# アメリカ式統計学セミナー

# 2. 集合と確率

#### 今日のコンテンツ

- 2-1 集合論
- 2-2 確率の定義
- 2-3 順列・組み合わせ
- 2-4 二項分布

# 2. 集合と確率

#### 今日のコンテンツ

- 2-1 集合論
- 2-2 確率の定義
- 2-3 順列・組み合わせ
- 2-4 二項分布

箱の中に5枚のカードが入っている。その中から3のカードを引く確率は?



$$P(3) = \frac{1}{5}$$

箱の中に1~5までの実数の番号がついたカードが入っている。その中から3のカードを引く確率は?

| 1      | 1.01   | 1.010  | •••• | 1.9998 | 1.9999 |
|--------|--------|--------|------|--------|--------|
| 2.0001 | 2.0002 | 2.0012 |      | 3      | 3.111  |
| 3.0001 | 4.2010 | 4.4421 |      | 4.9999 | 5      |

$$P(3) = \frac{1}{\infty}$$

# 一について考える

分母が大きくなると

$$\frac{1}{1} = 1$$

$$\frac{1}{10} = 0.1$$

$$\frac{1}{100} = 0.01$$

$$\frac{1}{1000} = 0.001$$

問題

$$\frac{1}{0} = ?$$

$$\frac{1}{\infty} = 0$$

箱の中に1~5までの実数の番号がついたカードが入っている。その中から3のカードを引く確率は?

| 1      | 1.01   | 1.010  | •••• | 1.9998 | 1.9999 |
|--------|--------|--------|------|--------|--------|
| 2.0001 | 2.0002 | 2.0012 |      | 3      | 3.111  |
| 3.0001 | 4.2010 | 4.4421 |      | 4.9999 | 5      |

$$P(3) = \frac{1}{\infty} = 0$$

箱の中に1~5までの実数の番号がついたカードが入っている。その中から **3以上**のカードを引く確率は?



箱の中に1~5までの実数の番号がついたカードが入っている。その中から **3以上**のカードを引く確率は?



$$P(3以上) = \frac{1}{2}$$

#### 集合論の応用

ある大学で1年生120人のうち、60人がフランス語、50人がスペイン語、20人がフランス語とスペイン語を履修している。120人からランダムに学生を選んだ時、この学生がフランス語もしくはスペイン語を履修している確率は?

### 集合とは?

#### 集合

いくつかの「もの」からなる集まり。 集合を構成する個々の「もの」のことを元という



# 和集合(union)



# 和集合(union)



$$A = \{1,2,3,4,5\}$$

$$B = \{4,5,6,7,8\}$$

$$A \cup B = \{1,2,3,4,5,6,7,8\}$$

# 共通部分(intersection)

 $A \cup B = \{A \subset B$ の両方に属す要素全体 $\}$ 



# 共通部分(intersection)

 $A \cup B = \{A \subset B$ の両方に属す要素全体 $\}$ 



$$A = \{1,2,3,4,5\}$$

$$B = \{4,5,6,7,8\}$$

$$A \cap B = \{4,5\}$$

 $A \setminus B = \{A \text{ だけに属す要素全体}\}$ 



$$A \setminus B = \{A \text{ だけに属す要素全体}\}$$



$$A = \{1,2,3,4,5\}$$

$$B = \{4,5,6,7,8\}$$

$$A \setminus B = \{1,2,3\}$$

 $B \setminus A = \{B \text{ だけに属す要素全体}\}$ 



$$B \setminus A = \{B \text{ だけに属す要素全体}\}$$



$$A = \{1,2,3,4,5\}$$

$$B = \{4,5,6,7,8\}$$

$$B \setminus A = \{6,7,8\}$$

## 対称差集合(symmetric difference)

*A* ⊕ *B*={どちらか一方の集合に含まれるが両方には含まれない要素全体}



# 対称差集合(symmetric difference)

A ⊕ B={どちらか一方の集合に含まれるが両方には含まれない要素全体}



$$A = \{1,2,3,4,5\}$$

$$B = \{4,5,6,7,8\}$$

$$A \oplus B = \{1,2,3,6,7,8\}$$

# 素集合(互いに素) (disjoint)

共通部分を持たない集合



## 素集合(互いに素)(disjoint)

#### 共通部分を持たない集合



$$A = \{1,2,3\}$$

$$B = \{4,5,6,7,8\}$$

$$A \ge B$$
 は互いに素

$$A \cap B = \{\emptyset\}$$

# 全体集合(universe)

集合全体



# 全体集合(universe)

#### 集合全体



$$A = \{1,2,3\}$$

U:整数全体

# 補集合(complement)

 $A^c = \{$ 全体集合 U から A を**取り除いた要素全体** $\}$ 



# 補集合(complement)

 $A^c = \{$ 全体集合 U から A を**取り除いた要素全体** $\}$ 



$$A = \{1,2,3\}$$

U:整数全体

$$A^c = \{1,2,3\}$$
以外の全整数

$$A = \{3, 7, -5, 0, 13\}$$
 $B = \{0, 17, 3, Blue, Star\}$ 
 $C = \{Pink, Star, 3, 17\}$ 

$$(A \setminus (A \cap (B \setminus C)^c)) \cup (B \cap C) = ?$$

$$A = \{3, 7, -5, 0, 13\}$$
 $B = \{0, 17, 3, Blue, Star\}$ 
 $C = \{Pink, Star, 3, 17\}$ 

$$(A \setminus (A \cap (B \setminus C)^c)) \cup (B \cap C) = ?$$

$$(B \setminus C) =$$

$$A = \{3, 7, -5, 0, 13\}$$
 $B = \{0, 17, 3, Blue, Star\}$ 
 $C = \{Pink, Star, 3, 17\}$ 

$$(A \setminus (A \cap (B \setminus C)^c)) \cup (B \cap C) = ?$$

$$(B \setminus C) = \{0, Blue\}$$

$$A = \{3, 7, -5, 0, 13\}$$
 $B = \{0, 17, 3, Blue, Star\}$ 
 $C = \{Pink, Star, 3, 17\}$ 

