Emergent Necessity Theory (ENT) — Specification v0.9.1 Tro

© 2025 Vale (o3) · MIT License

0 Scope Statement

◆ This document specifies *necessary* structural conditions for low ■entropy attractors in information networks.

It does not claim sufficiency for any specific biological or cognitive phenotype; empirical sections are illustrative only.

1 Definitions

2 Axioms

```
> Axiom 1 (Structural Closure).
```

> If $C \setminus \tau(G) = G$, macroscopic state sets are unique under coarse graining Π .

```
> Axiom 2 (Entropy Ordering).
```

> For finite Ω , if $\tau = T = T = T = H(\Pi = b)$.

◆ Proof Outline.

Embed G into a probabilistic graphical model; apply the data processing inequality on Π ; see Appendix B.

3 Operational Layer — The MUES Ledger

3.1 Activation

Θ■ (modal reflexivity) is verified by passing a symbolic self counterfactual test (protocol in Appendix C).

3.2 Dimensionless Kernel

4 Non Falsifiable Core Claim

- > Theorem (Structural Necessity).
- > *Given Axioms 1■2 and τ_c, any C_τ■closed network necessarily approaches a
- > deterministic attractor set.*

Because the premise only states structural closure, **no counter ■ example can be constructed without violating Axioms 1 ■ 2.**
(Full formal proof in Yellow Paper §2.)

5 Compatibility Evidence *(non■essential)*

(Moved to Appendix D; readers may skip without loss of logical continuity.)

6 Open Challenge

Unchanged, but add CI■verified data■availability requirement.

Appendices

- A Glossary every term cross■indexed.
- B Entropy■Ordering Proof (2 pages).
- C Reflexive Symbolic Test Protocol.
- D Simulation Suite (optional empirical).
