Package 'AATtools'

January 12, 2021

Title Reliability and Scoring Routines for the Approach-Avoidance Task

Type Package

Version 0.0.2	
Description Compute approach bias scores using different scoring algorithms, compute bootstrapped and exact split-half reliability estimates, and compute confidence intervals for individual participant scores.	
Depends R (ξ = 3.6.0)	
Imports magrittr, dplyr, doParallel, foreach	
License GPL-3	
Encoding UTF-8	
BugReports https://github.com/Spiritspeak/AATtools/issues	
LazyData true	
ByteCompile true	
RoxygenNote 7.1.1	
R topics documented:	
aat_alpha	2
aat_bootstrap	4
aat_compute	6
aat_splithalf	8
	11
erotica	13
Preprocessing	14
q_reliability	16
SpearmanBrown	17
Index	19

2 aat_alpha

aat_alpha

Compute reliability using Cronbach's Alpha

Description

<code>aat_alpha</code> computes approach-avoidance scores for each stimulus within each participant. It then computes Cronbach's alpha by treating each stimulus as an item on a questionnaire and measuring how much these scores correlate within each participant.

<code>aat_alpha_jackknife</code> additionally leaves out one stimulus or participant at a time and computes Cronbach's alpha for each such exclusion. This gives a glimpse of which stimuli may have especially confused participants or otherwise induced responses that are unlike those to other stimuli.

Please note that this method does not tolerate missing values - for every movement direction, within every stimulus, within every participant, there must be at least one trial - otherwise either the entire stimulus or participant must be excluded. q_reliability or aat_splithalf are recommended instead.

```
aat_alpha(
  ds.
  subjvar,
  stimvar,
  pullvar,
  rtvar,
  algorithm = c("aat_singlemeandiff", "aat_singlemediandiff"),
  delete.missing = c("subjects", "stimuli", "both", "none")
)
aat_alpha_jackknife(
  ds,
  subjvar,
  stimvar,
  pullvar,
  rtvar,
  algorithm = c("aat_singlemeandiff", "aat_singlemediandiff"),
  delete.missing = c("subjects", "stimuli", "both", "none")
## S3 method for class 'aat_alpha'
print(x, ...)
## S3 method for class 'aat_alpha'
plot(x, ...)
## S3 method for class 'aat_alpha_jackknife'
print(x, ...)
## S3 method for class 'aat_alpha_jackknife'
plot(x, exclusions = c("both", "stimulus", "participant"), ...)
```

aat_alpha 3

Arguments

ds	a data.frame
subjvar	character naming the column with participant IDs
stimvar	character naming the column with stimulus IDs
pullvar	character naming the column for movement direction
rtvar	character indicating the column with reaction times
algorithm	character name of the algorithm used to compute per-stimulus approach bias scores $$
delete.missing	character denoting the deletion strategy when missing values are encountered, which may occur when one participant saw a stimulus which another participant did not see, or when all approach trials for a certain stimulus were excluded for one participant. Defaults to excluding the entire participant's dataset.
X	an aat_alpha or aat_alpha_jackknife object
	Ignored.
exclusions	Character. Should the function display Cronbach's alpha for individually

Value

 $aat_alpha\ returns\ an\ aat_alpha\ S3\ object,\ aat_alpha_jackknife\ returns\ an\ aat_alpha_jackknife\ S3\ object,\ both\ with\ print\ and\ plot\ methods.$

excluded participants, stimuli, or both?

Author(s)

Sercan Kahveci

References

Cousijn, J., Goudriaan, A. E., & Wiers, R. W. (2011). Reaching out towards cannabis: Approach-bias in heavy cannabis users predicts changes in cannabis use. Addiction, 106(9), 1667-1674.

Examples

```
data(erotica)
#We artificially reduce the number of stimuli here because the original
#erotica dataset is not suitable for computing Cronbach's alpha.
erotica$stimulus<- substr(as.character(erotica$stimulus),5,5)

myalpha<-aat_alpha(erotica,"subject","stimulus","is_pull","RT")
print(myalpha)
plot(myalpha)

myalpha2<-aat_alpha_jackknife(erotica,"subject","stimulus","is_pull","RT")
print(myalpha2)
plot(myalpha2)</pre>
```

4 aat_bootstrap

aat_bootstrap

Compute bootstrapped approach-bias scores

Description

Compute bootstrapped approach-bias scores with confidence intervals.

Usage

```
aat_bootstrap(
  ds,
  subjvar,
  pullvar,
  targetvar = NULL,
  rtvar,
  iters,
  algorithm = c("aat_doublemeandiff", "aat_doublemediandiff", "aat_dscore",
    "aat_dscore_multiblock", "aat_regression", "aat_standardregression",
    "aat_doublemeanquotient", "aat_doublemedianquotient", "aat_singlemeandiff",
    "aat_singlemediandiff"),
 trialdropfunc = c("prune_nothing", "trial_prune_3SD", "trial_prune_SD_dropcases",
  "trial_recode_SD", "trial_prune_percent_subject", "trial_prune_percent_sample"),
  errortrialfunc = c("prune_nothing", "error_replace_blockmeanplus",
    "error_prune_dropcases"),
  plot = TRUE,
  include.raw = FALSE,
  parallel = TRUE,
## S3 method for class 'aat_bootstrap'
print(x, ...)
## S3 method for class 'aat_bootstrap'
plot(x, ...)
```

Arguments

d:	S	a longformat data.frame
SI	ubjvar	Quoted name of the participant identifier column
р	ullvar	Quoted name of the column indicating pull trials. Pull trials should either be represented by 1, or by the second level of a factor.
t	argetvar	Name of the column indicating trials featuring the target stimulus. Target stimuli should either be represented by 1, or by the second level of a factor.
r	tvar	Name of the reaction time column.
i.	ters	Total number of desired iterations. At least 200 are required to get confidence intervals that make sense.
a.	lgorithm	Function (without brackets or quotes) to be used to compute AAT scores.

See Algorithms for a list of usable algorithms.

 $aat_bootstrap$ 5

trialdropfunc

Function (without brackets or quotes) to be used to exclude outlying trials in each half. The way you handle outliers for the reliability computation should mimic the way you do it in your regular analyses. It is recommended to exclude outlying trials when computing AAT scores using the mean double-difference scores and regression scoring approaches, but not when using d-scores or median double-difference scores.

- prune_nothing excludes no trials (default)
- trial_prune_3SD excludes trials deviating more than 3SD from the mean per participant.
- trial_prune_SD_dropcases removes trials deviating more than a specific number of standard deviations from the participant's mean, and removes participants with an excessive percentage of outliers. Required arguments:
 - trialsd trials deviating more than trialsd standard deviations from the participant's mean are excluded (optional; default is 3)
 - maxoutliers participants with a higher percentage of outliers are removed from the data. (optional; default is .15)
- trial_recode_SD recodes outlying reaction times to the nearest nonoutlying value, with outliers defined as reaction times deviating more than a certain number of standard deviations from the participant's mean. Required argument:
 - trialsd trials deviating more than this many standard deviations from the mean are classified as outliers.
- trial_prune_percent_subject and trial_prune_percent_sample remove trials below and/or above certain percentiles, on a subject-by-subject basis or sample-wide, respectively. The following arguments are available:
 - lowerpercent and uppperpercent (optional; defaults are .01 and .99).

errortrialfunc Function (without brackets or quotes) to apply to an error trial.

- prune_nothing removes no errors (default).
- error_replace_blockmeanplus replaces error trial reaction times with the block mean, plus an arbitrary extra quantity. If used, the following additional arguments are required:
 - blockvar Quoted name of the block variable (mandatory)
 - errorvar Quoted name of the error variable, where errors are 1 or TRUE and correct trials are 0 or FALSE (mandatory)
 - errorbonus Amount to add to the reaction time of error trials.
 Default is 0.6 (recommended by Greenwald, Nosek, & Banaji, 2003)
- error_prune_dropcases removes errors and drops participants if they have more errors than a given percentage. The following arguments are available:
 - errorvar Quoted name of the error variable, where errors are 1 or TRUE and correct trials are 0 or FALSE (mandatory)
 - maxerrors participants with a higher percentage of errors are excluded from the dataset. Default is .15.

Plot the bias scores and their confidence intervals after computation is complete. This gives a good overview of the data.

plot

6 aat_compute

include.raw	logical indicating whether raw split-half data should be included in the output object.
parallel	If TRUE (default), will use parallel computing to compute results faster. If a doParallel backend has not been registered beforehand, this function will register a cluster and stop it after finishing, which takes some extra time.
	Other arguments, to be passed on to the algorithm or outlier rejection functions (see arguments above) $$
X	An aat_bootstrap object.

Value

A list, containing bootstrapped bias scores, their variance, bootstrapped 95 percent confidence intervals, the number of iterations, and a matrix of bias scores for each iteration.

Author(s)

Sercan Kahveci

Examples

aat_compute

Compute simple AAT scores

Description

Compute simple AAT scores, with optional outlier exclusion and error trial recoding.

```
aat_compute(
  ds,
  subjvar,
  pullvar,
  targetvar = NULL,
  rtvar,
  algorithm = c("aat_doublemeandiff", "aat_doublemediandiff", "aat_dscore",
        "aat_dscore_multiblock", "aat_regression", "aat_standardregression",
        "aat_doublemeanquotient", "aat_doublemedianquotient", "aat_singlemeandiff",
        "aat_singlemediandiff"),
  trialdropfunc = c("prune_nothing", "trial_prune_3SD", "trial_prune_SD_dropcases",
        "trial_recode_SD", "trial_prune_percent_subject", "trial_prune_percent_sample"),
```

aat_compute 7

Arguments

ds a long-format data.frame

subjvar column name of subject variable

pullvar column name of pull/push indicator variable, must be numeric or logical

(where pull is 1 or TRUE)

targetvar column name of target stimulus indicator, must be numeric or logical

(where target is 1 or TRUE)

rtvar column name of reaction time variable

algorithm Function (without brackets or quotes) to be used to compute AAT scores.

See Algorithms for a list of usable algorithms.

trialdropfunc

Function (without brackets or quotes) to be used to exclude outlying trials in each half. The way you handle outliers for the reliability computation should mimic the way you do it in your regular analyses. It is recommended to exclude outlying trials when computing AAT scores using the mean double-dfference scores and regression scoring approaches, but not when using d-scores or median double-difference scores.

- prune_nothing excludes no trials (default)
- trial_prune_3SD excludes trials deviating more than 3SD from the mean per participant.
- trial_prune_SD_dropcases removes trials deviating more than a specific number of standard deviations from the participant's mean, and removes participants with an excessive percentage of outliers. Required arguments:
 - trialsd trials deviating more than trialsd standard deviations from the participant's mean are excluded (optional; default is 3)
 - maxoutliers participants with a higher percentage of outliers are removed from the data. (optional; default is .15)
- trial_recode_SD recodes outlying reaction times to the nearest nonoutlying value, with outliers defined as reaction times deviating more than a certain number of standard deviations from the participant's mean. Required argument:
 - trialsd trials deviating more than this many standard deviations from the mean are classified as outliers.
- trial_prune_percent_subject and trial_prune_percent_sample remove trials below and/or above certain percentiles, on a subject-by-subject basis or sample-wide, respectively. The following arguments are available:
 - lowerpercent and uppperpercent (optional; defaults are .01 and .99).

errortrialfunc Function (without brackets or quotes) to apply to an error trial.

