Reporte de Simulación Gaussiana - Análisis de Datos Agrícolas Departamento: PUNO

Sistema de Análisis Espacial

17 de Setiembre de 2025

Contents

1	Res	Resumen Ejecutivo			
	1.1	Puntos Clave	3		
2	Me	todología	3		
	2.1	Marco Teórico	3		
	2.2	Variables Analizadas	3		
		2.2.1 Variable Principal: P120 - Fuente de Agua	9		
		2.2.2 Coordenadas Geográficas	9		
	2.3	Método de Simulación	4		
3	Ana	álisis de Datos Reales	4		
	3.1	Características del Dataset	4		
	3.2	Distribución de Fuentes de Agua	4		
	3.3	Análisis Espacial	Ę		
4	Res	sultados de la Simulación	6		
	4.1	Parámetros de Generación	6		
	4.2	Distribución Simulada	7		
	4.3	Visualización de Resultados Simulados	8		
5	Ana	álisis Comparativo	11		
	5.1	Comparación Visual Lado a Lado	11		
	5.2	Análisis Estadístico Comparativo	12		
	5.3	Histogramas Comparativos	13		
	5.4	Comparación de Categorías	14		

6	Inte	erpretación y Conclusiones	14
	6.1	Patrones Espaciales Observados	14
		6.1.1 Datos Reales	14
		6.1.2 Datos Simulados	15
	6.2	Diferencias Estadísticas Significativas	15
	6.3	Aplicaciones Prácticas	15
		6.3.1 1. Planificación Territorial	15
		6.3.2 2. Análisis de Políticas	15
		6.3.3 3. Investigación Científica	15
	6.4	Limitaciones del Estudio	16
	6.5	Recomendaciones Futuras	16
7	Met	todología Técnica Detallada	16
	7.1	Algoritmo de Simulación	16
	7.2	Parámetros de Configuración	17
8	Ane	exos	17
	8.1	Anexo A: Códigos de Variables	17
	8.2	Anexo B: Coordenadas del Área de Estudio	17

1 Resumen Ejecutivo

Este reporte presenta un análisis detallado de simulación gaussiana aplicada a datos agrícolas del departamento de **PUNO**. El objetivo es comparar la distribución espacial real de las unidades productivas agrícolas con una distribución teórica generada mediante métodos estadísticos.

1.1 Puntos Clave

• Área de estudio: 69837.9 km² aproximados

• Datos reales analizados: 863 puntos georreferenciados

• Simulación generada: 300 puntos usando método uniforme

• Densidad observada: 1897633.79 puntos por km²

2 Metodología

2.1 Marco Teórico

La **simulación gaussiana** es una técnica estadística que permite generar realizaciones de un campo aleatorio que preserva las características estadísticas de los datos originales. En este estudio, utilizamos esta metodología para:

- 1. Modelar la distribución espacial de unidades agrícolas
- 2. Comparar patrones observados vs. teóricos
- 3. Evaluar la aleatoriedad en la distribución de cultivos

2.2 Variables Analizadas

2.2.1 Variable Principal: P120 - Fuente de Agua

Esta variable categórica codifica el tipo de fuente de agua utilizada en cada unidad productiva:

Table 1: Codificación de la Variable P120 - Fuente de Agua

Codigo	Descripcion	Interpretacion
1	Río	Fuente superficial principal
2	Manantial/puquio	Agua subterránea natural
3	Pozo	Extracción artificial subterránea
4	Represa	Almacenamiento artificial grande
5	Peq. reservorio	Almacenamiento artificial pequeño
6	Otro	Fuentes no clasificadas

2.2.2 Coordenadas Geográficas

- LATITUD: Coordenada geográfica norte-sur (grados decimales)
- LONGITUD: Coordenada geográfica este-oeste (grados decimales)
- Sistema de referencia: WGS84 (EPSG:4326)

2.3 Método de Simulación

Tipo aplicado: Distribución Uniforme

La distribución uniforme genera puntos con igual probabilidad en toda el área de estudio, representando un escenario de máxima aleatoriedad espacial.

