随机过程 B 第 1 章 引论

殷哲 yinzhe@ustc.edu.cn

解扬洋 xieyclio@ustc.edu.cn

教材与参考书

- 教材:
 - ▷ 方兆本、缪柏其, 《随机过程》(第三版), 科学出版社, 2011年.
- 参考书:
 - D 更新过程:
 Ross, S.M. (1995). Stochastic Processes (2nd Edition), John Wiley & Sons.
 - (龚光鲁译, 《随机过程》(第二版), 机械工业出版社, 2013)
 - ▷ Markov 链: 李育强、姚强, 《应用随机过程》, 高等教育出版社, 2021 年.
 - 宽平稳过程: 林元烈,《应用随机过程》,清华大学出版社,2002年.

成绩计算

平时成绩 (30%) + 期末考试 (70%)

课程内容

- 第1章 引论
 - ▷ 基本概念
 - > 条件期望和矩母函数
 - ⊳ 收敛性
- 第2章 泊松过程
 - ⊳ 定义
 - ▷ 间隔时间与到达时间
 - > 泊松过程推广
- 第3章 马可夫过程
 - ▷ 定义
 - ▷ 马可夫链的状态分类
 - ▷ 极限定理与平稳分布
 - ▷ 分支过程
 - ▶ 连续时间马可夫链

- 第4章 平稳过程
 - ▷ 定义
 - ▷ 遍历性定理
 - ▷ 协方差函数与功率谱密度
- 第5章 布朗运动*
 - ▷ 定义
 - ▷ 布朗运动的性质
 - ▷ (伊藤积分)

本章提纲

- 1 引言
 - 随机变量与随机过程
 - 例子
 - 有限维分布与数字特征
 - 平稳过程
 - 独立增量过程
- ② 条件期望和矩母函数
 - 条件概率与条件期望
 - 矩母函数
 - 概率母函数
 - 特征函数
- ③ 收敛性
 - 依概率收敛与几乎处处收敛
 - 均方收敛
 - 依分布收敛

基本概念

定义 随机变量 (random variable)

随机变量是从样本空间(定义域) Ω 到可测空间(值域) E 的函数.

- 最常见的可测空间为 $E = \mathbb{R}$, 也即随机变量的取值均为实数
- 概率空间三元组 (Ω, F, ℙ)
 - Arr 样本空间: 集合 Ω , 包含了随机试验所有可能的结果 (基本事件)
 - ightharpoonup 事件域: \mathcal{F} , 由 Ω 中元素的集合构成的域, 例如 $\mathcal{F}=2^{\Omega}$

定义 事件域 (集合代数)

我们称 \mathcal{F} 是一个 (事件) 域, 若以下 2 个条件同时满足:

- 1. $\emptyset, \Omega \in \mathcal{F}$
- 2. 若 $A \in \mathcal{F}$ 且 $B \in \mathcal{F}$, 则 $A \cup B$, $A \cap B$, $A \setminus B \in \mathcal{F}$
- 注意:集合域通常不是抽象代数中定义的域,由于交运算和并运算没有逆元素
- 定义中 $A \setminus B \in \mathcal{F}$, 可替换为 $\bar{A} \in \mathcal{F}$, 为什么? 利用 $A \setminus B = A \cap \bar{B}$

基本概念(续)

定义 概率函数 (概率测度)

概率函数 $\mathbb{P}: \mathcal{F} \mapsto [0,1]$ 将域中的每个事件对应一个概率, 且满足

- 非负性: $\mathbb{P}(\omega) \geq 0$, $\mathbb{P}(\omega) \in \mathbb{R}$
- 归一性(正则性): $\mathbb{P}(\Omega) = 1$
- 可列可加性: $\mathbb{P}(\bigcup_{i=1}^{\infty} \omega_i) = \sum_{i=1}^{\infty} \mathbb{P}(\omega_i)$, 其中 ω_i 为不相交的事件

- 如何推导出 $\mathbb{P}(\emptyset) = 0$? 利用可列可加性
- 如何由概率函数的可列可加性推导出有限可加性?

$$\mathbb{P}(\bigcup_{i=1}^{\infty} \omega_i) = \sum_{i=1}^{\infty} \mathbb{P}(\omega_i) \Rightarrow \mathbb{P}(\bigcup_{i=1}^{n} \omega_i) = \sum_{i=1}^{n} \mathbb{P}(\omega_i)$$

其中 ω_i 为不相交的事件

思考与讨论

• 例: 随机变量 $X(\omega), \ \omega \in \Omega$

随机变量的概率分布为:

$$\mathbb{P}(X = 1) = \mathbb{P}(\{\omega_1, \omega_3, \omega_5\}) = 0.6$$

$$\mathbb{P}(X = 0) = \mathbb{P}(\{\omega_2, \omega_4, \omega_6\}) = 0.4$$

• 例子中随机变量 X 对应的 $(\Omega, \mathcal{F}, \mathbb{P})$ 以及 E 分别是什么?

基本概念(续)

定义 1.1 随机过程 (stochastic process)

随机过程是一族随机变量 $\{X(t), t \in T\}$, 其中 t 是参数, 它属于某个指标 集 T, T 称为参数集

- 参数 t 通常代表时间, 可以离散或连续
 - ight
 angle 当时间 $T=\{0,1,2,\cdots\}$ 为离散时, 也称为随机序列
- 随机过程是随时间变化的随机变量
- 因此, 随机过程可以看做是关于时间 $t \in T$ 和样本 $\omega \in \Omega$ 的 (二元) 函数, 记作 $X(t,\omega)$
 - ▷ 给定 $\omega = \omega_0$ 时, $X(t,\omega_0)$ 是一条样本路径/轨道 (sample path), 是关于 t 的确定性函数
 - \triangleright 给定 $t=t_0$ 时, $X(t_0,\omega)$ 是一个随机变量
- 随机过程在时刻 t 的取值 $X(t,\omega)$, 称为过程所处的状态
 - ▷ 状态的全体, 称为状态空间
 - ▷ 实值随机过程的状态是实数,而非实数向量。

基本概念(续)

• 依据参数 (时间) 集和状态空间的不同, 可将常见随机过程分为 4 类

	离散时间	连续时间
离散状态	随机徘徊 离散时间马可夫链	泊松过程 连续时间马可夫链
连续状态	离散时间马可夫过程	布朗运动 连续时间马可夫过程

• 当 T 是高维向量时, 则称 X(t) 是随机场

例子

- 例 1.1 布朗运动:X(t)
 - \triangleright 粒子在时刻 t 的一维位置 X(t), 服从正态分布 N(0,t)
 - ▷ 不确定性随时间增加
 - ▷ 一种定义: 轨道连续的平稳独立增量过程
- 例 1.2 随机徘徊:X(t)
 - ightharpoonup 一醉汉每时刻以概率 p 前进一步, 概率 1-p 后退一步
 - ▷ X(t) 表示 t 时刻时, 醉汉在街上的位置
 - ▷ 用以刻画股票价格、质点运动、赌博问题等
- 例 1.3 神经细胞的位势:X(t)
 - ight
 angle 神经细胞在其细胞膜电位 X(t) 达到某一临界值 C 时, 会产生兴奋
 - ▷ 刺激脉冲 (提高电位) 和抑制脉冲 (降低电位) 以一定速率 (例如 Poisson 过程) 抵达细胞
 - ▷ 每个脉冲带来的升降幅度, 服从相同的分布 H(x)
 - ▷ 兴奋过后,细胞膜电位恢复到 0
 - ▶ 我们会关注两次兴奋 (更新点) 的间隔时间, 记为 T_i

例子 (续)

- 例 1.5 流行病学模型
 - ▷ X(t): t 时刻易感染人群的大小
 - ▷ Y(t): t 时刻已被传染人数
 - ▷ 易感人群被传染的概率为 p
 - ▷ 每一时刻都有一部分易感染人群被传染

$$X(t) = X(t+1) + Y(t+1)$$

 \triangleright 对 $j \le i$ 时 (j > i 时如何?), 有

$$\mathbb{P}(X(t+1) = j | X(t) = i) = C_i^{i-j} p^{i-j} (1-p)^j$$

- ▷ 当 t 趋于无穷时, 感染和未感染的人群如何分布?
- 例 1.7 水库库容调度
 - ▷ X(t): 第 t 年初的水库蓄水量
 - $\triangleright Y(t)$: 水库在 (t,t+1) 年间的蓄水量, 是随机值
 - ▷ K: 水库的设计库容
 - ▷ M: 每年年底固定的清库泄洪量, M < K</p>

$$X(t+1) = \min\{X(t) + Y(t), K\} - \min\{X(t) + Y(t), M\}$$

▷ 当年蓄水量较多或较少时,来年的初始容量有什么规律?

