True Online Temporal-Difference Learning

Harm van Seijen Microsoft Research

joint work with

Rupam Mahmood

Patrick Pilarski

Marlos Machado

Rich Sutton

Outline

- Part 1: true online temporal-difference learning
- Part 2: effective multi-step learning for non-linear FA

Outline

A Markov decision process (MDP) can be described by 5-tuple: $\langle \mathcal{S}, \mathcal{A}, p, r, \gamma \rangle$, with

- S: the set of all states
- A: the set of all actions
- p(s'|s,a): the transition probability function
- r(s, a, s'): the reward function
- γ: the discount factor

A Markov decision process (MDP) can be described by 5-tuple: $\langle \mathcal{S}, \mathcal{A}, p, r, \gamma \rangle$, with

- S: the set of all states
- A: the set of all actions
- p(s'|s,a): the transition probability function
- r(s, a, s'): the reward function
- γ: the discount factor

policy $\pi: \mathcal{S} \times \mathcal{A} \to [0,1]$, function giving the selection probability for each action conditioned on the state

A Markov decision process (MDP) can be described by 5-tuple: $\langle \mathcal{S}, \mathcal{A}, p, r, \gamma \rangle$, with

- S: the set of all states
- A: the set of all actions
- p(s'|s,a): the transition probability function
- r(s, a, s'): the reward function
- γ: the discount factor

policy $\pi: S \times A \rightarrow [0,1]$, function giving the selection probability for each action conditioned on the state

The return at time t:
$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + ... = \sum_{i=1}^{\infty} \gamma^{i-1} R_{t+i}$$

A Markov decision process (MDP) can be described by 5-tuple: $\langle S, A, p, r, \gamma \rangle$, with

- S: the set of all states
- A: the set of all actions
- p(s'|s,a): the transition probability function
- r(s, a, s'): the reward function
- γ: the discount factor

policy $\pi : S \times A \rightarrow [0, 1]$, function giving the selection probability for each action conditioned on the state

The return at time t:
$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + ... = \sum_{i=1}^{\infty} \gamma^{i-1} R_{t+i}$$

state-value function:
$$v^{\pi}(s) = \mathbb{E}\{G_t \mid S_t = s, \pi\}$$

action-value function:
$$q^{\pi}(s,a) = \mathbb{E}\{G_t \, | \, S_t = s, A_t, = a, \pi\}$$

Find a weight vector $\boldsymbol{\theta} \in \mathbb{R}^n$ such that $\hat{V}(s|\boldsymbol{\theta})$ accurately approximates $v_{\pi}(s)$ for relevant states s.

Find a weight vector $\boldsymbol{\theta} \in \mathbb{R}^n$ such that $\hat{V}(s|\boldsymbol{\theta})$ accurately approximates $v_{\pi}(s)$ for relevant states s.

Error function:
$$E(\boldsymbol{\theta}) := \frac{1}{2} \sum_{i} d_{\pi}(s_{i}) \left[v_{\pi}(s_{i}) - \hat{V}(s_{i}|\boldsymbol{\theta}) \right]^{2}$$

where d_{π} is the stationary distribution induced by π .

Find a weight vector $\boldsymbol{\theta} \in \mathbb{R}^n$ such that $\hat{V}(s|\boldsymbol{\theta})$ accurately approximates $v_{\pi}(s)$ for relevant states s.

Error function:
$$E(\boldsymbol{\theta}) := \frac{1}{2} \sum_{i} d_{\pi}(s_{i}) \left[v_{\pi}(s_{i}) - \hat{V}(s_{i}|\boldsymbol{\theta}) \right]^{2}$$

where d_{π} is the stationary distribution induced by π .

Stochastic gradient descent (sampling from the stationary distribution):

$$\theta_{t+1} = \theta_t - \alpha \frac{1}{2} \nabla_{\theta} \left[v_{\pi}(S_t) - \hat{V}(S_t | \theta_t) \right]^2$$
$$= \theta_t + \alpha \left(v_{\pi}(S_t) - \hat{V}(S_t | \theta_t) \right) \nabla_{\theta} \hat{V}(S_t | \theta_t)$$

Find a weight vector $\boldsymbol{\theta} \in \mathbb{R}^n$ such that $\hat{V}(s|\boldsymbol{\theta})$ accurately approximates $v_{\pi}(s)$ for relevant states s.

