Linear Programming

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 11

Optimization problems

- Many computational tasks involve optimization
 - Shortest path
 - Minimum cost spanning tree
 - Longest common subsequence

Optimization problems

- Many computational tasks involve optimization
 - Shortest path
 - Minimum cost spanning tree
 - Longest common subsequence
- ... subject to constraints
 - Shortest path follows edges in the graph
 - Spanning tree is a subset of the given edges
 - Subsequence letters are from the given words

Optimization problems

- Many computational tasks involve optimization
 - Shortest path
 - Minimum cost spanning tree
 - Longest common subsequence
- ... subject to constraints
 - Shortest path follows edges in the graph
 - Spanning tree is a subset of the given edges
 - Subsequence letters are from the given words

Linear programming

- Constraints and objective to be optimized are linear functions
 - Constraints: $a_1x_1 + a_2x_2 + \cdots + a_mx_m \le K$, $b_1x_1 + b_2x_2 + \cdots + b_mx_m \ge L$, ...
 - Objective: $c_1x_1 + c_2x_2 + \cdots + c_mx_m$

2 / 10

- Profit for each box of barfis is Rs 100
- Profit for each box of halwa is Rs 600

- Profit for each box of barfis is Rs 100
- Profit for each box of halwa is Rs 600
- Daily demand for barfis is at most 200 boxes
- Daily demand for halwa is at most 300 boxes

- Profit for each box of barfis is Rs 100
- Profit for each box of halwa is Rs 600
- Daily demand for barfis is at most 200 boxes
- Daily demand for halwa is at most 300 boxes
- Staff can produce 400 boxes a day, altogether

- Profit for each box of barfis is Rs 100
- Profit for each box of halwa is Rs 600
- Daily demand for barfis is at most 200 boxes
- Daily demand for halwa is at most 300 boxes
- Staff can produce 400 boxes a day, altogether
- What is the most profitable mix of barfis and halwa to produce?

Grandiose Sweets sells cashew barfis and dry fruit halwa.

Linear programming model

- Profit for each box of barfis is Rs 100
- Profit for each box of halwa is Rs 600
- Daily demand for barfis is at most 200 boxes
- Daily demand for halwa is at most 300 boxes
- Staff can produce 400 boxes a day, altogether
- What is the most profitable mix of barfis and halwa to produce?

Grandiose Sweets sells cashew barfis and dry fruit halwa.

- Profit for each box of barfis is Rs 100
- Profit for each box of halwa is Rs 600
- Daily demand for barfis is at most 200 boxes
- Daily demand for halwa is at most 300 boxes
- Staff can produce 400 boxes a day, altogether
- What is the most profitable mix of barfis and halwa to produce?

Linear programming model

- **b** boxes of barfi to produce per day
- h boxes of halwa to produce per day

3 / 10

Grandiose Sweets sells cashew barfis and dry fruit halwa.

- Profit for each box of barfis is Rs 100
- Profit for each box of halwa is Rs 600
- Daily demand for barfis is at most 200 boxes
- Daily demand for halwa is at most 300 boxes
- Staff can produce 400 boxes a day, altogether
- What is the most profitable mix of barfis and halwa to produce?

Linear programming model

- **b** boxes of barfi to produce per day
- h boxes of halwa to produce per day
- **Profit:** 100b + 600h

Grandiose Sweets sells cashew barfis and dry fruit halwa.

- Profit for each box of barfis is Rs 100
- Profit for each box of halwa is Rs 600
- Daily demand for barfis is at most 200 boxes
- Daily demand for halwa is at most 300 boxes
- Staff can produce 400 boxes a day, altogether
- What is the most profitable mix of barfis and halwa to produce?

Linear programming model

- **b** boxes of barfi to produce per day
- h boxes of halwa to produce per day
- Profit: 100b + 600h
- Demand constraints:
 - **■** *b* ≤ 200
 - $h \le 300$

As demand for barfis is at most 200 boxes so there is no point in producing more than that, and thus b <= 200

Similarly for halwa

Grandiose Sweets sells cashew barfis and dry fruit halwa.

