THIS IS A REPRINT WITHOUT CHANGE OF ORDP 20-244

RESEARCH AND DEVELOPMENT OF MATERIEL

ENGINEERING DESIGN HANDBOOK

AMMUNITION SERIES SECTION 1, ARTILLERY AMMUNITION—GENERAL

WITH TABLE OF CONTENTS, GLOSSARY AND INDEX FOR SERIES

LC 263 .U52p no. 706-244

HEADQUARTERS, U. S. ARMY MATERIEL COMMAND

SEPTEMBER 1963

UC 263 .U52p no.706-244 1963

Section 1, artillery 6.3 ammunition, general

#29252702

HEADQUARTERS UNITED STATES ARMY MATERIEL COMMAND WASHINGTON 25, D.C.

30 September 1963

AMCP 706-244, Section 1, Artillery Ammunition--General, forming part of the Ammunition Series of the Army Materiel Command Engineering Design Handbook, is published for the information and guidance of all concerned.

(AMCRD)

FOR THE COMMANDER:

SELWYN D. SMITH, JR. Major General, USA Chief of Staff

OFFICIAL:

R. O. DAVIDSON

Colonel, GS

Chief, Administrative Office

DISTRIBUTION: Special

FOREWORD

The ARTILLERY AMMUNITION SERIES is being issued as an interim publication of the Ordnance Engineering Design Handbook, a comprehensive sequence of publications planned to treat the entire field of Ordnance design. When the Handbook was begun it was found to be impractical to integrate into it the series relating to Artillery Ammunition already in preparation under the direction of Picatinny Arsenal. Although they were similar, the objectives of the two projects were not identical. The subject breakdown adopted for the Handbook would have necessitated redistribution of the material of this series throughout several of the planned volumes of the Handbook, with consequent delay in publication of much of the material. It was therefore decided to issue this material intact as an interim publication to make it available as early as possible. The material appearing in this series will be gradually superseded as pertinent volumes of the Ordnance Engineering Design Handbook become available.

Material for this series was prepared by the Technical Writing Service of the McGraw-Hill Book Company, under Contract DAI-28-017-501-ORD-(P)-912. Technical supervision and much of the basic information were furnished by Picatinny Arsenal. Engineers from other Ordnance Design Centers also supplied much information, and aided in the review. In fact, so many persons have given time and energy to this project that it has been difficult to compile a complete list of acknowledgements.

The following were responsible for the conception and direction of the project.

ARTILLERY AMMUNITION SECTION, ARTILLERY AMMUNITION AND PACKING DEVELOPMENT LABORATORY, SAMUEL FELTMAN AMMUNITION LABORATORIES, PICATINNY ARSENAL

Alfred F. Teitscheid

Chief, Artillery Ammunition Branch

Wilder R. Carson

Chief, Artillery Ammunition Branch

Roy H. Wood

Chief, Artillery Ammunition Laboratory A

MAJOR CONTRIBUTORS

George Demitrack	Picatinny Arsenal	Interior Ballistics, Propellants
Lars Enequist	Ballistics Research Laboratory	Lethality Criteria
Henry P. Hitchcock	Ballistics Research Laboratory	Exterior Ballistics
Dr. Robert H. Kent	Ballistics Research Laboratory	Exterior Ballistics
Charles Lenchitz	Picatinny Arsenal	Thermodynamics of Explosive Materials
Prof. Arthur F. MacConochie	Prof. of Mechanical Engineering, Uni- versity of Virginia	Manufacturing Methods
Arnold O. Pallingston	Picatinny Arsenal	Physical Testing of Explosive Materials
Richard E. Todd	Picatinny Arsenal	Quality Control
Col. Herman U. Wagner, USA (Retired)		General Contributor and Consultant
Murray Weinstein	Picatinny Arsenal	Physical Testing of Explosive Materials
Dr. Lewis Zernow	Ballistics Research Laboratory	Shaped Charge Theory, Blast
Col. Herman H. Zornig, USA (Retired)		Ordnance Specialist and Consultant

GENERAL ASSISTANCE

Kenneth H. Abbott	Watertown Arsenal	Kinetic Energy Ammunition
Theodor Advokat	Picatinny Arsenal	Special Purpose Shell
Norman E. Beach	Picatinny Arsenal	Chemical Testing of Explosive Materials
Donald R. Beeman	Picatinny Arsenal	Head Ammunition Design Branch

GENERAL ASSISTANCE (cont)

Willard R. Benson	Picatinny Arsenal	Lethality Theory
Warren Blittersdorf	Frankford Arsenal	Cartridge Case Design, Manufac- turing Methods
Joseph I. Bluhm	Watertown Arsenal	Rotating Bands
William Byrne	Frankford Arsenal	Cartridge Case
John E. Capell	Picatinny Arsenal	Ammunition Design Standards
Herbert N. Cohen	Picatinny Arsenal	Pyrotechnics
Corwin S. Davis	Picatinny Arsenal	Chief Propellant Section
Abraham L. Doríman	Picatinny Arsenal	Pyrotechnics
Cyrus G. Dunkle	Picatinny Arsenal	Shaped Charge Ammunition
Leonard H. Eriksen	Picatinny Arsenal	Explosives Chemistry Laboratory
Harold N. Euker	Frankford Arsenal	AP Shell
Patrick Falivene	Picatinny Arsenal	Propellant Ignition
Arthur P. Field	Picatinny Arsenal	Inspection
Al Fox	Frankford Arsenal	Manufacturing Methods
Leo J. Frey, Jr.	Picatinny Arsenal	Special Purpose Shell
Robert Frye	Picatinny Arsenal	Head Chemical Branch
Andrew J. Galko	Picatinny Arsenal	GB Shell
Thomas Hall	Picatinny Arsenal	HEP Shell
Dr. David Hart	Picatinny Arsenal	Head Pyrotechnics Laboratory
Floyd Hill	Ballistics Research Laboratory	Tank Vulnerability
Sidney Jacobson	Picatinny Arsenal	Kinetic Energy Ammunition

GENERAL ASSISTANCE (cont)

William Josephs	Picatinny Arsenal	Propellants
Kurt Kupferman	Picatinny Arsenal	Shaped Charge Ammunition
Robert G. Leonardi	Picatinny Arsenal	Primer Ignition
William L. Lukens		Formerly in charge of Ammunition De- sign Branch, Picatinny Arsenal
Ulysses S. MacDonald	Picatinny Arsenal	Inspection
James R. McKay	Picatinny Arsenal	Special Purpose Shell
Harold Markus	Frankford Arsenal	AP Shell
Anthony Muzicka	Watervliet Arsenal	Rifling and Gun Chambers
Jacob H. Niper	Picatinny Arsenal	Inspection
Karl G. Ottoson	Picatinny Arsenal	Asst. Chief, Chemical Test Section
Lawrence W. Pell	Picatinny Arsenal	High Explosives
Ballard E. Quass	Picatinny Arsenal	Special Purpose Shell
Lt. Richard Rhiel	D & P S Aberdeen Proving Grounds	Plate Penetration Monograms
Dr. William H. Rinkenbach		Formerly in charge of Picatinny Arsenal
Gilbert E. Rogers	Picatinny Arsenal	General Artillery Ammunition Design
Max Rosenberg	Picatinny Arsenal	Ammunition Design
William M. Rowe	Picatinny Arsenal	HEP Shell
Samuel Sage	Picatinny Arsenal	Chief, High Ex- plosives Section
Marvin B. Schaffer	Picatinny Arsenal	Canister Shell
Arthur B. Schilling	Picatinny Arsenal	Foreign Ammunition

GENERAL ASSISTANCE (cont)

Robert M. Schwartz	Picatinny Arsenal	General Ammunition Design
William F. Shirk	Picatinny Arsenal	Canister Shell
Morgan Smith	Ballistics Research Laboratory	Aircraft Vulnera- bility
Joseph V. Sperazza	Ballistics Research Laboratory	Blast Theory
Joseph Sterne	Ballistics Research Laboratory	Lethality, Frag- mentation
Theodore W. Stevens	Picatinny Arsenal	High Explosives
Noah A. Tolch	Ballistics Research Laboratory	Lethality, Frag- mentation
Paul B. Tweed	Picatinny Arsenal	High Explosives
Robert J. Vogel	Picatinny Arsenal	Assistant, Research and Development Section
Leo Volkheimer	Picatinny Arsenal	WP Shell
Stanley Wachtell		Chief, Physical Test Section
Garry Weingarten	Picatinny Arsenal	Head, Chemical Research Section Pyrotechnics Laboratory
Edward Wurzell	Picatinny Arsenal	Interior Ballistics

PREFACE

This series is a compilation of available data on the design of artillery ammunition. It is intended to introduce the graduate engineer to the art of ammunition design and to serve as a ready reference for the practicing artillery ammunition designer.

Information contained in these publications has been obtained from development reports and drawings of ammunition items, from proof firing records, and from research reports by United States and British government agencies. The information obtained from these sources was corroborated and supplemented by means of direct interviews and correspondence with personnel of U. S. government and private research and design agencies.

This series consists of six sections. Section 1 is an introduction to the general subject of ammunition and its design. It is primarily intended to familiarize newcomers to the field with the nomenclature and classification of ammunition items. For convenience in publication, the features applying to the entire series, such as Table of Contents, Glossary and Index, have been bound with Section 1.

Section 2 is concerned with terminal ballistics, or the production of effect by the various types of ammunition. Section 3 deals with the control of flight, and exterior ballistic design of both fin-stabilized and spin-stabilized rounds.

Section 4, on design for projection of ammunition, includes the design of propellants for desired interior ballistic characteristics, stress analysis, and the design of cartridge case, gun chamber, and rifling and rotating bands.

Section 5 describes the inspection aspects of artillery ammunition design. It is included to acquaint the designer with dimensioning practices and the nature of the limitations placed on design by the requirements of gaging and quality control.

Section 6, on manufacturing methods, has been included to give the neophyte designer some insight into the overall problem of the manufacture of metal parts of ammunition items, since methods of manufacture impose limitations upon the design of such items.

Much effort has been spent in locating and verifying this data. However, in spite of this, it is probable that valuable sources have been overlooked and that a certain percentage of the information is already obsolescent because of the rapid advances being made in the field. It is hoped that the users of the Artillery Ammunition Series will inform the Office of Ordnance Research, Box CM, Duke Station, Durham, North Carolina, of any omissions or errors that they may notice.

table of contents

ection	Page	Paragraphs
FOF	REWORD iii	
PRE	EFACE ix	·
1	ARTILLERY AMMUNITION — GENERAL1-1	
	Types and Classification of Complete Rounds 1-1	1-1 to 1-12
	Types of Projectiles1-2	1-13 to 1-21
	Projectile Components 1-3	1-22 to 1-28
	Fuzes, Boosters, and Detonators 1-4	1-29 to 1-37
	Explosives for Ammunition 1-6	1-38 to 1-41
	Propelling Charges1-6	1-42 to 1-50
	General Design Requirements 1-8	1-51 to 1-54
	References and Bibliography 1-8	
2	DESIGN FOR TERMINAL EFFECTS . 2-1	
	Introduction2-1	2-1 to 2-16
	Blast Effect	2-17 to 2-49

Section	Page	Paragraphs
2	DESIGN FOR TERMINAL EFFECTS (cont)	
8	References and Bibliography 2-20	÷:
	Characteristics of High Explosives 2-22	2-50 to 2-70
	Shaped Charge Ammunition 2-30	2-71 to 2-153
	Fragmentation2-93	2-154 to 2-207
	References and Bibliography 2-113	
	Kinetic Energy Ammunition for the Defeat of Armor2-117	2-208 to 2-265
	References and Bibliography 2-148	
	Canister Ammunition 2-150	2-266 to 2-278
	References and Bibliography 2-155	•
	High-Explosive Plastic (HEP) Shell 2-156	2-279 to 2-291
	References and Bibliography 2-159	
	Special Purpose Shell 2-160	2-292 to 2-371
	References and Bibliography 2-199	
3	DESIGN FOR CONTROL OF FLIGHT CHARACTERISTICS 3-1	
	Design for Precision 3-1	3-1 to 3-22
	References and Bibliography 3-33	
	Design for Maximum Range or Minimum Time of Flight 3-38	3 -23 to 3-48
	References and Bibliography 3-77	
	Projectile Geometry 3-81	3-49 to 3-64
4	DESIGN FOR PROJECTION 4-1	
	Propellants and Interior Ballistics 4-1	4-1 to 4-75
· _	Cartridge Case and Gun Chamber Design 4-117	4-76 to 4-116
	Peteronees and Dibliography 4 197	

Section	Page	Paragraphs
4	DESIGN FOR PROJECTION (cont)	
	Rotating Band and Rifling Design4-149	4-117 to 4-154
	References and Bibliography 4-176	
	Stress in Shell	4-155 to 4-177
	References and Bibliography 4-190	
5	INSPECTION ASPECTS OF ARTIL- LERY AMMUNITION DESIGN5-1	
	Quality Assurance Aspects of Ammunition Design5-1	5-1 to 5-21
	References and Bibliography 5-12	
	Effect of Dimensioning and Tolerancing on Inspection5-13	5-22 to 5-28
6 .	MANUFACTURE OF METALLIC COMPONENTS OF ARTILLERY AMMUNITION 6-1	
	Introduction	6-1 to 6-10
	Forging of HE Shell 6-4	6-11 to 6-33
	Machining of HE Shell6-14	6-34 to 6-56
	Cold Extrusion of HE Shell6-21	6-57 to 6-68
	Compromise Method of Shell Forming 6-25	6-69 to 6-70
	Manufacture of High-Explosive Plastic Shell 6-26	6-71 to 6-77
	Manufacture of Armor-Piercing Shot and Caps 6-29	6-78 to 6-86
	The Manufacture of Hypervelocity Armor-Piercing (HVAP) Shot6-35	6-87 to 6-91
	The Manufacture of Tungsten Carbide Cores6-36	6-92 to 6-95
	The Manufacture of Brass Cartridge Cases 6-37	6-96 to 6-103
	The Manufacture of Drawn-Steel Cartridge Cases	6-104 to 6-122

Section		Page	Paragraphs
6	MANUFACTURE OF METALLIC COMPONENTS OF ARTILLERY AMMUNITION (cont)		
	The Manufacture of Trapezoidal- Wrapped Steel Cartridge Cases	6-46	6-123 to 6-131
	The Manufacture of Perforated Cartridge Cases	6-48	6-132 to 6-133
	References and Bibliography	6-49	
GLOS	SARY	G-1	
INDE	.	I-1	

- ABSOLUTE DEVIATION: The shortest distance between the center of the target and the point where a projectile hits or bursts.
- ABSOLUTE ERROR: Shortest distance between the center of impact or the center of burst of a group of shots and the point of impact or burst of a single shot within the group.
- ACCURACY LIFE: The estimated average number of rounds that a particular weapon can fire before its tube becomes so worn that its accuracy tolerance is exceeded.
- ACCURACY OF FIRE: The measurement of the precision of fire expressed as the distance of the center of impact from the center of the target.
- ADIABATIC FLAME TEMPERATURE: The temperature a combustible system would attain if all the energy of combustion went into the formation of gas without energy loss to the surroundings.
- AMATOL: High explosive made of a mixture of ammonium nitrate and trinitrotoluene; sometimes used as a bursting charge in high-explosive projectiles.
- AMMONAL: High-explosive substance made of a mixture of ammonium nitrate, trinitrotoluene, and flaked or powdered aluminum. Ammonal is sometimes used as a bursting charge in high-explosive projectiles, and produces bright flashes on explosion.
- AMMUNITION DATA CARD: Identification card prepared for each individual lot of ammunition manufactured, giving the type and composition of the ammunition, and identifying its components by lot number and manu-

- facturer. When necessary, it may also include instructions for handling the ammunition.
- AMMUNITION IDENTIFICATION CODE: Code symbol (for example, P5HBA) assigned to each ammunition item for identification and to facilitate the supply of ammunition to the field. The first two characters refer to the pertinent ordnance catalog, and the remaining three characters to the weapon group, type and model, and packaging. In small arms ammunition the grade is indicated.
- AMMUNITION LOT NUMBER: Code number that identifies a particular quantity of ammunition from one manufacturer. The number is assigned to each lot of ammunition when it is manufactured.
- ANGLE OF DEPARTURE: Angle between the line of sight and the axis of the bore of a gun at the instant the projectile leaves the muzzle. Angle of departure is the sum of the angles of site, elevation, and vertical jump.
- ANGLE OF FALL: Angle between the horizontal and the tangent to the trajectory at the point at which a projectile falls.
- ANGLE OF IMPACT: Acute angle between the tangent to the trajectory at the point of impact of a projectile and the plane tangent to the surface of the ground at the point of impact; angle at which a projectile strikes the ground or a target.
- ANGLE OF INCIDENCE: Angle at which a projectile strikes a surface; acute angle between the tangent to the line of impact of a projectile and the perpendicular to the surface of the ground at the point of impact. It is the complement of the angle of impact.

- AREA TARGET: Target for gunfire or bombing covering a considerable space, such as ammunitions factory, airport, or freight yard. An area target differs from a point target, which is a particular object or structure.
- ARMING: As applied to fuzes, the changing from a safe condition to a state of readiness for initiation. Generally a fuze is caused to arm by acceleration, rotation, clock mechanism, or air travel, or by combinations of these.
- ARMOR: Protective covering, especially metal plates used on ships, tanks, motor vehicles, etc.
- ARMOR-PIERCING: A term applied to bullets and projectiles designed to pierce armor plate.
- ARMOR-PIERCING CAPPED: Term applied to armor-piercing projectiles which have a steel cap in front of the projectile point, to assist in defeating face-hardened armor plate.
- AUTOMATIC (Self-Acting): Moving or acting by itself. After the first round is fired, an automatic weapon fires, extracts, ejects, and reloads without application of power from an outside source, repeating the cycle as long as the firing mechanism is held in the proper position. Automatic action involves repeating the cycle of operation, as distinguished from semi-automatic, which is restricted to one complete cycle at a time.
- AUTOMATIC FEED MECHANISM: Mechanism in an automatic gun that puts fresh shells into the chamber in position for firing.

В

- BACK-BLAST: Rearward blast of gases from the breech of recoilless weapons and rockets upon the burning of the propellant charge. It is sometimes referred to as breech-blast.
- BALLISTIC CAP: Cap for projectile, designed to improve its ballistic efficiency.
- BALLISTIC COEFFICIENT: Measure of the ability of a missile to overcome air resistance.

- BALLISTIC CONDITIONS: Conditions which affect the motion of a projectile in the bore and through the atmosphere, including muzzle velocity, weight of projectile, size and shape of projectile, rotation of the earth, density of the air, elasticity of the air and the wind.
- BALLISTIC CURVE: Actual path or trajectory of a bullet or shell.
- BALLISTIC DENSITY: Computed constant air density that would have the same total effect on a projectile during its flight as the varying densities actually encountered.
- BALLISTIC EFFICIENCY: Ability of a projectile to overcome the resistance of the air. Ballistic efficiency depends chiefly on the weight, diameter, and shape of the projectile.
- BALLISTIC LIMIT: Velocity at which a given type of projectile will perforate a given thickness and type of armor plate at a specified obliquity.
- BALLISTIC MORTAR: Instrument used to determine the relative energy obtainable from explosive materials.
- BALLISTICS: The science of the motion of projectiles.
- BALLISTIC TEMPERATURE: A computed constant temperature that would have the same total effect on a projectile traveling from the gun to the target as the varying temperatures actually encountered.
- BALLISTIC WAVE: Audible disturbance or wave caused by the compression of air ahead of a projectile in flight.
- BALLISTIC WIND: Assumed constant wind that would have the same total effect on a projectile traveling from the gun to the target as the varying winds actually encountered.
- BALLISTITE: Smokeless powder used as a propelling charge in small-arms and mortar ammunition.
- BALLOTING: The bounding from side to side of a projectile in the bore of a gun.

- BASE EJECTION SHELL: Type of special purpose shell which functions by expelling its filler out of the base of the shell. Expulsion is usually achieved by a small charge of propellant, called an expelling charge.
- BASE LINE: Line of known length and direction between two points whose locations are known; used in fire control.
- BASE PLUG: Seal in base of projectile.
- BASE OF TRAJECTORY: Straight horizontal line from the center of the muzzle of a weapon to the point in the downward curve of the path of a projectile that is level with the muzzle.
- BASE SPRAY: (See SPRAY.)
- BIOLOGICAL AGENT: Viruses, any of certain classifications of micro-organisms and toxic substances, derived from living organisms used to produce death or disease in man, animals, and growing plants.
- BIOLOGICAL WARFARE: Tactics and techniques of conducting warfare by use of biological agents.
- BLACK POWDER: A sensitive, easily ignitible explosive mixture, which produces dense smoke; few remaining military uses, such as igniters, expelling and blank-fire charges. Black powder was used as a propellant before the advent of so-called smokeless powder.
- BLANK AMMUNITION: Ammunition containing power but no projectile. Blank ammunition is used in training, in signaling, and in firing salutes.
- BLAST: Sudden air pressure created by the discharge of a gun or the explosion of a charge.
- BLASTING CAP: Small cylindrical case with a thin wall in which is enclosed a sensitive explosive, such as mercury fulminate, used as a detonator to set off another explosive charge. The explosive in the blasting cap is fired either by a burning fuse or by electricity. Also called a detonator.

- BLAST CUBE: Angle iron frame covered with aluminum sheets; used for testing effectiveness of blast.
- BLAST TUBE: Device used for the study of shock waves, and for calibration of airblast gages.
- BLASTING MACHINE: Small hand-powered generator for electrically firing one or more detonators or squibs to explode or ignite munitions or series of munitions.
- BLOWBACK: Escape, to the rear and under pressure, of gases formed during the firing of a gun. Blowback may be caused by a defective breech mechanism, a ruptured cartridge, or a faulty primer.
- BOAT-TAIL: Rear end of a projectile that is tapered or cone-shaped, and not cylindrical, as in a projectile having a square base.
- BOOSTER: High-explosive element, sufficiently sensitive to be actuated by small explosive elements in a fuze, and powerful enough to cause detonation of the main explosive filling.
- BORE: The cylindrical, and usually rifled, portion of the gun tube, or barrel interior, extending from the forcing cone to the muzzle. Bore is used both for the inside surface of the barrel or tube of a gun, with its rifling, and for the cylindrical space enclosed by that portion of the tube.
- BORE IMPRESSION: Impression of the bore of a gun tube, made with a plastic substance in order to determine the condition of the rifling.
- BORESAFE FUZE: Type of fuze having an interruptor in the explosive train that prevents a functioning until after the projectile has cleared the muzzle of a weapon.
- BOURRELET: Finely machined band or ring of metal just behind the ogive of a projectile, designed to support the front portion of the projectile by riding the lands as the projectile travels through the bore of a gun.
- **BOW WAVE: (See BALLISTIC WAVE.)**

BREECH: The rear part of the bore of a gun, especially the opening that permits the projectile to be inserted at the rear of the bore.

BREECH-BLAST: (See BACK-BLAST.)

BREECHBLOCK: Movable steel block that closes the rear part of the barrel in a firearm.

BRIDGE WAVES: Mach waves caused by the interaction of two shock waves to form a third that bridges the volume between the original two.

BRISANCE: Shattering power of high explosives.

BURNING (of propellant): (See LINEAR BURNING RATE.)

BURST: Explosion of a projectile in the air, or when it strikes the ground or target.

BURSTER: Explosive charge used to break open and spread the contents of chemical projectiles, bombs, or mines.

BURSTER TUBE: Tube that holds the burster in a chemical projectile.

BURSTING CHARGE: Quantity of explosive which breaks the casing of a projectile to produce demolition, fragmentation, or chemical action. (See EXPLOSIVE CHARGE.)

C

CALIBER: (1) Diameter of the bore of a gun. In rifled gun bores the caliber is obtained by measuring between opposite lands. A caliber .45 revolver has a barrel with a land diameter 45/100 of an inch. (2) Diameter of a projectile. (3) Unit of measure used to express the length of the bore of a weapon. The number of calibers is determined by dividing the length of the bore of the weapon, from the breech face of the tube to the muzzle, by the diameter of its bore. A gun tube whose bore is 40 feet (480 inches) long and 12 inches in diameter is said to be 40 calibers long.

CANISTER: (1) Metal cylinder containing metal fragments which are scattered when the cylinder breaks. (2) Cylinder containing materials for special terminal effects, such as smoke, propaganda leaflets, chaff, etc.

CANNISTER AMMUNITION: Shell containing preformed metal fragments which are dispersed by the centrifugal force caused by the shell's rotation.

CANNELURE: (1) A ring-like groove in the jacket of a bullet which provides a means of securely crimping the cartridge case to the bullet; analogous to the crimping groove in artillery ammunition. (2) Ring-like groove for locking the jacket of an armor-piercing bullet to the core. (3) Ring-like groove in the rotating band of a projectile, intended to lessen the resistance offered to the gun riflings. (4) Groove around the base of the cartridge case, where the extractor takes hold.

CANNON: (1) Fixed or mobile weapon, larger than small arms, that ejects its projectile by the action of an explosive. Cannon incclude guns, howitzers, and breech-loading mortars. (2) That portion of such a weapon required to fire a projectile (that is, tube, breech mechanism, and firing mechanism), as contrasted to that portion which supports the weapon and which is called the carriage or mount.

CANT: A leaning or tilt, to one side, of any object; militarily, the sidewise tilting of a gun.

CAP: (1) Nosepicce on a projectile. (2) (See BLASTING CAP.)

CARTRIDGE: Round of ammunition wherein the propellant and primer are contained in a casing and in which the propellant, primer, and projectile are assembled, stored, shipped, and issued as a complete unit.

CARTRIDGE BAG: Cloth bag holding the propelling charge for some types of cannon.

CARTRIDGE CASE: Container that holds the primer and propellant, and to which the projectile may be affixed.

- CAST LOADING: Loading of HE shell by the pouring of molten high-explosive filler into shell body.
- CAVITY CHARGE: (See SHAPED CHARGE.)
- CENTER OF BURST: Point in the air about which the bursts of several projectiles, from rounds fired under like conditions, are evenly distributed.
- CENTER OF BURST ERROR: Distance between the target and center of burst.
- CENTER OF DISPERSION: Theoretical center of hits or bursts that would have been made if an unlimited number of shots had been fired with the same data. Actually it has to be considered the center of impact or bursts of all shots already fired.
- CHAFF: Electromagnetic-wave reflectors in the form of narrow metallic strips, used for creating echoes with which to confuse the enemy; also called window.
- CHAFF SHELL: Hollow projectile containing a filler of chaff. (See CHAFF.)
- CHAMBER: Part of a gun in which the charge is placed; in a cannon, that space between the obturator or breechlock and the forcing cone. Nominally it is the space occupied by the cartridge case.
- CHAMBER CAPACITY: Space available for gas expansion when the projectile is seated in position; measured from the face of the closed breechblock, around the base of the projectile, to the rear of the rotating band (or obturator). In fixed ammunition, it is the volume of the cartridge case behind the projectile.
- CHEMICAL AGENT: Solid, liquid, or gas whose chemical properties produce lethal, injurious, or irritant effects; a screening or colored smoke; or an incendiary agent. (War gases, smokes, and incendiaries are the three main groups.)
- CHOKING GAS: Casualty producing gas which causes irritation and inflammation of the bronchial tubes and lungs. Phosgene is an example of this type of gas.

- CHORD: Straight line parallel to the centerline of the projectile from the leading edge to the trailing edge of a fin; the length of that line.
- CHRONOGRAPH: Instrument for measuring and graphically recording small intervals of time; frequently used for measuring velocity of projectiles.
- CLASSIFICATION OF DEFECTS: Enumeration of possible defects of a product classified according to their importance.
- CLOSED BOMB: Apparatus used for determining the thermochemical characteristics of combustible materials. Also called closed chamber; bomb calorimeter.
- COEFFICIENT OF FORM: Factor introduced into the ballistic coefficient of a projectile, based on its shape.
- COLORED MARKER SHELL: Projectile containing a colored dye which is ejected by a burster charge; used for spotting, marking, and signaling.
- COMPLETE PENETRATION: (1) In the Army, penetration obtained when the projectile in the target or light through the target can be seen from the rear of the target. (2) In the Navy, penetration obtained when the projectile passes through the target intact or a major portion of the projectile passes through.
- COMPLETE ROUND: (1) A complete round of separate-loading artillery ammunition consists of a primer, propelling charge, and (except for blank ammunition) a projectile.

 (2) A complete record of fixed or semifixed ammunition comprises a primer, propelling charge, cartridge case, and a projectile.
- COMPUTED MAXIMUM PRESSURE: For any type of gun, the theoretical value of maximum pressure computed by interior ballistics formulas. When a new gun of the type in question is fired under standard conditions, with a propelling charge that will give a projectile its rated muzzle velocity, this is the pressure which should be developed.

- CONFINEMENT: Degree of physical restriction to passage of detonation wave through explosive material.
- COOK-OFF: Functioning of a chambered round of ammunition, initiated by the heat of the weapon.
- COPPER CRUSHER GAGE: Device used to measure pressure developed in gun chamber by measuring the deformation of a copper cylinder.
- COPPERING: Metal fouling left in the bore of a weapon by the rotating band or the jacket of a projectile.
- CORDITE: Double-base powder in the form of cords, composed of guncotton, nitroglycerin, and mineral jelly, used by some foreign nations as a propellant in rounds of ammunition.
- COUNTERRECOIL: Forward movement of a gun returning to firing position after recoil.
- CROSS-WIND FORCE (LIFT): Component of air resistance in a direction perpendicular to the motion of the center of gravity, in the plane of yaw.
- CRYSTAL DENSITY: Maximum density attainable for a given substance.

D

- DECELEROTOR: Device for slowing the rotation of parachute-containing projectile, before ejection of the parachute.
- DEFLAGRATION: Rapid reaction (explosion) with evolution of considerable heat, accompanied by some disruptive effect but less violent than a detonation.
- DEGRESSIVE GRANULATION: Propellant grain which burns with a continually decreasing surface until the grain is completely consumed.
- DELAY FUZE: Fuze that has a delay element incorporated in the fuze train, permitting the missile to penetrate the target a dis-

- tance corresponding to the delay. Such fuzes are used to permit penetration of the target before detonation, or for mining effect.
- DESIGN PROCEDURE: Outline of steps to follow in designing an item.
- DETERRENT: Material diffused into the surface of propellant grains to control burning.
- DETONATE: Explode suddenly and violently.
- DETONATING AGENT: Explosive used to set off another explosive. Fulminate of mercury and tetryl are used as detonating agents to set off other less sensitive explosives.
- DETONATING CHARGE: Charge used to set off a high-explosive charge.
- DETONATING CORD: Flexible fabric tube containing a filler of high explosive that is set off by a blasting cap or by an electric detonator. It has an extremely high rate of explosion, and is used to set off other high-explosive charges. The detonating cord currently in use is known commercially as primacord.
- DETONATING EXPLOSIVE: (See HIGH EXPLOSIVE.)
- DETONATION: Extremely rapid reaction with evolution of considerable heat accompanied by considerable violently disruptive effect and intense shock wave. (See also DEFLA-GRATION.)
- **DETONATION FRONT: (See WAVE FRONT.)**
- DETONATION RATE: Velocity at which the detonation wave travels through an explosive material.
- DETONATION WAVE: (See SHOCK WAVE.)
- DETONATOR: Sensitive explosive used to set off an explosive train, as well as the mechanism and container connected therewith.
- DEVI.OPED MUZZLE VELOCITY: The actual muzzle velocity produced by any gun.
- DOUBLE-BASE POWDER: (See DOUBLE-BASE PROPELLANT.)

- DOUBLE-BASE PROPELLANT: Propellant whose principle active ingredients are nitrocellulose and nitroglycerin. (See PROPELLANT.)
- DRAG: Component of air resistance in the direction opposite to that of the motion of the center of gravity of a projectile.
- DRILL AMMUNITION: Ammunition without an explosive charge, used in training and practice.
- DUMMY PROJECTILE: Shell that has no explosive charge. Dummy projectiles are used for practice and training purposes.
- E. C. BLANK FIRE: (See E. C. SMOKELESS POWDER.)
- E. C. SMOKELESS POWDER: Orange or pink explosive powder, resembling coarse sand. It is used as a charge in small arms, in blank cartridges. Also called blank-fire powder or E. C. blank fire.
- ECCENTRICITY: Distance from center line to center of gravity of projectile.
- ELASTIC STRENGTH PRESSURE: The computed internal gas pressure in a gun which, at the section under consideration, will stress the metal in some layer of the wall tangentially, up to the minimum elastic limit which is prescribed for the metal from which the member is made.
- ELECTRIC PRIMER: Metallic device containing a small amount of a sensitive explosive or charge of black powder which is actuated by energizing an electric circuit. It is used for setting off explosive or propelling charges.
- ELECTRIC SQUIB: Commercial flash-fuze device for electrical firing of burning type munitions such as smoke pots. It consists essentially of a small tube sealed with sulfur, containing a small charge of powder compressed around a fine resistance wire. There are three types: open-end, flash-vented, and closed-end.
- EQUAL SECTION CHARGE: Propelling charge made up of a number of charges equal in

- size. The number of sections used determines the muzzle velocity and range of the projectile.
- EQUATION OF STATE: An equation relating the volume, temperature, and pressure of a system.
- EROSION: Wearing away of a bore due to combined effect of gas washing, scouring, and mechanical abrasion. Due to the high temperatures and velocities, and chemical action, the bore diameter becomes enlarged.
- EXPELLING CHARGE: Quantity of propellant used in special purpose shell to eject the contents of the shell.
- EXPLOSIVE: Substance which, when subjected to heat, impact, friction, or other suitable initial impulse, undergoes an explosion that is a very rapid chemical transformation, forming other more stable products entirely or largely gaseous, whose combined volume is much greater than that of the original substance. Explosives are classified as high-explosive or low-explosive, according to the rate of the transformation. (See HIGH EXPLOSIVE and LOW EXPLOSIVE.)
- EXPLOSIVE CHARGE: Predetermined quantity of explosive required to produce a specific effect. (See BURSTING CHARGE; EXPELLING CHARGE; PROPELLING CHARGE.)
- EXPLOSIVE D: Ammonium picrate, a highexplosive charge that is not easily set off in transportation, or in handling, etc. Sometimes it is used as a bursting charge in armor-piercing projectiles.
- EXPLOSIVE TRAIN: That portion of a fuze or fuze system consisting of explosive components, such as primer, detonator, booster, etc., necessary to cause functioning of a warhead or destructor.
- EXTERIOR BALLISTICS: The branch of ballistics which deals with the motion of the projectile after leaving the gun.

F

FIN: Light metal portion of a mortar shell, bomb, and some rockets, designed for stabilizing and controlling them while in flight.

- FIN STABILIZATION: Method of stabilizing a projectile, bomb, or missile during flight by the fitting of fins.
- FIXED AMMUNITION: Ammunition with primer and propellent powder contained in a cartridge case permanently crimped or attached to a projectile, that is loaded into a weapon as a unit.
- FIXED ROUND: Round of fixed ammunition.
- FLAME TEMPERATURE. (See ADIABATIC FLAME TEMPERATURE.)
- FLASH REDUCER: Any material for use with a propelling charge to reduce its muzzle flash.
- FLAT TRAJECTORY: Trajectory with little curvature, produced by a projectile with a high velocity.
- FLECHETTE: Stabilized fragment having a pointed nose and finned tail; dart.
- FORCE: A term, convenient in interior ballistics theory, which is defined as the product of the number of mols of gas per gram of propellant and the adiabatic-constant-volume flame temperature.
- FORCING CONE: Tapered beginning of the lands at the origin of the rifling of a gun tube. The forcing cone allows the rotating band of the projectile to be gradually engaged by the rifling thereby centering the projectile in the bore.
- FORM COEFFICIENT: Factor used in form functions to describe the ratio of burning surface to fraction burned.
- FORM FUNCTION: Mathematical expression relating burning rate to propellant grain geometry.
- FRAGMENTATION: The breaking and scattering in all directions of the pieces of a projectile, bomb, or grenade.
- FULMINATE OF MERCURY: (See MERCURY FULMINATE.)

FUZE: Device used to initiate a detonation under the conditions desired.

G

- GILDING METAL: Copper-zinc alloy (brass) used for rotating bands.
- GRANULATION: Size and shape of grain of propellant.
- GRAVIMETRIC DENSITY: Weight of the propellant (in lb per in. 3) divided by the volume occupied by the propellant (includes the air space in and around propellant grains).
- G-SERIES WAR GASES: Group of persistent blood and nerve poisons which are highly toxic and practically odorless. GA, GB, and GD are members of the G-series.
- GUNCOTTON: Nitrocellulose containing 13 percent or more of nitrogen.

H

- HANGFIRE: Temporary failure or delay in the action of a primer, igniter, or propelling charge. For a few seconds it cannot be distinguished from a complete failure, or misfire.
- HANGFIRE TEST: Test to determine uniformity and promptness of fire of a type of ammunition.
- HC MIXTURE: Solid, nonpersistent screening smoke that, when burning, produces a grayish white smoke having a sharp, acrid odor, which is toxic if released in sufficient quantities in enclosed places; used in bombs, shell, grenades, and smoke pots. The smoke is cool burning as contrasted with white phosphorous, and tends to cling to the earth.
- HEAT OF COMBUSTION: Heat evolved in the complete exidation of a substance at constant pressure and 25°C. The test is usually accomplished calorimetrically by burning a gram of sample in a combustion bomb containing one cc of water under a pressure of 30 atmospheres of pure oxygen.

- HEAT OF EXPLOSION: Heat evolved in burning a sample in a combustion bomb under a pressure of 25 atmospheres of helium, or other inert gas. (Products of explosion vary with the oxygen balance of the sample.)
- HEAT OF FORMATION: Heat of formation of a compound is equal to the sum of the heats of formation of the products of combustion, minus the heat of combustion of the compound. ΔH_f (reactants) = $\Sigma \Delta H_f$ (products) ΔH_c .
- HEAT OF REACTION: Heat evolved when a sample is burned in a combustion bomb in one atmosphere of helium or other inert gas. (Products of this reaction are dependent on the oxygen balance of the sample.)
- HEAT SHELL: (See HIGH-EXPLOSIVE ANTI-TANK SHELL.)
- **HEAT TEST:** Accelerated stability test of an explosive material.
- HEP SHELL: (See HIGH-EXPLOSIVE PLASTIC SHELL.)
- HIGH-ANGLE FIRE: Fire delivered at elevations greater than the elevation of maximum range, its range therefore decreasing as the angle of elevation is increased. Mortars deliver high-angle fire.
- HIGH EXPLOSIVE: Explosive which undergoes an extremely rapid chemical transformation, thereby producing a high order detonation and shattering effect. High explosives are used as bursting charges for bombs, projectiles, grenades, mines, and for demolition.
- HIGH-EXPLOSIVE ANTITANK (HEAT) SHELL: Ammunition for defeat of armour by use of a shaped charge.
- HIGH-EXPLOSIVE PLASTIC (HEP) SHELL (or, SQUASH-HEAD SHELL): Shell with deformable nose, designed to contain a plastic explosive, for use against armor; shock transmitted through the armor causes the back of armor plate to spall.
- NIGH-EXPLOSIVE SHELL: Projectile with a bursting charge of high explosive, used against personnel and materiel.

- HYGROSCOPICITY: The tendency of a substance to absorb any available moisture from its surroundings; specifically the absorption of water vapor from the atmosphere.
- HYPERVELOCITY: Muzzle velocity of an artillery projectile of 3,500 feet per second or more.
- HYPERVELOCITY ARMOR-PIERCING (HVAP)
 AMMUNITION: Ammunition which embodies
 a core of hard, dense material (such as
 tungsten carbide) within a shell of light
 material, such as aluminum. Its light overall weight permits it to be fired safely at
 very high velocities. The velocity is rapidly
 lost, but at short ranges it is effective
 against armor.
- HYPERVELOCITY ARMOR-PIERCING DIS-CARDING SABOT (HVAPDS) AMMUNITION: Ammunition which embodies a hypervelocity, armor-piercing, subcaliber projectile within a discarding sabot. (See SABOT.)
- HYPERVELOCITY ARMOR-PIERCING DIS-CARDING SABOT FIN-STABILIZED (HVA-PDSFS) AMMUNITION: Ammunition which embodies a hypervelocity, armor-piercing, subcaliber, fin-stabilized projectile within a discarding sabot. (See SABOT.)

T

- IGNITER: Device containing a ready burning composition, usually a form of black powder, used to amplify the ignition of a propelling charge by a primer. Also sometimes used to amplify the initiation of a primer in the functioning of certain types of fuzes and burster charges.
- IGNITER TRAIN: Step-by-step arrangement of charges in pyrotechnic bombs, shells, etc., by which the initial fire from the primer is transmitted and intensified until it reaches and sets off the main charge. An explosive bomb, projectile, etc., uses a similar series, called an explosive train.
- IGNITIBILITY: Statement of the ease with which the burning of a substance may be initiated.

- IGNITING MIXTURE: Explosive mixture used as a fuze in pyrotechnic signals.
- IGNITING PRIMER: Primer designed to be initiated by flame from another primer. Sometimes used in subcaliber guns so as to permit drill or practice with the regular primer.
- IGNITION CARTRIDGE: Igniter in cartridge form which may be used alone or with additional propellant increments as a propelling charge for certain mortar ammunition.
- ILLUMINATING SHELL: Projectile with a time fuze that sets off a parachute flare at any desired height; used for lighting up an area.
- IMPACT FUZE: Fuze designed to function on impact.
- INCENDIARY: (1) Chemical agent used primarily for igniting combustible substances with which it is in contact by generating sufficient heat to cause ignition. (2) Filling for incendiary munitions such as shells, bombs, grenades, and flame throwers. (3) Munition with flammable filling and means of release and/or ignition.
- INCREMENT: A package of propellant, forming part of the full propelling charge, which may be removed to reduce the velocity or range. (See MULTISECTION CHARGE.)
- INITIAL AIR SPACE: Volume of gun chamber not occupied by propellant when gun is loaded for firing.
- INITIAL VELOCITY: (See MUZZLE VELOCITY.)
- INITIATOR: Small quantity of very sensitive and powerful explosive used to start the detonation of another less sensitive explosive. Mercury fulminate, lead azide, and tetryl are the principle high explosives used as initiators.
- INSTANTANEOUS FUZE: One which will burst the projectile on the outside of a hard surface (such as a concrete emplacement) before penetration or ricochet. This fuze will give some crater on hard ground. (See SUPERQUICK FUZE.)

- INTERIOR BALLISTICS: Subdivision of ballistics which deals with that part of the phenomena within the chamber and bore of a weapon associated with imparting kinetic energy to missiles. (See BALLISTICS.)
- ISOBARIC ADIABATIC FLAME TEMPERA-TURE: Adiabatic flame temperature attained in a constant pressure system. (See ADIABATIC FLAME TEMPERATURE.)
- ISOCHORIC ADIABATIC FLAME TEMPERA-TURE: Adiabatic flame temperature attained in a constant volume system. (See ADI-ABATIC FLAME TEMPERATURE.)

J

- JOLT AND JUMBLE TESTS: Tests intended to simulate the shocks various components of ammunition are subjected to in transportation and handling.
- JUMP: The movement which the tube of the gun describes under the shock of firing, but before the projectile leaves the muzzle. Usually expressed as an angle.

K

KINETIC ENERGY AMMUNITION: Ammunition whose effectiveness is dependent upon its high density (mass) and high velocity.

L

- LANDS: Raised portion between grooves in the bore of a rifled gun.
- LATERAL DEVIATION: Horizontal distance between the point of impact or burst and the gun-target line.
- LEAD AZIDE: Very sensitive high explosive used in small quantities to initiate other less sensitive high explosives.
- LEAFLET SHELL: Usually consists of standard-base ejection smoke shell, of any caliber, with smoke canisters removed and propaganda substituted therefor.
- LIFTING PLUG: Threaded eyebolt which fits into the fuze cavity, permitting heavy shells to be handled by means of a winch.

- to any burning surface of the propellant grain burned through in unit time. This property depends upon the chemical composition, and is not a function of geometry.
- LINER: (1) Inner tube, in a cannon, which bears the rifling and which may be replaced when worn out. (2) Cone of material used as an integral part of shaped charge liner.
- LIVE AMMUNITION: Ammunition containing explosives. This is in contrast to drill ammunition (dummy ammunition), which contains no explosives and is used in training.
- LOADING DENSITY: Ratio of weight of propellant (in lb per in. 3) to available chamber volume.
- LONG-DELAY FUZE: One which will burst the projectile after complete penetration into hard ground. There is a variation in the time element in long-delay fuzes required for different uses. (This is a question to be determined by the Ordnance Dept.)
- LOW EXPLOSIVE: Explosive which undergoes a relatively slow chemical transformation, thereby producing a deflagration or an explosion, the effect ranging from that of a rapid combustion to that of a low order detonation. It is suitable for use in igniter trains and certain types of propellants. (See PROPELLANT.)
- LOW ORDER DETONATION: Incomplete detonation of the explosive charge in a bomb, projectile, or other similar high explosive. (See DETONATION.)
- LOWER ACCEPTABLE MEAN MAXIMUM PRESSURE: For any type gun, that value of the maximum pressure which is specified in the propellant specification as the lower limit for the average of the maximum pressures that are developed by an acceptable smokeless propellant in propelling charges which will impart the specified muzzle velocity to the specified projectile. Smokeless propellant in propelling charges which in acceptance tests develops an average maximum pressure lower than this value is considered as having failed to pass the test.

- MACH NUMBER: Ratio of the velocity of a body to that of sound in the same medium.
- MACH WAVE: Supersonic shock wave.
- MAGNUS FORCE: (1) Force normal to the plane of yaw, caused by the spin. (2) Force arising from interaction of a spinning body and the windstream when the body is yawing.
- MAGNUS FORCE, CENTER OF: Vanishing point of Magnus moment.
- MAXIMUM PRESSURE: The maximum value of the pressure exerted by the propellant gases on the walls of a gun during the firing of the round.
- MAXIMUM SKY BRIGHTNESS: Worst possible sky condition for observing pyrotechnic signals; usually uniform clouds or overcast.
- MEPLAT: Flat nose.
- MERCURY FULMINATE: Sensitive explosive that is set off by friction, impact, or heat, and detonates. Mercury fulminate is used to set off other explosives in projectiles, mines, or bombs.
- METAL FOULING: Deposit of metal, which collects in the bore of a gun, that comes from the jackets or rotating bands of projectiles.
- MISFIRE: (1) Failure to fire or explode properly. (2) Failure of a primer or the propelling charge of a projectile to function, wholly or in part. Misfire may be contrasted with hangfire, which is delay in any part of a firing charge.
- MULTISECTION CHARGE: Propelling charge in separate-loading or semifixed ammunition that is loaded into a number of powder bags. Range adjustments can be made by increasing or reducing the number of bags used, as contrasted with a single-section charge, in which the size of the charge cannot be changed.
- MUZZLE BLAST: Sudden air pressure exerted in the vicinity of the muzzle of a weapon by the rush of hot gases and air on firing.

- MUZZLE BRAKE (also called a RECOIL BRAKE): Device attached to the muzzle of a gun which utilizes escaping gases to reduce the effective recoil force of the gun tube on the carriage or mount. In some designs it eliminates or reduces muzzle flash.
- MUZZLE FLASH: Undesirable luminous ignition of unburned propellant gases issuing from the muzzle of a gun. The gases ignite upon mixture with atmospheric oxygen.
- MUZZLE VELOCITY: Speed of a projectile at the instant it leaves the muzzle of a gun.
- MUZZLE WAVE: Compression wave or reaction of the air in front of the muzzle of a weapon immediately after firing.

N

NERVE GAS: (See G-SERIES WAR GASES.)

NITROCELLULOSE: Explosive substance formed by the nitration of cotton, or some other form of cellulose. Used as the base of most U. S. propellants. Specific grades of nitrocellulose (see PYROCELLULOSE and GUNCOTTON) depend on the degree to which the cellulose is nitrated.

NITROCOTTON: (See GUNCOTTON.)

- NITROGUANIDINE (nitrated aminomethanamidine): Used as an additional base of propellant; used as a "cool propellant" because of its low flame temperature which does not erode gun bores nor produce as much luminous flash as single base (nitrocellulose) propellants.
- NITROGLYCERINE: Nitrated ester of glycerol in which the OH radicals are replaced by NO₂; used as primary base of British propellants and as gelatinizing agent of U. S. propellants, but not used as primary base of U. S. propellants because its high flame temperature accelerates bore erosion.
- NITROGEN MUSTARD GASES: Group of blister gases similar to mustard gas with varying chemical properties and little or no odor; gases affect eyes, nose, and lungs.

- NONDELAY FUZE: Fuze that functions as a result of inertia of firing pin (or primer) as missile is retarded during penetration of target. The inertia causes the firing pin to strike the primer (or primer the firing pin), initiating fuze action. This type of fuze is inherently slower in action than the superquick or instantaneous fuze, since its action depends upon deceleration (retardation) of the missile during penetration of the target.
- NORMAL CHARGE: Propelling charge employing a standard amount of propellant to fire a gun under ordinary conditions, as compared with a reduced charge or a supercharge used in special circumstances.
- NORMAL FORCE: (1) Component of air resistance perpendicular to the axis of the projectile in the plane of yaw (exterior ballistics). (2) Any force perpendicular to a given line or surface (general).
- NORMAL IMPACT: Striking of a projectile against a surface that is perpendicular to the line of flight of the projectile.

NOSE SPRAY: (See SPRAY.)

NUTATION: A small periodic oscillation about the motion of precession.

o

- OBTURATION: Any process that prevents the escape of gases from the tube of a weapon during the firing of a projectile.
- OBTURATOR: A device for making the tube of a weapon gas-tight, preventing any escape of gas until the projectile has left the muzzle.
- OGIVE: The shape of the head of the projectile, often a convex solid of revolution generated by an arc of a circle whose center lies on the side of the axis of revolution opposite to the arc.
- OPTIMUM CHARGE: Web and propellant weight combination which produces maximum velocity at a specified pressure.

OXYGEN BALANCE: Ratio of self-contained oxygen to fuel in a propellant or explosive.

D

- PARASHEET: Parachute-like device made from a single flat piece of material, or as few pieces as its size will permit; avoids cost of complex gore construction of parachute.
- PEAK PRESSURE: Instantaneous maximum pressure developed in the gun chamber by burning propellant; pressure immediately preceding an expanding shock wave.
- PERCUSSION COMPOSITION: High-explosive powder that is ignited in some types of firearms by the blow of the firing pin against the primer cap.
- PERCUSSION FUZE: (See IMPACT FUZE.)
- PERCUSSION PRIMER: Cap or cylinder containing a small charge of high explosive that may be set off by a blow. A percussion primer is used in all fixed and semifixed ammunition and in certain types of separate-loading ammunition to ignite the main propelling charge.
- PERFORATION: Passage of a missile completely through an object.
- PERMISSIBLE INDIVIDUAL MAXIMUM PRES-SURE: For any type gun, that value which should not be exceeded by the maximum pressure developed by any individual round under any service condition.
- PERMISSIBLE MEAN MAXIMUM PRESSURE: For any type gun, that value which should not be exceeded by the average of the maximum pressures developed in a series of rounds fired under any service conditions.
- PHOSGENE: Colorless choking gas having an odor of new-mown hay or fresh corn; causes choking and coughing, and injuries to the lungs.

- PICRIC ACID (trinitrophenol): High explosive, more powerful than trinitrotoluene, used widely in the form of mixtures with other nitro compounds.
- PIEZOELECTRIC CRYSTAL: Crystalline material possessing the property that, when it is mecahnically compressed or stretched in certain directions, electrical charges in direct proportion to the mechanical strain appear on the crystal surfaces.
- PITCH (of rifling): Reciprocal of the twist. (See TWIST.)
- PLANFORM: Shape of plan view of fins.
- PLASTIC EXPLOSIVE: Explosive which, within normal ranges of atmospheric temperature, is capable of being molded into desired shapes.
- PLUNGING FIRE: Gunfire that strikes the earth's surface at a high angle.
- POINT-BLANK RANGE: Distance, to a target, that is so short that the trajectory of a bullet or projectile is practically a straight, rather than a curved, line. Point-blank range is one for which no superelevation is needed.
- POINT DETONATING FUZE: Fuze, located in the nose of a projectile, which is initiated upon impact.
- POWDER: Term sometimes loosely used for "propellant" or "propelling charge."
- POWDER TRAIN: (1) Train, usually of compressed black powder, used to obtain time action in older fuze types. (2) Train of explosives laid out for destruction by burning.
- PRACTICE AMMUNITION: Ammunition used for target practice, ammunition with a propelling charge, but with either an inert filler or a low-explosive filler to serve as a spotting charge.
- PRECISION: The quality of having small dispersion about the mean.
- PRECESSION: A change in the direction of the axis of a rotating body. In this handbook, precession means the slow motion without nutation.

- PRESSURE, CENTER OF: The point where the resultant force caused by air resistance intersects the axis of the projectile.
- PRIMACORD: Flexible fabric tube containing a filler of high-explosive PETN (pentareyth-ritetetranitrate) that is used to transmit a detonation from a detonator to a booster or bursting charge. Primacord is the trade name for the type of detonating cord currently in use.
- PRIMER: Device used to initiate the functioning of an explosive or igniter train. It may be actuated by friction, blow, heat, pressure, or electricity.
- PRIMER-DETONATOR: Assembly consisting of a primer and a detonator. It may also include a delay element.
- PRIMER SEAT: Chamber in the breech mechanism of a gun that uses separate-loading ammunition, into which the primer is set.
- PROBABLE ERROR: An error of such magnitude that the probability of making an error greater than it in any given observation is just equal to the probability of making one less than it, both probabilities being one-half.
- PROCEDURE, DESIGN: Outline of steps to follow in designing an item.
- PROGRESSIVE GRANULATION: Propellant grain which burns with a continually increasing surface until the grain is completely consumed.
- PROJECTILE: Object, such as a bullet or shell, that is propelled from a weapon by an explosive propelling charge.
- PROOF AMMUNITION: Ammunition incorporating solid, blunt-nosed, steel or cast iron shot of inexpensive manufacture; used in proof firing of guns; used to simulate the weight of projectile designed for the gun in adjusting the charge weight of propellant.
- PROPAGANDA SHELL: (See LEAFLET SHELL.)
- PROPELLANT: Explosive material whose rate of combustion is low enough, and its other

- properties suitable, to permit its use as a propelling charge.
- PROPELLING CHARGE: Explosive charge that is burned in a weapon to propel a projectile therefrom (see PROPELLANT). Burning of the confined propelling charge produces gases whose pressure forces the projectile out.
- PROXIMITY FUZE: Fuze designed to detonate a projectile, bomb, mine, or charge when activated by an external influence in the close vicinity of a target.
- PYROCELLULOSE: Nitrocellulose containing 12.60 percent nitrogen.
- PYROCOTTON: (See PYROCELLULOSE.)
- PYRO POWDER: Straight nitrocellulose powder; smokeless propelling charge consisting of a nitrocellulose that has a smaller nitrogen content than guncotton; single-base propellant.
- PYROTECHNICS: Ammunition containing chemicals that produce a smoke or brilliant light in burning, used for signalling, marking, spotting, illuminating, etc.
- PYROXYLIN (collodion): Nitrocellulose containing 8-12 percent nitrogen.

Q

- QUALITY ASSURANCE: System of assuring that material accepted is in accordance with requirements, including inspection and test procedures, acceptance criteria, etc.
- QUICKNESS (propellant burning): Rate of change of pressure within the close chamber with respect to time.

R

- RAM: (1) To push into position. (2) To seat a projectile in the bore of a gun.
- RAMMER: (1) Device for driving a projectile into position in a gun. It may be hand-or power-operated or a part of the receiver mechanism. (2) Tool used to remove live projectiles from the bore of a gun.

- RATED MAXIMUM PRESSURE: For any type gun, that value of the maximum pressure which is specified in the propellant specification as the upper limit of average pressure which may be developed by an acceptable propellant in the form of propelling charges which will impart the specified muzzle velocity to the specified projectile. The smokeless propellant in propelling charges which, in the acceptance test, develops an average maximum pressure exceeding this value is considered as having failed to pass the test.
- RELATIVE FORCE: Ratio of observed maximum pressure developed by a propellant under test to the maximum pressure developed by a standard propellant under identical test conditions.
- RELATIVE QUICKNESS: Ratio of the quickness (dP/dt) of a test propellant to the quickness of a standard propellant, measured at the same initial temperature and loading density in the same closed chamber.
- REMAINING VELOCITY: Speed of a projectile at any point along its path of flight. Remaining velocity is usually measured in feet per second.
- RICOCHET: Glancing rebound of a projectile after impact.
- RIFLE: (1) Any firearm that has rifling in the bore designed to give a spin to the projectile for greater accuracy of fire and longer range (not extensively used in this manner, except for shoulder arms). (2) Cut spiral grooves (rifling) in the bore of a gun in order to give a spin to the projectile so that it will have a greater accuracy of fire and longer range.
- RIFLING: Spiral grooves in the bore of a weapon designed to give a spin to the projectile for greater accuracy and carrying power. Rifling includes both the grooves and the ridges between, called lands.
- ROTATING BAND: Soft metal band around a projectile near its base. The rotating band makes the projectile fit tightly in the bore

- by centering the projectile, thus preventing escape of gas, and giving the projectile its spin as it engages in the rifling.
- ROUND: (1) All the parts that make up the ammunition necessary in firing one shot (also called COMPLETE ROUND). (2) One shot fired by a weapon.
- ROUND OF AMMUNITION: (See ROUND.)

S

- SABOT: (1) Lightweight carrier in which a subcaliber projectile is centered to permit firing the projectile in the larger caliber weapon. The carrier fills the bore of the weapon from which the projectile is fired; and its light weight permits it to be safely fired at very high velocities. It is normally discarded a short distance from the muzzle, in which case it is known as a discarding sabot.
- SAFETY WIRE: Wire set into the body of a fuze to lock all movable parts into safe position so that the fuze will not be set off accidentally. It is pulled out just before loading.
- SCABBING: Breaking off of fragments in the inside of a wall of hard material due to the impact or explosion of a projectile on the outside.
- SCREENING SMOKE: Chemical agent which, when burned, hydrolyzed, or atomized, produces an obscuring smoke; used to deny observation and reduce effectiveness of aimed fire.
- SEMIFIXED AMMUNITION: Ammunition in which the cartridge case is not permanently fixed to the projectile, so that the zoned charge within the cartridge case can be adjusted to obtain the desired range; loaded into the weapon as a unit.
- SEMIFIXED ROUND: Round of semifixed ammunition.
- SENSITIVITY: Measure of the response of an explosive material to initiation by heat, friction, or impact.

- SEPARATED AMMUNITION: Ammunition in which the cartridge case is not fixed to the projectile, so that the zoned charge within the cartridge case can be adjusted to obtain the desired range; loaded into the weapon as a unit.
- SEPARATE-LOADING AMMUNITION: Ammunition in which the projectile, propelling charge, and primer are not held together in a shell case, as in fixed ammunition, but are loaded into a gun separately.
- SEPARATING BURST: Method of ejecting the contents of a projectile by means of a charge of propellant that breaks the projectile, into two approximately equal parts, along a specially designed circumferential shear joint.
- SERVICE AMMUNITION: Ammunition intended for combat rather than for training purposes.
- SETBACK: Rearward jerk, caused by inertia, of parts of a projectile when it is fired.
- SHAPED CHARGE: An explosive so shaped and designed as to concentrate its explosive force in a single direction.
- SHELL: Hollow projectile filled with explosive, or chemical or other material, as opposed to shot, which is a solid projectile.
- SHELL-DESTROYING TRACER: Tracer with an igniter element, placed between the explosive in an antiaircraft projectile and the tracer element, that is designed to detonate the explosive after the projectile has passed the target point but is still high enough to be harmless to ground troops.
- SHOCK WAVE: Rapid expansion of the hot gases resulting from detonation of an explosive charge.
- SHORT DELAY FUZE: One which will burst a projectile on ricochet, preferably about 6 to 10 feet above ground. Some crater effect will be obtained on hard ground.
- SHOT: (1) A solid projectile. (2) Pellets, small balls, or slugs used in shotgun shells, canisters, and some other types of ammunition.

- SHRAPNEL: Artillery projectile which contains small lead balls that are propelled by a powder charge in the base, set off by a time fuze. Shrapnel has been replaced almost entirely by high-explosive shells. Wounds called shrapnel wounds usually are due to shell fragments rather than to shrapnel.
- SHRINKAGE: Contraction of propellant grain from wet (green) dimensions (as it comes from the graining dye) to the dry dimensions after solvent extraction and evaporation.
- SIDE SPRAY: (See SPRAY.)
- SIGNALING SMOKE: Any type of smoke, but usually colored smoke from a hand or rifle grenade, or from a pyrotechnic signal, used for conveying a message.
- SINGLE-BASE POWDER: (See SINGLE-BASE PROPELLANT.)
- SINGLE-BASE PROPELLANT: Propellant whose principle active ingredient is nitrocellulose.
- SINGLE-SECTION CHARGE: Propelling charge in separate-loading ammunition that is loaded into a single bag. A single-section charge cannot be reduced or increased for changes of range, as a multisection charge can be.
- SMOKE SHELL: Any projectile containing a smoke-producing chemical agent that is released on impact or burst. Also called smoke projectile. Smoke may be white or colored. (See COLORED MARKER SHELL.)
- SMOKELESS POWDER: (See SMOKELESS PROPELLANT.)
- SMOKELESS PROPELLANT: Propellant explosive from which there is a minimum amount of visible smoke on firing.
- SMOOTH-BORE: Having a bore that is smooth and without rifling; shotguns and mortars are commonly smooth-bore.
- SPALL: Fragments broken from either surface of an armor plate as the result of penetration, impact of a projectile, or detonation against the plate.

- SPECIFIC DENSITY: Mass per unit volume. In interior ballistics it is usually distinguished from loading density and gravimetric density, which see.
- SPIN: Angular velocity about the axis of the projectile.
- SPIN-DECELERATING MOMENT: A couple about the axis of the projectile which diminishes spin.
- SPIN-STABILIZATION: Method of stabilizing a projectile during flight by causing it to rotate about its own longitudinal axis.
- SPRAY: Fragments of a bursting shell. The nose, side, and base sprays are the fragments thrown forward, sideways, and rearward, respectively.
- SQUASH-HEAD SHELL: (See HIGH-EXPLO-SIVE PLASTIC SHELL.)
- SQUIB: Small pyrotechnic device which may be used to fire the igniter in a rocket or for some similar purpose; not to be confused with a detonator, which explodes. (See ELECTRIC SQUIB.)
- STABILITY: Measure the ability of an explosive material to be stored for long periods.
- STABILITY TEST: Accelerated test to determine the suitability of an explosive material for long-term storage.
- STABILIZER: Material added to propellent colloid to inhibit, or reduce, decomposition in storage.
- STACKED CHARGE: Powder charge in which the powder grains lie end to end within the powder bag.
- STANDARD ATMOSPHERE: Values of temperature and pressure determined by NACA, based on the yearly averages at 40° N latitude. At sea level T = 59°F; P = 29.92 in. Hg; lapse rate = 3.6°F per 1,000 ft altitude. Various other standards have been defined, but this is the standard used in this handbook.

- STANDARD BALLISTIC CONDITIONS: Set of ballistic conditions arbitrarily assumed as standard for the computation of firing tables.
- STANDARD DEVIATION: The root-meansquare of the deviations from the mean.
- STANDARD TRAJECTORY: Path through the air that it is calculated a projectile will follow under given conditions of weather, position, and materiel, including the particular fuze, projectile, and propelling charge that are used. Firing tables are based on standard trajectories.
- STANDOFF: Distance between a shaped charge round and its target at the instant of functioning.
- STAR: Pyrotechnic signal that burns as a single light.
- STAR GAGE: Instrument for measuring the diameter of the bore of a gun.
- STAR SHELL: (See ILLUMINATING SHELL.)
- STOWAGE: (1) Method of placing cargo in a vessel to prevent damage, shifting, etc. (2) Method of placing equipment and supplies in a vehicle to provide availability and operating room. (3) Equipment when stowed.
- STRIKER: Part of the firing mechanism of a gun, mine, mortar, etc., that hits the primer; hammer or firing pin of a gun.
- STRIKING VELOCITY: Speed of a projectile at the point of impact.
- SUBCALIBER: Of a caliber smaller than standard.
- SUPERQUICK FUZE: Fuze that functions immediately upon impact of the missile with the target. Action of this type of fuze is the quickest possible: the firing pin is driven into the primer immediately upon first contact of the missile; functions at the surfaces of the target. Also called instantaneous fuze.
- SUPERSENSITIVE FUZE: Fuze that will set off a projectile when it strikes even a very light target, such as an airplane wing.

- SUPPLEMENTAL CHARGE: Filler, which is normally TNT, used in deep cavitied projectiles to fill vold between ordinary fuze and booster combination and bursting charge.
- SURVEILLANCE: Observation, inspection, investigation, test, study, and classification of ammunition, ammunition components, and explosives in movement, storage, and use with respect to degree of serviceability and rate of deterioration.
- SWELL DIAMETER: Maximum diameter of the ogive extended to the place where its generating arc is parallel to the center line.
- SYMPATHETIC DETONATION: Explosion caused by the shock of another explosion nearby.

1

- TERMINAL BALLISTICS: The branch of ballistics which deals with the ultimate effect produced by a projectile.
- TERMINAL VELOCITY: Remaining speed of a projectile at the point in the downward path of the projectile where the projectile is level with the muzzle of the gun. The speed at the point of impact is called the striking velocity.
- TETRYL: Sensitive explosive used especially in caps and boosters to detonate less sensitive explosives, and as the explosive filler in some types of projectiles.
- THERMATE: Standard incendiary agent used as filling for incendiary munitions. Mixture of thermite (iron oxide and aluminum) and other oxidizing agents; it burns at about 4,300°F.
- THERMIT: Thermite, commercial welding mixture of iron oxide and aluminum; used as an incendiary for some munitions.

TNT: (See TRINITROTOLUENE.)

TRACER: Element of a type of ammunition containing a chemical composition which burns visibly in flight. Tracer is used for

- observation and adjustment of fire, for incendiary purposes, and for signaling. Ammunition containing tracers is called tracer ammunition.
- TRAJECTORY: Path of projectile, missile, or bomb in flight.
- TRAJECTORY CHART: Diagram of a side view of the paths of projectiles fired at various elevations, under standard conditions. The trajectory chart is different for different guns, projectiles, and fuzes.
- TRAUZL TEST: Method of determining relative energy available from an explosive material by measurement of the volume expansion of a lead test block.
- TRIMONITE: High explosive used as a substitute for trinitrotoluene as a bursting charge. Trimonite is a mixture of picric acid and mononitronaphthalene.

TRINITROPHENOL: (See PICRIC ACID.)

- TRINITROTOLUENE (TNT): High explosive widely used as explosive filler in projectiles and by engineers; trinitrotoluol.
- TRINITROTOLUOL: (See TRINITROTOLUENE.)
- TRIPLE-BASE PROPELLANT: Propellant whose principal active ingredients are nitrocellulose, nitroglycerin, and nitroguanidine. (See PROPELLANT.)
- TRIPLE POINT: Intersection of the original shock wave, the reflected shock wave, and the Mach stem.
- TUBE: The inner cylinder of a built-up gun, usually extending from the inner face of the breechblock to the muzzle.
- TWIST: Inclination of the spiral grooves to the axis of the bore of a weapon. The degree of twist is the determing factor in the speed of rotation of the projectile.

V

VACUUM STABILITY TEST: (See STABILITY TEST.)

WAVE FRONT: Surface which is the locus of all molecules having motion in identical phase in a propagating wave.

WEB; WEB SIZE; WEB THICKNESS: Alternative terms describing the minimum distance between any two specified burning surfaces of a propellant grain.

WEB RANGE: Tolerance of web thickness to allow for manufacturing limitation.

WINDSHIELD: (See BALLISTIC CAP.)

WHITE PHOSPHORUS (WP): Yellow, waxy solid which ignites spontaneously when exposed to air. It is used as a filling for various projectiles as a smoke-producing agent, and has an incendiary effect. White phosphorus may be mixed with a xylene solution of synthetic rubber to form plasticized white phosphorus.

WP: (See WHITE PHOSPHORUS.)

Y

YAW: Angle between the axis of the projectile and the tangent to the trajectory.

