-TGA CGCCGAGGAGAGCTGAGTCATCACGATACTT AAGTATCGTGATGACTCAGCTCCGTGAGGAAAATGTTCACGGACTG AAGTATCGTGATGACTCCCTCAGCGGGGGAAAATGTTCACGGACTG CTCGAGCTTAACCACTCAGCTCTCCTCGGCGGTGACCAGTGGCTC GTCAGGAGGAGCCGTCTCCCTGAAGGGGAAG GAGAGCTGAGTGGTTAA TAACCACTCAGCTCTC TCCGGAGGAGGAGGAGGGGGGATTCGACGAGGAGGTCACCCTCGCCG GCGAGGACGGCGACTGAGTCGTCAGATTCGACGAGGAGTCCTTCAAC GTATTCCTCACGGATACTGTCATCTTTATACTC GAGTATAAAGATGACAGTATCCGTGAGGAATACGTTGAAGGACTG 5610			CTTCCCCTTCAGGGAGACGGCTCCTCCTGACGAGCCACTGGTCAC	5605
TTTTCCTCACGAGTCATCATCAGGATACTT			CCCCCACCACACCTCACTCGTTAACCTCGACCACTCCGTGAACA	3003
Trp37Term TrGG-TGA			TTTTCCTCACGGAGTCAGTCATCACGATACTT	
Tight		1 -	AAGTATCGTGATGACTGACTCCGTGAGGAAAATGTTCACGGACTG	5606
GTCAGGAGGACCGTTCCCCTGAAGGGAAG 5607	5	` ·	CTCGAGCTTAACCACTCAGCTCTCCTCGGCGGTGACCAGTGGCTC	
GAGAGCTGAGTGCTTAA 5607	Ü		GTCAGGAGGAGCCGTCTCCCTGAAGGGGAAG	
White leaves				5607
Immutans			TTAACCAC <u>T</u> CAGCTCTC	5608
10 Triticum aestivum Trp22Term Arg25Term GARTATCGAGTATTAACTGATATTC Tr2ACGGATACTGAGTCATCTTTATACTCGATATTC Tr2ACGGATACTGAGTCATCTTTATACTCGATATTC Tr2ACGGATACTGAGTCATCTTTCAACGTATTCATCGAGTAGTCATCTTTCAACGTATTCATCGAGTAGACTCCCCTTCCTC GGGTCGTCTGGATCAACGTATCCACCTCGCCGGCGA GGGTGAGCTCCTCGTCGAATCAGACCCCCTTCCTCC Tr2ACGATCAGACTCCCCTTCCTC Tr2ACGATCAGAATCAGACACCC Tr2ACGAATCAGACACCCC Tr2ACGAATCAGACACCC Tr2ACGAATCAGACACCCC Tr2ACGAATCAGACACCCC Tr2ACGAATCAGACACCCC Tr2ACGAATCAGAATATCAGAGTATTCTCAACGAATACCCCCC GGCCGAGGGACGACGCC Tr2ACGAATACTCGAGTATTCTTTATACTCGATATTCCTCAACGAATACCCCCC GGCCGAGGGTGAGCTCCTCGCCCGCCGCCGCCGCCCCCC GCCCGAGGGTGAGCTCCTCGCCCGCCGCCGCCCCCCCCCC		White leaves	TCCGGAGGAGGAGGGGGGTTCGACGAGGAGCTCACCCTCGCCG	5609
Trp2Term TGG-TGA TTHIcum aestivum Arg25Term AGA-TGA TGAG-TGATC-TGG-TGAG-TGAG-GAG-GAG-GAG-GAG-GAG-GAG-G		Immutans	GCGAGGACGGCGACTGAGTCGTCAGATTCGAGCAGTCCTTCAAC	
TGG-TGA		Triticum aestivum		
GCTCCTCGTCGAATCCCCCTTCCTCCGGA GGCGACTGAGTCGAGTCAGC GGCGACTGAGTCGCC 5611		Trp22Term	GAGTATAAAGATGACAGTATCCGTGAGGAATACGTTGAAGGACTG	5610
GGCGACTGAGTCGCC 5611	10	TGG-TGA	CTCGAATCTGACGAC <u>T</u> CAGTCGCCGTCCTCGCCGGCGAGGGTGA	
White leaves GAGGAAGGGATTCGACGAGGAGCTCACCCTCGCCGGCGAGG ACGGCGATACTGTCATCTTTATACTCGATATTCC Triticum aestivum AGA-TGA GAGTACTGACCCCTCGCCGGCGAGGAGCTCACCCTCGCCGGCGAGG GAGTACTGATCCTCGATATTCC GATATCGAGTATCCACGATACCCTCGCCGGCGA GATATCGAGTATCACGTATCCCTCGCCGGCGA GATATCGAGTATAAAGATGACAGTATCCCCCTCGCCGGCGA GATATCGAGTATCAGACCCCCTCGCCGGCGA GATATCGAGTATCAGACCCCCTCGCCGGCGA GATATCGAGTATCAGACCCCCTTCCTC GATACAGAATCACAGACCCC GAGTCGCTCGATCCACCCTCGCCGGCGAACGACCCC S615				5044
White leaves			GGCGACTG <u>A</u> GTCGTCAG	
Immutans				
Triticum aestivum		White leaves	GAGGAAGGGGATTCGACGAGGAGCTCACCCTCGCCGGCGAGG	5613
Arg25Term AGA-TGA GAATATCGAGTATAAAGATGACAGTATCCGTGAGGAATACGTTGAA GGACTGCTCGAATCAGACCCAGTCGCCGTCCTCGCCGGCGA GGGTGAGCTCCTCGTCGAATCCCCCTTCCTC GGGTCGTCTGATTCGAG CTCGAATCAGACCCC White leaves Immutans ACTGGGTCGTCAGATCCACCCTCGCCGGCGAGGACGCGC Immutans ACTGGGTCGTCAGATTCTAGCAGTCCTTCAACGTATTCCTCACGGA TACTGTCATCTTTATACTCGATATTCTGTATC GATACAGAATATCGAGTATAAAGATGACAGTACCCCCC GGCGAGGGTGAGCTCCCCCCCCCGCGGAGGACATAC GGCGAGGGTGAGCTCCTCGCAGTCCTCCCCC GGCCGAGGGTGAGCTCCTCGCCGCGCGAGGAATAC GGCCGAGGGTGAGCTCCTCGCCGCCGCCGCCGCCGCCTCCTCCCC GGCCGAGGGTGAGCTCCTCGCCGCCGCGCGAGGACGCCATC GGCCGAGGTGAGCTCCTCGCCGCGCGAGGACGCGACTG GGCCGTCAGATTCGAGTATCCTCACCGTCACGATACCTCCCC GGCCGAGGTCACCCTCGCCGCGCGAGGACGCCACTC GCCGCCAGATCCGATATTCTGTATCCTCACGGATACCT GTCATCTTTATACTCGATATTCTGTATCCTCACGGATACCT GTCATCTTTATACTCGATATTCTGTATCCTC GCCGCCAGGAGACTACCCCTCGCCGCGCGAGGAC TACGTTGAAGGACTACTCGATATTCCTCACGGATACCT GCCGCCAGGGTGAGCTCCTCCCCCGCCGCCGCCGCCGCCGCCGCCGCCGCCGC		Immutans	ACGGCGACTGGGTCGTCTGATTCGAGCAGTCCTTCAACGTATTCC	
AGA-TGA		Triticum aestivum	TCACGGATACTGTCATCTTTATACTCGATATTC	
GGGTGAGCTCCTCGTCGAATCCCCCTTCCTC			GAATATCGAGTATAAAGATGACAGTATCCGTGAGGAATACGTTGAA	5614
GGGTCGTC_IGATTCGAG 5615	15	AGA-TGA	GGACTGCTCGAATCAGACGACCCAGTCGCCGTCCTCGCCGGCGA	
White leaves GGGGGATTCGACGAGGAGCTCACCCTCGCCGGCGAGGACGCG 5617				FCAF
White leaves Immutans Triticum aestivum GAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA			GGGTCGTC <u>T</u> GATTCGAG	
Immutans Triticum aestivum Glu27Term GAG-TAG GAG-TAG White leaves Immutans Triticum aestivum GIn28Term GCAG-TAG CAG-TAG CAG-TAG CAG-TAG CAG-TAG CAG-TAG CAG-TAG CAG-TAG CAG-TAG CAGATTCTAGAGATTCTGACGACCCAGTCGCCGTCCTCGCC GCCAGGGTGAGCTCCTCGTCGAATCCCCC TCAGATTCTAGCAGTCC GCAGATCTAGCAGTCC CAGATTCGACGAGGAGCTCACCCTCGCCGGCGAGGACGGCGACTG GCTCGTCAGATTCGACGAGTCCTCTCACCGTCACCGGATACT GCTCGTCAGATTCGAGTAGTCCTTCAACGTATTCCTCACGGATACT GTCATCTTTATACTCGATATTCTGTATCGTG CACGATACAGAATATCGAGTATAAAGATGACAGTATCCGTGAGGAA TACGTTGAAGGACTACTCGAATCTGACGACCCAGTCGCCGTCCTC GCCGGCGAGGGTGAGCTCCTCCTCGCCGAATCCT GCCGGCGAGGGTGAGCTCCTCCTCGCCGAATCCT GCCGGCGAGGGTGAGCTCCTCCTCGCCGAATCCT GCCGGCGAGGGTGAGCTCCTCCTCGAATCCCTCCTCCTCCTCCTCCTCCTCCTCCTCCTCCTCCT				5616
Triticum aestivum Glu27Term GATACAGAATATCGAGTATACCGATATCCGTGAGGAATAC GAGGTAG GAG-TAG GAG-TAG GAG-TAG GAG-TAG GAGGTGAGGACTCCTCGTCGACCCAGTCGCCGTCCTCGCC GCCGAGGGTGAGCTCCTCGTCGAATCCCCC TCAGATTCTAGCAGTCC GGCGAGGGTGAGCTCCTCGTCGAATCCCCC TCAGATTCTAGCAGTCC GGACTGCTAGAATCTGA White leaves Immutans Triticum aestivum GIn28Term GIn28Term CAGGTTGAAGGACTCACCTTCGATATTCTGTATCGTG CACGATACAGAATATCGAGTATTCCTGAGGAA TACGTTGAAGGACTCACCTTCGAATCCGTGAGGAA TACGTTGAAGGACTATTCTGTATCGTG GCCGGCGAGGGTGAGCTCCTC GCCGGCGAGGGTGAGCTCCTC GCCGGCGAGGGTGAGCTCCTC GCCGGCGAGGGTGAGCTCCTC GCCGGCGAGGGTGAGCTCCTCC GATTCGAGTAGTCCTTC 5623		White leaves	GGGGGATTCGACGAGGAGCTCACCCTCGCCGGCGAGGACGGCG	5617
GIU27Term GATACAGAATATCGAGTATAAAGATGACAGTATCCGTGAGGAATAC GAG-TAG GAG-TAG GATACAGAATATCGAGTATAAAGATGACAGTATCCGTGAGGAATAC GTTGAAGGACTGCTAGAATCCCCC GCCGAGGGTGAGCTCCTCGTCGAATCCCCC TCAGATTCTAGCAGTCC GGACTGCTAGAATCTGA White leaves Immutans Triticum aestivum GIn28Term CAG-TAG CAG-TAG CAG-TAG GATTCGACGAGGAGTCACCCTCGCCGGCGAGGACGGCGATACT GCATCTTTATACTCGATATTCTGTATCGTG CACGATACAGAATATCGAGTATTCCGTGAGGAA TACGTTGAAGGACTACTCGAATCTGACGACCCAGTCGCCGTCCTC GCCGCGAGGGTGAGCTCCTCCTCGCCGCCGCCGCCGCCGCCGCCGCCGCCGCC		Immutans	ACTGGGTCGTCAGATTC <u>T</u> AGCAGTCCTTCAACGTATTCCTCACGGA	
GAG-TAG GTTGAAGGACTGCTAGACCCAGTCGCCGTCCTCGCC GGCGAGGGTGAGCTCCTCGTCGAATCCCCC TCAGATTCTAGCAGTCC GGACTGCTAGAATCTGA White leaves Immutans Triticum aestivum Gln28Term CAG-TAG CAG-TAG GTCGTCAGATTCGAGTATTCTGTATCGTG CACGATACAGAATATCGAGTATTCCTCACGGATACT GCAGCTTGAAGGACTCACCCTCGCCGCGAGGACGCGATACT GTCATCTTTATACTCGAGTATTCTGTATCGTG CACGATACAGAATATCGAGTATAAAGATGACAGTATCCGTGAGGAA TACGTTGAAGGACTACTCGAATCTGACGACCCAGTCGCCGTCCTC GCCGGCGAGGGTGAGCTCCTCGTCGAATCC GATTCGAGTAGTCCTTC GATTCGAGTAGTCCTTC 5623		Triticum aestivum		
GGCGAGGGTGAGCTCCTCGTCGAATCCCCC TCAGATTCTAGCAGTCC GGACTGCTAGAATCTGA White leaves Immutans Triticum aestivum GIn28Term CAG-TAG CAG-TAG GGCGAGGGTGAGCTCACCCTCGCCGGCGAGGACGGCGACTG GGTCGTCAGATTCGAGTAGTCCTTCAACGTATTCCTCACGGATACT GTCATCTTTATACTCGATATTCTGTATCGTG CACGATACAGAATATCGAGTATAAAGATGACAGTATCCGTGAGGAA TACGTTGAAGGACTACTCGAATCTGACGACCCAGTCGCCGTCCTC GCCGGCGAGGGTGAGCTCCTCGTCGAATCC GATTCGAGTAGTCCTTC TAGATTCGAGTAGTCCTTC TAGATTCGAGTAGTCCTCC TAGATTCGAGTAGTCCTCC TAGATTCGAGTAGTCCTTC CTCGTCGAGTCGCCGTCTCTCTC		Glu27Term	GATACAGAATATCGAGTATAAAGATGACAGTATCCGTGAGGAATAC	5618
TCAGATTCTAGCAGTCC GGACTGCTAGAATCTGA White leaves Immutans Triticum aestivum GIn28Term CAG-TAG CAG-TAG TAGGTTGAAGGACTCACCCTCGCCGGCGAGGACGGCGACTG GGTCGTCAGATTCGAGTAGTCCTTCAACGTATTCCTCACGGATACT GTCATCTTTATACTCGATATTCTGTATCGTG CACGATACAGAATATCGAGTATAAAGATGACAGTATCCGTGAGGAA TACGTTGAAGGACTACTCGAATCTGACGACCCAGTCGCCGTCCTC GCCGGCGAGGGTGAGCTCCTCGTCGAATCC GATTCGAGTAGTCCTTC TAGGTTGAAGGACTACTCGAATCC GATTCGAGTAGTCCTTC TAGGTTGAAGGACTCCTCGTCGAATCC TAGGTTGAGGAGTAGTCCTTC TAGGTTGAGGACTCCTCGTCGAATCC TAGGTTCGAGTAGTCCTTC TAGGTTGAGGACTCCTTCGTCGAATCC TAGGTTGAGGACTCCTTCGTCGAATCC TAGGTTCGAGTAGTCCTTC TAGGTTGAGGACTCCTTCGTCGAATCC TAGGTTGAGTAGTCCTTC CTCTCTCTCTCTCTCTCTCTC	20	GAG-TAG	GTTGAAGGACTGCT <u>A</u> GAATCTGACGACCCAGTCGCCGTCCTCGCC	
GGACTGCTAGAATCTGA White leaves Immutans GGTCGTCAGAGTAGTCCTTCAACGTATTCCTCACGGATACT Triticum aestivum GIn28Term CAG-TAG CAGAGAGGACGAGAATATCGAGTATTCTGTATCGTG CACGATACAGAATATCGAGTATATCGAGTATCCGTGAGGAA TACGTTGAAGGACTACTCGAATCTGACGACCCAGTCGCCGTCCTC GCCGGCGAGGGTGAGCTCCTCCTCGCCGAATCCTCGAATCCCGAATCCCTCGAATCCTCGAATCCCTCGAATCCCTCGAATCCCTCGAATCCCTCGAATCCCTCGAATCCCCTCCTCCGCCGCGAGGGTGAGCCCCCTCCTCCGCCGAATCCCCTCCTCCGAATCCCCCTCCTCCGAATCCCCCTCCTCCGAATCCCCCCTCCTCCGAATCCCCCCTCCTCCCCCCCC	•			5040
White leaves Immutans GGATTCGACGAGGAGCTCACCCTCGCCGGCGAGGACGGCGACTG GGTCGTCAGATTCGAGTAGTCCTTCAACGTATTCCTCACGGATACT Triticum aestivum GIn28Term CACGATACAGAATATCGAGTATAAAGATGACAGTATCCGTGAGGAA CACGATACAGAAGACTACTCGAATCTGACGACCCAGTCGCCGTCCTC CACGATACAGAATATCGAGTATAAAGATGACAGTATCCGTGAGGAA CACGATACAGAAGACTACTCGAATCTGACGACCCAGTCGCCGTCCTC GCCGGCGAGGGTGAGCTCCTCCTCGTCGAATCC GATTCGAGTAGTCCTTC CACGATCGAGTCACTCGAATCCC GCCGGCGAGGGTGAGCTCCTCCTCGTCGAATCC CACGATCGAGTAGTCCTTC CACGATCGAGTAGTCCTTC CACGATCGAGTCGCCGTCCTC CACGATCGCCGAGTCGCCGTCCTC CACGATCGAGTAGTCCTCC CACGATCGCCGTCCTC CACGATCGCCGAGTCGCCGTCCTC CACGATCGCCGAGTCGCCGTCCTC CACGATCGCCGAGTCGCCGTCCTC CACGATCGCCGAGTCGCCGTCCTC CACGATCGAGTAGTCCTC CACGATCGCCGAGTCGCCGTCCTC CACGATCGCAGTCGCCGTCCTC CACGATCGCCGAGTCGCCGTCCTC CACGATCGAGTAGTCCTC CACGATCGCCGAGTCGCCGTCCTC CACGATCGAGTAGTCCTC CACGATCGAGTCGCCGTCCTC CACGATCGAGTCGCCGAGTCGCCGTCCTC CACGATCGAGTCGCCGTCCTC CACGATCGAGTCGCCGAGTCGCCGTCCTC CACGATCGAGTCGCCGAGTCGCCGTCCTC CACGATCGAGTCGCCGAGTCGCCGTCCTC CACGATCGAGTCGCCGAGTCGCCCAGTCGCCGTCCTC CACGATCGAGTCGCCGAGTCGCCCAGTCGCCGTCCTCCTCGTCGAGTCGCCGTCCTCCTCGTCGAGTCGCCGAGTCGCCGAGTCGCCCAGTCGCCGAGTCGCCAGTCGCCGAGTCGCCGAGTCGCCGAGTCGCCGAGTCGCCCAGTCGCCGCGCGCG		ĺ	TCAGATTC <u>T</u> AGCAGTCC	
Immutans Triticum aestivum Gln28Term CAG-TAG CAG-TAG 25 CAG-TAG CACGATACAGAATATCGAGTATCCTCACGGATACT GTCATCTTTATACTCGATATTCTGTATCGTG CACGATACAGAATATCGAGTATAAAGATGACAGTATCCGTGAGGAA TACGTTGAAGGACTACTCGAATCTGACGACCCAGTCGCCGTCCTC GCCGGCGAGGGTGAGCTCCTCGTCGAATCC GATTCGAGTAGTCCTTC 5623				
Triticum aestivum Gln28Term CAG-TAG CAG-TAG CAG-TAG CAGGATACAGAATATCGAGTATCCGTGAGGAA TACGTTGAAGGACTACTCGAGTCCCCGTCGCCGTCCTC GCCGGCGAGGGTGAGCTCCTCGTCGAATCC GATTCGAGTAGTCCTTC GATTCGAGTAGTCCTTC TOTAL GTCATCTTTATACTCGATATCTCGTCGTCGAGGAA 5622 5623		White leaves	GGATTCGACGAGGAGCTCACCCTCGCCGGCGAGGACGGCGACTG	5621
CACGATACAGAATATCGAGTATAAAGATGACAGTATCCGTGAGGAA CAG-TAG CACGATACAGAATATCGAGTATAAAGATGACAGTATCCGTGAGGAA TACGTTGAAGGACTACTCGAATCTGACGACCCAGTCGCCGTCCTC GCCGGCGAGGGTGAGCTCCTCGTCGAATCC GATTCGAGTAGTCCTTC 5623		Immutans	GGTCGTCAGATTCGAG <u>T</u> AGTCCTTCAACGTATTCCTCACGGATACT	
CAG-TAG TACGTTGAAGGACTACTCGAATCTGACGACCCAGTCGCCGTCCTC GCCGGCGAGGGTGAGCTCCTCGTCGAATCC GATTCGAGTAGTCCTTC 5623		Triticum aestivum	GTCATCTTTATACTCGATATTCTGTATCGTG	
GCCGGCGAGGGTGAGCTCCTCGTCGAATCC GATTCGAGTAGTCCTTC 5623				5622
GATTCGAG <u>T</u> AGTCCTTC 5623	25	CAG-TAG		
OAT (OCHO_INCTOOTTO				5000
GAAGGACTACTCGAATC 5624	,		GATTCGAG <u>T</u> AGTCCTTC	
			GAAGGACT <u>A</u> CTCGAATC	5624

White leaves	CGAGCAGTCCTTCAACGTATTCCTCACGGATACTGTCATCTTTATA	5625
Immutans	CTCGATATTCTGTAGCGTGACCGCGACTACGCAAGGTTCTTCGTG	
Triticum aestivum	CTCGAGACCATCGCCAGGGTGCCCTATTTC	
Tyr46Term	GAAATAGGGCACCCTGGCGATGGTCTCGAGCACGAAGAACCTTG	5626
TAT-TAG	CGTAGTCGCGGTCACGCTACAGAATATCGAGTATAAAGATGACAG	
	TATCCGTGAGGAATACGTTGAAGGACTGCTCG	
	ATTCTGTA <u>G</u> CGTGACCG	5627
	CGGTCACG <u>C</u> TACAGAAT	5628

- 121 -

Example 9

Altering amino acid content of plants

Another aim of biotechnology is to generate plants, especially crop plants, with added value traits. An example of such a trait is improved nutritional quality in food crops. For example, lysine, tryptophan and threonine, which are essential amino acids in the diet of humans and many animals, are limiting nutrients in most cereal crops. Consequently, grain-based diets, such as those based on corn, barley, wheat, rice, maize, millet, sorghum, and the like, must be supplemented with more expensive synthetic amino acids or amino-acid-containing oilseed protein meals. Increasing the lysine content of these grains or of any of the feed component crops would result in significant added value.

10

5

Naturally occurring mutants of plants that have different levels of particular essential amino acids have been identified. However, these mutants are generally not the result of increased free amino acid, but are instead the result of shifts in the overall protein profile of the grain. For example, in maize, reduced levels of lysine-deficient endosperm proteins (prolamines) are complemented by elevated levels of more lysine-rich proteins (albumins, globulins and glutelins). While nutritionally superior, these mutants are associated with reduced yields and poor grain quality, limiting their agronomic usefulness.

15

An alternative approach is to generate plants with mutations that render key amino acid biosynthetic enzymes insensitive to feedback inhibition. Many such mutations are known and mutation results in increased free amino acid. The increased production can optionally be coupled to increased expression of an abundant storage protein comprising the chosen amino acid. Alternatively, a normally abundant protein can be engineered to contain more of the target amino acid.

20

The attached table discloses exemplary oligonucleotide base sequences which can be used to generate site-specific mutations that remove feedback inhibition in plant amino acid biosynthetic enzymes.

Table 19
Genome-Altering Oligos Conferring Amino Acid Overproduction

5	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
	Met Overproduction CGS Arabidopsis thaliana	TATCCTCCAGGATCTTAAGATTTCCTCCTAATTTCGTCCGTC	5629
10	Arg77His CGT-CAT	GGGTTGTTGGACCACTTAGCCGCCACGATCTGTGCAACACCGAT GTTGCTACAGTTTCTA <u>T</u> GGGCTTTAATGCTCAGCTGACGGACGAA ATTAGGAGGAAATCTTAAGATCCTGGAGGATA	5630
		TAAAGCCCATAGAAACT	5631 5632
		AGTTTCTA <u>T</u> GGGCTTTA	
	Met Overproduction CGS Arabidopsis thaliana	TCTTAAGATTTCCTCCTAATTTCGTCCGTCAGCTGAGCATTAAAGC CCGTAGAAACTGTAACAACATCGGTGTTGCACAGATCGTGGCGG CTAAGTGGTCCAACAACCCATCCTCCGCGTT	5633
15	Ser81Asn AGC-AAC	AACGCGGAGGATGGGTTGTTGGACCACTTAGCCGCCACGATCTG TGCAACACCGATGTTGTTACAGTTTCTACGGGCTTTAATGCTCAGC TGACGGACGAAATTAGGAGGAAATCTTAAGA	5634
		AAACTGTA <u>A</u> CAACATCG	5635
		CGATGTTG <u>T</u> TACAGTTT	5636
	Met Overproduction CGS Arabidopsis thaliana	TTTCCTCCTAATTTCGTCCGTCAGCTGAGCATTAAAGCCCGTAGAA ACTGTAGCAACATCAGTGTTGCACAGATCGTGGCGGCTAAGTGGT CCAACAACCCATCCTCCGCGTTACCTTCGG	5637
20	Gly84Ser GGT-AGT	CCGAAGGTAACGCGGAGGATGGGTTGTTGGACCACTTAGCCGCC ACGATCTGTGCAACACTGATGTTGCTACAGTTTCTACGGGCTTTAA TGCTCAGCTGACGGACGAAATTAGGAGGAAA	5638
		GCAACATC <u>A</u> GTGTTGCA	5639
		TGCAACAC <u>T</u> GATGTTGC	5640
	Met Overproduction CGS Arabidopsis thaliana	TTCCTCCTAATTTCGTCCGTCAGCTGAGCATTAAAGCCCGTAGAAA CTGTAGCAACATCGATGTTGCACAGATCGTGGCGGCTAAGTGGTC CAACAACCCATCCTCCGCGTTACCTTCGGC	5641
25	Gly84Asp GGT-GAT	GCCGAAGGTAACGCGGAGGATGGGTTGTTGGACCACTTAGCCGC CACGATCTGTGCAACA <u>T</u> CGATGTTGCTACAGTTTCTACGGGCTTTA ATGCTCAGCTGACGGACGAAATTAGGAGGAA	5642
		CAACATCGATGTTGCAC	5643
		GTGCAACA <u>T</u> CGATGTTG	5644

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ IC NO:
Met Overproduction CGS Fragraria vesca	TATCGTCACTCATCCTCCGCTTCCCTCCCAACTTCGTCCGCCAGC TCAGCACCAAGGCCCACCGCAACTGCAGCAACATCGGCGTCGCG CAGATCGTCGCGGCTTCGTGGTCCAACAAGA	5645
Arg73His CGC-CAC	TCTTTGTTGGACCACGAAGCCGCGACGACGACGCCGAT GTTGCTGCAGTTGCGG <u>T</u> GGGCCTTGGTGCTGAGCTGGCGGACGA AGTTGGGAGGGAAGCGGAGGATGAGTGACGATA	5646
	CAAGGCCCACCGCAACT	5647
	AGTTGCGGTGGGCCTTG	5648
Met Overproduction CGS Fragraria vesca	TCCTCCGCTTCCCCAACTTCGTCCGCCAGCTCAGCACCAAG GCCCGCCGCAACTGCAACAACATCGGCGTCGCGCAGATCGTCGC GGCTTCGTGGTCCAACAAAGACTCCGACCTTTC	5649
Ser77Asn AGC-AAC	GAAAGGTCGGAGTCTTTGTTGGACCACGAAGCCGCGACGATCTG CGCGACGCCGATGTTGTTGCAGTTGCGGCGGGCCTTGGTGCTGA GCTGGCGGACGAAGTTGGGAGGGAAGCGGAGGA	5650
	CAACTGCA <u>A</u> CAACATCG	5651
	CGATGTTG <u>T</u> TGCAGTTG	5652
Met Overproduction CGS	TTCCCTCCCAACTTCGTCCGCCAGCTCAGCACCAAGGCCCGCCG CAACTGCAGCAACATCAGCGTCGCGCAGATCGTCGCGGCTTCGT GGTCCAACAAGACTCCGACCTTTCGGCGGTGC	5653
Fragraria vesca Gly80Ser GGC-AGC	GCACCGCGAAAGGTCGGAGTCTTTGTTGGACCACGAAGCCGCG ACGATCTGCGCGACGC <u>T</u> GATGTTGCTGCAGTTGCGGCGGGCCTT GGTGCTGAGCTGGCGGACGAAGTTGGGAGGGAA	5654
	GCAACATCAGCGTCGCG	565
	CGCGACGCTGATGTTGC	5656
Met Overproduction CGS Fragraria vesca	TCCTCCAACTTCGTCCGCCAGCTCAGCACCAAGGCCCGCCGC AACTGCAGCAACATCGACGTCGCGCAGATCGTCGCGGCTTCGTG GTCCAACAAGACTCCGACCTTTCGGCGGTGCC	5657
Gly80Asp GGC-GAC	GGCACCGCGAAAGGTCGGAGTCTTTGTTGGACCACGAAGCCGC GACGATCTGCGCGACG <u>T</u> CGATGTTGCTGCAGTTGCGGCGGCCCT TGGTGCTGAGCTGGCGGACGAAGTTGGGAGGGA	565
	CAACATCGACGTCGCGC	565
	GCGCGACG <u>T</u> CGATGTTG	566
Met Overproduction CGS Glycine max	TCTCCTCCTCATCCTCCGCTTCCCCAACTTCCAGCGCCAGC TAAGCACCAAGGCGAGCCGCAACTGCAGCAACATCGGCGTCGCG CAAATCGTCGCCGCTTCGTGGTCGAACAACAG	566
Arg68His CGC-CAC	CTGTTGTTCGACCACGAAGCGGCGACGATTTGCGCGACGCCGAT GTTGCTGCAGTTGCGGC <u>T</u> CGCCTTGGTGCTTAGCTGGCGCTGGA AGTTGGGAAGCGGAGGATGAGGGAGAGA	566
	CCAAGGCGAGCCGCAAC	566

10

15

20

25

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ II NO:
	GTTGCGGC <u>T</u> CGCCTTGG	5664
Met Overproduction CGS Glycine max	TCCTCCGCTTCCCTCCCAACTTCCAGCGCCAGCTAAGCACCAAG GCGCGCCGCAACTGCAACATCGGCGTCGCGCAAATCGTCGC CGCTTCGTGGTCGAACAACAGCGACAACTCTCC	5665
Ser72Asn AGC-AAC	GGAGAGTTGTCGCTGTTGTTCGACCACGAAGCGGCGACGATTTG CGCGACGCCGATGTTGTTGCAGTTGCGGCGCGCGCCTTGGTGCTTA GCTGGCGCTGGAAGTTGGGAGGGAAGCGGAGGA	5666
	CAACTGCA <u>A</u> CAACATCG	5667
	CGATGTTG <u>T</u> TGCAGTTG	5668
Met Overproduction CGS Glycine max	TTCCCTCCCAACTTCCAGCGCCAGCTAAGCACCAAGGCGCGCCG CAACTGCAGCAACATCAGCGTCGCGCAAATCGTCGCCGCTTCGT GGTCGAACAACAGCGACAACTCTCCGGCCGCCG	5669
Gly75Ser GGC-AGC	CGGCGGCCGGAGAGTTGTCGCTGTTGTTCGACCACGAAGCGGC GACGATTTGCGCGACGC <u>T</u> GATGTTGCTGCAGTTGCGGCGCGCCT TGGTGCTTAGCTGGCGCTGGAAGTTGGGAGGGAA	5670
	GCAACATC <u>A</u> GCGTCGCG	5671
	CGCGACGC <u>T</u> GATGTTGC	5672
Met Overproduction CGS Glycine max	TCCCTCCCAACTTCCAGCGCCAGCTAAGCACCAAGGCGCGCCGC AACTGCAGCAACATCGACGTCGCGCAAATCGTCGCCGCTTCGTG GTCGAACAACAGCGACAACTCTCCGGCCGCCGG	5673
Gly75Asp GGC-GAC	CCGGCGGCCGAGAGTTGTCGCTGTTGTTCGACCACGAAGCGGC GACGATTTGCGCGACG <u>T</u> CGATGTTGCTGCAGTTGCGGCGCGCCT TGGTGCTTAGCTGGCGCTGGAAGTTGGGAGGGA	5674
	CAACATCG <u>A</u> CGTCGCGC	5675
	GCGCGACG <u>T</u> CGATGTTG	5676
Met Overproduction CGS Solanum tuberosum	TGTCTCTCTGATTTTCAGGTTTCCTCCTAATTTCGTGAGGCAGCT ,AAGCATTAAGGCT <u>CAC</u> AGGAATTGCAGCAATATTGGCGTGGCTCA AGTTGTGGCGGCTTCCTGGTCTAACAACCA	5677
Arg70His AGG-CAC	TGGTTGTTAGACCAGGAAGCCGCCACACTTGAGCCACGCCAATA TTGCTGCAATTCCT <u>GTG</u> AGCCTTAATGCTTAGCTGCCTCACGAAAT TAGGAGGAAACCTGAAAATCAGAGAAGACA	5678
	TAAGGCT <u>CAC</u> AGGAATT	5679
	AATTCCT GTG AGCCTTA	5680
Met Overproduction CGS Solanum tuberosum	TTTTCAGGTTTCCTCCTAATTTCGTGAGGCAGCTAAGCATTAAGGC TAGGAGGAATTGCAACAATATTGGCGTGGCTCAAGTTGTGGCGG CTTCCTGGTCTAACAACCAAGCCGGTCCTGA	568′
Ser74Asn AGC-AAC	TCAGGACCGGCTTGGTTGTTAGACCAGGAAGCCGCCACAACTTG AGCCACGCCAATATTGTTGCAATTCCTCCTAGCCTTAATGCTTAGC TGCCTCACGAAATTAGGAGGAAACCTGAAAA	5682

BNSDOCID: <WO___0192512A2_I_>

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	GAATTGCAACAATATTG	5683
	CAATATTGTTGCAATTC	5684
Met Overproduction CGS	TTTCCTCCTAATTTCGTGAGGCAGCTAAGCATTAAGGCTAGGAGG AATTGCAGCAATATTAGCGTGGCTCAAGTTGTGGCGGCTTCCTGG TCTAACAACCAAGCCGGTCCTGAATTCACTC	5685
Solanum tuberosum Gly77Ser GGC-AGC	GAGTGAATTCAGGACCGGCTTGGTTGTTAGACCAGGAAGCCGCC ACAACTTGAGCCACGCTAATATTGCTGCAATTCCTCCTAGCCTTAA TGCTTAGCTGCCTCACGAAATTAGGAGGAAA	5686
	GCAATATTAGCGTGGCT	5687
	AGCCACGCTAATATTGC	5688
Met Overproduction CGS Solanum tuberosum	TTCCTCCTAATTTCGTGAGGCAGCTAAGCATTAAGGCTAGGAGGA ATTGCAGCAATATTGACGTGGCTCAAGTTGTGGCGGCTTCCTGGT CTAACAACCAAGCCGGTCCTGAATTCACTCC	5689
Gly77Asp GGC-GAC	GGAGTGAATTCAGGACCGGCTTGGTTGTTAGACCAGGAAGCCGC CACAACTTGAGCCACGTCAATATTGCTGCAATTCCTCCTAGCCTTA ATGCTTAGCTGCCTCACGAAATTAGGAGGAA	5690
	CAATATTG <u>A</u> CGTGGCTC	5691
	GAGCCACG <u>T</u> CAATATTG	5692
Met Overproduction CGS	CTTCCTCTCTTATCCTTCGCTTTCCTCCCAACTTTGTCCGTCAGCT CAGCACCAAGGCTCGCCACAACTGCAGCAACATTGGTGTCGCAC AGGTCGTCGCTGCCTCCTGGTCCAACAACTC	5693
Mesembryanthemum crystallinum Arg73His CGC-CAC	GAGTTGTTGGACCAGGAGGCAGCGACGACCTGTGCGACACCAAT GTTGCTGCAGTTGTGGCGAGCCTTGGTGCTGAGCTGA	5694
CGC-CAC	GGCTCGCCACAACTGCA	569
	TGCAGTTG <u>T</u> GGCGAGCC	569
Met Overproduction CGS Mesembryanthemum	TCCTTCGCTTTCCTCCCAACTTTGTCCGTCAGCTCAGCACCAAGG CTCGCCGCAACTGCAACACATTGGTGTCGCACAGGTCGTCGCT GCCTCCTGGTCCAACAACTCCGATGCCGGCGC	569
crystallinum Ser77Asn AGC-AAC	GCGCCGCATCGGAGTTGTTGGACCAGGAGGCAGCGACCT GTGCGACACCAATGTTG <u>T</u> TGCAGTTGCGGCGAGCCTTGGTGCTG AGCTGACGGACAAAGTTGGGAGGAAAGCGAAGGA	569
AGO-AAC	CAACTGCAACAACATTG	569
	CAATGTTGTTGCAGTTG	570

