Matemática Discreta

Pedro Hokama

Fontes

- Gomide, Anamaria; Stolfi, Jorge. Elementos de Matematica Discreta para Computação.
- Rosen, Kenneth H. Discrete mathematics and its applications. McGraw-Hill Education, 8th Edition, 2019.

1/33 2/33

Afirmações auto-referentes

Já mencionamos que a afirmações que referem a si mesmas, como "esta sentença é falsa", não são proposições lógicas. Tais afirmações, relacionadas com o Paradoxo do Barbeiro, sempre foram um problema para a lógica matemática, que não tem maneiras satisfatórias de lidar com elas.

Afirmações auto-referentes

Este problema surge mesmo quando há várias afirmações que se referenciam entre si. Por exemplo, na frase "a sentença seguinte é falsa, e a sentença anterior é verdadeira", embora possa ser analisada como uma conjunção $p \land q$, não é uma afirmação lógica porque p é uma afirmação sobre q e vice-versa.

3/33 4/33

Manipulação lógica de proposições

O objetivo da lógica proposicional é identificar as deduções e transformações de proposições compostas cuja validade independe da natureza das suas proposições atômicas, e dos valores lógicos destas.

 $p \land (p \land q)$ pode ser substituída por $p \land q$;

Tautologias e contradições

Uma **tautologia** é uma proposição composta que é sempre verdadeira, quaisquer que sejam os valores lógicos das proposições simples que a compõem.

Ou seja, uma proposição composta é uma tautologia se e somente se a coluna de resultado de sua tabela-verdade contém somente valores lógicos verdadeiros (**V**).

5/33 6/33

Tautologia

Por exemplo, a proposição $p \lor (\neg p)$ tem a seguinte tabela-verdade:

p	$\neg p$	$p \lor (\neg p)$		
٧	F	V		
V	F	V		
F	V	V		
FV		V		

A tautologia mais simples é V.

Contradição

Uma **contradição** é uma proposição composta que é sempre falsa, quaisquer que sejam os valores lógicos das suas proposições atômicas.

Portanto, uma proposição composta é uma contradição se, e somente se, sua tabela-verdade contém somente **F** na sua coluna final. É fácil ver que a proposição p \(\lambda \) (\(\nabla p \) é uma

È fácil ver que a proposição $p \land (\neg p)$ é uma contradição.

7/33 8/33

Contradição

Em particular, a negação de uma tautologia é sempre uma contradição, e a negação de uma contradição é uma tautologia.

A contradição mais simples é **F**.

Construa as tabelas-verdade das proposições abaixo, e determine se elas são tautologias, contradições, ou nem uma nem outra.

a)
$$(p \land \neg q) \rightarrow (q \lor \neg p)$$
.

- b) $\neg p \rightarrow p$.
- c) $\neg p \leftrightarrow p$.
- d) $(p \land \neg p) \rightarrow p$.
- e) $(p \land \neg p) \rightarrow q$.
- f) $(p \land \neg q) \leftrightarrow (p \rightarrow q)$.
- g) $((p \oplus q) \oplus (q \oplus p))$.

9/33

10/33

Equivalência lógica

Duas proposições compostas \mathcal{P} e Q são ditas **equivalentes** se elas têm valores lógicos iguais, para quaisquer combinações de valores lógicos que sejam atribuídos às suas proposições atômicas.

Em outras palavras, \mathcal{P} e Q são equivalentes se e somente se $\mathcal{P} \leftrightarrow Q$ é uma tautologia.

Equivalência lógica

Por exemplo, podemos verificar, pela tabela-verdade, que as proposições compostas " $p \land (\neg q)$ "e " $\neg ((\neg p) \lor q)$ "são equivalentes, ou seja, que $p \land (\neg q) \leftrightarrow \neg ((\neg p) \lor q)$ "é uma tautologia:

p	q	$\neg q$	$p \wedge (\neg q)$	$\neg p$	$(\neg p) \lor q$	$\neg((\neg p) \lor q)$	$(p \land (\neg q)) \leftrightarrow \neg ((\neg p) \lor q)$
V	V	F	F	F	V	F	V
\mathbf{V}	F	V	$ \mathbf{v} $	F	F	\mathbf{V}	\mathbf{v}
\mathbf{F}	$ \mathbf{v} $	F	F	V	\mathbf{v}	F	\mathbf{v}
\mathbf{F}	F	V	F	V	\mathbf{V}	F	\mathbf{V}

11/33 12/33

Equivalência lógica

Assim como a propriedade de ser tautologia ou de ser contradição, a equivalência lógica de duas proposições depende apenas da sua forma, e não depende do significado das proposições atômicas que ocorrem nela. Assim, por exemplo, a proposição $p \leftrightarrow q$ pode ser verdadeira, dependendo das proposições $p \in q$; mas nem por isso p é logicamente equivalente a q.

