CBC-Mode

Nachricht in n Teile gliedern.

Schlüssel ⇒ Permutationsmatrix mit Einheitsvektoren

$$\pi = \begin{pmatrix} 1 & \cdots & n \\ a & \cdots & z \end{pmatrix} \Rightarrow P_{\pi} = \begin{pmatrix} e_a \\ \vdots \\ e_z \end{pmatrix}$$

Verschlüsselung:

$$c_0 = IV$$

$$c_i = E(\pi, c_{i-1} \oplus m_i) = P_{\pi} \cdot (c_{i-1} \oplus m_i)$$

$$\Rightarrow$$
 c_1,\ldots,c_n

Entschlüsselung:

$$m_i = D(\pi^{-1}, c_i) \oplus c_{i-1} = (P_{\pi^{-1}} \cdot c_i) \oplus c_{i-1}$$

mit $\pi^{-1} = \pi'$ (transponiert)

CFB-Mode

Verschlüsselung:

$$c_i = E(\pi, c_{i-1}) \oplus m_i$$

Entschlüsselung:

$$m_i = E(\pi, c_{i-1}) \oplus c_i$$

CTR-Mode

Verschlüsselung:

$$c_i = E(\pi, IV + (i-1)) \oplus m_i$$

(binäre Addition, Überträge verwerfen)

Entschlüsselung:

$$m_i = E(\pi, IV + (i-1)) \oplus c_i$$

Hashfunktion

Nicht injektive Abbildung, die Urbildbildbereich auf erheblich kleineren Bildbereich abbildet. Einwegfunk-

Sneicherung von Passwörtern. Dateivalidierung

Message Authentication Code (MAC)

Hashfunktion mit geheimen Schlüssel zur Integritätsprüfung von Nachrichten. Ermöglicht kein nonrepudiation, daher nicht als digitale Unterschrift geeignet.

Kollisionsresistenz

Es ist schwierig zwei Werte x und y mit H(x) =H(y) zu bestimmen

Schwache Kollisionsresistenz

Es ist schwierig zu geg. Wert x ein x' mit H(x) =H(x') zu bestimmen

Shamir Secret-Sharing

t von n Stakeholdern sind nötig, um Geheimnis k = f(0) zu entschlüsseln. Außerdem gegeben: Primzahl p > n,k und vom Dealer gewähltes Polynom f(x) vom Grad t-1

Schlüssel $s_i = f(i) \mod p$

Secret Recovery:

$$k = f(0) = \sum s_i \cdot l_i(0)$$
 $l_i(0) := \left[\prod_{i=1, j \neq i} \frac{j}{j-i}\right] \mod p$ Beim

Berechnen von $l_i(0)$ die Nenner zu $(a)^{-1}$ zusammenfassen und als inverses Element berechnen.

Erweiterter Euklidischer Algorithmus (EEA)

qqT(a,b) und $x \cdot a + y \cdot b = d$

a	r	x	u	a	Ь	x_2	x_1	y_2	<i>u</i> ₁
X	X	X	X	a	b	1	0	0	1
a/b	$a \mod b$	$x_2 - qx_1$	$y_2 - qy_1$	b	r	<i>x</i> ₁	x	y_1	y
?	0	?	?	=d	0	=x	?	=y	?

Inverses Element $(a)^{-1}$ berechnen

Es gilt: $[a \cdot (a)^{-1}] \mod k = 1$ qqT(a,k) mit EEA durchführen.

$$(a)^{-1} = \begin{cases} (x+k) \mod k & \text{wenn } x < 0 \\ x \mod k & \text{sonst} \end{cases}$$

iptables

Chains: Pakete von...

Außen an System mit Firewall INPUT

FORWARD Außen an System innerhalb des geschützten Bereichs

OUTPUT Innen nach Außen

Targets:

ACCEPT Akzeptieren und Weiterleiten Verwerfen ohne Info an Absender DROP

REJECT Verwerfen mit Info

Parameter:

Param	Argumente	Erklärung
-P	Chain Target	Policy für Chain
-A	Chain	Append Regel
-p	Protokoll	z.B. tcp, icmp
-j	Target	Gibt Target an
-F	Chain	Flush, löscht alle Regeln für
		Chain außer Standardregeln mit -P
-i/-o	Interface	in-interface bzw. out-interface
-dport/sport	port	Destination/Source port

Reliability

Wahrscheinlichkeit, dass ein System über gewissen Zeitraum korrekt funktioniert.

