Přednáška 9, 28. listopadu 2014

Část 4: limita funkce v bodě a spojitost funkce

Zápisem

$$f: M \to \mathbb{R}$$

rozumíme, že je dána funkce definovaná na neprázdné množině $M \subset \mathbb{R}$ reálných čísel, což je množina dvojic $f = \{(x, f(x)) \in \mathbb{R}^2 \mid x \in M\}$. Posloupnost $a = (a_n) \subset \mathbb{R}$ je speciální případ, je to funkce $a : \mathbb{N} \to \mathbb{R}$, kde $M = \mathbb{N} = \{1, 2, 3, \ldots\}$. Pro definici limity funkce v bodě budeme potřebovat pojem okolí bodu a značení pro něj.

Nechť $\delta > 0$ je reálné číslo. Pro $a \in \mathbb{R}$ množinu

$$U(a,\delta) := (a - \delta, a + \delta) = \{x \in \mathbb{R} \mid |x - a| < \delta\},\$$

to jest body se vzdáleností od a menší než δ , nazveme δ -okolím bodu a. Pro $a=\pm\infty$ položíme

$$U(-\infty, \delta) := (-\infty, -1/\delta)$$
 a $U(+\infty, \delta) := (1/\delta, +\infty)$.

Pro každé $a \in \mathbb{R}^*$ se pro $\delta \to 0$ okolí $U(a, \delta)$ zmenšuje, stahuje kolem a $(0 < \delta' < \delta \Rightarrow U(a, \delta') \subset U(a, \delta)$ a také $b \in \mathbb{R}, b \neq a \Rightarrow \exists \delta > 0 : b \notin U(a, \delta)$). Pro $a \in \mathbb{R}$ prstencové δ -okolí bodu a označuje množinu

$$P(a,\delta) := U(a,\delta) \setminus \{a\} = (a-\delta,a) \cup (a,a+\delta) = \{x \in \mathbb{R} \mid 0 < |x-a| < \delta\}.$$

Pravé δ -okolí bodu $a \in \mathbb{R}$, obyčejné a prstencové, je

$$U^{+}(a,\delta) := [a, a + \delta)$$
 a $P^{+}(a,\delta) := (a, a + \delta)$.

Podobně se definuje $levé \delta$ -okolí $bodu \ a \in \mathbb{R}$, obyčejné $U^-(a, \delta) = (a - \delta, a]$ a prstencové $P^-(a, \delta) = (a - \delta, a)$. Pro $a = \pm \infty$ prstencová a jednostranná okolí definujeme jako rovná obyčejnému okolí $U(\pm \infty, \delta)$.

Když $M \subset \mathbb{R}$ je neprázdná, pak řekneme, že $a \in \mathbb{R}^*$ je hromadným bodem množiny M, když pro každé $\delta > 0$ je $P(a, \delta) \cap M \neq \emptyset$. Ekvivalentně řečeno, $a = \lim a_n$ pro nějakou posloupnost $(a_n) \subset M \setminus \{a\}$.

Definice (limita funkce v bodě). Nechť $f: M \to \mathbb{R}, a \in \mathbb{R}^*$ je hromadný bod M a $A \in \mathbb{R}^*$. Pak definujeme

$$\lim_{x \to a} f(x) = A \iff \forall \varepsilon > 0 \; \exists \delta > 0 : \; f(P(a, \delta) \cap M) \subset U(A, \varepsilon)$$

— funkce f(x) má v bodě a limitu A.

Jinak řečeno, pro každé $\varepsilon > 0$ existuje $\delta > 0$, že když $x \in P(a, \delta)$ a f je v x definovaná, pak nutně $f(x) \in U(A, \varepsilon)$. Jak a tak A může být i $\pm \infty$. Je důležité, že $\lim_{x\to a} f(x)$ nezávisí na hodnotě f(a), ba ani f(x) nemusí být v bodě a definovaná (tj. $a \notin M$).

