CS2040S

AY23/24S2 Midterms

Original by: github.com/jovyntls Modified by: github.com/zeepheru

ORDERS OF GROWTH

definitions

$$T(n) = \Theta(f(n))$$

$$\iff T(n) = O(f(n)) \text{ and } T(n) = \Omega(f(n))$$

$$T(n) = \Theta(f(n))$$

$$c_3f(n)$$

$$n$$

$$T(n) = O(f(n))$$

if $\exists c, n_0 > 0$ such that for all $n > n_0$, $T(n) \leq c f(n)$ $T(n) = \Omega(f(n))$

if $\exists c, n_0 > 0$ such that for all $n > n_0, T(n) \ge cf(n)$

properties

Let T(n) = O(f(n)) and S(n) = O(g(n))

- addition: T(n) + S(n) = O(f(n) + g(n))
- multiplication: T(n)*S(n) = O(f(n)*g(n))
- composition: $f_1 \circ f_2 = O(g_1 \circ g_2)$
 - · only if both functions are increasing
- if/else statements: $cost = max(c1, c2) \le c1 + c2$
- max: $\max(f(n), g(n)) \le f(n) + g(n)$

notable

- $\sqrt{n} \log n$ is O(n)
- $O(2^{2n}) \neq O(2^n)$
- $O(\log(n!)) = O(n \log n) \rightarrow \text{sterling's approximation}$
- $T(n-1) + T(n-2) + \cdots + T(1) = 2T(n-1)$

space complexity

- $\Theta(f(n))$ time complexity $\Rightarrow O(f(n))$ space complexity
- the maximum space incurred at any time at any point
- · NOT the maximum space incurred altogether!
- · assumption: once we exit the function, we release all memory that was used

SORTING

overview

- BubbleSort compare adjacent items and swap
- · SelectionSort takes the smallest element, swaps into place
- InsertionSort from left to right: swap element leftwards until it's smaller than the next element. repeat for next element
- tends to be faster than the other $O(n^2)$ algorithms
- · MergeSort mergeSort 1st half; mergeSort 2nd half; merae
- QuickSort
 - partition algorithm: O(n)
 - stable quicksort: $O(\log n)$ space
 - · first element as partition. 2 pointers from left to
 - · left pointer moves until element ¿ pivot
 - · right pointer moves until element i pivot
 - swap elements until left = right.
 - · then swap partition and left=right index.

optimisations of QuickSort

- array of duplicates: $O(n^2)$ without 3-way partitioning
- · stable if the partitioning algo is stable.
- extra memory allows quickSort to be stable.

choice of pivot

- worst case $O(n^2)$: first/last/middle element
- worst case $O(n \log n)$: median/random element
- split by fractions: $O(n \log n)$
- · choose at random: runtime is a random variable

QuickSelect

- O(n) to find the k^{th} smallest element
- · after partitioning, the partition is always in the correct position

TREES

binary search trees (BST)

- · a BST is either empty, or a node pointing to 2 BSTs.
- tree balance depends on order of insertion
- balanced tree: $O(h) = O(\log n)$
- for a full-binary tree of size $n, \exists k \in \mathbb{Z}^+$ s.t. $n = 2^k - 1$

BST operations

- height, h(v) = max(h(v.left), h(v.right))
 - leaf nodes: h(v) = 0
- · modifying operations
- search, insert O(h)
- delete O(h)
- case 1: no children remove the node
- · case 2: 1 child remove the node, connect parent to child
- · case 3: 2 children delete the successor; replace node with successor
- · query operations
 - searchMin O(h) recurse into left subtree
 - searchMax O(h) recurse into right subtree
 - successor O(h)
 - if node has a right subtree: searchMin(v.right)
 - else: traverse upwards and return the first parent that contains the key in its left subtree

AVL Trees

- · height-balanced (maintained with rotations)
 - ⇔ |v.left.height v.right.height|
- each node is augmented with its height v.height =
- space complexity: O(LN) for N strings of length L

rebalancing

[case 1] B is balanced: right-rotate

[case 2] B is left-heavy: right-rotate

[case 3] B is right-heavy: left-rotate(v.left), right-rotate(v)

updating nodes after rotation

weights

- · insertion: max. 2 rotations
- · deletion: recurse all the way up
- rotations can create every possible tree shape.

- search, insert O(L) (for string of length L)
- space: $O(\text{size of text} \cdot \text{overhead})$

interval trees

- search(key) $\Rightarrow O(\log n)$
 - · if value is in root interval, return
 - if value ¿ max(left subtree), recurse right
 - else recurse left (go left only when can't go right)
- all-overlaps $\Rightarrow O(k \log n)$ for k overlapping intervals

orthogonal range searching

- · binary tree; leaves store points, internal nodes store max value in left subtree
- buildTree(points[]) $\Rightarrow O(n \log n)$ (space is
- query(low, hight) $\Rightarrow O(k + \log n)$ for k points
 - v=findSplit() $\Rightarrow O(\log n)$ find node b/w low &
- leftTraversal(v) $\Rightarrow O(k)$ either output all the right subtree and recurse left, or recurse right
- rightTraversal(v) symmetric
- insert(key), insert(key) $\Rightarrow O(\log n)$ • 2D_query() $\Rightarrow O(\log^2 n + k)$ (space is
- $O(n \log n)$ • build x-tree from x-coordinates; for each node, build
- a y-tree from y-coordinates of subtree • 2D_buildTree(points[]) $\Rightarrow O(n \log n)$

kd-Tree

- stores geometric data (points in an (x,y) plane)
- alternates splitting (partitioning) via x and ycoordinates
- construct(points[]) $\Rightarrow O(n \log n)$
- search(point) $\Rightarrow O(h)$
- searchMin() $\Rightarrow T(n) = 2T(\frac{n}{4}) + O(1) \Rightarrow O(\sqrt{n})$

