NI PXIe-5451 Specifications

400 MS/s Two-Channel Arbitrary Waveform Generator

このドキュメントには、日本語ページも含まれています。

This document lists specifications for the NI PXIe-5451 (NI 5451) arbitrary waveform generator.

Specifications are warranted under the following conditions:

- 15 minutes warm-up time at ambient temperature
- Calibration cycle maintained
- Chassis fan speed set to High
- NI-FGEN instrument driver used
- NI-FGEN instrument driver self-calibration performed after instrument is stable

Unless otherwise noted, the following conditions were used for each specification:

- Signals terminated with 50 Ω to ground
- Main path set to 2.5 V_{pk} differential (gain = 2.5, 5 V_{pk-pk} differential)
- Direct path set to 0.5 V_{pk} differential (gain = 0.5, 1 V_{pk-pk} differential)
- Sample clock rate set to 400 MS/s
- Onboard Sample clock used, with no Reference clock
- Analog filter enabled
- 0 °C to 55 °C ambient temperature

Specifications describe the warranted, traceable product performance over ambient temperature ranges of 0 °C to 55 °C, unless otherwise noted.

Typical values describe useful product performance beyond specifications that are not covered by warranty and do not include guardbands for measurement uncertainty or drift. Typical values may not be verified on all units shipped from the factory. Unless otherwise noted, typical values cover the expected performance of units over ambient temperature ranges of 23 ± 5 °C with a 90% confidence level, based on measurements taken during development or production.

Nominal values (or supplemental information) describe additional information about the product that may be useful, including expected performance that is not covered under *Specifications* or *Typical* values. Nominal values are not covered by warranty.

Specifications are subject to change without notice. For the most recent NI 5451 specifications, visit ni.com/manuals.

To access all the NI 5451 documentation, navigate to **Start**» **All Programs»National Instruments»NI-FGEN»Documentation**.

Hot Surface If the NI 5451 has been in use, the device or the shield may exceed safe handling temperatures and may cause burns. Allow the NI 5451 to cool before touching the shield or removing the device from the chassis.

Electromagnetic Compatibility Guidelines

This product was tested and complies with the regulatory requirements and limits for electromagnetic compatibility (EMC) as stated in the product specifications. These requirements and limits are designed to provide reasonable protection against harmful interference when the product is operated in its intended operational electromagnetic environment.

This product is intended for use in industrial locations. There is no guarantee that harmful interference will not occur in a particular installation, when the product is connected to a test object, or if the product is used in residential areas. To minimize the potential for the product to cause interference to radio and television reception or to experience unacceptable performance degradation, install and use this product in strict accordance with the instructions in the product documentation.

Furthermore, any changes or modifications to the product not expressly approved by National Instruments could void your authority to operate it under your local regulatory rules.

Caution For EMC compliance, you must install PXI EMC Filler Panels, National Instruments part number 778700-01, in all open chassis slots.

Caution When operating this product, use shielded cables and accessories.

Contents

Electromagnetic Compatibility Guidelines	2
Analog Outputs	4
CH 0+/-, CH 1+/- (Analog Outputs, Front Panel Connectors)	4
Clocking	
Onboard Sample Clock	
External Sample Clock	42
External Sample Clock Timebase	
Exporting Clocks	
Terminals	
CLK IN (Sample Clock and Reference Clock Input,	
Front Panel Connector)	45
CLK OUT (Sample Clock and Reference Clock Output,	
Front Panel Connector)	46
PFI 0 and PFI 1 (Programmable Function Interface,	
Front Panel Connectors)	47
Triggers and Events	
Triggers	
Events	
Waveform Generation Capabilities	
Onboard Signal Processing	
Calibration	
Power	
Software	
Physical	62
Hardware Front Panel	
NI PXIe-5451 Environment	
Compliance and Certifications	
Safety	
Electromagnetic Compatibility	
CE Compliance	
Online Product Certification	
Environmental Management	
Where to Go for Support	

Analog Outputs

CH 0+/-, CH 1+/-(Analog Outputs, Front Panel Connectors)

Specification	Value	Comments
Number of Channels	2	_
Output Type	Single-ended, differential	Single-ended output available on Main path only.
Output Paths	Main path, Direct path	_
DAC Resolution	16 bits	_

The following figure illustrates the relationship between the differential offset voltage and the common-mode offset voltage, along with a generated peak-to-peak AC signal for single-ended and differential configurations. The peak-to-peak differential receiver voltage rejects the common-mode offset voltage and other common-mode noise present in the signal.

Figure 1. Definition of Common Mode Offset and Differential Offset

$$V_{PPD} = V_{PPSE+} + V_{PPSE-}$$

where V_{PPD} represents the differential peak-to-peak voltage V_{PPSE} represents the single-ended peak-to-peak voltage V_{DO} represents the differential offset voltage V_{CMO} represents the common-mode offset voltage

Note The instantaneous differential voltage is equal to Output(CH+) - Output(CH-). Output offset settings are independent of gain settings.

Specification		V	alue		Comments
Amplitude and Offset					
Full-Scale	Single-Ended Main Path			Measured on	
Amplitude Range*	Flatness		Amplitud	e (V _{PPSE}) [†]	CH+. V _{pk} on each
	Correction State	Load	Minimum Value	Maximum Value	terminal is equal to analog offset +
	Disabled	50 Ω	0.00176	2.50	waveform data × gain.
		1 kΩ	0.00336	4.76	
		Open	0.00352	5.00	
	Enabled	50 Ω	0.00124	1.75	
		1 kΩ	0.00235	3.33	
		Open	0.00247	3.50	
		Measured as differential			
	Flatness		Amplitude $(V_{PPD})^{\dagger}$		peak-to-peak
	Correction State	Load	Minimum Value	Maximum Value	signal amplitude (V_{pk-pk}) . Each terminal V_{pk-pk} is
	Disabled	50 Ω	0.00352	5.00	half of the
		1 kΩ	0.00671	9.52	differential V_{pk-pk} . V_{pk} on each
		Open	0.00705	10.00	terminal is equal to
	Enabled	50 Ω	0.00247	3.50	differential offset × 0.5 + common-
		1 kΩ	0.00470	6.66	mode offset +
		Open	0.00493	7.00	waveform data × gain/2.

Notes: For all configurations, both CH± terminals are terminated to ground through loads of the same value.

The voltage output levels are set in the software and are based on a 50Ω per line load termination to ground (the default) or based on the user-specified load resistance. Common-mode offset assumes output terminals are terminated into equal loads to ground. Refer to the *NI Signal Generators Help* and navigate to **NI Signal Generators Help»Devices»NI 5451»Front Panel Connectors»Differential and Single-Ended Channel Connectors** for more information.

Gain values in NI-FGEN correspond to V_{pk} , which is half the amplitude in V_{pk-pk} .

^{*} Combinations of waveform data, offset, and gain that exceed a single-ended peak output voltage of 3.2 V may result in waveform clipping.

[†] Amplitude values assume the full scale of the DAC is used. If an amplitude smaller than the minimum value is desired, you can use waveforms less than the full scale of the DAC, or you can use digital gain. Additional offset can be added using waveform data.

Specification	Value			Comments	
Amplitude and Of	ffset (Continue	ed)			
Full-Scale		Differential Direct Path			Both CH 0+/-
Amplitude Range*	Flatness		Amplitude (V _{PPD}) [†]		or CH 1+/– terminals are
	Correction State	Load	Minimum Value	Maximum Value	terminated to ground through loads of the same
	Disabled	50 Ω	0.708	1.00	value.
		1 kΩ	1.35	1.90	Single-ended values are half of
		Open	1.42	2.00	differential values.
	Enabled	50 Ω	0.567	0.8	
		1 kΩ	1.08	1.52	
		Open	1.14	1.6	
Amplitude Resolution	4 digits <0.0025% (0.0002 dB of amplitude range)			_	

Notes: For all configurations, both CH± terminals are terminated to ground through loads of the same value.

The voltage output levels are set in the software and are based on a $50\,\Omega$ per line load termination to ground (the default) or based on the user-specified load resistance. Common-mode offset assumes output terminals are terminated into equal loads to ground. Refer to the NI Signal Generators Help and navigate to NI Signal Generators Help»Devices»NI 5451»Front Panel Connectors»Differential and Single-Ended Channel Connectors for more information.

Gain values in NI-FGEN correspond to V_{pk} , which is half the amplitude in V_{pk-pk} .

^{*} Combinations of waveform data, offset, and gain that exceed a single-ended peak output voltage of 3.2 V may result in waveform clipping.

[†] Amplitude values assume the full scale of the DAC is used. If an amplitude smaller than the minimum value is desired, you can use waveforms less than the full scale of the DAC, or you can use digital gain. Additional offset can be added using waveform data.

Specification	V	alue	Comments	
Amplitude and O	ffset (Continued)			
Analog Offset Range, per	Ma	in Path	Both CH 0+/- or CH 1+/-	
Terminal	Load	Amplitude $(V_{pk})^{*\dagger}$	terminals are	
	50 Ω	±1.00	ground through	
	1 kΩ	±1.905	loads of the same value. Offset is any	
	Open	±2.00	combination of common-mode	
	Direct Path		offset voltage and differential offset	
	Load	Amplitude $(V_{pk})^{*\dagger}$	voltage.	
	Any	_		
Offset Resolution	Main Path		Applies to differential,	
	4 digits <0.002% of offset range		common-mode, and single-ended offsets.	

Notes: For the Main path, $V_{CM} + V_{DIFF}/2$ and $V_{CM} - V_{DIFF}/2$ is between ± 2 V, into an open load.

For all configurations, both CH± terminals are terminated to ground through loads of the same value.

The voltage output levels are set in the software and are based on a 50Ω per line load termination to ground (the default) or based on the user-specified load resistance. Common-mode offset assumes output terminals are terminated into equal loads to ground. Refer to the *NI Signal Generators Help* and navigate to **NI Signal Generators Help»Devices»NI 5451»Front Panel Connectors»Differential and Single-Ended Channel Connectors** for more information.

^{*} Additional offset can be added using waveform data.

[†] Combinations of waveform data, offset, and gain that exceed a single-ended peak output voltage of 3.2 V may result in waveform clipping.

Specification	Value	Comments
Accuracy		
DC Accuracy	Single-Ended Main Path	Measured with
	Absolute	a DMM. Measured with
	Gain Error: within ±5 °C of Self-Cal temperature: ±(0.4% of single-ended output range*+ 0.5 mV) ±(0.3% of single-ended output range*+ 0.3 mV), typical outside ± 5 °C of Self-Cal temperature: - 0.05%/°C	both output terminals terminated to
	- 0.035%/°C, typical Offset Error: ±(0.15% of offset + 0.04% of single-ended output range* + 1.25 mV) (0 °C to 55 °C) ±(0.08% of offset + 0.025% of single-ended output range* + 0.75 mV) (0 °C to 55 °C), typical	

^{*} For DC accuracy, *single-ended output range* is defined as $2\times$ the gain setting into high impedance. For example, the accuracy of a DC signal with a gain of 2.5, a load impedance of 1 G Ω , and a single-ended output range of 5 V is calculated by the following equation:

Gain error within ± 5 °C of self-cal temperature: $\pm (0.4\% \times 5 \text{ V} + 0.5 \text{ mV}) = \pm 20.5 \text{ mV}$

Gain error at +10 °C of self-cal temperature: $\pm 20.5 \text{ mV} - 0.05\% \times 5 \text{ °C} \times (5 \text{ V}) = +8 \text{ mV}/-33 \text{ mV}$

Offset error: [2 V offset at gain = 2.5] $\pm (0.15\% \times (2 \text{ V}) + 0.04\% \times (5 \text{ V}) + 1.25 \text{ mV}) = \pm 6.25 \text{ mV}$

Specification	Value	Comments		
Accuracy (Con	Accuracy (Continued)			
DC Accuracy	Differential Main Path	Measured with		
	Absolute	a DMM.		
	Gain Error:	Measured with both output		
	within ± 5 °C of Self-Cal temperature: $\pm (0.6\% \text{ of differential output range}^* + 1 \text{ mV})$ $\pm (0.43\% \times \text{differential output range}^* + 500 \mu\text{V})$, typical	terminals terminated to ground through		
	outside ±5 °C of Self-Cal temperature: - 0.05%/°C - 0.035%/°C, typical	a high impedance.		
	Differential Offset:			
	$\pm~(0.3\%~of~differential~offset~+~0.01\%~of~differential~output~range^*~+~2~mV)$			
	$\pm(0.16\%$ of differential offset + 0.01% of differential output range* + 1 mV), typical			
	Common Mode Offset:			
	\pm (0.3% of common-mode offset + 2 mV)			
	\pm (0.16% of common-mode offset + 1 mV), typical			
	Channel-to-Channel Relative			
	Gain Error:			
	within ±5 °C of Self-Cal temperature: ±(0.66% of differential output range*+ 1.75 mV)			
	outside ±5 °C of Self-Cal temperature: - 0.02%/°C - 0.01%/°C, typical			

^{*} For DC accuracy, differential output range is defined as $2\times$ the gain setting into high impedance. For example, the accuracy of a DC signal with a gain of 5, a load impedance of 1 G Ω , and a differential output range of 10 V is calculated by the following equation:

Gain error within ± 5 °C of self-cal temperature: $\pm (0.6\% \times 10 \text{ V} + 1 \text{ mV}) = \pm 61 \text{ mV}$

Gain error at + 10 °C of self-cal temperature: $\pm 61 \text{ mV} - 0.05\% \times 5 \text{ °C} \times (10 \text{ V}) = +36 \text{ mV}/-86 \text{ mV}$

Differential Offset Error: [Requested differential offset = 1 V at gain = 5] \pm (0.3% × (1 V) + 0.01% × (10 V) + 2 mV) = \pm 6 mV

Value	Comments
tinued)	
Differential Direct Path Absolute Gain Error: within ±5 °C of Self-Cal temperature: ±0.2% of differential output range* outside ±5 °C of Self-Cal temperature: +0.030%/°C +0.015%/°C, typical Differential Offset: ± 1 mV (0 °C to 55 °C) Common Mode Offset*: ±350 µV (0 °C to 55 °C) Channel-to-Channel Relative Gain Error: within ±5 °C of Self-Cal temperature: ±0.08% of differential output range*	Measured with a DMM. Differential offset is not adjusted during self-calibration. Measured with both output terminals terminated to ground through a high impedance.
	Differential Direct Path Absolute Gain Error: within ±5 °C of Self-Cal temperature: ±0.2% of differential output range* outside ±5 °C of Self-Cal temperature: + 0.030%/°C + 0.015%/°C, typical Differential Offset: ± 1 mV (0 °C to 55 °C) Common Mode Offset†: ±350 μV (0 °C to 55 °C) Channel-to-Channel Relative Gain Error: within ±5 °C of Self-Cal temperature:

^{*}For DC accuracy, differential output range is defined as $2\times$ the gain setting into high impedance. For example, the accuracy of a DC signal with a gain of 1, a load impedance of 1 G Ω , and a differential output range of 2 V is calculated by the following equation:

Gain error within ± 5 °C of self-cal temperature: $\pm 0.2\% \times (2 \text{ V}) = \pm 4 \text{ mV}$

Gain error at + 10 °C of self-cal temperature: $4 \text{ mV} + 0.03\% \times 5 \times (2 \text{ V}) = +7 \text{ mV}/-1 \text{ mV}$

 $^{^{\}dagger}$ Direct path common-mode offset is minimized through active circuitry. Applying an external nonzero common-mode offset to the output terminal is not recommended; however, the common-mode circuitry can sink or source up to 5 mA of common-mode bias current. Terminate both output terminals to ground through the same impedance. If the output terminals are not terminated to ground, the maximum termination voltage is 250 mV through 50 Ω .

Specification	Va	lue	Comments	
Accuracy (Con				
AC Amplitude	Single-Ende	d Main Path	Measured	
Accuracy	Absolute within ±5 °C of Self-Cal temperature: ±(0.8% of single-ended output range + 1 mV _{RMS}) ±(0.4% of single-ended output range + 750 μV _{RMS}), typical Differential Main Path		using a DMM, with full-scale data into high- impedance, 50 kHz sine wave, 400 MS/s.	
	Absolute within ±5 °C of Self-Cal temperature: ±(0.8% of differential output range + 1.5 mV _{RMS}) ±(0.4% of differential output range + 1.5 mV _{RMS}), typical		The output range defined in DC Accuracy must be converted to V _{RMS} by	
	Differential	Direct Path	dividing by	
	Absolute	$(2\sqrt{2})$.		
	within ±5 °C of Self-Cal tem ±0.5% of differential outp			
	Channel-to-Channel, Relative	e		
	within ±5 °C of Self-Cal temperature: ±0.2% of differential output range ±0.07% of differential output range, typical			
Channel-to-	Main Path	Direct Path	±5 °C of	
Channel Timing	50 ps	35 ps	self-calibration temperature.	
Alignment Accuracy	40 ps, typical	25 ps, typical	Alignment can be improved with manual adjustment by using <i>Sample Clock Delay</i> .	

