Metody Probabilistyczne - Skrypt

Wiedza skondensowana jak mleko w tubce

prof. dr hab. inż. Aleksander Lasecki

Spis treści

1	Podstawowe zagadnienia				
	1.1	Podstawowe pojęcia	3		
	1.2	Najmniejsze (bo małe ciała są fajne) przeliczalnie addytywne ciało zdarzeń	3		
	1.3	Definicja rozkładu prawdopodobieństwa	3		
	1.4	Podstawowe własności rozkładu prawdopodobieństwa	3		
	1.5	Ciekawsze własności rozkładu prawdopodobieństwa	4		
	1.6	Dystrybuanta	4		
2	Prawdopodobieństwo warunkowe. Niezależność zdarzeń				
	2.1	Prawdopodobieństwo warunkowe	4		
	2.2	Niezależność zdarzeń	4		
	2.3	Rodziny zdarzeń niezależnych	5		
3	Pra	awdopodobieństwo zupełne. Wzór Bayesa	5		
	3.1	Twierdzenie o prawdopodobieństwie całkowitym	5		
	3.2	Twierdzenie Bayesa	5		
4	Zmienne losowe				
	4.1	Definicja zmiennej losowej	5		
	4.2	Definicja rozkładu prawdopodobieństwa zmiennej losowej	5		
5	Podstawowe typy zmiennych losowych				
	5.1	Zmienne losowe typu skokowego	6		
	5.2	Zmienne losowe typu ciągłego	6		
6	Fun	akcje zmiennej losowej	6		
	6.1	Definicja	6		
	6.2	Własności	7		
7	Wa	rtość przeciętna i wariancja	7		
	7.1	Definicja wartości przeciętniej	7		
	7.2	Wartość przeciętna funkcji zmiennej losowej	7		
	7.3	Własności wartości przeciętnej	8		
	7.4	Definicja wariancji	8		
	7.5	Własności wariancji	8		
	7.6	Nierówność Czebyszewa	8		
	77	Nierówność Czebyczewa-Rienayme	Q		

	7.8	Nierówność Markowa	8
	7.9	Centralne twierdzenie graniczne	6
8	Pop	oularne rozkłady prawdopodobieństwa zmiennych losowych	ę
	8.1	Rozkłady jednopunktowy i dwupunktowy	6
	8.2	Rozkład dwumianowy	6
	8.3	Rozkład Poissona(nie czytać Pojzona)	6
	8.4	Rozkład jednostajny	10
	8.5	Rozkład wykładniczy	10
	8.6	Rozkład normalny	10

1 Podstawowe zagadnienia

1.1 Podstawowe pojęcia

Zdarzeniem elementarnym nazywamy niepodzielny wynik pewnego doświadczenia.

Zbiór wszystkich możliwych zdarzeń elementarnych (dla danego doświadczenia) nazywamy **przestrzenią zdarzeń** elementarnych i oznaczamy go przez Ω .

Zdarzeniem losowym nazywamy pewien podzbiór Ω . W przypadku, gdy przestrzeń jest co najwyżej przeliczalna, zbiorem wszystkich zdarzeń losowych jest po prostu $\mathbb{P}(\Omega)$, natomiast w przypadku gdy przestrzeń jest nieprzeliczalna zbiorem tym będzie rodzina \mathcal{S} o której za chwilę.

Jako, że zdarzenia są zbiorami, możemy na nich wykonywać takie same działania jak na zbiorach (suma, iloczyn itp).

Zdarzeniem pewnym jest cały zbiór Ω .

Zdarzeniem niemożliwym jest zbiór \emptyset .

Zdarzenia **rozłączne** to takie, że $A \cap B = \emptyset$.

Zdarzeniem przeciwnym do zdarzenia A nazywamy zdarzenie $A' = \Omega - A$.

Rodzinę zdarzeń postaci $\{A_i\}_{i=1}^n$, której elementy są parami rozłączne oraz dla której $\bigcup_{i=1}^n A_i = \Omega$ nazywamy układem zupełnym.

