Exploratory analysis

Attach packages

```
library(tidyverse)
library(caret)
library(psych)
library(BioStatR)
library(car)
library(lattice)
```

Load the datafile

```
daily_data <- readRDS("daily_data.rds")
summary(daily_data)</pre>
```

```
##
        date
                                      air_temperature
                                                      cloud_coverage
                           meter
                                            :-6.569
##
   Min.
          :2016-01-01
                       Min.
                              :0.00
                                      Min.
                                                      Min.
                                                             :0.000
                                      1st Qu.: 9.224
   1st Qu.:2016-04-01
                       1st Qu.:0.75
                                                      1st Qu.:1.108
   Median :2016-07-01
                       Median:1.50
                                      Median :15.902
                                                      Median :1.524
## Mean
         :2016-07-01
                       Mean :1.50
                                           :15.899
                                                      Mean
                                                            :1.646
                                      Mean
   3rd Qu.:2016-10-01
                       3rd Qu.:2.25
                                      3rd Qu.:23.825
                                                      3rd Qu.:2.148
                                                             :7.292
                                             :31.616
## Max.
          :2016-12-31
                       Max.
                             :3.00
                                      Max.
                                                      Max.
##
   dew_temperature
                    precip_depth_1_hr sea_level_pressure wind_direction
## Min. :-14.147
                    Min. :-0.46323
                                       Min.
                                             :1003
                                                         Min.
                                                               : 56.52
  1st Qu.: 0.537
                    1st Qu.: 0.01168
                                       1st Qu.:1013
                                                         1st Qu.:149.43
##
   Median : 6.577
                    Median : 0.33109
                                       Median:1016
                                                         Median :171.41
## Mean : 6.785
                    Mean : 0.76072
                                                                :171.48
                                       Mean :1016
                                                         Mean
   3rd Qu.: 14.060
                     3rd Qu.: 1.07500
                                       3rd Qu.:1018
                                                         3rd Qu.:193.54
## Max. : 21.655
                    Max. : 8.69171
                                                         Max.
                                                                :267.27
                                       Max.
                                              :1035
##
     wind_speed
                   meter_reading
##
  Min.
          :1.453
                  Min. : 110.5
  1st Qu.:2.775
                   1st Qu.: 186.4
## Median :3.185
                   Median: 411.5
        :3.231
                   Mean : 3859.2
## Mean
   3rd Qu.:3.616
                   3rd Qu.: 990.0
   Max.
          :5.953
                   Max.
                         :77117.7
```

Examine distributions

```
numeric <- daily_data[,3:10]
multi.hist(numeric)</pre>
```


The target variable (meter_reading) is heavily right-skewed. cloud_coverage and precip_depth_1_hr are also right-skewed.

Examine scatterplots

```
air_temp <- ggplot(daily_data, aes(x = air_temperature, y = meter_reading, colour = meter)) + geom_poin
air_temp</pre>
```


There are outliers but for the most part there is not much of a linear relationship between air_temperature and meter_reading. meter type 3 does show a stronger linear relationship than the other two meter types.

```
cloud_cover <- ggplot(daily_data, aes(x = cloud_coverage, y = meter_reading, colour = meter)) + geom_po
cloud_cover</pre>
```


 cloud coverage does not have a clear linear relationship with meter reading except for meter 3.

```
dew_temp <- ggplot(daily_data, aes(x = dew_temperature, y = meter_reading, colour = meter)) + geom_poin
dew_temp</pre>
```


We see the same trend in dew temperature as the earlier two temperature variables. There is not much of a linear relationship, except for meter 3.

```
precip_depth <- ggplot(daily_data, aes(x = precip_depth_1_hr, y = meter_reading, colour = meter)) + georgeoup_depth</pre>
```


Precip_depth_1_hr does not have any relationship with meter reading. Even meter 3 is all over the place.

sea_pressure <- ggplot(daily_data, aes(x = sea_level_pressure, y = meter_reading, colour = meter)) + ge sea_pressure

sea_level pressure has no relationship with meter reading for all meter types.

wind_direction <- $ggplot(daily_data, aes(x = wind_direction, y = meter_reading, colour = meter)) + geom wind_direction$

No relationship between wind direction and meter reading. meter 3 is all over the place!

wind_speed <- ggplot(daily_data, aes(x = wind_speed, y = meter_reading, colour = meter)) + geom_point()
wind_speed

No relationship between wind speed and meter reading.

