

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа № 7

Дисциплина Моделирование

Тема _Моделирование информационного центра на языке GPSS_

Студент Ильясов И. М.

Группа ИУ7-73Б

Преподаватель Рудаков И.В.

Формализация задачи

В информационный центр приходят клиенты через интервал времени 10 ± 2 минуты. Если все три имеющихся оператора заняты, клиенту отказывают в обслуживании. Операторы имеют разную производительность и могут обеспечивать обслуживание среднего запроса пользователя за 20 ± 5 ; 40 ± 10 ; 40 ± 20 . Клиенты стремятся занять свободного оператора с максимальной производительностью. Полученные запросы сдаются в накопитель. Откуда выбираются на обработку. На первый компьютер запросы от 1 и 2-ого операторов, на второй — запросы от 3-его. Время обработки запросов первым и 2-м компьютером равны соответственно 15 и 30 мин. Промоделировать процесс обработки 300 запросов. Реализовать на языке GPSS.

Теоретическая часть

На рисунке 1 приведена схема данной концептуальной модели:

Рисунок 1 – схема концептуальной модели.

Транзакты — динамические элементы GPSS-модели. Каждая GPSS-модель обязательно должна содержать такие объекты, как блоки и транзакты.

Операторы имеют следующий формат:

<meтка> <uмя_оператора> <поле_операндов> [<комментарий>] Основными операторами являются:

- TERMINATE уничтожает транзакты, удаляя их из модели;
- STAR[T] A,B,C,D управляет процессом моделирования, причем:
 - о А − счетчик;
 - \circ B подавление вывода на печать (B = NP);
 - о С промежуточный вывод статистики;
- GENE[RATE] A,B,C,D,E,F,G вводит транзакты в модель, причем:

- о А среднее значение интервала времени;
- В разброс или модификатор среднего значения (по умолчанию 0);
- о С время появления первого транзакта;
- О − общее число генерируемых транзактов;
- Е уровень приоритета каждого транзакта;
- \circ F число параметров (по умолчанию 12);
- G тип параметра (F полнословный, H полусловный по умолчанию);
- GATE R A,B вспомогательный блок, проверяющий состояния устройств, памятей, логических ключей, причем R принимает одно из следующих значений:
 - ∪ устройство занято;
 - NU устройство не занято;
 - 1 − устройство прервано;
 - NI устройство не прервано;
 - SF память заполнена;
 - SNF память не заполнена;
 - \circ SE память пустая;
 - SNE память не пустая;
 - о LR − ключ выключен;
 - \circ LS ключ включен;
 - о М транзакт находится в состоянии синхронизации;
 - МN − транзакт не находится в состоянии синхронизации.
- SEIZE A занятие транзактом одноканального устройства;
- ADVA[NCE] A,B задерживает транзакт, причем:
 - А среднее время задержки (константа, если В не задано);
 - В разброс относительно среднего значения, который должен быть меньше или равен А;
- RELEASE A освобождение устройства;

- TRAN[SFER] A,B,C,D изменяет движение транзакта в модели, причем:
 - A режим передачи;
 - В следующий блок;
 - С следующий блок;
 - о D − значение индекса используемое в режиме ALL.
- QUEU[E] A,В помещает транзакт в конец очереди, причем:
 - о А номер очереди;
 - о В число добавляемых к очереди элементов (по умолчанию 1).
- DEPA[RT] A,В удаляет транзакт из очереди, причем:
 - A номер очереди;
 - о В число удаляемых из очереди элементов.
- SAVE[VALUE] A,B,C, сохраняет значение, причем:
 - А номер ячейки;
 - о В присваиваемое значение;
 - о С тип ячейки XF (по умолчанию), XH, XL.

