pbr_concepts.md 7/14/2023

Physically based rendering

Concepts

Energy conservation:

• total amount of light reflected from surface cannot exceed total amount received .

Microfacets:

Surface composed of microfacets that reflect light independantly.

· rough: reflect light more chaotically

• smooth: more uniformity

BRDF:

Bidirectional Reflectance Distribution Function , describes how light is reflected from a surface in different directions based on material properties. typically include :

- diffuse lighting (light scattering)
- specular lighting (mirror like reflections).

Maps and textures:

• Albedo, normal maps, metal roughness, IBL etc.

Reflectance equation:

 $L(0, \omega_0) = Le(0, \omega_0) + \int_{\infty} BRDF(p, \omega_0, \omega_0) * L(p, \omega_0) * dot(n, \omega_0) * d\omega$

- Radiant flux \$\phi\$: sum of wavelengths = RGB color of light .
- Solid angle \$\omega\$: This simulates the incidence of multiple rays of light over a small area . It represents the projection of an area on a unit sphere.

pbr_con cepts.md 7/14/2023

• Radiant intensity: Amount of Radiant flux per solid angle.

The equation for radiant intensity is : $\$I = \frac{d\pi}{d\phi}$

• Radiance: This is the total energy on Area "A" over a solid angle \$\omega\$ with radiant intensity

\$\phi\$

The radiance equation is:

 $L = \frac{d^2\pi}{dAd\sigma} \cos \theta$

Reflectance equation for a fragment :

 $\L_0(p,\c_{\infty_0}) = \int_0^p \int_0$

pbr_concepts.md 7/14/2023

- \$\vec{\omega_0}\$: Direction from the fragment to the camera.
- \$p\$: infinitesimally small point represented by area "A", or, in this case, a fragment.
- \$L_0(p,\vec{\omega_0})\$: Reflected sum of all lights irradiances falling on point p , viewed by direction \$\vec{\omega_0}\$
- \$\vec{n}.\vec{\omega_i}\$: represents the \$cos\theta\$ between the normal \$\vec{n}\$ and direction \$\vec{\omega_i}\$
- \$\Omega\$: Represents a hemisphere around the point \$p\$.

Reflectance integral resolution:

Code:

```
int steps = STEP_SIZE ;
float sum = 0.f ;
vec3 P = fragPos() ;
vec3 W0 = view_direction();
vec3 N = fragNormal();
float dW = 1.f / steps;
for(int i = 0 ; i < steps ; i++){
    vec3 Wi = -getLightDir(i);
    sum += BRDF(P , Wi , W0) * L(P , Wi) * dot(N , Wi) * dW ;
}</pre>
```

Bidirectional Reflective Distribution Function:

- Takes as input:
 - 1. \$\vec{\omega_i}\$: Light \$i\$ direction.
 - 2. \$\vec{n}\$: Normal of the surface.
 - 3. \$a\$: Roughness surface parameter.

pbr_con cepts.md 7/14/2023

• Approximates how much light \$\vec{\omega_i}\$ contributes to the final reflected light on a surface given it's material property.

- Perfectly smooth surface returns BRDF = 0 for all \$\vec{\omega_i}\$, except the only ray that reflects towards \$\vec{\omega_0}\$ which returns BRDF = 1.
- BRDF is valid only if the reflected light is less than the sum of incoming light (energy conservation, see inequality on next equations).

Cook-Torrance model:

\$\$f_r=k_df_{lambert} + k_sf_{cook-torrance}\$\$

- \$f_r\$: Reflected light intensity at point \$p\$.
- \$k_d\$: Diffuse reflection coefficient.
- \$k_s\$: Specular reflection coefficient.
- \$f_{lambert}\$: Lambertian diffuse component
- \$f_{cook-torrance}\$: Specular reflection component.

 $\$ \\ \vec{\omega_{i}} \in \mathbb{L} , \int_{\Omega}f_r(\vec{n} . \vec{\omega_0})d\vec{\omega_0} \leq 1 \\$\$

The equations reads: "For all Light ∞_i hitting the surface, the sum of outgoing BRDF weights in the hemisphere Ω_i must be smaller than 1.