10

15

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	Met Overproduction CGS Mesembryanthemum	TTTCCTCCCAACTTTGTCCGTCAGCTCAGCACCAAGGCTCGCCGC AACTGCAGCAACATTAGTGTCGCACAGGTCGTCGCTGCCTCCTG GTCCAACAACTCCGATGCCGGCGCCACCTCTT	5701
5	crystallinum Gly80Ser GGT-AGT	AAGAGGTGGCGCCGGCATCGGAGTTGTTGGACCAGGAGGCAGC GACGACCTGTGCGACACTAATGTTGCTGCAGTTGCGGCGAGCCT TGGTGCTGAGCTGA	5702
		GCAACATT <u>A</u> GTGTCGCA	5703
	Mot Overseduction	TGCGACAC <u>T</u> AATGTTGC	5704
40	Met Overproduction CGS Mesembryanthemum	TTCCTCCCAACTITGTCCGTCAGCTCAGCACCAAGGCTCGCCGCA ACTGCAGCAACATTGATGTCGCACAGGTCGTCGCTGCCTCCTGG TCCAACAACTCCGATGCCGGCGCCACCTCTTG	5705
10	crystallinum Gly80Asp GGT-GAT	CAAGAGGTGGCGCCGGCATCGGAGTTGTTGGACCAGGAGGCAG CGACGACCTGTGCGACA <u>T</u> CAATGTTGCTGCAGTTGCGGCGAGCC TTGGTGCTGAGCTGA	5706
		CAACATTGATGTCGCAC GTGCGACATCAATGTTG	5707
	Met Overproduction		5708
15	CGS Zea mays	CCTCTGCTACCATCCTCCGCTTTCCGCCAAACTTTGTCCGCCAGC TTAGCACCAAGGCACACCGCCAACTGCAGCAACATCGGCGTCGCG CAGATCGTCGCCGCCGCGTGGTCCGACTGCCC	5709
	Arg41His CGC-CAC	GGGCAGTCGGACCACGCGGCGGCGACGATCTGCGCGACGCCGA TGTTGCTGCAGTTGCGGTGTGCTTGGTGCTAAGCTGGCGACA AAGTTTGGCGGAAAGCGGAGGATGGTAGCAGAGG	5710
		CAAGGCAC <u>A</u> CCGCAACT	5711
		AGTTGCGG <u>T</u> GTGCCTTG	5712
20	Met Overproduction CGS Zea mays	TCCTCCGCTTTCCGCCAAACTTTGTCCGCCAGCTTAGCACCAAGG CACGCCGCAACTGCAACATCGGCGTCGCGCAGATCGTCGCC GCCGCGTGGTCCGACTGCCCCGCCGCTCGCCC	5713
	Ser45Asn AGC-AAC	GGGCGAGCGGGGGGCAGTCGGACCACGCGGCGCGACGATC TGCGCGACGCCGATGTTGTTGCAGTTGCGGCGTGCCTTGGTGCT AAGCTGGCGGACAAAGTTTGGCGGAAAGCGGAGGA	5714
		CAACTGCA <u>A</u> CAACATCG	5715
		CGATGTTGTTGCAGTTG	5716
25	Met Overproduction CGS Zea mays	TTTCCGCCAAACTTTGTCCGCCAGCTTAGCACCAAGGCACGCCGCAACTGCAGCAACATCAGCGTCGCGCAGATCGTCGCCGCGCGCG	5717
	Gly48Ser GGC-AGC	CTAAGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	5718
		GCAACATCAGCGTCGCG	5719

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQIC NO:
	CGCGACGC <u>T</u> GATGTTGC	5720
Met Overproduction CGS Zea mays	TTCCGCCAAACTTTGTCCGCCAGCTTAGCACCAAGGCACGCCGC AACTGCAGCAACATCGACGTCGCGCAGATCGTCGCCGCCGCGTG GTCCGACTGCCCCGCCGCTCGCCCCCACTTAGG	5721
Gly48Asp GGC-GAC	CCTAAGTGGGGGCGAGCGGCGGGGGGGCAGTCGGACCACGCGGCGGCGGCGACGACGATCTGCGCGACGTCGATGTTGCTGCAGTTGCGGCGTGCCTTGGTGCTAAGCTGGCGGACAAAGTTTGGCGGAA	5722
	CAACATCGACGTCGCGC	5723
	GCGCGACGTCGATGTTG	5724
Met Overproduction TS Arabidopsis thaliana	GTATGAATGATCTGTGGGTGAAACACTGTGGGATTAGTCATACAG GAAGTTTCAAGGATCGTGGAATGACTGTTTTGGTTAGTCAAGTTAA TCGTCTGAGAAAGATGAAACGACCTGTGGT	5725
Leu205Arg CTT-CGT	ACCACAGGTCGTTTCATCTTTCTCAGACGATTAACTTGACTAACCA AAACAGTCATTCCACGATCCTTGAAACTTCCTGTATGACTAATCCC ACAGTGTTTCACCCACAGATCATTCATAC	5726
	CAAGGATCGTGGAATGA	5727
	TCATTCCACGATCCTTG	5728
Met Overproduction TS Solanum tuberosum	GCATGACTGATTTGTGGGTCAAACACTGTGGGATTAGCCATACTG GTAGTTTTAAGGATCGTGGGATGACTGTTTTGGTGAGTCAAGTTAA TCGCTTGCGGAAAATGCATAAACCGGTTGT	5729
Leu198Arg CTT-CGT	ACAACCGGTTTATGCATTTTCCGCAAGCGATTAACTTGACTCACCA AAACAGTCATCCCACGATCCTTAAAACTACCAGTATGGCTAATCCC ACAGTGTTTGACCCACAAATCAGTCATGC	5730
	TAAGGATC G TGGGATGA	573
	TCATCCCACGATCCTTA	573
Lys Overproduction DHPS Zea mays	TCATTGGGCACACAGTGAACTGCTTTGGCTCTAGAATCAAAGTGA TAGGCAACACAGGAAACAACTCAACCAGAGAAGCCGTCCACGCA ACAGAACAGGGATTTGCTGTTGGCATGCATGC	5733
Ser157Asn AGC-AAC	GCATGCATGCCAACAGCAAATCCCTGTTCTGTTGCGTGGACGGCT TCTCTGGTTGAGTTGTTTCCTGTGTTGCCTATCACTTTGATTCTAG AGCCAAAGCAGTTCACTGTGTGCCCAATGA	573
	CACAGGAA <u>A</u> CAACTCAA	573
	TTGAGTTG <u>T</u> TTCCTGTG	573
Lys Overproduction DHPS Zea mays	GCTCTAGAATCAAAGTGATAGGCAACACAGGAAGCAACTCAACCA GAGAAGCCGTCCACGAAACAGAACAG	573
Ala166Val GCA-GAA	CCGTAGTAAGGATTGATGTGGAGAGCCGCATGCATGCCAACAGC AAATCCCTGTTCTGTT	573

10

15

20

25

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	CGTCCACG <u>A</u> AACAGAAC	5739
	GTTCTGTT <u>T</u> CGTGGACG	5740
Lys Overproduction DHPS Zea mays	GGCTCTAGAATCAAAGTGATAGGCAACACAGGAAGCAACTCAACC AGAGAAGCCGTCCAC <u>A</u> CAACAGAACAGGGATTTGCTGTTGGCAT GCATGCGGCTCTCCACATCAATCCTTACTACG	5741
Ala166Thr GCA-ACA	CGTAGTAAGGATTGATGTGGAGAGCCGCATGCATGCCAACAGCAA ATCCCTGTTCTGTT	5742
	CCGTCCAC <u>A</u> CAACAGAA	5743
	TTCTGTTG <u>T</u> GTGGACGG	5744
Lys Overproduction DHPS Oryza sativa	TTATTGGGCATACAGTTAACTGCTTTGGCACTAAAATTAAAGTGGT CGGCAACACAGGAAATAACTCAACAAGGGAGGCTATTCACGCAAC TGAGCAGGGATTCGCTGTAGGTATGCACGC	5745
Ser124Asn AGT-AAT	GCGTGCATACCTACAGCGAATCCCTGCTCAGTTGCGTGAATAGCC TCCCTTGTTGAGTTA <u>T</u> TTCCTGTGTTGCCGACCACTTTAATTTTAGT GCCAAAGCAGTTAACTGTATGCCCAATAA	5746
	CACAGGAA <u>A</u> TAACTCAA	5747
	TTGAGTTA <u>T</u> TTCCTGTG	5748
Lys Overproduction DHPS Oryza sativa	GCACTAAAATTAAAGTGGTCGGCAACACAGGAAGTAACTCAACAA GGGAGGCTATTCACG <u>T</u> AACTGAGCAGGGATTCGCTGTAGGTATG CACGCGGCTCTCCACATCAATCCTTACTACGG	5749
Ala133Val GCA-GTA	CCGTAGTAAGGATTGATGTGGAGAGCCGCGTGCATACCTACAGC GAATCCCTGCTCAGTTACTTAATTTTAGTGC CCTGTGTTGCCGACCACTTTAATTTTAGTGC	5750
	TATTCACG <u>T</u> AACTGAGC	5751
	GCTCAGTT <u>A</u> CGTGAATA	5752
Lys Overproduction DHPS Oryza sativa	GGCACTAAAATTAAAGTGGTCGGCAACACAGGAAGTAACTCAACA AGGGAGGCTATTCAC <u>A</u> CAACTGAGCAGGGATTCGCTGTAGGTAT GCACGCGGCTCTCCACATCAATCCTTACTACG	5753
Ala133Thr GCA-ACA	CGTAGTAAGGATTGATGTGGAGAGCCGCGTGCATACCTACAGCG AATCCCTGCTCAGTTG <u>T</u> GTGAATAGCCTCCCTTGTTGAGTTACTTC CTGTGTTGCCGACCACTTTAATTTTAGTGCC	5754
	CTATTCAC <u>A</u> CAACTGAG	5755
	CTCAGTTG <u>T</u> GTGAATAG	5756
Lys Overproduction DHPS 1 Triticum aestivum Ser165Asn	TCATCGGGCATACTGTTAACTGCTTTGGAGCCAACATTAAAGTGAT AGGCAACACGGGAA <u>A</u> TAACTCAACCAGAGAAGCTGTTCACGCGA CAGAGCAGGGATTTGCTGTTGGCATGCATGC	5757

Ser165Asn AGT-AAT

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
	GCATGCATGCCAACAGCAAATCCCTGCTCTGTCGCGTGAACAGCT TCTCTGGTTGAGTTA <u>T</u> TTCCCGTGTTGCCTATCACTTTAATGTTGG CTCCAAAGCAGTTAACAGTATGCCCGATGA	5758
	CACGGGAA <u>A</u> TAACTCAA	5759
	TTGAGTTA <u>T</u> TTCCCGTG	5760
Lys Overproduction DHPS 1 Triticum aestivum	GAGCCAACATTAAAGTGATAGGCAACACGGGAAGTAACTCAACCA GAGAAGCTGTTCACG <u>T</u> GACAGAGCAGGGATTTGCTGTTGGCATG CATGCAGCTCTTCATGTCAATCCTTACTACGG	5761
Ala174Val GCG-GTG	CCGTAGTAAGGATTGACATGAAGAGCTGCATGCCAACAGCA AATCCCTGCTCTGTCACGTGAACAGCTTCTCTGGTTGAGTTACTT CCCGTGTTGCCTATCACTTTAATGTTGGCTC	5762
	TGTTCACGTGACAGAGC	5763
	GCTCTGTCACGTGAACA	5764
Lys Overproduction DHPS 1 Triticum aestivum	GGAGCCAACATTAAAGTGATAGGCAACACGGGAAGTAACTCAACC AGAGAAGCTGTTCACACGACAGAGCAGGGATTTGCTGTTGGCAT GCATGCAGCTCTTCATGTCAATCCTTACTACG	5765
Ala174Thr GCG-ACG	CGTAGTAAGGATTGACATGAAGAGCTGCATGCCAACAGCAA ATCCCTGCTCTGTCGTGTGAACAGCTTCTCTGGTTGAGTTACTTC CCGTGTTGCCTATCACTTTAATGTTGGCTCC	5766
	CTGTTCACACGACAGAG	5767
	CTCTGTCGTGTGAACAG	5768
Lys Overproduction DHPS 2 Triticum aestivum	TCATCGGGCACACTGTTAACTGCTTTGGAACTAACATTAAAGTGAT AGGCAACACGGGAAATAACTCAACTAGAGAAGCGATTCACGCTTC AGAGCAGGGATTTGCTGTTGGCATGCATGC	5769
Ser154Asn AGT-AAT	GCATGCATGCCAACAGCAAATCCCTGCTCTGAAGCGTGAATCGCT TCTCTAGTTGAGTTA <u>T</u> TTCCCGTGTTGCCTATCACTTTAATGTTAGT TCCAAAGCAGTTAACAGTGTGCCCGATGA	5770
	CACGGGAAATAACTCAA	5771
	TTGAGTTATTTCCCGTG	5772
Lys Overproduction DHPS 2 Triticum aestivum	GAACTAACATTAAAGTGATAGGCAACACGGGAAGTAACTCAACTA GAGAAGCGATTCACGTTTCAGAGCAGGGATTTGCTGTTGGCATGC ATGCAGCTCTCCATGTCAATCCTTACTATGG	5773
Ala163Val GCT-GTT	CCATAGTAAGGATTGACATGGAGAGCTGCATGCCAACAGCA AATCCCTGCTCTGAAACGTGAATCGCTTCTCTAGTTGAGTTACTTC CCGTGTTGCCTATCACTTTAATGTTAGTTC	5774
	GATTCACGTTCAGAGC	5775
}	GCTCTGAAACGTGAATC	5776

10

15

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
	Lys Overproduction DHPS 2 Triticum aestivum Ala163Thr	GGAACTAACATTAAAGTGATAGGCAACACGGGAAGTAACTCAACT AGAGAAGCGATTCACACTTCAGAGCAGGGATTTGCTGTTGGCATG CATGCAGCTCTCCATGTCAATCCTTACTATG	5777
5	GCT-ACT	CATAGTAAGGATTGACATGGAGAGCTGCATGCCAACAGCAA ATCCCTGCTCTGAAGTGTGAATCGCTTCTCTAGTTGAGTTACTTCC CGTGTTGCCTATCACACACACACACACACACACACACACA	5778
		CGATTCAC <u>A</u> CTTCAGAG CTCTGAAGTGTGAATCG	5779
	Lys Overproduction DHPS Coix lacryma-jobi	CTCATTGGGCATACTGTGAACTGCTTTGGCTCTAGAATTAAAGTGA TAGGCAACACAGGAAATAACTCAACCAGAGAAGCTGTTCACGCAA CAGAGCAGGGATTTGCTGTTGGCATGCATG	5780 5781
10	Ser154Asn AGT-AAT	CATGCATGCCAACAGCAAATCCCTGCTCTGTTGCGTGAACAGCTT CTCTGGTTGAGTTA <u>T</u> TTCCTGTGTTGCCTATCACTTTAATTCTAGA GCCAAAGCAGTTCACAGTATGCCCAATGAG	5782
		CACAGGAAATAACTCAA	5783
	Lys Overproduction	TTGAGTTATTTCCTGTG	5784
	DHPS Coix lacryma-jobi	GCTCTAGAATTAAAGTGATAGGCAACACAGGAAGTAACTCAACCA GAGAAGCTGTTCACG <u>T</u> AACAGAGCAGGGATTTGCTGTTGGCATGC ATGCAGCTCTCCACATCAATCCTTACTATGG	5785
15	Ala163Val GCA-GTA	CCATAGTAAGGATTGATGTGGAGAGCTGCATGCATGCCAACAGCA AATCCCTGCTCTGTTACTTCACTTC	5786
•		TGTTCACG <u>T</u> AACAGAGC	5787
	Tue Ouere education	GCTCTGTT <u>A</u> CGTGAACA	5788
	Lys Overproduction DHPS Coix lacryma-jobi	GGCTCTAGAATTAAAGTGATAGGCAACACAGGAAGTAACTCAACC AGAGAAGCTGTTCACACAACAGAGCAGGGATTTGCTGTTGGCATG CATGCAGCTCTCCACATCAATCCTTACTATG	5789
20	Ala163Thr GCA-ACA	CATAGTAAGGATTGATGTGGAGAGCTGCATGCCAACAGCAA ATCCCTGCTCTGTTGTGTGAACAGCTTCTCTGGTTGAGTTACTTCC TGTGTTGCCTATCACTTTAATTCTAGAGCC	5790
		CTGTTCAC <u>A</u> CAACAGAG	5791
		CTCTGTTG <u>T</u> GTGAACAG	5792
	Lys Overproduction DHPS Nicotiana tabacum	TCATTGGTCACACAGTCAATTGTTTTGGAGGGTCCATCAAAGTCAT CGGGAACACTGGAAACACTCCACAAGGGAAGCAATCCATGCAA CTGAACAGGGATTTGCTGTAGGTATGCATGC	5793
25	Ser136Asn AGC-AAC	GCATGCATACCTACAGCAAATCCCTGTTCAGTTGCATGGATTGCTT CCCTTGTGGAGTTGTTCCAGTGTTCCCGATGACTTTGATGGACC CTCCAAAACAATTGACTGTGTGACCAATGA	5794
	-	CACTGGAA <u>A</u> CAACTCCA	5795

BNSDOCID: <WO__0192512A2_I_>

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ IE NO:
	TGGAGTTG <u>T</u> TTCCAGTG	5796
Lys Overproduction DHPS <i>Nicotiana tabacum</i> Ala145Val GCA-GTA	GAGGGTCCATCAAAGTCATCGGGAACACTGGAAGCAACTCCACAA GGGAAGCAATCCATG <u>T</u> AACTGAACAGGGATTTGCTGTAGGTATGC ATGCAGCTCTTCACATTAATCCCTACTATGG	5797
	CCATAGTAGGGATTAATGTGAAGAGCTGCATGCATACCTACAGCA AATCCCTGTTCAGTTACATGGATTGCTTCCCTTGTGGAGTTGCTTC CAGTGTTCCCGATGACTTTGATGGACCCTC	5798
	AATCCATG <u>T</u> AACTGAAC	5799
	GTTCAGTT <u>A</u> CATGGATT	5800
Lys Overproduction DHPS Nicotiana tabacum	GGAGGGTCCATCAAAGTCATCGGGAACACTGGAAGCAACTCCAC AAGGGAAGCAATCCATACAACTGAACAGGGATTTGCTGTAGGTAT GCATGCAGCTCTTCACATTAATCCCTACTATG	5801
Ala145Thr GCA-ACA	CATAGTAGGGATTAATGTGAAGAGCTGCATGCATACCTACAGCAA ATCCCTGTTCAGTTGTATGGATTGCTTCCCTTGTGGAGTTGCTTCC AGTGTTCCCGATGACTTTGATGGACCCTCC	5802
•	CAATCCATACAACTGAA	5803
	TTCAGTTGTATGGATTG	5804
Lys Overproduction DHPS	TTATAGGCCATACCGTTAACTGTTTTGGCGGAAGCATCAAAGTCAT TGGAAACACTGGAAACAATTCGACTAGAGAAGCAATCCACGCGAC TGAACAAGGATTCGCGGTTGGAATGCATGC	5805
Arabidopsis thaliana Ser142Asn AGC-AAC	GCATGCATTCCAACCGCGAATCCTTGTTCAGTCGCGTGGATTGCT TCTCTAGTCGAATTGTTTCCAGTGTTTCCAATGACTTTGATGCTTC CGCCAAAACAGTTAACGGTATGGCCTATAA	5806
	CACTGGAA <u>A</u> CAATTCGA	580
	TCGAATTG <u>T</u> TTCCAGTG	580
Lys Overproduction DHPS Arabidopsis thaliana	GCGGAAGCATCAAAGTCATTGGAAACACTGGAAGCAATTCGACTA GAGAAGCAATCCACGTGACTGAACAAGGATTCGCGGTTGGAATGC ATGCTGCTCTTCATATAAACCCTTACTATGG	580
Ala151Val GCG-GTG	CCATAGTAAGGGTTTATATGAAGAGCAGCATGCATTCCAACCGCG AATCCTTGTTCAGTCACGTGGATTGCTTCTCTAGTCGAATTGCTTC CAGTGTTTCCAATGACTTTGATGCTTCCGC	581
	AATCCACG <u>T</u> GACTGAAC	581
	GTTCAGTC <u>A</u> CGTGGATT	581
Lys Overproduction DHPS Arabidopsis thaliana	GGCGGAAGCATCAAAGTCATTGGAAACACTGGAAGCAATTCGACT AGAGAAGCAATCCACACCACCAACAAGGATTCGCGGTTGGAATG CATGCTGCTCTTCATATAAACCCTTACTATG	581
Ala151Thr GCG-ACG	CATAGTAAGGGTTTATATGAAGAGCAGCATGCATTCCAACCGCGA ATCCTTGTTCAGTCGTGTGGATTGCTTCTCTAGTCGAATTGCTTCC AGTGTTTCCAATGACTTTGATGCTTCCGCC	581

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
	CAATCCAC <u>A</u> CGACTGAA	5815
	TTCAGTCGTGTGGATTG	5816
Lys Overproduction DHPS <i>Glycine max</i>	TTATTGCTCATACAGTCAACTGTTTTGGTGGGAAAATTAAGGTTATT GGAAATACTGGAAACAACTCCACCAGGGAAGCAATTCATGCCACT GAGCAGGGTTTTGCTGTTGGAATGCATGC	5817
Ser103Asn AGC-AAC	GCATGCATTCCAACAGCAAAACCCTGCTCAGTGGCATGAATTGCT TCCCTGGTGGAGTTGTTTCCAGTATTTCCAATAACCTTAATTTTCC CACCAAAACAGTTGACTGTATGAGCAATAA	5818
	TACTGGAA <u>A</u> CAACTCCA	5819
	TGGAGTTG <u>T</u> TTCCAGTA	5820
Lys Overproduction DHPS Glycine max	GTGGGAAAATTAAGGTTATTGGAAATACTGGAAGCAACTCCACCA GGGAAGCAATTCATG <u>T</u> CACTGAGCAGGGTTTTGCTGTTGGAATGC ATGCTGCCCTTCACATAAACCCTTACTATGG	5821
Ala112Val GCC-GTC	CCATAGTAAGGGTTTATGTGAAGGGCAGCATGCATTCCAACAGCA AAACCCTGCTCAGTGACATGAATTGCTTCCCTGGTGGAGTTGCTT CCAGTATTTCCAATAACCTTAATTTTCCCAC	5822
	AATTCATG <u>T</u> CACTGAGC	5823
	GCTCAGTG <u>A</u> CATGAATT	5824
Lys Overproduction DHPS Glycine max	GGTGGGAAAATTAAGGTTATTGGAAATACTGGAAGCAACTCCACC AGGGAAGCAATTCATACCACTGAGCAGGGTTTTGCTGTTGGAATG CATGCTGCCCTTCACATAAACCCTTACTATG	5825
Ala112Thr GCC-ACC	CATAGTAAGGGTTTATGTGAAGGGCAGCATGCATTCCAACAGCAA AACCCTGCTCAGTGGTATGAATTGCTTCCCTGGTGGAGTTGCTTC CAGTATTTCCAATAACCTTAATTTTCCCACC	5826
	CAATTCAT <u>A</u> CCACTGAG	5827
	CTCAGTGG <u>T</u> ATGAATTG	5828
Trp Overproduction AS Arabidopsis thaliana	CTTGCAGGAGACATATTTCAGATCGTGCTGAGTCAACGTTTTGAG CGGCGAACATTTGCAAACCCCTTTGAAGTTTATAGAGCACTAAGA GTTGTGAATCCAAGTCCGTATATGGGTTATT	5829
Asp341Asn GAC-AAC	AATAACCCATATACGGACTTGGATTCACAACTCTTAGTGCTCTATA AACTTCAAAGGGGTTTGCAAATGTTCGCCGCTCAAAACGTTGACT CAGCACGATCTGAAATATGTCTCCTGCAAG	5830
	CATTTGCA <u>A</u> ACCCCTTT	5831
	AAAGGGGT <u>T</u> TGCAAATG	5832
Trp Overproduction AS Nicotiana tabacum Asp326Asn	GCTGCAGGAGACATATTTCAAATCGTTTTAAGTCAACGCTTTGAGA GAAGAACATTTGCTAACCCATTTGAAGTGTACAGAGCATTAAGAAT TGTGAATCCAAGCCCATATATGACTTACA	5833

Asp326Asn GAC-AAC

25

5

10

15

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
Alteration	TGTAAGTCATATATGGGCTTGGATTCACAATTCTTAATGCTCTGTA CACTTCAAATGGGT <u>T</u> AGCAAATGTTCTTCTCTCAAAGCGTTGACTT AAAACGATTTGAAATATGTCTCCTGCAGC	5834
	CATTIGCTACCCATTI	5835
	AAATGGGT <u>T</u> AGCAAATG	5836
Trp Overproduction AS	CTAGCTGGTGACATTTTTCAAGTAGTCTTAAGCCAGCGTTTTGAGA GGCGTACATTTGCTAACCCCTTTGAGGTGTACCGTGCATTGCGTA TTGTCAATCCTAGTCCTTATATGGCCTATC	5837
Oryza sativa Asp323Asn GAC-AAC	GATAGGCCATATAAGGACTAGGATTGACAATACGCAATGCACGGT ACACCTCAAAGGGGTTAGCAAATGTACGCCTCTCAAAACGCTGGC TTAAGACTACTTGAAAAATGTCACCAGCTAG	5838
	CATTTGCTAACCCCTTT	5839
	AAAGGGGTTAGCAAATG	5840
Trp Overproduction AS	CTTGCTGGTGACATATTCCAGATCGTACTAAGTCAGCGTTTTGAAA GGCGAACGTTCGCAAACCCATTTGAAATCTATAGATCACTGAGGA TTGTTAATCCAAGCCCATATATGACTTATT	5841
Ruta graveolens Asp354Asn GAC-AAC	AATAAGTCATATATGGGCTTGGATTAACAATCCTCAGTGATCTATA GATTTCAAATGGGTTTGCGAACGTTCGCCTTTCAAAACGCTGACTT AGTACGATCTGGAATATGTCACCAGCAAG	5842
	CGTTCGCAAACCCATTT	5843
	AAATGGGTTTGCGAACG	5844
Trp Overproduction AS Catharanthus roseus	CTGGCTGGGGACATATTCCAGCTTGTCCTAAGTCAGCGTTTTGAA CGGCGAACATTTGCAAATCCATTTGAAGTCTACCGAGCATTGAGA ATTGTCAACCCAAGTCCATATATGACTTATT	5845
Asp354Asn GAT-AAT	AATAAGTCATATATGGACTTGGGTTGACAATTCTCAATGCTCGGTA GACTTCAAATGGATTTGCAAATGTTCGCCGTTCAAAACGCTGACTT AGGACAAGCTGGAATATGTCCCCAGCCAG	
	CATTTGCAAATCCATTT	5847
	AAATGGATTTGCAAATG	5848

10

Example 10 Production of modified starch in plants

A principal aim of biotechnology is the improvement of crop plants for food value, agriculture, and to produce a range of plant-derived raw materials. Along with oils, fats and proteins, polysaccharides constitute the main raw materials derived from plants, and apart from cellulose, the storage polymer starch is the most important polysaccharide raw material. Starch is derived from a range of plants, but maize is the most important cultivated plant for the production of starch.

The polysaccharide starch is a polymer made up of glucose molecules. However, starch is not a homogeneous raw material and is, in fact, a highly complex mixture of various types of molecules which differ from each other, for example, in their degree of polymerization and in the degree of branching of the glucose chains. For example, amylose-starch is a basically non-branched polymer made up of α -1,4-glycosidically branched glucose molecules, and amylopectin-starch is a complex mixture of variously branched glucose chains. The branching results from additional α -1,6-glycosidic linkages. In plants from which starch is typically isolated, for example maize or potato, the starch is approximately 25% amylose-starch and 75% amylopectin-starch.

In maize, various mutants in starch metabolism are known, for example waxy, sugary, shrunken and opaque-2. In addition to producing a modified starch, these mutations greatly improve grain quality in maize, and thus expand the use of maize not only as the food but also for the important industrial materials in food chemistry. It would therefore be advantageous to be able readily to obtain mutants in these genes in particular maize genotypes as well as other plants. Such plants can be obtained, for example, using traditional breeding methods and through specific genetic modification by means of recombinant DNA techniques.

The attached tables disclose exemplary oligonucleotide base sequences which can be used to generate site-specific mutations in genes involved in starch metabolism.

10

15

20

Table 20
Genome-Altering Oligos Conferring Increased Starch

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
Increased Starch ADPGPP Arabidopsis thaliana Ala99Lys GCA-AAA	GAACTTGAGACTGAGAAAAGGGATCCAAGGACAGTTGCTTCCATT ATTCTTGGAGGTGGA <u>AA</u> AGGAACTCGACTCTTTCCTCTCACAAAA CGCCGCGCCAAGCCTGCCGTTCCTATCGGGG	5849
	CCCCGATAGGAACGGCAGGCTTGGCGCGCGTTTTGTGAGAGGA AAGAGTCGAGTTCCT <u>TT</u> TCCACCTCCAAGAATAATGGAAGCAACT GTCCTTGGATCCCTTTTCTCAGTCTCAAGTTC	5850
•	GAGGTGGA <u>AA</u> AGGAACT	5851
	AGTTCCT <u>TT</u> TCCACCTC	5852
Increased Starch ADPGPP Arabidopsis thaliana	CAAAACGCCGCGCCAAGCCTGCCGTTCCTATCGGGGGAGCCTAT AGGTTGATAGATGTACTAATGAGCAATTGTATTAACAGCGGAATCA ACAAAGTCTACATACTCACACAATATAACTC	5853
Pro127Leu CCA-CTA	GAGTTATATTGTGTGAGTATGTAGACTTTGTTGATTCCGCTGTTAA TACAATTGCTCATTAGTACATCTATCAACCTATAGGCTCCCCCGAT AGGAACGGCAGGCTTGGCCGCGCGTTTTG	5854
	AGATGTACTAATGAGCA	5855
	TGCTCATTAGTACATCT	5856
Increased Starch ADPGPP Arabidopsis thaliana	TCACACAATATAACTCAGCATCATTGAACAGGCATTTAGCCCGTGC TTACAACTCCAAT <u>AAT</u> CTTGGCTTTGGAGATGGCTATGTTGAGGTT CTTGCGGCCACTCAAACGCCAGGAGAATC	5857
Gly162Asn GGA-AAT	GATTCTCCTGGCGTTTGAGTGGCCGCAAGAACCTCAACATAGCCA TCTCCAAAGCCAAGATTATTGGAGTTGTAAGCACGGGCTAAATGC CTGTTCAATGATGCTGAGTTATATTGTGTGA	5858
	CTCCAATAATCTTGGCT	5859
	AGCCAAG <u>ATT</u> ATTGGAG	5860
Increased Starch ADPGPP Arabidopsis thaliana	TCACACAATATAACTCAGCATCATTGAACAGGCATTTAGCCCGTGC TTACAACTCCAAT <u>AAC</u> CTTGGCTTTGGAGATGGCTATGTTGAGGTT CTTGCGGCCACTCAAACGCCAGGAGAATC	586′
Gly162Asn GGA-AAC	GATTCTCCTGGCGTTTGAGTGGCCGCAAGAACCTCAACATAGCCA TCTCCAAAGCCAAG <u>GTT</u> ATTGGAGTTGTAAGCACGGGCTAAATGC CTGTTCAATGATGCTGAGTTATATTGTGTGA	5862
	CTCCAAT <u>AAC</u> CTTGGCT	5863
	AGCCAAG <u>GTT</u> ATTGGAG	586

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	Increased Starch ADPGPP Arabidopsis thaliana	GTTTGAGAGAAAGGTAGACCCGCAAAATGTGGCTGCAATCAT TCTAGGAGGAGGCAAAGGAGCTAAACTCTTCCCTCTTACAATGAG AGCCGCAACACCAGCTGTAAATATTCATCTT	5865
5	Asn100Lys AAT-AAA	AAGATGAATATITACAGCTGGTGTTGCGGCTCTCATTGTAAGAGG GAAGAGTTTAGCTCCTTTGCCTCCTAGAATGATTGCAGCCAC ATTTTGCGGGTCTACCTTTCTTCTCAAAC	5866
		GGAGGCAA <u>A</u> GGAGCTAA	5867
	Increased Starch	TTAGCTCCTTTGCCTCC	5868
	ADPGPP Arabidopsis thaliana Pro128Leu	CTTGTGTCTTCAAATTATGTTAGGTTCCTGTTGGTGGATGCTACAG GCTGATCGATATCCTGATGAGTAACTGTATTAACAGCTGCATCAAC AAGATATTTGTGCTGACACAGTTCAACTC	5869
10	CCG-CTG	GAGTTGAACTGTGTCAGCACAAATATCTTGTTGATGCAGCTGTTAA TACAGTTACTCATCAGGATATCGATCAGCCTGTAGCATCCACCAA CAGGAACCTAACATAATTTGAAGACACAAG	5870
		CGATATCCIGATGAGTA	5871
	Ingrana d Charab	TACTCATCAGGATATCG	5872
	Increased Starch ADPGPP Arabidopsis thaliana	TGACACAGTTCAACTCAGCTTCCCTTAATCGACATTTAGCACGAAC TTATTTTGGGAAT <u>AAT</u> ATAAACTTTGGAGGTGGTTTCGTAGAGGTA CAAACACTATGACAATAATAACTCTCAGC	5873
15 ·	Gly163Asn GGC-AAT	GCTGAGAGTTATTATTGTCATAGTGTTTGTACCTCTACGAAACCAC CTCCAAAGTTTATATTATTCCCAAAATAAGTTCGTGCTAAATGTCG ATTAAGGGAAGCTGAGTTGAACTGTGTCA	5874
		TGGGAAT <u>AAT</u> ATAAACT	5875
		AGTTTAT <u>ATT</u> ATTCCCA	5876
20	Increased Starch ADPGPP Arabidopsis thaliana	TGACACAGTTCAACTCAGCTTCCCTTAATCGACATTTAGCACGAAC TTATTTTGGGAAT AAC ATAAACTTTGGAGGTGGTTTCGTAGAGGTA CAAACACTATGACAATAATAACTCTCAGC	5877
	Gly163Asn GGC-AAC	GCTGAGAGTTATTATTGTCATAGTGTTTGTACCTCTACGAAACCAC CTCCAAAGTTTAT <u>GTT</u> ATTCCCAAAATAAGTTCGTGCTAAATGTCG ATTAAGGGAAGCTGAGTTGAACTGTGTCA	5878
		TGGGAAT <u>AAC</u> ATAAACT	5879
		AGTITAT <u>GTT</u> ATTCCCA	5880
25	Increased Starch ADPGPP Lycopersicon	TTGAGGAACAACCAACGGCAGATCCAAAAGCTGTTGCCTCTGTCA TTCTAGGTGGTGGTAAAGGAACTCGTCTTTTTCCTCTTACAAGCA GAAGAGCTAAACCAGCTGTTCCTATTGGTGG	5881
	esculentum Val94Lys GTT-AAA	CCACCAATAGGAACAGCTGGTTTAGCTCTTCTGCTTGTAAGAGGA AAAAGACGAGTTCC <u>TTT</u> ACCACCACCTAGAATGACAGAGGCAACA GCTTTTGGATCTGCCGTTGGTTGTTCCTCAA	5882
		TGGTGGT <u>AAA</u> GGAACTC	5883

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
		GAGTTCC <u>TTT</u> ACCACCA	5884
Al	Increased Starch ADPGPP	CAAGCAGAAGAGCTAAACCAGCTGTTCCTATTGGTGGTTGTTACC GGCTAATTGATGTACAAACCAGCTGAACTGCATTAACAGTGGCATAC GGAAAATTTTCATCTTAACACAGTTCAATTC	5885
e: P	ycopersicon sculentum ro122Leu :CA-CAA	GAATTGAACTGTTAAGATGAAAATTTTCCGTATGCCACTGTTAA TGCAGTTACTCATT <u>T</u> GTACATCAATTAGCCGGTAACAACCACCAAT AGGAACAGCTGGTTTAGCTCTTCTGCTTG	5886
		TGATGTAC <u>A</u> AATGAGTA	5887
		TACTCATT <u>T</u> GTACATCA	5888
Α	ncreased Starch DPGPP ycopersicon	CACAGTTCAATTCCTTTTCCCTCAATCGTCACCTTGCCCGCACGTA TAATTTTGGAAAT <u>AAT</u> GTGGGTTTTGGAGATGGATTTGTGGAGGTT TTAGCTGCAACCCAGACTCCAGGGGATGC	5889
e	sculentum Gly158Asn GGA-AAT	GCATCCCCTGGAGTCTGGGTTGCAGCTAAAACCTCCACAAATCCA TCTCCAAAACCCAC <u>ATT</u> ATTTCCAAAATTATACGTGCGGGCAAGGT GACGATTGAGGGAAAAGGAATTGAACTGTG	5890
	,0,1,1,1,1	TGGAAAT <u>AAT</u> GTGGGTT	589
		AACCCAC <u>ATT</u> ATTTCCA	589
A	ncreased Starch	CACAGTTCAATTCCTTTTCCCTCAATCGTCACCTTGCCCGCACGTA TAATTTTGGAAATAACGTGGGTTTTGGAGATGGATTTGTGGAGGTT TTAGCTGCAACCCAGACTCCAGGGGATGC	589
Lycopersicon esculentum Gly158Asn	esculentum	GCATCCCTGGAGTCTGGGTTGCAGCTAAAACCTCCACAAATCCA TCTCCAAAACCCACGTTATTTCCAAAATTATACGTGCGGGCAAGGT GACGATTGAGGGAAAAGGAATTGAACTGTG	589
`		TGGAAAT <u>AAC</u> GTGGGTT	589
	•	AACCCAC <u>GTT</u> ATTTCCA	589
	ncreased Starch ADPGPP	ACGTAGATTTGGAAAAAAGAGACCCAAGTACAGTTGTAGCAATTAT ACTAGGTGGAGGT <u>AAA</u> GGAACTCGTCTCTCCCTCTCACCAAGC GACGAGCCAAGCCTGCTGTTCCAATTGGAGG	589
1	Cicer arietinum Ala101Lys GCT-AAA	CCTCCAATTGGAACAGCAGGCTTGGCTCGCTTGGTGAGAGG GAAGAGACGAGTTCCTTTACCTCCACCTAGTATAATTGCTACAACT GTACTTGGGTCTCTTTTTTCCAAATCTACGT	589
		TGGAGGT <u>AAA</u> GGAACTC	589
		GAGTTCCTTTACCTCCA	590

