6: Transformations of Random Variables

PSTAT 120A: Summer 2022

Ethan P. Marzban July 11, 2022

University of California, Santa Barbara

Where We've Been

- Axioms of Probability, Probability Spaces, Counting
- Conditional Probabilities, independence, etc.
- Basics of Random Variables (classification, p.m.f., c.m.f., moments)
- Discrete Distributions
- Continuous Distributions

Notational Convenience

• First, it will be helpful to introduce some new notation:

Definition: Indicators

The $indicator\ function$ associated with a particular event A is defined as

$$\mathbb{1}_{A}(\omega) = \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{if } \omega \in A^{\complement} \end{cases}$$

Often, the (ω) will be dropped and we will simply write

$$\mathbb{1}_A = \begin{cases} 1 & \text{if } A \\ 0 & \text{otherwise} \end{cases}$$

 For instance, we can write the p.d.f. of the exponential distribution quite succinctly as

$$f_X(x) = \lambda e^{-\lambda x} \cdot \mathbb{1}_{\{x \ge 0\}}$$

Transformations of Random Variables

Transformations of Random

Variables

Introduction

- Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a random variable $X : \Omega \to \mathbb{R}$.
- Consider now a function $g: \mathbb{R} \to \mathbb{R}$.
- Recall from precauclus that $(g \circ X)$ is itself a function.
- Specifically, $(g \circ X) : \Omega \to \mathbb{R}$; that is, $(g \circ X)$ is a random variable!
- Often times we will denote this random variable by g(X); for instance, we will start with a random variable X and define a new random variable Y := g(X). In other words, Y is a **transformation** of X.

Introduction

- Functions of random variables? That sounds awfully abstract...
- Well, suppose T_C measures the temperature as measured in Centigrade of some town, and that $T_C \sim \mathcal{N}(0,3)$. We may ask ourselves: "what is the distribution of temperatures as measured in Fahrenheit?" That is, if T_F measures the temperature in Fahrenheit then

$$T_F = g(T_C)$$
 where $g(t) = \frac{9}{5}t + 32$

and we seek the distribution of T_F .

Reference Example 2

Reference Example:

A particle is fired from the origin into the first quadrant such that the angle of trajectory (as measured w.r.t. the x-axis) is uniformly distributed. The particle travels unobstructed until it collides with circlar ring, placed at a constant radius of 1 away from the origin. We let Y denote the y-coordinate of the point of collision (see figure below).

What is the distribution of **Y**?

The Setup:

- Let Θ denote the angle of trajectory; then $\Theta \sim \text{Unif}[0, {}^\pi\!/_2].$
- We can see that

$$sin(\Theta) = \frac{Y}{1} \implies Y = sin(\Theta)$$

• So, we have $Y = g(\Theta)$ where $g(t) = \sin(t)$, and we want the distribution of Y.

Transformations of Random Variables

Expectation?

ullet Finding $\mathbb{E}[Y]$ is relatively easy:

$$\mathbb{E}[Y] = \mathbb{E}[\sin(\Theta)]$$

$$= \int_{-\infty}^{\infty} \sin(\theta) \cdot f_{\Theta}(\theta) d\theta$$

$$= \int_{0}^{\pi/2} \sin(\theta) \cdot \frac{2}{\pi} d\theta$$

$$= \frac{2}{\pi} \int_{0}^{\pi/2} \sin(\theta) d\theta$$

$$= \frac{2}{\pi} [\cos(0) - \cos(\pi/2)] = \frac{2}{\pi}$$

- Okay.... now what?
 - $Y \sim \mathcal{N}(2/\pi, 1)$?
 - Y ~ Exp(π/2)?
- The point is: expectation isn't enough!

A Question

- This leads us to a broader question: what information is enough for us to determine the distribution of Y?
- There are at least two answers to this question. The answer we will discuss today is: "pmf's and pdf's."
 - The other answer will be discussed next week, and will lead us to something called Moment-Generating Functions. Again, more on that later.
- What I mean is this: if we can somehow find that the probability density function (p.d.f.) of Y is given by

$$f_Y(y) = \left(\frac{\pi}{2}\right) e^{-\frac{y\pi}{2}} \cdot \mathbb{1}_{\{y \ge 0\}}$$

then I can immediately say $Y \sim \text{Exp}(\pi/2)$.

The Question

• So, here is our task: given a random variable X that has p.d.f. $f_X(x)$, we seek to find the p.d.f. $f_Y(y)$ of the random variable Y := g(X).