Diffuse component:

 $f_{\mathrm{lambert}} = \frac{c}{\pi}$

• \$c\$: Albedo color

Specular component:

 $f_{cook-torrance} = \frac{DFG}{4(\sqrt{n})(\sqrt{n})(\sqrt{n})}$

This equation is composed of:

- \$f_{cook-torrance}\$: Specular component of the model.
- D : Normal Distribution Function => approximates the amount of surface microfacets aligned to the halfway vector , influenced by the roughness of the surface.
- G: Geometry Function: Describes the self shadowing properties of the microfacets.
- F: Fresnel Equations: Describes the amount of reflection at certain angles.

There are many other specular functions: here

BRDF Sub-functions:

Normal Distribution Function, "Trowbridge-Reitz GGX":

 $\$ NDF(\vec{n}, \vec{h}, \alpha) = \frac{\alpha^2}{\pi ((\vec{n}.\vec{h})^2(\alpha^2 - 1) + 1)^2}\$\$

• \$\vec{n}\$: surface normal.

pbr_concepts.md 7/14/2023

- \$\vec{h}\$: halfway vector.
- \$\alpha\$: surface roughness.

Code:

```
float distributionGGX(vec3 h , vec3 n , float a){
   float aa = a*a ;
   float dot_normalized = max(dot(n , h), 0.f);
   float dot_n_h_2 = dot_normalized * dot_normalized;
   float divid = (dot_n_h_2 * (aa - 1) + 1);
   divid *= divid;
   divid *= PI ;
   return aa/divid ;
}
```

Geometry Function, Schlick-GGX:

Allows to provide "self shadowing microfacets"

 $\frac{v}{n}.\sqrt{n}.\sqrt{n}.\sqrt{n}.\sqrt{1 - k} + k}$

 $S G_{SchlickGGX}(\vec{n}, \vec{v}, k) =$

with:

- \$\vec{n}\$: surface normal, normlized.
- \$\vec{v}\$: view direction, normalized.
- \$k\$: remapping of \$\alpha\$, defined as:

 $s k = \left(\frac{1}{2} \right) k_{\left(a + 1 \right)^{2}}{8} \ k_{\left(a + 1 \right)^{2}}{8} \$

Smith Method:

Approximation of the geometry, taking a view direction + light direction vectors:

```
SG(\vec{n}, \vec{n}, \vec
```

with: $\$\$G_{sub} = G_{schlickGGX}$

• The geometry function is a multiplier between [0.0, 1.0] with 1.0 (or white) measuring no microfacet shadowing, and 0.0 (or black) complete microfacet shadowing.

Code:

pbr_con cepts.md 7/14/2023

```
float GeometrySchlickGGX(float NdotV, float k)
{
  float nom = NdotV;
  float denom = NdotV * (1.0 - k) + k;
  return nom / denom;
}

float GeometrySmith(vec3 N, vec3 V, vec3 L, float k){
  float NdotV = max(dot(N, V), 0.0);
  float NdotL = max(dot(N, L), 0.0);
  float ggx1 = GeometrySchlickGGX(NdotV, k);
  float ggx2 = GeometrySchlickGGX(NdotL, k);
  return ggx1 * ggx2;
}
```

Fresnel Equations:

The equations for the dielectric case : $\$F_{Schlick}(\vec{h}, \vec{v}, F_0) = F_0 + (1 - F_0)(1 - (\vec{h}.\vec{v}))^5 = F_0 + (1-F_0)(1-\cos\theta)^5$$$ $\$F_0=\left(\frac{1-F_0}{1-\phi}\right)^2$$$ With :

- \$\eta_1\$, \$\eta_2\$: Reflection and refraction coefficients.
- \$\theta\$: Angle between the view direction and the half vector.

Conductor case: $\$F = \frac{(-1)^2 + 4}{1,-\infty} + \frac{(-1)^2 + k^2}{(-1)^2 + k^2}$

- \$\eta\$: Index of refraction for the conductor.
- \$k\$: Absooption coefficient for the conductor.

Code:

```
vec3 F0 = vec3(abs((1.0 - ior)/(1.0 + ior))); //We consider the incident
ray's first medium is air.
F0 *= F0;
F0 = mix(F0 , albedo.rgb , metallic);

vec3 fresnelSchlick(float cosT , vec3 F0){
   return F0 + (1 - F0) * pow(1 - cosT , 5) ;
}
```