Yasutaka Koike-Mori **UCLA** 5th Year

Koki Okumura **UCLA** 4th Year

Numerical Exercise

Supply Chains and R&D Allocation

- How do supply chains affect R&D (mis)allocation?
- e.g., Toyota v.s. Tesla

Introduction

- 1. Given its established supply chains, Toyota would have had a stronger incentive to invest in R&D for gas vehicles than for EV
- 2. Tesla does not internalize the impact of EV on Denso (supplier to Toyota) as well as on Toyota

Empirical Analysis of Supply Chains and Innovation

- Firm-level supply chain and patent data in Japan
- A firm with more suppliers and buyers engages more in internal innovation compared to **external** innovation
 - Internal innovation: improving firm's own technology/product
 - External innovation: developing technology/product that are new to the firm

Endogenous Growth Model with Supply Chain Formation

Tractable dynamic model of innovation and supply chain

- Innovation and firm dynamics
 - Klette and Kortum (2004)
 - Internal & external innovation
- Supply chain formation and destruction

Implications

- R&D allocation
 - When a firm has more suppliers or buyers per product, the firm makes more internal R&D effort relative to external R&D effort
- R&D misallocation
 - 1. Interaction b/w knowledge spillover and supply chain
 - Creative supply chain destruction

Linked Database of Supply Chain × Patent from Japan

Teikoku Databank (TDB)

Introduction

- A major credit reporting company
- Panel data on 800,000 firms with suppliers and buyers
- Different from TSR database used in Carvalho et. al. (2020)
- Intellectual Property Patent Database from the Japan Patent Office
- Linked data between innovation and production networks is new
 - Different from "innovation network" in Liu and Ma (2023)

Empirical Specification

Introduction

Future Internal Innovation Rate_{it}

$$=eta_0+eta_1 imes\log (\mathsf{N} ext{ of Suppliers})_{it}+eta_2 imes\log (\mathsf{N} ext{ of Buyers})_{it}+\mathsf{Controls}_{it}+arepsilon_{it}$$

Time period: 2009–2019

Patent filing firms: 6,500

Relationship observed firms: 800,000

Two Measurements of Internal Innovation Rate

- 1. 1 patents in new technology classes / total patents patents
 - New technology class: The classes ("sub groups") the firm has not applied in the past ten years
- Self citation patents / total patents
 - Self citation patent: More than 10% of patents that the focal patent cites are filed by the focal firm
- Both measures are based on the number of patents (3-year forward ave)
 - Robust when using patent citation weighed measures patent citation

Technology Class Measurement

	Internal Innovation Rate (3-year forward ave)						
log N of Suppliers	0.0633***				0.0455***		0.0222***
	(0.0033)				(0.0098)		(0.0082)
		0.0560***				0.0333***	0.0226***
log N of Buyers		(0.0036)				(0.0066)	(0.0050)
L Firm Oine			0.0609***		0.0272***	0.0419***	0.0315***
log Firm Size			(0.0035)		(0.0089)	(0.0057)	(0.0084)
Firm Age				0.0011***	-0.0006***	-0.0005**	-0.0006***
				(0.0002)	(0.0002)	(0.0002)	(0.0002)
Year × Industry FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
N	46,628	46,628	46,628	46,628	46,628	46,628	46,628

Note. Weighted by firm size. Clustering by year×industry. *p < 0.10, **p < 0.05, ***p < 0.01

Self Citation Measurement

Introduction

	ear forward ave)					
log N of Suppliers	0.0365***				0.0149***		0.0115**
	(0.0023)				(0.0046)		(0.0053)
L M of D		0.0296***				0.0088***	0.0034
log N of Buyers		(0.00321)				(0.0030)	(0.0033)
la a Firm Ciao			0.0365***		0.0225***	0.0285***	0.0231***
log Firm Size			(0.0022)		(0.0043)	(0.0030)	(0.0043)
Firm Age				0.0012***	0.0004***	0.0005***	0.0004***
				(0.0001)	(0.0001)	(0.0001)	(0.0001)
$\text{Year} \times \text{Industry FE}$	Yes	Yes	Yes	Yes	Yes	Yes	Yes
N	40486	40486	40486	40486	40486	40486	40486

Note. Weighted by firm size. Clustering by year×industry. $^{\star}p < 0.10, ^{\star\star}p < 0.05, ^{\star\star\star}p < 0.01$

Households

Introduction

$$U_{0} = \int_{0}^{\infty} \exp(-\rho t) \frac{Y(t)^{1-\theta} - 1}{1 - \theta} dt$$
$$\dot{A}(t) \le r(t)A(t) + w_{L}(t) + L_{H}w_{H}(t) - Y(t)$$

- Unskilled labor for production
- Skilled labor for R&D
- Inelastically supplied, respectively

Supply Chain Formation and Destruction

- Continuum mass of products
- A firm can own multiple product lines
- A product match randomly at each instant with (i) mass ζ_S of suppliers and (ii) mass ζ_B of buyers
- Each match is terminated (i) at exogenous rate δ and (ii) when products on either side exit

Supply Chain Formation and Destruction

Each match is terminated (i) at exogenous rate δ and (ii) when products on either side exit

Production Structure Given Supply Chains

Ω(t): the set of product

Introduction

• $S(\omega, t)$: the set of suppliers for product ω

$$Y(t) = \left(\int_{\omega' \in \Omega(t)} q^{\mathsf{F}}(\omega', t)^{\frac{\sigma-1}{\sigma}} d\omega\right)^{\frac{\sigma}{\sigma-1}}$$

$$\frac{1}{\beta^{\beta}(1-\beta)^{1-\beta}}(z(\omega,t)I(\omega,t))^{\beta}\left(\int_{\omega'\in\mathcal{S}(\omega,t)}q(\omega',\omega,t)^{\frac{\sigma-1}{\sigma}}d\omega'\right)^{\frac{\sigma}{\sigma-1}(1-\beta)}$$

Suppliers charge monopolistic prices:

$$p^{F}(\omega',t) = p(\omega',\omega,t) = \frac{\sigma}{\sigma-1}c(\omega',t)$$

Internal R&D

Introduction

Average productivity

$$Z(t) \equiv \left(\int z(\omega)^{eta(\sigma-1)} dF(\omega,t)
ight)^{rac{1}{eta(\sigma-1)}}$$

Product line productivity growth

$$\frac{d}{dt}\log z(\omega,t) = \mu(\omega,t)$$

Cost for internal R&D

$$w_H(t)\left(rac{z}{Z(t)}
ight)^{eta(\sigma-1)}c_I(\mu) \quad ext{where} \quad c_I(\mu)\equivrac{1}{arphi_I}\mu^{\gamma_I}$$

Numerical Exercise

External R&D

- n(f): the number of product lines of firm f
- X(f): external innovation flow rate of firm f
- $x(f) \equiv X(f)/n(f)$
- Cost for external R&D (Klette Kortum)

$$w_H(t)nc_X(x)$$
 where $c_X(x) \equiv \frac{1}{\varphi_X} x^{\gamma_X}$

- Variety creation with prob. 1α : $z' = \varepsilon Z(t)$, $\varepsilon \sim \Phi$
- Creative destruction with prob. α : $z' = \lambda z$
- We assume creative destruction is patent violation:
 - The new producer makes take-it-or-leave-it offer to get patent license
 - If the older producer accepts the offer, it stops producing the product

Entry and Exit

- Potential entrant:
 - Hiring a skilled worker generates external innovation at rate ϕ_E
- A product line dies at an exogenous rate δ_N
- A firm that loses all product lines exits the economy

Reduce State Space

Introduction

In general, for each product, we need to track the matched buyer and seller distributions

Theory

- Product age a is sufficient statistic of these distributions due to
 - Random matching b/w continuum mass of product lines
 - Deterministic internal R&D
- Firm's state variable is reduced to $\mathcal{O} = \{(z_1, a_1), (z_2, a_2), ..., (z_n, a_n)\}$
- Guess and verify firm value firm's HJB

$$V(\mathcal{O},t) = \sum_{(z,a)\in\mathcal{O}} \left\{ Z(t)V^P + z^{\beta(\sigma-1)}Z(t)^{1-\beta(\sigma-1)}V^A(a) \right\}$$