Листинг

Ниже приведен листинг кода ЛР7.

```
SIMULATE
; Блок GENERATE производит ввод транзакторов в модель
GENERATE 10,2,,300,
; Проверка первого оператора - если он занят, переход в блок ОРЕRATOR2
                           DEVICE_OPERATOR1, OPERATOR2
OPERATOR1 GATE NU
             SEIZE
                          до, о ; использование устройства 20+-5 единиц времени DEVICE_OPERATOR1 ; освобождение оператора (устройства) , СОМРИТЕR1,, : переуот и бложу СОМРИТЕР.
                           DEVICE_OPERATOR1 ; транзакт занимает первый оператор (устройство)
             ADVANCE
             RELEASE
             TRANSFER , COMPUTER1,,
; Проверка второго оператора - если он занят, переход в блок OPERATOR3
                          оператора - если он занят, перевод - DEVICE_OPERATOR2, OPERATOR2 ; транзакт занимает второй оператор (устройство) 40,10 ; использование устройства 40+-10 единиц времени DEVICE_OPERATOR2 ; освобождение оператора (устройства) сомритера. ; переход к блоку COMPUTER1
OPERATOR2 GATE NU
             SEIZE
             ADVANCE
                         DEVICE OPERATOR2
             RELEASE
             TRANSFER , COMPUTER1,,
; Проверка второго оператора — если он занят, переход в блок отказа DENY OPERATOR3 GATE NU DEVICE OPERATOR3, DENY
             SEIZE
                           DEVICE_OPERATOR3
                                                           ; транзакт занимает третий оператор (устройство)
             ADVANCE
                           40,20
                                                                        ; использование устройства 40+-20 единиц времени
                          DEVICE_OPERATOR3
,COMPUTER2,,
                                                          ; освобождение оператора (устройства) ; переход к блоку СОМРUTER2
             RELEASE
             TRANSFER , COMPUTER2,,
; Первый компьютер
                         речисе сомрител ; добавление транзакта в конец очереди первого ко речисе сомрител ; транзакт занимает первый компьютер (устройство) ; извлечение транзакта из очереди ; использование устройства 15 единиц врем речисе сомрител ; освобождение компьютера (устройства)
COMPUTER1 QUEUE
                                                           ; добавление транзакта в конец очереди первого компьютера
             SEIZE
             DEPART
             ADVANCE
                                                                        ; использование устройства 15 единиц времени
             RELEASE
             TRANSFER , ALLOW
                                                                        ; переход к блоку ALLOW, заявка обслужена
COMPUTER2 OUEUE
                           OUEUE COMPUTER2
                                                          ; добавление транзакта в конец очереди второго компьютера
                          DEVICE COMPUTER2 ; TPAHSAKT SAHUMAET NEMBUK KOMILDU
QUEUE_COMPUTER2 ; USBNEVEHUE TPAHSAKTA US OVEPEGU
                                                           ; транзакт занимает первый компьютер (устройство)
             SEIZE
                          30 ; использование устройства 30 DEVICE_COMPUTER2 ; освобождение компьютера (устройства)
             ADVANCE
                                                                        ; использование устройства 30 единиц времени
             RELEASE
             TRANSFER , ALLOW
                                                                         ; переход к блоку ALLOW, заявка обслужена
             TRANSFER ,END_PART TRANSFER ,END_PART
                                                                   ; переход к блоку END_PART, заявка обслужена
; переход к блоку END_PART, заявка обслужена
DENY
ALLOW
; Подсчет переменных, которые необходимо посчитать по заданию END_PART SAVEVALUE PROCESSED, N$ALLOW SAVEVALUE DROPPED, N$DENY
             SAVEVALUE PROBABILITY DENY, ((N$DENY) / (N$ALLOW))
TERMINATE 1
START
```

Рисунок 2 – листинг.

Результаты работы

На приведенном ниже рисунке представлены результаты работы программы. Как видно, были обработаны 231 заявка, отклонено 69. Вероятность отказа составляет 0.299.

FACILITY	ENTRIES	UTIL.	AVE. TIME	AVAIL.	OWNER	PEND	INTER	RETRY	DELAY
DEVICE_OPERATOR1	121	0.788	19.92	1 1	0	0	0	0	0
DEVICE_OPERATOR2	59	0.772	40.03	5 1	0	0	0	0	0
DEVICE OPERATORS	51	0.711	42.64	1	0	0	0	0	0
DEVICE COMPUTER	180	0.883	15.00	1	0	0	0	0	0
DEVICE_COMPUTER2	51	0.500	30.00	1	0	0	0	0	0
QUEUE QUEUE_COMPUTER1 QUEUE_COMPUTER2	2	0 180		0.279		4.737		E.(-0) 7.165 3.598	0
SAVEVALUE PROCESSED DROPPED PROBABILITY_DENY		RETRY 0 0 0	VALUE 231.000 69.000 0.299						

Рисунок 3 – результаты работы.

Вывод

В результате выполнения лабораторной работы была смоделирована работа информационного центра, в который приходят посетители. Программа была реализована на языке GPSS.