An Introduction to Quantum Computing

Lecture 16:

Density Operators

Paolo Zuliani

Dipartimento di Informatica Università di Roma "La Sapienza", Rome, Italy

Agenda

- Mixed states and traces
- Density matrices
- The rules of Quantum Mechanics with density matrices
- The von Neumann Entropy and the Holevo bound

Definition

A ket $|v\rangle \in \mathcal{H}$ is a *pure state*.

Definition

A ket $|v\rangle \in \mathcal{H}$ is a pure state.

Definition

Let $\{|v_1\rangle, \dots |v_N\rangle\}$ be pure states and w_1, \dots, w_N be positive numbers such that $\sum_i w_i = 1$. The *mixed state* ρ is the set:

$$\rho = \{ |v_i\rangle, w_i\}_{i=1}^N$$

A mixed state tells us that our quantum system is in pure state $|v_i\rangle$ with 'classical' probability w_i .

Rule 3: when measuring observable A on (pure) state $|v\rangle$ we have that

$$\mathsf{Prob}(A = \lambda_i; |v\rangle) = \langle v | P_i v \rangle \qquad (\mathsf{equivalently} \ \langle A \rangle_v = \langle v | A v \rangle)$$

where P_i is the projector associated to the *i*-th eigenspace of A.

Rule 3: when measuring observable A on (pure) state $|v\rangle$ we have that

$$\mathsf{Prob}(A = \lambda_i; |v\rangle) = \langle v | P_i v \rangle \qquad \text{(equivalently } \langle A \rangle_v = \langle v | A v \rangle)$$

where P_i is the projector associated to the *i*-th eigenspace of A.

How about measuring A on a mixed state $\rho = \{|v_i\rangle, w_i\}_{i=1}^{N}$?

Rule 3: when measuring observable A on (pure) state $|v\rangle$ we have that

$$\mathsf{Prob}(A = \lambda_i; |v\rangle) = \langle v | P_i v \rangle \qquad \text{(equivalently } \langle A \rangle_v = \langle v | A v \rangle)$$

where P_i is the projector associated to the *i*-th eigenspace of A.

How about measuring A on a mixed state $\rho = \{|v_i\rangle, w_i\}_{i=1}^N$?

Assuming the quantum and classical probabilities are independent, we get

$$\mathsf{Prob}(A = \lambda_i; \rho) = \sum_{j=1}^{N} w_j \mathsf{Prob}(A = \lambda_i; |v_j\rangle) = \sum_{j=1}^{N} w_j \langle v_j | P_i v_j \rangle$$

Definition

Let $\{e_i\}$ be an orthonormal basis for an Hilbert space \mathcal{H} , and A be an operator on \mathcal{H} . The *trace* of A is defined

$$\mathsf{tr}(A) = \sum_i \left\langle e_i | A e_i
ight
angle$$

Definition

Let $\{e_i\}$ be an orthonormal basis for an Hilbert space \mathcal{H} , and A be an operator on \mathcal{H} . The *trace* of A is defined

$$\mathsf{tr}(A) = \sum_i \langle e_i | A e_i
angle$$

Note: it is a generalisation of the usual trace of a matrix.

Exercise: show that tr(A) is independent of the basis chosen (hence it is well defined!)

Definition

Let $\{e_i\}$ be an orthonormal basis for an Hilbert space \mathcal{H} , and A be an operator on \mathcal{H} . The *trace* of A is defined

$$\operatorname{tr}(A) = \sum_i \langle e_i | A e_i \rangle$$

Note: it is a generalisation of the usual trace of a matrix.

Exercise: show that tr(A) is independent of the basis chosen (hence it is well defined!)

Let us rework Rule 3:

$$\langle v|Av\rangle = \langle v|A\sum_{i}|e_{i}\rangle\langle e_{i}|v\rangle = \sum_{i}\langle v|A|e_{i}\rangle\langle e_{i}|v\rangle$$

Definition

Let $\{e_i\}$ be an orthonormal basis for an Hilbert space \mathcal{H} , and A be an operator on \mathcal{H} . The *trace* of A is defined

$$\mathsf{tr}(A) = \sum_i \langle e_i | A e_i
angle$$

Note: it is a generalisation of the usual trace of a matrix.

Exercise: show that tr(A) is independent of the basis chosen (hence it is well defined!)

