SE102:Multivariable Calculus

Hyosang Kang¹

¹Division of Mathematics School of Interdisciplinary Studies DGIST

Lecture 04 Maxima and Minima

Definition

An **open ball** $B_{\varepsilon}(\mathbf{a})$ of the radius $\varepsilon > 0$ at a point $\mathbf{a} \in \mathbf{R}^n$ is the set defined by

$$B_{\varepsilon}(\mathbf{a}) = \{ \mathbf{x} \in \mathbf{R}^n \, | \, \|\mathbf{x} - \mathbf{a}\| < \varepsilon \}$$

Definition

A function $f(x_1, ..., x_n) = (y_1, ..., y_m)$ is said to be **continuously differentiable**, or of **class** \mathcal{C}^1 , at $\mathbf{a} \in \mathbf{R}^n$ if there is $\varepsilon > 0$ such that all the partial derivatives $\frac{\partial y_j}{\partial x_i}$ are continuous on an open ball $B_{\varepsilon}(\mathbf{a})$.

Theorem

If a function z = f(x, y) is continuously differentiable at $\mathbf{a} = (x_0, y_0)$, then it is differentiable at \mathbf{a} .

Proof.

Let $B_{\varepsilon}(\mathbf{a})$ be an open ball on which the partial derivatives f_x, f_y are continuous. Let us choose a point $\mathbf{b} = (x, y) \in B_{\varepsilon}(\mathbf{a})$ and define a sequence

$$\mathbf{p}_0 = \mathbf{a}, \quad \mathbf{p}_1 = (x, y_0), \quad \mathbf{p}_2 = \mathbf{b}$$

Without loss of generality, we will assume that $x_0 \leq x$ and $y_0 \leq y$. Define a function $\phi_1(t) = f(t, y_0)$ on $[x_0, x]$. Note that $\phi'_1(t) = f_x(t, y_0)$. By the mean value theorem on one-variable function, there is $t_1 \in [x_0, x]$ such that

$$\phi_1'(t_0)(x-x_0) = f(x,y_0) - f(x_0,y_0)$$

Proof.

Likewise, let us define $\phi_2(t) = f(x,t)$ on $[y_0, y]$, then there exists $t_2 \in [y_0, y]$ satisfying

$$\phi_2'(t_2)(y - y_0) = f(x, y) - f(x, y_0)$$

Then,

$$f(\mathbf{b}) - f(\mathbf{a}) - f_x(\mathbf{a})(x - x_0) - f_y(\mathbf{a})(y - y_0)$$

$$= (\phi_1'(t_1) - f_x(\mathbf{a}))(x - x_0) + (\phi_2'(t_2) - f_y(\mathbf{a}))(y - y_0)$$

$$= (f_x(t_1, y_0) - f_x(\mathbf{a}))(x - x_0) + (f_y(x, t_2) - f_y(\mathbf{a}))(y - y_0)$$

Note that as $\mathbf{b} \to \mathbf{a}$, we have $t_1 \to x_0$ and $t_2 \to y_0$, which means the above goes to 0. Since $(x - x_0) / \|\mathbf{b} - \mathbf{a}\|$ and $(y - y_0) / \|\mathbf{b} - \mathbf{a}\|$ bounded, we proved the differentiability of f at \mathbf{a} .

Definition

A function z = f(x, y) is said to be of class C^2 at $\mathbf{a} \in \mathbf{R}^2$ if there exists $\varepsilon > 0$ such that all second-order partial derivatives are continuous on an open ball $B_{\varepsilon}(\mathbf{a})$.

Remark

Given a function $\mathbf{f}: \mathbf{R}^n \to \mathbf{R}^m$, the derivative \mathbf{Df} is a function $\mathbf{Df}: \mathbf{R}^n \to \mathbf{R}^{nm}$ whose coordinate functions are all the first derivatives of \mathbf{f} . The function \mathbf{f} being a class \mathcal{C}^1 means that \mathbf{Df} is continuous. Similarly, being a class \mathcal{C}^2 means that \mathbf{Df} is \mathcal{C}^1 , which equivalent to saying that $\mathbf{D}^2\mathbf{f}$ is continuous. We say the function \mathbf{f} is of class \mathcal{C}^n if $\mathbf{D}^n\mathbf{f}$ is continuous. Moreover, the function \mathbf{f} is of class \mathcal{C}^∞ if $\mathbf{D}^n\mathbf{f}$ is continuous for all n > 0.

Theorem (Clairaut)

If
$$z = f(x, y)$$
 is of class C^2 at (x_0, y_0) , then

$$f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0).$$

Example

Check if the following function satisfies Clairaut's theorem at (0,0).

