Scilab Textbook Companion for Applied Physics-i by I. A. Shaikh¹

Created by
Sanket Bapu Sakharkar
B.E
Others
Mumbai University
College Teacher
Mrugendra Vasmatkar
Cross-Checked by
K. V. P. Pradeep

May 25, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Applied Physics-i

Author: I. A. Shaikh

Publisher: Tech-max Publication, Pune

Edition: 7

Year: 2013

ISBN: 9789350770641

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	st of Scilab Codes	
1	Crystallography	5
2	Semiconductor Physics	58
3	Dielectric And Magnetic Materials	76
4	Acoustics and Ultrasonics	102

List of Scilab Codes

Exa 1.3	3.1	calculate Unit cell dimension
Exa 1.3	3.2	calculate density
Exa 1.3	3.3	calculate density
Exa 1.3		calculate APF
Exa 1.3	3.5	calculate no of unit cell
Exa 1.3	3.6	calculate no of atoms per meter cube
Exa 1.3	3.7	calculate no of unit cell
Exa 1.5	5.1	calculate critical radius ratio of ligancy three 11
Exa 1.5	5.2	calculate critical radius ratio for ligancy six 12
Exa 1.5	5.3	calculate critical radius ratio for octohedral
Exa 1.5	5.4	calculate critical radius ratio for ligancy 4 14
Exa 1.5	5.5	calculate critical radius ratio for ligancy 8
Exa 1.5	5.6	calculate critical radius ratio for ligancy 16
Exa 1.6	6.2	calculate miller indices of plane
Exa 1.6		calculate interplanar spacing
Exa 1.	14.1	calculate lattice constant
Exa 1.	14.2	calculate Lattice constant and diameter
		calculate Density of diamond
Exa 1.	14.4	calculate miller indices
Exa 1.	14.5	calculate miller indices
Exa 1.	14.6	calculate ratio of intercepts
		calculate y and z intercepts
Exa 1.	14.8	calculate radius
Exa 1.	14.9	calculate density and diameter
Exa 1.1	14.10	calculate free electron concentration
Exa 1.1	14.11	calculate Y and Z intercept
Exa 1.1	14.12	calculate Number of atom per unit cell
Exa 1.1	14.13	calculate Lattice constant

Exa 1.14.15 calculate Number of atom per unit cell and atomic radius	32
Exa 1.14.16calculate Lattice constant and APF	33
Exa 1.14.17calculate Lattice constant	34
Exa 1.14.19calculate wavlength	35
Exa 1.14.20calculate Lattice constant and atomic radius	36
Exa 1.14.21 calculate mass of one atom	37
Exa 1.15.1 calculate glancing angle and highest order	38
Exa 1.15.2 calculate glancing angle	39
Exa 1.15.3 calculate second order reflection angle	40
Exa 1.15.4 calculate shortest wavelength and glancing angle	41
Exa 1.15.5 find possible solution of planes	43
Exa 1.15.6 calculate cubic lattice structure	44
Exa 1.15.7 calculate lattice constant	45
Exa 1.15.8 calculate glancing angle	46
Exa 1.15.9 calculate wavelength and glancing angle and highest or-	
der	47
Exa 1.15.10calculate wavelength	49
Exa 1.15.11 calculate glancing angle	50
Exa 1.15.12calculate glancing angle	51
Exa 1.16.1 calculate ratio of vacancies	52
Exa 1.16.2 calculate ratio of vacancies to no of atom	53
Exa 1.16.3 calculate ratio of vacancies	54
Exa 1.16.4 calculate no of frankel defects	56
Exa 2.21.1 calculate mobility of electron	58
Exa 2.21.2 calculate Resistivity of Cu	59
Exa 2.21.3 calculate Resistivity of Ge	59
Exa 2.21.5 calculate Ratio between conductivity	60
Exa 2.21.6 calculate conductivity	61
Exa 2.21.7 calculate hole concentration and mobility	62
Exa 2.22.1 calculate probability of an electron	63
Exa 2.22.2 calculate probability of an electron	64
Exa 2.22.3 calculate probability of an electron	65
Exa 2.22.4 calculate energy for different probability	66
Exa 2.23.1 calculate Potential barrier for Ge	68
Exa 2.23.2 calculate Hall voltage	68
Exa 2.23.3 calculate Hall voltage	69
Exa 2.23.4 calculate Resistivity of P type silicon	70
Exa 2.23.5 calculate hall voltage hall coefficient and hall angle	71

Exa 2.23.6 calculate density and mobility	72
Exa 2.23.7 calculate Hall voltage	73
Exa 2.24.1 calculate fermi level	74
Exa 3.17.1 calculate resultant voltage	76
Exa 3.17.2 find capacitance of capacitor	77
Exa 3.17.3 calculate relative permittivity	77
Exa 3.17.4 ratio of two capacitor	78
Exa 3.17.5 calculate electronic polarizability and radius of He atom	79
Exa 3.17.6 calculate electric susceptibility	80
Exa 3.17.7 calculate relative permeability	80
Exa 3.17.8 calculate Temperature	81
Exa 3.17.9 calculate magnetization of paramagnetic material	82
Exa 3.17.10calculate Horizontal component of magnetic field	83
Exa 3.17.11calculate current required	83
Exa 3.17.12calculate Current required	85
Exa 3.17.13calculate 1 magnetic intensity 2 magnetization 3 Rela-	
tive Permeability	86
Exa 3.17.14calculate Loss of energy	88
Exa 3.17.15calculate various parameter of magnetic field	89
Exa 3.17.16calculate loss of energy per hour	91
Exa 3.17.17calculate Hysteresis power loss	91
Exa 3.17.18calculate current required	92
Exa 3.17.19calculate reluctance and mmf	94
Exa 3.17.20calculate current	95
Exa 3.17.21 calculate Reluctance and current	96
Exa 3.17.22 calculate various parameter of magnetic field	97
Exa 3.17.23calculate Number of AmpereTurns	99
Exa 3.17.24 calculate intensity magnetization and flux density 1	100
Exa 4.11.1 calculate length	102
Exa 4.12.1 calculate thickness	103
Exa 4.15.1 calculate Reverberation time	103
Exa 4.15.2 calculate change in intensity level	104
Exa 4.15.3 clculate average sound absorption coefficient and rever-	
beration time	105
Exa 4.15.4 calculate average absorption coefficient	106
Exa 4.15.5 claculate average absorption coefficient and area of floor 1	107
Exa 4.15.6 calculate reverberation time for various case	108

Exa 4.15.7 calculate average absorption coefficient and total ab-
sorption
Exa 4.15.8 calculate change in reverberation time
Exa 4.15.9 calculate average absorption coefficient and reverbera-
tion time
Exa 4.15.10calculate depth of seabed and wavelength
Exa 4.15.11 calculate natural frequency
Exa 4.15.12calculate thickness
Exa 4.15.13calculate thickness
Exa 4.15.14calculate distance between two ships
Exa 4.15.15calculate natural frequency and change in thickness
Exa 4.15.16calculate depth of sea bed
Exa 4.15.17calculate depth of sea bed and frequency
Exa 4.15.18calculate real thickness
Exa 4.15.19calculate thickness of crystal
Exa 4.15.20 calculate distance at which defect has occurred
Exa 4.15.21 calculate echo time
Exa 4.15.22 calculate frquency of vibration
Exa 4.15.23calculate length
Exa 4.15.24calculate natural frequency and change in thickness
Exa 4.15.25 calculate average absorption coefficien and total absorp-
${\rm tion} \ \dots $
Exa 4.15.26calculate natural frequency and change in thickness
Exa 4.15.27calculate Youngs modulus

Chapter 1

Crystallography

Scilab code Exa 1.3.1 calculate Unit cell dimension

```
1 / Chapter -1, Example 1_3_1, pg 1-14
                                                //atomic
3 \quad A = 26.98
      weight of Al
                                                //Avogadro 's
5 N=6.023*10^26
       number
                                                //Density
7 p = 2700
8
                                                //FCC
9 n=4
      structure
10
11 a=(n*A/(N*p))^(1/3)
12
13 printf("Unit cell dimension of Al=")
14
15 disp(a)
16
17 printf("m")
```

Scilab code Exa 1.3.2 calculate density

```
1 / Chapter -1, Example 1_3_2, pg 1-15
                                                     //atomic
 3 \text{ As} = 28.1
       weight of Si
                                                     //atomic
 5 \text{ Ag} = 69.7
       weight of Ga
                                                     //atomic
 7 \text{ Aa} = 74.9
       weight of As
                                                     //lattice
9 \text{ as} = 5.43 * 10^{-8}
       constant of Si
10
   aga=5.65*10^-8
                                                     //lattice
11
       constant of GaAs
12
                                                     //no of
13 \text{ ns} = 8
       atoms/unit cell in Si
14
15 \text{ nga}=4
                                                     //no of
       atoms/unit cell in GaAs
16
                                                     //Avogadro 's
  N=6.023*10^23
        number
18
   //p=(n*A)/(N*a^3) this is formula for density
19
20
21 // for Si
22
23 ps=(ns*As)/(N*as^3)
24
```

```
1) Density of Si=")
25 printf("
26
27 disp(ps)
28
29 printf("gm/cm^3")
30
31 // for GaAs
32
                                                      //molecular
33 \text{ Aga} = \text{Ag} + \text{Aa}
       wt of GaAs
34
35 \text{ pga=(nga*Aga)/(N*aga^3)}
36
37 printf(" 2) Density of GaAs=")
38
39 disp(pga)
40
41 printf("gm/cm<sup>3</sup>")
```

Scilab code Exa 1.3.3 calculate density

Scilab code Exa 1.3.4 calculate APF

```
1 / Chapter -1, Example 1_3_4, pg 1-17
2
                                               //atomic
3 A = 50
      weight of chromium
                                               //Avogadro 's
5 N=6.023*10^23
       number
6
                                               //Density
7 p=5.96
                                               //BCC
9 n=2
      structure
10
11 //step 1 : claculation for lattice constant (a)
12
13 a=(n*A/(N*p))^(1/3)
14
15 //step 2 : radius of an atom in BCC
16
17 r = sqrt(3) * a/4
```

```
18
19 //step 3 : Atomic packing factor (APF)
20
21 APF=n*((4/3)*%pi*r^3)/a^3
22
23 printf("Atomic packing factor (APF)=")
24
25 disp(APF)
```

Scilab code Exa 1.3.5 calculate no of unit cell

```
1 / Chapter -1, Example 1_3_5, pg 1-17
                                                //atomic
3 A = 120
      weight of chromium
5 N=6.023*10^23
                                                //Avogadro 's
       number
6
                                                //Density
7 p=5.2
                                                //BCC
9 n=2
      structure
10
11 m = 20
                                                //mass
12
13 //step 1 : claculation for volume of unit cell(a^3)
14
15 a=(n*A/(N*p))
16
17 //step 2 : volume of 20 gm of the element
18
19 \text{ v=m/p}
20
21 //step 3 :no of unit cell
```

```
22

23  x=v/a

24

25  printf("no of unit cell=")

26

27  disp(x)
```

Scilab code Exa 1.3.6 calculate no of atoms per meter cube

```
1 / Chapter -1, Example 1_3_6, pg 1-18
                                                  //atomic
3 A = 132.91
      weight of chromium
                                                 //Avogadro 's
  N=6.023*10^26
       number
                                                  //Density
7 p = 1900
                                                 //lattice
  a=6.14*10^-10
      constant
10
11 //step 1 : type of structure
12
13 n = (p*N*a^3)/A
14
15 printf("n =")
16
17 disp(round(n))
18
19 printf("BCC structure")
20
21 / \text{step } 2: \text{ no of atoms/m}^3
22
23 x=n/a^3
```

```
24

25 printf(" no of atoms/m^3=")

26

27 disp(x)
```

Scilab code Exa 1.3.7 calculate no of unit cell

```
1 / Chapter -1, Example 1_3_6, pg 1-18
                                                //lattice
3 a=0.4049*10^-9
      constant
5 t=0.006*10^-2
                                                //thickness
      of Al foil
                                                //Area of
7 A = 50 * 10^{-4}
      foil
                                                //volume of
9 V1=a^3
      unit cell
10
                                                //volume of
11 V = A * t
      the foil
12
                                                //no of unit
13 N=V/V1
       cell in the foil
14
15 printf("no of unit cell in the foil=")
16
17 disp(N)
```