$$(A \setminus (A \cap (B \setminus C)^c)) \cup (B \cap C) = ?$$

$$(B \setminus C)^c =$$

$$A = \{3, 7, -5, 0, 13\}$$
 $B = \{0, 17, 3, Blue, Star\}$ 
 $C = \{Pink, Star, 3, 17\}$ 

$$(A \setminus (A \cap (B \setminus C)^c)) \cup (B \cap C) = ?$$

$$(B \setminus C)^c = \{0, Blue\}$$
以外の集合

$$A = \{3, 7, -5, 0, 13\}$$
 $B = \{0, 17, 3, Blue, Star\}$ 
 $C = \{Pink, Star, 3, 17\}$ 

$$(A \setminus (A \cap (B \setminus C)^c)) \cup (B \cap C) = ?$$

$$A \cap (B \setminus C)^c =$$

$$A = \{3, 7, -5, 0, 13\}$$
 $B = \{0, 17, 3, Blue, Star\}$ 
 $C = \{Pink, Star, 3, 17\}$ 

$$(A \setminus (A \cap (B \setminus C)^c)) \cup (B \cap C) = ?$$

$$A \cap (B \setminus C)^c = \{3, 7, -5, 13\}$$

$$A = \{3, 7, -5, 0, 13\}$$
 $B = \{0, 17, 3, Blue, Star\}$ 
 $C = \{Pink, Star, 3, 17\}$ 

$$\left(A \setminus (A \cap (B \setminus C)^{c})\right) \cup (B \cap C) = ?$$

$$A \setminus (A \cap (B \setminus C)^c) =$$

$$A = \{3, 7, -5, 0, 13\}$$
  
 $B = \{0, 17, 3, Blue, Star\}$ 

$$C = \{Pink, Star, 3, 17\}$$

$$\left(A \setminus (A \cap (B \setminus C)^{c})\right) \cup (B \cap C) = ?$$

$$A \setminus (A \cap (B \setminus C)^c) = \{0\}$$

#### 演習問題

$$A = \{3, 7, -5, 0, 13\}$$
 $B = \{0, 17, 3, Blue, Star\}$ 
 $C = \{Pink, Star, 3, 17\}$ 

$$\left(A \setminus (A \cap (B \setminus C)^c)\right) \cup (B \cap C) = ?$$

$$A \setminus (A \cap (B \setminus C)^c) = \{0\}$$
$$(B \cap C) =$$

#### 演習問題

$$A = \{3, 7, -5, 0, 13\}$$
 $B = \{0, 17, 3, Blue, Star\}$ 
 $C = \{Pink, Star, 3, 17\}$ 

$$(A \setminus (A \cap (B \setminus C)^c)) \cup (B \cap C) = ?$$

$$A \setminus (A \cap (B \setminus C)^c) = \{0\}$$
$$(B \cap C) = \{3, 17, Star\}$$

#### 演習問題

$$A = \{3, 7, -5, 0, 13\}$$
 $B = \{0, 17, 3, Blue, Star\}$ 
 $C = \{Pink, Star, 3, 17\}$ 

$$(A \setminus (A \cap (B \setminus C)^c)) \cup (B \cap C) = \{0, 3, 17, Star\}$$

$$A \setminus (A \cap (B \setminus C)^c) = \{0\}$$
$$(B \cap C) = \{3, 17, Star\}$$

(1)  $A \cap B^c$ 

(2)  $A^c \cap B^c$ 



#### ド・モルガンの定理

$$(A \cup B)^c = A^c \cap B^c$$







 $A \cap B \cap C$ 



 $(A \cup B)^c \cap C$ 



 $(A \cup B)^c \cap C$ 





A の要素の数: n(A)

$$n(A) = 5$$



Bの要素の数: n(B)

$$n(B) = 6$$

 $A \subset B$  の共通要素の数:  $n(A \cap B)$ 

$$n(A \cap B) = 2$$







$$n(A) = 5$$

$$n(B) = 6$$

$$n(A \cap B) = 2$$

 $A \subset B$ の和集合の要素の数:  $n(A \cup B)$ 

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$



150人を対象に、商品Pに関するアンケート調査を行った。下表は、調査項目と集計結果である。価格も質も両方満足している人が65人のとき、価格も質も両方満足していない人は何人いるか。

| 調査項目          | 回答      |      |
|---------------|---------|------|
| 価格は満足ですか?     | 満足している  | 人08  |
|               | 満足していない | 70人  |
| ロケル港ワズオかり     | 満足している  | 110人 |
| 品質は満足ですか?<br> | 満足していない | 40人  |

全体:150人



全体:150人



全体:150人



全体:150人



全体:150人



全体:150人



全体:150人





全体:150人



$$X + 125 = 150$$



$$X = 25$$

#### 与えられた情報を表にまとめる(求めるのは赤いマス)

|     | 品質〇 | 品質× | 合計  |
|-----|-----|-----|-----|
| 価格〇 | 65  | Y   | 80  |
| 価格× |     | X   | 70  |
| 合計  | 110 | 40  | 150 |

与えられた情報を表にまとめる(求めるのは赤いマス)

|     | 品質〇 | 品質× | 合計  |
|-----|-----|-----|-----|
| 価格〇 | 65  | Υ   | 80  |
| 価格× |     | X   | 70  |
| 合計  | 110 | 40  | 150 |

#### ①まずYを求める

$$65 + Y = 80$$



$$Y = 15$$

与えられた情報を表にまとめる(求めるのは赤いマス)

|     | 品質〇 | 品質× | 合計  |
|-----|-----|-----|-----|
| 価格〇 | 65  | 15  | 80  |
| 価格× |     | X   | 70  |
| 合計  | 110 | 40  | 150 |

#### ①まずYを求める

$$65 + Y = 80$$



$$Y = 15$$

②縦の関係からXを求める

与えられた情報を表にまとめる(求めるのは赤いマス)

|     | 品質〇 | 品質× | 合計  |
|-----|-----|-----|-----|
| 価格〇 | 65  | 15  | 80  |
| 価格× |     | Х   | 70  |
| 合計  | 110 | 40  | 150 |

