

1 Moore'sches Gesetz

- alle 18-24 Monate verdoppelt sich die Anzahl der Transistoren auf gleicher Fläche
- Exponentielles Wachstum der Transistorzahl, exponentieller Rückgange des Preises pro Transistor
- Herstellungskosten (Fixkosten, Variable Kosten, Technologiefaktor), Entwicklerproduktivität, Verlustleistungsdichte

2 Einheiten

Potenz	Vorsatz	Potenz	Vorsatz	Hz	s^{-1}
10 ¹²	Т	10-1	d	N J	$kgms^{-2}$ $Nm = VAs$
10^9 10^6	G M	10^{-2} 10^{-3}	c m	W	$VA = Js^{-1}$
10^{3}	k	10-6	μ	C	As
10^{2}	h	10^{-9}	n	V = F	JC^{-1} CV^{-1}
10^{1}	da	10^{-12} 10^{-15}	p f	0	VA^{-1}
		10	'	H	VsA^{-1}

$$Bit \xrightarrow{\cdot 8} Byte \xrightarrow{\cdot 1024} kByte \xrightarrow{\cdot 1024} MByte$$

3 Polyadische Zahlensysteme

$$Z = \sum_{i=-n}^{p-1} r^i \cdot d_i = d_{p-1}...d_1d_0.d_{-1}...d_n$$

$$Z: \mathsf{Zahl}, \quad r: \mathsf{Basis}, \quad d_i: \mathsf{Ziffer}, \quad p: \#\mathsf{Ziffern} \text{ vorne} \quad n: \#\mathsf{Nachkommastellen}$$

Binäres Zahlensystem:

$$\begin{aligned} d_{i2} &\in 0,1 \qquad B = \sum_{i=-n}^{p-1} 2^i \cdot d_i \quad d_{-n} : LSB; \quad d_{p-1} : MSB \\ \text{Octalsystem:} & & \text{Hexadezimalsystem:} \\ d_{i8} &\in 0,1,2,3,4,5,6,7 \end{aligned}$$

Benötigte Bits: N:n Bit. M:m Bit $N+M:\max\{n,m\}+1$ Bit $N\cdot M:n+m$ Bit

3.1 Umrechnung

	$Z \geq 1$	Z < 1
$r \rightarrow 10$	$Z_{10} = \sum_{i=1}^{\infty} r^i \cdot d_i$ $101_2 \to 1 \cdot 4 + 0 \cdot 2 + 1 \cdot 1$	$Z_{10} = \sum_{i=1}^{n} r^{-i} \cdot d_{-i}$ 0.11 ₂ \to 1 \cdot 0.5 + 1 \cdot 0.25
	$101_2 \rightarrow 1 \cdot 4 + 0 \cdot 2 + 1 \cdot 1$	$0.11_2 \rightarrow 1 \cdot 0.5 + 1 \cdot 0.25$
$10 \rightarrow r$	$ d_i = Z_{10} \% r^i \ (d_i = Z_{10} \bmod r^i) $ $58/8 = 7 \text{ Rest } 2(LSB) $	
	58/8 = 7 Rest 2(LSB)	$0.4 \cdot 2 = 0.8 \; \ddot{U}bertrag \; 0(MSB)$
	7/8 = 0 Rest 7(MSB)	$0.8 \cdot 2 = 1.6$ Übertrag 1
	(Ende wenn 0 erreicht)	(Wiederholen bis 1 oder Periodizität)
	Auf Ende achten $1r3\%5 \rightarrow 0r1$	

3.2 Zweierkomplement Wertebereich: $-2^{n-1} \le Z \le 2^{n-1} - 1$

Z
ightarrow - Z (Umkehrung gleich)

1. Invertieren aller Bits

2. Addition von 1

3. Ignoriere Überträge beim MSB

Bsp: Wandle 2 in -2 um $0010 \Rightarrow 1101$ 1101 + 1 = 1110 $\Rightarrow -2_{10} = 1110_2$

3.3 Gleitkommadarstellung nach IEEE 754

Bitverteili	ung(single/double)
(1)	(0 (11)

s(1)	e(8/11)	f(23/52)

s: Vorzeichen, e: Exponent, f: Mantisse (Nachkommastellen! $2^{-1}2^{-2}...$)

