PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6: (11) Internationale Veröffentlichungsnummer: WO 98/29952 A1 H03K 19/177, G06F 17/50 (43) Internationales Veröffentlichungsdatum: 9. Juli 1998 (09.07.98)

(21) Internationales Aktenzeichen:

PCT/DE97/02998

(22) Internationales Anmeldedatum:

22. Dezembér 1997 (22.12.97)

(30) Prioritätsdaten:

196 54 846.2

27. Dezember 1996 (27.12.96) DE

(71) Anmelder: PACT INFORMATIONSTECHNOLOGIE GMBH [DE/DE]; Thelemannstrasse 15, D-81545 München (DE).

(72) Erfinder: VORBACH, Martin; Hagebuttenweg 36, D-76149 Karlsruhe (DE). MÜNCH, Robert; Hagebuttenweg 36, D-76149 Karlsruhe (DE).

(74) Anwalt: ZAHN, Roland; Im Speitel 102, D-76229 Karlsruhe

(81) Bestimmungsstaaten: JP, europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen

(54) Title: METHOD FOR AUTOMATIC DYNAMIC UNLOADING OF DATA FLOW PROCESSORS (DFP) AS WELL AS MODULES WITH BIDIMENSIONAL OR MULTIDIMENSIONAL PROGRAMMABLE CELL STRUCTURES (EPGAs, DPGAs OR THE

(54) Bezeichnung: VERFAHREN ZUM SELBSTÄNDIGEN DYNAMISCHEN UMLADEN VON DATENFLUSSPROZESSOREN (DFPs) SOWIE BAUSTEINEN MIT ZWEI- ODER MEHRDIMENSIONALEN PROGRAMMIERBAREN ZELL-STRUKTUREN (FPGAs, DPGAs, o.dgl.)

(57) Abstract

The invention relates to a method for dynamic reconfiguration of FPGA, in which one or more switching tables consisting of one or more controls and one or more configuration storages are integrated in the module or connected thereto. Configuration words of a switching table are transferred to a configurable element or to multiple configurable elements of the module which then set a valid configuration. The load logic or the configurable elements of the module or modules can write data in the configuration storage or storages of the switching table or tables. The control of the switching table or tables can recognize individual inputs as instructions and execute them. The control can also recognize and distinguish different events and execute a relevant defined action. Upon reacting to the occurrence of an event or a combination of events, the control moves the position pointer or pointers. Whenever configuration data and not control instructions are concerned, the control sends said configuration data to the configurable element or elements declared in the configuration data.

(57) Zusammenfassung

Für ein Verfahren zur dynamischen Umkonfiguration von FPGA wird vorgeschlagen, dass ein oder mehrere Switching-Tabellen, bestehend aus einer oder

mehrerer Steuerungen und einem oder mehreren Konfigurationsspeicher, auf dem Baustein integriert sind oder an diesen angeschlossen werden. Dabei werden Konfigurationsworte von einer Switching-Tabelle an ein konfigurierbares Element oder mehrere konfigurierbare Elemente des Bausteins übertragen, welche eine gültige Konfiguration einstellen. Die Ladelogik oder die konfigurierbaren Elemente der Bausteins oder der Bausteine können Daten in den oder die Konfigurationsspeicher der Switching-Tabelle(n) schreiben. Die Steuerung der Switching-Tabelle(n) kann einzelne Einträge als Befehle erkennen und diese Befehle ausführen; die Steuerung kann ferner verschiedene Ereignisse erkennen und unterscheiden und daraufhin eine definierte Aktion durchführen. Als Reaktion auf das Eintreffen eines Ereignisses oder einer Kombination von Ereignissen bewegt die Steuerung den oder die Positionszeiger und, falls es sich um Konfigurationsdaten und nicht um Befehle für die Steuerung handelt, schickt diese Konfigurationsdaten an die, in das oder die in den Konfigurationsdaten angegebenen konfigurierbaren Elemente.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	RS.	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litanen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	· TG	Togo
BB	Barbados	CH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BR	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungam	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IB	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	ΠL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten vo
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NB	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	zw	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dånemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

Verfahren zum selbständigen dynamischen Umladen von Datenflußprozessoren (DFPs) sowie Bausteinen mit zwei- oder mehrdimensionalen programmierbaren Zellstrukturen (FPGAs, DPGAs, o.dgl.).

Hintergrund der Erfindung

Stand der Technik

Die sich heutzutage im Einsatz befindenden programmierbaren Bausteine (DFPs, FPGAs (Field Programmable Gate Arrays)) können auf zwei verschiedene Arten programmiert werden:

1. Einmalig, das heißt die Konfiguration kann nach der Programmierung nicht mehr geändert werden. Alle konfigurierten Elemente des Bausteins führen also die gleiche Funktion, über den gesamten Zeitraum in dem die Anwendung abläuft, durch.

2. Im Betrieb, das heißt die Konfiguration kann nach Einbau des Bausteins, durch das Laden einer Konfigurationsdatei, zum Startbeginn der Anwendung, geändert werden. Die meisten Bausteine (insbesondere die FPGA Bausteine), lassen sich während des Betriebes nicht weiter umkonfigurieren. Bei umkonfigurierbaren Bausteinen ist eine Weiterverarbeitung von Daten während des Umkonfigurierens meistens nicht möglich und die benötigte Zeit erheblich zu groß.

Die programmierbaren Bausteine werden durch ein HardwareInterface mit ihren Konfigurationsdaten geladen. Dieser
Vorgang ist langsam und benötigt meistens mehrere hundert
Millisekunden auf Grund der beschränkten Bandbreite zum
externen Speicher, in dem die Konfigurationsdaten abgelegt
sind. Danach steht der programmierbare Baustein in der

gewünschten/programmierten Funktion, wie in der Konfigurationsdatei beschrieben, zur Verfügung. Eine Konfiguration entsteht dadurch, daß ein spezielles Bitmuster beliebiger Länge, in die konfigurierbaren Elemente des Bausteines eingetragen wird. Konfigurierbare Elemente können zum Beispiel alle Arten von RAM Zellen, Multiplexer, Vernetzungselemente oder ALUs sein. Ein Konfigurationswort wird in in einem solchen Element gespeichert, so daß das Element seine durch das Konfigurationswort eingestellte Konfiguration über den Zeitraum des Betriebes beibehält.

Probleme

Die existierenden Verfahren und Möglichkeiten besitzen eine Reihe von Problemen. Dies sind:

- 1. Soll eine Konfiguration in eines DFP (vgl. DE 44 16 881 A1) oder einem FPGA geändert werden, so ist es immer notwendig, daß eine komplette Konfigurationsdatei in den zu programmierenden Baustein übertragen wird, auch wenn nur sehr kleine Teile der Konfiguration geändert werden sollen.
- 2. Während dem Laden einer neuen Konfiguration kann der Baustein keine, oder nur eingeschränkt, Daten weiterverarbeiten.
- 3. Durch die immer größer werdende Anzahl an konfigurierbaren Elementen pro Baustein (insbesondere bei den FPGA Bausteinen), werden die Konfigurationsdateien dieser Bausteine ebenfalls immer größer (mittlerweilen einige hundert Kilobyte an Daten). Einen großen Baustein zu konfigurieren dauert daher sehr lange und macht eine Umkonfigurierung während der Laufzeit oft unmöglich oder beeinträchtigt die Arbeitsweise des Bausteins.
- 4. Bei einer Teilkonfigurierung eines Bausteins zur Laufzeit, wird immer eine zentral Logik-Instanz benutzt, über welche

alle Umkonfigurierungen verwaltet werden. Dies führt zu einem sehr hohen Kommunikations- und Synchronisations-Aufwand.

Verbesserung durch die Erfindung Durch die beschriebene Erfindung ist eine Umkonfigurierung eines programmierbaren Bausteines wesentlich schneller möglich. Die Erfindung ermöglicht eine flexible Nutzung von verschiedenen Konfigurationen eines programmierbaren Bausteins zur Laufzeit, ohne dabei die Arbeitsfähigkeit des programmierbaren Bausteines zu beeinträchtigen oder zu stoppen. Veränderungen an der Konfiguration des Bausteins werden gleichzeitig durchgeführt und stehen somit sehr schnell, ohne daß, unter Umständen, weitere Konfigurationsdaten übertragen werden müssen, zur Verfügung. Das Verfahren kann für alle Arten von konfigurierbaren Elementen eines konfigurierbaren Bausteins sowie für alle Arten von Konfigurationsdaten, egal für welchen Zweck diese innerhalb des Bausteins bestimmt sind, eingesetzt werden. Durch die Erfindung ist es möglich die statischen Beschränkungen herkömmlicher Bausteine aufzuheben und eine Verbesserung der Ausnutzung vorhandener konfigurierbarer Elemente zu erreichen. Durch die Einführung eines Zwischenspeichers ist es möglich über die selben Daten eine Vielzahl unterschiedlicher Funktionen auszuführen. Die Einzelheiten und besondere Ausgestaltungen, sowie Merkmale des erfindungsgemäßen Bussystems sind Gegenstand der Patentansprüche.

Beschreibung der Erfindung
Übersicht über die Erfindung, Abstrakt
Auf einem programmierbaren Baustein existiert eine Vielzahl
an Ring-Speichern, das sind Speicher mit einer eigenen
Adressteuerung, die, wenn sie das Ende des Speichers erreicht
hat, an dessen Anfang weiterläuft, wodurcch sich ein Ring

ergibt. Dies Ring-Speicher können schreiben und lesend auf, Konfigurationsregister, also die die Konfigurationsdaten entgegennehmenden Schaltkreise, der zu konfigurierenden Elemente zugreifen. Ein solcher Ring-Speicher besitzt eine bestimmte Anzahl an Einträgen, welche durch eine Ladelogik, wie in Offenlegung DE 44 16 881 Al beschrieben, mit Konfigurationsdaten geladen werden. Der Aufbau der Einträge ist dabei so gewählt, daß ihr Datenformat, dem/den an den Ring-Speicher angeschlossenen konfigurierbaren Elementen entspricht und das Einstellen einer gültigen Konfiguration erlaubt.

Weiterhin existiert ein Lese-Positionszeiger, der einen der Einträge des Ring-Speichers, als aktuellen Lese-Eintrag selektiert. Der Lese-Positionszeiger kann durch eine Steuerung auf beliebige Positionen/Einträge innerhalb des Ring-Speichers bewegt werden. Weiterhin existiert eine Schreib-Positionszeiger, der einen der Einträge des Ring-Speichers, als aktuellen Schreib-Eintrag selektiert. Der Schreib-Positionszeiger kann durch eine Steuerung auf beliebige Positionen/Eintrage innerhalb des Ring-Speichers bewegt werden.

Zur Laufzeit kann über diesen Ring-Speicher ein Konfigurationswort in das zu konfigurierende Element übertragen werden um eine Umkonfigurierung durchzuführen, ohne daß die Daten durch eine zentrale Logik verwaltet oder übertragen werden müssen. Durch den Einsatz mehrerer Ring-Speicher können viele konfigurierbaren Elemente gleichzeitig umkonfiguriert werden.

Da ein Ring-Speicher mit seiner kompletten Steuerung konfigurierbare Zellen zwischen mehreren Konfigurationsmodi umschalten kann, wird er Switching-Tabelle genannt.

Detailbeschreibung der Erfindung

Auf einem programmierbaren Baustein oder extern an diesen Baustein angeschlossen, existiert eine Menge an Ring-Speichern. Dem oder den Ring-Speichern zugeordnet sind eine oder mehrere Steuerungen, welche den oder die Ring-Speicher steuern. Diese Steuerungen sind ein Teil der in der offenlegung DE 44 16 881 Al genannten Ladelogik. Die Ring-Speicher enthalten Konfigurationsworte für die zu konfigurierenden Elemente eines oder einer Vielzahl von konfigurierbaren Bausteinen, dabei können die konfigurierbaren Elemente auch ausdrücklich der Vernetzung von Funktionsgruppen dienen und Crossbar-Schaltungen oder Multiplexer zum Verschalten von Busstrukturen nach dem Stand der Technik sein.

Die Ring-Speicher und die Steuerung des Ring-Speichers können entweder direkt in Hardware implementiert sein, oder aber erst durch die Konfiguration einer oder einer Mehrzahl von konfigurierbaren Zellen eines konfigurierbaren Bausteins (zum Beispiel FPGA) entstehen.

Als Ring-Speicher können Ring-Speicher nach Stand der Technik zum Einsatz kommen und insbesondere Ring-Speicher und/oder Steuerungen mit folgenden Eigenschaften:

- 1. In denen nicht die gesamten Einträge genutzt werden, und welche eine Möglichkeit besitzen, eine Position anzugeben, an der der Lese- und/oder Schreib-Positionszeiger des Ring-Speichers an den Anfang oder das Ende des Ring-Speichers gesetzt wird. Dies läßt sich zum Beispiel durch Befehlswörter (STOP, GOTO, etc.), Zähler oder Register, welche die Start- und Stop-Position speichern, implementieren.
 - 2. Welche die Auftrennung des Ring-Speichers in unabhängige Sektionen ermöglichen und die Steuerung des Ring-Speichers derart, über die zum Beispiel unten aufgeführten Ereignisse, eingestellt werden kann, daß sie auf einer dieser Sektionen arbeitet.

3. Welche die Auftrennung des Ring-Speichers in unabhängige Sektionen ermöglichen und es eine Mehrzahl an Steuerungen gibt, welche jeweils auf einer Sektion arbeiten. Dabei kann eine Mehrzahl an Steuerungen auch auf der gleichen Sektion arbeiten. Dies kann durch eine Arbiter-Schaltung realisiert werden. In diesem Fall gehen einige Verarbeitungszyklen verloren. Weiterhin können Register anstatt RAM zum Einsatz kommen.

- 4. Jede Steuerung einen oder mehrere Lese-Positionszeiger und/oder einen oder mehrere Schreib-Positionszeiger besitzt.
- 5. Diese Positionszeiger vorwärts und/oder rückwärts bewegt werden können.
- 6. Diese Positionszeiger auf Grund eines oder mehrere Ereignisse auf den Beginn, das Ende oder eine angegebene Position gesetzt werden können.
- 7. Die Steuerung ein Maskenregister besitzt mit dem, durch Eintragen eines Datenwortes, aus der Menge aller möglichen Ereignisse eine Teilmenge selektiert werden kann. Nur diese Teilmenge an Ergebnissen, wird als Ereignis an die Steuerung weitergeleitet und lößt die Weiterschaltung des/der Positionszeiger aus.
- 8. Steuerungen, welche mit einem mehrfachen Takt des eigentlichen Systemtakts arbeiten (oversampling) um das Abarbeiten mehrerer Einträge innerhalb eines Systemtakts zu ermöglichen.

Die Steuerung der Switching-Tabelle wird durch eine gewöhnliche Zustandsmaschine implementiert. Neben der einfachen Steuerung, die ein herkömmlicher Ring-Speicher benötigt, sind Steuerungen mit folgenden Eigenschaften bestens geeignet die Steuerung der in der Erfindung beschriebenen Switching-Tabellen eines programmierbaren Bausteins (insbesondere auch von FPGAs und DPGAs (Dynamically

Programmable Gate Arrays, neue Untergruppe der FPGAs)) durchzuführen oder gegebenenfalls zu erweitern:

- 1. Steuerungen, welche spezielle Befehlswörter erkennen können. Ein Befehlswort unterscheidet sich dadurch, daß es eine Kennzeichnung besitzt, die es der Steuerung ermöglicht, die Daten eines Eintrags des Ring-Speichers als Befehlswort und nicht als Datenwort zu erkennen.
- 2. Steuerungen, welche spezielle Befehlswörter ausführen können. Insbesondere solche Befehle, welche den Ablauf der Zustandsmaschine ändern und/oder Einträge des Ring-Speichers, durch eine Datenverarbeitungs-Funktion, verändern können.
- 3. Steuerungen, welche eine Kennung erkennen können, und auf Grund dieser Kennung weitere Einträge der Ring-Speicher durch den internen schnelleren (oversampling) Takt abarbeiten, solange, bis eine Ende-Kennung erreicht wurde, oder aber der nächste Taktzyklus des den Oversampling-Takt steuernden Taktes erreicht wurde.

Als Befehlswörter für die sinnvolle Steuerung einer Switching-Tabelle, welche eine Steuerung mittels Befehlswörtern benötigt, sind besonders die nun genannten Befehle oder eine Teilmenge der genannten Befehle denkbar. Die Befehlswörter, welche Positionszeiger betreffen, können jeweils auf den oder die Lese-Positionszeiger oder aber auf den oder die Schreib-Positionszeiger angewandt werden. Mögliche Befehlswörter sind:

1. Einen WAIT Befehl.

Der WAIT Befehl veranlaßt die Steuerung solange zu warten bis das nächste Ereignis oder die nächsten (auch verschiedenen) Ereignisse eingetroffen sind. Während dieses Zustandes, werden der oder die Lese-/Schreib-Positionszeiger nicht weiterbewegt. Trifft das Ereignis oder die Ereignisse ein, so

wird der oder die Lese-/Schreib-Positionszeiger auf den nächsten Eintrag positioniert.

2. Einen SKIP Befehl.

Der SKIP Befehl überspringt eine angegebene Anzahl an Einträgen des Ring-Speichers, in einem von zwei Verfahren:

a. Der SKIP1 Befehl wird komplett in einem Verarbeitungszyklus durchgeführt. Wurde zum Beispiel SKIP 5 angegeben, so wird in einem Verarbeitungszyklus auf den, vom aktuellen Lese-/Schreib-Eintrag aus, fünf Einträge weiter vorne (hinten) liegenden Eintrag, gesprungen.
b. Der SKIP2 Befehl wird erst nach einer Anzahl an Verarbeitungszyklen durchgeführt. Denkbar ist hier zum Beispiel, daß der Befehl SKIP 5 erst nach fünf Verarbeitungszyklen durchgeführt wird. Dabei wird wieder vom aktuellen Eintrag aus, fünf Einträge nach vorne gesprungen. Der Parameter (in diesem Beispiel die 5) wird bei diesem Verfahren also zweimal genutzt.

Die Angabe der Sprungrichtung kann durch den Einsatz einer vorzeichenbehafteten Zahl sowohl in einer Vorwärtsbwegung, wie auch in einer Rückwärtsbewegung, des oder der Positionszeiger enden.

3. Einen SWAP Befehl.

Der SWAP Befehl tauscht die Daten zweier angegebener Einträge gegeneinander aus.

4. Einen RESET Befehl.

Der RESET Befehl setzt, den oder die Lese-/Schreib-Positionszeiger auf den Beginn und/oder eine angegebene Eintragsposition, innerhalb des Ring-Speichers.

5. Einen WAIT-GOTO Befehl.

Der WAIT-GOTO Befehl, wartet wie der weiter oben beschriebene WAIT Befehl, auf ein oder mehrere bestimmte Ereignisse und führt dann, eine Positionierung des Lese-/Schreib-Positionszeigers auf einen definierten Anfangszustand, innerhalb eines oder mehrere Verarbeitungszyklen, durch.

6. Einen NOP Befehl.

Der NOP Befehl führt keine Aktion aus. Es werden weder Daten aus dem Ring-Speicher an das oder die zu konfigurierenden Elemente übertragen, noch werden die Positionszeiger verändert. Der NOP Befehl kennzeichnet somit einen Eintrag als nicht relevant, dieser Eintrag wird aber von der Steuerung des Ring-Speichers angesprochen und ausgewertet, er benötigt als einen oder mehrere Verarbeitungszyklen.

7. Einen GOTO Befehl.

Der GOTO Befehl positioniert den oder die Lese-/Schreib-Positionszeiger auf die angegebene Eintragsposition.

8. Einen MASK Befehl.

Der MASK Befehl schreibt ein neues Datenwort in den Multiplexer, welcher die verschiedenen Ereignisse auswählt. Mit Hilfe dieses Befehls ist es also möglich, die Ereignisse, auf welche die Steuerung reagiert, zu ändern.

