

SEQUENCE LISTING

<110> O'Brien, Timothy J.
 <120> TADG-15: An Extracellular Serine Protease
 Overexpressed in Carcinomas
 <130> D6064CIP
 <140> US 09/421,213
 <141> 10-20-1999
 <150> US 09/027,337
 <151> 02-20-1998
 <160> 98
 <170> Office 98 for Macintosh

<210> 1
 <211> 3147
 <212> DNA
 <213> *Homo sapiens*
 <220>
 <223> TADG-15
 <400> 1

tcaagagcgg cctcggggta ccatggggag cgatcgccc cgcaaggcg gagggggcc 60
 gaaggacttc ggcgcgggac tcaagtacaa ctccoggcac gagaaagtga atggcttgg 120
 ggaaggcgtg gagttctgc cagtcaacaa cgtcaagaag gtggaaaagc atggcccg 180
 ggcgtgggtg gtgctggcag ccgtgctgat cggcctctc ttggctttgc tgggatcgg 240
 cttcctggtg tggcatttc agtaccggg cgtcgcttc cagaaggct tcaatggcta 300
 catgaggatc acaaattgaga attttgtgga tgcctacgg aactccaact ccactgagtt 360
 tgtaagcctg gccagcaagg tgaaggacgc gctgaagctg ctgtacagcg gagtcccatt 420
 cctggcccc taccacaagg agtcggctgt gacggctt agcgaggcga gcgtcatcgc 480
 ctactactgg tctgagttca gcatcccgca gcacctggtg gaggaggccg agcgcgtcat 540
 ggccgaggag cgcgtgtca tgctgcccc gcggcgcgc bccctgaagt cctttgtggt 600
 cacctcatgt gtggctttcc ccacggactc caaaacagta cagaggaccc aggacaacag 660
 ctgcagctt ggcctgcacg ccccggtgt ggagctgatg cgattcacca cgcccgctt 720
 ccctgacagc ccctaccccg ctcatgccc ctgcctgtt gccatgcggg gggacggcga 780
 ctcagtgtcg agcctcacct tccgcagctt tgaccttgcg tcctgcacg agcgcggcag 840
 cgacctggtg acggtgtaca acaccctgag ccccatggag ccccatggcc tggtgcattt 900
 gtgtggcacc taccctccct cctacaacct gaccttccac tcctccaga acgtcctgct 960
 catcacactg ataaccaaca ctgagcggcg gcatccggc tttgaggcca ctttcttcca 1020
 gctgcctagg atgagcagct gtggaggccg cttacgtaaa gcccaggaga cattcaacag 1080
 cccctactac ccaggccact acccacccaa cattgactgc acatggaaaa ttgagggtgcc 1140
 caacaaccag catgtgaagg tgagcttcaa attcttctac ctgctggagc cccgcgtgcc 1200
 tgcgggcacc tgccccaaagg actacgtgg gatcaatggg gagaataact gcccggagag 1260
 gtcccagtcc gtcgtcacca gcaacagcaa caagatcaca gttcgcttcc actcagatca 1320
 gtcctacacc gacaccggct tcttagctga ataccttcc tacgactccatgtgaccatg 1380

Alb
b1
bx
A
un

ccggggcag ttcacgtgcc gcacgggcg gtgtatccgg aaggagctgc gctgtatgg 1440
ctggccgac tgcaccgacc acagcgatga gctcaactgc agttgcgacg cccggccacca 1500
gttcacgtgc aagaacaagt tctgcaagcc cctcttctgg gtctgcgaca gtgtgaacga 1560
ctgcggagac cacagcgacg agcaggggtg cagttgtccg gcccgacacct tcaggtgttc 1620
caatgggaag tccctctcga aaagccagca gtgcaatggg aaggacgact gtggggacgg 1680
gtccgacgag gcttcctgcc ccaaggtgaa cgtcgtaact tgtaccaaact acacctaccg 1740
ctgcctcaat gggtctgtct tgtagcaaggg caaccctgag tgtgacggga aggaggactg 1800
tagcgacggc tcagatgaga aggactgcga ctgtggctg cggtcattca cgagacacaggc 1860
tcgttgttggg gggggcactgg atgcggatga gggcgagtgg ccctggcagg taagcctgca 1920
tgctctggc caggcccaca tctgcgggtgc ttccctcatc tctcccaact ggctggctc 1980
tgccgcacac tgctacatcg atgacagagg attcaggtac tcagaccccc cgcagtggac 2040
ggccttcctg ggcttgcacg accagagcca ggcgacgcgc cctgggtgc aggagcgcag 2100
gctcaagcgc atcatctccc accccttctt caatgacttc accttcgact atgacatcgc 2160
gctgctggag ctggagaaaac cggcagagta cagctccatg gtgcggcca tctgcctgca 2220
ggacgcctcc catgtcttcc ctggccggcaa ggccatctgg gtcacgggct ggggacacac 2280
ccagtatgga ggcactggcg cgtgtatcct gcaaaagggt gagatccgcg tcatcaacca 2340
gaccacctgc gagaacacctcc tgcgcagca gatcacgcgc cgcatgatgt gcgtggctt 2400
cctcagcggc ggcgtggact cctgcagggt tgattccggg ggaccctgt ccagcgtgga 2460
ggcggatggg cggatcttcc aggccgggtg ggtgagctgg ggagacggct ggcgtcagag 2520
gaacaaggca ggcgtgtaca caagggtccc tctgtttcgg gactggatca aagagaacac 2580
tgggttatag gggccggggc cacccaaatg tgtacacctg cggggccacc catcgccac 2640
cccagtgtgc acgcctgcag gctggagact ggaccgctga ctgcaccagc gccccagaa 2700
catacactgt gaactcaatc tccagggtcc caaatctgcc tagaaaacct ctcgcttcct 2760
cagcctccaa atggagactg ggaggtagaa ggggaggaca ctgggtgttc tactgaccca 2820
actggggca aagggttggaa gacacagcct ccccccggcag ccccaagctg ggccgaggcg 2880
cgttgtgtat tatctgcctc ccctgtctgt aaggagcagc gggAACGGAG cttcggagcc 2940
tcctcagtga aggtgggtgg gctgcccggat ctgggctgtg gggcccttgg gccacgctct 3000
tgaggaagcc caggctcgaa ggaccctggaa aaacagacgg gtctgagact gaaattgttt 3060
taccagctcc cagggtggac ttcaagtgtgt gtattgtgt aaatggtaa aacaatttat 3120
ttcttttaa aaaaaaaaaaaaaaaa 3147

<210> 2
<211> 855
<212> PRT
<213> *Homo sapiens*
<220>
<223> TADG-15
<400> 2

Met	Gly	Ser	Asp	Arg	Ala	Arg	Lys	Gly	Gly	Gly	Gly	Pro	Lys	Asp
					5				10				15	
Phe	Gly	Ala	Gly	Leu	Lys	Tyr	Asn	Ser	Arg	His	Glu	Lys	Val	Asn
					20				25				30	
Gly	Leu	Glu	Glu	Gly	Val	Glu	Phe	Leu	Pro	Val	Asn	Asn	Val	Lys
					35				40				45	
Lys	Val	Glu	Lys	His	Gly	Pro	Gly	Arg	Trp	Val	Val	Leu	Ala	Ala
					50				55				60	
Val	Leu	Ile	Gly	Leu	Leu	Leu	Val	Leu	Leu	Gly	Ile	Gly	Phe	Leu
					65				70				75	

