IDENTITIES IN ITERATED RASCAL TRIANGLES

PETRO KOLOSOV

ABSTRACT. In this manuscript, we show new binomial identities in iterated rascal triangles, revealing a connection between the Vandermonde convolution and iterated rascal numbers. We also present Vandermonde-like binomial identities. Furthermore, we establish a relation between iterated rascal triangle and (1,q)-binomial coefficients.

Contents

1.	Introduction	2
2.	Binomial identities in Iterated Rascal Triangles	3
3.	Q-Binomial identities in Iterated Rascal Triangles	6
4.	Conclusions	8
Re	ferences	8

Date: July 2, 2024.

2010 Mathematics Subject Classification. 11B25, 11B99.

Key words and phrases. Pascal's triangle, Rascal triangle, Binomial coefficients, Binomial identities, Binomial theorem, Generalized Rascal triangles, Iterated rascal triangles, Iterated rascal numbers, Vandermonde identity, Vandermonde convolution.

 $Sources: \verb|https://github.com/kolosovpetro/IdentitiesInRascalTriangle| \\$

1. Introduction

In 2010, three middle school students, Alif Anggoro, Eddy Liu, and Angus Tulloch [1], were challenged to provide the next row for the number triangle shown below

The expected answer that matches Pascal's triangle [2] was "1 4 6 4 1". However, Anggoro, Liu, and Tulloch suggested "1 4 5 4 1" instead. They devised this new row via so-called diamond formula

$$\mathbf{South} = \frac{\mathbf{East} \cdot \mathbf{West} + 1}{\mathbf{North}}$$

So that upcoming rows of the triangle are

n/k	l						6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	5	4	1			
5	1	5	7	7	5	1		
6	1	6	9	10	9	6	1	
0 1 2 3 4 5 6 7	1	7	11	13	13	11	7	1

Table 1. Rascal triangle. See the OEIS sequence A077028 [3].

Since then, a lot of work has been done over the topic of rascal triangles. Numerous identities and relations have been revealed. For instance, few combinatorial interpretations of rascal numbers provided at [4], in particular, these interpretations establish a relation between rascal numbers and combinatorics of binary words. Few generalization approaches were proposed, namely generalized and iterated rascal triangles [5, 6]. In particular, the

concept of iterated rascal numbers establishes a close connection between rascal numbers and binomial coefficients.

2. BINOMIAL IDENTITIES IN ITERATED RASCAL TRIANGLES

Prior we begin our discussion it is worth to introduce a few preliminary facts and statements. Define the iterated rascal number

Definition 2.1. Iterated rascal number [6]

$$\binom{n}{k}_{i} = \sum_{m=0}^{i} \binom{n-k}{m} \binom{k}{m} \tag{2.1}$$

First important thing is to notice that iterated rascal number is a partial case of Vandermonde convolution [7]. Consider Vandermonde convolution

$$\binom{a+b}{r} = \sum_{m=0}^{r} \binom{a}{m} \binom{b}{r-m}$$

Thus,

$$\binom{n}{k}_{i} = \sum_{m=0}^{i} \binom{n-k}{m} \binom{k}{m} = \sum_{m=0}^{i} \binom{n-k}{m} \binom{k}{k-m}$$
(2.2)

Therefore, iterated rascal number is partial case of Vandermonde convolution with upper summation bound equals to i. Without further hesitation consider our findings.

Proposition 2.2. Iterated rascal triangle equals to Pascal's triangle up to i-th column.

$$\binom{n}{k}_{i} = \binom{n}{k}, \quad 0 \le k \le i \tag{2.3}$$

Proof. Proof is given by [6].

Then binomial identity follows

$$\binom{n}{i-k}_i = \binom{n}{i-k}$$

Applying binomial coefficients symmetry principle we obtain

$$\binom{n}{n-i+k}_i = \binom{n}{n-i+k}$$

Proposition 2.3. Iterated rascal triangle equals to Pascal's triangle up to 2i + 1-th row

$$\binom{n}{k}_i = \binom{n}{k}, \quad 0 \le n \le 2i + 1$$

Therefore, for every fixed $i \geq 0$

Equation (2.4) is of interest because in contrast to rascal column identity (2.3) it gives relation over k for each i, so that it is true for all cases in i, k: i < k, i = k and k > i.