#### ①まずYを求める

$$65 + Y = 80$$



$$Y = 15$$

#### ②縦の関係からXを求める

$$15 + X = 40$$



$$X = 25$$

# 2. 集合と確率

#### 今日のコンテンツ

- 2-1 集合論
- 2-2 確率の定義
- 2-3 順列・組み合わせ
- 2-4 二項分布

#### 確率基礎用語(標本空間と事象)

ある実験を行った時に、起こり得る全ての結果の集合を**標本空間**、 または、**全事象**という。標本空間の要素(元)を**標本点**、標本空間 の部分集合を**事象**という。



例:サイコロを1回投げる実験

標本空間:起こり得るすべての結果

= {1,2,3,4,5,6}

事象:標本空間の部分集合

偶数 =  $\{2,4,6\}$ 

#### 確率基礎用語(標本空間と事象)





標本空間の要素数

$$P(A) = \frac{3}{6}$$

#### 問題

- コインを3回投げたとき、その標本空間を求めよ。
- コインを3回投げたとき、2回表が出る確率を求めよ。

#### 問題

- コインを3回投げたとき、その標本空間を求めよ。
- コインを3回投げたとき、2回表が出る確率を求めよ。

表=1 裏=0とし、 結果を(1回目, 2回目, 3回目)と表すと標本空間 S は

$$S = \{(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)\}$$

2回表がでる事象は  $A = \{(0,1,1), (1,0,1), (1,1,0)\}$  であるので、確率は

$$P(A) = \frac{n(A)}{n(S)} = \frac{3}{8}$$

- $(1)\ 0 \le P(A) \le 1$
- (2) P(S) = 1,  $P(A^c) = 1 P(A)$
- (3) A<sub>1</sub>, A<sub>2</sub>…A<sub>n</sub>が排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

# 科学理論の構造



# 科学理論の構造



# 科学理論の構造





# 移項

#### 代数学の公理

$$A = B$$
 のとき

$$A + C = B + C$$

次の方程式を、公理に基づいてxを求めよ

$$x - 5 = 11$$

- $(1)\ 0 \le P(A) \le 1$
- (2) P(S) = 1,  $P(A^c) = 1 P(A)$
- (3) A<sub>1</sub>, A<sub>2</sub>…A<sub>n</sub>が排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

- (1)  $0 \le P(A) \le 1$
- (2) P(S) = 1,  $P(A^c) = 1 P(A)$
- (3) A<sub>1</sub>, A<sub>2</sub>…A<sub>n</sub>が排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

#### 確率の公理

- (1)  $0 \le P(A) \le 1$
- (2) P(S) = 1,  $P(A^c) = 1 P(A)$
- (3) A<sub>1</sub>, A<sub>2</sub>…A<sub>n</sub>が排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

どのような事象Aについても確率は0以上1以下である。

#### 確率の公理

- (1)  $0 \le P(A) \le 1$
- (2) P(S) = 1,  $P(A^c) = 1 P(A)$
- (3) A<sub>1</sub>, A<sub>2</sub>…A<sub>n</sub>が排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

どのような事象Aについても確率は0以上1以下である。

(絶対に起こらない) 0



1 (絶対に起こる)

#### 確率の公理

$$(1)\ 0 \le P(A) \le 1$$

(2) 
$$P(S) = 1$$
,  $P(A^c) = 1 - P(A)$ 

(3) A<sub>1</sub>, A<sub>2</sub>…A<sub>n</sub>が排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

#### 確率の公理

$$(1)\ 0 \le P(A) \le 1$$

(2) 
$$P(S) = 1$$
,  $P(A^c) = 1 - P(A)$ 

(3) A<sub>1</sub>, A<sub>2</sub>…A<sub>n</sub>が排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

起こり得る全ての事象(=S)が起こる確率は1である。

#### 確率の公理

$$(1)\ 0 \le P(A) \le 1$$

(2) 
$$P(S) = 1$$
,  $P(A^c) = 1 - P(A)$ 

(3) A<sub>1</sub>, A<sub>2</sub>…A<sub>n</sub>が排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$



#### 確率の公理

(1) 
$$0 \le P(A) \le 1$$

(2) 
$$P(S) = 1$$
,  $P(A^c) = 1 - P(A)$ 

(3) A<sub>1</sub>, A<sub>2</sub>…A<sub>n</sub>が排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$



- $(1)\ 0 \le P(A) \le 1$
- (2) P(S) = 1,  $P(A^c) = 1 P(A)$
- (3) A<sub>1</sub>, A<sub>2</sub>…A<sub>n</sub>が排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$



- $(1)\ 0 \le P(A) \le 1$
- (2) P(S) = 1,  $P(A^c) = 1 P(A)$
- (3) A<sub>1</sub>, A<sub>2</sub>…A<sub>n</sub>が排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$



- $(1)\ 0 \le P(A) \le 1$
- (2) P(S) = 1,  $P(A^c) = 1 P(A)$
- (3) A<sub>1</sub>, A<sub>2</sub>…A<sub>n</sub>が排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$



- $(1)\ 0 \le P(A) \le 1$
- (2) P(S) = 1,  $P(A^c) = 1 P(A)$
- (3) A<sub>1</sub>, A<sub>2</sub>…A<sub>n</sub>が排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$



- $(1)\ 0 \le P(A) \le 1$
- (2) P(S) = 1,  $P(A^c) = 1 P(A)$
- (3) A<sub>1</sub>, A<sub>2</sub>…A<sub>n</sub>が排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$



- $(1)\ 0 \le P(A) \le 1$
- (2) P(S) = 1,  $P(A^c) = 1 P(A)$
- (3) A<sub>1</sub>, A<sub>2</sub>…A<sub>n</sub>が排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$



