11.Hash Tables

Yu-Shuen Wang, CS, NCTU

11.1 Directed-address tables

 Direct addressing is a simple technique that works well when the universe U of keys is reasonable small. Suppose that an application needs a dynamic set in which an element has a key drawn from the universe $U=\{0,1,...,m-1\}$ where m is not too large. We shall assume that no two elements have the same key.

■ To represent the dynamic set, we use an array, or directed-address table, *T*[0..*m*-1], in which each position, or slot, corresponds to a key in the universe *U*.

DIRECTED_ADDRESS_SEARCH(T,k)
return T[k]

DIRECTED_ADDRESS_INSERT(T,x) $T[key[x]] \leftarrow x$

DIRECTED-ADDRESS_DELETE(T,x) $T[key[x]] \leftarrow nil$

11.2 Hash tables

The difficulty with direct address is obvious: if the universe U is large, storing a table Tof size |U| may be impractical, or even impossible. Furthermore, the set *K* of keys actually stored may be so small relative to U. Specifically, the storage requirements can be reduced to O(|K|), even though searching for an element in in the hash table still requires only O(1) time.

- hash function: $h:U \rightarrow \{0,1,\ldots,m-1\}$
- hash table: T[0...m-1]
- k hashs to slot: h (k) hash value
- collision: two keys hash to the same slot

Collision resolution technique:

chaining

open addressing

Collision resolution by chaining:

In chaining, we put all the elements that hash to the same slot in a linked list.

- CHAINED_HASH_INSERT(T,X)
 Insert x at the head of the list T[h[key[x]]]
- CHAINED_HASH_SEARCH(T,k)
 Search for the element with key k in the list T[h[k]]

CHAINED_HASH_DELETE(*T,x*)
 delete *x* from the list *T*[*h*[*key*[*x*]]]
 Complexity:

INSERT O(1)

DELETE O(1) if the list are doubly linked.

Analysis of hashing with chaining

- Given a hash table T with m slots that stores n elements.
- load factor: $\alpha = \frac{n}{m}$ (the average number of elements stored in a chain.)

Assumption: *simple uniform hashing*

 uniform distribution, hashing function takes O(1) time.

for j = 0, 1, ..., m-1, let us denote the length of the list T[j] by n_j , so that

$$n = n_0 + n_1 + \ldots + n_m - 1,$$

and the average value of n_j is $E[n_j] = \alpha = n/m$.

Theorem 11.1.

If a hash table in which collision are resolved by chaining, an unsuccessful search takes expected time Θ(1+α), under the assumption of simple uniform hashing.

Proof.

- The average length of the list is $\alpha = \frac{n}{m}$.
- $\begin{tabular}{ll} \textbf{The expected number of elements} \\ \textbf{examined in an unsuccessful search is} \\ \alpha \end{tabular}$
- The total time required (including the time for computing h(k) is $O(1+\alpha)$.

PS: 1 means the time for computing h(k)

Theorem 11.2

If a hash table in which collision are resolved by chaining, a successful search takes time, $\Theta(1+\alpha)$ on the average, under the assumption of simple uniform hashing.

Proof.

- Assume the key being searched is equally likely to be any of the n keys stored in the table.
- Assume that CHAINED_HASH_INSERT procedure insert a new element at the end of the list instead of the front.

To find the expected number of elements examined, we take the average, over the n items in the table, of 1 plus the expected length of the list to which the ith element is added. The expected length of that list is (i-1)/m, and so the expected number of elements examined in a successful search is

$$\frac{1}{n} \sum_{i=1}^{n} \left(1 + \frac{i-1}{m} \right)$$

$$= 1 + \frac{1}{nm} \sum_{i=1}^{n} (i-1)$$

$$= 1 + \left(\frac{1}{nm} \right) \left(\frac{(n-1)n}{2} \right)$$

$$= 1 + \frac{\alpha}{2} - \frac{1}{2m}$$
Total time required for a successful search
$$\Theta(2 + \frac{\alpha}{2} - \frac{1}{2m}) = \Theta(1 + \alpha).$$

$$\Theta(2 + \frac{\alpha}{2} - \frac{1}{2m}) = \Theta(1 + \alpha).$$

PS: including the time for computing h(k))

11.3 Hash functions

What makes a good hash function?

