ЛАБОРАТОРНАЯ РАБОТА № 12

ИЗБИРАТЕЛЬНЫЕ RC-CXEMЫ

1. RC-генератор с поворотом фазы в цепи ОС на + 180°

1.1. Соберите схему. При построении схемы используйте **ОУ LM105** (**Models/Library/lm1xx/Model**).

1.2. Выберите f_0 в соответствии с вариантом задания, R = 5 кОм, а C рассчитайте, используя формулы:

$$\omega_0 = \frac{1}{RC\sqrt{6}};$$
 $\omega_0 = 2\pi f_0$ (*R* выражается в Ом, $C - B \Phi, f_0 B - \Gamma \mu$).

1.3. Коэффициент передачи цепи ОС равен

$$\gamma_{u0} = \frac{1}{29}.$$

Для удовлетворения условия баланса амплитуд усилитель должен иметь коэффициент усиления

$$\label{eq:Ku} \textit{\textbf{K}}_{\text{u}} \geq \frac{1}{\gamma_{\text{u}\,0}}\,; \qquad \textit{\textbf{K}}_{\text{u}} \geq 29.$$

Коэффициент усиления инвертирующего усилителя с ООС определяется выражением

$$K_{\rm u oc} = -\frac{R_2}{R_1}.$$

Следовательно

$$\frac{R_2}{R_1} \geq 29.$$

- 1.4. Выберите $R_2 = 500$ кОм, а начальное значение $R_1 = 5$ кОм. Изменяя R_1 , добейтесь, чтобы выходной сигнал имел минимальные искажения.
- 1.5. Изменяя C, добейтесь, чтобы частота сигналов вырабатываемых генератором соответствовала f_0 (при настройке с помощью маркеров **Oscilloscope** измеряйте период сигналов $T_0 = 1/f_0$).

2. RC-генератор без поворота фазы в цепи ОС с мостом Вина

2.1. Соберите схему. При построении схемы используйте **ОУ LM105** (**Models/Library/lm1xx/Model**).

2.2. Частота генерации определяется

$$\boldsymbol{\omega}_0 = \frac{1}{\sqrt{\boldsymbol{R}_1 \boldsymbol{C}_1 \boldsymbol{R}_2 \boldsymbol{C}_2}}.$$

Коэффициент передачи цепи ОС равен

$$\gamma_{u0} = \frac{1}{1 + \frac{R_1}{R_2} + \frac{C_2}{C_1}}.$$

Если мост симметричен ($\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{R}$ и $\mathbf{C}_1 = \mathbf{C}_2 = \mathbf{C}$), то:

$$\omega_0 = \frac{1}{RC}; \qquad \gamma_{u0} = \frac{1}{3}.$$

Выберите f_0 в соответствии с вариантом задания, $R_1 = R_2 = R = 5$ кОм, а $C_1 = C_2 = C$ рассчитайте, используя формулы:

$$\omega_0 = \frac{1}{RC};$$
 $\omega_0 = 2\pi f_0$ (*R* выражается в Ом, $C - \mathbf{B} \Phi, f_0 \mathbf{B} - \Gamma \mathbf{U}$).

2.3. Для удовлетворения условия баланса амплитуд усилитель должен иметь коэффициент усиления

$$K_{\mathrm{u}} \geq \frac{1}{\gamma_{\mathrm{u}0}}; \quad K_{\mathrm{u}} \geq 3.$$

Коэффициент усиления неинвертирующего усилителя с **ООС** определяется выражением

$$K_{\rm u oc} = \frac{R_4}{R_3} + 1.$$

Следовательно

$$\frac{R_4}{R_3} + 1 \ge 3; \qquad \frac{R_4}{R_3} \ge 2.$$

2.4. Выберите $R_4 = 10$ кОм. Изменяя R_3 , добейтесь, чтобы выходной сигнал имел минимальные искажения. Минимальные искажения выходного сигнала обеспечиваются при условии

$$\frac{R_4}{2} > R_3 > 0.9 \frac{R_4}{2}$$
.

