Résume Probabilités et Statistiques

Lorenzo Brucato

July 2023

1 Ensembles, Dénombrement Probabilités évènementielles

1.1 Vocabulaire

Def: Univers. On désigne par un grand ensemble Ω l'univers d'une expérience aléatoire, correspondant à l'ensemble de tous les évènements possibles pour une expérience aléatoire.

$\mathbf{E}\mathbf{x}$:

- On lance 6 dés à 6 faces. On utilise un univers Ω avec 6^6 éléments pour décrire cette expérience (par exemple l'ensemble des 6-uplets $(v_1, v_2, v_3, v_4, v_5, v_6)$ avec $v_i \in \{1, 2, 3, 4, 5, 6\}$ qui décrit la valeur de i-ème dé.
- On lance deux dés numérotés de 1 à 6 et on s'interesse à la somme des deux chiffres. Le réultat est compris dans l'univers $\Omega = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$

Def: évènement élémentaire

Chaque élément élémentaire de Ω est appellé **évènement élémentaire**. Un sous ensemble de Ω sont souvent appellés **évènements** de l'expérience aléatoire. On a naturellement $P(\Omega) = 1$

Notation: On notera:

- E_n l'ensemble des entiers $\{1, 2, ..., n\}$
- -P(A), la probabilité de l'évènement A compris entre 0 (probabilité nulle) et 1 (évènement certain)
 - $-A^{C}$, le complémentaire de l'évènement A (i.e. ΩA)
 - -Card(A) = #A, la taille (ou nombre d'éléments/cardinal) de A.

Def: Injectif, Surjectif, Bijectif

- On dit que $f: A \longrightarrow B$ est **injective** ssi $\forall (a_1, a_2) \in A$, si $a_1 \neq a_2$, alors $f(a_1) \neq f(a_2)$. Lorsque A et B sont de dimensions finies, cela implique par ailleurs $Card(A) \leq Card(B)$ Autrement-dit, pour chaque élément de l'ensemble de départ, on doit associer un unique élément de l'ensemble d'arrivée.
- On dit que $f:A \longrightarrow B$ est **surjective** ssi $\forall y \in B, \exists x \in A: f(x) = y$. Lorsque A et B sont de dimensions finies, cela implique par ailleurs $Card(A) \ge Card(B)$ Autrement-dit, pour chaque élément de l'ensemble d'arrivée, il doit exister au moins un antécédant par l'application f.
- On dit que $f:A \longrightarrow B$ est **bijective** ssi f est à la fois injective et surjective. Cela revient à dire que pour tout $y \in B$,, il existe un $unique\ x \in A$ tel que f(x) = y. Lorsque A et B sont de dimensions finies, cela implique par ailleurs Card(A) = Card(B) Autrement-dit, "on forme des couples uniques et distincts" avec un élément de l'ensemble de départ et un élément de l'ensemble d'arrivée.

Rq: Pour deux ensembles finis A et B de même cardinal n, il existe n! bijections de A dans B possibles.

Prop: Pour deux ensembles finis A et B, il existe $Card(B)^{Card(A)}$ applications possibles de A dans B.

Def: Ensemble fini, denombrable, infini

- On dit que E est un ensemble fini si $Card(E) < \infty$. Sinon il est infini.
- On dit qu'un ensemble infini E est **dénombrable** s'il est en bijection avec \mathbb{N} . Autrement-dit, on peut "numéroter et compter les éléments de E dans l'ordre".

1.2 Coefficient binomial, binome de Newton

Def: Coefficient binomial

Le coefficient binomial $\binom{n}{k}$ est le nombre de combinaisons possibles de k éléments dans un ensemble de n éléments. Il est donné par la formule :

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Thm: Binome de Newton

Soient, $a, b \in \mathbb{R}, n \in \mathbb{N}$ On a :

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Prop: Triangle de Pascal

La formule du triangle de pascal permet de calculer successivement les valeurs du coefficient binomial :

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$$

$n \setminus k$			2	3	4	5
1	1	1				
$\frac{2}{3}$	1	2	1			
3	1	3	3	1		
4	1	4	6	4	1	
5	1	5	1 3 6 10	10	5	1

