Project_01_PLA

Program questions (1) fill in the blanks

Where the code (PLA.ipynb) is None (as shown below), please fill in the correct code.
 (The code PLA.ipynb will be uploaded to ecourse2)

```
def sign(z):
                                                     if z > 0:
                                                         return None
                                                     else:
#如果分類錯誤
                                                         return None
if sign(np.dot(w,x)) != None:
    print("iterator: "+str(iterator))
    iterator += 1
    error += 1
    sns.lmplot(x='sepal length (cm)',y='petal length (cm)',data=data, fit reg=False, hue ='target class')
    # 前一個Decision boundary 的法向量
   if w[1] != 0:
       x last decision boundary = np.linspace(0,w[1])
       y last decision boundary = (w[2]/w[1])*x last decision boundary
        plt.plot(x last decision boundary, y last decision boundary, 'c--')
    w += None
    print("x:" + str(x))
    print("w: " + str(w))
```

Comparison of Classification Results from Different Datasets

Given three different iris datasets:

```
iris_data1, iris_data2, iris_data3 = iris_data, iris_data
iris_data1 = iris_data1.drop(98)
iris_data2 = iris_data2.append({'sepal length (cm)':5, 'petal length (cm)':2.4, 'target_class':1},ignore_index=True)
iris_data3 = iris_data3.append({'sepal length (cm)':6.5, 'petal length (cm)':4.0, 'target_class':1},ignore_index=True)
```


iris_data1

iris_data2

iris_data3

Comparison of Classification Results from Different Datasets

- Question 1: Please explain why the number of iterations between iris_data1 and iris_data2 is different, and the possible reasons?
- Question 2: Importing iris_data3 will find that there is no way to converge, please explain the possible reasons?

Program questions (2) Pocket Algorithm

•Importing iris_data3 cannot converge, so the program will keep iterating.

Please refer to Pocket Algorithm to modify the program so that the program will

not iterate all the time.

Pocket Algorithm

- Initialize pocket weight $\hat{\mathbf{w}}$
- For t = 0,1,...
 - 1. Find a (random) mistake of $\mathbf{w_t}$ called $(\mathbf{x}_{n(t)}, y_{n(t)})$
 - 2. Correct the mistake by

$$\mathbf{w_{t+1}} \leftarrow \mathbf{w}_t + y_{n(t)} \mathbf{x}_{n(t)}$$

3. If \mathbf{w}_{t+1} makes fewer mistakes than $\widehat{\mathbf{w}}$, replace $\widehat{\mathbf{w}}$ by \mathbf{w}_{t+1} .

Until enough iterations. $g = \widehat{\mathbf{w}}$

Submit file

- Code: StudentNumber_Name.ipynb
- Explanation of comparison results: StudentNumber_Name.pdf
- Deadline: 3/29(Wed.) 11:59 p.m.