RSA Public-Key Cipher:

- Plaintext Space $M = \{0, 1\}^*$.
- Ciphertext Space $C = \{0, 1\}^*$.
- Let N = pq.
- Choose e relatively prime to (p-1)(q-1).
- Find d such that $ed = 1 \pmod{(p-1)(q-1)}$.
- Public key is (N, e).
- Private key is d.

Encryption:

$$C = M^e \mod N$$

Decryption:

$$M = C^d \mod N$$

Proof of correctness:

- Chinese Remainder Theorem
 - Let p and q be two co-prime integers. If $x=a\pmod p$ and $x=a\pmod q$, then $x=a\pmod pq$.
- Fermat's Little Theorem
 - If p is a prime number and a is not divisible by p, then $a^{p-1} = 1 \pmod{p}$.
- Proof
 - \circ It suffices to prove that $M=C^d\pmod p$ and $M=C^d\pmod q$, because they lead to $M=C^d\pmod N$ by Chinese Remainder Theorem.
 - \circ First we prove $M=C^d\pmod p.$ From $C=M^e\pmod N,$ we know $C=M^e\pmod p$ and hence $C^d=M^{ed}\pmod p.$
 - $\circ \ ed = 1 \ (\operatorname{mod} \ (p-1)(q-1)),$ so ed = k(p-1)(q-1)+1 for some integer k.
 - $egin{aligned} \circ \ M^{ed} &= M*M^{k(p-1)(q-1)} \ (ext{mod} \ p) \ M^{ed} &= M*(M^{(p-1)})^{k(q-1)} \ (ext{mod} \ p) \end{aligned}$
 - According to Fermat's Little Theorem:

$$M^{ed} = M * (1)^{k(q-1)} \pmod{p}$$

 $M^{ed} = M \pmod{p}$

 \circ By symmetry, we also have $M^{ed}=M\pmod{q}$. Thus $M=C^d\mod N$.