- Profit for each box of barfis is Rs 100
- Profit for each box of halwa is Rs 600
- Daily demand for barfis is at most 200 boxes
- Daily demand for halwa is at most 300 boxes
- Staff can produce 400 boxes a day, altogether
- What is the most profitable mix of barfis and halwa to produce?

Linear programming model

- **b** boxes of barfi to produce per day
- h boxes of halwa to produce per day
- Profit: 100b + 600h
- Demand constraints:
 - *b* ≤ 200
 - *h* ≤ 300
- Production constraint: $b + h \le 400$

Grandiose Sweets sells cashew barfis and dry fruit halwa.

- Profit for each box of barfis is Rs 100
- Profit for each box of halwa is Rs 600
- Daily demand for barfis is at most 200 boxes
- Daily demand for halwa is at most 300 boxes
- Staff can produce 400 boxes a day, altogether
- What is the most profitable mix of barfis and halwa to produce?

Linear programming model

- **b** boxes of barfi to produce per day
- h boxes of halwa to produce per day
- Profit: 100b + 600h
- Demand constraints:
 - *b* ≤ 200
 - *h* ≤ 300
- Production constraint: $b + h \le 400$
- Implicit constraints:
 - $b \geq 0$
 - h > 0

as we cannot make -ve boxes of Barfis or Halwa right?

Objective

Maximize 100b + 600h

Linear programming model

- **b** boxes of barfi to produce per day
- h boxes of halwa to produce per day
- Profit: 100b + 600h
- Demand constraints:
 - *b* ≤ 200
 - *h* ≤ 300
- Production constraint: $b + h \le 400$
- Implicit constraints:
 - *b* ≥ 0
 - $h \ge 0$

Objective

■ Maximize 100b + 600h

Constraints

- *b* ≤ 200
- *h* < 300
- $b + h \le 400$
- b > 0
- $h \ge 0$

Linear programming model

- **b** boxes of barfi to produce per day
- h boxes of halwa to produce per day
- Profit: 100b + 600h
- Demand constraints:
 - **■** *b* ≤ 200
 - $h \le 300$
- Production constraint: $b + h \le 400$
- Implicit constraints:
 - $b \geq 0$
 - $h \ge 0$

Objective

■ Maximize 100b + 600h

Constraints

- *b* ≤ 200
- *h* < 300
- $b + h \le 400$
- b > 0
- $h \ge 0$

Pictorially

Objective

■ Maximize 100b + 600h

Constraints

- **b** ≤ 200
- *h* < 300
- $b + h \le 400$
- b > 0
- $h \ge 0$

Pictorially

5 / 10

Objective

■ Maximize 100b + 600h

Constraints

- *b* ≤ 200
- **h** ≤ 300
- $b + h \le 400$
- b > 0
- $h \ge 0$

Pictorially

5 / 10

Objective

■ Maximize 100b + 600h

Constraints

- *b* ≤ 200
- *h* < 300
- $b + h \le 400$
- b > 0
- $h \ge 0$

Pictorially

Objective

■ Maximize 100b + 600h

Constraints

- *b* ≤ 200
- *h* < 300
- $b + h \le 400$
- b > 0
- $b \geq 0$

So now all the values of b and h within this region are valid. And we need to maximize objective within this region.