1.2 Najmniejsze (bo małe ciała są fajne) przeliczalnie addytywne ciało zdarzeń

Niech $\Omega \subseteq \mathbb{R}^n$ oraz niech \mathcal{S}^* będzie taką rodziną podzbiorów Ω , że $\Omega \in \mathcal{S}^*$, $(\forall A \in \mathcal{S}^*)$ $(\Omega - A \in \mathcal{S}^*)$ oraz $(\forall A_1, A_2, \ldots \in \mathcal{S}^*)$ $(\bigcup_{i=1}^{\infty} A_i \in \mathcal{S}^*)$. Rodzinę taką nazywamy **przeliczalnie addytywnym ciałem zdarzeń**. Najmniejszą z tych rodzin oznaczać będziemy przez \mathcal{S} . Jest to rodzina zbiorów **borelowskich** której elementami są zdarzenia losowe.

1.3 Definicja rozkładu prawdopodobieństwa

Mamy zbiory Ω oraz \mathcal{S} . Definiujemy funkcję \mathbf{P} następująco:

$$\mathbf{P}: \ \mathcal{S} \to \mathbb{R}$$

$$(\forall A \in \mathcal{S}) (\mathbf{P}(A) \geqslant 0)$$

$$\mathbf{P}(\Omega) = 1$$

$$(\forall A_1, A_2, \dots \in \mathcal{S}) \left((\forall A_i, \ A_j) (A_i \cap A_j = \emptyset) \to \mathbf{P} \left(\bigcup_{i=1}^{\infty} A_i \right) = \sum_{i=1}^{\infty} \mathbf{P}(A_i) \right)$$

Funkcję taką nazywamy **rozkładem prawdopodobieństwa**, a jej wartości **prawdopodobieństwem** zdarzeń losowych.

1.4 Podstawowe własności rozkładu prawdopodobieństwa

$$\mathbf{P}(\emptyset) = 0$$

$$\mathbf{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} \mathbf{P}(A_{i})$$

$$\mathbf{P}(A') = 1 - \mathbf{P}(A)$$

$$\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B) - \mathbf{P}(A \cap B)$$

$$A \subset B \to \mathbf{P}(A) \leqslant \mathbf{P}(B)$$

1.5 Ciekawsze własności rozkładu prawdopodobieństwa

Jeśli zdarzenia A_1, A_2, \dots stanowią ciąg **wstępujący**, czyli mamy $A_1 \subset A_2 \subset \dots$ oraz jeśli $\bigcup_i A_i = A$ wtedy:

$$\lim_{n\to\infty} \mathbf{P}(A_n) = \mathbf{P}(A)$$

Dowód przeprowadzamy rozpatrując różnice między kolejnymi zbiorami $(A_i - A_{i-1} = B_i)$. Jeśli zdarzenia $A_1, A_2, ...$ stanowią ciąg **zstępujący**, czyli mamy $A_1 \supset A_2 \supset ...$ oraz jeśli $\bigcap_i A_i = A$ wtedy:

$$\lim_{n\to\infty} \mathbf{P}(A_n) = \mathbf{P}(A)$$

Do dowodu wykorzystujemy poprzedni fakt.

1.6 Dystrybuanta

Niech $\Omega = \mathbb{R}^1$. Definiujemy funkcję **F** w następujący sposób:

- 1. **F** jest niemalejąca
- 2. $\lim_{x\to-\infty} \mathbf{F}(x) = 0 \text{ oraz } \lim_{x\to\infty} \mathbf{F}(x) = 1$
- 3. F jest lewostronnie ciagla

