DISKRETE STRUKTUREN Aufgabenblatt 4

Aufgabe 23

Es sei eine Menge X gegeben.

a

Es seien eine Menge I und eine Familie $(c_i)_{i\in I}$ von Äquivalenzrelation auf X gegeben. Für $x,y\in X$ gelte genau dann x c y, wenn für $i\in I$ stets x c_i y gilt. Zeigen Sie, dass c eine Äquivalenzrelation auf X ist.

 c_i ist genau dann eine Äquivalenzrelation, wenn die Reflexivität, Transitivität und Symmetrie von c gilt.

c ist genau dann reflexiv, wenn x c x gilt. c_i sei Äquivalenzrelation auf x, dann gilt x c_i x für alle $i \in I$, da für alle $x \in X$ x c x gilt. \checkmark

c ist genau dann transitiv, wenn aus x c y und y c z x c z folgt. c_i sei eine Äquivalenzrelation, dann folgt aus x c_i y und y c_i z x c_i z, da für alle $x, y, z \in X$ aus x c y und y c z x c z folgt. \checkmark

c ist genau dann symmetrisch, wenn x c y und y c x gilt. c_i sei eine Äquivalenzrelation, dann gilt dann gilt x c_i y und y c_i x für $i \in I$, da x c y und y c x für $x, y \in X$ gilt. \checkmark

Da Reflexivität, Transitivität und Symmetrie von c_i soeben bewiesen wurde, ist c_i eine Äquivalenzrelation. \square

b

c	ıst	genau	dann	reflexiv,	wenn x	c x	gilt.	
\mathbf{T}^{2}			oin d				:1 ₊	1

Es existiert ein d aus C so, dass x d x gilt. Da x d x gilt, gilt auch x c x \Box c ist genau dann transitiv, wenn aus x c y und y c z x c z folgt.

Es existiert ein d aus C so, dass aus x d y und y d z x d z folgt. Da aus x d y und y d z x d z folgt, folgt auch aus aus x c y und y c z x c z. \square c ist genau dann symmetrisch, wenn x c y und y c x gilt. Es existiert ein d aus C so, dass x d y und y d x gilt. Da x d y und y d x gilt, gilt auch x c y und y c x. \square

Für jede Äquivalenzrelation d auf X derart, dass für $x,y\in X$ aus x r y stets x d y folgt , folgt für $x,y\in X$ auch aus x c y x d y.

Somit gilt x c y, wenn x d y gilt. Ebenso gilt y c z, wenn y d z gilt. Weil d eine Äquivalenzrelation ist, folgt aus x d z und y d z x d z. Gemäß Definition der Transitivität (4.3a) ist c transitiv und die zweite Bedinung erfüllt. \checkmark

Aufgabe 24

ล

Es sei eine Abbildung $f: X \to Y$ gegeben.

- (i) Es sei eine Äquivalenzrelation c auf Y gegeben. Für $x, \tilde{x} \in X$ gelte $x c_f \tilde{x} \in X$ genau dann, wenn f(x) c f(x) gilt. Zeigen Sie, dass c_f eine Äquivalenzrelation auf X ist.
- (ii) Folgern Sie, dass $=_f$ eine Äquivalenzrelation auf X ist.

Zur Bedingung (i): Es sei eine Äquivalenzrelation c auf Y gegeben. Für $x, \tilde{x} \in X$ gelte $x c_f \tilde{x}$ genau dann, wenn $f(x) c f(\tilde{x})$ gilt.

 $x c_f x$ gilt, wenn f(x) c f(x) gilt. Da c eine Äquivalenzrelation ist, ist dies erfüllt und somit ist c_f reflexiv. \checkmark

Aus x c_f y und y c_f z folgt x c_f z, wenn aus f(x) c f(y) und f(y) c f(z) f(x) c f(z) folgt. Da c eine Äquivalenzrelation ist, ist dies erfüllt und somit ist c_f transitiv. \checkmark

Aus x c_f y folgt y c_f x, wenn aus f(x) c f(y) auch f(y) c f(x) folgt. Da c eine Äquivalenzrelation ist, ist dies erfüllt und somit ist c_f symmetrisch. \checkmark c_f ist also eine Äquivalenzrelation, weil sie reflexiv, transitiv und symmetrisch ist. \Box

Zur Bedingung (ii): Fur $x, \tilde{x} \in X$ gilt $x =_f \tilde{x}$, wenn $f(x) = f(\tilde{x})$.

