Ejercicios Prácticos: Tidyverse Avanzado

Pivots y Joins

FCE-UBA

Abril 2025

Ejercicio 1: Análisis de automóviles con pivot longer

En este ejercicio trabajaremos con el conocido dataset mtcars, que contiene datos sobre diferentes modelos de automóviles.

```
# Cargar y examinar los datos
mtcars_tbl <- as_tibble(mtcars, rownames = "modelo")</pre>
glimpse(mtcars tbl)
## Rows: 32
## Columns: 12
## $ modelo <chr> "Mazda RX4", "Mazda RX4 Wag", "Datsun 710", "Hornet 4 Drive", "~
           <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.~
## $ mpg
## $ cyl
           <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4
## $ disp
           <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, ~
           <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 1~
## $ hp
## $ drat
           <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.9
           <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, ~
## $ wt
## $ qsec
           <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, ~
## $ vs
           <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, ~
## $ am
```

Tareas:

\$ gear ## \$ carb

1. Transforma el dataset a formato "largo" dejando solo modelo como identificador y convirtiendo todas las demás columnas en pares variable-valor.

<dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3,

<dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, ~

- 2. Filtra el dataset resultante para mostrar solo las variables relacionadas con el rendimiento: mpg (millas por galón), hp (caballos de fuerza) y qsec (tiempo en el cuarto de milla).
- 3. Crea una visualización que muestre estos tres indicadores de rendimiento para los 5 modelos más rápidos (menor qsec).

Ejercicio 2: Análisis de pingüinos con pivot wider

Para este ejercicio utilizaremos el dataset penguins del paquete palmerpenguins, que contiene medidas de diferentes especies de pingüinos.

```
data(penguins)
glimpse(penguins)
## Rows: 344
## Columns: 8
## $ species
                                                                                            <fct> Adelie, 
## $ island
                                                                                             <fct> Torgersen, Torgersen, Torgersen, Torgerse~
## $ bill_length_mm
                                                                                             <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34.1, ~
                                                                                             <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6, 17.8, 19.6, 18.1, ~
## $ bill_depth_mm
## $ flipper_length_mm <int> 181, 186, 195, NA, 193, 190, 181, 195, 193, 190, 186~
## $ body_mass_g
                                                                                            <int> 3750, 3800, 3250, NA, 3450, 3650, 3625, 4675, 3475, ~
## $ sex
                                                                                             <fct> male, female, female, NA, female, male, female, male~
                                                                                            <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007
## $ year
```

Tareas:

\$ year

\$ pop

\$ lifeExp

- 1. Crea un resumen que calcule la media de la longitud del pico (bill_length_mm) para cada combinación de especie (species) e isla (island).
- 2. Transforma este resumen a formato "ancho" usando pivot_wider(), con las islas como columnas y las especies como filas.
- 3. Añade una columna que calcule la diferencia entre la longitud del pico más grande y más pequeña para cada especie (entre islas).
- 4. Interpreta brevemente los resultados: ¿hay diferencias significativas en la longitud del pico entre islas para la misma especie?

Ejercicio 3: Análisis internacional con pivot_longer y pivot_wider

Utilizaremos el dataset gapminder que contiene datos socioeconómicos de países a lo largo del tiempo.

```
data(gapminder)
glimpse(gapminder)

## Rows: 1,704
## Columns: 6
## $ country <fct> "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "
```

<int> 1952, 1957, 1962, 1967, 1972, 1977, 1982, 1987, 1992, 1997, ~

<dbl> 28.801, 30.332, 31.997, 34.020, 36.088, 38.438, 39.854, 40.8~

<int> 8425333, 9240934, 10267083, 11537966, 13079460, 14880372, 12~

\$ continent <fct> Asia, ~

\$ gdpPercap <dbl> 779.4453, 820.8530, 853.1007, 836.1971, 739.9811, 786.1134, ~

Tareas:

- 1. Filtra los datos para quedarte solo con el año más reciente (2007).
- 2. Crea un nuevo dataframe con países como filas y las variables lifeExp (esperanza de vida), pop (población) y gdpPercap (PIB per cápita) como columnas.
- 3. Usa pivot_longer() para transformar este dataset a formato largo.
- 4. Utiliza pivot_wider() para crear un dataset donde las filas sean continentes, las columnas sean las tres variables mencionadas, y los valores sean los promedios de cada variable por continente.
- 5. ¿Qué continente tiene la mayor esperanza de vida promedio? ¿Y el mayor PIB per cápita?

