Université Nazi BONI Ecole Superieure d'Informatique Master 2 Réseaux et Systèmes Option Cybersécurité

Authentification biométrique (Systèmes et usages)

Plan

· Introduction à l'authentification biométrique

· Architecture technique des systèmes biométriques

 Sécurité, attaques et résilience des systèmes biométriques

Usages, législation et enjeux éthiques

Objectifs

- Comprendre les concepts fondamentaux de l'authentification biométrique.
- Distinguer les types de biométries (biologiques, physiques vs comportementales).
- Identifier les critères de qualité d'un système biométrique.
- Interpréter les courbes d'évaluation : FAR, FRR, EER.

Introduction

 Contexte de la cybersécurité : montée des besoins en authentification fiable.

- Limitations des méthodes traditionnelles (mots de passe, cartes).
- Arrivée de la biométrie : usage massif dans téléphones, egates, paiements...

Définitions fondamentales

• Identification : Qui est-ce ? → 1:N

• Authentification : Est-ce bien cette personne ? → 1:1

• **Biométrie** : ensemble des techniques qui permettent d'identifier ou d'authentifier une personne à partir de caractéristiques physiques ou comportementales uniques.

Types de biométries

Types de biométries et capteurs associés

Type de biométrie	Catégorie	Capteur ou dispositif utilisé
Empreinte digitale	Physique	Capteur d'empreinte (optique, capacitif, à ultrasons)
Reconnaissance faciale	Physique	Caméra RGB, caméra infrarouge, capteur 3D (ex : FaceID)
Iris	Physique	Caméra infrarouge haute résolution
Rétine	Physique	Scanner de rétine (analyse du réseau vasculaire)
Forme de la main	Physique	Scanner de main (3D ou infrarouge)
Veines (paume/doigt)	Physique	Caméra à lumière proche infrarouge (Near-Infrared, NIR)
Voix	Comportementale	Microphone, capteur audio
Signature dynamique	Comportementale	Tablette graphique (capture pression, vitesse, rythme)
Frappe clavier	Comportementale	Clavier classique + logiciel d'analyse comporte <mark>m</mark> entale
Démarche (gait)	Comportementale	Caméras vidéo, capteurs inertiels (IMU) ou cap <mark>t</mark> eurs <mark>au sol</mark>

Types de biométries

Biologiques :

- Salive
- ADN

Physiques (Morphologiques) :

- Empreinte digitale
- Iris
- Rétine
- Visage
- Forme de la main

Comportementales :

- Voix
- Signature dynamique
- Frappe clavier (keystroke dynamics)
- Démarche (gait)

· Propriétés d'un bon système biométrique

- Universalité : tout le monde en dispose ?
- Unicité : est-elle propre à chaque individu ?
- Permanence : reste-t-elle stable dans le temps ?
- Collectabilité : peut-elle être mesurée facilement ?
- Performance : rapidité, précision
- Acceptabilité : les utilisateurs sont-ils prêts à l'utiliser ?
- Résistance à la fraude (sécurité) : peut-on la contourner ?

- Évaluation des performances
 - FAR (False Acceptance Rate): taux d'acceptation d'un imposteur
 - FRR (False Rejection Rate) : taux de rejet d'un utilisateur légitime
 - **EER** (Equal Error Rate) : point d'équilibre FAR = FRR
 - Courbe ROC: courbe qui trace FAR vs FRR
 - **Seuil** : Valeur definit pour valider la prediction du modèle.

⚠ Discussion: Que choisir entre plus de sécurité ou plus d'accessibilité?

 La biométrie et les méthodes d'authentification traditionnelles (O'Gorman)

Authentification biométrique	Authentification par mot de passe/clé
- basée sur des mesures morphologiques, com-	- basée sur que l'on sait ou possède
portementales ou biologiques	
- utilisation facile (pas de secret à retenir)	- pouvant être plus compliquée (mots de passe
	complexe)
- authentifie l'individu	- authentifie la clé
- l'information est en relation étroite à l'utili-	- il peut être perdu, volé ou oublié
sateur de façon permanente	
- utilise une comparaison probabiliste	- utilise une comparaison exacte
- l'information biométrique peut être modifiée	- l'information ne varie pas, elle est sûre
et/ou altérée avec le temps, il est incertain	
- problème de respect de la vie privée	- moindre impact sur la vie privée
- difficile de révoquer l'information	- changement aisé

- Limitations des systèmes biométriques
 - 1. Performance (moins precis)
 - 2. Contraintes d'utilisation (ex : empreintes digitales <=> l'identification de criminels)
 - 3. Vulnerable aux attaques (ex : reproduire des empreintes digitales en utilisant des images résiduelles sur le capteur).

