Elicitation incrémentale et recherche locale pour le problème de sélection multi-objectifs

Sarah Lachiheb

Sorbonne Université

21 Janvier 2020

Introduction

Exploration de la notion d'apprentissage actif dans le domaine du multicritères. Application de la procédure d'élicitation incrémentale basée sur le regret dans pour:

- Restreindre l'espace des paramètres
- Réduire l'espace des solutions potentielles

Implémentation de deux méthodes de résolution :

- Pareto local search (PLS) et élicitation incrémentale basée sur le regret (CSS)
- Combinaison de la recherche locale et de l'élicitation incrémentale basée sur le regret (ILS)

Overview

- PLS puis élicitation
- 2 Résultats de la méthode en deux phases
- 3 ILS
- 4 Résultats de ILS
- 5 Comparaison des deux méthodes
- 6 Conclusion

Procédure d'élicitation incrémentale basée sur le regret

Définition du MMR

```
PMR(x,x',\Omega_P) = \max_{\omega \in \Omega_P} (f_{\omega}(x') - f_{\omega}(x))
MR(x) = \max_{x' \in X} \{PMR(x,x')\}
MMR = \min_{x \in X} \{MR(x)\}
```

On pose une question entre x^* et y^* qui sont les deux pires adversaires, c'est donc une bonne méthode pour apprendre de l'information :

Question entre ces deux alternatives

$$x^* = \underset{x \in X}{\arg \min\{MR(x)\}}$$

$$y^* = \underset{x' \in X}{\arg \max\{PMR(x^*, x')\}}$$

Procédure d'élicitation incrémentale basée sur le regret

Programme linéaire du calcul des PMR

$$\begin{aligned} \max_{\omega} & & \sum_{j \in \mathcal{P}} \left(\omega_{j} x_{j}' - \omega_{j} x_{j} \right) \\ s.c & & \sum_{j \in \mathcal{P}} \omega_{j} = 1 \\ & & \sum_{j \in \mathcal{P}} \omega_{j} a_{j} \geqslant \sum_{j \in \mathcal{P}} \omega_{j} b_{j} & \forall a, b \in \Theta \text{ avec } a \text{ préférée} \\ & & \omega_{j} \geqslant 0 & \forall j \in \mathcal{P} \end{aligned}$$

Auquel il faut ajouter une contrainte si on est dans le cadre d'un OWA à poids décroissant, dans le but de d'obliger à ce que les poids possibles respecte cette règle.

Ajout de la contrainte OWA à poids décroissants

$$w_i - w_{i+1} \ge 0$$
 $\forall j \in \{1, ..., p-1\}$

Présentation illustrée de l'élicitation

Valeurs du MMR

Résultats de la méthode en deux phases

Taille	р	Temps(s)	Itérations	Taux d'identiques
10	2	0.0003	3.8	100
10	3	0.0006	4.4	100
10	4	0.0010	4.9	100
10	5	0.0047	5.3	100
10	6	0.0044	5.3	100
20	2	0.0061	7.3	100
20	3	0.0380	7.8	100
20	4	0.3721	8.3	100
20	5	6.7656	9.1	100
20	6	22.4597	9.3	100
30	2	0.0459	10.0	100
30	3	0.6250	10.9	100
30	4	36.7146	11.7	100
30	5	2064.9400	11.5	100
40	2	0.2128	12.2	100
40	3	4.5793	13.6	100
40	4	364.2876	14.2	100
50	2	1.0233	15.2	100
50	3	22.1369	16.1	100
60	2	3.7206	18.1	100
60	3	173.9490	20.4	100
80	2	19.2443	22.3	100
100	2	90.4203	28.0	100
200	2	6318.2701	55.1	100

	Taille	р	Temps(s)	Questions	Écart à l'optimal
	10	2	0.019	0	0
	10	3	0.171	2.5	0
	10	4	1.015	8.1	0
	10	5	2.791	10.1	0
	10	6	3.435	11.6	0
	20	2	0.179	2.8	0
	20	3	4.276	7.0	0
	20	4	156.309	16.1	0
	20	5	-	-	-
	20	6	-	-	-
	30	2	0.350	2.7	0
	30	3	22.314	8.6	0
	30	4	-	-	-
	30	5	-	-	-
ı	40	2	0.830	2.7	0
ı	40	3	59.222	10.4	0
	40	4	-	-	
1	50	2	1.381	4.1	0
	50	3	417.767	9.6	0
	60	2	5.397	5.3	0
	60	3	-	-	-
ı	80	2	15.847	6.1	0
Ì	100	2	36.463	6.2	0
Ì	200	2	153.033	6.5	0

Table: Performances, de PLS à gauche et de la procédure d'élicitation à droite.

