6

Занятие ⊠1

- 1 Докажите, что в равных треугольниках соответствующие медианы равны. $\mathbf{2}$ Угол треугольника равен сумме двух других его углов. Докажите, что треугольник прямоугольный. 3 Через вершину B треугольника ABC проведена прямая, параллельная прямой AC. Образовавшиеся при этом три угла с вершиной B относятся как 3:10:5. Найдите углы треугольника ABC. 4 Углы треугольника относятся как 2:3:4 Найдите отношение внешних углов треугольника. Внешние углы треугольника ABC при вершинах A и C равны 115° и 140° . Прямая, па-5 раллельная прямой AC, пересекает стороны AB и BC в точках M и N. Найдите углы треугольника BMN.
- M. При этом BM=AB, $\angle BAM=35^\circ$, $\angle CAM=15^\circ$. Найдите углы треугольника ABC.

Прямая, проходящая через вершину A треугольника ABC, пересекает сторону BC в точке

- 7 Острые углы прямоугольного треугольника равны 81° и 9°. Найдите угол между биссектрисой и медианой, проведенными из вершины прямого угла. Ответ дайте в градусах.
- 8 В прямоугольном треугольнике ABC на гипотенузе AB взяты точки K и M, причем AK = AC и BM = BC. Найдите $\angle MCK$.

Занятие ⊠2

- **1** Дан треугольник ABC, причем AB = AC и $\angle A = 110^\circ$. Внутри треугольника взята точка M такая, что $\angle MBC = 30^\circ$, а $\angle MCB = 25^\circ$. Найдите $\angle AMC$.
- **2** Докажите, что если медиана равна половине стороны, к которой она проведена, то такой треугольник прямоугольный.
- **3** Докажите, что медиана прямоугольного треугольника, проведенная из вершины прямого угла, равна половине гипотенузы.
- **4** Докажите, что если треугольник вписан в окружность и одна из его сторон является диаметром этой окружности, то такой треугольник является прямоугольным.
- **5** Докажите обратное, что если треугольник прямоугольный и вписан в окружность, то гипотенуза будет являться диаметром окружности.
- **6** Докажите, что окружность, построенная на стороне равностороннего треугольника как на диаметре, проходит через середины двух других сторон треугольника.
- Докажите, что отличная от A точка пересечения окружностей, построенных на сторонах AB и AC треугольника ABC как на диаметрах, лежит на прямой BC.
- 8 Окружность, построенная на катете прямоугольного треугольника как на диаметре, делит гипотенузу пополам. Найдите углы треугольника.
- 9 Острый угол прямоугольного треугольника равен 30°. Докажите, что высота и медиана, проведенные из вершины прямого угла, делят прямой угол на три равные части.
- 10 В прямоугольном треугольнике ABC на гипотенузе AB взяты точки K и M, причем AK = AC и BM = BC. Найдите $\angle MCK$.

Домашняя работа ⊠1

1 Вычислить:

1)
$$3^7 \cdot 3^9 : 3^{14}$$

2)
$$\frac{10^8}{2^9 \cdot 2^8}$$

2 Упростить выражение:

$$\frac{7-5m}{m-4} + \frac{4m}{m+4} \cdot \frac{m^2-16}{4m} + \frac{9m-23}{m-4}$$

3 Упростить и найти значение выражения:

$$\left(\frac{x+1}{x-1} - \frac{x-1}{x+1}\right) \left(\frac{1}{2} - \frac{x}{4} - \frac{1}{4x}\right)$$
, при $x = 0, 2$

- 4 Докажите, что в равных треугольниках соответствующие биссектрисы равны.
- **5** В равностороннем треугольнике ABC биссектрисы CN и AM пересекаются в точке P. Найдите $\angle MPN$.
- 6 Медиана AM треугольника ABC перпендикулярна его биссектрисе BK. Найдите AB, если BC=12.
- Т На продолжениях гипотенузы AB прямоугольного треугольника ABC за точки A и B соответственно взяты точки K и M, причем AK = AC и BM = BC. Найдите угол MCK.
- **8** Докажите, что окружность, построенная на боковой стороне равнобедренного треугольника как на диаметре, проходит через середину основания.
- 9 На стороне AB квадрата ABCD построен равносторонний треугольник ABM. Найдите угол DMC.

