Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Estatística

Atividade 3 Estatística Multivariada 1

Douglas de Paula Nestlehner - 752728

Capítulo 1

Problema Apresentado

Os escores obtidos por n=87 estudantes no exame CLEP (College Level Examination Program), variável X1, e no exame CQT (College Qualification Test), variáveis X2 (verbal) e X3 (ciência), são apresentados na tabela abaixo.

X_1 X_2 X_3 468 41 26 428 39 26 514 53 21 547 67 33 \cdots \cdots 527 49 30 474 41 16 441 47 26			
428 39 26 514 53 21 547 67 33 527 49 30 474 41 16	X_1	X_2	X_3
514 53 21 547 67 33 527 49 30 474 41 16	468	41	26
547 67 33 527 49 30 474 41 16	428	39	26
527 49 30 474 41 16	514	53	21
474 41 16	547	67	33
474 41 16			• • •
111 11 10	527	49	30
441 47 26	474	41	16
	441	47	26
607 67 32	607	67	32

Tabela 1.1: Base de dados

- I) Determine os dois extremos outliers. Comente
- II) Teste normalidade univariada, todas as bivariadas e trivariada. Use transformação, se necessário.
- III) Teste, supondo normalidade e considerando o Teorema Central do Limite, que o vetor de médias μ é (500, 50, 25). Compare os dois resultados. Quais os possíveis valores para μ_0 em que você aceitaria Ho?

A seguir vou apresentar as respostas dos itens I, II, III, e no final os códigos utilizados para a resolução.

1.1 I) Outliers

Uma das maneiras mais comuns de detectar outliers em dados univariado é usando o gráfico de boxplot, porém os dados em que estamos analisando são multivariados e o mais interessante é analisar os outliers de forma conjunta.

Para isso utilizei a distância de mahalanobis (distancia de média) para poder encontrar os valores que mais se diferem (de forma conjunta) da média geral. Obtendo então os seguintes resultados:

X_1	X_2	X_3	Mahalanobis
468	41	26	2.1904869
428	39	26	3.6528798
514	53	21	0.9369832
547	67	33	5.0471274
			• • •
527	49	30	2.1551612
474	41	16	4.9353476
441	47	26	2.4507607
607	67	32	2.3356446

Tabela 1.2: Distância de mahalanobis

Em seguida, ordenei as distâncias obtidas de forma decrescente, tendo então um "rank" das observações que mais se diferem da média, ou seja, os outliers.

X_1	X_2	X_3	Mahalanobis
501	25	26	11.7536848
733	73	33	7.4694158
507	32	27	7.2244111
468	57	14	7.1556187
647	58	23	6.8043086
348	28	18	6.5644915
408	28	17	6.4976688
620	71	36	5.7896308

Tabela 1.3: Distancia de mahalanobis

Com isso, é possível concluir que a observação com os resultados "501 25 26" é um outlier, pois tem a distância com valor bem maior do que as demais.

Não tive certeza em afirmar apenas observando para o valor da distância do segundo caso "733 73 33" com distancia igual a 7.4694 se era ou não um outlier. com isso plotei o gráfico representado na Figura 1.2, para poder observar o comportamento das distancia obtidas:

Figura 1.1: Distancia mahalanobis x Observações

A linha pontilhada representa um possível critério de diagnóstico de outlier, nesse caso optei por definir esse critério como sendo a estatística teste do Qui-quadrado(χ^2) considerando um $\alpha = 0.01$ e com 3 graus de liberdade que é o numero de covariaveis da base de dados.

Com esse critério, nota-se que apenas a observação "501 25 26" é um outlier multivariado.

1.1.1 Distancia em relação a origem

Outra maneira de detectar possiveis outlier é utilizar a distancia de mahalanobis com relação a o origem. Fazendo isso obtive o seguinte resultado:

X_1	X_2	X_3	Mahalanobis(média)	Mahalanobis(origem)
501	25	26	11.7536848	90.5432
733	73	33	7.4694158	112.1352
507	32	27	7.2244111	67.7574
468	57	14	7.1556187	56.2466
647	58	23	6.8043086	86.4551
348	28	18	6.5644915	34.9938
408	28	17	6.4976688	42.3328
620	71	36	5.7896308	90.2845
•••		• • •	• • •	

Tabela 1.4: Distancias

Em que a observação (733, 73, 33) se destaca das demais em relação ao valor da distancia, o que indica um possível outlier.

Também plotei o grafico do comportamento dessas distancias em relação a origem.

