

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) **PCT**

(51) International Patent Classification 6: C12N 15/12, C07K 14/285, C12N 1/21, A61K 39/395, C07K 16/12 // (C12N 1/21, C12R 1:21)

(11) International Publication Number:

WO 95/13370

(43) International Publication Date:

18 May 1995 (18.05.95)

(21) International Application Number:

PCT/CA94/00616

A1

(22) International Filing Date:

7 November 1994 (07.11.94)

(30) Priority Data:

US 8 November 1993 (08.11.93) 08/148,968 29 December 1993 (29.12.93) US 08/175,116

[CA/CA]; 32 Estoril Street, Richmond Hill, Ontario L4C 0B6 (CA). GRAY-OWEN, Scott [CA/CA]; 2210-142 Silvergrove Drive N.W., Calgary, Alberta T3B 5H4 (CA). YANG, Yan-Ping [CA/CA]; Apartment 1709, 120 Torresdale Avenue, Willowdale, Ontario M2R 3N7 (CA). MURDIN, Andrew [GB/CA]; 146 Rhodes Circle, Newmarket, Ontario L3X 1V2 (CA). KLEIN, Michel [CA/CA]; 16 Munro Boulevard, Willowdale, Ontario M2P 1B9 (CA). (74) Agent: STEWART, Michael, I.; Sim & McBurney, Suite 701,

330 University Avenue, Toronto, Ontario M5G 1R7 (CA).

(60) Parent Application or Grant

(63) Related by Continuation

08/175,116 (CIP)

US Filed on 29 December 1993 (29.12.93)

(81) Designated States: AU, BR, CA, CN, Fl, JP, KR, NO, NZ, RU, UA, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(71) Applicant (for all designated States except US): CONNAUGHT LABORATORIES LIMITED [CA/CA]; 1755 Steeles Avenue West, Willowdale, Ontario M2R 3T4 (CA).

Published

(75) Inventors/Applicants (for US only): LOOSMORE, Sheena (72) Inventors; and

[CA/CA]; 70 Crawford Rose Drive, Aurora, Ontario L4G 4R4 (CA). HARKNESS, Robin [CA/CA]; Apartment 1706, 640 Sheppard Avenue East, Willowdale, Ontario M2K 1B8 (CA). SCHRYVERS, Anthony [CA/CA]; 39 Edforth Road N.W., Calgary, Alberta T3A 3V8 (CA). CHONG, Pele With international search report.

(54) Title: HAEMOPHILUS TRANSFERRIN RECEPTOR GENES

(57) Abstract

Purified and isolated nucleic acid is provided which encodes a transferrin receptor protein of a strain of Haemophilus or a fragment or an analog of the transferrin receptor protein. The nucleic acid sequence may be used to produce peptides free of contaminants derived from bacteria normally containing the Top1 or Top2 proteins for purposes of diagnostics and medical treatment. Furthermore, the nucleic acid molecule may be used in the diagnosis of infection. Also provided are recombinant Tbp1 or Tbp2 and methods for purification of the same. Live vectors expressing epitopes of transferrin receptor protein for vaccination are provided.

TITLE OF INVENTION

HAEMOPHILUS TRANSFERRIN RECEPTOR GENES

FIELD OF INVENTION

The present invention is related to the molecular cloning of genes encoding transferrin receptor and in particular to the cloning of transferrin receptor genes from Haemophilus influenzae.

REFERENCE TO RELATED APPLICATION

This application is a continuation-in-part of copending United States Patent Application Serial No. 08/175116, filed December 29, 1993, which itself is a continuation-in-part of copending United States Patent Application 08/148,968 filed November 8, 1993.

BACKGROUND OF THE INVENTION

Encapsulated Haemophilus influenzae type b strains are the major cause of bacterial meningitis and other invasive infections in young children. However, the nonencapsulated or non-typable H. influenzae (NTHi) are responsible for a wide range of human diseases including 20 otitis media, epiglottitis, pneumonia, tracheobronchitis. Vaccines based upon H. influenzae type b capsular polysaccharide conjugated to diphtheria (Berkowitz et al., 1987. Throughout this application, various references are referred to 25 parenthesis to more fully describe the state of the art to which this invention pertains. Full bibliographic information for each citation is found at the end of the specification, immediately preceding the claims. disclosures of these references are hereby incorporated 30 by reference into the present disclosure), tetanus toxoid (Classon et al., 1989 and US patent 4,496,538), or Neisseria meningitidis outer membrane protein (Black et al., 1991) have been effective in reducing H. influenzae type b-induced meningitis, but not NTHi-induced disease 35 (Bluestone, 1982).

regulated (Morton et al., 1993) and a putative furbinding site (Braun and Hantke, 1991) has been identified upstream of tbp2. This sequence is found in the promoter region of genes which are negatively regulated by iron, including N. meningitidis TfR (Legrain et al., 1993). The promoter is followed by the tbp2 and tbp1 genes, an arrangement found in other bacterial TfR operons (Legrain et al, 1993; Wilton et al., 1993). Antibodies which block the access of the transferrin receptor to its iron 10 source may prevent bacterial growth. In addition, antibodies against TfR that are opsonizing bactericidal may also provide protection by alternative Thus, the transferrin receptor, fragments mechanisms. thereof, its constituent chains, or peptides derived 15 therefrom are vaccine candidates to protect against H. influenzae disease. Mice immunized with N. meningitidis TfR proteins in Freund's adjuvant were protected from homologous challenge and the anti-TfR antisera were bactericidal and protective in a passive transfer assay 20 (Danve et al., 1993). Pigs immunized with recombinant A. pleuropneumoniae Tbp2 were protected against homologous challenge but not heterologous challenge (Rossi-Campos et al., 1992). These data indicate the efficacy of TfRbased vaccines in protection from disease. It would be 25 desirable to provide the sequence of the DNA molecule that encodes transferrin receptor and peptides corresponding to portions of the transferrin receptor and containing such sequences for diagnosis, immunization and the generation of diagnostic 30 immunological reagents.

Poliovirus is an enterovirus, a genus of the family Picornaviridae. There are three distinct serotypes of the virus, and multiple strains within each serotype. Virulent strains are causative agents of paralytic poliomyelitis. Attenuated strains, which have reduced potential to cause paralytic disease, and inactivated

15

20

25

30

35

for expressing the TfR genes by recombinant DNA means for providing, in an economical manner, purified and isolated transferrin receptor subunits, fragments or analogs thereof. The transferrin receptor, subunits or fragments thereof or analogs thereof, as well as nucleic acid molecules encoding the same and vectors containing such nucleic acid molecules, are useful in compositions against diseases caused by Haemophilus, the diagnosis of infection by Haemophilus and as tools for the generation of immunological reagents. Monoclonal antibodies or mono-specific antisera (antibodies) raised against the transferrin receptor protein produced in accordance with aspects of the present invention are useful for the diagnosis of infection by Haemophilus, the specific detection of Haemophilus (in for example in vitro and in vivo assays) and for the treatment of diseases caused by Haemophilus.

corresponding Peptides to portions the transferrin receptor or analogs thereof are useful immunogenic compositions against disease caused Haemophilus, the diagnosis of infection by Haemophilus as tools for the generation of immunological Monoclonal antibodies or antisera raised against these peptides, produced in accordance with aspects of the present invention, are useful for the diagnosis of infection by Haemophilus, the specific detection of Haemophilus (in, for example, in vitro and in vivo assays) and for use in passive immunization as a treatment of disease caused by Haemophilus.

In accordance with one aspect of the present invention, there is provided a purified and isolated nucleic acid molecule encoding a transferrin receptor protein of a strain of Haemophilus, more particularly, a strain of H. influenzae, specifically a strain of H. influenzae type b, such as H. influenzae type b strain DL63, Eagan or MinnA, or a non-typable strain of H.

25

30

35

The vector may be one having the characteristics of plasmid DS-712-1-3 having ATCC accession number 75603 or plasmid JB-1042-7-6 having ATCC accession number 75607.

The plasmids may be adapted for expression of the encoded transferrin receptor, fragments or analogs thereof, in a heterologous or homologous host, in either a lipidated or non-lipidated form. Accordingly, a further aspect of the present invention provides an expression vector adapted for transformation of a host comprising a nucleic-acid molecule as provided herein and expression means operatively coupled to the nucleic acid molecule for expression by the host of the transferrin receptor protein or the fragment or analog of the transferrin receptor protein. In specific embodiments of this aspect of the invention, the nucleic acid molecule may encode substantially all the transferrin receptor protein, only the Tbp1 protein or only the Tbp2 protein of the Haemophilus strain. The expression means may include a nucleic acid portion encoding a leader sequence for secretion from the host of the transferrin receptor protein or the fragment or the analog of the transferrin receptor protein. The expression means also may include a nucleic acid portion encoding a lipidation signal for expression from the host of a lipidated form of the transferrin receptor protein or the fragment or the analog of the transferrin receptor protein. The expression plasmid may the have identifying characteristics of plasmid JB-1468-29, JB-1600-1 or JB-1424-2-8. The host may be selected from, for example, Escherichia coli, Bacillus, Haemophilus, fungi, yeast or baculovirus and Semliki Forest virus expression systems may be used.

In an additional aspect of the invention, there is provided a transformed host containing an expression vector as provided herein. Such host may selected from JB-1476-2-1, JB-1437-4-1 and JB-1607-1-1. The invention

15

. 20-

25

30

35

In accordance with another aspect of the invention, an immunogenic composition is provided which comprises at least one active component selected from at least one nucleic acid molecule as provided herein, at least one recombinant protein as provided herein, at least one of the purified and isolated Tbp1 or Tbp2 proteins, as provided herein, at least one synthetic peptide, as provided herein, and a live vector, as provided herein, and a live vector, as provided herein, and a pharmaceutically acceptable carrier therefor or vector therefor. The at least one active component produces an immune response when administered to a host.

The immunogenic compositions provided herein may be Formulated as a vaccine for in vivo-administration to protect against diseases caused by bacterial pathogens that produce transferrin receptors. For such purpose, the compositions may be formulated as a microparticle, capsule or liposome preparation. Alternatively, the compositions may be provided in combination with a targeting molecule for delivery to specific cells of the immune system or to mucosal surfaces. The immunogenic composition may comprise a plurality of active components to provide protection against disease caused by a plurality of species of transferrin receptor producing The immunogenic compositions may further comprise an adjuvant.

In accordance with another aspect of the invention, there is provided a method for inducing protection against infection or disease caused by Haemophilus or other bacteria that produce transferrin receptor protein, comprising the step of administering to a susceptible host, such as a human, an effective amount of the immunogenic composition as recited above.

In accordance with another aspect of the invention, an antiserum or antibody specific for the recombinant protein, the isolated and purified Tbp1 protein or Tbp2

20

25

30

35

lysate; (d) fractionating the cell lysate to provide a and a first pellet, the first supernatant supernatant comprising substantially a large proportion soluble host proteins; (e) separating the supernatant from the first pellet; (f) selectively extracting the first pellet to remove substantially all soluble host proteins and host membrane proteins therefrom to provide a second supernatant extracted pellet containing the inclusion bodies; separating the second supernatant from the extracted pellet; (h) solubilizing the extracted pellet to provide solubilized extract; and (i) fractionating solubilized extract to provide a Tbpl or Tbp2 protein containing fraction.

The cell lysate may be fractionated to provide the first supernatant and first pellet may be effected by at least one detergent extraction.

The solubilized extract may be fractionated by gel filtration to provide the Tbpl or Tbp2 protein containing fraction, which may be subsequently dialyzed to remove at least the detergent and provide a further purified solution of Tbpl or Tbp2 protein.

BRIEF DESCRIPTION OF DRAWINGS

The present invention will be further understood from the following description with reference to the drawings, in which:

Figure 1A shows the restriction map of two plasmid clones (pBHT1 and pBHT2) of the transferrin receptor operon of Haemophilus influenzae type b strain DL63.

Figure 1B shows the restriction map of clones S-4368-3-3 and JB-901-5-3 containing TfR genes from H. influenzae type b strain Eagan.

Figure 1C shows the restriction map of clone DS-712-1-3 containing the transferrin receptor gene from H. influenzae type b strain MinnA.

15

25

strain PAK 12085. Putative -35, -10 and ribosomal binding site sequences are overlined.

Figure 7 shows the nucleotide sequences of the transferrin receptor genes (SEQ ID NO: 105) and their deduced amino acid sequences (SEQ ID NO. 106 -Tbpl and SEQ ID NO. 107 - Tbp2) from the non-typable H. influenzae strain SB33.

Figure 8 shows the nucleotide sequence of the Tbp2 gene (SEQ ID NO: 108) and the deduced amino acid sequence (SEQ ID NO: 109 - Tbp2) from non-typable strain H. influenzae strain SB12.

Figure 9 shows the nucleotide sequence of the Tbp2 gene (SEQ ID NO: 110) and the deduced amino acid sequence (SEQ ID NO: 111 - Tbp2) from non-typable strain H. influenzae strain SB29.

Figure 10 shows the nucleotide sequence of the Tbp2 gene (SEQ ID NO: 112) and the deduced amino acid sequence (SEQ ID NO: 113 - Tbp2) from non-typable strain H. influenzae strain SB30.

Figure 11 shows the nucleotide sequence of the Tbp2 gene (SEQ ID NO: 114) and the deduced amino acid sequence (SEQ ID NO: 115 - Tbp2) from non-typable strain H. influenzae strain SB32.

Figure 12A shows the nucleotide sequences of the promoter regions and 5'-end of the tbp2 genes from H. influenzae strains Eagan (SEQ ID NO: 116), MinnA (SEQ ID NO: 117), PAK 12085 (SEQ ID NO: 118) and SB33 (SEQ ID NO: 119). The coding strand primer used to amplify tbp2 genes by PCR is underlined (SEQ ID NO: 120).

Figure 12B shows the nucleotide sequence of the intergenic region and 5'-end of the tbp1 genes from H. influenzae strains Eagan (SEQ ID NO: 121), MinnA (SEQ ID NO: 122), DL63 (SEQ ID NO: 123), PAK 12085 (SEQ ID NO: 124), SB12 (SEQ ID NO: 125), SB29 (SEQ ID NO: 126), SB30 (SEQ ID NO: 127), and SB32 (SEQ ID NO: 128). The non-

20

Figure 21 shows the construction scheme of plasmid JB-1600-1 which expresses *H. influenzae* strain SB12 Tbp2 from *E. coli*.

Figure 22 shows SDS-PAGE gels of products from the expression of Haemophilus type b Eagan Tbpl protein, Eagan Tbp2 protein, and non-typable H. influenzaea SB12 Tbp2 protein from E. coli. Lane 1, JB-1476-2-1 (T7/Eagan Tbp1) at to; lane 2, JB-1476-2-1 at t=4h induction; lane 3, molecular weight markers of 200 kDa, 116 kDa, 97.4 kDa, 66 kDa, 45 kDa and 31 kDa; lane 4, JB-1437-4-1 (T7/Eagan Tbp2) at to; lane 5, JB-1437-4-1 at t=4h induction; lane 6, JB-1607-1-1 (T7/SB12 Tbp2) at to; lane 7, JB-1607-1-1 at t=4h induction.

Figure 23 shows a purification scheme for 15 recombinant Tbp1 and Tbp2 expressed from *E. coli*.

Figure 24 shows an analysis of the purity of recombinant Tbp1 and Tbp2 purified by the scheme of Figure 23. Lane 1 contains molecular weight size markers (106, 80, 49.5, 32.5, 27.5 and 18.5 kDa), Lane 2 is *E. Coli* whole cell lysate. Lane 3 is solubilized inclusion bodies. Lane 4 is purified Tbp1 or Tbp2.

Figure 25 shows the immunogenicity of rTbpl (upper panel) and rTbp2 (lower panel) in mice.

Figure 26 shows the reactivity of anti-Eagan rTbpl 25 antisera with various H. influenzae strains on a Western blot. Lane 1, BL21/DE3; lane 2, SB12-EDDA; lane 3, SB12 +EDDA; lane 4, SB29 - EDDA; lane 5, SB29 +EDDA; lane 6, SB33 -EDDA; lane 7, SB33 + EDDA; lane 8, Eagan -EDDA; lane 9, Eagan +EDDA; lane 10, B. catarrhalis 4223 - EDDA; 30 lane 11, B. catarrhalis 4223 +EDDA; lane 12, N. meningitidis 608 - EDDA; lane 13, N. meningitidis 608 + EDDA; lane 14, induced JB-1476-2-1 expressing recombinant Eagan Tbp1; lane 15, molecular weight markers. Specific ~ 95 kDa bands reacted with the anti-Tbpl antisera in lanes 3, 4, 5, 7, 8 and 9, corresponding to H. influenzae 35 strains SB12, SB29, SB33 and Eagan; - 110 kDa bands in

15

20

25

30

35

a pool of the sera collected on day 27 from rabbits immunised with PV1TBP2A (rabbits 40, 41 and 42). Panel C shows the results for a pool of prebleed sera from the same, which displayed minimal specific reactivity.

In some of the above Figures, the following abbreviations have been used to designate particular site specific restriction endonucleases: R, Eco RI; Ps, Pst I; H, Hind III; Bg, Bgl II; Nde, Nde I; Ear, Ear I; and Sau, Sau3A I.

In Figure 28, the following abbreviations have been used to designate particular site specific restriction endonucleases: A, Acc I; B Bam HI; E, Eco RI; O, Xho I; H, Hind III; Ps, Pst I; V, Eco RV; X, Xba I, G, Bgl II; S, Sal I; K, Kpn I; and S*, Sac I.

GENERAL DESCRIPTION OF THE INVENTION

Any Haemophilus strain may be conveniently used to provide the purified and isolated nucleic acid which may be in the form of DNA molecules, comprising at least a portion of the nucleic acid coding for a transferrin receptor as typified by embodiments of the present invention. Such strains are generally available from clinical sources and from bacterial culture collections, such as the American Type Culture Collection.

According to an aspect of the invention, transferrin receptor protein may be isolated from Haemophilus strains by the methods described by Schryvers (1989), Ogunnaviwo and Schryvers (1992) and US patent 5,141,743, the subject matter of which is hereby incorporated by reference. Although the details of an appropriate process are provided in patent US 5,141,743, a brief summary of such process is as follows. Isolation of transferrin receptor is achieved by isolating a membrane fraction from a bacterial strain expressing binding activity transferrin and purifying transferrin receptor by an affinity method involving the sequential steps of prebinding of transferrin to the

20

25

30

.35

influenzae type b strain DL63 was mechanically sheared, EcoRI linkers added, and a λ ZAP expression library constructed. The library was screened with the anti-TfR rabbit antisera and two positive clones (pBHIT1 and pBHIT2) were obtained which had overlapping restriction maps (Figure 1A and Figure 2). The clones were sequenced and two large open reading frames were identified (Figure 2). The nucleotide sequences of the transferrin receptor genes Tbp1 and Tbp2 (SEQ ID NO: 1) from H. influenzae DL63 and their deduced amino acid sequences (SEQ ID NO: 5 - Tbp1 and SEQ ID NO: 6 - Tbp2) are shown in Figure 3. The sequence analysis showed the TfR operon to consist of (Tbp1 and Tbp2) arranged in tandem and two genes transcribed from a single promoter (as particularly shown in Figure 2 and Figure 3). The Tbp2 protein tends to vary in molecular weight depending on the species whereas the Tbpl protein tends to have a more consistent molecular weight with some variability across the various bacteria which have TfR genes. The molecular weight of Tbp1 is usually in the range of 94 to 106,000 whereas the molecular weight of Tbp2 varies considerably from 58 to 98 000.

Amino acid sequencing of the N-termini and cyanogen bromide fragments of transferrin receptor from H. influenzae DL63 was performed. The N-terminus of Tbp2 was blocked but amino acid sequences were identified by sequencing of Tbp1 and are indicated by underlining within the protein sequence of Figure 3. These peptide sequences are Glu Thr Gln Ser lle Lys Asp Thr Lys Glu Ala lle Ser Ser Glu Val Asp Thr (as shown in Figure 3, SEQ ID NO: 101) and Leu Gln Leu Asn Leu Glu Lys Lys lle Gln Gln Asn Trp Leu Thr His Gln lle Ala Phe (as shown in Figure 3; SEQ ID NO: 102). The signal sequence of Tbp1 and the putative signal sequence of Tbp2 are indicated by double overligning in Figure 3. The putative signal sequence for Tbp1 is Met Thr Lys Lys Pro Tyr Phe Arg Leu Ser Ile

15

20

25

30

sequences of Tbp1 and Tbp2 (SEQ ID NO: 3) and their deduced amino acid sequences (SEQ ID NO: 9 - Tbp1 and SEQ ID NO: 10 - Tbp2) from H. influenzae type b strain MinnA are shown in Figure 5 where the Tbp2 sequence is first in the operon. In Figure 5, Putative -35, -10 and ribosomal binding site sequences are overlined.

Chromosomal DNA from the non-typable H. influenzae strain PAK 12085 was prepared. The DNA was partially digested with Sau3A I, size-fractionated for 10-20 kb fragments, and cloned into the BamH I site of EMBL3. The library was probed with the fragments of the pBHIT clone (Figure 2) and a full-length clone encoding TfR (JB-1042-7-6) was obtained. The restriction map of clone JB-1042-7-6 is shown in Figures 1D and 2 and the nucleotide sequences of the Tbp1 and Tbp2 genes (SEQ ID NO: 4) from H. influenzae PAK 12085 and their deduced amino acid sequences are shown in Figure 6 (SEQ ID NOS: 11, 12), with the Tbp2 sequence first. In Figure 6, Putative -35, -10 and ribosomal binding site sequences are overlined.