Reihenschaltung: $R_{ges}(t) = \prod_{i=1}^n R_i$ Falls gleiches Modell $R_i(t) = e^{-\lambda_i t}$ gilt: $R_{ges}(t) = e^{-\lambda t}$ mit $\lambda = \sum_{i=1}^n \lambda_i$

Parallelschaltung: $R_{qes}(t) = 1 - \prod_{i=1}^{n} (1 - R_i(t))$

Availability

Verfügbarkeit eines Systems in %:

A=Uptime/(Downtime+Uptime) = MTTF/(MTTF+MTTR)

MTTF (Mean Time to Failure): $MTTF = \int_0^\infty R(t)dt \stackrel{\exp}{=} \frac{1}{\lambda}$

MTTR (Mean Time to Recovery):

Wahrscheinlichkeit F(t), dass System bis t fehlerhaft wird.

Exp. Modell: $F(t) = 1 - e^{-\lambda t}$

Reliability Funktion: R(t) = 1 - F(t) exp. Modell: $R(t) = e^{-\lambda t}$

Sicherheitsziele

Safety Betriebssicherheit, Ablauf- und Ausfallsicherheit

Angriffssicherheit Security

> Authenticity Authentizität, Echtheit, Glaubwürdigkeit

Integrität der Daten Integrity

Confidentiality Vetraulichkeit, keine unautorisierte Datengewinnung Availability Verfügbarkeit, keine Funktionsbeeinträchtigungen

Verbindlichkeit und Zuordenbarkeit Non repudiation

Kasiski-Test

- Doppelt vorkommende N-Gramme und deren Abstand bestimmen
- Primfaktorzerlegung
- Gemeinsame Faktoren entsprechen Schlüssellänge

OTP - Beweis perfekte Sicherheit

zu zeigen: $Pr[Enc(k,m_1) = c|k \stackrel{\$}{\leftarrow} \mathcal{K}] = Pr[Enc(k,m_2) = c|k \stackrel{\$}{\leftarrow} \mathcal{K}]$

$$Pr[Enc(k,m) = c | k \xleftarrow{\$} \mathcal{K}] = Pr[m \oplus k = c | k \xleftarrow{\$} \mathcal{K}]$$
 (1)

$$= Pr[k = c \oplus m | k \xleftarrow{\$} \mathcal{K}] \tag{2}$$

$$= Pr[k = k^* | k \stackrel{\$}{\leftarrow} \mathcal{K}] = \frac{1}{2^l}$$
 (3)

Satz von Euler

 $n > 1 \Rightarrow a^{\phi(n)} \equiv 1 \pmod{n} \forall a \in \mathbb{Z}_n^*$

Spezialfall: kleiner Satz von Fermat

Primzahl p>1 so gilt für jede Zahl x mit ggT(x,p)=1 :

$$x^{p-1} \equiv 1 \pmod{n}$$

In jeder endl. Gruppe M gilt: $x^{ord(M)} = 1 \forall x \in M$

Korrektheit von ElGamal

Bekannt: $E[(g,h),m] = (c_1,c_2) := (g^k,mh^k)$ Zu zeigen: $D(E(m)) = m \quad \forall m \in \mathbb{Z}_p^*$ Beweis:

$$D(E(m)) = D(g^k, mh^k) \tag{4}$$

$$\equiv mh^k \cdot (g^k)^{-a} \mod p \tag{5}$$

$$\equiv mh^k \cdot g^{k(p-1-a)} \mod p \qquad (6$$

$$\equiv mg^{ak} \cdot g^{k(p-1)-ak} \mod p \quad (7)$$

$$\equiv m \cdot g^{k(p-1)} \mod p \tag{8}$$

$$\equiv m \mod p$$
 (9)

RSA

Allgemein:

- 1. Wähle zufällig große Primzahlen p,q
- 2. Setze $n = p \cdot q$
- 3. Wähle zufällig (e,d) mit $ed \equiv 1 mod(\varphi(n))$, mit $\varphi(n) = (p-1)(q-1)$

Public key: pk = (e,n)

Private key: sk = (d,n)

(Public und private key sind invers zueinander) Ver-/Entschlüsselung:

 $E(pk,m) = m^e \mod n$

 $D(sk,c) = c^d \mod n$

RSA Signatur:

 $sign(sk,m) = h(m)^d \mod n$ $verify(pk,m,s) : [s^e = h(m)?]$

Zeigen, dass Chiffriersystem definiert ist

Zu zeigen ist: $D[E(m_1,\ldots,m_n)]=m_1,\ldots,m_n$

Ansätze zur Userauthentifizierung

by knowledge (PIN, Passwort)

- free recall-based (Freies Erinnern ohne Abrufhilfe)