*M
B
W
A/
W*

Val	Trp	His	Leu	Gln	Tyr	Arg	Asp	Val	Arg	Val	Gln	Lys	Val	Phe
	80							85					90	
Asn	Gly	Tyr	Met	Arg	Ile	Thr	Asn	Glu	Asn	Phe	Val	Asp	Ala	Tyr
	95							100					105	
Glu	Asn	Ser	Asn	Ser	Thr	Glu	Phe	Val	Ser	Leu	Ala	Ser	Lys	Val
	110							115					120	
Lys	Asp	Ala	Leu	Lys	Leu	Leu	Tyr	Ser	Gly	Val	Pro	Phe	Leu	Gly
	125							130					135	
Pro	Tyr	His	Lys	Glu	Ser	Ala	Val	Thr	Ala	Phe	Ser	Glu	Gly	Ser
	140							145					150	
Val	Ile	Ala	Tyr	Tyr	Trp	Ser	Glu	Phe	Ser	Ile	Pro	Gln	His	Leu
	155							160					165	
Val	Glu	Glu	Ala	Glu	Arg	Val	Met	Ala	Glu	Glu	Arg	Val	Val	Met
	170							175					180	
Leu	Pro	Pro	Arg	Ala	Arg	Ser	Leu	Lys	Ser	Phe	Val	Val	Thr	Ser
	185							190					195	
Val	Val	Ala	Phe	Pro	Thr	Asp	Ser	Lys	Thr	Val	Gln	Arg	Thr	Gln
	200							205					210	
Asp	Asn	Ser	Cys	Ser	Phe	Gly	Leu	His	Ala	Arg	Gly	Val	Glu	Leu
	215							220					225	
Met	Arg	Phe	Thr	Thr	Pro	Gly	Phe	Pro	Asp	Ser	Pro	Tyr	Pro	Ala
	230							235					240	
His	Ala	Arg	Cys	Gln	Trp	Ala	Leu	Arg	Gly	Asp	Ala	Asp	Ser	Val
	245							250					255	
Leu	Ser	Leu	Thr	Phe	Arg	Ser	Phe	Asp	Leu	Ala	Ser	Cys	Asp	Glu
	260							265					270	
Arg	Gly	Ser	Asp	Leu	Val	Thr	Val	Tyr	Asn	Thr	Leu	Ser	Pro	Met
	275							280					285	
Glu	Pro	His	Ala	Leu	Val	Gln	Leu	Cys	Gly	Thr	Tyr	Pro	Pro	Ser
	290							295					300	
Tyr	Asn	Leu	Thr	Phe	His	Ser	Ser	Gln	Asn	Val	Leu	Leu	Ile	Thr
	305							310					315	
Leu	Ile	Thr	Asn	Thr	Glu	Arg	Arg	His	Pro	Gly	Phe	Glu	Ala	Thr
	320							325					330	
Phe	Phe	Gln	Leu	Pro	Arg	Met	Ser	Ser	Cys	Gly	Gly	Arg	Leu	Arg
	335							340					345	
Lys	Ala	Gln	Gly	Thr	Phe	Asn	Ser	Pro	Tyr	Tyr	Pro	Gly	His	Tyr
	350							355					360	
Pro	Pro	Asn	Ile	Asp	Cys	Thr	Trp	Asn	Ile	Glu	Val	Pro	Asn	Asn
	365							370					375	
Gln	His	Val	Lys	Val	Ser	Phe	Lys	Phe	Tyr	Leu	Leu	Glu	Pro	
	380							385					390	
Gly	Val	Pro	Ala	Gly	Thr	Cys	Pro	Lys	Asp	Tyr	Val	Glu	Ile	Asn
	395							400					405	
Gly	Glu	Lys	Tyr	Cys	Gly	Glu	Arg	Ser	Gln	Phe	Val	Val	Thr	Ser
	410							415					420	
Asn	Ser	Asn	Lys	Ile	Thr	Val	Arg	Phe	His	Ser	Asp	Gln	Ser	Tyr
	425							430					435	
Thr	Asp	Thr	Gly	Phe	Leu	Ala	Glu	Tyr	Leu	Ser	Tyr	Asp	Ser	Ser
	440							445					450	
Asp	Pro	Cys	Pro	Gly	Gln	Phe	Thr	Cys	Arg	Thr	Gly	Arg	Cys	Ile
	455							460					465	

M
b
w
A
W

Arg	Lys	Glu	Leu	Arg	Cys	Asp	Gly	Trp	Ala	Asp	Cys	Thr	Asp	His
				470					475					480
Ser	Asp	Glu	Leu	Asn	Cys	Ser	Cys	Asp	Ala	Gly	His	Gln	Phe	Thr
				485					490					495
Cys	Lys	Asn	Lys	Phe	Cys	Lys	Pro	Leu	Phe	Trp	Val	Cys	Asp	Ser
				500					505					510
Val	Asn	Asp	Cys	Gly	Asp	Asn	Ser	Asp	Glu	Gln	Gly	Cys	Ser	Cys
				515					520					525
Pro	Ala	Gln	Thr	Phe	Arg	Cys	Ser	Asn	Gly	Lys	Cys	Leu	Ser	Lys
				530					535					540
Ser	Gln	Gln	Cys	Asn	Gly	Lys	Asp	Asp	Cys	Gly	Asp	Gly	Ser	Asp
				545					550					555
Glu	Ala	Ser	Cys	Pro	Lys	Val	Asn	Val	Val	Thr	Cys	Thr	Lys	His
				560					565					570
Thr	Tyr	Arg	Cys	Leu	Asn	Gly	Leu	Cys	Leu	Ser	Lys	Gly	Asn	Pro
				575					580					585
Glu	Cys	Asp	Gly	Lys	Glu	Asp	Cys	Ser	Asp	Gly	Ser	Asp	Glu	Lys
				590					595					600
Asp	Cys	Asp	Cys	Gly	Leu	Arg	Ser	Phe	Thr	Arg	Gln	Ala	Arg	Val
				605					610					615
Val	Gly	Gly	Thr	Asp	Ala	Asp	Glu	Gly	Glu	Trp	Pro	Trp	Gln	Val
				620					625					630
Ser	Leu	His	Ala	Leu	Gly	Gln	Gly	His	Ile	Cys	Gly	Ala	Ser	Leu
				635					640					645
Ile	Ser	Pro	Asn	Trp	Leu	Val	Ser	Ala	Ala	His	Cys	Tyr	Ile	Asp
				650					655					660
Asp	Arg	Gly	Phe	Arg	Tyr	Ser	Asp	Pro	Thr	Gln	Trp	Thr	Ala	Phe
				665					670					675
Leu	Gly	Leu	His	Asp	Gln	Ser	Gln	Arg	Ser	Ala	Pro	Gly	Val	Gln
				680					685					690
Glu	Arg	Arg	Leu	Lys	Arg	Ile	Ile	Ser	His	Pro	Phe	Phe	Asn	Asp
				695					700					705
Phe	Thr	Phe	Asp	Tyr	Asp	Ile	Ala	Leu	Leu	Glu	Leu	Glu	Lys	Pro
				710					715					720
Ala	Glu	Tyr	Ser	Ser	Met	Val	Arg	Pro	Ile	Cys	Leu	Pro	Asp	Ala
				725					730					735
Ser	His	Val	Phe	Pro	Ala	Gly	Lys	Ala	Ile	Trp	Val	Thr	Gly	Trp
				740					745					750
Gly	His	Thr	Gln	Tyr	Gly	Gly	Thr	Gly	Ala	Leu	Ile	Leu	Gln	Lys
				755					760					765
Gly	Glu	Ile	Arg	Val	Ile	Asn	Gln	Thr	Thr	Cys	Glu	Asn	Leu	Leu
				770					775					780
Pro	Gln	Gln	Ile	Thr	Pro	Arg	Met	Met	Cys	Val	Gly	Phe	Leu	Ser
				785					790					795
Gly	Gly	Val	Asp	Ser	Cys	Gln	Gly	Asp	Ser	Gly	Gly	Pro	Leu	Ser
				800					805					810
Ser	Val	Glu	Ala	Asp	Gly	Arg	Ile	Phe	Gln	Ala	Gly	Val	Val	Ser
				815					820					825
Trp	Gly	Asp	Gly	Cys	Ala	Gln	Arg	Asn	Lys	Pro	Gly	Val	Tyr	Thr
				830					835					840
Arg	Leu	Pro	Leu	Phe	Arg	Asp	Trp	Ile	Lys	Glu	Asn	Thr	Gly	Val
				845					850					855