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	Increased Starch ADPGPP Cicer arietinum	CCAAGCGACGAGCCAAGCCTGCTGTTCCAATTGGAGGTGCTTATA GGCTGATAGATGTACTAATGAGTAACTGCATCAATAGTGGGATCAA CAAAGTATACATTCTCACTCAATTTAATTC	5901
5	Pro129Leu CCA-CTA	GAATTAAATTGAGTGAGAATGTATACTTTGTTGATCCCACTATTGAT GCAGTTACTCATTAGTACATCTATCAGCCTATAAGCACCTCCAATT GGAACAGCAGGCTTGGCTCGCTCGCTTGG	5902
		AGATGTAC <u>T</u> AATGAGTA TACTCATT <u>A</u> GTACATCT	5903
	Increased Starch		5904
	ADPGPP Cicer arietinum	CTCAATTTAATTCAGCCTCACTCAACAGGCATATTGCACGTGCTTA TAACTCTGGTACT <u>AAT</u> GTCACTTTTGGAGATGGCTATGTTGAGGTT CTTGCAGCAACTCAAACTCCAGGGGAGCA	5905
10	Gly165Asn GGA-AAT	TGCTCCCTGGAGTTTGAGTTGCTGCAAGAACCTCAACATAGCCA TCTCCAAAAGTGAC <u>ATT</u> AGTACCAGAGTTATAAGCACGTGCAATAT GCCTGTTGAGTGAGGCTGAATTAAATTGAG	5906
		TGGTACTAATGTCACTT	5907
		AAGTGAC <u>ATT</u> AGTACCA	5908
	Increased Starch ADPGPP Cicer arietinum	CTCAATTTAATTCAGCCTCACTCAACAGGCATATTGCACGTGCTTA TAACTCTGGTACTAACGTCACTTTTGGAGATGGCTATGTTGAGGTT CTTGCAGCAACTCAAACTCCAGGGGAGCA	5909
15	Gly165Asn GGA-AAC	TGCTCCCTGGAGTTTGAGTTGCTGCAAGAACCTCAACATAGCCA TCTCCAAAAGTGAC <u>GTT</u> AGTACCAGAGTTATAAGCACGTGCAATAT GCCTGTTGAGTGAGGCTGAATTAAATTGAG	5910
		TGGTACT <u>AAC</u> GTCACTT	5911
		AAGTGAC <u>GTT</u> AGTACCA	5912
	Increased Starch ADPGPP Ipomoea batatas	ATATTGGAGAGGCGTCGGGCAAACCCTAAGAATGTGGCTGCAATC ATACTGCCAGGCGGT <u>AA</u> AGGGACACACCTATTCCCTCTCACCAAT CGAGCTGCAACCCCTGCTGTTCCACTTGGAG	5913
20	Ala94Lys GCA-AAA	CTCCAAGTGGAACAGCAGGGGTTGCAGCTCGATTGGTGAGAGGG AATAGGTGTGCCCT <u>TT</u> ACCGCCTGGCAGTATGATTGCAGCCACA TTCTTAGGGTTTGCCCGACGCCTCTCCAATAT	5914
		CAGGCGGT <u>AA</u> AGGGACA	5915
		TGTCCCT <u>TT</u> ACCGCCTG	5916
25	Increased Starch ADPGPP Ipomoea batatas	CCAATCGAGCTGCAACCCCTGCTGTTCCACTTGGAGGATGCTATA GGTTGATCGACATTCTAATGAGCAACTGCATCAACAGCGGGGTTA ACAAGATCTTTGTGCTGACCCAGTTCAATTC	5917
	Pro122Leu CCA-CTA	GAATTGAACTGGGTCAGCACAAAGATCTTGTTAACCCCGCTGTTG ATGCAGTTGCTCATTAGAATGTCGATCAACCTATAGCATCCTCCAA GTGGAACAGCAGGGGTTGCAGCTCGATTGG	5918
		CGACATTC <u>T</u> AATGAGCA	5919

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	TGCTCATTAGAATGTCG	5920
Increased Starch ADPGPP Ipomoea batatas	TGACCCAGTTCAATTCAGCTTCTCTTAACCGTCACATTTCCCGTAC CGTCTTTGGCAAT <u>AAT</u> GTGAGCTTCGGAGATGGATTTGTTGAGGT GCTGGCTGCAACCCAAACACAGGGGAAAC	5921
Gly157Asn GGT-AAT	GTTTCCCCTTGTGTTTGGGTTGCAGCCAGCACCTCAACAAATCCA TCTCCGAAGCTCACATTATTGCCAAAGACGGTACGGGAAATGTGA CGGTTAAGAGAAGCTGAATTGAACTGGGTCA	5922
	TGGCAAT <u>AAT</u> GTGAGCT	5923
·	AGCTCAC <u>ATT</u> ATTGCCA	5924
Increased Starch ADPGPP Ipomoea batatas	TGACCCAGTTCAATTCAGCTTCTCTTAACCGTCACATTTCCCGTAC CGTCTTTGGCAAT <u>AAC</u> GTGAGCTTCGGAGATGGATTTGTTGAGGT GCTGGCTGCAACCCAAACACAGGGGAAAC	5925
Gly157Asn GGT-AAC	GTTTCCCCTTGTGTTTGGGTTGCAGCCAGCACCTCAACAAATCCA TCTCCGAAGCTCACGTTATTGCCAAAGACGGTACGGGAAATGTGA CGGTTAAGAGAAGCTGAATTGAACTGGGTCA	5926
	TGGCAAT AAC GTGAGCT	5927
	AGCTCAC <u>GTT</u> ATTGCCA	5928
Increased Starch ADPGPP Oryza sativa	CATTCCGGAGGAACTTTGCGGATCCAAATGAGGTTGCTGCTGTTA TATTGGGTGGTGGCAAAGGGACTCAACTTTTTCCTCTCACAAGCA CAAGGGCCACGCCTGCTGTTCCTATTGGAGG	5929
Thr96Lys ACC-AAA	CCTCCAATAGGAACAGCAGGCGTGGCCCTTGTGCTTGTGAGAGG AAAAAGTTGAGTCCCTTTGCCACCACCCAATATAACAGCAGCAAC CTCATTTGGATCCGCAAAGTTCCTCCGGAATG	5930
	TGGTGGCA <u>AA</u> GGGACTC	5931
	GAGTCCC <u>TT</u> TGCCACCA	5932
Increased Starch ADPGPP Oryza sativa	CAAGCACAAGGCCCACGCCTGCTGTTCCTATTGGAGGATGCTATA GGCTTATCGATATCCTCATGAGCAACTGTTTCAACAGTGGCATAAA CAAGATATTCATAATGACTCAACTC	5933
Pro124Leu CCC-CTC	GAGTTGAATTGAGTCATTATGAATATCTTGTTTATGCCACTGTTGAA ACAGTTGCTCATGAGGATATCGATAAGCCTATAGCATCCTCCAATA GGAACAGCAGGCGTGGCCCTTGTGCTTG	5934
	CGATATCCTCATGAGCA	5935
	TGCTCATGAGGATATCG	5936
Increased Starch ADPGPP Oryza sativa	TGACTCAATTCAACTCAGCATCTCTTAATCGTCACATTCATCGTAC GTACCTTGGTGGTAATATCAACTTTACTGATGGTTCTGTTGAGGTA TTAGCCGCTACACAAATGCCTGGGGAGGC	5937
Gly159Asn GGA-AAT	GCCTCCCAGGCATTTGTGTAGCGGCTAATACCTCAACAGAACCA TCAGTAAAGTTGATATTACCACCAAGGTACGTACGATGAATGTGAC GATTAAGAGATGCTGAGTTGAATTGAGTCA	5938

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ II NO:
	TGGTGGT <u>AAT</u> ATCAACT	5939
	AGTTGAT <u>ATT</u> ACCACCA	5940
Increased Starch ADPGPP Oryza sativa	TGACTCAATTCAACTCAGCATCTCTTAATCGTCACATTCATCGTAC GTACCTTGGTGGTAACATCAACTTTACTGATGGTTCTGTTGAGGTA TTAGCCGCTACACAAATGCCTGGGGAGGC	5941
Gly159Asn GGA-AAC	GCCTCCCCAGGCATTTGTGTAGCGGCTAATACCTCAACAGAACCA TCAGTAAAGTTGAT <u>GTT</u> ACCACCAAGGTACGATGAATGTGA CGATTAAGAGATGCTGAGTTGAATTGAGTCA	5942
	TGGTGGT <u>AAC</u> ATCAACT	5943
	AGTTGAT <u>GTT</u> ACCACCA	5944
Increased Starch ADPGPP Triticum aestivum	GTCCTTCAGGAGGATTAAGCGATCCGAACGAGGTTGCGGCCGTC ATACTCGGCGGCGGCA <u>AA</u> GGGACTCAGCTCTTCCCACTCACGAG CACAAGGGCCACACCTGCTGTTCCTATTGGAGG	5945
Thr80Lys ACC-AAA	CCTCCAATAGGAACAGCAGGTGTGGCCCTTGTGCTCGTGAGTGGGAAGAGCTGAGTCCCTTTGCCGCCGCGAGTATGACGGCCGCAACCCTCGTTCGGATCGCTTAATCCTCCTGAAGGAC	5946
	CGGCGGCA <u>AA</u> GGGACTC	5947
	GAGTCCC <u>TT</u> TGCCGCCG	5948
Increased Starch ADPGPP Triticum aestivum	CGAGCACAAGGGCCACACCTGCTGTTCCTATTGGAGGATGTTACA GGCTCATCGACATTCTCATGAGCAACTGCTTCAACAGTGGCATCA ACAAGATATTCGTCATGACCCAGTTCAACTC	5949
Pro108Leu CCC-CTC	GAGTTGAACTGGGTCATGACGAATATCTTGTTGATGCCACTGTTG AAGCAGTTGCTCATGAGAATGTCGATGAGCCTGTAACATCCTCCA ATAGGAACAGCAGGTGTGGCCCTTGTGCTCG	5950
	CGACATTC <u>T</u> CATGAGCA	5951
	TGCTCATG <u>A</u> GAATGTCG	5952
Increased Starch ADPGPP Triticum aestivum	TGACCCAGTTCAACTCGGCCTCCCTTAATCGTCACATTCACCGCA CCTACCTCGGCGGAATATCAATTTCACTGATGGATCCGTTGAGG TATTGGCCGCGACGCAAATGCCCGGGGAGGC	5953
Gly143Asn GGA-AAT	GCCTCCCGGGCATTTGCGTCGCGGCCAATACCTCAACGGATCC ATCAGTGAAATTGATATTCCCGCCGAGGTAGGTGCGGTGAATGTG ACGATTAAGGGAGGCCGAGTTGAACTGGGTCA	5954
	CGGCGGG <u>AAT</u> ATCAATT	5955
	AATTGAT <u>ATT</u> CCCGCCG	5956
Increased Starch ADPGPP <i>Triticum aestivum</i> Gly143Asn	TGACCCAGTTCAACTCGGCCTCCCTTAATCGTCACATTCACCGCA CCTACCTCGGCGGGAACATCAATTTCACTGATGGATCCGTTGAGG TATTGGCCGCGACGCAAATGCCCGGGGAGGC	5957

Gly143Asn GGA-AAC

25

5

10

15

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
	GCCTCCCGGGCATTTGCGTCGCGGCCAATACCTCAACGGATCC ATCAGTGAAATTGATGTTCCCGCCGAGGTAGGTGCGGTGAATGTG ACGATTAAGGGAGGCCGAGTTGAACTGGGTCA	5958
	CGGCGGG <u>AAC</u> ATCAATT	5959
	AATTGAT <u>GTT</u> CCCGCCG	5960
Increased Starch ADPGPP Oryza sativa	CCTCCCGAAAGAATTATGCTGATGCAAGCCACGTTTCTGCTGTCA TTTTGGGTGGAGGCAAAGGAGTTCAACTCTTTCCTCTGACAAGCA CAAGGGCTACCCCCGCTGTTCCTGTTGGAGG	5961
Thr95Lys ACT-AAA	CCTCCAACAGGAACAGCGGGGGTAGCCCTTGTGCTTGTCAGAGG AAAGAGTTGAACTCC <u>TT</u> TGCCTCCACCCAAAATGACAGCAGAAAC GTGGCTTGCATCAGCATAATTCTTTCGGGAGG	5962
	TGGAGGCA <u>AA</u> GGAGTTC	5963
	GAACTCC <u>TT</u> TGCCTCCA	5964
Increased Starch ADPGPP Onyza sativa	CAAGCACAAGGGCTACCCCCGCTGTTCCTGTTGGAGGATGTTACA GGCTTATTGACATCCTTATGAGCAATTGCTTCAATAGCGGAATAAA TAAAATATTTGTGATGACTCAGTTCAATTC	5965
Pro123Leu CCT-CTT	GAATTGAACTGAGTCATCACAAATATTTTATTCCGCTATTGAA GCAATTGCTCATAAGGATGTCAATAAGCCTGTAACATCCTCCAACA GGAACAGCGGGGGTAGCCCTTGTGCTTG	5966
	TGACATCCTTATGAGCA	5967
	TGCTCATAAGGATGTCA .	5968
Increased Starch ADPGPP Oryza sativa	TGACTCAGTTCAATTCTGCTTCTCTTAATCGCCATATCCATCATAC ATACCTTGGTGGGAATATCAACTTTACTGATGGGTCTGTGCAGGT ATTGGCTGCTACACAAATGCCTGACGAACC	5969
Gly158Asn GGG-AAT	GGTTCGTCAGGCATTTGTGTAGCAGCCAATACCTGCACAGACCCA TCAGTAAAGTTGATATTCCCACCAAGGTATGTATGATGGATATGGC GATTAAGAGAAGCAGAATTGAACTGAGTCA	5970
	TGGTGGG <u>AAT</u> ATCAACT	597.1
	AGTTGAT <u>ATT</u> CCCACCA	5972
Increased Starch ADPGPP Oryza sativa	TGACTCAGTTCAATTCTGCTTCTTTAATCGCCATATCCATCATAC ATACCTTGGTGGGAACATCAACTTTACTGATGGGTCTGTGCAGGT ATTGGCTGCTACACAAATGCCTGACGAACC	5973
Gly158Asn GGG-AAC	GGTTCGTCAGGCATTTGTGTAGCAGCCAATACCTGCACAGACCCA TCAGTAAAGTTGATGTTCCCACCAAGGTATGTATGATGGATATGGC GATTAAGAGAAGCAGAATTGAACTGAGTCA	5974
	TGGTGGG <u>AAC</u> ATCAACT	5975
	AGTTGATGTTCCCACCA	5976

10

15

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ II NO:
Increased Starch ADPGPP Triticum aestivum	CCTTCCGCAGGAATTACGCCGATCCGAACGAGGTCGCGGCCGTC ATACTCGGCGGTGGCAAAGGGGACTCAGCTCTTCCCTCTCACAAG CACAAGGGCCACACCTGCTGTTCCTATTGGAGG	5977
Thr99Lys ACC-AAA	CCTCCAATAGGAACAGCAGGTGTGGCCCTTGTGCTTGTGAGAGG GAAGAGCTGAGTCCC <u>TT</u> TGCCACCGCCGAGTATGACGGCCGCGA CCTCGTTCGGATCGGCGTAATTCCTGCGGAAGG	5978
1	CGGTGGCA <u>AA</u> GGGACTC	5979
1	GAGTCCCTTTGCCACCG	5980
Increased Starch ADPGPP Triticum aestivum	CAAGCACAAGGGCCACACCTGCTGTTCCTATTGGAGGATGTTACA GGCTCATCGATATTCTCATGAGCAACTGCTTCAATAGTGGCATCAA CAAGATATTCGTCATGACGCAGTTCAACTC	5981
Pro127Leu CCC-CTC	GAGTTGAACTGCGTCATGACGAATATCTTGTTGATGCCACTATTGA AGCAGTTGCTCATGAGAATATCGATGAGCCTGTAACATCCTCCAA TAGGAACAGCAGGTGTGGCCCTTGTGCTTG	5982
	CGATATTC <u>T</u> CATGAGCA	5983
	TGCTCATGAGAATATCG	5984
Increased Starch ADPGPP Triticum aestivum	TGACGCAGTTCAACTCGGCCTCTCTTAATCGTCACATTCACCGCA CCTACCTCGGCGGAATATCAATTTCACTGATGGATCTGTTGAGG TATTGGCCGCGACGCAAATGCCCGGGGAGGC	5985
Gly162Asn GGA-AAT	GCCTCCCGGGCATTTGCGTCGCGGCCAATACCTCAACAGATCC ATCAGTGAAATTGAT <u>ATT</u> CCCGCCGAGGTAGGTGCGGTGAATGTG ACGATTAAGAGAGGCCGAGTTGAACTGCGTCA	5986
	CGGCGGG <u>AAT</u> ATCAATT	5987
	AATTGAT <u>ATT</u> CCCGCCG	5988
Increased Starch ADPGPP Triticum aestivum	TGACGCAGTTCAACTCGGCCTCTCTTAATCGTCACATTCACCGCA CCTACCTCGGCGGGAACATCAATTTCACTGATGGATCTGTTGAGG TATTGGCCGCGACGCAAATGCCCGGGGAGGC	5989
Gly162Asn GGA-AAC	GCCTCCCGGGCATTTGCGTCGCGGCCAATACCTCAACAGATCC ATCAGTGAAATTGATGTTCCCGCCGAGGTAGGTGCGGTGAATGTG ACGATTAAGAGAGGCCGAGTTGAACTGCGTCA	5990
	CGGCGG <u>AAC</u> ATCAATT	5991
	AATTGAT <u>GTT</u> CCCGCCG	5992
Increased Starch ADPGPP Zea mays	CTTTTCGGAGGAATTATGCTGATCCTAATGAAGTCGCTGCCGTCA TTTTGGGTGGTGGTA <u>AA</u> GGGACTCAGCTTTTCCCTCTCACAAGCA CAAGGGCCACCCCTGCTGTTCCTATTGGAGG	5993
Thr96Lys ACC-AAA	CCTCCAATAGGAACAGCAGGGGTGGCCCTTGTGCTTGTGAGAGG GAAAAGCTGAGTCCC <u>TT</u> TACCACCACCCAAAATGACGGCAGCGAC TTCATTAGGATCAGCATAATTCCTCCGAAAAG	5994
	TGGTGGTA <u>AA</u> GGGACTC	5995

10

15

20

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	GAGTCCC <u>TT</u> TACCACCA	5996
Increased Starch ADPGPP Zea mays	CAAGCACAAGGGCCACCCCTGCTGTTCCTATTGGAGGATGTTACA GGCTTATTGATATCCTCATGAGCAACTGTTTCAACAGTGGCATAAA CAAGATATTTGTTATGACTCAGTTCAACTC	5997
Pro124Leu CCC-CTC	GAGTTGAACTGAGTCATAACAAATATCTTGTTTATGCCACTGTTGA AACAGTTGCTCATGAGGATATCAATAAGCCTGTAACATCCTCCAAT AGGAACAGCAGGGGTGGCCCTTGTGCTTG	5998
	TGATATCC <u>T</u> CATGAGCA	5999
	TGCTCATGAGGATATCA	6000
Increased Starch ADPGPP Zea mays	TGACTCAGTTCAACTCAGCTTCTCTTAACCGTCACATTCATCGTAC CTATCTTGGTGGGAATATCAACTTCACTGATGGATCTGTTGAGGT GCTGGCTGCAACACACAATGCCTGGGGAGGC	6001
Gly159Asn GGG-AAT	GCCTCCCAGGCATTTGTGTTGCAGCCAGCACCTCAACAGATCCA TCAGTGAAGTTGAT <u>ATT</u> CCCACCAAGATAGGTACGATGAATGTGA CGGTTAAGAGAAGCTGAGTTGAACTGAGTCA	6002
	TGGTGGG <u>AAT</u> ATCAACT	6003
	AGTTGATATTCCCACCA	6004
Increased Starch ADPGPP Zea mays	TGACTCAGTTCAACTCAGCTTCTCTTAACCGTCACATTCATCGTAC CTATCTTGGTGGGAACATCAACTTCACTGATGGATCTGTTGAGGT GCTGGCTGCAACACAAATGCCTGGGGAGGC	6005
Gly159Asn GGG-AAC	GCCTCCCAGGCATTTGTGTTGCAGCCAGCACCTCAACAGATCCA TCAGTGAAGTTGATGTTCCCACCAAGATAGGTACGATGAATGTGA CGGTTAAGAGAAGCTGAGTTGAACTGAGTCA	6006
	TGGTGGG <u>AAC</u> ATCAACT	6007
	AGTTGATGTTCCCACCA	6008
Increased Starch ADPGPP Solanum tuberosum	CTTGAGAGGCAAAAGAAGGGCGATGCAAGGACAGTAGTAGCAAT CATTCTAGGAGGGGGAAAGGGAACTCGTCTTTTCCCCCTCACCAA ACGTCGTGCTAAGCCTGCCGTTCCAATGGGAG	6009
Ala58Lys GCG-AAG	CTCCCATTGGAACGCCAGGCTTAGCACGACGTTTGGTGAGGGGG AAAAGACGAGTTCCCTTTTCCCCCTCCTAGAATGATTGCTACTACTG TCCTTGCATCGCCCTTCTTTTGCCTCTCAAG	6010
	GAGGGGAAAGGGAACT	6011
	AGTTCCC <u>TT</u> TCCCCCTC	6012
Increased Starch ADPGPP Solanum tuberosum	CCAAACGTCGTGCTAAGCCTGCCGTTCCAATGGGAGGAGCATATA GGCTAATTGATGTACTAATGAGCAACTGTATTAACAGTGGCATCAA CAAAGTATACATTCTCACTCAATTCAACTC	6013
Pro86Leu CCA-CTA	GAGTTGAGTGAGTGAGTGAGTGAGTGAGTGAGTGAGTGA	6014

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	TGATGTAC <u>T</u> AATGAGCA	6015
	TGCTCATTAGTACATCA	6016
Increased Starch ADPGPP Solanum tuberosum	CTCAATTCAACTCAGCCTCACTTAACAGGCATATAGCTCGTGCTTA CAACTTTGGCAAT <u>AAT</u> GTCACATTCGAGAGTGGCTATGTCGAGGT CTTAGCAGCAACTCAAACACCAGGTGAATT	6017
Gly122Asn GGG-AAT	AATTCACCTGGTGTTTGAGTTGCTGCTAAGACCTCGACATAGCCA CTCTCGAATGTGAC <u>ATT</u> ATTGCCAAAGTTGTAAGCACGAGCTATAT GCCTGTTAAGTGAGGCTGAGTTGAATTGAG	6018
	TGGCAAT <u>AAT</u> GTCACAT	6019
	ATGTGAC <u>ATT</u> ATTGCCA	6020
Increased Starch ADPGPP Solanum tuberosum	CTCAATTCAACTCAGCCTCACTTAACAGGCATATAGCTCGTGCTTA CAACTTTGGCAAT <u>AAC</u> GTCACATTCGAGAGTGGCTATGTCGAGGT CTTAGCAGCAACTCAAACACCAGGTGAATT	6021
Gly122Asn GGG-AAC	AATTCACCTGGTGTTTGAGTTGCTGCTAAGACCTCGACATAGCCA CTCTCGAATGTGAC <u>GTT</u> ATTGCCAAAGTTGTAAGCACGAGCTATAT GCCTGTTAAGTGAGGCTGAGTTGAATTGAG	6022
	TGGCAAT <u>AAC</u> GTCACAT	6023
	ATGTGAC <u>GTT</u> ATTGCCA	6024
Increased Starch ADPGPP Beta vulgaris	TATTTGAATCTCCAAAAGCTGACCCAAAAAATGTGGCTGCAATTGT GCTGGGTGGTAAAGGGACTCGCCTCTTTCCTCTTACTAGCA GGAGAGCTAAGCCAGCAGTGCCAATTGGAGG	6025
Ala98Lys GCT-AAA	CCTCCAATTGGCACTGCTGGCTTAGCTCTCCTGCTAGTAAGAGGA AAGAGGCGAGTCCC <u>TTT</u> ACCACCACCCAGCACAATTGCAGCCACA TTTTTTGGGTCAGCTTTTGGAGATTCAAATA	6026
	TGGTGGT <u>AAA</u> GGGACTC	6027
	GAGTCCCTTTACCACCA	6028
Increased Starch ADPGPP Beta vulgaris	TATTTGAATCTCCAAAAGCTGACCCAAAAAATGTGGCTGCAATTGT GCTGGGTGGTGGT <u>AAC</u> GGGACTCGCCTCTTTCCTCTTACTAGCA GGAGAGCTAAGCCAGCAGTGCCAATTGGAGG	6029
Ala98Lys GCT-AAC	CCTCCAATTGGCACTGCTGGCTTAGCTCTCCTGCTAGTAAGAGGA AAGAGGCGAGTCCC <u>GTT</u> ACCACCACCCAGCACAATTGCAGCCAC ATTTTTTGGGTCAGCTTTTGGAGATTCAAATA	6030
	TGGTGGT <u>AAC</u> GGGACTC	6031
	GAGTCCC <u>GTT</u> ACCACCA	6032
Increased Starch ADPGPP Beta vulgaris	CTAGCAGGAGAGCTAAGCCAGCAGTGCCAATTGGAGGGTGTTAC AGGCTGATTGATGTGCTATGAGCAACTGCATCAACAGTGGCATT AGAAAGATTTTCATTCTTACCCAGTTCAATTC	6033

Pro126Leu CCT-CTT

25

5

10

15

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
	GAATTGAACTGGGTAAGAATGAAAATCTTTCTAATGCCACTGTTGA TGCAGTTGCTCATAAGCACATCAATCAGCCTGTAACACCCCTCCAA TTGGCACTGCTGGCTTAGCTCTCCTGCTAG	6034
	TGATGTGC <u>T</u> TATGAGCA	6035
	TGCTCATA <u>A</u> GCACATCA	6036
Increased Starch ADPGPP Beta vulgaris	CCCAGTTCAATTCGTTTTCGCTTAATCGTCATCTTGCTCGAACCTA TAATTTTGGAGATATGTGAATTTTGGGGGATGGCTTTGTGGAGGTT TTTGCTGCTACACAAACACCCTGGAGAATC	6037
Gly162Asn GGT-AAT	GATTCTCCAGGTGTTTGTGTAGCAGCAAAAACCTCCACAAAGCCA TCCCCAAAATTCAC <u>ATT</u> ATCTCCAAAATTATAGGTTCGAGCAAGAT GACGATTAAGCGAAAACGAATTGAACTGGG	6038
	TGGAGAT <u>AAT</u> GTGAATT	6039
	AATTCAC <u>ATT</u> ATCTCCA	6040
Increased Starch ADPGPP Beta vulgaris	CCCAGTTCAATTCGTTTTCGCTTAATCGTCATCTTGCTCGAACCTA TAATTTTGGAGATAACGTGAATTTTGGGGGATGGCTTTGTGGAGGT TTTTGCTGCTACACACACACCTGGAGAATC	6041
Gly162Asn GGT-AAC	GATTCTCCAGGTGTTTGTGTAGCAGCAAAAACCTCCACAAAGCCA TCCCCAAAATTCACGTTATCTCCAAAATTATAGGTTCGAGCAAGAT GACGATTAAGCGAAAACGAATTGAACTGGG	6042
	TGGAGATAACGTGAATT	6043
	AATTCACGTTATCTCCA	6044

Table 21
Oligonucleotides to produce plants with waxy starch

5	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	Waxy starch GBSS Arabidopsis thaliana	GAATCCAGGTAAACGGGTAGTTCATAATGGCAACTGTGACTGCTTC TTCTAACTTTGTGTGAAGAACTTCACTTTTCAACAATCATGGTGCTT CTTCATGCTCTGATGTCGCTCAGATTAC	6045
10	Ser12Term TCA-TGA	GTAATCTGAGCGACATCAGAGCATGAAGAAGCACCATGATTGTTGA AAAGTGAAGTTCTT <u>C</u> ACACAAAGTTAGAAGAAGCAGTCACAGTTGC CATTATGAACTACCCGTTTACCTGGATTC	6046
		CTTTGTGT <u>G</u> AAGAACTT	6047
		AAGTTCTT <u>C</u> ACACAAAG	6048
	Waxy starch GBSS Arabidopsis thaliana	ATCCAGGTAAACGGGTAGTTCATAATGGCAACTGTGACTGCTTCTT CTAACTTTGTGTCA <u>T</u> GAACTTCACTTTTCAACAATCATGGTGCTTCT TCATGCTCTGATGTCGCTCAGATTACCT	6049
15	Arg13Term AGA-TGA	AGGTAATCTGAGCGACATCAGAGCATGAAGAAGCACCATGATTGTT GAAAAGTGAAGTTCATGACACAAAGTTAGAAGAAGCAGTCACAGTT GCCATTATGAACTACCCGTTTACCTGGAT	6050
		TTGTGTCA <u>T</u> GAACTTCA	6051
		TGAAGTTC <u>A</u> TGACACAA	6052
•	Waxy starch GBSS Arabidopsis thaliana	TAAACGGGTAGTTCATAATGGCAACTGTGACTGCTTCTTCTAACTT TGTGTCAAGAACTT <u>G</u> ACTTTTCAACAATCATGGTGCTTCTTCATGCT CTGATGTCGCTCAGATTACCTTAAAAGG	6053
20	Ser15Term TCA-TGA	CCTTTTAAGGTAATCTGAGCGACATCAGAGCATGAAGAAGCACCAT GATTGTTGAAAAGT <u>C</u> AAGTTCTTGACACAAAGTTAGAAGAAGCAGT CACAGTTGCCATTATGAACTACCCGTTTA	6054
		AAGAACTT <u>G</u> ACTTTTCA	6055
		TGAAAAGT <u>C</u> AAGTTCTT	6056
	Waxy starch GBSS Arabidopsis thaliana	TGACTGCTTCTTAACTTTGTGTCAAGAACTTCACTTTTCAACAAT CATGGTGCTTCTT <u>G</u> ATGCTCTGATGTCGCTCAGATTACCTTAAAAG GCCAATCCTTGACTCATTGTGGGTTAAG	6057
25	Ser24Term TCA-TGA	CTTAACCCACAATGAGTCAAGGATTGGCCTTTTAAGGTAATCTGAG CGACATCAGAGCAT <u>C</u> AAGAAGCACCATGATTGTTGAAAAGTGAAGT TCTTGACACAAAGTTAGAAGAAGCAGTCA	6058
		TGCTTCTT <u>G</u> ATGCTCTG	6059
		CAGAGCAT <u>C</u> AAGAAGCA	6060

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
Waxy starch GBSS Arabidopsis thaliana	TGCTTCTTCTAACTITGTGTCAAGAACTTCACTTTTCAACAATCATG GTGCTTCTTCATGATGTCGCTCAGATTACCTTAAAAGGCCA ATCCTTGACTCATTGTGGGTTAAGGTCA	6061
Cys25Term TGC-TGA	TGACCTTAACCCACAATGAGTCAAGGATTGGCCTTTTAAGGTAATC TGAGCGACATCAGATCATGAAGAAGCACCATGATTGTTGAAAAAGTG AAGTTCTTGACACAAAGTTAGAAGAAGCA	6062
	TCTTCATGATCTGATGT	6063
	ACATCAGA <u>T</u> CATGAAGA	6064
Waxy starch GBSS Antirrhinum majus	GTAACAGCTTCACAGTTGGTGTCACATGTCCATGGTGGAGCAACG TCTTCACCGGATACT <u>T</u> AAACAAACTTGGCCCAGGTTGGCCTCAGG AACCAGCAATTCACTCACAATGGGTTGAGAT	6065
Lys24Term AAA-TAA	ATCTCAACCCATTGTGAGTGAATTGCTGGTTCCTGAGGCCAACCT GGGCCAAGTTTGTTTAAGTATCCGGTGAAGACGTTGCTCCACCAT GGACATGTGACACCAACTGTGAAGCTGTTAC	6066
	CGGATACT <u>T</u> AAACAAAC	6067
	GTTTGTTT <u>A</u> AGTATCCG	6068
Waxy starch GBSS Antirrhinum majus	CACAGTTGGTGTCACATGTCCATGGTGGAGCAACGTCTTCACCGG ATACTAAAACAAACT <u>A</u> GGCCCAGGTTGGCCTCAGGAACCAGCAAT TCACTCACAATGGGTTGAGATCAATAAACAT	6069
Leu27Term TTG-TAG	ATGTTTATTGATCTCAACCCATTGTGAGTGAATTGCTGGTTCCTGA GGCCAACCTGGGCCTAGTTTGTTTTAGTATCCGGTGAAGACGTTG CTCCACCATGGACATGTGACACCAACTGTG	6070
	AACAAACTAGGCCCAGG	6071
	CCTGGGCCTAGTTTGTT	6072
Waxy starch GBSS	TTGGTGTCACATGTCCATGGTGGAGCAACGTCTTCACCGGATACT AAAACAAACTTGGCCTAGGTTGGCCTCAGGAACCAGCAATTCACT CACAATGGGTTGAGATCAATAAACATGGTTG	6073
Antirrhinum majus Gln29Term CAG-TAG	CAACCATGTTTATTGATCTCAACCCATTGTGAGTGAATTGCTGGTT CCTGAGGCCAACCTAGGCCAAGTTTGTTTTAGTATCCGGTGAAGA CGTTGCTCCACCATGGACATGTGACACCAA	6074
	ACTTGGCC <u>T</u> AGGTTGGC	6075
	GCCAACCT <u>A</u> GGCCAAGT	6076
Waxy starch GBSS Antirrhinum majus	GGTGGAGCAACGTCTTCACCGGATACTAAAACAAACTTGGCCCAG GTTGGCCTCAGGAACTAGCAATTCACTCACAATGGGTTGAGATCAA TAAACATGGTTGATAAGCTTCAAATGAGGA	6077
Gln35Term CAG-TAG	TCCTCATTTGAAGCTTATCAACCATGTTTATTGATCTCAACCCATTG TGAGTGAATTGCTAGTTCCTGAGGCCAACCTGGGCCAAGTTTGTT TTAGTATCCGGTGAAGACGTTGCTCCACC	6078

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ NO:
	TCAGGAAC <u>T</u> AGCAATTC	6079
	GAATTGCT <u>A</u> GTTCCTGA	6080
Waxy starch GBSS Antimhinum majus	GGAGCAACGTCTTCACCGGATACTAAAACAAACTTGGCCCAGGTT GGCCTCAGGAACCAGTAATTCACTCACAATGGGTTGAGATCAATAA ACATGGTTGATAAGCTTCAAATGAGGAACA	608
GIn36Term CAA-TAA	TGTTCCTCATTTGAAGCTTATCAACCATGTTTATTGATCTCAACCCA TTGTGAGTGAATTACTGGTTCCTGAGGCCAACCTGGGCCAAGTTT GTTTTAGTATCCGGTGAAGACGTTGCTCC	6082
	GGAACCAG <u>T</u> AATTCACT	608
	AGTGAATT <u>A</u> CTGGTTCC	608
Waxy starch GBSS <i>Ipomoea batatas</i>	GTGATGGCGACTATAACTGCCTCACACTTTGTTTCTCATGTCTGTG GGGGTGCCACTTCTTGAGAATCAAAAGTGGGGTTGGGTCAATTAG CCCTGAGGAGCCAAGCTGTGACTCACAATG	608
Gly20Term GGA-TGA	CATTGTGAGTCACAGCTTGGCTCCTCAGGGCTAATTGACCCAACC CCACTTTTGATTCTCAAGAAGTGGCACCCCCACAGACATGAGAAA CAAAGTGTGAGGCAGTTATAGTCGCCATCAC	608
	CCACTTCT <u>T</u> GAGAATCA	608
	TGATTCTC <u>A</u> AGAAGTGG	608
Waxy starch GBSS Ipomoea batatas	ATGGCGACTATAACTGCCTCACACTTTGTTTCTCATGTCTGGGG GTGCCACTTCTGGA <u>T</u> AATCAAAAGTGGGGTTGGGTCAATTAGCCC TGAGGAGCCAAGCTGTGACTCACAATGGGT	608
Glu21Term GAA-TAA	ACCCATTGTGAGTCACAGCTTGGCTCCTCAGGGCTAATTGACCCA ACCCCACTTTTGATTATCCAGAAGTGGCACCCCCACAGACATGAG AAACAAAGTGTGAGGCAGTTATAGTCGCCAT	609
	CTTCTGGA <u>T</u> AATCAAAA	609
	TTTTGATT <u>A</u> TCCAGAAG	609
Waxy starch GBSS Ipomoea batatas	CGACTATAACTGCCTCACACTTTGTTTCTCATGTCTGTGGGGGTGC CACTTCTGGAGAATGAAAAGTGGGGTTGGGTCAATTAGCCCTGAG GAGCCAAGCTGTGACTCACAATGGGTTGAG	609
Ser22Term TCA-TGA	CTCAACCCATTGTGAGTCACAGCTTGGCTCCTCAGGGCTAATTGA CCCAACCCCACTTTTCATTCTCCAGAAGTGGCACCCCCACAGACA TGAGAAACAAAGTGTGAGGCAGTTATAGTCG	609
	TGGAGAAT <u>G</u> AAAAGTGG	609
	CCACTTT <u>C</u> ATTCTCCA	609

10

15

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	Waxy starch GBSS Ipomoea batatas	ACTATAACTGCCTCACACTTTGTTTCTCATGTCTGTGGGGGTGCCA CTTCTGGAGAATCA <u>T</u> AAGTGGGGTTGGGTCAATTAGCCCTGAGGA GCCAAGCTGTGACTCACAATGGGTTGAGAC	6097
5	Lys23Term AAA-TAA	GTCTCAACCCATTGTGAGTCACAGCTTGGCTCCTCAGGGCTAATT GACCCAACCCCACTT <u>A</u> TGATTCTCCAGAAGTGGCACCCCCACAGA CATGAGAAACAAAGTGTGAGGCAGTTATAGT	6098
		GAGAATCA <u>T</u> AAGTGGGG	6099
		CCCCACTT <u>A</u> TGATTCTC	6100
	Waxy starch GBSS Ipomoea batatas	CCTCACACTTTGTTTCTCATGTCTGTGGGGGTGCCACTTCTGGAGA ATCAAAAGTGGGGTAGGGTCAATTAGCCCCTGAGGAGCCAAGCTGT GACTCACAATGGGTTGAGACCTGTGAACAA	6101
10	Leu26Term TTG-TAG	TTGTTCACAGGTCTCAACCCATTGTGAGTCACAGCTTGGCTCCTCA GGGCTAATTGACCC <u>T</u> ACCCCACTTTTGATTCTCCAGAAGTGGCAC CCCCACAGACATGAGAAACAAAGTGTGAGG	6102
		AGTGGGGT <u>A</u> GGGTCAAT	6103
		ATTGACCC <u>T</u> ACCCCACT	6104
	Waxy starch GBSS Astragalus	CATCGGCGATTGTTGCTCCTTACTGCTCTCTCACAGAATGGCAAC GGTGACGGGGTCTTAGGTGGTGTCGAGAAGCGCGTGCTTCAATTC CCAGGGAAGAACAGAAGCCAAAGTGAATTCA	6105
15	membranaeus Tyr8Term TAT-TAG	TGAATTCACTTTGGCTTCTGTTCTTCCCTGGGAATTGAAGCACGCG CTTCTCGACACCACCTAAGACCCCGTCACCGTTGCCATTCTGTGA GAGAGCAGTAAGGAGCAACAATCGCCGATG	6106
		GGGTCTTA <u>G</u> GTGGTGTC	6107
		GACACCAC <u>C</u> TAAGACCC	6108
٠	Waxy starch GBSS Astragalus	ATTGTTGCTCCTTACTGCTCTCTCACAGAATGGCAACGGTGACGG GGTCTTATGTGGTGTAGAGAAGCGCGTGCTTCAATTCCCAGGGAA GAACAGAAGCCAAAGTGAATTCACCTCAGAA	6109
20	membranaeus Ser11Term TCG-TAG	TTCTGAGGTGAATTCACTTTGGCTTCTGTTCTTCCCTGGGAATTGA AGCACGCGCTTCTC <u>T</u> ACACCACATAAGACCCCGTCACCGTTGCCA TTCTGTGAGAGAGCAGTAAGGAGCAACAAT	6110
		TGTGGTGT <u>A</u> GAGAAGCG	6111
		CGCTTCTC <u>T</u> ACACCACA	6112

