1MX9 DRAM SIMM Memory Module

FEATURES

· Performance range:

	trac	tcac	t _{RC}
KMM591000BN-6	60ns	15ns	110ns
KMM591000BN-7	70ns	20ns	130ns
KMM591000BN-8	80ns	20ns	150ns

- Fast Page Mode operation
- CAS-before-RAS refresh capability
- . RAS-only and Hidden refresh capability
- TTL compatible inputs and outputs
- Single +5V±10% power supply
- 1024 cycles/16ms refresh
- JEDEC standard pinout

GENERAL DESCRIPTION

The Samsung KMM591000BN is a 1M bit \times 9 Dynamic RAM high density memory module. The Samsung KMM591000BN consist of two 4M bit DRAMs (KM44C1000BJ 1M \times 4) in 20-pin SOJ package and 1M bit DRAM (KM41C1000CJ 1M \times 1) in 20-pin SOJ package mounted on a 30-pin glass-epoxy substrate. A 0.22μ F decoupling capacitor is mounted for each DRAM.

The KMM591000BN is a Single In-line Memory Module with edge connections and is intended for mounting into 30-pin edge connector sockets.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

Pin Name	Pin Function
A ₀ -A ₉	Address Inputs
DQ ₀₋₇	Data In/Out
W	Read/Write Input
RAS	Row Address Strobe
CAS	Column Address Strobe
PCAS	CAS for Parity
PD	Data In for Parity
PQ	Data Out for Parity
Vcc	Power (+5V)
V _{SS}	Ground
N.C.	No connection

ABSOLUTE MAXIMUM RATINGS*

Item	ltem Symbol		Units	
Voltage on Any Pin Relative to V _{SS}	VIN, VOUT	-1 to +7.0	٧	
Voltage on V _{CC} Supply Relative to V _{SS}	Vcc	-1 to +7.0	V	
Storage Temperature	T _{stg}	-55 to +150	°C	
Power Dissipation	PD	1.8	W	
Short Circuit Output Current	los	50	mA	

^{*} Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to V_{SS}, T_A=0 to 70°C)

Item	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	V _{SS}	0	0	0	٧
Input High Voltage	V _{IH}	2.4	_	V _{CC} +1	٧
Input Low Voltage	V _{IL}	-1.0	_	0.8	٧

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Parameter				Units
Operating Current* (RAS, CAS, Address Cycling @t _{RC} = min.)	KMM591000BN-6 KMM591000BN-7 KMM591000BN-8			250 225 200	mA mA mA
Standby Current (RAS = CAS = V _{IH})		I _{CC2}	_	6	mA
AS-Only Refresh Current* CAS = V _{IH} , RAS, Address Cycling @t _{RC} = min.) KMM591000BN-6 KMM591000BN-7 KMM591000BN-8		Іссз	=	250 225 200	mA mA mA
Fast Page Mode Current* (RAS = V _{IL} , CAS, Address Cycling @t _{PC} = min.)	KMM591000BN-6 KMM591000BN-7 KMM591000BN-8	I _{CC4}	=	195 170 145	mA mA mA
Standby Current (RAS = CAS = V _{CC} - 0.2V)	l _{CC5}		3	mA	
CAS-Before-RAS Refresh Current* (RAS and CAS Cycling @t _{RC} = min.)	KMM591000BN-6 KMM591000BN-7 KMM591000BN-8	1006	_	250 225 200	mA mA mA
Input Leakage Current (Any input 0≤V _{IN} ≤6.5V, all other pins not under	r test = 0V)	I _{IL}	- 30	30	μΑ
Output Leakage Current (Data out is disabled, 0V≤V _{OUT} ≤5.5V)	loL	10	10	μΑ	
Output High Voltage Level (I _{OH} = -5mA)			2.4	_	٧
Output Low Voltage Level (I _{OL} = 4.2mA)	Output Low Voltage Level (I _{OL} = 4.2mA)				V

^{*} NOTE: I_{CC1}, I_{CC3}, I_{CC4} and I_{CC6} are dependent on output loading and cycle rates. Specified values are obtained with the output open. I_{CC} is specified as an average current.

CAPACITANCE (T_A=25°C)

Item	Symbol	Min	Max	Unit
Input Capacitance (A ₀ -A ₉ , RAS, CAS, W)	C _{IN1}	_	25	pF
Input Capacitance (PD, PCAS)	C _{IN2}	_	10	pF
Input/Output Capacitance (DQ ₀ -DQ ₇)	C _{DQ}	_	15	pF
Output Capacitance (PQ)	CQ	_	10	pF

AC CHARACTERISTICS (0°C≤Ta≤70°C, V_{CC}=5.0V±10%, See notes 1,2)

