Blgebra

 $\sin n\pi = 0$

 $1 - \cos n\pi = 2$ for odd n

 $\arctan(\frac{1}{\sqrt{2}}) = \frac{\pi}{6}, \arctan(\sqrt{3}) = \frac{\pi}{3}$

 $\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$ $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$

 $\sin x \sin y = \frac{1}{2} \left[\cos(x - y) - \cos(x + y) \right]$

 $\cos x \cos y = \frac{1}{2} \left[\cos(x - y) + \cos(x + y) \right]$

 $\sin x \cos y = \frac{1}{2} \left[\sin(x - y) + \sin(x + y) \right]$

 $\sin a \pm \sin b = 2\sin \frac{a+b}{2}\cos \frac{a\mp b}{2}$

 $\cos a + \cos b = 2\cos\frac{a+b}{2}\cos\frac{a-b}{2}$

 $\cos a - \cos b = -2\sin\frac{a+b}{2}\sin\frac{a-b}{2}$

 $C\cos(\omega_0 t + \theta) = C\cos(\theta)\cos(\omega_0 t) - C\sin(\theta)\sin(\omega_0 t)$

 $C\sin(\omega_0 t + \theta) = C\sin(\theta)\cos(\omega_0 t) + C\cos(\theta)\sin(\omega_0 t)$

 $\theta = \tan^{-1}(-\frac{b}{a}), \pm \pi \text{ when } a < 0$

 $\sin t = \cos(t - \frac{\pi}{2})$ $-\cos t = \sin(t - \frac{\pi}{2})$

 $\cos x = \frac{1}{2} \left[e^{jx} + e^{-jx} \right]$ $\sin x = \frac{1}{2i} \left[e^{jx} - e^{-jx} \right]$

 $e^{j\omega t} = \cos(\omega t) + i\sin(\omega t)$

 $z^* = a - ib = re^{-j\theta}$

 $u^*v^* = (uv)^*$

 $\angle z = \tan^{-1}(\frac{b}{a}), \pm \pi \text{ in Q2 and Q3}$

 $z^{\frac{1}{n}} = r^{\frac{1}{n}} e^{j\frac{\theta+2\pi m}{n}}$

 $(s+a)(s+b)(s+c) = s^3 + (a+b+c)s^2 + (ab+bc+ca)s + abc$

Integrals

 $\int \cos^2 at \, dt = \frac{t}{2} + \frac{\sin 2at}{4\pi}$

 $\int t \cos at \, dt = \frac{1}{q^2} (\cos at + at \sin at)$ $\int t \sin at \, dt = \frac{1}{a^2} (\sin at - at \cos at)$

 $\int_{0}^{a} t^{2} \cos at \, dt = \frac{1}{q^{3}} (2at \cos at - 2\sin at + a^{2}t^{2} \sin at)$ $\int_{0}^{a} t^{2} \sin at \, dt = \frac{1}{q^{3}} (2at \sin at + 2\cos at - a^{2}t^{2} \cos at)$

 $\int te^{at} dt = \frac{1}{a^2} e^{at} (at - 1)$ $\int t^2 e^{at} dt = \frac{1}{a^3} e^{at} (a^2 t^2 - 2at + 2)$

 $\int e^{at} \cos bt \, dt = \frac{1}{a^2 + b^2} e^{at} (a \cos bt + b \sin bt)$

 $\int e^{at} \sin bt \, dt = \frac{1}{a^2 + b^2} e^{at} (a \sin bt - b \cos bt)$

 $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}$

Signals

 $\mathcal{E}_f = \int_{-\infty}^{\infty} |f(t)|^2 dt$ (complex);

 $P_f = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |f(t)|^2 dt;$ rms power = $\sqrt{P_f}$

Cont; analog; periodic (extension); (non/anti)causal; energy/power (both); deterministic/stochastic (info)

 $\int f(t) \cdot \delta(t-t_0) dt = f(t_0)$ (f continuous at t_0)

f(2x-6): shift by 6, scale by 2;

f(2(x-6)): scale by 2, shift by 6

 $f_e(t) = \frac{1}{2}[f(t) + f(-t)]$ $f_o(t) = \frac{1}{2} [f(t) - f(-t)]$

Systems

 \mathcal{T} : $\sum_{k=0} a_k D^k y(t) = \sum_{l=0} b_l D^l f(t)$

Linear $\mathcal{T}[kf_1(t) + f_2(t)] = ky_1(t) + y_2(t)$.

Lin if a_k , b_l are not functions of y(t), f(t)E. $\sin \dot{y}(t) + t^2 y(t) = (t+3) f(t)$

Time-inv $\mathcal{T}[f(t-\tau)] = y(t-\tau)$.

 a_k , b_l indep of t (const coeff)

Let $g(t) \equiv f(t-\tau)$, find $z(t) = \mathcal{T}[g(t)]$, cmp $y(t-\tau)$

Causal y(t) dep only on $f(\tau)$, $\tau < t$. Compare t and τ .

