United College of Engineering and Research, Prayagraj Department of Computer Science

$\begin{array}{c} {\rm B.Tech(2019\text{-}20)} \\ {\rm Discrete~Structures~and~Theory~of~Logic(KCS~303)} \\ {\rm Assignment\text{-}3} \end{array}$

QNo.	Question	CO Type	Bloom's level
1	Prove that a lattice with 5 elements is not a boolean algebra.	CO3	L3
2	Show that in a complemented, distributive lattice, $a \leq b \Leftrightarrow a \wedge b' = 0 \Leftrightarrow a' \vee b = 1 \Leftrightarrow b' \leq a'$	CO3	L4
3	Let $(L, \vee, \wedge, \preceq)$ be a distributive lattice and $a,b \in L$. if $a \wedge b = a \wedge c$ and $a \vee b = a \vee c$ then show that $b = c$.	CO3	L3
4	Describe the Boolean duality principle. Write the dual of each Boolean equations: $1. \ x+x'y=x+y$ $2. \ (x.1)(0+x')=0$	CO3	L3
5	Draw the Haase diagram of $\langle P(a,b,c), \preceq \rangle$. Find greatest element, least element, minimal element and maximal element.	CO3	L3
6	Simplify the following Boolean function using three variables maps: 1. $f(x,y,z)=\sum(0,1,5,7)$ 2. $f(x,y,z)=\sum(1,2,3,6,7)$	CO3	L3
7	Answer these questions for the poset $<\{3,5,9,15,24,45\}, >$. (i) Find the maximal elements. (ii) Find the minimal elements. (iii) Is there a greatest element? (iv) Is there a least element? (v) Find all upper bounds of $\{3,5\}$. (vii) Find the least upper bound of $\{3,5\}$. (viii) Find all lower bounds of $\{15,45\}$, if it exists.	CO3	L4
8	Which of the partially ordered sets are lattices?	CO3	L3
9	Distinguish betrveen bounded lattice and complemented lattice.	CO3	L2
10	Show that the "greater than or equal" relation (≥) is a parttal ordering on the set of integers.	CO3	L2
11	In a Lattice if $a \leq b \leq c$, then show that (i) $a \vee b = b \wedge c$ (ii) $(a \vee b) \vee (b \wedge c) = (a \vee b) \wedge (a \vee c) = b$	CO3	L3
12	Prove that every finite subset of a lattice has an LUB and a GLB.	CO3	L2
13	Give an example of a lattice which is a modular but not a distributive.	CO3	L2
14	Find the Boolean algebra expression for the following system.	CO3	L4
15	Let L be a bounded distributed lattice, prove if a complement exists, then it is unique. Is D(12) a complemented lattice?	CO3	L4