

Learning Goals

The module is concerned with theories, concepts, and practices to support decision making by means of formal, data-driven methods.

- Students are familiar descriptive, predictive and prescriptive analytics, understand how they support decision-making and are familiar with corresponding use-cases.
- Given some data, students are able to select appropriate techniques to summarize and visualize the data so as to maximize managerial insight.
- Students understand the potential and also limitations of predictive analytics to aid decision-making. Given a decision task, they can discuss the relative merits and demerits of alternative algorithms and recommend a suitable prediction method.
- Students are able to interpret and diagnose black-box machine learning models
- Students are familiar with the principles of analytic programming in Python. They can develop analytical models, assess their statistical accuracy, and judge their business value.

Course Format

■ Master level course with 6 ECTS

- ☐ Mandatory, mandatory elective or elective module depending on study program
- □ Prerequisites: none (prior experience in programming is useful)

■ Lecture

- □ Introduction and discussion of relevant concepts
- ☐ Slides are available via Moodle
- □ Slides & video-recordings of lecture sessions will be shared via <u>quantinar.com</u>

■ Tutorial

- ☐ Further elaborate on and demonstrate lecture topics
- ☐ Hands-on work: programming and data analysis
- □ Demos & exercises are available on Github (https://github.com/Humboldt-WI/bads)

Tooling

- **■** Python data science ecosystem
 - □ Python programming language
 - □ Libraries providing specialized functionalities for data science (simple example: create a plot)
 - □ Additional infrastructure to mange different libraries and library versions (e.g., Anaconda)
 - □ Jupyter notebooks (interactive programming environment)
- Infrastructure to execute Python codes and Jupyter notebooks
- GitHub (platform for code sharing, versioning and collaboration)
- The first tutorial session elaborates on these tools

Course Outline

Session	Lecture	Demo notebook	Tutorial session
1	Introduction	1_nb_python_intro.ipynb	Introduction to the Python ecosystem
2	Foundations of descriptive analytics	2_nb_descriptive_analytics.ipynb	1_ex_python.ipynb
3	Foundations of predictive analytics	3_nb_predictive_analytics.ipynb	
4	Data preparation	4_nb_data_preparation.ipynb	2_ex_descriptive_analytics.ipynb
5			
6	Basic algorithms for supervised learning	5_nb_supervised_learning.ipynb	3_ex_predictive_analytics.ipynb
7			
8	Prediction model assessment	6_nb_model_assessment.ipynb	4_ex_data_preparation.ipynb
9	Principles of statistical learning	7_nb_model_selection.ipynb	
10	Ensemble learning	8_nb_ensemble_learning.ipynb	5_ex_supervised_learning.ipynb
11			
12	Feature engineering and selection	9_nb_feature_engineering.ipynb	6_ex_model_assessment.ipynb
13	Imbalanced & cost-sensitive learning	10_nb_imbalance_n_costs.ipynb	
14	Model interpretation & XAI	11_nb_interpretable_ml.ipynb	7_ex_ensemble_learning.ipynb
15			

Why Focus on Algorithms?

Imagine you 'talk' to ChatGPT...

Prompt 1: [Problem/question description] State the answer and then explain your reasoning

Prompt 2: [Problem/question description] Explain your reasoning and then state the answer

Study Recommendation and Workload

■ BADS is a 6 ECTS master module

- □ Recall that 1 credit equates to a workload of 25 ~ **30** hours of studies.
- □ Roughly 180 h of work to complete a 6 ECTS module

■ How to organize your weekly studies (suggestion)

- ☐ Post-processing of the lecture by studying Python demos
- ☐ Preparation of tutorial sessions by working on Python exercises
- □ Weekly tutorial

□ Weekly lecture

■ Exam preparation

Grading and Evaluation

■ Grades based on results of a written exam

- □ Duration: 90 min
- ☐ Two slots, dates yet to be announced
- ☐ Registration in early 2023 via Agnes

■ Format

- □ Reproduce knowledge
- ☐ Solve quizzes
- □ Interpret data analysis results
- ☐ Spot errors in codes
- ☐ Apply technical skills

■ Old exam available on Moodle

- □ Note that we do update the course from year to year
- ☐ Therefore, the material covered in an old exam is not fully representative

A Note on the Slides

- Occasionally you will see...
- Definition of "self-study"
 - ☐ Material to augment core parts of the lecture
 - □ Potentially useful and interesting information
 - □ Do not worry about exam questions dedicated to self-study materials...
 - □ ... there will be no such questions!

Literature

■ MANY good books on related topics are available

- □ Abbott, D. (2014). Applied Predictive Analytics: Principles and Techniques for the Professional Data Analyst (1st edition. ed.). Indianapolis, IN: John Wiley and Sons.
- ☐ Baesens, B.: Analytics in a Big Data World, Wiley 2014
- □ Hastie, T.; Tibshirani, R.; Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Eds., Springer 2009
- ☐ Kuhn, M: Johnson. K., Applied Predictive Modeling, Springer 2013
- ☐ A. J. Izenman. Modern Multivariate Statistical Techniques. Springer 2008.
- □ Provost, F., & Fawcett, T. (2013). Data Science for Business. Cambridge: O'Reilly.
- □ And many more

■ The course is a composition of various sources

- ☐ We do not follow one textbook
- ☐ You can find vast amounts of great educational content freely available online (blogs, youtube, ...)
- ☐ The materials that we provide will be fully sufficient

Thank you for your attention!

Stefan Lessmann

Chair of Information Systems
School of Business and Economics
Humboldt-University of Berlin, Germany

Tel. +49.30.2093.99540

Fax. +49.30.2093.99541

stefan.lessmann@hu-berlin.de http://bit.ly/hu-wi

www.hu-berlin.de