Let us rework Rule 3:

$$\langle v|Av\rangle = \langle v|A\sum_{i}|e_{i}\rangle\langle e_{i}|v\rangle = \sum_{i}\langle v|A|e_{i}\rangle\langle e_{i}|v\rangle$$

$$= \sum_{i}\langle e_{i}|v\rangle\langle v|Ae_{i}\rangle = \sum_{i}\langle e_{i}|P_{v}Ae_{i}\rangle = \operatorname{tr}(P_{v}A)$$

where $P_v = |v\rangle\langle v|$.

Definition

Let $\{|v_1\rangle, \dots |v_N\rangle\}$ be pure states and w_1, \dots, w_N be positive numbers such that $\sum_i w_i = 1$. The *mixed state operator* ρ is defined:

$$\rho = \sum_{i} w_{i} P_{\mathbf{v}_{i}} = \sum_{i} w_{i} |\mathbf{v}_{i}\rangle\langle\mathbf{v}_{i}|$$

Definition

Let $\{|v_1\rangle, \dots |v_N\rangle\}$ be pure states and w_1, \dots, w_N be positive numbers such that $\sum_i w_i = 1$. The *mixed state operator* ρ is defined:

$$\rho = \sum_{i} w_{i} P_{\mathbf{v}_{i}} = \sum_{i} w_{i} |\mathbf{v}_{i}\rangle\langle\mathbf{v}_{i}|$$

$$\mathsf{Prob}(A=\lambda_i;
ho) = \sum_{j=1} w_j \left< v_j | P_i v_j \right>$$

Definition

Let $\{|v_1\rangle, \dots |v_N\rangle\}$ be pure states and w_1, \dots, w_N be positive numbers such that $\sum_i w_i = 1$. The *mixed state operator* ρ is defined:

$$\rho = \sum_{i} w_{i} P_{v_{i}} = \sum_{i} w_{i} |v_{i}\rangle\langle v_{i}|$$

$$\mathsf{Prob}(A = \lambda_i; \rho) = \sum_{j=1} w_j \left\langle v_j | P_i v_j \right\rangle = \sum_i w_j \operatorname{tr}(P_{v_j} P_i)$$

Definition

Let $\{|v_1\rangle, \dots |v_N\rangle\}$ be pure states and w_1, \dots, w_N be positive numbers such that $\sum_i w_i = 1$. The *mixed state operator* ρ is defined:

$$\rho = \sum_{i} w_{i} P_{v_{i}} = \sum_{i} w_{i} |v_{i}\rangle\langle v_{i}|$$

$$\begin{aligned} \mathsf{Prob}(A = \lambda_i; \rho) &= \sum_{j=1} w_j \, \langle v_j | P_i v_j \rangle \, = \sum_j w_j \, \mathsf{tr}(P_{v_j} P_i) \\ &= \mathsf{tr}(\sum_i w_j P_{v_j} P_i) \end{aligned}$$

Definition

Let $\{|v_1\rangle, \dots |v_N\rangle\}$ be pure states and w_1, \dots, w_N be positive numbers such that $\sum_i w_i = 1$. The *mixed state operator* ρ is defined:

$$\rho = \sum_{i} w_{i} P_{v_{i}} = \sum_{i} w_{i} |v_{i}\rangle\langle v_{i}|$$

$$\begin{aligned} \mathsf{Prob}(A = \lambda_i; \rho) &= \sum_{j=1} w_j \, \langle v_j | P_i v_j \rangle \, = \sum_j w_j \, \mathsf{tr}(P_{v_j} P_i) \\ &= \mathsf{tr}(\sum_j w_j P_{v_j} P_i) \\ &= \mathsf{tr}(\rho P_i) \end{aligned}$$

Definition

A *density matrix* is an operator ρ satisfying:

- ρ is positive (*i.e.*, $\forall v \in \mathcal{H}, \langle v | \rho v \rangle \geqslant 0$);
- $\operatorname{tr}(\rho) = 1$;
- $[\rho = \rho^{\dagger}]$ (but this follows from positivity).

Definition

A *density matrix* is an operator ρ satisfying:

- ρ is positive (*i.e.*, $\forall v \in \mathcal{H}, \langle v | \rho v \rangle \geqslant 0$);
- $\operatorname{tr}(\rho) = 1$;
- $[\rho = \rho^{\dagger}]$ (but this follows from positivity).