Chromosomal DNA from the otitis-media derived nontypable H. influenzae strain SB33 was prepared. was partially digested with Sau3A I, size-fractionated for 10-20 kb fragments, and cloned into the BamH I site The library was probed with the fragments of of EMBL3. the pBHIT clone (Figure 2) and a full-length clone encoding TfR (JB-1031-2-9) was obtained. The restriction map of clone JB-1031-2-9 is shown in Figure 2 and the nucleotide sequences of the Tbpl and Tbp2 genes (SEO ID NO: 4) from H. influenzae SB33 and their deduced amino acid sequences are shown in Figure 7 (SEQ ID NOS: 11, 12), with the Tbp2 sequence first. The SB33 tbp2 gene was found to have a single base deletion which resulted in a frame-shift at residue 126 and premature truncation of the resulting protein at residue 168.

15

SB12, SB29, SB30 and SB32 are compared in Figure 15. Tbp2 proteins of Eagan and MinnA are identical contain 660 amino acids, that of DL63 has 644 residues, and that of PAK 12085 has 654 residues. There is a single base deletion in the SB33 tbp2 gene which results in a frame-shift at residue 126 and premature trunction of the resulting protein at residue 168. The missing base was confirmed by direct sequencing of PCR amplified chromosomal DNA. With the exception of Eagan and MinnA which are identical, the Tbp2 protein sequences are less conserved with only 66-70% identity, but there are several short segments of conserved sequence which can be identified in Figure 15. The PCR amplified tbp2 genes from strains SB12, SB29, SB30 and SB32 were all found to encode full-length Tbp2 proteins. There was sequence and size heterogeneity amongst the deduced Tbp2 proteins wherein SB12 had 648 amino acids, SB29 had 631 residues, SB30 had 630 residues and SB32 had 631 residues.

Putative secondary structures of Eagan Tbpl and Tbp2 20 were determined (Figures 16A and 16B). Both proteins have several transmembrane domains, with Tbpl traversing the membrane 20 times and Tbp2 crossing it 12 times. Three exposed conserved epitopes were identified in the Tbpl amino-terminal region (DNEVTGLGK - SEQ ID NO: 43, 25 EQVLN/DIRDLTRYD _ . SEQ ID NOS: 139 and GAINEIEYENVKAVEISK - SEQ ID NO: 141) and one in the Cterminal region (GI/VYNLF/LNYRYVTWE - SEQ ID NOS: 142 and Only three small conserved regions can be identified within the Tbp2 proteins of the 30 pathogens: CS/LGGG(G)SFD - SEQ ID NOS: 75, 144 and 145 at the N-terminal, LE/SGGFY/FGP - SEQ ID NOS: 74 and 146 located internally, and VVFGAR/K - SEQ ID NOS: 83 and 84 at the C-terminus

The discovery that the Tbp2 amino acid sequence varies between strains of Haemophilus allows for the grouping of Haemophilus into sub-groups defined by the

15

20

25

allows the selection of a minimal number of antigens having particular amino acid sequences (including in the form of synthetic peptides) to immunize against the disease caused by pathogens that have transferrin receptors. Such bacteria in addition to those recited above include. other species of Neisseria, such Neisseria gonorrhoeae, and Branhamella, including Branhamella catarrhalis. Such conserved amino acid sequences among many bacterial pathogens permits the generation of TfR specific antibodies, including monoclonal antibodies, that recognize most if not all transferrin receptors. Antiserum was raised against peptides corresponding to conserved portions of the transferrin receptor. This antiserum recognized the transferrin receptor in Branhamella catarrhalis. antisera are useful for the detection and neutralization of most if not all bacteria that produce TfR protein and are also useful for passive immunization against the diseases caused by such pathogens. Diagnostic assays and kits using such conserved amino acid sequences are useful to detect many if not all bacteria that produce transferrin receptor.

Epitopes containing the afore-mentioned amino acid sequences can be delivered to cells of the immune system by the use of synthetic peptides containing such sequences, or by the use of live vectors expressing such sequences, or by the direct administration of nucleic acid molecules encoding the amino acid sequence.

Some peptides containing conserved amino acid sequences within the Tbpl proteins of *H. influenzae* type b strains Eagan, MinnA, DL63 and the nontypable strain PAK 12085 are shown in Table 2. Antibodies to some of these peptides were raised in guinea pigs (Table 4). Peptides containing conserved amino acid sequences within the Tbp2 proteins of *H. influenzae* type b strains Eagan, Minn A, DL63 and the nontypable strain PAK 12085 are

10

15

other strains, making these potentially useful diagnostic reagents (Figures 26 and 27).

Plasmids pUHIT1KFH and pUHITKFP shown in Figure 28, contain a selectable antibiotic resistance marker cloned within the transferrin receptor operon and were constructed to insertionally inactivate the transferrin receptor operon. These plasmids were used to transform Haemophilus to generate strains that do not produce transferrin receptor Tbpl and/or Tbp2 as described in Example 19. Such strains are useful as negative controls (since they do not produce TfR) in in vitro and in vivo detection and diagnostic embodiments. Such strains are also expected to be attenuated for in vivo growth and are useful as live vaccines to provide protection against diseases caused by Haemophilus.

As discussed above, epitopes of transferrin receptor proteins can be delivered to cells of the immune system by the use of live vectors expressing such amino acid sequences and the live vector may be poliovirus. 20 Referring to Figure 29 there is illustrated construction of hybrid polioviruses expressing an epitope of transferrin receptor protein including the conserved epitope from Tbp2 LEGGFYGP (SEQ ID NO: 74). Such viruses were recognized by antibodies raised against a peptide 25 incorporating the amino acid sequence LEGGFYGP (SEO ID NO: 74) (Table 5) indicating that the viruses expressed this sequence in an antigenically recognisable form. PV1TBP2A and PV1TBP2B were also neutralized by rabbit antisera raised against H. influenzae strain DL63 tbp2. 30 indicating that at least these two viruses expressed the sequence in a form recognisable to antibodies raised against the protein. All viruses were neutralisable by anti-PV1 sera, indicating that the changes in polio neutralization antigenic site I had not significantly 35 affected other antigenic sites on the Furthermore, rabbit antiserum produced by immunization

10

15

20

25

production of *Haemophilus*-specific antisera, for vaccination against the diseases caused by species of *Haemophilus* and (for example) detecting infection by *Haemophilus*.

- peptides corresponding to portions of the transferrin receptor as typified by the embodiments described herein are advantageous as diagnostic reagents, antigens for the production of Haemophilus-specific antisera, for vaccination against the diseases caused by species of Haemophilus and (for example) for detecting infection by Haemophilus.

The transferrin receptor encoded by the nucleic acid molecules of the present invention, fragments and analogs thereof, and peptides containing sequences corresponding to portions of the transferrin receptor that conserved between various isolates of Haemophilus and other bacteria that produce transferrin receptor, are useful in diagnosis of and immunization against diseases caused by any bacterial strain that produces transferrin receptor. In particular, peptides containing the sequences LEGGFYGP are conserved in the transferrin receptor proteins of many bacterial pathogens that produce transferrin receptor and are appropriate for diagnosis of and immunization against diseases caused by bacteria that produce transferrin receptor. bacteria include but are not limited to species of Haemophilus, Neisseria (including N. meningitidis and N. gonorrhoeae) and Branhamella (including B. catarrhalis).

It is clearly apparent to one skilled in the art, 30 that the various embodiments of the present invention have many applications in the fields of vaccination, diagnosis, treatment of, for example, Haemophilus infections, and infections with other bacterial pathogens that produce transferrin receptor and the generation of 35 immunological reagents. further Α non-limiting discussion of such uses is further presented below.

15

20

mucosal surfaces. Thus, the at response immunogenic composition may be administered to mucosal for example, the nasal by, The immunogenic composition may (intragastric) routes. be provided in combination with a targeting molecule for delivery to specific cells of the immune system or to mucosal surfaces. Some such targeting molecules include strain B12 and fragments of bacterial toxins, described in WO 92/17167 (Biotech Australia Pty. Ltd.), and monoclonal antibodies, as described in U.S. Patent No. 5,194,254 (Barber et al). Alternatively, other modes administration including suppositories and oral formulations may be desirable. For suppositories, binders and carriers may include, for polyalkalene glycols or triglycerides. Oral formulations may include normally employed incipients such as, for example, pharmaceutical grades of saccharine, cellulose and magnesium carbonate. These compositions take the form of solutions, suspensions, tablets, pills, capsules, sustained release formulations or powders and contain 10-95% of the transferrin receptor, fragment analogs and/or peptides.

The vaccines are administered in a manner compatible with the dosage formulation, and in such amount as will 25 be therapeutically effective, protective and immunogenic. The quantity to be administered depends on the subject to be treated, including, for example, the capacity of the individual's immune system to synthesize antibodies, and if needed, to produce a cell-mediated immune response. Precise amounts of active ingredient required to be 30 administered depend on the judgment of the practitioner. However, suitable dosage ranges are readily determinable by one skilled in the art and may be of the order of micrograms of the transferrin receptor, analogs and fragments thereof and/or peptides. Suitable regimes for 35 initial administration and booster doses are also

15

30

35

Examples of side chain modifications contemplated by the present invention include modification of amino groups such as by reductive alkylation by reaction with an aldehyde followed by reduction with NaBH₄; amidation with methylacetimidate; acetylation with acetic anhydride; carbamylation of amino groups with cyanate; trinitrobenzylation of amino groups with 2, 4, 6, trinitrobenzene sulfonic acid (TNBS); alkylation of amino groups with succinic anhydride and tetrahydrophthalic anhydride; and pyridoxylation of lysine with pyridoxal-5'-phosphate followed by reduction with NaBH₄.

The guanidino group of arginine residues may be modified by the formation of heterocyclic condensation products with reagents such as 2, 3-butanedione, phenylglyoxal and glyoxal.

The carboxyl group may be modified by carbodiimide activation via o-acylisourea formation followed by subsequent derivatisation, for example, to a corresponding amide.

Sulfhydryl groups may be modified by methods such as carboxymethylation with iodoacetic acid or iodoacetamide; performic acid oxidation to cysteic acid; formation of mixed disulphides with other thiol compounds; reaction with maleimide; maleic anhydride or other substituted maleimide; formation of mercurial derivatives using 4-chloromercuribenzoate, 4-chloromercuriphenylsulfonic acid, phenylmercury chloride, 2-chloromercuric-4-nitrophenol and other mercurials; carbamylation with cyanate at alkaline pH.

Tryptophan residues may be modified by, for example, oxidation with N-bromosuccinimide or alkylation of the indole ring with 2-hydroxy-5-nitrobenzyl bromide or sulphonyl halides. Tryosine residues may be altered by nitration with tetranitromethane to form a 3-nitrotyrosine derivative.

15

20

25

30

hydroxide and aluminim phosphate (collectively commonly referred to as alum) are routinely used as adjuvants in human and veterinary vaccines. The efficacy of alum in increasing antibody responses to diptheria and tetanus toxoids is will established and, more recently, a HBsAg vaccine has been adjuvanted with alum. While the usefulness of alum is well established for applications, it has limitations. For example, alum is ineffective for influenza vaccination and inconsistently elicits a cell mediated immune response. The antibodies elicited by alum-adjuvanted antigens are mainly of the IgG1 isotype in the mouse, which may not be optimal for protection by some vaccinal agents.

A wide range of extrinsic adjuvants can provoke potent immune responses to antigens. These include saponins complexed to membrane protein antigens (immune stimulating complexes), pluronic polymers with mineral oil, killed mycobacteria and mineral oil, Freund's complete adjuvant, bacterial products, such as muramyl dipeptide (MDP) and lipopolysaccharide (LPS), as well as lipid A, and liposomes.

To efficiently induce humoral immune responses (HIR) and cell-mediated immunity (CMI), immunogens are emulsified in adjuvants. Many adjuvants are toxic, inducing granulomas, acute and chronic inflammations (Freund's complete adjuvant, FCA), cytolysis (saponins and pluronic polymers) and pyrogenicity, arthritis and anterior uveitis (LPS and MDP). Although FCA is an excellent adjuvant and widely used in research, it is not licensed for use in human or veterinary vaccines because of its toxicity.

Desirable characteristics of ideal adjuvants include:

- (1) lack of toxicity;
- 35 (2) ability to stimulate a long-lasting immune response;

hepatitis B surface antigen, enhanced the host immune responses against hepatitis B virus.

Lipidation of synthetic peptides has also been used to increase their immunogenicity. Thus, Wiesmuller 1989, 5 describes a peptide with a sequence homologous to a footand-mouth disease viral protein coupled to an adjuvant tripalmityl-s-glyceryl-cysteinylserylserine, being synthetic analogue of the N-terminal part of lipoprotein from Gram negative bacteria. Furthermore, 10 Deres et al. 1989, reported in vivo priming of viruslpecific cytotoxic T lymphocytes with synthetic lipopeptide vaccine which comprised of modified synthetic peptides derived from influenza virus nucleoprotein by linkage to a lipopeptide, N-palmityl-s-[2,3-15 bis(palmitylxy) - (2RS) -propyl-[R] -cysteine (TPC).

2. Immunoassays

The transferrin receptor, analogs and fragments thereof and/or peptides of the present invention are as immunogens, as antigens in immunoassays including enzyme-linked immunosorbent assays (ELISA), 20 RIAs and other non-enzyme linked antibody binding assays or procedures known in the art for the detection of antibacterial, Haemophilus, TfR and/or peptide antibodies. In ELISA assays, the transferrin receptor, analogs, fragments and/or peptides corresponding to portions of 25 TfR protein are immobilized onto a selected surface, for example a surface capable of binding proteins or peptides such as the wells of a polystyrene microtiter plate. After washing to remove incompletely adsorbed transferrin 30 receptor, analogs, fragments and/or peptides, nonspecific protein such as a solution of bovine serum albumin (BSA) or casein that is known to be antigenically neutral with regard to the test sample may be bound to the selected surface. This allows for blocking of nonspecific adsorption sites on the immobilizing surface 35 and thus reduces the background caused by nonspecific

20

25

30

35

origin, the second antibody is an antibody having specificity for human immunoglobulins and in general IgG. To provide detecting means, the second antibody may have an associated activity such as an enzymatic activity that will generate, for example, a color development upon incubating with an appropriate chromogenic substrate. Quantification may then achieved by measuring the degree of color generation using, for example, a visible spectra spectrophotometer.

10 3. Use of Sequences as Hybridization Probes

The nucleotide sequences of the present invention, comprising the sequence of the transferrin receptor gene, now allow for the identification and cloning of the transferrin receptor genes from any species of Haemophilus and other bacteria that have transferrin receptor genes.

The nucleotide sequences comprising the sequence of the transferrin receptor genes of the present invention are useful for their ability to selectively form duplex molecules with complementary stretches of other TfR Depending on the application, a variety of genes. hybridization conditions may be employed to achieve varying degrees of selectivity of the probe toward the For a high degree of selectivity, other TfR genes. relatively stringent conditions are used to form the duplexes, such as low salt and/or high temperature conditions, such as provided by 0.02 M to 0.15 M NaCl at temperatures of between about 50°C to 70°C. applications, less stringent hybridization conditions are required such as 0.15 M to 0.9 M salt, at temperatures ranging from between about 20°C to 55°C. Hybridization conditions can also be rendered more stringent by the addition of increasing amounts of formamide, hybrid duplex. Thus, destabilize the hybridization conditions can be readily manipulated, and will generally be a method of choice depending on the

15

20

25

30

35

type of target nucleic acid, source of nucleic acid, size of hybridization probe etc. Following washing of the hybridization surface so as to remove non-specifically probe molecules, specific hybridization detected, or even quantified, by means of the label. As with the selection of peptides, it is preferred to select nucleic acid sequence portions which are conserved among species of Haemophilus, such as nucleic acid sequences. encoding the conserved peptide sequence of Figures 8, 9, 13 and 14 and particularly listed in Tables 2 and 3. The selected probe may be at least 18 bp and may be in the range of 30 bp to 90 bp long.

4. Expression of the Transferrin Receptor Genes

Plasmid vectors containing replicon and control sequences which are derived from species compatible with the host cell may be used for the expression of the transferrin receptor genes in expression systems. The vector ordinarily carries a replication site, as well as marking sequences which are capable of providing phenotypic selection in transformed cells. For example, E. coli may be transformed using pBR322 which contains genes for ampicillin and tetracycline resistance and thus provides easy means for identifying transformed cells. The pBR322 plasmid, or other microbial plasmid or phage must also contain, or be modified to contain, promoters which can be used by the host cell for expression of its own proteins.

In addition, phage vectors containing replicon and control sequences that are compatible with the host can be used as a transforming vector in connection with these hosts. For example, the phage in lambda $GEM^{TM}-11$ may be utilized in making recombinant phage vectors which can be used to transform host cells, such as $E.\ coli\ LE392$.

Promoters commonly used in recombinant DNA construction include the β -lactamase (penicillinase) and lactose promoter systems (Chang et al., 1978: Itakura et

5

of this application. Samples of the deposited plasmids will become available to the public upon grant of a patent based upon this United States patent application. The invention described and claimed herein is not to be limited in scope by plasmids deposited, since the deposited embodiment is intended only as an illustration of the invention. Any equivalent or similar plasmids that encode similar or equivalent antigens as described in this application are within the scope of the invention.

Deposit Summary

Clone	ATCC Designation	Date Deposited	
DS-712-1-3	75603	November 4, 1993	
ЈВ-1042-7-6	75607	November 4, 1993	
JB-1424-2-8	75937	October 27, 1994	
JB-1600-1	75935	October 27, 1994	
ЈВ-1468-29	75936	October 27, 1994	
pT7TBP2A	75931	October 27, 1994	
pT7TBP2B	75932	October 27, 1994	
pT7TBP2C	75933	October 27, 1994	
pT7TBP2D	75934	October 27, 1994	

Strains of Haemophilus

Hib strain Eagan is available from Connaught Laboratories Limited, 1755 Steeles Ave. W., Willowdale, Ontario, Canada M2R 3T4.

Hib strain MinnA was obtained from the collection of Dr. Robert Munson, Department of Microbiology and Immunology, Washington University School of Medicine, Children's Hospital, St. Louis, Missouri 63110.

Hib strain DL63 was obtained from the collection of 10 Dr. Eric Hansen, Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75235-9048.

15

20

25

30

HCl, pH 8.0, centrifuged as before, resuspended in 12.5 ml of 50mM Tris-HCl, 50mM EDTA, pH 8.0, and frozen at -Then 1.25 ml of a 10 mg/ml lysozyme solution in 0.25M Tris-HCl, pH 8.0, was added to the frozen cell The pellet was thawed and incubated on ice for 45 minutes. Next, 2.5 ml of a solution of 1mg/ml proteinase K in 0.5% SDS, 0.4M EDTA, 50mM Tris-HCl, pH 7.5 was added and the mixture incubated at 50°C for 1 hour with occasional mixing. The lysate was extracted once with 15 ml of Tris-buffered phenol, then 1.5 ml of 3M sodium acetate and 30 ml of ethanol were added to precipitate the DNA. The DNA was spooled on a glass rod, then dissolved in 12.5 ml of 50mM Tris-HCl, 1mM EDTA, pH 7.5 containing 0.2 mg/ml RNAse A by rocking overnight. The sample was extracted once with an equal volume of chloroform, precipitated, and spooled as above. The DNA was dissolved in 2 ml of 50mM Tris-HCl, 1mM EDTA, pH 7.5 and stored at 4°C.

B. Chromosomal DNA extraction from Haemophilus influenzae type b Eagan

the pellet resuspended in 25ml of TE (10mM Tris, 1mM EDTA, pH 7.5), and 2 x 5ml aliquots used for chromosomal DNA preparation. To each aliquot was added 0.6ml of 10% sarkosyl and 0.15ml of 20mg/ml proteinase K and the samples incubated at 37°C for 1 hour. The lysate was extracted once with Tris-saturated phenol and three times with chloroform:isoamyl alcohol (24:1). The aqueous phases were pooled for a final volume of 7ml. Then 0.7ml of 3M sodium acetate (pH 5.2) and 4.3 ml of isopropanol were added to precipitate the DNA which was spooled, rinsed with 70% ethanol, dried, and resuspended in 1 ml of water.

dGTP, and dTTP), and 4 μ l of 5 U/ μ l Klenow. The mixture was incubated at 12°C for 30 minutes. 450 μ l of STE (0.1M NaCl, 10mM Tris-HCl, 1mM EDTA, pH 8.0) were added, and the mixture extracted once with phenol/chloroform, and once with chloroform, before adding 1 ml of ethanol to precipitate the DNA. The sample was incubated on ice for 10 min or at -20°C overnight. The DNA was harvested by centrifugation in a microfuge for 30 minutes, washed with 70% ethanol and dried.

The DNA was resuspended in 7 μ l of TE and to the solution was added 14 μ l of phosphorylated Eco RI linkers (200 ng/ μ l), 3 μ l of 10x ligation buffer, 3 μ l of 10mM ATP, and 3 μ l of T4 DNA ligase (4 U/ μ l). The sample was incubated at 4°C overnight, then incubated at 68°C for 10 minutes to inactivate the ligase. To the mixture was added 218 μ l of H₂O, 45 μ l of 10x Universal buffer, and 7 μ l of Eco RI at 30 U/ μ l. After incubation at 37°C for 1.5 hours, 1.5 μ l of 0.5M EDTA was added, and the mixture placed on ice.

The DNA was size fractionated on a sucrose gradient, pooling fractions containing DNA of 6-10 kb. The pooled DNA was ethanol precipitated and resuspended in 5 μl of TE buffer. 200ng of insert DNA was ligated for 2-3 days at 4°C with 1 μg of ZAP II vector in a final volume of 5μl. The ligation mixture was packaged using Gigapack II Gold (Stratagene) and plated on E. coli SURE cells on NZY plates. The library was titrated, amplified, and stored at 4°C under 0.3% chloroform.

B. H. influenzae Eagan-pUC library

Chromosomal DNA prepared from H. influenzae Eagan by the method in Example 1C was digested with Sau3A I for 2, 5, and 10 minutes and samples electrophoresed on a preparative agarose gel. Gel slices which included DNA fragments between 3-10 kb in length were excised and the DNA extracted by the standard freeze-thaw procedure. Plasmid DNA from pUC 8:2 (pUC 8 with additional Bgl II

10

15

on *E. coli* LE392 cells. The library was titrated, then amplified and stored at 4°C under 0.3% chloroform.

Chromosomal DNA from *H. influenzae* PAK 12085 or SB33 prepared as in Example 1C was digested with Sau3A I (0.5 units/10 µg DNA) at 37°C for 15 minutes and size-fractionated by agarose gel electrophoresis. Gel slices corresponding to DNA fragments of 15-23 kb were excised and DNA was electroeluted overnight in dialysis tubing containing 3 ml of TAE at 14V. The DNA was precipitated twice and resuspended in water before overnight ligation with EMBL3 BamH I arms (Promega). The ligation mixture was packaged using the Lambda in vitro packaging kit (Amersham) according to the manufacturer's instructions and plated onto *E. coli* NM539 cells. The library was titrated, then amplified, and stored at 4°C in the presence of 0.3% chloroform.

Example 3.

This Example illustrates screening of the libraries

A. Influenzae DL63-AZAP expression library

20 Tbpl and Tbp2 proteins were affinity purified on solid phase human transferrin (hTf). Briefly, a 20 ml hTf-Sepharose column was prepared according to the manufacturer's protocol for coupling protein ligands to CNBr-activated Sepharose (Sigma). The resulting matrix 25 was washed with 3 column volumes of 50mM Tris-HCl, 1M NaCl, 6M guanidine-HCl, pH 8.0 to remove non-covalently bound hTf. The column was then equilibrated with 50mM Tris-HCl, pH 8.0 and bound hTf was iron loaded using 1 ml of 10mg/ml FeCl, in buffer containing 100mM each of 30 sodium citrate and sodium bicarbonate, pH 8.6, followed by 2 column volumes of 50mM Tris-HCl, 1M NaCl, pH 8.0. Total bacterial membranes (300 mg total protein) were prepared from H. influenzae strain DL63 grown on iron deficient media as described previously (Schryvers et 35 al., 1989). Membranes were diluted to 2 mg/ml in 50mM Tris-HCl, 1M NaCl, pH 8.0 and solubilized by the addition

10

15

20

25

30

35

second round screening using the same 5'pBHIT2 probe. Second round putatives were analysed by restriction enzyme mapping and clone S-4368-3-3 (Figure 1B, Figure 2) was selected for sequence analysis.

(ii) Screening H. influenzae Eagan-AZAP library The phage library was plated using standard techniques on XLI Blue cells (Stratagene) using LB plates and a 0.7% agarose overlay layer. Plaques were lifted onto nitrocellulose using standard protocols and the filters were baked at 80°C, for 2 hours, under vacuum, to The 5'pBHIT2 probe of the transferrin fix the DNA. receptor gene (Figure 2) was labelled with digoxigenin and the filters were pre-hybridized for 4 hours at 42°C, hybridized with the labelled probe at 42°C, overnight. The filters were washed at 68°C and after autoradiography, several plaques were selected for second round screening. In vivo excision of phagemid DNA from second round putatives was performed according protocols provided with the λZAP system (Promega). Four clones with identical ~2.5 kb Eco RI inserts were obtained of which JB-901-5-3 in Figure B, Figure 2 is an example. Putative plaques were also amplified and phage DNA was purified from 500 ml of culture. Insert DNA was excised by digestion with Xba I and was cloned into pUC 8:2 (pUC 8 containing additional Bgl II and Xba I sites in its multiple cloning site) which had been digested with Xba I and dephosphorylated. Clone JB-911-3-2 (Figure 17) contains the 3'-half of the H. influenzae

(iii) Screening EMBL 3 libraries

Eagan TfR operon.

The H. influenzae MinnA library was plated onto LE392 cells on NZCYM plates using 0.7% top agarose in NZCYM as overlay. Plaque lifts onto nitrocellulose filters were performed following standard procedures, and filters were processed and probed with the 5'pBHIT2 probe (Figure 2) labelled with digoxigenin. Putative plaques

the manufactures recommendations. Samples were sequenced using the ABI model 370A DNA Sequencer and dye terminator chemistry according to manufacturers' protocols. The sequence of the TfR operon from strain DL63 is illustrated in Figure 3, that of strain Eagan in Figure 4, that of strain MinnA in Figure 5, that of PAK 12085 in Figure 6 and that of SB33 in Figure 7.

Example 5

This Example illustrates the PCR amplification of the tbp2 genes from non-typable H. influenzae strains SB12, SB29, SB30, and SB32.

Chromosomal DNA from non-typable H. influenzae strains SB12, SB29, SB30, and SB32 was prepared as described aobve. The TfR genes are arranged as an operon with tbp2 followed by tbp1 (see Figures 12A and 12B). Oligonucleotides were synthesized to the 5'-end of the tbp2 and the reverse complement of the 5'-end of the tbp1 coding sequences. The primers were: GGATCCATATGAAATCTGT ACCTCTTATCTCTGGT (SEQ ID NO: 120) corresponding to 20 MKSVPLISGS (SEQ ID NO: 147) from the leader sequence of Tbp2 and TCTAGAAGCTTTTTTAGTCATTTTTAGTATTCCAT (SEQ ID NO: 137) which is the reverse complement of the leader sequence MTKK (SEQ ID NO: 138) of Tbp1 and a part of the intergenic sequence (Figures 12A and amplification was performed in buffer containing 10mM 25 Tris/HCl pH 8.3, 50 mM potassium chloride and 1.5 mM magnesium chloride. Each 100 μ l reaction mixture contained 5 ng of chromosomal DNA, 1 μ g of each primer, 5 units amplitag DNA polymerase (Perkin Elmer Cetus) and 0.4 mM dNTPs (Perkin Elmer Cetus). 30 The conditions were 25 cycles of 94°C for 1.0 min, 45°C for 2.0 min and 72°C for 1.5 min. Specific 2 kb fragments were amplified for each sample (Figure 13). SB33 DNA was used as a positive control (Lane 1). Chromosomal DNA used for amplification of the Tbp2 gene were lane 1, 35 SB33; lane 2, SB12; lane 3, SB29; lane 4, SB30; and lane

type b Eagan. The predicted secondary structures depicted in Figures 16A and 16B were arrived at using the procedures described above. However, the inventors have not yet been able to verify that the secondary structure is accurately depicted by these Figures.

Conserved epitopes of Tbp1 and Tbp2 proteins from several different bacteria were identified by sequence alignment as shown in Figures 14 and 15 respectively. Some such conserved epitopes include:

10	TBP1	DNEVTGLGK	SEQ	ID	NO:43
	TBP1	EQVLNIRLTRYDPGI	SEQ	ID	NO:44
	TBP1	GAINEIEYENVKAVEISKG	SEQ	ID	NO:45
	TBP1	GALAGSV	SEQ	ID	NO:46
	TBP2	LEGGFYGP	SEQ	ID	NO:74
15	TBP2	CSGGGSFD	SEQ	ID	NO:75
	TBP2	YVYSGL	SEQ	ID	NO:76
	TBP2	CCSNLSYVKFG	SEQ	ID	NO:77
	TBP2	FLLGHRT	SEQ	ID	NO:78
	TBP2	EFNVDF	SEQ	ID	NO:79
20	TBP2	NAFTGTA	SEQ	ID	NO:80
	TBP2	VNGAFYG	SEQ	ID	NO:81
	TBP2	LEGGYF	SEQ	ID	NO:82
	TBP2	VVFGAR	SEQ	ID	NO:83

Furthermore, in combination with the predicted secondary structures, four conserved exposed epitopes were identified on Tbp1 and two were identified on Tbp2. These are:

	Tbp1	DNEVTGLGK	SEQ ID NO:43
	Tbp1	EQVLN/DIRDLTRYD	SEQ ID NOS: 139 and 140
30	Tbp1	GAINEIEYENVKAVEISK	SEQ ID NO:141
	Tbp1	GI/VYNLF/LNYRYVTWE	SEQ ID NOS:142 and 143
	Tbp2	CS/LGGG(G)SFD SEQ	ID NOS: 75, 144 and 145
	Tbp2	LE/SGGFY/FGP	SEQ ID NOS: 74 and 146

Proteins, polypeptides or peptides containing the 35 afore-mentioned conserved amino acid sequences are particularly useful as detecting means in diagnostic

10

15

20

25

35

Example 8

This Example illustrates the construction of plasmid JB-1424-2-8 which expresses Eagan Tbp2 from E. coli.

Referring to Figure 18, there is shown plasmid S-4368-3-3 which contains the entire tbp2 gene from H. influenzae type b Eagan. Figure 18 illustrates plasmid JB-1424-2-8 and Figure 19 shows the oligonucleotides. Used. Plasmid JB-1424-2-8 was introduced into E. colistrain BL21/DE3 by electroporation to generate E. colistrain JB-1437-4-1. Upon induction with IPTG or lactose, Tbp2 was expressed by E. coli JB-1437-4-1 as shown in Figure 22. Lane 1, JB-1476-2-1 (T7/Eagan Tbp1) at to; lane 2, JB-1476-2-1 at t=4h induction; lane 3, molecular weight markers of 200 kDa, 116 kDa, 97.4 kDa, 66 kDa, 45 kDa and 31 kDa; lane 4, JB-1437-4-1 (T7/Eagan Tbp2) at to; lane 5, JB-1437-4-1 at t=4h induction; lane 6, JB-1607-1-1 (T7/SB12 Tbp2) at to; lane 7, JB-1607-1-1 at t=4h induction.

Example 9

This Example illustrates the construction of plasmids which encode a lipoprotein leader sequence before the Tbp2 sequence.

plasmids with lipoprotein leader sequences derived from E. coli lpp (SEQ ID NOS: 88 and 89), rlpB (SEQ ID NOS: 90 and 91), and pal (SEQ ID NOS: 92 and 93) preceeding Tbp2 are shown in Figure 20. Plasmids constructed and corresponding strains generated are illustrated in Table 1 below.

30 Example 10

This-Example illustrates the construction of plasmid JB-1600-1 which expresses SB12 Tbp2 from E. coli.

Plasmid DS-1047-1-2 (Figure 21) contains the PCR-amplified SB12 tbp2 gene. The tbp2 gene was excised as a Nde I to EcoR I restriction fragment and inserted into the pT7-7 expression vector to generate plasmid JB-1600-

25

30

35

fractions were analysed by SDS PAGE and those containing purified Tbpl or Tbp2 were dialysed overnight at 4° C against 50 mM Tris, pH 8.0 and then centrifuged at 20,000 x g for 30 min. The protein remained soluble under these conditions and the purified Tbpl and Tbp2 were stored at -20° C.

The SDS-PAGE analysis of the purification process is shown in Figure 24. Lanes 1, prestained molecular weight protein markers (106, 80, 49.5, 32.5, 27.5, 18.5 kDa); lanes 2, *E.coli* whole cell lysates; lanes 3, solubilized inclusion bodies; lanes 4, purified Tbp1 or Tbp2.

Example 12

This Example illustrates immunogenicity studies of recombinant Tbp1 and Tbp2 in mice.

Groups of five Balb/c mice were injected subcutaneously (s.c.) on days 1, 29 and 43 with purified rTbpl or rTbp2 (1 μ g to 10 μ g), prepared as described in Example 11, in the presence of AlPO₄ (1.5 mg per dose). Blood samples were taken on days 14, 28, 42 and 56 for 20 analysis of the anti-rTbp1 and anti-rTbp2 antibody titers by EIA. The results of the immunogenicity studies are illustrated in Figure 25.

Example 13

This Example illustrates the development of EIAs for determination of anti-rTbp1 and anti-rTbp2 antibodies in mouse sera.

Anti-rTbp1 and anti-rTbp2 antibody titres were determined essentially as described by Panezutti et al. (1993). Microtiter wells were coated with 0.5 μ g of rTbp1 or rTbp2, prepared as described in Example 11, for 16 h at room temperature, then blocked with 0.1% (w/v) BSA in PBS. The sera were serially diluted, added to the wells, then incubated for one hour at room temperature. Affinity-purified F(ab')₂ fragments of goat anti-mouse IgG (Fc specific) antibody conjugated to horseradish peroxidase were used as second antibody. The reactions

15

35

recombinant Eagan Tbp2, with various strains of H. influenzae.

Whole cell lysates of H. influenzae strains grown in BHI media supplemented with NAD and heme (Harkness et al., 1992) ± EDDA were separated on an SDS PAGE gel, transferred to nitrocellulose membrane, and probed with guinea piq anti-Tbp2 antisera raised to recombinant Eagan Tbp2 (Figure 27). Lane 1, molecular weight markers; lane 2, induced JB-1437-4-1 expressing recombinant Eagan Tbp2; lane 3, SB12-EDDA; lane 4, SB12 +EDDA; lane 5, SB29 -EDDA; lane 6, SB29 +EDDA; lane 7, SB30 -EDDA; lane 8, SB30 +EDDA; lane 9, SB32 -EDDA; lane 10, SB33-EDDA; lane 11, SB33 +EDDA; lane 12, PAK -EDDA; lane 13, PAK +EDDA; lane 14, Eagan -EDDA; lane 15, Eagan Specific bands of about 60-70 kDa were reactive with the anti-Tbp2 antisera in lanes 3, 6, 7, 8, 13, 14 and 15, corresponding to Haemophilus strains SB12, SB29, SB30, PAK and Eagan.

Example 16

This Example illustrates the synthesis of synthetic peptides corresponding to conserved regions in Tbp2 and Tbp1.

The deduced amino acid sequences of Tbp1 and Tbp2 were compared as shown in Figures 14 and 15 respectively.

This comparison identified regions of amino acid sequence conservation within the transferrin receptor described above and, as shown in Tables 2 and 3, peptides were synthesized containing a portion of the transferrin receptor. Such synthesis may be effected by expression in a suitable host of recombinant vectors containing nucleic acid encoding said peptides or by standard peptide synthesis.

Briefly, peptides were synthesized using an ABI 430A peptide synthesizer and optimized t-Boc chemistry using the conditions recommended by the manufacturer, and peptides were cleaved from the resin using hydrofluoric

10

15

20

25

30

35

washing buffer. The plates were developed using the substrate tetramethylbenzidine (TMB) in H,O, Toronto), the reaction was stopped with 1N H2SO4 and the optical density was measured at 450 nm using a Titretek Multiskan II (Flow Labs., Virginia). Two irrelevant peptides of 32 amino acid residues were included as negative controls in these ELISAs. Assays were performed in triplicate, and the reactive titer of each antiserum was defined as the dilution consistently showing a 2-fold increase in absorbance value over those obtained from the negative controls. The antisera raised in guinea pigs were monospecific for the peptide used for immunization. The titres of the sera obtained following immunization are shown in Table 4.

Peptides of the present invention comprise single copies of any of those shown in Tables 2 and 3 or peptides containing multiple copies of analogs thereof. A peptide may further comprise multiples of different peptides selected from those shown in Tables 2 and 3 or analogs thereof and include suitable carrier molecules. It is preferred that the peptides from conserved regions be used to develop antibodies because an immuno- or other type of binding assay can then be used to detect several species of Haemophilus. Tables 2 and 3 therefore set out several other conserved regions of transferrin receptor to identify other peptides which would be useful in diagnosis, immunization and medical treatment.

Example 18

This Example describes the ability of antiserum raised against peptides corresponding to conserved portions of transferrin receptor to recognize the transferrin receptor of Branhamella catarrhalis.

Guinea pigs were immunized with peptide, corresponding to conserved portions of transferrin receptor, and antisera obtained are described in Example 17. A whole-cell extract of Branhamella catarrhalis was

10

15

Example 19

This Example illustrates the generation of H. influenzae strains that do not produce transferrin receptor.

A 2.55 Eco RI fragment of the insert from pBHIT1 was subcloned into the Eco RI site of pUC4K, resulting in removal of the Tn903 kanamycin resistance (kan) cassette from this vector (pUHIT1; Figure 28). This subcloning step facilitated the subsequent insertion of either a HincII or PstI pUC4K fragment containing the kan cassette into the Hind III or Pst I sites of pUHIT1 as both are unique sites in this construction to produce pUHIT1KFH and pUHIT1KFP, Figure 28. Following digestion with Eco to remove the interrupted gene sequences, constructs were introduced into the H. influenzae wild type genome by transformation using M-IV media as described previously (Barcak et al., transformants were selected on BHINH agar containing 20 μ g/ml kanamycin.

20 Example 20

This Example illustrates the construction of polioviruses expressing an epitope of a transferrin receptor.

A cDNA clone of bases 1175 to 2956 of the poliovirus 25 type 1, Mahoney strain (PV1-M) genome was cut with restriction enzymes Sau I and Hind III. These enzymes excise a fragment containing bases 2754 to 2786, which encodes PV1-M amino acids 1094 to 1102, as shown in Figure 29. In this application, we use the four-digit 30 code for poliovirus amino-acids; for example, 1095 is amino acid 95 of capsid protein VP1. New hybrid cDNA clones encoding both poliovirus and transferrin receptor amino-acid sequences were constructed by replacing the excised fragment with synthetic oligonucleotides coding 35 for amino acids from H. influenzae Tbp2. The new hybrid cDNA clones were cut with restriction enzymes Nhe I and

PCT/CA94/00616

10

15

20

25

30

35

these two viruses expressed the sequence in a form recognisable to antibodies raised against the protein. All viruses were neutralisable by anti-PV1 sera, indicating that the changes in polio neutralization antigenic site I had not significantly affected other antigenic sites on the viruses.

Example 21

This Example illustrates the use of poliovirus hybrids to induce high titer antisera against Tbp2.

Rabbits were inoculated with CsCl-purified PV1TBP2A (rabbits #40, 41, 42). Note that, although the viruses used were live, poliovirus does not replicate in rabbits and that any response observed is effectively the response to an inactivated antigen. On day 1, rabbits were inoculated with 1 ug of virus in Freund's complete adjuvant subcutaneously on the back, and, on day 14, the rabbits were boosted with 1 ug of virus in Freund's incomplete adjuvant inoculated subcutaneously on the back. The rabbits were bled on day 0 (prebleed) and on day 27. The dose of virus per inoculation was 2.5×10^8 which was determined from A_{260} values to be approximately 3.0×10^{11} virions. This equivalent to 0.5pmol of virus or 30 pmol of the LEGGFYG (SEQ ID NO: 74) epitope, since each virion expresses 60 copies of the epitope.

SUMMARY OF THE DISCLOSURE

In summary of this disclosure, the present invention provides purified and isolated DNA molecules containing transferrin receptor genes, the sequences of these transferrin receptor genes and the derived amino acid sequences thereof. The invention also provides peptides corresponding to portions of the transferrin receptor. The genes, DNA sequences, recombinant proteins and peptides are useful for diagnosis, immunization and the generation of diagnostic and immunological reagents. Vaccines based upon expressed recombinant Tbp1 and/or

TABLE 1

		plasmid	strain
leader	lst residue	prasmid	SCIGIII
E. coli lpp	Cys	JB-1360-1R-10	JB-1407-1-1
E. coli lpp	Ser	JB-1366-1R-7	JB-1407-3-1
E. coli pal	Cys	JB-1360-3-10	JB-1407-2-1
E. coli pal	Ser	ЈВ-1366-3R-5	JB-1407-4-4
E. coli rlpB	Cys	JB-1399-1	JB-1437-1-1
E. coli rlpB	Ser	JB-1378-7	JB-1407-5-1

71

TABLE 2 (cont)

TBP1-28	794-829	NELLGKRALGNNSRNVKSTRKLTRAWHILDVSGYYM	40
TBP1-29	825-854	SGYYMVNRSILFRLGVYNLLNYRYVTWEAV	41
TBP1-30	843-865	LLNYRYVTWEAVRQTAQGAEFDI	42
TBP1-31	42-50	DNEVTGLGK	43
TBP1-32	61-76	EQVLNIRDLTRYDPGI	44
TBP1-33	61-95	EQVLNIRDLTRYDPGISVVEQGRGASSGYSIRGMD	45
TBP1-34	128-146	GAINEIEYENVKAVEISKG	46
TBP1-35	155-161	GALAGSV	47
TBP1-1	1-14	AETQSIKDTKEAISC ²	48

- 1. Residue number from the sequence of Tbpl of H. influenzae type b strain Eagan (as shown in Figure 8).
- Cysteine added to facilitate coupling to a carrier protein, for example KLH.

73 .

Table 3 (Cont)

TBP2-27	130-134	YVYSGL	76
TBP2-28	345-355	CCSNLSYVKFG	77
TBP2-29	401-407	FLLGHRT	78
TBP2-30	450~456	EFNVDF	79
TBP2-31	485-491	NAFTGTA	80
TBP2-32	516-522	VNGAFYG	81
TBP2-33 .	527-532	ELGGYF	82
TBP2-34	562-566	VVFGAR	83
TBP2-35	562-568	VVFGAK	84
TBP2-36	231-238	LEGGFYG	85

^{1.} Residue number from the sequence of Tbp2 of H. influenzae type B Eagan strain (as shown in Figure 9).

TABLE 5

Neutralizing activity of anti-Tbp2 and anti-peptide sera against polio/Tbp2 hybrid viruses

Sera *		Neutral	Neutralizing Titre v. Virus b	Virus b	
	PV1TBP2A	PV1TBP2B	PV1TBP2C	PV1TBP2D	PV1XLD
Rb @PV1	>40,9600	25,844	20,480	16,763	>40,960
Rb 516 D0	. <4	4>	<4	<4	. <4
Rb 516 D42	40	20	<4	4>	è 5
GP561, 562 D0 pool	64	4>	<4	64	<4 4
GP 561 D56	>2048	>2048	>2048	1164	4 >
GP 562 D56	. >2048	>2048	25	10	4
GP558, 559, 560 D56 pool	<4·	4,	4>	44	4

D56). Guinea-Pigs 561 and 562 received a peptide containing the sequence LEGGFYGP (SEQ Guinea-pigs 558, 559 and 556 received a control peptide with an unrelated sequence. 14 and 28. Serum was collected on days 0 (D0) and 42 (D42). Guinea-pigs were immunized with four successive doses of $200\mu g$ of peptide on days 1, 14, 28 and 42. Sera were collected on day 0 (D0) Rabbit 516 was immunised with three successive 3 µg dses of recombinant H. influenzae DL63 transferrin binding protein 2 on days 1, Rb @PV1 is pool of rabbit immune sera raised against PV1XLD. and day 56 (D56). ID NO:74).

Titre is the inverse dilution of serum giving a 50% endpoint in a virus neutralization assay versus 100 TCIDso of virus. 77

LIST OF REFERENCES

Barcak et al., (1991) Methods Enzymol. 204: 321-342.

Berkowitz et al., (1987) J. Pediatr. 110:509.

Black et al., (1991) Pediatr. Infect. Dis. J. 10:97.

Bluestone, N. (1982) Engl. J. Med. 306:1399.

Chang et al., (1978) Nature 375:615.

Chou, et al., (1978). Annual Reviews of Biochemistry 47, 251-276.

Claesson et al., (1989) J. Pediatr. 114:97.

Cornelissen et al., (1992) J. Bacteriol. 174:5788

Danve, et al., (1993). Vaccine 11, 1214-1220.

Deres et al., (1989) Nature 342:651.

Gerlach, et al., (1992) Infect. Immun. 608:325

Goeddel et al., (1979) Nature 281:544.

Goeddel et al., (1980) Nucl. Acids Res. 8:4057

Harkness et al., (1992) J. Bacteriol. 174:2425.

Holland et al., (1992) Infect. Immun. 60:2986.

Hopp, T.P. (1986) Journal of Immunological Methods 88, 1-18.

Itakura et al., (1977) Science 198:1056.

Jarosik et al., (1994). Infection and Immunity 62, 2470-2477.

Legrain et al., (1993). Gene 130:73

Lockhoff et al., (1991) Chem. Int. Ed. Engl. 30:1611.

Mickelsen and Sparling, (1981) Infect. Immun. 33:555.

Morton et al., (1993) Infection and Immunity 61, 4033-4037.

Murdin et al., (1992) J. Gen. Viral 73: 607.

Murdin et al., (1991) Microbial Pathogenesis 10:27.

Nixon-George et al., (1990) J. Immunol. 14:4798.

Ogunnariwo, and Schryvers, (1992) Avian Dis. 36:655.

CLAIMS

What we claim is:

- 1. A purified and isolated nucleic acid molecule encoding a transferrin receptor protein of a strain of Haemophilus or a fragment or an analog of the transferrin receptor protein.
- 2. The nucleic acid molecule of claim 1, wherein the strain of Haemophilus is a strain of Haemophilus influenzae.
- 3. The nucleic acid molecule of claim 2, wherein the strain of Haemophilus influenzae is a strain of Haemophilus influenzae type b.
- 4. The nucleic acid molecule of claim 3, wherein the strain of *Haemophilus influenzae* type b is selected from the group consisting of DL63, MinnA and Eagan.
- 5. The nucleic acid molecule of claim 2, wherein the strain of Haemophilus influenzae is a non-typable Haemophilus influenzae strain.
- 6. The nucleic acid molecule of claim 5, wherein the strain of non-typable *Haemophilus influenzae* is selected from the group consisting of PAK 12085, SB12, SB29, SB30, SB32 and SB33.
- 7. The nucleic acid molecule of claim 1 encoding only the Tbpl protein of the *Haemophilus* strain.
- 8. The nucleic acid molecule of claim 1 encoding only the Tbp2 protein of the *Haemophilus* strain.
- 9. The nucleic acid molecule of claim 1 encoding a fragment of the transferrin receptor protein of a strain of *Haemophilus* having a conserved amino acid sequence which is conserved among bacteria that produce transferrin receptor protein.
- 10. The nucleic acid molecule of claim 9, wherein the conserved amino acid sequence has an amino acid sequence contained within the amino acid sequences of the peptides shown in Tables 2 and 3 for Haemophilus influenzae type

- or the fragment or the analog of the transferrin receptor.
- The expression vector of claim 16, wherein the nucleic acid molecule encodes substantially all of the transferrin receptor protein of the *Haemophilus strain*.
- 18. The expression vector of claim 16, wherein the nucleic acid molecule encodes only the Tbp1 or only the Tbp2 protein of the *Haemophilus* strain.
- 19. The expression vector of claim 16, wherein the expression means includes a nucleic acid portion encoding a leader sequence for secretion from the host of the transferrin receptor protein or the fragment or the analog of the transferrin receptor protein.
- 20. The expression vector of claim 16, wherein the expression means includes a nucleic acid portion encoding a lipidation signal for expression from the host of a lipidated form of the transferrin receptor protein or the fragment or the analog of the transferrin receptor protein.
- 21. The expression vector of claim 16 having the identifying characteristics of plasmid JB-1424-2-8 having ATCC Accession No. 75937, JB-1600-1 having ATCC Accession No. 75935 or JB-1468-29 having ATCC Accession No. 75936.
- 22. A transformed host containing an expression vector as claimed in claim 16.
- 23. The host of claim 22 which is selected from the group consisting of JB-1476-2-1, JB-1437-4-1 and JB-1607-1-1.
- A recombinant transferrin receptor protein or fragment or analog thereof producible by the transformed host of claim 22.
 - 25. An isolated and purified Tbp1 protein of a strain of Haemophilus free from the Tbp2 protein of the Haemophilus strain.

- 36. The peptide of claim 29 comprising an amino acid sequence which is conserved among bacteria that produce transferrin receptor protein.
- 37. The peptide of claim 36 comprising an amino acid sequence which is conserved among strains of *Haemophilus*.
- 38. The peptide of claim 36, wherein the peptide includes an amino acid sequence LEGGFYGP (SEQ ID NO: 74) or LEGGFYG (SEQ ID NO: 85).
- 39. The peptide of claim 29 having an amino acid sequence selected from those presented in Table 2 or Table 3 for the Eagan strain of Haemophilus influenzae type b and the corresponding amino acid sequences of other strains of Haemophilus influenzae.
- 40 Ameimmunogenic composition, comprising at least one active component selected from the group consisting of:
- (A) a purified and isolated nucleic acid molecule encoding a transferrin receptor protein of a strain of Haemophilus or a fragment or an analog of the transferrin receptor protein;
- (B) a purified and isolated nucleic acid molecule having a DNA sequence selected from the group consisting of:
 - (a) any one of the DNA sequences set out in Figure 3, 4, 5, 6, 7, 8, 9, 10 or 11 (SEQ ID NOS: 1, 2, 3, 4, 105, 108, 110, 112, 114) or the complementary DNA sequence of any one of said sequences;
 - (b) a DNA sequence encoding one of the amino acid sequences set out in Figure 3, 4, 5, 6, 7, 8, 9, 10 or 11 (SEQ ID NOS: 5, 6, 7, 8, 9, 10, 11, 12, 106, 107, 109, 111, 113, 115) or the complementary DNA sequence thereto; and
 - (c) a DNA sequence which hybridizes under stringent conditions to any one of the DNA sequences defined in (a) or (b);
- (C) a recombinant transferrin receptor protein or fragment or analog thereof producible is a transformed

- against disease caused by a plurality of species of transferrin receptor producing bacteria.
- 45. The immunogenic composition of claim 40 further comprising an adjuvant.
- 46. A method for inducing protection against disease caused by a bacterial pathogen that produces transferrin receptor, comprising administering to a susceptible host an effective amount of the immunogenic composition of claim 40.
- 47. The method of claim 46, wherein the bacterial pathogen is a *Haemophilus* bacterium.
- 48. The method of claim 46, wherein the susceptible host is a human.
- 49. The method of claim 46, wherein said immunogenic composition is that of claim 44.
- 50. An antiserum or antibody specific for a recombinant protein as claimed in claim 24, an isolated and purified protein of claim 25 or 26, a synthetic peptide as claimed in claim 29 or an immunogenic composition as claimed in claim 40.
- 51. A live vector for delivery of transferrin receptor to a host, comprising a vector containing the nucleic acid molecule of claim 1 or 12.
- 52. The live vector of claim 51, wherein the vector is selected from *Salmonella*, BCG, adenovirus, poxvirus, vaccinia and poliovirus.
- 53. The live vector of claim 51, wherein the vector is poliovirus and the nucleic acid molecule codes for a fragment of transferrin receptor having an amino acid sequence of LEGGFYGP (SEQ ID NO: 74) or LEGGFYG (SEQ ID NO: 85).
- 54. A plasmid vector having the identifying characteristics of pT7TBP2A having ATCC Accession No. 75931, pT7TBP2B having ATCC Accession No. 75932, pT7TBP2C having ATCC Accession No. 75933 or pT7TBP2D having ATCC Accession No. 75934.

- 61. The method of claim 60 wherein the cell lysate is fractionated by centrifugation thereof.
- 62. The method of claim 61 wherein the step of selectively extracting the first pellet comprises at least one detergent extraction.
- 63. The method of claim 62 wherein the solubilized extract is fractionated by gel filtration to provide said Tbpl or Tbp2 protein containing fraction.
- 64. The method of claim 63 including subsequently dialyzing the Tbpl or Tbp2 protein containing fraction to remove at least said detergent to provide a further purified solution of Tbp1 or Tbp2 protein.
- 65. The method of claim 60 wherein said strain of Haemophilus is a strain of Haemophilus influenzae.
- The host of claim 22 wherein said host is a Haemophilus strain genetically modified by said expression vector.

INTERNATIONAL SEARCH REPORT

Intern al Application No PCT/CA 94/00616

		PCI/CA	347 00010
A. CLAS IPC 6	SIFICATION OF SUBJECT MATTER C12N15/12 C07K14/285 C12N1/ //(C12N1/21,C12R1:21)	/21 A61K39/395 C	07K16/12
According	to International Patent Classification (IPC) or to both national cl	amfication and IPC	
B. FIELD	DS SEARCHED		
MINIMUM IPC 6	documentation searched (classification system followed by classification CO7K C12N A61K	ication symbols)	
Document	ation searched other than minimum documentation to the extent $oldsymbol{u}$.	nat such documents are included in the fie	lds searched
Electronic	data base consulted during the international search (name of data	base and, where practical, search terms t	sed)
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of th	e relevant passages	Relevant to claim No.
X	INFECTION AND IMMUNITY, vol.60, no.7, July 1992, WASHIN pages 2986 - 2991 HOLLAND, J. ET AL.; 'Evidence f expression of transferrin-bindi in haemphilus influenzae type b see the whole document	or in vivo ng proteins	1-4, 7-10,14, 25-28, 40-50, 60-65
X	MICROBIAL PATHOGENESIS, vol.14, May 1993 pages 389 - 398 GRAY-OWEN, S.D. ET AL.; 'The in of primate transferrins with re- bacteria pathogenic to humans' see the whole document		1-4, 7-10,14, 25-28, 40-50, 60-65
X Furt	her documents are listed in the continuation of box C.	Patent family members are lis	led in annex.
* Special cal	legones of cited documents :	"T" later document published after the	international filing date
'A' docum	ent defining the general state of the art which is not ered to be of particular relevance	or priority date and not in conflic cited to understand the principle of	t with the application but
	document but published on or after the international	'X' document of particular relevance;	
'L' docume	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another	cannot be considered novel or car involve an inventive step when the	document is taken alone
GISTOL	n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	"Y" document of particular relevance; cannot be considered to involve a document is combined with one o	n inventive step when the
other n	neans int published prior to the international filing date but	ments, such combination being ob in the art.	mous to a person skilled
	aan the priority date claimed actual completion of the international search	& document member of the same particle. Date of mailing of the international	
	0 February 1995	2 8. 02. 9 5	
Name and m	nailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax (+ 31-70) 340-3016	Nauche, S	İ
	: wa (+ 31-10) 340-3010	1	

140/141

138/141 1 2 3 4 5 6 7 8 9 10 11 121314 15

FIG. 27.

136/141 Kinetics of Antibody Response to TBP1/TBP2 in Mice

FIG.25A.

FIG.25B.

134/141
PURFICATION OF rTBP1/ rTBP2 FROM *E. COLI*

FIG.23.

FIG.21.

130/141

and TBP2 for constructing TBP1 C and D) щ (A) Sequence of oligonucleotide pairs expression plasmids

F16.20A

Oligonucleotide pair A (Seq. ID 86 and 87) to join the T7 promoter and Eagan TBP1 gene

Nde T

TATGGAAACTCAAAGTATAAAAGATACAAAAGAAGCTATATCATCTGAAGT.

ACCTTTGAGTTTCATATTTCTATGTTTTCTTCGATATAGTAGACTTCA...

... GGACACTCAAAGTACAGAATTCAGAATTAGAAACTATCTCAGTCACTGCA

Pst

... CCTGTGAGTTTCATGTCTTCTAAGTCTTAATCTTTGATAGAGTCAGTG

promoter and Eagan TBP2 89) to join the T7 Oligonucleotide pair B (Seq. ID 88 and genes throught the E. coli 1pp leader SHEET

Nde I

TATG AAAGCTACTAAACTGGTTCTGGGTGCTGTTATCCTGGGTTCCACTCTG..

ACTITICGATGATITIGACCAAGACCCACGACAATAGGACCCAAGGTGAGAC...

... GACCCACCAACATCGCCTCCACCAACAAACTACATCTATTGCAGAGATTATGGGGGGAGAAGATTT ... CTGGCTGGT<u>TGT</u>AGCGGAGGTGGTTGTTTTGATGTAGATAACGTCTCTAATACCCCCCTCTTCT

Ear

FIG.18

FIG.16B".
SUBSTITUTE SHEET

PCT/CA94/00616

1	_	Š
Τ		_ ว
	-	-
	_	•
C		_
-	-	_
L	1	_

F16.15E

120/141

	4	
	ر ر	
-		

SB33 B16B6 M982 FA19	EAGAN DL63 PAK SB33 B16B6 M982 L	EAGAN DL63 PAK SB33 B16B6 M982 FA19	
G. A. VQD. VR. RWA. V. A YRS. HSEDKSV. T. THR. L A. V. L FT. M T A L A AESLKTLDL K. F. G. A. V. D. VR RWA. V. A. L YRS. HSDDGSV. T. THRTL A L AD T A L A SVQSKAV. ID K. F. S A. V. D. VR RWA. V. A. L YRS. HSDDGSV. T. THRTL A L AD T A L A S KIKAV. ID K. F.	OFFGLALKGDFGNIEISHFSNAYRNLIAFAEELSKNG-TGKGNYGYHNAQNAKLVGVNITAQLDFNGLWKRIPYGWYATFAYNQVKVKDQKINAGLAS CT T R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R N D VRGY N D VRGY N D VRGY N N D VRGY	USSYLFDAIQPSRYIIGLGYDHPSNTWGINTMFTQSKAKSQNELLGKRALGNNSRD-VKSTRKLTRAWHILDVSGYYMANKNIMLRLGIYNLFNYRYVTW USSYLFDAIQPSRYIIGLGYDHPSNTWGINTMFTQSKAKSQNELLGKRALGNNSRD-VKSTRKLTRAWHILDVSGYYMANKNIMLRLGIYNLFNYRYVTW USSYLFDAIQPSRYIIGLGYDHPSNTWGINTMFTGIY USSYLFDAIQPSRYIIGLGYDHPSNTWGINTMFTGIY USSYLFDAIQPSRYIIGLGYDHPSNTMFTGIY USSYLFATION USSYLFATION	EAVRQTAQGAVNQHQNVGSYTRYAASGRNYTLTLEMKF* EAGAN * DL63 * PAK * PAK * SB33 .N .G .N .G .N .FS * FB16B6 .N .N .N .FS * FA19

F16.14/

Comparison of TBP1 amino acid sequences

ogisv eagan DL63 SB33A. B1686A. M982A. FA19 L	EAGAN DL63 PAK SB33 B16B6 M982 FA19	PATLS EAGAN DL63I PAKKV. SB33 D.SVK B16B6 DVVGK M982
MTKKPYFRLSIISCLLISCYVKAETQSIKDTKEAISSEVDTQSTEDSELETISVTAEKIRDRKDNEVTGLGKIIKTSESISREQVLNIRDLTRYDPGISV V V V QQQHL. N.L SLMTALPVYAENTQAEQAQEKQD.Q.K.K.QKT.R. LV.S.DTL.K. D. A. QQQHL. N.L SLMTALP.YAENTQAGQAQEKQD.Q.K.K.QKT.R. LV.ADTL.K. D. A. AQQHL. N.L SLMTALP.YAENTQAGQAQEKQD.Q.K.K.QKT.R. LV.ADTL.K. D. A. ADTL.K. D. A. ADTL.K. D. A.	CYEQGRGASSGYSIRGMDRNRVALLVDGLPQTQSYVVQSPLVARSGYSGTGAINEIEYENVKAVEISKGGSSSEYGNCALAGSVTFQSKSAADILEGDKSW TH. CY. CY. CY. CY. CY. CY. CY. C	GIQTKNAYSSKNKGFTHSLAVAGKQGGFEGLAIYTQRNSIETQVHKDALKGVQSYDRLIATTDKSSGYFVIQGECPNGDDKCAAKPPATLS

F16.12B.

GTAGAAACAA CCAAATAATG GAATACTAAA AATGACTAAA AAACCCTATT TTCGCCTAAG

₽

GTAGAAACAA CCAAATAATG GAATACTAAA AATGACTAAA AAACCCTATT TTCGCCTAAG

₽

GTAGAAACAA CCAAGTAATG GAATACTAAA AATGACTAAA AAACCCTATT TTCGCCTAAG

⊱

GTAGAAACAA CCAACAAGTA AAAACAACCA AGTAATGGAA TACTAAAAAT GACTAAAAAA

114/141

CCCTATTTTC GCCTAAGT

GTAGAAACAA CCAAATAATG GAATACTAAA AATGACTAAA AAA

GIAGAAACAA CCAACAAGIA AAAACAACCA AGIAAIGGAA IACIAAAAAI GACIAAAAAA

GTAGAAAAAA ACAACTAGTA AAAACAACCA AGTAATGGAA TACTAAAAAT GACTAAAAAA

GTAGAAACAA CCAACAAGTA GAAAAAAAA AATAATGGAA TACTAAAAAT GACTAAAAAA

TCTAGAAGCT TITITIAGTCA TITITIAGTAT TCCAT

F16.116.

TAT AAC GGA AAA Tyr Asn Gly Lys 590 TTC ACC 1 r Gaa tta ggc ggr tar t r Glu Leu Gly Gly Tyr P 585 GGA CCT GAT GCT TL.

Pro Asp Ala Ser G¹
580

ACT Thr

GAC Asp

Pro S Ser Pro ACC Thr Ser . 333 Ser ATA ACT AAA AAT ACT GAA AGT Ile Thr Lys Asn Thr Glu Ser 595 600

GTA Val 605

TIT GGA GCT AAA A Phe Gly Ala Lys I 620 TCA CCA AAT GCA AGA GCT GCA GTT GTG Ser Pro Asn Ala Arg Ala Ala Val 615

112/141

AAA Lys

GTA GAA ACA ACC AAC AAG TAGAAAAAA CAAATAATGG AATACTAAAA Val Glu Thr Thr Asn Lys CAA

Lys Asn 630 Gln Val 625

ATGACTAAAA AAGCTTCTAG AAAGCCGAAT TC

SUBSTITUTE SHEET

AAT

 $\mathcal{C}^{\mathcal{C}}$

Asn 610

Pro

16.1E

AGT	Ser	400
ATA	I1e	
	Phe	
GAT	Asp	
Ę	313	
AGT	Glu Ser (395
GAG	Glu	
E	Pro	
TTA	Leu Pro	
CII	Fe	
333	Pro	390
' ATT (Ile	
E	S	
TAC	sn Tyr P	
AAT	Asn	
	Asp	385

r aaa gig gaa gca igi c Lys Val Glu Ala Cys 415	3 TAT TAT GAG GAT AAA 2 Tyr Tyr Glu Asp Lys 430
TAT	'ATG'
Arg Arg 410	GGT GLY
AAA Liys	TTT Phe 425
GT Gly	AAA Liys
GGA Gly	GTG Val
GTA Val	TAT Tyr
GAG Glu 405	TGC Cys
CAT	CTA Leu 420
CAC	AAT Asn
AAG Lys	AAG Lys
Ser	TGC

110/141

ACA	Thr	
•	Thr T	
CAA	Gln	,
AAA	Lys	445
GAA	Glu	
AAA	Lys	
GAA	Glu	
_	Lys (
		0
_	Asp	44
	Thr	
GAA	Glu	
AAT	Asn	
AAA	Lys	
	Asn	435
AAC ,		
	Glu i	
	_	

8	Pro	
ACT	Thr	
88	Arg	
CIC	Leu	
GT.	313	460
TTA TTA (Leu	
TTA	Leu	
TTC	Phe	
CAA	Gln	
TAT	Tyr	455
TAT	Tyr	
ACT	Thr	
AAG	Lys	
ATC	I1e	
ICI	Ser	450
ACA	Thr	

333	ŢŢ	480
AGT	Ser	
GGT.	GLy	
8	Arg	
TAT	ΊζΥ	
ACA	Thr	475
GIG	Val	
AAC	Asn	
GGA	G1y	
ATG	Met	
AAA	Lys	470
CCI	Pro	
ATT	Ile	
GAA	Glu	
AGT TCT GAA ATT CCT AAA ATG GGA AAC GTG ACA TAT CGC GGT AGT TGC	Ser	
AGT	Ser	465

CAA GCT TAT TCT CGA	Ala Tyr Ser	
8	<u>G</u>	
AGA	Arg	
AAT	Asn	
AAT	Phe Asn	200
31	Phe	
TTG	r Leu P	
زع	<u>a</u>	
TAT	Tyr S	
AAT	Asn	195
GGC AAA	Lys	
සි	Gly	

•	108/141
AT ATT GAT THA GAA AAC GGF GAC GCA GGC Sp Ile Asp Leu Glu Asn Gly Asp Ala Gly 15	GTC AAT TIT GGT ACA AAA AAG CTC ACT GGA Val Asn Phe Gly Thr Lys Lys Leu Thr Gly 235
Arg Ser Ala Thr Pro Gly Asp Ile Asp Leu Glu 210	TTA ACA AGT GAA TTT ACT GI Leu Thr Ser Glu Phe Thr Va 225

ACT GGA Thr Gly 240
CTC
AAG Lys
AAA Lys
ACA Thr 235
GGT Gly
TTT Phe
AAT Asn
GTC
ACT Thr 230
TTT Phe
GAA Glu
AGT Ser
ACA
TTA Leu 225

AA TCA AAA GAT In Ser Lys Asp 255
AAT CAA Asn Gln
CTT. Feu
ACA AAT (Thr Asn 1250
ACA
GAA
AGG Arg
GAA Glu
AAT Asn 245
TAT Tyr
TAT
GAA CCT Glu Pro
GAA

250	Arc	'
AAC	Asn	•
AGC	Ser Asn A	270
TAT	Tyr	
CIC	Val Tyr S	
GAT	ASD	
GG FJ	Ala	
GAA	eu Glu A	265
CIA	r Asp Leu	
GAT	Asp	
TA	7	
CEC	Fen	
AAA	s Lys I	260
T	田	
YGA AAA	Lys	
SE SE	₹	

AT	His	
J	H	
GAA	ı Glu	
GAA	Glu	
TCT	Ser	285
TCT	Ser	
GAG	Glu	
AAA	: Lys	
AA	3	
ACC	Pro Thr	280
S	Pro	
AAG	Lys	
GTA	Val Lys	
ACA	THE	
GGI	Gly	
AGA	Phe Arg	
TIC	Phe	

16.11A

AGT	Y Leu Ser Phe Leu Leu Ser	
CTA	Leu	15
TTA	Leu	
TITI	Phe	
323	Ser	
CI	Fen	
GGA A	Gly	10
<u>[5</u>	: Gly Gly I	
I CIT AIC ICT G	Ser	
ATC	Ile	
CES	Lea	
Ę	s Ser Val Pro	5
GTA	Val	
	Ser	
AAA	Lys	
ATIG	Met Lys	←

ACC	Thr	
AAT	Asn	
	Ser	30
CIC	Val	
AAC	Asn	
GAT	Asp	
GTA		
GAT	Asp	25
TIL	Phe	
	Ser	
_	Gly	
88	Gly	
GGA GA	Gly	20
AGC 0	Ser	
IGI	Cys	
EJ	Ala	

\$	Thr	ATC	Met	
	Arg (-	Gly 1	
•	Gln 1	_	Gly (
	Asn (45	-	Gly (
	Ser 1	_	Leu 60	
		TCT 1		
	Asp 7			
	Asp 1			
	Gln 1 40			
	Tyr (Leu S	
CGT	Arg .'	AAG '	[[5]	
	Pro ,	GAA		
AAA (Lys	TTG	_	
	Ser 35			
			Ser 50	
	Pro	AAA '		

106/141

TTA Leu 80	AAA Lys
TTC	ATT Ile
AGT Ser	ATG Met
CCT	TCT
GAA Glu	CTT
AAA Lys 75	TCA
GCT Ala	TCC Ser
GGT Gly	TTT Phe
GCT Ala	TAT Tyr
TTT Phe	TCA
AAT Asn 70	ATA Ile
CAA	TAT Tyr 85
GTG Val	GAC Asp
GIT Val	AAT
TTA	GAA Glu

AAG Lys 65 . AAT ASN

F16.10F.

_		
	Thr Ser T	
AAG	Lys	
GAT	Asp	
ATT GGT	Ile Gly	
GGT TAT.	171	485
TIT	Phe	
AGT TOG	_	

AAA	Lys	ı
GAT	Asp	•
	Thr	510
TIT		
AAT	Val Asn	
GIIA	Val	
GAT	Asp	
	Phe	505
GAG		
3000	Ala	
CIC	Len	
£3	Ala	
	Asn	500
AAA		
GAT	Asp	
GG.A	GLy	

	Phe	
GTA	Val	
ACC	Thr	
AAT	Asn	525
CAA	Gln	
	Asn	
	Asp	
88	Ala	
E.	\rg	520
AAA	·Lys	
TTA	Leu Lys A	
GAA	Glu	
8	Gly Glu	
ACA	Thr	515
AAG CTA	Fen	
AAG	Lys	

104/141

TC AAA GGT ACA	Phe Lys Gly Thr	
33		540
PAT	dst.	
A AAT ÁAT (Asn Asn	
AA	Lys	535
GAC TTT		
	Ala Asp	
AT	S	
AGA ATT A	Arg Ile	230

CT GGA	Thr Gly	$56\overline{0}$
CAA A	Ser Gln T	
AGT	Ser	
AAT	Asn	
AAC	Asn Asn	555
[]	GLY	
GAT	Asp	
GTA ATA	Ile	
GIA	Val	
	Phe	550
AAT	Asn	
GAA AAT	Glu	
B	Ala	
GCA ACC	Tr	
S	Ala	545

AAT ACC CAA ATT AAT ATT AAA ACT GAA GTA AAT GGG GCA TTT TAT GGT Asn Thr Gln Ile Asn Ile Lys Thr Glu Val Asn Gly Ala Phe Tyr Gly 570 575

0 0

		102/141			
FT ACC AGC GAG AGA ACA TTA GAA GGT GGT TTT TAT GGG CCT AAT Ne Thr Ser Glu Gly Thr Leu Glu Gly Gly Phe Tyr Gly Pro Asn 300	A GAA CTA GGG GGA AAA TTT TTA GCT AGC GAT AAA AAA GTT TTT u Glu Leu Gly Gly Lys Phe Leu Ala Ser Asp Lys Lys Val Phe 310	TTT AGT GCC AAA GAA CAG CAA GAA ACG GAA GAA AAC AAA AAA	IC AAA GAA ACC TIA ATT GAT GGC AAG CTA ACT ACT TTC TCT ACT 9u Lys Glu Thr Leu Ile Asp Gly Lys Leu Thr Thr Phe Ser Thr 340	AA ACC AAT GCA ACA ACC GAT GCA ACA ACC AGT ACA ACA ACC AGT /S Thr Asn Ala Thr Thr Asp Ala Thr Thr Ser Thr Thr Thr Ser 355	24 ACC AAT GCA ACA GCC GAT GCA GAA AAC TTT ACG ACA AAA GAT la Thr Asn Ala Thr Ala Asp Ala Glu Asn Phe Thr Thr Lys Asp 380
CCC TTT Pro Phe 290	GCT GAA Ala Glu 305	GGG GTA Gly Val	TTA CTC Leu Leu	AAA AAA Lys Lys	ACA GCA Thr Ala 370

13A Ser ATT Ile 110 TAT GAC Asp 999 Gly 99 Gly AAC Asn 105 ACA Thr Asn AAT AAC AAT GAA AAT AAC A Glu Asn Asn A EES Val Asp GAT GAT Asp

CAA Gln GLyCAT CGA His CAT His 125 GAA AAG Lys Glu ii cca cTC Giir Asn Pro Ir 120 AGA Tar ACA Thr AGT Ser CE Pro GAG Glu 115 ATA GAC Asp

Arg Fen AGT Ser 36 17 13 Ser 140 CAA Gln ATT 11e TAT TAT Tyr Tyr CTT Leu 135 Gly 8 13 Ser Tyr GIA Val TAT Tyr 130 Arg

100/141

Tyr 8 Ala TAT 8 GlyTAT TYT 155 TYT TAC TCA GGT ' Ser Gly ' TAT TTT Phe 150 Lys AAG AAG Lys g Pro

TTA Leu

GAT

Asp 145

13C 150 160

TAT

ACG Thr Glu GAY GTA AAT GGC (Val Asn Gly (CCT Pro 170 THA ACA Thr ACT Thr 900 Ala ACA Thr 165 GAA AAG Lys සි

AAA Lys සි Gly 190 Arg Asn AGA AAT GCA ACT Thr Ala ACT Thr 185 ATC Ile JJC Phe TOG GAT Asp Trp ACT Thr 180 G1yAAA GGA Lys

TTA	Leu	
GAA	GLu	
ACA	Thr	585
ES ES	Ala	
AAG	Lys	
Ę	Pro	
£55	G1	
TAT	Tyr	580
TILL	Phe	
\$		
93	Gly	
AAC	Asn	
GIA	Val A	575
ACA	Thr	
\Im	Ala	
ACG	ïħr	

TAT AAC GGA AAC AAT CCT ACA GAT AAA AAT Tyr Asn Gly Asn Asn Pro Thr Asp Lys Asn 595 600 Thr Tyr Phe 7 590 Gly

GTG Val OCT OCC GITT Ala Ala Val TCA CCA TCC AAT TCA GCA AAT GCT CGT Ser Pro Ser Asn Ser Ala Asn Ala Arg 610 615 GIT ACC Thr 605

98/141

OCC OCT AAA AAA CAA GTA GAA ACA ACC AAC AAG TAAAAACAAC Gly Ala Lys Lys Gln Val Glu Thr Thr Asn Lys 625 TTT GGC (Phe Gly 7)

CAAGTAATGG AATACTAAAA ATGACTAAAA AAGCTTCTAG AAAGCCGAAT TC

-16.9E

TTC CCT GAA GAA	Phe Pro Glu Glu 395	
	Leu Pi	
	Pro L 390	
GIT	Val	
G	Pro	
	Tyr	
AAT		
GAT	Asp 385	
ATT	Ile	
	<u>Fen</u>	
E		
TAC	T_{YT}	
GAT	Asp 380	

Lys AAA Gly 85 CAN AAG GTA (His Lys Val (AGT AGG Ser Arg ACT Thr ATA Ile TTC Phe 400 Asn Asp AAT ACT AAT GAT Thr

C TAT AAA GTA GCA TGT TGC AAG AAT CTA AGC TAT GTG AAA r Tyr Lys Val Glu Ala Cys Cys Lys Asn Leu Ser Tyr Val Lys 420

96/141

TTT Phe

Lys AAA GluGGC AAA C Gly Lys C 440 Glu Asn (TTA AAT GGA (Leu Asn Gly (435 Pro TAT GAA GAC CCA Tyr Glu Asp Tyr 430 ATG Met

ATC Ser Thr ACA ACA Thr Ala 455 Lys Glu Lys Gln AAA GAA AAA CAA GAC Glu Lys Glu Lys Asp 450 AAA GAA AAA GAA AAA Lys 445 Glu GAA

Asp 475 GAC GAC TTA GGT CAC CGT ACT GCC AAG GCC Leu Gly His Arg Thr Ala Lys Ala 470 r tat tat caa tic ita i c tyr tyr Gln Phe Leu I 465 ACT Thr

SUBSTITUTE SHEET

ACC Thr

. 16.9C

	T Asn	
ij	Ala Tyr	
GGA	Gly	200
TIT	Phe	
5	Ala	
AGC	Ser	
E5	Gly	
TITI	Teu Phe	195
TITA	Leu	
ICI	Ser	•
TAT	Τŷr	
CCI	ו Arg	
3	Gli	190
AAT GGC	Gly	
AAT	Asn	

CITA	Leu	
AAT	Asn	
	Asn	
GAA AAT	Leu Glu	•
TITA	Fen	215
' AAT 1	Asn	
GAI	Asp	
GAT ATA	Ile	
GAT	Asp	
TCA GAA	Glu	210
TCA	Ser	
ATT	Ile	
AGT GCT ATT	Ala	
AGT	Ser Ala	
8	Arg	205
AGA	Arg	

94/141
TIT GGT ACG Phe Gly Thr 235
AAT Asn
Corc Corc Corp
ACT Thr 230
TTT Phe
. Glu
AGT Ser
ACT
TTA Leu 225
GGA
GCG Ala
GGT Gly
AAT Asn
AAG Lys 220

A ACA AAT CTT	Glu Thr Asn Leu	250
£ 5	पु द्	
AG	Arg	
GAA	Glu	
AAT	Asn	245
TAT	s Leu Tyr Tyr	
TAT	TYT	
CIT	Fen	
AAA	Lys	
GGA	Gly Lys	240
ACT (Thr	
3	F G	
AAG	s Lys I	
AAA	Lys]	

	Asp	
\mathcal{Z}	Ala	
GAT	Asp Ala	265
ATA	Ile	
GAT	Asp	I
TAT	Tyr	!
	Leu	
GAA	Glu 1	260
CAT		
AAA	Lys	
HGA AAA	Arg	
A AAG A	Lys	
3	3Jn	255
TTA	Leu (
AAA	Lys	
AAT	Asn	

AAA	r Thr Gln Lys	i
CAA	Gln	
ACC	Thr	
ğ	뫁	200
g	Pro	
AAG	Lys	
GTA	Val Lys	
AAA	Gly Lys	
GT.	GIY	275
AGA	Arg	
TIC	g Phe Arg G	
AG	Ar	
AAT	: Ser Asn	•
AGT	Ser	770
TAT	77	
ATT TAT	Ile	

GAATTCGGCT TGGATCCAT ATG AAA TCT GTA CCT CTT ATC TCT GGT GGA CTT Met Lys Ser Val Pro Leu Ile Ser Gly Gly Leu 1

Asp GAT Phe Asp Val 7 GIA TCT TTT GAT Ser TIT TITA CITA AGT GCT TGT AGC GGA GGG GGG Ala Cys Ser Gly Gly Gly 20 Leu Leu Ser 1 15 Phe Ser

ACT Thr TAT CAA GAC GAT A Tyr Gln Asp Asp T 40 TCT AAA CCA CGT 1 Ser Lys Pro Arg 1 35 Ser TOC TOT Ser Ser Asn Pro S 30 TCT AAT CCA GIC Val AAC Asn

Ser Pro Ile TIG TCC ATT Ser Asn Leu Lys Lys Leu Ser 50 55 TCT AAT TTG AAA AAG Lys TCA AGA ACA AAA Ser Arg Thr AGT Ser Ser TCA

Gln Asn Leu Ser Asp Lys Asn 70 GGG GGA GGG ATG AAG TTA GTG GCT CAG AAT CTT AGT GAT AAG Gly Gly Gly Met Lys Leu Val Ala Gln Asn Leu Ser Asp Lys 65 TTA ren 60

TGA Ser Ser 90 Phe TAT TY AAA CCT AGT CTC TTA AAT GAA GAT GAC TAT ATA TCA Lys Pro Ser Leu Leu Asn Glu Asp Asp Tyr Ile Ser

92/141

7½7 85 Ser Leu Leu Asn 80

TAC Tyr Glu Ala Asp GAA GCT GAT Gly 395 TIL Phe Ser AGI 7CA Ser Ile GAT Asp 390 TIT AAG ACG AAA Lys Thr Lys AAC Asn 385 GAA Glu

GAT Ser GAG AGT Glu 5 Pro CIT TITA Pro Leu EJ J Pro Val E30 AAT Ile Asp Asn GAT TITA Fen

Asp 415 GTA Val Leu 410 85 PB ACT GTA (Thr Val CAC CAT A Tyr 405 ATA AGT AGT P Leu 400

CAA Gln 430 TAT AAG AAA ACC 1 Lys Lys ? Gly 425 AAG Lys 420

89/141

GGT ATG Gly Met 445 TAT GTG AAA TTT G Tyr Val Lys Phe G 440 AGT AAT CTA AGC 1 Ser Asn Leu Ser 1 TGC Cys 435

131 Cys

GCA Ala

ľýr

AAA Lys Lys Asp Lys Glu Lys Lys Glu 460 AAA AAA GAA GAA GAA AAA GAC AAA Glu 455 GAA Glu AAA GAA (Lys Glu (Pro Pro 450 GTC Val

TTC TAT TAT Tyr 3 ACA AAT CTA TCG AAC ACT T a Thr Asn Leu Ser Asn Thr T 470 Glu Lys Gln Ala GAA AAA CAA GCG Lys 465 AAA GAY Glu

-16.8C

CAA GCT TAT TTT	Gln Ala Tyr Phe Arg	
GGC AGI	Ser Asn Gly Ser	000
GGC AAA AGG TAT (Arg Tyr	19ቫ

GAG	•
GAT Asp	
AAT Asn	
AAA I	220
E G	
GAA Glu	
TTA	
GAT	
AIT Ile	215
GAT Asp	•
GAA Glu	
Pro Pro	
ATT	
GCA Ala	210
AGT Ser	
CGT	

ACT
666 61y
TTT Phe
GAT Asp
GCA Ala 235
AGT Ser
TTT Phe
GAA Glu
AGT Ser
GTG Val 230
CTA
666 61y
AAA Liys
GAA
AGA Arg 225
AAT Asn

87/141

ATT 11e 255
CAT
ACT
CAA Gln
AGA Arg
AAA Lys 250
ACC
TAC
TTT Phe
CEG CEG
GGA Gly 245
GGA Gly
ACA
CTG /
A AAA C S Lys I)
AAA Liys 240

IAT	Tyr	
ATT '	His Ile T 270	
CAT	His	
8	Ala	
GAT	Asp	
ATA	Ile Asp Ala	
GAT	Leu Tyr Asp 265	
TAT	Tyr	
CIC	<u>F</u> en	
AAA	Lys	
AA	<u></u>	
AAG	Lys 260	
GAA	Glu Lys 260	
S.	H.S	
CAA AAC	Asn	
GA C	Gln	

C CAA AAA GAT TCT AAA r Gln Lys Asp Ser Lys 285
T ACC o Thr
Pro
AAT Asn 280
GTA Val
AAA Liys
GGT Gly
AGA Arg
TTC Phe 275
AGA Arg
AAT Asn
AGT Ser

F16.8 A

AT ATG AAA TCT GTA CCT CTT ATC TCT GGT GGA CTT TCC TTT TTA TTA Met Lys Ser Val Pro Leu Ile Ser Gly Gly Leu Ser Phe Leu Leu 1

TCT AGT GCT TGT AGC GGG GGA GGT GGT TCT TTT GAT GTA GAT GAC GTC Ser Ala Cys Ser Gly Gly Gly Gly Ser Phe Asp Val Asp Asp Val 20 25 30

TCA Ser TCC TCT TCT AAA CCA CGT TAT CAA GAC GAT ACT TCA AGT Ser Ser Ser Lys Pro Arg Tyr Gln Asp Asp Thr Ser Ser 35 40 g Pro AAT Asn

85/141

TCC ATT CCT TCT TTA GGG GGA Ser Ile Pro Ser Leu Gly Gly 60 AAA TCT AAA TTG GAA AAT TTG Lys Ser Lys Leu Glu Asn Leu 50 55 ACA Thr AGA Arg

AGT Ser OCT CAG AAT CTT CGT GAT AGG ACA AAA CCT Ala Gln Asn Leu Arg Asp Arg Thr Lys Pro 70 GGG ATG AAG TTA GTG GCT Gly Met Lys Leu Val Ala 65

ATT Ile 95 TCC TCA CTT TCA A Ser Ser Leu Ser 1 90 Phe CTC TTA AAT GAA GAT GAC TAT ATG ATA Leu Leu Asn Glu Asp Asp Tyr Met Ile Asp .85 Leu 80

16.7 M

TAT AAC CGA GTA AAA GTT AAA GAT CAA AAA ATC AAT GCT GGT TTG GCC Tyr Asn Arg Val Lys Val Lys Asp Gln Lys Ile Asn Ala Gly Leu Ala 935			
AAC CGA GTA AAA GTT AAA GAT CAA AAA ATC AAT GCT GGT Asn Arg Val Lys Val Lys Asp Gln Lys Ile Asn Ala Gly 930.	8	Ala	
AAC CGA GTA AAA GTT AAA GAT CAA AAA ATC AAT GCT GGT Asn Arg Val Lys Val Lys Asp Gln Lys Ile Asn Ala Gly 930.	TIG	Leu	940
AAC CGA GTA AAA GTT AAA GAT CAA AAA ATC AAT (Asn Arg Val Lys Val Lys Asp Gln Lys Ile Asn 1 930.	GG	GLy	
AAC CGA GTA AAA GTT AAA GAT CAA AAA ATC AAT Asn Arg Val Lys Val Lys Asp Gln Lys Ile Asn 930.	g	Ala	
AAC CGA GTA AAA GTT AAA GAT CAA AAA Asn Arg Val Lys Val Lys Asp Gln Lys 930.	AAT	Asn	
AAC CGA GTA AAA GTT AAA GAT CAA AAA Asn Arg Val Lys Val Lys Asp Gln Lys 930.	ATC	Ile	
AAC CGA GTA AAA GTT AAA GAT Asn Arg Val Lys Val Lys Asp 930.		Lys	935
AAC CGA GTA AAA GTT AAA GAT Asn Arg Val Lys Val Lys Asp 930.	CAA	Gh	
AAC CGA GTA AAA Asn Arg Val Lys 930.	GAT	Asp	
AAC CGA GTA AAA Asn Arg Val Lys 930.	AAA	Lys	
AAC CGA GTA AAA Asn Arg Val Lys 930	GIT		,
AAC CGA Asn Arg	AAA	Lys	930
AAC Asn	GIA	Val	
	GA	Arg	
TAT Tyr	AAC	-	
	TAT	Tyr	