Занятие 🖾 3

- 1 Докажите следующие свойства окружности:
 - 1) диаметр, перпендикулярный хорде, делит ее пополам;
 - 2) диаметр, проходящий через середину хорды, не являющейся диаметром, перпендикулярен этой хорде;
 - 3) хорды, удаленные от центра окружности на равные расстояния, равны.
- Через точку A окружности с центром O проведены диаметр AB и хорда AC. Докажите, что угол BAC вдвое меньше угла BOC (без использования свойств центральных и вписанных углов).
- **3** Найдите угол между радиусами OA и OB, если расстояние от центра O окружности до хорды AB вдвое меньше AB.
- **4** Даны две концентрические окружности и пересекающая их прямая. Докажите, что отрезки этой прямой, заключенные между окружностями, равны.
- **5** Прямая, проходящая через общую точку A двух окружностей, пересекает вторично эти окружности в точках B и C соответственно. Расстояние между проекциями центров окружностей на эту прямую равно 12. Найдите BC, если известно, что точка A лежит на отрезке BC.
- **8*** Две хорды окружности взаимно перпендикулярны. Докажите, что расстояние от точки их пересечения до центра окружности равно расстоянию между их серединами.

Занятие ⊠4

- Внутренние углы треугольника ABC относятся как 10:5:3. Найдите внутренние и внешние углы треугольника ABC и вычислите разницу самого наибольшего и наименьшего внешних углов.
- **2** Угол между радиусами OA и OB окружности равен 60°. Найдите хорду AB, если радиус окружности равен 12.
- В треугольнике ABC углы B и C равны 30 и 40 соответственно. Сторону AB продлили за вершину A и из этой вершины провели высоту к стороне BC и биссектрису внешнего угла. Найдите угол между высотой и биссектрисой.
- 4 Дана окружность с центром O. На продолжении хорды AB за точку B отложен отрезок BC, равный радиусу. Через точки C и O проведена секущая CD (D точка пересечения с окружностью, лежащая вне отрезка CO). Докажите, что $\angle AOD = 3 \angle ACD$.
- **5** Равные хорды окружности с центром O пересекаются в точке M. Докажите, что MO биссектриса угла между ними.
- **6** Продолжения хорд AB и CD окружности с диаметром AD пересекаются под углом 25° . Найдите острый угол между хордами AC и BD.
- **7** Докажите, что точка пересечения биссектрис треугольника ABC, точки B и C, а также точка пересечения биссектрис внешних углов с вершинами B и C лежат на одной окружности.
- 8 Упростить выражение:

$$\frac{x^3 + 50}{10x - x^2 - 25} + \frac{2x^2}{(x - 5)^2} + \frac{25x}{(5 - x)^2}$$

Домашняя работа ⊠2

1 Упростить выражение:

$$1: \left(\frac{a}{a-b} + \frac{4a^2b - ab^2}{b^3 - a^3} + \frac{b^2}{a^2 + ab + b^2}\right) - \frac{-3ab}{(a-b)^2}$$

2 Упростить и найти значение выражения:

$$\left(\frac{x+1}{x-1} - \frac{x-1}{x+1} + 4x\right) \cdot \left(x - \frac{1}{x}\right)$$
, если $x = 5\frac{1}{3}$

- **3** Через точку на окружности проведены диаметр и хорда, равная радиусу. Найдите угол между ними.
- 4 Найдите угол между радиусами OA и OB, если расстояние от центра O окружности до хорды AB вдвое меньше OA.
- Б На катете AC прямоугольного треугольника ABC как на диаметре построена окружность, пересекающая гипотенузу AB в точке K. Найдите CK, если AC = 2 и $\angle A = 30^{\circ}$.
- 6 Окружность, построенная на стороне треугольника как на диаметре, проходит через середину другой стороны. Докажите, что треугольник равнобедренный.
- **7** Продолжения равных хорд AB и CD окружности соответственно за точки B и C пересекаются в точке P. Докажите, что треугольники APD и BPC равнобедренные.

Занятие ⊠5

- **1** Докажите, что центр окружности, вписанной в угол, расположен на его биссектрисе.
- **2** Точка D лежит на стороне BC треугольника ABC. В треугольник ABD и ACD вписаны окружности с центрами O_1 и O_2 . Докажите, что отрезок O_1O_2 виден из точки D под прямым углом.
- 3 К окружности, вписанной в равносторонний треугольник со стороной, равной 8, проведена касательная, пересекающая две его стороны. Найдите периметр отсеченного треугольника.
- **4** Прямая, параллельная хорде AB, касается окружности в точке C. Докажите, что треугольник ABC равнобедренный.
- **5** Две прямые, пересекающиеся в точке C, касаются окружности в точках A и B. Известно, что $\angle ACB = 120^{\circ}$. Докажите, что сумма отрезков AC и BC равна отрезку OC.
- **6** Пусть r радиус окружности, вписанной в прямоугольный треугольник с катетами a и b и гипотенузой c. Докажите, что $r=\frac{1}{2}(a+b-c)$.
- 7 В треугольник ABC вписана окружность, касающаяся стороны AB в точке M. Пусть AM = x, BC = a, полупериметр треугольника равен p. Докажите, что x = p a.
- 8 Найти значение выражения:

$$61a - 11b + 50$$
, если $\frac{2a - 7b + 5}{7a - 2b + 5} = 9$.

