西安交通大学考试题

成绩

课 程 计算方法 A

系 别 _____ 考试日期 2007年1月24日

专业班号 ______

题号	_	<u> </u>	三	四	五.	六	七	八	九	十
得分										

- 一. (24分)填空
- (1) (4分) 设 $f(x) = x^4 + 3x + 1$,

则
$$f [2^0, 2^1, ..., 2^4] = _____, f [2^0, 2^1, ..., 2^4, 2^5] = _____$$

(2)(4分)设 $x_i(i=0,1,...,4)$ 为互异节点, $l_i(x)$ 为相应的四次插值基函数,则

$$\sum_{i=0}^{4} x_i^4 l_i(0) = \underline{\qquad}, \qquad \sum_{i=0}^{4} (x_i^4 + 2) l_i(x) = \underline{\qquad}$$

- (3) (4分) 满足条件 p(0)=1, p(0)=p'(1)=0, p(2)=2 的插值多项式 p(x)=________,误差项 R(x)=_______
- (4) (6分) 设 $A = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}$,则

 $||A||_1 = \underline{\hspace{1cm}}, ||A||_2 = \underline{\hspace{1cm}}, ||A||_{\infty} = \underline{\hspace{1cm}}, Cond_1(A) = \underline{\hspace{1cm}}$

- (5)(6分)欲用迭代法求解线性方程组Ax=b,设A是对称正定矩阵。
 - (a) 雅可比迭代法收敛的一个充分条件是
 - (b) 高斯-赛德尔方法是否收敛? _____
 - (c) 为使超松弛迭代法收敛, 松弛因子ω的取值范围是______

二. (10分) 用矩阵 A = LU 分解求解方程 Ax = b

其中
$$A = \begin{pmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{pmatrix}, \qquad b = \begin{pmatrix} 2 \\ 3 \\ 5 \\ 0 \end{pmatrix}$$

解:

$$A = LU = \left(\begin{array}{c} \\ \\ \end{array} \right), \qquad y = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

- 三. (10 分) 求 $y = e^x$ 在区间[-1,1]上的最优平方逼近一次多项式。
- 解:(1)(5分)其正规方程组为

(2) (5 分) $y = e^x \approx \underline{\hspace{1cm}}$

四. (12分)

(1)(4 分)请构造在区间[-1,1]上关于权函数 $\omega(x)$ ≡1的最高次项系数为 1 的正交多项式:

$$g_0(x) =$$

$$g_1(x) = \underline{\hspace{1cm}}$$

$$g_2(x) = \underline{\hspace{1cm}}$$

(2)(4分)确定求积公式 $\int_{-1}^{1} f(x)dx \approx A_0 f(x_0) + A_1 f(x_1)$ 中的系数 A_0, A_1 与节点 x_0, x_1 ,使其具有最高代数精度。

(3)(4分)用广义佩亚诺定理确定其误差项。

五. (8 分) 已知方程 $e^{2x} + x - 4 = 0$ 在 0.6 附近有一根,

- (1) 给出一个收敛的简单迭代法的迭代格式 $x_{k+1} =$ _______
- (2) 收敛的理由是:

六. (12 分) 用反幂法求矩阵 $A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 2 \\ 0 & 2 & 1.5 \end{pmatrix}$ 在-2 附近的特征值与其对应的特征

向量,用半次迭代法取初始向量 $z_0 = Le$, $e = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^T$,取四位小数运算,迭代一次半。

解:

七. (8分) 用待定系数法确定常微分方程初值问题求解公式

$$y_{i+1} = y_i + h(\beta_0 f_i + \beta_1 f_{i-1})$$

中的系数,并用广义佩亚诺定理导出其局部截断误差估计式。 解:

八. (8分)给定热传导方程第一类初、边值问题如下:

$$\frac{\partial u}{\partial t} - a^2 \frac{\partial^2 u}{\partial x^2} = f(x, t), \quad 0 < x < l, \quad 0 < t \le T$$

$$u(x,0) = \varphi(x), \quad 0 \le x \le l$$

$$u(0,t) = \mu_1(t), \quad u(l,t) = \mu_2(t), \quad 0 \le t \le T$$

其中,f(x,t), $\varphi(x)$, $\mu_1(t)$, $\mu_2(t)$ 都是已知连续函数,且满足

$$\varphi(0) = \mu_1(0), \varphi(l) = \mu_2(0)$$
.

解:

(1) 最简显示差分格式:

稳定性条件:

截断误差:

(2) 最简隐式差分格式:

稳定性条件:

截断误差:

九.	(8分)	设 $A \in R$	2″** 是实	对称正	定矩阵,	$ x _A =$	$\sqrt{x^T A x}$,	$\forall x \in R^n$. 0	
	求证 x	₄ 是向量	$\exists x$ 的一	种范数。	0					
证明	J:									