Khôlles de Mathématiques - Semaine 7

Kylian Boyet, George Ober, Elijah Gaillard, Felix Rondeau, Hugo Vangilluwen (relecture)

10 novembre 2023

1 Résolution de l'ED $\forall t \in J, y' + a_0(t)y = b(t)$ par équivalences avec la méthode du facteur intégral.

Démonstration. Pour cette preuve, il est nécessaire de supposer a_0 et b continues. Ainsi, on note A la primitive de a_0 définie sur J.

$$f: J \longmapsto \mathbb{C} \text{ est solution de} \\ y' + a_0 y = b \text{ sur } J \qquad \Longleftrightarrow \begin{cases} f \in \mathcal{D}^1(J, \mathbb{K}) \\ f' + a_0 = b \text{ sur } J \end{cases}$$

$$\iff \begin{cases} f \in \mathcal{D}^1(J, \mathbb{K}) \\ f'e^A + \underbrace{a_0}_{=A'} fe^A = be^A \text{ sur } J \quad (e^A \text{ est le facteur intégrant}) \end{cases}$$

$$(\text{on note } B \text{ une primitive de } be^A \\ \text{définie sur } J \text{ car } b \text{ et } e^A \text{ sont continues} \end{cases} \iff \begin{cases} f \in \mathcal{D}^1(J, \mathbb{K}) \\ (fe^A)' = B' \text{ sur } J \end{cases}$$

$$\iff \begin{cases} f \in \mathcal{D}^1(J, \mathbb{K}) \\ (fe^A - B)' = 0 \text{ sur } J \end{cases}$$

$$\iff \begin{cases} f \in \mathcal{D}^1(J, \mathbb{K}) \\ (fe^A - B)' = 0 \text{ sur } J \end{cases}$$

$$\iff \begin{cases} f \in \mathcal{D}^1(J, \mathbb{K}) \\ \exists \lambda \in \mathbb{K} : fe^A - B = \lambda \end{cases}$$

$$\iff \exists \lambda \in \mathbb{K} : f = \lambda e^{-A} + Be^{-A}$$

$$\iff f \in \{\lambda e^{-A} + Be^{-A}\}$$

Ainsi, les solution de l'équation différentielle sont

$$S = \underbrace{Be^{-A}}_{\text{sol. particulière}} + \underbrace{\left\{\lambda e^{-A} + Be^{-A}\right\}}_{\text{droite vect. des sol. de l'EDLH}}$$

2 Théorème de résolution des EDLH d'ordre 2 à coefficients constants complexes.

Soient $(a_0, a_1, a_2) \in \mathbb{C}^2 \times \mathbb{C}^*$. Notons S_H l'ensemble des solutions définies sur \mathbb{R} de

$$a_2y'' + a_1y' + a_0 = 0$$

Alors, S_H est un plan vectoriel (espace vectoriel de dimension 2). Plus précisément, en notant Δ le discrimianat de l'équation caractéristique de l'équation différentielle ci-dessus,

 \star si $\Delta=0,$ l'équation caractéristique admet une unique racine double r_0 et

$$S_{H} = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ t & \longmapsto & (\lambda + \mu t)e^{r_{0}t} \end{array} \middle| (\lambda, \mu) \in \mathbb{C}^{2} \right\}$$

$$= \left\{ \lambda \left(\begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ t & \longmapsto & e^{r_{0}t} \end{array} \right) \middle| (\lambda, \mu) \in \mathbb{C}^{2} \right\}$$

$$= \operatorname{Vect} \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ t & \longmapsto & e^{r_{0}t} \end{array} \right, \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ t & \longmapsto & te^{r_{0}t} \end{array} \right\}$$

 \star si $\Delta \neq 0,$ l'équation caractéristique admet deux solution distinctes r_1 et r_2 et

$$S_{H} = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ t & \longmapsto & \lambda e^{r_{1}t} + \mu e^{r_{2}t} \end{array} \middle| (\lambda, \mu) \in \mathbb{C}^{2} \right\}$$

$$= \left\{ \lambda \left(\begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ t & \longmapsto & e^{r_{1}t} \end{array} \right) + \mu \left(\begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ t & \longmapsto & e^{r_{2}t} \end{array} \right) \middle| (\lambda, \mu) \in \mathbb{R}^{2} \right\}$$

$$= \text{Vect} \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ t & \longmapsto & e^{r_{1}t} \end{array} \right, \quad t & \longmapsto & e^{r_{2}t} \end{array} \right\}$$

