Содержание

1.	Apx	китектура учебной ЭВМ fN8	2
	1.1.	Основные характеристики модели	2
	1.2.	Организация адресного пространства	2
	1.3.	Директивы компилятора	4
	1.4.	Ресурсы процессора	5
	1.5.	Подсистема прерываний fN8	6
2.	Сис	тема команд	7
	2.1.	Система операций и форматы	7
	2.2.	Таблица команд	9
	2.3.	Пояснения к некоторым командам таблицы 1	.3
		2.3.1. Безадресные команды десятичной коррекции	3
		2.3.2. Умножение	3
			.3
			4
			4

1. Архитектура учебной ЭВМ fN8

1.1. Основные характеристики модели

- архитектура фон Неймана (общее ОЗУ для программы и данных);
- формат ячеек 1 байт;
- объём ОЗУ 1024 байта;
- стек в ОЗУ;
- число РОН 8;
- адресное пространство ввода/вывода -2^7 адресов;
- число векторов прерываний 8.

Структурная схема fN8 показана на рис. 1.

1.2. Организация адресного пространства

В модели fN8 реализовано три адресных пространства:

- ОЗУ 1024 байта;
- РОН 8 байт;
- РВУ 128 байт.

При проектировании форматов команд стремились обеспечить для всех команд одинаковую длину — 16 бит. В форматах команд ввода/вывода предусмотрено 7-битовое поле адреса, а в регистровых командах — 3-битовое (см. форматы 10, 11, 12 и 5 на рис. 2). Это позволяет адресовать в командах весь объём пространств ввода/вывода и регистров. Однако в форматах команд, адресующих ячейки ОЗУ (6, 7, 8, 9) поле адреса составляет всего 8 бит. Разрядности счётчика команд РСL и указателя стека SPL так же составляют 8 бит. Следовательно, в этом случае поле адреса таких команд и содержимое регистров РСL и SPL определяет только смещение в соответствующем сегменте пространства ОЗУ; очевидно, размер сегмента составляет 256 байт.

В адресном пространстве ОЗУ размещается четыре сегмента с адресами:

```
Сегмент 0 - 0x000 - 0x0FF Сегмент 2 - 0x200 - 0x2FF Сегмент 1 - 0x100 - 0x1FF Сегмент 3 - 0x300 - 0x3FF
```

причём среди этих сегментов необходимо выделить сегменты кода, данных и стека.

Для управления размещением сегментов в процессоре предусмотрен специальный программно-доступный регистр SR, в котором SR[1:0] определяет номер сегмента кода (CS), SR[3:2] — номер сегмента данных (DS), SR[5:4] — номер сегмента стека (SS). По умолчанию CS = 00, DS = 10 и SS = 11, то есть под программу отводится сегменты 0 и 1, под данные — сегмент 2, а под стек — сегмент 3.

Процессор Acc PCL -.U/S.I.C.A.O.N.Z PSW SPL RDB - SS DS CS SR ЦУУ 10 F 0 RRd RWr POH (8 * 8) 3 D 000 3FF MRd MWr O3y (1024 * 8) 10 D B0В3 B2 B1 7F 00 IORd Регистры ВУ (128 * 8) IOWr 7 A AB YB DB

Рисунок 1. Структурная схема fN8

Таблица векторов прерываний размещается в сегменте 0 по адресам 0x00 .. 0x0F и может содержать до восьми векторов, причём вектор 0 зарезервирован за RESET. Каждый вектор занимает два байта и содержит 10-разрядный адрес обработчика прерывания. Значение вектора 0 по умолчанию (точка старта программы) — 0x0010.

Адресное пространство ввода/вывода составляет 128 байт, в нём может располагаться до 128 регистров внешних устройств (ВУ). Разделение адресного пространства между подключаемыми ВУ осуществляется путём присвоения каждому устройству базового адреса, кратного 16. Таким образом, одновременно к системе можно подключить до 8 ВУ, каждое из которых может использовать до 16 адресов пространства ввода/вывода.