Definition

A *density matrix* is an operator ρ satisfying:

- ρ is positive (*i.e.*, $\forall v \in \mathcal{H}, \langle v | \rho v \rangle \geqslant 0$);
- $\operatorname{tr}(\rho) = 1$;
- $[\rho = \rho^{\dagger}]$ (but this follows from positivity).

$$\forall v \in \mathcal{H}, \langle v | \rho v \rangle \geqslant 0$$

Definition

A *density matrix* is an operator ρ satisfying:

- ρ is positive (*i.e.*, $\forall v \in \mathcal{H}, \langle v | \rho v \rangle \geqslant 0$);
- $\operatorname{tr}(\rho) = 1$;
- $[\rho = \rho^{\dagger}]$ (but this follows from positivity).

$$\forall v \in \mathcal{H}, \langle v | \rho v \rangle \geqslant 0 \Longrightarrow$$

$$\forall v \in \mathcal{H}, \langle v | \rho v \rangle = \langle v | \rho v \rangle^* = \langle \rho v | v \rangle = \langle \rho^{\dagger} v | v \rangle$$

Definition

A *density matrix* is an operator ρ satisfying:

- ρ is positive (*i.e.*, $\forall v \in \mathcal{H}, \langle v | \rho v \rangle \geqslant 0$);
- $\operatorname{tr}(\rho) = 1$;
- $[\rho = \rho^{\dagger}]$ (but this follows from positivity).

$$\forall v \in \mathcal{H}, \langle v | \rho v \rangle \geqslant 0 \Longrightarrow$$

$$\forall v \in \mathcal{H}, \langle v | \rho v \rangle = \langle v | \rho v \rangle^* = \langle \rho v | v \rangle = \langle \rho^{\dagger} v | v \rangle \Longrightarrow$$

$$\forall v \in \mathcal{H}, \langle \rho v | v \rangle = \langle \rho^{\dagger} v | v \rangle$$

Definition

A *density matrix* is an operator ρ satisfying:

- ρ is positive (*i.e.*, $\forall v \in \mathcal{H}, \langle v | \rho v \rangle \geqslant 0$);
- $\operatorname{tr}(\rho) = 1$;
- $[\rho = \rho^{\dagger}]$ (but this follows from positivity).

$$\begin{split} \forall v \in \mathcal{H}, \langle v | \rho v \rangle \geqslant 0 & \Longrightarrow \\ \forall v \in \mathcal{H}, \langle v | \rho v \rangle = \langle v | \rho v \rangle^* = \langle \rho v | v \rangle = \langle \rho^\dagger v | v \rangle & \Longrightarrow \\ \forall v \in \mathcal{H}, \langle \rho v | v \rangle = \langle \rho^\dagger v | v \rangle & \Longrightarrow \text{ (show that } \forall z, \langle x | z \rangle = \langle y | z \rangle & \Longrightarrow x = y \text{)} \\ \forall v \in \mathcal{H}, \rho v = \rho^\dagger v \end{split}$$

<u>Exercise</u>: prove that a mixed state operator is a density matrix.

Exercise: prove that a mixed state operator is a density matrix.

Any density matrix ρ is self-adjoint, hence can apply the spectral theorem and write:

$$\rho = \sum_{i} y_{i} P_{\psi_{i}}$$

where the $|\psi_i\rangle$'s are an orthonormal basis and the y_i 's are probabilities summing to 1.

Exercise: prove that a mixed state operator is a density matrix.

Any density matrix ρ is self-adjoint, hence can apply the spectral theorem and write:

$$\rho = \sum_{i} y_{i} P_{\psi_{i}}$$

where the $|\psi_i\rangle$'s are an orthonormal basis and the y_i 's are probabilities summing to 1.

Note that orthonormality is <u>not</u> required when modelling classically weighted sum of states (*i.e.*, when the system is in state $|\psi_i\rangle$ with probability y_i).

A density matrix does NOT admit a unique decomposition as a mixed state operator!

A density matrix does NOT admit a unique decomposition as a mixed state operator!

Example:

Consider density matrix $ho=rac{1}{2}egin{pmatrix}1&0\\0&1\end{pmatrix}$. It is easy to show that:

$$ho=rac{1}{2}egin{pmatrix}1&0\0&0\end{pmatrix}+rac{1}{2}egin{pmatrix}0&0\0&1\end{pmatrix}=rac{1}{2}\ket{0}\!\!ra{0}+rac{1}{2}\ket{1}\!\!ra{1}$$

which suggests that our system is in pure state $|0\rangle$ with (classical) probability 50% and in pure state $|1\rangle$ again with (classical) probability 50%.

