Math 3336: Test 1 Review

Instructions

• This is not an assignment. Neither work nor answers are to be submitted.

• Also, **DON'T FORGET THAT** $0 \in \mathbb{N}$.

1. Write down

(a) an example of a true statement.

5 is an odd integer.

(b) an example of a false statement.

5 is an even integer.

(c) an example of an open sentence.

x2 is even

(d) an example of a non-statement (that is also *not* an open sentence).

Shut the door!

2. suppose we have two finite sets, A and B, that satisfy

$$|A| = 5 \text{ and } |B| = 7$$

(a) Is it possible for $|A \cup B| = 5$?

(b) Is it possible for $|A \cup B| = 12$?

(c) Is it possible for $|A \cup B| = 4$?

(d) Compute $|\mathcal{P}(A)|$

(e) Compute $|A \times B|$

(f) Compute $|\mathcal{P}(A) \times B|$

(g) Is it possible for $|A \cap B| = 0$?

3. Suppose P, Q and R are statements. Is it possible that the following is true?

$$(P \Rightarrow Q) \iff R \text{ is true}$$

 $P \lor R \text{ is false}$

First one is true means $P \Rightarrow Q \perp R$ have same that value Second one means both P is $F \downarrow R$ is F. Since P is F, $(P \Rightarrow Q)$ is true. But this means $(P \Rightarrow Q)$ and R have difficulting that values

4. Fill in the following truth-tables:

P	Q	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \iff Q$	$P \oplus Q$
T	Ť	T	7	+	T	F
7	F	F	1	T	F	+
K	Ť	F	7	Т		7
F	F	F	F	+	+	F

5. Is $\neg (P \land Q) \lor P = \neg P \lor (\neg Q \lor P)$? Explain your answer using a truth table.

Р	Q \	m(PAQ) vP	7P v (7Q v P)	
T	T	Т	T	
T	F	T	T	
F	4	T	Т	
F	F	T	T	

book are tautologies!

- **6.** Determine which, if any, of the following statements is true when using the universal set $U = \{2n : n \in \mathbb{Z}\}$.
- X (a) $\exists ! x \in U, x^4 = 16$. \longrightarrow multiple x's make this true
- X (b) $\forall t \in U$, 3t is odd. \leftarrow no \pm 's make this true
- \mathbf{X} (c) $\exists y \in U, y^3 = 27$. No y's make this true
 - (d) $\forall s \in U, \cos(\pi s) = 1.$
 - (e) None of the other statements are true.
 - cos (even · TT) =) V

7. Write down a non-empty universal set, U, that makes the following statement true:

 $\forall m \in U, 3|m \wedge 2|m.$

8. Consider the following claim:

$$\forall (x, y) \in \mathbb{R}^2, \exists (u, v) \in \mathbb{R}^2, (x, y) + (u, v) = (x, y).$$

If one wanted to prove this using the Contrapositive method, then what could be used as the first line of the proof? What could be used as the last line?

9. A sequence of real numbers, $\{a_n\}$, satisfies the recurrence equation and initial condition

$$a_n = a_{n-1} + 5$$
 and $a_0 = 3$.

Write the first four terms of this sequence. Do any of the terms in the sequence equal 33? If so, which one(s)?

$$a_0 = 3$$
 $a_1 = 3 + 5 = 8$
 $a_2 = 8 + 5 = 13$
 $a_3 = 13 + 5 = 18$
 $a_4 = 18 + 5 = 23$
 $a_5 = 23 + 5 = 28$

10. Consider the statement

$$P: \exists q \in \mathbb{Q}, \forall p \in \mathbb{Z}, q \cdot p = 1.$$

Use logical symbols to write $\neg P$. Which statement is true, P or $\neg P$? (You do not need to write a proof.)

TP:
$$\neg (\exists q \in Q, \forall p \in \mathbb{Z}, qp = 1)$$

= $\forall q \in Q, \neg (\forall p \in \mathbb{Z}, qp = 1)$

= $\forall q \in Q, \exists p \in \mathbb{Z}, qp \neq 1$

TP is true. (given any 2, use $p = 0$ for ex.)

- 11. Consider the floor function f(x) = |x| with domain and co-domain equal to \mathbb{R} .
 - (a) Where does f send the input x = 5/3?

$$f(s/3) = \lfloor s/3 \rfloor = 1$$

(b) Is there an input $a \in \mathbb{R}$ that satisfies f(a) = 5/3? If so, identify the element(s) a that make this true. If not, explain why.

12. (HW 2 repeat) A new logical operator, ■, is partially defined by the following truth table information:

P	Q	$P \blacksquare Q$	$\neg (P \blacksquare Q) \land P$	$\neg (P \blacksquare Q) \lor Q$
T	T	T	F	7
T	F	T	F	F
F	T	F	P	T
F	F	¥	F	T

Complete this truth table. Is $P \blacksquare Q$ a contradiction? A tautology? Neither?

Proposition. Let $a, b, c \in \mathbb{Z}$. If a|b and b|c then a|c.

Proposition. Let $a, b, c \in \mathbb{Z}$. If a|b and b|c then a|c.

Proof (Direct)

Suppose alb and blc. (We want to show alc.)

This means
$$\exists m \in \mathbb{Z}$$
, $b = m \cdot a$ and $\exists n \in \mathbb{Z}$, $c = n \cdot b$.

It follows
$$C = n \cdot b = n \cdot (ma) = (n \cdot m) \cdot a$$
.

This shows alc since $nm \in \mathbb{Z}$.