Search for the Standard Model Higgs boson in the decay channel $H \to ZZ^{(*)} \to 4\ell$ with the ATLAS detector

The ATLAS Collaboration

Abstract

A search for the Standard Model Higgs boson in the decay channel $H \to ZZ^{(*)} \to \ell^+\ell^-\ell^+\ell^-$, where $\ell=e,\mu$, is presented. Proton-proton collision data at $\sqrt{s}=7$ TeV recorded with the ATLAS detector and corresponding to an average integrated luminosity of 2.1 fb⁻¹ are compared to the Standard Model expectations. Upper limits on the production cross section of a Standard Model Higgs boson with a mass between 110 and 600 GeV are derived. The observed (expected) 95% confidence level upper limit on the production cross section for a Higgs boson with a mass of 194 GeV, the region with the best expected sensitivity for this search, is 0.99 (1.01) times the Standard Model prediction. The Standard Model Higgs boson is excluded at 95% confidence level in the mass ranges 191 – 197, 199 – 200 and 214 – 224 GeV.

Keywords: LHC, ATLAS, Higgs, leptons

1. Introduction

The search for the Standard Model (SM) Higgs boson [1–3] is a major goal of the Large Hadron Collider (LHC) programme. Direct searches at the CERN LEP e^+e^- collider led to a lower limit on the Higgs boson mass, m_H , of 114.4 GeV at 95% confidence level (CL) [4]. The searches at the Fermilab Tevatron $p\bar{p}$ collider have excluded at 95% CL the region 156 GeV $< m_H < 177$ GeV [5]. Results from the 2010 LHC run extended the search in the region 200 GeV $< m_H < 600$ GeV by excluding a Higgs boson with cross section larger than 5-20 times the SM prediction [6, 7].

This letter presents a search for the SM Higgs boson in the mass range from 110 to 600 GeV in the channel $H \to ZZ^{(*)} \to \ell^+\ell^-\ell'^+\ell'^-$, where $\ell,\ell'=e,\mu$. Three distinct final states, $\mu\mu\mu\mu$ (4 μ), $ee\mu\mu$ (2 $e2\mu$), and eeee (4e), are selected. The largest background to this search comes from continuum $ZZ^{(*)}$ production. For $m_H < 180$ GeV, contributions from Z + jets and $t\bar{t}$ processes, where the additional charged leptons arise either from semi-leptonic decays of heavy flavour or from light flavour jets misidentified as leptons, are important. The pp collision data were recorded with the ATLAS detector at the LHC at $\sqrt{s}=7$ TeV and

correspond to an average integrated luminosity of 2.1 fb^{-1} [8].

2. The ATLAS Detector

The ATLAS detector [9] is a multi-purpose particle physics apparatus with forward-backward symmetric cylindrical geometry¹. The inner tracking detector (ID) consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. The ID is surrounded by a thin superconducting solenoid providing a 2 T magnetic field. A high-granularity lead-liquid argon (LAr) sampling calorimeter measures the energy and the position of electromagnetic showers. An iron-scintillator tile calorimeter provides hadronic coverage in the central rapidity range. The endcap and forward rapidity regions are instrumented with LAr calorimetry for both electromagnetic and hadronic measurements. The muon spectrometer

¹ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point. The z-axis is along the beam pipe, the x-axis points to the centre of the LHC ring and the y-axis points upward. Cylindrical coordinates (r,ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity η is defined as $\eta = -\ln[\tan(\theta/2)]$ where θ is the polar angle.

(MS) surrounds the calorimeters and consists of three large superconducting toroids, each with eight coils, a system of precision tracking chambers, and detectors for triggering. A three-level trigger system selects events to be recorded for offline analysis.

3. Data and Simulation Samples

The accumulated data are subjected to quality requirements ensuring that the relevant detector components were operating normally. The resulting average integrated luminosity of 2.1 fb⁻¹ corresponds to 2.28 fb⁻¹, 1.96 fb⁻¹ and 1.98 fb⁻¹ for the 4μ , $2e2\mu$ and 4e final states, respectively.

The $H \to ZZ^{(*)} \to 4\ell$ signal is modelled using the POWHEG Monte Carlo (MC) event generator [10, 11], which calculates separately the gluon and vector-boson fusion production mechanisms with matrix elements up to next-to-leading order (NLO). The Higgs boson transverse momentum, $p_{\rm T}$, spectrum is reweighted to the calculation of Ref. [12], providing QCD corrections up to next-to-leading order and QCD soft-gluon resummations up next-to-next-to-leading log (NNLL). POWHEG is interfaced to PYTHIA [13] for showering and hadronization, which in turn is interfaced to PHOTOS [14] for QED radiative corrections in the final state and to TAUOLA [15, 16] for the simulation of τ decays.

The cross sections for Higgs boson production, the corresponding branching fractions, as well as their uncertainties [17], are derived to next-to-nextto-leading order (NNLO) in QCD for the gluon fusion [18–23] and vector boson fusion [24] processes. In addition, QCD soft-gluon resummations up to NNLL are available for the gluon fusion process [25], while the NLO electroweak (EW) corrections are applied to both the gluon fusion [26, 27] and vector boson fusion [28, 29] processes. The Higgs boson decay branching ratio to the four-lepton final state is predicted by PROPHECY4F [30, 31], which includes the complete NLO QCD+EW corrections, interference effects between identical final state fermions and leading two-loop heavy Higgs boson corrections to the four-fermion width. Table 1 gives the production cross sections for the $H \to 4\ell$ for several Higgs boson masses.

The $ZZ^{(*)}$ background is generated using PYTHIA, taking into account $Z-\gamma$ interference. For the inclusive total cross section and the shape of the $m_{ZZ^{(*)}}$ spectrum, the MCFM [32, 33] prediction is

Table 1: Higgs boson production cross sections for both gluon and vector-boson fusion processes in pp collisions at $\sqrt{s} = 7$ TeV. The cross sections include the branching ratio of $H \to 4\ell$, with $\ell = e, \mu$. The errors are the total theoretical systematic uncertainty.

, ~		ancervaniey.		
	m_H	$\sigma\left(gg o H\right)$	$\sigma\left(qq o H ight)$	$\mathrm{BR}\left(H\to 4\ell\right)$
_	[GeV]	[pb]	[pb]	$\cdot 10^{-3}$
	130	$14.1^{+2.7}_{-2.1}$	$1.154^{+0.032}_{-0.027}$	0.19
	150	$10.5^{+2.0}_{-1.6}$	$0.962^{+0.028}_{-0.021}$	0.38
	200	$5.2^{+0.9}_{-0.8}$	$0.637^{+0.022}_{-0.015}$	1.15
	240	3.6 ± 0.6	$0.464^{+0.018}_{-0.012}$	1.32
	300	2.4 ± 0.3	$0.301^{+0.014}_{-0.008}$	1.38
	400	2.0 ± 0.3	$0.162^{+0.010}_{-0.005}$	1.21
	600	0.33 ± 0.06	$0.058^{+0.005}_{-0.002}$	1.23

used, which includes both quark-antiquark annihilation at QCD NLO and gluon fusion. The inclusive Z boson production, Z+jets, is modelled using ALPGEN [34] and is divided into Z+light flavour jets and $Zb\bar{b}$; overlaps between the two samples are removed. Specifically, $b\bar{b}$ pairs with separation $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} \ge 0.4$ between the b-jets are taken from the matrix-element calculation, whereas for $\Delta R < 0.4$ the parton-shower jets are taken. PYTHIA is also used as a cross-check of the ALPGEN results. In this search the Z + jets production is normalized from the data, but for comparisons the QCD NNLO FEWZ [35, 36] and the MCFM [32, 33] cross section calculations are used for the inclusive Z boson and the Zbb production, respectively. The $t\bar{t}$ background is modelled using MC@NLO [37] and is normalized to the approximately NNLO cross section calculated using HATHOR [38]. Both ALPGEN and MC@NLO are interfaced to HERWIG [39] for parton shower hadronization and to JIMMY [40] for the underlying event simulations.

All generated events undergo a full detector simulation performed using GEANT4 [41, 42].

The number of pp interactions in the same bunch crossing (pileup) is included in the simulation. The MC samples are reweighted to reproduce the observed distribution in the data.

4. Physics Object Identification and Event Selection

The data considered in this analysis were selected using single-lepton triggers. For electrons the threshold on the transverse energy, E_T , was

20-22 GeV depending on the LHC instantaneous luminosity and for muons the threshold on $p_{\rm T}$ was 18 GeV. Both triggers are more than 99.5% efficient for events passing the offline selection described below.

Electron candidates consist of clusters of energy deposited in the electromagnetic calorimeter associated to ID tracks. The electrons must satisfy the "medium" electron criteria [43], which require the shower profiles to be consistent with those expected for electromagnetic showers and a well reconstructed ID track pointing to the corresponding cluster. The electron transverse momentum is computed from the cluster energy and the track direction.

Muon candidates are reconstructed by matching ID tracks with either full or partial tracks in the MS [43]. For the former case, the two independent momentum measurements are combined, whereas for the latter case the momentum is measured using the ID information only, with the MS providing muon identification. To reject cosmic rays, tracks are required to be consistent with having originated from the primary vertex, defined as the reconstructed vertex with the highest $\sum p_{\rm T}^2$ of associated tracks.

Leptons from Higgs boson decays are expected to be isolated and to originate from a common vertex. Track and calorimeter isolation as well as transverse impact parameter significance requirements are therefore applied to further reduce the Z + jets and $t\bar{t}$ contributions. The sum of $p_{\rm T}$ of tracks within $\Delta R < 0.2$ of the lepton divided by the lepton $p_{\rm T}$ is required to be less than 0.15, while the sum $E_{\rm T}$ of the calorimeter cells within $\Delta R < 0.2$ around the lepton divided by the lepton $p_{\rm T}$ is required to be less than 0.3. In the case of electrons, the calorimeter cells corresponding to the electromagnetic shower are subtracted. The transverse impact parameter significance, defined as the transverse impact parameter of the lepton with respect to the primary vertex divided by its uncertainty, for the two lowest $p_{\rm T}$ leptons of the quadruplet in events with $m_{4\ell} < 190$ GeV is required to be less than 3.5 and 6 for muons and electrons respectively. The selection efficiency of the isolation and impact parameter requirements has been studied using data both for isolated leptons, with $Z \to \ell\ell$ decays and non-isolated leptons from semi-leptonic b and c-quark decays in a heavy-flavour enriched dijet sample. Good agreement is observed between data and simulation.

Higgs boson candidates are searched by select-

ing two same-flavour, opposite-sign isolated lepton pairs in an event. Each lepton must satisfy $p_{\rm T} > 7$ GeV and be measured in the pseudorapidity range $|\eta| < 2.47$ for electrons and $|\eta| < 2.5$ for muons. The electron $p_{\rm T}$ threshold is increased to 15 GeV in the transition region between the barrel and end-cap calorimeters (1.37 < $|\eta|$ < 1.52). At least two leptons must have $p_{\rm T} > 20$ GeV. The leptons are required to be well separated from each other with $\Delta R > 0.1$. The invariant mass of the lepton pair closest to the nominal Z boson mass (m_Z) is denoted by m_{12} and it is required that $|m_Z - m_{12}| < 15$ GeV. The invariant mass of the remaining lepton pair, m_{34} , is required to be lower than 115 GeV and greater than a threshold depending on the reconstructed four lepton mass, $m_{4\ell}$, as summarized in Table 2. The final discriminating variable is $m_{4\ell}$, where the Higgs boson production would appear as a clustering of events. The width of the reconstructed Higgs boson mass distribution is dominated by experimental resolution at low m_H values, with a full-width at half-maximum (FWHM) which varies according to decay mode and is between 4.5 (4μ) and 6.5 (4e)GeV for $m_H = 130$ GeV. At high m_H the reconstructed width is dominated by the natural width of the Higgs boson with a FWHM of approximately 35 GeV at $m_H = 400$ GeV.

5. Background Estimation

The dominant $ZZ^{(*)}$ background is estimated using MC simulation. Generated events are required to pass the complete analysis selection and the final yield is normalized to the integrated luminosity.

The $t\bar{t}$ background is also estimated using MC simulation. Comparison of data to MC predictions, in a control sample of events with opposite sign electron-muon pairs consistent with the Z boson mass and with one or two additional charged leptons, are used to verify that the $t\bar{t}$ background is small with respect to the dominant $ZZ^{(*)}$ process and in agreement with expectation.

The Z + jets background is normalized using data. The control sample is formed by selecting events with a pair of same-flavour, opposite-sign isolated leptons consistent with the Z boson mass, $|m_Z - m_{12}| < 15\,$ GeV, and a second same-flavour, opposite-sign lepton pair where only kinematic, but no isolation or impact parameter, requirements are applied. At this stage, the dominant background source depends on the flavour of the second lepton

Table 2: Thresholds applied to m_{34} for reference values of $m_{4\ell}$ (see text). For other $m_{4\ell}$ values, the selection requirement is obtained via linear interpolation.

$m_{4\ell}$ (GeV)	≤120	130	140	150	160	165	180	190	≥200
threshold (GeV)	15	20	25	30	30	35	40	50	60

Table 3: The expected numbers of background events, with their systematic uncertainty, separated into "Low mass" ($m_{4\ell} < 180$ GeV) and "High mass" ($m_{4\ell} \ge 180$ GeV) regions. The expected numbers of signal events for different m_H hypotheses and the observed numbers of events are also presented.

	μμμμ		ееµµ		eeee	
	Low mass	High mass	Low mass	High mass	Low mass	High mass
Integrated Luminosity	Integrated Luminosity 2.28 fb^{-1}		1.96	$\mathrm{fb^{-1}}$	$1.98 \; \mathrm{fb^{-1}}$	
$ZZ^{(*)}$	1.02 ± 0.15	$7.7 {\pm} 1.2$	0.99 ± 0.16	$9.6{\pm}1.4$	0.39 ± 0.09	$3.6 {\pm} 0.5$
$Z,Zbar{b},tar{t}$	$0.06 {\pm} 0.01$	$0.01 {\pm} 0.01$	$0.29 {\pm} 0.11$	$0.15{\pm}0.06$	$0.23 {\pm} 0.09$	$0.12{\pm}0.05$
Total Background	1.08 ± 0.15	$7.7{\pm}1.2$	1.28 ± 0.19	$9.8{\pm}1.4$	$0.62 {\pm} 0.13$	$3.7 {\pm} 0.5$
Data	1	11	1	8	1	5
$m_H = 130 \text{ GeV}$	0.42 ± 0.07		0.40 ± 0.06		0.14 ± 0.03	
$m_H = 150 \text{ GeV}$	0.98 ± 0.15		0.97 ± 0.15		0.34 ± 0.06	
$m_H = 200 \text{ GeV}$		2.26 ± 0.33		2.64 ± 0.38		0.98 ± 0.14
$m_H = 240 \text{ GeV}$		1.74 ± 0.25		2.24 ± 0.32		0.88 ± 0.13
$m_H = 300 \text{ GeV}$		1.18 ± 0.17		1.64 ± 0.23		0.64 ± 0.09
$m_H = 400 \text{ GeV}$		0.86 ± 0.13		1.23 ± 0.18		0.52 ± 0.08
$m_H = 600 \text{ GeV}$		0.15 ± 0.02		0.23 ± 0.04		0.10 ± 0.02

Figure 1: Invariant mass distributions (a) m_{12} , (b) m_{34} , and (c) $m_{4\ell}$ for the selected candidates. The data (dots) are compared to the background expectations from the dominant $ZZ^{(*)}$ process and the sum of $t\bar{t}$, $Zb\bar{b}$ and Z+light flavour jets processes. Error bars represent 68.3% central confidence intervals.

pair: Z+light flavour jets dominates the final states with a second electron pair, while $Zb\bar{b}$ production dominates the final states with a second muon pair after the contributions from $t\bar{t}, ZZ^{(*)}$, and muons from in-flight π and K decays which correspond

to 44% of the event yield are subtracted. The observed background, which is found to be in good agreement with expectation, is extrapolated to the signal region by means of the MC simulation.

6. Systematic Uncertainties

Uncertainties on lepton reconstruction and identification efficiency, and on the momentum resolution and momentum scale are determined using samples of W, Z and J/ψ decays. The muon efficiency uncertainty results in an acceptance uncertainty on the signal and the irreducible background which is uniform over the mass range of interest and amounts to 1.7% (1.2%) for the 4μ ($2e2\mu$) channel. The uncertainty on the electron efficiency results in an acceptance uncertainty of 3% (2%) for the 4e ($2e2\mu$) channel at $m_{4\ell}=600$ GeV reaching 15% (6%) at $m_{4\ell}=110$ GeV.

A conservative theoretical uncertainty of 15% is assigned to the $ZZ^{(*)}$ background contribution [44]. The Z+light flavour jets and $Zb\bar{b}$ backgrounds are evaluated using data. A systematic uncertainty between 20% and 40% is assigned on their normalization to account for the statistical uncertainty in the control sample and the MC-based extrapolation to the signal region. The uncertainty on the $t\bar{t}$ cross section is found to be 10% by adding linearly the contributions from variations of the renormalization and factorization scales to those of the parton distribution functions.

The theoretical uncertainties on the Higgs boson production cross section are 15–20% for the gluon fusion process and 3–9% for the vector-boson fusion process [17], depending on the Higgs boson mass². They include uncertainties on the QCD scale and on the parton distribution functions [46–49]. An additional 2% uncertainty is added to the signal selection efficiency due to the modelling of the signal kinematics. This is evaluated by comparing signal samples generated with PYTHIA and the default POWHEG samples.

The overall uncertainty on the total integrated luminosity is 3.7% [8].

7. Results

The number of events observed in each final state, separately for $m_{4\ell} < 180$ GeV and $m_{4\ell} \ge 180$ GeV,

are compared with the expectations for background and signal for various m_H hypotheses in Table 3. In total 27 candidate events are selected by the analysis: 12 4μ , 9 $2e2\mu$, and 6 4e events, while in the same mass range 24 ± 4 events are expected from the background processes. The m_{12} , m_{34} , and $m_{4\ell}$ mass spectra are shown in Fig. 1. The $m_{4\ell}$ distribution for the total background and several signal hypotheses is compared to the data in Fig. 2. The selected events have been examined visually and no evidence for reconstruction problems was identified.

Upper limits are set on the Higgs boson cross section at 95% CL, using the CL_s modified frequentist formalism [50] with the profile likelihood test statistic [51]. The test statistic is evaluated with a maximum likelihood fit of signal and background models to the observed $m_{4\ell}$ distribution. Figure 3 shows the expected and observed 95% CL cross section upper limits as a function of m_H and Table 4 summarizes the numerical values for selected m_H points. The consistency with the background-only hypothesis is quantified using the p-value, the probability that a background-only experiment fluctuates more than the observation. The most significant deviation from the background-only hypothesis is observed for $m_H = 242$ GeV with a p-value of 4.9%. These results do not account for the so-called "look-elsewhere" effect [52]. The SM Higgs boson is excluded at 95% CL in the mass ranges 191-197, 199 - 200 and 214 - 224 GeV.

Figure 2: $m_{4\ell}$ distribution of the selected candidates, compared to the background expectation. Error bars represent 68.3% central confidence intervals. The signal expectation for three m_H hypotheses is also shown.

²The limits presented in this study for $m_H > 200\,$ GeV assume cross sections based on on-shell Higgs boson production and decay and use MC generators with an ad-hoc Breit-Wigner Higgs line shape. Recently potentially important effects related to off-shell Higgs boson production and interference effects between the Higgs boson signal and backgrounds have been discussed [17, 45]. The inclusion of such effects may affect limits at high Higgs masses ($m_H > 400\,$ GeV).

Figure 3: The expected (dashed) and observed (full line) 95% CL upper limits on the Higgs boson production cross section as a function of the Higgs boson mass, divided by the expected SM Higgs boson cross section. The green and yellow bands indicate the expected sensitivity with $\pm 1\sigma$ and $\pm 2\sigma$ fluctuations, respectively.

8. Summary

A search for the Standard Model Higgs boson in the decay channel $H \to ZZ^{(*)} \to 4\ell$ based on 2.1 fb⁻¹ of data recorded by the ATLAS detector at $\sqrt{s}=7$ TeV during the 2011 run, has been presented. No significant excess of candidates is observed in the mass range between 110 and 600 GeV with respect to the expected SM background. The observed (expected) 95% CL upper limit on the Higgs boson production cross section, in units of the SM cross section, is 0.99 (1.01) for $m_H=194$ GeV, the region with the best expected sensitivity for this search. The SM Higgs boson is excluded at 95% CL in the mass ranges 191-197, 199-200 and 214-224 GeV.

9. Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC

Table 4: Median expected and observed 95% CL upper limits on the Higgs boson production cross section for several Higgs boson masses, divided by the expected SM Higgs boson cross section.

Mass (GeV)	Expected	Observed		
130	3.29	4.11		
150	1.39	1.47		
200	1.03	0.96		
240	1.28	2.03		
300	1.51	1.54		
400	1.91	1.77		
600	8.40	12.34		

and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

- F. Englert, R. Brout, Phys. Rev. Lett. 13 (1964) 321– 322. doi:10.1103/PhysRevLett.13.321.
- [2] P. W. Higgs, Phys. Rev. Lett. 13 (1964) 508-509. doi:10.1103/PhysRevLett.13.508.
- [3] G. Guralnik, C. Hagen, T. Kibble, Phys. Rev. Lett. 13 (1964) 585-587. doi:10.1103/PhysRevLett.13.585.

