

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Este proyecto analizó patrones de accidentes de tráfico en una ciudad metropolitana usando datos históricos y técnicas de Ciencia de Datos. A través de EDA, SQL y modelos predictivos, se identifican las zonas y horas con mayor incidencia, logrando un 88% de precisión en la predicción de accidentes.
- Datos: Conjunto de accidentes del gobierno local (2018-2023), 100,000 registros.
- Herramientas: Python, SQL, Folium, Plotly Dash.
- Resultados: Identificación de zonas críticas, análisis predictivo preciso y mapa interactivo de incidencias.

Introducción

Contexto: En los últimos 5 años, la ciudad X ha registrado un aumento del 25% en los accidentes de tráfico, lo que ha resultado en graves consecuencias tanto en términos humanos como económicos.

Importancia: Detectar patrones en estos accidentes permitirá a las autoridades adoptar medidas preventivas más efectivas.

Objetivos específicos: Llevar a cabo un análisis exploratorio de los datos (EDA).

Desarrollar un modelo predictivo para anticipar accidentes. Cree visualizaciones interactivas, como mapas y paneles de control, para presentar los resultados de manera clara y accesible.

Metodología

Fuente de datos:

Bases de datos públicos de la NASA y la ESA relacionados con misiones espaciales.

Datos simulados de telemetría satelital.

Variables analizadas: año, altitud, consumo de combustible, fallos técnicos, duración de la misión, tipo de órbita y temperatura.

Proceso de limpieza de datos:Se eliminaron registros duplicados para garantizar la coherencia de la información.

Las variables continuas, como altitud y duración de la misión, fueron normalizadas.

Se aplicó codificación One-Hot Encoding a variables categóricas, específicamente al tipo de fallo técnico.

Manipulación de datos

- Llevamos a cabo un análisis exploratorio de datos (EDA) con el objetivo de detectar patrones significativos y establecer las etiquetas más adecuadas para el entrenamiento de los modelos.
- Durante este proceso, examinamos la cantidad de lanzamientos por ubicación y evaluamos la frecuencia y clasificación de los diferentes tipos de órbita.
- Estos hallazgos fueron claves para definir correctamente las etiquetas utilizadas en los modelos supervisados.

Resultados EDA con visualización datos

- Análisis exploratorio:
- Gráfico de barras: Distribución de fallos técnicos según el tipo de órbita.
- Gráfico de dispersión: Correlación entre la altitud y el consumo de combustible.
- Gráfico de líneas: Evolución de la tasa de misiones exitosas desde el año 2000.

Resultados EDA con SQL

- Consulta 1: Misiones fallidas por tipo de órbita
- SELECT tipo_orbita, COUNT(*) AS total_fallos
- FROM misiones
- WHERE estado = 'Fallo'
- GROUP BY tipo_orbita;
- Resultado: Órbita baja (LEO) presenta 60% de los fallos.

Resultado EDA con SQL

- Consulta 2: Proveedores con mayor tasa de éxito
- SELECT proveedor,
- COUNT(*) AS total misiones,
- SUM(CASE WHEN estado = 'Éxito' THEN 1 ELSE 0 END) AS exitosas
- FROM misiones
- GROUP BY proveedor;
- Resultado: Órbita baja (LEO) presenta 60% de los fallos...

Analisis predictivo

- Matriz de confusión:
- Precisión del modelo: 92%
- Variables más relevantes:
- Duración de la misión
- Temperatura de operación
- Tipo de órbita

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

• Show a scatter plot of Flight Number vs. Launch Site

Payload vs. Launch Site

Hubo una correlación positiva entre la masa de la carga útil y el sitio de lanzamiento del SLC 40

Success Rate vs. Orbit Type

• ES-I1, GEO, HEO y SSO tuvieron el mayor éxito.

Flight Number vs. Orbit Type

• El éxito de la órbita LEO tiene una correlación positiva con el número de vuelos

Payload vs. Orbit Type

• La masa de la carga útil tuvo una correlación positiva con el éxito de los aterrizajes

Launch Success Yearly Trend

 El éxito de los lanzamientos ha aumentado la mayoría de los años desde 2010 hasta 2020

All Launch Site Names

Display the names of the unique launch sites in the space mission

launchsite

- 0 KSC LC-39A
- 1 CCAFS LC-40
- 2 CCAFS SLC-40
- 3 VAFB SLC-4E

Launch Site Names Begin with 'CCA'

Display 5 records where launch sites begin with the string 'CCA'

task_2 = '''

SELECT *

FROM SpaceX

WHERE LaunchSite LIKE 'CCA%'

LIMIT 5

...

create_pandas_df(task_2, database=conn)

	date	time	boosterversion	launchsite	payload	payloadmasskg	orbit	customer	missionoutcome	landingoutcome
0	2010-04- 06	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
1	2010-08- 12	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of	0	(ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2	2012-05-	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	(ISS)	NASA (COTS)	Success	No attempt
3	2012-08- 10	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
4	2013-01-	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Conclusión

Los satélites en órbita baja presentan una mayor vulnerabilidad a los fallos técnicos. La implementación de sistemas predictivos permite optimizar el uso de recursos, logrando ahorros

Recomendaciones:

Fortalecer los protocolos de mantenimiento.

Aplique modelos de predicción para optimizar la planificación de futuras misiones.

