Vacuum polarization in 1+1 spacetime dimensions

Santiago Sanz Wuhl Institut für Theoretische Physik Universität Leipzig

Abstract

In my M.Sc. project, I study the effects of the backreaction of a charged Klein-Gordon field coupled to an external electric field, in 1+1 dimensional spacetime. In this talk, I summarize the statement of the problem I intend to solve, and present preliminary results and observations from my project.

Table of Contents

- ► Preliminaries
- ► Results
- **▶** Upshot
- ➤ Outlook
- ▶ Bibliography

The set-up

1 Preliminaries

The set-up

1 Preliminaries

Semi classical Klein-Gordon-Maxwell (KGM) equations

The goal is to solve the system of coupled differential equations

$$\left\{ egin{aligned} \left[D_{\mu}D^{\mu}+m^{2}
ight]\phi(t,z)&=0\ \partial_{\mu}F^{\mu
u}&=j_{ ext{source}}^{
u}+\left\langle j^{
u}
ight
angle _{\phi} \end{aligned}
ight.$$

Semi classical Klein-Gordon-Maxwell (KGM) equations

The goal is to solve the system of coupled differential equations

$$\left\{ egin{aligned} \left[D_{\mu}D^{\mu} + \emph{m}^2
ight] \phi(t,z) &= 0 \ \partial_{\mu}F^{\mu
u} &= \emph{j}_{ ext{source}}^{
u} + \left< \emph{j}^{
u}
ight>_{\phi} \end{aligned}
ight.$$

With the gauge covariant derivative

$$D_{\mu} = \partial_{\mu} + ieA_{\mu},$$

Semi classical Klein-Gordon-Maxwell (KGM) equations

The goal is to solve the system of coupled differential equations

$$\left\{egin{aligned} \left[D_{\mu}D^{\mu}+m^{2}
ight]\phi(t,z)&=0\ \partial_{\mu}F^{\mu
u}&=j_{ ext{source}}^{
u}+\left\langle j^{
u}
ight
angle _{\phi} \end{aligned}
ight.$$

With the gauge covariant derivative

$$D_{\mu} = \partial_{\mu} + ieA_{\mu},$$

and the boundary conditions

$$\begin{cases} \phi \mid_{z=0,1} = 0 \\ F^{\mu\nu} \mid_{z=0,1} = \lambda \end{cases}$$

1 Preliminaries

Figure: The background electric potential

1. Constant electric field of strength λ pointing towards positive z.

1 Preliminaries

Figure: The background electric potential

- 1. Constant electric field of strength λ pointing towards positive z.
- 2. Under the Coulomb gauge

$$A_0(t,z) = -Ez, A_1(t,z) = 0$$

up to additive constant

1 Preliminaries

Figure: The background electric potential

- 1. Constant electric field of strength λ pointing towards positive z.
- 2. Under the Coulomb gauge

$$A_0(t,z) = -Ez, A_1(t,z) = 0$$

up to additive constant

3. To ensure anti-symmetric solutions

$$A_0(t,z)=-E(z-\frac{1}{2})$$

1 Preliminaries

Figure: The full electric potential (background+backreaction)

- 1. Constant electric field of strength λ pointing towards positive z.
- 2. Under the Coulomb gauge

$$A_0(t,z) = -Ez, A_1(t,z) = 0$$

up to additive constant

3. To ensure anti-symmetric solutions

$$A_0(t,z) = -E(z - \frac{1}{2}) + A_0^{br}(z)$$

1 Preliminaries

Klein-Gordon equation

With the chosen gauge the KGM equations turn into

$$((\partial_t + ieA_0)^2 - \partial_z^2 + m^2)\phi(t, z) = 0,$$

$$\partial_z^2 A_0^{br} = -\langle \rho(z) \rangle_{\phi},$$

with

$$A_0(z) = -E\left(z - \frac{1}{2}\right) + A_0^{\text{br}}(z),$$

 $\rho(z) = ie\left((D_0\phi)^*\phi - \phi^*D_0\phi\right)$

Time independent Klein-Gordon equation

1 Preliminaries

Mode equation

$$\phi(t,z) = \phi_n(z)e^{-i\omega_n t} \implies$$

Time independent Klein-Gordon equation

1 Preliminaries

Mode equation

$$\phi(t,z) = \phi_n(z)e^{-i\omega_n t} \implies \left(\left[\omega_n - eA_0(z)\right]^2 + \frac{d^2}{dz^2} - m^2 \right)\phi_n = 0$$

