Portfolio Theory with Matrix Algebra

Eric Zivot

4/12/2021

Three Risky Asset Example

Let R_i (i = M, N, S) denote the return on asset i and assume that R_i follows GWN model:

$$R_i \sim iid N(\mu_i, \sigma_i^2)$$

 $cov(R_i, R_j) = \sigma_{ij}$

Portfolio x

$$x_i = \text{share of wealth in asset } i$$

 $x_M + x_N + x_S = 1$
 $R_{p,x} = x_M R_M + x_N R_N + x_S R_S$.

Example Data

Estimates of GWN model for Microsoft, Nordstrom and Starbucks stock from monthly simple returns over the period January 1995 to January 2000.

Stock i	μ_i	σ_i	Pair (i,j)	σ_{ij}
M (Microsoft)	0.0427	0.1000	(M,N)	0.0018
N (Nordstrom)	0.0015	0.1044	(M,S)	0.0011
S (Starbucks)	0.0285	0.1411	(N,S)	0.0026

Table 1: Three asset example data.

Risk free rate (to be used later): $r_f = 0.005$

Example Data

In matrix algebra, we have

$$\begin{split} \mu &= \begin{pmatrix} \mu_M \\ \mu_N \\ \mu_S \end{pmatrix} = \begin{pmatrix} 0.0427 \\ 0.0015 \\ 0.0285 \end{pmatrix} \\ \Sigma &= \begin{pmatrix} \sigma_M^2 & \sigma_{MN} & \sigma_{MS} \\ \sigma_{MN} & \sigma_N^2 & \sigma_{NS} \\ \sigma_{MS} & \sigma_{NS} & \sigma_S^2 \end{pmatrix} = \begin{pmatrix} (0.1000)^2 & 0.0018 & 0.0011 \\ 0.0018 & (0.1044)^2 & 0.0026 \\ 0.0011 & 0.0026 & (0.1411)^2 \end{pmatrix} \end{split}$$

Example Data in R

Risk-Return Characteristics

• MSFT has highest Sharpe ratio, NORD has lowest Sharpe ratio

$$\mathbf{R} = \begin{pmatrix} R_{M} \\ R_{N} \\ R_{S} \end{pmatrix}, \ \mu = \begin{pmatrix} \mu_{M} \\ \mu_{N} \\ \mu_{S} \end{pmatrix}, \ \mathbf{1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
$$\mathbf{x} = \begin{pmatrix} x_{M} \\ x_{N} \\ x_{S} \end{pmatrix}, \ \boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{M}^{2} & \sigma_{MN} & \sigma_{MS} \\ \sigma_{MN} & \sigma_{N}^{2} & \sigma_{NS} \\ \sigma_{MS} & \sigma_{NS} & \sigma_{S}^{2} \end{pmatrix}$$

Portfolio weights sum to 1

$$\mathbf{x}'\mathbf{1} = (x_M \ x_N \ x_S) \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
$$= x_M + x_N + x_S = 1$$

Portfolio return

$$R_{p,x} = \mathbf{x}'\mathbf{R} = (x_M \ x_N \ x_S) \begin{pmatrix} R_M \\ R_N \\ R_S \end{pmatrix}$$
$$= x_M R_M + x_N R_N + x_S R_S$$

Portfolio expected return

$$\mu_{p,x} = \mathbf{x}'\mu = (x_M x_N x_S) \begin{pmatrix} \mu_A \\ \mu_B \\ \mu_C \end{pmatrix}$$
$$= x_M \mu_M + x_N \mu_N + x_S \mu_S$$

Portfolio variance

$$\begin{split} \sigma_{p,x}^2 &= \mathbf{x}' \mathbf{\Sigma} \mathbf{x} \\ &= \left(\begin{array}{ccc} x_M & x_N & x_S \end{array}\right) \left(\begin{array}{ccc} \sigma_M^2 & \sigma_{MN} & \sigma_{MS} \\ \sigma_{MN} & \sigma_N^2 & \sigma_{NS} \\ \sigma_{MS} & \sigma_{NS} & \sigma_S^2 \end{array}\right) \left(\begin{array}{c} x_M \\ x_N \\ x_S \end{array}\right) \\ &= x_M^2 \sigma_M^2 + x_N^2 \sigma_N^2 + x_S^2 \sigma_S^2 \\ &+ 2x_M x_N \sigma_{MN} + 2x_M x_S \sigma_{MS} + 2x_N x_S \sigma_{NS} \end{split}$$

Portfolio distribution

$$R_{p,x} \sim N(\mu_{p,x}, \sigma_{p,x}^2)$$

Covariance Between 2 Portfolio Returns

$$\mathbf{x} = \begin{pmatrix} x_M \\ x_N \\ x_S \end{pmatrix}, \ \mathbf{y} = \begin{pmatrix} y_M \\ y_N \\ y_S \end{pmatrix}$$
$$\mathbf{x}'\mathbf{1} = 1, \ \mathbf{y}'\mathbf{1} = 1$$

Portfolio returns

$$R_{p,x} = \mathbf{x}'\mathbf{R}, \ R_{p,y} = \mathbf{y}'\mathbf{R}$$

Covariance

$$cov(R_{p,x}, R_{p,y}) = \mathbf{x}' \Sigma \mathbf{y} = \mathbf{y}' \Sigma \mathbf{x}$$

R Formulas

Let x and y be the vectors of portfolio weights, muvec the vector of expected returns, and Sigma the covariance matrix. Then

- $\mu_{p,x} = t(x)*muvec = t(muvec)*x = crossprod(x,muvec)$
- $\sigma_{p,x} = t(x)%*\%Sigma%*%x$
- $\sigma_{xy} = t(x)$ %*%Sigma%*%y = t(y)%*%Sigma%*%x

