2-2 The Efficiency of Algorithms

Hengfeng Wei

hfwei@nju.edu.cn

March 05, 2020

The Analysis of Algorithms

Donald E. Knuth (1938 \sim)

Donald E. Knuth (1974)

"For his major contributions to the analysis of algorithms and the design of programming languages, and in particular for his contributions to the "art of computer programming" through his well-known books in a continuous series by this title."

Fibonacci numbers in the analysis of Euclid's GCD algorithm H_n in the analysis of FIND-MAX @ Stanford Lecture by Knuth

"People who analyze algorithms have double happiness.

First of all they experience the sheer beauty of elegant mathematical patterns that surround elegant computational procedures.

Then they receive a practical payoff when their theories make it possible to get other jobs done more quickly and more economically."

How Fast is It?

Time (and Space) Complexity of Algorithms

 $O \Omega \Theta$

Is it the Fastest?

Complexity (lower bounds) of Problems

This is much harder and is not our focus today.

Q: How fast is your algorithm?

A: It runs 3.1415926 seconds.

Disadvantages:

- ▶ On different machines
- ► At different time
- ▶ On different inputs

No Standards.

We need a uniform model of computation.

The RAM (Random Access Machine) Model of Computation

The RAM (Random Access Machine) Model of Computation

- ► Each memory access takes constant time.
- ► Each "primitive" operation takes constant time.
- ► Compound operations should be decomposed.

Counting up the number of time units.

Disadvantages:

- ▶ On different machines
- ► At different time
- ► On different inputs

Counting up the number of time units as a function of the input size in typical cases.

INSERTION-SORT (A)
$$cost$$
 times

1 **for** $j = 2$ **to** $A.length$ c_1 n

2 $key = A[j]$ c_2 $n-1$

3 // Insert $A[j]$ into the sorted sequence $A[1..j-1]$. 0 $n-1$

4 $i = j-1$ c_4 $n-1$

5 **while** $i > 0$ and $A[i] > key$ c_5 $\sum_{j=2}^{n} t_j$ c_6 $A[i+1] = A[i]$ c_6 $\sum_{j=2}^{n} (t_j-1)$

7 $i = i-1$ c_7 $\sum_{j=2}^{n} (t_j-1)$

8 $A[i+1] = key$ c_8 $n-1$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1)$$

$$+ c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

... as a function of the input size ...

INSERTION-SORT (A)
$$cost$$
 times

1 **for** $j = 2$ **to** $A.length$ c_1 n

2 $key = A[j]$ c_2 $n-1$

3 // Insert $A[j]$ into the sorted sequence $A[1..j-1]$. 0 $n-1$

4 $i = j-1$ c_4 $n-1$

5 **while** $i > 0$ and $A[i] > key$ c_5 $\sum_{j=2}^{n} t_j$ c_6 $A[i+1] = A[i]$ c_6 $\sum_{j=2}^{n} (t_j-1)$

7 $i = i-1$ c_7 $\sum_{j=2}^{n} (t_j-1)$

8 $A[i+1] = key$ c_8 $n-1$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1)$$

$$+ c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

T(n): Depends on which input of size n

... in typical cases.

Problem P Algorithm A

Inputs: \mathcal{X}_n of size n

$$W(n) = \max_{x \in \mathcal{X}_n} T(x)$$

$$B(n) = \min_{x \in \mathcal{X}_n} T(x)$$

$$A(n) = \left[\sum_{x \in \mathcal{X}_n} T(x) \cdot P(x)\right] = \mathbb{E}[T] = \left[\sum_{t \in T(\mathcal{X}_n)} t \cdot P(T = t)\right]$$