Time independent Klein-Gordon equation

1 Preliminaries

Mode equation

$$\phi(t,z) = \phi_n(z)e^{-i\omega_n t} \implies \left(\left[\omega_n - eA_0(z)\right]^2 + \frac{d^2}{dz^2} - m^2 \right)\phi_n = 0$$

Ignoring the backreaction of the scalar field (External field approximation)

$$\left(\left[\omega_n + \lambda\left(z - \frac{1}{2}\right)\right]^2 + \frac{d^2}{dz^2} - m^2\right)\phi_n = 0, \ \lambda = eE$$

Analytic solutions

2 External field approximation

When $A_0(z) = -\lambda(z - \frac{1}{2})$, the KG equation can be solved analytically

$$\phi_n(z) = a_n D_{i rac{m^2}{2\lambda} - rac{1}{2}} \left(rac{1+i}{\sqrt{\lambda}} \left(\omega_n + \lambda \left(z - rac{1}{2}
ight)
ight)
ight) \ + b_n D_{-i rac{m^2}{2\lambda} - rac{1}{2}} \left(rac{i-1}{\sqrt{\lambda}} \left(\omega_n + \lambda \left(z - rac{1}{2}
ight)
ight)
ight)$$

with $D_{\nu}(z)$ the parabolic cylinder functions.

Instabilities of the external field approximation

2 External field approximation

The external field approximation yields instabilities for critical λ values [AW83]:

Figure: Energy of the first three modes as the background field strength λ increases, without considering the backreaction of the field. Courtesy of [AW83].

Backreaction avoids those instabilities?

2 External field approximation

The main claim in [AW83] is that considering the backreaction of the scalar field raises the energy levels, avoiding instabilities

Figure: Positive energy levels for increasing λ with backreaction considered. [AW83]

Vacuum polarization

3 Quantisation and renormalisation

Vacuum polarization is calculated as the zeroth component of the charge density current

$$\rho(z) = ie((D_0\phi)^* \phi - \phi^* D_0\phi).$$

This operator is non-linear on the fields \implies ill-defined expectation value.

Mode expansion of the vacuum polarization

3 Quantisation and renormalisation

In [AW83] the vacuum polarization is directly calculated as

$$\langle 0 | \rho(z) | 0 \rangle = ie \langle 0 | \phi^* D_0 \phi - \phi (D_0 \phi)^* | 0 \rangle =$$

$$e \left(\sum_{n>0} (\omega_n - eA_0) |\phi_n|^2 + \sum_{n<0} (\omega_n - eA_0) |\phi_n|^2 \right)$$

Hadamard states

3 Quantisation and renormalisation

Assume the two-point function w(x, x') is of Hadamard form

$$\langle 0 | \phi(x) \phi^*(x') | 0 \rangle = w(x, x') = \underbrace{H(x, x')}_{\text{Divergent}} + \underbrace{R(x, x')}_{\text{Smooth}}$$

Hadamard states

3 Quantisation and renormalisation

Assume the two-point function w(x, x') is of Hadamard form

$$\langle 0 | \phi(x) \phi^*(x') | 0 \rangle = w(x, x') = \underbrace{H(x, x')}_{\text{Divergent}} + \underbrace{R(x, x')}_{\text{Smooth}}$$

w(x, x') is a divergent distribution as $x' \to x$, but so is H(x, x'). In a way similar to the normal ordering prescription of RQFT, define

$$\langle 0|\, D_{\alpha}\phi(x)\, (D_{\beta}\phi(x))^*\, |0\rangle := \lim_{\substack{v'\to x\\ }} \left[D_{\alpha}D_{\beta'}^{\prime*}\left(w(x,x')-H(x,x')\right)\right].$$