Instantaneous y only dep f at present (no \int , no memory)

Invertible given y(t), we can know f(t) (ideal diff is not)

Conv prop

 $c(t) \equiv \int_{-\infty}^{\infty} f(\tau)g(t-\tau) d\tau$ $c[n] \equiv \sum_{m=-\infty}^{\infty} f[m]g[n-m]$

f * q = q * f

f * (q+h) = f * h + q * h

f * (q * h) = (f * q) * h

pf: f * (q * h) = f * (h * q)

 $= \int f(\tau_1) \int h(\tau_2) q(t - \tau_2 - \tau_1) d\tau_2 d\tau_1$ $= \int h(\tau_2) \int f(\tau_1) g(t - \tau_1 - \tau_2) d\tau_1 d\tau_2$

 $f(t-T_1) * q(t-T_2) = c(t-T_1-T_2)$

 $f(at) * g(at) = \left| \frac{1}{a} \right| c(at)$ (even/odd)

 $f^{(m)}(t) * q^{(n)}(t) = c^{(m+n)}(t)$ pf: $\dot{f}(\tau) = \lim_{T \to 0} f(\tau) - f(\tau - T)$

Graph: shift left by +t, and reflect;

Every τ replaced by $t-\tau$; Reverted

Conv table

$$f(t) * \delta(t - T) = f(t - T)$$

$$u(t) * u(t) = t u(t)$$

$$e^{at} u(t) * u(t) = \frac{1 - e^{at}}{-a} u(t)$$

$$e^{at} u(t) * e^{bt} u(t) = \frac{e^{at} - e^{bt}}{a - b} u(t)$$
 $a = b, te^{at} u(t)$

$$e^{at} u(t) * e^{bt} u(-t) = \frac{e^{at} u(t) + e^{bt} u(-t)}{b-a}$$
 $\Re(b) > \Re(a)$

$$te^{at} u(t) * e^{at} u(t) = \frac{1}{2} t^2 e^{at} u(t)$$

$$t^m u(t) * t^n u(t) = \frac{m! \, n!}{(m+n+1)!} t^{m+n+1} u(t)$$

Don't forget $[u(t+T_1)-u(t-T_2)]$ term

LTI response

Q(D)y(t) = P(D)f(t), typically integrating f Assume causal input f(t)u(t)

 $y_{zs}(t) = f(t) * h(t)$ from input

 $y_{zs}(0^-) = 0, y_{zs}(0^+) \neq 0$

Let $h(t) = \mathcal{T}[\delta(t)]$ (impulse response) $y_{zs}(t) = \mathcal{T}[f(t)] = \mathcal{T}[f(t) * \delta(t)]$

 $= \mathcal{T}[\lim \sum f(n\Delta\tau)\delta(t-n\Delta\tau)\Delta\tau]$ $=\lim \sum f(n\Delta\tau)h(t-n\Delta\tau)\Delta\tau = f*h$

 $y_{zi}(t)$ from ini, f(t) = 0, $Qy_{zi}(t) = 0$ $y_{zi}(0^-) = y_{zi}(0^+), \ \dot{y_{zi}}(0^-) = \dot{y_{zi}}(0^+)$

Ortho set

 $\mathcal{E}_e = \int_{t_1}^{t_2} [e(t)]^2 dt$

 $= \int_{t_1}^{t_2} f^2(t)dt - 2\sum_{t_1} c_i \int_{t_1}^{t_2} f(t)x_i(t)dt + \int_{t_1}^{t_2} (\sum_{t_1} c_i x_i(t))^2 dt$ $=\mathcal{E}_f-2\sum_{x_i}\langle f,x_i\rangle$ $+(\sum_{i} c_{i}^{2} \int_{t_{-}}^{c_{i}} x_{i}(t)^{2} dt + \sum_{i \neq j} c_{i} c_{j} \int_{t_{-}}^{t_{2}} x_{i}(t) x_{j}(t) dt)$

$$\frac{\partial \mathcal{E}_e}{\partial c_i} = 0 = -2\langle f(t), x_i(t) \rangle + 2\mathcal{E}_i c_i$$

$$\mathcal{E}_e^{\min} = \mathcal{E}_f - \sum_{i=1}^N c_i^2 \mathcal{E}_i$$

$$c_i = \frac{1}{\mathcal{E}_i} \langle f, x_i \rangle = \frac{\int f(t)x(t)dt}{\int x_i^2(t)dt}$$

For ortho, $E_z = E_x + E_y$

$$|u+v|^2 = |u|^2 + |v|^2 + u^*v + v^*u$$

 $\langle x(t), y(t) \rangle = \int_{t_1}^{t_2} x(t)y(t)^* dt = \int_{t_1}^{t_2} x(t)y(t)dt$ if real Use prod \rightarrow sum identities

$$\mathbf{FS}$$

$$\begin{aligned} & a_0 = \frac{1}{T_0} \int_{T_0} f(t) \, dt \\ & a_n = \frac{2}{T_0} \int_{T_0} f(t) \cos(n\omega_0 t) \, dt \\ & b_n = \frac{2}{T_0} \int_{T_0} f(t) \sin(n\omega_0 t) \, dt \\ & \text{Energy: } T_0 \text{ for } n = 0; T_0/2 \text{ else} \end{aligned}$$

