Computational Neuroscience: Inhibitory-Stabilised Networks

B204511

November 2024

1 Introduction

Several brain regions, including the neocortex and hippocampus [5] contain local recurrently connected networks of excitatory and inhibitory neurons. Understanding how those networks function and react to external inputs is important for analysing how the brain operates. This report will introduce the concept of such networks, discuss their biological relevance, present a mathematical model, and provide computer simulations as well as mathematical analysis of the model.

The network is viewed as consisting of 2 pools of neurons: excitatory and inhibitory. Each pool projects to the other, and to itself, forming a recurrent neural network. Excitatory feedback can lead to runaway excitation, which is prevented by the inhibitory feedback. This allows the network to stabilise, earning it the name Inhibitory-Stabilised Network (ISN).

To understand how the system comes together, it is important to get a sense of what the underlying model of each individual nueron is and how the interaction between them integrates.

1.1 Leaky Integrate-and-Fire Neuron

In 1907, Louis Édouard Lapicque [2] introduced the concept of the integrate-and-fire neuron model. Even though the model was developed before scientists had a chance to describe the biophysical mechanics of the neuron, it captured the behaviour of the neuron in a way that was useful for understanding [1].

The neuron is viewed as an electric circuit with a capacitor and a resistor connected in parallel. The membrane has some resistance, which is assumed to be constant and can be described by Ohm's law: V = IR, and therefore the

resistor current is $I=\frac{V}{R}=gV$, where g is conductance of the cell. The relationship between the current and the voltage across the capacitor is described by the following equation: $C=\frac{Q}{V}$, where C is the capacitance, Q is the charge stored in the capacitor, and V is the voltage across the capacitor. Knowing this, the current in the circuit:

$$I = \frac{dQ}{dt} = \frac{dCV}{dt} = C\frac{dV}{dt}$$

Real neurons, however, receive current from other neurons via dendrites from synapses, and induce own **ionic** current by letting charged particles in and out of the cell. Therefore, the total current is the sum of the ionic current plus any external input: $I = \sum_i g_i V + I_{ext} = g_m V + I_{ext}$. Neurons are generally **negatively charged** relative to the outside, and therefore the flow outside the cell is treated as positive. Since the size of the cell and its channels is comparable to that of ions, effect of electric attraction is comparable with that of diffusion, and there exists a point, where one balances out the other, resulting in the zero net current flow. This point is called the resting potential V_{rest} of the neuron, and therefore any current should be measured relative to this potential.

$$C\frac{dV}{dt} = -g_m(V - V_{\text{rest}}) + I_{\text{ext}}$$

Dividing by conductance, we get the following equation:

$$\tau_m \frac{dV}{dt} = -(V - V_{\text{rest}}) + \frac{I_{\text{ext}}}{g_m}$$

where τ_m is the membrane time constant, describing how quickly it reacts to input.

Now, the external current is the component of interest, by extending this component, we can integrate input from other neurons. Neurons communicate by sending electrical signals to each other, via the synapse of emitting through the dendrites of the receiving neuron. This interaction can be modelled as a synpatic current, weighted by the strength of connection. Dale's Law[3] states that a neuron can only be either excitatory or inhibitory, and therefore we can simplify the model, and approximate the synaptic current as a function of emitting neuron's voltage: $I_{\text{syn},i} = W\phi(V_i)$, where W is the synaptic weight (+ for excitatory, – for inhibitory), and $\phi(V)$ is the transfer function of the neuron. The actual external current collapses into $I_{ext}/g_m = u_{ext}$.

Combing all component, we obtain a system of equations:

$$\tau_E \frac{dV_E}{dt} = -(V_E - V_{\text{rest}}) + W_{EE}\phi(V_E) - W_{EI}\phi(V_I) + u_E \quad (1)$$

$$\tau_I \frac{dV_I}{dt} = -(V_I - V_{\text{rest}}) + W_{IE}\phi(V_E) - W_{II}\phi(V_I) + u_I \quad (2)$$

where V_{rest} is the resting potential of the neuron, W_k are the synaptic weights, u_k are the external inputs to neurons, and $\phi(V)$ is the transfer function of a neuron, that acts as a communication channel between the neurons and is defined as a ReLU function:

$$\phi(V) = \beta[V - V_0]_+ \tag{3}$$

Now that we have the model and its origins, it's important to outline the benefits and limitations of the model.

1.2 Considerations

- 1. The model abstracts away certain biological complexity, such as stochasticity and variability of individual ion channels (both in somas and synapses), described in great detail by the Hodgkin-Huxley model [4], which is a more biologically plausible model of the neuron, but is also signficantly more complex.
- 2. Synaptic weights are assumed to be constant, whereas in reality they are subject to plasticity, and can change over time. The weights themeselves are a heuristic approximation, by making which we sacrifice details of spiking patterns assuming them to be a linear function of the voltage.
- 3. The membrane time constant that comes from conductance is assumed to be constant, and relies on Ohm's law, which is a simplification of the actual behaviour of the

neuron. However, it is a good approximation for the passive dynamics of a neuron.

4. The LIF model is a lot more computationally affordable, requires 4 ODEs per neuron in the HH model, instead of 1 in the LIF model, which allows us to run large scale simulations and analyse the network behaviour faster. The model is also more amenable to theoretic analysis, which helps to explain certain activity patterns in the network.

In essence, we trade off biological accuracy for computational efficiency and analytic tractability.

2 Computer Simulations

In this section, the results of the computer simulations of the network.

3 Mathematical Analysis

4 Conclusion

Figure 1: External inhibitory input

Figure 2: External excitatory input

References

- [1] Larry F Abbott. "Lapicque's introduction of the integrate-and-fire model neuron (1907)". In: Brain research bulletin 50.5-6 (1999), pp. 303–304.
- [2] Nicolas Brunel et al. "Quantitative investigations of electrical nerve excitation treated as polarization". In: *Biological Cybernetics* 97.5-6 (2007), pp. 341–349.
- [3] Daniel H Efron. "Psychopharmacology; a Review of Progress, 1957-1967". In: (1968).
- [4] A. L. Hodgkin and A. F. Huxley. "A quantitative description of membrane current and its application to conduction and excitation in nerve". In: *The Journal of Physiology* 117.4 (1952), pp. 500–544. DOI: https://doi.org/10.1113/jphysiol.1952.sp004764.
- [5] Misha V Tsodyks et al. "Paradoxical effects of external modulation of inhibitory interneurons". In: Journal of neuroscience 17.11 (1997), pp. 4382–4388.