Лемма 1.

- $\Phi: O \subset \mathbb{R}^k \to \mathbb{R}^m$
- $\Phi \in C^r$
- Φ параметризация многообразия $U(p) \cap M$, где $p \in M$, M гладкое k-мерное многообразие $\Rightarrow U(p) \cap M$ простое многообразие
- $\Phi(t^0) = p$

Тогда образ $\Phi'(t^0): \mathbb{R}^k \to \mathbb{R}^m$ есть k-мерное линейное подпространство в \mathbb{R}^m . Оно не зависит от Φ .

 $\Phi'(t^0)$ — касательное пространство к M в точке p, обозначается T_pM .

Доказательство. $\operatorname{rg}\Phi'(t^0)=k$ по определению параметризации \Rightarrow искомое очевидно. Если взять другую параметризацию Φ_1 , то по следствию о двух параметризациях

$$\Phi = \Phi_1 \circ \Psi$$

$$\Phi' = \Phi_1' \Psi'$$

 $\Psi'(t^0)$ — невырожденный оператор \Rightarrow образ Φ' = образ Φ_1'

 Π ример. M — окружность в \mathbb{R}^2 , задается параметризацией $\Phi:t\mapsto \begin{pmatrix}\cos t\\\sin t\end{pmatrix}, t^0:=\frac{\pi}{4}$

Рис. 1: Синим — касательное пространство к окружности в a. Зеленым — афинное ("сдвинутое") линейное подпространство.

$$\Phi'(t^0) = \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix}$$

Тогда $h\mapsto \begin{pmatrix} -\frac{\sqrt{2}}{2}\\ \frac{\sqrt{2}}{2} \end{pmatrix}h$ — касательное подпространство.

Определение. Афинное подпространство $\{p+v,v\in T_pM\}$ называется афинным касательным подпространством.

Примечание.

1. $v\in T_pM$. Тогда \exists путь $\gamma_v:[-\varepsilon,\varepsilon]\to M$, такой что $\gamma(0)=p,\gamma'(0)=v$ Доказательство. $u:=(\Phi'(t_0))^{-1}(v)$

Определим путь в \mathbb{R}^k :

$$\tilde{\gamma}_v(s) := t_0 + su, s \in [-\varepsilon, \varepsilon]$$

Отобразим этот путь в M и проверим, что такой путь подходит под условие:

$$\gamma_{v}(s) := \Phi(\tilde{\gamma}_{v}(s))$$

$$\gamma'_{v}(0) = \Phi'(\tilde{\gamma}_{v}(0)) \cdot \tilde{\gamma}'_{v}(0) = \Phi'(\tilde{\gamma}_{v}(0)) \cdot u = \Phi'(\tilde{\gamma}_{v}(0)) (\Phi'(t_{0}))^{-1} (v) = v$$

2. Пусть $\gamma:[-\varepsilon,\varepsilon]\to M, \gamma(0)=p$ — гладкий путь. Тогда $\gamma'(0)\in T_pM$

Доказательство. Из иллюстрации очевидно:

$$\gamma(s) = \Phi \circ \Psi \circ L \circ \gamma(s)$$
$$\gamma'(0) = \Phi'(\Psi(L(\gamma(0))))\Psi'(L(\gamma(0)))L'(\gamma(0))\gamma'(0)$$

Очевидно, что мы попадаем в образ $\Phi'(\dots)$, поэтому $\gamma'(0) \in T_p M$

3. $f:O\subset\mathbb{R}^m\to\mathbb{R}, f\in C(O), y=f(x)$ — поверхность в \mathbb{R}^{m+1} , задается точками (x,y).

Тогда (аффинная) касательная плоскость в точке (a, b) задается уравнением

$$y - b = f'_{x_1}(a)(x_1 - a_1) + f'_{x_2}(a)(x_2 - a_2) + \dots + f'_{x_m}(a)(x_m - a_m)$$

Доказательство. $\Phi: O \subset \mathbb{R}^m \to \mathbb{R}^{m+1}$

$$\Phi(x) = (x, f(x))$$

$$\Phi' = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \\ f'_{x_1} & f'_{x_2} & \dots & f'_{x_m} \end{bmatrix}$$

Рассмотрим произвольный вектор $\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_m \\ \beta \end{pmatrix}$. В каких случаях он принадлежит обра-

зу Φ' ?

$$\Phi'\vec{x} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \\ f'_{x_1} & f'_{x_2} & \dots & f'_{x_m} \end{bmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} x_1 \\ \vdots \\ x_m \\ x_1 f'_{x_1} + \dots + x_m f'_{x_m} \end{pmatrix}$$

Таким образом, вектор принадлежит образу, если $\beta = \alpha_1 f'_{x_1} + \ldots + \alpha_m f'_{x_m}$

Сместив на a, b, получаем искомое.

