

ESS302 Applied Geophysics II

Gravity, Magnetic, Electrical, Electromagnetic and Well Logging

Magnetic 1: Theory

Instructor: Dikun Yang Feb – May, 2019

Quiz

• Name two techniques in the gravity method that can enhance boundary detection.

• In a sinkhole mapping project, the basement relief produces longwavelength or short wavelength signals of gravity data?

• True or false and why: Gravity 3D inversion can resolve the exact structure of density in the subsurface.

Contents

- Magnetic "charge" and dipole
- Earth's magnetic field
- Magnetometer app demo
- Induced magnetization
 - Magnetic dipole response
 - Susceptibility

MAGNETIC IMAGING SEG

https://youtu.be/dUJib5s4B60

Magnetic surveying measures local magnetic field characteristics of a surveyed region.

Magnetic dipole

Magnetic field lines

- Mass generates gravity potential and field
- Only positive mass*
- Field lines from infinity to mass (open path)
- Unit of acceleration g: m/s²

- Magnetic charges generate magnetic potential and field
- Positive charge and negative charge (stick together)
- Field lines from negative charge to positive charge (loop)
- Unit of B: Tesla

^{*} Can be negative in relative sense

Magnetic Dipole

A vertical dipole and field lines

R >> L

Earth's Magnetic Field

Complicated inside the earth near the core.

Outside the earth it looks like a magnetic field due to a dipole (bar magnet).

Earth's Magnetic Field

- A vector field
- How is the field described anywhere?
 - Orthogonal decomposition: X, Y, Z
 - Inclination, Declination, Magnitude

IGRF: TMI, Dec, Inc

https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml?model=igrf#igrfwmm

Shenzhen

Latitude: 22.5936° N Longitude: 113.9845° E Declination: -2.9765° Inclination: 33.9377°

Magnetic field strength: 45,461.6 nT

Magnetometer on Cell Phones

- Physics Toolbox Suite
 - 3-axis magnetometer:
 - Bx: along the short edge
 - By: along the long edge
 - Bz: normal to the face
 - Verify the total field, dec and inc in Shenzhen
 - Adjust your phone so that Bx = 0, By = Total, Bz = 0
 - Draw a N-S cross section of the earth and draw B₀ field lines

Magnetometer on Cell Phones

- Physics Toolbox Suite
 - Detect the polarity of a nail (dipole)
 - Assign N and S
 - Draw field lines

A Buried Dipole

Composite field:

B is a vector:

Total field:

$$B = B_0 + B_A$$

$$B = \{B_x, B_y, B_z\}$$

$$|\mathbf{B}| = |\mathbf{B}_0 + \mathbf{B}_A|$$

A Buried Dipole

Composite field:

B is a vector:

Total field:

$$B = B_0 + B_A$$

$$B = \{B_x, B_y, B_z\}$$
 $|B| = |B_0 + B_A|$

$$|\mathbf{B}| = |\mathbf{B}_0 + \mathbf{B}_A|$$

Anomalous Field

- Measured data $|\mathbf{B}| = |\mathbf{B}_0 + \mathbf{B}_A|$
- Remove the influence of B₀
- The total field anomaly:

$$|\Delta \mathbf{B}| = |\mathbf{B}| - |\mathbf{B}_0|$$

• If $|B_A| \ll |B_0|$ then

$$|\triangle \vec{B}| = |\vec{B}_0 + \vec{B}_A| - |\vec{B}_0|$$

$$\simeq \vec{B}_A \cdot \hat{B}_0$$

$$= |\vec{B}_A| \cos \theta$$

Induced Magnetization

 Earth materials are built up of minerals that behave as small bar magnets

Induced Magnetization

- Strength of each magnet: the magnetic dipole moment m_i
- Magnetization: net "density" of small bar magnets
- Note: every m_i has its own direction, so M can be zero when the magnets are randomly oriented

$$\vec{M} = \frac{\Sigma \vec{m}_i}{Volume}$$

Small magnets align with fields of a larger magnet to have a non-zero total magnetic moment.

Susceptibility

Physical understanding

- Microscopic: ability for the small bar magnets in a rock to re-orient to form a large magnet when an external magnetic field is applied.
- Macroscopic: how much additional magnetic field can be excited (a dimensionless factor)?

$$\vec{M} = \frac{\Sigma m_i}{Volume}$$

$$ec{M}=\kappaec{H}$$

Zero susceptibility

Weak susceptibility

> 7 7 7 × 7 7 × 7 7 × 7 7 × 7 7 × 7 7 × 7

Strong susceptibility

Magnetic Susceptibility

Summary

- Source of magnetic field
- Earth's field B₀
 - Dipole field
 - Total, inc, dec
- Magnetic dipole anomaly
 - Enhancing or reducing B₀
 - Draw magnetic anomaly on surface due to a buried dipole
- Susceptibility
 - Influence of the inducing fields