INDEX

A-3, composition, 2-157	reducing, 2-186
Abel equation of state, 4-35	water proofing, 2-186
Aberdeen chronograph, 2-94	Air
Aberdeen Proving Grounds, 2-158	blast
Aberdeen Proving Grounds, Development and Proof	cooling, 6-4
Services, 2-126	gage, 2-11
Absolute temperature, 4-35	calibration of, 2–11
Absorber, shock, 2-175	intensities, determination of relative, 2-11
Absorption, selective, 2-177	burst
Acceleration	height, optimal, 2-107
angular, 4-179	lethal area, 2-107
burning rate, 4-16	aircraft
gas, 2-138	damage
due to gravity, 4-34	evaluation, 2-110
linear, 4-179	by external blast, 2-15
Acceptable (acceptance, acceptability)	by internal blast, 2-14
of cases, 4-137	defeat of, 2-3
criteria, 5-1	effect of blast on, 2-14
gage tolerance, 5-24	flares, 2-195
gaging, 6-44	structures, blast against, 2-13
of lot, 5-12	vulnerability, 2–111
probability of (Pa), 5-2	to external blast of, 2-16
quality level (AQL), 5-3, 8	studies, 2-111
level, establishing the (AQL), 5-4	density, 3-8
sampling, 5-2	any altitude, method of calculating, 2-198
of sublot, 6–44 test, 4–93	foil
Accessory	blades, rotating, 2-171
metal parts, 2-164	section, polygonal, 3-14
parts design, 2-177	speed, drag coefficient, 2-196
parts design WP shell, 2-180	Algebraic sign of stress, 4-181
Acids, occluded, 4-6	Alignment
Acid wash, 6-17	of cone and charge, 2-56 jib, 4-132
Accuracy of HEP shell, 2-157	of perforations, 6-49
A Damage, 2-110	Alkali metal salts, 4-3
Adapter	Alkaline wash, 6-17
fuze, 2-175	All burnt, 4-39
nose, 2-186	position of, 4-39
steel, 2-180	equations for period after, 4-45
tapered, 2-118	Allowance (allowable)
Adiabatic flame temperature, 4-87, 88	pressures, 2-118, 4-137
Advantage(s)	shear stress, 2-164
of Extrusion over Forging, 6-3	wear, 5-24
of HEP shell, 2-156	Alloys, critical, 6-3
for increasing twist, 4-170	All-plastic
of wrap-up cases, 6-47	sabot, 2-138
Aerodynamic	shell body, 2-175
coefficient, 3-8	Altitude
of a projectile, estimation of, 3-8	effect on internal blast, 2-15
forces, 3-6	finding, 3-73
After burnt, 4-39, 75	Aluminum
After splintering, 4-75	carrier, 2-128
Age harden, 4-49, 6-46	cones, 2-40
Agents	explosives, 2-13
binding, 2-186	magnesium-aluminum fuels, properties of, 2-190
decoppering, 4-2	split sleeves, 2-162
GB, 2-186	to-steel, closure versus, steel-to-steel, compari-
gelatinizing, 4-2	son of, 2-181
moistureproofing, 4-2	windshield, 6-35
oxidizing, 2-186	Amatol, 2-178

Ammonium perchlorate explosive, 2-13	process, 6-41
Ammunition	saltpeter, 6-39
armor-defeating, 2-156	stress-relief, 4-135, 6-40
armor-piercing (AP), 1-2	Antipersonnel fragmentation weapon(s), 2-103, 106
base ejection, 2-5	Antitank projectiles, 2-4, 156
with burster charges, 2-5	AP shot (shell) (see also Armor-piercing), 4-153
canister, 1-3, 2-5, 150, 151	AP caps, matching and soldering, 6-33
design, 2–162, 4–123	AP projectiles, effect of nose geometry of, 2-138
canister, 2-153	AP shot caps, specifications of steel for, 6-29
fixed, 4-117, 4-160	AP shot design, 2-128
items, dimensioning of, 5-13	AP and APC projectiles, comparative performance
high-explosive, 2-3	of, 2-142
antitank (HEAT), 2-4	APC shell, 4-178
plastic (HEP), 2-5	APC and AP projectiles, comparative performance
hypervelocity armor-piercing discarding sabo	of, 2-142
(HVAPDS), 1-3	Application of Metal Fragmentation Characteristics
kinetic energy, 2–4, 117	Data to Design of Shell, 2-98
missiles for canister, 2-150	Approximating the ballistic limit, 2-126
pyrotechnic-type, 1-3	AR, 2-85
recoilless, 2-153	Arc, Ogival, 3-87
semifixed, 4–117	Area
semifixed and, separate-loading, 4-160	of chamber, 4-34
separate loading, 4-117	fire effectiveness, 2-107
separated, 4-117	illumination, optimum height for, 2-195
special purpose, 2-154	lethal, 2-3, 93, 104, 106, 154
Amount of Inspection, 5-1	vulnerable, 2-101
Amplitude	Arhennius function, 2-192
of nutation, 3-8	Armco iron, soft, 4-149
of precession, 3-8	Armor, 2-4, 128
Analysis, 2-106	British (CTA) cemented tank, 2-120
beam, 4-155, 158	bullet proof (BP), 2-120
boiler, 4-156	classification, 2-119
combat, 2-107	defeat of, 2-117
constrained shell, 4-154	defeating ammunition, 2-156
evaluation of present methods of, 2-91	design for defeat of, 2-4
methods of data, 2-85	face-hardened, 2-141
stress, 2-153, 4-178, 179	bullet-proof, (FHBP), 2-120
stress in shell, 4-189	glass, 2-82
by statistical method, 2-126	homogeneous, 2-36, 120, 138, 139
weapon system, 2-107	Krupp, 2-120
Angle(s)	machinable quality (MQ), 2-120
of attack, 2-123, 3-11, 12	noncemented, 2-120
small, 3-13	parameters, effect of varying, 2-129
cone apex, 2-53	penetration, 2-137
cone of dispersion, 2-153	perforation, 2-124, 125
of departure, 3-39	plate failure, 2-119
of fall, 2-93	types of, 2-120
of fire, 2-83	performance of, 2-125
of impact, 2-137	skirting, 2-137, 157
index, 2-77, 79	solid, 2-137
Mach, 3-14	spaced, 2-49, 129, 137
of obliquity, 2–156	spalling of (HEP), 2-1
sweepback, 3-11, 14	targets, heavy, 2-145
sweepforward, 3-11, 14	thickness, effect on projectile performance, 2-129
toleranced, 5-20	U. S. Navy Class A, 2-120
of yaw, 3-2	U. S. Navy Class B, 2-120
Angular	Armor-piercing (see also AP)
acceleration, 4–179	cap(s), 2-4, 117, 123, 137, 141, 144, 4-178
velocity, 3-28	
	steel shell, 2-4
Anisotropic material, 4–149 Anisotropic plastic, 4–189	on, tungsten Carbide cores, effect of, 2-142 projectiles, 2-125, 139
Anneal(s), annealing	performance of, 2-126
· ,,	(HVAP), shell, hypervelocity, 2-117
of, cartridge case mouth, 6–44 of cones, effect of, 2–46	(hVAP), shell, hypervelocity, 2-117 shot (AP), 2-4, 117
intermediate, 6-1	
encretions (contrides cose monufacture) 6 20	comparison of HEP shell with, 2-156

hvap, manufacture of, 6-35	Baffle plate, 2/-175
Army Biophysics Laboratory, 2-102	Bags, cartridge igniter, 1-7
Arsenal Control of the Control of th	Bags, pancake, 4-85
Frankford, 2-82	Balance, oxygen, 4-3
Picatinny, 2-82, 153	Ball(s)
Watertown, 2-139, 142 Artillery ammunition, 1-1	point micrometer, 6-24
ammunition, design of, components of, 6-1	powder process, 4-7
ammunition, manufacture of, 6-1	steel, 2-150
primer, 4-84	Ballistic(s)
shell, 6-2	cap, 2-117
Asbestos-filled phenolic, 2-176	characteristics, uniform exterior, 2-151
As drawn, 4-123	coefficient (C), 3-38, 39, 64
Aspect ratio, 3-71	computing, 3-73
fins of low, 3-13	factors upon which it depends, 3-38
large, 3-12	maximum, 3-64
low, 3-13	computations, 4-24
ASN (Average Sample Number), 5-6	effect, uniformity of, 4-20
Assembly	equations, 4-45
candle, 2-164, 175	fundamental, 4-43
of HVAP shot, 6-35	
illuminant, 2-160, 182, 184	solution of, 4-36
of projectile, 2-151	equivalence, 4-26
tail fin, 2-172	failure, 6-43, 47
Assessment	integrator, 3-85
tank damage, 2-129	interior, 2-153, 4-1, 164
types of damage, 2-111	limit, 2-125, 127, 141, 144, 145
Assurance, quality, 5-1	approximating the, 2-126
Assymetry	charts for, 2–128
Assymetrical	estimating, 2-126, 127
effects of, on velocity drop and jump of finned	matching, 2-6, 157, 177
projectiles, 3-30	method, 4-26
projectiles, stability of, 3-29	mortar test, 2-23
Atmosphere	potential, 4-2
Atmospheric C 26	problem, exterior, 3-38
carburizing, 6-36	research laboratories, 2-36, 39, 41, 66, 68, 70, 73,
furnace, reducing, 6-29	81, 94, 97, 129
hydrogen, 6-36 protective, 6-36	tables, 3-39
moisture, 2-191	uniformity, 4-1
resistance to, 2-190	wound, 2-3, 93, 154
standard, 2-198, 3-4	Ballot(ing), 3-30, 4-178, 6-35
Attaching band to projectile, 4-154	forces, 4-178
Attachment, swivel, 2-173	of projectile, 4-164
Attack	Band
angle(s) of, 2-123, 3-11, 12	driving, 6-17
Kamikaze, 2-110	flyoff, 4-154
obliquities of, 2–145	land, 4-155
Attenuation, wavelength, 2-193	width, 4-155
Attribute, 5-14	wiping off of, 4-164 material, yield stress of, 4-157
inspection, 5-12	outside diameter, determination of, 4-149
Austenitic, steel, 6-1	pre-engraved, 6-27
Available energy for IMR powder, 2-169	pressure, radial, 4-149, 153
Average	theoretical prediction of, 4-151
bore diameter, 4-152	to projectile, attaching, 4-154
densities and compositions of explosives, 2-12	retention, 4-154
outgoing quality (AOQ), 5-3	calculation for, 4-154
outgoing quality limit (AOQL), 5-4	rotating, 1-3, 2-163, 4-33, 153, 179, 189, 6-1, 17,
web, 4-21	26
Axis	welded overlay, 2-5, 4-149, 154
Axial	seat, 4-155, 6-23
moment of inertia, 3-2	cleaning the, 6-17
spin, 3-29	diameter, determination of, 4-150
of revolution, 3-84	position of, 4-158
	shearing of, 4-172
	turning 6-17

uncannelured, 4-153	Bernoulli
width, 4-155	equation, 2-31
method for computing, 4-150	theorem, 2-33, 34
without grooves, 6-17	Beryllium copper cones, 2-46
Banding of shell, 6-17	Bifurcation, 2-69
Baratol, 2-176, 178	Bifurcation of jet, 2-35, 64
Bare charges, 2-10, 11, 16	Big-end-up, mold, 6-29
Barrelling, 4-119 Basal porosity, 6-13	Billet, 6-5
Base	scale and descaling, 6-6
area, estimation of, (effect of drag), 3-67	separation, 6-5
of case, 4-137	Bimetallic cones and nonconical shapes, 2-42
contour of, 4-124	Binary mixtures, 2-190
cover, 1-4	Binder metal, 6-36
diameter, 3-88	Binding agents, 2-186 Binomial probability distribution 5-2
drag, 3-70	Binomial probability distribution, 5-3 Birkhoff, 2-64
coefficient, 3-71	Black powder, 2-5, 168, 4-1
estimation of drag, 3-71	charge, 4-84
ejection, 1-3, 2-183	ejection charge, 2–183
ammunition, 2-5	initiator, 2-183
shell, 2-160, 161, 4-1	loading density versus pressure curve of, 2-183
smoke shell, 2-176	pellet, 1-5
flange, 2-45	train, 1-4
flat, 4-182	Blanking and cupping of cartridge case, 6-37
control of, 4-126	Blast, blasting, 2-1, 50, 93, 156
of HVAP shot, 6-35	against aircraft structures, 2-13
major, 3-87	aircraft damage by external, 2-15
plate, 2-162, 164	aircraft damage by internal, 2-14
fastening, 6–17	aircraft, effect of, 2-14
removable, 2-172	contours, 2-16
plug, 2-160, 162, 164, 170	cube, 2-11
shearing, 2-169, 184	damage criteria, external, 2–16
shear stress on threads of, 2-163	determination of relative intensities, 2-11
shear threads, design of, 2-163	effect, 2-7
pressure, 4-36	on aircraft, 2-14
reinforcement, 4-137	altitude on internal
round, 4-182	of case on internal, 2-14
rupture of steel cartridge cases, 4-133	evaluation, 2-11
of shell, finishing the, 6-16	explosives for, 2-12, 4-2
shell, square, 3-64 stress in, resulting from setback of filler,	external damage criteria, 2-16
4-183	external vulnerability of an aircraft, 2-16
Basic	information to be obtained from later experimenta-
angle dimensioning, 5-20, 23	tion, 2-9
dimension, 5-13, 23	measurement of, 2-10 Blast, Muzzle, 3-28, 29, 30
problems of interior ballistics, 4-33	propagation of, 2-10
radial dimension, 5-20	reflected, 2-9
Battle salvage, 6-47	shot, 6-5, 12, 13, 15
Battlefield illumination, 2-162	tube, 2-11
BAT weapon, 2-81	vulnerability of aircraft to external, 2-16
B Damage, 2-110	waves, 2-19
Bead, inverted, 4-134	Blended guncotton, 4-6
Beads, obturating, 4-134	Blended nitrocelluloses, 4-2
Beam analysis, 4-155, 158	Blending radius, 4-125
Bearing-mounted charges, 2-82	Blowholes, 6-1
Bearing stress of rotating band, 4-153	Blow-throughs, 4-120
Before heating, inspection of shell, 6-13	Blunt
Before splintering, 4-76	headed shot, 2-124
Beginning of motion of projectile, 4-34	nose, 2-157
Beginning of motion, time since, 4-47	projectiles, 2-154
Behavior of filler, 4–189	shot, 2-122
Bench, draw, 6-8	trailing edge, fins with a, 3-13
Bending stress(es), 2-124	Boat-tail, 3-8, 64, 67, 68, 6-21
Bent fins, 3-29	Boat-tail projectiles, 4-160
Benzene nucleus, resonance of, 4-90 Bergmann-Junk test, 4-93	Body
Derkmann-Amik rest, 4-29	fin interference, 3-71

chall 0 170	method of estimating indexie velocity of a sub-
shell, 2-170	caliber projectile, 2-138
determination of critical points in, 4-178	wear factor, 4-150
of wrapped cartridge case, 6-46	Brittle fracture, 2-123
Boiler analysis, 4-156	Bruceton, 2-34
Boiler formula, 4-154	staircase method, 2-23
Bolling of mouth, 4-122	Budd Co., 2-39
Bomb, closed, 4-16, 19, 33, 88	Buffer cap, 2-144
Bombs, photo-flash, 2-178	for defeat of spaced armor, 2-144
Bonderized, 6-24	Bulldozer(s), 6-7, 9
Bone penetration, 2-103	Bullet pull, 4-129
Boom, 2-172, 3-29	Bullet proof armor (BP), 2-120
Booster(s), 1-5, 2-57, 63	Bullet proof armor, face hardened (FHBP), 2-120
black powder pellet, 1-5	Buoyancy, center of, 6-35
of charge, 2–57	Bureau of Mines test, 2-22
lead azide, 1-5	Burn, burning
requirements, 2-10	candle, 2-173
sensitivity test, 2-23	characteristics, 2-190
standard, 2-177	cigarette, 2-170, 187
tetryl, 1-5	constant (B), 4-40
Bore	control of, 4-2, 3
clearance, 3-4	dye composition, 2-183
diameter, average, 4–152	equation, 4-18
erosion, 4-1, 3	filler, 2-178
residue, 4-2, 3	flare, 2-164, 193
safe fuze, 1-5	of pressed compositions, 2-189
safety, 1-5	progressive, 4-24, 25
yaw in the, 3-28	propagatively, 2-189
effects and magnitude of initial yaw due to, 3-28	Burning, propellant, 4-16, 33, 43
Boundry, increment, 2-183	
	rate, 2-187, 189, 190, 191, 4-1, 9, 22, 33, 36
Bourrelet, 1-3, 3-4, 82, 6-29	acceleration of, 4-16
clearance between and rifling, 4-164	burning rate, control of, 4-13
clearance, minimum, 4-178	effect of grain shape on, 4-20
expanding, 6-23	rate equation, 4-35
finishing, 6-17	linear, 4-16, 18, 20
ring gage, 6-24	proportional law of, 4-20
tolerances of, 6-17	regressive, 4-25
Вох	seven-perforated grains, 4-48
gage, 2-10	surface, 4-6
tests, 2-84	
	constant, 4-24, 26, 27
Brass	control of, 4-16
cartridge, 6-1, 37	time, 2-167
cases, manufacture of, 6-37	rotating candle, 2–162
copper and alpha, 4-160	type, smoke compositions, sensitivity of, 2-183
overworking, 4-125	zone A, 2-189
tensile strength, 4-135	zone B, 2-189
Break(-up)	zone C, 2-189
nick and, 6-5	Burner, strand, 4-16
fragments, 2-109	Burnt, burned
jet, 2-32	after, 4-76
projectile, 2-129	all, 4-39
shell, 2-144	fraction, 4-21
two-dimensional, 2-94	Burst
three-dimensional, 2-94	explosive, 1-3
Breech, 4-119, 137	height, mean, 2-107
Breech pressure, 2-164, 4-36, 37	position of, 3-39
Bridge waves, 2-19	separating, 1-3
Brinell hardness, 6-15	Burster(s)
Brisance values, 2-187	casing, 2-180
Brisant, 2-181	extruded-aluminum, 2–180
	charmole) 2-5 160 176 180 101
British	charge(s), 2-5, 160, 176, 178, 181
Armaments Design Department of the Ministry of	ammunition with, 2-5
Supply, 4-117	determination of weight of, 2-178, 182
armor, comented tank (CTA), 2-120	smoke charge, ratio of, 2–178
practice, design of drawn cartridge cases, 4-117	column, 2-178

explosive, 2-160	shot, 2-138
materials, 2–178	soft, 2-144
tetryl, 2-178	steel armor-piercing shell, 2-4
tube, metal, 2-160, 179	Carbide, 6-36
	cored, 2-4
	tungsten, 2-117,137
C-4, 2-157	Carbon, unoxidized, 4-87,89
"C damage", 2-110	Carburizing atmosphere, 6-36
Cabbages the nose, 6-21	Cardboard wadding, 2-151
Cable, suspension, 2-175	Carnegie Institute of Technology, 2-37,45,68,72,78,80 Carrier
Calculation of	aluminum, 2-128
band retention, 4-154	discarding, 2-152
deceleration, 2-166	Cartridge
density of propellant composition, 4-89	bags, 1-7
geometric characteristics of projectile, 3-90	brass, 6-1,37
heat of combustion, 4-90	case(s), 1-6, 4-117, 6-1,2,43,44
heat of explosion (Q), 4-89, 90	blanking and cupping of, 6-37
interior ballistic, 4-9	body of, wrapped, 6-46
maximum pressure, 4-81	in chamber, clearance of, 4-122
tables for, 4-47 muzzle velocity, tables for, 4-47	design, 4-117,118,125,129,137
ogive segment, 3-85	dimensioning of, 4-133
thermodynamic properties of propellants, 4-87	drawing of, 6-37
web, 4-14	functioning, theory of, 4-118
Caliber, 3-38	hardness requirements, 4-125,135 heading of, 6-37
Calibration of air-blast gages, 2-11	head machine and stamping of, 6-39
Calibration chart, standard, 4-40	internal volume of, 4-126
Calorimetric test, 4-89	length of, 4-121,128
Cameras, Fastax high-speed, 2-94	machining operations on head and mouth of, 6-44
Candle, 2-170	manufacture, 4-119,133, 6-1
assembly, 2-164, 175	annealing operations, 6-39
burning, 2-173	of drawn steel, 6-41
case(s), 2-187	of perforated, 6-49
strength of, 2-176	of trapezoidal, wrapped steel, 6-46
power, 2-167	marking on bases, 4-126
minimum, 2-195	materials for, 4-132
Canister(s), 2-160, 163, 177 ammunition, 2-5, 150, 151	mouth, anneal of, 6-44
casualty, criteria for, 2–154	mouth, design of, 4-123
design of, 2-153	neck of, 4-134
missiles for, 2-150	perforating of, 6–49 steel, 4–133, 6–1,41,44
optimum, pellet size, 2-153	tapering of, 6-37,43
preformed missiles, 2-1	trend in specifications for, 4-129
ejection, 2-165	typical calculations for, 4-126
illuminating, 2-185	volume, 4-1
information, tactical requirement for, 2-154	wraparound, 4-135
plastic, 2-183	head space, 4-122,123
projectile, plastic, 2-152	igniter bags, 1-7
shot, dispersion of, 2-154	ignition, 2-172
smoke, 2-182, 183, 184	Case(s), cased, casing(s)
Cannelure(s), 4-153, 154 Canopy-first, 2-196	acceptability of, 4-137
Cans, varnish, 2-11	advantages of wrap-up, 6-47
Capacity, chamber, 4-9,11,156,158	base of, 4-137 burster, 2-180
Cap(s), capped	candle, 2-187
action, theories, mechanism of, 2-141	cartridge, 1-6, 4-117, 6-1,2,43,44
armor-piercing, 2-4,117,123,137,141,144,178	manufacture, 6-1
ballistic, 2-117	of brass, 6-37
buffer, 2-144	chamber, clearance of in, 4-121
for defeat of spaced armor, 2-143	charges, 2-10,13,16
effect of skirting armor on, 2-143	comparison of steel and brass, 4-119
hard, 2-144	design, 4-124
material, optimum weight of, 2-143	diameter, 4-137
monobloc shot, 6-29	different-length in same gun, 4-120
radius of spherical, 3-3	effect on internal blast, 2-14

failures due to, 4-120		burning, 2-190
hardness of, 4-125		cartridge case designs, 4-137
moth, thickness of, 4-124		deep-drawing operations, 6-2
necking, 4-129		fragmentation, 2-94,95,97
plastic, 2-152		of chamber designs, 4-137
punch, stripping from, 4-124		of high explosives, 2-22
recovery of, 4-118		of pyrotechnics composition, 2-186
stop, 4-121		required, 2-187
thin-walled, 6-1		ogive, 3-88
trapezoidal-wrapped, 6-47		operating curve (OC), 5-2
-to-case variation, 4-126		propellant, 4-93
volume of, 4–137		rotating band, 4-151
wrap-up, 6-47		target, 2-85
Casting(s)		uniform ballistic, 2-151
centrifugal, 6-1		Charge(s)
versus forging of steel shells, 6-1		bare, 2-10,11,16
high-explosive shells, 6-1		bearing-mounted, 2-82
in mold, 6-1		black powder, 4-84
notched, 2-108		ejection, 2-183
plastics, 2–152		boostering of, 2-57
Casualty		burster, 2-5,160,176,178,181
criteria, 2-102		cased, 2-10,13,16
for canister ammunition, 2-154		confined, 2-49
Categories of damage, 2-83		diameter of, 2-189
Cavity(ies)		
charges, lined, 2-31		double-ejection, 2-160 effect of shape of explosive, 2-18
deep, 2-177		
forge, finish of, 6-1		ejection, 2-160,162,170,173,184
obstructions within, 2-44		expelling, 2-5,161
torn, 6-13		fuze-ejection, 2-172
Cell, Kerr, 2-34		initiating, 2-177
Center		length, 2-49
of buoyancy, 6-35		lined cavity, 2-31
of gravity, 2-172, 3-10,86		maximum, 4-50
location of, 3-8		moving, 2-16
motion of, 3-6,38		optimum, 4-9
		preparation, 2-62
position of, 3-81		pressure curve, 4-9
ogival arc, 3-84		pressure relationship, 4-9
of pressure, 2-172, 3-7,8,10,12		propellant, 2-138,150
Centerless grinder, 6-29		propelling, 2-72, 4-9
Centerless grinding, 6-17		separating, 2-175
Central ballistic parameter, 4-38		shape, 2-50,85
Centrality, 5-14		single ejection, 2-160
Centrality of holes, 5-22		spotting, 2-187
Centrifugal casting, 6-1		squash, 2-157
Centrifugal force, 2-167, 4-178		static, 4-1,3
Chamber, 1-6, 4-117		supplementary, 2-177
area of, 4-34		surface charges vs internal, 2-14
capacity, 4-9,11,158		tetryl, 2-182
effective, 4-126		-to-gage distance, 2-11
estimate of, 4-126		unrotated, 2-32
designs, characteristics of, 4-137		velocity curve, 4-9,10
dimensioning of, 4-133		velocity relationship, 4-9
effective length of, 4-37		weight of, 2-138, 4-20
expansion, elastic, 4-120		zoned, 4-134
gage inspection, 6-44		Charts for ballistic limit, 2-128
length of, 4-137		Chase Brass and Copper Company, 6-37
pressure, 2-163,172,182, 4-93		Check(s)
conditions, 2-129		
shape of, 4-117,124		dimensional, 6-40
slope, 4-137	•	gas, 4-189
		profile, 6-24
tapers, 4-134 volume, 2-128, 4-33		Chemical Corps, 2-161,172
Chamberlain Corporation, 2-158, 6-26		Chemical, chemistry
Chapman-Jouguet condition, 2-38, 6-26		energy rounds, 2-88
Characteristic(s) 2-95		flash reducers, 4-2

reactions, exothermal, 2-189	Cocked centerlines, 5-15
shell (WP), sealing of, 2-180	Coefficient(s), 3-64
Chipboard, 2-172	aerodynamic, 3-8
Chi-square tests, 2-95	ballistic (C), 3-38,39,64
Choice of method of stabilization, 3-2	factors upon which (C) depends, 3-38
Chopped-glass fiber, 2-175	maximum, 3-64
Chord, 3-71	base drag, 3-71
root, 3-11 tip, 3-11	cross-wind force, 3-10,12
wing, 3-11	drag (KD), 2-118,166,195,196, 3-10,38,39,64,67,68,
Chrome flash, 6-37	69,70,75
Chronograph, Aberdeen, 2-94	friction, 3–10
Cigarette burning, 2-170, 187	drag, 3-68,71
Circle, tolerance, 5-18,23	form, 4-21,23,24
Circular méplat, 3-69	lift, 3-10,12
Circumferential rupture, 6-42	moment yawing, 3-10 normal force, 3-8,9,13
Class B armor, U. S. Navy, 2-120	overturning moment, 3-9
Classification, 5-5	partial drag, 3-71
of ammunition, 1-2	practical drag, 3-38
fixed, 1-1	skin friction drag, 3-10
semifixed, 1-1	slopes, lift, 3-27
separated, 1-1,2	wave drag, 3-70
separate loading, 1-1	yaw-drag, 3-5,28,69
armor, 2-119	Coining, 4-122
of defects, 5-1,5	Cold
of explosives, 1-6	extrusion, 6-1,3,9
missiles, 2-1	HE shell, 6-21
by effect, 2-1	comparison of hot forging with, 6-24
blast, 2-1	tests of, 6-23
defeat of personnel, 2-3	forming, 6-25
fragmentation, 2-1	pressing, 6-36
incendiary, 2-1	shuts, 6-40,43
leaflets, 2-1	work, 6-3
light, 2-1	hardening, 6-37
poison gases, 2-1	steel, 6-2,43
penetration of armor (kinetic energy shot), 2-1	influence of hot work versus, 6-1
penetration of armor by (shaped charges), 2-1 preformed missiles (canister), 2-1	Collapsing cone, 2-38
smoke, 2-1	Colloid, 4-2,6,87
Cleaning band seat, 6-17	Color(ed), 2-178
Clearance	cloud, 2–176,178 dye, 2–160
bore, 3-4	emission, 2-193
between bourrelet and rifling, 4-164	filters, 2–193
of case in chamber, 4-121,122	intensifiers, 2-186
estimating, 4-121	marker, 2-160
initial, 4-119	shell, 2-160,176,178,182
minimum, 4-121	design of, 2-179
Cleat, shroud, 2-171	tactical requirements, 2-176
Clipped-delta wing, 3-27	smoke, 2-178
Closed	cloud, control of, 2-178
bomb, 4-16,19,33,88	method of producing, 2-178
test, 4-16,40	screen, 2-160
pit test, 2-94	shell, 2-160,182
Closing plug, 1-2,7	saturation, 2-177
Closure steel-to-steel, comparison of aluminum-to-	value, 2-187
steel, 2-181	Column
Cloud(s) colored, 2-176,178	burster, 2-178
control of colored smoke, 2-178	diameter, limits of propagation versus minimum,
duration of, 2-177	2-182
pillaring of (WP), 2-181	of explosive, 2-182
Coating(8), coated, 6-17	strength, 2-185 Combat
nitrocellulose lacquer, 6-47	analysis, 2-107
phosphate, 6-17,21	models, 2-107
protective, 4-134, 6-44	Combustion, heat of, 4-88,89
soap, 6-41	Compacts, sintered-iron, 4-161
	,,

Compacting and sintering of Tungsten Carbide, 6-36	Computation
Comparative Comparator	Computing
Comparing	ballistic, 4-24
Comparison	ballistic coefficient, 3-73
aluminum-to-steel closure versus steel-to-steel,	of ballistic limit, 2-126
2-181	energy of HE shell, 3-76
effectiveness of full-caliber versus subcaliber	lethal area, 2-103
steel shot, 2-138	momentum of HE shell, 3-76
explosives, 2-11	for ogive, 3-82 of vulnerability, 2-91
of HEP shell with AP shot, 2-156	Concentricity, 5-13,20, 6-13,33
of hot forging with cold extrusion shell, 6-24	symbol, 5-13,14
magnetic, 6-45	Concept of optimum height, 2-193
hardness, 6-43	Conclusions on HEP performances, 2-158
of peak pressure and impulse, 2-13	Condenser microphone gage, 2-10
performance of AP and APC projectiles, 2-142	Condition(s), 5-24
performance of KE shot, 2-145	Chapman-Jouguet, 2-30
of properties of pyrotechnic compositions with	maximum metal, 5-20,24
explosives, 2-188	minimum metal, 5-20,24
range firings, 3-68	optimum, 4-50,74
of results, 4-82	Conductive primer mixture, 1-7
of spinning shell with top, 3-2	Conductivity, electrical, 4-2,3
study of shell forging methods, 6-13	Conductivity, thermal, 2-189
of steel and brass cases, 4-119	Cone(s)
Compatible, compatibility, 2-22,177, 4-94 quantitative definition of, 2-24	Conic(al), 3-65,69
Compensation, 2-35	aluminum, 2–40
rotation, 2-35	angle, optimum, 2-54
spin, 2-35,36,37,71,73,75,78	angle, effect on penetration under rotation, 2-66
Complete	apex angle, 2-53 beryllium copper, 2-46
ogive, volume of, 3-86	bimetallic, 2-42
round, components of, 1-1	and nonconical shapes, 2-42
solution for pressure-time trace, 4-76	and charge, alinement of, 2-56
Complex yaw, 3-3	collapse, 2-58
Component(s), 3-3	collapsing, 2-38
of, artillery ammunition, design of, 6-1	of dispersion, 2-150
of complete round, 1-1	angle of, 2-153
solids of revolution, 3-81	double-angle, 2-43
tolerances, 5-24	electroformed, 2-39
Composite rigid projectile, 2-117	copper, 2-46
Composition(s), 2-13	effect of annealing of, 2-46
A-3, 2-157	forcing, 4-33,121,162
composition B, 2-13,63,178	frustums, 3-88
C-4, 2-157	glass, 2-38
of, average densities of explosives and, 2-12 burning of pressed, 2-189	head, 3-65
delay fuze, 2–187	lead, 2-41
dye, 2-177,178	liners, 2-31 malformed, 2-39
burning, 2-183	sharp apex, 2-55
first-fire, 2-172	steel, 2-41
flare, 2-167	tail, 2-172,175
illuminant, 2-175	wall thickness, 2-53
igniter, 2-192	zinc, 2-41
ignitibility of, 2-192	Confine(d), (ment), 2-31,57,181, 4-16
photoflash, 2-187	charges, 2-49
pyrotechnic, 2-191	of explosion, 2-109
of standard propellants, 4-2	Consideration of liner parameters, 2-49
tracer, 2-192	Consistent muzzle velocity, 2-152
Compression	Consistent notation, 4-16
Compressive	Consolidation, degree of, 2-189
force, radial, 4-178	Constant
stress, 4-181	burning (B), 4-40
test, 4-93 yield stress, 2-165	surface, 4-24,26,27
wave, 2-123	grains, 4-48
Compromise method of shell forming, 6-25	distortion (Hencky-Von Mises), 4-185,186 form function, 4-78

gas, 4-35	selection of propellant materials, 4-2
Gurney, 2-98	of shaped charge effectiveness, 2-82
Constituents of pyrotechnic compositions, 2-186	Sterne's, 2-102
Constrained-shell analysis, 4-154	yield, 4-181,185
Continuous-sampling plans, 5-10	theories, 4-185
Contour(s)	utilization, 4-178
blast, 2-16	Critical
of base, 4–124	alloys, 6-3
of case, internal, 4-124	defects, 5-5
Control(led), (ling)	opening velocity, 2-196
of colored smoke cloud, 2-178	points in, body of shell, determination for, 4-178
burning, 4-2,3	range, 6-27
rate, 4-13	of steel, 6-1
surface, 4-16	relative humidity, 2-191
of flatness of base, 4-126	temperatures, 6-12,14
fragmentation, 2-3,107,108,109,111	velocity, 2-126
methods of, 2-108	Cropping, 6-13
ring, 2-110	Cross, 3-3
scale, 6-42	rolls, 6-7
web dimensions, 4-13	slide, 6-27
Cook, 2-93,106	wind force, 3-3,5,7,10,29,30
Cooling, air-blast, 6-4	
Coordinates, toleranced, 5-17	coefficient, 3-10,12
Copper	damping factor, 3-6,10
and alpha brasses, 4-160	Crusher gage, 4-94
cones, electroformed, 2-41	Crush-up of nose, 2-5
· · · · · · · · · · · · · · · · · · ·	Crush-up, shell, 2-157
gage pressure, 4-40	Cryolite, 4-2
gasket, 6-27	Cube, blast, 2-11
liners, 2-32,46	Cumulative probability, 2-154
Coppering, 4-3	Cup(ping), 6-1,7,8,41
Cord, 4-23	of, cartridge case, blanking and, 6-37
propellant, 4-24	and draw, 6-37,47
equations for, 4-27	expanding, 4-150
Core(s), 6-36	glazed-board, 4-122
high-explosive, 2-160,176	preparation for, 6-41
tungsten carbide, 2-123,128, 6-35	obturating, 2-173
Corner form coefficient, 4-21	Curve(s)
Corner's treatment, 4-21	Curvature
Corps, Chemical, 2-161	charge-pressure, 4-9
Cost of shell manufacturing plant, 6-24	charge-velocity, 4-9,10
Cover, base, 1-4	design, 4-10
Covolume, 4-17,37,47,88	normal error, 2-100
Crack(s), (ing), 2-123, 6-17	probability, 2-126,127
season, 6-40	radius of longitudinal, 3-81
shearing, 6-5	stress-strain, 4-118, 6-2
"Cranz, law of", 2-32	of trajectory, 3-11
Crimp(ing), 4-33,132, 6-44	web-velocity, 4-10
effect of method of, 4-132	web-charge, 4-10
groove, 4-132	Cutting
design, 4-122	off base of HEP shell, 6-27
press-type, 4-132	flame, 6-5,14
rubber-die, 4-132	Cyclotol, 2-40,178
- · · ·	
Criteria Criterion	Cylinder(s) Cylindrical, 3-69
acceptance, 5-1	liner, 2-69,71
for, canister ammunition casualty, 2-154	right circular, 3-1
casualty, 2-102	tapered, 6-46
damage, 2-93	
external blast damage, 2-16	
Hencky-Von Mises, 4-187	
homogeneity, 5-1	Damage, 2-36,82,129
incapacitation, 2–104	assessment, types of, 2-111
lethal area, 2–154	tank, 2-129
lethality, 2-93,101,111	categories of, 2-83
protection, 2-128	A, 2-110
sampling plan, 5-2	В, 2-110

C, 2-110	classification of, 5–1,5
F, 2-83	critical, 5–5
K, 2-83,110	major, 5-5
KK, 2-110	minor, 5-5
M, 2-83	surface, 6-41
criteria, 2-16,93	Deficiency, oxygen, 4-89
external blast, 2-16	Definition
region I, 2-16	of lots, 5-1
region II, 2-16	of perforation, 2-125
region III, 2-16	Deflection dispersion, 2-107
evaluations, 2–129	Deformation
aircraft, 2-110	elastic, 4-150,178
external blast to (aircraft), 2-15	during nosing, 6-17
fuel, 2-111	permanent, 4-185,178
to gun, 4-178	plastic, 4-133,178,186, 6-43
internal blast (aircraft), 2-14	projectile, 2-141
probability of, 2-108,111	of shell, 4-178
estimates, 2-88	Degree of consolidation, 2-189
qualitative description of shaped charge, 2-84	Degree of nitration, proper, 4-6
structural 100A, 2-15	Degressive, 4-9
test ranking, 2-13	degressive shapes, 4-23
threshold, 2-16	
Damping factor(s), 3-4,6,30	Delay fuze, 1-4
cross-wind force, 3-6.10	composition, 2-187
magnus moment, 3-6,10	Degreasing, washing and, 6-17
spin-decelerating moment, 3-6	Delta wing, 3-27
yawing moment, 3-6	Demarre formula, 2-125,137
Danger	Density(ties), 4-87
	air, 3 - 8
of resonance between pitching period and rolling	average compositions of explosives and, 2-12
period, 3-29	compositions of explosives and average, 2-12
of too much spin (magnus moment), 3-29	fragment, 2-106
Data	gas, 4-35
Datum	jet, 2-38
dimensions, 5-13	loading, 2-11,14, 4-1,33
fragmentation, 2–105	function, 4-48
hole, 5-20	Ordnance Corps standard, 3-38
method of dimensioning tapers, 5-24	of propellant composition, calculated, 4-89
required to design cartridge case, 4-120	relative, 2-198
surface, 5-14	Departure, angles of, 3-39
symbol, 5-13	Dependent locational symbol, 5-15
Dead metal, 6-42	Dependent locational tolerance(s), 5-13,17,19
Decarburization, 6-36	Deployment methods, parachute, 2-166,196
surface, 6-33	Depth of cannelure, 4-154
Deceleration	Depth of penetration, 2-78
calculation of, 2-166	
efficiency, 2-165	Derivation of equations, OSRD 6468 method, 4-42
parachute, 2-166	Derivation of optimum height, 2-193
design of small, 2-166	Derivative, time, 3-6
	Deriving shell stress formulas, 4-178
Decelerator, 2-164,165,166	Descent rates, 2-171
Decompose in, storage (must not), 4-2	Description
Decomposition rate, 4-2	of notched casings, 2-109
Decoppering agent, 4-2	of notched-wire method, 2-109
Decrease hygroscopicity, 4-2	of test methods, 2-22
Deep cavity, 2-177	Design, 2-6
Deep-drawing operations, characteristics, 6-2	accessory parts, 2-177
Defeat	AP shot, 2-128
of aircraft, 2-3	ammunition, 2-162, 4-123, 6-1
of armor, 2-117	of canister, 2-153
of spaced buffer caps for, 2-144	of base plug (optimum), 2-162
of spaced caps for, 2-143	of base plug shear threads, 2-163
of fortification, 2-4	cartridge case, 4-117,118,124,129
of personnel, 2-3	data required, 4-117,120
of shaped charge weapons, 2-82	mouth of, 4-123
of tank, 2-129	of colored marker shell, 2-179
of target, 2-93	crimping groove, 4-122
Defects	curves. 4-10

for deleat of armor, 2-4	Deterrent material, 4-3
of dies, 4-7,13	Detonation
of drawn cartridge case, 4-117	Detonator(s), 1-6
British practice, 4-117	electric, 1-6, 2-57
ejection charge, 2-167,181	front, 2-30,31
equipment (new), 4-121	high order, 1-5
filler, 2-177	lead azide, 1-5
flange, 4-122	low order, 2-183
grain, 4-13	mercury fulminate, 1-5
gun, 4-119,124	premature, 2-180, 4-178, 6-13
chamber, 4-117	propagation, 2-24
of illuminating shell, 2-162	rate, 2-24
of mortar-type, 2-172	tetryl, 1-5
and use of, factors affecting the, 2-162	velocity, high, 2-157
of liquid-filled shell burster, 2-186	wave, 2-30,81,182
mortar ammunition, problems of, 2-172	Development and Proof Services, Aberdeen Proving
optimum, 2-93	Grounds, 2-126
parameters, effect on penetration, 2-39	Development of fundamental equations, 4-34
parachute, 2-162	Development of HEP shell, 6-26
small deceleration, 2-166	Deviation
pyrotechnic, 2-193	from mean, 4-137
parallel, 5-11	standard, 2-127, 3-8,10, 5-12
pin plates, 4-13	Diagrams, vulnerability, 2-141
for precision, 3-1	Dial indicator, 5-13,14
primers, standard, 4-84	Diameter
procedure, 2-3	base, 3-88
projectile, 2-2,128,129	case, 4-137
for gun already made, 3-1	of charge, 2-189
for Q. F. guns, German, 4-123	flange, 4-137
rifling, 4-169	nose, 3-87
rotating band, 4-149,153,180	pin circle, 4-14
of shaped charge missile, 2-47	rifling, 4-152
of shell, application of metal fragmentation char-	swell, 3-69,81,84,87,88
acteristics data to, 2-98	Diametral
shell metal parts, 2-162,177	taper, 3-83
propaganda shell, 2-184	tolerance, 5-13,19,20
signal smoke shell, 2-182	Dibutylphthalate, 4-2
split-sleeve, 2-164	Die(s), 4-14, 6-9
visibility, 2-193	design of, 4-13
for volume, 4-117	piercing, 6-7
of web dimensions, 4-9	ring, 6-7,8,9
WP shell, 2-180	tapered, 6-8
accessory parts, 2-180	tungsten carbide, 6-37
wraparound, 4-135	Differential expansion, 2-181
Desirable properties of liner, 2-38	Different-length cases in same gun, 4-120
Desired bullet pull, methods of achieving, 4-132	Difficulties, extraction, 4-132,134
Detection of gun battery, 4-3	Difficulties, ignition, 4-50
Deterioration in penetration, 2-78	Dimension(s)
Deterioration of propellant, 4-93	basic, 5-13,23
Determine(ation), (ing), 2-129	angular, 5-20
of band outside diameter, 4–149	radial, 5-20
of band-seat diameter, 4-150	chamber, 4-133
critical points in body of shell, 4-178	datum, 5-13
of effective width of band, 4-150	reference, 5-13
effect of yaw, 3-75	of shell forgings and shapes, 6-5
grain design, 4-9	Dimensional(ing)
internal volume of cartridge case, 4-126	of ammunition items, 5-13
initial velocity factors, 3-72	basic angle, 5-23
lethality, 2-106	of cartridge case, 4-133
of maximum forces acting on shell during firing,	mouth, 4-124
4-178	of chamber, 4-133
of rifling twist, 4-173	checks, 6-40
of relative air-blast intensities, 2-11	control, 5-13
of web range, 4-10	
	of grain, 4-7
of weight of burster charge, 2-178,182 weight of tetryl burster required, 2-178	of grain, 4-7 radial, 5-20

