CS 105: DIC on Discrete Structures

Instructor: S. Akshay

 ${\bf Sept~07,~2023}$ Lecture 14 – a little bit on lattices and on to Counting

Recap: Partial order relations

Last two classes we saw

- ▶ Partial orders: definition and examples
- ▶ Posets, chains and anti-chains
- ▶ Graphical representation as Directed Acyclic Graphs
- ► Topological sorting (application to task scheduling)
- ▶ Mirsky's theorem (application to parallel task scheduling)

Poset
$$P_1 = (S_1, \subseteq)$$

where $S_1 = \mathcal{P}(\{1, 2, 3\})$

Poset $P_2 = (S_2, \subseteq)$ where $S_2 = \mathcal{P}(\{1,2,3\}) \setminus \{\emptyset, \{1,2,3\}\}$

Let (S, \preceq) be a poset.

- $ightharpoonup a \in S$ is minimal in S if $\forall b \in S, b \leq a \implies b = a$
- $ightharpoonup a \in S$ is maximal in S if $\forall b \in S, a \leq b \implies a = b$.

Let (S, \preceq) be a poset.

- $ightharpoonup a \in S$ is minimal in S if $\forall b \in S, b \leq a \implies b = a$
- \bullet $a \in S$ is maximal in S if $\forall b \in S, a \leq b \implies a = b$.
- $ightharpoonup a \in S$ is least/minimum element of S if $\forall b \in S, a \leq b$
- ▶ $a \in S$ is greatest/maximum element of S if $\forall b \in S, b \leq a$.

Let (S, \preceq) be a poset.

- $ightharpoonup a \in S$ is minimal in S if $\forall b \in S, b \leq a \implies b = a$
- \bullet $a \in S$ is maximal in S if $\forall b \in S, a \leq b \implies a = b$.
- $ightharpoonup a \in S$ is least/minimum element of S if $\forall b \in S, a \leq b$
- ▶ $a \in S$ is greatest/maximum element of S if $\forall b \in S, b \leq a$.

Examples: \emptyset is a minimal and the minimum element in P_1 , $\{1\}, \{2\}, \{3\}$ are all minimal elements in P_2 , but P_2 does not have any minimum element.

Let (S, \preceq) be a poset.

- $lacktriangleq a \in S \text{ is minimal in } S \text{ if } \forall b \in S, b \leq a \implies b = a$
- \bullet $a \in S$ is maximal in S if $\forall b \in S, a \leq b \implies a = b$.
- $ightharpoonup a \in S$ is least/minimum element of S if $\forall b \in S, a \leq b$
- ▶ $a \in S$ is greatest/maximum element of S if $\forall b \in S, b \leq a$.

Examples: \emptyset is a minimal and the minimum element in P_1 , $\{1\}, \{2\}, \{3\}$ are all minimal elements in P_2 , but P_2 does not have any minimum element.

Exercise: What are the maximal/maximum elements in P_1, P_2 ?

Let (S, \preceq) be a poset and $A \subseteq S$.

▶ $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \leq u$ (resp. $l \leq a$) for all $a \in A$.

Let (S, \preceq) be a poset and $A \subseteq S$.

- ▶ $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \leq u$ (resp. $l \leq a$) for all $a \in A$.
- ▶ $u \in S$ is the least upper bound (lub) of A if it is an upper bound of A and is less than every other upper bound.
- ▶ $l \in S$ is the greatest lower bound (glb) of A if it is an lower bound of A and is greater than every other lower bound.

Let (S, \preceq) be a poset and $A \subseteq S$.

- ▶ $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \leq u$ (resp. $l \leq a$) for all $a \in A$.
- ▶ $u \in S$ is the least upper bound (lub) of A if it is an upper bound of A and is less than every other upper bound.
- ▶ $l \in S$ is the greatest lower bound (glb) of A if it is an lower bound of A and is greater than every other lower bound.

Let (S, \preceq) be a poset and $A \subseteq S$.

- ▶ $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \leq u$ (resp. $l \leq a$) for all $a \in A$.
- ▶ $u \in S$ is the least upper bound (lub) of A if it is an upper bound of A and is less than every other upper bound.
- ▶ $l \in S$ is the greatest lower bound (glb) of A if it is an lower bound of A and is greater than every other lower bound.

▶ Let $A = \{\{1\}, \{2\}\}$. Then $\{1, 2\}, \{1, 2, 3\}$ are upper bounds of A in P_1 and $\{1, 2\}$ is the lub of A.

Let (S, \preceq) be a poset and $A \subseteq S$.

- ▶ $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \leq u$ (resp. $l \leq a$) for all $a \in A$.
- $u \in S$ is the least upper bound (lub) of A if it is an upper bound of A and is less than every other upper bound.
- ▶ $l \in S$ is the greatest lower bound (glb) of A if it is an lower bound of A and is greater than every other lower bound.

Poset
$$P_3 = (S_3, \preceq)$$

▶ Consider $P_3 = (S_3, \preceq)$ where $S_3 = \{X, Y, Z, W\}$ and the \preceq is as given by the arrows. Let $B = \{X, Y\}$. Then Z, W are both upper bounds of B in P_3 , but B has no lub in P_3 .

Let (S, \preceq) be a poset and $A \subseteq S$.

