第二讲

线性规划的单纯形法

线性规划 (LP) 基本模型

$$max z = c^T x$$

$$s.t. Ax = b$$

$$x \ge 0$$

线性规划的基本原理

极点γ:

对于凸集中的点 γ , γ 不是凸集中任意两个不同点的严格凸组合

$$max z = c^T x$$

$$s.t. Ax = b$$

$$x \ge 0$$

z的极大值一定能在极点处取得

假设r(A) = m (行满秩)

$$A = (A_B \quad A_N)$$
基矩阵 非基矩阵
 $x = (x_B \quad x_N)$
基变量 非基变量

$$\begin{cases} x_B = A_B^{-1}b \ge 0 \\ x_N = 0 \end{cases}$$
基可行解

基本定理: 线性规划的基可行解是其极点, 反之亦然

反之亦然

证明:

极点 ➡ 基可行解:

反之亦然

极点 基可行解:
$$x_i > 0, i = 1, ..., k$$
 若 x 不是基可行解,则 $x = (x_1, ..., x_k, 0, ..., 0)$ $a_1, ..., a_k$ 线性相关

反之亦然

证明:

极点 基可行解:
$$x_i > 0, i = 1, ..., k$$
 若 x 不是基可行解,则 $x = (x_1, ..., x_k, 0, ..., 0)$ $a_1, ..., a_k$ 线性相关

则存在 $\lambda_1, ..., \lambda_k$ 不全为零,使得 $\lambda_1 a_1 + \cdots + \lambda_k a_k = 0$

反之亦然

证明: 极点 基可行解:
$$x_i > 0, i = 1, ..., k$$
 若 x 不是基可行解,则 $x = (x_1, ..., x_k, 0, ..., 0)$ $a_1, ..., a_k$ 线性相关 则存在 $\lambda_1, ..., \lambda_k$ 不全为零,使得 $\lambda_1 a_1 + \cdots + \lambda_k a_k = 0$ 取 $x' = x + \varepsilon(\lambda_1, ..., \lambda_k, 0, ..., 0)$ $x'' = x - \varepsilon(\lambda_1, ..., \lambda_k, 0, ..., 0)$

反之亦然

证明:
极点 基可行解:
$$z_i > 0, i = 1, ..., k$$
若 x 不是基可行解,则 $x = (x_1, ..., x_k, 0, ..., 0)$

$$a_1, ..., a_k$$
线性相关
则存在 $\lambda_1, ..., \lambda_k$ 不全为零,使得 $\lambda_1 a_1 + \cdots + \lambda_k a_k = 0$
取 $x' = x + \varepsilon(\lambda_1, ..., \lambda_k, 0, ..., 0)$

$$x'' = x - \varepsilon(\lambda_1, ..., \lambda_k, 0, ..., 0)$$

$$x \neq x' \neq x'' \neq x$$

反之亦然

极点 基可行解:
$$x_i > 0, i = 1, ..., k$$
 若 x 不是基可行解,则 $x = (x_1, ..., x_k, 0, ..., 0)$ $a_1, ..., a_k$ 线性相关 则存在 $\lambda_1, ..., \lambda_k$ 不全为零,使得 $\lambda_1 a_1 + \cdots + \lambda_k a_k = 0$ 取 $x' = x + \varepsilon(\lambda_1, ..., \lambda_k, 0, ..., 0)$ $x'' = x - \varepsilon(\lambda_1, ..., \lambda_k, 0, ..., 0)$ $x \neq x' \neq x'' \neq x$
$$Ax' = Ax + \varepsilon(A(\lambda_1, ..., \lambda_k, 0, ..., 0)^T)$$

$$= Ax + \varepsilon(\lambda_1 a_1 + \cdots + \lambda_k a_k) = Ax = b$$
 $Ax'' = Ax' = Ax = b$