Assume that each key is drawn independently from U according to a probability distribution P; that is, P(k) is the probability that k is drawn.

$$\sum_{k:h(k)=j} p(k) = \frac{1}{m} \quad \text{for } j = 1,2,...,m$$

Example:

- Assume $0 \le k \le 1$ is uniformly distributed
- Set $h(k) = \lfloor km \rfloor$.

Interpreting keys as natural number

 A key that is a character string can be interpreted as an integer expressed in suitable radix notation

$$pt = (p,t) = (112,116) = 112 \times 128 + 116 = 14452$$

11.3.1 The division method

$$h(k) = k \mod m$$

■ **Suggestion:** Choose *m* to be prime and not too close to exactly power of 2.

11.3.1 The division method

Hash Function : h(Key) = Key mod 2³
only least significant 3 bits matter

Hint: many words such as a_count \ b_count \ c_count are hashed.

11.3.2 The multiplication method

multiply the key k by a constant A in the range 0 < A < 1 and extract the fractional part of kA. Then, we multiply this value by m and take the floor of the result.

$$h(k) = \lfloor m(kA \mod 1) \rfloor$$
where $kA \mod 1 = kA - \lfloor kA \rfloor$

Suggestion:

choose
$$m = 2^p$$
, $A = \frac{\sqrt{5} - 1}{2}$

Example:

$$k = 123456, p = 14, m = 2^{14} = 16384,$$

$$A = \frac{s}{2^{32}} = \frac{\sqrt{5} - 1}{2} \approx 0.61803 \dots , s = 2654435769$$

$$k \times s = 327706022297664 = (76300 \times 2^{32}) + 17612864$$

$$r_1 = 76300, \qquad r_0 = 17612864$$

The 14 most important bits of r_0 yield the value h(k) = 67

Chapter 11

A weakness of hashing

- Problem: For any hash function h, a set of keys exists that can cause the average access time of a hash table to skyrocket.
 - An adversary can pick all keys from {k ∈ U : h (k) = i} for some slot i.
- IDEA: Choose the hash function at random, independently of the keys.
 - Even if an adversary can see your code, he or she cannot find a bad set of keys, since he or she doesn't know exactly which hash function will be chosen.

11.3.3 Universal hashing

 Choose the hash function randomly in a way that is independent of the keys that actually going to be stored.

11.3.3 Universal hashing

■ Definition. Let U be a universe of keys, and let \mathcal{H} be a finite collection of hash functions, each mapping U to $\{0, 1, ..., m-1\}$. We say \mathcal{H} is universal if for all x, y ∈ U, where x ≠ y, we have $|\{h \in \mathcal{H} : h(x) = h(y)\}| = |\mathcal{H}|/m$.

That is, the chance of a collision between x and y is 1/m if we choose h $|\mathcal{H}|$ randomly from \mathcal{H} .

Chapter 11

Universality is good

Theorem. Let h be a hash function chosen (uniformly) at random from a universal set H of hash functions. Suppose h is used to hash n arbitrary keys into the m slots of a table T. Then, for a given key x, we have

E[#collisions with x] < n / m.</p>

Proof of theorem

• Proof. Let C_x be the random variable denoting the total number of collisions of keys in T with x, and let

•
$$C_{xy} = \begin{cases} 1 & \text{if h (x) = h(y),} \\ 0 & \text{otherwise} \end{cases}$$

Note: $E\left[c_{xy}\right] = 1/m \text{ and } C_x = \sum_{y=T-\{x\}} C_{xy}$

Proof.

$$E[C_x] = E \begin{bmatrix} \sum_{y \in T - \{x\}} c_{xy} \\ = \sum_{y \in T - \{x\}} E[c_{xy}] \\ y \in T - \{x\} \end{bmatrix}$$

$$= \sum_{y \in T - \{x\}} 1/m$$

$$= \frac{n-1}{m} \cdot \square$$

- Take expectation of both sides.
- Linearity of expectation.
- $\bullet E[c_{xy}] = 1/m.$

• Algebra.

