9.5 Homework Questions:
· Find the equation of a plane
containing the point $(-1,-3,-2)$
and the rive of intersection of
the planes: $-x + 2y + 2z = -17$ $-x - 2y + z = -4$
Solution:
let $\vec{n}_i = \langle -1, 2, 2 \rangle$ and
$\vec{N}_{z} = \langle -1, -2, 1 \rangle.$
[Normal vectors to the planes []]
Notice the following: Vectors orthogonal to ni one on
plane ()
· vectors orthogonal to no are on
plane 2
=> rectors or thogonal to both mi and mi and mi are on both (1) and (2)!
The are on both with the

- This is precisely the intersection of the planes. $\vec{\eta}_1 \times \vec{\eta}_2 = \cdots = \langle 6, -1, 4 \rangle$ o let's find a point on the intersection (ine. let X=0. $-4+2y+27=-17 \rightarrow 2y+27=-17$ -x-2y+2=432 = - 13 => z = -13/3-D 24 + 2(-13/3) = -17 $-0 \quad 2\gamma - \frac{26}{3} = -17 = 2\gamma = \frac{-25}{3}$ $\Rightarrow \gamma = \frac{-25}{6}$ $\frac{1}{2}\left(\Theta\right)^{-25/6},\frac{-13/3}{3}$ is a point on the

· Vector convecting (0, -25/6, -13/3) and (-1, -3, -2): $\langle -1-0 \rangle -3 + \frac{25}{6} \rangle -2 + \frac{3}{3} \rangle$ $=\langle -|, \frac{7}{6}, \frac{\pm}{3} \rangle$ s rector orthogonal to $2-1,\frac{2}{5},\frac{3}{5}$ and 26,-1,4-10 $(-1, \frac{7}{6}, \frac{7}{3}) \times (6, -1, 4)$ = ... (cross prod.) ... = <7,18,-6> = > 7(x+i) + 18(y+3) - 6(z+2) = 0is the equation of the plane containing the intersection (me and

the point (-1,-3,-2).