IEEE \rightarrow Wert Z $Z = (-1)^s \cdot (1 + 0.f) \cdot 2^{e-127}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Wert $Z o $ IEEE (Binärdarstellung)	Bsp: $Z = 11.25$
s=0(positiv), $s=1$ (negativ)	s = 0
$Z ightarrow Z_2$ (beim Komma teilen)	$Z = 1011.01_2$
Z_2 n-mal shiften $ ightarrow 1.xxx\dots$	$Z = 1.01101_2 \cdot 2^3$
Exponent $e = n + 127 \rightarrow e_2$	$e = 3 + 127 = 130 = 10000010_2$
Mantisse $f_2 = xxx\dots$	f = 011010002
Wert $Z o IEEE$ (Formel)	$Bsp:\ Z=11.25$
s = 0(positiv), $s = 1$ (negativ)	s = 0
$E = \lfloor \log_2 Z \rfloor$	$E = \lfloor \log_2 11.25 \rfloor = \lfloor 3, 49 \dots \rfloor = 3$
$e = E + 127 \rightarrow e_2$	$e = 3 + 127 = 130 = 10000010_2$
$f = \left(\frac{ Z }{2E} - 1\right) \cdot 2^{23} \to f_2$	$f = \left(\frac{ 11.25 }{2^3} - 1\right) \cdot 2^{23} = 3407872 =$
	011010002

3.4 Zahlenoperationen

- Festkomma (Vorzeichenlos)
 - Erweiterung: Null vorne anhängen
 - Addition: Bitweise
 - Subtraktion: Bitweise
 - Multiplikation: Add-Shift (Add für jede 1 im Multiplikant) (Resultat eins rechts Shiften)
 Sonderfall: Multiplikation mit 2-er Potenz → um Potenz mal shiften.
 - Division:
- Festkomma (Einser Komplement)
 - Erweiterung: Null an Stelle 2 einfügen.
 - Addition:
 - Prüfe Beide Vorzeichen
 - 2. Gleiches Vorzeichen → reguläre Addition
 - 3. Verschieden \to Subtraktion kleiner Operator von großem Operator. Übernahme Vorzeichen des großen Operators.
- Festkomma (Zweier Komplement)
 - Erweiterung: 1 vorne anhängen
 - Addition: Regulär (Gleiche Parameterlänge) (Overflow ignorieren)
 - Subtraktion: Addition mit komplementiertem Subtraktor (Gleiche Parameterlänge) (Overflow ignorieren)
 - Multiplikation:
 - 1. Zahlen auf Produktlänge erweitern.
 - Zahlen mittels Add-Shift multiplizieren (Überflüssige Bits nach links rausschieben und ignorieren)
- Gleitkomma (IEEE Float)
 - Addition: Exponenten auf größeren angleichen, Mantissen addieren. Vorzeichen inspizieren.
 - Subtraktion:
 - Multiplikation: Exponenten auf größeren angleichen, Mantissen multiplizieren. Vorzeichen multiplizieren.

Sonderfall: Multiplikation mit 2-er Potenz → Potenz zu Exponent addieren.

Achtung: bei addieren der Exponenten zweier Gleitkommazahlen muss von einem Exponenten der Bias abgezogen werden.

- Division:

4 Zeichenkodierung

4.1 ASCII

American Standard Code for Information Exchange Fixe Codewortlänge (7 Bit, 128 Zeichen) 0x00-0x7F

4.2 UTF-8

Universal Character Set Transformation Format Variable Codewortlänge (1-4 Byte) → Effizient

Schema

- MSB = 0 → 8 Bit (restliche Bit nach ASCII)
- ullet MSB =1
 ightarrow 16, 24 oder 32 Bit
 - Byte 1: Die ersten 3, 4, 5 Bit geben die Länge des Codewortes an (110, 1110, 11110)
 - Byte 2-4: Beginnen mit Bitfolge 10

4.3 Zahlensysteme

Base 10	Base 2	Base 8	Base 16
00	0000	0 o00	0 x0
01	0001	0o 01	0x1
02	0010	0o 02	0 x2
03	0011	0o 03	0 x3
04	0100	0o 04	0x4
05	0101	0o 05	0x5
06	0110	0o 06	0 x6
07	0111	0o 07	0x7
08	1000	0o 10	0x8
09	1001	0o11	0 x9
10	1010	0o 12	0xA
11	1011	0o 13	0xB
12	1100	0o14	0xC
13	1101	0o 15	0 xD
14	1110	0o 16	0xE
15	1111	0o17	0xF

5 Boolsche Algebra

5.1 Boolsche Operatoren (Wahrheitstabelle WT)

		A out	A out A 21 Y	A ==1 = Y	A — a — out	A out	A out	
x	у	AND	OR	XOR	NAND	NOR	EQV	
		$x \cdot y$	x + y	$x \oplus y$	$\overline{x \cdot y}$	$\overline{x+y}$	$x \oplus y$	
0	0	0	0	0	1	1	1	
0	1	0	1	1	1	0	0	
1	0	0	1	1	1	0	0	
1	1	1	1	0	0	0	1	
Konfi	Konfiguration: $f = c_1 + c_2 + c_3 \Rightarrow cov(f) = \{c_1, c_2, c_3\}$ $x \oplus y \equiv x\overline{y} + \overline{x}y$							