1.3. Директивы компилятора

При написании программы на языке Ассемблер можно пользоваться следующими директивами компилятора:

```
.с <сегмент> – выбирает текущий сегмент компиляции;
```

.org <aдрес> - изменяет текущий адрес компиляции;

.db <байт, байт, ... байт> – загрузка констант размером в 1 байт в текущий сегмент начиная с текущего адреса компиляции;

.dw <слово> – загрузка констант размером в 2 байта в текущий сегмент начиная с текущего адреса компиляции.

В процессе компиляции возможна загрузка констант в сегмент данных (например, таблицы ASCII-кодов символов). По умолчанию сегменты «0» и «1» отведены для кода, сегмент «2» — для данных, а сегмент «3» — для стека. Если (лучше в конце текста программы) поставить директиву .c 2, то компилятор продолжит компиляцию фактически в сегмент данных. Например, если требуется разместить таблицу 7-сегментных кодов² десятичных цифр в сегменте данных начиная с адреса 0х90, то в конце текста программы можно добавить такой фрагмент:

```
.c 2
.org 0x90
.db 0x3F, 0x06, 0x5B, 0x66, 0x6D, 0x7D, 0x07, 0x7F, 0x6F, 0x77
```

Использование этих директив позволяет изменить установленную по умолчанию точку старта программы -0x10, например, на адрес 0x20 (a). Ещё проще поставить в нужном месте метку, например, Start: и объявить её точкой старта (b).

$$\begin{array}{c|cccc} & a) & & & b) \\ .org & 0 & & .org & 0 \\ .db & 0x20, & 0x0 & & .dw & Start \end{array} .$$

Эти же директивы позволяют автоматизировать заполнение **таблицы векторов прерываний**. Таблица векторов прерываний в fN8 размещается в младших адресах памяти 0x000 - 0x00F, каждый вектор занимает два байта. Вектор 0 определяет точку

 $^{^{1}}$ При соответствующей организации схемы ВУ допускается присваивание одинакового адреса двум различным регистрам, из которых один является регистром ввода, а другой – регистром вывода

 $^{^{2}{}m B}$ этом примере сегменту ${f A}$ индикатора соответствует младший бит кода.

старта (по умолчанию — 0x010), вектора 1, 2, 3 и 4 по умолчанию присваиваются клавиатуре, таймеру-2, таймеру-5 и контроллеру 7-сегментной индикации соответственно. Остальные вектора (5-7) можно использовать для других разрабатываемых внешних устройств или для подключения нескольких экземпляров одинаковых ВУ с разными векторами. Адрес младшего байта вектора определяется как его удвоенный номер.

Если поставить метки в начале всех обработчиков прерываний, то загрузка векторов прерываний может выглядеть следующим образом (для случая, когда вектора определяются последовательно):

```
.org 2
.dw IntKey, IntTim2, IntTim5, Int7Seq
```

По адресам неиспользуемых векторов в таблице векторов прерываний сохраняются значения 0. Если в системе используются те ВУ, вектора прерываний которых по умолчанию следуют не подряд, то можно или при подключении поменять им вектора в желаемом порядке или в директиве заполнения таблицы по неиспользуемым адресам записывать 0, например:

```
.org 2
.dw IntKey, 0, 0, Int7Seg,
```

если подключать только контроллер клавиатуры и контроллер 7-сегментной индикации и оставить им назначаемые по умолчанию вектора.

1.4. Ресурсы процессора

Вне адресных пространств – в процессоре – расположены программно-доступные объекты:

- Acc[7:0] аккумулятор;
- PCL[7:0] счётчик команд;
- SPL[7:0] указатель стека;
- SR[7:0] сегментный регистр;
- PSW[7:0] регистр слова состояния процессора;

Регистр слова состояния процессора включает следующие флаги:

```
PSW[0] = Z – нулевой результат;
```

PSW[1] = N - отрицательный результат;

PSW[2] = О – арифметическое переполнение;

PSW[3] = AC – дополнительный перенос;

PSW[4] = C - перенос;

PSW[5] = I - разрешение прерывания;

Объекты процессора CR[15:0] – регистр команд и DR[7:0] – регистр данных не являются программно-доступными и отображают код выполняемой команды и значение второго операнда бинарной операции АЛУ соответственно.