思考与讨论

什么是随机过程? 离散时间随机过程和离散状态随机过程有什么关系?

• 随机过程和随机向量的区别是什么?

有限维分布和数字特征

对于随机变量 X:

• 其概率特征反映在分布函数中

$$F(x) = \mathbb{P}(X \le x)$$

对于随机过程 $\{X(t), t \in T\}$:

• 定义过程的一维分布为

$$F_{\mathbf{t}}(x) = \mathbb{P}(X(t) \le x)$$

- 过程一维分布的数字特征有
 - \triangleright 均值函数: $\mathbb{E}X(t)$, 也记作 $\mu_X(t)$
 - \triangleright 方差函数: Var[X(t)]
- 然而, 一维分布不足以完全描述随机过程的概率特征
- 还需了解随机过程在不同时刻对应的随机变量的联合分布 (关联性), 也即过程的有限维分布

例如, $X(t_1)$ 与 $X(t_2)$ 的二维联合分布, 相应的数字特征有

- 自相关函数: $\mathbb{E}[X(t_1)X(t_2)]$, 也记作 $r_X(t_1,t_2)$
 - hipsi 与二阶矩的关系: $r_X(t,t) = \mathbb{E}[X(t)]^2$
 - ightharpoonup 对称性: $r_X(t_1, t_2) = \mathbb{E}[X(t_1)X(t_2)] = \mathbb{E}[X(t_2)X(t_1)] = r_X(t_2, t_1)$
 - ight
 angle 非负定性: 对任意 $t_1, t_2, \cdots, t_n \in T$ 及任意实数 b_1, b_2, \cdots, b_n , 总有

$$\mathbf{b}^T (r_X(t_i, t_j))_{n \times n} \mathbf{b} = \sum_{i=1}^n \sum_{j=1}^n b_i b_j r_X(t_i, t_j) \ge 0$$

证明: 基于 $\mathbb{E}[X(t_i)X(t_j)]$ 的关于 $X(t_i)$ 和 $X(t_j)$ 的双线性性 (关于两个自变量均有线性性: f(ax+by)=af(x)+bf(y)), 有

$$\sum_{i=1}^{n} \sum_{j=1}^{n} b_i b_j r_X(t_i, t_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} b_i b_j \mathbb{E}[X(t_i) X(t_j)]$$

$$= \mathbb{E}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} b_i X(t_i) b_j X(t_j)\right] = \mathbb{E}\left[\sum_{i=1}^{n} b_i X(t_i)\right] \left[\sum_{j=1}^{n} b_j X(t_j)\right]$$

$$= \mathbb{E}\left[\sum_{i=1}^{n} b_i X(t_i)\right]^2 \ge 0$$

• 协方差函数:

$$R_{X}(t_{1}, t_{2}) \triangleq \operatorname{Cov}(X(t_{1}), X(t_{2}))$$

$$= \mathbb{E} \{ [X(t_{1}) - \mathbb{E}X(t_{1})] [X(t_{2}) - \mathbb{E}X(t_{2})] \}$$

$$= \mathbb{E} \{ X(t_{1})X(t_{2}) - X(t_{1})\mathbb{E}X(t_{2}) - X(t_{2})\mathbb{E}X(t_{1}) + \mathbb{E}X(t_{1})\mathbb{E}X(t_{2})] \}$$

$$= \mathbb{E}[X(t_{1})X(t_{2})] - \mathbb{E}X(t_{1})\mathbb{E}X(t_{2})$$

- 与方差的关系: $R_X(t,t) = \operatorname{Var}[X(t)] \ge 0$
- 协方差函数有对称性、非负定性
- 非负定性证明: 协方差函数有双线性性

$$Cov(b_1X(t_1) + b_2X(t_2), X(s)) = b_1Cov(X(t_1), X(s)) + b_2Cov(X(t_2), X(s))$$

• 再利用方差的非负性

$$0 \leq \operatorname{Var}\left[\sum_{i=1}^{n} b_{i}X(t_{i})\right] = \operatorname{Cov}\left(\sum_{i=1}^{n} b_{i}X(t_{i}), \sum_{j=1}^{n} b_{j}X(t_{j})\right)$$
$$= \sum_{i=1}^{n} b_{i}\operatorname{Cov}\left(X(t_{i}), \sum_{j=1}^{n} b_{j}X(t_{j})\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} b_{i}b_{j}R_{X}(t_{i}, t_{j}) = \mathbf{b}^{T}\left(R_{X}(t_{i}, t_{j})\right)_{n \times n}\mathbf{b}$$

定义 有限维分布族

对所有正整数 n, 有限维分布函数

$$F_{t_1,t_2,\dots,t_n}(x_1,x_2,\dots,x_n) = \mathbb{P}(\{X(t_1) \le x_1,\dots,X(t_n) \le x_n\}), \forall t_1,\dots,t_n \in T$$

组成的集合, 称为随机过程 $\{X(t), t \in T\}$ 的有限维分布族.

- 知道了有限维分布族,就知道了过程任意 n 个时刻 (n 也是任意的) 对应随机变量的联合分布
- 对称性: 对 $(1, \dots, n)$ 的任一置换 (i_1, \dots, i_n) 有

$$F_{t_1,t_2,\cdots,t_n}(x_1,x_2,\cdots,x_n) = F_{t_{i_1},t_{i_2},\cdots,t_{i_n}}(x_{i_1},x_{i_2},\cdots,x_{i_n})$$

证明直接根据定义

● 相容性: 对 m < n

$$F_{t_1,\dots,t_m,t_{m+1},\dots,t_n}(x_1,\dots,x_m,\infty,\dots,\infty) = F_{t_1,\dots,t_m}(x_1,\dots,x_m)$$

必然事件不影响其它事件的分布

- 例子: 设 X_t 为第 t 次独立地扔一均匀六面骰子得到的点数
- 则 $\{X_t, t \geq 1\}$ 是一个随机过程
- 参数 (时间指标) 集: $T = \{1, 2, \cdots\}$
- 状态空间: {1,2,3,4,5,6}
- 均值:

$$\mathbb{E}X_t = \frac{1+2+3+4+5+6}{6} = 3.5, \ \forall t$$

• 方差:

$$Var X_t = \mathbb{E}X_t^2 - (\mathbb{E}X_t)^2 = \frac{35}{12}$$

- 协方差: $Cov(X_t, X_s) = \mathbb{E}X_t X_s \mathbb{E}X_t \mathbb{E}X_s = 0, \ \forall t \neq s$
- 有限维分布:

$$F_{t_1,t_2,\dots,t_n}(x_1,x_2,\dots,x_n) = F(x_1)F(x_2)\dots F(x_n),$$

其中 F(x) 为 X_1 的分布函数

思考与讨论

- 为什么说一维分布不足以刻画随机过程的概率特征?
- 协方差函数和自相关函数的区别是什么?