5.2 Boolesche Funktionen

$$f: \{0,1\}^n \to \{0,1\}$$
 $f(\underline{x}) = f(x_1, x_2, \dots, x_n)$

Einsmenge \underline{F} von f: $\underline{F} = \{\underline{x} \in \{0,1\}^n | f(\underline{x}) = 1\}$ Nullmenge \overline{F} von f: $\overline{F} = \{\underline{x} \in \{0,1\}^n | f(\underline{x}) = 0\}$

Kofaktor bezüglich

- $x_i: f_{x_i} = f|_{x_i=1} = f(x_1, \dots, 1, \dots, x_n)$
- $\overline{x}_i : f_{\overline{x}_i} = f|_{x_i=0} = f(x_1, \dots, 0, \dots, x_n)$

Eigenschaften von $f(\underline{x})$

- tautologisch $\Leftrightarrow f(\underline{x}) = 1 \quad \forall \underline{x} \in \{0, 1\}^n$
- kontradiktorisch $\Leftrightarrow f(\mathbf{x}) = 0 \quad \forall \mathbf{x} \in \{0, 1\}^n$
- unabhängig von $x_i \Leftrightarrow f_{x_i} = f_{\overline{x}_i}$
- abhängig von $x_i \Leftrightarrow f_{x_i} \neq f_{\overline{x_i}}$

5.3 Multiplexer

$$\begin{array}{ll} f=x\cdot a+\overline{x}\cdot b & \text{(2 Eingänge a,b und 1 Steuereingang x)} \\ f=\overline{x}_1\overline{x}_2a+\overline{x}_1x_2b+x_1\overline{x}_2c+x_1x_2d & \text{(Eingänge a,b, c,d Steuerung: x_1,x_2)} \end{array}$$

5.4 Wichtige Begriffe

Wichtige Begriffe:	Definition	Bemerkung
Signalvariable	x	$\hat{x} \in \{0, 1\}$
Literal	$l_i = x_i$ oder $\overline{x_i}$	$i \in I_0 = \{1,, n\}$
Minterme,0-Kuben	$\mathrm{MOC}\ni m_j=\prod_{i\in I_0}l_i$	$ M0C = 2^n$
d-Kuben	$MC i c_j = \prod_{i \in I_j \subseteq I_0} l_i$	$ MC = 3^n$
Distanz	$\delta(c_i, c_j) = \{l \mid l \in c_i \land \bar{l} \in c_j\} $	$\delta_{ij} = \delta(c_i, c_j)$
Implikanten	$MI = \{c \in MC \mid c \subseteq f\}$	
	Terme, dessen Erfüllbarkeit identisch mit die der Formel sind	
Primimplikanten	$MPI = \{ p \in MI \mid p \not\subset c \ \forall c \in MI \}$	$MPI \subseteq MI \subseteq MC$
	Implikanten, die maximal freie Variablen besitzen	
Kernprimimplikanten	Primimplikanten die für Überdeckung zwin- gend notwendig sind	Spalten mit 1 Eintrag in Überdeckungstabelle

DNF (DNF)	eine Summe von Produkttermen	Terme sind ODER-verknüpft
KNF (KNF)	ein Produkt von Summentermen	Terme sind UND-verknüpft
KDNF (KDNF)	Summe aller Minterme	WT: 1-Zeilen sind Minterme
KKNF (KKNF)	Menge aller Maxterme	WT: 0-Zeilen negiert sind Maxterm
DMF	Disjunktive Minimal Form	
VollSOP (nur 1)	Menge aller Primimplikanten	Bestimmung siehe Quine Methode oder Schichtenalgorithmus
MinSOP (min. 1)	Minimale Summe v. Primimplikanten	durch Überdeckungstabelle

FPGA: Field Programmable Gate Array LUT: Look Up Table

5.5 Gesetze der boolschen Algebra

	Boolsche Algebra	Mengenalgebra
	$(0,1;\cdot,+,\overline{x})$	$(P(G); \cap, \cup, \overline{A}; G, \emptyset)$
Kommutativ	$x \cdot y = y \cdot x$	$A \cap B = B \cap A$
	x + y = y + x	$A \cup B = B \cup A$
Assoziativ	$x \cdot (y \cdot z) = (x \cdot y) \cdot z$	$(A \cap B) \cap C = A \cap (B \cap C)$
	x + (y+z) = (x+y) + z	$(A \cup B) \cup C = A \cap (B \cup C)$
Distributiv	$x \cdot (y+z) = x \cdot y + x \cdot z$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
	$x + (y \cdot z) = (x+y) \cdot (x+z)$	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
Idempotenz	$x \cdot x = x$	$A \cap A = A$
	x + x = x	$A \cup A = A$
Absorption	$x \cdot (x + y) = x$	$A \cap (A \cup B) = A$
	$x + (x \cdot y) = x$	$A \cup (A \cap B) = A$
Neutral	$x \cdot 1 = x$	$A \cap G = A$
	x + 0 = x	$A \cup \emptyset = A$
Dominant	$x \cdot 0 = 0$	$A \cap \emptyset = \emptyset$
	x + 1 = 1	$A \cup G = G$
Komplement	$x \cdot \overline{x} = 0$	$A \cap \overline{A} = \emptyset$
	$x + \overline{x} = 1$	$A \cup \overline{A} = G$
	$\overline{x} = x$	$\overline{\overline{A}} = A$
De Morgan	$\overline{x \cdot y} = \overline{x} + \overline{y}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$
	$\overline{x+y} = \overline{x} \cdot \overline{y}$	$\overline{A \cup B} = \overline{A} \cap \overline{B}$