Error function: $E(\boldsymbol{\theta}) := \frac{1}{2} \sum_{i} d_{\pi}(s_{i}) \left[v_{\pi}(s_{i}) - \hat{V}(s_{i}|\boldsymbol{\theta}) \right]^{2}$

where d_{π} is the stationary distribution induced by π .

Stochastic gradient descent (sampling from the stationary distribution):

$$\theta_{t+1} = \theta_t - \alpha \frac{1}{2} \nabla_{\theta} \left[v_{\pi}(S_t) - \hat{V}(S_t | \theta_t) \right]^2$$
$$= \theta_t + \alpha \left(v_{\pi}(S_t) - \hat{V}(S_t | \theta_t) \right) \nabla_{\theta} \hat{V}(S_t | \theta_t)$$

Because $v_{\pi}(S_t)$ is unknown:

$$\theta_{t+1} = \theta_t + \alpha \Big(U_t - \hat{V}(S_t | \theta_t) \Big) \nabla_{\theta} \hat{V}(S_t | \theta_t).$$

where U_t is an estimate of $v_{\pi}(S_t)$ that we will call the update target.

Find a weight vector $\boldsymbol{\theta} \in \mathbb{R}^n$ such that $\hat{V}(s|\boldsymbol{\theta})$ accurately approximates $v_{\pi}(s)$ for relevant states s.

Error function: $E(\boldsymbol{\theta}) := \frac{1}{2} \sum_{i} d_{\pi}(s_{i}) \left[v_{\pi}(s_{i}) - \hat{V}(s_{i}|\boldsymbol{\theta}) \right]^{2}$

where d_{π} is the stationary distribution induced by π .

Stochastic gradient descent (sampling from the stationary distribution):

$$\theta_{t+1} = \theta_t - \alpha \frac{1}{2} \nabla_{\theta} \left[v_{\pi}(S_t) - \hat{V}(S_t | \theta_t) \right]^2$$
$$= \theta_t + \alpha \left(v_{\pi}(S_t) - \hat{V}(S_t | \theta_t) \right) \nabla_{\theta} \hat{V}(S_t | \theta_t)$$

Because $v_{\pi}(S_t)$ is unknown:

$$\theta_{t+1} = \theta_t + \alpha \Big(U_t - \hat{V}(S_t | \theta_t) \Big) \nabla_{\theta} \hat{V}(S_t | \theta_t).$$

where U_t is an estimate of $v_{\pi}(S_t)$ that we will call the update target.

With linear function approximation: $\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha (U_t - \boldsymbol{\theta}_t^{\top} \boldsymbol{\phi}_t) \boldsymbol{\phi}_t$

Find a weight vector $\boldsymbol{\theta} \in \mathbb{R}^n$ such that $\hat{V}(s|\boldsymbol{\theta})$ accurately approximates $v_{\pi}(s)$ for relevant states s.

Error function:
$$E(\boldsymbol{\theta}) := \frac{1}{2} \sum_{i} d_{\pi}(s_i) \left[v_{\pi}(s_i) - \hat{V}(s_i | \boldsymbol{\theta}) \right]^2$$

where d_{π} is the stationary distribution induced by π .

Stochastic gradient descent (sampling from the stationary distribution):

$$\theta_{t+1} = \theta_t - \alpha \frac{1}{2} \nabla_{\theta} \left[v_{\pi}(S_t) - \hat{V}(S_t | \theta_t) \right]^2$$
$$= \theta_t + \alpha \left(v_{\pi}(S_t) - \hat{V}(S_t | \theta_t) \right) \nabla_{\theta} \hat{V}(S_t | \theta_t)$$

Because $v_{\pi}(S_t)$ is unknown:

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha \Big(U_t - \hat{V}(S_t | \boldsymbol{\theta}_t) \Big) \nabla_{\theta} \hat{V}(S_t | \boldsymbol{\theta}_t).$$

where U_t is an estimate of $v_{\pi}(S_t)$ that we will call the update target.