1.5. Подсистема прерываний fN8

В модели fN8 предусмотрен механизм векторных внешних прерываний. Внешние устройства формируют запросы на прерывания, которые поступают на входы контроллера прерываний. При подключении ВУ, способного формировать запрос на прерывание, ему ставится в соответствие номер входа контроллера прерываний — вектор прерывания, принимающий значение в диапазоне [1..7].

Контроллер передает вектор, соответствующий запросу, процессору, который начинает процедуру обслуживания прерывания.

Каждому из контролируемых системой прерываний событий должен соответствовать т. н. *обработичик прерывания* — подпрограмма, вызываемая при возникновении события конкретного прерывания.

Механизм прерываний, реализованный в fN8, поддерживает maблицу векторов npe- pываний, которая создается в оперативной памяти (1.3), может содержать до 8 векторов и располагается по адресам 00 .. 0F нулевого сегмента. Каждый вектор занимает 2 байта памяти и содержит 10-разрядный адрес начала обработчика соответствующего события. Вектор 0 (ячейки 00 и 01) зарезервирован за точкой старта программы по кнопке $3anyc\kappa$.

Процессор начинает обработку прерывания 3 , завершив текущую команду. При этом он

- 1) получает от контроллера вектор прерывания;
- 2) формирует и помещает в верхушку стека двухбайтовое слово, 10 младших разрядов которого адрес возврата (текущее состояние CS.PCL), а 6 старших флаги PSW[5:0];
- 3) сбрасывает в «0» флаг разрешения прерывания I;
- 4) извлекает из таблицы векторов прерываний адрес обработчика, соответствующий обслуживаемому вектору, и помещает его в CS.PCL, осуществляя тем самым переход на подпрограмму обработчика прерывания.

Таким образом, вызов обработчика прерывания, в отличие от вызова подпрограммы связан с помещением в стек не только адреса возврата, но и текущего значения вектора флагов. Поэтому последней командой подпрограммы обработчика должна быть команда IRET, которая не только возвращает в РС адрес команды, перед выполнением которой произошло прерывание но и восстанавливает те значения флагов, которые были в момент перехода на обработчик прерывания.

Не всякое событие, которое может вызвать прерывание, приводит к прерыванию текущей программы.

В состав процессора входит программно-доступный флаг I разрешения прерывания. При I=0 процессор не реагирует на запросы прерываний. После сброса процессора флаг I так же сброшен и все прерывания запрещены. Для того, чтобы разрешить прерывания, следует в программе выполнить команду EI (Enable Interupt).

Выше отмечалось, что при переходе на обработчик прерывания флаг I автоматически сбрасывается, в этом случае прервать обслуживание одного прерывания другим прерыванием нельзя. По команде IRET значение флагов восстанавливается, в том числе

³Если прерывания разрешены

вновь устанавливается I=1, следовательно в основной программе прерывания опять разрешены.

Если требуется разрешить прерывания (другие!) в обработчике прерывания, достаточно в нём выполнить команду ЕІ. Контроллер прерываний и процессор на аппаратном уровне блокируют попытки запустить прерывание, если его обработчик начал, но не завершил работу.

Таким образом, флаг I разрешает или запрещает все прерывания системы. Если требуется выборочно разрешить некоторое подмножество прерываний, используются программно-доступные флаги разрешения формирования запросов прерываний непосредственно на внешних устройствах.

Как правило каждое ВУ, которое может вызвать прерывания, содержит в составе своих регистров управления разряды флагов разрешения прерываний, по умолчанию установленных в «0». Если оставить некоторые (или все) эти флаги в нуле, то внешнему устройству будет запрещено формировать соответствующие запросы контроллеру прерываний.

Иногда бывает удобно (например, в режиме отладки) иметь возможность вызвать обработчик прерывания непосредственно из программы. Поэтому в системах команд многих Θ BM, в том числе и fN8, имеются команды вызова прерываний — INT n, где n — вектор прерывания. Процессор, выполняя команду INT n, производит те же действия, что и при обработке прерывания с вектором n.

Характерно, что с помощью команды INT n можно вызвать обработчик прерывания даже в том случае, когда флаг разрешения прерывания сброшен.

2. Система команд

2.1. Система операций и форматы

Система команд включает в себя следующие операции: арифметические и логические операции над аккумулятором (Acc) и ячейкой памяти или регистром с размещением результата в Acc, команды управления битами, команды пересылки, ввода/вывода, передачи управления (включая вызовы подпрограмм), управление прерываниями.

Адресация в командах с ячейками ОЗУ – прямая и непосредственная. В регистровых командах – прямая, косвенная и несколько вариантов автоиндексной адресации. Адресация в командах ввода/вывода – только прямая. Кроме того, возможна адресация отдельных битов в любой ячейке сегмента данных ОЗУ или в любом РВУ.

Все команды имеют размер 16 бит. Большинство команд при этом являются одноадресными.

Форматы всех команд fN8 показаны на рис. 2

Рисунок 2. Форматы команд fN8

2.2. Таблица команд

В таблице приняты следующие обозначения:

Асс – содержимое аккумулятора;

DD – содержимое ячейки памяти или непосредственный операнд;

R – содержимое регистра общего назначения R;

R* – содержимое регистра или косвенно адресуемой через регистр ячейки памяти;

р – префикс перед именем регистра, определяющий способ адресации;

А – адрес ячейки памяти данных;

M(A) – содержимое ячейки памяти данных по адресу A;

С – флаг PSW[4] переноса(заёма)

SPL – содержимое указателя стека;

L – адрес перехода (метка или абсолютный);

CR – содержимое регистра команд;

RIO - содержимое регистра внешнего устройства;

а - номер (адрес) регистра внешнего устройства;

b - номер бита в байте;

Таблица 1 — Система команд

Мнемокод	Название	Действия	Флаги
1/11/01/10/10/1			OCANZ
	Безадресн	ые команды [Код 0]	
NOP	Нет операции	PCL := PCL + 1	
RET	Возврат из подпрограммы	PCL := M(SS.SPL); Inc(SPL); CS := M(SS.SPL)[1:0]; Inc(SPL)	
IRET	Возврат из прерывания	$\begin{array}{l} \mathrm{PCL} := \mathrm{M}(\mathrm{SS.SPL}); \ \mathrm{Inc}(\mathrm{SPL}); \\ \mathrm{PSW}[5:0].\mathrm{CS} := \mathrm{M}(\mathrm{SS.SPL}); \\ \mathrm{Inc}(\mathrm{SPL}) \end{array}$	
EI	Разрешить прерывание	FI := 1	
DI	Запретить прерывание	$\mid \mathrm{FI} := 0$	
RR	Сдвиг аккумулятора правый циклический	$\begin{array}{c} \operatorname{Acc}[7:0] := \operatorname{Acc}[0].\operatorname{Acc}[7:1]; \\ \operatorname{FC} := \operatorname{Acc}[0] \end{array}$	
RL	Сдвиг аккумулятора левый циклический	$\begin{array}{l} \operatorname{Acc}[7:0] := \operatorname{Acc}[6:0].\operatorname{Acc}[7]; \\ \operatorname{FC} := \operatorname{Acc}[7] \end{array}$	
RRC	Сдвиг аккумулятора правый через перенос	$\begin{array}{l} \operatorname{Acc}[7:0] := \operatorname{FC.Acc}[7:1]; \\ \operatorname{FC} := \operatorname{Acc}[0] \end{array}$	
RLC	Сдвиг аккумулятора левый через перенос	Acc[7:0] := Acc[6:0].FC; FC := Acc[7]	
Смотри продолжение на следующей странице			

