E-COMMERCE 3: RECOMMENDER SYSTEMS

Goal

- □ To recommend interesting stuff:
 - Songs, movies, web-pages, (queries...), ...
- Popular items vs. the Long Tail
 - There is a lot of money in the tail
 - Recommending popular stuff may not be sufficient
 - Really understand what a user is looking for
- Exploit every fragment of knowledge available
 - Wisdom of the crowds

Some general approaches (different knowledge models/bases)

Quality Measures

- Efficiency in building the model
- □ Efficiency in generating suggestions
- Serendipity of recommendations
- Cold-start problem

Content-based

- A user is represented by the set of items s/he purchased
 - Define a description of each item
 - Sum/Avg those descriptions to model the user
- □ E-Commerce:
 - □ Title, brand, description, price, category, on-sale
- Web Pages:
 - Every single word! (at least)

Modeling free text

- A document is a set of words
- □ In the vector-space model:
 - \blacksquare Each document is a vector x of size N, where N is the number of words in the lexicon

 - □ Given two documents x and y, their similarity is measured with the cosine of the two vectors:

$$cos(x,y) = \frac{x \cdot y}{|x||y|}$$

Why the cosine distance?

- Cosine is high if the angle is small
- Angle is not biased by the document length
 - \mathbf{z} = "apple", \mathbf{y} = "apple apple apple apple apple" have cosine equal to 1 (Θ =0)

Is frequency sufficient?

- \square x = [la:100, divina:1, commedia:1]
- \square y = [nella:100, divina:2, commedia:2]

- \square w = [che:1, bel:2, tempo:3, oggi:4]
- \square z = [the:1, Riemann: 1, zeta:1, function:1]

Different words have different specificity,
 they must have different weight

Frequency distribution

TF x IDF

- Context is the corpus
- □ Promote rare words, demote common words

$$x[i] = \mathsf{tf}_{i,x} \cdot \log\left(\frac{N}{\mathsf{df}_i}\right)$$

where

- N is the total number of documents
- df: documents containing term i
- Tf: i term freq in document x

Content-based recommendation

 \square User profile U, given the set V of visited documents:

$$U = \frac{1}{|V|} \sum_{x \in V} x$$

- □ Recommendation:
 - The nearest document y in the corpus

Content-based – Wrap up

- Efficiency in building the model
 - No model for the corpus
 - Cheap model for the user
- Efficiency in generating suggestions
 - K-NN search among the collection of documents
- Serendipity of recommendations
 - small
- Cold-start problem
 - Partial
- Ageing effect:
 - Which documents to use when building the model?

Collaborative Filtering

- In many cases, users rate items
 - Explicit: stars
 - Implicit: time on a web page, clicks on a result page

- Rather then finding similar items, find similar users!
 - Greater serendipity!

- □ A user is modeled by a vector U:
 - \square U[i] = r if the user U gave r stars to the item i.

Similarity between users

- What do we need to measure?
 - Do they have the same votes ??
 - Euclidean ??
 - □ Cosine ??

Pearson-correlation:

$$\rho(U,V) = \frac{\mathrm{cov}(U,V)}{\sigma_U \sigma_V} = \frac{\sum_i (U[i] - \overline{U})(V[i] - \overline{V})}{\sqrt{\sum_i (U[i] - \overline{U})^2} \sqrt{\sum_i (V[i] - \overline{V})^2}}$$

Rank items

- \square Find a set N(U) of neighbors
- Average their scores and take the best

$$S[i] = \overline{U} + \frac{\sum_{V \in N(U)} (V[i] - \overline{V}) \cdot \rho(U, V)}{\sum_{V \in N(U)} \rho(U, V)}$$

Average its weighted by user similarity

 \square S[i] is not only a score, but a prediction of U's rate

Collaborative Filtering – Wrap up

- Efficiency in building the model
 - User similarity is expensive
 - Done off-line
- Efficiency in generating suggestions
 - K-NN search not needed if pre-computed off-line
- Serendipity of recommendations
 - □ Great!
- Cold-start problem
 - Present!
- Sparsity:
 - Little votes and little shared votes

Item-based Collaborative Filtering

Search for similar items, but...
 Measure similarity on the basis of users' rates

- \sqcap An item \times is modeled as:
 - $\square x[U] = r$ if the user U rates the item x with a score r

- Items x and y are similar if they received similar votes
 - Which measure to use ?