- (1)  $0 \le P(A) \le 1$
- (2) P(S) = 1,  $P(A^c) = 1 P(A)$
- (3) A<sub>1</sub>, A<sub>2</sub>…A<sub>n</sub>が排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$



$$A = \{6\}$$

$$A^{c} = \{1,2,3,4,5\}$$

$$P(A^{c}) = 1 - P(A) = \frac{5}{6}$$

- $(1)\ 0 \le P(A) \le 1$
- (2) P(S) = 1,  $P(A^c) = 1 P(A)$
- (3) A<sub>1</sub>, A<sub>2</sub>…A<sub>n</sub>が排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

#### 確率の公理

- (1)  $0 \le P(A) \le 1$
- (2) P(S) = 1,  $P(A^c) = 1 P(A)$
- (3) A<sub>1</sub>, A<sub>2</sub>…A<sub>n</sub>が排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

同時に起こらない事象の確率は足し算ができる

- (1)  $0 \le P(A) \le 1$
- (2) P(S) = 1,  $P(A^c) = 1 P(A)$
- (3) A<sub>1</sub>, A<sub>2</sub>…A<sub>n</sub>が排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$



$$A_1 = \{2\}$$
 $A_2 = \{5\}$ 

$$P(A_1 \cup A_2)$$

$$= P(A_1) + P(A_2) = \frac{2}{6}$$

### 演習問題

4つの要素

$$S = \{a_1, a_2, a_3, a_4\}$$

から標本空間 S が構成されている。下の (a)~(d) のどの場合が標本空間 S の確率になり得るか?

#### 演習問題

#### 4つの要素

$$S = \{a_1, a_2, a_3, a_4\}$$

から標本空間 S が構成されている。下の  $(a)\sim(d)$  のどの場合が標本空間 S の確率になり得るか?

(a) 
$$P(a_1) = \frac{1}{2}$$
,  $P(a_2) = \frac{1}{3}$ ,  $P(a_3) = \frac{1}{4}$ ,  $P(a_4) = \frac{1}{5}$ 

(b) 
$$P(a_1) = \frac{1}{2}$$
,  $P(a_2) = \frac{1}{4}$ ,  $P(a_3) = -\frac{1}{4}$ ,  $P(a_4) = \frac{1}{2}$ 

(c) 
$$P(a_1) = \frac{1}{2}$$
,  $P(a_2) = \frac{1}{4}$ ,  $P(a_3) = \frac{1}{8}$ ,  $P(a_4) = \frac{1}{8}$ 

(b) 
$$P(a_1) = \frac{1}{2}$$
,  $P(a_2) = \frac{1}{4}$ ,  $P(a_3) = \frac{1}{4}$ ,  $P(a_4) = 0$ 

## 確率(排反事象でない時は?)

$$S = \{1,2,3,4,5,6\}$$
  
 $A_1 = \{2,5\}$   $A_2 = \{3,5\}$ 



このとき $P(A_1 \cup A_2)$ は?



## 確率(排反事象でない時は?)

$$S = \{1,2,3,4,5,6\}$$
  
 $A_1 = \{2,5\}$   $A_2 = \{3,5\}$ 



このとき $P(A_1 \cup A_2)$ は?

#### 集合和の要素の数

 $n(A_1 \cup A_2) = n(A_1) + n(A_2) - n(A_1 \cap A_2)$ 



2020/6/2

## 確率 (排反事象でない時は?)

$$S = \{1,2,3,4,5,6\}$$
  
 $A_1 = \{2,5\}$   $A_2 = \{3,5\}$ 



このとき $P(A_1 \cup A_2)$ は?

#### 集合和の要素の数

$$n(A_1 \cup A_2) = n(A_1) + n(A_2) - n(A_1 \cap A_2)$$



$$P(A_1 \cup A_2) = \frac{n(A_1 \cup A_2)}{n(S)}$$

$$= \frac{n(A_1) + n(A_2) - n(A_1 \cap A_2)}{n(S)}$$

$$= \frac{n(A_1)}{n(S)} + \frac{n(A_2)}{n(S)} - \frac{n(A_1 \cap A_2)}{n(S)}$$

$$= P(A_1) + P(A_2) - P(A_1 \cap A_2)$$

#### 問題

ある大学で1年生120人のうち60人がフランス語、50人がスペイン語、20人がフランス語とスペイン語を履修している。120人からランダムに学生を選んだ時、この学生が

- (1) フランス語もしくはスペイン語を履修している確率は?
- (2) フランス語もスペイン語も履修していない確率は?
- (3) フランス語だけを履修している確率は?

$$n(S) = 120$$



$$n(S) = 120$$



(1) フランス語もしくはスペイン語を履修



$$n(f \cup s) = n(f) + n(s) - n(f \cap s)$$

 $n(f \cup s) = 60 + 50 - 20 = 90$ 

(1) フランス語もしくはスペイン語を履修



$$n(f \cup s) = n(f) + n(s) - n(f \cap s)$$

 $n(f \cup s) = 60 + 50 - 20 = 90$ 

(1) フランス語もしくはスペイン語を履修  $P(f \cup s) = \frac{90}{120}$ 

$$n(S) = 120$$



(1) フランス語もしくはスペイン語を履修

$$P(f \cup s) = \frac{90}{120}$$

(2) フランス語もスペイン語も履修せず



$$n((f \cup s)^c) = n(S) - n(f \cup s)$$

$$n((f \cup s)^c) = 120 - 90 = 30$$

- (1) フランス語もしくはスペイン語を履修  $P(f \cup s) = \frac{90}{120}$
- (2) フランス語もスペイン語も履修せず



$$n((f \cup s)^c) = n(S) - n(f \cup s)$$

$$n((f \cup s)^c) = 120 - 90 = 30$$

- (1) フランス語もしくはスペイン語を履修  $P(f \cup s) = \frac{90}{120}$
- (2) フランス語もスペイン語も履修せず  $P((f \cup s)^c) = \frac{30}{120}$

