APPRENTISSAGE PAR RENFORCEMENT: PROJET

Alex Pierron

Apprentissage Par Renforcement M2 Mathématiques et Intelligence Artificielle Université Paris-Saclay / Institut de Mathématiques d'Orsay

22 Janvier 2024

Table des matières

Ι	\mathbf{Etu}	de théorique d'un nouvel algorithmes de points fixes	3
	I.1	Question 1	3
	I.2	Question 2	4
	I.3	Questions 3	5
		I.3.1 Question 3.a	5
		I.3.2 Question 3.b	5
	I.4	Questions 4	6
		I.4.1 Question 4.a	6
		I.4.2 Question 4.b	7
		I.4.3 Question 4.c	7
	I.5	Question 5	8

Organisation du travail

Ce travail est organisé en deux documents. Le présent document se concentre sur la Partie I du travail demandé et s'attarde sur les développements et résultats mathématiques.

Un notebook nommé "PIERRON_RL" est disponible et concerne les parties II et III, parties se concentrant sur les simulations numériques et des extensions algorithmiques.

I Etude théorique d'un nouvel algorithmes de points fixes

Soit $d \ge 1$, $F : \mathbb{R}^d \to \mathbb{R}^d$ une application admettant un point fixe $x_* \in \mathbb{R}^d$, $\eta > 0$, et $x_0 \in \mathbb{R}^d$. On définit l'algorithme Ada-FP comme suit :

$$x_{k+1} = x_k + \eta \frac{Fx_k - x_k}{\sqrt{\sum_{\ell=0}^k \|Fx_\ell - x_\ell\|_2^2}}, \quad k \geqslant 0,$$
 (Ada-FP)

avec la convention 0/0 = 0. On note pour tout $k \ge 0$,

$$u_k = Fx_k - x_k, \tag{1}$$

$$\eta_k = \frac{\eta}{\sqrt{\sum_{\ell=0}^k \| Fx_\ell - x_i\|_2^2}},$$
(2)

$$D_k = \max_{0 \le l \le k} \frac{1}{2} \|x_\ell - x_*\|_2^2.$$
 (3)

I.1 Question 1

On veut montrer que

$$\forall k \geqslant 0 \|x_{k+1} - x_*\|_2^2 \leqslant \|x_k - x_*\|_2^2 + 2\eta_k u_k^\top (x_k - x_*) + \eta_k^2 \|u_k\|_2^2.$$

Preuve. Par définition de l'algorithme Ada-FP on a $\forall k \geq 0$:

$$\begin{aligned} \|x_{k+1} - x_*\|_2^2 &= \left\|x_k + \eta \frac{\mathbf{F} x_k - x_k}{\sqrt{\sum_{\ell=0}^k \|\mathbf{F} x_\ell - x_i\|_2^2}} - x_*\right\|_2^2 = \|x_k + \eta_k u_k - x_*\|_2^2 \\ \Leftrightarrow \|x_{k+1} - x_*\|_2^2 &= \|x_k - x_* + \eta u_k\|_2^2 = \|x_k - x_*\|_2^2 + 2\eta_k u_k^\top (x_k - x_*) + \eta_k^2 \|u_k\|_2^2 \\ &\quad \text{en développant la norme avec } x = x_k - x_* \text{ et } y = \eta_k u_k \end{aligned}$$

D'où on conclut que l'on a bien

$$\forall k \geqslant 0, \|x_{k+1} - x_*\|_2^2 \leqslant \|x_k - x_*\|_2^2 + 2\eta_k u_k^\top (x_k - x_*) + \eta_k^2 \|u_k\|_2^2. \tag{4}$$

I.2 Question 2

On veut déduire de la question 1 que pour tout $k \ge 0$,

$$\sum_{l=0}^{k} u_l^{\top} (x_* - x_l) \leqslant \frac{D_k}{\eta_k} + \sum_{\ell=0}^{k} \frac{\eta_\ell \|u_\ell\|_2^2}{2}$$
 (5)

Preuve. Par (4), on a $\forall k \geq 0$:

$$2\eta_k u_k^T(x_* - x_k) \le \|x_k - x_*\|_2^2 - \|x_{k+1} - x_*\|_2^2 + \eta_k^2 \|u_k\|_2^2$$

$$\Leftrightarrow u_k^T(x_* - x_k) \le \frac{\|x_k - x_*\|_2^2}{2\eta_k} - \frac{\|x_{k+1} - x_*\|_2^2}{2\eta_k} + \eta_k \frac{\|u_k\|_2^2}{2}$$