BNSDOCID: <WO__0192512A2_1_>

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	Waxy starch GBSS Astragalus	TGTTGCTCCTTACTGCTCTCTCACAGAATGGCAACGGTGACGGGG TCTTATGTGGTGTCGTGAAGCGCGTGCTTCAATTCCCAGGGAAGA ACAGAAGCCAAAGTGAATTCACCTCAGAAGA	6113
5	membranaeus Arg12Term AGA-TGA	TCTTCTGAGGTGAATTCACTTTGGCTTCTGTTCTTCCCTGGGAATT GAAGCACGCGCTTCACGACACACACACACACACCCCGTCACCGTTGC CATTCTGTGAGAGAGCAGCAGCAACA	6114
		TGGTGTCGTGAAGCGCG	6115 6116
	Waxy starch GBSS Astragalus	CGCGCTTCACGACACCA ACTGCTCTCACAGAATGGCAACGGTGACGGGGTCTTATGTGGT GTCGAGAAGCGCGTGATTCAATTCCCAGGGAAGAACAGAAGCCAA AGTGAATTCACCTCAGAAGATAAATCTCAAT	6117
0	membranaeus Cys15Term TGC-TGA	ATTGAGATTTATCTTCTGAGGTGAATTCACTTTGGCTTCTGTTCTTC CCTGGGAATTGAATCACGCGCTTCTCGACACCACATAAGACCCCG TCACCGTTGCCATTCTGTGAGAGAGCAGT	6118
		AGCGCGTG <u>A</u> TTCAATTC	6119
		GAATTGAA <u>T</u> CACGCGCT	6120
5	Waxy starch GBSS Astragalus	CACAGAATGGCAACGGTGACGGGGTCTTATGTGGTGTCGAGAAGC GCGTGCTTCAATTCC <u>T</u> AGGGAAGAACAGAAGCCAAAGTGAATTCA CCTCAGAAGATAAATCTCAATAGCCAAGCAT	6121
	membranaeus Gln19Term CAG-TAG	ATGCTTGGCTATTGAGATTTATCTTCTGAGGTGAATTCACTTTGGCT TCTGTTCTTCCCTAGGAATTGAAGCACGCGCTTCTCGACACCACAT AAGACCCCGTCACCGTTGCCATTCTGTG	6122
		TCAATTCC <u>T</u> AGGGAAGA	6123
		TCTTCCCT <u>A</u> GGAATTGA	6124
20	Waxy starch GBSS Solanum tuberosum	TGTAGCTTGGTAGATTCCCCTTTTTGTAGACCACACATCACATGGC AAGCATCACAGCTTGACACCACTTTGTGTCAAGAAGCCAAACTTCACTAGACACCAAATCAACCTTGTCACAGAT	6125
	Ser7Term TCA-TGA	ATCTGTGACAAGGTTGATTTGGTGTCTAGTGAAGTTTGGCTTCTTG ACACAAAGTGGTGTCAAGCTGTGATGCTTGCCATGTGATGTGTGG TCTACAAAAAGGGGAATCTACCAAGCTACA	6126
		CACAGCTT <u>G</u> ACACCACT	6127
		AGTGGTGTCAAGCTGTG	6128
25	Waxy starch GBSS Solanum tuberosum	TCCCCTTTTGTAGACCACACATCACATGGCAAGCATCACAGCTTC ACACCACTTTGTGTGAAGAAGCCAAACTTCACTAGACACCAAATCA ACCTTGTCACAGATAGGACTCAGGAACCA	6129
	Ser12Term TCA-TGA	TGGTTCCTGAGTCCTATCTGTGACAAGGTTGATTTGGTGTCTAGTG AAGTTTGGCTTCTTCACACAAAGTGGTGTGAAGCTGTGATGCTTGC CATGTGATGTG	6130

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
Anteration	CTTTGTGTGAAGAAGCC	6131
	GGCTTCTT <u>C</u> ACACAAAG	6132
Waxy starch GBSS Solanum tuberosum	CCCTTTTTGTAGACCACACATCACATGGCAAGCATCACAGCTTCAC ACCACTTTGTGTCATGAAGCCAAACTTCACTAGACACCAAATCAAC CTTGTCACAGATAGGACTCAGGAACCATA	6133
Arg13Term AGA-TGA	TATGGTTCCTGAGTCCTATCTGTGACAAGGTTGATTTGGTGTCTAG TGAAGTTTGGCTTCATGACACAAAGTGGTGTGAAGCTGTGATGCTT GCCATGTGATGTG	6134
	TTGTGTCA <u>T</u> GAAGCCAA	6135
	TTGGCTTC <u>A</u> TGACACAA	6136
Waxy starch GBSS	TTGTAGACCACACATCACATGGCAAGCATCACAGCTTCACACCACT TTGTGTCAAGAAGCTAAACTTCACTAGACACCAAATCAACCTTGTC ACAGATAGGACTCAGGAACCATACTCTGA	6137
Solanum tuberosum Gln15Term CAA-TAA	TCAGAGTATGGTTCCTGAGTCCTATCTGTGACAAGGTTGATTTGGT GTCTAGTGAAGTTTAGCTTCTTGACACAAAGTGGTGTGAAGCTGTG ATGCTTGCCATGTGATGTG	6138
	CAAGAAGCTAAACTTCA	6139
•	TGAAGTTT <u>A</u> GCTTCTTG	6140
Waxy starch GBSS Solanum tuberosum	CCACACATCACATGGCAAGCATCACAGCTTCACACCACTTTGTGTC AAGAAGCCAAACTTGACTAGACACCAAATCAACCTTGTCACAGATA GGACTCAGGAACCATACTCTGACTCACAA	6141
Ser17Term TCA-TGA	TTGTGAGTCAGAGTATGGTTCCTGAGTCCTATCTGTGACAAGGTTG ATTTGGTGTCTAGTCAAGTTTGGCTTCTTGACACAAAGTGGTGTGA AGCTGTGATGCTTGCCATGTGATGTG	6142
	CCAAACTT G ACTAGACA	6143
	TGTCTAGT <u>C</u> AAGTTTGG	6144
Waxy starch GBSS Pisum sativum	GTCGATCACTCTTCTCACCGCCGAAACAGATTTTGACACAAAAA TGGCAACAATAACGTGATCTTCAATGCCGACGAGAACCGCGTGCT TCAATTACCAAGGAAGATCAGCAGAGTCTA	6145
Gly6Term GGA-TGA	TAGACTCTGCTGATCTTCCTTGGTAATTGAAGCACGCGGTTCTCGT CGGCATTGAAGATCACGTTATTGTTGCCATTTTTGTGTCAAAATCT GTTTCGGCGGTGAGAGAAGAGTGATCGAC	6146
	CAATAACGTGATCTTCA	6147
	TGAAGATC <u>A</u> CGTTATTG	6148

10

15

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
	Waxy starch GBSS Pisum sativum	ACTCTTCTCACCGCCGAAACAGATTTTGACACAAAAATGGCAAC AATAACGGGATCTTGAATGCCGACGAGAACCGCGTGCTTCAATTA CCAAGGAAGATCAGCAGAGTCTAAACTGAA	6149
5	Ser8Term TCA-TGA	TTCAGTTTAGACTCTGCTGATCTTCCTTGGTAATTGAAGCACGCGG TTCTCGTCGGCATTCAAGATCCCGTTATTGTTGCCATTTTTGTGTC AAAATCTGTTTCGGCGGTGAGAGAGAGAGT	6150
		GGGATCTT <u>G</u> AATGCCGA	6151 6152
	100	TCGGCATT <u>C</u> AAGATCCC	
	Waxy starch GBSS Pisum sativum	ACCGCCGAAACAGATTTTGACACAAAAATGGCAACAATAACGGGAT CTTCAATGCCGACG <u>T</u> GAACCGCGTGCTTCAATTACCAAGGAAGAT CAGCAGAGTCTAAACTGAATTTGCCTCAGA	6153
10	Arg12Term AGA-TGA	TCTGAGGCAAATTCAGTTTAGACTCTGCTGATCTTCCTTGGTAATT GAAGCACGCGGTTCACGTCGGCATTGAAGATCCCGTTATTGTTGC CATTTTTGTGTCAAAATCTGTTTCGGCGGT	6154
		TGCCGACG <u>T</u> GAACCGCG	6155
		CGCGGTTC <u>A</u> CGTCGGCA	6156
	Waxy starch GBSS Pisum sativum	AGATTTTGACACAAAAATGGCAACAATAACGGGATCTTCAATGCCG ACGAGAACCGCGTGATTCAATTACCAAGGAAGATCAGCAGAGTCT AAACTGAATTTGCCTCAGATACACTTCAAT	6157
15	Cys15Term TGC-TGA	ATTGAAGTGTATCTGAGGCAAATTCAGTTTAGACTCTGCTGATCTT CCTTGGTAATTGAA <u>T</u> CACGCGGTTCTCGTCGGCATTGAAGATCCC GTTATTGTTGCCATTTTTGTGTCAAAATCT	6158
	•	ACCGCGTG <u>A</u> TTCAATTA	6159
		TAATTGAA <u>T</u> CACGCGGT	6160
	Waxy starch GBSS Pisum sativum	CACAAAATGGCAACAATAACGGGATCTTCAATGCCGACGAGAAC CGCGTGCTTCAATTAGCAAGGAAGATCAGCAGAGTCTAAACTGAAT TTGCCTCAGATACACTTCAATAACAACCAA	6161
20 .	Tyr18Term TAC-TAG	TTGGTTGTTATTGAAGTGTATCTGAGGCAAATTCAGTTTAGACTCTG CTGATCTTCCTTGCTAATTGAAGCACGCGGTTCTCGTCGGCATTGA AGATCCCGTTATTGTTGCCATTTTTGTG	6162
		TTCAATTA G CAAGGAAG	6163
		CTTCCTTG <u>C</u> TAATTGAA	6164
	Waxy starch GBSS Manihot esculenta	TCTACACCGGAGAGCACCATGGCAACTGTAATAGCTGCACATT TCGTTTCCAGGAGCTGACACTTGAGCATCCATGCATTAGAGACTAA GGCTAATAATTTGTCTCACACTGGACCCTG	6165
25	Ser14Term TCA-TGA	CAGGGTCCAGTGTGAGACAAATTATTAGCCTTAGTCTCTAATGCAT GGATGCTCAAGTGTCAGCTCCTGGAAACGAAATGTGCAGCTATTA CAGTTGCCATGGTGCTCTCTCCGGTGTAGA	6166

BNSDOCID: <WO___0192512A2_I_>

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	CAGGAGCT <u>G</u> ACACTTGA	6167
	TCAAGTGT <u>C</u> AGCTCCTG	6168
Waxy starch GBSS Manihot esculenta	CCGGAGAGAGCACCATGGCAACTGTAATAGCTGCACATTTCGTTT CCAGGAGCTCACACTAGAGACTAAGGCTA ATAATTTGTCTCACACTGGACCCTGGACCCA	6169
Leu16Term TTG-TAG	TGGGTCCAGGGTCCAGTGTGAGACAAATTATTAGCCTTAGTCTCTA ATGCATGGATGCTC <u>T</u> AGTGTGAGCTCCTGGAAACGAAATGTGCAG CTATTACAGTTGCCATGGTGCTCTCTCCGG	6170
	CTCACACT <u>A</u> GAGCATCC	6171
	GGATGCTC <u>T</u> AGTGTGAG	6172
Waxy starch GBSS Manihot esculenta	TGGCAACTGTAATAGCTGCACATTTCGTTTCCAGGAGCTCACACTT GAGCATCCATGCATGAGAGACTAAGGCTAATAATTTGTCTCACACT GGACCCTGGACCCAAACTATCACTCCCAA	6173
Leu21Term TTA-TGA	TTGGGAGTGATAGTTTGGGTCCAGGGTCCAGTGTGAGACAAATTA TTAGCCTTAGTCTCTCATGCATGGATGCTCAAGTGTGAGCTCCTGG AAACGAAATGTGCAGCTATTACAGTTGCCA	6174
!	CCATGCAT <u>G</u> AGAGACTA	6175
	TAGTCTCT <u>C</u> ATGCATGG	6176
Waxy starch GBSS Manihot esculenta	GCAACTGTAATAGCTGCACATTTCGTTTCCAGGAGCTCACACTTGA GCATCCATGCATTA <u>T</u> AGACTAAGGCTAATAATTTGTCTCACACTGG ACCCTGGACCCAAACTATCACTCCCAATG	6177
Glu22Term GAG-TAG	CATTGGGAGTGATAGTTTGGGTCCAGGGTCCAGTGTGAGACAAAT TATTAGCCTTAGTCTAATAGCATGGATGCTCAAGTGTGAGCTCCT GGAAACGAAATGTGCAGCTATTACAGTTGC	6178
	ATGCATTA <u>T</u> AGACTAAG	6179
	CTTAGTCT <u>A</u> TAATGCAT	6180
Waxy starch GBSS Manihot esculenta	GTAATAGCTGCACATTTCGTTTCCAGGAGCTCACACTTGAGCATCC ATGCATTAGAGACT <u>T</u> AGGCTAATAATTTGTCTCACACTGGACCCTG GACCCAAACTATCACTCCCAATGGTTTAA	6181
Lys24Term AAG-TAG	TTAAACCATTGGGAGTGATAGTTTGGGTCCAGGGTCCAGTGTGAG ACAAATTATTAGCCTAAGTCTCTAATGCATGGATGCTCAAGTGTGA GCTCCTGGAAACGAAATGTGCAGCTATTAC	6182
	TAGAGACT <u>T</u> AGGCTAAT	6183
	ATTAGCCT <u>A</u> AGTCTCTA	6184

10

15

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
	Waxy starch GBSS Phaseolus vulgaris	ACAACTCCTCCGTCACCGGTATAAGCATGGCAACGGTATCGATGG CATCGTGCGTGGCGTG	6185
5	Ser12Term TCA-TGA	CGGTTCAGGCTCATCTGACCCGAAGATTTCACTTTTGTCTCTGTAC TCCACGCGCCTTTTCACGCCACGC	6186
		CGTGGCGT <u>G</u> AAAAGGCG	6187 6188
	Waxy starch GBSS	CGCCTTTTCACGCCACG CACCGGTATAAGCATGGCAACGGTATCGATGGCATCGTGCC GTCAAAAGGCGCGTGAAGTACAGAGACAAAAGTGAAATCTTCGGG	6189
10	Phaseolus vulgaris Trp16Term TGG-TGA	TCAGATGAGCCGGTCATGAATTGAAA TTTCAATTCATGACGGTTCAGGCTCATCTGACCCGAAGATTTCACT TTTGTCTCTGTACTTCACGCGCCTTTTGACGCCACGCACG	6190
•		GGCGCGTG <u>A</u> AGTACAGA	6191
		TCTGTACT <u>T</u> CACGCGCC	6192
	Waxy starch GBSS Phaseolus vulgaris	ATAAGCATGGCAACGGTATCGATGGCATCGTGCGTGGCGTCAAAA GGCGCGTGGAGTACA <u>T</u> AGACAAAAGTGAAATCTTCGGGTCAGATG AGCCTGAACCGTCATGAATTGAAATACGATG	6193
15	Glu19Term GAG-TAG	CATCGTATTTCAATTCATGACGGTTCAGGCTCATCTGACCCGAAGA TTTCACTTTTGTCTATGTACTCCACGCGCCTTTTGACGCCACGCAC GATGCCATCGATACCGTTGCCATGCTTAT	6194
	·	GGAGTACA <u>T</u> AGACAAAA	6195
		TTTTGTCT <u>A</u> TGTACTCC	6196
	Waxy starch GBSS Phaseolus vulgaris	ATGGCAACGGTATCGATGGCATCGTGCGTGGCGTCAAAAGGCGC GTGGAGTACAGAGACATAAGTGAAATCTTCGGGTCAGATGAGCCT GAACCGTCATGAATTGAAATACGATGGGTTGA	6197
20	Lys21Term AAA-TAA	TCAACCCATCGTATTTCAATTCATGACGGTTCAGGCTCATCTGACC CGAAGATTTCACTTATGTCTCTGTACTCCACGCGCCTTTTGACGCC ACGCACGATGCCATCGATACCGTTGCCAT	6198
		CAGAGACATACCATACCATACCATACCATACCATACCAT	6199
		TTTCACTTATGTCTCTG	6200
	Waxy starch GBSS Phaseolus vulgaris	ACGGTATCGATGGCATCGTGCGTGGCGTCAAAAGGCGCGTGGAG TACAGAGACAAAAGTGTAATCTTCGGGTCAGATGAGCCTGAACCG TCATGAATTGAAATACGATGGGTTGAGATCTC	6201
25	Lys23Term AAA-TAA	GAGATCTCAACCCATCGTATTTCAATTCATGACGGTTCAGGCTCAT CTGACCCGAAGATTACACTTTTGTCTCTGTACTCCACGCGCCTTTT GACGCCACGCACGATGCCATCGATACCGT	6202

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
	CAAAAGTG <u>T</u> AATCTTCG	6203
	CGAAGATT <u>A</u> CACTTTTG	6204
Waxy starch GBSS Triticum aestivum	GCGCCTAGCTCGAAAAGGTCGTCATTGAGAGGCTGCACCAATGG GTTCCATTCCTAATTAGTGTTCTTATCAAACAAACAGTGTTGGTTCA CTGAAACTGTCGCCTCACATCCAATTCCAG	6205
Tyr7Term TAT-TAG	CTGGAATTGGATGTGAGGCGACAGTTTCAGTGAACCAACACTGTTT GTTTGATAAGAACACTAATTAGGAATGGAACCCATTGGTGCAGCCT CTCAATGACGACCTTTTCGAGCTAGGCGC	6206
	CCTAATTA <u>G</u> TGTTCTTA	6207
•	TAAGAACA <u>C</u> TAATTAGG	6208
Waxy starch GBSS Triticum aestivum	CCTAGCTCGAAAAGGTCGTCATTGAGAGGCTGCACCAATGGGTTC CATTCCTAATTATTGATCTTATCAAACAAACAGTGTTGGTTCACTGA AACTGTCGCCTCACATCCAATTCCAGCAA	6209
Cys8Term TGT-TGA	TTGCTGGAATTGGATGTGAGGCGACAGTTTCAGTGAACCAACACT GTTTGTTTGATAAGATCAATAATTAGGAATGGAACCCATTGGTGCA GCCTCTCAATGACGACCTTTTCGAGCTAGG	6210
	AATTATTGATCTTATCA	6211
·	TGATAAGA <u>T</u> CAATAATT	6212
Waxy starch GBSS Triticum aestivum	TCGAAAAGGTCGTCATTGAGAGGCTGCACCAATGGGTTCCATTCC TAATTATTGTTCTTAGCAAACAAACAGTGTTGGTTCACTGAAACTGT CGCCTCACATCCAATTCCAGCAATCTTGT	6213
Tyr10Term TAT-TAG	ACAAGATTGCTGGAATTGGATGTGAGGCGACAGTTTCAGTGAACC AACACTGTTTGTTTGCTAAGAACAATAATTAGGAATGGAACCCATT GGTGCAGCCTCTCAATGACGACCTTTTCGA	6214
	TGTTCTTA G CAAACAAA	6215
	TTTGTTTG <u>C</u> TAAGAACA	6216
Waxy starch GBSS Triticum aestivum	CGAAAAGGTCGTCATTGAGAGGCTGCACCAATGGGTTCCATTCCT AATTATTGTTCTTATTAAACAAACAGTGTTGGTTCACTGAAACTGTC GCCTCACATCCAATTCCAGCAATCTTGTA	6217
GIn11Term CAA-TAA	TACAAGATTGCTGGAATTGGATGTGAGGCGACAGTTTCAGTGAAC CAACACTGTTTGTTTAATAAGAACAATAATTAGGAATGGAACCCATT GGTGCAGCCTCTCAATGACGACCTTTTCG	6218
	GTTCTTAT <u>T</u> AAACAAAC	6219
	GTTTGTTT <u>A</u> ATAAGAAC	6220

10

15

10

15

20

25

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
Waxy starch GBSS Triticum aestivum	AGGCTGCACCAATGGGTTCCATTCCTAATTATTGTTCTTATCAAACA AACAGTGTTGGTTGAACTGTCGCCTCACATCCAATTCCAGC AATCTTGTAACAATGAAGTTATGTTCCT	6221
Ser17Term TCA-TGA	AGGAACATAACTTCATTGTTACAAGATTGCTGGAATTGGATGTGAG GCGACAGTTTCAGTCAACCAACACTGTTTGTTTGATAAGAACAATA ATTAGGAATGGAACCCATTGGTGCAGCCT	6222
	TGTTGGTT <u>G</u> ACTGAAAC	6223
	GTTTCAGT <u>C</u> AACCAACA	6224
Waxy starch GBSS <i>Triticum aestivum</i>	CAGCTCGCCACCTCCGGCACCGTCCTCGGCATCACCGACAGGTT CCGGCGTGCAGGTTTCTAGGGCGTGAGGCCCCGGAGCCCGGCG GATGCGGCTCTCGGCATGAGGACCGTCGGAGCTA	6225
GIn28Term CAG-TAG	TAGCTCCGACGGTCCTCATGCCGAGAGCCGCATCCGCCGGGCTC CGGGGCCTCACGCCCTAGAAACCTGCACGCCGGAACCTGTCGGT GATGCCGAGGACGTGCCGGAGGTGGCGAGCTG	6226
	CAGGTTTC <u>T</u> AGGGCGTG	6227
	CACGCCCT <u>A</u> GAAACCTG	6228
Waxy starch GBSS <i>Triticum aestivum</i>	GGTTTCCAGGGCGTGAGGCCCGGAGCCCGGCGGATGCGGCTC TCGGCATGAGGACCGTCTGAGCTAGCGCCCCCCAACGCAAAGC CGGAAAGCGCACCGCGGGACCCGGCGGTGCCTCT	6229
Gly46Term GGA-TGA	AGAGGCACCGCGGGTCCCGCGGTGCGCTTTCCGGCTTTGCGTT GGGGCGCGCTAGCTCAGACGGTCCTCATGCCGAGAGCCGCATC CGCCGGGCTCCGGGGCCTCACGCCCTGGAAACC	6230
	GGACCGTC <u>T</u> GAGCTAGC	6231
	GCTAGCTC <u>A</u> GACGGTCC	6232
Waxy starch GBSS Triticum aestivum	CGGAGCCCGGCGATGCGGCTCTCGGCATGAGGACCGTCGGAG CTAGCGCCGCCCAACGTAAAGCCGGAAAGCGCACCGCGGGACC CGGCGGTGCCTCTCCATGGTGGTGCGCGCCACCG	6233
GIn53Term CAA-TAA	CGGTGGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCG GTGCGCTTTCCGGCTTTACGTTGGGGCGGCGCTAGCTCCGACGG TCCTCATGCCGAGAGCCGCATCCGCCGGGCTCCG	6234
	CCCCAACGTAAAGCCGG	6235
	CCGGCTTTACGTTGGGG	6236
Waxy starch GBSS Triticum aestivum	GCGGATGCGGCTCTCGGCATGAGGACCGTCGGAGCTAGCGCCG CCCCAACGCAAAGCCGGTAAGCGCACCGCGGGACCCGGCGGTG CCTCTCCATGGTGGTGCGCGCCACCGGCAGCGGCG	6237
Lys56Term AAA-TAA	CGCCGCTGCCGGTGGCGCGCACCACCATGGAGAGGCACCGCCG GGTCCCGCGGTGCGCTTACCGGCTTTGCGTTGGGGCGCGCTAG CTCCGACGGTCCTCATGCCGAGAGCCGCATCCGC	6238

BNSDOCID: <WO__0192512A2_I_>

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
	AAAGCCGG <u>T</u> AAGCGCAC	6239
	GTGCGCTTACCGGCTTT	6240
Waxy starch GBSS Triticum aestivum	CTCTCCATGGTGGTGCGCGCCACCGGCAGCGGCGCATGAACCT CGTGTTCGTCGGCGCCTAGATGGCGCCCTGGAGCAAGACCGGCG GCCTCGGCGACGTCCTCGGGGGCCTCCCCCAG	6241
Glu85Term GAG-TAG	CTGGGGGAGGCCCCGAGGACGTCGCCGAGGCCGCCGGTCTT GCTCCAGGGCGCCATCTAGGCGCCGACGAACACGAGGTTCATGC CGCCGCTGCCGGTGGCGCGCACCACCATGGAGAG	6242
	TCGGCGCC <u>T</u> AGATGGCG	6243
	CGCCATCT <u>A</u> GGCGCCGA	6244
Waxy starch GBSS Triticum aestivum	GTCGTCTCGCTGCAGGTAGCCACACCCTGCGCGCGCGATGGC GGCTCTGGTCACGTCGTAGCTCGCCACCTCCGGCACCGTCCTCG GCATCACCGACAGGTTCCGGCGTGCAGGTTTTC	6245
GIn8Term CAG-TAG	GAAAACCTGCACGCCGGAACCTGTCGGTGATGCCGAGGACGGTG CCGGAGGTGGCGAGCTACGACCAGAGCCGCCATCGCGC GCGCAGGGTGTGGCTACCTGCAGCGAGAGACGAC	6246
	TCACGTCG <u>T</u> AGCTCGCC	6247
	GGCGAGCT <u>A</u> CGACGTGA	6248
Waxy starch GBSS Triticum aestivum	CAGCTCGCCACCTCCGGCACCGTCCTCGGCATCACCGACAGGTT CCGGCGTGCAGGTTTTTAGGGTGTGAGGCCCCGGAGCCCGGCAG ATGCGCCGCTCGGCATGAGGACTACCGGAGCGA	6249
Gln28Term CAG-TAG	TCGCTCCGGTAGTCCTCATGCCGAGCGGCGCATCTGCCGGGCTC CGGGGCCTCACACCCTAAAAACCTGCACGCCGGAACCTGTCGGT GATGCCGAGGACGTGCCGGAGGTGGCGAGCTG	6250
	CAGGTTTT <u>T</u> AGGGTGTG	6251
	CACACCCT <u>A</u> AAAACCTG	6252
Waxy starch GBSS Triticum aestivum	CCCCGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTACCG GAGCGAGCGCCCCCGTAGCAACAAAGCCGGAAAGCGCACCG CGGGACCCGGCGGTGCCTCTCCATGGTGGTGCGCG	6253
Lys52Term AAG-TAG	CGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCGGTGCGC TTTCCGGCTTTGTTGCTACGGGGCGCGCGCTCGCTCCGGTAGTCC TCATGCCGAGCGCGCGCATCTGCCGGGGCTCCGGGG	6254
	CCGCCCG <u>T</u> AGCAACAA	6255
	TTGTTGCT <u>A</u> CGGGGCGG	6256

10

15

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
	Waxy starch GBSS Triticum aestivum	CGGAGCCCGCAGATGCGCCGCTCGGCATGAGGACTACCGGAG CGAGCGCCCCCGAAGTAACAAAGCCGGAAAGCGCACCGCGG GACCCGGCGGTGCCTCTCCATGGTGGTGCGCGCCA	6257
5	GIn53Term CAA-TAA	TGGCGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCGGTG CGCTTTCCGGCTTTGTTACTTCGGGGCGCGCGCTCCGGTAG TCCTCATGCCGAGCGCGCATCTGCCGGGCTCCG	6258
		CCCCGAAG <u>T</u> AACAAAGC	6259 6260
	Waxy starch	GCTTTGTT <u>A</u> CTTCGGGG AGCCCGGCAGATGCGCCGCTCGGCATGAGGACTACCGGAGCGA	6261
	GBSS Triticum aestivum	GCGCCGCCCGAAGCAA <u>T</u> AAAGCCGGAAAGCGCACCGCGGAC CCGGCGGTGCCTCCATGGTGGTGCGCGCCACGG	
10	GIn54Term CAA-TAA	CCGTGGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCG GTGCGCTTTCCGGCTTTATTGCTTCGGGGCGCGCGCTCCCGG TAGTCCTCATGCCGAGCGCGCCATCTGCCGGGCT	6262
		CGAAGCAA <u>T</u> AAAGCCGG	6263
		CCGGCTTTATTGCTTCG	6264
	Waxy starch GBSS Triticum durum	CAGCTCGCCACCTCCGGCACCGTCCTCGGCATCACCGACAGGTT CCGGCGTGCAGGTTTC <u>T</u> AGGGCGTGAGGCCCCGGAACCCGGCG GATGCGGCCCTCGTCATGAGGACTATCGGAGCGA	6265
15	Gln28Term CAG-TAG	TCGCTCCGATAGTCCTCATGACGAGGGCCGCATCCGCCGGGTTC CGGGGCCTCACGCCCTAGAAACCTGCACGCCGGAACCTGTCGGT GATGCCGAGGACGTGCCGGAGGTGGCGAGCTG	6266
		CAGGTTTC <u>T</u> AGGGCGTG	6267
		CACGCCCT <u>A</u> GAAACCTG	6268
	Waxy starch GBSS <i>Triticum durum</i>	CCCCGGAACCCGGCGGATGCGGCCCTCGTCATGAGGACTATCGG AGCGAGCGCCCCCGTAGCAAAGCCGGAAAGCGCACCGCGGG AGCCGGCGTGCCTCCATGGTGGTGCGCGCCA	6269
20	Lys52Term AAG-TAG	TGGCGCGCACCACGATGGAGAGGCACCGCCGGCTCCCGCGGTGCGCTTTCCGGCTTTGCTACGGGGCGGCGCTCGCT	6270
		CCGCCCGTAGCAAAGC	6271
		GCTTTGCT <u>A</u> CGGGGCGG	6272
	Waxy starch GBSS Triticum durum	CGGAACCCGGCGATGCGGCCCTCGTCATGAGGACTATCGGAGC GAGCGCCGCCCGAAG <u>T</u> AAAGCCGGAAAGCGCACCGCGGGAGC CGGCGTGCCTCTCCATGGTGCTGCGCGCACGG	6273
25	GIn53Term CAA-TAA	CCGTGGCGCACCACCATGGAGAGGCACCGCCGGCTCCCGCG GTGCGCTTTCCGGCTTTACTTCGGGGCGCGCTCCGCTC	6274

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	CCCCGAAG <u>T</u> AAAGCCGG	627.5
	CCGGCTTT <u>A</u> CTTCGGGG	6276
Waxy starch GBSS Triticum durum	GCGGATGCGGCCCTCGTCATGAGGACTATCGGAGCGAGCG	6277
Lys56Term AAA-TAA	CGCCGCTGCCCGTGGCGCGCACCACCATGGAGAGGCACCGCCGGCTCCCCGCGCGTGCGCTTACCGGCTTTGCTTCGGGGCGCGCTCGCT	6278
	AAAGCCGG <u>T</u> AAGCGCAC	6279
	GTGCGCTTACCGGCTTT	6280
Waxy starch GBSS <i>Triticum durum</i>	TATCGGAGCGAGCGCCCCGAAGCAAAGCCGGAAAGCGCACC GCGGGAGCCGGCGGTG <u>A</u> CTCTCCATGGTGGTGCGCGCCACGGG CAGCGGCGCATGAACCTCGTGTTCGTCGGCGCC	6281
Cys64Term TGC-TGA	GGCGCCGACGACACGAGGTTCATGCCGCCGCTGCCCGTGGCG CGCACCACCATGGAGAGTCACCGCCGGCTCCCGCGGTGCGCTTT CCGGCTTTGCTTCGGGGCGCGCGC	6282
	CGGCGGTG <u>A</u> CTCTCCAT	6283
	ATGGAGAG <u>T</u> CACCGCCG	6284
Waxy starch GBSS Triticum turgidum	CAGCTCGCCACCTCCGGCACCGTCCTCGGCATCACCGACAGGTT CCGGCGTGCAGGTTTTTAGGGTGTGAGGCCCCGGAGCCCGGCAG ATGCGCCGCTCGGCATGAGGACTACCGGAGCGA	6285
Gln28Term CAG-TAG	TCGCTCCGGTAGTCCTCATGCCGAGCGGCGCATCTGCCGGGCTC CGGGGCCTCACACCCTAAAAACCTGCACGCCGGAACCTGTCGGT GATGCCGAGGACGTGCCGGAGGTGGCGAGCTG	6286
	CAGGTTTT <u>T</u> AGGGTGTG	6287
	CACACCCT <u>A</u> AAAACCTG	6288
Waxy starch GBSS Triticum turgidum	CCCCGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTACCG GAGCGAGCGCCCCCGTAGCAACAAAGCCGGAAAGCGCACCG CGGGACCCGGCGGTGCCTCTCCATGGTGCTGCGCG	6289
Lys52Term AAG-TAG	CGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCGGTGCGC TTTCCGGCTTTGTTGCTACGGGGCGCGCGCTCGCTCCGGTAGTCC TCATGCCGAGCGCGCGCATCTGCCGGGGCTCCGGGG	6290
	CCGCCCG <u>T</u> AGCAACAA	6291
	TTGTTGCT <u>A</u> CGGGGCGG	6292

10

15

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	Waxy starch GBSS Triticum turgidum	CGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTACCGGAG CGAGCGCCGCCCGAAGTAACAAAGCCGGAAAGCGCACCGCGG GACCCGGCGGTGCCTCTCCATGGTGGTGCGCGCCA	6293
5	GIn53Term CAA-TAA	TGGCGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCGGTG CGCTTTCCGGCTTTGTTACTTCGGGGCGCGCGCTCGCTCCGGTAG TCCTCATGCCGAGCGCGCGCATCTGCCGGGCTCCG	6294
	·	CCCCGAAGTAACAAAGC	6295
		GCTTTGTT <u>A</u> CTTCGGGG	6296
	Waxy starch GBSS Triticum turgidum	AGCCCGCAGATGCGCCGCTCGGCATGAGGACTACCGGAGCGA GCGCCGCCCGAAGCAATAAAGCCGGAAAGCGCACCGCGGAC CCGGCGGTGCCTCTCCATGGTGGTGCGCGCCACGG	6297
10	Gin54Term CAA-TAA	CCGTGGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCG GTGCGCTTTCCGGCTTTATTGCTTCGGGGCGCGCTCGCTC	6298
		CGAAGCAA <u>T</u> AAAGCCGG	6299
		CCGGCTTTATTGCTTCG	6300
	Waxy starch GBSS <i>Triticum turgidum</i>	GATGCGCCGCTCGGCATGAGGACTACCGGAGCGAGCGCCCCCCGGAAGCAACAAAGCCGGTAAGCGCACCGCGGACCCGGCGGTGCCTCCATGGTGCGCGCGC	6301
15	Lys57Term AAA-TAA	CGGCGCTGCCGTGGCGCGCACCACCATGGAGAGGCACCGCCG GGTCCCGCGGTGCGCTTACCGGCTTTGTTGCTTCGGGGCGCGCGC	6302
		AAAGCCGG <u>T</u> AAGCGCAC	6303
		GTGCGCTT <u>A</u> CCGGCTTT	6304
	Waxy starch GBSS Aegilops speltoides	CAGCTCGCCACCTCCGCCACCGTCCTCGGCATCACCGACAGGTT CCGCCATGCAGGTTTCTAGGGCGTGAGGCCCGGAGCCCGGCAG ATGCGCCGCTCGGCATGAGGACTGTCGGAGCGA	6305
20	Gln28Term CAG-TAG	TCGCTCCGACAGTCCTCATGCCGAGCGGCGCATCTGCCGGGCTC CGGGGCCTCACGCCCTAGAAACCTGCATGGCGGAACCTGTCGGT GATGCCGAGGACGTGGCGAGGTGGCGAGCTG	6306
		CAGGTTTC <u>T</u> AGGGCGTG	6307
		CACGCCCT <u>A</u> GAAACCTG	6308
	Waxy starch GBSS Aegilops speltoides	GGTTTCCAGGGCGTGAGGCCCCGGAGCCCGGCAGATGCGCCGC TCGGCATGAGGACTGTCTGAGCGAGCGCCCCCGAAGCAACAA AGCCGGAAAGCGCACCGCGGGGACCCGGCGGTGCC	6309
25	Gly46Term GGA-TGA	GGCACCGCGGGTCCCGCGGTGCGCTTTCCGGCTTTGTTGCTTC GGGGCGGCGCTCGCT	6310

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
	GGACTGTC <u>T</u> GAGCGAGC	6311
	GCTCGCTC <u>A</u> GACAGTCC	6312
Waxy starch GBSS Aegilops speltoides	CCCCGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTGTCG GAGCGAGCGCCCCCGTAGCAACAAAGCCGGAAAGCGCACCG CGGGACCCGGCGGTGCCTCTCGATGGTGGTGCGCG	6313
Lys52Term AAG-TAG	CGCGCACCACCATCGAGAGGCACCGCCGGGTCCCGCGGTGCGC TTTCCGGCTTTGTTGCTACGGGGCGCGCGCTCGCTCCGACAGTCC TCATGCCGAGCGCGCGCATCTGCCGGGGCTCCGGGG	6314
	CCGCCCGTAGCAACAA	6315
	TTGTTGCTACGGGCCGG	6316
Waxy starch GBSS Aegilops speltoides	CGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTGTCGGAG CGAGCGCCCCCGAAGTAACAAAGCCGGAAAGCGCACCGCGG GACCCGGCGTGCCTCTCGATGGTGCTGCGCGCCA	6317
GIn53Term CAA-TAA	TGGCGCGCACCACCATCGAGAGGCACCGCCGGGTCCCGCGGTG CGCTTTCCGGCTTTGTTACTTCGGGGCGCGCTCCGCTC	6318
	CCCGAAGTAACAAAGC	6319
	GCTTTGTT <u>A</u> CTTCGGGG	6320
Waxy starch GBSS Aegilops speltoides	AGCCCGGCAGATGCGCCGCTCGGCATGAGGACTGTCGGAGCGA GCGCCGCCCGAAGCAATAAAGCCGGAAAGCGCACCGCGGGAC CCGGCGGTGCCTCTCGATGGTGGTGCGCGCCACCG	6321
GIn54Term CAA-TAA	CGGTGGCGCACCACCATCGAGAGGCACCGCCGGGTCCCGCG GTGCGCTTTCCGGCTTTATTGCTTCGGGGCGCGCTCGCTC	6322
	CGAAGCAATAAAGCCGG	6323
	CCGGCTTTATTGCTTCG	6324
Waxy starch GBSS Oryza glaberrima	AGTGCAGAGATCTTCCACAGCAACAGCTAGACAACCACCATGTCG GCTCTCACCACGTCCTAGCTCGCCACCTCGGCCACCGGCTTCGG CATCGCTGACAGGTCGGCGCCGTCGTCGCTGC	6325
GIn8Term CAG-TAG	GCAGCGACGGCGCCCGACCTGTCAGCGATGCCGAAGCCGGT GGCCGAGGTGGCGAGCTAGGACGTGGTGAGAGCCGACATGGTG GTTGTCTAGCTGTTGCTGTGGAAGATCTCTGCACT	6326
	CCACGTCCTAGCTCGCC	6327
	GGCGAGCT <u>A</u> GGACGTGG	6328

