Operating System

Lecture 15: File Systems

Manoj Kumar Jain

M.L. Sukhadia University Udaipur

Outline

- File Concept
- Access Methods
- Directory Structure
- File System Mounting
- File Sharing
- Protection

File Concept

- Contiguous logical address space
- Types:
 - Data
 - numeric
 - character
 - binary
 - Program

File Structure

- None sequence of words, bytes
- Simple record structure
 - Lines
 - Fixed length
 - Variable length
- Complex Structures
 - Formatted document
 - Relocatable load file
- Can simulate last two with first method by inserting appropriate control characters.
- Who decides:
 - Operating system
 - Program

File Attributes

- Name only information kept in human-readable form.
- **Type** needed for systems that support different types.
- Location pointer to file location on device.
- Size current file size.
- Protection controls who can do reading, writing, executing.
- Time, date, and user identification data for protection, security, and usage monitoring.
- Information about files are kept in the directory structure, which is maintained on the disk.

File Operations

- Create
- Write
- Read
- Reposition within file file seek
- Delete
- Truncate
- Open (F_i) search the directory structure on disk for entry F_i , and move the content of entry to memory.
- Close (F_i) move the content of entry F_i in memory to directory structure on disk.

File Types – Name, Extension

file type	usual extension	function	
executable	exe, com, bin or none	read to run machine- language program	
object	obj, o	compiled, machine language, not linked	
source code	c, cc, java, pas, asm, a	source code in various languages	
batch	bat, sh	commands to the command interpreter	
text	txt, doc	textual data, documents	
word processor	wp, tex, rrf, doc	various word-processor formats	
library	lib, a, so, dll, mpeg, mov, rm	libraries of routines for programmers	
print or view	arc, zip, tar	ASCII or binary file in a format for printing or viewing	
archive	arc, zip, tar	related files grouped into one file, sometimes com- pressed, for archiving or storage	
multimedia	mpeg, mov, rm	binary file containing audio or A/V information	

Access Methods

Sequential Access

```
read next
write next
reset
no read after last write
(rewrite)
```

Direct Access

```
read n
write n
position to n
read next
write next
rewrite n
```

n = relative block number

Sequential-access File

Simulation of Sequential Access on a Direct-access File

sequential access	implementation for direct access	
reset	cp = 0;	
read next	read cp; cp = cp+1;	
write next	write cp; cp = cp+1;	

Example of Index and Relative Files

Directory Structure

A collection of nodes containing information about all files.

Both the directory structure and the files reside on disk. Backups of these two structures are kept on tapes.

A Typical File-system Organization

Information in a Device Directory

- Name
- Type
- Address
- Current length
- Maximum length
- Date last accessed (for archival)
- Date last updated (for dump)
- Owner ID (who pays)
- Protection information (discuss later)

Operations Performed on Directory

- Search for a file
- Create a file
- Delete a file
- List a directory
- Rename a file
- Traverse the file system

Organize the Directory (Logically) to Obtain

- Efficiency locating a file quickly.
- Naming convenient to users.
 - Two users can have same name for different files.
 - The same file can have several different names.
- Grouping logical grouping of files by properties, (e.g., all Java programs, all games, ...)

Single-Level Directory

A single directory for all users.

Naming problem

Grouping problem

Two-Level Directory

Separate directory for each user.

- Path name
- Can have the same file name for different user
- Efficient searching
- No grouping capability

Tree-Structured Directories

Tree-Structured Directories (Cont.)

- Efficient searching
- Grouping Capability
- Current directory (working directory)
 - cd /spell/mail/prog
 - **type** list

Tree-Structured Directories (Cont.)

- Absolute or relative path name
- Creating a new file is done in current directory.
- Delete a file

Creating a new subdirectory is done in current directory.

Example: if in current directory /mail

mkdir count

Deleting "mail" ⇒ deleting the entire subtree rooted by "mail".

Acyclic-Graph Directories

Have shared subdirectories and files.

Acyclic-Graph Directories (Cont.)

- Two different names (aliasing)
- If dict deletes list ⇒ dangling pointer.
 Solutions:
 - Backpointers, so we can delete all pointers.
 Variable size records a problem.
 - Backpointers using a daisy chain organization.
 - Entry-hold-count solution.

General Graph Directory

General Graph Directory (Cont.)

- How do we guarantee no cycles?
 - Allow only links to file not subdirectories.
 - Garbage collection.
 - Every time a new link is added use a cycle detection algorithm to determine whether it is OK.

File System Mounting

A file system must be **mounted** before it can be accessed.

A unmounted file system (i.e. Fig. 11-11(b)) is mounted at a mount point.

(a) Existing. (b) Unmounted Partition

Mount Point

File Sharing

- Sharing of files on multi-user systems is desirable.
- Sharing may be done through a protection scheme.
- On distributed systems, files may be shared across a network.
- Network File System (NFS) is a common distributed file-sharing method.

Protection

- File owner/creator should be able to control:
 - what can be done
 - by whom
- Types of access
 - Read
 - Write
 - Execute
 - Append
 - Delete
 - List

Access Lists and Groups

- Mode of access: read, write, execute
- Three classes of users

			RWX
a) owner access	7	\Rightarrow	111
b) group access	6	\Rightarrow	1 1 0
c) public access	1	\Rightarrow	001

 $D \setminus A \setminus A$

- Ask manager to create a group (unique name), say G, and add some users to the group.
- For a particular file (say game) or subdirectory, define an appropriate access.

Attach a group to a file

chgrp G game

Thanks