On prend ensuite la somme:

$$\sum_{l=0}^{k} u_l^T(x_* - x_l) \le \sum_{l=0}^{k} \frac{\|x_l - x_*\|_2^2}{2\eta_l} - \frac{\|x_{l+1} - x_*\|_2^2}{2\eta_l} + \eta_l \frac{\|u_l\|_2^2}{2}$$
 (6)

On veut maintenant majorer $\sum_{l=0}^{k} \frac{\left\|x_{l}-x_{*}\right\|_{2}^{2}}{2\eta_{l}} - \frac{\left\|x_{l+1}-x_{*}\right\|_{2}^{2}}{2\eta_{l}}, \text{ on peut réécrire cette somme comme:}$

$$\sum_{l=0}^{k} \frac{\left\|x_{l} - x_{*}\right\|_{2}^{2}}{2\eta_{l}} - \frac{\left\|x_{l+1} - x_{*}\right\|_{2}^{2}}{2\eta_{l}} = \frac{1}{2} \left(\frac{1}{\eta_{0}} \left\|x_{0} - x_{*}\right\|_{2}^{2} - \frac{1}{\eta_{k}} \left\|x_{k+1} - x_{*}\right\|_{2}^{2} + \sum_{l=1}^{k} \left\|x_{l} - x_{*}\right\|_{2}^{2} \left(\frac{1}{\eta_{l}} - \frac{1}{\eta_{l-1}}\right)\right)$$

$$\sum_{l=0}^{k} \frac{\|x_{l} - x_{*}\|_{2}^{2}}{2\eta_{l}} - \frac{\|x_{l+1} - x_{*}\|_{2}^{2}}{2\eta_{l}} \le \frac{1}{\eta_{0}} \frac{\|x_{0} - x_{*}\|_{2}^{2}}{2} + \sum_{l=1}^{k} \frac{\|x_{l} - x_{*}\|_{2}^{2}}{2} (\frac{1}{\eta_{l}} - \frac{1}{\eta_{l-1}})$$
(7)

 $\operatorname{car} - \frac{1}{\eta_k} \left\| x_{k+1} - x_* \right\|_2^2 \text{ est n\'egatif.}$

En introduisant D_k comme défini dans (3), on a $\forall l$ tel que $0 \le l \le k$, $\frac{\|x_l - x_*\|_2^2}{2} \le D_k$. On a donc dans (7):

$$\sum_{l=0}^{k} \frac{\|x_l - x_*\|_2^2}{2\eta_l} - \frac{\|x_{l+1} - x_*\|_2^2}{2\eta_l} \le \frac{1}{\eta_0} D_k + D_k \sum_{l=1}^{k} (\frac{1}{\eta_l} - \frac{1}{\eta_{l-1}})$$
 (8)

 $\text{Or } \sum_{l=1}^k \frac{1}{\eta_l} - \frac{1}{\eta_{l-1}} \text{ est une somme t\'elescopique, donc on a } \sum_{l=1}^k \frac{1}{\eta_l} - \frac{1}{\eta_{l-1}} = \frac{1}{\eta_k} - \frac{1}{\eta_0}.$

En réécrivant (8), on a:

$$\sum_{l=0}^{k} \frac{\|x_l - x_*\|_2^2}{2\eta_l} - \frac{\|x_{l+1} - x_*\|_2^2}{2\eta_l} \le D_k \left(\frac{1}{\eta_0} + \frac{1}{\eta_k} - \frac{1}{\eta_0}\right) = \frac{D_k}{\eta_k} \tag{9}$$

En combinant (6) et (9), on aboutit directement à l'inégalité souhaitée qui est:

$$\forall k \geqslant 0, \sum_{l=0}^{k} u_l^{\top} (x_* - x_l) \leqslant \frac{D_k}{\eta_k} + \sum_{\ell=0}^{k} \frac{\eta_{\ell} \|u_{\ell}\|_2^2}{2}$$

I.3 Questions 3

I.3.1 Question 3.a

Soit $(a_k)_{k\geqslant 0}$ une suite positive. On veut montrer que pour tout $k\geqslant 0$,

$$\sum_{\ell=0}^{k} \frac{a_{\ell}}{\sqrt{\sum_{m=0}^{\ell} a_m}} \leqslant 2\sqrt{\sum_{\ell=0}^{k} a_{\ell}},$$

avec la convention 0/0 = 0.

Preuve. Soit $(a_k)_{k\geqslant 0}$ une suite positive.