(i) The Change of Variable Formula

Suppose X is a random variable with p.d.f. $f_X(x)$ and state space S_X . Further suppose g is a function that is bijective over S_X , and that Y := g(X). Then the p.d.f. of Y is given by

$$f_Y(y) = f_X[g^{-1}(y)] \cdot \left| \frac{\mathrm{d}}{\mathrm{d}y} g^{-1}(y) \right|$$

• We'll prove this in a bit.

Reference Example (again)

• Let's return to our reference example:

$$\Theta \sim \mathsf{Unif}(0, \pi/2)$$
 $g(t) := \sin(t)$
 $Y := g(\Theta)$

• First, we can check that $S_{\Theta} = [0, \pi/2]$ and g(t) is indeed bijective over S_{Θ} with inverse given by

$$g^{-1}(y) = \arcsin(y)$$

• Thus, by calculus:

$$\left| \frac{\mathrm{d}}{\mathrm{d}y} g^{-1}(y) \right| = \left| \frac{\mathrm{d}}{\mathrm{d}y} \arcsin(y) \right| = \left| \frac{1}{\sqrt{1 - y^2}} \right| = \frac{1}{\sqrt{1 - y^2}}$$

Reference Example (again)

• Hence:

$$f_Y(y) = f_{\Theta}(\arcsin y) \cdot \frac{1}{\sqrt{1 - y^2}}$$

$$= \begin{cases} \frac{2}{\pi} & \text{if } 0 \le \arcsin y \le \frac{\pi}{2} \\ 0 & \text{otherwise} \end{cases} \cdot \frac{1}{\sqrt{1 - y^2}}$$

$$= \begin{cases} \frac{2}{\pi\sqrt{1 - y^2}} & \text{if } 0 \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$$

- By the way, $S_Y = g(S_{\Theta})$.
- We can also verify our expectation computation from before:

$$\mathbb{E}[Y] = \int_0^1 \frac{2y}{\pi \sqrt{1 - y^2}} \, \mathrm{d}y = \frac{2}{\pi} \checkmark$$

Transformations of Random Variables

Example (Chalkboard)

Suppose X has p.d.f. $f_X(x)$ and suppose Y = aX + b for a, b > 0. Derive an expression [in terms of $f_X(x)$, a, and b] for the p.d.f. $f_Y(y)$ of Y.

Non-bijective Functions

- Note that the Change of Variable formula requires g to be bijective over the state space of X. What do we do if this is not the case? For instance, suppose $X \sim \mathcal{N}(0,1)$ and $Y = X^2$.
- Firstly, why does the Change of Variable formula not work for non-bijective functions?
- Answer: invertibility. Recall (from Precalculus) that inverting a function is equivalent to performing a reflection about the line y = x. Thus, if a function f(x) violates the horizontal line test [i.e. fails to be bijective] its reflection about y = x will fail the *vertical* line test and not even be a function!

Non-bijective Functions (cont'd)

- But, a fact that we can leverage is: restrictions of non-bijective functions can be bijective!
- For instance, $f(x) = x^2$ when restricted to only $x \in (-\infty, 0]$ is bijective; similarly, $f(x) = x^2$ when restricted to only $x \in (0, \infty)$ is also bijective:

Non-bijective Functions (cont'd)

- So, let us return to our problem of finding the density of Y := g(X) when g is not bijective over S_X .
- Our approach is as follows:
 - 1. Partition S_X into smaller subintervals $S_X^{(i)}$ such that g is bijective over each $S_X^{(i)}$.
 - 2. Apply the Change of Variable Formula to each $S_X^{(i)}$, to obtain a series of partial p.d.f.'s $f_Y^{(i)}(y)$ valid over $S_X^{(i)}$
 - 3. Combine these partial p.d.f.'s into a single piecewise-defined p.d.f. through addition.
 - 4. CAVEAT: Only add p.d.f's that are valid over the same domain. If you obtain two sub-pdf's $f_Y^{(1)}(y)$ and $f_Y^{(2)}(y)$ that ar valid over two separate domains, say $S_Y^{(1)}$ and $S_Y^{(2)}$, then do not add these but rather simply combine them into the same p.d.f. using piecewise notation:

$$f_Y(y) = \begin{cases} f_Y^{(1)}(y) & \text{if } y \in S_Y^{(1)} \\ f_Y^{(2)}(y) & \text{if } y \in S_Y^{(2)} \\ \vdots & \vdots \end{cases}$$

This is important for HW05 question 2.

Worked-Out Example

Worked-Out Example: If $X \sim \mathcal{N}(0, 1)$, find the distribution of $Y := X^2$.