1.3 Probabilités évènementielles, formules de Bayes

Def: Soit $A, B \in \Omega$:

- On note $P(A \cap B)$, la probabilité de l'intersection des évènements A et B.
- On note $P(A \cup B)$, la probabilité de l'union des évènements A et B. On a $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- On note $P(A|B)=P_B(A)$, la probabilité de l'évènement A sachant que l'évènement B est réalisé. On a $P(A|B)=\frac{P(A\cap B)}{P(B)}$
- On dit que A et B sont **indépendants** si l'un des deux évènements n'influe pas sur l'autre se qui se traduit naturellement par l'un des résultats suivants (équivalents par la formule précédente):

$$P(A|B) = P(A)$$
, ou $P(B|A) = P(B)$, ou encore $P(A \cap B) = P(A).P(B)$

Thm: Formules de Bayes

Soit (Ω,P) une expérience aléatoire d'univers Ω et muni d'une mesure de probabilité P. On a :

$$\begin{split} P(A|B) &= P(B|A).\frac{P(A)}{P(B)} \\ P(A|B) &= \frac{P(B|A).P(A)}{P(B|A).P(A) + P(B|A^C)P(A^C)} \end{split}$$

2 Variables aléatoires

2.1 Variables aléatoires réelles (VAR)

Les variables aléatoires permettent de s'interesser précisement à des expériences aléatoires ou le résultat peut être décrit par une valeur réelle $X \in \mathbb{R}$. On va

s'interesser ainsi aux probabilités qu'une variable puisse prendre un ensemble de valeurs dans l'ensemble des réels. On notera, pour une mesure de probabilité P, la probabilité que X prenne la valeur a:P(X=a)

Ex:

- On s'interesse au résultat de la somme de deux dés à 6 faces. On peut désigner X comme étant la variable aléatoire désignant le résultat obtenu.
- On s'interesse à la taille (en cm) des étudiants d'une promotion. On peut désigner X comme étant la variable aléatoire valant la taille de l'un des étudiants.

Def: atome

Soit X une VAR. On dit que a est un **atome** de X si P(X=a)>0 On note S_X l'ensemble des atomes de X

Def: VAR Discrète

Une VAR X est dite discrete si S_X est fini ou dénombrable et $S_X \neq \emptyset$, $P(X \in S_X) = 1$.

Ex: On désigne par X la variable aléatoire qui désigne le résultat d'un dé à 6 faces. X est une VAR discrète puisque $S_X = \{1, 2, 3, 4, 5, 6\}$ est fini.

Def: VAR à densité

Une VAR X est dite à densité s'il existe une fonction f_X intégrable $(F_X(x) = \int_{-\infty}^x f_X(t)dt)$ et $S_X = \emptyset$.

On appelle f_X la fonction de densité de X

La fonction $F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t) dt$ est la **fonction de répartition** de X qui désigne la probabilité que X prenne une valeur inférieure à un certain seuil x.

Rq: Pour une variable à densité, on ne mesure jamais la probabilité en un point (qui est toujours nulle) mais sa densité qui mesure la probabilité dans un voisinnage du point.

Prop: Soit une VAR X (discrète ou a densité). Sa fonction de répartition F_X vérifie les propriétés :

- i) F_X est croissante, continue à droite
- ii) $\lim_{t\to+\infty} F_X(t) = 1$
- iii) $\lim_{t\to-\infty} F_X(t) = 0$

2.2 Esperance, Variance, Ecart-type

Def: Esperance

Soit une VAR X. Si X est **integrable** (i.e. les formules ci-dessous ont un sens, résultat fini en valeur absolue, cf cours d'integration), on définit **l'espérance** de X (ou premier moment) comme étant la valeur :

$$E[X] = \sum_{k \in S_X} k.P(X=k),$$
si X est discrète $E[X] = \int_{\mathbb{R}} t.f_X(t)dt,$ si X est à densité

La loi des grands nombres (cf. partie 3) permet de comprendre l'esperance comme "la moyenne" des résultats obtenus pour des réalisations (infinies) successives de X (ou la valeur moyenne espérée).