INSERTION-SORT (A)
$$cost times$$

1 **for** $j = 2$ **to** $A.length$ c_1 n

2 $key = A[j]$ c_2 $n-1$

3 // Insert $A[j]$ into the sorted sequence $A[1..j-1]$. 0 $n-1$

4 $i = j-1$ c_4 $n-1$

5 **while** $i > 0$ and $A[i] > key$ c_5 $\sum_{j=2}^{n} t_j$

6 $A[i+1] = A[i]$ c_6 $\sum_{j=2}^{n} (t_j-1)$

7 $i = i-1$ c_7 $\sum_{j=2}^{n} (t_j-1)$

8 $A[i+1] = key$ c_8 $n-1$

$$B(n) = (c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8)$$

$$W(n) = \frac{c_5 + c_6 + c_7}{2}n^2 + (c_1 + c_2 + c_4 + c_8 - \frac{c_5 + c_6 + c_7}{2})n - (c_2 + c_4 + c_5 + c_8)$$

$$A(n) = 2.25n^2 + 7.75n - 3H_n - 6$$
 $(H_n = \sum_{k=1}^n \frac{1}{k} \approx \ln n)$

Q: How fast is your algorithm?

listen carefully.

$$W(n) = \frac{c_5 + c_6 + c_7}{2}n^2 + (c_1 + c_2 + c_4 + c_8 - \frac{c_5 + c_6 + c_7}{2})n - (c_2 + c_4 + c_5 + c_8)$$

SIGACT News

18

Apr.-June 1976

BIG OMICRON AND BIG OMEGA AND BIG THETA

Donald E. Knuth Computer Science Department Stanford University Stanford, California 94305

Reference:

"Big Omicron and Big Omega and Big Theta", Donald E. Knuth, 1976.

Asymptotics

Q: How fast is your algorithm?

$$W(n) = \frac{c_5 + c_6 + c_7}{2}n^2 + (c_1 + c_2 + c_4 + c_8 - \frac{c_5 + c_6 + c_7}{2})n - (c_2 + c_4 + c_5 + c_8)$$

$$W(n) = O(n^2)$$

"Order at most n^2 "

"W(n) is a function whose order of magnitude is uppper-bounded by a constant times n^2 , for all large n."

$$f(n) = O(g(n))$$

"f(n) is a function whose order of magnitude is uppper-bounded by a constant times g(n), for all large n."

$$O(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) \le cg(n) \right\}$$

$$f(n) = O(g(n))$$

$$O(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) \le cg(n) \right\}$$

It is a tradition to write f(n) = O(g(n)) instead of $f(n) \in O(g(n))$.

$$O(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) \le cg(n) \right\}$$
$$42n = O(0.50n^2) \qquad 42n^2 = O(0.50n^2)$$

Q: What does O(1) mean?

A: It means constants.

$$\Omega(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le cg(n) \le f(n) \right\}$$
$$0.50n^2 = \Omega(42n) \qquad 0.50n^2 = \Omega(42n^2)$$

$$\Theta(g(n)) = \left\{ f(n) \mid \exists c_1 > 0, \exists c_2 > 0, \exists n_0 > 0, \forall n \ge n_0 : \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \right\}$$
$$0.50n^2 = \Theta(42n^2)$$

$$o(g(n)) = \left\{ f(n) \mid \forall c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) < cg(n) \right\}$$

$$42n = o(0.50n^2)$$

$$\omega(g(n)) = \left\{ f(n) \mid \forall c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le cg(n) < f(n) \right\}$$

$$0.50n^2 = \omega(42n)$$

$$O \quad \Omega \quad \Theta$$
 $O \quad \omega \quad \theta$

$$f(n) \sim g(n) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$$

$$42n^2 + 2020n \sim 42n^2 + 2019n$$

$$f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \land f(n) = \Omega(g(n))$$

$$f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$$

$$f(n) = o(g(n)) \iff g(n) = \omega(f(n))$$

$$O(f(n)) + O(g(n)) = O(f(n) + g(n))$$

$$O(f(n))O(g(n)) = O(f(n)g(n))$$

Q: How to compare functions in terms of $O/\Omega/\Theta$?

$$O(1) = O(\log \log n) = O(\log n) = O((\log n)^c)$$

$$= O(n^{\epsilon}) = O(n^c)$$

$$= O(n^c \log n) = O(n^{\log n}) = O(c^n) = O(n^n)$$

$$(0 < \epsilon < 1 < c)$$

Stirling Formula (by James Stirling):

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

$$\log(n!) = \Theta(n \log n)$$

$$H_n = \sum_{k=1}^n \frac{1}{k} = \Theta(\log n)$$

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn