4.次臨界擺幅 (Sub-threshold Swing)

元件的次臨界擺幅(sub-threshold swing 或 SS),即 log I_D - V_G 曲線的斜率倒數,理論上室溫時,理想的SS約為 $60\,\text{mV/decade}$,一般元件則多在 $70\sim90\,\text{mV/decade}$ 的範圍。當閘極電壓低於臨限電壓而半導體表面只稍微反轉時,理想上汲極電流應為零。實際上仍有汲極電流,稱為次臨限電流(sub-threshold current)。MOSFET 做為開關使用時,次臨限區特別重要,可看出開關是如何打開及關掉。S越大,表示 I_D 隨 V_G 的變化越小,MOS 開關特性不明顯;S越小,表示 I_D 隨 V_G 的變化越大,MOS 開關特性顯著。

圖 13-6 0.13μm 世代的典型次臨界擺幅 $log I_D$ - V_G 圖形。

In subthreshold region:

$$\begin{split} I_D &= \frac{W_{eff}}{L_{eff}} I_o * exp \left[\frac{q(V_{GS})}{KT} \right] \\ S &\equiv \left[\frac{\partial \log_{10} I_D}{\partial V_G} \right]^{-1} = \left(1 - \frac{C_D}{C_{OX}} \right) \frac{kT}{q} ln \ 10 \end{split}$$