UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE TECNOLOGIA CURSO DE GRADUAÇÃO EM ENGENHARIA AEROESPACIAL

Jonas Muller Gonçalves

RELATÓRIO - APLICAÇÃO DO ELEMENTO DE BARRA TRIDIMENSIONAL

1 PROBLEMA 2.1 - KHENNANE (2013)

1.1 RESULTADOS DO CÓDIGO NUMÉRICO

O código implementado foi testado a partir do problema resolvido 2.1, presente no livro *Introduction to Finite Element Analysis with Matlab and Abaqus*. O exemplo consiste de 15 barras interligadas no formato Warren. Assim, o problema é discretizado com um nó em cada intersecção entre as barras, um total de 9 nós e 15 elementos.

Utilizando um fator de escala de 400 para a representação dos resultados, têm-se:

Figura 1.1 – Resultado visual P2.1 Khenanne.

Não obstante, os deslocamentos obtidos estão apresentados na tabela a seguir.

Solução Ref.			Solução Num.		
Desloc. X	Desloc. Y	Desloc. Z	Desloc. X	Desloc. Y	Desloc. Z
0.00000	0.00000	0	0	0	0
0.00014	-0.00010	0	0,00013609	-0,000100075	0
0.00003	-0.00019	0	2,73148148e-05	-0,000186492	0
0.00010	-0.00023	0	0,00010368	-0,000233414	0
0.00006	-0.00023	0	6,11111111e-05	-0,000230828	0
0.00007	-0.00021	0	7,36885621e-05	-0,000213242	0
0.00009	-0.00018	0	8,73148148e-05	-0,000182554	0
0.00005	-0.00009	0	5,12811547e-05	-9,407811555e-05	0
0.00010	0.00000	0	9,85185185e-05	0	0

2 EXEMPLO 2.1 - OÑATE (2009)

2.1 RESULTADOS DO CÓDIGO NUMÉRICO

O exemplo 2.1 do livro *Structural Analysis with the Finite Element Method - Linear Statics* consiste em uma barra carregada longitudinalmente sobre o eixo da barra com uma carga exponencial. Além disso, a barra possui seção variável.

2.2 ANÁLISE DA CONVERGÊNCIA DE MALHA

De forma a verificar a eficiência do programa, foi realizada uma análise de convergência de malha. Essa análise tem por objetivo verificar o número de elementos necessários para estabilização da resposta obtida através do método. Assim, para o caso analisado, obteve-se que a partir do 8º elemento a resposta varia pouco, logo, não é viável do ponto de vista computacional incrementar o modelo, pois, a resposta seria aproximadamente igual. A figura a seguir demonstra a análise da convergência de malha para o exemplo analisado.

Figura 2.1 – Convergência de Malha E2.1 Oñate.

2.3 COMPARAÇÃO COM SOLUÇÃO ANALÍTICA

A solução obtida pode ser comparada com a solução analítica em termos de tensão a partir dos gráficos a seguir.

Figura 2.2 – Tensão analítica.

Verifica-se que a medida que aumentam-se os elementos, a solução se aproxima da analítica em termos de tensão.

3 EXEMPLO 5.2 - FISH AND BELYTSCHKO (2007)

3.1 RESULTADOS DO CÓDIGO NUMÉRICO

3.2 ANÁLISE DA CONVERGÊNCIA DE MALHA

Devido à limitações a respeito do algoritmo desenvolvido, as análises a seguir foram executadas sem a adição da carga pontual. Isso se deve a tentativa de generalizar a geração dos gráficos para *n* elementos. Entretanto, é possível implementar a força pontual em qualquer nó da malha posteriormente.

Figura 3.1 – Convergência de malha para o exemplo 5.2.

4 ESTRUTURA TRELIÇADA ESCOLHIDA: HIBBELER - ENGINEERING MECHANICS: STATICS (2009) - P. 6.21 ADAPTADO

A estrutura escolhida para análise consiste em um guindaste fixado à parede, onde os pontos A e G da estrtura são pinados à parede. No ponto D existe uma carga pontual apontando para baixo, induzindo a deformação da estrutura nessa direção. O exemplo implementado possui algumas modificações quanto ao apresentado no livro no que tange as dimensões das barras. A figura a seguir demonstra o exemplo apresentado no livro.

Figura 4.1 – Estrutura treliçada utilizada.

O algoritmo elaborado apresentou uma resposta satisfatória para o exemplo analisado, onde a estrutura deformou na direção correta. Entretanto, devido algumas modificações impostas sobre o exemplo apresentado no livro, não foi realizada a comparação com a solução analítica. A figura a seguir demonstra a resposta visual apresentada pelo algoritmo.

Figura 4.2 – Resultado visual P6.20/21 Hibbeler (fator de escala de 400).

A tabela a seguir demonstra os deslocamentos resultantes nos nós da estrutura.

Deslocamentos da Estrutura						
Nó	Desloc. X	Desloc Y	Desloc Z			
1	0	0	0			
2	0	0	0			
3	-9,40125000000061e-05	-4,47218504688089e-05	0			
4	0,000161207268759754	-4,73787254688093e-05	0			
5	0,000226607268759763	-0,00182858345428811	0			
6	0,000660994413869600	-0,00183164907928811	0			
7	0,000697781913869600	-0,00337136548897701	0			

Utilizando o software *Abaqus*, obtém-se resultado semelhante, como demonstra a figura a seguir.

Figura 4.3 – Simulação realizada em abaqus.