Sorting Algorithms

Sorting

- Putting an unsorted list of data elements into order sorting - is a very common and useful operation
- We describe efficiency by relating the number of comparisons to the number of elements in the list (N)

Simple Sorts

- In this section we present three "simple" sorts
 - Selection Sort
 - Bubble Sort
 - Insertion Sort
- Properties of these sorts
 - use an unsophisticated brute force approach
 - are not very efficient
 - are easy to understand and to implement

Selection Sort -- Example

Selection Sort

```
for (i = 0; i < n-1; i++)
{
    lowindex = i;
    for (j = i+1; j < n; j++)
    {
        if (A[j].key < A[lowindex].key) {
            lowindex = j;
        }
    }
    swap(A[i], A[lowindex]);
}</pre>
```

Selection Sort algorithm is $O(N^2)$

Insertion Sort -- Example

Insertion Sort

```
for (i = 1; i < n; i++)
{
    j = i;
    while (j!= 0 && A[j] < A[j-1])
    {
        swap(A[j], A[j-1]);
        j = j-1;
    }
}</pre>
```

Insertion Sort algorithm is $O(N^2)$

-

Bubble Sort -- Example

```
0
                       0
                                  0
                                             0
                                                        0
    4
           0
                1
                                                  1
                                                              1
                                       1
    2
                4
                            2
                                                  2
                                                              2
1
           1
                                  1
                                                         1
                       <u>1</u>
    3
                2
                                                              3
                            4
                       2
2
           2
                                             2
                                                        2
                3
                            3
                                                             4
3
     1
           3
                       3
                                  3
                                       4
                                                  4
                                                        3
                                             <u>3</u>
                5
                            5
                                                  5
                                                              5
    6
           4
                                             4
                       4
                                                        4
     5
5
           5
                6
                                             5
                                                  6
                                                         5
                                                              6
                       5
                                  5
  initial
              after
                          after
                                     after
                                                after
                                                            after
              i = 0
                          i = 1
                                     i = 2
                                                i = 3
                                                            i = 4
```

Bubble Sort

```
for (i = 0; i < n-1; i++)
{
  for (j = n - 1; j > i; j--)
  {
    if (A[j].key < A[j-1].key)
      swap(A[j], A[j-1]);
  }
}</pre>
```

Bubble Sort algorithm is $O(N^2)$

c

Heap Sort

- ♦ In max heap, the maximum value of a heap is in the root node.
- The general approach of the Heap Sort is as follows:
 - take the root (maximum) element off the heap, and put it into its place.
 - reheap the remaining elements. (This puts the next-largest element into the root position.)
 - repeat until there are no more elements.
- For this to work we must first arrange the original array into a heap

Heap Sort -- Example

1	4	1	4	1	4	1	4	1	6	1	6	
2	2	2	2	2	2	2	2	2	4	2	4	
3	3	3	3	3	3	3	3	3	3	3	5	
4	1	4	1	4	1	4	1	4	1	4	1	
5	6	5	6	5	6	5	6	5	2	5	2	
6	5	6	5	6	5	6	5	6	5	6	3	
	initial		step 1		step 2		step 3		step 4		step 5	

11

Heap Sort -- Example

Divide-and-Conquer

- Divide-and conquer is a general algorithm design paradigm:
 - Divide: divide the input data S in two disjoint subsets S₁ and S₂
 - Recur: solve the subproblems associated with S₁ and S₂
 - Conquer: combine the solutions for S₁ and S₂ into a solution for S
- The base case for the recursion are subproblems of size 0 or 1

- Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm
- Like heap-sort
 - It has *O*(*n* log *n*) running time
- Unlike heap-sort
 - It does not use an auxiliary priority queue
 - It accesses data in a sequential manner (suitable to sort data on a disk)

13

Merge-Sort

- Merge-sort on an input sequence S with n elements consists of three steps:
 - Divide: partition S into two sequences S₁ and S₂ of about n/2 elements each
 - Recur: recursively sort S_1 and S_2
 - Conquer: merge S₁ and
 S₂ into a unique sorted sequence

Algorithm *mergeSort(S, C)*

Input sequence S with n elements, comparator C

Output sequence *S* sorted according to *C*

 $S \leftarrow merge(S_1, S_2)$

if
$$S.size() > 1$$

 $(S_1, S_2) \leftarrow partition(S, n/2)$
 $mergeSort(S_1, C)$
 $mergeSort(S_2, C)$

Merging Two Sorted Sequences

- The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B
- Merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes O(n) time

```
Algorithm merge(A, B)

Input sequences A and B with n/2 elements each

Output sorted sequence of A \cup B

S \leftarrow \text{empty} sequence

while \neg A.isEmpty() \land \neg B.isEmpty()

if A.first().element() < B.first().element()

S.insertLast(A.remove(A.first()))

else

S.insertLast(B.remove(B.first()))

while \neg A.isEmpty()

S.insertLast(A.remove(A.first()))

while \neg B.isEmpty()

S.insertLast(B.remove(B.first()))

return S
```

15

Merge-Sort Tree

- An execution of merge-sort is depicted by a binary tree
 - each node represents a recursive call of merge-sort and stores
 - unsorted sequence before the execution and its partition
 - sorted sequence at the end of the execution
 - the root is the initial call
 - the leaves are calls on subsequences of size 0 or 1

Execution Example

Partition

Execution Example (cont.)

