Bayesian Optimization of Pointnet

Laxman Singh (A0178223E)

Niranchana Periasamy (A0150379B)

Siew Yaw Hoong (A0178544U)

Tan Chee Wei (A0179723U)

WHAT WE HAVE DONE

- Subject matter understanding
 - Point cloud
 - Pointnet
 - Tensorflow / Tensorboard
 - o CNN
- Literature research
 - Pointnet
 - Pointnet++
 - o 3DmFV
- Installation and code execution
 - Local CPU/GPU
 - Colab GPU/TPU
- Comparing results

LITERATURE REVIEW

Point Cloud gained prominence since 2017 when point cloud scanning was widely used by scanners for converting multiple point cloud to a 3D model

Model Results - Point Classification

Research on optimizing model performance

Framework		Technique Used	Methodology		
Revisiting small batch tra deep Neural Network	aining for	Mini-batch Stochastic Gradient Descent (SGD) optimization	 Propose small batch training as it is observed the best performance is obtained for mini-batch sizes between 2 and 32 which helps in improving accuracy Although this increases the training time, we can Induce data parallelism to reduce the impact Current training time - 12 hrs 		
Algorithms for Hyper-Par Optimization	rameter	Sequential hyper-parameter optimisation algorithm	To overcome human intervention and drawbacks of random search algorithm in optimizing parameters of the model, TPE and sequential algorithms are proposed		

Pointnet - Applications

- Classification: Classify an object
- Part Segmentation: Classifying part of an object
- Semantic segmentation: associating each pixel of an image with a class label

Pointnet - Classification Architecture

- Mini-PointNet Takes raw input and regresses to 3*3 matrix.
 - MLP on each point (with shared weight)
 - Max pooling
 - Two fully connected layers with output sizes 512,256

Pointnet++

- Pointnet++ is hierarchical version of PointNet
- Each layer has three sub stages: sampling, grouping, and PointNeting.
- First stage : Select centroids
- 2nd stage: Using surrounding neighbouring points, create multiple sub-point clouds.
- Pointnet is able to produce high dimension outputs using these multiple subpoint clouds.
- This process is repeated.

3DmFV

- New point cloud hybrid representation
- Representation describes points by their deviation from Gaussian Mixture Model(GMM)
- This keeps continuous properties of point cloud.
- It has better classification accuracy even with low resolution.

POINTNET MODEL PARAMETERS

- Batch size 32
- Max epoch 250
- Learning rate 0.001
- Momentum 0.9
- Optimizer Adam
- Decay step 200,000
- Decay rate 0.7

```
Number of points - 256/512/1028/2048 arser.add_argument('--num_point', type=int, default=1024, helps
                                            MAX_EPOCH = FLAGS.max_epoch
                                            GPU_INDEX = FLAGS.gpu
                                            OPTIMIZER = FLAGS.optimizer
```

MODEL COMPARISON

1.00 -	Training			Evaluation			Published
0.950	Mean Loss	Accuracy	Average Class Accuracy	Mean Loss	Accuracy	Average Class Accuracy	Accuracy
Pointnet	0.552	0.885	0.859	0.546	0.883	0.856	0.892
Pointnet++	0.451	0.895	0.872	0.453	0.895	0.873	0.907
3DmFV	0.000	10.00k 20. 0.896	0.868	40.00k	50.00k	60.00k 70.	0.914

Yann LeCun @ylecun

Following

Training with large minibatches is bad for your health.

More importantly, it's bad for your test error. Friends dont let friends use minibatches larger than 32. arxiv.org/abs/1804.07612

5:00 AM - 27 Apr 2018

Ref: Revisiting small batch training for deep NN

- Small batch size improve performance and accuracy
- Best results with m=32, often as small as m=2 or m=4
- Cons: reduce computational parallelism available

Figure 16: Summary of range of base learning rates $\tilde{\eta} = \eta/m$ that provide reliable convergence, for different network architectures. CIFAR-10 and CIFAR-100 datasets. (BN, noBN: with/without BN; Aug, noAug: with/without data augmentation; WU: with gradual warmup.)

Ref:Algorithms for Hyper-Parameter Optimization

- Based on recent works, random search was shown to be more efficient than grid search.
- Tree-structured Parzen
 Estimator (TPE) outperforms
 manual and random search
 methods

Tree-structured Parzen Estimator (TPE)

- Hyperparameters are split into two distributions based on the threshold, I(x) - less than threshold, g(x) greater than threshold
- Draw sample
 hyperparameters from
 I(x) and evaluate them
 in terms of g(x)/I(x) and
 return the set that yields
 the highest value which
 corresponds to the
 greatest expected
 improvement (FI)

$$EI_{y^*}(x) = \frac{\gamma y^* \ell(x) - \ell(x) \int_{-\infty}^{y^*} p(y) dy}{\gamma \ell(x) + (1 - \gamma) g(x)} \propto \left(\gamma + \frac{g(x)}{\ell(x)} (1 - \gamma) \right)^{-1}$$

Bayesian Optimisation (B0)

- Optimise by building a probability model of the objective function that maps input values to a probability of a loss: p (loss | input values).
- The probability model, also called the surrogate or response surface, is easier to optimize than the actual objective function.
- Bayesian methods select the next values to evaluate by applying a criteria (usually Expected Improvement) to the surrogate

Bayesian Optimization (BO) - Cont

- Each time the algorithm proposes a new set of candidate hyperparameters, it evaluates them with the actual objective function and records the result in a pair (score, hyperparameters).
- These records form the history.
- The algorithm builds I(x) and g(x)
 using the history to come up with a
 probability model of the objective
 function that improves with each
 iteration.

Minimum of -219.8012 occurs at 4.8779

What's Next?

Implement Hyperparameters Optimisation

Research into hyperopt framework and implemen this on the Pointnet framework

Benchmark against default Model

Compare the result, analyze and document the changes.

Submit Final paper + Results

Fine tune the final code, and record the results and findings in a journal for submission.

THANKS!

Any questions?

