

SCALE 불량 요인 분석 및 개선안 도출 POSCO AI BIGDATA 아카데미 종합실습 2

A반 이무동

강판 제조공정 도중 불량품을 생산함으로써, 불량 자재를 유통할 가능성 有 불량 자재 유통에 사고 끊이지 않아, 불량 철강재 생산 문제 해결방안이 시급함 'SCALE불량'과 같은 데이터를 통해 불량 철강재와 관련된 데이터 분석 진행


```
# 데이터 구성하기
df_raw = pd.read_csv('<u>/content/sample_data/SCALE</u>불량.csv', encoding='euc-kr')
df_raw
```

'SCALE불량.CSV'를 READ 하여 데이터 구성하기

df_raw.isnull().sum()
PLATE_NO 0 ROLLING_DATE 0 SCALE 0 SPEC 0 STEEL_KIND 0 PT_THICK 0 PT_WIDTH 0 PT_WEIGHT 0 FUR_NO 0 FUR_NO_ROW 0 FUR_HZ_TEMP 0 FUR_HZ_TIME 0 FUR_SZ_TEMP 0 FUR_SZ_TIME 0 FUR_SZ_TIME 0 FUR_TIME 0 FUR_TIME

# 변수 타입 파악 ''	
df_raw.dtypes	
PLATE_NO	
ROLLING_DATE	
SCALE	
SPEC	

PLATE_NO	object
ROLLING_DATE	object
SCALE	object
SPEC	object
STEEL_KIND	object
PT_THICK	float64
PT_WIDTH	int64
PT_LENGTH	int64
PT_WEIGHT	int64
FUR_NO	object
FUR_NO_ROW	object
FUR_HZ_TEMP	int64
FUR_HZ_TIME	int 64
FUR_SZ_TEMP	int64
FUR_SZ_TIME	int64
FUR_TIME	int 64
FUR_EXTEMP	int64
ROLLING_TEMP_T5	int64
HSB	object
ROLLING_DESCALING	int 64
WORK_GR	object
dtype: object	

각 범주형 변수에 특성을 고려하여, 각각 다른 방식으로 처리 필요

결측치 존재하지 않음

PLATE_NO, ROLLING_DATE, SCALE, SPEC, STEEL_KIND, FUR_NO, FUR_NO_ROW, HSB, WORK_GR는 범주형 변수

SCALE

```
[] # SCALE 에서 '양품'이면 D, '불량' 이면 1로 데이터 변환
    df_raw['SCALE'].replace({'양품':0, '불량':1}, inplace=True)
[] # SCALE 변환 결과 간략히 확인
    df_raw['SCALE']
          0
          0
          0
          0
          0
    715
    716
    717
          0
    718
          Ο
    719
          Ο
    Name: SCALE, Length: 720, dtype: int64
```

SCALE에서 '양품' 이면 0, '불량' 이면 1로 데이터를 변환

SPEC

· FUR NO

```
[] # FUR_NO는 가열로 호기로, 이를 1,2,3 과 같은 int 형태로 바꾼다면 분석값에 혼란을 깨칠수 있으므로 따로 처리하지 않는다. df_raw['FUR_NO']

0 1호기
1 1호기
2 2호기
3 2호기
4 3호기
...
715 3호기
716 2호기
717 2호기
718 3호기
719 3호기
Name: FUR_NO, Length: 720, dtype: object
```

FUR_NO_ROW

[] # FUR_NO_ROW는 가열로 작업순번으로, 이를 1,2,3 과 같은 int 형태로 바꾼다면 분석값에 혼란을 끼칠수 있으므로 따로 처리하지 않는다. df_raw['FUR_NO_ROW']

```
0 1월
1 2월
2 1월
3 2월
4 1월
...
715 1월
716 1월
```

717 29 718 29

719

1열

Name: FUR_NO_ROW, Length: 720, dtype: object

STEEL_KIND

[] # STEEL_KIND는 강종으로 이미 분류하기 편한 상태이므로 따로 처리하지 않는다. df_raw['STEEL_KIND']

T1 T1 Τ8 Τ8 3 18 715 CO 716 CO 717 CO 718 CO 719 CO

Name: STEEL_KIND, Length: 720, dtype: object

STEEL_KIND는 강종으로 이미 분류하기 편한 상태이므로 따로 처리하지 않는다. 또한, FUR_NO, FUR_NO CROW은 각각 가열로 호기, 가열로 작업순번이므로 이를 1, 2, 3과 같은 int 형태로 바꾼다면 분석값에 혼란을 끼칠 수 있으므로 따로 처리하지 않는다.

