Álgebra Lineal - Clase 21

Gabriela Jeronimo

FCEN-UBA

Segundo cuatrimestre 2020

Esquema de la clase

- ► Transformaciones lineales unitarias y ortogonales.
- Clasificación de transformaciones ortogonales.

Bibliografía recomendada.

G. Jeronimo, J. Sabia, S. Tesauri. *Algebra Lineal*. Cursos de Grado. Fascículo 2. Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2008.

Capítulo 8 (Sección 8.3).

Transformaciones lineales unitarias y ortogonales

Recordar:

- ▶ $U \in \mathbb{C}^{n \times n}$ se dice unitaria si es inversible y $U^{-1} = U^*$.
- ▶ $O \in \mathbb{R}^{n \times n}$ se dice ortogonal si es inversible y $O^{-1} = O^t$.

Proposición.

Sea (V, \langle, \rangle) un e.v. de dimensión finita con p.i. Si B y B' bases ortonormales de V, entonces C(B, B') es una matriz unitaria (u ortogonal).

Demostración.

Si
$$B = \{v_1, \dots, v_n\}$$
 y $B' = \{w_1, \dots, w_n\}$, entonces, $\forall 1 \leq i, j \leq n$,
$$(C(B, B')^{-1})_{ij} = \frac{C(B', B)_{ij}}{C(B, B')_{ji}} = \langle w_j, v_i \rangle = \overline{\langle v_i, w_j \rangle}$$
$$= \overline{C(B, B')_{ji}} = (C(B, B')^*)_{ij}$$
$$\Rightarrow C(B, B')^{-1} = C(B, B')^*.$$

Teorema.

Sea (V, \langle, \rangle) un e.v. de dimensión finita con p.i. y sea $f: V \to V$ una transformación lineal. Son equivalentes:

- i) $\exists B$ base ortonormal de V tal que f(B) es una base ortonormal de V.
- ii) $\langle f(v), f(w) \rangle = \langle v, w \rangle \ \forall v, w \in V.$
- iii) $\forall B$ base ortonormal de V, f(B) es una base ortonormal de V.
- iv) $||f(v)|| = ||v|| \ \forall v \in V$.
- v) $f^* \circ f = f \circ f^* = id_V$.

Definición.

Una transformación lineal $f:V\to V$ que cumple las condiciones equivalentes del Teorema se dice unitaria si V es un \mathbb{C} -e.v., u ortogonal si V es un \mathbb{R} -e.v.

Demostración del Teorema.

i) \Rightarrow ii) Sea $B = \{v_1, \dots, v_n\}$ base ortonormal de V tal que $f(B) = \{f(v_1), \dots, f(v_n)\}\$ es una base ortonormal de V.

Si $v, w \in V$ con $v = \sum_{i=1}^{n} \alpha_i v_i$ y $w = \sum_{i=1}^{n} \beta_i v_i$, entonces

$$\langle v, w \rangle = \left\langle \sum_{i=1}^{n} \alpha_{i} v_{i}, \sum_{j=1}^{n} \beta_{j} v_{j} \right\rangle^{B} \stackrel{\text{bon}}{=} \sum_{i=1}^{n} \alpha_{i} \overline{\beta_{i}}$$

$$\langle f(v), f(w) \rangle = \left\langle \sum_{i=1}^{n} \alpha_{i} f(v_{i}), \sum_{j=1}^{n} \beta_{j} f(v_{j}) \right\rangle^{F(B)} \stackrel{\text{bon}}{=} \sum_{i=1}^{n} \alpha_{i} \overline{\beta_{i}},$$

$$\Rightarrow \langle v, w \rangle = \langle f(v), f(w) \rangle.$$

ii) \Rightarrow iii) Sea $B = \{v_1, \dots, v_n\}$ una base ortonormal de V.

$$\langle f(v_i), f(v_i) \rangle = \langle v_i, v_i \rangle = 1 \quad \forall 1 \le i \le n$$

 $\langle f(v_i), f(v_j) \rangle = \langle v_i, v_j \rangle = 0 \quad \forall 1 \le i, j \le n, i \ne j.$

 $\Rightarrow f(B)$ es una base ortonormal de V.

iii)
$$\Rightarrow$$
 i) \checkmark

ii)
$$\Rightarrow$$
 iv) $\forall v \in V$, $||f(v)|| = \langle f(v), f(v) \rangle^{\frac{1}{2}} = \langle v, v \rangle^{\frac{1}{2}} = ||v||$.
iv) \Rightarrow ii) Si V es un \mathbb{R} -e.v.,

$$\langle f(v), f(w) \rangle = \frac{1}{4} \|f(v) + f(w)\|^2 - \frac{1}{4} \|f(v) - f(w)\|^2$$

$$= \frac{1}{4} \|f(v+w)\|^2 - \frac{1}{4} \|f(v-w)\|^2$$

$$= \frac{1}{4} \|v+w\|^2 - \frac{1}{4} \|v-w\|^2 = \langle v, w \rangle$$

y análogamente si V es un \mathbb{C} -e.v. con la identidad correspondiente.