- [4] LEP Working Group for Higgs boson searches, Phys. Lett. B565 (2003) 61–75. doi:10.1016/S0370-2693(03)00614-2.
- [5] The Tevatron New Physics and Higgs Working Group (2011). arXiv:1107.5518.
- [6] ATLAS Collaboration, accepted by Eur. Phys. J. C (2011). arXiv:1106.2748.
- [7] CMS Collaboration, Phys.Lett. B699 (2011) 25-47. doi:10.1016/j.physletb.2011.03.056.
- [8] ATLAS Collaboration, ATLAS Note ATLAS-CONF-2011-116 (Aug 2011). URL http://cdsweb.cern.ch/record/1376384
- [9] ATLAS Collaboration, JINST 3 (2008) S08003. doi:10.1088/1748-0221/3/08/S08003.
- [10] S. Alioli, P. Nason, C. Oleari, E. Re, JHEP 04 (2009) 002. doi:10.1088/1126-6708/2009/04/002.
- [11] P. Nason, C. Oleari, JHEP 02 (2010) 037. doi:10.1007/JHEP02(2010)037.
- [12] G. Bozzi, S. Catani, D. de Florian, M. Grazzini, Nucl. Phys. B737 (2006) 73-120. doi:10.1016/j.nuclphysb.2005.12.022.
- [13] T. Sjostrand, S. Mrenna, P. Z. Skands, JHEP 05 (2006) 026. doi:10.1088/1126-6708/2006/05/026.
- [14] P. Golonka, Z. Was, Eur. Phys. J. C45 (2006) 97-107. doi:10.1140/epjc/s2005-02396-4.
- [15] S. Jadach, Z. Was, R. Decker, J. H. Kuhn, Comput. Phys. Commun. 76 (1993) 361–380. doi:10.1016/0010-4655(93)90061-G.
- [16] P. Golonka, et al., Comput. Phys. Commun. 174 (2006) 818-835. doi:10.1016/j.cpc.2005.12.018.
- [17] LHC Higgs Cross Section Working Group, S. Dittmaier, C. Mariotti, G. Passarino, R. Tanaka (Eds.) (CERN, Geneva, 2011). arXiv:1101.0593.
- [18] R. V. Harlander, W. B. Kilgore, Phys. Rev. Lett. 88 (2002) 201801. doi:10.1103/PhysRevLett.88.201801.
- [19] C. Anastasiou, K. Melnikov, Nucl. Phys. B646 (2002) 220–256. doi:10.1016/S0550-3213(02)00837-4.
- [20] V. Ravindran, J. Smith, W. L. van Neerven, Nucl. Phys. B665 (2003) 325–366. doi:10.1016/S0550-3213(03)00457-7.
- [21] C. Anastasiou, R. Boughezal, F. Petriello, JHEP 04 (2009) 003. doi:10.1088/1126-6708/2009/04/003.
- [22] D. de Florian, M. Grazzini, Phys. Lett. B674 (2009) 291-294. doi:10.1016/j.physletb.2009.03.033.
- [23] J. Baglio, A. Djouadi, JHEP 1103 (2011) 055. doi:10.1007/JHEP03(2011)055.
- [24] P. Bolzoni, F. Maltoni, S.-O. Moch, M. Zaro, Phys. Rev. Lett. 105 (2010) 011801. doi:10.1103/PhysRevLett.105.011801.
- [25] S. Catani, D. de Florian, M. Grazzini, P. Nason, JHEP 07 (2003) 028. arXiv:hep-ph/0306211.
- [26] U. Aglietti, R. Bonciani, G. Degrassi, A. Vicini, Phys. Lett. B595 (2004) 432-441. doi:10.1016/j.physletb.2004.06.063.
- [27] S. Actis, G. Passarino, C. Sturm, S. Uccirati, Phys. Lett. B670 (2008) 12-17. doi:10.1016/j.physletb.2008.10.018.
- [28] M. Ciccolini, A. Denner, S. Dittmaier, Phys. Rev. Lett. 99 (2007) 161803. doi:10.1103/PhysRevLett.99.161803.
- [29] M. Ciccolini, A. Denner, S. Dittmaier, Phys. Rev. D77 (2008) 013002. doi:10.1103/PhysRevD.77.013002.
- [30] A. Bredenstein, A. Denner, S. Dittmaier, M. M. Weber, Phys. Rev. D74 (2006) 013004. doi:10.1103/PhysRevD.74.013004.

- [31] A. Bredenstein, A. Denner, S. Dittmaier,
 M. M. Weber, JHEP 02 (2007) 080.
 doi:10.1088/1126-6708/2007/02/080.
- [32] J. M. Campbell, R. K. Ellis, Phys. Rev. D60 (1999) 113006. doi:10.1103/PhysRevD.60.113006.
- [33] J. M. Campbell, R. K. Ellis, C. Williams, JHEP 07 (2011) 018. doi:10.1007/JHEP07(2011)018.
- [34] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A. D. Polosa, JHEP 07 (2003) 001. arXiv:hep-ph/0206293.
- [35] K. Melnikov, F. Petriello, Phys. Rev. D74 (2006) 114017. doi:10.1103/PhysRevD.74.114017.
- [36] C. Anastasiou, L. J. Dixon, K. Melnikov, F. Petriello, Phys. Rev. D69 (2004) 094008. doi:10.1103/PhysRevD.69.094008.
- [37] S. Frixione, P. Nason, B. R. Webber, JHEP 08 (2003) 007. arXiv:hep-ph/0305252.
- [38] M. Aliev, et al., Comp. Phys. Comm. 182 (2011) 1034. arXiv:1007.1327.
- [39] G. Corcella, et al., JHEP 01 (2001) 010. doi:10.1088/1126-6708/2001/01/010.
- [40] J. M. Butterworth, J. R. Forshaw, M. H. Seymour, Z. Phys. C72 (1996) 637–646. doi:10.1007/s002880050286.
- [41] S. Agostinelli, et al., Nucl. Instrum. Meth. A506 (2003) 250–303. doi:10.1016/S0168-9002(03)01368-8.
- [42] ATLAS Collaboration, Eur. Phys. J. C70 (2010) 823–874. doi:10.1140/epjc/s10052-010-1429-9.
- [43] ATLAS Collaboration, JHEP 12 (2010) 060. doi:10.1007/JHEP12(2010)060.
- [44] J. M. Campbell, et al., Phys. Rev. D80 (2009) 054023. doi:10.1103/PhysRevD.80.054023.
- [45] C. Anastasiou, S. Buehler, F. Herzog, A. Lazopoulos (2011). arXiv:1107.0683.
- [46] M. Botje, J. Butterworth, A. Cooper-Sarkar, A. de Roeck, J. Feltesse, et al. (2011). arXiv:1101.0538.
- [47] A. D. Martin, W. J. Stirling, R. S. Thorne, G. Watt, Eur. Phys. J. C63 (2009) 189–285. doi:10.1140/epjc/s10052-009-1072-5.
- [48] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, et al., Phys. Rev. D82 (2010) 074024. doi:10.1103/PhysRevD.82.074024.
- [49] R. D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, et al., Nucl. Phys. B849 (2011) 296–363. doi:10.1016/j.nuclphysb.2011.03.021.
- [50] A. L. Read, J. Phys. G 28 (2002) 2693–2704. doi:10.1088/0954-3899/28/10/313.
- [51] G. Cowan, K. Cranmer, E. Gross,
 O. Vitells, Eur.Phys.J. C71 (2011) 1554.
 doi:10.1140/epjc/s10052-011-1554-0.
- [52] E. Gross, O. Vitells, Eur. Phys. J. C70 (2010) 525-530. doi:10.1140/epjc/s10052-010-1470-8.