With linear function approximation: $\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha (U_t - \boldsymbol{\theta}_t^{\top} \boldsymbol{\phi}_t) \boldsymbol{\phi}_t$

unbiased estimate of $v_{\pi}(S_t)$: $U_t = G_t$

• Temporal-Difference (TD) learning exploits knowledge about structure of v_{π} .

- Temporal-Difference (TD) learning exploits knowledge about structure of v_{π} .
- Bellman Equation:

$$v_{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} p(s'|s, a) [r(s, a, s') + \gamma v_{\pi}(s')]$$
 for all s

- Temporal-Difference (TD) learning exploits knowledge about structure of v_{π} .
- Bellman Equation:

$$v_{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} p(s'|s, a) [r(s, a, s') + \gamma v_{\pi}(s')]$$
 for all s
$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s, A_t \sim \pi(S_t, \cdot)]$$

- Temporal-Difference (TD) learning exploits knowledge about structure of v_{π} .
- Bellman Equation:

$$v_{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} p(s'|s, a) [r(s, a, s') + \gamma v_{\pi}(s')]$$
 for all s
$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s, A_t \sim \pi(S_t, \cdot)]$$

TD(0) update target (1-step update target):

$$U_t = R_{t+1} + \gamma \, \boldsymbol{\theta}^\top \boldsymbol{\phi}_{t+1}$$

- Temporal-Difference (TD) learning exploits knowledge about structure of v_{π} .
- Bellman Equation:

$$v_{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} p(s'|s, a) [r(s, a, s') + \gamma v_{\pi}(s')]$$
 for all s
$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s, A_t \sim \pi(S_t, \cdot)]$$

TD(0) update target (1-step update target):

$$U_t = R_{t+1} + \gamma \, \boldsymbol{\theta}^\top \boldsymbol{\phi}_{t+1}$$

3-step update target:

$$U_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t+3}$$

$TD(\lambda)$

• update equations for linear function approximation:

$$\delta_t = R_{t+1} + \gamma \boldsymbol{\theta}_t^{\mathsf{T}} \boldsymbol{\phi}_{t+1} - \boldsymbol{\theta}_t^{\mathsf{T}} \boldsymbol{\phi}_t,$$

$$\boldsymbol{e}_t = \gamma \lambda \boldsymbol{e}_{t-1} + \boldsymbol{\phi}_t,$$

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha \delta_t \, \boldsymbol{e}_t,$$

$TD(\lambda)$

• update equations for linear function approximation:

$$\delta_t = R_{t+1} + \gamma \boldsymbol{\theta}_t^{\mathsf{T}} \boldsymbol{\phi}_{t+1} - \boldsymbol{\theta}_t^{\mathsf{T}} \boldsymbol{\phi}_t,$$

$$\boldsymbol{e}_t = \gamma \lambda \boldsymbol{e}_{t-1} + \boldsymbol{\phi}_t,$$

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha \delta_t \, \boldsymbol{e}_t,$$

• TD(λ) is a multi-step method, even though the update target looks like a 1-step update target.

$TD(\lambda)$

• update equations for linear function approximation:

$$\delta_t = R_{t+1} + \gamma \boldsymbol{\theta}_t^{\mathsf{T}} \boldsymbol{\phi}_{t+1} - \boldsymbol{\theta}_t^{\mathsf{T}} \boldsymbol{\phi}_t,$$

$$\boldsymbol{e}_t = \gamma \lambda \boldsymbol{e}_{t-1} + \boldsymbol{\phi}_t,$$

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha \delta_t \, \boldsymbol{e}_t,$$

- TD(λ) is a multi-step method, even though the update target looks like a 1-step update target.
- This update is different from the general TD update rule.

the traditional forward view of $TD(\lambda)$

• the λ -return algorithm:

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha (G_t^{\lambda} - \boldsymbol{\theta}_t^{\top} \boldsymbol{\phi}_t) \boldsymbol{\phi}_t$$

where G_t^{λ} is the λ -return, defined as:

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$
with $G_t^{(n)} = \sum_{k=1}^{n} \gamma^{k-1} R_{t+k} + \gamma^n \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t+n}$

the traditional forward view of $TD(\lambda)$

• the λ -return algorithm:

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha (G_t^{\lambda} - \boldsymbol{\theta}_t^{\top} \boldsymbol{\phi}_t) \boldsymbol{\phi}_t$$

where G_t^{λ} is the λ -return, defined as:

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$
with $G_t^{(n)} = \sum_{k=1}^{n} \gamma^{k-1} R_{t+k} + \gamma^n \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t+n}$

note:

$$\lambda = 0 : G_t^{\lambda} = G_t^{(1)}$$

the traditional forward view of $TD(\lambda)$

• the λ -return algorithm:

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha (G_t^{\lambda} - \boldsymbol{\theta}_t^{\top} \boldsymbol{\phi}_t) \boldsymbol{\phi}_t$$

where G_t^{λ} is the λ -return, defined as:

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

with $G_t^{(n)} = \sum_{k=1}^{n} \gamma^{k-1} R_{t+k} + \gamma^n \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t+n}$

note:

$$\lambda = 0$$
 : $G_t^{\lambda} = G_t^{(1)}$
 $\lambda = 1$: $G_t^{\lambda} = G_t$

• **theorem*:** for small step-sizes, θ_T computed by TD(λ) is approximately the same as θ_T computed by the λ -return algorithm.

^{*}see: Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming.

How to set λ ?

• λ controls a trade-off between variance and bias of the update target, in general the best value of λ will differ from domain to domain.

How to set λ ?

- λ controls a trade-off between variance and bias of the update target, in general the best value of λ will differ from domain to domain.
- \bullet h not only influences the speed of convergence, but in case of function approximation it also influences the asymptotic performance.

How to set λ ?

- λ controls a trade-off between variance and bias of the update target, in general the best value of λ will differ from domain to domain.
- \bullet λ not only influences the speed of convergence, but in case of function approximation it also influences the asymptotic performance.
- theoretical results for $TD(\lambda)$ (Peter Dayan, 1992):
 - for $\lambda = 1$: convergence to LMS solution
 - for λ < 1: convergence to a different fixed point

online vs offline methods

- online method: the value of each visited state is updated at the time step immediately after the visit.
- **offline method:** the value of each visited state is updated at the end of an episode.

online vs offline methods

- online method: the value of each visited state is updated at the time step immediately after the visit.
- **offline method:** the value of each visited state is updated at the end of an episode.
- TD(λ) is an online method; the traditional λ -return algorithm is an offline method.

online vs offline methods

- **online method:** the value of each visited state is updated at the time step immediately after the visit.
- **offline method:** the value of each visited state is updated at the end of an episode.
- TD(λ) is an online method; the traditional λ -return algorithm is an offline method.

Is it possible to construct an online version of the λ -return algorithm that approximates $TD(\lambda)$ at **all** time steps?

the challenge of an online forward view

- To compute θ_t , no data beyond time t should be used.
- At the same time, we want to have multi-step update targets that look many time steps ahead.

the challenge of an online forward view

- To compute θ_t , no data beyond time t should be used.
- At the same time, we want to have multi-step update targets that look many time steps ahead.

the trick:

Use update targets that grow with the data-horizon.