Prop: Formule de transfert

Soit X une VAR, f une fonction définie sur \mathbb{R} . On a :

$$E[f(X)]=\sum_{k\in S_X}f(k).P(X=k),$$
si X est discrète $E[f(X)]=\int_{\mathbb{R}}f(t).f_X(t)dt,$ si X est à densité

Def: Variance

Soit une VAR X. On définit la variance de X comme étant la valeur :

$$Var(X) = E[X^2] - E[X]^2 = E[(X - E[X])^2]$$

On note l'écart-type $\sigma = \sqrt{Var(X)}$

La variance est l'espérance de la variable aléatoire décrivant les ecarts à la moyenne de X. Une variance élevée indique une forte fluctuation des résultats autour de l'espérance. Une variance faible indique une concentration forte des réalisations de X près de l'espérance.

2.3 Moments, Fonction génératrice des moments

Def: Moment d'ordre k

On appelle moment d'ordre k l'espérence de X^k (si intégrable).

Def: Fonction génératrice des moments

On appelle fonction génératrice des moments la fonction $G_X(t) = E[e^t X] = \sum_{k=0}^{\infty} E[X^k] \frac{t^k}{k!}$. Elle permet en particulier de retrouver efficacement les moments de X.

Lois discretes 2.4

On s'interesse ici aux lois classiques que peuvent suivre une variable aléatoire discrète.

2.4.1Loi de Dirac

Loi dont toute la masse de probabilité est concentrée au point a (La réalisation de $X \sim D(a)$ est de 1.0 en a)

Prop:

- -E[X] = a
- Var(X) = 0

Loi Uniforme discrète

 $X \sim Unif(S_X)$ modélise une expérience aléatoire sur un nombre fini d'issues equiprobables.

Prop:

- $E[X] = \frac{1}{Card(S_x)} \sum_{x \in S_x} x$ $Var(X) = \frac{Card(S_x)^2 1}{12}$

Figure 1: Loi uniforme discrète

2.4.3 Loi de Bernoulli

 $X \sim Ber(p)$ modélise une expérience aléatoire à deux issues 0 (echec), 1 (succes), avec probabilité p de succès.

Prop:

-
$$E[X] = p$$

$$-Var(X) = p(1-p)$$

Figure 2: Loi de Bernoulli

2.4.4 Loi Binomiale

 $X \sim Bin(n,p)$ modélise la répétition de n expériences de Bernoulli identiques et indépendantes de parametre p.

Prop:
$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

$$E[X] = np$$

$$Var(X) = np(1 - p)$$

-
$$E[X] = np$$

$$-Var(X) = np(1-p)$$

$$-G_X(t) = (pe^{t} + 1 - p)^n$$

Figure 3: Loi Binomiale

2.4.5 Loi de Poisson (ou des évènements rares)

 $X \sim Poi(a)$ modélise une expérience aléatoire dont la probabilité de réalisation diminue de manière très significative (évènements rares).

Prop: $P(X = k) = e^{-a} \frac{a^k}{k!}$ E[X] = a Var(X) = a $G_X(t) = e^{a(e^t - 1)}$

Figure 4: Loi de Poisson

2.4.6 Loi Géométrique

 $X \sim Geom(p)$ modélise une expérience aléatoire qui s'interesse au nombre de réalisations avant succès d'une expérience aléatoire à deux issues

Prop:

$$-P(X = k) = p(1-p)^{k-1}$$

$$-E[X] = 1/p$$

$$-E[X] = 1/p$$

$$-Var(X) = \frac{1-p}{p^2}$$

Figure 5: Loi Binomiale

Loi Hypergeométrique

 $X \sim H(n, N, m)$ modélise une expérience aléatoire qui s'interesse au nombre de boules blanches tirées sur n tirages dans une urne à N boules contenant m boules blanches

Prop:
$$-P(X=k) = \frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{k}}$$

Figure 6: Loi Hypergéométrique

2.5 Lois à densité

Quelques lois usuelles des variables aléatoires à densité.

