Lista de Exercícios - Teoria dos Números

Leitura Complementar 04 Notas de Aula de Matemática Discreta

Samy Sá

Universidade Federal do Ceará Campus de Quixadá Quixadá, Brasil samy@ufc.br

Requisitos: Funções (Vide Leitura Preparatória 02) Texto produzido em 20/03/2014.

O presente documento propõe exercícios para os temas de Divisibilidade, Aritmética Modular, Primos e Máximo Divisor Comum.

1 Divisibilidade e Aritmética Modular

Exercício 1: Qual o quociente e o resto quando

(a) 19 é dividido por 7?	(e) 0 é dividido por 195
(b) -111 é dividido por 11?	(f) 3 é dividido por 5?
(c) 789 é dividido por 23?	(g) -1 é dividido por 3?
(d) 1001 é dividido por 13?	(h) 4 é dividido por 1?

Exercício 2: Avalie as quantidades abaixo.

(a) 13 mod 3	(c) 155 mod 19
(b) -97 mod 11	(d) -221 mod 23

- **Exercício 3:** Mostre que se a|b e b|a, em que a e b são inteiros não nulos, então a=b ou a=-b.
- **Exercício 4:** Mostre que se a, b e c são números inteiros com $c \neq 0$, tal que ac|bc, então a|b.
- **Exercício 5:** Mostre que se $n \mid m$, em que n e m são números inteiros positivos maiores que 1, e se $a \equiv b \pmod{m}$, em que a e b são números inteiros, então $a \equiv b \pmod{n}$.
- Exercício 6: Encontre contra-exemplos para cada uma das proposições abaixo sobre congruências.
 - (a) Se $ac \equiv bc \pmod{m}$, em que a, b, c e m são números inteiros com $m \geq 2$, então $a \equiv b \pmod{m}$.
 - (b) Se $a \equiv b \pmod{m}$ e $c \equiv d \pmod{m}$, em que a, b, c, d e m são números inteiros com c e d positivos e $m \geq 2$, então $a^c \equiv b^d \pmod{m}$.
- **Exercício 7:** Qual a sequência de números pseudo-aleatórios gerada usando-se o gerador $x_{n+1} = 3x_n \mod 11$ com $x_0 = 2$?

2 Números Primos e Máximos Divisores Comuns

(a) 21	(c) 71	(e) 111
(b) 29	(d) 97	(f) 143

Exercício 8: Determine se cada um destes números inteiros é primo.

Exercício 9: Encontre a fatoração em primos de cada um dos números abaixo.

(a) 88 (c) 729 (e) 1111 (b) 126 (d) 1001 (f) 909090

Exercício 10: Encontre a fatoração de números primos de 10!.

Exercício 11: Demonstre ou negue que $n^2 - 79n + 1601$ é primo sempre que n for um número inteiro positivo.

Exercício 12: Demonstre que o produto de três números inteiros consecutivos quaisquer é divisível por 6.

Exercício 13: Determine se os números em cada um dos conjuntos abaixo são primos entre si (verifique dois a dois).

(a) 11, 15, 19 (b) 14, 15, 21 (c) 12, 17, 31, 37 (d) 7, 8, 9, 11

Exercício 14: Quais são os máximos divisores comuns de cada par de números inteiros abaixo?

(a) $3^7 \cdot 5^3 \cdot 7^3$, $2^{11} \cdot 3^3 \cdot 5^9$ (b) $11 \cdot 13 \cdot 17$, $2^9 \cdot 3^7 \cdot 5^5 \cdot 7^3$ (c) 23^{31} , 23^{17} (d) $41 \cdot 43 \cdot 53$, $41 \cdot 43 \cdot 53$ (e) $3^{13} \cdot 517$, $2^{12} \cdot 7^{21}$ (f) 1111, 0

Exercício 15: Mostre que se a, b e m são números inteiros tais que $m \ge 2$ e $a \equiv b \pmod{m}$, então mdc(a,m) = mdc(b,m).