

Matemática Discreta

Leandro Colombi Resendo

Grafos e Árvores

- Grafos e Suas Representações
- Árvores e suas Representações
- Árvores de Decisão
- Códigos de Huffman

Definição: Uma **árvore** é um grafo conexo acíclico com um nó especial, denominado raiz da árvore.

OBS: caso não haja raiz a árvore é chamada de, **árvore sem**

raiz ou árvore livre.

Quantos caminhos existem entre quaisquer dois nós de uma árvore?

Dica: a árvore é conexa?

lembre-se que a árvore é acíclica!

Profundidade do nó: comprimento do caminho da raiz ao nó.

A raiz tem profundidade 0.

Profundidade da árvore: maior profundidade de uma nó

Folha: nó sem filhos

Nós internos: nó que não são folhas

Floresta: conjunto de arvores desconexas

Árvore binária: com no máximo dois filhos cada nós. Árvore binária cheia

Árvore binária completa

Ex:

- Altura da árvore?
- Profundidade do nó D?
- Filhos de B?
- Filho a esquerda de C?
- Comprimento do caminho de D à I?

Aplicações:

Operações:

Ex: Monte a árvore para (2 + 3)*5.

Representação de árvores:

Representação de árvores:

Representação de árvores binárias:

	Filho	Filho
_	esquerdo	direito
1	2	3
1 2 3	4	5
3	0	6
4	0	0
5	0	0
6	0	0

Algoritmo de Percurso em Árvore:

- Pré-ordem
- Ordem Simétrica
- Pós-ordem

Para análise, note que a própria definição de árvore e recursiva.

Pré-ordem (árvore T) Escreva (r) Para i = 1 até t faça Pré-ordem (T_i) Fim do para Fim Pré-ordem

Note que o primeiro nó a ser visitado é a raiz

Ordem-Simétrica(árvore T)

Ordem-Simétrica(árvore T_1)

Escreva (r)

Para i = 2 até t faça

Ordem-Simétrica (árvore T_i)

Fim do para

Fim Ordem-Simétrica

Primeiro é percorrido a sub-árvore da esquerda, depois a raiz e depois a sub-árvore da direita.

Pós-ordem (árvore T)
Para i = 1 até t faça
Pós-ordem (T_i) Fim do para
Escreva (r)Fim Pós-ordem

Note que o último nó a ser visitado é a raiz

Pré-ordem (árvore T)

Escreva (r)

Para i = 1 até t faça

Pré-ordem (T_i)

Fim do para

Fim Pré-ordem

Diga a sequência impressa pelo algoritmo de pré-ordem para a seguinte árvore.

Pré-ordem (árvore T)

Escreva (r)

Para i = 1 até t faça

Pré-ordem (T_i)

Fim do para

Fim Pré-ordem

Diga a sequência impressa pelo algoritmo de pré-ordem para a seguinte árvore.

Com a árvore desenhada escreva como ficaria a saída dos algoritmos de **Ordem-simétrica** e **Pós-Ordem**?

Ex: Escreva as saídas dos algoritmos de **Pré-Ordem**, **Ordem**-**simétrica** e **Pós-Ordem** para a seguinte árvore.

Resultados sobre Árvores:

- Prove que o número de arcos é sempre um a menos que o número de nós.
- Prove que, em qualquer árvore com n nós, o número total de extremidades de arcos é 2n – 2.

Lista Mínima de Exercícios

Seção 5.2: 4, 7, 9, 12, 14, 16, 33, 34, 39, 40, 42, 43, 48