Adjusted Cosine Similarity

- Pearson correlation coefficient ?
 - Measures linear dependence
- Cosine similarity?
 - \square measures the angle between x and y

$$\operatorname{a-cos}(x,y) = \frac{\sum_{U} (x[U] - \overline{U})(y[U] - \overline{U})}{\sqrt{\sum_{U} (x[U] - \overline{U})^2} \sqrt{\sum_{U} (y[U] - \overline{U})^2}}$$

Quality measure

Mean Absolute Error

$$\mathsf{MAE} = \frac{\sum_{i=1}^{N} |rate[i] - score[i]|}{N}$$

where rate is the actual vote and score is the predicted one

Experiments on

- Movie lens dataset:
 - □ 3500 movies
 - 43000 users
- □ A subset was used:
 - 943 users (with at least 20 ratings)
 - □ 1682 movies
 - 100,000 ratings
 - □ 94% of the users-movies matrix is empty

Does it make any difference?

Relative performance of different similarity measures

Lower is better

Item-based C.F. – Wrap up

- Efficiency in building the model
 - Expensive offline computation
- Efficiency in generating suggestions
 - They are actually pre-computed
- Serendipity of recommendations
 - □ Great!
- Cold-start problem
 - Absent
- Used by Amazon!

Some papers

- Linden, G.; Smith, B.; York, J. . **Amazon.com recommendations:** item-to-item collaborative filtering. IEEE Internet Computing 2001.
- Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-Based Collaborative Filtering Recommendation Algorithms. WWW 2001.

The wisdom of the few [sigir'09]

- User-based collaborative filtering
 - But, only a set of expert is selected
- Who are the users?
 - Netflix database
- Who are the experts?
 - Rotten Tomatoes website
 - Intersect movies from the two sources
 - Expert if at least 250 ratings

Netflix rating matrix has 1% non zero entries, Experts rating matrix has 7%

- Experts use the full range of rates
- Experts rate good and bad movies
 - (not biased towards popular ones)
- Experts tend to agree

Building recommendations

- \square Compute score for item *i* and user *U*
- \square Search for the experts E such that $sim(U,E) > \delta$
- □ Take only the set of experts E' that rated i
 - \blacksquare If they are less \mathcal{T} than return no recommendations

□ Then ...

Building recommendations

□ Score:

$$S[i] = \overline{U} + \frac{\sum_{E \in E'} (E[i] - \overline{E}) \cdot \text{sim}(U, E)}{\sum \text{sim}(U, E)}$$

Results

- □ CF:
 - MAE: 71%, Recall: 93%
- Expert-CF:
 - MAE: 78%, Recall: 98%

Measuring only top recommendations

- Recommend only those items whose predicted score is at least σ
- Check whether the actual score of those items is greater than \(\sigma\)

User study

User study

The wisdom of the few – Wrap-up

- A small set of experts by enclose as much knowledge as the big set of general users
 - □ (maybe more ?)

Scalability

Patterns of Influence in a Recommendation Network

Objective:

- Discover the most frequent patterns of recommendation propagation
- Applicable to information propagation as well
 - Think about facebook...
- User study on a large on-line retailer:
 - Books, DVDs, music, videos.
 - After a purchase, users could send recommendations via email
 - If the receives buys the item, the sender gets some credit

The input data

- 15,646,121 recommendations, 3,943,084 distinct users,
 711 days, 542,719 products
- Represented as a labeled directed graph:
 - Nodes are costumers
 - a directed edge (v, w) with label (p, t) means that node
 v recommended product p to customer w at time t

The goal is to identify recurrent sub-graphs

Strategies

- Delete late recommendations:
 - If a use buys a product, remove all the incoming edges happening after the purchase
- Delete no-purchase nodes
- All connected components in the resulting graphs are potentially interesting
- "Cascade" enumeration:
 - For each node consider his predecessors up to distance h
 - Count the number of those graphs

Size distribution

The patterns

				1	Book	DVD		Music		Video	
Id	Graph	Nodes	Edges	R	F	R	F	R	F	R	F
G_1	••	2	1	1	86,430	1	36,863	1	11,518	1	1,425
G_2	•<	3	2	2	10,573	4	3,238	2	492	5	33
G_3	••••	3	2	3	5,089	2	5,147	3	389	3	61
G_4	>	3	2	6	1,593	5	2,419	5	115	22	4
G_6	Λ	4	3	5	2,769	15	505	6	55	20	5
G_{13}		4	3	92	21	12	549	54	4	0	0

Other patterns

