Comp305

Biocomputation

Lecturer: Yi Dong

Comp305 Module Timetable

There will be 26-30 lectures, thee per week. The lecture slides will appear on Canvas. Please use Canvas to access the lecture information. There will be 9 tutorials, one per week.

Lecture/Tutorial Rules

Questions are welcome as soon as they arise, because

- Questions give feedback to the lecturer;
- 2. Questions help your understanding;
- 3. Your questions help your classmates, who might experience difficulties with formulating the same problems/doubts in the form of a question.

Comp305 Part I.

Artificial Neural Networks

Topic 4.

Normalized Hebb's Rule (Oja's Rule)

Topic of Today's Lecture

What is Oja's rule and A Running Example.

Hebb's Rule (1949)

Where

$$w_i^{t+1} = w_i^t + \Delta w_i^t,$$
$$\Delta w_i^t = C a_i^t X^{t+1}$$

Algorithm of Hebb's Rule for a Single Neuron

- 1. Set the neuron threshold value θ and the learning rate C.
- 2. Set <u>random initial values</u> for the weights of connections w_i^t .
- 3. Give instant input values a_i^t by the input units.
- 4. Compute the instant state of the neuron $S^t = \sum_i w_i^t a_i^t$
- 5. Compute the instant output of the neuron X^{t+1}

$$X^{t+1} = g(S^t) = H(S^t - \theta) = \begin{cases} 1, & S^t \ge \theta; \\ 0, & S^t < \theta. \end{cases}$$

- 6. Compute the instant corrections to the weights of connections $\Delta w_i^t = Ca_i^t X^{t+1}$
- 7. Update the weights of connections $w_i^{t+1} = w_i^t + \Delta w_i^t$
- 8. Go to the step 3.

Meaning behind Hebb's Rule

Theory behind Hebb's Rule

Intuition: If two adjacent neurons always fire together, they should have strong relation (large weight).

Informal Explanation

Let the data set $D = \{ [1,0,1,0], [1,1,0,0] \}$. What is the characteristic of D?

Input at t = 0,1 Input at t = 2

Informal Explanation

Let the data set $D = \{ [1,0,1,0], [1,1,0,0] \}$. What is the characteristic of D?

By computing the "average value" of D,

$$\bar{a} = (2 \times [1,0,1,0] + [1,1,0,0])/3 = \left[1, \frac{1}{3}, \frac{2}{3}, 0\right],$$

we know that

- the first input (component) of the points in D is the most important;
- the third input is the second most important;
- the second is the third most important;
- the fourth input is never fired.

Informal Explanation

Let the data set $D = \{ [1,0,1,0], [1,1,0,0] \}$. What is the characteristic of D?

Input at
$$t = 0.1$$

Input at t = 2

By computing the "average value" of D,

$$\bar{a} = (2 \times [1,0,1,0] + [1,1,0,0])/3 = \left[1, \frac{1}{3}, \frac{2}{3}, 0\right],$$

we know that

- the first input (component) of the points in D is the most important;
- the third input is the second most important;
- the second is the third most important;
- the fourth input is never fired.

Principal components analysis

Meaning behind Hebb's Rule

Intuition: The weights reflect the importance of the inputs. That is, the more important the input is, the larger the corresponding weight is.

Hebb's Rule (1949)

 $w_i^{t+1} = w_i^t + \Delta w_i^t,$

Where

$$\Delta w_i^t = C a_i^t X^{t+1}$$

Hebb's original learning rule

has the unfortunate property that it can only monotonously increase synaptic weights, thus washing out the distinctive performance of different neurons, as the connections drive into saturation...

Example: w_1 and w_3

Example: w_1 and w_3

All the weights increase **monotonously**. Finally, each weight will become large enough such that any activated input can fire the neuron <u>alone</u>.

