ZARISKI CANCELLATION

PEDRO NÚÑEZ

ABSTRACT. Following [Hoc72] we provide an example of rings¹ B, C such that $B \ncong C$ but $B[t] \cong C[t]$, where t is an indeterminate. As a preparation for this counterexample we also study the notion of projective module and the hairy ball theorem.

CONTENTS

1.	Introduction	1
2.	Projective modules	2
References		3

-parts in gray will be omitted during the talk-

1. Introduction

Let R be a ring. We can form the polynomial ring R[t] in one variable t with coefficients in R. This construction is functorial, and hence

$$R \cong S \Rightarrow R[t] \cong S[t].$$

The goal of this talk is to show with an explicit counterexample due to Hochster [Hoc72] that the converse is not true.

In the process of constructing this counterexample we will come across a projective module which, as a consequence of the hairy ball theorem, is not a free module. Therefore we will discuss projective modules and the hairy ball theorem before jumping into the counterexample.

Date: 4th November 2020.

The author gratefully acknowledges support by the DFG-Graduiertenkolleg GK1821 "Cohomological Methods in Geometry" at the University of Freiburg.

2

2. Projective modules

Definition 2.1. Let C be a category. An object $P \in C$ is called *projective* if the following lifting problem can always be solved:

Lemma 2.2. Let \mathcal{A} be an abelian category and let $P \in \mathcal{A}$ be an object. The following are equivalent:

- (1) P is projective.
- (2) $\operatorname{Hom}_{\mathcal{A}}(P, -)$ is exact.
- (3) Every short exact sequence of the form

$$0 \to N \to M \to P \to 0$$

splits.

Proof. We start with $(1) \Rightarrow (2)$. Assume *P* is projective and consider a short exact sequence

$$0 \to A \to B \to C \to 0$$
.

Since $\operatorname{Hom}_{\mathcal{A}}(P,-)$ is always left exact, we only need to show that the induced map $\operatorname{Hom}_{\mathcal{A}}(P,B) \to \operatorname{Hom}_{\mathcal{A}}(P,C)$ is surjective. But $B \to C$ is an epimorphism, so this is precisely what P being projective means by definition.

Next we show (2) \Rightarrow (3). Assume $\operatorname{Hom}_{\mathcal{A}}(P,-)$ is exact and consider a short exact sequence

$$0 \to N \to M \to P \to 0$$
.

Applying $\operatorname{Hom}_{\mathcal{A}}(P,-)$ we get a surjection $\operatorname{Hom}_{\mathcal{A}}(P,M) \to \operatorname{Hom}_{\mathcal{A}}(P,P)$, and the identity on P comes then from the desired section $\sigma \colon P \to M$.

Let us check finally that $(3) \Rightarrow (1)$. We are given the following situation:

$$P \longrightarrow N$$

$$\downarrow^{\text{epi}}$$

All finite limits exist in \mathcal{A} , so we may consider the cartesian square

$$\begin{array}{ccc}
P \times_N M & \stackrel{g}{\longrightarrow} M \\
\downarrow f \downarrow & & \downarrow \text{epi} \\
P & \longrightarrow N
\end{array}$$

Epimorphisms are stable under pullback in abelian categories, so f is also an epimorphism. By assumption, we can find a section $\sigma \colon P \to P \times_N M$ splitting the corresponding short exact sequence. The composition $g \circ \sigma \colon P \to M$ is then the desired lift.

Let us look now at the abelian category of modules over a ring *R*. What does it mean for an *R*-module to be projective?

REFERENCES

[Hoc72] M. Hochster. Nonuniqueness of coefficient rings in a polynomial ring. *Proc. Amer. Math. Soc.*, 34:81–82, 1972. ↑ 1