Specification	Value			Comments		
Output Charac	Output Characteristics					
DC Output	Main Path	Direct Path		For the Direct		
Resistance	50 Ω nominal, per connector	50 Ω nominal, p	er connector	path only, both output terminals must be terminated with the same impedance to ground.		
Return Loss	Single-Ended and Differential Main Path	Single-Ended Direct Path	Differential Direct Path	Nominal.		
	30 dB, up to 20 MHz 27 dB, up to 60 MHz 12 dB, up to 135 MHz	26 dB, 5 MHz to 60 MHz 15 dB, 60 MHz to 145 MHz	35 dB, up to 20 MHz 22 dB, up to 60 MHz 12 dB, up to 145 MHz			
Load Impedance Compensation	Output amplitude is compensated for user-specified load impedance to ground.*		Performed in software.			
Output Coupling	DC		_			
Output Enable	Software-selectable. When with a 50 Ω , 1 W resistor.	disabled, output i	s terminated	_		

^{*} The voltage output levels are set in the software and are based on a 50 Ω per line load termination to ground (the default) or based on the user-specified load resistance. Common-mode offset assumes output terminals are terminated into equal loads to ground. Refer to the *NI Signal Generators Help* and navigate to **NI Signal Generators Help»Devices» NI 5451sFront Panel Connectors»Differential and Single-Ended Channel Connectors** for more information.

Specification		Value	Comments
Output Charac	teristics (Continued)		
Maximum	Main Path	Direct Path	For the Direct
Output Overload	$\pm 12 \ V_{pk}$ from a 50 Ω source	$\pm 8~V_{pk}$ from a 50 Ω source	path only, both CH 0+/- or CH 1+/- terminals are terminated to ground through loads of the same value.
Waveform Summing	The output terminals support waveform summing which means the outputs of multiple NI 5451 signal generators can be connected together.		Clipping may occur if the summed voltage is outside of the maximum voltage range.

Specification	Value		Comments
Frequency Resp	onse		
Analog	Baseband	Complex Baseband	Typical. –3 dB,
Bandwidth	Main Path, F	ilter Disabled	400 MS/s. Includes DAC sinc response.
	180 MHz for each I and Q output	360 MHz when used with external I/Q modulator	Flatness correction disabled.
	Main Path, F	ilter Enabled	
	135 MHz for each I and Q output	270 MHz when used with external I/Q modulator	
	Direct Path		
	145 MHz for each I and Q output	290 MHz when used with external I/Q modulator	
Analog Filter	Main Path	Direct Path	
	7-pole elliptic filter for image suppression	4-pole filter for image suppression	

Specification	Va	Comments	
Frequency Response	(Continued)		
	6	fferential Main Path, Enabled	With respect to 50 kHz into 100 Ω
Passband Flatness	Flatness Correction Disabled	Flatness Correction Enabled*,†	differential load, 400 MS/s.†
0 MHz to	0.8 dB, typical	±0.30 dB	Flatness correction corrects for analog
60 MHz ^{†, ‡}		±0.20 dB, typical	frequency response and DAC sinc
60 MHz ^{†,‡} to	3 dB, typical	±0.50 dB	response up to
135 MHz ^{†,**}		±0.30 dB, typical	$0.3375 \times \text{sample}$ rate.
			Receiver return loss may degrade flatness.
Channel-to- Channel Passband Flatness Matching 0 MHz to 60 MHz ^{†,‡}	±0.12 dB, typical	±0.12 dB, typical	With respect to 50 kHz on each channel, 400 MS/s.
Channel-to- Channel Passband	±0.20 dB, typical	±0.14 dB, typical	Load variations may degrade performance.
Flatness Matching 60 MHz ^{†,‡} to 135 MHz ^{†,**}			Refer to the AC Amplitude Accuracy Main Path specification for the correct terminal configuration for the 50 kHz reference accuracy.

Note: Flatness correction is not supported if the filter is disabled.

^{*} Valid for use without OSP enabled or when interpolating by 2× with OSP enabled. For all larger interpolation rates using OSP, the OSP filters may introduce extra ripple. Refer to the *Interpolating Flat Filter Passband Ripple* specification in the OSP section for more information about OSP filter ripple.

 $[\]dagger$ Frequency ranges with flatness correction enabled are sample rate dependent. The 60 MHz frequency is defined by the 0 MHz to 60 MHz Passband Flatness specification.

 $^{^{\}ddagger}$ Value = Min (0.3375 × Sample Rate, 60 MHz)

^{**} Value = $0.3375 \times Sample Rate$

Specification	Va	lue	Comments
Frequency Respons	e (Continued)		
	Direc	et Path	With respect to
Passband Flatness	Flatness Correction Disabled	Flatness Correction Enabled*,†	50 kHz into 100 Ω differential load, 400 MS/s.†
0 MHz to 60 MHz ^{†,‡}	0.5 dB, typical	±0.24 dB	Flatness correction corrects for analog
		±0.13 dB, typical	frequency response and DAC sinc response up to
60 MHz ^{†,‡} to	1.9 dB, typical	±0.34 dB	0.3 × sample rate. Receiver return loss
120 MHz ^{†,**}		±0.19 dB, typical	may degrade flatness.
Channel-to- Channel Passband Flatness Matching	0.05 dB, typical	0.03 dB, typical	With respect to 50 kHz on each channel, 400 MS/s.
0 MHz to 60 MHz ^{†,‡}			Load variations may degrade performance.
Channel-to- Channel Passband Flatness Matching 60 MHz ^{†,‡} to 120 MHz ^{†,**}	0.18 dB, typical	0.04 dB, typical	Refer to the AC Amplitude Accuracy Differential Direct Path specification for more information about the 50 kHz reference accuracy.

^{*} Valid for use without OSP enabled or when interpolating by 2× with OSP enabled. For all larger interpolation rates using OSP, the OSP filters may introduce extra ripple. Refer to the *Interpolating Flat Filter Passband Ripple* specification in the OSP section for more information about OSP filter ripple.

 $^{^\}dagger$ Frequency ranges with flatness correction enabled are sample rate dependent. The 60 MHz frequency is defined by the 0 MHz to 60 MHz Passband Flatness specification.

 $^{^{\}ddagger}$ Value = Min (0.3 × Sample Rate, 60 MHz)

^{**} Value = $0.3 \times Sample Rate$

Figure 2. Main Path Filter Enabled Amplitude Response with Flatness Correction Enabled and Disabled, 400 MS/s, Gain=2.5, Differential, Referenced to 50 kHz, Representative Unit

Figure 3. Direct Path Amplitude Response with Flatness Correction Enabled and Disabled, 400 MS/s, Differential, Referenced to 50 kHz, Representative Unit

Figure 4. Main and Direct Path Amplitude Response with Flatness Correction Enabled, 400 MS/s, Differential, Referenced to 50 kHz, Representative Unit

Figure 5. Main Path Characteristic Frequency Response of Image Suppression Filter, Representative Unit

Figure 6. Direct Path Characteristic Frequency Response of Image Suppression Filter, Representative Unit

Note Sinc response due to DAC sampling is not included in Figure 5 or Figure 6.

Specification				Value	ne				Comments
Spectral Characteristics	cteristics								
				SFDR (dB)	(dB)				Nominal.
Spurious Free Dynamic			Single-Ended Main Path			Differential Main Path		Differential Direct Path	400 MS/s, amplitude -1 dBFS.
Range (SFDR) at 1 MHz	Frequency Range	$Gain = 0.25$ 0.5 V_{PPSE}	Gain = 0.625 1.25 V _{PPSE}	Gain = 1.25 2.5 V _{PPSE}	$Gain = 0.5,$ 1 V_{PPD}	$Gain = 1.25,$ 2.5 V_{PPD}	$Gain = 2.5,$ $5 V_{PPD}$	$Gain = 0.5,$ 1 V_{PPD}	Includes aliased harmonics.
SFDR with Harmonics	DC to 7 MHz		82			85		88	Differential output measured
	DC to 200 MHz		75			75		75	single- ended with a balun or differential
SFDR without Harmonics	DC to 7 MHz	82	88	56		86		86	amp. Terminated
	DC to	82	83	84		84		84	ground on each terminal.

Specification				Value	ne				Comments
Spectral Characteristics (Continued)	acteristics (Co	ontinued)							
SFDR with				SFDR (dB)	(dB)				400 MS/s,
Harmonics			Single-Ended Main Path			Differential Main Path		Differential Direct Path	amplitude –1 dBFS. Measured
	Frequency	Gain = 0.25, 0.5 V _{PPSE}	Gain = 0.625, 1.25 V _{PPSE}	Gain = 1.25, 2.5 V _{PPSE}	$Gain = 0.5,$ 1 V_{PPD}	Gain = 1.25, 2.5 V_{PPD}	$Gain = 2.5,$ $5 V_{PPD}$	$Gain = 0.5,$ 1 V_{PPD}	from DC to 200 MHz. All values
	10 MHz	73 (75)*	73 (75)*	73 (75)*	73 (75)*	73 (75)*	73 (73)*	73 (75)*	are typical and include aliased
	60 MHz	65	61	56	69	<i>L</i> 9	64	70 (72)*	narmonics. Differential output
	100 MHz	53	52	49	55	54	53	09	single- ended with balun.
	120 MHz	62	62	62	62	62	62	62	Terminated into 50 Ω to ground on
	160 MHz							62	each terminal.
Note: The first specification listed is 10.0 MHz sinusoid at a 399.9 MS/s	ecification lister id at a 399.9 MS	d is for a 10.0 MH Vs sample rate (wa	Note: The first specification listed is for a 10.0 MHz sinusoid at a 400 MS/s sample rate (waveform contains 40 unique samples), and the specification in parentheses is for a 10.0 MHz sinusoid at a 399.9 MS/s sample rate (waveform contains over 3000 unique samples with unique DAC codes).	MS/s sample rate er 3000 unique sa	(waveform cont amples with uniq	ains 40 unique sar que DAC codes).	nples), and the sp	ecification in pare	ntheses is for a

* Long, nonrepetitive waveforms like modulated signals offer better spurious performance. For periodic waveforms represented by a small number of unique samples, DAC nonlinearities limit dynamic specifications.

Specification		Value		Comments
Spectral Charact	eristics (Conti	nued)		
SFDR without		SFDF	R (dB)	400 MS/s sample
Harmonics	Frequency	Single-Ended and Differential Main Path	Differential Direct Path	rate. Amplitude -1 dBFS. Measured from DC to 200 MHz. All values
	10 MHz	74 (76)*	74 (76)*	are typical and include aliased
	60 MHz	72 (74)*	72 (74)*	harmonics. Differential output measured
	100 MHz	66	64	single-ended with balun.
	120 MHz	62	62	Characterized at the same gain ranges as
	160 MHz	_	62	SFDR with Harmonics.

Note: The first specification listed is for a 10.0 MHz sinusoid at a 400 MS/s sample rate (waveform contains 40 unique samples), and the specification in parentheses is for a 10.0 MHz sinusoid at a 399.9 MS/s sample rate (waveform contains over 3000 unique samples with unique DAC codes).

^{*} Long, nonrepetitive waveforms, like modulated signals, offer better spurious performance. For periodic waveforms represented by a small number of unique samples, DAC nonlinearities limit dynamic specifications.

Specification		Va	lue	Comments
Spectral Chara	acteristics (Con	tinued)		
Out-of-Band Performance		ne Frequency Hz)	Out-of-Band Spur Level (dBm)	Nominal. Generating full-scale sine
		Main Path, F	ilter Enabled	wave at
	0 to	o 20	<-65 dBm	frequency listed,
	20 t	to 50	<-45 dBm	400 MS/s. Measured
		Direc	t Path	200 MHz to 2 GHz.
	0 to	o 20	<-80 dBm	Anti-imaging filter is fixed
	20 to 50		<-65 dBm	and optimized for 400 MS/s.
Channel-to- Channel Crosstalk	el Output		Main Path*	Measured single ended at the victim
	2.5	-90 dBc, 0 MHz to 200 MHz		channel, 0 V DC output, 400 MS/s
	1.25	-85 dBc, 0 MHz to 200 MHz		sample rate.
	0.5	-80 dBc, 0 MHz to 200 MHz		Aggressor channel is terminated into
	0.15	-70 dBc, 0 MF	Hz to 200 MHz	50 Ω, sine wave output,
		Direc	t Path	400 MS/s sample rate.
	<80 dBc, 0 M	Hz to 200 MHz		All values
	<90 dBc, 0 M	Hz to 150 MHz		nominal.

 $^{^{*}}$ The dBc values are referenced to the differential tone power on the aggressor channel. Results are independent of victim and aggressor filter configurations, terminal configurations, and victim channel output amplitude.

Specification		Value Comments						
Spectral Charact	eristics (Cont	inued)						
Total Harmonic		Ma	in Path		Amplitude			
Distortion (THD)	Output	Frequency	THD (dBc)	-1 dBFS. Includes the			
	Amplitude	(MHz)	Single-Ended	Differential	2 nd through the			
	2.5 V _{PPSE} ,	10	-71	-71	6 th harmonic. All values are			
	5 V _{PPD}	20	-66	-69	typical.			
		40	-59	-64	Measured at			
		60	-55	-61	0.1 MHz offset.			
		80	-51	-55	400 MS/s			
		120	-50	-51	sample rate.			
		140	-50	-52	Differential Main path			
		160	-50	-53	output			
	1.25 V _{PPSE} , 2.5 V _{PPD}	10	-78	-75	measured single ended			
		20	-72	-73	with a balun.			
		40	-63	-69				
		60	-60	-65				
		80	-56	-59				
		120	-56	– 59				
		140	-56	-59				
		160	-55	-59				
	0.5 V _{PPSE} , 1 V _{PPD}	10	-80	- 79				
		20	-74	–75				
			40	-68	-69			
		60	-64	-69				
		80	-62	-65				
		120	-65	-70				
		140	-64	-69				
		160	-61	-66				

Specification		V	/alue	Comments
Spectral Charact	eristics (Conti	inued)		
Total Harmonic		Dire	ect Path	Amplitude
Distortion (THD)	Output Amplitude	Frequency (MHz)	THD (dBc)	-1 dBFS. Includes the 2 nd through the
	0.5 V _{PPSE} ,	10	-75	6 th harmonic.
	$1 V_{PPD}$	20	-70	All values are
		40	-68	typical. Measured at
		80	-68	0.1 MHz
		100	-68	offset.
			120	-78
		160	-83	Differential Direct path output measured single ended with a balun.

Specification	Value Comments					
Spectral Charact	eristics (Conti	inued)				
Intermodulation	Sin	gle-Ended and	Differential Main Path	The waveform		
Distortion (IMD ₃)	Output Amplitude	Frequency (MHz)	IMD (dBc)	amplitude for each tone is –7 dBFS.		
	2.5 V _{PPSE} ,	10	-87	Typical.		
	5 V _{PPD}	20	-82	400 MS/s		
		40	-71	sample rate.		
		60	-63	Two-tone frequencies are		
		80	-57	frequency		
		120	-51	±100 kHz.		
		160	-48			
	1.25 V _{PPSE} , 2.5 V _{PPD}	10	-92			
		20	-87			
		40	-79			
		60	-72			
		80	-66			
		120	-61			
		160	-57			
		10	-87			
		20	-85			
		40	-82			
		60	-7 9			
		80	-75			
		120	-7 9			
		160	-75			

Specification		V	/alue	Comments					
Spectral Charact	eristics (Conti	inued)							
Intermodulation	Sin	gle-Ended and	Differential Main Path	The digital					
Distortion (IMD ₃)	Output Amplitude	Frequency (MHz)	IMD (dBc)	amplitude for each tone is –7 dBFS.					
	0.1 V _{PPSE} ,	10	-89	All values are					
	$0.2 V_{PPD}$	20	-83	typical.					
		40	-78	400 MS/s sample rate.					
		60	-73	Two-tone					
		80	-69	frequencies are					
		120	-66	frequency ±100 kHz.					
		160	-65	Differential					
		Dire	ect Path	Direct path output					
	Output Amplitude 0.5 V _{PPSE} , 1 V _{PPD}	Frequency (MHz)	IMD (dBc)	measured single-ended					
		10	-84	with balun.					
		20	-81						
							40	-75	
					80	–71			
		100	-68						
		120	-68						
		160	-66						

Specification			Value			Comments
Spectral Character	ristics (Co	ntinued)				
Average Noise Density	Out Ampl	itude	le-Ended N	Average Noise Densi Iain Path	ty	Average noise density from DC to 200 MHz generating –40 dBFS, 1 MHz
	$V_{ ext{PPSE}}$	dBm	$\frac{\text{nV}}{\sqrt{\text{Hz}}}$	dBm/Hz	dBFS/Hz	sine wave at 400 MS/s. Differential output
2.5 12 12.57 -145 0.5 -2 9.99 -147	-157	measured with a				
	0.5	-2	9.99	-147	-145	balun.
	0.06	-20.4	9.99	-147	-126.6	Differential dBm numbers referred
	Diffe		Differential Main Path			back to a 50 Ω
	$ m V_{PPD}$	dBm	$\frac{\text{nV}}{\sqrt{\text{Hz}}}$	dBm/Hz	dBFS/Hz	system.
	5	18	17.76	-142	-160	
	1	4	14.11	-144	-148	
	0.12	-14.4	14.11	-144	-129.6	
		Diff	erential Di	rect Path		
	V_{PPD}	dBm	$\frac{\text{nV}}{\sqrt{\text{Hz}}}$	dBm/Hz	dBFS/Hz	
	1	4.0	2.24	-160	-164	

Figure 7. Single-Ended Main Path, Total Harmonic Distortion, Typical

Figure 8. Differential Main Path, Total Harmonic Distortion, Typical

Figure 9. Direct Path, Total Harmonic Distortion, Typical

Figure 10. Single-Ended and Differential Main Path, Intermodulation Distortion, 200 kHz Separation, Typical

Figure 11. Direct Path, Intermodulation Distortion, 200 kHz Separation, Typical

Figure 12. Single-Ended Main Path 10.000 MHz Single-Tone Spectrum, 400 MS/s, -1 dBFS, Representative Unit

Figure 13. Single-Ended Main Path 10.100 MHz Single-Tone Spectrum, 400 MS/s, -1 dBFS, Representative Unit

Figure 14. Single-Ended Main Path 110.100 MHz Single-Tone Spectrum, 400 MS/s, —1 dBFS, Representative Unit

Figure 15. Differential Main Path 10.000 MHz Single-Tone Spectrum, 400 MS/s, -1 dBFS, Measured Through Balun, Representative Unit

Figure 16. Single-Ended Main Path Intermodulation Distortion, 1 MHz Separation, 20 MHz Tone, 400 MS/s, -7 dBFS, Representative Unit

Figure 17. Direct Path Intermodulation Distortion, 1 MHz Separation, 20 MHz Tone, 400 MS/s, -7 dBFS, Representative Unit

Figure 18. Direct Path 10.000 MHz Single-Tone Spectrum, 400 MS/s, -1 dBFS, Representative Unit

Figure 19. Direct Path 10.100 MHz Single-Tone Spectrum, 400 MS/s, -1 dBFS, Representative Unit

Note The noise floor on all spectral graphs is limited by the measurement device.

