Fund of Funds

Qi Zhou, Wang Zhe, Ren Qingjie

School of Physics & School of Economics, Peking University

May 30, 2017

- In this part, we would explore the relationship between the fund market and the retirement market.
- The Fund of Funds is favoured by risk averter, especially for those who have retired.
- There might be cointegration relationships bewteen the two markets.

Unit Root Test

3 tests are employed here: ADF-Test, KPSS-Test, and PP-Test (Phillips-Perron Test).

Unit Root Test of Retire

Test Method	Statistics	10pct	5pct	1pct
ADF	1.64	-1.61	-1.95	-2.62
KPSS	1.01	0.35	0.46	0.74
PP	0.23	*	0.26	*

Unit Root Test of the Difference of Retire

CHILL FROM TOOL OF LIFE BINGTONICS OF FROM				
Test Method	Statistics	10pct	5pct	1pct
ADF	-2.31	-1.61	-1.95	-2.62
KPSS	0.18	0.35	0.46	0.74
PP	1.55	*	0.26	*

Unit Root Test of FOF

Office 1000 1000 Off					
Test Method	Statistics	10pct	5pct	1pct	
ADF	2.53	-1.61	-1.95	-2.62	
KPSS	1.07	0.35	0.46	0.74	

Unit Root Test

3 tests are employed here: ADF-Test, KPSS-Test, and PP-Test (Phillips-Perron Test).

<u> </u>			
TEST Method	ADF	KPSS	PP
FOF	2.53	1.07	-0.16
diff(FOF)	-3.40	0.11	40
Retire	1.64	1.01	0.23
diff(Retire)	-2.31	0.18	1.55
10pct	-1.61	0.35	*
5pct	-1.95	0.46	0.26
1pct	-2.62	0.74	*

Cointegration Relationship 1

First, estimate relationship between FOF and Retire.

```
FOF_t = \alpha + \beta * Retire_t + \mu_t
```

Next, do unit root test on μ_t . The results show that μ_t is white noise sequence. So two I(1) processes combines to one I(0) process. It indicates the cointegration relationship between FOF and Retire. And the cointegration vector is (1, -0.15).

Error Correction Model 1

Establish Error Correction Model use lags of FOF and Retire, and the residuals got before. Let y = diff(FOF) and x = diff(Retire). And set the ecm equation as

 $y_t = \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \alpha_3 y_{t-3} + \alpha_4 y_{t-4} + \beta_0 x_t + \beta_1 x_{t-1} + \gamma r_{t-1} + \epsilon_t$. The results are as follows.

```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 22.13335 11.14436 1.986 0.0573 .

L(y, 1) -0.46108 0.19994 -2.306 0.0290 *

L(y, 2) -0.01601 0.12908 -0.124 0.9022

L(y, 3) -0.03563 0.12999 -0.274 0.7861

L(y, 4) -0.02875 0.13862 -0.207 0.8373

L(x, 1) 0.05842 0.02549 2.292 0.0300 *

L(x, 0) 0.09517 0.01852 5.138 2.1e-05 ***

L(x, 1) -0.38373 0.16855 -2.277 0.0309 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 40.94 on 27 degrees of freedom

Multiple R-squared: 0.5683, Adjusted R-squared: 0.4564

F-statistic: 5.078 on 7 and 27 DF, p-value: 9e-04
```

Cointegration in Log

The \log function is usually employed when dealing with macro-data. The Unit Root Test of $\log(FOF)$ and $\log(Retire)$ are as follows.

TEST Method	ADF	KPSS	PP
log(FOF)	2.28	1.07	-1.04
diff(log(FOF))	-3.74	0.10	-28.59
log(Retire)	1.39	1.00	-0.41
diff(log(Retire))	-2.67	0.12	-25.56
10pct	-1.61	0.35	*
5pct	-1.95	0.46	0.26
1pct	-2.62	0.74	*

7/11

Cointegration Relationship 2

Repeat the process before.

Error Correction Model 2

Let
$$y = diff(log(FOF))$$
 and $x = log(diff(Retire))$
 $y_t = \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \alpha_3 y_{t-3} + \alpha_4 y_{t-4} + \beta_0 x_t + \beta_1 x_{t-1} + \gamma r_{t-1} + \epsilon_t$.

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                    0.01097 1.750
(Intercept) 0.01921
                                   0.0915
L(v, 1) -0.27010 0.19590 -1.379
                                    0.1793
L(v, 2) -0.03732 0.11204 -0.333
                                    0.7416
L(y, 3) -0.02120 0.11345 -0.187
                                    0.8532
L(y, 4) -0.01700 0.11327 -0.150
                                    0.8818
L(x, 0) 1.21439 0.19466 6.238 1.13e-06 ***
       0.56210 0.30853 1.822
L(x, 1)
                                    0.0796 .
                    0.13785 -1.221
                                    0.2325
L(r, 1)
        -0. 16838
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.04489 on 27 degrees of freedom Multiple R-squared: 0.688, Adjusted R-squared: 0.6071 F-statistic: 8.506 on 7 and 27 DF, p-value: 1.717e-05

Cointegration Relationship Three

Error Correction Model Three