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Proof of Clairaut's Theorem.

Let us define $\mu: B_{\varepsilon}(\mathbf{a}) \to \mathbf{R}$ as

$$\mu(x,y) = f(x,y) - f(x_0,y) - f(x,y_0) + f(x_0,y_0)$$

Let us define $\phi(t) = f(t, y) - f(t, y_0)$ on $[x_0, x]$. Since f is of class \mathcal{C}^1 , ϕ is differentiable on $[x_0, x]$. Note that

$$\mu(x,y) = \phi(x) - \phi(x_0).$$

By the mean value theorem, there exists $t_1 \in [x_0, x]$ satisfying

$$\mu(x,y) = \phi'(t_1)(x-x_0) = (f_x(t_1,y) - f_x(t_1,y_0))(x-x_0).$$

Since f_x is of class \mathcal{C}^1 , we can apply the mean value theorem on $\psi(h) = f_x(t_1, h)$, which means that there exists $t_2 \in [y_0, y]$ satisfying

$$f_x(t_1, y) - f_x(t_1, y_0) = \psi'(t_2)(y - y_0) = f_{xy}(t_1, t_2)(y - y_0)$$

Proof.

Thus we showed that there exists $(t_1, t_2) \in [x_0, x] \times [y_0, y]$ satisfying

$$\mu(x,y) = f_{xy}(t_1, t_2)(x - x_0)(y - y_0).$$

If we switch the role of x and y when we defined ϕ , we would obtain the similar result: there exists a point $(s_1, s_2) \in [x_0, x] \times [y_0, y]$ satisfying

$$\mu(x,y) = f_{yx}(s_1, s_2)(x - x_0)(y - y_0).$$

Let us replace $x = x_0 + h$ and $y = y_0 + h$. Since we assume that f is of class C^2 , the following function converges as $(x, y) \to (x_0, y_0)$.

$$\frac{\mu(x_0 + h, y_0 + h)}{h^2} = f_{xy}(t_1, t_2) = f_{yx}(s_1, s_2)$$

Since $(t_1, t_2), (s_1, s_2) \to (x_0, y_0)$ as $(x, y) \to (x_0, y_0)$, we are done.

Definition

Suppose that f(x, y) is of class C^2 at (x_0, y_0) . Then the following polynomial is called the **Taylor polynomial of second degree** 2 of f at (x_0, y_0) .

$$Q(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0)$$

$$+ f_y(x_0, y_0)(y - y_0) + \frac{1}{2}f_{xx}(x_0, y_0)(x - x_0)^2$$

$$+ f_{xy}(x_0, y_0)(x - x_0)(y - y_0)$$

$$+ \frac{1}{2}f_{yy}(x_0, y_0)(y - y_0)^2.$$

Remark

If all *n*-th order partial derivatives of a function f(x, y) are continuous, then

- \triangleright f is differentiable, and
- ▶ the formulae of *n*-order partial derivatives does not depend on the order of partial derivatives.

Remark

Let

$$\Delta \mathbf{x} = (\Delta x, \Delta y) = (x - x_0, y - y_0)$$

and denote the *gradient operator* ∇ in vector notation:

$$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$$

Let us define the *multiplication* of differential operators as follows:

$$\left(\frac{\partial}{\partial x}\frac{\partial}{\partial x}\right)f = \frac{\partial^2 f}{\partial x^2}, \quad \left(\frac{\partial}{\partial x}\frac{\partial}{\partial y}\right)f = \frac{\partial^2 f}{\partial x \partial y}$$

By the assumption in the definition of Taylor polynomial, we have $f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0)$. Thus we can write

$$Q(x,y) = \sum_{n=0}^{2} \frac{1}{n!} (\Delta \mathbf{x} \cdot \nabla)^n f(x_0, y_0)$$

We can generalize this to the k-th order Taylor polynomial.

$$P_k f(\mathbf{x}) = \sum_{n=0}^k \frac{1}{n!} (\Delta \mathbf{x} \cdot \nabla)^n f(\mathbf{x}_0)$$

This is a generalization of the Taylor polynomial for single variable function:

Theorem (Taylor)

Let z = f(x, y) be a function of class C^3 on a rectangular region

$$D = \{(x, y) \, | \, |x - x_0|, |y - y_0| \le \epsilon \}.$$

Then for each $(x,y) \in D$, there exists a constant $0 \le c \le 1$ satisfying

$$f(x,y) = Q(x,y) + R_2(x,y)$$

where

$$R_2(x,y) = \frac{1}{3!} (\Delta \mathbf{x} \cdot \nabla)^3 f(\mathbf{x}_0 + c\Delta \mathbf{x})$$

