(ii) at least one thickening polymer;

(a) wherein said compounds of formula (I) are chosen from compounds of formula:

$$A - D = D - \bigvee_{R_3}^{R_3'} - N \bigvee_{R_2}^{R_1} \qquad (I)$$

in which:

D is chosen from a nitrogen atom and a -CH group,

 R_1 and R_2 , which may be identical or different, are chosen from a hydrogen atom; a 4'-aminophenyl radical; and C_1 - C_4 alkyl radicals which can optionally be substituted with a radical chosen from -CN, -OH and -NH $_2$ radicals; or

 R_1 and R_2 may form, with each other or with a carbon atom of the benzene ring of formula (I), a heterocycle optionally containing a heteroatom chosen from oxygen and nitrogen, which can be substituted with at least one radical chosen from C_1 - C_4 alkyl radicals;

R₃ and R'₃, which may be identical or different, are chosen from a hydrogen atom, halogen atoms, a cyano radical, C₁-C₄ alkyl radicals, C₁-C₄ alkoxy radicals and acetyloxy radicals,

X is chosen from anions,

A is chosen from structures A_1 to A_{19} below:

$$\begin{array}{c}
R_4 \\
N+\\
N-\\
S
\end{array}$$

$$\begin{array}{c}
R_4 \\
N+\\
N-\\
N-\\
N+\\
R_4
\end{array}$$

$$\begin{array}{c}
R_4 \\
R_4
\end{array}$$

and

in which:

 R_4 is chosen from $C_1\text{-}C_4$ alkyl radicals which can be substituted with a hydroxyl radical, and

 R_5 is chosen from C_1 - C_4 alkoxy radicals, and wherein when D represents -CH, when A represents A_4 or A_{13} and when R_3 is not an alkoxy radical, R_1 and R_2 are not both a hydrogen atom;

(b) wherein said compounds of formula (II) are chosen from compounds of formula:

$$B-N=N-R_{s}$$

$$X \cdot R_{s}$$

$$R_{7}$$

$$R_{7}$$

$$R_{7}$$

in which:

R₆ is chosen from a hydrogen atom and C₁-C₄ alkyl radicals,

 R_7 is chosen from a hydrogen atom, alkyl radicals which can be substituted with a species chosen from a -CN radical and an amino group, and a 4'-aminophenyl radical, or forms, with R_6 , a heterocycle optionally comprising at least one heteroatom chosen from oxygen and nitrogen, which can be substituted with C_1 - C_4 alkyl radicals,

 R_8 and R_9 , which may be identical or different, are chosen from a hydrogen atom, halogen atoms, C_1 - C_4 alkyl radicals, C_1 - C_4 alkoxy radicals and a -CN radical,

X is chosen from anions,

B is chosen from structures B_1 to B_6 below:

$$R_{10}$$
 R_{10}
 R_{10}
 R_{10}
 R_{11}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R

(111)

and

B6

in which:

 R_{10} is chosen from $C_1\text{-}C_4$ alkyl radicals, and

 R_{11} and R_{12} , which may be identical or different, are chosen from a hydrogen atom and $C_1\text{-}C_4$ alkyl radicals;

(c) wherein said compounds of formulae (III) and (III') are chosen from compounds of formulae:

$$E-D_{1}=D_{2}-(N)_{m}$$

$$X^{-}$$

$$R_{15}$$

$$R_{17}$$

$$R_{17}$$

in which:

 R_{13} is chosen from a hydrogen atom, $C_1\text{-}C_4$ alkoxy radicals, halogen atoms and an amino radical,

R₁₄ is chosen from a hydrogen atom, C₁-C₄ alkyl radicals or forms, with a carbon atom of the benzene ring, a heterocycle optionally containing an oxygen heteroatom and/or substituted with at least one radical chosen from C₁-C₄ alkyl radicals,

R₁₅ is chosen from a hydrogen atom and halogen atoms,

 R_{16} and R_{17} , which may be identical or different, are chosen from a hydrogen atom and $C_1\text{-}C_4$ alkyl radicals,

 D_1 and D_2 , which may be identical or different, are chosen from a nitrogen atom and a -CH group,

m is 0 or 1,

wherein when R_{13} is an unsubstituted amino group, D_1 and D_2 are both a -CH group and m is 0,

X is chosen from anions,

E is chosen from structures E_1 to E_8 below:

and E7

in which R' is chosen from $C_1\text{-}C_4$ alkyl radicals;

wherein when m is 0 and when D_1 represents a nitrogen atom, E can be further chosen from structure E9 below:

in which R' is chosen from C₁-C₄ alkyl radicals;

and

- (d) wherein said at least one thickening polymer is chosen from:
- (ii)₁ nonionic guar gums;
- (ii)₂ biopolysaccharide gums of microbial origin;
- (ii)₃ gums derived from plant exudates;
- (ii)₄ pectins;
- (ii)₅ alginates;
- (ii)₆ starches; and
- (ii)₇ hydroxyalkylcelluloses and carboxyalkylcelluloses, with the provisos that
- (1) when said at least one cationic direct dye is chosen from compounds of formula (I) wherein:
 - both D's are simultaneously nitrogen atoms,
 - R₃ and R'₃ are simultaneously hydrogen atoms,
 - R₁ and R₂ are simultaneously unsubstituted methyl radicals, and
 - A is A_6 wherein R_4 is an unsubstituted methyl radical, or
 - (2) when said at least one cationic direct dye is chosen from compounds

of formula (III) wherein:

- D₁ and D₂ are simultaneously nitrogen atoms,
- m is zero,
- R₁₅ is a hydrogen atom,
- R₁₃ is a dimethylamino radical, and
- E is E₈ wherein R' is an unsubstituted methyl group,

then the at least one thickening polymer is not chosen from at least one nonionic guar gum; and

with the further provisos that

- (1) when said at least one cationic direct dye is chosen from compounds of formula (I) wherein:
 - both D's are simultaneously nitrogen atoms, and
 - A is chosen from A₄ and A₁₃, or
- (2) when said at least one cationic direct dye is chosen from compounds of formula (III) wherein:
 - D₁ and D₂ are simultaneously nitrogen atoms,
 - m is zero, and
 - E is chosen from E₁, E₂, and E₇,

then said at least one thickening polymer is not chosen from hydroxyalkylcelluloses and carboxyalkylcelluloses.

