ISÉN - $Ci \mathbf{R}^2$ 18 janvier 2012

$egin{aligned} & \mathbf{Math\'ematiques} \\ & \mathbf{Examen\ final-1^{er}\ semestre} \end{aligned}$

Consignes

- Cette épreuve de 3h comporte 6 questions équipondérées non ordonnées.
- Explicitez vos raisonnements, faites des croquis, et surtout amusez-vous bien!

☐ – Plan bitangent

Le plan $\mathcal{P}: x + \sqrt{3}z = 0$ est tangent au tore \mathcal{T} paramétré par

$$\mathbf{F}(u,v) = (2 + \cos v)\cos u\,\mathbf{i} + (2 + \cos v)\sin u\,\mathbf{j} + \sin v\,\mathbf{k} \qquad (0 \leqslant u,v \leqslant 2\pi)$$

en exactement deux points. Lesquels?

⊠ – Astroïde

Calculer la longueur totale et le rayon de courbure de l'arc d'astroïde $\begin{cases} x(t) = \cos^3 t \\ y(t) = \sin^3 t \end{cases} \quad (0 \leqslant t \leqslant \frac{\pi}{2}).$

⊡ – Voile florentine

Soit $\mathcal{V} \subseteq \mathbf{R}^3$ l'image du carré de sommets $(\pm \frac{\pi}{2}, 0)$, $(0, \pm \frac{\pi}{2})$ dans le plan (u, v) par le changement de variables

 $\mathbf{F}(u, v) = \sin u \cos v \,\mathbf{i} + \sin v \,\mathbf{j} + \cos u \cos v \,\mathbf{k}.$

Montrer qu'il s'agit d'une portion de sphère et calculer son aire.

🗓 – Cassini

Considérons le produit des carrés des distances

$$f(P) = ||\overrightarrow{AP}||^2 \cdot ||\overrightarrow{BP}||^2$$

d'un point quelconque $P=(x,y)\in\mathbf{R}^2$ aux points fixés A=(-1,0) et B=(1,0).

Déterminer les valeurs extrêmes de f sur le disque de rayon 2 centré à l'origine.

☑ – Cubique réglée

Soit $\mathbf{n}: \mathcal{S} \to \mathbf{R}^3 \setminus \{\mathbf{0}\}$ une application de classe \mathcal{C}^1 fournissant un vecteur normal en chaque point d'une surface régulière \mathcal{S} . Montrer que si $\mathbf{r}(t) = P_0 + t \mathbf{d}$ est une droite paramétrée incluse dans \mathcal{S} , alors le long de cette droite on a

$$\mathbf{n}(t) \cdot \mathbf{d} = \frac{\mathrm{d}\mathbf{n}}{\mathrm{d}t} \cdot \mathbf{d} = 0.$$

Utiliser ce fait pour trouver une famille de droites incluses dans la cubique $C: z = 3xy - 2x^3$.

□ – Intégrale curviligne

Calculer l'intégrale curviligne $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ du champ de vecteurs

$$\mathbf{F}(x, y, z) = -2xy\,\mathbf{i} + e^y\cos z\,\mathbf{j} - e^y\sin z\,\mathbf{k}$$

le long de l'arc de cercle $\mathbf{r}(t) = (\sqrt{2}\cos t, 1 + 2\sin t, \sqrt{2}\cos t), 0 \leqslant t \leqslant \frac{\pi}{2}$.

[Suggestion: Pour simplifier les calculs, chercher des fonctions f et g pour lesquelles $\mathbf{F} = \nabla f + g \mathbf{j}$]