2.5.1 Loi Uniforme à densité

 $X \sim Unif(I=[a,b])$, I intervalle continu, modélise une expérience aléatoire équiprobable sur l'intervalle I.

Prop:

- $f_X(x) = \frac{1_I(x)}{Card(I)}$ $F_X(t) = \frac{t-a}{b-a}1_I(t) + 1_{t>b}(t)$ E[X] = (a+b)/2- $Var(X) = (b-a)^2/12$

Figure 7: Loi Uniforme dense

2.5.2Loi Exponentielle

 $X \sim Exp(\lambda)$ modélise une expérience aléatoire dont la probabilité de réalisation décroit exponentiellement.

Prop:

- $f_X(x) = \lambda e^{-\lambda x} 1_{x \ge 0}$ $F_X(t) = (1 e^{-\lambda t}) 1_{t \ge 0}$ $E[X] = 1/\lambda$ $Var(X) = 1/(\lambda^2)$ $G_X(t) = \lambda/(\lambda t)$

Figure 8: Loi Exponentielle

2.5.3Loi Normale (Gaussienne)

 $X \sim Exp(\mu, \theta^2)$ modélise la distribution classique autour de l'esperance μ donnée par le théorème central limite. La loi N(0,1) d'esperance nulle et de variance 1 est la loi normale centrée réduite.

1 Top.

-
$$f_X(x) = \frac{1}{\sqrt{2\pi\theta^2}} e^{-\frac{(x-\mu)^2}{2\theta^2}}$$

- $F_X(t) = \int_{-\infty}^t f_X(x) dx$

- $E[X] = \mu$

- $Var(X) = \theta^2$

$$-F_X(t) = \int_{-\infty}^t f_X(x) dx$$

$$-E[X] = \mu$$

$$-Var(X) = \theta^2$$

$$-G_X(t) = e^{t\mu + (\theta^2 t^2)/2}$$

Figure 9: Loi Normale

2.5.4Loi Gamma

La loi Gamma $X \sim Gamma(\alpha, \beta)$ est la loi générale suivie par une somme de variables suivants une loi exponentielle. $Exp(\lambda)$ est le cas particulier où $\alpha = 1$, $\beta = \lambda$

Prop:
$$\begin{aligned} & -\Phi(\alpha) = \int_0^{+\infty} x^{\alpha-1} e^{-\beta x} dx \\ & f_X(x) = \beta^{\alpha} \Phi(\alpha)^{-1} x^{\alpha-1} e^{-\beta x} \mathbf{1}_{x \geq 0} \\ & - F_X(t) = \int_{-\infty}^t f_X(x) dx \\ & - E[x] = \alpha/\beta \\ & - Var(X) = \alpha/\beta^2 \end{aligned}$$

$$-F_X(t) = \int_{-\infty}^t f_X(x) dx$$

$$-E[x] = \alpha/\beta$$

$$-Var(X) = \alpha/\beta^2$$

Figure 10: Loi Gamma

2.6 Loi centrée réduite et Theoreme de Moivre Laplace

Def: Loi centrée réduite

Soit X une VAR de loi paramétrique donnée. On appelle loi centrée réduite de X, la variable aléatoire :

$$Y = \frac{X - E[X]}{\sqrt{Var(X)}}$$

Son espérance vaut 0 et sa variance vaut 1.

Thm: Moivre-Laplace

Une variable aléatoire $X \sim Bin(n,p)$ peut être approchée par la loi gaussienne N(np, np(1-p)) lorsque np(1-p) >> 10. Il s'agit d'un résultat du théorème central-limite (cf. 3. Statistiques)

La loi normale donne ainsi une bonne approximation de la loi binomiale lorsque n tend vers l'infini et $p\sim 0.5$

Prop: approximation par loi de Poisson

De manière similaire, une variable aléatoire $X \sim Bin(n, p)$ peut être approchée par la loi de Poisson Poi(p) lorsque p faible et n tend vers l'infini.

