man.

Physics based piano simulation

ICCP 2015

Delft University of Technology

Selwyn, Kenneth, Daniël May 15, 2015

Outline

1 First Section

Section 1 - Subsection 1

Section 2 - Last Subsection

Next Subsection

1 First Section
Section 1 - Subsection 1

Simplified piano string interaction

The wave equation

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2} - \kappa^2 \frac{\partial^4 y}{\partial x^4} - 2b_1 \frac{\partial y}{\partial t} + 2b_2 \frac{\partial^3 y}{\partial x^2 \partial t}$$

Finite difference wave equation

$$\frac{\partial^{2} y}{\partial t^{2}} = c^{2} \frac{\partial^{2} y}{\partial x^{2}} - \kappa^{2} \frac{\partial^{4} y}{\partial x^{4}} - 2b_{1} \frac{\partial y}{\partial t} + 2b_{2} \frac{\partial^{3} y}{\partial x^{2} \partial t}$$

$$y_{n}^{t+1} = a_{1} \left(y_{n+2}^{t} + y_{n-2}^{t} \right) + a_{2} \left(y_{n+1}^{t} + y_{n-1}^{t} \right) + a_{3} y_{n}^{t}$$

$$+ a_{4} y_{n}^{t-1} + a_{5} \left(y_{n+1}^{t-1} + y_{n-1}^{t-1} \right)$$

Hammer strike

Cutoff sounds unnatural

Cutoff sounds unnatural \rightarrow add damper suppression

Cutoff sounds unnatural \rightarrow add damper suppression Increase stiffness

VERGELIJKINGSPLAATJES

Examples

Time for some 'music'!

Considerations

Add more notes

Considerations

- Add more notes
- Real-time playback
- Simulate multiple strings with slightly different parameters

Next Subsection

1 First Section

Section 1 - Subsection 1

Section 2 - Last Subsection

Last Page

Summary

End of the beamer demo with a *tidy* TU Delft lay-out. Thank you!