Specification	Value				Comments			
Output Phase I	Output Phase Noise and Jitter*							
G 1	0	Sy	stem Phas	e Noise Dei	nsity† (dBc/F	Iz)	System	_
Sample Clock Source	Output Freq. (MHz)	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz	Output Integrated Jitter†	
Internal, High- Resolution	10	<-121	<-137	<-146	<-152	<-153	<350 fs	Typical.
Clock, 400 MS/s	100	<-101	<-119	<-126	<-136	<-141	<350 fs	
CLK IN External	10	<-122	<-135	<-146	<-152	<-153	<350 fs	Typical.
10 MHz Reference Clock, 400 MS/s	100	<-105	<-115	<-126	<-136	<-141	<350 fs	

Note: Specifications valid for both main path and direct path, limited by the output noise floor.

^{*}Generating sine wave at an output frequency of 400 MS/s.

 $^{^\}dagger$ System output jitter integrated from 100 Hz to 100 kHz.

Figure 20. Phase Noise on a Representative Module, 100 MHz Sine Wave, 400 MS/s Internal Clock Sample Rate, Chassis Fans Low, Shown With and Without a Reference Clock

Figure 21. Phase Noise on a Representative Module, 100 MHz Sine Wave, 400 MS/s Internal Clock Sample Rate, Chassis Fans High, No Reference Clock

Specification	Va	lue	Comments
Suggested Maxi	mum Frequencies for Common	Functions	
Function	Main Path	Direct Path	The Direct
Sine	135 MHz	145 MHz	path is optimized
Square	150 MHz*	33 MHz (<133 V/µs slew rate) [†]	for frequency-domain
Ramp	20 MHz*	1 MHz (<50 V/μs slew rate) [†]	performance.
Triangle	20 MHz* (5 MHz)	8 MHz	
Pulse Response			
Rise/Fall Time	Flatness Correction Disabled	Flatness Correction Enabled	Typical.
(10% to 90%)	Main Path, F	Values into	
	1.5 ns	_	50Ω at each output.
	Main Path, F		
	3 ns	3 ns	
	Direc		
	3 ns	2.5 ns	-
Aberration	Flatness Correction Disabled	Flatness Correction Enabled	Typical.
	Main Path, F	ilter Disabled	Values into
	3%	_	50Ω at each output.
	Main Path, F		
	18%	25%	1
	Direct	t Path*	
	18% (7%)‡	22%	1

^{*} Filter disabled.

 $^{^{\}dagger}$ Aberrations on pulsed waveforms are due to the analog reconstruction filter and can be significantly reduced if waveform data has limited slew rate. Waveforms with higher slew rates are not recommended.

 $^{^{\}ddagger}$ 7% aberrations achievable with 133 V/ μ s slew rate limiting on waveform data. Pulsed waveforms should contain multiple data points per rising or falling edge, regardless of DAC rate or signal frequency.

Clocking

The NI 5451 offers many clocking options. Waveform generation is driven by the Sample clock. You have multiple choices for configuring the device clocking, as shown in the following figure.

Figure 22. NI PXIe-5451 Clocking

Tip Refer to the clocking documentation in the *NI Signal Generators Help* by navigating to **NI Signal Generators Help»Devices»NI 5451»Theory of Operation»Clocking** for more information about NI 5451 clocking options.

Onboard Sample Clock

The following figure shows the NI 5451 onboard Sample clock path.

Figure 23. NI PXIe-5451 Onboard Sample Clock and External Reference Clock Path

Specification	Value	Comments
Sample Clock Rate Range	12.2 kS/s to 400 MS/s	_
Sample Clock Rate Frequency Resolution	<5.7 μHz	Varies with Sample clock frequency. Specification is worst-case.
Sample Clock Delay	0 ns to 2 ns, independent per channel	Set in software with the Channel Delay property or the NIFGEN_ATTR_ CHANNEL_DELAY attribute.
Sample Clock Delay Resolution	10 ps	Nominal.
Sample Clock Timebase Phase Adjust	±1 Sample clock timebase period	_
Reference Clock Sources	 None (internal reference) PXI_CLK10 (backplane) CLK IN (front panel connector) 	_

Specification	Value	Comments
Reference Clock Frequency	1 MHz to 100 MHz in increments of 1 MHz 100 MHz to 200 MHz in increments of 2 MHz 200 MHz to 400 MHz in increments of 4 MHz Default of 10 MHz.	±0.01% accuracy required
Internal Reference Clock Frequency Accuracy	±0.01%	Measured without an external Reference clock. When locking to a Reference clock, frequency accuracy is solely dependent on the frequency accuracy of the Reference clock source.

External Sample Clock

The following figure shows the NI 5451 external Sample clock path.

Figure 24. NI PXIe-5451 External Sample Clock Path

Specification	Value	Comments
External Sample Clock Source	CLK IN, front panel connector, with multiplication and division	_
External Sample Clock Rate	10 MS/s, 20 MS/s to 400 MS/s	_
Sample Clock Rate Range	12.2 kS/s to 400 MS/s	_
Multiplication/ Division Factor Range	Varies depending on the external Sample clock rate	Shown as Multiply*W and Divide/N in Figure 24.
Sample Clock Delay	0 ns to 2 ns, independent per channel	Set in software with the Channel Delay property or the NIFGEN_ATTR_ CHANNEL_DELAY attribute.
Sample Clock Delay Resolution	10 ps	Nominal.
Sample Clock Timebase Phase Adjust	±1 Sample clock timebase period	

External Sample Clock Timebase

The following figure shows the NI 5451 external Sample clock timebase path.

Figure 25. NI PXIe-5451 External Sample Clock Timebase Path

Specification	Value	Comments
External Sample Clock Timebase Sources	CLK IN, front panel connector, with division	_
External Sample Clock Timebase Rate Range	200 MS/s to 400 MS/s	
Divide Factor Range	1, 2 to 32768 in steps of 2	Shown as Divide/N in Figure 25.
Sample Clock Delay	0 ns to 2 ns, independent per channel	_
Sample Clock Delay Resolution	10 ps	Nominal.

Exporting Clocks

Specification	Value		Comments
	Destination	Rates	
Reference	CLK OUT	1 MHz to 400 MHz	_
Clock	PFI<01>	1 MHz to 200 MHz	
Sample Clock	CLK OUT	100 kHz to 400 MHz	With optional
	PFI<01>	0 MHz to 200 MHz	divider.
Sample Clock Timebase	CLK OUT	100 kHz to 400 MHz	With optional
	PFI<01>	0 MHz to 200 MHz	divider.

Terminals

CLK IN (Sample Clock and Reference Clock Input, Front Panel Connector)

Specification	Value	Comments
Direction	Input	_
Destinations	1. Reference clock	_
	2. Sample clock	
	3. Sample clock timebase	
Frequency Range	1 MHz to 400 MHz	Not applicable for all destinations. Refer to the specifications for your clocking configuration for applicable ranges.
Input Voltage Range	500 mV _{pk-pk} to 5 V _{pk-pk} into 50 Ω (–2 dBm to +18 dBm)	50% duty cycle input.
	$550~\text{mV}_{pk\text{-}pk}~\text{to}~4.5~\text{V}_{pk\text{-}pk}~\text{into}~50~\Omega \\ (-1.2~\text{dBm to}~+17~\text{dBm})$	45% to 55% duty cycle input.

Specification	Value	Comments
Input Protection	$6 V_{pk-pk}$ into $50 Ω$ $19.5 dBm$	50% duty cycle input.
Range	$5.4~V_{pk\cdot pk}$ into $50~\Omega$ $18.5~dBm$	45% to 55% duty cycle input.
Duty Cycle Requirements	45% to 55%	_
Input Impedance	50Ω , nominal	_
Input Coupling	AC	_
Voltage Standing Wave Ratio (VSWR)	1.3:1 up to 2 GHz	Nominal.

CLK OUT (Sample Clock and Reference Clock Output, Front Panel Connector)

Specification	Value	Comments
Direction	Output	_
Sources	 Sample clock, divided by integer K (1≤ K ≤ 3, minimum) Reference clock Sample clock timebase, divided by integer M (1 ≤ M ≤ 1048576) 	The maximum value of the divisor, <i>K</i> , is sample rate dependent.
Frequency Range	100 kHz to 400 MHz	_
Output Voltage	\geq 0.7 V _{pk-pk} into 50 Ω	Typical.
Maximum Output Overload	$3.3~V_{pk\text{-}pk}$ from a $50~\Omega$ source	_
Output Coupling	AC	_
VSWR	1.3:1 up to 2 GHz	Nominal.

PFI 0 and PFI 1 (Programmable Function Interface, Front Panel Connectors)

Specification	Value	Comments
Direction	Bidirectional	_
Frequency Range	DC to 200 MHz	_
As an Input (Tr	rigger)	
Destinations	Start trigger, Script trigger	_
Input Range	0 V to 5 V	_
Input Protection Range	-2 V to +6.5 V	
V _{IH}	1.8 V	_
V _{IL}	1.5 V	_
Input Impedance	10 kΩ, nominal	_

Specification	Va	lue	Comments
As an Output (I			
Sources	 Sample clock divided by integer K (2 ≤ K ≤ 3, minimum) Sample clock timebase divided by integer M (2 ≤ M ≤ 1048576) Reference clock Marker event Data marker event Exported Start trigger Exported Script trigger Ready for Start event Started event Done event 		The maximum value of the Sample clock divisor, <i>K</i> , is sample rate dependent.
Output	Main Path	Direct Path	
Impedance	50 Ω, nominal	50 Ω (+4%, -0%)	
Maximum Output Overload	-2 V to +6.5 V		_
V _{OH}	Minimum: 2.4 V (open load),	1.3 V (50 Ω load)	Output drivers
V _{OL}	Maximum: 0.4 V (open load), 0.2 V (50 Ω load)		are +3.3 V TTL/CMOS compatible up to 200 MHz.
Rise/Fall Time	3 ns		Typical. Load of 10 pF.

Triggers and Events

Triggers

Specification	Value	Comments
Sources	 PFI<01> (SMB front panel connectors) PXI_Trig<07> (backplane connector) Immediate (does not wait for a trigger). Default. 	_
Types	 Start trigger edge Script trigger edge and level Software trigger 	_
Edge Detection	Rising, falling	_
Minimum Pulse Width	25 ns	Refer to the t _{s1} documentation in the <i>NI Signal Generators Help</i> by navigating to NI Signal Generators Help»Devices» NI 5451» Triggering» Trigger Timing.
Delay from Trigger to Analog Output with OSP Disabled	154 Sample clock timebase periods + 65 ns, nominal	Refer to the t _{s2} documentation in the <i>NI Signal Generators Help</i> by navigating to NI Signal Generators Help»Devices» NI 5451» Triggering» Trigger Timing.
Additional Delay with OSP Enabled	Varies with OSP configuration	_

Specification	Value	Comments
Trigger Export	ing	
Exported Trigger Destinations	 PFI<01> (SMB front panel connectors) PXI_Trig<06> (backplane connector) 	
Exported Trigger Delay	50 ns, nominal	Refer to the t _{s3} documentation in the NI Signal Generators Help by navigating to NI Signal Generators Help»Devices» NI 5451» Triggering» Trigger Timing.
Exported Trigger Pulse Width	>150 ns	Refer to the t _{s4} documentation in the NI Signal Generators Help by navigating to NI Signal Generators Help»Devices» NI 5451» Triggering» Trigger Timing.

Events

Specification	Va	lue	Comments
Destinations	1. PFI<01> (SMB front pan	el connectors)	_
	2. PXI_Trig<06> (backplan	e connector)	
Types	Marker<03>, Data Marker<0	01>, Ready for Start, Started,	There are two data markers per channel.
Quantum	Marker position must be plactwo samples.	ed at an integer multiple of	
Width	Adjustable, minimum of 2 san Default is 150 ns.	mples	Refer to the t _{m2} documentation in the NI Signal Generators Help by navigating to NI Signal Generators Help» Fundamentals» Waveform Fundamentals» Events» Marker Events.
Skew	Destination	With Respect to Analog Output	Refer to the t _{m1} documentation in
	PFI<01>	±3 Sample clock periods	the NI Signal Generators Help
	PXI_Trig<06>	±6 Sample clock periods	by navigating to NI Signal Generators Help» Fundamentals» Waveform Fundamentals» Events» Marker Events.

Waveform Generation Capabilities

Specification		Value		Comments	
Memory Usage	(SMC) technology is onboard memory. P	in which waveform Parameters, such as num number of wa available for wave	and Memory Core as and instructions share number of segments in veforms in memory, and form storage, are	For more information, refer to the NI Signal Generators Help by navigating to NI Signal Generators Help» Programming» Reference» NI-TClk Synchronization Help.	
Onboard Memory Size	128 MB option	512 MB option	2 GB option	Memory is shared between both channels.	
	134,217,728 bytes				
Loop Count	1 to 16,777,215 Burst trigger: Unlin		_		
Quantum	Waveform size mus	_			
Output Modes	nt Modes				
Arbitrary Waveform mode	A single waveform stored in onboard n	_			
Script mode	complex combination indicates how waves be sent to the device the waveforms are g	ons. A script is a section on a section of the control of the cont	nultiple waveforms in eries of instructions that onboard memory should ecify the order in which ber of times they are rs associated with the	_	

Specification		٦	Value		Comments	
Output Modes	s (Continue	d)				
Arbitrary Sequence mode	in a specif to as segm instruction selected fr loops (iter	re directs the NI 54 ric order. Elements nents. Each segments. The instructions rom the set of wave rations) of the waveform a m	of the sequence a nt is associated w s identify which v eforms in memor	are referred ith a set of waveform is y, how many ed, and at which	_	
Minimum Waveform Size (Samples)						
Trigger Mode	Number of Channels	Arbitrary Waveform Mode	Arbitrary Sequence Mode >180 MS/s	Arbitrary Sequence Mode ≤180MS/s	The minimum waveform size is sample rate dependent.	
Single	1	4	2	2	Measured using	
	2	4	4	4	a 200 MHz trigger.	
Continuous	1	1 142 140 58				
	2	284	280	116		
Stepped	1	210	154	54		
	2	420	308	108		
Burst	1	142	1,134	476		
	2	284	2,312	952		

Specification			Value		Comments
Memory Limi	ts (Bytes)				
	Number of Channels	128 MB	512 MB	2 GB	
Arbitrary Waveform Mode,	1	67,108,352	268,434,944	1,073,741,312	All trigger modes except where noted.
Maximum Waveform Memory	2	33,553,920	134,217,216	536,870,400	where noted.
Arbitrary Sequence	1	67,108,352	268,434,944	1,073,741,312	Condition: One or two
Mode, Maximum Waveform Memory	2	33,553,920	134,217,216	536,870,400	segments in a sequence.
Arbitrary Sequence	1	1,048,575	4,194,303	16,777,217	Condition: One or two
Mode, Maximum Waveforms	2	524,287	2,097,151	8,388,607	segments in a sequence.
Arbitrary Sequence Mode,	1	8,388,597	33,554,421	134,217,717	Condition: Waveform size is <4,000 samples.
Maximum Segments in a Sequence	2	4,194,293	16,777,205	67,108,853	C+,000 samples.