Scilab code Exa 1.5.1 calculate critical radius ratio of ligancy three

```
1 / Chapter -1, Example 1_5_1, pg 1-29
3 //refer diagram from textbook
5 //on joining centre of 3 anions, an equilateral
      triangle is formed and on joining centres of any
      anion and cation a right angle triangle ABC os
      formed
  //where AC=rc+ra
  //and BC=ra
10
11 /m(angle (ACB)) = 30 degree
12
  // therefore cos (30)=ra/(rc+ra)
13
14
15 //assume rc/ra=r
16
17 r = (1 - \cos d(30)) / \cos d(30)
                                               //by
      arrangimg terms we get value of r
18
19 printf("critical radius ratio of ligancy 3=")
20
21 \text{ disp(r)}
```

Scilab code Exa 1.5.2 calculate critical radius ratio for ligancy six

```
6
  //join cation anion centres E and B and complete the
       triangle EBF
8
  //in triangle EBF m(angle F)=90 and EF=BF
10
11 /m(angle B) = m(angle E) = 45
12
  //and EB=rc+ra and BF=ra
13
  //\cos(45) = ra/(rc+ra)
15
16
17
  //assume rc/ra=r
18
19 r=(1-\cos d(45))/\cos d(45)
                                               //by
      arranging terms we get value of r
20
21 printf("critical radius ratio for ligancy 6 =")
22
23 \text{ disp}(r)
```

Scilab code Exa 1.5.3 calculate critical radius ratio for octohedral

```
//Chapter -1, Example 1_5_3, pg 1-30
//refer diagram from textbook
//since plane is square hence it is same as ligancy
//since plane is square hence it is same as ligancy
//since plane is square hence it is same as ligancy
//since plane is square hence it is same as ligancy
//since plane is square hence it is same as ligancy
full state of the said arrangement a cation is squeezed into
anions in a plane and 5th anion is in upper
layer and 6th in bottom layer
//join cation anion centres E and B and complete the
```

```
triangle EBF
10
   //in triangle EBF m(angle F)=90 and EF=BF
11
12
13
   //m(angle B)=m(angle E)=45
14
  //and EB=rc+ra and BF=ra
15
16
   //\cos(45) = ra/(rc+ra)
17
18
  //assume rc/ra=r
20
21 r = (1 - \cos d(45)) / \cos d(45)
                                                 //by
      arranging terms we get value of r
22
23 printf("critical radius ratio for ligancy 8 =")
24
25 \text{ disp(r)}
```

Scilab code Exa 1.5.4 calculate critical radius ratio for ligancy 4

```
//Chapter -1, Example1_5_4, pg 1-31
//a tetrahedron CAEH can be considered with C as the apex of the tetrahedron.
// the edges AE, AH and EH of the tetrahedron will then be the face of the cube faces ABEF, ADHF, EFHG resp.
// from fig
// AO=ra+rc and AJ=ra
// AE=root (2)*a and AG=root (3)*a
```

Scilab code Exa 1.5.5 calculate critical radius ratio for ligancy 8

```
1 / Chapter -1, Example 1_5_5, pg 1-32
3 //ligancy 8 represents cubic arrangment .8 anions
      are at the corners and touch along cube edgs.
      Along the body diagonal the central cation and
      the corner anion are in contact.
  //cube edge=2*ra
7 //refer diagram from textbook
  //and body diagonal=root(3)*cube edge=root(3)[2*(rc+
      ra)]
10
11
  //assume rc/ra=r
12
13 r = sqrt(3) - 1
14
15 printf("critical radius ratio of ligancy 8=")
16
17 \text{ disp}(r)
```

Scilab code Exa 1.5.6 calculate critical radius ratio for ligancy

```
// \text{Chapter} -1, \text{Example } 1_{-5} = 6, \text{pg} \quad 1-32
3 //for an ionic crystal exibiting HCP structure the
      arrangment of ions refere from textbook
   //at centre we have a cation with radius rc=OA
   //it is an touch with 6 anions with radius ra=AB
9
  //OB=OC=ra+rc
10
  //intrangle ODB ,m(angle (OBC))=60 degree ,m(angle (
11
      ODB))=90 degree
12
   // therefore \cos(60) = BD/OB = AB/(OA+OB) = ra/(rc+ra)
13
14
15 //assume rc/ra=r
16
17 r = (1 - \cos d(60)) / \cos d(60)
                                                  //by
      arranging terms we get value of r
18
  printf("critical radius ratio 0f HCP structure=")
20
21 \text{ disp(r)}
```

Scilab code Exa 1.6.2 calculate miller indices of plane

```
//as a,b and c are basic vectors the proportin of
      intercepts 1:1/3:2
  //therefore reciprocal
9 r1=1
10
11 r2=3
12
13 r3 = 1/2
14
   //taking LCM
15
16
17 v=int32([2,1])
18
19 l=double(lcm(v))
20
21 m1 = (1*r1)
22
23 m2 = (1*r2)
24
25 \text{ m3} = (1*r3)
26
27 printf("miler indices=")
28
29 disp(m3,m2,m1)
```

Scilab code Exa 1.6.4 calculate interplanar spacing

```
5 //for FCC structure
7 a=4*r/sqrt(2)
9 / part 1: plane(2,0,0)
10
11 //the interplanar spacing of plane
12
13 h1=2
14
15 k1=0
16
17 11=0
18
19 //we know that d=a/sqrt(h^2+k^2+l^2)
20
21 d1=a/sqrt(h1^2+k1^2+l1^2)
22
                         1) interplanar spacing for
23 printf("
      (2,0,0) plane=")
24
25 disp(d1)
26
27 printf("amstrong")
28
29 // part 2: plane (1,1,1)
30
31 //the interplanar spacing of plane
32
33 h2=1
34
35 k2=1
36
37 \quad 12 = 1
38
39 //we know that d=a/\sqrt{h^2+k^2+l^2}
40
41 d2=a/sqrt(h2^2+k2^2+12^2)
```

```
42
43 printf(" 2)interplanar spacing for(1,1,1) plane="
44
45 disp(d2)
46
47 printf("amstrong")
```

Scilab code Exa 1.14.1 calculate lattice constant

```
1 / Chapter -1, Example 1_1 4_1, pg 1-58
                                                 //FCC
3 n=4
      structure
                                                 //density of
5 \text{ ro} = 2180
       NaCl
                                                 //molecular
7 M = 23 + 35.5
      weight of NaCl
                                                 //Avogadro 's
9 N=6.023*10^26
       number
10
11 a=((n*M)/(N*ro))^{(1/3)}
12
13 printf("Lattice constant=")
14
15 disp(a)
16
17 printf ("m")
```

Scilab code Exa 1.14.2 calculate Lattice constant and diameter

```
1 / Chapter -1, Example 1_1 4_2, pg 1-58
2
                                                //FCC
3 n=4
      structure
4
                                                //density of
5 \text{ ro} = 8.9
       Cu atom
                                                //atomic
7 \quad A = 63.55
      weight of Cu atom
                                                //Avogadro 's
9 N=6.023*10^23
       number
10
11 a=((n*A)/(N*ro))^{(1/3)}
12
13 printf(" 1) Lattice constant=")
14
15 disp(a)
16
17 printf("cm")
18
                                                //radius of
19 r = sqrt(2) *a/4
      Cu atom
20
21 d = 2 * r
                                                //diameter
      of Cu atom
22
23 printf(" 2) Diameter of Cu atom=")
24
25 disp(d)
26
27 printf("cm")
```

Scilab code Exa 1.14.3 calculate Density of diamond

```
1 / Chapter -1, Example 1_1 4_3, pg 1-59
2
                                               //diamond
3 n=8
      structure
                                               //atomic wt
5 A = 12.01
                                               //Avogadro 's
7 N=6.023*10^23
       number
8
9 a=3.75*10^-8
                                               //lattice
      constant of diamond
10
11 ro=(n*A)/(N*(a^3))
12
13 printf("Density of diamond=")
14
15 disp(ro)
16
17 printf("gm/cc")
```

Scilab code Exa 1.14.4 calculate miller indices

```
11 r2=1/4
12
13 r3=0
14
15
   //taking LCM
16
17 v=int32([3,4])
18
19 l=double(lcm(v))
20
21 m1 = (1*r1)
22
23 m2 = (1*r2)
24
25 \text{ m3} = (1*r3)
26
27 printf(" miler indices=")
29 disp(m3,m2,m1)
```

Scilab code Exa 1.14.5 calculate miller indices

```
//Chapter -1, Example 1_14_5, pg 1-59
//intercept of planeare in proportion 3a:-2b:3/2c
//as a,b and c are basic vectors the proportin of intercepts 3:-2:3/2
//therefore reciprocal
r1=1/3
r2=-1/2
```

```
13 \text{ r3} = 2/3
14
   //taking LCM
15
16
17 v=int32([3,2,3/2])
18
19 l = double(lcm(v))
20
21 m1 = (1*r1)
22
23 m2 = (1*r2)
24
25 \text{ m3} = (1*r3)
26
27 printf("miler indices=")
28
29 disp(m3,m2,m1)
```

Scilab code Exa 1.14.6 calculate ratio of intercepts

```
//Chapter -1, Example1_14_6, pg 1-59
// if a plane cut at length m,n,p on the three crystal axes, then
// m:n:p=xa:yb:zc
// when primitive vectors of unit cell and numbers x, y,z, are related to miller indices (h,k,l) of the plane by relation
// since a=b=c (crystal is simple cubic)
// since a=b=c (crystal is simple cubic)
```

```
13 // and (h, k, l) = (1, 2, 3)
14
15 //therefore reciprocal
16
17 r1=1/1
18
19 r2=1/2
20
21 r3=1/3
22
  //taking LCM
23
24
25 \text{ v=int32}([1,2,3])
26
27 l = double(lcm(v))
28
29 m = (1*r1)
30
31 n = (1*r2)
32
33 p=(1*r3)
34
35 printf("ratio of intercepts=")
36
37 disp(m)
38
39 \text{ disp(n)}
40
41 disp(p)
```

Scilab code Exa 1.14.7 calculate y and z intercepts

```
1 //Chapter-1,Example1_14_7,pg 1-60
2
3 //primitive vectors
```

```
4
                                               //in
5 a=1.2
      amstrong unit
6
7 b=1.8
                                               //in
      amstrong unit
8
9 c = 2
                                              //in amstrong
       unit
10
11 // miller indices of the plane
12
13 h=2
14
15 k=3
16
17 1=1
19 //therefore intercepts are a/h, b/k, c/l
20
21 x=a/h
22
23 y=b/k
24
25 z = c/1
26
27 //this gives intercepts along x axis as x amstrong
      but it is given tthat plane cut x axis at 1.2
      amstrong.
28
29 t = 1.2/x
30
31 //this shows that the plane under consideration is
      another plane which is parallel to it (to keep
      miller indices same)
32
33 \quad n = t * y
                                               //Y
      intercept
```

```
34
                                             //Z
35 p=t*z
      intercept
36
                     1) Y intercept=")
37 printf("
38
39 disp(n)
40
41 printf("amstrong")
43 printf(" 2)Z intercept=")
44
45 disp(p)
46
47 printf("amstrong")
```

Scilab code Exa 1.14.8 calculate radius

```
17  // for FCC structure
18
19  r=sqrt(2)*a/4
20
21  printf("radius r=")
22
23  disp(r)
24
25  printf("amstrong")
```