Equivalência lógica

- Uma tautologia é logicamente equivalente a V.
- Uma contradição é logicamente equivalente a F.
 Alguns autores escrevem usam ⇔ ou ≡ para dizer que p é logicamente equivalente a q, mas isso não deve ser confundido com o operador lógico.

13/33 14/33

Equivalências lógicas importantes

- Leis de elemento identidade:
 - p ∧ V equivale a p
 - $\triangleright p \lor \mathbf{F}$ equivale a p
 - ▶ $p \leftrightarrow V$ equivale a p
 - ▶ p ⊕ F equivale a p
- Leis da negação dupla
 - $\neg (\neg p)$ equivale a p
- Leis da idempotência:
 - p ∧ p equivale a p
 - $p \lor p$ equivale a p

Leis de dominação:

- ▶ p ∨ V equivale a V
- ▶ p ∧ F equivale a F

Leis da comutatividade:

- $ightharpoonup p \lor q$ equivale a $q \lor p$
- ▶ $p \land q$ equivale a $q \land p$
- ▶ $p \leftrightarrow q$ equivale a $q \leftrightarrow p$
- ▶ $p \oplus q$ equivale a $q \oplus p$

Leis da associatividade:

- $(p \lor q) \lor r$ equivale a $p \lor (q \lor r)$
- $(p \land q) \land r$ equivale a $p \land (q \land r)$
- ▶ $(p \leftrightarrow q) \leftrightarrow r$ equivale a $p \leftrightarrow (q \leftrightarrow r)$
- ▶ $(p \oplus q) \oplus r$ equivale a $p \oplus (q \oplus r)$

15/33 16/33

Leis da distributividade:

- ▶ $p \lor (q \land r)$ equivale a $(p \lor q) \land (p \lor r)$
- ▶ $p \land (q \lor r)$ equivale a $(p \land q) \lor (p \land r)$
- ▶ $p \land (q \oplus r)$ equivale a $(p \land q) \oplus (p \land r)$

Leis de De Morgan:

- ▶ $\neg(p \land q)$ equivale a $\neg p \lor \neg q$
- ▶ $\neg(p \lor q)$ equivale a $\neg p \land \neg q$

Leis da implicação

- $(p \rightarrow q)$ equivale a $(\neg p \lor q)$
- ▶ $\neg(p \rightarrow q)$ equivale a $(p \land \neg q)$

Exercício: Verifique quais das seguintes afirmações são corretas:

 \bigcirc $(\neg p \land (p \lor q))$ é logicamente equivalente a q.

$$((p \rightarrow q) \rightarrow r)$$
 é logicamente equivalente a $(p \rightarrow (q \rightarrow r))$

Leis da equivalência

- ▶ $(p \leftrightarrow q)$ equivale a $(p \rightarrow q) \land (q \rightarrow p)$
- ▶ $(p \leftrightarrow q)$ equivale a $\neg (p \oplus q)$
- Lei da contrapositiva:
 - $(p \rightarrow q)$ equivale a $(\neg q) \rightarrow (\neg p)$
- Lei da redução ao absurdo:
 - ▶ $p \rightarrow q$ equivale a $(p \land \neg q) \rightarrow F$

17/33 18/33

Implicação entre fórmulas lógicas

- Sejam \mathcal{F} e \mathcal{G} duas fórmulas lógicas que dependem de uma certa coleção de variáveis lógicas. Dizemos que \mathcal{F} implica logicamente \mathcal{G} se a fórmula $\mathcal{F} \to \mathcal{G}$ é uma tautologia.
- Para qualquer combinação de valores atribuídos às variáveis que ocorrem nessas fórmulas, a proposição \mathcal{F} é falsa, ou \mathcal{F} e \mathcal{G} são ambas verdadeiras.

19/33 20/33 • Essa afirmação é denotada $\mathcal{F}\Rightarrow\mathcal{G}$, que pode ser interpretada como " \mathcal{G} é uma consequência lógica de \mathcal{F} "

Exemplo: Seja \mathcal{F} a fórmula $p \land q$ e \mathcal{G} a fórmula $p \lor q$. As tabelas-verdade de \mathcal{F} , \mathcal{G} e $\mathcal{F} \to \mathcal{G}$ são

		\mathcal{F}	\mathcal{G}	$(\mathcal{F}) \to \mathcal{G}$
p	q	$p \wedge q$	$p \lor q$	$(p \land q) \to (p \lor q)$
V	V	V	V	V
V	F	F	V	\mathbf{v}
F	$ \mathbf{v} $	F	$ \mathbf{v} $	\mathbf{v}
F	F	F	F	\mathbf{v}

Implicação entre fórmulas lógicas

Mais geralmente, sejam $\mathcal{F}_1, \mathcal{F}_2, \dots, \mathcal{F}_n$ uma coleção de proposições. Dizemos que essas proposições **implicam logicamente** \mathcal{G} se, e somente se,

$$(\mathcal{F}_1 \wedge \mathcal{F}_2 \wedge \cdots \wedge \mathcal{F}_n) \to \mathcal{G}$$

é uma tautologia.

