Lecture 8

Pandas Continued: Plotting and other Pandas Functions

What have we learned to do this week?

Import data into python

 Introduced the Pandas python package

 Learned to use these skills to manipulate and analyze data

What else can we do?

- Pandas has many built in tools you can use to help analyze your data
- Ex:
 - o df.loc & df.iloc
 - pd.concat
 - o df.dropna

 Today we are going to focus on what pandas can do with plotting

Plotting With Pandas

 Pandas makes it very easy for us to display our data in a meaningful way

 Easy to use built in plotting functions exist that can work in conjunction with matplotlib

Plotting With Pandas

- Plotting in pandas can also handle more than two variables at once
- This third value could pertain to error, or particle intensity on a detector, or light hitting a telescope
- The examples on the sides of the slides all show plots created with pandas where each point has a third value beyond position

Plotting With Pandas

 Colored scatter plots aren't the only option

 Pandas has built in capabilities for a wide variety of plots, giving you plenty of options for ways to display your data

 All options can be found at: <u>https://pandas.pydata.org/docs/use</u> <u>r_quide/visualization.html</u>

Coding Demo Part 1

Pandas Example: Type 1a Supernova

- These are specific type of supernovae
- Occur in binary star systems between a main sequence star and a white dwarf
- The dwarf star accretes mass from the partner star
- Once it reaches a critical mass, the star will explode

Type-1a Lightcurve

- What is interesting about these supernova is that they all have the same lightcurve
- We know how bright they should be, so we can tell how far away they are
- M = 5 + m-5logd
- And, because they are so bright we can see them galaxies away

Why Do We Care?

 We don't have a lot of methods for measuring distances on an intergalactic scale

 With these supernovae, we can measure the distance along with the doppler shift of the home galaxy

Why Do We Care?

- By measuring the doppler effect, we can tell what direction the galaxy is moving relative to us and how quickly
- Berkeley Professor Saul
 Perlmutter used this to discover
 that the rate of expansion of the
 universe is increasing (and win a
 Nobel Prize)

Coding Demo Part 2