Scilab code Exa 1.14.9 calculate density and diameter

```
1 / Chapter -1, Example 1_1 4_9, pg 1-61
2
                                                //for FCC
3 n=4
      structure
  //the interplanar spacing of plane
7 h=1
9 k=1
10
11 1=1
12
                                                //distance
13 d=2.08*10^-10
14
                                                //atomic
15 \quad A = 63.54
      weight of Cu
16
                                                //amstrong
17 N=6.023*10^26
      no
18
19 //we know that d=a/\sqrt{h^2+k^2+l^2} therefore
20
```

```
21 a=d*sqrt(h^2+k^2+1^2)
22
23 // also (a^3*q)=n*A/N
24
25 q=n*A/(N*a^3)
26
                          1) density=")
27 printf("
28
29 disp(q)
30
31 printf("kg/m^3")
32
33 //for FCC structure
34
35 r = sqrt(2)*a/4
36
37 d=r*2
38
             2) radius r=")
39 printf("
40
41 \text{ disp(r)}
42
43 printf("m")
44
45 printf("
                          3) diameter d=")
46
47 disp(d)
48
49 printf("m")
```

Scilab code Exa 1.14.10 calculate free electron concentration

```
1 //Chapter -1, Example 1_14_10, pg 1-62
2 3 A=63.546 //atomic
```

```
weight of Cu
                                               //Avogadro 's
5 N=6.023*10^26
       number
                                               //Density
  p = 8930
                                               //no.of
  n=1.23
      electron per atom
10
11 //density=mass/volume
12
13 //therfore 1/volume=density/mass
14
  //since electron concentration is needed, let us
      find out no of atoms/volume(x)
16
17 x=N*p/A
18
19 //now one atom contribute n=1.23 electron
20
  //therefore x atoms contribute y no of free
21
      electron
22
23 y = x * n
24
25 printf("free electron concentration=")
26
27 disp(y)
28
29 printf("electron/m<sup>3</sup>")
```

Scilab code Exa 1.14.11 calculate Y and Z intercept

```
1 / Chapter -1, Example 1_1 4_1 1, pg 1-62
```

```
3 //primitive vectors
5 a=1.5
                                              //in
      amstrong unit
7 b = 2
                                              //in
      amstrong unit
9 c = 4
                                              //in amstrong
       unit
10
11 //miller indices of the plane
12
13 h = 3
14
15 k=2
16
17 1=6
18
19 //therefore intercepts are a/h, b/k, c/l
20
21 x=a/h
22
23 y=b/k
24
25 z = c/1
26
27 //this gives intercepts along x axis as x amstrong
      but it is given that plane cut x axis at 1.2
      amstrong.
28
29 t = 1.5/x
30
31 //this shows that the plane under consideration is
      another plane which is parallel to it (to keep
      miller indices same)
32
```

```
//Y
33 n=t*y
     intercept
34
                                            //Z
35 p=t*z
      intercept
36
37 printf("
              1) Y intercept=")
38
39 disp(n)
40
41 printf("amstrong")
42
43 printf(" 2)Z intercept=")
44
45 disp(p)
46
47 printf("amstrong")
```

Scilab code Exa 1.14.12 calculate Number of atom per unit cell

```
1 / Chapter -1, Example 1_1 4_1 2, pg 1-63
                                                   //density of
3 \text{ ro} = 7.87
       metal
4
5 \quad A = 55.85
                                                   //atomic wt
      of metal
                                                   //Avogadro 's
7 N=6.023*10^23
       number
9 a=2.9*10^-8
                                                   //lattice
      constant of metal
10
11 n = (N*(a^3)*ro)/A
```

```
12
13 printf("Number of atom per unit cell of a metal=")
14
15 disp(int32(n))
```

Scilab code Exa 1.14.13 calculate Lattice constant

```
1 //Chapter -1, Example 1_14_13, pg 1-63
                                                  //BCC
3 n=2
      structure
                                                  //density of
5 \text{ ro=} 9.6 * 10^2
       sodium crystal
                                                  //atomic
7 \quad A = 23
      weight of sodium crystal
                                                  //Avogadro 's
9 N=6.023*10^26
       number
10
11 a=((n*A)/(N*ro))^{(1/3)}
12
13 printf("Lattice constant=")
15 disp(a)
16
17 printf("m")
```

Scilab code Exa 1.14.15 calculate Number of atom per unit cell and atomic radius

```
1 / Chapter -1, Example 1_1 4_1 5, pg 1-64
```

```
3 \text{ ro=} 2.7*10^3
                                                  //density of
       metal
4
                                                  //atomic wt
5 A = 27
      of metal
                                                  //Avogadro 's
7 N=6.023*10^26
       number
8
9 \quad a=4.05*10^-10
                                                  //lattice
      constant of metal
10
11 n = (N*(a^3)*ro)/A
12
13 printf("1) Number of atom per unit cell of a metal="
      )
14
15 disp(int32(n))
16
                                                  //radius of
17 r = sqrt(2) * a/4
      metal
18
19 printf("2) atomic radius of a metal=")
20
21 \text{ disp(r)}
22
23 printf("m")
```

Scilab code Exa 1.14.16 calculate Lattice constant and APF

```
4
5 ro=5.98*10<sup>3</sup>
                                                //density of
       chromium
6
                                                //atomic wt
7 \quad A = 50
      of chromium
                                                //Avogadro 's
9 N=6.023*10^26
       number
10
11 a=((n*A)/(N*ro))^(1/3)
12
13 printf(" 1) Lattice constant=")
14
15 disp(a)
16
17 printf("m")
18
19 // for BCC
20
                                                //radius of
21 r = sqrt(3)*a/4
      chromium
22
23 APF = (n*(4/3)*\%pi*(r^3))/(a^3)
24
25 printf(" 2) A.P.F. for chromium=")
26
27 disp(APF)
```

Scilab code Exa 1.14.17 calculate Lattice constant

```
4
                                                 //density
5 \text{ ro} = 6250
                                                 //molecular
7 M = 60.2
      weight
                                                  //Avogadro 's
9 N=6.023*10^26
       number
10
11 a=((n*M)/(N*ro))^(1/3)
12
13 printf("Lattice constant=")
14
15 disp(a)
16
17 printf("m")
```

Scilab code Exa 1.14.19 calculate wavlength

```
1 / Chapter -1, Example 1_1 4_19, pg 1-66
                                               //lattice
3 a=2.82*10^-9
      constant
                                               //FCC
5 n=2
      crystal
                                               //glancing
  t = 17.167
      angle in degree
8
                                               //glancing
  q=%pi/180*t
      angle in radians
10
  //assuming reflection in (1,0,0) plane
11
12
```

```
13 h = 1
14
15 k = 0
16
17 \quad 1 = 0
18
19 d=a/sqrt(h^2+k^2+1^2)
20
  //using Bragg's law , 2*d*sin(q)=n*la
21
22
23 \quad la=2*d*sin(q)/n
24
25 printf("wavlength of X-ray=")
26
27 disp(la)
28
29 printf ("m")
```

Scilab code Exa 1.14.20 calculate Lattice constant and atomic radius

```
12
13 printf(" 1) Lattice constant=")
14
15 disp(a)
16
17 printf("m")
18
                                               //radius of
19 r = sqrt(3)*a/8
      diamond structure
20
21 printf(" 2) atomic radius of a metal=")
22
23 \text{ disp(r)}
24
25 printf("m")
```

Scilab code Exa 1.14.21 calculate mass of one atom

```
1 / Chapter -1, Example 1_1 4_2 1, pg 1-66
2
3 n=2
                                                 //BCC
      structure
5 ro=8.57*10<sup>3</sup>
                                                 //density of
       chromium
                                                 //nearest
7 d=2.86*10^-10
      atoms distance
9 //d = sqrt(3)/2*a
10
11 a=2*d/sqrt(3)
12
13 //now use formulae a^3*ro=n*A/N
14
```

Scilab code Exa 1.15.1 calculate glancing angle and highest order

```
1 / Chapter -1, Example 1_1 5_1, pg 1-68
                                             //
3 d=4.255*10^-10
      interplaner spacing
                                             //wavelength
5 1=1.549*10^-10
       of x ray
  //part 1: for smallest glancing angle(n=1)
9 n1=1
10
11 //using Bragg's law n*l=2*d*sin(q)
12
13 q=asind(n1*1/(2*d))
14
15 printf(" 1) glancing angle=")
16
17 disp(q)
18
19 printf("degree")
20
```

```
//part 2: for highst order
// for highest order sin(q) not exceed one i.e
    maximum value is one

// using Bragg's law n*l=2*d*sin(q)
// since sin(
    q) is one

// gis one
// since sin(
    q) is one
// disp(floor(n2))
```

Scilab code Exa 1.15.2 calculate glancing angle

```
1 / Chapter -1, Example 1_1 5_2, pg 1-69
                                                //lattice
3 a=2.125*10^-10
      constant
5 d=a/2
      interplaner spacing
                                                //second
7 n=2
      order maximum
                                                //wavelength
9 1 = 0.592 * 10^{-10}
       of rock salt crystal
10
11 //using Bragg's law
12
                                                //glancing
13 m = asin((n*1)/(2*d))
      angle
14
```

```
15 Q=m*180/%pi
16
17 printf("glancing angle=")
18
19 disp(Q)
20
21 printf("degree")
```

Scilab code Exa 1.15.3 calculate second order reflection angle

```
1 / Chapter -1, Example 1_1 5_3, pg 1-69
3 n1=1
                                                //for 1st
      order
5 n2=2
                                                // for 2nd
      order
7 t=3.4
                                                //angle
      where 1st order reflection done
                                                //convert
9 t1=t*\%pi/180
      degree to radian
10
11 \text{ m} = \sin(t1)
12
13 //but from Bragg's law
14
15 //n * l = 2*d*sin(t)
16
17 // for for constant distance(d) and wavelength(l)
18
19 //order(n) is directly proportion to sine of angle
      i.e.(sin(t))
20
```

```
21 / n1/n2 = \sin(t1)/\sin(t2)
22
23 //assume sin(t2)=a
24
25 \quad a=n2/n1*m
26
                                                 //taking
27 t2=asind(a)
      sin inverese in degree
28
  printf("second order reflection take place at an
29
      angle=")
30
31 disp(t2)
32
33 printf("degree")
```

Scilab code Exa 1.15.4 calculate shortest wavelength and glancing angle

```
1 / Chapter -1, Example 1_1 5_4, pg 1-70
3 V = 50 * 10^3
                                                 //operating
      voltage of x-ray
4
                                                 //molecular
5 M = 74.6
      weight
                                                //density
7 p=1.99*10^3
                                                 //no of
9 n=4
      atoms per unit cell (for FCC structure)
10
                                                 //plank's
11 h=6.63*10^-34
      constant
12
                                                 //velocity
13 c = 3 * 10^8
```

```
14
15 \text{ e=1.6*10^--19}
                                                 //charge on
      electron
16
                                                 //Avogadro 's
17 N = 6.023 * 10^26
       number
18
19 //step 1: clculating shortest wavelength
20
21 \quad l=h*c/(e*V)
22
23 printf("
             1) shortest wavelength=")
24
25 disp(1)
26
27 printf ("m")
28
29 //step:2 calculating distance(d)
30
31 / \text{now a } 3*p=n*M/N \text{ therefore}
32
33 a=(n*M/(N*p))^{(1/3)}
34
35 //since KCl is ionic crystal herefore,
36
37 d=a/2
38
39 //step 3: calculaing glancing angle
40
41 //using Bragg's law
42
43 //n*l = 2*d*sin(t)
44
45 //assume sin(t)=a, wavelength is minimum i.e l and n
46
47 \, n=1
48
```

Scilab code Exa 1.15.5 find possible solution of planes

```
1 / Chapter -1, Example 1_1 5_5, pg 1-70
                                                 //first
3 n=1
      order maximum
5 1=0.82*10^-10
                                                 //wavelength
       of X ray
                                                 //glancing
7 qd=7
      angle in degree
                                                 //glancing
9 \text{ qm} = 51/60
      angle in minute
10
                                                 //glancing
11 qs = 48/3600
      angle in second
12
                                                 //total
13 q = qd + qm + qs
      glancin angle in degree
14
15
  // using Bragg's law n*l=2*d*sin(q)
16
```

```
17 d=n*1/(2*sind(q))
18
                                                //lattice
19 \ a=3*10^-10
      constant
20
21
   //we know that d=a/root(h^2+k^2+l^2)
22
23 // assume root (h^2+k^2+l^2) = m
24
  //arranging terms we get
25
26
27 \text{ m=a/d}
28
29 printf("square root(h^2+k^2+l^2)=")
30
31 disp(int32(m))
32
33 printf("hence possible solutions are (100),(010)
      ,(001)")
```