反之亦然

极点 基可行解:
$$x_i > 0, i = 1, ..., k$$
 若 x 不是基可行解,则 $x = (x_1, ..., x_k, 0, ..., 0)$ $a_1, ..., a_k$ 线性相关 则存在 $\lambda_1, ..., \lambda_k$ 不全为零,使得 $\lambda_1 a_1 + \cdots + \lambda_k a_k = 0$ 取 $x' = x + \varepsilon(\lambda_1, ..., \lambda_k, 0, ..., 0)$ $x'' = x - \varepsilon(\lambda_1, ..., \lambda_k, 0, ..., 0)$ $x \neq x' \neq x'' \neq x$
$$Ax' = Ax + \varepsilon(A(\lambda_1, ..., \lambda_k, 0, ..., 0)^T)$$

$$= Ax + \varepsilon(\lambda_1 a_1 + \cdots + \lambda_k a_k) = Ax = b$$
 $Ax'' = Ax' = Ax = b$ x 是 x' 和 x'' 凸组合中的点,不是极点,矛盾。

基可行解 → 极点:

基可行解 ➡ 极点:

若x不是极点,则可在可行域中找到到不同的两点 $x' = (x'_1, ..., x'_n)^T$, $x'' = (x''_1, ..., x''_n)^T$ 使得 $x = \lambda x' + (1 - \lambda)x''0 < \lambda < 1$;

基可行解 ⇒ 极点:

若x不是极点,则可在可行域中找到到不同的两点

$$x' = (x'_1, ..., x'_n)^T, \quad x'' = (x''_1, ..., x''_n)^T$$

 $ext{the determinant of the problem}$ $ext{the determinant of the problem}$ $ext{the problem}$ $ext{the$

$$x = (x_1, ..., x_k, 0, ..., 0)$$

$$a_1, ..., a_k$$

$$x_i > 0, i = 1, ..., k$$

$$j > k, x_j' = x_j'' = x_j = 0$$

基可行解 ⇒ 极点:

若x不是极点,则可在可行域中找到到不同的两点

$$x' = (x'_1, ..., x'_n)^T, \quad x'' = (x''_1, ..., x''_n)^T$$

$$\text{使} \exists x = \lambda x' + (1 - \lambda)x'' 0 < \lambda < 1 ;$$

$$x = (x_1, ..., x_k, 0, ..., 0)$$
 $a_1, ..., a_k$

$$x_i > 0, i = 1, ..., k$$

$$y > 0, j = x_j'' = x_j'' = x_j = 0$$

由于x'和x''是可行解,所以有 $\sum_{j=1}^k a_j x_j' = b$, $\sum_{j=1}^k a_j x_j'' = b$, 二者相减,得 $\sum_{j=1}^k a_j (x_j' - x_j'') = 0$;

基可行解 ⇒ 极点:

若x不是极点,则可在可行域中找到到不同的两点

$$x' = (x'_1, ..., x'_n)^T, \quad x'' = (x''_1, ..., x''_n)^T$$

 $ext{the definition of the problem}$
 $ext{the definition of the problem}$

$$x = (x_1, ..., x_k, 0, ..., 0)$$
 $a_1, ..., a_k$

$$x_i > 0, i = 1, ..., k$$

$$j > k, x'_j = x''_j = x_j = 0$$

由于x'和x''是可行解,所以有 $\sum_{j=1}^k a_j x_j' = b$, $\sum_{j=1}^k a_j x_j'' = b$, 二者相减,得 $\sum_{j=1}^k a_j (x_j' - x_j'') = 0$;

x'和x''不相等,所以 $x'_j - x''_j$ 不全为零, $a_1, ..., a_k$ 线性相关;故 $x = (x_1, ..., x_k, 0, ..., 0)$ 不是基可行解。

单纯形法 (Simplex Method 1947)

George Dantzig (1914-2004)

$$max \ z = x_1 + 2x_2$$

 $s.t. \ x_1 + x_2 \le 3$
 $x_2 \le 1$
 $x_1, x_2 \ge 0$

$$max \quad z = x_1 + 2x_2$$
 $s.t. \quad x_1 + x_2 \le 3$ 标准 $x_2 \le 1$ 形式 $x_1, x_2 \ge 0$

max
$$z = x_1 + 2x_2$$

s.t. $x_1 + x_2 + x_3 = 3$
 $x_2 + x_4 = 1$
 $x_1, x_2, x_3, x_4 \ge 0$

例:

$$max \ z = x_1 + 2x_2$$
 $max \ z = x_1 + 2x_2$ $s.t. \ x_1 + x_2 \le 3$ 标准 $x_2 \le 1$ 形式 $x_1, x_2 \ge 0$ $x_1, x_2, x_3, x_4 \ge 0$

