Table of Contents

MATERIALES METÁLICOS

Se denomina a l	os elementos químicos caracte	erizados por ser buenos cond	uctores del
y la	, poseer alta	, y ser	a
temperaturas normales (except	to el mercurio y el galio). Gene	eralmente son	de
la luz, lo que les da su peculia	r brillo. El concepto de metal r	efiere tanto a elementos purc	os, así
como a co	on características metálicas, co	mo el acero (
) y el bronce (). Los :	metales comprenden la mayo	or parte de
la tabla periódica de los eleme	ntos y se separan de los no me	tales por una línea diagonal (entre el
boro y el polonio. Se extraen o	le los minerales de de las rocas	s (menas). Los materiales me	tálicos
cuyo componente principal es	else	ellaman ferrosos, el resto se l	llaman no
ferrosos, como el		, etc.	
PRINCIPALES PROPIEDAD 1-Plasticidad Es la propiedad mecánica de le La plasticidad se define como forma que les fue dada despué altamente conservarán su nueva FORMA	os metales completamente opu la capacidad que tienen los me s de ser sometidos a un esfuerz , por esta razón, un	iesta a la etales de zo. Los metales, usualmente	la son
los metales son y poder tolerar más las cargas.	l completamente opuesta a la te una vez es someti unos con otros para redu La fragilidad también se defin etales. De esta manera, un meta	ido a un esfuerzo. En muchas ucir su coeficiente de ne como fatiga durante las pr	s ocasiones, ———— uebas de

Paulino Posada pág. 1 de 12

reducción de área. Una forma elemental de explicar dúctilidad de material, es su capacidad para ser

transformado en ______ o _____. Un metal altamente dúctil es el ______.

este sentido, es una propiedad mecánica completamente opuesta a la ______. La

ductilidad puede ser dada como un porcentaje de elongación máximo o como un máximo de

Paulino Posada pág. 2 de 12

_	101	i	. •		1	1
h_	. н I	las	t1/	71/	าว	П
v-		Lus	ш	_11	uu	u

La elasticidad que define como la capacidad que tiene un metal para recuperar su
después de haber sido sometido a una fuerza externa. En general, los metales son muy
elásticos, por esta razón es común que presenten o rastros de golpes de los
que nunca se recuperarán. Cuando un metal es elástico, también se puede decir que es resiliente, ya
que es capaz de absorber de forma elástica la que le está provocando una
deformación.
7-Tenacidad
La tenacidad es el concepto opuesto a la, ya que denota la capacidad que
tiene un material de resistir la aplicación de una fuerza externa sin Los metales
y sus aleaciones son, generalmente, tenaces. Este es el caso del, cuya tenacidad le
permite ser apto para aplicaciones de construcción que requieran de soportar altas
sin que haya lugar a rupturas. La tenacidad de los metales puede ser medida en diferentes escalas.
En algunas pruebas, se aplican cantidades relativamente pequeñas de fuerza a un metal, como
ligeros impactos o choques. En otras ocasiones, es común que sean aplicadas fuerzas mayores. De
cualquier manera, el coeficiente de tenacidad de un metal será dado en la medida en la que éste no
presente ningún tipo de después de haber sido sometido a un esfuerzo.
8-Rigidez
o-rrigiuez
La rigidez es una propiedad mecánica propia de los metales. Esta tiene lugar cuando una fuerza
externa es aplicada a un metal y éste debe desarrollar una fuerza interna para soportarla. Esta fuerza
interna se denomina "estrés". De esta manera, la rigidez es la capacidad que tiene un metal de
a la deformación durante la presencia del estrés.

Paulino Posada pág. 3 de 12

9-Variabilidad de las propiedades

Los tests de propiedades mecánicas de los metales no siempre producen los mismos resultados, esto se debe a los posibles cambios en el tipo de equipo, procedimiento, u operario que se usa durante las pruebas. Sin embargo, incluso cuando todos estos parámetros son controlados, existe un pequeño margen en la variación de los resultados de las propiedades mecánicas de los metales. Esto se debe a que en general la fabricación o proceso de extracción de los metales difiere. Por lo tanto, los resultados a la hora de medir las propiedades de los metales se pueden ver alterados. Con el objetivo de mitigar estas diferencias, se recomienda realizar varias veces la misma prueba de resistencia mecánica en el mismo material, pero en diferentes muestras seleccionadas de forma aleatoria.

Paulino Posada pág. 4 de 12

EL ACERO.

