Mutually Unbiased Bases

Abdul Fatah

Doctor of Philosophy

Thesis

Faculty of Engineering and Computing

July 2026

Ollscoil Teicneolaíochta an Atlantaigh

Atlantic Technological University

Table of Contents

1 Mutually Unbiased Bases	:
·	_
Bibliography	—— <i>'</i>

Mutually Unbiased Bases

Definition (Mutually Unbiased Bases): Two bases $\mathcal{U}=\{|u_i\rangle\}_{i=0}^{d-1}$ and $\mathcal{V}=\{|v_j\rangle\}_{j=0}^{d-1}$ of the Hilbert space \mathbb{C}^d are called mutually unbiased when:

$$\left|\left\langle u_i \middle| v_j \right\rangle\right|^2 = \frac{1}{d}$$

Definition (Set of Mutually Unbiased Bases): A set of n bases $S = \{U_i\}_{i=0}^{n-1}$ is called a set of mutually unbiased bases when for each pair of bases (U_i, U_j) in S, U_i and U_j are mutually unbiased bases.

Theorem (Horodecki [1]): There are no more than d+1 mutually unbiased bases in the Hilbert space \mathbb{C}^d .

Proof: ...

Theorem (Horodecki [1]): There is a set of at least three mutually unbiased bases in the Hilbert space \mathbb{C}^d for $d \geq 2$.

Proof: Suppose we take d=2, according to the theorem, no more than three mutually unbiased bases exist in \mathbb{C}^2 Hilbert space. Let's first identify the set of the three mutually unbiased bases, then show that any other basis can not be unbiased with all three of them.

$$U = \{U_0, U_1, U_2\}$$

Step 1: Defining the first basis (The computational basis)

Lets begin with a familiar orthonormal basis, the computational basis. We label this U_0 :

$$U_0 = \{|0\rangle, |1\rangle\}$$

This basis corresponds to the eigenbasis of the Puali-Z operator.

Step 2: Defining a second mutually unbiased basis

A second basis, U_1 , is mutually unbiased with U_0 if the squared inner product between any state from U_1 and any state from U_0 is equal to $\frac{1}{d} = \frac{1}{2}$. A good candidate is the Hadamard basis, which corresponds to the eigenbasis of the Pauli-X operator:

$$U_1 = \{|+\rangle, |-\rangle\}$$

where
$$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$
 and $|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$.

Let's verify the unbiased condition:

$$\begin{split} |\langle 0|+\rangle|^2 &= \left|\left\langle 0 \left| \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \right\rangle \right|^2 = \left| \frac{1}{\sqrt{2}} \right|^2 = \frac{1}{2} \\ |\langle 0|-\rangle|^2 &= \left|\left\langle 0 \left| \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \right\rangle \right|^2 = \left| \frac{1}{\sqrt{2}} \right|^2 = \frac{1}{2} \\ |\langle 1|+\rangle|^2 &= \left|\left\langle 1 \left| \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \right\rangle \right|^2 = \left| \frac{1}{\sqrt{2}} \right|^2 = \frac{1}{2} \\ |\langle 1|-\rangle|^2 &= \left|\left\langle 1 \left| \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \right\rangle \right|^2 = \left| \frac{1}{\sqrt{2}} \right|^2 = \frac{1}{2} \end{split}$$

Since the condition holds for all pairs U_0 and U_1 are mutually unbiased.

Step 3: Defining a third mutually unbiased basis

Now, we seek third basis U_2 that is unbiased with both U_0 and U_1 . The eigenbasis of the Pauli-Y operator works perfectly.

$$U_2 = \{|+i\rangle, |-i\rangle\}$$

where $|+i\rangle=\frac{1}{\sqrt{2}}(|0\rangle+i|1\rangle)$ and $|-i\rangle=\frac{1}{\sqrt{2}}(|0\rangle-i|1\rangle)$. We can verify U_2 basis, the pairwise inner product with U_0 and U_1 that must equal to $\frac{1}{2}$.

$$\begin{split} |\langle 0|+i\rangle|^2 &= \left|\left\langle\left|\frac{1}{\sqrt{2}}(|0\rangle+i|1\rangle)\right\rangle\right|^2 = \left|\frac{1}{\sqrt{2}}\right|^2 = \frac{1}{2}\\ |\langle 0|-i\rangle|^2 &= \left|\left\langle 0\left|\frac{1}{\sqrt{2}}(|0\rangle-i|1\rangle)\right\rangle\right|^2 = \left|\frac{1}{\sqrt{2}}\right|^2 = \frac{1}{2}\\ |\langle 1|+i\rangle|^2 &= \left|\left\langle 1\left|\frac{1}{\sqrt{2}}(|0\rangle+i|1\rangle)\right\rangle\right|^2 = \left|\frac{i}{\sqrt{2}}\right|^2 = \frac{1}{2}\\ |\langle 1|-i\rangle|^2 &= \left|\left\langle 1\left|\frac{1}{\sqrt{2}}(|0\rangle-i|1\rangle)\right\rangle\right|^2 = \left|-\frac{i}{\sqrt{2}}\right|^2 = \frac{1}{2} \end{split}$$