Product Value and Internal Innovation Are Increasing in a

$$(r + \delta_{N} - (1 - \beta (\sigma - 1)) g) V^{A}(a)$$

$$= \frac{1}{\sigma} \left(\frac{\sigma}{\sigma - 1} \hat{c}(a) \right)^{1 - \sigma} \hat{D}(a) + V_{a}^{A}(a) + \max_{\mu \ge 0} \left[\mu \beta (\sigma - 1) V^{A}(a) - \hat{w}_{H} c_{I}(\mu) \right]$$

- ĉ(a): cost function, decreasing in a
 - more supplier → lower the cost "love of input variety effect"
- D(a): demand shifter, increasing in a
 - more buyer → lager the demand "market size effect"
- \rightarrow Product value $V^A(a)$ and optimal internal innovation $\mu(a)$ are increasing in a

Same External Innovation Rate across Incumbents

Free entry condition

Entry Value =
$$w_H/\varphi_E$$

Incumbent firms choose external innovation rate x to maximize

$$nx \times \text{Entry Value} - nw_H c_X(x)$$

These conditions pin down x for all firms:

$$x = \left(\frac{1}{\gamma_X} \frac{\varphi_X}{\varphi_E}\right)^{1/(\gamma_X - 1)}$$

 → When a firm has more suppliers and buyers per product, the firm makes more internal R&D effort relative to external R&D effort

Interaction b/w Innovation and Supply Chain

Sources of R&D Misallocation

- 1. Interaction b/w knowledge spillover and supply chains (internal)
 - Firms consider the importance of its product in production network
 - Planner consider both the importance of products in production network and knowledge spillover
- Creative supply chain destruction (external)
 - A firm does not take into account that external innovation destroys supply chains

Parameters

Introduction

Parameter	Description	Value
ρ	Discount Rate	0.05
$oldsymbol{ heta}$	Inverse of Intertemporal Elasticity of Substitution	2
σ	Elasticity of Substitution for Intermediate Goods	4
β	Labor Share	0.5
L_H	Measure of High-Skilled Worker	0.166
γι	Curvature of Internal Innovation Cost	2
YΕ	Curvature of External Innovation Cost	2
ζ_B	Matching Rate with Buyers	0.14
ζ_S	Matching Rate with Suppliers	0.14
δ	Link Death Rate	0.06
δ_{N}	Product Death Rate	0.06
α	Share of Creative Destruction	0.6
ϕ_I	Efficiency of Internal Innovation	0.1
ϕ_X	Efficiency of External Innovation by Incumbent	0.04
ϕ_{E}	Efficiency of External Innovation by Entrant	10
λ	Step Size on Quality Ladder	1.3
$ar{arepsilon}$	Average Relative Efficiency of New Products	1.3
$ar{\sigma}$	Standard Deviation of Entrant Productivity	0.1

Steady State Equilibrium 1

Introduction

Variables	Description	Value
w_H	Wage for High Skilled	1.43
w_L	Wage for Low Skilled	0.78
Ν	Product Mass	10.0
Y	Aggregate Consumption	1.30
g	Economic Growth Rate (%)	6.1
V_P	Product Value	8000.0
X	External Innovation Rate by Incumbent (%)	0.2
x_E	Flow of Entry per Product by Entrant (%)	14.8
v	Total Flow Rate of Entry (%)	15
v_N	Variety Creation Rate (%)	6
v_D	Creative Destruction Rate (%)	9

Numerical Exercise

0000

Next Steps

- Analytical characterization for optimal R&D allocation
- Calibration using Japanese supply chain and patent data
- Numerical exercise

International Patent Classification Example

- (Section) H: Electricity
- (Class) H01: Electric elements
- (Sub Class) H01L: Semiconductor devices
- (Group) H01L 21: Processes or apparatus specially adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- (Sub Group) H01L 21/16: The devices having semiconductor bodies comprising cuprous oxide or cuprous iodide