Example Portfolio: Equally-Weighted

```
x.vec = rep(1,3)/3
names(x.vec) = asset.names
mu.p.x = crossprod(x.vec,mu.vec)
sig2.p.x = t(x.vec)%*%sigma.mat%*%x.vec
sig.p.x = sqrt(sig2.p.x)
```

Mean and volatility are:

```
c(mu.p.x, sig.p.x)
```

```
## [1] 0.0242 0.0759
```

Example Portfolio: Long-Short

```
y.vec = c(0.8, 0.4, -0.2)
names(y.vec) = asset.names
mu.p.y = crossprod(y.vec,mu.vec)
sig2.p.y = t(y.vec)%*%sigma.mat%*%y.vec
sig.p.y = sqrt(sig2.p.y)
```

Mean and volatility are:

```
c(mu.p.y,sig.p.y)
```

[1] 0.0291 0.0966

Covariance and Correlation between Example Portfolio Returns

Covariance:

```
sig.xy = t(x.vec)%*%sigma.mat%*%y.vec
sig.xy
## [,1]
## [1,] 0.00391
```

Correlation:

```
rho.xy = sig.xy/(sig.p.x*sig.p.y)
rho.xy
```

```
## [,1]
## [1,] 0.533
```

Risk-Return characteristics: Example Portfolios

Random Portfolios

Create 600 random portfolio vectors with weights that sum to one.

```
## [1,] -0.637 -0.788 2.426
## [2,] 0.865 0.559 -0.424
## [3,] -0.273 -0.823 2.096
```

Portfolio Weights: Random Portfolios

First 50 Random portfolio weight vectors

Risk-Return Characteristics: Random Portfolios

Risk-Return Characteristics: Random Portfolios

Comments:

- With more than two assets, set of feasible portfolios is no longer one side of a hyperbole
- Set of feasible portfolios is a solid space (e.g. grey dots fill out solid space as number of portfolios increase)
- Efficient portfolios are on the upper boundary (above minimimum variance portfolio)

Global Minimum Variance Portfolio

Problem: Find the portfolio $\mathbf{m} = (m_M, m_N, m_S)'$ that solves

$$\min_{\textit{m}_{\textit{M}},\textit{m}_{\textit{N}},\textit{m}_{\textit{S}}} \sigma_{\textit{p},\textit{m}}^2 = \textit{m}' \Sigma \textit{m} \text{ s.t. } \textit{m}' \textbf{1} = 1$$

That is, find the portfolio that has the smallest possible variance (volatility). We can do this in two ways:

- Analytic solution using calculus and matrix algebra
- Numerical Solution in R or Excel Using numerical optimizers

Review: Derivatives of Simple Matrix Functions

Let **A** be an $n \times n$ symmetric matrix, and let **x** and **y** be an $n \times 1$ vectors. Then

$$\frac{\partial}{\partial \mathbf{x}} \mathbf{x}' \mathbf{y} = \begin{pmatrix} \frac{\partial}{\partial x_1} \mathbf{x}' \mathbf{y} \\ \vdots \\ \frac{\partial}{\partial x_n} \mathbf{x}' \mathbf{y} \end{pmatrix} = \mathbf{y}, \tag{1}$$

$$\frac{\partial}{\partial \mathbf{x}} \mathbf{x}' \mathbf{A} \mathbf{x} = \begin{pmatrix} \frac{\partial}{\partial x_1} \mathbf{x}' \mathbf{A} \mathbf{x} \\ \vdots \\ \frac{\partial}{\partial x_n} \mathbf{x}' \mathbf{A} \mathbf{x} \end{pmatrix} = 2 \mathbf{A} \mathbf{x}. \tag{2}$$

The Lagrangian is

$$L(\mathbf{m}, \lambda) = \mathbf{m}' \mathbf{\Sigma} \mathbf{m} + \lambda (\mathbf{m}' \mathbf{1} - 1)$$

First order conditions (use matrix derivative results)

$$\mathbf{0}_{(3\times1)} = \frac{\partial L(\mathbf{m}, \lambda)}{\partial \mathbf{m}} = \frac{\partial \mathbf{m}' \Sigma \mathbf{m}}{\partial \mathbf{m}} + \frac{\partial}{\partial \mathbf{m}} \lambda (\mathbf{m}' \mathbf{1} - 1) = 2 \cdot \Sigma \mathbf{m} + \lambda \mathbf{1}$$

$$\mathbf{0}_{(1\times1)} = \frac{\partial L(\mathbf{m}, \lambda)}{\partial \lambda} = \frac{\partial \mathbf{m}' \Sigma \mathbf{m}}{\partial \lambda} + \frac{\partial}{\partial \lambda} \lambda (\mathbf{m}' \mathbf{1} - 1) = \mathbf{m}' \mathbf{1} - 1$$

Write FOCs in matrix form as

$$\left(\begin{array}{cc} 2\Sigma & \mathbf{1} \\ \mathbf{1}' & 0 \end{array}\right) \left(\begin{array}{c} \mathbf{m} \\ \lambda \end{array}\right) = \left(\begin{array}{c} \mathbf{0} \\ 1 \end{array}\right) \begin{array}{c} 3\times 1 \\ 1\times 1 \end{array}.$$

The FOCs are the linear system

$$\mathbf{A}_{m}\mathbf{z}_{m}=\mathbf{b}$$

where

$$\mathbf{A}_m = \left(egin{array}{cc} 2\Sigma & \mathbf{1} \\ \mathbf{1}' & 0 \end{array}
ight), \ \mathbf{z}_m = \left(egin{array}{c} \mathbf{m} \\ \lambda \end{array}
ight) \ \mathrm{and} \ \mathbf{b} = \left(egin{array}{c} \mathbf{0} \\ 1 \end{array}
ight).$$

The solution for \mathbf{z}_m is

$$\mathbf{z}_m = \mathbf{A}_m^{-1} \mathbf{b}$$
.