Renormalized vacuum polarization

3 Quantisation and renormalisation

Hadamard Point-splitting[WZ20]

$$\langle 0 | \rho(z) | 0 \rangle = ie \langle 0 | \phi^* D_0 \phi - \phi (D_0 \phi)^* | 0 \rangle =$$

$$e \lim_{\tau \to 0} \left(\sum_{n > 0} (\omega_n - eA_0) |\phi_n|^2 e^{i\omega_n(\tau + i\epsilon)} + \sum_{n < 0} (\omega_n - eA_0) |\phi_n|^2 e^{-i\omega_n(\tau + i\epsilon)} \right) + \frac{e^2}{\pi} A_0$$

Renormalized vacuum polarization

3 Quantisation and renormalisation

Hadamard Point-splitting[WZ20]

$$\langle 0 | \rho(z) | 0 \rangle = ie \langle 0 | \phi^* D_0 \phi - \phi (D_0 \phi)^* | 0 \rangle =$$

$$e \lim_{\tau \to 0} \left(\sum_{n > 0} (\omega_n - eA_0) |\phi_n|^2 e^{i\omega_n(\tau + i\epsilon)} + \sum_{n < 0} (\omega_n - eA_0) |\phi_n|^2 e^{-i\omega_n(\tau + i\epsilon)} \right) + \frac{e^2}{\pi} A_0$$

Mode sum formula [AW83]

$$\langle 0 | \rho(z) | 0 \rangle = ie \langle 0 | \phi^* D_0 \phi - \phi (D_0 \phi)^* | 0 \rangle =$$

$$e \left(\sum_{n>0} (\omega_n - eA_0) |\phi_n|^2 + \sum_{n<0} (\omega_n - eA_0) |\phi_n|^2 \right)$$

Renormalized vacuum polarization

3 Quantisation and renormalisation

Hadamard Point-splitting[WZ20]

$$\langle 0| \,
ho(z) \, |0\rangle = e \sum_{n=-N, n \neq =0}^{N} (\omega_n - eA_0) |\phi_n|^2 + \frac{e^2}{\pi} A_0$$

Mode sum formula [AW83]

$$\langle 0 | \rho(z) | 0 \rangle = e \sum_{n=-1, n\neq =0}^{1} (\omega_n - eA_0) |\phi_n|^2$$

Closing the loop

3 Quantisation and renormalisation

Closing the loop

3 Quantisation and renormalisation

$$\left(\left[\omega_n^{\kappa+1}-eA_0^{\kappa}(z)\right]^2+rac{d^2}{dz^2}-m^2
ight)\phi_n^{\kappa+1}=0 \ A_0^{\kappa}(z)=-\lambda\left(z-rac{1}{2}
ight)-\int_{rac{1}{2}}^z\int_0^{z'}
ho^{\kappa}(z'')dz''dz'.$$

Closing the loop

3 Quantisation and renormalisation

$$\left(\left[\omega_n^{\kappa+1} - eA_0^{\kappa}(z)\right]^2 + \frac{d^2}{dz^2} - m^2\right)\phi_n^{\kappa+1} = 0$$
 $A_0^{\kappa}(z) = -\lambda\left(z - \frac{1}{2}\right) - \int_{\frac{1}{2}}^z \int_0^{z'} \rho^{\kappa}(z'')dz''dz'.$

As a fixed point problem

Reminiscent of fixed point problems

$$A_0^{\kappa+1}=f(A_0^{\kappa})$$

4 Fixed point problems

Definition

For X a metric space, a fixed point $x \in X$ of a function $f : X \to X$ is defined as

$$x = f(x)$$
.

4 Fixed point problems

Definition

For X a metric space, a fixed point $x \in X$ of a function $f : X \to X$ is defined as

$$x = f(x)$$
.

$$f(A_0) = A_{\mathsf{background}} + A_{\mathsf{induced}}(A_0)$$

4 Fixed point problems

Definition

For X a metric space, a fixed point $x \in X$ of a function $f : X \to X$ is defined as

$$x = f(x)$$
.

$$f(A_0) = A_{\mathsf{background}} + A_{\mathsf{induced}}(A_0)$$

 $A_0 \longrightarrow A_{\text{background}} + A_{\text{induced}}(A_0)$

4 Fixed point problems

Definition

For X a metric space, a fixed point $x \in X$ of a function $f : X \to X$ is defined as

$$x = f(x)$$
.