Specification		•	Value		Comments
Waveform Pla	y Times				
Maximum Play Time, Sample Rate	Number of Channels	128 MB	512 MB	2 GB	Single Trigger mode. Play times can
400 MS/s	1	0.17 seconds	0.67 seconds	2.68 seconds	be significantly
	2	0.084 seconds	0.34 seconds	1.34 seconds	extended by using
25 MS/s	1	2.68 seconds	10.74 seconds	42.95 seconds	Continuous,
	2	1.34 seconds	5.37 seconds	21.47 seconds	Stepped, or Burst Trigger
100 kS/s	1	11 minutes 11 seconds	44 minutes 44 seconds	2 hours 58 minutes 57 seconds	modes.
	2	5 minutes 35 seconds	22 minutes 22 seconds	1 hour 29 minutes 29 seconds	

Onboard Signal Processing

Figure 26. Onboard Signal Processing Block Diagram

Specification	Value	Comments
I/Q Rate		
OSP Interpolation Range	2, 4, 8, 12, 16, 20 24 to 8,192 (multiples of 8) 8,192 to 16,384 (multiples of 16) 16,384 to 32,768 (multiples of 32)	_
I/Q Rate	(Sample clock rate) ÷ (OSP interpolation)	Example: For a Sample clock rate of 400 MS/s, I/Q rate range = 12.2 kS/s to 200 MS/s.
Data Processing Modes*	Real (I path only) Complex (I/Q)	_
OSP Modes†	1. IF 2. Baseband	_
Maximum Bandwidth‡	0.8 × I/Q rate	_

Note: For more information about frequency translation and upconversion, refer to the *NI Signal Generators Help* and navigate to NI Signal Generators Help»Devices»NI 5451»Onboard Signal Processing (OSP)»Numerically Controlled Oscillator (NCO).

^{*} Data Processing Mode describes the OSP engine data source. The data can be a single stream of real data (*Real*) or separate streams of real and imaginary data (*Complex*).

 $^{^{\}dagger}$ OSP Mode describes the signal processing function performed on the data after interpolation. In IF Mode, I and Q data streams are quadrature upconverted to an intermediate frequency in a single output stream (to DAC 0/I). In Baseband Mode, frequency shifting can be applied to the I and Q data streams before they go into separate output streams (DAC 0/I and DAC 1/Q).

[‡] When using an external I/Q modulator, RF Bandwidth = $0.8 \times I/Q$ rate.

Specification		Value		Comments	
Prefilter Gain a	nd Offset				
Prefilter Gain and Offset Resolution	21 bits			_	
Prefilter Gain Range	-16.0 to +16.0 (Values < 1 attent	uate user data)		Unitless.	
Prefilter Offset Range	-1.0 to +1.0			Applied after prefilter gain.	
Prefilter Output	(User data × Prefil	ter gain) + Prefilter	offset	Overflows occur when Output > 1.	
Finite Impulse	pulse Response (FIR) Filtering				
Filter Types	Parameter	Minimum	Maximum		
Flat	Passband	0.4	0.4	Lowpass filter that minimizes ripple to I/Q rate × Passband.	
Raised Cosine	Alpha	0.1	0.4	When using pulse	
Root Raised Cosine	Alpha	0.1	0.4	shaping, these filters require an OSP interpolation factor of 24 or greater.	
Numerically Controlled Oscillator (NCO)					
Maximum Frequency	$0.4 \times \text{sample rate}$			_	
Frequency Resolution	Sample rate/2 ⁴⁸			Example: 1.42 µHz with a sample rate of 400 MS/s.	
Tuning Speed	250 μs			Software- and system-dependent.	

Specification	Value	Comments
Digital Perform	ance	
Maximum NCO Spur	<-90 dBc	Full-scale output.
Interpolating Flat Filter Passband Ripple	<0.1 dB	Passband from 0 to (0.4 × I/Q rate). Ripple is dependent upon the interpolation rate.
Interpolating Flat Filter Out-of-Band Suppression	>80 dB	Stopband suppression from $(0.6 \times I/Q \ rate)$.

	Specificati	fication				Value	ne			Comments
IF Modul	IF Modulation Performal	rmance (N	nce (Nominal)							
	Symbol				EVM (%)			MER (dB)		1
QAM Order	Rate (MS/s)	Alpha	Bandwidth	40 MHz IF	70 MHz IF	110 MHz IF	40 MHz IF	70 MHz IF	110 MHz IF	
$\mathbf{M} = 4$	0.16	0.25	200 kHz	0.2	0.2	0.2	57	57	99	
	0.80	0.25	1.00 MHz	0.2	0.2	0.2	57	56	55	
	4.09	0.22	4.98 MHz	0.2	0.3	0.2	57	52	55	
M = 16	17.6*	0.25	22.0 MHz	0.3	0.5	6.4	51	45	49	
	32.0*	0.25	40.0 MHz	9.0	-	9.0	42	-	43	
M = 64	5.36	0.15	6.16 MHz	0.2	0.3	0.2	54	51	53	
	6.95	0.15	7.99 MHz	0.3	0.3	0.3	52	51	50	
	25.0	0.15	28.75 MHz	0.4	9.0	6.4	46	43	46	
M = 256	6.95	0.15	ZHW 66.7	0.3	0.3	6.4	52	51	49	
Notes: Single	e-Ended Main p	path, -1 dBFS	Notes: Single-Ended Main path, -1 dBFS, Flatness Correction enabled, onboard Sample clock without reference.	on enabled, onb	oard Sample cl	ock without refer	rence.			

Number of Symbols = 1,024

All measurements were made using the NI PXIe-5622, not phase-locked to the NI 5451, equalization enabled, 40 MHz IF and 110 MHz IF using internal clocking, 70 MHz IF using external clocking at 100 MHz.

^{*} Fractional interpolation performed on data before generation. For more information about interpolation, refer to the NI Signal Generators Help and navigate to NI Signal Generators Help»Devices»NI 5451»Theory of Operation»Onboard Signal Processing (OSP)»Baseband Interpolation Considerations.

Calibration

Specification	Value	Comments
External Calibration	The external calibration calibrates the ADC voltage reference and passband flatness. Appropriate constants are stored in nonvolatile memory.	_
Self-Calibration	An onboard, 24-bit ADC and precision voltage reference are used to calibrate the DC gain and offset. Onboard channel alignment circuitry is used to calibrate the skew between channels. The self-calibration is initiated by the user through the software and takes approximately 60 seconds to complete. Appropriate constants are stored in nonvolatile memory.	
Calibration Interval	Specifications valid within 1 year of external calibration	_
Warm-up Time	15 minutes	_

Power

Specification	Typical	Maximum	Comments
+3.3 VDC	1.9 A	2.0 A	_
+12 VDC	2.6 A	2.9 A	_
Total Power	37.5 W	41.4 W	

Software

Specification	Value	Comments
Driver Software	NI-FGEN is an IVI-compliant driver that allows you to configure, control, and calibrate the NI 5451. NI-FGEN provides application programming interfaces for many development environments.	_
Application Software	NI-FGEN provides programming interfaces for the following application development environments: • LabVIEW	-
	• LabWindows TM /CVI TM	
	Measurement Studio	
	Microsoft Visual C++ .NET	
	Microsoft Visual C/C++	
	Microsoft Visual Basic	
Interactive Control and Configuration	The FGEN Soft Front Panel supports interactive control of the NI 5451. The FGEN Soft Front Panel is included on the NI-FGEN DVD.	
Software	Measurement & Automation Explorer (MAX) provides interactive configuration and test tools for the NI 5451. MAX is also included on the NI-FGEN DVD.	
	You can use the NI 5451 with NI SignalExpress.	

Hardware Front Panel

Figure 27. NI 5451 Front Panel

Specification	Value		Comments
Dimensions	3U, Two Slot, PXI Express module 21.6 cm × 4.0 cm × 13.0 cm (8.5 in. × 1.6 in. × 5.1 in.)		_
Weight	550 g (19.4 oz)		_
Front Panel Co	onnectors		
Label	Function(s)	Connector Type	_
CH 0+/I+	Differential and single-ended analog output	SMA	
CH 0-/I-	Differential analog output	SMA	
CH 1+/Q+	Differential and single-ended analog output	SMA	
CH 1-/Q-	Differential analog output	SMA	
CLK IN	Sample clock, Sample clock timebase, and Reference clock input	SMA	
CLK OUT	Sample clock, Sample clock timebase, and Reference clock output	SMA	
PFI 0	Marker output, trigger input, Sample clock output, exported trigger output	SMB	
PFI 1	Marker output, trigger input, Sample clock output, exported trigger output	SMB	
Front Panel Ll	ED Indicators		
Label	Function		For more information about the front panel LEDs, refer to the NI Signal Generators Help.
ACCESS	The ACCESS LED indicates the status of the PXI Express bus and the interface from the NI 5451 to the controller.		
ACTIVE	The ACTIVE LED indicates the status of the onboard generation hardware of the NI 5451.		

NI PXIe-5451 Environment

Note To ensure that the NI PXIe-5451 cools effectively, follow the guidelines in the *Maintain Forced-Air Cooling Note to Users* included in the NI 5451 kit. The NI PXIe-5451 is intended for indoor use only.

Specifications	Value	Comments
Operating	0 °C to +55 °C in all NI PXI Express chassis:	_
Temperature	Meets IEC 60068-2-1 and IEC 60068-2-2.	
	Note : Refer to KnowledgeBase 4AEB2ML1 at ni.com/kb for more information about maximizing PXI Express data transfer rates when operating at ambient temperatures below 10 °C.	
Storage Temperature	−25 °C to +85 °C. Meets IEC 60068-2-1 and IEC 60068-2-2.	_
Operating Relative Humidity	10% to 90%, noncondensing. Meets IEC 60068-2-56.	_
Storage Relative Humidity	5% to 95%, noncondensing. Meets IEC 60068-2-56.	_
Operating Shock	30 g, half-sine, 11 ms pulse. Meets IEC 60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.	Spectral and jitter specifications could degrade.
Storage Shock	50 g, half-sine, 11 ms pulse. Meets IEC 60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.	_
Operating Vibration	5 Hz to 500 Hz, 0.31 g _{rms} . Meets IEC 60068-2-64.	Spectral and jitter specifications could degrade.
Storage Vibration	5 Hz to 500 Hz, 2.46 g _{rms} . Meets IEC 60068-2-64. Test profile exceeds requirements of MIL-PRF-28800F, Class B.	_
Altitude	2,000 meter maximum (at 25 °C ambient temperature)	_
Pollution Degree	2	_

Compliance and Certifications

Safety

This product meets the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the *Online Product Certification* section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note For EMC declarations and certifications, refer to the *Online Product Certification* section.

CE Compliance $\subset \in$

This product meets the essential requirements of applicable European Directives as follows:

- 2006/95/EC; Low-Voltage Directive (safety)
- 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Online Product Certification

To obtain product certifications and the Declaration of Conformity (DoC) for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the *NI and the Environment* Web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all products *must* be sent to a WEEE recycling center. For more information about WEEE recycling centers, National Instruments WEEE initiatives, and compliance with WEEE Directive 2002/96/EC on Waste Electrical and Electronic Equipment, visit ni.com/environment/weee.

电子信息产品污染控制管理办法 (中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。 关于 National Instruments 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs_china。 (For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

Where to Go for Support

The National Instruments Web site is your complete resource for technical support. At ni.com/support you have access to everything from troubleshooting and application development self-help resources to email and phone assistance from NI Application Engineers.

A Declaration of Conformity (DoC) is our claim of compliance with the Council of the European Communities using the manufacturer's declaration of conformity. This system affords the user protection for electromagnetic compatibility (EMC) and product safety. You can obtain the DoC for your product by visiting ni.com/certification. If your product supports calibration, you can obtain the calibration certificate for your product at ni.com/calibration.

National Instruments corporate headquarters is located at 11500 North Mopac Expressway, Austin, Texas, 78759-3504. National Instruments also has offices located around the world to help address your support needs. For telephone support in the United States, create your service request at ni.com/support and follow the calling instructions or dial 512 795 8248. For telephone support outside the United States, contact your local branch office:

Australia 1800 300 800, Austria 43 662 457990-0, Belgium 32 (0) 2 757 0020, Brazil 55 11 3262 3599, Canada 800 433 3488, China 86 21 5050 9800, Czech Republic 420 224 235 774, Denmark 45 45 76 26 00, Finland 358 (0) 9 725 72511, France 01 57 66 24 24, Germany 49 89 7413130, India 91 80 41190000, Israel 972 3 6393737, Italy 39 02 41309277, Japan 0120-527196, Korea 82 02 3451 3400, Lebanon 961 (0) 1 33 28 28, Malaysia 1800 887710, Mexico 01 800 010 0793, Netherlands 31 (0) 348 433 466, New Zealand 0800 553 322, Norway 47 (0) 66 90 76 60, Poland 48 22 328 90 10, Portugal 351 210 311 210, Russia 7 495 783 6851, Singapore 1800 226 5886, Slovenia 386 3 425 42 00, South Africa 27 0 11 805 8197, Spain 34 91 640 0085, Sweden 46 (0) 8 587 895 00, Switzerland 41 56 2005151, Taiwan 886 02 2377 2222, Thailand 662 278 6777, Turkey 90 212 279 3031, United Kingdom 44 (0) 1635 523545

CVI, LabVIEW, National Instruments, NI, ni.com, the National Instruments corporate logo, and the Eagle logo are trademarks of National Instruments Corporation. Refer to the Trademark Information at ni.com/trademarks for other National Instruments trademarks. The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft Corporation in the United States and other countries. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your software, the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents.

NI PXIe-5451 仕様

400 MS/s 2 チャンネル任意波形発生器

このドキュメントには、NI PXIe-5451 (NI 5451) 任意波形発生器の仕様 が記載されています。

仕様は、以下の条件下において保証されています。

- 周囲温度での 15 分間のウォームアップ時間
- 一定に維持されたキャリブレーション間隔
- シャーシのファンの速度を HIGH に設定
- NI-FGEN 計測器ドライバを使用
- 計測器が安定した後に NI-FGEN 計測器ドライバセルフキャリブレーションを実行

特に注記のない限り、各仕様において以下の条件が適用されます。

- 50 Ω で信号をグランドに終端。
- メインパスを 2.5 V_{pk} 差動(ゲイン = 2.5、5 V_{pk-pk} 差動)に設定
- ダイレクトパスを 0.5 V_{pk} 差動(ゲイン = 0.5、1 V_{pk-pk} 差動)に設定
- サンプルクロックレートは 400 MS/s に設定
- 基準クロックなしのオンボードサンプルクロックを使用
- アナログフィルタ有効
- 0~55℃の周囲温度

仕様は、特に指定がない限り、 $0\sim55$ \mathbb{C} の周囲温度範囲内で使用した場合の、保証済みでトレーサブルな製品性能を記載しています。

標準値は、保証範囲外での使用における有用な製品性能を表しますが、これには測定の不確定性やドリフトに対するガードバンドは含まれていません。標準値は工場から出荷されたすべてのユニットで確認されるとは限りません。特に指定がない限り、標準値は、この製品の開発時または製造時の測定値に基づいて、23 ±5 ℃ (信頼水準 90%) の周囲温度範囲内で使用した場合の、ユニットの予想性能を記載しています。

公称値(または補足情報)は、仕様または標準値に記載されていない予想性能を含む、製品の有用な追加情報を記載しています。公称値は保証範囲外です。

仕様は事前の通知なしに変更されることがあります。最新の NI 5451 の 仕様については、ni.com/manuals をご覧ください。

NI 5451 のドキュメントにアクセスするには、スタート→すべてのプログラム→ National Instruments → NI-FGEN →ドキュメントを選択します。

動面

NI 5451 を長時間使用する場合、デバイスまたはシールドは安全な取扱温度を超え、火傷の原因になる場合があります。シールドに触れる前、またはデバイスをシャーシから取り外す前に、NI 5451 を十分に冷却してください。

電磁両立性ガイドライン

この製品は、製品仕様書に記載された電磁両立性(EMC)の規制基準および制限に基づいて所定の試験が実施され、これらに適合するものと認定されています。これらの基準および制限は、製品を意図された動作電磁環境で操作する場合に、有害な電磁妨害から保護するために設けられました。

この製品は、工場での使用を意図して設計されています。この製品が試験対象に接続されている場合、または住宅地域で使用されている場合、設置方法によっては有害な電磁妨害が発生する場合があります。製品によるラジオおよびテレビ受信への電磁妨害が起こる可能性、そして許容できない性能低下を最小限に抑えるには、製品ドキュメントの手順に厳密に従って取り付け、使用してください。

また、ナショナルインスツルメンツによって明示的に許可されていない製品への変更および修正は、地域の取締規則下で製品を操作するユーザの権利を無効にする可能性があります。

注意

EMC に適合させるには、PXI EMC フィラーパネル(NI 製品番号 778700-01)をすべての空いているシャーシスロットに取り付ける必要があります。

注意

この製品を使用する場合、シールドされたケーブルおよびアクセサリを使用してください。

目次

電磁両立性ガイドライン	2
CH 0+/-、CH 1+/-(アナログ出力、フロントパネルコネクタ)	
クロック	
オンボードサンプルクロック	38
外部サンプルクロック	
外部サンプルクロックタイムベース	
クロックをエクスポートする	
端子	42

