Лабораторная работа

Packet Tracer. Обмен данными с использованием TCP и UDP

Задачи

Часть 1. Генерация сетевого трафика в режиме моделирования

Часть 2. Изучение процесса функционирования протоколов транспортного уровня TCP и UDP

Общие сведения

Данная лабораторная позволит понять основы функционирования протоколов транспортного уровня TCP и UDP для более подробного их изучения в дальнейшем. Режим моделирования Packet Tracer дает вам возможность просматривать состояние различных PDU, когда они перемещаются по уровням модели OSI.

В режиме моделирования программы Packet Tracer имеется возможность просматривать все протоколы и соответствующие им PDU. Ниже представлены шаги для поэтапного ознакомления с процессом запроса сервисов с помощью различных приложений, доступных на клиентском компьютере. Вы можете изучить функциональные особенности протоколов TCP и UDP, а также возможности мультиплексирования и функцию номеров портов при определении локального приложения, запросившего данные или отправляющего их.

Часть 1. Генерация сетевого трафика в режиме моделирования и изучение режима мультиплексирования.

Генерация сетевого трафика производится **в режиме моделирования**.

Примечание. Для переключения из режима реального времени в

режим моделирования щелкните значок режима Simulation Simulation

Шаг 1. Сгенерируйте трафик для заполнения таблиц протокола разрешения адресов (ARP).

- **a**. Выберите MultiServer (Мультисервер) → вкладка Desktop (Рабочий стол) → элемент Command Prompt (Командная строка).
- **b**. Введите команду ping -n 1 192.168.1.255. Выполнится отправка эхо-запроса на широковещательный адрес для клиентской локальной сети. Это займет несколько секунд, поскольку каждое устройство в сети отвечает на эхо-запрос от MultiServer.
 - **c**. Закройте окно MultiServer (Мультисервер).

Шаг 2. Сгенерируйте веб-трафик (НТТР).

- а. Перейдите в Режим моделирования.
- **b**. Выберите HTTP Client (HTTP-клиент) → вкладка Desktop → элемент Web Browser (веб-браузер).
- **с**. В поле URL-адреса введите 192.168.1.254 и нажмите кнопку Go. В окне **Топологии** появятся изображения конвертов (единиц PDU).
 - d. Сверните (но не закрывайте) окно HTTP Client.

Шаг 3. Сгенерируйте FTP-трафик.

- **a**. Выберите FTP Client (FTP-клиент) → вкладка Desktop → элемент Command Prompt.
 - **b**. В командной строке введите

ftp 192.168.1.254

В окне Топологии появятся изображения конвертов.

с. Сверните (но не закрывайте) окно FTP Client.

Шаг 4. Сгенерируйте DNS-трафик.

- **a**. Выберите DNS Client (DNS-клиент) \rightarrow вкладка Desktop \rightarrow элемент Command Prompt.
 - b. В командной строке введите nslookup multiserver.pt.ptu

В окне Топологии появятся изображения конвертов.

c. Сверните (но не закрывайте) окно DNS Client.

Шаг 5. Сгенерируйте трафик электронной почты.

- **a**. Выберите E-Mail Client (Почтовый клиент) \to вкладка Desktop \to элемент EMail (Эл. почта).
 - **b**. Нажмите кнопку Compose (Создать) и введите следующие данные:
 - 1) То (Получатель): user@multiserver.pt.ptu
 - 2) Subject (Тема): укажите любую тему
 - 3) E-Mail Body (Текст письма): введите произвольный текст письма
 - **c**. Нажмите кнопку Send (Отправить).
 - d. Сверните (но не закрывайте) окно E-Mail Client.

Шаг 6. Убедитесь, что все виды трафика сгенерированы и готовы для моделирования.

Теперь на Simulation Panel (Панели моделирования) в Event List (Списке событий) должны быть записи PDU для каждого клиентского узла.

Simulation Panel								
Event	List							
Vis.	Time(sec)	Last Device	At Device	Туре	Info	^		
	0.000		MultiSer	ICMP				
	0.000		HTTP Cli	TCP				
	0.000		HTTP Cli	TCP				
	0.000		HTTP Cli	ARP				
	0.000		FTP Client	TCP				
	0.000		FTP Client	TCP				
	0.000		FTP Client	ARP				
	0.000		DNS Client	DNS				
	0.000		DNS Client	ARP				
	0.000		E-Mail Cl	TCP				
	0.000		E-Mail Cl	TCP				
	0.000		E-Mail Cl	ARP				

Шаг 7. Изучите процесс мультиплексирования при передаче трафика по сети.

