Subspaces

- to prove S is a subspace for V, S must be
 - − closed under ⊙
 - closed under \oplus
- NOTE: a quick way to disprove is if the $\vec{0} \notin S$
- also, closed just means preforming the operation results in an object inside the same space

Basis and Dimension

- finding a basis means finding the general element and iterating through parameters setting one to 1 and the rest to 0
- dimension is the number of vectors is the basis

Linear Dependence

- if the only sol to $c_1v_1 + \cdots + c_nv_n = 0$ is $c_1 = \cdots = c_n = 0$
- set up a homogenous system of equations and if infinite solutions LD, unique sol LI
- any set that includes $\vec{0}$ is LD
- let $v_1...v_k$ be a set of vectors in V
- let $\dim(V) = n$
- Case 1. k < n
 - Not a spanning set. Not a basis.
- Case 2. k > n
 - LD. Not a basis.
- Case 3. k = n
 - if spanning, LI, basis
 - if not span, LD, not a basis
 - so have to check span or LI
- wronskian: if you can find one value for which the wronskian is non-zero it's LI

Span

- to check is $v \in \text{span of } V$ unravel the vectors into matrices and if it's consistent (ie. has solution(s)) it's in the span
- if you have less vectors than dimension automatically not a aspanning set

Row/Col Space

- Let A be and $m \times n$ matrix
- def:
 - rowspace(A) is span of rows, subspace of \mathbb{R}^n
 - colspace(A) is span of columns, subspace of \mathbb{R}^m
 - nullspace(A) is sols to Ax = 0, subspace of \mathbb{R}^n
 - note: $\dim(nullspace(A))$ is called the nullity(A)
 - $-\dim(rowspace(A)) = \dim(colspace(A)) = rank(A)$
- How to find basis:
 - row: put A into ref use non-zero rows
 - col: put A into ref, use **ORIGINAL** cols corresponding to pivot position
 - null: put A into ref and solve the homogenous system
- rank nullity thm: let A be $m \times n$. Then rank(A) + nullity(A) = n
 - note: $\dim(nullspace(A))$ is called the nullity(A)

Inner Product

- define an inner product to be a mapping $\langle u, v \rangle \Rightarrow \mathbb{R}$. The input is 2 vectors and the output is a scalar that satisfies 4 properties:
 - $-\langle u,u\rangle \geq 0$ AND $\langle u,u\rangle = 0 \Leftrightarrow u=0_V$ (the subscript indicates $\vec{0}\in V$)
 - < u, v > = < v, u >

```
- < ku, v >= k < u, v >

- < u + v, w >= < u, w > + < v, w >
```

- def: let V be an inner product space. Then the norm of a vector u is $||u|| = \sqrt{\langle u, u \rangle}$
- orthogonal: let v, w be vectors in IP space. if $\langle v, w \rangle = 0$ then v, w are orthogonal (\bot)

Gram Schmidt Process

```
• def: projection of v onto u: P(v,u) = \frac{\langle v,u \rangle}{\langle u,u \rangle} u
```

• let $v_1 \dots v_n$ be a basis for IP space V

• construct $u_1 \dots u_n$ to be an orthogonal basis for the IP space V

```
- u_1 = v_1
- u_2 = v_2 - P(v_2, u_1)
- u_3 = v_3 - P(v_3, u_2) - P(v_3, u_1)
- \vdots
- u_n = v_n - P(v_n, u_{n-1}) - \dots - P(v_n, u_1)
```

• noramlize: divide each basis element by its magnitude

Linear Transformations

- def: let V, W be vector spaces. Then a mapping T is called a linear transformation written as $T: V \to W$ if
 - $T(v_1 + v_2) = T(v_1) + T(v_2)$
 - -T(kv) = kT(v)

Kernel, Range

- kernel: to find the kernel, set $T(v) = 0_w$
 - unravel into matrix and solve
 - a non trivial solution means the kernel has something other than $\vec{0}$
- $T: V \to W$. T is a LT
 - -V is the domain
 - W is the co-domain
- $kr(T) \subseteq V$
- $kr(T)\{v \in V : T(v) = 0_w\}$
 - everything that gets mapped to 0
 - subspace of V always contains $\vec{0}$
- $Rng(T) \subseteq W$
- $Rng(T) = \{w \in W : \exists v \in Vw/T(v) = w\}$
 - everything in the co-domain which is covered by the transformation
 - solving for Rng means first solving Ker, use ranl nullity thm to solve for dim, is general T(v) to get Rng, and get the basis by inputting 0 and 1 for parameters in Rng
 - if gen elem has more params then dimension, rewrite
- general rank nullity thm: $\dim(ker(T)) + \dim(Rng(T)) = \dim(V)$
 - **NOTE**: $\dim(ker(T)) \leq \dim(V)$
 - $-\dim(Rng(T)) \leq \dim(W)$
- 1-to-1: $T: V \to W$ is 1-to-1 if $T(v_1) = T(v_2) \Rightarrow v_1 = v_2$
 - each element of the domain, when transformed, maps to a single distinct element of the co-domain. this only
 happens if the kernel is just 0
 - $ker(T) = \{0_V\}$
 - $-\dim(ker(T)) = 0$
- onto: $T:V\to W$ is ontoi if $\forall w\in W\exists v\in V: T(v)=w$ (ae. domain when transformed covers the entire co-domain)
 - -Rnq(T) = W
 - $-\dim(Rng(T)) = \dim(W)$