Metoda podpornih vektorjev in jedrne funkcije

Ljupčo Todorovski Univerza v Ljubljani, Fakulteta za upravo

Marec 2018

1 / 48

Pregled predavanja

Metoda podpornih vektorjev

- Geometrijski in funkcijski rob (margin)
- Optimizacija roba in dualni problem
- Kontrola predsodka in variance

Jedrne (kernel) funkcije

- Jedrni trik
- Izbira jedra

Klasifikacija kot optimizacijski problem

Linearni modeli za binarno klasifikacijo, $D_Y = \{-1,1\}$

$$\hat{Y} = g(\beta^T \mathbf{x} + \beta_0), \ g(z) = \begin{cases} 1 & ; \ z \ge 0 \\ -1 & ; \ z < 0 \end{cases}$$

Vprašanje: kateri model je najboljši?

Odgovor metode podpornih vektorjev: model z največjim robom.

Todorovski, UL-FU Podproni vektorij in jedra Marec 2018 3 / 48

Funkcijski rob za primer in učno množico

Funkcijski rob $\hat{\gamma}_e$ za učni primer e = (x, y)

$$\hat{\gamma}_e = (\beta^T \mathbf{x} + \beta_0) \mathbf{y}$$

- Ima pozitivne vrednosti za pravilne napovedi (TP in TN)
- Visoka (absolutna) vrednost nakazuje veliko gotovost napovedi

Funkcijski rob za učno množico S

$$\hat{\gamma} = \min_{e \in S} \, \hat{\gamma}_e$$

Občutljivost $\hat{\gamma}$ na velikost β in β_0

k-kratno povečanje, $k \in \mathbb{R}^+$

Ne spremeni napovednega modela

$$g(\beta^T \mathbf{x} + \beta_0) = g(k\beta^T \mathbf{x} + k\beta_0)$$

Po drugi strani pa k-kratno poveča rob

$$(k\beta^T \mathbf{x} + k\beta_0) y = k(\beta^T \mathbf{x} + \beta_0) y = k\hat{\gamma}_e$$

Za enoličnost lahko zahtevamo $\|\beta\| = 1$.

Geometrijski rob γ_e za učni primer e = (x, y)

Definiran je kot razdalja primera od odločitvene meje $\beta^T \mathbf{x} + \beta_0 = 0$

Izračun geometrijskega roba

- Projekcija ${m x}$ na odločitveno mejo je ${m x} \gamma_{m e} \beta / \| \beta \|$
- Projekcija leži na odločitveni meji, t.j.,

$$\beta^{T} (\mathbf{x} - \gamma_{e} \frac{\beta}{\|\beta\|}) + \beta_{0} = 0$$

• Torej, ob upoštevanju definicije $\|\beta\|^2 = \beta^T \beta$

$$\gamma_{\rm e} = \left(\frac{\beta}{\|\beta\|}\right)^{\rm T} \mathbf{x} + \frac{\beta_0}{\|\beta\|}$$

4 D > 4 D > 4 D > 4 D > 3 P 9 Q Q

Geometrijski rob γ za učno množico S

$$\gamma = \min_{e \in S} \, \gamma_e$$

Razlika med funkcijskim in geometrijskim robom

- Formula za slednjega ne vsebuje y
- Ni občutljiv na velikost β in β_0

Alternativni formulaciji

Na osnovi geometrijskega roba (nelinearna omejitev)

$$\max_{\beta,\beta_0} \gamma$$

|S| + 1 omejitev

- $y(\beta^T \mathbf{x} + \beta_0) \ge \gamma$, $(\mathbf{x}, \mathbf{y}) \in S$
- $\|\beta\| = 1$: nelinearna omejitev

Na osnovi funkcijskega roba (ne-konveksna ciljna funkcija)

$$\max_{\beta,\beta_0} \frac{\hat{\gamma}}{\|\beta\|}$$

|S| omejitev

•
$$y(\beta^T \mathbf{x} + \beta_0) \geq \hat{\gamma}, (\mathbf{x}, \mathbf{y}) \in S$$

4 11 1 4 4 12 1 4 12 1 1 1 1 1 1 1 1

Kako do konveksne ciljne funkcije?

- ullet Za funkcijski rob brez škode za splošnost določimo $\hat{\gamma}=1$
- Upoštevamo max $1/\|\beta\| = 1/\min \|\beta\|$
- Upoštevamo da sta min $\|\beta\|$ in min $\|\beta\|^2$ ekvivalentni

Končna formulacija za binarno klasifikacijo

$$\min_{\beta,\beta_0} \frac{1}{2} \|\beta\|^2$$

|S| omejitev

- $y(\beta^T x + \beta_0) \ge 1$, $(x, y) \in S$ oziroma
- $1 y(\beta^T x + \beta_0) \le 0$, $(x, y) \in S$

Naloga kvadratnega programiranja

- Kvadratna in konveksna ciljna funkcija
- Linearne omejitve
- Možno najti globalni minimum

Dualni problem

Lagrange-ova funkcija s koeficienti $\alpha_{\mathbf{x}}$, $(\mathbf{x}, y) \in S$

$$\mathcal{L}(\beta, \beta_0, \alpha) = \frac{1}{2} \|\beta\|^2 + \sum_{(\mathbf{x}, \mathbf{y}) \in S} \alpha_{\mathbf{x}} \left(1 - y \left(\beta^T \mathbf{x} + \beta_0\right)\right)$$

Karush-Kuhn-Tucker-jevi (KKT) pogoji za optimalno rešitev $\beta^*, \beta_0^*, \alpha^*$

$$\frac{\partial \mathcal{L}(\beta^*, \beta_0^*, \alpha^*)}{\partial \beta} = \frac{\partial \mathcal{L}(\beta^*, \beta_0^*, \alpha^*)}{\partial \beta_0} = 0$$

$$\alpha_{\mathbf{x}}^* (1 - y(\beta^{*T} \mathbf{x} + \beta_0^*)) = 0$$

$$1 - y(\beta^{*T} \mathbf{x} + \beta_0^*) \leq 0$$

$$\alpha_{\mathbf{x}}^* \geq 0$$

Reševanje dualnega problema

Prvi KKT pogoj, upoštevaje $\|\beta\|^2 = \beta^T \beta$ oziroma $\frac{\partial \|\beta\|^2}{\partial \beta} = 2\beta$

$$\frac{\partial \mathcal{L}}{\partial \beta} = \beta - \sum_{(\mathbf{x}, y) \in S} \alpha_{\mathbf{x}} y \mathbf{x} = 0$$

$$\frac{\partial \mathcal{L}}{\partial \beta_0} = - \sum_{(\mathbf{x}, y) \in S} \alpha_{\mathbf{x}} y = 0$$

Je izpolnjen pri

•
$$\beta = \sum_{(\mathbf{x}, \mathbf{y}) \in S} \alpha_{\mathbf{x}} \mathbf{y} \mathbf{x}$$

• $\sum_{(\mathbf{x}, \mathbf{y}) \in S} \alpha_{\mathbf{x}} \mathbf{y} = 0$

Če upoštevamo $\beta = \sum_{(x,y) \in S} \alpha_x y x$

 $\langle u, v \rangle = u^T v = v^T u$ je oznaka za skalarni produkt vektorjev u in v

$$\frac{1}{2} \|\beta\|^2 = \frac{1}{2} \langle \beta, \beta \rangle
= \frac{1}{2} \sum_{(\mathbf{x}_1, y_1) \in S} \sum_{(\mathbf{x}_2, y_2) \in S} \alpha_{\mathbf{x}_1} \alpha_{\mathbf{x}_2} y_1 y_2 \langle \mathbf{x}_1, \mathbf{x}_2 \rangle
\beta^T \mathbf{x} = \langle \beta, \mathbf{x} \rangle
= \sum_{(\mathbf{x}_2, \mathbf{y}_2) \in S} \alpha_{\mathbf{x}_2} y_2 \langle \mathbf{x}, \mathbf{x}_2 \rangle$$