Half wave sym
$$f(t - \frac{T_0}{2}) = -f(t)$$

 $a_{n_{\text{odd}}} = \frac{4}{T_0} \int_0^{T_0/2} f(t) \cos(n\omega_0 t) dt$

$$f(t) = \sum_{n=-\infty}^{\infty} F_n e^{jn\omega_0 t}$$

$$F_n = \frac{1}{T_0} \int_{T_0} f(t) e^{-jn\omega_0 t} dt$$

$$C_n \cos(n\omega_0 t + \theta_n) = \frac{C_n}{2} \left(e^{j(n\omega_0 t + \theta_n)} + e^{-j(n\omega_0 t + \theta_n)} \right)$$
$$= \left(\frac{C_n}{2} e^{j\theta_n} \right) e^{jn\omega_0 t} + \left(\frac{C_n}{2} e^{-j\theta_n} \right) e^{-jn\omega_0 t}$$

$$\begin{split} F_n &= \frac{C_n}{2} e^{j\theta_n} = \frac{1}{2} (a_n - jb_n) = |F_n| e^{j\angle F_n} \\ F_{-n} &= \frac{C_n}{2} e^{-j\theta_n} = \frac{1}{2} (a_n + jb_n) \end{split}$$

Existence

Weak: finite \int , fin bounds a, b, fin power Strong: fin min/max/discont over T_0 , $\to \frac{f(t_0^+)+f(t_0^-)}{2}$

FS prop

Time shift
$$f(t-t_0) \to F_n e^{-jn(\omega_0 t_0)}$$

 $|F_n|$ same; $\angle F_n$ shifted by $-(\omega_0 t_0)n$

Reversal
$$f(-t) \to F_{-n}$$

Scaling $T = \frac{T_0}{a}$, $\omega = a\omega_0$

$$\begin{array}{l} \text{Multiplication (same T_0): } f(t)g(t) \rightarrow F_n * G_n \\ \frac{1}{T_0} \int_{T_0} f(t)g(t)e^{jn\omega_0t} \, dt \\ = \frac{1}{T_0} \int (\sum F_m e^{jm\omega_0t})(\sum G_k e^{jk\omega_0t})e^{-jn\omega_0t} \, dt \\ = \sum_m \sum_k F_m G_k \frac{1}{T_0} \int_{T_0} e^{j(m+k-n)\omega_0t} \, dt \\ = \sum_m \sum_k F_m G_k \langle e^{j(m+k)\omega_0t}, e^{jn\omega_0t} \rangle \\ = \sum_{k=-\infty}^{\infty} G_k F_{n-k} \end{array}$$

Conjugation
$$f(t)^* = F_{-n}^*$$

Parseval (power sig):
$$P_f = \frac{1}{T_0} \int_{T_0} f(t) f(t)^* dt$$

 $= \frac{1}{T_0} \int_{T_0} (\sum_n F_n e^{jn\omega_0 t}) (\sum_m F_m e^{jm\omega_0 t})^* dt$
 $= \sum_n \sum_m F_n F_m^* \frac{1}{T_0} \int_{T_0} e^{j(n-m)\omega_0 t} dt$
 $= \sum_m |F_n|^2 \cdot 1$

$$\begin{array}{l} f \text{ real} \rightarrow |F| \text{ even, } \angle F \text{ odd} \\ f \text{ real, even} \rightarrow F \text{ real, even; } F_{-n} = F_n = F_n^* \\ f \text{ real, odd} \rightarrow F \text{ imaginary, odd; } -F_{-n} = F_n = -F_n^* \end{array}$$

$$f_e(t) \to \Re\{F_n\}$$

 $f_o(t) \to j \Im\{F_n\}$

Common FS

$$(A = 1, T = 2\pi, \omega = 1)$$
Square $\frac{4}{\pi}(\cos t - \frac{1}{3}\cos 3t + \frac{1}{5}\cos 5t - ...)$
 $\frac{4}{\pi}(\sin t + \frac{1}{3}\sin 3t + \frac{1}{5}\sin 5t + ...)$
Triangle $\frac{8}{\pi^2}(\sin t - \frac{1}{9}\sin 3t + \frac{1}{25}\sin 5t - ...)$
 $\frac{8}{\pi^2}(\cos t + \frac{1}{9}\cos 3t + \frac{1}{25}\cos 5t + ...)$
Sawtooth $\frac{2}{\pi}(\sin t - \frac{1}{2}\sin 2t + \frac{1}{3}\sin 3t - ...)$
 $\frac{2}{\pi}(-\sin t - \frac{1}{2}\sin 2t - \frac{1}{3}\sin 3t - ...)$
 $\delta \operatorname{train} \delta_{T_0}(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_0)$
 $\frac{1}{T_0} \sum_{n=-\infty}^{\infty} e^{jn\omega_0 t}$