平稳过程

定义 同分布

若两个随机变量 X_1 , X_2 的分布函数 $F_{X_1}(x)$ 与 $F_{X_2}(x)$ 对任意 x 都是相等的, 则称它们为同分布的, 记作 $X_1 \stackrel{d}{=} X_2$.

- 注意区别 $X_1 \stackrel{d}{=} X_2$ 和 $X_1 = X_2$
- 类似地, 如果一个随机向量 $\mathbf{X}=(X_1,\cdots,X_n)$ 与另一随机向量 $\mathbf{Y}=(Y_1,\cdots,Y_n)$ 有相同的联合分布, 则也称其为同分布的, 记作 $\mathbf{X}\stackrel{d}{=}\mathbf{Y}$

定义 1.2 严平稳过程

若随机过程 $\{X(t), t \in T\}$, 对任意的 $t_1, \dots, t_n \in T$ 和任意 h 有

$$(X(t_1+h),\cdots,X(t_n+h))\stackrel{d}{=}(X(t_1),\cdots,X(t_n)),$$

则称过程为严平稳的.

- 任意 n 维的概率特性与时间起点无关
- 平稳即指概率特性 (例如有限维分布) 关于时间的不变性

平稳过程(续)

定义 1.3 宽平稳过程

若随机过程 $\{X(t),\ t\in T\}$ (i) 在所有时刻的<mark>二阶矩存在 (</mark> $\mathbb{E}X^2(t)<\infty$, $\forall t$, 也称二阶矩过程), (ii) $\mathbb{E}X(t)=m$, $\forall t$, 且 (iii) 协方差函数 $R_X(t,s)$ 只与时间差 t-s 有关, 则称过程为宽平稳的或二阶矩平稳的.

- 宽平稳过程实际上只保证了一、二阶矩是平稳的
- 一个二阶矩过程 (所有时刻二阶矩 $\mathbb{E}X^2(t)$ 存在),一定是一阶矩过程 (所有时刻一阶矩 $\mathbb{E}X(t)$ 存在) 吗?
- 若一个随机变量的高阶矩存在,则低阶矩一定存在

$$\begin{split} \mathbb{E} X^{n+1} &= \int_{-\infty}^{-1} x^{n+1} f(x) dx + \int_{-1}^{1} x^{n+1} f(x) dx + \int_{1}^{\infty} x^{n+1} f(x) dx \\ \mathbb{E} X^{n} &= \int_{-\infty}^{-1} x^{n} f(x) dx + \int_{-1}^{1} x^{n} f(x) dx + \int_{1}^{\infty} x^{n} f(x) dx \\ & \biguplus \int_{1}^{\infty} x^{n} f(x) dx \leq \int_{1}^{\infty} x^{n+1} f(x) dx < \infty, \quad \left| \int_{-1}^{1} x^{n} f(x) dx \right| \leq \int_{-1}^{1} f(x) dx \\ & \int_{-\infty}^{-1} |x^{n}| f(x) dx \leq \int_{-\infty}^{-1} |x^{n+1}| f(x) dx = \left| \int_{-\infty}^{-1} x^{n+1} f(x) dx \right| < \infty \end{split}$$

平稳过程(续)

- 严平稳过程未必是宽平稳的,例如二阶矩不存在的情形
- 二阶矩存在的严平稳过程是宽平稳的, 证明如下:
 - ▶ 由严平稳过程定义 $(X(t_1+h), \cdots, X(t_n+h)) \stackrel{d}{=} (X(t_1), \cdots, X(t_n)),$ 可知 $X(t+h) \stackrel{d}{=} X(t), \forall t, h,$ 从而 (二阶矩存在保障一阶矩存在) $\mathbb{E}X(t+h) = \mathbb{E}X(t), \forall t, h$ (一阶矩为常数)
 - ightarrow 关于协方差函数,二阶矩存在,意味着协方差 (自相关) 函数存在 $[\mathbb{E}X(t)X(s)]^2 \leq \mathbb{E}X^2(t)\mathbb{E}X^2(s) < \infty \text{ (Cauchy-Schwarz 不等式,见讨论)}$
 - ▷ 利用 $(X(t), X(s)) \stackrel{d}{=} (X(t-s), X(0))$, 有 $R_X(t,s) = \text{Cov}(X(t), X(s))$ = Cov(X(t-s), X(0)) = $R_X(t-s,0)$ (协方差函数只与时间差 t-s 相关)
- 对于宽平稳过程, 总有 $R_X(t,s) = R_X(t-s,0)$
 - \triangleright 故可将协方差函数记为 $R_X(t-s)$
 - ightharpoonup 由对称性,得 $R_X(t) = R_X(t,0) = R_X(0,t) = R_X(-t)$ 为偶函数
 - $ightharpoonup R_X(0) = R_X(t,t) = Var X(t), \ \forall t$

思考与讨论

- 平稳性的直观含义是什么?
- 宽平稳过程和严平稳过程的联系和区别是什么?
- 如何证明 Cauchy-Schwarz 不等式?

$$[\mathbb{E}XY]^2 \le \mathbb{E}X^2\mathbb{E}Y^2$$

考虑
$$\mathbb{E}(X+tY)^2 \geq 0$$

独立增量过程

定义 1.4 独立增量过程

若对任意 $t_1 < t_2 < \cdots < t_n, \ t_1, t_2, \cdots, t_n \in T$, 随机变量 $X(t_2) - X(t_1)$, $X(t_3) - X(t_2)$, \cdots , $X(t_n) - X(t_{n-1})$ 是相互独立的, 则称 X(t) 为独立增量过程.

- 例 1.10:
 - \triangleright 设 Z_i , $i=0,1,2,\cdots$, 是一系列独立的随机变量
 - \triangleright 定义 $X_n = \sum_{i=0}^n Z_i$
 - \triangleright 则过程 $\{X_n, n \ge 0\}$ 是独立增量过程, 也称 X_n 为独立和

定义 平稳增量过程

若过程 X(t) 满足对任意的 t_1 , t_2 和 h, 有 $X(t_1+h)-X(t_1)\stackrel{d}{=} X(t_2+h)-X(t_2)$, 则称 X(t) 为平稳增量过程.

• $X(t_1+h)-X(t_1)$ 与 $X(t_2+h)-X(t_2)$ 未必独立

独立增量过程(续)

定义 平稳独立增量过程

若独立增量过程 X(t) 满足对任意的 t_1 , t_2 和 h, 有 $X(t_1+h)-X(t_1)\stackrel{d}{=} X(t_2+h)-X(t_2)$, 则称 X(t) 为平稳独立增量过程.

- 例 1.10 中, 若 Z_i 是独立同分布的, 则 $X_n = \sum_{i=0}^n Z_i$ 是平稳独立增量过程
- 平稳独立增量过程不一定是平稳过程, 仅指增量是平稳的

 ▷ 例如:

$$X_n = \sum_{i=0}^n Z_i,$$

其中 Z_i 独立同分布, $\mathbb{E}Z_i = m \neq 0$

▷ 过程的均值不是常数:

$$\mathbb{E}X_{n+1} = (n+2)m \neq (n+1)m = \mathbb{E}X_n,$$

因此, 过程不是宽平稳或严平稳的

独立增量过程(续)

- 平稳独立增量过程的均值 (如存在) 一定是 t 的线性函数, 证明如下
 - \triangleright 设 $\mathbb{E}X(t) = f(t)$
 - ightharpoonup 由平稳独立增量过程定义 $X(t_1+h)-X(t_1)\stackrel{d}{=} X(t_2+h)-X(t_2)$ 知,对任意 t_1,t_2 有

$$\frac{f(t_1+h) - f(t_1)}{h} = \frac{f(t_2+h) - f(t_2)}{h}, \ \forall h$$

 \triangleright 令 $h \to 0$, 可得

$$f'(t_1) = f'(t_2) = \text{constant}$$

• Poisson 过程和 Brown 运动都是平稳独立增量过程

思考与讨论

- 平稳过程、平稳增量过程、平稳独立增量过程的联系和区别是什么?
- 平稳增量过程一定是平稳过程吗? 平稳过程一定是平稳增量过程吗?