Taking $t \ge 2i + 1$ for every fixed $i \ge 0$

$$\binom{t-n}{k}_{t-i-1} = \binom{t-n}{k}$$

Proof. Proof of proposition (2.3). We have three possible relations between i, k: k < i, k = i, k > i. So we have to prove that for every i, k

$$\sum_{m=0}^{k} {2i+1-n-k \choose m} {k \choose m} - \sum_{m=0}^{i} {2i+1-n-k \choose m} {k \choose m} = 0$$

For the case k < i proof is given in Jenna Gregory et al. [6]. For the case k = i proof is trivial. Thus, the remaining case is k > i yields that

$$\sum_{m=i+1}^{k} \binom{2i+1-n-k}{m} \binom{k}{m} = 0$$

Considering the constraints,

$$\begin{cases} n \ge 0 \\ k \ge i + 1 \\ 2i + 1 - n - k \le i - n \\ m \ge i + 1 \end{cases}$$

Thus,

$$\sum_{m=i+1}^{k} {2i+1-n-k \choose m} {k \choose m}$$

is indeed equals zero because binomial coefficients $\binom{i-n-s}{i+1+s}$ are zero for each $i, n, s \geq 0$. Therefore, the proposition (2.3) is true.

Moreover, equation (2.4) gives Vandermonde-like identity

Proposition 2.4. (Vandermonde-like identity.)

$$\binom{2i+1-n}{k} = \sum_{m=0}^{i} \binom{2i+1-n-k}{m} \binom{k}{m}$$

In particular, given n = 0 proposition (2.4) yields

$$\binom{2i+1}{k} = \sum_{m=0}^{i} \binom{2i+1-k}{m} \binom{k}{m}$$

Now, let's smoothly switch our focus to finite differences of binomial coefficients and iterated rascal numbers. Considering the table of differences $\binom{n}{k} - \binom{n}{k}_3$

In[67]:=	Gr:	id[Tal	ble[B	inomi	al[n,k	(] – Ras	calNumb	er[n, k	, 3], {n	, 0, 20}	, {k, 0,	n}],F	rame →	A11]						
	0	Т	Т		Par	⊒ 4}												П	Т	٦	
	0	0			2														I		
	0	0 0													Ŧ				\Box		
	0	0 6	0							9									\perp		
	0	0 0	0	0					1033	2											
	0	0 6	0	0	0														\perp		
		0 0			0	0													Ш		
	-	0 0	_		0	0	0													_	
	0	0 0	0	1	0	0	0	0											Ц	Ш	M=8
	\vdash	0 0	_		5	0	0	0	0										\perp	_	
Out[67]=	0	0 0	0	15	26	15	0	0	0	0									\perp		
	0	0 6	0	35	81	81	35	0	0	0	0								\perp		
	0	0 0	0	70	196	262	196	70	0	0	0	0									
	0	0 0	0	126	406	658	658	406	126	0	0	0	0						\Box		
	0	0 0	9	210	756	1414	1716	1414	756	210	0	0	0	0							
	0	0 0	0	330	1302	2730	3830	3830	2730	1302	330	0	0	0	0				\Box		
	0	0 0	0	495	2112	4872	7680	8885	7680	4872	2112	495	0	0	0	0			$oxed{oxed}$		
	0	0 0	0	715	3267	8184	14 232	18 525	18 5 2 5	14 232	8184	3267	715	0	0	0	0				
	0	0 0	0	1001	4862	13 101	24816	35 697	40186	35 697	24816	13 101	4862	1001	0	0	0	0			
	ш					20163		64713	80587	80 587	64713	41 217	20 163	7007	1365	0		0	0		
	0	0 0	0	1820	9828	30030	65 780	111 705	152 020	168 230	152 020	111 705	65 780	30030	9828	1820	0	0	0	б	

Figure 1. Difference $\binom{n}{k} - \binom{n}{k}_3$. Highlighted column is $\binom{n}{4}$. Sequence A000332 in the OEIS [8].

We can spot that having i = 3 the k = 4-th column gives binomial coefficient $\binom{n}{4}$. Indeed, this rule is true for every i.