ii)
$$\Rightarrow$$
 v) Sea $v \in V$. Para cada $w \in V$,
 $\langle f^* \circ f(v), w \rangle = \langle f^*(f(v)), w \rangle = \langle f(v), f(w) \rangle = \langle v, w \rangle$,
 $\Rightarrow \langle f^* \circ f(v) - v, w \rangle = 0 \ \forall w \in V$.
 $\Rightarrow f^* \circ f(v) - v = 0 \Rightarrow f^* \circ f(v) = v$.

$$\Rightarrow f^* \circ f = id_V$$
. (V de dim. finita $\Rightarrow f \circ f^* = id_V$.)

$$v) \Rightarrow ii) \ \forall v, w \in V,$$

$$\langle f(v), f(w) \rangle = \langle v, f^*(f(w)) \rangle = \langle v, f^* \circ f(w) \rangle = \langle v, w \rangle.$$

Proposición.

Sea (V, \langle, \rangle) un e.v. de dimensión finita con p.i. y sea B una base ortonormal de V. Si $f: V \to V$ es una t.l, entonces

f es unitaria (ortogonal) \iff $|f|_B$ es unitaria (ortogonal).

Demostración.

Si V es un \mathbb{C} -e.v. (para un \mathbb{R} -e.v. es análogo):

(
$$\Rightarrow$$
) f unitaria $\Rightarrow f^* \circ f = f \circ f^* = id_V$.

$$\Rightarrow I_B = |f^* \circ f|_B = |f^*|_B \cdot |f|_B \stackrel{\text{B bon}}{=} (|f|_B)^* \cdot |f|_B.$$

$$\Rightarrow |f|_B$$
 es inversible y $(|f|_B)^{-1} = (|f|_B)^*$.

$$(\Leftarrow)$$
 $|f|_B$ unitaria $\Rightarrow |f|_B^{-1} = (|f|_B)^*$

$$\Rightarrow |f^* \circ f|_B = |f \circ f^*|_B = I_n \Rightarrow f^* \circ f = f \circ f^* = id_V.$$

Ejemplo.

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f(x,y) = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ es ortogonal.

Lema.

Sea $f: V \to V$ una t.l. unitaria (ortogonal) y sea $\lambda \in \mathbb{C}$ ($\lambda \in \mathbb{R}$) un autovalor de f. Entonces $|\lambda| = 1$.

Demostración.

 λ autovalor de $f \Rightarrow \exists v \in V, v \neq 0$, tal que $f(v) = \lambda . v$. f unitaria (ortogonal) $\Rightarrow ||f(v)|| = ||v||$.

$$\Rightarrow \|\mathbf{v}\| = \|f(\mathbf{v})\| = \|\lambda \cdot \mathbf{v}\| = |\lambda| \cdot \|\mathbf{v}\| \stackrel{\mathbf{v} \neq \mathbf{0}}{\Rightarrow} |\lambda| = 1.$$

Lema.

Sea $f:V\to V$ una t.l. unitaria (ortogonal). Si $S\subseteq V$ es un subespacio f-invariante, entonces S^\perp es f-invariante.

Demostración.

Sea $x \in S^{\perp}$. Veamos que $f(x) \in S^{\perp}$.

 $f_{|_S}:S o S$ t.I. unitaria (ortogonal) $\Rightarrow f_{|_S}$ isomorfismo.

$$s \in S \Rightarrow \exists s' \in S \text{ tal que } s = f(s').$$

$$\langle f(x), s \rangle = \langle f(x), f(s') \rangle = \langle x, s' \rangle = 0.$$

$$\Rightarrow \langle f(x), s \rangle = 0 \ \forall s \in S$$
. Luego, $f(x) \in S^{\perp}$.

Clasificación de t.l. ortogonales en e.v. de dimensión 2

En lo que sigue, (V, \langle, \rangle) es un espacio euclídeo de dimensión 2.

Sea $f: V \to V$ una transformación lineal ortogonal.

 $B = \{v_1, v_2\}$ base ortonormal de $V \Rightarrow \{f(v_1), f(v_2)\}$ base ortonormal de V

$$\begin{split} f(v_1) &= \alpha v_1 + \beta v_2 \text{ y } f(v_2) = \alpha' v_1 + \beta' v_2 \\ &\Rightarrow \{(\alpha, \beta), (\alpha', \beta')\} \text{ base ortonormal de } \mathbb{R}^2 \\ &\Rightarrow \|(\alpha, \beta)\| = 1 \text{ y } (\alpha', \beta') = (-\beta, \alpha) \text{ o } (\alpha', \beta') = (\beta, -\alpha). \end{split}$$

(1)
$$|f|_B = \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$$
 (2) $|f|_B = \begin{pmatrix} \alpha & \beta \\ \beta & -\alpha \end{pmatrix}$.
 $\det(f) = 1$ $\det(f) = -1$

$$(1) |f|_{B} = \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$$

$$\mathcal{X}_f = (X - \alpha)^2 + \beta^2 = X^2 - 2\alpha X + 1.$$

$$lpha=\pm 1\Rightarrow f=\pm id_V.$$
 Si no, \mathcal{X}_f no tiene raíces reales.

$$\|(\alpha,\beta)\|=1\Rightarrow\exists\theta\in[0,2\pi)$$
 tal que $\alpha=\cos\theta$, $\beta=\sin\theta$.

$$|f|_B = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

Se puede tomar $\theta \in [0, \pi]$, cambiando $\{v_1, v_2\}$ por $\{v_1, -v_2\}$ de ser necesario.