6 Beschreibungsformen

6.1 Disjunktive Normalform/Sum of products (DNF/DNF)

Eins-Zeilen als **Implikanten** (UND) schreiben und alle Implikanten mit **ODER** verknüpfen: $Z=\overline{A}\cdot\overline{B}+\overline{C}\cdot D$

6.2 Konjunktive Normalform/Product of sums (KNF/KNF)

Null-Zeilen negiert als Implikat (ODER) schreiben und alle Implikaten **UND** verknüpfen: $Z=(\overline{A}+\overline{C})\cdot(\overline{A}+\overline{D})\cdot(\overline{B}+\overline{C})\cdot(\overline{B}+D)$

6.3 Umwandlung in jeweils andere Form

- 1. Doppeltes Negieren der Funktion: $Z = \overline{\overline{A} \cdot \overline{B} + \overline{C} \cdot D}$
- 2. Umformung "untere" Negation (DeMorgan) : $Z = \overline{\overline{A} \cdot \overline{B}} \cdot \overline{\overline{C} \cdot D} = \overline{(A+B) \cdot (C+\overline{D})}$
- 3. Ausmultiplizieren: $Z = \overline{(A+B)\cdot(C+\overline{D})} = \overline{A\cdot C + A\cdot \overline{D} + B\cdot C + B\cdot \overline{D}}$
- 4. Umformung "obere" Negation (DeMorgan) :
- $Z = \overline{AC} \cdot \overline{AD} \cdot \overline{BC} \cdot \overline{BD} = (\overline{A} + \overline{C}) \cdot (\overline{A} + D) \cdot (\overline{B} + \overline{C}) \cdot (\overline{B} + D)$

Analog von KNF (KNF) nach DNF (DNF).

6.4 Shannon Entwicklung

$$\begin{array}{l} f = x_i \cdot f_{x_i} + \overline{x}_i \cdot f_{\overline{x}_i} = (x_i + f_{\overline{x}_i}) \cdot (\overline{x}_i + f_{x_i}) = (f_{x_i} \oplus f_{\overline{x}_i}) \cdot x_i \oplus f_{\overline{x}_i} \\ \overline{f} = x_i \cdot \overline{f}_{x_i} + \overline{x}_i \cdot \overline{f}_{\overline{x}_i} \end{array}$$

7 Logikminimierung

7.1 Nomenklatur

- m_i Minterm: UND-Term in dem alle Variablen vorkommen (aus KDNF)
- M_i Maxterm: ODER-Term in dem alle Variablen vorkommen (aus KKNF)
- c_i Implikant: UND-Term in dem freie Variablen vorkommen können
- C_i Implikat: ODER-Term in dem freie Variablen vorkommen können
- ullet p_i Primimplikant: UND-Term mit maximal freien Variablen
- ullet P_i Primimplikat: ODER-Term mit maximal freien Variablen

7.2 Karnaugh-Diagramm

Zyklische Gray-Codierung:			2-di 3-di		00 01 11 10 000 001 011 010 110 111 101 10	
z^{a}	y	00	01	11	10	
0		1	0	0	0	Gleiche Zellen zusammenfassen: z.B. $\overline{xy} + y \cdot z$
1		Χ	1	1	0	

Don't Care Werte ausnutzen!

—Achtung: Auf eventuelle Unterdefiniertheit überprüfen (Redundante Zeilen) (Kreiert Don't Cares) Immer vollständig mit Nullen und Einsen ausfüllen

7.3 Quine Methode

geg.: DNF/DNF oder Wertetabelle von f(x) ges.: alle Primimplikanten p_i (VollSOP)

Spezielles Resoltutionsgesetz: $x \cdot a + \overline{x} \cdot a = a$ Absorptionsgesetz: $a + a \cdot b = a$

