Übungsblatt 17 zur Homologischen Algebra II

Aufgabe 1. Halmweise Exaktheit

Sei X ein topologischer Raum (keine Örtlichkeit!). Sei $0 \to \mathcal{E} \to \mathcal{F} \to \mathcal{G} \to 0$ eine Sequenz von Garben abelscher Gruppen auf X. Zeige, dass sie genau dann exakt ist (im allgemeinen Sinn der Exaktheit in abelschen Kategorien), wenn für jeden Punkt $x \in X$ die induzierte Sequenz $0 \to \mathcal{E}_x \to \mathcal{F}_x \to \mathcal{G}_x \to 0$ von Halmen exakt ist.

Aufgabe 2. Kategorielle Charakterisierung von partieller Exaktheit

Zeige, dass ein additiver Funktor zwischen abelschen Kategorien genau dann linksexakt ist, wenn er endliche Limiten bewahrt.

Aufgabe 3. Beispiele für projektive Moduln

- a) Zeige, dass $\mathbb{Z}/(2)$ als $\mathbb{Z}/(6)$ -Modul projektiv, aber nicht frei ist.
- b) Sei $R = \mathbb{Z}[\sqrt{-5}]$ und $\mathfrak{m} = (3, 1 + \sqrt{-5})$ das bekannte Beispiel für ein maximales Ideal, das lokal ein Hauptideal, aber nicht selbst ein Hauptideal ist. Zeige, dass \mathfrak{m} als R-Modul projektiv, aber nicht frei ist.

Tipp: Projektivität von endlich präsentierten Moduln kann man lokal testen. Wäre \mathfrak{m} frei, so wäre \mathfrak{m} frei vom Rang 1 (wieso?). Damit wäre \mathfrak{m} ein Hauptideal (wieso?).

Die wichtigste Bezugsquelle für nicht-freie projektive Moduln sind nichttriviale Vektorbündel, das besagt der Satz von Serre-Swan. Eine gut lesbare Darstellung gibt es in Abschnitt 6 von Pete Clarks Notizen zu kommutativer Algebra, http://www.math.uga.edu/~pete/integral.pdf#page=112. In der algebraischen Geometrie lernt man, dass auch die Beispiele dieser Aufgabe von dieser Form sind.

Aufgabe 4. Die Kategorie der Garben als Lokalisierung

Sei X ein topologischer Raum. Sei S die Klasse all derjenigen Morphismen von Prägarben auf X, die halmweise Bijektionen sind. Zeige, dass die Kategorie der Garben auf X die Lokalisierung der Kategorie der Prägarben nach S ist: $\operatorname{Sh}(X) \simeq \operatorname{PSh}(X)[S^{-1}]$. Wie sehen unter dieser Äquivalenz der Vergissfunktor und der Garbifizierungsfunktor aus?

Ist S eine Klasse von Morphismen in einer Kategorie \mathcal{C} , so sind die Objekte von $\mathcal{C}[S^{-1}]$ per Definition dieselben wie die von \mathcal{C} . Morphismen $X \to Y$ in $\mathcal{C}[S^{-1}]$ sind aber formale Verknüpfungen von Morphismen in \mathcal{C} und formalen Inversen von Morphismen aus S, modulo einer geeigneten Äquivalenzraltion. Zum Beispiel kann ein Morphismus $X \to Y$ in $\mathcal{C}[S^{-1}]$ von der Form $X \to Z \dashrightarrow Z' \to Z'' \dashrightarrow Z'' \to Y$ sein – dabei sind die durchgezogenen Pfeile Morphismen aus \mathcal{C} und die gestrichelten Pfeile formale Inverse von Morphismen $Z' \to Z$, $Z''' \to Z''$ aus S. Auf diese Art und Weise erreicht man, dass der kanonische Funktor $\mathcal{C} \to \mathcal{C}[S^{-1}]$ die Morphismen aus S auf Isomorphismen schickt und sogar unter all solchen Funktoren in einem 2-kategoriellen Sinn initial ist. Formale Inverse sind keine Erfindung der Kategorientheorie. In der Form des Übergangs von \mathbb{Z} zu \mathbb{Q} sind sie allgemein bekannt.

Aufgabe 5. Ein Beispiel für den Pushforward von Garben

Sei $f: S^1 \to S^1$ die Abbildung $z \mapsto z^2$ des Einheitskreises in sich. Sei $\underline{\mathbb{Z}}$ die konstante Garbe mit Halmen \mathbb{Z} auf S^1 . Was sind die Halme von $f_*\underline{\mathbb{Z}}$? Ist $f_*\underline{\mathbb{Z}}$ isomorph zu $\underline{\mathbb{Z}}^2$? Die Garbe $f_*\underline{\mathbb{Z}}$ ist lokal konstant. Was ist ihre Monodromie (Blatt 11, Aufgabe 5)?