Resultados de Patrones de Reacción-Difusión (Punto 2)

Referencia

Primero que todo, el método, las funciones y constantes que usamos para reproducir los patrones de puntos y rayas fueron sacados de el siguiente artículo:

 Staddon, M. F. (2024). How the zebra got its stripes: Curvature-dependent diffusion orients Turing patterns on three-dimensional surfaces. Physical Review E, 110(3), 034402.

https://doi.org/10.1103/PhysRevE.110.034402

Rayas de Cebra

Las rayas de cebra se obtuvieron modificando las constantes F y G en un sistema de reacción-difusión. Este patrón de bandas alternas emerge de la interacción entre un activador (U) y un inhibidor (V). La imagen muestra cómo las concentraciones de estos dos morfogénos oscilan en un patrón de franjas, simulando las rayas del pelaje.

Puntos de Guepardo

Los puntos de guepardo también se generaron ajustando las constantes F y G. En este caso, la interacción entre el activador y el inhibidor dio lugar a un patrón de puntos aislados en lugar de rayas. Este resultado demuestra la sensibilidad de los sistemas de Turing a los parámetros, donde un pequeño cambio puede generar un patrón completamente diferente, como puntos en vez de rayas.

Patrones de Escamas de Pez Globo (Activación)

La activación del sistema (representada por α) juega un papel crucial en la resolución y el tamaño de los patrones.

- Menor activación ($\alpha = 0.00007$): Se obtienen patrones más detallados y de mayor resolución, con puntos más pequeños y densos.
- Activación media ($\alpha = 0.00028$): El patrón se vuelve más grande y menos denso, con puntos más grandes y menos numerosos.
- Mayor activación ($\alpha = 0.00112$): El patrón se reduce a una forma mucho más simple, con áreas de concentración más grandes y menos definidas.

Patrones de Escamas de Pez Globo (Ruido)

El nivel de ruido en el sistema afecta la cantidad de "islas" o grupos aislados en el patrón.

- Menor ruido (0.01): Se observan muchos puntos o islas bien definidos y separados.
- Ruido medio (0.05): Los puntos comienzan a fusionarse, reduciendo la cantidad de islas aisladas.
- Mayor ruido (0.20): El patrón se vuelve más uniforme y la cantidad de grupos aislados se reduce significativamente, ya que el ruido difumina las fronteras y cohesiona las áreas de concentración.