FONCTIONS EXPONENTIELLES EN TERMINALE ES ET L

1. FONCTIONS EXPONENTIELLES DE BASE Q

THÉORÈME ET DÉFINITION

Soit q un réel strictement positif.

Il existe une unique fonction f définie et dérivable sur $\mathbb R$ telle que :

- pour tout entier $n \in \mathbb{Z}$, $f(n) = q^n$
- pour tous réels x et y: $f(x+y) = f(x) \times f(y)$ (relation fonctionnelle)

Cette fonction s'appelle fonction **exponentielle de base** q et on note $f(x) = q^x$

REMARQUES

- D'après la première propriété et les formules vues au collège, on a notamment : $q^1=q$, $q^0=1$, $q^{-1}=\frac{1}{q}$
- Avec la notation exponentielle, la seconde propriété (relation fonctionnelle) s'écrit : $q^{x+y} = q^x \times q^y$.

A partir de cette propriété on montre également que pour tout q > 0 et tous réels x et y:

$$q^{x-y} = \frac{q^x}{q^y}$$
 (en particulier $q^{-y} = \frac{1}{q^y}$)

$$[q^x]^y = q^{xy}$$

ce qui généralise les propriétés vues au collège.

• La courbe de la fonction $x \mapsto q^n$ s'obtient en reliant les points de coordonnées (n, q^n) . Pour $n \ge 0$ ces points représentent la suite géométrique de premier terme $u_0 = 1$ et de raison q.

Fonction exponentielle de base q = 1,4 (les points correspondent à la suite géométrique $u_0 = 1$ et q = 1.4)

PROPRIÉTÉ

Pour tout réel x et tout réel q > 0, q^x est **strictement positif**.

PROPRIÉTÉ

- Pour q > 1, la fonction $x \mapsto q^x$ est strictement croissante sur $\mathbb R$
- Pour 0 < q < 1, la fonction $x \mapsto q^x$ est strictement décroissante sur $\mathbb R$

Fonction exponentielle de base q > 1

Fonction exponentielle de base 0 < q < 1

REMARQUE

Pour q = 1, la fonction $x \mapsto q^x$ est constante et égale à 1. Sa courbe représentative est une droite parallèle à l'axe des abscisses.

2. FONCTION EXPONENTIELLE (DE BASE E)

THÉORÈME ET DÉFINITION

Il existe une valeur de q pour laquelle la fonction $f: x \mapsto q^x$ vérifie f'(0) = 1.

Cette valeur est notée e.

La fonction $x \mapsto e^x$ (parfois notée exp) est appelée **fonction exponentielle**.

REMARQUE

Le nombre e est approximativement égal à 2,71828 (on l'obtient à la calculatrice en faisant e^1 ou $\exp(1)$.

PROPRIÉTÉ

La fonction exponentielle est **strictement positive** et **strictement croissante** et sur \mathbb{R} .

DÉMONSTRATION

Cela résulte du fait que e > 1 et des résultats de la section précédente.

Fonction exponentielle de base e

REMARQUE

La stricte croissance de la fonction exponentielle entraı̂ne que :

$$x < y \Leftrightarrow e^x < e^y$$

Cette propriété est fréquemment utilisée dans les exercices (inéquations notamment).

THÉORÈME (DÉRIVÉE DE LA FONCTION EXPONENTIELLE

La fonction exponentielle est égale à sa dérivée.

Autrement dit, pour tout $x \in \mathbb{R}$: $\exp'(x) = \exp(x)$

DÉMONSTRATION

Le taux d'accroissement de la fonction exponentielle sur l'intervalle [x; x + h] est égal à :

$$T = \frac{e^{x+h} - e^x}{h} = \frac{e^x \times e^h - e^x}{h} = e^x \times \frac{e^h - 1}{h}$$

Par définition du nombre dérivé, le quotient $\frac{e^h-1}{h}$ tend vers $\exp'(0)=1$ quand h tend vers 0, donc T tend vers e^x quand h tend vers 0.

PROPRIÉTÉ

Soit u une fonction dérivable sur un intervalle I.

Alors la fonction $f: x \mapsto e^{u(x)}$ est dérivable sur I et :

$$f'(x) = u'(x) e^{u(x)}$$

EXEMPLE

Soit f définie sur \mathbb{R} par $f(x) = e^{-x}$

f est dérivable sur \mathbb{R} et $f'(x) = -e^{-x}$ (on pose u(x) = -x donc u'(x) = -1)