Če upoštevamo $\beta = \sum_{(\mathbf{x}, \mathbf{y}) \in S} \alpha_{\mathbf{x}} \mathbf{y} \mathbf{x}$

$$\sum_{(\mathbf{x}, \mathbf{y}) \in S} \alpha_{\mathbf{x}} (1 - y (\beta^{\mathsf{T}} \mathbf{x} + \beta_{0})) = \sum_{(\mathbf{x}, \mathbf{y}) \in S} \alpha_{\mathbf{x}}$$

$$- \sum_{(\mathbf{x}, \mathbf{y}) \in S} \sum_{(\mathbf{x}_{2}, \mathbf{y}_{2}) \in S} \alpha_{\mathbf{x}} \alpha_{\mathbf{x}_{2}} y y_{2} \langle \mathbf{x}, \mathbf{x}_{2} \rangle$$

$$- \beta_{0} \sum_{(\mathbf{x}, \mathbf{y}) \in S} \alpha_{\mathbf{x}} y$$

Če upoštevamo zadnje dve prosojnici ter $\sum_{(x,y)\in S} \alpha_x y = 0$

$$\mathcal{L}(\beta, \beta_0, \alpha) = \sum_{(\mathbf{x}, \mathbf{y}) \in S} \alpha_{\mathbf{x}} - \frac{1}{2} \sum_{(\mathbf{x}_1, \mathbf{y}_1) \in S} \sum_{(\mathbf{x}_2, \mathbf{y}_2) \in S} \alpha_{\mathbf{x}_1} \alpha_{\mathbf{x}_2} y_1 y_2 \langle \mathbf{x}_1, \mathbf{x}_2 \rangle$$

Todorovski, UL-FU

Končna formulacija dualnega problema

$$\max_{\alpha} \sum_{(\mathbf{x}, \mathbf{y}) \in S} \alpha_{\mathbf{x}} - \frac{1}{2} \sum_{(\mathbf{x_1}, \mathbf{y_1}) \in S} \sum_{(\mathbf{x_2}, \mathbf{y_2}) \in S} \alpha_{\mathbf{x_1}} \alpha_{\mathbf{x_2}} y_1 y_2 \langle \mathbf{x_1}, \mathbf{x_2} \rangle$$

 $|\mathcal{S}|+1$ linearnih omejitev iz tretjega in četrtega KKT pogoja

- $\alpha_{x} \geq 0$, $(x, y) \in S$
- $\bullet \ \sum_{(x,y)\in S} \alpha_x y = 0$

Pozor: vse operacije v prostoru X so skalarni produkti.

Napoved in podporni vektorji

Napoved modela y_0 za primer x_0

$$\hat{y}_0 = g\left(\left\langle \sum_{(\mathbf{x}, \mathbf{y}) \in S} \alpha_{\mathbf{x}} y \mathbf{x}, \mathbf{x}_0 \right\rangle + \beta_0\right)$$
$$= g\left(\sum_{(\mathbf{x}, \mathbf{y}) \in S} \alpha_{\mathbf{x}} y \left\langle \mathbf{x}, \mathbf{x}_0 \right\rangle + \beta_0\right)$$

Vsoto v zgornji formuli računamo le za primere x, kjer $\alpha_x > 0$.

Podporni vektorji x_s

- Pri njih velja $\alpha_x > 0$
- Zaradi drugega KKT pogoja velja $1 y (\beta^T x_s + \beta_0) = 0$
- Torej x_s ležijo na robu

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 7 □ ♥) Ч(

Podporni vektorji in rob

Na sliki je w oznaka za β in b oznaka za β_0

Visoka varianca in občutljivost na šumne podatke

In kaj lahko naredimo, če razreda nista linearno ločljiva?

Alternativna formulacija za podatke, ki niso linearno ločljivi

$$\min_{\beta,\beta_0} \frac{1}{2} \|\beta\|^2 + C \sum_{(\boldsymbol{x},\boldsymbol{y}) \in S} \xi_{\boldsymbol{x}}$$

2|S| linearnih omejitev:

- $y(\beta^T x_s + \beta_0) \ge 1 \xi_x, (x, y) \in S$
- $\xi_{x} > 0$, $(x, y) \in S$

Todorovski, UL-FU Marec 2018

Dualni problem in podporni vektorji

$$\max_{\alpha} \sum_{(\mathbf{x}, y) \in S} \alpha_{\mathbf{x}} - \frac{1}{2} \sum_{(\mathbf{x_1}, y_1) \in S} \sum_{(\mathbf{x_2}, y_2) \in S} \alpha_{\mathbf{x_1}} \alpha_{\mathbf{x_2}} y_1 y_2 \left\langle \mathbf{x_1}, \mathbf{x_2} \right\rangle$$