45. (Amended Three Times) A process for dyeing keratin fibers, comprising applying at least one dye composition to said keratin fibers and

10

developing for a period of time sufficient to achieve a desired coloration, wherein said at least one dye composition comprises:

- (i) at least one cationic direct dye chosen from compounds of formulae (I),(II), (III) and (III') below, and
 - (ii) at least one thickening polymer;
- (a) wherein said compounds of formula (I) are chosen from compounds of formula:

$$A-D=D-\bigvee_{R_3}^{R_3'}N_{R_2}$$
 (I)

in which:

D is chosen from a nitrogen atom and a -CH group,

 R_1 and R_2 , which may be identical or different, are chosen from a hydrogen atom; a 4'-aminophenyl radical; and C_1 - C_4 alkyl radicals which can optionally be substituted with a radical chosen from -CN, -OH and -NH $_2$ radicals; or

 R_1 and R_2 form, with each other or with a carbon atom of the benzene ring of formula (I), a heterocycle optionally containing a heteroatom chosen from oxygen and nitrogen, which can be substituted with at least one radical chosen from C_1 - C_4 alkyl radicals;

R₃ and R'₃, which may be identical or different, are chosen from a hydrogen atom, halogen atoms, a cyano radical, C₁-C₄ alkyl radicals, C₁-C₄ alkoxy radicals and acetyloxy radicals,

X is chosen from anions,

A is chosen from structures A_1 to A_{19} below:

and

in which:

 R_4 is chosen from $C_1\text{-}C_4$ alkyl radicals which can be substituted with a hydroxyl radical, and

R₅ is chosen from C₁-C₄ alkoxy radicals, and

wherein when D represents -CH, when A represents A_4 or A_{13} and when R_3 is not an alkoxy radical, R_1 and R_2 are not both a hydrogen atom;

(b) wherein said compounds of formula (II) are chosen from compounds of formula:

$$B-N=N$$

$$X$$

$$R_{9}$$

$$R_{7}$$

$$R_{7}$$

$$R_{9}$$

in which:

R₆ is chosen from a hydrogen atom and C₁-C₄ alkyl radicals,

 R_7 is chosen from a hydrogen atom, alkyl radicals which can be substituted with a species chosen from a -CN radical and an amino group, and a 4'-aminophenyl radical, or forms, with R_6 , a heterocycle optionally comprising at least one heteroatom chosen from oxygen and nitrogen, which can be substituted with C_1 - C_4 alkyl radicals,

 R_8 and R_9 , which may be identical or different, are chosen from a hydrogen atom, halogen atoms, C_1 - C_4 alkyl radicals, C_1 - C_4 alkoxy radicals and a -CN radical,

X is chosen from anions,

B is chosen from structures B₁ to B₆ below:

$$R_{10}$$
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{11}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{15}

and

R₁₀

B6

in which:

R₁₀ is chosen from C₁-C₄ alkyl radicals, and

 R_{11} and R_{12} , which may be identical or different, are chosen from a hydrogen atom and $C_1\text{-}C_4$ alkyl radicals;

(c) wherein said compounds of formulae (III) and (III') are chosen from compounds of formulae:

$$E-D_{1} = D_{2} - (N)_{m} - R_{13}$$

$$X - R_{15} - R_{15} - R_{15} - R_{16} - R_{16$$

in which:

 R_{13} is chosen from a hydrogen atom, C_1 - C_4 alkoxy radicals, halogen atoms and an amino radical,

 R_{14} is chosen from a hydrogen atom, C_1 - C_4 alkyl radicals or forms, with a carbon atom of the benzene ring, a heterocycle optionally containing an oxygen heteroatom and/or substituted with at least one to radical chosen from C_1 - C_4 alkyl radicals,

R₁₅ is chosen from a hydrogen atom and halogen atoms,

 R_{16} and R_{17} , which may be identical or different, are chosen from a hydrogen atom and $C_1\text{-}C_4$ alkyl radicals,

 D_1 and D_2 , which may be identical or different, are chosen from a nitrogen atom and a -CH group,

m is 0 or 1,

wherein when R_{13} is an unsubstituted amino group, D_1 and D_2 are both a -CH group and m is 0,

X is chosen from anions,

E is chosen from structures E_1 to E_8 below:

and

in which R' is chosen from $C_1\text{-}C_4$ alkyl radicals;

wherein when m is 0 and when D₁ represents a nitrogen atom, E can be further chosen from structure E9 below:

in which R' is chosen from C₁-C₄ alkyl radicals;

and

- (d) wherein said at least one thickening polymer is chosen from:
- (ii)₁ nonionic guar gums;
- (ii)₂ biopolysaccharide gums of microbial origin;
- (ii)₃ gums derived from plant exudates;
- (ii)₄ pectins;
- (ii)₅ alginates;
- (ii)₆ starches; and
- $(ii)_7$ hydroxyalkylcelluloses and carboxyalkylcelluloses, with the provisos that
- (1) when said at least one cationic direct dye is chosen from compounds of formula (I) wherein:
 - both D's are simultaneously nitrogen atoms,
 - R₃ and R'₃ are simultaneously hydrogen atoms,
 - R₁ and R₂ are simultaneously unsubstituted methyl radicals, and

- A is A₆ wherein R₄ is an unsubstituted methyl radical, or

(2) when said at least one cationic direct dye is chosen from compounds of formula (III) wherein:

- D₁ and D₂ are simultaneously nitrogen atoms,
- m is zero,
- R₁₅ is a hydrogen atom,
- R₁₃ is a dimethylamino radical, and
- E is E₈ wherein R' is an unsubstituted methyl group,

then the at least one thickening polymer is not chosen from at least one nonionic guar gum; and

with the further provisos that

(1) when said at least one cationic direct dye is chosen from compounds of formula (I) wherein:

- both D's are simultaneously nitrogen atoms, and
- A is chosen from A₄ and A₁₃, or
- (2) when said at least one cationic direct dye is chosen from compounds of formula (III) wherein:
 - D₁ and D₂ are simultaneously nitrogen atoms,
 - m is zero, and
 - E is chosen from E₁, E₂, and E₇,

then said at least one thickening polymer is not chosen from hydroxyalkylcelluloses and carboxyalkylcelluloses.

48. 48 (Amended Twice) A process for dyeing keratin fibers, comprising separately storing a first composition,

separately storing a second composition,

thereafter mixing said first and second compositions,

applying said mixture to said fibers, and

developing for a period of time sufficient to achieve a desired coloration,

- wherein said first composition comprises at least one cationic direct dye chosen from compounds of formulae (I), (II), (III) and (III') below, at least one thickening polymer and at least one oxidation base,
- (a) wherein said compounds of formula (I) are chosen from compounds of formula:

03

$$A - D = D - N R_1$$

$$X \cdot R_3 \qquad (I)$$

in which:

D is chosen from a nitrogen atom and a -CH group,

 R_1 and R_2 , which may be identical or different, are chosen from a hydrogen atom; a 4'-aminophenyl radical; and C_1 - C_4 alkyl radicals which can optionally be substituted with a radical chosen from -CN, -OH and -NH $_2$ radicals; or

R₁ and R₂ form, with each other or with a carbon atom of the benzene ring of

formula (I), a heterocycle optionally containing a heteroatom chosen from oxygen and nitrogen, which can be substituted with at least one radical chosen from C₁-C₄ alkyl radicals;