2.7Inégalités de Markov, Chebychev et Jensen

Thm: Inégalité de Markov (Inégalité sur l'esperance)

Soit une VAR X positive intégrable. On a :

$$\forall x \ge 0, P(X \ge x) \le \frac{E[X]}{x}$$

Thm: Inégalité de Chebychev (Inégalité sur la variance)

Soit une VAR X de carré intégrable. On a :

$$\forall x \ge 0, P(|X - E[X]| \ge x) \le \frac{Var(X)}{r^2}$$

Thm: Inégalité de Jensen

Soit $\phi: I \leftrightarrow \mathbb{R}$ convexe, I ouvert.

Soit une VAR X integrable sur I et $P(X \in I) = 1$. On a :

$$\phi(E[X]) \le E[\phi(X)]$$

2.8 Vecteur aléatoire

Def: Vecteur aléatoire

On appelle vecteur aléatoire $X=(X_1,...,X_n)\in\mathbb{R}^n$, un vecteur de n variables aléatoires $X_1,...,X_n$. Sa fonction de densité f_X est une fonction de \mathbb{R}^n dans \mathbb{R}

Def: densité marginale

Chaque composante X_i d'un vecteur aléatoire X a pour densité marginale :

$$f_{X_i}(x) = \int_{-\infty}^{+\infty} ... \int_{-\infty}^{+\infty} f_X(x_1, ..., x, ..., x_n) dx_1 ... dx_{i-1} dx_{i+1} ... dx_n$$

Si X est à densité, alors toutes les composantes X_i sont à densité.

2.9 Propriétés d'indépendance et changement de variable

Def: Independance de VAR

Soit $X \in \mathbb{R}^n$. $X_1, ..., X_n$ sont indépendantes si et seulement si, de manière

- i) $P(X_1 \in A_1, ..., X_n \in A_n) = \prod_{i=1}^n P(X_i \in A_i)$ ii) $F_{X_1...X_n} = P(X_1 \le x_1)...P(X_n \le x_n)$ iii) Si X discrete, $P(X_1 = x_1, ..., X_n = x_n) = \prod_{i=1}^n P(X_i = x_i)$ Si X à densité, $f_{X_1,...,X_n}(x_1, ..., x_n) = \prod_{i=1}^n f_{X_i}(x_i)$

Si X à densité,
$$f_{X_1,...,X_n}(x_1,...,x_n) = \prod_{i=1}^n f_{X_i}(x_i)$$

Prop: propriétés d'indépendance

Si $X_1,...,X_n$ sont n variables aléatoires indépendantes, alors : $Var(\sum_{x=1}^n X_i) = \sum_{x=1}^n Var(X_i)$

$$Var(\sum_{x=1}^{n} X_i) = \sum_{x=1}^{n} Var(X_i)$$

$$E[\prod_{i=1}^{n} g_i(X_i)] = \prod_{i=1}^{n} E[g_i(X_i)]$$

$$G_{X_1 + \dots + X_n} = \prod_{i=1}^{n} G_{X_i}(t)$$

Prop: densité de somme de variables aléatoires

On appelle convolée de f et g:

$$(f * g)(x) = \int_{\mathbb{R}} f(t)g(x - t)dt$$

Si $X_1,...,X_n$ sont des VAR indépendantes de densités respectives $f_{X_1},...,f_{X_n}$, alors $X_1+...+X_n$ est de densité $f_{X_1}*...*f_{X_n}$

Thm: Changement de variable

Soit $\Phi:A\to B$, une bijection différentiable continue et sa réciproque $\Phi^{-1}:B\to A$.

On note J la jacobienne de Φ .

Alors, $\forall g: \mathbb{R}^n \to \mathbb{R}$ bornée et $f: \mathbb{R}^n \to \mathbb{R}$ integrable, on a:

$$\int_{B} g(\Phi(x))f(x)dx = \int_{A} g(y)f(\Phi^{-1}(y))|J(\Phi^{-1}(y))|dy$$

2.10 Convergence de lois

On s'interesse à la convergence, quand n tend vers l'infini, d'un vecteur X_n de n variables aléatoires indépendantes et identiquement distribuées.

