Control Systems

Subject Code: EC380

Lecture 3: Block Diagram Models

Surajit Panja
Associate Professor
Dept. of Electronics and Communication Engineering

Indian Institute of Information Technology Guwahati Bongora, Guwahati-781015

Introduction

- > A Block Diagram is a shorthand pictorial representation of the cause-and-effect relationship of a system.
- > Block diagram has four components:

Signals
System/block
Summing junction
Pick-off/ Take-off point

> The simplest form of the block diagram is the single *block*, with one input and one output.

$$\frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$$

Transfer Function of Negative Feedback Systems

Output,
$$Y(s) = G(s).E_a(s)$$

Error,
$$E(s) = R(s) - B(s)$$

Feedback, B(s)=H(s)Y(s)

$$\gg Y(s) = G(s)R(s) - G(s)H(s)Y(s)$$

$$\gg (1+G(s)H(s))Y(s)=G(s)R(s)$$

$$\gg$$
 Transfer Function, $\frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$

Different Definitions Related to Block Diagram

$$\frac{B(s)}{E(s)} = G(s)H(s)$$

$$\frac{C(s)}{E(s)} = G(s)$$

$$\frac{C(s)}{E(s)} = G(s)$$

$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$$

$$\frac{B(s)}{R(s)} = \frac{G(s)H(s)}{1 + G(s)H(s)}$$

$$\frac{E(s)}{R(s)} = \frac{1}{1 + G(s)H(s)}$$

$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$$

$$1+G(s)H(s)=0$$

$$G(s)$$

$$E(s)$$

$$K$$

$$(1+K)s+1$$

$$H(s)$$

R - Input Signal

C- Output Signal

E- Error Signal

B- Feedback Signal

SERVOMOTOR

Armature circuit,
$$L_a \frac{di_a}{dt} + R_a i_a + e_b = K_1 e_v$$

Torque equilibrium,
$$J_o \frac{d^2\theta}{dt^2} + b_0 \frac{d\theta}{dt} = T$$

K. Ogata, *Modern Control Engineering*, Prentice Hall India, 2010.

Block Diagram of Servomotor

Figure 3-29

(a) Schematic diagram of servo system; (b) block diagram for the system; (c) simplified block diagram.

K. Ogata, Modern Control Engineering, Prentice Hall India, 2010.

What is the transfer function, Y(s)/R(s)=?

1. Combining blocks in Cascade:

2. Moving a summing point behind a block:

3. Moving a pickoff point ahead of a block:

4. Moving a pickoff point behind a block:

5. Moving a summing point ahead of a block:

6. Eliminating a feedback loop:

Example-1

Example-1 *H*₂ ◀ H_1 $\frac{H_2}{G_4}$ H_3 (a) $\frac{H_2}{G_4}$ $\overline{1-G_3G_4H_1}$ H_3 (b) $\frac{G_2G_3G_4}{1-G_3G_4H_1+G_2G_3H_2}$ $G_1G_2G_3G_4$ $1 - G_3G_4H_1 + G_2G_3H_2 + G_1G_2G_3G_4H_3$ (c) (d)

Simplify these block diagrams. Find the transfer function for each system.

Example-3

Example-4

Example-5

Example-6

Determine the transfer functions:

i)
$$\frac{Y_1(s)}{R_1(s)}$$
 when $R_2(s)=0$ and ii) $\frac{Y_2(s)}{R_2(s)}$ when $R_1(s)=0$,

Home Work

Reduce this block diagram to create a system with unity feedback.