CLK IN(サンプルクロックおよび基準クロック入力、	
フロントパネルコネクタ)	42
CLK OUT(サンプルクロックおよび基準クロック出力、	
フロントパネルコネクタ)	43
PFI 0 および PFI 1(プログラム可能な機能的インタフェース、	
フロントパネルコネクタ)	44
トリガおよびイベント	
トリガ	
イベント	
波形生成機能	
オンボード信号処理	
キャリブレーション	
電力	
ソフトウェア	58
物理特性	59
ハードウェアのフロントパネル	
NI PXIe-5451 の環境	61
認可および準拠	
安全性	62
電磁両立性	62
CE 準拠	62
オンライン製品認証	62
環境管理	63
11 1º 1 4±+0	, ,

アナログ出力

CH 0+/-、CH 1+/- (アナログ出力、フロントパネルコネクタ)

仕様	値	コメント
チャンネル数	2	_
出力タイプ	シングルエンド、差動	シングルエンド出 カはメインパスの みで使用可能。
出力パス	メインパス、ダイレクトパス	_
DAC 分解能	16 ビット	_

次の図は、差動オフセット電圧とコモンモードオフセット電圧の関係および、シングルエンド構成と差動構成で生成されたピーク - ピーク AC 信号を示します。ピーク - ピーク差動受信機電圧は、信号に存在するコモンモードオフセット電圧およびその他のコモンモードノイズを除去します。

図1 コモンモードオフセットおよび差動オフセットの定義

 $V_{PPD} = V_{PPSE+} + V_{PPSE-}$

V_{PPD} = 差動電圧のピーク - ピーク

V_{PPSE} = シングルエンド電圧のピーク - ピーク

V_{DO} = 差動オフセット電圧

V_{CMO} = コモンモードオフセット電圧

メモ 瞬時差動電圧は、出力(CH+)-出力(CH-)に等しくなります。出力オフセット設定はゲイン設定に依存しません。

仕様			値		コメント
振幅とオフセット			-	-	
フルスケール振	シングルエンドメインパス				CH+ で測定。
幅範囲*	フラットネ		振幅(V _{PPSE}) †	各端子の V _{pk} は、 アナログオフセッ
	ス補正状態	負荷	最小値	最大値	ト + 波形データ × ゲイン。
	無効	50 Ω	0.00176	2.50	
		1 kΩ	0.00336	4.76	
		開回路	0.00352	5.00	
	有効	50 Ω	0.00124	1.75	
		1 kΩ	0.00235	3.33	
		開回路	0.00247	3.50	
	差動メインパス			差動ピーク - ピー ク信号の振幅とし	
			振幅(V _{PPD}) †	て測定(V _{pk-pk})各
			最小値	最大値	端子の V _{pk-pk} は、 差動 V _{pk-pk} の半分
	無効	50 Ω	0.00352	5.00	の値。
		1 kΩ	0.00671	9.52	- 各端子の V _{pk} は、 差動オフセット ×
		開回路	0.00705	10.00	0.5 + コモンモード オフセット + 波形
	有効	50 Ω	0.00247	3.50	データ×ゲイン /2
		1 kΩ	0.00470	6.66	
		開回路	0.00493	7.00	

メモ: すべての構成において、CH±の端子は両方とも同じ値の負荷でグランドに終端されています。

電圧出力レベルはソフトウェアで設定されており、ラインにつき50Ωの負荷インピーダンス(デフォルト)またはユーザ指定の負荷抵抗に基づきます。コモンモードオフセットは、出力端子が同等の負荷でグランドへ終端されることを想定しています。詳細については、『NI 信号発生器ヘルプ』から NI 信号発生器ヘルプ→デバイス→ NI 5451 →フロントパネルコネクタ→差動およびシングルエンドチャンネルコネクタを参照してください。

NI-FGEN のゲイン値は、 V_{pk-pk} の半分の振幅である V_{pk} に相当します。

^{*3.2} V のシングルエンドピーク出力電圧を超える波形データ、オフセット、ゲインの組み合わせでは、波形にクリッピングが発生する可能性があります。

[†]振幅値は、DACのフルスケールが使用されていると想定しています。最小値よりも小さい振幅を必要とする場合は、DACのフルスケールよりも小さい波形またはデジタルゲインを使用できます。波形データを使用することでさらにオフセットが追加される場合があります。

仕様	値				コメント
振幅とオフセット					
フルスケール振 幅範囲 [*]	差動ダイレクトパス				CH 0+/- または CH 1+/- 端子は両
	フラットネ	負荷	振幅(V _{PPD}) †	方とも同じ値の負
	ス補正状態		最小値	最大値	│ 荷でグランドに終 │ 端。
	無効	50 Ω	0.708	1.00	シングルエンドの
		1 kΩ	1.35	1.90	値は差動値の半分。
		開回路	1.42	2.00	
	有効	50 Ω	0.567	0.8	
		1 kΩ	1.08	1.52	
		開回路	1.14	1.6	
振幅分解能	4桁<0.0025	4桁 <0.0025%(振幅範囲の 0.0002 dB)			

メモ: すべての構成において、CH± の端子は両方とも同じ値の負荷でグランドに終端されています。

電圧出力レベルはソフトウェアで設定されており、ラインにつき50Ωの負荷インピーダンス(デフォルト)またはユーザ指定の負荷抵抗に基づきます。コモンモードオフセットは、出力端子が同等の負荷でグランドへ終端されることを想定しています。詳細については、『NI 信号発生器ヘルプ』から NI 信号発生器ヘルプ→デバイス→ NI 5451 →フロントパネルコネクタ→ 差動およびシングルエンドチャンネルコネクタを参照してください。

NI-FGEN のゲイン値は、 V_{pk-pk} の半分の振幅である V_{pk} に相当します。

NI PXIe-5451 仕様 6 ni.com/jp

^{*3.2} V のシングルエンドピーク出力電圧を超える波形データ、オフセット、ゲインの組み合わせでは、波形にクリッピングが発生する可能性があります。

[†]振幅値は、DACのフルスケールが使用されていると想定しています。最小値よりも小さい振幅を必要とする場合は、DACのフルスケールよりも小さい波形またはデジタルゲインを使用できます。波形データを使用することでさらにオフセットが追加される場合があります。

仕様		コメント	
振幅とオフセット			
アナログオフ セット範囲	メイ	ンパス	CH 0+/- または — CH 1+/- 端子は両
(端子あたり)	負荷	振幅(V _{pk})*、†	方とも同じ値の負 一 荷でグランドに終
	50 Ω	±1.00	端。オフセットは、 コモンモードオフ
	1 kΩ	±1.905	── セット電圧と差動 ── オフセット電圧の
	開回路	±2.00	組み合わせ。
	ダイレ		
	負荷	振幅(V _{pk}) ^{*、†}	
	任意	_	
オフセット分解能	メインパス		差動、コモンモー = ド、シングルエン
nc	4 桁 < オフセット範囲の 0.002%		── 「、

メモ: メインパスでは、 $V_{CM} + V_{DIFF}/2$ および $V_{CM} - V_{DIFF}/2$ は ± 2 V 間で、開回路の負荷になります。

すべての構成において、CH±の端子は両方とも同じ値の負荷でグランドに終端されています。

電圧出力レベルはソフトウェアで設定されており、ラインにつき 50 Ω の負荷インピーダンス(デフォルト)またはユーザ指定の負荷抵抗に基づきます。コモンモードオフセットは、出力端子が同等の負荷でグランドへ終端されることを想定しています。詳細については、『NI 信号発生器ヘルプ』から NI 信号発生器ヘルプ→デバイス→ NI 5451 →フロントパネルコネクタ→ 差動およびシングルエンドチャンネルコネクタを参照してください。

^{*}波形データを使用することでさらにオフセットが追加される場合があります。

^{†3.2} V のシングルエンドピーク出力電圧を超える波形データ、オフセット、ゲインの組み合わせでは、波形にクリッピングが発生する可能性があります。

仕様	値	コメント
確度		
DC 確度	シングルエンドメインパス	DMM で測定。
	 絶対値 ゲイン誤差: セルフキャリブレーション温度 ±5 ℃以内の場合: ± (シングルエンド出力範囲の 0.4%* + 0.5 mV) ± (シングルエンド出力範囲の 0.3%* + 0.3 mV)、標準 セルフキャリブレーション温度 ±5 ℃を上回る場合: - 0.05%/ ℃ - 0.035%/ ℃、標準 オフセット誤差: ± (オフセットの 0.15% + シングルエンド出力範囲の 0.04%* + 1.25 mV) (0 ~ 55 ℃) ± (オフセットの 0.08% + シングルエンド出力範囲の 0.025%* + 0.75 mV) (0 ~ 55 ℃)、標準 	高インピーダ ンスでグラされ ドにあ方で測定。

^{*} DC 確度の場合、差動出力範囲は、高インピーダンスの 2× ゲイン設定により定義されます。たとえば、ゲイン値が 2.5、負荷 インピーダンスが 1 G Ω 、差動出力範囲が 5 V の DC 信号確度は、以下の式を使用して計算できます。

セルフキャリブレーション温度 ±5 ℃以内のゲイン誤差 : ± (0.4%×5 V + 0.5 mV) = ±20.5 mV

セルフキャリブレーション温度 +10 ℃のゲイン誤差: ±20.5 mV - 0.05% × 5 ℃× (5 V) = +8 mV/-33 mV

オフセット誤差: (2 V オフセット (ゲイン 2.5 時)) ± (0.15%× (2 V) + 0.04%× (5 V) + 1.25 mV) = ±6.25 mV

仕様	値	コメント
確度(続き)		
DC 確度	差動メインパス	DMM で測定。
	絶対値	高インピーダ
	ゲイン誤差:	ンスでグラン ドに終端され
	セルフキャリブレーション温度 ±5 ℃以内の場合 : ±(差動出力範囲 * の 0.6% + 1 mV) ±(0.43% × 差動出力範囲 * + 500 μV)、標準	た両方の出力端子で測定。
	セルフキャリブレーション温度 ±5 ℃を上回る場合: - 0.05%/ ℃ - 0.035%/ ℃、標準	
	差動オフセット:	
	±(差動オフセットの 0.3% + 差動出力範囲の 0.01%* + 2 mV)	
	±(差動オフセットの 0.16% + 差動出力範囲の 0.01%* + 1 mV)、標準	
	コモンモードオフセット:	
	±(コモンモードオフセットの 0.3% + 2 mV)	
	±(コモンモードオフセットの 0.16% + 1 mV)、標準	
	チャンネル間、相対	
	ゲイン誤差:	
	セルフキャリブレーション温度 ±5 ℃以内の場合 : ±(差動出力範囲 * の 0.66% + 1.75 mV)	
	セルフキャリブレーション温度 ±5 ℃を上回る場合: - 0.02%/ ℃ - 0.01%/ ℃、標準	

^{*}DC 確度の場合、差動出力範囲は、2x 高インピーダンスのゲイン設定により定義されます。たとえば、ゲイン値が 5、負荷インピーダンスが 1 G Ω 、差動出力範囲が 10 V の DC 信号確度は、以下の式を使用して計算できます。

セルフキャリブレーション温度 ±5 ℃以内のゲイン誤差:± (0.6%×10 V+1 mV) = ±61 mV

セルフキャリブレーション温度 + 10 ℃のゲイン誤差 : ±61 mV - 0.05%×5 ℃× (10 V) = +36 mV/-86 mV

差動オフセット誤差 : (要求した差動オフセット = 1 V(ゲイン 5 時)) ± (0.3% × (1 V) + 0.01% × (10 V) + 2 mV) = ±6 mV

仕様	(da	コメント
確度(続き)		
DC 確度	差動ダイレクトパス	DMM で測定。
	 絶対値 ゲイン誤差: セルフキャリブレーション温度 ±5 ℃以内の場合: 差動出力範囲*の ±0.2% セルフキャリブレーション温度 ±5 ℃を上回る場合: + 0.030%/ ℃ + 0.015%/ ℃、標準 差動オフセット: ± 1 mV (0 ~ 55 ℃) コモンモードオフセット†: ±350 µV (0 ~ 55 ℃) チャンネル間、相対 ゲイン誤差: セルフキャリブレーション温度 ±5 ℃以内の場合: 差動出力範囲*の ±0.08% セルフキャリブレーション温度 ±5 ℃を上回る場合: + 0.010%/ ℃ + 0.005%/ ℃、標準 	マンドた端で、 サンドを端の測にできた。 サンフー差トでいる。 イスに両子で リンフ調が、 リンフ調が、 リンフ調が、 リンフ調が、 リンフ調が、 リンフ調が、 リンフ調が、 リンフ調が、 リンフ調が、 リンフ調が、 リンフ調が、 リンフ調が、 リンフ・ リンフ・ リンで終方で リンフ・ リンで終方で リンフ・ リンフ・ リンで終方で リンフ・ リンフ・ リンフ・ リンで リンで リンで リンで リンで リンで リンで リンで リンで リンで

^{*}DC 確度の場合、差動出力範囲は、 $2\times$ 高インピーダンスのゲイン設定により定義されます。たとえば、ゲイン値が 1、負荷インピーダンスが 1 G Ω 、差動出力範囲が 2 V 0 DC 信号確度は、以下の式を使用して計算できます。

セルフキャリブレーション温度 ±5 ℃以内のゲイン誤差: ±0.2%× (2 V) = ±4 mV

セルフキャリブレーション温度 + 10 ℃でのゲイン誤差: 4 mV + 0.03% × 5× (2 V) = +7 mV/-1 mV

[†]ダイレクトパスのコモンモードオフセットはアクティブ回路により最小限に抑えられます。外部の 0 以外のコモンモードオフセットを出力端子に適用することは推奨しません。ただし、コモンモード回路は、コモンモードバイアス電流の 5 mA まで電力をシンクまたはソースすることが可能です。同じインピーダンスで両方の出力端子をグランドに終端してください。出力端子がグランドに終端されていない場合、最大終端電圧は 250 mV(50 Ω 負荷)です。

仕様	í	<u>i</u>	コメント
確度(続き)			
AC 振幅確度	シングルエン	DMM で測定	
	絶対値 セルフキャリブレーション ± (シングルエンド出力範 ± (シングルエンド出力範	(高インピーダ ンスのフルス ケールデータ、 50 kHz の正弦 波、 400 MS/s)。	
		インパス 	DC 確度で定義
	絶対値 セルフキャリブレーション ± (差動出力範囲の 0.8% ± (差動出力範囲の 0.4%	された出力範 囲は、次の値 で除算して V _{RMS} に変換す る必要があり	
	差動ダイし	ノクトパス	ます。(2√2).
	絶対値セルフキャリブレーション: 差動出力範囲の ±0.5%チャンネル間、相対 セルフキャリブレーション:		
	差動出力範囲の ±0.2%、差	差動出力範囲の ±0.07%、標準 □	
チャンネル間 タイミングア ライメント確 度	メインパス 50 ps 40 ps、標準	ダイレクトパス 35 ps 25 ps、標準	セルフキャリ ブレーション 実行時の温度 ±5 ℃以内。
		,	アライメント は、「サンプル クロック遅延」 の使用による 手動調整によ り向上が可能。

仕様		値		コメント
出力特性				
DC 出力抵抗	メインパス		ダイレクトパス	
	50 Ω 公称、1 コネクタあ たり	50 Ω 公称、1 コ	イクタの にり	出力端子は、同 じインピーダン スでグランドに 終端される必要 あり。
反射減衰量	シングルエンドおよび差 動メインパス	シングルエン ドダイレクト パス	差動ダイレ クトパス	公称。
	30 dB(最大 20 MHz) 27 dB(最大 60 MHz) 12 dB(最大 135 MHz)	26 dB, 5 MHz ~ 60 MHz	35 dB(最大 20 MHz) 22 dB(最大	
	12 GB (#XX 100 IVII IZ)	15 dB, 60 MHz ~ 145 MHz	60 MHz) 12 dB(最大 145 MHz)	
負荷インピー ダンス補正	出力振幅は、ユーザ指定の スに対して補正されていま	ソフトウェアで 実行。		
出カカプリン グ	DC	_		
出力有効	ソフトウェアで選択可能。 抵抗で終端。	無効時に、出力は	50 Ω、1 W Ø	_

^{*}電圧出力レベルはソフトウェアで設定されており、ラインにつき50Ωの負荷インピーダンス(デフォルト)またはユーザ指定の負荷抵抗に基づきます。コモンモードオフセットは、出力端子が同等の負荷でグランドへ終端されることを想定しています。詳細については、『NI 信号発生器ヘルプ』から NI 信号発生器ヘルプ→デバイス→ NI 5451 →フロントパネルコネクタ→差動およびシングルエンドチャンネルコネクタを参照してください。

仕様		値	コメント
出力特性(続き)			
最大出力過負	メインパス	ダイレクトパス	ダイレクトパス
荷	±12 V _{pk} (50 Ω ソースから)	±8 V _{pk} (50 Ω ソースから)	に限り、 CH 0+/- または CH 1+/- 端子は 両方とも同じ値 の負荷でグラン ドに終端。
波形加算	出力端子は、波形加算をサポートしています。これは、複数の NI 5451 信号発生器の出力を直接接続できるということです。		合計電圧が最大 電圧レンジを上 回った場合、ク リッピングが発 生する可能性あ り。