\mathbf{FT}

Let
$$F(\omega) \equiv \int f(t)e^{-j\omega t} dt$$

 $F_n = \frac{1}{T_0} \int_{T_0} f(t)e^{-jn\omega_0 t} dt$
Limit as $\omega_0 = \Delta\omega \to 0$,
 $F_n = \frac{\Delta\omega}{2\pi} \int_{-\infty}^{\infty} f(t)e^{-jn\Delta\omega t} dt \equiv \frac{\Delta\omega}{2\pi} F(n\Delta\omega)$

$$f_{T_0}(t) = \sum_{n} F_n e^{jn\omega_0 t} = \sum_{n} \frac{\Delta\omega}{2\pi} F(n\Delta\omega) e^{jn\Delta\omega t}$$

$$f(t) = \lim_{T_0 \to \infty} f_{T_0}(t) = \frac{1}{2\pi} \int_{0}^{\infty} F(\omega) e^{jt\omega} d\omega$$

$$F(\omega) = |F(\omega)| e^{j\omega} f(\omega)$$

Real signals: amp and phase symmetry

Existence: weak: energy signal $(|e^{-j\omega t}| = 1)$ Strong: fin num max/min/discont

FT Table

$$\delta(t) \to 1$$

$$1 \to 2\pi\delta(\omega)$$

$$e^{j\omega_0 t} \to 2\pi\delta(\omega - \omega_0)$$

$$\cos \omega_0 t \to \pi[\delta(\omega + \omega_0) + \delta(\omega - \omega_0)]$$

$$\sin \omega_0 t \to \int \pi[\delta(\omega + \omega_0) - \delta(\omega - \omega_0)]$$

$$\sum \delta(t - nT_0) \to \omega_0 \sum \delta(\omega - n\omega_0)$$

$$e^{-at} u(t) \to \frac{1}{a+j\omega}$$

$$e^{-a|t|} \to \frac{2a}{a^2 + \omega^2}$$

$$u(t) = \lim_{a \to 0} e^{-at} u(t) \to \lim_{a \to 1} \frac{1}{a+j\omega}$$

$$= \lim_{a \to 0} \left(\frac{a}{a^2 + \omega^2} - j\frac{\omega}{a^2 + \omega^2}\right) = \pi\delta(\omega) + \frac{1}{j\omega}$$

$$\operatorname{sgn}(t) \to \frac{2}{j\omega}$$

$$t^n e^{-at} u(t) \to \frac{n!}{(a+i\omega)^{n+1}}$$

$$\cos \omega_0 t \, u(t) \to \frac{\pi}{2} (\delta(\omega - \omega_0) + \delta(\omega + \omega_0)) + \frac{j\omega}{\omega_0^2 - \omega^2}$$

$$\sin \omega_0 t \, u(t) \to \frac{\pi}{2j} (\delta(\omega - \omega_0) - \delta(\omega + \omega_0)) + \frac{\omega_0}{\omega_0^2 - \omega^2}$$

$$e^{-at} \cos \omega_0 t \, u(t) \to \frac{a+j\omega}{(a+j\omega)^2 + \omega_0^2} \qquad a > 0$$

$$e^{-at} \sin \omega_0 t \, u(t) \to \frac{\omega_0}{(a+j\omega)^2 + \omega_0^2} \qquad a > 0$$

$$\operatorname{rect}(\frac{t}{\tau}) \to \tau \operatorname{sinc}(\frac{\tau}{2}\omega)$$

$$\frac{W}{\pi} \operatorname{sinc}(Wt) \to \operatorname{rect}(\frac{\omega}{2W})$$

$$\Delta(\frac{t}{\tau}) \to \frac{\tau}{2} \operatorname{sinc}^2(\frac{\tau}{4}\omega)$$

$$\frac{W}{2\pi} \operatorname{sinc}^2(\frac{W}{2}t) \to \Delta(\frac{\omega}{2W})$$

$$[\omega^2 r(\frac{\omega}{2\omega_0})] \leftarrow \frac{1}{2\pi} \frac{e^{j\omega t}}{(jt)^3} (-\omega^2 t^2 - 2j\omega t + 2)^{\omega_0}_{-\omega_0}$$

$$= \frac{(\omega_0^2 t^2 - 2) \sin \omega_0 t + 2\omega_0 t \cos \omega_0 t}{\pi t^3}$$

$$[\frac{|\omega|}{\omega t} \operatorname{rect}(\frac{\omega}{2\omega_0})] \leftarrow \frac{\cos \omega_0 t + \omega_0 t \sin \omega_0 t - 1}{\omega t}$$