HSB

```
[] # HSB는 Hot Scale Breaker으로 '미적용'이면 0, '적용' 이면 1로 데이터 변환 df_raw['HSB'].replace({'미적용':0, '적용':1}, inplace=True)

[] # HSB 변환 결과 간략히 확인 df_raw['HSB']

0 1
1 1
2 1
3 1
4 1
...
715 1
716 1
717 1
718 1
719 1
Name: HSB, Length: 720, dtype: int64
```

Name: WORK_GR, Length: 720, dtype: object

HSB는 Hot Scale Breaker으로 '미적용'이면 0, '적용 ' 이면 1로 데이터 변환한다. WORK_GR은 작업조이며, 이를 1,2,3, 과 같은 int 형태로 바꾼다면 분석값에 혼란을 끼칠수 있으므로 따로 처리하지 않는다.

WORK_GR

```
[] # WORK_GR은 작업조 이며, 이를 1,2,3 과 같은 int 형태로 바꾼다면 분석값에 혼란을 끼칠수 있으므로 따로 처리하지 않는다.
   df_raw['WORK_GR']
        2조
        2조
        3조
        3조
        1조
   715
        2조
   716
        1조
   717
        4조
   718
        2조
        2조
   719
```

데이터 현황

변수의 이상치 제거를 위하여 plt.figure 와 sns.boxplot 을 이용하여 이상치를 확인한다. 해당 분석 결과, [PT_THICK, PT_WIDTH, FUR_HZ_TIME, FUR_SZ_TIME, ROLLING_TEMP_T5]의 이상치를 제거한다. 데이터 현황

최종 DATA -> 목표변수 : SCALE(Scale 불량)

df_raw.isnull().sum() # 이상치 제거 df_raw.dropna(inplace=True) df_raw

	PLATE_NO	ROLLING_DATE	SCALE	SPEC	STEEL_KIND	PT_THICK	PT_WIDTH	PT_LENGTH	PT_WEIGHT	FUR_NO	 FUR_HZ_TIME	FUR_SZ_TEMP	FUR_SZ_TIME	FUR_TIME	FUR_EXTEMP	ROLLING_TEMP_T5	HSB
0	PB562774	2021-08-01:08:00:01	0	AB/EH32-TM	T1	32.25	3707.0	15109	14180	1호기	 116.0	1133	59.0	282	1125	934.0	1
1	PB562775	2021-08-01:08:07:11	0	AB/EH32-TM	T1	32.25	3707.0	15109	14180	1호기	 122.0	1135	53.0	283	1120	937.0	1
2	PB562776	2021-08-01:08:14:21	0	NV-E36-TM	T8	33.27	3619.0	19181	18130	2호기	 116.0	1121	55.0	282	1106	889.0	1
3	PB562777	2021-08-01:08:21:31	0	NV-E36-TM	T8	33.27	3619.0	19181	18130	2호기	 125.0	1127	68.0	316	1113	885.0	1
4	PB562778	2021-08-01:08:28:41	0	BV-EH36-TM	Т8	38.33	3098.0	13334	12430	3호기	 134.0	1128	48.0	314	1118	873.0	1
						•••	•••	***			 						
715	PB563502	2021-08-04:21:24:11	1	NK-KA	C0	20.14	3580.0	38639	21870	3호기	 72.0	1164	62.0	245	1155	1005.0	1
716	PB563503	2021-08-04:21:31:21	0	NV-A32	C0	15.08	3212.0	48233	18340	2호기	 61.0	1169	61.0	238	1160	947.0	1
717	PB563504	2021-08-04:21:38:31	0	NV-A32	C0	16.60	3441.0	43688	19590	2호기	 65.0	1163	77.0	247	1152	948.0	1
718	PB563505	2021-08-04:21:45:41	0	LR-A	C0	15.59	3363.0	48740	80240	3호기	 86.0	1163	45.0	243	1154	940.0	1
719	PB563506	2021-08-04:21:52:51	0	GL-A32	C0	16.09	3400.0	54209	69840	3호기	 82.0	1169	45.0	239	1155	957.0	1
609 ro	ws × 22 colu	mns															

