Diffusion-Based Voice Conversion with **FAST** Maximum Likelihood Sampling Scheme

ICLR 2022

Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, Mikhail Sergeevich Kudinov, Jiansheng Wei

Why Use Diffusion Models?

- More Stable than GAN
- Higher Quality than VAE
- Easier to Design than Flow Models

But **Slower** than Them

Diffusion Steps

CIFAR10 (32 × 32)				CelebA (64×64)					
10	20	50	100	1000	10	20	50	100	1000
367.43	133.37	32.72	9.99	3.17	299.71	183.83	71.71	45.20	3.26

CIFAR10 and CelebA image generation measured in FID.

Image source: Song et al., 2020

Propose a **FAST** Sampling Scheme

+

Average Voice Encoder

= SOTA Any to Any VC

Forward Diffusion (Training)

Use variational lower bound

Reverse Diffusion (Inference)

Forward Diffusion

Use variational lower bound

Mix X_0 with noise to get X_t , and train the model to estimate noise.

Reverse the diffusion process and sampling from it, you can generate real samples from Gaussian noise.

Use variational lower bound

Reverse Diffusion (Inference)

Voice Conversion Diffusion Model

Average Voice Encoder

Average Voice 2. Calculate the average Mel feature for each phoneme across the whole LibriTTS dataset.

Average Voice Encoder

Forward Diffusion

Forward Diffusion: Sample X_t

$$X_{t} = \gamma_{0,t} X_{0} + (1 - \gamma_{0,t}) \overline{X} + \nabla \log p_{t|0} (X_{t}|X_{0}) \sqrt{1 - \gamma_{0,t}^{2}}$$

$$\nabla \log p_{t|0}(X_t|X_0) \sim \mathcal{N}(0,I)$$

$$\gamma_{s,t} = e^{-\frac{1}{2} \int_{s}^{t} \beta_{u} du}$$

$$\beta_t = \beta_0 + t(\beta_1 - \beta_0)$$
Hyper parameters

Forward Diffusion: Loss

Reverse Diffusion: Euler-Maruyama

$$\widehat{X}_{t-h} = \widehat{X}_t + \widehat{\sigma}_{t,h} \nabla \log p_{t|0}(X_t|X_0) + \beta_t h \left(\frac{1}{2} \right) (\widehat{X}_t - \overline{X}) + (1)$$
step size

$$)s_{\theta}(X_t, \bar{X}, g_t(Y), t)$$

By Theorem 1.

$$\begin{split} \widehat{\chi}_{t-h} & \qquad \widehat{\sigma}_{t,h} = \sigma_{t,h}^*, \, \widehat{\omega}_{t,h} = \omega_{t,h}^*, \, \hat{\kappa}_{t,h} = \kappa_{t,h}^* \\ &= \widehat{\chi}_t + \widehat{\sigma}_{t,h} \nabla \log p_{t|0}(X_t|X_0) \\ &+ \beta_t h \left(\left(\frac{1}{2} + \widehat{\omega}_{t,h} \right) (\widehat{\chi}_t - \overline{\chi}) + (1 + \hat{\kappa}_{t,h}) s_{\theta}(X_t, \overline{\chi}, g_t(Y), t) \right) \\ &\text{step Size} \end{split}$$

By Theorem 1.

$$\hat{\sigma}_{t,h} = \sigma_{t,h}^*$$
, $\hat{\omega}_{t,h} = \omega_{t,h}^*$, $\hat{\kappa}_{t,h} = \kappa_{t,h}^*$

$$\kappa_{t,h}^* = \frac{\nu_{t-h,t}(1-\gamma_{0,t}^2)}{\gamma_{0,t}\beta_t h} - 1, \quad \omega_{t,h}^* = \frac{\mu_{t-h,t}-1}{\beta_t h} + \frac{1+\kappa_{t,h}^*}{1-\gamma_{0,t}^2} - \frac{1}{2},$$
$$(\sigma_{t,h}^*)^2 = \sigma_{t-h,t}^2 + \frac{1}{n}\nu_{t-h,t}^2 \mathbb{E}_{X_t} \left[\text{Tr} \left(\text{Var} \left(X_0 | X_t \right) \right) \right],$$

