Equations cartésiennes Applications linéaires Représentations matricielles Calcul matricie

CM4 : Equations cartésiennes, applications linéaires, matrices

L3 UPSSITECH

Mardi 14 septembre 2021

Objectifs de cette séance

- Savoir caractériser un espace vectoriel par
 - une base et la dimension
 - ou des équations cartésiennes.
- Savoir déterminer si une application est linéaire et en donner une représentation matricielle dans des bases indiquées.
- Savoir manipuler des matrices
 - les additionner, les multiplier,
 - ► en calculer le déterminant,
 - les inverser.

Lorsqu'un e.v. est défini par des équations cartésiennes ...

- ... comment en trouver une base et la dimension?
 - ► le mettre sous la forme Vect(...)
 - ▶ et montrer que les vecteurs générateurs sont libres.

Ils forment alors une base et leur nombre donne la dimension du s.e.v.

Exercice-méthode - base et dimension?

$$W_1 = \left\{ \left(\begin{array}{c} x \\ y \\ z \end{array} \right) \middle| x + 2y - z = 0 \right\}.$$

Lorsqu'un e.v. est engendré par une famille de vecteurs ...

... comment en trouver les équations cartésiennes?

Exercice-méthode - equations cartésiennes?

$$W_2 = \operatorname{Vect}\left(\left(\begin{array}{c}1\\2\\3\end{array}\right)\right).$$

Hypothèses de la section

- ightharpoonup E et F sont deux \mathbb{R} -espaces vectoriels;
- ightharpoonup dim(E) = n, dim(F) = m;
- ▶ $\mathcal{E} = \{e_1, e_2, ..., e_n\}$ est une base de E et $\mathcal{F} = \{f_1, f_2, ..., f_m\}$ est une base de F.
- ▶ On note 0_E l'élément neutre de E et 0_F celui de F.

Définition

Une application $f: E \to F$ est une application linéaire si elle vérifie, pour tous $u, v \in E$ et pour tout $\lambda \in \mathbb{K}$,

$$f(u+v) = f(u) + f(v)$$
 et $f(\lambda u) = \lambda f(u)$.

Conséquence de la définition

$$f(0_E)=0_F.$$

Application

L'application g de \mathbb{R}^2 dans \mathbb{R}^2 définie par g(x,y)=(x+1,y+2) est-elle linéaire?

Exercice-méthode : montrer qu'une application est linéaire

$$\begin{array}{cccc} L: & \mathbb{R}^2 & \to & \mathbb{R}^3 \\ & (x,y) & \mapsto & \Big(x+y,2y,x-y\Big), \end{array}$$

Théorème

Si on se donne n vecteurs quelconques \hat{f}_1 , \hat{f}_2 , ..., \hat{f}_n de F, il existe une et une seule application linéaire f de E dans F telle que

$$f(e_1) = \hat{f}_1, \quad f(e_2) = \hat{f}_2, \quad ..., \quad f(e_n) = \hat{f}_n.$$

Application

Prenons $E=\mathbb{R}^3$, $F=\mathbb{R}^2$, $\mathcal E$ la base canonique et

$$\hat{f}_1 = \left(\begin{array}{c} 2 \\ -5 \end{array} \right), \quad \hat{f}_2 = \left(\begin{array}{c} 1 \\ 12 \end{array} \right), \quad \hat{f}_3 = \left(\begin{array}{c} 3 \\ -4 \end{array} \right).$$

Cherchons l'expression de l'application linéaire f définie par

$$f(e_1) = \hat{f}_1, \quad f(e_2) = \hat{f}_2, \quad f(e_3) = \hat{f}_3$$

Equations cartésiennes
Applications linéaires
Représentations matricielles

Réponse

$$f(x,y,z) = \begin{pmatrix} 2x + y + 3z \\ -5x + 12y - 4z \end{pmatrix}.$$

Soit $f: E \to F$ une application linéaire.