Draw a Secret (DAS), Android

- cued recall-based (Mit Abrufhilfe, Sicherheitsfrage)
PassPoints

- Recognition-based (Wiedererkennen) by ownership (smart card, token, SIM) by inherence (Biometrie, Verhalten)

Features of authentication schemes

Security

- Guessability $|P| = \log_2 \sum_{l \in L} |A|^l$

Angreifbar über:

Brute Force (Offline), Dictionary Attack (On/Offline)

- Oberservability

Angreifbar über:

Shoulder Surfing (Human Observer), Spyware (Technology)

- Recordability

Angreifbar über:

Social Engineering (Deception), Theft (Unsecured Record) Usability

- Compatibility
- Costs
- Maturity
- Proprietary

Mandatory Access Control (MAC)

Systembestimmte (regelbasierte) Festlegung von Sicherheitseigenschaften, die benutzerdefinierte Rechte dominieren. Bell-La Padula Modell erweitert Matrixbasiertes Zugriffskontrollsystem.

Rechte $R = \{read, append, read - write\}$

Sicherheitsklassen SC = (A,B) mit A total geordnete Sicherheitsmarken, mit B Menge von Kategorien/Personen.

Jedes Subjekt hat Clearance: $SC(s) \in SC$ Jedes Objekt hat Classification: $SC(o) \in SC$

Regeln:
- Simple-security-Property/no read up-Regel. Lesen nur erlauben,

 $read \in M(s,o) \land SC(s) \ge SC(o)$

- *-Property (no write down-Regel):

A nur erlauben, falls $append \in M(s,o) \land SC(s) \leq SC(o)$

RW nur erlauben, fall $read - write \in M(s,o) \land SC(s) = SC(o)$

- Während Laufzeit keine Änderungen

Usability aspects of knowledge based authentication

Effectiveness Objective Success-/Errorrate

Efficiency Objective Time needed per attempts, attempts needed Satisfaction Subjective Questionnaires (SUS), Recommendations

Discretionary Access Control (DAC) - Fahrschein

Eigentümer bestimmt Rechte für einzelne Objekte in Matrix M

Menge von Objekten O, Subjekten S, Rechten R.

 $M: S \times O \rightarrow 2^R$

Vorteile: Einfach in Nutzung & Implementierung, flexibel

Nachteile: dynamische Rechte schlecht abbildbar, Vergabe/Rücknahme von Rechten relativ komplex

Spaltenweise Speicherung: $ACL(Datei1) = \{(Prozess1), \{read, write\}\}$

Role-Based Access Control (RBAC)

Berechtigungen für Rollen statt Nutzer, intuitiv, flexibel

Menge von Subjekten S, Rollen R, Zugriffsrechten P.

Zwei Abbildungen/Zuordnungen:

Benutzer - Rollen: $sr:S \to 2^R$

Rolle - Rechte: $pr: R \to 2^P$ (Rolle bestimmt Rechte)

Sitzung: $session \subseteq S \times 2^R$

Für alle Paare $(s,rl) \in session: rl \subseteq sr(s)$

 ${\it rl}$: aktive Rollen von ${\it s}$

Invarianten:

 $\forall s \in S : R_j \in session(s) \Rightarrow sr(s)$:

Subjekt darf nur Rollen haben, in denen es Mitglied ist

 $\forall s \in S : \underline{exec(s,p)}_{\mathsf{hat\ s\ p}^2} \Rightarrow R_j \in R : R_j \in session(s) \land p \in pr(R_j)$:

Subjekt hat nur Rechte der aktiven Rolle

 $\forall s \in S : exec(s,p) \Rightarrow \exists R_i \in R, R_i \in session(s) \land (p \in pr(R_i) \lor \exists R_j : (\exists R_j : (R_i < R_i \land p \in pr(R_i))))$

Hierarchisches Modell

Statischer Ausschluss von Rollenpaaren: $SSD \subseteq R \times R$

 $\forall R_i, R_j \in R, \forall s \in S : (s \in member(R_i) \land s \in member(R_j)) \Rightarrow (R_i, R_j) \notin SSD$

Dynamischer Ausschluss von Rollenpaaren: $DSD \subseteq R \times R$

 $\forall R_i, R_j \in R, \forall s \in S$:

 $(s \in member(R_i) \land s \in member(R_j) \land \{R_i, R_j\} \subseteq active(s))$

 $\Rightarrow (R_i,R_j) \not\in SSD$

 $active(s) = \{R_i | \exists R_s \in R \land (s, R_s) \in session \land R_i \in R_s\}$