Frequency domain prop

Linearity

Time shift
$$f(t-t_0) \to F(\omega)e^{-jt_0\omega}$$

|F| unchanged; $\angle F = -t_0\omega$, lin shift

Freq shift
$$f(t)e^{j\omega_0t} \to F(\omega-\omega_0)$$

Duality
$$f(t) \to F(\omega)$$
, $F(t) \to 2\pi f(-\omega)$
pf. $f(t) = \frac{1}{2\pi} \int F(\lambda) e^{jt\lambda} d\lambda$
 $2\pi f(-t) = \int F(\lambda) e^{-tj\lambda} d\lambda = \mathcal{F}[F(\lambda)]$

Reversal
$$f(-t) \to F(-\omega)$$

Scaling $f(at) \to \frac{1}{|a|} F(\frac{\omega}{a})$

$$\omega_0 = \frac{2\pi}{T_0} \quad \text{Diff } f^{(n)}(t) \to (j\omega)^n F(\omega) \text{ (diff } e^{j\omega t})$$

$$\begin{array}{ll} T_0 & \text{Int } \int_{-\infty}^t f(\tau) d\tau \to \frac{1}{j\omega} F(\omega) + \pi F(0) \delta(\omega) \\ a > 0 & \int = f(t) * u(t) \to F(\omega) U(\omega) \\ a > 0 & U(\omega) = \lim \frac{1}{a+j\omega} = \lim (\frac{a}{a^2+\omega^2} - j\frac{\omega}{a^2+\omega^2}) \\ & = \pi \delta(\omega) + \frac{1}{j\omega} \left(\int \frac{a}{\omega^2+a^2} d\omega = \tan^{-1} = \pi \right) \end{array}$$

Conjugation
$$f(t)^* \to F(-\omega)^*$$

a > 0 Symmetry Re
$$\rightarrow$$
 mag even, phase odd $(F(-\omega) = F(\omega)^*)$ real, even \rightarrow real, even; real, odd \rightarrow imaginary, odd

f even:
$$F(\omega) = 2 \int_0^\infty f(t) \cos(\omega t) dt$$

f odd: $F(\omega) = -2j \int_0^\infty f(t) \sin(\omega t) dt$

Parseval

$$E_f = \int |f(t)|^2 dt = \frac{1}{2\pi} \int |F(\omega)|^2 d\omega \text{ for energy sig}$$

$$= \int f f^* dt = \int f(t) \mathcal{F}^{-1} [F(-\omega)^*] dt$$

$$= \int f(t) \frac{1}{2\pi} \int F(-\omega)^* e^{j\omega t} d\omega dt$$

$$= \frac{1}{2\pi} \int f(t) \int F(\lambda)^* e^{-jt\lambda} d\lambda dt$$

$$= \frac{1}{2\pi} \int F(\lambda)^* \int f(t) e^{-j\lambda t} dt d\lambda$$

$$\Delta E_f = \frac{2}{2\pi} \int_{\omega_1}^{\omega_2} |F(\omega)|^2 d\omega$$

Autocorrelation $\psi_f(t) \equiv \int f(\tau) f(\tau - t) d\tau \to |F(\omega)|^2$

Modulation

$$m(t)\cos(\omega_c t) \to \frac{1}{2}[M(\omega + \omega_c) + M(\omega - \omega_c)]$$

$$e(t) = m(t)\cos^2 \omega_c t$$

$$E(\omega) = \frac{1}{2}M + \frac{1}{4}[M(\omega + 2\omega_c) + M(\omega - 2\omega_c)] \to \text{LPF}$$

SSB 1/4 gain

$$\phi_{AM}(t) = [A + f(t)] \cos(\omega_0 t)$$

$$A \ge f(t) \text{ for all } t$$
modulation index $\mu = f$

modulation index $\mu \equiv f_{\text{max}}/A$ $\mu = \infty$, suppressed carrier; $\mu = 1$, marginal

LTIC sys trans, (marginally) stable

Let
$$e^{j\omega t} \Rightarrow H(\omega)e^{j\omega t}$$

$$\begin{split} \lim \sum \frac{F(n\Delta\omega)\Delta\omega}{2\pi} e^{jn\Delta\omega t} &\Rightarrow \lim \sum \frac{F(n\Delta\omega)H(n\Delta\omega)\Delta\omega}{2\pi} e^{jn\Delta\omega t} \\ y(t) &= \frac{1}{2\pi} \int^{2\pi} F(\omega)H(\omega) e^{j\omega t} d\omega \\ Y(\omega) &= F(\omega)H(\omega) \end{split}$$

Distortionless $y(t) = kf(t - t_d)$, so $H(\omega) = ke^{-j\omega t_d}$

Payley-Wiener H realizable, h causal iff $\int \frac{|\ln|H(\omega)|}{1+\omega^2} d\omega < \infty \text{ (consecutive 0s)}$ Truncate $\hat{h}(t) = h(t)u(t)$

Periodic FT

$$f(t) = \sum_{n} F_{\mathbf{n}} e^{j\mathbf{n}\omega_{0}t}$$

$$\mathcal{F}[f(t)] = 2\pi \sum_{n} F_{n}\delta(\omega - n\omega_{0})$$

$$Y = F(\omega)H(\omega) = 2\pi \sum_{n} F_n H(n\omega_0)\delta(\omega - n\omega_0)$$