R₃ and R'₃, which may be identical or different, are chosen from a hydrogen atom, halogen atoms, a cyano radical, C₁-C₄ alkyl radicals, C₁-C₄ alkoxy radicals and acetyloxy radicals,

X is chosen from anions,

A is chosen from structures A_1 to A_{19} below:

()3

and

in which:

 R_4 is chosen from $C_1\text{-}C_4$ alkyl radicals which can be substituted with a hydroxyl radical, and

 R_{5} is chosen from $C_{1}\text{-}C_{4}$ alkoxy radicals, and

wherein when D represents -CH, when A represents A_4 or A_{13} and when R_3 is not an alkoxy radical, R_1 and R_2 are not both a hydrogen atom;

(b) wherein said compounds of formula (II) are chosen from compounds of formula:

$$B-N=N$$

$$R_{9}$$

$$R_{7}$$

$$R_{7}$$

$$R_{9}$$

$$R_{7}$$

in which:

R₆ is chosen from a hydrogen atom and C₁-C₄ alkyl radicals,

 R_7 is chosen from a hydrogen atom, alkyl radicals which can be substituted with a species chosen from a -CN radical and an amino group, and a 4'-aminophenyl radical, or forms, with R_6 , a heterocycle optionally comprising at least one heteroatom chosen from oxygen and nitrogen, which can be substituted with C_1 - C_4 alkyl radicals,

 R_8 and R_9 , which may be identical or different, are chosen from a hydrogen atom, halogen atoms, $C_1\text{-}C_4$ alkyl radicals $C_1\text{-}C_4$ alkoxy radicals and a -CN radical,

X is chosen from anions,

B is chosen from structures B_1 to B_6 below:

$$R_{10}$$
 R_{10} R_{10} R_{10} R_{10} R_{11} R_{12} R_{12} R_{13} R_{12} R_{13} R_{14} R_{15} R

in which:

 R_{10} is chosen from $C_1\hbox{-} C_4$ alkyl radicals, and

 R_{11} and R_{12} , which may be identical or different, are chosen from a hydrogen atom and C_1 - C_4 alkyl radicals;

(c) wherein said compounds of formulae (III) and (III') are chosen from compounds of formulae:

$$E-D_{1}=D_{2}-(N)_{m}$$

$$X = R_{15}$$

$$R_{15}$$

$$R_{16}$$

$$R_{16}$$

$$R_{16}$$

$$R_{16}$$

$$R_{17}$$

$$R_{16}$$

$$R_{17}$$

in which:

R₁₃ is chosen from a hydrogen atom, C₁-C₄ alkoxy radicals, halogen atoms and an amino radical,

 R_{14} is chosen from a hydrogen atom, C_1 - C_4 alkyl radicals or forms, with a carbon atom of the benzene ring, a heterocycle optionally containing an oxygen heteroatom and/or substituted with at least one radical chosen from C_1 - C_4 alkyl radicals,

R₁₅ is chosen from a hydrogen atom and halogen atoms,

 R_{16} and R_{17} , which may be identical or different, are chosen from a hydrogen atom and $C_1\text{-}C_4$ alkyl radicals,

 D_1 and D_2 , which may be identical or different, are chosen from a nitrogen atom and a -CH group,

m is 0 or 1,

wherein when R_{13} is an unsubstituted amino group, D_1 and D_2 are both a -CH group and m is 0,

X is chosen from anions,

E is chosen from structures E_1 to E_8 below:

and

in which R' is chosen from $C_1\text{-}C_4$ alkyl radicals;

wherein when m is 0 and when D₁ represents a nitrogen atom, E can be further chosen from structure E9 below:

in which R' is chosen from C₁-C₄ alkyl radicals;

- and wherein said at least one thickening polymer is chosen from:
- (ii)₁ nonionic guar gums;
- (ii)₂ biopolysaccharide gums of microbial origin;
- (ii)₃ gums derived from plant exudates;
- (ii)₄ pectins;
- (ii)₅ alginates;
- (ii)₆ starches; and
- (ii)₇ hydroxyalkylcelluloses and carboxyalkylcelluloses; and
- wherein said second composition comprises at least one oxidizing agent.

(Amended Twice) A process for dyeing keratin fibers, comprising separately storing a first composition, separately storing a second composition,

thereafter mixing said first and second compositions,

applying said mixture to said fibers, and

developing for a period of time sufficient to achieve a desired coloration,

- wherein said first composition comprises at least one oxidation base, and at least one cationic direct dye chosen from compounds of formulae (I), (II), (III) and (III') below:
- (a) wherein said compounds of formula (I) are chosen from compounds of formula:

$$A - D = D - N R_1$$

$$X \cdot R_3 \qquad (I)$$

in which:

D is chosen from a nitrogen atom and a -CH group,

 R_1 and R_2 , which may be identical or different, are chosen from a hydrogen atom; a 4'-aminophenyl radical; and C_1 - C_4 alkyl radicals which can optionally be substituted with a radical chosen from -CN, -OH and -NH $_2$ radicals; or

 R_1 and R_2 form, with each other or with a carbon atom of the benzene ring of formula (I), a heterocycle optionally containing a heteroatom chosen from oxygen and nitrogen, which can be substituted with at least one radical chosen from C_1 - C_4 alkyl radicals;

R₃ and R'₃, which may be identical or different, are chosen from a hydrogen atom, halogen atoms, a cyano radical, C₁-C₄ alkyl radicals, C₁-C₄ alkoxy radicals and acetyloxy radicals,

X is chosen from anions,

A is chosen from structures A_1 to A_{19} below:

and

in which:

 R_4 is chosen from $C_1\hbox{-} C_4$ alkyl radicals which can be substituted with a hydroxyl radical, and

 R_{5} is chosen from $C_{1}\text{-}C_{4}$ alkoxy radicals, and

wherein when D represents -CH, when A represents A_4 or A_{13} and when R_3 is not an alkoxy radical, R_1 and R_2 are not both a hydrogen atom;

(b) wherein said compounds of formula (II) are chosen from compounds of formula:

$$B-N=N- \begin{array}{c} R_8 \\ \hline \\ X \\ \end{array}$$

$$R_7$$

$$R_7$$

$$R_7$$

$$R_7$$

$$R_7$$

in which:

R₆ is chosen from a hydrogen atom and C₁-C₄ alkyl radicals,

 R_7 is chosen from a hydrogen atom, alkyl radicals which can be substituted with a species chosen from a -CN radical and an amino group, and a 4'-aminophenyl radical, or forms, with R_6 , a heterocycle optionally comprising at least one heteroatom chosen from oxygen and nitrogen, which can be substituted with C_1 - C_4 alkyl radicals,

 R_8 and R_9 , which may be identical or different, are chosen from a hydrogen atom, halogen atoms, C_1 - C_4 alkyl radicals C_1 - C_4 alkoxy radicals and a -CN radical,