Normalizer 적용을 통한 Heatmap 출력

Normalizer 적용 from sklearn.preprocessing import Normalizer

Scale 변환 : Normalizer scaler (평균, 표준편차 적용) df_scale_normal = Normalizer() df_scale_normal = df_scale_normal.fit_transform(df_raw_dummy) df_scale_normal

Scale 변환 결과값의 전체 상관관계 분석 df_scale_normal.corr().round(3)

	SCALE	PT_THICK	PT_WIDTH	PT_LENGTH	PT_WEIGHT	FUR_HZ_TEMP	FUR_HZ_TIME	FUR_SZ_TEMP	FUR_SZ_TIME	FUR_TIME
SCALE	1.000	-0.101	-0.136	0.013	0.011	-0.088	-0.099	-0.087	-0.144	-0.102
PT_THICK	-0.101	1.000	0.811	-0.112	0.135	0.917	0.884	0.919	0.858	0.949
PT_WIDTH	-0.136	0.811	1.000	0.162	-0.128	0.944	0.812	0.944	0.853	0.879
PT_LENGTH	0.013	-0.112	0.162	1.000	-0.964	0.165	0.047	0.163	0.092	0.079
PT_WEIGHT	0.011	0.135	-0.128	-0.964	1.000	-0.122	-0.017	-0.120	-0.054	-0.045
FUR_HZ_TEMP	-0.088	0.917	0.944	0.165	-0.122	1.000	0.895	1.000	0.918	0.971
FUR_HZ_TIME	-0.099	0.884	0.812	0.047	-0.017	0.895	1.000	0.893	0.801	0.926
FUR_SZ_TEMP	-0.087	0.919	0.944	0.163	-0.120	1.000	0.893	1.000	0.916	0.971
FUR_SZ_TIME	-0.144	0.858	0.853	0.092	-0.054	0.918	0.801	0.916	1.000	0.925
FUR_TIME	-0.102	0.949	0.879	0.079	-0.045	0.971	0.926	0.971	0.925	1.000
FUR_EXTEMP	-0.087	0.919	0.944	0.163	-0.120	1.000	0.893	1.000	0.916	0.971
ROLLING_TEMP_T5	-0.042	0.897	0.933	0.185	-0.137	0.994	0.885	0.994	0.904	0.961
HSB	-0.253	0.852	0.870	0.128	-0.090	0.928	0.834	0.929	0.860	0.905
ROLLING_DESCALING	-0.105	0.730	0.919	0.412	-0.361	0.923	0.778	0.922	0.795	0.841
STEEL_KIND_C0	0.325	-0.608	-0.403	0.426	-0.437	-0.468	-0.519	-0.465	-0.544	-0.536
STEEL_KIND_C1	0.034	-0.021	-0.035	-0.037	0.034	-0.028	-0.016	-0.028	-0.031	-0.023
STEEL_KIND_C3	-0.048	-0.035	-0.045	-0.050	0.059	-0.045	-0.050	-0.043	-0.058	-0.049
STEEL_KIND_T0	-0.047	0.055	0.080	-0.004	0.013	0.079	0.087	0.076	0.137	0.087
STEEL_KIND_T1	-0.080	0.120	0.137	0.067	-0.044	0.178	0.129	0.180	0.191	0.174
STEEL_KIND_T3	-0.036	-0.023	-0.042	-0.033	0.035	-0.031	-0.034	-0.032	-0.029	-0.037

Scale 변환 결과값의 Heatmap 출력 sns.heatmap(df_scale_normal.corr(), cmap="Reds")

Scale 변환 결과값의 Heatmap 출력 결과, FUR_HZ_TIME, FUR_TIME, HSB 와 SCALE이 연관이 있다는걸 알 수 있다.