- The first three elements of \mathbf{z}_m are the portfolio weights $\mathbf{m} = (m_M, m_N, m_S)'$ for the global minimum variance portfolio with expected return $\mu_{p,m} = \mathbf{m}' \mu$ and variance $\sigma_{p,m}^2 = \mathbf{m}' \Sigma \mathbf{m}$.
- ullet The fourth element is the Lagrange multiplier λ

Alternative Derivation of Global Minimum Variance Portfolio

The first order conditions from the optimization problem can be expressed in matrix notation as

$$\mathbf{0}_{(3\times1)} = \frac{\partial L(\mathbf{m}, \lambda)}{\partial \mathbf{m}} = 2 \cdot \Sigma \mathbf{m} + \lambda \cdot \mathbf{1},$$

$$\mathbf{0}_{(1\times1)} = \frac{\partial L(\mathbf{m}, \lambda)}{\partial \lambda} = \mathbf{m}' \mathbf{1} - 1.$$

Using first equation, solve for \mathbf{m} :

$$\mathbf{m} = -\frac{1}{2} \cdot \lambda \Sigma^{-1} \mathbf{1}.$$

Alternative Derivation of Global Minimum Variance Portfolio

Next, multiply both sides by $\mathbf{1}'$ and use second equation to solve for λ :

$$\mathbf{1}'\mathbf{m} = -\frac{1}{2} \cdot \lambda \mathbf{1}' \Sigma^{-1} \mathbf{1} = 1$$
$$\Rightarrow \lambda = -2 \cdot \frac{1}{\mathbf{1}' \Sigma^{-1} \mathbf{1}}.$$

Finally, substitute the value for λ in the equation for \mathbf{m} :

$$\mathbf{m} = -\frac{1}{2} (-2) \frac{1}{\mathbf{1}' \Sigma^{-1} \mathbf{1}} \Sigma^{-1} \mathbf{1}$$

$$= \frac{\Sigma^{-1} \mathbf{1}}{\mathbf{1}' \Sigma^{-1} \mathbf{1}}.$$

Global Minimum Variance Portfolio: Example Data Method 1

```
Use \mathbf{z}_m = \mathbf{A}_m^{-1} \mathbf{b}.
top.mat = cbind(2*sigma.mat, rep(1, 3))
bot.vec = c(rep(1, 3), 0)
Am.mat = rbind(top.mat, bot.vec)
b.vec = c(rep(0, 3), 1)
z.m.mat = solve(Am.mat)%*%b.vec
m.vec = z.m.mat[1:3,1]
m.vec
```

MSFT NORD

0.441 0.366 0.193

SRUX

##

Global Minimum Variance Portfolio: Example Data Method 1

Mean and volatility of minimum variance portfolio

```
mu.gmin = as.numeric(crossprod(m.vec, mu.vec))
sig2.gmin = as.numeric(t(m.vec)%*%sigma.mat%*%m.vec)
sig.gmin = sqrt(sig2.gmin)
c(mu.gmin, sig.gmin)
```

[1] 0.0249 0.0727

Global Minimum Variance Portfolio: Example Data Method 2

Use analytic formula for minimum variance portfolio

```
one.vec = rep(1, 3)
sigma.inv.mat = solve(sigma.mat)
top.mat = sigma.inv.mat%*%one.vec
bot.val = as.numeric((t(one.vec)%*%sigma.inv.mat%*%one.vec))
m.mat = top.mat/bot.val
m.mat[, 1]
## MSFT NORD SBUX
```

0.441 0.366 0.193

Plot the Global Minimum Variance Portfolio

Problem 1: find portfolio ${\bf x}$ that has the highest expected return for a given level of risk as measured by portfolio variance

$$\max_{\mathbf{x}_A,\mathbf{x}_B,\mathbf{x}_C} \mu_{p,\mathbf{x}} = \mathbf{x}' \mu \text{ s.t}$$

$$\sigma_{p,\mathbf{x}}^2 = \mathbf{x}' \Sigma \mathbf{x} = \sigma_p^0 = \text{ target risk}$$

$$\mathbf{x}' \mathbf{1} = 1$$

Problem 2 (Dual): find portfolio \mathbf{x} that has the smallest risk, measured by portfolio variance, that achieves a target expected return.

$$\begin{split} \min_{\mathbf{x}_A,\mathbf{x}_B,\mathbf{x}_C} \sigma_{p,\mathbf{x}}^2 &= \mathbf{x}' \Sigma \mathbf{x} \text{ s.t.} \\ \mu_{p,\mathbf{x}} &= \mathbf{x}' \mu = \mu_p^0 = \text{targetreturn} \\ \mathbf{x}' \mathbf{1} &= 1 \end{split}$$

Remark: Problem 2 is usually solved in practice by varying the target return between a given range.

