Lab Task#8 Graph Traversal Algorithm Assignment

- 1. You are given an undirected or bidirected graph and a source from which you will start your journey. You have to find and print the list of vertices you can go from the source vertice given as input.
 - a. First will have the total number of nodes (n) and the total number of edges (m).
 - b. Next m lines will be followed by m pairs of integers denoting the bi-directional edges.
 - i. a b
 - 1. It means there is a connection from **a to b** and
 - 2. Also, a connection from **b** to a.
 - c. Then a single integer **s** denoting the source.
- 2. Use the idea of Graph traversal to solve the problem. Use **Stack** for this one instead of recursion.
- 3. Implementation should be done in either C or C++ or Python or Java.
 - a. Explain your code in words if possible.
 - b. Also, if I ask you about your code, you better be able to answer. So please, understand the code before submitting it.
- 4. **Assignment File Name**: AlgoLabAssign8_GraphTraversalStack_191-115-ZZZ
 - a. Replace **ZZZ** with your roll.
- 5. Related material link: https://youtu.be/bVCeXuMX7Hk
- 6. If You find any problem in the question, let me know. I will correct it.

Input #1	Output#1
14 12	0 2 11 10 4 1 3 5 7 6 8
01	
0 4	
0 2	
13	
14	
35	
56	
57	
68	
2 11	
11 10	
9 13	
О	

Input #2	Output#2
14 10	4 1 3 5 0 2 11
01	
0 2	
0 4	
13	
14	
2 11	
35	
67	
8 9	
10 13	
4	
Input #3	Output#3
75	6 0 3
12	
14	
25	
36	
06	
6	