Working with Unlabeled Data – Cluster Analysis

Find the best number of clusters with k_means and agglomerative clustering

Overview

- 1. Load the data file
 - check the shape and plot the content
- 2. Observe the pair plot and comment the shapes in view of clustering
 - A. if necessary, transform the data
- 3. Use the elbow method to find the optimal number of clusters, to do this test with varying number of clusters, from 2 to 10: for each value of k
 - fit the data
 - compute the inertia and the silhouette score
 - store them for plot
- 4. Plot inertia and silhouette score versus k
- 5. Choose the optimal number of clusters looking at the plots
- 6. Cluster the data using the optimal number, plot the cluster assignment
 - in the plot choose the features that seem to be most promising
- 7. For comparison, repeat the same operation with the AgglomerativeClustering

1. Load the data file

Check the shape and plot the content

```
In [ ]: X_url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/00292/WholesaleS
Out[ ]: (440, 8)
In [ ]:
```

Out[

]:		Channel	Region	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delicassen
	0	2	3	12669	9656	7561	214	2674	1338
	1	2	3	7057	9810	9568	1762	3293	1776
	2	2	3	6353	8808	7684	2405	3516	7844
	3	1	3	13265	1196	4221	6404	507	1788
	4	2	3	22615	5410	7198	3915	1777	5185

2. Observe the data distributions

In []:

We observe that the distributions of values are definitely *skewed*: in the columns from Fresh to Delicassen the values are highly concentrated on the right, but there are always outliers, frequently in a very large range.

Clustering is more effective in absence of outliers and with all the variables distributed in similar ranges, for this reason, we will execute two transformations:

- 1. transform all the variables from the column Fresh to the column Delicassen computing the *square root*
- 2. remap all the variables in the range 0:1

```
In [ ]: # square root transformation - the first two columns are not transformed
    from math import sqrt

# remap on the 0:1 range with MinMaxScaler
    from sklearn.preprocessing import MinMaxScaler
```

Out[]:		Channel	Region	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delicassen
	0	1.0	1.0	0.332649	0.344530	0.281385	0.039835	0.249488	0.160416
	1	1.0	1.0	0.246952	0.347490	0.317250	0.152973	0.277812	0.186029
	2	1.0	1.0	0.234044	0.327791	0.283711	0.182200	0.287352	0.399740
	3	0.0	1.0	0.340505	0.103027	0.208796	0.310384	0.103755	0.186684
	4	1.0	1.0	0.446188	0.250813	0.274408	0.238171	0.201784	0.323509

Show the result of the transformation

In []:

Now the effect of outliers is reduced, and we compute the clustering

3. Use the elbow method to find the optimal number of clusters

Test KMeans with varying number of clusters, from 2 to 10

Prepare the results list that will contain pairs of inertia and silhouette_score for each value of k , then, for each value of k

- initialize an estimator for KMeans
- fit the data and predict the cluster assignment for each individual with fit and predict
- the **inertia** is provided in the attribute <code>inertia_</code> of the fitted model
- compute the **silhouette score** using the function silhouette_score from sklearn.metrics using as arguments the data and the fitted labels, we will fill the variable silhouette_scores
- store the two values above in the list created at the beginning

k_range = list(range(2,11)) # set the range of k values to test

4. Plot inertia and silhouette score versus k

5. Cluster with the optimal number

The two *elbow* points of inertia would suggest as cluster number 3 or 4, slightly more pronounced in 3. Silhouette has a maximum on 4, but the increase with respect to 3 is very small.

We will choose k=3

```
In [ ]:
    Number of clusters = 3 - Distortion = 58.00 - Silhouette score = 0.55
In [ ]:
```


Comments

The **silhouette score** ranges from **-1** (worst) to **1** (best); as a rule of thumb, a value greater than **0.5** should be considered acceptable.

Agglomerative clustering

We will try a grid of parameter configurations, with the number of clusters in the range 2:10 and the four linkage methods available in the *sklearn* implementation of *AgglomerativeClustering*.

In []:	fro	om sklea	rn.cluster	import Agglome
In []:				
Out[]:		linkage	n_clusters	silhouette_score
	22	average	6	0.555314
	2	ward	4	0.553519
	1	ward	3	0.552275
	23	average	7	0.550038
	24	average	8	0.545323
In []:				
In []:				

The top five results have a very similar silhouette score, we will choose the setting with 3 clusters, as for k-means, and the linkage giving the best result with 3 clustes, that is ward. This is the result record with index 1 (the record index is the unnamed column at the very left of the dataframe output

```
In []:

linkage n_clusters silhouette_score linkage_enc
1 ward 3 0.552275 3.0

In []:

Show the distribution of data in the three clusters

In []:
```


In []:

Comments

The solution with the Agglomerative Clustering in this case provides a result very similar to that of kmeans.

It is interesting to compare more deeply the results of the two clustering models.

The function pair_confusion_matrix computes the number of pairs of objects that are in the same clusters or in different clusters in two different clustering schemes.

The result is given in a 2x2 matrix, the perfect match is when only the numbers in the main diagonal are non zero.

We present here the results normalized to 1

The percentage of match between the two clustering schemes is 99.69%

Control questions

- 1. Repeat the experiments without the data transformations and comment the result
- 2. Repeat the final fittings with the numbers of clusters immediately before and after the chosen values and comment the results