Look at the Building related variables

```
building_vars <- readRDS("building_vars.rds")</pre>
summary(building_vars)
    meter_reading
                          building_id
                                         primary_use
                                                               square_feet
##
    Min.
                   0.0
                         Min.
                                : 0
                                         Length: 1449
                                                              Min.
                                                                    :
                                                                         283
                  32.0
                         1st Qu.: 362
                                         Class : character
                                                              1st Qu.: 23012
    1st Qu.:
##
    {\tt Median} :
                  94.1
                         Median: 724
                                         Mode :character
                                                              Median : 57673
                1652.3
##
    Mean
                         Mean
                                : 724
                                                              Mean
                                                                     : 92112
##
    3rd Qu.:
                 256.9
                         3rd Qu.:1086
                                                              3rd Qu.:115676
##
    Max.
            :1907445.9
                         Max.
                                                              Max.
                                                                     :875000
##
                     floor_count
##
      year_built
            :1900
                    Min.
                          : 1.000
##
    Min.
##
    1st Qu.:1949
                    1st Qu.: 1.000
    Median:1970
                    Median : 3.000
##
##
    Mean
            :1968
                    Mean
                            : 3.741
    3rd Qu.:1995
                    3rd Qu.: 5.000
##
    Max.
            :2017
                    Max.
                            :26.000
    NA's
            :774
                    NA's
                            :1094
dim(building_vars)
```

[1] 1449 6

```
building_vars$primary_use <- as.factor(building_vars$primary_use)
summary(building_vars$primary_use)</pre>
```

```
##
                         Education Entertainment/public assembly
##
                               549
                                                                184
##
          Food sales and service
                                                        Healthcare
##
                                                                 23
##
              Lodging/residential
                                         Manufacturing/industrial
##
                               147
                                                                 12
##
                            Office
                                                              Other
##
                               279
                                                                 25
##
                           Parking
                                                   Public services
##
                                22
                                                                156
##
                Religious worship
                                                             Retail
##
                                                                 11
##
                          Services
                                                Technology/science
##
                                10
                                                                  6
##
                           Utility
                                                 Warehouse/storage
##
```


primary_use

Not much of a difference in means. I logged meter readings because they are so strongly right skewed. I

could not see a trend if I did not log them. No relationship between use of building and meter reading.

Now, lets look at the area of the buildings. Again this variable is highly right-skewed. I'm going to log it.

hist(building_vars\$square_feet)

Histogram of building_vars\$square_feet

area_log <- log(building_vars\$square_feet)
hist(area_log)</pre>

Histogram of area_log

looks much better!

plot(area_log, meter_log)

Nothing going on here! There is no relationship between area and meter readings.

building_vars\$year_built <- as.factor(building_vars\$year_built)
summary(building_vars\$year_built)</pre>

##	1976	1966	1968	1919	1964	2004	1960	1975	2006
##	55	23	18	17	15	14	13	13	13
##	2007	1970	2001	2010	2014	2002	1930	1959	1967
##	13	12	12	12	12	11	10	10	10
##	2005	1989	2013	1923	1956	1999	1958	1963	1969
##	10	9	9	8	8	8	7	7	7
##	1990	2011	2016	1912	1913	1931	1932	1953	1965
##	7	7	7	6	6	6	6	6	6
##	1974	1981	1996	1900	1909	1910	1940	1941	1942
##	6	6	6	5	5	5	5	5	5
##	1948	1951	1955	1957	1961	1962	1971	1978	1986
##	5	5	5	5	5	5	5	5	5
##	1995	2000	2003	2008	1911	1914	1929	1933	1935
##	5	5	5	5	4	4	4	4	4
##	1945	1949	1950	1979	1980	1982	1983	1985	1991
##	4	4	4	4	4	4	4	4	4
##	1993	1997	2009	2012	1903	1907	1908	1917	1924
##	4	4	4	4	3	3	3	3	3
##	1927	1928	1939	1973	1977	1994	2015	1904	1906
##	3	3	3	3	3	3	3	2	2
##	1915	1920	1921	1925	1952	1954	1984	1987	(Other)
##	2	2	2	2	2	2	2	2	21

```
## NA's
#774

meter_log <- log(building_vars@meter_reading)
year <- ggplot(building_vars, ass(x = year_built, y = meter_log)) + geom_boxplot() + stat_summary(fun.y)
year + theme(axis.text.x = element_text(size = 5, angle = 90, hjust = 1))

15-

10-

5-

10-

year_built
```

There is some variation but not much of a trend. It almost seems random. Surprisingly, the newer buildings are not using less energy!!

Now lets look at floor count!

```
hist(building_vars$floor_count)
```

Histogram of building_vars\$floor_count


```
table(building_vars$floor_count)
```

```
##
##
                        5
                             6
                                  7
                                       8
                                            9
                                               10
                                                    11
                                                        12
                                                             13
                                                                  14
                                                                       16
                                                                           19
                                                                                21
                                                                                     26
## 109
              33
                  37
                       25
                            25
                                14
                                     19
                                            8
                                                4
                                                     5
                                                          2
                                                              2
                                                                   1
                                                                        1
                                                                             1
                                                                                 1
                                                                                      1
```

High number of 1 storey buildings. Lets cut this into a factor with 1 storey, 2 storey, 3 to 9 storey and more than 9 storey buildings. That looks like a natural grouping to me looking at the histogram.

```
cut_storey <- cut(building_vars$floor_count, breaks = c(1, 2, 3, 9, 26))
summary(cut_storey)</pre>
```

```
## (1,2] (2,3] (3,9] (9,26] NA's
## 67 33 128 18 1203
cut_storey <- as.factor(cut_storey)
plot(cut_storey, meter_log)</pre>
```


Not much of a difference in the medians!

Main conclusion: My EDA does not show any strong relationships between the predictors and the target in this dataset.