- 1. KDNF/KDNF bestimmen (z.B. $f(x, y, z) = xy = xyz + xy\overline{z}$)
- 2. Alle Minterme in Tabelle eintragen (Index von m ist (binär)Wert des Minterms)
- 1-Kubus: Minterme die sich um eine Negation unterscheiden, zu einem Term verschmolzen (Resolutionsgesetz)
- Der 1-Kubus muss zusammenhängend sein! (d.h. alle 1-Kubus Minterme müssen zusammenhängen)
- 5. Wenn möglich 2-Kubus bilden.
- 6. Wenn keine Kubenbildung mehr möglich ightarrow Primimplikanten

Beispiel (Quine	Methode): y	$= a\overline{c}$	$+ abc + \overline{abc} =$	abī	$\overline{c} + a\overline{bc} + abc +$	\overline{abc}
Anzahl pos.	Minterme	Α	Implikanten mit	Α	Implikanten mit	A
Literale			1 freien Variable		2 freien Variablen	
0	\overline{abc}	c_1	$c_1 = \overline{bc}$			
1	$a\overline{b}\overline{c}$	c_1, c_2	$c_2 = a\overline{c}$			
2	$ab\overline{c}$	c_2, c_3	$c_3 = ab$			
3	abc	c_3				

	0-Kubus	Α	1-Kubus	R	Α	2-Kubus	Α	
m_1	$\overline{x}_1\overline{x}_2x_3$	\checkmark	\overline{x}_2x_3	$m_1 \& m_5$	p_1			1
m_4	$x_1\overline{x}_2\overline{x}_3$	\checkmark	$x_1\overline{x}_2$	$m_4 \& m_5$	√	x_1	p_2	
m_5	$x_1\overline{x}_2x_3$	\checkmark	$x_1\overline{x}_3$	$m_4 \& m_6$	√			l
m_6	$x_1x_2\overline{x}_3$	\checkmark	$x_{1}x_{3}$	$m_5 \& m_7$	√			l
m_7	$x_1x_2x_3$	$\sqrt{}$	x_1x_2	$m_6 \& m_7$	√			l

 $\Rightarrow f(x_1, x_2, x_3) = p_1 + p_2 = \overline{x}_2 x_3 + x_1$

7.4 Resolventenmethode

Ziel: alle Primimplikanten

Wende folgende Gesetze an: Absorptionsgesetz: a + ab = a

allgemeines Resolutionsgesetz: $x\cdot a + \overline{x}\cdot b = x\cdot a + \overline{x}\cdot b + ab$

Anwendung mit Schichtenalgorithmus

- 1. schreibe die Funktion f in die 0. Schicht
- bilde alle möglichen Resolventen aus der 0. Schicht und schreibe sie in die nächste Schicht als ODER Verknüpfungen (Resolventen zu f "hinzufügen")
- überprüfe ob Resolventen aus der 1. Schicht Kuben aus Schicht 0 überdecken(Absorption) und streiche diese Kuben aus Schicht 0
- 4. Schicht i besteht aus den möglichen Resolventen von Schicht 0 bis (i-1). Abgestrichene Kuben aus vorherigen Schichten brauchen **nicht** mehr beachtet werden.
- 5. Sobald in der i-ten Schicht +1 steht oder keine weiteren Resolventen gebildet werden können, ist man fertig. \Rightarrow alle nicht ausgestrichenen Terme bilden die VollSOP

$f(x_1,\ldots,x_n)$	Schicht
$x \cdot w + \overline{x} \cdot w + x \cdot y \cdot w \cdot \overline{z} + \overline{x} \cdot y \cdot w \cdot \overline{z} + \overline{y} \cdot w \cdot \overline{z}$	0
$+w+y\cdot w\cdot \overline{z}$	1
$+w\cdot \overline{z}$	2
+w	3

7.5 Überlagerung Bestimmung der MinSOP

(Bestimmung der Kernprimimplikanten) Geg: KDNF/KDNF $(\sum m_i)$ und VollSOP $(\sum p_i)$ Ges: MinSOP (Minimalform)

 $\begin{array}{lll} \text{Überdeckung:} & C = & (m_0 \subseteq p_1) & \cdot (m_2 \subseteq p_1 + m_2 \subseteq p_2) & \stackrel{!}{=} 1 \\ C = & \tau_1 & \cdot (\tau_1 + \tau_2) & = \tau_1 + \tau_1 \tau_2 = \tau_1 \end{array}$

Alternativ: Mit Überdeckungstabelle bestimmen. Bsp:

		Minterme				
Primterme	m_1	m_2		m_N	$L(p_i)$	
p_1	√				$L(p_1)$	
p_2	√			\checkmark	$L(p_2)$	
•					:	
p_K		√			$L(p_K$	

Algorithmus:

- 1. Suche Spalten mit nur einem Minterm.
- 2. Streiche andere Spalten des zugehörigen Primterms.
- 3. Streiche Primterme, dessen Minterme alle gestrichen sind.
- 4. Dominierte Zeilen streichen.

