Aula 9

9 Dia 9: Limites: abordagem numérica

Exercício 9.1. Dada a função

$$g(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0\\ 1, & x = 0 \end{cases}$$

preencha a tabela a seguir arredondando para cinco casas decimais.

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
g(x)							

Exercício 9.2. Dada a função

$$h(x) = \left(1 + \frac{1}{x}\right)^x$$

preencha a tabela a seguir arredondando para cinco casas decimais.

x	10	20	100	200	1000	2000
h(x)						

Exercício 9.3. Considere agora a função $f(x) = \sin(\frac{\pi}{x})$.

(a) Preencha a tabela a seguir arredondando para cinco casas decimais.

	x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
f	(x)							

(b) Agora preencha a tabela a seguir arredondando para cinco casas decimais.

x	$-\frac{2}{21}$	$-\frac{2}{201}$	$-\frac{2}{2001}$	0	$\frac{2}{2001}$	$\frac{2}{201}$	$\frac{2}{21}$
f(x)							

(c) Calcule $\lim_{x\to 0} f(x)$.

Exercício 9.4. Considere as seguintes funções polinomiais

$$p(x) = 4x^5 + 6$$
, $q(x) = 3x^5 - 13x + 1$, $f(x) = -\frac{1}{2}x^5 - 2x^4 + 1$, $g(x) = 1090x^4 + x^2$.

(a) Utilize sua calculadora e complete a tabela abaixo:

x	10 000	50 000	1 000 000
$\frac{q(x)}{q(x)}$			
p(x)			
$\underline{f(x)}$			
p(x)			
g(x)			
p(x)			

- (b) Qual a relação entre os números da tabela e os coeficientes dos polinômios?
- (c) Calcule cada um dos limites abaixo.

$$\bullet \lim_{x \to +\infty} \frac{q(x)}{p(x)} =$$

$$\bullet \lim_{x \to +\infty} \frac{f(x)}{p(x)} =$$

$$\bullet \lim_{x \to +\infty} \frac{f(x)}{p(x)} =$$

$$\bullet \lim_{x \to +\infty} \frac{f(x)}{p(x)} =$$

$$\bullet \lim_{x \to +\infty} \frac{g(x)}{p(x)} =$$

$$\bullet \lim_{x \to +\infty} \frac{g(x)}{p(x)} =$$

(d) Considere agora os polinômios

$$\widetilde{q}(x) = 3x^6 - 13x + 1, \quad \widetilde{f}(x) = -\frac{1}{2}x^6 - 2x^4 + 1, \quad \widetilde{g}(x) = 1090x^5 + x^2,$$

que são obtidos dos polinômios anteriores simplesmente aumentando um grau. Agora calcule cada um dos limites abaixo

$$\bullet \lim_{x \to +\infty} \frac{\widetilde{q}(x)}{p(x)} =$$

$$\bullet \lim_{x \to +\infty} \frac{\widetilde{f}(x)}{p(x)} =$$

$$\bullet \lim_{x \to +\infty} \frac{\widetilde{g}(x)}{p(x)} =$$

(e) Agora calcule cada um dos seguintes limites

$$\bullet \lim_{x \to +\infty} \frac{p(x)}{\widetilde{q}(x)} =$$

$$\bullet \lim_{x \to +\infty} \frac{p(x)}{\widetilde{f}(x)} =$$

•
$$\lim_{x \to +\infty} \frac{p(x)}{\widetilde{g}(x)} =$$

Exercício 9.5. Calcule cada um dos limites abaixo

(a)
$$\lim_{x \to +\infty} \frac{x^2 + 2x - 1}{3 + 3x^2} =$$

(b)
$$\lim_{x \to +\infty} \frac{\sqrt{3x^2 + 1}}{2x - 5} =$$

(c)
$$\lim_{x \to +\infty} \frac{2e^{-x} + 3}{3e^{-x} + 2} =$$

(d)
$$\lim_{x \to +\infty} \frac{2e^{-x} + 3}{3(10)^{-x} + 2} =$$

(e)
$$\lim_{x \to +\infty} \frac{\ln(x+1)}{x+1} =$$

(f)
$$\lim_{x \to -\infty} \frac{x^2 + 2x - 1}{3 + 3x^2} =$$

(g)
$$\lim_{x \to -\infty} \frac{\sqrt{3x^2 + 1}}{2x - 5} =$$

(h)
$$\lim_{x \to -\infty} \frac{2e^{-x} + 3}{3e^{-x} + 2} =$$

(i)
$$\lim_{x \to +\infty} \frac{\ln(x^{10} + 1)}{x + 1} =$$