- ▶ f est déterminée de manière unique par l'image d'une base de E, donc par les vecteurs $f(e_1)$, $f(e_2)$, ..., $f(e_n)$.
- ▶ Comme $f(e_j) \in F$, il se décompose de manière unique dans la base \mathcal{F} : il existe $a_{1j}, a_{2j}, ..., a_{mj}$ tels que

$$f(e_j) = a_{1j}f_1 + a_{2j}f_2 + ... + a_{mj}f_m.$$

Représentation matricielle de f relativement aux bases \mathcal{E} et \mathcal{F}

C'est le tableau à m lignes et n colonnes suivant

$$[f]_{\mathcal{E}}^{\mathcal{F}}=\left(egin{array}{ccccc} a_{11}&\cdots&a_{1j}&\cdots&a_{1n}\ a_{21}&\cdots&a_{2j}&\cdots&a_{2n}\ dots&dots&dots&dots\ a_{m1}&\cdots&a_{mj}&\cdots&a_{mn} \end{array}
ight).$$

Exercice-méthode - représentation matricielle de L(x, y) = (x + y, 2y, x - y) dans les bases canoniques?

Addition de deux matrices

Définition

On note $\mathcal{M}_{m,n}(\mathbb{R})$, ou parfois $\mathbb{R}^{m,n}$, l'ensemble des matrices (tableaux) de m lignes et n colonnes d'éléments de \mathbb{R} .

Addition de deux matrices

L'addition de 2 matrices A et B de $\mathcal{M}_{m,n}(\mathbb{R})$ est une matrice de $\mathcal{M}_{m,n}(\mathbb{R})$, notée A+B, dont les éléments sont simplement la somme des éléments de A et B aux mêmes positions.

Exemple

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 0 & -1 & -5 \end{array}\right) + \left(\begin{array}{ccc} -5 & 2 & 0 \\ -2 & 1 & 15 \end{array}\right) = \left(\begin{array}{ccc} -4 & 4 & 3 \\ -2 & 0 & 10 \end{array}\right)$$

Multiplication d'une matrice par un scalaire

Multiplication d'une matrice par un scalaire

La multiplication d'une matrice A de $\mathcal{M}_{m,n}(\mathbb{R})$ par un élément $\lambda \in \mathbb{R}$ est une matrice de $\mathcal{M}_{m,n}(\mathbb{R})$, notée λA , dont les éléments sont simplement la multiplication des éléments de A par λ .

Exemple

$$3\begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & -5 \end{pmatrix} = \begin{pmatrix} 3 & 6 & 9 \\ 0 & -3 & -15 \end{pmatrix}$$

Théorème

L'ensemble $\mathcal{M}_{m,n}(\mathbb{R})$, muni de l'addition et de la multiplication par un réel, est un \mathbb{R} -espace vectoriel.

Multiplication de deux matrices

Multiplication de deux matrices

La multiplication de 2 matrices $A \in \mathcal{M}_{m,n}(\mathbb{R})$ et $B \in \mathcal{M}_{n,p}(\mathbb{R})$ est une matrice de $\mathcal{M}_{m,p}(\mathbb{R})$, notée C, définie pour tout $1 \leq i \leq m$ et pour tout $1 \leq j \leq p$ par

$$c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}.$$

Exemple

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 0 & -1 & -5 \end{array}\right) \left(\begin{array}{cccc} -5 & 2 & 0 & 1 \\ -2 & 1 & 15 & 0 \\ 1 & 3 & -5 & 0 \end{array}\right) = ????$$

Exemple (suite)

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 0 & -1 & -5 \end{array}\right) \left(\begin{array}{cccc} -5 & 2 & 0 & 1 \\ -2 & 1 & 15 & 0 \\ 1 & 3 & -5 & 0 \end{array}\right) = \left(\begin{array}{cccc} -6 & 1 & 1 & 1 & 1 \\ -6 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{array}\right)$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & -5 \end{pmatrix} \begin{pmatrix} -5 & 2 & 0 & 1 \\ -2 & 1 & 15 & 0 \\ 1 & 3 & -5 & 0 \end{pmatrix} = \begin{pmatrix} -6 \\ -3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & -5 \end{pmatrix} \begin{pmatrix} -5 & 2 & 0 & 1 \\ -2 & 1 & 15 & 0 \\ 1 & 3 & -5 & 0 \end{pmatrix} = \begin{pmatrix} -6 & 13 \\ -3 & & & \end{pmatrix}$$

$$\left(\begin{array}{cccc} 1 & 2 & 3 \\ 0 & -1 & -5 \end{array}\right) \left(\begin{array}{ccccc} -5 & 2 & 0 & 1 \\ -2 & 1 & 15 & 0 \\ 1 & 3 & -5 & 0 \end{array}\right) = \left(\begin{array}{ccccc} -6 & 13 & 15 & 1 \\ -3 & -16 & 10 & 0 \end{array}\right)$$

