UMassAmherst

College of Information

& Computer Sciences

Estimating Eigenvalues of Symmetric Matrices via Random Submatrices

Archan Ray, Rajarshi Bhattacharjee and Cameron Musco

{ray, rbhattacharj, cmusco}@cs.umass.edu

College of Information and Computer Sciences, UMASS Amherst

Problem Description

- Given: A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ in the bounded entry model *i.e* $\|\mathbf{A}\|_{\infty} \leq 1$ [1].
- Exact Eigenvalues: SVD, power methods, etc. require reading the full matrix and have time complexity close to $O(n^{\omega})$.
- Faster methods available for PSD matrices.
- A can be indefinite (non-PSD).
- Problem: Estimate eigenvalues of A upto ϵn additive error without using the full matrix.
- Applications: optimization, dynamical systems, and spectral graph theory.

Algorithm: Sampling Random Submatrices

- For each $i \in [1, n]$: sample i w.p. $\frac{s}{n}$: Sampled Set S.
- Get principal submatrix A_S corresponding to indices in S.
- Calculate eigenvalues of A_S and scale by $\frac{n}{s}$.

Theorem 1 (Upper bound)

For any $\lambda_i(\mathbf{A})$, such that $|\lambda_i(\mathbf{A})| \ge \epsilon \sqrt{\delta n}$, if $s \ge \tilde{O}(\frac{1}{\epsilon^3 \delta})$, with probability at least $1 - \delta$, we have,

$$\lambda_i(\mathbf{A}) - \epsilon n \le \frac{n}{s} \lambda_i(\mathbf{A}_S) \le \lambda_i(\mathbf{A}) + \epsilon n.$$
 (1)

• Need to sample submatrix with size $\propto \frac{1}{\epsilon^3}$: sublinear in n.

Proof Techniques

- Eigendecomposition of A: $\mathbf{A} = \mathbf{A}_o + \mathbf{A}_m$.
- \mathbf{A}_o : all "large" eigenvalues of \mathbf{A} with $|\lambda_i(\mathbf{A})| \geq \epsilon \sqrt{\delta} n$.
- A_m : all "small" eigenvalues of A with $\lambda_i(A) \leq \epsilon \sqrt{\delta} n$.

- $\mathbf{A}_S = \mathbf{A}_{oS} + \mathbf{A}_{mS}$ (after sampling).
- Eigenvalue Perturbation Theorem: $|\lambda_i(\mathbf{A}_S) \lambda_i(\mathbf{A}_{oS})| \leq ||\mathbf{A}_{mS}||_2$.
- Bound small eigenvalues $\|\mathbf{A}_{mS}\|_2$ using known spectral norm bounds from Tropp [2].
- Intuition: Incoherent eigenvectors of \mathbf{A}_o : By proposition 3.4 of [3] if $\lambda_i(\mathbf{A}) \geq \epsilon n$, $||x||_{\infty} \leq \frac{1}{\epsilon \sqrt{n}}$, (x is the eigenvector associated with $\lambda_i(\mathbf{A})$). Since eigenvectors of \mathbf{A}_o are spread out (incoherent), uniform sampling preserves the values approximately.
- Formally, bound large eigenvalues $\lambda_i(\mathbf{A}_{oS})$ using an application of Matrix Bernstein bound.
- Connection to leverage score sampling: Since eigenvectors are incoherent, leverage scores of the rows of the matrix of eigenvectors of \mathbf{A}_o are bounded. Thus we can sample using leverage scores to get close spectral approximation.

Lower Bound

Theorem 2 (General lower bound)

We need at least $\Omega(\frac{1}{\epsilon^2})$ samples of any $n \times n$ symmetric matrix to get a $(1 + \epsilon)$ factor approximation of the minimum eigenvalue with high probability.

- Generate 2 symmetric $n \times n$ matrices with 0/1 entries by tossing 2 coins with probability of heads 0.5 and $0.5(1 + \epsilon)$.
- Maximum eigenvalue of these matrices follows a normal distribution asymptotically (Furedi and Kolmos).
- Need at least $\Omega(\frac{1}{\epsilon^2})$ samples to distinguish between the coins.

Open Questions

• Can sample complexity of upper bound be reduced to $\tilde{\mathcal{O}}(1/\epsilon^2)$?

Empirical evaluation

Dataset. We use a synthetic dataset created by uniformly sampling 5000 points from a binary image. We then compute the similarity function, δ , using the following two measures: (a) Sigmoid: $\delta(x,y) = \tanh\left(\frac{xy}{\sigma+1}\right)$, and (b) Thin plane spline (TPS): $\delta(x,y) = \frac{|x-y|^2}{\sigma^2}\log\left(\frac{|x-y|^2}{\sigma^2}\right)$.

Figure: Eigenvalue estimates. Eigenvalues of sigmoid and TPS matrices.

Figure: Error estimates. Estimation errors of sigmoid and TPS matrices.

References

- [1] Balcan, M.-F., Y. Li, D. P. Woodruff, et al. Testing matrix rank, optimally. In *Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 727–746. SIAM, 2019.
- [2] Tropp, J. A. An introduction to matrix concentration inequalities. arXiv preprint arXiv:1501.01571, 2015.
- [3] Bakshi, A., N. Chepurko, R. Jayaram. Testing positive semi-definiteness via random submatrices. *arXiv preprint arXiv:2005.06441*, 2020.