

Thermo

Fachgebiet Thermodynamik
Fakultät III – Prozesswissenschaften

Aufgabe 16.1

In einem Kühlschrank sollen die Lebensmittel auf $T_{\rm Nutz} = 5\,^{\circ}{\rm C}$ abgekühlt werden. Dazu wird das Kältemittel R134a bei $T_{\rm Verd} = 0\,^{\circ}{\rm C}$ verdampft, vom trockengesättigten Zustand adiabatisch mit einem Wirkungsgrad $\eta_{\rm Komp} = 0.85$ komprimiert und dann isobar abgekühlt und kondensiert ohne Unterkühlung. Das Kondensat wird adiabatisch gedrosselt. Beantworten Sie die Fragen mit Hilfe des $\log(p)$ -h - Diagramms.

- a) Auf welchen Druck muss das Kältemittel komprimiert werden, wenn die Wärme mit mindestens $\Delta T = 10\,\mathrm{K}$ Temperaturdifferenz an die Umgebung $T_\mathrm{a} = 25\,^\circ\mathrm{C}$ (Sommer) abgegeben werden soll?
- b) Welche spezifische Kompressionsarbeit muss aufgebracht werden?
- c) Welche spezifische Wärme kann im Verdampfer aufgenommen werden?
- d) Wie groß ist die Leistungszahl des Kühlschranks?
- e) Welche Antriebsleistung ist nötig, wenn im Mittel $\dot{Q}=1.5\,\mathrm{kW}$ Wärme durch die Isolierung und durch das Öffnen der Kühlschranktür in den Kühlschrank gelangt?

Thermo

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

Aufgabe 16.2

In einer Tiefkühltruhe durchläuft das Kältemittel R134a den folgenden Kreisprozess: Das Kältemittel verlässt den Verdampfer als überhitzter Dampf mit der Temperatur $T_1 = -21\,^{\circ}\mathrm{C}$ und dem Druck $p_1 = 1.25\,\mathrm{bar}$. Der Verdichter ist als sogenannter "hermetischer Verdichter" ausgeführt, bei dem das Kältemittel zunächst die Wicklungen des Antriebsmotors isobar kühlt. Dabei nimmt es $\dot{Q}_{11a} = 10\,\mathrm{W}$ auf. Anschließend wird es mit einem isentropen Verdichterwirkungsgrad von $\eta_{S,V} = 0.75$ auf den Druck $p_2 = 7.25\,\mathrm{bar}$ verdichtet. Den isobaren Kondensator verlässt das Kältemittel als unterkühlte Flüssigkeit mit der Temperatur $T_3 = 27\,^{\circ}\mathrm{C}$. In der adiabaten Drossel wird das Kältemittel auf $p_4 = 1.25\,\mathrm{bar}$ entspannt und gelangt in diesem Zustand wieder in den

Verdampfer, in dem es die Kälteleistung $\dot{Q}_0 = 300\,\mathrm{W}$ aufnimmt. Umgebungs- und Raumtemperatur betragen $T_\mathrm{a} = 22\,^\circ\mathrm{C}$.

- a) Wie groß ist der Massenstrom des umlaufenden Kältemittels?
- b) Wie groß ist die Antriebsleistung P_{1a2} des Verdichters?
- c) Wie groß ist der Exergieverluststrom in der Drossel?

Stoffdaten von R134a:

T	ρ	h	s	
[°C]	$[\mathrm{kg/m^3}]$	[kJ/kg]	$[\mathrm{kJ/(kgK)}]$	
$p=1.25\mathrm{bar}$				
-21.381*	1362.5	171.85	0.8932	
-21.381**	6.4102	385.70	1.7426	
-21.000	6.3983	386.01	1.7438	
-16.000	6.2482	390.06	1.7597	
-15.000	6.2193	390.87	1.7629	
-14.000	6.1908	391.68	1.7660	
-13.000	6.1625	392.5	1.7691	

^{*} siedende Flüssigkeit ** gesättigter Dampf

T	ho	h	s	
[°C]	$[kg/m^3]$	[kJ/kg]	[kJ/(kg K)]	
$p=7.25\mathrm{bar}$				
27.000	1199.2	237.40	1.1293	
27.911*	1195.6	238.71	1.1337	
27.911**	35.289	413.79	1.7152	
41.000	32.703	427.21	1.7588	
42.000	32.531	428.22	1.762	
43.000	32.361	429.22	1.7652	
44.000	32.193	430.23	1.7684	
53.000	30.798	439.21	1.7963	
54.000	30.654	440.21	1.7994	
55.000	30.512	441.20	1.8024	
56.000	30.372	442.20	1.8054	