9. Einen LLBACK Befehl.

Der LLBACK Befehl erzeugt eine Rückmeldung an die Ladelogik (im Sinne von Offenlegung DE 44 16 881 A1). Durch diesen Befehl kann die Switching-Tabelle das Umladen grrößerer Bereiche des Baustein veranlassen, ins besondere jedoch ihr eigenes Umladen.

10. Einen Befehl, welcher einen Read/Modify/Write Zyklus auslöst.

Der Befehl löst das Lesen von Befehlen oder Daten in einem anderen Eintrag, zum Beispiel durch die Steuerung, die Ladelogik oder ein außerhalb der Switching-Tabelle liegendes Element, aus. Diese Daten werden dann auf beliebige Art verarbeitet und wieder an die gleiche oder eine andere Position, in den Ring-Speicher der Switching-Tabelle, geschrieben. Dies kann in der Zeitspanne eines Verarbeitungszykluses der Switching-Tabelle geschehen. Der Vorgang ist dann vor dem nächsten Neupositionieren eines Positionszeigers beendet.

Der Aufbau der Einträge des Ring-Speicher hat folgendes Format:

Daten/Befehl	Run/Stop	Daten

Das erste Bit kennzeichnet einen Eintrag als Befehl oder als Datenwort. Die Steuerung der Switching-Table entscheidet damit, ob die Bitkette im Datenteil des Eintrages als Befehl oder als Konfigurationsdaten behandelt werden. Das zweite Bit kennzeichnet, ob die Steuerung sofort, auch ohne daß ein weiteres Ereignis eingetroffen ist, mit dem nächsten Eintrag fortfahren soll, oder ob auf das nächste Ereignis gewartet werden soll. Wird ein Oversampling-Verfahren eingesetzt, und ist das RUN-Bit gesetzt, so werden die nächsten Einträge mit Hilfe dieses Oversampling-Taktes abgearbeitet. Dies geschieht solange, bis ein Eintrag ohne gesetztes RUN-Bit erreicht wurde, oder die Anzahl der Einträge, welche in der Oversampling-Taktrate innerhalb eines Systemtakt abgearbeitet werden können, erreicht wurde. Kommt kein Oversamling-Verfahren zum Einsatz, so wird durch den normalen Systemtakt und gesetztes RUN-Bit eine Weiterschaltung veranlaßt. Während des Ablaufes einer mit dem RUN-Bit gekennzeichneten Befehlsfolge eintreffende Ereignisse werden ausgewertet und das Trigger-Signal in einem Flip-Flop gespeichert. Die Steuerung wertet dieses Flip-Flop dann wieder aus, wenn ein Eintrag ohne gesetztes RUN-Bit erreicht wurde.

Der Rest eines Eintrags enthält je nach Art (Daten oder Befehl) alle notwendigen Informationen, so daß die Steuerung ihre Aufgabe vollständig durchführen kann.

Die Größe des Ring-Speichers ist der Anwendung entsprechend implementierbar, insbesondere gilt dies für programmierbare Bausteine, bei denen der Ring-Speicher durch die

Konfiguration einer oder mehrerer konfigurierbarer Zellen entsteht.

Ein Ring-Speicher ist dabei derart an ein zu konfigurierendes Element --- oder an eine Gruppe von zu konfigurierenden Elementen --- angeschlossen, daß ein selektiertes Konfigurationswort (im Ring-Speicher) in das Konfigurationsregister des zu konfigurierenden Elements oder der Gruppe der zu konfigurierenden Elemente, eingetragen wird.

Dadurch ensteht eine gültige und arbeitsfähige Konfiguration des zu konfigurierenden Elements oder der zu konfigurierenden Gruppe.

Jeder Ring-Speicher besitzt eine Steuerung oder mehrere Steuerungen, welche die Positionierung des Lese-Positionszeiger und/oder des Schreib-Positionszeigers steuert.

Die Steuerung kann, mittels des ind er Offenlegung DE 44 16 881 Al genannten Rückmeldekanals, auf Ereignisse von anderen Elementen des Bausteins oder durch externe Ereignisse, welche in den Baustein, übertragen werden (zum Beispiel Interrupt, IO-Protokolle etc.) reagieren und bewegt, als Reaktion auf diese internen oder externen Ergeignisse, den Lese-Positionszeiger und/oder den Schreib-Positionszeiger, auf einen anderen Eintrag.

Als Ereignisse sind zum Beispiel denkbar:

- 1. Taktzyklus einer Rechenanlage.
- 2. internes oder externes Interrupt-Signal.
- 3. Trigger-Signal von anderen Elementen innerhalb des Bausteines.
- 4. Vergleich eines Datenstroms und/oder eines Befehlstroms mit einem Wert.
- Input/Output Ereigenisse.

6. Ablaufen, überlaufen, neusetzen etc. eines Zählers.

7. Auswerten eines Vergleichs.

Befinden sich mehrere Ring-Speicher auf dem Baustein, so kann die Steuerung eines jeden Ring-Speichers auf unterschiedliche Ereignisse reagieren.

Nach jeder Bewegung des Lese-Positionszeigers auf einen neuen Eintrag, wird das in diesem Eintrag enthaltene Konfigurationswort an das konfigurierbare Element oder die konfigurierbaren Elemente, welche an den Ring-Speicher angeschlossen sind, übertragen.

Diese Übertragung geschieht in der Art, daß die Arbeitsweise der nicht von der Umkonfigurierung betroffenen Teile des Bausteines, nicht beeinträchtigt wird.

Der oder die Ring-Speicher können sich entweder in einem Baustein befinden, oder aber über ein externes Interface, von außen an den Baustein angeschlossen werden.

Dabei sind auch mehrere unabhängige Ring-Speicher pro Baustein denkbar, welche in einer Region des Bausteins zusammengefaßt sein können oder aber in einer sinnvollen Weise verteilt über die Fläche des Bausteines angeordnet sind

Die Konfigurationsdaten werden durch eine Ladelogik, wie aus Offenlegung DE 44 16 881 Al gekannt, oder durch andere interne Zellen des Bausteins in den Speicher der Switching-Tabelle geladen. Die Konfigurationsdaten können durch die Ladelogik oder durch andere interne Zellen des Bausteins dabei auch gleichzeitig an mehrere verschiedene Switching-Tabellen übertragen werden, um ein gleichzeitiges Laden der Switching-Tabellen zu ermöglichen.

Dabei können sich die Konfigurationsdaten auch im Hauptspeicher einer Datenverarbeitungsanlage befinden und anstatt der Ladelogik durch bekannte Verfahren, wie DMA oder prozessorgesteuerte Datentransfers übertragen werden.

Nach dem Laden des Ring-Speichers der Switching-Tabelle durch die Ladelogik, wird die Steuerung der Switching-Tabelle, in einen Startzustand gesetzt, die eine gültige Konfiguration des kompletten Bausteines oder Teilen des Bausteines,, einstellt. Die Steuerung der Switching-Tabelle beginnt nun mit der Neupositionierung des Lese-Positionszeigers und/oder des Schreib-Positionszeigers, als Reaktion auf eintreffende Ereignisse.

Um das Laden neuer Daten in eine Switching-Tabelle oder einer Menge von Switching-Tabellen zu veranlassen kann die Steuerung ein Signal an die Ladelogik, im Sinne von Offenlegung DE 44 16 881 Al, oder andere interne Teile des Bausteins, welche für das Laden neuer Daten in den Ring-Speicher der Switching-Tabelle verantwortlich sind, zurückgeben. Das Auslösen einer solchen Rückmeldung kann durch die Auswertung eines speziellen Befehls, eine Zählerstandes oder aber von außen (wie in der Patentanmeldung DE 196 51 075.9 in der State-Back-UNIT beschrieben) erfolgen. Die Ladelogik oder andere interne Zellen des Bausteins werten dieses Signal aus, reagieren auf das Signal durch eine möglicherweise veränderte Programmausführung, und überträgen neue oder andere Konfigurationsdaten an den oder die Ring-Speicher. Dabei müssen nun nur noch die Daten jener Ring-Speicher übertragen werden, die auf Grund der Auswertung des Signals an einer Datenübertragung beteiligt sind und nicht mehr die Konfigurationsdaten eines kompletten Bausteines.

Zwischenspeicher

An einzelne konfigurierbare Elemente oder Gruppen derer (nachfolgend Funktionselemente genannt) kann ein Speicher angeschlossen werden. Zur Ausgestaltung dieses Speichers können mehrere Verfahren nach dem Stand der Technik eingesetzt werden, ins besondere bieten sich FIFOs an. Die von den Funktionselementen generierten Daten werden in den

Speicher gespeichert, so lange, bis ein Datenpaket mit der gleichen durchzuführenden Operation abgearbeitet ist, oder der Speicher voll ist. Danach werden die Konfigurationselemente über Switching-Tabellen umkonfiguriert, d.h. die Funktion der Elemente ändert sich. Als Triggersignal für die Switching-Tabellen kann dabei das FullFlag dienen, das anzeigt, daß der Speicher voll ist. Um die Datenmenge beliebig bestimmen zu können, ist die Position des FullFlags konfigurierbar, d.h. der Speicher kann ebenfalls durch die Switching-Tabelle konfiguriert werden. Die Daten im Speicher werden auf den Eingang der Konfigurationselemente geführt und eine neue Operation über die Daten wird durchgeführt; die Daten stellen die operanden für die neue Berechnung dar. Dabei können ausschließlich die Daten aus dem Speicher verarbeitet werden, oder weitere Daten gelangen von außen (von außerhalb des Bausteines oder anderen Funktionselementen) hinzu. Beim Abarbeiten der Daten können diese (die Ergebnisse der Operation) an nachfolgende Konfigurationselemente weitergeleitet werden, oder nochmals in den Speicher geschrieben werden. Um sowohl den schreibenden als auch den lesenden Zugriff auf den Speicher zu ermöglichen, kann der Speicher aus zwei Speicherbanken bestehen, die alternierend abgearbeitet werden oder es existiert ein getrennter Lese- und Schreibpositionszeiger auf demselben Speicher. Eine besondere Ausgestaltungsmöglichkeit ist der Anschluß mehrerer wie oben beschriebener Speicher. Damit können mehrere Ergebnisse in getrennten Speichern abgelegt werden und zu einem bestimmten Zeitpunkt, zum Ausführen einer bestimmten Funktion, werden mehrere Speicherbereiche gleichzeitig zum Eingang eines Funktionselementes geführt und verrechnet.