条件期望

给定事件 B 发生时, 事件 A 发生的条件概率

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

- ight
 angle 若 $\mathbb{P}(B)=0$, 则条件概率无法用上式定义
- \triangleright 此时, $\mathbb{P}(A|B)$ 可以定义为任意 (符合概率公理的) 的值
- \triangleright 每一个 $\mathbb{P}(A|B)$ 的取值, 都是条件概率的一种形式 (version)
- 对于离散型随机变量, 给定事件 $\{\omega: Y(\omega)=y\}$ (简记为 $\{Y=y\}$) 且 $\mathbb{P}(Y=y)>0$ 时, X 取值为 x 的条件概率为

$$\mathbb{P}(X = x | Y = y) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(Y = y)}$$

• 相应的条件分布函数定义为

$$F(x|y) = \mathbb{P}(X \le x|Y = y)$$

• 条件期望定义为

$$\mathbb{E}(X|Y=y) = \sum_{x} x \mathbb{P}(X=x|Y=y)$$

• 对于连续型随机变量, $\mathbb{P}(Y=y)$ 通常为 0, 此时

$$\mathbb{P}(X = x | Y = y) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(Y = y)}$$

没有意义

ullet 此时,为定义条件概率,我们取一个包含 y 的小区间 Δ_y

ight
angle 若 $\mathbb{P}(Y\in\Delta_y)=0$, 则定义相应的条件概率 (的一种形式) 为

$$\mathbb{P}(X \in A|Y = y) = 0$$

ightharpoonup 若 $\mathbb{P}(Y \in \Delta_y) > 0$, 则定义

$$\mathbb{P}(X \in A | Y = y) = \lim_{\Delta_y \downarrow 0} \mathbb{P}(X \in A | Y \in \Delta_y)$$

其中 $\Delta_y \downarrow 0$ 表示使 Δ_y 的区间长度趋于 0

- ullet 例如, 假设 (X,Y) 是均匀分布在单位圆内的随机点, 概率密度为 ${1\over\pi}$
- \mathbb{N} $\mathbb{P}(X=x)=0, \ \forall x, \ \mathbb{P}(Y=y)=0, \ \forall y$
- 考虑 $\mathbb{P}(X \in A | Y = 0.5)$, 其中 A = [-a, a] 且 $a \leq \frac{\sqrt{3}}{2}$
- 包含 y = 0.5 的小区间为 $\Delta_y = (0.5 h, 0.5 + h)$
- 由图可知

$$\begin{split} \mathbb{P}(Y \in \Delta_y) &= \left[2 \cdot \frac{\sqrt{3}}{2} \cdot 2h + o(h) \right] \frac{1}{\pi} = \frac{2\sqrt{3}}{\pi} h + o(h) \quad \text{(类梯形区域)} \\ \mathbb{P}(Y \in \Delta_y, X \in A) &= 2a \cdot 2h \cdot \frac{1}{\pi} = \frac{4}{\pi} ah \quad \text{(矩形区域)} \end{split}$$

从而有

$$\mathbb{P}(X \in A|Y = y) = \lim_{\Delta_y \downarrow 0} \mathbb{P}(X \in A|Y \in \Delta_y)$$

$$= \lim_{\Delta_y \downarrow 0} \frac{\mathbb{P}(X \in A, Y \in \Delta_y)}{\mathbb{P}(Y \in \Delta_y)}$$

$$= \lim_{h \to 0^+} \frac{\frac{4}{2\sqrt{3}}ah}{2} + o(h) = \frac{2}{3}\sqrt{3}a, \ a \le \frac{\sqrt{3}}{2}$$

• 条件分布函数: 在条件概率的定义中, 取 $A = (-\infty, x)$

$$F(x|y) = \mathbb{P}(X \le x|Y = y) = \lim_{\Delta_y \downarrow 0} \mathbb{P}(X \le x|Y \in \Delta_y)$$

• 条件密度函数: 若存在 f(x|y), 对任意集合 A 有

$$\mathbb{P}(X \in A|Y = y) = \int_A f(x|y)dy$$

且 $\int_{-\infty}^{\infty} f(x|y)dx = 1$, 则称 f(x|y) 为给定 Y = y 时, X 的条件密度

• 条件分布函数与条件密度函数的关系:

$$F(x|y) = \int_{-\infty}^{x} f(x|y) dx$$

• 对随机变量 X 与 Y, 若存在非负函数 f(x,y), 使得

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v)dvdu$$

则称 f(x,y) 为随机变量 X 与 Y 的联合概率密度

• 记 $f(y) = \int_{-\infty}^{+\infty} f(x,y) dx$ 为 Y 的边缘概率密度, 则有

$$f(x,y) = f(x|y)f(y)$$
 (联合 = 条件 × 边缘)

• \$件期望: 给定 Y = y, X 的条件期望为

$$\mathbb{E}(X|Y=y) = \int x f(x|y) dx = \int x dF(x|y)$$

- $\triangleright \mathbb{E}(X|Y=y)$ 是一个关于 y 的确定性函数
- $\triangleright \mathbb{E}(X|Y)$ 是一个随机变量

例 1.11: 投掷一枚硬币, 出现正面的概率为 p, 独立地进行 n 次投掷

- 记 S 为 n 次试验中出现正面的次数: $S \in \{0,1,\cdots,n\}$
- T 为首次出现正面的试验次数: T 的取值可能有哪些?
- 求给定 n 次试验中仅出现 1 次正面时,随机变量 T 的条件分布,也即 $\mathbb{P}(T=k|S=1)$

解:注意到 $\{T=k,S=1\}$ 实际上只包含了一种可能的试验结果序列

反
$$\cdots$$
反 正 反 \cdots 反 $\hat{\pi}_{k}$ 个

- $\mathbb{P}(T=k,S=1)=p(1-p)^{n-1}$, 与 k 无关
- $\mathbb{P}(S=1) = C_n^1 p (1-p)^{n-1}$
- $\mathbb{P}(T = k | S = 1) = \frac{\mathbb{P}(T = k, S = 1)}{\mathbb{P}(S = 1)} = \frac{1}{n}, \ \forall k$
- 唯一的一次正面, 将以相同的机会在 n 次试验中出现

命题 1.1 条件期望的性质

(a) 若 X 与 Y 独立, 则

$$\mathbb{E}(X|Y=y) = \mathbb{E}X$$

(b) 平滑性 (全期望公式):

$$\mathbb{E}X = \int \mathbb{E}(X|Y=y)dF_Y(y) = \mathbb{E}[\mathbb{E}(X|Y)]$$

(c) 对随机变量 X, Y 的函数 $\phi(X,Y)$ 有

$$\mathbb{E}[\phi(X,Y)|Y=y] = \mathbb{E}[\phi(X,y)|Y=y]$$

- (a) 独立时, 条件期望与无条件期望相同
- (b) 期望的计算可以<mark>两步走,先在给定条件下求条件期望,再对条件期望做概率加权平均</mark>
- (c) 可以将条件期望中取条件的随机变量, 直接替换成其条件取值
- 3 条性质分别证明如下