Solving for Efficient Portfolios

- Analytic solution using matrix algebra
- Numerical solution using optimizers in R or Excel

The Lagrangian function associated with Problem 2 is

$$L(x, \lambda_1, \lambda_2) = \mathbf{x}' \mathbf{\Sigma} \mathbf{x} + \lambda_1 (\mathbf{x}' \mu - \mu_{p,0}) + \lambda_2 (\mathbf{x}' \mathbf{1} - 1)$$

The FOCs are

$$\begin{aligned} & \mathbf{0}_{(3\times1)} = \frac{\partial L(\mathbf{x}, \lambda_1, \lambda_2)}{\partial \mathbf{x}} = 2\Sigma \mathbf{x} + \lambda_1 \mu + \lambda_2 \mathbf{1}, \\ & \mathbf{0}_{(1\times1)} = \frac{\partial L(\mathbf{x}, \lambda_1, \lambda_2)}{\partial \lambda_1} = \mathbf{x}' \mu - \mu_{p,0}, \\ & \mathbf{0}_{(1\times1)} = \frac{\partial L(\mathbf{x}, \lambda_1, \lambda_2)}{\partial \lambda_2} = \mathbf{x}' \mathbf{1} - 1. \end{aligned}$$

These FOCs consist of five linear equations in five unknowns

Analytic solution using matrix algebra

We can represent the FOCs in matrix notation as

$$\begin{pmatrix} 2\Sigma & \mu & \mathbf{1} \\ \mu' & 0 & 0 \\ \mathbf{1}' & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mu_{p,0} \\ 1 \end{pmatrix}$$

or

$$\mathbf{A}_{x}\mathbf{z}_{x}=\mathbf{b}_{0}$$

where

$$\mathbf{A}_{\mathsf{x}} = \left(egin{array}{ccc} 2\Sigma & \mu & \mathbf{1} \\ \mu' & 0 & 0 \\ \mathbf{1}' & 0 & 0 \end{array}
ight), \; \mathbf{z}_{\mathsf{x}} = \left(egin{array}{c} \mathbf{x} \\ \lambda_1 \\ \lambda_2 \end{array}
ight) \; \mathsf{and} \; \mathbf{b}_0 = \left(egin{array}{c} \mathbf{0} \\ \mu_{p,0} \\ 1 \end{array}
ight)$$

Analytic solution using matrix algebra

The solution for \mathbf{z}_{x} is then

$$\mathbf{z}_{\scriptscriptstyle X} = \mathbf{A}_{\scriptscriptstyle X}^{-1}\mathbf{b}_0.$$

The first three elements of \mathbf{z}_x are the portfolio weights $\mathbf{x} = (x_M, x_N, x_S)'$ for the efficient portfolio with expected return $\mu_{p,x} = \mu_{p,0}$.

Example: Find efficient portfolios with the same expected return as MSFT and SBUX

For MSFT, we solve

$$\begin{aligned} \min_{\mathbf{x}_A,\mathbf{x}_B,\mathbf{x}_C} \sigma_{p,\mathbf{x}}^2 &= \mathbf{x}' \mathbf{\Sigma} \mathbf{x} \text{ s.t.} \\ \mu_{p,\mathbf{x}} &= \mathbf{x}' \mu = \mu_{MSFT} = 0.0427 \\ \mathbf{x}' \mathbf{1} &= 1 \end{aligned}$$

For SBUX, we solve

$$\begin{split} \min_{y_A,y_B,y_C} \sigma_{p,x}^2 &= \mathbf{y}' \boldsymbol{\Sigma} \mathbf{y} \text{ s.t.} \\ \mu_{p,y} &= \mathbf{y}' \boldsymbol{\mu} = \mu_{SBUX} = 0.0285 \\ \mathbf{y}' \mathbf{1} &= 1 \end{split}$$

Efficient portfolio with the same mean as Microsoft

• Point E1 is the efficient portfolio with the same mean as Microsoft

Efficient portfolio with the same mean as Microsoft

Use matrix algebra formula to compute efficient portfolio.

```
top.mat = cbind(2*sigma.mat, mu.vec, rep(1, 3))
mid.vec = c(mu.vec, 0, 0)
bot.vec = c(rep(1, 3), 0, 0)
Ax.mat = rbind(top.mat, mid.vec, bot.vec)
bmsft.vec = c(rep(0, 3), mu.vec["MSFT"], 1)
z.mat = solve(Ax.mat)%*%bmsft.vec
x.vec = z.mat[1:3,]
x.vec
```

```
## MSFT NORD SBUX
## 0.8275 -0.0907 0.2633
```

Efficient portfolio with the same mean as MSFT

Compute mean and volatility of efficient portfolio.

```
mu.px = as.numeric(crossprod(x.vec, mu.vec))
sig2.px = as.numeric(t(x.vec)%*%sigma.mat%*%x.vec)
sig.px = sqrt(sig2.px)
c(mu.px,sig.px)
```

```
## [1] 0.0427 0.0917
```

Compare with mean and volatility of MSFT.

```
c(mu.vec["MSFT"],sd.vec["MSFT"])
```

```
## MSFT MSFT
## 0.0427 0.1000
```

- Efficient portfolio has slightly smaller volatility than Microsoft.
- Microsoft is near the efficient frontier boundary

Efficient portfolio with the same mean as SBUX

• Point E2 is the efficient portfolio withe the same mean as Starbucks

Efficient portfolio with the same mean as SBUX

Use matrix algebra formula to compute efficient portfolio. Note: only have to change $\mathbf{b_0}$.

```
bsbux.vec = c(rep(0, 3), mu.vec["SBUX"], 1)
z.mat = solve(Ax.mat)%*%bsbux.vec
y.vec = z.mat[1:3,]
y.vec
```

```
## MSFT NORD SBUX
## 0.519 0.273 0.207
```

Efficient portfolio with the same mean as SBUX

Compute mean and volatility of efficient portfolio.

```
mu.py = as.numeric(crossprod(y.vec, mu.vec))
sig2.py = as.numeric(t(y.vec)%*%sigma.mat%*%y.vec)
sig.py = sqrt(sig2.py)
c(mu.py,sig.py)
```

```
## [1] 0.0285 0.0736
```