Patents in New Technology Class / Total Patents

		Internal Innova	ation Rate Wei	ghted by Paten	t Citation (3-yea	ar Forward Ave)
log N of Suppliers	0.0638***				0.0446***		0.0228***
	(0.0033)				(0.0291)		(0.0079)
		0.0559***				0.0321***	0.0212***
log N of Buyers		(0.0036)				(0.0064)	(0.0050)
log Firm Size			0.0619***		0.0291***	0.0437***	0.0331***
			(0.0034)		(0.0086)	(0.0056)	(0.0081)
Firm Age				0.0011***	-0.0007***	-0.0005**	-0.0006***
				(0.0002)	(0.0002)	(0.0002)	(0.0002)
${\sf Year} \times {\sf Industry} \; {\sf FE}$	Yes	Yes	Yes	Yes	Yes	Yes	Yes
N	46,628	46,628	46,628	46,628	46,628	46,628	46,628

Note. Weighted by firm size. Clustering by year×industry. p < 0.10, p < 0.05, p < 0.01

Self Citation Patents / Total Patents

		Internal Innova	tion Rate Weig	hted by Patent	Citation (3-yea	ar Forward Ave)
	0.0370***				0.0165***		0.0134**
log N of Suppliers	(0.0022)				(0.0047)		(0.0053)
L M of D		0.0300***				0.0094***	0.0030
log N of Buyers		(0.0021)				(0.0031)	(0.0033)
I Firm 0i			0.0366***		0.0213***	0.0282***	0.0219***
log Firm Size			(0.0023)		(0.0045)	(0.0031)	(0.0044)
Firm Age				0.0012***	0.0004***	0.0005***	0.0004***
Firm Age				(0.0001)	(0.0001)	(0.0001)	(0.0001)
Year × Industry FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
N	40,486	40,486	40,486	40,486	40,486	40,486	40,486

Note. Weighted by firm size. Clustering by year×industry. $^\star p <$ 0.10, $^{\star\star}p <$ 0.05, $^{\star\star\star}p <$ 0.01

Firm Value

$$\begin{split} r(t)V(\mathcal{O},t) - V_{t}(\mathcal{O},t) \\ &= \max_{x \geq 0, \ \{\mu(z,a) \geq 0\}_{\mathcal{O}}} \sum_{(z,a) \in \mathcal{O}} \left[\begin{array}{c} \frac{1}{\sigma} \left(\tilde{\sigma} z^{-\beta} \tilde{c}(a,t) \right)^{1-\sigma} D(a,t) - (z/Z(t))^{\beta(\sigma-1)} w_{H}(t) c_{I}(\mu) \\ + \mu z V_{z}(\mathcal{O},t) + V_{a}(\mathcal{O},t) \\ + \delta_{N} \left\{ V(\mathcal{O} - \{(z,a)\},t) - V(\mathcal{O},t) \right\} \end{array} \right] \\ &+ nx \left[\begin{array}{c} \alpha \int [V(\mathcal{O} + \{(\lambda z',0)\},t) - \{V(\mathcal{O}',t) - V(\mathcal{O}' - \{(z',a')\},t)\}] dF(z',a',t) \\ (1-\alpha) \int [V(\mathcal{O} + \{(\varepsilon Z(t),0)\},t)] d\Phi(\varepsilon) \\ - V(\mathcal{O},t) \end{array} \right] \\ &- nw_{H}(t)c_{X}(x) \end{split}$$

back

Flow Rate of Entry, Creative Destruction, and New Variety

- Flow of entry per product by entrant: x_E
- Flow of entry per product by incumbent:

$$x = \left(\frac{1}{\gamma_X} \frac{\varphi_X}{\varphi_E}\right)^{1/(\gamma_X - 1)}$$

- Variety creation rate: $v_N = (1 \alpha)(x + x_E)$
- Creative destruction rate: $v_D = \alpha (x + x_E)$
- Variety growth rate:

$$g_N \equiv \dot{N}(t)/N(t) = v_N - \delta_N = (1 - \alpha)(x_E + x) - \delta_N$$

• $g_N = 0$ in SS implies

$$x_{E} = \frac{\delta_{N}}{1 - \alpha} - x = \frac{\delta_{N}}{1 - \alpha} - \left(\frac{1}{\gamma_{X}} \frac{\varphi_{X}}{\varphi_{E}}\right)^{1/(\gamma_{X} - 1)}$$

BGP Equilibrium (1)

