# The Drinfeld center and topological symmetries

Jackson Van Dyke UT Austin

April 24, 2023

#### 3-dimensional TQFT

Consider a 3-dimensional (framed) TQFT:

$$\textbf{Bord}_3^{\text{fr}} \xrightarrow{\textit{F}} \textbf{Alg}_1 \big( \textbf{Cat} \big) \enspace .$$

• The point goes to some monoidal category:

$$F(\bullet) = (\mathcal{C}, *)$$
,

• and the interval goes to the identity bimodule:

$$F(\bullet \longrightarrow ) = {}_{\mathcal{C}}\mathcal{C}_{\mathcal{C}}$$
.

The circle will be sent to some category:

$$F\left( igcup_{\mathbf{Alg}_{1}(\mathsf{Cat})} 
ight) = ? \in \mathsf{Cat} \cong \mathsf{End}_{\mathsf{Alg}_{1}(\mathsf{Cat})} \left( 1 
ight) \ .$$

#### Example of a 3-dimensional TQFT

- Before we identify  $F(S^1)$ , let's consider an example.
- Consider the category of vector spaces graded by a finite abelian group *G*:

$$C = \mathbf{Vect}[G]. \tag{1}$$

The simple objects are given by 'skyscrapers'  $\mathbb{C}_g$  for  $g \in G$ .

• This has a tensor product given by convolution \*. On simple objects  $\mathbb{C}_g$  it is simply:

$$\mathbb{C}_g * \mathbb{C}_h = \mathbb{C}_{gh} . \tag{2}$$

• The TQFT F associated to this particular fusion category is finite gauge theory with gauge group G. If  $\tau$  is a cocycle for a class in  $H^3\left(BG,\mathbb{C}^\times\right)$ , we can define a nontrivial associator for  $\mathbf{Vect}\left[G\right]$  using  $\tau$ , resulting in Dijkgraaf-Witten theory for  $(G,\tau)$ .

## The assignment to the circle



• From this picture, we have an action:

$$F\left(\bigcirc\right)\stackrel{\sim}{\to} \operatorname{End}_{\mathcal{C}\text{-bimod}}\left(_{\mathcal{C}}\mathcal{C}_{\mathcal{C}}\right)$$
.

- This map turns out to be an equivalence. [DSS20, Section 3.2.2]
- This has more structure, e.g. a product map given by composition, which we will discuss in a couple of slides.
- But first, let's notice: this is the Drinfeld center!

#### The Drinfeld center

ullet The *Drinfeld center* of a tensor category  $(\mathcal{C},*)$  is:

$$\mathcal{Z}\left(\mathcal{C}\right) = \mathsf{End}_{\mathcal{C}\text{-}\mathsf{bimod}}\left(_{\mathcal{C}}\mathcal{C}_{\mathcal{C}}\right) = \mathsf{End}_{\mathcal{C}\otimes\mathcal{C}^{\mathsf{op}}}\left(\mathcal{C}\right) \;.$$

So the upshot of the previous slide is:

$$F(\bigcirc) \cong \mathcal{Z}(F(\bullet) = \mathcal{C})$$
.

• The Drinfeld center has a more concrete description: consider the category with objects given by pairs  $(X, \sigma_X)$ , where X is an object of C, and  $\sigma_X$  is a natural transformation:

$$\sigma_X \colon X \otimes (-) \to (-) \otimes X$$
.

The morphisms are (appropriately compatible) morphisms in  $\mathcal{C}$ . See [Eti+15, Prop. 7.13.8] for the equivalence between the two definitions.

# Extra structure on $F(S^1)$

• We have seen that if  $F(\bullet) = \mathcal{C}$ , then:

$$F\left( \ \bigcirc \ \right)\cong \mathcal{Z}\left( \mathcal{C}
ight) =\mathsf{End}_{\mathcal{C}\otimes \mathcal{C}^{\mathsf{op}}}\left( \mathcal{C}
ight) \ .$$

 This is naturally a monoidal category: composition of endomorphisms is the same as the multiplication map induced by the pair of pants bordism:

$$F\left(\bigcirc\bigcirc\bigcirc\right):F\left(\bigcirc\right)\otimes F\left(\bigcirc\right)\to F\left(\bigcirc\right)$$
.

• In fact there is even a *braiding*, induced by moving one of the "legs" around the other.

#### Back to the example

- Recall our finite abelian gauge theory example:  $F(\bullet) = \mathbf{Vect}[G]$ .
- The Drinfeld center of this fusion category turns out to be:

$$\mathcal{Z}\left(\mathsf{Vect}\left[\mathcal{G}\right]\right)\cong\mathsf{Vect}\left[\mathcal{G}\oplus\mathcal{G}^{\vee}\right]\ ,$$

where  $G^{\vee} = \operatorname{\mathsf{Hom}} \left( G, \mathbb{C}^{\times} \right)$  is the character dual.

 The monoidal structure is still convolution, and the braiding is given on simple objects by:

$$\mathbb{C}_{(g,\chi)} * \mathbb{C}_{(h,\omega)} \xrightarrow{\chi(h)\omega(g)\,\mathrm{id}} \mathbb{C}_{(h,\omega)} * \mathbb{C}_{(g,\chi)} . \tag{3}$$

#### What does any of this have to do with symmetry?

- A boundary theory  $1 \to F$  should be thought of as a "2-dimensional theory with a C-action": usually a 2d theory sends the point to a category, and now it is sent to a C-module category.
- In the finite gauge theory example, where  $C = \mathbf{Vect}[G]$ , a C-module structure on a category can be thought of as a categorical action of G itself.

