

Successioni definite per ricorrenza

Consideriamo la successione che segue:

$$egin{cases} a_0=lpha\ a_{n+1}=f(a_n) \end{cases}$$
 esempio: $egin{cases} a_0=1\ a_{n+1}=\ln(1+a_n)
ightarrow a_0=1, a_2=ln2, a_3=ln(1+ln2)... \end{cases}$

Per definrie se una successione di questo tipo ha limite devo controllare se si tratta di una successione monotona

Condizione SUF. per la regolarità ($possedere\ limite$) di $\{a_n\}$ è la MONOTONIA

- Se $\{a_n\}$ non è limitata allora:
 - \circ Tende a $+\infty$
 - \circ Tende a $-\infty$

- Se $\{a_n\}$ è limitata allora ammette limite finito, ossia $l\in\mathbb{R}$
 - $\circ~$ Se $a_n o l$ allora $a_{n+1} o l$
 - $\circ \;\;$ Se f è una somma, un prodotto, un quoaziente o una composizione *allora* $f(a_n) o f(l)$

Sia $f:A\subset\mathbb{R} o\mathbb{R},l\in A$ si dice che l è punto fisso di f se f(l)=l

L'intersezione della funzione f con la bisettrice del 1° e del 3° quadrante definsce i punti fissi

