```
In [140]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")

In [141]: data=pd.read_csv("/home/placement/Downloads/Advertising.csv")

In [142]: data.describe()
```

Out[142]:

	Unnamed: 0	TV	radio	newspaper	sales
count	200.000000	200.000000	200.000000	200.000000	200.000000
mean	100.500000	147.042500	23.264000	30.554000	14.022500
std	57.879185	85.854236	14.846809	21.778621	5.217457
min	1.000000	0.700000	0.000000	0.300000	1.600000
25%	50.750000	74.375000	9.975000	12.750000	10.375000
50%	100.500000	149.750000	22.900000	25.750000	12.900000
75%	150.250000	218.825000	36.525000	45.100000	17.400000
max	200.000000	296.400000	49.600000	114.000000	27.000000

```
In [143]: data.head(10)
```

Out[143]:		Unnamed: 0	TV	radio	newspaper	sales
	0	1	230.1	37.8	69.2	22.1
	1	2	44.5	39.3	45.1	10.4
	2	3	17.2	45.9	69.3	9.3
	3	4	151.5	41.3	58.5	18.5
	4	5	180.8	10.8	58.4	12.9
	5	6	8.7	48.9	75.0	7.2
	6	7	57.5	32.8	23.5	11.8
	7	8	120.2	19.6	11.6	13.2

8.6

10 199.8

memory usage: 7.9 KB

2.1

2.6

1.0

21.2

4.8

10.6

```
Non-Null Count Dtype
    Column
    Unnamed: 0 200 non-null
                                 int64
                 200 non-null
 1
     TV
                                 float64
    radio
                 200 non-null
                                 float64
                 200 non-null
                                 float64
 3
    newspaper
     sales
                 200 non-null
                                 float64
dtypes: float64(4), int64(1)
```

In [145]: data.shape

Out[145]: (200, 5)

In [146]: data

_		-			
()11.	+ 1	ш.	/I 6	~ I	
υu	L I	ъ,	+1	JI	

	Unnamed: 0	TV	radio	newspaper	sales
0	1	230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
3	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9
195	196	38.2	3.7	13.8	7.6
196	197	94.2	4.9	8.1	9.7
197	198	177.0	9.3	6.4	12.8
198	199	283.6	42.0	66.2	25.5
199	200	232.1	8.6	8.7	13.4

200 rows × 5 columns

In [147]:

datal=data.drop(['Unnamed: 0'],axis=1)

In [148]: data1

Out[148]:

	TV	radio	newspaper	sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	9.7
197	177.0	9.3	6.4	12.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	13.4

200 rows × 4 columns

In [149]: cor=data1.corr() cor

Out[149]:

	TV	radio	newspaper	sales
 TV	1.000000	0.054809	0.056648	0.782224
radio	0.054809	1.000000	0.354104	0.576223
newspaper	0.056648	0.354104	1.000000	0.228299
sales	0.782224	0.576223	0.228299	1.000000

```
In [150]: import seaborn as sns
sns.heatmap(cor,vmax=1,vmin=-1,annot=True,linewidths=.5,cmap='bwr')
```

Out[150]: <Axes: >


```
In [151]: data2=data1.drop(['sales'],axis=1)
```

```
In [152]: data2
```

\sim	10.0		2.7	
(1)	ŦΙ	15		
υu	L I		<i>'</i> _]	

	TV	radio	newspaper
0	230.1	37.8	69.2
1	44.5	39.3	45.1
2	17.2	45.9	69.3
3	151.5	41.3	58.5
4	180.8	10.8	58.4
195	38.2	3.7	13.8
196	94.2	4.9	8.1
197	177.0	9.3	6.4
198	283.6	42.0	66.2
199	232.1	8.6	8.7

