Zajęcia ze sztucznej inteligencji

(laboratorium Sob 15.20)

Zadanie 2

1. Algorytm i jego opis

Algorytmy genetyczne stanowią narzędzie w dziedzinie sztucznej inteligencji i optymalizacji, czerpiąc inspirację z procesów ewolucyjnych występujących w naturze. Zaprojektowane w celu rozwiązywania problemów optymalizacyjnych, te heurystyczne metody przeszukują przestrzeń rozwiązań, adaptując się i ewoluując w poszukiwaniu najlepszych możliwych rozwiązań.

Algorytmy genetyczne opierają się na mechanizmach krzyżowania, mutacji i selekcji, wykorzystując zasady ewolucji do iteracyjnego doskonalenia zbioru rozwiązań. W kontekście poszukiwania maksimum funkcji, algorytm genetyczny będzie dążył do znalezienia optymalnej kombinacji wartości zdefiniowanych na przedziale <0,31>, która prowadzi do maksymalizacji badanej funkcji.

W trakcie iteracyjnego procesu ewolucji, algorytm genetyczny tworzy nowe pokolenia, przetwarzając i modyfikując rozwiązania w sposób zainspirowany mechanizmami dziedziczenia genetycznego. Dzięki temu, wraz z upływem czasu, populacja dąży do coraz lepszych rozwiązań, umożliwiając rozwiązanie złożonych problemów optymalizacyjnych.

2. Przykładowe rozwiązanie

Wstępne dane:

Numer indeksu: 7580

Funkcja: f(x) = 8x + 2

Współczynnik krzyżowania: $P_{\nu} = 0.8$

Współczynnik mutacji: $P_{M} = 0.2$

Liczba chromosomów wynosi: 6

Przedział wynosi <0, 31> czyli $\Omega=32$, więc możemy zakodować to na 5 bitach

Pula początkowa chromosomów wraz z fenotypami:

$$Ch_1 = 10110 = 22$$

$$Ch_2 = 01101 = 13$$

$$Ch_2 = 11001 = 25$$

$$Ch_{A} = 00111 = 7$$

$$Ch_5 = 10000 = 16$$

$$Ch_6 = 01010 = 10$$

Obliczanie funkcji dostosowania:

$$f(22) = 8 * 22 + 2 = 178$$

$$f(13) = 8 * 13 + 2 = 106$$

$$f(25) = 8 * 25 + 2 = 202$$

$$f(7) = 8 * 7 + 2 = 58$$

$$f(16) = 8 * 16 + 2 = 130$$

$$f(10) = 8 * 10 + 2 = 82$$

Selekcja chromosomów metodą koła ruletki:

$$178 + 106 + 202 + 58 + 130 + 82 = 756$$

$$f(Ch_1)\% = (178/756) * 100\% \approx 23.54\%$$

$$f(Ch_2)\% = (106/756) * 100\% \approx 14.02\%$$

$$f(Ch_2)\% = (202/756) * 100\% \approx 26.72\%$$

$$f(Ch_{A})\% = (58/756) * 100\% \approx 7.67\%$$

$$f(Ch_{s})\% = (130/756) * 100\% \approx 17.20\%$$

$$f(Ch_6)\% = (82/756) * 100\% \approx 10.85\%$$

Obliczanie funkcji dostosowania:

$$Ch_1 \to Ch_5 = 10000 = 16$$

$$Ch_2 \to Ch_6 = 01010 = 10$$

$$Ch_3 \to Ch_2 = 01101 = 13$$

$$Ch_4 \to Ch_2 = 01101 = 13$$

$$Ch_5 \to Ch_3 = 11001 = 25$$

$$Ch_6 \to Ch_2 = 01101 = 13$$

Krzyżowanie

Lokus: od 1 do (n-1)

$$Ch_1 = 10|000$$
 lokus: 2, Pk = 0.43 Krzyżowanie $Ch_1 = 10010$

$$Ch_2 = 01|010$$
 $Ch_2 = 01000$

$$Ch_3 = 01101$$
 lokus: 5, Pk = 0.98 Brak krzyżowania $Ch_3 = 01101$

$$Ch_{_{4}} = 01101$$
 $Ch_{_{4}} = 01101$

$$Ch_{_{5}}=11001$$
 lokus: 1, Pk = 0.81 Brak krzyżowania $Ch_{_{5}}=11001$

$$Ch_{6} = 01101$$
 $Ch_{6} = 01101$

Mutacje

Lokus: od 1 do n

$$Ch_1 =$$
 Lokus: 4

1 0	0	1	0
-----	---	---	---

$$Ch_2 =$$
 Lokus: 3

			_	
0	1	0	0	0

$$Ch_3 =$$
 Lokus: 1

0	1	1	0	1
---	---	---	---	---

$Ch_4 =$		Lokus: 2			
	0	1	1	0	1

$Ch_5 =$		Lokus: 5			
	1	1	0	0	1

$Ch_6 =$		Lokus: 4		
0	1	1	0	1

$$Ch_1 = 10000 = 16$$
 $f(Ch_1) = 130$ $Ch_2 = 01100 = 12$ $f(Ch_2) = 98$ $Ch_3 = 11101 = 29$ $f(Ch_3) = 234$ $Ch_4 = 00101 = 5$ $f(Ch_4) = 42$ $Ch_5 = 11000 = 24$ $f(Ch_5) = 194$ $Ch_6 = 01111 = 15$ $f(Ch_6) = 122$

 $Suma\ wyniko'w\ funkcji\ przystosowania\ =\ 130\ +\ 98\ +\ 234\ +\ 42\ +\ 194\ +\ 122\ =\ 820$