Los materiales más	_ en cualquier taller de mantenimien	to industrial son los		
aceros. Generalmente acero al carbono	del tipo A42b. Aunque actualmente	también se utilizan		
mucho otros materiales como los acerc	os, el	, la fibra de		
, los	o los materiales	El acero es una		
aleación de	. Se puede alear, además,	con otros elementos para		
obtener aleaciones de diferentes caract	erísticas según sea necesario.			
Es el metal más usado del mundo con	gran diferencia por sus elevadas pres	taciones		
asi como su	Las aleaciones de hierro-carbono o	dan lugar a los aceros si		
el porcentaje de carbono es menor del	Si hay más carbono, dan lu	gar a las fundiciones.		
Las técnicas para la obtención del acero se denominan Empieza con los				
minerales ricos en	como siderita, limonita, pirita, magr	netita El hierro se		
obtiene de sus óxidos, presentes en los	minerales anteriores, en un	En el		
alto horno se reduce con	y carbonato cálcico.			

Esquema de un alto horno.

En la imagen an	terior se ve cómo el alto horno se	alimenta por la	con	carbón,
mineral de hierr	o y caliza. El carbón se	, potenciáno	lose el calor generado	con
6	a presión. Se funden los	de hierro	o, mezclándose con el	l carbono
presente en el ca	arbón. La mezcla		(llamada arrabio), má	is pesada,
se va al	del alto horno (). En la	parte intermedia (eta	laje) queda
la	El arrabio se extrae por la p	arte	del alto horno.	El arrabio,
al contener alrec	ledor del de carbono, es	un material	, pero	, que
tiene menos apli	caciones practicas. Para convertir	lo en acero se le d	ebe rebajar el conteni	ido
en	Asimismo, se le pueden	añadir otros	pa	ara obtener
características d	eterminadas que mejoren sus prop	oiedades.		
	,			
CLASIFICACIO	ÓN DE LOS ACEROS.			
Segúnla norma I	UNE EN 10020:2001 define al ace	ero como aquel ma	aterial en el que el	
es el elemento p	redominante, el contenido en	e:	s, generalmente inferi	ior al y
contiene además	a otros elementos. El límite supe	rior del 2% en el c	contenido de carbono	(C) es el
límite que separa	a al acero de la	En general, ı	un aumento del conte	nido de
carbono en el ac	ero eleva su resistencia a la	,	pero como contrapart	tida
incrementa su _	en frío y ha	ace que disminuya	la	y la
	En función de este po	orcentaje, los acero	os se pueden clasifica	r de la
siguiente manera	a:			
			<i>,</i> . –	
	: Cuando el porcentaje de			
	encia última de rotura en el rango	<u> </u>		
	160 HB. Son aceros que presentan			
	a. Aplicaciones: Piezas de resisten	icia media de buen	ia tenacidad, deforma	.cion en
trio, embutición	, plegado, herrajes, etc.			
-Aceros	: El porcentaje de ca	ırbono estáen el er	ntorno del	Tiene una
	ia a la rotura de 55-62 kg/mm2 v u			

Paulino Posada pág. 6 de 12

Mecanizado	Materiales	02/24
bajo un tratamiento térmico por	pueden alcanzar una re	sistencia mecánica de
hasta 80 kg/mm2 y una dureza de 215-245	НВ.	
Aplicaciones: Ejes, elementos de maquina herrajes.	ria, piezas resistentes y tenaces, perr	nos, tornillos,
-Aceros: Si el porcresistencia a la rotura de 62-70 kg/mm2 y tratamiento de templado su resistencia med Aplicaciones: Ejes y elementos de máquin explosión, transmisiones, etc.	una dureza de 280 HB. Después de s cánica puede aumentar hasta alcanza	someterlos a un ar los 90 kg/mm2.
-Aceros: El porcentaje de o de 70-75 kg/mm2, y una dureza Brinell de		

aceros pueden alcanzar un valor de resistencia de 100 kg/mm2 y una dureza de 275-300 HB.

elevados.

Aplicaciones: Ejes, transmisiones, tensores y piezas regularmente cargadas y de espesores no muy

Paulino Posada pág. 7 de 12

	,	,
DIAGRAMA	TENSION-DEFORM.	ACION.

El diagrama tensión-deformación resulta de la rep	resentación gráfica del	
, normalizado en UNE-EN 10	002-1, y que consiste en some	eter a una probeta de
acero normalizada a un esfuerzo	de tracción según su eje h	asta la rotura de la
misma. El ensayo de tracción permite el cálculo d	e diversas propiedades	del acero.
La probeta de acero empleada en el ensayo consis	te en una pieza	_ cuyas dimensiones
guardan una relación de proporcionalidad.		

Paulino Posada pág. 8 de 12

"

Pasado el punto A y hasta llegar al punto B, los alargamiento producidos crecen de manera más rápida con la tensión, y se cumple que al ______ la carga, la pieza ______ de nuevo su geometría inicial, es decir, se sigue comportando elásticamente. El punto B marca el límite a este comportamiento, y por ello al punto B se le denomina "límite elástico".