Remark

This theorem is a generalization of Taylor theorem for one-variable function:

Let f be of class C^{k+1} on an interval $I = (x_0 - \epsilon, x_0 + \epsilon)$. Then for $x, c \in I$, there exists a constant ξ between x and c such that

$$f(x) = P_k(x) + \frac{f^{(k+1)}(\xi)}{(k+1)!}(x-c)^{k+1}$$

Note that the choice of c depends on the choice of x, x_0 . Since all the third-order partial derivatives of f are bounded, the error $|R_n(x,y)|$ decreases to zero, as $(x,y) \to (x_0,y_0)$,

Example

Find $Q_2(x,y)$ at (0,0) for

$$f(x,y) = xy - x^2 - 5y^2 + y - 1$$

$$f(x,y) = \cos x \cos y$$

and compare the graphs of Q_2 and f near (1,0)

Definition

Let z = f(x, y) be a function defined on an open ball at $\mathbf{a} = (x_0, y_0)$. The point \mathbf{a} is said to be **local maximal** (**minimal**, respectively) if there exists a sufficiently small $\varepsilon > 0$ such that for all $\mathbf{x} \in B_{\varepsilon}(\mathbf{a})$,

$$f(\mathbf{a}) \ge f(\mathbf{x})$$
 $(f(\mathbf{a}) \le f(\mathbf{x}), \text{ respectively}).$

A local maximal or minimal is called an **extremal**.

Definition

A point (a) is called a **critical point** if it satisfies one of the following conditions:

- 1. $f_x(\mathbf{a}) = f_y(\mathbf{a}) = 0;$
- 2. f_x or f_y does not exist at a;
- 3. f is discontinuous at **a**.

A critical point which is *not* an extremal point is called a **saddle point**.

Example

Find the critical points of

$$f(x,y) = xy - x^2y - xy^2$$

and classify them. Also, find $Q_2(x, y)$ at each critical points and compare their graphs.

Remark

- 1. Suppose that f(x,y) is differentiable at **a**. The linear approximation Q_1 of f(x,y) at **a** is the *tangent plane*. If $f_x(\mathbf{a}) = f_y(\mathbf{a}) = 0$ then the tangent plane is parallel to the xy-plane.
- 2. Suppose that **a** is a saddle point of f(x, y). Then there exists a curve

$$c: (-\epsilon, \epsilon) \to \mathbf{R}^2, \quad c(0) = (\mathbf{a})$$

such that composite function $F(t) = (f \circ c)(t)$ has an inflection point at t = 0.

Definition

Suppose that f(x,y) is of class C^2 at $\mathbf{a} \in \mathbf{R}^2$. Then

$$\Delta_f = f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - f_{xy}(x_0, y_0)^2$$

is called the **discriminant** of f.

Example

Graph the following function at (0,0) and compare their discriminants.

$$z = -x^2 - y^2$$
, $z = x^2 + y^2$, $z = x^2 - y^2$

Theorem (Hesse)

Let (x_0, y_0) be a critical point satisfying $f_x(\mathbf{a}) = f_y(\mathbf{a}) = 0$.

- ▶ If $\Delta_f > 0$ and $f_{xx}(x_0, y_0) > 0$, then (x_0, y_0) is a local minimal point.
- ▶ If $\Delta_f > 0$ and $f_{xx}(x_0, y_0) < 0$, then (x_0, y_0) is a local maximal point.
- ▶ If $\Delta_f < 0$, then $f(x_0, y_0)$ is a saddle point.
- ▶ If $\Delta_f = 0$, then we cannot determine local extremity by this method.

Remark

Let $\Delta x = x - x_0$, $\Delta y = y - y_0$. The summands of the second degrees of $Q_2(x, y)$ can be written as

$$\frac{1}{2} \begin{bmatrix} \Delta x & \Delta y \end{bmatrix} \underbrace{\begin{bmatrix} f_{xx}(x_0, y_0) & f_{xy}(x_0, y_0) \\ f_{xy}(x_0, y_0) & f_{yy}(x_0, y_0) \end{bmatrix}}_{=A} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

Note that $\Delta_f = \det A$. Using linear transformation of x, y, we can transform the matrix A to one of three matrices below wihout changing the nature of extremities.

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \pm 1 & 0 \\ 0 & \mp 1 \end{bmatrix}$$

Example (Least square method)

Suppose that we have a set of data

$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$$

where each y_i is an experimental output for each input x_i . Assume that hypothetically the output value y_j should follow a linear equation on the input value, say mx + b. Our goal is to find the value of m and b that best fits to the data: we want to minimize the sum of all squares of errors between the actual value y_i and true value $mx_i + b$ to be minimum. In other words, we want

$$d(m,b) = \sum_{i=1}^{n} (y_i - (mx_i + b))^2$$

to be minimum.