The ATLAS Collaboration

```
G. Aad<sup>48</sup>, B. Abbott<sup>111</sup>, J. Abdallah<sup>11</sup>, A.A. Abdelalim<sup>49</sup>, A. Abdesselam<sup>118</sup>, O. Abdinov<sup>10</sup>, B. Abi<sup>112</sup>,
M. Abolins<sup>88</sup>, H. Abramowicz<sup>153</sup>, H. Abreu<sup>115</sup>, E. Acerbi<sup>89a,89b</sup>, B.S. Acharya<sup>164a,164b</sup>, D.L. Adams<sup>24</sup>,
T.N. Addy<sup>56</sup>, J. Adelman<sup>175</sup>, M. Aderholz<sup>99</sup>, S. Adomeit<sup>98</sup>, P. Adragna<sup>75</sup>, T. Adye<sup>129</sup>, S. Aefsky<sup>22</sup>,
J.A. Aguilar-Saavedra<sup>124b,a</sup>, M. Aharrouche<sup>81</sup>, S.P. Ahlen<sup>21</sup>, F. Ahles<sup>48</sup>, A. Ahmad<sup>148</sup>, M. Ahsan<sup>40</sup>, G. Aielli<sup>133a,133b</sup>, T. Akdogan<sup>18a</sup>, T.P.A. Åkesson<sup>79</sup>, G. Akimoto<sup>155</sup>, A.V. Akimov <sup>94</sup>, A. Akiyama<sup>67</sup>, M.S. Alam<sup>1</sup>, M.A. Alam<sup>76</sup>, J. Albert<sup>169</sup>, S. Albrand<sup>55</sup>, M. Aleksa<sup>29</sup>, I.N. Aleksandrov<sup>65</sup>, F. Alessandria<sup>89a</sup>,
C. Alexa<sup>25a</sup>, G. Alexander<sup>153</sup>, G. Alexandre<sup>49</sup>, T. Alexopoulos<sup>9</sup>, M. Alhroob<sup>20</sup>, M. Aliev<sup>15</sup>, G. Alimonti<sup>89a</sup>, J. Alison<sup>120</sup>, M. Aliyev<sup>10</sup>, P.P. Allport<sup>73</sup>, S.E. Allwood-Spiers<sup>53</sup>, J. Almond<sup>82</sup>, A. Aloisio<sup>102a,102b</sup>,
R. Alon<sup>171</sup>, A. Alonso<sup>79</sup>, M.G. Alviggi<sup>102a,102b</sup>, K. Amako<sup>66</sup>, P. Amaral<sup>29</sup>, C. Amelung<sup>22</sup>,
V.V. Ammosov<sup>128</sup>, A. Amorim<sup>124a,b</sup>, G. Amorós<sup>167</sup>, N. Amram<sup>153</sup>, C. Anastopoulos<sup>29</sup>, L.S. Ancu<sup>16</sup>,
N. Andari<sup>115</sup>, T. Andeen<sup>34</sup>, C.F. Anders<sup>20</sup>, G. Anders<sup>58a</sup>, K.J. Anderson<sup>30</sup>, A. Andreazza<sup>89a,89b</sup>,
V. Andrei<sup>58a</sup>, M-L. Andrieux<sup>55</sup>, X.S. Anduaga<sup>70</sup>, A. Angerami<sup>34</sup>, F. Anghinolfi<sup>29</sup>, N. Anjos<sup>124a</sup>,
A. Annovi<sup>47</sup>, A. Antonaki<sup>8</sup>, M. Antonelli<sup>47</sup>, A. Antonov<sup>96</sup>, J. Antos<sup>144b</sup>, F. Anulli<sup>132a</sup>, S. Aoun<sup>83</sup>,
L. Aperio Bella<sup>4</sup>, R. Apolle<sup>118,c</sup>, G. Arabidze<sup>88</sup>, I. Aracena<sup>143</sup>, Y. Arai<sup>66</sup>, A.T.H. Arce<sup>44</sup>,
J.P. Archambault<sup>28</sup>, S. Arfaoui<sup>29,d</sup>, J-F. Arguin<sup>14</sup>, E. Arik<sup>18a,*</sup>, M. Arik<sup>18a</sup>, A.J. Armbruster<sup>87</sup>, O. Arnaez<sup>81</sup>, C. Arnault<sup>115</sup>, A. Artamonov<sup>95</sup>, G. Artoni<sup>132a,132b</sup>, D. Arutinov<sup>20</sup>, S. Asai<sup>155</sup>,
R. Asfandiyarov<sup>172</sup>, S. Ask<sup>27</sup>, B. Åsman<sup>146a,146b</sup>, L. Asquith<sup>5</sup>, K. Assamagan<sup>24</sup>, A. Astbury<sup>169</sup>,
A. Astvatsatourov<sup>52</sup>, G. Atoian<sup>175</sup>, B. Aubert<sup>4</sup>, E. Auge<sup>115</sup>, K. Augsten<sup>127</sup>, M. Aurousseau<sup>145a</sup>,
N. Austin<sup>73</sup>, G. Avolio<sup>163</sup>, R. Avramidou<sup>9</sup>, D. Axen<sup>168</sup>, C. Ay<sup>54</sup>, G. Azuelos<sup>93,e</sup>, Y. Azuma<sup>155</sup>,
M.A. Baak<sup>29</sup>, G. Baccaglioni<sup>89a</sup>, C. Bacci<sup>134a,134b</sup>, A.M. Bach<sup>14</sup>, H. Bachacou<sup>136</sup>, K. Bachas<sup>29</sup>,
G. Bachy<sup>29</sup>, M. Backes<sup>49</sup>, M. Backhaus<sup>20</sup>, E. Badescu<sup>25a</sup>, P. Bagnaia<sup>132a,132b</sup>, S. Bahinipati<sup>2</sup>, Y. Bai<sup>32a</sup>, D.C. Bailey<sup>158</sup>, T. Bain<sup>158</sup>, J.T. Baines<sup>129</sup>, O.K. Baker<sup>175</sup>, M.D. Baker<sup>24</sup>, S. Baker<sup>77</sup>, E. Banas<sup>38</sup>, P. Banerjee<sup>93</sup>, Sw. Banerjee<sup>172</sup>, D. Banfi<sup>29</sup>, A. Bangert<sup>137</sup>, V. Bansal<sup>169</sup>, H.S. Bansil<sup>17</sup>, L. Barak<sup>171</sup>,
S.P. Baranov<sup>94</sup>, A. Barashkou<sup>65</sup>, A. Barbaro Galtieri<sup>14</sup>, T. Barber<sup>27</sup>, E.L. Barberio<sup>86</sup>, D. Barberis<sup>50a,50b</sup>,
M. Barbero<sup>20</sup>, D.Y. Bardin<sup>65</sup>, T. Barillari<sup>99</sup>, M. Barisonzi<sup>174</sup>, T. Barklow<sup>143</sup>, N. Barlow<sup>27</sup>,
B.M. Barnett<sup>129</sup>, R.M. Barnett<sup>14</sup>, A. Baroncelli<sup>134a</sup>, G. Barone<sup>49</sup>, A.J. Barr<sup>118</sup>, F. Barreiro<sup>80</sup>, J. Barreiro
Guimarães da Costa<sup>57</sup>, P. Barrillon<sup>115</sup>, R. Bartoldus<sup>143</sup>, A.E. Barton<sup>71</sup>, D. Bartsch<sup>20</sup>, V. Bartsch<sup>149</sup>,
R.L. Bates<sup>53</sup>, L. Batkova<sup>144a</sup>, J.R. Batley<sup>27</sup>, A. Battaglia<sup>16</sup>, M. Battistin<sup>29</sup>, G. Battistoni<sup>89a</sup>, F. Bauer<sup>136</sup>, H.S. Bawa<sup>143</sup>, f, B. Beare<sup>158</sup>, T. Beau<sup>78</sup>, P.H. Beauchemin<sup>118</sup>, R. Beccherle<sup>50a</sup>, P. Bechtle<sup>41</sup>, H.P. Beck<sup>16</sup>, M. Beckingham<sup>48</sup>, K.H. Becks<sup>174</sup>, A.J. Beddall<sup>18c</sup>, A. Beddall<sup>18c</sup>, S. Bedikian<sup>175</sup>, V.A. Bednyakov<sup>65</sup>, C.P. Bee<sup>83</sup>, M. Begel<sup>24</sup>, S. Behar Harpaz<sup>152</sup>, P.K. Behera<sup>63</sup>, M. Beimforde<sup>99</sup>, C. Belanger-Champagne<sup>85</sup>, P. B. Belanger-Champagne<sup>85</sup>, D. B. Belanger-Champagne<sup>85</sup>, P. Belanger-Champagne<sup>85</sup>, P. B. Belanger-Champagne<sup>8</sup>
P.J. Bell<sup>49</sup>, W.H. Bell<sup>49</sup>, G. Bella<sup>153</sup>, L. Bellagamba<sup>19a</sup>, F. Bellina<sup>29</sup>, M. Bellomo<sup>29</sup>, A. Belloni<sup>57</sup>,
O. Beloborodova<sup>107</sup>, K. Belotskiy<sup>96</sup>, O. Beltramello<sup>29</sup>, S. Ben Ami<sup>152</sup>, O. Benary<sup>153</sup>, D. Benchekroun<sup>135a</sup>,
C. Benchouk<sup>83</sup>, M. Bendel<sup>81</sup>, N. Benekos<sup>165</sup>, Y. Benhammou<sup>153</sup>, D.P. Benjamin<sup>44</sup>, M. Benoit<sup>115</sup>,
J.R. Bensinger<sup>22</sup>, K. Benslama<sup>130</sup>, S. Bentvelsen<sup>105</sup>, D. Berge<sup>29</sup>, E. Bergeaas Kuutmann<sup>41</sup>, N. Berger<sup>4</sup>,
F. Berghaus<sup>169</sup>, E. Berglund<sup>49</sup>, J. Beringer<sup>14</sup>, K. Bernardet<sup>83</sup>, P. Bernat<sup>77</sup>, R. Bernhard<sup>48</sup>, C. Bernius<sup>24</sup>, T. Berry<sup>76</sup>, A. Bertin<sup>19a,19b</sup>, F. Bertinelli<sup>29</sup>, F. Bertolucci<sup>122a,122b</sup>, M.I. Besana<sup>89a,89b</sup>, N. Besson<sup>136</sup>, S. Bethke<sup>99</sup>, W. Bhimji<sup>45</sup>, R.M. Bianchi<sup>29</sup>, M. Bianco<sup>72a,72b</sup>, O. Biebel<sup>98</sup>, S.P. Bieniek<sup>77</sup>, K. Bierwagen<sup>54</sup>, J. Biesiada<sup>14</sup>, M. Biglietti<sup>134a,134b</sup>, H. Bilokon<sup>47</sup>, M. Bindi<sup>19a,19b</sup>, S. Binet<sup>115</sup>, A. Bingul<sup>18c</sup>,
C. Bini<sup>132a,132b</sup>, C. Biscarat<sup>177</sup>, U. Bitenc<sup>48</sup>, K.M. Black<sup>21</sup>, R.E. Blair<sup>5</sup>, J.-B. Blanchard<sup>115</sup>, G. Blanchot<sup>29</sup>,
T. Blazek<sup>144a</sup>, C. Blocker<sup>22</sup>, J. Blocki<sup>38</sup>, A. Blondel<sup>49</sup>, W. Blum<sup>81</sup>, U. Blumenschein<sup>54</sup>, G.J. Bobbink<sup>105</sup>,
V.B. Bobrovnikov<sup>107</sup>, S.S. Bocchetta<sup>79</sup>, A. Bocci<sup>44</sup>, C.R. Boddy<sup>118</sup>, M. Boehler<sup>41</sup>, J. Boek<sup>174</sup>,
N. Boelaert<sup>35</sup>, S. Böser<sup>77</sup>, J.A. Bogaerts<sup>29</sup>, A. Bogdanchikov<sup>107</sup>, A. Bogouch<sup>90,*</sup>, C. Bohm<sup>146a</sup>,
V. Boisvert<sup>76</sup>, T. Bold<sup>163,g</sup>, V. Boldea<sup>25a</sup>, N.M. Bolnet<sup>136</sup>, M. Bona<sup>75</sup>, V.G. Bondarenko<sup>96</sup>, M. Bondioli<sup>163</sup>,
M. Boonekamp<sup>136</sup>, G. Boorman<sup>76</sup>, C.N. Booth<sup>139</sup>, S. Bordoni<sup>78</sup>, C. Borer<sup>16</sup>, A. Borisov<sup>128</sup>, G. Borissov<sup>71</sup>, I. Borjanovic<sup>12a</sup>, S. Borroni<sup>87</sup>, K. Bos<sup>105</sup>, D. Boscherini<sup>19a</sup>, M. Bosman<sup>11</sup>, H. Boterenbrood<sup>105</sup>, D. Botterill<sup>129</sup>, J. Bouchami<sup>93</sup>, J. Bouchami<sup>93</sup>, E.V. Bouhova-Thacker<sup>71</sup>, C. Bourdarios<sup>115</sup>, N. Bousson<sup>83</sup>,
A. Boveia<sup>30</sup>, J. Boyd<sup>29</sup>, I.R. Boyko<sup>65</sup>, N.I. Bozhko<sup>128</sup>, I. Bozovic-Jelisavcic<sup>12b</sup>, J. Bracinik<sup>17</sup>, A. Braem<sup>29</sup>,
P. Branchini<sup>134a</sup>, G.W. Brandenburg<sup>57</sup>, A. Brandt<sup>7</sup>, G. Brandt<sup>15</sup>, O. Brandt<sup>54</sup>, U. Bratzler<sup>156</sup>, B. Brau<sup>84</sup>,
J.E. Brau<sup>114</sup>, H.M. Braun<sup>174</sup>, B. Brelier<sup>158</sup>, J. Bremer<sup>29</sup>, R. Brenner<sup>166</sup>, S. Bressler<sup>152</sup>, D. Breton<sup>115</sup>,
```

```
D. Britton<sup>53</sup>, F.M. Brochu<sup>27</sup>, I. Brock<sup>20</sup>, R. Brock<sup>88</sup>, T.J. Brodbeck<sup>71</sup>, E. Brodet<sup>153</sup>, F. Broggi<sup>89a</sup>,
C. Bromberg<sup>88</sup>, G. Brooijmans<sup>34</sup>, W.K. Brooks<sup>31b</sup>, G. Brown<sup>82</sup>, H. Brown<sup>7</sup>, P.A. Bruckman de Renstrom<sup>38</sup>, D. Bruncko<sup>144b</sup>, R. Bruneliere<sup>48</sup>, S. Brunet<sup>61</sup>, A. Bruni<sup>19a</sup>, G. Bruni<sup>19a</sup>,
M. Bruschi<sup>19a</sup>, T. Buanes<sup>13</sup>, F. Bucci<sup>49</sup>, J. Buchanan<sup>118</sup>, N.J. Buchanan<sup>2</sup>, P. Buchholz<sup>141</sup>,
R.M. Buckingham<sup>118</sup>, A.G. Buckley<sup>45</sup>, S.I. Buda<sup>25a</sup>, I.A. Budagov<sup>65</sup>, B. Budick<sup>108</sup>, V. Büscher<sup>81</sup>,
L. Bugge<sup>117</sup>, D. Buira-Clark<sup>118</sup>, O. Bulekov<sup>96</sup>, M. Bunse<sup>42</sup>, T. Buran<sup>117</sup>, H. Burckhart<sup>29</sup>, S. Burdin<sup>73</sup>,
T. Burgess<sup>13</sup>, S. Burke<sup>129</sup>, E. Busato<sup>33</sup>, P. Bussey<sup>53</sup>, C.P. Buszello<sup>166</sup>, F. Butin<sup>29</sup>, B. Butler<sup>143</sup>, J.M. Butler<sup>21</sup>, C.M. Buttar<sup>53</sup>, J.M. Butterworth<sup>77</sup>, W. Buttinger<sup>27</sup>, T. Byatt<sup>77</sup>, S. Cabrera Urbán<sup>167</sup>, D. Caforio<sup>19a,19b</sup>, O. Cakir<sup>3a</sup>, P. Calafiura<sup>14</sup>, G. Calderini<sup>78</sup>, P. Calfayan<sup>98</sup>, R. Calkins<sup>106</sup>, L.P. Caloba<sup>23a</sup>, R. Caloi<sup>132a,132b</sup>, D. Calvet<sup>33</sup>, S. Calvet<sup>33</sup>, R. Camacho Toro<sup>33</sup>, P. Camarri<sup>133a,133b</sup>, M. Cambiaghi<sup>119a,119b</sup>, D. Cameron<sup>117</sup>, S. Campana<sup>29</sup>, M. Campanelli<sup>77</sup>, V. Canale<sup>102a,102b</sup>, F. Canelli<sup>30,h</sup>, A. Canepa<sup>159a</sup>,
J. Cantero<sup>80</sup>, L. Capasso<sup>102a,102b</sup>, M.D.M. Capeans Garrido<sup>29</sup>, I. Caprini<sup>25a</sup>, M. Caprini<sup>25a</sup>, D. Capriotti<sup>99</sup>,
M. Capua<sup>36a,36b</sup>, R. Caputo<sup>148</sup>, R. Cardarelli<sup>133a</sup>, T. Carli<sup>29</sup>, G. Carlino<sup>102a</sup>, L. Carminati<sup>89a,89b</sup>.
B. Caron<sup>159a</sup>, S. Caron<sup>48</sup>, G.D. Carrillo Montoya<sup>172</sup>, A.A. Carter<sup>75</sup>, J.R. Carter<sup>27</sup>, J. Carvalho<sup>124a,i</sup>, D. Casadei<sup>108</sup>, M.P. Casado<sup>11</sup>, M. Cascella<sup>122a,122b</sup>, C. Caso<sup>50a,50b,*</sup>, A.M. Castaneda Hernandez<sup>172</sup>,
E. Castaneda-Miranda<sup>172</sup>, V. Castillo Gimenez<sup>167</sup>, N.F. Castro<sup>124a</sup>, G. Cataldi<sup>72a</sup>, F. Cataneo<sup>29</sup>,
A. Catinaccio<sup>29</sup>, J.R. Catmore<sup>71</sup>, A. Cattai<sup>29</sup>, G. Cattani<sup>133a,133b</sup>, S. Caughron<sup>88</sup>, D. Cauz<sup>164a,164c</sup>,
P. Cavalleri<sup>78</sup>, D. Cavalli<sup>89a</sup>, M. Cavalli-Sforza<sup>11</sup>, V. Cavasinni<sup>122a,122b</sup>, F. Ceradini<sup>134a,134b</sup>,
A.S. Cerqueira<sup>23a</sup>, A. Cerri<sup>29</sup>, L. Cerrito<sup>75</sup>, F. Cerutti<sup>47</sup>, S.A. Cetin<sup>18b</sup>, F. Cevenini<sup>102a,102b</sup>, A. Chafaq<sup>135a</sup>,
D. Chakraborty<sup>106</sup>, K. Chan<sup>2</sup>, B. Chapleau<sup>85</sup>, J.D. Chapman<sup>27</sup>, J.W. Chapman<sup>87</sup>, E. Chareyre<sup>78</sup>,
D.G. Charlton<sup>17</sup>, V. Chavda<sup>82</sup>, C.A. Chavez Barajas<sup>29</sup>, S. Cheatham<sup>85</sup>, S. Chekanov<sup>5</sup>, S.V. Chekulaev<sup>159a</sup>,
G.A. Chelkov<sup>65</sup>, M.A. Chelstowska<sup>104</sup>, C. Chen<sup>64</sup>, H. Chen<sup>24</sup>, S. Chen<sup>32c</sup>, T. Chen<sup>32c</sup>, X. Chen<sup>172</sup>, S. Cheng<sup>32a</sup>, A. Cheplakov<sup>65</sup>, V.F. Chepurnov<sup>65</sup>, R. Cherkaoui El Moursli<sup>135e</sup>, V. Chernyatin<sup>24</sup>, E. Cheu<sup>6</sup>, S.L. Cheung<sup>158</sup>, L. Chevalier<sup>136</sup>, G. Chiefari<sup>102a,102b</sup>, L. Chikovani<sup>51a</sup>, J.T. Childers<sup>58a</sup>, A. Chilingarov<sup>71</sup>, G. Chiodini<sup>72a</sup>, M.V. Chizhov<sup>65</sup>, G. Choudalakis<sup>30</sup>, S. Chouridou<sup>137</sup>, I.A. Christidi<sup>77</sup>, A. Christov<sup>48</sup>, D. Chromek-Burckhart<sup>29</sup>, M.L. Chu<sup>151</sup>, J. Chudoba<sup>125</sup>, G. Ciapetti<sup>132a,132b</sup>, K. Ciba<sup>37</sup>, A.K. Ciftci<sup>3a</sup>, P. Cicala and Christopeta and Christop
R. Ciftci<sup>3a</sup>, D. Cinca<sup>33</sup>, V. Cindro<sup>74</sup>, M.D. Ciobotaru<sup>163</sup>, C. Ciocca<sup>19a,19b</sup>, A. Ciocio<sup>14</sup>, M. Cirilli<sup>87</sup>,
M. Ciubancan<sup>25a</sup>, A. Clark<sup>49</sup>, P.J. Clark<sup>45</sup>, W. Cleland<sup>123</sup>, J.C. Clemens<sup>83</sup>, B. Clement<sup>55</sup>,
C. Clement 146a, 146b, R.W. Clifft 129, Y. Coadou 83, M. Cobal 164a, 164c, A. Coccaro 50a, 50b, J. Cochran 64,
P. Coe<sup>118</sup>, J.G. Cogan<sup>143</sup>, J. Coggeshall<sup>165</sup>, E. Cogneras<sup>177</sup>, C.D. Cojocaru<sup>28</sup>, J. Colas<sup>4</sup>, A.P. Colijn<sup>105</sup>,
C. Collard<sup>115</sup>, N.J. Collins<sup>17</sup>, C. Collins-Tooth<sup>53</sup>, J. Collot<sup>55</sup>, G. Colon<sup>84</sup>, P. Conde Muiño<sup>124a</sup>, E. Coniavitis<sup>118</sup>, M.C. Conidi<sup>11</sup>, M. Consonni<sup>104</sup>, V. Consorti<sup>48</sup>, S. Constantinescu<sup>25a</sup>, C. Conta<sup>119a,119b</sup>,
F. Conventi<sup>102a,j</sup>, J. Cook<sup>29</sup>, M. Cooke<sup>14</sup>, B.D. Cooper<sup>77</sup>, A.M. Cooper-Sarkar<sup>118</sup>, N.J. Cooper-Smith<sup>76</sup>,
K. Copic<sup>34</sup>, T. Cornelissen<sup>50a,50b</sup>, M. Corradi<sup>19a</sup>, F. Corriveau<sup>85,k</sup>, A. Cortes-Gonzalez<sup>165</sup>, G. Cortiana<sup>99</sup>,
G. Costa<sup>89a</sup>, M.J. Costa<sup>167</sup>, D. Costanzo<sup>139</sup>, T. Costin<sup>30</sup>, D. Côté<sup>29</sup>, L. Courneyea<sup>169</sup>, G. Cowan<sup>76</sup>,
C. Cowden<sup>27</sup>, B.E. Cox<sup>82</sup>, K. Cranmer<sup>108</sup>, F. Crescioli<sup>122a,122b</sup>, M. Cristinziani<sup>20</sup>, G. Crosetti<sup>36a,36b</sup>,
R. Crupi<sup>72a,72b</sup>, S. Crépé-Renaudin<sup>55</sup>, C.-M. Cuciuc<sup>25a</sup>, C. Cuenca Almenar<sup>175</sup>,
T. Cuhadar Donszelmann<sup>139</sup>, M. Curatolo<sup>47</sup>, C.J. Curtis<sup>17</sup>, P. Cwetanski<sup>61</sup>, H. Czirr<sup>141</sup>, Z. Czyczula<sup>175</sup>,
S. D'Auria<sup>53</sup>, M. D'Onofrio<sup>73</sup>, A. D'Orazio<sup>132a,132b</sup>, P.V.M. Da Silva<sup>23a</sup>, C. Da Via<sup>82</sup>, W. Dabrowski<sup>37</sup>, T. Dai<sup>87</sup>, C. Dallapiccola<sup>84</sup>, M. Dam<sup>35</sup>, M. Dameri<sup>50a,50b</sup>, D.S. Damiani<sup>137</sup>, H.O. Danielsson<sup>29</sup>, D. Dannheim<sup>99</sup>, V. Dao<sup>49</sup>, G. Darbo<sup>50a</sup>, G.L. Darlea<sup>25b</sup>, C. Daum<sup>105</sup>, J.P. Dauvergne <sup>29</sup>, W. Davey<sup>86</sup>, T. Davidson<sup>86</sup>, R. Davidson<sup>71</sup>, E. Davies<sup>118,c</sup>, M. Davies<sup>93</sup>, A.R. Davison<sup>77</sup>,
Y. Davygora<sup>58a</sup>, E. Dawe<sup>142</sup>, I. Dawson<sup>139</sup>, J.W. Dawson<sup>5,*</sup>, R.K. Daya<sup>39</sup>, K. De<sup>7</sup>, R. de Asmundis<sup>102a</sup>,
S. De Castro<sup>19a,19b</sup>, P.E. De Castro Faria Salgado<sup>24</sup>, S. De Cecco<sup>78</sup>, J. de Graat<sup>98</sup>, N. De Groot<sup>104</sup>,
P. de Jong<sup>105</sup>, C. De La Taille<sup>115</sup>, H. De la Torre<sup>80</sup>, B. De Lotto<sup>164a,164c</sup>, L. De Mora<sup>71</sup>, L. De Nooij<sup>105</sup>,
D. De Pedis<sup>132a</sup>, A. De Salvo<sup>132a</sup>, U. De Sanctis<sup>164a,164c</sup>, A. De Santo<sup>149</sup>, J.B. De Vivie De Regie<sup>115</sup>,
S. Dean<sup>77</sup>, R. Debbe<sup>24</sup>, D.V. Dedovich<sup>65</sup>, J. Degenhardt<sup>120</sup>, M. Dehchar<sup>118</sup>, C. Del Papa<sup>164a,164c</sup>,
J. Del Peso<sup>80</sup>, T. Del Prete<sup>122a,122b</sup>, M. Deliyergiyev<sup>74</sup>, A. Dell'Acqua<sup>29</sup>, L. Dell'Asta<sup>89a,89b</sup>, M. Della Pietra<sup>102a,j</sup>, D. della Volpe<sup>102a,102b</sup>, M. Delmastro<sup>29</sup>, P. Delpierre<sup>83</sup>, N. Delruelle<sup>29</sup>, P.A. Delsart<sup>55</sup>, C. Deluca<sup>148</sup>, S. Demers<sup>175</sup>, M. Demichev<sup>65</sup>, B. Demirkoz<sup>11,l</sup>, J. Deng<sup>163</sup>, S.P. Denisov<sup>128</sup>,
D. Derendarz<sup>38</sup>, J.E. Derkaoui<sup>135d</sup>, F. Derue<sup>78</sup>, P. Dervan<sup>73</sup>, K. Desch<sup>20</sup>, E. Devetak<sup>148</sup>,
P.O. Deviveiros<sup>158</sup>, A. Dewhurst<sup>129</sup>, B. DeWilde<sup>148</sup>, S. Dhaliwal<sup>158</sup>, R. Dhullipudi<sup>24,m</sup>,
```

```
A. Di Ciaccio 133a,133b, L. Di Ciaccio 4, A. Di Girolamo 29, B. Di Girolamo 29, S. Di Luise 134a,134b, A. Di Mattia 88, B. Di Micco 29, R. Di Nardo 133a,133b, A. Di Simone 133a,133b, R. Di Sipio 19a,19b, M.A. Diaz 31a, F. Diblen 18c, E.B. Diehl 87, J. Dietrich 41, T.A. Dietzsch 58a, S. Diglio 115, K. Dindar Yagci 39, T. Dietzsch 133a, 133b, R. Di Sipio 133b, R. Di Sipio
 J. Dingfelder<sup>20</sup>, C. Dionisi<sup>132a,132b</sup>, P. Dita<sup>25a</sup>, S. Dita<sup>25a</sup>, F. Dittus<sup>29</sup>, F. Djama<sup>83</sup>, T. Djobava<sup>51b</sup>,
 M.A.B. do Vale<sup>23a</sup>, A. Do Valle Wemans<sup>124a</sup>, T.K.O. Doan<sup>4</sup>, M. Dobbs<sup>85</sup>, R. Dobinson <sup>29,*</sup>, D. Dobos<sup>29</sup>,
 E. Dobson<sup>29</sup>, M. Dobson<sup>163</sup>, J. Dodd<sup>34</sup>, C. Doglioni<sup>118</sup>, T. Doherty<sup>53</sup>, Y. Doi<sup>66</sup>, J. Dolejsi<sup>126</sup>, I. Dolenc<sup>74</sup>,
 Z. Dolezal<sup>126</sup>, B.A. Dolgoshein<sup>96,*</sup>, T. Dohmae<sup>155</sup>, M. Donadelli<sup>23d</sup>, M. Donega<sup>120</sup>, J. Donini<sup>55</sup>,
 J. Dopke<sup>29</sup>, A. Doria<sup>102a</sup>, A. Dos Anjos<sup>172</sup>, M. Dosil<sup>11</sup>, A. Dotti<sup>122a,122b</sup>, M.T. Dova<sup>70</sup>, J.D. Dowell<sup>17</sup>, A.D. Doxiadis<sup>105</sup>, A.T. Doyle<sup>53</sup>, Z. Drasal<sup>126</sup>, J. Drees<sup>174</sup>, N. Dressnandt<sup>120</sup>, H. Drevermann<sup>29</sup>,
 C. Driouichi<sup>35</sup>, M. Dris<sup>9</sup>, J. Dubbert<sup>99</sup>, T. Dubbs<sup>137</sup>, S. Dube<sup>14</sup>, E. Duchovni<sup>171</sup>, G. Duckeck<sup>98</sup>, A. Dudarev<sup>29</sup>, F. Dudziak<sup>64</sup>, M. Dührssen <sup>29</sup>, I.P. Duerdoth<sup>82</sup>, L. Duflot<sup>115</sup>, M-A. Dufour<sup>85</sup>, M. Dunford<sup>29</sup>,
 H. Duran Yildiz<sup>3b</sup>, R. Duxfield<sup>139</sup>, M. Dwuznik<sup>37</sup>, F. Dydak <sup>29</sup>, M. Düren<sup>52</sup>, W.L. Ebenstein<sup>44</sup>, J. Ebke<sup>98</sup>,
 S. Eckert<sup>48</sup>, S. Eckweiler<sup>81</sup>, K. Edmonds<sup>81</sup>, C.A. Edwards<sup>76</sup>, N.C. Edwards<sup>53</sup>, W. Ehrenfeld<sup>41</sup>, T. Ehrich<sup>99</sup>,
 T. Eifert<sup>29</sup>, G. Eigen<sup>13</sup>, K. Einsweiler<sup>14</sup>, E. Eisenhandler<sup>75</sup>, T. Ekelof<sup>166</sup>, M. El Kacimi<sup>135c</sup>, M. Ellert<sup>166</sup>,
S. Elles<sup>4</sup>, F. Ellinghaus<sup>81</sup>, K. Ellis<sup>75</sup>, N. Ellis<sup>29</sup>, J. Elmsheuser<sup>98</sup>, M. Elsing<sup>29</sup>, D. Emeliyanov<sup>129</sup>, R. Engelmann<sup>148</sup>, A. Engl<sup>98</sup>, B. Epp<sup>62</sup>, A. Eppig<sup>87</sup>, J. Erdmann<sup>54</sup>, A. Ereditato<sup>16</sup>, D. Eriksson<sup>146a</sup>, J. Ernst<sup>1</sup>, M. Ernst<sup>24</sup>, J. Ernwein<sup>136</sup>, D. Errede<sup>165</sup>, S. Errede<sup>165</sup>, E. Ertel<sup>81</sup>, M. Escalier<sup>115</sup>, C. Escobar<sup>123</sup>, X. Espinal Curull<sup>11</sup>, B. Esposito<sup>47</sup>, F. Etienne<sup>83</sup>, A.I. Etienvre<sup>136</sup>, E. Etzion<sup>153</sup>, D. Evangelakou<sup>54</sup>,
 H. Evans<sup>61</sup>, L. Fabbri<sup>19a,19b</sup>, C. Fabre<sup>29</sup>, R.M. Fakhrutdinov<sup>128</sup>, S. Falciano<sup>132a</sup>, Y. Fang<sup>172</sup>,
 M. Fanti<sup>89a,89b</sup>, A. Farbin<sup>7</sup>, A. Farilla<sup>134a</sup>, J. Farley<sup>148</sup>, T. Farooque<sup>158</sup>, S.M. Farrington<sup>118</sup>,
 P. Farthouat<sup>29</sup>, P. Fassnacht<sup>29</sup>, D. Fassouliotis<sup>8</sup>, B. Fatholahzadeh<sup>158</sup>, A. Favareto<sup>89a,89b</sup>, L. Fayard<sup>115</sup>,
P. Farthouat<sup>13</sup>, P. Fassnacht<sup>13</sup>, D. Fassouhous, D. Fatholanzaden, A. Favareto, L. Fayard, S. Fazio<sup>36a,36b</sup>, R. Febbraro<sup>33</sup>, P. Federic<sup>144a</sup>, O.L. Fedin<sup>121</sup>, W. Fedorko<sup>88</sup>, M. Fehling-Kaschek<sup>48</sup>, L. Feligioni<sup>83</sup>, D. Fellmann<sup>5</sup>, C.U. Felzmann<sup>86</sup>, C. Feng<sup>32d</sup>, E.J. Feng<sup>30</sup>, A.B. Fenyuk<sup>128</sup>, J. Ferencei<sup>144b</sup>, J. Ferland<sup>93</sup>, W. Fernando<sup>109</sup>, S. Ferrag<sup>53</sup>, J. Ferrando<sup>53</sup>, V. Ferrara<sup>41</sup>, A. Ferrari<sup>166</sup>, P. Ferrari<sup>105</sup>, R. Ferrari<sup>119a</sup>, A. Ferrer<sup>167</sup>, M.L. Ferrer<sup>47</sup>, D. Ferrere<sup>49</sup>, C. Ferretti<sup>87</sup>, A. Ferretto Parodi<sup>50a,50b</sup>, M. Fiascaris<sup>30</sup>, F. Fiedler<sup>81</sup>, A. Filippic <sup>74</sup>, A. Filippas<sup>9</sup>, F. Filthaut<sup>104</sup>, M. Fincke-Keeler<sup>169</sup>,
 M.C.N. Fiolhais<sup>124a,i</sup>, L. Fiorini<sup>167</sup>, A. Firan<sup>39</sup>, G. Fischer<sup>41</sup>, P. Fischer<sup>20</sup>, M.J. Fisher<sup>109</sup>, S.M. Fisher<sup>129</sup>,
 M. Flechl<sup>48</sup>, I. Fleck<sup>141</sup>, J. Fleckner<sup>81</sup>, P. Fleischmann<sup>173</sup>, S. Fleischmann<sup>174</sup>, T. Flick<sup>174</sup>,
 L.R. Flores Castillo<sup>172</sup>, M.J. Flowerdew<sup>99</sup>, M. Fokitis<sup>9</sup>, T. Fonseca Martin<sup>16</sup>, D.A. Forbush<sup>138</sup>,
 A. Formica<sup>136</sup>, A. Forti<sup>82</sup>, D. Fortin<sup>159a</sup>, J.M. Foster<sup>82</sup>, D. Fournier<sup>115</sup>, A. Foussat<sup>29</sup>, A.J. Fowler<sup>44</sup>,
 K. Fowler<sup>137</sup>, H. Fox<sup>71</sup>, P. Francavilla<sup>122a,122b</sup>, S. Franchino<sup>119a,119b</sup>, D. Francis<sup>29</sup>, T. Frank<sup>171</sup>,
 M. Franklin<sup>57</sup>, S. Franz<sup>29</sup>, M. Fraternali<sup>119a,119b</sup>, S. Fratina<sup>120</sup>, S.T. French<sup>27</sup>, F. Friedrich <sup>43</sup>,
 R. Froeschl<sup>29</sup>, D. Froidevaux<sup>29</sup>, J.A. Frost<sup>27</sup>, C. Fukunaga<sup>156</sup>, E. Fullana Torregrosa<sup>29</sup>, J. Fuster<sup>167</sup>, C. Gabaldon<sup>29</sup>, O. Gabizon<sup>171</sup>, T. Gadfort<sup>24</sup>, S. Gadomski<sup>49</sup>, G. Gagliardi<sup>50a,50b</sup>, P. Gagnon<sup>61</sup>, C. Galea<sup>98</sup>,
 E.J. Gallas<sup>118</sup>, M.V. Gallas<sup>29</sup>, V. Gallo<sup>16</sup>, B.J. Gallop<sup>129</sup>, P. Gallus<sup>125</sup>, E. Galyaev<sup>40</sup>, K.K. Gan<sup>109</sup>,
 Y.S. Gao<sup>143, f</sup>, V.A. Gapienko<sup>128</sup>, A. Gaponenko<sup>14</sup>, F. Garberson<sup>175</sup>, M. Garcia-Sciveres<sup>14</sup>, C. García<sup>167</sup>,
 J.E. García Navarro<sup>49</sup>, R.W. Gardner<sup>30</sup>, N. Garelli<sup>29</sup>, H. Garitaonandia<sup>105</sup>, V. Garonne<sup>29</sup>, J. Garvey<sup>17</sup>,
C. Gatti<sup>47</sup>, G. Gaudio<sup>119a</sup>, O. Gaumer<sup>49</sup>, B. Gaur<sup>141</sup>, L. Gauthier<sup>136</sup>, I.L. Gavrilenko<sup>94</sup>, C. Gay<sup>168</sup>, G. Gaycken<sup>20</sup>, J-C. Gayde<sup>29</sup>, E.N. Gazis<sup>9</sup>, P. Ge<sup>32d</sup>, C.N.P. Gee<sup>129</sup>, D.A.A. Geerts<sup>105</sup>, Ch. Geich-Gimbel<sup>20</sup>, K. Gellerstedt<sup>146a,146b</sup>, C. Gemme<sup>50a</sup>, A. Gemmell<sup>53</sup>, M.H. Genest<sup>98</sup>, S. Gentile<sup>132a,132b</sup>, M. George<sup>54</sup>, S. George<sup>76</sup>, P. Gerlach<sup>174</sup>, A. Gershon<sup>153</sup>, C. Geweniger<sup>58a</sup>, H. Ghazlane<sup>135b</sup>, P. Ghez<sup>4</sup>, N. Ghodbane<sup>33</sup>,
 B. Giacobbe<sup>19a</sup>, S. Giagu<sup>132a,132b</sup>, V. Giakoumopoulou<sup>8</sup>, V. Giangiobbe<sup>122a,122b</sup>, F. Gianotti<sup>29</sup>,
 B. Gibbard<sup>24</sup>, A. Gibson<sup>158</sup>, S.M. Gibson<sup>29</sup>, L.M. Gilbert<sup>118</sup>, M. Gilchriese<sup>14</sup>, V. Gilewsky<sup>91</sup>,
 D. Gillberg<sup>28</sup>, A.R. Gillman<sup>129</sup>, D.M. Gingrich<sup>2,e</sup>, J. Ginzburg<sup>153</sup>, N. Giokaris<sup>8</sup>, M.P. Giordani<sup>164c</sup>,
 R. Giordano <sup>102a,102b</sup>, F.M. Giorgi <sup>15</sup>, P. Giovannini <sup>99</sup>, P.F. Giraud <sup>136</sup>, D. Giugni <sup>89a</sup>, M. Giunta <sup>93</sup>,
 P. Giusti<sup>19a</sup>, B.K. Gjelsten<sup>117</sup>, L.K. Gladilin<sup>97</sup>, C. Glasman<sup>80</sup>, J. Glatzer<sup>48</sup>, A. Glazov<sup>41</sup>, K.W. Glitza<sup>174</sup>,
 G.L. Glonti<sup>65</sup>, M. Goblirsch-kolb<sup>99</sup>, J. Godfrey<sup>142</sup>, J. Godlewski<sup>29</sup>, M. Goebel<sup>41</sup>, T. Göpfert<sup>43</sup>, C. Goeringer<sup>81</sup>, C. Gössling<sup>42</sup>, T. Göttfert<sup>99</sup>, S. Goldfarb<sup>87</sup>, T. Golling<sup>175</sup>, S.N. Golovnia<sup>128</sup>,
 A. Gomes <sup>124a,b</sup>, L.S. Gomez Fajardo<sup>41</sup>, R. Gonçalo<sup>76</sup>, J. Goncalves Pinto Firmino Da Costa<sup>41</sup>,
 L. Gonella<sup>20</sup>, A. Gonidec<sup>29</sup>, S. Gonzalez<sup>172</sup>, S. González de la Hoz<sup>167</sup>, M.L. Gonzalez Silva<sup>26</sup>,
 S. Gonzalez-Sevilla<sup>49</sup>, J.J. Goodson<sup>148</sup>, L. Goossens<sup>29</sup>, P.A. Gorbounov<sup>95</sup>, H.A. Gordon<sup>24</sup>, I. Gorelov<sup>103</sup>, G. Gorfine<sup>174</sup>, B. Gorini<sup>29</sup>, E. Gorini<sup>72a,72b</sup>, A. Gorišek<sup>74</sup>, E. Gornicki<sup>38</sup>, S.A. Gorokhov<sup>128</sup>,
```

```
V.N. Goryachev<sup>128</sup>, B. Gosdzik<sup>41</sup>, M. Gosselink<sup>105</sup>, M.I. Gostkin<sup>65</sup>, I. Gough Eschrich<sup>163</sup>, M. Gouighri<sup>135a</sup>, D. Goujdami<sup>135c</sup>, M.P. Goulette<sup>49</sup>, A.G. Goussiou<sup>138</sup>, C. Goy<sup>4</sup>, I. Grabowska-Bold<sup>163,g</sup>, V. Grabski<sup>176</sup>, P. Grafström<sup>29</sup>, C. Grah<sup>174</sup>, K-J. Grahn<sup>41</sup>, F. Grancagnolo<sup>72a</sup>, S. Grancagnolo<sup>15</sup>, V. Grassi<sup>148</sup>, V. Gratchev<sup>121</sup>, N. Grau<sup>34</sup>, H.M. Gray<sup>29</sup>, J.A. Gray<sup>148</sup>, E. Graziani<sup>134a</sup>, O.G. Grebenyuk<sup>121</sup>,
  D. Greenfield 129, T. Greenshaw 73, Z.D. Greenwood 24, m, K. Gregersen 35, I.M. Gregor 41, P. Grenier 143,
  J. Griffiths<sup>138</sup>, N. Grigalashvili<sup>65</sup>, A.A. Grillo<sup>137</sup>, S. Grinstein<sup>11</sup>, Y.V. Grishkevich<sup>97</sup>, J.-F. Grivaz<sup>115</sup>,
 J. Grognuz<sup>29</sup>, M. Groh<sup>99</sup>, E. Gross<sup>171</sup>, J. Grosse-Knetter<sup>54</sup>, J. Groth-Jensen<sup>171</sup>, K. Grybel<sup>141</sup>, V.J. Guarino<sup>5</sup>, D. Guest<sup>175</sup>, C. Guicheney<sup>33</sup>, A. Guida<sup>72a,72b</sup>, T. Guillemin<sup>4</sup>, S. Guindon<sup>54</sup>, H. Guler<sup>85,n</sup>,
J. Guarmo<sup>5</sup>, D. Guest<sup>15</sup>, C. Guicheney<sup>5</sup>, A. Guida<sup>15,15</sup>, T. Guinemin , S. Guindon , H. Guier J. Gunther<sup>125</sup>, B. Guo<sup>158</sup>, J. Guo<sup>34</sup>, A. Gupta<sup>30</sup>, Y. Gusakov<sup>65</sup>, V.N. Gushchin<sup>128</sup>, A. Gutierrez<sup>93</sup>, P. Gutierrez<sup>111</sup>, N. Guttman<sup>153</sup>, O. Gutzwiller<sup>172</sup>, C. Guyot<sup>136</sup>, C. Gwenlan<sup>118</sup>, C.B. Gwilliam<sup>73</sup>, A. Haas<sup>143</sup>, S. Haas<sup>29</sup>, C. Haber<sup>14</sup>, R. Hackenburg<sup>24</sup>, H.K. Hadavand<sup>39</sup>, D.R. Hadley<sup>17</sup>, P. Haefner<sup>99</sup>, F. Hahn<sup>29</sup>, S. Haider<sup>29</sup>, Z. Hajduk<sup>38</sup>, H. Hakobyan<sup>176</sup>, J. Haller<sup>54</sup>, K. Hamacher<sup>174</sup>, P. Hamal<sup>113</sup>,
F. Hahn<sup>29</sup>, S. Haider<sup>29</sup>, Z. Hajduk<sup>36</sup>, H. Hakobyan<sup>176</sup>, J. Haller<sup>34</sup>, K. Hamacher<sup>174</sup>, P. Hamal<sup>113</sup>, A. Hamilton<sup>49</sup>, S. Hamilton<sup>161</sup>, H. Han<sup>32a</sup>, L. Han<sup>32b</sup>, K. Hanagaki<sup>116</sup>, M. Hance<sup>120</sup>, C. Handel<sup>81</sup>, P. Hanke<sup>58a</sup>, J.R. Hansen<sup>35</sup>, J.B. Hansen<sup>35</sup>, J.D. Hansen<sup>35</sup>, P.H. Hansen<sup>35</sup>, P. Hansson<sup>143</sup>, K. Hara<sup>160</sup>, G.A. Hare<sup>137</sup>, T. Harenberg<sup>174</sup>, S. Harkusha<sup>90</sup>, D. Harper<sup>87</sup>, R.D. Harrington<sup>45</sup>, O.M. Harris<sup>138</sup>, K. Harrison<sup>17</sup>, J. Hartert<sup>48</sup>, F. Hartjes<sup>105</sup>, T. Haruyama<sup>66</sup>, A. Harvey<sup>56</sup>, S. Hasegawa<sup>101</sup>, Y. Hasegawa<sup>140</sup>, S. Hassani<sup>136</sup>, M. Hatch<sup>29</sup>, D. Hauff<sup>99</sup>, S. Haug<sup>16</sup>, M. Hauschild<sup>29</sup>, R. Hauser<sup>88</sup>, M. Havranek<sup>20</sup>, B.M. Hawes<sup>118</sup>, C.M. Hawkes<sup>17</sup>, R.J. Hawkings<sup>29</sup>, D. Hawkins<sup>163</sup>, T. Hayakawa<sup>67</sup>, D Hayden<sup>76</sup>, H. Lander<sup>78</sup>, L. Haragara<sup>178</sup>, S. L. Haragara<sup>179</sup>, L. 
  H.S. Hayward<sup>73</sup>, S.J. Haywood<sup>129</sup>, E. Hazen<sup>21</sup>, M. He<sup>32d</sup>, S.J. Head<sup>17</sup>, V. Hedberg<sup>79</sup>, L. Heelan<sup>7</sup>,
  S. Heim<sup>88</sup>, B. Heinemann<sup>14</sup>, S. Heisterkamp<sup>35</sup>, L. Helary<sup>4</sup>, M. Heller<sup>115</sup>, S. Hellman<sup>146a,146b</sup>,
  D. Hellmich<sup>20</sup>, C. Helsens<sup>11</sup>, R.C.W. Henderson<sup>71</sup>, M. Henke<sup>58a</sup>, A. Henrichs<sup>54</sup>, A.M. Henriques Correia<sup>29</sup>,
  S. Henrot-Versille<sup>115</sup>, F. Henry-Couannier<sup>83</sup>, C. Hensel<sup>54</sup>, T. Henß<sup>174</sup>, C.M. Hernandez<sup>7</sup>, Y. Hernández
Jiménez<sup>167</sup>, R. Herrberg<sup>15</sup>, A.D. Hershenhorn<sup>152</sup>, G. Herten<sup>48</sup>, R. Hertenberger<sup>98</sup>, L. Hervas<sup>29</sup>, N.P. Hessey<sup>105</sup>, A. Hidvegi<sup>146a</sup>, E. Higón-Rodriguez<sup>167</sup>, D. Hill<sup>5,*</sup>, J.C. Hill<sup>27</sup>, N. Hill<sup>5</sup>, K.H. Hiller<sup>41</sup>, S. Hillert<sup>20</sup>, S.J. Hillier<sup>17</sup>, I. Hinchliffe<sup>14</sup>, E. Hines<sup>120</sup>, M. Hirose<sup>116</sup>, F. Hirsch<sup>42</sup>, D. Hirschbuehl<sup>174</sup>,
 J. Hobbs<sup>148</sup>, N. Hod<sup>153</sup>, M.C. Hodgkinson<sup>139</sup>, P. Hodgson<sup>139</sup>, A. Hoecker<sup>29</sup>, M.R. Hoeferkamp<sup>103</sup>, J. Hoffman<sup>39</sup>, D. Hoffman<sup>83</sup>, M. Hohlfeld<sup>81</sup>, M. Holder<sup>141</sup>, S.O. Holmgren<sup>146a</sup>, T. Holy<sup>127</sup>,
 J.L. Holzbauer<sup>88</sup>, Y. Homma<sup>67</sup>, T.M. Hong<sup>120</sup>, L. Hooft van Huysduynen<sup>108</sup>, T. Horazdovsky<sup>127</sup>, C. Horn<sup>143</sup>, S. Horner<sup>48</sup>, K. Horton<sup>118</sup>, J-Y. Hostachy<sup>55</sup>, S. Hou<sup>151</sup>, M.A. Houlden<sup>73</sup>, A. Hoummada<sup>135a</sup>,
  J. Howarth<sup>82</sup>, D.F. Howell<sup>118</sup>, I. Hristova <sup>15</sup>, J. Hrivnac<sup>115</sup>, I. Hruska<sup>125</sup>, T. Hryn'ova<sup>4</sup>, P.J. Hsu<sup>175</sup>,
 S.-C. Hsu<sup>14</sup>, G.S. Huang<sup>111</sup>, Z. Hubacek<sup>127</sup>, F. Hubaut<sup>83</sup>, F. Huegging<sup>20</sup>, T.B. Huffman<sup>118</sup>,
E.W. Hughes<sup>34</sup>, G. Hughes<sup>71</sup>, R.E. Hughes-Jones<sup>82</sup>, M. Huhtinen<sup>29</sup>, P. Hurst<sup>57</sup>, M. Hurwitz<sup>14</sup>, U. Husemann<sup>41</sup>, N. Huseynov<sup>65,o</sup>, J. Huston<sup>88</sup>, J. Huth<sup>57</sup>, G. Iacobucci<sup>49</sup>, G. Iakovidis<sup>9</sup>, M. Ibbotson<sup>82</sup>, I. Ibragimov<sup>141</sup>, R. Ichimiya<sup>67</sup>, L. Iconomidou-Fayard<sup>115</sup>, J. Idarraga<sup>115</sup>, M. Idzik<sup>37</sup>, P. Iengo<sup>102a,102b</sup>,
  O. Igonkina<sup>105</sup>, Y. Ikegami<sup>66</sup>, M. Ikeno<sup>66</sup>, Y. Ilchenko<sup>39</sup>, D. Iliadis<sup>154</sup>, D. Imbault<sup>78</sup>, M. Imhaeuser<sup>174</sup>,
  M. Imori<sup>155</sup>, T. Ince<sup>20</sup>, J. Inigo-Golfin<sup>29</sup>, P. Ioannou<sup>8</sup>, M. Iodice<sup>134a</sup>, G. Ionescu<sup>4</sup>, K. Iordanidou<sup>8</sup>,
  A. Irles Quiles<sup>167</sup>, K. Ishii<sup>66</sup>, A. Ishikawa<sup>67</sup>, M. Ishino<sup>68</sup>, R. Ishmukhametov<sup>39</sup>, C. Issever<sup>118</sup>, S. Istin<sup>18a</sup>,
A. Irles Quiles<sup>107</sup>, K. Ishil<sup>108</sup>, A. Ishikawa<sup>108</sup>, M. Ishil<sup>109</sup>, R. Ishilukhametov<sup>109</sup>, C. Issever<sup>109</sup>, S. Istin<sup>109</sup>, A.V. Ivashin<sup>128</sup>, W. Iwanski<sup>38</sup>, H. Iwasaki<sup>66</sup>, J.M. Izen<sup>40</sup>, V. Izzo<sup>102a</sup>, B. Jackson<sup>120</sup>, J.N. Jackson<sup>73</sup>, P. Jackson<sup>143</sup>, M.R. Jaekel<sup>29</sup>, V. Jain<sup>61</sup>, K. Jakobs<sup>48</sup>, S. Jakobsen<sup>35</sup>, J. Jakubek<sup>127</sup>, D.K. Jana<sup>111</sup>, E. Jankowski<sup>158</sup>, E. Jansen<sup>77</sup>, A. Jantsch<sup>99</sup>, M. Janus<sup>20</sup>, G. Jarlskog<sup>79</sup>, L. Jeanty<sup>57</sup>, K. Jelen<sup>37</sup>, I. Jen-La Plante<sup>30</sup>, P. Jenni<sup>29</sup>, A. Jeremie<sup>4</sup>, P. Jež<sup>35</sup>, S. Jézéquel<sup>4</sup>, M.K. Jha<sup>19a</sup>, H. Ji<sup>172</sup>, W. Ji<sup>81</sup>, J. Jia<sup>148</sup>, Y. Jiang<sup>32b</sup>, M. Jimenez Belenguer<sup>41</sup>, G. Jin<sup>32b</sup>, S. Jin<sup>32a</sup>, O. Jinnouchi<sup>157</sup>, M.D. Joergensen<sup>35</sup>,
  D. Joffe<sup>39</sup>, L.G. Johansen<sup>13</sup>, M. Johansen<sup>146a,146b</sup>, K.E. Johansson<sup>146a</sup>, P. Johansson<sup>139</sup>, S. Johnert<sup>41</sup>,
 K.A. Johns<sup>6</sup>, K. Jon-And<sup>146a,146b</sup>, G. Jones<sup>82</sup>, R.W.L. Jones<sup>71</sup>, T.W. Jones<sup>77</sup>, T.J. Jones<sup>73</sup>, O. Jonsson<sup>29</sup>, C. Joram<sup>29</sup>, P.M. Jorge<sup>124a,b</sup>, J. Joseph<sup>14</sup>, T. Jovin<sup>12b</sup>, X. Ju<sup>130</sup>, V. Juranek<sup>125</sup>, P. Jussel<sup>62</sup>,
  A. Juste Rozas<sup>11</sup>, V.V. Kabachenko<sup>128</sup>, S. Kabana<sup>16</sup>, M. Kaci<sup>167</sup>, A. Kaczmarska<sup>38</sup>, P. Kadlecik<sup>35</sup>,
M. Kado<sup>115</sup>, H. Kagan<sup>109</sup>, M. Kagan<sup>57</sup>, S. Kaiser<sup>99</sup>, E. Kajomovitz<sup>152</sup>, S. Kalinin<sup>174</sup>, L.V. Kalinovskaya<sup>65</sup>, S. Kama<sup>39</sup>, N. Kanaya<sup>155</sup>, M. Kaneda<sup>29</sup>, T. Kanno<sup>157</sup>, V.A. Kantserov<sup>96</sup>, J. Kanzaki<sup>66</sup>, B. Kaplan<sup>175</sup>, A. Kapliy<sup>30</sup>, J. Kaplon<sup>29</sup>, D. Kar<sup>43</sup>, M. Karagoz<sup>118</sup>, M. Karnevskiy<sup>41</sup>, K. Karr<sup>5</sup>, V. Kartvelishvili<sup>71</sup>, A.N. Karyukhin<sup>128</sup>, L. Kashif<sup>172</sup>, A. Kasmi<sup>39</sup>, R.D. Kass<sup>109</sup>, A. Kastanas<sup>13</sup>, M. Kataoka<sup>4</sup>, Y. Kataoka<sup>155</sup>,
  E. Katsoufis<sup>9</sup>, J. Katzy<sup>41</sup>, V. Kaushik<sup>6</sup>, K. Kawagoe<sup>67</sup>, T. Kawamoto<sup>155</sup>, G. Kawamura<sup>81</sup>, M.S. Kayl<sup>105</sup>,
  V.A. Kazanin<sup>107</sup>, M.Y. Kazarinov<sup>65</sup>, J.R. Keates<sup>82</sup>, R. Keeler<sup>169</sup>, R. Kehoe<sup>39</sup>, M. Keil<sup>54</sup>, G.D. Kekelidze<sup>65</sup>,
```