Proposition 2.5. (Row-column difference.) For every fixed $i \geq 0$

$$\binom{n+2i}{i} - \binom{n+2i}{i}_{i-1} = \binom{n+i}{i}$$

Proof. We have previously stated that iterated rascal numbers are closely related to Vandermonde convolution (2.2). Thus, proposition (2.5) can be rewritten as

$$\sum_{m=0}^{i} \binom{n+i}{m} \binom{i}{i-m} - \sum_{m=0}^{i-1} \binom{n+i}{m} \binom{i}{m}$$

Therefore, $\binom{n+2i}{i} - \binom{n+2i}{i}_{i-1} = \binom{n+i}{i}$ is indeed true.

Proposition (2.5) yields to few more identities. Applying binomial coefficients symmetry

$$\binom{n+2i}{n+i} - \binom{n+2i}{n+i}_{i-1} = \binom{n+i}{n}$$

Taking j = n + i gives

$$\binom{j+i}{j} - \binom{j+i}{j}_{i-1} = \binom{j}{j-i}$$

$$\binom{j+i}{i} - \binom{j+i}{i}_{i-1} = \binom{j}{i}$$

Proposition (2.5) can be generalized even further, for every fixed i < k.

Proposition 2.6. (Binomial coefficient difference iterated rascal number.) For every fixed i < k

$$\binom{n}{k} - \binom{n}{k}_{i} = \sum_{m=i+1}^{k} \binom{n-k}{m} \binom{k}{k-m}$$

Proof. It is true by means of Vandermonde convolution.

3. Q-BINOMIAL IDENTITIES IN ITERATED RASCAL TRIANGLES

Consider the table of differences of binomial coefficients and iterated rascal numbers one more time as there is another pattern we can spot.

0	Т	Π	Π														П				
0	0		Г				S										П	Т	Т	1	
0	0	0	Г														П	Т	Т	1	
0	0	0	0														П	I	Τ]	
0	0	0	0	0					7069	า/ค								\perp	Ι]	
0	0	0	0	0	0			2											\mathbb{L}]	
0	0	0	0	0	0	0													\perp]	
	\perp		0	0	0	0	0												\perp]	
	-	-	0	1	0	0	0	0									Ц	_	Ţ		
0	0	0	0	5	5	0	0	0	0												ũ
	-	_	Ø		26	15	И	Ø	Ø	Ø								\perp	İ	_	
	-	_	0		81	81	35	0	0	0	0						Ш	\perp	\perp]	
	-	-	0		196	262	196	70	0	0	0	0					Ц	\perp	\perp		
	\perp		0			658	658	406	126	0	0	0	0				Ц	\perp	\perp		
	_		0			1414	1716	1414	756	210	0	0	0	0			Ц	\perp	\perp]	
_	-	_	0		1302		3830	3830	2730	1302	330	0	0	0	0		Ц	\perp	\perp		
	-	_	0		_	4872	7680	8885	7680	4872	2112	495	0	0	0	0	Ц	\perp	\perp		
						8184	14 232	18 525	18525	14 232	8184	3267	715	0	0	0	0	\perp	\perp		
							24816		40186	35 697	24816	13 101	4862	1001	0	0	0	_	\perp		
	-	_	-				41 217		80587	80 587	64713		20 163		1365	0	${}$	0 6	_		
0	0	0	0	1820	9828	30 030	65 780	111 705	152 020	168 230	152 020	111 705	65 780	30 030	9828	1820	0	0 0) 0		

Figure 2. Difference $\binom{n}{k} - \binom{n}{k}_3$. Highlighted column is (1,5)-binomial coefficient $\binom{n}{k}^5$. Sequence A096943 in the OEIS [9].

The (1,q)-binomial coefficients $\binom{n}{k}^q$ are special kind of binomial coefficients defined by

Definition 3.1. (1,q)-Binomial coefficient

$$\begin{bmatrix} n \\ k \end{bmatrix}^{q} = \begin{cases} q & \text{if } k = 0, n = 0 \\ 1 & \text{if } k = 0 \\ 0 & \text{if } k > n \end{cases}$$

$$\begin{bmatrix} \binom{n-1}{k} \rceil^{q} + \binom{n-1}{k-1} \rceil^{q} \\ \end{cases}$$
(3.1)

Indeed, the relation shown in Figure (2) is true for every i, so that it establishes a relation between (1, q)-binomial coefficients and iterated rascal numbers.

