Práctico 7

- 1. Probar que las siguientes ecuaciones determinan a y en función de x alrededor de (x_0, y_0) , como $y = \phi(x)$. Hallar $\phi'(x_0)$ y $\phi''(x_0)$, y determinar el polinomio de Taylor de segundo orden de ϕ alrededor de x_0 .
 - a) $x^2 3xy + y^3 7 = 0$, $(x_0, y_0) = (4, 3)$.
 - b) $x^2y + \log(xy) = 1$, $(x_0, y_0) = (1, 1)$.
 - c) $\ln(x^2 + y^2) + \arctan(\frac{y}{x}) = 0$, $(x_0, y_0) = (1, 0)$.
 - d) $\frac{x}{y} \operatorname{sen}(\frac{\pi xy}{2}) = 0$, $(x_0, y_0) = (1, 1)$.
 - e) $x + \sin x \sin y = 0$, con $(x_0, y_0) = (0, 0)$.
- 2. Demostrar que la ecuación $e^y + y = e^{-2x} x$ determina una única función y = f(x) definida para todo x real. Hallar f'(0), f''(0) y f'''(0).
- 3. Estudiar las funciones y(x) definidas por las ecuaciones implícitas F(x,y)=c, donde $F(x,y)=(x^2+y^2)^2-2x^2+2y^2$. La curva de nivel para c=0 se conoce como lemniscata de Bernoulli. Encontrar el conjunto de los puntos en los que $\frac{\partial F}{\partial y}=0$, es decir, aquellos en los que no se puede aplicar el teorema de la función implícita. Hallar también el conjunto de los (x,y(x)) tales que y'(x)=0, y reconocerlo geométricamente.
- 4. Probar que las siguientes ecuaciones determinan $z = \phi(x, y)$ alrededor de (x_0, y_0, z_0) . Determinar el polinomio de Taylor de primer orden de ϕ alrededor de (x_0, y_0) .
 - a) $xz + x \operatorname{arctg}(z) + z \operatorname{sen}(2x + y) = 1, (x_0, y_0, z_0) = (0, \frac{\pi}{2}, 1).$
 - b) $(x^2 + y^2 + 2z^2)^{\frac{1}{2}} = x \operatorname{sen}(z), (x_0, y_0, z_0) = (1, 0, 0).$
- 5. Sea $f: \mathbb{R}^3 \to \mathbb{R}$ tal que $f(x, y, z) = axz + x \arctan z + z \sec(2x + y) 1$, con $a \in \mathbb{R}$.
 - a) Probar que la ecuación f(x, y, z) = 0 determina a z = g(x, y) alrededor de $(0, \pi/2, 1)$.
 - b) Hallar a para que $(0, \pi/2)$ sea un punto crítico de g.
 - c) Calcular $\lim_{(x,y)\to(0,\pi/2)} \frac{g(x,y) 1 3/2x^2 2x(y \pi/2)}{x^2 + (y \pi/2)^2}$.
- 6. Sean $A \subseteq \mathbb{R}^2$ un subconjunto abierto, y $f: A \to \mathbb{R}$ una función que no se anula en A, y tal que $(x^2+y^2)f(x,y)+(f(x,y)^3)=1, \ \forall (x,y)\in A.$ Probar que f es de clase C^{∞} .
- 7. Se define $f: \mathbb{R}^2 \to \mathbb{R}^2$ por $f(x,y) = (x\cos y, \sin(x-y))$. Probar que f es localmente invertible alrededor de $(\frac{\pi}{2}, \frac{\pi}{2})$ y calcular la matriz Jacobiana de la inversa local en (0,0).
- 8. a) Sea $f: \mathbb{R}^2 \to \mathbb{R}$ una función de clase C^1 . Probar que f no es inyectiva.
 - b) (Opcional) Generalice este resultado al caso de una función de clase C^1 $f: \mathbb{R}^n \to \mathbb{R}^m$ con m < n.