# Algorithms

Balanced Trees

$$2-3-4$$
 Tree

### 2-3 Trees

#### Features

- > each internal node has either 2 or 3 children
- > all leaves are at the same level



### 2-3 Trees with Ordered Nodes

2-node 3-node



• leaf node can be either a 2-node or a 3-node

## Why 2-3 tree

- Faster searching?
  - Actually, no. 2-3 tree is about as fast as an "equally balanced" binary tree, because you sometimes have to make 2 comparisons to get past a 3-node
- Easier to keep balanced?
  - Yes, definitely.
  - Insertion can split 3-nodes into 2-nodes, or promote 2-nodes to 3-nodes to keep tree approximately balanced!

## Why is this better?

- Intuitively, you unbalance a binary tree when you add height to one path significantly more than other possible paths.
- With the 2-3 insert algorithm, you can only add height to the tree when you create a new root, and this adds one unit of height to all paths simultaneously.
- Hence, the average path length of the tree stays close to log N.

# Example of 2-3 Tree



## What did we gain?



What is the time efficiency of searching for an item?

### Gain: Ease of Keeping the Tree Balanced





Insert 38

insert in leaf

divide leaf and move middle value up to parent

result







Insert 37



Insert 36

insert in leaf



divide leaf and move middle value up to parent



still inserting 36

divide overcrowded node, move middle value up to parent, attach children to smallest and largest

result



After Insertion of 35, 34, 33



### Inserting so far



### Inserting so far



How do we insert 32?



- → creating a new root if necessary
- → tree grows at the root



Final Result



Delete 70



Deleting 70: swap 70 with inorder successor (80)



Deleting 70: ... get rid of 70



Result



Delete 100



### Deleting 100



Result



Delete 80



Deleting 80 ...



### Deleting 80 ...





Merge by moving 90 down and removing empty leaf

#### Deleting 80 ...



Merge: move 50 down, adopt empty leaf's child, remove empty node

Remove empty root

Final Result



## Deletion Algorithm I

#### Deleting item I:

- Locate node n, which contains item I
- 2. If node n is not a leaf → swap I with inorder successor
- → deletion always begins at a leaf
- If leaf node n contains another item, just delete item I else

try to redistribute nodes from siblings (see next slide) if not possible, merge node (see next slide)

## Deletion Algorithm II

#### Redistribution

(a)

A sibling has 2 items:

→ redistribute item between siblings and parent





#### Merging

(b)

No sibling has 2 items:

- → merge node
- → move item from parent to sibling





## Deletion Algorithm III

(c)

(d)

#### Redistribution

Internal node n has no item left

→ redistribute



#### Merging

Redistribution not possible:

- → merge node
- → move item from parent to sibling
- → adopt child of n



If n's parent ends up without item, apply process recursively

## Deletion Algorithm IV

If merging process reaches the root and root is without item

→ delete root



## Operations of 2-3 Trees

all operations have time complexity of log n

## 2-3-4 Trees

- similar to 2-3 trees
- 4-nodes can have 3 items and 4 children

#### 4-node



# 2-3-4 Tree Example



### Insertion procedure:

- similar to insertion in 2-3 trees
- items are inserted at the leafs
- since a 4-node cannot take another item,
   4-nodes are split up during insertion process

### Strategy

- on the way from the root down to the leaf: split up all 4-nodes "on the way"
- → insertion can be done in one pass (remember: in 2-3 trees, a reverse pass might be necessary)

Inserting 60, 30, 10, 20, 50, 40, 70, 80, 15, 90, 100

Inserting 60, 30, 10, 20 ...



... 50, 40 ...

Inserting 50, 40 ...



... 70, ...

Inserting 70 ...





... 80, 15 ...

Inserting 80, 15 ...



... 90 ...

Inserting 90 ...



... 100 ...

### Inserting 100 ...



### 2-3-4 Tree: Insertion Procedure

Splitting 4-nodes during Insertion



### 2-3-4 Tree: Insertion Procedure

Splitting a 4-node whose parent is a 2-node during insertion



### 2-3-4 Tree: Insertion Procedure

Splitting a 4-node whose parent is a 3-node during insertion



### 2-3-4 Tree: Deletion

### Deletion procedure:

- similar to deletion in 2-3 trees
- items are deleted at the leafs
   → swap item of internal node with inorder successor
- note: a 2-node leaf creates a problem

#### Strategy (different strategies possible)

- on the way from the root down to the leaf: turn 2-nodes (except root) into 3-nodes
- → deletion can be done in one pass (remember: in 2-3 trees, a reverse pass might be necessary)

## 2-3-4 Tree: Deletion

Turning a 2-node into a 3-node ...

Case 1: an adjacent sibling has 2 or 3 items

→ "steal" item from sibling by rotating items and moving subtree



## 2-3-4 Tree: Deletion

Turning a 2-node into a 3-node ...

Case 2: each adjacent sibling has only one item

→ "steal" item from parent and merge node with sibling (note: parent has at least two items, unless it is the root)



## 2-3-4 Tree: Deletion Practice

Delete 32, 35, 40, 38, 39, 37, 60



# 2-3-4 Insert Example



Insert 24, then 19

# Insert 24: Split root first



# Insert 19, Split leaf (20 up) first