Dimensionless feeten (10, 0, 183	estimation of, 3-71
Dimensionless factor (K), 2-178	minimum, 3-64
Dimensionless parameter, 4-39	variation in, 3-67
Dinitrotoluene, 4-2	base, 3-70
Diphenylamine, 4-2,6	estimation of, 3-71
Direction of future designs, 2-170	coefficient, 3-71
Disadvantage(s)	coefficient (KD), 2-118,166,195,196, 3-10,38,39,64,
of HEP shell, 2-156	67,68,69,70,75
for increasing twist, 4-170	estimating, 3-74
Discarding	of fin-stabilized projectiles, 3-70
carrier, 2-152	partial, 3-71
method of releasing, 2-119	practical, 3-38
petal, 2-119	versus air speed, 2-196
sabot, fin-stabilized, 2-4	friction, 3-68,70
sabot, shot, 2-4,118	estimation of, 3-71
Discussion of fragmentation patterns, 2-100	coefficient, 3-71
Disking, 2-122,124	force, 2-195,196
Dispersion, 2-39, 4-137	formula, 2-196
of canister shot, 2-154	skin friction, 3-10
cone of, 2-150	coefficient, 3-10
angle of, 2-153	stabilize, 2-4,5
deflection, 2-107	wave, 3-70
excessive, 4-129	estimation of, 3-70
of fragments, 2-137	coefficient, estimating the, 3-76
of filler, 2-178	Draw(ing)
fuze, 2-107	Drawn, 4-124,132, 6-1,8,42
gases, nonperistent, 2-185	bench, 6-8
gases, persistent, 2-185	of cartridge case, 6-37
missile, 2-152	design of, 4-117
radial, 2-150	British practice, 4-117
range, 2-107	steel, manufacture of, 6-41
of smoke signal, 2-183	copper liners, 2-68
Displacement, water, 2-180	cup and, 6-37,47
Dissociative equilibrium, 4-87	number of, 4-125
Distance	insufficient, 4-125
charge-to-gage, 2-11	pierce and, 6-7,8
standoff, 2-49	successive, 6-1
wadding, 1-7	taper, 4-135
Distortion, (Hencky-Von Mises) constant, 4-185	Drift firings, 3-10
Distribution	Driving
area method, 2-88	band, 6-17
binomial probability, 5-3	
error, 2-110	face force — (no friction), 4-153
fragment weight, 2-93	face force — (with friction), 4-153
hypergeometric, 5-2	Drop(s)
poisson, 5-3	tear, 6-13
Diverging yaw, 3-4	velocity, 3-5,28,30
Double	Dry-soap lubricated, 6-37
_	Ductile(ity)
angle cones, 2-43	failure, 2-120
angle nose, 2-124	good, 6-4
base propellant, 1-6, 4-1,93	jet, 2-52
ejection charge, 2-160	perforation, 2-129
ejection system, 2-171	Du Pont, 2-37,60
sampling, 5-5	Duration of cloud, 2-177
wedge profile, 3-71	Dye(s)
wedge, symmetrical, 3-71	composition, 2-177,178
Drag, 2-58, 3-5,7,10,11,38	colored, 2-160
estimation of, 3-64	organic, 2-178
effect of base area, 3-67	for smokes, 2-186
effect of head curvature, 3-65	
effect of head length, 3-65	
effect of meplat diameter, 3-67	
effect of shell length, 3-68	Ears, 6-37
effect of yaw, 3-69	Ease of extraction, 4-121,134, 6-1
increase in, 3-67	Eccentric, 5-13,21
interference, 3-70	loading forces caused by 4-178

or mouth, 4-124	yaw, determining, 3–75
of projectile, 4–137	Effective
ramming, 4-178	chamber capacity, 4–126
shell, 3-30	ejection pressure, 2-163
Economics of shell forging, 6-12	fragments, 2-107
Edge, 6-37	length of chamber, 4-37
leading, 3-11,13,14 trailing, 3-11,13,14	mass of projectile, 4-36
Effect(s) of	width of band (determination of), 4-150
altitude on internal blast, 2-15	Effectiveness
annealing of cones, 2-46	area fire, 2-107
armor-piercing caps on tungsten carbide cores,	comparative, full-caliber vs subcaliber steel sho
2-142	2-138
armor thickness on projectile performance, 2-129	pyrotechnic composition radiation, 2–193 shaped charge, 2–48
blast, 2-7	against tanks, 2-82
on aircraft, 2-14	weapon, 2-106
case on internal blast, 2-14	wounding, 2-98
classification of missiles by, 2-1	Efficiency, deceleration, 2-165
cone angle on penetration under rotation, 2-66	Efficiency, point of optimum, 4-75
design parameters on penetration, 2-39	Eichelberger, 2–32
estimation of drag	Ejection
base area on, 3-67	base, 2-183
head curvature on, 3-65	canister, 2-165
head length on, 3-65	charge, 2-160,162,170,173,184
mēplat diameter, 3-67	design, 2-167,181
shell length, 3-68	black-powder, 2-183
yaw, 3-69	powders, 2-171
erosion, 4-163	pressure, 2-169
of gage tolerance on component tolerance, 5-24	effective, 2-163
of grain shape on burning rate, 4-20	second, 2-164,166
gun on extraction, 4-119	velocity, 2-163,164
initial yaw due to bore clearance, 3-28	Elastic
effect of liner	chamber expansion, 4-120
material on penetration under rotation, 2-68	deformation, 2-9, 4-150,178
shape on penetration under rotation, 2-69	expansion of gun, 4-119
thickness on penetration under rotation, 2-67	limit, 6-43
method of crimping, 4-132	modulus of, 2-165
moisture, protection against, 2-192 moisture on shelf life, 2-191	recovery, 4-118, 6-43
effect, Munroe, 2-110	setback, 4-125
nose, 2-157	stress state, 4-187,188
geometry of AP projectiles, 2-138	stress waves, 2-157 Electric
geometry of tungsten carbide cores, 2-139	
on HEP shell performance, 2-157	conductivity, 4-2,3 detonators, 1-6, 2-57
obliquity, 2-123	fuze, 2-57,63
rotation, 2-34	primer, 1-7
on penetration, 2-66	End squeeze, 6-6
on shaped charge jets, 2-63	Enamel seam sealer, 2-151
scale, 2-125	Electroformed cones, 2-39,41,46
second order, 4-33,36	Element, percussion, 4-84
secondary, 2-156	Eliminating spin degradation, 2-81
shaped charge, 2-18,57,59	Elliptic integral, 3-27
shock wave, 2-9	Elongation
skirting armor on cap, 2-143	factor, 2-178
skirting plate, 2-137	percentage, 4-136, 6-43
spaced armor on HEP shell, 2-157	low, 6-44
specific surface of reactants, 2-190	Emission
spit-back (flash-back) tubes, 2-46	color, 2-193
standoff on penetration under rotation, 2-68	fragment, 2-101
tapered walls on penetration, 2-43	Energy
thick-thin, 2-72	available IMR powder, 2-169
transport, 2-72	balance equation, 4-33,35,36,37,43
varying armor parameters, 2-129	computing of HE shell, 3-76
varying projectile parameters, 2-137	equation, 4-37
velocity, 2-123	allowing for friction, 4-37
water sprays on hot forgings, 6-12	including heat loss, 4–37

maximum, 4-185	urag, 3-64
of motion, 4-43	coefficient, 3-74
muzzle, 3-38,72	fin-stabilized projectiles, 3-70
of propellant, 4-87	effect of, 3-69
propellant gases, 3-73	base area, 3-67
radiant, 2-187,189	head curvature, 3-65
relative, 4-88	head length, 3-65
specific limit, 2-124	méplat diameter, 3-67
strain, 2-182	shell length, 3-68
Engines, peripheral jet, 2-82	
Engines, peripheral jet, 2-02 Enganing 9 150 4 151 150 160	yaw, 3-69
Engraving, 2-152, 4-151,152,153	friction drag, 3-71
pressure, 4-150	interference drag, 3-71
rifling, 4-153	wave drag, 3-70
rotating band, 4-164	coefficient, 3-76
Equation(s)	Ethyl centralite, 4-2
ballistic, 4-45	Eutectic, 6-36
solution of, 4-36	Evaluation
Bernoulli's, 2-31	blast, 2-11
burning, 4-18	damage, 2-129
rate, 4-35,43	aircraft, 2-110
for cord propellant, 4-27	fragmentation effectiveness (parameters required),
derivation of OSRD 6468 method, 4-42	2-93
energy balance, 4-33,35,36,37,43	of present methods of analysis, 2-91
allowing for friction, 4-37	Example by Le Duc system, 4-81
including heat loss, 4-37	Example by Le Duc system, 4-51 Example for order up loading desired as
form-function, 4-43	Example for optimum loading density, 4-50
	Excessive dispersion, 4-129
Hill-Mott-Pack, 2-33	Exothermal chemical reactions, 2-187,189
of interior ballistics, 4-22,33,35	Expansion
Lame, 4-182	bourrelet, 6-23
of motion, 4-36,38,42	cups, 4-150
modified, 4-37	differential, 2–181
projectile, 4-34	of gun (elastic), 4-119
of shell, 3–4	permanent, 4-118
Mott, 2-94,98	wrapped cartridge case (rough rolling and), 6-39
for multiperforated grain, 4-28	Expelling charge, 2-5,161
for period after all powder burned, 4-45	Experiment(al, 2-73
for single-perforated propellant, 4-27	case design (notes on), 4-126
solution of RD38, 4-37	to determine penetration, 2-102
for specific surface, 2-190	firings, 4-84
for strip propellant, 4-27	results with fluted liners, 2-73,76
of state, 2-30, 4-33,34,42,43,88	
Abel, 4-35	shell (ring-type), 2-97 Explosion
_ *	•
van der Waals, 4-35	confinement of, 2-109
virial, 4-34	heat of, 4-2,3,87,89
Equilibrium, dissociative, 4-87	premature, 6-17
Equipment, designing new, 4-121	temperature test, 2-23
Equivalence, ballistic, 4-26	Explosive(s)
Equivalent rotating band geometry, 4-155	average densities and compositions, 2-12
Erratic pressures, 4-11	for blast, 2-12
Erosion, 4-162,163	blasting, 4-2
bore, 4-1,3	burst, 1-3
causes of, 4-164	shell, 2-160
effects of, 4-163	burster, 2-160
methods used to control, 4-169	classification of, 1-6
of rifling, 4-162	high, 1-6
Error distribution, 2–110	low, 1-6
Stablishing acceptable quality level, (AQL), 5-4	column of, 2-182
Stablishing web size, 4-13	comparison of, 2-11
Stimate(s)	numetochnic commoditions with a sec
	pyrotechnic compositions with, 2-188
aerodynamic coefficients of projectile, 3-8	filler, pinching of, 2-158
ballistic limit, 2-127	fluting of, 2-81
base drag, 3-71	initiation of, 2-61
chamber capacity, 4-126	liquid, 2-62
minimum, 4-125	pellets, 2-82
clearance, 4-121	plastic, 2-156
damage probability 2-88	pressed, 2–95

ratios, 2-178	design and use of illuminating shell, 2-162
react with, 6-17	freedom of extraction, 4-118
in shaped charges, 2-59	initial velocity, 3-72
solid, 2-63	liner performance, 2-36
train, 2-177	luminous intensity, 2-189
primer, 1-6	parachute design, 2-195
types	penetration of subcaliber projectiles, 2-13
aluminum, 2-13	pyrotechnic compositions, 2-187
ammonium perchlorate, 2-13	range, 3-38
HBX, 2-13	time of flight, 3-38
Medina, 2-13	Failure
MOX, 2-13	armor plate, 2-119,120
Pentolite, 2-13	ballistic, 6-43,47
RDX, 2-13,14	ductile, 2-120
Silas Mason, 2-178	due to case, 4-120
TNT, 2-13	due to gun causing hard extraction, 4-120
Torpex, 2-13	the gun tube, 4-162
Tritonal, 2-13	to pentrate, 2-123
wave propagation, 2-7	of shell under stress, 4-178
Extension, plastic, 4-118	Fall, angle of, 2-93
Exterior ballistics	False ogive, 2-117
problem, 3-38	Fastax high-speed cameras, 2-94
sample of, 3-73	Fastening base plate, 6-17
of sabot, 2-119	Felt wadding, 2-172
External blast	FFAR (shell), 2-85
damage criteria, 2-16	Fiber, chopped-glass, 2-176
vulnerability of aircraft, 2-16	Field interchangeability, 2-182
Extraction, 4-119, 6-40	Figure of merit, 2-103,106
difficulties, 4-132,134	Filler(s), 2-5,150
ease of, 4-121,134	behavior of, 4-189
effect of gun, 4-119	burning of, 2-178
free, 4-117	design, 2-177
factors influencing, 4–118	propaganda shell, 2-184
grooves, 1-7	dispersion of, 2-178
stiff, 4-119	flechette-type, 2-150
Extractor(s)	liquid, 2-6,161,185
gun, 4-117,122	loading (WP), 2-180
pockets, 4-119	pinching of explosive, 2-158
Extruded-aluminum burster casing, 2-180	setback (Sp), 4-179,181,182,189
Extrusion, 4-6, 6-3,21	Fillets, rotation of, 3-81
over, advantages of forging, 6-3	Fillet, volume of partial, 3-85
cold, 6-1,3,9	Film, protective, 2-192
to length, 6-21	Filters, colored, 2-193
process, French, 6-7	Fin(s)
rearward, 6-8	bent, 3-29
for shell manufacture, 6-2	with blunt trailing edge, 3-13
	interference, 3-71
	low aspect ratio, 3-13
	rectangular, 3-12,71
F damage, 2-83	stabilize(d), 3-1
Fabric, tensile strength of, 2-198	discarding sabot, 2-4
Face, 6-27	hypervelocity, 2-4
hardened armor, 2-119,141	shell, 2-82,175, 3-10,28,70, 4-189
bullet proof (FHBP), 2-120	estimation of drag coefficients of, 3-70
Factor	lift of, 3-12
damping, 3-4,6,30	ensure static stability, lift of, 3-11
dimensionless (K), 2-178	at subsonic velocities, 3-12
elongation, 2-178	sweptback, 3-13
form, 3-38,39,65,66,69, 4-23	supersonic speeds, thin, 3-12
overturning couple, 3-2	supersonic speeds, three-dimensional, 3-1
overturning moment, 3-8	thin, pointed, short, 3-13
righting moment, 3-30	wedge-type, 3-71
shock-load, 2-198	Final head, 6-43
stability, 3-2,5,6,8	Final inspection, 6-39,44,45
Factors (affecting)	Finding
ballistic coefficient, 3-38	altitude, 3–73

norizontal range, 3-73	chrome, 6-37
maximum range, 3-73	first, 4-3
Finish(ing), 6-20	metal dust, 2-187
base of shell, 6-16	muzzle, 4-3
bourrelet, 6-17	- less propellant, 1-6
cavity, forge, 6-1	radiographs, 2-69,73,93
HEP shell, 6-27	reducers, chemical, 4-2
machining, 6-15	second, 4-3
microsurface, 2-180	tube, 2–183
surface, 6-27	Flashlessness, 4-2,11
Fire(s)	Flat
angles of, 2-83	base, 4-182
closed-chamber, 4-40	projectiles, 4-160
drift, 3-10	plate, 2-166
effectiveness, area, 2-107	spin, 3-30
experimental, 4-84	Flatness of base, control of, 4-126
first, 2-192	Flattening of lands, 4-178
forces during, 4-178	Flechette(s), 1-3, 2-150
determination of maximum forces acting on	loading of, 2-150
shell, 4-178	type filler, 2-150
low-temperature, 4-129	Flight
percussion, 4-126	stability in, 4-170, 6-35
range, 3-65	time of, 3-4
tables, 2-177	minimum, 3-38,64
terminal ballistic, 2-83	spin, versus, 3-10
Fireman, 2-34	whipping of casing in, 2-185
Firestone Tire and Rubber Co., 2-36,37,68,78,81	Flow, plastic, 2-120,123,143, 4-118
First, 2-3,4	Flute(s)
fire(s), 2-192	liner, 2-35,69,71,72,75,82,108,109
* * =	
composition, 2-172 nonhygroscopic, 2-192	experimental results with, 2-73,76
flash, 4-3	mechanism of spin compensation by, 2-72
	methods for manufacturing, 2-80
hit, 6-21	performance of, 2–80
moment about plane, 3-81	tolerances of, 2-80
order theory, 2–34	nonideal, 2-78
round hit, 2-47	nonlinear, 2-80
round probability of kill, 2-4	types of, 2-76
Fit	Fluting, 6-43
interference, 4-121	of explosive, 2-81
least-square, 4-20	spiral, 2-36
press, 4-132,180	Flyoff, band, 4-154
web to gun, 4-9	Foilmeter, 2-10
Fixed ammunition, 4-117,160	Force(s), 4-87
Five-second incapacitation, 2-102	acting on shell, 4-178
Flame	during firing, 4-178
action primer, 1-6	summary of, 4-181
cutting, 6-5,14	determination of maximum, 4-178
temperature, 4-35	in handling, 1-8
adiabatic, 4-87,88	propellant gas pressure, 4-179,181
isobaric, 4-88	aerodynamic, 3-6
isochoric, 4-88	balloting, 4-178
Flange	centrifugal, 2-167, 4-178
base, 2-45	cross-wind, 3-3,5,7,10,29,30
design, 4-122	coefficient, 3-10,12
diameter, 4-137	damping factor, 3-6,10
stepped, 4-123	drag, 2-195,196
thickness, 4-123,133	driving face (no friction), 4-153
types of, 4-122	driving face (with friction), 4-153
roller, 6-46	eccentric loading, 4-178
Flare(s), 2-160,187	inertial, 4-178
aircraft, 2-195	normal, 3-7
burning, 2-164,193	coefficient, 3-13
composition, 2-167	propellant, 4-88
parachute, 2-161	radial compressive, 4-178
Flareback, 1-7	relative, 4-16,19
Flash, 4-1,3.11	setback, 2-108,109,162, 4-178,179

snear, 2-162	data, 2-105
in shell wall resulting from rotation (tension),	effect, secondary, 2-5
4-181	effectiveness, parameters needed to evaluate, 2-93
stresses in shell, resulting from, 4-181	Kirkwood-Brinkley's theory, 2-9
tangential, 4-179	nature of, 2-93
inertia, 4-178	patterns, 2-93
on rotating band, 4-181	discussion of, 2-100
at given section of shell, 4-181	tests, 2-23,94,106
Forcing cone, 4-33,121,162	weapons, antipersonnel, 2-103,106
slope of, 4-126	Frankford Arsenal, 2-82, 4-129,133,134,137,160,169
Forging, 6-3	Franklin Institute, 4-137
advantages of extrusion over, 6-3	Free
finish of cavity, 6-1	body stress analysis, 4-188
heat, 6-9	extraction, 4-117,118
hot, 6-1,25	flight system, 2-195
inspection of shell after, 6-13	run projectile, 4-164
shell, 6-4,6	space, initial, 4-38
steel, casting versus, 6-1	Free Flight Aerodynamics Branch of the Exterior
French extrusion method, 6-9	Ballistics Laboratory, 3-65
thick-and-thin, 6-7	French extrusion method of forging shell, 6-7,9
upsetter, 6-9	Friction
Form, 4-21	coefficient, 3-10
coefficient, 4-21,23,24	drag, 3-68,70
corner, 4-21	estimation of, 3-71
factor, 3-38,39,65,66,69, 4-23	coefficient, 3-68,71
function, 4-16,18,21,23,25,26,27	projectile, 4-33
constants, 4-78	sensitivity, 2-23,187
equation, 4-43	Front
for seven perforated propellant (simplified), 4-	detonation, 2-30,31
25,26	shock, 2-7
of nitrocellulose, 4-2	Frustums, 3-81
Formation	conic, 3-88
heat of, 4-89	volume of, 4-126
of nitrocellulose, 4-90	Fuel damage, 2-111
jet, 2-31,32	Fuel tank vulnerability, 2-112 Function
Forming cold 6.25	
cold, 6-25	Arhennius, 2-192
punch, 6-26	density of loading, 4-48
tool, 6-16	form, 4-16,18,21,23,25,27
Formula	pressure, 4–48 of rotating band, 4–149
boiler, 4-154	of skirting plate, 2–137
Demarre, 2-137	of special purpose shell, 2-160
drag, 2-196	of stability factor, 3-31
Gurney, 2-98	travel, 4-48
of interior ballistics, 4-39	velocity, 4-48
for maximum pressure, 4-41 penetration, 2-125	Functional
Ritter's, 2-165	Functioning
simple beam, 4-154	parachute, 2-163
solids of revolution, 3-81	premature, 4-162,164
stress (deriving), 4-178	tests, 4-129,137
stress (summary of), 4-184	theory of cartridge case, 4-118
thick-cylinder, 4-180	time, fuze, 2-157
two-dimensional, 3-12	Fundamental
Formulation, 4-1	ballistic equation, 4-43
Fortification, defeat of, 2-4	equations of interior ballistics, 4-33
Fouling, metal, 4-149	development of, 4-34
Four-wheeled planimeter, 3-85	Furnace
Fraction burned, 4-21	induction, 6-33
of powder, 4-47	reducing atmosphere, 6-29
of web, 4-17	Future designs, direction of, 2-170
Fracture, brittle, 2-123	Fuze(s), 1-1,4
Fragments, 2–14,85,95,112,154	adapter, 2-175
Fragmentation, 2-1,50,93,94,156	black powder train, 1-4
characteristics, 2-94,95,97	boresafe, 1-5
control(led), 2-3,107,108,109,110,111	delay, 1-4

ejection charge, 2-172	dispersion, 2-185
electrical, 2-63	relative energy in, 4-87
functioning time, 2-49,157	temperature, 4-47
impact, 1-4	volume, 4-87
magnetic, 2-57	calculated for organic chemical constituent, 4-87
nondelay, 1-4	calculated for propellant composition, 4-87
point-detonating, 1-4,5, 2-177	wash, 4-120
proximity (VT), 1-4, 2-177,184	Gasket, copper, 6-27
for shaped charge missiles, 2-63	GB agents, 2-186
spitback (flash-back), 2-63	Gelatinizing agents, 4-2
superquick, 1-4	General form functions, 4-26
time, 1-4, 4-1	Generator, piezoelectric, 2-63
mechanical, 2-177,183,184	Geometric
VT, 1-4, 2-177, 184	components of projectile, 3-89
Fuzing	calculations of, 3-90
of high-velocity rounds, 2-63	density of loading, 4-46
of low-velocity rounds, 2-63	Geometry
or low volcotty rounds, a -oo	grain, 4-3,9,26
	nose, 2-140
	projectile, 3-69,81
Gafarian, 3-14	German designs for Q. F. guns, 4-123
Gage, 2-10, 6-20	Gilding-metal, 2-152, 4-149,160
	Glazed-board cup, 4-122
acceptance, 6-44	Glass
air-blast, 2-11	
calibration of, 2-11	armor, 2-82
blast cube, 2-11	cones, 2-38
blast tube, 2-11	filled phenolic, 2-175
bourrelet ring, 6-24	GO and NOT GO gaging, 5-5,12,24, 6-20
box, 2-10	Good ductility, 6-4
condenser microphone, 2-10	Government inspection
crusher, 4-94	intermediate, 6–44
dial indicating, 5-13	and marking of shells, 6-24
distance, charge-to-, 2-11	Graham, 3-12,13
foilmeter, 2-10	Grain, 4-20
GO, 5-5,24	design, 4-13
NOT GO, 5-5,12	determination of, 4-9
head thickness, 6–45	dies, design of, 4-7
icosahedron, 2-100	dimensioning of, 4-7
inspection, chamber, 6-44	geometry, 4-3,9,26
mechanical, 2-10	green, 4-7
NOT GO, 5-5,24	(seven-perforated), multiperforated, 4-13,21,24,26,
papter blast, 2-85	36,48
meter, 2-10	shape, 4-7
peak-pressure, 2-10	burning rate, effect of, 4-20
piezoelectric, 2-10, 4-16,94	shrinkage of, 4–13
pressure, copper, 4-40	single perforated, 4-22,23
pull-over, 4-163	propellant, 4-16,20,93
resistance, 2-10	surface, 4-6
snap, 6-24	constant-burning, 4-48
thread, 6-24	Granulation, 4-1
tolerances, 5-24	propellant, 4-9,16
varnish cans, 2-11	Gravity, acceleration due to, 4-34
Gain twist, 4–170	Gravity, center of, 2–172, 3–10,86
Gas(es)	Green grains, 4-7
acceleration, 2-138	Gregg, 2-102
The second secon	Grinding, centerless, 6-17,29
check, 4-189 constant, 4-35	Grommet, 1-4
•	Groove(s)
density, 4-35	bands without, 6-17
evolution, 4-1	
internal energy of, 4-35	crimping, 4-132
kinetic energy of, 4-36	extracting, 1-7
muzzle, 4-3	rifling, 4-155
nonpersistent, 2-186	rings, 2-3,108
dispersion, 2-185	wire, 2-108
obturate, 2-172	Ground

persistent, 2-186

dispersion, 2-107

Ammon A 188	or expression, 4-2,3,67,69
impact, 2-177	calculation of (Q), 4-89,90
Gun	for organic chemical constituent, 4-87
battery, detection of, 4-3	for propellant composition, 4-87
chamber design, 4–117	forging, 6-9
damage to, 4–178	of formation, 4-89
design of, 4-119,124	of nitrocellulose, 4-90
extractors, 4-117,122	loss, energy equation including, 4-37
high-pressure, 4-125	of reaction, 2-189, 4-89
of infinite length, 4-80	sensitivity to, 2-187,192
and mount, weight of, 3-72	of pyrotechnic compositions, 2-192
optimum, 4-50	specific, 4-35
separate loading, 4-117	test (100° C), 2-22
shell, recoilless, 6-4	test (115° C), 4-93
stress limits, 4-1	treatment, 6-3,4,14,33,43
tank, 4-50	none required, 6-47
tapered-bore, 2-4,118	sidewall, 6-43
tube, failure of, 4-162	HEAT shell, 2-32,58, 3-70,85
Guncotton, 4-2,6	Heavy armor targets, 2-145
blended, 4-6	Height, 3-64
Gurney, 2-93,94,106	₹ 1
constant, 2-98	of ogive, 3-65
formulas, 2-98	optimum, 2–195
Sarmousakis scaling formula, 2-95	HE shell, 4-153
	cold extrusion of, 6-21
Gyration, radius of, 2-165, 4-153	computing energy of, 3-76
	computing momentum of, 3-76
	forging of, 6-4
22 16	machining of, 6-14
Half-weight, 2-98	HEP shell, 1-3, 2-5,156,158
Handling, forces acting on projectiles in, 1-8	accuracy of, 2-157
Hangfires, 4-84	action, 2-158
Hard	advantages and disadvantages, 2-156
caps, 2-144	comparison of with armor-piercing shot, 2-156
extraction (failures due to gun causing), 4-120	cutting-off base of, 6-27
spot, 4-125	development of, 6-26
Hardening	theory, status of, 2-158
age, 4-149, 6-46	finishing of, 6-27
strain, 6-21	fuzing requirements, 2-157
work, 4-119, 6-24	hardness of, 6-27
cold, 6-37	one-piece, 2-158
Hardness, 4-119	performance, 2-157
Brinell, 6-15	conclusions on, 2-158
of cartridge case, 4-125	effect of nose on, 2-157
requirements, 4-135	effect of spaced armor on, 2-157
of HEP shell, 6-27	theory of, 2-156
loss of, 6-43	principles of, 2-157
test for, 6-15	spalling of armor, 2-1
magnetic comparator, 6-43	Hexagonal planform, 3-14
Harvard tables (use of), 3-85,86,87,88,89	High
HBX, 2-13	detonation velocity, 2-157
Hencky-Von Mises criterion, 4-187	explosive(s), 1-6
Hencky-Von Mises theory (constant distortion or),	
4-185.186	characteristics of, 2-22 core, 2-160,176
Head	shell, 1-2, 2-3, 3-10, 6-7,17
conical, 3-65	
final, 6-43	antitank (HEAT), 1-2, 2-4
	casting, 6-1
machining and stamping of cartridge case, 6-39	plastic (HEP), 2-5,156
ogival, 3-65	notch sensitivity, 4–129
ogivo-conical, 3-64	obliquity, 2–124
thickness, 4-133	order detonation, 1-5
gage, 6-45	pressure guns, 4-125
Heading of cartridge case, 6-37	pressure, sporadic, 4-84
Heat	speed cameras (Fastax), 2-94
capacity, mean, 4-87,88	speed jet, 2-31
of combustion, 4–88,89	sulfur steel, 6-2
calculated, 4-90	(objections to), 6-4

velocity rounds, ruzing of, 2-63	igniter sticks, 4-84
yield, 6-44	Ignitibility, 2-191,192
Hill-Mott-Pack equation, 2-33	Ignition
Hirschfelder interior ballistic system, 4-18,20,21	cartridge, 2-172
solution by, 4-48	charges, 1-7
Hitchcock, 3-9,10	difficulties, 4-50
Hit, first, 6-21	interval, 4-84
Hit, second, 6-21	temperature, 2-187,189
Hole(8)	time-to-, 2-192
centrality of, 5-22	Illuminant
datum, 5-20	assembly, 2-160,182,184
primer, 6-43	composition, 2-175
vent, 4-84 Hollow jet, 2-64	Illuminating
Homogeneity criteria, 5-1	canister, 2-185
Homogeneity of lot, 5-2	shell, 2-160,161,164,182,185,187,195 design of, 2-162
Homogeneous armor, 2-36,120,138,139	elements of mortar-type, 2–172
Hoop stress, 4-179	factors affecting use of and, 2-162
tensional, 2-163	metal parts of, 2-162
Horizontal range, finding, 3-73	optimum height of, 2-162
Hospitalization of shells, 6-18	Illumination
Hot	battlefield, 2-162
-and-cold water tested, 6-29	intensity, 4-3
-forged stock, 6-2	maximum, 2-195
-forging, 6-1,25	Immediate incapacitation, probability of, 2-102
comparison with cold extrusion of shell, 6-24	Impact, 2-117
effect of water sprays on, 6-12	angle of, 2-137
pressing, 6-36	fuze, 1-4
tops, 6-29	ground, 2-177
work versus cold work on steel, influence of, 6-1	resistance, 6-4
Howitzers, obturating problem in, 4-134	sensitivity to, 2-187
HVAP	rifle bullet, 2-23
shot, 2-128, 6-35,36	test, 2-22
assembly of, 6-35	velocity, 2-5,93
base of, 6-35	Impaired penetration, 2-38
body of, 6-35	Implied requirement, 5-15,22
windshield of, 6-35	Importance of slow roll, 3-29
projectiles, 4-153	Improper heat treatment, 2-123
HVAPDS	Impulse, 2-16,72
round, 2-137	comparison of peak pressure and, 2-13
shot, 2-118, 6-36	positive, 2-7,9,10,11,13,14,19
projectile, 2-138	IMR powder, 2-188
HVAPDSFS	available energy for, 2-169
projectiles, 2-128	Incapacitation
shot, 2-119	criterion, 2-104
Hydraulic piercing, 6-7	probability of immediate, 2-102
Hydrogen atmosphere, 6-36	types of, 2-102
Hydrostatic pressure, 4-186	A, 2-102
Hydroxide, metal, 2-191	B, 2-102
Hygroscopicity, 2-22	K, 2-102
decrease, 4-2	five-second, 2-102
test, 4-94	Incendiary, 2-1
Hypergeometric distribution, 5-2	Incident wave, 2-8,9
Hypervelocity, 2-4,118	Incipient plastic flow, 4-186
armor-piercing shell (HVAP), 2-117	Incipient plastic stress state, 4-188
manufacture of, 6-35	Increase in drag, 3-67
discarding sabot ammunition (HVAPDS), 1-3	Increasing twist, 4-172
fin-stabilized shot (HVAPDSFS), 1-3	advantages, 4-170
discarding sabot, fin-stabilized shell, 2-4 projectiles, 2-123	disadvantages, 4-170
Hypothetical shell, lethality of, 2-106	Increment(s), 1-7 boundary, 2-183
hypometical shell, lemailty of, 2-100	propellant, 2-172
	Indentation pressure, 4-152
	Independent
Icosahedron gage, 2-100	locational tolerance, 5-13
Imites compositions 0 100	symbol E 1E

