Homework 2 At

Due Feb 20 at 11:59pm

Points 10

Questions 10

Available Feb 7 at 8am - Feb 20 at 11:59pm

Time Limit None

Allowed Attempts Unlimited

Take the Quiz Again

Attempt History

attempt	Time	Score
ttempt 2	12 minutes	10 out of 10
ttempt 2	12 minutes	10 out of 10
ttempt 1	28 minutes	7 out of 10
	ttempt 2	ttempt 2 12 minutes ttempt 2 12 minutes

(!) Correct answers are hidden.

Score for this attempt: 10 out of 10

Submitted Feb 18 at 7:32pm

This attempt took 12 minutes.

Question 1	1 / 1 pts
Question i	

The periodic discrete time signal $\cos(0.5 \text{ mk} + 0.2)$ has a period of N₀ samples according to the following equation:

$$N_0 = m \left(\frac{2 \pi}{\Omega}\right)$$

where Ω is 0.5 $\pi.$ Find the value of N_0 and the $\boldsymbol{minimum}$ integer value of m.

Note: No represents the number of samples and it must be an integer.

(a).
$$m=1$$
, $N_0=4$

(b).
$$m=10$$
, $N_0=40$

(c).
$$m=100$$
, $N_0=400$

a

0 b

1 of 7 2/18/2023, 7:32 PM

О с			

Question 2 1 / 1 pts

The periodic discrete time signal $cos(0.6 \text{ }\pi\text{k} + 0.2)$ has a period of N_0 samples according to the following equation:

$$N_0=m\,\left(\frac{2\,\pi}{\Omega}\right)$$
 where Ω is 0.6 π . N₀= $m\,\left(\frac{2\,\pi}{0.6\pi}\right)=m\left(\frac{10}{3}\right)$

Find the value of N_0 and the **minimum** integer value of m.

Note: No represents the number of samples and it must be an integer.

(a).
$$m=1$$
, $N_0=3$

(b).
$$m=3$$
, $N_0=10$

(c).
$$m=100$$
, $N_0=333.33$

O a

b

O c

Question 3 1 / 1 pts

Rational number can be defined as p/q where both p and q are integers.

Which statement about the discrete time signals shown below is correct?

- (a). $\sin(0.5 \pi k + 0.2)$ is periodic because $2 \pi/(0.5 \pi) = 4$ and 4 is a rational number.
- (b). $\sin(0.5 \text{ k} + 0.2)$ is periodic because $2 \pi/(0.5) = 4 \pi$ and 4π is a rational number.

(c)	. None of the above.
	a
	O b
	Ос

For the discrete time signal, $\cos(\Omega\pm 2\,\pi\mathrm{m}\,)k=\cos(\Omega k\,)$, and the fundamental frequency range can be reduced to the range of $0^{\,\sim}\pi$. Determine the lowest frequency which can be used to describe the sinusoid of the frequency 22.9 π . (a). $22.9\,\pi-2\,\pi\,\times\,11=0.9\,\pi$ (b). $22.9\,\pi-2\,\pi\,\times\,10=2.9\,\pi$ (c). $22.9\,\pi-2\,\pi\,\times\,5=12.9\,\pi$

Question 5	1 / 1 pts

3 of 7 2/18/2023, 7:32 PM

The discrete time step function signal u(k) is defined below:

For the discrete time signal $f[k] = (0.8^k) u[k]$, which statement below is correct?

- (a). When k=-1, u[k] = u[-1] = 0, $f[k] = f[-1] = 0.8^{-1} u[-1] = 1/0.8$.
- (b). When k=0, u[k]=u[0]=1, $f[k]=f[0]=0.8^{\circ}u[0]=1 \times 1=1$.
- (c). When k=1, u[k] = u[1] = 0, $f[k] = f[0] = 0.8^1 u[1] = 0.8 \times 0 = 0$.
 - O a
 - b
 - О с

Question 6 1 / 1 pts

For the discrete time signal shown below, find the signal energy.

- (a). $E = f[-4]^2 + f[-3]^2 + f[-2]^2 + f[-1]^2 + f[0]^2 + f[1]^2 + f[2]^2 + f[3]^2 + f[4]^2 + f[5]^2 + f[6]^2$ = 0 + 0 + (-3)² + 4² + 6² + 4² + 2² + 0 + 0 + 0 + 0 = 9 + 16 + 36 + 16 + 4 = 81
- (b). E = f[-4] + f[-3] + f[-2] + f[-1] + f[0] + f[1] + f[2] + f[3] + f[4] + f[5] + f[6]= 0 + 0 + (-3) + 4 + 6 + 4 + 2 + 0 + 0 + 0 + 0 = 13
- (c). E = |f[-4]| + |f[-3]| + |f[-2]| + |f[-1]| + |f[0]| + |f[1]| + |f[2]| + |f[3]| + |f[4]| + |f[5]| + |f[6]|= 0 + 0 + 3 + 4 + 6 + 4 + 2 + 0 + 0 + 0 + 0 = 19

4 of 7 2/18/2023, 7:32 PM

4	ø		
	a	6.0	

а

O b

O c

Question 7

1 / 1 pts

The following discrete time signal has a period of 5 which means the signal repeats after every 5 samples. f[1] = f[2] = 2, f[3] = f[4] = f[5] = 4. Find the power of this signal.

(a).
$$P = \frac{1}{5} x (2^2 + 2^2 + 4^2 + 4^2 + 4^2) = \frac{56}{5}$$

(b).
$$P = \frac{1}{5} \times (2 + 2 + 4 + 4 + 4) = \frac{16}{5}$$

(c).
$$P = \frac{1}{10} x (2 + 2 + 4 + 4 + 4 - 2 - 2 - 4 - 4 - 4) = 0$$

a

0 b

O c

Question 8

1 / 1 pts

The continuous-time sinusoids $f(t) = 10 \cos (11 \pi t + 0.2 \pi)$ is sampled with a sampling interval of T=0.1 second. Find the expression for the resulting discrete-time sinusoid.

- (a). $f[k] = 10 \cos (11 \pi k T + 0.2 \pi) = 10 \cos (1.1 \pi k + 0.2 \pi)$
- (b). $f[k] = (10 \times T) \cos (11 \pi k + 0.2 \pi) = \cos (11 \pi k + 0.2 \pi)$
- (c). Both (a) and (b) are wrong.

O b

O c

Question 9

1 / 1 pts

The discrete time step function signal u(k) is defined below:

Which figures below represents the discrete signal u[k-2] and u[k-6]? (a).

(b).

(c). None of the above.

a

0 b

6 of 7

O c

Question 10

1 / 1 pts

The discrete time step function signal u(k) is defined below:

Which figures below represents the discrete signal u[k-2] - u[k-6]?

(a).

(b).

(c). None of the above.

a

O b

O c

Quiz Score: 10 out of 10