10

15

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	Waxy starch GBSS Oryza glaberrima	TCCACAGCAACAGCTAGACAACCACCATGTCGGCTCTCACCACGT CCCAGCTCGCCACCTAGGCCACCGGCTTCGGCATCGCTGACAGG TCGCCGCCGTCGTCGCTGCTCCGCCACGGGTT	6329
5	Ser12Term TCG-TAG	AACCCGTGGCGAGCAGCGACGACGGCGCCGACCTGTCAGCGAT GCCGAAGCCGGTGGCCTAGGTGGCGAGCTGGGACGTGGTGAGA GCCGACATGGTGGTTGTCTAGCTGTTGCTGTGGA	6330
		CGCCACCT <u>A</u> GGCCACCG CGGTGGCCTAGGTGGCG	6331
	10/		6332
	Waxy starch GBSS Oryza glaberrima	CGGCTCTCACCACGTCCCAGCTCGCCACCTCGGCCACCGGCTTC GGCATCGCTGACAGGTAGGCCCCGCTCGTCGCTCCCCCCCC	6333
10	Ser22Term TCG-TAG	CCGGCGGGCTGCGGGCTTGAGGCCCTGGAACCCGTGGCGGA GCAGCGACGACGCGCCTACCTGTCAGCGATGCCGAAGCCGGTG GCCGAGGTGGCGAGCTGGGACGTGGTGAGAGCCG	6334
		TGACAGGT <u>A</u> GGCGCCGT	6335
		ACGGCGCC <u>T</u> ACCTGTCA	6336
	Waxy starch GBSS Oryza glaberrima	CCACGTCCCAGCTCGCCACCTCGGCCACCGGCTTCGGCATCGCT GACAGGTCGGCGCCGTAGTCGCTGCTCCGCCACGGGTTCCAGG GCCTCAAGCCCCGCAGCCCCGCCGGCGGCGACGC	6337
15	Ser25Term TCG-TAG	GCGTCGCCGCCGGGGGCTGCGGGGCTTGAGGCCCTGGAACC CGTGGCGAGCAGCGAC <u>T</u> ACGGCGCCGACCTGTCAGCGATGCC GAAGCCGGTGGCCGAGGTGGCGAGCTGG	6338
		GGCGCCGT <u>A</u> GTCGCTGC	6339
4		GCAGCGAC <u>T</u> ACGGCGCC	6340
	Waxy starch GBSS Oryza glaberrima	CGTCCAGCTCGCCACCTCGGCCACCGGCTTCGGCATCGCTGAC AGGTCGGCGCCGTCGTAGCTCCCGCCACGGGTTCCAGGGCCT CAAGCCCCGCAGCCCCGCCGCGGCGACGCGAC	6341
20	Ser26Term TCG-TAG	GTCGCGTCGCCGCGGGGGCTGCGGGGCTTGAGGCCCTGGA ACCCGTGGCGAGCAGCTACGACGCGCCCGACCTGTCAGCGATG CCGAAGCCGGTGGCCGAGCTGGCAGCT	6342
		GCCGTCGT <u>A</u> GCTGCTCC	6343
		GGAGCAGC <u>T</u> ACGACGGC	6344
	Waxy starch GBSS Oryza sativa	TCCACAGCAAGAGCTAAACAGCCGACCGTGTGCACCACCATGTCG GCTCTCACCACGTCCTAGCTCGCCACCTCGGCCACCGGCTTCGG CATCGCCGACAGGTCGGCGCCGTCGTCGCTGC	6345
25	GIn8Term CAG-TAG	GCAGCGACGACGCGCCGACCTGTCGGCGATGCCGAAGCCGGT GGCCGAGGTGGCGAGCTAGGACGTGGTGAGAGCCGACATGGTG GTGCACACGGTCGGCTGTTTAGCTCTTGCTGTGGA	6346

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
	CCACGTCC <u>T</u> AGCTCGCC	6347
	GGCGAGCT <u>A</u> GGACGTGG	6348
Waxy starch GBSS Oryza sativa	CTAAACAGCCGACCGTGTGCACCACCATGTCGGCTCTCACCACGT CCCAGCTCGCCACCTAGGCCACCGGCTTCGGCATCGCCGACAGG TCGGCGCCGTCGTCGCTGCTTCGCCACGGGTT	6349
Ser12Term TCG-TAG	AACCCGTGGCGAAGCAGCGACGACGGCGCCGACCTGTCGGCGAT GCCGAAGCCGGTGGCCTAGGTGGCGAGCTGGGACGTGGTGAGA GCCGACATGGTGGTGCACACGGTCGGCTGTTTAG	6350
	CGCCACCT <u>A</u> GGCCACCG	6351
	CGGTGGCC <u>T</u> AGGTGGCG	6352
Waxy starch GBSS Oryza sativa	CGGCTCTCACCACGTCCCAGCTCGCCACCTCGGCCACCGGCTTC GGCATCGCCGACAGGTAGCCCGTCGTCGCTGCTTCGCCACGG GTTCCAGGGCCTCAAGCCCCGTAGCCCAGCCGG	6353
Ser22Term TCG-TAG	CCGGCTGGGCTACGGGGCTTGAGGCCCTGGAACCCGTGGCGAA GCAGCGACGACGCCCTACCTGTCGGCGATGCCGAAGCCGGT GGCCGAGGTGGCGAGCTGGGACGTGAGAGCCG	6354
	CGACAGGT <u>A</u> GGCGCCGT	6355
	ACGGCGCC <u>T</u> ACCTGTCG	6356
Waxy starch GBSS Oryza sativa	CCACGTCCCAGCTCGCCACCTCGGCCACCGGCTTCGGCATCGCC GACAGGTCGGCGCCGTAGTCGCTTCGCCACGGGTTCCAGGG CCTCAAGCCCCGTAGCCCAGCCGGCGGGGACGC	6357
Ser25Term TCG-TAG	GCGTCCCGCCGGCTGGGCTACGGGGCTTGAGGCCCTGGAACC CGTGGCGAAGCAGCGACTACGGCGCCGACCTGTCGGCGATGCC GAAGCCGGTGGCCGAGGTGGCGAGCTGGGACGTGG	6358
	GGCGCCGT <u>A</u> GTCGCTGC	6359
	GCAGCGAC <u>T</u> ACGGCGCC	6360
Waxy starch GBSS Oryza sativa	CGTCCCAGCTCGCCACCTCGGCCACCGGCTTCGGCATCGCCGAC AGGTCGGCGCCGTCGTAGCTGCTTCGCCACGGGTTCCAGGGCCT CAAGCCCCGTAGCCCAGCCGGCGGGGACGCATC	6361
Ser26Term TCG-TAG	GATGCGTCCCGCCGGCCGGCGGCGCCCGTGGGCCTGGAA CCCGTGGCGAAGCAGCTACGACGGCGCCGACCTGTCGGCGATGC CGAAGCCGGTGGCCGAGCTGGCGACCTGTCGGCGATGC	6362
	GCCGTCGTAGCTGCTTC	6363
	GAAGCAGC <u>T</u> ACGACGGC	6364

10

15

10

15

20

25.

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEC
Waxy starch GBSS Hordeum vulgare	GTCTCTCACTGCAGGTAGCCACACCCTGTGCGCGGCGCCATGGC GGCTCTGGCCACGTCCTAGCTCGCCACCTCCGGCACCGTCCTCG GCGTCACCGACAGATTCCGGCGTCCAGGTTTTC	63
GIn8Term CAG-TAG	GAAAACCTGGACGCCGGAATCTGTCGGTGACGCCGAGGACGGTG CCGGAGGTGGCGAGCTAGGACGTGGCCAGAGCCGCCATGGCGC CGCGCACAGGGTGTGGCTACCTGCAGTGAGAGAC	63
	CCACGTCC <u>T</u> AGCTCGCC	63
	GGCGAGCT <u>A</u> GGACGTGG	63
Waxy starch GBSS Hordeum vulgare	ATGGCGCTCTGGCCACGTCCCAGCTCGCCACCTCCGGCACCGT CCTCGGCGTCACCGAC <u>T</u> GATTCCGGCGTCCAGGTTTTCAGGGCCT CAGGCCCCGGAACCCGGCGGATGCGGCGCTTG	63
Arg21Term AGA-TGA	CAAGCGCCGCATCCGCCGGGTTCCGGGGCCTGAGGCCCTGAAAA CCTGGACGCCGGAATCAGTCGGTGACGCCGAGGACGGTGCCGG AGGTGGCGAGCTGGGACGTGCCAGAGCCGCCAT	63
	TCACCGAC <u>T</u> GATTCCGG	63
	CCGGAATC <u>A</u> GTCGGTGA	63
Waxy starch GBSS Hordeum vulgare	CAGCTCGCCACCTCCGGCACCGTCCTCGGCGTCACCGACAGATT CCGGCGTCCAGGTTTTTAGGGCCTCAGGCCCCGGAACCCGGCGG ATGCGGCGCTTGGTATGAGGACTATCGGAGCAA	63
Gln28Term CAG-TAG	TTGCTCCGATAGTCCTCATACCAAGCGCCGCATCCGCCGGGTTCC GGGGCCTGAGGCCCT <u>A</u> AAAACCTGGACGCCGGAATCTGTCGGTG ACGCCGAGGACGCTGCCGGAGGTGCCGAGCTG	63
	CAGGTTTT <u>T</u> AGGGCCTC	63
	GAGGCCCT <u>A</u> AAAACCTG	63
Waxy starch GBSS Hordeum vulgare	GGTTTTCAGGGCCTCAGGCCCCGGAACCCGGCGGATGCGGCGCT TGGTATGAGGACTATCTGAGCAAGCGCCGCCCCGAAGCAAAGCC GGAAAGCGCACCGCGGGAGCCGGCGCGCTCT	63
Gly46Term GGA-TGA	AGAGGCACCGCCGGCTCCCGCGGTGCGCTTTCCGGCTTTGCTTC GGGGCGGCGCTTGCTCAGATAGTCCTCATACCAAGCGCCGCATC CGCCGGGTTCCGGGGCCCTGAGGCCCTGAAAACC	63
	GGACTATC <u>T</u> GAGCAAGC	63
	GCTTGCTC <u>A</u> GATAGTCC	63
Waxy starch GBSS Hordeum vulgare	CCCCGGAACCCGGCGATGCGGCGCTTGGTATGAGGACTATCGG AGCAAGCGCCGCCCCGTAGCAAAGCCGGAAAGCGCACCGCGGG AGCCGGCGGTGCCTCCCGTGGTGGTGAGCGCCA	63
Lys52Term AAG-TAG	TGGCGCTCACCACGGAGAGGCACCGCCGGCTCCCGCGGTG CGCTTTCCGGCTTTGCT <u>A</u> CGGGGCGGCGCTTGCTCCGATAGTCC TCATACCAAGCGCCGCATCCGCCGGGTTCCGGGG	63

BNSDOCID: <WO___0192512A2_l_>

Phenotype Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	CCGCCCGTAGCAAAGC	6383
	GCTTTGCT <u>A</u> CGGGGCGG	6384
Waxy starch GBSS Zea mays	ACGTCTTTTCTCTCTCCTACGCAGTGGATTAATCGGCATGGCGG CTCTGGCCACGTCGTAGCTCGTCGCAACGCGCGCCGGCCTGGGC GTCCCGGACGCGTCCACGTTCCGCCGCGCG	6385
GIn8Term CAG-TAG	CGCCGCGGAACGTGGACGCGTCCGGGACGCCCAGGCCGGC GCGCGTTGCGACGAGCTACGACGTGGCCAGAGCCGCCATGCCGA TTAATCCACTGCGTAGGAGAGAGAAAAGACGT	6386
	CCACGTCG <u>T</u> AGCTCGTC	6387
	GACGAGCT <u>A</u> CGACGTGG	6388
Waxy starch GBSS Zea mays	GTCGCAACGCGCCGGCCTGGGCGTCCCGGACGCGTCCACGT TCCGCCGCGCGCGCGCGTAGGGCCTGAGGGGGCCCCGGGCGTC GGCGGCGCGACACGCTCAGCATGCGGACCAGCG	6389
Gln30Term CAG-TAG	CGCTGGTCCGCATGCTGAGCGTGTCCGCCGCCGCCGACGCCCG GGCCCCCTCAGGCCCTACGCGGCGCGCGCGCGCGAACGTGGAC GCGTCCGGGACGCCCAGGCCGCGCGCGCGTTGCGAC	6390
	GCGCCGCG <u>T</u> AGGGCCTG	6391
	CAGGCCCT <u>A</u> CGCGGCGC	6392
Waxy starch GBSS Zea mays	TCCCGGACGCGTCCACGTTCCGCCGCGCGCGCGCGCAGGGCCT GAGGGGGCCCGGGCGTAGGCGCGCGCGCGCACACGCTCAGCATG CGGACCAGCGCGCGCGCGCGCCCAGGCACCAGCA	6393
Ser38Term TCG-TAG	TGCTGGTGCCTGGGCGCGCGCGCGCGCGCGCGCATGCTGA GCGTGTCCGCCGCCCCTACGCCCGGGCCCCCCTCAGGCCCTG CGCGCGCGCGGGAACGTGGACGCGTCCGGGA	6394
	CCGGGCGTAGGCGGCGG	6395
	CCGCCGCTACGCCCGG	6396
Waxy starch GBSS Zea mays	GCGTCGGCGGCGGGACACGCTCAGCATGCGGACCAGCGCGCGC	6397
Ser57Term CAG-TAG	TGCCGGCGCTGCCACACGACGACGACGGGAACCTGCCCCCGCGCGCG	6398
	CCAGGCAC <u>T</u> AGCAGCAG	6399
	CTGCTGCTAGTGCCTGG	6400

10

15

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
Waxy starch	TCGGCGGCGGCGACACGCTCAGCATGCGGACCAGCGCGCGC	6401
GBSS	CGGCGCCCAGGCACCAG <u>T</u> AGCAGGCGCGCGCGCGGGGGCAGGTT	
Zea mays	CCCGTCGCTCGTGTGCGCCAGCGCCGGCATGA	
GIn58Term	TCATGCCGGCGCTGGCGCACACGACGACGACGGGAACCTGCCC	6402
CAG-TAG	CCGCGGCGCGCCTGCT <u>A</u> CTGGTGCCTGGGCGCGCGCGCGCGCGCGCGCGCGCGCGC	
	TGGTCCGCATGCTGAGCGTGTCCGCCGCCGCCGA	
	GGCACCAG <u>T</u> AGCAGGCG	6403
	CGCCTGCT <u>A</u> CTGGTGCC	6404

Example 11 Altering fatty acid content of plants

Improved means to manipulate fatty acid compositions, from biosynthetic or natural plant sources, are needed. For example, oils containing reduced saturated fatty acids are desired for dietary reasons and oils containing increased saturated fatty acids are also needed as alternatives to current sources of highly saturated oil products, such as tropical oils or chemically hydrogenated oils. It would therefore be advantageous to influence directly the production and composition of fatty acids in crop plants.

Higher plants synthesize fatty acids, primarily palmitic, stearic and oleic acids, in the plastids (i.e., chloroplasts, proplastids, or other related organelles) as part of the Fatty Acid Synthase (FAS) complex. Fatty acid synthesis is the result of the three enzymatic activities: acyl-ACP elongase, acyl-ACP desaturase and acyl-ACP thioesterases specific for each of palmitoyl-, stearoyl- and oleoyl-ACP.

A variety of enzymes have been identified that influence the relative levels of saturated vs. unsaturated fatty acids in plants. For example, the enzymes stearoyl-acyl carrier protein (stearoyl-ACP) desaturase, oleoyl desaturase and linoleate desaturase produce unsaturated fatty acids from saturated precursors. Similarly, relative enzymatic activities of the various acyl-ACP thioesterases influences the relative acyl-chain composition of the resultant fatty acids. Consequently a reduction or an increase of the activity of these enzymes can alter the properties of oils produced in a plant. In fact, specific targeting of particular enzymatic activities can results in altered levels of particular fatty acids.

The attached tables disclose exemplary oligonucleotides base sequences which can be used to generate site-specific mutations in plant genes encoding proteins involved in fatty acid biosynthesis.

Table 22
Oligonucleotides to produce plants with reduced palmitate

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
Reduced palmitate Acyl-ACP-thioesterase Arabidopsis thaliana	TTTGGTGGCAGTGTCTTTGAACGCTTCATCTCCTCGTCATGGTGGC CACCTCTGCTACGTAGTCATTCTTTCCTGTACCATCTTCTTCACTT GATCCTAATGGAAAAGGCAATAAGATTGG	6405
Ser8Term TCG-TAG	CCAATCTTATTGCCTTTTCCATTAGGATCAAGTGAAGAAGATGGTA CAGGAAAGAATGAC <u>T</u> ACGTAGCAGAGGTGGCCACCATGACGAGG AGATGAAGCGTTCAAAGACACTGCCACCAAA	6406

20

25

30

15

5

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
		TGCTACGT <u>A</u> GTCATTCT	6407
		AGAATGAC <u>T</u> ACGTAGCA	6408
	Reduced palmitate Acyl-ACP-thioesterase Arabidopsis thaliana	GGTGGCAGTGTCTTTGAACGCTTCATCTCCTCGTCATGGTGGCCA CCTCTGCTACGTCGTGATTCTTTCCTGTACCATCTTCTTCACTTGAT CCTAATGGAAAAGGCAATAAGATTGGGTC	6409
5	Ser9Term TCA-TGA	GACCCAATCTTATTGCCTTTTCCATTAGGATCAAGTGAAGAAGATG GTACAGGAAAGAAT <u>C</u> ACGACGTAGCAGAGGTGGCCACCATGACGA GGAGATGAAGCGTTCAAAGACACTGCCACC	6410
		TACGTCGT <u>G</u> ATTCTTTC	6411
		GAAAGAAT <u>C</u> ACGACGTA	6412
	Reduced palmitate Acyl-ACP-thioesterase Arabidopsis thaliana	ATCTCCTCGTCATGGTGGCCACCTCTGCTACGTCGTCATTCTTTCC TGTACCATCTTCTTGACTTGA	6413
10	Ser17Term TCA-TGA	GAATTGAGTCCAGCAAGATTCGTAGACCCAATCTTATTGCCTTTTC CATTAGGATCAAGTCAAG	6414
		ATCTTCTT <u>G</u> ACTTGATC	6415
		GATCAAGT <u>C</u> AAGAAGAT	6416
	Reduced palmitate Acyl-ACP-thioesterase Arabidopsis thaliana	GTGGCCACCTCTGCTACGTCGTCATTCTTTCCTGTACCATCTTCTT CACTTGATCCTAATTGAAAAGGCAATAAGATTGGGTCTACGAATCT TGCTGGACTCAATTCTGCACCTAACTCTG	6417
15	Gly22Term GGA-TGA	CAGAGTTAGGTGCAGAATTGAGTCCAGCAAGATTCGTAGACCCAA TCTTATTGCCTTTTCAATTAGGATCAAGTGAAGAAGATGGTACAGG AAAGAATGACGACGTAGCAGAGGTGGCCAC	6418
		ATCCTAAT <u>T</u> GAAAAGGC	6419
		GCCTTTTC <u>A</u> ATTAGGAT	6420
	Reduced palmitate Acyl-ACP-thioesterase Garcinia mangostana	GCTTGAATTTGTGATCTGATTGGTTAATTGTGGCCACAATGGTTGC TACTGCCGCCACGTGATCATTCTTTCCGTTGACTTCCCCTTCTGGG GATGCCAAATCGGGCAATCCCGGAAAAGG	6421
20	Ser8Term TCA-TGA	CCTTTTCCGGGATTGCCCGATTTGGCATCCCCAGAAGGGGAAGTC AACGGAAAGAATGATCACGTGGCGGCAGTAGCAACCATTGTGGCC ACAATTAACCAATCAGATCACAAATTCAAGC	6422
		CGCCACGT <u>G</u> ATCATTCT	6423
		AGAATGAT <u>C</u> ACGTGGCG	6424

BNSDOCID: <WO___0192512A2_I_>

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	TGAATTTGTGATCTGATTGGTTAATTGTGGCCACAATGGTTGCTAC TGCCGCCACGTCAT <u>G</u> ATTCTTTCCGTTGACTTCCCCTTCTGGGGAT GCCAAATCGGGCAATCCCGGAAAAGGGTC	6425
Ser9Term TCA-TGA	GACCCTTTTCCGGGATTGCCCGATTTGGCATCCCCAGAAGGGGAA GTCAACGGAAAGAATCATGACGTGGCGGCAGTAGCAACCATTGTG GCCACAATTAACCAATCAGATCACAAATTCA	6426
	CACGTCAT G ATTCTTTC	6427
	GAAAGAAT <u>C</u> ATGACGTG	6428
Reduced palmitate Acyl-ACP-thioesterase Garcinia mangostana	CTGATTGGTTAATTGTGGCCACAATGGTTGCTACTGCCGCCACGT CATCATTCTTTCCGTAGACTTCCCCTTCTGGGGATGCCAAATCGG GCAATCCCGGAAAAGGGTCGGTGAGTTTTGG	6429
Leu13Term TTG-TAG	CCAAAACTCACCGACCCTTTTCCGGGATTGCCCGATTTGGCATCC CCAGAAGGGGAAGTC <u>T</u> ACGGAAAGAATGATGACGTGGCGGCAGT AGCAACCATTGTGGCCACAATTAACCAATCAG	6430
	CTTTCCGT <u>A</u> GACTTCCC	6431
	GGGAAGTC <u>T</u> ACGGAAAG	6432
Reduced palmitate Acyl-ACP-thioesterase Garcinia mangostana	ATGGTTGCTACTGCCGCCACGTCATCATTCTTTCCGTTGACTTCCC CTTCTGGGGATGCCTAATCGGGCAATCCCGGAAAAGGGTCGGTG AGTTTTGGGTCAATGAAGTCGAAATCCGCGG	6433
Lys21Term AAA-TAA	CCGCGGATTTCGACTTCATTGACCCAAAACTCACCGACCCTTTTCC GGGATTGCCCGATTAGGCATCCCCAGAAGGGGAAGTCAACGGAA AGAATGATGACGTGGCGGCAGTAGCAACCAT	6434
	GGGATGCC <u>T</u> AATCGGGC	6435
	GCCCGATT <u>A</u> GGCATCCC	6436
Reduced palmitate Acyl-ACP-thioesterase Gossypium hirsutum	GGGATTTCAGCACGAAATTGAAGTTGTTTTTAAAAACCATGGTTGC TACTGCTGTGACAT <u>A</u> GGCGTTTTTCCCAGTCACTTCTTCACCTGAC TCCTCTGACTCGAAAAACAAGAAGCTCGG	6437
Ser8Term TCG-TAG	CCGAGCTTCTTGTTTTTCGAGTCAGAGGAGTCAGGTGAAGAAGTG ACTGGGAAAAACGCCTATGTCACAGCAGTAGCAACCATGGTTTTTA AAAACAACTTCAATTTCGTGCTGAAATCCC	6438
	TGTGACAT <u>A</u> GGCGTTTT	6439
	AAAACGCC <u>T</u> ATGTCACA	6440
Reduced palmitate Acyl-ACP-thioesterase Gossypium hirsutum	TGTTTTTAAAAACCATGGTTGCTACTGCTGTGACATCGGCGTTTTT CCCAGTCACTTCTTGACCTGACTCCTCTGACTCGAAAAACAAGAAG CTCGGAAGCATCAAGTCGAAGCCATCGGT	6441
Ser16Term TCA-TGA	ACCGATGGCTTCGACTTGATGCTTCCGAGCTTCTTGTTTTTCGAGT CAGAGGAGTCAGGTCAAGAAGTGACTGGGAAAAACGCCGATGTCA CAGCAGTAGCAACCATGGTTTTTAAAAACA	6442

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ II NO:
	CACTTCTT G ACCTGACT	6443
	AGTCAGGT <u>C</u> AAGAAGTG	6444
Reduced palmitate Acyl-ACP-thioesterase Gossypium hirsutum	TTGCTACTGCTGTGACATCGGCGTTTTTCCCAGTCACTTCTTCACC TGACTCCTCTGACTAGAAAAAAAAAA	6445
Ser22Term TCG-TAG	TGCAAACTTCCAGAAGAAACCGATGGCTTCGACTTGATGCTTCCGA GCTTCTTGTTTTTCTAGTCAGAGGAGTCAGGTGAAGAAGTGACTGG GAAAAACGCCGATGTCACAGCAGTAGCAA	6446
	CTCTGACT <u>A</u> GAAAAACA	6447
	TGTTTTC <u>T</u> AGTCAGAG	6448
Reduced palmitate Acyl-ACP-thioesterase Gossypium hirsutum	GCTACTGCTGTGACATCGGCGTTTTTCCCAGTCACTTCTTCACCTG ACTCCTCTGACTCGTAAAACAAGAAGCTCGGAAGCATCAAGTCGA AGCCATCGGTTTCTTCTGGAAGTTTGCAAG	6449
Lys23Term AAA-TAA	CTTGCAAACTTCCAGAAGAAACCGATGGCTTCGACTTGATGCTTCC GAGCTTCTTGTTTTACGAGTCAGAGGAGTCAGGTGAAGAAGTGAC TGGGAAAAACGCCGATGTCACAGCAGTAGC	6450
	CTGACTCG <u>T</u> AAAACAAG	6451
	CTTGTTTT <u>A</u> CGAGTCAG	6452
Reduced palmitate Acyl-ACP-thioesterase Cuphea hookeriana	CTCCCGCTCGTTGAAAGACAATGGTGGCTACCGCTGCAAGCTCTG CATTCTTCCCCGTGTAGTCCCCGGTCACCTCCTCTAGACCAGGAA AGCCCGGAAATGGGTCATCGAGCTTCAGCCC	6453
Ser14Term TCG-TAG	GGGCTGAAGCTCGATGACCCATTTCCGGGCTTTCCTGGTCTAGAG GAGGTGACCGGGGAC <u>T</u> ACACGGGGAAGAATGCAGAGCTTGCAGC GGTAGCCACCATTGTCTTTCAACGAGCGGGAG	6454
	CCCCGTGT <u>A</u> GTCCCCGG	6455
	CCGGGGAC <u>T</u> ACACGGGG	6456
Reduced palmitate Acyl-ACP-thioesterase Cuphea hookeriana Arg21Term AGA-TGA	ATGGTGGCTACCGCTGCAAGCTCTGCATTCTTCCCCGTGTCGTCC CCGGTCACCTCCTTGACCAGGAAAGCCCGGAAATGGGTCATCG AGCTTCAGCCCCATCAAGCCCAAATTTGTCG	6457
	CGACAAATTTGGGCTTGATGGGGCTGAAGCTCGATGACCCATTTC CGGGCTTTCCTGGTCAAGAGGAGGTGACCGGGGACGACACGGG GAAGAATGCAGAGCTTGCAGCGGTAGCCACCAT	6458
	CCTCCTCTTGACCAGGA	6459
	TCCTGGTC <u>A</u> AGAGGAGG	6460

10

15

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
Reduced palmitate Acyl-ACP-thioesterase Cuphea hookeriana	GCTACCGCTGCAAGCTCTGCATTCTTCCCCGTGTCGTCCCCGGTC ACCTCCTCTAGACCATGAAAGCCCGGAAATGGGTCATCGAGCTTC AGCCCCATCAAGCCCAAATTTGTCGCCAATG	6461
Gly23Term GGA-TGA	CATTGGCGACAAATTTGGGCTTGATGGGGCTGAAGCTCGATGACC CATTTCCGGGCTTTCATGGTCTAGAGGAGGTGACCGGGGACGAC ACGGGGAAGAATGCAGAGCTTGCAGCGGTAGC	6462
	CTAGACCA <u>T</u> GAAAGCCC	6463
	GGGCTTTC <u>A</u> TGGTCTAG	6464
Reduced palmitate Acyl-ACP-thioesterase Cuphea hookeriana	ACCGCTGCAAGCTCTGCATTCTTCCCCGTGTCGTCCCCGGTCACC TCCTCTAGACCAGGATAGCCCGGAAATGGGTCATCGAGCTTCAGC CCCATCAAGCCCAAATTTGTCGCCAATGGCG	6465
Lys24Term AAG-TAG	CGCCATTGGCGACAAATTTGGGCTTGATGGGGCTGAAGCTCGATG ACCCATTTCCGGGCT <u>A</u> TCCTGGTCTAGAGGAGGTGACCGGGGAC GACACGGGGAAGAATGCAGAGCTTGCAGCGGT	6466
	GACCAGGATAGCCCGGA	6467
	TCCGGGCTATCCTGGTC	6468
Reduced palmitate Acyl-ACP-thioesterase Cuphea lanceolata	GCCACCGCTGCAAGTTCTGCATTCTTCCCCCTGCCGTCCCCGGAC ACCTCCTCTAGGCCGTGAAAGCTCGGAAATGGGTCATCGAGCTTG AGCCCCCTCAAGCCCAAATTTGTCGCCAATG	6469
Gly23Term GGA-TGA	CATTGGCGACAAATTTGGGCTTGAGGGGGGCTCAAGCTCGATGACC CATTTCCGAGCTTTCACGGCCTAGAGGAGGTGTCCGGGGACGGC AGGGGGAAGAATGCAGAACTTGCAGCGGTGGC	6470
	CTAGGCCG <u>T</u> GAAAGCTC	6471
	GAGCTITC <u>A</u> CGGCCTAG	6472
Reduced palmitate Acyl-ACP-thioesterase Cuphea lanceolata	ACCGCTGCAAGTTCTGCATTCTTCCCCCTGCCGTCCCCGGACACC TCCTCTAGGCCGGGATAGCTCGGAAATGGGTCATCGAGCTTGAGC CCCCTCAAGCCCAAATTTGTCGCCAATGCCG	6473
Lys24Term AAG-TAG	CGGCATTGGCGACAAATTTGGGCTTGAGGGGGCTCAAGCTCGAT GACCCATTTCCGAGCTATCCCGGCCTAGAGGAGGTGTCCGGGGA CGGCAGGGGGAAGAATGCAGAACTTGCAGCGGT	6474
	GGCCGGGA <u>T</u> AGCTCGGA	6475
	TCCGAGCT <u>A</u> TCCCGGCC	6476
Reduced palmitate Acyl-ACP-thioesterase Cuphea lanceolata	GCAAGTTCTGCATTCTTCCCCCTGCCGTCCCCGGACACCTCCTCT AGGCCGGGAAAGCTCTGAAATGGGTCATCGAGCTTGAGCCCCCT CAAGCCCAAATTTGTCGCCAATGCCGGGTTGA	6477
Gly26Term GGA-TGA	TCAACCCGGCATTGGCGACAAATTTGGGCTTGAGGGGGCTCAAGC TCGATGACCCATTTCAGAGCTTTCCCGGCCTAGAGGAGGTGTCCG GGGACGGCAGGGGGAAGAATGCAGAACTTGC	6478

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
		GAAAGCTC <u>T</u> GAAATGGG	6479
		CCCATTTC <u>A</u> GAGCTTTC	6480
	Reduced palmitate Acyl-ACP-thioesterase Cuphea lanceolata	CATTCTTCCCCCTGCCGTCCCCGGACACCTCCTCTAGGCCGGGAA AGCTCGGAAATGGGTGATCGAGCTTGAGCCCCCTCAAGCCCAAAT TTGTCGCCAATGCCGGGTTGAAGGTTAAGGC	6481
5	Ser29Term TCA-TGA	GCCTTAACCTTCAACCCGGCATTGGCGACAAATTTGGGCTTGAGG GGGCTCAAGCTCGATCACCCATTTCCGAGCTTTCCCGGCCTAGAG GAGGTGTCCGGGGACGGCAGGGGGAAGAATG	6482
		AAATGGGT <u>G</u> ATCGAGCT	6483
·		AGCTCGAT <u>C</u> ACCCATTT	6484
	Reduced palmitate Acyl-ACP-thioesterase Helianthus annuus	CGTTTAAGTGGATCGGACATTTAAGTGTTTTAATCATGGTAGCTAT GAGTGCTACTGCGT <u>A</u> GCTGTTTCCGGTTTCTCCCCAAAACCTCA CTCTGGAGCCAAGACATCTGATAAGCTTGG	6485
0	Ser9Term TCG-TAG	CCAAGCTTATCAGATGTCTTGGCTCCAGAGTGAGGTTTTGGGGAA GAAACCGGAAACAGC <u>T</u> ACGCAGTAGCACTCATAGCTACCATGATT AAAACACTTAAATGTCCGATCCACTTAAACG	6486
		TACTGCGTAGCTGTTTC	6487
		GAAACAGC <u>T</u> ACGCAGTA	6488
	Reduced palmitate Acyl-ACP-thioesterase Helianthus annuus	AGTGTTTTAATCATGGTAGCTATGAGTGCTACTGCGTCGCTGTTTC CGGTTTCTTCCCCATAACCTCACTCTGGAGCCAAGACATCTGATAA GCTTGGAGGTGAACCAGGTAGTGTTGCTG	6489
15	Lys17Term AAA-TAA	CAGCAACACTACCTGGTTCACCTCCAAGCTTATCAGATGTCTTGGC TCCAGAGTGAGGTTATGGGGAAGAAACCGGAAACAGCGACGCAG TAGCACTCATAGCTACCATGATTAAAACACT	6490
		CTTCCCCATAACCTCAC	6491
		GTGAGGTT <u>A</u> TGGGGAAG	6492
	Reduced palmitate Acyl-ACP-thioesterase Helianthus annuus	ATGGTAGCTATGAGTGCTACTGCGTCGCTGTTTCCCGGTTTCTTCCC CAAAACCTCACTCTTGAGCCAAGACATCTGATAAGCTTGGAGGTGA ACCAGGTAGTGTTGCTGTGCGCGGAATCA	6493
20 .	Gly21Term GGA-TGA	TGATTCCGCGCACAGCAACACTACCTGGTTCACCTCCAAGCTTATC AGATGTCTTGGCTCAAGAGAGAGAAACCGGAAA CAGCGACGCAGTAGCACTCATAGCTACCAT	6494
		CTCACTCT <u>T</u> GAGCCAAG	6495
		CTTGGCTC <u>A</u> AGAGTGAG	6496

BNSDOCID: <WO___0192512A2_I_>

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
Acyl-ACP-thioesterase	GCTATGAGTGCTACTGCGTCGCTGTTTCCGGTTTCTTCCCCAAAAC CTCACTCTGGAGCCTAGACATCTGATAAGCTTGGAGGTGAACCAGGTAGTGTTGCTGTGCGCGGAATCAAGACAA	6497
Lys23Term AAG-TAG	TTGTCTTGATTCCGCGCACAGCAACACTACCTGGTTCACCTCCAAG CTTATCAGATGTCTAGGCTCCAGAGTGAGGTTTTGGGGAAGAAAC CGGAAACAGCGACGCAGTAGCACTCATAGC	6498
	CTGGAGCC <u>T</u> AGACATCT	6499
	AGATGTCT <u>A</u> GGCTCCAG	6500
Reduced palmitate Acyl-ACP-thioesterase Cuphea palustris	ATGGTGGCTGCAGCAAGTTCTGCATGCTTCCCTGTTCCATCC CCAGGAGCCTCCCCTTAACCTGGGAAGTTAGGCAACTGGTCATCG AGTTTGAGCCCTTCCTTGAAGCCCAAGTCAA	6501
Lys21Term AAA-TAA	TTGACTTGGGCTTCAAGGAAGGGCTCAAACTCGATGACCAGTTGC CTAACTTCCCAGGTTAAGGGGAGGCTCCTGGGGATGGAACAGGG AAGCATGCAGAACTTGCTGCAGCAGCCACCAT	6502
	CCTCCCCT <u>T</u> AACCTGGG	6503
	CCCAGGTT <u>A</u> AGGGGAGG	6504
Reduced palmitate Acyl-ACP-thioesterase Cuphea palustris	GCTGCAGCAAGTTCTGCATGCTTCCCTGTTCCATCCCCAGGAGCC TCCCCTAAACCTGGGTAGTTAGGCAACTGGTCATCGAGTTTGAGC CCTTCCTTGAAGCCCAAGTCAATCCCCAATG	6505
Lys24Term AAG-TAG	CATTGGGGATTGACTTGGGCTTCAAGGAAGGGCTCAAACTCGATG ACCAGTTGCCTAACTACCCAGGTTTAGGGGAGGCTCCTGGGGATG GAACAGGGAAGCATGCAGAACTTGCTGCAGC	6506
	AACCTGGG <u>T</u> AGTTAGGC	6507
	GCCTAACT <u>A</u> CCCAGGTT	6508
Reduced palmitate Acyl-ACP-thioesterase	TGCATGCTTCCCTGTTCCATCCCCAGGAGCCTCCCCTAAACCTGG GAAGTTAGGCAACTGATCATCGAGTTTGAGCCCTTCCTTGAAGCC CAAGTCAATCCCCAATGGCGGATTTCAGGTT	6509
Cuphea palustris Trp28Term TGG-TGA	AACCTGAAATCCGCCATTGGGGATTGACTTGGGCTTCAAGGAAGG	6510
	GGCAACTG <u>A</u> TCATCGAG	6511
	CTCGATGA <u>T</u> CAGTTGCC	6512
Reduced palmitate Acyl-ACP-thioesterase Cuphea palustris	CATGCTTCCCTGTTCCATCCCCAGGAGCCTCCCCTAAACCTGGGA AGTTAGGCAACTGGTGATCGAGTTTGAGCCCTTCCTTGAAGCCCA AGTCAATCCCCAATGGCGGATTTCAGGTTAA	6513
Ser29Term TCA-TGA	TTAACCTGAAATCCGCCATTGGGGATTGACTTGGGCTTCAAGGAA GGGCTCAAACTCGATCACCAGTTGCCTAACTTCCCAGGTTTAGGG GAGGCTCCTGGGGATGGAACAGGGAAGCATG	6514