仕様	f	コメント	
周波数応答			
アナログ帯域幅	ベースバンド	複素ベースバンド	標準。-3 dB、
	メインパス、	フィルタ無効	400 MS/s。DAC の sinc 応答を含む。フ
	各 I および Q 出力で 180 MHz	外部 I/Q 変調器使用時に 360 MHz	ラットネス補正無 効。
	メインパス、	フィルタ有効	
	各 I および Q 出力で 135 MHz	外部 I/Q 変調器使用時に 270 MHz	
	ダイレクトパス		
	各 I および Q 出力で 145 MHz	外部 I/Q 変調器使用時に 290 MHz	
アナログ	メインパス	ダイレクトパス	
フィルタ	イメージ抑制用 7 次楕円 フィルタ	イメージ抑制用 4 次フィ ルタ	

仕様	ſ	コメント				
周波数応答(続き)						
パスバンドフラット ネス	シングルエンドおよ フィル	50 kHz(100 Ω 差 動負荷、400 MS/s)				
	フラットネス補正 無効	フラットネス補正 有効 ^{*、†}	を基準。† フラットネス補正 は、最大 0.3375 ×			
0 ~ 60 MHz†\ ‡	0.8 dB、標準	±0.30 dB	サンプルレートま			
		±0.20 dB、標準	│ でのアナログ周波 │ 数応答および DAC			
60 MHz ^{†, ‡} ~ 135 MHz ^{†, **}	3 dB、標準	±0.50 dB ±0.30 dB、標準	の sinc 応答を補正。 受信機反射減衰量がフラットネスを 劣化させる可能性あり。			
0 ~ 60 MHz ^{†、‡} に 一致するチャンネル 間のパスバンドフ ラットネス	±0.12 dB、標準	±0.12 dB、標準	各チャンネルで 50 kHz、400 MS/s を基準。 異なる負荷により、			
60 MHz ^{†、‡} ~ 135 MHz ^{†、} ** に一致 するチャンネル間の パスバンドフラット ネス	±0.20 dB、標準	±0.14 dB、標準	性能が悪化する可能性あり。 50 kHz の基準確度における正しい端子構成については、「AC 振幅確度」「メインパス」仕様を参照。			

メモ: フィルタが無効の場合、フラットネス補正はサポートされません。

^{*} OSP 無効時、または OSP 有効で 2x の補間時に使用できます。OSP でのより高い補間レートの場合、OSP フィルタは不要なリプルを発生させる可能性あり。OSP フィルタのリプルに関する詳細については、「オンボード信号処理」セクションにある「補間フラットフィルタパスバンドリプル」仕様を参照してください。

[†]フラットネス補正有効の周波数範囲は、サンプルレートに依存します。60 MHz 周波数は、0 \sim 60 MHz パスバンドフラットネス仕様によって定義されます。

[‡] 値 = Min (0.3375×サンプルレート、60 MHz)

^{**} 値 = 0.3375×サンプルレート

仕様	ſ	コメント				
周波数応答(続き)						
パスバンドフラッ	ダイレ:	ウトパス	50 kHz(100 Ω 差			
トネス	フラットネス補正 無効	フラットネス補正 有効 ^{*、†}	】動負荷、 ↓ 400 MS/s)を基 ↓ 準。†			
0 ~ 60 MHz ^{†, ‡}	0.5 dB、標準	±0.24 dB	フラットネス補正			
		±0.13 dB、標準	は、最大 0.3 × サン プルレートまでの アナログ周波数応 答および DAC の sinc 応答を補正。			
60 MHz ^{†,} ‡ ~	1.9 dB、標準	±0.34 dB	受信機反射減衰量がステットネスを			
120 MHz ^{†,} **		±0.19 dB、標準	がフラットネスを 劣化させる可能性 あり。			
0 ~ 60 MHz ^{†、‡} に 一致するチャンネ ル間のパスバンド	0.05 dB、標準	0.03 dB、標準	各チャンネルで 50 kHz、400 MS/s を基準。			
フラットネス			異なる負荷により、 性能が悪化する可 能性あり。			
			50 kHz の基準確度			
60 MHz ^{†, ‡} ~ 120 MHz ^{†, **} に一 致するチャンネル 間のパスバンドフ ラットネス	0.18 dB、標準	0.04 dB、標準	に関する詳細については、「AC振幅を度」「差動ダイレクトパス」仕様を参照。			

^{*}OSP 無効時、または OSP 有効で 2× の補間時に使用できます。OSP でのより高い補間レートの場合、OSP フィルタは不要なリプルを発生させる可能性あり。OSP フィルタのリプルに関する詳細については、「オンボード信号処理」セクションにある「補間フラットフィルタパスバンドリプル」仕様を参照してください。

[†]フラットネス補正有効の周波数範囲は、サンプルレートに依存します。60 MHz 周波数は、0 \sim 60 MHz パスバンドフラットネス仕様によって定義されます。

[‡] 値 = Min (0.3×サンプルレート、60 MHz)

^{**} 値 = 0.3 × サンプルレート

図 2 メインパスフィルタ有効振幅応答(フラットネス補正有効および無効、 400 MS/s、ゲイン = 2.5、差動、50 kHz を基準、標準単位)

図3 ダイレクトパス振幅応答(フラットネス補正有効および無効、 400 MS/s、差動、50 kHz を基準、標準単位)

図 4 メインおよびダイレクトパス振幅応答(フラットネス補正有効、 400 MS/s、差動、50 kHz を基準、平均単位)

図5 イメージ抑制用フィルタのメインパス周波数応答特性、標準単位

図6 イメージ抑制用フィルタのダイレクトパス周波数応答特性、標準単位

メモ DAC サンプリングによる sinc 応答は、図 5 および図 6 には含まれていません。

仕禁				a					コメンメロ
スペクトル特性	₩								
1 MHz 時の				SFDR (dB)	(dB)				公称。
ス フ フ リ リ リ シ マ タ タ ス ス ク		ッング	シングルエンドメインパス	ンパス	THE	差動メインパス		差動ダイ レクトパ ス	400 MS/s、 振幅 -1 dBFS。 エイリア
(SFDR)	周波数範	ゲイン = 0.25	ゲイン = 0.625	ゲイン= 1.25	ゲイン= 0.5,	ゲイン = 1.25,	ゲイン = 2.5,	ゲイン = 0.5,	スされた 高調波を 含む。差動
高調波あり SFDR	DC ~	O A PPSE	1.23 v ppse 82	Z.O v PPSE	Odd v	2.3 VPPD 85	Odda >	88 88	出力は、 バランま たは差動
	DC ~		75			75		75	イソプル よりシプ グレナン ドグ単ン
高調波なし SFDR	DC ~ 7 MHz	82	88	95		86		86	か端子は50Ωでグランドに
	DC ~ 200 MHz	82	83	84		84		84	終端。

井				車					コメント
スペクトル特性	性(続き)								
高調波あり				SFDR (dB)	(dB)				400 MS/s.
SFD18								差動ダイ レクトパ	新島 -1 dBFS。 DC ~
		シンク	シングルエンドメインパス	ハパス		差動メインパス	λ	Υ	200 MHz
		ゲイン=	ゲイン=	ゲイン=	ゲイン=	ゲイン=	グイン=	ゲイン=	まふぎ紀。すべての
	周波数	0.5 V _{PPSE}	0.023, 1.25 V _{PPSE}	1.23, 2.5 V _{PPSE}	U.S. 1 V _{PPD}	1.23, 2.5 V _{PPD}	5.5 $5 V_{PPD}$	0.3, 1 V _{PPD}	値は標準点、エイ
	10 MHz	73 (75)*	73 (75)*	73 (75)*	73 (75)*	73 (75)*	73 (73)*	73 (75)*	リアスさ れた高調 波が合ま
	60 MHz	99	61	56	69	67	64	70 (72)*	ある。悪地とは、ボルンに、ハント・ハン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	100 MHz	53	52	49	55	54	53	09	インシャン グレン グ ガ が が が に が に が に が に が に が に が に が に
	120 MHz	62	62	62	62	62	62	62	4年 5000 5000 5000 5000 5000 5000 5000 50
	160 MHz			I				62	° E
神にこれがにまる	1. ** ** ** ** ** ** ** ** ** ** ** ** **	//:: L / + 3/3/V	・ TATA A MANA MASS は、 サンプルファントはの 100 MH2の正弦法(AO個の結右なせンプルを今ぎ法式)の仕様です。 括河内のMSS は、 300 0 MSS はいっぱい コンプルンプル	の単しり、単独生の	を は サンプル	を 会が 出版) の 仕ま	第7十 年間内の	SVV 0 000 +/ 崇十	-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\

▶►: 初めに記載した仕様は、400 MS/s サンブルレート時の 10.0 MHz の正弦波(40 個の特有なサンブルを含む波形)の仕様です。括弧内の仕様は、399.9 MS/s サンブルレート時の 10.0 MHz の正弦波(特有な DAC 符号による 3000 を超える数の特有なサンブルを含む波形)の仕様です。 DAC の非線形がダイナミック仕様を制限しま 少数の特有なサンプルで構成された周期波形では、 優れたスプリアス性能を提供します。 *変調信号のような長い非反復波形は、 す。

仕様		値		コメント
スペクトル特性(続き)			
高調波なし		SFDR	(dB)	400 MS/s サンプル
SFDR	周波数	シングルエンドお よび差動メインパ ス	差動ダイレクトパ ス	レート。振幅 -1 dBFS。DC 〜 200 MHz まで測定。 すべての値は標準
	10 MHz	74 (76)*	74 (76)*	で、エイリアスされ た高調波が含まれ る。差動出力は、バ
	60 MHz	72 (74) [*]	72 (74) [*]	う。 注動出がは、ハ ランによりシングル エンドで測定。
	100 MHz	66	64	同一ゲイン範囲を高 調波あり SFDR とし て特徴づけ。
	120 MHz	62	62	
	160 MHz	_	62	

メモ: 初めに記載した仕様は、400 MS/s サンプルレート時の 10.0 MHz の正弦波(40 個の特有なサンプルを含む波形)の仕様です。括弧内の仕様は、399.9 MS/s サンプルレート時の 10.0 MHz の正弦波(特有な DAC 符号による 3000 を超える数の特有なサンプルを含む波形)の仕様です。

[・]変調信号のような長い非反復波形は、優れたスプリアス性能を提供します。少数の特有なサンプルで構成された周期波形では、DAC の非線形がダイナミック仕様を制限します。

仕様		fi	İ	コメント
スペクトル特性	(続き)			
帯域外性能		−ン周波数 Hz)	帯域外スプリアスレベル (dBm)	公称。記載し た周波数、 400 MS/s でフ
		メインパス、	フィルタ有効	ルスケールの
	0 ~	· 20	<-65 dBm	正弦波を生成。 200 MHz ~
	20 ^	~ 50	<-45 dBm	2 GHz まで測 定。アンチイ メージング
		ダイレク	フトパス	フィルタは
	0 ~	- 20	<-80 dBm	400 MS/s で固 定および最適 化。
	20 ^	~ 50	<-65 dBm	
チャンネル間 クロストーク	アグレッサ 出力振幅		ビクティム チャンネル、	
	2.5	-90 dBc√0 ~	0 V DC 出力、 400 MS/s サン プルレートで	
	1.25	-85 dBc、0 ~ 200 MHz		シングルエン ドを測定。
	0.5	-80 dBc√0 ~	アグレッサ チャンネルは、 50 Ω、正弦波	
	0.15	-70 dBc、0 ~	200 MHz	出力、 400 MS/s サン
		ダイレク	フトパス	プルレートで 終端。
	<80 dBc, 0 ~			すべて公称値。

^{*}dBc値は、アグレッサチャンネルの差動トーン電力を基準とします。結果、ビクティムおよびアグレッサフィルタの構成、端子構成、およびビクティムチャンネルの出力振幅に依存しません。

仕様			値		コメント
スペクトル特性(統き)				
全高調波歪み		メ~	インパス		振幅 -1 dBFS。
(THD)			THD (d	dBc)	第2高調波か ら第6高調波
	出力	周波数	シングルエン		を含む。
	振幅	(MHz)	۴	差動	すべての値は 標準。
	2.5 V _{PPSE} , 5 V _{PPD}	10	-71	-71	1%0 0.1 MHz のオ
	O V PPD	20	-66	-69	フセットで測 定。
		40	-59	-64	性。 400 MS/s サン
		60	-55	-61	プルレート。
		80	-51	-55	差動メインパ
		120	-50	-51	ス出力は、バ ランによりシ
		140	-50	-52	ングルエンド で測定。
		160	-50	-53	, , , , , , , , , , , , , , , , , , ,
	1.25 V _{PPSE} ,	10	-78	- 75	
	2.5 V _{PPD}	20	-72	-73	
		40	-63	-69	
		60	-60	-65	
		80	-56	-59	
		120	-56	-59	
		140	-56	-59	
		160	-55	-59	
	0.5 V _{PPSE} \	10	-80	-79	
	1 V _{PPD}	20	-74	-75	
		40	-68	-69	
		60	-64	-69	
		80	-62	-65	
		120	-65	-70	
		140	-64	-69	
		160	-61	-66	

仕様			値	コメント
スペクトル特性(i	続き)			
全高調波歪み		ダイレ	/ クトパス	振幅 -1 dBFS。
(THD)	出力 振幅	周波数 (MHz)	THD (dBc)	第2高調波から第6高調波を含む。
	0.5 V _{PPSE}	10	-75	すべての値は
	1 V _{PPD}	20	-70	標準。
		40	-68	── 0.1 MHz のオ フセットで測
		80	-68	定。
		100	-68	── 400 MS/s サン プルレート。
		120	-78	差動ダイレク
		160	-83	トパス出力は、 バランにより シングルエン ドで測定。

仕様			値	コメント
スペクトル特性	(続き)			
相互変調歪み	٤	·ングルエンド	および差動メインパス	各トーンの波
(IMD ₃)	出力 振幅	周波数 (MHz)	IMD (dBc)	形振幅は、 -7 dBFS。 標準。
	2.5 V _{PPSE} ,	10	-87	振手。 400 MS/s サン
	5 V _{PPD}	20	-82	プルレート。
		40	-71	2 トーン周波数 は、周波数
		60	-63	±100 kHz.
		80	-57	
		120	-51	
		160	-48	
	1.25 V _{PPSE} ,	10	-92	
	2.5 V _{PPD}	20	-87	
		40	-79	
		60	-72	
		80	-66	
		120	-61	
		160	-57	
	0.5 V _{PPSE} ,	10	-87	
	1 V _{PPD}	20	-85	
		40	-82	
		60	-79	
		80	-75	
		120	-79	
		160	-75	

仕様			値	コメント
スペクトル特性(続き)			
相互変調歪み	シ	ングルエンドね	および差動メインパス	各トーンのデ
(IMD ₃)	出力 振幅	周波数 (MHz)	IMD (dBc)	ジタル振幅 は、-7 dBFS。 すべての値は
	0.1 V _{PPSE}	10	-89	標準。
	0.2 V _{PPD}	20	-83	400 MS/s サン プルレート。
		40	-78	フルレート。 2 トーン周波数
		60	-73	は、周波数
		80	-69	±100 kHz。 —— 差動ダイレク
		120	-66	トパス出力は、
		160	-65	バランにより シングルエン
		ドで測定。		
	出力 振幅	周波数 (MHz)	IMD (dBc)	
	0.5 V _{PPSE} ,	10	-84	
	1 V _{PPD}	20	-81	
		40	-75	
		80	-71	
		100	-68	
		120	-68	
		160	-66	

仕様			値			コメント
スペクトル特性(#	売き)					
平均ノイズ密度	出力	振幅	3	平均ノイズ密	き	-40 dBFS を生成す
		シンク	ブルエンド	メインパス		】る DC ~ 200 MHz までの平均ノイズ密
	V _{PPSE}	dBm	<u>nV</u> √Hz	dBm/Hz	dBFS/Hz	度、400 MS/s で 1 MHz 正弦波。 差動出力はバランに
	2.5	12	12.57	-145	-157	より測定。
	0.5	-2	9.99	-147	-145	差動 dBm 数値は 50 Ω システムに基
	0.06	-20.4	9.99	-147	-126.6	準。
		:	<u>-</u> 差動メイン	パス		
	V _{PPD}	dBm	$\frac{\text{nV}}{\sqrt{\text{Hz}}}$	dBm/Hz	dBFS/Hz	
	5	18	17.76	-142	-160	
	1	4	14.11	-144	-148	
	0.12	-14.4	14.11	-144	-129.6	
		差	動ダイレク	トパス		
	V_{PPD}	dBm	$\frac{\text{nV}}{\sqrt{\text{Hz}}}$	dBm/Hz	dBFS/Hz	
	1	4.0	2.24	-160	-164	