Compare with mean and volatility of SBUX.

```
c(mu.vec["SBUX"],sd.vec["SBUX"])
```

```
## SBUX SBUX
## 0.0285 0.1411
```

- Efficient portfolio has much smaller volatility than Starbucks!
- Starbucks is far away from the efficient frontier boundary

Covariance between Efficient Portfolio Returns

Later on, we will use the covariance between the two efficient portfolios.

```
sigma.xy = as.numeric(t(x.vec)%*%sigma.mat%*%y.vec)
rho.xy = sigma.xy/(sig.px*sig.py)
c(sigma.xy, rho.xy)
```

```
## [1] 0.00591 0.87722
```

Computing the Portfolio Frontier

Result: The portfolio frontier can be represented as convex combinations of any two frontier portfolios. Let \mathbf{x} be a frontier portfolio that solves

$$\begin{aligned} \min_{\mathbf{x}} \sigma_{p,x}^2 &= \mathbf{x}' \mathbf{\Sigma} \mathbf{x} \text{ s.t.} \\ \mu_{p,x} &= \mathbf{x}' \mu = \mu_p^0 \\ \mathbf{x}' \mathbf{1} &= 1 \end{aligned}$$

Let $\mathbf{y} \neq \mathbf{x}$ be another frontier portfolio that solves

$$\begin{aligned} \min_{\mathbf{y}} \sigma_{p,y}^2 &= \mathbf{y}' \mathbf{\Sigma} \mathbf{y} \text{ s.t.} \\ \mu_{p,y} &= \mathbf{y}' \mu = \mu_p^1 \neq \mu_p^0 \\ \mathbf{y}' \mathbf{1} &= 1 \end{aligned}$$

Computing the Portfolio Frontier

Let α be any constant. Then the portfolio

$$\mathbf{z} = \alpha \cdot \mathbf{x} + (1 - \alpha) \cdot \mathbf{y}$$

is a frontier portfolio. Furthermore

$$\begin{split} \mu_{p,z} &= \mathbf{z}' \mu = \alpha \cdot \mu_{p,x} + (1 - \alpha) \mu_{p,y} \\ \sigma_{p,z}^2 &= \mathbf{z}' \Sigma \mathbf{z} \\ &= \alpha^2 \sigma_{p,x}^2 + (1 - \alpha)^2 \sigma_{p,y}^2 + 2\alpha (1 - \alpha) \sigma_{x,y} \\ \sigma_{x,y} &= \operatorname{cov}(R_{p,x}, R_{p,y}) = \mathbf{x}' \Sigma \mathbf{y} \end{split}$$

A convex combination of two frontier portfolios is another frontier portfolio:

$$\mathbf{z} = \alpha \cdot \mathbf{x} + (1 - \alpha) \cdot \mathbf{y}$$

$$= \alpha \cdot \begin{pmatrix} x_M \\ x_N \\ x_S \end{pmatrix} + (1 - \alpha) \begin{pmatrix} y_M \\ y_N \\ y_S \end{pmatrix}$$

$$= \begin{pmatrix} \alpha x_M + (1 - \alpha)y_M \\ \alpha x_N + (1 - \alpha)y_N \\ \alpha x_S + (1 - \alpha)y_S \end{pmatrix} = \begin{pmatrix} z_M \\ z_N \\ z_S \end{pmatrix}$$

 $\mathbf{z} = \alpha \cdot \mathbf{x} + (1 - \alpha) \cdot \mathbf{y}$

Eric Zivot

- Compute efficient portfolio as convex combination of efficient portfolio with same mean as MSFT and efficient portfolio with same mean as SBUX.
- Let ${\bf x}$ denote the efficient portfolio with the same mean as MSFT, ${\bf y}$ denote the efficient portfolio with the same mean as SBUX, and let $\alpha=0.5$. Then

$$= 0.5 \cdot \begin{pmatrix} 0.82745 \\ -0.09075 \\ 0.26329 \end{pmatrix} + 0.5 \cdot \begin{pmatrix} 0.5194 \\ 0.2732 \\ 0.2075 \end{pmatrix}$$

$$= \begin{pmatrix} (0.5)(0.82745) \\ (0.5)(-0.09075) \\ (0.5)(0.26329) \end{pmatrix} + \begin{pmatrix} (0.5)(0.5194) \\ (0.5)(0.2732) \\ (0.5)(0.2075) \end{pmatrix} = \begin{pmatrix} 0.6734 \\ 0.0912 \\ 0.2354 \end{pmatrix} = \begin{pmatrix} z_M \\ z_N \\ z_S \end{pmatrix}$$

Portfolio Theory with Matrix Algebra

The mean of this portfolio can be computed using:

$$\mu_{p,z} = \mathbf{z}'\mu = (0.6734, 0.0912, 0.2354)'\begin{pmatrix} 0.0427 \\ 0.0015 \\ 0.0285 \end{pmatrix} = 0.0356$$

$$\mu_{p,z} = \alpha \cdot \mu_{p,x} + (1 - \alpha)\mu_{p,y} = 0.5(0.0427) + (0.5)(0.0285) = 0.0356$$

The variance can be computed using

$$\sigma_{p,z}^2 = \mathbf{z}' \mathbf{\Sigma} \mathbf{z} = 0.00641$$

$$\sigma_{p,z}^2 = \alpha^2 \sigma_{p,x}^2 + (1 - \alpha)^2 \sigma_{p,y}^2 + 2\alpha (1 - \alpha) \sigma_{xy}$$

$$= (0.5)^2 (0.09166)^2 + (0.5)^2 (0.07355)^2 + 2(0.5)(0.5)(0.005914) = 0.006$$

Example: R Code

a = 0.5

The weight vector **z** is determined using

```
z.vec = a*x.vec + (1-a)*y.vec
z.vec
## MSFT NORD SBUX
## 0.6734 0.0912 0.2354
The mean and volatility are
sigma.xy = as.numeric(t(x.vec)%*%sigma.mat%*%y.vec)
mu.pz = as.numeric(crossprod(z.vec, mu.vec))
sig2.pz = as.numeric(t(z.vec)) *%sigma.mat%*%z.vec)
sig.pz = sqrt(sig2.pz)
c(mu.pz, sig.pz)
```