$$f(A_0) = A_{\mathsf{background}} + A_{\mathsf{induced}}(A_0)$$

$$A_0 \longrightarrow (\omega_n, \phi_n) \longrightarrow \rho \longrightarrow -\int \int \rho \longrightarrow A_{\text{background}} + A_{\text{induced}}(A_0)$$

One dimensional fixed point problems

4 Fixed point problems

Fixed point

Find, if it exists

$$\lim_{n\to\infty} f^n(x), f^n := \underbrace{f \circ \ldots \circ f}_{\text{n times}}$$

One dimensional fixed point problems

4 Fixed point problems

Fixed point

Find, if it exists

$$\lim_{n \to \infty} f^n(x), f^n := \underbrace{f \circ \ldots \circ f}_{n \text{ times}}$$

Figure: Iterations in fixed point problems

One dimensional fixed point problems

4 Fixed point problems

Fixed point

Find, if it exists

$$\lim_{n\to\infty} f^n(x), f^n := \underbrace{f \circ \ldots \circ f}_{n \text{ times}}$$

Figure: Iterations in fixed point problems

One dimensional fixed point problems

4 Fixed point problems

Fixed point

Find, if it exists

$$\lim_{n\to\infty} f^n(x), f^n := \underbrace{f \circ \ldots \circ f}_{n \text{ times}}$$

Figure: Iterations in fixed point problems

One dimensional fixed point problems

4 Fixed point problems

Fixed point

Find, if it exists

$$\lim_{n\to\infty} f^n(x), f^n := \underbrace{f \circ \ldots \circ f}_{n \text{ times}}$$

Figure: Iterations in fixed point problems

The relaxing update rule

4 Fixed point problems

To avoid numerical instabilities due to $\Delta \lambda$ being too big,

$$A_0^{\kappa+1} = cA_0^{\kappa} + (1-c)(A_{\mathsf{background}} + A_{\mathsf{induced}}^{\kappa}), 0 < c \lesssim 1$$

- ▶ Preliminaries
- ► Results
- **▶** Upshot
- ➤ Outlook
- ▶ Bibliography

The energy of the modes for each λ

5 Results

Figure: ω_1 as a function of λ for the massless case in the **external field approximation**.

The energy of the modes for each λ

5 Results

Figure: ω_1 as a function of λ in the mode sum prescription with N=1.

The energy of the modes for each λ

5 Results

Figure: The energy of the first three modes of the scalar field in the Hadamard point-splitting prescription with cutoff N=12 as λ increases.

The energy of the modes at each λ

5 Results

Figure: ω_1 as a function of λ for the mode sum formula prescription, Hadamard point-splitting prescription and external field approximation.

Self consistent vacuum polarizations for low λ

5 Results

Figure: $\lambda = 5$ comparison of the self consistent vacuum polarization.

Figure: $\lambda = 5$ comparison of the self consistent induced A_0

Self consistent vacuum polarizations for high λ

5 Results

Figure: Higher values of λ comparison of the self consistent vacuum polarization.

Dashed lines: mode sum formula.

Figure: Higher values of λ comparison of the self consistent vacuum polarization.

Vacuum polarization for different λ

Figure: The maximum of the vacuum polarization for different values of the background electric field strength.

5 Results

Asymptotic behaviour?

6 Standing questions

It is not yet safe to say that backreaction completely avoids instabilities of the solutions for each background electric field strength λ .

Asymptotic behaviour?

6 Standing questions

It is not yet safe to say that backreaction completely avoids instabilities of the solutions for each background electric field strength λ .

There are two main problems that can arise for a given configuration

- 1. The root finding algorithm for the boundary conditions finds no ω_1
- 2. There is no convergence

These two issues can be solved by a smaller $\Delta\lambda$, or a relaxing parameter c closer to 1. It can get however to the order of $\Delta\lambda\sim 10^{-7}$.

Good convergence

6 Standing questions

Figure: The iterations in the potential and the energy of the first mode in a case of good convergence.

No convergence

6 Standing questions

Figure: The values of the potential for constant $\lambda=17.8$, as $\kappa\to\infty$.

