MATH 127 Calculus for the Sciences

Lecture 5

September 12, 2025

Today's lecture

Office hours/Question session

Mon: 1430-1520 (before class, in my office MC5331)

Wed: after class in this room (but make sure you get to your quiz in time)

Fri: after class in this room

Tutoring center

In person MC 3022 Online on Teams

Last time Integration, fundamental theorem of calculus

This time

Course note coverage Section 1.1.4, 1.1.5

An example of how to use FTC

Anti-derivatives

Indefinite integrals

Quiz 2 is next Wednesday!

Coverage:

- 1. Basic derivatives, e.g. deriative of sin(x) is...?
- 2. Tangent line, e.g. find point-slope form of tangent of y = ... at x = ...
- 3. Tangent approximation, e.g. if tangent at x = 3 is ..., approximate the value at x = 3.01.
- 4. Differentials, e.g. what is dy is y = ...?
- 5. Differential equaiton, e.g. is ... a differential equation? What's its order? Is ... a solution to it?
- 6. Definite integrals, e.g. evaluate $\int_0^3 x dx$ (we will do this today).
- 7. Net change problem, e.g. If F'(x) = ..., what is ΔF as x goes from 3 to 5?

Recall from last time.

Theorem (The Fundamental Theorem of Calculus (FTC)) If F(x) is a differentiable function with F'(x) = f(x), then

$$F(x)\Big|_a^b = \int_a^b f(x)dx.$$

Question If an object has speed S(t) = 2t at time t, what is the distance it travelled from time 0 to time 3?

Denote the distance function by D(t). We want to find

$$D(t)\Big|_{0}^{3} = D(3) - D(0),$$

but we do not know what D(t) is.

Theorem (The Fundamental Theorem of Calculus (FTC)) If F(x)is a differentiable function with F'(x) = f(x), then

$$F(x)\Big|_a^b = \int_a^b f(x)dx.$$

Want:

$$D(t)\Big|_{0}^{3} = D(3) - D(0) = \boxed{???}$$

Know: The derivative of D(t) is exactly

By FTC, we have

$$= \int_{1}^{3} \boxed{ } dt.$$

So now we want:

Theorem (The Fundamental Theorem of Calculus (FTC)) If F(x) is a differentiable function with F'(x) = f(x), then

$$F(x)\Big|_a^b = \int_a^b f(x)dx.$$

Now we want:

$$\int_{1}^{3} 2t dt = \boxed{???}$$

Know: If we take $F(t) = \begin{bmatrix} \\ \\ \end{bmatrix}$, then

$$F'(t) = 2t.$$

By FTC, we have

$$\int_{1}^{3} 2t dt = \boxed{}$$

And the right-hand side is equal to:

Theorem (The Fundamental Theorem of Calculus (FTC)) If F(x) is a differentiable function with F'(x) = f(x), then

$$F(x)\Big|_a^b = \int_a^b f(x)dx.$$

Written more concisely, we can say

$$D(t) \Big|_0^3 = \int_0^3 S(t)dt \qquad \text{(by FTC)}$$
$$= \int_0^3 2tdt$$
$$= (t^2) \Big|_0^3 \qquad \text{(by FTC again)}$$
$$= 3^2 - 0^2 = 9,$$

Question If we know D'(t) = 2t, and $(t^2)' = 2t$, then can we just say

$$D(t) = t^2$$
?

Anti-derivatives

Definition Suppose F'(x) = f(x), then we say F(x) is an **anti-derivative** of f(x).

Example If
$$f(x) = 2x$$
, an anti-derivative of $f(x)$ is

another anti-derivative of $f(x)$ is

a third anti-derivative of $f(x)$ is

If we know F(x) is the anti-derivative of f(x), then all other anti-derivatives are of form

Indefinite integral

Definition Suppose F(x) is the anti-derivative of f(x), then the family of anti-derivatives of f(x) is denoted by

$$\int f(x)dx = F(x) + C$$

where C is called the **constant of integration**.

Given any F(x) and C with F'(x) = f(x), we have

$$\int_{a}^{b} f(x)dx = \boxed{.}$$

So no matter which C we choose, it will always cancel out and we always get the same answer.

Common anti-derivatives

Keep the following in mind.

1.
$$\int 0dx = C;$$

2.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C;$$

$$3. \int e^x = \boxed{};$$

4.
$$\int \cos x =$$

5.
$$\int \sin x =$$

If k is a number and f,g are two functions with anti-derivatives F,G respectively, then

$$\int (k \cdot f(x) + g(x)) dx = k \cdot F(x) + G(x) + C$$

because the derivative of kF(x) + G(x) is

Question If my speed is $(6x^2 + 2e^x)$ m/s, what could my distance function be at time x?

My distance function must be an anti-derivative of my speed.

An anti-derivative of $6x^2 + 2e^x$ is

,

so we can say

$$\int (6x + 2e^x)dx = \boxed{}$$

Another anti-derivative of $6x^2 + 2e^x$ is

so we can say

$$\int (6x + 2e^x)dx = \boxed{}$$

Conclusion: my distance function is...

Question Which of the following sentences is correct?

Suppose $f'(x) = 3x^2$, but we are not sure what f(x) is exactly....

- 1. f(x) is an anti-derivative of $3x^2$.
- 2. x^3 is an anti-derivative of $3x^2$.
- 3. $f(x) = x^3$.
- 4. $f(x) = x^3 + C$.
- 5. $f(x) = x^3 + C$ for some number C.
- 6. Any anti-derivative of $3x^2$ is of form f(x) + C.
- 7. Any anti-derivative of $3x^2$ is of form $x^3 + C$.
- 8. Any anti-derivative of $3x^2$ is of form $x^3 + 1 + C$.

Survey

Give some feedback for your experience so far.

