³³SO₂: Interstellar Identification and Laboratory Measurements

E. Klisch, P. Schilke, S. P. Belov, 1 and G. Winnewisser

I. Physikalisches Institut, Universität zu Köln, D-50937 Cologne, Germany

Received August 12, 1997

The rotational spectrum of 33 S isotopically substituted sulfur dioxide, 33 SO₂, has been measured up to nearly 1 THz. The combined analysis of these new data together with the published line frequencies resulted in refined molecular constants, such as the rotational (A = 59856.4723(62) MHz, B = 10318.3012(15) MHz, C = 8780.1363(15) MHz) and centrifugal distortion constants which yielded precise frequency predictions. The carrier of six previously unidentified interstellar lines in the Caltech molecular line survey in the 325-360 GHz band could be assigned to 33 SO₂. © 1997 Academic Press

1. INTRODUCTION

Sulfur dioxide, SO₂, is an ubiquitous interstellar molecule with high abundance in star forming regions such as the Orion A region. Consequently one expects to identify, in addition to the fairly intense ground state transitions, vibrationally excited lines as well as the rarer isotopomers in the dense hot cores of molecular clouds. With the Cologne terahertz spectrometer we have investigated the vibrational ground state of SO₂ and several rare isotopomers in the region of 500 up to 1100 GHz. In the present paper we report rotational spectra of ³³SO₂ measured in the laboratory—as part of a larger program on the laboratory rotational spectrum of SO₂ and its isotopomers carried out by various laboratories, including Cologne (1). The first microwave measurements on 33SO2 were reported by Bird and Townes (2) in the 20 to 30 GHz region. This $^{33}SO_2$ data set was expanded by van Riet (3, 4). The interstellar discovery of SO₂ and ³⁴SO₂ by Snyder et al. (5) in the Orion Nebula molecular cloud and in Sgr B2 is now supplemented by our observations of ³³SO₂ in Orion-KL. For each isotopomer, ³³SO₂ and ³⁴SO₂, six transitions in the CSO 325-360 GHz line survey of Orion-KL could be assigned on the basis of highly accurate frequency predictions. The purpose of this paper is twofold: first to present the new laboratory measurements and discuss their analysis which is somewhat more elaborate due to the electric hyperfine structure of the ³³S nucleus. Second, we give the astrophysical spectra which secure the interstellar discovery of $^{33}SO_2$ and further assignments of interstellar $^{34}SO_2$.

2. EXPERIMENTAL

The Cologne terahertz spectrometer has been described in detail elsewhere (1). The accuracy of the measurements for single lines is estimated to be better than 10 kHz. However, for $^{33}\mathrm{SO}_2$, measured in natural abundance of 0.75%, the accuracy is less due to the smaller signal-to-noise ratio. This holds particularly for lines corresponding to quantum numbers which provide absorption coefficients smaller than 10^{-6} . The effects of varying line accuracy have been weighted accordingly in the fit. Similarly the influence of the hyperfine structure has been taken into account for blended lines. The spectra were recorded at pressures between 15 and 40 μ bar.

3. THEORY AND ANALYSIS

The SO₂ molecule is a near prolate asymmetric top with C_2 symmetry. Its spectrum consists of b-type transitions only. Prominent features in the frequency region between 530 and 1000 GHz are exhibited by the Q branches; e.g., the rQ_5 branch has been completely measured from J=6 up to J=31. The hyperfine structure of these lines remains unresolved.

The highly reliable molecular parameters, obtained in this study, are derived from 103 new P-, Q-, and R-branch transitions. The nuclear spin I=3/2 of the ³³S atom produces an electric nuclear hyperfine structure which has partially been resolved in the new measurements. Using Watson's A-reduced Hamiltonian (6) the rotational

¹On leave of absence from the Microwave Spectroscopy Laboratory, Institute of Applied Physics, Nizhnii Novgorod, Russia 603024

parameters A, B, and C and the centrifugal correction terms up to sixth order could be obtained. The new set of hyperfine-split transitions allowed an accurate determination of the electric quadrupole terms eQq_{aa} , eQq_{bb} , and eQq_{cc} .

The Hamiltonian \hat{H} describing the $^{33}SO_2$ rotational energy levels in the ground electronic state consists of three parts:

$$H = H_{\rm rot} + H_{\rm cd} + H_{\rm hfs}. \tag{1}$$

The contributions of the rotation and the centrifugal correction terms for an A-reduced asymmetric top in the I^r axis choice were developed by Watson (6). The nuclear spin I=3/2 interacts with the electric field gradient of the electrons around the nonspherical distribution of the 33 S nuclear charge and therefore causes hyperfine splitting. Consequently, the Hamiltonian has to be expanded by an expression for the electric quadrupole hyperfine interaction. The complete Hamiltonian including the rotation, centrifugal distortion, and hyperfine structure is given in the Appendix.

4. ASTROPHYSICAL DETECTION OF 33SO2

Hot cores are the formation sites of massive young stars. They display a multitude of strong molecular lines from many species. The study of these lines provides insights into the physical conditions of massive star forming regions and into the interactions between stars and the remnants of their parent clouds. Unbiased spectral line surveys offer the unique opportunity to investigate their complete chemical composition. The best studied site of massive star formation is the Orion hot core. It is the richest known source of molecular lines, in part due to its proximity ($\approx 500 \, \mathrm{pc}$). Unbiased spectral line surveys also are a treasure chest for identifications of previously unknown species or transitions.

One such high sensitivity spectral line survey of the high mass star forming region Orion-KL in the 325–360 GHz frequency band was conducted at the Caltech Submillimeter Observatory on Mauna Kea, Hawaii (7). This survey found 717 resolvable features consisting of 1004 lines. After completion of the analysis, of these only 60 remain unidentified. The identified lines are weak and many of them are most likely due to isotopomers or vibrationally or torsionally excited states of known species with unknown line frequencies, but a few reach the 2–5 K level.

This is the database that was used to search for ³³SO₂ lines. Six previously unidentified lines could indeed be assigned to ³³SO₂ (see Fig. 1 for a plot of the lines with the corresponding ³⁴SO₂ lines). These six lines are all lines which were expected to be detectable in this frequency band and not blended with other, stronger features. The intensity ratio of

FIG. 1. Small portions of the Caltech line survey of Orion-KL (325–360 GHz) pertaining to the frequency areas of the predicted ³³SO₂ and ³⁴SO₂ line positions, which are marked. The interstellar spectra are often blended by many overlapping lines of different species, showing that the confusion limit (i.e., the point at which the identification of a line is no longer hampered by the system noise, but by the large number of weak lines) is basically reached.

the ³⁴SO₂ to the corresponding ³³SO₂ lines agree, within their uncertainties due to line blending and defining a baseline, with the expected ratio of 5.5, based on Solar System ³⁴S/ ³³S ratios. Although the detection of ³³SO₂ contributes little to what can be learned about the physical conditions in the observed region, this detection is valuable in reducing the number of unidentified lines. Unidentified lines are potential candidates for new species, but as long as many line frequencies of isomers, isotopomers, and vibrationally or torsionally excited states of known molecules are unknown, most of the unidentified lines probably are due to these candidates. This prevents using the "true" unidentified lines to detect new species.