• The state space of X is $S_X = \mathbb{R}$; clearly $g(x) = x^2$ is not bijective over S_X . Thus, we partition S_X into

$$S_X^{(1)} := (-\infty, 0] , \ S_X^{(2)} := (0, \infty)$$

because $g(x) = x^2$ is bijective over $S_X^{(1)}$ and $S_X^{(2)}$ respectively.

• For $x \in S_X^{(1)}$ we have $g^{-1}(y) = -\sqrt{y}$:

Thus,

$$\left| \frac{\mathrm{d}}{\mathrm{d}y} g^{-1}(y) \right| = \left| -\frac{1}{2\sqrt{y}} \right| = \frac{1}{2\sqrt{y}}$$

and so

$$f_Y^{(1)}(y) = \phi(-\sqrt{y}) \cdot \frac{1}{2\sqrt{y}}$$

• For $x \in S_X^{(2)}$ we have $g^{-1}(y) = \sqrt{y}$:

Thus,

$$\left| \frac{\mathrm{d}}{\mathrm{d}y} g^{-1}(y) \right| = \left| \frac{1}{2\sqrt{y}} \right| = \frac{1}{2\sqrt{y}}$$

and so

$$f_Y^{(2)}(y) = \phi(\sqrt{y}) \cdot \frac{1}{2\sqrt{y}}$$

Transformations of Random Variables

• So, putting everything together,

$$f_{Y}(y) = f_{Y}^{(1)}(y) + f_{Y}^{(2)}(y)$$

$$= \phi(-\sqrt{y}) \cdot \frac{1}{2\sqrt{y}} + \phi(\sqrt{y}) \cdot \frac{1}{2\sqrt{y}}$$

$$= \phi(\sqrt{y}) \cdot \frac{1}{2\sqrt{y}} + \phi(\sqrt{y}) \cdot \frac{1}{2\sqrt{y}}$$

$$= \frac{1}{\sqrt{y}} \phi(\sqrt{y})$$

$$= \frac{1}{\sqrt{y}} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y}$$

Worked-Out Example: If $X \sim \mathcal{N}(0, 1)$, find the distribution of $Y := X^2$.

- State Space?
- $\bullet \ \ S_Y(y)=g(S_X).$
- So, in our example, $S_Y = (\mathbb{R})^2 = [0, \infty)$ meaning

$$f_Y(y) = \frac{1}{\sqrt{y}} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y} \cdot \mathbb{1}_{\{y \ge 0\}}$$

• (This is a special case of the so-called χ^2 distribution, a very useful distribution you will return to throughout your Statistics Careers!)

Transformations of Random Variables

The C.D.F. Method

 Now, there is another approach to identifying the distributions of transformed random variable. It stems from the following fact:

Fact

CDF's uniquely determine distributions. In other words, if X and Y are random variables with c.d.f.'s F_X and $F_Y(y)$ respectively, then $F_X(t) = F_Y(t)$ for all y implies that X and Y follow the same distribution [sometimes written $X \stackrel{d}{=} Y$]

The C.D.F. Method

- To see this in action, let's return to our χ^2 example.
- The c.d.f. of Y is given by

$$F_Y(y) := \mathbb{P}(Y \leq y) = \mathbb{P}(X^2 \leq y) = \mathbb{P}(|X| \leq \sqrt{y}) = \mathbb{P}(-\sqrt{y} \leq X \leq \sqrt{y})$$

• Since the c.d.f. of X is simply $\Phi(\cdot)$, we have

$$F_Y(y) = \Phi(\sqrt{y}) - \Phi(-\sqrt{y})$$

which can be further cleaned up by noting

$$\Phi(-\sqrt{y}) = 1 - \Phi(\sqrt{y})$$

Therefore,

$$F_Y(y) = 2\Phi(\sqrt{y}) - 1$$

ullet To find the p.d.f. of Y we differentiate and apply the chain rule:

$$f_Y(y) = \frac{d}{dy} [2\Phi(\sqrt{y}) - 1] = 2 \cdot \frac{1}{2\sqrt{y}} \cdot \phi(\sqrt{y}) = \frac{1}{\sqrt{y}} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(\sqrt{y})^2}$$

[recall that ϕ , the lowercase version of Φ , denotes the standard normal density]

Another Example

Let $X \sim \operatorname{Exp}(\lambda)$ and Y = X + c for some c > 0. Find the p.d.f. of Y using the c.d.f. method

- First note $S_Y = [c, \infty)$
- So, for $y \in [c, \infty)$ we have that the c.d.f. of Y at y is

$$F_Y(y) = \mathbb{P}(X + c \le y) = \mathbb{P}(X \le y - c) = 1 - e^{-\lambda(y - c)}$$

• Differentiating yields

$$f_Y(y) = \frac{1}{\lambda} e^{-\lambda(y-c)}$$

meaning, putting everything together,

$$f_Y(y) = \begin{cases} \frac{1}{\lambda} e^{-\lambda(y-c)} & \text{if } y \ge c \\ 0 & \text{otherwise} \end{cases}$$

which is a special case of what is sometimes known as the **two-parameter exponential distribution**.