Hebb's Rule (1949)

$$w_i^{t+1} = w_i^t + \Delta w_i^t,$$

Where

$$\Delta w_i^t = C a_i^t X^{t+1}$$

However,

when the Hebbian rule is augmented by a *normalisation* rule, *e.g.* keeping constant the total strength of synapses upon a given neuron, it tends to "sharpen" a neuron's predisposition "without a teacher", causing its firing to become better correlated with a cluster of stimulus patterns.

Normalized Hebb's Rule (Oja's rule)

$$w_i^{t+1} = w_i^t + \Delta w_i^t,$$

Where

$$\Delta w_i^t = C a_i^t X^{t+1}$$

Normalized Hebb's Rule (Oja's rule)

$$w_i^{t+1} = w_i^t + \Delta w_i^t,$$

Where

$$\Delta w_i^t = C a_i^t X^{t+1}$$

Normalization:

$$||w^t|| = 1$$

- Also known as Oja's rule.
- By normalization, the weights will not monotonously increase, but converge after, which reflects the predisposition to different inputs. It plays an important role in unsupervised learning or selforganisation.

Formulation of Hebb's Rule for a single neuron

- 1. Set the neuron threshold value θ and the learning rate C.
- 2. Set <u>random initial values</u> for the weights of connections w_i^t .
- 3. Give instant input values a_i^t by the input units.
- 4. Compute the instant state of the neuron $S^t = \sum_i w_i^t a_i^t$
- 5. Compute the instant output of the neuron X^{t+1}

$$X^{t+1} = g(S^t) = H(S^t - \theta) = \begin{cases} 1, & S^t \ge \theta; \\ 0, & S^t < \theta. \end{cases}$$

- 6. Compute the instant corrections to the weights $\Delta w_i^t = C a_i^t X^{t+1}$
- 7. Update the weights of connections $w_i^{t+1} = w_i^t + \Delta w_i^t$
- 8. Go to the step 3.

Formulation of Normalized Hebb's Rule (Oja's rule)

- 1. Set the neuron threshold value θ and the learning rate C.
- 2. Set <u>random initial values</u> for the weights of connections w_i^t .
- 3. Normalization.
- 4. Give instant input values a_i^t by the input units.
- 5. Compute the instant state of the neuron $S^t = \sum_i w_i^t a_i^t$
- 5. Compute the instant output of the neuron X^{t+1}

$$X^{t+1} = g(S^t) = H(S^t - \theta) = \begin{cases} 1, & S^t \ge \theta; \\ 0, & S^t < \theta. \end{cases}$$

- 6. Compute the instant corrections to the weights $\Delta w_i^t = C a_i^t X^{t+1}$
- 7. Update the weights of connections $w_i^{t+1} = w_i^t + \Delta w_i^t$
- 8. Go to the step 3.

Formulation of Normalized Hebb's Rule

- Set the neuron threshold value θ and the learning rate C.
- Set <u>random initial values</u> for the weights of connections w_i^{τ} .
- Normalization.
 - Compute the 2-norm of the vector w^t

$$||w^t||_2 = \sqrt{\sum_i (w_i^t)^2}$$

Normalize the weight of each connection w_i^t $w_i^t = \frac{1}{\|w^t\|_2} w_i^t$

$$w_i^t = \frac{1}{\|w^t\|_2} w_i^t$$

III. Check the following convergence criteria with a given small positive real δ $\max_{i} \left| w_i^t - w_i^{t-1} \right| \le \delta$

Alternative Version of Normalized Hebb's Rule

- 1. Set the neuron threshold value θ and the learning rate C.
- 2. Set <u>random initial values</u> for the weights of connections w_i^t .
- 3. Give instant input values a_i^t by the input units.
- 4. Compute the instant state of the neuron $S^t = \sum_i w_i^t a_i^t$
- 5. Compute the instant output of the neuron X^{t+1}

$$X^{t+1} = g(S^t) = H(S^t - \theta) = \begin{cases} 1, & S^t \ge \theta; \\ 0, & S^t < \theta. \end{cases}$$

- 6. Compute the instant corrections to the weights $\Delta w_i^t = C(a_i^t w_i^t X^{t+1}) X^{t+1}$
- 7. Check the convergence criteria
- 8. Update the weights of connections $w_i^{t+1} = w_i^t + \Delta w_i^t$
- 9. Go to the step 3.

