It is often used for test purposes because of its ill-conditioned nature. Define $b_i =$ $\sum_{i=1}^{n} a_{ij}$. Then the solution of the system of equations $\sum_{i=1}^{n} a_{ij} x_i = b_i$ for $1 \le i \le n$ is $x = [1, 1, ..., 1]^T$. Verify this. Select some values of n in the range $2 \le n \le 15$, solve

^a4. The **Hilbert matrix** of order n is defined by $a_{ij} = (i + j - 1)^{-1}$ for $1 \le i, j \le n$.

the system of equations for x using procedures *Gauss* and *Solve*, and see whether the

result is as predicted. Do the case n=2 by hand to see what difficulties occur in the

computer.