$$n(S) = 120$$



(1) フランス語もしくはスペイン語を履修

$$P(f \cup s) = \frac{90}{120}$$

(2) フランス語もスペイン語も履修せず

$$P((f \cup s)^c) = \frac{30}{120}$$

(3) フランス語のみを履修



$$n(f \setminus s) = n(f) - n(f \cap s)$$

$$n(f \setminus s) = 60 - 20 = 40$$

- (1) フランス語もしくはスペイン語を履修  $P(f \cup s) = \frac{90}{120}$
- (2) フランス語もスペイン語も履修せず  $P((f \cup s)^c) = \frac{30}{120}$
- (3) フランス語のみを履修



$$n(f \setminus s) = n(f) - n(f \cap s)$$

$$n(f \setminus s) = 60 - 20 = 40$$

(1) フランス語もしくはスペイン語を履修  $P(f \cup s) = \frac{90}{120}$ 

(2) フランス語もスペイン語も履修せず

$$P((f \cup s)^c) = \frac{30}{120}$$

(3) フランス語のみを履修

$$P(f \setminus s) = \frac{40}{120}$$

# 2. 集合と確率

### 今日のコンテンツ

- 2-1 集合論
- 2-2 確率の定義
- 2-3 順列・組み合わせ
- 2-4 二項分布

### 順列

異なるn個の中から、**重複せずに**、r個選んで**並べる**場合の数

#### 順列

異なるn個の中から、**重複せずに**、r個選んで**並べる**場合の数













#### 順列

異なるn個の中から、**重複せずに**、r個選んで**並べる**場合の数

「5人の中から3人を並べる」並べ方の数は?











【X】には5通りの選び方がある







#### 順列

異なるn個の中から、**重複せずに**、r個選んで**並べる**場合の数

「5人の中から3人を並べる」並べ方の数は?











【X】には5通りの選び方がある







#### 順列

異なるn個の中から、**重複せずに**、r個選んで**並べる**場合の数

「5人の中から3人を並べる」並べ方の数は?











【Y】には4通りの選び方がある







#### 順列

異なるn個の中から、**重複せずに**、r個選んで**並べる**場合の数

「5人の中から3人を並べる」並べ方の数は?



【Y】には4通りの選び方がある



#### 順列

異なるn個の中から、**重複せずに**、r個選んで**並べる**場合の数

「5人の中から3人を並べる」並べ方の数は?



【Z】には3通りの選び方がある



5 4

#### 順列

異なるn個の中から、**重複せずに**、r個選んで**並べる**場合の数

「5人の中から3人を並べる」並べ方の数は?











【Z】には3通りの選び方がある







5

4

3

#### 順列

異なるn個の中から、**重複せずに**、r個選んで**並べる**場合の数

「5人の中から3人を並べる」並べ方の数は?



### 並べ方の総数は?



5 4 3

#### 順列

異なるn 個の中から、**重複せずに**、r 個選んで**並べる**場合の数

「5人の中から3人を並べる」並べ方の数は?











並べ方の総数は?





Z

 $5 \times 4 \times 3$ 

#### 順列

異なるn 個の中から、**重複せずに**、r 個選んで**並べる**場合の数

「5人の中から3人を並べる」並べ方の数は?











並べ方の総数は?





Z

 $5 \times 4 \times 3 = 60 通り$ 

### 順列

異なるn個の中から、**重複せずに**、r個選んで**並べる**場合の数

#### 順列

異なるn個の中から、**重複せずに**、r個選んで**並べる**場合の数

公式



$$_{n}P_{r} = \frac{n!}{(n-r)!} = n \times (n-1) \times (n-2) \times \cdots \times (n-r+1)$$

#### 順列

異なるn個の中から、**重複せずに**、r個選んで**並べる**場合の数

公式



$${}_{n}P_{r} = \frac{n!}{(n-r)!} = n \times (n-1) \times (n-2) \times \dots \times (n-r+1)$$

$$r \triangleq$$

#### 順列

異なるn個の中から、**重複せずに**、r個選んで**並べる**場合の数

### 公式



$${}_{n}P_{r} = \frac{n!}{(n-r)!} = n \times (n-1) \times (n-2) \times \dots \times (n-r+1)$$

$$_{n}P_{0}=1$$
と定義する  $_{n}P_{n}=n!$  である

$$_{n}P_{n}=n!$$
 である

#### 順列

異なるn 個の中から、**重複せずに**、r 個選んで**並べる**場合の数

### 公式



$${}_{n}P_{r} = \frac{n!}{(n-r)!} = n \times (n-1) \times (n-2) \times \dots \times (n-r+1)$$

$$_{n}P_{0}=1$$
と定義する  $_{n}P_{n}=n!$  である

$$_{n}P_{n}=n!$$
 である

#### 順列

異なるn 個の中から、**重複せずに**、r 個選んで**並べる**場合の数

### 公式



$${}^{n}P_{r} = \frac{n!}{(n-r)!} = n \times (n-1) \times (n-2) \times \dots \times (n-r+1)$$

$$_{n}P_{0}=1$$
と定義する  $_{n}P_{n}=n!$  である

$$_{n}P_{n}=n!$$
 である



$$_{5}P_{3} = 5 \times 4 \times 3$$

#### 順列

異なるn 個の中から、**重複せずに**、r 個選んで**並べる**場合の数

### 公式



$${}_{n}P_{r} = \frac{n!}{(n-r)!} = n \times (n-1) \times (n-2) \times \dots \times (n-r+1)$$

$$_{n}P_{0}=1$$
と定義する  $_{n}P_{n}=n!$  である

$$_{n}P_{n}=n!$$
 である



#### 順列

異なるn 個の中から、**重複せずに**、r 個選んで**並べる**場合の数

### 公式



$${}_{n}P_{r} = \frac{n!}{(n-r)!} = n \times (n-1) \times (n-2) \times \dots \times (n-r+1)$$

$$_{n}P_{0}=1$$
と定義する  $_{n}P_{n}=n!$  である

$$_{n}P_{n}=n!$$
 である

$$_{5}P_{3} = 5 \times 4 \times 3 = 60$$

### 順列

異なるn個の中から、**重複せずに**、r個選んで**並べる**場合の数

$$(1)_{5}P_{2}$$

$$(2)_{8}P_{4}$$

$$(3)_{6}P_{6}$$

#### 順列

異なるn個の中から、**重複せずに**、r個選んで**並べる**場合の数

$$(1)_{5}P_{2}$$

$$(2)_{8}P_{4}$$

$$(3)_{6}P_{6}$$

$$_{5}P_{2} = \frac{5!}{(5-2)!} = \frac{5!}{3!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1} = 5 \cdot 4 = 20$$