21/33 22/33

Implicação lógica

Listaremos algumas implicações lógicas mais conhecidas. As letras p, q, r representam proposições arbitrárias.

- Lei da adição:
 - ▶ p implica logicamente $p \lor q$
- Lei da simplificação:
 - ▶ $p \land q$ implica logicamente p
- Lei do modus ponens:
 - ▶ $p \in p \rightarrow q$ implicam logicamente q
- Lei do modus tollens:
 - ▶ $p \rightarrow q$ e $\neg q$ implicam logicamente $\neg p$

- Silogismo hipotético:
 - ▶ $p \rightarrow q$ e $q \rightarrow r$ implicam logicamente $p \rightarrow r$
- Silogismo disjuntivo:
 - ▶ $p \lor q$ e ¬p implicam logicamente q
- Demonstração por absurdo:
 - $p \rightarrow \mathbf{F}$ implica logicamente $\neg p$

23/33 24/33

Equivalência em contexto específico

As fórmulas $p \leftrightarrow q$ e $p \land q$ não são equivalentes; pois, quando substituímos $p = \mathbf{F}$ e $q = \mathbf{F}$, a primeira é verdadeira e a segunda é falsa.

Porém, se soubermos de alguma maneira, que a afirmação $p \lor q$ é verdadeira, então a combinação $p = \mathbf{F}$ e $q = \mathbf{F}$ não pode ocorrer.

25/33

27/33

Equivalência em contexto específico

p	q	$p \leftrightarrow q$	$p \wedge q$	$p \lor q$
F	F	V	F	F
F	٧	F	F	V
V	F	F	F	V
٧	٧	V	V	V

 $p \leftrightarrow q$ é logicamente equivalente à $p \land q$, se $p \lor q$ for verdadeira.

26/33

Síntese de proposições

Dada uma tabela-verdade com determinadas variáveis lógicas, é sempre possível construir uma proposição composta com essas mesmas variáveis que tem essa tabela-verdade.

Escrevendo para cada linha com o resultado verdadeiro uma sub-fórmula lógica que é verdadeira para essa combinação de valores das variáveis, e falsa para todas as outras combinações.

Para a linha 2, precisamos de uma sub-fórmula que seja V apenas quando p = F e q = V. Para isso podemos usar a fórmula $(\neg p) \land q$. Para a linha 3, a fórmula é $p \land (\neg q)$. A proposição desejada é então

$$((\neg p) \land q) \lor (p \land (\neg q))$$

28/33

Forma normal disjuntiva

A sub-fórmula correspondente a cada linha com resultado **V** é uma conjunção de todas variáveis ou de suas negações. Especificamente, uma variável deve ser negada na sub-fórmula se e somente se nessa linha ela tem valor **F**.

A fórmula obtida desta maneira — uma disjunção de conjunções, cujos termos são variáveis ou suas negações — é chamada de **forma normal disjuntiva**. 29/33

 p
 q
 F

 F
 F
 F

 F
 V
 V

V F V V V F

• Primeira linha: $(p \lor q)$

• Quarta linha: $((\neg p) \lor (\neg q))$

• A formula obtida: $(p \lor q) \land ((\neg p) \lor (\neg q))$

 A fórmula assim obtida é chamada de forma normal conjuntiva.

31/33

Forma normal conjuntiva

Outra maneira de construir uma proposição a partir de sua tabela-verdade é considerar cada linha em que o resultado desejado é **F**, e escrever uma fórmula que é falsa apenas para essa combinação de variáveis.

Esta fórmula pode ser uma disjunção das variáveis e suas negações. A conjunção dessas fórmulas é a proposição desejada.

30/33

Sistemas completos de operadores

A construção da forma normal disjuntiva (ou conjuntiva) permite concluir que toda proposição composta, usando quaisquer conectivos, é logicamente equivalente a outra proposição que usa apenas os conectivos ∨, ∧ e ¬. Dizemos então que estes três conectivos formam um **sistema completo** de operadores lógicos.

32/33

Dualidade lógica

Seja p uma proposição que usa apenas os conectivos \vee , \wedge , e \neg . A **proposição dual** é obtida a partir de p trocando-se toda ocorrência de \vee por \wedge , e vice-versa; bem como toda ocorrência de \mathbf{V} por \mathbf{F} , e vice-versa. Por exemplo, a dual da proposição $(p \wedge \neg q) \vee r$ é $(p \vee \neg q) \wedge r$. A dual de uma proposição p é geralmente denotada por p^* . Note que $(p^*)^*$, a dual da dual, é a proposição original p.