~~MBW~~
~~A/C~~

<210> 3
<211> 256
<212> PRT
<213> *Homo sapiens*
<220>
<223> Hepsin
<400> 3

Arg Ile Val Gly Gly Arg Asp Thr Ser Leu Gly Arg Trp Pro Trp
5 10 15
Gln Val Ser Leu Arg Tyr Asp Gly Ala His Leu Cys Gly Gly Ser
20 25 30
Leu Leu Ser Gly Asp Trp Val Leu Thr Ala Ala His Cys Phe Pro
35 40 45
Glu Arg Asn Arg Val Leu Ser Arg Trp Arg Val Phe Ala Gly Ala
50 55 60
Val Ala Gln Ala Ser Pro His Gly Leu Gln Leu Gly Val Gln Ala
65 70 75
Val Val Tyr His Gly Gly Tyr Leu Pro Phe Arg Asp Pro Asn Ser
80 85 90
Glu Glu Asn Ser Asn Asp Ile Ala Leu Val His Leu Ser Ser Pro
95 100 105
Leu Pro Leu Thr Glu Tyr Ile Gln Pro Val Cys Leu Pro Ala Ala
110 115 120
Gly Gln Ala Leu Val Asp Gly Lys Ile Cys Thr Val Thr Gly Trp
125 130 135
Gly Asn Thr Gln Tyr Tyr Gly Gln Gln Ala Gly Val Leu Gln Glu
140 145 150
Ala Arg Val Pro Ile Ile Ser Asn Asp Val Cys Asn Gly Ala Asp
155 160 165
Phe Tyr Gly Asn Gln Ile Lys Pro Lys Met Phe Cys Ala Gly Tyr
170 175 180
Pro Glu Gly Gly Ile Asp Ala Cys Gln Gly Asp Ser Gly Gly Pro
185 190 195
Phe Val Cys Glu Asp Ser Ile Ser Arg Thr Pro Arg Trp Arg Leu
200 205 210
Cys Gly Ile Val Ser Trp Gly Thr Gly Cys Ala Leu Ala Gln Lys
215 220 225
Pro Gly Val Tyr Thr Lys Val Ser Asp Phe Arg Glu Trp Ile Phe
230 235 240
Gln Ala Ile Lys Thr His Ser Glu Ala Ser Gly Met Val Thr Gln
245 250 255

Leu

<210> 4
<211> 225
<212> PRT

M
b
A
W
<213> *Homo sapiens*

<220>

<223> SCCE

<400> 4

Lys	Ile	Ile	Asp	Gly	Ala	Pro	Cys	Ala	Arg	Gly	Ser	His	Pro	Trp
				5					10					15
Gln	Val	Ala	Ieu	Leu	Ser	Gly	Asn	Gln	Leu	His	Cys	Gly	Gly	Val
				20					25					30
Leu	Val	Asn	Glu	Arg	Trp	Val	Leu	Thr	Ala	Ala	His	Cys	Lys	Met
				35					40					45
Asn	Glu	Tyr	Thr	Val	His	Leu	Gly	Ser	Asp	Thr	Leu	Gly	Asp	Arg
				50					55					60
Arg	Ala	Gln	Arg	Ile	Lys	Ala	Ser	Lys	Ser	Phe	Arg	His	Pro	Gly
				65					70					75
Tyr	Ser	Thr	Gln	Thr	His	Val	Asn	Asp	Leu	Met	Leu	Val	Lys	Leu
				80					85					90
Asn	Ser	Gln	Ala	Arg	Leu	Ser	Ser	Met	Val	Lys	Lys	Val	Arg	Leu
				95					100					105
Pro	Ser	Arg	Cys	Glu	Pro	Pro	Gly	Thr	Thr	Cys	Thr	Val	Ser	Gly
				110					115					120
Trp	Gly	Thr	Thr	Thr	Ser	Pro	Asp	Val	Thr	Phe	Pro	Ser	Asp	Leu
				125					130					135
Met	Cys	Val	Asp	Val	Lys	Leu	Ile	Ser	Pro	Gln	Asp	Cys	Thr	Lys
				140					145					150
Val	Tyr	Lys	Asp	Leu	Leu	Glu	Asn	Ser	Met	Leu	Cys	Ala	Gly	Ile
				155					160					165
Pro	Asp	Ser	Lys	Lys	Asn	Ala	Cys	Asn	Gly	Asp	Ser	Gly	Gly	Pro
				170					175					180
Leu	Val	Cys	Arg	Gly	Thr	Leu	Gln	Gly	Leu	Val	Ser	Trp	Gly	Thr
				185					190					195
Phe	Pro	Cys	Gly	Gln	Pro	Asn	Asp	Pro	Gly	Val	Tyr	Thr	Gln	Val
				200					205					210
Cys	Lys	Phe	Thr	Lys	Trp	Ile	Asn	Asp	Thr	Met	Lys	Lys	His	Arg
				215					220					225

<210> 5

<211> 225

<212> PRT

<213> *Homo sapiens*

<220>

<223> Trypsin

<400> 5

Lys	Ile	Val	Gly	Gly	Tyr	Asn	Cys	Glu	Glu	Asn	Ser	Val	Pro	Tyr
				5					10					15
Gln	Val	Ser	Leu	Asn	Ser	Gly	Tyr	His	Phe	Cys	Gly	Gly	Ser	Leu
				20					25					30

Ile Asn Glu Gln Trp Val Val Ser Ala Gly His Cys Tyr Lys Ser
 35 40 45
 Arg Ile Gln Val Arg Leu Gly Glu His Asn Ile Glu Val Leu Glu
 50 55 60
 Gly Asn Glu Gln Phe Ile Asn Ala Ala Lys Ile Ile Arg His Pro
 65 70 75
 Gln Tyr Asp Arg Lys Thr Leu Asn Asn Asp Ile Met Leu Ile Lys
 80 85 90
 Leu Ser Ser Arg Ala Val Ile Asn Ala Arg Val Ser Thr Ile Ser
 95 100 105
 Leu Pro Thr Ala Pro Pro Ala Thr Gly Thr Lys Cys Leu Ile Ser
 110 115 120
 Gly Trp Gly Asn Thr Ala Ser Ser Gly Ala Asp Tyr Pro Asp Glu
 125 130 135
 Leu Gln Cys Leu Asp Ala Pro Val Leu Ser Gln Ala Lys Cys Glu
 140 145 150
 Ala Ser Tyr Pro Gly Lys Ile Thr Ser Asn Met Phe Cys Val Gly
 155 160 165
 Phe Leu Glu Gly Gly Lys Asp Ser Cys Gln Gly Asp Ser Gly Gly
 170 175 180
 Pro Val Val Cys Asn Gly Gln Leu Gln Gly Val Val Ser Trp Gly
 185 190 195
 Asp Gly Cys Ala Gln Lys Asn Lys Pro Gly Val Tyr Thr Lys Val
 200 205 210
 Tyr Asn Tyr Val Lys Trp Ile Lys Asn Thr Ile Ala Ala Asn Ser
 215 220 225

A1
WY
 <210> 6
 <211> 231
 <212> PRT
 <213> *Homo sapiens*
 <220>
 <223> Chymotrypsin
 <400> 6

Arg Ile Val Asn Gly Glu Asp Ala Val Pro Gly Ser Trp Pro Trp
 5 10 15
 Gln Val Ser Leu Gln Asp Lys Thr Gly Phe His Phe Cys Gly Gly
 20 25 30
 Ser Leu Ile Ser Glu Asp Trp Val Val Thr Ala Ala His Cys Gly
 35 40 45
 Val Arg Thr Ser Asp Val Val Ala Gly Glu Phe Asp Gln Gly
 50 55 60
 Ser Asp Glu Glu Asn Ile Gln Val Leu Lys Ile Ala Lys Val Phe
 65 70 75
 Lys Asn Pro Lys Phe Ser Ile Leu Thr Val Asn Asn Asp Ile Thr
 80 85 90
 Leu Leu Lys Leu Ala Thr Pro Ala Arg Phe Ser Gln Thr Val Ser
 95 100 105