Scilab code Exa 1.15.6 calculate cubic lattice structure

```
angle in degree
12
13 dl1=n*1/(2*sind(q1))
14
15 // part 2: for (110)
16
  //\operatorname{using} \operatorname{Bragg}'s law n*l=2*d*\sin(q)
17
18
                                                    //glancing
19 q2=7.6
      angle in degree
20
21 dl2=n*1/(2*sind(q2))
22
23 // part 3: for (111)
24
25 //using Bragg's law n*l=2*d*sin(q)
26
27 \quad q3 = 9.4
                                                    //glancing
      angle in degree
28
29 	 d13=n*1/(2*sind(q3))
30
31 //for taking ratio divide all dl by dl1
32
33 d1 = d11/d11
34
35 d2=d12/d11
36
37 d3 = d13/d11
38
39 printf("cubic lattice structure is=")
40
41 disp(d3,d2,d1)
```

Scilab code Exa 1.15.7 calculate lattice constant

```
1 / Chapter -1, Example 1_1 5_7, pg 1-71
                                              //first
3 n=1
      order maximum
                                              //wavelength
5 1=1.54*10^-10
       of rock salt crystal
                                              //glancing
7 q = 21.7
      angle in degree
  //using Bragg's law n*l=2*d*sin(q)
10
11 d=n*1/(2*sind(q))
12
13 printf("lattice constant of crystal=")
14
15 disp(d)
16
17 printf("meter")
```

Scilab code Exa 1.15.8 calculate glancing angle

```
12
13 d=a/sqrt(h^2+k^2+l^2)
14
                                                //first
15 n=2
      order maximum
16
17 1=0.714*10^-10
                                                 //wavelength
       of X-ray crystal
18
19 //using Bragg's law
20
                                                //glancing
21 \text{ m=asin}((n*1)/(2*d))
      angle
22
23 \ Q=m*180/\%pi
24
25 printf("glancing angle=")
26
27 disp(Q)
28
29 printf("degree")
```

Scilab code Exa 1.15.9 calculate wavelength and glancing angle and highest order

```
//first
9 n=1
      order maximum
10
11 //using Bragg's law n*l=2*d*sin(t)
12
13 \ 1=2*d*sind(t)/n
14
15 printf(" 1) wavelength=")
16
17 disp(1)
18
19 printf("meter")
20
21 // for part 2
22
23 n1 = 2
24
25 //using Bragg's law n*l=2*d*sin(q)
26
27 \text{ q=asind}(n1*1/(2*d))
28
29 printf(" 2) glancing angle=")
30
31 disp(q)
32
33 printf("degree")
34
35 //for part 3
36
37 // for highest order sin(q) not exceed one i.e
      maximum value is one
38
39 //using Bragg's law n*l=2*d*sin(q)
40
                                               //since sin(
41 \quad n2 = 2 * d/1
      q) is one
42
43 printf(" 3) highest order possible =")
```

```
44
45 disp(floor(n2))
```

Scilab code Exa 1.15.10 calculate wavelength

```
// Chapter -1, Example 1_1 5_1 0, pg 1-73
3
  //for line -A
                                               //1st order
5 n1=1
      maximum
7 q1 = 30
                                               //glancing
      angle in degree
  //using Bragg's law for line A n1*l1=2*d1*sin(q1)
10
11 //d1 = n1 * 11 / (2 * sin (q1))
13 //for line B
14
                                               //wavelength
15
  12=0.97
       in amstrong unit
16
                                               //1st order
17
  n2 = 3
      maximum
18
19 q2 = 60
                                                //glancing
      angle in degree
20
  //using Bragg's law for line B n2*12=2*d2*sin(q2)
21
22
23 //since for both lines A and B we use same plane of
      same crystal, therefore
24
```

```
25 / d1 = d2
26
  //therefore equution became n2*12=2*n1*11/(2*sin(q1))
27
      )*\sin(q2)
28
29
  //by arranging terms we get
30
31
32 11=n2*12*2*sind(q1)/(2*n1*sind(q2))
33
34 printf("wavelength of the line A=")
35
36 disp(11)
37
38 printf("amstrong")
```

Scilab code Exa 1.15.11 calculate glancing angle

```
1 / Chapter -1, Example 1_1 5_1 1, pg 1-74
2
3 n=1
                                                 //first
      order minimum
5 d=5.5*10^-11
                                                 //atomic
      spacing
                                                 //charge on
  e=1.6*10^-19
      one electron
  Ee=10*10^3
                                                 //energy in
      eV
10
11 \quad E=e*Ee
                                                 //energy in
      Joule
12
```

```
//mass of
13 m=9.1*10^-31
      elelctron
14
                                               //plank's
15 h=6.63*10^{-34}
      constant
16
17 l=h/sqrt(2*m*E)
                                               //wavelength
18
19 //using Bragg's law
20
                                                //glancing
21 \ Q=asind((n*1)/(2*d))
      angle
22
23 printf("glancing angle=")
24
25 disp(Q)
26
27 printf("degree")
```

Scilab code Exa 1.15.12 calculate glancing angle

```
of rock salt crystal
12
  //using Bragg's law
13
14
                                               //glancing
15 m=asin((n*1)/(2*d))
      angle
16
17 \ Q=m*180/\%pi
18
19 printf("glancing angle=")
20
21 disp(Q)
22
23 printf("degree")
```

Scilab code Exa 1.16.1 calculate ratio of vacancies

```
1 / Chapter -1, Example 1_16_1, pg 1-75
3 \text{ Ev} = 1.08
                                                 //average
      energy required to creaet a vacancy
5 k=1.38*10^-23
                                                 //boltzman
      constant in J/K
7 e=1.6*10^-19
                                                 //charge on
      1 electron
                                                 //boltzman
9 \text{ K=k/e}
      constant in eV/K
10
11 // for a low concentration of vacancies a relation is
12
13 / n = N \exp(-Ev/KT)
14
```

```
15 // since total no atom is 1 hence N=1
16
17 / at 1000 k
18
                                                 //
19 T1=1000
      temperature
20
21 n1 = exp(-Ev/(K*T1))
22
23 / at 500 k
24
                                                 //
25 T2=500
      temperature
26
27 n2 = exp(-Ev/(K*T2))
28
                                                   //ratio
29 v = (n1)/(n2)
      of vacancies
30
31 printf("ratio of vacancies=")
32
33 disp(v)
```

Scilab code Exa 1.16.2 calculate ratio of vacancies to no of atom

```
9 \text{ K=k/e}
                                                //boltzman
      constant in eV/K
10
11 T=500
                                               //
      temperature
12
13 // for a low concentration of vacancies a relation is
14
15 / n = N \exp(-Ev/KT)
16
17 m = exp(-Ev/(K*T))
                                                   //ratio
      of no of vacancies to no of atoms n/N
18
19 printf("ratio of no of vacancies to no of atoms=")
20
21 disp(m)
```

Scilab code Exa 1.16.3 calculate ratio of vacancies

```
12
13 / n = N \exp(-Ev/KT)
14
15 // ratio of vacancy is n/N assume be r=\exp(-Ev/KT)
16
17 //since total no atom is 1 hence N=1
18
19 / at 1000 k
20
                                                  //
21 t1 = -119
      temperature in degree
22
23 \quad T1 = t1 + 273
                                                 //
      temperature in kelvine
24
25 r1 = exp(-Ev/(K*T1))
26
27 printf("1) ratio of vacancies at -119 degree=")
28
29 disp(r1)
30
31 / at 500 k
32
                                                  //
33 t2=80
      temperature in degree
34
35 \quad T2 = t2 + 273
                                                 //
      temperature in kelvine
36
37 r2 = exp(-Ev/(K*T2))
38
                                                     //ratio
39 v = (r1)/(r2)
      of vacancies
40
41 printf("2) ratio of vacancies at 80 degree=")
42
43 disp(r2)
```

Scilab code Exa 1.16.4 calculate no of frankel defects

```
1 / Chapter -1, Example 1_1 6_4, pg 1-76
                                                  //energy of
3 \text{ Ev} = 1.5
      formaton of frankel defect
                                                  //boltzman
5 k=1.38*10^-23
      constant in J/K
                                                  //charge on
7 e=1.6*10^-19
      1 electron
                                                  //boltzman
9 \text{ K=k/e}
      constant in eV/K
10
11 T = 700
                                                  //
      temperature
12
                                                  //avogadro 's
13 N=6.023*10^26
       no
14
15 // for a low concentration of vacancies a relation is
17 / n = N \exp(-Ev/KT)
18
                                                     //ratio of
19 m = \exp(-Ev/(2*K*T))
       no of vacancies to no of atoms n/N
20
                                                  //specific
21 \text{ qs} = 5.56
      density
22
                                                  //real
q=5.56*10^3
      density ke/m<sup>3</sup>
```

```
24
                                                   //molecular
25 M = 0.143
      weight in kg/m<sup>3</sup>
26
                                                    //mass of
27 \text{ ma=M/N}
      one molecule
28
                                                    //vol of
29 \text{ v=ma/q}
      one molecule
30
31 //v volume containe 1 molecule
33 //therefore 1 m^3 containe x molecule
34
35 x = 1/v
36
                                                   //defect per
37 d=m*x
       m^3
38
                                                   //defect per
39 \, dm = d * 10^- 9
       mm^3
40
41 printf("number of frankel defects per mm^3=")
42
43 disp(dm)
```

Chapter 2

Semiconductor Physics

Scilab code Exa 2.21.1 calculate mobility of electron

```
1 / Chapter - 2, Example 2_2 1_1, pg 2-47
                                                //
3 \text{ ro=} 1.72*10^-8
      resistivity of Cu
5 s=1/ro
                                                //
      conductivity of Cu
                                               //no of
7 n=10.41*10^28
      electron per unit volume
9 e=1.6*10^-19
                                                //charge on
      electron
10
11 u=s/(n*e)
12
13 printf("mobility of electron in Cu =")
14
15 disp(u)
16
17 printf("m^2/volt-sec")
```

Scilab code Exa 2.21.2 calculate Resistivity of Cu

```
1 / Chapter -2, Example 2_2 1_2, pg 2-47
2
                                                  //atomic
3 m = 63.5
      weight
                                                  //mobility
  u = 43.3
      of electron
                                                  //charge on
  e=1.6*10^-19
      electron
                                                  //Avogadro 's
  N=6.02*10^23
       number
10
                                                  //density
11 d=8.96
                                                  //Atomic
13 Ad=N*d/m
      density
14
15 \, n = 1 * Ad
16
17 \text{ ro=1/(n*e*u)}
18
19 printf("Resistivity of Cu =")
20
21 disp(ro)
22
23 printf("ohm-cm")
```

Scilab code Exa 2.21.3 calculate Resistivity of Ge

```
1 / Chapter -2, Example 2_2 1_3, pg 2-47
                                                   //charge on
3 e=1.6*10^-19
      electron
                                                   //density of
5 ne=2.5*10^19
        carriers
6
                                                   //for
7 \text{ nh=ne}
      intrinsic semiconductor
                                                   //mobility
  ue = 0.39
      of electron
10
                                                   //mobility
11 \quad uh = 0.19
      of hole
12
13 \text{ s=ne*e*ue+nh*e*uh}
                                                   //
      conductivity of Ge
14
                                                   //
15 \text{ ro=1/s}
      resistivity of Ge
16
17 printf("Resistivity of Ge =")
18
19 disp(ro)
20
21 printf("ohm-m")
```

Scilab code Exa 2.21.5 calculate Ratio between conductivity

```
1 //Chapter -2, Example 2_21_5, pg 2-48
2
3 Eg=1.2 //energy gap
```

```
//
5 T1=600
      temperature
6
7 T2 = 300
      temperature
9 //since ue>>uh for intrinsic semiconductor
10
11 // s = ni * e * ue
12
                                                 //Boltzman
13 \text{ K=8.62*10^--5}
      constant
14
15 s=%s
16
17 s1=s*exp((-Eg)/(2*K*T1))
18
19 s2=s*exp((-Eg)/(2*K*T2))
20
21 m = (s1/s2)
22
23 printf('Ratio between conductivity =')
24
25 disp(m)
```