Parameter		KMM591000BN-6		KMM591000BN-7		KMM591000BN-8			
	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	110		130		150		ns	
Access time from RAS	t _{RAC}		60		70		80	ns	3,4
Access time from CAS	t _{CAC}		15		20		20	ns	3,4,5
Access time from column address	tAA		30		35		40	ns	3,11
CAS to output in Low-Z	t _{CLZ}	0		0		0		ns	3
Output buffer turn-off delay	t _{OFF}	0	15	0	20	0	20	ns	7
Transition time (rise and fall)	t⊤	3	50	3	50	3	50	ns	2
RAS precharge time	t _{RP}	40		50		60		ns	
RAS pulse width	tras	60	10,000	70	10,000	80	10,000	ns	
RAS hold time	t _{RSH}	15		20		20		ns	
CAS hold time	t _{CSH}	60		70		80		ns	
CAS pulse width	t _{CAS}	15	10,000	20	10,000	20	10,000	ns	
RAS to CAS delay time	t _{RCD}	20	45	20	50	20	60	ns	4
RAS to column address delay time	t _{RAD}	15	30	15	35	15	40	ns	11
CAS to RAS precharge time	tone	5		5		5		ns	
Row address set-up time	t _{ASR}	0		0		0		ns	
Row address hold time	t _{RAH}	10		10		10	-	ns	
Column address set-up time	tasc	0		0		0		ns	
Column address hold time	t _{CAH}	15		15		15		ns	
Column address hold referenced to RAS	t _{AR}	50		55		60		ns	6
Column address to RAS lead time	t _{RAL}	30		35		40		ns	
Read command set-up time	t _{RCS}	0		0		0		ns	
Read command hold referenced to CAS	t _{RCH}	0		0		0		ns	9
Read command hold referenced to RAS	t _{RRH}	0		0		0		ns	9
Write command hold time	twch	15		15		15		ns	
Write command hold referenced to RAS	twcn	50		55		60		ns	6
Write command pulse width	t _{WP}	15		15	_	15		ns	
Write command to RAS lead time	t _{RWL}	15		20		20		ns	
Write command to CAS lead time	t _{CWL}	15		20		20		ns	

AC CHARACTERISTICS (Continued)

Parameter	Sumb =1	KMM591000BN-6		KMM591000BN-7		KMM591000BN-8			T
	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Data-in set-up time	t _{DS}	0		0		0		ns	10
Data-in hold time	t _{DH}	15		15		15		ns	10
Data-in hold referenced to RAS	t _{DHR}	50		55		60		ns	6
Refresh period	t _{REF}		16		16		16	ms	
Write command set-up time	twcs	0		0		0		ns	- 8
CAS set-up time (C-B-R refresh)	t _{CSR}	10		10		10		ns	
CAS hold time (C-B-R refresh)	t _{CHR}	15		15		15		ns	
RAS precharge to CAS hold time	t _{RPC}	5		5	-	5		ns	
Access time from CAS precharge	t _{CPA}		35		40		45	ns	3
Fast Page mode cycle time	tpc	40		45		50		ns	
CAS precharge time (fast page)	t _{CP}	10		10		10		ns	
RAS pulse width (fast page)	trasp	60	100,000	70	100,000	80	100,000	ns	
W to RAS precharge time (C-B-R refresh)	twee	10		10	· · ·	10	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ns	
W to RAS hold time (C-B-R refresh)	twen	10		10		10		ns	
CAS precharge (C-B-R counter test)	t _{CPT}	20		30		30	_	ns	

NOTES

- V_{IH(min)} and V_{IL(max)} are reference levels for measuring timing of input signals. Transition times are measured between V_{IH(min)} and V_{IL(max)}, and are assumed to be 5ns for all inputs.
- Measured with a load equivalent to 2 TTL loads and 100pF
- Operation within the t_{RCD(max)} limit insures that t_{RAC(max)} can be met. t_{RCD(max)} is specified as a reference point only. If t_{RCD} is greater than the specified t_{RCD(max)} limit, then access time is controlled exclusively by t_{CAC}.
- Assumes that t_{RCD}≥t_{RCD(max)}.
- 6. tar, twcr, tohr are referenced to trad(max).
- This parameter defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL}.

- 8. twos, tRWD, tcWD and tAWD are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twos≥twos(min) the cycle is an early write cycle and the data out pin will remain high impedance for the duration of the cycle.
- Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- These parameters are referenced to the CAS leading edge in early write cycles and to the W leading edge in read-write cycles.
- 11. Operation within the t_{RAD}(max) limit insures that t_{RAC}(max) can be met. t_{RAD}(max) is specified as a reference point only. If t_{RAD} is greater than the specified t_{RAD}(max) limit, then access time is controlled by t_{AA}.

TIMING DIAGRAMS (Continued) FAST PAGE MODE READ CYCLE

FAST PAGE MODE WRITE CYCLE (EARLY WRITE)

TIMING DIAGRAMS (Continued)

RAS-ONLY REFRESH CYCLE

Note: W=Don't Care

CAS-BEFORE-RAS REFRESH CYCLE

NOTE: Address=Don't Care

TIMING DIAGRAMS (Continued)

HIDDEN REFRESH CYCLE (READ)

HIDDEN REFRESH CYCLE (WRITE)

TIMING DIAGRAMS (Continued)

CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE

PACKAGE DIMENSIONS

Units: Inches (millimeters)

Tolerances: ±.005(.13) unless otherwise specified