Ala Val Cys Leu Pro Ser Ala Asp Asp Asp Phe Pro Ala Gly Thr
110 115 120
Leu Cys Ala Thr Thr Gly Trp Gly Lys Thr Lys Tyr Asn Ala Asn
125 130 135
Lys Thr Pro Asp Lys Leu Gln Gln Ala Ala Leu Pro Leu Leu Ser
140 145 150
Asn Ala Glu Cys Lys Lys Ser Trp Gly Arg Arg Ile Thr Asp Val
155 160 165
Met Ile Cys Ala Gly Ala Ser Gly Val Ser Ser Cys Met Gly Asp
170 175 180
Ser Gly Gly Pro Leu Val Cys Gln Lys Asp Gly Ala Trp Thr Leu
185 190 195
Val Gly Ile Val Ser Trp Gly Ser Asp Thr Cys Ser Thr Ser Ser
200 205 210
Pro Gly Val Tyr Ala Arg Val Thr Lys Leu Ile Pro Trp Val Gln
215 220 225
Lys Ile Leu Ala Ala Asn
230

<210> 7

<211> 255

<212> PRT

<213> *Homo sapiens*

<220>

<223> Factor 7

<400> 7

Arg Ile Val Gly Gly Lys Val Cys Pro Lys Gly Glu Cys Pro Trp
5 10 15
Gln Val Leu Leu Leu Val Asn Gly Ala Gln Leu Cys Gly Gly Thr
20 25 30
Leu Ile Asn Thr Ile Trp Val Val Ser Ala Ala His Cys Phe Asp
35 40 45
Lys Ile Lys Asn Trp Arg Asn Leu Ile Ala Val Leu Gly Glu His
50 55 60
Asp Leu Ser Glu His Asp Gly Asp Glu Gln Ser Arg Arg Val Ala
65 70 75
Gln Val Ile Ile Pro Ser Thr Tyr Val Pro Gly Thr Thr Asn His
80 85 90
Asp Ile Ala Leu Leu Arg Leu His Gln Pro Val Val Leu Thr Asp
95 100 105
His Val Val Pro Leu Cys Leu Pro Glu Arg Thr Phe Ser Glu Arg
110 115 120
Thr Leu Ala Phe Val Arg Phe Ser Leu Val Ser Gly Trp Gly Gln
125 130 135
Leu Leu Asp Arg Gly Ala Thr Ala Leu Glu Leu Met Val Leu Asn
140 145 150
Val Pro Arg Leu Met Thr Gln Asp Cys Leu Gln Gln Ser Arg Lys
155 160 165

Val Gly Asp Ser Pro Asn Ile Thr Glu Tyr Met Phe Cys Ala Gly
170 175 180
Tyr Ser Asp Gly Ser Lys Asp Ser Cys Lys Gly Asp Ser Gly Gly
185 190 195
Pro His Ala Thr His Tyr Arg Gly Thr Trp Tyr Leu Thr Gly Ile
200 205 210
Val Ser Trp Gly Gln Gly Cys Ala Thr Val Gly His Phe Gly Val
215 220 225
Tyr Thr Arg Val Ser Gln Tyr Ile Glu Trp Leu Gln Lys Leu Met
230 235 240
Arg Ser Glu Pro Arg Pro Gly Val Leu Leu Arg Ala Pro Phe Pro
245 250 255

Mb BK
A W
<210> 8

<211> 253

<212> PRT

<213> *Homo sapiens*

<220>

<223> Tissue plasminogen activator

<400> 8

Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile Ala Ser His Pro Trp
5 10 15
Gln Ala Ala Ile Phe Ala Lys His Arg Arg Ser Pro Gly Glu Arg
20 25 30
Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp Ile Leu Ser
35 40 45
Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His Leu Thr
50 55 60
Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu Glu
65 70 75
Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp
80 85 90
Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser
95 100 105
Asp Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val
110 115 120
Cys Leu Pro Pro Ala Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys
125 130 135
Glu Leu Ser Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr
140 145 150
Ser Glu Arg Leu Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser
155 160 165
Arg Cys Thr Ser Gln His Leu Leu Asn Arg Thr Val Thr Asp Asn
170 175 180
Met Leu Cys Ala Gly Asp Thr Arg Ser Gly Gly Pro Gln Ala Asn
185 190 195
Leu His Asp Ala Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys
200 205 210

Leu Asn Asp Gly Arg Met Thr Leu Val Gly Ile Ile Ser Trp Gly
 215 220 225
 Leu Gly Cys Gly Gln Lys Asp Val Pro Gly Val Tyr Thr Lys Val
 230 235 240
 Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn Met Arg Pro
 245 250

<210> 9.
 <211> 2900
 <212> DNA
 <213> *Homo sapiens*
 <220>
 <223> SNC-19; GeneBank Accession No. #U20428
 <400> 9

Mb BK
Al WY

cgctgggtgg	tgctggcagc	cgtgctgatc	ggcctcctct	tggtcttgct	ggggatcgac	60
ttcctgggt	ggcatttgc	gtacgggac	gtgcgtgtcc	agaaggctt	caatggctac	120
atgaggatca	caaataggaa	tttggat	gcctacgaga	actccaactc	cactgagtt	180
gtaaggcctgg	ccagcaaggt	gaaggacgac	ctgaagctgc	tgtacagcgg	agtcccattc	240
ctgggcccc	accacaaggaa	gtcggtgt	acggccttc	gcgaggccag	cgtcatcgcc	300
tactacttgt	ctgagttcag	catcccgac	cacctggtt	aggaggccga	gcgcgtcatg	360
gccaggagcg	cgtgtcatg	ctggcccccgc	ggcgcgcctc	cctgaagtcc	tttgtggtca	420
cctcagtgtt	ggctttcccc	acgactcca	aaacagtaca	gaggacccag	gacaacagct	480
gcagcttgg	cctgcacgac	gcgtgtgga	gctgatgcgc	ttcaccacgc	cggctccct	540
gacagccct	accccgctca	tgcccgcgtc	cagtggtctg	cggggacgcg	acgcagtgct	600
gagctactcg	agctgactcg	cagttgact	gcgcctcgac	gagcgcggca	gcgacctggt	660
gacgtgtaca	acacccttag	ccccatggag	ccccacgcct	ggtgagtgt	ttgcacccat	720
cctccctcc	acaacactgac	cttccactcc	ctcccacgaa	cgtcctgctc	atcacactga	780
taaccaacac	tgacgcggca	tccggctt	gaggccacat	tcttcagct	gcctaggatg	840
agcagctgt	gaggccgcctt	acgtaaagcc	cagggacat	tcaacagccc	ctactaccca	900
ggccactacc	cacccaaat	tgactgcaca	tggaaaattg	agggtcccaa	caaccagcat	960
gtgaagggtgc	gcttcaaatt	cttctacctg	ctggagcccg	ggtgcctgc	gggcacctgc	1020
cccaaggact	acgtggagat	caatggggag	aaataactgcg	gagagaggtc	ccagttcgctc	1080
gtcaccagca	acagcaacaa	gatcacagtt	cgcttccact	cagatcagtc	ctacacccgac	1140
accggcttct	tagctgaata	cctctccctac	gactccagtg	accatgccc	ggggcagttc	1200
acgtgcccga	cggggcgggt	tatccggaaag	gagctgcgt	gtgatgggt	ggcactgca	1260
ccgaccacag	cgtgagctc	aactgcagtt	gcgacgcccgg	ccaccaggcc	acgtgcaaga	1320
gcaagttctg	caagctttc	tgggtctgcg	acagtgtgaa	cgagtgcgg	gacaacagcg	1380
acgagcagg	ttgcatttgt	ccgacccag	accttcaggt	gttccaatgg	gaagtgcctc	1440
tcgaaaagcc	agcagtgc	tggaaaggac	gactgtgggg	acgggtccga	cgaggcctcc	1500
tgcccccaagg	tgaacgtcgt	cacttgtacc	aaacacacat	accgctgcct	caatgggctc	1560
tgcttgagca	aggcaaccc	tgagtgtgac	ggaaaggagg	actgtagcga	cggctcagat	1620
gagaaggact	gcgactgtgg	gctgcggta	ttcacgagac	aggctcgtgt	tttgtggggc	1680
acggatgcgg	atgagggcga	gtggccctgg	caggtaaagcc	tgcatgctct	ggccaggggc	1740
cacatctcg	gtgctccct	catctctccc	aactggctgg	tctctgcgc	acactgctac	1800
atcgatgaca	gaggattcag	gtactcagac	cccacgcagg	acggcctcc	tgggcttgca	1860
cgaccagagc	cagcgcaggc	cctgggggtgc	aggagcgcag	gctcaagcgc	atcatctccc	1920
accccttctt	caatgacttc	acttcgact	atgacatcgc	gctgctggag	ctggagaaac	1980
cggcagagta	cagctccatg	gtgcggccca	tctgcctgac	ggacgcctgc	catgtctcc	2040

