logikai műveletek igazságtáblája

Α	В	$\neg A$	$A \wedge B$	$A \lor B$	$A \Rightarrow B$	$A \Leftrightarrow B$
Π	П	Н	I	I	I	I
Π	Н	Н	Н	I	Н	Н
Н	П	I	Н	I	I	Н
Н	Н		Н	Н	I	I

• a logikai műveletek tulajdonságai, ítéletlogikai tételek

1
$$A \lor A \Leftrightarrow A, A \land A \Leftrightarrow A$$
 (idempotencia)

2
$$A \lor (B \lor C) \Leftrightarrow (A \lor B) \lor C, A \land (B \land C) \Leftrightarrow (A \land B) \land C$$
 (asszociativitás)

3
$$A \lor B \Leftrightarrow B \lor A, A \land B \Leftrightarrow B \land A$$
 (kommutativitás)

$$(A \lor B) \land A \Leftrightarrow A, (A \land B) \lor A \Leftrightarrow A$$
 (abszorpció, azaz elnyelési tulajdonság)

1
$$\neg (A \lor B) \Leftrightarrow \neg A \land \neg B, \neg (A \land B) \Leftrightarrow \neg A \lor \neg B$$
 (De Morgan azonosságok)

(
$$A \Rightarrow B$$
) $\Leftrightarrow (\neg B \Rightarrow \neg A)$ (kontrapozíció tétele)

kvantorok

üreshalmaz

Azt a halmazt, melynek nincs eleme, üres halmaznak nevezzük. Jele: ∅ vagy {}.

Figyelem! $\emptyset \neq \{\emptyset\}$.

Definíciók listája 1. oldal

részhalmaz

Az A halmaz részhalmaza a B halmaznak: $A \subseteq B$, ha A minden eleme B-nek is eleme, azaz

$$\forall x (x \in A \Rightarrow x \in B).$$

Ha $A \subseteq B$ -nek, de $A \neq B$, akkor A valódi részhalmaza B-nek: $A \subsetneq B$.

• részhalmaz reláció tulajdonságai

$$\bullet$$
 $\forall A \ (A \subseteq A) \ (reflexivitás).$

②
$$\forall A, B, C \ ((A \subseteq B \land B \subseteq C) \Rightarrow A \subseteq C) \ (tranzitivitás).$$

• halmazok uniója

Az A és B halmazok uniója: $A \cup B$ az a halmaz, mely pontosan A és B összes elemét tartalmazza: $A \cup B = \{x \mid x \in A \lor x \in B\}$.

Általában: Legyen \mathscr{A} egy olyan halmaz, melynek az elemei is halmazok (halmazrendszer). Ekkor $\bigcup \mathscr{A} = \bigcup \{A : A \in \mathscr{A}\} = \bigcup_{A \in \mathscr{A}} A$ az a halmaz, mely \mathscr{A} összes elemének elemeit tartalmazza:

$$\cup \mathscr{A} = \{x \mid \exists A \in \mathscr{A} : x \in A\}.$$

Speciálisan: $A \cup B = \cup \{A, B\}$.

az unió tulajdonságai

Minden A, B, C halmazra:

$$\bigcirc$$
 $A \cup B = B \cup A$ (kommutativitás)

$$\bigcirc$$
 $A \cup A = A$ (idempotencia)

$$\bullet A \subseteq B \Leftrightarrow A \cup B = B$$

Definíciók listája 2. oldal

halmazok metszete

Az A és B halmazok metszete: $A \cap B$ az a halmaz, mely pontosan az A és B közös elemeit tartalmazza: $A \cap B = \{x \mid x \in A \land x \in B\}$. Általában: Legyen \mathscr{A} egy olyan halmaz, melynek az elemei is halmazok

Altalában: Legyen $\mathscr A$ egy olyan halmaz, melynek az elemei is halmazok (halmazrendszer). Ekkor $\cap \mathscr A = \cap \{A: A \in \mathscr A\} = \cap_{A \in \mathscr A} A$ a következő halmaz:

$$\cap \mathscr{A} = \{ x \mid \forall A \in \mathscr{A} : x \in A \}.$$

Speciálisan: $A \cap B = \cap \{A, B\}$.

• a metszet tulajdonságai

Minden A, B, C halmazra:

- \bigcirc $A \cap B = B \cap A$ (kommutativitás)
- \bigcirc $A \cap A = A$ (idempotencia)
- (páronként) diszjunkt halmazrendszer

Ha $A \cap B = \emptyset$, akkor A és B diszjunktak.

Általánosabban: Ha \mathscr{A} egy halmazrendszer, és $\cap \mathscr{A} = \emptyset$, akkor \mathscr{A} diszjunkt, illetve \mathscr{A} elemei diszjunktak.

Ha $\mathscr A$ egy halmazrendszer, és $\mathscr A$ bármely két eleme diszjunkt, akkor $\mathscr A$ elemei páronként diszjunktak.

• az unió és a metszet disztributivitási tulajdonságai

Definíciók listája 3. oldal

halmazok különbsége, komplementere

Az A és B halmazok különbsége az $A \setminus B = \{x \in A : x \notin B\}$ halmaz. Egy rögzített X alaphalmaz és $A \subseteq X$ részhalmaz esetén az A halmaz komplementere az $\overline{A} = A' = X \setminus A$ halmaz.

