2015-XE-40-52

EE24BTECH11035 - KOTHAPALLI AKHIL

1) The velocity profile in turbulent flow through a pipe is approximated as

$$\frac{u}{u_{\text{max}}} = \left(\frac{y}{R}\right)^{1/7}$$

where u_{max} is the maximum velocity, R is the radius, and y is the distance measured normal to the pipe wall towards the centerline. If u_{av} denotes the average velocity, the ratio $\frac{u_{\text{av}}}{u_{\text{max}}}$ is

- a) $\frac{2}{15}$
- b) $\frac{1}{5}$
- c) $\frac{1}{3}$
- d) $\frac{49}{60}$
- 2) A steel sphere (density $\rho_s = 7900 \, \text{kg/m}^3$) of diameter 0.1 m is dropped from rest in water (density $\rho_w = 1000 \, \text{kg/m}^3$). The gravitational acceleration is 9.81 m/s². Assuming that the drag coefficient is constant and equal to 1.33, the terminal velocity attained by the sphere in m/s is
- 3) An inclined venturimeter connected to an inverted manometer is shown in the figure. The cross-sectional areas at the inlet and the throat are $2 \times 10^{-3} \,\mathrm{m}^2$ and $2 \times 10^{-4} \,\mathrm{m}^2$, respectively. The densities of water and oil are $1000 \,\mathrm{kg/m}^3$ and $800 \,\mathrm{kg/m}^3$, respectively. The gravitational acceleration is $9.81 \,\mathrm{m/s}^2$. If the discharge of water through the venturimeter is $5 \times 10^{-4} \,\mathrm{m}^3/\mathrm{s}$, neglecting viscous effects and assuming uniform velocities across the inlet and the throat, the manometer reading h, in meters, will be

1

4) A plane jet of water with volumetric flow rate $0.012\,\mathrm{m}^3/\mathrm{s}$ and cross-sectional area $6\times10^{-4}\,\mathrm{m}^2$ strikes a stationary plate inclined at angle θ and leaves as two streams, as shown in the figure. The ratio of the discharge through section 2 to that through section 3 is 3:1. The velocities may be considered uniform across the cross-sections, and the effects of friction may be neglected. The density of water is $1000\,\mathrm{kg/m}^3$. Ignoring the effects of gravity, the magnitude of the normal force exerted on the plate, in N, is

- 5) Arrange the following elements in order of increasing melting point:
 - (P) Gallium
 - (Q) Tungsten
 - (R) Aluminium
 - (S) Gold
 - a) (A) P < R < Q < S
 - b) (B) S < P < R < Q
 - c) (C) P < R < S < Q
 - d) (D) R < S < O < P
- 6) When the atoms in a solid are separated by their equilibrium distance,
 - a) (A) the potential energy of the solid is lowest
 - b) (B) the force of attraction between the atoms is maximum
 - c) (C) the force of repulsion between the atoms is zero
 - d) (D) the potential energy of the solid is zero
- 7) To which of the following categories of materials does Teflon (PTFE) belong?
 - a) (A) Thermosets
 - b) (B) Thermoplastics
 - c) (C) Elastomers
 - d) (D) Block copolymers
- 8) Which of the following statements is **TRUE** about the glass transition temperature (T_g) ?
 - a) T_g appears below the melting temperature in a perfectly crystalline material
 - b) Upon heating through T_g , heat capacity remains constant but the thermal expansion coefficient changes

- c) Upon heating through $T_{\rm g}$, heat capacity changes but the thermal expansion coefficient remains the same
- d) Upon heating through T_g , both the heat capacity and thermal expansion coefficient change
- 9) The slope of a graph of $\log_e(\text{conductivity})$ versus 1/T (where T is the temperature) for an intrinsic semiconductor with energy gap E_g is:
 - a) $E_g/2k$
 - b) $-E_g/2k$
 - c) E_g/k
 - d) $-E_g/k$
- 10) Which is **NOT** a ceramic forming process?
 - a) extrusion
 - b) slip casting
 - c) forging
 - d) tape casting
- 11) Which of the following is **NOT** a soft magnetic material?
 - a) Iron-silicon steel
 - b) Nickel zinc ferrite
 - c) Nickel iron alloy
 - d) Alnico
- 12) The eutectic reaction is

[Note: S = solid; L = liquid]

- a) $L \rightleftharpoons S_1 + S_2 + S_3$
- b) $L \rightleftharpoons S_1 + S_2$
- c) $L_1 + S_1 \rightleftharpoons L_2 + S_2$
- d) $L_1 + S_1 \rightleftharpoons S_2 + S_3$
- 13) Vacancies play an important role in:
 - a) deformation twinning
 - b) self diffusion
 - c) strain hardening
 - d) cross-slip