 Derived from Taylor expansion at 0 in terms of C and reducing the high-order term when C is small.

w_1^0	w_2^0	w_3^0	w_4^0
1	1	1	1

$$||w^{0}||_{2} = \sqrt{\sum_{i} (w_{i}^{0})^{2}}$$

$$= \sqrt{(w_{1}^{0})^{2} + (w_{2}^{0})^{2} + (w_{3}^{0})^{2} + (w_{4}^{0})^{2}}$$

$$= \sqrt{(1)^{2} + (1)^{2} + (1)^{2} + (1)^{2}}$$

$$= 2$$

w_1^0
1

$$||w^0||_2 = 2$$

$$w_1^0 = \frac{1}{\|w^0\|_2} w_1^0 = \frac{1}{2} \qquad w_2^0 = \frac{1}{\|w^0\|_2} w_2^0 = \frac{1}{2}$$

$$w_3^0 = \frac{1}{\|w^0\|_2} w_3^0 = \frac{1}{2} \qquad w_4^0 = \frac{1}{\|w^0\|_2} w_4^0 = \frac{1}{2}$$

$$w_2^0 = \frac{1}{\|w^0\|_2} w_2^0 = \frac{1}{2}$$

$$w_4^0 = \frac{1}{\|w^0\|_2} w_4^0 = \frac{1}{2}$$

a_1^0	a_2^0	a_3^0	a_4^0
1	0	1	0

w_1^0	w_2^0	w_3^0	w_4^0
0.5	0.5	0.5	0.5

$$t = 0$$

a_1^0	a_2^0	a_3^0	a_4^0
1	0	1	0

w_1^0	w_2^0	w_3^0	w_4^0
0.5	0.5	0.5	0.5

$$Y S^0 = \sum_{i=1}^4 w_i^0 a_i^0$$

$$= w_1^0 \times a_1^0 + w_2^0 \times a_2^0 + w_3^0 \times a_3^0 + w_4^0 \times a_4^0$$

$$= 0.5 \times 1 + 0.5 \times 0 + 0.5 \times 1 + 0.5 \times 0 = 1 \ge \theta$$

$$X^1 = 1$$

a_1^0	a_2^0	a_3^0	a_4^0
1	0	1	0

w_1^0	w_2^0	w_3^0	w_4^0
0.5	0.5	0.5	0.5

$$S^{0} = \sum_{i=1}^{4} w_{i}^{0} a_{i}^{0}$$

$$= w_{1}^{0} \times a_{1}^{0} + w_{2}^{0} \times a_{2}^{0} + w_{3}^{0} \times a_{3}^{0} + w_{4}^{0} \times a_{4}^{0}$$

$$= 0.5 \times 1 + 0.5 \times 0 + 0.5 \times 1 + 0.5 \times 0 = 1 \ge \theta$$

$$t = 0$$

a_1^0	a_2^0	a_3^0	a_4^0
1	0	1	0

w_1^0	w_2^0	w_3^0	w_4^0
0.5	0.5	0.5	0.5

$$\Delta w_i^0 = C a_i^0 X^1$$

$$\Delta w_1^0 = 1 \times 1 \times 1 = 1,$$

$$\Delta w_2^0 = 1 \times 0 \times 1 = 0$$

$$\Delta w_3^0 = 1 \times 1 \times 1 = 1$$

$$\Delta w_4^0 = 1 \times 0 \times 1 = 0$$

$$w_i^1 = w_i^0 + \Delta w_i^0$$

$$\Delta w_1^0 = 1 \times 1 \times 1 = 1, \qquad w_1^1 = w_i^0 + \Delta w_i^0 = 0.5 + 1 = 1.5;$$

