M1 Chapter 10: Forces and Motion

Force Vectors

Forces as Vectors

Forces have direction, and therefore we can naturally write them as vectors, either in *i-j* notation or as column vectors.

You can find the resultant of two or more forces given as vectors by adding the vectors.

[Textbook] The forces 2i + 3j, 4i - j, -3i + 2j and ai + bj act on an object which is in equilibrium. Find the values of a and b.

$${2 \choose 3} + {4 \choose -1} + {-3 \choose 2} + {a \choose b}$$
 If in equilibrium, resultant $a = -3$, $b = -4$ force is 0.

[Textbook] The vector i is due east and j due north. A particle begins at rest at the origin. It is acted on by three forces (2i + j) N, (3i - 2j) N and (-i + 4j) N.

- (a) Find the resultant force in the form pi + qj.
- (b) Work out the magnitude and bearing of the resultant force.

$$\binom{2}{1} + \binom{3}{-2} + \binom{-1}{4} = \binom{4}{3} = 4\mathbf{i} + 3\mathbf{j}$$

 $\frac{\theta}{4}$ 3

The magnitude of the force is the magnitude of the vector:

$$\left| \binom{4}{3} \right| = \sqrt{4^2 + 3^2} = 5 \, N$$

$$\theta = \tan^{-1} \left(\frac{3}{4} \right) = 36.9^{\circ}$$

 $\therefore \text{ Bearing} = 90 - 36.9 = 053.1^{\circ}$

Test Your Understanding

Edexcel M1 Jan 2012 Q3

Three forces \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 acting on a particle P are given by

$$F_1 = (7i - 9j) N$$

$$F_2 = (5i + 6j) N$$

$$\mathbf{F}_3 = (p\mathbf{i} + q\mathbf{j}) \text{ N}$$

where p and q are constants.

Given that P is in equilibrium,

(a) find the value of p and the value of q.

(3)

The force \mathbf{F}_1 is now removed. The resultant of \mathbf{F}_1 and \mathbf{F}_2 , is \mathbf{R} . Find

(b) the magnitude of R,

- (2)
- (c) the angle, to the nearest degree, that the direction of ${\bf R}$ makes with ${\bf j}$. (3)

Edexcel M1 May 2009 Q2

A particle is acted upon by two forces F, and F, , given by

$$F_1 = (i - 3j) N,$$

 $\mathbf{F_2} = (p\mathbf{i} + 2p\mathbf{j}) \text{ N}$, where p is a positive constant.

(a) Find the angle between F₂ and j. (2)

The resultant of \mathbf{F}_1 and \mathbf{F}_2 is \mathbf{R} . Given that \mathbf{R} is parallel to \mathbf{i} ,

(b) find the value of p. (4)

Tip: If a vector is parallel to say $\binom{1}{2}$, then it could be any multiple of it, i.e. $k \binom{1}{2}$

(a) ?

Test Your Understanding

Edexcel M1 Jan 2012 Q3

Three forces \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 acting on a particle P are given by

$$F_1 = (7i - 9j) N$$

$$F_2 = (5i + 6j) N$$

$$\mathbf{F}_3 = (p\mathbf{i} + q\mathbf{j}) \,\mathrm{N}$$

where p and q are constants.

Given that P is in equilibrium,

(a) find the value of p and the value of q.

The force \mathbf{F}_3 is now removed. The resultant of \mathbf{F}_1 and \mathbf{F}_2 is \mathbf{R} . Find

(b) the magnitude of R,

(b)

(c) the angle, to the nearest degree, that the direction of R makes with j. (3)

(a)
$$7+5+p=0$$
 or $-9+6+q=0$
 $p=-12$
 $q=3$

 $\mathbf{R} = 12\mathbf{i} - 3\mathbf{j}$ $|\mathbf{R}| = \sqrt{(12^2 + (-3)^2)} = \sqrt{153} \text{ or } 3\sqrt{17} \text{ or } 12.4 \text{ or better (N)}$

$$\tan \theta = \frac{3}{12}$$

 $\theta = 14.03^{\circ}...$

Angle with $\, \boldsymbol{j} \,$ is 104° , to the nearest degree cao

Edexcel M1 May 2009 Q2

A particle is acted upon by two forces F, and F, , given by

$$F_1 = (i - 3j) N,$$

(3)

(2)

M1 A1 A1

M1 A1

 $\mathbf{F_2} = (p\mathbf{i} + 2p\mathbf{j}) \text{ N}$, where p is a positive constant.