4.
$$\Phi(x_1 \dots x_m) = 0$$

$$\Phi: O \subset \mathbb{R}^m \to \mathbb{R}$$

$$\Phi(a) = 0$$

Тогда уравнение касательной плоскости $\Phi'_{x_1}(a)(x_1-a_1)+\ldots+\Phi'_{x_m}(a)(x_m-a_m)=0$

Доказательство. γ — путь в $M:\Phi(\gamma(s))=0,\Phi'(\gamma(s))\gamma'(s)=0.$ По предыдущим утверждениям такой путь есть, кроме того, любому вектору x в касательном пространстве можно сопоставить $\gamma:\gamma'(s)=x.$ Поэтому любой касательный вектор от точки a должен быть подчинём искомому отношению.

Альтернативное доказательство:

По определению дифференцируемости Φ в точке a:

$$\Phi(x) = \Phi(a) + \Phi'_{x_1}(x_1 - a_1) + \ldots + \Phi'_{x_m}(x_m - a_m) + \emptyset$$

Мы игнорируем o, потому что оно скомпенсируется тем, что мы берем не с поверхности Φ , а с касательной плоскости. Это нестрогое утверждение.

Примечание. $y(x) = f(a) + f'_{x_1}(a)(x_1 - a_1) + \ldots + f'_{x_m}(a)(x_m - a_m) \Leftrightarrow$ дифференцирование, но без o.

Таким образом, f(x) - y(x) = o(x - a)

Относительный экстремум

Пример. Найти наибольшее/наименьшее значение выражения f(x,y) = x + y при условии $x^2 + y^2 = 1$.

Рассмотрим линии уровня, т.е. f(x, y) = C:

M и m — точки минимума и максимума, т.к. M — точка, в которой f = точки минимума уровня касаются. Если они пересекаются, но не касаются, то есть точка больше. Аналогичное верно для минимума.

В более формальных терминах: пусть условие $\Phi(x,y) = 0$.

$$\Phi'_{x}(x-a) + \Phi'_{y}(y-b) = 0$$

 (Φ_x',Φ_y') — вектор нормали к касательной прямой. Тогда (f_x',f_y') и (Φ_x',Φ_y') — параллельны.

Определение.

- $f: O \subset \mathbb{R}^{m+n} \to \mathbb{R}$
- $M_{\Phi} \subset O := \{x : \Phi(x) = 0\}$
- $x_0 \in M_{\Phi}$

 x_0 — точка локального относительного max, min, строгий max, строгий min, экстремума, если $\exists U(x_0) \subset \mathbb{R}^{m+n}: \forall x \in U(x_0) \cap M_\Phi \ f(x_0) \geq f(x)$, остальные — аналогично.

Уравнения $\Phi(x) = 0$ называются уравнениями связи.

Как решать задачу нахождения локального относительного чего-то?

Если $\operatorname{rg}\Phi'(x_0)=n$, то есть rg максимален, то выполнено условие теоремы о неявном отображении.

Теорема 1 (необходимое условие относительного экстремума).

- $f:O\subset\mathbb{R}^{m+n}\to\mathbb{R}$ гладкое в O
- $M_\Phi \subset O := \{x: \Phi(x) = 0\}$ гладкое в O
- $a \in O$ точка относительного локального экстремума
- $\Phi(a) = 0$
- $rg\Phi'(a) = n$

Тогда
$$\exists \lambda=(\lambda_1\dots\lambda_n)\in\mathbb{R}^n: egin{cases} f'(a)+\lambda\Phi'(a)=0 \\ \Phi(a)=0 \end{cases}$$

Второе условие дописано для удобства, оно не содержательно, т.к. оно уже дано.

В координатах:
$$\begin{cases} f'_{x_1} + \lambda_1(\Phi_1)'_{x_1} + \lambda_2(\Phi_2)'_{x_1} + \ldots + \lambda_n(\Phi_n)'_{x_1} = 0 \\ \vdots \\ f'_{x_{m+n}} + \lambda_1(\Phi_1)'_{x_{m+n}} + \lambda_2(\Phi_2)'_{x_{m+n}} + \ldots + \lambda_n(\Phi_n)'_{x_{m+n}} = 0 \\ \Phi_1(a) = 0 \\ \vdots \\ \Phi_n(a) = 0 \end{cases}$$

Здесь неизвестны $a_1 \dots a_{m+n}, \lambda_1 \dots \lambda_n$, поэтому, если уравнения не вырождены, то решение есть.