证明思路:

(a) 独立时, 条件分布与无条件分布相同

$$\mathbb{P}(X=x|Y=y) = \frac{\mathbb{P}(X=x,Y=y)}{\mathbb{P}(Y=y)} = \mathbb{P}(X=x)$$

$$\mathbb{E}(X|Y=y) = \sum_{x} x \mathbb{P}(X=x|Y=y) = \sum_{x} x \mathbb{P}(X=x) = \mathbb{E}X$$

(b) 以离散情形为例

$$\begin{split} \mathbb{E}(X) &= \sum_x x \mathbb{P}(X=x) \\ &= \sum_x x \left[\sum_y \mathbb{P}(X=x,Y=y) \right] \qquad \text{(特事件关于 Y 的取值进行拆分)} \\ &= \sum_x \sum_y \mathbb{P}(Y=y) \left[x \frac{\mathbb{P}(X=x,Y=y)}{\mathbb{P}(Y=y)} \right] \\ &= \sum_y \mathbb{P}(Y=y) \left[\sum_x x \frac{\mathbb{P}(X=x,Y=y)}{\mathbb{P}(Y=y)} \right] \qquad \text{(交换求和顺序)} \\ &= \sum_y \mathbb{P}(Y=y) \mathbb{E}(X|Y=y) = \mathbb{E}[\mathbb{E}(X|Y)] \end{split}$$

证明思路:

(c) 把 $Z = \phi(X, Y)$ 看作一个随机变量, 其是随机向量 (X, Y) 的函数

$$\mathbb{E}[\phi(X,Y)|Y=y]$$

$$=\sum_{(x_i,y_j)}\phi(x_i,y_j)\mathbb{P}((X,Y)=(x_i,y_j)|Y=y) \quad (按 \ (X,Y) \ \mathbb{D}(X,Y) \ \mathbb{D}(X,Y)=(X_i,y_j)|Y=y)$$

$$=\sum_{(x_i,y_j)}\phi(x_i,y_j)\frac{\mathbb{P}((X,Y)=(x_i,y_j),Y=y)}{\mathbb{P}(Y=y)} \quad (\text{由条件概率定义})$$

$$=\sum_{x_i}\phi(x_i,y)\frac{\mathbb{P}((X,Y)=(x_i,y),Y=y)}{\mathbb{P}(Y=y)} \quad (\text{互斥事件同时发生的概率为 0})$$

$$=\sum_{x_i}\phi(x_i,y)\frac{\mathbb{P}(X=x_i,Y=y)}{\mathbb{P}(Y=y)} \quad (\mathbb{D}(X,Y)=(X_i,Y))$$

$$=\sum_{x_i}\phi(x_i,y_i)\mathbb{P}(X=x_i,Y=y)$$

$$=\sum_{x_i}\phi(X_i,y_i)\mathbb{P}(X=x_i|Y=y)$$

$$=\mathbb{E}[\phi(X,y_i)|Y=y] \quad (\mathcal{B}(X,Y)|Y=y)$$

思考与讨论

- $\mathbb{P}(A|B)$, $\mathbb{P}(X=x|Y)$, $\mathbb{P}(X=x|Y=y)$ 的联系和区别是什么? 其中 A 和 B 是随机事件, X 和 Y 是随机变量
- $\mathbb{E}(X|Y)$, $\mathbb{E}(X|Y=y)$ 的联系和区别呢?

矩母函数

定义 1.5 矩母函数 (也称矩生成函数)

随机变量 X 的矩母函数定义为 $\mathbb{E}e^{tX}$, 记作

$$g_X(t) = \mathbb{E}e^{tX} = \int e^{tx} dF_X(x), \ t \in \mathbb{R}.$$

- 当矩母函数存在时,它唯一确定 X 的分布
- 通过 $q_X(t)$, 可以计算 X 的各阶矩

$$\mathbb{E}X^{n} = \int x^{n} dF_{X}(x) = \int x^{n} e^{tx} dF_{X}(x) \Big|_{t=0} = g_{X}^{(n)}(0), \ n \ge 1,$$

其中

$$g_X^{(n)}(t) = \frac{d^n}{dt^n} \int e^{tx} dF_X(x) = \int x^n e^{tx} dF_X(x)$$

注意,交换求导和广义积分需要条件,被积函数一致收敛是一个充分 条件

矩母函数(续)

• 对于相互独立的随机变量 X 与 Y, 有

$$g_{X+Y}(t) = g_X(t)g_Y(t)$$

证明如下:

$$g_{X+Y}(t) = \mathbb{E}e^{t(X+Y)} = \mathbb{E}e^{tX}e^{tY} = \mathbb{E}e^{tX}\mathbb{E}e^{tY} = g_X(t)g_Y(t)$$

• 常见分布的矩母函数 (见教材后附表)

分布	矩性成函数 M _X (t)	特征函数 p(t)
退化	,-	,en
伯恕利 P(X = 1) = p	1-p+pe*	1-p+pe ⁸
Л/Н (1 — p)^{b-1} p	pgi 1 - (1 - p)qi Vt < - ln(1 - p)	96 ² 1 − (1 − p) 6 ²
二項式 B(n,p)	(1-p+pe ²)*	(1-p+pc*)*
<u>6</u>	$\left(\frac{p}{1-e^t+pe^t}\right)^r, t<-\log(1-p)$	$\left(\frac{p}{1-e^{\alpha}+pe^{\alpha}}\right)^{r}$
iii Pois(λ)	(1-4)ئے	(1-4)دي
均匀(连续型) 囗(a, b)	40 - 40 1(0 - a)	±(b − a)
均均(商股盟) 🗷 🗸 (4, 8)	$\frac{e^{ab}-e^{(b+1)a}}{(b-a+1)(1-e^{a})}$	$\frac{e^{ab}-e^{(b+1)tt}}{(b-a+1)(1-e^{bt})}$
10181016 L(p, 6)	$\frac{a^{4a}}{1-b^2b^2}$, $ t < 1/b$	1+ <i>PP</i>
Εδ Ν (μ,σ²)	A	
·尼方(Chi-squared) 🔏	(1 - 21)-2	(1 - 20)-2
Noncentral chi-squared えない	e ³⁴⁽¹⁻⁴⁰⁾ (1-24) ⁻²	e ^{(34/(1-36)} (1 - 24)
ttiFij(Gamma) I'(k,€)	(1 − 60) ⁻³ , ∀6 < ½	(1 - 669)-5
指数(Exponential) Bap(A)	$(1-t\lambda^{-1})^{-1}$, $t < \lambda$	(1 - #1\ ⁻¹) ⁻¹
多元正志 N(μ, B)	g ^{2*} (p+ ¹ / ₂ 20)	e (u-12)
柯西(Cauchy) Cenchy(p, f)	不存在	,Av-01
Multivariate Cauchy		

矩母函数(续)

例 1.12 随机和的矩母函数

- 设 X_1, X_2, \cdots 为一系列<u>独立同分布</u>的随机变量
- N 为非负整数值随机变量, 且与 $\{X_i\}$ 序列独立
- $Y = \sum_{i=1}^{N} X_i$, 称为随机和
- 求 Y 的矩母函数与 X_i 矩母函数的关系

解:

• 在给定 N=n 的条件下,利用独立随机变量矩母函数性质,得

• 再利用两步走求期望

$$g_Y(t) = \mathbb{E}e^{tY} = \mathbb{E}[\mathbb{E}(e^{tY}|N)] = \mathbb{E}[g_{X_1}(t)]^N$$

矩母函数(续)