 $D\acute{e}monstration.$ Dans $\mathbb C$, l'équation caractéristique admet au moins une solution que l'on note r. On a donc

$$a_2r^2 + a_1r^1 + a_0 = 0$$

Soit $\lambda \in \mathcal{D}^2(\mathbb{R}, \mathbb{C})$.

$$t \mapsto \lambda(t)e^{rt} \text{ est solution}$$

$$\det \text{ l'EDLH}_2 \text{ sur } \mathbb{R}$$

$$\iff a_2 \left(\lambda f_r\right)'' + a_1 \left(\lambda f_r\right)' + a_0 \lambda f_r = 0 \quad \text{sur } \mathbb{R}$$

$$\iff a_2 \left(\lambda'' f_r + \lambda' f_r' + \lambda f_r' + \lambda f_r''\right) + a_1 \left(\lambda' f_r + \lambda f_r'\right) + a_0 \lambda f_r = 0$$

$$\iff a_2 \left(\lambda'' f_r + 2r \lambda' f_r + \lambda r^2 f_r\right) + a_1 \left(kl' f_r + \lambda r f_r\right) + a_0 \lambda f_r = 0$$

$$f_r \neq 0 \text{ sur } \mathbb{R} \iff a_2 \lambda'' + \left(2a_2 r + a_1\right) \lambda' + a_2 r^2 + a_1 r + a_0 \lambda = 0$$

$$\iff a_2 \lambda'' + \left(2a_2 r + a_1\right) \lambda' = 0 \quad \text{sur } \mathbb{R}$$

$$\iff \lambda' \text{ sol. définie sur } \mathbb{R} \text{ de l'EDLH}_1 \ a_2 y' + \left(2a_2 r + a_1\right) y = 0 \quad (1)$$

L'EDL H_1 ci-dessus admet comme droite vectorielle de solutions définies sur $\mathbb R$

$$\left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ t & \longmapsto & \alpha e^{-\left(\frac{2a_2r+a_1}{a_2}\right)t} \end{array} \middle| \alpha \in \mathbb{C} \right\}$$

Ainsi,

$$te \iff \exists \alpha \in \mathbb{C} : \forall t \in \mathbb{R}, \lambda'(t) = \alpha e^{-\left(\frac{2a_2r + a_1}{a_2}\right)}$$

$$\iff \exists (\alpha, \beta) \in \mathbb{C}^2 : \forall t \in \mathbb{R}, \begin{cases} \lambda(t) = \frac{\alpha}{-\left(2r + \frac{a_1}{a_2}\right)} e^{-\left(2r + \frac{a_1}{a_2}\right)t} + \beta & \text{sinon} \\ \lambda(t) = \alpha t + \beta & \text{si} \ 2r + \frac{a_1}{a_2} = 0 \end{cases}$$

On remarque que

$$2r + \frac{a_1}{a_2} = 0 \iff 2r = -\frac{a_1}{a_2} \iff \text{l'éq. caract\'eristique admet} \iff \Delta = 0$$
 somme des racines de l'eq. carac

Donc

 $\star\,$ si $\Delta=0,$ appelons r_0 la racine double de l'équation caractéristique. Alors

$$t\mapsto \lambda(t)e^{r_0t} \text{ est solution} \\ \text{de l'EDLH}_2 \text{ sur } \mathbb{R} \iff \exists (\alpha,\beta) \in \mathbb{C}^2 : \forall t \in \mathbb{R}, \lambda(t) = \alpha t + \beta$$

 \star si $\Delta \neq 0$, notons r_1 et r_2 les deux racines de l'équation caractéristique et prenons $r=r_1$. Dans ce cas,

$$2r_1 + \frac{a_1}{a_2} = 2r_1 + (-r_1 - r_2) = r_1 - r_2$$

d'où

$$t\mapsto \lambda(t)e^{r_1t} \text{ est solution} \\ \det \text{l'EDLH}_2 \text{ sur } \mathbb{R} \\ \iff \exists (\alpha,\beta) \in \mathbb{C}^2 : \forall t \in \mathbb{R}, \lambda(t) = \frac{\alpha}{r_2-r_1}e^{(r_2-r_1)t} + \beta \\ \iff \exists (\alpha',\beta) \in \mathbb{C}^2 : \forall t \in \mathbb{R}, \lambda(t) = \alpha'e^{(r_2-r_1)t} + \beta$$