A balanced growth path equilibrium consists of (i) the value of product $V^A(a)$ and V^P ; (ii) the internal innovation intensity $\mu(a)$; (iii) the distribution of products $\hat{F}(\hat{z},a)$; (iv) the distribution of matched products $\hat{M}_B(\hat{z}',a';a)$ and $\hat{M}_S(\hat{z}',a';a)$; (v) the cost function $\hat{c}(a)$; (vi) the demand shifter for an age a product $\hat{D}(a)$; (vii) the R&D worker wage \hat{w}_H (viii) the production worker wage \hat{w}_L ; (ix) the number of variety N; (x) the economic growth rate g; (xi) and the aggregate output \hat{Y} , such that;

The value of products V^A(a) satisfies the HJB

$$\{\rho + \delta_{N} + (\theta - 1 + \beta (\sigma - 1))g\} V^{A}(a)$$

$$= \frac{1}{\sigma} (\tilde{\sigma}\hat{c}(a))^{1-\sigma} \hat{D}(a) + V_{a}^{A}(a) + \mu (a)\beta (\sigma - 1) V^{A}(a) - \frac{\hat{w}_{H}}{\varphi_{I}} \mu (a)^{\gamma_{I}}$$
(1)

and V^P is given by

$$V^{P} = \frac{1}{\rho + \delta_{N} + (\theta - 1)g} \frac{\hat{w}_{H}}{\varphi_{E}} \left(1 - \frac{1}{\gamma_{X}} \right) \left(\frac{1}{\gamma_{X}} \frac{\varphi_{X}}{\varphi_{E}} \right)^{\frac{1}{\gamma_{X} - 1}}$$
(2)

• The internal innovation intensity $\mu(a)$ satisfies the FOC

$$\mu(a) = \left(\frac{\beta(\sigma - 1)\varphi_I}{\gamma_I \hat{w}_H} V^A(a)\right)^{\frac{1}{\gamma_I - 1}} \tag{3}$$

BGP Equilibrium (2)

• The distribution of products $\hat{f}(\hat{z}, a)$ satisfies the KFE

$$0 = -\frac{\partial}{\partial \hat{z}} \left\{ (\mu(a) - g) \hat{z} \hat{f}(\hat{z}, a) \right\} - \frac{\partial \hat{f}(\hat{z}, a)}{\partial a} + \frac{\delta_N}{1 - \alpha} \left[\alpha \hat{f}\left(\frac{\hat{z}}{\lambda}, a\right) + (1 - \alpha) \hat{\varphi}(\hat{z}) - \hat{f}(\hat{z}, a) \right]$$
(4)

• The distributions of matched buyers $\hat{M}_B(\hat{z}',a';a)$ and sellers $\hat{M}_S(\hat{z}',a';a)$ are given by

$$\hat{M}_{B}(\hat{z}', a'; a) = \zeta_{B} \int_{0}^{\min\{a, a'\}} \exp\left(-\left(\delta + \frac{\delta_{N}}{1 - \alpha}\right)\tau\right) \hat{F}\left(\exp\left(-\int_{a' - \tau}^{a'} \mu(s) ds + \tau g\right) \hat{z}', a' - \tau\right) d\tau$$
(5)

$$\hat{M}_{S}(\hat{z}', a'; a) = \zeta_{S} \int_{0}^{\min\{a, a'\}} \exp\left(-\left(\delta + \frac{\delta_{N}}{1 - \alpha}\right)\tau\right) \hat{F}\left(\exp\left(-\int_{a' - \tau}^{a'} \mu(s) \, ds + \tau g\right) \hat{z}', a' - \tau\right) d\tau$$
(6)

BGP Equilibrium (3)

• The product cost function $\hat{c}(a)$ satisfies

$$\hat{c}(a)^{1-\sigma} = \hat{w}_L^{\beta(1-\sigma)} \left(\int \hat{z}'^{\beta(\sigma-1)} \left(\tilde{\sigma} \hat{c}(a') \right)^{1-\sigma} d\hat{M}_S(\hat{z}', a'; a) \right)^{1-\beta}$$
(7)

