Dynamic Adaptive Neural Network Arrays: A Neuromorphic Architecture

Catherine Schuman
Computational Data Analytics
Oak Ridge National Lab

Adam Disney and John Reynolds
Department of EECS
University of Tennessee

Neuromorphic Computing

- Neuromorphic computing systems are software/hardware systems that are inspired by biological brains.
 - Neural networks in hardware.
- Goal is to capture some of the important capabilities of the biological brain: real-time processing, generalization of learned information, robustness, adaptability to changes in the environment.
- Neuromorphic hardware: improvements in size/portability, power, computation time and communication costs over neuromorphic simulations.

Neuromorphic Computing Projects

Neuromorphic Project	Biology/Computation	Hardware	
SpiNNaker ¹	Biology	ARM Boards, Custom Interconnection	
BrainScaleS ²	Biology	Wafer-Scale ASIC	
Neurogrid ³	Biology/Computation	Fabbed using existing processes. Analog components.	
TrueNorth ⁴	Computation	Fabbed using existing processes.	

- 1. Furber, Steve B., et al. "Overview of the spinnaker system architecture." *Computers, IEEE Transactions on* 62.12 (2013): 2454-2467.
- 2. Brüderle, Daniel, et al. "A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems." *Biological cybernetics* 104.4-5 (2011): 263-296.
- 3. Benjamin, Ben Varkey, et al. "Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations." *Proceedings of the IEEE* 102.5 (2014): 699-716.
- Merolla, Paul A., et al. "A million spiking-neuron integrated circuit with a scalable communication network and inter Science 345.6197 (2014): 668-673.

Dynamic Adaptive Neural Network Array (DANNA)

 Implementation of a spiking neural network architecture, Neuroscience-Inspired Dynamic Architecture (NIDA).

- Neuron: threshold and refractory period.
- Synapse: weight, delay, and LTP/LTD.
- Trained/design using evolutionary optimization.

Dynamic Adaptive Neural Network Array (DANNA)

- Array of programmable neuromorphic elements
 - Can be a neuron or a synapse.
- Elements can connect to up to 16 neighbors.
- Current Implementation: **FPGA**

Comparison

Neuromorphic System	Programmable Structure	Component Complexity (Neuron/Synapse)	On-Chip Learning
DANNA ¹	Neurons and synapses	2/2	Yes
TrueNorth ²	Fixed (Synapses on/off)	10/3	No
Neurogrid ³	Fixed (Synapses on/off)	79 / 8	No
BrainScaleS ⁴	Neurons and synapses	Variable	Yes
SpiNNaker ⁵	Neurons and synapses	Variable	Yes

^{1.} Dean, Mark E., Catherine D. Schuman, and J. Douglas Birdwell. "Dynamic adaptive neural network array." *Unconventional Computation and Natural Computation*. Springer International Publishing, 2014. 129-141.

^{2.} Merolla, Paul A., et al. "A million spiking-neuron integrated circuit with a scalable communication network and interface." Science 345.6197 (2014): 668-673.

[.] Benjamin, Ben Varkey, et al. "Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations." Proceedings of the IEEE 102.5 (2014): 699-716.

I. Brüderle, Daniel, et al. "A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems." Biological cybernetics 104.4-5 (2011): 263-296.

^{5.} Furber, Steve B., et al. "Overview of the spinnaker system architecture." *Computers, IEEE Transactions on* 62.12 (2013): 2454-2467.

Preliminary Results: Iris

- 150 instances:
 - Four attributes:
 - Sepal length and width.
 - Petal length and width.
 - Three possible classes:
 - Iris Setosa, Iris Virginica, Iris Versicolour.
- Training set and testing set each have 75 instances (25 instances of each type).
- Fitness function: Evaluates the DANNA network on each of the 75 training instances.
- Stopping condition: 96 percent accuracy (72/75 correct).

Preliminary Results: Iris

Size: 15 neurons 30 synapses

Training Accuracy: 96 percent (72/75)

Testing Accuracy: 98.67 percent (74/75)

Preliminary Results: Iris

Size: 15 neurons 30 synapses

Training Accuracy: 96 percent (72/75)

Testing Accuracy: 98.67 percent (74/75)

Future Work

- Improved simulation:
 - Event queue instead of clock-based.
 - CPU vector instructions.
 - GPUs.

- Parallelized evolutionary optimization.
 - Parallelization of training for NIDA is already in progress.
- Development, visualization and analysis tools for DANNA hardware kit.
- In Progress Hardware Implementations:
 - VLSI.
 - Memristors.

Contact

Catherine Schuman

Email: schumancd@ornl.gov

UT's Research Group: neuromorphic.eecs.utk.edu