Parámetros utilizados: - Semilla aleatoria: 123 - Número de realizaciones: 300 - Área de influencia: [-70.9685, -16.6915] a [-69.0426, -13.7653]

3 Análisis de Datos Reales

3.1 Características del Dataset

Table 2: Estadísticas Descriptivas - Datos Reales

Métrica	Valor
Total de observaciones	863 unidades
Rango latitudinal	2.9262 grados
Rango longitudinal	1.9259 grados
Área estimada	$69837.9 \; \mathrm{km^2}$
Densidad espacial	$1897633.79 \text{ unidades/km}^2$
Categorías presentes	6 tipos de fuente

3.2 Distribución de Fuentes de Agua

Table 3: Distribución de Fuentes de Agua en Datos Reales

Código	Tipo de Fuente	Frecuencia	Porcentaje (%)
1	Río	600	69.5
2	Manantial/puquio	133	15.4
3	Pozo	66	7.6
4	Represa	27	3.1
5	Peq. reservorio	32	3.7
6	Otro	5	0.6

3.3 Análisis Espacial

Distribución Espacial - Datos Reales

Unidades productivas por tipo de fuente de agua

Figure 1: Distribución espacial de las unidades productivas reales

Mapa de Densidad – Datos Reales

Concentración espacial de unidades productivas

Figure 2: Densidad espacial de puntos reales

4 Resultados de la Simulación

4.1 Parámetros de Generación

La simulación se ejecutó con los siguientes parámetros específicos:

Table 4: Parámetros de la Simulación

Parámetro	Valor
Método de distribución	uniforme

Parámetro	Valor
Semilla aleatoria	123
Número de puntos	300
Límite oeste	-70.968544°
Límite este	-69.042644°
Límite sur	-16.691513°
Límite norte	-13.765266°

4.2 Distribución Simulada

Table 5: Distribución de Categorías en Datos Simulados

Categoría	Frecuencia	Porcentaje (%)	Prob. Teórica (%)
1	107	35.7	35
2	71	23.7	25
3	50	16.7	15
4	39	13.0	12
5	22	7.3	8
6	11	3.7	5

4.3 Visualización de Resultados Simulados

Distribución Espacial – Datos Simulados

Figure 3: Distribución espacial de los puntos simulados

Mapa de Densidad - Datos Simulados

Figure 4: Densidad espacial de puntos simulados

9

5 Análisis Comparativo

5.1 Comparación Visual Lado a Lado

Comparación: Distribución Espacial Real vs Simulada

Análisis de patrones espaciales

Figure 5: Comparación visual entre datos reales y simulados $\,$

5.2 Análisis Estadístico Comparativo

Table 6: Estadísticas Comparativas de Coordenadas

Métrica	Datos Reales	Datos Simulados
Media Longitud	-70.221652	-70.006341
Media Latitud	-15.160350	-15.231671
Desv. Est. Longitud	0.484205	0.540446
Desv. Est. Latitud	0.619810	0.854148
Rango Longitud	1.925900	1.913661
Rango Latitud	2.926247	2.923143

5.3 Histogramas Comparativos

Distribución de Longitudes

Figure 6: Distribución de coordenadas: Real vs Simulado

5.4 Comparación de Categorías

Comparación de Distribución Categórica

Frecuencia de cada tipo de fuente de agua

Figure 7: Comparación de distribución categórica

6 Interpretación y Conclusiones

6.1 Patrones Espaciales Observados

6.1.1 Datos Reales

Los datos reales muestran una distribución espacial **no aleatoria** con las siguientes características:

- 1. Agrupamiento geográfico: Las unidades productivas tienden a concentrarse en ciertas áreas
- 2. Heterogeneidad espacial: Existen zonas de alta y baja densidad de producción
- 3. Influencia geográfica: La distribución refleja factores ambientales, topográficos y socioeconómicos

6.1.2 Datos Simulados

La simulación uniforme genera un patrón:

• Homogéneo: Distribución espacial uniforme sin agrupamientos

• Aleatorio: No considera factores geográficos o ambientales

• **Teórico:** Representa el escenario de máxima dispersión

6.2 Diferencias Estadísticas Significativas

Table 7: Diferencias Cualitativas Entre Datasets

Aspecto	Datos Reales	Simulación	Implicaciones
Distribución espacial	Heterogénea	Homogénea	Factores ambientales influyen en la ubicación
Variabilidad	Alta	Media	Múltiples variables determinan la distribución
Agrupamiento	Presente	Ausente	Existencia de zonas preferenciales
Realismo	Total	Teórico	Necesidad de modelos más complejos

6.3 Aplicaciones Prácticas

Este análisis tiene múltiples aplicaciones en el sector agrícola:

6.3.1 1. Planificación Territorial

- Identificación de zonas de mayor concentración productiva
- Optimización de la distribución de servicios agrícolas
- Planificación de infraestructura de riego

6.3.2 2. Análisis de Políticas

- Evaluación del impacto de políticas agrícolas
- Identificación de áreas prioritarias para intervención
- Análisis de equidad en la distribución de recursos

6.3.3 3. Investigación Científica

- Modelado de patrones espaciales agrícolas
- Desarrollo de algoritmos de optimización
- Estudios de sostenibilidad ambiental

6.4 Limitaciones del Estudio

- 1. Simplificación del modelo: La simulación no considera factores ambientales
- 2. Escala temporal: Análisis estático sin considerar evolución temporal
- 3. Variables omitidas: No incluye factores socioeconómicos o climáticos
- 4. Resolución espacial: Limitada por la precisión de las coordenadas

6.5 Recomendaciones Futuras

Para estudios posteriores se recomienda:

- 1. Incorporar variables ambientales (clima, suelo, topografía)
- 2. Desarrollar modelos multivariados que consideren múltiples factores
- 3. Análisis temporal para estudiar la evolución de patrones
- 4. Validación con datos de campo para verificar la precisión

7 Metodología Técnica Detallada

7.1 Algoritmo de Simulación

```
# Pseudocódigo del algoritmo implementado
generar_simulacion_gaussiana <- function(bbox, n_puntos, semilla, metodo) {</pre>
  # 1. Establecer semilla para reproducibilidad
  set.seed(semilla)
  # 2. Generar coordenadas según el método
  if (metodo == "uniforme") {
    longitudes <- runif(n_puntos, bbox[1], bbox[3])</pre>
    latitudes <- runif(n_puntos, bbox[2], bbox[4])</pre>
  } else {
    # Distribución gaussiana centrada
    centro_long <- mean(c(bbox[1], bbox[3]))</pre>
    centro_lat <- mean(c(bbox[2], bbox[4]))</pre>
    longitudes <- rnorm(n puntos, centro long, sd = rango long/6)
    latitudes <- rnorm(n_puntos, centro_lat, sd = rango_lat/6)
    # Truncar a los límites del área
    longitudes <- pmax(bbox[1], pmin(bbox[3], longitudes))</pre>
    latitudes <- pmax(bbox[2], pmin(bbox[4], latitudes))</pre>
  # 3. Asignar categorías con probabilidades realistas
  categorias <- sample(1:6, n_puntos, replace = TRUE,</pre>
                       prob = c(0.35, 0.25, 0.15, 0.12, 0.08, 0.05))
  return(data.frame(LONGITUD = longitudes,
                    LATITUD = latitudes,
```

```
categoria = categorias))
}
```

7.2 Parámetros de Configuración

- Área de estudio: Bounding box calculado automáticamente
- Distribución de probabilidades: Basada en frecuencias observadas
- Método de truncamiento: Límites geográficos estrictos
- Generador aleatorio: R base runif() y rnorm()

8 Anexos

8.1 Anexo A: Códigos de Variables

Clasificación completa de la variable P120:

Table 8: Características Detalladas de Fuentes de Agua

Código	Descripción	Características	Ventajas
1	Río	Fuente superficial, caudal variable estacional	Disponible, bajo costo
2	Manantial/puquio	Fuente subterránea, caudal más estable	Calidad agua, estabilidad
3	Pozo	Extracción artificial, requiere energía	Control total, ubicación flexible
4	Represa	Gran capacidad, regulación estacional	Gran volumen, regulación
5	Peq. reservorio	Capacidad limitada, uso local	Bajo costo, fácil construcción
6	Otro	Fuentes diversas o no especificadas	Adaptabilidad local

8.2 Anexo B: Coordenadas del Área de Estudio

Table 9: Coordenadas Límite del Área de Estudio

Límite	Coordenada	Descripción
Oeste Este Sur	-70.968544° -69.042644° -16.691513°	Límite occidental del área Límite oriental del área Límite meridional del área
Norte	-13.765266°	Límite septentrional del área

Fecha de generación: 17 de Setiembre de 2025

Hora: 18:08:32

Sistema: R R version 4.5.1 (2025-06-13 ucrt)
Paquetes utilizados: shiny, ggplot2, sf, dplyr, knitr

Este reporte fue generado automáticamente mediante el sistema de análisis espacial desarrollado para el estudio de patrones agrícolas.