Sistemas e Sinais

(LEE & LETI)

Laboratório nº 1: Sinais e Sistemas Preparado por Isabel Lourtie, Janeiro 2016

Preparação Prévia

$\prec \succ$	\prec \succ	\prec \succ
76	7	76

Grupo nº _	Turno _	
N°	Nome:	
N°	Nome:	
N°	Nome:	
		$\mathcal{N}_{\mathcal{N}}$

1. Introdução

Este trabalho de laboratório explora conceitos básicos de sinais e de sistemas discretos, nomeadamente, a periodicidade de sinais sinusoidais, a compressão temporal de sinais, e as propriedades de causalidade, estabilidade, linearidade e invariância temporal de sistemas.

Os trabalhos de laboratório são constituídos por duas partes. A primeira, de preparação prévia, deve ser resolvida **antes da aula de laboratório** e a resolução **entregue no início da aula**; Os alunos devem levar para a aula uma cópia desta resolução para consultarem durante a aula. A segunda parte do trabalho é experimental e deverá ser resolvida na aula de laboratório e o relatório **entregue no final da aula**.

Tanto a resolução da parte de preparação prévia como o relatório da parte experimental são constituídos pelo respectivos enunciados, com as respostas escritas nos espaços reservados para o efeito. Caso o espaço seja insuficiente, poderão ser acrescentadas folhas adicionais. As figuras solicitadas na componente experimental deverão ser guardadas em formato jpg.

No **início da aula** de laboratório os alunos devem **entregar a resolução prévia** ao docente.

2. Sinais

2.1 Periodicidade

1. (1 val.) Considere o sinal discreto

$$x_1(n) = 2 \sin\left(\frac{2\pi}{3}n - 1\right) + 3\cos\left(\frac{8\pi}{5}n\right).$$

O sinal $x_1(n)$ é periódico? Em caso afirmativo determine o seu período e frequência fundamentais.

2.2 Compressão temporal

1. (1.5 val.) Considere o sinal discreto

$$x(n) = \begin{cases} n & ; & n \text{ impar} \\ 1 & ; & n \text{ par} \end{cases}$$

Esboce x(n) para $-10 \le n \le 10$ e explique porque é que o sinal não é periódico.

Sistemas e Sinais - 1º trabalho de laboratório

$Para -10 \le n \le 10,$	determine	e esboce o	sinal

$$y(n) = x(2n)$$

e explique porque é que y(n) é periódico apesar de x(n) não o ser.

2. (2 val.) Seja x(n) um sinal discreto periódico de período fundamental N_{x_0} . Mostre que

$$y(n) = x(2n)$$

também é periódico. Relacione o período fundamental de y(n), N_{y_0} , com N_{x_0} .

Nota: Para relacionar N_{y_0} com N_{x_0} , analise separadamente para N_{x_0} par e N_{x_0} impar.

3. Sistemas

3.1 Propriedades

Considere o seguinte sistema discreto

$$y(n) = (-1)^n |x(n)|$$

em que x(n) e y(n) representam, respectivamente, os sinais de entrada e de saída.

- 1. Mostre, ou justifique, que:
 - a) (0.5 val.) O sistema é causal.

b) (1 val) O sistema é estável.

c) (1 val) O sistema é não linear.

d) (1 val) O sistema é variante no tempo.

- 2. Explique porque é que são verdadeiras as seguintes afirmações:
 - a) (1 val) Sejam $y_1(n)$ e $y_2(n)$ as respostas no tempo de um sistema discreto aos sinais de entrada, respectivamente, $x_1(n)$ e $x_2(n)$, tais que

$$x_1(n) = x_2(n) \quad \forall n \le N.$$

Se o sistema for **causal** então

$$y_1(n) = y_2(n) \quad \forall n \le N.$$

b) (1 val) Seja y(n) a resposta no tempo de um sistema discreto ao sinal de entrada

$$x(n) = 0 \quad \forall n$$
.

Se o sistema for linear então

$$y(n) = 0 \quad \forall n$$
.