Análisis Matemático II

Tema 2

Límites y continuidad en <u>funciones de varias variables</u>

Autor: Víctor Gayoso Martínez

Curso: 2024-2025

Versión: 1.0

Centro Universitario U-tad

Doble Grado en Matemática Computacional e Ingeniería del Software

Índice

1	Lím	ite de funciones reales de dos variables	1
	1.1	Concepto de límite de funciones reales de dos variables	1
	1.2	Cálculo del límite según un subconjunto	1
	1.3	Cálculo de los límites reiterados, iterados o sucesivos	2
	1.4	Cálculo del límite utilizando coordenadas polares	3
	1.5	Cálculo de límites mediante infinitésimos	3
2	Lím	ite de funciones vectoriales	4
3	Con	tinuidad de funciones reales de variable vectorial	4
	3.1	Continuidad en un valor	4
	3.2	Continuidad en un subconjunto	4
	3.3	Propiedades de las funciones continuas	4
4	Con	tinuidad de funciones vectoriales de variable vectorial	5
	4.1	Continuidad en un valor	5
	4.2	Continuidad en un subconjunto	5
_	D	Element.	_

1 Límite de funciones reales de dos variables

1.1 Concepto de límite de funciones reales de dos variables

Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ una función real de variable vectorial, y sean $\overline{a} = (x_0, y_0) \in \mathbb{R}^2$ y $L \in \mathbb{R}$. Se dice que L es el **límite** de f(x, y) en $\overline{a} = (x_0, y_0)$, y se escribe

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$$

cuando para todo $\epsilon > 0$ existe un $\delta > 0$ tal que, si

$$0 < ||(x,y) - (x_0,y_0)|| = \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$$

entonces $|f(x,y)-L|<\epsilon$.

Figura 1: Representación gráfica de un vector geométrico.

1.2 Cálculo del límite según un subconjunto

Sea $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ una función real de variable vectorial, y sean D un subconjunto de \mathbb{R}^2 , $\overline{a}=(x_0,y_0)\in D$ y $L\in\mathbb{R}$. Se dice que L es el límite de f(x,y) en $\overline{a}=(x_0,y_0)$ según el subconjunto D, y se escribe

$$\lim_{\substack{(x,y)\to(x_0,y_0)\\(x,y)\in D}} f(x,y) = L$$

cuando para todo $(x,y) \in D$ y $\epsilon > 0$, existe un $\delta > 0$ tal que, si

$$0 < \left\| (x, y) - (x_0, y_0) \right\| = \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta$$

entonces $|f(x,y) - L| < \epsilon$.

En el límite según un subconjunto, únicamente interesa el comportamiento de la función en los puntos de ese subconjunto.

Si los subconjuntos son rectas que pasan por el punto $\overline{a}=(x_0,y_0)$, es decir, de la forma

$$D = \{(x, y) \in \mathbb{R}^2 \mid y - y_0 = m(x - x_0)\}\$$

entonces los límites se denominan límites direccionales.

Ejercicio 1

Calcula el límite de la función $f(x,y)=\frac{x^2}{x^2+y^2}$ en $(x_0,y_0)=(0,0)$ según la recta y=2x.

Ejercicio 2

Calcula los límites direccionales de la función $f(x,y) = \frac{xy}{x^2 + y^2}$ en $(x_0, y_0) = (0,0)$.

Existen otras posibilidades de límites según subconjuntos, por ejemplo según parábolas

$$D = \{(x, y) \in \mathbb{R}^2 \mid y - y_0 = m(x - x_0)^2\}$$

Ejercicio 3

Calcula el límite de la función $f(x,y)=\frac{x^2}{x^2+y^2}$ en $(x_0,y_0)=(0,0)$ según la curva $y=x^2$.

Teorema

Si existe el límite de una función $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ en $\overline{a}=(x_0,y_0)$, y dicho límite vale L, entonces existe el límite según cualquier subconjunto $D\in\mathbb{R}^2$ en \overline{a} , y dicho límite vale L.

Una consecuencia de este teorema es que, si según dos subconjuntos D_1 y D_2 los límites son dos valores L_1 y L_2 , siendo $L_1 \neq L_2$, entonces no existe el límite de la función f(x,y) en $\overline{a}=(x_0,y_0)$.

1.3 Cálculo de los límites reiterados, iterados o sucesivos

Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ una función real de variable vectorial, y sea $\overline{a} = (x_0, y_0)$. Los **límites reiterados**, **iterados** o **sucesivos** de f(x, y) en $\overline{a} = (x_0, y_0)$ se definen, si existen, de la forma

$$\lim_{x \to x_0} \left(\lim_{y \to y_0} f(x, y) \right) \quad \text{y} \quad \lim_{y \to y_0} \left(\lim_{x \to x_0} f(x, y) \right)$$

En los límites reiterados el objetivo es calcular el límite considerando una de las variables constante, realizando a continuación el límite en esa variable.