- prune_nothing removes no errors (default).
- error_replace_blockmeanplus replaces error trial reaction times with the block mean, plus an arbitrary extra quantity. If used, the following additional arguments are required:

8 aat_splithalf

- blockvar Quoted name of the block variable (mandatory)
- errorvar Quoted name of the error variable, where errors are 1 or TRUE and correct trials are 0 or FALSE (mandatory)
- errorbonus Amount to add to the reaction time of error trials.
 Default is 0.6 (recommended by Greenwald, Nosek, & Banaji, 2003)
- error_prune_dropcases removes errors and drops participants if they have more errors than a given percentage. The following arguments are available:
 - errorvar Quoted name of the error variable, where errors are 1 or TRUE and correct trials are 0 or FALSE (mandatory)
 - maxerrors participants with a higher percentage of errors are excluded from the dataset. Default is .15.

Other arguments, to be passed on to the algorithm or outlier rejection functions (see arguments above)

Examples

. . .

 $aat_splithalf$

Compute the bootstrapped split-half reliability for approachavoidance task data

Description

Compute bootstrapped split-half reliability for approach-avoidance task data.

```
aat_splithalf(
  ds,
  subjvar,
  pullvar,
  targetvar = NULL,
  rtvar,
  iters,
```

aat_splithalf 9

```
algorithm = c("aat_doublemeandiff", "aat_doublemediandiff", "aat_dscore",
    "aat_dscore_multiblock", "aat_regression", "aat_standardregression",
    "aat_doublemedianquotient", "aat_doublemeanquotient", "aat_singlemeandiff",
    "aat_singlemediandiff"),
 trialdropfunc = c("prune_nothing", "trial_prune_3SD", "trial_prune_SD_dropcases",
   "trial_recode_SD", "trial_prune_percent_subject", "trial_prune_percent_sample"),
  errortrialfunc = c("prune_nothing", "error_replace_blockmeanplus",
    "error_prune_dropcases"),
  casedropfunc = c("prune_nothing", "case_prune_3SD"),
  plot = TRUE,
  include.raw = FALSE,
  parallel = TRUE,
)
## S3 method for class 'aat_splithalf'
print(x, ...)
## S3 method for class 'aat_splithalf'
plot(x, type = c("median", "minimum", "maximum", "random"), ...)
```

Arguments

ds a longformat data.frame

subjvar Quoted name of the participant identifier column

pullvar Quoted name of the column indicating pull trials. Pull trials should either

be represented by 1, or by the second level of a factor.

targetvar Name of the column indicating trials featuring the target stimulus. Target

stimuli should either be represented by 1, or by the second level of a factor.

rtvar Name of the reaction time column.

iters Total number of desired iterations. At least 200 are recommended for

reasonable confidence intervals; If you want to see plots of your data, 1

iteration is enough.

algorithm Function (without brackets or quotes) to be used to compute AAT scores.

See Algorithms for a list of usable algorithms.

trialdropfunc Function (without brackets or quotes) to be used to exclude outlying trials

in each half. The way you handle outliers for the reliability computation should mimic the way you do it in your regular analyses. It is recommended to exclude outlying trials when computing AAT scores using the mean double-dfference scores and regression scoring approaches, but not when using d-scores or median double-difference scores.

- prune_nothing excludes no trials (default)
- trial_prune_3SD excludes trials deviating more than 3SD from the mean per participant.
- trial_prune_SD_dropcases removes trials deviating more than a specific number of standard deviations from the participant's mean, and removes participants with an excessive percentage of outliers. Required arguments:
 - trialsd trials deviating more than trialsd standard deviations from the participant's mean are excluded (optional; default is 3)

10 aat_splithalf

- maxoutliers participants with a higher percentage of outliers are removed from the data. (optional; default is .15)
- trial_recode_SD recodes outlying reaction times to the nearest nonoutlying value, with outliers defined as reaction times deviating more than a certain number of standard deviations from the participant's mean. Required argument:
 - trialsd trials deviating more than this many standard deviations from the mean are classified as outliers.
- trial_prune_percent_subject and trial_prune_percent_sample remove trials below and/or above certain percentiles, on a subject-by-subject basis or sample-wide, respectively. The following arguments are available:
 - lowerpercent and uppperpercent (optional; defaults are .01 and .99).

errortrialfunc Function (without brackets or quotes) to apply to an error trial.