A co kdyby a nebyl hromadným bodem M? Pak by existovalo $\delta > 0$, že $P(a, \delta) \cap M = \emptyset$, tedy $f(P(a, \delta) \cap M) = \emptyset$ a inkluze $f(P(a, \delta) \cap M) \subset U(A, \varepsilon)$ by platila pro každé A a $\varepsilon > 0$. Cokoli by pak bylo limitou f(x) v a, což není šikovná definice. Proto se požaduje, aby a byl hromadným bodem M.

Tato definice zobecňuje limitu posloupnosti: když posloupnost $(a_n) \subset \mathbb{R}$ chápeme jako funkci $a: \mathbb{N} \to \mathbb{R}$, pak zřejmě

$$\lim_{n\to\infty} a_n = \lim_{x\to +\infty} a(x) ,$$

existuje-li alespoň jedna strana.

Pár příkladů limit funkcí. Nechť $a, A \in \mathbb{R}$ a $P(a, \delta) \subset M$. Pak

$$\lim_{x \to a} f(x) = A \iff \forall \varepsilon > 0 \; \exists \delta > 0 : \; 0 < |x - a| < \delta \Rightarrow |f(x) - A| < \varepsilon \; .$$

Nechť $a=-\infty, A=+\infty$ a $M=\mathbb{R}$. Pak

$$\lim_{x \to -\infty} f(x) = +\infty \iff \forall c \; \exists d : \; x < d \Rightarrow f(x) > c$$

 $(c,d\in\mathbb{R}$ a představujeme si je jako hodně záporné, respektive hodně kladné, číslo).

Uvažme funkci $g: \mathbb{R} \to \mathbb{R}$, definovanou jako

$$g(x) = \begin{cases} x & \dots & x \neq 0 \\ 2014 & \dots & x = 0 \end{cases}$$

Pak samozřejmě $\lim_{x\to 0} g(x) = 0$, protože pro limitu v 0 je g(0) irelevantní. Funkce znaménka, signum, sgn : $\mathbb{R} \to \{-1,0,1\}$, je definovaná jako

$$sgn(x) = \begin{cases} -1 & \dots & x < 0 \\ 0 & \dots & x = 0 \\ 1 & \dots & x > 0 \end{cases}$$

Pak $\lim_{x\to 0} \operatorname{sgn}(x)$ neexistuje a $\lim_{x\to a} \operatorname{sgn}(x)$ je 1 pro a>0 a -1 pro a<0.

Uvažme funkci $f: \mathbb{Q} \to \mathbb{Q}$, definovanou jako

$$f(p/q) = 1/q \; ,$$

kde zlomek p/qje v základním tvaru. Tvrdíme, že pro každé $a \in \mathbb{R}$ je

$$\lim_{x \to a} f(x) = 0 .$$

Jak to dokázat? Uvažme okolí U(a,1/2)=(a-1/2,a+1/2) a číslo $n\in\mathbb{N}$ a zamysleme se, kolik zlomků v základním tvaru a se jmenovatelem nejvýše n padne do U(a,1/2). Jistě jen konečně mnoho (přesněji, je jich nejvýše $1+2+\cdots+n$, rozmyslete si proč). Když pak $\delta>0$ zvolíme menší než nejmenší vzdálenost od takového zlomku různého od a do a, v okolí $P(a,\delta)$ už ani jeden z těchto zlomků neleží. Takže $p/q\in P(a,\delta)\Rightarrow q>n$ a f(p/q)=1/q<1/n a tedy $\lim_{x\to a}f(x)=0$. Pro úplnost, limity $\lim_{x\to\pm\infty}f(x)$ neexistují.

Konečně spočteme limitu

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1 .$$

Zde funkce definovaná zlomkem pro x=0 ani není definovaná, dostáváme neurčitý výraz 0/0. Řada pro exponenciální funkci pro každé $x\in P(0,1/2)$ dá odhad

$$\left| \frac{e^x - 1}{x} - 1 \right| \le \sum_{n=1}^{\infty} \frac{|x|^n}{(n+1)!} < \sum_{n=1}^{\infty} |x|^n = \frac{|x|}{1 - |x|} < 2|x|,$$

kde jsme použili vzorec pro součet geometrické řady. Tedy, pro $0 < \delta < 1/2$, $x \in P(0, \delta) \Rightarrow (e^x - 1)/x \in U(1, 2\delta)$, což dává naši limitu (pro dané $\varepsilon > 0$ volíme $\delta = \varepsilon/2$).

