Supplementary Material of "Towards a Pareto Front Shape Invariant Multi-Objective Evolutionary Algorithm Using Pair-Potential Functions"

Luis A. Márquez-Vega $^{1[0000-0002-1115-1504]}$, Jesús Guillermo Falcón-Cardona $^{2[0000-0003-1131-098X]}$, and Edgar Covantes Osuna $^{1[0000-0001-5991-6927]}$

¹ Tecnologico de Monterrey, School of Engineering and Science, Monterrey, Nuevo León 64849, Mexico

a00832536@itesm.mx, edgar.covantes@tec.mx

² UAM Cuajimalpa, Department of Applied Mathematics and Systems, Cuajimalpa de Morelos, Mexico City 05348, Mexico jfalcon@cua.uam.mx

1 Qualitative Results

Figures 1 to 14 show approximation sets with the median HV value among 30 independent runs obtained by NSGA-III and each version of NSGA-III- \mathcal{K} on DTLZ1-DTLZ7 and DTLZ1⁻¹-DTLZ7⁻¹ with 3 objective functions, respectively. Figures 1 to 4 show that all the versions of NSGA-III- \mathcal{K} maintain the good performance of NSGA-III on MOPs with regular *Pareto front* shapes. On the other hand, Figures 5 to 14 show approximation sets on MOPs with irregular *Pareto front* shapes. Figure 5 and Figure 6 show that all the versions of NSGA-III- \mathcal{K} improve the distribution of solutions on MOPs with degenerate *Pareto front* shapes. Figure 7 and Figure 14 show that all versions of NSGA-III- \mathcal{K} obtain better distribution of solutions than NSGA-III on MOPs with disconnected *Pareto front* shapes. From Figures 8 to 13, it can be seen that all versions of NSGA-III- \mathcal{K} outperform NSGA-III on MOPs with inverted linear and inverted convex *Pareto front* shapes.

Figures 15 to 18 show the approximation sets with the median HV value among 30 independent runs obtained by NSGA-III and each version of NSGA-III- \mathcal{K} on DTLZ1, DTLZ4, DTLZ1⁻¹, and DTLZ4⁻¹ with 10 objective functions, respectively. It can be seen from Figure 15 and Figure 16 that all versions of NSGA-III- \mathcal{K} preserve the good performance of NSGA-III on MOPs with regular *Pareto front* shapes. On the other hand, Figure 17 and Figure 18 show that NSGA-III is not capable to fully cover the *Pareto front* while all versions of NSGA-III- \mathcal{K} outperform NSGA-III on MOPs with irregular *Pareto front* shapes.

These results show the capability of the selection mechanism based on niching and pair-potential functions to preserve the good performance of NSGA-III on MOPs with regular *Pareto front* shapes. At the same time, it increases the performance of NSGA-III on MOPs with irregular *Pareto front* shapes.

Fig. 1. Approximation sets with the median HV value among 30 independent runs on DTLZ1 with 3 objectives.

Fig. 2. Approximation sets with the median HV value among 30 independent runs on DTLZ2 with 3 objectives.

 ${f Fig.\,3.}$ Approximation sets with the median HV value among 30 independent runs on DTLZ3 with 3 objectives.

 ${f Fig.\,4.}$ Approximation sets with the median HV value among 30 independent runs on DTLZ4 with 3 objectives.

Fig. 5. Approximation sets with the median HV value among 30 independent runs on DTLZ5 with 3 objectives.

 ${f Fig.\,6.}$ Approximation sets with the median HV value among 30 independent runs on DTLZ6 with 3 objectives.

Fig. 7. Approximation sets with the median HV value among 30 independent runs on DTLZ7 with 3 objectives.

Fig. 8. Approximation sets with the median HV value among 30 independent runs on $\mathrm{DTLZ1^{-1}}$ with 3 objectives.

Fig. 9. Approximation sets with the median HV value among 30 independent runs on $\mathrm{DTLZ2^{-1}}$ with 3 objectives.

Fig. 10. Approximation sets with the median HV value among 30 independent runs on $\mathrm{DTLZ3}^{-1}$ with 3 objectives.

Fig. 11. Approximation sets with the median HV value among 30 independent runs on $\mathrm{DTLZ4^{-1}}$ with 3 objectives.

Fig. 12. Approximation sets with the median HV value among 30 independent runs on $\mathrm{DTLZ5^{-1}}$ with 3 objectives.

Fig. 13. Approximation sets with the median HV value among 30 independent runs on $\mathrm{DTLZ6^{-1}}$ with 3 objectives.

Fig. 14. Approximation sets with the median HV value among 30 independent runs on $\mathrm{DTLZ7^{-1}}$ with 3 objectives.

Fig. 15. Approximation sets with the median HV value among 30 independent runs on DTLZ1 with 10 objectives.

 ${f Fig.\,16.}$ Approximation sets with the median HV value among 30 independent runs on DTLZ4 with 10 objectives.

Fig. 17. Approximation sets with the median HV value among 30 independent runs on $\mathrm{DTLZ1}^{-1}$ with 10 objectives.

Fig. 18. Approximation sets with the median HV value among 30 independent runs on $\rm DTLZ4^{-1}$ with 10 objectives.