- ▶ $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \leq u$ (resp. $l \leq a$) for all $a \in A$.
- ▶ $u \in S$ is the least upper bound (lub) of A if it is an upper bound of A and is less than every other upper bound.
- ▶ $l \in S$ is the greatest lower bound (glb) of A if it is an lower bound of A and is greater than every other lower bound.

Some Obervations (Exercise: Prove it!)

- ightharpoonup The lub/glb of a subset A in S, if it exists, is unique.
- ▶ If the lub/glb of $A \subseteq S$ belongs to A, then it is the greatest/least element of A.

Definition

▶ A lattice is a poset in which every pair of elements has both a lub and a glb (in the set), i.e., $\forall x, y \in S$, there exists $l, u \in S$ such that l is the glb and u is the lub of $\{x, y\}$.

Definition

- ▶ A lattice is a poset in which every pair of elements has both a lub and a glb (in the set), i.e., $\forall x, y \in S$, there exists $l, u \in S$ such that l is the glb and u is the lub of $\{x, y\}$.
- \blacktriangleright $(\mathcal{P}(S),\subseteq)$ is a lattice.
- ▶ What about $({2,4,5,10,12,20,25},|)$?

Definition

- ▶ A lattice is a poset in which every pair of elements has both a lub and a glb (in the set), i.e., $\forall x, y \in S$, there exists $l, u \in S$ such that l is the glb and u is the lub of $\{x, y\}$.
- \blacktriangleright $(\mathcal{P}(S),\subseteq)$ is a lattice.
- ▶ What about $(\{2,4,5,10,12,20,25\},|)$?

Applications of Lattices

► Models of information flow –

Definition

- ▶ A lattice is a poset in which every pair of elements has both a lub and a glb (in the set), i.e., $\forall x, y \in S$, there exists $l, u \in S$ such that l is the glb and u is the lub of $\{x, y\}$.
- \blacktriangleright $(\mathcal{P}(S),\subseteq)$ is a lattice.
- ▶ What about $(\{2,4,5,10,12,20,25\},|)$?

Applications of Lattices

▶ Models of information flow – think security clearence.

Definition

- ▶ A lattice is a poset in which every pair of elements has both a lub and a glb (in the set), i.e., $\forall x, y \in S$, there exists $l, u \in S$ such that l is the glb and u is the lub of $\{x, y\}$.
- \blacktriangleright $(\mathcal{P}(S), \subseteq)$ is a lattice.
- ▶ What about $(\{2,4,5,10,12,20,25\},|)$?

Applications of Lattices

- ▶ Models of information flow think security clearence.
- ▶ Finite lattices have a strong link with Boolean Algebra

Definition

- ▶ A lattice is a poset in which every pair of elements has both a lub and a glb (in the set), i.e., $\forall x, y \in S$, there exists $l, u \in S$ such that l is the glb and u is the lub of $\{x, y\}$.
- \blacktriangleright $(\mathcal{P}(S), \subseteq)$ is a lattice.
- ▶ What about $({2,4,5,10,12,20,25},|)$?

Applications of Lattices

- ▶ Models of information flow think security clearence.
- ▶ Finite lattices have a strong link with Boolean Algebra
- ➤ Several other applications in many domains of mathematics and CS, including formal semantics of programming languages, program verification.

- 1. Proofs and structures
- 2. Counting and combinatorics
- 3. Introduction to graph theory

- 1. Proofs and structures
 - ▶ Propositions, predicates
 - ▶ Proofs and proof techniques: contradiction, contrapositive, (strong) induction, well-ordering principle, diagonalization.
 - Basic mathematical structures: (finite and infinite) sets, functions, relations.
 - ▶ Relations: equivalence relations, partial orders, lattices
 - ► Some applications
- 2. Counting and combinatorics
- 3. Introduction to graph theory

- 1. Proofs and structures
 - ▶ Propositions, predicates
 - Proofs and proof techniques: contradiction, contrapositive, (strong) induction, well-ordering principle, diagonalization.
 - Basic mathematical structures: (finite and infinite) sets, functions, relations.
 - ▶ Relations: equivalence relations, partial orders, lattices
 - Some applications
 - ► Functions: To compare infinite sets
 - Using diagonalization to prove impossibility results.
 - ► Equivalences: Defining "like" partitions.
 - ▶ Posets: Topological sort, (parallel) task scheduling, lattices
- 2. Counting and combinatorics
- 3. Introduction to graph theory

- 1. Proofs and structures
 - ▶ Propositions, predicates
 - ▶ Proofs and proof techniques: contradiction, contrapositive, (strong) induction, well-ordering principle, diagonalization.
 - ▶ Basic mathematical structures: (finite and infinite) sets, functions, relations.
 - ► Relations: equivalence relations, partial orders, lattices
 - ► Some applications
- 2. Counting and combinatorics
- 3. Introduction to graph theory

Pop Quiz

Pop Quiz

Fill the feedback form at

https://forms.gle/uP39XHMmqmx63qUTA

Next chapter: Counting and Combinatorics

Topics to be covered

- ► Basics of counting
- ▶ Subsets, partitions, Permutations and combinations
- ▶ Pigeonhole Principle and its extensions
- ▶ Recurrence relations and generating functions