

"SAPIENZA" UNIVERSITÀ DI ROMA INGEGNERIA DELL'INFORMAZIONE, INFORMATICA E STATISTICA DIPARTIMENTO DI INFORMATICA

Automi, Calcolabilità e Complessità

Appunti integrati con il libro "Introduzione alla teoria della computazione", Michael Sipser

Author Simone Bianco

Indice

In	form	azioni e Contatti	1
1		guaggi e Automi	2
	1.1	Linguaggi	2
	1.2	Determinismo	3
	1.3	Non determinismo	8
		1.3.1 Equivalenza tra NFA e DFA	10
	1.4	Linguaggi regolari	13

Informazioni e Contatti

Appunti e riassunti personali raccolti in ambito del corso di *Automi, Calcolabilità e Complessità* offerto dal corso di laurea in Informatica dell'Università degli Studi di Roma "La Sapienza".

Ulteriori informazioni ed appunti possono essere trovati al seguente link: https://github.com/Exyss/university-notes. Chiunque si senta libero di segnalare incorrettezze, migliorie o richieste tramite il sistema di Issues fornito da GitHub stesso o contattando in privato l'autore:

• Email: bianco.simone@outlook.it

• LinkedIn: Simone Bianco

Gli appunti sono in continuo aggiornamento, pertanto, previa segnalazione, si prega di controllare se le modifiche siano già state apportate nella versione più recente.

Prerequisiti consigliati per lo studio:

Apprendimento del materiale relativo al corso Progettazione di Algoritmi.

Licence:

These documents are distributed under the **GNU Free Documentation License**, a form of copyleft intended for use on a manual, textbook or other documents. Material licensed under the current version of the license can be used for any purpose, as long as the use meets certain conditions:

- All previous authors of the work must be **attributed**.
- All changes to the work must be **logged**.
- All derivative works must be licensed under the same license.
- The full text of the license, unmodified invariant sections as defined by the author if any, and any other added warranty disclaimers (such as a general disclaimer alerting readers that the document may not be accurate for example) and copyright notices from previous versions must be maintained.
- Technical measures such as DRM may not be used to control or obstruct distribution or editing of the document.

1

Linguaggi e Automi

1.1 Linguaggi

Definizione 1: Alfabeto

Definiamo come alfabeto un insieme finito di elementi detti simboli

Esempio:

- L'insieme $\Sigma = \{0, 1, x, y, z\}$ è un alfabeto
- L'insieme $\Sigma = \{0, 1\}$ è un alfabeto. In particolare, tale alfabeto viene detto **alfabeto** binario

Definizione 2: Stringa

Dato un alfabeto Σ , definiamo come **stringa di** Σ una sequenza di simboli $x_1x_2...x_n$ dove $x_1,...,x_n \in \Sigma$ e $n \in \mathbb{N}$.

In particolare, indichiamo come ε la stringa vuota

Esempio:

- Dato l'alfabeto $\Sigma = \{0,1,\mathbf{x},\mathbf{y},\mathbf{z}\},$ una stringa di Σ è 0x1yyy0

Definizione 3: Linguaggio

Dato un alfabeto Σ , definiamo come **linguaggio di** Σ , indicato come Σ^* , l'insieme delle stringhe di Σ .

In particolare, notiamo che $\varepsilon \in \Sigma^*$ per qualsiasi linguaggio Σ^*

Definizione 4: Concatenazione

Data la stringa $x := x_1 \dots x_n \in \Sigma^*$ e la stringa $y := y_1 \dots y_m \in \Sigma^*$, definiamo come **concatenazione** la seguente operazione:

$$xy = x_1 \dots x_n y_1 \dots y_n$$

Definizione 5: Potenza

Data la stringa $x \in \Sigma^*$ e dato $n \in \mathbb{N}$, definiamo come **potenza** la seguente operazione:

$$x^{n} = \begin{cases} \varepsilon & \text{se } n = 0\\ xx^{n-1} & \text{se } n > 0 \end{cases}$$

1.2 Determinismo

Definizione 6: Automa

Un **automa** è un meccanismo di controllo (o macchina) progettato per seguire automaticamente una sequenza di operazioni o rispondere a istruzioni predeterminate, mantenendo informazioni relative allo **stato** attuale dell'automa stesso ed agendo di conseguenza, **passando da uno stato all'altro**.