 $Y_n \equiv F_n H(n\omega_0)$. Periodic with same ω_0

Eigen:
$$f(t) = e^{j\omega_0 t}$$
, $Y_1 = H(1\omega_0)$, $y(t) = H(1\omega_0)e^{j\omega_0 t}$

$$f(t) = \cos(\omega_0 t + \theta), \text{ assume } h(t) \text{ real}$$

$$y = \frac{1}{2} (e^{j(\theta + \omega_0 t)} H(\omega_0) + e^{-j(\theta + \omega_0 t)} H(-\omega_0))$$

$$= |H(\omega_0)| \cos(\omega_0 t + \theta + \angle H(\omega_0))$$

$$\cos 2t * e^{-3t} u(t) \equiv f * h$$
$$= |H(2)| \cos(2t + \angle H(2))$$

Sampling

$$\overline{f}(t) \equiv f(t)\delta_{T_s}(t) = \sum_s f(nT_s)\delta(t - nT_s)
\overline{F}(\omega) = \frac{1}{2\pi}F(\omega) * \left[\frac{2\pi}{T_s}\sum_s \delta(\omega - n\omega_s)\right] = \frac{1}{T_s}\sum_s F(\omega - n\omega_s)
\omega_s > 4\pi B, F_s > F_N \equiv 2B$$

Intrapolation when $F_s = 2B$

F(
$$\omega$$
) = $\overline{F}(\omega)T_s \operatorname{rect}(\frac{\omega}{4\pi B})$
If $F_s = 2B$, $f(t) = \overline{f}(t) * \frac{2B}{F_s} \operatorname{sinc}(2\pi Bt)$
= $\sum_n f(nT_s)\delta(t - nT_s) * \operatorname{sinc}(2\pi Bt)$
= $\sum_n f(nT_s) \operatorname{sinc}(2\pi Bt - n\pi)$

ana FS, with basis sinc, weighted sample sum

If $F_s > 2B$, $f(t) = \sum f(nT_s)w(t - nT_s)$ not sinc weight for some relaxed LP filter w(t)

Anti-alias before sampling: LPF of $F_s/2$

Practical sampling

$$p_T(t) = \frac{\tau}{T_s} + \sum_{s} \left(\frac{2}{\pi n} \sin(n\pi \frac{\tau}{T_s})\right) \cos(n\omega_s t)$$

$$P_T(\omega) = \frac{2\pi}{T_s} \frac{\tau}{\delta(\omega)} + \sum_{s} \frac{\pi^2 \sin(...)}{\pi n} [\delta(\omega + n\omega_s) + \delta(\omega - n\omega_s)]$$

ТЛ

$$\mathcal{L}[-e^{-at}u(-t)] = \mathcal{L}[e^{-at}u(t)]$$
, except ROC If sig are causal, \mathcal{L} is 1-to-1

Unilateral:
$$\mathcal{L}[f] = \int_{0^{-}}^{\infty} f(t)e^{-st}dt$$

= $\int [f(t)e^{-\sigma t}]e^{-j\omega t}dt$

 σ_0 : smallest σ to make integral converge

Uni LT Table

Watch ROC!!

$$\delta(t) \to 1$$
 $\forall s$ $u(t) \to \frac{1}{s}$ $\Re(s) > 0$ $t^n \underbrace{u(t)}_{cn+1} \to \frac{n!}{c^{n+1}}$

$$e^{\lambda t} \frac{u(t)}{u(t)} \to \frac{1}{s-\lambda} \qquad \Re(s) > \Re(\lambda)$$

$$t^n e^{\lambda t} u(t) \to \frac{n!}{(s-\lambda)^{n+1}}$$

$$\frac{1}{(n-1)!} t^{n-1} e^{\lambda t} u(t) \to \frac{1}{(s-\lambda)^n}$$

$$e^{-at}\cos(bt) u(t) \to \frac{s+a}{(s+a)^2+b^2}$$
$$e^{-at}\sin(bt) u(t) \to \frac{b}{(s+a)^2+b^2}$$

$$re^{-at}\cos(bt + \theta) u(t) \to \frac{(r\cos\theta)s + (ar\cos\theta - br\sin\theta)}{s^2 + 2as + (a^2 + b^2)}$$

$$2re^{-at}\cos(bt + \theta) u(t) \to \frac{re^{j\theta}}{s - (-a + jb)} + \frac{re^{-j\theta}}{s - (-a - jb)}$$

$$e^{-at} \left[A\cos(bt) + \frac{B - Aa}{b}\sin(bt)\right] u(t)$$

$$= \frac{\sqrt{A^2c + B^2 - 2ABa}}{b}e^{-at}\cos\left(bt + \tan^{-1}\frac{Aa - B}{Ab}\right) u(t)$$

$$\to \frac{As + B}{s^2 + 2as + c}$$

$$b \equiv \sqrt{c - a^2}$$

LT Prop

Linearity $ROC \cap Time \ delay \ f(t-t_0) \ u(t-t_0) \to F(s)e^{-st_0}$ ROC same $t_0 > 0$; pf: $\int_{-t_0}^{\infty}$ Freq shift $f(t)e^{s_0t} \to F(s-s_0)$ $\Re(s) > \sigma_0 + \Re(s_0)$ Scaling (a > 0), $f(at) \to \frac{1}{|a|}F(\frac{s}{a})$ $\Re(s) > a\sigma_0$ Convolution $f_1 * f_2 \to F_1F_2$ ROC $\cap f_1f_2 \to \frac{1}{2\pi j}F_1 * F_2$