Ejercicio 4

Calcula los límites reiterados de $f(x,y)=rac{x^2+y^3}{x^2+y^2}$ en $(x_0,y_0)=(0,0)$.

Teorema

Si existe el límite de una función $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ en $\overline{a} = (x_0, y_0)$, y dicho límite vale L, entonces si existen los dos límites reiterados, su valor es L.

Sin embargo, es posible que no exista uno o los dos límites reiterados, pero que sin embargo sí que exista el límite de la función f(x,y) en $\overline{a}=(x_0,y_0)$. Igualmente, es posible que existan los dos límites reiterados, y que sean iguales, pero que sin embargo no exista el límite de la función.

Ejercicio 5

Calcula los límites reiterados de $f(x,y)=\frac{xy}{x^2+y^4}$ en $(x_0,y_0)=(0,0)$ y compara los resultados con el límite direccional.

1.4 Cálculo del límite utilizando coordenadas polares

A veces es más sencillo calcular los límites realizando un cambio a **coordenadas polares** con origen en el punto (x_0, y_0) , utilizando para ello las relaciones

$$x = x_0 + r\cos(\theta)$$
 $y = y_0 + r\sin(\theta)$

de manera que el cálculo del límite $\lim_{(x,y)\to(x_0,y_0)}f(x,y)$ pasa a ser $\lim_{r\to 0}F(r,\theta)$.

Si por ejemplo la función $F(r,\theta)$ es tal que verifica $F(r,\theta)=g(r)h(r,\theta)$, donde $\lim_{r\to 0}g(r)=0$ y la función $h(r,\theta)$ está acotada, entonces se puede asegurar que $\lim_{(x,y)\to(x_0,y_0)}f(x,y)=0$.

Ejercicio 6

Calcula el límite de $f(x,y)=rac{x^2y^2}{(x^2+y^2)^{3/2}}$ en (0,0) utilizando coordenadas polares.

1.5 Cálculo de límites mediante infinitésimos

Dada la función $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, se dice que $f(\overline{x})$ es infinitésimo en $\overline{a} = (x_0, y_0)$ si $\lim_{\overline{x} \to \overline{a}} f(\overline{x}) = 0$.

Dadas dos funciones $f(\overline{x})$ y $g(\overline{x})$ que sean infinitésimos en $\overline{x}=\overline{a}$, se dice que $f(\overline{x})$ y $g(\overline{x})$ son infinitésimos equivalentes en $\overline{x}=\overline{a}$ si

$$\lim_{\overline{x} \to \overline{a}} \frac{f(\overline{x})}{g(\overline{x})} = 1$$

En ese caso se afirma que $f(\overline{x}) \sim g(\overline{x})$ si $\overline{x} \to \overline{a}$, y se puede sustituir un infinitésimo por otro equivalente al calcular el límite de un producto o un cociente.

Ejercicio 7

Calcula el límite de $f(x,y)=\frac{x^3\sin(y^2-4)}{(y+2)\sin(x)}$ en $(x_0,y_0)=(0,-2)$ utilizando infinitésimos equivalentes.

2 Límite de funciones vectoriales

Dada la función vectorial $\overline{f}:\mathbb{R}^m\longrightarrow\mathbb{R}^n$, y el vector $\overline{a}\in\mathbb{R}^m$, el límite $\lim_{\overline{x}\to\overline{a}}\overline{f}(\overline{x})=\overline{L}$, donde el vector $\overline{L}=(l_1,l_2,\ldots,l_n)\in\mathbb{R}^n$, si y solo si $\lim_{\overline{x}\to\overline{a}}f_i(\overline{x})=l_i$ para $i=1,2,\ldots,n$.

Aunque el análisis del límite de una función vectorial se puede realizar utilizando la definición de límite, en la práctica se realiza componente a componente, reduciendo el problema a analizar el límite de las funciones escalares f_i componentes, donde $f_i : \mathbb{R}^m \longrightarrow \mathbb{R}$.

Ejercicio 8

Calcula el límite de $\overline{f}(x,y) = (x+y, x^2+1, y^3-3)$ en $(x_0, y_0) = (1,1)$.