Pictorially

Objective

■ Maximize 100b + 600h

Constraints

- *b* < 200
- *h* < 300
- $b + h \le 400$
- b > 0
- $h \ge 0$

Pictorially

Objective: c = 100b + 600h

5/10

Objective

■ Maximize 100b + 600h

Constraints

- *b* ≤ 200
- *h* < 300
- $b + h \le 400$
- b > 0
- $h \ge 0$

Pictorially

Objective: c = 100b + 600h

Objective

■ Maximize 100b + 600h

Constraints

- *b* ≤ 200
- *h* < 300
- $b + h \le 400$
- b > 0
- $h \ge 0$

Pictorially

Objective: c = 100b + 600h

Objective

■ Maximize 100b + 600h

Constraints

- *b* < 200
- *h* < 300
- $b + h \le 400$
- b > 0
- $h \ge 0$

Pictorially

Objective: c = 100b + 600h

5/10

Objective

■ Maximize 100b + 600h

Constraints

- *b* < 200
- *h* < 300
- $b + h \le 400$
- b > 0
- $h \ge 0$

Pictorially

Objective: c = 100b + 600h

Objective

■ Maximize 100b + 600h

Constraints

- *b* ≤ 200
- *h* ≤ 300
- $b + h \le 400$
- *b* ≥ 0
- $h \ge 0$

Optimal value always at some vertex in the graph

Objective: c = 100b + 600h

Simplex algorithm

■ Start at any vertex, evaluate objective

Simplex algorithm

- Start at any vertex, evaluate objective
- If an adjacent vertex has a better value, move

Simplex algorithm

- Start at any vertex, evaluate objective
- If an adjacent vertex has a better value, move
- If current vertex is better than all neighbours, stop

Simplex algorithm

- Start at any vertex, evaluate objective
- If an adjacent vertex has a better value, move
- If current vertex is better than all neighbours, stop
- Can be exponential, but efficient in practice

6 / 10

Simplex algorithm

- Start at any vertex, evaluate objective
- If an adjacent vertex has a better value, move
- If current vertex is better than all neighbours, stop
- Can be exponential, but efficient in practice
- Theoretically efficient algorithms exist

Simplex algorithm

- Start at any vertex, evaluate objective
- If an adjacent vertex has a better value, move
- If current vertex is better than all neighbours, stop
- Can be exponential, but efficient in practice
- Theoretically efficient algorithms exist

Existence of solutions

Following conditions are must for the solution to exist

Simplex algorithm

- Start at any vertex, evaluate objective
- If an adjacent vertex has a better value, move
- If current vertex is better than all neighbours, stop
- Can be exponential, but efficient in practice
- Theoretically efficient algorithms exist

Existence of solutions

Simplex algorithm

- Start at any vertex, evaluate objective
- If an adjacent vertex has a better value, move
- If current vertex is better than all neighbours, stop
- Can be exponential, but efficient in practice
- Theoretically efficient algorithms exist

Existence of solutions

- Feasible region is convex
- May be empty constraints are unsatisfiable, no solutions

```
b >= 250
h >= 250
but
b + h <= 250
```

Solving linear programs

Simplex algorithm

- Start at any vertex, evaluate objective
- If an adjacent vertex has a better value, move
- If current vertex is better than all neighbours, stop
- Can be exponential, but efficient in practice
- Theoretically efficient algorithms exist

Existence of solutions

- Feasible region is convex
- May be empty constraints are unsatisfiable, no solutions
- May be unbounded no upper/lower limit on objective

Grandiose Sweets adds almond rasmalai

■ Profit per box: barfis – Rs 100, halwa – Rs 600, rasmalai – Rs 1300

- Profit per box: barfis Rs 100, halwa Rs 600. rasmalai – Rs 1300
- Daily demand, in boxes: barfis 200, halwa - 300, rasmalai - unlimited

- Profit per box: barfis Rs 100, halwa Rs 600, rasmalai Rs 1300
- Daily demand, in boxes: barfis 200, halwa 300, rasmalai unlimited
- Production capacity: 400 boxes a day, altogether

- Profit per box: barfis Rs 100, halwa Rs 600, rasmalai Rs 1300
- Daily demand, in boxes: barfis 200, halwa 300, rasmalai unlimited
- Production capacity: 400 boxes a day, altogether
- Milk supply is limited
 - 600 boxes halwa or 200 boxes rasmalai
 - Or any combination (rasmalai needs 3 times as much milk)

- Profit per box: barfis Rs 100, halwa Rs 600, rasmalai Rs 1300
- Daily demand, in boxes: barfis 200, halwa 300, rasmalai unlimited
- Production capacity: 400 boxes a day, altogether
- Milk supply is limited
 - 600 boxes halwa or 200 boxes rasmalai
 - Or any combination (rasmalai needs 3 times as much milk)
- Most profitable mix to produce?

