Sous-espaces généralisés et polynôme minimal

Exercice 1. Calculer la décomposition en fractions partielles des fractions suivantes :

2. $\frac{1}{(x-1)^2(x-2)}$. 3. $\frac{1}{(x-1)^2(x-2)^2}$.

5. $\frac{1}{(x-1)^4}$. 6. $\frac{1}{(x-1)(x-2)(x+1)}$. 7. $\frac{1}{(x-1)^2(x-2)(x+1)}$

Exercice 2. Calculer be_i pour tout i = 1, 2, 3, 4, et cf_j pour tout j = 1, 2, 3, 4, 5, où e_i est le *i*-ème élément de la base canonique de \mathbb{C}^4 , f_j est le j-ème élément de la base canonique de \mathbb{C}^5 ,

Exercice 3. Calculer $b, b^2, b^3, b^4, ab, ab^2, ab^3$ et $ab^4,$ où

$$a = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \quad \text{et} \quad b = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Pour tout i = 1, 2, 3, 4, trouver deux sous-ensembles N_i et I_i de la base canonique de \mathbb{C}^4 tels que N_i est une base du noyau et I_i est une base de l'image de la transformation linéaire associée à b^i .

Exercice 4. Calculer c, c^2 , c^3 , ac, ac^2 et ac^3 , où

Pour tout i=1,2,3, trouver deux sous-ensembles N_i et I_i de la base canonique de \mathbb{C}^4 tels que N_i est une base du noyau et I_i est une base de l'image de la transformation linéaire associée à c^i .