

Stepmotor-Controller EL734

Usermanual

unvollständige Vorversion

20.12.00

SH93

Inhaltsverzeichnis

Inhaltsverzeichnis		
Allgemeines	5	
Spezifikationen	6	
Übersicht		
	_	
Bedienung		
Positionierungsarten		
1 ositiomer ungouteen		
Mechanischer Aufbau	8	
Elektrische Anschlüsse	9	
VME-Steuereinheit	9	
Leistungs-Einheit	9	
Blockschema		
Anschluss des VME-Steuerteils	11	
Anschluss eines Leistungsteils	12	
Steckerbelegung	13	
VME-Steuerteil	13	
RS232-Schnittstellen	13	
Testbuchsen	13	
Display	13	
Leistungsteil	14	
Motorstecker		
Stecker 24V		
Stecker Steuerung Input		
Stecker Steuerung Output		
Klemmenblock Steuerung Input		
Klemmenblock Steuerung Output		
Motoren		
Winkelgeber		
Inkrementalgeber		
Absolutgeber Heidenhain m. ser. Interface		
Absolutgebel Entoll	20	
Moduleinbau	21	
Moduladressen	22	
VME-Steuereinheit	24	
VME-Module	25	
Jumper-Configuration	25	
Leistungseinheit		
Brückenkabel		
Netzanschluss		
Motoranschluss		
Anschluss Steuerung Ausgänge		
Anschluss Steuerung Eingänge		
24VModule der Leistungseinheit		
Product del Delstungsemment		
Befehlssatz	29	

Stepmotor-Controller EL734

Handbedienung	32
Liste Achsbelegung	33
Geräteliste	34
Parameterliste	35
Anhang	36
Kompaktsteuerung	36
Neue Befehle in Software Version 2.0	

Allgemeines

Der Stepmotorcontroller EL734 wurde für Anwendungen in Spektrometer-Positionierantrieben entwickelt.

Mit ihm lassen sich über eine serielle Schnittstelle bis max. 12 mit Schrittmotoren unterschiedlicher Typen ausgerüstete Achsen positionieren. Die Positionserfassung kann wahlweise im Openloop-Betrieb über den Motor-Schrittzähler und Endschalter bzw. einen Referenzpunkt-Schalter, oder mittels verschiedener Arten von Winkelgebern erfolgen.

Pro Motorachse stehen eine automatische Luftkissen- oder Magnetbremsen-Steuerung, sowie je ein Steuer-Ein und Ausgang (24V) zur Verfügung.

Der Stepmotorcontroller ist mit einer RS232-Schnittstelle ausgerüstet, über welche er mit einem übergeordneten Hostcomputer verbunden wird. Über diese Verbindung werden sämtliche Steuerbefehle gegeben, Parameterwerte eingestellt, sowie Parameter und Betriebszustände abgefragt.

Zusätzlich zur Host-Schnittstelle sind eine serielle Service-Schnittstelle, sowie Möglichkeiten zur direkten Handbedienung eines einzelnen Motors mittels Tasten oder eines Drehknopfs vorhanden.

Eine der beiden Schnittstellen kann jeweils durch einen Steuerbefehl als aktive Schnittstelle gewählt werden. Zwei verschiedene Betriebsarten erlauben einerseits im Host-Mode einen optimalen Verkehr mit einem Host-Computer, oder anderseits im Terminal-Mode den Handbetrieb mit zusätzlichen Text-Informationen.

Eine komplette Anlage besteht aus einer VME-Steuereinheit mit, je nach Anzahl benötigter Motorachsen, minimal einer bis maximal drei Leistungseinheiten.

Die Eingangs- und Ausgangs-Leitungen der Steuerung (Endschalter, Luftkissensteuerung etc.) werden auf im Rack montierte Klemmenblöcke geführt, welche den individuellen Anchluss der externen externen Apparate ermöglichen.

Für den Anschluss der Winkelgeber sind im Rack montierte Steckeradapter vorgesehen.

Die Motoren werden werden direkt an den Motorsteckdosen der Leistungseinheiten angeschlossen.

20.12.00 5/37

Spezifikationen

Übersicht

Motorachsenzahl 1.. 12

verwendbare Motortypen - 5 Phasen-Schrittmotoren Berger Lahr

RDM 564/50 bis RDM 5913/50 mit 0.55A bis 2.8A pro Phase 2 Phasen-Schrittmotoren

mit 1A pro Phase

Positionsmessung - ohne Winkelgeber, mit Refererenzpunkt-Schalter

Inkrementalgeber mit zusätzlichem Index-SignalAbsolut Pin-Encoder, ohne eingeb. Elektronik

- Absolut-Encoder mit seriellem Interface (SSI)

Schnittstelle zu Host-Computer RS232 9600Bd

Service-Schnittstelle RS232 9600Bd

Steuersignale pro Achse - 2 Endschalter

- 1 Referenzpunkt-Schalter

- 1 Stop-Signal

- 1 Luftkissen-Rückmeldesignal

- 1 Steuer-Eingangssignal, frei benützbar

- 1 Luftkissen-Ausgang

- 1 Steuer-Ausgang, frei benützbar

Steuersignal pro Leistungseinheit 1 Notstop-Eingang

Steuerlogik Endschalter, Notstop-Eingang, Referenzpunkt-Schalter

Ruhekontakt

Steuereingänge +aktiv

Pegel der Steuersignale + 24V, Ausgänge +geschaltet

Strom der Ausgangs-Signale 1A, total max. 4A pro Leistungseinheit

Betriebsarten

Bedienung

 Der Stepmotorcontroller wird normalerweise über die serielle Host-Schnittstelle von einem Host-Computer aus gesteuert.

