Homework 6

Chandler Swift

February 28, 2019

- 20 Find two sets A and B such that $A \in B$ and $A \subset B$. $A = \emptyset, B = {\emptyset}$
- 24 Can you conclude that A=B if A and B are two sets with the same power set? Yes.
- 28 Show that if $A \subset C$ and $B \subset D$ then $A \times B \subset C \times D$.

Proof. Let $x \in A$ and $y \in B$. (If either A or B is empty, then their cartesian product is the empty set, which is trivially a subset of $C \times D$.) Then (x,y) is in $A \times B$. Also, because $A \subset C$ and $B \subset D$, we know that $x \in C$ and $y \in D$, and so $(x,y) \in C \times D$.

40 Show that $A \times B \neq B \times A$ when A and B are non empty and not equal.

Proof. Suppose A and B are non-empty inequal sets. Since A and B are not equal, one must contain an element the other does not. Without loss of generality, assume that A contains an element x that B does not. So for any element $y \in B$, the cartesian product $A \times B$ contains (x, y), whereas because x is not in B, the cartesian product $B \times A$ does not contain (x, y).

- 14 Find the sets A and B if $A-B=\{1,5,7,8\}, B-A=\{2,10\},$ and $A\cap B=\{3,6,9\}.$ $A=\{1,3,5,6,7,8,9\},$ $B=\{2,3,6,9,10\}$
- 26 Let A, B, and C be sets. Show that (A B) C = (A C) (B C).

Proof.
$$\Box$$

32 Can you conclude that A = B if A, B, and C are sets such that

a
$$A \cup C = B \cup C$$
?
No.

b
$$A \cap C = B \cap C?$$

No.
c $A \cup C = B \cup C$ and $A \cap C = B \cap C?$

44b Show that if A and B are sets, then $(A \oplus B) \oplus B = A$.

Proof. Suppose that A and B are sets, and x is an element.

$x \in A$	$x \in B$	$x \in A \oplus B$	$x \in (A \oplus B) \oplus B$	$x \in A = x \in (A \oplus B) \oplus B.$
1	1	0	1	1
1	0	1	1	1
0	1	1	0	1
0	0	0	0	1

In all cases, $x \in A = x \in (A \oplus B) \oplus B$, so $(A \oplus B) \oplus B = A$.

46 Determine whether the symmetric difference is associative; that is, if A, B, and C are sets, does it follow that $A \oplus (B \oplus C) = (A \oplus B) \oplus C$? Yes, the symmetric difference is associative.