Def: Convergence en loi

On dit que X_n converge en loi vers $X,\,X_n\stackrel{loi}{\to} X$ si :

$$\lim_{n \to +\infty} P(X_n \le t) = P(X \le t)$$

Def: Convergence en probabilité

On dit que X_n converge en probabilité vers $X,\,X_n\stackrel{P}{\to}X$ si :

$$\forall \epsilon > 0, \lim_{n \to +\infty} P(|X_n - X| > \epsilon) = 0$$

La convergence en probabilité implique la convergence en loi

$\mathbf{Def:\ Convergence}\ L^p$

On dit que X_n converge en L^p vers $X,\,X_n\stackrel{L^p}{\to} X$ si :

$$\forall p > 0, \lim_{n \to +\infty} E[|X_n - X|^p] = 0$$

La convergence en L^p implique la convergence en probabilité

3 Statistiques

3.1 Echantillon de données et estimateur

Def: loi paramétrique

Une loi paramétrique est une loi d'un ou plusieurs paramètres réels $\theta_1, \theta_2, ...$ (Par exemple l'esperance et la variance pour la loi gaussienne...)

Def: n-échantillon

On appelle **n-échantillon**, un vecteur de n variables aléatoires supposées de même loi et indépendantes (**iid**). Elles sont issues d'une expérience aléatoire sur lequel on veut estimer certains parametres (par exemple : n-échantillon de médicaments pour un test de fiabilité, n-échantillon de pièces mécaniques pour test de durabilité, n-échantillon de personnes pour un sondage, ...)

Def: Estimateur

Soit un n-échantillon $X_1, ..., X_n$ de n variables aléatoires iid de loi paramétrique donnée et θ un parametre de la loi. Un **estimateur** $\hat{\theta}$ de θ est une variable aléatoire fonction du n-échantillon $X_1, ..., X_n$, construit dans le but d'estimer θ .

Def: Biais d'un estimateur

Le biais d'un estimateur $\hat{\theta}$ pour estimer θ est donné par :

$$B(\hat{\theta}, \theta) = E[\hat{\theta}] - \theta$$

Il s'agit de l'écart moyen entre l'esperance de notre estimateur et la valeur réelle du paramètre.

On dit que $\hat{\theta}$ est sans biais si $B(\hat{\theta}, \theta) = 0$

Def: Risque quadratique

Le risque quadratique est basé sur l'esperance de l'écart entre un estimateur $\hat{\theta}$ de θ et la valeur réelle du paramètre θ . Il permet ainsi d'évaluer la qualité d'un estimateur. Il est donné par :

$$R(\hat{\theta}) = E[(\hat{\theta} - \theta)^{2}] = Var(\hat{\theta}) + B(\hat{\theta}, \theta)^{2}$$

Def: Consistance d'un estimateur

Un estimateur θ est dit **consistant** si, lorsque la taille de l'échantillon augmente, il converge vers la vraie valeur du paramètre θ , ce qui se traduit, de manière équivalente, par :

i)
$$\lim_{n\to+\infty} R(\hat{\theta}) = 0$$

ii)
$$\hat{\theta} \stackrel{P}{\rightarrow} \theta$$

3.2 Estimateur des moments

Thm: Loi des grands nombres

Soit $X_1,...,X_n$ un n-échantillon. La moyenne empirique, notée $\overline{X}=(X_1+...+X_n)/n$, converge en probabilité vers $E[X_1]$

Def: Estimateur des moments

La linéarité de l'espérance et le résultat de la loi des grands nombres permettent d'utiliser la moyenne empirique comme estimateur sans biais et consistant des moments des X_i .