- prune_nothing removes no errors (default).
- error_replace_blockmeanplus replaces error trial reaction times with the block mean, plus an arbitrary extra quantity. If used, the following additional arguments are required:
 - blockvar Quoted name of the block variable (mandatory)
 - errorvar Quoted name of the error variable, where errors are 1 or TRUE and correct trials are 0 or FALSE (mandatory)
 - errorbonus Amount to add to the reaction time of error trials.
 Default is 0.6 (recommended by Greenwald, Nosek, & Banaji, 2003)
- error_prune_dropcases removes errors and drops participants if they have more errors than a given percentage. The following arguments are available:
 - errorvar Quoted name of the error variable, where errors are 1 or TRUE and correct trials are 0 or FALSE (mandatory)
 - maxerrors participants with a higher percentage of errors are excluded from the dataset. Default is .15.

casedropfunc

Function (without brackets or quotes) to be used to exclude outlying participant scores in each half. The way you handle outliers here should mimic the way you do it in your regular analyses.

- prune_nothing excludes no participants (default)
- case_prune_3SD excludes participants deviating more than 3SD from the sample mean.

plot

Create a scatterplot of the AAT scores computed from each half of the data from the last iteration. This is highly recommended, as it helps to identify outliers that can inflate or diminish the reliability.

include.raw

logical indicating whether raw split-half data should be included in the output object.

parallel

If TRUE (default), will use parallel computing to compute results faster. If a doParallel backend has not been registered beforehand, this function will register a cluster and stop it after finishing, which takes some extra time.

• • •

Other arguments, to be passed on to the algorithm or outlier rejection functions (see arguments above)

Algorithms 11

```
x an aat_splithalf object
```

type Character argument indicating which iteration should be chosen. Must be

an abbreviation of "median" (default), "minimum", "maximum", or "random".

Value

A list, containing the mean bootstrapped split-half reliability, bootstrapped 95 a list of data.frames used over each iteration, and a vector containing the split-half reliability of each iteration.

Author(s)

Sercan Kahveci

See Also

q_reliability

Examples

```
split <- aat_splithalf(ds=erotica[erotica$is_irrelevant==0,],</pre>
                       subjvar="subject",pullvar="is_pull",targetvar="is_target",
                       rtvar="RT",iters=10,trialdropfunc="trial_prune_3SD",
                       casedropfunc="case_prune_3SD",algorithm="aat_dscore",
                       plot=FALSE,parallel=FALSE)
print(split)
#Mean reliability: 0.521959
\#Spearman-Brown-corrected r: 0.6859041
#95%CI: [0.4167018, 0.6172474]
plot(split)
#Regression Splithalf
aat_splithalf(ds=erotica[erotica$is_irrelevant==0,],
              subjvar="subject", pullvar="is_pull", targetvar="is_target",
              rtvar="RT", iters=10, trialdropfunc="trial_prune_3SD",
              casedropfunc="case_prune_3SD", algorithm="aat_regression",
              formula = RT ~ is_pull * is_target, aatterm = "is_pull:is_target",
              plot=FALSE, parallel=FALSE)
#Mean reliability: 0.5313939
#Spearman-Brown-corrected r: 0.6940003
#95%CI: [0.2687186, 0.6749176]
```

Description

- aat_doublemeandiff computes a mean-based double-difference score: (mean(push_target) -mean(pull_target)) -(mean(push_control) -mean(pull_control))
- aat_doublemediandiff computes a median-based double-difference score: (median(push_target) -median(pull_target)) -(median(push_control) -median(pull_control))
- aat_dscore computes D-scores for a 2-block design (see Greenwald, Nosek, and Banaji, 2003):

```
((mean(push_target) -mean(pull_target)) -(mean(push_control) -mean(pull_control)))
/ sd(participant_reaction_times)
```