Pour tout $n \ge 0$ on introduit $S_n = \sum_{i=0}^n a_i$ et on fixe $S_{-1} = 0$. On a alors $\forall l \ge 0$:

$$\frac{a_{\ell}}{\sqrt{\sum_{m=0}^{\ell} a_{m}}} = \frac{S_{l} - S_{l-1}}{\sqrt{S_{l}}} \text{d'où}$$

$$\sum_{\ell=0}^{k} \frac{a_{\ell}}{\sqrt{\sum_{l=0}^{\ell} a_{m}}} = \sum_{\ell=0}^{k} \frac{S_{l} - S_{l-1}}{\sqrt{S_{l}}}$$

Or la suite des $(S_k)_{k\geq 0}$ est positive et croissante, on a donc par somme de rectangle à gauche pour la fonction $f:x\to \frac{1}{\sqrt{x}}$ qui est bien définie sur \mathbb{R}^{+*} :

$$\sum_{\ell=0}^{k} \frac{S_{\ell} - S_{\ell-1}}{\sqrt{S_{\ell}}} \le \int_{0}^{S_{k}} \frac{1}{\sqrt{x}} dx$$

$$\Leftrightarrow \sum_{\ell=0}^{k} \frac{S_{\ell} - S_{\ell-1}}{\sqrt{S_{\ell}}} \le 2\sqrt{S_{k}}$$

$$\Leftrightarrow \sum_{\ell=0}^{k} \frac{a_{\ell}}{\sqrt{\sum_{m=0}^{\ell} a_{m}}} \le 2\sqrt{\sum_{\ell=0}^{k} a_{\ell}}.$$

I.3.2 Question 3.b

On veut déduire de ce qui précède que pour tout $k \ge 0$,

$$\sum_{\ell=0}^{k} u_{\ell}^{\top} \left(x_* - x_{\ell} \right) \leqslant \left(\eta + \frac{D_k}{\eta} \right) \sqrt{\sum_{\ell=0}^{k} \|u_{\ell}\|_2^2}.$$
 (10)

Preuve. Par la question 2,on a $\forall k \geq 0$,

$$\sum_{i=0}^{k} u_{e}^{\top} (x_{*} - x_{i}) \leqslant \frac{D_{k}}{\eta_{k}} + \sum_{\ell=0}^{k} \frac{\eta_{\ell} \|u_{\ell}\|_{2}^{2}}{2}$$

Or ici on reconnaît que $a_k = \eta_k \|u_k\|_2^2$, $\forall k \geq 0$ est une suite positive, on peut donc utiliser le résultat de la question I.3.1 pour cette suite en utilisant que $\eta_k = \frac{\eta}{\sqrt{\sum_{\ell=0}^k \|\operatorname{F} x_\ell - x_i\|_2^2}} = \frac{\eta}{\sqrt{\sum_{\ell=0}^k \|u_\ell\|_2^2}}$, on a alors:

$$\sum_{i=0}^{k} u_k^{\top} (x_* - x_i) \leqslant \frac{D_k}{\eta_k} + \sum_{\ell=0}^{k} \frac{\eta_{\ell} \|u_{\ell}\|_2^2}{2} \leqslant \frac{D_k}{\eta_k} + \eta_{\ell} \sqrt{\sum_{\ell=0}^{k} \|u_{\ell}\|_2^2}$$

$$\Leftrightarrow \sum_{i=0}^{k} u_{k}^{\top} (x_{*} - x_{i}) \leqslant \frac{D_{k}}{\eta_{k}} + \sum_{\ell=0}^{k} \frac{\eta_{\ell} \|u_{\ell}\|_{2}^{2}}{2} \leqslant \frac{D_{k}}{\eta} \sqrt{\sum_{\ell=0}^{k} \|u_{\ell}\|_{2}^{2}} + \eta \sqrt{\sum_{\ell=0}^{k} \|u_{\ell}\|_{2}^{2}}$$

D'où l'on conclut que
$$\forall k \geq 0, \sum_{\ell=0}^{k} u_{\ell}^{\top} (x_* - x_{\ell}) \leqslant \left(\eta + \frac{\mathbf{D}_k}{\eta} \right) \sqrt{\sum_{\ell=0}^{k} \left\| u_{\ell} \right\|_2^2}$$

I.4 Questions 4

On suppose que F est γ_F -lipschitzienne pour un certain $0 \leqslant \gamma_F < 1$.