X is chosen from anions,

B is chosen from structures B₁ to B₆ below:

$$R_{10}$$
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{11}
 R_{12}
 R_{12}
 R_{13}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R

in which:

 R_{10} is chosen from $C_1\hbox{-} C_4$ alkyl radicals, and

 R_{11} and R_{12} , which may be identical or different, are chosen from a hydrogen atom and C_1 - C_4 alkyl radicals;

(c) wherein said compounds of formulae (III) and (III') are chosen from compounds of formulae:

$$E-D_{1}=D_{2}-(N)_{m}$$

$$X \cdot R_{15}$$

$$R_{15}$$

$$R_{16}$$
(III)
$$R_{16}$$

$$R_{17}$$

$$R_{16}$$

$$R_{17}$$

$$R_{16}$$

in which:

R₁₃ is chosen from a hydrogen atom, C₁-C₄ alkoxy radicals, halogen atoms and an amino radical,

 R_{14} is chosen from a hydrogen atom, C_1 - C_4 alkyl radicals or forms, with a carbon atom of the benzene ring, a heterocycle optionally containing an oxygen heteroatom and/or substituted with at least one radical chosen from C_1 - C_4 alkyl radicals,

 $\ensuremath{R_{15}}$ is chosen from a hydrogen atom and halogen atoms,

 R_{16} and R_{17} , which may be identical or different, are chosen from a hydrogen atom and C_1 - C_4 alkyl radicals,

 D_1 and D_2 , which may be identical or different, are chosen from a nitrogen atom and a -CH group,

m is 0 or 1,

wherein when R_{13} is an unsubstituted amino group, D_1 and D_2 are both a -CH group and m is 0,

X is chosen from anions,

E is chosen from structures E_1 to E_8 below:

03

and

wherein when m is 0 and when D₁ represents a nitrogen atom, E can be further chosen from structure E9 below:

in which R' is chosen from $C_1\text{-}C_4$ alkyl radicals;

and

- wherein said second composition comprises at least one oxidizing agent and at least one thickening polymer,
- wherein said at least one thickening polymer is chosen from:
 - (ii)₁ nonionic guar gums;
 - (ii)₂ biopolysaccharide gums of microbial origin;
 - (ii)₃ gums derived from plant exudates;
 - $(ii)_4$ pectins;
 - (ii)₅ alginates;
 - (ii)₆ starches; and
 - (ii)₇ hydroxyalkylcelluloses and carboxyalkylcelluloses.

50. (Amended Twice) A process for dyeing keratin fibers, comprising separately storing a first composition, separately storing a second composition,

thereafter mixing said first and second compositions,

- applying said mixture to said fibers, and
- developing for a period of time sufficient to achieve a desired coloration,
- wherein said first composition comprises at least one cationic direct dye chosen from compounds of formulae (I), (II), (III) and (III') below and at least one thickening polymer:
- (a) wherein said compounds of formula (I) are chosen from compounds of formula:

$$A \longrightarrow D \longrightarrow D \longrightarrow R_3$$

$$X \longrightarrow R_2$$

$$R_2$$

$$(1)$$

in which:

D is chosen from a nitrogen atom and a -CH group,

 R_1 and R_2 , which may be identical or different, are chosen from a hydrogen atom; a 4'-aminophenyl radical; and C_1 - C_4 alkyl radicals which can optionally be substituted with a radical chosen from -CN, -OH and -NH $_2$ radicals; or

 R_1 and R_2 form, with each other or with a carbon atom of the benzene ring of formula (I), a heterocycle optionally containing a heteroatom chosen from oxygen and nitrogen, which can be substituted with at least one radical chosen from C_1 - C_4 alkyl radicals;

R₃ and R'₃, which may be identical or different, are chosen from a hydrogen atom, halogen atoms, a cyano radical, C₁-C₄ alkyl radicals, C₁-C₄

alkoxy radicals and acetyloxy radicals,

X is chosen from anions,

A is chosen from structures A_1 to A_{19} below:

Application No.: 09/349,105

Attorney Docket No.: 05725.0441

and

in which:

 R_4 is chosen from $C_1\hbox{-} C_4$ alkyl radicals which can be substituted with a hydroxyl radical, and

 R_{5} is chosen from $C_{1}\text{-}C_{4}$ alkoxy radicals, and

wherein when D represents -CH, when A represents A_4 or A_{13} and when R_3 is not an alkoxy radical, R_1 and R_2 are not both a hydrogen atom;

(b) wherein said compounds of formula (II) are chosen from compounds of formula:

$$B-N=N- \begin{array}{c} R_8 \\ \hline \\ X \\ \end{array}$$

$$R_7$$

$$(II)$$

in which:

R₆ is chosen from a hydrogen atom and C₁-C₄ alkyl radicals,

 R_7 is chosen from a hydrogen atom, alkyl radicals which can be substituted with a species chosen from a -CN radical and an amino group, and a 4'-aminophenyl radical, or forms, with R_6 , a heterocycle optionally comprising at least one heteroatom chosen from oxygen and nitrogen, which can be substituted with C_1 - C_4 alkyl radicals,

 R_8 and R_9 , which may be identical or different, are chosen from a hydrogen atom, halogen atoms, C_1 - C_4 alkyl radicals C_1 - C_4 alkoxy radicals and a -CN radical,

X is chosen from anions,

B is chosen from structures B_1 to B_6 below:

$$R_{10}$$
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{11}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R

in which:

R₁₀ is chosen from C₁-C₄ alkyl radicals, and

 R_{11} and R_{12} , which may be identical or different, are chosen from a hydrogen atom and C_1 - C_4 alkyl radicals;

(c) wherein said compounds of formulae (III) and (III') are chosen from compounds of formulae:

$$E-D_{1}=D_{2}-(N)_{m}$$

$$X^{-}$$

$$R_{15}$$

$$R_{15}$$

$$R_{16}$$

$$(III)$$

$$(III')$$

in which:

 R_{13} is chosen from a hydrogen atom, C_1 - C_4 alkoxy radicals, halogen atoms and an amino radical,

 R_{14} is chosen from a hydrogen atom, C_1 - C_4 alkyl radicals or forms, with a carbon atom of the benzene ring, a heterocycle optionally containing an oxygen heteroatom and/or substituted with at least one radical chosen from C_1 - C_4 alkyl radicals,

R₁₅ is chosen from a hydrogen atom and halogen atoms,

 R_{16} and R_{17} , which may be identical or different, are chosen from a hydrogen atom and C_1 - C_4 alkyl radicals,

 D_1 and D_2 , which may be identical or different, are chosen from a nitrogen atom and a -CH group,

m is 0 or 1,

wherein when R_{13} is an unsubstituted amino group, D_1 and D_2 are both a -CH group and m is 0,

X is chosen from anions,

E is chosen from structures E₁ to E₈ below:

and

in which R' is chosen from $C_1\text{-}C_4$ alkyl radicals;

wherein when m is 0 and when D_1 represents a nitrogen atom, E can be further chosen from structure E9 below:

in which R' is chosen from C₁-C₄ alkyl radicals;

- wherein said at least one thickening polymer is chosen from:
 - (ii)₁ nonionic guar gums;
 - (ii)₂ biopolysaccharide gums of microbial origin;
 - (ii)₃ gums derived from plant exudates;
 - $(ii)_4$ pectins;
 - (ii)₅ alginates;
 - (ii)₆ starches; and
 - (ii)7 hydroxyalkylcelluloses and carboxyalkylcelluloses; and
- wherein said second composition comprises at least one oxidizing agent.