Figura 1.2: Distancia mahalanobis x Observações

Analisando as duas distâncias e os resultados obtidos concluo que os dois extremos outliers são: (501, 25, 26) e (733, 73, 33).

Depois de detectar os outiliers devemos decidir o que fazer com ele, nesse caso, decidi seguir o estudo considerando os outliers encontrados, mas se eu encontrar algum problema mais a frente (como não normalidade), poderei retira-los, substitui-los, etc.

1.2 II) - Normalidade

Primeiramente verifiquei a normalidade univariada para cada uma das covaraiveis, plotando o gráfico qqnorm, e realizando alguns testes:

1.2.1 Covariavel X1:

Gráfico qqnorm:

Normal Q-Q Plot (X1)

Figura 1.3: gráfico normal QQ

Aparentemente os pontos estão proximos da reta, o que indica normalidade, mas para poder confirmar a normalidade, realizei os testes de Shapiro-Wilk, Lilliefors e Anderson-Darling:

Testes:

_	Shapiro-Wilk	Lilliefors	Anderson–Darling
p-valor	0.6861	0.0481	0.3775

Tabela 1.5: Teste de normalidade para a covariavel X1

Definindo o nível de significância como sendo $\alpha = 0.01$, em todos os testes não rejeitamos H0, ou seja, a normalidade é aceita para a covariavel X1.

1.2.2 Covariavel X2:

Gráfico qqnorm:

Normal Q-Q Plot (X2)

Figura 1.4: gráfico normal QQ

Alguns pontos estão distantes da reta porem outros estão bem "comportados", a conclusão apenas olhando o gráfico se torna um pouco difícil, a realização dos testes é o mais indicado:

Testes:

_	Shapiro-Wilk	Lilliefors	Anderson–Darling
p-valor	0.0387	0.1744	0.0679

Tabela 1.6: Teste de normalidade para a covariavel X2

Os p-valores estão bem próximos ao valor de decisão = 0.01, porém em todos os casos rejeitamos H0, concluindo estão que a normalidade é aceita para a covariavel X2.

1.2.3 Covariavel X3:

Gráfico qqnorm:

Normal Q-Q Plot (X3)

Figura 1.5: gráfico normal QQ

Os pontos estão próximos da reta e aparentemente a normalidade vai ser aceita, o que será confirmada pelos testes:

Testes:

_	Shapiro-Wilk	Lilliefors	Anderson–Darling
p-valor	0.5358	0.2168	0.3775

Tabela 1.7: Teste de normalidade para a covariavel X3

Em todos os testes rejeitamos H0, ou seja, a normalidade é aceita para a covariavel X3.

1.2.4 Normalidade Bivariada

Em seguida, assim como foi pedido no exercício, testei a normalidade de todos os possíveis casos bivariados.

X1-X2

Plotei o gráfico Gama Plot - Quantis QuiQuadrado para a normalidade Multivariada, considerando apenas as covariaveis X1 e X2:

Figura 1.6: Grafico Gama Plot

Aparentemente a normalidade sera aceita, pois os pontos parecem estar proximos da reta. Para confirmar a normalidade multivariada realizei os teste de Royston, teste de Henze-Zinklers e o teste de Mardia.

_	Royston	Henze-Zinklers	Mardia
p-valor	0.1101	0.4465	0.1235 e 0.6251

Tabela 1.8: Teste de normalidade multivariada (X1 e X2)

Em todos os testes rejeita-se H0 ($\alpha=0.01$), ou seja em todos os testes a normalidade bivariada (X1 e X2) foi aceita.

X1-X3

Grafico Gama Plot para as covariaveis X1 e X3:

Chi-Square Q-Q Plot Or - Square Graphic Square Q-Q Plot Or - Square Graphic Graphi

Figura 1.7: Grafico Gama Plot

Aparentemente a normalidade será aceita, pois os pontos parecem estar proximos da reta. Para confirmar a normalidade multivariada realizei os teste de Royston, teste de Henze-Zinklers e o teste de Mardia.

_	Royston	Henze-Zinklers	Mardia
p-valor	0.7614	0.6825	$0.8945 \ \mathrm{e} \ 0.0895$

Tabela 1.9: Teste de normalidade multivariada (X1 e X3)

Em todos os testes rejeita-se H0 ($\alpha=0.01$), ou seja em todos os testes a normalidade bivariada (X1 e X3) foi aceita.

