

Simple and Efficient Design for Semantic Segmentation with **Transformers**

(<u>https://arxiv.org/abs/2105.15203</u>) 한성대학교 1971336 김태민

목치

- Semantic Segmentation
- Abstract
- Method
- Hierarchical Transformer Encoder
- Hierarchical Feature Representation
- Overlapped Patch Merging
- Efficient Self-Attention
- Mix-FFN
- Lightweight All-MLP Decoder
- Experiments
- Competition

Semantic Segmentation

Semantic Segmentation

Abstract

- **features: 0)** 트랜스 포머의 경량화
- **features: 1)** multiscale feature를 ouput으로 뽑는 계층적 구조의 Transformer encoder 로 구성되며 Transformer에 사용되는 positional encodeing을 제거하여 학습과 다른 이 미지 사이즈를 테스트할 경우 성능이 하락된 부분을 개선
- **features: 2)** MLP로만 이루어진 MLP decoder를 사용하며 encoder에서 얻은 multiscale feature를 결합하여 각 feature map에서의 local attention과 합쳐진 feature map에서 global attention을 통하여 높은 성능을 달성

Method

Method

- ViT와 다르게 4x4 patch를 사용하는것이 dense prediction task에 더 유리하다고 한다.
- 각 패치들은 입력으로 들어가 Transformer encoder에 들어간다.
- 마치 Residual blocks 처럼 각 feature map을 뽑아 주는데 각 사이즈는 {1/4, 1/8, 1/16, 1/32}로 나오게 된다.
- MLP decoder에서 multi-level feature map을 여러 레이어를 거침으로써 최종적으로 H/4 x H/4 x N(cls)를 갖는Segmetation mask를 예측

Hierarchical Transformer Encoder

Figure 1: Performance of SegFormer-B0 to SegFormer-B5.

- 저자 들은 Segformer의 Encoder 를 Mix Transformer Enoder(MiT)
- 라 부르며 모델은 사이즈 별로 B0~B5까지 존재한다.
- 숫자가 높을 수록 높은 성능

Hierarchical Feature Representation

- ViT와 다르게 4x4 patch를 사용하는것이 dense prediction task에 더 유리하다고 한다.
- 각 패치들은 입력으로 들어가 Transformer encoder에 들어간다.
- 마치 Residual blocks 처럼 각 feature map을 뽑아 주는데 각 사이즈는 {1/4, 1/8, 1/16, 1/32}로 나오게 된다.
- MLP decoder에서 multi-level feature map을 여러 레이어를 거침으로써 최종적으로 H/4 x H/4 x N(cls)를 갖는Segmetation mask를 예측
- ViT와 다르게 여러 feature map
- (multi-level feature map)을 생성하여 성능을 향상

 $\frac{H}{2^{i+1}}\times\frac{W}{2^{i+1}}\times C_i,$ where $i\in\{1,2,3,4\},$ and C_{i+1} is larger than $C_i.$

기존 multi-head self-attention 연산량의 문제 ViT는 16x16이었지만 Segformer는 4x4이므로 더 많은 연산을 요구함으로 **Efficient Self-Attention**을 도입 시간복잡도(O(N²))

$$\begin{split} & \text{Attention}(Q, K, V) = \text{Softmax}(\frac{QK^\mathsf{T}}{\sqrt{d_{head}}})V. \\ & \hat{K} = \text{Reshape}(\frac{N}{R}, C \cdot R)(K) \\ & K = \text{Linear}(C \cdot R, C)(\hat{K}), \end{split}$$

- 저자들은 R(reduction ratio)를 사전에 정의하여 K,V의 N(HxW)채널을 줄이는sequence reduction process를 적용
- 위 수식과 같이 N을 R로 나누고 C에 R을 곱하면 Reshape이 가능해지고 이때 C X R을 Linear 연산을 통해 다시 C로 줄임으로써 (N/R) x C차원으로 Key와 Value로 만들어 줄 수 가 있다. 저자들은 실험을 통해 Stage-1부터 Stage-4 까지의 R을 [64, 16, 4, 1]로 설정하였다

Mix-FFN

- 기존 ViT에서는 positional encoding을 적용하는데 이 방식은 input resolution이 고정되어야함 이는 문제가 있어 input resolution이 달라지면 성능이 하락함으로 이를 대신하여
- 3x3 Conv(stride:1/padding:1)을 FFN에 적용 (3 x 3 Conv의 zero padding을 통해 leak location의 정보를 고려할 수 있다고 주장)

$$\mathbf{x}_{out} = \text{MLP}(\text{GELU}(\text{Conv}_{3\times3}(\text{MLP}(\mathbf{x}_{in})))) + \mathbf{x}_{in},$$

- 실제로는 파라미터수를 줄이기 위해 3x3 convolution을 depth-wise convolution으로 사용

Overlapped Patch Merging

- ViT에서는 NxNx3 patch를 1x1xC의 벡터로 표현하는데 이럴 경우 패치들은 non-overlap상태이므로 patch들 간의 local continuity (지역 연속성)이 보존되기가 어렵다.
- 보완하기 위해 추후 Swin Transformer에서는 Shifted Window를 통해 위를 보존하려고 했고 Segformer 에서는 overlapping patch merging 으로 접근하였다.
- K(patch size or kernel size), S(stride), P(padding)를 사전에 정의하여 B(batch) x C(channel x stride²) x N(num of patch) 의 차원으로 patch를 분할하고 B(batch) x C(embedd dim) x W(width) x H(height) 의 차원으로 Merging을 수행한다.