Занятие 🛚 6

- **1** Докажите, что центр окружности, вписанной в угол, расположен на его биссектрисе.
- **2** Точка D лежит на стороне BC треугольника ABC. В треугольник ABD и ACD вписаны окружности с центрами O_1 и O_2 . Докажите, что отрезок O_1O_2 виден из точки D под прямым углом.
- 3 К окружности, вписанной в равносторонний треугольник со стороной, равной 8, проведена касательная, пересекающая две его стороны. Найдите периметр отсеченного треугольника.
- 4 Прямая, параллельная хорде AB, касается окружности в точке C. Докажите, что треугольник ABC равнобедренный.
- **5** Две прямые, пересекающиеся в точке C, касаются окружности в точках A и B. Известно, что $\angle ACB = 120^{\circ}$. Докажите, что сумма отрезков AC и BC равна отрезку OC.
- **6** Пусть r радиус окружности, вписанной в прямоугольный треугольник с катетами a и b и гипотенузой c. Докажите, что $r=\frac{1}{2}(a+b-c)$.
- **7*** В треугольник ABC вписана окружность, касающаяся стороны AB в точке M. Пусть AM = x, BC = a, полупериметр треугольника равен p. Докажите, что x = p a.
- **8*** В треугольник со сторонами 6, 10 и 12 вписана окружность. К окружности проведена касательная так, что она пересекает две большие стороны. Найдите периметр отсечённого треугольника.

Подготовка к проверочной

- Чему равен угол между биссектрисами двух смежных углов?
 Чему равен угол между биссектрисами двух внутренних односторонних углов при параллельных прямых? Докажите это.
 Сформулируйте и докажите теорему о внешнем угле треугольника.
 Чему равна сумма всех внешних углов треугольника?
 Докажите, что биссектриса внешнего угла при вершине равнобедренного треугольника, параллельна основанию.
 Докажите, что если в треугольнике один угол равен сумме двух других, то такое треугольник прямоугольный.
- **7** Докажите, что если медиана равна половине стороны, к которой она проведена, то такой треугольник прямоугольный.
- **8** Докажите, что если треугольник вписан в окружность и одна из его сторон является диаметром этой окружности, то такой треугольник прямоугольный.
- **9** Сформулируйте теорему об угле в 30° в прямоугольном треугольнике. Сформулируйте обратную теорему.
- 10 Сформулируйте теорему о диаметре, перпендикулярном хорде.
- 11 Сформулируйте теорему о диаметре, проходящем через середину хорды.
- **12** Где лежит центр вписанной в треугольник окружности? Где лежит центр описанной окружности?
- 13 Сформулируйте теорему о двух касательных, проведенных из одной точки к окружности.
- **14** Докажите, что касательные к окружности, проведенные через концы диаметра, параллельны.
- 15 Угол между биссектрисами двух углов треугольника равен 120°. Чему равен третий угол треугольника?
- **16** Угол треугольника равен 50°. Найдите угол между высотами, проведенными из двух других углов.
- 17 В треугольнике ABC угол $\angle B = 60^\circ$. Найдите угол между биссектрисами двух других внешних углов.
- **18** Докажите, что окружность, построенная на боковой стороне равнобедренного треугольника как на диаметре, проходит через середину основания.
- **19** Продолжения равных хорд AB и CD окружности соответственно за точки B и C пересекаются в точке P. Докажите, что треугольники APD и BPC равнобедренные.
- **20** Хорда большей из двух концентрических окружностей касается меньшей. Докажите, что точка касания делит эту хорду пополам.

