Backpropagation

TA: Yi Wen

April 17, 2020 CS231n Discussion Section

Slides credits: Barak Oshri, Vincent Chen, Nish Khandwala, Yi Wen

Agenda

- Motivation
- Backprop Tips & Tricks
- Matrix calculus primer

Agenda

- Motivation
- Backprop Tips & Tricks
- Matrix calculus primer

Motivation

Recall: Optimization objective is minimize loss

$$Loss = f(x, y; \theta)$$

Motivation

Recall: Optimization objective is minimize loss

$$Loss = f(x, y; \theta)$$

Goal: how should we tweak the parameters to decrease the loss?

Agenda

- Motivation
- Backprop Tips & Tricks
- Matrix calculus primer

A Simple Example

Loss $Loss = f(x, y; \theta)$

Goal: Tweak the parameters to minimize loss

=> minimize a multivariable function in parameter space

A Simple Example

=> minimize a multivariable function

$$f(x,y) = x^2 + y^2$$

Plotted on WolframAlpha

Approach #1: Random Search

Intuition: the *step* we take in the domain of function

Approach #2: Numerical Gradient

Intuition: rate of change of a function with respect to a variable surrounding a small region

Approach #2: Numerical Gradient

Intuition: rate of change of a function with respect to a variable surrounding a small region

$$\frac{f(x+h,y) - f(x,y)}{h}$$

$$f(x,y) = x^2 + y^2$$

Recall: partial derivative by limit definition

$$\frac{\partial f}{\partial x}(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

$$f(x,y) = x^2 + y^2$$

Recall: chain rule $\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$.

Recall: chain rule $\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$.

E.g.
$$f(x,y,z) = (x+y)z$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} =$$

Recall: chain rule $\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$.

E.g.
$$f(x,y,z)=(x+y)z$$
 $_{\mathrm{x}}$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} = z \cdot 1 = z = -4 \qquad \text{y} \frac{5}{-4}$$

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y} = z \cdot 1 = z = -4 \qquad \text{z} \frac{-4}{3}$$

$$\frac{\partial f}{\partial z} = q = x + y = -2 + 5 = 3$$

Recall: chain rule $\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$.

Intuition: upstream gradient values propagate backwards -- we can reuse them!

Gradient

$$f: R^{n} \to R$$

$$\nabla f: R^{n} \to R^{n}$$

$$\mathbf{x} = [x_{1}, \dots, x_{n}]^{T} \in R^{n}$$

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_{1}}(\mathbf{x}) \\ \vdots \\ \frac{\partial f}{\partial x}(\mathbf{x}) \end{bmatrix}$$

"direction and rate of fastest increase"

Numerical Gradient vs Analytical Gradient

What about Autograd?

Deep learning frameworks can automatically perform backprop!

 Problems might surface related to underlying gradients when debugging your models

"Yes You Should Understand Backprop"

https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

Problem Statement: Backpropagation

$$Loss = \frac{1}{N} \sum_{i} L_i(f(x_i, \theta), y_i)$$

Given a function ${\it f}$ with respect to inputs ${\it x}$, labels ${\it y}$, and parameters ${\it \theta}$ compute the gradient of ${\it Loss}$ with respect to ${\it \theta}$

Problem Statement: Backpropagation

An algorithm for computing the gradient of a **compound** function as a series of **local, intermediate gradients**:

- 1. Identify intermediate functions (forward prop)
- 2. Compute local gradients (chain rule)
- 3. Combine with upstream error signal to get full gradient

Modularity: Previous Example

Compound function

Intermediate Variables (forward propagation)

$$f(x, y, z) = (x + y)z$$
$$q = x + y$$
$$f = qz$$

Modularity: 2-Layer Neural Network

Compound function

Intermediate Variables (forward propagation)

$$Loss = L\left(\sigma(xW_1 + b_1)W_2 + b_2, y\right)$$

$$h_1 = xW_1 + b_1$$
$$z_1 = \sigma(h_1)$$

$$z_2 = z_1 W_2 + b_2$$

Loss = Squared Euclidean Distance between z_2 and y

Intermediate Variables

(forward propagation)

$$h_1 = xW_1 + b_1$$

$$z_1 = \sigma(h_1)$$

$$z_2 = z_1 W_2 + b_2$$

? f(x;W,b) = Wx + b ?

