

Python in High performance computing

Jussi Enkovaara and Martti Louhivuori

Outline

- High performance computing
- Python and high performance
- Python challenges

High performance computing

- Advanced computational problems
- Scientific computing
- Large scale numerical problems
- Massively parallel supercomputers
- "Every FLOP matters"
- Today's HPC systems: 10¹²-10¹⁵ FLOP/s

High performance computing

- Traditionally, HPC focuses on the computer aspect of performance
- Compiled programming languages
 - Fortran, C, C++
- Parallel computing
 - Message passing paradigm (MPI)
 - Hybrid (threads + message passing)
- Emerging technologies

Why Python?

- High performance for programmer
 - Fast program development
 - Simple syntax
 - Easy to write well readable code
 - Large standard library
 - Lots of third party libraries
- High computer performance with Python?
 - NumPy, C-extensions, optimized libraries

GPAW

- Software package for quantum mechanical simulations of nanostructures
- Implemented in combination of Python and C
- Massively parallelized
- Open source under GPL
- 20-30 developers in Denmark, Finland, Sweden, Germany, UK, US
 - J. Enkovaara et al., J. Phys. Condens. Matter **22**, 253202 (2010)

wiki.fysik.dtu.dk/gpaw

Python benefits

- Lists and dictionaries provide powerful data structures for set-up data
- Convenient file and text manipulation
- Dynamic typing:
 - Depending on input, computations are performed either with real or complex numbers

```
def apply_local_potential(self, psit_nG, Htpsit_nG, s):
    ...
    vt_G = self.vt_sG[s]
    for psit_G, Htpsit_G in zip(psit_nG, Htpsit_nG):
        Htpsit_G += psit_G * vt_G
    ...
```

Numpy – fast array interface

- Standard Python is not well suitable for numerical computations
 - lists are very flexible but also slow to process in numerical computations
- Numpy adds a new array data type
 - static, multidimensional
 - fast processing of arrays
 - some linear algebra, random numbers

Array operations

- Most operations for NumPy arrays are done element-wise
- Operations are carried out in compiled code
 - e.g. loops in C-level
 - NumPy code should be "vectorized"
- Numpy has special functions which can work with array arguments
 - sin, cos, exp, sqrt, log, …
- Performance closer to C than "pure" Python

Linear algebra

- Numpy has routines for basic linear algebra
 - Numpy can be linked to optimized linear algebra libraries (BLAS/LAPACK)
- Performance in matrix multiplication
 - -C = A * B
 - matrix dimension 200
 - pure python: 5.30 s
 - naive C: 0.09 s
 - numpy.dot: 0.01 s
- (GPAW uses custom BLAS interface)

C - extensions

- Some times there are time critical parts of code which would benefit from compiled language
- It is relatively straightforward to create a Python interface to C-functions
- Some tools can simplify the interfacing
 - -SWIG
 - Cython, pyrex

C-extensions

- GPAW uses custom C-extensions for timecritical numerical kernels
- Custom interfaces also to optimized libraries
- NumPy arrays used as data containers

Python + C implementation

Lines of code:

Python

C

Execution time:

BLAS, LAPACK, MPI, NumPy

- Python (+ NumPy)
 - Fast development
 - Slow execution
 - High level algorithms
- C
 - Fast execution
 - Slow development
 - Main numerical kernels

Python + C implementation

Time line of GPAW's codebase

Parallelization in GPAW

- Message passing paradigm
 - Independent processes
 - Memory is local to processes
 - Processes exchange data by sending and receiving messages
 - MPI : standard, API, and library for message passing applications

Parallelization in GPAW

- N independent Python interpreters are launched
 - Interpreter processes use MPI for data exchange
- Custom Python interface to MPI
- MPI calls both from Python and from C

```
# MPI calls within the apply C-function
hamiltonian.apply(psi, hpsi)
# Python interface to MPI_Reduce
norm = gd.comm.sum(np.vdot(psi,psi))
```

All the normal parallel programming concerns

Parallel scalability

- Ground state DFT
 - Blue Gene P, Argonne

- TD-DFT
 - Cray XT5 Jaguar,
 Oak Ridge

Python challenges

Minor challenges

- Special operating systems in supercomputers
 - No dynamic linking
- Debugging and profiling
 - Python contains debugger and profiler for serial applications
- Most parallel development tools support only Fortran and C

Python initialization

- import statements in Python trigger lots of small-file I/O
- Import foo triggers fopen/stat system calls:
 - Directory foo, foo.so, foomodule.so, foo.py, foo.pyc
 - In working directory, default directories, PYTHONPATH
- GPAW initialization:
 - ~350 imports, ~3400 fopen/stat calls

Python initialization

- In parallel calculations all processes perform the same I/O
- Introduces severe bottleneck with large number (> 512) of processes
- In Blue Gene P, importing NumPy + GPAW specific modules with
 - ~32 000 processes can take 45 minutes!

Python initialization

- Create special Python interpreter
 - Single process does I/O in imports, data broadcast to others with MPI

Global interpreter lock

- There is threading support in Python level
- Global interpreter lock in (CPython) interpreter:
 - Only single thread is executed at time
- Threading has to be implemented in Cextensions
 - Higher granularity than algorithmically necessary

Summary

- Python can be used in massively parallel high performance computing
- Combining Python with C one gets best of both worlds
 - High performance for programmer
 - High performance execution
- GPAW: ~25 % of peak performance with 2048 cores

Acknowledgements

- Partnership for Advanced Computing in Europe (PRACE), EU FP7 programme
- Finnish Technology Agency, MASI program
- Argonne Leadership Computing Facility, US DoE
- Whole GPAW development team
 - Marcin, Ask, Christian, Carsten, Lauri, Michael,
 Lara, Mikael, Olga, Mikkel, Jun, Thomas, Jess,
 Mathias, Carsten, Kristian, Jacob, Hannu, Tapio,
 Martti, Risto, ...

Acknowledgements

Questions?