- 利用随机和 Y 的矩母函数 $g_Y(t) = \mathbb{E}[g_{X_1}(t)]^N$ 及 $\mathbb{E}Y^n = g_Y^{(n)}(0)$,可求出 Y 的各阶矩与 X_1 及 N 的关系
- 以均值、方差为例,我们先求 $g_Y'(t)$ 和 $\mathbb{E}Y$

$$g_Y'(t) = \mathbb{E}\{N[g_{X_1}(t)]^{N-1}g_{X_1}'(t)\}$$
 (为什么?对条件期望求导)

• 注意到 $g_{X_1}(0) = \int e^{0 \cdot x} dF_{X_1}(x) = 1$, 得

$$\mathbb{E}Y = g_Y'(t)\big|_{t=0} = \mathbb{E}\{N[g_{X_1}(0)]^{N-1}g_{X_1}'(0)\} = \mathbb{E}[N\mathbb{E}X_1] = \mathbb{E}N \cdot \mathbb{E}X_1$$

• 类似地, 利用 $g_{X_1}(0)=1$, $g_{X_1}'(0)=\mathbb{E} X_1$ 和 $g_{X_1}''(0)=\mathbb{E} X_1^2$, 有

$$g_Y''(t) = \mathbb{E}\{N(N-1)[g_{X_1}(t)]^{N-2}[g_{X_1}'(t)]^2 + N[g_{X_1}(t)]^{N-1}g_{X_1}''(t)\}$$

$$\begin{split} \mathbb{E}Y^2 &= g_Y''(t)\big|_{t=0} = \mathbb{E}N(N-1) \cdot (\mathbb{E}X_1)^2 + \mathbb{E}N \cdot \mathbb{E}X_1^2 \\ &= \mathbb{E}N[\mathbb{E}X_1^2 - (\mathbb{E}X_1)^2] + \mathbb{E}N^2 \cdot \mathbb{E}X_1^2 = \mathbb{E}N \cdot \text{Var}X_1 + \mathbb{E}N^2 \cdot (\mathbb{E}X_1)^2 \end{split}$$

$$VarY = \mathbb{E}Y^{2} - (\mathbb{E}Y)^{2} = \mathbb{E}N \cdot VarX_{1} + \mathbb{E}N^{2} \cdot (\mathbb{E}X_{1})^{2} - (\mathbb{E}N \cdot \mathbb{E}X_{1})^{2}$$
$$= \mathbb{E}N \cdot VarX_{1} + (\mathbb{E}X_{1})^{2} \cdot VarN$$

概率母函数

定义 1.6 概率母函数 (也称概率生成函数)

若 X 为取值在非负整数域上的离散型随机变量,则定义 $\mathbb{E} s^X$ 为其概率 母函数,记作 $\phi_X(s)$.若 $\mathbb{P}(X=k)=p_k,\ k=0,1,2,\cdots$,则 $\phi_X(s)=\mathbb{E} s^X=\sum_{k=0}^\infty p_k s^k,\ s\in\mathbb{C}$.

概率母函数是以 pk 为系数的幂级数, 且有

$$p_0 = \phi_X(0), \quad p_k = \frac{1}{k!} \frac{d^k}{ds^k} \phi_X(s) \Big|_{s=0}, \ k = 1, 2, \dots$$

- $\phi_X(s)$ ($|x| \le 1$ 必存在) 和 X 的分布是——对应的
- 若 X 与 Y 相互独立, 则 $\phi_{X+Y}(s) = \phi_X(s)\phi_Y(s)$
- 高阶矩满足: $\mathbb{E}[X(X+1)\cdots(X-r+1)] = \frac{d^r}{ds^r}\phi_X(s)|_{s=1}$
- 对随机和 $Y = \sum_{i=1}^{N} X_i$, 其中 X_i 同分布, Y 的概率母函数是随机变量 N 与 X_i 母函数的复合

$$\phi_Y(s) = \mathbb{E}\left[\mathbb{E}(s^{\sum_{i=1}^N X_i}|N)\right] = \mathbb{E}\left[\mathbb{E}(\prod_{i=1}^N s^{X_i}|N)\right] = \mathbb{E}[\phi_{X_1}(s)]^N = \frac{\phi_N\left(\phi_{X_1}(s)\right)}{\phi_N\left(\phi_{X_1}(s)\right)} = \frac{\phi_N\left(\phi_N\left(\phi_{X_1}(s)\right)}{\phi_N\left(\phi_N\left(\phi_{X_1}(s)\right)} =$$

特征函数

定义 特征函数

随机变量 X 的特征函数定义为 $\mathbb{E}e^{jtX}$,记作

$$\varphi_X(t) = \mathbb{E}e^{jtX} = \int e^{jtx} dF_X(x), \ t \in \mathbb{R}$$

- 其中 $j = \sqrt{-1}$, 是单位虚数
- 类似矩母函数, 特征函数和概率分布也是——对应的
- 特征函数与矩母函数的关系: $\varphi_X(t) = g_X(jt)$
- 在后续的功率谱密度计算和 Fourier 变换中会经常用到
- 求特征函数的过程, 实际上是对复值随机变量求期望
- 实值随机变量特征函数的性质: 有限性(复可积)、共轭对称性

$$|\varphi_X(t)| = \left| \int_{-\infty}^{\infty} e^{jtx} f_X(x) dx \right| \le \int_{-\infty}^{\infty} |e^{jtx}| f_X(x) dx \le \int_{-\infty}^{\infty} e^0 f_X(x) dx = |\varphi_X(0)| = 1$$

$$\varphi_X(-t) = \mathbb{E}e^{-jtX} = \overline{\mathbb{E}}e^{jtX} = \overline{\varphi_X(t)}$$

思考与讨论

矩母函数、概率母函数、特征函数有哪些区别? (随机变量、自变量、 收敛性)

$$g_X(t) = \mathbb{E}e^{tX} = \int e^{tx} dF_X(x)$$
$$\phi_X(s) = \mathbb{E}s^X = \sum_{k=0}^{\infty} p_k s^k$$
$$\varphi_X(t) = \mathbb{E}e^{jtX} = \int e^{jtx} dF_X(x)$$

随机变量序列的收敛性

定义 1.7 依概率收敛

设 $\{X_n, n \geq 1\}$ 为一随机变量序列,若存在随机变量 X,使得对 $\forall \varepsilon > 0$,有

$$\lim_{n \to \infty} \mathbb{P}\left(\omega : |X_n(\omega) - X(\omega)| \ge \varepsilon\right) = 0,$$

则称序列 $\{X_n, n \geq 1\}$ 依概率收敛于 X, 记为 $X_n \stackrel{p}{\rightarrow} X$.

- 简记为 $\lim_{n\to\infty} \mathbb{P}\left(|X_n-X|\geq \varepsilon\right)=0$, 其中 $|X_n-X|$ 是一个随机变量
- 使 $X_n(\omega)$ 与 $X(\omega)$ 差值超过 ε 的所有基本事件 ω 的概率和趋于 0 (概率的极限)

定义 几乎必然收敛 (也称 以概率 1 收敛 或 几乎处处收敛)

若

$$\mathbb{P}\left(\omega: \lim_{n \to \infty} \left[X_n(\omega) - X(\omega)\right] = 0\right) = 1,$$

则称序列 $\{X_n, n \geq 1\}$ 几乎必然 (almost surely) 收敛于 X, 记为 $X_n \stackrel{a.s.}{\to} X$.

