

Exercise 1. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be the function defined as follows:

$$f(x,y) = \begin{cases} \frac{x^2(y+1)}{x^2 + (y+1)^2} & \text{if } (x,y) \neq (0,-1), \\ 0 & \text{if } (x,y) = (0,-1). \end{cases}$$

- 1. Study of the function on $\mathbb{R}^2 \setminus \{(0,-1)\}$:
 - a) Show that f is continuous on $\mathbb{R}^2 \setminus \{(0, -1)\}.$
 - b) Calculate the gradient of f for $(x, y) \in \mathbb{R}^2 \setminus \{(0, -1)\}.$
 - c) Show that f is of class C^1 on $\mathbb{R}^2 \setminus \{(0, -1)\}$.
 - d) What can we conclude about the differentiability of f on $\mathbb{R}^2 \setminus \{(0,-1)\}$?
- 2. Study of the function at (0, -1):
 - a) Show that f is continuous at (0, -1).
 - b) Calculate the gradient of f at (0, -1).
 - c) Show that f is not differentiable at (0, -1).
 - d) Is f of class C^1 at (0, -1)?

Exercise 2. Let f be the function defined on \mathbb{R}^2 by

$$f(x,y) = x^2 + y^2 - 2(x+y) + 1$$

- 1. Represent the level curve at k = 0.
- 2. State the implicit function theorem for a function of two variables.
- 3. Show that the equation f(x,y) = 0 defines implicitly $y = \varphi(x)$ in the neighborhood of the point $(\frac{2+\sqrt{2}}{2}, \frac{2+\sqrt{2}}{2})$.
- 4. calculate φ' in the neighborhood of the point $(\frac{2+\sqrt{2}}{2},\frac{2+\sqrt{2}}{2})$.
- 5. Find the equation of the tangent line to the graph of φ at point $(\frac{2+\sqrt{2}}{2}, \frac{2+\sqrt{2}}{2})$.

Exercise 3. Find the area of the following domains without using change of variable

- 1. $D_1 = \{(x, y) \in \mathbb{R}^2 : |x y| \le 1, |x + y| \le 1\}.$
- 2. D_2 is delimited by the curves of equations $y = 1 x^2$ and $y = (x 1)^2$.

Exercise 1. (10.5pts)

- 1. Study of the function on $\mathbb{R}^2 \setminus \{(0,-1)\}$:
 - (a) (1pt) f is continuous on $\mathbb{R}^2 \setminus \{(0,-1)\}$ since it is the quotient, sum, product and composition of continuous functions on $\mathbb{R}^2 \setminus \{(0,-1)\}$.

Midterm: Correction

- (b) (2.5pts= 0.5pt existence of partial derivatives+ 1pt first partial derivative+ 1pt second partial derivative)
 - f is derivable on $\mathbb{R}^2 \setminus \{(0, -1)\}$ since it is the quotient, sum, product and composition of derivable functions on $\mathbb{R}^2 \setminus \{(0, -1)\}$.
 - •The gradient of f for $(x,y) \in \mathbb{R}^2 \setminus \{(0,-1)\}$ is the vector with components

$$\frac{\partial f}{\partial x}(x,y) = \frac{2x(y+1)^3}{(x^2 + (y+1)^2)^2}, \quad \frac{\partial f}{\partial y}(x,y) = x^2 \frac{x^2 - (y+1)^2}{(x^2 + (y+1)^2)^2}.$$

- (c) (1pt) f is continuous and derivable on $\mathbb{R}^2 \setminus \{(0,-1)\}$; its partial derivatives are continuous on $\mathbb{R}^2 \setminus \{(0,-1)\}$ as they are the quotients of continuous functions. Therefore, f is of class $C^1(\mathbb{R}^2 \setminus \{(0,-1)\})$.
- (d) (1pt) Since f is of class $C^1(\mathbb{R}^2 \setminus \{(0,-1)\})$, f is differentiable on $\mathbb{R}^2 \setminus \{(0,-1)\}$.
- 2. Study of the function at (0, -1):
 - (a) (1pt) The function f continuous at (0,-1) if and only if $\lim_{(x,y)\to(0,-1)} f(x,y) = f(0,-1)$. We switch to polar coordinates:

$$x = 0 + r\cos(\theta), \quad y = -1 + r\sin(\theta).$$

 $f(r,\theta) = f(x(r,\theta), y(r,\theta)) = r\cos^2(\theta)\sin(\theta)$. Since $|f(r,\theta)| \le r \to 0$ as $r \to 0$, we have

$$\lim_{(x,y)\to(0,-1)} f(x,y) = 0 = f(0,-1),$$

and therefore, f is continuous at (0, -1).