Random Forest

```
# 모델 설명력에 대한 그래프 확인
plt.plot(para_n_tree, train_score, linestyle = "-", label = "Train Score")
plt.plot(para_n_tree, test_score, linestyle = "--", label = "Test Score")
plt.ylabel("score");plt.xlabel("n_estimators")
plt.legend()
```

<matplotlib.legend.Legend at 0x7fa22be79190>


```
# 모델 설명력에 대한 그래프 확인
plt.plot(para_leaf, train_score, linestyle = "-", label = "Train Score")
plt.plot(para_leaf, test_score, linestyle = "--", label = "Test Score")
plt.ylabel("score");plt.xlabel("min samples leaf")
plt.legend()
```

<matplotlib.legend.Legend at 0x7fa22c99b490>


```
# 모델 설명력에 대한 그래프 확인
plt.plot(para_depth, train_score, linestyle = "-", label = "Train Score")
plt.plot(para_depth, test_score, linestyle = "--", label = "Test Score")
plt.ylabel("score");plt.xlabel("max depth")
plt.legend()
```

<matplotlib.legend.Legend at 0x7fa22c046b90>

모델 설명력에 대한 여러 그래프의 확인 내용. y_label 은 'score'로 동일하지만, x_label은 'n_estimators', 'min samples leaf', 'max depth'로 세 가지의 다른 그래프들을 확인할 수 있다.

Random Forest 트리 및 설명변수 중요도

0.004

0.004

0.003

0.002

0.001

0.001

PT_WEIGHT

FUR_HZ_TEMP

FUR_EXTEMP

FUR_SZ_TIME

FUR_HZ_TIME

FUR TIME

SPEC_SIMPLE_JS

'ROLLING_TEMP_T5' 의 Importance는 0.672, 'FUR_SZ_TEMP'의 Importance는 0.156, 'HSB'의 Importance는 0.155로 세 가지 설명변 수가 SCALE에 가장 영 향을 많이 주는 변수임 을 알 수 있다

압연온도(ROLLING_TEMP_T5). 가열로 균열대 시간(FUR_SZ_TEMP), 고열 의 스케일 브레이커(HSB) 순으로 SCALE과 강한 연관성이 있음

Gradient Boosting

```
# 모델 설명력에 대한 그래프 확인
plt.plot(para_n_tree, train_score, linestyle = "-", label = "Train Score")
plt.plot(para_n_tree, test_score, linestyle = "--", label = "Test Score")
plt.ylabel("score"); plt.xlabel("n_estimators")
plt.legend()
```

<matplotlib.legend.Legend at 0x7fa22c45c2d0>


```
# 모델 설명력에 대한 그래프 확인
plt.plot(para_leaf, train_score, linestyle = "-", label = "Train Score")
plt.plot(para_leaf, test_score, linestyle = "--", label = "Test Score")
plt.ylabel("score"); plt.xlabel("min samples leaf")
plt.legend()
```

<matplotlib.legend.Legend at 0x7fa22c3e96d0>


```
# 모델 설명력에 대한 그래프 확인 : 22개
plt.plot(para_depth, train_score, linestyle = "-", label = "Train Score")
plt.plot(para_depth, test_score, linestyle = "--", label = "Test Score")
plt.ylabel("score")
plt.xlabel("depth")
plt.legend()
```

<matplotlib.legend.Legend at 0x7fa22aa27ed0>


```
# 모델 설명력에 대한 그래프 확인 : 22개
plt.plot(para_Ir, train_score, linestyle = "-", label = "Train Score")
plt.plot(para_Ir, test_score, linestyle = "--", label = "Test Score")
plt.ylabel("score")
plt.xlabel("learning rate")
plt.legend()
```

<matplotlib.legend.Legend at 0x7fa22a9a9d90>

모델 설명력에 대한 여러 그래프의 확인 내용. y_label 은 'score'로 동일하지만, x_label은 'n_estimators', 'min samples leaf', 'depth', 'learning rate'로 네 가지의 다른 그래프들을 확인할 수 있다.

Gradient Boosting 설명변수 중요도

로지스틱 회귀분석

Iog_model=Logit.from_formula("""SCALE ~ PT_THICK+PT_WIDTH+PT_LENGTH+PT_WEIGHT+FUR_HZ_TEMP+FUR_HZ_TIME+FUR_SZ_TEMP+FUR_SZ_TIME+FUR_EXTEMP+ROLLING_TEMP_T5+HSB+ROLLING_DESCALING""", df_train)
Iog_result = Iog_model.fit()
print(Iog_result.summary())

Warning: Maximum number of iterations has been exceeded.