- aat_dscore_multiblock computes D-scores for pairs of sequential blocks and averages the resulting score (see Greenwald, Nosek, and Banaji, 2003). Requires extra blockvar argument, indicating the name of the block variable.
- aat_regression and aat_standardregression fit regression models to participants' reaction times and extract a term that serves as AAT score. aat_regression extracts the raw coefficient, equivalent to a mean difference score. aat_standardregression extracts the t-score of the coefficient, standardized on the basis of the variability of the participant's reaction times. These algorithms can be used to regress nuisance variables out of the data before computing AAT scores. When using these functions, additional arguments must be provided:
 - formula a formula to fit to the data
 - aatterm the term within the formula that indicates the approach bias; this is usually the interaction of the pull and target terms.
- aat_doublemeanquotient and aat_doublemedianquotient compute a log-transformed ratio of approach to avoidance for both stimulus categories and subtract these ratios: log(mean(pull_target) / mean(push_target)) -log(mean(pull_control) / mean(push_control))
- aat_singlemeandiff and aat_singlemediandiff subtract the mean or median approach reaction time from the mean or median avoidance reaction time. These algorithms are only sensible if the supplied data contain a single stimulus category.

```
aat_doublemeandiff(ds, subjvar, pullvar, targetvar, rtvar, ...)
aat_doublemediandiff(ds, subjvar, pullvar, targetvar, rtvar, ...)
aat_dscore(ds, subjvar, pullvar, targetvar, rtvar, ...)
aat_dscore_multiblock(ds, subjvar, pullvar, targetvar, rtvar, blockvar, ...)
aat_regression(ds, subjvar, formula, aatterm, ...)
aat_standardregression(ds, subjvar, formula, aatterm, ...)
aat_doublemedianquotient(ds, subjvar, pullvar, targetvar, rtvar, ...)
aat_doublemeanquotient(ds, subjvar, pullvar, targetvar, rtvar, ...)
aat_singlemeandiff(ds, subjvar, pullvar, rtvar, ...)
aat_singlemediandiff(ds, subjvar, pullvar, rtvar, ...)
```

erotica 13

Arguments

ds A long-format data.frame

subjvar Column name of the participant identifier variable

pullvar Column name of the movement variable (0: avoid; 1: approach)

targetvar Column name of the stimulus category variable (0: control stimulus; 1:

target stimulus)

rtvar Column name of the reaction time variable

... Other arguments passed on by functions (ignored) blockvar name of the variable indicating block number

formula A regression formula to fit to the data to compute an AAT score

aatterm A character naming the formula term representing the approach bias.

Usually this is the interaction of the movement-direction and stimulus-

category terms.

Value

A data frame containing participant number and computed AAT score.

erotica	AAT examining approach bias for erotic stimuli	
erotica	AAT examining approach bias for erotic stimuli	

Description

AAT

Usage

erotica

Format

An object of class "data.frame"

Source

osf.io repository

References

Kahveci, S., Van Bockstaele, B.D., & Wiers, R.W. (in preparation). Pulling for Pleasure? Erotic Approach-Bias Associated With Porn Use, Not Problems. DOI:10.17605/OSF.IO/6H2RJ

14 Preprocessing

Preprocessing

Pre-processing rules

Description

These are pre-processing rules that can be used in aat_splithalf, aat_bootstrap, and aat_compute.