Ejercicio 4: Joins con datos de vuelos

Trabajaremos con los datasets del paquete nycflights13, que contiene información sobre vuelos desde aeropuertos de Nueva York en 2013.

```
# Examinar las tablas a utilizar glimpse(flights)
```

```
## Rows: 336,776
## Columns: 19
## $ year
                  <int> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2~
## $ month
                  ## $ day
                  <int> 517, 533, 542, 544, 554, 554, 555, 557, 557, 558, 558, ~
## $ dep time
## $ sched dep time <int> 515, 529, 540, 545, 600, 558, 600, 600, 600, 600,
                  <dbl> 2, 4, 2, -1, -6, -4, -5, -3, -3, -2, -2, -2, -2, -2, -1~
## $ dep_delay
## $ arr_time
                  <int> 830, 850, 923, 1004, 812, 740, 913, 709, 838, 753, 849,~
## $ sched_arr_time <int> 819, 830, 850, 1022, 837, 728, 854, 723, 846, 745, 851,~
                  <dbl> 11, 20, 33, -18, -25, 12, 19, -14, -8, 8, -2, -3, 7, -1~
## $ arr_delay
                  <chr> "UA", "UA", "AA", "B6", "DL", "UA", "B6", "EV", "B6",
## $ carrier
## $ flight
                  <int> 1545, 1714, 1141, 725, 461, 1696, 507, 5708, 79, 301, 4~
## $ tailnum
                  <chr> "N14228", "N24211", "N619AA", "N804JB", "N668DN", "N394~
                  <chr> "EWR", "LGA", "JFK", "JFK", "LGA", "EWR", "EWR", "LGA",~
## $ origin
                  <chr> "IAH", "IAH", "MIA", "BQN", "ATL", "ORD", "FLL", "IAD",~
## $ dest
## $ air time
                  <dbl> 227, 227, 160, 183, 116, 150, 158, 53, 140, 138, 149, 1~
## $ distance
                  <dbl> 1400, 1416, 1089, 1576, 762, 719, 1065, 229, 944, 733, ~
## $ hour
                  <dbl> 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
## $ minute
                  <dbl> 15, 29, 40, 45, 0, 58, 0, 0, 0, 0, 0, 0, 0, 0, 0, 59, 0~
## $ time_hour
                  <dttm> 2013-01-01 05:00:00, 2013-01-01 05:00:00, 2013-01-01 0~
```

glimpse(airlines)

glimpse(airports)

```
## Rows: 1,458
## Columns: 8
         <chr> "04G", "06A", "06C", "06N", "09J", "0A9", "0G6", "0G7", "0P2", "~
## $ faa
## $ name <chr> "Lansdowne Airport", "Moton Field Municipal Airport", "Schaumbur~
         <dbl> 41.13047, 32.46057, 41.98934, 41.43191, 31.07447, 36.37122, 41.4~
## $ lat
## $ lon
         <dbl> -80.61958, -85.68003, -88.10124, -74.39156, -81.42778, -82.17342~
         <dbl> 1044, 264, 801, 523, 11, 1593, 730, 492, 1000, 108, 409, 875, 10~
## $ alt
         <dbl> -5, -6, -6, -5, -5, -5, -5, -5, -5, -8, -5, -6, -5, -5, -5, -5, -
## $ tz
         ## $ dst
## $ tzone <chr> "America/New_York", "America/Chicago", "America/Chicago", "Ameri~
```

Tareas:

- 1. Usa inner_join() para combinar la tabla flights con la tabla airlines y obtener el nombre completo de la aerolínea para cada vuelo.
- 2. Utiliza left_join() para añadir la información de los aeropuertos de origen.
- 3. Realiza un anti_join() para encontrar aerolíneas que aparecen en la tabla airlines pero que no operaron ningún vuelo en la base de datos.
- 4. Usa una combinación de joins para crear un resumen que muestre, para cada aerolínea, el número total de vuelos, el retraso promedio en la salida y el porcentaje de vuelos cancelados.