Time diff
$$\dot{f}(t) \to sF(s) - f(0^-)$$
 $\Re(s) > \max(\sigma_0, 0)$ $\ddot{f}(t) \to s^2 F(s) - sf(0^-) - \dot{f}(0^-)$ pf (parts): $\int_{0^-}^{\infty} \dot{f}(t) e^{-st} dt = [f(t)e^{-st}]_{0^-}^{\infty} + sF(s)$ Time int $\int_{0^-}^{\infty} f(\tau) d\tau \to \frac{1}{s}F(s)$ pf: diff

Freq diff
$$-tf(t) \to \frac{dF(s)}{ds}$$

Freq int $\frac{1}{t}f(t) \to \int_{s}^{\infty} F(z)dz$

IVT
$$f(0^{+}) = \lim_{s \to \infty} sF(s)$$
 if exists pf: $\mathcal{L}[\dot{f}(t)] = \int_{0^{-}}^{\infty} \dot{f}(t)e^{-st}dt$
$$sF(s) - f(0^{-}) = \int_{0^{-}}^{0^{+}} \dot{f}(t)e^{-st}dt + \int_{0^{+}}^{\infty} \dot{f}(t)e^{-st}dt$$

$$sF(s) - f(0^{-}) = f(0^{+}) - f(0^{-})$$
FVT $f(\infty) = \lim_{s \to 0} sF(s)$ if exists pf: $\mathcal{L}[\dot{f}(t)] = \int_{0^{-}}^{\infty} \dot{f}(t)e^{-st}dt$
$$\lim_{s \to 0} sF(s) - f(0^{-}) = \lim_{s \to 0} \int_{0^{-}}^{\infty} \dot{f}(t)e^{-st}dt$$

$$sF(s) - f(0^{-}) = f(\infty) - f(0^{-})$$

Rational \mathcal{L}^{-1}

First rationalize

$$F(s) = \frac{b_m s^m + \dots + b_1 s + b_0}{1 s^n + \dots + a_1 s + a_0} \equiv \frac{P(s)}{Q(s)}$$

$$\forall s = \frac{a_0}{(s - \lambda)^r} + \dots + \frac{a_{r-1}}{s - \lambda} + \frac{k_1}{s - \lambda_1} + \dots$$

$$\Re(s) > 0 \qquad k = (s - \lambda_i) F(s)|_{s = \lambda_i}$$

$$a_0 = (s - \lambda)^r F(s)|_{s = \lambda}$$

$$a_m = \frac{1}{m!} \frac{d^m}{ds^m} [(s - \lambda)^r F(s)]|_{s = \lambda}$$

$$\mathcal{L}^{-1} \left[\frac{1}{(s - \lambda)^n} \right] = \frac{1}{(n-1)!} t^{n-1} e^{\lambda t} u(t)$$

Multiply both by s and let $s = \infty$, only $\frac{1}{s}$ term left

Sys Anal

$$\begin{array}{l} Q(D)y(t) = P(D)f(t) \\ H(s) = \frac{Y_{zs}(s)}{F(s)} = \frac{P(s)}{Q(s)} \end{array}$$

Asym. (internal, init): $y_{zi}(t) \to 0$ as $t \to \infty$ marginal: $y_{zi}(t)$ remains bounded (unique λ s on Im axis)

BIBO (external, input) iff $\int_{-\infty}^{\infty} |h(t)| dt$ exists $\Rightarrow |f(t)| < K$ $y_{zs}(t) = h * f = \int h(\tau) f(t-\tau) d\tau$ $\leq \int |h(\tau)| |f(t-\tau)| d\tau < K \int |h(\tau)| d\tau$ $\Leftarrow \text{Let } f(t) = \text{sgn}(h(-t))$ $y(0) = \int h(\tau)f(0-\tau)d\tau$ $=\int h(\tau)\operatorname{sgn}(h(\tau))d\tau$

Asy stable \Rightarrow BIBO stable (all exp) Marginal \Rightarrow BIBO unstable $(\int |\sin(t)| dt = \infty)$

