Zeitdiskrete Markowketten

Marcel Wienöbst

19.12.2017

Gambler's Ruin

• Das Gambler's Ruin Problem wird auf dem Wertebereich $\{0,1,2,\dots\}$ betrachtet.

- Zur Erinnerung: $A_k(1)$ ist die Wahrscheinlichkeit des Ruins (Absorption bei x=0, wenn mit Kapital k gestartet wird).
- Weiterhin gilt: $A_k(t)=c_1\lambda_1^k+c_2\lambda_2^k$, aber nun $A_0(t)=1$ und $\lim_{k\to\infty}|A_k(t)|<\infty$

Gambler's Ruin

• Es folgt:

$$a_k = A_k(1) = \begin{cases} 1 & \text{wenn } p \leq q, \\ (q/p)^k & \text{wenn } p > q \end{cases}$$

ullet Für die Dauer au_k bis zur Absorption ergibt sich

$$\tau_k = \begin{cases} k/(q-p), & \text{wenn } p < q, \\ \infty, & \text{wenn } p \geq q. \end{cases}$$

Wiederholung

Eigenschaften von Markowketten:

- irreduzibel
- aperiodisch
- transient/rekurrent
- ergodisch

Stationäre Wahrscheinlichkeitsverteilungen

Definition

Eine stationäre Wahrscheinlichkeitsverteilung einer Markowkette mit den Zuständen $\{1,2,...\}$ ist der nichtnegative Vektor $\pi=(\pi_1,\pi_2,...)^T$, der die Bedingungen $P\pi=\pi$ und $\Sigma_{i=1}^\infty\pi_i=1$ erfüllt.

Fakt

Für endliche Markowketten existiert immer eine stationäre Verteilung.

Theorem

Eine Markowkette sei stark ergodisch mit den Zuständen $\{1,2,\dots\}$ und der Übergangsmatrix P. Dann existiert eine eindeutige stationäre Verteilung $\pi=(\pi_1,\pi_2,\dots)^T$, $P\pi=\pi$, sodass

$$\lim_{n\to\infty}p_{ij}^{(n)}=\pi_i,\ \ \mathrm{für}\ i,j=1,2,\ldots$$

• Beweis kann bei Karlin und Taylor (1975) nachgelesen werden.

Weitere Eigenschaften endlicher Markowketten

Theorem

In einer endlichen Markowkette kann es keine null rekurrenten Zustände geben und nicht alle Zustände können transient sein. Daher ist jede endliche, irreduzible Markowkette positiv rekurrent.

Dazu:

Lemma

Ist j ein transienter Zustand einer Markovkette und i ein beliebiger Zustand der Markovkette, dann gilt:

$$\lim_{n \to \infty} p_{ji}^{(n)} = 0$$

Weitere Eigenschaften endlicher Markowketten

Wir definieren die Matrix der erwarteten
Ersteintrittswahrscheinlichkeiten bzw. Wiederkehrzeiten als:

$$M = (\mu_{ij}) = \begin{pmatrix} \mu_{11} & \mu_{12} & \dots & \mu_{1N} \\ \mu_{21} & \mu_{22} & \dots & \mu_{2N} \\ \vdots & \vdots & \dots & \vdots \\ \mu_{N1} & \mu_{N2} & \dots & \mu_{NN} \end{pmatrix}$$

- Bei einer naiven Berechnungsmethode von M müssten die Wahrscheinlichkeiten $\{f_{ii}^{(n)}\}$ und $\{f_{ji}^{(n)}\}$ betrachtet werden.
- Stattdessen können die folgenden Gleichungen aufgestellt werden:

$$\mu_{ji} = p_{ji} + \sum_{k=1, k \neq j}^{N} p_{ki} (1 + \mu_{jk}) = 1 + \sum_{k=1, k \neq j}^{N} p_{ki} \mu_{jk}.$$

In Matrixform:

$$M=1_{\{N,N\}}+(M-\operatorname{diag}(M))P$$

- Modellierung einer Population durch eine diskrete Markowkette, wobei der Zustand ${\cal X}_n$ die Größe der Population angibt.
- Zwei Fälle:
 - $\textbf{ 1} \ \, \text{ Die Population ist begrenzt: } X_n \in \{0,1,2,\ldots,N\}.$
 - $\textbf{ 2} \ \ \text{Die Population ist unbegrenzt:} \ X_n \in \{0,1,2,\dots\}.$
- In jedem Schritt $n \to n+1$ eine Geburt, ein Tod oder eine unveränderte Populationsgröße.
- b_i ist die Wahrscheinlichkeit einer Geburt, d_i die Wahrscheinlichkeit eines Todes. Dabei gibt i die Populationsgröße an. Wir setzen $b_0=d_0=0$ und bei einer beschränkten Population $b_N=0$.