interim update target

normal update targets:

$$\phi_t \quad o \quad U_t$$

• interim update targets:

$$\phi_t \rightarrow U_t^1, U_t^2, U_t^3, \dots, U_t^h$$

interim update target

normal update targets:

$$\phi_t \quad o \quad U_t$$

• interim update targets:

$$\phi_t \rightarrow U_t^1, U_t^2, U_t^3, \dots, U_t^h$$

data-horizon: time step up to which data is observed ←

interim λ -return

• λ -return: $G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$

• interim λ -return: replace all n-step returns with n > h-t with the (h-t)-step return

$$G_t^{\lambda|h} = (1-\lambda) \sum_{n=1}^{h-t-1} \lambda^{n-1} G_t^{(n)} + (1-\lambda) \sum_{n=h-t}^{\infty} \lambda^{n-1} G_t^{(h-t)}$$

$$= (1-\lambda) \sum_{n=1}^{h-t-1} \lambda^{n-1} G_t^{(n)} + G_t^{(h-t)} \cdot \left[(1-\lambda) \sum_{n=h-t}^{\infty} \lambda^{n-1} \right]$$

$$= (1-\lambda) \sum_{n=1}^{h-t-1} \lambda^{n-1} G_t^{(n)} + G_t^{(h-t)} \cdot \left[\lambda^{h-t-1} (1-\lambda) \sum_{k=0}^{\infty} \lambda^k \right]$$

$$= (1-\lambda) \sum_{n=1}^{h-t-1} \lambda^{n-1} G_t^{(n)} + \lambda^{h-t-1} G_t^{(h-t)}$$

update sequences

$$t = 1: \quad \boldsymbol{\theta}_{1}^{1} = \boldsymbol{\theta}_{0}^{1} + \alpha \left(G_{0}^{\lambda|1} - (\boldsymbol{\theta}_{0}^{1})^{\top} \boldsymbol{\phi}_{0} \right) \boldsymbol{\phi}_{0}$$

$$t = 2: \quad \boldsymbol{\theta}_{1}^{2} = \boldsymbol{\theta}_{0}^{2} + \alpha \left(G_{0}^{\lambda|2} - (\boldsymbol{\theta}_{0}^{2})^{\top} \boldsymbol{\phi}_{0} \right) \boldsymbol{\phi}_{0}$$

$$\boldsymbol{\theta}_{2}^{2} = \boldsymbol{\theta}_{1}^{2} + \alpha \left(G_{1}^{\lambda|2} - (\boldsymbol{\theta}_{1}^{2})^{\top} \boldsymbol{\phi}_{1} \right) \boldsymbol{\phi}_{1}$$

$$t = 3: \quad \boldsymbol{\theta}_{1}^{3} = \boldsymbol{\theta}_{0}^{3} + \alpha \left(G_{0}^{\lambda|3} - (\boldsymbol{\theta}_{0}^{3})^{\top} \boldsymbol{\phi}_{0} \right) \boldsymbol{\phi}_{0}$$

$$\boldsymbol{\theta}_{2}^{3} = \boldsymbol{\theta}_{1}^{3} + \alpha \left(G_{1}^{\lambda|3} - (\boldsymbol{\theta}_{1}^{3})^{\top} \boldsymbol{\phi}_{1} \right) \boldsymbol{\phi}_{1}$$

$$\boldsymbol{\theta}_{3}^{3} = \boldsymbol{\theta}_{2}^{3} + \alpha \left(G_{2}^{\lambda|3} - (\boldsymbol{\theta}_{2}^{3})^{\top} \boldsymbol{\phi}_{2} \right) \boldsymbol{\phi}_{2}$$

with $\theta_0^t := \theta_{init}$

14

online lambda-return algorithm.

$$\boldsymbol{\theta}_t := \boldsymbol{\theta}_t^t$$

$$\boldsymbol{\theta}_{k+1}^t := \boldsymbol{\theta}_k^t + \alpha \left(G_k^{\lambda|t} - (\boldsymbol{\theta}_k^t)^\top \boldsymbol{\phi}_k \right) \boldsymbol{\phi}_k, \quad \text{for } 0 \le k < t$$

with

$$G_k^{\lambda|t} := (1 - \lambda) \sum_{n=1}^{t-k-1} \lambda^{n-1} G_k^{(n)} + \lambda^{t-k-1} G_k^{(t-k)}$$

online vs. offline λ -return algorithm

• performance on a 10-state random walk task for the first 3 episodes ($\lambda = 1$, $\alpha = 0.2$)

Theorem*

"For small step-size, the online λ -return algorithm behaves like TD(λ) at all time steps"

^{*}see Theorem 1: van Seijen, H., Mahmood, A. R., Pilarski, P. M., Machado, M. C., and Sutton, R. S. True online temporal-difference learning. Journal of Machine Learning Research, 17(145):1–40, 2016.