51. (Amended Twice) A process for dyeing keratin fibers, comprising separately storing a first composition, separately storing a second composition, thereafter mixing said first and second compositions, applying said mixture to said fibers, and

developing for a period of time sufficient to achieve a desired coloration, wherein said first composition comprises at least one cationic direct dye

chosen from compounds of formulae (I), (II), (III) and (III') below:

(a) wherein said compounds of formula (I) are chosen from compounds of formula:

$$A \longrightarrow D \longrightarrow D \longrightarrow R_3 \qquad (I)$$

$$X \longrightarrow R_3 \qquad .$$

in which:

D is chosen from a nitrogen atom and a -CH group,

 R_1 and R_2 , which may be identical or different, are chosen from a hydrogen atom; a 4'-aminophenyl radical; and C_1 - C_4 alkyl radicals which can optionally be substituted with a radical chosen from -CN, -OH and -NH $_2$ radicals; or

 R_1 and R_2 form, with each other or with a carbon atom of the benzene ring of formula (I), a heterocycle optionally containing a heteroatom chosen from oxygen and nitrogen, which can be substituted with at least one radical chosen from C_1 - C_4 alkyl radicals;

R₃ and R'₃, which may be identical or different, are chosen from a hydrogen atom, halogen atoms, a cyano radical, C₁-C₄ alkyl radicals, C₁-C₄ alkoxy radicals and acetyloxy radicals,

X is chosen from anions,

A is chosen from structures A_1 to A_{19} below:

Application No.: 09/349,105

Attorney Docket No.: 05725.0441

and

in which:

 R_4 is chosen from $C_1\hbox{-} C_4$ alkyl radicals which can be substituted with a hydroxyl radical, and

 R_{5} is chosen from $C_{1}\text{-}C_{4}$ alkoxy radicals, and

wherein when D represents -CH, when A represents A_4 or A_{13} and when R_3 is not an alkoxy radical, R_1 and R_2 are not both a hydrogen atom;

(b) wherein said compounds of formula (II) are chosen from compounds of formula:

$$R_{g}$$

in which:

R₆ is chosen from a hydrogen atom and C₁-C₄ alkyl radicals,

 R_7 is chosen from a hydrogen atom, alkyl radicals which can be substituted with a species chosen from a -CN radical and an amino group, and a 4'-aminophenyl radical, or forms, with R_6 , a heterocycle optionally comprising at least one heteroatom chosen from oxygen and nitrogen, which can be substituted with C_1 - C_4 alkyl radicals,

 R_8 and R_9 , which may be identical or different, are chosen from a hydrogen atom, halogen atoms, C_1 - C_4 alkyl radicals C_1 - C_4 alkoxy radicals and a -CN radical,

X is chosen from anions,

B is chosen from structures B₁ to B₆ below:

03

$$R_{10}$$
 R_{10} R_{10} R_{10} R_{10} R_{10} R_{11} R_{12} R_{12} R_{12} R_{13} R_{14} R_{15} R

(13)

in which:

 R_{10} is chosen from $C_1\hbox{-} C_4$ alkyl radicals, and

 R_{11} and R_{12} , which may be identical or different, are chosen from a hydrogen atom and C_1 - C_4 alkyl radicals;

(c) wherein said compounds of formulae (III) and (III') are chosen from compounds of formulae:

$$E-D_{1}=D_{2}-(N)_{m}$$

$$X^{-}$$

$$R_{15}$$

$$R_{15}$$

$$R_{16}$$

$$(III')$$

in which:

R₁₃ is chosen from a hydrogen atom, C₁-C₄ alkoxy radicals, halogen atoms and an amino radical,

 R_{14} is chosen from a hydrogen atom, C_1 - C_4 alkyl radicals or forms, with a carbon atom of the benzene ring, a heterocycle optionally containing an oxygen heteroatom and/or substituted with at least one radical chosen from C_1 - C_4 alkyl radicals,

R₁₅ is chosen from a hydrogen atom and halogen atoms,

 R_{16} and R_{17} , which may be identical or different, are chosen from a hydrogen atom and $C_1\text{-}C_4$ alkyl radicals,

 D_1 and D_2 , which may be identical or different, are chosen from a nitrogen atom and a -CH group,

m is 0 or 1,

wherein when R_{13} is an unsubstituted amino group, D_1 and D_2 are both a -CH group and m is 0,

X is chosen from anions,

E is chosen from structures E_1 to E_8 below:

and

wherein when m is 0 and when D₁ represents a nitrogen atom, E can be further chosen from structure E9 below:

in which R' is chosen from C₁-C₄ alkyl radicals;

- wherein said second composition comprises at least one oxidizing agent and at least one thickening polymer,
- wherein said at least one thickening polymer is chosen from:
 - (ii)₁ nonionic guar gums;
 - (ii)₂ biopolysaccharide gums of microbial origin;
 - (ii)₃ gums derived from plant exudates;
 - (ii)₄ pectins;
 - (ii)₅ alginates;
 - (ii)₆ starches; and
 - (ii)₇ hydroxyalkylcelluloses and carboxyalkylcelluloses.
- (Amended Once) A multi-compartment dyeing kit, comprising at least two separate compartments, wherein a first compartment contains a first composition and a second compartment contains a second composition,
- wherein said first composition comprises at least one cationic direct dye

chosen from compounds of formulae (I), (II), (III) and (III') below, at least one thickening polymer and at least one oxidation base:

(a) wherein said compounds of formula (I) are chosen from compounds of formula:

$$A - D = D - N R_1$$

$$X \cdot R_3$$

$$R_2$$
(I)

in which:

D is chosen from a nitrogen atom and a -CH group,

 R_1 and R_2 , which may be identical or different, are chosen from a hydrogen atom; a 4'-aminophenyl radical; and C_1 - C_4 alkyl radicals which can optionally be substituted with a radical chosen from -CN, -OH and -NH $_2$ radicals; or

 R_1 and R_2 form, with each other or with a carbon atom of the benzene ring of formula (I), a heterocycle optionally containing a heteroatom chosen from oxygen and nitrogen, which can be substituted with at least one radical chosen from C_1 - C_4 alkyl radicals;

