4. Hausaufgabe im Modul "Berechenbarkeit & Komplexität"

Gruppe HA-EH-Fr-10-12-MA544-3

Aufgabe 1: Entscheidbarkeit

Wir Zeigen dass die Sprachen L_1, \ldots, L_n semi-entscheidbar sind analog zu der VL7.

Da L_1 bis L_n semi-entscheidbar sind, heißt es dass jede Sprache χ'_{L_i} berechenbar durch WHILE-Programme mit einer WHILE-Schleife:

```
1 x_i \leftarrow 1;
2 while x_i \neq 0 do
3 | P_{L_i};
4 end
5 x_0 \leftarrow 1;
```

Dann können wir ein Programm Konstruiren das die Sprache L_i entscheidet indem wir nacheinander P_{L_i} für jedes $j \in \{1, \ldots, n\}$ ausführen.

Da jedes L_j semi-entscheidbar ist und $\bigcup_{i=1}^n L_i = \Sigma^*$ ist, wird das Programm bei einer Eingabe $w \in \Sigma^*$ eventuell für ein j terminieren. Falls j = i, dann geben wir 1 aus, sonst 0.

```
1 x_1 \leftarrow 1; x_2 \leftarrow 1; ...; x_{n+1} \leftarrow 1;
2 while x_1 \neq 0 und x_2 \neq 0 und ... und x_{n+1} \neq 0 do
3 | P_{L_0}; P_{L_1}; ...; P_{L_n};
4 end
5 if x_{j+1} = 1 then
6 | x_0 = 1
7 else
8 | x_0 = 0
9 end
```

Aufgabe 2: Abgeschlossenheit Semi-Entscheidbarkeit

(a) Gegenbeispiel: Sei

$$U := \{w \in \{0,1\}^*\} = \{0,1\}^*$$

Wir erkennen dass, U entscheidbar (und somit auch semi-entscheidbar) ist, da wir 1 ausgeben für jede Eingabe $w \in \{0,1\}^*$ und 0 für jede Eingabe $w \notin \{0,1\}^*$. Aus der VL6 kennen wir außerdem das spezielle Halteproblem

$$K := \{w \in \{0,1\}^* | M_w \text{ hält auf Eingabe } w\}$$

Wir erkennen, dass K semi-entscheidbar ist, da wir 1 ausgeben wenn M_w hält, sonst wird M_w nicht halten. Aus der VL6 wissen wir auch, dass K unentscheidbar ist.

Offenbar gilt $K \subseteq U$, da K nur aus Wörtern besteht, die aus 0 und 1 bestehen.

Wenn $U \setminus K$ semi-entscheidbar wäre, dann wäre K entscheidbar (VL7), was ein Widerspruch ist.

(b) da L_1 und L_2 semi-entscheidbar sind, gibt es zwei Turingmaschinen M_1 und M_2 die Halten wenn $w \in L_1$ bzw. $w \in L_2$.

Wir können eine Turingmaschine M konstruieren, die $L = \{w_1w_2|w_1 \in L_1, w_2 \in L_2\}$ auch semi-entscheidet indem wir ein Wort w aufteilen in wörtern $w_{1,i} = \text{Präfix}$ der länge i und $w_{2,i} = \text{Suffix}$ der länge |w| - i für i = 0, 1, ..., |w|. Wir führen dann ein Schritt von M_1 auf $w_{1,i}$ und ein Schritt von M_2 auf $w_{2,i}$ aus für jedes i. Falls $w \in L$ wird es nach definition von L wird es ein i geben sodass $w_{1,i} \in L_1$ und $w_{2,i} \in L_2$. So geben wir 1 aus, falls M_1 und M_2 beide halten, sonst wird das Programm nicht halten. Somit ist L semi-entscheidbar.

Aufgabe 3: NICHT (CO-)SEMI-ENTSCHEIDBARE SPRACHEN

Seien $S_i\subseteq\{0,1\}^*,\ i\in\mathbb{N}$ alle semi- und co-semi-entscheidbare Sprachen. Wir können anhand von Diagonalisierung wie folgt eine Sprache D konstruieren:

$$D = \{w_i \in \{0, 1\}^* | w_i \not\in S_i\} \quad i \in \mathbb{N}$$

Da kein wort $w \in D$ in S_i enthalten ist, existiert keine funktion die χ'_D berechnet.

Somit ist D weder semi- noch co-semi-entscheidbar.