构造初始基本可行解 $x^{(0)} = (0,0,3,1)^T$, z = 0

例:

$$max \ z = x_1 + 2x_2$$
 $max \ z = x_1 + 2x_2$ $s.t. \ x_1 + x_2 \le 3$ 标准 $x_2 \le 1$ 形式 $x_1, x_2 \ge 0$ $x_1, x_2, x_3, x_4 \ge 0$

构造初始基本可行解 $x^{(0)} = (0,0,3,1)^T$, z = 0

例:

max
$$z = x_1 + 2x_2$$

s.t. $x_1 + x_2 + x_3 = 3$
 $x_2 + x_4 = 1$
 $x_1, x_2, x_3, x_4 \ge 0$

构造初始基本可行解 $x^{(0)} = (0,0,3,1)^T$, z = 0

$$\begin{cases} x_3 = 3 - x_1 - x_2 \\ x_4 = 1 - x_2 \\ z = x_1 + 2x_2 \end{cases}$$

例:

max
$$z = x_1 + 2x_2$$

s.t. $x_1 + x_2 + x_3 = 3$
 $x_2 + x_4 = 1$
 $x_1, x_2, x_3, x_4 \ge 0$

构造初始基本可行解 $x^{(0)} = (0,0,3,1)^T$, z = 0

$$\begin{cases} x_3 = 3 - x_1 - x_2 & x_2$$
入基
$$x_4 = 1 - x_2 & x_1$$
不变
$$z = x_1 + 2x_2 \end{cases}$$

例:

$$max \ z = x_1 + 2x_2$$
 $max \ z = x_1 + 2x_2$ $s.t. \ x_1 + x_2 \le 3$ 标准 $x_2 \le 1$ 形式 $x_1, x_2 \ge 0$ $x_1, x_2, x_3, x_4 \ge 0$

构造初始基本可行解 $x^{(0)} = (0,0,3,1)^T$, z = 0

$$\begin{cases} x_3 = 3 - x_1 - x_2 & x_2 \land \\ x_4 = 1 - x_2 & x_1 \land \\ z = x_1 + 2x_2 & x_4 \text{ 出基} & x^{(1)} = (0,1,2,0)^T, \ z = 2 \end{cases}$$

$$\begin{cases} x_2 = 1 - x_4 & x_1 \land \\ x_3 = 2 - x_1 + x_4 & x_2 \land \\ z = x_1 - 2x_4 + 2 & x_3 \text{ 出基} & x^{(2)} = (2,1,0,0)^T, \ z = 4 \end{cases}$$

$$\begin{cases} x_3 = 3 - x_1 - x_2 & x_2 \land \mathbb{B} \\ x_4 = 1 - x_2 & x_1 \land \mathbb{T} \\ z = x_1 + 2x_2 & x_4 \dashv \mathbb{B} \end{cases} x^{(1)} = (0,1,2,0)^T, z = 2$$

$$\begin{cases} x_2 = 1 - x_4 & x_1 \land \mathbb{B} \\ x_3 = 2 - x_1 + x_4 & x_2 \land \mathbb{T} \\ z = x_1 - 2x_4 + 2 & x_3 \dashv \mathbb{B} \end{cases} x^{(2)} = (2,1,0,0)^T, z = 4$$

$$\begin{cases} x_1 = 2 - x_2 + x_4 \\ x_2 = 1 - x_4 \\ z = 4 - x_3 - x_4 \end{cases}$$