(a) Find the angle between F, and j. (2)

The resultant of $\mathbf{F_1}$ and $\mathbf{F_2}$ is \mathbf{R} . Given that \mathbf{R} is parallel to \mathbf{i} ,

(b) find the value of p. (4)

Tip: If a vector is parallel to say $\binom{1}{2}$, then it could be any multiple of it, i.e. $k\binom{1}{2}$

(a)
$$\tan \theta = \frac{p}{2p} \Rightarrow \theta = 26.6^{\circ}$$
 M1 A1 (2)

(b)
$$\mathbf{R} = (\mathbf{i} - 3\mathbf{j}) + (p\mathbf{i} + 2p\mathbf{j}) = (1 + p)\mathbf{i} + (-3 + 2p)\mathbf{j}$$
 M1 A1

R is parallel to **i**
$$\Rightarrow$$
 $(-3 + 2p) = 0$ DM1
 $\Rightarrow p = \frac{3}{2}$ A1 (4)

Classwork Exercise 10.2

Pearson Stats/Mechanics Year 1 Exercise Book Page 68

Extension

A force F_1 acts in the direction of i and a force F_2 acts at an angle of θ to i, as shown. Show that the resultant force has magnitude

Show that the resultant force has
$$\sqrt{F_1^2 + F_2^2 + 2F_1F_2\cos\theta}$$

Homework Exercise

1 In each part of the question a particle is acted upon by the forces given. Work out the resultant force acting on the particle.

a
$$(-\mathbf{i} + 3\mathbf{j})$$
 N and $(4\mathbf{i} - \mathbf{j})$ N
b $\begin{pmatrix} 5 \\ 3 \end{pmatrix}$ N and $\begin{pmatrix} -3 \\ -6 \end{pmatrix}$ N

b
$$\binom{5}{3}$$
 N and $\binom{-3}{-6}$ N

c
$$(\mathbf{i} + \mathbf{j}) N$$
, $(5\mathbf{i} - 3\mathbf{j}) N$ and $(-2\mathbf{i} - \mathbf{j}) N$ d $\begin{pmatrix} -1 \\ 4 \end{pmatrix} N$, $\begin{pmatrix} 6 \\ 0 \end{pmatrix} N$ and $\begin{pmatrix} -2 \\ -7 \end{pmatrix} N$

d
$$\begin{pmatrix} -1\\4 \end{pmatrix}$$
 N, $\begin{pmatrix} 6\\0 \end{pmatrix}$ N and $\begin{pmatrix} -2\\-7 \end{pmatrix}$ N

2 An object is in equilibrium at O under the action of three forces F_1 , F_2 and F_3 . Find F_3 in these cases.

a
$$\mathbf{F}_1 = (2\mathbf{i} + 7\mathbf{j})$$
 and $\mathbf{F}_2 = (-3\mathbf{i} + \mathbf{j})$

a
$$F_1 = (2i + 7j)$$
 and $F_2 = (-3i + j)$ **b** $F_1 = (3i - 4j)$ and $F_2 = (2i + 3j)$

3 The forces $\binom{a}{2b}$ N, $\binom{-2a}{-b}$ N and $\binom{3}{-4}$ N act on an object which is in equilibrium.

Find the values of a and b.