Constructing a set of universal hash functions

- Let m be prime. Decompose key k into r + 1 digits, each with value in the set $\{0, 1, ..., m-1\}$. That is, let $k = \langle k_0, k_1, ..., k_r \rangle$, where $0 \le k_i < m$.
- Randomized strategy:
 - Pick $a = \langle a_0, a_1, ..., a_r \rangle$ where each a_i is chosen randomly from $\{0, 1, ..., m-1\}$.

Define
$$h_a(k) = \sum_{i=0}^{r} a_i k_i \mod m$$
. Dot product, modulo m

How big is $\mathcal{H} = \{h_a\}$? $|\mathcal{H}| = m^{r+1}$. \leftarrow REMEMBER THIS!

Universality of dot-product hash functions

- Theorem. The set $\mathcal{H} = \{h_a\}$ is universal.
- Proof. Suppose that $x = \langle x_0, x_1, ..., x_r \rangle$ and $y = \langle y_0, y_1, ..., y_r \rangle$ be distinct keys. Thus, they differ in at least one digit position, without the loss of generality, position 0. For how many $h_a \in \mathcal{H}$ do x and y collide?
- We must have $h_a(x) = h_a(y)$, which implies that

$$\sum_{i=0}^{r} a_i x_i \equiv \sum_{i=0}^{r} a_i y_i \qquad (mod \ m)$$

Universality of dot-product hash functions

$$\sum_{i=0}^{r} a_i x_i \equiv \sum_{i=0}^{r} a_i y_i \qquad (mod \ m)$$

$$\sum_{i=0}^{r} a_i(x_i - y_i) \equiv 0 \qquad (mod \ m)$$

$$a_0(x_0-y_0) \equiv -\sum_{i=1}^r a_i(x_i-y_i)$$
 (mod m)

Fact from number theory

Theorem. Let m be prime. For any $z \in \mathbb{Z}_m$ such that $z \neq 0$, there exists a unique $z^{-1} \in \mathbb{Z}_m$ such that

$$z \cdot z^{-1} \equiv 1 \pmod{m}$$
.

Example: m = 7.

z^{-1}	1	2	3	4	5	6
z^{-1}	1	4	5	2	3	6

Back to proof

We have

$$a_0(x_0 - y_0) \equiv -\sum_{i=1}^r a_i(x_i - y_i)$$
 (mod m)

and since $x_0 \neq y_0$, an inverse $(x_0 - y_0)^{-1}$ must exist, which implies that

$$a_0 \equiv \left(-\sum_{i=1}^r a_i(x_i - y_i)\right) (x_0 - y_0)^{-1} \pmod{m}$$

■ Thus, for any choices of $a_1, a_2, ..., a_r$, exactly one choice of a_0 causes x and y to collide.

Back to proof

- Q. How many h_a 's cause x and y to collide?
- A. There are m choices for each of $a_1, a_2, ..., a_r$, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

$$a_0 = \left(-\sum_{i=1}^r a_i(x_i - y_i)\right) (x_0 - y_0)^{-1} \pmod{m}$$

■ Thus, the number of h's that cause x and y to collide is $m^r \cdot 1 = |\mathcal{H}|/m$

11.4 Open addressing

- (All elements are stored in the hash tables itself.)
- $h: U \times \{0,1,...,m-1\} \rightarrow \{0,1,...,m-1\}.$

With open addressing, we require that for every key k, the **probe sequence** $\langle h(k,0),h(k,1),...,h(k,m-1)\rangle$

be a permutation of $\{0,1,...,m\}$.

Chaining: insert itemB with h(itemB)=0

Open Addressing: insert itemB with h(itemB,0)=0

HASH_INSERT(T,k)

```
1 i \leftarrow 0
2 repeat j \leftarrow h(k, i)
       if T[j] = NIL
            then T[j] \leftarrow k
                        return j
            else i \leftarrow i + 1
       until i = m
8 error "hash table overflow"
```

HASH_SEARCH(T,k)

```
1 i ← 0
2 repeat j ← h(k, i)
3     if T[j] = k
4     then return j
5     i ← i + 1
6 until T[j] = NIL or i = m
7 return NIL
```

Linear probing:

$$h(k,i) = (h'(k)+i) \mod m$$

It suffers the primary clustering problem.