ATC	Ile	
TAT	Tyr	ı
CGI	Arg	955
	Ser	
	Pro	
CAG	Gln	
	Ile	
2	Ala	950
	Asp	
TIII		
TTA	Leu	
TAT	Τλτ	
	Ser	945
AGC	Ser	
GIA	Val	
33	Ser	

ACA Thr
AAT Asn
GCA ATT Gly Ile 970
1335 1777 1779
ACT Thr
AGT AAT Ser Asn
Pro 965
CAT
TAE Asp
TAT (
A GGC T 1 Gly T)
TTA Leu 960
GGT Gly
ATT (Ile (

83/141

CAA
GGA Gly
CTA
TTG
GAA Glu 985
AAT Asn
Ser Gln
AAA Lys
GCA Ala 980
AAA Lys
TCA Ser
CAA
ACT
TTT Phe 975
ATG

A CTT		1005
AA	Š	1
AGA	Arg Lys)
ACA	Thr	
\$	Ser	0
AAA	Lys	$1\overline{0}00$
GITA	Val	
AAT	: Arg Asn	
AGG	Arg	
7	Sex	
	Asn	995
GGT AAC	Asn	
£59	317	
JTT	E	
\$	Ala	
CGT	Arg	990

AC ATG GCG AAT	yr Met Ala Asn	1020
T GTA TCG GGT TAT T	e Leu Asp Val Ser Gly Tyr Tyr Met Ala Asn	1015
ACT CGG GCA TGG CAT ATC TTA GAT	Thr Arg Ala Trp His Ile Leu Asp	1010

.16.7K

A GGT TTA GGT u Gly Leu Gly 765	
ATA O	
TAT. 1 Asp I	
WA TAC AITY GAT TITA GC rs Tyr Ile Asp Leu Gl 760	
TAC	
GCA CGC AAT AAT ATG GCA TTA GGG AAA 7 Ala Arg Asn Asn Met Ala Leu Gly Lys 7 750	
996 617	
TTA	
GCA Ala 755	
ATG Met	
AAT Asn	
AA'I' Asn	
Arg	
Ala 750	

AGT Ser
ATT Ile 780
ACT Thr
TCA Ser
GAA Glu
AAT Asn
GCT Ala 775
AAA Lys
ACA Thr
CGT
Ser
GTPA Val 770
GAC Asp
TAT
Arg '
ATT (Ile /

81/141

AAA	Lys	1
	Ile 1	
	Val	795
ATT	Ile	
	Gly	
ACT	Thr	
AAT	Asn	
13C	Trp	790
	Ser	
TIC	Phe	
AAT		
AAA	Lys	
LL	Phe	785
AAA		
[]	Gly	
GIT	Val	

CTT TCT ACT GGA TTT AGA	Ser Thr Gly Phe	
GAT CIT ICT TAT CGC	Leu Ser Tyr Arg	805
ACG GAA TGG CTT	ney dul nie	008

	Asn	
	Asn	
86	GlV	1
GGT	Gly	1
TAT	Tyr	825
99	Arg)
133		
GGT	Gly	ı
TAT	ΤŢΤ	
ATG	Met	820
GAA	Glu	
GCT	Ala	
TIT	Phe	
AGT	Ser	
	Pro	815
AAT	Asn	

-16.71

GGT	Gly	ı
GTA	Val	
GT	Arg	
CAG		570
	Lys	
AGA	Ary	
CAI	His	
CAC		
GAA	Glu	565
GAT	Asp	
TIC		٠
	TYT	
_	Len	
_	GLy	560
AGT	Ser	
BB	Ala	

ATT GAA TAT ATT TAC (Ile Glu Tyr Ile Tyr (575	GAA AAT AAG AAC AAA GCG GGC ATC ATT GAC AAA Glu Asn Lys Asn Lys Ala Gly Ile Ile Asp Lys 580	
	GAA TAT ATT TAC Glu Tyr Ile Tyr 575	

79/141

	Met	605
TAT	Tyr	
AGT	Ser	
GAC	Asp	
	Fen	
ATA	Ile	009
ATC ATA	Ile	
CAA AAC	Asn	
CAA	GIn	
CAAC	GIn	
AATI	Asn	595
	Ala	
TTA AGT	Ser	
TTA .	Fen	
GIG 1	Val	
8	ALa	590

8	Arg	
133	Cys 620	
AAT	Asn	
AAG	Lys	
AGT AAG	Ser	
GA	Pro	
AAT	Pro Asn 615	
EJ J	Pro	
TAT	TYr	
CIT TAT	Eg .	
AGT	cys Ser 610	
ු පූ	Cys 610	
\frac{1}{2}	H	
AGG	Thr	
CAT .	His	
£ .	Arg	

_	Ser Asp Arg Asn 635
	Tyr Arg
	1yr 630
T	
TAT	Tyr
G	Pro
AAA	Lys
GAT	Asp 625
CII	Leu 7
ACA	Thr
99	Pro

F16.76

GAC
GGA
GAA
TTA
ATC
GAT
33
82
333
AAA
AGC
GAA
TIT
ACA
GTA
<u>[</u>]

Asp 365
${ m Gly}$
Glu
Fen
Ile]
Asp 360
Ala
Ala i
Ser 1
Lys S
Ser 1 355
Gln
Phe (
Thr 1
Val 1
Ser V 350
വ് സ

AAA	Lys	1
AAT	Asn	380
AAA	Lys Asn	1
AGC	Ser Ser	
5	Ser	
	Tyr	
g	ı Ala	375
AAT	. Lys Asn	
AAA	Lys	
ACT	끏	
A	귽	
ATT	Gly Ile (370
GGA	GLY	
1 <u>3</u>	Trp	
TCA 1	Ser	
AAA	Lys	

CAA GGT GGA TTT GAA Gln Gly Gly Phe Glu 395
AAA Lys
GGA Gly
GTA GCA Val Ala 390
GTA
GCT Ala
TTA
TCT Ser
CAT His 385
ACC
TTT. Phe
GC 3

77/141

GAA ACC CAA GTC	Glu Glu Thr Gln Val His	
CAA CGA AAT TCG	Gln Arg Asn Ser	405
GGG GTC GCC ATT TAC ACT	Val Ala Ile Tyr	400

TTC ATC GCC	Glu Arg Phe Ile Ala Thr	
_	Tyr	ı
	Ser	
A CAA	Gln	
GTPA	Val	420
88	Gly	
AAA	Lys	
TTA A	Leu	
GCA	Ala	
	Asp ,	415
	Lys 7	-

AAT	Agn	445
S S	Pro) {
Ter (
GAG	Glu	
GGT		
CAA	Gln	440
ATA	Ile	
GTG ATA	Val	
TIT	Phe	
TAC	<u>1</u> 7	i
GGA TAC	G	435
T	Ser	
TCT	Ser	
AAA	Lys	
GAT		
ACA.		430

F16.7

TCCAATTICAG CAAATGCTCG TGCTGCCGTT GTGTTTGGAG CTAAAAAACA AGTAGACACA

ACCAACAAGT AGAAAAAACC AAATAATGGA ATACTAAAA ATG ACT AAA AAA CCC Pro Lys Thr Lys 1 Met

Val Cys TCA TGC Ser CGC CTA AGT ATT ATT TCT TGT CTT TTA ATT ATG Leu Ser Ile Ile Ser Cys Leu Leu Ile 11e 185 Cys Leu Ile Ser (180 Phe 175 TAT

TCT Ser 205 Ser ATA Glu Ala Ile GAA GCT Thr Lys (200 AAA ACA Ile Lys Asp ATA AAA GAT AGT Ser 195 CAA Gln ACT Glu Thr GAA Ala B AAA Lys 190

ATC 11e 220 GAA TTA GAA ACT P Glu Leu Glu Thr 1 13 Ser 215 AGT ACA GAA GAT Thr Glu Asp Ser CAA Gln 210 ACT Thr Asp ' GAC Sig Val GAA Glu

G1yThr Arg Asp Arg Lys Asp Asn Glu Val 230 GAA AAA ATA AGA GAT CGT AAA GAT AAT GAA GTA Ile . Glu Lys 225 B Ala ACT Thr

Val GAA Arg 250 SE SE GAA AGT ATC AGC Glu Ser Ile Ser AGT Ser 245 AAA ATT ATA AAA ACG Thr Lys Ile Ile Lys 240 8 GlyLeu

75/141

F16.7C

ACT TTG GCA AGC AAA CAG CCA CTA CAT TAC CTG TAGATGGCGA AGCAACGTAT Thr Leu Ala Ser Lys Gln Pro Leu His Tyr Leu 160 AAAGGAACTT GGCACTTCAT CACCGCAACT GAAAATGGCA AAAAGTATTC TTTGTTCAGT AATGATAGCG GTCAAGCTTA TCGCAGACGT AGTCCAATTC CAGAAGATAT TGATTTAGAA ACAAAAAAGC TCACTGGAAA ACTTTATTAT AATGAAAGAG AAACAGAACT TAATAAATCA AAAGATAGAA AACATACACT CTACAATCTA GAAGCTGAAG TGTATAGTAA CCGATTCAGG GGTACAGTAA AGCCAACCGA AAAAGATTCT ACAGATCATC CCTTTACCAG CGAGGGAACA TTAGAAGGTG GTTTTTATGG GCCTAAAGGT GAAGAACTAG GAGGAAAGTT TTTAGCTGGC GATAAAAAAG TITITIGGGGT ATITIAGTGCC AAAGAAACGG AAGAAACAAA AAAGAAAAGCG TTATCCAAGG AAACCTTAAT TGATGGCAAG CTAACTACTT TTAAAACAAC CAATGCAACA ACCAATGCAA CAGCCAATGC AACAACCAGT ACAACAGCCA GTACAACAAC CGATGCAGAA AAAAATGATT CAACTAATGG TGACAAGGGC TTAATAAGTG AATTTAGTGT CAATTTTGGT

73/141

F16.7 A

CAACATCTGC CCAAGCTATA TTCGTTAATG ATAAGCCTAT TAATGATAAG CCTATTAATG

ATAAGAAAGA AATITIGITITI ACGCCATITIT TCATATITITA TCCATGAACT TAAAAAATIC

TAAGTTGACA TTATTACAAA AAAAGAACAA TAATGCGAAT TATTATCAAT TTTGTATAAG

Met Lys Ser Val Pro Leu Ile Ser Gly Gly Leu Ser Phe 1 AATATAATTC T ATG AAA TCT GTA CCT CTT ATC TCT GGT GGA CTT TCC TTT

TTA TTA AGT GCT TGT AGC GGA GGG TCT TTT GAT GTA GAT AAC GTC Leu Leu Ser Ala Cys Ser Gly Gly Gly Ser Phe Asp Val Asp Asn Val 15

71/141

TCT TCT AAA CCA CGT TAT CAA GAC GAT ACC TCG AAT Ser Ser Lys Pro Arg Tyr Gln Asp Asp Thr Ser Asn 35 Tyr Gln Asp Asp Thr 40 TCT AAT CCC TCC T Ser Asn Pro Ser S 30

CAA AGA ACA AAA TCT GAT TTG CAA AAG TTG TCC ATT CCT TCT TTA GGG Gln Arg Thr Lys Ser Asp Leu Gln Lys Leu Ser Ile Pro Ser Leu Gly 50 55 60

F16.6P

CGT ATT CCC TAC GGT TGG TAT GCA ACA TITT GCT TAT AAC CGA GTA AAA Arg Ile Pro Tyr Gly Trp Tyr Ala Thr Phe Ala Tyr Asn Arg Val Lys

GIT AAA GAT CAA AAA ATC AAT GCT GGT TTG GCC TCC GTA AGC AGT TAT Val Lys Asp Gln Lys Ile Asn Ala Gly Leu Ala Ser Val Ser Ser Tyr 1420 THA THT GAT GCC ATT CAG CCC AGC CGT TAT ATC ATT GGT TTA GGC TAT Leu Phe Asp Ala Ile Gln Pro Ser Arg Tyr Ile Ile Gly Leu Gly Tyr

69/141

GAT CAT CCA AGT AAT ACT TGG GGA ATT AAT ACA ATG TTT ACT CAA TCA ASP His Pro Ser Asn Thr Trp Gly Ile Asn Thr Met Phe Thr Gln Ser 1455

Ala Lys Ser Gln Asn Glu Leu Leu Gly Lys Arg Ala Leu Gly Asn AAA GCA AAA TCT CAA AAT GAA TTG CTA GGA AAA CGT GCA TTG GGT AAC

Asn Ser Arg Asp Val Lys Ser Thr Arg Lys Leu Thr Arg Ala Trp His AAT TCA AGG GAT GTA AAA TCA ACA AGA AAA CTT ACT CGG GCA TGG CAT

F16.6N

TGT GAT TAT AAA GGT AAC TCC TCT AAT TAC AGA GAC TGT AAA Cys Asp Tyr Lys Gly Asn Ser Ser Asn Tyr Arg Asp Cys 1215 1220 His GAT CAT Asp

CGG TTA ATT AAA GGG AAA AAT TAT TAT TTC GCA GCA CGC AAT AAT AXG Leu Ile Lys Gly Lys Asn Tyr Tyr Phe Ala Ala Axg Asn Asn Asn

ATG GCA TTA GGG AAA TAC GTT GAT TTA GGT TTA GGT ATT CGG TAT GAC Met Ala Leu Gly Lys Tyr Val Asp Leu Gly Leu Gly Ile Arg Tyr Asp 1245

67/141

Ile Ser Val Gly Lys Phe ATT AGT GTT GGT AAA CGC ACA AAA GCT AAT GAA TCA ACT Val Ser Arg Thr Lys Ala Asn Glu Ser Thr STA TOT

Trp Asn Thr Gly Ile Val Ile Lys Pro Thr Glu Trp 1280 AAA AAT TTC TCT TGG AAT ACT GGT ATT GTC ATA AAA CCA ACG GAA TGG Asn Phe Ser Lys

Asp Leu Ser Tyr Arg Leu Ser Thr Gly Phe Arg Asn Pro Ser CITY GAT CITY TOTY TOCK CITY TOTY ACT GGA TITY AGA AAT CCTY AGT Leu

F16.6L

TAT GGT GCA	Tyr Gly Ala 1035	
GAT	Asp	
G CAA	s Gln 30	
A AA	Pro Lys G 1030	
S	r Pro	
T TAT	le Tyr	
TITI TO		
E SSS	Gly Ser 1025	
-	Ser	
	Ser	
GAT		
GAT.	Asp 10	
99	Arg 1	

AGT GGG CTT	Ser Gly Leu	1050
TAT GCA	Tyr Ala	
GIT AAC I	Val Asn T)45
9	GLy	1(
GGC CGA	Gly Arg	
ATT GAG GAT	Ile Glu Asp	1040
CAA CGT	Gln Arg	
TAT	ľyr	

65/141				
SCT ATT GAA TAT	Val Gly Ile Glu Tyr Ile	1065		
AGA AAA CAG CGT	Arg Lys Gln Arg	1060		
TTC GAT	Asp Glu His	1055		

AGT	Ser	
TT'A /	Val Leu Ser	
CIC	Val	
GCA (Ala	1080
AAA	Lys	
	Asp	
ATT	Ile	
IG GGC ATTC A	Ile	
8	GIY	1075
8	Z	
AAA	1 Lys	
AAC	Asn	
AAG	Lys	
AAT	1 Asn	1070
GAA AAT	Glu	
	77.	

GAT	His	
ACG	Thr	•
CAT	Gln His	
S.	Gln	
ATG	Æ	1095
TAT ATG	Tyr	
AGT	e Leu Asp Ser	
GAC	Asp	
EJ	Fen	_
AT	Ile	1090
ATC	Ile	
AAC	Asn	
CAA AAC ATC	Gln Asn Ile	
GA	GJn	
AAT	Asn	. 1085
GCT AAT	Ala Asn	٠

GAT	r Arg Asp	1115
CGT	Arg	
ACA	Thr	
S	n Cys Arg Pro Thr	
සි	Arg	
130	Cys	111(
AAT	Asn	
AAG	: Lys Asn	
5	á	
T CCT AAT CCA 1	Pro	
AAT	Asn	1105
G	Pro	
TAT	ΤYΥ	•
CIT	Leu	
AGT	Cys Ser Leu Tyr	_
38	ζys	1100

ACA TITI CAA AGC	Thr	840
r GTA		
TCT		
	Gly	835
GCT.	Ala	
CIA	<u>Fen</u>	
SCA C	Ala	
GGA	G1y	
AAT	Asn	830
GGT		
TAT	1 <u>}</u>	

GTPA	Val 875	
_	Ala 1	
	Leu	
TCT	Ser	
CAT		
-	Thr 870	
	Phe	
_	Gly	
AAA	Lys	
AAT		
AAA	Lys. 865	
AGC	Ser	
TCA		
TAT	TYT	
ESO .	Ala	
AAT	Asn 860	

63/141

ACT CAA CGA Thr Gln Arg 890
TAT Tyr
ATT Ile
occ Ala
GTC GCC Val Ala 885
996 Gly
GAC ASP
TTT
GGA Gly
GGG G1y 880
CAA
AAA Lys
GGA Gly
GCT Ala

CAA	Gln	
GTA	Val (
\aleph	17	5
AAA	Ala Leu Lys G	
TTA	Leu	
8	Ala	
AT	S	
AAA	Lys A	900
CAIT	His	
CIC	Val	
CAA GTC CAT A	Gln	
ACC	Glu Thr	
GAA	Glu	895
ATT	Ile	
AT TCA ATT O	Ser	
AT	Sn	

TIT	. Phe	
IAC	7	
B	Gln Ser Ala	
13	Ser	920
GA	Gln	
GAT	Asp	
GAG	Glu	
T CCA	Pro	
AAA	3	915
\mathcal{Z}	¥Ìa	
TTA ATC (Ile	
TTA	Leu	
æ	rg	•
CAT	His	910
TAT	Τλτ	
AGT	Ser Tyr His A	

GAA ACA ACC AAC AAG TAAAAACAAC CAAGTAATGG Glu Thr Thr Asn Lys Glu Thr ' 650 AAA AAA CAA GTA Gln Val Lys Lys

Ser Ser CT'A AGT Arg Leu Phe Pro AATACTAAAA ATG ACT AAA AAA Thr Lys Lys Met 655

Ile 665 Tyr 660

TCA TGC TAT GTA AAA GCA GAA ACT CAA AGT ATA AAA Ser Cys·Tyr Val Lys Ala Glu Thr Gln Ser Ile Lys 675

61/141

GAA Glu Thr CAA AGT i ACT. Thr 695 Asp TCT GAA GTG GAC Glu Val Ser ZZ Z Ser AAA GAA GCT ATA Lys Glu Ala Ile

9

Asp 715 GAT GAA AAA ATA AGA Ile Glu Lys TCA GTC ACT (Ser Val Thr A Ile ATC 1 GAA TTA GAA ACT A 2 Glu Leu Glu Thr I 705 13 Ser Asp 700

AGT ACT Thr 730 F GGC AAA ATT ATC AAA A 1 Gly Lys Ile Ile Lys T 725 E Gly Leu ACT GGA Thr GIA Val GAA Asp Asn GAT AAT Lys AAA

Glu 720

SUBSTITUTE SHEET

ATT 1

Leu 670

ACA

Thr 685

Fen

TITA

16.6F

		59/141			
ACG	CGT Arg 485	GGT	AGT	AGT	GGA Gly
Pro Pro	CIC	CAT His 500	occ Ala	GTA Val	AAT Asn
AAA Lys	GGT Gly	TAT Tyr	TCC Ser 515	GAT Asp	GAT Asp
GAA	ITIA	AAA Lys	TAC	TTT Phe 530	CAC
AAA Lys 465	TTA	GCA AAA ' Ala Lys '	TCT Ser	GAG '	CGA Arg 545
990 61y	TTC Phe 480	AGT Ser	ACA Thr	GCC Ala	AAA Liys
AAA Lys	CAA	GGA Gly 495	GAG Glu	GTC Val	TTA
GAA Glu	TAT	GAA Glu	99C Gly 510	GCT Ala	GC GAA GIY GIN
AAA Lys	TAT	AAA Lys	AGT GAT (Ser Asp)	AAT Asn 525	GC Gly
ACA GAC Thr Asp 1 460	AAC ACT 1 Asn Thr 1 475	Pro	AGT Ser	AAA Lys	ACA Thr 540
ACA Ifir	AAC Asn 475	ATA (Ile 1	ATT Ile	AGT Ser	TTA
GAA Glu	ATC Ile	GAA Glu 490	TAT	CGC Arg	ACA Thr
AAT Asn	TCT Ser	GAC Asp	GGT Gly 505	GAA Glu	AAA Lys
AAA Lys	ACA	AAG Lys	TTT Phe	AAG Lys 520	AAT
GAC AAC AAA AAT GAA A Asp Asn Lys Asn Glu T 455	ACA Thr	CCC Pro	793 771	GAT Asp	Ala S35
GAC Asp	ACG Thr 470	ACT	AAT Asn	GGT Gly	TTT Phe

F16.6D

TIC		2.75
	Ser Asn Arg	
AAA GTG	Lys Val Tyr	270
CTC TAC ACT CTA GAA GCT	Leu Glu	265

GAG	Glu	
AGC	Ser	
ACC	Thr	
TIT	Phe	290
\mathcal{Z}	Pro	
	His	
GAT	Asp	
GAA	Glu	
	Ser	285
	Lys	•
ACA	Thr	
	Lys	
ACC	Thr	
8	Pro	280
AAG	Lys	
GTA	Val	

99	GLy	
CIPA	Leu Gly	
	Glu Glu	
AA.	Glu	
AAT GCT (Ala	305
AAT	Asn	
CCT /	Pro	
55	Gly	
TAI	7	•
TIT	Phe	300
GGT GGT	Gly	
GGT	GIY	
GAA	Glu	
TIM	Leu	
ACA 7		295
GGA	GIY	

57/141

AGT GCC Ser Ala 325
rrr A
GTA 1
617
TTT Phe 320
GIT Val
AAA Lys
GAA Glu
GAC Asp
AAC Asn 315
GCT Ala
TTA Leu
TIT
AAG Lys
GGA Gly 310

CA GAA ACC	Thr Glu Thr	340
A TCC A	n Gln Lys Leu Ser Ti	
AAA TT	Lys Le	
AC CAA	sn Gln	335
CCA GAA AAC	Glu As	
C CCA	n Pro	
5	Gln Asn F	330
8	Asp Pro	
GAA	Lys Glu A	
Ø	H.	