- Mini-quiz
 - Quelle est la différence entre identification et authentification ?

- Donnez un exemple de biométrie physique et un comportementale.
- Que signifie EER ?
- Pourquoi l'empreinte digitale est-elle couramment utilisée ?

Architecture technique des systèmes biométriques

· Architecture d'un système biométrique

Capteur Prétraitement Extraction Stockage Comparaison Décision

- Capteur : capture l'image brute (ex: caméra, scanner d'empreinte)
- **Prétraitement** : amélioration (nettoyage, centrage, redimensionnement...)
- Extraction : calcule un vecteur caractéristique (feature vector)
- Stockage : modèle (ou "template") enregistré dans une base sécurisée
- Comparaison : distance entre le modèle stocké et celui extrait
- Décision : acceptation ou rejet selon un seuil

Architecture technique des systèmes biométriques

Architecture d'un système biométrique

- · Risques et défis spécifiques à la biométrie
 - Irrevocabilité des données biométriques : on ne peut pas "changer de visage"
 - Vol de gabarits biométriques : accès à la base = compromission durable
 - Dérives possibles :
 - Surveillance massive (ex : Chine)
 - Reconnaissance faciale sans consentement
 - Discrimination algorithmique

⚠ Discussion ouverte: la biométrie est-elle trop "dangereuse" pour certains usages?

Typologie des attaques

- Spoofing (usurpation biométrique)
 - Empreinte moulée (gélatine, silicone)
 - Masque 3D ou photo
 - Enregistrement vocal
- Attaque par injection
 - Image modifiée injectée dans le système (replay attack)
- Reconstruction inverse
 - À partir d'un modèle biométrique → tentative de reconstituer l'image d'origine (ex : empreinte à partir d'un template)
- Attaques sur les bases de données
 - Accès aux modèles stockés
 - Attaque sur les communications (interception des données biométriques)

Contre-mesures et résilience

- Détection de vivacité (Liveness Detection)
 - Détection de clignement, texture de peau, micro-mouvements
 - Challenge-réponse pour la voix
- Fusion biométrique (Multimodal)
 - Empreinte + visage + mot de passe
 - Plus difficile à usurper
- Chiffrement des gabarits
 - Gabarit non inversible
 - Technique: Fuzzy vault, Cancelable biometrics
- Audit et surveillance
 - Journaux d'accès, détection d'anomalies
 - Analyse comportementale complémentaire

Conclusion : sécurité biométrique ≠ sécurité parfaite → elle nécessite des couches défensives multiples.

Mini-Quiz

- · Citez deux types d'attaques contre un système biométrique.
- Quelle est la principale limite de l'usage d'une empreinte digitale comme identifiant unique ?
- Qu'est-ce que la "détection de vivacité" et pourquoi est-elle utile ?
- Qu'est-ce qu'une "attaque par reconstruction inverse" ?
- Expliquez en quoi le chiffrement des gabarits biométriques est important dans un système d'authentification.

- Activité de groupe (débat)
 - Sujet : La reconnaissance faciale dans les lieux publics : sécurité ou intrusion ?

• Groupes de 3-4 étudiants

- Chaque groupe prépare un argumentaire pour ou contre
- Présentation orale de 2 min / groupe

Objectifs pédagogiques

- Identifier les principaux usages concrets de la biométrie dans les domaines publics et privés.
- Comprendre les enjeux juridiques, réglementaires et éthiques liés à l'usage de données biométriques.

Usages réels des technologies biométrique

- Dans le secteur public
 - Frontières et immigration : e-gates, passeports biométriques
 - Police et surveillance : reconnaissance faciale en temps réel
 - Vote électronique : tests en Afrique, Amérique Latine
- Dans le secteur privé
 - Smartphones : Face ID, Touch ID, capteurs sous écran
 - Banques : authentification vocale / faciale pour les comptes
 - Contrôle d'accès en entreprise : badge biométrique, empreinte

Cadre juridique national

Le Burkina Faso dispose d'un cadre juridique et institutionnel encadrant les données personnelles:

- Commission de l'Informatique et des Libertés (CIL) :
 - par la Loi N° 010-2004/AN du 20 avril 2004 portant protection des données à caractère personnel.
 - Elle est devenue fonctionnelle en décembre 2007.
 - Site web : https://cil.bf/

- Mini-Quiz
 - Citez un exemple d'usage de la biométrie au Burkina Faso.

 Quels sont les deux grands enjeux éthiques liés à l'usage de la reconnaissance faciale dans les lieux publics ?