N. Anzahl der Minterme

 $L(p_i)$: Kosten/Länge der Primimplikanten

L(z): Länge des Terms z= Summe der Literale in Teiltermen + Anzahl der Teilterme

Primimplikanten von Tabelle ausrechnen: Minterme für jeden Primterm ablesen und reduzieren. Länge Primimplikanten: anhand Anzahl von Kreuzen ablesen.

8 Halbleiter

	Isolator	Metall	undotiert	N-Typ	P-Typ
Ladungsträger	Keine	e ⁻	e^-/e^+	e^-	e^+
Leitfähigkeit	Keine	Sehr hoch	$\propto T$	Hoch	Mittel

9 MOS-FET's

Metal Oxide Semiconductor Field Effekt Transistor

9.1 Bauteilparameter

- große Kanalweite ⇒ große Drain-Störme \Rightarrow schnelle Schaltgeschwindigkeit (da $i_d \propto \beta \propto \frac{W}{L}$) Aber: große Fläche.
- nMos schaltet schneller als pMOS

9.2 Drainstrom

nMos (p-dotiertes Substrat, n-dotierte Drain/Source), schlechter pull up (Pegeldegenerierung)

$$I_d = \begin{cases} 0, & \text{für } U_{gs} - U_{th} \leq 0 & \text{(Sperrber.)} \\ \beta[(u_{gs} - U_{th}) \cdot u_{ds} - \frac{1}{2}u_{ds}^2], & \text{für } 0 \leq U_{gs} - U_{th} \geq u_{ds} & \text{(linearer Ber.)} \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \leq U_{gs} - U_{th} \leq u_{ds} & \text{(S\"{a}ttigungsber.)} \end{cases}$$

pMos (n-dotiertes Substrat, p-dotierte Drain/Source), schlechter pull down (Pegeldegenerierung)

$$I_d = \begin{cases} 0, & \text{für } U_{gs} - U_{th} \geq 0 & \text{(Sperrber.)} \\ -\beta[(u_{gs} - U_{th}) \cdot u_{ds} - \frac{1}{2}u_{ds}^2], & \text{für } 0 \geq U_{gs} - U_{th} \leq u_{ds} & \text{(linearer Ber.)} \\ -\frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_{ds} & \text{(S\"{a}ttigungsber.)} \end{cases}$$

9.3 pMos und nMos

9.4 Kondensatoraufgaben

9.4.1 Laden

Kondensator C lädt, solange $I_D > 0$ ightarrow C lädt, solange $u_{gs} - U_{th} \geq 0$ und $u_{ds} \geq 0$

9.4.2 Entladen

Source und Drain werden vertauscht. Auf Gatespannung achten.

9.5 Gatterschwellspannungsaufgaben

10 CMOS - Logik

Vorteil: (Fast) nur bei Schaltvorgängen Verlustleistung - wenig statische Verluste Drei Grundgatter der CMOS-Technologie:

Falls GND und V_{DD} vertauscht würden, dann $NAND \rightarrow AND$ und $NOR \rightarrow OR$ Allerdings schlechte Pegelgenerierung.

10.1 Gatterdesign

Netzwerk	Pull-Down	Pull-U p
Transistoren	nMos	pMos
AND	Serienschaltung	Parallelschaltung
OR	Parallelschaltung	Serienschaltung

- 1. Möglichkeit: Direkt; ggf. Inverter vor die Eingänge und Ausgänge schalten.
- 2. Möglichkeit: Mit boolesche Algebra die Funktion nur mit NAND und NOR darstellen.

10.2 Umwandlung in Nand und Nor

Gatter	Funktion	NAND Form	NOR Form
NOT	\overline{A}	$\overline{A \cdot A}$	$\overline{A+A}$
AND	$A \cdot B$	$\overline{\overline{A\cdot B}\cdot \overline{A\cdot B}}$	$\overline{\overline{A+A}+\overline{B+B}}$
OR	A + B	$\overline{\overline{A\cdot A}\cdot \overline{B\cdot B}}$	$\overline{\overline{A+B}} + \overline{\overline{A+B}}$
NAND	$\overline{A \cdot B}$	$\overline{A\cdot B}$	$\overline{\overline{A+A}+\overline{B+B}}+\overline{\overline{A+A}+\overline{B+B}}$
NOR	$\overline{A+B}$	$\overline{\overline{A\cdot A\cdot B\cdot B}\cdot \overline{A\cdot A\cdot B\cdot B}}$	$\overline{A+B}$

10.3 Anzahl Gatter aus Netzwerk berechnen

Jede Unterbrecheung in der Mittellinie (Mittellinie → Eingang CMOS Transistor) ist die Grenze zwischen zwei Gattern.