Recursive call, partition

Recursive call, partition

19

Execution Example (cont.)

Recursive call, base case

Recursive call, base case

Execution Example (cont.)

Merge

21

Merge

Execution Example (cont.)

◆Recursive call, ..., merge, merge

Merge

25

Analysis of Merge-Sort

- The height h of the merge-sort tree is $O(\log n)$
 - at each recursive call we divide in half the sequence,
- lacktriangle The overall amount of work done at the nodes of depth i is O(n)
 - we partition and merge 2^i sequences of size $n/2^i$
 - we make 2^{i+1} recursive calls
- \bullet Thus, the total running time of merge-sort is $O(n \log n)$

Quick-Sort

- Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:
 - Divide: pick a random element x (called pivot) and partition S into
 - L elements less than x
 - *E* elements equal *x*
 - G elements greater than x

Recur: sort L and G

■ Conquer: join *L*, *E* and *G*

27

Quick-Sort Tree

- An execution of quick-sort is depicted by a binary tree
 - Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
 - The root is the initial call
 - The leaves are calls on subsequences of size 0 or 1

Execution Example

Pivot selection

Execution Example (cont.)

Partition, recursive call, pivot selection

Partition, recursive call, base case

31

Execution Example (cont.)

Recursive call, ..., base case, join

Quick-Sort

32

Recursive call, pivot selection

33

Execution Example (cont.)

Partition, ..., recursive call, base case

Quick-Sort

34

◆Join, join

35

In-Place Quick Sort

```
Algorithm inPlaceQuickSort(S, a, b)
   if a \ge b then return { empty subrange }
   p \leftarrow S.elementAtRank(b) {pivot}
   l \leftarrow a { will scan rightward}
   r \leftarrow b - 1
   while l < r
        {find an element larger than pivot}
        while l \le r and S.elemAtRank(l) \le p do
           l \leftarrow l + 1
        {find an element smaller than pivot}
        while l \le r and S.elemAtRank(r) \ge p do
               r \leftarrow r - 1
        if l < r then
            S.swapElements(S.atRank(l), S.atRank(r))
    {put the pivot into its final place}
   S.swapElements(S.atRank(l), S.atRank(b))
   inPlaceQuickSort(S, a, l-1)
   inPlaceQuickSort(S, l+1, b)
```

In-Place Quick Sort

```
Algorithm inPlaceQuickSort(S, a, b)
   if a \ge b then return { empty subrange }
   p \leftarrow S.elementAtRank(a) {pivot}
   l \leftarrow a + 1 { will scan rightward}
   r \leftarrow b { will scan leftward}
   while l \le r
        {find an element larger than pivot}
        while l \le r and S.elemAtRank(l) \le p do
            l \leftarrow l + 1
        {find an element smaller than pivot}
        while l \le r and S. elemAtRank(r) \ge p do
                r \leftarrow r - 1
        if l < r then
            S.swapElements(S.atRank(l), S.atRank(r))
    {put the pivot into its final place}
   S.swapElements(S.atRank(a), S.atRank(r))
   inPlaceQuickSort(S, a, r-1)
   inPlaceQuickSort(S, r+1, b)
```

In-Place Quick Sort

```
Algorithm inPlaceQuickSort(S, a, b)
    if a \ge b then return { empty subrange }
    p \leftarrow S.elementAtRank(b)
                                    {pivot}
    l \leftarrow a { will scan rightward}
    r \leftarrow b - 1 { will scan leftward}
    while l \le r
        {find an element larger than pivot}
        while l \le r and S.elemAtRank(l) \le p do
            l \leftarrow l + 1
        {find an element smaller than pivot}
        while l \le r and S.elemAtRank(r) \ge p do
            r \leftarrow r - 1
        if l < r then
            S.swapElements(S.atRank(I), S.atRank(r))
    {put the pivot into its final place}
    S.swapElements(S.atRank(l), S.atRank(b))
    inPlaceQuickSort(S, a, l-1)
    inPlaceQuickSort(S, l+1, b)
```

Worst-case Running Time

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element
- One of L and G has size n-1 and the other has size 0
- The running time is proportional to the sum

$$n + (n-1) + ... + 2 + 1$$

 \bullet Thus, the worst-case running time of quick-sort is $O(n^2)$

Expected Running Time

- On the first call, every element in the array is compared to the dividing value (the "split value"), so the work done is O(N).
- The array is divided into two sub arrays (not necessarily halves)
- Each of these pieces is then divided in two, and so on.
- If each piece is split approximately in half, there are $O(log_2N)$ levels of splits. At each level, we make O(N) comparisons.
- \bullet So Quick Sort is an O($N \log_2 N$) algorithm.

Quick-Sort 40

Summary of Sorting Algorithms

Algorithm	Time	Notes			
selection-sort insertion-sort Bubble-sort	$O(n^2)$	in-placeslow (good for small inputs)			
quick-sort	$O(n \log n)$ expected	in-place, randomizedfastest (good for large inputs)			
heap-sort	$O(n \log n)$	in-placefast (good for large inputs)			
merge-sort	$O(n \log n)$	sequential data accessfast (good for huge inputs)			