tolerance, 5-21	fit, 4-121
Index, 2-77	minimum, 2-180
angle, 2-77,79	ratio, 4-152
lethality, 2-103,106,107	recommended, 4-123
of satisfactory ignition, 4-84	zero, 4-169
Indicator, dial, 5-14	Interior ballistics, 2-153, 4-1,164
Induction furnace, 6-33	basic problems of, 4-33
Inertia(1)	calculations, 4-9
forces, 4-178	equations of, 4-22,33,35
tangential, 4-178	summary of, 4-39,46
moments of, 3-86,89	properties, 4-16
polar, 4-179	systems of, 4-18,33
of shell, 3-4	Intermediate anneals, 6-1
Influence of hot work versus cold work on steel, 6-1	Intermediate inspection, government, 6-44
Information-bearing leaflets, 2-183	Internal
Infrared, 2-189	contour of case, 4-124
Initial	contour of shell, 2-185
clearance, 4-119	energy of gas, 4-35
free space, 4-38	mouth diameter, 4-124
shot start pressure, uniform, 4-149	volume of cartridge case (determine), 4-126
velocity, 3–38	International heat test (75°C), 2-22
factors determining, 3-72	Interpolator, transparent, 4-17
fragment, 2-106	Interpolation, linear, 3-88
prediction of, 2-98	Interval of burning of propellant, 4-43
yaw, 3-5,28, 4-164,178	Interval, ignition, 4-84
magnitude and effects of, due to bore clearance,	Inverted bead, 4-134
3-28	Inverted piercing, 6-8
Initiating charge, 2-177 Initiation	Iron
	powder, 4-161
of explosive, 2-61	sintered, 4-149,161
peripheral, 2-62	sulfide, 6-4
Initiator	Isobaric adiabatic flame temperature, 4-88
black powder, 2-183	Isochoric adiabatic flame temperature, 4-88
test, 2-23	
Inspection, 6-5,18 amount of, 5-1	
chamber gage, 6-44	Jaeger, 3-13
final, 6-39,44,45	Jet, 2-58
government and marking of shells, 6-24	
	Duureation of, 2-35
methods of 5-1 6-40	bifurcation of, 2-35 breakup, 2-32
methods of, 5-1, 6-40 by attributes, 5-5.12	breakup, 2-32
by attributes, 5-5,12	breakup, 2–32 density, 2–38
by attributes, 5–5,12 lot-by-lot sampling, 5–1	breakup, 2-32 density, 2-38 ductility, 2-52
by attributes, 5–5,12 lot-by-lot sampling, 5–1 100-percent, 6–44	breakup, 2–32 density, 2–38 ductility, 2–52 engines, peripheral, 2–82
by attributes, 5–5,12 lot-by-lot sampling, 5–1 100-percent, 6–44 by variables, 5–12	breakup, 2–32 density, 2–38 ductility, 2–52 engines, peripheral, 2–82 formation, 2–31,32
by attributes, 5-5,12 lot-by-lot sampling, 5-1 100-percent, 6-44 by variables, 5-12 visual, 6-20,24	breakup, 2–32 density, 2–38 ductility, 2–52 engines, peripheral, 2–82 formation, 2–31,32 high speed, 2–31
by attributes, 5-5,12 lot-by-lot sampling, 5-1 100-percent, 6-44 by variables, 5-12 visual, 6-20,24 personnel required, 6-47	breakup, 2-32 density, 2-38 ductility, 2-52 engines, peripheral, 2-82 formation, 2-31,32 high speed, 2-31 hollow, 2-64
by attributes, 5-5,12 lot-by-lot sampling, 5-1 100-percent, 6-44 by variables, 5-12 visual, 6-20,24 personnel required, 6-47 in process of manufacture, 6-13,19,23	breakup, 2-32 density, 2-38 ductility, 2-52 engines, peripheral, 2-82 formation, 2-31,32 high speed, 2-31 hollow, 2-64 radiographic studies, 2-68
by attributes, 5-5,12 lot-by-lot sampling, 5-1 100-percent, 6-44 by variables, 5-12 visual, 6-20,24 personnel required, 6-47 in process of manufacture, 6-13,19,23 of shell forgings, 6-13	breakup, 2-32 density, 2-38 ductility, 2-52 engines, peripheral, 2-82 formation, 2-31,32 high speed, 2-31 hollow, 2-64
by attributes, 5-5,12 lot-by-lot sampling, 5-1 100-percent, 6-44 by variables, 5-12 visual, 6-20,24 personnel required, 6-47 in process of manufacture, 6-13,19,23 of shell forgings, 6-13 of wrapped case, 6-48	breakup, 2-32 density, 2-38 ductility, 2-52 engines, peripheral, 2-82 formation, 2-31,32 high speed, 2-31 hollow, 2-64 radiographic studies, 2-68 shaped charge, 2-38,85
by attributes, 5-5,12 lot-by-lot sampling, 5-1 100-percent, 6-44 by variables, 5-12 visual, 6-20,24 personnel required, 6-47 in process of manufacture, 6-13,19,23 of shell forgings, 6-13 of wrapped case, 6-48 Insufficient number of draws, 4-125	breakup, 2-32 density, 2-38 ductility, 2-52 engines, peripheral, 2-82 formation, 2-31,32 high speed, 2-31 hollow, 2-64 radiographic studies, 2-68 shaped charge, 2-38,85 velocity, 2-63
by attributes, 5-5,12 lot-by-lot sampling, 5-1 100-percent, 6-44 by variables, 5-12 visual, 6-20,24 personnel required, 6-47 in process of manufacture, 6-13,19,23 of shell forgings, 6-13 of wrapped case, 6-48	breakup, 2-32 density, 2-38 ductility, 2-52 engines, peripheral, 2-82 formation, 2-31,32 high speed, 2-31 hollow, 2-64 radiographic studies, 2-68 shaped charge, 2-38,85 velocity, 2-63 water, 6-6
by attributes, 5-5,12 lot-by-lot sampling, 5-1 100-percent, 6-44 by variables, 5-12 visual, 6-20,24 personnel required, 6-47 in process of manufacture, 6-13,19,23 of shell forgings, 6-13 of wrapped case, 6-48 Insufficient number of draws, 4-125 Integral, elliptic, 3-27 Integrator, 4-126 ballistic, 3-85	breakup, 2-32 density, 2-38 ductility, 2-52 engines, peripheral, 2-82 formation, 2-31,32 high speed, 2-31 hollow, 2-64 radiographic studies, 2-68 shaped charge, 2-38,85 velocity, 2-63 water, 6-6 Jib, alining, 4-132 Joint press, 6-17 Joint, shear, 2-160
by attributes, 5-5,12 lot-by-lot sampling, 5-1 100-percent, 6-44 by variables, 5-12 visual, 6-20,24 personnel required, 6-47 in process of manufacture, 6-13,19,23 of shell forgings, 6-13 of wrapped case, 6-48 Insufficient number of draws, 4-125 Integral, elliptic, 3-27 Integrator, 4-126 ballistic, 3-85	breakup, 2-32 density, 2-38 ductility, 2-52 engines, peripheral, 2-82 formation, 2-31,32 high speed, 2-31 hollow, 2-64 radiographic studies, 2-68 shaped charge, 2-38,85 velocity, 2-63 water, 6-6 Jib, alining, 4-132 Joint press, 6-17
by attributes, 5-5,12 lot-by-lot sampling, 5-1 100-percent, 6-44 by variables, 5-12 visual, 6-20,24 personnel required, 6-47 in process of manufacture, 6-13,19,23 of shell forgings, 6-13 of wrapped case, 6-48 Insufficient number of draws, 4-125 Integral, elliptic, 3-27 Integrator, 4-126	breakup, 2-32 density, 2-38 ductility, 2-52 engines, peripheral, 2-82 formation, 2-31,32 high speed, 2-31 hollow, 2-64 radiographic studies, 2-68 shaped charge, 2-38,85 velocity, 2-63 water, 6-6 Jib, alining, 4-132 Joint press, 6-17 Joint, shear, 2-160 Jominy tests, 6-29 Jump, 3-6,28,30
by attributes, 5-5,12 lot-by-lot sampling, 5-1 100-percent, 6-44 by variables, 5-12 visual, 6-20,24 personnel required, 6-47 in process of manufacture, 6-13,19,23 of shell forgings, 6-13 of wrapped case, 6-48 Insufficient number of draws, 4-125 Integral, elliptic, 3-27 Integrator, 4-126 ballistic, 3-85 Intensifiers, color, 2-186 Intensity illumination, 4-3	breakup, 2-32 density, 2-38 ductility, 2-52 engines, peripheral, 2-82 formation, 2-31,32 high speed, 2-31 hollow, 2-64 radiographic studies, 2-68 shaped charge, 2-38,85 velocity, 2-63 water, 6-6 Jib, alining, 4-132 Joint press, 6-17 Joint, shear, 2-160 Jominy tests, 6-29
by attributes, 5-5,12 lot-by-lot sampling, 5-1 100-percent, 6-44 by variables, 5-12 visual, 6-20,24 personnel required, 6-47 in process of manufacture, 6-13,19,23 of shell forgings, 6-13 of wrapped case, 6-48 Insufficient number of draws, 4-125 Integral, elliptic, 3-27 Integrator, 4-126 ballistic, 3-85 Intensifiers, color, 2-186 Intensity illumination, 4-3 luminous (candlepower), 2-187,190,191	breakup, 2-32 density, 2-38 ductility, 2-52 engines, peripheral, 2-82 formation, 2-31,32 high speed, 2-31 hollow, 2-64 radiographic studies, 2-68 shaped charge, 2-38,85 velocity, 2-63 water, 6-6 Jib, alining, 4-132 Joint press, 6-17 Joint, shear, 2-160 Jominy tests, 6-29 Jump, 3-6,28,30
by attributes, 5-5,12 lot-by-lot sampling, 5-1 100-percent, 6-44 by variables, 5-12 visual, 6-20,24 personnel required, 6-47 in process of manufacture, 6-13,19,23 of shell forgings, 6-13 of wrapped case, 6-48 Insufficient number of draws, 4-125 Integral, elliptic, 3-27 Integrator, 4-126 ballistic, 3-85 Intensitiers, color, 2-186 Intensity illumination, 4-3 luminous (candlepower), 2-187,190,191 factors affecting, 2-189	breakup, 2-32 density, 2-38 ductility, 2-52 engines, peripheral, 2-82 formation, 2-31,32 high speed, 2-31 hollow, 2-64 radiographic studies, 2-68 shaped charge, 2-38,85 velocity, 2-63 water, 6-6 Jib, alining, 4-132 Joint press, 6-17 Joint, shear, 2-160 Jominy tests, 6-29 Jump, 3-6,28,30 finned projectiles, assymetry effects on, 3-30
by attributes, 5-5,12 lot-by-lot sampling, 5-1 100-percent, 6-44 by variables, 5-12 visual, 6-20,24 personnel required, 6-47 in process of manufacture, 6-13,19,23 of shell forgings, 6-13 of wrapped case, 6-48 Insufficient number of draws, 4-125 Integral, elliptic, 3-27 Integrator, 4-126 ballistic, 3-85 Intensifiers, color, 2-186 Intensity illumination, 4-3 luminous (candlepower), 2-187,190,191 factors affecting, 2-189 Intensities, determination of relative air-blast, 2-11	breakup, 2-32 density, 2-38 ductility, 2-52 engines, peripheral, 2-82 formation, 2-31,32 high speed, 2-31 hollow, 2-64 radiographic studies, 2-68 shaped charge, 2-38,85 velocity, 2-63 water, 6-6 Jib, alining, 4-132 Joint press, 6-17 Joint, shear, 2-160 Jominy tests, 6-29 Jump, 3-6,28,30 finned projectiles, assymetry effects on, 3-30
by attributes, 5-5,12 lot-by-lot sampling, 5-1 100-percent, 6-44 by variables, 5-12 visual, 6-20,24 personnel required, 6-47 in process of manufacture, 6-13,19,23 of shell forgings, 6-13 of wrapped case, 6-48 insufficient number of draws, 4-125 Integral, elliptic, 3-27 Integrator, 4-126 ballistic, 3-85 Intensifiers, color, 2-186 Intensity illumination, 4-3 luminous (candlepower), 2-187,190,191 factors affecting, 2-189 Intensities, determination of relative air-blast, 2-11 Interacting wave front theory, 2-157	breakup, 2-32 density, 2-38 ductility, 2-52 engines, peripheral, 2-82 formation, 2-31,32 high speed, 2-31 hollow, 2-64 radiographic studies, 2-68 shaped charge, 2-38,85 velocity, 2-63 water, 6-6 Jib, alining, 4-132 Joint press, 6-17 Joint, shear, 2-160 Jominy tests, 6-29 Jump, 3-6,28,30 finned projectiles, assymetry effects on, 3-30 measurement of, 3-6
by attributes, 5-5,12 lot-by-lot sampling, 5-1 100-percent, 6-44 by variables, 5-12 visual, 6-20,24 personnel required, 6-47 in process of manufacture, 6-13,19,23 of shell forgings, 6-13 of wrapped case, 6-48 lnsufficient number of draws, 4-125 Integral, elliptic, 3-27 Integrator, 4-126 ballistic, 3-85 Intensifiers, color, 2-186 Intensity illumination, 4-3 luminous (candlepower), 2-187,190,191 factors affecting, 2-189 Intensities, determination of relative air-blast, 2-11 Interacting wave front theory, 2-157 Interchangeability, field, 2-182	breakup, 2-32 density, 2-38 ductility, 2-52 engines, peripheral, 2-82 formation, 2-31,32 high speed, 2-31 hollow, 2-64 radiographic studies, 2-68 shaped charge, 2-38,85 velocity, 2-63 water, 6-6 Jib, alining, 4-132 Joint press, 6-17 Joint, shear, 2-160 Jominy tests, 6-29 Jump, 3-6,28,30 finned projectiles, assymetry effects on, 3-30 measurement of, 3-6 K damage, 2-83,110
by attributes, 5-5,12 lot-by-lot sampling, 5-1 100-percent, 6-44 by variables, 5-12 visual, 6-20,24 personnel required, 6-47 in process of manufacture, 6-13,19,23 of shell forgings, 6-13 of wrapped case, 6-48 lnsufficient number of draws, 4-125 Integral, elliptic, 3-27 Integrator, 4-126 ballistic, 3-85 Intensifiers, color, 2-186 Intensity illumination, 4-3 luminous (candlepower), 2-187,190,191 factors affecting, 2-189 Intensities, determination of relative air-blast, 2-11 Interacting wave front theory, 2-157 Interchangeability, field, 2-182 Interference(s)	breakup, 2-32 density, 2-38 ductility, 2-52 engines, peripheral, 2-82 formation, 2-31,32 high speed, 2-31 hollow, 2-64 radiographic studies, 2-68 shaped charge, 2-38,85 velocity, 2-63 water, 6-6 Jib, alining, 4-132 Joint press, 6-17 Joint, shear, 2-160 Jominy tests, 6-29 Jump, 3-6,28,30 finned projectiles, assymetry effects on, 3-30 measurement of, 3-6 K damage, 2-83,110 KK damage, 2-110
by attributes, 5-5,12 lot-by-lot sampling, 5-1 100-percent, 6-44 by variables, 5-12 visual, 6-20,24 personnel required, 6-47 in process of manufacture, 6-13,19,23 of shell forgings, 6-13 of wrapped case, 6-48 Insufficient number of draws, 4-125 Integral, elliptic, 3-27 Integrator, 4-126 ballistic, 3-85 Intensifiers, color, 2-186 Intensity illumination, 4-3 luminous (candlepower), 2-187,190,191 factors affecting, 2-189 Intensities, determination of relative air-blast, 2-11 Interacting wave front theory, 2-157 Interchangeability, field, 2-182 Interference(s) drag, 3-70	breakup, 2-32 density, 2-38 ductility, 2-52 engines, peripheral, 2-82 formation, 2-31,32 high speed, 2-31 hollow, 2-64 radiographic studies, 2-68 shaped charge, 2-38,85 velocity, 2-63 water, 6-6 Jib, alining, 4-132 Joint press, 6-17 Joint, shear, 2-160 Jominy tests, 6-29 Jump, 3-6,28,30 finned projectiles, assymetry effects on, 3-30 measurement of, 3-6 K damage, 2-83,110 KK damage, 2-110 Kamikaze attack, 2-110
by attributes, 5-5,12 lot-by-lot sampling, 5-1 100-percent, 6-44 by variables, 5-12 visual, 6-20,24 personnel required, 6-47 in process of manufacture, 6-13,19,23 of shell forgings, 6-13 of wrapped case, 6-48 Insufficient number of draws, 4-125 Integral, elliptic, 3-27 Integrator, 4-126 ballistic, 3-85 Intensitiers, color, 2-186 Intensity illumination, 4-3 luminous (candlepower), 2-187,190,191 factors affecting, 2-189 Intensities, determination of relative air-blast, 2-11 Interacting wave front theory, 2-157 Interchangeability, field, 2-182 Interference(s) drag, 3-70 estimation of, 3-71	breakup, 2-32 density, 2-38 ductility, 2-52 engines, peripheral, 2-82 formation, 2-31,32 high speed, 2-31 hollow, 2-64 radiographic studies, 2-68 shaped charge, 2-38,85 velocity, 2-63 water, 6-6 Jib, alining, 4-132 Joint press, 6-17 Joint, shear, 2-160 Jominy tests, 6-29 Jump, 3-6,28,30 finned projectiles, assymetry effects on, 3-30 measurement of, 3-6 K damage, 2-83,110 KK damage, 2-110 Kamikaze attack, 2-110 Kelley, 3-12
by attributes, 5-5,12 lot-by-lot sampling, 5-1 100-percent, 6-44 by variables, 5-12 visual, 6-20,24 personnel required, 6-47 in process of manufacture, 6-13,19,23 of shell forgings, 6-13 of wrapped case, 6-48 Insufficient number of draws, 4-125 Integral, elliptic, 3-27 Integrator, 4-126 ballistic, 3-85 Intensifiers, color, 2-186 Intensity illumination, 4-3 luminous (candlepower), 2-187,190,191 factors affecting, 2-189 Intensities, determination of relative air-blast, 2-11 Interacting wave front theory, 2-157 Interchangeability, field, 2-182 Interference(s) drag, 3-70	breakup, 2-32 density, 2-38 ductility, 2-52 engines, peripheral, 2-82 formation, 2-31,32 high speed, 2-31 hollow, 2-64 radiographic studies, 2-68 shaped charge, 2-38,85 velocity, 2-63 water, 6-6 Jib, alining, 4-132 Joint press, 6-17 Joint, shear, 2-160 Jominy tests, 6-29 Jump, 3-6,28,30 finned projectiles, assymetry effects on, 3-30 measurement of, 3-6 K damage, 2-83,110 KK damage, 2-110 Kamikaze attack, 2-110

KI-starch test, 4-93 Kill, 2-110	criteria, 2-93,101,111 determination, 2-105,106
first-round probability of, 2-3,4	of hypothetical shell, 2-106
Kinetic energy	index, 2-103,106,107
ammunition, 2-1,4,85,117	Lieberman, 2-69
of gas, 4-36	Lift(ing)
of powder, 2-137	coefficient, 3-10,12
of projectile, 4-9,33,35	slopes, 3-13,27
shot, comparative performance of, 2-145	of fins to ensure static stability, 3-11
shot, penetration of armor, 2-1	of finned projectile, 3-12
Kirkwood-Brinkley's theory, 2-9	plug, 1-4
Knurling rollers, 6-16	Light, 2-1
Krupp armor, 2-120	characteristics of pyrotechnic compositions (fac- tors which affect), 2-187 output, 2-170
	signal color, 2-193
Labyrinth seal, 4-134	Limit(s)
Lagerstrom, 3-12,13	ballistic, 2-125,127,141,144,145
Lame, equations by, 4-182	approximating the, 2-126
Lamellar pearlite, 6-29	elastic, 6-43
Laminac, 2-192	to length of shell, 3-1
Land(s), 3-4, 6-35	pressure, 4-1,9,11
band, 4-155	of propagation vs. minimum column diameter,
width, 4-155	. 2-182
flattening of, 4-178	signal smokes (terminal effects), 2-182
rifling, 4-155	tolerance, 5-11,18
wear of, 4-164	velocity, 2-125
Lapin, 3-14	web, 4-11
Late collapse, 2-69	Linear
Law(s)	acceleration, 4-179
of Cranz, 2-32	burning rate, 4-16,18,20
of mass action, 2-190	interpolation, 3-88
Newton's, 4-34	-shaped charges, 2-82
scaling, 2-9,16,65	Liner(s), 2-108
Lead	conical, 2-31
azide, 1-5	copper, 2-32,46
carbonate, 4-3	drawn, 2-68
cones, 2-41	cylindrical, 2-69,71
Leading edge, 3-11,13,14	desirable properties of, 2-38
Leaflets, 2-1	fluted, 2-35,69,71,72,75,82,108,109
information-bearing, 2-183	materials, 2-85
Leaflets, propaganda, 2-184,185	effect on penetration under rotation, 2-68
rolls, 2-184	selection of, 2-50
method of reinforcing, 2-184	method of attaching, 2-55
surrender, 2-183	parameters, consideration of, 2-49
warning, 2-183	performance, 2-36
Leakage, 2-6	factors affecti: ;, 2-36
propellant gases, 2-180	measures of, 36
Least-square fit, 4-20	shape, 2-52
Le Duc system, 4-33,80,81	effect on penetration under rotation, 2-69
Length	shaped charge, 2-52
cartridge case, 4-121,128	soft porous, 2-109
tolerance of, 4-121	steel, 2-32,61
of chamber, 4-137	thickness, effect on penetration under rotation,
extrusion to, 6-21	2-67
gun of infinite, 4-80	trumpet-shaped, 2-69
ogival, 3-87	Lined cavity charges, 2-31
arc, 3-82	Lines-first, 2-196
of swell diameter, 3-85	Lines, Lueder's, 6-44
Lessells' and Associates, 2-158	Linfoot, 2-94
Lethal area, 2-3,93,104,106,154	Liquid
air-burst, 2-107	explosives, 2-62
computation, 2-103	fillers, 2-6,161,185
criteria, 2-154	-filled shell, 2-160,185
ground-burst, 2-106	burster, design of, 2–186
Lathality 2_4 36 71 119 153	ealtnoter 6-37

Litmus-paper test, 6-40	operations on mouth of cartridge case, 6-44
Loaded, press, 2-156	Magnaflux test, 6-33
Loading	Magnesium-aluminum fuels, properties of aluminum
density, 2-11,14, 4-1,33	and, 2-190
maximum, 4-50	Magnetic comparator, 6–45
optimum, 4-50 vs. pressure curve of black powder, 2-183	hardness, 6-43
of propellant, 4-164	fuzes, 2-57
flechettes, 2-150	hardness test, 6-43
geometric density, 4-46	Magnitude of initial yaw due to bore clearance, 3-28
mortar shell, 4-178	Magnus moment, 3-8,29
tool, 6-41	damping factor, 3-6,10
WP filler, 2-180	Main body taper, 4-121
Location of center of gravity, 3-88	Major base, 3-87
Locational tolerance symbols, 5-13	Major defects, 5–5
Longitudinal stress, 4-182,189	Malformed cones, 2-39
Longitudinal tensile stress, 4-179	Malfunctions, 6-47
Long-term surveillance, 2-175	caused by twisting of shroud lines, 2-166
Loose rotating bands, 6-26	Mandrel, 6-9
Loss	Manganese sulfide, 6-4
of hardness, 6-43	Manufacture
in obturation, 4-163	armor-piercing shot and caps, 6-29
in penetration, 2-57	artillery ammunition, 6-1
in shot-start pressure, 4-163	cartridge case, 4-119,133
Lot	annealing operations, 6-39
acceptability of, 5-12 definition of, 5-1	brass, 6-37 perforated, 6-49
homogeneity of, 5-2	steel, drawn, 6-41
-by-lot sampling inspection, 5-1	trapezoidal-wrapped, 6-46
size, sample-size-to-, 5-6	of HEP shell, 6-26
tolerance percent defective (LTPD), 5-3	of hypervelocity armor-piercing shot (HVAP), 6-35
Low	inspection in process of, 6-23
aspect ratio, 3-13	of shell during closing, 6-19
explosives, 1-6	of nitrocellulose, 4-6
notch toughness, 6-4	progress in techniques, 6-1
order detonation, 2-183	of propellants, 4-6
oxygen balance, 4-3	steel shells, pierce-and-draw process of, 6-2
percentage elongation, 6-44	of tungsten carbide cores, 6-36
-temperature firing, 4-129	Marker, colored, 2-160
-temperature stress relieving, 6-43	Marking
-velocity rounds (fuzing of), 2-63	on bases of cartridge cases, 4-126
Love, 4-36	of shells, 6-18
Lueder's lines, 6-44	government inspection and, 6-24
Luminous intensity (candlepower), 2-187,190,191	Martensite structure, 2-143
factors affecting, 2-189	Mass
Lupersol, 2-192	action, law of, 2-190
Luther, 3-13	fragment, 2-109,111 presented area, relation between, 2-99
	of projectile, 3-38
	Matching
M damage, 2-83	ballistic, 2-6,157
M1 propellant, 4-1	and soldering AP caps, 6-33
M2 propellant, 4-2	weight, 2-180
M15 propellant, 4-2	Material(s)
Mach	anisotropic, 4-149
angle, 3-14	burster, 2-178
number, 3-4,9,12,13,39,65,68,71	for cartridge cases, 4-132
stem, 2-9	deterrent, 4-3
wave, 2-9,19	liner, 2-85
Machinable quality armor (MQ), 2-120	rotating bands, 4-149
Machining, 6-1	properties required of, 4-149
finish, 6-15	stabilizing, 4-1
of HE shells, 6-14	Mathematical statement of Von Mises yield condi-
outside of, rough, 6-14	tion, 4-187
preparation for, 6-14	Matrix, use of, 2–150
operations on head of cartridge case, 6–44	Maximum

ballistic coefficient, 3-64	fragmentation characteristics data to design of
charge, 4–50	shell, application of, 2-98
energy, 4-185	gilding, 2-152, 4-149,160
theory, 4-185	hydroxide, 2-191
illumination, 2–195	oxide, 2-191
likelihood, method of, 2-95,127	parts
loading density, 4-50	accessory, 2-164
metal conditions, 5-20,24	of illuminating shell, 2-162
pressure, 4-16,19,20,26,39,40,48,94,188	signal-smoke shell design, 2-182
attainable, 4-33	setback of, 4-181
calculate, 4-81	sabots, 2-138
tables for, 4-47	salts, alkali, 4-3
formula for, 4-41	Metallurgy, powder, 6-1
position of, 4-45,47	Meter, paper blast, 2-10
propellant, 4-180,188	Method(s), 4-149
rated, 4-11,50	analysis
ratio of, 4-88	of data, 2-85
	evaluation of present, 2-91
time of, 4-45,48	by, statistical, 2-126
range, 3-38,64	of arming, 1-5
finding, 3-73	ballistic, 4-26
shear	Bruceton staircase, 2-23
stress, 4-185	bullet pull, of achieving desired, 4-132
theory, 4-185,187	
(Tresca's rule of flow), 4-185	of producing colored smoke, 2-178
sky brightness, 2-193	comparative study of shell forging, 6-13
square, 6-8	of computing
velocity, 4-9,50	air density at any altitude, 2-198
permissible, 4-156	ballistic limits from firing data, 2-126
muzzle, 2-128	band width, 4-150
McMillen, 2-102	muzzle velocity of a subcaliber projectile,
Mean, 5-12	British, 2-138
burst height, 2-107	of crimping (effect of), 4-132
deviation from, 4-137	of controlling fragmentation, 2-108
dimension of ogive, 3-2	of dimensioning mouth of case, 4-124
heat capacity, 4-87,88	distributed area, 2-88
calculated for organic chemical constituent, 4-88	used to control erosion, 4-169
calculated for propellant composition, 4-88	of forging shell, French extrusion, 6-9
Measurements	of imparting rotation, 2-119, 4-149
of blast, 2-10	of inspection, 5-1
of jump, 3-6	liner, of attaching, 2-55
of liner performance, 2-36	liners, for manufacturing fluted, 2-80
piezoelectric, 4-94	of maximum likelihood, 2-95,127
of presented area of fragment, 2-100	of reinforcing leaflet rolls, 2-184
	of releasing and discarding carrier, 2–119
of sensitivity, 4-93	test, 4-93 .
of stability, 4-93	description of, 2-22
wind tunnel, 3-9,71	of shell forming (compromise), 6-25
Mechanical gage, 2-10	shock velocity, 2-11
time fuze, 2-177,183,184	of stabilization, 3-1
Mechanism	
of cap action (theories), 2-141	stochastic, 2-107
recoil, 3-72	up-and-down, 2-127
of spalling, 2-157	vulnerable area, 2-88
of spin compensation (by fluted liners), 2-72	of weight control (shell manufacture), 6-17
Medina explosives, 2-13	Methyl violet test, 4-93
Meplat (flat nose), 3-67	Micrometer, ball point, 6-24
circular, 3-69	Microsurface finish, 2–180
diameter, effect on estimation of drag, 3-67	Midwest Research Laboratories, 2-82
Mercury fulminate, 1-5	Minimum
Merit, figure of, 2-103,106	bourrelet clearance, 4-178
Metal	candlepower, 2-195
binder, 6-36	chamber capacity (estimating), 4-125
burster tube, 2-160,179	clearance, 4-121
case, solid-drawn, 4-120	drag, 3-64
dead, 6-42	interference, 2-180
dust flashes, 2-187	metal conditions, 5-20,24
fouling, 4-149	permissible yield stress, 4-156

stress in shell wall, 4-158 time of flight, 3-38,64	illuminating, design elements of, 2-172 loading, 4-178
Minor defects, 5-5	special design problems of, 2-172
Misfires, 4-84	spin-stabilized, 2-173
Missile(s), 2-150	Motion
for canister ammunition, 2-150	of center of gravity, 3-6,38
classification of, 2-1	energy of, 4-43
effect by, 2-1	equation of, 3-4, 4-36,38,42
design of shaped charge, 2-47	of projectile, 4-33
dispersion, 2-152	of spinning shell, 3-2
preformed, 2-1	start of, 2-73, 4-43
secondary, 2-4	Mott, 2-93,94,106
Mixed zone, 2-127	equation, 2-94,98
Mixtures, binary, 2-190	reliability of, 2-95
Mixture, pyrotechnic, 2-192	scaling formula, 2–95 Mouth
Models, combat, 2-107	
Modifications of shape of shell, 3-64	anneal of cartridge case, 6-44
Modified equation of motion, 4-37	bolling of, 4-122
Modulus	diameter, internal, 4-124
elasticity, 2–165	eccentricity of, 4-124
rigidity, 4-186	thickness at, 4-133
Young's, 4-118	Moving charge, 2-16
Moisture	MOX explosives, 2-13
atmospheric, 2–191	Multiple manufacturing Corporation, 6-21
proofing agents, 4-2	Multichek gage, 6-24 Multiperferenced grain (seven perference), 4-10-01-04
protection against effects, 2-192	Multiperforated grain (seven-perforated), 4-13,21,24
on shelf life, effect of, 2-191	(equations for), 4–28 Multiple
Mold, big-end-up, 6-29	punching, 6-49
Mold casting in, 6-1	sampling, 5-6
Moles of gas, number of, 4-87	wall shell, 2-108,109
Molybdenum disulfide, 2-181	Multipurpose shell, 2-161
Molykote, 2-181	Munk's theoretical values, 3-9
Moment	Munroe effect, 2-110
inertia, 3–86,89	Murphy, 3-9,10
axial, 3-2	Murray-Ohio Corporation, 6-46
polar, 3-81,89, 4-179 of shell, 3-4	Must not decompose in storage, 4-2
	Muzzle
transverse, 3-2,10,28,81,90 first about plane, 3-1	blast, 3-28,29,30
Magnus, 3-8,29	energy, 3-38,72
damping factor, 3-10	rotational, 4-150
overturning, 3-2,7,10,11,29	flash, 4-3
coefficient, 3-9	reduce, 4-2
factor, 3-8	gases, 4-3
righting, 3-7,10,11	momentum, 3-38,72
factor, 3-28,30	pressure, 4-11
spin-decelerating, 3-8	velocity, 2-118,129,153, 3-39,72, 4-26,40,48,129,
coefficient, 3-10	137,173,189
damping factor, 3-6	consistent, 2-152
transverse, 3-89, 4-178	of subcaliber projectile (British method of es-
yawing, 3-3,8,10	timating), 2-138
coefficient, 3-10	tables for calculation of, 4-47
damping factor, 3-6	·
Momentum	
of HE shell (computing), 3-76	
muzzle, 3-38,72	National Defense Research Council, 2-37
of projectile, 3-72	National Pneumatic Company, 6-29
of propellant gases, 3-72	Nature of fragmentation, 2-93
recoil, 3-72	Naval Ordnance Laboratory, 2-60
Monobloc	Naval Ordnance Test Station, 2-37
projectiles, 2-141	Navy star shell, 2-173
shot, 2-117,138	Neck of cartridge case, 4–134
capped, 6-29	Necking case, 4-129
Morikawa, 3-14,27	Newton's laws, 4-34
Mortar ammunition	Nick and break, 6-5
forgings, 6-4	Nitration, proper degree of, 4-6

Nitrocellulose, 1-6, 4-1,2,6,13	amplitude of, 3-8
blended, 4-2	angular velocity, 3-29
forms of, 4-2	yaw, 3-6
heats of formation of, 4-90	Nylon shrouds, 2–167
lacquer coatings, 6-47	
manufacture of, 4-6	
Nitroglycerin, 4-1,2	
propellants, 4-1,84	Objections to high sulfur content steel, 6-4
Nitroguanidine, 1-6, 4-2	Objectives in shell forging, 6-7
propellants, 4-93	Obliquities of attack, 2-145
Nomograph, 4-17	Obliquity, 2-125,137,138,141
No heat treatment required, 6-47	angle of, 2-156
Non-	effect of, 2–123
cemented armor, 2-120	high, 2-124
deformable projectiles, 2-137	Obscuration, target, 4-3
delay fuze, 1-4	Obstructions within the cavity, 2-44
hygroscopic first-fire, 2-192	Obturation, 1-7, 2-152, 4-117,134,149,150,152, 6-1,
ideal flute, 2-78	40
linear flutes, 2–80	beads, 4-134
persistent gas, 2-186	cup, 2-173
dispersion, 2-185	gases, 2-172
undercut seat, 4–154	loss in, 4-163
Normal	problem in howitzers, 4-134
error curve, 2-100	Obturators, rubber, 2-152
force, 3-7	Occluded acids, 4-6
coefficient, 3-8,9,13	Office of Scientific Research and Development, 2-66,
stresses, 4-181	68
Nose	OSRD 6468 method, derivation of equations, 4-42
adapter, 2-186	Offsets, 2-36
blunt, 2-157	Ogival
cabbage of, 6-21	arc, 3-87
charge, single, 2-175	center of, 3-84
crush-up of, 2-5	length of, 3-82
diameter, 3-87	radius of, 3-69
double-angle, 2-124	heads, 3-65
geometry, 2-140	length, 3-87
AP projectile (effect of), 2-138	radius, 3-8,67
tungsten carbide cores (effect of), 2-139	solid of revolution, 3-87
notching, 6-17	zone, volume of, 3-86
pointed, 2-124	Ogive, 1-3, 2-49,128, 3-64,69,81
radius of projectile, 3-82	arc, radius of, 3-82
truncated conical, 2-139	characteristics, 3-88
truncated ogival, 2-124	computations for, 3–82
tapping, 6-16	false, 2-117
Nosing, 6-23	height of, 3–65
deformation during, 6-17	mean dimension of, 3–82
of shell, 6-14	pointed, 3-87
NOT GO gage, 5-24	radius of, 2-139
NOT GO, GO-and-, 6-20	secant, 3-64,65,81,87
Notation, consistent, 4-16	segment, 3-85
Notch(es), (ed), (ing), 6-41 casings, 2-108	calculation of, 3-85
castings (description of), 2-109	shape, 2-58
(or grooved) rings, 2-108	snell, volume of thin, 3-86
(or grooved) wire, 2-3,108,109	tangent, 3-65,81,87,88
nose, 6-17	volume of complete, 3-86
Notch sensitivity, 4-129,133, 6-43	Ogivo-conical head, 3-64
Notes on cartridge case designs, 4-125,126	Olin Mathieson Chemical Corporation, 4-7
Nubbin, 6-27	One, 6-7
Number, 3-4	-piece HEP shell, 2-158
of draws, 4-125	-shot method, 6-7
of fragments, 2-93	-shot piercing process, 6-7
or fragments, 2-53 Mach, 3-4,9,12,13,39,65,68,71	-shot press, 6-7
of moles of gas, 4-87	100-percent inspection, 6-44
Reynolds, 3-68	Opening of parachute, stages in, 2-196
Nutation, 3-3	Opening velocity, critical, 2-196
armometrus U-U	Operating characteristic, curve (OC), 5-2