Traspasado el punto B, el material pasa a comportarse o	le manera,	es decir, que		
no recupera su inicial, quedando	una deformación remanente al	cesar la		
carga. De esta manera, el proceso de descarga se realiza	ı siguiendo la trayectoria según	la línea		
punteada mostrada del diagrama	, que como se ve, co	orta al eje de		
deformaciones, $\Delta ext{L/L0}$, a una cierta distancia del origen	, que se corresponde con la def	ormación		
que queda. Concretamente, el	punto B o "			
es aquel que le corresponde una deformación remanent	e del			
Si se sigue aplicando carga se llega al punto identificado en la gráfica como C, a partir de aquí				
y hasta el punto D, las deformaciones	de manera rápida mientras	que la carga		
fluctúa entre dos valores, llamados límites de fluencia,		Este		
nuevo estadio, denominado de,	es característico exclusivamen	te de los		
aceros, no apareciendo en los ace	ros	·		
Más allá del punto de fluencia D es necesario seguir ap	licando un	de la		
carga para conseguir un pronunciado aumento del alargamiento. Entramos ya en la zona de las				

Paulino Posada pág. 9 de 12

grandes	plásticas hasta alcanzar el punto F, donde la carga alcanza su			
valor	, lo que dividida por el área inicial de la probeta proporciona la tensión			
máxima de	áxima de o resistencia a la tracción.			
A partir del punto E	E tiene lugar el fenómeno de e	stricción de la probeta, consistente en una		
	de la sección en la zona	a de la rotura, que es la causa de la siguiente ba	ajada	
de la curva, dado q	ue al reducirse el valor de la _	, el valor de la carga aplio	cado	
a partir del punto E	también se va reduciendo has	sta alcanzar el punto F de	_•	
LÍMITE ELÁSTIC	O Y RESISTENCIA A LA TF	RACCIÓN		
La determinación d	le las propiedades mecánicas e	en el acero, como el, la		
	, así como	de otras características mecánicas del acero co	omo	
el	, o el	que se produce en la ro	otura	
se efectuará mediar	nte el anteriormente definido e	ensayo de tracción normalizado en la UNE-EN	[
10002-1.				
El valor de la tensió	ón última o	se calcula a partir de este ensay	o, y	
se define como el c	ociente entre	que ha provocado el fallo a rotura	del	
material por tracció	on y la	de la sección transversal inicial de la		
probeta, mientras q	ue el	marca el umbral que, una vez se ha		
superado, el materi	al trabaja bajo un comportami	ento plástico y deformaciones remanente.		
En la sección ANE	XOS de este tutorial se puede	n consultar los valores del límite elástico y la		
resistencia a tracció	on para las distintas calidades	de aceros según las normativas europea y		
americana.				

Paulino Posada pág. 10 de 12

CARACTERÍSTICAS PRINCIPALES DEL ACERO

• Aleación de color pardo/oscuro).			
Resistencia a tracción:				
Alargamiento rotura:				
• Densidad:	-			
• Fusión a	en función de los	aleantes empleados.		
•				
• Se en p	resencia de agua/hum	iedad		
• Es, el	imán se pega.			
La composición y las proporcion	nes de los elementos o	de aleación tienen gran influencia sobre las		
características resultantes de los	aceros.			
El carbono eleva la		del acero y disminuye su		
tenacidad; el silicio mejora la		, y el azufre y el fósforo pueden		
considerarse perjudiciales.				
Entre los metales, el níquel incre	ementa la	, el cromo la		
	el vanadio la	, el		
tungsteno y el cobalto la dureza				

Paulino Posada pág. 11 de 12

ALEANTES PRINCIPALES.

- Plomo: Reduce resistencia. Fácil de mecanizar.
- Cromo: Dureza, Resistencia, inoxidabilidad
- Vanadio: Resistencia, corrosión.
- Molibdeno: Tenacidad, resistencia, corrosión.
- Silicio: Flexibilidad. Muelles.
- Níquel: Tenacidad, resistencia corrosión.
- Cobalto: Gran dureza. Para corte.
- Tungsteno o Wolframio: Resistencia a alta temperatura, para herramientas de corte.

APLICACIONES DE ACUERDO A SU COMPOSICIÓN.

- Aceros al Carbono: Para elementos constructivos (vigas, pilares), piezas mecánicas.
- Aceros al Silicio: Muelles, ballestas.
- Aceros al Cromo-Vanadio: Herramientas.
- Aceros al Cromo- Molibdeno: Herramientas, piezas de alta resistencia.
- Aceros al Cobalto o Tungsteno: Herramientas de corte.

Paulino Posada pág. 12 de 12