 Es sind also die Übergangswahrscheinlichkeiten folgendermaßen definiert:

$$\begin{split} p_{ji} &= \mathsf{Prob}\{X_{n+1} = j | X_n = i\} \\ &= \begin{cases} b_i & \text{für } j = i+1 \\ d_i & \text{für } j = i-1 \\ 1-(b_i+d_i) & \text{für } j = i \\ 0 & \text{für } j \neq i-1, i, i+1 \end{cases} \end{split}$$

Die Übergangsmatrix sieht damit folgendermaßen aus:

$$P = \begin{pmatrix} 1 & d_1 & \dots & 0 & 0 \\ 0 & 1 - (b_1 + d_1) & \dots & 0 & 0 \\ 0 & b_1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 - (b_{N-1} + d_{N-1}) & d_N \\ 0 & 0 & \dots & b_{N-1} & 1 - d_N \end{pmatrix}$$

• Als gerichteter Graph ergibt sich:

- Es gibt zwei kommunizierende Klassen $\{0\}$ und $\{1,2,\ldots,N\}$. Dabei ist $\{0\}$ positiv rekurrent und alle weiteren Zustände sind transient.
- Es existiert eine eindeutige stationäre Verteilung π , wobei $\pi_0=1$ und $\pi_i=0$ für $i=1,2,\ldots,N$. Außerdem gilt

$$\lim_{n\to\infty}P(X_n=0)=\lim_{n\to\infty}p_0(n)=1.$$

- Wie lange dauert es bis die Population ausstirbt?
- Dazu sei τ_k die erwartete Aussterbedauer für eine Population der Größe k. Damit ist $\tau_0=0$, für 0< k < N

$$\begin{split} \tau_k &= b_k (1 + \tau_{k+1}) + d_k (1 + \tau_{k-1}) + (1 - (b_k + d_k))(1 + \tau_k). \\ \text{und } \tau_N &= d_N (1 + \tau_{N-1}) + (1 - d_N)(1 + \tau_N). \end{split}$$

Diese Differenzengleichung kann vereinfacht werden zu:

$$d_k \tau_{k-1} - (b_k + d_k) \tau_k + b_k \tau_{k+1} = -1$$

für $k=1,2,\ldots,N-1$. Für k=N ergibt sich $d_N\tau_{N-1}-d_N\tau_N=-1$.

• Diese Differenzengleichungen können als Matrixgleichung $D\tau=c$ interpretiert werden, wobei $\tau=(\tau_0,\tau_1,\ldots,\tau_N)^T$, $c=(0,-1,\ldots,-1)^T$ und

$$D = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ d_1 & -b_1 - d_1 & b_1 & 0 & \cdots & 0 & 0 \\ 0 & d_2 & -b_2 - d_2 & b_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & d_N & -d_N \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ D_1 & D_N \end{pmatrix}$$

• Es kann gezeigt werden, dass $\det(D_N) \neq 0$. Da $\det(D) = \det(D_N)$ gilt, ist D invertierbar und es folgt: $\tau = D^{-1}c$.

 Es kann auch eine analytische Lösung für die erwartete Zeit bis zum Aussterben der Population gefunden werden (Nisbet und Gurney [1982]).

Theorem

Für einen wie zuvor beschriebenen Geburts- und Todesprozess $\{X_n\}$ ergibt sich als erwartet Zeit bis zum Aussterben bei einer Startpopulation der Größe m:

$$\tau_m = \begin{cases} 1/d_1 + \sum_{i=2}^N \frac{b_1 \cdots b_{i-1}}{d_1, \cdots, d_i}, & m = 1 \\ \tau_1 + \sum_{s=1}^{m-1} \left(\frac{d_1 \cdots d_s}{b_1 \cdots b_s} \sum_{i=s+1}^N \frac{b_1 \cdots b_{i-1}}{d_1 \cdots d_i} \right), & m = 2, \dots N. \end{cases}$$

Logistische Wachstumsprozesse

- ullet Wir wählen nun b_i und d_i , sodass der Geburts- und Todesprozess logistische Form hat.
- Deterministisches logistisches Modell:

$$\frac{dy}{dt} = ry(1 - \frac{y}{K}), \ y(0) = y_0 > 0,$$

wobei y(t) die Populationsgröße nach Zeit t beschreibt. Dabei ist r der Wachstumsfaktor und K eine obere Schranke für y(t).