Grandiose Sweets adds almond rasmalai

- Profit per box: barfis Rs 100, halwa Rs 600, rasmalai Rs 1300
- Daily demand, in boxes: barfis 200, halwa 300, rasmalai unlimited
- Production capacity: 400 boxes a day, altogether
- Milk supply is limited
 - 600 boxes halwa or 200 boxes rasmalai
 - Or any combination (rasmalai needs 3 times as much milk)
- Most profitable mix to produce?

New linear program

Grandiose Sweets adds almond rasmalai

- Profit per box: barfis Rs 100, halwa –
 Rs 600, rasmalai Rs 1300
- Daily demand, in boxes: barfis 200, halwa 300, rasmalai unlimited
- Production capacity: 400 boxes a day, altogether
- Milk supply is limited
 - 600 boxes halwa or 200 boxes rasmalai
 - Or any combination (rasmalai needs 3 times as much milk)
- Most profitable mix to produce?

New linear program

Objective

■ Maximize 100b + 600h + 1300r

Grandiose Sweets adds almond rasmalai

- Profit per box: barfis Rs 100, halwa Rs 600, rasmalai Rs 1300
- Daily demand, in boxes: barfis 200, halwa 300, rasmalai unlimited
- Production capacity: 400 boxes a day, altogether
- Milk supply is limited
 - 600 boxes halwa or 200 boxes rasmalai
 - Or any combination (rasmalai needs 3 times as much milk)
- Most profitable mix to produce?

New linear program

Objective

■ Maximize 100b + 600h + 1300r

- **■** *b* ≤ 200
- $h \le 300$

Grandiose Sweets adds almond rasmalai

- Profit per box: barfis Rs 100, halwa Rs 600, rasmalai Rs 1300
- Daily demand, in boxes: barfis 200, halwa 300, rasmalai unlimited
- Production capacity: 400 boxes a day, altogether
- Milk supply is limited
 - 600 boxes halwa or 200 boxes rasmalai
 - Or any combination (rasmalai needs 3 times as much milk)
- Most profitable mix to produce?

New linear program

Objective

■ Maximize 100b + 600h + 1300r

- *b* ≤ 200
- *h* ≤ 300
- $b + h + r \le 400$

Grandiose Sweets adds almond rasmalai

- Profit per box: barfis Rs 100, halwa Rs 600, rasmalai Rs 1300
- Daily demand, in boxes: barfis 200, halwa 300, rasmalai unlimited
- Production capacity: 400 boxes a day, altogether
- Milk supply is limited
 - 600 boxes halwa or 200 boxes rasmalai
 - Or any combination (rasmalai needs 3 times as much milk)
- Most profitable mix to produce?

New linear program

Objective

■ Maximize 100b + 600h + 1300r

- *b* ≤ 200
- *h* ≤ 300
- $b + h + r \le 400$
- $h + 3r \le 600$

Grandiose Sweets adds almond rasmalai

- Profit per box: barfis Rs 100, halwa Rs 600, rasmalai Rs 1300
- Daily demand, in boxes: barfis 200, halwa 300, rasmalai unlimited
- Production capacity: 400 boxes a day, altogether
- Milk supply is limited
 - 600 boxes halwa or 200 boxes rasmalai
 - Or any combination (rasmalai needs 3 times as much milk)
- Most profitable mix to produce?

New linear program

Objective

■ Maximize 100b + 600h + 1300r

- *b* ≤ 200
- *h* ≤ 300
- $b + h + r \le 400$
- $h + 3r \le 600$
- $b \ge 0$, $h \ge 0$, $r \ge 0$

New linear program

Objective

■ Maximize 100b + 600h + 1300r

- *b* < 200
- *h* < 300
- $b + h + r \le 400$
- $h + 3r \le 600$
- b > 0, h > 0, r > 0

New linear program

Objective

■ Maximize 100b + 600h + 1300r

Constraints

- *b* < 200
- *h* < 300
- $b + h + r \le 400$
- $h + 3r \le 600$
- $b \ge 0$, $h \ge 0$, $r \ge 0$

Again, optimal solutions are always on a vertex

New linear program

Objective

■ Maximize 100b + 600h + 1300r

- *b* < 200
- *h* < 300
- $b + h + r \le 400$
- $h + 3r \le 600$
- b > 0, h > 0, r > 0

• Why is (0, 300, 100) optimal?

