APM 2013

The Advanced Process Modeling Forum

June 5-6, 2013, New York

Model-based design and optimization of distillation trains

Rodrigo Blanco – Senior Consultant

Continuous distillation

- Most frequently used unit operation for separation
- Low thermodynamic efficiency
- Costly to build and operate

Continuous distillation

- Role of modeling in distillation process design is well-established
 - Sequential-modular tools in use for >30 years
- Some problems remain challenging
 - Easy customization (e.g. new concepts, costing)
 - Converging recycles
 - Inverse problem statements (e.g. product purity)
- We can now go beyond simulation
 - Optimizing design and operation simultaneously

Equilibrium tray column model

gPROMS Product Family

General Mathematical Modeling

Sector-focused Modeling Tools

Model Deployment Tools

The gPROMS platform

Equation-oriented modeling & solution engine

Equilibrium tray column model

- Key assumption: vapor/liquid equilibrium at each stage
 - including reboiler & condenser
 - optional specification of stage efficiencies
- Design calculations
 - column height
 - column diameter
 - determined from flooding limit
- Costing calculations
 - standard equipment cost correlations (Seider & Seader, 2010)
- Built-in Model Initialization Procedures
- Superstructure for design optimization

Workflow for distillation column modeling

Workflow

- 1. Construct flowsheet and introduce specifications
 - a) Configure material & physical properties
 - b) Construct flowsheet
 - c) Configure unit models
- Use design mode for equipment sizing
- 3. Turn on costing to calculate equipment and operating costs
- 4. Perform sensitivity and optimization studies

Example #1: Methanol-water separation

Single column (thermo: NRTL-VLE)

Feed parameters	Value	Units
Composition	50% methanol + 50% water	mol/mol
Pressure	2.4	bar
Temperature	300	K
Flowrate	900	kmol/hr

Column parameters	Value	Units
Number of stages	27	
Feed stage	11	
Boilup ratio	2.3	mol/mol
Reflux ratio	0.55	mol/mol
Top pressure	2	bar
Pressure drop per stage	0.0025	bar

Video

Distillation train modeling

Example #2: Ethylene plant

Ethylene process

Initializes with no user-provided initial guesses

Simplified ethylene process

- Step 1: Construct flowsheet
- Base case:
 - Ethylene 5.5 x 10³ t/yr
 - Propylene $3.6 \times 10^3 \text{ t/yr}$

Depropanizer parameters	Value	Units
Number of stages	55	
Feed stage	25	
Boilup ratio	3.08	mol/mol
Reflux ratio	1.32	mol/mol
Pressure	16	bar

C3 splitter parameters	Value	Units
Number of stages	200	
Feed stage	100	
Boilup ratio	18	mol/mol
Propylene purity	99.6	%
Pressure	15	bar

Case initializes with no user-provided initial guesses

- Steps 2-3: Design + Costing
- Assumptions
 - Tray columns

Allowed column flooding 80%

Saturated steam 10 bar

CW temperature 20 °C

- Basis for sizing and costing
 - Column diameter based on vapor flowrate
 - Column height based on geometry of tray
 - Column cost based on metal cost
 - Compressor cost based on power consumption
 - HX cost based on area required
 - Operating costs based on CW, steam and power costs

- Steps 2-3: Design + Costing
- Results

Depropanizer	Value	Units
Column diameter	0.383	m
Column height	46.3	m
Column cost	595 k	\$
Operation cost	12 k	\$

C3 splitter	Value	Units
Column diameter	0.839	m
Column height	173.3	m
Column cost	13,785 k	\$
Operation cost	202 k	\$

Total annualised costs	Value	Units
Capital cost	5,023 k	\$
Operation cost	1,051 k	\$
Total	6,074 k	\$

- Step 4: Optimization
- Objective function
 - Minimize total annualized cost
- By adjusting
 - Feed locations
 - No of trays
 - Column pressures
 - Boilup ratio in C3 splitter
 - Boilup and reflux ratio in depropanizer
- Constraints
 - Ethylene and propylene production
 - Propylene recovery
 - HX temperature differences