 $f: \mathbb{R}^2 \to \mathbb{R}^2$ es una rotación de ángulo θ .

(2)
$$|f|_B = \begin{pmatrix} \alpha & \beta \\ \beta & -\alpha \end{pmatrix}$$

 $\mathcal{X}_f = (X - \alpha)(X + \alpha) - \beta^2 = X^2 - 1 = (X - 1)(X + 1)$
 $|f|_B$ simétrica $\Rightarrow \exists B'$ base ortonormal de V tal que

$$|f|_{B'}=\left(\begin{array}{cc}1&0\\0&-1\end{array}\right).$$

$$B' = \{w_1, w_2\}$$

 $w_1 \perp w_2$
 $f(w_1) = w_1$
 $f(w_2) = -w_2$.

 $f: \mathbb{R}^2 \to \mathbb{R}^2$ es la simetría respecto de $H = \langle w_1 \rangle$.

Definición.

Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$ una transformación lineal ortogonal.

- (1) Se dice que f es una rotación si det(f) = 1.
- (2) Sea $H \subseteq \mathbb{R}^2$ un subespacio de dimensión 1. Se dice que f es una simetría respecto de H si $f_{|_H} = id_H$ y $f_{|_{U^{\perp}}} = -id_{H^{\perp}}$.

Proposición.

Si $f: \mathbb{R}^2 \to \mathbb{R}^2$ es una transformación lineal ortogonal, entonces f es una rotación o f es una simetría.

Ejemplos.

1. Hallar la simetría $f: \mathbb{R}^2 \to \mathbb{R}^2$ respecto de la recta L: x+y=0.

$$L = < (1, -1) >,$$
 $L^{\perp} = < (1, 1) >.$
 $f: \mathbb{R}^2 \to \mathbb{R}^2$ la t.l. definida por:
 $f(1, -1) = (1, -1)$
 $f(1, 1) = (-1, -1).$
 $f_{|_L} = id_L \ y \ f_{|_{L^{\perp}}} = -id_{L^{\perp}}$

$$f(x,y) = (-y,-x) \ \forall (x,y) \in \mathbb{R}^2.$$

 $\Rightarrow f$ simetría respecto de L.

2. Hallar, si es posible, una rotación $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que f(2,1)=(1,2).

$$f \text{ ortogonal } \Rightarrow ||f(v)|| = ||v|| \ \forall v \in V.$$

 $||f(2,1)|| = ||(1,2)|| = \sqrt{5} = ||(2,1)|| \checkmark$

Definimos f en una base ortonormal de \mathbb{R}^2 que contiene a

$$\frac{1}{\|(2,1)\|}(2,1) = \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right) \rightsquigarrow B = \left\{\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right), \left(\frac{-1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)\right\}.$$

$$\frac{1}{\|(2,1)\|}(2,1) = \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right) \rightsquigarrow B = \left\{\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right), \left(\frac{-1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)\right\}.$$

$$f\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right) = \frac{1}{\sqrt{5}}f(2,1) = \frac{1}{\sqrt{5}}(1,2) = \left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right).$$

$$(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}) = \frac{4}{5} (\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}) + \frac{3}{5} (\frac{-1}{\sqrt{5}}, \frac{2}{\sqrt{5}}).$$

$$|f|_{B} = \begin{pmatrix} \frac{4}{5} & * \\ \frac{3}{5} & * \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} \frac{4}{5} & -\frac{3}{5} \\ \frac{3}{5} & \frac{4}{5} \end{pmatrix}$$

$$\Rightarrow f(\frac{-1}{\sqrt{5}}, \frac{2}{\sqrt{5}}) = -\frac{3}{5}(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}) + \frac{4}{5}(\frac{-1}{\sqrt{5}}, \frac{2}{\sqrt{5}}) = (\frac{-2}{\sqrt{5}}, \frac{1}{\sqrt{5}}).$$

Consideramos $f: \mathbb{R}^2 \to \mathbb{R}^2$ la t.l. definida por:

$$\begin{cases} f(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}) &= (\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}) \\ f(\frac{-1}{\sqrt{5}}, \frac{2}{\sqrt{5}}) &= (\frac{-2}{\sqrt{5}}, \frac{1}{\sqrt{5}}). \end{cases}$$

- f es ortogonal, porque f(B) es una base ortonormal para B base ortonormal.
- ▶ f es una rotación, porque det(f) = 1.
- $f(2,1) = (1,2) \checkmark$