A density matrix does NOT admit a unique decomposition as a mixed state operator! Example:

Consider density matrix $ho=rac{1}{2}egin{pmatrix}1&0\\0&1\end{pmatrix}$. It is easy to show that:

$$\rho = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \frac{1}{2} \left| 0 \right\rangle\!\langle 0 \right| + \frac{1}{2} \left| 1 \right\rangle\!\langle 1 |$$

which suggests that our system is in pure state $|0\rangle$ with (classical) probability 50% and in pure state $|1\rangle$ again with (classical) probability 50%. However:

$$\rho = \frac{1}{2} \begin{bmatrix} \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \end{bmatrix}$$

A density matrix does NOT admit a unique decomposition as a mixed state operator!

Example:

Consider density matrix $ho=\frac{1}{2}\begin{pmatrix}1&0\\0&1\end{pmatrix}$. It is easy to show that:

$$\rho = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \frac{1}{2} \left| 0 \right\rangle\!\!\left\langle 0 \right| + \frac{1}{2} \left| 1 \right\rangle\!\!\left\langle 1 \right|$$

which suggests that our system is in pure state $|0\rangle$ with (classical) probability 50% and in pure state $|1\rangle$ again with (classical) probability 50%. However:

$$\rho = \frac{1}{2} \begin{bmatrix} \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \end{bmatrix}$$

Exercise: verify that the two matrices above are projectors (recall a projector P satisfies $P^2 = P$ and $P = P^{\dagger}$).

Proposition

The set of density matrices is convex, i.e., given density matrices ρ_1, \ldots, ρ_N and positive numbers w_1, \ldots, w_N such that $\sum_i w_i = 1$, then $\sum_i w_i \rho_i$ is a density matrix.

Exercise: prove the proposition above.

Proposition

The set of density matrices is convex, i.e., given density matrices ρ_1, \ldots, ρ_N and positive numbers w_1, \ldots, w_N such that $\sum_i w_i = 1$, then $\sum_i w_i \rho_i$ is a density matrix.

Exercise: prove the proposition above.

Density matrices of the form $|\psi\rangle\langle\psi|$ are called *pure states*, the rest are *mixed*.

Proposition

The set of density matrices is convex, i.e., given density matrices ρ_1, \ldots, ρ_N and positive numbers w_1, \ldots, w_N such that $\sum_i w_i = 1$, then $\sum_i w_i \rho_i$ is a density matrix.

Exercise: prove the proposition above.

Density matrices of the form $|\psi\rangle\langle\psi|$ are called *pure states*, the rest are *mixed*.

Proposition

Let ρ be a density matrix. Then $\operatorname{tr}(\rho^2) \leq 1$ and $\operatorname{tr}(\rho^2) = 1$ iff ρ is a pure state.

Proposition

The set of density matrices is convex, i.e., given density matrices ρ_1, \ldots, ρ_N and positive numbers w_1, \ldots, w_N such that $\sum_i w_i = 1$, then $\sum_i w_i \rho_i$ is a density matrix.

Exercise: prove the proposition above.

Density matrices of the form $|\psi\rangle\langle\psi|$ are called *pure states*, the rest are *mixed*.

Proposition

Let ρ be a density matrix. Then $\operatorname{tr}(\rho^2) \leqslant 1$ and $\operatorname{tr}(\rho^2) = 1$ iff ρ is a pure state.

Thus, a state ρ is mixed iff $tr(\rho^2) < 1$.

Proposition

Let ρ be a density matrix. Then $\operatorname{tr}(\rho^2) \leqslant 1$ and $\operatorname{tr}(\rho^2) = 1$ iff ρ is a pure state.

Let us prove it.

Proposition

Let ρ be a density matrix. Then $\operatorname{tr}(\rho^2) \leqslant 1$ and $\operatorname{tr}(\rho^2) = 1$ iff ρ is a pure state.

Let us prove it.

 ρ is positive hence self-adjoint, so by the spectral theorem we can write:

$$\rho = \sum_{i} \lambda_{i} P_{i}$$

where the λ_i 's are the eigenvalues and the P_i 's are the eigenspace projectors of ρ , respectively.

