開集合至による連続写像の特徴付け

X,Yは距離空間であるとする。

定理 写像f:X→Yについて,以下の2つの条件は至いに同値である

(1) 于は連続である。

| 学 任意のaeXと任意のE>Dに対いて, ある8>Dかで存在して, XEX かっdx(2,0)<8 ならは"dy(f(2),f(a))<E.

- (2) Yの任意の開集台Uに対して、f1(U)はXの開集台になる。 (記明は役述) []

でこの条件は非常に抽像的だが,もとのE-δによる定義よりシソプルである.

| 定義|| 佳相空間 X, Yのあいだの写像がX→Yが連接であることを上の定理の条件 (2) が成立していることだと定める。

前ページの定理の証明

 $f(a) \in U$ $\{x \in X | f(x) \in U\}$

(1) \Rightarrow (2) \Rightarrow (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7) \Rightarrow (8) \Rightarrow (8) \Rightarrow (9) \Rightarrow (1) \Rightarrow (1)

(2) 戸(1) 条件(2)を仮定し、 $\alpha \in X \times E > 0$ を任意にとる、 $U_{\varepsilon}^{Y}(f(\alpha))$ は Yの開集合なので、条件(2)より $f^{-1}(U_{\varepsilon}^{Y}(f(\alpha)))$ は Xの開集合になる、 $f(\alpha) \in U_{\varepsilon}^{Y}(f(\alpha))$ より、 $\alpha \in f^{-1}(U_{\varepsilon}^{Y}(f(\alpha))) \times Q$ るので、 $f^{-1}(U_{\varepsilon}^{Y}(f(\alpha)))$ かが Xの開集合で あることより、ある S > 0 が 存在して、 $U_{\varepsilon}^{X}(\alpha) \subset f^{-1}(U_{\varepsilon}^{Y}(f(\alpha))) \times Q$ る。 $\Phi \lambda r$ 、 $f(U_{\varepsilon}^{X}(\alpha)) \subset U_{\varepsilon}^{Y}(f(\alpha)) \times Q$ るので、 $f(U_{\varepsilon}^{X}(\alpha)) \subset U_{\varepsilon}^{Y}(f(\alpha)) \times Q$ る。

言正明の国による説明

応用例 位相な間 X,Y,Zと連続写像たちfix→Y,giY→Zに対して, それらの合成 gofiX→Zも連続写像になる。

定義 (同相, homeomorphic) 位相空間 (たとえば)起離空間)メとYのありだに連続写像たまたメンY, ダンY → X で 互口に相手に逆写像になるものから存在するとき、メとY は同相 (homeomorphic) であるといい、 fとすを 同相写像 (homeomorphism) と呼ぶ、

例 コップ とドーナツ () は同梱で、ある、 []

問題 X=[0,2元)とY=s'={(x,y)eR'|x3+y2=1)が同期でないことを示せ、

解答例 XとYは同地であると仮定する。(矛盾をみなかけばよい,)

互川に相手の逆写像になる全単射連続写像たちfix→Y,giY→Xか存在する。 fとgのX\{\\とY\{f(\)\^の制限は,X\{\\\\)とY\{f(\)\}のありたの同相写像 になっている(自分で示せ)。

 $f(0) = (\cos d, \sin d), f(\pi) = (\cos \beta, \sin \beta), f(6) = (\cos \delta, \sin \delta), \beta < d < \delta < \beta + 2\pi$ EHT27 d, β , $\gamma \in \mathbb{R}$ E\lambda 13.

このこき、 $J = \{(\cos\theta, \sin\theta) | d \leq \theta \leq t\}$ は $f(\pi) = (\cos\beta, \sin\beta)$ も 含まない、 $f(\pi) = (\cos\beta, \sin\beta)$ も 含まない、 $f(\pi) = (\cos\beta, \sin\beta)$ は 同 相 写像である.

これと $g: Y \to X$ と $X \circ R \land 9 包含写像 9 合成 <math>\varphi: [d, Y] \to R$, $\theta \mapsto \varphi(\theta) = g(h(\theta))$ は連続でかつ, $\varphi(d) = g(h(d)) = g(f(0)) = 0$, $\varphi(Y) = g(h(Y)) = g(f(0)) = 0$ なので、中間値の主理より, ある $\theta \in [d, Y]$ が存在して, $\varphi(\theta) = g(h(\theta)) = \pi = g(f(\pi))$. しかし, J = h([d, Y]) は $f(\pi)$ を含まないので、g か全単射であることに矛値する.