$h'(k)=k \mod m$ $h(k, i)=(h'(k)+i) \mod m$ $=((k \mod m) + i) \mod m$ now, m=8, k=2 $h(2, i)=(2+i) \mod 8$ for $i = 0 \sim 7$, $h(2, i) = \{2, 3, 4, 5, 6, 7, 0, 1\}$

Linear Probing:

Quadratic probing:

$$h(k,i) = (h(k) + c_1 i + c_2 i^2) \mod m$$

 $c_1, c_2 \neq 0$

- It suffers the secondary clustering problem (h(k₁)=h(k₂),k₁≠k₂).
- Note that not all c₁, c₂, and m can produce the permutation of {0,1,...,m−1}

Quadratic probing:

•
$$c_1 = c_2 = 0.5$$
, $m = 2^p$
 $h(k,i) = (h(k) + c_1 i + c_2 i^2) \mod m$

- The values of $c_1 i + c_2 i^2$
 - **1**, 3, 6, 10, 15, 21, 28

- If m=8, the probing sequence is
 - **1**, 3, 6, 2, 7, 5, 4

Table Table Quadratic Probing: $h(2,3)=0_0$ find empty slot! $h'(k)=k \mod m$ $h(k, i)=(h'(k)+0.5i+0.5i^2) \mod m$ h(2,0)=2 $=((k \mod m)+0.5i+0.5i^2) \mod m$ 2 18 18 h(2,1)=3now, m=8, k=23 $h(2, i)=(2+i) \mod 8$ 4 h(2,2)=5for $i = 0 \sim 7$, 5 45 $h(2, i) = \{2, 3, 5, 0, 4, 1, 7, 6\}$ 6 6

Double hashing:

$$h(k,i) = (h_1(k) + i \cdot h_2(k)) \mod m$$

Double hashing represents an improvement over linear and quadratic probing in that probe sequence are used. Its performance is more closed to uniform hashing.

$$h(k,i) = (h_1(k) + i \cdot h_2(k)) \mod m$$

Example:

$$h_1(k) = k \mod m$$

 $h_2(k) = 1 + (k \mod n)$

Insert 14

$$h_1(k) = (k \bmod 13) = 1$$

 $h_2(k) = 1 + (k \bmod 11) = 4$

$$h(k,i) = (5, 9, 0, 4, 8,...)$$

Analysis of open-address hash

Theorem 11.6

• Given an open-address hash-table with load factor $\alpha = n/m < 1$, the expected number of probes in an unsuccessful search is at most $1/(1-\alpha)$ assuming uniform hashing.

Example:

$$\alpha = 0.5 \qquad \frac{1}{1 - \alpha} = 2$$

$$\alpha = 0.9 \qquad \frac{1}{1 - \alpha} = 10$$

When a random variable X takes on values from the natural numbers $N = \{0,1, 2, ...\}$, there is a nice formula for its expectation:

$$E[X] = \sum_{i=0}^{\infty} i \Pr\{X = i\}$$

$$= \sum_{i=0}^{\infty} i (\Pr\{X \ge i\} - \Pr\{X \ge i + 1\})$$

$$= \sum_{i=1}^{\infty} \Pr\{X \ge i\}$$

since each term $\Pr\{X \ge i\}$ is added in i times and subtracted out i-1 times (except $\Pr\{X \ge 0\}$, which is added in 0 times and not subtracted out at all).

For example

$$\sum_{i=0}^{\infty} i(Pr\{X \geq i\} - Pr\{X \geq i+1\})$$

$$i = 0$$
: $0(Pr\{X \ge 0\} - Pr\{X \ge 1\})$

$$i = 1$$
: $1(Pr\{X \ge 1\} - Pr\{X \ge 2\})$

$$i = 2$$
: $2(Pr\{X \ge 2\} - Pr\{X \ge 3\})$

$$i = 3$$
: $3(Pr\{X \ge 3\} - Pr\{X \ge 4\})$

. . .

