Adjoint Computational Electromagnetics Ray Optics

Mohamed Kamal Abd Elrahman 6 October, Giza, Egypt

November 8, 2019

The adjoint method is used to inverse design High frequency EM problems where light rays are governed by the Eikonal equation.

The Eikonal Equation

The Eikonal equation is F = ma for ray optics! It can be written as a differential equation in the phase.

$$\left(\frac{\partial \phi}{\partial x}\right)^2 + \left(\frac{\partial \phi}{\partial y}\right)^2 - \epsilon(x, y) = 0 \tag{1}$$

where $\epsilon(x,y)$ is the dielectric profile. Gradient of a wavefront at a position (x,y) defines the direction of the wave propagation. The contours of solution are the wavefronts.

Formulation

$$\begin{aligned} & \underset{\epsilon}{\text{min}} \quad G(\epsilon) = \int g(\phi, \epsilon) dx dy \\ & \text{s.t.} \quad A(\phi) = \left(\frac{\partial \phi}{\partial x}\right)^2 + \left(\frac{\partial \phi}{\partial y}\right)^2 - \epsilon(x, y) = 0 \\ & \quad I(\phi(x_s), \epsilon) = 0 \end{aligned}$$
 (2)

Sensitivity Analysis

$$L = G(\epsilon) + \int \lambda A(\phi) \, dx dy \tag{3}$$