- Step 4: Optimization
- Results

Depropanizer	Initial value	Final value	Units
No. trays	55	11	-
Feed location	25	5	-
Column diameter	0.383	0.482	m
Column height	46.3	7.9	m
Column cost	595 k	68.5 k	\$
Operation cost	12 k	21 k	\$

C3 splitter	Initial value	Final value	Units
No. trays	200	173	-
Feed location	100	97	-
Column diameter	0.839	1.487	m
Column height	173.3	149.6	m
Column cost	13,785 k	5,707 k	\$
Operation cost	202 k	392 k	\$

Total annualized costs	Initial value	Final value	Units
Capital cost	5,023 k	2,156 k	\$
Operation cost	1,051 k	1,252 k	\$
Total	6,074 k	3,408 k	\$

Tightly coupled distillation systems

R. Pack, Integration of Model Based Optimal Design Methods in the Process Modeling Environment gPROMS,
Diploma Thesis, RWTH Aachen 2013

- Step 1: Construct flowsheet
 - Base case

Oxygen production
 410 x 10³ t/yr

Oxygen purity99.9 %

Impurity in Argon product1 ppm

- Step 2: Design
 - Column design at 80% flooding

- Solution with no user-provided initial guesses: 200 CPU s (Intel i7 laptop)
 - Subsequent solutions: ~1.5 s

- Step 4: Sensitivity study
- What will be the effect of uncertain oxygen demand on the plant operation?
 - Uniform sampling (500 points)
 - Oxygen production +/- 10%
 - Oxygen purity98.5 99.9%
 - Fixed column size
 - Fixed argon product purity

Total CPU time < 15 min

Step 4: Sensitivity study

Results

Conclusions

Summary

Recent developments in equation-based modeling

- Built-in Model Initialization Procedures
- Mixed-integer optimization
- State-of the art models

allow us to address

- Customization (new concepts, costing)
- Converging recycles
- Inverse problem statements (e.g. product purity)

and more

- Optimizing many design aspects simultaneously
- Plant-wide Mixed IntegerOptimization

Example 4: propylene oxide production

HPPO: Hydrogen Peroxide route to Propylene Oxide $CH_3CH=CH_2+H_2O_2 \rightarrow CH_3-CH-CH_2+H_2O$

- Plant-wide optimisation
- Detailed multitubular reactor
- Many distillation columns
 - 1 azeotropic
 - 2 reactive
- Two major recycle streams
- Simultaneous optimization of design and operation
- \$10M p.a. savings identified

H. Martin Rodriguez, A. Cano, M. Matzopoulos, *Improve engineering via whole-plant design optimization*. Hydrocarbon Processing, December 2010, pp. 43-49

Acknowledgements

- Library development
 - Maarten Nauta
 - Diogo Narciso
 - Robert Pack
- Testing & applications
 - Pedro Chainho
 - Francisco Borralho

Thank you!

APV 2013

The Advanced Process Modeling Forum

Extra slides

References

Ethylene recovery:

K. Y. Cheung, Site-wide and supply chain optimisation for continuous chemical processes,
 PhD thesis, Imperial College, 2008

Air Separation Unit (ASU):

 R. Pack, Integration of Model Based Optimal Design Methods in the Process Modeling Environment gPROMS, Diploma Thesis, RWTH Aachen 2013

Workflow - Construct flowsheet

Construct flowsheet

 Drag-and-drop column model onto flowsheet

2. Configure minimum set of specifications

3. gPROMS takes care of initialization

```
Initialisation procedure

Automatic (Robust)

47

48 INITIALISATION_PROCEDURE default_initialisation_procedure DEFAULT

49 # Start Initialisation Procedure Specifications

50 USE

51 MeOH_column: Init_Flash_Fast_Spec;

52 END

53 # End Initialisation Procedure Specifications

54
```