Lecture 2 Simple Linear Regression STAT 452, Spring 2021

- ► Linear regression is a useful and widely applied approach to supervised learning.
- ▶ It is important to have a good understanding of linear regression before studying more complex statistical learning methods.
- ► Many fancy statistical learning approaches can be seen as generalizations or extensions of linear regression.

**Simple linear regression** is a method for fitting a straight line to data that show a linear trend when displayed on a scatterplot. It is a useful tool for making predictions for a quantitative response variable.



# Simple Linear Regression Model

Let  $\{(x_i, y_i) : i = 1, \dots, n\}$  be a collection of n data points. A **simple linear regression model** expressing the relationship between  $y_i$  and  $x_i$  is given by:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

- $\triangleright$   $y_i$  response variable
- $\triangleright$   $x_i$  predictor variable
- $\triangleright$   $\beta_0$  intercept parameter
- $\triangleright$   $\beta_1$  slope parameter
- $ightharpoonup \epsilon_i$  is the random error term; assume  $\epsilon_i \sim N(0, \sigma^2)$

It is called "simple" linear regression because there is only one predictor variable.

## **Terminology**

In statistical / machine learning we can use the following terms interchangeably:

x: predictor variable, explanatory variable, independent variable, input variable, feature

y: response variable, dependent variable, target variable, output variable

 $\beta_0$ ,  $\beta_1$ : regression parameters or coefficients

#### Fitted Values and Residuals

► The line that we we estimate, or fit to the data in the scatterplot, is written as

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

where  $\hat{\beta}_0$  and  $\hat{\beta}_1$  denote the estimates of the unknown regression parameters  $\beta_0$  and  $\beta_1$ .

▶ The fitted (or predicted) value for the  $i^{th}$  observation  $(x_i, y_i)$ :

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

▶ The **residual** for the  $i^{th}$  observation is the difference between the observed value  $(y_i)$  and the predicted value  $(\hat{y}_i)$ :

$$\hat{e}_i = y_i - \hat{y}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$$









# Sum of Squared Residuals

- Intuitively, a line that fits the data well has small residuals.
- ► The least squares line minimizes the residual sum of squares:

$$RSS = \sum_{i=1}^{n} \hat{e}_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i})^{2}$$

That is, out of all possible lines we could draw on the scatterplot, the least squares line is the "best fit" since it has the smallest sum of squared residuals.

## Least Squares Estimates

Using some calculus, one can show that the estimates  $\hat{\beta}_0$  and  $\hat{\beta}_1$  that minimize the residual sum of squares (RSS) are given by:

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = r \frac{s_y}{s_x}$$

where  $\bar{x}$  and  $\bar{y}$  are the sample means,  $s_x$  and  $s_y$  are the sample standard deviations, and r is the correlation coefficient.

### Interpretation

- ▶ **Slope**: an increase in the explanatory variable (x) by one unit is associated with a change of  $\hat{\beta}_1$  in the predicted response  $(\hat{y})$ .
- ▶ **Intercept**: the prediction for the response variable  $(\hat{y})$  when the value for the explanatory variable is zero (x = 0). It may not make sense to try to interpret the intercept depending on the application.

### Example

- ▶ Data set on residential properties in Ames, Iowa from 2006 to 2010, which can be accessed though the R package AmesHousing.
- ► The data set contains 2930 observations (properties) and 81 variables.
- ➤ For this example, we fit a simple linear regression model with sale price (Sale\_Price) as the response variable, and total above ground living space in square feet (Gr\_Liv\_Area) as the predictor.
- ➤ To read more about this data package in the R help menu type help(make\_ames) and help(ames\_raw)

```
> library(tidyverse)
```

- > library(AmesHousing)
- > ames <- make\_ames()

```
> ggplot(ames, aes(x = Gr_Liv_Area, y = Sale_Price / 1000)) +
    geom_point(size = 0.5, alpha = 0.5) +
    geom_smooth(method = "lm", se = FALSE) +
    labs(x = "Square Footage", y = "Sale Price (thousands)")
```



```
> lm1 <- lm(Sale Price ~ Gr Liv Area, data = ames)
> summary(lm1)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 13289.634 3269.703 4.064 4.94e-05 ***
Gr_Liv_Area 111.694 2.066 54.061 < 2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 56520 on 2928 degrees of freedom
Multiple R-squared: 0.4995, Adjusted R-squared: 0.4994
F-statistic: 2923 on 1 and 2928 DF, p-value: < 2.2e-16
> coef(lm1) # just extract coefficients
(Intercept) Gr_Liv_Area
  13289.634 111.694
```

#### Example

(a) Write the equation for the least squares regression line.

(b) Interpret the slope of the model.

(c) What is the predicted sales price for a property with 2000 square feet of above ground living area?

R code to make prediction:

```
> predict(lm1, newdata = data.frame(Gr_Liv_Area = 2000))
          1
236677.6
```

(d) Use R to predict the sales price for a property with 4500 square feet of above ground living area? Based on the scatterplot would you have much confidence in this prediction?

#### Coefficient of Determination

The **coefficient of determination**  $(R^2)$  is a measure of how well the linear regression model fits the data.

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

- ►  $TSS = \sum_{i=1}^{n} (y_i \bar{y})^2$  is the total sum of squares (total variability in the response variable)
- ►  $RSS = \sum_{i=1}^{n} (y_i \hat{y}_i)^2$  is the residual sum of squares (unexplained variability)

#### Coefficient of Determination

- $ightharpoonup R^2$  can be interpreted as the proportion of variability in the response variable v that is explained by x.
- ▶  $0 \le R^2 \le 1$ ; the closer  $R^2$  is to 1, the better the linear regression model fits the data.
- $ightharpoonup R^2$  can be computed as the correlation coefficient r squared.
- R<sup>2</sup> is arguably one of the most commonly misused statistics. Always look at a scatterplot of your data first, and check whether fitting a line makes sense and for any outliers.

### Example

- ▶ Based on the summary output  $R^2 = 0.4995$  (see Multiple R-squared). Therefore, about 50% of the variability in sale price can be explained by above ground living area.
- Alternatively, we can compute  $R^2$  by taking the sample correlation (using the cor() function) and then squaring it.

```
> cor(ames$Sale_Price, ames$Gr_Liv_Area)^2
[1] 0.4995379
```