Ejercicio 5: Análisis económico con joins

Utilizaremos datos simulados inspirados en los conjuntos de datos de Wooldridge para análisis económico.

```
# Crear dos datasets relacionados: trabajadores y empresas
set.seed(456)
# Dataset de trabajadores
trabajadores <- wage_data %>%
  mutate(
    id_trabajador = row_number(),
   id_empresa = sample(1:50, n(), replace = TRUE),
    sector = sample(c("Manufactura", "Servicios", "Tecnologia", "Salud", "Educacion"),
                    n(), replace = TRUE)
  ) %>%
  select(id_trabajador, id_empresa, wage, educ, exper, female, married, sector)
# Dataset de empresas
empresas <- tibble(</pre>
  id_empresa = 1:50,
  nombre empresa = paste0("Empresa ", LETTERS[1:50]),
  tamano = sample(c("Pequena", "Mediana", "Grande"), 50, replace = TRUE),
  antiguedad = sample(1:50, 50, replace = TRUE),
  cotiza_bolsa = sample(c(TRUE, FALSE), 50, replace = TRUE, prob = c(0.3, 0.7))
)
```

Mostrar los primeros registros de ambas tablas head(trabajadores)

id_trabajador	id_empresa	wage	educ	exper	female	married	sector
1	45	3.10	11	2	1	0	Tecnologia
2	37	3.24	12	22	1	1	Salud
3	35	3.00	11	2	0	0	Educacion
4	38	6.00	8	44	0	1	Salud
5	21	5.30	12	7	0	1	Manufactura
6	27	8.75	16	9	0	1	Servicios

head(empresas)

$\overline{\mathrm{id}}$ _empresa	nombre_empresa	tamano	antiguedad	cotiza_bolsa
1	Empresa_A	Pequena	25	FALSE
2	Empresa_B	Mediana	26	FALSE
3	Empresa_C	Pequena	12	FALSE
4	$Empresa_D$	Mediana	39	FALSE
5	$Empresa_E$	Grande	26	FALSE
6	${\bf Empresa_F}$	Mediana	40	TRUE

Tareas:

- 1. Utiliza inner_join() para combinar los datos de trabajadores y empresas.
- 2. Calcula el salario promedio por tamaño de empresa y por sector.
- 3. Con anti_join(), identifica si hay empresas que no tienen trabajadores en la muestra.
- 4. Usa semi_join() para filtrar solo los trabajadores que trabajan en empresas grandes.
- 5. Crea una visualización que muestre la relación entre educación (educ), experiencia (exper) y salario (wage) diferenciando por tamaño de empresa.

Ejercicio 6: Pivots avanzados con datos de gapminder

Continuaremos trabajando con el dataset gapminder pero ahora utilizando técnicas más avanzadas de pivot.

```
# Volver a cargar los datos
data(gapminder)
```

Tareas:

- 1. Selecciona solo los años 1997 y 2007 del dataset.
- 2. Crea un resumen con el promedio de esperanza de vida y PIB per cápita por continente y año.
- 3. Utiliza pivot_wider() con múltiples columnas de valores para crear un dataset donde:
 - Las filas sean continentes

- Las columnas sean combinaciones de variable (lifeExp, gdpPercap) y año (1997, 2007)
- Crea nombres de columnas como "lifeExp_1997", "lifeExp_2007", etc.
- 4. Añade columnas que calculen la variación porcentual de cada indicador entre 1997 y 2007.
- 5. ¿Qué continente experimentó el mayor crecimiento en PIB per cápita? ¿Y en esperanza de vida?

Ejercicio 7: Análisis de ventas con pivots y joins

En este ejercicio trabajaremos con tablas relacionadas que contienen información sobre ventas, productos, clientes y tiendas.

Examinar las tablas
head(productos)

id_producto	nombre	categoria	precio_unitario	stock
1	Producto_1	Hogar	43.73	134
2	$Producto_2$	Juguetes	852.31	176
3	$Producto_3$	Juguetes	240.78	164
4	$Producto_4$	Electronica	696.70	182
5	$Producto_5$	Hogar	476.65	151
6	Producto_6	Electronica	701.02	197

head(ventas)

id_venta	id_producto	id_cliente	id_tienda	fecha	cantidad
1	28	118	5	2023-04-06	8
2	34	98	8	2023-11-01	6
3	72	88	4	2023 - 05 - 07	9
4	9	125	3	2023 - 10 - 27	8
5	74	136	9	2023-07-17	8
6	33	193	2	2023-10-11	8

head(clientes)

$id_cliente$	nombre	ciudad	segmento
1	Cliente_1	Cordoba	Estandar
2	$Cliente_2$	Rosario	Estandar
3	$Cliente_3$	Rosario	Estandar
4	$Cliente_4$	Cordoba	Estandar
5	$Cliente_5$	Buenos Aires	Estandar
6	$Cliente_6$	La Plata	Premium

head(tiendas)

id_tienda	nombre	ubicacion	tamano
1	Tienda_A	Oeste	Mediana
2	$Tienda_B$	Oeste	Mediana
3	$Tienda_C$	Centro	Grande
4	$Tienda_D$	Centro	Grande
5	$Tienda_E$	Oeste	Grande
6	$Tienda_F$	Centro	Grande

Tareas:

- 1. Utiliza los joins adecuados para crear un dataset completo que combine información de ventas, productos, clientes y tiendas.
- 2. Calcula el monto total (cantidad \times precio unitario) para cada venta y agrega esta información al dataset.
- 3. Crea un resumen que muestre las ventas totales por categoría de producto y por ciudad del cliente.
- 4. Transforma este resumen usando pivot_wider() para crear una matriz donde las filas sean las categorías de productos y las columnas sean las ciudades.
- 5. Identifica qué categoría de producto es la más vendida en cada ciudad.