- $X_n(\omega)$ 的极限收敛到 $X(\omega)$ 的所有基本事件 ω 的概率和为 1 (极限的概率)
- 也即几乎每个样本轨道都收敛

以概率 1 收敛 ⇒ 依概率收敛 (证明见下页), 反之则未必

• 反例: 考虑独立随机变量序列 $\{X_n\}$, 满足

$$\mathbb{P}(X_n = 1) = \frac{1}{n}, \ \mathbb{P}(X_n = 0) = 1 - \frac{1}{n}$$

• 令 X = 0, 对 $0 < \epsilon < 1$, 有

$$\mathbb{P}(|X_n - X| \ge \varepsilon) = \frac{1}{n}$$

- 故而 $\lim_{n\to\infty} \mathbb{P}(|X_n-X|\geq \varepsilon)=0$, 也即 $X_n\stackrel{p}{\to} X$ 成立
- 由于 $\sum_{n=1}^{\infty} \mathbb{P}(X_n = 1) = +\infty$ 且事件 $\{X_n = 1\}$ 相互独立,根据 Borel-Cantelli 第二引理 (点击参考),有

$$\mathbb{P}\left(\bigcap_{N=1}^{\infty}\bigcup_{m=N}^{\infty} \{X_m = 1\}\right) = \mathbb{P}\left(\lim_{N \to \infty}\bigcup_{m=N}^{\infty} \{X_m = 1\}\right) = 1 > 0$$

- 即对任意 N 和几乎所有样本轨道, 总存在 n>N, 使得 $X_n(\omega)=1$
- 而 $\mathbb{P}\left(\omega:\lim_{n\to\infty}X_n(\omega)=0\right)=1$ 要求,对任意 $\varepsilon>0$,存在 N,当 n>N 时,在几乎所有样本轨道下, $|X_n(\omega)-0|\leq \varepsilon$,故 $X_n\overset{a.s}{\longrightarrow}X$ 不成立

证明: 以概率 1 收敛 ⇒ 依概率收敛

- 以概率 1 收敛: $\mathbb{P}\left(\lim_{n\to\infty}[X_n-X]=0\right)=1$
- 也即, 事件 $\left\{\omega:\lim_{n \to \infty}[X_n(\omega) X(\omega)] = 0 \right\}$ 的概率为 1
 - ightarrow 其中 $\lim_{n\to\infty}[X_n-X]$ 是一个随机变量 (随机变量序列 $[X_n-X]$ 的极限), 其等于 0 的概率为 1
- 样本 ω 满足事件 $\Big\{\omega:\lim_{v\to\infty}[X_v(\omega)-X(\omega)]=0\Big\}$, 等价于 ω 满足
 - \triangleright 对任意 $\varepsilon_k > 0$ (即 $\bigcap_{k=1}^{\infty}$)
 - \triangleright **F** \overline{r} **F** \overline{r}
 - \triangleright 使对任意 $v \ge n$ (即 $\bigcap_{v=n}^{\infty}$)
 - \triangleright 有 $|X_v(\omega) X(\omega)| < \varepsilon_k$
- 也即, 事件 $\left\{\omega:\lim_{n\to\infty}[X_n(\omega)-X(\omega)]=0\right\}$ 等价于, 对 $\varepsilon_k\downarrow 0$, 有

$$\bigcap_{k=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcap_{v=n}^{\infty} \{\omega : |X_v(\omega) - X(\omega)| < \varepsilon_k\}$$

• 基于上述表示, 以概率 1 收敛等价于

$$X_{n} \stackrel{a.s.}{\to} X$$

$$\Leftrightarrow \mathbb{P}\left(\bigcap_{k=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcap_{v=n}^{\infty} \{\omega : |X_{v}(\omega) - X(\omega)| < \varepsilon_{k}\}\right) = 1$$

$$\Leftrightarrow \mathbb{P}\left(\bigcup_{k=1}^{\infty} \bigcap_{n=1}^{\infty} \bigcup_{v=n}^{\infty} \{\omega : |X_{v}(\omega) - X(\omega)| \ge \varepsilon_{k}\}\right) = 0$$

$$(利用 \mathbb{P}(A \cup B) = 0 \Leftrightarrow \mathbb{P}(A) = 0 \to \mathbb{P}(B) = 0)$$

$$\Leftrightarrow \mathbb{P}\left(\bigcap_{n=1}^{\infty} \bigcup_{v=n}^{\infty} \{\omega : |X_{v}(\omega) - X(\omega)| \ge \varepsilon_{k}\}\right) = 0, \ \forall k$$

$$(利用递减事件序列 \ A_{n} \ \text{的极限满足} \lim_{n \to \infty} A_{n} = \bigcap_{i=1}^{\infty} A_{i}$$

$$\mathcal{R} \mathbb{P}\left(\lim_{n \to \infty} A_{n}\right) = \lim_{n \to \infty} \mathbb{P}(A_{n}), \ \text{证明见下页备注}\right)$$

$$\Leftrightarrow \lim_{n \to \infty} \mathbb{P}\left(\bigcup_{v=n}^{\infty} \{\omega : |X_{v}(\omega) - X(\omega)| \ge \varepsilon\}\right) = 0, \ \forall \varepsilon > 0$$

备注

• 递减事件序列 A_n 的概率极限满足 $\mathbb{P}(\bigcap_{n=1}^{\infty}A_n)=\lim_{n\to\infty}\mathbb{P}(A_n)$, 证明如下

$$\mathbb{P}(\bigcap_{n=1}^{\infty}A_n) = \mathbb{P}(\overline{\bigcup_{n=1}^{\infty}\overline{A_n}}) = 1 - \mathbb{P}(\bigcup_{n=1}^{\infty}\overline{A_n}) \quad \text{(德·摩根定律)}$$

$$= 1 - \mathbb{P}\left(\bigcup_{n=1}^{\infty}\left(\overline{A_n}(\bigcap_{i=1}^{n-1}A_i)\right)\right) \quad \text{(所有事件中有至少一个不发生的等价表示)}$$

$$= 1 - \sum_{n=1}^{\infty}\mathbb{P}\left(\overline{A_n}(\bigcap_{i=1}^{n-1}A_i)\right) \quad \text{(互斥事件概率和)}$$

$$= 1 - \lim_{k \to \infty}\sum_{n=1}^{k}\mathbb{P}\left(\overline{A_n}(\bigcap_{i=1}^{n-1}A_i)\right) = 1 - \lim_{k \to \infty}\mathbb{P}\left(\bigcup_{n=1}^{k}\left(\overline{A_n}(\bigcap_{i=1}^{n-1}A_i)\right)\right)$$

$$= 1 - \lim_{k \to \infty}\mathbb{P}(\bigcup_{n=1}^{k}\overline{A_n}) = \lim_{k \to \infty}\mathbb{P}(\bigcap_{n=1}^{k}A_k) = \lim_{n \to \infty}\mathbb{P}(A_n) \quad \text{(德·摩根定律及事件递减性)}$$

$$X_n \stackrel{a.s.}{\to} X \Leftrightarrow \lim_{n \to \infty} \mathbb{P}\left(\bigcup_{v=n}^{\infty} \{\omega : |X_v(\omega) - X(\omega)| \ge \varepsilon\}\right) = 0, \ \forall \varepsilon > 0$$

• 由于依概率收敛 $\lim_{n \to \infty} \mathbb{P}(|X_n - X| \ge \varepsilon) = 0$ 中, 事件

$$\{|X_n - X| \ge \varepsilon\} \subset \left\{ \bigcup_{v=n}^{\infty} \{|X_v - X| \ge \varepsilon\} \right\}$$

