MATHEMATICAL LOGIC FINAL EXAM- DURATION 2H-

Documents are unauthorized (Use only one Language in your responses)

Exercise 1 (3 points) (on interleaf sheet)

Represent the following statements in first-order language:

- 1. Every even integer, strictly greater than 2, can be written as the sum of two primes. (Goldbach's Conjecture)
- 2. Every integer greater than 1 is divisible by a prime number.
- 3. There is no even prime greater than 2.

Exercise 2 (2-3 points) (on double sheet)

1. Prove - using the semantic tree - that the formula:

 $\alpha : \forall x \exists y P(x,y) \land \exists x \forall y \exists P(x,y)$ is unsatisfiable

2. Prove - without using the completeness property - the following proposition:

$$\forall x \exists y \Big(\big(\neg P(x,y) \rightarrow P(x,a) \big) \land \big(\neg P(y,x) \rightarrow P(x,a) \big) \Big) \vdash \exists x \exists y \exists z (P(x,a) \land P(x,y) \land P(y,x))$$

Exercise 3 (2.5 points) Answer the following questions:

- 1. Name 3 methods to show that a set of formulas is not satisfiable.
- 2. Show that the following formula is satisfiable: $\forall x P(x) \rightarrow P(x)$
- 3. Show that the following formula is invalid: $\exists x P(x) \rightarrow P(x)$

Exercise 4 (4.5 points) Answer the following questions:

- 1. Find a Factor of the Clause $C: P(x, z, f(x)) \vee P(z, y, f(b))$ (specify the MGU)
- 2. Find a Factor of the Clause $C: P(x,z,f(x)) \vee P(z,y,f(g(y)))$ (specify the MGU)
- 3. Find a resolvent of the following two clauses and specify the MGU

C1: $P(x,f(y)) \vee Q(g(y),x)$

C2: $P(f(x), y) \vee Q(f(g(y)), z) \vee R(z)$

- 4. Let the clause: $C: P(x, f(y)) \vee Q(g(b), x, y)$
- $C'_1: P(h(y), f(y)) \vee Q(g(b), b, y)$: is it an instance of C (justify)
- C'_2 : $P(x, f(x)) \vee Q(g(f(a)), x, x)$: is it an instance of C (justify)
- 5. Let the clause: $C: P(x, f(y)) \vee Q(g(b), x, y)$
- $C'_1: P(b, f(y)) \vee Q(g(b), b, y)$ Is it a ground instance of C (justify)
- $C''_1: P(a, f(b)) \vee Q(g(b), a, b)$ Is it a ground instance of C (justify)
- $C'''_2: P(f(b), f(g(b))) \vee Q(g(b), f(b), b)$ is it a ground instance of C (justify)

Exercise 5: (5 points)

For each proposal, check whether it is valid or not (Justify your answer by demonstration in case of validity and a justified example in case of invalidity)

1.	The Herbrand base of any set of clauses is finite								
2.	The set of ground instances of any set of clauses is infinite								
3.	Whatever the formula	α	α	=	α_s	avec	α_s	the Skolem form of	α
4.	Whatever the formula	r	α	≢	α_s	avec	α_s	the Skolem form of	α
5.	Whatever the formula	α	A	x∃y	α	≡ ∃y	∀x α		
6.	Whatever the formula	α	$\forall x \exists y \alpha \not\equiv \exists y \forall x \alpha$						