Scilab code Exa 2.21.6 calculate conductivity

```
//mobility
7 u = 0.048
      of hole
9 s=4.4*10^-4
                                                //
      conductivity of Si
10
11 //since millionth Si atom is replaced by an indium
      atom
12
13 n=c*10^-6
14
                                                //
15 \text{ sp=u*e*n}
      conductivity of resultant
16
  printf("conductivity =")
17
18
19 disp(sp)
20
21 printf("mho/m")
```

Scilab code Exa 2.21.7 calculate hole concentration and mobility

```
10
                                                   //
11 p = 0.25
       resistivity
12
13 //no. of Si atom/m<sup>3</sup>
14
                                                   //Atomic
15 Ad=N*d/m
      density
16
  //impurity level is 0.01 ppm i.e. 1 atom in every
17
      10<sup>8</sup> atoms of Si
18
                                                   //no of
19 \, n = Ad/10^8
      impurity atoms
20
   //since each impurity produce 1 hole
21
22
23 \quad nh=n
24
25 printf("1) hole concentration =")
26
27 disp(n)
28
29 printf("holes/m^3")
30
31 \text{ up=1/(e*p*nh)}
32
              2) mobility =")
33 printf("
34
35 disp(up)
36
37 printf("m<sup>2</sup>/volt.sec")
```

Scilab code Exa 2.22.1 calculate probability of an electron

```
1 / Chapter -2, Example 2_2 2_1, pg 2-50
 2
                                                    //temp in
 3 t = 27
       degree
                                                    //temp in
  T = t + 273
       kelvin
                                                    //Boltzman
 7 \text{ K=8.62*10^--5}
       constant in eV
8
  Eg = 1.12
                                                     //Energy
      band gap
10
  //For intrensic semiconductor (Ec-Ev)=Eg/2
11
12
13 / let (Ec-Ev) = m
14
15 \text{ m} = \text{Eg}/2
16
17 a = (m/(K*T))
18
   // \text{probability} \quad f(Ec) = 1/(1 + \exp((Ec-Ev)/(K*T)))
19
20
21 p=1/(1+exp(a))
22
23
24 printf("probability of an electron being thermally
       excited to conduction band=")
25
26 disp(p)
```

Scilab code Exa 2.22.2 calculate probability of an electron

```
1 / Chapter -2, Example 2_2 2_2, pg 2-50
```

```
2
3 T=300
                                               //temp in
      kelvin
  K=8.62*10^{-5}
                                               //Boltzman
      constant in eV
6
  m = 0.012
                                               //energy
      level (Ef-E)
8
9 a=(m/(K*T))
10
  // probability f(Ec) = 1/(1 + exp((Ec-Ev)/(K*T))
11
12
13 p=1/(1+exp(a))
14
15 p1=1-p
16
17 printf("probability of an energy level not being
      occupied by an electron=")
18
19 disp(p1)
```

Scilab code Exa 2.22.3 calculate probability of an electron

```
8
9 Eg=1.12
                                                   //Energy
      band gap
10
11 //For intrensic semiconductor (Ec-Ev)=Eg/2
12
13 // let (Ec-Ev) = m
14
15 \text{ m=Eg/2}
16
17 a = (m/(K*T))
18
19
   // \text{probability} \quad f(Ec) = 1/(1 + \exp((Ec-Ev)/(K*T)))
20
21 p=1/(1+exp(a))
22
23
24 printf("probability of an electron being thermally
      excited to conduction band=")
25
26 disp(p)
```

Scilab code Exa 2.22.4 calculate energy for different probability

```
9 // probability f(Ec) = 1/(1 + \exp((Ec-Ev)/(K*T))
10
11 \quad m = K * T
12
13 // \text{for } f(E) = 0.99
14
15 p1=0.99
16
17 b=1-1/p1
18
                                                //a = (E - 2.1)/m
19 a = log(b)
20
21 E=2.1+m*a
22
23 printf("1) Energy for which probability is 0.99=")
24
25 disp(real(E))
26
27 printf("eV")
28
29 // \text{for } f(E) = 0.01
30
31 p2=0.01
32
33 b2=1-1/p2
34
                                                 //a = (E - 2.1)/m
35 \quad a1 = log(b2)
36
37 E1=2.1+m*a1
38
39 printf("2) Energy for which probability is 0.01=")
40
41 disp(real(E1))
42
43 printf("eV")
```

Scilab code Exa 2.23.1 calculate Potential barrier for Ge

```
1 / Chapter -2, Example 2_2 3_1, pg 2-52
                                                  //density of
3 \text{ ni}=2.4*10^19
       intrensic semiconductor
5 n=4.4*10^28
                                                  //no atom in
       Ge crystal
                                                  //density
7 \text{ Nd=n/10^6}
9 \text{ Na=Nd}
10
                                                  //charge on
11 e=1.6*10^-19
      electron
12
13 T=300
                                                  //temerature
       at N.T.P.
14
                                                  //Boltzman
15 \text{ K=1.38*10^--23}
      constant
16
17 Vo=(K*T/e)*log(Na*Nd/(ni^2))
18
19 printf("Potential barrier for Ge =")
20
21 disp(Vo)
22
23 printf("Volts")
```

Scilab code Exa 2.23.2 calculate Hall voltage

```
1 / Chapter -2, Example 2_2 3_2, pg 2-52
2
                                               //magnetic
3 B=0.6
      field
5 d=5*10^{-3}
      distancebetween surface
                                               //current
  J=500
      density
                                               //density
  Nd = 10^21
10
11 e=1.6*10^-19
                                               //charge on
      electron
12
13 Vh = (B*J*d)/(Nd*e)
                                               //due to
      Hall effect
14
15 printf("Hall voltage =")
16
17 disp(Vh)
18
19 printf("Volts")
```

Scilab code Exa 2.23.3 calculate Hall voltage

```
//current in
7 I=200
       strip
9 W=1*10^-3
                                              // thickness
      of strip
10
11 Vh=Rh*(B*I)/W
                                              //due to
      Hall effect
12
13 printf("Hall voltage =")
14
15 disp(Vh)
16
17 printf("Volt")
```

Scilab code Exa 2.23.4 calculate Resistivity of P type silicon

Scilab code Exa 2.23.5 calculate hall voltage hall coefficient and hall angle

```
1 / Chapter -2, Example 2_2 3_5, pg 2-53
2
                                                  //magnetic
3 B = 0.55
      field
5 d=4.5*10^{-3}
      distancebetween surface
6
                                                  //current
   J=500
      density
                                                  //density
9 n=10^20
10
11 e=1.6*10^-19
                                                  //charge on
      electron
12
                                                  //Hall
13 Rh = 1/(n * e)
      coefficient
14
                                                  //Hall
15 Vh=Rh*B*J*d
      voltage
16
17 printf("
                        1) Hall voltage =")
18
19 disp(Vh)
20
21 printf("Volts")
22
23 printf("
              2) Hall coefficient =")
24
25 disp(Rh)
26
27 \text{ printf}(\text{"m}^3/\text{C"})
28
                                                  //mobility
29 u = 0.17
```

```
of electrom

30
31 m=atan(u*B)

32
33 a=m*180/%pi //conversion
    randian into degree

34
35 printf(" 3) Hall angle =")

36
37 disp(a)

38
39 printf("degree")
```

Scilab code Exa 2.23.6 calculate density and mobility

```
1 / Chapter -2, Example 2_2 3_6, pg 2-54
2
                                                   //Hall
3 \text{ Rh} = 3.66 * 10^{-4}
      coefficient
                                                   //
5 r=8.93*10^{-3}
      resistivity
                                                   //charge on
  e=1.6*10^-19
      electron
9 // Hall coefficient Rh=1/(n*e)
10
                                                   //density
11 n=1/(Rh*e)
12
13 printf(" 1) density(n) =")
14
15 \text{ disp(n)}
16
17 printf("/m<sup>3</sup>")
```

Scilab code Exa 2.23.7 calculate Hall voltage

```
1 / Chapter -2, Example 2_2 3_7, pg 2-55
2
                                                      //magnetic
3 B = 0.2
       field
                                                      //charge on
5 e=1.6*10^-19
       electron
6
                                                      //mobility
7 \text{ ue} = 0.39
      of electron
                                                      //length
9 1 = 0.01
10
11 A=0.001*0.001
                                                      //\operatorname{cross}
       section area of bar
12
                                                      //Applied
13 \quad V = 1 * 10^{-3}
       voltage
14
15 d = 0.001
                                                      //sample of
       width
16
                                                      //
17 r=1/(ue*e)
```

```
resistivity
18
                                                     //resistance
19 R=r*1/A
        of Ge bar
20
21
   //using ohm's law
22
23 I = V/R
24
                                                     //hall
25 \text{ Rh=r*ue}
       coefficient
26
   //using formulae for hall effect
27
28
                                                     //current
29
  J = I / A
       density
30
31 \quad Vh = Rh * B * J * d
32
33 printf("Hall voltage =")
34
35 disp(Vh)
```

Scilab code Exa 2.24.1 calculate fermi level

```
9 //ne=N*e^(-(Ec-Ef)/(K*T))
10
11 //ne is no of electron in conduction band
12
13 //since concentration of donor electron is doubled
14
                                               //ratio of
15 a=2
      no of electron
16
17 //let x2 be the difference between new fermi level
      and conduction band (Ec-Ef')
18
                                               //arranging
19 x2 = -\log(a) * (K*T) + x1
      equation ne=N*e^{(-(Ec-Ef)/(K*T))}
20
21 printf("Fermi level will be shifted towards
      conduction band by")
22
23 \text{ disp}(x2)
24
25 printf ("eV")
```

Chapter 3

Dielectric And Magnetic Materials

${f Scilab\ code\ Exa\ 3.17.1\ }$ calculate resultant voltage

```
1 / Chapter -3, Example 3_17_1, pg 3-35
                                                   //area
3 A = 650 * 10^{-6}
5 d=4*10^{-3}
                                                   //seperation
       of plate
                                                   //charge
7 Q = 2 * 10^{-10}
                                                   //relative
9 \text{ er} = 3.5
      permitivity
10
                                                   //absolute
11 e0=8.85*10^-12
      permitivity
12
13 V = (Q*d)/(e0*er*A)
14
15 printf("voltage across capacitor =")
```

```
17 disp(V)
18
19 printf("Volt")
```

Scilab code Exa 3.17.2 find capacitance of capacitor

```
1 / Chapter -3, Example 3_17_2, pg 3-36
3 A = 2000 * 10^{-6}
                                               //area
                                                //seperation
5 d=0.5*10^-6
       of plate
6
                                               //relative
  er=8
      permitivity
  e0=8.85*10^-12
                                               //absolute
      permitivity
10
11 C=(e0*er*A)/d
12
13 printf("capacitance for capacitor =")
14
15 disp(C)
16
17 printf("Faraday")
```

Scilab code Exa 3.17.3 calculate relative permittivity

```
4
                                              //
5 P=4.3*10^-8
      polarization
6
                                              //absolute
  e0=8.854*10^-12
      permitivity
8
                                              //as P/E=e0(
  er=(P/(e0*E))+1
      er - 1
10
11 printf("relative permittivity =")
12
13 disp(er)
```

Scilab code Exa 3.17.4 ratio of two capacitor

```
1 / Chapter -3, Example 3_17_4, pg 3-36
3 //As C=e0*er*A/d
4
                                                    //absolute
5 e0=%e
      permitivity
6
7 Ag=%s
9 \text{ Ap} = \text{Ag}
                                                    //Assuming
      Area of glass plate and plastic film is same
10
  //for glass
11
12
                                                    //relative
13 \text{ erg=6}
      permitivity
14
                                                    //thickness
15 \, dg = 0.25
16
```

```
17 Cg=e0*erg*Ag/dg
18
19 //for plastic film
20
                                                       //relative
21 \text{ erp=3}
       permitivity
22
                                                        //thickness
23 \, dp = 0.1
24
25 \text{ Cp=e0*erp*Ap/dp}
26
27 \text{ m} = \text{Cg}/\text{Cp}
28
29 printf("since Cg/Cp=")
30
31 disp(m)
32
33 printf("plastic film holds more charge")
```