Current function value: 0.250279

Iterations: 35

Logit Regression Results

Dep. Variable: Model: Method: Date: Time: converged: Covariance Type:		SCALE Logit MLE Aug 2022 09:11:22 False onrobust	No. Observation Df Residuals: Df Model: Pseudo R-squ.: Log-Likelihood LL-Null: LLR p-value:			i.80
	coef	std err	z	P> z	[0.025	0.975]
Intercept PT_THICK PT_WIDTH PT_LENGTH PT_WEIGHT FUR_HZ_TEMP FUR_HZ_TIME FUR_SZ_TEMP FUR_SZ_TIME FUR_TIME FUR_EXTEMP ROLLING_TEMP_T5 HSB ROLLING_DESCALING	-122,9450 -0,0005 -0,0018 -1,197e-05 -3,756e-06 0,0060 0,0178 0,0693 -0,0133 -0,0094 0,0411 0,0370 -33,8806 -0,7709	7.55e+05 0.049 0.001 3.22e-05 7.98e-06 0.018 0.011 0.070 0.017 0.006 0.058 0.006 7.55e+05 0.254	-0.000 -0.011 -3.345 -0.372 -0.471 0.328 1.628 0.992 -0.794 -1.502 0.710 5.730 -4.49e-05 -3.031	1.000 0.991 0.001 0.710 0.638 0.743 0.104 0.321 0.427 0.133 0.478 0.000 1.000 0.002	-1.48e+06 -0.097 -0.003 -7.51e-05 -1.94e-05 -0.030 -0.004 -0.068 -0.046 -0.022 -0.072 0.024 -1.48e+06 -1.269	1.48e+06 0.096 -0.001 5.12e-05 1.19e-05 0.042 0.039 0.206 0.020 0.003 0.155 0.050 1.48e+06 -0.272

로지스틱 회귀분석을 하기 위하여 SCALE 을 비롯한 다른 변수들을 입력한다

로지스틱 회귀분석

```
Train 예측/분류 결과
Accuracy: 0.899
Confusion Matrix:
[[272 18]
[ 25 111]]
             precision
                         recall f1-score
                                           support
                 0.916
                          0.938
                                    0.927
                                               290
          0
                 0.860
                          0.816
                                    0.838
                                               136
                                    0.899
                                               426
   accuracy
                          0.877
                                    0.882
                                               426
                 0.888
  macro avg
                 0.898
                          0.899
                                    0.898
                                               426
weighted ava
test 예측/분류 결과
Accuracy: 0.814
Confusion Matrix:
[[105 16]
[ 18 441]
             precision
                         recall f1-score
                                           support
                 0.854
                          0.868
                                    0.861
                                               121
          0
                 0.733
                          0.710
                                    0.721
                                                62
                                               183
                                    0.814
   accuracy
                                    0.791
                 0.793
                          0.789
                                               183
  macro avg
weighted ava
                 0.813
                          0.814
                                    0.813
                                               183
1)모델의 Test 데이터 정분류율은 81.4 %
2) 분류 내용 -> 실제 0을 0으로 분류 105건 -> 실제 1
을 0으로 분류 18 건 ....
3) "1" 기준 f1 score는 72.1% (Precision : 73.3%, Recall :
71.0%)
```


KNN

```
# 데이터 구성: Series, DataFrame
import pandas as pd
# 데이터 시각화
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV

from sklearn.metrics import accuracy_score, f1_score
from sklearn.metrics import confusion_matrix, classification_report
```

```
KNN을 진행하기 위해서 데이터 구성 및 데이터
시각화, KNeighborsClassifier를 호출
```

```
# 데이터 구성하기 - 데이터 분할
# 설명변수, 목표변수 데이터 구분
df_raw_x = df_raw_dummy.drop('SCALE', axis=1 ,inplace=False)
df_raw_y = df_raw_dummy['SCALE']
df_train_x, df_test_x, df_train_y, df_test_y = train_test_split(
    df_raw_x, df_raw_y, test_size=0.3, random_state=1234)
print('분할 전 설명변수 데이터:', df_raw_x.shape)
print('분할 후 설명변수 데이터:Train', df_train_x.shape, 'Test',df_test_x.shape)
분할 전 설명변수 데이터: (609, 44)
분할 후 설명변수 데이터:Train (426, 44) Test (183, 44)
knn_uncusotomized = KNeighborsClassifier()
knn_uncusotomized.fit(df_train_x,df_train_y)
print("Accuracy on training set : {:.3f}".format(knn_uncusotomized.score(df_train_x,df_train_y)))
print("Accuracy on test set : {:.3f}".format(knn_uncusotomized.score(df_test_x,df_test_y)))
Accuracy on training set : 0.822
Accuracy on test set : 0.689
```

데이터 구성하기 및 데이터 분할, knn_uncustomized를 통하여 Accuracy on training set: 0.822, Accuracy on test set: 0.689 라는 값을 얻을 수 있었다.