Sensitivity of $TD(\lambda)$ to Divergence

RMS error during early learning

Sensitivity of $TD(\lambda)$ to Divergence

RMS error during early learning

Sensitivity of $TD(\lambda)$ to Divergence

RMS error during early learning

Computational Complexity

$$\begin{split} h &= 1: \quad \boldsymbol{\theta}_1^1 = \boldsymbol{\theta}_0^1 + \alpha \left[G_0^{\lambda|1} - (\boldsymbol{\theta}_0^1)^\top \boldsymbol{\phi}_0 \right] \boldsymbol{\phi}_0 \\ h &= 2: \quad \boldsymbol{\theta}_1^2 = \boldsymbol{\theta}_0^2 + \alpha \left[G_0^{\lambda|2} - (\boldsymbol{\theta}_0^2)^\top \boldsymbol{\phi}_0 \right] \boldsymbol{\phi}_0 \\ \boldsymbol{\theta}_2^2 &= \boldsymbol{\theta}_1^2 + \alpha \left[G_1^{\lambda|2} - (\boldsymbol{\theta}_1^2)^\top \boldsymbol{\phi}_1 \right] \boldsymbol{\phi}_1 \\ h &= 3: \quad \boldsymbol{\theta}_1^3 = \boldsymbol{\theta}_0^3 + \alpha \left[G_0^{\lambda|3} - (\boldsymbol{\theta}_0^3)^\top \boldsymbol{\phi}_0 \right] \boldsymbol{\phi}_0 \\ \boldsymbol{\theta}_2^3 &= \boldsymbol{\theta}_1^3 + \alpha \left[G_1^{\lambda|3} - (\boldsymbol{\theta}_1^3)^\top \boldsymbol{\phi}_1 \right] \boldsymbol{\phi}_1 \\ \boldsymbol{\theta}_3^3 &= \boldsymbol{\theta}_2^3 + \alpha \left[G_2^{\lambda|3} - (\boldsymbol{\theta}_2^3)^\top \boldsymbol{\phi}_2 \right] \boldsymbol{\phi}_2 \end{split}$$

Computational Complexity

$$\begin{split} h &= 1: \quad \boldsymbol{\theta}_1^1 = \boldsymbol{\theta}_0^1 + \alpha \left[G_0^{\lambda|1} - (\boldsymbol{\theta}_0^1)^\top \boldsymbol{\phi}_0 \right] \boldsymbol{\phi}_0 \\ h &= 2: \quad \boldsymbol{\theta}_1^2 = \boldsymbol{\theta}_0^2 + \alpha \left[G_0^{\lambda|2} - (\boldsymbol{\theta}_0^2)^\top \boldsymbol{\phi}_0 \right] \boldsymbol{\phi}_0 \\ \boldsymbol{\theta}_2^2 = \boldsymbol{\theta}_1^2 + \alpha \left[G_1^{\lambda|2} - (\boldsymbol{\theta}_1^2)^\top \boldsymbol{\phi}_1 \right] \boldsymbol{\phi}_1 \\ h &= 3: \quad \boldsymbol{\theta}_1^3 = \boldsymbol{\theta}_0^3 + \alpha \left[G_0^{\lambda|3} - (\boldsymbol{\theta}_0^3)^\top \boldsymbol{\phi}_0 \right] \boldsymbol{\phi}_0 \\ \boldsymbol{\theta}_2^3 &= \boldsymbol{\theta}_1^3 + \alpha \left[G_1^{\lambda|3} - (\boldsymbol{\theta}_1^3)^\top \boldsymbol{\phi}_1 \right] \boldsymbol{\phi}_1 \\ \boldsymbol{\theta}_3^3 &= \boldsymbol{\theta}_2^3 + \alpha \left[G_2^{\lambda|3} - (\boldsymbol{\theta}_2^3)^\top \boldsymbol{\phi}_2 \right] \boldsymbol{\phi}_2 \end{split}$$