Esempio:

- Un sensore che apre e chiude una porta può essere descritto tramite il seguente automa, dove Chiuso e Aperto sono gli stati dell'automa e N, F, R e E sono le operazioni di transizione tra i due stati indicanti rispettivamente:
 - N: il sensore non rileva alcuna persona da entrambi i lati della porta
 - F: il sensore rileva qualcuno nel lato frontale della porta
 - R: il sensore rileva qualcuno nel lato retrostante della porta
 - E: il sensore rileva qualcuno da entrambi i lati della porta

• L'automa appena descritto è in grado di interpretare una **stringa in input** che ne descriva la sequenza di operazioni da svolgere (es: la stringa NFNNNFRR terminerà l'esecuzione dell'automa sullo stato Aperto)

Definizione 7: Deterministic Finite Automaton (DFA)

Un **Deterministic Finite Automaton (DFA)** (o Automa Deterministico a Stati Finiti) è una quintupla $(Q, \Sigma, \delta, q_0, F)$ dove:

- ullet Q è l'insieme finito degli stati dell'automa
- Σ è l'alfabeto dell'automa
- $\delta: Q \times \Sigma \to Q$ è la funzione di transizione degli stati dell'automa
- $q_0 \in Q$ è lo **stato iniziale** dell'automa
- $F \subseteq Q$ è l'insieme degli stati accettanti dell'automa, ossia l'insieme degli stati su cui, a seguito della lettura di una stringa in input, l'automa accetta la corretta terminazione

Esempio:

• Consideriamo il seguente DFA

dove:

- $-Q = \{q_1, q_2, q_3\}$ è l'insieme degli stati dell'automa
- $\Sigma = \{0,1\}$ è l'alfabeto dell'automa
- $\delta: Q \times \Sigma \rightarrow Q$ definita come

$$\begin{array}{c|cccc} \delta & q_1 & q_2 & q_3 \\ \hline 0 & q_1 & q_3 & q_2 \\ 1 & q_2 & q_2 & q_2 \end{array}$$

è la funzione di transizione degli stati dell'automa

- $-q_1$ è lo stato iniziale dell'automa
- $F=\{q_2\}$ è l'insieme degli stati accettanti

Definizione 8: Funzione di transizione estesa

Sia $D := (Q, \Sigma, \delta, q_0, F)$ un DFA. Definiamo $\delta^* : Q \times \Sigma^* \to Q$ come **funzione di transizione estesa di** D la funzione definita ricorsivamente come:

$$\left\{ \begin{array}{l} \delta^*(q,\varepsilon) = \delta(q,\varepsilon) = q \\ \delta^*(q,ax) = \delta^*(\delta(q,a),x), \ \text{dove} \ a \in \Sigma, x \in \Sigma^* \end{array} \right.$$

Definizione 9: Stringa accettata

Sia $D := (Q, \Sigma, \delta, q_0, F)$ un DFA. Data una stringa $x \in \Sigma^*$, diciamo che x è **accettata** da D se $\delta^*(q_0, x) \in F$, ossia l'interpretazione di tale stringa **termina su uno stato** accettante

Esempio:

- Consideriamo ancora il DFA dell'esempio precedente.
- La stringa 0101 è accettata da tale DFA, poiché:

$$\delta^*(q_1, 0101) = \delta^*(\delta(q_1, 0), 101) = \delta^*(q_2, 101) = \delta^*(\delta(q_2, 1), 01) = \delta^*(q_2, 01) =$$
$$= \delta^*(\delta(q_2, 0), 1) = \delta^*(q_3, 1) = \delta^*(\delta(q_3, 1), \varepsilon) = \delta^*(q_2, \varepsilon) = q_2 \in F$$

• La stringa 1010, invece, non è accettata dal DFA, poiché:

$$\delta^*(q_1, 1010) = \delta^*(q_2, 010) = \delta^*(q_3, 10) = \delta^*(q_2, 0) = \delta^*(q_3, \varepsilon) = q_3 \notin F$$

Definizione 10: Linguaggio di un DFA

Sia $D := (Q, \Sigma, \delta, q_0, F)$ un DFA. Definiamo come **linguaggio di** D, indicato come L(D), l'insieme di stringhe accettate da D

$$L(D) = \{ x \in \Sigma^* \mid \delta^*(q_0, x) \in F \}$$

Inoltre, diciamo che D riconosce L(D)

Esempi:

1. • Consideriamo il seguente DFA D

• Il linguaggio riconosciuto da tale DFA corrisponde a

$$L(D) = \{x \in \{0,1\}^* \mid x := y1, \exists y \in \{0,1\}^*\}$$

ossia al linguaggio composto da tutte le stringhe terminanti con 1

2. • Consideriamo il seguente linguaggio

$$L = \{x \in \{0, 1\}^* \mid 1y, \exists y \in \{0, 1\}^*\}$$

• Un DFA in grado di riconoscere tale linguaggio corrisponde a

3. • Consideriamo il seguente linguaggio

$$L = \{x \in \{0, 1\}^* \mid w_H(x) \ge 3\}$$

dove w_H è il **peso di Hamming** (ossia $w_H(x) =$ numero di "1" in x)

• Un DFA in grado di riconoscere tale linguaggio corrisponde a

4. • Consideriamo il seguente linguaggio

$$L = \{x \in \{0, 1\}^* \mid 0^n 1, n \in \mathbb{N} - \{0\}\}\$$

 $\bullet\,$ Un DFA in grado di riconoscere tale linguaggio corrisponde a

Definizione 11: Configurazione di un DFA

Sia $D:=(Q,\Sigma,\delta,q_0,F)$ un DFA. Definiamo la coppia $(q,x)\in Q\times \Sigma^*$ come configurazione di D

Definizione 12: Passo di computazione

Definiamo come passo di computazione la relazione binaria definita come

$$(p, ax) \vdash_D (q, x) \iff \delta(p, a) = q$$

Definizione 13: Computazione deterministica

Definiamo una computazione come **deterministica** se ad ogni passo di computazione segue un'unica configurazione:

$$\forall (q, ax) \ \exists !(p, x) \mid (q, ax) \vdash_D (p, x)$$

Proposizione 1: Chiusura del passo di computazione

Sia $D := (Q, \Sigma, \delta, q_0, F)$ un DFA. La **chiusura riflessiva e transitiva** di \vdash_D , indicata come \vdash_D^* , gode delle seguenti proprietà:

- $\bullet \ (p,ax) \vdash_D (q,x) \implies (p,ax) \vdash_D^* (q,x)$
- $\forall q \in Q, x \in \Sigma^* \ (q, x) \vdash_D^* (q, x)$
- $\bullet \ (p,aby) \vdash_D (q,by) \land (q,by) \vdash_D (r,y) \implies (p,aby) \vdash_D^* (r,y)$

Osservazione 1

Sia $D := (Q, \Sigma, \delta, q_0, F)$ un DFA. Dati $q_i, q_f \in Q, x \in \Sigma^*$, si ha che

$$\delta^*(q_i, x) = q_f \iff (q_i, x) \vdash_D^* (q_f, \varepsilon)$$

(dimostrazione omessa)

1.3 Non determinismo

Definizione 14: Alfabeto epsilon

Dato un alfabeto $\Sigma,$ definiamo $\Sigma_\varepsilon=\Sigma\cup\{\varepsilon\}$ come alfabeto epsilon di Σ

Definizione 15: Non-deterministic Finite Automaton (NFA)

Un Non-deterministic Finite Automaton (NFA) (o Automa Non-deterministico a Stati Finiti) è una quintupla $(Q, \Sigma, \delta, q_0, F)$ dove:

- ullet Q è l'insieme finito degli stati dell'automa
- Σ è l'alfabeto dell'automa
- $\delta:Q\times\Sigma_{\varepsilon}\to\mathcal{P}(Q)$ è la funzione di transizione degli stati dell'automa
- $q_0 \in Q$ è lo **stato iniziale** dell'automa
- $F \subseteq Q$ è l'insieme degli stati accettanti dell'automa

Nota: $\mathcal{P}(Q)$ è l'insieme delle parti di Q, ossia l'insieme contenente tutti i suoi sottoinsiemi possibili

Esempio:

• Consideriamo il seguente NFA

dove:

- $-\ Q = \{q_1, q_2, q_3\}$ è l'insieme degli stati dell'automa
- $-\Sigma_{\varepsilon} = \{\varepsilon,\}$ è l'alfabeto dell'automa
- $-\delta: Q \times \Sigma \to Q$ definita come

$$egin{array}{c|cccc} \delta & q_1 & q_2 & q_3 \\ \hline arepsilon & \{q_3\} & arnothing & arnothing \\ \mathbf{a} & arnothing & \{q_2,q_3\} & \{q_1\} \\ \mathbf{b} & \{q_2\} & \{q_3\} & arnothing \end{array}$$

è la funzione di transizione degli stati dell'automa

- $-q_1$ è lo stato iniziale dell'automa
- $-F = \{q_1\}$ è l'insieme degli stati accettanti

Proposizione 2: Stringa accettata in un NFA

Sia $N := (Q, \Sigma_{\varepsilon}, \delta, q_0, F)$ un NFA. Data una stringa $x := x_0 \dots x_k \in \Sigma_{\varepsilon}^*$, diciamo che x è **accettata** se esiste una sequenza di stati $r_0, r_1, \dots, r_k \in Q$ tali che:

- $r_0 = q_0$
- $\forall i \in [0, k] \ r_{i+1} \in \delta(r_i, x_0)$
- $r_m \in F$

Osservazione 2: Computazione in un NFA

Sia $N := (Q, \Sigma, \delta, q_0, F)$ un NFA. Data una stringa $x \in \Sigma_{\varepsilon}$ in ingresso, la **computazione** viene eseguita nel seguente modo:

- Tutte le volte che uno stato potrebbe avere più transizioni per diversi simboli dell'alfabeto, l'automa N si duplica in **più copie**, ognuna delle quali segue il suo corso. Si vengono così a creare più **rami di computazione** indipendenti che sono eseguiti in **parallelo**.
- Se il prossimo simbolo della stringa da computare non si trova su nessuna delle transizioni uscenti dello stato attuale di un ramo di computazione, l'intero ramo termina la sua computazione (terminazione incorretta).
- Se almeno una delle copie di N termina correttamente su uno stato di accettazione, l'automa accetta la stringa di partenza.
- Quando a seguito di una computazione ci si ritrova in uno stato che possiede un ε -arco in uscita, la macchina si duplica in più copie: quelle che seguono gli ε -archi e quella che rimane nello stato raggiunto.

Esempio:

• Consideriamo il seguente NFA

• Supponiamo che venga computata la stringa x = 1010:

 \bullet Poiché esiste un ramo che termina correttamente, l'NFA descritto accetta la stringa x = 1010

1.3.1 Equivalenza tra NFA e DFA

Definizione 16: Classe dei linguaggi riconosciuti da un DFA

Dato un alfabeto Σ , definiamo come classi dei linguaggi riconosciuti da un DFA il seguente insieme:

$$\mathcal{L}(DFA) = \{ L \subseteq \Sigma^* \mid \exists DFA \ D \text{ t.c } L = L(D) \}$$

Definizione 17: Classe dei linguaggi riconosciuti da un NFA

Dato un alfabeto Σ , definiamo come classi dei linguaggi riconosciuti da un NFA il seguente insieme:

$$\mathcal{L}(NFA) = \{ L \subseteq \Sigma_{\varepsilon}^* \mid \exists NFA \ N \text{ t.c } L = L(N) \}$$

Teorema 1: Equivalenza tra NFA e DFA

Date le due classi di linguaggi $\mathcal{L}(DFA)$ e $\mathcal{L}(NFA)$, si ha che:

$$\mathcal{L}(DFA) = \mathcal{L}(NFA)$$

Dimostrazione.

Prima implicazione.

- Dato $L \in \mathcal{L}(DFA)$, sia $D := (Q, \Sigma, \delta, q_0, F)$ il DFA tale che L = L(D)
- Poiché il concetto di NFA è una generalizzazione del concetto di DFA, ne segue automaticamente che D sia anche un NFA, implicando che $L \in \mathcal{L}(NFA)$ e di conseguenza che:

$$\mathcal{L}(DFA) \subseteq \mathcal{L}(NFA)$$

Seconda implicazione.

- Dato $L \in \mathcal{L}(NFA)$, sia $N := (Q_N, \Sigma_{\varepsilon}, \delta_N, q_{0_N}, F_N)$ il NFA tale che L = L(N)
- Consideriamo quindi il DFA $D:=(Q_D, \Sigma, \delta_D, q_{0_D}, F_D)$ costruito tramite N stesso:
 - $-Q_D = \mathcal{P}(Q_N)$
 - Dato $R \in Q_D$, definiamo l'estensione di R come:

 $E(R) = \{ q \in Q_N \mid q \text{ è raggiungibile in } N \text{ da } q' \in R \text{ tramite } k \geq 0 \text{ } \varepsilon\text{-archi} \}$

- $q_{0_D} = E(\{q_{0_N}\})$
- $F_D = \{ R \in Q_D \mid R \cap F_N \neq \emptyset \}$
- Dati $R \in Q_D$ e $a \in \Sigma$, definiamo δ_D come:

$$\delta_D = (R, a) = \bigcup_{r \in R} E(\delta_N(r, a))$$

• A questo punto, per costruzione stessa di *D* si ha che:

$$x \in L = L(N) \iff x \in L(D)$$

implicando dunque che $L \in \mathcal{L}(DFA)$ e di conseguenza che:

$$L \in \mathcal{L}(NFA) \subseteq \mathcal{L}(DFA)$$

Osservazione 3

Dato un NFA N, seguendo i passaggi della dimostrazione precedente è possibile definire un DFA D equivalente ad N

Esempio:

• Consideriamo ancora il seguente NFA

• Definiamo quindi l'insieme degli stati del DFA equivalente a tale NFA:

$$Q_D = \{\emptyset, \{q_1\}, \{q_2\}, \{q_3\}, \{q_1, q_2\}, \{q_2, q_3\}, \{q_1, q_3\}, \{q_1, q_2, q_3\}\} = \{\emptyset, q_1, q_2, q_3, q_{1,2}, q_{2,3}, q_{1,3}, q_{1,2,3}\}$$

• A questo punto, lo stato iniziale sarà $q_{0_D}=E(\{q_{0_N}\})=E(\{q_1\})=\{q_1,q_3\}=q_{1,3},$ mentre gli stati accentanti saranno:

$$F_D = \{\{q_1\}, \{q_1, q_2\}, \{q_1, q_3\}, \{q_1, q_2, q_3\}\} = \{q_1, q_{1,2}, q_{1,3}, q_{1,2,3}\}$$

• Le transizioni del DFA corrisponderanno invece a:

$$- \delta_{D}(\{q_{1}\}, a) = E(\delta_{N}(q_{1}), a) = \varnothing$$

$$- \delta_{D}(\{q_{1}\}, b) = E(\delta_{N}(q_{1}), b) = \{q_{2}\} = q_{2}$$

$$- \delta_{D}(\{q_{2}\}, a) = E(\delta_{N}(q_{2}), a) = \{q_{2}, q_{3}\} = q_{2,3}$$

$$- \delta_{D}(\{q_{2}\}, b) = E(\delta_{N}(q_{2}), b) = \{q_{2}\} = q_{2}$$

$$- \delta_{D}(\{q_{1}, q_{2}\}, a) = E(\delta_{N}(q_{1}, a)) \cup E(\delta_{N}(q_{2}, a)) = \varnothing \cup \{q_{2}, q_{3}\} = \{q_{2}, q_{3}\} = q_{2,3}$$

$$- \delta_{D}(\{q_{1}, q_{2}\}, b) = E(\delta_{N}(q_{1}, b)) \cup E(\delta_{N}(q_{2}, b)) = \{q_{2}\} \cup \{q_{3}\} = \{q_{2}, q_{3}\} = q_{2,3}$$

$$- \dots$$

• Il DFA equivalente corrisponde dunque a:

1.4 Linguaggi regolari

Definizione 18: Linguaggi regolari

Dato un linguaggio Σ^* , definiamo come **insieme dei linguaggi regolari di** Σ^* , indicato con REG, l'insieme delle classi dei linguaggi riconosciuti:

$$REG := \mathcal{L}(DFA) = \mathcal{L}(NFA)$$

Proposizione 3: Operazioni sui linguaggi

Dati due linguaggi $L_1, L_2 \subseteq \Sigma^*$, definiamo le seguenti operazioni:

• Operatore unione:

$$L_1 \cup L_2 = \{x \in \Sigma^* \mid x \in L_1 \lor x \in L_2\}$$

• Operatore intersezione:

$$L_1 \cap L_2 = \{ x \in \Sigma^* \mid x \in L_1 \land x \in L_2 \}$$

• Operatore complemento:

$$\neg L_1 = \{ x \in \Sigma^* \mid x \notin L_1 \}$$

• Operatore concatenazione:

$$L_1 \circ L_2 = \{xy \in \Sigma^* \mid x \in L_1, x \in L_2\}$$

• Operatore potenza:

$$L_1^n = \left\{ \begin{array}{ll} \{\varepsilon\} & \text{se } n = 0 \\ L_1 \circ L_1^{n-1} & \text{se } n > 0 \end{array} \right.$$

• Operatore star:

$$L_1^* = \{x_1 \dots x_k \in \Sigma^* \mid k \ge 0, \forall i \in [1, k] \ x_i \in L_1\} = \bigcup_{n \ge 0} L^n$$

Teorema 2: Chiusura dell'unione in REG

L'operatore unione è **chiuso in** *REG*, ossia:

$$\forall L_1, L_2 \in REG \ L_1 \cup L_2 \in REG$$

Dimostrazione.

• Dati due linguaggi $L_1, L_2 \in REG$, siano $D_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ e $D_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ i due DFA tali che:

$$L_1 = L(D_1) \qquad L_2 = L(D_2)$$

- Definiamo quindi il DFA $D = (Q, \Sigma, \delta, q_0, F)$ tale che:
 - $Q = Q_1 \times Q_2 = \{ (r_1, r_2) \mid r_1 \in Q_1, r_2 \in Q_2 \}$
 - $\forall (r_1, r_2) \in Q, a \in \Sigma \text{ si ha che } \delta((r_1, r_2), a) = (\delta(r_1, a), \delta(r_2, a))$
 - $F = \{(r_1, r_2) \mid r_1 \in F_1 \lor r_2 \in F_2\} = (F_1 \times Q_2) \cup (Q_1 \times F_2)$
- A questo punto, per costruzione stessa di D ne segue che:

$$x \in L_1 \cup L_2 \iff D(x) \in F \iff x \in L(D)$$

da cui concludiamo che:

$$L_1 \cup L_2 = L(D) \implies L_1 \cup L_2 \in REG$$

Teorema 3: Chiusura dell'intersezione in REG

L'operatore intersezione è **chiuso in** REG, ossia:

$$\forall L_1, L_2 \in REG \ L_1 \cap L_2 \in REG$$

Dimostrazione.

• Dati due linguaggi $L_1, L_2 \in REG$, siano $D_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ e $D_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ i due DFA tali che:

$$L_1 = L(D_1)$$
 $L_2 = L(D_2)$

- Definiamo quindi il DFA $D = (Q, \Sigma, \delta, q_0, F)$ tale che:
 - $Q = Q_1 \times Q_2 = \{(r_1, r_2) \mid r_1 \in Q_1, r_2 \in Q_2\}$
 - $\forall (r_1, r_2) \in Q, a \in \Sigma \text{ si ha che } \delta((r_1, r_2), a) = (\delta(r_1, a), \delta(r_2, a))$
 - $F = \{(r_1, r_2) \mid r_1 \in F_1 \land r_2 \in F_2\} = F_1 \times F_2$
- A questo punto, per costruzione stessa di D ne segue che:

$$x \in L_1 \cap L_2 \iff D(x) \in F \iff x \in L(D)$$

da cui concludiamo che:

$$L_1 \cap L_2 = L(D) \implies L_1 \cap L_2 \in REG$$