Taką funkcje nazywamy **dystrybuantą** i definiuje ona, jednoznacznie, rozkład prawdopodobieństwa w następujący sposób:

$$\mathbf{P}(\langle a; b \rangle) = \mathbf{F}(b) - \mathbf{F}(a)$$

Mając rozkład prawdopodobieństwa możemy również w jednoznaczny sposób wyznaczyć dystrybuantę jako:

$$\mathbf{F}(x) = \mathbf{P}\left((-\infty; x)\right)$$

2 Prawdopodobieństwo warunkowe. Niezależność zdarzeń

2.1 Prawdopodobieństwo warunkowe

Prawdopodobieństwo zdarzenia A pod warunkiem wystąpienia zdarzenia B (przy założeniu, że $\mathbf{P}(B) > 0$) oznaczamy przez $\mathbf{P}(A|B)$ i definiujemy następująco:

$$\mathbf{P}(A|B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}$$

$$\mathbf{P}(A \cap B) = \mathbf{P}(A|B)\mathbf{P}(B)$$

Zauważmy, że funkcja $\mathbf{P}(A|B)$, przy ustalonym B spełnia aksjomaty rozkładu prawdopodobieństwa.

Na podstawie powyższego wzoru możemy, za pomocą indukcji matematycznej, wyznaczyć wzór na prawdopodobieństwo iloczynu zbiorów:

$$\mathbf{P}(A_1 \cap A_2 \cap ... \cap A_n) = \mathbf{P}(A_n | A_1 \cap A_2 \cap ... \cap A_{n-1}) ... \mathbf{P}(A_3 | A_1 \cap A_2) \mathbf{P}(A_2 | A_1) \mathbf{P}(A_1)$$

2.2 Niezależność zdarzeń

Zdarzenie nazywamy **niezależnymi** jeśli zachodzi następujący warunek:

$$\mathbf{P}\left(A|B\right) = \mathbf{P}\left(A\right)$$

$$\mathbf{P}\left(B|A\right) = \mathbf{P}\left(B\right)$$

Warunek ten możemy również zapisać w postaci:

$$\mathbf{P}(A \cap B) = \mathbf{P}(A)\mathbf{P}(B)$$

2.3 Rodziny zdarzeń niezależnych

Rodzinę zdarzeń $\{A_i\}_{i=1}^n$ nazywamy rodziną zdarzeń niezależnych jeśli dla każdych $k_1, k_2, ..., k_p$, takich, że $1 \le k_1 \le ... \le n$ mamy:

$$\mathbf{P}\left(A_{k_1} \cap A_{k_2} \cap \ldots \cap A_{k_p}\right) = \mathbf{P}\left(A_{k_1}\right) \mathbf{P}\left(A_{k_2}\right) \ldots \mathbf{P}\left(A_{k_p}\right)$$

Rodzinę zdarzeń $\{A_i\}_{i=1}^{\infty}$ nazywamy rodziną zdarzeń niezależnych jeśli dla każdego $n \in \mathbb{N}$, takiego, że n > 1 rodzina $\{A_i\}_{i=1}^n$ jest rodziną zdarzeń niezależnych.

Niech $\{A_i\}_{i=1}^{n+1}$ będzie rodziną zdarzeń niezależnych. Wtedy zdarzenia $\bigcup_{i=1}^n A_i$ oraz A_{n+1} są parą zdarzeń niezależnych.

Niech $\{A_i\}_{i=1}^n$ będzie rodziną zdarzeń niezależnych. Wtedy $\{A_i'\}_{i=1}^n$, czyli rodzina składająca się ze zdarzeń A_1' , A_2' itd, jest rodziną zdarzeń niezależnych.

3 Prawdopodobieństwo zupełne. Wzór Bayesa

3.1 Twierdzenie o prawdopodobieństwie całkowitym

Niech $\mathcal{A} = \{A_i\}_i$ będzie układem zupełnym takim, że $(\forall C \in \mathcal{A}) (\mathbf{P}(C) > 0)$. Wtedy zachodzi następujący wzór:

$$\mathbf{P}(B) = \sum_{i} \mathbf{P}(B|A_{i}) \mathbf{P}(A_{i})$$

3.2 Twierdzenie Bayesa

Niech $\mathcal{A} = \{A_i\}_i$ będzie układem zupełnym takim, że $(\forall C \in \mathcal{A}) (\mathbf{P}(C) > 0)$ oraz $\mathbf{P}(B) > 0$. Wtedy prawdziwe jest następujące zdanie:

$$(\forall C \in \mathcal{A}) \left(\mathbf{P} \left(C | B \right) = \frac{\mathbf{P} \left(B | C \right) \mathbf{P} \left(C \right)}{\sum_{i} \mathbf{P} \left(B | A_{i} \right) \mathbf{P} \left(A_{i} \right)} \right)$$