(a, b)-trees

e.g. a (2, 4)-tree storing 18 keys

· rules

1. (a, b)-child policy where $2 \le a \le (b+1)/2$

· / /	,		_ \	//
	# keys		# children	
node type	min	max	min	max
root	1	b-1	2	b
internal	a-1	b-1	a	b
leaf	a-1	b-1	0	0

2. an internal node has 1 more child than its number of keys

- 3. all leaf nodes must be at the same depth from the root
- terminology (for a node z)
 - key range range of keys covered in subtree rooted
 - ullet keylist list of keys within z
 - treelist list of z's children
- $\max \text{ height} = O(\log_a n) + 1$
- min height = $O(\log_b n)$
- search(key) $\Rightarrow O(\log n)$
- $ullet = O(\log_2 b \cdot \log_a n)$ for binary search at each node
- insert(key) $\Rightarrow O(\log n)$
- split() a node with too many children

- 1. use median to split the keylist into 2 halves
- 2. move median key to parent; re-connect remaining nodes
- 3. (if the parent is now unbalanced, recurse upwards; if the root is reached, median key becomes the new root)

- delete(key) $\Rightarrow O(\log n)$
 - if the node becomes empty, merge(y, z) join it

with its left sibling & replace it with their parent

• if the combined nodes exceed max size: share(y, z) = merge(y, z) then split()

B-Tree

- (B,2B)-trees $\Rightarrow (a,b)$ -tree where a=B,b=2B
- possible augmentation: use a linkedList to connect between each level

sort	best	average	worst	stable?	memory
bubble	$\Omega(n)$	$O(n^2)$	$O(n^2)$	✓	O(1)
selection	$\Omega(n^2)$	$O(n^2)$	$O(n^2)$	×	O(1)
insertion	$\Omega(n)$	$O(n^2)$	$O(n^2)$	✓	O(1)
merge	$\Omega(n \log n)$	$O(n \log n)$	$O(n \log n)$	✓	O(n)
quick	$\Omega(n \log n)$	$O(n \log n)$	$O(n^2)$	×	O(1)
				Searchi	ng

Sorting Invariants		search	average
sort	invariant (after k iterations)	linear	O(n)
bubble	largest k elements are sorted	binary	$O(\log n)$
selection	smallest k elements are sorted	quickSelect	O(n)
insertion	first k slots are sorted	interval	$O(\log n)$
merge	given subarray is sorted	all-overlaps	$O(k \log n)$
quick	partition is in the right position	1D range	$O(k + \log n)$
		2D range	$O(k + \log^2 n)$

Data Structures Assuming O(1) Comparison Cost

2 ata 3 a a a a a a a a a a a a a a a a a					
data structure	search	insert			
sorted array	$O(\log n)$	O(n)			
unsorted array	O(n)	O(1)			
linked list	O(n)	O(1)			
tree (kd/(a, b)/binary)	$O(\log n)$ or $O(h)$	$O(\log n)$ or $O(h)$			
trie	O(L)	O(L)			
dictionary	$O(\log n)$	$O(\log n)$			
symbol table	O(1)	O(1)			
chaining	O(n)	O(1)			
open addressing	$\frac{1}{1-\alpha} = O(1)$	O(1)			

Orders of Growth

$$1 < \log n < \sqrt{n} < n < n \log n < n^2 < n^3 < 2^n < 2^{2n}$$

$$\log_a n < n^a < a^n < n! < n^n$$

Note that:

$$3^n \neq O(2^n) \text{ and } 2^{log(n)} = O(n)$$

$$T(n) = 2T(\frac{n}{2}) + O(n) \qquad \Rightarrow O(n \log n)$$

$$T(n) = T(\frac{n}{2}) + O(n) \qquad \Rightarrow O(n)$$

$$T(n) = 2T(\frac{n}{2}) + O(1) \qquad \Rightarrow O(n)$$

$$T(n) = T(\frac{n}{2}) + O(1) \qquad \Rightarrow O(\log n)$$

$$T(n) = 2T(n - 1) + O(1) \qquad \Rightarrow O(2^n)$$

$$T(n) = 2T(\frac{n}{2}) + O(n \log n) \qquad \Rightarrow O(n(\log n)^2)$$

$$T(n) = 2T(\frac{n}{4}) + O(1) \qquad \Rightarrow O(\sqrt{n})$$

$$T(n) = T(n - c) + O(n) \qquad \Rightarrow O(n^2)$$