Minh Nguyen

4/2/2014

CS 225

Asn 1.3: 8, 14, 16, 20, 37

- a) Kwame will neither take a job in industry nor go to graduate school.
 - b) Either Yoshiko doesn't know Java or he doesn't know calculus.
 - c) James is not young or he is not strong.
 - d) Rita will neither move to Oregon nor Washington.

14)
$$(\neg p \land (p --> q)) --> \neg q$$

$$== (\neg p \land (\neg p \lor q)) \longrightarrow \neg q \qquad \text{ex. 3}$$

$$== \neg (\neg p \land (\neg p \lor q)) \lor \neg q \qquad \text{ex. 3}$$

$$== (\neg (\neg p) \lor \neg (\neg p \lor q)) \lor \neg q \qquad \text{1st De Morgan law}$$

$$== (p \lor (\neg (\neg p \lor q)) \lor \neg q \qquad \text{double negation law}$$

$$== (p \lor (\neg (\neg p) \land \neg q)) \lor \neg q \qquad \text{2nd De Morgan law}$$

$$== (p \lor (p \land \neg q)) \lor \neg q \qquad \text{double negation law}$$

$$== p \lor \neg q \qquad \text{1st absorption law}$$

Truth value of p $^{\vee}$ $\neg q$ is either T or F, so $(\neg p \land (p --> q)) --> \neg q$ is not tautological

16) show that p <-->q and (p ^ q) \vee (¬p ^ ¬q) are equivalent.

р	q	P <> q	(p^q)	¬р	¬q	(¬p ^ ¬q)	(p ^ q) \(\backsqr p ^ \sqr)
Т	Т	T	T	F	F	F	Т
Т	F	F	F	F	T	F	F
F	Т	F	F	Т	F	F	F
F	F	Т	F	Т	Т	Т	Т

p <--> q is logical equivalence of (p ^ q) $^{\vee}$ (¬p ^ ¬q) as they have the same truth values.

р	q	рФq	¬(р Ф q)
Т	Т	F	Т
Т	F	Т	F
F	Т	T	F
F	F	F	Т

р	Q	p -> q	q -> p	p<>q
T	Т	T	T	Т
Т	F	F	T	F
F	Т	Т	F	F
F	F	Т	T	T

They are logically equivalent as they have the same truth values.

32) show that $(p \land q) \rightarrow r$ and $(p \rightarrow r) \land (q \rightarrow r)$ are NOT equivalent.

table for $(p ^q) \rightarrow r$

р	q	r	p ^ q	(p ^ q) -> r
Т	Т	Т	Т	T
Т	Т	F	T	F
Т	F	Т	F	T
Т	F	F	F	Т
F	Т	Т	F	Т
F	Т	F	F	Т
F	F	Т	T	Т
F	F	F	T	F

table for $(p \rightarrow r) \land (q \rightarrow r)$

р	q	r	p -> r	q->r	(p -> r) ^ (q -> r)
Т	Т	Т	Т	Т	Т
Т	Т	F	F	F	Т
Т	F	Т	Т	Т	Т
Т	F	F	F	Т	F
F	Т	Т	Т	Т	Т
F	Т	F	Т	F	F
F	F	Т	Т	Т	Т
F	F	F	Т	Т	Т

that (p ^ q) -> r $\,$ and (p -> r) ^ (q -> r) are not equivalents $\,$ as they do not have the same truth values.