• a komplementer tulajdonságai

Legyen X az alaphalmaz. Ekkor minden $A, B \subseteq X$ halmazra:

- $\bullet \ \overline{\overline{A}} = A;$

- $A \cap \overline{A} = \emptyset;$
- $\bullet \quad A \subseteq B \Leftrightarrow \overline{B} \subseteq \overline{A};$

- szimmetrikus differencia

Az A és B halmazok szimmetrikus differenciája az

$$A\triangle B=(A\setminus B)\cup (B\setminus A)$$

halmaz.

$$A\triangle B=(A\cup B)\setminus (B\cap A).$$

hatványhalmaz

Ha A egy halmaz, akkor azt a halmazrendszert, melynek elemei pontosan az A halmaz részhalmazai az A hatványhalmazának mondjuk, és 2^A -val jelöljük. (A $\mathscr{P}(A)$ jelölés is szokásos.)

Tetszőleges A véges halmazra: $|2^A| = 2^{|A|}$.

Definíciók listája 4. oldal

rendezett pár

Az (x, y) rendezett párt a $\{\{x\}, \{x, y\}\}$ halmazzal definiáljuk. Az (x, y) rendezett pár esetén x az első, y a második koordináta.

halmazok Descartes-szorzata

Az X, Y halmazok Descartes-szorzatán (direkt szorzatán) az

$$X \times Y = \{(x, y) : x \in X, y \in Y\}$$

UL6F3E

rendezett párokból álló halmazt értjük.

binér reláció

Ha valamely X, Y halmazokra $R \subseteq X \times Y$, akkor azt mondjuk, hogy R reláció X és Y között. Ha X = Y, akkor azt mondjuk, hogy R X-beli reláció (homogén binér reláció).

• ÉT, ÉK

Az $R \subseteq X \times Y$ reláció értelmezési tartománya:

$$dmn(R) = \{x \in X \mid \exists y \in Y : (x, y) \in R\},\$$

értékkészlete:

$$rng(R) = \{ y \in Y \mid \exists x \in X : (x, y) \in R \}.$$

• reláció kiterjesztése, leszűkítése, inverze

Egy R binér relációt az S binér reláció kiterjesztésének, illetve S-et az R leszűkítésének (megszorításának) nevezzük, ha $S \subseteq R$. Ha A egy halmaz, akkor az R reláció A-ra való leszűkítése (az A-ra való megszorítása) az

$$R|_{A} = \{(x,y) \in R : x \in A\}.$$

Egy R binér reláció inverze az $R^{-1} = \{(y, x) : (x, y) \in R\}$ reláció.

Definíciók listája 5. oldal

• halmaz képe, inverz képe

Legyen $R \subseteq X \times Y$ egy binér reláció, A egy halmaz. Az A halmaz (R szerinti) képe az

$$R(A) = \{ y \in Y \mid \exists x \in A : (x, y) \in R \}$$

halmaz. Adott B halmaz inverz képe, vagy ősképe a B halmaz R^{-1} szerinti képe, azaz $R^{-1}(B)$. (Ez nem más, mint:

$$R^{-1}(B) = \{ x \in X \mid \exists y \in B : (x, y) \in R \}$$

• relációk kompozíciója és tulajdonságai

Legyenek R és S binér relációk. Ekkor az $R \circ S$ kompozíció (összetétel, szorzat) reláció:

$$R \circ S = \{(x, z) \mid \exists y : (x, y) \in S, (y, z) \in R\}.$$

Legyenek R, S, T relációk. Ekkor

- ② $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$ (kompozíció inverze).
- homogén relációk tulajdonságai

Legyen R reláció X-en. Ekkor azt mondjuk, hogy

- 1 R tranzitív, ha $\forall x, y, z \in X : (x R y \land y R z) \Rightarrow x R z; (=, <, \leq, |, \subseteq)$
- 2 R szimmetrikus, ha $\forall x, y \in X : x R y \Rightarrow y R x$; (=, T)
- 3 R antiszimmetrikus, ha $\forall x, y \in X : (x R y \land y R x) \Rightarrow x = y; (=, \leq, \subseteq)$
- **1** R szigorúan antiszimmetrikus, ha $\forall x, y \in X : x R y \Rightarrow \neg y R x$; (<)
- **5** R reflexív, ha $\forall x \in X : x R x$; $(=, \leq, |, \subseteq, T)$
- **1** R irreflexív, ha $\forall x \in X : \neg x \ R \ x$; (<)
- 7 R trichotóm, ha $\forall x, y \in X$ esetén x = y, x R y és y R x közül pontosan egy teljesül; (<)
- 8 R dichotóm, ha $\forall x, y \in X$ esetén x R y vagy y R x (esetleg mindkettő) teljesül. (\leq)

Definíciók listája 6. oldal

ekvivalenciareláció, ekvivalenciaosztály

Legyen X egy halmaz, R reláció X-en. Az R relációt ekvivalenciarelációnak nevezzük, ha reflexív, szimmetrikus és tranzitív. Legyen \sim egy ekvivalenciareláció az X halmazon. Tetszőleges $x \in X$ esetén az

$$\tilde{x} = [x] = \{y \mid y \sim x\}$$

halmazt az x ekvivalenciaosztályának nevezzük.

• halmaz osztályozásai

Egy (nemüres) X halmaz részhalmazainak egy $\mathcal O$ rendszerét az X osztályozásának nevezzük, ha

- Ø nemüres halmazokból áll,
- Ø páronként diszjunkt halmazrendszer és
- $\bullet \cup \mathscr{O} = X.$

Ekkor az \mathcal{O} elemeit (melyek maguk is halmazok) az X osztályainak nevezzük.

Definíciók listája 7. oldal