(b) (2pts: 1pt for each partial derivative) The gradient of f at (0, -1) is the vector with components

$$\frac{\partial f}{\partial x}(0,-1) = \lim_{x \to 0} \frac{f(x,-1) - f(0,-1)}{x - 0} = 0, \quad \frac{\partial f}{\partial y}(0,-1) = \lim_{y \to -1} \frac{f(0,y) - f(0,-1)}{y + 1} = 0.$$

(c) (1pt)To prove that f is not differentiable at (0,-1), it is necessary to show that

$$\lim_{(h,k)\to(0,0)}\frac{f(h,k-1)-f(0,-1)-h\frac{\partial f}{\partial x}(0,-1)-k\frac{\partial f}{\partial y}(0,-1)}{\sqrt{h^2+k^2}}\neq 0.$$

Let
$$H(h,k) = \frac{f(h,k-1) - f(0,-1) - h\frac{\partial f}{\partial x}(0,-1) - k\frac{\partial f}{\partial y}(0,-1)}{\sqrt{h^2 + k^2}} = \frac{h^2k}{(h^2 + k^2)^{3/2}}.$$

Since $H(h,h) = \frac{1}{2^{3/2}} \neq 0$, then f is not differentiable at (0,-1).

(d) (1pt) Since f is not differentiable at (0,-1), it is not of class C^1 at (0,-1).

Exercise 2. (5.5pts)

1. 1pt=0.5pt identification of the curve+0.5pt drawing

At k=0 $f(x,y)=0 \iff (x-1)^2+(y-1)^2=1$, it is a circle centered in (1,1) with radius 1.

2. (1pt) Implicit function theorem 2D: Let $F:D\subset\mathbb{R}^n\to\mathbb{R}$ be a C^k function on D with $k\geq 1$. Consider $(a,b)\in\mathbb{R}^2$ such that

$$F(a,b) = 0$$
 and $\frac{\partial F}{\partial u}(a,b) \neq 0$.

Then, there exist neighborhoods V and W of a and b and a C^k function $\varphi:V\to W$ such that $V\times W\subset D$ and

$$\forall x \in V, \ \forall y \in W, \quad F(x,y) = 0 \Longleftrightarrow y = \varphi(x).$$

Furthermore, we have for all $x \in V$, the derivative $\varphi'(x)$ is given by

$$\varphi'(x) = -\frac{\frac{\partial F}{\partial x}(x, \varphi(x))}{\frac{\partial F}{\partial y}(x, \varphi(x))}.$$

3. **(1.5pts)** We have $f(x,y) = x^2 + y^2 - 2(x+y) + 1$ and $\frac{\partial f}{\partial y}(x,y) = 2y - 2$.

At the point $(a,b)=(\frac{2+\sqrt{2}}{2},\frac{2+\sqrt{2}}{2})$ we have f(a,b)=0 and $\frac{\partial f}{\partial y}(a,b)=\sqrt{2}\neq 0$. Then, there exist neighborhoods V and W of a and b and a C^k function $\varphi:V\to W$ such that $V\times W\subset D$ and

$$\forall x \in V, \ \forall y \in W, \quad F(x,y) = 0 \Longleftrightarrow y = \varphi(x).$$

- 4. (1pt) We have $\forall x \in V$, $\varphi'(x) = -\frac{\partial F/\partial x(x,\varphi(x))}{\partial F/\partial y(x,\varphi(x))}$. and $\frac{\partial f}{\partial x}(x,y) = 2x 2$. then $\varphi'(x) = \frac{1-x}{\varphi(x)-1}$
- 5. (1pt) The equation of tangent line to the graph of φ at the point $(a,b)=(\frac{2+\sqrt{2}}{2},\frac{2+\sqrt{2}}{2})$ is given by $y=\varphi'(a)x+\alpha$, where
 - $\varphi'(a) = \frac{1-a}{\varphi(a)-1} = -1$ (since $\varphi(a) = b$).
 - $\alpha = b \varphi'(a)a \Longrightarrow \alpha = 2 + \sqrt{2}$.

then $y = -x + 2 + \sqrt{2}$.

Exercise 3. (4pts)

• 2 pts= 0.5pt drawing+1pt domain+ 0.5 calculation

Area of
$$D_1 = \{(x, y) \in \mathbb{R}^2 : |x - y| \le 1, |x + y| \le 1\}$$
.: We divide D_1 to two sub domains as follows $D_{11} = \{(x, y) \in \mathbb{R}^2 : -1 \le x \le 0, -1 - x \le y \le 1 + x\}$. $D_{12} = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, x - 1 \le y \le 1 - x\}$.

$$D_{11} = \{(x, y) \in \mathbb{R}^2 : -1 \le x \le 0, -1 - x \le y \le 1 + x\}.$$

$$D_{12} = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, x - 1 \le y \le 1 - x\}.$$

$$Area(D_1) = Area(D_{11}) + Area(D_{12})$$

$$\iint\limits_{D_1} dx dy = \iint\limits_{D_{11}} dx dy + \iint\limits_{D_{12}} dx dy$$

$$\iint\limits_{D_1} dx dy = \int_{-1}^{0} \int_{-1-x}^{1+x} dy dx + \int_{0}^{1} \int_{x-1}^{1-x} dy dx = 2.$$

• 2 pts= 0.5pt drawing+1pt domain+ 0.5 calculation Area of D_2 is delimited by the curves of equations $y = 1 - x^2$ and $y = (x - 1)^2$:

$$D_2 = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, (x - 1)^2 \le y \le 1 - x^2\}.$$

Area
$$D_2 = \iint_{D_2} dx dy = \int_0^1 \int_{(x-1)^2}^{1-x^2} dy dx = \frac{1}{3}.$$