Таблица 1 — Система команд

Мнемокод	Название	Действия	Флаги
Willemonog	Hasbanno	Донотын	O C A N Z
NOTA	Инверсия аккумулятора	$Acc := \overline{Acc}$	0 0 0 + +
INCA	Инкремент аккумуля-	$oxed{\operatorname{Acc} := \operatorname{Acc} + 1}$	- + + + +
DECA	Декремент аккумулято- ра	$oxed{\operatorname{Acc} := \operatorname{Acc} - 1}$	- + + + +
SWAPA	Обмен тетрадами акку-мулятора	$Acc[7:4] \Leftrightarrow Acc[3:0]$	
DAA	Десятичная коррекция сложения	См. раздел 2.3.1	- + + + +
DSA	Десятичная коррекция вычитания	См. раздел 2.3.1	- + + + +
MOVSP	Загрузка SPL	SPL := Acc;	
MOVAPSW	Прочитать PSW	Acc := PSW	
MOVASR	Прочитать SR	$oxed{\operatorname{Acc}}:=\operatorname{SR}$	
MOVSRA	Загрузить SR	$ $ $\mathrm{SR}:=\mathrm{Acc}$	
HLT	Стоп	Прекратить командные циклы	
	Ц	Гикл [Код 1]	
DJRNZ R^c , L	Цикл	$R^c := R^c - 1;$ if $R^c \neq 0$ then goto L	
$R^c \in \{R0, R1, R$	$\{2, R3\}$, ,	I
	Команды условн	ых переходов [Код 2 or 3]	
JNZ L	Переход, если не ноль	if $Z=0$ then $CS.PCL := CR[9:0]$	
JNC L	Переход, если не перенос	if $C=0$ then $CS.PCL := CR[9:0]$	
JNN L	Переход, если не отрицательно	if $N=0$ then $CS.PCL := CR[9:0]$	
JNO L	Переход, если не переполнение	if $O=0$ then $CS.PCL := CR[9:0]$	
JZ L	Переход, если ноль	if $Z=1$ then $CS.PCL := CR[9:0]$	
JC L	Переход, если перенос	if $C=1$ then $CS.PCL := CR[9:0]$	
JN L	Переход, если отрицательно	if $N=1$ then $CS.PCL := CR[9:0]$	
JO L	Переход, если переполнение	if $O=1$ then $CS.PCL := CR[9:0]$	
Смотри продолжение на следующей странице			

Таблица 1 — Система команд

Мнемокод	Название	Действия	Флаги	
ттомонод	Traspanno	Допотыя	OCANZ	
	Команды безусловной передачи управления [Код 4]			
JMP L	Безусловный переход	CS.PCL := CR[9:0]		
CALL L	Вызов подпрограммы	$\begin{array}{l} \operatorname{Dec}(\operatorname{SPL});\\ \operatorname{M}(\operatorname{SS.SPL})[1:0] := \operatorname{CS};\\ \operatorname{Dec}(\operatorname{SPL}); \operatorname{M}(\operatorname{SS.SPL}) := \operatorname{PCL};\\ \operatorname{CS.PCL} := \operatorname{CR}[9:0] \end{array}$		
INT v	Вызов прерывания	$\begin{array}{l} \operatorname{Dec}(\operatorname{SPL});\\ \operatorname{M}(\operatorname{SS.SPL}) := \operatorname{PSW}[5:0].\operatorname{CS};\\ \operatorname{Dec}(\operatorname{SPL}); \operatorname{M}(\operatorname{SS.SPL}) := \operatorname{PCL};\\ \operatorname{PCL} := \operatorname{M}(2\mathrm{v});\\ \operatorname{CS} := \operatorname{M}(2\mathrm{v}+1)[1:0]; \operatorname{FI} := 0 \end{array}$		
v = CR[2:0] - E	 вектор прерывания			
		5] (Для команд ADC и SUBB – [Код	ι F])	
ADD pR	Сложение	$Acc := Acc + R^*$	+ + + + +	
ADC pR	Сложение с переносом	$Acc := Acc + R^* + C$	+++++	
SUB pR	Вычитание	$Acc := Acc - R^*$	+++++	
SUBB pR	Вычитание с заёмом	$Acc := Acc - R^* - C$	+++++	
MUL pR	Умножение	$R7.Acc := Acc \times R^*$		
DIV pR	Деление	$Acc := Acc : R^*$	+	
AND pR	Конъюнкция	$Acc := Acc \& R^*$	$\begin{bmatrix} 0 & 0 & 0 & + & + \end{bmatrix}$	
OR pR	Дизъюнкция	$Acc := Acc \vee R^*$	$\begin{bmatrix} 0 & 0 & 0 & + & + \end{bmatrix}$	
XOR pR	Неравнозначность	$Acc := Acc \oplus R^*$	$\begin{bmatrix} 0 & 0 & 0 & + & + \end{bmatrix}$	
CMP pR	Сравнение	R* – Acc	+++++	
RD pR	Чтение	$Acc := R^*$		
WR pR	Запись	$R^* := Acc$		
XCH pR	Обмен	$R^* \Leftrightarrow Acc$		
PUSH R	Поместить в стек	$ \operatorname{Dec}(\operatorname{SPL}); \operatorname{M}(\operatorname{SPL}) := \operatorname{R};$		
POP R	Извлечь из стека	R := M(SPL); Inc(SPL)		
INC R	Инкремент	R := R + 1;	-++++	
DEC R	Декремент	R := R - 1;	-++++	
NOT R	Инверсия	$R := \overline{R};$	$\begin{bmatrix} 0 & 0 & 0 & + & + \end{bmatrix}$	
$MOV R_r, R_t$	Копирование	$R_r := R_t$		
	Смотри продолже	ение на следующей странице		

