Введение в анализ данных

Лекция 4 Линейная регрессия

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2021

kNN для регрессии

kNN: обучение

- Дано: обучающая выборка $X = (x_i, y_i)_{i=1}^\ell$
- Задача регрессии (ответы из множества $\mathbb{Y} = \mathbb{R}$)

- Обучение модели:
 - Запоминаем обучающую выборку X

kNN: применение

Дано: новый объект x

Применение модели:

- Сортируем объекты обучающей выборки по расстоянию до нового объекта: $\rho(x,x_{(1)}) \leq \rho(x,x_{(2)}) \leq \cdots \leq \rho(x,x_{(\ell)})$
- Выбираем k ближайших объектов: $x_{(1)}$, ..., $x_{(k)}$
- Усредняем ответы:

$$a(x) = \frac{1}{k} \sum_{i=1}^{k} y_{(i)}$$

kNN: применение

• Можно добавить веса:

$$a(x) = \frac{\sum_{i=1}^{k} w_i y_{(i)}}{\sum_{i=1}^{k} w_i}$$

•
$$w_i = K\left(\frac{\rho(x,x_{(i)})}{h}\right)$$

• Формула Надарая-Ватсона

kNN: применение

Функция потерь для регрессии

• Частый выбор — квадратичная функция потерь

$$L(y,a) = (a - y)^2$$

• Функционал ошибки — среднеквадратичная ошибка (mean squared error, MSE)

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2$$

Функция потерь для регрессии

• Ещё один вариант — средняя абсолютная ошибка (mean absolute error, MAE)

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} |a(x_i) - y_i|$$

• Слабее штрафует за серьёзные отклонения от правильного ответа

Резюме

Плюсы kNN

- Если данных много и для любого объекта найдётся похожий в обучающей выборке, то это лучшая модель
- Очень простое обучение
- Мало гиперпараметров
- Бывают задачи, где гипотеза компактности уместна
 - Классификация изображений
 - Классификация текстов на много классов

Минусы kNN

- Часто другие модели оказываются лучше
- Надо хранить в памяти всю обучающую выборку
- Искать к ближайших соседей довольно долго
- Мало способов настроить модель

Линейная регрессия

Парная регрессия

Парная регрессия

Парная регрессия

- Простейший случай: один признак
- Модель: $a(x) = w_1 x + w_0$
- Два параметра: w_1 и w_0
- w_1 тангенс угла наклона
- w_0 где прямая пересекает ось ординат

Почему модель линейная?

$$a(x) = 2 x + 1$$

•
$$x = 1$$
, $a(x) = 3$

•
$$x = 2$$
, $a(x) = 5$

•
$$x = 10, a(x) = 21$$

•
$$x = 20$$
, $a(x) = 41$

Два признака

- Чуть более сложный случай: два признака
- Модель: $a(x) = w_0 + w_1 x_1 + w_2 x_2$
- Три параметра

Два признака

Много признаков

- Общий случай: d признаков
- Модель

$$a(x) = w_0 + w_1 x_1 + \dots + w_d x_d$$

• Количество параметров: d+1

Много признаков

- Общий случай: d признаков
- Модель

• Количество параметров: d+1

Много признаков

Запишем через скалярное произведение:

$$a(x) = w_0 + w_1 x_1 + \dots + w_d x_d =$$
$$= w_0 + \langle w, x \rangle$$

Будем считать, что есть признак, всегда равный единице:

$$a(x) = w_1 x_1 + \dots + w_d x_d =$$

$$= w_1 * 1 + w_2 x_2 + \dots + w_d x_d =$$

$$= \langle w, x \rangle$$

Применимость линейной регрессии

Модель линейной регрессии

$$a(x) = w_1 x_1 + \dots + w_d x_d = \langle w, x \rangle$$

- Нет гарантий, что целевая переменная именно так зависит от признаков
- Надо формировать признаки так, чтобы модель подходила

- Признаки: площадь, район, расстояние до метро
- Целевая переменная: рыночная стоимость квартиры
- Линейная модель:

$$a(x) = w_0 + w_1 * (площадь)$$
 $+ w_2 * (район)$ $+ w_3 * (расстояние до метро)$

```
a(x) = w_0 + w_1 * (площадь) + w_2 * (район) + w_3 * (расстояние до метро)
```

$$a(x) = w_0 + w_1 * (площадь)$$
 $+ w_2 * (район)$ $+ w_3 * (расстояние до метро)$

ullet За каждый квадратный метр добавляем w_1 к прогнозу

$$a(x) = w_0 + w_1 * (площадь)$$
 $+ w_2 * (район)$ $+ w_3 * (расстояние до метро)$

• Что-то странное

$$a(x) = w_0 + w_1 * (площадь)$$

+ $w_2 * (район)$

Кодирование категориальных признаков

- Значения признака «район»: $U = \{u_1, \dots, u_m\}$
- Новые признаки вместо x_j : $[x_j = u_1]$, ..., $[x_j = u_m]$
- One-hot кодирование

Кодирование категориальных признаков

Кодирование категориальных признаков


```
a(x) = w_0 + w_1 * (площадь)
+ w_2 * (квартира в ЦАО?)
+ w_3 * (квартира в ЮАО?)
+ w_4 * (квартира в САО?)
```

$$a(x) = w_0 + w_1 * (площадь)$$

+ $w_2 * (район)$

$$a(x) = w_0 + w_1 * (площадь)$$

+ $w_2 * (район)$

$$a(x) = w_0 + w_1 * (площадь)$$

+ $w_2 * (район)$

$$a(x) = w_0 + w_1 * ($$
площадь $)$ $+ w_2 * ($ район $)$ $+ w_3 * [t_0 \le x_3 < t_1] + \dots + w_{3+n}[t_{n-1} \le x_3 < t_n]$

Нелинейные признаки

• Линейная модель с полиномиальными признаками:

$$a(x) = w_0 + w_1 * (площадь) + w_2 * (этаж)$$
 $+w_3 * (расстояние до метро) + w_4 * (площадь)^2$
 $+w_5 * (этаж)^2 + w_6 * (расстояние до метро)^2$
 $+w_7 * (площадь) * (этаж) + \cdots$

Линейные модели

- Модель линейной регрессии хороша, если признаки сделаны специально под неё
- Пример: one-hot кодирование категориальных признаков или бинаризация числовых признаков