1 Problem 2

1.1 Part A

Let X be the random variable of the number of different coupons you have. Further, let

$$X_i = \begin{cases} 1 & 1 \text{ if you have the } i \text{th kind of coupon} \\ 0 & \text{otherwise,} \end{cases}$$

Hence,

$$X = \sum_{i} X_{i}.$$

Then, the probability that you didn't get the *i*the coupon after n rounds is $(1 - \frac{1}{n})^n$. Hence, the probability that you did get the *i*th coupon after n rounds is $1 - (1 - \frac{1}{n})^n$. Thus, the expected number of different coupons after n rounds using linearity of expectation is

$$X = \sum_{i=1}^{n} X_{i}$$

$$E(X) = E(\sum_{i=1}^{n} X_{i})$$

$$= \sum_{i=1}^{n} E(X_{i})$$

$$= n \cdot (1 - (1 - \frac{1}{n})^{n})$$

$$\frac{E(X)}{n} = 1 - (1 - \frac{1}{n})^{n}$$

$$E(X) = n(1 - (1 - \frac{1}{n})^{n})$$

$$\lim_{n \to \infty} \frac{E(X)}{n} = 1 - \frac{1}{e}.$$

1.2 Part B

Let Y_i be the number of coupons of type i you received after n rounds. Further, let

$$Y_{ik} = \begin{cases} 1 & 1 \text{ if you get the } i \text{th kind of coupon at round k} \\ 0 & \text{otherwise,} \end{cases}$$

Then, the probability that you get the ith coupon on round k is $\frac{1}{n}$. Thus, the expected number of the same coupon i after n rounds is

$$E(Y_i) = E(\sum_{k=1}^n Y_{ik})$$
$$= \sum_{k=1}^n E(Y_{ik})$$
$$= n \cdot \frac{1}{n}$$
$$= 1.$$

1.3 Part C

We see $E(max_iY_i)$ represents the expected number of the most common coupon of type i you received after n rounds. However, $max_iE(Y_i)$ is the maximum value of the expected number of the same coupon i after n rounds. However, by part B $E(Y_i)$ for any coupon i is 1. Thus,

$$max_i E(Y_i) = max_i(1)$$
$$= 1.$$

Hence, $\max_i E(Y_i) = 1$ for all i, while $\max_i Y_i$ may vary from 1 to n. Note, $E(\max_i Y_i) \neq 1$ as $E(\max_i Y_i) = \sum_{j=1}^n j P(\max_i Y_i = j) > 1$, as the $\sum_{j=1}^n P(\max_i Y_i = j) = 1$.