Lien avec les représentations matricielles

Soit $f: E \to F$ une application linéaire, $\mathcal E$ une base de E et $\mathcal F$ une base de F.

Relation importante

Notons

- $lackbox[f]_{\mathcal{E}}^{\mathcal{F}}$ la matrice représentative de f relativement aux bases \mathcal{E} et \mathcal{F} ,
- $ightharpoonup [v]_{\mathcal{E}}$ le vecteur des coordonnées de v dans la base \mathcal{E} ,
- ightharpoonup et $[f(v)]_{\mathcal{F}}$ le vecteur des coordonnées de f(v) dans la base \mathcal{F} .

On a

$$[f]_{\boldsymbol{\varepsilon}}^{\mathcal{F}}[v]_{\boldsymbol{\varepsilon}} = [f(v)]_{\mathcal{F}},$$

Transposée

Transposée d'une matrice à coefficients réels

Si $A \in \mathcal{M}_{m,n}(\mathbb{R})$, la **matrice transposée** de A est la matrice de $\mathcal{M}_{n,m}(\mathbb{R})$, notée A^{\top} , définie par $A^{\top} = (\alpha_{ij})_{1 \leq i \leq n, 1 \leq j \leq m}$ et $\alpha_{ij} = a_{ji}$

Exemple

$$\left(\begin{array}{ccc}1&2&3\\0&-1&-5\end{array}\right)^{\top}=\left(\begin{array}{ccc}1&0\\2&-1\\3&-5\end{array}\right)$$

Remarque :
$$(A^{\top})^{\top} = A$$
.

Proposition

Si $A \in \mathcal{M}_{m,n}(\mathbb{R})$ et $B \in \mathcal{M}_{n,p}(\mathbb{R})$, alors $(AB)^{\top} = B^{\top}A^{\top}$.

Déterminant d'une matrice carrée

Dans cette section, on ne s'intéresse qu'aux matrices carrées : celles qui ont autant de lignes de colonnes.

L'espace $\mathcal{M}_{n,n}(\mathbb{R})$ est aussi noté $\mathcal{M}_n(\mathbb{R})$.

Déterminant d'une matrice d'ordre 2

Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$. On appelle **déterminant de** A et on note $\det(A)$ ou |A| le scalaire de \mathbb{R} défini par

$$\det(A) = ad - cb.$$

Calcul du déterminant par développement par rapport à la ligne *i*

Soit
$$A=\left(\begin{array}{ccccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{array}\right)\in \mathcal{M}_n(\mathbb{R}).$$
 On appelle **déterminant**

 $de\ A$ et on note det(A) ou |A| le scalaire $de\ \mathbb{R}$ défini par :

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} |M_{ij}|$$

où $M_{ij} \in \mathcal{M}_{n-1}(\mathbb{R})$ est obtenue à partir de A en retirant la ligne i et la colonne j.

Exercice-méthode - calcul de déterminant par développement p.r. ligne 1

Résultat analogue pour les colonnes ...

Exercice-méthode - calcul de déterminant par développement p.r. colonne 3

Exercice-méthode - calcul du déterminant d'un matrice triangulaire

0 5 2

Le déterminant d'une matrice triangulaire

est simplement le produit des éléments diagonaux.