2.5. Изменяя C_1 и C_2 , добейтесь, чтобы частота сигналов вырабатываемых генератором соответствовала f_0 (при настройке с помощью маркеров **Oscilloscope** измеряйте период сигналов $T_0 = 1/f_0$).

3. Избирательный RC-усилитель с двойным Т-образным мостом

3.1. Соберите схему. При построении схемы используйте **ОУ LM105** (**Models/Library/lm1xx/Model**).

3.2. Для создания **ООС** в **ОУ** используется двойной Т-образный мост ($R_1R_2R_3C_1C_2C_3$). На резонансной частоте мост не пропускает сигнал, глубина **ООС** минимальна и, следовательно, коэффициент усиления **ОУ** по неинвертирующему входу максимален.

Если мост симметричен ($\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{R}$, $\mathbf{C}_1 = \mathbf{C}_2 = \mathbf{C}$), то резонансная частота определяется:

$$\mathbf{\omega}_0 = \frac{\sqrt{\mathbf{n}}}{RC};$$
 $\mathbf{\omega}_0 = 2\pi f_0$ (R выражается в Ом, $C - \mathbf{B} \Phi, f_0 \mathbf{B} - \Gamma \mathbf{H}$).

Для расчета \mathbf{R}_3 и \mathbf{C}_3 используется соотношение

$$\frac{2C}{C_3} = \frac{R}{2R_3} = \mathbf{n},$$

где \mathbf{n} — целое положительное число.

- 3.3. Выберите f_0 в соответствии с вариантом задания, $R_1 = R_2 = R = 5$ кОм, а $C_1 = C_2 = C$, R_3 , и C_3 рассчитайте, используя формулы для симметричного моста при $\mathbf{n} = \mathbf{2}$.
- 3.4. Максимальный коэффициент усиления неинвертирующего усилителя с **ООС** зависит от соотношения R_4 и сопротивления моста на резонансной частоте. Для надежной работы усилителя выберите $R_4 = 1$ к**Ом**.
- 3.5. Подайте с Function Generator на вход схемы синусоидальный сигнал с амплитудой 100 мВ и частотой 50 Гц. Установите на Bode Plotter пределы измерения коэффициента усиления по напряжению от $0 \, д$ Б ($I = 0 \, d$ В) до $90 \, д$ Б ($F = 90 \, d$ В). Установите на Bode Plotter минимальный предел измерения частоты на $1 \, \kappa$ Гц меньше чем f_0 ($I \approx f_0 1 \, k$ Нz), а максимальный на $1 \, \kappa$ Гц больше чем f_0 ($F \approx f_0 + 1 \, k$ Hz).
- 3.6. Изменяя C_1 , C_2 и C_3 , добейтесь, чтобы усилитель имел максимальный коэффициент усиления по напряжению на частоте f_0 .
 - 3.7. С помощью **Bode Plotter** измерьте:
 - а) коэффициент усиления усилителя $K_{\text{u oc}}$ [д**Б**] на частоте f_0 ;
 - б) низшую $f_{\text{н гр}}$ и высшую $f_{\text{в гр}}$ граничные частоты полосы пропускания.

Варианты заданий

Вариант	Частота f_0 , к Γ ц
1	6,1
2	7,1
	8,1
3 4	9,1
5	10,1
6	11,1
7	12,1
8	13,1
9	14,1
10	15,1
11	6,2
12	7.2
13	8,2 9,2 10,2 11,2
14	9,2
15	10.2
16	11.2
17	12,2
18	13.2
19	13,2 14,2
20	15,2
21	6,3
22	7,3
23	8,3
24	9,3
25	10,3
26	11,3
27	12,3
28	13,3
29	14,3
30	15.3
31	15,3 6,4 7,4
32	7.4
33	8,4
34	9,4
35	10,4
36	11,4
37	12,4
38	13,4
39	14,4
40	15,4
41	6,5
42	7,5
	1,5