

Урок 23

Защита целостности информации

Memory line

Base64

НАЛИЧИЕ ОШИБОК

CRC – контроль чётности

Добавляем **девятый** бит 00010000<mark>1</mark>

Бит чётности или контрольный разряд формируется при выполнении операции «Исключающее-ИЛИ» поразрядно. (1 если единиц нечётно)

- **10111101** содержит 6 '1' битов. Бит чётности будет 0, получаем 10111101<mark>0</mark>.
- **01110011** содержит 5 '1' битов. Бит чётности будет 1, получаем 01110011<mark>1</mark>.
- **00000000** содержит 0 '1' битов. Бит чётности будет 0, получаем 0000000<mark>0</mark>.

Развитие CRC -> Хеш-сумма

Хеш-сумма – математическая функция от входной строки

CRC32: F6DE2FEA

MD5: 026f8e459c8f89ef75fa7a78265a0025

SHA-1: 7DD987F846400079F4B03C058365A4869047B4A0

Хеш-сумма

Хеш-сумма – основные свойства:

Функционал:

- Произвольная длина входных данных
- Фиксированная длина результата
- Однозначность результата

Качество

- Сильная зависимость результата от входных данных
- Непредсказуемость результата

Стойкость

- Необратимость
- Стойкость к коллизиям первого рода: невозможно подобрать сообщение под известный хеш
- Стойкость к коллизиям второго рода: невозможно подобрать пару сообщений с одинаковым хешом

КОДИРОВАНИЕ ХЕММИНГА 15/11

Магия... делай раз

Итак, есть некоторый закодированный текст: 11001010 11100101 11010001...

Выделяем из него первые 11 бит:

11001010 11100101 11010001...

Обратите внимание, что в один блок попадает одна целая буква и 3/8ых от второй буквы... То есть некоторые символы будут разорваны между несколькими блоками кодирования

Магия... делай два

Магия... готовь три

		1		1	0	0		1	0	1	0	1	1	1
1		1		1		1		1		1		1		1
	2	2			2	2			2	2			2	2
			4	4	4	4					4	4	4	4
							8	8	8	8	8	8	8	8

Магия... считаем единицы. Четыре

		1		1	0	0		1	0	1	0	1	1	1
1		1				1		1		1		1		1
	2	2			2	2			2	2			2	2
			4	4	4	4					4	4	4	4
							8	8	8	8	8	8	8	8

6 единиц

Магия... Ставим бит. Пять

0		1		1	0	0		1	0	1	0	1	1	1
1		1		1		1		1		1		1		1
	2	2			2	2			2	2			2	2
			4	4	4	4					4	4	4	4
							8	8	8	8	8	8	8	8

6 единиц

Магия... Повторяем....

0	0	1		1	0	0		1	0	1	0	1	1	1
1		1		1		1		1		1		1		1
	2	2			2	2			2	2			2	2
			4	4	4	4					4	4	4	4
							8	8	8	8	8	8	8	8

6 единиц

4 единиц

Магия... Готово....

0	0	1	0	1	0	0	1	1	0	1	0	1	1	1
1		1		1		1		1		1		1		1
	2	2			2	2			2	2			2	2
			4	4	4	4					4	4	4	4
							8	8	8	8	8	8	8	8

6 единиц4 единиц5 единиц

О нет! Помеха...

0	0	1	0	1	0	0	1	1	1	1	0	1	1	1
1		1		1		1		1		1		1		1
	2	2			2	2			2	2			2	2
			4	4	4	4					4	4	4	4
							8	8	8	8	8	8	8	8

6 единиц 4 единиц 4 единиц 5 единиц

Магия... Пересчитываем....

0	0	1	0	1	0	0	1	1	1	1	0	1	1	1
1		1		1		1		1		1		1		1
	2	2			2	2			2	2			2	2
			4	4	4	4					4	4	4	4
							8	8	8	8	8	8	8	8

8	4	2	1
1	0	1	0

Магия... Пересчитываем....