X2-X3

Grafico Gama Plot para as covariaveis X2 e X3:

Chi-Square Q-Q Plot Output O

Figura 1.8: Grafico Gama Plot

Aparentemente a normalidade será aceita, pois os pontos parecem estar próximos da reta. Para confirmar a normalidade multivariada realizei os teste de Royston, teste de Henze-Zinklers e o teste de Mardia.

	Royston	Henze-Zinklers	Mardia
p-valor	0.0971	0.3577	0.20788 e 0.2864

Tabela 1.10: Teste de normalidade multivariada (X2 e X3)

Em todos os testes rejeita-se H0 ($\alpha=0.01$), ou seja em todos os testes a normalidade bivariada (X2 e X3) foi aceita.

1.2.5 Normalidade Trivariada

Após verificar a normalidade univariada e bivariada, só restou testar a normalidade trivariada, de forma semenlhante a bivaraiada plotei o gráfico Gama e realizei alguns testes de normalidade:

Chi-Square Q-Q Plot

Chi-Square Quantile

Figura 1.9: Grafico Gama Plot

6

Squared Mahalanobis Distance

8

10

12

Observa-se que alguns pontos estão distantes da reta, porém a um alto numero de pontos que estão "comportados", a realização dos testes é a mais indicada nesses casos.

_	Royston	Henze-Zinklers	Mardia
p-valor	0.1859	0.7235	0.4311 e 0.1095

Tabela 1.11: Teste de normalidade multivariada

A normalidade multivariada foi aceita nos três testes feitos.

Conclusão Normalidade:

0

2

4

Como foi apresentado até agora a normalidade foi aceita: Univariada, Bivariada e Trivariada ao nível de significância $\alpha = 0.01$ (mesmo não retirando os outliers encontrados anteriormente).

1.3 III) Teste de Hipótese

O objetivo imposto pelo problema é testar :

$$\begin{cases} H0: \mu = (500, 50, 25) \\ H1: \mu \neq (500, 50, 25) \end{cases}$$

Para isso, utilizei um teste apresentado em aula, rejeitamos H0, ao nivel $\alpha=0.01$ de significância, se:

$$T^2 = n(\bar{x} - \mu_0)' S^{-1}(\bar{x} - \mu_0) > \frac{(n-1)p}{(n-p)} F_{p,(n-p),\alpha}$$

obs: Esse teste exige normalidade multivariada, então utilizei os dados que não contém o outlier encontrado (pois sem ele verifiquei normalidade multivariada).

Calculando T^2 no R, obtive:

$$T^2 = 20.6170$$

verificando a tabela F e calculando $\frac{(87-1)3}{(87-3)}F_{3,(87-3),0.01}$ também no R:

$$\frac{(87-1)^3}{(87-3)}F_{3,(87-3),0.01} = 12.3584$$

Ou seja:

$$T^2 > \frac{(n-1)^p}{(n-p)} F_{p,(n-p),\alpha}$$

Concluindo então que ao nível de significância $\alpha=0.01$ rejeita-se a hipótese que $\mu=(500,50,25)$

Considerando o Teorema Central do Limite

Outro teste apresentado em aula e que tem a mesma finalidade de testar:

$$\begin{cases} H0: \mu = \mu_0 \\ H1: \mu \neq \mu_0 \end{cases}$$

É o teste considerando o Teorema Central do Limite, que tem como critério: Rejeita-se H0 se:

$$\Lambda = \left(\frac{|\sum (x_i - \bar{x})(x_i - \bar{x})'|}{|\sum (x_i - \mu_0)(x_i - \mu_0)'|}\right)^{n/2} < c_{\alpha}$$

O que é equivalente a:

$$\Lambda^{2/n} = \left(\frac{1}{1 + \frac{T^2}{n-1}}\right)^{-1}$$

Ou seja, rejeita-se H0 se $\Lambda^{2/n}$ menor que um valor muito baixo (c_{α}) , sendo assim calculei:

$$\Lambda^{2/n} = 0.2369$$

Tendo então que $\Lambda^{2/n}$ é um valor bem baixo e menor que o valor critico $(\frac{(n-1)^p}{(n-p)}F_{p,(n-p),\alpha})$. Conclui-se então, pelo teste considerando o Teorema Central do Limite também rejeita-se H0.

1.3.1 Regiões de Confiança - RC

Em ambos os testes concluiu-se que não ha evidências que $\mu = (500, 50, 25)$, então quais seriam os possíveis valores para μ_0 talque $\mu = \mu_0$.