3.3 Estimateur du maximum de vraisemblance

Def: Vraisemblance

Soit un n-échantillon $X_1,...,X_n$ de densité f_θ , dépendant du paramètre θ . La **vraisemblance** de l'échantillon est donnée par :

$$L_n(\theta) = \prod_{i=1}^n f_{\theta}(X_i)$$

Def: Estimateur du maximum de vraisemblance

Rechercher le maximum de $L_n(\theta)$ revient à rechercher l'estimateur de θ qui rend le plus vraisemblable la réalisation du n-échantillon. S'il existe, on construit ainsi un nouvel estimateur :

$$\hat{\theta}_{MV} = max(L_n(\theta))$$

On peut, puisque que le logarithme est croissant, choisir un estimateur parfois plus simple à déterminer :

$$\hat{\theta}_{MV} = max(logL_n(\theta))$$

3.4 Inégalité de Cramer-Rao

La question est désormais de savoir : jusqu'à quel point un estimateur peut-il être "performant" ?

Def: Information de Fisher

On définit l'information de Fisher par :

$$I_n(\theta) = Var(logL'_n(\theta))$$

Thm: Borne de Cramer-Rao

Dans un modèle dit "régulier" (notion hors programme, mais qui concernera l'ensemble des cas étudiés) :

Soit g une fonction dérivable sur le domaine de θ , $\hat{\theta}$ estimateur sans biais de $g(\theta)$, on a :

$$R(\hat{\theta}) \ge \frac{g'(\theta)^2}{I_n(\theta)}$$

Cette inégalité montre en particulier, que tout estimateur possède un risque minimum...

3.5 Intervalles de confiance asymptotique

Thm: Theoreme central limite

Soit X_n une suite de VAR iid de carré intégrable. On a alors :

$$\sqrt{n}(\overline{X} - E[X_1]) \stackrel{loi}{\rightarrow} N(0, Var(X_1))$$

Lemme: Lemme de l'application continue

Soit g une fonction continue. Si Z_n converge en loi (resp. probabilité) vers Z, alors $g(Z_n)$ converge en loi (resp. probabilité) vers g(Z)

Thm: Slutsky

Si (X_n) converge en loi vers X, et (Y_n) converge en loi vers une constante réelle c (Dirac(c)), alors le couple (X_n, Y_n) converge en loi vers (X, c)

Prop: Methode delta

Soit X_n une suite de VAR iid de carré intégrable et g une fonction dérivable, $g' \neq 0$ On a alors :

$$\sqrt{n}(g(\overline{X}) - g(E[X_1])) \overset{loi}{\rightarrow} N(0, g'(E[X_1])^2 Var(X_1))$$

Def: Estimateur asymptotiquement gaussien

On dit qu'un estimateur $\hat{\theta}$ de θ est asymptotiquement gaussien si:

$$\sqrt{n}(\hat{\theta} - \theta) \stackrel{loi}{\rightarrow} N(0, \sigma^2)$$

On peut construire à l'aide de ce résultat et en utilisant les quantiles de la loi normale, un intervalle de confiance asymptotique pour estimer θ , avec une erreur α que l'on choisira. De plus, puisque le résultat est asymptotique, il ne devient pertinent qu'au fur et à mesure que la taille de l'échantillon augmente...

3.6 Intervalles de confiance de la loi normale

On considère dans cette partie un n-échantillon X_n suivant une loi gaussienne $N(\mu, \sigma^2)$. On peut dans ce cas construire des intervalles de confiance non asymptotiques pour estimer soit μ , soit σ^2 :

Prop : estimer μ si σ^2 connu

Si $X_1, ..., X_n \sim N(\mu, \sigma^2)$, alors $\overline{X} \sim N(\mu, \sigma^2/n)$ est un estimateur de μ et permet de construire un intervalle de confiance pour μ .

Prop : estimer μ si σ^2 inconnu - loi de Student

Soit $X_1, ..., X_n \sim N(\mu, \sigma^2)$.

On pose $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$, l'estimateur de la variance empirique.

On note T(n) la **loi de Student**, non explicitée ici, mais dont on connait une table des valeurs.