R₃ and R'₃, which may be identical or different, are chosen from a hydrogen atom, halogen atoms, a cyano radical, C₁-C₄ alkyl radicals, C₁-C₄ alkoxy radicals and acetyloxy radicals,

X is chosen from anions,

A is chosen from structures A_1 to A_{19} below:

03

(13

and

in which:

 R_4 is chosen from $C_1\text{-}C_4$ alkyl radicals which can be substituted with a hydroxyl radical, and

 R_{5} is chosen from $C_{1}\hbox{-} C_{4}$ alkoxy radicals, and

wherein when D represents -CH, when A represents A_4 or A_{13} and when R_3 is not an alkoxy radical, R_1 and R_2 are not both a hydrogen atom;

(b) wherein said compounds of formula (II) are chosen from compounds of formula:

$$B-N=N- \begin{array}{c} R_8 \\ \hline \\ X \\ \end{array}$$

$$R_7$$

$$R_7$$

$$R_7$$

$$R_7$$

in which:

R₆ is chosen from a hydrogen atom and C₁-C₄ alkyl radicals,

 R_7 is chosen from a hydrogen atom, alkyl radicals which can be substituted with a species chosen from a -CN radical and an amino group, and a 4'-aminophenyl radical, or forms, with R_6 , a heterocycle optionally comprising at least one heteroatom chosen from oxygen and nitrogen, which can be substituted with C_1 - C_4 alkyl radicals,

 R_8 and R_9 , which may be identical or different, are chosen from a hydrogen atom, halogen atoms, $C_1\text{-}C_4$ alkyl radicals $C_1\text{-}C_4$ alkoxy radicals and a -CN radical,

X is chosen from anions,

B is chosen from structures B₁ to B₆ below:

$$R_{10}$$
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{11}
 R_{12}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R

13

in which:

R₁₀ is chosen from C₁-C₄ alkyl radicals, and

 R_{11} and R_{12} , which may be identical or different, are chosen from a hydrogen atom and C_1 - C_4 alkyl radicals;

(c) wherein said compounds of formulae (III) and (III') are chosen from compounds of formulae:

$$E-D_{1}=D_{2}-(N)_{m}$$

$$X = R_{15}$$

$$R_{15}$$

$$R_{16}$$
(III)
$$R_{16}$$

$$R_{16}$$

in which:

R₁₃ is chosen from a hydrogen atom, C₁-C₄ alkoxy radicals, halogen atoms and an amino radical,

 R_{14} is chosen from a hydrogen atom, C_1 - C_4 alkyl radicals or forms, with a carbon atom of the benzene ring, a heterocycle optionally containing an oxygen heteroatom and/or substituted with at least one radical chosen from C_1 - C_4 alkyl radicals,

 $\ensuremath{R_{15}}$ is chosen from a hydrogen atom and halogen atoms,

 R_{16} and R_{17} , which may be identical or different, are chosen from a hydrogen atom and C_1 - C_4 alkyl radicals,

 D_1 and D_2 , which may be identical or different, are chosen from a nitrogen atom and a -CH group,

m is 0 or 1,

wherein when R_{13} is an unsubstituted amino group, D_1 and D_2 are both a -CH group and m is 0,

X is chosen from anions,

E is chosen from structures E_1 to E_8 below:

and

wherein when m is 0 and when D₁ represents a nitrogen atom, E can be further chosen from structure E9 below:

in which R' is chosen from C₁-C₄ alkyl radicals;

- wherein said at least one thickening polymer is chosen from:
 - (ii)₁ nonionic guar gums;
 - (ii)₂ biopolysaccharide gums of microbial origin;
 - (ii)₃ gums derived from plant exudates;
 - $(ii)_4$ pectins;
 - (ii) $_5$ alginates;
 - (ii)₆ starches; and
 - (ii)₇ hydroxyalkylcelluloses and carboxyalkylcelluloses; and
- wherein said second composition comprises at least one oxidizing agent.

(Amended Once) A multi-compartment dyeing kit, comprising at least two separate compartments, wherein a first compartment contains a first composition and a second compartment contains a second composition,

- wherein said first composition comprises at least one oxidation base and at least one cationic direct dye chosen from compounds of formulae (I), (II), (III)

and (III') below:

(a) wherein said compounds of formula (I) are chosen from compounds of formula:

$$A - D = D - N R_1$$

$$X \cdot R_3 \qquad (I)$$

in which:

D is chosen from a nitrogen atom and a -CH group,

 R_1 and R_2 , which may be identical or different, are chosen from a hydrogen atom; a 4'-aminophenyl radical; and C_1 - C_4 alkyl radicals which can optionally be substituted with a radical chosen from -CN, -OH and -NH $_2$ radicals; or

 R_1 and R_2 form, with each other or with a carbon atom of the benzene ring of formula (I), a heterocycle optionally containing a heteroatom chosen from oxygen and nitrogen, which can be substituted with at least one radical chosen from C_1 - C_4 alkyl radicals;

 R_3 and R_3 , which may be identical or different, are chosen from a hydrogen atom, halogen atoms, a cyano radical, C_1 - C_4 alkyl radicals, C_1 - C_4 alkoxy radicals and acetyloxy radicals,

X is chosen from anions,

A is chosen from structures A_1 to A_{19} below:

03

	A,	H _N R ₄	R ₄ -N _N -N _N -N _A -N _A -N _A -N _A -N _A -N _A
	R ₄ -N	N-N+ R ₄ N R ₄ A ₅	N-N+ // N-N+ // R ₄ A ₆
03	$ \begin{array}{cccc} R_4 & R_4 \\ \hline R_4 & N + \\ R_4 & R_4 \end{array} $ $ \begin{array}{cccc} R_4 & R_4 &$	A ₈	R ₄ +// N N R ₄ A ₉
	N, N+ R ₄ ;	$R_{5} \xrightarrow{N=N+} A_{11}$	R ₄ O N+ R ₄ A ₁₂
	=N+ R ₄	S R ₄	N N R ₄

03

and

in which:

 R_4 is chosen from $C_1\text{-}C_4$ alkyl radicals which can be substituted with a hydroxyl radical, and

 R_{5} is chosen from $C_{1}\hbox{-} C_{4}$ alkoxy radicals, and

wherein when D represents -CH, when A represents A_4 or A_{13} and when R_3 is not an alkoxy radical, R_1 and R_2 are not both a hydrogen atom;

(b) wherein said compounds of formula (II) are chosen from compounds of formula:

$$B-N=N- \begin{array}{c} R_8 \\ \hline \\ X \end{array} \begin{array}{c} R_7 \\ \hline \\ R_7 \end{array} \tag{II)}$$

in which:

R₆ is chosen from a hydrogen atom and C₁-C₄ alkyl radicals,

 R_7 is chosen from a hydrogen atom, alkyl radicals which can be substituted with a species chosen from a -CN radical and an amino group, and a 4'-aminophenyl radical, or forms, with R_6 , a heterocycle optionally comprising at least one heteroatom chosen from oxygen and nitrogen, which can be substituted with C_1 - C_4 alkyl radicals,

 R_8 and R_9 , which may be identical or different, are chosen from a hydrogen atom, halogen atoms, C_1 - C_4 alkyl radicals C_1 - C_4 alkoxy radicals and a -CN radical,

X is chosen from anions,

B is chosen from structures B₁ to B₆ below:

03

in which:

R₁₀ is chosen from C₁-C₄ alkyl radicals, and

 R_{11} and R_{12} , which may be identical or different, are chosen from a hydrogen atom and C_1 - C_4 alkyl radicals;

(c) wherein said compounds of formulae (III) and (III') are chosen from compounds of formulae:

$$E-D_{1}=D_{2}-(N)_{m}$$

$$X \cdot R_{15}$$

$$R_{15}$$

$$R_{16}$$

$$R_{16}$$

$$R_{17}$$

$$R_{16}$$

$$R_{16}$$

in which:

R₁₃ is chosen from a hydrogen atom, C₁-C₄ alkoxy radicals, halogen atoms and an amino radical,

 R_{14} is chosen from a hydrogen atom, C_1 - C_4 alkyl radicals or forms, with a carbon atom of the benzene ring, a heterocycle optionally containing an oxygen heteroatom and/or substituted with at least one radical chosen from C_1 - C_4 alkyl radicals,

R₁₅ is chosen from a hydrogen atom and halogen atoms,

 R_{16} and R_{17} , which may be identical or different, are chosen from a hydrogen atom and C_1 - C_4 alkyl radicals,

 D_1 and D_2 , which may be identical or different, are chosen from a nitrogen atom and a -CH group,

m is 0 or 1,

wherein when R_{13} is an unsubstituted amino group, D_1 and D_2 are both a -CH group and m is 0,

X is chosen from anions,

E is chosen from structures E_1 to E_8 below:

and

in which R' is chosen from C₁-C₄ alkyl radicals;

wherein when m is 0 and when D₁ represents a nitrogen atom, E can be further chosen from structure E9 below:

in which R' is chosen from C₁-C₄ alkyl radicals;

- wherein said second composition comprises at least one oxidizing agent and at least one thickening polymer,
- wherein said at least one thickening polymer is chosen from:
 - (ii)₁ nonionic guar gums;
 - (ii)₂ biopolysaccharide gums of microbial origin;
 - (ii)₃ gums derived from plant exudates;
 - (ii)₄ pectins;
 - (ii)₅ alginates;
 - (ii)₆ starches; and
 - (ii)₇ hydroxyalkylcelluloses and carboxyalkylcelluloses.
- 51 (Amended Once) A multi-compartment dyeing kit, comprising at least two separate compartments, wherein a first compartment contains a first composition and a second compartment contains a second composition,
- wherein said first composition comprises at least one thickening polymer

and at least one cationic direct dye chosen from compounds of formulae (I), (II), (III) and (III') below:

(a) wherein said compounds of formula (I) are chosen from compounds of formula:

$$A - D = D - \begin{cases} R'_3 \\ N \\ R_2 \end{cases}$$
 (I)

in which:

D is chosen from a nitrogen atom and a -CH group,

 R_1 and R_2 , which may be identical or different, are chosen from a hydrogen atom; a 4'-aminophenyl radical; and C_1 - C_4 alkyl radicals which can optionally be substituted with a radical chosen from -CN, -OH and -NH $_2$ radicals; or

 R_1 and R_2 form, with each other or with a carbon atom of the benzene ring of formula (I), a heterocycle optionally containing a heteroatom chosen from oxygen and nitrogen, which can be substituted with at least one radical chosen from C_1 - C_4 alkyl radicals;

R₃ and R'₃, which may be identical or different, are chosen from a hydrogen atom, halogen atoms, a cyano radical, C₁-C₄ alkyl radicals, C₁-C₄ alkoxy radicals and acetyloxy radicals,

X is chosen from anions,

A is chosen from structures A_1 to A_{19} below:

and

in which:

 R_4 is chosen from $C_1\hbox{-} C_4$ alkyl radicals which can be substituted with a hydroxyl radical, and

 R_5 is chosen from $C_1\text{-}C_4$ alkoxy radicals, and

wherein when D represents -CH, when A represents A_4 or A_{13} and when R_3 is not an alkoxy radical, R_1 and R_2 are not both a hydrogen atom;

(b) wherein said compounds of formula (II) are chosen from compounds of formula:

$$R_{8}$$

$$X \cdot R_{9}$$

$$R_{7}$$

$$R_{7}$$

$$R_{7}$$

$$R_{7}$$

in which:

 R_6 is chosen from a hydrogen atom and $C_1\text{-}C_4$ alkyl radicals,

 R_7 is chosen from a hydrogen atom, alkyl radicals which can be substituted with a species chosen from a -CN radical and an amino group, and a 4'-aminophenyl radical, or forms, with R_6 , a heterocycle optionally comprising at least one heteroatom chosen from oxygen and nitrogen, which can be substituted with C_1 - C_4 alkyl radicals,

 R_8 and R_9 , which may be identical or different, are chosen from a hydrogen atom, halogen atoms, C_1 - C_4 alkyl radicals C_1 - C_4 alkoxy radicals and a -CN radical,

X is chosen from anions,

B is chosen from structures B₁ to B₆ below:

03

$$R_{10}$$
 R_{10} R_{10} R_{10} R_{10} R_{10} R_{11} R_{12} R_{12} R_{12} R_{13} R_{14} R_{15} R

03

in which:

 R_{10} is chosen from $C_1\hbox{-} C_4$ alkyl radicals, and

 R_{11} and R_{12} , which may be identical or different, are chosen from a hydrogen atom and C_{1} - C_{4} alkyl radicals;

(c) wherein said compounds of formulae (III) and (III') are chosen from compounds of

formulae:

$$E-D_{1}=D_{2}-(N)_{m}$$

$$X^{-}$$

$$R_{15}$$

$$R_{15}$$

$$R_{16}$$

$$(III)$$

$$(III')$$

in which:

R₁₃ is chosen from a hydrogen atom, C₁-C₄ alkoxy radicals, halogen atoms and an amino radical,

 R_{14} is chosen from a hydrogen atom, C_1 - C_4 alkyl radicals or forms, with a carbon atom of the benzene ring, a heterocycle optionally containing an oxygen heteroatom and/or substituted with at least one radical chosen from C_1 - C_4 alkyl radicals,

 R_{15} is chosen from a hydrogen atom and halogen atoms,

 R_{16} and R_{17} , which may be identical or different, are chosen from a hydrogen atom and C_1 - C_4 alkyl radicals,

 D_1 and D_2 , which may be identical or different, are chosen from a nitrogen atom and a -CH group,

m is 0 or 1,

wherein when R_{13} is an unsubstituted amino group, D_1 and D_2 are both a -CH group and m is 0,

X is chosen from anions,

E is chosen from structures E_1 to E_8 below:

and

wherein when m is 0 and when D₁ represents a nitrogen atom, E can be further chosen from structure E9 below:

in which R' is chosen from C₁-C₄ alkyl radicals;

- wherein said at least one thickening polymer is chosen from:
 - (ii)₁ nonionic guar gums;
 - (ii)₂ biopolysaccharide gums of microbial origin;
 - (ii)₃ gums derived from plant exudates;
 - $(ii)_4$ pectins;
 - (ii)₅ alginates;
 - (ii)₆ starches; and
 - (ii)7 hydroxyalkylcelluloses and carboxyalkylcelluloses; and
- wherein said second composition comprises at least one oxidizing agent.