Таблица 1 — Система команд

Мнемокод	Название	Действия	Флаги		
Minemoned	TIMOBATITO	Донотын	O C A N Z		
Команды с ячейками ОЗУ [Код 6 от 7]					
Код 6 – прямая адресация (А), 7 – непосредственная (#А)					
ADD A	Сложение	$oxed{\operatorname{Acc}} := \operatorname{Acc} + \operatorname{DD}$	+++++		
ADC A	Сложение с переносом	$oxed{\operatorname{Acc}} := \operatorname{Acc} + \operatorname{DD} + \operatorname{FC}$	+++++		
SUB A	Вычитание	$oxed{\operatorname{Acc}} := \operatorname{Acc} - \operatorname{DD}$	+++++		
SUBB A	Вычитание с заёмом	Acc := Acc - DD - FC	+++++		
MUL A	Умножение	$R7.Acc := Acc \times DD$			
DIV A	Деление	Acc := Acc : DD	+		
AND A	Конъюнкция	Acc := Acc & DD	0 0 0 + +		
OR A	Дизъюнкция	$Acc := Acc \lor DD$	$ 0 \ 0 \ 0 \ + \ + $		
XOR A	Неравнозначность	$oxed{\operatorname{Acc}} := \operatorname{Acc} \oplus \operatorname{DD}$	0 0 0 + +		
CMP A	Сравнение	DD – Acc	+++++		
RD A	Чтение	Acc := DD			
WR A	Запись	M(A) := Acc			
XCH A	Обмен	$M(A) \Leftrightarrow Acc$			
INC A	Инкремент	M(A) := M(A) + 1	- + + + +		
DEC A	Декремент	$ig \operatorname{M}(\operatorname{A}) := \operatorname{M}(\operatorname{A}) - 1$	- + + + +		
NOT A	Инверсия	$ig \operatorname{M}(\operatorname{A}) := \overline{D}\overline{D}$	$ 0 \ 0 \ 0 \ + \ + $		
	Битовые	команды 1 [Код 8]			
CB A,b	Сбросить бит	M(A)[b] := 0			
SB A,b	Установить бит	$ig \mathrm{M}(\mathrm{A})[\mathrm{b}] := 1$			
	Битовые	команды 2 [Код 9]			
SBC A,b	Пропустить следую-	if M(A)[b]=0 then PCL := PCL			
	щую команду, если бит сброшен	+ 1			
SBS A,b	Пропустить следую-	if M(A)[b]=1 then PCL := PCL			
	щую команду, если бит	+ 1			
	установлен				
Битовые команды 3 [Код А ог В]					
CBI a,b	Сбросить бит	RIO(a)[b] := 0			
SBI a,b	Установить бит	RIO(a)[b] := 1			
NBI a,b	Инвертировать бит	$RIO(a)[b] := \overline{RIO(a)[b]}$			
SBIC a,b	Пропустить следую-	if RIO(a)[b]=0			
	щую команду, если бит сброшен	$ ext{then PCL} := ext{PCL} + 1 $			
Смотри продолжение на следующей странице					