Aufbau eines Eintrages des Ring-Speichers

Ein möglicher Aufbau der Einträge in den Ring-Speichern einer Switching-Tabelle, welche in einer Datenverarbeitungs-Anlage zum Einsatz kommt, wie sie in Offenlegung DE 44 16 881 Al beschrieben ist, wird nun beschrieben. In den folgenden Tabellen ist der Befehlsaufbau anhand der einzelnen Bits eines Befehlswortes beschrieben:

Bit-	Name	Bedeutung
Nummer		
0	Daten/Befehl	Kennzeichnet einen Eintrag als Daten-
	'	oder Befehlswort
1	run/stop	Kennzeichnet run- oder Stop-Mode

Handelt es sich bei dem Eintrag um einen Dateneintrag, hat das Bit Nummer O also den Wert O, so haben die Bits ab der Position zwei folgende Bedeutung:

Bit-	Name	Bedeutung
Nummer		·
26	Zellen-	Gibt die Nummer der Zelle innerhalb
	Nummer	einer Gruppe an, welche zusammen eine
		Switching-Tabelle verwenden
711	Konfi-	Gibt die Funktion an, welche die
	gurations-	Zelle (zum Beispiel eine EALU) ausführen
	daten	soll

Handelt es sich bei dem Eintrag um einen Befehl, das Bit Nummer 0 hat also den Wert 1, so haben die Bits ab der Position zwei folgende Bedeutung:

Bit-	Name	Bedeutung
Nummer		
26	Befehls-	Gibt die Nummer des Befehls an, welcher
	Nummer	durch die Steuerung der Switching-
		Tabelle ausgeführt wird
7	Schreib-	Gibt an, ob der Befehl auf
	/Lese-	den Schreib- oder den Lese-
	Positions-	Positionszeiger des Ring-Speichers
	zeiger	angewendet werden soll. Verändert ein
		Befehl keine Positionszeiger, so ist der
		Bitzustand nicht definiert
8n	Daten	Ja nach Befehl werden ab Bit 8 die
		für den Befehl benötigten Daten
		abgespeichert

In der nachfolgenden Tabelle sind nun die Bits 2..6 und 8..n für jeden hier aufgeführten Befehl dargestellt. Die insgesamte Bitbreite eines Datenwortes hängt von dem verwendeten Baustein ab, in dem die Switching-Tabelle zum Einsatz kommt. Die Bitbreite ist so zu wählen, daß alle, für die Befehle benötigten Daten in den Bits ab Position 8 kodiert werden können.

Befehl	Bit 26	Bit 8n Bedeutung
WAIT	00 00 0	Anzahl wie oft auf ein Ereignis gewartet werden soll
SKIP1	. 00.00 1.	Vorzeichenbehaftete Zahl, die angibt, wieviele Einträge nach vorne(hinten, wenn negativ) gesprungen werden soll
SKIP2	00 01 0	Siehe SKIP1
SWAP	00 01 1	1. Eintragsposition, 2. Eintragsposition
RESET	00 10 0	Nummer des Eintrags auf den der

		Positionszeiger gesetzt werden soll
WAIT-	00 10 1	Anzahl wie oft auf ein Ereignis gewartet
GOTO		werden soll, gefolgt von der Nummer des
		Eintrags auf den der Positionszeiger
	1	gesetzt werden soll
NOP	00 11 0	Keine Funktion!
GOTO	00 11 1	Nummer des Eintrags auf den der
		Positionszeiger gesetzt werden soll
MASK	01 00 0	Bitmuster, welches in den Multiplexer
		zur Auswahl der Ereignisse eingetragen
		wird
LLBACK	01 00 1	Ein Trigger-Signal für die Ladelogik
		wird generiert (Rückmeldung)

Umkonfigurieren von ALUs

Weiterhin ist der Einsatz einer oder mehrerer SwitchingTabellen für die Steuerung einer ALU denkbar. Die
beschriebene Erfindung kann zum Beispiel als Verbesserung des
Patentes DE 196 51 075.9 benutzt werden, in dem die
Switching-Tabelle an die M/F-PLUREG Register angeschlossen
wird oder die M/F-PLUREG Register komplett durch eine
Switching-Tabelle ersetzt werden.

Kurzbeschreibung der Diagramme

- Fig. 1 zeigt den prinzipiellen Aufbau eines Ringspeichers.
- Fig. 2 stellt den internen Aufbau des Ringspeichers dar.
- Fig. 3 zeigt einen Ringspeicher mit wählbarem Arbeitsbereich.
- Fig. 4 zeigt einen Ringspeicher und eine Steuerung, die über mehrere Schreib- und Lese-Positionszeiger auf verschiedenen Sektionen des Ringspeichers arbeiten kann.
- Fig. 5 stellt einen Ringspeicher dar, auf den verschiedene Steuerungen in unterschiedlichen Sektionen zugreifen.

Fig. 6 zeigt einen Ringspeicher und seine Verbindung mit den konfigurierbaren Elementen.

- Fig. 7 zeigt die Steuerung, mit einer Logik um auf verschiedene Triggersignale reagieren zu können. a)
 Realisierung der Maske für die Triggerimpulse
- Fig. 8 stellt den Taktgenerator für die Steuerung dar.
- Fig. 9 zeigt die Verschaltung der Steuerung und der internen Zellen, um eine Konfiguration der zu konfigurierenden Elemente zu ermöglichen.
- Fig. 10 stellt die Verarbeitung der im Ringspeicher abgelegten Befehle, durch die Steuerung dar.
- Fig. 11 stellt die Verarbeitung der im Ringspeicher gespeicherten Daten dar.
- Fig. 12 zeigt den Anschluß eines Zwischenspeichers aus zwei Speicherbänken an eine Menge von konfigurierbaren Elementen. Die Figuren a-d zeigen den Ablauf einer Datenverarbeitung.
- Fig. 13 zeigt den Anschluß eines Zwischenspeichers mit getrenntem Schreib-/Lesezeiger an eine Menge von konfigurierbaren Elementen.
- Fig. 14 zeigt die Funktionsweise eines Zwischenspeichers mit getrenntem Schreib-/Lesezeiger.
- Fig. 15 zeigt den Anschluß zweier Zwischenspeicher aus je zwei Speicherbanken an eine Menge von konfigurierbaren Elementen. Die Figuren a-c zeigen den Ablauf einer Datenverarbeitung

Detailbeschreibung der Diagramme

Figur 1 zeigt den prinzipielle Aufbau eines Ringspeichers. Er besteht aus einem Schreib-Positionszeiger 0101 und einem Lese-Positionszeiger 0102, die auf einen Speicher 0103 zugreifen. Dieser Speicher kann als RAM oder als Register ausgeführt werden. Mit Hilfe der Schreib/Lese-Positionszeiger

wird eine Adresse des RAMs 0104 ausgewählt, die abhängig von der gewählten Zugriffsart, mit den Eingangsdaten beschrieben wird, oder deren Daten gelesen werden.

Figur 2 stellt den internen Aufbau eines einfachen Ringspeichers dar. Für den Schreib/Lese-Positionszeiger steht jeweils ein Zähler zur Verfügung. 0201 stellt den Zähler des Lese-Positionszeigers 0204 dar und 0206 ist der Zähler des Schreib-Positionszeigers 0205. Beide Zähler 0201,0206 besitzten jeweils einen globalen Reset Eingang und einen Up/Down Eingang über den die Zählrichtung festgelegt wird. Über einen Multiplexer 0202, an dessen Eingängen die Ausgänge der Zähler anliegen, wird zwischen Schreib- (0205) und Lese-Positionszeiger (0204), die auf eine Adresse des Speichers 0203 zeigen, umgeschaltet. Der Schreib- und Lesezugriff wird über das Signal 0207 durchgeführt. Bei jedem Schreib- oder Lesezugriff wird der jeweilige Zähler um eine Position weitergezählt. Zeigt nun der Schreib- (0205) oder Lese-Positionszeiger (0204) auf die letzte Position des Speichers (letzte Adresse bei einem aufwärts zählendem Zähler oder die erste Adresse bei einem abwärts zählenden Zähler) so wird der Schreib- oder Lese-Positionszeiger 0205,0204 mit dem nächsten Zugriff auf die erste Position des Speichers 0203 gesetzt (erste Adresse bei einem aufwärts zählenden Zähler oder die letzte Adresse bei einem abwärts zählenden Zähler). Damit ergibt sich die Funktion eines Ringspeichers.

Figur3 stellt eine Erweiterung des normalen Ringspeichers dar. Bei dieser Erweiterung kann der Zähler 0303 des Schreib-Positionszeiger 0311 und der Zähler 0309 des Lese-Positionszeiger 0312 mit einem Wert geladen werden, so daß jede Adresse des Speichers direkt eingestellt werden kann. Dieser Ladevorgang erfolgt wie üblich über die Data- und Load-Eingänge der Zähler. Außerdem kann der Arbeitsbereich

des Ringspeichers auf eine bestimmte Sektion des internen Speichers 0306 eingegrenzt werden. Dies erfolgt mit einer internen Logik, welche die Zähler 0303,0309 der Schreib/Lese-Positionzeiger 0311,0312 ansteuert. Diese Logik ist folgendermaßen aufgebaut: Der Ausgang eines Zählers (0303,0309) wird auf den Eingang des zu ihm gehörenden Komparators (0302,0308) geführt. Dort wird der Wert des jeweiligen Zählers mit dem Wert des jeweiligen Datenregisters (0301,0307) in dem die Sprungposition, das heißt das Ende der Sektion des Ringspeichers gespeichert ist, verglichen. Stimmen die beiden Werte überein, so gibt der Komparator (0302,0308) ein Signal an den Zähler (0303,0309), der dann den Wert aus dem Datenregister für die Zieladresse des Sprunges (0304,0310), das heißt den Beginn der Sektion des Ringspeichers, lädt. Die Datenregister für die Sprungposition (0301,0307) und die Datenregister für die Zieladresse (0304,0310) werden von der Ladelogik (vgl. DE 44 16 881) geladen. Mit dieser Erweiterung ist es möglich, daß der Ringspeicher nicht den gesamten Bereich des internen Speichers verwendet, sondern nur einen ausgewählten Teil. Außerdem kann der Speicher, bei der Verwendung mehrerer solcher Schreib/Lese-Positionszeiger (0311,0312) in verschiedene Sektionen aufgeteilt werden.