Lub inaczej:

$$(\forall C \in \mathcal{A}) \left(\mathbf{P} \left(C | B \right) = \frac{\mathbf{P} \left(B | C \right) \mathbf{P} \left(C \right)}{\mathbf{P} \left(B \right)} \right)$$

4 Zmienne losowe

4.1 Definicja zmiennej losowej

Niech $(\Omega, \mathbf{S}, \mathbf{P})$ będzie dowolną przestrzenią probabilistyczną. Zmienną losową X nazywamy funkcję zdefiniowaną następująco:

$$X:\Omega \to \mathbb{R}$$

$$(\forall x \in \mathbb{R}) \left(\{ \omega \in \Omega : X(\omega) < x \} \in \mathbf{S} \right)$$

W szczególności, gdy Ω jest zbiorem co najwyżej przeliczalnym, każde przekształcenie typy $X:\Omega\to\mathbb{R}$ jest zmienną losową.

4.2 Definicja rozkładu prawdopodobieństwa zmiennej losowej

Rozkładem prawdopodobieństwa zmiennej losowej X na przestrzeni probabilistycznej $(\Omega, \mathbf{S}, \mathbf{P})$ jest następująca funkcja, określona na rodzinie zbiorów borelowskich na prostej (oznaczmy ją przez $\mathbf{S}_{\mathcal{B}}$):

$$\mathbf{P}_{X}(A) = \mathbf{P}\left(\{\omega \in \Omega : X(\omega) \in A\}\right)$$

Zauważmy, że zdefiniowane wyżej byty indukują nową przestrzeń probabilistyczną $(\mathbb{R}, \mathbf{S}_{\mathcal{B}}, \mathbf{P}_{X})$.

Zgodnie z metodą podaną wcześniej, dystrybu
antę rozkładu prawdopodobieństwa zmiennej losowej X definiujemy jako:

$$\mathbf{F}_X(x) = \mathbf{P}_X\left((-\infty; x)\right)$$

Otrzymujemy również następująca zależność:

$$\mathbf{P}_X (\langle a, b \rangle) = \mathbf{P} (\{ \omega \in \Omega : a \leqslant X(\omega) < b \}) = \mathbf{F}_X (b) - \mathbf{F}_X (a)$$

Możemy również stosować skrócony zapis:

$$\mathbf{P}(a \leqslant X < b)) = \mathbf{P}(\{\omega \in \Omega : a \leqslant X(\omega) < b\})$$

5 Podstawowe typy zmiennych losowych

5.1 Zmienne losowe typu skokowego

Zmienna losowa typu skokowego (bądź inaczej: dyskretna zmienna losowa) to taka dla której istnieje co najwyżej przeliczalny zbiór \mathcal{X} (czyli zbiór postaci $\{x_1,\ldots,x_n\}$ lub $\{x_1,x_2,\ldots\}$, gdzie x_k nazywamy wartościami zmiennej losowej) dla którego $\mathbf{P}_X(\mathcal{X}) = 1$.

Rozkład prawdopodobieństwa zmiennej losowej wyglada wtedy następujaco:

$$p(x_k) = \mathbf{P}\left(\{\omega \in \Omega : X(\omega) = x_k\}\right)$$

Zauważmy, że $\sum_k p(x_k) = 1$ oraz, że dystrybuanta naszej zmiennej losowej jest lewostronnie ciągła, przedziałami stała i ma skoki w punktach gdzie $p(x_k) > 0$ o wartości $p(x_k)$.

