Recurrent Neural Network (RNN) and Long Short Time Memory (LSTM)

BY CECCOTTI ROMAIN, DENELE LUCAS, EL KHIATI AMINE, KUCUKAL BURAK AND XU LU

RNN

One to One

Many to Many

RNN: The feedforward

RNN: The feedforward

RNN: The recurrent neural network

RNN: Vanish gradient

Figure 1
The Normal Distribution of IQ Scores

LSTM: Three main operations

- Forget Gate
- Input Gate
- Output Gate

LSTM: The forget Gate

- Gets t-1 output value
- Apply a sigmoïd function to it
- Saves the result in the memory called « C »

$$f_t = \sigma_g(W_f x_t + U_f h_{t-1} + b_f)$$

LSTM: Input Gate

- Aplly tanh and adds a bayes to the memory
- Proposes new interesting values
- Aplly the input gate function to these values

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

LSTM: Output Gate

Apply the sigmoid function on the memory

Apply tanh on the actual memory

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Multiply the previous results