Next, find an efficient portfolio with expected return 0.05 from two efficient portfolios. Let ${\bf x}$ denote the efficient portfolio with the same mean as MSFT, ${\bf y}$ denote the efficient portfolio with the same mean as SBUX, and let $\mu_{p,z}=0.05$. Then use

$$0.05 = \mu_{p,z} = \alpha \cdot \mu_{p,x} + (1 - \alpha)\mu_{p,y}$$

to solve for α :

$$\alpha = \frac{0.05 - \mu_{p,y}}{\mu_{p,x} - \mu_{p,y}} = \frac{0.05 - 0.0285}{0.0427 - 0.0285} = 1.514$$

Solve for portfolio weights using

$$\mathbf{z} = \alpha \cdot \mathbf{x} + (1 - \alpha) \cdot \mathbf{y}$$

$$= 1.514 \begin{pmatrix} 0.8275 \\ -0.0908 \\ 0.2633 \end{pmatrix} - 0.514 \begin{pmatrix} 0.5194 \\ 0.2732 \\ 0.2075 \end{pmatrix} = \begin{pmatrix} 0.9858 \\ -0.2778 \\ 0.2920 \end{pmatrix}$$

Example: R Code

Given a target mean value, $\mu_0 = 0.05$, you can solve for α .

```
a.05 = (0.05 - mu.py)/(mu.px - mu.py)

a.05
```

[1] 1.51

Given $\alpha = 1.514$ solve for **z**.

```
z.05 = a.05*x.vec + (1 - a.05)*y.vec
z.05
```

```
## MSFT NORD SBUX
## 0.986 -0.278 0.292
```

Example: R Code

Compute the mean and volatility.

```
mu.pz.05 = as.numeric(crossprod(z.05,mu.vec))
sig.pz.05 = as.numeric(sqrt(t(z.05)%*%sigma.mat%*%z.05))
c(mu.pz.05,sig.pz.05)
```

```
## [1] 0.050 0.107
```

Show Example Frontier Portfolios

- ullet Point E3 is the efficient portfolio with lpha= 0.5
- Point F4 is the efficient portfolio with expected return 0.05
 Eric Zivot Portfolio Theory with Matrix Algebra 4/12/2021

Strategy for Plotting Portfolio Frontier

Set global minimum variance portfolio = first frontier portfolio

$$\min_{\mathbf{m}} \sigma_{p,m}^2 = \mathbf{m}' \Sigma \mathbf{m}$$
s.t. $\mathbf{m}' \mathbf{1} = 1$

and compute $\mu_{p,m} = \mathbf{m}' \mu$

② Find asset i that has highest expected return. Set target return to $\mu^0 = \max(\mu)$ and solve

$$\begin{aligned} \min_{\mathbf{x}} \sigma_{p,\mathbf{x}}^2 &= \mathbf{x}' \boldsymbol{\Sigma} \mathbf{x} \quad \text{s.t.} \\ \boldsymbol{\mu}_{p,\mathbf{x}} &= \mathbf{x}' \boldsymbol{\mu} = \boldsymbol{\mu}_p^0 = \max(\boldsymbol{\mu}) \\ \mathbf{x}' \mathbf{1} &= 1 \end{aligned}$$

Strategy for Plotting Portfolio Frontier

lacktriangle Create grid of lpha values, initially between 0 and 1, and compute

$$\mathbf{z} = \alpha \cdot \mathbf{x} + (1 - \alpha) \cdot \mathbf{m}$$

$$\mu_{p,z} = \alpha \cdot \mu_{p,x} + (1 - \alpha)\mu_{p,m}$$

$$\sigma_{p,z}^2 = \alpha^2 \sigma_{p,x}^2 + (1 - \alpha)^2 \sigma_{p,m}^2 + 2\alpha (1 - \alpha)\sigma_{m,x}$$

$$\sigma_{m,x} = \mathbf{m}' \Sigma \mathbf{x}$$

9 Plot $\mu_{p,z}$ against $\sigma_{p,z}$. Expand or contract the grid of α values if necessary to improve the plot

Example: R Code

```
a = seq(from=0, to=1, by=0.1)
n.a = length(a)
z.mat = matrix(0, n.a, 3)
colnames(z.mat) = names(mu.vec)
mu.z = rep(0, n.a)
sig2.z = rep(0, n.a)
sig.mx = t(m.vec) *% sigma.mat *% x.vec
for (i in 1:n.a) {
  z.mat[i, ] = a[i]*x.vec + (1-a[i])*m.vec
  mu.z[i] = a[i]*mu.px + (1-a[i])*mu.gmin
  sig2.z[i] = a[i]^2 * sig2.px + (1-a[i])^2 * sig2.gmin +
    2*a[i]*(1-a[i])*sig.mx
```

Plot the Efficient Frontier

Show the Weights of the Efficient Portfolios

Plot the Efficient Frontier with Random Portfolios

The Tangency Portfolio

The tangency portfolio ${\bf t}$ is the portfolio of risky assets that maximizes Sharpe's slope:

$$\max_{\mathbf{t}} \text{ Sharpe's ratio} = \frac{\mu_{p,t} - r_f}{\sigma_{p,t}}$$

subject to

$$t'1 = 1$$

In matrix notation,

Sharpe's ratio
$$=\frac{\mathbf{t}'\mu-r_f}{(\mathbf{t}'\Sigma\mathbf{t})^{1/2}}$$