ctggccggcaa ggccatctgg gtcacgggct ggggacacac ccagtatgga ggcactggcg 2100
cgctgatcct gcaaaaagggt gagatccgcg tcatacaacca gaccacctgc gagaacctcc 2160
tgccgcagca gatcacgcgc cgcatgatgt gcgtggcctt cctcagcggc ggcgtggact 2220
cctgccagg tgattccggg ggacccctgt ccagcgtgga ggcggatggg cggatctcc 2280
aggccggtgt ggtgagctgg ggagacgctg cgctcagagg aacaagccag gcgtgtacac 2340
aaggctccct ctgtttcggg aatggatcaa agagaacact ggggtatagg ggccggggcc 2400
acccaaatgt gtacacctgc ggggccaccc atcgtccacc ccagtgtgca cgcctgcagg 2460
ctggagactc ggcacccgtg acctgcacca ggcgcggcaga acataactg tgaactcatc 2520
tccaggctca aatctgctag aaaacctctc gcttcctcag cctccaaagt ggagctggga 2580
gggtagaagg ggaggaacac tggtggttct actgacccaa ctggggcaag gtttgaagca 2640
cagctccggc agdccaagtg ggcgaggacg cgtttgta tactgcccctg ctctatacac 2700
ggaagacctg gatdtctagt gagggtgact gccgatctg gctgtggtcc ttggccacgc 2760
ttcttgagga agcccaggct cgaggaccc tggaaaacag acgggtctga gactgaaaat 2820
ggtttaccag ctcccagggtg acttcagtgt gtgtattgtg taaatgagta aaacatttta 2880
tttctttta aaaaaaaaaa 2900

<210> 10
<211> 902
<212> PRT
<213> *Mus musculus*
<220>
<223> Epithin
<400> 10

Met Gly Ser Asn Arg Gly Arg Lys Ala Gly Gly Gly Ser Gln Asp
5 10 15
Phe Gly Ala Gly Leu Lys Tyr Asp Ser Arg Leu Glu Asn Met Asn
20 25 30
Gly Phe Glu Glu Gly Val Glu Phe Leu Pro Ala Asn Asn Ala Lys
35 40 45
Lys Val Glu Lys Arg Gly Pro Arg Arg Trp Val Val Leu Val Ala
50 55 60
Val Leu Phe Ser Phe Leu Leu Ser Leu Met Ala Gly Leu Leu
65 70 75
Val Trp His Phe His Tyr Arg Asn Val Arg Val Gln Lys Val Phe
80 85 90
Asn Gly His Leu Arg Ile Thr Asn Glu Ile Phe Leu Asp Ala Tyr
95 100 105
Glu Asn Ser Thr Ser Thr Glu Phe Ile Ser Leu Ala Ser Gln Val
110 115 120
Lys Glu Ala Leu Lys Leu Leu Tyr Asn Glu Val Pro Val Leu Gly
125 130 135
Pro Tyr His Lys Lys Ser Ala Val Thr Ala Phe Ser Glu Gly Ser
140 145 150
Val Ile Ala Tyr Tyr Trp Ser Glu Phe Ser Ile Pro Pro His Leu
155 160 165
Ala Glu Glu Val Asp Arg Ala Met Ala Val Glu Arg Val Val Thr
170 175 180

M
W

M
BX

Leu	Pro	Pro	Arg	Ala	Arg	Ala	Leu	Lys	Ser	Phe	Val	Leu	Thr	Ser
				185					190				195	
Val	Val	Ala	Phe	Pro	Ile	Asp	Pro	Arg	Met	Leu	Gln	Arg	Thr	Gln
				200					205				210	
Asp	Asn	Ser	Cys	Ser	Phe	Ala	Leu	His	Ala	His	Gly	Ala	Ala	Val
				215					220				225	
Thr	Arg	Phe	Thr	Thr	Pro	Gly	Phe	Pro	Asn	Ser	Pro	Tyr	Pro	Ala
				230					235				240	
His	Ala	Arg	Cys	Gln	Trp	Val	Leu	Arg	Gly	Asp	Ala	Asp	Ser	Val
				245					250				255	
Leu	Ser	Leu	Thr	Phe	Arg	Ser	Phe	Asp	Val	Ala	Pro	Cys	Asp	Glu
				260					265				270	
His	Gly	Ser	Asp	Leu	Val	Thr	Val	Tyr	Asp	Ser	Leu	Ser	Pro	Met
				275					280				285	
Glu	Pro	His	Ala	Val	Val	Arg	Leu	Cys	Gly	Thr	Phe	Ser	Pro	Ser
				290					295				300	
Tyr	Asn	Leu	Thr	Phe	Leu	Ser	Ser	Gln	Asn	Val	Phe	Leu	Val	Thr
				305					310				315	
Leu	Ile	Thr	Asn	Thr	Gly	Arg	Arg	His	Leu	Gly	Phe	Glu	Ala	Thr
				320					325				330	
Phe	Phe	Gln	Leu	Pro	Lys	Met	Ser	Ser	Cys	Gly	Gly	Val	Leu	Ser
				335					340				345	
Asp	Thr	Gln	Gly	Thr	Phe	Ser	Ser	Pro	Tyr	Tyr	Pro	Gly	His	Tyr
				350					355				360	
Pro	Pro	Asn	Ile	Asn	Cys	Thr	Trp	Asn	Ile	Lys	Val	Pro	Asn	Asn
				365					370				375	
Arg	Asn	Val	Lys	Val	Arg	Phe	Lys	Leu	Phe	Tyr	Leu	Val	Asp	Pro
				380					385				390	
Asn	Val	Pro	Val	Gly	Ser	Cys	Thr	Lys	Asp	Tyr	Val	Glu	Ile	Asn
				395					400				405	
Gly	Glu	Lys	Gly	Ser	Gly	Glu	Arg	Ser	Gln	Rhe	Val	Val	Ser	Ser
				410					415				420	
Asn	Ser	Ser	Lys	Ile	Thr	Val	His	Phe	His	Ser	Asp	His	Ser	Tyr
				425					430				435	
Thr	Asp	Thr	Gly	Phe	Leu	Ala	Glu	Tyr	Leu	Ser	Tyr	Asp	Ser	Asn
				440					445				450	
Asp	Pro	Cys	Pro	Gly	Met	Phe	Met	Cys	Lys	Thr	Gly	Arg	Cys	Ile
				455					460				465	
Arg	Lys	Glu	Leu	Arg	Cys	Asp	Gly	Trp	Ala	Asp	Cys	Pro	Asp	Tyr
				470					475				480	
Ser	Asp	Glu	Arg	Tyr	Cys	Arg	Cys	Asn	Ala	Thr	His	Gln	Phe	Thr
				485					490				495	
Cys	Lys	Asn	Gln	Phe	Cys	Lys	Pro	Leu	Phe	Trp	Val	Cys	Asp	Ser
				500					505				510	
Val	Asn	Asp	Cys	Gly	Asp	Gly	Ser	Asp	Glu	Glu	Gly	Cys	Ser	Cys
				515					520				525	
Pro	Ala	Gly	Ser	Phe	Lys	Cys	Ser	Asn	Gly	Lys	Cys	Leu	Pro	Gln
				530					535				540	
Ser	Gln	Lys	Cys	Asn	Gly	Lys	Asp	Asn	Cys	Gly	Asp	Gly	Ser	Asp
				545					550				555	
Glu	Ala	Ser	Cys	Asp	Ser	Val	Asn	Val	Val	Ser	Cys	Thr	Lys	Tyr
				560					565				570	

*M
B
A
M*

Thr	Tyr	Arg	Cys	Gln	Asn	Gly	Leu	Cys	Leu	Ser	Lys	Gly	Asn	Pro
				575					580				585	
Glu	Cys	Asp	Gly	Lys	Thr	Asp	Cys	Ser	Asp	Gly	Ser	Asp	Glu	Lys
				590					595				600	
Asn	Cys	Asp	Cys	Gly	Leu	Arg	Ser	Phe	Thr	Lys	Gln	Ala	Arg	Val
				605					610				615	
Val	Gly	Gly	Thr	Asn	Ala	Asp	Glu	Gly	Glu	Trp	Pro	Trp	Gln	Val
				620					625				630	
Ser	Leu	His	Ala	Leu	Gly	Gln	Gly	His	Leu	Cys	Gly	Ala	Ser	Leu
				635					640				645	
Ile	Ser	Pro	Asp	Trp	Leu	Val	Ser	Ala	Ala	His	Cys	Phe	Gln	Asp
				650					655				660	
Asp	Lys	Asn	Phe	Dys	Tyr	Ser	Asp	Tyr	Thr	Met	Trp	Thr	Ala	Phe
				665					670				675	
Leu	Gly	Leu	Leu	Asp	Gln	Ser	Lys	Arg	Ser	Ala	Ser	Gly	Val	Gln
				680					685				690	
Glu	Leu	Lys	Leu	Lys	Arg	Ile	Ile	Thr	His	Pro	Ser	Phe	Asn	Asp
				695					700				705	
Phe	Thr	Phe	Asp	Tyr	Asp	Ile	Ala	Leu	Leu	Glu	Leu	Glu	Lys	Ser
				710					715				720	
Val	Glu	Tyr	Ser	Thr	Val	Val	Arg	Pro	Ile	Cys	Leu	Pro	Asp	Ala
				725					730				735	
Thr	His	Val	Phe	Pro	Ala	Gly	Lys	Ala	Ile	Trp	Val	Thr	Gly	Trp
				740					745				750	
Gly	His	Thr	Lys	Glu	Gly	Gly	Thr	Gly	Ala	Leu	Ile	Leu	Gln	Lys
				755					760				765	
Gly	Glu	Ile	Arg	Val	Ile	Asn	Gln	Thr	Thr	Cys	Glu	Asp	Leu	Met
				770					775				780	
Pro	Gln	Gln	Ile	Thr	Pro	Arg	Met	Met	Cys	Val	Gly	Phe	Leu	Ser
				785					790				795	
Gly	Gly	Val	Asp	Ser	Cys	Gln	Gly	Asp	Ser	Gly	Gly	Pro	Leu	Ser
				800					805				810	
Ser	Ala	Glu	Lys	Asp	Gly	Arg	Met	Phe	Gln	Ala	Gly	Val	Val	Ser
				815					820				825	
Trp	Gly	Glu	Gly	Cys	Ala	Gln	Arg	Asn	Lys	Pro	Gly	Val	Tyr	Thr
				830					835				840	
Arg	Leu	Pro	Cys	Ser	Ser	Gly	Leu	Asp	Gln	Arg	Ala	His	Trp	Gly
				845					850				855	
Ile	Ala	Ala	Trp	Thr	Asp	Ser	Arg	Pro	Gln	Thr	Pro	Thr	Gly	Met
				860					865				870	
Pro	Asp	Met	His	Thr	Trp	Ile	Gln	Glu	Arg	Asn	Thr	Asp	Asp	Ile
				875					880				885	
Tyr	Ala	Val	Ala	Ser	Pro	Pro	Gln	His	Asn	Pro	Asp	Cys	Glu	Leu
				890					895				900	
His Pro														

<210> 11

<211> 23

<212> DNA

~~<213> Artificial sequence
<220>
<221> n=Inosine
<222> 6, 9, 12, 15, 18
<223> Degenerate oligonucleotide primer
<400> 11~~
tgggtngtna chgcngcnca ytg

23

M b
B X
A W
~~<210> 12
<211> 20
<212> DNA
<213> Artificial sequence
<220>
<221> n=Inosine
<222> 3, 6, 9, 12, 18
<223> Degenerate oligonucleotide primer
<400> 12~~
arnnnccncc cnswrtncc

20

~~<210> 13
<211> 12
<212> PRT
<213> *Homo sapiens*
<220>
<223> Fragment of TADG-15
<400> 13~~
Leu Phe Arg Asp Trp Ile Lys Glu Asn Thr Gly Val

5

10

~~<210> 14
<211> 20
<212> DNA
<213> Artificial sequence
<220>
<223> TADG-15 forward oligonucleotide primer~~

<400> 14

atgacagagg attcaggtac

20

<210> 15

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> TADG-15 reverse oligonucleotide primer

<400> 15

gaaggtgaag tcattgaaga

20

Mb
Bck

AI
Ant

<210> 16

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> β -tubulin forward oligonucleotide primer

<400> 16

cgcataaacc tgtaactacaa

20

<210> 17

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> β -tubulin reverse oligonucleotide primer

<400> 17

tacgagctgg tggactgaga

20

<210> 18

<211> 3147

<212> RNA

<213> Artificial sequence

<220>

~~<223>~~ Antisense of TADG-15

~~<400>~~ 18

uuuuuuuuuuuu	uuuuuuuuuuua	aaaagaaaaa	aauuguuuuua	cccauuuuaca	50
caaauuacaca	cacugaaguc	cacccuggga	gcugguaaaa	caauuucagu	100
cucagacccg	ucuguuuuucc	aggguccucc	gagccugggc	uuccucaaga	150
gcguggccca	aggggccccac	agcccagauc	cggcagcccc	accaccuuca	200
cugagggaggc	uccgaagcuc	cguuccccgcu	gcuccuuaca	gacaggggag	250
gcagauauac	acaaacgcgc	cucggcccaag	cuuggggcug	gcgggggagg	300
cugugucuuuc	aaaccuuuugc	ccccaguuagg	gucaguagaa	ccaccagugu	350
ccuuccccuuc	uacccuccag	cuccacuuug	gaggcugagg	aagcgagagg	400
uuuuucuaggc	agauuuggag	cccuggagau	ugaguucaca	guguauguuc	450
uggggggcgcu	ggugcaguca	gcgguccagu	cuccagccug	caggcgugca	500
cacuggggug	gacgaugggu	ggccccgcag	guguacacau	uuggguggcc	550
ccggcccccua	uaccccccag	uucucuuuga	uccagucccg	aaacagaggg	600
agcciuugugu	acacgcccugg	cuuguuccuc	ugagcgcagc	cgucucccca	650
gcucaccaca	ccggccugga	agauccgccc	auccgcucc	acgcuggaca	700
gggguccccc	ggaaucaccc	uggcaggagu	ccacgcccgc	gcugaggaag	750
cccacgcaca	ucaugcgcgg	cgugaucugc	ugcggcagga	gguucucgca	800
ggugggucugg	uugaugacgc	ggaucucacc	cuuuugcagg	aucagcgcbc	850
cagugccucc	auacuggggug	ugucccccagc	ccgugaccca	gauggccuug	900
ccggcaggga	agacauggga	ggcgccccgc	aggcagaugg	gccgcaccau	950
ggaggcuguac	ucugccgguu	ucuccagcuc	cagcagcgcg	augucauagu	1000
cgaaggugaa	gucauugaag	aagggguggg	agaugaugcg	cuugagccug	1050
cgcuccugca	ccccaggggc	gcugcgcugg	cucuggucgu	gcaagcccag	1100
gaaggccguc	cacugcggugg	ggucugagua	ccugaauccu	cugucaucga	1150
uguagcagug	ugcggcagag	accagccagu	ugggagagau	gagggaagca	1200
ccgcagagaug	ggcccuggcc	cagagcaugc	aggcuuaccu	gccaggggca	1250
cucgcccucu	uccgcauccg	ugcccccaac	aacacgagcc	ugucucguga	1300
augaccgcag	cccacagucg	caguccuucu	caucugagcc	gucgcuacag	1350
uccuccuucc	cgucacacuc	aggguugccc	uugcucaagg	agagcccauu	1400
gaggcagcgg	uagguguguu	ugguacaagu	gacgacguuc	accuuggggc	1450
aggaggccuc	gucggaccgg	uccccacagu	cguccuuccc	auugcacugc	1500
uggcuiiuucg	agaggcacuu	cccauuggaa	caccugaagg	ucuggggccgg	1550
acaacugcac	cccgugcugu	cgcuguuguc	uccgcagucg	uucacacugu	1600
cgcagaccca	gaagaggggc	uugcagaacu	uguucuugca	cgugacugg	1650
uggccggcgu	cgcaacugca	guugagcuca	ucgcuguggu	cggugcaguc	1700
ggcccagcca	ucacagcgc	gcuccuuccg	gauacaccgc	cccugcgcc	1750
acgugaacug	ccccgggcau	gggucacugg	agucguagga	gagguaauca	1800
gcuaagaagc	cggugucggu	guaggacuga	ucugagugga	agcgaacugu	1850
gaucuuguug	cuguugcugg	ugacgacgaa	cugggaccuc	ucuccgcagu	1900
auuuucucccc	auugaucucc	acguaguccu	uggggcaggu	gcccgcaggg	1950
acgcccggcu	ccagcaggua	gaagaauuuug	aagcucaccu	ucacaugcug	2000
guuguugggc	accucaaugu	uccaugugca	gucaaughug	gguggguagu	2050
ggccugggua	guaggggcug	uugaauugcc	ccuggggcuuu	acquaagcgg	2100
ccuccacagc	ugcucauccu	aggcagcugg	aagaaggugg	ccucaaagcc	2150
gggaugccgc	cgcucagugu	ugguuaucag	ugugaugagc	aggacguucu	2200
gggaggagug	gaaggucagg	uuguaggagg	gaggguaggu	gccacacaaac	2250
ugcaccaggg	cguggggcuc	cauggggcuc	aggguguugu	acaccgucac	2300
caggucgcug	ccgcgcucgu	cgcaggacgc	aaggucaaag	cugcggaaagg	2350
ugaggcucag	cacugagucg	gcguccccc	gcagggccca	cuggcagcgg	2400
gcaugagcgg	gguaggggcu	gucagggaaag	ccgggcccugg	ugaagcgcau	2450

cagcuccaca ccgcgggcgu gcaggccaaa gcugcagcug uuguccuggg 2500
uccucuguac uguuuuggag ucggugggg aagccaccac ugaggugacc 2550
acaaaggacu ucagggagcg cgccccggg ggcagcauga cuacgcgcuc 2600
cucggccaug acgcgcucgg ccuccuccac caggugcugc gggauugcuga 2650
acucagacca guaguaggcg augacgcugc ccucgcugaa ggccgucaca 2700
gccgactccu uguguuaggg gcccaggaau gggacuccgc uguacagcag 2750
cuucagcgcg uccuucaccu ugcuggccag gcuuacaaac ucaguggagu 2800
uggagiuuctc guaggcaucc acaaaaauucu cauuugugau ccucauguag 2850
ccauugaaga cciuucuggac acgcacgucc cgguaucugca aaugccacac 2900
caggaagccg auccccagca agaccaagag gaggccgauc agcacggcug 2950
ccagcaccac ccagcgcccc gggccaugcu uuuccaccuu cuugacguug 3000
uugacuggca ggaacuccac gccuuccucc aagccauua ciiucucugug 3050
ccgggaguug uacuugaguc ccgcgcgaa guccuucggg ccccccuccgc 3100
ccuugcgggc ccgaucgcuc cccaugguac cccgaggccg cuciuga 3147

Mr b
Mr b
V
<210> 19
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 68-76 of the TADG-15 protein
<400> 19
Val Leu Leu Gly Ile Gly Phe Leu Val

5

Mr b
<210> 20
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 126-134 of the TADG-15 protein
<400> 20
Leu Leu Tyr Ser Gly Val Pro Phe Leu

5

<210> 21
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>

<223> Residues 644-652 of the TADG-15 protein

<400> 21

Ser Leu Ile Ser Pro Asn Trp Leu Val

5

<210> 22

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 379-387 of the TADG-15 protein

<400> 22

Lys Val Ser Phe Lys Phe Phe Tyr Leu

5

A <210> 23

W <211> 9

W <212> PRT

W <213> *Homo sapiens*

W <220>

<223> Residues 386-394 of the TADG-15 protein

<400> 23

Tyr Leu Leu Glu Pro Gly Val Pro Ala

5

B <210> 24

B <211> 9

B <212> PRT

B <213> *Homo sapiens*

B <220>

<223> Residues 257-265 of the TADG-15 protein

<400> 24

Ser Leu Thr Phe Arg Ser Phe Asp Leu

5

<210> 25

A
Int

<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 762-770 of the TADG-15 protein
<400> 25
Ile Leu Gln Lys Gly Glu Ile Arg Val

5

M
b
B
nX

<210> 26
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 841-849 of the TADG-15 protein
<400> 26
Arg Leu Pro Leu Phe Arg Asp Trp Ile

5

<210> 27
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 64-72 of the TADG-15 protein
<400> 27
Gly Leu Leu Leu Val Leu Leu Gly Ile

5.

<210> 28
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 57-65 of the TADG-15 protein

<400> 28

Val Leu Ala Ala Val Leu Ile Gly Leu

5

<210> 29

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 67-75 of the TADG-15 protein

<400> 29

Leu Val Leu Leu Gly Ile Gly Phe Leu

5

<210> 30

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 379-387 of the TADG-15 protein

<400> 30

Lys Val Ser Phe Lys Phe Phe Tyr Leu

5

A
W
<210> 31

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 126-134 of the TADG-15 protein

<400> 31

Leu Leu Tyr Ser Gly Val Pro Phe Leu

5

<210> 32

<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 88-96 of the TADG-15 protein
<400> 32

Lys Val Phe Asn Gly Tyr Met Arg Ile

5

<210> 33
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 670-678 of the TADG-15 protein
<400> 33

Thr Gln Trp Thr Ala Phe Leu Gly Leu

5

<210> 34
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 119-127 of the TADG-15 protein
<400> 34

Lys Val Lys Asp Ala Leu Lys Leu Leu

5

<210> 35
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 60-68 of the TADG-15 protein

<400> 35

Ala Val Leu Ile Gly Leu Leu Leu Val

5

<210> 36

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 62-70 of the TADG-15 protein

<400> 36

Leu Ile Gly Leu Leu Leu Val Leu Leu

5

<210> 37

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 57-65 of the TADG-15 protein

<400> 37

Val Leu Ala Ala Val Leu Ile Gly Leu

5

ab <210> 38

BB <211> 9

CC <212> PRT

CD <213> *Homo sapiens*

<220>

<223> Residues 61-69 of the TADG-15 protein

<400> 38

Val Leu Ile Gly Leu Leu Leu Val Leu

5

<210> 39

~~<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 146-154 of the TADG-15 protein
<400> 39
Phe Ser Glu Gly Ser Val Ile Ala Tyr~~

5

~~A/
W/
<210> 40
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 658-666 of the TADG-15 protein
<400> 40
Tyr Ile Asp Asp Arg Gly Phe Arg Tyr~~

5

~~B/
B/
<210> 41
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 449-457 of the TADG-15 protein
<400> 41
Ser Ser Asp Pro Cys Pro Gly Gln Phe~~

5

~~<210> 42
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 401-409 of the TADG-15 protein~~

A

<400> 42
Tyr Val Glu Ile Asn Gly Glu Lys Tyr
5

<210> 43
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 387-395 of the TADG-15 protein
<400> 43
Leu Leu Glu Pro Gly Val Pro Ala Gly
5

A1

<210> 44
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 553-561 of the TADG-15 protein
<400> 44
Gly Ser Asp Glu Ala Ser Cys Pro Lys
5

Mb
B1

<210> 45
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 97-105 of the TADG-15 protein
<400> 45
Thr Asn Glu Asn Phe Val Asp Ala Tyr
5

<210> 46
<211> 9

<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 110-118 of the TADG-15 protein
<400> 46
Ser Thr Glu Phe Val Ser Leu Ala Ser

5

<210> 47
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 811-819 of the TADG-15 protein
<400> 47
Ser Val Glu Ala Asp Gly Arg Ile Phe

5

A
Int
<210> 48
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 666-674 of the TADG-15 protein
<400> 48
Tyr Ser Asp Pro Thr Gln Trp Thr Ala

5

B
JK
<210> 49
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 709-717 of the TADG-15 protein
<400> 49

Asp Tyr Asp Ile Ala Leu Leu Glu Leu

5

<210> 50

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 408-416 of the TADG-15 protein

<400> 50

Lys Tyr Cys Gly Glu Arg Ser Gln Phe

5

<210> 51

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 754-762 of the TADG-15 protein

<400> 51

Gln Tyr Gly Gly Thr Gly Ala Leu Ile

5

<210> 52

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 153-161 of the TADG-15 protein

<400> 52

Ala Tyr Tyr Trp Ser Glu Phe Ser Ile

5

<210> 53

<211> 9

<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 722-730 of the TADG-15 protein
<400> 53
Glu Tyr Ser Ser Met Val Arg Pro Ile

5

<210> 54
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 326-334 of the TADG-15 protein
<400> 54
Gly Phe Glu Ala Thr Phe Phe Gln Leu

5

A/
W/
<210> 55
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 304-312 of the TADG-15 protein
<400> 55
Thr Phe His Ser Ser Gln Asn Val Leu

5

B/
W/
<210> 56
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 707-715 of the TADG-15 protein
<400> 56

Thr Phe Asp Tyr Asp Ile Ala Leu Leu

5

<210> 57

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 21-29 of the TADG-15 protein

<400> 57

Lys Tyr Asn Ser Arg His Glu Lys Val

5

<210> 58

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 665-673 of the TADG-15 protein

<400> 58

Arg Tyr Ser Asp Pro Thr Gln Trp Thr

5

<210> 59

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 686-694 of the TADG-15 protein

<400> 59

Ala Pro Gly Val Gln Glu Arg Arg Leu

5

<210> 60

<211> 9

<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 12-20 of the TADG-15 protein
<400> 60
Gly Pro Lys Asp Phe Gly Ala Gly Leu

5

<210> 61
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 668-676 of the TADG-15 protein
<400> 61
Asp Pro Thr Gln Trp Thr Ala Phe Leu

5

A
B
<210> 62
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 461-469 of the TADG-15 protein
<400> 62
Thr Gly Arg Cys Ile Arg Lys Glu Leu

5

<210> 63
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 59-67 of the TADG-15 protein

<400> 63

Ala Ala Val Leu Ile Gly Leu Leu

5

<210> 64

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 379-387 of the TADG-15 protein

<400> 64

Lys Val Ser Phe Lys Phe Phe Tyr Leu

5

<210> 65

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 119-127 of the TADG-15 protein

<400> 65

Lys Val Lys Asp Ala Leu Lys Leu Leu

5

<210> 66

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 780-788 of the TADG-15 protein

<400> 66

Leu Pro Gln Gln Ile Thr Pro Arg Met

5

<210> 67

<211> 9

~~<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 67-75 of the TADG-15 protein
<400> 67
Leu Val Leu Leu Gly Ile Gly Phe Leu~~

5

~~<210> 68
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 283-291 of the TADG-15 protein
<400> 68
Ser Pro Met Glu Pro His Ala Leu Val~~

5

A
Int
~~<210> 69
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 12-20 of the TADG-15 protein
<400> 69~~

B
Int
Gly Pro Lys Asp Phe Gly Ala Gly Leu

5

~~<210> 70
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 257-265 of the TADG-15 protein
<400> 70~~

Ser Leu Thr Phe Arg Ser Phe Asp Leu

5

<210> 71

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 180-188 of the TADG-15 protein

<400> 71

Met Leu Pro Pro Arg Ala Arg Ser Leu

5

<210> 72

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 217-225 of the TADG-15 protein

<400> 72

Gly Leu His Ala Arg Gly Val Glu Leu

5

<210> 73

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 173-181 of the TADG-15 protein

<400> 73

Met Ala Glu Glu Arg Val Val Met Leu

5

<210> 74

<211> 9

<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 267-275 of the TADG-15 protein
<400> 74
Ser Cys Asp Glu Arg Gly Ser Asp Leu

5

<210> 75
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 567-575 of the TADG-15 protein
<400> 75
Cys Thr Lys His Thr Tyr Arg Cys Leu

5

A
W
<210> 76
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 724-732 of the TADG-15 protein
<400> 76
Ser Ser Met Val Arg Pro Ile Cys Leu

5

M
B
X
<210> 77
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 409-417 of the TADG-15 protein
<400> 77

Tyr Cys Gly Glu Arg Ser Gln Phe Val

5

<210> 78

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 495-503 of the TADG-15 protein

<400> 78

Thr Cys Lys Asn Lys Phe Cys Lys Pro

5

<210> 79

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 427-435 of the TADG-15 protein

<400> 79

Val Arg Phe His Ser Asp Gln Ser Tyr

5

<210> 80

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 695-703 of the TADG-15 protein

<400> 80

Lys Arg Ile Ile Ser His Pro Phe Phe

5

<210> 81

<211> 9

<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 664-672 of the TADG-15 protein
<400> 81
Phe Arg Tyr Ser Asp Pro Thr Gln Trp

5

<210> 82
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 220-228 of the TADG-15 protein
<400> 82
Ala Arg Gly Val Glu Leu Met Arg Phe

5

A
M
<210> 83
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 492-500 of the TADG-15 protein
<400> 83
His Gln Phe Thr Cys Lys Asn Lys Phe

5

M
B/X
<210> 84
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 53-61 of the TADG-15 protein
<400> 84

Gly Arg Trp Val Val Leu Ala Ala Val

5

<210> 85

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 248-256 of the TADG-15 protein

<400> 85

Leu Arg Gly Asp Ala Asp Ser Val Leu

5

<210> 86

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 572-580 of the TADG-15 protein

<400> 86

Tyr Arg Cys Leu Asn Gly Leu Cys Leu

5

<210> 87

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 692-700 of the TADG-15 protein

<400> 87

Arg Arg Leu Lys Arg Ile Ile Ser His

5

<210> 88

<211> 9

~~<212> PRT~~
~~<213> *Homo sapiens*~~
~~<220>~~
~~<223> Residues 24-32 of the TADG-15 protein~~
~~<400> 88~~
Ser Arg His Glu Lys Val Asn Gly Leu

5

~~<210> 89~~
~~<211> 9~~
~~<212> PRT~~
~~<213> *Homo sapiens*~~
~~<220>~~
~~<223> Residues 147-155 of the TADG-15 protein~~
~~<400> 89~~
Ser Glu Gly Ser Val Ile Ala Tyr Tyr

5

A/
unt
~~<210> 90~~
~~<211> 9~~
~~<212> PRT~~
~~<213> *Homo sapiens*~~
~~<220>~~
~~<223> Residues 715-723 of the TADG-15 protein~~
~~<400> 90~~
Leu Glu Leu Glu Lys Pro Ala Glu Tyr

5

B/wk
~~<210> 91~~
~~<211> 9~~
~~<212> PRT~~
~~<213> *Homo sapiens*~~
~~<220>~~
~~<223> Residues 105-113 of the TADG-15 protein~~
~~<400> 91~~

Tyr Glu Asn Ser Asn Ser Thr Glu Phe

5

<210> 92

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 14-22 of the TADG-15 protein

<400> 92

Lys Asp Phe Gly Ala Gly Leu Lys Tyr

5

<210> 93

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 129-137 of the TADG-15 protein

<400> 93

Ser Gly Val Pro Phe Leu Gly Pro Tyr

5

<210> 94

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 436-444 of the TADG-15 protein

<400> 94

Thr Asp Thr Gly Phe Leu Ala Glu Tyr

5

<210> 95

<211> 9

<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 766-774 of the TADG-15 protein
<400> 95
Gly Glu Ne Arg Val Ile Asn Gln Thr

5

<210> 96
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 402-410 of the TADG-15 protein
<400> 96
Val Glu Ile Asn Gly Glu Lys Tyr Cys

5

A
C
D
B
W
<210> 97
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 482-490 of the TADG-15 protein
<400> 97
Asp Glu Leu Asn Cys Ser Cys Asp Ala

5

<210> 98
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 82-90 of the TADG-15 protein
<400> 98

Arg Asp Val Arg Val Gln Lys Val Phe

5

A
CUT

NO
B.WY