Statystyka dla Inżynierów Laboratorium 13 Analiza Korelacji

Dane do zadania 4 znajdują się w pliku mieszkania.csv

Wygenerowanie skorelowanych zmiennych z dwuwymiarowego rozkładu normalnego: Wynik 1: Niech X, Y będą niezależnymi zmiennymi losowymi oraz $U=c_1X+c_2Y$, gdzie $c_1^2+c_2^2=1$. Wtedy, $\rho(X,U)=c_1$

Wynik 2: Skalowanie liniowe zmiennych *X* i *U* nie zmienia współczynnika korelacji.

- 1. Poniżej podano liczbę punktów zdobytych na egzaminach z analizy oraz algebry przez 6 studentów.
 - a) Wyznaczyć współczynnik korelacji według i) Pearsona ii) Spearmana, iii) Kendalla
 - b) Korzystając z odpowiednich testów, zweryfikować hipotezę iż wyniki z tych egzaminów są nieskorelowane.

Student	1	2	3	4	5	6
Analiza	28	26	23	18	14	12
Algebra	25	27	20	24	16	13

- 2. Niech *X* oraz *Y* będą niezależnymi zmiennymi losowymi o rozkładzie normalnym standardowym.
 - a) Za pomocą generatora wylosować 100 realizacji pary (X, Y)
 - b) Wyznaczyć współczynnik korelacji $\rho(X,Y)$ i wykonać test hipotezy H_0 : $\rho(X,Y)=0$ według i) Pearsona, ii) Spearmana, iii) Kendalla za pomocą odpowiedniego polecenia.
 - c) Wykonać test hipotezy H_0 : $\rho(X,Y)=0$ według i) Pearsona, ii) Spearmana, iii) Kendalla za pomocą testu permutacyjnego (za pomocą 1000 symulacji)
 - d) Wyznaczyć przedział ufności na poziomie ufności 95% dla $\rho(X,Y)$ i wykonać test hipotezy H_0 : $\rho(X,Y)=0$ według i) Pearsona, ii) Spearmana, iii) Kendalla za pomocą Bootstrapu (za pomocą 1 000 symulacji w każdej symulacji należy wybrać 100 par (X_i,Y_i) z oryginalnej próby z zwracaniem).
 - e) Sporządzić rozrzut zmiennych *X* i *Y*.
- 3. Niech $V = 0.2X + \sqrt{0.96} Y$ (X i Y tak jak w zad. 2). Stworzyć 100 realizacji pary (X, V) i zbadać korelacje między zmiennych X i V analogicznie jak w zad. 2.
- 4. a) Wyznaczyć macierz współczynnik korelacji Pearsona między następującymi zmiennymi: metraż, , liczba pokoi, cena, cena za m².
 - b) Wyznaczyć macierz współczynnik korelacji Spearmana między zmiennymi: cena, metraż, cena za m², liczba pokoi.
 - c) Wyznaczyć macierz współczynnik korelacji Kendalla między zmiennymi: cena, metraż, cena za m², liczba pokoi.
 - d) Opisać relacje między tymi zmiennymi.
 - e) Wykonać test hipotezy że współczynnik korelacji między ceną za m² a metrażem wynosi zero według i) Pearsona, ii) Spearmana, iii) Kendalla.

5. Wygenerowanie "wzrostu" i "wagi" z dwuwymiarowego rozkładu normalnego

- a) Niech X oraz Y będą niezależnymi zmiennymi losowymi o rozkładach normalnych standardowych oraz $V=\rho X+Y\sqrt{1-\rho^2}$. Za pomocą generatora wylosować 100 realizacji pary (X,V) przy $\rho=0,7$.
 - b) Niech H=170 + 12X oraz W = 65 + 10V. Wyznaczyć i) średnie oraz odchylenia standardowe tych zmiennych, ii) współczynnik korelacji Pearsona, $r_P(H, W)$, ii) współczynnik korelacji Spearmana, $r_S(H, W)$, iii) współczynnik korelacji Kendalla, $r_S(H, W)$.
 - c) Narysować estymatory gęstości zmiennych H i W.

- d) Zweryfikować hipotezy że H i W pochodzą z rozkładów normalnych.e) Sporządzić rozrzut zmiennych H i W.