316 KLISCH ET AL.

TABLE 1 Observed Rotational Transitions of ³³SO₂ up to 950 GHz

Transition	$F \leftarrow F'$	v _{exp} a	$\Delta \nu_{exp}^{\ b}$	Residuum ^b	E'c	Transition	$F \leftarrow F'$	vezpa	$\Delta \nu_{exp}^{b}$	Residuum ^b	E'c
$31_{6,26} \leftarrow 31_{5,27}$		538 420.916	100	+ 328	359.70	31 _{3,29} ← 30 _{2,28}	29.5 ← 28.5	629 314.000	50	+ 43	309.76
$19_{3,17} \leftarrow 18_{2,16}$	$17.5 \leftarrow 16.5$ $20.5 \leftarrow 19.5$	539 785.269	300	+ 191	118.52		$32.5 \leftarrow 31.5 \\ 30.5 \leftarrow 29.5$	629 316.254	50	- 88	
	$18.5 \leftarrow 17.5$ $19.5 \leftarrow 18.5$	539 790.224	300	- 277		$15_{4,12} \leftarrow 14_{3,11}$	$31.5 \leftarrow 30.5$ $13.5 \leftarrow 12.5$	632 646.121	7 0	- 48	82.38
$10_{8, 2} \leftarrow 11_{7, 5} \\ 14_{2,12} \leftarrow 13_{1,13}$	14.5 ← 13.5	540 034.733 540 198.901	100 2 00	+ 123 - 459	124.12 56.99		$16.5 \leftarrow 15.5$ $14.5 \leftarrow 13.5$	632 647.487	7 0	+ 122	
	13.5 ← 12.5	540 200.362	200	+ 391	56.99	25 25	$15.5 \leftarrow 14.5$	400 TOT 001	100	. 244	r10.74
	$15.5 \leftarrow 14.5$ $12.5 \leftarrow 11.5$	540 211.931 540 213.393	200 200	+ 252 - 183	56.99 56.99	$37_{7,31} \leftarrow 37_{6,32}$ $42_{4,38} \leftarrow 41_{5,37}$	42.5 ← 41.5	632 707.281 639 447.054	100 150	+ 344 - 348	510.74 594.40
$29_{6,24} \leftarrow 29_{5,25}$	1210	540 596.585	100	+ 254	320.48	12 4,38 1 11 5,31	41.5 ← 40.5	000 1111001	100		
$29_{2,28} \leftarrow 28_{1,27}$		541 456.293	150	+ 26	260.44		$43.5 \leftarrow 42.5$	639 450.389	150	+ 420	
$10_{4,6} \leftarrow 9_{3,7}$	37.5 ← 37.5	542 739.523 543 826.837	80 100	- 15 + 96	43.81 442.42	26 . 25	$40.5 \leftarrow 39.5$	640 409.269	25	- 15	378.88
$37_{3,35} \leftarrow 37_{2,36}$	$36.5 \leftarrow 36.5$	040 620.607	100	7 50	442.42	$36_{0,36} \leftarrow 35_{1,35} \\ 31_{7,25} \leftarrow 31_{6,26}$		641 621.128	100	+ 272	377.66
	38.5 ← 38.5	543 830.597	100	- 134		$35_{2,34} \leftarrow 34_{1,33}$		642 012.625	60	- 78	376.51
	$35.5 \leftarrow 35.5$					$30_{7,23} \leftarrow 30_{6,24}$		642 120.830	100	+ 237	357.78
$24_{6,18} \leftarrow 24_{5,19}$		544 728.335	100	+ 194	233.81	$25_{7,19} \leftarrow 25_{6,20}$		647 330.610	7 0	+ 111	267.99
$25_{6,20} \leftarrow 25_{5,21}$		544 921.621 546 737.307	100 100	+ 137 + 91	249.81 218.38	$\begin{array}{c} 24_{7,17} \leftarrow 24_{6,18} \\ 43_{3,41} \leftarrow 43_{2,42} \end{array}$	43.5 ← 43.5	647 914.770 649 673.761	70 70	+ 94 + 108	251.98 589.90