Converted Voice \hat{X}_0

$$\mu_{s,t} = \gamma_{s,t} \frac{1 - \gamma_{0,s}^2}{1 - \gamma_{0,t}^2}, \quad \nu_{s,t} = \gamma_{0,s} \frac{1 - \gamma_{s,t}^2}{1 - \gamma_{0,t}^2}, \quad \sigma_{s,t}^2 = \frac{(1 - \gamma_{0,s}^2)(1 - \gamma_{s,t}^2)}{1 - \gamma_{0,t}^2},$$

$$\kappa_{t,h}^* = \frac{\nu_{t-h,t}(1-\gamma_{0,t}^2)}{\gamma_{0,t}\beta_t h} - 1, \quad \omega_{t,h}^* = \frac{\mu_{t-h,t}-1}{\beta_t h} + \frac{1+\kappa_{t,h}^*}{1-\gamma_{0,t}^2} - \frac{1}{2},$$

$$(\sigma_{t,h}^*)^2 = \sigma_{t-h,t}^2 + \frac{1}{n} \nu_{t-h,t}^2 \mathbb{E}_{X_t} \left[\text{Tr} \left(\text{Var} \left(X_0 | X_t \right) \right) \right],$$
 Without in source code?

Decoder = SDE-ML Solver

$$d\hat{X}_t = \left(\frac{1}{2}(\bar{X} - \hat{X}_t) - s_{\theta}(\hat{X}_t, \bar{X}, g_t(Y), t)\right) \beta_t dt + \sqrt{\beta_t} d\overline{W}_t$$
Starting from $\hat{X}_1 \sim \mathcal{N}(\bar{X}, I)$

$$\begin{split} \widehat{X}_{1} &\sim \mathcal{N}(\bar{X}, \mathbf{I}) \\ \textbf{for } i &= 0 \textbf{ to } N - 1 \textbf{ do} \\ t &\leftarrow i \times h \\ X'_{t-h} &\leftarrow \widehat{X}_{t} + \beta_{t} h \left(\left(\frac{1}{2} + \widehat{\omega}_{t,h} \right) \left(\widehat{X}_{t} - \bar{X} \right) + (1 + \widehat{\kappa}_{t,h}) s_{\theta}(X_{t}, \bar{X}, g_{t}(Y), t) \right) \\ \nabla \log p_{t|0}(X_{t}|X_{0}) &\sim \mathcal{N}(0, I) \\ \widehat{X}_{t-h} &\leftarrow X'_{t-h} + \widehat{\sigma}_{t,h} \nabla \log p_{t|0}(X_{t}|X_{0}) \\ \textbf{return } \widehat{X}_{0} \end{split}$$

Speaker Conditional Analysis

Input types for speaker conditioning $g_t(Y)$ compared in terms of speaker similarity.

	Diff-LibriTTS			Diff-VCTK		
	d-only	wodyn	whole	d-only	wodyn	whole
Most similar	27.0%	38.0%	34.1%	27.2%	46.7 %	23.6%
Least similar	28.9 %	29.3%	38.5%	25.3%	23.9 %	48.6%

- d-only: $Y = \text{target Mel-spectrogram } Y_0$
- wodyn: Y = Noisy target Mel-spectrogram Y_t
- whole: $Y = \{Y_t, Y_{0.5/15}, Y_{1.5/15}, ..., Y_{14.5/15}\}$, channel = 16

	VCTK test (9 spe	eakers, 54 pairs)	Whole test (25 speakers, 350 pairs)					
	Naturalness	Similarity	Naturalness	Similarity				
AGAIN-VC	1.98 ± 0.05	1.97 ± 0.08	1.87 ± 0.03	1.75 ± 0.04				
FragmentVC	2.20 ± 0.06	2.45 ± 0.09	1.91 ± 0.03	1.93 ± 0.04				
VQMIVC	2.89 ± 0.06	2.60 ± 0.10	2.48 ± 0.04	1.95 ± 0.04				
<i>Diff-VCTK-ML-6</i>	3.73 ± 0.06	3.47 ± 0.09	3.39 ± 0.04	2.69 ± 0.05				
Diff-VCTK-ML-30	3.73 ± 0.06	3.57 ± 0.09	3.44 ± 0.04	2.71 ± 0.05				
Ground truth	4.55 ± 0.05	4.52 ± 0.07	4.55 ± 0.05	4.52 ± 0.07				
		<u> </u>	<u> </u>					

Conv Auto Encoder Attention-based Vector Quantization

Train on VCTK, **100** speakers

All subjective human evaluation was carried out on Amazon Mechanical Turk.

