

BIOMHXANIKH HAEKTPONIKH

Α. Αντωνόπουλος

Διάλεξη 2

17/10/2022

COVINETION OF THE TANK OF THE

Βιομηχανική Ηλεκτρονική

Χρήσιμες έννοιες/ορισμοί

• Στιγμιαία τιμή:
$$v(t) = \sqrt{2}V_s \cos \omega t$$

Στιγμιαία ισχύς:
$$p(t) = v(t) \cdot i(t)$$

• Μέση τιμή:
$$\overline{V} = \frac{1}{T} \int_0^T v(t) dt$$

Ενεργός ισχύς:
$$P = \overline{P} = \frac{1}{T} \int_0^T p(t) dt$$

• Ενεργός ή ενδεικνύμενη (RMS) τιμή:
$$I_{RMS} = \sqrt{\frac{1}{T}} \int_0^T i^2(t) dt$$

- Ενεργός (και μη), άεργος, φαινόμενη ισχύς. Συντελεστής ισχύος: $\lambda = \frac{P}{S}$ (=? $\cos \varphi_1$)
- <u>Πλάτος αρμονικών Μετασχηματισμός Fourier</u>

$$f(t) = \frac{1}{2}a_0 + \sum_{h=1}^{\infty} \{a_h \cos(h\omega t) + b_h \sin(h\omega t)\}$$

$$a_h = \frac{1}{\pi} \int_0^{2\pi} f(t) \cos(h\omega t) d\omega t, \qquad b_h = \frac{1}{\pi} \int_0^{2\pi} f(t) \sin(h\omega t) d\omega t$$

Παράδειγμα 1

- $V_{ac,RMS} = 380 \text{ V} \Rightarrow v_{ac}(\omega t) = \sqrt{2} \cdot 380 \cos \omega t$
- $I_{dc} = 10 \text{ A}$
- $P_{\varepsilon\xi\delta\delta ov}$, $P_{\varepsilon\iota\sigma\delta\delta ov}$, $I_{ac,RMS}$, $I_{ac,1}$, Q_1 , λ ?

Παράδειγμα 2

- $v(\omega t) = 42\cos\omega t + 5\cos(3\omega t 20^{\circ}) + 9\cos(7\omega t + 47^{\circ})$
- $i(\omega t) = 5\cos(\omega t \frac{\pi}{6}) + 2\cos(5\omega t \frac{2\pi}{3})$
- V_{RMS} , I_{RMS} , P, Q, S, λ ?

Στόχοι διάλεξης

- Ιδιότητες και χαρακτηριστικές διόδων ισχύος
- Χρήση διόδων σε ανορθωτικές διατάξεις
- Κυκλώματα διόδων με επαγωγικό φορτίο

Αρνητική τάση

κατάρευσης , V_{BR}

Περιοχή

Βιομηχανική Ηλεκτρονική

Περιοχή αγωγής

θετικής αποκοπής

Περιοχή

5SDD 11D2800

5SDD 11D2800

Old part no. DV 827-1100-28

Rectifier Diode

Properties

- Industry standard housing
- Suitable for parallel operation
- High operating temperature
- Low forward voltage drop

Key Parameters

V _{RRM}	=	2 800	V
I _{FAVm}	=	1 285	A
I _{FSM}	=	15 000	A
V_{TO}	=	0.933	V
r_{τ}	=	0.242	$m\Omega$

Types

	V_{RRM}	
5SDD 11D2800	2 800 V	
Conditions:	$T_j = -40 + 160 ^{\circ}C$	
	half sine waveform,	
	f = 50 Hz	

Mechanical Data

F _m	Mounting force	10 ± 2	kN
m	Weight	0.27	kg
D₅	Surface creepage distance	30	mm
Da	Air st ike distance	20	mm

Fig. 1 Case

Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic tel.: +420 261 306 250, http://www.abb.com/semiconductors

V

Δίοδος ισχύος

αρνητικής αποκοπής

 $\forall i_R (mA)$

Κυκλώματα με διόδους

Κυκλώματα με διόδους

Παράδειγμα:

 i_d

$$I_{S,RMS} = ??$$