$$\Delta w_2^0 = 1 \times 0 \times 1 = 0, \qquad w_2^1 = w_2^0 + \Delta w_2^0 = 0.5 + 0 = 0.5;$$

$$\Delta w_3^0 = 1 \times 1 \times 1 = 1, \qquad w_3^1 = w_3^0 + \Delta w_3^0 = 0.5 + 1 = 1.5;$$

$$\Delta w_4^0 = 1 \times 0 \times 1 = 0, \qquad w_4^1 = w_4^0 + \Delta w_4^0 = 0.5 + 0 = 0.5;$$

w_1^1	w_2^1	w_3^1	w_4^1
1.5	0.5	1.5	0.5

w_1^1	w_2^1	w_3^1	w_4^1
1.5	0.5	1.5	0.5

$$t = 1$$

w_1^1	w_2^1	w_3^1	w_4^1
1.5	0.5	1.5	0.5

$$||w^1||_2 \approx 2.24$$

$$w_1^1 = \frac{1}{\|w^1\|_2} w_1^1 = 0.67 \quad w_2^1 = \frac{1}{\|w^1\|_2} w_2^1 = 0.22$$

$$w_3^1 = \frac{1}{\|w^1\|_2} w_3^1 = 0.67 \quad w_4^1 = \frac{1}{\|w^1\|_2} w_4^1 = 0.22$$

w_1^0	w_2^0	w_3^0	w_4^0
0.5	0.5	0.5	0.5
w_1^1	w_2^1	w_3^1	w_4^1
0.67	0.22	0.67	0.22

$$\max_{i} \left| w_i^1 - w_i^0 \right| \le \delta \quad ?$$

$$|w_1^1 - w_1^0| = 0.17$$

$$|w_2^1 - w_2^0| = 0.28$$

$$|w_3^1 - w_3^0| = 0.17$$

$$\left| w_4^1 - w_4^0 \right| = 0.28$$

$$\max_{i} |w_{i}^{1} - w_{i}^{0}| = 0.28 > \delta$$

Convergence criteria is not met. Continue.

a_1^1	a_2^1	a_3^1	a_4^1
1	0	1	0

W	1 1	w_2^1	w_3^1	w_4^1
0.6	67	0.22	0.67	0.22

$$t = 1$$

a_1^1	a_2^1	a_3^1	a_4^1
1	0	1	0

w_1^1	w_2^1	w_3^1	w_4^1
0.67	0.22	0.67	0.22

$$S^{1} = \sum_{i=1}^{4} w_{i}^{1} a_{i}^{1}$$

$$= w_{1}^{1} \times a_{1}^{1} + w_{2}^{1} \times a_{2}^{1} + w_{3}^{1} \times a_{3}^{1} + w_{4}^{1} \times a_{4}^{1}$$

$$= 0.67 \times 1 + 0.22 \times 0 + 0.67 \times 1 + 0.22 \times 0$$

$$= 1.34 \ge \theta$$

$$t = 1$$

a_1^1	a_2^1	a_3^1	a_4^1
1	0	1	0

w_1^1	w_2^1	w_3^1	w_4^1
0.67	0.22	0.67	0.22

$$\Delta w_i^1 = C a_i^1 X^2$$

$$\Delta w_1^1 = 1 \times 1 \times 1 = 1,$$

$$\Delta w_2^1 = 1 \times 0 \times 1 = 0,$$

$$\Delta w_3^1 = 1 \times 1 \times 1 = 1,$$

$$\Delta w_4^1 = 1 \times 0 \times 1 = 0$$

$$w_i^2 = w_i^1 + \Delta w_i^1$$

$$\Delta w_1^1 = 1 \times 1 \times 1 = 1, \qquad w_1^2 = w_i^1 + \Delta w_i^1 = 0.67 + 1 = 1.67;$$

$$\Delta w_2^1 = 1 \times 0 \times 1 = 0$$
, $w_2^2 = w_2^1 + \Delta w_2^1 = 0.22 + 0 = 0.22$;