KNN

```
plt.plot(para_n_neighbors, train_accuracy, linestyle="-", label = "Train Accuracy")
plt.plot(para_n_neighbors, test_accuracy, linestyle="--", label = "Test Accuracy")
plt.ylabel("accuracy"); plt.xlabel("n_neighbors")
plt.legend()
```

<matplotlib.legend.Legend at 0x7fa22a741b10>

sns.lineplot(data=df_accuracy_weights_pivot)
weights="uniform"


```
df_accuracy_metric_pivot = df_accuracy_metric.pivot(index = "Neighbors", columns="Metric",
values = ["TrainAccuracy", "TestAccuracy"])
level0 = df_accuracy_metric_pivot.columns.get_level_values(0)
level1 = df_accuracy_metric_pivot.columns.get_level_values(1)
df_accuracy_metric_pivot.columns = level0 + "_" + level1
sns.lineplot(data=df_accuracy_metric_pivot)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fa22a504ed0>

모델 설명력에 대한 여러 그래프의 확인 내용. Train Accuracy, Test Accuracy에 관한 그래프, weights_pivot에 따른 그래프, Euclidean, Manhattan, minkowski 에 따른 그래프 등을 확인할 수 있다.

KNN

```
knn_model = KNeighborsClassifier(n_neighbors = 4, weights = 'uniform', metric = 'euclidean'))
knn_model.fit(df_train_x, df_train_y)
y_pred = knn_model.predict(df_test_x)
print('train data accuracy : {0:.3f}'.format(knn_model.score(df_train_x, df_train_y)))
print('test data accuracy : {0:.3f}'.format(knn_model.score(df_test_x, df_test_y)))
print('Confusion matrix : \format(confusion_matrix(df_test_y,y_pred)))
print(classification_report(df_test_y, y_pred, digits = 3))
train data accuracy : 0.812
test data accuracy: 0.743
Confusion matrix :
[[109 12]
[ 35 27]]
             precision
                          recall f1-score
                                              support
           0
                  0.757
                           0.901
                                     0.823
                                                  121
                           0.435
                 0.692
                                     0.535
                                                  62
                                     0.743
                                                  183
    accuracy
                                     0.679
                 0.725
                           0.668
                                                  183
   macro avg
                 0.735
                           0.743
                                     0.725
                                                  183
weighted avg
```

KNN 분석 결과, 'train data accuracy' = 0.812, 'test data accuracy' = 0.743 의 값을 얻을 수 있다.

SVM

```
# 데이터 구성 : Series, DataFrame
import pandas as pd
import numpy as np
# 데이터 시각화, 한글폰트
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rc('font', family = 'Malgun Gothic')
# scaling
from sklearn.preprocessing import StandardScaler
# data split
from sklearn.model_selection import train_test_split
# SVM
from sklearn.svm import SVC
# 최적 모델, 파라미터 탐색
from sklearn.model_selection import GridSearchCV
# 분류모델 평가 함수
from sklearn.metrics import accuracy_score, f1_score
from sklearn.metrics import confusion_matrix, classification_report
```

```
# 데이터 구성하기 - 데이터 분할
# 설명변수, 목표변수 데이터 구분
df_raw_x = df_raw_dummy.drop('SCALE', axis=1 ,inplace=False)
df_raw_y = df_raw_dummy['SCALE']
df_train_x, df_test_x, df_train_y, df_test_y = train_test_split(
   df_raw_x, df_raw_y, test_size=0.3, random_state=1234)
print('분할 전 설명변수 데이터:', df_raw_x.shape)
print('분할 후 설명변수 데이터:Train', df_train_x.shape, 'Test',df_test_x.shape)
분할 전 설명변수 데이터: (609, 44)
분할 후 설명변수 데이터:Train (426, 44) Test (183, 44)
# SVC 모델 생성 - 기본 옵션으로 모델 생성
svm_uncustomized = SVC(random_state = 1234)
svm_uncustomized.fit(df_train_x, df_train_y)
#train 데이터 셋 정확도
print('Accuracy on training set: {:.3f}'.format(sym_uncustomized.score(df_train_x, df_train_y)))
# test데이터 정확도
print('Accuracy on test set: {:.3f}'.format(sym_uncustomized.score(df_test_x, df_test_y)))
Accuracy on training set: 0.681
Accuracy on test set: 0.661
```

SVM을 진행하기 위해서 데이터 구성 및 데이터 시각화, SVC를 호출 데이터 구성하기 및 데이터 분할, svm_uncustomized를 통하여 Accuracy on training set: 0.681, Accuracy on test set: 0.661 라는 값을 얻을 수 있었다.

SVM