10.4 CMOS Verlustleistung

Achtung: Logikpegel sind über die Steigung der $|VTC| \le 1$ des Inverters definiert. Zusammensetzung I_{short} :

Transistor	$(0, V_{tn})$	$(V_{tn}, V_{DD}/2)$	Um $V_{DD}/2$	$(V_{DD}/2, V_{DD} - V_{tp})$	$(V_{DD} - V_{tp}, V_{DD})$
n-MOS	Sperrt	Sättigung	Sättigung	Linear	Linear
- MOC	1:	Linna	Citations	Sättigung	Carant

Dynamische Verlustleistung $P_{dyn} = P_{cap} + P_{short} \Rightarrow P_{dyn} \propto V_{DD}^2$ $P_{cap} = \alpha_{01} f C_L V_{DD}^2$ Kapazitive Verluste

 $P_{short} = \alpha_{01} f \beta_n \tau (V_{DD} - 2V_{tn})^3$ Kurzschlussstrom

 $\alpha_{0
ightarrow 1} = rac{ ext{Schaltvorgänge(pos. Flanke)}}{\# ext{Betrachtete Takte}} \; (ext{max 0.5})$ Schalthäufigkeit

 $\alpha = \frac{f_{\text{switch}}}{f}$ Schalthäufigkeit (periodisch)

Abhängig von den Signalflanken, mit Schaltfunktionen verknüpft

 $\approx V_{DD}1/\propto \text{Schaltzeit: } \frac{V_{DD2}}{V_{DD1}} = \frac{t_{D1}}{t_{D2}} \text{ (bei Schaltnetzen } t_{log} \text{)}$ $\text{Verzögerungszeit } t_{pd} \propto \frac{C_L t_{ox} L_p}{W_p \mu_p \varepsilon (V_{DD} - V_{th})}$

 t_{pd} ist Zeit zwischen crossover 50% von Eingang zu crossover 50% am Ausgang.

Steigend mit: Kapazitiver Last, Oxiddicke, Kanallänge, Schwellspannung

Sinkend mit: Kanalweite, Ladungsträger Beweglichkeit, Oxyd Dielektrizität, Versorgungsspannung

 $\textbf{Statische Verlustleistung} \ \ P_{stat} \text{: Sub-Schwellstr\"{o}me, Leckstr\"{o}me, Gate-Str\"{o}me \ Abh\"{a}ngigkeit} \text{:}$ $V_{DD} \uparrow: P_{stat} \uparrow V_{th} \uparrow: P_{stat} \downarrow \text{ (aber nicht proportional)}$

11 Volladdierer (VA)/Ripple-C(u)arry-Adder

Propagate $p_n = a_n \oplus b_n$

Summerbit $S_n = c_n \oplus p_n = a_n \oplus b_n \oplus c_n$

 $a_nb_nc_n$ (Ungerade Anzahl von Eingängen 1) $S_n = a_n \overline{b_n} \overline{c_n} + \overline{a_n} b_n \overline{c_n} + \overline{a_n} \overline{b_n} c_n +$

alle Eingänge high

genau ein Eingang high

$$\begin{array}{l} \text{Carry-out} \ c_{n+1} = c_n \cdot p_n + g_n \\ c_{n+1} = \underbrace{a_n b_n \overline{c_n} + a_n \overline{b_n} c_n + \overline{a_n} b_n c_n}_{\text{zwei Eingänge 1}} + \underbrace{a_n b_n c_n}_{\text{drei Eingänge 1}} \quad \text{(Mindesten zwei Eingänge 1)} \end{array}$$

Laufzeiten

$$\begin{split} t_{sn} &= \begin{cases} t_{cn} + t_{xor} & t_{cn} > t_{xor} \\ 2t_{xor} & sonst \end{cases} \\ t_{cn+1} &= \begin{cases} t_{and} + t_{or} & a_n = b_n = 1 \\ t_{xor} + t_{and} + t_{or} & a_n = b_n = 0 \\ t_{xor} + t_{xor} + t_{xor} & a_{xor} + b_{xor} \end{cases} & (p_n = 0, g_n = 0) \end{split}$$

11.1 Multibit Addierer / Subtrahierer

Subtraktion entspricht Addition mit negiertem Subtrahenden

Zweierkomplement zur Bildung des negativen Subtrahenden

→ Invertieren aller Bits des Subtrahenden und Addition von 1

 $XOR: X \oplus 0 = X, X \oplus 1 = \overline{X}$

Aufteilen langer kombinatorischer Pfade durch Einfügen zusätzlicher Registerstufen → Möglichst Halbierung des längsten Pfades

- Zeitverhalten beachten (evtl. Dummy-Gatter einfügen)
- Durchsatz erhöht sich entsprechend der Steigerung der Taktfrequenz
- Gesamtlatenz wird eher größer
- Taktfrequenz erhöht sich

