47006- ANÁLISE E MODELÇÃO DE SISTEMAS

AMS: course presentation

Ilídio Oliveira

v2020/10/06

Key resources

Web page at Moodle

All learning materials Assignments submission

Syllabus (dossier pedagógico)

Subjects covered Grading (and other) rules

Course Calendar

<u>Weekly plan</u>

Análise e Modelação de Sistemas > 47006

Informática / Sistemas de Informação código no paco ensino teórico (T) - 3 horas/semana área científica

ensino prático e laboratorial (PL) - 2 horas/s créditos escolaridade Português, Inglês

Ilidio Fernando de Castro Oliveira idioma(s) de lecionação responsável

Análise e Modelação de Sistemas é uma Unidade Curricular (UC) intro engenharia de software. Serão apresentados conceitos básicos de an objectivos requisitos, casos de uso e principios OO. Tópicos de arquitectura de s serão também abordados para suportar a UML e a OpenUP.

A metodologia OpenUP será usada como referência no processo de software . Os alunos terão a oportunidade de a seguirem e praticar uma solução para um problema concreto. A UML será também apre longo da UC para suportar o processo de modelação.

Mapping AMS in the ACM/IEEE curriculum guidelines

Software Engineering 2014

Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering

[Resource] Full Guidelines document @eLearning

KA/KU	Title	Hours	KA/KU	Title	Hours
CMP	Computing essentials	152	DES	Software design	48
CMP.cf	Computer science foundations	120	DES.con	Design concepts	3
CMP.ct	Construction technologies	20	DES.str	Design strategies	6
CMP.tl	Construction tools	12	DES.ar	Architectural design	12
				Human-computer interaction	
			DES.hci	design	10
			DES.dd	Detailed design	14
			DES.ev	Design evaluation	3
	Mathematical and			Software verification and	
FND	engineering fundamentals	80	VAV	validation	37
				V&V terminology and	
FND.mf	Mathematical foundations	50	VAV.fnd	foundations	5
	Engineering foundations for				
FND.ef	software	22	VAV.rev	Reviews and static analysis	9
	Engineering economics for				
FND.ec	software	8	VAV.tst	Testing	18
			VAV.par	Problem analysis and reporting	5
PRF	Professional practice	29	PRO	Software process	33
	Group dynamics and				
PRF.psy	psychology	8	PRO.con	Process concepts	3
	Communications skills (specific				
PRF.com	to SE)	15	PRO.imp	Process implementation	8
PRF.pr	Professionalism	6	PRO.pp	Project planning and tracking	8
				Software configuration	_
			PRO.cm	management	6
				Evolution processes and	_
			PRO.evo	activities	8
	Software modeling and				
MAA	analysis	28	QUA	Software quality	10
	Mandalina farmadakiana	_	0114	Software quality concepts and	_
MAA.md	Modeling foundations	8	QUA.cc	culture	2
MAA.tm	Types of models	12	QUA.pca	Process assurance	4
MAA.af	Analysis fundamentals	8	QUA.pda	Product assurance	4
BEO	Requirements analysis and	20	656	Conveite	20
REQ	specification	30	SEC	Security	20
REQ.rfd	Requirements fundamentals	6 10	SEC.sfd	Security fundamentals	8
REQ.er	Eliciting requirements	10	SEC.net	Computer and network security	ŏ
DEO rod	Requirements specification and	10	SEC day	Dovoloning coours coffware	8
REQ.rsd	documentation	10 4	SEC.dev	Developing secure software	0
REQ.rv	Requirements validation	4			

Course subject: analysis and specification of software-intensive systems

Systems analysis

Disciplines related to the characterization of the problem and specification of the technical solution

Development Process

Systematic engineering method. Defines activities, roles and outcomes

Visual modeling

Unified Modeling Language - UML

CASE tools (computeraided software engineering)

E.g.: VisualParadigm

http://www.sw-engineering-candies.com/blog-1/periodic-table-of-software-engineering-know-how

Note on cooperative learning

Team effort

Labs

Project assignment

Individual

Written exam

More on <u>Cooperative Learning</u>.

[Resource] Turning groups into teams @eLearning

cooperative Learning It leads to more and deeper learning and longer retention of information; greater development of high-level thinking, problem-solving, communication, and interpersonal skills; more positive attitudes toward engineering and science curricula and careers and greater retention in those curricula; and better preparation for the workplace.

Richard Felder

Engineer

Richard M. Felder is the Hoechst Celanese Professor Emeritus of Chemical Engineering at North Carolina State University. Wikipedia

How to study for AMS?

Attend the classes;)

All topics in the Exam are addressed in classes, including some viewpoints/discussion questions.

Books

See references cited at the end of each presentation to find the relevant Chapters (from selected references)

Labs & project

Actively participate in every assignment.

Pitfalls

- ★ distribute the tasks and cut the discussion in lab assignment... everybody shoud go through the work.
- skip rotative "roles" in the group
- ★ let the "smart volunteer" take all the responsabilities

Main references

Adopted text book.