$$\begin{cases} x_3 = 3 - x_1 - x_2 & x_2 \land \\ x_4 = 1 - x_2 & x_1 \land \\ z = x_1 + 2x_2 & x_4 \lor \\ x_4 \lor \exists x_1 \land \exists x_2 \land \\ x_2 = 1 - x_4 & x_1 \land \exists \\ x_3 = 2 - x_1 + x_4 & x_2 \land \\ z = x_1 - 2x_4 + 2 & x_3 \lor \exists x_1 \land \exists \\ x_1 = 2 - x_2 + x_4 & x_2 \land \exists \\ x_2 = 1 - x_4 & x_2 \land \exists \\ x_2 = 1 - x_4 & x_2 \land \exists \\ x_3 \lor \exists x_1 \land \exists x_2 \land \exists x_3 \lor \exists x_4 \lor \exists x_3 \lor \exists x_4 \lor \exists x_3 \lor \exists x_4 \lor \exists$$

$$x = \begin{pmatrix} x_B \\ x_N \end{pmatrix} \quad A = (A_B \ A_N)$$

$$x = \begin{pmatrix} x_B \\ x_N \end{pmatrix} \quad A = (A_B \ A_N)$$

$$x_B = A_B^{-1}b - A_B^{-1}A_N x_N$$

$$c^T x = c_B^T x_B + c_N^T x_N = c_B^T A_B^{-1}b + (c_N^T - c_B^T A_B^{-1}A_N) x_N$$

$$x = \begin{pmatrix} x_B \\ x_N \end{pmatrix} \quad A = (A_B \ A_N)$$

$$x_B = A_B^{-1}b - A_B^{-1}A_N x_N$$

$$x = \begin{pmatrix} x_B \\ x_N \end{pmatrix} \quad A = (A_B \ A_N)$$

$$x_B = A_B^{-1}b - A_B^{-1}A_N x_N$$

$$\bar{A} = A_B^{-1} A_N = (\bar{a}_{ij})_{m \times (n-m)}$$

$$x = \begin{pmatrix} x_B \\ x_N \end{pmatrix} \quad A = (A_B \ A_N)$$

$$x_B = A_B^{-1}b - A_B^{-1}A_N x_N$$

$$x_B = A_B^{-1}b - A_B^{-1}A_N x_N$$

$$c^T x = c_B^T x_B + c_N^T x_N = c_B^T A_B^{-1}b + (c_N^T - c_B^T A_B^{-1}A_N) x_N$$

$$\bar{A} = A_B^{-1} A_N = (\bar{a}_{ij})_{m \times (n-m)}$$

非基变量 $x_i(j=m+1,...,n)$ 的检验数 $\sigma_i=c_i-\sum_{i=1}^m c_i \bar{a}_{ij}$

$$x = \begin{pmatrix} x_B \\ x_N \end{pmatrix} \quad A = (A_B \ A_N)$$

$$x_B = A_B^{-1}b - A_B^{-1}A_N x_N$$

$$x_B = A_B^{-1}b - A_B^{-1}A_N x_N$$

$$c^T x = c_B^T x_B + c_N^T x_N = c_B^T A_B^{-1}b + (c_N^T - c_B^T A_B^{-1}A_N) x_N$$

$$\bar{A} = A_B^{-1} A_N = (\bar{a}_{ij})_{m \times (n-m)}$$

非基变量 $x_j(j=m+1,...,n)$ 的检验数 $\sigma_j=c_j-\sum_{i=1}^m c_i\,\bar{a}_{ij}$

若
$$\sigma_j \leq 0 (j = m + 1, ..., n)$$
,则 $\binom{x_B}{x_N}$ 为最优解;

