Redes Neurais Convolucionais CNN's

→ Redes Neurais Convolucionais

- → Redes Neurais Convolucionais
 - ♦ É uma rede *feed-forward*;

- → Redes Neurais Convolucionais
 - ♦ É uma rede *feed-forward*;
 - Boa aplicabilidade para problemas que envolvem análise de imagens.

→ Redes Neurais Convolucionais

→ Redes Neurais Convolucionais

→ Convolução?

→ Convolução?

0	0	0	0	0	0	
0	105	102	100	97	96	
0	103	99	103	101	102	Y
0	101	98	104	102	100	
0	99	101	106	104	99	
0	104	104	104	100	98	
8						

Image Matrix

$$0*0+0*-1+0*0$$

+0*-1+105*5+102*-1
+0*0+103*-1+99*0 = 320

Output Matrix

Convolution with horizontal and vertical strides = 1

→ Exemplo de filtro (Sobel)

Matematicamente este operador utiliza duas matrizes 3×3 que são convoluídas com a imagem original para calcular aproximações das derivadas - uma para as variações horizontais e uma para as verticais. Sendo $\bf A$ a imagem inicial então, $\bf G_x$ e $\bf G_y$ serão duas imagens que em cada ponto contêm uma aproximação às derivadas horizontal e vertical de $\bf A$.

$$\mathbf{G_x} = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix} * \mathbf{A} \quad \mathbf{e} \quad \mathbf{G_y} = \begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} * \mathbf{A}$$

Portanto a magnitude, **G**, e a direcção, **Θ**, do gradiente são dados por:

$$\mathbf{G} = \sqrt{\mathbf{G_x}^2 + \mathbf{G_y}^2}$$
 $\mathbf{\Theta} = \arctan\left(\frac{\mathbf{G_y}}{\mathbf{G_x}}\right)$

https://pt.wikipedia.org/wiki/Filtro_Sobel

→ Exemplo de filtro (Sobel)

- a) Imagem original
- b) Sobel (Gx)
- c) Sobel (Gy)
- d) Sobel (Magnitude G)

→ Pooling?

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

→ Redes Neurais Convolucionais Gráficas inversas Profundas

→ Redes Neurais Convolucionais Gráficas inversas Profundas

→ Convolution e Deconvolution?

→ Convolution e Deconvolution?

→ Classificar e Localizar

→ Image Augmentation

Enlarge your Dataset

→ Image Augmentation

→ U-Net

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

→ U-Net

[Data provided by Dr. Gert van Cappellen, Erasmus Medical Center. Rotterdam. The Netherlands]

CNN's - Atividade 1

Clique <u>aqui</u> para abrir a atividade

CNN's - Atividade 2

Clique <u>aqui</u> para abrir a atividade