$$\Delta w_3^1 = 1 \times 1 \times 1 = 1$$
, $w_3^2 = w_3^1 + \Delta w_3^1 = 0.67 + 1 = 1.67$;

$$\Delta w_4^1 = 1 \times 0 \times 1 = 0, \qquad w_4^2 = w_4^1 + \Delta w_4^1 = 0.22 + 0 = 0.22;$$

w_1^2	w_2^2	w_3^2	w_4^2
1.67	0.22	1.67	0.22

$$||w^2||_2 \approx 2.38$$

$$w_1^2 = \frac{1}{\|w^2\|_2} w_1^2 = 0.70 \quad w_2^2 = \frac{1}{\|w^2\|_2} w_2^2 = 0.09$$

$$w_3^2 = \frac{1}{\|w^2\|_2} w_3^2 = 0.70 \quad w_4^2 = \frac{1}{\|w^2\|_2} w_4^2 = 0.09$$

w_1^1	w_2^1	w_3^1	w_4^1
0.67	0.22	0.67	0.22
w_1^2	w_2^2	w_3^2	w_4^2
0.70	0.09	0.70	0.09

$$\max_{i} \left| w_i^2 - w_i^1 \right| \le \delta \quad ?$$

$$|w_1^2 - w_1^1| = 0.03$$
$$|w_2^2 - w_2^1| = 0.13$$

$$\left| w_3^2 - w_3^1 \right| = 0.03$$

$$\left| w_4^2 - w_4^1 \right| = 0.13$$

$$\max_{i} \left| w_i^2 - w_i^1 \right| = 0.13 > \delta$$

Long way to go. Continue.

a_1^2	a_2^2	a_3^2	a_4^2
1	0	1	0

w_1^2	w_2^2	w_3^2	w_4^2
0.70	0.09	0.70	0.09

$$t=2$$

a_1^2	a_2^2	a_3^2	a_4^2
1	0	1	0

w_1^2	w_2^2	w_3^2	w_4^2
0.70	0.09	0.70	0.09

$$S^{2} = \sum_{i=1}^{4} w_{i}^{2} a_{i}^{2}$$

$$= w_{1}^{2} \times a_{1}^{2} + w_{2}^{2} \times a_{2}^{2} + w_{3}^{2} \times a_{3}^{2} + w_{4}^{2} \times a_{4}^{2}$$

$$= 0.70 \times 1 + 0.09 \times 0 + 0.70 \times 1 + 0.09 \times 0$$

$$= 1.40 \ge \theta$$

$$t=2$$

a_1^2	a_2^2	a_3^2	a_4^2
1	0	1	0

w_1^2	w_2^2	w_3^2	w_4^2
0.70	0.09	0.70	0.09

$$\Delta w_i^2 = C a_i^2 X^3$$

$$\Delta w_i^2 = C a_i^2 X^3$$
 $w_i^3 = w_i^2 + \Delta w_i^2$

$$\Delta w_1^2 = 1 \times 1 \times 1 = 1,$$

$$\Delta w_2^2 = 1 \times 0 \times 1 = 0$$

$$\Delta w_3^2 = 1 \times 1 \times 1 = 1$$

$$\Delta w_4^2 = 1 \times 0 \times 1 = 1$$

$$\Delta w_1^2 = 1 \times 1 \times 1 = 1$$
, $w_1^3 = w_i^2 + \Delta w_i^2 = 0.70 + 1 = 1.70$;

$$\Delta w_2^2 = 1 \times 0 \times 1 = 0$$
, $w_2^3 = w_2^2 + \Delta w_2^2 = 0.09 + 0 = 0.09$;

$$\Delta w_3^2 = 1 \times 1 \times 1 = 1$$
, $w_3^3 = w_3^2 + \Delta w_3^2 = 0.70 + 1 = 1.70$;

$$\Delta w_4^2 = 1 \times 0 \times 1 = 1$$
, $w_4^3 = w_4^2 + \Delta w_4^2 = 0.09 + 0 = 0.09$;