Quelques règles de calcul pour les matrices 2×2

► Permutation de 2 lignes;

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - cb = -(cb - ad) = - \begin{vmatrix} c & d \\ a & b \end{vmatrix}$$

► Multiplication d'une ligne par un scalaire;

$$\begin{vmatrix} \alpha a & \alpha b \\ c & d \end{vmatrix} = (\alpha a)d - c(\alpha b) = \alpha(ad - cb) = \alpha \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

Linéarité par rapport aux lignes;

$$\begin{vmatrix} a+A & b+B \\ c & d \end{vmatrix} = (a+A)d - c(b+B)$$
$$= (ad-cb) + (Ad-cB) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} + \begin{vmatrix} A & B \\ c & d \end{vmatrix}$$

▶ Une petite dernière

$$\begin{vmatrix} a+c & b+d \\ c & d \end{vmatrix} = \dots$$

Mêmes propriétés si matrice carrée de taille > 2 ...

Mêmes propriétés pour les colonnes ...

Application pratique:

- algorithme de Gauss pour faire apparaître des zéros sur une ligne (ou une colonne),
- puis développer par rapport à cette ligne (ou colonne).

Exercice-méthode : calcul de déterminant efficace

$$\begin{array}{c|ccccc}
2 & 1 & -1 & 7 \\
0 & -1 & 3 & 8 \\
-1 & 1 & -3 & 1 \\
2 & 0 & 2 & -1
\end{array}$$

Dans cette section encore, on ne s'intéresse qu'aux matrices carrées

Matrice identité

On appelle *matrice identité* et on note I_n la matrice de $\mathcal{M}_n(\mathbb{R})$ dont les éléments diagonaux sont des 1 et les éléments extra-diagonaux sont nuls.

Inverse

On dit que $A \in \mathcal{M}_n(\mathbb{R})$ est *inversible* s'il existe une matrice $B \in \mathcal{M}_n(\mathbb{R})$ telle que $AB = BA = I_n$.

Si une telle matrice B existe, elle est unique et on la note A^{-1} .

Théorème

Soit $A \in \mathcal{M}_n(\mathbb{R})$.

La matrice A est inversible si et seulement si $det(A) \neq 0$.

En pratique ...

- ▶ Une manière de procéder pour trouver l'inverse d'une matrice A est d'appliquer la méthode de Gauss pour résoudre le système linéaire (à plusieurs second membres) AB = I pour trouver B.
- ▶ On peut le faire en posant le tableau augmenté (A|I) et en appliquant le procédé d'élimination de Gauss pour obtenir I à gauche du tableau augmenté final. La partie droite contient alors $A^{-1}:(I|B)$.

Exercice-méthode : calcul d'inverse efficace

$$M = \left(\begin{array}{rrr} 1 & 3 & 4 \\ -1 & -2 & 2 \\ 1 & 3 & 5 \end{array}\right).$$

Lien avec les systèmes linéaires

Soit le système linéaire

$$(S) \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Posons
$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$
, $b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} \in \mathbb{R}^m$ et

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \in \mathcal{M}_{m,n}(\mathbb{R}).$$

Alors (S) peut être réécrit de manière compacte $Ax = b_0$

Si le S.L. est carré m = n, ...

Théorème

- ▶ Si A est inversible, alors (S) admet une unique solution : $x = A^{-1}b$.
- ► Si A n'est pas inversible, alors
 - * soit (S) n'a pas de solution,
 - * soit (S) a une infinité de solutions.

Exemples

$$\begin{cases} x + y = 1 \\ 2x + 2y = 2 \end{cases}$$

$$\begin{cases} x + y = 1 \\ 2x + 2y = 0 \end{cases}$$

Famille libre et déterminant

Proposition

Si $u = \begin{pmatrix} a \\ b \end{pmatrix}$ et $v = \begin{pmatrix} c \\ d \end{pmatrix}$ sont deux vecteurs de \mathbb{R}^2 , alors $\{u, v\}$ est une famille libre de \mathbb{R}^2 si et seulement si le déterminant de la matrice $\begin{pmatrix} a & c \\ b & d \end{pmatrix}$ est non nul.

Proposition

Si
$$u = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
, $v = \begin{pmatrix} d \\ e \\ f \end{pmatrix}$ et $w = \begin{pmatrix} g \\ h \\ i \end{pmatrix}$ sont trois vecteurs de \mathbb{R}^3 , alors $\{u, v, w\}$ est une famille libre de \mathbb{R}^3 si et seulement si le déterminant de la matrice $\begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix}$ est non nul.