(Amended Once) A multi-compartment dyeing kit, comprising at least two separate compartments, wherein a first compartment contains a first composition and a second compartment contains a second composition,

- wherein said first composition comprises at least one cationic direct dye chosen from compounds of formulae (I), (II), (III) and (III') below:

(a) wherein said compounds of formula (I) are chosen from compounds of formula:

$$A - D = D - N R_1$$

$$X \cdot R_3$$

$$R_2$$
(I)

in which:

D is chosen from a nitrogen atom and a -CH group,

 R_1 and R_2 , which may be identical or different, are chosen from a hydrogen atom; a 4'-aminophenyl radical; and C_1 - C_4 alkyl radicals which can optionally be substituted with a radical chosen from -CN, -OH and -NH $_2$ radicals; or

 R_1 and R_2 form, with each other or with a carbon atom of the benzene ring of formula (I), a heterocycle optionally containing a heteroatom chosen from oxygen and nitrogen, which can be substituted with at least one radical chosen from C_1 - C_4 alkyl radicals;

R₃ and R'₃, which may be identical or different, are chosen from a hydrogen atom, halogen atoms, a cyano radical, C₁-C₄ alkyl radicals, C₁-C₄ alkoxy radicals and acetyloxy radicals,

X is chosen from anions,

A is chosen from structures A₁ to A₁₉ below:

Application No.: 09/349,105

Attorney Docket No.: 05725.0441

13

and

in which:

 R_4 is chosen from $C_1\text{-}C_4$ alkyl radicals which can be substituted with a hydroxyl radical, and

 R_{5} is chosen from $C_{1}\text{-}C_{4}$ alkoxy radicals, and

wherein when D represents -CH, when A represents A_4 or A_{13} and when R_3 is not an alkoxy radical, R_1 and R_2 are not both a hydrogen atom;

(b) wherein said compounds of formula (II) are chosen from compounds of formula:

$$B-N=N- \begin{array}{c} R_8 \\ \hline \\ X \end{array} \begin{array}{c} R_7 \\ \hline \\ R_7 \end{array}$$
 (II)

in which:

 R_6 is chosen from a hydrogen atom and C_1 - C_4 alkyl radicals,

 R_7 is chosen from a hydrogen atom, alkyl radicals which can be substituted with a species chosen from a -CN radical and an amino group, and a 4'-aminophenyl radical, or forms, with R_6 , a heterocycle optionally comprising at least one heteroatom chosen from oxygen and nitrogen, which can be substituted with C_1 - C_4 alkyl radicals,

 R_8 and R_9 , which may be identical or different, are chosen from a hydrogen atom, halogen atoms, $C_1\text{-}C_4$ alkyl radicals $C_1\text{-}C_4$ alkoxy radicals and a -CN radical,

X is chosen from anions,

B is chosen from structures B₁ to B₆ below:

03

$$R_{10}$$
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{11}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R

03

in which:

R₁₀ is chosen from C₁-C₄ alkyl radicals, and

 R_{11} and R_{12} , which may be identical or different, are chosen from a hydrogen atom and $C_1\text{-}C_4$ alkyl radicals;

(c) wherein said compounds of formulae (III) and (III') are chosen from compounds of

formulae:

$$E-D_{1}=D_{2}-(N)_{m}$$

$$X \cdot R_{15}$$

$$R_{15}$$

$$R_{16}$$
(III)
$$R_{16}$$
(IIII)

in which:

 R_{13} is chosen from a hydrogen atom, C_1 - C_4 alkoxy radicals, halogen atoms and an amino radical,

 R_{14} is chosen from a hydrogen atom, C_1 - C_4 alkyl radicals or forms, with a carbon atom of the benzene ring, a heterocycle optionally containing an oxygen heteroatom and/or substituted with at least one radical chosen from C_1 - C_4 alkyl radicals,

R₁₅ is chosen from a hydrogen atom and halogen atoms,

 R_{16} and R_{17} , which may be identical or different, are chosen from a hydrogen atom and $C_1\text{-}C_4$ alkyl radicals,

 D_1 and D_2 , which may be identical or different, are chosen from a nitrogen atom and a -CH group,

m is 0 or 1,

wherein when R_{13} is an unsubstituted amino group, D_1 and D_2 are both a -CH group and m is 0,

X is chosen from anions,

E is chosen from structures E_1 to E_8 below:

and

in which R' is chosen from C₁-C₄ alkyl radicals;

wherein when m is 0 and when D_1 represents a nitrogen atom, E can be further chosen from structure E9 below:

N3

in which R' is chosen from C₁-C₄ alkyl radicals;

- wherein said second composition comprises at least one oxidizing agent and at least one thickening polymer,
- wherein said at least one thickening polymer is chosen from:
 - (ii)₁ nonionic guar gums;
 - (ii)₂ biopolysaccharide gums of microbial origin;
 - (ii)₃ gums derived from plant exudates;
 - (ii)₄ pectins;
 - (ii)₅ alginates;

- (ii)₆ starches; and
- (ii)₇ hydroxyalkylcelluloses and carboxyalkylcelluloses.

In accordance with the requirements of 37 C.F.R. § 1.121, the attached Appendix shows the changes to the claims that have been made by the amendment.

REMARKS

I. Status of the Claims

Claims 1-6, and 8-55 are now pending in this application. Claim 7 has been cancelled and its subject matter incorporated into each of claims 1, 45, 48, 49, 50, 51, 52, 53, 54, and 55 in light of the Office's suggestions in a telephone conference with Applicant's attorney on June 5, 2002. This proposed amendment does not constitute new matter, or raise any new issues for search, as support for the proposed amendments is found in claim 7 as-filed. Accordingly, the above proposed amendment should place the claims in condition for allowance, or at least reduce the number of issues for appeal. Thereby, Applicant respectfully requests entry of the above amendment, reconsideration and reexamination of the application, and timely allowance of the pending claims.

II. <u>Double Patenting Rejections</u>

Claims 1-17 and 21-25 have been provisionally rejected under the judicially created doctrine of obviousness-type double patenting as being unpatentable over claims 1-46 of copending Application No. 09/349,436.