M. Kelly⁸², J. Kennedy⁹⁸, C.J. Kenney¹⁴³, M. Kenyon⁵³, O. Kepka¹²⁵, N. Kerschen²⁹, B.P. Kerševan⁷⁴, S. Kersten¹⁷⁴, K. Kessoku¹⁵⁵, C. Ketterer⁴⁸, J. Keung¹⁵⁸, M. Khakzad²⁸, F. Khalil-zada¹⁰ H. Khandanyan¹⁶⁵, A. Khanov¹¹², D. Kharchenko⁶⁵, A. Khodinov⁹⁶, A.G. Kholodenko¹²⁸, A. Khomich^{58a}, T.J. Khoo²⁷, G. Khoriauli²⁰, A. Khoroshilov¹⁷⁴, N. Khovanskiy⁶⁵, V. Khovanskiy⁹⁵, E. Khramov⁶⁵, J. Khubua⁵¹⁵, H. Kim⁷, M.S. Kim², P.C. Kim¹⁴³, S.H. Kim¹⁶⁰, N. Kimura¹⁷⁰, O. Kind¹⁵, B.T. King⁷³, J. Khubua³¹⁵, H. Kim⁷, M.S. Kim², P.C. Kim¹⁴³, S.H. Kim¹⁵⁰, N. Kimura¹⁷⁰, O. Kind¹⁵, B.T. King¹⁵, M. King⁶⁷, R.S.B. King¹¹⁸, J. Kirk¹²⁹, L.E. Kirsch²², A.E. Kiryunin⁹⁹, T. Kishimoto⁶⁷, D. Kisielewska³⁷, T. Kittelmann¹²³, A.M. Kiver¹²⁸, E. Kladiva^{144b}, J. Klaiber-Lodewigs⁴², M. Klein⁷³, U. Klein⁷³, K. Kleinknecht⁸¹, M. Klemetti⁸⁵, A. Klier¹⁷¹, A. Klimentov²⁴, R. Klingenberg⁴², E.B. Klinkby³⁵, T. Klioutchnikova²⁹, P.F. Klok¹⁰⁴, S. Klous¹⁰⁵, E.-E. Kluge^{58a}, T. Kluge⁷³, P. Kluit¹⁰⁵, S. Kluth⁹⁹, N.S. Knecht¹⁵⁸, E. Kneringer⁶², J. Knobloch²⁹, E.B.F.G. Knoops⁸³, A. Knue⁵⁴, B.R. Ko⁴⁴, T. Klushali ¹⁵⁵, M. Kluit⁴³, M. Kluit¹⁴³, M. Kluit¹⁴⁴, M. Kluit¹⁴⁴, M. Kluit¹⁴⁵, T. Kobayashi¹⁵⁵, M. Kobel⁴³, M. Kocian¹⁴³, A. Kocnar¹¹³, P. Kodys¹²⁶, K. Köneke²⁹, A.C. König¹⁰⁴, S. Koenig⁸¹, L. Köpke⁸¹, F. Koetsveld¹⁰⁴, P. Koevesarki²⁰, T. Koffas²⁸, E. Koffeman¹⁰⁵, F. Kohn⁵⁴, Z. Kohout¹²⁷, T. Kohriki⁶⁶, T. Koi¹⁴³, T. Kokott²⁰, G.M. Kolachev¹⁰⁷, H. Kolanoski¹⁵, V. Kolesnikov⁶⁵, I. Koletsou^{89a}, J. Koll⁸⁸, D. Kollar²⁹, M. Kollefrath⁴⁸, S.D. Kolya⁸², A.A. Komar⁹⁴, Y. Komori¹⁵⁵, T. Kondo 66 , T. Kono 41,p , A.I. Kononov 48 , R. Konoplich 108,q , N. Konstantinidis 77 , A. Kootz 174 , S. Koperny 37 , S.V. Kopikov 128 , K. Korcyl 38 , K. Kordas 154 , V. Koreshev 128 , A. Korn 118 , A. Korol 107 , I. Korolkov¹¹, E.V. Korolkova¹³⁹, V.A. Korotkov¹²⁸, O. Kortner⁹⁹, S. Kortner⁹⁹, V.V. Kostyukhin²⁰, M.J. Kotamäki²⁹, S. Kotov⁹⁹, V.M. Kotov⁶⁵, A. Kotwal⁴⁴, C. Kourkoumelis⁸, V. Kouskoura¹⁵⁴, A. Koutsman¹⁰⁵, R. Kowalewski¹⁶⁹, T.Z. Kowalski³⁷, W. Kozanecki¹³⁶, A.S. Kozhin¹²⁸, V. Kral¹²⁷, V.A. Kramarenko⁹⁷, G. Kramberger⁷⁴, M.W. Krasny⁷⁸, A. Krasznahorkay¹⁰⁸, J. Kraus⁸⁸, A. Kreisel¹⁵³, V.A. Kramarenko⁹⁷, G. Kramberger⁷⁴, M.W. Krasny⁷⁸, A. Krasznahorkay¹⁰⁸, J. Kraus⁶⁸, A. Kreisel¹⁰⁸, F. Krejci¹²⁷, J. Kretzschmar⁷³, N. Krieger⁵⁴, P. Krieger¹⁵⁸, K. Kroeninger⁵⁴, H. Kroha⁹⁹, J. Kroll¹²⁰, J. Kroseberg²⁰, J. Krstic^{12a}, U. Kruchonak⁶⁵, H. Krüger²⁰, T. Kruker¹⁶, Z.V. Krumshteyn⁶⁵, A. Kruth²⁰, T. Kubota⁸⁶, S. Kuehn⁴⁸, A. Kugel^{58c}, T. Kuhl⁴¹, D. Kuhn⁶², V. Kukhtin⁶⁵, Y. Kulchitsky⁹⁰, S. Kuleshov^{31b}, C. Kummer⁹⁸, M. Kuna⁷⁸, N. Kundu¹¹⁸, J. Kunkle¹²⁰, A. Kupco¹²⁵, H. Kurashige⁶⁷, M. Kurata¹⁶⁰, Y.A. Kurochkin⁹⁰, V. Kus¹²⁵, W. Kuykendall¹³⁸, M. Kuze¹⁵⁷, P. Kuzhir⁹¹, J. Kvita²⁹, R. Kwee¹⁵, A. La Rosa¹⁷², L. La Rotonda^{36a,36b}, L. Labarga⁸⁰, J. Labbe⁴, S. Lablak^{135a}, C. Lacasta¹⁶⁷, F. Ladwin⁶⁵, R. Lafave⁴, B. Lafave⁷⁸, R. Lafave⁷⁸ F. Lacava^{132a,132b}, H. Lacker¹⁵, D. Lacour⁷⁸, V.R. Lacuesta¹⁶⁷, E. Ladygin⁶⁵, R. Lafaye⁴, B. Laforge⁷⁸, T. Lagouri⁸⁰, S. Lai⁴⁸, E. Laisne⁵⁵, M. Lamanna²⁹, C.L. Lampen⁶, W. Lampl⁶, E. Lancon¹³⁶, U. Landgraf⁴⁸, M.P.J. Landon⁷⁵, H. Landsman¹⁵², J.L. Lane⁸², C. Lange⁴¹, A.J. Lankford¹⁶³, F. Lanni²⁴, K. Lantzsch²⁹, S. Laplace⁷⁸, C. Lapoire²⁰, J.F. Laporte¹³⁶, T. Lari^{89a}, A.V. Larionov ¹²⁸, A. Larner¹¹⁸, C. Lasseur²⁹, M. Lassnig²⁹, P. Laurelli⁴⁷, A. Lavorato¹¹⁸, W. Lavrijsen¹⁴, P. Laycock⁷³, A.B. Lazarev⁶⁵, O. Le Dortz⁷⁸, E. Le Guirriec⁸³, C. Le Maner¹⁵⁸, E. Le Menedeu¹³⁶, C. Lebel⁹³, T. LeCompte⁵, F. Ledroit-Guillon⁵⁵, H. Lee¹⁰⁵, J.S.H. Lee¹⁵⁰, S.C. Lee¹⁵¹, L. Lee¹⁷⁵, M. Lefebvre¹⁶⁹, M. Legendre¹³⁶, A. Leger⁴⁹, B.C. LeGeyt¹²⁰, F. Legger⁹⁸, C. Leggett¹⁴, M. Lehmacher²⁰, G. Lehmann Miotto²⁹, X. Lei⁶, M.A.L. Leite^{23d}, R. Leitner¹²⁶, D. Lellouch¹⁷¹, M. Leltchouk³⁴, B. Lemmer⁵⁴, V. Lendermann^{58a}, K.J.C. Leney^{145b}, T. Lenz¹⁰⁵, G. Lenzen¹⁷⁴, B. Lenzi²⁹, K. Leonhardt⁴³, S. Leontsinis⁹, C. Leroy⁹³, J-R. Lessard¹⁶⁹, J. Lesser^{146a}, C.G. Lester²⁷, A. Leung Fook Cheong¹⁷², J. Levêque⁴, D. Levin⁸⁷, L.J. Levinson¹⁷¹, M.S. Levitski¹²⁸, M. Lewandowska²¹, A. Lewis¹¹⁸, G.H. Lewis¹⁰⁸, A.M. Leyko²⁰, M. Leyton¹⁵, B. Li⁸³, H. Li¹⁷², S. Li^{32b}, d, X. Li⁸⁷, Z. Liang³⁹, Z. Liang¹¹⁸, r, H. Liao³³, B. Liberti^{133a}, P. Lichard²⁹, M. Lichtnecker⁹⁸, K. Lie¹⁶⁵, W. Liebig¹³, R. Lifshitz¹⁵², J.N. Lilley¹⁷, C. Limbach²⁰, A. Limosani⁸⁶, M. Limper⁶³, S.C. Lin¹⁵¹, r, F. Linde¹⁰⁵, J.T. Linnemann⁸⁸, E. Lipeles¹²⁰, L. Lipinsky¹²⁵, A. Lipniacka¹³, T.M. Liss¹⁶⁵, D. Lissauer²⁴, A. Lister⁴⁹, A.M. Litke¹³⁷, C. Liu²⁸, D. Liu¹⁵¹, t, H. Liu⁸⁷, J.B. Liu⁸⁷, M. Liu^{32b}, S. Liu², Y. Liu^{32b}, M. Livan^{119a}, S.S.A. Livermore¹¹⁸, A. Lleres⁵⁵, J. Llorente Merino⁸⁰, S.L. Lloyd⁷⁵, E. Lobodzinska⁴¹, P. Loch⁶, W.S. Lockman¹³⁷, T. Loddenkoetter²⁰, F.K. Loebinger⁸², A. Loginov¹⁷⁵, C.W. Loh¹⁶⁸, T. Lohse¹⁵, K. Lohwasser⁴⁸, M. Lokajicek¹²⁵, J. Loken ¹¹⁸, V.P. Lombardo⁴, R.E. Long⁷¹, L. Lopes^{124a,b}, D. Lopez Mateos⁵⁷, M. Losada¹⁶², P. Loscutoff¹⁴, F. Lo Sterzo^{132a,132b}, M.J. Losty^{159a}, X. Lou⁴⁰, A. Lounis¹¹⁵, K.F. Loureiro¹⁶², J. Love²¹, P.A. Love⁷¹, A.J. Lowe^{143,f}, F. Lu^{32a}, H.J. Lubatti¹³⁸, C. Luci^{132a,132b}, A. Lucotte⁵⁵, A. Ludwig⁴³, D. Ludwig⁴⁴, I. Ludwig⁴⁸, J. Ludwig⁴⁸, F. Luehring⁶¹, G. Luijkkx¹⁰⁵, D. Lumb⁴⁸, L. Luminari^{132a}, E. Lund¹¹⁷, P. Ludwig⁴⁸, P. Luchring⁶¹, G. Luijkkx¹⁰⁵, D. Lumb⁴⁸, L. Luminari^{132a}, E. Lund¹¹⁷, Ludwig⁴⁸, L. Luminari^{132a}, E. Lund¹¹⁷, P. Ludwig⁴⁸, P. Luchring⁶¹, G. Luijkkx¹⁰⁵, D. Lumb⁴⁸, L. Luminari^{132a}, E. Lund¹¹⁷, Ludwig⁴⁸, L. Luminari^{132a}, E. Lund¹¹⁷, Ludwig⁴⁸, P. Luchring⁶¹, G. Luijkx¹⁰⁵, D. Lumb⁴⁸, L. Luminari^{132a}, E. Lund¹¹⁷, Ludwig⁴⁸, Ludwig⁴⁸, L. Luminari^{132a}, E. Lund¹¹⁷, Ludwig⁴⁸, L. Luminari^{132a}, E. Lundwig⁴⁸, L. Luminari^{132a}, Ludwig⁴⁸, Ludwig B. Lund-Jensen¹⁴⁷, B. Lundberg⁷⁹, J. Lundberg^{146a,146b}, J. Lundquist³⁵, M. Lungwitz⁸¹, A. Lupi^{122a,122b}, G. Lutz⁹⁹, D. Lynn²⁴, J. Lys¹⁴, E. Lytken⁷⁹, H. Ma²⁴, L.L. Ma¹⁷², J.A. Macana Goia⁹³, G. Maccarrone⁴⁷, A. Macchiolo⁹⁹, B. Maček⁷⁴, J. Machado Miguens^{124a}, R. Mackeprang³⁵, R.J. Madaras¹⁴, W.F. Mader⁴³,

```
R. Maenner<sup>58c</sup>, T. Maeno<sup>24</sup>, P. Mättig<sup>174</sup>, S. Mättig<sup>41</sup>, L. Magnoni<sup>29</sup>, E. Magradze<sup>54</sup>, Y. Mahalalel<sup>153</sup>, K. Mahboubi<sup>48</sup>, G. Mahout<sup>17</sup>, C. Maiani<sup>132a,132b</sup>, C. Maidantchik<sup>23a</sup>, A. Maio<sup>124a,b</sup>, S. Majewski<sup>24</sup>, Y. Makida<sup>66</sup>, N. Makovec<sup>115</sup>, P. Mal<sup>6</sup>, Pa. Malecki<sup>38</sup>, P. Malecki<sup>38</sup>, V.P. Maleev<sup>121</sup>, F. Malek<sup>55</sup>,
 U. Mallik<sup>63</sup>, D. Malon<sup>5</sup>, C. Malone<sup>143</sup>, S. Maltezos<sup>9</sup>, V. Malyshev<sup>107</sup>, S. Malyukov<sup>29</sup>, R. Mameghani<sup>98</sup>,
 J. Mamuzic<sup>12b</sup>, A. Manabe<sup>66</sup>, L. Mandelli<sup>89a</sup>, I. Mandić<sup>74</sup>, R. Mandrysch<sup>15</sup>, J. Maneira<sup>124a</sup>,
 P.S. Mangeard<sup>88</sup>, I.D. Manjavidze<sup>65</sup>, A. Mann<sup>54</sup>, P.M. Manning<sup>137</sup>, A. Manousakis-Katsikakis<sup>8</sup>,
 B. Mansoulie<sup>136</sup>, A. Manz<sup>99</sup>, A. Mapelli<sup>29</sup>, L. Mapelli<sup>29</sup>, L. Marchand<sup>29</sup>,
 F. Marchese<sup>133a,133b</sup>, G. Marchiori<sup>78</sup>, M. Marcisovsky<sup>125</sup>, A. Marin<sup>21,*</sup>, C.P. Marino<sup>61</sup>, F. Marroquim<sup>23a</sup>,
 R. Marshall<sup>82</sup>, Z. Marshall<sup>29</sup>, F.K. Martens<sup>158</sup>, S. Marti-Garcia<sup>167</sup>, A.J. Martin<sup>175</sup>, B. Martin<sup>29</sup>, B. Martin<sup>88</sup>, F.F. Martin<sup>120</sup>, J.P. Martin<sup>93</sup>, Ph. Martin<sup>55</sup>, T.A. Martin<sup>17</sup>, V.J. Martin<sup>45</sup>,
 B. Martin dit Latour<sup>49</sup>, S. Martin-Haugh<sup>149</sup>, M. Martinez<sup>11</sup>, V. Martinez Outschoorn<sup>57</sup>, A.C. Martyniuk<sup>82</sup>, M. Marx<sup>82</sup>, F. Marzano<sup>132a</sup>, A. Marzin<sup>111</sup>, L. Masetti<sup>81</sup>, T. Mashimo<sup>155</sup>,
 R. Mashinistov<sup>94</sup>, J. Masik<sup>82</sup>, A.L. Maslennikov<sup>107</sup>, I. Massa<sup>19a,19b</sup>, G. Massaro<sup>105</sup>, N. Massol<sup>4</sup>,
 P. Mastrandrea<sup>132a,132b</sup>, A. Mastroberardino<sup>36a,36b</sup>, T. Masubuchi<sup>155</sup>, M. Mathes<sup>20</sup>, P. Matricon<sup>115</sup>,
 H. Matsumoto<sup>155</sup>, H. Matsunaga<sup>155</sup>, T. Matsushita<sup>67</sup>, C. Mattravers<sup>118,c</sup>, J.M. Maugain<sup>29</sup>, S.J. Maxfield<sup>73</sup>,
 D.A. Maximov<sup>107</sup>, E.N. May<sup>5</sup>, A. Mayne<sup>139</sup>, R. Mazini<sup>151</sup>, M. Mazur<sup>20</sup>, M. Mazzanti<sup>89a</sup>,
 E. Mazzoni<sup>122a,122b</sup>, S.P. Mc Kee<sup>87</sup>, A. McCarrh<sup>165</sup>, R.L. McCarthy<sup>148</sup>, T.G. McCarthy<sup>28</sup>, N.A. McCubbin<sup>129</sup>, K.W. McFarlane<sup>56</sup>, J.A. Mcfayden<sup>139</sup>, H. McGlone<sup>53</sup>, G. Mchedlidze<sup>51b</sup>,
 R.A. McLaren<sup>29</sup>, T. Mclaughlan<sup>17</sup>, S.J. McMahon<sup>129</sup>, R.A. McPherson<sup>169,k</sup>, A. Meade<sup>84</sup>, J. Mechnich<sup>105</sup>,
 M. Mechtel<sup>174</sup>, M. Medinnis<sup>41</sup>, R. Meera-Lebbai<sup>111</sup>, T. Meguro<sup>116</sup>, R. Mehdiyev<sup>93</sup>, S. Mehlhase<sup>35</sup>,
 A. Mehta<sup>73</sup>, K. Meier<sup>58a</sup>, J. Meinhardt<sup>48</sup>, B. Meirose<sup>79</sup>, C. Melachrinos<sup>30</sup>, B.R. Mellado Garcia<sup>172</sup>,
 L. Mendoza Navas^{162}, Z. Meng^{151,t}, A. Mengarelli^{19a,19b}, S. Menke^{99}, C. Menot^{29}, E. Meoni^{11},
L. Mendoza Ivavas , Z. Mengarelli , A. Mengarelli , S. Menke<sup>25</sup>, C. Menot<sup>25</sup>, E. Meoni , K.M. Mercurio , P. Mermod , L. Merola , C. Meroni , F.S. Merritt , A. Messina , Messina , J. Metcalfe , A. Messina , A. Messina , A. Messina , J. Metcalfe , A. Messina , J. Meyer , Meyer , J. Meyer , Meyer , Meyer , Meyer , R.P. Middleton , P. Miele , Migas , R. Milovi , G. Mikenberg , M. Mikestikova , M. Mikestikova , M. Mikestikova , M. Milovi , A. Milovi , D. Milstein , A. Minaenko , M. Miñano , M. Miñano , M. Minaenko , M. Miñano , M. Miñano
 M. Miñano<sup>167</sup>, I.A. Minashvili<sup>65</sup>, A.I. Mincer<sup>108</sup>, B. Mindur<sup>37</sup>, M. Mineev<sup>65</sup>, Y. Ming<sup>130</sup>, L.M. Mir<sup>11</sup>,
 G. Mirabelli<sup>132a</sup>, L. Miralles Verge<sup>11</sup>, A. Misiejuk<sup>76</sup>, J. Mitrevski<sup>137</sup>, G.Y. Mitrofanov<sup>128</sup>, V.A. Mitsou<sup>167</sup>,
S. Mitsui<sup>66</sup>, P.S. Miyagawa<sup>139</sup>, K. Miyazaki<sup>67</sup>, J.U. Mjörnmark<sup>79</sup>, T. Moa<sup>146a,146b</sup>, P. Mockett<sup>138</sup>, S. Moed<sup>57</sup>, V. Moeller<sup>27</sup>, K. Mönig<sup>41</sup>, N. Möser<sup>20</sup>, S. Mohapatra<sup>148</sup>, W. Mohr<sup>48</sup>, S. Mohrdieck-Möck<sup>99</sup>, A.M. Moisseev<sup>128,*</sup>, R. Moles-Valls<sup>167</sup>, J. Molina-Perez<sup>29</sup>, J. Monk<sup>77</sup>, E. Monnier<sup>83</sup>, S. Montesano<sup>89a,89b</sup>, F. Monticelli<sup>70</sup>, S. Monzani<sup>19a,19b</sup>, R.W. Moore<sup>2</sup>, G.F. Moorhead<sup>86</sup>, C. Mora Herrera<sup>49</sup>, A. Moraes<sup>53</sup>, N. Morange<sup>136</sup>, J. Morel<sup>54</sup>, G. Morello<sup>36a,36b</sup>, D. Moreno<sup>81</sup>, M. Moreno Llácer<sup>167</sup>, P. Morettini<sup>50a</sup>, N. Moraes<sup>53</sup>, M. Moraes<sup>53</sup>, M. Moraes<sup>54</sup>, G. Morello<sup>36a,36b</sup>, D. Moreno<sup>81</sup>, M. Moreno Llácer<sup>167</sup>, P. Morettini<sup>50a</sup>, N. Moraes<sup>55</sup>, M. Moraes<sup>56</sup>, A.M. Moreno<sup>81</sup>, M. Moreno Llácer<sup>167</sup>, P. Morettini<sup>50a</sup>, N. Moraes<sup>58</sup>, M. Moreno<sup>81</sup>, M. Moreno Llácer<sup>167</sup>, P. Morettini<sup>50a</sup>, N. Moraes<sup>58</sup>, M. Moreno<sup>81</sup>, M. More
 M. Morii<sup>57</sup>, J. Morin<sup>75</sup>, Y. Morita<sup>66</sup>, A.K. Morley<sup>29</sup>, G. Mornacchi<sup>29</sup>, S.V. Morozov<sup>96</sup>, J.D. Morris<sup>75</sup>,
 L. Morvaj<sup>101</sup>, H.G. Moser<sup>99</sup>, M. Mosidze<sup>51b</sup>, J. Moss<sup>109</sup>, R. Mount<sup>143</sup>, E. Mountricha<sup>136</sup>, S.V. Mouraviev<sup>94</sup>,
 E.J.W. Moyse<sup>84</sup>, M. Mudrinic<sup>12b</sup>, F. Mueller<sup>58a</sup>, J. Mueller<sup>123</sup>, K. Mueller<sup>20</sup>, T.A. Müller<sup>98</sup>,
D. Muenstermann<sup>29</sup>, A. Muir<sup>168</sup>, Y. Munwes<sup>153</sup>, W.J. Murray<sup>129</sup>, I. Mussche<sup>105</sup>, E. Musto<sup>102a,102b</sup>, A.G. Myagkov<sup>128</sup>, M. Myska<sup>125</sup>, J. Nadal<sup>11</sup>, K. Nagai<sup>160</sup>, K. Nagano<sup>66</sup>, Y. Nagasaka<sup>60</sup>, A.M. Nairz<sup>29</sup>, Y. Nakahama<sup>29</sup>, K. Nakamura<sup>155</sup>, I. Nakano<sup>110</sup>, G. Nanava<sup>20</sup>, A. Napier<sup>161</sup>, M. Nash<sup>77,c</sup>, N.R. Nation<sup>21</sup>, T. Nattermann<sup>20</sup>, T. Naumann<sup>41</sup>, G. Navarro<sup>162</sup>, H.A. Neal<sup>87</sup>, E. Nebot<sup>80</sup>, P.Yu. Nechaeva<sup>94</sup>,
 A. Negri<sup>119a,119b</sup>, G. Negri<sup>29</sup>, S. Nektarijevic<sup>49</sup>, A. Nelson<sup>64</sup>, S. Nelson<sup>143</sup>, T.K. Nelson<sup>143</sup>, S. Nemecek<sup>125</sup>,
 P. Nemethy<sup>108</sup>, A.A. Nepomuceno<sup>23a</sup>, M. Nessi<sup>29,u</sup>, S.Y. Nesterov<sup>121</sup>, M.S. Neubauer<sup>165</sup>, A. Neusiedl<sup>81</sup>,
 R.M. Neves<sup>108</sup>, P. Nevski<sup>24</sup>, P.R. Newman<sup>17</sup>, V. Nguyen Thi Hong<sup>136</sup>, R.B. Nickerson<sup>118</sup>, R. Nicolaidou<sup>136</sup>,
 L. Nicolas<sup>139</sup>, B. Nicquevert<sup>29</sup>, F. Niedercorn<sup>115</sup>, J. Nielsen<sup>137</sup>, T. Niinikoski<sup>29</sup>, N. Nikiforou<sup>34</sup>,
 A. Nikiforov<sup>15</sup>, V. Nikolaenko<sup>128</sup>, K. Nikolaev<sup>65</sup>, I. Nikolic-Audit<sup>78</sup>, K. Nikolics<sup>49</sup>, K. Nikolopoulos<sup>24</sup>,
 H. Nilsen<sup>48</sup>, P. Nilsson<sup>7</sup>, Y. Ninomiya <sup>155</sup>, A. Nisati<sup>132a</sup>, T. Nishiyama<sup>67</sup>, R. Nisius<sup>99</sup>, L. Nodulman<sup>5</sup>,
M. Nomachi<sup>116</sup>, I. Nomidis<sup>154</sup>, M. Nordberg<sup>29</sup>, B. Nordkvist<sup>146a,146b</sup>, P.R. Norton<sup>129</sup>, J. Novakova<sup>126</sup>, M. Nozaki<sup>66</sup>, M. Nožička<sup>41</sup>, L. Nozka<sup>113</sup>, I.M. Nugent<sup>159a</sup>, A.-E. Nuncio-Quiroz<sup>20</sup>, G. Nunes Hanninger<sup>86</sup>, T. Nunnemann<sup>98</sup>, E. Nurse<sup>77</sup>, T. Nyman<sup>29</sup>, B.J. O'Brien<sup>45</sup>, S.W. O'Neale<sup>17,*</sup>, D.C. O'Neil<sup>142</sup>, V. O'Shea<sup>53</sup>, F.G. Oakham<sup>28,e</sup>, H. Oberlack<sup>99</sup>, J. Ocariz<sup>78</sup>, A. Ochi<sup>67</sup>, S. Oda<sup>155</sup>, S. Odaka<sup>66</sup>, J. Odier<sup>83</sup>,
```