```
# 모델 정확도 그래프 확인
plt.plot(para_c, train_accuracy, linestyle = '-', label = 'Train Accuracy')
plt.plot(para_c, test_accuracy, linestyle = '--', label = 'Test Accuracy')
plt.ylabel('accuracy'); plt.xlabel('C')
plt.legend()
```

<matplotlib.legend.Legend at 0x7fa22a436790>


```
# 모델 정확도 그래프 확인
plt.plot(para_gamma, train_accuracy, linestyle = '-', label = 'Train Accuracy')
plt.plot(para_gamma, test_accuracy, linestyle = '--', label = 'Test Accuracy')
plt.ylabel('accuracy'); plt.xlabel('gamma')
plt.legend()
```

<matplotlib.legend.Legend at 0x7fa22a3b81d0>


```
# 모델 정확도 그래프 확인
plt.plot(para_c, train_accuracy, linestyle = '-', label = 'Train Accuracy')
plt.plot(para_c, test_accuracy, linestyle = '--', label = 'Test Accuracy')
plt.ylabel('accuracy'); plt.xlabel('C')
plt.legend()
```

<matplotlib.legend.Legend at 0x7fa22a3a0250>

모델 정확도에 대한 여러 그래프의 확인 내용. Train Accuracy, Test Accuracy에 관한 그래프, accuracy와 gamma 에 따른 그래프 등을 확인할 수 있다.

SVM

```
# 결론 도출 - 최종 모델 선택
svc_final = SVC(gamma = 0.1, C = 1, random_state= 1234)
svc_final.fit(df_scaled_train_x, df_train_y)
y_pred = svc_final.predict(df_scaled_test_x)
# train 데이터 셋 정확도
print("Accuracy on training set: {:.3f}".format(svc_final.score(df_scaled_train_x, df_train_y)))
# test 데이터 셋 정확도
print("Accuracy on test set: {:.3f}".format(svc_final.score(df_scaled_test_x, df_test_y)))
# confusion matrix
print("Confusion matrix: \text{\mathbb{m}}\)".format(confusion_matrix(df_test_y, y_pred)))
# 목표변수의 빈도 불균형 : f1 score로 모델 평가
print(classification_report(df_test_y, y_pred, digits=3))
Accuracy on training set: 0.958
Accuracy on test set: 0.770
Confusion matrix:
[[110 11]
[ 31 31]]
             precision
                          recall f1-score
                                             support
           0
                 0.780
                           0.909
                                     0.840
                                                 121
                           0.500
                 0.738
                                     0.596
                                                  62
                                     0.770
                                                 183
    accuracy
                 0.759
                           0.705
                                     0.718
                                                 183
   macro avg
                           0.770
                                     0.757
weighted ava
                 0.766
                                                 183
```

SVM 분석 결과, 'train data accuracy' = 0.958, 'test data accuracy' = 0.770 의 값을 얻을 수 있다.

의사결정 트리

```
# Over-Sampling : SMOTE

# 목표변수 빈도 확인
print(df_raw.value_counts(['SCALE']), '\m')
print('SCALE=1 비율', df_raw.value_counts(df_raw['SCALE']==1)/len(df_raw))