Таблица 1 — Система команд

Мнемокод	Название	Действия	Флаги		
Мисмокод			O C A N Z		
SBIS a,b	Пропустить следую-	if RIO(a)[b]=1			
	щую команду, если бит	then $PCL := PCL + 1$			
	установлен				
SBISC a,b	Пропустить следую-	if RIO(a)[b]=1			
	щую команду, если бит	then $(PCL := PCL + 1;$			
	установлен и сбросит	RIO(a)[b] := 0			
	бит				
Команды ввода/вывода [Код С]					
IN a	Ввод	Acc := RIO(a)			
OUT a	Вывод	RIO(a) := Acc			

2.3. Пояснения к некоторым командам таблицы 1

2.3.1. Безадресные команды десятичной коррекции

DAA – десятичная коррекция байта в Асс после сложении (кодировка «8421»)

if
$$(B_L > 9)$$
 or (AC) then $B := B + 0x06$; (1)

if
$$(B_H > 9)$$
 or (C) then $B := B + 0x60$; (2)

DSA – десятичная коррекция байта в Асс после вычитании (кодировка «8421»)

if
$$(AC)$$
 then $B := B - 0x06$; (3)

if (C) then
$$B := B - 0x60;$$
 (4)

Здесь B – предварительный результат операции сложения (вычитания), B_H – старшая тетрада $B,\ B_L$ – младшая тетрада $B,\ AC$ – перенос (заём) из младшей тетрады, C – перенос (заём) из байта.

2.3.2. Умножение

Сомножители рассматриваются как целые беззнаковые числа. Содержимое аккумулятора можно умножить на содержимое регистра, прямо или косвенно адресуемой ячейки памяти или 8-разрядную константу. Формат произведения — два байта, поэтому младший байт размещается в аккумуляторе Acc, а старший — в регистре R7.

2.3.3. Деление

Целочисленное беззнаковое деление: байт Acc делится на байт делителя, целая часть частного помещается в Acc. Если содержимое Acc меньше делителя, то результат деления равен 0, устанавливается флаг Z=1. В случае ненулевого результата деления

флаг Z=0, остальные флаги в операции деления не изменяются. В качестве делителя можно использовать непосредственный операнд, содержимое регистра, содержимое прямо или косвенно адресуемой ячейки памяти.

2.3.4. Цикл

DJRNZ R,L – декремент регистра и проверка. Если <u>после декремента</u> содержимое регистра $\neq 0$, то осуществляется переход по указанному адресу, иначе – на следующую команду. Можно использовать для организации циклов. Работает <u>только</u> с регистрами R0, R1, R2, R3.

2.3.5. Команды безусловной передачи управления

CALL L – вызов подпрограммы по прямому адресу. Использует две ячейки стека для размещения 10-разрядного адреса возврата (в старшем байте занято только два младших разряда).

INT v — вызов обработчика прерывания по вектору v. Как и команда CALL, сохраняет адрес возврата, а в свободные 6 разрядов старшего байта помещает флаги I, O, C, AC, N, Z. Таблица векторов прерываний в ОЗУ начинается c адреса 0х000, вектор прерываний $v \in \{0,1,\ldots 7\}$. Адрес обработчика прерываний загружается из ячеек c адресами (2v) и (2v+1)[1:0] в PCL и SR[1:0] соответственно.