Analytic solution using matrix algebra

The Lagrangian for this problem is

$$L(\mathbf{t},\lambda) = (\mathbf{t}'\mu - r_f)(\mathbf{t}'\Sigma\mathbf{t})^{-\frac{1}{2}} + \lambda(\mathbf{t}'\mathbf{1} - 1)$$

Using the chain rule, the first order conditions are

$$\mathbf{0}_{(3\times1)} = \frac{\partial L(\mathbf{t},\lambda)}{\partial \mathbf{t}} = \mu(\mathbf{t}'\Sigma\mathbf{t})^{-\frac{1}{2}} - (\mathbf{t}'\mu - r_f)(\mathbf{t}'\Sigma\mathbf{t})^{-3/2} \cdot \mathbf{t} + \lambda \mathbf{1}$$

$$\mathbf{0}_{(1\times1)} = \frac{\partial L(\mathbf{t},\lambda)}{\partial \lambda} = \mathbf{t}'\mathbf{1} - 1 = 0$$

Analytic solution using matrix algebra

After much tedious algebra, it can be shown that the solution for \boldsymbol{t} is

$$\mathbf{t} = \frac{\boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu} - r_f \cdot \mathbf{1})}{\mathbf{1}' \boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu} - r_f \cdot \mathbf{1})}$$

The Tangency Portfolio

- If the risk free rate, r_f , is less than the expected return on the global minimum variance portfolio, $\mu_{g\, {\rm min}}$, then the tangency portfolio has a positive Sharpe slope
- If the risk free rate, r_f , is equal to the expected return on the global minimum variance portfolio, $\mu_{g\, \rm min}$ then the tangency portfolio is not defined
- If the risk free rate, r_f , is greater than the expected return on the global minimum variance portfolio, $\mu_{g \, \text{min}}$, then the tangency portfolio has a negative Sharpe slope.

The Tangency Portfolio

Example: Finding the Tangency Portfolio for 3 Asset Case

```
rf = 0.005
sigma.inv.mat = solve(sigma.mat)
one.vec = rep(1, 3)
mu.minus.rf = mu.vec - rf*one.vec
top.mat = sigma.inv.mat%*%mu.minus.rf
bot.val = as.numeric(t(one.vec)%*%top.mat)
t.vec = top.mat[,1]/bot.val
t.vec
```

```
## MSFT NORD SBUX
## 1.027 -0.326 0.299
```

Example: Finding the Tangency Portfolio for 3 Asset Case

Compute mean and volatility of tangency portfolio

```
mu.t = as.numeric(crossprod(t.vec, mu.vec))
sig2.t = as.numeric(t(t.vec)%*%sigma.mat%*%t.vec)
sig.t = sqrt(sig2.t)
c(mu.t, sig.t)
```

[1] 0.0519 0.1116

Compute Sharpe ratio of tangency portfolio

```
SR.t = (mu.t - r.f)/sig.t
SR.t
```

[1] 0.42

Mutual Fund Separation Theorem Again

Efficient Portfolios of T-bills and Risky assets are combinations of two portfolios (mutual funds)

- T-bills
- Tangency portfolio

Efficient Portfolios

$$egin{aligned} x_t &= ext{ share of wealth in tangency portfolio } \mathbf{t} \ x_f &= ext{ share of wealth in T-bills} \ x_t + x_f &= 1 \Rightarrow x_f = 1 - x_t \ \mu_p^e &= r_f + x_t (\mu_{p,t} - r_f), \ \mu_{p,t} = \mathbf{t}' \mu \ \sigma_p^e &= x_t \sigma_{p,t}, \ \sigma_{p,t} = (\mathbf{t}' \Sigma \mathbf{t})^{1/2} \end{aligned}$$

Efficient Portfolios

The weights x_t and x_f are determined by an investor's risk preferences

- Risk averse investors hold mostly T-Bills ($x_t \approx 0$)
- Risk tolerant investors hold mostly tangency portfolio ($x_t \approx 1$)
- If Sharpe's slope for the tangency portfolio is negative then the efficient portfolio involves shorting the tangency portfolio

Example: Efficient Portfolios

Show the efficient portfolio weights

Example: Find efficient portfolio with target risk (SD) equal to 0.02

• Recall, tangency portfolio has $\mu_t = 0.05189$ and $\sigma_t = 0.1116$. Use equation for volatility of efficient portfolio and solve for x_t

$$0.02 = \sigma_p^e = x_t \sigma_{p,t} = x_t \times (0.1116)$$

$$\Rightarrow x_t = \frac{0.02}{0.1116} = 0.1792$$

$$x_t = 1 - x_t = 0.8208$$

• Efficient portfolio with $\sigma_p^e=0.02$ has 18% invested in tangency portfolio and 82% invested in T-Bills.