Lightweight All-MLP Decoder

- 저자들은 MLP layer로만 구성된 decoder를 설계하여 다른 모델의 decoder와 다르게 큰 연산량 을 요구 하지않는다고 한다.
- 작은 연산량으로 잘 작동되는 이유는 hierachical transformer encoder에서 기존 CNN 인코더보 다 더 larger effective field를 가진다고 한다.

$$\hat{F}_i = \text{Linear}(C_i, C)(F_i), \forall i$$

1. multi-level feature들의 channel을 모두 동일하게 통 한시킨다.

 $\hat{F}_i = \operatorname{Upsample}(\frac{W}{4} \times \frac{W}{4})(\hat{F}_i), \forall i$

2. feature size를 original image의 1/4 크기로 통합한

 $F = \text{Linear}(4C, C)(\text{Concat}(\hat{F}_i)), \forall i$ $M = \operatorname{Linear}(C, N_{cls})(F),$

3. feature들을 concatenate시키고 이 과정에서 4배로 증가한 channel을 원래대로 돌린다.

4. 최종 segmentation mask를 예측한다. (shape: B(batch) x N(num of class) x H/4 x W/4)

Experiments

Table 1: Ablation studies related to model size, encoder and decoder design.

(a) Accuracy, parameters and flops as a function of the model size on the three datasets. "SS" and "MS" means single/multi-scale test. Encoder Params ADE20K Cityscanes COCO-Stuff Model Size Encoder Decoder Flops 1 mIoU(SS/MS) † Flops | mIoU(SS/MS) ↑ Flops | mIoU(SS) † 76.2 / 78.1 MiT-B0 3.4 0.4 37,4 / 38,0 125.5 8.4 35.6 MiT-B1 13.1 0.6 42.2 / 43.1 243.7 78.5 / 80.0 15.9 40.2 MiT-B2 24.2 3.3 62.4 46.5 / 47.5 717.1 81.0 / 82.2 62.4 44.6 MiT-B3 44.0 33 79.0 494/50.0 962.9 81.7 / 83.3 79.0 45.5 MiT-R4 60.8 3.3 95.7 50.3 / 51.1 1240.6 82.3 / 83.9 95.7 46.5 MiT-B5 3.3 183.3 51.0 / 51.8 1460.4 82.4 / 84.0 111.6 46.7

(b) Accuracy as a function of the MLP dimension C in the decoder on ADE20K.			(c) Mix-FFN vs. p different test resol	(d) Accuracy on ADE20K of CNN and Transformer encoder with MLP decoder. "S4" means stage-4 feature.						
C	Flops ↓	Params ↓	mIoU †	Inf Res	Enc Type	mIoU †	Encoder	Floris	Params 1	mloU f
256	25.7	24.7	44.9	768×768	PE	77.3	ResNet50 (S1-4)	69.2	29.0	34.7
512	39.8	25.8	45.0				ResNet101 (\$1-4)	88.7	47.9	38.7
768	62.4	27.5	45.4	1024×2048	PE	74.0	ResNeXt101 (\$1-4)	127.5	86.8	39.8
1024	93.6	29.6	45.2	768×768	Mix-FFN	80.5	MIT-B2 (S4)	22.3	24.7	43.1
2048	304.4	43.4	45.6	1024×2048	Mix-FFN	79.8	MIT-B2 (S1-4)	62.4	27.7	45.4

Table 2: Comparison to state of the art methods on ADE20K and Cityscapes. SegFormer has significant advantages on #Params, #Flops, #Speed and #Accuracy. Note that for SegFormer-B0 we scale the short side of image to [1024, 768, 640, 512] to get speed-accuracy tradeoffs.

	Method	Encoder	Params ↓	ADE20K			Cityscapes		
	Medica	Lincolne		Flops ↓	FPS †	mloU †	Flops ↓	FPS †	mloU 1
Real-Time	FCN [1]	MobileNetV2	9.8	39.6	64.4	19.7	317.1	14.2	61.5
	ICNet [11]		343					30.3	67.7
	PSPNet [17]	MobileNetV2	13.7	52.9	57.7	29.6	423.4	11.2	70.2
	DeepLabV3+ [20]	MobileNetV2	15.4	69.4	43.1	34.0	555.4	8.4	75.2
		MiT-B0	3.8	8.4	50.5	37.4	125.5	15.2	76.2
	F F (0)			10000		-	51.7	26.3	75.3
	SegFormer (Ours)				196	1.60	31.5	37.1	73.7
					125	20	17.7	47.6	71.9
Non Real-Time	FCN [1]	ResNet-101	68.6	275.7	14.8	41.4	2203.3	1.2	76.6
	EncNet [24]	ResNet-101	55.1	218.8	14.9	44.7	1748.0	1.3	76.9
	PSPNet [17]	ResNet-101	68.1	256.4	15.3	44.4	2048.9	1.2	78.5
	CCNet [41]	ResNet-101	68.9	278.4	14.1	45.2	2224.8	1.0	80.2
	DeeplabV3+ [20]	ResNet-101	62.7	255.1	14.1	44.1	2032.3	1.2	80.9
	OCRNet [23]	HRNet-W48	70.5	164.8	17.0	45.6	1296.8	4.2	81.1
	GSCNN [35]	WideResNet38	-	-	-	120		-	80.8
	Axial-DeepLab [74]	AxialResNet-XL	(2)	-		- 51	2446.8		81.1
	Dynamic Routing [75]	Dynamic-L33-PSP		8		123	270.0	23	80.7
	Auto-Deeplab [50]	NAS-F48-ASPP			200	44.0	695.0		80.3
	SETR [7]	ViT-Large	318.3	~	5.4	50.2	-	0.5	82.2
	SegFormer (Ours)	MiT-B4	64.1	95.7	15.4	51.1	1240.6	3.0	83.8
	SegFormer (Ours)	MiT-B5	84.7	183.3	9.8	51.8	1447.6	2.5	84.0

Competition

- Github: https://github.com/AIConnect-Army/qualify-test