I.4.1 Question 4.a

On veut montrer que que pour tout $k \ge 0$,

$$\|Fx_k - x_k\|_2^2 \le 2 (Fx_k - x_k)^\top (x_* - x_k).$$
 (11)

Preuve. Comme F est γ_F lipschitzienne, on a

$$\|\mathbf{F}x_1-\mathbf{F}x_2\|_2^2\leqslant \gamma_{\mathbf{F}}^2\,\|x_1-x_2\|_2^2\,, \forall x_1,x_2\in\mathbb{R}^p \text{ et on rappelle que }0\leqslant \gamma_{\mathbf{F}}<1$$

On a en particulier $\forall k \geq 0$:

 $\|\mathbf{F}x_k - \mathbf{F}x_*\|_2^2 = \|\mathbf{F}x_k - x_k - \mathbf{F}x_* + x_k\|_2^2 = \|\mathbf{F}x_k - x_k\|_2^2 + 2(\mathbf{F}x_k - x_k)^T(x_k - \mathbf{F}x_*) + \|x_k - \mathbf{F}x_*\|_2^2$ or $\|\mathbf{F}x_k - \mathbf{F}x_*\|_2^2 \leqslant \gamma_{\mathbf{F}}^2 \|x_k - x_*\|_2^2$, donc on a:

$$\|\mathbf{F}x_k - x_k\|_2^2 + 2(\mathbf{F}x_k - x_k)^T(x_k - \mathbf{F}x_*) + \|x_k - \mathbf{F}x_*\|_2^2 \leqslant \gamma_{\mathbf{F}}^2 \|x_k - x_*\|_2^2$$

Comme x_* est un point fixe, on a $Fx_* = x_*$, d'où:

$$\|\mathbf{F}x_{k} - x_{k}\|_{2}^{2} + 2(\mathbf{F}x_{k} - x_{k})^{T}(x_{k} - x_{*}) + \|x_{k} - x_{*}\|_{2}^{2} \leqslant \gamma_{\mathbf{F}}^{2} \|x_{k} - x_{*}\|_{2}^{2}$$

$$\Leftrightarrow \|\mathbf{F}x_{k} - x_{k}\|_{2}^{2} + 2(\mathbf{F}x_{k} - x_{k})^{T}(x_{k} - x_{*}) \leqslant (\gamma_{\mathbf{F}}^{2} - 1) \|x_{k} - x_{*}\|_{2}^{2} \leqslant 0, \text{ car } 0 \leqslant \gamma_{\mathbf{F}} < 1$$

$$\Leftrightarrow \|\mathbf{F}x_k - x_k\|_2^2 \leqslant 2(\mathbf{F}x_k - x_k)^T (x_* - x_k)$$

I.4.2 Question 4.b

On veut déduire de ce qui précède que pour tout $k \ge 0$,

$$\min_{0 \le l \le k} \| \operatorname{F} x_{\ell} - x_{\ell} \|_{2} \leqslant \frac{2}{\sqrt{k}} \left(\eta + \frac{\operatorname{D}_{k}}{\eta} \right) \tag{12}$$

Preuve. Soit $k \ge 0$, on pose l^* l'indice tel que $\min_{0 \le l \le k} \| \operatorname{Fx}_{\ell} - x_{\ell} \|_2 = \min_{0 \le l \le k} \| u_l \|_2 = \| u_{l^*} \|_2$. Par construction, $l^* \in \{1, ..., k\}$.

Tout d'abord, on remarque que:

$$k \|u_{l^*}\|_2^2 \le \sum_{l=0}^k \|u_l\|_2^2$$

$$\|u_{l^*}\|_2^2 \le \sum_{l=0}^k \frac{\|u_l\|_2^2}{k} \tag{13}$$

par définition de u_{l^*} . On a alors par (10) et (11) combinés:

$$\sum_{l=0}^{k} \frac{\|u_l\|_2^2}{k} \le \frac{2}{k} \sum_{l=0}^{k} u_l^T (x_k - x_*) \le \frac{2}{k} (\eta + \frac{D_k}{\eta}) \sqrt{\sum_{l=0}^{k} \|u_l\|_2^2}$$

$$\Leftrightarrow \frac{\sqrt{\sum_{l=0}^{k} \|u_l\|_2^2}}{k} \le \frac{2}{k} (\eta + \frac{D_k}{\eta}) \tag{14}$$

En utilisant la racine carré pour (13) et en multipliant (14) par \sqrt{k} , on a:

$$\|u_{l^*}\|_2 \le \frac{\sqrt{\sum_{l=0}^k \|u_l\|_2^2}}{\sqrt{k}} \le \frac{2}{\sqrt{k}} (\eta + \frac{D_k}{\eta})$$

soit
$$\|u_{l^*}\|_2 \le \frac{2}{\sqrt{k}}(\eta + \frac{D_k}{\eta})$$

Ce qui est bien l'inégalité que l'on souhaite démontrer.