若∃ σ_i > 0且 $\bar{a}_{ij} \leq 0$, $\forall i = 1, ..., m$, 则最优值无限大。

	c_B	c_N	
\mathcal{X}_B	A_B	A_N	b

检验数

目标值相反数

	0	$\boldsymbol{c_N} - c_B^T \boldsymbol{A}_B^{-1} \boldsymbol{A}_N$	$-c_B^T A_B^{-1} b$
x_B	$I_{m \times m}$	$A_B^{-1}A_N$	$A_B^{-1}b$

	c_B	c_N	
x_B	A_B	A_N	b

检验数

目标值相反数

	0	$\boldsymbol{c_N} - c_B^T A_B^{-1} A_N$	$-c_B^T A_B^{-1} b$
x_B	$I_{m \times m}$	$A_B^{-1}A_N$	$A_B^{-1}b$

$$x_i + \overline{a}_{ij}x_j = \overline{b}_i$$

$$min_{\overline{a}_{ij}>0} \frac{\overline{b}_i}{\overline{a}_{ij}}$$
对应的 i 出基

$$max \ z = x_1 + 2x_2$$

 $s.t. \ x_1 + x_2 \le 3$ 标准
 $x_2 \le 1$ 形式
 $x_1, x_2 \ge 0$

	$max z = x_1 + 2x_2$
□ t=\t	$s.t. x_1 + x_2 + x_3 = 3$
标准 形式	$x_2 + x_4 = 1$
	$x_1, x_2, x_3, x_4 \ge 0$

	1	2	0	0	
x_3	1	1	1	0	3
x_4	0	1	0	1	1

$$max \ z = x_1 + 2x_2$$

 $s.t. \ x_1 + x_2 \le 3$ 标准
 $x_2 \le 1$ 形式
 $x_1, x_2 \ge 0$

max
$$z = x_1 + 2x_2$$

s.t. $x_1 + x_2 + x_3 = 3$
 $x_2 + x_4 = 1$
 $x_1, x_2, x_3, x_4 \ge 0$

	1	2	0	0			1	0	0	-2	-2
x_3	1	1	1	0	3	x_3	1	0	1	-1	2
x_4	0	1	0	1	1	x_2	0	1	0	1	1

$$max z = x_1 + 2x_2$$

 $s.t. x_1 + x_2 \le 3$ 标准
 $x_2 \le 1$ 形式
 $x_1, x_2 \ge 0$

max
$$z = x_1 + 2x_2$$

s.t. $x_1 + x_2 + x_3 = 3$
 $x_2 + x_4 = 1$
 $x_1, x_2, x_3, x_4 \ge 0$

	1	2	0	0		
x_3	1	1	1	0	3	
χ_4	0	1	0	1	1	

	1	0	0	-2	-2
x_3	1	0	1	-1	2
x_2	0	1	0	1	1

$$max z = x_1 + 2x_2$$

s.t.
$$x_1 + x_2 \le 3$$

 $x_2 \le 1$
 $x_1, x_2 \ge 0$

$$max z = x_1 + 2x_2$$

s.t.
$$x_1 + x_2 + x_3 = 3$$

 $x_2 + x_4 = 1$
 $x_1, x_2, x_3, x_4 \ge 0$

	1	2	0	0		
x_3	1	1	1	0	3	
χ_4	0	1	0	1	1	

	1	0	0	-2	-2
x_3	1	0	1	-1	2
x_2	0	1	0	1	1

$$x^{(*)} = (2,1,0,0)^T, z = 4$$

练习题: 求解问题

min
$$z = -x_2 + 2x_3$$

s.t. $x_1 - 2x_2 + x_3 = 2$
 $x_2 - 3x_3 + x_4 = 1$
 $x_2 - x_3 + x_5 = 2$
 $x_j \ge 0, j = 1, ... 5$

初始可行解-两阶段法

$$max z = c^{T}x min \sum_{i=1}^{\bar{x}_{i}} \bar{x}_{i}$$

$$s.t. Ax = b s.t. Ax + \bar{x} = b$$

$$x \ge 0 x, \bar{x} \ge 0$$

初始可行解-两阶段法

$$max z = c^{T}x min \sum_{i=1}^{m} \bar{x}_{i}$$

$$s.t. Ax = b s.t. Ax + \bar{x} = b$$

$$x \ge 0 x, \bar{x} \ge 0$$

- 若 $min \sum_{i=1}^{m} \bar{x}_i = 0$,则后者得到的解是原问题的一个可行解
- 若 $min \sum_{i=1}^{m} \bar{x}_i > 0$,则原问题无解