#### Boundary theories for the 3-dimensional theory

- $F: \bullet \mapsto \mathcal{C}$  is the Turaev-Viro (TV) theory associated to  $\mathcal{C}$ .
- The theory sending the circle to a particular braided category  $\mathcal{B}$  is the Reshetikhin-Turaev (RT) theory associated to  $\mathcal{B}$ .
- So the RT theory for  $\mathcal{Z}(\mathcal{C})$  agrees with the TV theory for  $\mathcal{C}$ , but not all RT theories may be of this form.

#### Theorem ([FT21])

An RT theory admits a nonzero boundary theory if and only if it is a TV theory.

#### 4-dimensional theory associated to the Drinfeld center

 The Drinfeld center is a braided category, and turns out to be sufficiently dualizable [BJS21] to define a 4-dimensional TQFT:

$$\alpha \colon \mathsf{Bord}_4 \ni \bullet \mapsto \mathcal{Z}\left(\mathcal{C}\right) \in \mathsf{Alg}_2\left(\mathsf{Cat}\right) \ .$$

• This is the Crane-Yetter (CY) theory associated to the braided category  $\mathcal{Z}(\mathcal{C})$ .

## Upgrading the 3-dimensional theory to a boundary theory

 The Drinfeld center of a tensor category manifestly acts on the original tensor category, since we have a forgetful functor

$$\mathcal{Z}\left(\mathcal{C}\right) 
ightarrow \mathcal{C}$$
.

 In terms of the theories, this means that F can be upgraded to a boundary condition:

$$\widetilde{F}: 1 \to \alpha$$
.

The value of  $\widetilde{F}$  on the point is  $\mathcal C$  as a  $\mathcal Z$  ( $\mathcal C$ )-module.

• More specifically there is a  $(\alpha, \rho)$ -module structure on F, in the sense of [FMT22].

#### Back to the example

• Consider our running example: if *F* is *G*-gauge theory, then the theory

$$\alpha \colon \mathsf{pt} \mapsto \mathcal{Z}\left(\mathsf{Vect}\left[\mathcal{G}\right]\right) \cong \mathsf{Vect}\left[\mathcal{G} \oplus \mathcal{G}^{\vee}\right] \ ,$$

can be described as the quantization (in the sense of [Fre+10]) of the groupoid  $B^2$  ( $G \oplus G^{\vee}$ ), twisted by a cocycle for the class

$$\mathsf{ev} \in \mathsf{Hom}\left( \mathsf{G} \oplus \mathsf{G}^\vee, \mathbb{C}^\times \right) \cong \mathsf{H}^4\left( \mathsf{B}^2\left( \mathsf{G} \oplus \mathsf{G}^\vee \right), \mathbb{C}^\times \right) \; .$$

• Lagrangian subgroups L of  $(G \oplus G^{\vee}, ev)$  now give rise to boundary theories  $1 \to \alpha$ , by quantizing the correspondence (as in [FMT22]):

$$ullet \leftarrow B^2L o B^2\left(G \oplus G^{\vee}\right)$$
.

• The boundary theories corresponding to L = G and  $G^{\vee}$  are related by a "twice-categorified finite Fourier transform", which is studied in detail in my upcoming work.

#### The running example as an anomalous theory

- We might wonder if the theory F can be upgraded to have an action of the automorphisms of the center or, more concretely, of the group  $O(G \oplus G^{\vee})$ .
- At the level of the fusion category itself, this is answered by [ENO10]: this group acts if and only if specific obstructions are trivializable, and an action is determined by a trivialization.
- Passing the obstruction theory from [ENO10] through the "quantization of groupoids" formalism developed in [Fre+10] yields a collection of anomaly theories and symmetry theories for the theory associated to the fusion category we started with.
- This is spelled out in my upcoming work.

#### Summary:

#### TV for C:

- lacktriangledown governs  $\mathcal{C}$ -symmetry,
- 2 is equivalent to RT for  $\mathcal{Z}(\mathcal{C})$ , and
- $oldsymbol{3}$  is (can be upgraded to) a boundary theory for CY for  $\mathcal{Z}(\mathcal{C})$ .

#### References

- [BJS21] Adrien Brochier, David Jordan, and Noah Snyder. "On dualizability of braided tensor categories". In: Compos. Math. 157.3 (2021), pp. 435–483. ISSN: 0010-437X. DOI: 10.1112/s0010437x20007630.
- [DSS20] Christopher L. Douglas, Christopher Schommer-Pries, and Noah Snyder. "Dualizable tensor categories". In: *Mem. Amer. Math. Soc.* 268.1308 (2020), pp. vii+88.
- [ENO10] Pavel Etingof, Dmitri Nikshych, and Victor Ostrik. "Fusion categories and homotopy theory". In: *Quantum Topol.* 1.3 (2010). With an appendix by Ehud Meir, pp. 209–273. ISSN: 1663-487X. DOI: 10.4171/QT/6.
- [Eti+15] Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. Tensor categories. Vol. 205. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2015, pp. xvi+343.
- [FMT22] Daniel S. Freed, Gregory W. Moore, and Constantin Teleman. Topological symmetry in quantum field theory. 2022. DOI: 10.48550/ARXIV.2209.07471. URL: https://arxiv.org/abs/2209.07471.
- [Fre+10] Daniel S. Freed, Michael J. Hopkins, Jacob Lurie, and Constantin Teleman. "Topological quantum field theories from compact Lie groups". In: A celebration of the mathematical legacy of Raoul Bott. Vol. 50. CRM Proc. Lecture Notes. Amer. Math. Soc., Providence, RI, 2010, pp. 367–403.
- [FT21] Daniel S. Freed and Constantin Teleman. "Gapped boundary theories in three dimensions". In: Comm. Math. Phys. 388.2 (2021), pp. 845–892.