Bayesian and frequentist statistics

Bayes' theorem:

$$P(m|o) = \frac{P(m) \cdot P(o|m)}{P(o)}$$

this just follows from the laws of probability!

Li quite powerful still!

M: our model

0: the data

P(m): the "prior"
probability of M

P(DIM): the likelihood

P(D): a normalizing factor
Lower D would have
happened anyway

⇒ can only calculate this if you have other hypotheses for comparison.

DID THE SUN JUST EXPLODE? (IT'S NIGHT, SO WE'RE NOT SURE.)

Frequentist

If the true value of the mass is 130 mev, then if we repeat the experiment loo times, we would trice get a measurement <120 ~ > 140.

model params. one fixed + unknown. We calculate P(data) given those params.

Random vaniables model outcome of data.

> Often somewhat ad hoc: p-values, etc.

> > learning/etc ---

Bayesian

The probability of the mass being Letween 120 - 140 MeV is 98%.

Consider data known/ fixed. calculates probabilities of models) hypotheses/parameters.

Requires prior. estimation of the model's libelihood.

incorbetates bush knowledge.

FREQUENTIST STATISTICIAN:

Bayesian Statistician:

be big data / machine

can give POWERFUL INSIGHTS!

Coin flip

p-value for the coin. Prob (heads) =?

you flip the coin 20 times and get 15 heads.

La frequentist approach:

a maximum liketihood calculation gives $p(heads) = \frac{3}{4}$.

unfair coin!

a Bayesian statistician would be a little uneasy.

La pavam. p = Prob (heads)

let's assume a uniform prior for $p \longrightarrow P(m) = P(p) = 1$. likelihood: $P(D|p) = \frac{2^{3}!}{5! |5|} p^{15} (1-p)^{5} \leftarrow \text{Binomial}!$

P(0): probability of observing D over all hypotheses i.e all values of p $\int_{-\infty}^{1} d\rho P(\rho) \frac{20!}{5! |S|} p^{15} (1-p)^5$

Putting it all together (uniform prior)...

$$P(P|O) \propto P(P) \cdot P(O|P) = \frac{20!}{5! |5!} (1-P)^5 P^{15}$$

-> dropped P(D) because it integrates out to a constant.

what does this look like?? -> JUPYTER NOTEBOOK!

NB: this gives us distributions for our parameters.

no confidence intervals etc needed here.

A new prior: unfair coins are very rare.

You're 991. Sure this is a normal coin.

Ly might have some spread around p = 0.5, let's take $\sigma = 0.01$.

1% chance of an unfair coin \rightarrow who knows what p is!

$$\Rightarrow P(p) = 0.99 \cdot \frac{1}{\sqrt{2\pi} \cdot 0.01} \exp\left(-\frac{1}{2} \cdot (\frac{p-0.5}{5^2})^2\right) + 0.01 \cdot 1$$

So this all depends on your subjective choice of prior??

Ly Yep.

nuisauce

This is a good thing! It allows us to quantitatively build in things that we know/suspect.

Los If the prior changes the answer by a Lot? Occame well, then the data were not very constraining.

Frequentist analysis doesn't require you to spellout assumptions so clearly.

Ly uncertainty on p would come from var (Binom) but couldn't talk about prob of a value of p!
Ly only platar at some cluster p. confusing...
doesn't give us a distribution for p either.