Кнопка Capture/Forward (Захват/Вперед) — Сартиге / Forward на Simulation Panel используется для наблюдения за PDU различных протоколов, перемещающимися по сети.

a. Нажмите кнопку Capture/Forward один раз. Все PDU передадутся на коммутатор.

b. Нажмите Capture/Forward **шесть** раз и наблюдайте за PDU с разных узлов, пока они путешествуют по сети. Обратите внимание, что в любой момент времени только одно PDU передается по среде передачи в каждом направлении.

Как называется такой режим?

мультиплексированный

В окне Simulation Panel в списке Event List отображаются различные PDU. В чем смысл различных цветов?

Они представляют различные протоколы

Часть 2. Изучение процесса функционирования протоколов TCP и UDP

Шаг 1. Изучите НТТР-трафик, при котором клиент обменивается данными с сервером.

- a. Нажмите Reset Simulation (Сбросить моделирование)
- **b**. Выберите в списке Event List Filters (Фильтры списка событий) протоколы НТТР и ТСР.

При необходимости нажмите кнопку Редактировать фильтры в нижней части Панели моделирования Simulation Panel, чтобы отобразить доступные Visible Events (Видимые события). На установите только НТТР и ТСР и закройте окно вкладке Misc Редактировать фильтры. В разделе Visible Events теперь должны отображаться только PDU для HTTP- и TCP-трафика.

- c. Откройте браузер на HTTP-Client и в поле URL введите 192.168.1.254. Нажмите кнопку Go Go . чтобы подключиться к серверу по протоколу HTTP. Сверните окно HTTP-Client.
- d. Нажмите Capture/Forward, пока не появится PDU для HTTP. Обратите внимание, что цвет конверта в окне Топологии совпадает с цветовым кодом PDU для HTTP в Панели моделирования.

Почему для появления PDU для HTTP понадобилось так много времени? Из за полудуплексного режима сначала была передана PDU

типа TCP а только потом для HTTP e. Нажмите второй PDU для TCP в Event List (списке событий) для отображения сведений о PDU. Выберите вкладку Outbound PDU Details (Сведения об исходящем PDU) и перейдите к последнему разделу.

Как называется данный раздел?

TCP

Можно ли назвать такую связь надежной?

Да, поскольку протокол ТСР гарантирует что данные будут доставлены на устройство назначения в правильном порядке, без ошибок и без потерь

Запишите значения параметров SRC PORT (Порт Источника), DEST PORT SEQUENCE NUM (относительный (Порт Назначения), последовательный номер) и ACK NUM (номер подтверждения). src port - 1026 dest port - 80 seq num - 0 ack num - 0

f. Посмотрите на значение в поле Флаги, которое находится слева от поля WINDOW (Окно). Значения справа от «ь» представляют TCP-флаги, установленные для данного этапа обмена данными. Каждое из шести мест соответствует флагу. Наличие «1» в любом месте указывает на то, что флаг установлен. За один раз можно установить несколько флагов.

Место флага	h	5	4	3	2	1
Флаг	URG	ACK	PSH	RST	SYN	FIN

Какие TCP-флаги установлены в этом PDU?

- **g**. Закройте окно PDU. Нажимайте на кнопку Capture/Forward до тех пор, пока PDU не достигнет узла HTTP-Client.
- h. Нажмите на пятый конверт PDU для TCP и выберите вкладку Inbound PDU Details (Сведения о входящем PDU).

Чем отличаются значения портов, номера и флаги от значений в предыдущих PDU? порты источника и назначения поменялись местами, ack num имеет значение 1 установлены флаги SYN и ACK

i. Нажмите на первый PDU для HTTP в списке Event List, который HTTP-Client подготовил для отправки в MultiServer. Это начало сеанса связи по протоколу HTTP.

Какие данные теперь представлены в разделе ТСР?

src-1026 dst - 80 seq - 1 ack - 1 FLAGS: ACK+PSH

Чем отличаются значения портов, номера и флаги от значений, что были в предыдущих двух PDU?

Значение портов отличается от предыдущего PDU, seq и ack равны 1, добавился флаг psh j. Нажмите Reset Simulation (Сбросить моделирование).

Шаг 2. Изучите FTP-трафик, при котором клиент обменивается данными с сервером.

- а. Выберите в списке Event List Filters протоколы FTP и TCP.
- **b**. Откройте командную строку на рабочем столе клиента FTP. Создайте FTP-соединение, введя **ftp 192.168.1.254**.
- **c**. Нажмите на кнопку Capture/Forward. Нажмите на второй конверт PDU и откройте его.

Выберите вкладку Outbound PDU Details и перейдите вниз к разделу TCP.

Можно ли назвать такую связь надежной?

Да, поскольку протокол ТСР гарантирует что данные будут доставлены на устройство назначения в правильном порядке, без ошибок и без потерь

d. Запишите значения параметров Порт Источника, Порт Назначения, Относительный последовательный номер и Номер подтверждения.