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ IE NO:
	CAACTGGT <u>G</u> ATCGAGTT	6515
	AACTCGAT <u>C</u> ACCAGTTG	6516
Reduced palmitate Acyl-ACP-thioesterase Cuphea hookeriana	ATGGTGGCTGCCGCAGCAAGTTCTGCATTCTTCTCCGTTCCAACC CCGGGAATCTCCCCTTAACCCGGGAAGTTCGGTAATGGTGGCTTT CAGGTTAAGGCAAACGCCAATGCCCATCCTA	6517
_ys21Term AAA-TAA	TAGGATGGCATTGGCGTTTGCCTTAACCTGAAAGCCACCATTAC CGAACTTCCCGGGTT <u>A</u> AGGGGAGATTCCCGGGGTTGGAACGGAG AAGAATGCAGAACTTGCTGCGGCAGCCACCAT	6518
	TCTCCCCT <u>T</u> AACCCGGG	6519
	CCCGGGTT <u>A</u> AGGGGAGA	6520
Reduced palmitate Acyl-ACP-thioesterase Cuphea hookeriana	GCCGCAGCAAGTTCTGCATTCTTCTCCGTTCCAACCCCGGGAATC TCCCCTAAACCCGGGTAGTTCGGTAATGGTGGCTTTCAGGTTAAG GCAAACGCCAATGCCCATCCTAGTCTAAAGT	6521
Lys24Term AAG-TAG	ACTITAGACTAGGATGGGCATTGGCGTTTGCCTTAACCTGAAAGCC ACCATTACCGAACT <u>A</u> CCCGGGTTTAGGGGAGATTCCCGGGGTTGG AACGGAGAAGAATGCAGAACTTGCTGCGGC	6522
	AACCCGGG <u>T</u> AGTTCGGT	652
	ACCGAACT <u>A</u> CCCGGGTT	652
Reduced palmitate Acyl-ACP-thioesterase Cuphea hookeriana	TTCTCCGTTCCAACCCCGGGAATCTCCCCTAAACCCGGGAAGTTC GGTAATGGTGGCTTTIAGGTTAAGGCAAACGCCAATGCCCATCCT AGTCTAAAGTCTGGCAGCCTCGAGACTGAAG	652
Gln31Term CAG-TAG	CTTCAGTCTCGAGGCTGCCAGACTTTAGACTAGGATGGGCATTGG CGTTTGCCTTAACCTAAAAGCCACCATTACCGAACTTCCCGGGTTT AGGGGAGATTCCCGGGGTTGGAACGGAGAA	652
	GTGGCTTT <u>T</u> AGGTTAAG	652
	CTTAACCT <u>A</u> AAAGCCAC	652
Reduced palmitate Acyl-ACP-thioesterase Cuphea hookeriana	GTTCCAACCCGGGAATCTCCCCTAAACCCGGGAAGTTCGGTAAT GGTGGCTTTCAGGTT <u>T</u> AGGCAAACGCCAATGCCCATCCTAGTCTA AAGTCTGGCAGCCTCGAGACTGAAGATGACA	652
Lys33Term AAG-TAG	TGTCATCTTCAGTCTCGAGGCTGCCAGACTTTAGACTAGGATGGG CATTGGCGTTTGCCTAAACCTGAAAGCCACCATTACCGAACTTCCC GGGTTTAGGGGAGATTCCCGGGGTTGGAAC	653
	TTCAGGTTTAGGCAAAC	653
	GTTTGCCT A AACCTGAA	653

10

15

10

15

20

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SE
Reduced palmitate Acyl-ACP-thioesterase <i>Brassica rapa</i>	ATGTTGAAGCTCTCGTGTAATGCGACTGATAAGTTACAGACCCTCT TCTCGCATTCTCAT <u>T</u> AACCGGATCCGGCACACCGGAGAACCGTCT CCTCCGTGTCGTGCTCTCATCTGAGGAAAC	6
Gln21Term CAA-TAA	GTTTCCTCAGATGAGAGCACGACACGGAGGAGACGGTTCTCCGGT GTGCCGGATCCGGTTAATGAGAATGCGAGAAGAGGGTCTGTAACT TATCAGTCGCATTACACGAGAGCTTCAACAT	6
	ATTCTCAT <u>T</u> AACCGGAT	6
	ATCCGGTT <u>A</u> ATGAGAAT	6
Reduced palmitate Acyl-ACP-thioesterase Brassica rapa	GCGACTGATAAGTTACAGACCCTCTTCTCGCATTCTCATCAACCGG ATCCGGCACACCGG <u>T</u> GAACCGTCTCCTCCGTGTCGTGCTCTCATC TGAGGAAACCGGTTCTCGATCCTTTGCGAG	6
Arg28Term AGA-TGA	CTCGCAAAGGATCGAGAACCGGTTTCCTCAGATGAGAGCACGACA CGGAGGAGACGGTTCACCGGTGTGCCGGATCCGGTTGATGAGAA TGCGAGAAGAGGGTCTGTAACTTATCAGTCGC	6:
	CACACCGGTGAACCGTC	6
	GACGGTTC <u>A</u> CCGGTGTG	6
Reduced palmitate Acyl-ACP-thioesterase <i>Brassica rapa</i>	CCCTCTTCTCGCATTCTCATCAACCGGATCCGGCACACCGGAGAA CCGTCTCCTCCGTGTAGTGCTCTCATCTGAGGAAACCGGTTCTCG ATCCTTTGCGAGCGATCGTATCTGCTGATCA	6
Ser24Term TCG-TAG	TGATCAGCAGATACGATCGCTCGCAAAGGATCGAGAACCGGTTTC CTCAGATGAGAGCACTACACGGAGGAGACGGTTCTCCGGTGTGC CGGATCCGGTTGATGAGAATGCGAGAAGAGGG	6
	CTCCGTGT <u>A</u> GTGCTCTC	6
	GAGAGCAC <u>T</u> ACACGGAG	6
Reduced palmitate Acyl-ACP-thioesterase <i>Brassica rapa</i>	CTTCTCGCATTCTCATCAACCGGATCCGGCACACCGGAGAACCGT CTCCTCCGTGTCGTGATCTCATCTGAGGAAACCGGTTCTCGATCC TTTGCGAGCGATCGTATCTGCTGATCAAGGA	6
Cys25Term TGC-TGA	TCCTTGATCAGCAGATACGATCGCTCGCAAAGGATCGAGAACCGG TTTCCTCAGATGAGATCACGACACGGAGGAGACGGTTCTCCGGTG TGCCGGATCCGGTTGATGAGAATGCGAGAAG	6
	GTGTCGTG <u>A</u> TCTCATCT	65
	AGATGAGA <u>T</u> CACGACAC	65
Reduced palmitate Acyl-ACP-thioesterase Brassica napus	ATTCTTCTTCTATAAACCAAAACCTCAGGAACCATAAAAAAAA	65
Leu2Term TTG-TAG	GAGGAATCGGAGAAGAAGGAGAAGGTGTGAAGTTGTTAGTCACA TTACACGAAAGCTTC <u>T</u> ACATTTTTGATGCCCTTTTTTTTTATGGTTC CTGAGGTTTTGGTTTATAGAAGAAGAAT	65

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
	AAAAATGT A GAAGCTTT	6551
	AAAGCTTC <u>T</u> ACATTTTT	6552
Reduced palmitate Acyl-ACP-thioesterase Brassica napus	TCTTCTTCTATAAACCAAAACCTCAGGAACCATAAAAAAAA	6553
Lys3Term AAG-TAG	GGGAGGAATCGGAGAAGAAGGAGAAGGTGTGAAGTTGTTAGTCA CATTACACGAAAGCT <u>A</u> CAACATTTTTGATGCCCTTTTTTTTTATGG TTCCTGAGGTTTTGGTTTATAGAAGAAGA	6554
	AAATGTTG <u>T</u> AGCTTTCG	6555
	CGAAAGCT <u>A</u> CAACATTT	6556
Reduced palmitate Acyl-ACP-thioesterase Brassica napus	CTATAAACCAAAACCTCAGGAACCATAAAAAAAAAAAAGGGCATCAAA AATGTTGAAGCTTT <u>A</u> GTGTAATGTGACTAACAACTTACACACCTTCT CCTTCTTCTCCGATTCCTCCCTTTTCAT	6557
Ser5Term TCG-TAG	ATGAAAAGGGAGAATCGGAGAAGAAGGAGAAGGTGTGTAAGTTG TTAGTCACATTACACTAAAGCTTCAACATTTTTGATGCCCTTTTTTTT	6558
	GAAGCTTT <u>A</u> GTGTAATG	6559
	CATTACAC <u>T</u> AAAGCTTC	6560
Reduced palmitate Acyl-ACP-thioesterase Brassica napus	AAACCAAAACCTCAGGAACCATAAAAAAAAAAGGGCATCAAAAATG TTGAAGCTTTCGTGAAATGTGACTAACAACTTACACACCTTCTCCTT CTTCTCCGATTCCTCCCTTTTCATCCCG	6561
Cys6Term TGT-TGA	CGGGATGAAAAGGGAGGAATCGGAGAAGAAGGAGAAGGTGTGTA AGTTGTTAGTCACATTTCACGAAAGCTTCAACATTTTTGATGCCCTT TTTTTTTTATGGTTCCTGAGGTTTTGGTTT	6562
	CTTTCGTG <u>A</u> AATGTGAC	6563
	GTCACATT <u>T</u> CACGAAAG	6564

10

Table 23
Oligonucleotides to produce plants with increased stearate

5	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
	Increased stearate stearoyl-ACP desaturase	GGGAGAGCTCTAGCTCTGTAGAAAAGAAGGATTCATTCAT	6565
10	Arabidopsis thaliana Lys4Term AAG-TAG	TTGGCGGACGAGTCGAGGAAGGGAATTTGTAAGGCTGAGATGCCA CCAAAGGGTTAAACTATAGAGCCATTTCTGGATATGAATGA	6566
•		TGGCTCTA <u>T</u> AGTTTAAC	6567
		GTTAAACT <u>A</u> TAGAGCCA	6568
	Increased stearate stearoyl-ACP desaturase	CTCTGTAGAAAAGAAGGATTCATTCATCATATCCAGAAATGGCTCT AAAGTTTAACCCTTAGGTGGCATCTCAGCCTTACAAATTCCCTTCC TCGACTCGTCCGCCAACTCCTTCTTTCAG	6569
15	Arabidopsis thaliana Leu8Term TTG-TAG	CTGAAAGAAGGAGTTGGCGGACGAGTCGAGGAAGGGAATTTGTAA GGCTGAGATGCCACC <u>T</u> AAGGGTTAAACTTTAGAGCCATTTCTGGAT ATGATGAATGAATCCTTCTTTTCTACAGAG	6570
		TAACCCTT <u>A</u> GGTGGCAT	6571
		ATGCCACC <u>T</u> AAGGGTTA	6572
20	Increased stearate stearoyl-ACP desaturase	AGAAGGATTCATCATCATATCCAGAAATGGCTCTAAAGTTTAACC CTTTGGTGGCATCT <u>T</u> AGCCTTACAAATTCCCTTCCTCGACTCGTCC GCCAACTCCTTCTTTCAGATCTCCCAAGT	6573
20	Arabidopsis thaliana Gln12Term CAG-TAG	ACTTGGGAGATCTGAAAGAAGGAGTTGGCGGACGAGTCGAGGAA GGGAATTTGTAAGGCT <u>A</u> AGATGCCACCAAAGGGTTAAACTTTAGAG CCATTTCTGGATATGATGAATGAATCCTTCT	6574
		TGGCATCT <u>T</u> AGCCTTAC	6575
		GTAAGGCT <u>A</u> AGATGCCA	6576
25	Increased stearate stearoyl-ACP desaturase	TCATTCATCATATCCAGAAATGGCTCTAAAGTTTAACCCTTTGGTG GCATCTCAGCCTTAGAAATTCCCTTCCTCGACTCGTCCGCCAACTC CTTCTTTCAGATCTCCCAAGTTCCTCTGC	6577
	Arabidopsis thaliana Phe14Term TAC-TAG	GCAGAGGAACTTGGGAGATCTGAAAGAAGGAGTTGGCGGACGAG TCGAGGAAGGGAATTTCTAAGGCTGAGATGCCACCAAAGGGTTAA ACTTTAGAGCCATTTCTGGATATGATGAATGA	6578
		CAGCCTTA <u>G</u> AAATTCCC	6579
		GGGAATTT <u>C</u> TAAGGCTG	6580

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	Increased stearate stearoyl-ACP desaturase	GAGAGCTCGCTCGTGTCTGAAAGAACATCAAACCTCGTATCAAAAA AAAGAAAATGGCAT <u>A</u> GAAGCTTAACCCTTTGGCATCTCAGCCTTAC AAACTCCCTTCCTCGGCTCGTCCGCCAAT	6581
5	Brassica napus Leu3Term TTG-TAG	ATTGGCGGACGAGCCGAGGAAGGGAGTTTGTAAGGCTGAGATGC CAAAGGGTTAAGCTTC <u>T</u> ATGCCATTTTCTTTTTTTGATACGAGGTT TGATGTTCTTTCAGACACGAGCGAGCTCTC	6582
	·	AATGGCAT <u>A</u> GAAGCTTA	6583
		TAAGCTTC <u>T</u> ATGCCATT	6584
	Increased stearate stearoyl-ACP desaturase	GAGCTCGCTCGTGTCTGAAAGAACATCAAACCTCGTATCAAAAAAA AGAAAATGGCATTG <u>T</u> AGCTTAACCCTTTGGCATCTCAGCCTTACAA ACTCCCTTCCTCGGCTCGTCCGCCAATCT	6585
10	Brassica napus Lys4Term AAG-TAG	AGATTGGCGGACGAGCCGAGGAAGGGAGTTTGTAAGGCTGAGAT GCCAAAGGGTTAAGCT <u>A</u> CAATGCCATTTTCTTTTTTTGATACGAG GTTTGATGTTCTTTCAGACACGAGCGAGCTC	6586
		TGGCATTG <u>T</u> AGCTTAAC	6587
		GTTAAGCT <u>A</u> CAATGCCA	6588
15	Increased stearate stearoyl-ACP desaturase	TCTGAAAGAACATCAAACCTCGTATCAAAAAAAAAAAATGGCATT GAAGCTTAACCCTT <u>A</u> GGCATCTCAGCCTTACAAACTCCCTTCCTCG GCTCGTCCGCCAATCTCTACTCTCAGATC	6589
	Brassica napus Leu8Term TTG-TAG	GATCTGAGAGTAGAGATTGGCGGACGAGCCGAGGAAGGGAGTTT GTAAGGCTGAGATGCC <u>T</u> AAGGGTTAAGCTTCAATGCCATTTTCTTT TTTTTGATACGAGGTTTGATGTTCTTTCAGA	6590
		TAACCCTT <u>A</u> GGCATCTC	6591
		GAGATGCC <u>T</u> AAGGGTTA	6592
20	Increased stearate stearoyl-ACP desaturase	AACATCAAACCTCGTATCAAAAAAAAAGAAAATGGCATTGAAGCTTAA CCCTTTGGCATCT <u>T</u> AGCCTTACAAACTCCCTTCCTCGGCTCGTCCG CCAATCTCTACTCTCAGATCTCCCAAGT	6593
	Brassica napus Gln11Term CAG-TAG	ACTTGGGAGATCTGAGAGTAGAGATTGGCGGACGAGCCGAGGAA GGGAGTTTGTAAGGCT <u>A</u> AGATGCCAAAGGGTTAAGCTTCAATGCC ATTTTCTTTTTTTGATACGAGGTTTGATGTT	6594
		TGGCATCT <u>T</u> AGCCTTAC	6595
		GTAAGGCT <u>A</u> AGATGCCA	6596
25	Increased stearate stearoyl-ACP desaturase	AACCAAAAGAAAAAGGTAAGAAAAAAAAAAACAATGGCTCTCAAGCTCA ATCCTTTCCTT	6597
30	Ricinus communis Gln27Term CAA-TAA	ACTTAGGAGATCTGGTACTGGCCATTGGTGGAAGAGCGAAAGAAG GTAACTTTTGGGTTT <u>A</u> AGAAAGGAAAGGATTGAGCTTGAGAGCCAT TGTTTTTTTCTTACCTTTTTCTTTTGGTT	6598
	Or WITTUT	TOTALITICIACCITITICITIES	

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
Alteration	TCCTTTCT <u>T</u> AAACCCAA	6599
	TTGGGTTT <u>A</u> AGAAAGGA	6600
ncreased stearate stearoyl-ACP	AAGAAAAAGGTAAGAAAAAAAAACAATGGCTCTCAAGCTCAATCCTT TCCTTTCTCAAACCTAAAAGTTACCTTCTTTCGCTCTTCCACCAATG GCCAGTACCAGATCTCCTAAGTTCTACA	6601
desaturase Ricinus communis Gln29Term CAA-TAA	TGTAGAACTTAGGAGATCTGGTAGTTGTAGT TGTAGAACTTAGGAGATCTGGTACTGGCCATTGGTGGAAGAGCGA AAGAAGGTAACTTTTAGGTTTGAGAAAGGAAAG	6602
JAA-17A	CTCAAACC <u>T</u> AAAAGTTA	6603
	TAACTTTTAGGTTTGAG	6604
Increased stearate stearoyl-ACP desaturase	AAAAAGGTAAGAAAAAAAAAAACAATGGCTCTCAAGCTCAATCCTTTCC TTTCTCAAACCCAA <u>T</u> AGTTACCTTCTTTCGCTCTTCCACCAATGGC CAGTACCAGATCTCCTAAGTTCTACATGG	6605
Ricinus communis Lys30Term	CCATGTAGAACTTAGGAGATCTGGTACTGGCCATTGGTGGAAGAG CGAAAGAAGGTAACTATTGGGTTTGAGAAAGGAAAG	6606
AAG-TAG	AAACCCAATAGTTACCT	6607
	AGGTAACT <u>A</u> TTGGGTTT	6608
Increased stearate stearoyl-ACP	TCTCAAACCCAAAAGTTACCTTCTTTCGCTCTTCCACCAATGGCCA GTACCAGATCTCCTTAGTTCTACATGGCCTCTACCCTCAAGTCTGG TTCTAAGGAAGTTGAGAATCTCAAGAAGC	6609
desaturase Ricinus communis Lys46Term AAG-TAG	GCTTCTTGAGATTCTCAACTTCCTTAGAACCAGACTTGAGGGTAGA GGCCATGTAGAACT <u>A</u> AGGAGATCTGGTACTGGCCATTGGTGGAAG AGCGAAAGAAGGTAACTTTTGGGTTTGAGA	6610
7010 1710	GATCTCCT <u>T</u> AGTTCTAC	661
	GTAGAACT <u>A</u> AGGAGATC	661
Increased stearate stearoyl-ACP desaturase	TCTTCTGATTCATTTAATCTTTACTCATCAATGGCTCTGAGACTGAA CCCTATCCCCACCTAAACCTTCTCCCTCCCCCAAATGGCCAGTCT CAGATCTCCCAGGTTCCGCATGGCCTCTA	661
Glycine max Gln11Term	TAGAGGCCATGCGGAACCTGGGAGATCTGAGACTGGCCATTTGG GGGAGGGAAAGGTTTAGGTGGGGATAGGGTTCAGTCTCAGAGC CATTGATGAGTAAAGATTAAATGAATCAGAAGA	661
CAA-TAA	TCCCACCTAAACCTTC	661
	GAAGGTTTAGGTGGGGA	661

10

15

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	Increased stearate stearoyl-ACP desaturase	CTTTACTCATCAATGGCTCTGAGACTGAACCCTATCCCCACCCA	6617
5	Glycine max Gln17Term CAA-TAA	TGGAACCGGAGCGAGGGTAGAGGCCATGCGGAACCTGGGAGAT CTGAGACTGGCCATTTAGGGGAGGAGGAAGGTTTGGGTGGG	6618
		CCCTCCCC <u>T</u> AAATGGCC	6619
		GGCCATTT <u>A</u> GGGGAGGG	6620
10	Increased stearate stearoyl-ACP desaturase	GCTCTGAGACTGAACCCTATCCCCACCCAAACCTTCTCCCTCC	6621
10	Glycine max Arg22Term AGA-TGA	TATTTTCAACCTCTTTGGAACCGGAGCGGAGGGTAGAGGCCATGC GGAACCTGGGAGATCAGAGCTGGCCATTTGGGGGAGGGAG	6622
		CCAGTCTC <u>T</u> GATCTCCC	6623
		GGGAGATC <u>A</u> GAGACTGG	6624
15	Increased stearate stearoyl-ACP desaturase	CAAATGGCCAGTCTCAGATCTCCCAGGTTCCGCATGGCCTCTACC CTCCGCTCCG	6625
	Glycine max Lys37Term AAA-TAA	TTACTTGAACATGCACTTCTCTGGGAGGAGTGAATGGCTTCTTAAT ATTTTCAACCTCTT A GGAACCGGAGCGGAGGGTAGAGGCCATGCGGAACCTGGGAGATGTGAGACTGGCCATTTG	6626
		CCGGTTCCTAAGAGGTT	6627
		AACCTCTT <u>A</u> GGAACCGG	6628
20	Increased stearate stearoyl-ACP desaturase	CAACAAGCACACAAGAACAACATCAACAATGGCGATTCGCATCA ATACGGCGACGTTT <u>T</u> AATCAGACCTGTACCGTTCATTCGCGTTTCC TCAACCGAAACCTCTCAGATCTCCCAAAT	6629
	Helianthus annuus Gln11Term CAA-TAA	ATTTGGGAGATCTGAGAGGTTTCGGTTGAGGAAACGCGAATGAAC GGTACAGGTCTGATTAAAACGTCGCCGTATTGATGCGAATCGCCA TTGTTGATGTTGTTCTTGTGTGTGTTG	6630
		CGACGTTT <u>T</u> AATCAGAC	6631
		GTCTGATT <u>A</u> AAACGTCG	6632
25	Increased stearate stearoyl-ACP desaturase	AAGCACACAAGAACAACATCAACAATGGCGATTCGCATCAATAC GGCGACGTTTCAAT <u>G</u> AGACCTGTACCGTTCATTCGCGTTTCCTCAA CCGAAACCTCTCAGATCTCCCAAATTCGC	6633
30	Helianthus annuus Ser12Term TCA-TGA	GCGAATTTGGGAGATCTGAGAGGGTTTCGGTTGAGGAAACGCGAAT GAACGGTACAGGTCT <u>C</u> ATTGAAACGTCGCCGTATTGATGCGAATC GCCATTGTTGATGTTCTTGTGTGTGCTT	6634

10

15

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
Aiteration	GTTTCAAT G AGACCTGT	6635
	ACAGGTCT <u>C</u> ATTGAAAC	6636
ncreased stearate stearoyl-ACP desaturase	AAGAACAACATCAACAATGGCGATTCGCATCAATACGGCGACGTTT CAATCAGACCTGTAGCGTTCATTCGCGTTTCCTCAACCGAAACCTC TCAGATCTCCCAAATTCGCCATGGCTTCC	6637
Helianthus annuus Tyr15Term TAC-TAG	GGAAGCCATGGCGAATTTGGGAGATCTGAGAGGTTTCGGTTGAGG AAACGCGAATGAACGCTACAGGTCTGATTGAAACGTCGCCGTATT GATGCGAATCGCCATTGTTGATGTTGTTCTT	6638
1710 1710	GACCTGTA <u>G</u> CGTTCATT	6639
	AATGAACG <u>C</u> TACAGGTC	6640
Increased stearate stearoyl-ACP desaturase	CAACATCAACAATGGCGATTCGCATCAATACGGCGACGTTTCAATC AGACCTGTACCGTTGATTCGCGTTTCCTCAACCGAAACCTCTCAGA TCTCCCAAATTCGCCATGGCTTCCACCAT	6641
Helianthus annuus Ser17Term TCA-TGA	ATGGTGGAAGCCATGGCGAATTTGGGAGATCTGAGAGGTTTCGGT TGAGGAAACGCGAATCAACGGTACAGGTCTGATTGAAACGTCGCC GTATTGATGCGAATCGCCATTGTTGATGTTG	6642
	GTACCGTT <u>G</u> ATTCGCGT	6643
	ACGCGAAT <u>C</u> AACGGTAC	6644
Increased stearate stearoyl-ACP desaturase	ACACACACACACTCAATCACACACACATCATCATCTTCTT	664
Helianthus annuus Arg4Term CGA-TGA	TCGATTGATGAAAAGTGTATGAAGGATATATCTCCCGTTGAAGCGT CACCGGACTCATTCAAAGCGCCATCGTTGATGAAGAAGATGATGA TGTGTGTGATTGAGTGTGTGT	6646
*	TGGCGCTT <u>T</u> GAATGAGT	6647
	ACTCATTC A AAGCGCCA	664
Increased stearate stearoyl-ACP desaturase	ACACACACATCATCTTCTTCATCAACGATGGCGCTTCGAATGA GTCCGGTGACGCTTTAACGGGAGATATATCCTTCATACACTTTTCA TCAATCGAAAAATCTCAGATCTCCTAAAT	664
Helianthus annuus Gln11Term CAA-TAA	ATTTAGGAGATCTGAGATTTTTCGATTGATGAAAAGTGTATGAAGG ATATATCTCCCGTTAAAGCGTCACCGGACTCATTCGAAGCGCCAT CGTTGATGAAGAAGATGATGATGTGTGTGT	6650
	TGACGCTT <u>T</u> AACGGGAG	665
	CTCCCGTTAAAGCGTCA	665

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
	Increased stearate stearoyl-ACP desaturase	ACATCATCATCTTCATCAACGATGGCGCTTCGAATGAGTCCGG TGACGCTTCAACGGTAGATATATCCTTCATACACTTTTCATCAATCG AAAAATCTCAGATCTCCTAAATTCGCGA	6653
5	Helianthus annuus Glu13Term GAG-TAG	TCGCGAATTTAGGAGATCTGAGATTTTTCGATTGAAAAGTGTA TGAAGGATATATCT <u>A</u> CCGTTGAAGCGTCACCGGACTCATTCGAAG CGCCATCGTTGATGAAGAAGATGATGT	6654
		TTCAACGG <u>T</u> AGATATAT	6655 6656
		ATATATCT <u>A</u> CCGTTGAA	
	Increased stearate stearoyl-ACP desaturase	ATCTTCTTCATCAACGATGGCGCTTCGAATGAGTCCGGTGACGCTT CAACGGGAGATATAGCCTTCATACACTTTTCATCAATCGAAAAATCT CAGATCTCCTAAATTCGCGATGGCTTCC	6657
10	Helianthus annuus Tyr15Term TAT-TAG	GGAAGCCATCGCGAATTTAGGAGATCTGAGATTTTTCGATTGATGA AAAGTGTATGAAGGCTATATCTCCCGTTGAAGCGTCACCGGACTC ATTCGAAGCGCCATCGTTGATGAAGAAGAT	6658
	·	GAGATATA G CCTTCATA	6659
		TATGAAGG <u>C</u> TATATCTC	6660
15	Increased stearate stearoyl-ACP desaturase	AACTCAGCCAGCTTGCCCCCAAACAACAGCGCAGAAAAACCTTCA ACAACAATGGCTCTC <u>T</u> AGCTCAACCCAGTCACCACCTTCCCTTCAA CACGCTCCCTCAACAACTTCTCCTCCAGAT	6661
-	Linum usitatissimum Lys4Term AAG-TAG	ATCTGGAGGAGAGTTGTTGAGGGAGCGTGTTGAAGGGAAGGTG GTGACTGGGTTGAGCTAGAGAGCCATTGTTGTTGAAGGTTTTTCTG CGCTGTTGTTTGGGGGGCAAGCTGGCTGAGTT	6662
		TGGCTCTC <u>T</u> AGCTCAAC	6663
		GTTGAGCT <u>A</u> GAGAGCCA	6664
20	Increased stearate stearoyl-ACP desaturase	GCGCAGAAAACCTTCAACAACAATGGCTCTCAAGCTCAACCCAG TCACCACCTTCCCTT G AACACGCTCCCTCAACAACTTCTCCTCCAG ATCTCCTCGCACCTTTCTCATGGCTGCTTC	6665
	Linum usitatissimum Ser13Term TCA-TGA	GAAGCAGCCATGAGAAAGGTGCGAGGAGATCTGGAGGAGAAGTT GTTGAGGGAGCGTGTT <u>C</u> AAGGGAAGGTGGTGACTGGGTTGAGCT TGAGAGCCATTGTTGTTGAAGGTTTTTCTGCGC	6666
		CTTCCCTT <u>G</u> AACACGCT	6667
		AGCGTGTT <u>C</u> AAGGGAAG	6668
25	Increased stearate stearoyl-ACP desaturase	CTCAAGCTCAACCCAGTCACCACCTTCCCTTCAACACGCTCCCTC AACAACTTCTCCTCGTGATCTCCTCGCACCTTTCTCATGGCTGCTT CCACTTTCAATTCCACCTCCACCAAGTAAG	6669
30	Linum usitatissimum Arg23Term AGA-TGA	CTTACTTGGTGGAGGTGGAATTGAAAGTGGAAGCAGCCATGAGAA AGGTGCGAGGAGATCAGGAGGAGAAGTTGTTGAGGGAGCGTGTT GAAGGGAAGG	6670

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ IE NO:
Aiteration	TCTCCTCCTGATCTCCT	6671
	AGGAGATC <u>A</u> GGAGGAGA	6672
ncreased stearate stearoyl-ACP	TCCTCCAGATCTCCTCGCACCTTTCTCATGGCTGCTTCCACTTTCA ATTCCACCTCCACCTAGTAAGCATCTCCTCCTCCTCGGAATCTCCG CCGATTTCTTTTAAGCGATTGATCGTAGA	6673
desaturase Linum usitatissimum _ys41Term AAG-TAG	TCTACGATCACTCGCTTAAAAGAAATCGGCGGAGATTCCGAGGAG GAGGAGATGCTTACTAGGTGGAGGTGGAATTGAAAGTGGAAGCAG CCATGAGAAAGGTGCGAGGAGATCTGGAGGA	6674
-NG-1NG	CCTCCACC <u>T</u> AGTAAGCA	6675
	TGCTTACT <u>A</u> GGTGGAGG	6676
Increased stearate stearoyl-ACP desaturase	ATGGCACTGAAACTTTGCTTTCCACCCCACAAGATGCCTTCCTT	6677
oesaturase Olea europaea Arg21Term AGA-TGA	CTTTTCCGACCTCCATAGAAGGAGAATGAATAGTTGAAGCCATGAA AACCCTGTGAGATCAGATACGAGCATCGGGGAAGGAAGGCATCTT GTGGGGTGGAAAGCAAAGTTTCAGTGCCAT	6678
AGA-1GA	CTCGTATC <u>T</u> GATCTCAC	667
	GTGAGATC <u>A</u> GATACGAG	668
Increased stearate stearoyl-ACP desaturase	CCCACAAGATGCCTTCCTTCCCCGATGCTCGTATCAGATCTCACA GGGTTTTCATGGCTTGAACTATTCATTCTCCTTCTATGGAGGTCGG AAAAGTTAAAAAGCCTTTCACGCCTCCACG	668
Olea europaea Ser29Term TCA-TGA	CGTGGAGGCGTGAAAGGCTTTTTAACTTTTCCGACCTCCATAGAAG GAGAATGAATAGTTCAAGCCATGAAAACCCTGTGAGATCTGATACG AGCATCGGGGAAGGAAGGCATCTTGTGGG	668
TOATOA	CATGGCTT <u>G</u> AACTATTC	668
	GAATAGTT C AAGCCATG	668
Increased stearate stearoyl-ACP desaturase	GATGCTCGTATCAGATCTCACAGGGTTTTCATGGCTTCAACTATTC ATTCTCCTTCTATGTAGGTCGGAAAAGTTAAAAAGCCTTTCACGCC TCCACGAGAGGTACATGTTCAAGTAACCC	668
Olea europaea Glu37Term GAG-TAG	GGGTTACTTGAACATGTACCTCTCGTGGAGGCGTGAAAGGCTTTTT AACTTTTCCGACCTACATAGAAGGAGAATGAATAGTTGAAGCCATG AAAACCCTGTGAGATCTGATACGAGCATC	668
GAG-IAG	CTTCTATG <u>T</u> AGGTCGGA	668
	TCCGACCTACATAGAAG	668

10

15

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	Increased stearate stearoyl-ACP desaturase	CGTATCAGATCTCACAGGGTTTTCATGGCTTCAACTATTCATCTC CTTCTATGGAGGTCTGAAAAAGTTAAAAAGCCTTTCACGCCTCCACG AGAGGTACATGTTCAAGTAACCCATTCCT	6689
5	Olea europaea Gly39Term GGA-TGA	AGGAATGGGTTACTTGAACATGTACCTCTCGTGGAGGCGTGAAAG GCTTTTTAACTTTTCAGACCTCCATAGAAGGAGAATGAAT	6690
		TGGAGGTC <u>T</u> GAAAAGTT	6691
-		AACTTTTC <u>A</u> GACCTCCA	6692
	Increased stearate stearoyl-ACP desaturase	TTCTCGTTTTTGTCGTCCCCTCTGCTCTCTCTCTCTATCAGGCACG GAGAAATGGCACTGTAACTCAGTCCAGTC	6693
0	Persea americana Lys4Term AAA-TAA	AAGGCGGATAGGAGGCAAGAAATGGAAGCTTCTGAGATTGAAACA TGACTGGACTG	6694
	700(170(TGGCACTG <u>T</u> AACTCAGT	6695
		ACTGAGTT <u>A</u> CAGTGCCA	6696
5	Increased stearate stearoyl-ACP desaturase	CTGCTCTCTCTCTATCAGGCACGGAGAAATGGCACTGAAACTC AGTCCAGTCATGTTTTAATCTCAGAAGCTTCCATTTCTTGCCTCCTA TCCGCCTTCCAATCTCAGATCTCCGAGGG	6697
J	Persea americana Gin11Term CAA-TAA	CCCTCGGAGATCTGAGATTGGAAGGCGGATAGGAGGCAAGAAAT GGAAGCTTCTGAGATT <u>A</u> AAACATGACTGGACTGAGTTTCAGTGCCA TTTCTCCGTGCCTGATAGAGAGAGAGAGCAG	6698
		TCATGTTT <u>T</u> AATCTCAG	6699
		CTGAGATT <u>A</u> AAACATGA	6700
20	Increased stearate stearoyl-ACP desaturase	TCTCTCTATCAGGCACGGAGAAATGGCACTGAAACTCAGTCCA GTCATGTTTCAATCTTAGAAGCTTCCATTTCTTGCCTCCTATCCGC CTTCCAATCTCAGATCTCCGAGGGTTTTCA	6701
	Persea americana Gln13Term CAG-TAG	TGAAAACCCTCGGAGATCTGAGATTGGAAGGCGGATAGGAGGCAA GAAATGGAAGCTTCTAAGATTGAAACATGACTGGACTG	6702
	OAG-TAG	TTCAATCTTAGAAGCTT	6703
		AAGCTTCT <u>A</u> AGATTGAA	6704
25	Increased stearate stearoyl-ACP desaturase	CTCTCTATCAGGCACGGAGAAATGGCACTGAAACTCAGTCCAGTC ATGTTTCAATCTCAGTAGCTTCCATTTCTTGCCTCCTATCCGCCTTC CAATCTCAGATCTCCGAGGGTTTTCATGG	6705
	Persea americana Lys14Term	CCATGAAAACCCTCGGAGATCTGAGATTGGAAGGCGGATAGGAGG CAAGAAATGGAAGCT <u>A</u> CTGAGATTGAAACATGACTGGACTGAGTTT	6706
30	AAG-TAG	CAGTGCCATTTCTCCGTGCCTGATAGAGAG	<u> </u>

Phenotype, Gene, Plant & Targeted	Altering Oligos	SEQ IC NO:
Alteration	AATCTCAGTAGCTTCCA	6707
	TGGAAGCT <u>A</u> CTGAGATT	6708
ncreased stearate stearoyl-ACP desaturase	CCCCGAGATCTCGCTGCCGCTGCTCATGGCGTTCGCGGCGTCCC ACACCGCATCGCCGTAGTCCTGCGGCGCGTGGCGCAGAGAGGAG GAGCAATGGGATGTCGAAGATGGTGGCCATGGCC	6709
oesalurase Oryza sativa Fyr12Term FAC-TAG	GGCCATGGCCACCATCTTCGACATCCCATTGCTCCTCTGCGC CACGCCGCCGCAGGACTACGGCGATGCGGTGTGGGACGCCGCG AACGCCATGAGCAGCGCAGC	6710
IAC-IAG	TCGCCGTAGTCCTGCGG	6711
	CCGCAGGA <u>C</u> TACGGCGA	6712
Increased stearate stearoyl-ACP desaturase	CTGCTCATGGCGTTCGCGGCGTCCCACACCGCATCGCCGTACTC CTGCGGCGGCGTGGCGT	6713
oesaturase O <i>ryza sativa</i> Gln19Term CAG-TAG	TGACCCTGTTGATGGTGGAGGCCATGGCCACCATCTTCGACATCC CATTGCTCCTCCTCTACGCCACGCC	6714
CAG-TAG	GCGTGGCG <u>T</u> AGAGGAGG	671
	CCTCCTCT <u>A</u> CGCCACGC	6716
Increased stearate stearoyl-ACP	CCCACACCGCATCGCCGTACTCCTGCGGCGCGCGTGGCGCAGAG GAGGAGCAATGGGATGTAGAAGATGGTGGCCATGGCCTCCACCA TCAACAGGGTCAAGACTGCTAAGAAGCCCTACAC	6717
desaturase Oryza sativa Ser26Term TCG-TAG	GTGTAGGGCTTCTTAGCAGTCTTGACCCTGTTGATGGTGGAGGCC ATGGCCACCATCTTCTACATCCCATTGCTCCTCTGCGCCACG CCGCCGCAGGAGTACGGCGATGCGGTGTGGG	671
	TGGGATGT <u>A</u> GAAGATGG	671
	CCATCTTC <u>T</u> ACATCCCA	672
Increased stearate stearoyl-ACP desaturase	CACACCGCATCGCCGTACTCCTGCGGCGCGTGGCGCAGAGGAG GAGCAATGGGATGTCGTAGATGGTGGCCATGGCCTCCACCATCAA CAGGGTCAAGACTGCTAAGAAGCCCTACACTC	
Oryza sativa Lys27Term AAG-TAG	GAGTGTAGGGCTTCTTAGCAGTCTTGACCCTGTTGATGGTGGAGG CCATGGCCACCATCTACGACATCCCATTGCTCCTCTCTGCGCCA CGCCGCCGCAGGAGTACGGCGATGCGGTGTG	672
MAG-IAG	GGATGTCG <u>T</u> AGATGGTG	672
	CACCATCTACGACATCC	672