I.4.3 Question 4.c

On souhaite exhiber une ou des propriétés sur $\min_{0 \leqslant \ell \leqslant k} \|x_{\ell} - x_*\|_2$. On a: $\forall k \geq 0$

$$||x_k - x_*||_2 = ||x_k - Fx_k + Fx_k - Fx_* + Fx_* - x_*||_2 \le ||x_k - Fx_k + Fx_k - Fx_*||_2 + ||Fx_* - x_*||_2$$

or comme x_* est le point fixe de F, on a que $\|Fx_* - x_*\|_2 = 0$, on peut alors écrire:

$$||x_k - x_*||_2 \le ||x_k - Fx_k + Fx_k - Fx_*||_2 \le ||x_k - Fx_k||_2 + ||Fx_k - Fx_*||_2$$
(15)

Et comme F est $\eta_{\rm F}$ lipschitzienne, on a:

$$||x_k - x_*||_2 \le ||x_k - Fx_k||_2 + ||Fx_k - Fx_*||_2 \le ||x_k - Fx_k||_2 + \eta_F ||x_k - x_*||_2$$

$$\Leftrightarrow \|x_k - x_*\|_2 \le \frac{\|x_k - Fx_k\|_2}{1 - \eta_F}$$

Or par (12), on a que

$$\forall k \geqslant 0, \min_{0 \le l \le k} \| \operatorname{F} x_{\ell} - x_{\ell} \|_{2} \leqslant \frac{2}{\sqrt{k}} \left(\eta + \frac{\operatorname{D}_{k}}{\eta} \right)$$

d'où l'on obtient

$$\min_{0 \le \ell \le k} \|x_{\ell} - x_*\|_2 \le \frac{2}{\sqrt{k}} \left(\eta + \frac{D_k}{\eta}\right) \frac{1}{1 - \eta_F} \tag{16}$$

On a donc finalement

Theorem 1. Soit F une fonction η_F -lipschitzienne. Alors pour tout $k \geq 0$, on a:

$$\min_{0 \le \ell \le k} \|x_{\ell} - x_*\|_2 \le \frac{2}{\sqrt{k}} \left(\eta + \frac{D_k}{\eta} \right) \frac{1}{1 - \eta_F} \tag{17}$$

où \mathbf{D}_k est défini par $\mathbf{D}_k = \max_{0 \leqslant l \leqslant k} \frac{1}{2} \left\| x_\ell - x_* \right\|_2^2$

I.5 Question 5

On rappelle que dans un contexte de programmation dynamique (i.e. où la dynamique de transition p du MDP est disponible sous forme explicite), les itérations valeur (synchrones) pour l'évaluation d'une politique $\pi \in \Pi_0$ (resp. pour le contrôle) sont données par

$$v_{k+1} = \mathbf{B}_{\pi} v_k, \quad k \geqslant 1, \tag{VI}_{\pi}^{(V)}$$

et

$$v_{k+1} = \mathbf{B}_* v_k, \quad k \geqslant 1, \tag{VI}_*^{(V)}$$

En utilisant (Ada-FP), on veut définir des algorithmes aux itérations valeurs synchrones classiques $(VI_{\pi}^{(V)})$ et $(VI_{*}^{(V)})$.

Sur la base de (Ada-FP), on propose les deux algorithmes (Ada-VI $_{\pi}^{(V)}$) et (Ada-VI $_{*}^{(V)}$) définis par:

$$v_{k+1} = v_k + \eta \frac{\mathbf{B}_{\pi} v_k - v_k}{\sqrt{\sum_{\ell=0}^k \|\mathbf{B}_{\pi} x_{\ell} - x_{\ell}\|_2^2}}, \quad k \geqslant 1$$
 (Ada-VI_{\pi}^(V))

et

$$v_{k+1} = v_k + \eta \frac{\mathbf{B}_* v_k - v_k}{\sqrt{\sum_{\ell=0}^k \|\mathbf{B}_* x_\ell - x_\ell\|_2^2}}, \quad k \geqslant 1$$
 (Ada-VI_{*}^(V))

Avec η un hyperparamètre strictement positif. Ce choix est motivé par le fait que B_{π} et B_{*} sont des fonctions admettant un point fixe comme vue en cours.

l'algorithme (Ada-FP) peut donc s'appliquer à ces fonctions.