w_1^3	w_2^3	w_3^3	w_4^3
1.70	0.09	1.70	0.09

$$w_1^3 \quad w_2^3 \quad w_3^3 \quad w_4^3$$

1.70

0.09

1.70 0.09

$$||w^3||_2 \approx 2.41$$

$$w_1^3 = \frac{1}{\|w^3\|_2} w_1^3 = 0.71 \quad w_2^3 = \frac{1}{\|w^3\|_2} w_2^3 = 0.04$$

$$w_3^3 = \frac{1}{\|w^3\|_2} w_3^3 = 0.71 \quad w_4^3 = \frac{1}{\|w^3\|_2} w_4^3 = 0.04$$

w_1^2	w_2^2	w_3^2	w_4^2
0.70	0.09	0.70	0.09
w_{1}^{3}	w_2^3	w_3^3	w_4^3
0.71	0.04	0.71	0.04

$$\max_{i} \left| w_i^3 - w_i^2 \right| \le \delta \quad ?$$

$$|w_1^3 - w_1^2| = 0.01$$

$$|w_2^3 - w_2^2| = 0.05$$

$$|w_3^3 - w_3^2| = 0.01$$

$$|w_4^3 - w_4^2| = 0.05$$

$$\max_{i} \left| w_i^3 - w_i^2 \right| = 0.05 > \delta$$

Smaller, but not enough. Continue.

T	- ≺
L	

a_1^3	a_2^3	a_3^3	a_4^3
1	0	1	0

w_1^3	w_2^3	w_3^3	w_4^3
0.71	0.04	0.71	0.04

$$t = 3$$

a_1^3	a_2^3	a_3^3	a_4^3
1	0	1	0

w_1^3	w_2^3	w_3^3	w_4^3
0.71	0.04	0.71	0.04

$$t = 3$$

a_1^3	a_2^3	a_3^3	a_4^3
1	0	1	0

w_1^3	w_2^3	w_3^3	w_4^3
0.71	0.04	0.71	0.04

$$\Delta w_i^3 = C a_i^3 X^4$$

$$\Delta w_1^3 = 1 \times 1 \times 1 = 1$$
.

$$\Delta w_2^3 = 1 \times 0 \times 1 = 0,$$

$$\Delta w_3^3 = 1 \times 1 \times 1 = 1,$$

$$\Delta w_4^3 = 1 \times 0 \times 1 = 1$$

$$\Delta w_i^3 = C a_i^3 X^4$$
 $w_i^4 = w_i^3 + \Delta w_i^3$

$$\Delta w_1^3 = 1 \times 1 \times 1 = 1, \qquad w_1^4 = w_i^3 + \Delta w_i^3 = 0.71 + 1 = 1.71;$$

$$\Delta w_2^3 = 1 \times 0 \times 1 = 0$$
, $w_2^4 = w_2^3 + \Delta w_2^3 = 0.04 + 0 = 0.04$;

$$\Delta w_3^3 = 1 \times 1 \times 1 = 1, \qquad w_3^4 = w_3^3 + \Delta w_3^3 = 0.71 + 1 = 1.71;$$

$$\Delta w_4^3 = 1 \times 0 \times 1 = 1$$
, $w_4^4 = w_4^3 + \Delta w_4^3 = 0.04 + 0 = 0.04$;

w_1^4	w_2^4	w_3^4	w_4^4
1.71	0.04	1.71	0.04

$$t = 4$$

w_1^4	w_2^4	w_3^4	w_4^4
1.71	0.04	1.71	0.04

$$||w^4||_2 \approx 2.42$$

$$w_1^4 = \frac{1}{\|w^4\|_2} w_1^4 = 0.71 \quad w_2^4 = \frac{1}{\|w^4\|_2} w_2^4 = 0.02$$

$$w_3^4 = \frac{1}{\|w^4\|_2} w_3^4 = 0.71 \quad w_4^4 = \frac{1}{\|w^4\|_2} w_4^4 = 0.02$$

