HW5 of Plasma Chen lang.

1. Consider both gradient & curvature drift,

guiding center drift velocity is \vec{v}_8 :

$$\mathcal{C}$$
 \mathcal{C}

 $\overrightarrow{\mathcal{J}}_{B} = \overrightarrow{\mathcal{V}}_{DB} + \overrightarrow{\mathcal{V}}_{R} = \frac{2K_{11} + K_{1}}{8B} \cdot \frac{\overrightarrow{R}_{C} \times \overrightarrow{B}}{R^{2} \cdot B}$

non $\vec{B} = \frac{M_o I}{2\pi \gamma} \cdot \hat{e}_{\sigma}$, and $\vec{v}_{11} = \vec{v}_{1} = V_o$, $\gamma = \gamma_o \left(\vec{R}_c = \gamma_o \cdot \hat{e}_r \right)$

 $\frac{\vec{\mathcal{D}}_{B}}{\vec{\mathcal{D}}_{B}} = \frac{3m \vec{\mathcal{D}}_{0}^{2}}{g} \cdot \frac{2\pi}{M_{0}I} \cdot \hat{\ell}_{z}$ $\frac{\vec{\mathcal{D}}_{B}}{2} = \frac{3m \vec{\mathcal{D}}_{0}^{2}}{g} \cdot \frac{2\pi}{M_{0}I} \cdot \frac{2\pi}{M_{0}I}$

and this angular E field accelerates the 21 and resulting in perpendicular energy increase.

3. magnetic momentum M heeps constant during motion:

$$M = \frac{m \cdot \mathcal{U}^2}{2B} = Const.$$

 $M = \frac{m \cdot \mathcal{U}_{\perp}^{2}}{2B} = Const.$ and magnetic flux enclosed is $\ell_{m} = B \cdot \pi r_{c}^{2}$, with $r_{c} = \frac{m \mathcal{U}_{\perp}^{2}}{3B}$

So
$$lm = \frac{\pi m^2 22^2}{g^2 B} = \frac{2\pi m}{g^2} \mu$$
, lm is also a constant.

4. M= K1/B is constant, meaning that K1 max = K1 min Bux Busn. K₁ max = 4 K₁ min , so when K₂ max > (K₁ min + K₁₁) , particle escapes.

Criteria equation is 3 K₁ min = K₁₁ , or $53 \text{ D}_1 = 2i$,

and launch angle θ satisfies $\tan \theta = \frac{1}{\sqrt{3}}$, $\theta = \frac{\pi}{6}$. the escaped ions fractions is: $Pe = \frac{1}{4\pi} \cdot 2x \int_{0}^{3\pi} 2\pi r \cdot \sin \theta \, d\theta = 1 - \frac{53}{2}$ and the trapped particels fraction $P + = 1 - Pe = \frac{13}{2}$. 5 (1) initial $2n = 21 = \frac{1}{\sqrt{2}} \cdot \sqrt{\frac{2E_k}{m_p}} = 978.67 \text{ km/s}$ because the moving mirror will recoil v_{ij} with extra speed v_{ij} increase after every reflection, until $v_{\parallel}/v_{\perp} > \sqrt{R_{m-1}} = 2$. It requires $[v_{11}/2v_{m}]+|=49$ times reflection to meet this criteria. and final energy world be: $E_k = \frac{1}{z}m\left(v_1^2 + \left(v_1 + 4v_2\right)^2\right) = 25.027 \text{ keV}$ (2) assuming motion in mirror is harmonic, we calculate the single period by last recoil, where length of airm is $A = \frac{1}{2}L - \nu_n \cdot t$, t is the time of total process, $T = \frac{2\pi A}{2v_0}$ and $24.5T = \frac{1}{2}$, so $\pi \left(\frac{1}{2} L - \nu_{n} + \right) \cdot 24.5 = \nu_{n} \cdot t$ $t = \frac{24.5 \pi L}{2\nu_{11} + 2\pi \cdot 24.5 \cdot \nu_{m}} = 6.85 \times 10^{10} \text{ S}$