Backpropagation 2

수업 목표

이번 수업의 핵심:

- 복잡한 Computational graph의 Backpropagation
- Local gradient 계산을 통한 Backpropagation path 단순화

핵심 개념

- Computational graph
- Backpropagation

Logistic regression의 Computational Graph

$$\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}},$$

$$\mathcal{L} = BCE(y, \hat{y}) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

다른 예시:
$$\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
,
$$\mathcal{L} = \text{BCE}(y, \hat{y}) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

Forward pass: output 계산

다른 예시:
$$\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
,
 $\mathcal{L} = \text{BCE}(y, \hat{y}) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$

다른 예시:
$$\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
,
$$\mathcal{L} = BCE(y, \hat{y}) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

다른 예시:
$$\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
,
$$\mathcal{L} = BCE(y, \hat{y}) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

다른 예시:
$$\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
,
$$\mathcal{L} = \text{BCE}(y, \hat{y}) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

다른 예시:
$$\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
,
$$\mathcal{L} = \text{BCE}(y, \hat{y}) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

다른 예시:
$$\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
,
$$\mathcal{L} = \text{BCE}(y, \hat{y}) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

다른 예시:
$$\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
,
$$\mathcal{L} = \text{BCE}(y, \hat{y}) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

다른 예시:
$$\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
,
$$\mathcal{L} = BCE(y, \hat{y}) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

다른 예시:
$$\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
,
$$\mathcal{L} = \text{BCE}(y, \hat{y}) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

다른 예시:
$$\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
,
$$\mathcal{L} = \text{BCE}(y, \hat{y}) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

다른 예시:
$$\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
,
$$\mathcal{L} = \text{BCE}(y, \hat{y}) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

다른 예시:
$$\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
,
$$\mathcal{L} = \text{BCE}(y, \hat{y}) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

다른 예시:
$$\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
,
 $\mathcal{L} = \text{BCE}(y, \hat{y}) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$

Gradient descent update

Backpropagation Path의 다양성

다른 예시:
$$\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
,
$$\mathcal{L} = BCE(y, \hat{y}) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

긴 graph를 단순한 local gradient로 나타낼 수도 있음

18

Backpropagation Path의 다양성

다른 예시:
$$\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
,
$$\mathcal{L} = BCE(y, \hat{y}) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

Sigmoid & BCE local gradient when y = 1 $\frac{\partial}{\partial x} \left[-\log \sigma(x) \right] = -\log \left(\frac{1}{1 + e^{-x}} \right) = -\frac{\overline{(1 + e^{-x})^2}}{\frac{1}{1 + e^{-x}}} = -\frac{e^{-x}}{1 + e^{-x}} = \sigma(x) - 1$ Sigmoid & BCE $\frac{d\mathcal{L}}{dx} = (1 - 0.73) \times 0.73 \times (-1.37) = -0.27$

긴 graph를 단순한 local gradient로 나타낼 수도 있음

Computational graph는 유일하지 않음

19

Backpropagation Path의 다양성

다른 예시:
$$\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
,
$$\mathcal{L} = BCE(y, \hat{y}) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

 $\frac{d\mathcal{L}}{dx_1} \\ \frac{d\mathcal{L}}{dx_2}$

Computational graph는 유일하지 않음 긴 graph를 단순한 local gradient로 나타낼 수도 있음

Backpropagation Path와 Chain Rule

다른 예시:
$$\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
,
$$\mathcal{L} = BCE(y, \hat{y}) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

요약

- Computational graph의 복잡한 예시
- 지수 함수 및 역수 등 다양한 계산에서의 Backpropagation 적용
- 다양한 Local gradient를 활용한 Backpropagation path 단순화