Proposition 3.2. (Relation between iterated rascal numbers and (1, q)-binomial coefficients.) For every fixed $i \ge 0$

$$\binom{2i+3+j}{i+2} - \binom{2i+3+j}{i+2}_{i} = \begin{bmatrix} i+2+j \\ i+2 \end{bmatrix}^{i+2}_{i}$$

Taking t = i + 2 in (3.2) yields

$$\binom{2t-1+j}{t} - \binom{2t-1+j}{t}_{t-2} = \begin{bmatrix} t+j \\ t \end{bmatrix}^t$$

In particular, having i = 1 proposition (3.2) gives the OEIS sequence A006503 [10] such that third column of (1,3)-Pascal triangle A095660 [11].

Having i = 3 proposition (3.2) gives the OEIS sequence A096943 [9] such that third column of (1, 5)-Pascal triangle A096940 [12].

4. Conclusions

In this manuscript we have discussed new binomial identities in iterated rascal triangles (2.4), (2.5), (2.6), revealing a connection between the Vandermonde convolution and iterated rascal numbers. We also present Vandermonde-like binomial identities (2.4). Furthermore, we establish a relation between iterated rascal triangle and (1,q)-binomial coefficients (3.2). All the results can be validated using supplementary Mathematica scripts at [13].

References

- [1] Anggoro, Alif and Liu, Eddy and Tulloch, Angus. The Rascal Triangle. *The College Mathematics Journal*, 41(5):393–395, 2010. https://doi.org/10.4169/074683410X521991.
- [2] Sloane, N. J. A. Pascal's triangle read by rows. Entry A007318 in The On-Line Encyclopedia of Integer Sequences, 1994. https://oeis.org/A007318.
- [3] Sloane, N. J. A. The Rascal triangle read by rows. Entry A077028 in The On-Line Encyclopedia of Integer Sequences, 2002. https://oeis.org/A077028.
- [4] Amelia Gibbs and Brian K. Miceli. Two Combinatorial Interpretations of Rascal Numbers. arXiv preprint arXiv:2405.11045, 2024. https://arxiv.org/abs/2405.11045.
- [5] Hotchkiss, Philip K. Generalized Rascal Triangles. arXiv preprint arXiv:1907.11159, 2019. https://arxiv.org/abs/1907.11159.
- [6] Gregory, Jena and Kronholm, Brandt and White, Jacob. Iterated rascal triangles. Aequationes mathematicae, pages 1–18, 2023. https://doi.org/10.1007/s00010-023-00987-6.

IDENTITIES IN ITERATED RASCAL TRIANGLES

9

- [7] Andrews, George E. and Askey, Richard and Roy, Ranjan and Roy, Ranjan and Askey, Richard. Special
- functions, volume 71. Cambridge university press Cambridge, 2000.
- [8] Sloane, N. J. A. Binomial coefficient binomial(n,4). Entry A000332 in The On-Line Encyclopedia of
- Integer Sequences, 2009. https://oeis.org/A000332.
- [9] Sloane, N. J. A. Sixth column of (1,5)-Pascal triangle. Entry A096943 in The On-Line Encyclopedia of
- Integer Sequences, 2004. https://oeis.org/A096943.
- [10] Sloane, N. J. A. Entry A006503 in The On-Line Encyclopedia of Integer Sequences, 1995. https:
 - //oeis.org/A006503.
- [11] Sloane, N. J. A. Pascal (1,3) triangle. Entry A095660 in The On-Line Encyclopedia of Integer Sequences,
 - 2004. https://oeis.org/A095660.
- [12] Sloane, N. J. A. Pascal (1,5) triangle. Entry A096940 in The On-Line Encyclopedia of Integer Sequences,
 - 2004. https://oeis.org/A096940.
- [13] Kolosov, Petro. Identities in Iterated Rascal Triangles Mathematica programs, 2024. https://github.
 - com/kolosovpetro/IdentitiesInRascalTriangle.

Version: Local-0.1.0

SOFTWARE DEVELOPER, DEVOPS ENGINEER

 $Email\ address{:}\ \verb+kolosovp94@gmail.com+$

URL: https://kolosovpetro.github.io