Computational Complexity

$$\begin{split} h &= 1 : \quad \boldsymbol{\theta}_1^1 = \boldsymbol{\theta}_0^1 + \alpha \left[G_0^{\lambda|1} - (\boldsymbol{\theta}_0^1)^\top \boldsymbol{\phi}_0 \right] \boldsymbol{\phi}_0 \\ h &= 2 \quad \boldsymbol{\theta}_1^2 = \boldsymbol{\theta}_0^2 + \alpha \left[G_0^{\lambda|2} - (\boldsymbol{\theta}_0^2)^\top \boldsymbol{\phi}_0 \right] \boldsymbol{\phi}_0 \\ \boldsymbol{\theta}_2^2 &= \boldsymbol{\theta}_1^2 + \alpha \left[G_1^{\lambda|2} - (\boldsymbol{\theta}_1^2)^\top \boldsymbol{\phi}_1 \right] \boldsymbol{\phi}_1 \\ h &= 3 : \quad \boldsymbol{\theta}_1^3 = \boldsymbol{\theta}_0^3 + \alpha \left[G_0^{\lambda|3} - (\boldsymbol{\theta}_0^3)^\top \boldsymbol{\phi}_0 \right] \boldsymbol{\phi}_0 \\ \boldsymbol{\theta}_2^3 &= \boldsymbol{\theta}_1^3 + \alpha \left[G_1^{\lambda|3} - (\boldsymbol{\theta}_1^3)^\top \boldsymbol{\phi}_1 \right] \boldsymbol{\phi}_1 \\ \boldsymbol{\theta}_2^3 &= \boldsymbol{\theta}_1^3 + \alpha \left[G_1^{\lambda|3} - (\boldsymbol{\theta}_1^3)^\top \boldsymbol{\phi}_1 \right] \boldsymbol{\phi}_1 \\ \boldsymbol{\theta}_3^3 &= \boldsymbol{\theta}_2^3 + \alpha \left[G_2^{\lambda|3} - (\boldsymbol{\theta}_2^3)^\top \boldsymbol{\phi}_2 \right] \boldsymbol{\phi}_2 \end{split}$$

True online $TD(\lambda)$

• true online $TD(\lambda)$ is an efficient implementation of the online λ -return algorithm

$$\delta_{t} = R_{t+1} + \gamma \boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t+1} - \boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t}$$

$$\boldsymbol{e}_{t} = \gamma \lambda \boldsymbol{e}_{t-1} + \boldsymbol{\phi}_{t} - \alpha \gamma \lambda [\boldsymbol{e}_{t-1}^{\top} \boldsymbol{\phi}_{t}] \boldsymbol{\phi}_{t}$$

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_{t} + \alpha \delta_{t} \boldsymbol{e}_{t} + \alpha [\boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t} - \boldsymbol{\theta}_{t-1}^{\top} \boldsymbol{\phi}_{t}] [\boldsymbol{e}_{t} - \boldsymbol{\phi}_{t}]$$

True online $TD(\lambda)$

• true online $TD(\lambda)$ is an efficient implementation of the online λ -return algorithm

$$\delta_{t} = R_{t+1} + \gamma \boldsymbol{\theta}_{t}^{\mathsf{T}} \boldsymbol{\phi}_{t+1} - \boldsymbol{\theta}_{t}^{\mathsf{T}} \boldsymbol{\phi}_{t}$$

$$\boldsymbol{e}_{t} = \gamma \lambda \boldsymbol{e}_{t-1} + \boldsymbol{\phi}_{t} - \alpha \gamma \lambda [\boldsymbol{e}_{t-1}^{\mathsf{T}} \boldsymbol{\phi}_{t}] \boldsymbol{\phi}_{t}$$