2|S|+1 linearnih omejitev

- $0 \le \alpha_{\mathbf{x}} \le C$, $(\mathbf{x}, \mathbf{y}) \in S$
- $\bullet \sum_{(\mathbf{x},\mathbf{v})\in S} \alpha_{\mathbf{x}} y = 0$

Podporni vektorji so lahko tudi znotraj roba

- Na robu $0 < \alpha_{x_s} < C$: $y(\beta^T x_s + \beta_0) = 1$
- Znotraj roba $\alpha_{\mathbf{x_s}} = C$: $y(\beta^T \mathbf{x_s} + \beta_0) < 1$

4 D > 4 D > 4 B > 4 B > B 9 Q C

Vloga parametra C (cena): predsodek in varianca

$$\min_{\beta,\beta_0} \frac{1}{2} \|\beta\|^2 + C \sum_{(\boldsymbol{x},\boldsymbol{y}) \in S} \xi_{\boldsymbol{x}}$$

Večanje vrednosti C

- Fokus optimizacije se prenese na drugi člen formule zgoraj, t.j., na zmanjševanju odmikov $\xi_{\mathbf{x}}$
- Fokus torej na čim boljšem ločevanju razredov
- Potegne model v smer višje variance in nižjega predsodka
- Podobno kot malo število sosedov k pri metodi najbližjih sosedov

Manjšanje vrednosti *C*

- ullet $\xi_{m{x}}$ so lahko veliki, zato ločevanje razredov ni tako pomembno
- Zniža se varianca in poveča predsodek
- Pozor: poveča se tudi število podpornih vektorjev znotraj roba

Todorovski, UL-FU Podproni vektorji in jedra Marec 2018 22 / 48

Klasifikacija s podpornimi vektorji: cena C

Številke na grafih: število podpornih vektorjev

$$Y = I((1 + X_1 + X_1X_2)/3 \ge 0.5), D_i = [0, 1], i = 1...2, D_Y = \{0, 1\}$$
 zamenjamo vrednost Y 0.05 naključno izbranim primerom

1 D > 4 B > 4 E > 4 E > E *) U(*

Klasifikacije s podpornimi vektorji: C=0.1

Klasifikacije s podpornimi vektorji: vpliv vrednosti C

Alternativni metodi za več kot dva razreda, $|D_Y| > 2$

Metoda ena-na-ena, $|D_Y|(|D_Y|-1)/2$ modelov

- Po en za vsako podmnožico $\{v_1, v_2\} \subset D_Y$
 - Izberemo primere $S' = \{(x, y) \in S : y \in \{v_1, v_2\}\}$
 - Zgradimo model iz S', kjer v_1 spremenimo v 1, v_2 v -1
- Iz napovedi veh modelov izberemo večinsko napoved

Metoda en-proti-vsem, $|D_Y|$ modelov

- ullet Po en za vsako vrednost $v \in D_Y$
- ullet Zgradimo model iz S, kjer v spremenimo v 1, druge vrednosti Y v -1
- Napovemo razred, katerega napoved je najdlje od roba

Regresija, $D_Y \subset \mathbb{R}$

$$\min_{\beta,\beta_0} \frac{C}{2} \|\beta\|^2 + \sum_{(\boldsymbol{x},y) \in S} V_{\epsilon}(y - (\beta^T \boldsymbol{x} + \beta_0))$$

Funkcija V_{ϵ} , $\epsilon \in \mathbb{R}^+$

$$V_{\epsilon}(r) = \left\{ egin{array}{ll} 0 & ; \ |r| \leq \epsilon \ |r| - \epsilon & ; \ |r| > \epsilon \end{array}
ight.$$

4 D > 4 D > 4 B > 4 B > B 9 Q P

Regresija: dualni problem

$$\begin{aligned} & \underset{\alpha,\alpha^*}{\min} & & \epsilon \sum_{(\mathbf{x},\mathbf{y}) \in S} (\alpha_{\mathbf{x}}^* + \alpha_{\mathbf{x}}) - \sum_{(\mathbf{x},\mathbf{y}) \in S} \mathbf{y} (\alpha_{\mathbf{x}}^* - \alpha_{\mathbf{x}}) \\ & + & \frac{1}{2} \sum_{(\mathbf{x}_1,\mathbf{y}_1) \in S} \sum_{(\mathbf{x}_2,\mathbf{y}_2) \in S} (\alpha_{\mathbf{x}_1}^* - \alpha_{\mathbf{x}_1}) (\alpha_{\mathbf{x}_2}^* - \alpha_{\mathbf{x}_2}) \langle \mathbf{x}_1, \mathbf{x}_2 \rangle \end{aligned}$$

