FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO
Curso MIEM / MIEGI Data
Disciplina Algebra linear e Geometria Anelítica Ano 1º Semestre 1º
Nome Jose Augusto Trigo Barbosa
Notas de apoio as Capátolo 4 do marmal:
"Noçais sobre Matrizes e sistemes de Equeções lineares".
Seja o sisteme de megación lineares a minimitar
Seja o sistème de mequações lineares a minosánitas, expresso através de equação metrical
A X = B (=)
[a11 a12 a1n] [x1] [b1]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
[ans ans ann] (xn) (bn)
matriz dos matriz das leiums do mateix dos finteme
mating dos matriz das indépendentes do sisteme Conficientes do sisteme incognitas do sisteme mutiz do tipo orxa
metriz do tipo nxm metriz do tipo nx1
O sisteme diz-se um sisteme de Cramer se r(A) = m, pelo que:
,
· IAI + 0; · A é um matriz net singular;
e Exist A
. O sinteme é norrivel e determinado, tendo como
so ut cos
$X = A^1 B$
peg. 1/2

Exemple 1 [4.2]

$$A = \begin{bmatrix} 2 & -3 & 4 \\ -4 & 2 & -7 \\ 3 & 1 & 2 \end{bmatrix}$$

O : elements com cofector com Sicial pontivo

A metriz A et mes singular, já pue |A| = 21 + 0

Cálculo des cofectores des elementes da metriz A:

· Cofecheres com simel positivo

$$||c_{1}||^{2} = + ||c_{1}||^{2} = + ||c_{1}||^$$

$$c = \left(\begin{array}{c|c} c & a_{31} & = & -3 & 4 \\ 2 & -7 & = & +13 \end{array} \right)$$

$$c \Rightarrow \begin{vmatrix} a_{33} = + \begin{vmatrix} 2 & -3 \\ -4 & 2 \end{vmatrix} = -8$$

 $C = \left(\begin{array}{c|c} a_{21} = + & 2 & 4 \\ 3 & 2 & = -8 \end{array} \right)$

. Cofectors com s'uel neget vo

$$\omega_1^2 = - \begin{vmatrix} -4 & -7 \\ 3 & 2 \end{vmatrix} = -13$$

$$cof a_{23} = -\begin{vmatrix} 2 & -3 \\ 3 & 1 \end{vmatrix} = -11$$

$$\cos \left(\frac{1}{4} a_{32} = - \frac{1}{4} - \frac{1}{4} - \frac{1}{4} \right) = -2$$

$$\begin{array}{c} \text{Cof A} = \begin{bmatrix} 11 & -13 & -10 \\ 10 & -8 & -11 \\ 13 & -2 & -8 \end{bmatrix}$$

Exemple

Seja o hiteme de equecais linears
$$\begin{cases} 2x-3y=12\\ -3x+4y=-17 \end{cases}$$
, on leja,

$$AX = B$$
 em fu $A = \begin{bmatrix} 2 & -3 \\ -3 & 4 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \end{bmatrix}$, $B = \begin{bmatrix} 12 \\ -17 \end{bmatrix}$

Une vez fix
$$|A| = \begin{vmatrix} 2 & -3 \\ -3 & 4 \end{vmatrix} = -1 \neq 0$$
, o sistem é un Sistem de Cramer.

A sue soluçes é:

Cof
$$A = \begin{bmatrix} 4 & 3 \\ 3 & 2 \end{bmatrix} \Rightarrow A^{1} = \frac{1}{|A|} \begin{bmatrix} Cof A \end{bmatrix}^{T} = -\begin{bmatrix} 4 & 3 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} -4 & -3 \\ -3 & -2 \end{bmatrix}$$

$$X = A^{1}B \iff \begin{bmatrix} \times \\ y \end{bmatrix} = \begin{bmatrix} -4 & -3 \\ -3 & -2 \end{bmatrix} \begin{bmatrix} 12 \\ -17 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

· Regra de Cramer

$$x = \frac{1}{|A|} |A_x| = \frac{1}{-1} |\frac{12}{-17} | \frac{-3}{4}| = -(48 - 51) = 3$$

$$y = \frac{1}{|A|} |A_y| = \frac{1}{-1} |\frac{2}{-3}|^{-17} = -(-34+36) = -2$$

Mary