- The following rules are to be used for the trialdropfunc argument. The way you
 handle outliers for the reliability computation and bootstrapping more broadly should
 mimic the way you do it in your regular analyses. It is recommended to exclude
 outlying trials when computing AAT scores using the mean double-difference scores
 and regression scoring approaches, but not when using d-scores or median doubledifference scores.
 - prune_nothing excludes no trials (default)
 - trial_prune_3SD excludes trials deviating more than 3SD from the mean per participant.
 - trial_prune_SD_dropcases removes trials deviating more than a specific number of standard deviations from the participant's mean, and removes participants with an excessive percentage of outliers. Required arguments:
 - * trialsd trials deviating more than trialsd standard deviations from the participant's mean are excluded (optional; default is 3)
 - * maxoutliers participants with a higher percentage of outliers are removed from the data. (optional; default is .15)
 - trial_recode_SD recodes outlying reaction times to the nearest non-outlying value, with outliers defined as reaction times deviating more than a certain number of standard deviations from the participant's mean. Required argument:
 - * trialsd trials deviating more than this many standard deviations from the mean are classified as outliers.
 - trial_prune_percent_subject and trial_prune_percent_sample remove trials below and/or above certain percentiles, on a subject-by-subject basis or sample-wide, respectively. The following arguments are available:
 - * lowerpercent and uppperpercent (optional; defaults are .01 and .99).
- The following pre-processing rules are to be used for the errortrialfunc argument. They determine what is to be done with errors remove or recode?
 - prune_nothing removes no errors (default).
 - error_replace_blockmeanplus replaces error trial reaction times with the block mean, plus an arbitrary extra quantity. If used, the following additional arguments are required:
 - * blockvar Quoted name of the block variable (mandatory)
 - * errorvar Quoted name of the error variable, where errors are 1 or TRUE and correct trials are 0 or FALSE (mandatory)
 - * errorbonus Amount to add to the reaction time of error trials. Default is 0.6 (recommended by Greenwald, Nosek, & Banaji, 2003)
 - error_prune_dropcases removes errors and drops participants if they have more errors than a given percentage. The following arguments are available:
 - * errorvar Quoted name of the error variable, where errors are 1 or TRUE and correct trials are 0 or FALSE (mandatory)

Preprocessing 15

- * maxerrors participants with a higher percentage of errors are excluded from the dataset. Default is .15.
- These are pre-processing rules to be used for the casedropfunc argument. The way you handle outliers here should mimic the way you do it in your regular analyses.
 - prune_nothing excludes no participants (default)
 - case_prune_3SD excludes participants deviating more than 3SD from the sample mean.

```
prune_nothing(ds, ...)
trial_prune_percent_subject(
  ds,
  subjvar,
  rtvar,
  lowerpercent = 0.01,
  upperpercent = 0.99,
)
trial_prune_percent_sample(
  ds,
  rtvar,
  lowerpercent = 0.01,
  upperpercent = 0.99,
)
trial_prune_3SD(ds, subjvar, rtvar, ...)
trial_prune_SD_dropcases(
  ds,
  subjvar,
  rtvar,
  trialsd = 3,
  maxoutliers = 0.15,
)
trial_recode_SD(ds, subjvar, rtvar, trialsd = 3, ...)
case_prune_3SD(ds, ...)
error_replace_blockmeanplus(
  ds,
  subjvar,
  rtvar,
  blockvar,
  errorvar,
  errorbonus,
```

 q_{\perp} reliability

```
)
error_prune_dropcases(ds, subjvar, errorvar, maxerrors = 0.15, ...)
```

Arguments

ds A data.frame.

... Other arguments (ignored).

subjvar The name of the subject variable.

rtvar The name of the reaction time variable.

lowerpercent, upperpercent

for trial_prune_percent_subject and trial_prune_percent_sample, the lower and upper proportions beyond which trials are considered outliers

and removed (defaults to .01 and .99).

trialsd The amount of deviation from the participant mean (in SD) after which

a trial is considered an outlier and excluded (defaults to 3).

maxoutliers for trial_prune_SD_dropcases, the maximum percentage of outliers, after

which a participant is excluded from the data.

blockvar The name of the block variable.

errorvar The name of the error variable.

errorbonus for error_replace_blockmeanplus, the amount of seconds to add to the

block mean and use as a replacement for error trial reaction times (default

is 0.6).

maxerrors for error_prune_dropcases, the maximum percentage of errors, after which

a participant is excluded from the data.