Observons que $f_r: \mathbb{R} \to \mathbb{C}$ est solution de l'équation homogène si et seulement si

$$f_r: \mathbb{R} \to \mathbb{C}$$
 est solution de l'EDLH₂ $\iff \frac{f}{f_r} f_r$ est une solution sur \mathbb{R} de l'équation homogène $\iff \frac{f}{f_r} \in \{\text{fonctions } \lambda \text{ déterminées ci-dessus}\}$ $\iff f \in \{f_r \times \text{ fonction } \lambda \text{ déterminées ci-dessus}\}$

Ainsi, $f_r: \mathbb{R} \to \mathbb{C}$ est solution de l'équation homogène si et seulement si

$$\begin{cases} f \in \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ t & \longmapsto & e^{r_0 t} (\alpha t + \beta) \end{array} \middle| (\alpha, \beta) \in \mathbb{C}^2 \right\} & \text{si } \Delta = 0 \\ f \in \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ t & \longmapsto & e^{r_1 t} \left(\alpha' e^{(r_2 - r_1) t} + \beta \right) \end{array} \middle| (\alpha', \beta) \in \mathbb{C}^2 \right\} & \text{si } \Delta \neq 0 \end{cases}$$

3 Caractérisation des fonctions exponentielles et de la fonction nulle par la propriété de dérivabilité en 0 et celle de morphisme de $(\mathbb{R}, +)$ dans (\mathbb{C}, \times) .

(i) Comme solution d'un problème de Cauchy. Soit $\alpha \in \mathbb{C}$.

$$\mathbb{R} \longrightarrow \mathbb{C} \\
t \longmapsto e^{\alpha t} \text{ est l'unique solution de } \begin{cases}
y' - \alpha y = 0 \\
y(0) = 1
\end{cases}$$

(ii) Par la propriété de morphisme et de non-annulation.

 $D\acute{e}monstration(i)$ Soit $\alpha \in \mathbb{C}$. Le problème de Cauchy

$$\begin{cases} y' - \alpha y &= 0 \\ y(0) &= 1 \end{cases}$$

admet une unique solution car l'EDL₁ est résolue et à coefficients et second membre continus. Par ailleurs, en notant

$$f: \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ t & \longmapsto & e^{\alpha t} \end{array}$$

on a bien

$$f(0) = 1$$
 , $f \in \mathcal{D}^1(\mathbb{R}, \mathbb{C})$ et $\forall t \in \mathbb{R}, f'(t) = \alpha e^{\alpha t} = \alpha f(t)$

donc f est solution du problème de Cauchy, et par unicité de la solution d'un problème de Cauchy, elle est unique.

(ii) Procédons par analyse-synthèse.

ightharpoonup Analyse. Soit $f: \mathbb{R} \longrightarrow \mathbb{C}$ telle que

$$\begin{cases} f \text{ est d\'erivable en 0} \\ \forall (s, u) \in \mathbb{R}^2, f(s+u) = f(s)f(u) \end{cases}$$
 (1)

$$\forall (s, u) \in \mathbb{R}^2, f(s+u) = f(s)f(u) \tag{2}$$

On obtient, en particularisant (2) pour $(s, u) \leftarrow (0, 0)$

$$f(0+0) = f(0)f(0)$$
 donc $f(0) - f(0)^2 = 0$ donc $f(0) \in \{0, 1\}$

○ Supposons que f(0) = 0. Soit $x \in \mathbb{R}$ fixé quelconque. Appliquons (2) pour $(s, u) \leftarrow (x, 0)$:

$$f(x+0) = f(x)\underbrace{f(0)}_{=0}$$
 donc $f(x) = 0$ donc $f = \widetilde{0}$

• Supposons à présent f(0) = 1. Soit $x \in \mathbb{R}$ et $h \in \mathbb{R}^*$ fixés quelconques.

$$\frac{f(x+h) - f(x)}{h} = \frac{f(x)f(h) - f(x)}{h} = f(x)\frac{f(h) - 1}{h}$$

f(0) valant 1, on reconnaît le taux d'acroissement en 0 de la fonction f. On a donc

$$\frac{f(x+h) - f(x)}{h} \xrightarrow[h \to 0]{} f(x)f'(0)$$

donc f est dérivable en x (par hypothèse) et f'(x) = f'(0)f(x). Ainsi,

$$\begin{cases} f \in \mathcal{D}(\mathbb{R}, \mathbb{C}) \\ f \text{ est solution de } y' - f'(0)y = 0 \end{cases}$$

