Contents Workshop 2

Midterm Exam Range

Date: October 23(Wed), 2019, 09:00 am

1) Understand Sokoban rules and code.

Link: https://github.com/GP101/Programming/blob/master/CProgramming/ConsoleApplication%20-%20sokoban%20codebase.cpp

2) Read Chapter 1 and 2 of text book.

- 1. Introduction → Big O Notation
- 2. Linked List

3) Memorize the Elementary Function Table.

- Elementary Number
- Elementary Function
- Euler Equation
- Integration of Power Function
- Get Position from Acceleration
- * Elementary Number

$$0,1,i,e,\pi$$

* Elementary Function

Function Type	Differentiation	Inverse	Differentiation
Power: x^2 , x^n	$2x^1, nx^{n-1}$	Root: \sqrt{x}	$\frac{1}{2\sqrt{x}}$
Exponential: e^x	e^x	Log: $\ln x$	$\frac{1}{x}$
Trigonometric: $\cos(x), \sin(x)$	$-\sin(x),\cos(x)$	Inverse Trigonometric: $acos(x), asin(x)$	

* Euler Equation

$$\begin{split} e^{i\theta} &= \cos(\theta) + i\sin(\theta) \\ e^{i\pi} &= \cos(\pi) + i\sin(\pi) \\ e^{i\pi} + 1 &= 0 \end{split}$$

* Integration of Power Function

$$\int x^n dx = \frac{1}{n+1} x^{n+1} + C$$

* Acceleration

$$\begin{split} v' &= v_0 + at \\ s' &= s_0 + v_0 t + \frac{1}{2} at^2 \end{split}$$