	VCTK test (9 spe	eakers, 54 pairs)	Whole test (25 speakers, 350 pairs)				
	Naturalness	Similarity	Naturalness	Similarity			
AGAIN-VC	1.98 ± 0.05	1.97 ± 0.08	1.87 ± 0.03	1.75 ± 0.04			
FragmentVC	2.20 ± 0.06	2.45 ± 0.09	1.91 ± 0.03	1.93 ± 0.04			
VQMIVC	2.89 ± 0.06	2.60 ± 0.10	2.48 ± 0.04	1.95 ± 0.04			
<i>Diff-VCTK-ML-6</i>	3.73 ± 0.06	3.47 ± 0.09	3.39 ± 0.04	2.69 ± 0.05			
Diff-VCTK-ML-30	3.73 ± 0.06	3.57 ± 0.09	3.44 ± 0.04	2.71 ± 0.05			
Ground truth	4.55 ± 0.05	4.52 ± 0.07	4.55 ± 0.05	4.52 ± 0.07			

Conv Auto Encoder Attention-based Vector Quantization

Real-Time Factor on GPU (unknow model)

- 6 step: around **0.1**
- 30 step: around 0.5

Train on LibriTTS approximately **1100** speakers.

	VCTK test (9 spe	akers, 54 pairs)	Whole test (25 speakers, 350 pairs)		
	Naturalness	Similarity	Naturalness	Similarity	
Diff-LibriTTS-EM-6	1.68 ± 0.06	1.53 ± 0.07	1.57 ± 0.02	1.47 ± 0.03	
Diff-LibriTTS-PF-6	3.11 ± 0.07	2.58 ± 0.11	2.99 ± 0.03	2.50 ± 0.04	
Diff-LibriTTS-ML-6	3.84 ± 0.08	3.08 ± 0.11	3.80 ± 0.03	3.27 ± 0.05	
Diff-LibriTTS-ML-30	3.96 ± 0.08	3.23 ± 0.11	4.02 ± 0.03	3.39 ± 0.05	
BNE-PPG-VC	3.95 ± 0.08	3.27 ± 0.12	3.83 ± 0.03	3.03 ± 0.05	

BEN-PPG-VC: combining a bottleneck feature extractor obtained from a phoneme recognizer with a seq2seq-based synthesis module.

The proposed maximum likelihood (ML) sampling scheme over other sampling methods for a small number of inference steps.

	VCTK test (9 spe	akers, 54 pairs)	Whole test (25 speakers, 350 pairs)		
	Naturalness	Similarity	Naturalness	Similarity	
Diff-LibriTTS-EM-6	1.68 ± 0.06	1.53 ± 0.07	1.57 ± 0.02	1.47 ± 0.03	
Diff-LibriTTS-PF-6	3.11 ± 0.07	2.58 ± 0.11	2.99 ± 0.03	2.50 ± 0.04	
Diff-LibriTTS-ML-6	3.84 ± 0.08	3.08 ± 0.11	3.80 ± 0.03	3.27 ± 0.05	
Diff-LibriTTS-ML-30	3.96 ± 0.08	3.23 ± 0.11	4.02 ± 0.03	3.39 ± 0.05	
BNE-PPG-VC	3.95 ± 0.08	3.27 ± 0.12	3.83 ± 0.03	3.03 ± 0.05	

BEN-PPG-VC: combining a bottleneck feature extractor obtained from a phoneme recognizer with a seq2seq-based synthesis module.

Maximum Likelihood Sampling

Euler-Maruyama

Probability Flow

Maximum Likelihood

CIFAR-10 images randomly sampled from VP DPM by running **10 reverse diffusion steps**.

- Average Voice Encoder

 a new disentanglement method.
- Diffusion-based Decoder achieve good results both in terms of similarity and naturalness.
- Novel Sampling Scheme
 High-quality results in just a few steps.