0	0	1	0	1	0	0	1	1	1	1	0	1	1	1
1		1		1		1		1		1		1		1
	2	2			2	2			2	2			2	2
			4	4	4	4					4	4	4	4
							8	8	8	8	8	8	8	8

8	4	2	1
1	0	1	0

Магия... Пересчитываем....

1010 ₂ =	1010
1	

0	0	1	0	1	0	0	1	1	0	1	0	1	1	1
1		1		1		1		1		1		1		1
	2	2			2	2			2	2			2	2
			4	4	4	4					4	4	4	4
							8	8	8	8	8	8	8	8

8	4	2	1
1	0	1	0

Магия... Ещё разок....

0	0	1	0	1	0	0	1	1	0	1	0	1	1	1
1		1		1		1		1		1		1		1
	2	2			2	2			2	2			2	2
			4	4	4	4					4	4	4	4
							8	8	8	8	8	8	8	8

8 4 2 1

Проверка самостоятельно

001010011110111

Алгоритм

- 001010011<u>1</u>10111
- 001010011010111
- 001010011010111
- 11001010111
- 110010111+...000000
- 1100 1010
 111+...00000
- CA ...
- «K...»

Хемминг

1) Без кода Хемминга

Если пересылать информацию блоками по m' бит с повторной пересылкой в случае обнаружения ошибки, то получим, что в среднем нам придётся переслать D бит:

$$D = Lm' \frac{1}{1 - P_r}$$

Где $P_r = (1-(1-p)^{m'})(1-\varepsilon)$ — вероятность повторной передачи равная вероятности ошибки умноженной на вероятность того, что мы её заметим. Коэффициент раздувания равен

$$k(m, p, \varepsilon) = \frac{D}{M} = \frac{k_{\varepsilon}(m)}{\varepsilon + (1 - \varepsilon)(1 - p)^{k_{\varepsilon}(m)m}}$$

2) С кодом Хемминга.

При кодировании методом Хемминга слова длины m^\prime получается слово длины n бит:

$$2^n=2^{m'}(n+1), \quad k_{arepsilon}(m)m=n-\log_2(n+1)$$
 (eq:hnm)

Для отдельного блока вероятность безошибочной передачи равна $P_0=(1-p)^n$. Вероятность одинарной ошибки $P_1=np^1(1-p)^{n-1}$. Вероятность того, что произошло более чем одна ошибка, и мы это заметили

$$P_r = (1 - P_0 - P_1)(1 - \varepsilon) = 1 - \varepsilon - (1 - \varepsilon)(1 - p)^{n-1}(np + 1 - p)$$

— в этом случае требуется повторная передача кадра. Количество передаваемых данных:

$$D_{H} = Ln \frac{1}{1 - P_{r}} = \frac{Ln}{\varepsilon + (1 - \varepsilon)(1 - p)^{n-1}(np + 1 - p)}$$

И коэффициент раздувания

$$k_H(m, p, \varepsilon) = \frac{n}{m(\varepsilon + (1 - \varepsilon)(1 - p)^{n-1}(np + 1 - p))},$$

 $\mathsf{гдe}\ n(m)$ неявно определённая с помощью ((eq:hnm)) функция. Удобно записать соответствующие коэффициенты полезного содержания:

$$KPS = KPS_{\varepsilon}(n)(\varepsilon + (1 - \varepsilon)(1 - p)^n)$$

$$KPS_H = KPS_{arepsilon}ig(m'ig)rac{m'}{n}ig(arepsilon + (1-p)^{n-1}(np+1-p)(1-arepsilon)ig), \ m' = n - \log_2(n+1)$$
 (eq:kps)

Легко обнаружить что при n>3444 и $p=10^{-6}$ код Хемминга оказывается эффективнее, то есть $KPS_H/KPS>1$

Практика