10

15

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	Increased stearate stearoyl-ACP desaturase	TTCTCTCTAGGTTGAGCGGTTACCAACAGAAGCACTTAGGAGA GAGAAGCAATGGCGT <u>A</u> GAAGCTTCACCACACGGCCTTCAATCCTT CCATGGCGGTTACCTCTTCGGGACTTCCTCG	6725
5	Simmondsia chinensis Leu3Term TTG-TAG	CGAGGAAGTCCCGAAGAGGTAACCGCCATGGAAGGATTGAAGGC CGTGTGGTGAAGCTTCTACGCCATTGCTTCTCTCTAAGTGCTT CTGTTGGTAACCGCTCAACCTAGAGAGAGAA	6726
		AATGGCGT <u>A</u> GAAGCTTC	6727
		GAAGCTTC <u>T</u> ACGCCATT	6728
	Increased stearate stearoyl-ACP desaturase	CTCTCTCTAGGTTGAGCGGTTACCAACAGAAGCACTTAGGAGAGA GAAGCAATGGCGTTG <u>T</u> AGCTTCACCACACGGCCTTCAATCCTTCC ATGGCGGTTACCTCTTCGGGACTTCCTCGAT	6729
10	Simmondsia chinensis Lys4Term AAG-TAG	ATCGAGGAAGTCCCGAAGAGGTAACCGCCATGGAAGGATTGAAG GCCGTGTGGTGAAGCTACAACGCCATTGCTTCTCTCCTAAGTG CTTCTGTTGGTAACCGCTCAACCTAGAGAGAG	6730
•		TGGCGTTG <u>T</u> AGCTTCAC	6731
		GTGAAGCT <u>A</u> CAACGCCA	6732
15	Increased stearate stearoyl-ACP desaturase	AAGCAATGGCGTTGAAGCTTCACCACACGGCCTTCAATCCTTCCAT GGCGGTTACCTCTTAGGGACTTCCTCGATCGTATCACCTCAGATC TCACCGCGTTTTCATGGCTTCTTCTACAAT	6733
	Simmondsia chinensis Ser19Term TCG-TAG	ATTGTAGAAGAAGCCATGAAAACGCGGTGAGATCTGAGGTGATAC GATCGAGGAAGTCCC <u>T</u> AAGAGGTAACCGCCATGGAAGGATTGAAG GCCGTGTGGTGAAGCTTCAACGCCATTGCTT	6734
		TACCTCTT <u>A</u> GGGACTTC	6735
		GAAGTCCC <u>T</u> AAGAGGTA	6736
20	Increased stearate stearoyl-ACP desaturase	GCAATGGCGTTGAAGCTTCACCACACGGCCTTCAATCCTTCCATG GCGGTTACCTCTCGTGACTTCCTCGATCGTATCACCTCAGATCTC ACCGCGTTTTCATGGCTTCTTCTACAATTG	6737
	Simmondsia chinensis Gly20Term GGA-TGA	CAATTGTAGAAGAAGCCATGAAAACGCGGTGAGATCTGAGGTGAT ACGATCGAGGAAGTCACGAAGAGGTAACCGCCATGGAAGGATTGA AGGCCGTGTGGTGAAGCTTCAACGCCATTGC	6738
,		CCTCTTCG <u>T</u> GACTTCCT	6739
		AGGAAGTC <u>A</u> CGAAGAGG	6740
25	Increased stearate stearoyl-ACP desaturase	TGGCTCTGAATCTCAACCCCGTTTCCACACCATTTCAGTGTCGTCG ATTGCCGTCTTTCTGACCTCGTCAAACGCCTTCTCGCAGATCTCCC AAATTCTTCATGGCTTCCACTCTCAGCAG	6741
30	Spinacia oleracea Ser21Term TCA-TGA	CTGCTGAGAGTGGAAGCCATGAAGAATTTGGGAGATCTGCGAGAA GGCGTTTGACGAGGTCAGAAAGACGGCAATCGACGACACTGAAAT GGTGTGGAAACGGGGTTGAGATTCAGAGCCA	6742

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
	GTCTTTCT <u>G</u> ACCTCGTC	6743
	GACGAGGT <u>C</u> AGAAAGAC	6744
Increased stearate stearoyl-ACP desaturase	AATCTCAACCCCGTTTCCACACCATTTCAGTGTCGTCGATTGCCGT CTTTCTCACCTCGTTAAACGCCTTCTCGCAGATCTCCCAAATTCTT CATGGCTTCCACTCTCAGCAGCTCTTCTC	6745
Spinacia oleracea Gln24Term CAA-TAA	GAGAAGAGCTGCTGAGAGTGGAAGCCATGAAGAATTTGGGAGATC TGCGAGAAGGCGTTTAACGAGGTGAGAAAGACGGCAATCGACGA CACTGAAATGGTGTGGAAACGGGGTTGAGATT	6746
	CACCTCGTTAAACGCCT	6747
	AGGCGTTT <u>A</u> ACGAGGTG	6748
Increased stearate stearoyl-ACP desaturase	TCCACACCATTTCAGTGTCGTCGATTGCCGTCTTTCTCACCTCGTC AAACGCCTTCTCGCTGATCTCCCAAATTCTTCATGGCTTCCACTCT CAGCAGCTCTTCTCCTAAGGAAGCGGAAA	6749
Spinacia oleracea Arg29Term AGA-TGA	TTTCCGCTTCCTTAGGAGAAGAGCTGCTGAGAGTGGAAGCCATGA AGAATTTGGGAGATCAGCGAGAAGGCGTTTGACGAGGTGAGAAAG ACGGCAATCGACGACACTGAAATGGTGTGGA	6750
NON TON	CTTCTCGCTGATCTCCC	6751
	GGGAGATC <u>A</u> GCGAGAAG	6752
Increased stearate stearoyl-ACP desaturase	TTTCAGTGTCGATTGCCGTCTTTCTCACCTCGTCAAACGCCTT CTCGCAGATCTCCCTAATTCTTCATGGCTTCCACTCTCAGCAGCTC TTCTCCTAAGGAAGCGGAAAGCCTGAAGA	6753
Spinacia oleracea Lys32Term AAA-TAA	TCTTCAGGCTTTCCGCTTCCTTAGGAGAAGAGCTGCTGAGAGTGG AAGCCATGAAGAATTAGGGAGATCTGCGAGAAGGCGTTTGACGAG GTGAGAAAGACGGCAATCGACGACACTGAAA	6754
	GATCTCCC <u>T</u> AATTCTTC	6755
	GAAGAATT <u>A</u> GGGAGATC	6756
Increased stearate stearoyl-ACP desaturase	AAATAGTCGAGGTGAAAAACAGAGCATCAACAATGGCACTGAATAT CAATGGGGTGTCGT <u>G</u> AAAATCTCACAAAATGTTACCATTTCCTTGT TCTTCAGCCAGATCTGAGCGAGTTTTCAT	6757
Solanum tuberosum Leu10Term TTA-TGA	ATGAAAACTCGCTCAGATCTGGCTGAAGAACAAGGAAATGGTAACA TTTTGTGAGATTTTCACGACACCCCATTGATATTCAGTGCCATTGTT GATGCTCTGTTTTTCACCTCGACTATTT	6758
	GGTGTCGT <u>G</u> AAAATCTC	6759
	GAGATTTT <u>C</u> ACGACACC	6760

10

15

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	Increased stearate stearoyl-ACP desaturase	ATAGTCGAGGTGAAAAACAGAGCATCAACAATGGCACTGAATATCA ATGGGGTGTCGTTA <u>T</u> AATCTCACAAAATGTTACCATTTCCTTGTTCT TCAGCCAGATCTGAGCGAGTTTTCATGG	6761
5	Solanum tuberosum Lys11Term AAA-TAA	CCATGAAAACTCGCTCAGATCTGGCTGAAGAACAAGGAAATGGTA ACATTTTGTGAGATTATAACGACACCCCATTGATATTCAGTGCCATT GTTGATGCTCTGTTTTTCACCTCGACTAT	6762
	}	TGTCGTTA <u>T</u> AATCTCAC GTGAGATT A TAACGACA	6763 6764
	Increased stearate stearoyl-ACP desaturase	GTGAGATIATACGACA GTGAGAAAACAGAGCATCAACAATGGCACTGAATATCAATGGGGTGT CGTTAAAATCTCACTAAATGTTACCATTTCCTTGTTCTTCAGCCAGA TCTGAGCGAGTTTTCATGGCTTCAACCA	6765
10	Solanum tuberosum Lys14Term AAA-TAA	TGGTTGAAGCCATGAAAACTCGCTCAGATCTGGCTGAAGAACAAG GAAATGGTAACATTTAGTGAGATTTTAACGACACCCCATTGATATTC AGTGCCATTGTTGATGCTCTGTTTTTCAC	6766
		AATCTCAC <u>T</u> AAATGTTA	6767
		TAACATTT <u>A</u> GTGAGATT	6768
15	Increased stearate stearoyl-ACP desaturase	ACAGAGCATCAACAATGGCACTGAATATCAATGGGGTGTCGTTAAA ATCTCACAAAATGTGACCATTTCCTTGTTCTTCAGCCAGATCTGAG CGAGTTTTCATGGCTTCAACCATTCATCG	6769
	Solanum tuberosum Leu16Term TTA-TGA	CGATGAATGGTTGAAGCCATGAAAACTCGCTCAGATCTGGCTGAA GAACAAGGAAATGGTCACATTTTGTGAGATTTTAACGACACCCCAT TGATATTCAGTGCCATTGTTGATGCTCTGT	6770
		CAAAATGT <u>G</u> ACCATTTC	6771
		GAAATGGT <u>C</u> ACATTTTG	6772
20	Increased stearate stearoyl-ACP desaturase	TGGCTCTGAGGCTGAACCCTAACCCTTCACAGAAGCTCTTTCTCTC TCCTTCTTCATCATCATCGATCTCCTC AAATGGCTAGCCTCAGATCTCCAAGGTT	6773
	Arachis hypogaea Ser21Term TCA-TGA	AACCTTGGAGATCTGAGGCTAGCCATTTGAGGAAGCGAGAACGAT GAAGAAGAAGAAGATCATGATGAAGAAGAGAGAGAAAAGAGCTTC TGTGAAGGGTTAGGGTTCAGCCTCAGAGCCA	6774
		TTCATCAT <u>G</u> ATCTTCTT	6775
		AAGAAGAT <u>C</u> ATGATGAA	6776
25	Increased stearate stearoyl-ACP desaturase	ACCCTAACCCTTCACAGAAGCTCTTTCTCTCTCTTCTTCATCATCA TCTTCTTCTTCTCGATCGTTCTCGCTTCCTCAAATGGCTAGCCTCA GATCTCCAAGGTTCCGCATGGCCTCCAC	6777
30	Arachis hypogaea Ser26Term TCA-TGA	GTGGAGGCCATGCGGAACCTTGGAGATCTGAGGCTAGCCATTTGA GGAAGCGAGAACGATCAAGAAGAAGAAGATGATGAAGAAGGA GAGAGAAAGAGCTTCTGTGAAGGGTTAGGGT	
30	LICA-IGA	TOVOULUIGIONOOOLIVOOOL	J

10

15

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
Alteration	TTCTTCTT G ATCGTTCT	6779
	AGAACGAT C AAGAAGAA	6780
ncreased stearate tearoyl-ACP desaturase	CTAACCCTTCACAGAAGCTCTTTCTCTCTCTCTTCATCATCATCT TCTTCTTCATAGTTCTCGCTTCCTCAAATGGCTAGCCTCAGAT CTCCAAGGTTCCGCATGGCCTCCACCCT	6781
nesalurase Arachis hypogaea Ser27Term FCG-TAG	AGGGTGGAGCCATGCGGAACCTTGGAGATCTGAGGCTAGCCAT TTGAGGAAGCGAGAACTATGAAGAAGAAGAAGATGATGAAGA AGGAGAGAGAAAGAGCTTCTGTGAAGGGTTAG	6782
100-170	TTCTTCAT <u>A</u> GTTCTCGC	6783
	GCGAGAAC <u>T</u> ATGAAGAA	6784
ncreased stearate stearoyl-ACP	CTTCACAGAAGCTCTTTCTCTCTCTCTTCATCATCATCTTCTTCT TCTTCATCGTTCTAGCTTCCTCAAATGGCTAGCCTCAGATCTCCAA GGTTCCGCATGGCCTCCACCCTCCGCAC	6785
desaturase Arachis hypogaea Ser29Term TCG-TAG	GTGCGGAGGTGGAGGCCATGCGGAACCTTGGAGATCTGAGGCT AGCCATTTGAGGAAGCTAGAACGATGAAGAAGAAGAAGATGATGA TGAAGAAGGAGAGAAAAGAGCTTCTGTGAAG	6786
ICG-IAG	ATCGTTCTAGCTTCCTC	6787
	GAGGAAGCTAGAACGAT	6788
Increased stearate stearoyl-ACP	AAAGTTAAAAGCCGTCCAAAACCCAAACCAGGAAAGGCAAACGAA AAGAAAAAATGGCTTAGAATTTTAATGCCATCGCCTCGAAATCTCA GAAGCTCCCTTGCTTTGCT	6789
desaturase Gossypium hirsutum Leu3Term TTG-TAG	TTTGGTGGAAGAGCAAAGCAAGGGAGCTTCTGAGATTTCGAGGCG ATGGCATTAAAATTCTAAGCCATTTTTTCTTTTC	6790
110-140	AATGGCTT <u>A</u> GAATTTTA	679°
	TAAAATTC <u>T</u> AAGCCATT	679
Increased stearate stearoyl-ACP	CCCAAACCAGGAAAGGCAAACGAAAAGAAAAATGGCTTTGAATTT TAATGCCATCGCCT <u>A</u> GAAATCTCAGAAGCTCCCTTGCTTTGCTCTT CCACCAAAGGCCACCCTTAGATCTCCCAA	679
desaturase Gossypium hirsutum Ser1-Term	TTGGGAGATCTAAGGGTGGCCTTTGGTGGAAGAGCAAAGCAAGG GAGCTTCTGAGATTTCTAGGCGATGGCATTAAAATTCAAAGCCATT TTTTCTTTTC	679
TCG-TAG	CATCGCCTAGAAATCTC	679
	GAGATTTCTAGGCGATG	679

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
Increased stearate stearoyl-ACP desaturase	CAAACCAGGAAAGGCAAACGAAAAGAAAAAATGGCTTTGAATTTTA ATGCCATCGCCTCG <u>T</u> AATCTCAGAAGCTCCCTTGCTTTGCTCTTCC ACCAAAGGCCACCCTTAGATCTCCCAAGT	6797
Gossypium hirsutum Lys11Term AAA-TAA	ACTTGGGAGATCTAAGGGTGGCCTTTGGTGGAAGAGCAAGCA	6798
	TCGCCTCG <u>T</u> AATCTCAG	6799
	CTGAGATT <u>A</u> CGAGGCGA	6800
Increased stearate stearoyl-ACP desaturase	AGGAAAGGCAAACGAAAAGAAAAAATGGCTTTGAATTTTAATGCCA TCGCCTCGAAATCT <u>T</u> AGAAGCTCCCTTGCTTTGCTCTTCCACCAAA GGCCACCCTTAGATCTCCCAAGTTTTCCA	6801
Gossypium hirsutum Gln13Term CAG-TAG	TGGAAAACTTGGGAGATCTAAGGGTGGCCTTTGGTGGAAGAGCAA AGCAAGGGAGCTTCTAAGATTTCGAGGCGATGGCATTAAAATTCAA AGCCATTTTTTCTTTTC	6802
	CGAAATCT <u>T</u> AGAAGCTC	6803
	GAGCTTCT <u>A</u> AGATTTCG	6804

Table 24
Oligonucleotides to produce plants with reduced linolenic acid

5	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
J	Reduced linolenic acid omega-3 fatty acid desaturase	AATAGAACGACAGAGACTTTTTCCTCTTTTCTTCTTGGGAAGAGGC TCCAATGGCGAGCTAGGTTTTATCAGAATGTGGTTTTAGACCTCTC CCCAGATTCTACCCTAAACACACACCTC	6805
10	Arabidopsis thaliana Ser4Term TCG-TAG	GAGGTTGTGTTTAGGGTAGAATCTGGGGAGAGGTCTAAAACCA CATTCTGATAAAACC <u>T</u> AGCTCGCCATTGGAGCCTCTTCCCAAGAAG AAAAGAGGAAAAAGTCTCTGTCGTTCTATT	6806
		GGCGAGCT <u>T</u> GGTTTTAT	6807
		ATAAAACC <u>A</u> AGCTCGCC	6808
	Reduced linolenic acid omega-3 fatty acid desaturase	ACGACAGAGACTTTTTCCTCTTTTCTTCTTGGGAAGAGGCTCCAAT GGCGAGCTCGGTTTGATCAGAATGTGGTTTTAGACCTCTCCCCAG ATTCTACCCTAAACACACACACCTCTTTTGC	6809
15	Arabidopsis thaliana Leu6Term TTA-TGA	GCAAAAGAGGTTGTGTTTTAGGGTAGAATCTGGGGAGAGGTCTA AAACCACATTCTGATCAAACCGAGCTCGCCATTGGAGCCTCTTCC CAAGAAGAAAAGAGGAAAAAGTCTCTGTCGT	6810
	ITATON	CTCGGTTT <u>G</u> ATCAGAAT	6811
		ATTCTGAT <u>C</u> AAACCGAG	6812
20	Reduced linolenic acid omega-3 fatty acid desaturase	ACAGAGACTTTTTCCTCTTTTCTTCTTGGGAAGAGGCTCCAATGGC GAGCTCGGTTTTATGAGAATGTGGTTTTAGACCTCTCCCCAGATTC TACCCTAAACACACAACCTCTTTTGCCTC	6813
20	Arabidopsis thaliana Ser7Term TCA-TGA	GAGGCAAAAGAGGTTGTGTTTTAGGGTAGAATCTGGGGAGAGGT CTAAAACCACATTCT <u>C</u> ATAAAACCGAGCTCGCCATTGGAGCCTCTT CCCAAGAAGAAAAGAGGAAAAAGTCTCTGT	6814
	TOATOA	GGTTTAT <u>G</u> AGAATGTG	6815
		CACATTCT <u>C</u> ATAAAACC	6816
25	Reduced linolenic acid omega-3 fatty acid desaturase	AGAGACTTTTCCTCTTTTCTTCTTGGGAAGAGGCTCCAATGGCGA GCTCGGTTTTATCATAATGTGGTTTTAGACCTCTCCCCAGATTCTA CCCTAAACACACACCTCTTTTGCCTCTA	6817
·	Arabidopsis thaliana Glu8Term GAA-TAA	TAGAGGCAAAAGAGGTTGTGTTTTAGGGTAGAATCTGGGGAGAG GTCTAAAACCACATT <u>A</u> TGATAAAACCGAGCTCGCCATTGGAGCCTC TTCCCAAGAAGAAAAGGGAAAAAGTCTCT	6818
	Q/Vn-1/Vn	TTTTATCATAATGTGGT	6819
		ACCACATT <u>A</u> TGATAAAA	6820

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	Reduced linolenic acid omega-3 fatty acid desaturase	TCATCATCTTCTTCTGGGGAGAGAGAGAGAGCAAAAGAGCTCT AGCAATGGCGAACT <u>A</u> GGTCTTATCCGAATGTGGCATAAGACCTCT CCCCAGAATCTACACCACACC	6821
5	Brassica juncea Leu4Term TTG-TAG	GTGGATCTGGGTGTGGTGTAGATTCTGGGGAGAGGTCTTATGCCA CATTCGGATAAGACC <u>T</u> AGTTCGCCATTGCTAGAGCTCTTTTGCTCT CTCTCTCCCCAGAAGAAGAAGATGATGA	6822
		GGCGAACT <u>A</u> GGTCTTAT	6823
		ATAAGACC <u>T</u> AGTTCGCC	6824
	Reduced linolenic acid omega-3 fatty acid desaturase	TCTTCTTCTGGGGAGAGAGAGAGCAAAAGAGCTCTAGCAA TGGCGAACTTGGTCT <u>G</u> ATCCGAATGTGGCATAAGACCTCTCCCCA GAATCTACACCACACC	6825
10	Brassica juncea Leu6Term TTA-TGA	AGGAAAGTGGATCTGGGTGTGGTGTAGATTCTGGGGAGAGGTCTT ATGCCACATTCGGAT <u>C</u> AGACCAAGTTCGCCATTGCTAGAGCTCTTT TGCTCTCTCTCTCCCCAGAAGAAGAAGA	6826
		CTTGGTCT <u>G</u> ATCCGAAT	6827
		ATTCGGAT <u>C</u> AGACCAAG	6828
15	Reduced linolenic acid omega-3 fatty acid desaturase	TTCTTCTGGGGAGAGAGAGAGCAAAAGAGCTCTAGCAATGGCG AACTTGGTCTTATCCTAATGTGGCATAAGACCTCTCCCCAGAATCT ACACCACACC	6829
	Brassica juncea Glu8Term GAA-TAA	TGGAGAGGAAAGTGGATCTGGGTGTGGTGTAGATTCTGGGGAGA GGTCTTATGCCACATTAGGATAAGACCAAGTTCGCCATTGCTAGAG CTCTTTTGCTCTCTCTCTCCCCAGAAGAA	6830
		TCTTATCC <u>T</u> AATGTGGC	6831
		GCCACATT <u>A</u> GGATAAGA	6832
20	Reduced linolenic acid omega-3 fatty acid desaturase	CTGGGGAGAGAGAGAGCAAAAGAGCTCTAGCAATGGCGAACTT GGTCTTATCCGAATGAGGCATAAGACCTCTCCCAGAATCTACAC CACACCCAGATCCACTTTCCTCTCCAACACC	6833
	Brassica juncea Cys9Term TGT-TGA	GGTGTTGGAGAGGAAAGTGGATCTGGGTGTGGTGTAGATTCTGGG GAGAGGTCTTATGCCTCATTCGGATAAGACCAAGTTCGCCATTGCT AGAGCTCTTTTGCTCTCTCTCTCCCCAG	6834
		TCCGAATG <u>A</u> GGCATAAG	6835
		CTTATGCC <u>T</u> CATTCGGA	6836
25	Reduced linolenic acid omega-3 fatty acid desaturase	TATAACAGAATTGCTGAATTCTTGCATTTTTAGCTTCTGGGTTTTCAA TGGCTGCTGGTTG <u>A</u> GTATTATCAGAATGTGGTTTAAGGCCTCTCCC AAGAATCTACTCACGACCCAGAATTGGT	6837
30	Ricinus communis Trp5Term TGG-TGA	ACCAATTCTGGGTCGTGAGTAGATTCTTGGGAGAGGCCTTAAACC ACATTCTGATAATACTCAACCAGCAGCCATTGAAAACCCAGAAGCT AAAAATGCAAGAATTCAGCAATTCTGTTAT	6838

10

15

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID
	GCTGGTTG <u>A</u> GTATTATC	6839
	GATAATAC <u>T</u> CAACCAGC	6840
Reduced linolenic acid omega-3 fatty acid desaturase	AGAATTGCTGAATTCTTGCATTTTTAGCTTCTGGGTTTTCAATGGCT GCTGGTTGGGTATGATCAGAATGTGGTTTAAGGCCTCTCCCAAGA ATCTACTCACGACCCAGAATTGGTTTTAC	6841
Ricinus communis Leu7Term TTA-TGA	GTAAAACCAATTCTGGGTCGTGAGTAGATTCTTGGGAGAGGCCTT AAACCACATTCTGATCATACCCAACCAGCAGCCATTGAAAACCCAG AAGCTAAAAATGCAAGAATTCAGCAATTCT	6842
,,,,,,	TTGGGTAT <u>G</u> ATCAGAAT	6843
	ATTCTGAT C ATACCCAA	6844
Reduced linolenic acid omega-3 fatty acid desaturase	ATTGCTGAATTCTTGCATTTTTAGCTTCTGGGTTTTCAATGGCTGCT GGTTGGGTATTATGAGAATGTGGTTTAAGGCCTCTCCCAAGAATCT ACTCACGACCCAGAATTGGTTTTACATC	6845
Ricinus communis Ser8Term TCA-TGA	GATGTAAAACCAATTCTGGGTCGTGAGTAGATTCTTGGGAGAGGC CTTAAACCACATTCTCATAATACCCAACCAGCAGCCATTGAAAACC CAGAAGCTAAAAATGCAAGAATTCAGCAAT	6846
IOA-IOA	GGTATTAT <u>G</u> AGAATGTG	6847
	CACATTCT <u>C</u> ATAATACC	6848
Reduced linolenic acid omega-3 fatty acid desaturase	TGCTGAATTCTTGCATTTTTAGCTTCTGGGTTTTCAATGGCTGCTG GTTGGGTATTATCATAATGTGGTTTAAGGCCTCTCCCAAGAATCTA CTCACGACCCAGAATTGGTTTTACATCGA	6849
Ricinus communis Glu9Term GAA-TAA	TCGATGTAAAACCAATTCTGGGTCGTGAGTAGATTCTTGGGAGAG GCCTTAAACCACATTATGATAATACCCAACCAGCAGCCATTGAAAA CCCAGAAGCTAAAAATGCAAGAATTCAGCA	6850
	TATTATCA <u>T</u> AATGTGGT	6851
	ACCACATT <u>A</u> TGATAATA	6852
Reduced linolenic acid omega-3 fatty acid desaturase	GCAAGTTGGGTTTTATCAGAATGTGGTCTTAGACCACTCCCAAGAA TCTACCCTAAGCCCTGAACTGGGGCAGCCACTTCTGCCTCCTCTC ACATTAAGTTGAGAATTTCACGTACAGATC	6853
Nicotiana tabacum Arg22Term AGA-TGA	GATCTGTACGTGAAATTCTCAACTTAATGTGAGAGGAGGCAGAAGT. GGCTGCCCCAGTTCAGGGCTAGGGTAGATTCTTGGGAGTGGTCT AAGACCACATTCTGATAAAACCCAACTTGC	6854
	CTAAGCCC <u>T</u> GAACTGGG	685
	CCCAGTTCAGGGCTTAG	685

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	Reduced linolenic acid omega-3 fatty acid desaturase	CTCCCAAGAATCTACCCTAAGCCCAGAACTGGGGCAGCCACTTCT GCCTCCTCACATT <u>T</u> AGTTGAGAATTTCACGTACAGATCTGAGTG GTTCTGCAATTTCTTTGTCTAATACTAATA	6857
5	Nicotiana tabacum Lys34Term AAG-TAG	TATTAGTATTAGACAAAGAAATTGCAGAACCACTCAGATCTGTACG TGAAATTCTCAACT <u>A</u> AATGTGAGAGGGGGGCAGAAGTGGCTGCCCC AGTTCTGGGCTTAGGGTAGATTCTTGGGAG	6858
		CTCACATT <u>T</u> AGTTGAGA	6859
		TCTCAACT <u>A</u> AATGTGAG	6860
	Reduced linolenic acid omega-3 fatty acid desaturase	CAAGAATCTACCCTAAGCCCAGAACTGGGGCAGCCACTTCTGCCT CCTCTCACATTAAGTAGAGAATTTCACGTACAGATCTGAGTGGTTC TGCAATTTCTTTGTCTAATACTAATAAAGA	6861
10	Nicotiana tabacum Leu35Term TTG-TAG	TCTTTATTAGTATTAGACAAAGAAATTGCAGAACCACTCAGATCTGT ACGTGAAATTCTCTACTTAATGTGAGAGGGGGCAGAAGTGGCTGC CCCAGTTCTGGGCTTAGGGTAGATTCTTG	6862
		CATTAAGT <u>A</u> GAGAATTT	6863
		AAATTCTC <u>T</u> ACTTAATG	6864
15	Reduced linolenic acid omega-3 fatty acid desaturase	AGAATCTACCCTAAGCCCAGAACTGGGGCAGCCACTTCTGCCTCC TCTCACATTAAGTTGTGAATTTCACGTACAGATCTGAGTGGTTCTG CAATTTCTTTGTCTAATACTAATAAAGAGA	6865
	Nicotiana tabacum Arg36Term AGA-TGA	TCTCTTTATTAGTATTAGACAAAGAAATTGCAGAACCACTCAGATCT GTACGTGAAATTCACAACTTAATGTGAGAGGAGGCAGAAGTGGCT GCCCCAGTTCTGGGCTTAGGGTAGATTCT	6866
		TTAAGTTG <u>T</u> GAATTTCA	6867
		TGAAATTC <u>A</u> CAACTTAA	6868
20	Reduced linolenic acid omega-3 fatty acid desaturase	GCGAGTTGGGTTTTATCAGAATGTGGTCTGAGGCCACTCCCGAGG GTCTATCCTAAGCCATGAACTGGCCACCCTTTGTTGAATTCCAATC CCACAAAGCTGAGATTTTCAAGAACAGATC	6869
	Sesamum indicum Arg22Term AGA-TGA	GATCTGTTCTTGAAAATCTCAGCTTTGTGGGATTGGAATTCAACAA AGGGTGGCCAGTTCATGGCTTAGGATAGACCCTCGGGAGTGGCC TCAGACCACATTCTGATAAAACCCAACTCGC	6870
		CTAAGCCATGAACTGGC	6871
		GCCAGTTC <u>A</u> TGGCTTAG	6872
25	Reduced linolenic acid omega-3 fatty acid desaturase	CAGAATGTGGTCTGAGGCCACTCCCGAGGGTCTATCCTAAGCCAA GAACTGGCCACCCTTAGTTGAATTCCAATCCCACAAAGCTGAGATT TTCAAGAACAGATCTTGGAAATGGTTCTTC	6873
30	Sesamum indicum Leu27Term TTG-TAG	GAAGAACCATTTCCAAGATCTGTTCTTGAAAATCTCAGCTTTGTGG GATTGGAATTCAACTAAGGGTGGCCAGTTCTTGGCTTAGGATAGA CCCTCGGGAGTGGCCTCAGACCACATTCTG	6874

10

15

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID
	CCACCCTT <u>A</u> GTTGAATT	6875
	AATTCAAC <u>T</u> AAGGGTGG	6876
Reduced linolenic acid omega-3 fatty acid desaturase	AATGTGGTCTGAGGCCACTCCCGAGGGTCTATCCTAAGCCAAGAA CTGGCCACCCTTTGTAGAATTCCAATCCCACAAAGCTGAGATTTTC AAGAACAGATCTTGGAAATGGTTCTTCATT	6877
Sesamum indicum Leu28Term TTG-TAG	AATGAAGAACCATTTCCAAGATCTGTTCTTGAAAATCTCAGCTTTGT GGGATTGGAATTC <u>T</u> ACAAAGGGTGGCCAGTTCTTGGCTTAGGATA GACCCTCGGGAGTGGCCTCAGACCACATT	6878
	CCCTTTGT <u>A</u> GAATTCCA	6879
	TGGAATTC <u>T</u> ACAAAGGG	6880
Reduced linolenic acid omega-3 fatty acid desaturase	CTCCCGAGGGTCTATCCTAAGCCAAGAACTGGCCACCCTTTGTTG AATTCCAATCCCACATAGCTGAGATTTTCAAGAACAGATCTTGGAA ATGGTTCTTCATTCTGTTTGTCGAGTGGGA	6881
Sesamum indicum Lys34Term AAG-TAG	TCCCACTCGACAAACAGAATGAAGAACCATTTCCAAGATCTGTTCT TGAAAATCTCAGCT <u>A</u> TGTGGGATTGGAATTCAACAAAGGGTGGCC AGTTCTTGGCTTAGGATAGACCCTCGGGAG	6882
,,,,,	ATCCCACA <u>T</u> AGCTGAGA	6883
	TCTCAGCT <u>A</u> TGTGGGAT	6884
Reduced linolenic acid omega-3 fatty acid desaturase	CATCAGAGCGGCGATACCTAAGCATTGCTGGGTTAAGAATCCATG GAAGTCTATGAGTTAGGTCGTCAGAGAGCTAGCCATCGTGTTCGC ACTAGCTGCTGGAGCTGCTTACCTCAACAAT	-6885
Brassica napus Tyr3Term TAC-TAG	ATTGTTGAGGTAAGCAGCTCCAGCAGCTAGTGCGAACACGATGGC TAGCTCTCTGACGACCTAACTCATAGACTTCCATGGATTCTTAACC CAGCAATGCTTAGGTATCGCCGCTCTGATG	6886
	ATGAGTTA <u>G</u> GTCGTCAG	6887
	CTGACGAC <u>C</u> TAACTCAT	6888
Reduced linolenic acid omega-3 fatty acid desaturase	GCGGCGATACCTAAGCATTGCTGGGTTAAGAATCCATGGAAGTCT ATGAGTTACGTCGTCTGAGAGCTAGCCATCGTGTTCGCACTAGCT GCTGGAGCTGCTTACCTCAACAATTGGCTTG	6889
Brassica napus Arg6Term AGA-TGA	CAAGCCAATTGTTGAGGTAAGCAGCTCCAGCAGCTAGTGCGAACA CGATGGCTAGCTCTCAGACGACGTAACTCATAGACTTCCATGGAT TCTTAACCCAGCAATGCTTAGGTATCGCCGC	6890
	ACGTCGTCTGAGAGCTA	689
	TAGCTCTCAGACGACGT	6892

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	Reduced linolenic acid omega-3 fatty acid desaturase	GCGATACCTAAGCATTGCTGGGTTAAGAATCCATGGAAGTCTATGA GTTACGTCGTCAGA <u>T</u> AGCTAGCCATCGTGTTCGCACTAGCTGCTG GAGCTGCTTACCTCAACAATTGGCTTGTTT	6893
5	Brassica napus Glu7Term GAG-TAG	AAACAAGCCAATTGTTGAGGTAAGCAGCTCCAGCAGCTAGTGCGA ACACGATGGCTAGCT <u>A</u> TCTGACGACGTAACTCATAGACTTCCATG GATTCTTAACCCAGCAATGCTTAGGTATCGC	6894
		TCGTCAGA <u>T</u> AGCTAGCC	6895
		GGCTAGCT <u>A</u> TCTGACGA	6896
	Reduced linolenic acid omega-3 fatty acid desaturase	CCATGGAAGTCTATGAGTTACGTCGTCAGAGAGCTAGCCATCGTG TTCGCACTAGCTGCTTGAGCTGCTTACCTCAACAATTGGCTTGTTT GGCCTCTCTATTGGATTGCTCAAGGAACCA	6897
10	Brassica napus Gly17Term GGA-TGA	TGGTTCCTTGAGCAATCCAATAGAGAGGCCAAACAAGCCAATTGTT GAGGTAAGCAGCTCAAGCAGCTAGTGCGAACACGATGGCTAGCT CTCTGACGACGTAACTCATAGACTTCCATGG	6898
		TAGCTGCT <u>T</u> GAGCTGCT	6899
		AGCAGCTC <u>A</u> AGCAGCTA	6900
15	Reduced linolenic acid omega-3 fatty acid desaturase	GCAAGTTGGGTTCTATCAGAATGTGGTCTTAGACCACTACCAAGAA TATACCCAAAGCCC <u>T</u> GAATAGGGTCTTCTTCCGTTTGCGCCACCAA TTTAAATCTGAGAAGAATTTCACCTTCAC	6901
	Solanum tuberosum Arg22Term AGA-TGA	GTGAAGGTGAAATTCTTCTCAGATTTAAATTGGTGGCGCAAACGGA AGAAGACCCTATTCAGGCCTTTGGGTATATTCTTGGTAGTGGTCTA AGACCACATTCTGATAGAACCCAACTTGC	6902
		CAAAGCCC <u>T</u> GAATAGGG	6903
		CCCTATTC <u>A</u> GGGCTTTG	6904
20	Reduced linolenic acid omega-3 fatty acid desaturase	TGGTCTTAGACCACTACCAAGAATATACCCAAAGCCCAGAATAGG GTCTTCTTCCGTTTGAGCCACCAATTTAAATCTGAGAAGAATTTCA CCTTCACCTATACGAACAGATCGGAATTGT	6905
	Solanum tuberosum Cys29Term TGC-TGA	ACAATTCCGATCTGTTCGTATAGGTGAAGGTGAAATTCTTCTCAGA TTTAAATTGGTGGCTCAAACGGAAGAAGACCCTATTCTGGGCTTTG GGTATATTCTTGGTAGTGGTCTAAGACCA	6906
		TCCGTTTG <u>A</u> GCCACCAA	6907
		TTGGTGGC <u>T</u> CAAACGGA	6908
25	Reduced linolenic acid omega-3 fatty acid desaturase	CACTACCAAGAATATACCCAAAGCCCAGAATAGGGTCTTCTTCCGT TTGCGCCACCAATT <u>G</u> AAATCTGAGAAGAATTTCACCTTCACCTATA CGAACAGATCGGAATTGTTGGGCATTGAG	6909
30	Solanum tuberosum Leu33Term TTA-TGA	CTCAATGCCCAACAATTCCGATCTGTTCGTATAGGTGAAGGTGAAA TTCTTCTCAGATTT <u>C</u> AATTGGTGGCGCAAACGGAAGAAGACCCTAT TCTGGGCTTTGGGTATATTCTTGGTAGTG	6910

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID
	CACCAATT <u>G</u> AAATCTGA	6911
	TCAGATTT <u>C</u> AATTGGTG	6912
Reduced linolenic acid omega-3 fatty acid desaturase	AGAATATACCCAAAGCCCAGAATAGGGTCTTCTTCCGTTTGCGCCA CCAATTTAAATCTG <u>T</u> GAAGAATTTCACCTTCACCTATACGAACAGAT CGGAATTGTTGGGCATTGAGGGTAAGTG	6913
Solanum tuberosum Arg36Term AGA-TGA	CACTTACCCTCAATGCCCAACAATTCCGATCTGTTCGTATAGGTGA AGGTGAAATTCTTCACAGATTTAAATTGGTGGCGCAAACGGAAGAA GACCCTATTCTGGGCTTTGGGTATATTCT	6914
	TAAATCTG <u>T</u> GAAGAATT	6915
	AATTCTTC <u>A</u> CAGATTTA	6916
Reduced linolenic acid omega-3 fatty acid desaturase	CTCTTTATTATCCTCCTCTTCTTTGTTTTTTTGAGTTCTGAGTCACC TATGGCAAGTTGAGTGATTTCAGAATGTGGGCTAAGGCCACTTCC AAGAATCTATGCCAGGCCCAGAAGTGGA	6917
Petroselinum crispum Trp4Term TGG-TGA	TCCACTTCTGGGCCTGGCATAGATTCTTGGAAGTGGCCTTAGCCC ACATTCTGAAATCACTCAACTTGCCATAGGTGACTCAGAACTCAAA AAAAACAAAGAAGAGGGGGGATAATAAAGAG	6918
100 101	GCAAGTTG <u>A</u> GTGATTTC	6919
	GAAATCAC <u>T</u> CAACTTGC	6920
Reduced linolenic acid omega-3 fatty acid desaturase	TATCCTCCTCTTCTTTGTTTTTTTGAGTTCTGAGTCACCTATGGCA AGTTGGGTGATTTGAGAATGTGGGCTAAGGCCACTTCCAAGAATC TATGCCAGGCCCAGAAGTGGAGCTTCATG	6921
Petroselinum crispum Ser7Term TCA-TGA	CATGAAGCTCCACTTCTGGGCCTGGCATAGATTCTTGGAAGTGGC CTTAGCCCACATTCTCAAATCACCCAACTTGCCATAGGTGACTCAG AACTCAAAAAAAAACAAAGAAGAAGAGGAGGATA	6922
	GGTGATTT <u>G</u> AGAATGTG	6923
	CACATTCT <u>C</u> AAATCACC	6924
Reduced linolenic acid omega-3 fatty acid desaturase	TCCTCCTCTTCTTTGTTTTTTTGAGTTCTGAGTCACCTATGGCAAG TTGGGTGATTTCATAATGTGGGCTAAGGCCACTTCCAAGAATCTAT GCCAGGCCCAGAAGTGGAGCTTCATGTT	6925
Petroselinum crispum Glu8Term GAA-TAA	AACATGAAGCTCCACTTCTGGGCCTGGCATAGATTCTTGGAAGTG GCCTTAGCCCACATTATGAAATCACCCAACTTGCCATAGGTGACTC AGAACTCAAAAAAAACAAAGAAGAAGAGGAGGA	6926
	TGATTTCA <u>T</u> AATGTGGG	6927
	CCCACATT <u>A</u> TGAAATCA	6928