Proposition

Let ρ be a density matrix. Then $\operatorname{tr}(\rho^2) \leqslant 1$ and $\operatorname{tr}(\rho^2) = 1$ iff ρ is a pure state.

Let us prove it.

 ρ is positive hence self-adjoint, so by the spectral theorem we can write:

$$\rho = \sum_{i} \lambda_{i} P_{i}$$

where the λ_i 's are the eigenvalues and the P_i 's are the eigenspace projectors of ρ , respectively. The eigenvalues are all positive and satisfy $\sum_i \lambda_i = 1$ since $\operatorname{tr}(\rho) = 1$.

Density Matrices

Proposition

Let ρ be a density matrix. Then $\operatorname{tr}(\rho^2) \leqslant 1$ and $\operatorname{tr}(\rho^2) = 1$ iff ρ is a pure state.

Let us prove it.

 ρ is positive hence self-adjoint, so by the spectral theorem we can write:

$$\rho = \sum_{i} \lambda_{i} P_{i}$$

where the λ_i 's are the eigenvalues and the P_i 's are the eigenspace projectors of ρ , respectively. The eigenvalues are all positive and satisfy $\sum_i \lambda_i = 1$ since $\operatorname{tr}(\rho) = 1$.

$$\operatorname{tr}(\rho\rho)=\operatorname{tr}(\rho\sum_{i}\lambda_{i}P_{i})=\operatorname{tr}(\sum_{i,j}\lambda_{i}\lambda_{j}P_{i}P_{j})=\operatorname{tr}(\sum_{i}\lambda_{i}^{2}P_{i})=\sum_{i}\lambda_{i}^{2}\leqslant1.$$

Density Matrices

Proposition

Let ρ be a density matrix. Then $\operatorname{tr}(\rho^2) \leqslant 1$ and $\operatorname{tr}(\rho^2) = 1$ iff ρ is a pure state.

Let us prove it.

 ρ is positive hence self-adjoint, so by the spectral theorem we can write:

$$\rho = \sum_{i} \lambda_{i} P_{i}$$

where the λ_i 's are the eigenvalues and the P_i 's are the eigenspace projectors of ρ , respectively. The eigenvalues are all positive and satisfy $\sum_i \lambda_i = 1$ since $\operatorname{tr}(\rho) = 1$.

$$\operatorname{tr}(\rho\rho)=\operatorname{tr}(\rho\sum_{i}\lambda_{i}P_{i})=\operatorname{tr}(\sum_{i,j}\lambda_{i}\lambda_{j}P_{i}P_{j})=\operatorname{tr}(\sum_{i}\lambda_{i}^{2}P_{i})=\sum_{i}\lambda_{i}^{2}\leqslant1.$$

Now, $\sum_{i} \lambda_{i}^{2} = 1$ iff there is only one term in the sum, i.e., ρ is a pure state.

Rule 1: The state space of Quantum Mechanics is a Hilbert space \mathcal{H} (the "physical" state of a system is a **density matrix**).

Rule 1: The state space of Quantum Mechanics is a Hilbert space \mathcal{H} (the "physical" state of a system is a **density matrix**).

Rule 2: A closed system evolves over time under **unitary transformations**. Applying unitary operator U to state ρ has the effect

$$\rho \to U \rho U^{\dagger}$$
.

Rule 1: The state space of Quantum Mechanics is a Hilbert space \mathcal{H} (the "physical" state of a system is a **density matrix**).

Rule 2: A closed system evolves over time under **unitary transformations**. Applying unitary operator U to state ρ has the effect

$$\rho \to U \rho U^{\dagger}$$
.

Here is "why":

$$\{\ket{\psi_i}, \mathbf{w}_i\} \xrightarrow{U} \{U\ket{\psi_i}, \mathbf{w}_i\}$$

Rule 1: The state space of Quantum Mechanics is a Hilbert space \mathcal{H} (the "physical" state of a system is a **density matrix**).

Rule 2: A closed system evolves over time under **unitary transformations**. Applying unitary operator U to state ρ has the effect

$$\rho \to U \rho U^{\dagger}$$
.