H. Ogren⁶¹, A. Oh⁸², S.H. Oh⁴⁴, C.C. Ohm^{146a,146b}, T. Ohshima¹⁰¹, H. Ohshita¹⁴⁰, T.K. Ohska⁶⁶,

```
T. Ohsugi<sup>59</sup>, S. Okada<sup>67</sup>, H. Okawa<sup>163</sup>, Y. Okumura<sup>101</sup>, T. Okuyama<sup>155</sup>, M. Olcese<sup>50a</sup>, A.G. Olchevski<sup>65</sup>,
M. Oliveira 124a,i, D. Oliveira Damazio<sup>24</sup>, E. Oliver Garcia<sup>167</sup>, D. Olivito<sup>120</sup>, A. Olszewski<sup>38</sup>, J. Olszewska<sup>38</sup>, C. Omachi<sup>67</sup>, A. Onofre<sup>124a,v</sup>, P.U.E. Onyisi<sup>30</sup>, C.J. Oram<sup>159a</sup>, M.J. Oreglia<sup>30</sup>, Y. Oren<sup>153</sup>, D. Orestano<sup>134a,134b</sup>, I. Orlov<sup>107</sup>, C. Oropeza Barrera<sup>53</sup>, R.S. Orr<sup>158</sup>, B. Osculati<sup>50a,50b</sup>, R. Ospanov<sup>120</sup>, C. Osuna<sup>11</sup>, G. Otero y Garzon<sup>26</sup>, J.P Ottersbach<sup>105</sup>, M. Ouchrif<sup>135d</sup>, F. Ould-Saada<sup>117</sup>, A. Ouraou<sup>136</sup>,
C. Osuna<sup>11</sup>, G. Otero y Garzon<sup>26</sup>, J.P Ottersbach<sup>103</sup>, M. Ouchrif<sup>133</sup>d, F. Ould-Saada<sup>11</sup>, A. Ouraou<sup>136</sup>, Q. Ouyang<sup>32a</sup>, M. Owen<sup>82</sup>, S. Owen<sup>139</sup>, V.E. Ozcan<sup>18a</sup>, N. Ozturk<sup>7</sup>, A. Pacheco Pages<sup>11</sup>, C. Padilla Aranda<sup>11</sup>, S. Pagan Griso<sup>14</sup>, E. Paganis<sup>139</sup>, F. Paige<sup>24</sup>, K. Pajchel<sup>117</sup>, G. Palacino<sup>159b</sup>, C.P. Paleari<sup>6</sup>, S. Palestini<sup>29</sup>, D. Pallin<sup>33</sup>, A. Palma<sup>124a,b</sup>, J.D. Palmer<sup>17</sup>, Y.B. Pan<sup>172</sup>, E. Panagiotopoulou<sup>9</sup>, B. Panes<sup>31a</sup>, N. Panikashvili<sup>87</sup>, S. Panitkin<sup>24</sup>, D. Pantea<sup>25a</sup>, M. Panuskova<sup>125</sup>, V. Paolone<sup>123</sup>, A. Papadelis<sup>146a</sup>, Th.D. Papadopoulou<sup>9</sup>, A. Paramonov<sup>5</sup>, W. Park<sup>24,w</sup>, M.A. Parker<sup>27</sup>, F. Parodi<sup>50a,50b</sup>, J.A. Parsons<sup>34</sup>, U. Parzefall<sup>48</sup>, E. Pasqualucci<sup>132a</sup>, A. Passeri<sup>134a</sup>, F. Pastore<sup>134a,134b</sup>, Fr. Pastore<sup>76</sup>,
G. Pásztor <sup>49,x</sup>, S. Pataraia<sup>174</sup>, N. Patel<sup>150</sup>, J.R. Pater<sup>82</sup>, S. Patricelli<sup>102a,102b</sup>, T. Pauly<sup>29</sup>, M. Pecsy<sup>144a</sup>, M.I. Pedraza Morales<sup>172</sup>, S.V. Peleganchuk<sup>107</sup>, H. Peng<sup>32b</sup>, R. Pengo<sup>29</sup>, A. Penson<sup>34</sup>, J. Penwell<sup>61</sup>, M. Perantoni<sup>23a</sup>, K. Perez<sup>34,y</sup>, T. Perez Cavalcanti<sup>41</sup>, E. Perez Codina<sup>11</sup>, M.T. Pérez García-Estañ<sup>167</sup>,
V. Perez Reale<sup>34</sup>, L. Perini<sup>89a,89b</sup>, H. Pernegger<sup>29</sup>, R. Perrino<sup>72a</sup>, P. Perrodo<sup>4</sup>, S. Persembe<sup>3a</sup>,
V.D. Peshekhonov<sup>65</sup>, B.A. Petersen<sup>29</sup>, J. Petersen<sup>29</sup>, T.C. Petersen<sup>35</sup>, E. Petit<sup>83</sup>, A. Petridis<sup>154</sup>, C. Petridou<sup>154</sup>, E. Petrolo<sup>132a</sup>, F. Petrucci<sup>134a,134b</sup>, D. Petschull<sup>41</sup>, M. Petteni<sup>142</sup>, R. Pezoa<sup>31b</sup>, A. Phan<sup>86</sup>, A.W. Phillips<sup>27</sup>, P.W. Phillips<sup>129</sup>, G. Piacquadio<sup>29</sup>, E. Piccaro<sup>75</sup>, M. Piccinini<sup>19a,19b</sup>, A. Pickford<sup>53</sup>,
S.M. Piec<sup>41</sup>, R. Piegaia<sup>26</sup>, J.E. Pilcher<sup>30</sup>, A.D. Pilkington<sup>82</sup>, J. Pina<sup>124a,b</sup>, M. Pinamonti<sup>164a,164c</sup>,
A. Pinder<sup>118</sup>, J.L. Pinfold<sup>2</sup>, J. Ping<sup>32c</sup>, B. Pinto<sup>124a,b</sup>, O. Pirotte<sup>29</sup>, C. Pizio<sup>89a,89b</sup>, R. Placakyte<sup>41</sup>,
M. Plamondon<sup>169</sup>, W.G. Plano<sup>82</sup>, M.-A. Pleier<sup>24</sup>, A.V. Pleskach<sup>128</sup>, A. Poblaguev<sup>24</sup>, S. Poddar<sup>58a</sup>,
F. Podlyski<sup>33</sup>, L. Poggioli<sup>115</sup>, T. Poghosyan<sup>20</sup>, M. Pohl<sup>49</sup>, F. Polci<sup>55</sup>, G. Polesello<sup>119a</sup>, A. Policicchio<sup>138</sup>,
A. Polini<sup>19a</sup>, J. Poll<sup>75</sup>, V. Polychronakos<sup>24</sup>, D.M. Pomarede<sup>136</sup>, D. Pomeroy<sup>22</sup>, K. Pommès<sup>29</sup>, L. Pontecorvo<sup>132a</sup>, B.G. Pope<sup>88</sup>, G.A. Popeneciu<sup>25a</sup>, D.S. Popovic<sup>12a</sup>, A. Poppleton<sup>29</sup>, X. Portell Bueso<sup>29</sup>, R. Porter<sup>163</sup>, C. Posch<sup>21</sup>, G.E. Pospelov<sup>99</sup>, S. Pospisil<sup>127</sup>, I.N. Potrap<sup>99</sup>, C.J. Potter<sup>149</sup>, C.T. Potter<sup>114</sup>, G. Poulard<sup>29</sup>, J. Poveda<sup>172</sup>, R. Prabhu<sup>77</sup>, P. Pralavorio<sup>83</sup>, S. Prasad<sup>57</sup>, R. Pravahan<sup>7</sup>, S. Prell<sup>64</sup>,
K. Pretzl<sup>16</sup>, L. Pribyl<sup>29</sup>, D. Price<sup>61</sup>, L.E. Price<sup>5</sup>, M.J. Price<sup>29</sup>, P.M. Prichard<sup>73</sup>, D. Prieur<sup>123</sup>,
M. Primavera<sup>72a</sup>, K. Prokofiev<sup>108</sup>, F. Prokoshin<sup>31b</sup>, S. Protopopescu<sup>24</sup>, J. Proudfoot<sup>5</sup>, X. Prudent<sup>43</sup>,
H. Przysiezniak<sup>4</sup>, S. Psoroulas<sup>20</sup>, E. Ptacek<sup>114</sup>, E. Pueschel<sup>84</sup>, J. Purdham<sup>87</sup>, M. Purohit<sup>24,w</sup>, P. Puzo<sup>115</sup>,
Y. Pylypchenko<sup>117</sup>, J. Qian<sup>87</sup>, Z. Qian<sup>83</sup>, Z. Qia<sup>41</sup>, A. Quadt<sup>54</sup>, D.R. Quarrie<sup>14</sup>, W.B. Quayle<sup>172</sup>, F. Quinonez<sup>31a</sup>, M. Raas<sup>104</sup>, V. Radescu<sup>58b</sup>, B. Radics<sup>20</sup>, T. Rador<sup>18a</sup>, F. Ragusa<sup>89a,89b</sup>, G. Rahal<sup>177</sup>, A.M. Rahimi<sup>109</sup>, D. Rahm<sup>24</sup>, S. Rajagopalan<sup>24</sup>, M. Rammensee<sup>48</sup>, M. Rammes<sup>141</sup>, M. Ramstedt<sup>146a,146b</sup>,
A.S. Randle-Conde<sup>39</sup>, K. Randrianarivony<sup>28</sup>, P.N. Ratoff<sup>71</sup>, F. Rauscher<sup>98</sup>, E. Rauter<sup>99</sup>, M. Raymond<sup>29</sup>, A.L. Read<sup>117</sup>, D.M. Rebuzzi<sup>119a,119b</sup>, A. Redelbach<sup>173</sup>, G. Redlinger<sup>24</sup>, R. Reece<sup>120</sup>, K. Reeves<sup>40</sup>,
A. Reichold<sup>105</sup>, E. Reinherz-Aronis<sup>153</sup>, A. Reinsch<sup>114</sup>, I. Reisinger<sup>42</sup>, D. Reljic<sup>12a</sup>, C. Rembser<sup>29</sup>,
Z.L. Ren<sup>151</sup>, A. Renaud<sup>115</sup>, P. Renkel<sup>39</sup>, M. Rescigno<sup>132a</sup>, S. Resconi<sup>89a</sup>, B. Resende<sup>136</sup>, P. Reznicek<sup>98</sup>,
R. Rezvani<sup>158</sup>, A. Richards<sup>77</sup>, R. Richter<sup>99</sup>, E. Richter-Was<sup>4,z</sup>, M. Ridel<sup>78</sup>, S. Rieke<sup>81</sup>, M. Rijpstra<sup>105</sup>,
M. Rijssenbeek<sup>148</sup>, A. Rimoldi<sup>119a,119b</sup>, L. Rinaldi<sup>19a</sup>, R.R. Rios<sup>39</sup>, I. Riu<sup>11</sup>, G. Rivoltella<sup>89a,89b</sup>,
F. Rizatdinova<sup>112</sup>, E. Rizvi<sup>75</sup>, S.H. Robertson<sup>85</sup>, A. Robichaud-Veronneau<sup>118</sup>, D. Robinson<sup>27</sup>, J.E.M. Robinson<sup>77</sup>, M. Robinson<sup>114</sup>, A. Robson<sup>53</sup>, J.G. Rocha de Lima<sup>106</sup>, C. Roda<sup>122a,122b</sup>, D. Roda Dos Santos<sup>29</sup>, S. Rodier<sup>80</sup>, D. Rodriguez<sup>162</sup>, A. Roe<sup>54</sup>, S. Roe<sup>29</sup>, O. Røhne<sup>117</sup>, V. Rojo<sup>1</sup>,
S. Rolli<sup>161</sup>, A. Romaniouk<sup>96</sup>, V.M. Romanov<sup>65</sup>, G. Romeo<sup>26</sup>, L. Roos<sup>78</sup>, E. Ros<sup>167</sup>, S. Rosati<sup>132a,132b</sup>,
K. Rosbach<sup>49</sup>, A. Rose<sup>149</sup>, M. Rose<sup>76</sup>, G.A. Rosenbaum<sup>158</sup>, E.I. Rosenberg<sup>64</sup>, P.L. Rosendahl<sup>13</sup>,
O. Rosenthal<sup>141</sup>, L. Rosselet<sup>49</sup>, V. Rossetti<sup>11</sup>, E. Rossi<sup>132a,132b</sup>, L.P. Rossi<sup>50a</sup>, L. Rossi<sup>89a,89b</sup>, M. Rotaru<sup>25a</sup>,
I. Roth<sup>171</sup>, J. Rothberg<sup>138</sup>, D. Rousseau<sup>115</sup>, C.R. Royon<sup>136</sup>, A. Rozanov<sup>83</sup>, Y. Rozen<sup>152</sup>, X. Ruan<sup>115</sup>,
I. Rubinskiy<sup>41</sup>, B. Ruckert<sup>98</sup>, N. Ruckstuhl<sup>105</sup>, V.I. Rud<sup>97</sup>, C. Rudolph<sup>43</sup>, G. Rudolph<sup>62</sup>, F. Rühr<sup>6</sup>,
F. Ruggieri<sup>134a,134b</sup>, A. Ruiz-Martinez<sup>64</sup>, E. Rulikowska-Zarebska<sup>37</sup>, V. Rumiantsev<sup>91,*</sup>, L. Rumyantsev<sup>65</sup>,
K. Runge<sup>48</sup>, O. Runolfsson<sup>20</sup>, Z. Rurikova<sup>48</sup>, N.A. Rusakovich<sup>65</sup>, D.R. Rust<sup>61</sup>, J.P. Rutherfoord<sup>6</sup>, C. Ruwiedel<sup>14</sup>, P. Ruzicka<sup>125</sup>, Y.F. Ryabov<sup>121</sup>, V. Ryadovikov<sup>128</sup>, P. Ryan<sup>88</sup>, M. Rybar<sup>126</sup>, G. Rybkin<sup>115</sup>, N.C. Ryder<sup>118</sup>, S. Rzaeva<sup>10</sup>, A.F. Saavedra<sup>150</sup>, I. Sadeh<sup>153</sup>, H.F-W. Sadrozinski<sup>137</sup>, R. Sadykov<sup>65</sup>,
F. Safai Tehrani<sup>132a,132b</sup>, H. Sakamoto<sup>155</sup>, G. Salamanna<sup>75</sup>, A. Salamon<sup>133a</sup>, M. Saleem<sup>111</sup>, D. Salihagic<sup>99</sup>,
A. Salnikov<sup>143</sup>, J. Salt<sup>167</sup>, B.M. Salvachua Ferrando<sup>5</sup>, D. Salvatore<sup>36a,36b</sup>, F. Salvatore<sup>149</sup>, A. Salvucci<sup>104</sup>,
```