# 목표변수 산점도 확인
plt.figure(figsize=(10,8))
plt.scatter(df_raw['ROLLING_TEMP_T5'], df_raw['FUR_SZ_TEMP'], c=df_raw['SCALE'], s=10,alpha=0.5)
plt.show()
```

SCALE
0 411
1 198
dtype: int64

SCALE=1 出量 SCALE
False 0.674877
True 0.325123
dtype: float64

데이터 구성하기 및 분할 전 설명변수 데이터, 분할 후 설명변수 데이터를 확인할 수 있다. 또한 , Over-Sampling : SMOTE를 통하여 얻을 수있는 목표변수 산점도를 확인할 수 있다.

의사결정 트리

		_			
ρl	t.show()				
0 1 2 3 4	14.09 328 44.39 204 18.10 309	40.0 34797 34.0 51234 40.0 27501 34.0 41786 34.0 41786	16020 93050 39100 91850 91850	1142 1113 1; 1159 1;	30.0 75.0 24.0 32.0 08.0
0 1 2 3 4	FUR_SZ_TEMP FU 1120 1131 1120 1164 1163	JR_SZ_TIME FUR_ 65.0 122.0 82.0 54.0 88.0	TIME FUR_EXTEMP 324 1112 353 1125 334 1113 358 1155 351 1148	SPEC_SIMP	LE_JS # 0 1 0 1
0 1 2 3 4	SPEC_SIMPLE_KR 0 0 0 0 0	SPEC_SIMPLE_KS 0 0 0 0 0	SPEC_SIMPLE_LR 0 0 0 0 0	SPEC_SIMPLE_NK 0 0 0 0 0	#
0 1 2 3 4	SPEC_SIMPLE_NV 0 0 0 0 0	SPEC_SIMPLE_PI 0 0 0 0 0 0	SPEC_SIMPLE_SA 0 0 0 0 0	SPEC_SIMPLE_V4 0 0 0 0 0 0	SCALE 0 0 0 0 0

데이터 결합 이후 목표변수 산점도를 확인할 수 있다

의사결정 트리

```
# 모델 정확도에 대한 그래프 확인
plt.plot(para_depth, train_accuracy, linestyle='-', label='Train Accuracy')
plt.plot(para_depth, test_accuracy, linestyle='--', label='Test Accuracy')
plt.legend();
```


모델 정확도 그래프 확인 plt.plot(para_leaf, train_accuracy, linestyle='-', label='Train Accuracy') plt.plot(para_leaf, test_accuracy, linestyle='--', label='Test Accuracy') plt.legend();

의사결정 트리

```
# 평가
y_pred =tree_final.predict(df_test_x)
print('Accuracy: {0:.3f}\m'.format(tree_final.score(df_test_x, df_test_y)))
print('Confusion matrix: \m\{}'.format(confusion_matrix(df_test_y, df_test_y)))
# 목표변수의 빈도 불균형 : f1 score로 모델 평가
print(classification_report(df_test_y, y_pred, digits=3))
```

Accuracy: 0.951

Confusion matrix:

[[121 0] [0 62]]

0 0211	precision	recall	f1-score	support
0 1	0.931 1.000	1.000 0.855	0.964 0.922	121 62
accuracy macro avg ghted avg	0.965 0.954	0.927 0.951	0.951 0.943 0.950	183 183 183

Accuracy, f1-score 등을 알 수 있다

tree.feature_importance_ 로 설명변수 중요도 확인 및 테이블로 저장

df_importance = pd.DataFrame()

df_importance['Feature'] = v_feature_name

df_importance['Importance'] = tree_final.feature_importances_

df_feature_importance의 테이블을 중요도 순으로 정렬

df_importance.sort_values('Importance',ascending=False, inplace=True)

df_importance.round(3)

	Feature	Importance	
10	ROLLING_TEMP_T5	0.672	
6	FUR_SZ_TEMP	0.163	
11	HSB	0.158	
7	FUR_SZ_TIME	0.007	

Feature_importance 로 설명변수 중요도 확인 및 테이블을 중요도 순으로 정렬한다.

의사결정 트리

중요 설명변수 : 압연온도(ROLLING_TEMP_T5). 가열 로 균열대 시간(FUR_SZ_TEMP), 고열의 스케일 브레 이커(HSB) 순으로 영향이 크다고 해석할 수 있음 열화상 카메라

1 영상취득

BEFORE

〈포스코 스마트CCTV〉

2

영상전송

3

영상인식/분석

(형상 및 래들

온도 분석)

이상 감지 시

정보 알림

6

후속 공장제어

After

데이터 기반 정책

Normalizer 적용을 통한 Heatmap 출력, Random Forest, Gradient Boosting, 로지스틱 회귀분석, KNN, SVM, 의사결정 트리를 통하여, **압연온도(ROLLING_TEMP_T5). 가열로 균열대 시간(FUR_SZ_TEMP), 고열의 스케일 브레이커(HSB)** 조절을 통해 Scale 불량을 줄일 수 있을 것이다