Figur 4 zeigt den Aufbau eines in mehrere Sektionen aufgeteilten Ringspeichers, wobei die Steuerung 0401 auf einer dieser Sektionen arbeitet. Die Steuerung wird detailierter in Figur 7 beschrieben. Um eine Aufteilung des Ringspeichers in mehrere Sektionen zu ermöglichen, werden mehrere Schreib/Lese-Positionszeiger 0402,0408 verwendet, deren Aufbau in Figur 3 dargestellt wurde. Die Steuerung wählt dabei den Bereich, auf dem sie arbeitet, über die Multiplexer 0407 aus. Der Schreib- oder Lesezugriff wird über den Multiplexer 0403 gewählt. Eine Adresse des Speichers 0404

wird also von dem ausgewählten Schreib/Lese-Positionszeiger adressiert.

Figur 5 zeigt den Fall, in dem mehrere Steuerungen 0501 über jeweils einen Schreib- und Lese-Positionszeiger 0506,0502 pro Steuerung, auf einem eigenen Bereich des Ringspeichers arbeiten. Jeder Steuerung 0501 ist dabei ein Schreib-Positionszeiger 0506 und ein Lese-Positionszeiger 0502 zugeordnet. Welcher der mehreren Schreib- und Lese-Positionszeiger 0506,0502 auf den Speicher 0504 zugreift, wird über den Multiplexer 0505 ausgewählt. Über den Multiplexer 0503 wird entweder ein Schreib- oder Lesezugriff ausgewählt. Das Schreib/Lesesignal der Steuerungen 0501 gelangt über den Multiplexer 0507 zum Speicher 0504. Das Steuersignal der Multiplexer 0507,0505,0503 verläuft von den Steuerungen 0501 über einen Arbiter 0508 zu den Multiplexern. Durch den Arbiter 0508 wird verhindert, daß mehrere Steuerungen gleichzeitig auf die Multiplexer 0507,0505,0503 zugreifen.

Figur 6 stellt einen Ringspeicher 0601 und seine Verbindung mit den Konfigurationselementen 0602 dar. Der Ringspeicher 0601 ist über 0604, 0605, 0606 verbunden. Über 0604 werden die Adressen der angesprochenen Zellen 0607 übertragen. Die Leitung 0605 überträgt die Konfigurationsdaten aus dem Ringspeicher. Die Zellen 0607 übertragen eine Rückmeldung ob eine Umkonfigurierung möglich ist über die Verbindung 0606. Die im Ringspeicher abgelegten Daten werden in das Konfigurationselement 0602 eingetragen. Dieses Konfigurationselement 0602 bestimmt die Konfiguration der konfigurierbaren Elemente 0603. Die konfigurierbaren Elemente 0603 können z.B. aus logischen Bauteilen, ALUs bestehen.

Figur 7 zeigt eine Steuerung die auf verschiedene Triggerereignisse reagieren kann. Die einzelnen Triggerereignisse sind dabei maskierbar, so daß immer nur ein Triggerereignis angenommen wird. Dies erfolgt mit dem Multiplexer 0701. Das Triggersignal wird mit dem Flipflop 0704 gespeichert. Der Multiplexer 0702, der auch als Maske über UND-Gatter ausgestaltet sein kann (vgl. Fig. 7a), dient dazu um Low aktive und High aktive Triggersignale verarbeiten zu können. Das im Flipflop gespeicherte Triggersignal wird über 0705 zur Takterzeugung, die in Figur 8 beschrieben ist, weitergegeben. Die Zustandsmaschine 0703 bekommt ihren Takt von der Logik zur Takterzeugung und liefert abhängig von ihren Eingangssignalen ein Ausgangssignal und ein Resetsignal um das Flipflop 0704 zurückzusetzten und die Verarbeitung bis zum nächsten Triggersignales anzuhalten. Vorteil dieser Implementierung ist die Stromersparnis bei Taktabschaltung, da die Zustandsmaschine 0703 dann statisch ist. Eine Implementierung wäre ebenfalls denkbar, in dem der Takt immer anliegt und die Zustandsmaschine durch den Zustand des Befehlsdekoders und des run Bit gesteuert wird.

Figur 7a zeigt die Maskierung der Triggersignale. Die Triggersignale und die Leitungen von A liegen auf den Eingängen der UND-Gatter 0706. Die Ausgänge der UND-Gatter 0706 werden mit 0707 verodert und erzeugen das Ausgangssignal.

Figur 8 zeigt die Logik zur Takterzeugung für die Zustandsmaschine. In 0801 wird mit Hilfe eines PLL ein anderer Takt erzeugt. Über den Multiplexer 0802 kann nun ausgewählt werden, ob der normale Chiptakt oder der Takt des PLL 0801 verwendet wird. Am ODER-Gatter 0804 liegen die Signale C und B an. Das Signal C wird aufgrund eines Triggerereignisses in der Steuerung erzeugt (vgl. Fig 7,

0705). Signal B stammt aus dem Bit 1 des Befehlswortes (vgl. Fig 10, 1012). Dieses Bit hat die Funktion eines run Flags, sodaß die Steuerung bei gesetztem run Flag unabhängig vom einem Triggerimpuls weiterarbeitet. Der Ausgang des ODER-Gatters 0804 wird mit dem Ausgang des Multiplexers 0802 verundet und erzeugt so den Takt für die Zustandsmaschine.

Figur 9 zeigt die Verbindung zwischen der Steuerung 0907, der Ladelogik 0902 mit Speicher 0901, dem Ringspeicher 0906, den konfigurierbaren Elementen 0905 und Konfigurationselementen 0908, sowie den internen zur Konfiguration benutzten Zellen 0903. Hier ist die interne zur Konfiguration verwendete Zelle 0903 als normale Zelle mit konfigurierbaren Elementen 0905 und Konfigurationselemanten 0908 gezeigt. Der Ringspeicher 0906 steht mit den Konfigurationselementen 0908 in Verbindung und wird seinerseits durch die Steuerung 0907 gesteuert. Die Steuerung 0907 reagiert auf verschiedene Triggerimpulse, wobei diese Triggerimpulse auch von der internen zur Konfiguration verwendeten Zelle 0903 stammen können. Über den Rückmeldekanal 0909 teilt die Steuerung 0907 der Ladelogik 0902 mit, wenn aufgrund eines Triggerereignisses neue Daten in den Ringspeicher 0906 zu laden sind. Zusätzlich zum Senden dieser Rückmeldung schickt die Steuerung 0907 noch ein Signal an den Multiplexer 0904 und wählt aus, ob Daten aus der Ladelogik 0902 oder der internen zur Konfiguration verwendeten Zelle 0903 zum Ringspeicher geschickt wird. Außer der Konfiguration des Ring-Speichers durch die Ladelogik, kann der Ring-Speicher wie folgt eingestellt werden: Das konfigurierbare Element 0903 ist so geschaltet, daß es, allein oder als letztes Element einer Gruppe von Elementen Einträge für den Ringspeicher (0906) generiert. Dabei generiert es einen Triggerimpuls, der den Schreibpositionszeiger im Ring-Speicher weiterschaltet. In diesem Modus schaltet der Multiplexer (0904) die Daten von

0903 zum Ring-Speicher durch, während bei einer Konfiguration durch die Ladelogik die Daten von der Ladelogik durchgeschaltet werden. Es wäre selbstverständlich denkbar, daß weitere fest implementierte Funktionseinheiten als Quelle der Konfigurationssignale dienen.

Figur 10 zeigt die Befehlsverarbeitung der in den Ringspeichern abgelegten Befehle durch die Steuerung. 1001 stellt den Speicher des Ringspeichers mit folgender Bitaufteilung dar. Bit 0 kennzeichnet den Eintrag als Datenoder Befehlswort. Bit 1 kennzeichnt den run- und Stop-Mode. Bit 2..6 bezeichnet die Befehlsnummer, welche die Befehle kodiert. Bit 7 gibt an ob der Befehl auf den Lese- oder Schreib-Positionszeiger angewendet werden soll. Beeinflußt der Befehl keinen Positionszeiger, so ist Bit 7 undefiniert. In Bit 8..n werden die für einen Befehl benötigten Daten abgelegt. Die Zähler 1004,1005 bilden die zum Ringspeicher gehörenden Schreib/Lese-Positionszeiger. Empfängt die Steuerung einen Triggerimpuls, gibt die Zustandsmaschine einen Impuls an den Lese-Positionszeiger. Der Schreib-Positionszeiger wird zum Lesen eines Befehles nicht benötigt, sondern wird nur für den Eintrag von Daten in den Ringspeicher benutzt. Der gewählte Lese-Positionszeiger bewegt sich um eine Position weiter und ein neuer Befehl wird selektiert (Bit 0=0). Am Befehlsdecoder 1002 liegen nun die Bits 2..6 und Bit 7 an, werden dekodiert und das Ergebnis wird zur Zustandsmaschine weitergeleitet (1024). Diese erkennt um welchen Befehl es sich handelt und schaltet entsprechend.

