

**A.U.**: 2021-2022 **Prof.** H. El-Otmany

NB: cette fiche présente les techniques nécessaires minimales sur quelques lois continues; elle ne constitue donc pas un objectif mais un pré-requis! Elle est autorisée pendant les contrôles!!

## Généralités sur la loi normale centrée réduite 1

- Si X suit la loi normale centrée réduite  $\mathcal{N}(0;1)$ , noté  $X \hookrightarrow \mathcal{N}(0;1)$ , alors E(X) = 0, V(X) = 1et  $\sigma_X = 1$ .
- Densité de la loi normale centrée réduite :  $f_X(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ . Fonction de répartition :  $\Phi(t)$  P(X) —
- Fonction de répartition :  $\Phi(t) = P(X \leq t) = P(] \infty; t]$ ).
- Si  $Y \hookrightarrow \mathcal{N}(\mu; \sigma^2)$ , alors  $X = \frac{Y \mu}{\sigma} \hookrightarrow \mathcal{N}(0, 1)$ .
- Si  $Y \hookrightarrow \mathcal{N}(\mu, \sigma^2)$ , alors  $E(Y) = \mu$ ,  $V(Y) = \sigma^2$  et  $\sigma_Y = \sigma$ .

## Calcul des probabilités en utilisant la table de la loi normale

Si X suit la loi normale centrée réduite  $\mathcal{N}(0;1)$ , alors on a

- pour un nombre positif a :
  - $-P(X \leqslant a) = \Phi(a).$
  - $-- P(X \ge a) = 1 \Phi(a).$
  - $-- P(X \leqslant -a) = 1 \Phi(a).$
  - $-P(X \geqslant -a) = \Phi(a).$
  - $P(|X| \leqslant a) = P(-a \leqslant X \leqslant a) = 2 \times \Phi(a) 1.$
- pour a et b deux réels avec  $a < b : P(a \le X \le b) = \Phi(b) \Phi(a)$ .

Si  $Y \hookrightarrow \mathcal{N}(\mu; \sigma^2)$ , alors on effectue le changement de variable  $\frac{Y-\mu}{\sigma}$  pour obtenir une variable aléatoire X suivant normale centrée réduite  $\mathcal{N}(0;1)$  et on applique les relations ci-dessus. Par exemple :

$$P(-a \leqslant Y \leqslant a) = P\left(\frac{-a - \mu}{\sigma} \leqslant \frac{Y - \mu}{\sigma} \leqslant \frac{a - \mu}{\sigma}\right) = P\left(\frac{-a - \mu}{\sigma} \leqslant X \leqslant \frac{a - \mu}{\sigma}\right)$$

## Approximation d'une loi binomiale

Soit Z une variable aléatoire suivant la loi binomiale  $\mathcal{B}(n;p)$ . Si

- $-n \ge 30$ ,
- $-n \times p \geqslant 10$ ,
- $-- n \times (1-p) \ge 10.$

Alors, nous pouvons apporcher la loi de Z par la loi de Y où  $Y \hookrightarrow \mathcal{N}(\mu; \sigma^2)$  avec  $\mu = n \times p$  et  $\sigma = \sqrt{n \times p \times (1-p)}$ .

## Correction de la continuité

Soit Z une variable aléatoire suivant la loi binomiale  $\mathcal{B}(n;p)$ . Si

- $-n \geqslant 20$ ,
- $-n \times p \geqslant 10$ ,
- $-- n \times (1-p) \ge 10.$

Alors, nous utiliserons la correction de la continuité pour le calcul des probabilités comme suit :

$$P(Z=k) \approx P(k-0.5 \leqslant Y \leqslant k+0.5)$$

avec  $Y \hookrightarrow \mathcal{N}(n \times p; n \times p \times (1-p))$  et k un nombre réel.