Here is "why":

$$\{|\psi_{i}\rangle, w_{i}\} \xrightarrow{U} \{U |\psi_{i}\rangle, w_{i}\}$$

$$\sum_{i} w_{i} |\psi_{i}\rangle\langle\psi_{i}| \xrightarrow{U} \sum_{i} w_{i}U |\psi_{i}\rangle (U |\psi_{i}\rangle)^{\dagger} = \sum_{i} w_{i}U |\psi_{i}\rangle\langle\psi_{i}| U^{\dagger} = U\rho U^{\dagger}$$

Rule 1: The state space of Quantum Mechanics is a Hilbert space \mathcal{H} (the "physical" state of a system is a **density matrix**).

Rule 2: A closed system evolves over time under **unitary transformations**. Applying unitary operator U to state ρ has the effect

$$\rho \to U \rho U^{\dagger}$$
.

Here is "why":

$$\{|\psi_{i}\rangle, w_{i}\} \xrightarrow{U} \{U |\psi_{i}\rangle, w_{i}\}$$

$$\sum_{i} w_{i} |\psi_{i}\rangle\langle\psi_{i}| \xrightarrow{U} \sum_{i} w_{i}U |\psi_{i}\rangle(U |\psi_{i}\rangle)^{\dagger} = \sum_{i} w_{i}U |\psi_{i}\rangle\langle\psi_{i}| U^{\dagger} = U\rho U^{\dagger}$$

The (linear) function that maps ρ to $U\rho U^{\dagger}$ is called a *superoperator*.

Rule 3: A measurement is described by a collection $M = \{M_m\}$ of **measurement** operators that satisfy $\sum_m M_m^{\dagger} M_m = I$ (where m indexes the measurement outcomes).

Rule 3: A measurement is described by a collection $M = \{M_m\}$ of **measurement** operators that satisfy $\sum_m M_m^{\dagger} M_m = I$ (where m indexes the measurement outcomes).

The probability of measuring outcome m in state ρ is:

$$\mathsf{Prob}(M=m;\rho)=\mathsf{tr}(M_m^\dagger M_m \rho)$$

Rule 3: A measurement is described by a collection $M = \{M_m\}$ of **measurement** operators that satisfy $\sum_m M_m^{\dagger} M_m = I$ (where m indexes the measurement outcomes).

The probability of measuring outcome m in state ρ is:

$$\mathsf{Prob}(M=m;\rho)=\mathsf{tr}(M_m^\dagger M_m \rho)$$

The state ρ_m resulting <u>after</u> obtaining measurement outcome m is:

$$ho_m = rac{M_m
ho M_m^\dagger}{\mathsf{tr}(M_m^\dagger M_m
ho)}$$

Rule 3: A measurement is described by a collection $M = \{M_m\}$ of **measurement** operators that satisfy $\sum_m M_m^{\dagger} M_m = I$ (where m indexes the measurement outcomes).

The probability of measuring outcome m in state ρ is:

$$\mathsf{Prob}(M=m;\rho)=\mathsf{tr}(M_m^\dagger M_m \rho)$$

The state ρ_m resulting <u>after</u> obtaining measurement outcome m is:

$$ho_m = rac{M_m
ho M_m^\dagger}{\mathsf{tr}(M_m^\dagger M_m
ho)}$$

<u>Exercise</u>: verify that the probability Rule 3 above reduces to the usual rule for a self-adjoint observable (the measurement operators are simply the projectors on the eigenspaces).

After Claude Shannon (electrical engineer; 1916-2001).

We have a source that produces symbols (from a finite alphabet) via a random process:

$$symb_1 @ p_1, symb_2 @ p_2, \dots, symb_n @ p_n$$

The source can be thus thought of as a random variable.

How can we quantify the resources needed to store the symbols generated?

After Claude Shannon (electrical engineer; 1916-2001).

We have a source that produces symbols (from a finite alphabet) via a random process:

$$symb_1 @ p_1, symb_2 @ p_2, \dots, symb_n @ p_n$$

The source can be thus thought of as a random variable.

How can we quantify the resources needed to store the symbols generated?

Definition

Given a random variable $X = \{s_i \otimes p_i\}$, the Shannon entropy is

$$H(X) = -\sum_{i} p_{i} \log p_{i}$$

Note: if $p_i = 0$ then we assume $p_i \log p_i = 0$.

Example:

Consider a binary source, i.e., it emits only two symbols:

{Pistacchio, @ p; Stracciatella @ (1 - p)}

Example:

Consider a binary source, i.e., it emits only two symbols:

{Pistacchio, @p; Stracciatella @(1-p)}

$$H(p) = -p \log p - (1-p) \log(1-p)$$

H(p) is largest for $p=\frac{1}{2}$ and smallest for p=0 (or p=1).