ACT GAT GCA	Thr Asp	355
TIT AAA	hr Phe Lys Arg	350
ATT GAT GGC	Asp Gly Lys Leu	345

AGA GAA CCT AGT TTC TTA AAT GAA	Ala Arg Glu Pro Ser Phe Leu Asn Glu Asp	08
AAT TIT AIT	Phe Ile (70

AAA	Lys	1
GAA	Glu	100
GII	Val	
GAT	Asp	١,
	Glu	
	Glu	
ATT	Ile	95
ACG	Thr	
	Ser	
	Leu	
_	Ser	
33	Ser	90
TEL	Phe	
ATA	Ile	
ATG 1	Met	
TAT	TYT	

GC TCA ATT	I Leu Ile Gly Ser Ile Glu	_ 115
GGG GGG AGC	Gly Gly Arg	110
GIT AAA AAT AAC AAT AAA AAC	Asn Asn Asn Lys. As	

55/141

ACA TCA CAA AAT TCT AAT TCA CAA GAA TAC GTT TAT Thr Ser Gln Asn Ser Asn Ser Gln Glu Tyr Val Tyr 125	'AT ATC GAT AGT TOG CGT GAT TAT AAG AAG GAA GAG 'Yr ile Asp Ser Trp Arg Asp Tyr Lys Lys Glu Glu
-	
AAT Asn	CGT Arg
TCT	7333 177
AAT Asn 125	AGT Ser
CAA Gln	GAT Asp
TCA Ser	ATC 11e
ACA Thr	TAT Tyr
GGA Gly	TAT Tyr
AAT Asn 120	TTG
FC CT	GGT Gly
GAA (Glu 1	TCT (Ser (

\mathfrak{F}	G	
GAA	Glu	•
AAG	Lys	1
AAG	Lys	ı
TAT	Tyr	145
GAT	Asp	ı
	Arg	
1333	Trp	
AGT	Ser	
GAT	Asp	140
ATC	Ile	
TAT	Tyr	
TAT	Tyr	
TTG TAT	Leu	
GGT	Gly	135
ICI	Ser	

AAT	Asn	165
331	313	
PAT (Tyr Gly Asn	
TAT (Tyr '	
Î.	Phe '	
3G		160
TAT (r Gly Tyr Ala	
GGT	Gly '	
TAT	Tyr	
TAT	Tyr Tyr	
8	Thr Gly 1	155
ACT	Thr	
TAI	7	-
£3	Ala	
AAA	Lys	
CAA	Gln	150

F16.50

Ile Met Leu Arg Leu Gly Ile Tyr Asn Leu Phe Asn Tyr Arg Tyr 1520 AAT ATT ATG CTT CGA TTA GGG ATA TAT AAT TTA TTC AAC TAT CGC TAT Asn

GIT ACT 186 GAA GCG GIG CGT CAA ACA GCA CAA GGT GCG GIC AAT CAA

Thr Trp Glu Ala Val Arg Gln Thr Ala Gln Gly Ala Val Asn Gln

1545

His Gln Asn Val Gly Ser Tyr Thr Arg Tyr Ala Ala Ser Gly Arg Asn 1550 CAT CAA AAT GTT GGT AGC TAT ACT CGC TAC GCA GCA TCA GGA CGA AAC

53/141

TAT ACC TTA ACA TTA GAA ATG AAA TTC TAAATTAAAA TGCGCCAGAT Tyr Thr Leu Thr Leu Glu Met Lys Phe 1565

GGACTAGATA TGCTATATCT ATACCTTACT GGCGCATCTT TTTCTGTTCT ATAATCTGCT

TAAGTGAAAA ACCAAACITG GATTITITAC AAGATCITIT CACACATITA TIGIAAAATC

TCCCACAATT TTCACCC

F16.50

Gln TAT GTA GGT AAA TTT AAG CCT GAA ACA TCT CGT AAC CAA Asp Glu Val Tyr Val Gly Lys Phe Lys Pro Glu Thr Ser Arg Asn GAC GAG GIT

GAG TIT GGT CTC GCT CTA AAA GGG GAT TIT GGT AAT ATT GAG ATC AGT Glu Phe Gly Leu Ala Leu Lys Gly Asp Phe Gly Asn 11e Glu 11e Ser 1340

Phe Ser Asn Ala Tyr Arg Asn Leu Ile Ala Phe Ala Glu Glu Leu TIT AGT AAT GCT TAT CGA AAT CIT ATC GCC TIT GCT GAA GAA CIT His

51/141

AGT AAA AAT GGA ACT GGA AAG GGC AAT TAT GGA TAT CAT AAT GCA CAA Ser Lys Asn Gly Thr Gly Lys Gly Asn Tyr Gly Tyr His Asn Ala Gln 1375

Asn AAT GCA AAA TI'A GTT GGC GTA AAT ATA ACT GCA CAA TI'A GAT TIT AAT Ala Lys Leu Val Gly Val Asn Ile Thr Ala Gln Leu Asp Phe 1400 Asn

GGT THA TGG AAA CGT ATT CCC TAC GGT TGG TAT GCA ACA TTT GCT Gly Leu Trp Lys Arg Ile Pro Tyr Gly Trp Tyz Ala Thr Phe Ala

F16.5M

Gln GAA AAA CAT AAT ATG TTG CAA TTG AAT TTA GAG AAA AAA ATT CAA CAA Glu Lys His Asn Met Leu Gln Leu Asn Leu Glu Lys Lys Ile Gln 1135 TGG CTT ACT CAT CAA ATT GTC TTC AAT CTT GGT TTT GAT GAC TTP Leu Thr His Gln 11e Val Phe Asn Leu Gly Phe Asp Asp 1150 Asn '

TCA GCG CTT CAG CAT AAA GAT TAT TTA ACT CGA CGT GTT ATC GCT Ser Ala Leu Gln His Lys Asp Tyr Leu Thr Arg Arg Val Ile 1165 ACT '

49/141

ACG GCA GAT AGT ATT CCA AGG AAA CCT GGT GAA ACT GGT AAA CCA AGA Thr Ala Asp Ser Ile Pro Arg Lys Pro Gly Glu Thr Gly Lys Pro Arg

AAT GGT TTG CAA TCA CAA CCT TAC TTA TAC CCA AAA CCA GAG CCA TAT Leu Gln Ser Gln Pro Tyr Leu Tyr Pro Lys Pro Glu Pro Tyr 1200 Gly

TIT GCA GGA CAA GAT CAT TGT AAT TAT CAA GGT AGC TCC TCT AAT TAC Ser Ser Asn Ala Gly Gln Asp His Cys Asn Tyr Gln Gly Ser 1215

F 6.5K

F16.5H

Phe TIL Pro 665 AAA TAATGGAATA CTAAAA ATG ACT AAA AAA Lys Lys 660 ACA ACC Thr Thr GAA

Ala B Lys TAT GTA AAA Val 7½7 680 Cys 38 Ser Ser Cys Leu Leu Ile 675 TTA ATT Ile Ile Ser 670 AGT CITA Leu

Arg

44/141 515 Val GAA Ser Ser **T** ATA Ile 695 ACA AAA GAA GCT Glu Ala Thr Lys Ile Lys Asp 1 690 ATA AAA GAT AGT Gln Ser CAA Thr 685 GAA Glu

ACT Thr 715 515 Val ZZ Z Ser ATC Ile GAA GAT TCA GAA TTA GAA ACT Glu Asp Ser Glu Leu Glu Thr Glu 710 Glu Asp 705 ACA Thr AGT Ser 8 Gln ACT Thr GAC Asp 700

GLyಜ Leu 730 G1yGAA AAA ATA AGA GAT CGT AAA GAT AAT GAA GTA Glu Lys Ile Arg Asp Arg Lys Asp Asn Glu Val Lys Asp Asn (Ile Arg Asp Arg I 720

TTPA AAT Asn Fen Gln Val 745 GTA G GAA Glu Arg 83 AGC Ser ATC 11e 740 Ser AGT **₩** Glu AGT Ser ACT Thr AAA Lys 735 ATC Ile ATT

AAA

16.5F

		42/141			
ACG Thr 480	GAC Asp	GGT Gly	AAA Lys	AAA Liys	TTT Phe 560
GCA Ala	AAG Lys 495	TTT	AAG Lys	GAG	GTA Val
GCG Ala	J.C.C.	70G 7rp 510	GAT	OCC Ala	CCC Pro
ACG	ACT	AGT	GGT Gly 525	TTT Phe	AAT Asn
CAA Glh	CGT ACT (Arg Thr]	GGT Gly	AGT Ser	GAT ASP 540	OGA AAT (Gly Asn 1
AAA ys 175	ZAC tis	CAT GGT AGT T His Gly Ser T	Pro	3 TTT AAT GTT (1 Phe Asn Val A	다. 12 1년 22
AAA GAC AAA GAA 1 Lys Asp Lys Glu I	TTA TTA GGT (Leu Leu Gly H	AAA TAT (Lys Tyr) 505	TCC	AAT Asn	AAA CGA CAC GAT A Liys Arg His Asp T
AAA Liys	TTA	AAA Liys 505	TAC	TTT Phe	CAC His
GAC Asp	TTA	GCA Ala	TCT Ser 520	£ 55	CGA Arg
AAA Lys	TTC	AGT Ser	ACA	300 Ala 335	AAA Lys
GAC Asp 470	CAA G1n	G17	AAG ACA Lys Thr	GIC Val	1113 Leu 550
AAA Lys	TAT Tyr 485	AAA ACA (Lys Thr (500	GGT Gly	AAT GCT GTC (Asn Ala Val A	GAA
GAA Glu	TAT Tyr	AAA Lys 500	GAC Asp	AAT Asn	99C 91Y
AAA Lys	ACT	Pro	ACT Thr 515	AAA Lys	ACA Thr
GAA	AAC Asn	ATA Ile	ATT Ile	GAT ASP 530	AAG CTA ACA (Lys Leu Thr (545
AAA Lys 465	ACC	GAC	ŢAT Tyr	CGC Arg	AAG Lys 545

16.50

TCT GAA GAA CAT CCC	Ser Glu Glu His Pro Phe	285
	Asp	
AAA	Lys	
GAA	Glu	280
ACC	Thr	
8	Pro	
AAG		
	Val	-
ACA	Thr	275
<u>G</u>	GLy	
AGG	Arg	

ACC AGC GAG GAA ACA TIA GAA GGI GGI TITI TATI GGG CCT AAT GCT GAA Thr Ser Glu Gly Thr Leu Glu Gly Gly Phe Tyr Gly Pro Asn Ala Glu 290	
GCT Ala	
AA'I' Asn	
Pro	
G1y 300	0
TAT' Tyr	
l'I'I' Phe	!
G1y	8
G1y :	{
GAA Glu 295	
Leu	
Thr Thr	;
Gly	Ç
Glu Glu	ξ
Asc. Case Goa ACA THA GAA GSF GSF THF TATEGGS CCT AAT GCT GAA Ser Glu Gly Thr Leu Glu Gly Gly Phe Tyr Gly Pro Asn Ala Glu 290	
Thr.	ć

4 . –
GTA Val 320
336 31y
TTT (
STT T
CGA Arg
AAC Asn 315
GAT ASP
ACG
OCT Ala
TTA
TTT Phe 310
AAA Lys
933 Gly
666 61y
CTA
GAA Glu 305

40/141

AAG Lys
95 95 35
GAA GCG TTA T Glu Ala Leu S 3
GCG Ala
GAA Glu
AAG Lys
A GAA ACA AAA u Glu Thr Lys 330
ACA
GAA Glu
3 5
ACG Thr
Glu Thr 325
74 A
OCC Ala
F AGT GCC
TTT Phe

	Thr	
AAA	· Lys Lys	
AAA	Lys	350
ACT	Thr	
<u>[</u>]	Ser Thr 1	
E	Phe	
ACT	Thr	
ATT	ı Ile '	345
CIA	Fen	
AAG	Lys	
8	Gly	
	Asp	
ATT	Leu Ile	340
TTA	Leu	
ACC 1	Thr 1	
GAA	Glu	

GCA GCT AAT ACA	Ala Ala Asn Thr Thr	365
ACC AGT	Thr Ser Thr	360
GCA ACA	Ala Thr	
ACC AAT	Thr Asr	
8CA	Asp Ala Lys	355

F16.5B

ACG ATT	r Thr Ile Glu	95
TCT !	ss.	
	ਬੁ	
\$	Ser	
33	Ser	90
TIT		
TAT	Tyr	
1CA		
ATA		
TAT	1Yr	82
GAC	Asp	
GAT	Asp	
GAA GAT	Glu	
	Asn	

Ser GLYAIT 11e 110 GGG GCG GAC CTT Gly Ala Asp Leu AAA GAT AAC AAT AAA AAC GGG Lys Asp Asn Asn Lys Asn Gly 100 AAG GAT GTT 1 Lys Asp Val 1 Asp

CAA Gln GGA G1y CAT His AGT ACA ACA AAT CCA CCC GAA AAG CAT Ser Thr Thr Asn Pro Pro Glu Lys His 120 GAG CCT AGT ACA AGL BLOOM SET Through GAC Asp

38/141

AAC Asn TITA Leu TOG AGT The Ser I TCG Ser 140 Pro Cr TAT TAT ACT C TYr TYr Thr E Leu 135 E 663 613 TCA TAT GTA Val TAT Tyr 130 AAA Lys

TAT TYT 160 Phe TAT GCG GGA Gly TAT Tyr 155 TAC TAT TTA GGF : Tyr Leu Gly TTT Phe 150 Lys TCT AAA AAC AAG Lys Asn Ser GAT Asp 145

Lys AAA OCT Ala 175 GTA AAC GGT GTA C CCA Pro 170 ACA AAC TTG C OCA A ACT Thr 165 GGT AAT AAA 1 Gly Asn Lys 7

6.40

Ile Leu Asp Val Ser Gly Tyr Tyr Met Ala Asn Lys Asn Ile Met CAT ATC TTA GAT GTA TCG GGT TAT TAC ATG GCG AAT AAA AAT ATT ATG 1505 His

Trb Leu Arg Leu Gly Ile Tyr Asn Leu Phe Asn Tyr Arg Tyr Val Thr 1520 CIT CGA TTA GGG ATA TAT AAT TTA TTC AAC TAT CGC TAT GTT ACT

36/141 1550 Glu Ala Val Arg Gln Thr Ala Gln Gly Ala Val Asn Gln His Gln Asn GAA GCG GTG CGT CAA ACA GCA CAA GGT GCG GTC AAT CAA CAT CAA AAT

Gly Ser Tyr Thr Arg Tyr Ala Ala Ser Gly Arg Asn Tyr Thr Leu GGT AGC TAT ACT CGC TAC GCA GCA TCA GGA CGA AAC TAT ACC TTA

ACA TTA GAA ATG AAA TTC TAAATTAAAA TGCGCCAGAT GGACTAGATA Thr Leu Glu Met Lys Phe 1570 TGCTATATCT ATACCTTACT GGCGCATCTT TTTCTGTTCT ATAATCTGCT TAAGTGAAAA

ACCAAACITG GAFFIFFTAC AAGATCIFITF CACACATITA TTG

-16.40

GIT Val
GAG (Glu 1 1325
GAC Asp
AAT Asn
AAG Lys
99C
GGT Gly 1320
TAT
CGG Arg
10G
GGT Gly
TAT (Tyr (1315
ATG Met
GAA Glu
Ser
TTT

AAC CAA GAG	Asn Gln Glu Phe	1340
GTA GGT AAA TITT AAG CCT GAA	Glu Thr Ser	

34/	/14	11
GAG ATC AGT CAT TITT	Glu Ile Ser His Phe Ser	1355
TIT GGT AAT	sp. Phe Gly Asn Ile	1350
XCT CTA AAA	Leu Ala Leu Lys Gly Asp.	1345

GAA GAA CTT AGT AAA AAT	Glu Glu	
AAT CIT ATC GCC TITT GCT	Asn Leu Ile Ala Phe Ala	1365
AAT GCT TAT CGA	Asn Ala Tyr Arg	1360

		_
AAA	Lys	1390
B	4la	
AAT (Sn /	
'AA 1	iln 1	
₽ Ø	la G	
AT G	Sn A	1385
'AT P	lis 7	,
PAT (rs Gly Asn Tyr Gly Tyr His Asn Ala Gln Asn Ala Lys	
3GA 1	31y 1	
I'AT (]Yr (
AAT '	Asn '	1380
386	Gly .	
AAG (Lys	
GGA AGA	Gly	
ACT	Thr	
GGA	Gly Thr Gly Lys Gl	1375

동	Asn Gly Leu Tro	1405
	: Thr Ala Gln Leu Asp Phe As	1400
TTA GIT GGC GTA AAT ATA ACT G	Val Gly Val Asn Ile	1395

F16.4M

TAC TAT CGT TCT GAT AGA AAT GTT TAT AAA GAA AAA CAT Tyr Ser Tyr Tyr Arg Ser Asp Arg Asn Val Tyr Lys Glu Lys 1120 CCT TAT TCA Pro

1150 Asn Met Leu Gln Leu Asn Leu Glu Lys Lys Ile Gln Gln Asn Trp Leu AAT ATG TTG CAA TTG AAT TTA GAG AAA AAA ATT CAA CAA AAT

ACT CAT CAA ATT GTC TTC AAT CTT GGT TTT GAT GAC TTT ACT TCA GCG Thr His Gln Ile Val Phe Asn Leu Gly Phe Asp Asp Phe Thr Ser Ala 1165

32/141

CTT CAG CAT AAA GAT TAT TTA ACT CGA CGT GTT ATC GCT ACG GCA GAT Leu Gln His Lys Asp Tyr Leu Thr Arg Arg Val 11e Ala Thr Ala Asp Leu Gln His Lys Asp Tyr Leu Thr Arg Arg Val 1170

AGT ATT CCA AGG AAA CCT GGT GAA ACT GGT AAA CCA AGA AAT GGT TTG Pro Arg Lys Pro Gly Glu Thr Gly Lys Pro Arg Asn Gly Leu 1185 Ile

Ala CAA TCA CAA CCT TAC TTA TAC CCA AAA CCA GAG CCA TAT TTT GCA Ser Gln Pro Tyr Leu Tyr Pro Lys Pro Glu Pro Tyr Phe 1200 1210

-16.4K

 Ω SS GAG TGT CCA AAT GGT GAT GAC Glu Cys Pro Asn Gly Asp Asp 935 r GTG ATA CAA GGT C val 11e Gln Gly G 930 Phe TIT. TAC Tyr 85 Gly

Ser AGC GAA ACC GTA 7 Glu Thr Val 955 Ser CAA AGC Gln Thr ACC 3 CCA CCT GCG ACT TTA TCC A s Pro Pro Ala Thr Leu Ser T 5 Lys Pro 1 945 AAG 8 Ala

30/141 AAA LysPro Met AAT CCA Pro Asn 1 970 Ile Lys ATC AAA GAT TAT ACG GGG GCT AAC CGT.
Asp Tyr Thr Gly Ala Asn Arg
965 13 Ser 960 GIJ Val

Glu 990 GAY Ser Phe EEL Tyr His TAT CAT Gly 985 99 GlyG. TTT TTA AGA (Phe Leu Arg (<u>1</u>33 777 980 Gln Ser <u>[]</u> CAG Ser GAA Glu 1³yr 975

Gln Gln Lys Phe Asp AIT TIT GAA TIC ACA CAA CAA AAA TITT GAT Ile Phe Glu Phe Thr Gln Gln Lys Phe Asp 1000 GGT ATT 1 Gly 995 ATT GGT Ile (Tyr TAT His CAT GA

Arg 8 Glu Arg 1020 TIT CCC GCT TAT TTA AGC CCA ACA GAA AGA Thr Pro, Ala Tyr Leu Ser 1015 Pro Phe GAT ATG ACA TASP Met Thr 1 CGJ Arg

16.4

GAT	Asp	750
CGI	Arg	
ATT	Ile	
AAT	Asn	
TTA	Leu	
GTA	Val	745
CAA	Gln	
GAA	Glu	
	Arg	
AGC	Ser	
ATC	c Ile :	740
AG	Ser	,
€	Glu	
AGT		
ACT	Thr	
AAA	Įγs	735