Operations, characteristic deep-drawing, 6-2	Parachute, 2-160,173
Operations in the machining of shells, sequence of,	deceleration, 2-166
6-14	deployment, 2-166
Optimum	methods, 2-196
air-burst height, 2-107	design, 2-162
base plug, design of, 2-162	factors affecting, 2-195
charge, 4-9	pyrotechnic, 2-193
cone angle, 2-54	flares, 2-161
conditions, 4-50,74	functioning, 2-163
design, 2-93	shaped, 2-195
efficiency, point of, 4-75	stages in opening of, 2-196
gun, 4-50	standard flat, 2-195
height, 2-195	suspension system, 2-196
for area illumination, 2-195	types of, 2-195
concept of, 2-193	Parallel axis (or plane) theorem, 3-89
derivation of, 2-193	Parallel design, 5-11
of illuminating shell, 2-162	Parallelism, symbol for, 5-14
ignition, requirement for, 4-85	Parameter(s)
loading density, 4-50	central ballistic, 4-38
example for, 4-50	dimensionless, 4-39
pellet size (canister ammunition), 2-153	needed to evaluate fragmentation effectiveness,
standoff distance, 2-38,49	2-93
visibility, 2-177	Parasheet, 2-195
warhead size, 2-14	Partial drag coefficients, 3-71
web, 4-10,11	Partial randomness of sampling, 5-2
weight of cap material, 2-143	Particle size, 2-106,189
Ordnance	Particle velocity, 2-7,30
Ammunition Command, 4-7	Parts design, accessory, 2-177
Board, 4-119	Parts design, shell metal. 2-177
Committee Minutes (OCM), 2-2	Patterns, fragmentation, 2-93
Corps standard density, 3-38	Peak, 4-20
Department, 4-7,169	penetration, 2-68
Organic	pressure, 2-7,9,10,11,13,14,16,19, 4-1,20,38
chemical constituent, gas volume (n) calculated	gage, 2-10
for. 4-87	impulse and comparison of, 2-13
	Pearlite, lamellar, 6-29
mean heat capacity $\overline{\gamma}$ calculated for, 4-88	Pearlitic structure, 2-143
heat of explosion (Q) calculated for an, 4-87	Pellet
relative energy in gas calculated for, 4-88	
dye, 2-178	black powder, 1-5
Origin of rifling, 4–173	explosive, 2-82
Oscillatory projectile motion, 3-2	size, optimum (canister ammunition), 2-153
Output, light, 2-170	Penetrate, failure to, 2-123
Ovality, 4-122, 5-13	Penetrated, thickness of plate, 2-137
Overcoming deficiencies of conventional long artil-	Penetration, 2-32,34,35,36,40,41,45,46,49,53,58,60,
lery primers (proposals made for), 4-84	62,63,66,71,74,80,81,83,117,122,128,138
Overlay bands, welded, 6-17,26	armor, 2-137
Overturning	kinetic energy shot, 2-1
couple factor, 3-2	by shaped charges, 2-1
moment, 3-2,7,10,11,29	bone, 2-103
coefficient, 3-9	depth of, 2-78
factor, 3-8	deterioration in, 2-78
Overworking brass, 4-125	effect of design parameters on, 2-39
Oxidations, exothermal, 2-187	effect of rotation upon, 2-66
Oxide, metal, 2-191	experiments to determine, 2-102
Oxidizing agents, 2-186	fall-off, 2-64
Oxygen balance, 4-3	formula, 2-125
Oxygen deficiency, 4-89	impaired, 2-38
ouldon gottotonell a pa	loss in, 2-57
	peak, 2-68
	performance, 2-70,137
Dainting of shalls 6-19	power, 2-78
Painting of shells, 6-19	rate of, 2–33
Pancake bags, 4-85	
Panel test, 2-94	rotational, 2-68
Panzerfaust, 2-83	effect of cone angle on, 2-66
Paper blast gages, 2-85	effect of liner shape on, 2-69
Paper blast meter, 2-10	effect of standoff, 2-68

enect of finer unchiess on, 2-07	Pierce-and-draw process of manufacturing steel
spin versus optimum, 2-4	shells, 6-2,5,7,8,29
subcaliber projectiles, factors limiting, 2-137	Piercing
sufficient residual, 2-85	die, 6-7
Pentolite, 2-13,40	drawing after, 6-8
Percentage elongation, 4-136, 6-43	hydraulic, 6-7
Percentage oxygen deficiency, 4-89	inverted, 6-8
Percussion	press, 6-7,8
element, 4-84	primer hole, 6-43
firing, 4-126	process, one-shot, 6-7
primer, 1-7, 2-172	progressive, 6-9
Perforate, 2-125	punch, 6-7
Perforated cartridge cases, manufacture of, 6-49	Piezoelectric
Perforation, 2-82,85	gage, 2-10, 4-16
alignment of, 6-49	generator, 2-63
armor, 2-124,125	measurements, 4-94
of cartridge case, 6-49	Pillaring of WP cloud, 2-181
definition of, 2-125	Pin(s)
ductile, 2-129	circle diameter, 4-14
probability of, 2-88	plate, 4-14
punching type of, 2-129	design of, 4-13
Performance	shear, 2-5,160,161,164,172,175,184
of armor plate, 2-125	size, 4-13
of armor-piercing projectiles, 2-126	twist, 2-161
of, AP and APC projectiles, comparative, 2-142	
of fluted liners, 2-80	Pinching of explosive filler, 2-158
	Pipe, 6-13,17
HEP shell, 2-157	Pit
effect of nose, 2-157	sand, 2-94
theory of, 2-156	sawdust, 2-94
of kinetic energy shot, comparative, 2-145	water, 2-94
liner, 2-36	Plane detonation wave, 2-31
factors affecting, 2-36	Plane of yaw, 3-7
penetration, 2-70,137	Planform, hexagonal, 3-14
shaped charge, 2-62	Planimeter, four-wheeled, 3-85
of wrapped case, 6–47	Plans sampling, continuous, 5-10
Peripheral initiation, 2-62	Plastic
Peripheral jet engines, 2-82	anisotropic, 4-189
Permanent deformation, 4-178,185	canister, 2-183
Permanent expansion, 4-118	projectile, 2-152
Permissible tolerance zone, 5-17	casings, 2-152
Perpendicularity, 5-21	deformation, 4-133,178,186, 6-43
of surface, 5-15	explosives, 2-156
symbol for, 5-14	extension, 4-118
Persistent gas, 2-186	flow, 2-120,123,143, 4-118
dispersion of, 2-185	incipient, 4-186
Personnel, defeat of, 2-3	phenolic-type, 2-175
Personnel needed, inspection, 6-47	plug, 4-122
Petal, discarding, 2-119	rotating bands, 4-154
Petal, retained, 2-119	sabot, 2-119
Petalling, 2-120	shell, manufacture of high-explosive, 6-26
Phenolic	strain, 4-118
asbestos-filled, 2-176	stress state, 4-188
glass-filled, 2-175	Plasticity theory, 4-150,187
type plastic, 2–175	Plate
Phillips, 3-14	baffle, 2-175
Phosphate coating, 6-17,21	base, 2-164
Phosphate, zinc, 6-3	Паt, 2-166
Photoflash bombs, 2-178	skirting, 2-129
Photoflash composition, 2-187	pin, 4-14
Phthalates, 4-6	vibrations, 2-123
Picatinny Arsenal, 2-82,153,176, 4-16,137,182	Plug(s), 2-124
Picatinny test, 2-22	base, 2-160,162,164,170
Pickled, 6-21	closing, 1-2,7
Pickled, shot-blasted, 6-3	lifting, 1-4
Pickling, 6-41	plastic, 4-122
Pidduck, 4-36	white metal, 4-122

Plugging, 2-122	of shell for machining, 6-14
Pockets, extractor, 4-119	of slug, 6-21
Pocket, primer, 6-43	Presented area of fragment, measurement of, 2-100
Point(ed)	Press(ed), (ing)
-detonating fuze, 1-5, 2-177	cold, 6-36
of maximum pressure, 4-47 noses, 2-124	compositions, burning of, 2-189
ogive, 3-87	explosives, 2–95 fit, 2–180, 4–132
of optimum efficiency, 4–75	surface, 2–180
at which powder all burned, 4-45	hot, 6-36
stagnation, 2-31,33	loaded, 2-156
triple, 2-9	one-shot, 6-7
V-0, 2-126	piercing, 6-7,8
V-50, 2-126	type crimping, 4-132
V-100, 2-126	Pressure, 4-47
yield, 2-153, 4-118, 6-23	acting on projectiles during firing (summary of),
Poison gases, 2-1	4-181
Poisson distribution, 5-3	allowable, 2-118, 4-137
Poisson's ratio, 4-155	base, 4-36
Polar moment of inertia, 3-81,89, 4-179	breech, 2-164, 4-36,37
Polygonal airfoil section, 3-14	center of, 2-172, 3-7,8,10,12
Poor velocity uniformity, 4-84 Porosity, 2-196	chamber, 2-129,163,172, 4-93,182
basal, 6-13	curve of black powder, loading density vs., 2-183 ejection, 2-163,169
Position	engraving, 4-150
of all burnt, 4-39	erratic, 4-11
of band seat, 4-158	force resulting from propellant gas, 4-179,181
of burst, 3-39	function, 4-48
of center of gravity, 3-81	hydrostatic, 4–186
of maximum pressure, 4-45	identation, 4-152
under head, 4-122	limitations, 4-1,9,11
Positive impulse, 2-7,9,10,11,13,14,19	maximum, 4-16,19,20,26,39,40,48,94
Potassium sulfate, 4-2	allowable, 4-188
potential, ballistic, 4-2	attainable, 4-33
Powder(s)	propellant, 4-180,188
all burned, point at which, 4-45	rated, 4-9,50
black, 2-168, 4-1	muzzle, 4-11
burned, fraction of, 4-47	peak, 2-7,9,10,11,13,14,16,19, 4-1,20,38
ejection, 2-171	propellant, 4-189
gas, kinetic energy of, 2–137 IMR, 2–168	relative, 4-94
iron, 4-161	setback, 2-164 on shell wall resulting from rotation of filler,
metallurgy, 6-1	4-180,181
process, Ball, 4-7	space average, 4-36,76
smokeless, 4-1	stagnation, 2-34
Power, penetrating, 2-78	Prevailing shell steel specifications, 6-4
Practical drag coefficient, 3-38	Prime requirement, 5-15
Precession, 3-3	Primer(s), 1-1,7, 4-33
amplitude of, 3–8	artillery, 4-84
yaw, 3-6	conductive mixture, 1-7
Precision, design for, 3-1	design, standard, 4-84
Precup, 6-41	electric, 1-7
Prediction of initial fragment velocity, 2-98	explosive train, 1-6
Pre-engraved rotating band, 2-152, 6-27	flame action, 1-6
Pre-engraved shells, 3-10 Preignition cone, 2-199	hole, 4-133, 6-43
Preignition zone, 2-189 Preformed fragments, 2-108	piercing, 6-43
Preformed missiles, 1-3, 2-1,150	percussion, 1-7, 2-172 pocket, 6-43
Preheading, 6-43	stab action, 1-6
Premature(s), 2-183	tube, 4-84
detonation, 4-178,180, 6-13	Principle(s)
explosion, 6-17	of HEP shell, 2-157
functioning, 4-162,164	separating burst, 2-174
Preparation	shearing stresses, 4–185
charge, 2-62	of similitude, 2-125
for cupping, 6-41	stresses of shell, 4-182,185

Probability	Emetic energy, 4-9,33,35
of acceptance (Pg), 5-2	mass of, 3-38
cumulative, 2–154	effective, 4-36
curve, 2-126,127	momentum of, 3-72
damage, 2-108,111	monobloc, 2-141
of immediate incapacitation, 2-102	
	motion of, 4-33
of kill, first-round, 2-3,4	beginning of, 4-34
of perforating, 2–88	oscillatory, 3-2
single-shot, 2-106,107	nondeformable, 2-137
Problem(s)	nose radius of, 3-82
exterior ballistic, 3-38	parameters, effect of varying, 2-137
	parameters, effect of varying, 2-137
sample, 3-73	performance of armor-piercing, 2-126
of interior ballistics, basic, 4-33	performance, effect of armor thickness on, 2-129
of propellant ignition, 4-84	requirements for gun, 2-2
sample, 3-31	shattered, 2-123
Procedure(s)	skirted, 2-118, 4-124
	00111 manustus 0 05
design, 2-3	solid geometry, 3-85
inspection, 6-40	spin-stabilized, 3-64
test, 6-5	squeeze-bore, 2-4
Process	subcaliber, 1-3, 2-4,118,137
anneal, 6-41	T33 (FAP), 2-138
Ball powder, 4-7	
	T33 (FAPT), 2-138
of manufacture, inspection in, 6-23	tapered back, 4-189
one-shot, 6-7	torque (T) applied to, 4-179
pierce-and-draw, 6-5,29	total volume behind, 4-34
Producing colored smoke, method of, 2-178	travel of, 4-44,47
Profile	
	tumbling of, 4-164
check, 6-24	typical, 3-39
double wedge, 3-71	velocity of, 4-20,35,44
of finish-machined rotating bands, 4-154	weight of, 4-50
of rifling, 4-155,169	weight distribution in, 4-189
single wedge, 3-71	weight distribution in, 4-109
	yaw of inside gun, 4–149
Progress in manufacturing techniques, 6-1	Propaganda, 2–160
Progressive, 4-9	disseminating shell, 2-5,160,161,183,185
burning, 4-24,25	filler design, 2-184
piercing, 6-9	shell metal parts design, 2-184
shapes, 4-23	leaflets, 2-184,185
stress, 4-163	Propagate, 2-178
cracks, 4-162	Propagation
Projectile, 1-1	of blast, 2–10
antitank, 2-4,156	detonation, 2-24
armor-piercing, 2-125,139	difficulties, 2–181
assembly of, 2-151	explosive wave, 2-7
balloting of, 4-164	vs. minimum column diameter, limits of, 2-182
blunt-nosed, 2-154	Propagatively, burn, 2-189
boat-tail, 4-160	Propellant(s), 1-6, 4-1
breakup, 2-129	
	M1, 4-1
calculations of geometric characteristics, 3-90	M2, 4-2
composite rigid, 2-117	M15, 4-2
deformation, 2-141	burning of, 4-16,33
design, 2-2,128,129	calculation of thermodynamic properties, 4-87
intended for gun already made, 3-1	gos volume (a) 4 07
memoral of gui arready made, 3-1	gas volume (n), 4-87
eccentricity of, 4-137	heat of explosion (Q), 4-87
equation of motion, 4-34	mean heat capacity, 4-88
fin-stabilized, 4–189	relative energy, 4–88
during firing, forces and pressures acting on	characteristics, 4-93
(summary of), 4–181	charge, 2-138,150
flat-base, 4-160	composition, calculated density of, 4-89
free run, 4-164	cord, 4-24
friction, 4-33	double base, 1-6, 4-1,93
geometric components of, 3-89	deterioration of, 4-93
geometry, 3-69,81	
	energy of, 4-87
hypervelocity, 2-123	flashless, 1-6
HVAP, 4-153	force, 4-88
HVAPDS, 2-138	gases, energy of, 3-73
HVAPDSFS, 2-128	gases, leakage of, 2-180
	_ ,

gases, momentum of, 3-72	Punch(ing), 6-9	
pressure, force resulting from, 4-179,181	forming, 6-26	
grain, 4-16,20,93	multiple, 6-49	
granulation, 4-9,16	piercing, 6-7	
ignition, problems of, 4-84	type of perforation, 2-129	
increments, 2-172	Purdue University, 4-161	
loading density of, 4-164	Pyramid rolls, 4-136	
manufacture of, 4-6	Pyrocellulose, 4-2,6	
relative costs of, 4-7	Pyroxylin (collodion), 4-2,6	
materials, criteria for selection of, 4-2		
nitrocellulose, 1-6	•	
nitroglycerine, 4-1,84		
nitroguanidine, 1-6, 4-93	Qualitative description of shaped charge damage,	
pressure, 4-189	2-84	
maximum, 4-180		
	Quality	
released at muzzle, unburnt, 4-76	assurance, 5-1	
residue, 4-1	average outgoing (AOQ), 5-3	
single base, 1-6, 4-1,93	level acceptable, 5-8	
slow-burning, 2-175	level acceptance (AQL), 5-3	
smokeless, 1-6	limit average outgoing (AOQL), 5-4	
strip, 4-24	Quantitative definition of compatibility, 2-24	
thermochemical, characteristics of, 4-89		
	Quench, 6-43	
triple base, 1-6, 4-2	Quenching, 6-14	
Pyrotechnic	Quickmatch, 2-172,183	
compositions, 2-191	Quickness, relative, 4-9,16,18	
characteristics of, 2–186	· ·	
required, 2-187		
chemistry of, 2-186		
constituents of, 2-186	RDX, 2-13,14	
with explosives, comparison of properties, 2-188	Radial	
factors affecting, 2-187	band pressure, 4-149,153	
heat sensitivity of, 2-192	reduction of, 4-169	
properties of typical, 2-187	compressive force, 4-178	
radiation effectiveness of, 2-193	dimensioning, 5-20	
mixture, 2-192	dispersion, 2-150	
reaction mechanism of, 2-192	stresses, 4-182	
parachute design, 2-193	Radiant energy, 2-187,189	
solid-state chemistry of, 2-190	Podiation effectiveness of numetoshule comments	
	Radiation effectiveness of pyrotechnic compositions,	
type ammunition, 1-3	2-193	
Propelling charge, 1-1,6, 4-9	Radiographs, flash, 2-69,73,93	
Proper degree of nitration, 4-6	Radiographic jet studies, 2-68	
Properties	Radius	
of aluminum and magnesium-aluminum fuels, 2-	blending, 4-125	
190	of gyration, 2-165, 4-153	
interior ballistic, 4-16	of longitudinal curvature, 3-81	
rheological, 4–189		
	ogival, 2-139, 3-8,67	
of rotating band materials, 4-149,160	arc, 3-69,82	
of sintered iron, 4-161	of spherical cap, 3-83	
of typical pyrotechnic compositions, 2-187	toleranced, 5-20	
Proportional law of burning rate, 4-20	Raisers, stress, 6-41,43	
Proposals made for overcoming deficiencies of con-	Raketenpanzerbüchse, 2-83	
ventional long artillery primers, 4-84	Ramming, eccentric, 4-178	
Protective	Randomness, of sampling, 5-2	
atmosphere of hydrogen, 6-36	• •	
	Range	
coatings, 4-134, 6-44	critical, 6-27	
criterion, 2-128	steel, 6-1	
film, 2-192	dispersion, 2-107	
against moisture, 2-192	finding horizontal, 3-73	
Proving ground tests, 6-40	firings, 3-65,68	
Proximity fuze (VT), 1-4	maximum, 3-38,64,73	
Pseudo-ratio of specific heats, $\bar{\gamma}$, 4-47	spark, 3-67,70	
Psychological warfare, 2-183	and time of flight, factors governing, 3-38	
Psychological Warfare Service, 2-184	web, 4-9,11	
Pugh, 2-32,34,81	Ranking, damage test, 2-13	
Pull, bullet, 4-129	Rarefaction wave, 2-7	
2111_0ven coce 4_163	Boto/s\	

burning, 2-187,189,190,191, 4-1,9,22,33,36	weak shock, 2-8
equation for, 4-43	Region I, 2-16
decomposition, 4-2	Region II, 2-16
descent, 2-171	Region III, 2-16
detonation, 2-24	Regression of surfaces, 4-35
reaction, 2-189,190,192	Regressive burning, 4-25
penetration, 2-33	Reinforcement, base, 4-137
of yawing, 3-8,10	Relation
Rated maximum pressure, 4-9,11 Ratio	charge-pressure, 4-9
aspect, 3-71	charge-velocity, 4-9 between mass and presented area of fragment,
of burster charge to smoke charge, 2-178	2-99
explosive, 2-178	Relative
interference, 4-152	costs of propellant manufacture, 4-7
of maximum pressures, 4-88	density, 2-198
Poisson's, 4-155	energy, 4-88
of specific heats, 4-88	calculated for propellant composition, 4-88
t/d, 2-122,125	in gas, 4-87
RD38 system, solution by, 4-33,36,48	calculated for organic chemical constituent,
sample solution by use of, 4-40	4-88
React with explosive, 6-17	force, 4-16,19
Reactants, effect of specific surface of, 2-190	humidity, critical, 2–191
Reaction	pressure, 4-94
heat of, 2-189, 4-89	quickness, 4-9,16,18
mechanism of pyrotechnic mixtures, 2-192	Release wave, 2-45
rate, 2-190,192	Releasing and discarding carrier, method of, 2-119
temperatures, 2-187	Reliability of Mott equation, 2-95
time to, 2-192	Relief, stress, 6-44
Rearward extrusion, 6-8	anneal, 6-23
Recessed, 6-27	Remaining
Recoil	velocity, 3–4
mechanism, 3-72	of fragments, 2-99
momentum, 3-72	web, 4-23
system, 3-72	Removable base plate, 2-172
Recoilless	Repose, yaw of, 3-2,4
ammunition, 2-153	Representative shrinkage data, 4-14
gun shell, 6-4	Reproducibility of results, 2-126
rifles, 2-5,156	Required characteristics of pyrotechnic composi-
weapons, 2-157, 6-49 Recommended interferences, 4-123	tions, 2-187
Recovery	Requirement(s) booster, 2-10
of case, 4-118	for canister information, tactical, 2-154
elastic, 4-118, 6-43	colored marker shell, tactical, 2-176
solvent, 4-7	for gun projectiles, 2-2
Recrystallization, 6-43	HEP fuzing, 2-157
temperature, 6-41	implied, 5-15,22
Rectangular	for optimum ignition, 4–85
fin. 3-12.71	prime, 5-15
wing, 3-13,27,71	secondary, 5-15
Red shortness, 6-4	WP shell, sealing, 2-186
Reduce	Residual velocity, 2-126
bore residue, 4-2	Residue, bore, 4-3
muzzle flash, 4-2	Residue propellant, 4-1
radial band pressure, 4-169	Resistance
smoke, 4-2	to atmospheric moisture, 2–190
velocity, 2-169, 4-48	gage, 2-10
viscosity, 4-6	impact, 6-4
Reducing agents, 2-186	to setback, 2-184
Reducing-atmosphere furnace, 6-29	Resonance, 3-29
Reefing, 2-196	of benzene nucleus, 4-90
Reference dimension, 5-13	between pitching period and rolling period (danger
Reflect(-ion)	of), 3-29
blast, 2-9	Results
shock, 2-31	comparison of, 4-82
wave, 2-8,9 strong shock (Mach Waves), 2-8	reproducibility of, 2–126 zone of mixed, 2–125
atroog anock (Maco wa ves). 2-8	zone ol mixed. Z=1Z8

netamen-petat, 2-119	design of, 4-149,153,180
Retardants, 2-186	engraving of, 4-164
Retardation, 3-38	function of, 4-149
Retention, band, 4-154	geometry, equivalent, 4-155
Revolution	loose, 6-26
axis of, 3-84	materials, properties of, 4-149,160
solid of, 3–88	materials used for, 4-149
surface of, 3-69	plastic, 4-154
Reynolds number, 3-68	pre-engraved, 2-152
Rheological properties, 4-189	profile of finish-machined, 4-154
Ricochet, 2-124	shearing of, 4–153,172
Riel, R. H., 2-128	tangential force on, 4-181
Rifle bullet impact sensitivity, 2-23	wear of, 4-150
Rifles, recoilless, 2-5,156	welded overlay, 2-5
Rifling	width of, 4-124
design, 4-169	candle, burning time of, 2-162
diameter, 4-152	shaped charges, 2-32,65
dimensioning of, 4-169	Rotation
engraved, 4-153	compensation, 2-35
erosion of, 4-162	effect of, 2-34
grooves, 4-155	of filler, pressure on shell wall resulting from,
land, 4-155	4-180,181
origin of, 4–173	of filler, stress in base resulting from, 4-183
profile of, 4-155,169	of filler, stress in shell wall resulting from, 4-183
standard forms, 4–169	of fillets, 3–81
twist of, 4-169,170,179,189	methods of imparting, 2-119, 4-149
determination of, 4-173	muzzle energy, 4–150
typical values of, 4-172	penetration, 2-66,68
miform, 4-153	of wall, stress resulting from, 4-182
wear of, 4-149	tension in shell wall resulting from, 4-180,181
worn, 4-162	Rough
Right circular cylinders, 4-81	machining outside of shell, 6-14
Righting moment, 3-7,10,11	rolling and expanding wrapped cartridge case, 6-39
factor, 3-28,30	turning, 6-12
Rigidity, modulous of, 4–186	Roughness, surface, 6-16
Ring	Round(s)
die(s), 6-7,8,9	base shell, 4-182
gage, bourrelet, 6-24	chemical energy, 2–88
grooved, 2-3,108	fin-stabilized, 2-82,175
method of controlling fragmentation, 2-110	HVAPDS, 2-137
notched, 2-108	kinetic energy, 2-85
sabot, 2-119	va square slugs, 6–8
shear, 2-175	Rubber-die crimping, 4-132
split, 2-162	Rubber obturators, 2-152
type experimental shell, 2-97	Rupture, circumferential, 6-42
Risks, sampling, 5-2	
Ritter's formula, 2–165	
Rockets, 3-10	
Rolled strip, 6-1	Sabot, 1-3, 2-4,138
Roller, flanging, 6-46	all-plastic, 2-138
Rollers, knurling, 6-16	discarding, 2-118
Rolling, 4-6	exterior ballistics, 2-119
Rolls	metal, 2-138
cross, 6-7	plastic, 2-119
leaflet, 2-184	ring, 2-1 _, 19
pyramid, 4-136	Sachs' theory, 2-9
serrated, 6-6	Safety, bore, 1-5
Root chord, 3-11	Saltpeter anneals, 6-39
Root thickness, 3-71	Saltpeter, liquid, 6-37
Rostoker, 2-32	Salvage, 6-44
Rotary trim, 6-42	battle, 6-47
Rotating, 2-32	Sample
airfoil blades, 2-171	problems, 3-31
band, 1-3, 2-163, 4-33,153,179,189, 6-1,17,26	of exterior ballistics, 3-73
bearing stress of, 4-153	by use of RD38 system, 4-40
characteristics, 4-151	randomness of, 5–2

812e to 10t 812e, 3-6	test, 2-22
Sampling, 6-5	rifle bullet, 2–23
acceptance, 5-2	measure of, 4-93
double, 5-5	notch, 4-129,133, 6-43
inspection, standard tables, 6-44	
multiple, 5-6	to static, 2–187
	Separate loading ammunition, 4-117,160,178
plan criteria, 5-2	Separate loading gun, 4-117
risks, 5-2	Separated ammunition, 4–117
single, 5-5	Separating
by variables, 5–12	burst, 1-3
Sand	principle, 2-174
pit, 2-94	
test for liquids, 2-23	shell, 2-160
	charge, 2-175
test for solids, 2-23	Separation, billet, 6-5
Sarmousakis, 2-93,94,95	Sequence of operations in machining of shells, 6-14
Satisfactory ignition, index of, 4-84	Serrated rolls, 6-6
Saturation, color, 2-177	Service ammunition, 1-2
Sawdust pit, 2-94	blank, 1-2
Sawing, 6-5	- ·
Scale	drill, 1-2
	practice, 1-2
control, 6-42	proof, 1-2
and descaling, billet, 6-6	Service velocity, 4-9,10
effect, 2-125	Setback, 2-5,150,176, 4-189
Scaling, 2-75	elastic, 4-125
formula, Gurney-Sarmousakis, 2-95	filler, 4-179,181,182,189
formula, Mott, 2-85	etrone in hose nemilies form 4 ton
laws, 2-9,16,65	stress in base resulting from, 4-183
	stress in shell wall resulting from, 4-183
Schmidt, 3-9,10	forces, 2-108,109,162, 4-178,179
Schroedter, 3-13	of metal parts, 4-181
Scoop, 2-124	stress in shell wall resulting from, 4-183
Screen, colored smoke, 2-160	pressure, 2-164
Screen, velocity, 2-94	resistance to, 2-184
Screening, 5-12	
	of shell walls, 4-179,189
Seal, labyrinth, 4-134	stresses, 2-119
Sealing of chemical (WP) shell, 2-180,186	weight, 2-164,175,185
Sealing lip, short, 4-150	Setter, tire, 6-17
Seam sealer, enamel, 2-151	Seven-perforated propellant grains, 4-26,36,48
Season cracking, 6-40	burning of, 4-48
Seat, band, 4-155, 6-23	
nonundercut, 4-154	form functions for, 4–25,26
	Shape(s)
undercut, 4-154	of chamber, 4-117,124
Secant ogive, 3-64,65,81,87	charge, 2-50
Second	degressive, 4-23
ejection, 2-164,166	and dimensions of shell forgings, 6-5
flash, 4-3	of explosive charge effect of 0 10
hit, 6-21	of explosive charge, effect of, 2-18
1 4	grain, 4-7
order effects, 4-33, 4-36	liner, 2-52
Secondary	ogive, 2-58
effect, 2-5,156	parachutes, 2-195
missile, 2–4	progressive, 4-23
requirement, 5-15	of shell, modifications of, 3-64
Section of shell, tangential force at given, 4-181	Showed character 0 05
	Shaped charge(s), 2-85
Segment, ogive, 3-85	ammunition, 2-1
Selection of	damage, qualitative description of, 2–84
liner material, 2-50	effect, 2-57,59
propellant materials (criteria for), 4-2	on explosive, 2-18
weapon type and size, 2-47	effectiveness, 2–48
Selective absorption, 2-177	criterion of, 2–82
Semi-anneal, 6-37	
	against tanks, 2–82
Semifixed ammunition, 4-117,160	explosives in, 2-59
Sensitivity, 2-23	jet, 2-38,85
of burning-type smoke compositions, 2-183	effect of rotation upon, 2-63
friction, 2-23,187	linear-, 2-82
heat, 2-187,192	liners, 2-52
pyrotechnic compositions, 2-192	missile, design of, 2–47
to impact, 2-187	missiles fuzes for 2-63

performance, 2-62	forming, compromise method of, 6-25
penetration of armor by, 2-1	high-explosive (HE), 1-2, 3-10, 4-153, 6-7,17
rotating, 2-32,65	high-explosive antitank (HEAT), 1-2, 2-32,58,85,
weapons, defeat of, 2-82	3-70
Shaping, wave, 2-61	high-explosive plastic (HEP), 1-3, 2-156,158
Shapiro, 2-95	hardness of, 6-27
Sharp apex cone, 2-55	hospitalization of, 6-18
Sharp-nosed shot, 2-122	hyper-velocity, armor-piercing (HVAP), 2-117
Shatter, 2-123,126,144	incendiary, 2-1
gap, 2-4	illuminating, 2-160,161,164,182,185,187,195
Shattered projectile, 2-123	internal contour of, 2-185
Shear	leaflet distributing, 2-1
force, 2-162	lethelites of hemothesteel a san
joint, 2-160	lethality of hypothetical, 2-106
pins, 2-5,160,161,164,172,175,184	light-producing, 2-1
rings, 2-175	limit to length of, 3-1
	length, estimation of drag effect of, 3-68
stresses, 2-31, 4-181,183	liquid-filled, 2-160,185
allowable, 2-164	machining of HE, 6-14
maximum, (Tresca's rule of flow), 4-185	manufacture, extrusion for, 6-2
rotating band, 4-153	manufacture of HEP, 6-26
on threads of base plug, 2-163	manufacture, methods of weight control, 6-17
threads, 2-5,160,164,184	manufacture, pierce-and-draw process of, steel,
design of base plug, 2-163	6-2
Shearing, 2-120, 6-5	manufacturing plant, cost of, 6-24
base plug, 2–169,184	marking of, 6-18
cracks, 6-5	metal parts design, 2-162,177
of rotating band, 4–172	moments of inertia, 3-4
stresses, principal, 4-185	motion of spinning, 3-2
Sheet, trapezoidal, 6-39	multipurpose, 2-161
Shelf life, effect of moisture on, 2-191	multiple-wall, 2-109
Shell, 2-160, 3-1, 6-1,2	nosing of, 6-14
APC, 2-4, 4-178	painting of, 6-19
banding of, 6-17	performance, HEP, 2-157
base-ejection, 2-160,161, 4-1	poison gas, 2-1
smoke, 2-176	pre-engraved, 3-10
body, 2-170	propaganda disseminating, 2-5,160,161,183,185
all-plastic, 2-175	filler design, 2-184
breakup, 2-94,144	metal parts design, 2–184
capped steel armor-piercing, 2-4, 4-178	
casting high-explosive, 6-1	ring-type (experimental), 2-97
colored marker, 2-160,176,178,182	rough machining outside of, 6-14
	round base, 4-182
colored smoke, 2-160,182	separate-loading, 4-178
crush-up, 2-157	separating burst, 2-160
deformation of, 4-178	shape modifications of, 3-64
development of, HEP, 6-26	smoke, 2-1,161
design of colored marker, 2-179	WP, 2-179
design of illuminating, 2-162	special purpose, 2-160
design of liquid-filled burster, 2-186	function of, 2-160
design, WP, 2-180	spin-stabilized, 2-35, 3-39
during closing (manufacture) inspection of, 6-19	spinning, 3-4
during firing, determination of the maximum forces	square base, 3-64
acting on, 4-178	squash-head, 2-157
eccentric, 3-30	steel, military specification for, 6-5
equations of motion of, 3-4	stress in, 2-153, 4-177,184,185
explosive-burst, 2-160	resulting from forces, 4-181
fin stabilized, 3-10,28,70	under stress, failure of, 4-178
finishing of HEP, 6-27	thin-walled, 4-154, 6-26
forces acting on, 4-178,181	unsatisfactory, 6-15
forging, 6-6	
economics of, 6-12	velocity relative to air velocity of, 3-10 volume of thin ogive, 3-86
inspection of, 6-13	well pressure on mosulting from material at the
	wall pressure on resulting from rotation of filler,
after, inspection of, 6-13 methods, comparative study of, 6-13	4-180,181
	walls, setback of, 4-179
mortar, 6-4	wall, stress in minimum, 4-158
objectives in, 6-7	wall stress in resulting from rotation of filler,

4-183	Simple peam formula, 4-154
	Simplified form function for seven-perforated pro-
wall stress in resulting from setback of metal	pellant, 4-26
parts, 4-183	Simulated fire, 1-2
tension in wall resulting from rotation, 4-180	Single
weight of, 3-64	-base propellants, 1-6, 4-1,93
white phosphorous (WP), 2-160,161,179,186	ejection charge, 2-160
Shock, 2-156	-ejection system, 2-171
absorber, 2-175	nose charge, 2-175
front, 2-7	perforated grains, 4-22,23
-load factor, 2-198	equations for, 4-27
reflection, 2-31	sampling, 5-5
surface, 2-30	-shot probability, 2-106,107
velocity method, 2-11	wedge profile, 3-71
wave, 2-7,14,19,72,93,156,157,177	Singleton, 2-95
effect of, 2-9	Sintered iron, 4-149,161
reflection of strong (Mach Waves), 2-8	compacts, 4-161
reflection of weak, 2–8	properties of, 4-161
velocity, 2-11	Sintering, 6-36
Short sealing lip, 4-150	of tungsten carbide (compacting and), 6-36
Shortness, red, 6-4	Size
Shot	particle, 2-106,189
armor-piercing (AP), 2-4,117,153	pin, 4-13
blasting, 6-5,12,13,15	web, 4-22
pickled, 6-3	Sizing-the-slug, 6-21
blunt headed, 2-124	Skin friction drag, 3-10
blunt-nosed, 2-122	coefficient, 3-10
capped, 2-138	Skirting
monobloc, 6-29	armor, 2-137,157
discarding sabot, 2–4	
hypervelocity armor-piercing (HVAP), 1-2, 2-128,	on cap, effect of, 2-143
	-banded projectiles, 2-118, 4-124
6-35,36	plate, 2-129
base of, 6-35	e!fect of, 2-137
body of, 6-35	function of, 2-137
manufacture of, 6-35	Sky brightness, maximum, 2–193
windshield of, 6-35	Sleeves, split, 2-164,166,171,175,185
hypervelocity armor-piercing discarding sabot	Slide, cross, 6-27
(HVAPDS), 2-118, 6-36	Slope
hypervelocity armor-piercing discarding sabot	chamber, 4-137
fin-stabilized (HVAPDSFS), 1-3, 2-119	of forcing cone, 4-126
monobloc, 2-138, 6-29	lift-coefficient, 3-13
sharp-nosed, 2-122	start of forward, 4-137
solid, 2-117	of tangent lines connecting two arcs, 3-83
start pressure, loss in, 4-163	Slow-burning propellant, 2-175
truncated-nosed, 2-117	Slow-roll, importance of, 3-29
Shrinkage, 4-7	
	Slug, 2-31,58,150, 6-1,3,5,7
data, representative, 4-14	preparation of, 6-21
of grain, 4-13	sizing the, 6-21
Shroud	Small angles of attack, 3-13
cleat, 2-171	Smoke(s), 2-1,187, 4-1,3
lines, malfunctioning caused by twisting, 2-166	canister, 2-182,183,184
line, tensile strength of, 2-198	charge, ratio of burster charge to, 2-178
nylon, 2-167	compositions, sensitivity of burning type, 2-183
Shuts, cold, 6-40,43	compositions, typical, 2-179
Side spray, 2-106	dyes for, 2-186
Sidewall heat treatment, 6-43	reduce, 4-2
Sidewall stress, 2-153	shell, 2-161
Signal(s), 2-187	base-ejection, 2-176
color lights, 2–193	
smokes, 2-182	colored, 2-182
	signal, 2-182
shell, metal parts design, 2-182	dispersion of, 2-183
tactical use, 2-182	screen, colored, 2-160
terminal effects limitations, 2-182	Smokeless propellant, 1-6, 4-1
Silas Mason explosive, 2-178	Snap gage, 6-24
Similitude, principle of, 2-125	Soapcoated, 6-41,42
Simmons, 3-9	Soap lubricant, sodium stearate, 6-3