図7 シングルエンドメインパス、全高調波歪み、標準

図8 差動メインパス、全高調波歪み、標準

図9 ダイレクトパス、全高調波歪み、標準

図 10 シングルエンドおよび差動メインパス、相互変調歪み、 200 kHz 間隔、標準

図11 ダイレクトパス、相互変調歪み、200 kHz 間隔、標準

図 12 シングルエンドメインパス 10.000 MHz シングルトーンスペクトル、 400 MS/s、-1 dBFS、標準単位

図 13 シングルエンドメインパス 10.100 MHz シングルトーンスペクトル、 400 MS/s、-1 dBFS、標準単位

図 14 シングルエンドメインパス 110.100 MHz シングルトーンスペクトル、 400 MS/s、-1 dBFS、標準単位

図 15 差動メインパス 10.000 MHz シングルトーンスペクトル、 400 MS/s、-1 dBFS、バランにより測定、標準単位

図 16 シングルエンドメインパス相互変調歪み、1 MHz 間隔、20 MHz トーン、 400 MS/s、-7 dBFS、平均単位

図 17 ダイレクトパス相互変調歪み、1 MHz 間隔、20 MHz トーン、 400 MS/s、-7 dBFS、標準単位

図 18 ダイレクトパス 10.000 MHz シングルトーンスペクトル、 400 MS/s、-1 dBFS、標準単位

図 19 ダイレクトパス 10.100 MHz シングルトーンスペクトル、 400 MS/s、-1 dBFS、標準単位

メモ すべてのスペクトルグラフのノイズフロアは、測定デバイスによって制限されます。

仕様				値				コメント
出力位相ノイン	ズおよびジャ	ッタ [*]						
サンプルク	出力周	シフ	ステム位相]ノイズ密	度† (dBc/H	z)	システム	
ロックソー ス	波数 (MHz)	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz	出力統合 ジッタ†	_
内部、高分 解能クロッ	10	<-121	<-137	<-146	<-152	<-153	<350 fs	標準。
ク、 400 MS/s	100	<-101	<-119	<-126	<-136	<-141	<350 fs	
CLK IN 外部 10 MHz 基準	10	<-122	<-135	<-146	<-152	<-153	<350 fs	標準。
クロック、 400 MS/s	100	<-105	<-115	<-126	<-136	<-141	<350 fs	

メモ: 仕様はメインパスおよびダイレクトパス両方で有効ですが、出力ノイズフロアによって制限されます。

^{*400} MS/s の出力周波数で正弦波を生成します。

[†]システム出力ジッタ(100 Hz \sim 100 kHz を統合)。

図 20 代表的なモジュールでの位相ノイズ、100 MHz 正弦波、400 MS/s 内部クロックサンプルレート、シャーシファン設定 LOW、基準クロックあり / なしの状態を示す

図 21 代表的なモジュールでの位相ノイズ、100 MHz 正弦波、400 MS/s 内部クロックサンプルレート、シャーシファン設定 HIGH、基準クロックなし

仕様	í	直	コメント
一般的な関数にお	おける推奨する最大周波数		
機能	メインパス	ダイレクトパス	ダイレクト
正弦波	135 MHz	145 MHz	パスは、周 波数領域の
方形波	150 MHz*	33 MHz (<133 V/µs スルーレート) †	性能に最適 化。
ランプ波	20 MHz ⁻	1 MHz (<50 V/μs スルーレート) †	
三角波	20 MHz [*] (5 MHz)	8 MHz	
パルス応答			
立ち上がり /	フラットネス補正無効	フラットネス補正有効	標準。
立ち下がり時 間	メインパス、	フィルタ無効	50 Ω 負荷の 値。
(10 ~ 90%)	1.5 ns	_	一世。
	メインパス、	フィルタ有効	
	3 ns	3 ns	
	ダイレタ	クトパス	
	3 ns	2.5 ns	
アベレーショ	フラットネス補正無効	フラットネス補正有効	標準。
ン	メインパス、	フィルタ無効	50 Ω 負荷の 値。
	3%	_	一世。
	メインパス、	フィルタ有効†	
	18%	25%	
	ダイレク	ァ トパス *	
	18% (7%)‡	22%	

^{*}フィルタ無効。

[†]パルス型波形のアベレーションはアナログ再構成フィルタにより発生し、波形データでスルーレートが制限されていれば、大幅に小さくなる可能性があります。高スルーレートの波形は推奨しません。

[‡]波形データで制限された 133 V/µs のスルーレートで 7% のアベレーションが可能。DAC レートまたは信号周波数に関わらず、パルス型波形には、1 つの立ち上がりまたは立ち下がりエッジにつき複数のデータポイントが含まれる必要あり。

NI 5451 には、複数のクロックオプションがあります。波形生成は、サンプルクロックにより駆動されます。以下の図に示すように、デバイスのクロック構成には複数のオプションがあります。

図 22 NI PXIe-5451 クロック

ヒント NI 5451 でのクロックのオプションについては、NI 信号発生器ヘルプ→デバイ ス→ NI 5450 →動作理論→クロックに移動し、『NI 信号発生器ヘルプ』にあるクロックのドキュメントを参照してください。

オンボードサンプルクロック

以下の図は、NI 5451 オンボードサンプルクロックパスを示します。

図 23 NI PXIe-5451 オンボードサンプルクロックおよび外部基準クロックパス

仕様	値	コメント
サンプルクロッ クレート範囲	12.2 kS/s ~ 400 MS/s	_
サンプルクロッ クレート周波数 分解能	<5.7 μHz	サンプルクロッ ク周波数により 異なる。仕様は 最悪のケース。
サンプルクロッ ク遅延	○〜2ns、各チャンネルで独立	「チャンネル遅 延」プロパティ または 「NIFGEN_ATTR_ CHANNEL_DELAY」 属性によりソフ トウェアで設定。
サンプルクロッ ク遅延分解能	10 ps	公称。
サンプルクロッ クタイムベース 位相調整	±1 サンプルクロックタイムベース周期	_
基準クロック ソース	 なし(内部基準) PXI_CLK10 (バックプレーン) CLK IN (フロントパネルコネクタ) 	_
基準クロック周 波数	1 MHz ~ 100 MHz(1 MHz 刻み)、 100 MHz ~ 200 MHz(2 MHz 刻み)、 200 MHz ~ 400 MHz(4 MHz 刻み)、 10 MHz(デフォルト)。	±0.01% の確度が 必要
内部基準クロッ ク周波数確度	±0.01%	外部基準クロックなしで測定。 基準クロックにロック時、周波 をでは基準クロック時は基準クロック時は基準クリーででは 数確度は基準クロック数確度のみに依存。

外部サンプルクロック

以下の図は、NI 5451 外部サンプルクロックパスを示します。

24 NI PXIe-5451 外部サンプルクロックパス

仕様	値	コメント
外部サンプル クロックソー ス	CLK IN、フロントパネルコネクタ、乗算および除算あり	_
外部サンプル クロックレー ト	10 MS/s、20 MS/s ~ 400 MS/s	_
サンプルク ロックレート 範囲	12.2 kS/s ~ 400 MS/s	_
乗算/除算係 数範囲	外部サンプルクロックレートにより異なる	図 24 にある 「W で乗算」およ び「N で除算」 を参照。
サンプルク ロック遅延	0~2 ns、各チャンネルで独立	「チャンネル遅 延」プロパティ または 「NIFGEN_ATTR_ CHANNEL_DELAY」 属性によりソフ トウェアで設定。
サンプルク ロック遅延分 解能	10 ps	公称。
サンプルク ロックタイム ベース位相調 整	±1 サンプルクロックタイムベース周期	_

外部サンプルクロックタイムベース

以下の図は、NI 5451 外部サンプルクロックタイムベースパスを示します。

図 25 NI PXIe-5451 外部サンプルクロックタイムベースパス

仕様	値	コメント
外部サンプル クロックタイ ムベースソー ス	CLK IN、フロントパネルコネクタ、除算あり	_
外部サンプル クロックタイ ムベースレー ト範囲	200 MS/s ~ 400 MS/s	_
除算係数範囲	1、2~32768(2刻み)	図 25 にある 「N で除算」を参 照。
サンプルク ロック遅延	0~2 ns、各チャンネルで独立	_
サンプルク ロック遅延分 解能	10 ps	公称。

クロックをエクスポートする

仕様	ſ	コメント	
	出力先	レート	
基準クロック	CLK OUT	1 MHz ∼ 400 MHz	_
	PFI<01>	1 MHz \sim 200 MHz	
サンプルク	CLK OUT	100 kHz \sim 400 MHz	オプションの分
ロック	PFI<01>	0 MHz \sim 200 MHz	周器あり。
サンプルク	CLK OUT	100 kHz \sim 400 MHz	オプションの分
ロックタイム ベース	PFI<01>	0 MHz ~ 200 MHz	周器あり。

端子

CLK IN(サンプルクロックおよび基準クロック入力、フロントパネルコネクタ)

仕様	値	コメント
方向	入力	_
出力先	 基準クロック サンプルクロック サンプルクロックタイムベース 	
周波数範囲	1 MHz ∼ 400 MHz	すべてのれるわ に適用されるわ けではありませ ん。適用範囲に ついて構成の仕 様を参照。
入力電圧範囲	500 mV _{pk-pk} ~ 5 V _{pk-pk} (50 Ω 負荷) (-2 dBm ~ +18 dBm)	50% のデュー ティーサイクル 入力。
	550 mV _{pk-pk} ~ 4.5 V _{pk-pk} (50 Ω 負荷) (−1.2 dBm ~ +17 dBm)	45 ~ 55% の デューティーサ イクル入力。

仕様	値	コメント
入力保護範囲	6 V _{pk-pk} (50 Ω 負荷) 19.5 dBm	50% のデュー ティーサイクル 入力。
	5.4 V _{pk-pk} (50 Ω 負荷) 18.5 dBm	45 ~ 55% の デューティーサ イクル入力。
デューティー サイクル要件	45% ~ 55%	_
入力インピー ダンス	50 Ω、公称	_
入力カプリン グ	AC	_
電圧定在波比 (VSWR)	1.3:1(最大 2 GHz)	公称。

CLK OUT (サンプルクロックおよび基準クロック出力、フロントパネルコネクタ)

仕様	値	コメント
方向	出力	_
ソース	 サンプルクロックは、整数 K (1 ≤ K ≤ 3、最小) で分周可能。 基準クロック サンプルクロックは、整数 M (1 ≤ M ≤ 1048576) で分周可能。 	分周器の最大値 <i>K</i> は、サンプル レートに依存。
周波数範囲	100 kHz \sim 400 MHz	_
出力電圧	≥ 0.7 V _{pk-pk} (50 Ω 負荷)	標準。
最大出力過負 荷	3.3 V _{pk-pk} (50 Ω ソースから)	_
出カカプリン グ	AC	_
VSWR	1.3:1(最大 2 GHz)	公称。

PFI O および PFI 1(プログラム可能な機能的インタフェース、フロントパネルコネクタ)

仕様	値	コメント
方向	双方向	_
周波数範囲	DC ~ 200 MHz	_
入力の場合(ト	リガ)	
出力先	開始トリガ、スクリプトトリガ	_
入力範囲	0~5V	_
入力保護範囲	−2 V ~ +6.5 V	_
V _{IH}	1.8 V	_
V _{IL}	1.5 V	_
入力インピー ダンス	10 kΩ、公称	_

仕様	fi	t	コメント
出力の場合(イ			
ソース	 サンプルクロックは、整数可能。 サンプルクロックタイムベ(2≤M≤1048576)で分居 基準クロック マーカイベント データマーカイベント エクスポートした開始トリフスポートしたスクリフ 開始準備完了イベント 開始したイベント 完了イベント 	サンプルクロッ ク分周器の最大 値 <i>K</i> は、サンプ ルレートに依存。	
出力インピー	メインパス	ダイレクトパス	
ダンス	50 Ω、公称	50 Ω (4%、-0%)	
最大出力過負 荷	−2 V ~ +6.5 V		_
V _{OH}	最小: 2.4 V (開回路)、1.3 V	出力ドライバは、	
V _{OL}	最大: 0.4 V (開回路)、0.2 V (50 Ω 負荷)		最大 200 MHz ま で +3.3 V TTL/ CMOS に対応。
立ち上がり / 立ち下がり時 間	3 ns		標準。 10 pF の負荷。

トリガおよびイベント

トリガ

仕様	値	コメント
ソース	 PFI<01> (SMB フロントパネルコネクタ) PXI_Trig<07> (バックプレーンコネクタ) 即時(トリガを待機しない)。デフォルト。 	_
タイプ	 開始トリガエッジ スクリプトトリガエッジおよびレベル ソフトウェアトリガ 	_
エッジ検出	立ち上がり、立ち下がり	_
最小パルス幅	25 ns	『NI 信号発生器へ ルプ』で NI 信号 発生器ヘルプ→ デバイス→ NI 5451 →トリ ガ→トリガタイ ミングに進み、 t _{s1} の説明を参照。
OSP 無効時の トリガからア ナログ出力の 遅延	154 サンプルクロックタイムベース周期 + 65 ns、公称	『NI 信号発生器へ ルプ』で NI 信号 発生器ヘルプ→ デバイス→ NI 5451 → トリ ガ→トリガタイ ミングに進み、 † _{s2} の説明を参照。
OSP が有効な 場合の追加遅 延	OSP 構成によって異なる	_

仕様	値	コメント
トリガのエクス	ポート	
エクスポート したトリガの 出力先	 PFI<01> (SMB フロントパネルコネクタ) PXI_Trig<06> (バックプレーンコネクタ) 	_
エクスポート したトリガ遅 延	50 ns、公称	『NI 信号発生器へ ルプ』で NI 信号 発生器ヘルプ→ デバイス→ NI 5451 → トリ ガ→トリガタイ ミングに進み、 † _{s3} の説明を参照。
エクスポート したトリガパ ルス幅	>150 ns	『NI 信号発生器へ ルプ』で NI 信号 発生器へルプ→ デバイス→ NI 5451 →トリ ガ→トリガタイ ミング に進み、 t _{s4} の説明を参照。

イベント

仕様	f	Ė	コメント
出力先	1. PFI<01> (SMB フロント/ 2. PXI_Trig<06> (バックプ	_	
タイプ	マーカ <03>、データマーカ 済み、完了	各チャンネルに つき 2 つのデー タマーカあり。	
波形量	マーカ位置は、2 つのサンプ があります。	ルの整数倍で配置される必要	_
幅	調整可能、最小 2 サンプル デフォルトは 150 ns。	『NI 信号発生器へ ルプ』で NI 信号 発生器ヘルプ→ 基本概念→波形 の基本概念→イ ベント→マーカ イベントに進み、 † _{m2} の説明を参 照。	
スキュー	出力先	アナログ出力の場合	『NI 信号発生器へ
	PFI<01>	ルプ』で NI 信号 発生器ヘルプ→	
	PXI_Trig<06>	基本概念→波形 の基本概念→イ ベント→マーカ イベントに進み、 † _{m1} の説明を参 照。	

波形生成機能

仕様		値		コメント
メモリ使用	NI 5451 は、波形と命令がオンボードメモリを共有する SMC (Synchronization and Memory Core) テクノロジを使用しています。シーケンスリストのセグメント数、メモリ内の最大波形数、および波形ストレージで使用できるサンプル数などのパラメータは、柔軟性があり、ユーザ定義です。			詳細については、 『NI 信号発生器 ヘルプ』から NI 信号発生器へ ルプ→プログラ ミング→リファ レンス→ NI-TCIk 同期へ ルプを参照。
オンボードメ モリサイズ	128 MB オプション	メモリは両チャ ンネル間で共有。		
	134,217,728 バイト	536,870,912 バイト	2,147,483,648 バイト	
ループカウン ト	1 ~ 16,777,215 バー	_		
波形量	波形サイズは、2つのサンプルの整数倍である必要があります。			_
出力モード				
任意波形モード	単一波形がオンボー 選択され、生成され	_		
スクリプト モード	し、繰り返し実行す ボードメモリに格約 を示す一連の命令で	「ることができます 内された波形がデバ ごす。スクリプトは	な組み合わせでリンク。スクリプトは、オンイスに送信される方法、波形の生成、生成回原を指定することがで	_

仕様	値				コメント
出力モード(続き)					
任意シーケン スモード	シーケンスによって NI 5451 が波形のセットを特定の順序で生成します。シーケンスの要素は、セグメントとしても示されます。各セグメントは、一連の命令に関連付けられます。命令は、メモリ内の波形から選択される波形、生成される波形のループ(繰り返し)の数、そしてマーカ出力信号が送信される波形のサンプルを認識します。				-
最小波形サイス	(サンプル	·)			
トリガモード	チャン ネル数	任意波形モード	任意シーケン スモード >180 MS/s	任意シーケン スモード ≤ 180 MS/s	最小波形サイズ はサンプルレー トに依存。
シングル	1	4	2	2	200 MHz のトリ ガを使用して測
	2	4	4	4	定。
連続	1	142	140	58	
	2	284	280	116	
ステップ	1	210	154	54	
	2	420	308	108	
バースト	1	142	1,134	476	
	2	284	2,312	952	