Sys Realization

Feedback:
$$Y = GE = G(F - HGY)$$

 $H_{\text{eff}} = \frac{Y}{F} = \frac{G}{1 + HG}$

 $=\int |h(\tau)|d\tau \equiv \infty$

Canonical

$$F(s) = \frac{1}{3}s^{3}X + a_{2}s^{2}X + a_{1}sX + a_{0}X$$

$$s^{3}X = F - a_{2}s^{2}X - a_{1}sX - a_{0}X$$

$$b_{3}s^{3}X + b_{2}s^{2}X + b_{1}sX + b_{0}X = Y(s)$$

$$H = \frac{b_1 s + b_0}{1 s^3 + a_2 s^2 + a_1 s + a_0}$$

Second form:

$$\begin{array}{l} s^2Y = s^2b_2F + s(-a_1Y + b_1F) + (-a_oY + b_0F) \\ Y = b_2F + \frac{1}{s}(-a_1Y + b_1F) + \frac{1}{s^2}(-a_oY + b_0F) \end{array}$$

Transpose A, swap and trans b, c

Cascade (made $P_3(s)$ constant here)

$$H = \frac{P_1(s)}{s+\lambda_1} \cdot \frac{P_2(s)}{s+\lambda_2} \cdot \frac{k_3}{s+\lambda_3}$$

Parallel

 $y = \begin{bmatrix} 0 & 0 & k_3 \end{bmatrix} \cdot \mathbf{x}$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -\lambda_1 & 0 & 0 \\ 0 & -\lambda_2 & 0 \\ 0 & 0 & -\lambda_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} f$$

$$y = \begin{bmatrix} k_1 & k_2 & k_3 \end{bmatrix} \cdot \mathbf{x}$$

(same pole)
$$H = \frac{a_0}{(s-\lambda)^2} + \frac{a_1}{s-\lambda} + \frac{k_1}{s-\alpha_1}$$

State Equations

Def: state of a sys at any time t_0 is the smallest set of nums $\{x_i(t_0)\}\$ that is sufficient to determine sys behavior $\forall t > t_0$ when input f(t) is known for $t > t_0$

Always
$$\int$$
 output

If $t_0 = 0$, initial condition

$$\mathbf{\dot{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}f$$

$$y = \mathbf{c} \cdot \mathbf{x}$$

$$\mathbf{\dot{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{f}$$

$$y = Cx + Df$$

$$s\mathbf{X}(s) - \mathbf{x}(0) = \mathbf{A}\mathbf{X}(s) + \mathbf{B}\mathbf{F}(s)$$

$$(s\mathbf{I} - \mathbf{A})\mathbf{X}(s) = \mathbf{x}(0) + \mathbf{B}\mathbf{F}(s)$$

$$\mathbf{X}(s) = (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{x}(0) + (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}\mathbf{F}(s)$$

$$\mathbf{x}(t) = \mathbf{x}_{zi}(t) + \mathbf{x}_{zs}(t)$$

LTI Freq Response

$$H(\omega) = H(s)|_{s=j\omega} = \frac{P(s)}{Q(s)}$$

Ideal delay:
$$|H| = 1, \angle H(\omega) = -\omega T$$

Ideal diff:
$$|H(\omega)| = |\omega|, \angle H(\omega) = \pm \frac{\pi}{2}$$

Ideal int: $|H(\omega)| = \frac{1}{|\omega|}, \angle H(\omega) = \mp \frac{\pi}{2}$

$$f(t) = C = Ce^{0t}$$
$$y(t) = H(0)C$$

$$f(t) = e^{st}$$
 everlasting
$$y(t) = h(t) * e^{st} = e^{st} \int h(\tau)e^{-s\tau}d\tau \equiv H(s)e^{st}$$

$$f(t) = e^{j\omega_0 t} \frac{u(t)}{u(t)}$$

$$Y_{zs}(s) = F(s)H(s) = \frac{1}{s-j\omega_0} \frac{P(s)}{(s-\lambda_1)...(s-\lambda_n)} = \frac{H(s)|_{s=j\omega_0}}{s-j\omega_0} + \frac{k_1}{s-\lambda_1} + ... y_{zs}(t) = H(\omega_0)e^{j\omega_0 t} \frac{u(t)}{u(t)} + \sum_i k_i e^{\lambda_i t} \frac{u(t)}{u(t)}$$

$$y_{ss}(t)$$
 scaled input

 $y_{tr}(t)$ decays for stable sys

$$f(t) = \cos(\omega_0 t + \theta) \frac{u(t)}{u(t)}$$

$$y_{ss}(t) = |H(\omega_0)| \cos(\omega_0 t + \theta + \angle H(\omega_0)) u(t)$$

Pole Zero

$$H(j\omega) = b_n \frac{(j\omega - z_1)...(j\omega - z_n)}{(j\omega - p_1)...(j\omega - p_n)}$$

$$\equiv b_n \frac{(r_1 e^{j\phi_1})...(r_n e^{j\phi_n})}{(d_1 e^{j\theta_1})...(d_n e^{j\theta_n})}$$

$$|H(\omega)| = b_n \frac{r_1...r_n}{d_1...d_n}$$

$$\angle H(\omega) = (\phi_1 + ... + \phi_n) - (\theta_1 + ... + \theta_n)$$

Vector from p/z to $j\omega$

Pole enhances gain; Zero suppresses