Доказательство. $\operatorname{rg}\Phi'(a)=n$. Пусть ранг реализуется на столбцах $x_{m+1}\dots x_{m+n}$.

Обозначим $y_1 = x_{m+1} \dots y_n = x_{m+n}$.

$$(x_1 \dots x_{m+n}) \leftrightarrow (x,y), a \leftrightarrow (a_x,a_y).$$

 $\det \frac{\partial \Phi}{\partial y}(a) \neq 0$. Тогда по теореме о неявном отображении $\exists U(a_x) \; \exists V(a_y) \; \exists \varphi : U(a_x) \to V(a_y) : \Phi(x,\varphi(x)) \equiv 0$ и отображение $x \mapsto (x,\varphi(x))$ есть параметризация простого гладкого многообразия $M_{\varphi} \cap (U(a_x) \times V(a_y))$.

a — точка относительного локального экстремума $\Rightarrow a_x$ — точка локального экстремума функции $g(x)=f(x,\varphi(x))$, потому что $(x,\varphi(x))\in U(a)$.

Необходимое свойство экстремума для a_x :

$$(f_x' + f_y' \cdot \varphi')(a_x) = 0 \tag{1}$$

Примечание. Здесь и далее в этом доказательстве в функции и производные операторы подставляется a и a_x , но не записывается ради краткости и запутанности.

$$\Phi(x, \varphi(x)) \equiv 0$$

$$\Phi'_x + \Phi'_y \cdot \varphi' = 0$$

Тогда $\forall \lambda \in \mathbb{R}^n$:

$$\lambda \Phi_x' + \lambda \Phi_y' \cdot \varphi' = 0 \tag{2}$$

$$f_x' + \lambda \Phi_x' + (f_y' + \lambda \Phi_y')\varphi' = 0$$
(3)

(3) это (2) + (1)

Пусть
$$\lambda = -f_y' \cdot (\Phi_y'(a))^{-1}$$
.

Тогда $f_y' + \lambda \Phi_y' = f_y' - f_y' (\Phi_y'(a))^{-1} \Phi_y'(a) = 0$ и $f_x' + \lambda \Phi_y' = 0$ в силу (3). Итого (3) выполнено, мы предъявили λ , подходящее под искомое.

Определение. $G:=f-\lambda_1\Phi_1-\lambda_2\Phi_2-\ldots-\lambda_n\Phi_n$ — функция Лагранжа.

$$f'(a) - \lambda \Phi'(a) = 0 \Leftrightarrow G'(a) = 0$$

Примечание. В определении выше можно писать "+" вместо "-".

Пример. $A = (a_{ij})$ — матрица $m \times n$, симметричная и вещественная.

$$f(x) := \langle Ax, x \rangle, x \in \mathbb{R}^m$$
 — квадратичная форма.

Найдём $\max f(x)$, когда $x \in S^{m-1}$ (единичной сфере в \mathbb{R}^m).

Такой тах ∃ по теореме Вейерштрасса.

$$G(x) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_{i} x_{j} - \lambda \left(\sum_{i=1}^{m} x_{i}^{2} - 1 \right)$$

$$\Phi'=egin{pmatrix} 2x_1 \\ 2x_2 \\ \vdots \\ 2x_m \end{pmatrix}$$
 . Ha c
фере $\operatorname{rg}\Phi'=1$.

$$G'_{x_k} = 2\sum_{j=1}^{m} a_{kj}x_j - 2\lambda x_k \quad \forall k = 1\dots m = 0$$

То есть $Ax = \lambda x \Rightarrow \lambda$ — собственное число A, x — собственный единичный вектор.

$$f(x) = \langle Ax, x \rangle = \langle \lambda x, x \rangle = \lambda x^2 = \lambda$$

Теорема 2.

