Esame di *Calcolo delle probabilità e statistica* (per studenti di Informatica) corso A e B

Università degli studi di Bari Aldo Moro Docente: Stefano Rossi, Simone Del Vecchio

24-06-2022

Esercizio 1. Si lancia una moneta equa N volte, dove N è una variabile geometrica di parametro $p = \frac{1}{2}$. Sia X la variabile aleatoria che conta il numero di teste ottenute

- (1) Calcolare $P[X \ge 1]$.
- (2) Per ogni naturale $n \ge 1$, calcolare P[N = n | X = 0].
- (3) Calcolare P[X = 1].

Esercizio 2. Per ogni valore del parametro $\lambda > 0$ si considera la funzione

$$f(x) := 2\lambda x e^{-\lambda x^2} \chi_{[0,\infty)}(x), x \in \mathbb{R}.$$

- (1) Verificare che f è la densità di una certa variabile aleatoria X.
- (2) Determinare lo stimatore di massima verosimiglianza di λ relativo a un campione (X_1, X_2, \dots, X_n) di rango n distribuito come X.
- (3) Esibire una statistica sufficiente per il parametro λ .
- (4) Determinare la legge di X^2 e dire se si tratta di una legge notevole.
- (5) Dire se $\frac{X_1^2 + X_2^2 + ... + X_n^2}{n}$ è uno stimatore corretto di $\frac{1}{\lambda}$.

Esercizio 3. Dare la definizione di distribuzione di Fisher di parametri (n, m) e richiamare le proprietà dei suoi quantili.

Si devono confrontare le varianze di due popolazioni normali indipendenti. Un campione di rango $n_1=9$ estratto dalla prima fornisce una varianza campionaria pari a $S_1^2=1.5278$, mentre un campione di rango $n_2=10$ estratto dalla seconda fornisce una varianza campionaria pari a $S_2^2=1.6556$. Verificare l'ipotesi che le due varianze siano uguali con un livello di significatività del 5% e del 10%.