- 4 For each force find:

i the magnitude of the force ii the angle the force makes with i

$$a (3i + 4i) N$$

$$\mathbf{b} (5\mathbf{i} - \mathbf{j}) \mathbf{N}$$

$$c (-2i + 3j) N$$

$$\mathbf{a} \ (3\mathbf{i} + 4\mathbf{j}) \, \mathbf{N} \qquad \qquad \mathbf{b} \ (5\mathbf{i} - \mathbf{j}) \, \mathbf{N} \qquad \qquad \mathbf{c} \ \left(-2\mathbf{i} + 3\mathbf{j} \right) \mathbf{N} \qquad \qquad \mathbf{d} \ \begin{pmatrix} -1 \\ -1 \end{pmatrix} \mathbf{N}$$

Homework Exercise

- 5 In this question, i represents the unit vector due east, and j represents the unit vector due north. A particle is acted upon by forces of:
 - $\mathbf{a} \ (-2\mathbf{i} + \mathbf{j}) \ N, \ (5\mathbf{i} + 2\mathbf{j}) \ N \ and \ (-\mathbf{i} 4\mathbf{j}) \ N$
- **b** (-2i + j) N, (2i 3j) N and (3i + 6j) N

Work out:

- i the resultant vector
- ii the magnitude of the resultant vector
- iii the bearing of the resultant vector.
- 6 The forces (ai bj) N, (bi + aj) N and (-4i 2j) N act on an object which is in equilibrium. Find the values of a and b.

Problem-solving

Use the **i** components and the **j** components to set up and solve two simultaneous equations.

- 7 The forces $(2a\mathbf{i} + 2b\mathbf{j})$ N, $(-5b\mathbf{i} + 3a\mathbf{j})$ N and $(-11\mathbf{i} 7\mathbf{j})$ N act on an object which is in equilibrium. Find the values of a and b.
- 8 Three forces \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 act on a particle. $\mathbf{F}_1 = (-3\mathbf{i} + 7\mathbf{j}) \, \text{N}$, $\mathbf{F}_2 = (\mathbf{i} \mathbf{j}) \, \text{N}$ and $\mathbf{F}_3 = (p\mathbf{i} + q\mathbf{j}) \, \text{N}$.
 - a Given that this particle is in equilibrium, determine the value of p and the value of q.

The resultant of the forces \mathbf{F}_1 and \mathbf{F}_2 is \mathbf{R} .

- b Calculate, in N, the magnitude of R.
- c Calculate, to the nearest degree, the angle between the line of action of R and the vector j.

Homework Exercise

- 9 A particle is acted upon by two forces \mathbf{F}_1 and \mathbf{F}_2 , given by $\mathbf{F}_1 = (3\mathbf{i} 2\mathbf{j}) \, \mathbf{N}$ and $\mathbf{F}_2 = (a\mathbf{i} + 2a\mathbf{j}) \, \mathbf{N}$, where a is a positive constant.
 - a Find the angle between \mathbf{F}_2 and \mathbf{i} .

(2 marks)

The resultant of \mathbf{F}_1 and \mathbf{F}_2 is \mathbf{R} .

b Given that **R** is parallel to 13i + 10j, find the value of a.

(4 marks)

10 Three forces \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 acting on a particle P are given by the vectors $\mathbf{F}_1 = \begin{pmatrix} -7 \\ -4 \end{pmatrix} \mathbf{N}$,

 $\mathbf{F}_2 = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \mathbf{N}$ and $\mathbf{F}_3 = \begin{pmatrix} a \\ b \end{pmatrix} \mathbf{N}$, where a and b are constants.

Given that P is in equilibrium,

a find the value of a and the value of b.

(3 marks)

- **b** The force \mathbf{F}_1 is now removed. The resultant of \mathbf{F}_2 and \mathbf{F}_3 is \mathbf{R} . Find:
 - i the magnitude of R

(2 marks)

ii the angle, to the nearest degree, that the direction of R makes with the horizontal.

(3 marks)

Challenge

An object is acted upon by a horizontal force of $10\mathbf{i}$ N and a vertical force $a\mathbf{j}$ N as shown in the diagram. The resultant of the two forces acts in the direction 60° to the horizontal. Work out the value of a and the magnitude of the resultant force.

Homework Answers

Challenge

a = 17.3 (3 s.f.), magnitude of resultant force = 20 N