Noise Cancellation Methods

- 1. Filtering, down-conversion
- 2. Sideband cancellation
- 3. Balanced mixers
- 4. Reducing calibration noise

Noise Cancellation Methods

Example 1: canceling unwanted sidebands by filtering Want Q >> $f_{o}/f_{i.f.}$ for filter where Q $\stackrel{\Delta}{=}$ $f_{o}/\Delta f$

Noise Cancellation Methods

Example 2: dual-down conversion with lower Q

$$Q \cong f_1/\Delta f_A \cong f_2/\Delta f_B$$

Multiple conversion required when:

$$\begin{cases} f_1/f_{i.f.} \lessgtr Q_{MAX}/3 \\ \text{e.g. triple conversion if } \frac{f_1}{f_{i.f.}} \lessgtr \left(\frac{Q}{3}\right)^2 \end{cases}$$

900-GHz Wireless Phone

$$f_1/f_{i.f.} > Q_{MAX}/3$$

e.g. triple conversion if
$$\frac{f_1}{f_{i.f.}} > \left(\frac{Q}{3}\right)^2$$

Let
$$f_1 \cong 10^8$$
, $f_{i.f.} \cong 10^4$
If Q = 100 (for RLC filter)

$$\frac{f_1}{f_{i.f.}} = 10^4 > \frac{100^2}{9}, \quad \text{Therefore we need triple conversion}$$

Surface Acoustic Wave (SAW) filters have $Q \cong 10^4$, and $Q \approx 10^5$ for crystal filters, so double conversion works here with SAW filters $\left(10^4 > 10^4/3\right)$, and single conversion with crystal filters (for one 10-kHz channel) $\left(10^4 < 10^5/3\right)$

Example 3: Sideband Cancellation

Recall:

$$cos \omega_o t = \frac{e^{j\omega_o t} + e^{-j\omega_o t}}{2}$$

$$sin \omega_{o}t = \frac{e^{j\omega_{o}t} - e^{-j\omega_{o}t}}{2j}$$

Example 3: Sideband Cancellation

Note: Analog signals can be converted to digital at any point in these circuits

$$90^{\circ} \pm \delta \Rightarrow \frac{B}{f_0} \approx 0.1$$

Example 4: Calibration

Calibrate:

- •gain
- baseline
- linearity

Example: cosmic background measurement

Example 4: Calibration

Example 4: Calibration

Issues:

1) switch assymetry

- 2) T_B of H_e load (~4°K) (Note hf << kTT)
- 3) Liquid helium load VSWR
- Isolator? (effects of LO and 2f_{LO} leakage and reflection from Dicke and calibration switches)
- 5) Atmospheric contribution

In general

- 1) Design for calibration; seek symmetry and redundancy
- 2) Use lab calibration, internal calibration, sky calibration sources
- 3) Use antenna pattern ranges

Example 5: Local Oscillator Noise Cancellation

- 1) use quiet L.O.'s
- 2) filter the L.O's
- 3) use high f_{i.f.}
- 4) cancellation (balanced mixers)

Example 6: Balanced Mixers

LO and r.f. signal add, so v_{in} produces i.f. component in v_{out}

Example 6: Balanced Mixers

③€ > ⊸ output

Cancels L.O. noise, which is identical at both diodes

Signals are 180° out of phase, add

Note field symmetries: at i.f. [even] \times [odd] = [odd]

L.O. (original)

output

reversed diodes cancel L.O. noise upon addition

Example 6: Balanced Mixers

Another balanced mixer

Optical detection

Classification of detectors:

Before: hf << kT Rayleigh-Jeans radio limit

Now: hf >> kT Optical limit (photon counting)

Next: $hf \cong kT$ Infrared

Photoelectric effect

 z_{min} is ~1 angstrom when electron "sea" vanishes; yields $e\phi_m$

 ϕ_m = 1.95 (cesium), 2.1 (rubidium), 2.3 (lithium) volts $\cong 4-5$ volts, most common metals

Photoelectric effect

 ϕ_m = 1.95 (cesium), 2.1 (rubidium), 2.3 (lithium) volts $\cong 4-5$ volts, most common metals

 ϕ_m sensitive to surface contamination and microstructure: local \overline{E}

hf
$$\Rightarrow \phi_m e \Rightarrow$$
 emission [1 e.v. = e Joules]

$$\lambda_{c.o.} = c/f_{c.o.} = \frac{hc}{e\varphi_m} \cong 0.6 - 0.7 \ \mu m \ for \ cesium$$

Tunneling is important for short leaps and high E_z

(Microstructure, etc $\stackrel{\sim}{\Rightarrow}$ 1 μ m cutoff wavelength)

Phototubes

quantum efficiency η~< 30% for G_e, S_i

$$i(t) = e v_{el}/L = e at/L \cong e^2 Vt/m_e L^2$$

$$\uparrow$$

$$a = dv/dt = f/m_e = eV/m_e L$$

Problem:

single electron voltage spikes are lost in R_L Johnson noise.

Photomultiplier Tubes (PMT's)

7 - 13 dynodes typical, $G \cong 10^4 - 10^7$

With $10^4 - 10^7$ electrons per detected photon, Johnson noise from R_L becomes negligible.

Photomultiplier Tubes (PMT's)

7 – 13 dynodes typical, $G \approx 10^4 - 10^7$

With $10^4 - 10^7$ electrons per detected photon, Johnson noise from R_L becomes negligible.

Number of electrons emitted per dynode hit $\cong (V_1/\phi_m) \cdot Q \approx 4$, say [impact efficiency Q < 1] $(V_1 = \text{electron kinetic energy})$

Dark current from cosmic rays, thermal, etc.

(note: smaller pulses from dynodes permit rejection)

(Thermal: 1 e.v. ≈ 10⁴K; so modest cooling helps)

Dark count $n_D \approx 1000 \text{ sec}^{-1}$ typically Counting rate ~10 MHz – 1 GHz + or more