Alors:

$$\sqrt{n}\frac{\overline{X}-\mu}{s} \sim T(n-1)$$

Cela permet de construire un intervalle de confiance pour μ

Prop : estimer σ^2 - loi du Khi-2

On note $X_2(n)$ la **loi du Khi-2**, non explicitée ici, mais dont on connait une table des valeurs. On a les deux propriétés :

$$-(1/\sigma)\sum (X_i - \mu)^2 \sim X_2(n)$$

Ce résultat permet d'estimer σ si μ est connu et de construire un intervalle de confiance pour σ

$$-(1/\sigma)\sum(X_i-\overline{X})^2\sim X_2(n-1)$$

Ce résultat permet d'estimer σ si μ est inconnu et de construire un intervalle de confiance pour σ

3.7 Methodologie de tests

On considèrera dans cette partie un n-échantillon X_n suivant une loi paramétrique $P(\theta)$. On réalise un test en opposannt deux hypothèses l'une contre l'autre :

- l'hypothèse nulle $H_0: \theta \in \Theta_0$
- l'hypothèse alternative $H_1: \theta \in \Theta_1$

On définit ensuite une **région de rejet** R. Il s'agit de l'ensemble des réalisations de X_n pour lesquelles on décide de rejeter H_0 au profit de H_1 .

Def: statistique de test

On définit plusieurs stratégies de tests :

- un **test unilatéral** consiste à rejetter H_0 lorsque la valeur $T(X_n)$ dépasse un certain seuil c (soit positivement, soit négativement).
- un **test bilatéral** consiste à rejetter H_0 lorsque la valeur $|T(X_n)|$ dépasse un certain seuil c. (à la fois positivement et négativement).

Def:

i) On appelle **erreur de première espèce** (erreur la plus grave), la probabilité de rejetter H_0 alors que H_0 est vraie. Plus précisément c'est la probabilité, sachant H_0 , que l'évènement $\theta \in R$ se réalise :

$$\alpha(\theta) = P_{H_0}((X_1, ..., X_n) \in R)$$

ii) On appelle **erreur de seconde espèce** (erreur moins grave), la probabilité de conserver H_0 alors que H_0 est fausse. Plus précisément, c'est la probabilité, sachant H_1 , que l'évènemnt $\theta \notin R$ se réalise :

$$\beta(\theta) = P_{H_1}((X_1, ..., X_n) \notin R)$$

Def: taille du test

On définit la taille du test : $t = \sup_{\theta \in \Theta_0} \alpha(\theta)$

On dit que le test est de niveau de confiance a si $a \ge \sup_{\theta \in \Theta_0} \alpha(\theta)$.

Def: puissance du test

La puissance du test est sa capacité à rejetter H_0 lorsque H_0 est effectivement faux :

$$\pi(\theta) = 1 - \beta(\theta) = P_{H_1}(X_n \in R)$$

Rq

Si I_n est un intrevalle de confiance de niveau 1-a pour estimer θ , alors le test de rejet $R = \{(X_1, ..., X_n), \theta_0 \notin I_n\}$ est un test de niveau de confiance a pour tester $H_0: \theta_0 = \theta$ contre $H_1: \theta_0 \neq \theta$

Def:

On dit qu'un test Φ_1 est uniformément plus puissant (UPP) que Φ_2 si $\pi_{\Phi_1}(\theta) \geq \pi_{\Phi_2}(\theta) \forall \theta \in \Theta_1$

Lemme: Neyman-Pearson

Si l'on teste une hypothèse $H_0:\theta=\theta_0$ contre $H_1:\theta=\theta_1$ ou encore $H_0:f_\theta=\theta_0$ f_{θ_0} contre $H_1:f_{\theta}=f_{\theta_1},$ alors le test de rejet :

$$R = \{ \prod f_1(X_i) / \prod f_0(X_i) > c_a \}$$

de taille a est UPP que tout autre test de niveau de confiance au plus a.

Def: p-value

On appelle p-valeur (p-value en anglais), la probabilité dans l'hypothèse H_0 que l'on ait une valeur "plus extrême" que celle observée :

- pour un test unilatéral à droite : $p_{val} = P(X_n > X^{obs})$
- pour un test unilatéral à gauche : $p_{val} = P(X_n < X^{obs})$ pour un test bilatéral : $p_{val} = P(|X_n| > |X^{obs}|)$