Proof.

- In an unsuccessful search, every probe but the last accesses an occupied slot that does not contain the desired key, and the last slot probed is empty.
- Define $p_i = \Pr\{\text{exactly } i \text{ probes access occupied slots}\}$ for $i = 0,1,2,..., i \le n$, and $p_i = 0$ if i > n
- The expected number of probes is $1 + \sum_{i=0}^{\infty} i p_i$
- Define $q_i = Pr\{at least i probes access occupied slots\}$

$$\sum_{i=0}^{\infty} i p_i = \sum_{i=0}^{\infty} q_i$$

The probability that the first probe accesses an occupied slot is $q_1 = \frac{n}{m}$

The second probe only if the first probe accesses an occupied slot; thus $q_1 = \frac{n}{m} \frac{n-1}{m-1}$

$$q_{i} = \frac{n}{m} \frac{n-1}{m-1} \dots \frac{n-i+1}{m-i+1} \le \left(\frac{n}{m}\right)^{i} = \alpha^{i}$$
if $1 < i < n$

 $q_i = 0$, for i > n (all sluts are occupied).

$$1 + \sum_{i=0}^{\infty} i p_i = 1 + \sum_{i=0}^{\infty} q_i \le 1 + \alpha + \alpha^2 + \dots = \frac{1}{1 - \alpha}$$

Chapter 11

Corollary 11.7

Inserting an element into an openaddress hash table with load factor α requires at most $\frac{1}{1-\alpha}$ probes on average, assuming uniform hashing.

Proof.

An element is inserted only if there is room in the table, and thus $\alpha < 1$. Inserting a key requires an unsuccessful search followed by placement of the key in the first empty slot found. Thus, the expected number of probes is $\frac{1}{100}$.

Theorem 11.8

Given an open-address hash table with load factor $\alpha < 1$, the expected number of successful search is at most $\frac{1}{\alpha} \ln \left(\frac{1}{1-\alpha} \right) + \frac{1}{\alpha}$ assuming uniform hashing and assuming that each key in the table is equally likely to be searched for.

Example:

$$\alpha = 0.5 \quad \frac{1}{\alpha} \ln \frac{1}{1-\alpha} + \frac{1}{\alpha} \approx 3.387$$

$$\alpha = 0.9 \quad \frac{1}{\alpha} \ln \frac{1}{1-\alpha} + \frac{1}{\alpha} \approx 3.670$$

Proof.

- A search for k follows the same probe sequence as followed when k was inserted.
- If k is the $(i+1)^{st}$ key inserted in the hash table, the expected number of probes made in a search for k is at

$$\operatorname{most} \frac{1}{1-\alpha} = \frac{1}{1-\frac{i}{m}} = \frac{m}{m-1}$$

Averaging over all n key in the hash table gives us the average number of probes in a successful search:

$$\frac{1}{n}\sum_{i=0}^{n-1}\frac{m}{m-i}$$

Harmonic number

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \sum_{k=1}^{n} \frac{1}{k}$$

$$ln(n) \leq H_n \leq ln(n) + 1$$

$$\frac{1}{n}\sum_{i=0}^{n-1}\frac{m}{m-i}=\frac{m}{n}\sum_{i=0}^{n-1}\frac{1}{m-i}=\frac{1}{\alpha}\left(\sum_{i=0}^{m}\frac{1}{i}-\sum_{i=0}^{n-m}\frac{1}{i}\right)$$

$$=\frac{1}{\alpha}(H_m-H_{m-n})\leq \frac{1}{\alpha}(\ln(m)+1-\ln(m-n))$$

$$=\frac{1}{\alpha}\left(\ln\left(\frac{m}{m-n}\right)+1\right)=\frac{1}{\alpha}\ln\left(\frac{1}{1-\alpha}\right)+\frac{1}{\alpha}$$

Chapter 11