La droite vectorielle des solution de y' - f'(0)y = 0 est

$$\left\{\begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ t & \longmapsto & \lambda e^{f'(0)t} \end{array} \middle| \lambda \in \mathbb{C} \right\}$$

donc

$$\exists \lambda \in \mathbb{C} : \forall t \in \mathbb{R}, f(t) = \lambda e^{f'(0)t}$$

or, f(0) = 1, donc pour t = 0, on trouve $1 = \lambda e^0 = \lambda$. On a donc

$$\forall t \in \mathbb{R}, f(t) = e^{f'(0)t} \quad \text{d'où} \quad f \in \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ t & \longmapsto & e^{\alpha t} \end{array} \middle| \alpha \in \mathbb{C} \right\}$$

ce qui prouve l'inclusion.

 \triangleright Synthèse.

 \circ $\widetilde{0}$ est dérivable en 0 et

$$\forall (s, u) \in \mathbb{R}^2, \left(\widetilde{0}(s+u) = 0 \text{ et } \widetilde{0}(s) \cdot \widetilde{0}(u) = 0\right)$$

 $\circ\,$ Soit $\alpha\in\mathbb{C}$ fixé quel conque. Posons

$$f: \left| \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ t & \longmapsto & e^{\alpha t} \end{array} \right|$$

 $\rightarrow f$ est dérivable en 0 (car $f = exp_{\mathbb{C}} \circ (t \mapsto \alpha t)$).

$$\rightarrow \forall (s,u) \in \mathbb{R}^2, f(s+u) = e^{\alpha(s+u)} = e^{\alpha s} \cdot e^{\alpha u}$$

ce qui prouve l'inclusion réciproque.

4 Preuve de l'expression des solutions réelles des EDL homogènes d'ordre 2 à coefficients constants réels dans le cas $\Delta < 0$ (en admettant la connaissance de l'expression des solutions à valeurs complexes des EDLH2 à coeff. constants).

Démonstration. Notons $\mathcal{S}_{H,\mathbb{C}}$ et $\mathcal{S}_{H,\mathbb{R}}$ les ensembles des solutions complexes et réelles de l'équation différentielle, puisque nous nous plaçons dans le cas $\Delta < 0$ et $\alpha \pm i\beta$ les deux racines complexes conjuguées.

$$\mathcal{S}_{H,\mathbb{C}} = \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{C} \\ t \mapsto \lambda e^{(\alpha + i\beta)t} + \mu e^{(\alpha - i\beta)t} \end{array} \middle| (\lambda, \mu) \in \mathbb{C}^2 \right\}$$

Montrons que $\forall f \in \mathcal{S}_{H,\mathbb{C}}, \operatorname{Re}(f) \in \mathcal{S}_{H,\mathbb{R}}.$ Soit $f \in \mathcal{S}_{H,\mathbb{C}}$ fq.

$$f \in \mathcal{D}^2(\mathbb{R}, \mathbb{C}) \implies \operatorname{Re}(f) \in \mathcal{D}^2(\mathbb{R}, \mathbb{R})$$

Et, de plus, par morphisme additif de Re

$$a_2 \text{Re}(f)'' + a_1 \text{Re}(f)' + a_0 \text{Re}(f) = \text{Re}(a_2 f'' + a_1 f' + a_0 f) = 0$$

D'où, avec $f: t \mapsto e^{(\alpha+i\beta)t}$; $\operatorname{Re}(f(t)) = \operatorname{Re}(e^{(\alpha+i\beta)t}) = e^{\alpha t} \cos(\beta t)$. Qui appartient donc à $\mathcal{S}_{H,\mathbb{R}}$. En suivant le même raisonnement pour $\operatorname{Im}(f)$, $(t \mapsto e^{\alpha} \sin(\beta t)) \in \mathcal{S}_{H,\mathbb{R}}$.

