

АБСТРАКТНЫЕ ТИПЫ ДАННЫХ ПОСЛЕДОВАТЕЛЬНОСТИ, СПИСКИ

Максименкова Ольга Вениаминовна

Младший научный сотрудник МНУЛ ИССА

Старший преподаватель Департамента программной инженерии Факультета компьютерных наук

Цели

Познакомиться

- С контейнерами и последовательностями, как с абстрактными типами данных;
- С динамическими структурами данных;
- Со способами реализации этих представлений на языке С++

Получить навыки

• Реализации некоторых АТД на языке С++

Соглашения о терминологии

- Абстрактный Тип Данных (*ATД*) [abstract logic design] функциональное описание некоторого класса сущностей в терминах операций, которые могут выполняться над ними.
- Интерфейс АТД формальное и однозначное описание синтаксиса
 и семантики операций, которые могут выполняться над
 экземплярами АТД.

ТАК ЖЕ, КАК ОПИСАНИЕ ЯЗЫКА ПРОГРАММИРОВАНИЯ НЕ ОПРЕДЕЛЯЕТ ОСОБЕННОСТИ ЕГО РЕАЛИЗАЦИИ, ТАК И ИНТЕРФЕЙС АТД НЕ ОПРЕДЕЛЯЕТ РЕАЛИЗАЦИЮ АТД.

Контейнер

- **Контейнер** [container] Абстрактный тип данных, представляющий собой структурированную коллекцию информационных элементов, доступ к которым определяется структурой контейнера.
- Добавление и удаление элементов контейнера назовём его трансформацией.
- Доступ к элементу контейнера операция получения или изменения значения этого элемента.
- Последовательность [sequence] контейнер, в котором элементы упорядочены по *индексам* (пронумерованы).

Некоторые виды последовательностей

- Вектор [vector]
 - последовательность, в которой возможен доступ к любому элементу по *индексу* элемента
- Дек
- Стек
- Очередь

Дек

- Дек [deque, double ended queue] последовательность, в которой возможны только:
 - **1. доступ**: к концевым элементам;
 - 2. добавление: до начального и после конечного элемента;
 - 3. удаление: концевых элементов.

Очередь

- Очередь [queue] дек, в котором возможны только:
 - 1. доступ: к начальному элементу;
 - 2. добавление: после конечного элемента;
 - 3. удаление: начального элемента.
- Конечный элемент очереди часто называют хвостом очереди, а начальный – головой очереди.

Queue

Стек

- Стек [stack] дек, в котором возможны только:
 - доступ: к конечному элементу;
 - 2. добавление: после конечного элемента;
 - 3. удаление: конечного элемента.
- Конечный элемент стека называют вершиной стека.

Списки

Односвязный Двусвязный

Список

- Список представляет собой такую реализацию последовательности однотипных элементов, когда элементы связаны друг с другом посредством ссылок.
- Каждый элемент списка содержит не только информационное поле, но одно или более полей со ссылками на другие элементы.

Наиболее распространённые списки

• односвязные списки

• каждый элемент, кроме последнего, содержит ссылку на следующий, последний элемент ссылается на **null**

• двухсвязные списки

• каждый элемент, кроме первого и последнего, содержит ссылки на предыдущий и следующий

Односвязный список

Примеры

Модель элемента односвязного списка

Как добавить элемент в односвязный список?

```
// добавим элемент
ListItem newItem;
newItem.n = 2;
newItem.next = NULL;
// head должен "указывать" на новый элемент
head.next = &newItem;
// пройдём по списку, нужен "указатель"
ListItem* curr = &head;
while (curr != NULL) {
  cout << curr->n << endl;</pre>
  curr = curr->next;
system("pause");
```

Самостоятельно напишем функцию, добавления элемента в конец односвязного списка → следующий слайд

Вставка элемента в односвязный список

Пусть имеется некоторый односвязный список и ссылка **р** на элемент, после которого мы хотим вставить новый элемент.

Состояние списка перед добавление элемента

Алгоритм добавления элемента

- 1. создание нового элемента
- 2. присвоение значений его полям
- 3. добавление связи с элементом, следующим за Р
- 4. добавление связи с элементом Р

Создание и инициализация нового элемента

1. Создание нового элемента

2. Присвоение значений его полям

Добавление связей

3. добавление связи с элементом, следующим за Р

Tmp.next = p.next;

4. добавление связи с элементом Р

p.next = &Tmp;

Максименкова О.В., 2015

Удаление элемента из односвязного списка

Пусть имеется некоторый односвязный список и ссылка **р** на элемент, предшествующий тому, который мы хотим удалить.

Состояние списка перед удалением элемента

Алгоритм удаления элемента

- 1. добавление связи между Р и следующим за удаляемым элементом
- 2. Освобождение памяти из под удалённого элемента!!!

Двусвязный список

Модель элемента двусвязного списка

Задание: многомерные массивы

- 1. Опишите функцию **structure_create()**, которая формирует структуру данных **X**, основанную на массиве целочисленных массивов, по следующему правилу: на вход функции подаётся количество элементов 0<**N**<1000, хранящихся в **X**. Каждый массив из **X**, начиная со второго содержит на один элемент больше предыдущего, последний массив может содержать произвольное количество элементов.
- 2. Опишите функцию **structure_fill()** заполнения значениями уже созданной структуры вида $\overline{\mathbf{X}}$.
- 3. Опишите функцию **structure_print()** для отформатированного вывода на экран структуры вида X.

```
Пример заполнения X числами от 1 до 12
1
2 3
4 5 6
7 8 9 10
11 12
```

Задание: односвязный список

- 1. Описать функцию добавления нового элемента в конец односвязного списка (как узнать, в какой список добавить элемент?).
- 2. Описать функцию вывода на экран всех элементов списка, начиная с головы.
- 3. Описать функцию добавления элемента в произвольное место в односвязном списке (как задавать это место?)
- 4. Описать функцию удаления элемента из списка.
- 5. Описать функцию обращения/инверсии списка. Функция заменяет порядок следования элементов на обратный.

Задание: двусвязные и закольцованные списки

- 1. Опишите набор функций для управления двусвязным списком: добавление элемента списка, удаление элемента списка, добавление элемента в конец списка, добавление элемента в начало списка; вывод списка в прямом и обратном порядке.
- 2. Каким образом реализовать закольцованный список?
- **3.** * Опишите функции для управления односвязным и двусвязным закольцованными списками.
- **4.** ** Реализуйте алгоритм сортировки слиянием для односвязного списка.

Спасибо за внимание!

Максименкова Ольга Вениаминовна

Старший преподаватель Департамента программной инженерии, ФКН

E-mail: omaksimenkova@hse.ru

Blog: Stop To Scale (http://stoptoscale.blogspot.ru)