Consider d(m, b) as two-variable function on m, b. The critical point is

$$m_0 = \frac{n\sum_{i=1}^n x_i y_i - \sum_{i=1}^n x_i \sum_{i=1}^n y_i}{n\sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2}, \quad b_0 = \frac{\sum_{i=1}^n x_i^2 \sum_{i=1}^n y_i - \sum_{i=1}^n x_i \sum_{i=1}^n x_i y_i}{n\sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2}$$

The Hessian of
$$d(m, b)$$
 at (m_0, b_0) is
$$\begin{bmatrix} 2\sum_{i=1}^{n} x_i^2 & 2\sum_{i=1}^{n} x_i \\ 2\sum_{i=1}^{n} x_i & 2n \end{bmatrix}$$

Since the discriminant of f is

$$\Delta_f(m_0, b_0) = 4n \sum_{i=1}^n x_i^2 - 4\left(\sum_{i=1}^n x_i\right)^2 > 0$$

The point (m_0, b_0) is a local minimal point. In fact, it is a global minimal point. (why?)

Theorem

Let (x_0, y_0, z_0) be a critical point of f(x, y, z) where f_x, f_y, f_z are all zero. Let H be the 3×3 matrix defined by

$$\begin{bmatrix} f_{xx} & f_{xy} & f_{xz} \\ f_{yx} & f_{yy} & f_{yz} \\ f_{zx} & f_{zy} & f_{zz} \end{bmatrix}$$

Let d_1, d_2, d_3 be the determinants of the 1×1 , 2×2 , 3×3 sub-matrices on the left-top corner of H. Suppose that $d_1d_2d_3 \neq 0$.

- ▶ If $d_i > 0$ for all i, then (x_0, y_0, z_0) is a local minimum point.
- if $d_1, d_3 < 0$ and $d_2 > 0$, then (x_0, y_0, z_0) is a local maximal point.
- ▶ In all other cases, (x_0, y_0, z_0) is a saddle point.

Proposition

Let $L_c(f)$ be the level curve at $c = f(x_0, y_0)$. on the xy-plane. Then the gradient vector $\nabla f(x_0, y_0)$ is perpendicular to the curve $L_c(f)$ at (x_0, y_0)

Theorem (Lagrange multiplier)

Let g(x,y), f(x,y) be differentiable functions. Let $L_c(g)$ be a level curve at c. Let us retrict the domain of f onto $L_c(g)$. If (x_0, y_0) is an extremal point of f and $\nabla g(x_0, y_0) \neq \mathbf{0}$, there exists λ such that

$$\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$$

Example

The Lagrange multiplier finds the maxima or minima of a **target** function f(x,y) under the **constraint** g(x,y) = c. Find the point on the circle $x^2 + y^2 = 10$ where the function f(x,y) = 3x + y attains maximal or minimal.

Corollary

The direction of the gradient vector $\nabla f(x_0, y_0)$ is the direction the value of function f(x, y) increases the fastest from the point (x_0, y_0) .

Example

Let

$$f(x,y) = 100 + \frac{100}{x^2 + 2y^2 + 9}$$

be a function whose graph represent the contour of a mountain. Suppose that a water flow from the point (1,0,110) down the valley in the steepest direction. Find the trajectory of the water path.

Theorem

Let g(x, y, z), f(x, y, z) be differentiable functions. Suppose that (x_0, y_0, z_0) is a local extremal of f(x, y, z) restricted the level set $L_c(g)$. If $\nabla g(x_0, y_0) \neq \mathbf{0}$, then there exists λ such that

$$\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0)$$

Example

Find the minimal and maximal value of $f(x, y, z) = x^3 + y^3 + z^3$ on the sphere $x^2 + y^2 + z^2 = 1$ on the first octant.

Find all critical points and classify them

1.
$$f(x,y) = xy + \frac{2}{x} + \frac{2}{y}$$

2.
$$e^y(x^2 + y^2 - z^2)$$

Find all local extremes of f(x, y) with the give contraints.

1.
$$f(x,y) = 2x + y^2 + x^2, 2x^2 + y^2 = 2$$

2.
$$f(x, y, z) = xy + yz, x^2 + y^2 = 1, yz = 1$$

Find the local extremes of $f(x,y) = x^2 + xy + y^2$ on the disk $D = \{(x,y) \mid x^2 + y^2 \le 1\}.$

Find the point on the graph $xy^2z^3=2$ which is the closest to the origin.