Outer Product-based Neural Collaborative Filtering

Accepted by IJCAI-2018,论文链接: http://www.comp.nus.edu.sg/~xiangnan/papers/ijcai18-Conv http://www.comp.nus.edu.sg/~xiangnan/papers/ijcai18-Conv

摘要

本文指出了目前较为流行的各种 NCF 及其变体模型大多采用特征向量内积、拼接操作的局限性。为此,提出了一种基于外积的新的特征交互模型,通过特征交互操作得到一个特征矩阵,在此基础上应用 CNN 学习到特征中每一维的高阶相互关系。从实验中验证了这一观点,代码开源在 https://github.com/duxy-me/ConvNCF

背景简介

推荐系统问题是在 IR (信息检索)领域中很重要的研究方向,而协同过滤方法又是最为常用且有效地推荐算法和模型。一个协同过滤模型主要有两部分:使用特征向量表示用户和物品;特征向量的交互计算,即用户对物品的感兴趣程度。(注:表示学习得到用户、物品的特征向量 p 和 q,而模型设计中,学习一个打分函数 $f:(\mathbb{R}^n,\mathbb{R}^n)\to\mathbb{R}$ 。)因此,在引入神经网络模型后,大部分工作都在如何学习更好的表示和交互模型的构建上。

尽管大大小小的改进,都取得了一定的成果,但是 CF 方法存在固有的局限:在模型学习中,采用一种固定的操作——内积,假设 $f(p,q)=p^Tq\in\mathbb{R}$ 。在这样的假设下,特征向量 p 和 q 的每一维(每一个特征的角度、语义)都是平等的,而且这样的操作每一维都是独立的计算乘积最后求和。作者指出,特征向量的每一个维度都有特定的语义,表征了对象的某个方面的信息,在使用时应该有所侧重的。此外,当前对于特征映射函数 f 的改进,如从数据中用 MLP 等其他抽象形式来学习,也显示出能取得更出色的效果。

本文的作者团队与 2017 年提出的 Neural CF 模型,在用户、物品的特征输入层上,使用多个非线性层(深度网络)学习函数 f,已经成为"标配",处理方式主要有拼接和按位相乘。尽管 MLP 理论上能够拟合任意复杂的连续函数 f,但这样的做法仍然没有对特征向量的每个不同的维度进行限制。

本文提出了一种新的 NCF 模型,意在模型中融合一种特征维度之间的关系。具体而言,就是通过特征向量的外积,得到交互矩阵(Interaction Map) $E \in \mathbb{R}^{K \times K}$,K 是特征向量维数。如此构建的交互矩阵,体现出了每个维度下特征之间的关系,而其中也包含了传统 CF 的内积信息(E 中的主对角线求和即为向量内积),最终能刻画特征维度之间的高阶关系。此外,在特征矩阵上引入 CNN 处理方式,也比全连接 MLP 更容易泛化、也更容易建立更深的网络。

本文的贡献主要有:

- 提出了一种基于外积的 NCF 模型, ONCF, 刻画特征向量的每个维度的相互关系;
- 在特征交互的矩阵上采用 CNN, 从局部和全局, 对每个维度进行高阶的交互;
- 通过扩展实验,验证了ONCF模型的理论正确和有效性;
- 第一个使用 CNN 对特征映射函数 f 进行建模。

模型

模型设计

Figure 1: Outer Product-based NCF framework

- ONCF 模型的输入是一个用户、物品对 u 和 i,输入层是一个 one-hot 编码的向量,通过一个 embedding 映射 P 和 Q 得到一个表示 p_u 和 q_i
- 计算外积,得到 Interaction Map $E=p_u\otimes q_i=p_uq_i^T$ 矩阵。与一般方法相比,具有三个优势:
 - \circ 对于矩阵分解的方法是一种泛化、矩阵分解只使用了E 的主对角元素;
 - 比矩阵分解考虑到了更多的每一个特征维度之间的关系;
 - 比特征向量的拼接更有可解释性,是从一个综合的角度来看建模的。

与此同时,相关的实践经验表示,这样的特征之间的交互操作,更有利于深度模型的学习。(注:作者团队提出过 NFM 模型验证)另一方面,E是一个二维矩阵,与(单通道)图片是类似的,CNN 操作尤其能够抓住这个矩阵中的局部、全局信息特征。

- 隐藏层,输入是交互矩阵 E,输出则是隐藏状态 $g=f_{\Theta}(E)$,其中 f_{Θ} 是一个从矩阵到向量的映射, Θ 是模型参数。在这个模型中,是一个 CNN 结构
- 预测层,计算预测得分 $\hat{y}_{ui}=w^Tg$,至此,整个模型需要学习的参数有 P,Q,Θ,w
- 模型的损失函数是一个 BPR 损失,能够刻画观测到的正例比负例有更高的得分排名: $L(\Delta) = \sum_{(u,i,j)\in\mathcal{D}} -\ln\sigma(\hat{y}_{ui}-\hat{y}_{uj}) + \lambda_{\Delta}\|\Delta\|^2, \ \ \text{其中}\ \mathcal{D} := \{(u,i,j)|i\in\mathcal{Y}_u^+\wedge j\notin\mathcal{Y}u^+\},$ \mathcal{Y}^+ 是用户 u 观测到的正例。
- 值得一提的是,预测层参数 w 的等比例放大,会增大 $(\hat{y}_{ui}-\hat{y}_{uj})$ 的值,体现在训练过程中,会使得 w 的分量值较大,因此需要引入 L_2 或者是 maxnorm 的限制。

