Strategic Control of Episodic Memory Through Post-Gating

Activity:

Cody Dong, Qihong Lu, Kenneth Norman

RINCETON UNIVERSITY

Main Points

Can people learn to strategically control episodic memory?

Are people able to modulate retrieval of episodic memory based on the diagnosticity of retrieval cues?

Results:

- People refrained from making predictions in situations when it is unclear which memory to retrieve (i.e., non-diagnostic retrieval cues)
- Comparing memory-augmented models that learn optimal retrieval policies: Post-gating models leveraging a memory conflict signal were able to account for this selective behavior while pre-gating models could not

Memory Augmented Model

- Model^{1,2} is a recurrent neural network connected to an episodic memory module
- Memory Retrieval:
 - 1. stored memories are activated based on similarity to current hidden state
 - 2. activated memories compete to be retrieved using a leaky competing accumulator process (LCA)
 - 3. Averaged memory pattern (weighted by final activation from LCA) is added back into the hidden state
- Pre-gating models can control initial level of memory activation while post-gating models control the magnitude of the final retrieved memory pattern
- Post-gating models have access to a binary conflict signal³ that can potentially influence the degree of retrieval
- Model was trained using reinforcement learning (A2C) on behavioral task analogous to our experiment, with the ability to respond "don't know" to queries

Future Directions

Issue: "Don't Know" responses may not track retrieval gating Participants may retrieve candidate memories beforehand but decide to withhold their prediction

Need alternate ways of measuring when retrieval happens:

- 1. Priming: if retrieval of a specific memory occurs, then its subsequent memory is enhanced⁵
- 2. Neural measures of episodic recall⁶

Want tighter coupling between prediction and retrieval:

- Avoid cued recall because it artificially introduces a deliberative step between retrieval and prediction
- Switch to different tasks incorporating retrieval-based predictions that occur naturally (e.g., during story reading)

References

- Lu, Q., Hasson, U., Norman, K. A. eLife 2022
- Ritter, S., et al. arXiv 2018
- Botvinick, M., Cohen, J. D., Carter, C.S. Trends Cogn Sci. 2004
- Johnson, M. K., et al. Psychological Bulletin 1993
- Smith, T. A., Hasinski A. E., Sederberg P.B. J Exp Psychol Gen. 2013
- Chen, J., et al. Cerebral Cortex 2016

Acknowledgement:

This work was supported by a Multi-University Research Initiative (MURI) grant

awarded to KAN (ONR/DoD N00014-17-1-2961).

Experimental Paradigm

"Don't Know" or Input Answer

- Participants studied events consisting of an event label (e.g., community park) and 4 slot-filler pairs (e.g., Weather: Hurricane) that they viewed sequentially
- Each event type (e.g., community park) had two study events
 - Each event has one shared feature while the rest are unique (i.e., diagnostic of the specific studied event)

Subjects are later shown an event again in a test trial:

- First observe event label and one feature
- Then cued with slot and queried on the identity of the feature

Low Diagnosticity Test Trial

Response:

High Diagnosticity Test Trial

Whether shared feature is presented first or not (high or low diagnosticity trial) causes ambiguity during query #1

Results

- Participants were able to accurately discern whether the first feature was ambiguous (i.e., during a low diagnosticity trial) and respond don't know at Query #1
 - Decrease in "don't know" responses from Query #1 to Query #2 indicates that, once participants were shown a diagnostic feature, they were able to retrieve the correct memory to respond
- Only the post-gating model qualitatively replicates this human pattern of don't know responses at medium penalties
- Increasing penalty causes both models to become more cautious, leading to greater proportion of don't know responses

- By leveraging a conflict signal between activated memories, the post-gating model can limit retrieval when it is unclear which memory corresponds to the features presented thus far
- In contrast, the pre-gating model is unable to detect when multiple similar events are equally plausible
- Post-gating may generally support selective retrieval based on the characteristics of the activated memories⁴ (e.g., conflict)