Periodic points in the context of fixed points

6 Standing questions

Figure: The periodic points of the function f(x) = 1 - x

Eventhough $x = \frac{1}{2}$ is a fixed point of f(x), it cannot be found by taking the limit $\lim_{n\to\infty} f^n(x_1)$. Indeed,

$$x_{2n} := f^{2n}(x_1) = x_1$$

 $x_{2n+1} := f^{2n+1}(x_1) = 1 - x_1$

Periodic points in the context of fixed points

6 Standing questions

Eventhough $x=\frac{1}{2}$ is a fixed point of f(x), it cannot be found by taking the limit $\lim_{n\to\infty} f^n(x_1)$. Indeed,

$$x_{2n} := f^{2n}(x_1) = x_1$$

 $x_{2n+1} := f^{2n+1}(x_1) = 1 - x_1$

Figure: The periodic points of the function f(x) = 1 - x

Dynamic relaxation

7 Possible fixes

In the 1-D case, no convergence appeared when f'(x) = -1.

Dynamic relaxation

7 Possible fixes

In the 1-D case, no convergence appeared when f'(x) = -1. Recall the relaxing update law

$$A_0^{\kappa+1} = cA_0^{\kappa} + (1-c)(A_{\mathsf{background}} + A_{\mathsf{induced}}^{\kappa}), 0 < c \lesssim 1$$

Dynamic relaxation

7 Possible fixes

In the 1-D case, no convergence appeared when f'(x) = -1. Recall the relaxing update law

$$A_0^{\kappa+1} = cA_0^{\kappa} + (1-c)(A_{\mathsf{background}} + A_{\mathsf{induced}}^{\kappa}), 0 < c \lesssim 1$$

Choose c at every mesh point z_n , so that convergence is fastest, e.g. The convergence for the function $f(x) = \frac{1}{2}$ is immediate.

Extrapolation

7 Possible fixes

Since the problem arises from starting too far away from the next self consistent solution, try to predict by extrapolation.

Extrapolation

7 Possible fixes

Since the problem arises from starting too far away from the next self consistent solution, try to predict by extrapolation.

Point-wise extrapolation

 $A_0^{\lambda_n}(z), A_0^{\lambda_{n-1}}(z)$ the self consistent potentials for λ_n, λ_{n-1} , respectively. Guess the next self consistent potential (and use it as a starting A_0) by

$$A_0^{\lambda_{n+1}}(z) = rac{A_0^{\lambda_n}(z) - A_0^{\lambda_{n-1}}(z)}{\lambda_n - \lambda_{n-1}}(\lambda_{n+1} - \lambda_n) + A_0^{\lambda_n}(z)$$
 (1)

- ▶ Preliminaries
- ► Results
- **▶** Upshot
- ➤ Outlook
- ▶ Bibliography

- We used the proper prescription for the vacuum polarization $\langle \rho(z) \rangle$ calculated in [WZ20], to study the effect the backreaction of the Klein-Gordon field has on a background constant electric field.
- We find that the backreaction raises the energy of the modes enough so as to avoid instabilities found when ignoring backreaction.
- However, convergence is still not fast enough to be able to correctly study the whole of the λ parameter space.

- ▶ Preliminaries
- ▶ Results
- **▶** Upshot
- ► Outlook
- **▶** Bibliography

- 1. Redoing the calculations for Neumann boundary conditions,
- 2. Studying the effect of the size of the interval has for the different boundary conditions,
- 3. Redoing the calculations for mixed (Robin) boundary conditions.

- ▶ Preliminaries
- ▶ Results
- **▶** Upshot
- ➤ Outlook
- **▶** Bibliography

```
[AW83] Jan Ambjørn and Stephen Wolfram. "Properties of the vacuum. 2. Electrodynamic". ln: Annals of Physics 147.1 (1983), pp. 33-56. ISSN: 0003-4916. DOI: https://doi.org/10.1016/0003-4916(83)90066-0. URL: https://www.sciencedirect.com/science/article/pii/0003491683900660.
```

[WZ20] Jonathan Wernersson and Jochen Zahn. "Vacuum polarization near boundaries". In: *Phys. Rev. D 103, 016012 (2021)* (Oct. 12, 2020). DOI: 10.1103/PhysRevD.103.016012. arXiv: 2010.05499v2 [hep-th].

Vacuum polarization in 1+1 spacetime dimensions