Zur Bedienung steht ein umfangreicher mnemonischer Parameter- und Kommandosatz zur zur Verfügung.

Parametereinstellungen und Positionswerte können auch zurückgelesen werden und bleiben in einem batteriegestützten RAM auch nach Netzausfall gespeichert.

- Alternativ ist eine Bedienung über die auf der Frontseite befindliche Service-Schnittstelle mittels
 Terminal oder Computer möglich. Die Service-Schnittstelle bietet dieselben Bedienungsmöglichkeiten wie die Host-Schnittstelle.
- Unmittelbar nach dem Aufstarten oder nach Abschalten der seriellen Schnittstellen können einzelne Achsen über Tasten, oder mittels einer Kabelfernbedienung, im Handbetrieb bewegt werden.

Positionierungsarten

• Offline Ohne Positionsmessung durch Winkelgeber.

Durch eine Referenzfahrt an einen Referenz- oder Endschalter muss die Orientierung initialisiert werden.

Störungen z.B. durch mechanische Blockierung können nicht automatisch erkannt werden. Netzausfälle während laufender Positionierung haben Verlust des korrekten Ist-Positionswertes zur Folge.

• Online Mit Positionsmessung durch Winkelgeber.

Beim Einsatz eines **Inkrementalgebers** ist eine Referenzfahrt an einen Referenz- oder Endschalter zur Initilisierung der Orientierung notwendig.

Störungen z.B. durch mechanische Blockierung können automatisch erkannt werden. Netzausfälle während laufender Positionierung haben i. A. höchstens eine geringfügige Abweichung des korrekten Ist-Positionswertes zur Folge.

Beim Einsatz eines **Absolutgebers** ist keine Referenzfahrt Referenzfahrt notwendig. Die Position des Drehgebernullpunktes wird als Parameter eingegeben und bleibt konstant. Als Absolutgeber können sowohl mechanische Pin-Encoder (Litton) mit paralleler Schnittstelle wie elektronische Winkelgeber (mit elektro-optischer Ablesung) mit SSI-Schnittstelle (Heidenhain) eingesetzt werden.

Mechanischer Aufbau

1 .. 4 Motorachsen 1 VME-Steuereinheit

1 Leistungseinheit

5... 8 Motorachsen 1 VME-Steuereinheit

2 Leistungseinheiten

9...12 Motorachsen 1 VME-Steuereinheit

3 Leistungseinheiten

Im Schrank wird über der VME-Steuereinheit eine Kabeldurchführungsplatte, und darüber die Leistungseinheiten montiert.

VME-Steuereinheit 19" ELMA-Chassis 3HE 550mm Tiefe

Rackmontage

Leistungseinheit 19" ELMA-Chassis 3HE 550mm Tiefe

Rackmontage

Kabeldurchführung 19" Frontplatte 3HE

Elektrische Anschlüsse

VME-Steuereinheit

Netzanschluss Gerätestecker 2P + E 230V

mit Netzschalter und Sicherung Rückseite

Host-Schnittstelle D-Sub Stecker 25P m Rückseite

Service-Schnittstelle D-Sub Stecker 25P m Frontseite

Testbuchsen 0, +5V 2mm Buchsen sw, rt Frontseite

Leistungs-Einheit

Netzanschluss Gerätestecker 2P + E 230V

mit Netzschalter

Sicherung Rückseite

Motor-Stecker Burndy Metalok Bantam 12P w Rückseite

24V-Stecker Burndy Metalok Bantam 4P w Rückseite

Steuer-Ausgänge Flachband-Stecker 50P m Rückseite

Steuer-Eingänge Flachband-Stecker 64P m Rückseite

Blockschema

Anschluss des VME-Steuerteils

Der Anschluss der Winkelgeber erfolgt über Interface-Adapterkabel mit im Rack montierten Steckerblöcken.

Für die Verbindung der VME-Steuereinheit mit den Leistungseinheiten stehen angepasste Brückenkabel mit drei verschiedenen Längen zur Verfügung.

Anschluss eines Leistungsteils

Die Motorkabel werden direkt am Leistungsteilangeschlossen.

Die Steuersignale (Endschalter, Referenzpunkt-Schalter etc., sowie die SteuerAusgänge werden über im Rack montierte Anschluss-Klemmenblöcke geführt, welche einen individuellen Anschluss an die Anlagenverdrahtung ermöglichen.

Für die Verbindung der Leistungseinheiten mit der VME-Steuereinheit stehen angepasste Brückenkabel mit drei verschiedenen Längen zur Verfügung.

Steckerbelegung

VME-Steuerteil

RS232-Schnittstellen

- Host-Anschluss Rückwand
- Service-Anschluss Frontseite

Stecker D-Sub 25P m, DCE

Pin	Signal
1	NC
2	TxD
3	RxD
4	RTS *
5	CTS *
6	NC
7	GND
825	NC

^{*} nicht benutzt

Testbuchsen

2mm Buchsen fixe Frontplatte Modulsteckplatz 2

Buchse	Signal
rot	+5V
schwarz	GND

Display

Steckdose LEMO 1 Frontplatte Displaymodul

Pin	Signal
1	Analog-Output
2	Analog Input
3	Bit 0
4	Bit 1
5	Bit 2
6	GND

Leistungsteil

Motorstecker

Steckdose Burndy Metalok Bantam 12P w

	2-Phasen-Motor	5-Phasen-Motor	3-Phasen-Motor
Pin	Signal	Signal	Signal
1	A	W 1A	V
2	В	W 1E	U
3	С	W 2A	
4	D	W 2E	U
5		W 3A	
6		W 3E	
7		W 4A	W
8		W 4E	
9		W 5A	W
10		W 5E	V
11			
12	Masse	Masse	Masse

Stecker 24V

Steckdose Burndy Metalok Bantam 4P w

Pin	Signal
1	+24V
2	+24V
3	0V
4	0V

Stecker Steuerung Input

Der Inputstecker wird über ein Adapterkabel mit einem im Rack montierten Klemmenblock verbunden, welcher den individuellen Anschluss der Eingangssignale ermöglicht.

Flachbandstecker 64P m

Pin	Signal	Funktion	Pin	Signal
1	GND		2	GND
3	GND		4	GND
5	LS1-1	- Endschalter 1	6	+24V
7	LS2-1	+Endschalter 1	8	+24V
9	LSX-1	Referenzschalter 1	10	+24V
11	STOP-1	Stopschalter 1	12	+24V
13	ACI-1	Luftkissenrückmeldung 1	14	+24V
15	IN-1	Steuereingang 1	16	+24V
17	GND		18	GND
19	LS1-2	- Endschalter 2	20	+24V
21	LS2-2	+Endschalter 2	22	+24V
23	LSX-2	Referenzschalter 2	24	+24V
25	STOP-2	Stopschalter 2	26	+24V
27	ACI-2	Luftkissenrückmeldung 2	28	+24V
29	IN-2	Steuereingang 2	30	+24V
31	GND		32	GND
33	LS1-3	- Endschalter 3	34	+24V
35	LS2-3	+Endschalter 3	36	+24V
37	LSX-3	Referenzschalter 3	38	+24V
39	STOP-3	Stopschalter 3	40	+24V
41	ACI-3	Luftkissenrückmeldung 3	42	+24V
43	IN-3	Steuereingang 3	44	+24V
45	GND		46	GND
47	LS1-4	- Endschalter 4	48	+24V
49	LS2-4	+Endschalter 4	50	+24V
51	LSX-4	Referenzschalter 4	52	+24V
53	STOP-4	Stopschalter 4	54	+24V
55	ACI-4	Luftkissenrückmeldung 4	56	+24V
57	IN-4	Steuereingang 4	58	+24V
59	GND		60	GND
61	XLS	Notstop	62	+24V
63	GND		64	GND

Stecker Steuerung Output

Der Outputstecker wird über ein Adapterkabel mit einem im Rack montierten Klemmenblock verbunden, welcher den individuellen Anschluss der Ausgangssignale ermöglicht.

Flackbandstecker 50P m

Pin	Signal	Funktion	Pin	Signal
1			2	GND
3	OUT-1	Steuer-Ausgang 1	4	GND
5			6	GND
7			8	GND
9	ACO-1	Luftkissen-Ausgang 1	10	GND
11			12	GND
13			14	GND
15	OUT-2	Steuer-Ausgang 2	16	GND
17			18	GND
19			20	GND
21	ACO-2	Luftkissen-Ausgang 2	22	GND
23			24	GND
25			26	GND
27	OUT-3	Steuer-Ausgang 3	28	GND
29	1		30	GND
31			32	GND
33	ACO-3	Luftkissen-Ausgang 3	34	GND
35			36	GND
37			38	GND
39	OUT-4	Steuer-Ausgang 4	40	GND
41			42	GND
43			44	GND
45	ACO-4	Luftkissen-Ausgang 4	46	GND
47			48	GND
49	+24V		50	+24V

Klemmenblock Steuerung Input

Die Steuerleitungen werden über die im Rack montierten Klemmenblöcke angeschlossen.

Pin	Signal	Funktion Pin Signal		Funktion	
1	+24V	Speisung	23	+24V	Speisung
2	LS1-1	- Endschalter 1	24	LS2-1	+Endschalter 1
3	LSX-1	Referenzschalter 1	25	GND	
4	STOP-1	Stopschalter 1	26	GND	
5	ACI-1	Luftkissenrückmeldung 1	27	IN-1	Steuereingang 1
6	+24V	Speisung	28	+24V	Speisung
7	LS1-2	- Endschalter 2	29	LS2-2	+Endschalter 2
8	LSX-2	Referenzschalter 2	30	GND	
9	STOP-2	Stopschalter 2	31	GND	
10	ACI-2	Luftkissenrückmeldung 2	32	IN-2	Steuereingang 2
11	+24V	Speisung	33	+24V	Speisung
12	LS1-3	- Endschalter 3	34	LS2-3	+Endschalter 3
13	LSX-3	Referenzschalter 3	35	GND	
14	STOP-3	Stopschalter 3	36	GND	
15	ACI-3	Luftkissenrückmeldung 3	37	IN-3	Steuereingang 3
16	+24V	Speisung	38	+24V	Speisung
17	LS1-4	- Endschalter 4	39	LS2-4	+Endschalter 4
18	LSX-4	Referenzschalter 4	40	GND	
19	STOP-4	Stopschalter 4	41	GND	
20	ACI-4	Luftkissenrückmeldung 4	42	IN-4	Steuereingang 4
21	+24V	Speisung	43	+24V	Speisung
22	XLS	Notstop	44	GND	

Klemmenblock Steuerung Output

Pin	Signal		Pin	Signal
1	OUT-1	Steuer-Ausgang 1	11	GND
2	ACO-1	Luftkissen-Ausgang 1	12	GND
3	OUT-2	Steuer-Ausgang 2	13	GND
4	ACO-2	Luftkissen-Ausgang 2	14	GND
5	OUT-3	Steuer-Ausgang 3	15	GND
6	ACO-3	Luftkissen-Ausgang 3	16	GND
7	OUT-4	Steuer-Ausgang 4	17	GND
8	ACO-4	Luftkissen-Ausgang 4	18	GND
9	+24V	Speisung	19	+24V
10	+24V	Speisung	20	+24V

Motoren

Für alle Motortypen wird der selbe Steckertyp verwendet.

Stecker Burndy Metalok Bantam 12P m

Stecke r	2-Phasen-Motor				3-Phasen-Motor	
Pin	Farbe	Signal	Farbe	Signal	Klemme	Signal
1	rot	A	gelb	W 1A	2	V
2	blau	В	weiss	W 1E	1	U
3	gelb	С	blau	W 2A		
4	weiss	D	rot	W 2E	1	U
5			orange	W 3A		
6			grün	W 3E		
7			grau	W 4A	3	W
8			schwarz	W 4E		
9			braun	W 5A	3	W
10			violett	W 5E	2	V
11				_	_	_
12		Masse		Masse		Masse

Winkelgeber

Inkrementalgeber

Stecker D-Sub 9P m Crimp- oder Löt-Montage

Pin	Farbe	Signal	Pin	Farbe	Signal
1		UA2+	6		UA0+
2		UA2-	7		/
3		UA1-	8		VCC
4		UA1+	9		GND
5		UA0-			
Gehäuse	Schirm				

Absolutgeber Heidenhain m. ser. Interface

Typ **ROC424.2** GS5-12-12 mit 24 Bit ohne Parität, 4096/360°, 4096 Umdr. VCC 10.5V .. 26V Stecker D-Sub 15P m Crimp- oder Löt-Montage

Pin	Farbe	Signal	Pin	Farbe	Signal
1			9		
2	rosa	-Daten	10	grau	+Daten
3	gelb	-Takt	11	violett	+Takt
4			12		
5	blau	VCC*	13	braun/grün	VCC
6	weiss	GND*	14	weiss/grün	GND
7			15		
8		·			
Gehäuse	Schirm				

* Fühlleitung

Typ ROC425 mit 25 Bit (Nachfolger von ROC424)

Pin 3 und Pin 11 werden wie folgt vertauscht angeschlossen:

ſ	3	violett	+Takt	11	gelb	-Takt
L	_				8	

Alle andern Anschlüsse sind identisch mit ROC424.

Absolutgeber Litton

Typ VNB11-13P1 mit 13 Bit, 256/360°, 32 Umdr.

Typ VNB11-17P1 mit 17 Bit, 256/360°, 512 Umdr.

Stecker D-Sub 37P m Crimpmontage DELCONEX Typ DT 37PX Distrelec Art. Nr. 12 47 44

Pin	Farbe	Bit	Pin	Farbe	Bit
1	braun	LD1	20	weiss/blau-schwarz	0
2	rot	LD2	21	weiss/braun	LG1
3	orange	LD3	22	weiss/rot	LG2
4	gelb	LD4	23	weiss/orange	LG3
5	grün	LD5	24	weiss/gelb	LG4
6	blau	LD6	25	weiss/grün	LG5
7	violett	LD7	26	weiss/blau	LG6
8	grau	LD8	27	weiss/violett	LG7
9	weiss	LD9	28	weiss/grau	LG8
10	orange/schwarz	LD10	29	weiss/schwarz	LG9
11	gelb/braun	LD11	30	weiss/orange-schwarz	LG10
12	braun/rot	LD12	31	weiss/gelb-braun	LG11
13	weiss/rot-orange	LD13	32	weiss/braun-rot	LG12
14	weiss/rot-gelb	LD14	33	rot/orange	LG13
15	weiss/rot-grün	LD15	34	rot/gelb	LG14
16	weiss/rot-blau	LD16	35	rot/grün	LG15
17	NC		36	rot/blau	LG16
18		C	37		C
19	schwarz	C		•	

Der Typ VNB11-13P1 (13 Bit) ist nur an [angeschlossen. Die übrigen Pins bleiben frei.
Der Kollektor ist in jedem Fall an Pin 37 a	ngeschlossen. 17 bis 19 bleiben frei.

Moduleinbau

Moduladressen

Jedem Interface-Modul muss eine Modul-Adresse nach folgender Tabelle eingestellt werden. Mehrere Module mit der selben Adresse in einem System sind unzulässig.

Bezeichnung	Achsen	Interface	Adresse	Jumper
MOT1	1 - 4	Step-Motor	FF1800	00011000
MOT2	5 - 8		FF1900	00011001
MOT3	9 - 12		FF1A00	00011010
DSP1	1 - 4	Display	FF1B00	00011011
DSP2	5 - 8		FF1C00	00011100
DSP3	9 - 12		FF1D00	00011101
IEC1	1 - 4	Increment.	FF1E00	00011110
IEC2	5 - 8	Encoder	FF1F00	00011111
IEC3	9 - 12		FF2000	00100000
AUX		Auxiliary	FF2100	00100001
AEC1	1 - 2	Absolut	FF2400	00100100
AEC2	3 - 4	Encoder	FF2500	00100101
AEC3	5 - 6		FF2600	00100110
AEC4	7 - 8		FF2700	00100111
AEC5	9 - 10		FF2800	00101000
AEC6	11 - 12		FF2900	00101001
SEC1	1 - 2	Serial	800000	0 Schalter
SEC2	3 - 4	Encoder	810000	1 S10
SEC3	5 - 6		820000	2
SEC4	7 - 8		830000	3
SEC5	9 - 10		840000	4
SEC6	11 - 12		850000	5

Die Module MOTx, DSPx, IECx und AECx sind alle auf der Buskarte VMIO10 aufgebaut. Ihre Modul-Adresse wird an 8 Jumpersteckern eingestellt. Die fett markierten Jumper gehören nicht zur Adresse, und bleiben auf allen VMIO10-Karten in den gezeichneten Positionen.

Das Interface-Modul SECx für Winkelgeber mit seriellem Interface ist auf der Buskarte SMOD-3 aufgebaut. Die Grundadresse 800000H ist auf diesen Karten über Lötbrücken fest vorgegeben. Die individuellen Moduladressen 0..5 werden am Drehschalter S10 eingestellt.

VME-Steuereinheit

Die VME-Steuereinheit werden als als unterster Einschub der Anlage auf Tragschienen im Rack montiert.

Die VME-Steuereinheit enthält eine VME-Busplatine mit 21 Modulsteckplätzen und in der Rückwand den Netzanschluss mit Schalter und Sicherung, sowie ein 5V-Netzspeisemodul und den Stecker für die Verbindung mit dem Host-Computer.

VME-Module

Die Reihenfolge der Steckplätze im VME-Bus läuft von links nach rechts. Den verschiedenen Modulen sind im Motorcontrollersystem feste Plätze zugewiesen, wobei die Displaymodule je 3 Plätze belegen.

- 1 CPU-Modul. Die beiden Flachbandkabelstecker können am zur Hälfte ausgefahrenen eingesteckt werden.
- 2 Fest montierte Frontplatte mit einer LED und zwei 2mm-Prüfbuchsen zur Kontrolle der Speisung und Service-Schnittstellenstecker.
- 3, 6, 9 Display-Module
- 12...17 Winkelgeber-Interfaces, je nach den verwendeten Winkelgebern.
- 18 .. 20 Motor-Interfaces
- 21 Reserveplatz, ev. für Winkelgeber-Interface.

Jumper-Configuration

Jumper	Position	Funktion
J1	2-3	CMOS RAM Battery powered
J2	1-2	SYSCLK enabled
J3	2-3	Slot 1 Funktion enabled
J5	1-2	VMEbus Timeout enabled
J6	4-5 1-2	CPUtype VCPU0xxC12 xxC16
J7	2-3	Battery Power Source onboard
J8	1-2	no Wait States
J9	1-2	Dual Port RAM Interrupt disabled
J10	1-2	
J15	2-3	EPROM Type 27C512
J16	2-3	IC32, IC33
J21	1-2	
J24	open	
J11	2-3	external Interrupts enabled
J12	1-2	RS232 Selection
J14	1-2	
J13	1-2	
J17	2-3	
J22	4-5 6-7	RAM2 Size 32Kx8/128Kx8
J23	3-4 5-6	IC29, IC31
J25	1-2	
J18	2-3	RAM1 Size 128Kx8
J26	1-2	IC28, IC30
J19	1-2	not Write protection RAM1

Leistungseinheit

Die Leistungseinheiten werden im Rack über der VME-Steuereinheit auf Tragschienen montiert.

Zwischen der VME-Steuereinheit und der ersten Leistungseinheit ist ein Zwischenraum von 2 HE vorgesehen, welcher als Durchführung für die Winkelgeber-Kabel dient.

Die Reihenfolge der Endstufenmodule läuft von links nach rechts, von unten nach oben.

Die Leistungseinheiten werden je nach den verwendeten Motortypen (5 oder 3 Phasen) individuell mit Enstufenmodulen bestückt. Dazu sind zuvor die Kartenführungen in den entsprechenden Positionen einzusetzen.

Brückenkabel

Die Leistungseinheiten werden über je ein Brückenkabel mit dem zugehörigen Motorcontroller-Modul in der VME-Steuereinheit verbunden. Es stehen Kabel in drei passenden Längen zur Verfügung.

Netzanschluss

Werden in einer Anlage zwei oder drei Leistungseinheiten eingesetzt, so sollen diese zur besseren Lastverteilung aus verschieden Phasen gespeist werden.

Motoranschluss

Die Schrittmotoren werden über abgeschirmte, paarweise verdrillte Kabel angeschlossen. Die Kabelabschirmung ist mit dem Steckergehäuse verbunden.

Anschluss Steuerung Ausgänge

Zum Anschluss der Steuerausgänge dient ein im Rack montierter Verteiler-Klemmenblock, welcher über Flachbandkabel mit der Leistungseinheit verbunden ist. Die Abschirmungen der externen Signalkabel werden über die Masseklemmen mit der Rackstruktur verbunden.

Anschluss Steuerung Eingänge

Zum Anschluss der Steuereingänge dient ein im Rack montierter Verteiler-Klemmenblock, welcher über Flachbandkabel mit der Leistungseinheit verbunden ist. Die Abschirmungen der externen Signalkabel werden über die Masseklemmen mit der Rackstruktur verbunden.

24V

An der 24V-Steckdose steht die ungeregelte Steuer-Speisepannnung zur Verfügung. Die Belastung darf zusammen mit den Ausgangsströmen der Steuerung 4A nicht überschreiten.

Module der Leistungseinheit

Jede Leistungseinheit ist mit einem Speisemodul 24V/4A DC ungeregelt und einem Steuerinterface-Modul ausgerüstet.

Die Typen der Endstufen-Module müssen nach den Schrittmotoren der jeweiligen Achsen bestimmt werden. Die der Steckplätze Leistungseinheit können wahlweise mit 5-Phasen- oder 2-Phasenmodulen bestückt werden. Die erforderlichen Kartenführungen sind dazu in den richtigen Positionen einzusetzen. Der von vorne gesehen linke Kartenstecker in jedem Steckplatz ist für 5-Phasenmodule vorgesehen, der rechte für 2-Phasenmodule.

Warnung!

Ein im falschen Kartenstecker eingestecktes Modul wird nach dem einschalten der Netzspannung sofort zerstört!

Endstufen-Module und Motorstecker dürfen nur in stromlosem Zustand der Leistungseinheit ein-oder ausgesteckt werden. Entladung der Kondensatoren des Netzteils abwarten. Ohne Belastung mindestens 1 Minute abwarten. Unter Strom werden Steck-Kontakte zerstört!

Befehlssatz

Parameterliste

Syntax für die zugehöringen Befehle:

X m lesen des Parameters Xm (Motornummer $1 \le m \le 12$)

X m r setzen des Parameters Xm auf den Wert r (auch c, d, h, l, n, p, s)

Par.	Datentyp	Default	Einheit	Bereich	Erklärung
Amr	Integer	3	Grad	03	Anzahl Nachkommastellen f. Ausgabe
Dmr	Real	0.1	sec.	0.0 10.0	Schleppfehlertoleranz
CFG [m]	Text				Anzeige Konfiguration, Parameter
Emr	Integer	20	kHz / sec.	1 1000	Start- und Bremsbeschleunigung
EC m t n	Integer	0 0	##	03 112	Encoder-Zuordnung Typ Nummer (0: kein Encoder)
EPmr	Integer	1	#	023	Encoder ProgrammReg. Code f. SSI-Interface
Fmr	Integer	1	#	0, 1	0: Open Loop, 1: Closed Loop
FD m c n	Integer	1000 1	DS / grd.	$\pm (0.002 < c/n < 500$	000) Getriebefaktor Drehgeber (Zähler Nenner)
FM m c n	Integer	1000 1	MS / grd.	$\pm (0.002 < c/n < 50$	000) Getriebefaktor Motor (Zähler Nenner)
Gmr	Integer	300	MS / sec.	33 10000	Start/Stop-Frequenz
Hmlh	Real -180	0.0 360.0	grd.	*(1	Softwarelimite (untere obere)
ID	Text				Controller Identifikation
Jmr	Integer	1000	MS / sec.	33 20000	MaxFrequenz
K m r	Integer	0	#		Referenzlaufmodus 0:kein Referenzlauf -1: Rückwärtsendschalter
					1: Vorwärtsendschalter
					2: separater Referenzschalter mit zusätzl.
Lmr	Integer	0	MS	0 50000	Spielausgleich (0: kein Spielausgleich)
M m r	Integer	1	DS	1 50000	Positionstoleranz
MEM m t	_			0 15 Zeichen	Text ohne Leerzeichen
MN m t	Text			0 15 Zeichen	Motorname
Q <i>m</i> r	Real	0.0	Grad	0.0 100.0	Parameter f. Referenzlauf
Tmr	Integer	0	DS	-10000 10000	einseitiges Anfahren (0: nicht aktiv)
V m r	Real	0.0	Grad	H <i>m</i> l H <i>m</i> h	Winkelwert des Drehgeber-Nullpunktes
$\mathbf{W} m \mathbf{r}$	Integer	0	#	$0 \mid m$	0: Motor benötigt keine Luftkissen
					m: zum Fahren nur Luftkissen <i>m</i> heben # <i>m</i> : zum Fahren Luftkissen <i>m</i> und
					die mit m verketteten Luftkissen heben
Zmr	Integer	0	DS	0 8388608	die mit <i>m</i> verketteten Luftkissen heben Umfang des Absolutdrehgebers
Zmr SPmr	Integer Integer	0	DS #	0 8388608 0	
	_				Umfang des Absolutdrehgebers

SA m r Integer 0 # 0 löschen) Luftkissenfehler

Befehlsliste

Befehl	Datentyp	Einheit	Bereich	Erklärung
AM	Hex	#	0 FFF	aktive Motoren, Statusanzeige
Umr	Real	Grad		Istwert setzen (dabei wird Vm enspr. verändert)
UU m	Real	Grad	H <i>m</i> l H <i>m</i> h	Istwert setzen (dabei wird Vm nicht verändert)
$\mathrm{UD}m$	Hex	DS	800000 7FFFFF	Istwert lesen (Hexadezimal)
Pm	Real	Grad	H <i>m</i> l H <i>m</i> h	letzten Sollwert lesen
Pmr	Real	Grad	H <i>m</i> l H <i>m</i> h	Motor an Sollwert r positionieren
PD m d	Hex	DS	800000 7FFFFF	Motor an Sollwert d positionieren (Hexadezimal)
PR m d	Integer	MS	H <i>m</i> l H <i>m</i> h	Motor um d Schritte vor- od rückwärts bewegen
N m				Endschalter freifahren
S [<i>m</i>]				Motor m stoppen, ohne m alle Motoren
Rm				Referenzlauf Motor m , neuer Wert wird gesetzt
RFm				Referenzlauf Motor m , neuer Wert wird nicht gesetzt
FF <i>m</i> [f]	Integer	MS / sec.	33 20000	vorwärtsfahren mit Rampe und MaxFrequenz f (Default Jm)
FB <i>m</i> [f]	Integer	MS / sec.	3320000	rückwärtsfahren mit Rampe und MaxFrequenz f (Default Jm)
SF m [f]	Integer	MS / sec.	3310000	vorwärtsfahren ohne Rampe mit Frequenz f (Default Gm)
SB m [f]	Integer	MS / sec.	33 10000	rückwärtsfahren ohne Rampe mit Frequenz f (Default Gm)
AC m	Integer	#	0, 1	Luftkissenzustand abfragen
ACms	Integer	#	0, 1	s = 1: Luftkissen m heben, $s = 0$: Luftkissen m senken
SO m s	Integer	#	0, 1	Set Output ($s = 1$: High, $s = 0$: Low)
RI	Binär			read all Inputs
RIm	Integer	#	0, 1	read Input m
MSR m	Hex	#	0 1FFF	RunStatus m
SS m	Hex	#	0 1F	show Statusflags (1 HLT, 2 CCW, 4 STP, 8 LS1, 10 LS2 20 LSX)
DE m				alle Motorparameter von Motor m Default setzen
ECHO s	Integer	#	0, 1, 2	s=0: Hostmode ohne Echo, ohne <lf> (nach Systemstart) $s=1$: Terminalmode mit Echo, <lf> und Kommentar $s=2$: Hostmode, verzögerte Meldungen (*) eingesch.</lf></lf>
RMT s	Integer	#	0, 1, 2	Remote flag setzen
RMT	Integer	#	0, 1	Remote lesen(nach Systemstart $s = 0$) s = 0: Offline, Handsteuerung oder Terminalport in Betrieb s = 1: Hostport aktiv
%				alle Motoren stoppen, dann Reset mit default Parametern
?				Helpcommands
?C				Commandliste
?M				Messageliste
?P				Parameterliste

20.12.00 31/37

Handbedienung

Unmittelbar nach dem Aufstarten oder nach Abschalten der seriellen Schnittstellen (RMT 0) ist die Betriebsart *Handbedienung* aktiv.

Mittels der Tasten auf den Displaymodulen des VME-Steuerteils können einzelne Achsen bewegt werden. Ein simultaner Lauf mehrerer Achsen ist in dieser Betriebsart nicht möglich.

Wie im Normalbetrieb sind die vorher eingestellten Betriebsparameter (Position, Stepfrequenzen, Bescheunigung etc.) wirksam. Die momentan selektierte Achse wird durch die entsprechende Tasten-LED sigalisiert.

Die Betriebsart Handbedienung wird durch die leuchtenden Richtungstasten-LEDs angezeigt.

Durch Betätigen einer Achswahltaste wird eine Motorachse ausgewählt. Die Selektion wird durch die zugehörige Tasten-LED bestätigt. Die Richtungstasten der nicht aktiven Displaymodule werden dunkel.

Folgende Bewegungsarten sind möglich:

- Einzelschritt vor- oder rückwärts durch Antippen der entsprechenden Richtungstaste.
- Vor- oder Rückwärtslauf mit der programmierten Start-Stop-Frequenz durch Drücken und Halten der entsprechenden Richtungstaste. Lauf solange die Taste gedrückt bleibt.
- Vor- oder Rückwärtslauf mit der programmierten Positionier-Frequenz und Beschleunigung durch gleichzeitiges drücken und halten einer Achswahltaste und der entsprechenden Richtungstaste. Lösen der Richtungstaste leitet die Bremsrampe ein.

Durch gleichzeitiges Drücken zweier beliebiger benachbarter Achswahltasten wird die Achs-Selektion ausgeschaltet.

Liste Achsbelegung

Anlage	

Achse	Bezeichnung	Motor	Winkelg	eber	Luftkissen	CW	I-Switch
Nr.	1	2 / 5 Ph	Inkr./Abs./Ser.	Interf. Nr.			
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11		-					
12							

20.12.00 33/37

Geräteliste

Anlage

Pos.	Gerät	Stück
	Ausrüstung VME-Steuerteil	
1	VME-Steuerteil für max. 12 Achsen	
2	Kompaktsteuerung für max. 2 5Ph- oder 4 2Ph-Achsen	
3	Netz-Speisemodul 5V/12A	
4	CPU mit Software STPMOT	
5	MOT Stepmotor-Interface für 4 Achsen	
6	DSP Display-Modul für 4 Achsen	
7	IEC Inkrementalencoder-Interface für 4 Achsen	
8	AEC Absolutencoder-Interface für 2 Achsen	
9	SEC Interface für Encoder mit Serieller Schnittstelle für 1 Achse	
10	SEC Interface für Encoder mit Serieller Schnittstelle für 2 Achsen	
11	AUX Interface für EEPROM	
	Ausrüstung Leistungsteil	
12	Leistungsteil für 4 Achsen	
13	Steuer-Interface für 4 Achsen	
14	Speisemodul 24V/4A, ungeregelt	
15	5 Phasen-Endstufenmodul 2.8A Berger Lahr	
16	2 Phasen-Endstufenmodul 1A Zebotronics	
	Verbindungskabel	
17	Brückenkabel kurz für Achsen 1 4	
18	Brückenkabel mittel für Achsen 5 8	
19	Brückenkabel lang für Achsen 9 12	
	Adapter	
20	Klemmen-Adapter für Steuer-Ausgänge für 4 Achsen	
21	Klemmen-Adapter für Steuer-Eingänge für 4 Achsen	
22	Interface-Adapter für Inkremental-Encoder für 4 Achsen	
23	Interface-Adapter für Absolut-Encoder für 4 Achsen	
24	Interface-Adapter für serielle Encoder für 4 Achsen	
	Zubehör	
25	Frontplatte für Kabeldurchführung	
26	Frontplatte für 4 5Ph-Endstufenmodule	
27	Paar Winkelschienen für Rackmontage	
28	Profilschiene für Montage Steckerblock Interface-Adapter	

Parameterliste

Anlage Motor

Parameter	Befehl	default	Einheit	aktueller Wert
Getriebe-Faktor Motor	FM	1000 1	MS/grd.	
Getriebe-Faktor Winkelgeber	FD	1000 1	DS/grd.	
Encoder-Coordination	EC	0 0	##	
Istwert	U	0.0	grd.	
Position des Referenzpunktes	V	0.0	grd.	
Software Limite	Н	-180.0 360.0	grd.	
max.Frequenz	J	1000	Hz	
StartStop Frequenz	G	300	Hz	
Beschleunigung	Е	20	kHz/s	
Luftkissenverkettung	W	0	#	
OpenLoop	F	0	#	
Encoder-Programmiercode	EP		#	
Referenz-Mode	K	0	#	
Referenz-Parameter	Q	0.0	grd.	
Umfang des Absolut-Winkelgebers	Z	0	#	
Positionier-Toleranz	M	1	DS	
Schleppfehler-Toleranz	D	0.1	S	
Spielausgleich	L	0	#	
einseitiges Anfahren d. Zielposition	T	0	DS	
Anzahl Nachkommastellen f. Anzeige	A	3	#	
Motorname	MN		Text	
Memo	MEM		Text	

Anhang

Kompaktsteuerung

Vereinigung von VME-Teil und Leistungsteil für 2 (4 bei 2PH-Antrieben) Achsen in einem VME-Modul

Neue Befehle in Software Version 2.0

ACS m [s] s = 0: disable, s = 1: enable

Funktion aut. Motorstromabschaltung

(funktioniert nur, wenn der entsprechende Jumper auf dem

Steuerinterface gesetzt ist)

CLS ALL alle Fehlerzähler löschen

EP m[r] r = 1 : ROC424, r = 13 : ROC417

Encoder-Programmier-Register Code

SN m [CLR] CLR löscht den Zähler

Anzahl Parameter-Reset

SW m [CLR] CLR löscht den Zähler

Anzahl Watchdog-Reset

SYR System-Status Register

zeigt, auf welche Weise der letzte Systemstart erfolgt ist, und welche Parameter geladen wurden.

Bit 7 zeigt, ob das Register seit dem letzten Start bereits gelesen wurde.

$$V m [r]$$
 $r = -16777215 \dots 16777215$ Drehgebernullpunkt DS

Die Umschaltung auf Offline für den Handbetrieb vor Ort kann durch Drücken der obersten (quadratischen) grünen Taste auf dem ersten (von links) Displaymodul erfolgen. Die Tastste muss dazu während 3 Sec. betätigt bleiben, bis der Offlinezustand durch Aufleuchten der gelben Tasten angezeigt wird.

Ein SystemReset erfolgt durch Kippen des Schalters auf dem CPU-Modul nach oben, während die oberste (quadratische) und die unterste (runde) grüne Taste auf dem ersten (von links) Displaymodul gedrückt gehalten werden.