Performances de la procédure avec M alternatives

Taille	р	Temps(s)	Questions	Écart à l'optimal	Taux du Front de Pareto(%)
20	5	330.062	27.9	0.27	36.14
20	6	758.470	34.1	0.38	23.18
30	4	676.463	14.9	0.17	20.59
30	5	463.256	26.4	0.65	3.06
40	4	536.551	15.9	0.34	7.71
60	3	582.222	9.80	0.06	31.37

Taille	р	Temps(s)	Questions	Ecart à l'optimal	Taux du Front de Pareto(%)
20	5	6.413	14.7	1.25	3.61
20	6	14.306	19.1	1.88	2.31
30	4	12.745	12.2	1.12	2.06
30	5	8.049	19.80	1.94	0.31
40	4	7.021	15.3	0.75	0.77
60	3	6.683	7.4	0.27	3.14

Table: Performances de la procédure avec M = 1000 en haut et M = 100 en bas

Courbes de résultats pour 10 et 20 objet

Résultats de la méthode en deux phases avec OWA

Taille	р	Temps(s)	Questions	Écart à l'optimal
10	2	0.021	0	0
10	3	0.090	2.0	0
10	4	0.385	2.0	0
10	5	1.653	4.8	0
10	6	1.006	1.3	0
20	2	0.069	1.2	0
20	3	2.955	3.8	0
20	4	146.531	6.6	0
20	5	-	-	-
20	6	-	-	-
30	2	0.317	2.6	0
30	3	7.139	3.1	0
30	4	-	-	-
30	5	-	-	-
40	2	0.820	3.0	0
40	3	24.753	5.8	0
40	4	-	-	
50	2	1.582	2.9	0
50	3	276.320	5.9	0
60	2	7.627	3.2	0
60	3	-	-	-
80	2	13.748	2.3	0
100	2	23.730	2.8	0
200	2	273.214	3.7	0

Performances de la procédure avec M alternatives

Taille	р	М	Temps(s)	Questions	Écart à l'optimal
20	5	1000	105.467	5.9	0.29
20	6	1000	77.185	3.54	0.46
30	4	1000	205.975	6.4	0.48
30	5	1000	66.657	4.0	0.93
40	4	1000	244.880	7.6	0.42
60	3	1000	50.519	2.7	0.19
20	5	100	2.995	4.2	1.75
20	6	100	1.761	2.3	2.24
30	4	100	2.990	3.8	1.51
30	5	100	2.12	3.1	2.35
40	4	100	3.106	4.3	1.04
60	3	100	1.395	1.6	0.87

Résultats de ILS

Taille	р	Temps(s)	Questions	Écart à l'optimal	Nombre d'itérations
10	2	0.019	0.4	0	3.8
10	3	0.058	2.2	0	3.6
10	4	0.193	5.8	0	3.7
10	5	0.377	8.9	0	3.5
10	6	0.555	9.8	0	3.4
20	2	0.068	2.4	0.02	6.0
20	3	0.517	8.15	0	5.9
20	4	1.901	13.4	0.02	6.1
20	5	4.836	18.8	0.002	5.8
20	6	6.802	22.3	0	5.9
30	2	0.125	3.3	0	8.7
30	3	1.264	10.8	0	8.4
30	4	8.065	19.5	0	8.7
30	5	17.117	26.6	0	8.9
40	2	0.199	3.0	0	10.8
40	3	2.062	10.4	0	10.8
40	4	11.101	22.5	0	11.2
50	2	0.311	3.6	0	13.6
50	3	3.248	11.2	0	13.5
60	2	0.562	4.1	0	15.7
60	3	5.311	13.5	0	15.9
80	2	1.001	4.2	0	21.8
100	2	1.459	4.9	0	24.9
200	2	15.394	5.7	0	51.3

Courbes de résultats

Résultats de ILS avec OWA

Taille	n	Temps(s)	Questions	Écart à l'optimal	Nombre d'itérations
10	2	0.005	0.1	0	3.5
10	3	0.052	1.6	0	3.6
10	4	0.088	1.4	0	3.6
10	5	0.159	2.9	0	3.4
10	6	0.233	2.1	0	3.4
20	2	0.056	1.0	0.01	5.8
20	3	0.380	3.7	0	6.4
20	4	0.883	6.1	0.27	6.3
20	5	1.342	7.2	0	6.35
20	6	1.497	6.1	0.03	6.1
30	2	0.095	1.2	0	8.2
30	3	0.797	3.7	0.08	8.5
30	4	2.442	6.7	0.27	8.1
30	5	3.647	8.2	0.24	8.4
40	2	0.165	1.6	0	10.8
40	3	1.202	6.1	0.01	10.9
40	4	3.872	9.5	0.22	11.2
50	2	0.277	2.1	0	13.1
50	3	1.971	5.9	0.01	13.7
60	2	0.366	2.1	0.01	16.3
60	3	1.722	5.5	0.25	16.0
80	2	0.735	2.1	0.11	21.5
100	2	1.120	1.9	0.09	26.0
200	2	14.211	2.3	0.12	49.6

Comparaison des deux méthodes pour 2 critères

Comparaison des deux méthodes pour 4 critères

Conclusion

Dans ce projet nous avons :

- Étudier deux méthodes différentes qui ont le même but, basé sur une heuristique
- Utiliser les fonctions de scalarisation pour modéliser un décideur aux paramètre inconnus

Il aurait été intéressant :

- De partir d'un point de départ non aléatoire
- L'implémentation de l'intégrale de Choquet
- Utiliser d'autres voisinage