A. Salzburger²⁹, D. Sampsonidis¹⁵⁴, B.H. Samset¹¹⁷, A. Sanchez^{102a,102b}, H. Sandaker¹³, H.G. Sander⁸¹, M.P. Sanders⁹⁸, M. Sandhoff¹⁷⁴, T. Sandoval²⁷, C. Sandoval¹⁶², R. Sandstroem⁹⁹, S. Sandvoss¹⁷⁴, D.P.C. Sankey¹²⁹, A. Sansoni⁴⁷, C. Santamarina Rios⁸⁵, C. Santoni³³, R. Santonico^{133a,133b}, H. Santos^{124a}, C. Santamarina Rios⁸⁵, C. Santoni³³, R. Santonico^{133a,133b}, H. Santos^{124a}, R. Santonico^{133a,133b}, H. Santos^{124a}, R. Santonico^{133a,133b}, R. Santonico^{133a,133b}, H. Santos^{124a}, R. Santonico^{133a,133b}, R. Santonico J.G. Saraiva^{124a,b}, T. Sarangi¹⁷², E. Sarkisyan-Grinbaum⁷, F. Sarri^{122a,122b}, G. Sartisohn¹⁷⁴, O. Sasaki⁶⁶, T. Sasaki⁶⁶, N. Sasao⁶⁸, I. Satsounkevitch⁹⁰, G. Sauvage⁴, E. Sauvan⁴, J.B. Sauvan¹¹⁵, P. Savard^{158,e}, T. Sasaki¹⁰, N. Sasao¹⁰, I. Satsounkevitch²⁰, G. Sauvage⁴, E. Sauvan⁴, J.B. Sauvan¹¹³, P. Savard^{138,e}, V. Savinov¹²³, D.O. Savu²⁹, P. Savva⁹, L. Sawyer^{24,m}, D.H. Saxon⁵³, L.P. Says³³, C. Sbarra^{19a,19b}, A. Sbrizzi^{19a,19b}, O. Scallon⁹³, D.A. Scannicchio¹⁶³, J. Schaarschmidt¹¹⁵, P. Schacht⁹⁹, U. Schäfer⁸¹, S. Schaepe²⁰, S. Schaetzel^{58b}, A.C. Schaffer¹¹⁵, D. Schaile⁹⁸, R.D. Schamberger¹⁴⁸, A.G. Schamov¹⁰⁷, V. Scharf^{58a}, V.A. Schegelsky¹²¹, D. Scheirich⁸⁷, M. Schernau¹⁶³, M.I. Scherzer¹⁴, C. Schiavi^{50a,50b}, J. Schieck⁹⁸, M. Schioppa^{36a,36b}, S. Schlenker²⁹, J.L. Schlereth⁵, E. Schmidt⁴⁸, K. Schmieden²⁰, C. Schmitt⁸¹, S. Schmitt^{58b}, M. Schmitz²⁰, A. Schöning^{58b}, M. Schott²⁹, D. Schouten¹⁴², J. Schovancova¹²⁵, M. Schram⁸⁵, C. Schroeder⁸¹, N. Schroer^{58c}, S. Schuh²⁹, G. Schuler²⁹, J. Schultes¹⁷⁴, H. C. Schulter^{68a}, H. Schulter¹⁵, L.W. Schumpscham²⁰, M. Schram²⁰, A. Schumpscham²⁰, M. Schram²⁰, J. Schulter¹³⁷ H.-C. Schultz-Coulon^{58a}, H. Schulz¹⁵, J.W. Schumacher²⁰, M. Schumacher⁴⁸, B.A. Schumm¹³⁷, Ph. Schune¹³⁶, C. Schwanenberger⁸², A. Schwartzman¹⁴³, Ph. Schwemling⁷⁸, R. Schwienhorst⁸⁸, R. Schwierz⁴³, J. Schwindling¹³⁶, T. Schwindt²⁰, W.G. Scott¹²⁹, J. Searcy¹¹⁴, E. Sedykh¹²¹, E. Segura¹¹, S.C. Seidel¹⁰³, A. Seiden¹³⁷, F. Seifert⁴³, J.M. Seixas^{23a}, G. Sekhniaidze^{102a}, D.M. Seliverstov¹²¹, B. Sellden^{146a}, G. Sellers⁷³, M. Seman^{144b}, N. Semprini-Cesari^{19a,19b}, C. Serfon⁹⁸, L. Serin¹¹⁵, R. Seuster⁹⁹, H. Severini¹¹¹, M.E. Sevior⁸⁶, A. Sfyrla²⁹, E. Shabalina⁵⁴, M. Shamim¹¹⁴, L.Y. Shan^{32a}, J.T. Shank²¹, Q.T. Shao⁸⁶, M. Shapiro¹⁴, P.B. Shatalov⁹⁵, L. Shaver⁶, K. Shaw^{164a,164c}, D. Sherman¹⁷⁵, P. Sherwood⁷⁷, A. Shibata¹⁰⁸, H. Shichi¹⁰¹, S. Shimizu²⁹, M. Shimojima¹⁰⁰, T. Shin⁵⁶, A. Shmeleva⁹⁴, M.J. Shochet³⁰, D. Short¹¹⁸, M.A. Shupe⁶, P. Sicho¹²⁵, A. Sidoti^{132a,132b}, A. Siebel¹⁷⁴, F. Siegert⁴⁸, J. Siegrist¹⁴, Dj. Sijacki^{12a}, O. Silbert¹⁷¹, J. Silva^{124a,b}, Y. Silver¹⁵³, D. Silverstein¹⁴³, S.B. Silverstein^{146a}, V. Simak¹²⁷, O. Simard¹³⁶, Lj. Simic^{12a}, S. Simion¹¹⁵, B. Simmons⁷⁷, M. Simonyan³⁵, P. Sinervo¹⁵⁸, N.B. Sinev¹¹⁴, V. Sipica¹⁴¹, G. Siragusa¹⁷³, A. Sircar²⁴, A.N. Sisakyan⁶⁵, S.Yu. Sivoklokov⁹⁷, J. Sjölin^{146a,146b}, T.B. Sjursen¹³, L.A. Skinnari¹⁴, K. Skovpen¹⁰⁷, P. Skubic¹¹¹, N. Skvorodnev²², M. Slater¹⁷, T. Slavicek¹²⁷, K. Sliwa¹⁶¹, T.J. Sloan⁷¹, J. Sloper²⁹, V. Smakhtin¹⁷¹, S.Yu. Smirnov⁹⁶, J. N. G. Starten⁷⁹, P. Scholar, J. Sloper²⁹, V. Smakhtin¹⁷¹, S.Yu. Smirnov⁹⁶, J. N. G. Starten⁷⁹, P. Scholar, J. J. Sloper²⁹, V. Smakhtin¹⁷¹, S.Yu. Smirnov⁹⁶, J. N. G. Starten⁷⁹, P. Scholar, J. J. Sloper²⁹, V. Smakhtin¹⁷¹, S.Yu. Smirnov⁹⁶, J. J. Starten⁷⁹, P. Scholar, J. J. Sloper²⁹, V. Smakhtin¹⁷¹, S.Yu. Smirnov⁹⁶, J. J. Starten⁷⁹, P. Scholar, J. J. Sloper²⁹, V. Smakhtin¹⁷¹, S.Yu. Smirnov⁹⁶, J. J. Starten⁷⁹, P. Scholar, J. J. Sloper²⁹, V. Smakhtin¹⁷¹, S.Yu. Smirnov⁹⁶, J. J. Starten⁷⁹, P. Scholar, J. J. Sloper²⁹, V. Smakhtin¹⁷¹, S.Yu. Smirnov⁹⁶, J. J. Starten⁷⁹, P. Scholar, J. J. Sloper²⁹, V. Smakhtin¹⁷¹, S.Yu. Smirnov⁹⁶, J. J. Starten⁷⁹, P. Scholar, J. J. Sloper²⁹, V. Smakhtin¹⁷¹, S.Yu. Smirnov⁹⁶, J. J. Starten⁷⁹, P. Scholar, J. J. Sloper²⁹, V. Smakhtin¹⁷¹, S.Yu. Smirnov⁹⁶, J. J. Starten⁷⁹, J. Starten⁷⁹, P. Scholar, J. J. Sloper²⁹, V. Smakhtin¹⁷¹, S.Yu. Smirnov⁹⁶, J. J. Starten⁷⁹, P. Scholar, J. J. Shaper⁷⁹, J. Starten⁷⁹, P. Scholar, J. J. Sloper⁷⁹, J. Starten⁷⁹, J. Starten⁷⁹, P. Scholar, J. J. Starten⁷⁹, J. Sta L.N. Smirnova⁹⁷, O. Smirnova⁷⁹, B.C. Smith⁵⁷, D. Smith¹⁴³, K.M. Smith⁵³, M. Smizanska⁷¹, K. Smolek¹²⁷, A.A. Snesarev⁹⁴, S.W. Snow⁸², J. Snow¹¹¹, J. Snuverink¹⁰⁵, S. Snyder²⁴, M. Soares^{124a}, R. Sobie^{169,k}, J. Sodomka¹²⁷, A. Soffer¹⁵³, C.A. Solans¹⁶⁷, M. Solar¹²⁷, J. Solc¹²⁷, E. Soldatov⁹⁶, U. Soldevila¹⁶⁷, E. Solfaroli Camillocci^{132a,132b}, A.A. Solodkov¹²⁸, O.V. Solovyanov¹²⁸, J. Sondericker²⁴, N. Soni², V. Sopko¹²⁷, B. Sopko¹²⁷, M. Sorbi^{89a,89b}, M. Sosebee⁷, A. Soukharev¹⁰⁷, S. Spagnolo^{72a,72b}, F. Spanò⁷⁶, R. Spighi^{19a}, G. Spigo²⁹, F. Spila^{132a,132b}, E. Spiriti^{134a}, R. Spiwoks²⁹, M. Spousta¹²⁶, T. Spreitzer¹⁵⁸, B. Spurlock⁷, R.D. St. Denis⁵³, T. Stahl¹⁴¹, J. Stahlman¹²⁰, R. Stamen^{58a}, E. Stanecka²⁹, R.W. Stanek⁵, C. Stanescu^{134a}, S. Stapnes¹¹⁷, E.A. Starchenko¹²⁸, J. Stark⁵⁵, P. Staroba¹²⁵, P. Starovoitov⁹¹, A. Staude⁹⁸, P. Stavina^{144a}, G. Stavropoulos¹⁴, G. Steele⁵³, P. Steinbach⁴³, P. Steinberg²⁴, I. Stekl¹²⁷, B. Stelzer¹⁴², H.J. Stelzer⁸⁸, O. Stelzer-Chilton^{159a}, H. Stenzel⁵², K. Stevenson⁷⁵, G.A. Stewart²⁹, J.A. Stillings²⁰, T. Stockmanns²⁰, M.C. Stockton²⁹, K. Stoerig⁴⁸, G. Stoicea^{25a}, S. Stonjek⁹⁹, P. Strachota¹²⁶, A.R. Stradling⁷, A. Straessner⁴³, J. Strandberg¹⁴⁷, S. Strandberg^{146a,146b}, A. Strandlie¹¹⁷, M. Strang¹⁰⁹, E. Strauss¹⁴³, M. Strauss¹¹¹, P. Strizenec^{144b}, R. Ströhmer¹⁷³, D.M. Strom¹¹⁴, J.A. Strong^{76,*}, R. Stroynowski³⁹, J. Strube¹²⁹, B. Stugu¹³, I. Stumer^{24,*}, J. Stupak¹⁴⁸, P. Sturm¹⁷⁴, D.A. Soh^{151,r}, D. Su¹⁴³, HS. Subramania², A. Succurro¹¹, Y. Sugaya¹¹⁶, T. Sugimoto¹⁰¹, C. Suhr¹⁰⁶, K. Suita⁶⁷, M. Suk¹²⁶, V.V. Sulin⁹⁴, S. Sultansoy^{3d}, T. Sumida²⁹, X. Sun⁵⁵, J.E. Sundermann⁴⁸, K. Suruliz¹³⁹, S. Sushkov¹¹, G. Susinno^{36a,36b}, M.R. Sutton¹⁴⁹, Y. Suzuki⁶⁶, Y. Suzuki⁶⁷, M. Svatos¹²⁵, Yu.M. Sviridov¹²⁸, S. Swedish¹⁶⁸, I. Sykora^{144a}, T. Sykora¹²⁶, B. Szeless²⁹, J. Sánchez¹⁶⁷, D. Ta¹⁰⁵, K. Tackmann⁴¹, A. Taffard¹⁶³, R. Tafirout^{159a}, N. Taiblum¹⁵³, Y. Takahashi¹⁰¹, H. Takai²⁴, R. Takashima⁶⁹, H. Takeda⁶⁷, T. Takeshita¹⁴⁰, M. Talby⁸³, A. Talyshev¹⁰⁷, M.C. Tamsett²⁴, J. Tanaka¹⁵⁵, R. Tanaka¹¹⁵, S. Tanaka¹³¹, S. Tanaka⁶⁶, Y. Tanaka¹⁰⁰, K. Tani⁶⁷, N. Tannoury⁸³, G.P. Tappern²⁹, S. Tapprogge⁸¹, D. Tardif¹⁵⁸, S. Tarem¹⁵², F. Tarrade²⁸, G.F. Tartarelli^{89a}, P. Tas¹²⁶, M. Tasevsky¹²⁵, E. Tassi^{36a,36b}, M. Tatarkhanov¹⁴, Y. Tayalati^{135d}, C. Taylor⁷⁷, F.E. Taylor⁹², G.N. Taylor⁸⁶, W. Taylor^{159b}, M. Teinturier¹¹⁵, M. Teixeira Dias Castanheira⁷⁵, P. Teixeira-Dias⁷⁶, K.K. Temming⁴⁸, H. Ten Kate²⁹, P.K. Teng¹⁵¹, S. Terada⁶⁶, K. Terashi¹⁵⁵, J. Terron⁸⁰, M. Terwort^{41,p}, M. Testa⁴⁷, R.J. Teuscher^{158,k}, J. Thadome¹⁷⁴, J. Therhaag²⁰, T. Theveneaux-Pelzer⁷⁸, M. Thioye¹⁷⁵,

```
S. Thoma<sup>48</sup>, J.P. Thomas<sup>17</sup>, E.N. Thompson<sup>84</sup>, P.D. Thompson<sup>17</sup>, P.D. Thompson<sup>158</sup>, A.S. Thompson<sup>53</sup>, E. Thomson<sup>120</sup>, M. Thomson<sup>27</sup>, R.P. Thun<sup>87</sup>, F. Tian<sup>34</sup>, T. Tic<sup>125</sup>, V.O. Tikhomirov<sup>94</sup>, Y.A. Tikhonov<sup>107</sup>, C.J.W.P. Timmermans<sup>104</sup>, P. Tipton<sup>175</sup>, F.J. Tique Aires Viegas<sup>29</sup>, S. Tisserant<sup>83</sup>, J. Tobias<sup>48</sup>,
 B. Toczek<sup>37</sup>, T. Todorov<sup>4</sup>, S. Todorova-Nova<sup>161</sup>, B. Toggerson<sup>163</sup>, J. Tojo<sup>66</sup>, S. Tokár<sup>144a</sup>, K. Tokunaga<sup>67</sup>, K. Tokushuku<sup>66</sup>, K. Tollefson<sup>88</sup>, M. Tomoto<sup>101</sup>, L. Tompkins<sup>14</sup>, K. Toms<sup>103</sup>, G. Tong<sup>32a</sup>, A. Tonoyan<sup>13</sup>,
C. Topfel<sup>16</sup>, N.D. Topilin<sup>65</sup>, I. Torchiani<sup>29</sup>, E. Torrence<sup>114</sup>, H. Torres<sup>78</sup>, E. Torró Pastor<sup>167</sup>, J. Toth<sup>83</sup>, x, F. Touchard<sup>83</sup>, D.R. Tovey<sup>139</sup>, D. Traynor<sup>75</sup>, T. Trefzger<sup>173</sup>, L. Tremblet<sup>29</sup>, A. Tricoli<sup>29</sup>, I.M. Trigger<sup>159a</sup>, S. Trincaz-Duvoid<sup>78</sup>, T.N. Trinh<sup>78</sup>, M.F. Tripiana<sup>70</sup>, W. Trischuk<sup>158</sup>, A. Trivedi<sup>24</sup>, w, B. Trocmé<sup>55</sup>,
 C. Troncon<sup>89a</sup>, M. Trottier-McDonald<sup>142</sup>, A. Trzupek<sup>38</sup>, C. Tsarouchas<sup>29</sup>, J.C-L. Tseng<sup>118</sup>, M. Tsiakiris<sup>105</sup>,
 P.V. Tsiareshka<sup>90</sup>, D. Tsionou<sup>4</sup>, G. Tsipolitis<sup>9</sup>, V. Tsiskaridze<sup>48</sup>, E.G. Tskhadadze<sup>51a</sup>, I.I. Tsukerman<sup>95</sup>,
 V. Tsulaia<sup>14</sup>, J.-W. Tsung<sup>20</sup>, S. Tsuno<sup>66</sup>, D. Tsybychev<sup>148</sup>, A. Tua<sup>139</sup>, J.M. Tuggle<sup>30</sup>, M. Turala<sup>38</sup>,
 D. Turecek<sup>127</sup>, I. Turk Cakir<sup>3e</sup>, E. Turlay<sup>105</sup>, R. Turra<sup>89a,89b</sup>, P.M. Tuts<sup>34</sup>, A. Tykhonov<sup>74</sup>,
M. Tylmad<sup>146a,146b</sup>, M. Tyndel<sup>129</sup>, H. Tyrvainen<sup>29</sup>, G. Tzanakos<sup>8</sup>, K. Uchida<sup>20</sup>, I. Ueda<sup>155</sup>, R. Ueno<sup>28</sup>,
M. Ugland<sup>13</sup>, M. Uhlenbrock<sup>20</sup>, M. Uhrmacher<sup>54</sup>, F. Ukegawa<sup>160</sup>, G. Unal<sup>29</sup>, D.G. Underwood<sup>5</sup>,
A. Undrus<sup>24</sup>, G. Unel<sup>163</sup>, Y. Unno<sup>66</sup>, D. Urbaniec<sup>34</sup>, E. Urkovsky<sup>153</sup>, P. Urrejola<sup>31a</sup>, G. Usai<sup>7</sup>, M. Uslenghi<sup>119a,119b</sup>, L. Vacavant<sup>83</sup>, V. Vacek<sup>127</sup>, B. Vachon<sup>85</sup>, S. Vahsen<sup>14</sup>, J. Valenta<sup>125</sup>, P. Valente<sup>132a</sup>, S. Valentinetti<sup>19a,19b</sup>, S. Valkar<sup>126</sup>, E. Valladolid Gallego<sup>167</sup>, S. Vallecorsa<sup>152</sup>, J.A. Valls Ferrer<sup>167</sup>,
 H. van der Graaf<sup>105</sup>, E. van der Kraaij<sup>105</sup>, R. Van Der Leeuw<sup>105</sup>, E. van der Poel<sup>105</sup>, D. van der Ster<sup>29</sup>,
 B. Van Eijk<sup>105</sup>, N. van Eldik<sup>84</sup>, P. van Gemmeren<sup>5</sup>, Z. van Kesteren<sup>105</sup>, I. van Vulpen<sup>105</sup>, W. Vandelli<sup>29</sup>,
 G. Vandoni<sup>29</sup>, A. Vaniachine<sup>5</sup>, P. Vankov<sup>41</sup>, F. Vannucci<sup>78</sup>, F. Varela Rodriguez<sup>29</sup>, R. Vari<sup>132a</sup>,
D. Varouchas<sup>14</sup>, A. Vartapetian<sup>7</sup>, K.E. Varvell<sup>150</sup>, V.I. Vassilakopoulos<sup>56</sup>, F. Vazeille<sup>33</sup>, G. Vegni<sup>89a,89b</sup>, J.J. Veillet<sup>115</sup>, C. Vellidis<sup>8</sup>, F. Veloso<sup>124a</sup>, R. Veness<sup>29</sup>, S. Veneziano<sup>132a</sup>, A. Ventura<sup>72a,72b</sup>, D. Ventura<sup>138</sup>,
 M. Venturi<sup>48</sup>, N. Venturi<sup>16</sup>, V. Vercesi<sup>119a</sup>, M. Verducci<sup>138</sup>, W. Verkerke<sup>105</sup>, J.C. Vermeulen<sup>105</sup>, A. Vest<sup>43</sup>, M.C. Vetterli<sup>142</sup>, I. Vichou<sup>165</sup>, T. Vickey<sup>145b</sup>, a, O.E. Vickey Boeriu<sup>145b</sup>, G.H.A. Viehhauser<sup>118</sup>,
S. Viel<sup>168</sup>, M. Villa<sup>19a,19b</sup>, M. Villaplana Perez<sup>167</sup>, E. Vilucchi<sup>47</sup>, M.G. Vincter<sup>28</sup>, E. Vinek<sup>29</sup>, V.B. Vinogradov<sup>65</sup>, M. Virchaux<sup>136</sup>, J. Virzi<sup>14</sup>, O. Vitells<sup>171</sup>, M. Viti<sup>41</sup>, I. Vivarelli<sup>48</sup>, F. Vives Vaque<sup>2</sup>,
 S. Vlachos<sup>9</sup>, M. Vlasak<sup>127</sup>, N. Vlasov<sup>20</sup>, A. Vogel<sup>20</sup>, P. Vokac<sup>127</sup>, G. Volpi<sup>47</sup>, M. Volpi<sup>86</sup>, G. Volpini<sup>89a</sup>,
 H. von der Schmitt<sup>99</sup>, J. von Loeben<sup>99</sup>, H. von Radziewski<sup>48</sup>, E. von Toerne<sup>20</sup>, V. Vorobel<sup>126</sup>, A.P. Vorobiev<sup>128</sup>, V. Vorwerk<sup>11</sup>, M. Vos<sup>167</sup>, R. Voss<sup>29</sup>, T.T. Voss<sup>174</sup>, J.H. Vossebeld<sup>73</sup>, N. Vranjes<sup>12a</sup>,
 M. Vranjes Milosavljevic<sup>105</sup>, V. Vrba<sup>125</sup>, M. Vreeswijk<sup>105</sup>, T. Vu Anh<sup>81</sup>, R. Vuillermet<sup>29</sup>, I. Vukotic<sup>115</sup>,
W. Wagner<sup>174</sup>, P. Wagner<sup>120</sup>, H. Wahlen<sup>174</sup>, J. Wakabayashi<sup>101</sup>, J. Walbersloh<sup>42</sup>, S. Walch<sup>87</sup>, J. Walder<sup>71</sup>, R. Walker<sup>98</sup>, W. Walkowiak<sup>141</sup>, R. Wall<sup>175</sup>, P. Waller<sup>73</sup>, C. Wang<sup>44</sup>, H. Wang<sup>172</sup>, H. Wang<sup>32b,ab</sup>, J. Wang<sup>151</sup>, J. Wang<sup>32d</sup>, J.C. Wang<sup>138</sup>, R. Wang<sup>103</sup>, S.M. Wang<sup>151</sup>, A. Warburton<sup>85</sup>, C.P. Ward<sup>27</sup>, M. Warsinsky<sup>48</sup>, P.M. Watkins<sup>17</sup>, A.T. Watson<sup>17</sup>, M.F. Watson<sup>17</sup>, G. Watts<sup>138</sup>, S. Watts<sup>82</sup>, A.T. Waugh<sup>150</sup>, B.M. Waugh<sup>77</sup>, J. Weber<sup>42</sup>, M. Weber<sup>129</sup>, M.S. Weber<sup>16</sup>, P. Weber<sup>54</sup>, A.R. Weidberg<sup>118</sup>, P. W. Watts<sup>180</sup>, A.R. Weidberg<sup>180</sup>, P. Weights<sup>180</sup>, A.R. Weidberg<sup>180</sup>, P. Weights<sup>180</sup>, P. Weights<sup>180</sup>, A.R. Weidberg<sup>180</sup>, P. Weights<sup>180</sup>, P. Weights<sup>1</sup>
 P. Weigell<sup>99</sup>, J. Weingarten<sup>54</sup>, C. Weiser<sup>48</sup>, H. Wellenstein<sup>22</sup>, P.S. Wells<sup>29</sup>, M. Wen<sup>47</sup>, T. Wenaus<sup>24</sup>,
 S. Wendler<sup>123</sup>, Z. Weng<sup>151,r</sup>, T. Wengler<sup>29</sup>, S. Wenig<sup>29</sup>, N. Wermes<sup>20</sup>, M. Werner<sup>48</sup>, P. Werner<sup>29</sup>,
 M. Werth<sup>163</sup>, M. Wessels<sup>58a</sup>, C. Weydert<sup>55</sup>, K. Whalen<sup>28</sup>, S.J. Wheeler-Ellis<sup>163</sup>, S.P. Whitaker<sup>21</sup>,
A. White<sup>7</sup>, M.J. White<sup>86</sup>, S.R. Whitehead<sup>118</sup>, D. Whiteson<sup>163</sup>, D. Whittington<sup>61</sup>, F. Wicek<sup>115</sup>, D. Wicke<sup>174</sup>, F.J. Wickens<sup>129</sup>, W. Wiedenmann<sup>172</sup>, M. Wielers<sup>129</sup>, P. Wienemann<sup>20</sup>, C. Wiglesworth<sup>75</sup>, L.A.M. Wiik<sup>48</sup>, P.A. Wijeratne<sup>77</sup>, A. Wildauer<sup>167</sup>, M.A. Wildt<sup>41,p</sup>, I. Wilhelm<sup>126</sup>, H.G. Wilkens<sup>29</sup>,
 J.Z. Will<sup>98</sup>, E. Williams<sup>34</sup>, H.H. Williams<sup>120</sup>, W. Willis<sup>34</sup>, S. Willocq<sup>84</sup>, J.A. Wilson<sup>17</sup>, M.G. Wilson<sup>143</sup>,
 A. Wilson<sup>87</sup>, I. Wingerter-Seez<sup>4</sup>, S. Winkelmann<sup>48</sup>, F. Winklmeier<sup>29</sup>, M. Wittgen<sup>143</sup>, M.W. Wolter<sup>38</sup>,
H. Wolters ^{124\mathrm{a},i}, W.C. Wong ^{40}, G. Wooden ^{87}, B.K. Wosiek ^{38}, J. Wotschack ^{29}, M.J. Woudstra ^{84}, K. Wraight ^{53}, C. Wright ^{53}, B. Wrona ^{73}, S.L. Wu ^{172}, X. Wu ^{49}, Y. Wu ^{32\mathrm{b},ac}, E. Wulf ^{34}, R. Wunstorf ^{42},
 B.M. Wynne<sup>45</sup>, L. Xaplanteris<sup>9</sup>, S. Xella<sup>35</sup>, S. Xie<sup>48</sup>, Y. Xie<sup>32a</sup>, C. Xu<sup>32b,ad</sup>, D. Xu<sup>139</sup>, G. Xu<sup>32a</sup>,
 B. Yabsley<sup>150</sup>, S. Yacoob<sup>145b</sup>, M. Yamada<sup>66</sup>, H. Yamaguchi<sup>155</sup>, A. Yamamoto<sup>66</sup>, K. Yamamoto<sup>64</sup>,
S. Yamamoto<sup>155</sup>, T. Yamamura<sup>155</sup>, T. Yamanaka<sup>155</sup>, J. Yamaoka<sup>44</sup>, T. Yamazaki<sup>155</sup>, Y. Yamazaki<sup>67</sup>, Z. Yan<sup>21</sup>, H. Yang<sup>87</sup>, U.K. Yang<sup>82</sup>, Y. Yang<sup>61</sup>, Y. Yang<sup>32a</sup>, Z. Yang<sup>146a,146b</sup>, S. Yanush<sup>91</sup>, Y. Yao<sup>14</sup>, Y. Yasu<sup>66</sup>, G.V. Ybeles Smit<sup>130</sup>, J. Ye<sup>39</sup>, S. Ye<sup>24</sup>, M. Yilmaz<sup>3c</sup>, R. Yoosoofmiya<sup>123</sup>, K. Yorita<sup>170</sup>, R. Yoshida<sup>5</sup>, C. Young<sup>143</sup>, S. Youssef<sup>21</sup>, D. Yu<sup>24</sup>, J. Yu<sup>7</sup>, J. Yu<sup>32c,ad</sup>, L. Yuan<sup>32a,ae</sup>, A. Yurkewicz<sup>148</sup>,
 V.G. Zaets <sup>128</sup>, R. Zaidan<sup>63</sup>, A.M. Zaitsev<sup>128</sup>, Z. Zajacova<sup>29</sup>, Yo.K. Zalite <sup>121</sup>, L. Zanello<sup>132a,132b</sup>,
```