Scilab code Exa 3.17.5 calculate electronic polarizability and radius of He atom

```
1 / Chapter -3, Example 3_17_5, pg 3-37
                                                   //no of
3 N=2.7*10^25
      atoms per m<sup>3</sup>
4
                                                   // dielectric
5 \text{ er} = 1.0000684
       constant of He atom at NTP
6
                                                   //absolute
7 e0=8.854*10^-12
      permitivity
8
                                                   //electronic
9 a = e0 * (er - 1) / N
       polarizability
```

```
10
11 printf("1) electronic polarizability=")
12
13 disp(a)
14
15 R=(a/(4*%pi*e0))^(1/3) //radius of
    helium atom
16
17 printf("2) radius of He atoms =")
18
19 disp(R)
20
21 printf("meter")
```

Scilab code Exa 3.17.6 calculate electric susceptibility

Scilab code Exa 3.17.7 calculate relative permeability

```
\frac{1}{2} // Chapter -3, Example \frac{3}{2} \frac{17}{7}, pg \frac{3}{3}
```

```
//
3 T=300
      temperature of paramagnetic material
5 \quad X = 3.7 * 10^{-3}
                                                //
      susceptibility of material
7 \quad C = X * T
                                                //using
      Curie's law
  T1 = 250
      temperature
10
11 T2=600
      temperature
12
                                                //relative
13 u1 = C/T1
      permeability of material at 250k
14
15 u2=C/T2
                                                //relative
      permeability of material at 350k
16
17 printf("relative permeability at temp 250K=")
18
19 disp(u1)
20
21 printf("relative permeability at temp 600K =")
22
23 disp(u2)
```

Scilab code Exa 3.17.8 calculate Temperature

```
4
5 B = 0.8
                                                //magnetic
      field
                                                //boltzmann
7 \text{ K=1.38*10}^-23
      constant
8
                                                //
  T = (2*u*B)/(3*K)
      temperature
10
11 printf("Temperature at which average thermal energy
      of an atom is equal to magnitic energy=")
12
13 disp(T)
14
15 printf("K")
```

Scilab code Exa 3.17.9 calculate magnetization of paramagnetic material

```
1 / Chapter -3, Example 3_17_9, pg 3-38
                                                 //magnetic
3 B=0.5
      field
5 t = 27
                                                 //
      temperature in degree celcius
  T = 273 + t
                                                 //
      temperature in kelvin
9 u0=4*\%pi*10^-7
      permeability of free space
10
                                                 //Curie 's
11 C = 2 * 10^{-3}
      constant
```

Scilab code Exa 3.17.10 calculate Horizontal component of magnetic field

Scilab code Exa 3.17.11 calculate current required

```
\frac{1}{2} // Chapter -3, Example \frac{3}{17} _ 11, pg \frac{3}{39}
```

```
//magnetic
3 \text{ phi}=5.9*10^-3
      flux
4
                                                 //relative
5 ur=900
      permeability of material
7 n = 700
                                                 //number of
      turns
9 u0=4*\%pi*10^-7
                                                 //
      permeability of free space
10
                                                 //cross
11 A = 60 * 10^{-4}
      section area of ring
12
13 1=2
                                                 //mean
      circumference of ring
14
                                                 //flux
15 B=phi/A
      density
16
                                                 //magnetic
17 H=B/(u0*ur)
      field
18
                                                 //Amp-turns
19 At = H * 1
      required
20
                                                 //current
21 I = At/n
      required
22
23 printf("Current required to produce a flux=")
24
25 disp(I)
26
27 printf("Amp")
```

Scilab code Exa 3.17.12 calculate Current required

```
1 / Chapter -3, Example 3_17_12, pg 3-39
                                                 //magnetic
3 \text{ phi}=2.7*10^-3
      flux
                                                  //cross
5 A = 25 * 10^{-4}
      section area of ring
7 r = 25 * 10^{-2}
                                                  //mean
      circumference of ring
                                                   //air gap
9 la=10^-3
10
                                                  //relative
11 ur=900
      permeability of material
12
                                                  //number of
13 n = 400
      turns
14
                                                 //
15 \quad u0=4*\%pi*10^-7
      permeability of free space
16
                                                  //mean
17 d=40*10^-2
      diameter of ring
18
19 li=2*%pi*r
                                                  //mean
      circumference of ring
20
21 B=phi/A
                                                 //flux
      density
22
23 //for air gap
```

```
24
25 Ha=B/(u0)
                                                  //magnetic
      field for air gap
26
27 //for iron ring
28
29 Hi=B/(u0*ur)
                                                  //magnetic
      field for iron ring
30
31 //therefore, Amp turn in air gap
32
33 Ata=Ha*la
                                                  //Amp-turns
      required
34
35 //therefore, Amp-turn in ring
36
37 \text{ Ati=Hi*li}
                                                  //Amp-turns
      required
38
39 //therrfore total mmf required
40
41 \text{ mmf} = \text{Ata} + \text{Ati}
42
43 // Current required
44
45 \quad I = mmf/n
                                                    //current
      required
46
47 printf("Current required =")
48
49 disp(I)
50
51 printf("Amp")
```

Scilab code Exa 3.17.13 calculate 1 magnetic intensity 2 magnetization 3 Relative Permeability

```
1 / Chapter -3, Example 3_17_13, pg 3-40
2
                                                 //no of
 3 n1=10
      turns per cm
                                                //current
 5 i = 2
 6
                                                //flux
 7 B = 1
      density
9 u0=4*\%pi*10^-7
                                                //
      permeability of free space
10
11 n=n1*100
                                                //no turns
      per m
12
13 \text{ H=n*i}
14
                                 1) magnetic intensity =")
15 printf("
16
17 disp(H)
18
19 printf("Amp-turn/meter")
20
21 //calculation for magnetization
22
23 I = B/u0 - H
24
25 printf("
             2) magnetization =")
26
27 disp(I)
28
29 printf("Amp-turn/meter")
30
31 //relative permeability
```

```
32
33 ur=B/(u0*H)
34
35 printf(" 3) Relative Permeability of the ring ="
)
36
37 disp(int(ur))
```

Scilab code Exa 3.17.14 calculate Loss of energy

```
1 / Chapter -3, Example 3_17_14, pg 3-40
                                                //wt of the
3 m = 40
      core
                                                //density of
5 d=7.5*10^3
       iron
                                                //frequency
7 n = 100
9 V=m/d
                                                //volume of
      the iron core
10
11 E1=3800*10^-1
                                                //loss of
      energy in core per cycles/cc
12
                                                //loss of
13 E2 = E1 * V
      energy in core per cycles
14
                                                //no of
15 N = 60 * n
      cycles per minute
16
                                                //loss of
17 E = E2 * N
      energy per minute
18
```

```
19 printf("Loss of energy per minute =")
20
21 disp(E)
22
23 printf("Joule")
```

Scilab code Exa 3.17.15 calculate various parameter of magnetic field

```
1 / Chapter -3, Example 3_17_15, pg 3-40
                                                  //length of
3 1=30*10^-2
      ring
                                                  //\operatorname{cross}
5 A = 1 * 10^{-4}
      section area of ring
7 i=0.032
                                                  //current
                                                  //magnetic
9 phi=2*10^-6
      flux
10
                                                  //
11 \quad u0=4*\%pi*10^-7
      permeability of free space
12
                                                  //no of
13 N = 300
      turns in the coil
14
15 //1) flux density
16
                                                  //flux
17 B=phi/A
      density
18
19 printf("1) Flux density in the ring =")
20
21 disp(B)
```

```
22
23 printf("Wb/m<sup>2</sup>")
24
25 //2) magnetic intensity of ring
26
                                                 //no of
27 n=N/1
      turns per unit length
28
                                                 //magnetic
29 \text{ H=n*i}
      intensity
30
                            2) magnetic intensity =")
31 printf("
32
33 disp(H)
34
35 printf("Amp-turn/meter")
36
37 //3) permeability and relative permeability of the
      ring
38
39 \quad u=B/H
40
41 printf(" 3) Permeability of the ring =")
42
43 disp(u)
44
45 printf("Wb/A-m")
46
47 \text{ ur=u/u0}
48
49 printf("
                             4) Relative Permeability of
      the ring =")
50
51 disp(ur)
53 / 4) Susceptibility
54
55 \quad Xm = ur - 1
```

```
56
57 printf("5) magnetic Susceptibility of the ring =")
58
59 disp(Xm)
```

Scilab code Exa 3.17.16 calculate loss of energy per hour

```
1 / Chapter -3, Example 3_17_16, pg 3-41
                                                 //loss of
3 E=3000
      energy per cycle per cm<sup>3</sup>
5 m = 12 * 10^3
                                                 //wt of the
      core
                                                 //density of
7 d=7.5
       iron
                                                 //frequency
9 n = 50
10
                                                 //volume of
11 \quad V=m/d
      the core
12
                                                 //loss of
13 E1=E*V*n*60*60
      energy per hour
14
15 printf("Loss of energy per hour =")
16
17 disp(E1)
18
19 printf("Erg")
```

Scilab code Exa 3.17.17 calculate Hysteresis power loss

```
1 / Chapter -3, Example 3_17_17, pg 3-41
                                                 //frequency
3 n = 50
                                                 //volume of
5 V = 10^{-3}
      the specimen
  //Area of B-H loop
9 A=0.5*10<sup>3</sup>*1
10
11 P=n*V*A
12
13 printf("Hysteresis power loss =")
14
15 disp(P)
16
17 printf("Watt")
```

Scilab code Exa 3.17.18 calculate current required

```
//cross
11 A=5.8*10^-4
      section area of ring
12
13 d=40*10^-2
                                                //mean
      diameter of ring
14
                                                //mean
15 li=\%pi*d
      circumference of ring
16
17 \quad la=5*10^-3
                                                //air gap
18
                                                //flux
19 B=phi/A
      density
20
21 //for air gap
22
23 \text{ Ha=B/(u0)}
                                                //magnetic
      field for air gap
24
25 //for iron ring
26
27 Hi=B/(u0*ur)
                                                //magnetic
      field for iron ring
28
29 //therefore, Amp turn in air gap
30
31 Ata=Ha*la
                                                //Amp-turns
      required
32
33 //therefore, Amp-turn in ring
34
35 Ati=Hi*li
                                                //Amp-turns
      required
36
37 //therrfore total mmf required
38
39 mmf = Ata+Ati
40
```

Scilab code Exa 3.17.19 calculate reluctance and mmf

```
1 / Chapter -3, Example 3_17_19, pg 3-42
                                                 //air gap
3 la=1*10^-2
                                                 //radius of
5 r = 0.5
      ring
7 A = 5 * 10^{-4}
                                                  //cross
      section area of ring
8
                                                 //current
9 i = 5
10
11 u=6*10^-3
      permeability of iron
12
13 \quad u0 = 4 * \%pi * 10^-7
                                                 //
      permeability of free space
14
                                                 //no of
15 N = 900
      turns in the coil
16
17 //let reluctance of iron ring with air gap be S
```

```
18
19 S=la/(u0*A)+(2*\%pi*r-la)/(u*A)
20
                    1) Reluctance =")
21 printf("
22
23 disp(S)
24
25 printf("A-T/Wb")
26
27 \text{ mmf} = N*i
28
29 printf("2) m.m.f =")
30
31 disp(mmf)
32
33 printf("Amp-turn")
```

Scilab code Exa 3.17.20 calculate current

```
14
15  printf("current =")
16
17  disp(I)
18
19  printf("Ampere")
```