Ainsi, par combinaison linéaire (qui se base sur le principe de superposition),

$$\left\{ \begin{array}{l} \mathbb{R} \to \mathbb{R} \\ t \mapsto \lambda e^{\alpha t} \cos(\beta t) + \mu e^{\alpha t} \sin(\beta t) \end{array} \middle| (\lambda, \mu) \in \mathbb{R}^2 \right\} \subset \mathcal{S}_{H, \mathbb{R}}$$

Réciproquement, soit $f \in \mathcal{S}_{H,\mathbb{R}}$ fq. Puisque $\mathbb{R} \subset \mathbb{C}$, $f \in \mathcal{S}_{H,\mathbb{C}}$.

$$\exists (a,b) \in \mathbb{C}^2 : f \mid \begin{array}{c} \mathbb{R} \to \mathbb{C} \\ t \mapsto ae^{(\alpha+i\beta)t} + be^{(\alpha-i\beta)t} \end{array}$$

Or, puisque toutes les valeurs de f sont réelles, en notant (a_r, a_i, b_r, b_i) les parties réelles et imaginaires respectives de a et b.

$$\forall t \in \mathbb{R}, f(t) = \operatorname{Re}(f(t))$$

$$= \operatorname{Re}(ae^{(\alpha+i\beta)t} + be^{(\alpha-i\beta)t})$$

$$= \operatorname{Re}((a_r + ia_i)e^{(\alpha+i\beta)t} + (b_r + ib_i)e^{(\alpha-i\beta)t})$$

$$= a_r \cos(\beta t)e^{\alpha} - a_i \sin(\beta t)e^{\alpha} + b_r \cos(\beta t)e^{\alpha} + b_i \sin(\beta t)e^{\alpha}$$

$$= (a_r + b_r)\cos(\beta t)e^{\alpha} + (b_i - a_i)\sin(\beta t)e^{\alpha}$$

Ainsi,

$$f \in \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{R} \\ t \mapsto \lambda e^{\alpha t} \cos(\beta t) + \mu e^{\alpha t} \sin(\beta t) \end{array} \middle| (\lambda, \mu) \in \mathbb{R}^2 \right\}$$

Ce qui conclut la preuve par double inclusion.

5 Existence et unicité d'une solution au problème de Cauchy pour les EDL d'ordre 2 à coefficients constants et second membre continu sur *I* (cas complexe puis cas réel).

Considérons le problème de Cauchy suivant :

$$\begin{cases} a_{2}y'' + a_{1}y' + a_{0}y = b \text{ sur } J \\ y(t_{0}) = \alpha_{0} \\ y'(t_{0}) = \alpha_{1} \end{cases} \text{ où } (\alpha_{0}, \alpha_{1}) \in \mathbb{K}^{2}, t_{0} \in J, (a_{0}, a_{1}, a_{2}) \in \mathbb{K}^{2} \times \mathbb{K}^{*}, b \in \mathcal{F}(J, \mathbb{K})$$

Si b est continu sur J, alors ce problème de Cauchy admet une unique solution définie sur J.

Démonstration.

1. Cas $\mathbb{K} = \mathbb{C}$

Nous savons que sous l'hyphothèse de continuité de b sur J, les solutions de (EDL2) définies sur J constituent le plan affine S:

$$S = \left\{ \lambda f_1 + \mu f_2 + s | (\lambda, \mu) \in \mathbb{C}^2 \right\}$$

où s est une solution particulière de (EDL2), (f_1, f_2) sont deux solutions de (EDLH2) qui engendrent S_h . On a :

$$f: J \to \mathbb{C} \text{ est sol. du pb de Cauchy} \iff \begin{cases} f \text{ sol de (EDL2) sur } J \\ f(t_0) = \alpha_0 \\ f'(t_0) = \alpha_1 \end{cases}$$

$$\iff \begin{cases} f \in S \\ f(t_0) = \alpha_0 \\ f'(t_0) = \alpha_1 \end{cases}$$

$$\iff \exists (\lambda, \mu) \in \mathbb{C}^2 : \begin{cases} f = \lambda f_1 + \mu f_2 + s \\ \lambda f_1(t_0) + \mu f_2(t_0) + s(t_0) = \alpha_0 \\ \lambda f'_1(t_0) + \mu f'_2(t_0) + s'(t_0) = \alpha_1 \end{cases}$$

$$\iff \exists (\lambda, \mu) \in \mathbb{C}^2 : \begin{cases} f = \lambda f_1 + \mu f_2 + s \\ \lambda f_1(t_0) + \mu f'_2(t_0) = \alpha_0 - s(t_0) \\ \lambda f'_1(t_0) + \mu f'_2(t_0) = \alpha_1 - s'(t_0) \end{cases}$$

