Nombres flottants

Nombres flottants

 Les nombres flottants sont des représentation approximative des nombres réels.

Nombres flottants

- Les nombres flottants sont des représentation approximative des nombres réels.
- Les calculs utilisant des nombres flottants sont donc toujours entachés d'erreurs d'arrondi qui peuvent au final perturber le résultat d'un calcul.

Nombres flottants

- Les nombres flottants sont des représentation approximative des nombres réels.
- Les calculs utilisant des nombres flottants sont donc toujours entachés d'erreurs d'arrondi qui peuvent au final perturber le résultat d'un calcul.

Exemples

Par exemple, le calcul de 0, 1+0, 2 ne donne pas exactement 0, 3.

Ecriture dyadique

De la même façon que les chiffres après la virgule d'un nombre en écriture décimal utilisent les puissances de 10 négatives :

De la même façon que les chiffres après la virgule d'un nombre en écriture décimal utilisent les puissances de 10 négatives :

	dizaines	unités		dixièmes	centièmes	
	 10^{1}	10^{0}	,	10^{-1}	10^{-2}	
$3,14_{10} =$		3	,	1	4	

De la même façon que les chiffres après la virgule d'un nombre en écriture décimal utilisent les puissances de 10 négatives :

	dizaines	unités		dixièmes	centièmes	
	 10^{1}	10^{0}	,	10^{-1}	10^{-2}	
$3,14_{10} =$		3	7	1	4	

En écriture binaire (ou dyadique) les chiffres après la virgule correspondent aux puissances négatives de 2 :

De la même façon que les chiffres après la virgule d'un nombre en écriture décimal utilisent les puissances de 10 négatives :

	dizaines	unités		dixiémes	centièmes	
	 10^{1}	10^{0}	7	10^{-1}	10^{-2}	
$3,14_{10} =$		3	,	1	4	

En écriture binaire (ou dyadique) les chiffres après la virgule correspondent aux puissances négatives de 2 :

$$10,01_{10} = egin{array}{c|cccccc} ... & 2^1 & 2^0 & , & 2^{-1} & 2^{-2} & ... \\ & 1 & 0 & , & 0 & 1 \\ \end{array}$$

De la même façon que les chiffres après la virgule d'un nombre en écriture décimal utilisent les puissances de 10 négatives :

	dizaines	unités		dixièmes	centièmes	
	 10^{1}	10^{0}	,	10^{-1}	10^{-2}	
$3,14_{10} =$		3	,	1	4	

En écriture binaire (ou dyadique) les chiffres après la virgule correspondent aux puissances négatives de 2 :

et donc $10.01_{10} = 2.25$

Méthode : du décimal au dyadique

Pour traduire une partie décimal en écriture dyadique :

Exemple

Méthode : du décimal au dyadique

Pour traduire une partie décimal en écriture dyadique :

• Multiplier la partie décimale par 2. Si ce produit est supérieur ou égal à 1, ajouter 1 à l'écriture dyadique sinon ajouter 0.

Exemple

Méthode : du décimal au dyadique

Pour traduire une partie décimal en écriture dyadique :

- Multiplier la partie décimale par 2. Si ce produit est supérieur ou égal à 1, ajouter 1 à l'écriture dyadique sinon ajouter 0.
- Recommencer avec la partie décimale de ce produit tant qu'elle est non nul.

Exemple

Méthode : du décimal au dyadique

Pour traduire une partie décimal en écriture dyadique :

- Multiplier la partie décimale par 2. Si ce produit est supérieur ou égal à 1, ajouter 1 à l'écriture dyadique sinon ajouter 0.
- Recommencer avec la partie décimale de ce produit tant qu'elle est non nul.

Exemple

Par exemple si on veut écrire $0,59375_{10}$ en binaire :

Méthode : du décimal au dyadique

Pour traduire une partie décimal en écriture dyadique :

- Multiplier la partie décimale par 2. Si ce produit est supérieur ou égal à 1, ajouter 1 à l'écriture dyadique sinon ajouter 0.
- Recommencer avec la partie décimale de ce produit tant qu'elle est non nul.

