Clase 7

Manuel Garcia.

August 31, 2023

1 Propiedades segunda forma fundamental en una superficie

1.1 Invariantes de formas cuadráticas

Si tenemos por jemplo una matriz cuando hacemos una transformacion de coordenadas en el plano tangente esto se va a ver como una rotacion $Q \to RQ$. Por ejemplo la ecuacion de autovalores $Q\vec{v} = \lambda G\vec{v} \to G^{-1}Q\vec{v} = \lambda\vec{v}$, λ es una cantidad que no varia con el sistema de coordenadas.

$$det[Q - \lambda G] = 0 det[G^{-1}Q - \lambda \mathbb{I}] = 0 (1)$$

Para un λ de dos dimension tenemos $\lambda_1 \lambda_2 \to [\xi_1, \xi_2]$.

$$(b_{ij} - \lambda_1 g_{ij}) \xi_1^j \tag{2}$$

$$(b_{ij} - \lambda_2 g_{ij}) \xi_2^j \tag{3}$$

Para la eq eq. 2 tenemos dos ecuaciones:

$$i = 1$$
 $(b_{11} - \lambda_a g_{11}) \xi_a^1 + (b_{12} - \lambda_a g_{12}) \xi_a^2 = 0$ (4)

$$i = 2$$
 $(b_{21} - \lambda_a g_{21}) \xi_a^1 + (b_{22} - \lambda_a g_{22}) \xi_a^2 = 0$ (5)

Ej?

$$P\vec{\xi_i} = \lambda_i \vec{\xi_i} \tag{6}$$

$$P|\xi_{i}\rangle = \lambda_{i}|\xi_{i}\rangle \to P|\xi_{1}\rangle = \lambda_{1}|\xi_{1}\rangle \to P|\xi_{2}\rangle = \lambda_{2}|\xi_{2}\rangle \tag{7}$$

$$\langle \xi_2 | P | \xi_1 \rangle = \lambda \langle \xi_2 | \xi_1 \rangle \tag{8}$$

$$\langle \xi_1 | P | \xi_2 \rangle = \lambda_2 \langle \xi_1 | \xi_2 \rangle \tag{9}$$

De forma matricial lo podemos ver como:

$$\xi_2^i P_{ji} \xi_i^i = P_{ij} \xi_2^i \xi_1^j \quad \to \tag{10}$$

$$\xi_1^j P_{ii} \xi_2^i = P_{ij} \xi_2^i \xi_1^i \tag{11}$$

Entonces:

$$\lambda_1 \langle \xi_2 | \xi_1 \rangle = \lambda_2 \langle \xi_1 | \xi_2 \rangle \tag{12}$$

$$(\lambda_1 - \lambda_2) \langle \xi_1 | \xi_2 \rangle = 0 \tag{13}$$

1.2 Invariantes

$$K = \lambda_1 \lambda_2 \rightarrow \text{Curvatura gaussiana}$$
 (14)

$$k = \lambda_1 + \lambda_2 \rightarrow \text{Curvatura media}$$
 (15)

Ej

$$r(u,v) = \begin{bmatrix} x & y & f(x,y) \end{bmatrix} \rightarrow r_u = \begin{bmatrix} 1 & 0 & f_x \end{bmatrix}, \quad r_v = \begin{bmatrix} 0 & 1 & f_y \end{bmatrix}$$
 (16)

$$N = \frac{[r_u, r_v]}{|r_u, r_v|} = \frac{(-f_x, -f_y, 1)}{\sqrt{1 + f_x^2 + f_y^2}}$$
 (17)

recordemos que la metrica es $g_{ij} = \begin{bmatrix} \langle r_x | r_x \rangle & \langle r_x | r_y \rangle \\ \langle r_y | r_x \rangle & \langle r_y | r_y \rangle \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

Tambien tenemos que $b_{ij} = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{bmatrix}$ y $g_{ij} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, al calcular el determinante de $b_{ij} - g_{ij}$:

$$\det \begin{bmatrix} f_{xx} - \lambda & f_{xy} \\ f_{xy} & f_{yy} - \lambda \end{bmatrix} = (f_{xx} - \lambda)(f_{yy} - \lambda) - f_{xy}^2 = 0$$

$$(18)$$

$$\lambda \pm = \frac{1}{2} (f_{xx} + f_{yy}) \pm \frac{1}{2} \sqrt{(f_{xx} - f_{yy})^2 + 4f_{xy}}$$
 (19)

$$K = \lambda_+ \lambda_- = f_{xx} f_{yy} - f_{xy}^2 \tag{20}$$

$$k = f_{xx} + f_{yy} = \lambda_+ + \lambda_- \tag{21}$$

En todos estos ejemplos anteriores se supuso que tenemos dos autovectores que son diferentes.

Ejemplo Funcion explicita z = f(x, y) en un punto regular $P_0 = (x_0, y_0, z_0)$ con $f_x(x_0, y_0, z_0) = f_y(x_0, y_0, z_0) = 0$.

$$\langle \ddot{r}|N\rangle dl^2 = \lambda_1 dx'^2 + \lambda_2 dy'^2 \tag{22}$$

$$\langle \ddot{r}|N\rangle = k_n = \frac{\lambda_1 dx^2 + \lambda_2 dy^2}{dx^2 + dy^2} = \frac{\lambda_1 \dot{x}^2 + \lambda_2 \dot{y}^2}{\dot{x}^2 + \dot{y}^2}$$
 (23)

$$k_n = \lambda_1 \left(\frac{\dot{x}^2}{(\dot{x}^2 + \dot{y}^2)} \right) + \lambda \left(\frac{\dot{y}^2}{\dot{x}^2 + \dot{y}^2} \right)$$
 (24)

$$k_n = \lambda_1 \cos \alpha + \lambda_2 \sin \alpha$$
Formula de euler (25)

Formula de euler

Curvatura de una seccion normal

$$k_n = \lambda_1 \cos \alpha + \lambda_2 \sin \alpha \tag{26}$$