Sodium orthosilicate wash, 6-21	damping factor, 3-6
Sodium stearate soap hibricant, 6-3	degradation, eliminating, 2-81
Soft.	flat, 3-30
(Armco) iron, 4-149	stabilization, 3–1
caps, 2-144	-stabilized shell, 2-35, 3-39,64
porous liner, 2-109	mortar, 2-173
Solem, 2-95	vs. flight time, 3-10
Solid	vs. optimum penetration, 2-4
armor, 2-137	Spinning shell, 3-4
-drawn metal case, 4-120	with a top, comparison of, 3-2
explosives, 2–63	Spiral flutings, 2-36
geometry of projectiles, 3-85	Spiral wrapping, 4-135, 6-1
of revolution, 3–88	Splintering, after, 4-76
component, 3-81	Splintering, before, 4-76
formulas for, 3-81	Splinters, unburned, 4-25
ogival, 3-87	Spit-back (flash-back)
volume of, 3-81	fuze, 2-63
shot, 2-117	tube, 2-37,54
-state chemistry of pyrotechnics, 2-190	effect of, 2–46
Solution	Split
of ballistic equation, 4-36	rings, 2-162
after burnt, 4-39	• • • • • • • • • • • • • • • • • • • •
	sleeves, 2-164,166,171,175,185
for pressure-time trace (complete), 4-76	aluminum, 2-162
by RD38 system (Hirschfelder), 4-37,40,48	design, 2-164
Solvent recovery, 4-7	steel tubes, 2-5
Sources of terminal ballistic data, 2-83	Sponginess, 6-17
Space average pressure, 4-36,76	Sporadic high pressures, 4-84
Space, cartridge head, 4-122,123	Spotting charge, 1-2, 2-187
Spaced armor, 2-49,129,137	Spray, side, 2-106
caps for defeat of, 2–144	Sprays on hot forgings, effect of water, 6-12
on HEP shell, effect of, 2-157	Spreiter, 3-13
Spall(ing), 1-3, 2-120,121,156	Square
of armor (HEP), 2-1	base shell, 3-64
mechanism of, 2-157	maximum, 6-8
Span, 3-11,71	slugs, round vs. 6-8
Spark range, 3-67,70	Squash charge, 2-157
Spatial distribution, fragments, 2-101	Squash-head shell, 2-157
Special	Squeeze-bore projectile, 2-4
design problems of mortar ammunition, 2-172	Squeeze, end, 6-6
purpose shell, 2-154,160	Squeezing, 6-1
function of, 2-160	Squidding, 2-195
treatment steel (STS), 2-120	
Specific	Stab-action primer, 1-6 Stability, 1-8, 2-157, 101, 4-2, 180
heat, 4-35	Stability, 1-8, 2-157,191, 4-2,189
	of asymmetrical projectiles, 3-29
ratio of, 4-88	condition, statement of, 3-4
pseudo-ratio of, 4-47	factor, 3-2,5,6,8
limit energy, 2-124	functions of, 3-31
surface, 2-190,192	in flight, 4-170, 6-35
reactants, effect of, 2-190	measure of, 4-93
equation for, 2-190	of pyrotechnic compositions (factors which affect),
volume, 4-37	2-187
Specifications, 4-137	static, 3-10
for cartridge cases, trend in, 4-129	vs. standoff, 2-4
specifications for shell steel, 6-4,5,29	of symmetrical shell, 3-11
Spheroidized, 6-41	Stabilization, 4-6
Spin, 3-8, 4-149,173	methods of, 3-1,2
axial, 3-29	drag, 2-4,5
compensation, 2-35,36,37,71,73,75,78	fin, 3-1
by fluted liners (mechanism of), 2-72	spin, 3-1
other than fluted liners, 2-81	Stabilizing materials, 4-1,2
lawnmowers, 2-81	Stages in opening of parachute, 2-196
shear-formed liners, 2–81	Stagnation point, 2-31,33
spiral staircases, 2-81	Stagnation pressure, 2-34
danger of too much (Magnus Moment), 3-29	Staircase method, Bruceton, 2-23
-decelerating moment, 3-8	Stamping of cartridge case, head machining and, 6-39
coefficient, 3-10	Standard

boosters, 2-177	plastic, 4–118
calibration chart, 4-40	stretcher, 6-44
deviation, 2–127, 3–8,10, 5–12	Strand burner, 4-16
flat parachute, 2–195	Strength
primers design, 4–84	of candle case, 2-176
propellants, compositions of, 4-2	column, 2–185
rifling forms, 4-169	ultimate, 6-41
sampling inspection tables, 6-44	yield, 4-134,149, 6-2,41
Standoff, 2-33,34,35,36,38,40,41,49,66,82	Stress(es), 2-153
optimum, 2–38,49	algebraic sign of, 4-181
on penetration under rotation, effect of, 2-68	bending, 2-124
stability vs., 2-4	in base resulting from rotation of filler, 4-183
time of flight vs., 2-4 Stanford Research Institute, 2-158	in base resulting from setback of filler, 4-183
Star shell, Navy, 2–173	compressive, 4-181
Start of forward slope, 4–137	failure of shell under, 4-178
Start of motion, 4–43	formulas, deriving shell, 4-178 formulas, summary of, 4-184
State	hoop, 4-179
of deformation, elastic, 4-178	limits, gun, 4-1
equation of, 2-30, 4-33,34,42,43,88	longitudinal, 4–182,189
of stress, elastic, 4–187	normal, 4-181
Statement of stability condition, 3-4	principal, 4-182,185
Static	progressive, 4-162,163
charge, 4-1,3	radial, 4-182
sensitivity to, 2-187	raisers, 6-41,43
stability, 3-10	relief, 6-44
lift of fins to ensure, 3-11	anneal, 4-135, 6-23,40
tests, 2-16	low-temperature, 6-43
compression, 2–165	taper, 6-43
yield stress, 4–185	setback, 2-119
Statistical method, analysis by, 2-126	shear, 2-31, 4-181,183
Status of HEP shell development and theory, 2-158	maximum, 4-185
Status of wound ballistics, 2-102	in shell (analysis of), 2-153, 4-177,178,179,188,189
Steady-state suspension, 2-195	principle, 4-181,185
Steel	resulting from rotation, 4–182
adapter, 2-180	summary of, 4-184
austenitic, 6-1	wall resulting from rotation of filler, 4-183
balls, 2-150	wall resulting from setback of filler, 4-183
cartridge cases, 4-133, 6-1,41,44	
	wall resulting from setback of metal parts,
base rupture of, 4-133	4-183
base rupture of, 4-133 trapezoidal-wrapped, 4-135	4-183 sidewall, 2-153
base rupture of, 4-133 trapezoidal-wrapped, 4-135 cold-worked, 6-2,43	4-183 sidewall, 2-153 -strain curves, 4-118, 6-2
base rupture of, 4-133 trapezoidal-wrapped, 4-135 cold-worked, 6-2,43 cones, 2-41	4-183 sidewall, 2-153 -strain curves, 4-118, 6-2 state, elastic, 4-188
base rupture of, 4-133 trapezoidal-wrapped, 4-135 cold-worked, 6-2,43 cones, 2-41 critical range of, 6-1	4-183 sidewall, 2-153 -strain curves, 4-118, 6-2 state, elastic, 4-188 state, plastic, 4-188
base rupture of, 4-133 trapezoidal-wrapped, 4-135 cold-worked, 6-2,43 cones, 2-41 critical range of, 6-1 liners, 2-32,61	4-183 sidewall, 2-153 -strain curves, 4-118, 6-2 state, elastic, 4-188 state, plastic, 4-188 tangential, 4-182
base rupture of, 4-133 trapezoidal-wrapped, 4-135 cold-worked, 6-2,43 cones, 2-41 critical range of, 6-1 liners, 2-32,61 high sulfur content, 6-2	4-183 sidewall, 2-153 -strain curves, 4-118, 6-2 state, elastic, 4-188 state, plastic, 4-188 tangential, 4-182 tensile, 4-181
base rupture of, 4-133 trapezoidal-wrapped, 4-135 cold-worked, 6-2,43 cones, 2-41 critical range of, 6-1 liners, 2-32,61 high sulfur content, 6-2 objections to, 6-4	4-183 sidewall, 2-153 -strain curves, 4-118, 6-2 state, elastic, 4-188 state, plastic, 4-188 tangential, 4-182 tensile, 4-181 ultimate, 2-178
base rupture of, 4-133 trapezoidal-wrapped, 4-135 cold-worked, 6-2,43 cones, 2-41 critical range of, 6-1 liners, 2-32,61 high sulfur content, 6-2 objections to, 6-4 shells, casting va forging of, 6-1	4-183 sidewall, 2-153 -strain curves, 4-118, 6-2 state, elastic, 4-188 state, plastic, 4-188 tangential, 4-182 tensile, 4-181 ultimate, 2-178 yield, 2-178, 4-119
base rupture of, 4-133 trapezoidal-wrapped, 4-135 cold-worked, 6-2,43 cones, 2-41 critical range of, 6-1 liners, 2-32,61 high sulfur content, 6-2 objections to, 6-4 shells, casting va forging of, 6-1 special treatment (STS), 2-120	4-183 sidewall, 2-153 -strain curves, 4-118, 6-2 state, elastic, 4-188 state, plastic, 4-188 tangential, 4-182 tensile, 4-181 ultimate, 2-178 yield, 2-178, 4-119 Stretcher strains, 6-44
base rupture of, 4-133 trapezoidal-wrapped, 4-135 cold-worked, 6-2,43 cones, 2-41 critical range of, 6-1 liners, 2-32,61 high sulfur content, 6-2 objections to, 6-4 shells, casting va forging of, 6-1 special treatment (STS), 2-120 specifications, shell, 6-4,29	4-183 sidewall, 2-153 -strain curves, 4-118, 6-2 state, elastic, 4-188 state, plastic, 4-188 tangential, 4-182 tensile, 4-181 ultimate, 2-178 yield, 2-178, 4-119 Stretcher strains, 6-44 Striking velocity, 2-126,128,137
base rupture of, 4-133 trapezoidal-wrapped, 4-135 cold-worked, 6-2,43 cones, 2-41 critical range of, 6-1 liners, 2-32,61 high sulfur content, 6-2 objections to, 6-4 shells, casting va forging of, 6-1 special treatment (STS), 2-120 specifications, shell, 6-4,29 -to-steel, comparison of aluminum to steel closure	4-183 sidewall, 2-153 -strain curves, 4-118, 6-2 state, elastic, 4-188 state, plastic, 4-188 tangential, 4-182 tensile, 4-181 ultimate, 2-178 yield, 2-178, 4-119 Stretcher strains, 6-44 Striking velocity, 2-126,128,137 Strip propellant, 4-24
base rupture of, 4-133 trapezoidal-wrapped, 4-135 cold-worked, 6-2,43 cones, 2-41 critical range of, 6-1 liners, 2-32,61 high sulfur content, 6-2 objections to, 6-4 shells, casting va forging of, 6-1 special treatment (STS), 2-120 specifications, shell, 6-4,29 -to-steel, comparison of aluminum to steel closure va, 2-181	4-183 sidewall, 2-153 -strain curves, 4-118, 6-2 state, elastic, 4-188 state, plastic, 4-188 tangential, 4-182 tensile, 4-181 ultimate, 2-178 yield, 2-178, 4-119 Stretcher strains, 6-44 Striking velocity, 2-126,128,137 Strip propellant, 4-24 equations for, 4-27
base rupture of, 4-133 trapezoidal-wrapped, 4-135 cold-worked, 6-2,43 cones, 2-41 critical range of, 6-1 liners, 2-32,61 high sulfur content, 6-2 objections to, 6-4 shells, casting va forging of, 6-1 special treatment (STS), 2-120 specifications, shell, 6-4,29 -to-steel, comparison of aluminum to steel closure vs., 2-181 Stellite, 6-27 Stem, Mach, 2-9	4-183 sidewall, 2-153 -strain curves, 4-118, 6-2 state, elastic, 4-188 state, plastic, 4-188 tangential, 4-182 tensile, 4-181 ultimate, 2-178 yield, 2-178, 4-119 Stretcher strains, 6-44 Striking velocity, 2-126,128,137 Strip propellant, 4-24
base rupture of, 4-133 trapezoidal-wrapped, 4-135 cold-worked, 6-2,43 cones, 2-41 critical range of, 6-1 liners, 2-32,61 high sulfur content, 6-2 objections to, 6-4 shells, casting va forging of, 6-1 special treatment (STS), 2-120 specifications, shell, 6-4,29 -to-steel, comparison of aluminum to steel closure vs. 2-181 Stellite, 6-27 Stem, Mach, 2-9 Stepped flange, 4-123	4-183 sidewall, 2-153 -strain curves, 4-118, 6-2 state, elastic, 4-188 state, plastic, 4-188 tangential, 4-182 tensile, 4-181 ultimate, 2-178 yield, 2-178, 4-119 Stretcher strains, 6-44 Striking velocity, 2-126,128,137 Strip propellant, 4-24 equations for, 4-27 Strip, rolled, 6-1 Stripping case from punch, 4-124 Structural damage (100A), 2-15
base rupture of, 4-133 trapezoidal-wrapped, 4-135 cold-worked, 6-2,43 cones, 2-41 critical range of, 6-1 liners, 2-32,61 high sulfur content, 6-2 objections to, 6-4 shells, casting va forging of, 6-1 special treatment (STS), 2-120 specifications, shell, 6-4,29 -to-steel, comparison of aluminum to steel closure vs. 2-181 Stellite, 6-27 Stem, Mach, 2-9 Stepped flange, 4-123 Sterne's criterion, 2-102	4-183 sidewall, 2-153 -strain curves, 4-118, 6-2 state, elastic, 4-188 state, plastic, 4-188 tangential, 4-182 tensile, 4-181 ultimate, 2-178 yield, 2-178, 4-119 Stretcher strains, 6-44 Striking velocity, 2-126,128,137 Strip propellant, 4-24 equations for, 4-27 Strip, rolled, 6-1 Stripping case from punch, 4-124 Structural damage (100A), 2-15
base rupture of, 4-133 trapezoidal-wrapped, 4-135 cold-worked, 6-2,43 cones, 2-41 critical range of, 6-1 liners, 2-32,61 high sulfur content, 6-2 objections to, 6-4 shells, casting va forging of, 6-1 special treatment (STS), 2-120 specifications, shell, 6-4,29 -to-steel, comparison of aluminum to steel closure vs., 2-181 Stellite, 6-27 Stem, Mach, 2-9 Stepped flange, 4-123 Sterne's criterion, 2-102 Sticks, igniter, 4-84	4-183 sidewall, 2-153 -strain curves, 4-118, 6-2 state, elastic, 4-188 state, plastic, 4-188 tangential, 4-182 tensile, 4-181 ultimate, 2-178 yield, 2-178, 4-119 Stretcher strains, 6-44 Striking velocity, 2-126,128,137 Strip propellant, 4-24 equations for, 4-27 Strip, rolled, 6-1 Stripping case from punch, 4-124 Structural damage (100A), 2-15 Structure, martensite, 2-143 Structure, pearlitic, 2-143
base rupture of, 4-133 trapezoidal-wrapped, 4-135 cold-worked, 6-2,43 cones, 2-41 critical range of, 6-1 liners, 2-32,61 high sulfur content, 6-2 objections to, 6-4 shells, casting va forging of, 6-1 special treatment (STS), 2-120 specifications, shell, 6-4,29 -to-steel, comparison of aluminum to steel closure vs. 2-181 Stellite, 6-27 Stem, Mach, 2-9 Stepped flange, 4-123 Sterne's criterion, 2-102 Sticks, igniter, 4-84 Stiff extraction, 4-119	4-183 sidewall, 2-153 -strain curves, 4-118, 6-2 state, elastic, 4-188 state, plastic, 4-188 tangential, 4-182 tensile, 4-181 ultimate, 2-178 yield, 2-178, 4-119 Stretcher strains, 6-44 Striking velocity, 2-126,128,137 Strip propellant, 4-24 equations for, 4-27 Strip, rolled, 6-1 Stripping case from punch, 4-124 Structural damage (100A), 2-15 Structure, martensite, 2-143 Structure, pearlitic, 2-143 Studies, aircraft vulnerability, 2-111
base rupture of, 4-133 trapezoidal-wrapped, 4-135 cold-worked, 6-2,43 cones, 2-41 critical range of, 6-1 liners, 2-32,61 high sulfur content, 6-2 objections to, 6-4 shells, casting va forging of, 6-1 special treatment (STS), 2-120 specifications, shell, 6-4,29 -to-steel, comparison of aluminum to steel closure vs, 2-181 Stellite, 6-27 Stem, Mach, 2-9 Stepped flange, 4-123 Sterne's criterion, 2-102 Sticks, igniter, 4-84 Stiff extraction, 4-119 Stochastic methods, 2-107	4-183 sidewall, 2-153 -strain curves, 4-118, 6-2 state, elastic, 4-188 state, plastic, 4-188 tangential, 4-182 tensile, 4-181 ultimate, 2-178 yield, 2-178, 4-119 Stretcher strains, 6-44 Striking velocity, 2-126,128,137 Strip propellant, 4-24 equations for, 4-27 Strip, rolled, 6-1 Stripping case from punch, 4-124 Structural damage (100A), 2-15 Structure, martensite, 2-143 Structure, pearlitic, 2-143 Structure, parlitic, 2-143 Studies, aircraft vulnerability, 2-111 Subcaliber projectile, 1-3, 2-4,118,128,137,165
base rupture of, 4-133 trapezoidal-wrapped, 4-135 cold-worked, 6-2,43 cones, 2-41 critical range of, 6-1 liners, 2-32,61 high sulfur content, 6-2 objections to, 6-4 shells, casting va forging of, 6-1 special treatment (STS), 2-120 specifications, shell, 6-4,29 -to-steel, comparison of aluminum to steel closure vs. 2-181 Stellite, 6-27 Stem, Mach, 2-9 Stepped flange, 4-123 Sterne's criterion, 2-102 Sticks, igniter, 4-84 Stiff extraction, 4-119 Stochastic methods, 2-107 Stock, hot-forged, 6-2	sidewall, 2-153 -strain curves, 4-118, 6-2 state, elastic, 4-188 state, plastic, 4-188 stangential, 4-182 tensile, 4-181 ultimate, 2-178 yield, 2-178, 4-119 Stretcher strains, 6-44 Striking velocity, 2-126,128,137 Strip propellant, 4-24 equations for, 4-27 Strip, rolled, 6-1 Stripping case from punch, 4-124 Structural damage (100A), 2-15 Structure, martensite, 2-143 Structure, pearlitic, 2-143 Studies, aircraft vulnerability, 2-111 Subcaliber projectile, 1-3, 2-4,118,128,137,165 factors limiting penetration of, 2-137
base rupture of, 4-133 trapezoidal-wrapped, 4-135 cold-worked, 6-2,43 cones, 2-41 critical range of, 6-1 liners, 2-32,61 high sulfur content, 6-2 objections to, 6-4 shells, casting va forging of, 6-1 special treatment (STS), 2-120 specifications, shell, 6-4,29 -to-steel, comparison of aluminum to steel closure vs. 2-181 Stellite, 6-27 Stem, Mach, 2-9 Stepped flange, 4-123 Sterne's criterion, 2-102 Sticks, igniter, 4-84 Stiff extraction, 4-119 Stochastic methods, 2-107 Stock, hot-forged, 6-2 Stop, case, 4-121	4-183 sidewall, 2-153 -strain curves, 4-118, 6-2 state, elastic, 4-188 state, plastic, 4-188 tangential, 4-182 tensile, 4-181 ultimate, 2-178 yield, 2-178, 4-119 Stretcher strains, 6-44 Striking velocity, 2-126, 128, 137 Strip propellant, 4-24 equations for, 4-27 Strip, rolled, 6-1 Stripping case from punch, 4-124 Structural damage (100A), 2-15 Structure, martensite, 2-143 Structure, pearlitic, 2-143 Structure, ircraft vulnerability, 2-111 Subcaliber projectile, 1-3, 2-4, 118, 128, 137, 165 factors limiting penetration of, 2-137 subcaliber steel shot, comparative effectiveness
base rupture of, 4-133 trapezoidal-wrapped, 4-135 cold-worked, 6-2,43 cones, 2-41 critical range of, 6-1 liners, 2-32,61 high sulfur content, 6-2 objections to, 6-4 shells, casting va forging of, 6-1 special treatment (STS), 2-120 specifications, shell, 6-4,29 -to-steel, comparison of aluminum to steel closure vs, 2-181 Stellite, 6-27 Stem, Mach, 2-9 Stepped flange, 4-123 Sterne's criterion, 2-102 Sticks, igniter, 4-84 Stiff extraction, 4-119 Stochastic methods, 2-107 Stock, hot-forged, 6-2 Stop, case, 4-121 Storage, 1-8	sidewall, 2-153 -strain curves, 4-118, 6-2 state, elastic, 4-188 state, plastic, 4-188 tangential, 4-182 tensile, 4-181 ultimate, 2-178 yield, 2-178, 4-119 Stretcher strains, 6-44 Striking velocity, 2-126,128,137 Strip propellant, 4-24 equations for, 4-27 Strip, rolled, 6-1 Stripping case from punch, 4-124 Structural damage (100A), 2-15 Structure, martensite, 2-143 Structure, pearlitic, 2-143 Structure, pearlitic, 2-143 Studies, aircraft vulnerability, 2-111 Subcaliber projectile, 1-3, 2-4,118,128,137,165 factors limiting penetration of, 2-137 subcaliber steel shot, comparative effectiveness of full-caliber vs, 2-138
base rupture of, 4-133 trapezoidal-wrapped, 4-135 cold-worked, 6-2,43 cones, 2-41 critical range of, 6-1 liners, 2-32,61 high sulfur content, 6-2 objections to, 6-4 shells, casting va forging of, 6-1 special treatment (STS), 2-120 specifications, shell, 6-4,29 -to-steel, comparison of aluminum to steel closure vs, 2-181 Stellite, 6-27 Stem, Mach, 2-9 Stepped flange, 4-123 Sterne's criterion, 2-102 Sticks, igniter, 4-84 Stiff extraction, 4-119 Stochastic methods, 2-107 Stock, hot-forged, 6-2 Stop, case, 4-121 Storage, 1-8 must not decompose in, 4-2	sidewall, 2-153 -strain curves, 4-118, 6-2 state, elastic, 4-188 state, plastic, 4-188 tangential, 4-182 tensile, 4-181 ultimate, 2-178 yield, 2-178, 4-119 Stretcher strains, 6-44 Striking velocity, 2-126,128,137 Strip propellant, 4-24 equations for, 4-27 Strip, rolled, 6-1 Stripping case from punch, 4-124 Structural damage (100A), 2-15 Structure, martensite, 2-143 Structure, pearlitic, 2-143 Structure, pearlitic, 2-143 Studies, aircraft vulnerability, 2-111 Subcaliber projectile, 1-3, 2-4,118,128,137,165 factors limiting penetration of, 2-137 subcaliber steel shot, comparative effectiveness of full-caliber vs, 2-138 Sublot, acceptability of each, 6-44
base rupture of, 4-133 trapezoidal-wrapped, 4-135 cold-worked, 6-2,43 cones, 2-41 critical range of, 6-1 liners, 2-32,61 high sulfur content, 6-2 objections to, 6-4 shells, casting va forging of, 6-1 special treatment (STS), 2-120 specifications, shell, 6-4,29 -to-steel, comparison of aluminum to steel closure vs, 2-181 Stellite, 6-27 Stem, Mach, 2-9 Stepped flange, 4-123 Sterne's criterion, 2-102 Sticks, igniter, 4-84 Stiff extraction, 4-119 Stochastic methods, 2-107 Stock, hot-forged, 6-2 Stop, case, 4-121 Storage, 1-8	sidewall, 2-153 -strain curves, 4-118, 6-2 state, elastic, 4-188 state, plastic, 4-188 tangential, 4-182 tensile, 4-181 ultimate, 2-178 yield, 2-178, 4-119 Stretcher strains, 6-44 Striking velocity, 2-126,128,137 Strip propellant, 4-24 equations for, 4-27 Strip, rolled, 6-1 Stripping case from punch, 4-124 Structural damage (100A), 2-15 Structure, martensite, 2-143 Structure, pearlitic, 2-143 Structure, pearlitic, 2-143 Studies, aircraft vulnerability, 2-111 Subcaliber projectile, 1-3, 2-4,118,128,137,165 factors limiting penetration of, 2-137 subcaliber steel shot, comparative effectiveness of full-caliber vs, 2-138

Sufficient residual penetration, 2-85	T33 projectile (FAP), 2-138
Summary,	T33 projectile (FAPT), 2-138
of causes of case failure, 4-120	T34/85 Russian tank (vulnerable areas), 2-89
of equations, interior ballistics, 4-39,46	T/D ratio, 2-122,125
summary of stresses acting on projectile during firing, 4-181	TNT, 2-13
of stress in shell, 4-184	Tables
of tabulated values, 4-87	ballistic, 3-39
Superquick fuze, 1-4	for calculation of maximum pressure, 4-47
	for calculation of muzzle velocity, 4-47
Supersonic speeds, thin fins at, 3-12	firing, 2-177
Supersonic speeds, three-dimensional fins at, 3-12 Supersonic velocity, 3-9	Harvard, 3-85,87,88,89
Supplementary charges, 2-177	standard sampling inspection, 6-44
Surface	Tabulated values, summation of, 4-87 Tack-welded, 6-46
burning, 4-6	Tactical
charges vs. internal charges, 2-14	requirement for canister information, 2-15-
datum, 5-14	
decarburization, 6-33	requirements, colored marker shell, 2-176
defects, 6-41	requirements, WP smoke shell, 2-180 use, signal smokes, 2-182
finish, 6-27	Tail
grain, 4-6	boat, 3-64,67,68, 6-21
perpendicularity of, 5-15	cone, 2-172,175
press-fit, 2-180	fin assembly, 2-172
regression of, 4-35	Taliani test (110°C), 4-94
of revolution, 3–69	Tangent
roughness, 6-16	ogive, 3-65,81,87,88
shock, 2-30	lines connecting two arcs (slope of), 3-83
specific, 2-190,192	Tangential
equation for, 2-190	(inertia) forces, 4-178,179
Surrender leaflets, 2-183	at given section of shell, 4-181
Surveillance, long-term, 2-175	on rotating band, 4-181
Surveillance test (65° C), 4-93	stresses, 4-182
Suspension	Tank
cable, 2-175	damage assessment, 2-129
steady-state, 2-195	defeat of, 2-129
system, 2-170	guns, 4-50
parachute, 2-196	Taper(s)
Sweepback angle, 3-11,14	chamber, 4-134
Sweepforward angle, 3-11,14	datum method of dimensioning, 5-24
Swell diameter, 3-69,81,84,87,88	diametral, 3-83
length of, 3-85	draw, 4-135
Sweptback fins, 3-13	main body, 4-121
Swivel, 2-164,166	stress relief, 6-43
attachment, 2-173	Tapered
Symbol	adapter, 2-118
concentricity, 5-13,14	back projectiles, 4-189
datum surface, 5-13	-bore gun, 2-4,118
dependent locational, 5-15	cylinder, 6-46
independent, 5-15	die, 6-8
locational tolerance, 5-13	walls, effect on penetration of, 2-43
for parallelism, 5–14	Tapering, 4-124, 6-43
for perpendicularity, 5-14	of cartridge case, 6-37,43
Symmetrical double wedge, 3-71	Tapping, nose, 6-16
Symmetrical shell, stability of, 3-11	Target(s)
Symmetry, 5-14	characteristics, 2-85
System	defeat of, 2-93
double-ejection, 2-171	heavy armor, 2-145
free-flight, 2-195	obscuration, 4-3
of interior ballistics, 4-33	Taschengurts, 2-196
Le Duc, 4-80	Tear drops, 6-13
RD38 (Hirschfelder), 4-20,33,36	Temperature
recoil, 3-72	absolute, 4-35
single-ejection, 2-171	critical, 6-12,14
suspension, 2-170	flame, 4-35
two-shock, 2-9	ignition, 2-187,189
	recrystallization, 6-41

reaction, 2-187	required, determining weight of, 2-178		
tempering, 6-14	charge, 2-182		
Tempering temperatures, 6–14	Tetrytol, 2-181		
Tensile	Theory		
strength brass, 4-135	Bernoulli's, 2-33,34		
strength of fabric, 2-198	of cartridge case functioning, 4–118		
strength of shroud line, 2-198	constant distortion, of Hencky-Von Mises, 4-186		
stress, 4-181	first-order, 2-34		
longitudinal, 4-179	of HEP shell performance, 2-156		
Tension	status of HEP shell development and, 2-158		
in shell wall resulting from rotation, 4-180,181	interacting wave front, 2-157		
test, 4-185	Kirkwood-Brinkley's, 2-9		
hoop stress, 2-163	maximum energy, 4–186		
Terminal	maximum shear, 4-185,187		
ballistic data, sources of, 2-83	mechanism of cap action, 2-141		
ballistic firings, 2-83	parallel axis (or plane), 3-89		
effects' limitations of signal smokes, 2-182	plasticity, 4-150,187		
velocity, 2-195			
Test(s)	Sachs', 2-9		
• • •	thin-walled shell, 4-156		
acceptance, 4-93	yield criteria, 4–185		
ballistic mortar, 2-23	zero-order, 2-31		
Bergmann-Junk, 4-93	Theoretical prediction of radial band pressure, 4-151		
booster sensitivity, 2-23	Theoretical values, Munk's, 3-9		
box, 2-84	Thermal conductivity, 2-189		
Bureau of Mines, 2-22	Thermochemical characteristics of propellants, 4-89		
calorimetric, 4-89	Thermodynamic properties of propellants, calcula-		
chi-square, 2-95	tion of, 4-87		
closed bomb, 4-16	Thick and thin, 6-37		
closed-pit, 2-94	Thick(ness)		
of cold-extruded shell, 6-23	of case mouth, 4-124,133		
compression, 4-93	cone wall, 2-53		
explosion temperature, 2-23	-cylinder formula, 4–180		
fragmentation, 2-23,94,106			
functional, 4-129,137	flange, 4-123		
	of plate penetrated, 2-137		
hardness, 6-15	root, 3-71		
heat (75° C International), 2-22	-thin effect, 2-72		
heat (100° C), 2-22	-and-thin forgings, 6-7		
heat (115° C), 4-93	web, 4-11,21,24		
hygroscopicity, 4-94	Thin		
impact sensitivity, 2-22	fins at supersonic speeds, 3-12		
initiator, 2-23	pointed, short fins, 3-13		
Jominy, 6-29	thick and, 6-37		
KI-starch, 4-93	-walled case, 6-1		
litmus-paper, 6-40	wall shell, 4-154, 6-26		
magnaflux, 6-33	-walled theory, 4-156		
magnetic hardness, 6-43	Thompson, 2-125		
methods, 2-22, 4-93	Thread(s)		
methyl violet, 4-93	gage, 6-24		
sand for liquids, 2-23	shear, 2-5,160,164,184		
sand for solids, 2-23	Three-dimensional breakup of shell, 2-94		
static, 2-16	Three-dimensional fins at supersonic speeds, 3-12		
compression, 2-165			
surveillance (65° C), 4-93	Threshold, damage, 2-16		
Taliani (110° C), 4-94	Thresholds, visibility, 2-193		
	Throner, 2-37		
tension, 4-185	Time		
Trauzl, 2-24	since beginning of motion, 4-47		
total volatiles, 4-94	burning, 2-167		
panel, 2-94	derivative, 3-6		
Picatinny, 2-22	of flight, 3-4		
test procedures, 6-5	factors governing, 3-38		
proving ground, 6-40	minimum, 3-38,64		
up-and-down, 2-126	vs. standoff, 2-4		
vacuum stability, 2-22, 4-94	fuzes, 1-4, 4-1		
velocity measurement, 2-94	functioning, 2-49,157		
Tetryl, 1-5, 2-178,181	-to-ignition, 2-192		
hundon 0 179	4 45 40		