Scilab code Exa 3.17.21 calculate Reluctance and current

```
1 / Chapter -3, Example 3_17_21, pg 3-43
2
                                                 //relative
3 ur=380
      permeability of air
  u0=4*\%pi*10^-7
      permeability of free space
                                                 //cross
  A = 5 * 10^{-4}
      section area of ring
9 n = 200
                                                 //number of
      turns
10
11 d=20*10^-2
                                                 //mean
      diameter of ring
12
                                                 //mean
13 l = \%pi *d
      circumference of ring
14
                                                 //magnetic
15 \text{ phi} = 2*10^{-3}
      flux
16
                                                 //reluctance
17 S=1/(u0*ur*A)
18
19 //using ohm's law for magnetic circuit
```

```
20
21 / phi=N*I/S
22
23 I=S*phi/n
24
            1) Reluctance =")
25 printf("
26
27 disp(S)
28
29 printf("A-T/Wb")
30
31
32 printf(" 2) current =")
33
34 disp(I)
35
36 printf("Ampere")
```

Scilab code Exa 3.17.22 calculate various parameter of magnetic field

```
1 / Chapter -3, Example 3_17_2 2, pg 3-43
2
                                                 //relative
3 ur=1
      permeability of air
5 u0=4*\%pi*10^-7
                                                 //
      permeability of free space
                                                 //cross
7 A = 6 * 10^{-4}
      section area of torroid
                                                 //number of
9 n = 500
      turns
10
                                                 //radius of
11 r = 15 * 10^{-2}
```

```
torroid
12
                                                  //current in
13 I=4
       coil
14
                                                  //mean
15 \ 1=2*\%pi*r
      circumference of torroid
16
17 \quad MMF = n * I
18
19 printf("1) MMF (NI) =")
20
21 disp(MMF)
22
23 printf("AT")
24
25 R=1/(u0*ur*A)
                                                  //Reluctance
26
                     2) Reluctance (R) =")
27 printf("
28
29 disp(R)
30
31 \text{ printf}(\text{"AT/Wb"})
32
                                                  //flux
33 \text{ phi=MMF/R}
34
35 printf(" 3) Magnetic flux =")
36
37 disp(phi)
38
39 printf("Wb")
40
                                                  //flux
41 B=phi/A
      density
42
                 4) Flux density =")
43 printf("
44
45 disp(B)
```

Scilab code Exa 3.17.23 calculate Number of AmpereTurns

```
1 / Chapter -3, Example 3_17_23, pg 3-44
                                                  //magnetic
3 \text{ phi} = 10^{-3}
      flux
4
                                                  //relative
5 ur = 1000
      permeability of iron
6
                                                  //
7 u0=4*\%pi*10^-7
      permeability of free space
8
9 A = 5 * 10^{-4}
                                                  //cross
      section area of ring
10
11 la=2*10^-3
                                                  //air gap
12
                                                  //mean
13 d=20*10^{-3}
      diameter of ring
14
15 li=\%pi*d-la
                                                  //mean
      circumference of ring
```

```
16
17 //using KVL for magnetic circuit
18
19 //AT(total)=AT(iron)+AT(air gap)
20
21 ATt=(phi/(u0*A))*((li/ur)+la)
22
23 printf("Number of Ampere-Turns required =")
24
25 disp(round(ATt))
```

Scilab code Exa 3.17.24 calculate intensity magnetization and flux density

```
1 / Chapter -3, Example 3_17_24, pg 3-44
                                               //
3 X=0.5*10^-5
      susceptibility of material
                                               //magnetic
5 H = 10^6
      field strength
6
                                                //intensity
7 I = X * H
      of magnetization
9 u0=4*\%pi*10^-7
                                               //
      permeability of free space
10
11 B=u0*(H+I)
                                                //flux
      density
12
                         1) intensity magnetization =")
13 printf("
14
15 disp(I)
16
```

```
17  printf("Amp/m")
18
19  printf(" 2) flux density in the material =")
20
21  disp(B)
22
23  printf("wb/m^2")
```

Chapter 4

Acoustics and Ultrasonics

Scilab code Exa 4.11.1 calculate length

```
1 / Chapter -4, Example 4_11_1, pg 4-17
                                                //density
3 d=8900
                                                //Young's
5 \quad Y = 20.8 * 10^{10}
      modulus
                                                //frequency
7 n=40*10^3
      of wave
                                                //consider 1
9 k=1
      st harmonic
10
                                                //arranging
11 l=(k/(2*n))*sqrt(Y/d)
      formula of natural frequency
12
13 printf("length =")
14
15 disp(1)
16
17 printf("meter")
```

Scilab code Exa 4.12.1 calculate thickness

```
1 / Chapter -4, Example 4_12_1, pg 4-20
                                              //density
3 d=2.65*10^3
                                              //Young's
5 Y=8*10^10
      modulus
                                              //frequency
7 n=1*10^6
      of wave
8
                                              //consider 1
9 k=1
      st harmonic
10
11 t=(k/(2*n))*sqrt(Y/d)
                                              //arranging
      formula of natural frequency
12
13 printf("thickness =")
14
15 disp(t)
16
17 printf("meter")
```

Scilab code Exa 4.15.1 calculate Reverberation time

```
//bredth of
5 b = 15
      room
                                                //height of
7 h = 10
      room
                                                //volume of
9 V = 1 * b * h
      room
10
                                                //absorption
11 a=0.106
       coefficient
12
                                                //surface
13 S=2*(1*b+b*h+h*1)
      area of hall
14
  T=(0.161*V)/(a*S)
      Reverberation time, using Sabine's formula
16
17 printf("Reverberation time =")
18
19 disp(T)
20
21 printf("sec")
```

Scilab code Exa 4.15.2 calculate change in intensity level

```
intensity level

8
9 printf("change in intensity level =")
10
11 disp(1)
12
13 printf("dB")
```

Scilab code Exa 4.15.3 clculate average sound absorption coefficient and reverberation time

```
1 / Chapter -4, Example 4_15_3, pg 4-26
                                                  //wall area
3 S1=220
                                                  //absorption
5 a1=0.03
       coefficient for the wall
                                                  //floor area
7 S2 = 120
                                                  //absorption
  a2 = 0.8
       coefficient for the floor
10
                                                 //ceiling
11 S3=120
      area
12
                                                  //absorption
13 \quad a3 = 0.06
       coefficient for the ceiling
14
                                                  //volume of
15 V = 600
      room
16
                                                  // total
17 S = S1 + S2 + S3
      surface area
18
```

```
//average
19 a=(a1*S1+a2*S2+a3*S3)/S
      sound absorption coefficient
20
21 printf("1) average sound absorption coefficient =")
22
23 disp(a)
24
25 T = (0.161*V)/(a*S)
      Reverberation time, using Sabine's formula
26
27 printf("2) Reverberation time =")
28
29 disp(T)
30
31 printf("sec")
```

Scilab code Exa 4.15.4 calculate average absorption coefficient

```
1 / Chapter -4, Example 4_15_4, pg 4-27
3 V=5500
                                               //volume
5 T = 2.3
      Reverberation time
6
7 S = 750
                                               //sound
      absorption coefficient
                                               //using
9 a = (0.161*V)/(S*T)
      Sabine's formula
10
11 printf("average absorption coefficient =")
12
13 disp(a)
```

Scilab code Exa 4.15.5 claculate average absorption coefficient and area of floor

```
1 / Chapter -4, Example 4_15_5, pg 4-27
                                                  //length of
3 1=20
      room
4
                                                  //bredth of
5 b = 12
      room
6
                                                  //height of
7 h = 12
      room
                                                  //volume of
9 V = 1 * b * h
      room
10
                                                  //surface
11 S=2*(1*b+b*h+h*1)
      area of hall
12
                                                  //
13 T1 = 2.5
      Reverberation time
14
                                                  //using
15 a = (0.161*V)/(T1*S)
      Sabine's formula
16
17 printf("1) average absorption coefficient =")
18
19 disp(a)
20
21 \quad a1 = 0.5
                                                  //absorption
       coefficient
22
                                                  //
23 T2 = 2
```

Reverberation time 24 25 S1=(0.161*V/(a1-a))*(1/T2-1/T1) 26 27 printf("2) carpet area required =") 28 29 disp(S1) 30 31 printf("m^2")

Scilab code Exa 4.15.6 calculate reverberation time for various case

```
1 / Chapter -4, Example 4_15_6, pg 4-28
2
                                                      //area of
3 \text{ Ac} = 10 * 12
       carpet covering entire floor
4
                                                      //absorption
5 \text{ ac} = 0.06
        coefficient of carpet
6
   aS1=Ac*ac
                                                      //absorption
        due to carpet
   Af = 10 * 12
                                                      //area of
       false celling
10
                                                      //absorption
11 \text{ af} = 0.03
        coefficient of celling
12
                                                      //absorption
13 \text{ aS2=Af*af}
        due to celling
14
                                                      //area of
15 \text{ As} = 100 * 1
       cushioned sets
16
```

```
//absorption
17 \text{ as} = 1
        coefficient of cushion sets
18
                                                      //absorption
19 \text{ aS3=As*as}
        due to cusion sets
20
21 \text{ Aw} = 346 * 1
                                                      //area of
       walls covered with absorbent
22
                                                      //absorption
23 \text{ aw} = 0.2
        coefficient of walls
24
                                                      //absorption
25 \quad aS4 = Aw*aw
        due to walls
26
27 \text{ Ad} = 346 * 1
                                                      //area of
       wooden door
28
29 \text{ ad} = 0.2
                                                      //absorption
        coefficient of wooden door
30
31 \text{ aS5=Ad*ad}
                                                      //absorption
        due to wooden door
32
33 aS = aS1 + aS2 + aS3 + aS4
                                                      //total
       absorption
34
                                                      //absorption
35 \text{ ap} = 0.46
        coefficient of audience/person
36
                                                      //assuming
37 1=12
       length of wall
38
                                                      //assuming
39 b=10
       breadth of wall
40
41 h=8
                                                      //assuming
       height of wall
```

```
42
                                               //volume of
43 V = 1 * b * h
      hall
44
  //case 1 : (no one inside/emptey hall)
45
46
47 T1 = (0.161 * V) / aS
                                               //
      reverberation time
48
                1) reverberation time of empty hall =")
49 printf("
50
51 disp(T1)
52
53 printf("sec")
54
55 //case 2 :(50 person inside hall)
56
  T2=(0.161*V)/(aS+50*0.46)
                                               //
      reverberation time
58
59 printf(" 2) reverberation time of hall with 50
      person =")
60
61 disp(T2)
62
63 printf("sec")
64
  //case 2 :(100 person inside hall/full capacity of
      hall)
66
                                               //
  T3 = (0.161 * V) / (aS + 100 * 0.46)
      reverberation time
68
69 printf(" 3) reverberation time of hall with 100
      person = ")
70
71 disp(T3)
72
```

Scilab code Exa 4.15.7 calculate average absorption coefficient and total absorption

```
1 / Chapter -4, Example 4_15_7, pg 4-30
                                                 //length of
3 1=20
      room
                                                 //bredth of
5 b = 15
      room
                                                 //height of
7 h=5
      room
                                                 //volume of
9 V = 1 * b * h
      room
10
                                                 //surface
11 S=2*(1*b+b*h+h*1)
      area of hall
12
13 T = 3.5
                                                 //
      Reverberation time
14
15 a=(0.161*V)/(T*S)
                                                 //using
      Sabine's formula
16
17 printf("1) average absorption coefficient =")
18
19 disp(a)
20
                                                 //average
21 \text{ avg=a*S}
      total absorption
22
```

```
23 printf("2) average total absorption =")
24
25 disp(avg)
26
27 printf("m^2.S")
```

Scilab code Exa 4.15.8 calculate change in reverberation time

```
1 / Chapter -4, Example 4_15_8, pg 4-30
                                                 //length of
3 1=20
      room
                                                 //bredth of
5 b = 15
      room
                                                //height of
7 h = 10
      room
                                                //volume of
9 V = 1 * b * h
      room
10
                                                 //absorption
11 a=0.1
       coefficient
12
13 S=2*(1*b+b*h+h*1)
                                                //surface
      area of hall
14
15 T1 = (0.161 * V) / (a*S)
      Reverberation time, using Sabine's formula
16
17 printf("1) Reverberation time =")
18
19 disp(T1)
20
```

```
21 printf("sec")
22
                                               //absorption
23 \quad a2 = 0.66
       coefficient of curtain cloth
24
                                               //surface
25 S2=100
      area of a curtain cloth
26
  T2 = (0.161*V)/(a*S+a2*S2*2)
27
      Reverberation time, using Sabine's formula
28
29
  T=T1-T2
                                               //change in
      Reverberation time
30
31 printf("2) change in Reverberation time =")
32
33 disp(T)
34
35 printf("sec")
```