#### 順列

異なるn個の中から、**重複せずに**、r個選んで**並べる**場合の数

$$(1)_{5}P_{2}$$

$$(2)_{8}P_{4}$$

$$(3)_{6}P_{6}$$

$$_{5}P_{2} = \frac{5!}{(5-2)!} = \frac{5!}{3!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1} = 5 \cdot 4 = 20$$

$$_{8}P_{4} = \frac{8!}{(8-4)!} = \frac{8!}{4!} = \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{4 \cdot 3 \cdot 2 \cdot 1} = 8 \cdot 7 \cdot 6 \cdot 5 = 1680$$

#### 順列

異なるn個の中から、**重複せずに**、r個選んで $\dot{u}$ べる場合の数

$$(1)_{5}P_{2}$$

$$(2)_{8}P_{4}$$

$$(3)_{6}P_{6}$$

$$_{5}P_{2} = \frac{5!}{(5-2)!} = \frac{5!}{3!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1} = 5 \cdot 4 = 20$$

$$_{8}P_{4} = \frac{8!}{(8-4)!} = \frac{8!}{4!} = \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{4 \cdot 3 \cdot 2 \cdot 1} = 8 \cdot 7 \cdot 6 \cdot 5 = 1680$$

$$_{6}P_{6} = \frac{6!}{(6-6)!} = \frac{6!}{0!} = \frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{1} = 720$$

### 組み合わせ

異なるn個の中から、**重複せずに**、r個**選び出す**場合の数

### 組み合わせ

異なるn 個の中から、**重複せずに**、r 個**選び出す**場合の数

「5人の中から3人選ぶ」選び方の総数は?

選び方の総数は?











### 組み合わせ

異なるn 個の中から、**重複せずに**、r 個選び出す場合の数

「5人の中から3人選ぶ」選び方の総数は?

選び方の総数は?











(A,B,C) (A,B,D) (A,B,E) (A,C,D) (A,C,E)

(A,D,E)

### 組み合わせ

異なるn個の中から、**重複せずに**、r個選び出す場合の数

「5人の中から3人選ぶ」選び方の総数は?

選び方の総数は?











$$(A,B,C)$$
  $(A,B,D)$   $(A,B,E)$ 

$$(B,C,D)$$
  $(B,C,E)$ 

$$(A,C,D)$$
  $(A,C,E)$ 

### 組み合わせ

異なるn個の中から、**重複せずに**、r個選び出す場合の数

「5人の中から3人選ぶ」選び方の総数は?

選び方の総数は?











$$(A,B,C)$$
  $(A,B,D)$   $(A,B,E)$ 

(B,C,D) (B,C,E)

(C,D,E)

$$(A,C,D)$$
  $(A,C,E)$ 

(B,D,E)

(A,D,E)

### 組み合わせ

異なるn個の中から、**重複せずに**、r個選び出す場合の数

「5人の中から3人選ぶ」選び方の総数は?

選び方の総数は?











10通り

(A,B,C) (A,B,D) (A,B,E)

(B,C,D) (B,C,E)

(C,D,E)

(A,C,D) (A,C,E)

(B,D,E)

(A,D,E)

### 組み合わせ

異なるn個の中から、**重複せずに**、r個選び出す場合の数

「5人の中から3人選ぶ」選び方の総数は?

選び方の総数は?











10通り

(A,B,C) (A,B,D) (A,B,E) (A,C,D) (A,C,E) (A,D,E)

Aを含む選び方

(B,C,D) (B,C,E) (C,D,E)

(B,D,E)

### 組み合わせ

異なるn 個の中から、**重複せずに**、r 個**選び出す**場合の数

「5人の中から3人選ぶ」選び方の総数は?

選び方の総数は?











10通り

(A,B,C) (A,B,D) (A,B,E)(A,C,D) (A,C,E)(A,D,E)

Aを含む選び方

(B,C,D) (B,C,E)

(B,D,E)

(C,D,E)

Aを含まず、 Bを含む選び方

Copyright © 2020 Wakara Corp. All Rights Reserved.

#### 組み合わせ

異なるn個の中から、**重複せずに**、r個選び出す場合の数

「5人の中から3人選ぶ」選び方の総数は?

選び方の総数は?











10通り

(A,B,C) (A,B,D) (A,B,E) (A,C,D) (A,C,E) (A,D,E)

Aを含む選び方

(B,C,D) (B,C,E)

(B,D,E)

Aを含まず、 Bを含む選び方 (C,D,E)

A、Bを含まず、 Cを含む選び方

Copyright © 2020 Wakara Corp. All Rights Reserved.

#### 組み合わせ

異なるn個の中から、**重複せずに**、r個**選び出す**場合の数

#### 組み合わせ

異なるn 個の中から、**重複せずに**、r 個**選び出す**場合の数





$$_{n}C_{r} = \frac{n!}{r! (n-r)!} = \frac{n \times (n-1) \times \cdots \times (n-r+1)}{r \times (r-1) \times \cdots \times 2 \times 1}$$

#### 組み合わせ

異なるn個の中から、**重複せずに**、r個選び出す場合の数

公式
$${}_{n}C_{r} = \frac{n!}{r! (n-r)!} = \frac{n \times (n-1) \times \cdots \times (n-r+1)}{r \times (r-1) \times \cdots \times 2 \times 1}$$

#### 組み合わせ

異なるn個の中から、**重複せずに**、r個選び出す場合の数



#### 組み合わせ

異なるn 個の中から、**重複せずに**、r 個**選び出す**場合の数



#### 組み合わせ

異なるn個の中から、**重複せずに**、r個選び出す場合の数



「5人の中から3人選ぶ」選び方の総数は?

$${}_{5}C_{3} = \frac{5 \times 4 \times 3}{3 \times 2 \times 1}$$

#### 組み合わせ

異なるn個の中から、**重複せずに**、r個選び出す場合の数



「5人の中から3人<mark>選ぶ</mark>」選び方の総数は?

$${}_{5}C_{3} = \frac{5 \times 4 \times 3}{3 \times 2 \times 1}$$

Copyright © 2020 Wakara Corp. All Rights Reserved.

