Devoir Surveillé n°6 - Sujet groupe A

- 1. (Question de cours) Indépendance de deux événements, indépendance mutuelle de n événements. Que faut-il prouver pour prouver que trois événements A, B, C sont mutuellement indépendants?
- 2. (Question de cours) Définition de la covariance. Variance d'une somme de deux, de n variables aléatoires (sans démonstration). Cas où les variables aléatoires sont deux à deux indépendantes (toujours sans démonstration).
- 3. Soient $A=(i^2+j)_{1\leq i,j\leq n}$ et $B=(ij)_{1\leq i,j\leq n}\in \mathscr{M}_n(\mathbb{R})$. Donner le terme général de la matrice AB.
- 4. Si $n \ge 2$, donner la puissance n-ième de $A = \begin{pmatrix} 2 & 1 & 2 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{pmatrix}$.
- 5. Soit la matrice $A = \begin{pmatrix} -4 & -4 & 1 \\ 3 & 1 & 1 \\ 0 & -6 & 5 \end{pmatrix}$.
 - (a) Donner trois vecteurs $X_1, X_2, X_3 \in \mathbb{R}^3$ non nuls vérifiant respectivement $AX_1 = -X_1, AX_2 = X_2$ et $AX_3 = 2X_3$.
 - (b) Soit P la matrice dont les vecteurs colonnes sont dans l'ordre X_1, X_2 et X_3 . Inverser P.
 - (c) Calculer la matrice $D = P^{-1}AP$. A est-elle inversible? En déduire A^n pour tout $n \ge 1$.
- 6. Calculer $I = \int_0^{\pi} \sin\left(\lfloor x \rfloor \times \frac{\pi}{4}\right) dx$.
- 7. Calculer la limite de la suite de terme général $I_n = \int_0^1 \frac{t^n}{1+e^{t^2}} \, \mathrm{d}t$.
- 8. Calculer la limite de la suite de terme général $u_n = \prod_{k=1}^n \left(1 + \frac{2k}{n}\right)^{1/n}$.
- 9. Montrer que pour tout $x \in [0; \pi]$, $\sin(x) \le x \frac{x^3}{6} + \frac{x^5}{120}$.
- 10. Montrer que : $\forall x \in \left[-\frac{1}{2}; 0 \right], \left| \sqrt{1+x} \left(1 + \frac{x}{2}\right) \right| \le \frac{x^2}{2\sqrt{2}}.$
- 11. Donner un équivalent en 0 de $f(x) = \cos(x) \times \ln(1+x) \sin(x)$.
- 12. Donner un équivalent en 0 et en $+\infty$ de $f(x) = \frac{\arctan(x^2) \times \sqrt[5]{1+x^2}}{\ln(x^2+x+1) \times e^x}$.
- 13. À l'aide de la formule de Taylor-Young, donner les dérivées de $f: x \mapsto \frac{x^4}{1+x^2}$ en 0 jusqu'à l'ordre 6.
- 14. Donner le DL de $f: x \mapsto \sin(x) \times e^{x^2}$ à l'ordre 5 en 0.
- 15. Donner le DL de $g: x \mapsto \frac{\operatorname{sh}(x)}{\ln(1+x)}$ à l'ordre 2 en 0.
- 16. Montrer que $f: x \mapsto e^{1/x} \times \sqrt{x^2 + x}$ admet une asymptote en $+\infty$ et donner les positions relatives.
- 17. Donner la nature de la série $\sum \sin\left(\frac{1}{n}\right) \tan\left(\frac{1}{n}\right)$.
- 18. Donner la nature de la série $\sum \frac{(n^2+n+1)}{2^{n-1}}$.
- 19. Montrer que la série $\sum \frac{(-1)^n}{\ln(n)}$ converge, donner le signe et un encadrement de sa somme.
- 20. Montrer que la série $\sum \frac{1}{n(n+5)}$ converge et calculer sa somme.