수치 모델링 및 머신러닝을 이용한 대기 오염 예측

수학과 2017010698 오서영 수학과 2018010705 신영민

목차

수행 결과 수행 결론 개요 과정 분석

1. 수행개요

목적 및 필요성

미세먼지에 의한 사망률이 증가하는 추세 ---→

미세먼지 농도 예측의 필요성

<출처 : 환경부, 국민 재난 안전 포털>

1. 수행개요

목표

두가지 방법론을 사용하여 미세먼지 농도 예측하기

수학적 모델링 (Mathematical modeling)

기계 학습 (Machine learning)

데이터 수집 및 정제

DATASET

지역별 시간당 **미세먼지 농도** (Pm-10)

풍속, 풍향 데이터 (2019-04-05)

지역별 위도 경도 데이터

37.519977, 126.984509

위도

경도

DATASET

데이터 정제 필요성

공간에 대한 통계자료를 모든 지점에서 획득하기는 현실적으로 불가능

보간법 (Interpolation)

알고 있는 두 점 사이 어느 지점의 값을 추정하는 기법

3차 보간법 (Cubic Interpolation)

Cubic Interpolation (3차 보간법)

IDW(Inversed distance weighted)

가까이 있는 실측값에 더 큰 가중 값을 주어 보간하는 방법 거리가 가까울 수록 높은 가중 값이 적용.

$$\hat{u}(x) = \frac{\sum_{k=0}^{N} w_k(x) u_k}{\sum_{k=0}^{N} w_k}$$

N: 실측값 개수

 $w_k(x) = \frac{1}{d(x,x_k)}$: 가중치

 \hat{u} : 보간된 값

IDW(Inversed distance weighted)

수학적 모델링

→ 가정 : 물질들 사이의 화학적인 변화가 없다 공기 질 모델링 ~ 대류 + 확산

대류-확산방정식 (Convection-Diffusion equation)

대류 방정식 : $\frac{\partial c}{\partial t}(x,t) + \frac{\partial(uc)}{\partial x}(x,t) = 0$ 확산 방정식 : $\frac{\partial c}{\partial t}(x,t) = D\frac{\partial^2 c}{\partial x^2}(x,t)$

대류 방정식

상수 u의 속도로 물질이 흘러가고 있다면 물질의 분포는

$$C(x,t) = C_0(x - ut)$$

로 쓸 수 있다.

양변을 x와 t로 각각 편미분을 하면 연쇄법칙에 의하여 아래와 같은 결과가 나온다.

$$\frac{\partial C}{\partial x} = C_0'(x - ut)$$
$$\frac{\partial C}{\partial t} = C_0'(x - ut)(-u)$$

이를 정리하면,

$$\frac{\partial C}{\partial t}(x,t) + \frac{\partial (uC)}{\partial x}(x,t) = 0$$

와 같은 대류 방정식을 얻을 수 있다.

확산 방정식

$$C_{i}^{n+1} = C_{i}^{n} + kC_{i-1}^{n} - kC_{i}^{n} + kC_{i+1}^{n} - kC_{i}^{n}$$

$$= C_{i}^{n} + k(C_{i-1}^{n} - 2C_{i}^{n} + C_{i+1}^{n})$$

$$C_{i}^{n+1} - C_{i}^{n} = k(C_{i-1}^{n} - 2C_{i}^{n} + C_{i+1}^{n})$$

$$\frac{C_{i}^{n+1} - C_{i}^{n}}{\Delta t} = \frac{k}{\Delta t}(C_{i-1}^{n} - 2C_{i}^{n} + C_{i+1}^{n})$$

$$\frac{C_{i}^{n+1} - C_{i}^{n}}{\Delta t} = \frac{kh^{2}}{\Delta t} \frac{(C_{i-1}^{n} - 2C_{i}^{n} + C_{i+1}^{n})}{h^{2}}$$

$$\frac{\partial C}{\partial t} = D \frac{\partial^{2} C}{\partial x^{2}} \quad (D = \frac{kh^{2}}{\Delta t})$$