#### 組み合わせ

異なるn 個の中から、**重複せずに**、r 個**選び出す**場合の数



「5人の中から3人選ぶ」選び方の総数は?

$${}_{5}C_{3} = \frac{5 \times 4 \times 3}{3 \times 2 \times 1} = 10$$

Copyright © 2020 Wakara Corp. All Rights Reserved.

#### 組み合わせ

異なるn 個の中から、**重複せずに**、r 個**選び出す**場合の数

$$_{n}C_{r} = \frac{n!}{r! (n-r)!} = \frac{n \times (n-1) \times \cdots \times (n-r+1)}{r \times (r-1) \times \cdots \times 2 \times 1}$$

#### 組み合わせ

異なるn 個の中から、**重複せずに**、r 個**選び出す**場合の数

$$_{n}C_{r} = \frac{n!}{r! (n-r)!} = \frac{n \times (n-1) \times \cdots \times (n-r+1)}{r \times (r-1) \times \cdots \times 2 \times 1}$$

#### 組み合わせ

異なるn 個の中から、**重複せずに**、r 個**選び出す**場合の数

$${}_{n}C_{r} = \frac{n!}{r! (n-r)!} = \frac{n \times (n-1) \times \dots \times (n-r+1)}{r \times (r-1) \times \dots \times 2 \times 1}$$

$${}_{n}C_{r} = \frac{n!}{r! (n-r)!} = \frac{n!}{(n-r)! r!} = {}_{n}C_{n-r}$$

#### 組み合わせ

異なるn 個の中から、**重複せずに**、r 個**選び出す**場合の数

#### 組み合わせ

異なるn個の中から、**重複せずに**、r個選び出す場合の数

#### 公式

r 個の選び方 = n - r 個の残し方

#### 組み合わせ

異なるn個の中から、**重複せずに**、r個**選び出す**場合の数

#### 組み合わせ

異なるn個の中から、**重複せずに**、r個**選び出す**場合の数

#### 練習問題

(1)  $_{6}C_{2}$ 

(2)  $_{8}C_{6}$ 

(3)  $_{10}C_2$ 

#### 組み合わせ

異なるn 個の中から、**重複せずに**、r 個**選び出す**場合の数

#### 練習問題

(1) 
$$_{6}C_{2}$$

$$(2)_{8}C_{6}$$

$$(3)_{10}C_2$$

$$_{6}C_{2} = \frac{6!}{2!(6-2)!} = \frac{6!}{2!4!} = \frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(2 \cdot 1)(4 \cdot 3 \cdot 2 \cdot 1)} = 15$$

#### 組み合わせ

異なるn 個の中から、**重複せずに**、r 個**選び出す**場合の数

#### 練習問題

(1) 
$$_{6}C_{2}$$

$$(2)_{8}C_{6}$$

(3) 
$$_{10}C_2$$

$$_{6}C_{2} = \frac{6!}{2!(6-2)!} = \frac{6!}{2!4!} = \frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(2 \cdot 1)(4 \cdot 3 \cdot 2 \cdot 1)} = 15$$

$$_{8}C_{6} = \frac{8!}{6!(8-6)!} = \frac{8!}{2!6!} = \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)(2 \cdot 1)} = \frac{8 \cdot 7}{(2 \cdot 1)} = 28$$

#### 組み合わせ

異なるn 個の中から、**重複せずに**、r 個**選び出す**場合の数

#### 練習問題

(1) 
$$_{6}C_{2}$$

(2) 
$$_{8}C_{6}$$

(3) 
$$_{10}C_2$$

$$_{6}C_{2} = \frac{6!}{2!(6-2)!} = \frac{6!}{2!4!} = \frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(2 \cdot 1)(4 \cdot 3 \cdot 2 \cdot 1)} = 15$$

$$_{8}C_{6} = \frac{8!}{6!(8-6)!} = \frac{8!}{2!6!} = \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)(2 \cdot 1)} = \frac{8 \cdot 7}{(2 \cdot 1)} = 28$$

$${}_{10}C_2 = \frac{10!}{2!(10-2)!} = \frac{10!}{2!8!} = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(2 \cdot 1)(8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)} = \frac{10 \cdot 9}{(2 \cdot 1)} = 45$$

どこが違う? =

「5人の中から3人を**並べる**」 VS

「5人の中から3人<mark>選ぶ</mark>」

#### どこが違う?

「5人の中から3人を**並べる**」

VS

「5人の中から3人選ぶ」



#### どこが違う?

「5人の中から3人を**並べる**」

VS

「5人の中から3人選ぶ」



(C,D,E) (C,E,D)

## 順列と組み合わせの違い

# **どこが違う?**「5人の中から3人を**並べる**」 VS 「5人の中から3人**選ぶ**」 (A.R.C.) (B.A.C.) (B.C.A.) (C.A.R.) (C.R.A.)

(E,D,C)

```
(A,B,C)
         (A,C,B)
                  (B,A,C)
                           (B,C,A)
                                    (C,A,B)
                                              (C,B,A)
(A,B,D)
         (A,D,B)
                  (B,A,D)
                           (B,D,A)
                                     (D,A,B)
                                              (D,B,A)
(A,B,E)
         (A,E,B)
                  (B,A,E)
                           (B,E,A)
                                     (E,A,B)
                                              (E,B,A)
(A,C,D)
                                     (D,A,C)
         (A,D,C)
                  (C,A,D)
                           (C,D,A)
                                              (D,C,A)
(A,C,E)
         (A,E,C)
                           (C,E,A)
                  (C,A,E)
                                    (E,A,C)
                                              (E,C,A)
(A,D,E)
         (A,E,D)
                           (D,E,A)
                  (D,A,E)
                                     (E,A,D)
                                              (E,D,A)
         (B,D,C)
(B,C,D)
                  (C,B,D)
                           (C,D,B)
                                     (D,B,C)
                                              (D,C,B)
         (B,E,C)
(B,C,E)
                   (C,B,E)
                           (C,E,B)
                                    (E,B,C)
                                              (E,C,B)
(B,C,E)
                            (C,E,B)
         (B,E,C)
                   (C,B,E)
                                     (E,B,C)
                                               (E,C,B)
         (B,E,D)
(B,D,E)
                   (D,B,E)
                            (D,E,B)
                                     (E,B,D)
                                              (E,D,B)
```