Scilab code Exa 4.15.9 calculate average absorption coefficient and reverberation time

```
//ceiling
11 S3=120
      area
12
                                                //absorption
13 \quad a3 = 0.06
       coefficient for the ceiling
14
                                                //volume of
15 V=600
      room
16
                                                //total
17 S = S1 + S2 + S3
      surface area
18
19 a=(a1*S1+a2*S2+a3*S3)/S
                                                //average
      sound absorption coefficient
20
21 printf("1) average sound absorption coefficient =")
22
23 disp(a)
24
25 T = (0.161*V)/(a*S)
      Reverberation time, using Sabine's formula
26
27 printf("2) Reverberation time =")
28
29 disp(T)
30
31 printf("sec")
```

Scilab code Exa 4.15.10 calculate depth of seabed and wavelength

```
6
                                               //velocity
7 v = 1700
      of sound
                                               //depth of
9 d=v*t/2
      seabed
10
11 printf("1) depth of seabed =")
12
13 disp(d)
14
15 printf("meter")
16
                                               //wavelength
17 l = v/f
18
19 printf("2) wavelength =")
20
21 disp(1)
22
23 printf("meter")
```

Scilab code Exa 4.15.11 calculate natural frequency

Scilab code Exa 4.15.12 calculate thickness

```
1 / Chapter -4, Example 4_15_12, pg 4-32
2
                                                 //density
3 d = 2650
                                                 //Young's
5 Y = 8 * 10^10
      modulus
6
                                                 //consider 1
7 k = 1
      st harmonic
9 // case 1
10
11 n1=3.8*10<sup>6</sup>
                                                 //frequency
      of wave
12
13 t1=(k/(2*n1))*sqrt(Y/d)
                                                 //arranging
      formula of natural frequency
14
15 printf("1) thickness =")
16
17 disp(t1)
18
19 printf("meter")
```

```
20
21 / case 2
22
                                                //frequency
23 n2=300*10<sup>3</sup>
      of wave
24
25 t2=(k/(2*n2))*sqrt(Y/d)
                                                //arranging
      formula of natural frequency
26
27 printf("2) thickness =")
28
29 disp(t2)
30
31 printf("meter")
```

Scilab code Exa 4.15.13 calculate thickness

```
1 / Chapter -4, Example 4_15_13, pg 4-32
                                               //density
3 d = 2650
                                               //Young's
5 Y=8*10^10
      modulus
7 n = 2 * 10^6
                                               //frequency
      of wave
                                               //consider 1
9 k=1
      st harmonic
10
                                               //arranging
11 t=(k/(2*n))*sqrt(Y/d)
      formula of natural frequency
12
13 printf("thickness =")
14
```

```
15 disp(t)
16
17 printf("meter")
```

Scilab code Exa 4.15.14 calculate distance between two ships

```
1 / Chapter -4, Example 4_15_14, pg 4-33
                                                  //frequency
3 f = 50 * 10^3
                                                  //velocity
5 v1 = 348
      of ultrasound in atmosphere
                                                  //velocity
7 v2 = 1392
      of ultrasound in sea water
9 t = 2
                                                  //time
      difference
10
11 //distance is constant hence v1*t1=v2*t2
12
                                                  //assuming
13 \text{ m} = \text{v}2/\text{v}1
      constant as m
14
15 //(t1-t2=d) and (t1=m*t2) therefore
16
17 t2=t/(m-1)
18
                                                  //distance
19 d = v2 * t2
      between two ship
20
21 printf("distance between two ships =")
22
23 disp(d)
24
```

Scilab code Exa 4.15.15 calculate natural frequency and change in thickness

```
1 / Chapter -4, Example 4_15_15, pg 4-34
3 // for case1
                                               //thicknesss
4 t1=2*10^-3
       of plate
                                               //density
6 d=2.65*10^3
                                               //Young's
  Y = 8 * 10^10
      modulus
9
                                               //consider 1
10 \, k = 1
      st harmonic
11
                                               //formula of
12 n1=(k/(2*t1))*sqrt(Y/d)
       natural frequency
13
                   1) natural frequency =")
14 printf("
15
16 disp(n1)
17
18 printf("Hz")
19
20 //for case2
21
                                               //frequency
22 n2=3*10^6
23
                                               //arranging
24 t2=(k/(2*n2))*sqrt(Y/d)
      formula of natural frequency
25
```

Scilab code Exa 4.15.16 calculate depth of sea bed

```
1 / Chapter -4, Example 4_15_16, pg 4-34
3 S = 10
                                               //salinity
                                               //time
5 t=2
6
7 T = 20
      temperature
9 v=1510+1.14*S+4.21*T-0.037*T^2
                                               //velocity
      of ultrasound in sea
10
                                               //depth of
11 d=v*t/2
      sea bed
12
13 printf("depth of sea bed =")
14
15 disp(d)
16
17 printf("meter")
```

Scilab code Exa 4.15.17 calculate depth of sea bed and frequency

```
1 / Chapter -4, Example 4_15_17, pg 4-35
2
                                               //salinity
3 S = 29
4
                                               //time
5 t=2
                                               //wavelength
71=0.01
9 T = 30
                                               //
      temperature
10
                                               //velocity
11 v=1510+1.14*S+4.21*T-0.037*T^2
      of ultrasound in sea
12
                                               //depth of
13 \ d=v*t/2
      sea bed
14
15 printf("1)depth of sea bed =")
16
17 disp(d)
18
19 printf("meter")
20
                                               //frequency
21 f = v/1
22
23 printf("2) frequency =")
24
25 disp(f)
26
27 printf("Hz")
```

Scilab code Exa 4.15.18 calculate real thickness

```
\begin{array}{ll} 1 & //\operatorname{Chapter} -4, \operatorname{Example4\_15\_18} \;, \operatorname{pg} \;\; 4-35 \\ 2 & \end{array}
```

```
//velocity
3 v1=5.9*10^3
      of UW in mild steel
                                             //velocity
5 v2=4.3*10^3
      of UW in brass
7 t2=15*10^-3
                                             //thickness
      of brass plate
9 t1=v2*t2/v1
                                             //since ve;
      ocity is inversly proportional to thickness
10
11 printf("real thickness =")
12
13 disp(t1)
14
15 printf("meter")
```

Scilab code Exa 4.15.19 calculate thickness of crystal

```
12
13 disp(t2)
14
15 printf("meter")
```

Scilab code Exa 4.15.20 calculate distance at which defect has occurred

```
1 / Chapter -4, Example 4_15_20, pg 4-36
                                               //pulse
3 t2=30*10^-6
      arrival time of defective steel bar
5 t1=80*10^-6
                                               //pulse
      arrival time of non defective steel bar
                                               //bar
7 d=40*10^-2
      thickness
9 x = (t2/t1)*d
10
11 printf("distance at which defect has occurred =")
12
13 \text{ disp}(x)
14
15 printf("meter")
```

Scilab code Exa 4.15.21 calculate echo time

```
1 //Chapter -4, Example 4_15_21, pg 4-37
2 
3 d=18*10^-3 //thickness
4 
5 v=5.9*10^3 //velocity
```

```
6
7 t=(2*d)/v //echo time
8
9 printf("echo time =")
10
11 disp(t)
12
13 printf("sec")
```

Scilab code Exa 4.15.22 calculate frquency of vibration

```
1 / Chapter -4, Example 4_15_22, pg 4-37
                                               // thickness
3 t=1*10^-3
      of quartz crystal
5 / given t=1/2
                                               //wavelength
7 1=t*2
                                               //young's
9 Y = 7.9 * 10^10
      module of crystal
10
                                               //density of
11 p = 2650
       crystal
12
13 v=sqrt(Y/p)
                                               //velocity
      of vibration
14
                                               //frequency
15 n=v/1
      of vibration
16
17 printf("frquency of vibration =")
18
19 disp(n)
```

```
20
21 printf("Hz")
```

Scilab code Exa 4.15.23 calculate length

```
1 / Chapter -4, Example 4_15_23, pg 4-38
                                                //density
3 d=7.23*10^3
                                                //Young's
5 \quad Y = 11.6 * 10^10
      modulus
6
                                                //frequency
7 n = 20 * 10^3
      of wave
8
                                                //consider 1
9 k=1
      st harmonic
10
                                                //arranging
11 l=(k/(2*n))*sqrt(Y/d)
      formula of natural frequency
12
13 printf("length =")
14
15 disp(1)
17 printf("meter")
```

Scilab code Exa 4.15.24 calculate natural frequency and change in thickness

```
\begin{array}{cccc} 1 & //\operatorname{Chapter} -4, \operatorname{Example4} \ _15 \ _24 \ , \operatorname{pg} \ 4-38 \\ 2 & \\ 3 & //\operatorname{for} \ \operatorname{case1} \end{array}
```

```
// thicknesss
4 t1=2*10^-3
       of plate
                                               //density
6 d=2.65*10^3
                                               //Young's
8 \quad Y = 8 * 10^10
      modulus
9
                                               //consider 1
10 \, k = 1
      st harmonic
11
                                               //formula of
12 n1=(k/(2*t1))*sqrt(Y/d)
       natural frequency
13
14 printf("
             1) natural frequency =")
15
16 disp(n1)
17
18 printf("Hz")
19
20 //for case2
21
                                               //frequency
22 \quad n2=3*10^6
23
                                               //arranging
24 t2=(k/(2*n2))*sqrt(Y/d)
      formula of natural frequency
25
                                               //change in
26 t=t1-t2
      thickness
27
28 printf(" 2) change in thickness =")
29
30 disp(t)
31
32 printf("meter")
```

Scilab code Exa 4.15.25 calculate average absorption coefficien and total absorption

```
1 //Chapter -4, Example 4_15_25, pg 4-39
                                                 //length of
3 1=20
      room
4
                                                 //bredth of
5 b = 15
      room
6
                                                //height of
7 h = 10
      room
                                                //volume of
9 V = 1 * b * h
      room
10
                                                //surface
11 S=2*(1*b+b*h+h*1)
      area of hall
12
                                                //
13 T=3
      Reverberation time
14
15 a=(0.161*V)/(T*S)
                                                //using
      Sabine's formula
16
17 printf("1) average absorption coefficient =")
18
19 disp(a)
20
                                                //total
21 \text{ m=a*S}
      absorption
22
23 printf("2) total absorption of surface =")
```

```
24
25 disp(m)
26
27 printf("m^2/sec")
```

Scilab code Exa 4.15.26 calculate natural frequency and change in thickness

```
1 / Chapter -4, Example 4_15_26, pg 4-39
3 // for case1
                                                  // thicknesss
4 t1=1.8*10^-3
       of plate
                                                  //density
6 d=2.65*10^3
                                                  //Young's
8 \quad Y = 8 * 10^10
      modulus
9
                                                  //consider 1
10 \, k = 1
      st harmonic
11
                                                  //formula of
12 n1=(k/(2*t1))*sqrt(Y/d)
       natural frequency
13
                     1) natural frequency =")
14 printf("
15
16 disp(n1)
17
18 printf("Hz")
19
20 // for case 2
21
                                                  //frequency
22 n2=2*10<sup>6</sup>
23
```

Scilab code Exa 4.15.27 calculate Youngs modulus

```
1 / Chapter -4, Example 4_15_27, pg 4-39
3 n=0.4999*10^6
                                              //frequency
5 t=5.5*10^{-3}
                                              //thicknesss
       of plate
                                              //density
7 d=2.65*10^3
                                              //consider 1
9 k=1
      st harmonic
10
                                              //arranging
11 Y=4*(t^2)*(n^2)*d/k
      formula of natural frequency
12
13 printf("Youngs modulus =")
14
15 disp(Y)
16
17 printf("N/m^2")
```