Para encontrarSS esses valores calculei as regiões de confiança da matriz de dados, a qual denotei como R(X):

$$R(X) = \left(\bar{x}_p - \sqrt{\frac{p(n-1)}{n-p}} F_{p,n-p,\alpha} \sqrt{\frac{S_{pp}}{n}} \le \mu_p \le \bar{x}_p + \sqrt{\frac{p(n-1)}{n-p}} F_{p,n-p,\alpha} \sqrt{\frac{S_{pp}}{n}}\right)$$

para todo p.

Sendo assim calculei a região de confiança para para todas as colunas e obtive o seguinte resultado:

$$\mu_1 = (497.8626; 555.3098)$$

$$\mu_2 = (50.45809; 58.92122)$$

$$\mu_3 = (23.31452; 26.93836)$$

Apenas para provar se os valores encontrados realmente seriam aceitos no teste, tomei $\mu_0 = (530, 55, 25)$ (valores dentro da região de confiança) e realizei o teste novamente, obtendo:

$$T^2 = 0.5686$$

O valor encontrado T^2 é menor do que a decisão já calculada anteriormente (12.3584), ou seja NÃO rejeita-se H0, tendo então que ao nível de significância $\alpha=0.01$ existe evidencias que $\mu=(500,55,25)$

Apêndice A

Código

```
1 # DADOS
2 df = read.csv2("E:/Trabalho_03/df_T3.csv", sep = ",", header = T)
5 df $X = NULL
7 head(df)
8 tail(df)
10 plot(df)
12 boxplot(df)
boxplot (df$Ciencia.Social.e.Historia..CLEP.)
boxplot((df$Verbal..CQT.))
boxplot(df$Ciencia..CQT.)
d = mahalanobis(df, colMeans(df), cov(df))
20 df$mahalanobis = d
d2 = mahalanobis(df, 0, cov(df))
24 d2
26 df $mahalanobis0 = d2
27 df
29 library(dplyr)
30 dfOrdem = df\%>\%
    arrange(desc(df$mahalanobis))
33 dfOrdem
35 # plot das distancia
```

```
general and a quant = qchisq(0.01, 3, lower.tail = F)
37 plot(1:length(d), d, xlab = "Observa es",
     ylab= "Dist ncia de Mahalanobis",
     main = "Distancias")
abline (h=quant, lty=2)
42 plot(1:length(d2), d2, xlab = "Observa es",
     ylab = "Dist ncia de Mahalanobis",
     main = "Distancias")
abline (h=quant, lty=2)
49 ###########
             Normalidade
                         ##############
52 qqnorm(df$Ciencia.Social.e.Historia..CLEP., main = "Normal Q-Q Plot (X1)
   ")
53 qqline(df$Ciencia.Social.e.Historia..CLEP., col="red")
55 library(nortest)
56 shapiro.test(df$Ciencia.Social.e.Historia..CLEP.)
57 lillie.test(df$Ciencia.Social.e.Historia..CLEP.)
58 ad.test(df$Ciencia.Social.e.Historia..CLEP.)
60 # X2
61 qqnorm(df$Verbal..CQT., main = "Normal Q-Q Plot (X2)")
62 qqline(df$Verbal..CQT., col="red")
64 hist (df $ Verbal . . CQT .)
65 shapiro.test(df$Verbal..CQT.)
66 lillie.test(df$Verbal..CQT.)
ad.test(df $ Verbal..CQT.)
69 #X3
70 qqnorm(df$Ciencia..CQT., main = "Normal Q-Q Plot (X3)")
71 qqline(df$Ciencia..CQT., col="red")
73 shapiro.test(df$Ciencia..CQT.)
74 lillie.test(df$Ciencia..CQT.)
75 ad.test(df $Ciencia..CQT.)
# install.packages("MVA")
# install.packages("royston")
```

```
84 library (MVN)
85 ######### A-B ###############
ab = data.frame(df$Ciencia.Social.e.Historia..CLEP., df$Verbal..CQT.)
89 # Teste de Royston
90 library (royston)
91 mvn(ab, mvnTest = c("royston"), covariance = T, scale = F, desc = F,
     multivariatePlot = "qq")
92 royston.test(ab)
94 # Teste de Henze-Zirklers
95 mvn(ab, mvnTest = c("hz"), covariance = T, scale = F, desc = F,
     multivariatePlot = "qq")
96
97 # Teste de Mardia