5.2 Zmienne losowe typu ciągłego

Niech teraz $\mathcal{X} = \mathcal{R}$. Zmienną losową typu ciągłego jest funkcja zdefiniowana w następny sposób:

$$\mathbf{F}(x) = \int_{-\infty}^{x} f(u)du$$

Gdzie f jest funkcją nazywaną **gęstością prawdopodobieństwa**, która jest nieujemna oraz spełnia:

$$\int_{-\infty}^{\infty} f(u)du = 1$$

W przedziałach w których f jest ciągła zachodzi zależność:

$$\mathbf{F}'(x) = f(x)$$

Prawdopodobieństwo $\mathbf{P}(x_1 \leqslant X < x_2)$ dla $x_1 < x_2$ określamy, z własności dystrybuanty, jako:

$$\mathbf{P}(x_1 \leqslant X < x_2) = \int_{x_1}^{x_2} f(u) du$$

Zauważmy również, że dla dowolnej liczby rzeczywistej $x_0 \in \mathbb{R}$ mamy:

$$\mathbf{P}(X=x_0)=0$$

6 Funkcje zmiennej losowej

6.1 Definicja

Niech X będzie zmienną losową oraz niech g będzie dowolną funkcją borelowską. Wtedy **funkcję zmiennej losowej** \mathbf{Y} definiujemy jako:

$$Y(\omega) = g(X(\omega))$$

6.2 Własności

Jeżeli znamy gęstość zmiennej losowej X, dystrybuantę zmiennej losowej Y znajdujemy w następujący sposób:

$$\mathbf{F}_{Y}(y) = \mathbf{P}(Y < y) = \mathbf{P}(g(X) < y) = \int_{\{x:g(x) < y\}} f_{X}(x) dx$$

Jeśli g jest funkcją różniczkowalną oraz ściśle monotoniczną (czyli rosnącą lub malejącą), oznaczamy przez g^{-1} funkcję odwrotną do g i mamy: Dla g rosnącej:

$$\frac{d}{dy}\mathbf{F}_{Y}(y) = f_{Y}(Y) = \frac{d}{dy} \int_{\{x: q(x) < y\}} f_{X}(x) dx = \frac{d}{dy} \int_{\{x: x < q^{-1}(y)\}} f_{X}(x) dx = f_{X}\left(g^{-1}(y)\right) (g^{-1})'(y)$$

Dla g malejacej:

$$\frac{d}{dy}\mathbf{F}_{Y}(y) = f_{Y}(Y) = \frac{d}{dy} \int_{\{x:g(x) < y\}} f_{X}(x) dx = \frac{d}{dy} \int_{\{x:x > g^{-1}(y)\}} f_{X}(x) dx = -f_{X} \left(g^{-1}(y)\right) \left(g^{-1}\right)'(y)$$

Czyli ogólnie:

$$\frac{d}{dy}\mathbf{F}_Y(y) = f_X\left(g^{-1}(y)\right) \left| (g^{-1})'(y) \right|$$

Pamiętajmy, że gdy X jest typu ciągłego oraz g jest ściśle monotoniczna nie implikują tego, że Y jest typu ciągłego.

7 Wartość przeciętna i wariancja

7.1 Definicja wartości przeciętniej

Wartość przeciętną/oczekiwaną/średnią dla zmiennej losowej X typu skokowego określamy jako:

$$\mathbb{E}(X) = \sum_{k} x_k p(x_k)$$

Przy warunku, że szereg $\sum_{k} |x_k| p(x_k)$ jest zbieżny.

Wartość przeciętną/oczekiwaną/średnią dla zmiennej losowej X typu ciągłego określamy jako:

$$\mathbb{E}(X) = \int_{\mathbb{R}} x f(x) dx$$

Przy warunku, że całka $\int_{\mathbb{R}} |x| f(x) dx$ jest zbieżna.

7.2 Wartość przeciętna funkcji zmiennej losowej

Niech zmienna losowa Y będzie funkcją zmiennej losowej X (Y = g(X)), przy czym znamy rozkład prawdopodobieństwa zmiennej losowej X.