- Handelt es sich um einen Skip Befehl so gibt die Zustandsmaschine 1011 einen Impuls an den Addierer/Subtrahierer 1006 damit er zu den über den Multiplexer 1003 anliegenden Daten aus den Zählern 1004,1005,

die Daten des Befehlswortes aus Bit 8..n addiert oder subtrahiert. Der Multiplexer 1003 wählt abhängig von Bit 7 den Zähler des Schreib-Positionszeigers 1004 oder den Zähler des Lese-Positionszeigers 1005. Nachdem die Daten addiert/subtrahiert wurden, aktiviert die Zustandsmaschine 1011 das Tor 1010 und gibt ein Übernahmesignal an den Zähler 1004,1005. Damit zeigt der ausgewählte Positionszeiger um soviele Positionen nach vorne oder hinten wie in den Daten des Skip Befehles angegeben.

- Bei einem GOTO Befehl wird von der Zustandsmaschine 1011 das Tor 1007 aktiviert, so daß die Daten abhängig von Bit 7 zum Schreib- oder Lese-Positionszähler 1004,1005 gelangen und dort übernommen werden.
- Beim MASK Befehl werden die Daten in ein Latch 1008 übernommen und dort gespeichert. Diese Daten stehen dann über die Verbindung A (1013) der in Figur 7/7a beschriebenen Steuerung bereit und maskieren dort alle Triggereingänge von denen kein Triggerimpuls übernommen werden soll.
- Bei einem WAIT Befehl wird so oft auf ein Ereignis gewartet, wie in den Daten-Bits angegeben. Wird von der Zustandsmaschine 1011 dieser Befehl registriert, so gibt sie einen Impuls an den Wartezyklus-Zähler 1009, der die Daten übernimmt. Der Wartezyklus-Zähler zählt nun bei jedem von der Zustandsmaschine 1011 weitergeleiteten Ereignis eine Stelle nach unten. Sobald er auf null gezählt hat wird das Carry Flag gesetzt und zur Zustandsmaschine 1011 geleitet (1023). Durch das Carry Flag läuft die Zustansmaschine danach weiter. Bei einem WAIT-Goto Befehl werden die Daten, welche die
- Anzahl der Wait-Ereignisse angeben in den Wartezyklus-Zähler übernommen. Nach dem Eintreffen der Anzahl der in den Daten angegebenen Ereignissen aktiviert die Zustandsmaschine das Tor 1007 und leitet die Daten für die Sprungposition in den gewählten Zähler weiter.

- Der SWAP Befehl dient zum Tausch zweier Einträge zwischen zwei Positionen des Ringspeichers. In Latch 1017 wird die Adresse des ersten zu tauschenden Eintrages gespeichert, in Latch 1018 die Adresse des 2. Eintrages. Die Adressen werden an die Multiplexer 1015 und 1016 der Schreib-/Lesezeiger weitergeleitet. Zunächst wird über 1016 der Eintrag 1 selektiert und in das Latch 1019 gespeichert, danach wird über 1016 der Eintrag 2 selektiert und in 1020 gespeichert. Über 1015 wird der Schreibzeiger auf den 1. Eintrag gesetzt und über Tor 1022 die ehemaligen Daten von Eintrag 2 gespeichert. Danach wird über 1015 wird der Schreibzeiger auf den 2. Eintrag gesetzt und über Tor 1021 die ehemaligen Daten von Eintrag 1 gespeichert.

- Die Zustandsmaschine 1011 sendet über 1014 Rückmeldungen an die Ladelogik (z.B. über eine State-Back-UNIT vgl. DE 196 51 075.9). Über diese Verbindung gibt die Zustandsmaschine ein Signal, sobald ein LLBack Befehl registriert wird.
- Das Bit 1, das als run Flag dient, Wird zur Taktgenerierung der Steuerung geleitet, die in Figur 8 beschrieben wird.
- Der NOP Befehl wird in der Zustandsmaschine registriert, es wird jedoch keine Operation durchgeführt.

Figur 11 zeigt die Verarbeitung eines im Ringspeicher gespeicherten Datenwortes. 1101 entspricht 1001 der Figur 10. Da es sich um ein Datenwort handelt ist das Bit 0 auf eins gesetzt. Der Befehlsdekoder 1107 erkennt, daß es sich um ein Datenwort handelt und schickt eine Anfrage 1106 an die in den Bits 2..6 adressierte Zelle, ob eine Umkonfigurierung möglich ist. Das Abschicken der Anfrage geschieht gleichzeitig mit dem aktivieren des Tores 1102 wodurch die Adresse der Zelle übertragen wird. Die Zelle zeigt über 1105 ob eine Umkonfigurierung möglich ist. Wenn ja, Tor 1103 um die Konfigurationsdaten an die Zelle zu übertragen. Wenn keine Umkonfigurierung möglich ist läuft die Verarbeitung weiter

und im nächsten Umlauf im Ringspeicher wird die Umkonfiguration erneut versucht. Eine andere Möglichkeit des Ablauf sieht folgendermaßen aus. Die Zustandsmaschine aktiviert Tor 1102 und 1103 und überträgt die Daten zur adressierten Zelle. Ist eine Umkonfigurierung der Zelle möglich, quittiert die Zelle über 1105 den Empfang der Daten. Ist keine Umkonfigurierung möglich schickt die Zelle kein Empfangssignal und im nächsten Umlauf des Ringspeichers wird die Umkonfigurierung erneut versucht.

Figur 12 zeigt eine Gruppe (Funktionselement) (1202) von konfigurierbaren Elementen (1201). Die Daten gelangen über den Eingangsbus (1204) in das Funktionselement und die Ergebnisse werden über den Ausgangsbus (1205) weitergeleitet. 1205 wird dabei unter anderem auf zwei Speicherbänke (1203) geleitet, von denen abwechselnd je einer als Schreib- oder Lesespeicher arbeitet. Deren Ausgänge sind auf den Eingangsbus (1204) geschaltet. Die gesamte Schaltung kann über einen Bus zu den Switching-Tabellen (1206) konfiguriert werden, dabei werden sowohl die Triggersignale zur Switching-Tabelle, als auch die Konfigurationsdaten von der Switching-Tabelle über diesen Bus übertragen. Dabei wird neben der Funktion des Funktionselementes der momentan aktive Schreib/Lesespeicher und die Speichertiefe des jeweiligen Speichers eingestellt.

Figur 12a zeigt wie Daten von außen (1204), also einer anderen Funktionseinheit oder außerhalb des Bausteins, in dem Funktionselement (1202) berechnet werden und dann in den Schreibspeicher (1210) geschrieben werden.

Figur 12b zeigt den nächsten Schritt nach Figur 12a. Das Funktionselement (1202) und die Speicher (1220, 1221) wurden nach einem von dem Funktionselement oder den Speichern oder

einer anderen Einheit generierten Trigger über 1206 umkonfiguriert. Der Schreibspeicher (1210) ist jetzt als Lesespeicher (1220) konfiguriert und liefert die Daten für das Funktionselement. Die Ergebnisse werden im Schreibspeicher (1221) gespeichert.

Figur 12c zeigt den nächsten Schritt nach Figur 12b. Das Funktionselement (1202) und die Speicher (1230, 1231) wurden nach einem von dem Funktionselement oder den Speichern oder einer anderen Einheit generierten Trigger über 1206 umkonfiguriert. Der Schreibspeicher (1221) ist jetzt als Lesespeicher (1230) konfiguriert und liefert die Daten für das Funktionselement. Die Ergebnisse werden im Schreibspeicher (1231) gespeichert. In diesem Beispiel werden zusätzliche Operanden von außen (1204), also einer anderen Funktionseinheit oder außerhalb des Bausteins, mit verrechnet.

Figur 12d zeigt den nächsten Schritt nach Figur 12c. Das Funktionselement (1202) und die Speicher (1203, 1240) wurden nach einem von dem Funktionselement oder den Speichern oder einer anderen Einheit generierten Trigger über 1206 umkonfiguriert. Der Schreibspeicher (1231) ist jetzt als Lesespeicher (1240) konfiguriert und liefert die Daten für das Funktionselement. Die Ergebnisse werden über den Ausgabebus (1205) weitergeleitet.

Figur 13 zeigt eine Schaltung nach Figur 12, dabei ist anstatt der beiden Speicherbanke ein Speicher mit getrenntem Schreib- und Lesezeiger eingesetzt (1301).

Figur 14 zeigt den Speicher (1401) nach Figur 13. 1402 ist der Lesepositionszeiger, der Eintrag vor dem Zeiger ist bereits gelesen oder frei (1405). Der Zeiger zeigt auf einen

freien Eintrag. Hinter dem Lesepositionzeiger liegen Daten (1406), die noch gelesen werden müssen. Danach folgt Freiraum (1404) und bereits neu geschriebene Daten (1407). Der Schreibpositionszeiger (1403) zeigt auf einen freien Eintrag, der entweder leer ist oder schon gelesen wurde. Der Speicher kann als Ring-Speicher, wie bereits beschrieben, ausgestaltet sein.

Figur 15 zeigt eine Schaltung nach Figur 12, dabei sind die beiden Speicherbanke (1203) doppelt vorhanden. Dadurch können mehrere Ergebnisse gespeichert und danach zusammen verarbeitet werden.

Figur 15a zeigt wie Daten von außen (1204), also einer anderen Funktionseinheit oder außerhalb des Bausteins, in dem Funktionselement (1202) berechnet werden und dann über den Bus 1511 in den Schreibspeicher (1510) geschrieben werden.

Figur 15b zeigt den nächsten Schritt nach Figur 15a. Das Funktionselement (1202) und die Speicher (1203, 1510, 1520) wurden nach einem von dem Funktionselement oder den Speichern oder einer anderen Einheit generierten Trigger über 1206 umkonfiguriert. Dabei werden Daten von außen (1204), also einer anderen Funktionseinheit oder außerhalb des Bausteins, in dem Funktionselement (1202) berechnet und dann über den Bus 1521 in den Schreibspeicher (1520) geschrieben. Figur 15c zeigt den nächsten Schritt nach Figur 15b. Das Funktionselement (1202) und die Speicher (1203, 1530, 1531, 1532) wurden nach einem von dem Funktionselement oder den Speichern oder einer anderen Einheit generierten Trigger über 1206 umkonfiguriert. Der Schreibspeicher (1510,1520) ist jetzt als Lesespeicher (1531, 1532) konfiguriert. Die Lesespeicher liefern mehrere Operanden gleichzeitig an die Funktionselemente (1202). Dabei ist jeder Lesespeicher (1531,

1532) mit je einem unabhängigen Bussystem (1534, 1535) mit 1202 verbunden. Die Ergebnisse werden entweder über 1533 im Schreibspeicher (1530) gespeichert oder über 1205 weitergeleitet.