Paying our Dues

Finally, it is time to pay one of our dues and prove something we said we'd prove:

Theorem: Standardization

If
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
 and $Z := \left(\frac{X - \mu}{\sigma} \right)$, then $Z \sim \mathcal{N}(0, 1)$

Proof.

• Let's use the change of variable formula.

$$g(t) = \frac{t - \mu}{\sigma} \implies g^{-1}(t) = \sigma t + \mu \implies \frac{\mathrm{d}}{\mathrm{d}t} g^{-1}(t) = \sigma$$

So

$$f_Z(z) = \sigma \cdot \frac{1}{\sqrt{2\pi} \cdot \sigma} \cdot \exp\left\{-\frac{1}{2\sigma^2} \left([\sigma z + \mu] - \mu \right)^2 \right\}$$

• Once the dust settles, you can see that $f_Z(z) = \phi(z)$ thereby showing $Z \sim \mathcal{N}(0,1)$.

Proving the Change of Variable Formula

- There are two cases we must consider: when g is strictly increasing and when g is strictly decreasing.
- If g is strictly increasing, then g^{-1} will also be strictly increasing and its derivative will be positive.
- Now, let's find the p.d.f. of Y := g(X) using the c.d.f. method:

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(g(X) \le y) = \mathbb{P}(X \le g^{-1}(y)) = F_X[g^{-1}(y)]$$

Note that we are guaranteed the existence of g^{-1} by our bijectivity assumption on g.

• Now, we differentiate w.r.t. y:

$$f_Y(y) = \frac{d}{dy} F_X [g^{-1}(y)] = f_X[g^{-1}(y)] \cdot \frac{d}{dy} g^{-1}(y)$$

where we have applied the chain rule.

Proving the Change of Variable Formula

- ullet The other case to consider is when g is strictly decreasing.
- If g is strictly decreasing, then g^{-1} will also be strictly decreasing and its derivative will be negative.
- Now, let's find the p.d.f. of Y := g(X) using the c.d.f. method:

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(g(X) \le y) = \mathbb{P}(X \ge g^{-1}(y)) = 1 - F_X[g^{-1}(y)]$$

Key Point: We had to flip the sign of the inequality because we applied a decreasing function to both sides!

• Now, we differentiate w.r.t. y:

$$f_Y(y) = \frac{d}{dy} \left\{ 1 - F_X \left[g^{-1}(y) \right] \right\} = f_X[g^{-1}(y)] \cdot \left[-\frac{d}{dy} g^{-1}(y) \right]$$

where we have again applied the chain rule.

Proving the Change of Variable Formula

• So, in piecewise-defined form, we have

$$\begin{split} f_Y(y) &= \begin{cases} f_X[g^{-1}(y)] \cdot \begin{bmatrix} \frac{\mathrm{d}}{\mathrm{d}y} g^{-1}(y) \end{bmatrix} & \text{if } \frac{\mathrm{d}}{\mathrm{d}y} g^{-1}(y) > 0 \\ f_X[g^{-1}(y)] \cdot \begin{bmatrix} -\frac{\mathrm{d}}{\mathrm{d}y} g^{-1}(y) \end{bmatrix} & \text{if } \frac{\mathrm{d}}{\mathrm{d}y} g^{-1}(y) > 0 \end{cases} \\ &= f_X[g^{-1}(y)] \cdot \begin{cases} \begin{bmatrix} \frac{\mathrm{d}}{\mathrm{d}y} g^{-1}(y) \end{bmatrix} & \text{if } \frac{\mathrm{d}}{\mathrm{d}y} g^{-1}(y) > 0 \\ -\frac{\mathrm{d}}{\mathrm{d}y} g^{-1}(y) \end{bmatrix} & \text{if } \frac{\mathrm{d}}{\mathrm{d}y} g^{-1}(y) > 0 \end{cases} \\ &= f_X[g^{-1}(y)] \cdot \left| \frac{\mathrm{d}}{\mathrm{d}y} g^{-1}(y) \right| & \text{if } \frac{\mathrm{d}}{\mathrm{d}y} g^{-1}(y) > 0 \end{cases}$$

which is precisely the Change of Variable formula.