Wartość przeciętną/oczekiwaną/średnią dla zmiennej losowej Y typu skokowego określamy jako:

$$\mathbb{E}(Y) = \sum_{k} g(x_k) p(x_k)$$

Przy warunku, że szereg $\sum_k |g(x_k)| p(x_k)$ jest zbieżny.

Wartość przeciętną/oczekiwaną/średnią dla zmiennej losowej Y typu ciągłego określamy jako:

$$\mathbb{E}(Y) = \int_{\mathbb{D}} g(x)f(x)dx$$

Przy warunku, że całka $\int_{\mathbb{R}} |g(x)| f(x) dx$ jest zbieżna.

7.3 Własności wartości przeciętnej

Niech zmienna losowa Y będzie funkcją zmiennej losowej X (Y = g(X)) oraz niech g będzie postaci aX + b dla dowolnych a, b. Wtedy określamy wartość przeciętną jako:

$$\mathbb{E}(Y) = \mathbb{E}(aX + b) = a\mathbb{E}(X) + b$$

Niech zmienna losowa Y będzie funkcją zmiennej losowej X ($Y = \sum_i g_i(X)$) oraz niech $\mathbb{E}(g_i(X))$ istnieje dla każdego $i \in [N]$. Wtedy określamy wartość przeciętną jako:

$$\mathbb{E}(Y) = \mathbb{E}\left(\sum_{i} g_{i}(X)\right) = \sum_{i} \mathbb{E}(g_{i}(X))$$

7.4 Definicja wariancji

Wariancja opisuje 'rozrzut' wartości zmiennej losowej względem wartości oczekiwanej. Definiujemy ją w następujący sposób:

$$\mathbb{V}(X) = \mathbb{E}((X - \mathbb{E}(X))^2)$$

Lub inaczej:

$$\mathbb{V}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

Zmienną losową X dla której $\mathbb{E}(X) = 0$, $\mathbb{V}(X) = 1$ nazywamy **zmienną losową standaryzowaną**. Pierwiastek z wariancji nazywamy **odchyleniem standardowym**.

7.5 Własności wariancji

Niech X będzie zmienną losową dla której istnieje wariancja. Wtedy zachodzi zależność:

$$\mathbb{V}(aX + b) = a^2 \mathbb{V}(X)$$

Warunkiem koniecznym i dostatecznym tego, aby $\mathbb{V}(X) = 0$ jest to, aby rozkład X był jednopunktowy. Funkcja φ określona jako:

$$\varphi(c) = \mathbb{E}((X - c)^2)$$

Przyjmuje najmniejszą wartość gdy $c = \mathbb{E}(X)$.

7.6 Nierówność Czebyszewa

Jeśli zmienna losowa X spełniająca warunek $\mathbf{P}(X<0)=0$ ma wartość przeciętną $\mathbb{E}(X)$, to dla dowolnego $\varepsilon>0$ mamy:

$$\mathbf{P}(X \geqslant \varepsilon) \leqslant \frac{\mathbb{E}(X)}{\varepsilon}$$

7.7 Nierówność Czebyszewa-Bienayme

Jeśli zmienna losowa X ma wariancje $\mathbb{V}(X)$ i wartość przeciętną $\mathbb{E}(X)$, to dla dowolnego $\varepsilon > 0$ mamy:

$$\mathbf{P}(|X - \mathbb{E}(X)| \ge \varepsilon) \le \frac{\mathbb{V}(X)}{\varepsilon^2}$$

7.8 Nierówność Markowa

Jeśli zmienna losowa X ma wartość przeciętną $\mathbb{E}(X)$, to dla dowolnych $\varepsilon, p > 0$ mamy:

$$\mathbf{P}(|X| \geqslant \varepsilon) \leqslant \frac{\mathbb{E}(|X|^p)}{\varepsilon^p}$$

7.9 Centralne twierdzenie graniczne

Dla danego rozkładu, określonej wartości oczekiwanej m i skończonej wariancji σ^2 określamy zbiór zdarzeń niezależnych, które oznaczamy przez X_i . Wtedy:

 $\frac{\frac{1}{n}\sum_{i=1}^{n}X_{i}-m}{\frac{\sigma}{\sqrt{n}}}$

Zbiega według rozkładu do standardowego rozkładu normalnego przy $n \to \infty$.