↑ lecture note) Input one feature vector

(← here) Input a batch of data (matrix)

Intermediate Variables (forward propagation)

- 1. intermediate functions
- 2. local gradients

Intermediate Gradients (backward propagation)

$$\uparrow \frac{\partial h_1}{\partial W_1}, \frac{\partial h_1}{\partial b_1} \quad \frac{\partial h_1}{\partial x} ? ? W_1$$

$$\frac{\partial z_1}{\partial x}$$

$$z_1 = \sigma(h_1)$$

$$z_2 = z_1 W_2 + b_2$$

$$\frac{\partial z_1}{\partial h_1^2}$$
 ? $z_1(1-z_1)$

$$Loss = \frac{1}{N} \|z_2 - y\|_F^2$$

Agenda

- Motivation
- Backprop Tips & Tricks
- Matrix calculus primer

Derivative w.r.t. Vector

Scalar-by-Vector

$$\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} & \frac{\partial y}{\partial x_2} \dots \frac{\partial y}{\partial x_n} \end{bmatrix}$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \dots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \dots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}$$

- 1. intermediate functions
- 2. local gradients
- 3. full gradients

Derivative w.r.t. Vector: Chain Rule

$$\frac{\partial J}{\partial x_j} = \sum_{i} \frac{\partial J}{\partial y_i} \frac{\partial y_i}{\partial x_j}$$
$$= \sum_{i} \left(\frac{\partial J}{\partial \mathbf{y}}\right)_{1i} \left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)_{ij}$$

$$\frac{\partial J}{\partial \mathbf{x}} = \frac{\partial J}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{x}}$$

Derivative w.r.t. Vector: Takeaway

$$\mathbf{y} = A_{m \times n} \mathbf{x} \qquad \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = A$$
$$\frac{\partial J}{\partial \mathbf{x}} = \frac{\partial J}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \frac{\partial J}{\partial \mathbf{y}} A$$

$$\mathbf{y} = \omega(\mathbf{x}) \qquad \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \omega'(x_1) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \omega'(x_n) \end{bmatrix}$$

$$\frac{\partial J}{\partial \mathbf{x}} = \frac{\partial J}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \left[\frac{\partial J}{\partial y_1} \omega'(x_1), \cdots, \frac{\partial J}{\partial y_n} \omega'(x_n) \right] = \frac{\partial J}{\partial \mathbf{y}} \circ \omega'(\mathbf{x})^T$$

Derivative w.r.t. Matrix

Scalar-by-Matrix

$$\frac{\partial y}{\partial A} = \begin{bmatrix} \frac{\partial y}{\partial A_{11}} & \frac{\partial y}{\partial A_{12}} & \cdots & \frac{\partial y}{\partial A_{1n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial A_{m1}} & \frac{\partial y}{\partial A_{m2}} & \cdots & \frac{\partial y}{\partial A_{mn}} \end{bmatrix}$$

Vector-by-Matrix

?

Derivative w.r.t. Matrix: Dimension Balancing

When you take **scalar-by-matrix** gradients

The gradient has **shape of denominator**

 Dimension balancing is the "cheap" but efficient approach to gradient calculations in most practical settings

Derivative w.r.t. Matrix: Takeaway

$$Y_{m \times l} = A_{m \times n} X_{n \times l}$$

$$\frac{\partial J}{\partial X} = A^T \frac{\partial J}{\partial Y}$$

$$\frac{\partial J}{\partial A} = \frac{\partial J}{\partial Y} X^T$$

$$Y_{m \times n} = \omega(X_{m \times n})$$

$$\frac{\partial J}{\partial X} = \frac{\partial J}{\partial Y} \circ \omega'(X)$$

Intermediate Variables

(forward propagation)

- 1. intermediate functions
- 2. local gradients
- 3. full gradients

Intermediate Gradients

(backward propagation)

Backprop Menu for Success

- Write down variable graph
- 2. Keep track of error signals
- 3. Compute derivative of loss function
- 4. Enforce shape rule on error signals, especially when deriving over a linear transformation

$$\mathbf{y} = A_{m \times n} \mathbf{x}$$

$$y_i = \sum_{j=1} A_{ij} x_j \qquad \frac{\partial y_i}{\partial x_j} = A_{ij}$$

$$\mathbf{y} = A_{m \times n} \mathbf{x}$$
$$\lambda^T = \frac{\partial J}{\partial \mathbf{y}}$$

$$y_i =$$

$$= \frac{\partial J}{\partial y_i}$$

$$\mathbf{x} \longrightarrow \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \longrightarrow \frac{\partial J}{\partial \mathbf{x}} = \mathbf{y}$$

$$\frac{\partial J}{\partial x_j} = \sum_{i} \frac{\partial J}{\partial y_i} \frac{\partial y_i}{\partial x_j} = \sum_{i=1}^{m} \lambda_i A_{ij}$$

$$\frac{\partial J}{\partial \mathbf{x}} = \lambda^T A = \frac{\partial J}{\partial \mathbf{y}} A$$