Jednostranné limity funkcí. Když $f: M \to \mathbb{R}, a \in \mathbb{R}, A \in \mathbb{R}^*$ a pro každé $\delta > 0$ je $P^+(a, \delta) \cap M \neq \emptyset$, pak definujeme

$$\lim_{x \to a^{+}} f(x) = A \iff \forall \varepsilon > 0 \; \exists \delta > 0 : \; f(P^{+}(a, \delta) \cap M) \subset U(A, \varepsilon)$$

— funkce f(x) má v bodě a limitu zprava rovnou A. Obdobně definujeme limitu zleva, $P^+(a, \delta)$ se nahradí levým okolím $P^-(a, \delta)$.

V $a=\pm\infty$ jednostranné limity neuvažujeme. Například $\lim_{x\to 0^-} \operatorname{sgn}(x)=-1$ a $\lim_{x\to 0^+} \operatorname{sgn}(x)=1$.

Úloha. Rozmyslete si, že $(a \in \mathbb{R}, A \in \mathbb{R}^*)$

$$\left(\lim_{x\to a^+} f(x) = A \& \lim_{x\to a^-} f(x) = A\right) \Rightarrow \lim_{x\to a} f(x) = A$$

a

$$\lim_{x \to a} f(x) = A \Rightarrow \left(\lim_{x \to a^{+}} f(x) = A \lor \lim_{x \to a^{-}} f(x) = A \right)$$

a proč disjunkci ∨ nemůžeme nahradit konjunkcí &.

Definice (spojitost funkce v bodě). Nechť $f: M \to \mathbb{R}, a \in M$. Pak řekneme, že funkce f(x) je spojitá v bodě a, když

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \; f(U(a, \delta) \cap M) \subset U(f(a), \varepsilon) \; .$$

Jinými slovy, spojitost f(x) v a znamená, že

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ x \in M, \ |x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon.$$

Dostatečně malá změna v argumentu funkce f tedy způsobí jen (předem omezenou) malou změnu funkční hodnoty.

Rozebereme souvislost s limitou. Když $a \in M$ není hromadným bodem množiny $M \setminus \{a\}$, čili $U(a,\delta) \cap M = \{a\}$ pro nějaké $\delta > 0$, postulovali jsme v hořejší definici, že $\lim_{x \to a} f(x)$ není definovaná. Nicméně v této situaci podle právě uvedené definice je stále f(x) spojitá v a. Je-li $a \in M$ hromadným bodem množiny $M \setminus \{a\}$, pak spojitost f(x) v a znamená přesně, že

$$\lim_{x \to a} f(x) = f(a) .$$

Definuje se i jednostranná spojitost: když $a \in M, f: M \to \mathbb{R}$ a

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \; f(U^+(a,\delta) \cap M) \subset U(f(a),\varepsilon) \; ,$$

pak řekneme, že f(x) je v a zprava spojitá. Podobně pro spojitost zleva.

Tvrzení (jednoznačnost limity funkce). $\lim_{x\to a} f(x)$ je určena jednoznačně, když existuje.

 $D\mathring{u}kaz$. Nechť $f: M \to \mathbb{R}$, $a \in \mathbb{R}^*$ je hromadný bod M, $A, B \in \mathbb{R}^*$ jsou dva různé prvky a $\lim_{x\to a} f(x) = A$ i $\lim_{x\to a} f(x) = B$. Pak vezmeme $\varepsilon > 0$,

že $U(A,\varepsilon)$ a $U(B,\varepsilon)$ jsou disjunktní (což podle definice okolí lze). Mělo by existovat $\delta > 0$, že

$$f(P(a,\delta)\cap M)\subset U(A,\varepsilon)\cap U(B,\varepsilon)=\emptyset$$
.

To není možné, protože $P(a, \delta) \cap M \neq \emptyset$.

