4. Serie Einführung in nichtlineare Optimierung

Aufgabe 1 (Präsenzaufgabe: Bedeutung der Schrittweite) $Sei\ f: \mathbb{R} \to \mathbb{R},$

$$f(x) = \frac{1}{5}x^2.$$

Setze den Startpunkt $x_0 := 2.5$, die Schrittweite $\alpha_k := (1/2)^k$ für alle $k \in \mathbb{N}_0$ und die Suchrichtung $d_k := d := -1$. Es sei $(x_k)_k$ die durch das Abstiegsverfahren erzeugte Folge.

- a) Zeigen Sie, dass die Folge $(x_k)_k$ nicht gegen das Minimum von f konvergiert.
- b) Die Suchrichtung sei nun gegeben als $d_k := -f'(x_k)$. Zeigen Sie, dass weiterhin die Folge $(x_k)_k$ nicht gegen das Minimum von f konvergiert.
- c) Zeigen Sie, dass die Suchrichtungen $(d_k)_k$ sowohl für $d_k := -1$ als auch $d_k := -f'(x_k)$ Abstiegsrichtungen sind.

Hinweis: Bei Aufgabe b) kann die Rechnung aus a) hilfreich sein.

Aufgabe 2 (Programmieraufgabe: Skalierungsproblem)

Sei die Rosenbrock-Funktion $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x_1, x_2) = 100(x_1^2 - x_2)^2 + (1 - x_1)^2$$

gegeben. Wir definieren weiter für $\alpha > 0$ die skalierte Rosenbrock-Funktion $f_{\alpha} : \mathbb{R}^2 \to \mathbb{R}$,

$$f_{\alpha}(x_1, x_2) = f(\alpha x_1, x_2/\alpha).$$

Implementieren Sie das Gradientenverfahren mit der Armijo-Schrittweitensteuerung. Berechnen Sie dafür den Gradienten approximativ, z.B. wie in Serie 2 Aufgabe 3. Testen Sie Ihre Implementierung zuerst an der Rosenbrock-Funktion. Was passiert, wenn Sie $\alpha > 0$ klein wählen? Kann Konvergenz zum Minimum weiter erreicht werden? Hinweis: Diese Aufgabe beinhaltet neben der Programmierung auch Interpretation und ggf. Gedanken zur Verbesserung des implementierten Algorithmus. Sie ist deswegen für zwei Wochen gedacht.

Aufgabe 3 (Schriftliche Aufgabe)

 $Sei\ f: \mathbb{R} \to \mathbb{R},$

$$f(x) = x^4.$$

Setze $x_0 := 3/2$. Berechnen Sie für das Gradientenverfahren mit

- a) der Armijo-Schrittweite mit $\nu := 1/4$
- b) der exakten Schrittweite

die nächste Iterierte. Leiten Sie die Formeln für die Armijo-Regel angewendet auf das konkrete Beispiel her. Bestimmen Sie aber den konkreten Wert für die Schrittweite α bei der Armijo-Regel mit einem Taschenrechner oder anderem Tool und nicht per Hand. Vergleichen Sie weiter beide Schrittweitensteuerungen an diesem Beispiel. Welche Vorund Nachteile haben beide Verfahren im Vergleich?

Abgabe der schriftlichen Aufgaben bis: 11.05.2023 bis 16:15 Uhr zu Beginn der Vorlesung oder im OLAT.