10

15

omega-3 fatty acid desaturase Petroselinum crispum Cys9Term TGT-TGA CYs9Term TGT-TGA TGT-TGA Reduced linolenic acid omega-3 fatty acid desaturase Petroselinum crispum Cys9Term TGT-TGA Reduced linolenic acid omega-3 fatty acid desaturase AGGCCTCACACAGACTCACAACAACAACAACACCCCACTTCACCTTCACTTCACTCACTTCACTTCACTTCACTTCACTTCACTTCACTTCACTTCACTTCACTTCACTTCACTTCACTTCACTTCACTTCACTTCACACTTCACACTTCACACTTCACACTTCACACTTCACACTTCACACTTCACACTTCACACTTCACACTTCACACTTCACACTCACACTTCACACTTCACACTCACACTTCACACTTCACACTCACACTCACACTCA		Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
Cys9Term		omega-3 fatty acid	GGCCCAGAAGTGGAGCTTCATGTTTCAAC	
CTTAGCCCTCATTCTGA 6932	5	Cys9Term	AGTGGCCTTAGCCC <u>T</u> CATTCTGAAATCACCCAACTTGCCATAGGTG	6930
Reduced linolenic acid omega-3 fatty acid desaturase Vernicia fordii GACCAACAGTACAAGACACCCCCAATTCTAAATGGCGTTA AAGCAATCCTCCTCCATTCAATATTGGTC Vernicia fordii CAACCAATATTGATCAAGAGAAAACCATTCAAATGGCGTTAAGAAATCATTCAATATGGCGTTAAGAAATCAATATGGCGTTAAGAAATCAATATGGACTGAAAAACCATTAACGCCATTTAGAATTGGACTGAAAAACAATAAAACAATAAACAATAAACAATAAACAATAAACAATAAACAATAAACAATAAACAATAAACAATAAACAATAAACAATAAACAATAAACAAC			TCAGAATG <u>A</u> GGGCTAAG	
10				
Vemicia fordii Lys21Term GACCAATATTGAATGGAGGAGGATTGCTTAAGTCGAAATCCTCTTC TTCTTCTTCTTT_AGCATGAAAACCATTAACGCCATTTAGAATTG GGGTGTCTTTGTCTT_AGCATGAAAACCATTAACGCCATTTAGAATTG GGGTGTCTTTGTACTGTTGCTGCTTCAT TTCATGCT_AAGAAGAA 6935		omega-3 fatty acid	ATGGTTTTCATGCT <u>T</u> AAGAAGAAGAAGAAGAAGAGAGGATTTCGACTT	6933
TTCATGCTTAAGAAGAA 6935	10	Lys21Term	TTCTTCTTCTTAAGCATGAAAACCATTAACGCCATTTAGAATTG	6934
Reduced linolenic acid omega-3 fatty acid desaturase		7,000,17,00		6935
15			TTCTTCTT <u>A</u> AGCATGAA	6936
Vemicia fordii Glu22Term GAA-TAA TCTGACCAATATTGAATGGAGGAGGATTGCTTAAGTCGAAATCCTC TTCTTCTTTATTTAGCATGAAAAACCATTAACGCCATTTAGAA TTGGGGTGTCTTTGTACTGTTGCTGCTT ATGCTAAATAAGAAGAA Reduced linolenic acid omega-3 fatty acid desaturase Vemicia fordii GAA-TAA GAA-TAA CTCTCCTCATCAATATTGAATGGAGAGAGATTCCAAAATC GAA-TAA Reduced linolenic acid omega-3 fatty acid desaturase Vemicia fordii GAA-TAA GAATTGGGGTGTCTTTGTACTGTTGAAAACCACTTAAGTCAAATC CTCTTCTTCTTTATTCTTTAGCATGAAAACCATTAACGCCATTTA GAATTGGGGTGTCTTTGTACTGTTGCTG CTAAAGAATAAGAAGAAAACCATTAACGCCATTTA Reduced linolenic acid omega-3 fatty acid desaturase Vemicia fordii Glu24Term CTCTCTCCATCATATTGAATGGAGAGAGAGAATCC CTCTTCTTCTTCAATATTGGTCAAATGGCGTTAATGGTT TTCATGCTAAAGAATAAGAAGAAACAAAGAAGAAGAAGAAGAAGAATC CTCTCCCCCATTCAATATTGGTCAAATTCAAATGGCGTTAATGGTT TTCATGCTAAAGAATAAGAAGAAGAAGAAGAAGAAGAATCC CTCTCCCCCATTCAATATTGGTCAGATCC CTCTCCCCCATTCAATATTGGTCAGATCC CTCTCTCTCTTCTTCTTATTCTTTAGCATGAAAACCATTAACGCCATTTA CTCTCCTCCCATTCAATATTGGTCAGATCC CTCTTCTTCTTCTTTATTCTTTAGCATGAAAACCATTAACGCCATTTA CTCTCTCTCTTCTTCTTATTCTTTAGCATGAAAACCATTAACGCCATTTA CTCTCTCTTCTTCTTTATTCTTTAGCATGAAAACCATTAACGCCATTTA CTCTCTCTTCTTCTTTATTCTTTAGCATGAAAACCATTAACGCCATTTA CTCTCTTCTTCTTCTTTATTCTTTAGCATGAAAACCATTAACGCCATTTA CTCTCTTCTTCTTCTTTATTCTTTAGCATGAAAACCATTAACGCCATTTA CTCTCTTCTTCTTCTTTATTCTTTAGCATGAAAACCATTAACGCCATTTA CTCTCTTCTTCTTCTTATTCTTTAGCATGAAAACCATTAACGCCATTTA CTCTCTTCTTCTTCTTTATTCTTTAGCATGAAAACCATTAACGCCATTTA CTCTCTTCTTCTTCTTTATTCTTTAGCATGAAAACCATTAACGCCATTTA CTCTCTTCTTCTTCTTTATTCTTTAGCATGAAAACCATTAACGCCATTTA CTCTCTTCTTCTTCTTTATTCTTTTAGCATGAAAACCATTAACGCCATTTA CTTCTTCTTCTTTCTTTATTCTTTTAGCATGAAAACCATTAACGCCATTTA CTTCTTCTTCTTCTTTATTCTTTTTTTTTT	15	omega-3 fatty acid	GTTTCATGCTAAA <u>T</u> AAGAAGAAGAAGAAGAGGGATTTCGACTTAAG	6937
Reduced linolenic acid omega-3 fatty acid desaturase Vernicia fordii GAA-TAA Reduced linolenic acid omega-3 fatty acid desaturase Vernicia fordii GAA-TAA Reduced linolenic acid omega-3 fatty acid desaturase Vernicia fordii GAA-TAA Reduced linolenic acid omega-3 fatty acid desaturase Vernicia fordii GAA-TAA Reduced linolenic acid omega-3 fatty acid desaturase Vernicia fordii GEGATCTGACCAATATTGATCGTTGACCATTCAATGCCATTTAAGCCATTTAAGCACATTCTTAATTCTTTAGCATGAAAACCATTAACGCCATTTA Reduced linolenic acid omega-3 fatty acid desaturase Vernicia fordii GIu24Term Reduced linolenic acid CGGATCTGACCAATATTGGTCAAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAA		Glu22Term	TTCTTCTTCTTATTTAGCATGAAAACCATTAACGCCATTTAGAA	6938
Reduced linolenic acid omega-3 fatty acid desaturase Vemicia fordii GAA-TAA Reduced linolenic acid omega-3 fatty acid desaturase Vemicia fordii GAA-TAA Reduced linolenic acid omega-3 fatty acid desaturase Vemicia fordii GAA-TAA Reduced linolenic acid omega-3 fatty acid desaturase Vemicia fordii GCAGCAACAGTACAAAGACAGAGAGAGAGAGAGAGAATC CTCTTCTTCTTATTCTTTAGCATGAAAACCATTAACGCCATTTA CTCTCTTATTCTTTAG Reduced linolenic acid omega-3 fatty acid desaturase Vemicia fordii GIu24Term CAGCAACAGTACAAAGACACCCCAATTCTAAATGGCGTTAATGGTT CTCTCCTCCATTCAATATTGGTCAGATCC CTCTTCTTCTTCTTATTCTTTAGCATGAAAGAGAGAGAGA			ATGCTAAA <u>T</u> AAGAAGAA	6939
Omega-3 fatty acid desaturase Vemicia fordii Glu23Term GAA-TAA Reduced linolenic acid omega-3 fatty acid desaturase Vemicia fordii Glu24Term CTCTCCTCATTCATTCTTTATTCTTAAATGGCATTCAATGGCGTTAATGGTT CTCTTCTTTATTCTTTAGCATGAAAACCATTAACGCCATTTA GAATTGGGGTGTCTTTGTACTGTTGCTG CTAAAGAATAAGAAGAA TTCTTCTTATTCTTTAG GAGCAACAGTACAAAGACACCCCAATTCTAAATGGCGTTAATGGTT TTCATGCTAAAGAATAAGAAGAAGAAGAAGAAGAGAGAGA			TTCTTCTT <u>A</u> TTTAGCAT	6940
Vemicia fordii Glu23Term GAA-TAA GAATGGGGTGTCTTTGTACTGTTGCTG GAATTGGGGTGTCTTTGTACTGTTGCTG CTAAAGAATAAGAAGAA GAATTGGGGTGTCTTTTTAGCATGAAAACCATTAACGCCATTTA GAATTGGGGTGTCTTTGTACTGTTGCTG CTAAAGAATAAGAAGAA TTCTTCTTATTCTTTAG Reduced linolenic acid omega-3 fatty acid desaturase Vemicia fordii GGATCTGACCAATATTGAATGGAGAGAGAATCC Vemicia fordii GGATCTGACCAATATTGAATGGAGAGAGAATCC GGATCTGACCAATATTGAATGGAGAGAATCC GGATCTGACCAATATTGAATGGAGAGAAAACCATTAACGCAATTAACGCAATTCTTAGTTCTTTATTCTTTAGCATGAAAAACCATTAACGCCATTTA 6942 6942 6943 6944 6945 6946 6946 6947	20	omega-3 fatty acid	TTCATGCTAAAGAA <u>T</u> AAGAAGAAGAAGAGGGATTTCGACTTAAGCAA	6941
CTAAAGAATAAGAAGAA 6943 TTCTTCTTATTCTTAG 6944 Reduced linolenic acid omega-3 fatty acid desaturase Vemicia fordii Glu24Term CTCTTCTTCTTATTCTTAGATGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAG		Vemicia fordii Glu23Term	CTCTTCTTCTTATTCTTTAGCATGAAAACCATTAACGCCATTTA	6942
Reduced linolenic acid omega-3 fatty acid desaturase Vemicia fordii Glu24Term CAGCAACAGTACAAAGACACCCCAATTCTAAATGGCGTTAATGGTT 6945 TCATGCTAAAGAATAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAA			CTAAAGAA <u>T</u> AAGAAGAA	6943
omega-3 fatty acid desaturase TCCTCCTCATTCAATATTGGTCAGATCC Vemicia fordii Glu24Term TCCTCTTCTTATCTTAGCATGAAAAACCATTAACGCATTAACGCATTTA TCCTCCTCATCAATATTGGTCAGATCC GGATCTGACCAATATTGAATGGAGAGGATTGCTTAAGTCGAAATC 6946 CTCTTCTTCTTCTTATTCTTTAGCATGAAAACCATTAACGCCATTTA			TTCTTCTT <u>A</u> TTCTTTAG	6944
Vemicia fordii GGATCTGACCAATATTGAATGGAGGAGGATTGCTTAAGTCGAAATC 6946 Glu24Term CTCTTCTTCTTATTCTTAGCATGAAAACCATTAACGCCATTTA	25	omega-3 fatty acid	TTCATGCTAAAGAA <u>T</u> AAGAAGAAGAAGAGGGATTTCGACTTAAGCAA	6945
OU DAMEIAN DAMEIDUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	30	Vemicia fordii	GGATCTGACCAATATTGAATGGAGGAGGATTGCTTAAGTCGAAATC	6946

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ I
	CTAAAGAATAAGAAGAA	6947
	TTCTTCTT <u>A</u> TTCTTTAG	6948
Reduced linolenic acid omega-3 fatty acid desaturase	GGTCCAAGCACAGCCTCTACAACATGTTGGTAATGGTGCAGGGAA AGAAGATCAAGCTTAGTTTGATCCAAGTGCTCCACCACCCTTCAAG ATTGCAAATATCAGAGCAGCAATTCCAAAA	6949
Glycine max Fyr21Term FAT-TAG	TTTTGGAATTGCTGCTCTGATATTTGCAATCTTGAAGGGTGGTGGA GCACTTGGATCAAACTAAGCTTGATCTTCTTTCCCTGCACCATTAC CAACATGTTGTAGAGGCTGTGCTTGGACC	6950
	CAAGCTTA <u>G</u> TTTGATCC	695
	GGATCAAA <u>C</u> TAAGCTTG	695
Reduced linolenic acid omega-3 fatty acid desaturase	GGTAATGGTGCAGGGAAAGAAGATCAAGCTTATTTTGATCCAAGTG CTCCACCACCCTTCTAGATTGCAAATATCAGAGCAGCAATTCCAAA ACATTGCTGGGAGAAGAACACATTGAGAT	695
Glycine max Lys31Term AAG-TAG	ATCTCAATGTGTTCTTCTCCCAGCAATGTTTTGGAATTGCTGCTCT GATATTTGCAATCTAGAAGGGTGGTGGAGCACTTGGATCAAAATAA GCTTGATCTTCTTTCCCTGCACCATTACC	695
AAG-TAG	CACCCTTCIAGATTGCA	695
	TGCAATCT <u>A</u> GAAGGGTG	695
Reduced linolenic acid omega-3 fatty acid desaturase	AAAGAAGATCAAGCTTATTTTGATCCAAGTGCTCCACCACCCTTCA AGATTGCAAATATC <u>T</u> GAGCAGCAATTCCAAAACATTGCTGGGAGAA GAACACATTGAGATCTCTGAGTTATGTTC	695
Glycine max Arg36Term AGA-TGA	GAACATAACTCAGAGATCTCAATGTGTTCTTCTCCCAGCAATGTTTT GGAATTGCTGCTCAGATATTTGCAATCTTGAAGGGTGGTGGAGCA CTTGGATCAAAATAAGCTTGATCTTCTTT	695
, 10, 110, 1	CAAATATCTGAGCAGCA	695
	TGCTGCTC <u>A</u> GATATTTG	696
Reduced linolenic acid omega-3 fatty acid desaturase	TATTTTGATCCAAGTGCTCCACCACCCTTCAAGATTGCAAATATCA GAGCAGCAATTCCATAACATTGCTGGGAGAAGAACACATTGAGATC TCTGAGTTATGTTCTGAGGGATGTGTTGG	696
Glycine max Leu41Term AAA-TAA	CCAACACCTCAGAACATAACTCAGAGATCTCAATGTGTTCTT CTCCCAGCAATGTTATGGAATTGCTGCTCTGATATTTGCAATCTTG AAGGGTGGTGGAGCACTTGGATCAAAATA	696
 \	CAATTCCATAACATTGC	696
	GCAATGTTATGGAATTG	696

10

15

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQ ID NO:
	Reduced linolenic acid omega-3 fatty acid desaturase	CCGGCTCGTGCTCTCCTAGTGCTCGGGCCTCGCGCCCGCC	6965
5	Zea mays Glu8Term GAG-TAG	GCGCGCAATGGCGCCCGGCCGCGCGCAGGCGGCGACGG GCGCGAGGCCCGAGCACTAGGAGCACGAGCCGGGCCATTGC CGCCGTCAGCGGGGCGGG	6966
		TGCTCTCC <u>T</u> AGTGCTCG	6967
		CGAGCACT <u>A</u> GGAGAGCA	6968
	Reduced linolenic acid omega-3 fatty acid desaturase	ACCCGCACCCGCCCCGCTGACGGCGCAATGGCCCGG CTCGTGCTCTCCGAGTGATCGGGCCTCGCGCCCGCCCT GCGCGCCGGCCGGGGCGCCATTGCGGCGCGGTCA	6969
10	Zea mays Cys9Term TGC-TGA	TGACCGCGCCAATGGCGCCCCGGCCGGCGCGCGGCGGCGGCGGCGGCGGCGG	6970
		TCCGAGTG <u>A</u> TCGGGCCT	6971
		AGGCCCGA <u>T</u> CACTCGGA	6972
15	Reduced linolenic acid omega-3 fatty acid desaturase	CCGCACCCGCACCCGCCCGCTGACGGCGCAATGGCCCGGCT CGTGCTCTCCGAGTGCTAGGGCCCTCGCGCCCGCCTGC GCGCCGGCCGGGCGCCATTGCGGCGCGGTCACC	6973
	Zea mays Ser10Term TCG-TAG	GGTGACCGCGCCGCAATGGCGCCCCGGCCGCGCGCGCGCG	6974
		CGAGTGCT <u>A</u> GGGCCTCG	6975
	·	CGAGGCCC <u>T</u> AGCACTCG	6976
20	Reduced linolenic acid omega-3 fatty acid desaturase	GCTCGGGCCTCGCGCCGTCCGCCGCCGGCCGGGG CGCCATTGCGCGCGCGTCAACCCCCCGCGCTCTCCGCGCGCCCG CGCCGTCCTCCGCGTCCGCGTCCATCCACCGCGA	6977
	Zea mays Ser29Term TCA-TGA	TCGCGGTGGATGGACGCGGACGCGCGCGCGCCCGCCGCCGGAGAGAGCGCGGGGGG	6978
		GGCGCGGT <u>G</u> ACCCCCCG	6979
		CGGGGGT <u>C</u> ACCGCGCC	6980
25	Reduced linolenic acid omega-3 fatty acid desaturase	CCCCTCCCCACGCACACGCACAGATCCATCCGCGGCCATGGC CCCCGCAATGAGGCCG <u>T</u> AGCAGGAGGCGAGCTGCAAGGCCACC GAGGACCACCGCTCCGAGTTCGACGCCGCCAAGC	6981
30	Triticum aestivum Glu8Term GAG-TAG	GCTTGGCGGCGTCGAACTCGGAGCGGTGGTCCTCGGTGGCCTTG CAGCTCGCCTCCTGCTACGGCCCTCATTGCGGGGGCCATGGCCGC GGATGGATCTGTGCGTGCGTGGGGGGGGGG	6982

Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos		
- Incorporation	TGAGGCCGTAGCAGGAG	6983	
	CTCCTGCT <u>A</u> CGGCCTCA	6984	
Reduced linolenic acid omega-3 fatty acid	CCTCCCCACGCACACGCACAGATCCATCCGCGGCCATGGCCCC CGCAATGAGGCCGGAGTAGGAGGCGAGCTGCAAGGCCACCGAG GACCACCGCTCCGAGTTCGACGCCGCCAAGCCGC		
desaturase Triticum aestivum Gln9Term CAG-TAG	GCGGCTTGGCGCGTCGAACTCGGAGCGGTGGTCCTCGGTGGC CTTGCAGCTCGCCTCCTACTCCGGCCTCATTGCGGGGGCCATGG CCGCGGATGGATCTGTGCGTGTGCGTGGGGGAGG	6986	
	GGCCGGAG <u>T</u> AGGAGGCG	6987	
	CGCCTCCT <u>A</u> CTCCGGCC	6988	
Reduced linolenic acid omega-3 fatty acid desaturase	CCCCCACGCACACGCACAGATCCATCCGCGGCCATGGCCCCCGC AATGAGGCCGGAGCAGTAGGCGAGCTGCAAGGCCACCGAGGACC ACCGCTCCGAGTTCGACGCCGCCAAGCCGCCGC		
Triticum aestivum Glu10Term GAG-TAG	GCGGCGGCTTGGCGGCGTCGAACTCGGAGCGGTGGTCCTCGGT GGCCTTGCAGCTCGCCTACTGCTCCGGCCTCATTGCGGGGGCCA TGGCCGCGGATGGATCTGTGCGTGTGCGTGGGGG	6990	
	CGGAGCAGTAGGCGAGC	6991	
	GCTCGCCT <u>A</u> CTGCTCCG	6992	
Reduced linolenic acid omega-3 fatty acid	ACGCACAGATCCATCCGCGGCCATGGCCCCGCAATGAGGCCGG AGCAGGAGGCGAGCTGAAAGGCCACCGAGGACCACCGCTCCGA GTTCGACGCCGCCAAGCCGCCCCTTCCGCATC	6993	
desaturase Triticum aestivum Cys13Term TGC-TGA	GATGCGGAAGGCGGGGCTTGGCGGCGTCGAACTCGGAGCGG TGGTCCTCGGTGGCCTTTCAGCTCGCCTCCTGCTCCGGCCTCATT GCGGGGGCCATGGCCGCGGATGGATCTGTGCGT	6994	
100 10/1	GCGAGCTG <u>A</u> AAGGCCAC	699	
	GTGGCCTT <u>T</u> CAGCTCGC	699	
Reduced linolenic acid omega-3 fatty acid desaturase	CTTCACAAATCACAAATCGGAATCAGATCCACCACGACACCCCGG CGGCAATGGCGGCGTAGGCGACCCAGGAGGCCGACTGCAAGGC TTCCGAGGACGCCCGTCTCTTCTTCGACGCCGC		
Oryza sativa Ser4Term TCG-TAG	GCGCGTCGAAGAAGAGACGGGCGTCCTCGGAAGCCTTGCAGTC GGCCTCCTGGGTCGCCTACGCCGCCATTGCCGCCGGGGTGTCGT GGTGGATCTGATTCCGATTTGTGATTTGTGAAG	699	
	GGCGGCGTAGGCGACCC	699	
	GGGTCGCCTACGCCGCC	700	

10

15

	Phenotype, Gene, Plant & Targeted Alteration	Altering Oligos	SEQID NO:
	Reduced linolenic acid omega-3 fatty acid desaturase	ATCACAAATCGGAATCAGATCCACCACGACACCCCGGCGGCAATG GCGGCGTCGGCGACC <u>T</u> AGGAGGCCGACTGCAAGGCTTCCGAGG ACGCCCGTCTCTTCTTCGACGCCGCCAAGCCCC	7001
5	Oryza sativa Gln7Term CAG-TAG	GGGGCTTGGCGCGTCGAAGAAGAGACGGGCGTCCTCGGAAGC CTTGCAGTCGGCCTCCTAGGTCGCCGACGCCGCCATTGCCGCCG GGGTGTCGTGGATCTGATTCCGATTTGTGAT	7002
		CGGCGACC <u>T</u> AGGAGGCC	7003
		GGCCTCCT <u>A</u> GGTCGCCG	7004
	Reduced linolenic acid omega-3 fatty acid desaturase	ACAAATCGGAATCAGATCCACCACGACACCCCGGCGCAATGGC GGCGTCGGCGACCCAGTAGGCCGACTGCAAGGCTTCCGAGGACG CCCGTCTCTTCTTCGACGCCGCCAAGCCCCCGC	7005
0	Oryza sativa Glu8Term GAG-TAG	GCGGGGCTTGGCGCGTCGAAGAAGAGACGGGCGTCCTCGGA AGCCTTGCAGTCGGCCT <u>A</u> CTGGGTCGCCGACGCCGCCATTGCCG CCGGGGTGTCGTGGTGGATCTGATTCCGATTTGT	7006
		CGACCCAG <u>T</u> AGGCCGAC	7007
	:	GTCGGCCT <u>A</u> CTGGGTCG	7008
5	Reduced linolenic acid omega-3 fatty acid desaturase	TCAGATCCACCACGACACCCCGGCGGCAATGGCGGCGTCGGCGA CCCAGGAGGCCGACTGAAAGGCTTCCGAGGACGCCCGTCTCTTC TTCGACGCCGCCAAGCCCCCGCCCTTCCGCATC	7009
	Oryza sativa Cys10Term TGC-TGA	GATGCGGAAGGCGGGGGCTTGGCGGCGTCGAAGAAGAGACGG GCGTCCTCGGAAGCCTT <u>T</u> CAGTCGGCCTCCTGGGTCGCCGACGC CGCCATTGCCGCCGGGGTGTCGTGGTGGATCTGA	7010
,		GCCGACTG <u>A</u> AAGGCTTC	7011
		GAAGCCTT <u>T</u> CAGTCGGC	7012

10

WHAT IS CLAIMED IS:

- 1. An oligonucleotide for targeted alteration of genetic sequence, comprising a single-stranded oligonucleotide having a DNA domain, said DNA domain having at least one mismatch with respect to the genetic sequence to be altered, and further comprising chemical modifications of the oligonucleotide, said chemical modifications selected from the group consisting of an o-methyl modification, an LNA modification including LNA derivatives and analogs, two or more phosphorothioate linkages on a terminus, and a combination of any two or more of these modifications.
- 2. The oligonucleotide according to claim one that comprises two or more phosphorothioate linkages on at least the 3' terminus.
 - 3. The oligonucleotide according to claim one that comprises a 2'-O-methyl analog.
- 4. The oligonucleotide according to claim one that comprises an LNA nucleotide, including an LNA derivative or analog.
- 5. The oligonucleotide according to claim one that comprises a combination of at least two modifications selected from the group of a phosphorothioate linkage, a 2'-O-methyl analog, a locked nucleotide analog and a ribonucleotide.
- 6. The oligonucleotide according to any one of claims 1 to 5 that comprises at least one unmodified ribonucleotide.
- 7. The oligonucleotide according to any one of claims 1 to 6, wherein the sequence of said oligonucleotide is selected from the group consisting of SEQ ID NOS: 4341-7012.
- 8. A method of targeted alteration of genetic material, comprising combining the target genetic material with an oligonucleotide according to any one of claims 1 to 7 in the presence of purified proteins.

- 9. A method of targeted alteration of genetic material, comprising administering to a cell extract an oligonucleotide of any one of claims 1 to 7.
- 10. A method of targeted alteration of genetic material, comprising administering to a cell an oligonucleotide of any one of claims 1 to 7.
- 11. A method of targeted alteration of genetic sequence in callus, comprising administering to the callus an oligonucleotide of any one of claims 1 to 7.
- 12. A method of targeted alteration of genetic sequence, comprising combining target genetic material with an oligonucleotide according to any one of claims 1 to 7, said target genetic material being a non-transcribed DNA strand of a duplex DNA.
 - 13. The genetic material obtained by any one of the methods of claim 8, 9 or claim 10.
 - 14. A cell comprising the genetic material of claim 13.
 - A plant organism comprising the cell according to claim 14.
 - 16. A plant or plant part produced by the method of claim 11.
 - 17. A method of determining whether an oligonucleotide is optimized for targeted alteration of a genetic sequence, which comprises:
 - (a) comparing the efficiency of alteration of a targeted genetic sequence by an oligonucleotide of any one of claims 1 to 7 with the efficiency of alteration of the same targeted genetic sequence by a second oligonucleotide, said second oligonucleotide selected from the group of an oligonucleotide that lacks the mismatch, a fully modified phosphorothiolated oligonucleotide, a fully modified 2'-O-methylated oligonucleotide and a chimeric double-stranded double hairpin containing RNA and DNA nucleotides.

- 18. The method of claim 17 in which the alteration is produced in a plant cell extract.
- 19. The method of claim 17 in which the alteration is produced in a cell.
- 20. A kit comprising the oligonucleotide according to any one of claims 1 to 7 and a second oligonucleotide selected from the group of an oligonucleotide that lacks the mismatch, a fully modified phosphorothiolated oligonucleotide, a fully modified 2-O-methylated oligonucleotide and a chimeric double stranded double hairpin containing RNA and DNA nucleotides.

Figure 1A

Figure 1B SUBSTITUTE SHEET (RULE 26)

Plasmids, DNA targets and chimeric oligonucleotides

Figure 1C

Figure 2

SUBSTITUTE SHEET (RULE 26)

Wild type: GAC AGC AT CGCCAGT
Mutant: GAC AGC AT - GCCAGT
Converted: GAC AGC AT TGCCAGT

Sequence analysis of Tet^r plasmid △208

Figure 3

SUBSTITUTE SHEET (RULE 26)

DNA sequence analysis of Kan^r plasmids

Target codon distribution									
oligomer	TAG	TAC	TAC/TAG	TGG	TCG				
1) 3S/25G (20)		+							
2) 6S/25G (20)		+		****	'				
3) 8S/25G (20)		+.	****	****					
4) 10S/25G (18)		+		+(2)	+(2)				
5) 25S/25G (4)			+(2)	+(2)					

Figure 4

Figure 5

Figure 6

Sequence of normal allele: GTGGATATGTCCT Target/existing mutant: GTGGATAATGTCCT Desired alteration:

Figure 7A

Sequence of normal allele: GTGGATATGTCCT Target/existing mutant: GTGGATAGGTCCT Desired alteration:

Figure 7B

SUBSTITUTE SHEET (RULE 26)

HygE3T/25: 5'-AGG GCG TGG ATA CGT CCT GCG GGT A-3'

HygE3T/74: 5'-CTC GTG CTT TCA GCT TCG ATG TAG GAG GGC GTG GAT ACG TCC TGC GGG TAA ATA GCT GCG CCG ATG GTT TCT AC-3'

HygE3T/74α: 5'-GTA GAA ACC ATC GGC GCA GCT ATT TAC CCG CAG GAC GTA TCC ACG CCC TCC TAC ATC GAA GCT GAA AGC ACG AG-3'

HyqGG/Rev:

Kan70T: 5'-CAT CAG AGC AGC CAA TTG TCT GTT GTG CCC AGT CGT AGC CGA ATA GCC TCT CCA CCC AAG CGG CCG GAG A-3'

Figure 8

FUSION GENE FOR LIGAND BINDING

Figure 9
SUBSTITUTE SHEET (RULE 26)

Figure 10

Figure 11

SUBSTITUTE SHEET (RULE 26)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 6 December 2001 (06.12.2001)

PCT

(10) International Publication Number WO 01/092512 A3

- (51) International Patent Classification⁷: C12N 15/10, 15/82, 15/11, C07H 21/04, A61K 31/7088, C12N 5/04, A01H 5/00
- (21) International Application Number: PCT/US01/17672
- (22) International Filing Date: 1 June 2001 (01.06.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/208,538 1 June 2000 (01.06.2000) US 60/244,989 30 October 2000 (30.10.2000) US 09/818,875 27 March 2001 (27.03.2001) US

- (71) Applicant (for all designated States except US): UNI-VERSITY OF DELAWARE [US/US]; 210 Hullihen Hall, Newark, DE 19716 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): KMIEC, Eric, B. [US/US]; 18 Crossan Court, Landenberg, PA 19350 (US). GAMPER, Howard, B. [US/US]; 904 Locust Street, Philadelphia, PA 19107 (US). RICE, Michael, C. [US/US]; 802 Washington Crossing Road, Newtown,

PA 18940 (US). **KIM, Jungsup** [KR/US]; 3 Chase Hall, Newark, DE 19711 (US).

- (74) Agents: HALEY, James, F., Jr. et al.; Fish & Neave, 1251 Avenue of the Americas, New York, NY 10020 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA,

[Continued on next page]

(54) Title: TARGETED CHROMOSOMAL GENOMIC ALTERATIONS IN PLANTS USING MODIFIED SINGLE STRANDED OLIGONUCLEOTIDES

Plasmids, DNA targets and chimeric oligonucleotides

Tet∆208T

TGCGCGaaggcugucgTAACGgucagugauaT
T
TCGGCC TTCCCACAGCATGCCAGTCACTATT
3'5'

(57) Abstract: Presented are methods and compositions for targeted chromosomal genomic alterations with modified single-stranded oligonucleotides. The oligonucleotides of the invention have modified nuclease-resisant termini comprising LNA, phosphorothioate linkages or 2'-O-Me base analogues or combinations of such modifications.

CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG)

as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG)

as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT,

RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG)

as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, F1, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, F1, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG)

Published:

with international search report

(88) Date of publication of the international search report: 9 January 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

International Application No PCT/US 01/17672

a. classification of subject matter IPC 7 C12N15/10 C12N15/82 C12N5/04 A01H5/00

C12N15/11

C07H21/04

A61K31/7088

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, SEQUENCE SEARCH

	INTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Category °	Citation of document, with indication, when the appropriate in the citation of	
,	WOOLF T M ET AL: "TOWARD THE THERAPEUTIC	1-3,5,8,
(EDITING OF MUTATED RNA SEQUENCES"	9,12-14,
	PROCEEDINGS OF THE NATIONAL ACADEMY OF	17,20
•	SCIENCES OF USA.	1
	vol. 92, 1 August 1995 (1995-08-01), pages	
	8298-8302, XP000574995	
	ISSN: 0027-8424	1-6,
Y	the whole document	8-12,17,
		18,20
	-/	
	·	
:		

X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search 22 March 2002	Date of mailing of the international search report 2 3. 07. 2002
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer ANDRES S.M.

International Application No
PCT/US 01/17672

		PCT/US 01/17672
C.(Continua	ition) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Х	GAMPER HOWARD B JR ET AL: "A plausible mechanism for gene correction by chimeric oligonucleotides." BIOCHEMISTRY, vol. 39, no. 19, 16 May 2000 (2000-05-16), pages 5808-5816, XP002192327 ISSN: 0006-2960 cited in the application	13-16
Υ	the whole document	1-6,8-12
Y	RICE M C ET AL: "GENETIC REPAIR OF MUTATIONS IN PLANT CELL-FREE EXTRACTS DIRECTED BY SPECIFIC CHIMERIC OLIGONUCLEOTIDES" PLANT PHYSIOLOGY, vol. 123, no. 2, June 2000 (2000-06), pages 427-437, XP000945128 ISSN: 0032-0889 the whole document	17,18,20
A	WO 99 07865 A (KIMERAGEN INC) 18 February 1999 (1999-02-18) cited in the application the whole document	1-6,8-20
A	US 5 312 910 A (KISHORE GANESH M ET AL) 17 May 1994 (1994-05-17) column 28, line 39 -column 31 claims	7
А	WO 99 14226 A (WENGEL JESPER ; EXIQON A S (DK); NIELSEN POUL (DK)) 25 March 1999 (1999-03-25) page 56, line 16 - line 30 page 149; example 131 page 168 -page 173; examples 151,152 claims 93-108	1-4
P,X	GAMPER HOWARD B ET AL: "The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts." NUCLEIC ACIDS RESEARCH, vol. 28, no. 21, 1 November 2000 (2000-11-01), pages 4332-4339, XP002192329 ISSN: 0305-1048 the whole document	1-6,8-16
P,X	WO 01 15740 A (VALIGEN US INC) 8 March 2001 (2001-03-08) the whole document	1-6,8-16
	-/	

International Application No
PCT/US 01/17672

	PCI/US OI/I/O/E				
	ntion) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.			
Category °	Citation of document, with indication, where appropriate, of the relevant passages	nelevant to daim No.			
P,A	WO 01 24615 A (VALIGEN US INC) 12 April 2001 (2001-04-12) the whole document	1-20			
E	WO 01 73002 A (UNIV DELAWARE ;GAMPER HOWARD B (US); KMIEC ERIC B (US); RICE MICHA) 4 October 2001 (2001-10-04) the whole document	1-6,8-20			
Т	RICE MICHAEL C ET AL: "The potential of nucleic acid repair in functional genomics." NATURE BIOTECHNOLOGY, vol. 19, no. 4, April 2001 (2001-04), pages 321-326, XP002192330 ISSN: 1087-0156				
T .	KMIEC ERIC B ET AL: "Chloroplast lysates support directed mutagenesis via modified DNA and chimeric RNA/DNA oligonucleotides." PLANT JOURNAL, vol. 27, no. 3, August 2001 (2001-08), pages 267-274, XP002192584 ISSN: 0960-7412				

International application No. PCT/US 01/17672

Box l Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	_
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	
This International Search Report has not been established in respect or overland the stabilished in respect of the stabilished in respect or overland the stabilished in respect or overland the stabilished in respect or overland the stabilished in respect or overland the stabilished in respect or overland the stabilished in respect to the stabilished in respect or overland the stabilished in respect or overland the stabilished in respect to the stabilished in	
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:	
Although claims 8,10,12 (as far as in vivo methods) are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.	
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:	
•	
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	4
This International Searching Authority found multiple inventions in this international application, as follows:	
see additional sheet	
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.	
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:	
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-20 (all partially)	
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.	

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

Invention 1. : Claims 1-20 (all partially)

Oligonucleotides characterised by SEQ IDs 4341-4344 for targeted alteration of the Arabidopsis EPSPS at aminoacid position 97; modified forms thereof; compositions and kits comprising them; methods for their optimisation.

Inventions 2. to 668. : Claims 1-20 (all partially)

As for subject 1., but concerning respectively the 667 groups of altering oligonucleotides (SEQ IDs 4345-7012) for each individual mutation disclosed in Tables 10 to 24.

Information on patent family members

International Application No PCT/US 01/17672

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 9907865	A	18-02-1999	AU CN EP JP NZ WO	748015 B2 8769598 A 1273606 T 1007712 A1 2001512687 T 502929 A 9907865 A1	30-05-2002 01-03-1999 15-11-2000 14-06-2000 28-08-2001 28-09-2001 18-02-1999
US 5312910	A	17-05-1994	US AT AU CN DE DE DK EP SJP NZ US ZA	4971908 A 108203 T 1660188 A 1032030 A 3850527 D1 3850527 T2 285688 A 0293358 A2 2058338 T3 1039984 A 224782 A 5145783 A 8803735 A	20-11-1990 15-07-1994 01-12-1988 29-03-1989 11-08-1994 22-12-1994 05-01-1989 30-11-1988 01-11-1994 10-02-1989 26-02-1991 08-09-1992 26-04-1989
WO 9914226	A	25-03-1999	AU CA CN WO EP NZ US	9063398 A 2303299 A1 1279687 T 9914226 A2 1015469 A2 503765 A 2002068708 A1	05-04-1999 25-03-1999 10-01-2001 25-03-1999 05-07-2000 26-04-2002 06-06-2002
WO 0115740	A	08-03-2001	US AU BR EP WO	6271360 B1 7076700 A 0013590 A 1210123 A1 0115740 A1	07-08-2001 26-03-2001 07-05-2002 05-06-2002 08-03-2001
WO 0124615	A	12-04-2001	AU WO	8005200 A 0124615 A1	10-05-2001 12-04-2001
WO 0173002	A	04-10-2001	AU WO AU WO AU WO	4948801 A 0173002 A2 6527701 A 0192512 A2 7906901 A 0210364 A2	08-10-2001 04-10-2001 11-12-2001 06-12-2001 13-02-2002 07-02-2002

Form PCT/ISA/210 (patent family annex) (July 1992)