Sprawozdanie z realizacji projektu systemu kolejkowego w sklepie komputerowym

W ramach zadania zaprojektowano i zaimplementowano system kolejkowy symulujący obsługę klientów w sklepie komputerowym. System uwzględnia cztery kategorie usług: szybki odbiór zamówienia (A), doradztwo w zakupie (B), serwis (C) oraz luźne pogaduchy (D). Celem projektu było wykorzystanie odpowiedniej struktury danych do zarządzania kolejkami, symulacja napływu klientów oraz zbieranie statystyk dotyczących średniego czasu obsługi.

Struktura danych

Podstawową strukturą wykorzystaną w systemie jest kolejka typu FIFO (First-In, First-Out), zaimplementowana przy użyciu listy Pythona. Struktura ta została wybrana ze względu na jej naturalne odwzorowanie rzeczywistych kolejek, w których klienci są obsługiwani w kolejności przybycia. Klasa Kolejka zawiera metody standardowe dla tej struktury, takie jak enqueue (dodanie elementu na koniec kolejki), dequeue (usunięcie elementu z początku kolejki), is_empty (sprawdzenie, czy kolejka jest pusta) oraz size (zwrócenie liczby klientów w kolejce). Każda kategoria obsługi (A, B, C, D) posiada własną instancję kolejki.

Opis implementacji

System składa się z trzech głównych komponentów:

Klasa Klient

Generuje obiekty reprezentujące klientów z unikalnym identyfikatorem, czasem przybycia, kategorią usługi oraz losowym czasem obsługi zależnym od kategorii. Czas obsługi jest generowany w zakresach:

- A: 2–5 sekund,
- B: 5–10 sekund,
- C: 10–20 sekund,
- D: 15–30 sekund.

Klasa System

Zarządza czterema kolejkami (A, B, C, D) oraz historią obsługi klientów. Metody tej klasy umożliwiają:

- Dodawanie klientów do odpowiednich kolejek (dodaj klienta),
- Obsługę klientów (obsluz_klienta) z pomiarem czasu między przybyciem a rozpoczęciem obsługi,
- Wyświetlanie aktualnego stanu kolejek (akutalny stan),
- Generowanie statystyk średniego czasu obsługi dla każdej kategorii (statystyki).

Główna pętla symulacji (plik main.py)

Symulacja trwa 60 sekund (domyślnie), podczas których:

- 1. Z prawdopodobieństwem 40% w każdej iteracji generowany jest nowy klient z losową kategorią.
- 2. Z prawdopodobieństwem 20% próbuje obsłużyć klienta w każdej z kategorii.
- 3. Co 5 sekund wyświetlany jest aktualny stan kolejek.
- 4. Po zakończeniu symulacji prezentowane są statystyki średniego czasu obsługi.

Przykład uruchomienia programu

Podczas symulacji na konsoli wyświetlane są komunikaty o dodawaniu klientów do kolejek, rozpoczynaniu i kończeniu obsługi oraz okresowe podsumowania stanu kolejek. Przykładowy fragment działania:

--- Czas: 25s ---

Kolejka A: 1 klientów Kolejka B: 0 klientów Kolejka C: 1 klientów Kolejka D: 1 klientów

[+] Obsługa klienta 7ee188dd (kategoria A - szybki odbiór zamówienia)

Czas obsługi: 5s (zakonczenie: 36s)

[*] Obsłużono klienta 7ee188dd(kategoria A, czas obslugi: 5s)

Wynik końcowy zawiera średnie czasy obsługi dla każdej kategorii:

===Koniec symulacji ===

Średni czas obsługi (A): 7.11s

Średni czas obsługi (B): 3.67s

Średni czas obsługi (C): 2.75s

Średni czas obsługi (D): 3.75s

Podsumowanie

Zaimplementowany system poprawnie symuluje działanie kolejek w sklepie, uwzględniając różnice w czasie obsługi poszczególnych kategorii. Struktura kolejki FIFO zapewnia realistyczne zarządzanie klientami, a mechanizm zbierania statystyk umożliwia analizę efektywności obsługi. Program spełnia założenia zadania, a jego modularna konstrukcja ułatwia ewentualne rozszerzenia.