$$\mathbf{y} = \omega(\mathbf{x})$$

$$y_i = \omega(x_i)$$
 $\dfrac{\partial y_i}{\partial x_i} = \omega'(x_i)$ $\dfrac{\partial y_i}{\partial x_i} = 0$ $(i \neq i)$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \omega'(x_1) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \omega'(x_n) \end{bmatrix}$$

$$\mathbf{y} = \omega(\mathbf{x})$$

$$\lambda^T = \frac{\partial J}{\partial z}$$

$$y_i = \omega(x_i)$$

$$\partial J$$

$$\lambda_i = \frac{\partial J}{\partial u_i}$$

$$\frac{\partial y_i}{\partial x_i} = \omega'(x_i)$$

$$\frac{\partial y_i}{\partial x_i} = 0 \qquad (i \in \mathbb{R})$$

$$=0$$
 (i

$$\begin{array}{c|c}
\mathbf{X} & & \partial \mathbf{y} \\
\hline
\mathbf{X} & \partial \mathbf{y} & \partial J \\
\mathbf{y} & \partial \mathbf{x}
\end{array} = ?$$

$$\frac{\partial J}{\partial x_j} = \sum_{i} \frac{\partial J}{\partial y_i} \frac{\partial y_i}{\partial x_j} = \frac{\partial J}{\partial y_j} \frac{\partial y_j}{\partial x_j} = \lambda_j \omega'(x_j)$$
$$\frac{\partial J}{\partial \mathbf{x}} = \lambda^T \circ \omega'(\mathbf{x})^T = \frac{\partial J}{\partial \mathbf{y}} \circ \omega'(\mathbf{x})^T$$

Matrix multiplication [Backprop]

$$Y_{ij} = \sum_{i=1}^{n} A_{ik} X_{kj}$$

 $\mathbf{y} = A_{m \times n} \mathbf{x}$

 $\frac{\partial J}{\partial \mathbf{x}} = \frac{\partial J}{\partial \mathbf{v}} A$

 $\frac{\partial J}{\partial \mathbf{x}}^T = A^T \frac{\partial J}{\partial \mathbf{v}}^T$

$$Y_{m \times l} = A_{m \times n} X_{n \times l}$$
$$\frac{\partial J}{\partial Y} = \Lambda_{m \times l}$$

$$\Lambda_{ij} = rac{\partial J}{\partial Y_{ij}}$$

$$\frac{\partial J}{\partial X_{ij}} = \sum_{i',j'} \frac{\partial J}{\partial Y_{i'j'}} \frac{\partial Y_{i'j'}}{\partial X_{ij}} = \sum_{i'=1}^{m} \frac{\partial J}{\partial Y_{i'j}} \frac{\partial Y_{i'j}}{\partial X_{ij}}$$
$$= \sum_{i'=1}^{m} A_{i'i} \Lambda_{i'j} = \sum_{k=1}^{m} A_{ki} \Lambda_{kj}$$
$$\frac{\partial J}{\partial X} = A^{T} \Lambda = A^{T} \frac{\partial J}{\partial Y}$$

$$\frac{\partial J}{\partial A_{ij}} = \sum_{i',j'} \frac{\partial J}{\partial Y_{i'j'}} \frac{\partial Y_{i'j'}}{\partial A_{ij}} = \sum_{j'=1}^{l} \frac{\partial J}{\partial Y_{ij'}} \frac{\partial Y_{ij'}}{\partial A_{ij}} \qquad A X$$

$$= \sum_{j'=1}^{l} \Lambda_{ij'} X_{jj'} = \sum_{k=1}^{l} \Lambda_{ik} X_{jk}$$

$$\frac{\partial J}{\partial A} = \Lambda X^T = \frac{\partial J}{\partial Y} X^T$$

Elementwise function [Backprop]

 $\frac{\partial J}{\partial \mathbf{x}} = \frac{\partial J}{\partial \mathbf{y}} \circ \omega'(\mathbf{x})^T$

 $\frac{\partial J}{\partial \mathbf{x}}^T = \frac{\partial J}{\partial \mathbf{v}}^T \circ \omega'(\mathbf{x})$

 $\mathbf{y} = \omega(\mathbf{x})$

$$Y_{m \times n} = \omega(X_{m \times n})$$

$$\frac{\partial J}{\partial Y} = \Lambda_{m \times n}$$

$$Y_{ij} = \omega(X_{ij})$$

$$\Lambda_{ij} = \frac{\partial J}{\partial Y_{ij}}$$

$$Y$$
 $\frac{\partial J}{\partial Y}$