Example: Find efficient portfolio with target risk (SD) equal to 0.02

• To find expected return on efficient portfolio use

$$\mu_p^e = r_f + x_t(\mu_{p,t} - r_f)$$

= 0.005 + (0.1116) (0.05189 - 0.005) = 0.0134

Example: R Code

Find the weight in the tangency portoflio:

```
x.t.02 = 0.02/sig.t
x.t.02
```

[1] 0.179

The mean and volatility of this efficient portfolio are:

```
mu.t.02 = x.t.02*mu.t + (1-x.t.02)*r.f
sig.t.02 = x.t.02*sig.t
c(mu.t.02, sig.t.02)
```

[1] 0.0134 0.0200

Example: Find efficient portfolio with target ER equal to 0.07

Every efficient portfolio is a combination of T-bills and the tangency portfolio. The mean of such an efficient portfolio is:

$$\mu_{e} = r_{f} + x_{t} \times (\mu_{t} - r_{f})$$

Given a target mean, $\mu_0 = 0.07$, you can solve for x_t and $x_f = 1 - x_t$:

$$0.07 = \mu_p^e = r_f + x_t(\mu_{p,t} - r_f)$$

$$\Rightarrow x_t = \frac{0.07 - r_f}{\mu_{p,t} - r_f} = \frac{0.07 - 0.005}{0.05189 - 0.005} = 1.386$$

Example: Find efficient portfolio with target ER equal to 0.07

To find the volatility of the efficient portfolio use

$$\sigma_p^e = x_t \sigma_{p,t} = (1.386)(0.1116) = 0.1547$$

Example: R Code

Find weight in tangency portfolio

```
x.t.07 = (0.07 - rf)/(mu.t - r.f)
x.t.07
```

[1] 1.39

The mean and volatility of this efficient portfolio are:

```
mu.t.07 = x.t.07*mu.t + (1-x.t.07)*r.f
sig.t.07 = x.t.07*sig.t
c(mu.t.07, sig.t.07)
```

[1] 0.070 0.155

Efficient Portfolios with Target Mean and Target Volatility

Portfolio functions in IntroCompFinR

- The package IntroCompFinR contains a few R functions for computing Markowitz mean-variance efficient portfolios allowing for short sales using matrix algebra computations.
- These functions allow for the easy computation of the global minimum variance portfolio, an efficient portfolio with a given target expected return, the tangency portfolio, and the efficient frontier.

Portfolio functions in IntroCompFinR

Function	Description
getPortfolio	create "portfolio" object
<pre>globalMin.portfolio</pre>	compute global minimum variance portfolio
efficient.portfolio	compute min var portfolio subject to target return
tangency.portfolio	compute tangency portfolio
efficient.frontier	compute efficient frontier of risky assets

Functions require expected return vector, covariance matrix and optionally a risk-free rate

Example Data (Same as Before)

```
mil.vec
##
     MSFT
            NOR.D
                    SBUX
## 0.0427 0.0015 0.0285
sigma.mat
##
          MSFT
                  NOR.D
                         SBUX
  MSFT 0.0100 0.0018 0.0011
  NORD 0.0018 0.0109 0.0026
## SBUX 0.0011 0.0026 0.0199
r.f
## [1] 0.005
```

getPortfolio()

Create equally weighted portfolio object:

[1] "portfolio"

getPortfolio()

```
"portfolio" objects have the following components:
names(equalWeight.portfolio)

## [1] "call" "er" "sd" "weights"

Extract components using $
equalWeight.portfolio$weights

## MSFT NORD SBUX
```

0.333 0.333 0.333

Method functions for "portfolio" objects

There are print(), summary() and plot() methods for "portfolio" objects. The print() method gives:

```
equalWeight.portfolio
```

Call:

Method functions for "portfolio" objects

The plot() method shows a bar chart of the portfolio weights:

plot(equalWeight.portfolio, col="cornflowerblue")

globalMin.portfolio()

To compute the global minimum variance portfolio use the function globalMin.portfolio():

gmin.port = globalMin.portfolio(mu.vec, sigma.mat)

```
gmin.port

## Call:
## globalMin.portfolio(er = mu.vec, cov.mat = sigma.mat)
##
## Portfolio expected return: 0.0249
## Portfolio standard deviation: 0.0727
```

0.441 0.366 0.193

efficient.portfolio()

Use the efficient.portfolio() function to compute a mean-variance efficient portfolio with the same mean as MSFT:

```
target.return = mu.vec[1]
e.port.msft = efficient.portfolio(mu.vec, sigma.mat, target.re
e.port.msft
## Call:
## efficient.portfolio(er = mu.vec, cov.mat = sigma.mat, targe
##
## Portfolio expected return: 0.0427
## Portfolio standard deviation: 0.0917
## Portfolio weights:
##
     MSFT NORD
                     SBUX
## 0.8275 -0.0907 0.2633
```

tangent.portfolio()

```
To compute the tangency portfolio with r_f = 0.005 use the
tangency.portfolio() function:
tan.port = tangency.portfolio(mu.vec, sigma.mat, r.f)
tan.port
## Call:
## tangency.portfolio(er = mu.vec, cov.mat = sigma.mat, risk.
##
## Portfolio expected return: 0.0519
## Portfolio standard deviation: 0.112
## Portfolio weights:
     MSFT
            NOR.D
                   SBUX
##
## 1.027 -0.326 0.299
```

efficient.frontier()

The function efficient.frontier() constructs the set of efficient portfolios for a collection of α values on an equally spaced grid between α_{\min} and α_{\max} . For example, to compute 20 efficient portfolios for values of α between -2 and 1.5 use:

```
## $names

## [1] "call" "er" "sd" "weights"

##

## $class

## [1] "Markowitz"
```

efficient.frontier()

Each component of ef has information for 20 frontier portfolios

```
head(cbind(ef$er, ef$sd, ef$weights), n=5)
```

```
## port 1 -0.010724 0.133 -0.3316 1.278 0.0532

## port 2 -0.007444 0.125 -0.2604 1.194 0.0661

## port 3 -0.004164 0.117 -0.1892 1.110 0.0790

## port 4 -0.000883 0.109 -0.1181 1.026 0.0919

## port 5 0.002397 0.101 -0.0469 0.942 0.1048
```

efficient.frontier()

Use the plot() method to create a simple plot the efficient frontier:

