ANOVA

ANALYSIS OF VARIANCE

-> extension of z-test & t- test

ANOVA:

One Way ANOVA

Q1: To assess the significance of possible variation in performance in a certain test between the convent schools of a city, a common test was given to a number of students taken at a random from the 5th class of the 3 schools concerned. The result is given as follows:

J			
A_	В	C	1
9 7	13 7	14 7	
11 _	12	13	
13 - 5-1	10 1 5-1 =4	17 55-1 _4	
9	15	7	ラレン
8	5 🗝	9	

Make the Analysis of Variance of the given data. (Null Hypo: No Significance Variation in the schools).

Solution:

Null Hypothesis = No variation between schools Alt. Hypothesis = There is variation between schools

Source of Variation	Sum of Square	Degrees of freedom	Mean Square	F
Between the Sample	SSC	$\frac{(c-1)}{2} = 2$	MSC = SSC/df1	F = MSC/MSE
Within the sample	SSE	(n-c) = 12	MSE = SSE/df2	

degrees of freedom (df1)
$$= C-1$$

$$= C-1$$

$$= C-1$$

$$= (S-1)+(S-1)+(S-1)$$

$$= (S-3)$$

$$= N-C$$

$$= N-C$$

$$= columns$$

$$\vec{X}_A = 10$$

$$\vec{X}_B = 11$$

$$\vec{X}_C = 12$$

$$\bar{\chi}_{A} - \bar{\chi} (\bar{\chi}_{A} - \bar{\chi})^{2}$$

$$(\bar{x}_{-g}x)$$
 $\bar{x}_{-g}\bar{x}$

$$\frac{SSC}{\bar{\chi}_{A} - \bar{\chi}} (\bar{\chi}_{A} - \bar{\chi})^{2} \qquad \bar{\chi}_{B} - \bar{\chi} (\chi_{B} - \bar{\chi})^{2} \qquad \chi_{C} - \bar{\chi} (\chi_{C} - \bar{\chi})^{2}$$

0

$$MSC = \frac{SSC}{df_1} = \frac{10}{2} = S$$

$$A - \overline{\lambda}_A \qquad (A - \overline{\lambda}_A)^2$$

$$df_2 = n - c = 15 - 3$$

$$F_{cd} = \frac{MSC}{MSE} = \frac{5}{11.5} = 0.435$$
 $F_{tab}, Df_1(y_1) = 2$
 $Df_2(y_2) = 12$
 $F_{tab} = 3.89$

$$f_{tab}$$
, $Df_1(V_1) = 2$
 $Df_2(V_2) = 12$
 $f_{tab} = 389$

Compare Frato with feal

2-WAY AVOVA

The following data represents the number of Units of Tablet production (in thousands) per day by five different technicians by using 4 different machines.

- a. Tell whether the mean productivity of the different machines are same?
- b. Test whether the 5 technicians differ w.r.t. the mean productivity?

Machines	Α	В	С	D
Technicians				
Р	54	48	57	46
Q	56	50	62 ~	53
R	44 ~	46 /	54	42~
S	53	48	56	44
T	48	52	59	48

Source of Variance	Sum of	Degree of	Mean sum of	F
	Squares	Freedom	squares	
Between the	SSC_338.8	df = c-1 4-1 = = 3	MSC= SSC/(c-	MSC/MSE
columns	· ·		1) =	5
Between the rows	SSR = (df = r-1	MSR = SSR/(r-	MSR/MSE
Residual Errors	SSE_67.2	df = (c-1)(r-1)	MSE =	
Trooladar Erroro	264.0	= 3×4=12		
Total Sum of	SST_C61	df = n-1		
Square	> > 0	*		

$$MSC = \frac{3388}{3} = 112.93$$

$$MSR = 158/4 = 39.5$$

$$Mid_{value} = 50$$
value

K
$$74^{-50} = 6$$
 $76^{-5} = -7$
S $53^{-50} = 3$ $48^{-50} = -2$ $56^{-50} = 6$ $44^{-50} = -6$ $1 = 25$
T $48^{-50} = 3$ $52^{-50} = 2$ $59^{-50} = 9$ $48^{-50} = -2$ $30^{-50} = -2$ 30

Extlored Correction factor =
$$(GT)^2 = \frac{20^2}{N} = \frac{20^2}{20} = 20$$

$$\frac{SSC}{n_{A}} \Rightarrow \frac{(\Xi A)^{2}}{n_{A}} + \frac{(\Xi B)^{2}}{n_{B}} + \frac{(\Xi C)^{2}}{n_{C}} + \frac{(\Xi D)^{2}}{n_{D}} - \frac{\text{correction}}{\text{factor}}$$

$$\Rightarrow \frac{(5)^{2}}{5} + \frac{(-6)^{2}}{5} + \frac{(30)^{2}}{5} + \frac{(-(7)^{2} - \frac{10^{2}}{20})^{2}}{5}$$

$$\Rightarrow 338.8$$

$$\frac{SSR}{np} \Rightarrow \frac{(\Xi P)^{2}}{np} + \frac{(\Xi Q)^{2}}{nq} + \frac{(\Xi R)^{2}}{nq} + \frac{(\Xi S)^{2}}{nq} + \frac{(\Xi S)^{2}}{nq}$$

$$=) \quad 4^{2} + 6^{2} + (-6)^{2} + -- - - + (-6)^{2} + (6)^{2} - \frac{20^{2}}{20}$$

X=0.05

$$df_1 = 91 = 3$$
 $f_{+ab} = 3.49$
 $df_2 = 92 = 12$

$$df_1 = \Im 1 = 4$$
 $F_{+ab} = 3.26$ $df_2 = \Im 2 = 12$