Alt-Max_EM_methods

במטלה נתבקשנו לקחת אוסף של מאמרים בעלי תשעה נושאים שאיננו מכירים, לבצע את האלגוריתם EM, ולסווג את המאמרים לפי התוצאות לתשעה נושאים נתונים.

ישנם **פרמטרים רבים** איתם ניתן לנתח את תוצאות ריצת האלגוריתם שלנו:

Threshold to stop the EM iterations .1

בחרנו epsilon = 0.01 עבורו נעצור את ריצת האלגוריתם. בסוף כל איטרציה של EM ושיפור הפרמטרים, נבדוק האם ה- likelihood ושיפור הפרמטרים, נבדוק האם ה- כדי אפסילון, אם כן, נחדול את הריצה כיוון שהתכנסנו מספיק, אחרת, נמשיך לאיטרציה נוספת.

Log likelihood & Perplexity graphs .2

יצרנו שני גרפים המתארים את עליית ה- likelihood וירידת ה- perplexity ביחס יצרנו שני גרפים המתארים את עליית ה- לכמות האיטרציות, ומראות את השינוי מאיטרציה אחת לבאה אחריה, כאשר ציר ה- perplexity - מסמל את (likelihood) ואת ה X מסמל את בהתאמה.

Confusion matrix M of 9X9 .3

מטריצה המציגה את היחס בין כמות הסיווגים שמצאנו בהרצת המודל לבין אלו האמיתיים, כך שמתקיים:

 $M_{ij}=$ the number of articles from the j th topic in the i th cluster בנוסף, סדר השורות הינו על פי כמות הסיווגים ל-

Histograms graph for the confusion matrix .4

וציר M מייצג את תשעת הנושאים על פי הסדר במטריצה X היסטוגרמה בה ציר ה- X מייצג את כמות המאמרים אשר סווגו לכל נושא על פי המודל שלנו.

Accuracy .5 מידת

הדיוק במודל שלנו

הינו מספר המסמל את יחס בין כמות הסיווגים הנכונים אותם מצא המודל שלנו לבין כלל הסיווגים שמצאנו:

$$accuracy = \frac{\text{num of our correct assignments}}{\text{total num of our assignments}} = \frac{1306}{2124} \approx 0.615 = 61.5\%$$

More hyperparameters, and some parameters .6

- vocabulary size after filtering
- גודל המילון לאחר הפלטור (הסרת כל מילה המופיעה שלוש פעמים ומטה) אותו קיבלנו הינו – 6800.
 - $-\lambda$

לאחר ניסוי ובחירה של ערכים שונים, בחרנו ב- $\lambda=0.023$ עבורו קיבלנו תוצאות טובות. בשלב ה- M אנחנו מבצעים החלקה למילים ע"י אלגוריתם M לומדים במילון (300,000) מאשר וותר מילים במילון (300,000) מאשר בקובץ ממנו אנו לומדים (6800 – לאחר פלטור), לכן, כאשר אנו מחפשים את ההסתברות למילה בנושא מסוים P(w|x), עלינו למנוע הסתברות השווה לאפס עבור מילה (הרי תמיד קיימת הסתברות כלשהי עבור מילה מסוימת), lidstone נותן למילה זו הסתברות של λ .

- k •

במהלך החישובים הקורים בריצת האלגוריתם אנו עלולים להגיע ל-underflow, על מנת לטפל בכך אנו עושים מספר דברים, בניהם חישוב על ידי לוגים והפיכת מכפלות לסכימה, הסרת החזקה הגבוהה ביותר ועוד. בין היתר אנו משתמשים ב- k על מנת לנרמל את הערכים, דבר הגורם לערכים

בין היתר אנו משתמשים ב- k על מנת לנרמל את הערכים, דבר הגורם לערכים להיות פחות שליליים – כלומר, פחות רחוקים מהאפס, ובכך מסייע למניעת הunderflow.