8 Popularne rozkłady prawdopodobieństwa zmiennych losowych

8.1 Rozkłady jednopunktowy i dwupunktowy

Niech $\mathcal{X} = \{x_0\}$ oraz $\mathbf{P}(X = x_0) = 1$. Wtedy mówimy, że zmienna losowa X ma **rozkład jednopunktowy**. $\mathbb{E}(X) = x_0$, $\mathbb{V}(X) = 0$.

Niech $\mathcal{X} = \{x_0, x_1\}$ oraz $\mathbf{P}(X = x_0) = p$, $\mathbf{P}(X = x_1) = 1 - p$. Wtedy mówimy, że zmienna losowa X ma **rozkład dwupunktowy**. $\mathbb{E}(X) = p(x_0 - x_1) + x_1$, $\mathbb{V}(X) = p(1 - p)(x_0 - x_1)^2$.

8.2 Rozkład dwumianowy

Wykonujemy n razy doświadczenie, które można opisać za pomocą rozkładu dwumianowego, przy czym możliwe wyniki to A oraz A'. Prawdopodobieństwo wystąpienia k sukcesów wyraża się wzorem:

$$\mathbf{P}(X=k) = \binom{n}{k} p^k q^{n-k}$$

Zauważmy, że:

$$\sum_{k=0}^{n} \binom{n}{k} p^k q^{n-k} = 1$$

$$\mathbb{E}(X) = np, \ \mathbb{V}(X) = np(1-p)$$

Wartość najbardziej prawdopodobną (nie mylić z wartością oczekiwaną) określamy jako:

$$\left[(n+1)p \right]$$

Gdzie [x] oznacza część całkowitą z x.

8.3 Rozkład Poissona(nie czytać Pojzona)

Niech $\mathcal{X} = \mathbb{N}$ oraz niech $k \in \mathbb{N}$. Rozkład Poissona(**Pois**(λ), gdzie $\lambda > 0$) określamy jako:

$$\mathbf{P}(X=k) = \frac{e^{-\lambda}\lambda^k}{k!}$$

Mamy, również:

$$\mathbb{E}(X) = \mathbb{V}(X) = \lambda$$

Zauważmy, że jeśli rozważamy serię doświadczeń zgodną ze schematem Bernoulliego, gdzie liczba doświadczeń jest duża, a prawdopodobieństwo sukcesu małe, rozkład Poissona jest dobrą aproksymacją rozkłady Bernoulliego(dwumianowego) dla $\lambda = np$.

8.4 Rozkład jednostajny

$$f(x) = \begin{cases} 0 & : x \leqslant a \\ \frac{1}{b-a} & : a < x \leqslant b \\ 0 & : x > b \end{cases}$$

$$F(x) = \begin{cases} 0 & : x \leqslant a \\ \frac{x-a}{b-a} & : a < x \leqslant b \\ 0 & : x > b \end{cases}$$

$$\mathbb{E}(X) = \frac{a+b}{2} \qquad \mathbb{E}(X^2) = \frac{a^2 + ab + b^2}{3} \qquad \mathbb{V}(X) = \frac{(b-a)^2}{12}$$

8.5 Rozkład wykładniczy

$$f(x) = \begin{cases} 0 & : x < 0 \\ \lambda e^{-\lambda x} & : x \geqslant 0, \ \lambda > 0 \end{cases}$$
$$F(x) = \begin{cases} 0 & : x < 0 \\ -e^{-\lambda x} & : x \geqslant 0, \ \lambda > 0 \end{cases}$$
$$\mathbb{E}(X) = \frac{1}{\lambda} \qquad \mathbb{V}(X) = \frac{1}{\lambda^2}$$

8.6 Rozkład normalny

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-m)^2}{2\sigma^2}}$$

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-m)^2}{2\sigma^2}}$$

$$\mathbb{E}(X) = m \qquad \mathbb{V}(X) = \sigma^2$$