• 故
$$X_n \stackrel{a.s.}{\to} X$$

$$\Rightarrow \lim_{n \to \infty} \mathbb{P}(|X_n - X| \ge \varepsilon)$$

$$\leq \lim_{n \to \infty} \mathbb{P}\left(\bigcup_{v=n}^{\infty} \{\omega : |X_v(\omega) - X(\omega)| \ge \varepsilon\}\right) = 0, \ \forall \varepsilon > 0$$

$$\Rightarrow \lim_{n \to \infty} \mathbb{P}(|X_n - X| \ge \varepsilon) = 0, \ \forall \varepsilon > 0$$

$$\Leftrightarrow X_n \stackrel{p}{\to} X$$

例 1.13

- Bernoulli 试验中, 每次成功概率为 p
- S_n 表示 n 次试验中成功的次数
- 求证 $\frac{S_n}{n} \stackrel{p}{\to} p$
 - ▷ 此时随机变量 🚰 收敛于确定的值, 是收敛于随机变量的特例

解: 利用 Markov 不等式

• 对于非负随机变量,

$$\begin{split} \mathbb{E} X &= \int_0^{+\infty} x d\mathbb{P}(X \ge x) = \int_0^a x d\mathbb{P}(X \ge x) + \int_a^{+\infty} x d\mathbb{P}(X \ge x) \\ &\ge \int_a^{+\infty} x d\mathbb{P}(X \ge x) \ge \int_a^{+\infty} a d\mathbb{P}(X \ge x) \\ &= a\mathbb{P}(X \ge a) \end{split}$$

得到 Markov 不等式:

$$\mathbb{P}(X \ge a) \le \frac{\mathbb{E}X}{a}$$

例 1.13 (续)

- 从 $\frac{S_n}{n} \stackrel{p}{\to} p$ 定义出发,需证 $\lim_{n \to \infty} \mathbb{P}\left(|\frac{S_n}{n} p| \ge \varepsilon \right) = 0, \ \forall \varepsilon > 0$
- 由于 $S_n \sim B(n,p)$, 有 $\mathbb{E}S_n = np$ 和 $\mathrm{Var}S_n = np(1-p)$, 故对 $\forall \varepsilon > 0$

$$\mathbb{P}\left(\left|\frac{S_n}{n} - p\right| \ge \varepsilon\right) = \mathbb{P}\left(|S_n - np| \ge n\varepsilon\right)$$

$$= \mathbb{P}\left((S_n - np)^2 \ge (n\varepsilon)^2\right) \qquad (等价事件替换)$$

$$\le \frac{\mathbb{E}(S_n - np)^2}{(n\varepsilon)^2} = \frac{np(1-p)}{(n\varepsilon)^2} \qquad (\mathsf{Markov} \, \texttt{不等式} \, \mathbb{P}(X \ge a) \le \frac{\mathbb{E}X}{a})$$

$$= \frac{p(1-p)}{n\varepsilon^2} \to 0, \text{ as } n \to \infty$$

得证 $\frac{S_n}{n} \stackrel{p}{\to} p$

- 成功的<mark>频率 $\frac{S_n}{n}$ (为随机变量), 趋近于成功的<mark>概率 p(为确定值)</mark></mark>
 - ▶ 大数定律的一个应用

定义 1.8 均方收敛

设随机变量 X 和随机序列 $\{X_n, n \geq 1\}$, 都有有限二阶矩, 若

$$\lim_{n \to \infty} \mathbb{E}(X_n - X)^2 = 0,$$

则称 X_n 均方收敛于 X. 记作 $X_n \stackrel{L_2}{\rightarrow} X$

- 在例 1.13 中, 由于 $\mathbb{E}(\frac{S_n}{n}-p)^2=\frac{\operatorname{Var}S_n}{n^2}=\frac{p(1-p)}{n}\stackrel{n\to\infty}{\longrightarrow}0$, 故 $\frac{S_n}{n}\stackrel{L_2}{\longrightarrow}p$
- 均方收敛 ⇒ 依概率收敛:
 - ▷ 对 $\forall \varepsilon > 0$, 由 Markov 不等式有

$$\mathbb{P}(|X_n - X| \ge \varepsilon) = \mathbb{P}(|X_n - X|^2 \ge \varepsilon^2) \le \frac{\mathbb{E}(X_n - X)^2}{\varepsilon^2}$$

 \triangleright 再对两边取 $n \to \infty$, 得

$$\lim_{n \to \infty} \mathbb{P}\left(|X_n - X| \ge \varepsilon\right) \le 0$$

ight
angle 由概率非负性,得 $\lim_{n o\infty}\mathbb{P}\left(|X_n-X|\geq arepsilon
ight)=0$,即依概率收敛

定义 依分布收敛

对随机变量 X 和随机序列 $\{X_n, n \geq 1\}$, 若对所有的 x, 有

$$\lim_{n \to \infty} \mathbb{P}(X_n \le x) = \mathbb{P}(X \le x)$$

则称 X_n 依分布收敛于 X, 记作 $X_n \stackrel{d}{\to} X$

- 另一种等价表示为: $\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$
- 依概率收敛 \Rightarrow 依分布收敛, 证明如下: 对任意的 $\varepsilon > 0$,

$$\mathbb{P}(X_n \le x) \ge \mathbb{P}(X_n \le x, \ X \le x - \varepsilon)
= \mathbb{P}(X \le x - \varepsilon) - \mathbb{P}(X_n > x, \ X \le x - \varepsilon)
\ge \mathbb{P}(X \le x - \varepsilon) - \mathbb{P}(|X_n - X| > \varepsilon)$$

• 两边取 $n \to \infty$, 利用依概率收敛定义 $\lim_{n \to \infty} \mathbb{P}(|X_n - X| \ge \varepsilon) = 0$, 有

$$\lim_{n \to \infty} \mathbb{P}(X_n \le x) \ge \mathbb{P}(X \le x - \varepsilon)$$

$$\lim_{n\to\infty} \mathbb{P}(X_n \le x) \ge \mathbb{P}(X \le x - \varepsilon)$$

- 再令 $\varepsilon \to 0^+$, 得 $\lim_{n \to \infty} \mathbb{P}(X_n \le x) \ge \mathbb{P}(X \le x)$
- 下面证 $\lim_{n\to\infty} \mathbb{P}(X_n \le x) \le \mathbb{P}(X \le x)$

$$\mathbb{P}(X \le x + \varepsilon) \ge \mathbb{P}(X \le x + \varepsilon, X_n \le x)
= \mathbb{P}(X_n \le x) - \mathbb{P}(X_n \le x, X > x + \varepsilon)
\ge \mathbb{P}(X_n \le x) - \mathbb{P}(|X_n - X| > \varepsilon)$$

• 同样, 两边取 $n \to \infty$, 再取 $\varepsilon \to 0^+$, 得

$$\lim_{n \to \infty} \mathbb{P}(X_n \le x) \le \mathbb{P}(X \le x)$$

- 综上, 有 $\lim_{n\to\infty} \mathbb{P}(X_n \leq x) = \mathbb{P}(X \leq x)$, 依分布收敛得证
- 几种收敛性的关系

均方收敛

(<mark>互不包含</mark>) ⇒ 依概率收敛 ⇒ 依分布收敛 几乎必然收敛

思考与讨论

- 极限运算在概率函数内和函数外时, 其区别是什么?
- 试简述四种收敛性之间的关系

$$\lim_{n \to \infty} \mathbb{P}(|X_n - X| \ge \varepsilon) = 0$$

$$\mathbb{P}\left(\lim_{n \to \infty} X_n = X\right) = 1$$

$$\lim_{n \to \infty} \mathbb{E}(X_n - X)^2 = 0$$

$$\lim_{n \to \infty} \mathbb{P}(X_n \le x) = \mathbb{P}(X \le x)$$

第1章习题

习题 1:

• 1.1 节作业: 1, 2, 8

• 1.2 节作业: 9, 10, 17