w_1^3	w_2^3	w_3^3	w_4^3
0.71	0.04	0.71	0.04
w_1^4	w_2^4	w_3^4	w_4^4
0.71	0.02	0.71	0.02

$$\max_{i} \left| w_i^4 - w_i^3 \right| \le \delta \quad ?$$

$$|w_1^4 - w_1^3| = 0.00$$

$$|w_2^4 - w_2^3| = 0.02$$

$$|w_3^4 - w_3^3| = 0.00$$

$$|w_4^4 - w_4^3| = 0.02$$

$$\max_{i} \left| w_i^4 - w_i^3 \right| = 0.02 > \delta$$

Very close. Continue.

a_1^4	a_2^4	a_3^4	a_4^4
1	0	1	0

w_1^4	w_2^4	w_3^4	w_4^4
0.71	0.02	0.71	0.02

$$t = 4$$

a_1^4	a_2^4	a_3^4	a_4^4
1	0	1	0

w_1^4	w_2^4	w_3^4	w_4^4
0.71	0.02	0.71	0.02

$$S^{4} = \sum_{i=1}^{4} w_{i}^{4} a_{i}^{4}$$

$$= w_{1}^{4} \times a_{1}^{4} + w_{2}^{4} \times a_{2}^{4} + w_{3}^{4} \times a_{3}^{4} + w_{4}^{4} \times a_{4}^{4}$$

$$= 0.71 \times 1 + 0.02 \times 0 + 0.71 \times 1 + 0.02 \times 0$$

$$= 1.42 \ge \theta$$

$$t = 4$$

a_1^4	a_2^4	a_3^4	a_4^4
1	0	1	0

w_1^4	w_2^4	w_3^4	w_4^4
0.71	0.02	0.71	0.02

$$\Delta w_i^4 = C a_i^4 X^5$$

$$\Delta w_1^4 = 1 \times 1 \times 1 = 1$$

$$\Delta w_2^4 = 1 \times 0 \times 1 = 0,$$

$$\Delta w_3^4 = 1 \times 1 \times 1 = 1,$$

$$\Delta w_4^4 = 1 \times 0 \times 1 = 1$$

$$\Delta w_i^4 = C a_i^4 X^5$$
 $w_i^5 = w_i^4 + \Delta w_i^4$

$$\Delta w_1^4 = 1 \times 1 \times 1 = 1, \qquad w_1^5 = w_i^4 + \Delta w_i^4 = 0.71 + 1 = 1.71;$$

$$\Delta w_2^4 = 1 \times 0 \times 1 = 0, \qquad w_2^5 = w_2^4 + \Delta w_2^4 = 0.02 + 0 = 0.02;$$

$$\Delta w_3^4 = 1 \times 1 \times 1 = 1, \qquad w_3^5 = w_3^4 + \Delta w_3^4 = 0.71 + 1 = 1.71;$$

$$\Delta w_4^4 = 1 \times 0 \times 1 = 1$$
, $w_4^5 = w_4^4 + \Delta w_4^4 = 0.02 + 0 = 0.02$;

w_1^5	w_2^5	w_3^5	w_{4}^{5}
1.71	0.02	1.71	0.02

w_1^4	w_2^4	w_3^4	w_4^4
0.71	0.02	0.71	0.02
w_1^5	w_{2}^{5}	w_3^5	w_{4}^{5}
0.71	0.01	0.71	0.01

$$\max_{i} \left| w_i^5 - w_i^4 \right| \le \delta \quad ?$$

$$|w_1^5 - w_1^4| = 0.00$$

$$|w_2^5 - w_2^4| = 0.01$$

$$|w_3^5 - w_3^4| = 0.00$$

$$|w_4^5 - w_4^4| = 0.01$$

$$\max_{i} \left| w_i^5 - w_i^4 \right| = 0.01 \le \delta$$

Finally. We can STOP!!