SRC:1026 DST:21 SEQ:0 ACK: 0

Какие TCP-флаги установлены в этом PDU?

SYN

- **e**. Закройте окно PDU. Нажимайте на кнопку Capture/Forward до тех пор, пока PDU не достигнет узла FTP Client с флажком .
 - f. Нажмите на PDU и откройте вкладку Inbound PDU Details.

Чем отличаются значения портов, номера и флаги от значений, имевшихся ранее?

порты поменялись местами, seq = 0 ack = 1 flags:ACK SYN

g. Выберите вкладку Outbound PDU Details.

Чем отличаются значения портов, номера и флаги от значений в предыдущих PDU?

SRC:1026 DST:21 SEQ:1 ACK: 1 FLAGS: ACK

h. Закройте окно PDU. Нажимайте на кнопку Capture/Forward до тех

пор, пока вторая PDU не достигнет узла FTP Client. Единица PDU обозначена другим цветом.

i. Нажмите PDU и выберите вкладку Inbound PDU Details. Перейдите к разделу FTP.

Какое сообщение было получено от сервера?

Welcome to PT Ftp server

j. Нажмите Reset Simulation.

Шаг 3. Изучите DNS-трафик, при котором клиенты обмениваются данными с сервером.

- a. Выберите в списке Event List Filters протоколы DNS и UDP.
- **b**. Повторите действия, описанные в части 1, чтобы создать DNS-трафик.
 - **с**. Щелкните конверт PDU и откройте его.
 - **d**. Посмотрите детали модели OSI для исходящего PDU.

Можно ли назвать такую связь надежной?

Het, т.к UDP не предоставляет никаких механизмов для проверки ошибок, управления потоком или повторной передачи сегментов

e. Выберите вкладку Outbound PDU Details. Перейдите к разделу UDP. Запишите значения параметров Порт Источника и Порт Назначения.

src: 1026 dst:53

Почему отсутствует порядковый номер и номер подтверждения?

Потому что UDP не нуждается в установлении надежного соединения

- **f**. Закройте окно PDU. Нажимайте на кнопку Capture/Forward до тех пор, пока PDU не достигнет узла DNS Client.
 - g. Нажмите конверт PDU и выберите вкладку Inbound PDU Details.

Чем отличаются значении портов от значений в предыдущем PDU? значения поменялись местами

THE THOMSTER MOST AND

Как называется последний раздел PDU?

DNS Answer

Каков IP-адрес для имени multiserver.ptu?

192.168.1.254

h. Нажмите Reset Simulation.

Шаг 4. Изучите трафик электронной почты, при котором клиент обменивается данными с сервером.

- а. Выберите в списке Event List Filters протоколы POP3, SMTP и TCP.
- **b**. Повторите действия, описанные в части 1, чтобы отправить электронное письмо на адрес user@multiserver.pt.ptu.
 - **с**. Выделите конверт PDU и откройте его.
- **d**. Выберите вкладку Outbound PDU Details и перейдите к последнему разделу.

Какой протокол транспортного уровня используется для передачи трафика электронной почты?

TCP

Да, поскольку протокол TCP гарантирует что данные будут доставлены на устройство назначения в правильном порядке, без ошибок и без потерь

e. Запишите значения параметров Порт Источника, Порт Назначения, Относительный последовательный номер и Номер подтверждения.

SRC:1026 DST:25 SEQ:0 ACK:0

Какие TCP-флаги установлены в этом PDU?

SYN

- **f**. Закройте окно PDU. Нажимайте на кнопку Capture/Forward до тех пор, пока PDU не достигнет узла E-mail Client с флажком.
 - g. Нажмите конверт TCP и выберите вкладку Inbound PDU Details.

Чем отличаются значения портов, номера и флаги от значений в предыдущем PDU?

значения портов поменялись местами, seq:0 ack:1 flags: ack, syn

h. Выберите вкладку Outbound PDU Details.

Чем отличаются значения портов, номера и флаги от значений в предыдущих двух PDU?

src:1026 dst:25 seq: 1 ack: 1 flags: ack

i. Выберите второй PDU другого цвета, который E-Mail Client подготовил для отправки в MultiServer. Это начало сеанса передачи электронной почты. Выберите вкладку Outbount PDU Details (Сведения об исходящей PDU).

Чем отличаются порты, номера и флаги от предыдущих двух результатов?

src 1026 dst: 25 seq:1 ack:1 flags: ack psh

Вопросы на закрепление

Какой протокол использует порт 25 протокола TCP? Какой протокол использует порт 110 протокола TCP?

SMTP - 25 POP3 - 110