3|S|+1 linearnih omejitev

- $0 \le \alpha_{\mathbf{x}} \le C$, $(\mathbf{x}, \mathbf{y}) \in S$
- $0 \le \alpha_{x}^{*} \le C$, $(x, y) \in S$
- $\alpha_{x}\alpha_{x}^{*} = 0$, $(x, y) \in S$
- $\sum_{(\mathbf{x},\mathbf{y})\in\mathcal{S}}(\alpha_{\mathbf{x}}^* \alpha_{\mathbf{x}}) = 0$

Napoved regresijskega modela v točki x_0

$$\hat{y}_0 = \sum_{(\mathbf{x}, \mathbf{y}) \in S} (\alpha_{\mathbf{x}}^* - \alpha_{\mathbf{x}}) \langle \mathbf{x}, \mathbf{x}_0 \rangle + \beta_0$$

- Podporni vektorji so učni primeri $(x, y) \in S$: $\alpha_x^* \neq \alpha_x$
- Vse operacije v prostoru X so še vedno skalarni produkti

4□ > 4□ > 4 = > 4 = > = 90

Vloga parametrov cena (C) in ϵ

$$\min_{\beta,\beta_0} \frac{c}{2} \|\beta\|^2 + \sum_{(\boldsymbol{x},y) \in S} V_{\epsilon}(y - (\beta^T \boldsymbol{x} + \beta_0))$$

Parameter cena uravnava kompromis med predsodkom in varianco

- Obratno kot pri klasifikaciji
- Z večanjem C se optimizacija osredotoča na male vrednosti β (regularizacija), kar zmanjša varianco in poveča predsodek
- Večji predsodek, manj kompleksni modeli in praviloma manj podpornih vektorjev (obvezno opazovanje njihovega števila)

Parameter ϵ

- Vpliv nepredvidljiv, zato običajno privzeta vrednost $\epsilon=0.1$
- Vrednosti spremenljivk X in Y običajno standardiziramo

40 > 40 > 42 > 42 > 2 > 2 000

Regresija s podpornimi vektorji: cena C

$$Y = (1 + X_1 + X_1X_2)/3 + \mathcal{N}(0, 0.05), D_i = [0, 1], i = 1..2, D_Y = [0, 1]$$

4 D > 4 B > 4 B > 4 B > 9 Q P

Todorovski, UL-FU Podproni vektorji in jedra Marec 2018 31 / 48

Transformacija ϕ prostora napovednih spremenljivk X

$$X' = \phi(X)$$

Primer kvadratne transformacije $\phi(\{X_1, X_2\}) = \{X_1^2, X_2^2\}$

Nelinearna odločitvena meja postane linearna.

4 D > 4 A > 4 B > 4 B > B 9 Q Q

32 / 48

Todorovski, UL-FU Podproni vektorji in jedra Marec 2018

Definicija in pomen

Definicija jedrne funkcije $K: \times_{i=1}^p D_i \times \times_{i=1}^p D_i \to \mathbb{R}_0^+$

$$K(u, v) = \langle \phi(u), \phi(v) \rangle$$

Vrne vrednost skalarnega produkta transformiranih vektorjev.

Primer s prejšnje prosojnice

$$K(u, v) = \langle (u_1^2, u_2^2), (v_1^2, v_2^2) \rangle = u_1^2 v_1^2 + u_2^2 v_2^2$$

Jedrni trik

Z jedrno funkcijo skalarni produkt vektorjev v transformiranem prostoru izračunamo brez potrebe prehoda v transformirani prostor.

Primer jedrne funkcije $K(u, v) = (\langle u, v \rangle + 1)^2$

$$(\langle u, v \rangle + 1)^{2} = (u_{1}v_{1} + u_{2}v_{2} + 1)^{2}$$

$$= u_{1}^{2}v_{1}^{2} + u_{2}^{2}v_{2}^{2} + 1 + 2u_{1}u_{2}v_{1}v_{2} + 2u_{1}v_{1} + 2u_{2}v_{2}$$

$$= \langle (\phi(u), \phi(v)) \rangle$$

$$\phi(u) = (u_1^2, u_2^2, 1, \sqrt{2}u_1u_2, \sqrt{2}u_1, \sqrt{2}u_2)$$

S pomočjo jedrnega trika lahko izračunamo model podpornih vektorjev v 6-dimenzionalnem prostoru, čeprav je X dvodimenzionalen.