12.3 Parallel Processing

$$\label{eq:Durchsatz} \mathsf{Durchsatz} = \frac{\#\mathsf{Modul}}{t_{clk}, Modul} = f \qquad \qquad \mathsf{Latenz} = t_{clk}$$

- Paralleles, gleichzeitiges Verwenden mehrere identischer Schaltnetze
- Zusätzliche Kontrolllogik nötig (Multiplexer)
- Taktfrequenz und Latenz bleiben konstant
- Durchsatz steigt mit der Zahl der Verarbeitungseinheiten ABER: deutlich höherer Ressourcenverbrauch

13 Speicherelemente

Flüchtig Speicherinhalt gehen verloren, wenn Versorgungsspannung V_{DD} wegfällt - Bsp: *RAM Nicht Flüchtig Speicherinhalt bleibt auch ohne ${\cal V}_{DD}$ erhalten - Bsp: Flash

Asynchron Daten werden sofort geschrieben/gelesen.

Synchron Daten werden erst mit $clk_{0\rightarrow 1}$ geschrieben.

Dynamisch Ohne Refreshzyklen gehen auch bei angelegter V_{DD} Daten verloren - Bsp: DRAM Statisch Behält den Zustand bei solange V_{DD} anliegt (keine Refreshzyklen nötig) - Bsp: SRAM Bandbreite: Bitanzahl, die gleichzeitig gelesen/geschrieben werden kann.

Latenz: Zeitverzögerung zwischen Anforderung und Ausgabe von Daten.

Zykluszeit: Minimale Zeitdifferenz zweier Schreib/Lesezugriffe.

 ${\sf Speicherkapazit\"{a}t} = {\sf Wortbreite} \cdot 2^{{\sf Adressbreite}}$

13.1 Speicherzelle/Register

Ring aus zwei Invertern. Logikpegel kann nur mit öffnen des Inverter-Rings gesetzt werden.

13.2 Latch

12 Sequentielle Logik

Logik mit Gedächtnis (Speicher).

12.1 Begriffe/Bedingungen

t_{Setup}	Stabili
t_{hold}	Stabili
t_{c2q}	Eingan
Min. Taktperiode	$t_{clk} \ge$
Max. Taktfrequenz	f_{max}
Holdzeitbedingung	t _{hold}
Durchsatz	$t_{clk,j}$
Latenz	t _{clk} ·

itätszeit vor der aktiven Taktflanke litätszeit nach der aktiven Taktflanke

ng wird spätestens nach t_{c2q} am Ausgang verfügbar

 $\geq t_{1,c2q} + t_{logic,max} + t_{2,setup}$ (Nicht aufrunden)

 $\leq t_{c2q} + t_{logic,min}
ightarrow extsf{Dummy Gatter einbauen}$

 $t_{clk} \cdot \# Pipelinestufen (das zwischen den FFs)$

12.2 Pipelining

Nur bei synchronen(taktgesteuerten) Schaltungen möglich!

Set-Reset Latch:

Zwei gegenseitig rückgekoppelte NAND-Gatter. Active Low Logik:

 $\overline{S} = 0 \Rightarrow \overline{Q} = 1, \overline{R} = 0 \Rightarrow Q = 0$ \overline{R} \overline{S} Q0 1 0 $Q = \overline{Q}$

Enable-Latch: ändert Speicherzustand auf D nur wenn e=1. Level-Controlled \Leftrightarrow Latch

e Q 0 Q D

13.3 Flip-Flop

		_
clk	Q	Q
$0 \rightarrow 1$	D	\overline{D}
sonst	Q	\overline{Q}

Besteht aus zwei enable-Latches

Flip-Flop: Ändert Zustand bei steigender/(fallender) Taktflanke.

14 Automaten

DFA 6-Tupel $\{I, O, S, R, f, g\}$

Eingabealphabet 0 Ausgabealphabet SMenge von Zuständen Menge der Anfangszustände

 $R \subseteq S$ $f: S \times I \rightarrow S$ Übergangsrelation

Ausgaberelation

Mealy Automat Moore Automat

Zustandsnummerierung immer einfügen.

Moore	Mealy
Ouput hängt nur vom Zustand ab	Output hängt von Zustand und Eingabe ab
Kein direkter kombinatorischer Pfad Eingang⇒Ausgang	Generell weniger Zustände als Moore.
s' = f(s, i), o = g(s)	s' = f(s, i), o = g(s, i)
$g: S \rightarrow O$	$g : S \times I \rightarrow O$

14.1 Wahrheitstabelle einer FSM

i	$S = S_0S_n$	o	$S' = S_1' S_n'$
0	00	00,00	$S'_{0,00}$
:	:	:	
1	11	$o_{1,11}$	$S'_{1,11}$

Moore: o ist f(S), nächster Zustand S' = f(i, S)**Mealy:** o ist f(i, S), nächster Zustand S' = f(i, S)