Lecture 9

Instructor: Karteek Sreenivasaiah

14th September 2018

Recap

Algorithm 1 Breadth-first Search from vertex s

```
1: Color all vertices WHITE.
2: For all u \in V, d[u] \leftarrow \infty, \pi[u] \leftarrow \text{NIL}.
3: d[s] \leftarrow 0.
4: Initialize queue Q \leftarrow \emptyset.
5: ENQUEUE(Q, s)
6: while Q \neq \emptyset do
     u \leftarrow \mathsf{DEQUEUE}(Q)
     for each v \in \mathcal{N}(u) do
           if color(v) = WHITE then
               color[v] \leftarrow GRAY
10:
               d[v] \leftarrow d[u] + 1
11:
12:
              \pi[v] \leftarrow u
               ENQUEUE(Q, v)
13:
           end if
14:
    end for
15:
        color[u] \leftarrow BLACK.
16:
17: end while
```

Correctness of BFS

Notation: Let $\delta(s, v)$ denote the minimum number of edges on a path from s to v.

Theorem

Let G = (V, E) be a graph. When BFS is run on G from vertex $s \in V$:

- 1. Every vertex that is reachable from *s* gets discovered.
- 2. On termination, $d[v] = \delta(s, v)$.

Show (1) is an exercise.

Proof

Suppose, for the sake of contradiction, (2) does not hold.

Let v be the vertex with smallest $\delta(s, v)$ such that $d[v] \neq \delta(s, v)$.

Claim 1: $d[v] \ge \delta(s, v)$

Let u be the vertex just before v on any path from s to v.

Claim 2: $\delta(s, v) \leq \delta(s, u) + 1$.

Choose a *shortest* path from *s* to *v*.

Let u be the vertex immmediately preceding v

Then $\delta(s, v) = \delta(s, u) + 1 = d[u] + 1$.

So we have:

$$d[v] > \delta(s, v) = \delta(s, u) + 1 = d[u] + 1$$

Proof cont...

We have:

$$d[v] > \delta(s, v) = \delta(s, u) + 1 = d[u] + 1$$

Consider the time step when u is dequeued.

- Case 1: v was white. The algo sets d[v] = d[u] + 1.
- This contradicts the eq above.

 Case 2: v is black.
- Then, v was dequeued before u. Claim 3: If v was dequeued before u, then $d[v] \le d[u]$.

Proof cont...

Case 3: v was gray.
 Vertex v was colored gray after dequeuing some vertex w earlier.

So d[v] = d[w] + 1.

By Claim 3, $d[w] \le d[u]$ since w was dequeued before u.

This gives: $d[v] = d[w] + 1 \le d[u] + 1$.

Claim 2

Let $(u, v) \in E$. Then we have:

$$\delta(s,v) \leq \delta(s,u) + 1$$

Proof

If *u* is reachable from *s*, then:

Take the shortest path from s to u. Then take the edge (u, v).

This gives a path from s to v.

The shortest path from s to v can only be shorter than the above path.

Claim 1

$$\forall v \in V, d[v] \geq \delta(s, v)$$

Proof

Induction on the number of enqueue operations.

Hypothesis: same as claim.

Base case: The time when the first vertex enqueued.

The first vertex enqueued is *s*. At this time we have:

$$\forall v \in V \setminus \{s\}, d[v] = \infty$$

$$b d[s] = \delta(s,s) = 0.$$

Hence the claim holds for the base case.

Proof

Hypothesis: $\forall v \in V, d[v] \geq \delta(s, v)$

Step: A white (undiscovered) vertex *v* gets discovered while

we are visiting a vertex u with $(u, v) \in E$.

From induction, we have: $d[u] \ge \delta(s, u)$.

The algorithm assigns $d[v] \leftarrow d[u] + 1$. So:

$$d[v] = d[u] + 1$$

$$\geq \delta(s, u) + 1$$

$$\geq \delta(s, v)$$

Last inequality follows from Claim 2.

Claim 3

If v was dequeued before u, then $d[v] \leq d[u]$.

We will show a stronger claim:

Claim 4

If at some point, the queue contained v_1, v_2, \dots, v_r where v_1 was the head. Then:

- (a) $d[v_1] \le d[v_2] \le \cdots \le d[v_r]$
- (b) $d[v_r] \leq d[v_1] + 1$

Proof of Claim 3:

Write down vertices in the order they went through the queue.

By claim 4 (a), the calculated d values for them are non-decreasing. Vertex v will appear before u in this order.

Hence claim 3 follows.

Claim 4

If queue contains v_1, v_2, \ldots, v_r where v_1 is the head. Then:

- (a) $d[v_1] \leq d[v_2] \leq \cdots \leq d[v_r]$
- (b) $d[v_r] \le d[v_1] + 1$

Proof

Induction on number of queue operations.