• $A \in \operatorname{Lin}(\mathbb{R}^m, \mathbb{R}^n)$

Тогда $||A|| = \max\{\sqrt{\lambda} : \lambda - \text{собственное число } A^TA\}$

Такое число существует, т.к. $\langle Ax,y\rangle=\langle x,A^Ty\rangle\Rightarrow\langle A^TAx,x\rangle=\langle Ax,Ax\rangle\geq 0\Rightarrow\lambda\geq 0.$

Доказательство. $\triangleleft x \in S^{m-1}$.

$$|Ax|^2 = \langle Ax, Ax \rangle = \langle \underbrace{A^T A}_{\text{cumm.}} x, x \rangle$$

$$\max |Ax|^2 = \max \langle A^T A x, x \rangle = \lambda_{\max}$$

Функциональные последовательности и ряды

Равномерная сходимость последовательностей и функций

Определение. Последовательность функций : $\mathbb{N} \to \mathcal{F}-$ пространство функций, $n \mapsto f_n$

Определение.
$$\mathcal{F} = \{f: \underbrace{X}_{\text{метрическое пространство}} \to \mathbb{R} \}$$

Определение. Пусть $E \subset X$. Последовательность f_n сходится поточечно к f на множестве E, если $\forall x \in E \quad f_n(x) \to f(x)$, т.е.:

$$\forall x \in E \ \forall \varepsilon > 0 \ \exists N \ \forall n > N \ |f_n(x) - f(x)| < \varepsilon$$

Пример. $f_n: \mathbb{R}_+ \to \mathbb{R}, f_n(x) = \frac{x^n}{n}$

Если $E = [0,1] \Rightarrow f_n(x) \to 0$ — тождественный ноль, не ноль.

Если $E\cap(1,+\infty) \neq \emptyset$, то нет поточечной сходимости ни к какой функции.

Пример.
$$f_n = \frac{n^{\alpha}x}{1+n^2x^2}, x \in [0,1], 0 < \alpha < 2.$$

Ясно, что $f_n(x) \to 0 \ \, \forall \alpha$, поточечно сходится на [0,1].

$$\max_{x \in [0,1]} \frac{n^{\alpha}x}{1 + n^2x^2} = n^{\alpha} \max \frac{x}{1 + n^2x^2} = n^{\alpha} \frac{1}{2n} = \frac{1}{2}n^{\alpha - 1}$$

При $\alpha>1$ $\frac{1}{2}n^{\alpha-1}\to +\infty$. Это странно.

Теперь мы видим, что функции стремятся к тождественному нулю, хотя $\exists x: f(x) \to +\infty$. Придумаем определение, которое это запрещает.

Определение. f_n равномерно сходится к f на $E\subset X$, если $M_n:=\sup_{x\in E}|f_n(x)-f(x)|\xrightarrow{n\to +\infty}0$.

$$\forall \varepsilon \ \exists N \ \forall n > N \ 0 \leq M_n < \varepsilon \text{ r.e. } \forall x \in E \ |f_n(x) - f(x)| < \varepsilon$$

Обозначается $f_n \underset{E}{\Longrightarrow} f$

Примечание.

- $x_0 \in E$
- $f_n \Longrightarrow f$

Тогда $f_n(x_0) \to f(x_0)$. То есть равномерная сходимость \Rightarrow поточечная сходимость и предел.

Примечание.

- $E_0 \subset E$
- $f_n \underset{E}{\Longrightarrow} f$

Тогда $f_n \Longrightarrow_{E_0} f$

Примечание.

• $\mathcal{F} = \{f : X \to \mathbb{R} - \text{огр. функции}\}$

Тогда $\rho(f_1,f_2):=\sup_{x\in X}|f_1(x)-f_2(x)|$ — метрика в $\mathcal F$. Называется Чебышевское расстояние.

Доказательство. 1. $ho(f_1,f_2)\geq 0,
ho(f_1,f_2)=0 \Leftrightarrow f_1\neq f_2$ — очевидно

2.
$$\rho(f_1, f_2) = \rho(f_2, f_1)$$
 — очевидно

3.
$$\rho(f_1, f_2) \le \rho(f_1, f_3) + \rho(f_2, f_3)$$

$$\lessdot \varepsilon > 0 \exists x$$

$$\begin{split} \rho(f_1, f_2) - \varepsilon &= \sup |f_1 - f_2| - \varepsilon \\ &< |f_1(x) - f_2(x)| \\ &\leq |f_1(x) - f_3(x)| + |f_2(x) - f_3(x)| \\ &\leq \rho(f_1, f_3) + \rho(f_2, f_3) \end{split}$$

 $f_n \underset{E}{\Longrightarrow} f \Leftrightarrow f_n \to f$ по метрике ρ_E .

Можем заметить, что в \mathcal{F} при различных метриках происходит различная сходимость или расходимость, в отличие от \mathbb{R}^m .

Примечание.

•
$$E = E_1 \cup E_2$$

$$\begin{cases}
f_n \underset{E_1}{\Longrightarrow} f \\
f_n \underset{E_2}{\Longrightarrow} f
\end{cases} \Rightarrow f_n \underset{E}{\Longrightarrow} f$$