卷积 NCF

动机: MLP 的缺陷。

可以看到,隐藏层,从特征交互得到的隐藏状态是整个模型中最核心的部分。对于这里的 E,可以使用一个 MLP 对向量化(拉直操作)的 E 处理和运算。可是这样做带来的问题是:如果 E 的规模是 $K \times K$,取 K = 64,那么 $e = \mathrm{vec}(E)$ 是一个 $64 \times 64 = 4096$ 的特征向量,那么标准的第一层 MLP 的权重就已经至少是 4096×2048 的规模了,这样的参数规模是可怕的:需要极其庞大的计算资源和开销、需要更多的数据来拟合参数、调参问题。

卷积 NCF 模型

相比较 MLP 模型, CNN 的参数规模大大减小, 也更容易往深度学习。

Figure 2: An example of the architecture of our ConvNCF model that has 6 convolution layers with embedding size 64.

- 输入的是一个 $K \times K$ 的矩阵 E, 图中假设 K = 64
- 模型一共有 6 层,每一层都有 32 个 Feature Map,每个卷积核都是 2×2 的,那么每一层过后,Feature Map 的两个维度都缩小为上一层的一半,激活函数选择 RELU
- 最后输出第六层是一个 $1 \times 1 \times 32$ 的张量,可以视作一个向量 g,即为隐藏层的输出
- 从参数规模上,比第一层的 MLP 就要小了几百倍,因此在数据不太多的情况下,具有更好的稳定性和泛化能力。

卷积 NCF 的理论说明

作者给出了一些直观上的说明,在从前一层去往后一层的过程中,后一层的每一个元素都是由前一层的 4 个元素计算得来的,可以认为是一个 4 阶关系的刻画。直到最后的输出层,降到 1×1 后,即包含了特征每一个维度之间的交互信息。

实验

数据集选择的是经过处理的 Yelp 和 Gowalla,评价指标是 HR 和 NDCG,基线对比实验有 ItemPop,MF-BPR,MLP,JRL 和 NMF,结果如下:

Table 1: Top-k recommendation performance where $k \in \{5, 10, 20\}$. RI indicates the average improvement of ConvNCF over the baseline. * indicates that the improvements over all other methods are statistically significant for p < 0.05.

	Gowalla						Yelp						
	HR@k			NDCG@k			HR@k			NDCG@k			RI
	k = 5	k = 10	k = 20	k = 5	k = 10	k = 20	k = 5	k = 10	k = 20	k = 5	k = 10	k = 20	
ItemPop	0.2003	0.2785	0.3739	0.1099	0.1350	0.1591	0.0710	0.1147	0.1732	0.0365	0.0505	0.0652	+227.6%
MF-BPR	0.6284	0.7480	0.8422	0.4825	0.5214	0.5454	0.1752	0.2817	0.4203	0.1104	0.1447	0.1796	+9.5%
MLP	0.6359	0.7590	0.8535	0.4802	0.5202	0.5443	0.1766	0.2831	0.4203	0.1103	0.1446	0.1792	+9.2%
JRL	0.6685	0.7747	0.8561	0.5270	0.5615	0.5821	0.1858	0.2922	0.4343	0.1177	0.1519	0.1877	+3.9%
NeuMF	0.6744	0.7793	0.8602	0.5319	0.5660	0.5865	0.1881	0.2958	0.4385	0.1189	0.1536	0.1895	+3.0%
ConvNCF	0.6914*	0.7936*	0.8695*	0.5494*	0.5826*	0.6019*	0.1978*	0.3086*	0.4430*	0.1243*	0.1600*	0.1939*	-

毫无悬念,ConvNCF 是最好的。另外,JRL 比 MLP 要好,也从侧面说明了多个特征角度之间的交互, 是有作用的。

外积与 CNN 的作用

对于外积的作用,作者的对比试验 MLP 中采用的是向量的拼接、GMF、JRL 是向量点乘,在训练过程中,ConvNCF 始终要优于其他方法;对于 CNN 的作用,作者也使用了一个 MLP 对特征交互矩阵 E 进行抽象,尽管使用的 MLP 参数规模要巨大得多。而实验结果显示,MLP 即便是有更大的参数规模,性能还是比不上 ConvNCF。

Figure 3: NDCG@10 of applying different operations above the embedding layer in each epoch (GMF and JRL use element-wise product, MLP uses concatenation, and ConvNCF uses outer product).

Figure 4: NDCG@10 of using different hidden layers for ONCF (ConvNCF uses a 6-layer CNN and ONCF-mlp uses a 3-layer MLP above the interaction map).

超参分析

对于 E 的 embedding size,发现不同的大小在训练过程中性能都得到了一些提高,选择一个不太大的超参规模,可以避免过拟合。另一方面,也显示出 ConvNCF 模型具有更好的学习泛化能力。

总结

作者从协同过滤算法的模型设计上进行了改进,引入向量的外积操作,从向量式的表示到矩阵,再选择 CNN 进行抽象,刻画了更为复杂的特征之间的关系,最终获得了性能的提升。

本文虽然想法简单,但是的确是很有道理的,结构也比较清楚,符合现在的 simple、elegant、 reasonable and effective 的特点。引入 CNN 处理特征是很有启发式的做法,也可以用来学习用户的表示,to be continued...