 Wir machen für den logistischen Wachstumsprozess die Annahme:

$$b_i-d_i=ri(1-i/K), \\$$

für i = 0, 1, 2, ..., N, wobei N > K.

• Die erwartete Zeit bis zum Aussterben der Population kann, wie zuvor hergeleitet, berechnet werden.

Logistische Wachstumsprozesse

• Wir betrachten zwei Möglichkeiten b_i und d_i entsprechend der obigen Bedingung zu wählen:

1

$$b_i = r(i - \frac{i^2}{2K}) \text{ und } d_i = r\frac{i^2}{2K}, \ i = 0, 1, 2, \dots, 2K$$

2

$$b_i = \begin{cases} ri, & i=0,1,2,\dots,N-1\\ 0, & i \geq N \end{cases} \quad \text{und } d_i = r\frac{i^2}{K}, i=0,1,\dots,N$$

- Wie verhält sich ein Geburts- und Todesprozess (und speziell der logistische Wachstumsprozess) unter der Annahme des Nicht-Aussterbens?
- Sei $\{X_n\}$ für $n=0,1,2,\ldots,N$ ein Geburts- und Todesprozess mit $p_i(n)=P(X_n=i\}, i=0,1,2,\ldots,N$. Wir definieren für $i=1,2,\ldots,N$ die bedingte Wahrscheinlichkeit:

$$\begin{split} q_i(n) &= P(X_n = i | X_j \neq 0, j = 0, 1, 2, \dots, n-1) \\ &= \frac{p_i(n)}{1 - p_0(n)} \end{split}$$

 \bullet Dabei ist $q(n)=(q_1(n),q_2(n),\dots,q_N(n))^T$ eine Wahrscheinlichkeitsverteilung.

- Wir betrachten nun die Markowkette $\{Q_n\}$, wobei Q_n die Zufallsvariable der Populationsgröße zum Zeitpunkt n sei: $P(Q_n=i)=q_i(n)$.
- Die stationäre Verteilung q* dieses Prozesses wird quasistationäre Verteilung genannt.
- ullet Wir stellen die Differenzengleichung für $q_i(n+1)$ auf:

$$\begin{split} q_i(n+1) &= \frac{p_i(n+1)}{1-p_0(n+1)} \\ &= \left(\frac{p_i(n+1)}{1-p_0(n)}\right) \left(\frac{1-p_0(n)}{1-p_0(n+1)}\right) \\ &= \left(\frac{p_i(n+1)}{1-p_0(n)}\right) \left(\frac{1-p_0(n)}{1-p_0(n)-d_1p_1(n)}\right) \end{split}$$

• Und damit:

$$\begin{split} q_i(n+1)(1-d_1q_1(n)) &= \left(\frac{p_i(n+1)}{1-p_0(n)}\right) \\ &= b_{i-1}q_{i-1}(n) + (1-b_i-d_i)q_i(n) \\ &+ d_{i+1}q_{i+1}(n) \end{split}$$

• Als Approximation nehmen wir an, dass $d_1=0$:

$$\begin{split} \bar{q}_i(n+1) &= b_{i-1}\bar{q}_{i-1}(n) + (1-b_i-d_i)\bar{q}_i(n) + d_{i+1}{}^-q_{i+1}(n) \\ \text{für } i &= 2,\dots,N-1. \text{ Für } i=1 \text{ bzw. } i=N: \\ \bar{q}_1(n+1) &= (1-b_1)\bar{q}_1(n) + d_2\bar{q}_2(n) \end{split}$$

und

$$\bar{q}_N(n+1) = b_{N-1}\bar{q}_{N-1}(n) + (1-d_N)\bar{q}_N(n).$$

• Die zu dieser Approximation gehörige Übergangsmatrix \bar{P} ist eine Submatrix von P, wobei $d_1=0$.

$$\bar{P} = \begin{pmatrix} 1-b_1 & d_2 & \dots & 0 & 0 \\ b_1 & 1-(b_2+d_2) & \dots & 0 & 0 \\ 0 & b_2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1-(b_{N-1}+d_{N-1}) & d_N \\ 0 & 0 & \dots & b_{N-1} & 1-d_N \end{pmatrix}$$

- Die Markowkette ist ergodisch (irreduzibel, positiv rekurrent und aperiodisch) und hat eine eindeutige stationäre Wahrscheinlichkeitsverteilung \bar{q}^* , $\bar{P}\bar{q}^*=\bar{q}^*$.
- Es gilt:

$$\bar{q}_{i+1}^* = \frac{b_i\cdots b_1}{d_{i+1}\cdots d_2}\bar{q}^*$$

