Fundamentos da Computação 1

Introdução a Argumentos

- Se você tem uma senha atualizada, então você pode entrar na rede
- Você tem uma senha atualizada

- Se você tem um senha atualizada, então você pode entrar na rede
- Você tem uma senha atualizada
- Portanto, você pode entrar na rede

- Se você tem um senha atualizada, então você pode entrar na rede
- Você tem uma senha atualizada
- Portanto, você pode entrar na rede

p:você tem uma senha atualizada

q: você pode entrar na rede

- Se você tem um senha atualizada, então você pode entrar na rede
- Você tem uma senha atualizada
- → Portanto, você pode entrar na rede

 Argumento é uma seqüência finita de proposições que acarreta um proposição final (conclusão)

- Argumento é uma seqüência finita de proposições que acarreta um proposição final (conclusão)
- Os argumentos são usados em demonstrações matemáticas.

Um argumento que consiste de duas premissas e uma conclusão chama se silogismo.

Dizemos que um argumento é válido se e somente se todas as premissas são verdadeiras então a conclusão também é verdadeira.

As tabelas verdade podem ser usadas para demonstrar, verificar ou testar a validade de qualquer argumento.

p → q Premissa 1				
Premissa 2	→ p	q	p →q	
q	V	V	V	
	V	F	F	
	F	V	V	
	F	F	V	

As tabelas verdade podem ser usadas para demonstrar, verificar ou testar a validade de qualquer argumento.

 As tabelas verdade podem ser usadas para demonstrar, verificar ou testar a validade de qualquer argumento.

Um argumento pode ser representado em uma linha da seguinte forma.

- Teorema:
 - ■Um argumento P₁, P₂, ..., P_n | Q é válido se e somente se a condicional associada a este argumento é <u>uma tautologia</u>

 $-(P_1 \land P_2 \land ... \land P_n) \rightarrow Q$ é tautológica

- Exemplo Teorema
 - $p \rightarrow q, p \mid -q$

- Exemplo Teorema
 - $p \rightarrow q, p \mid -q$
 - \rightarrow (p \rightarrow q \wedge p) \rightarrow q é tautológica?

Exemplo Teorema

$$p \rightarrow q, p \mid -q$$

 $-((p\rightarrow q) \land p) \rightarrow q \text{ \'e tautol\'ogica?} Sim$

р	q	p→q	((p→q) ^ p)	$((p \rightarrow q) \land p) \rightarrow q$
V	V	V	V	V
V	F	F	F	V
F	V	V	F	V
F	F	V	F	V

Exercícios

1. Verifique se os argumentos são válidos usando tabela verdade.

b)
$$p \leftrightarrow q, q \mid -p \mid$$

c)
$$p \vee q, \sim q, p \rightarrow r \mid -r \mid$$

e)
$$p \rightarrow q \mid -p \rightarrow q \vee r$$

- 2. Construir a condicional associada a cada um dos argumentos do exercício anterior.
- 3. Construir o argumento (premissas e conclusão) correspondente a cada uma das seguintes condicionais.

a)
$$p \land (q \lor \sim q) \rightarrow q$$

b)
$$(p \rightarrow q) \land (p \land \neg q) \rightarrow s$$

c)
$$\sim (x<0 \land y=x) \rightarrow x>0 \lor y=x$$

Exercício 2

- b) $p \leftrightarrow q, q \mid -p$
- c) $p \vee q, \sim q, p \rightarrow r \mid -r$
- d) $\sim p \rightarrow q, p \mid \sim q$
- e) $p \rightarrow q \mid -p \rightarrow q \vee r$

Exercício 3

- a) $p \land (q \lor \sim q) \rightarrow q$
- b) $(p \rightarrow q) \land (p \land \neg q) \rightarrow s$
- c) $\sim (x<0 \land y=x) \rightarrow x>0 \lor y=x$