Unbiased condition satisfied U_2 and U_0 , now lets repeat for U_2 and U_1

$$\begin{split} |\langle +|+i\rangle|^2 &= \left| \left\langle \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \right| \frac{1}{\sqrt{2}} (|0\rangle + i|1\rangle) \right\rangle \Big|^2 = \left| \frac{1+i}{2} \right|^2 = \frac{|1|^2 + |1|^2}{2^2} = \frac{1}{2} \\ |\langle +|-i\rangle|^2 &= \left| \left\langle \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \right| \frac{1}{\sqrt{2}} (|0\rangle - i|1\rangle) \right\rangle \Big|^2 = \left| \frac{1-i}{2} \right|^2 = \frac{|1|^2 + |1|^2}{2^2} = \frac{1}{2} \\ |\langle -|+i\rangle|^2 &= \left| \left\langle \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \right| \frac{1}{\sqrt{2}} (|0\rangle + i|1\rangle) \right\rangle \Big|^2 = \left| \frac{1-i}{2} \right|^2 = \frac{|1|^2 + |1|^2}{2^2} = \frac{1}{2} \\ |\langle -|-i\rangle|^2 &= \left| \left\langle \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \right| \frac{1}{\sqrt{2}} (|0\rangle - i|1\rangle) \right\rangle \Big|^2 = \left| \frac{1+i}{2} \right|^2 = \frac{|1|^2 + |1|^2}{2^2} = \frac{1}{2} \end{split}$$

Thus, we have found three mutually unbiased bases for d=2

Step 4: Proving a fourth mutually unbiased basis is impossible

Now we show that it's impossible to construct a fourth basis, U_3 , that is unbiased with U_0 , U_1 , and U_2 .

For any new basis to be unbiased with U_0 , its states must be of the form:

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + e^{i\varphi}|1\rangle)$$

Where φ is some real phase.

For this state to also be unbiased with U_1 , we must have

$$\begin{split} |\langle +|\varphi\rangle|^2 &= \frac{1}{2} \\ \left|\frac{1}{2}(\langle 0|+\langle 1|)\big(|0\rangle+e^{i\varphi}|1\rangle\big)\right|^2 &= \frac{1}{2} \\ \left|\frac{1+e^{i\varphi}}{2}\right|^2 &= \frac{1}{2} \quad \forall \quad e^{i\varphi} = \cos(\varphi)+i\sin(\varphi) \\ |(1+\cos(\varphi)+i\sin(\varphi))|^2 &= 2 \\ (1+\cos(\varphi))^2+(\sin(\varphi))^2 &= 2 \\ 1+2\cos(\varphi)+\cos^2(\varphi)+\sin^2(\varphi) &= 2 \\ 1+1+2\cos(\varphi) &= 2 \\ \cos(\varphi) &= 0 \end{split}$$

This means the phase angle φ must be either $\frac{\pi}{2}, \frac{3\pi}{2}$ (or its equivalent, $-\frac{\pi}{2}$).

Finally, for the state to also be unbiased with U_2 , we check the condition for $\varphi = \frac{\pi}{2} \Rightarrow |\psi\rangle = |0\rangle + i|1\rangle$, So,

$$|\langle +i|\psi\rangle|^2 = \left|\frac{1}{2}(\langle 0|-i\langle 1|)(|0\rangle+i|1\rangle)\right|^2 = \left|\frac{1-i^2}{2}\right|^2 = \left|\frac{2}{2}\right|^2 = 1$$

Since its not equal to $\frac{1}{2}$, the state ψ for phase $\varphi=\frac{\pi}{2}$ is not unbiased with U_2 , the same logic applies to $\varphi=\frac{3\pi}{2}$

The only possible candidates for for new mutually unbiased bases were the eigenbases of Pauli-X, and Pauli -Y operators, which we already proved. Therefore, no 4th basis for d=2 can exist.

Bibliography

[1] P. Horodecki, Ł. Rudnicki, and K. \ifmmode \dot{Z}\else \(\dot{Z}\\) lse \(\dot{Z}\\) fi{}yczkowski, "Five Open Problems in Quantum Information Theory," *PRX Quantum*, vol. 3, no. 1, p. 10101, 2022, doi: 10.1103/PRXQuantum.3.010101.