```
In [28]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import ttest_ind, f_oneway
```

In [29]:

```
# Load sentiment dataset
sentiment = pd.read_csv('/home/rguktongole/Downloads/fear_greed_index.csv')
# Load historical trader dataset
trader = pd.read_csv('/home/rguktongole/Downloads/historical_data.csv')
```

In [50]:

```
sentiment.columns
```

Out[50]:

Index(['timestamp', 'value', 'classification', 'date', 'Date'], dtype='object')

In [51]:

trader.columns

Out[51]:

In [38]:

sentiment.head()

Out[38]:

	timestamp	value	classification	date	Date
0	1517463000	30	Fear	2018-02-01	2018-02-01
1	1517549400	15	Extreme Fear	2018-02-02	2018-02-02
2	1517635800	40	Fear	2018-02-03	2018-02-03
3	1517722200	24	Extreme Fear	2018-02-04	2018-02-04
4	1517808600	11	Extreme Fear	2018-02-05	2018-02-05

In [40]:

```
# Proper conversion from Unix time in seconds
sentiment['timestamp'] = pd.to_datetime(sentiment['timestamp'], unit='s')
sentiment['Date'] = sentiment['timestamp'].dt.date
```

In [39]:

trader.head()

Out[39]:

											٨
	Account	Coin	Execution Price	Size Tokens	Size USD	Side	Timestamp IST	Start Position	Direction	Closed PnL	
0	0xae5eacaf9c6b9111fd53034a602c192a04e082ed	@107	7.9769	986.87	7872.16	BUY	02-12-2024 22:50	0.000000	Buy	0.0	
1	0xae5eacaf9c6b9111fd53034a602c192a04e082ed	@107	7.9800	16.00	127.68	BUY	02-12-2024 22:50	986.524596	Buy	0.0	
2	0xae5eacaf9c6b9111fd53034a602c192a04e082ed	@107	7.9855	144.09	1150.63	BUY	02-12-2024 22:50	1002.518996	Buy	0.0	
3	0xae5eacaf9c6b9111fd53034a602c192a04e082ed	@107	7.9874	142.98	1142.04	BUY	02-12-2024 22:50	1146.558564	Buy	0.0	
4	0xae5eacaf9c6b9111fd53034a602c192a04e082ed	@107	7.9894	8.73	69.75	BUY	02-12-2024 22:50	1289.488521	Buy	0.0	*

In [41]:

```
trader['Timestamp'] = pd.to_datetime(trader['Timestamp IST'], format='%d-%m-%Y %H:%M', errors='coerce')
# Step 2: Extract date
trader['Date'] = trader['Timestamp'].dt.date
```

In [42]:

```
merged_df = pd.merge(trader, sentiment, on='Date', how='inner')
```

In [43]:

merged_df.head()

Out[43]:

	Account	Coin	Execution Price	Size Tokens	Size USD	Side	Timestamp IST	Start Position	Direction	Closed PnL	•
0	0xae5eacaf9c6b9111fd53034a602c192a04e082ed	@107	7.9769	986.87	7872.16	BUY	02-12-2024 22:50	0.000000	Buy	0.0	
1	0xae5eacaf9c6b9111fd53034a602c192a04e082ed	@107	7.9800	16.00	127.68	BUY	02-12-2024 22:50	986.524596	Buy	0.0	
2	0xae5eacaf9c6b9111fd53034a602c192a04e082ed	@107	7.9855	144.09	1150.63	BUY	02-12-2024 22:50	1002.518996	Buy	0.0	
3	0xae5eacaf9c6b9111fd53034a602c192a04e082ed	@107	7.9874	142.98	1142.04	BUY	02-12-2024 22:50	1146.558564	Buy	0.0	
4	0xae5eacaf9c6b9111fd53034a602c192a04e082ed	@107	7.9894	8.73	69.75	BUY	02-12-2024 22:50	1289.488521	Buy	0.0	
5 rows x 21 columns									+	•	

In [44]:

```
plt.figure(figsize=(10, 4))
sns.lineplot(data=sentiment, x='date', y='value')
plt.title('Bitcoin Sentiment Value Over Time')
plt.xlabel('Date')
plt.ylabel('Sentiment Score')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```


In [45]:

```
print(merged_df.shape)
print(merged_df[['Closed PnL', 'value', 'classification']].isnull().sum())
```

```
(211218, 21)
Closed PnL 0
value 0
classification 0
dtype: int64
```

In [46]:

```
avg_pnl_by_sentiment = merged_df.groupby('classification')['Closed PnL'].mean().reset_index()

plt.figure(figsize=(8, 5))
sns.barplot(data=avg_pnl_by_sentiment, x='classification', y='Closed PnL', palette='viridis')
plt.title('Average Closed PnL by Market Sentiment')
plt.xticks(rotation=45)
plt.show()
```

<ipython-input-46-a36c99a07731>:4: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(data=avg pnl by sentiment, x='classification', y='Closed PnL', palette='viridis')

In [47]:

Correlation coefficient: 0.04

```
In [48]:
```

```
# Create PnL lists by sentiment class
groups = merged_df.groupby('classification')['Closed PnL'].apply(list)

# Perform ANOVA test
stat, p = f_oneway(*groups)
print(f"ANOVA F-statistic: {stat:.2f}, p-value: {p:.4f}")
if p < 0.05:
    print("=> Significant difference in PnL between sentiment classes")
else:
    print("=> No significant difference in PnL between sentiment classes")
```

ANOVA F-statistic: 9.06, p-value: 0.0000 => Significant difference in PnL between sentiment classes

In [49]:

```
plt.figure(figsize=(10, 6))
sns.countplot(data=merged_df, x='classification', hue='Side')
plt.title('Buy/Sell Distribution by Sentiment')
plt.xticks(rotation=45)
plt.show()
```


In []: