Laboratorio Análsis Aplicado Método de Direcciones de Descenso

1 Introducción

Sea $f: \mathbb{R}^n \to \mathbb{R}$ tal que $f \in \mathcal{C}^2(\mathbb{R}^n)$. Supongamos que $x^* \in \mathbb{R}^n$ es un mínimo local estricto de f y $\nabla^2 f(x^*)$ es simétrica y positiva definida.

El método general de direcciones de descenso para aproximar un mínimo local de $f: \mathbb{R}^n \to \mathbb{R}$ tal que $f \in \mathcal{C}^2(\mathbb{R}^n)$ es:

Método de direcciones de descenso

Paso 1. Sea $x^0 \in V_\delta(x^*) - \{x^*\}$ tal que $\nabla f(x^0) \neq 0$. Hacemos $k \leftarrow 0$.

Paso 2. Mientras $\nabla f(x^k) \neq 0$ hacer

Paso 2.1. Escoger un vector $p^k \in \mathbb{R}^n$ tal que $\nabla f(x^k)^T p < 0$

Paso 2.2. Escoger $\alpha^k \in (0, 1]$ tal que

$$f(x^k + \alpha^k p^k) \le f(x^k) + \alpha^k (c_1 \nabla f(x^k)^T p^k)).$$

con $c_1 = 0.1$,

Paso2.3. Hacer $x^{k+1} = x^k + \alpha^k p^k$.

Paso 2.4. Actualizar $k \leftarrow k+1$

Paso 3. Fin.

El comportamiento iterativo del método se ve como en la siguiente figura.

1.1 Descenso por Coordenadas

En el paso (2.1) escogemos el vector $p^k = \pm e_i$ tal que e_i es el *i*-ésimo vector canónico y $\nabla f(x^k)^T p^k = -\|\nabla f(x^k)\|_{\infty}$. Es decir, se hace minimización en una sola coordenada.

1.2 Máximo Descenso

En cada iteración se escoge el vector $p^k = -\nabla f(x^k)$. Como el valor $\|\nabla f(x^k)\|_2$ es un criterio de parar en el método, el vector $p^k = \nabla f(x^k)$ no gasta esfuerzo computacional adicional.

1.3 Descenso de Newton

Suponiendo que en cada iteración la matriz $\nabla^2 f(x^k)$ es simétrica positiva definida, la dirección p^K se obtiene al resolver el sistema lineal de Newton

$$(\nabla^2 f(x^k))p = -\nabla f(x^k).$$

2 Laboratorio

Programar los método de: (a) descenso por coordenadas (b) máximo descenso y (c) descenso por Newton con la condición de no dar pasos tan largos

$$f(x^k + \alpha^k p^k) \le f(x^k) + \alpha^k (c_1 \nabla f(x^k)^T p^k)).$$

function [xf, iter] = descoor(fname, x)

% Método de descenso por coordenadas para aproximar un mínimo local,

% IN

 $\%\ fname$ es una cadena con el nombre de la función a minimizar.

%, x. – vector columna n dimensional con el punto inicial.

% OUT

%, xf, – vector n dimensional con la aproximación al mínimo local estricto.

% iter.- es el número de iteraciones que se realizaron.

function [xf, iter] = desmax(fname, x,)

% Método de máximo descenso para aproximar un mínimo local.

function [xf, iter] = desnewton(fname, x)

% Método de descenso por dirección de Newton para aproximar un mínimo local.

Internamente en cada método se usan los parámetros :

 $\|\nabla f(x^k)\|_2 \le tol \text{ con } tol = 10^{-5}.$

maxiter = 100 máximo número de iteraciones permitidas.

maxj = 6 máximo número de iteraciones en la búsqueda de línea.

3 Funciones

Los métodos se probarán con dos tipos de funciones.

3.1 Función Cuadrática

$$f(x) = \frac{1}{2}x^{T}Ax + b^{T}x + 1 \tag{1}$$

 ${\rm donde}$

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20 \end{pmatrix}, b = \begin{pmatrix} -1 \\ -1 \\ -1 \\ -1 \end{pmatrix}$$

con único mínimo en $x^* = (1, 0, 0, 0)^T$.

Punto inicial en $x = (5, 5, 5, 5)^T$.

método	iter	Conv
descoor	100	NO
desmax	12	SI
desnewton	13	SI

3.2 Función de Rosenbrock

El punto inicial es $x = (2,3)^T$.

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2.$$

con único mínimo en $x = (1, 1)^T$.

El punto inicial es $x = (2,3)^T$.

método	iter	Conv
descoor	100	NO
desmax	3	NO
desnewton	13	SI

Comportamiento de las iteraciones con máximo descenso. Vector final $x=(1.5250,\ 2.2297)^T$

Comportamiento de las iteraciones con dirección de Newton. Vector final $x=(1,\ 1)^T.$

