Step-1

A 3 dimensional space is understood by 3 axes x, y, and z. Each axis can be divided into two types $\hat{a} \in$ positive and negative.

Consider the two vectors (1,0,0) and (-1,0,0), which are along the *x*-axis. Any vector along the *x*-axis can be expressed as $\alpha(1,0,0)$ or $\alpha(-1,0,0)$, where $\hat{I}\pm$ is a nonnegative number.

Step-2

Similarly, any vector along the y-axis can be expressed as $\beta(0,1,0)$ or $\beta(0,-1,0)$, where \hat{I}^2 is a non negative number.

Finally, any vector along the z-axis can be expressed as $\gamma(0,0,1)$ or $\gamma(0,0,-1)$, where \hat{I}^3 is a non negative number.

Step-3

Thus, any vector in the 3 dimensional space can be expressed as a nonnegative combination of the following six vectors: (1,0,0), (0,1,0), (0,1,0), (0,0,1), and (0,0,-1).

Thus, a required set of six vectors is as follows: $\boxed{ \{ (\pm 1,0,0), (0,\pm 1,0), (0,0,\pm 1) \} }$

It may be noted that this set is not unique. If a is any positive number, then the following set of six vectors will certainly serve the purpose: $\{(\pm a,0,0),(0,\pm a,0),(0,0,\pm a)\}$.

Step-4

Now a nonzero component of a vector is either positive or negative. If p is a positive number, then we can write $p = p \times 1$ and if p is negative, (that is $\hat{a} \in p$ is positive), we can write $p = -p \times (-1)$.

This gives us the idea that any vector in the 3 dimensional space can be expressed as a nonnegative combination of the following vectors: (1,0,0), (0,1,0), (0,0,1), and (-1,-1,-1).

Thus, a required set of four vectors is as follows: $\overline{\left\{ (1,0,0),(0,1,0),(0,0,1),(-1,-1,-1) \right\}}$. As before, this set is not unique. The set $\left\{ (a,0,0),(0,a,0),(0,a,0),(-a,-a,-a) \right\}$ also serves the required purpose.