Ejercicio 8: Joins múltiples y análisis de ventas

Continuamos con el análisis de las ventas, pero ahora nos enfocaremos en técnicas más avanzadas de joins.

```
# Crear datos adicionales: promociones
promociones <- tibble(
   id_promocion = 1:20,
   id_categoria = sample(c("Electronica", "Hogar", "Ropa", "Deportes", "Juguetes"), 20, replace = TRUE),
   fecha_inicio = sample(seq(as.Date("2023-01-01"), as.Date("2023-12-01"), by = "month"), 20, replace =
   duracion_dias = sample(c(7, 14, 30), 20, replace = TRUE),
   descuento_pct = sample(c(10, 15, 20, 25, 30), 20, replace = TRUE)
)

# Añadir información de promoción a algunas ventas
ventas <- ventas %>%
   mutate(id_promocion = sample(c(NA, 1:20), n(), replace = TRUE, prob = c(0.7, rep(0.3/20, 20))))
head(promociones)
```

id_promocion	id_categoria	fecha_inicio	duracion_dias	descuento_pct
1	Ropa	2023-05-01	14	30
2	Electronica	2023-07-01	7	25
3	Electronica	2023-11-01	30	25
4	Deportes	2023-11-01	7	30
5	Hogar	2023-02-01	14	20
6	Hogar	2023-07-01	7	10

Tareas:

- 1. Realiza múltiples joins para combinar todas las tablas: ventas, productos, clientes, tiendas y promociones.
- 2. Calcula el precio final de cada venta considerando los descuentos de las promociones cuando corresponda.
- 3. Utiliza anti_join() para identificar ventas que no tienen promociones asociadas.
- 4. Crea un análisis que compare las ventas con promoción vs. sin promoción por categoría de producto.
- 5. Usa pivot_wider() para crear un resumen que muestre el impacto de las promociones en las ventas por categoría.

Ejercicio 9: Pivots complejos con datos anidados

En este ejercicio exploraremos técnicas avanzadas de pivots con estructuras de datos más complejas.

```
# Crear un dataset con jerarquías y múltiples variables
evaluaciones <- tibble(
   curso = rep(c("Matematicas", "Fisica", "Economia", "Estadistica"), each = 40),
   estudiante = rep(paste0("Estudiante_", 1:10), times = 16),
   periodo = rep(rep(c("2023-1", "2023-2", "2024-1", "2024-2"), each = 10), times = 4),
   nota_teoria = runif(160, 4, 10) %>% round(1),
   nota_practica = runif(160, 4, 10) %>% round(1),
   asistencia_pct = runif(160, 60, 100) %>% round(0)
)
```

curso	estudiante	periodo	nota_teoria	nota_practica	asistencia_pct
Matematicas	Estudiante_1	2023-1	4.3	5.9	63
Matematicas	$Estudiante_2$	2023-1	4.3	10.0	95
Matematicas	$Estudiante_3$	2023-1	7.0	10.0	75
Matematicas	$Estudiante_4$	2023-1	9.1	9.2	75
Matematicas	$Estudiante_5$	2023-1	7.6	7.5	68
Matematicas	$Estudiante_6$	2023-1	9.2	6.0	72

Tareas:

- 1. Crea una nota final calculada como 60% de la nota de teoría y 40% de la nota de práctica.
- 2. Transforma el dataset para tener una columna de "tipo_evaluacion" y otra de "valor", donde tipo_evaluacion puede ser "teoria", "practica" o "asistencia".
- 3. Utiliza pivot_wider() para crear un dataset donde las filas sean combinaciones de curso y estudiante, y las columnas sean las evaluaciones en los diferentes períodos.
- 4. Crea un resumen de la evolución de las notas promedio por curso a lo largo de los períodos.
- 5. Transforma este resumen utilizando técnicas avanzadas de pivots para visualizar la tendencia temporal de manera efectiva.