98 mvn(ab, mvnTest = c("mardia"), covariance = T, scale = F, desc = F,
     multivariatePlot = "qq")
99
100
102 ########## A-C ###############
103 ac = data.frame(df$Ciencia.Social.e.Historia..CLEP., df$Ciencia..CQT.)
104 ac
105
106 # Teste de Royston
mvn(ac, mvnTest = c("royston"), covariance = T, scale = F, desc = F,
     multivariatePlot = "qq")
109 # Teste de Henze-Zirklers
110 mvn(ac, mvnTest = c("hz"), covariance = T, scale = F, desc = F,
     multivariatePlot = "qq")
111
112 # Teste de Mardia
113 mvn(ac, mvnTest = c("mardia"), covariance = T, scale = F, desc = F,
     multivariatePlot = "qq")
114
117 ######## B-C ###############
bc = data.frame(df$Verbal..CQT., df$Ciencia..CQT.)
119 bc
120
121 # Teste de Royston
mvn(bc, mvnTest = c("royston"), covariance = T, scale = F, desc = F,
     multivariatePlot = "qq")
# Teste de Henze-Zirklers
nvn(bc, mvnTest = c("hz"), covariance = T, scale = F, desc = F,
```

```
multivariatePlot = "qq")
126
127 # Teste de Mardia
128 mvn(bc, mvnTest = c("mardia"), covariance = T, scale = F, desc = F,
     multivariatePlot = "qq")
129
130
131
##############################
133 #####
             TRIVARIADA
tri = data.frame(df$Ciencia.Social.e.Historia..CLEP., df$Verbal..CQT.,
    df$Ciencia..CQT.)
136 tri
137
138 # Teste de Royston
mvn(tri, mvnTest = c("royston"), covariance = T, scale = F, desc = F,
    multivariatePlot = "qq")
140
141 # Teste de Henze-Zirklers
mvn(tri, mvnTest = c("hz"), covariance = T, scale = F, desc = F,
     multivariatePlot = "qq")
143
144 # Teste de Mardia
145 mvn(tri, mvnTest = c("mardia"), covariance = T, scale = F, desc = F,
    multivariatePlot = "qq")
146
148 ############### Teste de hipotese \mu #######
150 df3 = data.frame(df$Ciencia.Social.e.Historia..CLEP., df$Verbal..CQT.,
    df$Ciencia..CQT.)
151 df3
152
n = count(df3)
154 n = as.numeric(n)
p = length(df3)
mu = matrix(colMeans(df3))
mu0 = matrix(c(500, 50, 25))
160 mu0
161
_{162} S = cov(df3)
T2 = n*t(mu - mu0) %*% solve(S) %*% (mu-mu0)
164 T2
165
166 # Tabela F
f = qf(0.01, df1 = 3, df2 = 84, lower.tail = FALSE) # tail = F, calda da
```

```
direita
168 f
170 final = f*(n-1)*p/(n-p)
171 final
173
174 # Outro
lambda2 = (1/(1+(T2/n-1)))^{-1}
176 lambda2
Regiao de confian a ###############
182 #############
185 x1 = c(mean(df3\$df.Ciencia.Social.e.Historia..CLEP.) - sqrt(p*(n-1)/(n-p))
     )*f)*sqrt(S[1,1]/n), mean(df3$df.Ciencia.Social.e.Historia..CLEP.) +
     sqrt(p*(n-1)/(n-p)*f)*sqrt(S[1,1]/n))
186 x 1
187
x2 = c(mean(df3\$df.Verbal..CQT.) - sqrt(p*(n-1)/(n-p)*f)*sqrt(S[2,2]/n),
      mean(df3$df.Verbal..CQT.) + sqrt(p*(n-1)/(n-p)*f)*sqrt(S[2,2]/n))
189 x2
190
191 x3 = c(mean(df3\$df.Ciencia..CQT.) - sqrt(p*(n-1)/(n-p)*f)*sqrt(S[3,3]/n)
     , mean(df3df.Ciencia..CQT.) + sqrt(p*(n-1)/(n-p)*f)*sqrt(S[3,3]/n))
192 x3
195 # Testando novamente
196 \text{ mu0} = \text{matrix}(c(530, 55, 25))
197 mu0
198 S = cov(df3)
199 T2 = n*t(mu - mu0) %*% solve(S) %*% (mu-mu0)
200 T2
201
202 # Tabela F
f = qf(0.01, df1 = p, df2 = (n-p), lower.tail = FALSE) # tail = F, calda
      da direita
204 f
206 final = f*(n-1)*p/(n-p)
207 final
```