- P. Zarzhitsky³⁹, A. Zaytsev¹⁰⁷, C. Zeitnitz¹⁷⁴, M. Zeller¹⁷⁵, M. Zeman¹²⁵, A. Zemla³⁸, C. Zendler²⁰, O. Zenin¹²⁸, T. Ženiš^{144a}, Z. Zenonos^{122a,122b}, S. Zenz¹⁴, D. Zerwas¹¹⁵, G. Zevi della Porta⁵⁷, Z. Zhan^{32d}, D. Zhang^{32b,ab}, H. Zhang⁸⁸, J. Zhang⁵, X. Zhang^{32d}, Z. Zhang¹¹⁵, L. Zhao¹⁰⁸, T. Zhao¹³⁸, Z. Zhao^{32b}, A. Zhemchugov⁶⁵, S. Zheng^{32a}, J. Zhong^{151,af}, B. Zhou⁸⁷, N. Zhou¹⁶³, Y. Zhou¹⁵¹, C.G. Zhu^{32d}, H. Zhu⁴¹, J. Zhu⁸⁷, Y. Zhu¹⁷², X. Zhuang⁹⁸, V. Zhuravlov⁹⁹, D. Zieminska⁶¹, R. Zimmermann²⁰, S. Zimmermann²⁰,
- S. Zimmermann⁴⁸, M. Ziolkowski¹⁴¹, R. Zitoun⁴, L. Živković³⁴, V.V. Zmouchko^{128,*}, G. Zobernig¹⁷²,
- A. Zoccoli^{19a,19b}, Y. Zolnierowski⁴, A. Zsenei²⁹, M. zur Nedden¹⁵, V. Zutshi¹⁰⁶, L. Zwalinski²⁹.
- ¹ University at Albany, Albany NY, United States of America
- ² Department of Physics, University of Alberta, Edmonton AB, Canada
- ³ (a) Department of Physics, Ankara University, Ankara; (b) Department of Physics, Dumlupinar University, Kutahya; (c) Department of Physics, Gazi University, Ankara; (d) Division of Physics, TOBB University of Economics and Technology, Ankara; (e) Turkish Atomic Energy Authority, Ankara, Turkey
- ⁴ LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
- ⁵ High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
- ⁶ Department of Physics, University of Arizona, Tucson AZ, United States of America
- ⁷ Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
- ⁸ Physics Department, University of Athens, Athens, Greece
- ⁹ Physics Department, National Technical University of Athens, Zografou, Greece
- ¹⁰ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
- ¹¹ Institut de Física d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
- ¹² (a) Institute of Physics, University of Belgrade, Belgrade; (b) Vinca Institute of Nuclear Sciences, Belgrade, Serbia
- ¹³ Department for Physics and Technology, University of Bergen, Bergen, Norway
- ¹⁴ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
- ¹⁵ Department of Physics, Humboldt University, Berlin, Germany
- Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
- ¹⁷ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
- ¹⁸ (a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Department of Physics, Istanbul Technical University, Istanbul, Turkey
- ¹⁹ (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
- ²⁰ Physikalisches Institut, University of Bonn, Bonn, Germany
- ²¹ Department of Physics, Boston University, Boston MA, United States of America
- ²² Department of Physics, Brandeis University, Waltham MA, United States of America
- ²³ (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz
- de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei;
- (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
- ²⁴ Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
- ²⁵ (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica
- Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
- ²⁶ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina ²⁷ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- ²⁸ Department of Physics, Carleton University, Ottawa ON, Canada
- ²⁹ CERN, Geneva, Switzerland
- 30 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
- ³¹ (a) Departamento de Fisica, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
- ³² (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern

