# Spatial GEV Regression Bayesian Storm Surge Risk Modeling

Mahlon Scott (UCF) Supervised by: Dr. Hsin-Hsiung Huang (UCF)

October 28, 2025

#### Data

- Storm surges (non-tidal residuals), at gauges provided by UCF Coastal Risks and Engineering lab
- ► ERA5-Interim wind speed, pressure, precipitation at gauge, 1979 present
- Approach Model the yearly surge maxima as GEV distributed
- Regression for GEV parameters at each location, assuming spatial correlation weighted by distance

#### Notation

- Anywhere we see an s represents a specific location in space (i.e. a tide gauge)
- S then represents a list of all of the locations we use
- i represents the different times the surges occur at (i.e. which year for annual maxima)

## **GEV**

$$p(y_{is}) = \frac{1}{\sigma_s} \left( 1 + \xi_s \left( \frac{y_{is} - \mu_s}{\sigma_s} \right) \right)^{-(1 + \frac{1}{\xi_s})} \cdot \exp \left( -\left( 1 + \xi_s \left( \frac{y_{is} - \mu_s}{\sigma_s} \right) \right)^{-\frac{1}{\xi_s}} \right)$$

- Models maxima of iid samples
- Assume  $\xi_s = \frac{\sigma_s}{\mu_s}$ 
  - ▶ i.e. the distribution has a minimum value of 0

# Regression

$$\ln(\sigma_s) = \beta^\top X_s + a_s + \epsilon_{\sigma,s} \qquad \epsilon_{\sigma,s} \sim N(0, \sigma_{\sigma}^2)$$

$$\mu_s = \gamma^\top X_s + b_s + \epsilon_{\mu,s} \qquad \epsilon_{\mu,s} \sim N(0, \sigma_{\mu}^2)$$

- Assumes these parameters do not change over time
- At location, one  $X_s$  is associated to one  $\sigma_s$  and  $\mu_s$ , which are in turn associated with many actual measurements  $y_{is}$
- Use Gaussian process prior for overall a, b vectors
- ▶ Approach inspired by (Boumis et al., 2023) and (He and Huang, 2024). This work: (Scott and Huang, 2025)

# Spatial Random Effects

$$a \sim \mathit{N}(0, \sigma_a^2 \mathit{K}_{\phi_a}(S, S))$$
  $\sigma_a^2 \sim \mathsf{Gamma}(lpha, heta)$   $\mathcal{K}_{\phi}(s, s') = e^{-\left(\mathsf{dist}(s, s')^2
ight)\phi}$ 

- Assumes that spatial correlations fall off according to the right half of some gaussian curve
  - ▶ Height of gaussian curve controlled by  $\sigma_a^2$
  - ightharpoonup Spread controlled by  $\phi$
- **b** (random effect for  $\mu$ ) will be modeled similarly

#### Model Visualization



$$p(. \mid y) \propto \underbrace{p(y \mid \mu_s, \sigma_s)}_{\text{GEV likelihood}} \cdot \underbrace{p(\sigma_s \mid \beta, a, \sigma_\sigma^2) \cdot p(\beta, \sigma_\sigma^2) \cdot p(a \mid \phi_a, \sigma_a^2) \cdot p(\phi_a, \sigma_a^2)}_{\text{Model for } \sigma_s} \cdot \underbrace{p(\mu_s \mid \gamma, b, \sigma_{\mu_s}^2) \cdot p(\gamma, \sigma_\mu^2) \cdot p(b \mid \phi_b, \sigma_b^2) \cdot p(\phi_b, \sigma_b^2)}_{\text{Model for } \mu_s}$$

#### Results

| Regression Coefficient | 95 % C.I.        |
|------------------------|------------------|
| Intercept              | [0.178, 0.773]   |
| Sea Level Pressure     | [-0.199, -0.038] |
| Wind                   | [-0.060, 0.016]  |
| Precipitation          | [-0.066, 0.030]  |

Table: 95% credible intervals for the model coefficients for  $\mu$ .

For every 146.7 pascal decrease in the mean annual minimum sea level pressure at a location, we expect somewhere from a 0.038 meter to 0.199 meter increase in the GEV location parameter  $\mu$ .

#### Results

| Parameter    | 95 % C.I.      |
|--------------|----------------|
| $\phi$       | [3.03, 133.7]  |
| $\sigma_b^2$ | [0.0061, 0.34] |

Table: 95% credible intervals for the GP parameters for  $\mu$ .

- ▶ Intercept correlation at locations less than 50 miles apart are 0.2 or greater.
- ▶ The correlation decays to 0.2 at a distance of 50 to 300 miles.
- The error variance for  $\mu$  is between 0.001 and 0.009; spatial correlations may\* explain 1.027 to 141 times as much variance in  $\mu$  between locations than the error term.
  - \* Simulations show that this estimate is not always reliable.

## Results



Figure: Left: Upper bound for 100-year storm surges based on data from 1979 to 2019. Right: Posterior median for the same.

# Completeness of Dataset



Figure: Proportion of years (1979-2020) for which there are measured maxima at each location

#### Direction

- Update using now-released ERA5 back to 1940, expand region of interest
  - Check for temporal effects with expanded data
- Improve computational speed for better usability in practice
- Further investigate ways to constrain the support to include 0

#### References

- Center for Operational Oceanographic Products and Services. Tides/Water Levels, 2024. Available online: https://tidesandcurrents.noaa.gov/products.html (accessed on 7th December 2024)
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. https://doi.org/10.1002/qj.3803.
- Boumis, G.; Moftakhari, H.R.; Moradkhani, H. Storm surge hazard estimation along the US Gulf Coast: A Bayesian hierarchical approach. Coast. Eng. 2023, 185, 104371. https://doi.org/10.1016/j.coastaleng.2023.104371.
- He, Q.; Huang, H.H. A framework of zero-inflated Bayesian negative binomial regression models for spatiotemporal data. J. Stat. Plan. Inference 2024, 229, 106098. https://doi.org/10.1016/j.jspi.2023.106098.
- Wahl, T.; Haigh, I.D.; Nicholls, R.J.; Arns, A.; Dangendorf, S.; Hinkel, J.; Slangen, A.B.A. Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis. *Nat. Commun.* 2017, 8, 16075. https://doi.org/10.1038/ncomms16075.
- Scott, M.; Huang, H.-H. Generalizable Storm Surge Risk Modeling. Mathematics 2025, 13, 486. https://doi.org/10.3390/math13030486.