

Model Development Phase Template

Date	15 March 2024	
Team ID	SWTID1720437019	
Project Title	Thyroid Classification	
Maximum Marks	4 Marks	

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
[39]: from sklearn.ensemble import RandomForestClassifier

RFclassifier = RandomForestClassifier(max_leaf_nodes=30)

RFclassifier.fit(x_train, y_train)
```

```
[40]: y_pred = RFclassifier.predict(x_test)

print(classification_report(y_test, y_pred))
print(confusion_matrix(y_test, y_pred))
```

```
SVC Model

[45]: from sklearn.svm import SVC
SVCclassifier = SVC(kernel='linear', max_iter=251)
SVCclassifier.fit(x_train, y_train)
```



```
[46]: svc_params = {
    'kernel': ['linear', 'poly', 'rbf', 'sigmoid'],
    'C': [1, 10, 100],
    'gamma': ['scale', 'auto']
}

grid_svc = GridSearchCV(SVC(), svc_params, cv=5)
grid_svc.fit(x_train, y_train)

print("Best parameters for SVC:", grid_svc.best_params_)
```

```
XGBClassifier Model

[51]: !pip install xgboost

[52]: from xgboost import XGBClassifier
    from sklearn.preprocessing import LabelEncoder
    le = LabelEncoder()
    y_train_encoded = le.fit_transform(y_train)
    xgb = XGBClassifier()
    xgb.fit(x_train, y_train_encoded)
```

Model Validation and Evaluation Report:

Model	Classification Report	Accura cy	Confusion Matrix
-------	-----------------------	--------------	------------------

Random Forest	[47]: from sklearn.model_select from sklearn.model_select from sklearn.model_select from sklearn.model_select from sklearn.model_select from sklearn.modelselect from sklea	0, 200, 300], 7, 10, None] wwtClassifier(run RClassifier, rf, rrain) for Rundom Forest: ((z_i=xt)) port(y test, y pre lom forest: ['max, recall f1-so 0.43 0, 0.95 0, 0.87 0, 0.92 0, 0.95 0, 0.95 0, 0.95 0, 0.95 0, 0.95 0,	dom_state=42 cv=5) ", grid_rf.t d)) depth': Nome re support 60 7 91 /4	ust purums) ust purums) t t t t t t t t t t t t t		94.20%	[43]: print(confusion_matrix(y_test, y_pred)) [[3 0 0 0 4 0 0] [0 70 1 3 0 0 0] [0 2 83 0 0 0 0] [0 4 0 31 0 2 1] [0 0 0 0 122 0 0] [0 2 1 1 0 47 0] [0 2 2 0 0 1 66]]
SVC	y_pred = SVCclass print(classifica print) 0 1 2 3 4 5 6 accuracy macro avg weighted avg	tion_report(y ecision re 0.67 0.79 0.83 0.73 0.89 0.76 0.87		_pred))	7 74 85 38 122 51 71 448 448 448	86.61%	[48]: print(confusion_matrix(y_test, y_pred)) [[6 0 0 0 1 0 0] [1 59 7 3 2 2 0] [1 4 63 0 9 3 5] [0 6 2 22 0 7 1] [1 1 0 0 116 0 4] [0 4 3 4 2 38 0] [0 1 1 1 0 0 68]]
XGB CLASSIFIER MODEL	[53]: y_test_encoded y_pred = xgb.pr print(classific p 0 1 2 3 4 5 6 accuracy macro avg weighted avg	edict(x_test) ation_report(ncoded, y	r_pred)) support 7 74 85 38 122 51 71 448 448 448	95.54%	[56]: print(confusion_matrix(y_test_encoded, y_pred)) [[5 0 0 0 2 0 0] [0 70 1 3 0 0 0] [0 0 83 0 0 2 0] [0 2 0 35 0 1 0] [0 0 0 0 122 0 0] [0 2 1 2 0 46 0] [0 1 2 0 0 1 67]]