R⁸ represents a hydrogen atom or an alkyl group,

R⁹ represents OR¹⁰ or NR¹¹R¹²,

R¹⁰ represents an unsubstituted or substituted alkyl group with 1 to 6 carbon atoms,

R¹¹ represents an unsubstituted or substituted alkyl group with 1 to 6 carbon atoms,

R¹² represents a hydrogen atom or an unsubstituted or substituted alkyl group with 1 to 6 carbon atoms.

R¹³ represents an unsubstituted or substituted alkyl group and

Z represents a hydrogen atom or a group which may be split off under the conditions of chromogenic development,

wherein the total number of carbon atoms of the alkyl group R^{10} to R^{13} in a coupler molecule is 8 to 18.

- 17. The material according to claim 1, wherein the amount of compound (II) is 50 mg to 5,000 mg per kg Ag.
- 18. The material according to claim 17, wherein the amount of compound (II) is 200 mg to 2,000 mg per kg Ag.
- 19. The material according to claim 1, wherein the red-sensitive layer contains at least one compound of formula

$$(R^{14})_n$$
 SH (III)

wherein

R¹⁴ represents a substituent and

n represents a number 1, 2 or 3.

20. The material as claimed in claim 19, wherein the compound of formula III is

- 21. The material according to claim 19, wherein the amount of compound (III) is 100 mg to 5,000 mg per kg Ag.
- 22. The material according to claim 19, wherein the amount of compound (III) is 500 mg to 3,000 mg per kg Ag.
- 23. The material according to claim 1, wherein the red-sensitive layer contains a compound of formula

$$R^{18}$$

$$R^{19}$$

$$R^{20}$$

$$R^{20}$$

$$R^{21}$$

$$R^{25}$$

$$R^{24}$$

$$R^{23}$$

$$R^{22}$$

$$R^{21}$$

$$R^{26}$$

$$R^{21}$$

$$R^{20}$$

$$R^{21}$$

$$R^{21}$$

$$R^{22}$$

$$R^{22}$$

wherein

 R^{17} to R^{24} independently represent H, alkyl, alkoxy, halogen, aryl, CN, 2- thienyl, 3- thienyl, N-pyrrolyl, N-indolyl, benzthienyl, CF₃, 2- furanyl or 3-furanyl or

R¹⁸ and R¹⁹ or R¹⁹ and R²⁰ or R²¹ and R²² and R²³ represent the remaining members of a carbocyclic ring system,

X¹ and X² independently represent O, S, Se or N-R²⁷,

 R^{25} and R^{26} independently represent optionally substituted alkyl or R^{25} together with L^{1} or R^{26} together with L^{5} represent the remaining members of a 5- to 7-membered saturated or unsaturated ring,

L¹ to L⁵ independently represent optionally substituted methine groups of L², L³ and L⁴ together represent the members of a 5- to 7-membered ring,

m represents 0 to 1,

R²⁷ represents C₁ to C₄ alkyl and

M represents a counterion optionally necessary for charge compensation, wherein X^1 and X^2 independently of one another represent S or Se if m is 0.

- 24. The material according to claim 23, wherein the compound (IV) was used in an amount of 5 μmol to 250 μmol per mol silver halide.
- 25. The material according to claim 23, wherein the red-sensitive layer contains a compound of formula

$$R^{45}$$
 R^{46}
 R^{47}
 R^{52}
 R^{48}
 R^{51}
 R^{50}
 R^{49}
 R^{48}
 R^{48}
 R^{52}
 R^{52}
 R^{53}
 R^{48}
 R^{48}

wherein

R⁴⁴ to R⁵¹ independently represent H, alkyl, alkoxy, halogen, aryl, CN, 2- thienyl, 3-thienyl, N-pyrrolyl, N-indolyl, benzthienyl, CF₃, 2- furanyl or 3-furanyl or

R⁴⁵ and R⁴⁶ or R⁴⁶ and R⁴⁷ or R⁴⁸ and R⁴⁹ or R⁴⁹ and R⁵⁰ represent the remaining members of a carbocyclic ring system,

X³ represents O, S, Se or N-R⁵⁴,

X⁴ represents 0 or N-R⁵⁵,

 R^{52} and R^{53} independently represent optionally substituted alkyl or R^{52} together with L^6 or R^{53} together with L^8 represent the remaining members of a 5- to 7-membered saturated or unsaturated ring,

L⁶ to L⁸ independently represent optionally substituted methine groups,

 R^{54} and R^{55} independently represent C_1 to C_4 alkyl and

M represents a counterion optionally necessary for charge compensation.

- 26. The material according to claim 23, wherein the compound (IV) is used in an amount of 50 μmol to 200 μmol per mol silver halide.
- 27. The material according to claim 1, wherein the material is a color negative material.
- A method for producing a positive image to be viewed by reflection from a color negative, which comprises exposing the color photographic material according to claim1.
- 29. The method according to claim 27, wherein exposing is carried out with a scanning copier.
- 30. The method according to claim 27, wherein exposing is carried out with an analogue copier.--

REMARKS

The applicants respectfully request that the preliminary amendment be entered prior to fee calculation and examination. The applicants have rewritten claims 2-15 into proper U.S.