60通り

(D,C,E) (D,E,C) (E,C,D)

## どこが違う? 「5人の中から3人を並べる」 VS 「5人の中から3人選ぶ」

```
(A,B,C)
         (A,C,B)
                  (B,A,C)
                            (B,C,A)
                                     (C,A,B)
                                              (C,B,A)
(A,B,D)
         (A,D,B)
                  (B,A,D)
                            (B,D,A)
                                     (D,A,B)
                                              (D,B,A)
(A,B,E)
         (A,E,B)
                           (B,E,A)
                                              (E,B,A)
                  (B,A,E)
                                     (E,A,B)
(A,C,D)
                                     (D,A,C)
         (A,D,C)
                  (C,A,D)
                           (C,D,A)
                                              (D,C,A)
(A,C,E)
         (A,E,C)
                  (C,A,E)
                           (C,E,A)
                                    (E,A,C)
                                              (E,C,A)
(A,D,E)
         (A,E,D)
                            (D,E,A)
                  (D,A,E)
                                     (E,A,D)
                                              (E,D,A)
(B,C,D)
         (B,D,C)
                  (C,B,D)
                           (C,D,B)
                                     (D,B,C)
                                              (D,C,B)
         (B,E,C)
(B,C,E)
                   (C,B,E)
                            (C,E,B)
                                    (E,B,C)
                                               (E,C,B)
(B,C,E)
                            (C,E,B)
         (B,E,C)
                   (C,B,E)
                                     (E,B,C)
                                               (E,C,B)
(B,D,E)
         (B,E,D)
                   (D,B,E)
                            (D,E,B)
                                     (E,B,D)
                                               (E,D,B)
(C,D,E) (C,E,D)
                  (D,C,E) (D,E,C) (E,C,D)
                                              (E,D,C)
```



















## 問題

アルファベット26文字のカードがある。この中の2枚のカードで文字を作るとき、出来る文字列は何種類か?

#### 順列の問題

<sub>26</sub>P<sub>2</sub> = 26·25 = 650 (種類)

大人3人、子供4人がいる。ここから4人を選んでリレーチームを作る。

#### 順列の問題

 $_{7}P_{4} = 7 \cdot 6 \cdot 5 \cdot 4 = 840$  (種類)

## 問題

学芸会で演劇をすることになり、演劇部に所属する男子生徒6人と女子生徒3人の中から出演してもらうことにした。男子生徒だけを3人選ぶとすると、その選び方は何通りあるか。

#### 組み合わせの問題

$$_6$$
C $_3$  = 20 (通り)

5人の中から 2人代表を選ぶ方法の数を求めよ。

#### 組み合わせの問題

5人の中からリーダーと副リーダーを選ぶ方法の数を求めよ

#### 順列の問題

## 2. 集合と確率

#### 今日のコンテンツ

- 2-1 集合論
- 2-2 確率の定義
- 2-3 順列・組み合わせ
- 2-4 二項分布

## 二項分布(ベルヌーイ試行)

#### = ベルヌーイ試行

コインを投げた時の表が出るか裏が出るかのように、何かを行った時に起こる結果が2つしかない試行のことをベルヌーイ試行と言う。

$$P(成功) = p$$
  
 $P(失敗) = 1 - p$ 

## 二項分布(ベルヌーイ試行)

#### = ベルヌーイ試行

コインを投げた時の表が出るか裏が出るかのように、何かを行った時に起こる結果が2つしかない試行のことをベルヌーイ試行と言う。

$$P(成功) = p$$
  
 $P(失敗) = 1 - p$ 

### 二項分布

ベルヌーイ試行をn回行って、k回成功する確率

$$P(k$$
回成功する確率) =  $_{n}C_{k}p^{k}(1-p)^{n-k}$ 

## 二項分布(ベルヌーイ試行)

#### = ベルヌーイ試行

コインを投げた時の表が出るか裏が出るかのように、何かを行った時に起こる結果が2つしかない試行のことをベルヌーイ試行と言う。

$$P(成功) = p$$

$$P(失敗) = 1 - p$$

### 二項分布

ベルヌーイ試行をn回行って、k回成功する確率

P(k回成功する確率) =  $_{n}C_{k}p^{k}(1-p)^{n-k}$ 

k:成功数

n:全試行数

p:成功確率











例:10回コインを投げた時、6回表が出る確率

確率  $-10C_6$  通り  $-10C_6$  画り  $-10C_6$  画り



例:10回コインを投げた時、6回表が出る確率

$$P(6回表が出る確率) = {}_{10}C_6 0.5^6 (1-0.5)^4 = 0.205$$

## 問題

10円硬貨を5回投げるとき、表がちょうど2回出る確率は?

## 問題

10円硬貨を5回投げるとき、表がちょうど2回出る確率は?

#### 【解答】

10円硬貨を1回投げて表がでる確率は  $p=rac{1}{2}$ 

表が出ない(=裏が出る)確率は  $1-p=rac{1}{2}$ 

試行を5回 (n=5) 繰り返して、表が2回 (k=2) 出る確率は

$$\frac{5!}{2!(5-2)!} \left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right)^{5-2} = 10 \times \frac{1}{32} = \frac{5}{16}$$