- Why is (0, 300, 100) optimal?
- Profit is 100b + 600h + 1300r

- Why is (0, 300, 100) optimal?
- Profit is 100b + 600h + 1300r
- Consider the following constraints
 - (A) $h \le 300$
 - (*B*) $b + h + r \le 400$
 - (*C*) $h + 3r \le 600$

- Why is (0, 300, 100) optimal?
- Profit is 100b + 600h + 1300r
- Consider the following constraints
 - (A) $h \le 300$
 - (*B*) $b + h + r \le 400$
 - (*C*) $h + 3r \le 600$
- Combine as $100 \cdot (A) + 100 \cdot (B) + 400 \cdot (C)$

Trying to make a linear combination of constraints to match the resultant with our objective function to get an upper bound

- Why is (0, 300, 100) optimal?
- Profit is $\frac{100b + 600h + 1300r}{}$
- Consider the following constraints
 - (A) $h \leq 300$
 - (*B*) $b + h + r \le 400$
 - (*C*) $h + 3r \le 600$

Both are same and we managed to find upper bound for the objective (profit)

Result is $100b + 600h + 1300r \le 310000$

- Why is (0, 300, 100) optimal?
- Profit is 100b + 600h + 1300r
- Consider the following constraints
 - (A) $h \le 300$
 - (*B*) $b + h + r \le 400$
 - (C) h + 3r < 600
- Combine as $100 \cdot (A) + 100 \cdot (B) + 400 \cdot (C)$
- Result is $100b + 600h + 1300r \le 310000$
- LHS is profit, so value at (0,300,100) matches upper bound on profit

LP Duality

 We derived an upper bound on the objective through a linear combination of constraints

- Why is (0, 300, 100) optimal?
- Profit is 100b + 600h + 1300r
- Consider the following constraints

(A)
$$h \le 300$$

(*B*)
$$b + h + r \le 400$$

(*C*)
$$h + 3r \le 600$$

Combine as

$$100 \cdot (A) + 100 \cdot (B) + 400 \cdot (C)$$

- Result is $100b + 600h + 1300r \le 310000$
- LHS is profit, so value at (0,300,100) matches upper bound on profit

LP Duality

- We derived an upper bound on the objective through a linear combination of constraints
- This is always possible!

- Why is (0, 300, 100) optimal?
- Profit is 100b + 600h + 1300r
- Consider the following constraints

(A)
$$h \le 300$$

(*B*)
$$b + h + r \le 400$$

(*C*)
$$h + 3r \le 600$$

Combine as

$$100 \cdot (A) + 100 \cdot (B) + 400 \cdot (C)$$

- Result is $100b + 600h + 1300r \le 310000$
- LHS is profit, so value at (0,300,100) matches upper bound on profit

LP Duality

- We derived an upper bound on the objective through a linear combination of constraints
- This is always possible. This was not explained clearly, if needed see 2min video below
- Dual LP problem

- https://voutu.be/3YPqsJpYQJU?t=1560 Minimize linear combination of
- Variables are multipliers for the linear combination
- Implicit constraint: multipliers are non-negative
- Optimum solution solves both the original (primal) and the dual LP

- Why is (0, 300, 100) optimal?
- Profit is 100b + 600h + 1300r
- Consider the following constraints
 - (A) h < 300
 - (B) b + h + r < 400
 - (C) h + 3r < 600
- Combine as $100 \cdot (A) + 100 \cdot (B) + 400 \cdot (C)$
- Result is 100b + 600h + 1300r < 310000
- LHS is profit, so value at (0, 300, 100) matches upper bound on profit