Ersetzen wir nun c und c_f aus a entsprechend mit = und =_f, heißt dass es $x =_f \tilde{x}$, wenn $f(x) = f(\tilde{x})$ gilt. Die Äquivalenzrelation =_f ist aber eine konkrete Relation für c_f aus a), wobei '=' eine Äquivalenzrelation, wie c, ist. \Box

| MUSTER | $f: X \to Y$. $x, \tilde{x} \in X$. $x c_f$ gilt genau dann wenn, $f(x) c f(\tilde{x})$.

Beweis: Seien $x, x^i, x^{ii} \in X$ mit $x c_f x^i$ und $x^i c_f x^i$

- $\implies f(x) \ c \ f(x^i) \ \text{und} \ f(x^i) \ c \ f(x^i)$
- $\implies f(x) \ c \ f(x^i)$
- $\implies c_f$ transitiv.

Seien $x, \tilde{x} \in X$ mit $x c_f \tilde{x}$.

- $\implies f(x) \ c \ f(\tilde{x})$
- $\implies f(\tilde{x}) \ c \ f(x)$
- $\implies \tilde{x} c_f x$
- $\implies c_f$ ist symmetrisch.

Insgesamt ist c_f eine Äquivalenzrelation auf X. Zur Bedingungen (ii):

= ist eine Äquivalenzrelation auf Y, also ist $=_f$ nach 24a)i) eine Äquivalenz-

relaion auf X.

b

 $T:AF\to B$

Zur Bildgleichheit: Für $a, b \in AF$ gilt $a =_{\overline{T}}$, wenn T(a) = T(b) gilt.

Das bedeutet, dass zwei aussagenlogische Formeln in dieser Relation stehen, wenn die potentiellen Wahrheitstafeln beider gleich sind, also die aussagenlogischen Formeln logisch äquivalent sind.

Zum Homomorphiesatz: Es gibt eine induzierte Abbildung $\bar{T}: AF/=_T \to B, [a] \mapsto f(a),$ welche $T = \bar{T} \circ quo$ erfüllt.

Also gilt für $a,b \in AF$ $a =_T B$, wenn ihre Wahrheitstafeln gleich sind, also die aussagenlogischen Formeln logische äquivalent sind. Eine Äquivalenzrelation bezüglich $=_T$ entspricht der Gesamtheit der logisch äquivalenten aussagenlogischen Formeln, wobei die Quotientenmenge $AF/=_T$ die Einteilung in Gruppen von logisch äquivalenten aussagenlogischen Formeln widerspricht. Die Quotientenabbildung $auo: AF \to AF/=_T$ kann als Zuordnung von aussagenlogischen Formeln zu ihrer Klasse von logisch äquivalenten aussagenlogischen Formeln aufgefasst werden, wobei diesen Klassen durch die induzierte Abbildung $T: AF/=_T \to B$ die entsprechenden Wahrheitstafeln zugeordnet werden.

[MUSTER] Seien $F, G \in AF$, $F =_{AF} G$ genau dann, wenn T(F) = T(G), d.h. $T \equiv G$. Nach Homomorphiesatz: $\overline{T} : AF/_{=_T} \to B$, $[F]_{=_T} \mapsto T(F)$ ist wohldefinierte, injektive Abbildung, die folgende Eigenschaften erfüllt: Mit $T : \overline{T} \circ quo$, $quo : AF \to AF_{=_T}$, $F \mapsto [F]_{=_T}$ für alle $F \in AF$.

 $[F]_{=T} = \{G \in AF | G =_T F\} = \{G \in AF | G \equiv F\}$. Somit ist T surjektiv, wegen $Im(\bar{T}) = Im(T)$, auch \bar{T} surjektiv. Insgesamt \bar{T} ist eine Bijektion. $x \in y \iff [x] = [y]$.