40 40 40 40 40 40 40 40 40

34 / 48

Pogosto uporabljene jedrne funkcije (jedra)

Polinomsko jedro, stopnja d

$$K(u, v) = (1 + \langle u, v \rangle)^d$$

Dimenzija transformiranega prostora $O(p^d)$.

Gaussovo (radialno) jedro $\gamma = 1/(2\sigma^2)$

$$K(u,v) = e^{-\gamma \|u-v\|^2}$$

Sorodnika: eksponentno in Lagrangeovo jedro. Dimenzija ∞ .

Sigmoidno (nevronsko) jedro, κ_1, κ_2

$$K(u, v) = \tanh(\kappa_1 \langle u, v \rangle + \kappa_2)$$

Dimenzija transformiranega prostora ∞ .

Jedrna matrika in Mercerjev izrek

Jedrna matrika K za podatkovno množico S

- Dimenzije matrike $|S| \times |S|$
- Elementi $K_{ij} = K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle, x_i, x_j \in S$
- Zaradi komutativnosti skalarnega produkta je K simetrična

Mercerjev izrek

Nujni in zadostni pogoj zato, da matrika K določa veljavno jedro, je to da je K simetrična in pozitivno semi-definitna, t.j., $\forall z \in R^{|S|} : z^T K z \ge 0$.

Posledici

- K lahko obravnavamo kot matriko podobnosti med primeri
- Prostor možnih jeder zelo velik

Todorovski, UL-FU

Klasifikacija s polinomskim jedrom: C in degree

 $Y = I((1 + X_1 + X_1X_2)/3 \ge 0.5), D_i = [0, 1], i = 1...2, D_Y = \{0, 1\}$ zamenjamo vrednost Y 0.05 naključno izbranim primerom

37 / 48

Todorovski, UL-FU Podproni vektorji in jedra Marec 2018

Klasifikacija s polinomskim jedrom: degree = 3

Klasifikacije s polinomskim jedrom: C = 100, degree = 3

Klasifikacija z Gaussovim jedrom: \emph{C} in γ

Klasifikacija z Gaussovim jedrom: $\gamma=0.1$

Klasifikacije s Gaussovim jedrom: $\mathit{C}=1$, $\gamma=0.1$

◆ロト ◆個ト ◆意ト ◆意ト ・意 ・ からで

Todorovski, UL-FU

Regresija s polinomskim jedrom: *C* in *degree*

$$Y = (1 + X_1 + X_1X_2)/3 + \mathcal{N}(0, 0.05), D_i = [0, 1], i = 1...2, D_Y = [0, 1]$$

←□▶ ←□▶ ← □▶ ← □▶ □ ● ♥ ♥ ♥ ♥

43 / 48

Todorovski, UL-FU Podproni vektorji in jedra Marec 2018

Regresija s polinomskim jedrom: degree = 3

Regresija z Gaussovim jedrom: $\it C$ in $\it \gamma$

Regresija z Gaussovim jedrom: $\gamma = 0.1$

Primerjava napak

Klasifikacija, klasifikacijska napaka

- Linearno jedro, C = 0.1: 0.071
- Polinomsko jedro, degree = 3, C = 100: 0.114
- Gaussovo jedro, $\gamma = 0.1$, C = 1: **0.066**
- Drevesa 0.094, najbližji sosedi 0.065

Regresija, celotna napaka RMSE

- Linearno jedro, *C* = 1000: 0.0636
- ullet Polinomsko jedro, degree=3, C=1: 0.0766
- Gaussovo jedro, $\gamma = 0.001$, C = 10,000: **0.0487**
- Drevesa 0.0679, najbližji sosedi 0.0548

Znani algoritmi in implementacije

Originalni predlog (Vapnik in Chervonenkis 1963)

Optimizacija roba za linearno ločljiva razreda.

Nadgradnja in posplošitev (Cortes in Vapnik 1995)

Knjižnica LIBSVM (C++ in Java), na voljo tudi v R (ovojnica e1071).