-w-1 cacuou, 2-132	Truncated
Tin, 4-3	conical nose, 2-139
Tip chord, 3-11	-nosed shot, 2-117
Tire-setter, 4-154, 6-17	ogival nose, 2–124
Toggle joint press, 6-17	Tube, 4-23
Tolerance(s), 2-39	blast, 2-11
acceptance gage, 5-24	flash, 2-183
of bourrelet, 6-17	metal burster, 2-160
circle, 5-18,23	primer, 4-84
component, 5-24	spit-back, 2-37,54
dependent locational, 5-13,17,19	effect of, 2-46
diametral, 5-13,19,20	split steel, 2-5
gage, 5-24	Tuck, 2-64
effect of on component, 5-24	Tumbling (velocity retardation), 2-166
of fluted liners, 2–80	Tumbling of projectile, 4–164
independent locational, 5-13,21	Tungsten carbide, 2-117,137
of length of case, 4-121	compacting and sintering of, 6-36
limits, 5–11,18	core, 2-123,128, 6-35
percent defective lot (LTPD), 5-3	effect of armor-piercing caps on, 2-142
weight, 2-152	effect of nose geometry of, 2-139
work gage, 5-24	manufacture of, 6-36
zone, 5-24,25	dies, 6-37
Toleranced	Turning, band, 6-17
angle, 5-20	Turning, rough, 6-12
	Twist, 2–173
coordinates, 5–17 radius, 5–20	
	gain, 4-170
Tolerancing, 5-13	increasing, 4-172
Tool	pin, 2-161
forming, 6-16	rifling, 4-169,170,179,189
loading, 6-41	uniform, 4-170
waving, 6-16	zero, 4-172
Torn cavities, 6-13	Twisting of shroud lines, malfunctioning caused by,
Torpex, 2-13	2-166
Torque (T) applied to projectile, 4-179	Two
Total	-dimensional breakup of shell, 2-94
radial stress, 4–182	-dimensional fragment breakup, 2-106
* · · * · · · · · · · · · · · · · · · ·	-dimensional formula, 3-12
volatiles test, 4-94	
volume behind projectile, 4-34	-shock system, 2-9
Toughness, low notch, 6-4	Type(s)
Tracer(s), 1-4, 2-187	of armor plate failure, 2–120
compositions, 2-192	of damage assessment, 2–111
Trailing edge, 3-11,13,14	of flanges, 4–122
Train, explosive, 2–177	of flutes, 2–76
Trajectory, curvature of, 3-11	of incapacitation, 2–102
Transparent interpolator, 4-17	A, 2-10 2
Transport effect, 2-72	B, 2-102
Transverse	K, 2-102
moment, 3-89, 4-178	of parachutes, 2–195
of inertia, 3-2,10,28,81,90	of perforation, punching, 2-129
wave, 2-123	of projectiles, 1-2
	Typical
weakness, 6-4	
Trapezoidal sheet, 6-39	calculations for cartridge case, 4-126
Trapezoidal-wrapped cases, 4-135, 6-47	smoke compositions, 2-179
Trauzl test, 2-24	projectiles, 3-39
Travel function, 4-48	of rifling twist, 4–172
Travel of projectile, 4-44,47	•
Treatment, heat, 6-3,4,14,33,43	
improper, 2-123	
Tresca's rule of flow (maximum shear), 4-185	Ultimate strength, 6-41
Triacetin, 4-2	Ultimate stress, 2-178
Trim, rotary, 6-42	Unburnt propellant released at muzzle, 4-76
Trimming, 6-42	Unburned splinters, 4-25
Triple base propellant, 1-6, 4-2	Uncannelured band, 4-153
Triple base propenant, 1-0, 4-2 Triple point, 2-9	. Undercut seat, 4–154
Tritonal, 2-13	
	Under nead bosition, 4-122, 125
Trumpet-shaped liners, 2-69	Under head position, 4-122,125 Uniform

initial (shot start) pressure, 4-149	supersonic, 3-9
twist rifling, 4-153,170	terminal, 2–195
U. S. Naval Ordnance Laboratory, 2-95	
U. S. Navy "Class A" armor, 2-120	uniformity (poor), 4-84
U. S. standard sieve, 2-190	Vent holes, 4-84 Vibrations, plate, 2-123
Unoxidized carbon, 4-67,89	Virial equation, 4–34
Unrotated charges, 2-32	Viscosity reduction, 4-6
Unsatisfactory shells, 6-15	Visibility
Unyawed symmetrical wings, 3-14	design for, 2-193
Up-and-down method, 2-127	optimum, 2–177
Up-and-down testing, 2-126	threshholds, 2–193
Upsetter forging, 6-7,9	Visual inspection, 6-20,24
Use of Harvard tables, 3-86	Volume
Use of matrix, 2-150	cartridge case, 4-1,137
Utilization of yield criteria, 4-178	chamber, 2-128, 4-33
	of complete ogive, 3-86
	designed for, 4-117
	gas, 4-87
V-0 point, 2-126	of frustums, 4-126
V ₇ 50 point, 2-126	of ogival zone, 3-86
V-100 point, 2-126	of partial fillet, 3-85
Vacuum stability test, 2-22, 4-94	solid of revolution, 3-81
Value, color, 2-187	specific, 4-37
Values, brisance, 2-187	of thin ogive shell, 3-86
Van der Walls equation, 4-35	Von Mises yield condition, mathematical statement
Variables, sampling by, 5-12	of, 4-186,187
Variation, case-to-case, 4-126	VT fuze, 2-177,184
Variation in drag, 3–67	Vulnerability, 2-14,88,110
Varnish cans, 2-11	aircraft, 2-111
Vector yaw, 3-2	to external blast, 2-16
Velocity, 3-8, 4-47	area, 2-101
angular, 3-28	mechod, 2-88
critical, 2-126	computation of, 2-91
opening, 2-196	diagrams, 2–141
drop, 3-5,28,30	fuel tank, 2-112
drop and jump of finned projectiles (asymmetry	
effects of on), 3-30	
effect of, 2-123	991_ 3.34
ejection, 2-163,164	Wadding
function, 4-48	cardboard, 2-151
fragment, 2-93,99,111	distance, 1-7
high detonation, 2–157	felt, 2-172
of impact, 2-5,93 initial, 3-38	Walls, 3-12
· · · · · · ·	setback of, 4–189
jet, 2–63 limit, 2–125	multiple, 2-108
maximum, 4-9,50	Warfare, psychological, 2-183
permissible, 4-156	Warhead size, optimum, 2-14 Warning leaflets, 2-183
measurement test, 2-94	Wash, 6-6
method, shock, 2-11	acid, 6-17
muzzle, 2-118,129,153, 3-39,72, 4-26,40,48,129,	alkaline, 6-17
137,173,189	gas, 4-120
maximum, 2-128	sodium orthosilicate, 6-21
consistent, 2-152	Washing and degreasing, 6-17
nutational angular, 3-29	Water
particle, 2-7,30	displacement, 2-180
projectile, 4-20,35,44	jets, 6-6
reduction, 2-169, 4-48	pit, 2-94
remaining, 3-4	proofing agents, 2-186
residual, 2-126	Watertown Arsenal, 2-139,142,152, 4-150,151
retardation (tumbling), 2-166	Wave(s), 2-30
screen, 2-94	blast, 2–19
service, 4-9,10	bridge, 2-19
of shell relative to air, 3-10	compression, 2-123
shock-wave, 2-11	detonation, 2-30,81,182

plane, 2-31	Weiss, 2-93
drag, 3-70	Welded overlay rotating bands, 2-5, 4-149,154, 6-17
estimation of, 3-70	26
coefficient, 3-70	Welded, tack, 6-46
estimating, 3-76	Whipping of casing in flight, 2-185
elastic stress, 2-157	White metal plug, 4-122
front theory, interacting, 2-157	WP shell (white phosphorous), 2-160,161,179,186
incident, 2-8,9 Mach, 2-9,19	cloud, pillaring of, 2-181
	shell design, 2-180
propagation, explosive, 2-7 rarefaction, 2-7	accessory parts design, 2-180
reflected, 2-8,9	sealing requirements, 2-186
of strong shock (Mach Waves), 2-8	tactical requirements, 2-180
of weak shock, 2-8	filler loading, 2-180
release, 2-45	Width of rotating band, 4-124,155
shaping, 2-61,70	Windshield, 2-117, 3-86, 4-178
shock, 2-7,14,19,72,93,156,157,177	aluminum, 6-35
effect of, 2-9	of HVAP shot, 6-35 Wind tunnel measurements, 3-9,71
transverse, 2-123	Wing(s), 3-13
Wavelength attenuation, 2-193	chord, 3-11
Waving tool, 6-16	clipped-delta, 3-27
Weakness, transverse, 6-4	delta, 3-27
Weapon(s)	rectangular, 3-13,27,71
antipersonnel fragmentation, 2-103,106	unyawed symmetrical, 3-14
BAT, 2-81	Wiping off of band lands, 4-164
effectiveness, 2-106	Wire, notched, 2-3,108
recoilless, 2-157, 6-49	Withdrawal easy, 6-1
system analysis, 2-107	Wood, 3-9
type and size, selection of, 2-47	Work
Wear	cold, 6-3
allowance, 5-24	gage tolerances, 5–24
factor, British, 4-150	-hardening, 4-119, 6-24
of lands, 4-164	Worn rifling, 4-162
of rifling, 4-149	Wound ballistics, 2-3,93,154
of rotating band, 4-150	status of, 2–102
Web, 4-7,9,20,24,36,43	Wounding effectiveness, 2-98
average, 4-21	Wrapped cartridge case(s), 4-135, 6-47
calculations, 4-9,14	body of, 6-46
-charge curve, 4-10	design, 4-135
dimensions, control of, 4-13	rough rolling and expanding, 6-39
dimensions, design of, 4-9	inspection of, 6-48
to gun, fitting, 4-9	performance of, 6-47
limits, 4-11	spiral, 4-135, 6-1
optimum, 4-10,11	trapezoidal, 4-135, 6-47
range, 4-9,11	steel, manufacture of, 6-46
determination of, 4-10	Wrinkles, 6-43
remaining, 4-23	•
size, 4-22	
establishing, 4-13	
thickness, 4-11,21,24	Yaw, 3-7,8,12,69
-velocity curve, 4-10	angle of, 3-2
Wedge, symmetrical double, 3-71	in bore, 3-28, 4-149
Wedge-type fins, 3-71	complex, 3-3
Weight	determining effect of, 3-75
of burster charge, determination of, 2-178,182	diverging, 3-4
of tetryl burster required, determining, 2-178 charge, 2-138, 4-20	-drag coefficient, 3-5,28,69
weight control, methods of (shell manufacture),	initial, 3-5,28, 4-164,178
6-17	nutational, 3-6 plane of, 3-7
distribution in projectile, 4-189	
of gun and mount, 3-72	precessional, 3-6 of repose, 3-2.4
matching, 2-180	vector, 3-2,4
of projectile, 4-50	Yawing
setback, 2-164,175,185	moment, 3-3,8,10
of shell, 3-64	coefficient, 3-10
tolerances, 2-152	damning factor 3-6

rate of, 3-8,10

Yield

condition, mathematical statement of Von Mises,

4-187

criteria, 4-181,185

theories, 4-185

utilization of, 4-178

function, Von Mises, 4-186

high, 6-44

point, 2-153, 4-118, 6-23

strength, 4-134,149, 6-2,41

stress, 2-178, 4-119

of band material, 4-157

compressive, 2-165

minimum permissible, 4-156

static, 4-185

Young's modulus, 4-118

Zamac 5 (zinc alloy), 2-37

Zero
interference, 4-169
order, 2-32
theory, 2-31
twist, 4-172
Zinc
alloy, Zamac 5, 2-37
cones, 2-41
phosphate, 6-3
Zobel, 3-10
Zone
A (burning), 2-189
B (burning), 2-189
C (burning), 2-189
charges, 4-134
firing, 1-2,7
mized, 2-127
of mixed results, 2-125
pre-ignition, 2-189
tolerance, 5-24,25
permissible, 5-17

ARTILLERY AMMUNITION — GENERAL

TYPES AND CLASSIFICATION OF COMPLETE ROUNDS

1-1. Complete Rounds. The term "artillery ammunition" refers to ammunition, excepting rockets and shotgun shells, used in weapons having a bore diameter of more than 0.60 inch. A complete round of artillery ammunition comprises all of the components necessary to fire a weapon once and to cause the projectile to function at the desired time and place. These components are, in general, the projectile, the fuze, the propelling charge, and the primer. Dependent upon both the type of propelling charge and the method of loading into the weapon, complete rounds of artillery ammunition are known as fixed, semifixed, separate loading, or separated. Figure 1-1 illustrates these types of ammunition and their component parts.

1-2. Components of a Complete Round.

Projectile. The projectile is the effect-producing assembly which is ejected from the weapon by the gas pressure developed by the burning propelling charge. Other terms used in specific nomenclature of certain items, in place of "projectile," are "shell" and "shot."

<u>Fuze</u>. A fuze is a mechanical or electrical device assembled to a projectile to cause it to function at the time and under the circumstances desired.

Propelling Charge. The propelling charge consists of a quantity of propellant in a cartridge case, cloth bag, or both.

<u>Primer.</u> A primer is used to initiate the burning of a propelling charge. It consists essentially of a small quantity of sensitive explosive and a charge of black powder.

Figure 1-1. Ammunition terms - complete rounds

1-3. <u>Fixed Ammunition</u>. Complete rounds in which the propelling charge is fixed, that is, not adjustable, and which are loaded into the weapon in one operation, are known as "fixed" ammunition. As usually designed, the propelling charge is loose in the cartridge case, which is crimped rigidly to the projectile. In a few cases, however, the charge is contained

in a bag inside the cartridge case. For certain calibers, rounds of fixed ammunition are termed "cartridges."

- 1-4. Semifixed Ammunition is characterized by an accessible propelling charge, which may be adjusted for zone firing. Like fixed ammunition, it is loaded into the weapon as a unit. The cartridge case is a free fit over the projectile. The propelling charge is divided into bagged sections, each containing a definite quantity of propellant.
- 1-5. In <u>Separate-Loading Ammunition</u>, the separate components projectile, propelling charge, and primer—are loaded into the weapon separately, because the ammunition is too heavy and bulky to be handled as a unit. Ammunition larger than 105-mm caliber falls into this category.
- 1-6. Separated Ammunition is characterized by the arrangement of the propelling charge and the projectile for loading into the gun. The propelling charge, contained in a primed cartridge case that is sealed with a closing plug, and the projectile, are loaded into the gun in one operation. Separated ammunition is used when the ammunition is too large to handle as a fixed unit.
- 1-7. Classification of Ammunition. Ammunition may be classified according to use as service, practice, blank, or drill. In addition, it may be classified according to type of filler as explosive, chemical, or inert.
- 1-8. Service Ammunition is used in combat. Dependent upon the type of projectile, it may be high-explosive (HE), high-explosive antitank (HEAT), armor-piercing (AP), armor-piercing capped (APC, with or without explosive filler), hypervelocity armor-piercing (HVAP, HVAPDS, or HVAPDSFS), high-explosive plastic (HEP), incendiary, illuminating, marking, propaganda, chaff, or liquid-filled shell.
- 1-9. <u>Practice Ammunition</u> is fired for effect in simulated combat, and is also used in training in marksmanship. The projectile in this type of ammunition may have a small quantity of low-explosive filler to serve as a spotting charge, or the filler may be inert. The projectile may be an empty cast-iron shell.

- 1-10. <u>Blank Ammunition</u> is provided in small and medium calibers for saluting and simulated fire. This ammunition has no projectile.
- 1-11. <u>Drill Ammunition</u> is used for training in handling and loading. It is completely inert.
- 1-12. <u>Proof Ammunition</u>. Proof ammunition is used for testing of guns and propellant charges. The projectile is ordinarily a blunt-nosed solid steel shot of the same weight as the high-explosive projectile which is to be fired from the gun. The propellant charge weight is adjusted to give the pressure desired for the test that the round is designed for.

TYPES OF PROJECTILES

- 1-13. High-Explosive (HE) Shell have projectiles of forged steel, comparatively thin walls, and a large bursting charge of high explosive. HE shell are used against personnel and materiel targets, producing blast effect and fragmentation at the target. HE shell may have a time-, impact-, inertia-, or proximity-type fuze, according to the action desired.
- 1-14. High-Explosive Antitank (HEAT) Shell. This is a special shell used against armored targets. Its effect is dependent upon the formation of an ultra-high-velocity jet of metal caused by the action of the hollow charge on the metal liner.
- 1-15. Armor-Piercing (AP) Ammunition. The armor-piercing projectile has a nose of forged high-carbon nickel-chrome steel, and is intended to penetrate the armor of a tank by the energy of impact. The nose may be ogival, or blunt truncated, and must be hard enough to penetrate armor, yet tough enough to withstand cracking or shattering upon impact; it may have an aluminum windshield to provide better ballistic characteristics. The body of an AP shot must be capable of withstanding bending stresses, and also the gouging action of the edges of the hole. The base must have enough strength to smash through the plate if caught by the side of the hole, or should be so designed that it will break off from the body without injuring the forward part.
- 1-16. Hypervelocity Armor-Piercing (HVAP) Shot is lighter than the other armor-piercing projectile of the same caliber, and it is fired

at higher velocities. The HVAP shot has a pointed cylindrical core of tungsten carbide. The core has great density and hardness. This type of projectile is obsolescent and is being replaced by more modern types, such as HVAPDS.

1-17. Hypervelocity Armor-Piercing Discarding Sabot (HVAPDS) Ammunition. This type of ammunition consists of a subcaliber projectile comprising a carbide core in a light alloy or steel sheath. The subcaliber projectile is placed inside a full-caliber carrier (called a "sabot") designed to impart velocity and spin to the projectile. As it leaves the gun, the sabot is discarded by the action of centrifugal force, air resistance, or both, allowing the projectile to proceed toward the target unimpeded. Generally made of aluminum, magnesium-zirconium alloy, or plastic, sabots are of three types: pot type, petal type, and latch type. (See Section 2.)

1-18. Hypervelocity Armor-Piercing Discarding Sabot Fin-Stabilized (HVAPDSFS) Shot. The HVAPDSFS shot is a fin-stabilized kinetic energy projectile designed for extremely high muzzle velocities. It is characterized by an extremely high length-over-diameter ratio. Its long thin appearance has led to its being referred to as the "arrow" projectile. It may be fired from either rifled or unrifled barrels by means of a sabot. It is currently in the development stage and has given some very promising results.

1-19. High-Explosive Plastic (HEP) Shell are unique in antitank warfare, as they attempt to defeat tanks without penetrating the armor. The explosive is made in a molded plastic form and flattens out when the projectile strikes the target. The detonation of the explosive on the face of the armor causes a rupture on the opposite side. This ruptured portion is known as a spall, which causes damage inside the tank, dependent on the velocity and mass of the spall. The mass and velocity of the spall depends on the quality and thickness of the armor, and the mass, type, and shape of the explosive filler. This shell has not yet been fully developed, and little of the theory is known. A more complete description of available theory and design is given in Section 2.

1-20. Canister Ammunition consists of slugs (small cylinders from bar stock), steel balls, or flechettes (stabilized fragments with pointed nose and finned tail), contained by various methods within the shell. The canister projectile consists of a heavy steel base, designed to withstand the firing stresses, and a thin steel tube packed with preformed missiles. As the canister projectile leaves the weapon, the steel case containing the missiles is split open by centrifugal force, and the missiles are distributed in a random pattern. The missiles inflict damage, since a velocity is imparted to them by a propellant charge. A more complete description of canister packing and design is given in Section 2.

1-21. Pyrotechnic - Type Ammunition comprises a group of shells which perform varied functions, but possess certain design similarities. These shells, which are fired from mortars, howitzers, or guns, are made to function by base ejection, separating burst, or explosive burst. In general, they are modifications of the HE shell of the same caliber. Pyrotechnic-type ammunition, grouped together by design similarity, include: illuminating shell, propaganda shell, colored smoke shell, and chaff shell; WP shell, and liquid-filled shell; and colored marker shell. The complete description and design of these shells is given in Section 2.

PROJECTILE COMPONENTS

1-22. The Ogive is the curved portion of the projectile from the point to the bourrelet. The curve of the ogive is usually the arc of a circle whose center is located in a line perpendicular to the axis of the projectile, and whose radius generally is 6 to 11 calibers in length.

1-23. The Bourrelet is an accurately machined cylindrical surface, of diameter slightly larger than the body, that bears on the lands of the bore. The bourrelet centers the projectile in the bore and guides it in its travel through the bore.

1-24. The Rotating Band is a cylindrical ring of comparatively soft material, usually copper, gilding metal, or soft iron, pressed into a knurled or roughened groove near the base of the projectile. When the gun is fired, the

rotating band is engraved by the rifling and imparts spin to the projectile. The band may also be welded to the projectile by the "welded overlay" method.

1-25. <u>Base Cover.</u> Shell containing high explosives usually are provided with a base cover to prevent the hot gases of the propelling charge from coming in contact with the explosive filler of the projectile through possible flaws in the metal of the base.

1-26. Body. The main portion of the projectile ordinarily is called the body. The term "body diameter," however, is used to designate the dimension of the cylindrical portion of the projectile between the bourrelet and the rotating band. In order to prevent contact with the bore, the body diameter is smaller than the diameter of the bourrelet or the rotating band.

1-27. <u>Tracer.</u> For observation of fire, some shell are fitted with a tracer in the base. In some antiaircraft gun projectiles, the tracer ignites a pellet that, after burning a prescribed number of seconds, detonates the explosive filler, should the fuze fail to operate against a target. This type of tracer is known as "shell destroying" (SD).

1-28. Lifting Plug and Grommet. The lifting plug and grommet do not play any part in the firing of the projectile but are included on the larger caliber shell merely for shipping and handling purposes. The lifting plug is an eye bolt that fits into the threaded fuze cavity in the nose of the shell and permits the shell to be handled by means of a winch. The grommet is a rubber-lined steel covering placed over the rotating band to protect it from damage resulting from rough handling. Both are removed before the projectile is used.

FUZES, BOOSTERS, AND DETONATORS

1-29. Introduction. A fuze is a device used with ammunition to cause it to function at the time desired, and under the circumstances desired. Artillery fuzes are classified according to their location on the projectile as base detonating or point detonating. They also are classified according to their method of functioning, as time, impact, or proximity (VT), or may be a combination of these.

1-30. <u>Time Fuzes</u> usually contain a graduated time element in the form of a compressed black powder train, or a mechanism with a gear train like a clock, which may be set to function at a predetermined time after firing.

1-31. Impact Fuzes are classified according to the quickness of action after impact as superquick, nondelay, or delay. See figure 1-2 for action of ammunition at the target according to the quickness of action. Superquick fuzes produce a burst immediately upon impact, before any penetration occurs, thus giving maximum surface effect. Nondelay fuzes are inertia-operative, and burst the projectile on a hard surface before complete penetration or ricochet. Delay fuzes allow penetration of material targets before bursting, or allow air bursts in ricochet fire. The time of action of impact fuzes is measured from the instant of its impact on a target, whereas the time of action of time fuzes is measured from the instant the weapon is fired. An impact fuze intended to function on impact with a very light material target, such as an airplane wing, is called supersensitive.

1-32. Proximity (VT) Fuzes. In effect, VT (Variable Time) fuzes are automatic time fuzes. Without "setting" or adjustment, they detonate the missiles that carry them on approach to the target. Artillery VT fuzes are essentially combination self-powered radio transmitting and receiving units. In flight, the armed fuze broadcasts radio waves. Unlike radar waves, the radio waves are sent continuously and are nondirectional. The radio wave fronts, which are reflected back from airplane, ground, or water to the moving missile, interact with the transmitted wave. When this interaction of transmitted and reflected waves, which results in ripples or beats, reaches a predetermined intensity, it trips an electronic switch. The switch then permits an electric charge that is stored in the firing capacitor to flow through an electric firing squib. The VT fuzes can be used only in deep-cavity shell.

1-33. General Description of Fuzes. In general, modern fuzes consist of a connected series (train) of small explosive charges, together with a striker or firing-pin device for initiating the action of the first charge in the train. The mechanism and explosive elements are held in a body or housing. In modern point-detonating

Figure 1-2. Action of ammunition at the target

(PD) fuzes, the housing is shaped for best ballistics. In impact fuzes now in use, the explosive train usually consists of a small but highly sensitive explosive charge, such as lead azide, in turn followed by a still larger and still less sensitive explosive charge, such as tetryl. Such charges function by successive detonation—hence the term detonating fuzes.

When delay action is desired by the use of a black powder pellet, the initial charge is a primer mixture, which passes a flame to the black powder and, in turn, to a detonator. Black powder is used exclusively in the time train of powder-train time fuzes, and for the magazine charge of both powder-train and mechanical types of time fuzes. Black powder that has been compressed to great density

burns slowly, the rate of combustion decreasing as the density increases. In the functioning of a fuze, each charge by its action initiates the next charge in the train. The final charge in the fuze causes the detonation of the booster, which in turn detonates the bursting charge of the shell.

1-34. Bore Safety. To prevent accidental arming during handling and shipping, safety devices, such as a safety wire or a cotter pin, are used when required. In certain types of fuzes, the mechanisms are arranged so that the fuzes are said to be "boresafe" (detonator-safe). A boresafe fuze is one in which the explosive train is interrupted so that, while the projectile is still in the bore of the weapon, premature action of the bursting charge is prevented if any of the more sensitive elements (primer or detonator) function.

1-35. Methods of Arming. A fuze is said to be armed when it is ready to detonate the shell, that is, when all parts are in, or are free to move to, their proper positions in order that the fuze may operate in its intended manner. The principal forces used in arming fuzes are inertia and centrifugal force. In some fuzes, both of these forces are used to activate safety devices; in others, only one is used. Centrifugal force occurs in spinning projectiles. This force may be utilized to actuate gear trains and to move safety devices into their proper positions in fuzes and boosters.

1-36. Boosters. Since the bursting charges of high-explosive shell are relatively insensitive to shock, a comparatively large detonating charge is necessary to ensure a high order detonation of the bursting charge. The use of more sensitive explosives, such as mercury fulminate or lead azide, in the quantities required for the purpose would create excessive hazards in handling and firing; therefore, such explosives are used only in small amounts as initiating and intermediate detonating charges. A separate charge of somewhat less sensitivity, usually tetryl, is provided for detonating the high-explosive charge of the shell. Because its function is to increase or "boost" the effectiveness of the explosive train, this charge is known as a booster charge. The booster charge may be incorporated in the fuze itself. or may be encased in thin metal or plastic which is screwed permanently to the fuze and handled as a unit with the fuze.

1-37. Detonators. A detonator is used in the explosive train to create or transmit a detonation wave to the booster charge, booster lead, or burster. Three types of detonators are used. One contains a primer mixture as the upper layer, for initiation by stab action of a firing pin. Another contains lead azide as the upper layer, for initiation either by flame action from a separate primer, delay pellet, time-train ring, or by detonation of a separate detonator. The third type contains a fine wire or other high-resistance electric circuit in contact with a heat-sensitive primer mixture. Passage of an electric current through the resistance circuit generates heat, which initiates detonation in the primer mixture. Most detonator cups and disks are made of aluminum.

EXPLOSIVES FOR AMMUNITION

1-38. General. To deliver the projectile at the target, and to cause it to function properly on arrival, it is necessary to employ different kinds of explosives, each of which has a specific function in a round of ammunition. The characteristics of the various types of explosives are given in Section 2. The arrangement of a series of explosives, beginning with a small amount of sensitive explosive and ending with a large amount of comparatively insensitive explosive, is called an explosive train.

1-39. Classification of Explosives. Explosives are divided into two basic groups—propellants (low explosives) and high explosives. The propellant reacts by burning, at a rate which depends upon such factors as pressure, grain form, grain size, and composition. The high explosive is used for its detonating properties, which result from the motion of a detonation wave traveling through the high-explosive charge at an extremely high velocity.

1-40. Propellants are used to eject the projectile from the weapon at a prescribed velocity. Those currently used have a nitrocellulose and/or nitroguanidine base. These propellants are distinguished by such terms as single base (those with nitrocellulose), double base (with nitrocellulose and nitroglycerin), or triple base (nitrocellulose, nitroglycerin, and nitroguanidine). Propellants may be called flashless and/or smokeless, but these terms are relative, not absolute.

1-41. <u>High Explosives</u>, because of their extremely rapid rate of detonation, have a powerful disruptive action. The high explosives that are most sensitive to impact are used as initiators in primers or detonators, whereas the high explosives less sensitive to impact are used as bursting charges in shell.

PROPELLING CHARGES

1-42. General. Propelling charges consist of the propellant (essentially nitrocellulose plus other ingredients) with an igniter of black powder, assembled in a suitable container. Generally, in fixed, semifixed, and separated rounds, the full igniter charge is present in a tube attached to the percussion element of the primer. In certain cases, however, such as ammunition for the 75-mm rifle, a supplementary igniter charge is located in the forward end of the cartridge case. In separate-loading rounds, the igniter charge is assembled in a bag sewed to the base end of the propellingcharge bag, and in some cases includes a core running through the center of the propellingcharge bag. See figure 1-1 for representative types of propelling charges.

To control the burning of propellant powder to obtain the desired performance in a particular weapon, the powder is manufactured in several types of grains. For a complete description of the various propellants, their grain types and their characteristics, refer to Section 4.

1-43. <u>Flashless and Smokeless Characteristics</u>. Whether the ammunition upon firing has flashless or smokeless characteristics, or both, depends chiefly upon the chemical composition of the propellant, the design of the ignition system, and the characteristics of the weapon in which the ammunition is fired. Variable factors that must be allowed for in the original design of the flashless-smokeless ammunition are firing temperature, degree of wear of weapon, and weather conditions.

1-44. A Cartridge Case, made of drawn brass or steel, serves as the container for the propelling charge in the instance of fixed and semi-fixed artillery ammunition. The case has a profile and design to conform to the chamber of the weapon for which the case is intended. The head of the case is relatively thick and has a flange to permit mechanical extraction and to

seat the round in the gun. These rounds used in automatic guns usually have cartridge cases with extracting grooves instead of flanges or rims. The cartridge case holds the primer, the propelling charge, and the projectile (except for separated types), so that the assembly can be inserted into the weapon in one operation. A secondary function is to provide for obturation. The case is sufficiently thin to be expanded by the pressure of the burning gases to a tight fit against the side of the weapon chamber, thereby preventing the escape of gas to the rear.

1-45. The Propelling Charge in a Round of Fixed Ammunition is usually loose powder in the cartridge case. In some instances, where the charge is not large enough to fill the case completely, a distance wadding, usually a cardboard disk and cylinder or felt pads, is inserted in the neck of the cartridge case, between the powder charge and the base of the projectile. In some instances, the same function may be served by enclosing the charge in a cloth bag inside the case. Where the primer charge is insufficient for satisfactory ignition of the propelling charge, a supplementary igniter charge of black powder may be attached to the distance wadding to supplement the primer ignition.

1-46. The Propelling Charge in a Round of Semifixed Ammunition is in cartridge bags in the cartridge case. Since the cartridge case is loosely fitted to the projectile, some of the bags of powder may be removed prior to firing to provide for zone firing.

munition. In "separated" ammunition, the separately loaded propelling charge is loosely contained in a cartridge case, which is closed by a "closing plug" made of palmetto pulp, plastic, or cork. An igniter may be placed around the primer to ensure proper ignition.

1-48. Mortar Propelling Charges are made up of several removable parts or "increments" to provide for zone firing. Each increment consists of a charge of smokeless propellant encased in a cotton bag. The bag has a buttonhole at each end to enable it to be fastened to the cartridge housing of the mortar round. The round, as received in the field, has the maximum number of increments fastened to it. The gunner adjusts for zone firing by removing the increments that are not desired.

1-49. Cartridge Bags form a suitable and convenient means of containing the smokeless powder charge in separate-loading ammunition. Cartridge-bag cloth normally is made of silk; bags made of rayon sometimes are used to replace silk. Only certain ash-free grades of this fabric are suitable; other grades might leave smoldering fragments in the bore of the cannon after firing. The products of combustion of smokeless powder are inflammable when mixed with the requisite amount of air. A reignition of gases known as a "flareback" could occur in the presence of these smoldering particles.

Cartridge igniter bags are made of silk, and the cloth is similar to cartridge-bag cloth, except that it is more closely woven in order to prevent the black ignition powder from sifting through. To date no suitable substitutes for silk have been found.

For a further discussion of the propelling charges, and a description of propelling charges for particular guns, refer to Section II, chapter 3, of reference 3, and also Section 4 of this handbook.

1-50. Primers and Ignition Charges. A primer is used in a propelling-charge explosive train as the component that initiates burning of the propelling charge by a flame. Such primers vary in size and complexity, depending upon their type and the quantity of propelling charge to be ignited. For example, the propelling charge of 20-mm rounds is so small, relatively, that the primer is merely a sensitive element assembly that is inserted directly into the primer pocket of the cartridge case. In larger caliber rounds, the primer contains a sensitive element of primer mixture or other explosive, plus a primer charge of black powder to ensure proper ignition of the larger propellant charges. Where sufficient black powder cannot be loaded into the primer body to ensure proper ignition, a separate bag of black powder, called an igniter charge assembly, is placed with the propellant.

Primers may be classified by method of ignition as percussion, initiated by a sharp blow from a firing pin in the weapon; or electric, initiated by sending a small electric current through a resistance wire embedded in an explosive, or through a conductive primer mixture.

GENERAL DESIGN REQUIREMENTS

1-51. Unique Functioning. The unique function of ammunition must be considered in the design of complete rounds and their components. Practically all ammunition items are required to function only once. This one time, they must function as intended, with a very high degree of certainty. Usually, they are used without any previous preparation or adjustment, after subjection to handling and storage that may have gone on for periods of years, sometimes under very adverse conditions.

This peculiarity of function imposes certain design requirements of a restrictive nature, such as:

- 1. Ruggedness
- 2. Corrosion prevention
- 3. Prevention of deterioration of materials.

On the other hand, this peculiarity makes it possible to neglect certain other factors that ordinarily must be given consideration, such as:

- 1. Wear
- 2. Fatigue
- 3. Permanent deformation of certain parts as a normal consequence of its functioning.

1-52. Quantity Production Requirements. Another general characteristic of nearly all ammunition components is that they are made in large quantities. Quantity production makes it economical to provide special tools, automatic or semi-automatic machines, and other special mass production equipment for their manufacture, loading, assembly, inspection, testing, and the like. In the design of ammunition components, their forms, dimensions, and tolerances must be kept in mind for mass production purposes.

1-53. Forces Acting on Projectiles in Handling. Normally, projectiles are subject to rough handling. They may be dropped, or they may roll and tumble against each other, both in shipment and in use. Some of the areas of the projectile that may be subject to damage as a result of this handling are listed below, together with the nature of the damage that might be expected.

- 1. Rotating bands indentations or scars.
- 2. Fins breaking or bending.
- 3. Setback arming devices becoming armed.
- Explosive elements primers and detonators are liable to detonation if subjected to severe shock deformation or movement.
- 5. Chemical fillers leakage.

Such damage can be minimized by proper choice of materials, by the avoidance of sharp corners or edges subject to breakage, and by proper packing.

1-54. <u>Design Considerations From Storage Requirements</u>. Since ammunition may be stored for long periods of time, under adverse conditions of temperature and humidity, the following factors must be considered.

- Malfunctioning or loss of accuracy caused by extremes of temperature.
- Malfunctioning or loss of accuracy resulting from exposure to dust or sand.
- Malfunctioning or loss of accuracy resulting from exposure to rain or snow, and immersion in water.
- Stability of explosives and other chemically reactive material.
- 5. Resistance of metal parts to corrosion.
- 6. Resistance of nonmetallic materials to deterioration.

BIBLIOGRAPHY

- 1. Hayes, T.J., "Elements of Ordnance," John Wiley and Sons, New York, 1938.
- Ammunition, General, TM 9-1900, War Department Technical Manual, June 1945.
- Artillery Ammunition, TM 9-1901, Department of the Army Technical Manual, September 1950.

ENGINEERING DESIGN HANDBOOK SERIES

The Engineering Design Handbook Series is intended to provide a compilation of principles and fundamental data to supplement experience in assisting engineers in the evolution of new designs which will meet tactical and technical needs while also embodying satisfactory producibility and maintainability.

Listed below are the Handbookswhich have been published or submitted forpublication. Handbooks with publication

Listed below are the Handbooks which have been published or submitted for publication. Handbooks with publication dates prior to 1 August 1962 were published as 20-series Ordnance Corps pamphlets. AMC Circular 310-38, 19 July 1963, redesignated those publications as 706-series AMC pamphlets (i.e., ORDP 20-138 was redesignated AMCP 706-138). All new, reprinted, or revised handbooks are being published as 706-series AMC pamphlets.

General and Miscellaneous Subjects

of Artillery Ammunition (U)

Ballistic Missile Series

Number		Number	Title
106	Elements of Armament Engineering, Part One,	281 (S-RD)	Weapon System Effectiveness (U)
	Sources of Energy	282	Propulsion and Propellants
107	Elements of Armament Engineering, Part Two,	284(C)	Trajectories (U)
	Ballistics	286	Structures
108	Elements of Armament Engineering, Part Three,		
	Weapon Systems and Components		cs Series
110	Experimental Statistics, Section 1, Basic Con-	140	Trajectories, Differential Effects, and Data
	cepts and Analysis of Measurement Data		for Projectiles
111	Experimental Statistics, Section 2, Analysis of	160(S)	Elements of Terminal Eallistics, Part One,
	Enumerative and Classificatory Data		Introduction, Kill Mechanisms, and
112	Experimental Statistics, Section 3, Planning and		Vulnerability (U)
	Analysis of Comparative Experiments	161 (S)	Elements of Terminal Ballistics, Part Two,
113	Experimental Statistics, Section 4, Special		Collection and Analysis of Data Concern-
	Topics		ing Targets (U)
114	Experimental Statistics, Section 5, Tables	162(S-RD)	
134	Maintenance Engineering Guide for Ordnance		Application to Missile and Space Targets (U)
	Design		
135	Inventions, Patents, and Related Matters		es and Mounts Series
136	Servomechanisms, Section 1, Theory	341	Cradles
137	Servomechanisms, Section 2, Measurement	342	Recoil Systems
	and Signal Converters	343	Top Carriages
138	Servomechanisms, Section 3, Amplification	344	Bottom Carriages
139	Servomechanisms, Section 4, Power Elements	345	Equilibrators
	and System Design	346	Elevating Mechanisms
170(C)	Armor and its Application to Vehicles (U)	347	Traversing Mechanisms
270	Propellant Actuated Devices		
290(C)	WarheadsGeneral (U)		ls Handbooks
331	Compensating Elements (Fire Control Series)	301	Aluminum and Aluminum Alloys
355	The Automotive Assembly (Automotive Series)	302	Copper and Copper Alloys
_		303	Magnesium and Magnesium Alloys
	unition and Explosives Series	305	Titanium and Titanium Alloys
175	Solid Propellants, Part One	306	Adhesives
176(C)	Solid Propellants, Part Two (U)	307	Gasket Materials (Nonmetallic)
177	Properties of Explosives of Military Interest,	308	Glass
	Section 1	309	Plastics
178(C)	Properties of Explosives of Military Interest,	310	Rubber and Rubber-Like Materials
-4-	Section 2 (U)	311	Corrosion and Corrosion Protection of Metals
210	Fuzes, General and Mechanical		
211(C)	Fuzes, Proximity, Electrical, Part One (U)		to-Air Missile Series
212(5)	Fuzes, Proximity, Electrical, Part Two (U)	291	Part One, System Integration
21 3(5)	Fuzes, Proximity, Electrical, Part Three (U)	292	Part Two, Weapon Control
214 (5)	Fuzes, Proximity, Electrical, Part Four (U)	293	Part Three, Computers
215(C)	Fuzes, Proximity, Electrical, Part Five (U)	294(S)	Part Four, Missile Armament (U)
244	Section 1, Artillery AmmunitionGeneral,	295(S)	Part Five, Countermeasures (U)
	with Table of Contents, Glossary and	296 207 <i>(</i> 5)	Part Six, Structures and Power Sources
245(C)	Index for Series	297(S)	Part Seven, Sample Problem (U)
246	Section 2, Design for Terminal Effects (U) Section 3. Design for Control of Flight Chan-		
	Section 3, Design for Control of Flight Characteristics		
247(C)	Section 4, Design for Projection (U)	.*	
248	Section 5, Inspection Aspects of Artillery		
-10	Ammunition Design	•	
249(C)	Section 6, Manufacture of Metallic Components		
,(0)	of Antillana Americation (11)		