Description

This function can be used to compute an exact reliability score for a psychological task whose results involve a difference score. The resulting intraclass correlation coefficient is equivalent to the average all possible split-half reliability scores. It ranges from -1 to 1, with -1 implying that all variance in the data is explained by within-subjects variability, 1 implying that all variance is explained by between-subjects variability, and 0 implying that within-subjects and between-subjects variability contribute equally to the total variance in the sample.

```
q_reliability(ds, subjvar, formula, aatterm = NA)
## S3 method for class 'qreliability'
print(x, ...)
## S3 method for class 'qreliability'
plot(x, ...)
```

SpearmanBrown 17

Arguments

ds	a long-format data.frame
subjvar	name of the subject variable
formula	a formula predicting the participant's reaction time using trial-level variables such as movement direction and stimulus category
aatterm	a string denoting the term in the formula that contains the participant's approach bias
x	a qreliability object
	Other arguments passed to the generic print and plot functions.

Value

a qreliability object, containing the reliability coefficient, and a data.frame with participants' bias scores and score variance.

Author(s)

Sercan Kahveci

Examples

SpearmanBrown

Spearman-Brown corrections for Correlation Coefficients

Description

Perform a Spearman-Brown correction on the provided correlation score.

```
SpearmanBrown(
  corr,
  ntests = 2,
  fix.negative = c("nullify", "bilateral", "none")
)
```

18 SpearmanBrown

Arguments

corr To-be-corrected correlation coefficient

ntests An integer indicating how many times larger the full test is, for which the

corrected correlation coefficient is being computed. When ntests=2, the formula will compute what the correlation coefficient would be if the test

were twice as long.

fix.negative Determines how to deal with a negative value. "nullify" sets it to zero,

"bilateral" applies the correction as if it were a positive number, and then

sets it to negative. "none" gives the raw value.

Details

Correct a correlation coefficient for being based on only a subset of the data.

Value

Spearman-Brown-corrected correlation coefficient.

Index

q_reliability, 2, 11, 16

```
*Topic datasets
                                               SpearmanBrown, 17
    erotica, 13
                                               trial_prune_3SD (Preprocessing), 14
                                               trial_prune_percent_sample
aat_alpha, 2
                                                        (Preprocessing), 14
aat_alpha_jackknife (aat_alpha), 2
                                               trial_prune_percent_subject
aat_bootstrap, 4, 14
                                                        (Preprocessing), 14
aat_compute, 6, 14
                                               trial_prune_SD_dropcases
aat_doublemeandiff (Algorithms), 11
                                                        (Preprocessing), 14
aat_doublemeanquotient (Algorithms), 11
                                               trial_recode_SD (Preprocessing), 14
aat_doublemediandiff (Algorithms), 11
aat_doublemedianquotient (Algorithms),
        11
aat_dscore (Algorithms), 11
aat_dscore_multiblock (Algorithms), 11
aat_regression (Algorithms), 11
aat_singlemeandiff (Algorithms), 11
aat_singlemediandiff (Algorithms), 11
aat_splithalf, 2, 8, 14
aat_standardregression (Algorithms), 11
Algorithms, 4, 7, 9, 11
case_prune_3SD (Preprocessing), 14
erotica, 13
error_prune_dropcases (Preprocessing),
error_replace_blockmeanplus
        (Preprocessing), 14
plot.aat_alpha (aat_alpha), 2
plot.aat_alpha_jackknife (aat_alpha), 2
plot.aat_bootstrap (aat_bootstrap), 4
plot.aat_splithalf (aat_splithalf), 8
plot.qreliability (q_reliability), 16
Preprocessing, 14
print.aat_alpha (aat_alpha), 2
print.aat_alpha_jackknife (aat_alpha),
print.aat_bootstrap (aat_bootstrap), 4
print.aat_splithalf (aat_splithalf), 8
print.qreliability (q_reliability), 16
prune_nothing (Preprocessing), 14
```