Následující věta ukazuje, že pojem limity funkce v bodě se dá ekvivalentně popsat jen pomocí pojmu limity posloupnosti.

Věta (Heineho definice limity funkce). Nechť $a \in \mathbb{R}^*$ je hromadným bodem $M, A \in \mathbb{R}^*$ a $f: M \to \mathbb{R}$. Následující dvě tvrzení jsou ekvivalentní:

- 1. $\lim_{x\to a} f(x) = A$,
- 2. pro každou takovou posloupnost $(x_n) \subset M$, že $\lim x_n = a$, ale $x_n \neq a$ pro každé n, je $\lim f(x_n) = A$.

 $D\mathring{u}kaz$. Nechť platí 1. Je dána posloupnost $(x_n) \subset M$, že $\lim x_n = a$, ale $x_n \neq a$ pro každé n. Nepřítel dal $\varepsilon > 0$. Podle předpokladu o f(x) vezmeme $\delta > 0$, že $f(P(a,\delta) \cap M) \subset U(A,\varepsilon)$. Podle předpokladu o (x_n) existuje n_0 , že pro každé $n > n_0$ je $x_n \in P(a,\delta) \cap M$. Tedy, pro $n > n_0$, je $f(x_n) \in U(A,\varepsilon)$, což jsme chtěli dokázat — $\lim f(x_n) = A$.

Nechť 1 neplatí. Takže (negujeme definici limity funkce) existuje $\varepsilon > 0$, že pro každé $\delta > 0$ existuje bod $x \in P(a, \delta) \cap M$, že $f(x) \notin U(A, \varepsilon)$. Pro $n = 1, 2, \ldots$ a $\delta = 1/n$ zvolíme takový bod $x = x_n$ (že $x_n \in P(a, 1/n) \cap M$, ale $f(x_n) \notin U(A, \varepsilon)$). Vzniklá posloupnost $(x_n) \subset M$ popírá část 2: zřejmě $x_n \neq a$ pro každé n a lim $x_n = a$, avšak posloupnost $(f(x_n))$ nemá za limitu A (všechny její členy mají od A "vzdálenost" alespoň $\varepsilon > 0$).

Věta nese jméno německého matematika Eduarda Heineho (1821–1881), jehož známe již ze třetí přednášky, nikoli básníka a literáta *Heinricha Heineho* (1797–1856).

Tvrzení (aritmetika limit funkcí). Nechť $a \in \mathbb{R}^*$, funkce f, g jsou definované na nějakém prstencovém okolí a, $\lim_{x\to a} f(x) = A$ a $\lim_{x\to a} g(x) = B$, $kde\ A, B \in \mathbb{R}^*$. Pak

- 1. $\lim_{x\to a} (f(x) + g(x)) = A + B$, je-li tento součet definován,
- 2. $\lim_{x\to a} (f(x)g(x)) = AB$, je-li tento součin definován a

3. je-li navíc g(x) nenulová na nějakém prstencovém okolí a, pak i $\lim_{x\to a} (f(x)/g(x)) = A/B$, je-li tento podíl definován.

 $D\mathring{u}kaz$. Pomocí Heineho definice limity funkce se to snadno převede na tvrzení o aritmetice limit posloupností. Detaily necháváme jako úlohu.

Tvrzení (limita monotónní funkce). Nechť $a,b \in \mathbb{R}^*$, a < b a f: $(a,b) \to \mathbb{R}$ je monotónní funkce (neklesající nebo nerostoucí). Pak obě limity

$$\lim_{x \to a} f(x) \quad a \quad \lim_{x \to b} f(x)$$

existují (mohou být nevlastní).

 $D\mathring{u}kaz$. Nechť je f(x) na intervalu (a,b) neklesající, pak zřejmě

$$\lim_{x \to b} f(x) = \sup(f((a, b)))$$

(pro shora neomezenou množinu f((a,b)) toto supremum definujeme jako $+\infty$). Argument je stejný jako v důkazu tvrzení o limitě monotónní posloupnosti, detaily necháváme jako úlohu. Ostatní tři případy (nerostoucí f(x), limita v a) jsou podobné.