Begriffsdefinition

ALU Arithmetisch logische Einheit. Grundeinheit zum Verarbeiten von Daten. Die Einheit kann arithmetische Operationen wie Addition, Subtraktion, unter Umständen auch Multiplikation, Division, Reihenentwicklungen usw. durchführen. Dabei kann die Einheit als ganzzahlige (integer) Einheit oder als Fließkomma-(floating-point)-Einheit gestaltet sein. Ebenfalls kann die Einheit logische Operationen, wie UND, ODER, sowie Vergleiche durchführen.

Datenwort Ein Datenwort besteht aus einer beliebig langen Bit-Reihe. Diese Bit-Reihe stellt eine Verarbeitungseinheit für eine Anlage dar. In einem Datenwort können sowohl Befehle für Prozessoren o.ä. Bausteine sowie rein Daten kodiert werden.

DFP Datenflußprozessor nach Patent/Offenlegung DE 44 16 881

DPGA Dynamisch konfigurierbare FPGAs. Stand der Technik}

D-FlipFlop Speicherelement, welches ein Signal bei der steigenden Flanke eines Taktes speichert.

EALU Erweiterte arithmetisch logische Einheit. ALU, die um Sonderfunktionen, die zum Betrieb einer Datenverarbeitungseinrichtung gemäß DE 441 16 881 Al benötigt werden oder sinnvoll sind erweitert wurde. Dies sind ins besondere Zähler.

Elemente Sammelbegriff für alle Arten von in sich abgeschlossenen Einheiten, welche als Stück in einem

elektronischen Baustein zum Einsatz kommen können. Elemente sind also:

- Konfigurierbare Zellen aller Art
- Cluster
- RAM-Blöcke
- Logik
- Rechenwerke
- Register
- Multiplexer
- I/O Pins eines Chips

Ereignis Ein Ereignis kann durch ein Hardwareelement in irgendeiner zur Anwendung passenden Art und Weise ausgewertet werden und als Reaktion auf diese Auswertung eine bedingte Aktion auslösen. Ereignisse sind somit zum Beispiel:

- Taktzyklus einer Rechenanlage.
- internes oder externes Interrupt-Signal.
- Trigger-Signal von anderen Elementen innerhalb des Bausteines.
- Vergleich eines Datenstroms und/oder eines Befehlstroms mit einem Wert.
- Input/Output Ereignisse.
- Ablaufen, überlaufen, neusetzen etc. eines Zählers.
- Auswerten eines Vergleichs.

Flag (Fahne). Statusbit in einem Register, das einen Zustand anzeigt.

FPGA Programmierbarer Logikbaustein. Stand der Technik.

Gatter Gruppe von Transistoren, die eine logische Grundfunktion durchführen. Grundfunktionen sind z.B. NAND, NOR, Trans\-mission-Gates.

konfigurierbares Element Ein konfigurierbares Element stellt eine Einheit eines Logik-Bausteines dar, welche durch ein Konfigurationswort für eine spezielle Funktion eingestellt werden kann. Konfigurierbare Elemente sind somit, alle Arten von RAM-Zellen, Multiplexer, Arithmetische logische Einheiten, Register und alle Arten von interner und externer Vernetzungsbeschreibung etc.

Konfigurieren Einstellen der Funktion und Vernetzung einer logischen Einheit, einer (FPGA)-Zelle oder einer PAE (vgl. umkonfigurieren).

Konfigurationsdaten Beliebige Menge von Konfigurationsworten.

Konfigurationsspeicher Der Konfigurationspeicher enthält ein oder mehrere Konfigurationsworte.

Konfigurationswort Ein Konfigurationswort besteht aus einer beliebig langen Bit-Reihe. Diese Bit-Reihe stellt eine gültige Einstellung für das zu konfigurierende Element dar, so das eine funktionsfähige Einheit entsteht.

Ladelogik Einheit zum Konfigurieren und Umkonfigurieren der PAE. Ausgestaltet durch einen speziell an seine Aufgabe angepaßten Mikrokontroller.

Latch Speicherelement, das ein Signal für gewöhnlich während des H-Pegels transparent weiterleitet und während des L-Pegels speichert. In PAEs werden teilweise Latches gebraucht, bei denen die Funktion der Pegel genau umgekehrt ist. Hierbei wird vor den Takt eines üblichen Latch ein Inverter geschaltet.

Lese-Positionszeiger Adresse des momentan aktuellen Eintrags für Lesezugriffe innerhalb eines FIFOs oder Ringspeichers.

Logikzellen Bei DFPs, FPGAs, DPGAs verwendete konfigurierbare Zellen, die einfache logische oder arithmetische Aufgaben gemäß ihrer Konfiguration erfüllen.

Oversampling Ein Takt läuft mit mehrfacher Frequenz eines Grundtaktes, synchron zu selbigem. Der schnellere Takt wird meistens durch einen PLL generiert.

PLL (Phase Locked Loop) Einheit zur Taktvervielfachung auf Basis eines Grundtaktes.

PLU Einheit zum Konfigurieren und Umkonfigurieren der PAE. Ausgestaltet durch einen speziell an seine Aufgabe angepaßten Mikrokontroller.

Ringspeicher Speicher mit eigenem Schreib-/Lesepositionszeiger, der --- am Ende des Speichers angelangt --- sich auf den Anfang des Speichers plaziert. Dadurch entsteht ein Endlosspeicher in Form eines Ringes.

RS-FlipFlop Reset-/Set-FlipFlop. Speicherelement, das durch 2 Signale umgeschaltet werden kann.

Schreib-Positionszeiger Adresse des momentan aktuellen Eintrags für Schreibzugriffe innerhalb eines FIFOs oder Ringspeichers.

StateBack-UNIT Einheit, die die Rückmeldung der Statussignale an die PLU steuert. Bestehend aus einem Multiplexer und einer Open-Kollektor-Bustreiberstufe

Switching-Tabelle Eine Switching-Tabelle ist ein Ring-Speicher, welcher durch eine Steuerung angesprochen wird. Die Einträge einer Switching-Tabelle können beliebige Konfigurationswörter aufnehmen. Die Steuerung kann Befehle durchführen. Die Switching-Tabelle reagiert auf Triggersignale und konfiguriert konfigurierbare Elemente anhand eines Eintrages in einem Ringspeicher um.}

Tor Schalter, der ein Signal weiterleitet oder sperrt. Einfacher Vergleich: Relais

Umkonfigurieren Neues Konfigurieren von einer beliebigen Menge von PAEs während eine beliebige Restmenge von PAEs ihre eigenen Funktionen fortsetzen (vgl. konfigurieren).}

Verarbeitungszyklus Ein Verarbeitungszyklus beschreibt die Dauer, welche von einer Einheit benötigt wird, um von einem definierten und/oder gültigen Zustand in den nächsten definierten und/oder gültigen Zustand, zu gelangen.

Zustandsmaschine Logik, die diversen Zuständen annehmen kann. Die Übergänge zwischen den Zuständen sind von verschiedenen Eingangsparametern abhängig. Diese Maschinen werden zur Steuerung komplexer Funktionen eingesetzt und entsprechen dem Stand der Technik

Namenskonvention

Baugruppe -UNIT
Betriebsart -MODE
Multiplexer -MUX
Negiertes Signal notRegister für PLU sichtbar -PLUREG

Register intern -REG Schieberegisters -sft

Funktionskonvention

NICHT-Funktion !

I	Q
0	1
1	0

UND-Funktion &

A	В	Q
0	0	0
0	1	0
1	0	0
1	1	1

ODER-Funktion

Α	В	Q
0	0	0
0	1	1
1	0	1
1	1	1

TOR-Funktion G

EN	В	Q
0	0	-
0	1	-
1	0	0
1	1	1

Patentansprüche

1. Verfahren zur dynamischen Umkonfiguration von konfigurierbarer Bausteinen, mit einer zwei oder mehrdimensionalen Zellanordnung (zum Beispiel FPGAs, DPGAs, DFPs o.ä.)

1.1 dadurch gekennzeichent,

- daß 1. ein oder mehrere Switching-Tabellen, bestehen aus einer oder mehrerer Steuerungen und einem oder mehrerer Konfigurationsspeicher, auf dem Baustein existieren, oder an diesen angeschlossen werden,
- daß 2. Konfigurationsworte von einer Switching-Tabelle an ein konfigurierbares Element oder mehrere konfigurierbare Elemente des Bausteins oder der Bausteine übertragen werden, welche eine gültige Konfiguration einstellen,
- daß 3. die Ladelogik oder die konfigurierbaren Elemente des Bausteins oder der Bausteine, Daten in den oder die Konfigurationsspeicher des oder der Switching-Tabelle schreiben können,
- daß 4. die Steuerung des oder der Switching-Tabellen, einzelne Einträge als Befehle erkennen und diese Befehle ausführen kann,
- daß 5. die Steuerung verschiedene Ereignisse erkennen und unterscheiden kann und daraufhin eine definierte Aktion durchführt,
- daß 6. die Steuerung als Reaktion auf das Eintreffen eines Ereignisses oder einer Kombination von Ereignissen, den oder die Positionszeiger bewegt und, falls es sich um Konfigurationsdaten und nicht um Befehle für die Steuerung handelt, diese Konfigurationsdaten an die, in das oder die in den Konfigurationsdaten angegebenen konfigurierbaren Elemente schickt,

daß 8. die Steuerung ein oder mehrere Rückmeldungen an eine oder mehrere Ladelogiken senden kann,

- daß 9. eine Ladelogik mehrere Ladelogiken dieses oder diese Signale erkennen und auswerten kann,
- daß 10. eine Ladelogik Daten in die Konfigurationsspeicher des oder der Switching-Tabellen überträgt,

oder

- 1.2 dadurch gekennzeichent,
 - daß 1. oder einer Gruppe von konfigurierbaren Elementen (Funktionselement) ein Speicher zugeordnet ist, in dem die Ergebnisdaten zwischengespeichert werden,
 - daß 2. eine Switching-Tabelle oder Ladelogik ein Triggersignal erhält, sobald alle Ergebnisse berechnet sind,
 - daß 3. das Funktionselement daraufhin von einer Switching-Tabelle oder Ladelogik umkonfiguriert wird,
 - daß 4. der Speicher daraufhin von einer Switching-Tabelle oder Ladelogik umkonfiguriert wird,
 - daß 5. die Daten des Speichers in das Funktionselement geladen werden und erneut verarbeitet werden,
 - daß 6. dabei auch Daten neu von weiteren Funktionselementen hinzukommen können,
 - daß 7. dabei auch Daten neu von weiteren Speichern hinzukommen können,
 - daß 8. das Ergebnis an weitere Funktionselemente, einen anderen oder denselben Speicher geführt werden kann,
- daß 9. dieser Ablauf einmal oder mehrmals wiederholt wird.
- 3. Verfahren nach Anspruch 1.2, dadurch gekennzeichnet, daß

der Speicher als FIFO ausgestaltet ist und als Triggersignale das FullFlag verwendet wird.