Hypothesis: Same as claim. We show that the claim holds after every enqueue and dequeue.

Base case: The first queue operation - enqueuing *s*.

The claim trivially holds.

Claim 4

If queue contains v_1, v_2, \dots, v_r where v_1 is the head. Then:

- (a) $d[v_1] \leq d[v_2] \leq \cdots \leq d[v_r]$
- (b) $d[v_r] \leq d[v_1] + 1$

Proof

Step:

Dequeue: After v_1 is dequeued, v_2 is the new head.

Part (a): From induction,

 $d[v_1] \le d[v_2] \le d[v_3] \le \cdots \le d[v_r].$ Hence (a) holds.

Part (b): From induction, $d[v_r] \le d[v_1] + 1$. And so:

$$d[v_r] \le d[v_1] + 1$$

$$\le d[v_2] + 1$$

Proof

Enqueue: When a vertex *v* is enqueued:

It was enqueued because:

- it was undiscovered so far.
- ▶ it was present in the adjacency list of a vertex *u* that was just dequeued.

Since *u* was the previous head of the list, from induction we have:

- $d[u] \leq d[v_1] \leq d[v_2] \leq \cdots \leq d[v_r].$
- ▶ $d[v_r] \le d[u] + 1$.

We assign $d[v] \leftarrow d[u] + 1$ and then enqueue v. Hence, we have:

- $b d[v_r] \leq d[u] + 1 = d[v]$
- $d[v_1] \leq d[v_2] \leq \cdots \leq d[v_r] \leq d[v].$

Weighted Graphs

A weighted graph is a graph G = (V, E) with a weight function:

$$w: E \to \mathbb{Z}$$

The weight of an edge $(u, v) \in E$ is w((u, v)).

For this lecture, we look at directed weighted graphs with weight function $w: E \to \mathbb{Z}^+$.

Shortest path in weighted graphs

Input:

- Graph G = (V, E)
- ▶ Weight function $w: E \to \mathbb{Z}^+$
- ▶ Source vertex $s \in V$.

Goal: Compute the shortest path from *s* to all reachable vertices.

Example graph

Dijkstra's Algorithm Pseudocode

Algorithm 2 Dijkstra's algorithm

```
1: For all u \in V, d[u] \leftarrow \infty, \pi[u] \leftarrow \text{NIL}
 2: d[s] \leftarrow 0
 3: Initialize min-priority queue Q \leftarrow V
 4: S \leftarrow \emptyset
 5: while Q \neq \emptyset do
     u \leftarrow \text{Extract-Min}(Q)
    S \leftarrow S \cup \{u\}
    for each v \in \mathcal{N}(u) do
 8:
            if d[u] + w(u, v) < d[v] then
 9:
               d[v] \leftarrow d[u] + w(u, v)
10:
               DECREASE-KEY(v, d[v]).
11:
12:
               \pi[v] \leftarrow u
            end if
13:
        end for
14:
15: end while
```

Theorem

At the end of Dijkstra's algorithm, we have:

$$\forall u \in U, d[u] = \delta(s, u)$$

Proof

Loop Invariant:

At the start of each iteration, we have $\forall v \in S, d[v] = \delta(v)$.

Init: At the start of the first iteration, $S = \emptyset$. So the claim

holds.

Maintenance: For the sake of contradiction, let u be the first vertex for which $d[u] \neq \delta(s, u)$.

Look at the start of the iteration where u was added to S.

If u = s or u is not reachable from s, immediate contradiction.

So assume $u \neq s$ and u is reachable from s.

Take a shortest path σ from s to u.

Let y be the first vertex on σ that is outside S.

Let $x \in S$ be the vertex on σ just before y.

So the path σ looks like $s \rightsquigarrow x \rightarrow y \rightsquigarrow u$.

Claim 1: $d[y] = \delta(s, y)$.

Since y appears before u in σ , we have $\delta(s, y) \leq \delta(s, u)$.

Hence:

$$d[y] = \delta(s, y)$$

$$\leq \delta(s, u)$$

$$\leq d[u]$$

Although y and u were in $V \setminus S$, Extract-Min returned u.

This means $d[u] \leq d[y]$. Hence:

$$d[y] = \delta(s, y) = \delta(s, u) = d[u]$$

Claim 1

$$d[y] = \delta(s, y)$$

Proof

We chose u to be the first vertex for which $d[u] \neq \delta(s, u)$. Since $x \in S$, $d[x] = \delta(s, x)$.

We updated d[y] when we added x to S.

Now we note a *convergence* property:

If y is on a shortest path σ from s to u.

Then, the path formed by σ from s to y is a shortest path from s to y.

Ш