GGT.	Gly	
9	Arg (765
GGT	Gly	
CAA		
GAA		
GIA	Val	
EES	Val	760
TGA	Ser	
ATT I	Ile	
8	Gly	
g		
GAT	Asp	755
	TY	
සි	Arg	
CTPA ACPA	Thr	
CTA	Leu	

AAT AGA	g Asn Arg Val Ala	780
AG	R	
GAC	Asp Arg	
ATIG	Met	
GGT.	Arg Gly 1	775
GI	Arg	
ATT	Ile	
TCI	Ser	•
TAT	T_{YT}	
GGA A	Gly Tyr	770
TCI	Ser	
AGT	Ser	
GCA AGT	Ala	

28/141

AGC	er	
CAA A		
GTG C	r G	
5	Ν,	
GIS	Val	795
TAT	TYT	
<u>13</u>	Ser	
CAA	Gln	
CAA ACG	Gln	790
ESS 1		
TITA	Leu	
G	Gly	
GAT	Asp	
GTA GAT	Val	785
TTA TTA	Leu	
ŢŢ	<u>Leu</u>	

GA	G	
AAT	Asn Glu	•
ATT	Gly Ala Ile	
B	Ala	,
G	GLy	810
ACT	Gly Thr	
8	Gly	
ICI	Ser	
TAT	Gly Tyr	
GGA	Gly	805
5	Ser	
5	Arg	
£3	Val Ala	
GII	Val	
TTA	Leu	800
G	Pro	

AGT	Ser	830
99	Gly Gly Ser	
999	G1y	
AAG	Ser Lys	
AGC	Ser	
ATA	Ile	825
GAA	Glu	
GIC	Val	
8	Ala Val Glu Ile	
AAG	r Glu Asn Val Lys A	
GTA	Val	820
AAT	Asn	
GAA	Glu	•
TAT	Tyr	
GAA	lle Glu Tyr	
ĮĮ.	[]e	315

. 1 G . 4 G

GAG 31u
ATT (Ile (
AGT Ser
TTT Phe 560
GTA Val
Pro 1
AAT Asn
GGA Gly
ACT Thr 555
GAT Asp
CGA CAC Arg His
AAA Liys
TTA 1 Leu 1 550
GAA Glu
937 913

ACC GCA Thr Ala	
GCA 1	
ACA CA Thr Al	
四位的	
Pr Thr	
Phe 1	
Ala	
AGI' AAT' GCC TTC ACT G Ser Asn Ala Phe Thr G 570	
Ser 570	
III AAI AAI AGI Phe Asn Asn Ser	
AAT. Asn	
AAT. Asn	
Phe	
Ash Ash 565	
Ala Asn 565	

26/141			
CCA Pro 595			
ACC			
AAT Asn			
AAA Lys			
AAT			
CAA Gln 590			
AGT Ser			
AST AST			
AAA Lys			
GGT GLY			
GAT Asp 585			
ATA Ile			
GTA			
TTT Phe			
AAT Asn			
ACA Thr 580			

OCT Ala
AAG Lys 610
. F. S.
GGA (GIY 1
TAT
TTT Phe
OCA Ala 605
663 613
Asn
GTP Val
AAA Lys
ACT Thr 600
E E
ATT A
AAT Asn
ATT 1 Ile 1

ACA Thr	
GCT A	
ACA Thr	
77.7 Ser	
AAT Asn	
GGA GILY	
AAC Asn	
TAT Tyr 620	
ACT Thr	
TTC Phe	
TAT	
GGT GLY	
99C (917) (615)	
TTA (
GAA Glu	
TCT Ser	

E	· -	:
AAT	Agn	1
	<u> </u>	
TCA	Ser	! }
AAT	Asn	640
201	Ser	
Z Z	Ser	
ZZ Z	Ser	
_	Ser	
GTA	Val	635
ACC	Thr	
T	_	
32		
AGT	Ser	
GAA	Glu	630
ŢŢ	Ser	
AAT	Asn	

ь П

ACC	Thr	
ACA		370
GAT	Asp	
ACC	Thr	
ACA CA	Thr 1	
ACA.	Thr	
AAI	Asn	365
GG.	Ala	
8	Ala	
AGT ACC GCA (Thr	
AGT	Ser	
ACC	1 Ala Thr Thr	360
ACA A	Thr	
8	Ala	
ACC AAT (Asn	•
ACC	Thr	

TCA	Ser	
ATA	11e	
GAT	Asp	385
GAA	Glu	
	Thr	
AAG	Lys	
	Phe	
AAC	Asn	380
	Lys	
GAA	Glu	
	Asp	
ACC	Thr	
ATA	Ile	375
AS	Thr	
AAT	Asn	
8	Ala	

GAC AAA TAT CCT	Asp Lys Tyr Pro Ile 400	
CTG TTPA	Tyr Leu Leu Ile 395	
GAA GCT GAT	Phe Gly Glu Ala Asp 390	

24/141

AAT GAT TIC ATA AGT AGT AAG	Asp Phe Ile Ser Ser Lys His	415
AAT.	Asn '	₩.
AAA		
GAT	Asp	
S	Pro	
TTA	en Leu Pr	405
CIJ	Fen	

CIA	Leu	435
AAT	Asn	
AGT	Ser	
<u> </u>	Cys	
TGT	Cys	
B	Ala	430
GAA	Glu	
GIG	Val	
AAA	Lys	
TAT	17.	
g	Arg	425
AAA	Lys	
AAT	Asn	
GG-PA	GLy	
GTA	Val	
ACT	Thr	420
		٠

DDD	O Ton Term Old Term	Z T	
CAA	; ; ; ;	ern	450
AAA	1 1	Z/J	
E	1 (哥	
ع	}	Z	
ر رون		3	
GAA	5	nTS	445
TAT		ΤŽΤ	
TAT	<u>}</u>	171	
ATIC	T AOM "I	בו בו	
GGT	5	75	
	40	י בו	440
AAA	. 1/2] [2,1	<u>5</u> ,	•
	157	7 8	
TAT	2	171	
AGC	, C	T C	

SEP PEP	Glv	1
AAA	LWS	1
TAC	뇐	
AAA	LVS	1
GCT.	Ala	175
GTA	Val	
GT.	Gly	1
AAC	Asn	
GTA	Pro Val Asn G	
S	Pro	170
TIG	Fen	
AAC	Asn	
A ACA AAC	캶	
8	Ą	
ACT	Th	165
AAA ACT	Lys	

TGG GAT TIC AIC ACT GCA ACT AAA AAT GGC AAA CGT TAT CCT TIG Trp Asp Phe Ile Thr Ala Thr Lys Asn Gly Lys Arg Tyr Pro Leu 185	AGT AAT GGC AGT CAC GCT TAT TAT CGA CGT AGT GCA ATT CCA GAA
ACT Thr 180	TTPA

Arg Arg Ser Ala Ile Pro Glu 205	GC TTA ATA Gly Leu Ile 225
r Ala	T ATA o
S	GAT Asp
Arg	GGT Gly
Arg 205	AAT Asn
777	Lys P
Tyr Tyr	TCA Ser
His.Ala	GATT ASP
His	AAT
Ser 200	GAA Glu
Asn Gly	TTA Leu 215
Asn	GAT Asp
Ser	ATT Ile
Leu	GAT

22/141

	Leg	
CAA	GIn	
GGA	GLy	
ACA	컖	240
CIB	Lea	
AAA	Lys	
AAA	Lys	
ACT		
99		235
EE,	Phe	
GAT	Asp	
83	Ala	
AGT (Ser	
	Pre	230
GAA	n is	
AGT	Xe.	•

A TAT GAA AAG AAA AAA O Tyr Glu Lys Lys Lys 255 TAC ACC AAA AGA AAA ACT AAT AAT CAA CCA 'Tyr Thr Lys Arg Lys Thr Asn Asn Gln Pro 245 TCT

F16.4 A

GCCCAAGCTA CATTGGTTAA TGATAAGCCT ATAAATGATA AGAAAGAAAT TTGTTTTTACG CCATTITICA TATITITATCC ATGAACITAA AAAACICTAA CITGACAITA TTACAAAAA

Met Lys Ser 1 AGAICAATAA TGCGAATTAT TATCAATTIT GTATGAGTAT ATAATTCT ATG AAA TCT

Ser TGT AGC Cys GTA CCT CTT ATC TCT GGT GGA CTT TCC TTT TTA CTA AGT GCT Val Pro Leu Ile Ser Gly Gly Leu Ser Phe Leu Leu Ser Ala 5

Ser 35 [] Ser GGA GGG GGG TCT TTT GAT GTA GAT AAC GTC TCT AAT ACC CCC Gly Gly Gly Ser Phe Asp Val Asp Asn Val Ser Asn Thr Pro 20 30

20/141

Asn AAT AAA CCA CGT TAT CAA GAC GAT ACC TCG AAT CAA AGA AAA ACT LYS Pro Arg Tyr Gln Asp Asp Thr Ser Asn Gln Arg Lys Lys Ser 40 45 50

TTG GTG Leu Val TTC ATT CCT TCT TTA GGA GGA GGG ATG AAA TTG Phe Ile Pro Ser Leu Gly Gly Gly Met Lys Leu 60 65 Leu Lys Lys Leu Phe 55 TIG TTG AAA AAG

GG. GlyTAT ATC ATT GGT TTA GGC TAT GAT CAT CCA AGT AAT ACT TGG Trp lle Ile Gly Leu Gly Tyr Asp His Pro Ser Asn Thr Tyr. Cell Arg

lle Lys Thr Met Phe Thr Gln Ser Lys Ala Lys Ser Gln Asn Glu Leu TIT ACT CAA TCA AAA GCA AAA TCT CAA AAT GAA 1455 ATT AAG ACA ATG

1480 Leu Gly Lys Arg Ala Leu Gly Asn Asn Ser Arg Asn Val Lys Ser Thr CTA GGA AAA CGT GCA TTG GGT AAC AAT TCA AGG AAT GTA AAA

18/141

Tyr Tyr 1495 TAT TAC CTT ACT CGG GCA TGG CAT ATC TTA GAT GTA TCG GGT Arg Lys Leu Thr Arg Ala Trp His Ile Leu Asp Val Ser Gly 1485 1490 AGA AAA

Asn Arg Ser Ile Leu Phe Arg Leu Gly Val Tyr Asn Leu Leu 1500 ATG GTG AAT AGA AGT ATT TTG TTC CGA TTA GGA GTA TAT AAT TTA TTA Val

Gly AAC TAT CGC TAT GTC ACT TGG GAA GCG GTG CGT CAA ACA GCA CAA GGT Trp Glu Ala Val Arg Gln Thr Ala Gln 1520 Asn Tyr Arg Tyr Val Thr

N . 9 -

GGT TTA GGT ATG AGG TAT GAC GTA TCT CGT ACA AAA GCT AAT GAA TCA Asp Val Ser Arg Thr Lys Ala Asn Glu Ser 1 Gly Met Arg Tyr A 1245 Gly Leu

Ile Ser Val Gly Lys Phe Lys Asn Phe Ser Trp Asn Thr Gly ACT ATT AGT GTT GGT AAA TTT AAA AAT TTC TCT TGG AAT ACT GGT Thr

Thr Ile Lys Pro Thr Glu. Trp Leu Asp Leu Ser Tyr Arg Leu Ser 1275 TAT CGC CTT TCT ATA AAA CCA ACG GAA TGG CIT GAT CIT TCT

16/141

G Gly TIT AGA AAT CCT AGT TIT GCT GAA ATG TAT GGT TGG CGG TAT Phe Arg Asn Pro Ser Phe Ala Glu Met Tyr Gly Trp Arg Tyr 1290 Gly GGA PA

Ser Gly Lys Asp Thr Asp Val Tyr Ile Gly Lys Phe Lys Pro Glu Thr GGC AAG GAT ACC GAT GTT TAT ATA GGT AAA TITT AAG CCT GAA ACA

Asn Ile CGT AAC CAA GAG TITI GGT CTC GCT CTA AAA GGG GAT TITI GGT AAT ATT Gln Glu Phe Gly Leu Ala Leu Lys Gly Asp Phe Gly 1325 Asn

. J L .

Ile ATC Gly 8 Ile Tyr Glu Asn Lys Asn Lys Ala TAT ATT TAC GAA AAT AAG AAC AAA Ile Glu Tyr GA ATT Val Gly GTA GGT Arg Col

Tyr Leu Thr TTG ACA TCA TAC ATT GAC AAA GCG GTG TTA AGT GCT AAT CAA CAA ACA TCA Ile Asp Lys Ala Val Leu Ser Ala Asn Gln Gln Thr Ser 1075 1070

TIT ATC CAT AAT CCA AGT AAG Phe Ile His Asn Pro Ser Lys TICC GAC ATTA COC ATTY OCA GTC Ile Arg Ile Ala Val Cys Asp Ile ATA

Asp GAT TAC TAT CAT TCT Tyr His Ser T_{YT} Ser CCA ACA CTT GAT AAA CCT TAT TCA Arg Pro Thr Leu Asp Lys Pro Tyr සි Asn Cys 33 AAT

14/141

9 Glu Lys His Asn Met Leu Gln Leu Asn Leu CAA TTG AAT TTA GAA AAA CAT AAC ATG TTG Val Tyr Lys Glu GIT TAT AAA AAT Asn AGA Arg

Fen E Asn TGG CTT ACT CAT CAA ATT GCC TTC AAT Ile Ala Phe *1* 1140 Gln Lys Lys Ile Gln Gln Asn Trp Leu Thr His 1130 CAA CAA AAT AAA ATT AAA .

. 16.3J

AA CAA GGT GGA TTT 7S Gln Gly Gly Phe 870	
A AAA Y Lys	
GGA G1y	
A. A	
r GTA GCA (a Val Ala (865	
TTA GCT Leu Ala	
TTA	
TCT Ser	
CAT	
360 17 360	
TTT Phe Phe	
99C	
AAA GGC Lys Gly	

CAA GIIC	Gln Val	
	컕	
	Glu	885
ATT	Ser Ile	
2	Ser	
AAT	Asn	
g	3 Arg Asn S	
5	His	880
K	Thr His Ar	
×	5	
ATT	Ile I	
Ξ	Ла	
CIC	val A	875
3	Gly	
EA FA	Glu Gly	

SCC Ala	
ATC Ile	
TTC	
CCGA Arg	
GAT ASP 900	
TAT Tyr	
AGT Ser	
CAA Gln	
GIG	
GGC G1y 895	
AAA Sys.	
TTA /	
GCA Ala	
GAT Asp	
AAA Lys 890	
CAT His	

12/141

T CTA s Leu 920
16T C/3s
GAG
GAT ASP
CAA Gln
ATG Met 915
GTG Val
TTT
TAC
OCA Ala
Ser 910
CAA
GAT Asp
GAG Glu
ACA
ACA Thr 905

TTIA		
ACT	캶	935
933	Ala	
CCT		
GA	Arg	
AAA	Ľys	
TCA CCC	Pro	930
13 13	Ser	
Ę,	Ihr	
₩.	55	
<u>I</u>	C/ys	
AAG.	ΓλS	925
. BC	ASp	
TAT	,1 <u>}7</u>	
3		
GAT	ASD	

OCT AAC Ala Asn TAT ACG GGG G Tyr Thr Gly P 950 TCA GAT 1 Ser Asp 1 GTT Val 945 TCC ACC CAA AGA GAA ACC GTA AGC Ser Thr Gln Arg Glu Thr Val Ser 940

AAA GAA GCT ATA TCA Lys Glu Ala Ile Ser 680	GAA TTA GAA ACT ATC Glu Leu Glu Thr 11e 695	GAT AAT GAA GTA ACT Asp Asn Glu Val Thr 710
ACA Thr 675	TCA Ser	AAA Lys
GAT ASP	GAT Asp 690	CGT Arg
AAA Lys	GAA Glu	GAT Asp 705
ATA Ile	ACA Thr	AGA Arg
AGT Ser	AGT	GITT Val
CAA Gln 670	CAA Gln	AAA Lys:
ACT Thr	ACT Thr 685	GAA Glu
OCA GAA Ala Glu	GAC Asp	GCA Ala 700
SCA Ala	GTG Val	ACT
AAA Lys	GAA	GTC
GTA <i>1</i> Val 1 665	ICT (ICA (Ser V
Q > 0	E Q	E O

CAA
GAA Glu
AGC CGA Ser Arg 725
AGC Ser 725
ATC Ile
AGT Ser
GAA A
AGT G
ACT Thr 720
AAA Liys
ATA Ile
ATT Ile
GGC AAA Gly Lys 715
93C Gly 715
CTT
GGA Gly

10/141

GIT Val	ATG Met 760
TCA Ser	GGT Gly
AIT Ile	OCT Arg
996 Gly	ATT
CCA (Pro 740	Ser
GAT (Asp	TAT Tyr 755
TAT (SGA '
Arg (TCT (Ser (
ACA (Thr)	AGT'
CTA Leu 735	GCA Ala
GAT (GGT (Gly 7750
OGT (CGC (Arg (
ATT (Ile 1	GGT (
AAT 1 Asn :	CAA (Gln (
TTA I	GAA (Glu (
FIP 7	311A (Jal (

GTA

16.3F.

GLyGAA GluCCT AAA (Pro Lys (490 ATA IleGAA Glu Ser AGT Ser CCC Pro 485 Thr CGT Arg GGT CTC (Gly Leu TTA Leú 480 Leu TITA

GAG Gly GAT Asp AGT Ser ATT Ile 505 TAT GLyTITI Phe 7335 747 AAT Asn 500 GlyE5 CAT His TAT Lys AAA SCA BCA Ala 495 Ser AGT

TCT TAC TCC GCC AGT GGT GAT AAG GAA CGC AGT AAA AAT GCT Ser Tyr Ser Ala Ser Gly Asp Lys Glu Arg Ser Lys Asn Ala 515

8/141

GTC Val 525

TIA Leu GAA Glu 540 93C 91y TTA ACA Leu Thr AGA Tar AAA Lys 535 GAG Glu Ala 8 Phe III AAT Asn GTA Val 530 AAT Phe Asn GAG Glu

TTT Phe Thr Ala 555 TTT AAA ATT AAT (Phe Lys Ile Asn 1 GTA Val 550 CAA AAT CCC (ACT GAT Asp 545 His CGA Arg AAA Lys

Leu AAA **MC** Thr GCA Ala GGT ACA (Gly Thr.) ACT Thr 565 TIC Phe AAG AAT GAC Asp Asn · Iys . G3 Gly 560 AGT Ser CAA

SUBSTITUTE SHEET

ACA Thr 510

6/141					
GGT TTT TAC GGG CCT	CAC GAC AAA AAA GIT	ACG TCA GAA AAC AAA	CTA ACT ACT TTT AAA	GCA ACA ACC AGT ACA	GCA ACA GCC AAT ACA
Gly Phe Tyr Gly Pro	His Asp Lys Lys Val	Thr Ser Glu Asn Lys	Leu Thr Thr Phe Lys	Ala Thr Thr Ser Thr	Ala Thr Ala Asn Thr
300	315	330	345	365	380
AGC GAG GGA ACA TTA GAA GGT G	TTA GGA GGA AAG TTT TTA GCT C	AGT GCC AAA GAA CAG CAA GAA A	GAA ACC TTA ATT GAT GGC AAG C	ACA GCC AAT GCA ACA ACC GAT G	AAA ACC GAT ACA ACA ACC AAT G
Ser Glu Gly Thr Leu Glu Gly G	Leu Gly Gly Lys Phe Leu Ala H	Ser Ala Lys Glu Gln Gln Glu T	Glu Thr Leu Ile Asp Gly Lys L	Thr Ala Asn Ala Thr Thr Asp A	Lys Thr Asp Thr Thr Thr Asn A
290	310	325	340	355	370
CAT CCC TTT ACC His Pro Phe Thr	GAG GGT CAA GAA G Glu Gly Gln Glu 1 305	TTG GGG GTA TTT 1 Leu Gly Val Phe 3	AAA TTA CCC AAA (Lys Leu Pro Lys (335	ACA ACC AAT GCA 1 Thr Thr Asn Ala 7 350	ACA GCC AGT ACA 1 Thr Ala Ser Thr I

F16.3B.

ATT Ile Pro His GAG CAC Glu 8 Gly 105 AAA AAT GAC AAT CAA AAC Asn Gln Asn Asn Asp . 100 Lys GAA GAG GAT GTT Glu Asp Val Glu 95

CAT His 125 Arg Asn Glu Asn GAA AAT AAC Ser 120 2 AAT Arg Ala Pro Asn 8 B AGA Pro 115 EJ G Asp GAT GIC Val ATA Ile 5 Ser Asp 110

AGI Ser 1rp 140 Ser GAA Gla ATT Ile TAT TAT Tyr 135 GGG CTT Gly Leu 2 Ser Tyr. TAT GTA Val 130 TAT TyrAAA Lys 8 Gln 85 G1y

4/141

TAT TY GG-PA GLyTAT Tyr 155 Tyr TAC GLyTCA GGT Ser TAT **1**/1 Phe 150 Lys Lys CCA AAT AAA AAG Asn Pro TTA Leu 145 GAT Asp AGA Arg CIA Leu

8 Gly Gly GIA Val Pro 170 Leu TTA Ala & A 13 Ser 8 Ala ACT Thr 165 ACA Thr AAT Asn Gly TIT GGC Phe TYr 160 TAT ľγr OCG Ala

GAA AAT Asn GCA GCT Ala Ala ACC Thr 185 ATC Ile AGC Ser 133 Trp ACT 17 17 180 Gly 8 AAA Lys TAT Τλτ ACC GCA Ala 175