• The demand shifter for an age a product $\hat{D}(a)$ satisfies

$$\hat{D}(a) = \hat{Y} + (1 - \beta) \tilde{\sigma}^{-\sigma} \hat{w}_{L}^{-\frac{\beta}{1-\beta}(\sigma-1)} \int \hat{z}'^{\beta(\sigma-1)} \left(\tilde{c} \left(a' \right)^{1-\sigma} \right)^{-\frac{\beta}{1-\beta}} \hat{D}(a') d\hat{M}_{B}(\hat{z}', a'; a)$$
(8)

BGP Equilibrium (4)

• The R&D worker wage \hat{w}_H satisfies the free entry condition

$$\frac{\hat{w}_{H}}{\varphi_{E}} = \alpha \left\{ \lambda^{\beta(\sigma-1)} V^{A}(0) - \int \hat{z}^{\beta(\sigma-1)} V^{A}(a) d\hat{F}(\hat{z}, a) \right\} + (1 - \alpha) \left\{ V^{P} + \bar{\varepsilon}^{\beta(\sigma-1)} V^{A}(0) \right\}$$
(9)

 The production worker wage ŵ_L satisfies the labor market clearing conditions for production workers

$$\hat{w}_{L} = \beta \, \tilde{\sigma}^{-\sigma} N \int \hat{z}^{\beta(\sigma-1)} \hat{c}(a)^{1-\sigma} \hat{D}(a) d\hat{F}(\hat{z}, a) \tag{10}$$

• The number of variety N satisfies the labor market clearing conditions for R&D workers

$$L_{H} = N \left[\frac{1}{\varphi_{I}} \int \hat{z}^{\beta(\sigma-1)} \mu(a)^{\gamma_{I}} d\hat{F}(\hat{z}, a) + \frac{1}{\varphi_{X}} \left(\frac{1}{\gamma_{X}} \frac{\varphi_{X}}{\varphi_{E}} \right)^{\gamma_{X}/(\gamma_{X}-1)} + \frac{1}{\varphi_{E}} \left(\frac{\delta_{N}}{1-\alpha} - \left(\frac{1}{\gamma_{X}} \frac{\varphi_{X}}{\varphi_{E}} \right)^{1/(\gamma_{X}-1)} \right) \right]$$

$$(11)$$

BGP Equilibrium (5)

• The economic growth rate *g* is given by

$$g = \int \hat{z}^{\beta(\sigma-1)} \mu(a) d\hat{F}(\hat{z}, a) + \frac{\alpha \lambda^{\beta(\sigma-1)} + (1-\alpha) \bar{\varepsilon}^{\beta(\sigma-1)} - 1}{\beta(\sigma-1)} \frac{\delta_N}{1-\alpha}$$
(12)

The aggregate output Ŷ is equal to the total value added:

$$\hat{Y} = \{\tilde{\sigma} - (1 - \beta)\} \frac{w_L}{\beta} \tag{13}$$

• The aggregate consumption \hat{Y} satisfies the household budget constraint

$$\hat{Y} = (\rho + (\theta - 1)g) N \left\{ V^{P} + \int \hat{z}^{\beta(\sigma - 1)} V^{A}(a) d\hat{F}(\hat{z}, a) \right\} + \hat{w}_{L} + L_{H} \hat{w}_{H}$$
 (14)

Solution Algorithm

- Guess V^A(a)
 - Guess ŵ_H
 - Solve $\mu(a)$ using (3)
 - Guess g
 - Solve $\hat{f}(\hat{z}, a)$ using (4)
 - Update g using (12)
 - Solve V_P using (2)
 - Update ŵ_H using (9)
- Solve $\hat{M}_B(\hat{z}', a'; a)$, $\hat{M}_S(\hat{z}', a'; a)$ using (5) and (6)
- Solve N using (9)
- Solve \hat{w}_L and \hat{Y} using (14) and (13)
- Solve ĉ(a) using (7)
- Solve D(a) using (8)
- Update $V^A(a)$ using (1)

