Contents

1	Machine Learning Grundlagen	1
2	Data Quality Assessment	1
3	Machine Learning Fundamentals	2
4	Supervised Learning Basics	2
5	Linear Regression	2
6	Gradient Descent	3
7	Logistische Regression	3

1 Machine Learning Grundlagen

Disciplines in Machine Learning

1. Supervised Learning - The algorithm is given labeled training data - The algorithm learns to predict the label of yet unseen examples 2. Unsupervised Learning - The algorithm is given unlabeled data - The algorithm detects and exploits the inherent structure of the data 3. Semi-Supervised Learning - A mixture of supervised and unsupervised machine learning techniques - Usually there is only very limited labeled data available 4. Reinforcement Learning - No data available but the algorithm is guided by a reward function - It searches the ideal behavior that maximizes the agent's reward Identifyin Identifyin

dentifying target groups for marketing campaigns using clustering techniques		Unsupervised Machine Learning
alculating product recommendations with collaborative filtering techniques		Supervised Machine Learning
larket basket analysis using association rules	passt zu	Unsupervised Machine Learning
ledical image analysis for detection of skin diseases based on human expert markings	passt zu	Supervised Machine Learning
earch query analysis for e-commerce by semantical clustering	passt zu	Unsupervised Machine Learning
rediction of selling prices for the real estate market	passt zu	Supervised Machine Learning
imensionality reduction for data visualization	passt zu	Unsupervised Machine Learning
earning to play Jass by self-play	passt zu	Reinforcement Machine Learning
etecting animals on high-resolution photographs	passt zu	Supervised Machine Learning
dentifying most-valuable customers on e-commerce platforms using transactions and tracking data	passt zu	Unsupervised Machine Learning

2 Data Quality Assessment

- 1. Data Cleaning¹
 - (a) Dublizierte Daten erkennen und entfernen
 - (b) Daten mit nullen können ersetzt werden.
 - (c) Daten Machine Learning freundlicher gestalten (z.B. für Farben eigene Zeilen erstellen, damit die Euklid-Distanz gerechnet werden kann.

¹Auch wenn die Datenqualität selbständig verbessert werden kann sollten: alle Änderungen dokumentiert werden, data-repository mit versionierung verwendet werden, den Herausgeber der Daten auf fehler in den Daten hinweisen

2. Analyse mit Hilfe von

- (a) 5 Nummer Zusammenfassung (median Q2, Quartile Q1 und Q3 sowie min und max)
- (b) Boxplots um das Datenset auf Ausreisser zu prüfen.
- (c) Varianz und Standardabweichung berechnen

3 Machine Learning Fundamentals

Euklid Distanz

Kosinus Ähnlichkeit

Formel Kosinus Similarity

$$\begin{split} sim(X,Y) &= \frac{\langle X,Y \rangle}{||X||||Y||} \\ &= \frac{\sum_{i=1}^n x_i y_i}{\sqrt{\sum_{i=1}^n x_i^2} \sqrt{\sum_{i=1}^n y_i^2}} \\ dist(X,Y) &= 1 - sim(X,Y) \end{split}$$

4 Supervised Learning Basics

$$Accuracy = \frac{TP + TN}{Total}$$

$$Errorrate = \frac{FP + FN}{Total}$$

$$Sensitivity = \frac{TP}{ActualYes} = \frac{TP}{TP + FN}$$

$$Specificity = \frac{TN}{ActualNo} = \frac{TN}{TN+FP}$$

$$Precision = \frac{TP}{PredictedYes} = \frac{TP}{TP+FP}$$

5 Linear Regression

Das Modell hat generell die folgende Form: $y = h_{\theta}(x) = \theta_0 + \theta_1 x$.

Mit \bar{x} und \bar{y} als Mittelwerte der Datenreihe, können somit die Werte θ_1 und θ_0 berechnet werden. ²

$$\theta_1 = \frac{\sum_{i=1}^n (y^{(i)} - \bar{y})(x^{(i)} - \bar{x})}{\sum_{i=1}^n (x^{(i)} - \bar{x})} = \frac{S_{xy}}{S_{xx}} \qquad \theta_0 = \bar{y} - \theta_1 \bar{x}$$

 $^{^2\}mathrm{Bei}\ var^{(i)}$ ist iein Index für den Datenpunkt und kein Exponent

6 Gradient Descent

Um die best möglichen θ_0 und θ_1 zu bekommen wird die Kostenfunktion

$$J(\theta_0, \theta_1) = \frac{1}{2n} \sum_{i=1}^{n} [y^{(i)} - h_{\theta}(x^{(i)})]^2$$

minimiert, wobei n für die Grösse des Trainingsets steht. Diese wird mit $\theta = (X^T X)^{-1} X^T y$ umgesetzt. In python wird das mit

X als $n \times m$ Matrix, bei der die erste Spalte mit Einsen aufgefüllt wurde und mit y als Zielwert $\theta = \begin{bmatrix} \theta_1 \\ \dots \\ \theta_m \end{bmatrix}$ definiert wird.

theta =
$$np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)$$

Korrelation liegt immer zwischen $-1 \le r \le 1$. r = 0 bedeutet keine Korrelation und |r| = 1 vollständige Korrelation.

7 Logistische Regression

Logistische Regression zielt darauf ab eine binäre Zuordnung vorzunehmen (z.B. Brustkrebs oder nicht; Spam-Mail oder nicht etc.). Dabei können die unabhängigen Variablen numerisch (12mm) oder kategorisch (mag Skifahren) sein.

Die Logistische Funktion nennt sich auch "Siegmoid Funktion" und lautet wie folgt:

$$\sigma(z) = \frac{1}{1 + e^{-z}}, z \in \mathbb{R}$$