Physics, University of Science and Technology of China, Anhui; $^{(c)}$ Department of Physics, Nanjing University, Jiangsu; $^{(d)}$ High Energy Physics Group, Shandong University, Shandong, China

- ³³ Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
- ³⁴ Nevis Laboratory, Columbia University, Irvington NY, United States of America
- ³⁵ Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
- 36 $^{(a)}$ INFN Gruppo Collegato di Cosenza; $^{(b)}$ Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
- ³⁷ Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland
- ³⁸ The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
- ³⁹ Physics Department, Southern Methodist University, Dallas TX, United States of America
- ⁴⁰ Physics Department, University of Texas at Dallas, Richardson TX, United States of America
- ⁴¹ DESY, Hamburg and Zeuthen, Germany
- ⁴² Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
- ⁴³ Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
- ⁴⁴ Department of Physics, Duke University, Durham NC, United States of America
- ⁴⁵ SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
- ⁴⁶ Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3 2700 Wiener Neustadt, Austria
- ⁴⁷ INFN Laboratori Nazionali di Frascati, Frascati, Italy
- ⁴⁸ Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
- ⁴⁹ Section de Physique, Université de Genève, Geneva, Switzerland
- ⁵⁰ (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
- ⁵¹ (a)</sup>E.Andronikashvili Institute of Physics, Georgian Academy of Sciences, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
- ⁵² II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
- ⁵³ SUPA School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
- ⁵⁴ II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
- ⁵⁵ Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
- ⁵⁶ Department of Physics, Hampton University, Hampton VA, United States of America
- ⁵⁷ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
- ⁵⁸ (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
- ⁵⁹ Faculty of Science, Hiroshima University, Hiroshima, Japan
- ⁶⁰ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
- ⁶¹ Department of Physics, Indiana University, Bloomington IN, United States of America
- 62 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
- ⁶³ University of Iowa, Iowa City IA, United States of America
- ⁶⁴ Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
- ⁶⁵ Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
- ⁶⁶ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
- ⁶⁷ Graduate School of Science, Kobe University, Kobe, Japan
- ⁶⁸ Faculty of Science, Kyoto University, Kyoto, Japan
- ⁶⁹ Kyoto University of Education, Kyoto, Japan
- ⁷⁰ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
- ⁷¹ Physics Department, Lancaster University, Lancaster, United Kingdom
- ⁷² (a) INFN Sezione di Lecce; (b) Dipartimento di Fisica, Università del Salento, Lecce, Italy
- ⁷³ Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
- ⁷⁴ Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia

- ⁷⁵ Department of Physics, Queen Mary University of London, London, United Kingdom
- ⁷⁶ Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
- ⁷⁷ Department of Physics and Astronomy, University College London, London, United Kingdom
- ⁷⁸ Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
- ⁷⁹ Fysiska institutionen, Lunds universitet, Lund, Sweden
- ⁸⁰ Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
- 81 Institut für Physik, Universität Mainz, Mainz, Germany
- 82 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- 83 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
- ⁸⁴ Department of Physics, University of Massachusetts, Amherst MA, United States of America
- ⁸⁵ Department of Physics, McGill University, Montreal QC, Canada
- ⁸⁶ School of Physics, University of Melbourne, Victoria, Australia
- ⁸⁷ Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
- ⁸⁸ Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
- ⁸⁹ (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
- 90 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
- ⁹¹ National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
- ⁹² Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
- 93 Group of Particle Physics, University of Montreal, Montreal QC, Canada
- ⁹⁴ P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
- ⁹⁵ Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
- ⁹⁶ Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
- 97 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
- 98 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
- 99 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
- ¹⁰⁰ Nagasaki Institute of Applied Science, Nagasaki, Japan
- ¹⁰¹ Graduate School of Science, Nagoya University, Nagoya, Japan
- ¹⁰² (a) INFN Sezione di Napoli: (b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
- 103 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
- ¹⁰⁴ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
- $^{10\bar{5}}$ Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
- ¹⁰⁶ Department of Physics, Northern Illinois University, DeKalb IL, United States of America
- ¹⁰⁷ Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia
- ¹⁰⁸ Department of Physics, New York University, New York NY, United States of America
- ¹⁰⁹ Ohio State University, Columbus OH, United States of America
- 110 Faculty of Science, Okayama University, Okayama, Japan
- 111 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
- ¹¹² Department of Physics, Oklahoma State University, Stillwater OK, United States of America
- ¹¹³ Palacký University, RCPTM, Olomouc, Czech Republic
- ¹¹⁴ Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
- ¹¹⁵ LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
- ¹¹⁶ Graduate School of Science, Osaka University, Osaka, Japan
- ¹¹⁷ Department of Physics, University of Oslo, Oslo, Norway
- ¹¹⁸ Department of Physics, Oxford University, Oxford, United Kingdom

- $^{119}\ ^{(a)}$ INFN Sezione di Pavia; $^{(b)}$ Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Pavia, Italy
- 120 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
- ¹²¹ Petersburg Nuclear Physics Institute, Gatchina, Russia
- ¹²² (a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
- ¹²³ Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
- ¹²⁴ (a) Laboratorio de Instrumentacao e Fisica Experimental de Particulas LIP, Lisboa, Portugal;
- (b) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
- ¹²⁵ Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
- ¹²⁶ Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
- ¹²⁷ Czech Technical University in Prague, Praha, Czech Republic
- ¹²⁸ State Research Center Institute for High Energy Physics, Protvino, Russia
- ¹²⁹ Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
- ¹³⁰ Physics Department, University of Regina, Regina SK, Canada
- ¹³¹ Ritsumeikan University, Kusatsu, Shiga, Japan
- ¹³² (a) INFN Sezione di Roma I; (b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy
- $^{133}\ ^{(a)}$ INFN Sezione di Roma Tor Vergata; $^{(b)}$ Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
- ¹³⁴ (a) INFN Sezione di Roma Tre; (b) Dipartimento di Fisica, Università Roma Tre, Roma, Italy
- ¹³⁵ (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies Université Hassan II, Casablanca; (b) Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat;
- (c) Université Cadi Ayyad, Faculté des sciences Semlalia Département de Physique, B.P. 2390 Marrakech 40000; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des Sciences, Université Mohammed V, Rabat, Morocco
- 136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France
- ¹³⁷ Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
- ¹³⁸ Department of Physics, University of Washington, Seattle WA, United States of America
- ¹³⁹ Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
- 140 Department of Physics, Shinshu University, Nagano, Japan
- ¹⁴¹ Fachbereich Physik, Universität Siegen, Siegen, Germany
- ¹⁴² Department of Physics, Simon Fraser University, Burnaby BC, Canada
- ¹⁴³ SLAC National Accelerator Laboratory, Stanford CA, United States of America
- ¹⁴⁴ (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
- 145 $^{(a)}$ Department of Physics, University of Johannesburg, Johannesburg; $^{(b)}$ School of Physics, University of the Witwatersrand, Johannesburg, South Africa
- ¹⁴⁶ (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
- ¹⁴⁷ Physics Department, Royal Institute of Technology, Stockholm, Sweden
- 148 Department of Physics and Astronomy, Stony Brook University, Stony Brook NY, United States of America
- ¹⁴⁹ Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
- ¹⁵⁰ School of Physics, University of Sydney, Sydney, Australia
- ¹⁵¹ Institute of Physics, Academia Sinica, Taipei, Taiwan
- ¹⁵² Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel
- ¹⁵³ Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
- ¹⁵⁴ Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
- 155 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

- ¹⁵⁶ Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
- ¹⁵⁷ Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
- ¹⁵⁸ Department of Physics, University of Toronto, Toronto ON, Canada
- ¹⁵⁹ (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada
- ¹⁶⁰ Institute of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
- ¹⁶¹ Science and Technology Center, Tufts University, Medford MA, United States of America
- ¹⁶² Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
- 163 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
- 164 $^{(a)}$ INFN Gruppo Collegato di Udine; $^{(b)}$ ICTP, Trieste; $^{(c)}$ Dipartimento di Fisica, Università di Udine, Udine, Italy
- ¹⁶⁵ Department of Physics, University of Illinois, Urbana IL, United States of America
- ¹⁶⁶ Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
- ¹⁶⁷ Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingenierá Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
- 168 Department of Physics, University of British Columbia, Vancouver BC, Canada
- ¹⁶⁹ Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
- 170 Waseda University, Tokyo, Japan
- ¹⁷¹ Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
- ¹⁷² Department of Physics, University of Wisconsin, Madison WI, United States of America
- ¹⁷³ Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
- ¹⁷⁴ Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
- ¹⁷⁵ Department of Physics, Yale University, New Haven CT, United States of America
- ¹⁷⁶ Yerevan Physics Institute, Yerevan, Armenia
- 177 Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
- ^a Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas LIP, Lisboa, Portugal
- ^b Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
- ^c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
- ^d Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
- ^e Also at TRIUMF, Vancouver BC, Canada
- f Also at Department of Physics, California State University, Fresno CA, United States of America
- ^g Also at Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland
- ^h Also at Fermilab, Batavia IL, United States of America
- ⁱ Also at Department of Physics, University of Coimbra, Coimbra, Portugal
- ^j Also at Università di Napoli Parthenope, Napoli, Italy
- ^k Also at Institute of Particle Physics (IPP), Canada
- Also at Department of Physics, Middle East Technical University, Ankara, Turkey
- ^m Also at Louisiana Tech University, Ruston LA, United States of America
- ⁿ Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada
- ^o Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
- ^p Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
- ^q Also at Manhattan College, New York NY, United States of America
- ^r Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China
- ^s Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
- ^t Also at High Energy Physics Group, Shandong University, Shandong, China
- ^u Also at Section de Physique, Université de Genève, Geneva, Switzerland
- ^v Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal
- $^{\it w}$ Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America

- ^x Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
- ^y Also at California Institute of Technology, Pasadena CA, United States of America
- ^z Also at Institute of Physics, Jagiellonian University, Krakow, Poland
- aa Also at Department of Physics, Oxford University, Oxford, United Kingdom
- ^{ab} Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
- ac Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
- ad Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France
- ae Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
- af Also at Department of Physics, Nanjing University, Jiangsu, China
- * Deceased