- **21** Две прямые касаются окружности с центром O в точках A и B и пересекаются в точке C. Найдите угол между этими прямыми, если $\angle ABO = 40^{\circ}$.
- **22** К окружности, вписанной в квадрат со стороной, равной 4, проведена касательная, пересекающая две его стороны. Найдите периметр отсеченного треугольника.
- **23** Окружность касается двух параллельных прямых и их секущей. Докажите, что отрезок секущей, заключенный между параллельными прямыми, виден из центра окружности под прямым углом.
- **24** Докажите, что отличная от A точка пересечения окружностей, построенных на сторонах AB и AC треугольника ABC как на диаметрах, лежит на прямой BC.
- **25** В треугольнике ABC медиана AM продолжена за точку M на расстояние, равное AM. Найдите расстояние от полученной точки до вершин B и C, если AB = 5, AC = 12.
- **26** Дана окружность с центром O. На продолжении хорды AB за точку B отложен отрезок BC, равный радиусу. Через точки C и O проведена секущая CD (D точка пересечения с окружностью, лежащая вне отрезка CO). Докажите, что $\angle AOD = 3 \angle ACD$.
- 27 Из произвольной точки основания равнобедренного треугольника с боковой стороной, равной 10, проведены прямые, параллельные боковым сторонам. Найдите периметр получившегося четырехугольника.
- [28] На сторонах выпуклого четырехугольника как на диаметрах построены четыре окружности. Докажите, что общая хорда окружностей, построенных на двух соседних сторонах, параллельна общей хорде двух других окружностей.

Проверочная работа

Вариант 1

- 1) Чему равен угол между биссектрисами двух смежных углов?
 - 2) Сформулируйте и докажите теорему о внешнем угле треугольника.
 - 3) Докажите, что биссектриса внешнего угла при вершине равнобедренного треугольника, параллельна основанию.
 - 4) Докажите, что если медиана равна половине стороны, к которой она проведена, то такой треугольник прямоугольный.
 - 5) Докажите, что если треугольник вписан в окружность и одна из его сторон является диаметром этой окружности, то такой треугольник прямоугольный.
 - 6) Сформулируйте теорему об угле в 30° в прямоугольном треугольнике. Сформулируйте обратную теорему.
 - 7) Сформулируйте теорему о диаметре, проходящем через середину хорды.
 - 8) Где лежит центр вписанной в треугольник окружности?
- **2** В треугольнике ABC обе стороны AB и BC равны 15. Чему равна сторона AC, если $\angle BAC = 60^{\circ}$?
- **3** В треугольнике ABC известно, что $\angle A=50$ и $\angle B=80$. Найдите сторону BC, если AC=16 и $P_{ABC}=40$.
- 4 Угол между биссектрисами двух углов треугольника равен 100°. Чему равен третий угол треугольника?
- **5** Докажите, что окружность, построенная на боковой стороне равнобедренного треугольника как на диаметре, проходит через середину основания.
- 6 Две прямые касаются окружности с центром O в точках A и B и пересекаются в точке C. Найдите угол между этими прямыми, если $\angle ABO = 40^{\circ}$.
- **7** В треугольнике ABC медиана AM продолжена за точку M на расстояние, равное AM. Найдите расстояние от полученной точки до вершин B и C, если AB = 5, AC = 12.
- 8 К окружности, вписанной в квадрат со стороной, равной 4, проведена касательная, пересекающая две его стороны. Найдите периметр отсеченного треугольника.

Проверочная работа

Вариант 2

- 1) Чему равен угол между биссектрисами двух внутренних односторонних углов при параллельных прямых?
 - 2) Сформулируйте и докажите теорему о внешнем угле треугольника.
 - 3) Докажите, что если в треугольнике один угол равен сумме двух других, то такое треугольник прямоугольный.
 - 4) Докажите, что если треугольник вписан в окружность и одна из его сторон является диаметром этой окружности, то такой треугольник прямоугольный.
 - 5) Сформулируйте теорему об угле в 30° в прямоугольном треугольнике. Сформулируйте обратную теорему.
 - 6) Сформулируйте теорему о диаметре, перпендикулярном хорде.
 - 7) Сформулируйте теорему о двух касательных, проведенных из одной точки к окружности.
- **2** В треугольнике ABC обе стороны AB и BC равны 30. Чему равна сторона AC, если $\angle BAC = 60^{\circ}$?
- **3** В треугольнике ABC известно, что $\angle A=50$ и $\angle B=80$. Найдите сторону BC, если AC=20 и $P_{ABC}=50$.
- 4 Угол треугольника равен 80°. Найдите угол между высотами, проведенными из двух других углов.
- **5** Докажите, что окружность, построенная на боковой стороне равнобедренного треугольника как на диаметре, проходит через середину основания.
- **6** Две прямые касаются окружности с центром O в точках A и B и пересекаются в точке C. Найдите угол между этими прямыми, если $\angle ABO = 40^{\circ}$.
- В треугольнике ABC медиана AM продолжена за точку M на расстояние, равное AM. Найдите расстояние от полученной точки до вершин B и C, если AB=5, AC=12.
- 8 Из произвольной точки основания равнобедренного треугольника с боковой стороной, равной 10, проведены прямые, параллельные боковым сторонам. Найдите периметр получившегося четырехугольника.