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_{t} + \alpha \delta_{t} \boldsymbol{e}_{t} + \alpha [\boldsymbol{\theta}_{t}^{\mathsf{T}} \boldsymbol{\phi}_{t} - \boldsymbol{\theta}_{t-1}^{\mathsf{T}} \boldsymbol{\phi}_{t}] [\boldsymbol{e}_{t} - \boldsymbol{\phi}_{t}]$$

Empirical Comparison

• in all domains, true online $TD(\lambda)$ performs at least as good as replace/accumulate $TD(\lambda)$

Outline

- Part 1: true online temporal-difference learning
- Part 2: effective multi-step learning for non-linear FA

Computational Cost

- Implementing the online forward view is computationally very expensive.
 - ▶ Memory as well as computation time per time step grows over time.
- In the case of linear FA there is an efficient backward view with exact equivalence: true online $TD(\lambda)$.
 - ▶ Computational cost is span-independent and linear in the number of features.
- In the case of non-linear FA such an efficient backward view does not appear to exist.

New Research Question

Is it possible to construct a different online forward view, with a performance close to that of the online λ -return algorithm, that can be implemented efficiently?

New Research Question

Is it possible to construct a different online forward view, with a performance close to that of the online λ -return algorithm, that can be implemented efficiently?

Answer: Yes

forward $TD(\lambda)$

- Uses online λ -return with fixed horizon, K steps ahead: $G_t^{\lambda|t+K}$
- As a consequence, updates occur with a delay of K time steps.
- Computational cost is span-independent and efficient (computational complexity equal to TD(0)).

forward $TD(\lambda)$

- Uses online λ -return with fixed horizon, K steps ahead: $G_t^{\lambda|t+K}$
- As a consequence, updates occur with a delay of K time steps.
- Computational cost is span-independent and efficient (computational complexity equal to TD(0)).

How to set K?

- Setting K involves a trade-off:
 - small K : less delay in updates
 - large K : better approximation of the λ -return
- How well $G_t^{\lambda|t+K}$ approximates G_t^{λ} depends on K, but also on $\gamma\lambda$.
- Whereas the weight of R_{t+1} in G_t^{λ} is 1, the weight of R_{t+n} is only $\gamma \lambda^{n-1}$.
 - Example: $\gamma \lambda = 0.5$ and n = 20, then $\gamma \lambda^{n-1}$ is about 10^{-6} .
- Strategy: set K such that $\gamma \lambda^{K-1}$ is just below η , with η some tiny number like 0.01

How to set K?

- Setting K involves a trade-off:
 - small K : less delay in updates
 - large K : better approximation of the λ -return
- How well $G_t^{\lambda|t+K}$ approximates G_t^{λ} depends on K, but also on $\gamma\lambda$.
- Whereas the weight of R_{t+1} in G_t^{λ} is 1, the weight of R_{t+n} is only $\gamma \lambda^{n-1}$.
 - Example: $\gamma \lambda = 0.5$ and n = 20, then $\gamma \lambda^{n-1}$ is about 10^{-6} .
- Strategy: set K such that $\gamma \lambda^{K-1}$ is just below η , with η some tiny number like 0.01

Results on Prediction Task

mountain-car task with non-linear FA

Results on 2 Control Tasks

mountain-car task

cart-pole task

Summary

- The online λ -return algorithm outperforms TD(λ), but is computationally very expensive.
- For linear FA, an efficient backward view exists with exact equivalence: true online $TD(\lambda)$.
- For non-linear FA, such an efficient backward view does not appear to exist.
- Forward TD(λ) approximates the online λ -return algorithm and can be implemented efficiently for non-linear FA.
- The price that forward $TD(\lambda)$ pays is a delay in the updates.
- Empirically, forward $TD(\lambda)$ outperforms $TD(\lambda)$

Thank you!

References:

- 1) van Seijen, H., Mahmood, A. R., Pilarski, P. M., Machado, M. C., and Sutton, R. S. True online temporal-difference learning. Journal of Machine Learning Research, 17(145):1–40, 2016.
- 2) van Seijen, H. Effective multi-step temporal-difference learning for non-linear function approximation. arXiv:1608.05151, 2016.