Exemple

Par exemple si on veut écrire $0,59375_{10}$ en binaire :

• $0,59375 \times 2 = 1,1875 \geq 1$ donc on ajoute 1 à l'écriture dyadique : $0,1_2$

Méthode : du décimal au dyadique

Pour traduire une partie décimal en écriture dyadique :

- Multiplier la partie décimale par 2. Si ce produit est supérieur ou égal à 1, ajouter 1 à l'écriture dyadique sinon ajouter 0.
- Recommencer avec la partie décimale de ce produit tant qu'elle est non nul.

Exemple

Par exemple si on veut écrire $0,59375_{10}$ en binaire :

- $0,59375 \times 2 = 1,1875 \geq 1$ donc on ajoute 1 à l'écriture dyadique : $0,1_2$
- $0,1875 \times 2 = 0,375 < 1$ donc on ajoute 0 à l'écriture dyadique : $0,10_2$

Méthode : du décimal au dyadique

Pour traduire une partie décimal en écriture dyadique :

- Multiplier la partie décimale par 2. Si ce produit est supérieur ou égal à 1, ajouter 1 à l'écriture dyadique sinon ajouter 0.
- Recommencer avec la partie décimale de ce produit tant qu'elle est non nul.

Exemple

Par exemple si on veut écrire 0.59375_{10} en binaire :

- $0.59375 \times 2 = 1.1875 > 1$ donc on ajoute 1 à l'écriture dyadique : 0.12
- $0,1875 \times 2 = 0,375 < 1$ donc on ajoute 0 à l'écriture dyadique : $0,10_2$
- $0.375 \times 2 = 0.75 < 1$ donc on ajoute 0 à l'écriture dyadique : 0.100_2

Méthode : du décimal au dyadique

Pour traduire une partie décimal en écriture dyadique :

- Multiplier la partie décimale par 2. Si ce produit est supérieur ou égal à 1, ajouter 1 à l'écriture dyadique sinon ajouter 0.
- Recommencer avec la partie décimale de ce produit tant qu'elle est non nul.

Exemple

Par exemple si on veut écrire 0.59375_{10} en binaire :

- $0.59375 \times 2 = 1.1875 > 1$ donc on ajoute 1 à l'écriture dyadique : 0.12
- $0,1875 \times 2 = 0,375 < 1$ donc on ajoute 0 à l'écriture dyadique : $0,10_2$
- $0.375 \times 2 = 0.75 < 1$ donc on ajoute 0 à l'écriture dyadique : 0.100_2
- $0.75 \times 2 = 1.5 \ge 1$ donc on ajoute 1 à l'écriture dyadique : 0.1001_2

Méthode : du décimal au dyadique

Pour traduire une partie décimal en écriture dyadique :

- Multiplier la partie décimale par 2. Si ce produit est supérieur ou égal à 1, ajouter 1 à l'écriture dyadique sinon ajouter 0.
- Recommencer avec la partie décimale de ce produit tant qu'elle est non nul.

Exemple

Par exemple si on veut écrire 0.59375_{10} en binaire :

- $0.59375 \times 2 = 1.1875 > 1$ donc on ajoute 1 à l'écriture dyadique : 0.12
- $0,1875 \times 2 = 0,375 < 1$ donc on ajoute 0 à l'écriture dyadique : $0,10_2$
- $0.375 \times 2 = 0.75 < 1$ donc on ajoute 0 à l'écriture dyadique : 0.100_2
- $0.75 \times 2 = 1.5 \ge 1$ donc on ajoute 1 à l'écriture dyadique : 0.1001_2
- $0,5 \times 2 = 1,0 \ge 1$ donc on ajoute 1 à l'écriture dyadique : $0,10011_2$

Méthode : du décimal au dyadique

Pour traduire une partie décimal en écriture dyadique :

- Multiplier la partie décimale par 2. Si ce produit est supérieur ou égal à 1, ajouter 1 à l'écriture dyadique sinon ajouter 0.
- Recommencer avec la partie décimale de ce produit tant qu'elle est non nul.