仕様			値		コメント
メモリ制限(バ	イト)				
	チャン ネル数	128 MB	512 MB	2 GB	
任意波形モー ド、最大波形 メモリ	1	67,108,352	268,434,944	1,073,741,312	特別な記載がな い限りすべての トリガモード。
	2	33,553,920	134,217,216	536,870,400	
任意シーケン スモード、最 大波形メモリ	1	67,108,352	268,434,944	1,073,741,312	条件:シーケン ス内に1または 2つのセグメン
	2	33,553,920	134,217,216	536,870,400	トがある場合。
任意シーケン スモード、最 大波形	1	1,048,575	4,194,303	16,777,217	条件:シーケン ス内にlまたは 2つのセグメン
XIIXIID	2	524,287	2,097,151	8,388,607	トがある場合。
任意シーケン スモード、 シーケンス内	1	8,388,597	33,554,421	134,217,717	条件:波形サイ ズが <4,000 サ ンプルの場合。
の最大セグメント	2	4,194,293	16,777,205	67,108,853	ファルツ畑口。

仕様			値		コメント
波形再生時間					
最大再生時 間、サンプル レート	チャン ネル数	128 MB	512 MB	2 GB	単一トリガモー ド。 連続、ステップ、
400 MS/s	1	0.17 秒	0.67 秒	2.68 秒	またはバースト トリガモードを
	2	0.084 秒	0.34 秒	1.34 秒	使用して、再生
25 MS/s	1	2.68 秒	10.74 秒	42.95 秒	時間を大幅に延 長することが可
	2	1.34 秒	5.37 秒	21.47 秒	能。
100 kS/s	1	11 分 11 秒	44分 44秒	2 時間 58 分 57 秒	
	2	5分 35秒	22 分 22 秒	1 時間 29 分 29 秒	

オンボード信号処理

図 26 オンボード信号処理ブロック図

仕様	値	コメント
I/Q レート		
OSP 補間範囲	2、4、8、12、16、20、 24 ~ 8,192(8 の倍数) 8,192 ~ 16,384(16 の倍数) 16,384 ~ 32,768(32 の倍数)	1
1/Q V-F	(サンプルクロックレート)÷ (OSP 補間)	例 : サンプルクロッ クレートが 400 MS/s の場合の I/Q レート 範囲 = 12.2 kS/s ~ 200 MS/s
データ処理 モード [*]	1. 実数 (Iパスのみ) 2. 複素 (I/Q)	_
OSP モード†	1. IF 2. ベースバンド	_
最大帯域幅‡	0.8×I/Qレート	_

メモ: 周波数変換およびアップコンバージョンについては、『NI 信号発生器へルプ』から NI 信号発生器へルプ→デバイス→ NI 5451 →動作理論→オンボード信号処理 (OSP) →コンボーネント→数値制御発振器 (NCO) を参照してください。

[・]データ処理モードは OSP エンジンデータソースを表します。データは単一ストリームの実データ(実数)または個別のストリームの実データおよび虚データ(複素)です。

 $^{^\}dagger$ OSP モードは、補間後のデータで実行される信号処理機能を示します。 † モードでの † および Q データストリームは、単一出力ストリーム(DAC † O/I)で中間周波数に直交アップコンバートされます。ベースバンドモードでは、 † および Q データストリームが個別の出力ストリーム(DAC † O/I および DAC † DAC † C分岐する前に周波数シフトが適用されます。

[‡] 外部 I/Q 変調器使用時の RF 帯域幅 = 0.8 × I/Q レート。

仕様		値		コメント	
プレフィルタゲー	インおよびオフセット				
プレフィルタ ゲインおよび オフセット分 解能	21 ビット			_	
プレフィルタ ゲインレンジ	-16.0~+16.0 (値 < 1 ユーザ	単位なし			
プレフィルタ オフセットレ ンジ	-1.0 ∼ +1.0	プレフィルタゲイン の後に適用。			
プレフィルタ 出力	(ユーザデータ×プレフィルタゲイン)+プレフィルタ オフセット			出力 > 1 の時に オーバーフローが発 生。	
有限インパルス	ンパルス応答(FIR)フィルタ処理				
フィルタタイ プ	パラメータ	最小	最大		
平坦	パスバンド	0.4	0.4	I/Q レート×パスバ ンドまでリプルを最 小化するローパス フィルタ。	
二乗余弦	アルファ	0.1	0.4	パルス整形を使用す	
平方根二乗余 弦	アルファ 0.1 0.4			る場合、これらの フィルタでは 24 以 上の OSP 補間係数を 必要とします。	
数值制御発振器	(NCO)				
最大周波数	0.4×サンプルレー	- ト		_	
周波数分解能	サンプルレート /	2 ⁴⁸		例 : 1.42 µHz (400 MS/s のサンプ ルレート)。	
調整速度	250 µs			ソフトウェアおよび システムに依存。	

仕様	値	コメント
デジタル特性		
最大 NCO ス プリアス	<-90 dBc	フルスケール出力
補間フラット フィルタパス バンドリプル	<0.1 dB	0~(0.4×I/Q レート)までのパスバンド。 リプルは補間レートに依存します。
補間フラット フィルタ帯域 外減衰量	>80 dB	(0.6×I/Q レート) からのストップバン ド減衰量

	4	仕様				鱼				コメント
F 変調性能 (公称)	! (公称)									
	ドンド				EVM (%)			MER (dB)		I
ØAM	ラ フ ー	7.11		40 MHz	70 MHz	110 MHz	40 MHz	ZHW 02	110 MHz	
次数	(MS/s)	77	帯域幅	뜨	브	F	뜨	Щ	ட	
M = 4	0.16	0.25	200 KHz	0.2	0.2	0.2	22	22	56	
	08'0	0.25	1.00 MHz	0.2	0.2	0.2	25	99	55	
	4.09	0.22	4.98 MHz	0.2	0.3	0.2	25	25	55	
M = 16	17.6*	0.25	22.0 MHz	0.3	0.5	0.4	51	45	49	
	32.0*	0.25	40.0 MHz	9'0	I	9:0	42	-	43	
M = 64	5.36	0.15	6.16 MHz	0.2	0.3	0.2	54	19	53	
	96'9	0.15	7.99 MHz	6.0	0.3	0.3	52	19	90	
	25.0	0.15	28.75 MHz	0.4	9.0	0,4	46	43	46	
M = 256	6.95	0.15	7.99 MHz	0.3	0.3	0.4	52	19	49	

メモ:シングルエンドメインパス、-1 dBFS、フラットネス補正有効、オンボードサンプルクロック (基準なし)

ンンボル数 = 1,024

すべての測定は NI PXIe-5622 を使用して、NI 5451 への位相ロックなし、等化有効、40 MHz F および 110 MHz F(内部ロック使用)、70 MHz F(100 MHz で外部ロック使用)の条件下で行われました。

・生成前に、データの部分補間が適用されています。補間については、『NI 信号発生器ヘルプ』から、**NI 信号発生器ヘルプ→デバイス→ NI 5451 →配作組第→オンボード信号紀 題(OSP)→ベースパンド補間に関する注意春頃**を参照してください。

<u>キャリブレーション</u>

仕様	値	コメント
外部キャリブ レーション	外部キャリブレーションは、ADC 電圧基準およびパスバンドフラットネスを校正します。適切な定数は、不揮発性メモリに保管されます。	-
セルフキャリ ブレーション	オンボードでは、24 ビット ADC および精度電圧基準を用いて DC ゲインおよびオフセットを校正します。オンボードチャンネルアライメント回路は、チャンネル間のスキューを校正するのに使用されます。セルフキャリブレーションは、ソフトウェアを利用してユーザが開始し、完了までに約60秒かかります。適切な定数は、不揮発性メモリに保管されます。	_
キャリブレー ション間隔	仕様は外部キャリブレーションから 1 年間有効。	_
ウォームアッ プ時間	15 分	_

雷力

仕様	標準	最大	コメント
+3.3 VDC	1.9 A	2.0 A	_
+12 VDC	2.6 A	2.9 A	_
合計電力	37.5 W	41.4 W	_

ソフトウェア

仕様	値	コメント
ドライバソフ トウェア	NI-FGEN は、IVI 準拠ドライバで NI 5451 の構成、制御、 および校正を可能にします。 NI-FGEN は、多数の開発環境 アプリケーションプログラミングインタフェースを提供し ます。	ı
アプリケー ションソフト ウェア	NI-FGEN は、以下のアプリケーション開発環境のプログラミングインタフェースを提供します。 LabVIEW LabWindows™/CVI™ Measurement Studio Microsoft Visual C++ .NET Microsoft Visual Basic	-
対話式の制御 および構成ソ フトウェア	FGEN ソフトフロントパネルは、NI 5451 の対話的制御をサポートしています。FGEN ソフトフロントパネルはNI-FGEN DVD に含まれています。 Measurement & Automation Explorer(MAX)でNI 5451 を対話式に構成、そしてテストすることができます。MAX も NI-FGEN DVD に含まれています。 NI 5451 は、NI SignalExpress と併用可能です。	_

ハードウェアのフロントパネル

図 27 NI 5451 フロントパネル

仕様	値		コメント	
外形寸法	3U、2 スロット、PXI Express モジ 21.6 × 4.0 × 13.0 cm(8.5 × 1.6 ×		_	
重量	550 g (19.4 oz)	_		
フロントパネル	コネクタ			
ラベル	機能	コネクタタイプ	_	
CH 0+/I+	差動およびシングルエンドアナ ログ出力	SMA		
CH 0-/I-	差動アナログ出力	SMA		
CH 1+/Q+	差動およびシングルエンドアナ ログ出力	SMA		
CH 1-/Q-	差動アナログ出力	SMA		
CLK IN	サンプルクロック、サンプルク ロックタイムベース、および基 準クロック入力	SMA		
CLK OUT	サンプルクロック、サンプルク ロックタイムベース、および基 準クロック出力	SMA		
PFI 0	マーカ出力、トリガ入力、サン プルクロック出力、エクスポー トしたトリガ出力	SMB		
PFI 1	マーカ出力、トリガ入力、サン プルクロック出力、エクスポー トしたトリガ出力	SMB		
フロントパネル LED インジケータ				
ラベル	機能	フロントパネル		
ACCESS	ACCESS LED は、NI 5451 からコスおよび PXI Express バスのステ-		LED の詳細につ いては、『NI 信 号発生器ヘル	
ACTIVE	ACTIVE LED は、NI 5451 のオンホステータスを示します。	ボード生成ハードウェアの	プ』を参照して ください。	

NI PXIe-5451 の環境

メモ

NI PXIe-5451 を効果的に冷却するには、NI 5451 キットに含まれる『強制空冷の維持について』のガイドラインに従ってください。NI PXIe-5451 は、室内使用を意図して設計されています。

仕様	値	コメント
動作温度	0 ~ 55 ℃ (すべての NI 製 PXI Express シャーシで動作時) IEC 60068-2-1、IEC 60068-2-2 に準拠。 メモ : 10 ℃以下の周囲温度での PXI Express データ転送	_
	レート最大化の詳細については、ni.com/kb から技術サポートデータベースのドキュメント ID「4AEB2ML1」を参照してください。	
保管温度	-25~+85℃。IEC 60068-2-1、IEC 60068-2-2 に準拠。	_
動作時の相対 湿度	10 ~ 90%(結露なきこと)。IEC 60068-2-56 に準拠。	_
保管時の相対 湿度	5~95% (結露なきこと)。IEC 60068-2-56 に準拠。	_
動作時衝擊	30 g、半正弦波、11 ms パルス。IEC 60068-2-27 に準拠。 MIL-PRF-28800F に準拠してテストプロファイルを確立。	スペクトルおよ びジッタ仕様が 低下する場合が あります。
保管時衝撃	50 g、半正弦波、11 ms パルス。IEC 60068-2-27 に準拠。 MIL-PRF-28800F に準拠してテストプロファイルを確立。	_
動作振動	5 Hz ~ 500 Hz、0.31 g _{rms} 。IEC 60068-2-64 に準拠。	スペクトルおよ びジッタ仕様が 低下する場合が あります。
保管振動	5 Hz ~ 500 Hz、2.46 g _{rms} 。IEC 60068-2-64 に準拠。テストプロファイルは、MIL-PRF-28800F、Class B の要件を上回る。	_
高度	最大 2,000 m(周囲温度 25 ℃時)	_
汚染度	2	

安全性

この製品は、計測、制御、実験に使用される電気装置に関する以下の規格および安全性の必要条件を満たします。

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

メモ UL およびその他の安全保証については、製品ラベルまたは「オンライン製品認

証」セクションを参照してください。

電磁両立性

この製品は、計測、制御、実験に使用される電気装置に関する以下の EMC 規格の必要条件を満たします。

- EN 61326-1 (IEC 61326-1): Class A エミッション、基本イミュニティ
- EN 55011 (CISPR 11): Group 1、Class A エミッション
- AS/NZS CISPR 11: Group 1、Class A エミッション
- FCC 47 CFR Part 15B: Class A エミッション
- ICES-001: Class A エミッション

メモ EMC 宣言および認証については、「オンライン製品認証」セクションを参照してください。

CE準拠(€

この製品は、該当する EC 理事会指令による基本的要件に適合しています。

- 2006/95/EC、低電圧指令(安全性)
- 2004/108/EC、電磁両立性指令(EMC)

オンライン製品認証

この製品の製品認証および適合宣言 (DOC) を入手するには、ni.com/certification にアクセスして型番または製品ラインで検索し、保証の欄の該当するリンクをクリックしてください。

環境管理

ナショナルインスツルメンツは、環境に優しい製品の設計および製造に努めています。NIは、製品から特定の有害物質を除外することが、環境およびNIのお客様にとって有益であると考えています。

環境の詳細な情報については、ni.com/environment(英語)の NI and the Environment(英語)を参照してください。このページには、ナショナルインスツルメンツが準拠する環境規制および指令、およびこのドキュメントに含まれていないその他の環境に関する情報が記載されています。

廃電気電子機器(WEEE)

欧州のお客様へ 製品寿命を過ぎたすべての製品は、必ず WEEE リサイクルセンターへ送付してください。WEEE リサイクルセンターおよびナショナルインスツルメンツの WEEE への取り組み、および廃電気電子機器の WEEE 指令 2002/96/EC 準拠については、ni.com/environment/weee (英語)を参照してください。

电子信息产品污染控制管理办法 (中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。 关于 National Instruments 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs_china。 (For information about China RoHS compliance, go to ni.com/environment/rohs_china.) 技術サポートリソースの一覧は、ナショナルインスツルメンツのウェブサイトでご覧いただけます。ni.com/jp/supportでは、トラブルシューティングやアプリケーション開発のセルフヘルプリソースから、ナショナルインスツルメンツのアプリケーションエンジニアのEメール/電話の連絡先まで、あらゆるリソースを参照することができます。

適合宣言(Doc)とは、その会社の自己適合宣言を用いた、さまざまな欧州閣僚理事会指令への適合の宣言のことです。この制度により、電磁両立性(EMC)に対するユーザ保護や製品の安全性に関する情報が提供されます。ご使用の製品の適合宣言は、ni.com/certification(英語)から入手できます。ご使用の製品でキャリブレーションがサポートされている場合、ni.com/calibration からその製品の Calibration Certificate(英語)を入手してご利用になることもできます。

ナショナルインスツルメンツでは、米国本社(11500 North Mopac Expressway, Austin, Texas, 78759-3504) および各国の現地オフィスにてお客様にサポート対応しています。日本国内でのサポートについては、ni.com/jp/supportでサポートリクエストを作成するか、0120-527196(フリーダイヤル)または03-5472-2970(大代表)までお電話ください。日本国外でのサポートについては、各国の営業所にご連絡ください。

イスラエル 972 3 6393737, イタリア 39 02 41309277, インド 91 80 41190000, 英国 44 (0) 1635 523545, オーストラリア 1800 300 800, オーストリア 43 662 457990-0, オランダ 31 (0) 348 433 466, カナダ 800 433 3488, 韓国 82 02 3451 3400, シンガポール 1800 226 5886, スイス 41 56 2005151, スウェーデン 46 (0) 8 587 895 00, スペイン 34 91 640 0085, スロベニア 386 3 425 42 00, タイ 662 278 6777, 台湾 886 02 2377 2222, チェコ 420 224 235 774, 中国 86 21 5050 9800, デンマーク 45 45 76 26 00, ドイツ 49 89 7413130, トルコ 90 212 279 3031, ニュージーランド 0800 553 322, ノルウェー 47 (0) 66 90 76 60, フィンランド 358 (0) 9 725 72511, フランス 01 57 66 24 24. ブラジル 55 11 3262 3599, ベルギー 32 (0) 2 757 0020, ポーランド 48 22 328 90 10. ポルトガル 351 210 311 210. マレーシア 1800 887710, 南アフリカ 27 0 11 805 8197, メキシコ 01 800 010 0793, レバノン 961 (0) 1 33 28 28, ロシア 7 495 783 6851

CVI、LabVIEW、National Instruments、NI、ni.com、National Instruments のコーポレートロゴ及びイーグルロゴは、National Instruments Corporation の商標です。その他の National Instruments の商標については、ni.com/teademarks [に掲載されている Tirademark Information]をご覧下さい。The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft Corporation in the United States and other countries. 本文書中に記載されたその他の製品名および企業名は、それぞれの企業の商標または商号です。National Instruments の製品/技術を保護する特許については、ソフトウェアで参照できる特許情報(ヘルプ・特許情報)、メディアに含まれているpatents、はエファイル、または「National Instruments Patent Notice」(ni.com/patents)のうち、該当するリソースから参照してください。