3 Continuidad de funciones reales de variable vectorial

3.1 Continuidad en un valor

Una función real de variable vectorial $f: \mathbb{R}^m \to \mathbb{R}$ es **continua** en el elemento $\overline{x} = \overline{a}$ cuando se satisfacen las siguientes condiciones:

- 1) Existe $f(\overline{a})$.
- 2) Existe $\lim_{\overline{x} \to \overline{a}} f(\overline{x})$.
- 3) $\lim_{\overline{x} \to \overline{a}} f(\overline{x}) = f(\overline{a}).$

En cuanto una de las anteriores condiciones no se cumple, se puede afirmar que la función $f(\overline{x})$ es discontinua en $\overline{x} = \overline{a}$.

Ejercicio 9

Determina si la función $f(x, y) = x^2 + y^3$ es continua en (0, 0).

Ejercicio 10

Determina qué valor habría que asignar a f(0,0) para que la función $f(x,y) = \frac{x^3 + y^3}{x^2 + y^2}$ sea continua en (x,y) = (0,0).

3.2 Continuidad en un subconjunto

Una función real de variable vectorial $f: \mathbb{R}^m \to \mathbb{R}$ es continua en un subconjunto $A \subset \mathbb{R}^m$ si es continua en cada elemento $\overline{x} \in A$.

3.3 Propiedades de las funciones continuas

Sean f y g dos funciones reales de variable vectorial continuas en un elemento $\overline{a} \in \mathbb{R}^m$. Dichas funciones tienen las siguientes propiedades:

- 1) La suma $f(\overline{x}) \pm g(\overline{x})$ es una función continua en $\overline{a} \in \mathbb{R}^m$.
- 2) El producto $f(\overline{x}) \cdot g(\overline{x})$ es una función continua en $\overline{a} \in \mathbb{R}^m$.
- 3) El cociente $\frac{f(\overline{x})}{g(\overline{x})}$ es una función continua en $\overline{a} \in \mathbb{R}^m$, siempre que $g(\overline{a}) \neq 0$.

4 Continuidad de funciones vectoriales de variable vectorial

4.1 Continuidad en un valor

Una función vectorial de variable vectorial $\overline{f}: \mathbb{R}^m \to \mathbb{R}^n$, tal que $\overline{f}(\overline{x}) = (f_1(\overline{x}), f_2(\overline{x}), \dots, f_n(\overline{x}))$, es continua en el valor $\overline{x} = \overline{a}$ cuando se satisfacen estas condiciones:

- 1) Existe $\overline{f}(\overline{a})$.
- 2) Existe $\lim_{\overline{x} \to \overline{a}} \overline{f}(\overline{x})$.
- 3) $\lim_{\overline{x} \to \overline{a}} \overline{f}(\overline{x}) = \overline{f}(\overline{a}).$

En cuanto una de las anteriores condiciones no se cumple, se puede afirmar que la función $\overline{f}(\overline{x})$ es discontinua en $\overline{x}=\overline{a}$.

En resumen, una función vectorial de variable vectorial \overline{f} es continua en $\overline{x} = \overline{a}$ si y solo si todas sus funciones componentes f_i son continuas en \overline{a} .

4.2 Continuidad en un subconjunto

Una función vectorial de variable vectorial $\overline{f}:\mathbb{R}^m\to\mathbb{R}^n$ es continua en un subconjunto $A\subset\mathbb{R}^m$ si es continua en cada elemento $\overline{x}\in A$.

5 Problemas

- 1) Demuestra que $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2} = 0$ utilizando la definición $\epsilon-\delta$.
- 2) Calcula el límite de la función $f(x,y)=\frac{xy^3}{x^2+y^6}$ en $(x_0,y_0)=(0,0)$ mediante límites direccionales y también según el subconjunto $x=y^3$.
- Calcula el límite $\lim_{(x,y)\to(0,0)} \frac{(x+1)x+(2y-1)y}{x-y}$ según las rectas y=mx y según las curvas del tipo $y=x-\alpha x^2$, sacando las conclusiones apropiadas.
- 4) Calcula el límite de la función $f(x,y)=\frac{xy-x+y}{x+y}$ en $(x_0,y_0)=(0,0)$ mediante límites reiterados.
- 5) Calcula el límite $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+xy+2y^2}$ mediante el cambio a coordenadas polares.