SS Comparison Planner 1

$$\max \frac{1}{\rho - (1 - \theta)g} \hat{Y}^{1 - \theta}$$

$$x = \left(\frac{1}{\gamma_X} \frac{\varphi_X}{\varphi_E}\right)^{1/(\gamma_X - 1)}, \quad x_E = \frac{\delta_N}{1 - \alpha} - \left(\frac{1}{\gamma_X} \frac{\varphi_X}{\varphi_E}\right)^{1/(\gamma_X - 1)}$$
(15)

$$\hat{Y} = \{\tilde{\sigma} - (1 - \beta)\} \frac{w_L}{\beta} \tag{16}$$

$$\hat{w}_{L} = \beta \frac{\sigma - 1}{\sigma} N \int \hat{z}^{\beta(\sigma - 1)} (\tilde{\sigma} \hat{c}(a))^{1 - \sigma} \hat{D}(a) d\hat{F}(\hat{z}, a)$$
(17)

$$\hat{c}(a)^{1-\sigma} = \hat{w}_L^{\beta(1-\sigma)} \left(\int \hat{z}'^{\beta(\sigma-1)} \left(\tilde{\sigma} \hat{c}(a') \right)^{1-\sigma} d\hat{M}_S(\hat{z}', a'; a) \right)^{1-\beta}$$
(18)

$$\hat{D}(a) = \hat{Y} + (1 - \beta) \, \tilde{\sigma}^{-\sigma} \hat{w}_L^{-\frac{\beta}{1-\beta}(\sigma-1)} \int \hat{z}'^{\beta(\sigma-1)} \hat{c} \, (a')^{\frac{\beta}{1-\beta}(\sigma-1)} \, \hat{D}(a') d\hat{M}_B(\hat{z}', a'; a) \tag{19}$$

SS Comparison Planner 2

$$\hat{M}_{B}(\hat{z}', a'; a) = \zeta_{B} \int_{0}^{\min\{a, a'\}} \exp\left(-\left(\delta + \delta_{N} + \alpha\left(x_{E} + x\right)\right)\tau\right) \hat{F}\left(\exp\left(-\int_{a' - \tau}^{a'} \mu\left(s\right) ds + \tau g\right) \hat{z}', a' - \tau\right) d\tau$$
(20)

$$\hat{M}_{S}(\hat{z}', a'; a) = \zeta_{S} \int_{0}^{\min\{a, a'\}} \exp\left(-\left(\delta + \delta_{N} + \alpha\left(x_{E} + x\right)\right)\tau\right) \hat{F}\left(\exp\left(-\int_{a' - \tau}^{a'} \mu\left(s\right) ds + \tau g\right) \hat{z}', a' - \tau\right) d\tau \tag{21}$$

$$0 = -(\mu(a) - g)\hat{z}\frac{\partial}{\partial \hat{z}}\left\{\hat{f}(\hat{z}, a)\right\} - \frac{\partial \hat{f}(\hat{z}, a)}{\partial a} + \frac{\delta_{N}}{1 - \alpha}\left[\alpha\hat{f}\left(\frac{\hat{z}}{\lambda}, a\right) + (1 - \alpha)\hat{\varphi}(\hat{z}) - \hat{f}(\hat{z}, a)\right]$$
(22)

$$N\left[\int \hat{z}^{\beta(\sigma-1)}c_{I}(\mu(a))d\hat{F}(\hat{z},a) + \frac{x_{E}}{\varphi_{E}} + c_{X}(x)\right] = L_{H}$$
(23)

$$g = \int \hat{z}^{\beta(\sigma-1)} \mu(a) d\hat{F}(\hat{z}, a) + \frac{\alpha \lambda^{\beta(\sigma-1)} + (1-\alpha)\bar{\varepsilon}^{\beta(\sigma-1)} - 1}{\beta(\sigma-1)} (x_E + x)$$
 (24)

Planner Solution Algorithm

- Find μ(a) that maximize (15) using projection method
- Guess g
 - Solve $\hat{f}(\hat{z}, a)$ using (22)
 - Update g using (24)
- Solve $\hat{M}_B(\hat{z}', a'; a)$, $\hat{M}_S(\hat{z}', a'; a)$ using (20) and (21)
- Solve N using (23)
- Guess w_L
 - Solve ĉ(a) using (18)
 - Solve $\hat{D}(a)$ using (19)
 - Update w_L using (17)
- Solve Ŷ using (16)