Process Mining: Data Science in Action

Petri Nets (2/2)

prof.dr.ir. Wil van der Aalst www.processmining.org

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

Safe traffic lights

rg1 rg2 or2 or1 g1 go1 go2 01

non-deterministic

alternating

Non-deteministic traffic lights

- Initial marking: [r1,r2,x]
- Set of reachable markings:

```
{ [r1,r2,x], [g1,r2],
 [r1,g2], [o1,r2],
 [r1,o2] }
```


Reachability graph

The reachability graph of a Petri net is a transition system with one initial state (initial marking) and no explicit final marking.

Reachability graph

Question

Construct the reachability graph

Answer

Multiple arcs connecting a place and a transition

Reachability graph does not need to be finite

Question (not easy, takes 10 minutes!)

- Model a circular railway system with four stations (st1, st2, st3, and st4) and one train.
- At each station passengers may "hop on" or "hop off". This is impossible if the train is moving.
- The train has a capacity of 50 persons; if the train is full, no new passengers may hop on.
- Model the above process in terms of a Petri net.
- What is the number of reachable states?

Hints

- How to describe the state of the train in terms of its location (e.g., moving from st1 to st2) and number of passengers (e.g., 36)?
- What are possible actions?
- When are they possible?

Answer (1/4)

Answer (2/4)

state of the train: location

Answer (3/4)

state of the train: passengers

Answer (4/4)

51 x 8 = 408 reachable markings

Reachability
graph is already
too large to draw
merged model

"Token game" defines play-out

Play-Out (Classical use of models)

Play-In

Replay

Replay

Replay can detect problems

Part I: Introduction

Chapter 1 Data Science in Action

Chapter 2 Process Mining: The Missing Link

Part II: Preliminaries

Chapter 3

Process Modeling and Analysis

Chapter 4 **Data Mining**

Part III: From Event Logs to Process Models

Chapter 5 Getting the Data

Chapter 6

Process Discovery: An Introduction

Chapter 7

Advanced Process Discovery Techniques

Part IV: Beyon

Chapter 8 Conformance Checking

ess Discovery

pter 9 Mining Additional Perspectives

Chapter 10 **Operational Support**

Part V: Putting Process Mining to Work

Chapter 11

Process Mining Software

Chapter 12

Process Mining in the Large

Chapter 13

Analyzing "Lasagna Processes"

Part VI: Reflection

Chapter 15

Cartography and **Navigation**

Chapter 16

Epilogue

Chapter 14

Analyzing "Spaghetti Processes"

Process

Mining

Wil van der Aalst