200 rows × 3 columns

```
In [153]: y=data1['sales']
x=data1.drop('sales',axis=1)
```

```
In [154]: y
Out[154]: 0
                  22.1
                  10.4
                  9.3
          2
          3
                 18.5
          4
                 12.9
                  . . .
                  7.6
          195
          196
                  9.7
          197
                 12.8
          198
                 25.5
          199
                 13.4
          Name: sales, Length: 200, dtype: float64
In [155]: from sklearn.model_selection import train_test_split
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
In [156]: y
Out[156]: 0
                  22.1
                  10.4
          1
                  9.3
          2
          3
                  18.5
                 12.9
           4
                  . . .
          195
                  7.6
                  9.7
          196
          197
                 12.8
          198
                 25.5
          199
                 13.4
          Name: sales, Length: 200, dtype: float64
In [157]: list(x)
Out[157]: ['TV', 'radio', 'newspaper']
```

```
In [158]: from sklearn.model selection import train test split
          x train,x test,y train,y test=train test split(x,y,test size=0.33,random state=42)
In [159]: from sklearn.linear model import LinearRegression
          reg=LinearRegression()#creating object of linearRegression
          reg.fit(x train, y train) #training and fitting LR object using training data
Out[159]: LinearRegression()
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page with nbyiewer.org.
In [160]: ypred=reg.predict(x test)
In [161]: vpred
Out[161]: array([16.58673085, 21.18622524, 21.66752973, 10.81086512, 22.25210881,
                 13.31459455, 21.23875284, 7.38400509, 13.43971113, 15.19445383,
                  9.01548612, 6.56945204, 14.4156926, 8.93560138, 9.56335776,
                 12.10760805, 8.86091137, 16.25163621, 10.31036304, 18.83571624,
                 19.81058732, 13.67550716, 12.45182294, 21.58072583, 7.67409148,
                  5.67090757, 20.95448184, 11.89301758, 9.13043149, 8.49435255,
                 12.32217788, 9.99097553, 21.71995241, 12.64869606, 18.25348116,
                 20.17390876, 14.20864218, 21.02816483, 10.91608737, 4.42671034,
                  9.59359543, 12.53133363, 10.14637196, 8.1294087, 13.32973122,
                  5.27563699, 9.30534511, 14.15272317, 8.75979349, 11.67053724,
                 15.66273733, 11.75350353, 13.21744723, 11.06273296, 6.41769181,
                  9.84865789, 9.45756213, 24.32601732, 7.68903682, 12.30794356,
                 17.57952015, 15.27952025, 11.45659815, 11.12311877, 16.60003773,
                  6.906114781)
In [162]: from sklearn.metrics import r2 score
          r2 score(y test,ypred)
Out[162]: 0.8555568430680086
```

```
In [163]: from sklearn.metrics import mean squared error
          l=mean squared error(ypred,y test)
In [164]: l
Out[164]: 3.7279283306815105
In [165]: from sklearn.linear model import ElasticNet
          from sklearn.model selection import GridSearchCV
          elastic = ElasticNet()
          parameters = {'alpha':[1e-15,1e-10,1e-8,1e-4,1e-3,1e-2,1,5,10,20]}
          elastic regressor = GridSearchCV(elastic,parameters)
          elastic regressor.fit(x train,y train)
Out[165]: GridSearchCV(estimator=ElasticNet(),
                        param grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1,
                                               5, 10, 201})
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page with nbyiewer.org.
In [166]: elastic regressor.best params
Out[166]: {'alpha': 1}
In [167]: elastic=ElasticNet(alpha=0.1)
          elastic.fit(x train,y train)
          y pred elastic=elastic.predict(x test)
In [168]: from sklearn.metrics import r2 score
          r2 score(y test,y pred elastic)
Out[168]: 0.8557548052018211
```

```
In [169]: from sklearn.metrics import mean_squared_error
  elastic_Error=mean_squared_error(y_pred_elastic,y_test)
  elastic_Error
```

Out[169]: 3.722819132968605

In [170]: x_test

Out[170]:

	TV	radio	newspaper
95	163.3	31.6	52.9
15	195.4	47.7	52.9
30	292.9	28.3	43.2
158	11.7	36.9	45.2
128	220.3	49.0	3.2
97	184.9	21.0	22.0
31	112.9	17.4	38.6
12	23.8	35.1	65.9
35	290.7	4.1	8.5
119	19.4	16.0	22.3

66 rows × 3 columns

```
In [171]: y_pred_elastic=elastic.predict(test)
    test=[[110,33,21]]
    y_pred_elastic
```

Out[171]: array([14.28599702])

```
In [173]: y_pred_elastic=elastic.predict(test)
    test=[[110,33,21],[220,66,13]]
    y_pred_elastic

Out[173]: array([14.28599702, 25.6314246 ])

In []:
```