Definition

The joint entropy of random variables X, Y is:

$$H(X,Y) = -\sum_{x,y} p(x,y) \log p(x,y)$$

Definition

The mutual information of random variables X, Y is:

$$H(X:Y) = H(X) + H(Y) - H(X,Y)$$

H(X : Y) is informally the amount of information that X and Y have in common.

The von Neumann Entropy

After John (János) von Neumann (mathematician; 1903-1957).

Definition

The entropy of a density matrix ρ is:

$$S(\rho) = -\operatorname{tr}(\rho \log \rho)$$

or equivalently:

$$S(\rho) = -\sum_{i} \lambda_{i} \log \lambda_{i}$$

where the λ_i 's are the eigenvalues of ρ .

The von Neumann Entropy

After John (János) von Neumann (mathematician; 1903-1957).

Definition

The entropy of a density matrix ρ is:

$$S(\rho) = -\operatorname{tr}(\rho \log \rho)$$

or equivalently:

$$S(
ho) = -\sum_i \lambda_i \log \lambda_i$$

where the λ_i 's are the eigenvalues of ρ .

Example: consider the density matrix I/n in an n-dimensional Hilbert space.

$$S(I/n) = -\sum_{i=1}^{n} \frac{1}{n} \log \frac{1}{n} = -\frac{1}{n} \log \frac{1}{n} \sum_{i=1}^{n} = -\log \frac{1}{n} = \log n$$

In fact, I/n is the state with highest entropy.

Context: a game between two parties, Alice and Bob.

Alice has a random source of symbols X = 1, ..., n with probability $p_1, ..., p_n$. Bob aims at determining the value of X.

Context: a game between two parties, Alice and Bob.

Alice has a random source of symbols X = 1, ..., n with probability $p_1, ..., p_n$. Bob aims at determining the value of X.

Alice prepares a state ρ_X chosen from ρ_1, \dots, ρ_n and gives it to Bob, who performs a quantum measurement, denoted Y, to guess X as best as he can.

Context: a game between two parties, Alice and Bob.

Alice has a random source of symbols X = 1, ..., n with probability $p_1, ..., p_n$. Bob aims at determining the value of X.

Alice prepares a state ρ_X chosen from ρ_1, \dots, ρ_n and gives it to Bob, who performs a quantum measurement, denoted Y, to guess X as best as he can.

Classically: $H(X : Y) \leq H(X)$, so Bob "wins" if H(X : Y) = H(X). (And classical states can be easily distinguished.)

Context: a game between two parties, Alice and Bob.

Alice has a random source of symbols $X=1,\ldots,n$ with probability p_1,\ldots,p_n . Bob aims at determining the value of X.

Alice prepares a state ρ_X chosen from ρ_1, \dots, ρ_n and gives it to Bob, who performs a quantum measurement, denoted Y, to guess X as best as he can.

Classically: $H(X : Y) \leq H(X)$, so Bob "wins" if H(X : Y) = H(X). (And classical states can be easily distinguished.)

Quantumly: non-orthogonal quantum states <u>cannot</u> be distinguished with certainty! (Remember the BB84 quantum key-distribution protocol.)

After Alexander Holevo (physicist; 1943 -).

Theorem

Suppose Alice prepares ρ_X for $X=1,\ldots,n$ with probability p_1,\ldots,p_n . Suppose Bob performs a measurement on ρ_X with outcome Y. Then:

$$H(X:Y) \leqslant S(\rho) - \sum_{i} p_{i} \log S(\rho_{i})$$

where $\rho = \sum_{i} p_{i} \rho_{i}$.

After Alexander Holevo (physicist; 1943 -).

Theorem

Suppose Alice prepares ρ_X for $X=1,\ldots,n$ with probability p_1,\ldots,p_n . Suppose Bob performs a measurement on ρ_X with outcome Y. Then:

$$H(X:Y) \leqslant S(\rho) - \sum_{i} p_{i} \log S(\rho_{i})$$

where $\rho = \sum_{i} p_{i} \rho_{i}$.

One can also show that $S(\rho) - \sum_i p_i \log S(\rho_i) \leq H(X)$ (with equality iff the states are orthogonal). Thus, in general Bob cannot learn X with certainty.