ITR Miniproject-2

Team SINGULARITY

Jenishkumar Chauhan
 Anamullah Ansari
 Vishal Kumar Singh
 23210047
 23210012
 23210118

Task 0 - Setup

Lengths

Length of link 1 = 107.55mm(center to center) Length of link 2 = 112.00mm(center to tip) Z axis distance = 66.5mm

Mass of links

Link1 = 225gmLink2 = 70gm

D-H Parameter

Link	d	θ	а	α
1	0	θ1	107.55mm	0
2	0	θ2	112.00mm	0

Homogeneous transformation

$H_0^1 = [\cos(\theta 1)]$	-sin(θ1)	0	L1 * cos(θ1)]
[sin(θ1)	cos(θ1)	0	L1 * sin(θ1)]
[0	0	1	0]
[0	0	0	1]

$H_1^2 = [\cos(\theta 2)]$	-sin(θ2)	0	L2 * cos(θ2)]
[sin(θ2)	cos(θ2)	0	L2 * $\sin(\theta 2)$
[0	0	1	0]
[0	0	0	1]

$$H_0^2 = H_0^1 \times H_1^2$$

Jacobian matrix

J =
$$[-L1 * sin(\theta 1) - L2 * sin(\theta 2)$$
 -L2 * sin(\theta 2)]
 $[L1 * cos(\theta 1) + L2 * cos(\theta 2)$ L2 * cos(\theta 2)]

Where $\theta 1$ and $\theta 2$ are absolute angles.

End effector position(forward kinematics)

$$x = L1 * cos(\theta 1) + L2 * cos(\theta 1 + \theta 2)$$

 $y = L1 * sin(\theta 1) + L2 * sin(\theta 1 + \theta 2)$

Joint velocities

$$[\theta 1_dot, \theta 2_dot]^T = J(\theta)^{-1} \mathbf{x} [dx, dy]^T$$

End effector velocity

$$[dx, dy]^T = J(\theta) \mathbf{x} [\theta1_dot, \theta2_dot]^T$$

Coding: - click here

Task 1 - Position & Trajectory Control

This trajectory is made by continuously increasing the angles of link-1 by 15 degrees and link-2 by 45 degrees.

Task 2 - Apply a prespecified force of prespecified direction

ACS-712 current sensor analog input (current in the form of Voltage difference) converted into current and then converted into torque. [shown conversion in Embedded C program].

Please note here that, due to an unknown reason, current sensor readings were fluctuating too much, showing 1-2 Amps of current even if there was no motor movement.

Task 3 - Robot end-tip acts like a virtual spring

Here we just adjusted the PID control tuning such that the Robot end tip acts like a spring.