- 4. Verfahren nach Anspruch 1.2, dadurch gekennzeichnet, daß der mehrere Speicherbanke existieren, die abwechselnd als Schreib- oder Lesespeicher arbeiten.
- 5. Verfahren nach Anspruch 1.2, dadurch gekennzeichnet, daß der Speicher ein Ringpuffer ist.
- 6. Verfahren nach Anspruch 1.2, dadurch gekennzeichnet, daß die Tiefe des Speichers konfigurierbar ist.
- 7. Verfahren nach Anspruch 1.1, dadurch gekennzeichnet, daß eine Switching-Tabelle einen oder mehrere Lese-Positionszeiger enthält.
- 8. Verfahren nach Anspruch 1.1, dadurch gekennzeichnet, daß eine Switching-Tabelle einen oder mehrere Schreib-Positionszeiger enthält.
- 9. Verfahrenn nach Anspruch 1.1, dadurch gekennzeichnet, daß der oder die Positionszeiger vorwärts, rückwärts oder auf einen beliebigen Eintrag innerhalb des Konfigurationsspeichers der Switching-Tabelle bewegt werden können.
- 10. Verfahren nach Anspruch 1.1, dadurch gekennzeichnet, daß nicht alle Einträge des Konfigurationsspeichers verwendet werden.
- 11. Verfahren nach Anspruch 1.1, dadurch gekennzeichnet, daß eine Rückmeldemöglichkeit der Tabellensteuerung an eine Ladelogik besteht.

ERSATZBLATT (REGEL 26)

ERSATZBLATT (REGEL 26)

7/18

Fig. 8

ERSATZBLATT (REGEL 26)

ERSATZBLATT (REGEL 26)

ERSATZBLATT (REGEL 26)

Fig. 12

ERSATZBLATT (REGEL 26)

ERSATZBLATT (REGEL 26)

ERSATZBLATT (REGEL 26)

Fig. 13

Fig. 14

Fig. 15

16/18

Fig. 15a

Fig. 15b

Fig. 15*c*

INTERNATIONAL SEARCH REPORT

Into ional Application No PCT/DE 97/02998

			.,
A. CLASSI IPC 6	FICATION OF SUBJECT MATTER H03K19/177 G06F17/50		
According to	o International Patent Classification(IPC) or to both national classific	ation and IPC	
	SEARCHED		
	ocumentation searched (classification system followed by classification H03K G06F	on symbols)	
Oocumenta	tion searched other than minimumdocumentation to the extent that s	such documents are included in the fields s	earched
Electronic d	ata base consulted during the international search (name of data ba	ise and, where practical, search terms use	d)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category '	Citation of document, with indication, where appropriate, of the rel	evant passages	Relevant to claim No.
А	EP 0 748 051 A (IBM) 11 December 1996 see the whole document		1-11
A	SALEEBA M: "A self-contained dyn reconfigurable processor archited SIXTEENTH AUSTRALIAN COMPUTER SC CONFERENCE. ACSC-16, BRISBANE, QI AUSTRALIA, 3-5 FEB. 1993, vol. 15, no. 1, pt.A, ISSN 0157-1000 AUSTRALIAN COMPUTER SCIENCE COMMUNICATIONS, 1993, AUSTRALIA, pages 59-70, XP002064400 see the whole document	cture" IENCE LD., 3055,	1
Α	EP 0 678 985 A (XILINX INC) 25 00 1995 see abstract 	ctober	1
Furt	her documents are listed in the continuation of box C.	X Patent family members are listed	t in annex.
"A" docume consid "E" earlier of filing of "L" docume which citation "O" docume other i "P" docume later ti	ent which may throw doubts on priority claim(s) or is cited to establish the publicationdate of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	T" later document published after the into or priority date and not in conflict with cited to understand the principle or the invention. "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the different cannot be considered to involve an indocument of particular relevance; the cannot be considered to involve an indocument is combined with one or ments, such combination being obvious the art. "&" document member of the same patent Date of maiting of the international se	h the application but heory underlying the claimed invention of the considered to occurrent is taken alone claimed invention nventive step when the nore other such docupous to a person skilled
8	May 1998	26/05/1998	
Name and r	naiting address of the ISA European Patent Office. P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx, 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Michel, T	
	1 un (** 1-10) 070-0010	1	

1

INTERNATIONAL SEARCH REPORT

information on patent family members

Intr ional Application No PCT/DE 97/02998

ited in search report	date	member(s)	date
P 0748051 A	11-12-96	US 5646544 A JP 8330945 A	08-07-97 13-12-96
EP 0678985 A	25-10-95	US 5426378 A JP 8051356 A	20-06-95 20-02-96

INTERNATIONALER RECHERCHENBERICHT

Inti Jonales Aktenzeichen
PCT/DE 97/02998

			I CI/UL 3/	02330
A. KLASSI IPK 6	ifizierung des anmeldungsgegenstandes H03K19/177 G06F17/50			
Nach der In	nternationalen Patentklassifikation (IPK) oder nach der nationalen Kla	ssifikation und der IPK		
	ACHIERTE GEBIETE			
Recherchie IPK 6	rter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbo H03K G06F	ole)		
Recherchie	rte aber nicht zum Mindestprüfsloff gehörende Veröffentlichungen, so	weit diese unter die rechei	rchierten Geblete	fallen
Während de	er internationalen Recherche konsultierte elektronische Datenbank (N	lame der Datenbank und e	evil. verwendete S	ouchbegriffe)
C. ALS WE	ESENTLICH ANGESEHENE UNTERLAGEN			
Kategorie'	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angab	e der in Betracht kommend	ten Teile	Betr. Anspruch Nr.
Α	EP 0 748 051 A (IBM) 11.Dezember siehe das ganze Dokument	1996		1-11
А	SALEEBA M: "A self-contained dyr reconfigurable processor architect SIXTEENTH AUSTRALIAN COMPUTER SCICONFERENCE. ACSC-16, BRISBANE, QUAUSTRALIA, 3-5 FEB. 1993, Bd. 15, Nr. 1, pt.A, ISSN 0157-30 AUSTRALIAN COMPUTER SCIENCE COMMUNICATIONS, 1993, AUSTRALIA, Seiten 59-70, XP002064400 siehe das ganze Dokument	cture" IENCE LD.,		1
А	EP 0 678 985 A (XILINX INC) 25.0k 1995 siehe Zusammenfassung	ctober		1
	tere Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	X Siehe Anhang Pa	atentlamilie	
"Besonders" "A" Veröffe aber n "E" älteres Anmel "L" Veröffe schein ander soll och ausge "O" Veröffe eine B "P" Veröffe dem b	ehmen a Kategorien von angegebenen Veröffentlichungen intlichtung, die den allgemeinen Stand der Technik definiert, inicht als besonders bedeutsam anzusehen ist Dokument, das jedoch erst am oder nach dem Internationalen idedatum veröffentlicht worden ist ntlichtung, die geeignet ist, einen Prioritätsanspruch zweifelhaft ernen zu lassen, oder durch die das Veröffentlichungsdatum einer ein im Recherchenbericht genannten Veröffentlichungs belegt werden ist die aus einem anderen besonderen Grund angegeben ist (wie rücht) intlichung, die sich auf eine mündliche Offenbarung, benutzung, eine Ausstellung oder andere Maßnahmen bezieht mitlichung, die vor dem intermationalen Anmeldedatum, aber nach eeanspruchten Prioritätsdatum veröffentlicht worden ist Abschlusses der internationalen Recherche	oder dem Prioritätsda Anmeldung nicht kolit Erfindung zugrundelle Theorie angegeben is "X" Veröftentlichung von b kann allein aufgrund erfinderischer Tätigke "Y" Veröffentlichung von b kann nicht als auf erfit werden, wenn die Vei	tum veröffentlicht dient, sondern nur dient, sondern nur genden Prinzips ist esonderer Bedeut dieser Veröffentlicht beruhend betrauesonderer Bedeut nderischer Tätigkeröffentlichung mits eser Kategorie in einen Fachmann kittglied derselben.	tung; die beanspruchte Erlindung eit beruhend betrachtet siner oder mehreren anderen Verbindung gebracht wird und naheliegend ist Patentfamilie ist
	.Mai 1998	26/05/199		
Name und F	Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Bevollmächtigter Bed Michel,		

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichurgen, die zur selben Patentfamilie gehören

Inte phales Aktenzeichen
PCT/DE 97/02998

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0748051 A	11-12-96	US 5646544 A JP 8330945 A	08-07-97 13-12-96
EP 0678985 A	25-10-95	US 5426378 A JP 8051356 A	20-06-95 20-02-96