Development Status of Compact X-band Synthetic Aperture Radar Compatible with a100kg-class SAR Satellite and Its Future Plan

Hirobumi Saito

Japan Aerospace Exploration Agency (JAXA),
Institute of Space and Astronautical Science (ISAS)

Outline

- 1. Mission of Small SAR for Small Satellite (2015-2018, Japanese Cabinet Office Program "ImPACT")
- 2. Strategy of Small SAR Satellite
- 3. Engineering Model of Small SAR
 - 3.1 SAR Antenna RF Test
 - 3.2 SAR Antenna Mechanical/Thermal Test
 - 3.3 1kW GaN X-band Power Amplifier
 - 3.4 High Speed Down Link (1.5-3Gbps)
- 4. Future Plan

1 Mission of Small SAR Satellite

Proposed 100kg class SAR Satellite

NovaSAR-S 400kg Resolution 6m 300kg Resolution 1m

Proposed MicroXSAR satellite mass < 130kg stowed 0.73m

Resolution

10-3 m (constellation for commercial)

1m @300km (responsive mission)

Target cost < \$6M **⟨**□ **<**\$20M

RadarSat-2

1 Mission of Small SAR Satellite

SAR System Specification for 130kg Satellite Ground Resolution = 3 -10m @600km 1m @300km(short life)

Item	SAR Mode	
	Strip Map	Sliding Spot Light
Altitude	600km	300km
Resolution	3m	1 m
Center Frequency	9.65GHz	
Swath	25 km	10 km
Chirp Band Width	75MHz	300MHz
Polarization	V/V	
Antenna Size	4.9 m×0.7 m	
Ant Panel Efficiency	50%	
TX Peak Power	1000∼1100 W	
TX Duty	25%	
System Loss	3.5 dB	
System Noise Figure	4.3 dB	
Off Nadir Angle	15∼45 deg	
Pulse Repitition Frequency	3000 ~	8000 (TBD) Hz
NESZ (beam center)	-15dB	-22dB
Ambiguity (beam center)	>15dB	

2 Strategy of Small SAR Satellite

SAR System Block & Technology Strategy

Rectangular Honeycomb Panel, Slot Array Antenna with Waveguide Feeder

Noncontact RF Feed with Choke Flange

at Hinge Position

- Waveguide Feeds RF to Deployable Antenna Panel
- Choke & Cover Flange at Hinge Position
- Low RF Loss (<0.1dB) with Gap 1-2mm

Engineering Model of One Wing-Antenna (4 Panels 2.8m x 0.7m)

Panel #0

Panel #1

Panel #2

Panel #3

3.1 SAR Antenna RF Test One Wing (4 Panels) Near Field Measurement

at A-Metlab/Kyoto Univ

Aperture Distribution (Amp/Phase)

- -Nearly uniform amplitude/phase Distribution
- -Far field pattern of cross range is as expected

Measured Directivity Gains of Antenna Wing

Directivities of 2 panels, 3 panels and 4 panel increase by 3dB(x2), 4.7dB(x3), 6dB(x4)

3.2 SAR Antenna Mechanical/Thermal Test

Antenna Mechanical Tests

Vibration test

Acoustic test

Antenna surface measurement by photogrammetry.

surface
repeatability
< 0.4mm rms
before/after
vibration test

satellite in acoustic chamber

3.2 SAR Antenna Mechanical/Thermal Test

Antenna/Solar-Cell on Same Panels

Front: Antenna Surface
Thermal deformation
< 0.7mm rms λ/40

Rear: Solar-Cell Panel
Solar-Cell 120°C on MLI

Flexible Solar Sheet

MLI

Thermal Design Tant =0-60°C Trear-Tfront<10°C

thermal vacuum test

Thermo-Deformation Design

deformation measurement in air

on-orbit deformation analysis 12

3.3 1kW GaN X-band Power Amplifier

1kW X-band Amplifier

3.4 High Speed Down Link

Test Model under development 3.5Gbps X-band Down link

Test Model of Transmitter, 64/256APSK, 2 Channel

Modulation	QPSK~256APSK	
Polarization	RHCP/LHCP 2ch	
Bit rate	max 3.5Gbps/2ch	
Protcol	DVB-S2X	
Error Correction	LDPC	
RF Output	1W/ch	
DC Power	60W(TBD)	
Size	200×200×200	
Weight	7kg(TBD)	
Others	Deep Space Band Filter	

Received Constellation w/o RF DVB-S2X, 64APSK(5/6), 1.75Gbps

1symbol represents 6 bits.

Dual Polarization Antenna Gain 17dBi

XPD >33dB

4 Future Plan

Post "ImPACT"

Conclusions

- 1. Now in EM phase of small SAR for 130kg satellite. (Japanese Cabinet Office Program "ImPACT", 2015-2018)
- 2. EM development/test results (preliminary) deployable panel slot array antenna
 - + non-contact waveguide feeding,
 - 1kW X-band power amplifier
 - 1.5-3Gbps X-band transmitter
- 3. Future plan (Post "ImPACT")
 - Demonstration Flight
 - Constellation for Civil/Commercial
 - & On-demand SAR SAT for Japanese Gov.

Acknowledgement

 This work is funded by ImPACT Program of Council for Science, technology and Innovation (Cabinet Office, Government of Japan)