대류-확산방정식 (Convection-Diffusion equation)

c(x,y,t)와 (u(x,y), v(x,y))를 2차원 공간 (x,y)와 시간 t에서의 어떤 물질의 농도와 속도장이라고 하면

$$\frac{\partial c(x,y,t)}{\partial t} + \frac{\partial}{\partial x} \left[u(x,y)c(x,y,t) \right] + \frac{\partial}{\partial y} \left[v(x,y)c(x,y,t) \right]$$
$$= D\left[\frac{\partial^2 c(x,y,t)}{\partial x^2} + \frac{\partial^2 c(x,y,t)}{\partial y^2} \right]$$

대류-확산방정식 (Convection-Diffusion equation)

이산화를 위한 차분 공식

테일러 전개:
$$f(x+h) = f(x) + hf'(x) + h^2 \frac{f''(x)}{2!} + h^3 \frac{f'''(x)}{3!} + \cdots$$

1계 중앙차분

$$f(x+h) = f(x) + hf'(x) + h^2 \frac{f''(x)}{2!} + h^3 \frac{f'''(\xi)}{3!}$$

$$f(x-h) = f(x) - hf'(x) + h^2 \frac{f''(x)}{2!} - h^3 \frac{f'''(\xi)}{3!}$$

위 두식을 빼면

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$

대류-확산방정식 (Convection-Diffusion equation)

이산화를 위한 차분 공식

테일러 전개:
$$f(x+h) = f(x) + hf'(x) + h^2 \frac{f''(x)}{2!} + h^3 \frac{f'''(x)}{3!} + \cdots$$

2계 중앙차분

$$f(x+h) = f(x) + hf'(x) + h^2 \frac{f''(x)}{2!} + h^3 \frac{f'''(\xi)}{3!}$$

$$f(x-h) = f(x) - hf'(x) + h^2 \frac{f''(x)}{2!} - h^3 \frac{f'''(\xi)}{3!}$$

위 두식을 더하면

$$f''(x) = \frac{f(x+h) - f(x) + f(x-h)}{h^2} + O(h^2)$$

대류-확산방정식 (Convection-Diffusion equation)

이산화한 결과

$$c_{ij}^{n+1}$$

$$= c_{ij}^{n} - \Delta t \left[\frac{cu_{i+1,j}^{n} - cu_{i-1,j}^{n}}{2h} + \frac{cv_{i,j+1}^{n} - cv_{i,j-1}^{n}}{2h} \right]$$

$$+ D \frac{\Delta t}{h^{2}} \left[c_{i+1,j}^{n} + c_{i,j+1}^{n} - 4c_{ij}^{n} + c_{i-1,j}^{n} + c_{i,j-1}^{n} \right]$$

대류-확산방정식 (Convection-Diffusion equation)

경계 조건은 **노이만 경계 조건** (Neumann boundary condition) 을 사용

RNN (Recurrent Neural Network)

시계열 데이터 예측에 적합한 딥러닝 모델

 x_t : 현재 입력, h_{t-1} : 과거 기억, h_{t-1} : 현재기억

머신러닝

RNN (Recurrent Neural Network)

LSTM (Long Short Term Memory)

장기 의존성 문제

: 은닉층의 과거 정보가 마지막까지 전달되지 못하는 현상

장기 의존성 학습을 할 수 있는 RNN의 한 종류

수학적 모델링 _ Convection-Diffusion model

24시간 대기오염 농도

머신러닝 _ LSTM

마지막 한시간에 대한 대기오염 농도

머신러닝 _ LSTM

Kurnia, Jundika Candra, Agus Pulung Sasmito, and Arun Sadashiv Mujumdar. "Dust dispersion and management in underground mining faces." International Journal of Mining Science and Technology 24.1 (2014): 39-44.

4. 결론

질의응답