- 6) Calcula el límite $\lim_{(x,y)\to(0,0)}(x+y)\mathrm{Ln}(x^2+y^2)$ mediante el cambio a coordenadas polares.
- 7) Calcula el límite de $f(x,y)=\frac{(1-\cos(xy))\sin(x)}{x^2+y^2}$ en $(x_0,y_0)=(0,0)$ utilizando infinitésimos equivalentes.
- 8) Calcula el límite de $f(x,y)=\frac{e^{xy}-1}{\mathrm{sen}(x)\mathrm{Ln}(1+y)}$ en $(x_0,y_0)=(0,0)$ utilizando infinitésimos equivalentes.
- 9) Calcula el límite de la función $\frac{x^2 + xy + y^2}{x^2 + y^2}$ en el punto (0,0) utilizando límites reiterados y direccionales, e igualmente mediante cambio a coordenadas polares.
- 10) Calcula el límite de la función $\frac{x^3+y^3}{x^2-y^2}$ en el punto (0,0) utilizando coordenadas polares.
- 11) Dada la siguiente función f(x,y), calcula sus límites reiterados en el punto (0,0). ¿Qué conclusión se puede obtener sobre la existencia del límite en el punto (0,0)?

$$f(x,y) = \begin{cases} \frac{x^2 + 2y^2}{(2x^2 + y^2)} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

12) Calcula los límites reiterados de la función f(x, y) y proporciona alguna conclusión sobre la existencia del límite en el punto (0,0).

$$f(x,y) = \begin{cases} y \operatorname{sen}\left(\frac{1}{x}\right) + x \operatorname{sen}\left(\frac{1}{y}\right) & x \neq 0, \ y \neq 0 \\ 0 & x = 0 \text{ o bien } y = 0 \end{cases}$$

- 13) Calcula, utilizando un método que permita afirmar la validez absoluta de la solución, el límite de la función $f(x,y)=\frac{x\,{\rm sen}(y)}{y\,{\rm sen}(x)}$ en el punto (0,0).
- 14) Calcula, utilizando un método que permita afirmar la validez absoluta de la solución, el límite de la función $f(x,y)=\frac{3x-12}{x^2-16y^2}$ en el punto (4,1).
- 15) Calcula el límite de la función $f(x,y) = \sqrt{x} \operatorname{Ln} \left(1 + \sqrt{x^2 y^2} + \left| \frac{y}{x} \right| \right)$ en el origen.
- 16) Calcula el límite de la función $f(x,y) = \frac{x^2y^2}{x^2y^2 + (x-y)^2}$ en el punto (0,0).
- 17) Calcula el límite de la función vectorial $\overline{f}(x,y) = \left(1 x \operatorname{sen}(y), 3x^2 e^{-y^2}\right)$ en el origen.

- 18) Calcula el límite de la función $f(x, y, z) = \frac{\sin(x^2 + y^2 + z^2)}{x^2 + y^2 + z^2}$ en el punto $(x_0, y_0, z_0) = (0, 0, 0)$.
- 19) Calcula el límite de la función $f(x,y,z)=\frac{xy+yz}{x^2+y^2+z^2}$ en el punto (0,0,0).
- 20) Determina si la función f(x, y) es continua en todo \mathbb{R}^2 .

$$f(x,y) = \begin{cases} \frac{\sin^2(x) \sin(y)}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

21) Estudia la continuidad en el punto (0,0) de la siguiente función:

$$f(x,y) = \begin{cases} x \sin\left(\frac{1}{x^2 + y^2}\right) + y \cos\left(\frac{1}{x^2 + y^2}\right) & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

22) Estudia en todo \mathbb{R}^2 la continuidad de la siguiente función:

$$f(x,y) = \begin{cases} \frac{2xy^2 + 3x}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

23) Determina si la función f(x, y) es continua en todo \mathbb{R}^2 .

$$f(x,y) = \begin{cases} \frac{x}{4x^2 + y^2 - 1} & \text{si } 4x^2 + y^2 \neq 1 \text{ y } (x,y) \neq (0,0) \\ 1 & \text{si } \text{si } 4x^2 + y^2 = 1 \text{ o } (x,y) = (0,0) \end{cases}$$

24) Comprueba si la función vectorial $\overline{h}(x,y,z)=\left(3e^{x+y+z}, \operatorname{sen}(x^2+y^2), 1+x+y+z\right)$ es continua en todo elemento de \mathbb{R}^3 .

Bibliografía

En la elaboración de estos apuntes se ha utilizado el siguiente material:

- Alfonsa García, Antonio López, Gerardo Rodríguez, Sixto Romero y Agustín de la Villa. *Cálculo II. Teoría y problemas de funciones de varias variables*. Ed. CLAGSA.
- Isaías Uña, Jesús San Martín y Venancio Tomeo. *Problemas resueltos de Cálculo en varias variables*. Ed. Paraninfo.
- Saturnino Salas, Einar Hille y Garret Edgen. *Cálculo de varias variables. Volumen II*. 4ª edición. Editorial Reverté.
- Carmen Anido y Martha Saboyá. *Bases matemáticas para el análisis económico*. Grupo Editorial Universitario.

Profesor: Víctor Gayoso Martínez U-tad 2024-2025