Exemple

Par exemple si on veut écrire $0,59375_{10}$ en binaire :

- $0,59375 \times 2 = 1,1875 \geq 1$ donc on ajoute 1 à l'écriture dyadique : $0,1_2$
- $0,1875 \times 2 = 0,375 < 1$ donc on ajoute 0 à l'écriture dyadique : $0,10_2$
- $0.375 \times 2 = 0.75 < 1$ donc on ajoute 0 à l'écriture dyadique : 0.100_2
- $0.75 \times 2 = 1.5 \ge 1$ donc on ajoute 1 à l'écriture dyadique : 0.1001_2
- $0, 5 \times 2 = 1, 0 \ge 1$ donc on ajoute 1 à l'écriture dyadique : $0, 10011_2$
- ullet On s'arrête car la partie décimale du produit est 0 et $0,59375_{10}=0,10011_2$

Exemples

 $\textcircled{ } \ \, \mathsf{Donner} \,\, \mathsf{l'\'ecriture} \,\, \mathsf{d\'ecimale} \,\, \mathsf{de} \,\, 1101,0111_2 \\$

Exemples

 $\textcircled{ } \ \, \mathsf{Donner} \,\, \mathsf{l'\'ecriture} \,\, \mathsf{d\'ecimale} \,\, \mathsf{de} \,\, 1101,0111_2 \\$

Exemples

- ① Donner l'écriture décimale de $1101,0111_2$ $1101,0111_2=2^3+2^2+2^0+2^{-2}+2^{-3}+2^{-4}=13,4375$
- ② Donner l'écriture dyadique 3,5

Exemples

- **Onner l'écriture décimale de** $1101,0111_2$ $1101,0111_2 = 2^3 + 2^2 + 2^0 + 2^{-2} + 2^{-3} + 2^{-4} = 13,4375$
- Onner l'écriture dyadique 3,5Pour la partie entière $3 = 2^1 + 2^0$.

Pour la partie décimale on multiple $0,5\times 2=1,0$ le premier chiffre est 1 et on s'arrête car la partie décimale de ce produit est 0.

Donc $3, 5_{10} = 11, 1_2$

Ecritrure dyadique illimitée

De la même façon que certaines écritures décimale sont illimitées comme par exemple :

$$\frac{1}{3} = 0,3333333....$$

(on notera bien les points de suspensions) Certaines écritures dyadiques sont illimitées, par exemple :

$$0, 1_{10} = 0,00011001100110011001100...$$

Ecriture scientifique

Les nombres très grands ou très petits ont une écriture décimale trop difficile à manipuler, à lire ou à utiliser. On préfère les écrire en notation scientifique.

Ecriture scientifique

Les nombres très grands ou très petits ont une écriture décimale trop difficile à manipuler, à lire ou à utiliser. On préfère les écrire en notation scientifique. Ecrire un nombre en notation scientifique c'est l'écrire sous la forme

Ecriture scientifique

Les nombres très grands ou très petits ont une écriture décimale trop difficile à manipuler, à lire ou à utiliser. On préfère les écrire en notation scientifique. Ecrire un nombre en notation scientifique c'est l'écrire sous la forme

$$a \times 10^n$$

Ecriture scientifique

Les nombres très grands ou très petits ont une écriture décimale trop difficile à manipuler, à lire ou à utiliser. On préfère les écrire en notation scientifique. Ecrire un nombre en notation scientifique c'est l'écrire sous la forme

$$a \times 10^n$$

où a est un nombre décimal n'ayant qu'un seul chiffre non nul à gauche de la virgule et n un nombre relatif. Par exemple,

Ecriture scientifique

Les nombres très grands ou très petits ont une écriture décimale trop difficile à manipuler, à lire ou à utiliser. On préfère les écrire en notation scientifique. Ecrire un nombre en notation scientifique c'est l'écrire sous la forme

$$a \times 10^n$$

où a est un nombre décimal n'ayant qu'un seul chiffre non nul à gauche de la virgule et n un nombre relatif.

Par exemple, : $7200000000000 = 7,2 \times 10^{12}$

Nombres flottants

L'arithmétique à virgule flottant des ordinateurs utilise ce principe en base 2 mais avec une taille de mantisse et d'exposant limité.