Abs – BD vs Li+

NA NA NA NA NA NA NA NA NA Lanz

Rivera 1.0e+00 NA NA NA NA NA NA NA NA 3.9e-30 2.4e-02 NA NA NA NA NA Akkouh NA NA

NA

NA

NA

1.0e+00

1.0e-09

7.3e-01

FVA_BD_NR

NA

NA

NA

NA

1.0e+00

2.3e-53

NA

NA

NA

NA

NA

1.0e+00

MTA_BD_R

NA

NA

1.0e+00

4.3e-01

1.0e+00

9.4e-01

FVA_BD_R

FVA_BD

FVA_BD_R

FVA BD NR

MTA_BD

MTA BD R

MTA_BD_NR

NA

NA

NA

NA

NA

NA

MTA_BD_NR

2.4e-02 NA NA

7.3e-01

7.3e-01

1.0e+00

1.0e+00

1.0e+00

1.0e+00

Akkouh

NA

5.0e-01

1.0e+00

7.3e-01

1.0e+00

1.0e+00

FVA_BD

3.0e-03

5.0e-01

1.0e+00

2.7e-02

1.0e+00

5.0e-01

1.0e+00

1.0e+00

9.4e-01

1.0e+00

1.0e+00

1.0e+00

Rivera

Norm_T1 - BD vs Li+ NA Lanz NA NA NA NA NA NA NA NA Rivera 1.0e+00 NA NA NA NA NA NA NA NA 2.1e-18 1.0e-02 NA NA NA NA NA Akkouh NA NA 1.1e-02 FVA_BD 1.0e+00 1.0e+00 NA NA NA NA NA NA

NA

NA

1.0e+00

1.0e+00

1.0e+00

FVA_BD_NR

NA

NA

NA

4.0e-42

1.0e+00

NA

NA

NA

NA

1.0e+00

MTA_BD_R

NA

NA

NA

NA

NA

MTA_BD_NR

1.0e+00

1.0e+00

1.0e+00

1.0e+00

1.0e+00

1.0e+00

1.0e+00

1.9e-01

2.3e-01

5.5e-01

Rivera

1.0e+00

1.0e+00

8.1e-01

1.0e+00

1.0e+00

Akkouh

1.0e+00

1.0e+00

1.0e+00

1.0e+00

1.0e+00

FVA_BD

NA

1.0e+00

1.0e+00

1.0e+00

1.0e+00

FVA_BD_R

FVA_BD_R

FVA BD NR

MTA_BD

MTA BD R

MTA_BD_NR

Norm_T2 - BD vs Li+ NA Lanz NA NA NA NA NA NA NA NA Rivera 1.0e+00 NA NA NA NA NA NA NA NA 1.4e-40 1.6e-02 NA NA NA NA NA Akkouh NA NA FVA_BD 1.0e+00 1.0e+00 1.0e+00 NA NA NA NA NA NA

NA

NA

1.0e+00

1.0e+00

1.0e+00

FVA_BD_NR

NA

NA

NA

1.0e+00

1.0e+00

NA

NA

NA

NA

1.0e+00

MTA_BD_R

NA

NA

NA

NA

NA

MTA_BD_NR

1.0e+00

1.0e+00

1.9e-03

1.0e+00

1.0e+00

1.0e+00

1.0e+00

1.0e+00

9.3e-02

1.0e+00

Rivera

1.0e+00

1.0e+00

6.4e-01

5.7e-01

1.0e+00

Akkouh

1.4e-54

1.0e+00

1.0e+00

1.0e+00

9.2e-02

FVA_BD

NA

1.0e+00

1.0e+00

1.0e+00

5.3e-02

FVA_BD_R

FVA_BD_R

FVA BD NR

MTA_BD

MTA BD R

MTA_BD_NR

All - BD vs Li+

Abs 0 0 0 0 0 0 0 0 0

0

0

0

1

1

1

1

Transport, endoplasmic reticular Keratan sulfate synthesis Transport, extracellular ROS detoxification Starch and sucrose metabolism Fructose and mannose metabolism Valine, leucine, and isoleucine metabolism Miscellaneous

Tyrosine metabolism

Keratan sulfate degradation

Chondroitin sulfate degradation

Sink Fatty acid oxidation Lysine metabolism Methionine and cysteine metabolism Cholesterol metabolism Fatty acid synthesis Vitamin B6 metabolism Pyrimidine catabolism Propanoate metabolism Inositol phosphate metabolism Glycolysis/gluconeogenesis

Heparan sulfate degradation Chondroitin synthesis Biotin metabolism Glutamate metabolism

	FVA_BD	FVA_BD_R	FVA_BD_NR	MTA_BD	MTA_BD_R	MTA_BD_NR
	0	0	1	0	0	0
	0	0	1	0	0	0
	0	0	1	0	0	0
	0	0	1	0	0	0
	0	0	1	0	0	0
	0	0	1	0	0	0
4	0	0	1	0	0	0
	0	0	1	0	1	0
	0	0	1	0	1	1
	1	0	0	0	0	0
	1	0	0	0	0	0
	1	0	0	0	0	0
4	1	0	0	0	0	0
	- 1	0	0	0	1	0
	0	0	0	0	1	0
	0	0	0	0	1	0
	0	0	0	0	1	0
	- 0	0	0	0	0	1
	0	1	0	0	0	0
	1	1	0	1	0	1
	0	0	0	1	0	0
	0	0	0	1	0	0
1	0	0	0	1	0	1
					9	

Number of disrupted modules

BD_Lumped

BD_NR