On en déduit donc que (λ, μ) doit être solution d'un système linéaire (2, 2). On a une unique solution si et seulement si les déterminant de ce système est non nul. Explicitons alors le déterminant de ce système, que l'on notera D.

$$D = \begin{vmatrix} f_1(t_0) & f_2(t_0) \\ f'_1(t_0) & f'_2(t_0) \end{vmatrix} = f_1(t_0) \cdot f'_2(t_0) - f_2(t_0) \cdot f'_1(t_0)$$

Notons Δ le discriminant de l'équation caractéristique de (EDL2) $(a_2r^2 + a_1r^1 + a_0 = 0)$. On distingue alors deux cas selon la nullité ou non de Δ . Traitons d'abord le cas $\Delta \neq 0$. On peut choisir :

$$f_1(t_0) = e^{r_1 t_0}$$
 et $f_2(t_0) = e^{r_2 t_0}$
 $f'_1(t_0) = r_1 e^{r_1 t_0}$ et $f'_2(t_0) = r_2 e^{r_2 t_0}$

Donc (en sachant que $\Delta \neq 0 \Rightarrow r_1 \neq r_2$):

$$D = e^{r_1 t_0} \cdot r_2 e^{r_2 t_0} - r_1 e^{r_1 t_0} \cdot e^{r_2 t_0} = (r_2 - r_1) \cdot e^{r_1 t_0 + r_2 t_0} \neq 0$$

Dans le deuxième cas, on a $\Delta = 0$; on peut alors prendre :

$$f_1(t_0) = e^{r_0 t_0}$$
 et $f_2(t_0) = t_0 e^{r_0 t_0}$

Ainsi:

$$D = e^{r_0 t_0} \left(r_0 t_0 e^{r_0 t_0} + e^{r_0 t_0} \right) - r_0 e^{r_0 t_0} \times t_0 e^{r_0 t_0} = e^{2r_0 t_0} \neq 0$$

On remarque alors que, dans les deux cas, $D \neq 0$, donc le système (2,2) étudié admet une unique solution, donc il existe un unique couple (λ, μ) le vérifiant d'où l'unicité et existence d'une solution au problème de Cauchy.

2. Cas $\mathbb{K} = \mathbb{R}$

Dans cette partie, $(a_0, a_1, a_2) \in \mathbb{R}^2 \times \mathbb{R}^*, (\alpha_0, \alpha_1) \in \mathbb{R}^2$ et $b \in C^0(J, \mathbb{R})$.

- ightharpoonup Existence. Puisque $\mathbb{R} \subset \mathbb{C}$, le problème de Cauchy admet, dans \mathbb{R} , une solution à valeurs complexes g. Posons f = Re(g) et montrons que f est une solution réelle du problème de Cauchy.
 - $\star g \in \mathcal{D}^2(J,\mathbb{C}) \text{ donc } f \in \mathcal{D}^2(J,\mathbb{R})$
 - $\star g$ vérifie $a_2g'' + a_1g' + a_0g = b$ sur J donc en prenant $\text{Re}(\cdot)$:

$$\operatorname{Re}(a_2 g'' + a_1 g' + a_0 g = b) = \operatorname{Re}(b) \iff a_2 \operatorname{Re}(g'') + a_1 \operatorname{Re}(g') + a_0 \operatorname{Re}(g) = b$$

$$\iff a_2 f'' + a_1 f' + a_0 f = b \operatorname{sur} J$$

$$\star f(t_0) = \operatorname{Re}(g(t_0)) = \operatorname{Re}(\alpha_0) = \alpha_0$$

$$\star f'(t_0) = \text{Re}(g(t_0))' = \text{Re}(g'(t_0)) = \text{Re}(\alpha_1) = \alpha_1$$

Donc f est une solution réelle définie sur J au problème de Cauchy.

ightharpoonup Unicité. Soient f_1 et f_2 deux fonctions à valeurs réelles solutions du problème de Cauchy ci-dessus fixées quelconques : puisque $\mathbb{R} \subset \mathbb{C}$, f_1 et f_2 sont des fonctions à valeurs dans \mathbb{C} solutions du même problème de Cauchy ; or il y a unicité de la solution au problème de Cauchy dans les fonctions à valeurs complexes, donc $f_1 = f_2$ dans $\mathcal{F}(J, \mathbb{C})$, donc $f_1 = f_2$ dans $\mathcal{F}(J, \mathbb{R})$.