$\begin{array}{c} 23_{6,18} \leftarrow 23_{5,19} \\ 22_{6,16} \leftarrow 22_{5,17} \end{array}$		547 029.205	100	+ 65	203.65	43 3,41 - 43 2,42	$42.5 \leftarrow 42.5$	045 075.701	10	7 100	000.00
$21_{6,16} \leftarrow 21_{5,17}$		548 227.172	100	- 56	189.53		$44.5 \leftarrow 44.5$	649 677.101	70	- 58	
$20_{6,14} \leftarrow 20_{5,15}$		548 650.931	80	+ 39	176.08		$41.5 \leftarrow 41.5$				
$19_{6,14} \leftarrow 19_{5,15}$		549 387.797	60	- 11	163.27	$20_{7,13} \leftarrow 20_{6,14}$		649 787.554	40	+ 39	194.39
$18_{6,12} \leftarrow 18_{5,13}$		549 782.520 550 247.277	60 60	+ 17 + 13	151.11 139.59	19 7,13 ← 19 6,14		650 099.531 650 354.619	30 30	$+32 \\ +24$	181.60 169.45
$17_{6,12} \leftarrow 17_{5,13}$ $16_{6,10} \leftarrow 16_{5,11}$		550 555.677	45	+ 5	128.72	$ \begin{array}{r} 18_{7,11} \leftarrow 18_{6,12} \\ 17_{7,11} \leftarrow 17_{6,12} \end{array} $		650 569.149	30	+ 15	157.95
$15_{6,10} \leftarrow 15_{5,11}$		550 850.014	40	- 8	118.49	$18_{3,15} \leftarrow 17_{2,16}$	$18.5 \leftarrow 17.5$	650 781.008	120	- 135	103.46
$14_{6,8} \leftarrow 14_{5,9}$		551 064.989	40	- 13	108.91		$17.5 \leftarrow 16.5$				
$14_{6,9} \leftarrow 14_{5,10}$		551 071.175	200	+ 341	108.90		19.5 ← 18.5	650 786.761	120	+ 78	
$8_{4,5} \leftarrow 9_{1,8}$	$6.5 \leftarrow 7.5$ $9.5 \leftarrow 10.5$	551 226.933	500	+ 848	31.40	14 = = = 14 = 0	$16.5 \leftarrow 15.5$	650 991.957	25	+ 2	127.29
$13_{6,8} \leftarrow 13_{5,9}$	3.5 ← 10.5	551 246.299	30	- 44	99.96	$\begin{array}{c} 14_{7, 7} \leftarrow 14_{6, 8} \\ 13_{7, 7} \leftarrow 13_{6, 8} \end{array}$		651 075.816	10	- 2	118.35
$12_{6, 6} \leftarrow 12_{5, 7}$		551 381.447	25	+ 5	91.66	$12_{7,5} \leftarrow 12_{6,6}$		651 137.604	25	- 27	110.05
11 6, 6 ← 11 5, 7		551 485.599	25	- 29	84.00	$11_{7,5} \leftarrow 11_{6,6}$		651 181.065	10	- 5	102.39
$10_{6,4} \leftarrow 10_{5,5}$		551 560.393	25	- 35	76.98	$10_{7,3} \leftarrow 10_{6,4}$		651 209.376	10	- 3	95.38
$9_{6,4} \leftarrow 9_{5,5}$		551 612.635 551 646.331	25 25	- 45 - 51	70.60 64.85	$9_{7,3} \leftarrow 9_{6,4}$		651 225.571 651 232.343	10 50	- 5 + 86	89.00
$\begin{array}{c} 8_{6,2} \leftarrow 8_{5,3} \\ 7_{6,2} \leftarrow 7_{5,3} \end{array}$		551 665.880	25 25	- 30	59.75	$7_{7,1} \leftarrow 7_{6,2} \\ 33_{3,31} \leftarrow 32_{2,30}$	31.5 ← 30.5	651 865.802	50	+ 13	78.15 349.90
$6_{6,0} \leftarrow 6_{5,1}$		551 674.884	25	+ 27	55.29	0,01 2,00	34.5 ← 33.5				
$11_{4,8} \leftarrow 10_{3,7}$		560 949.861	25	- 11	50.23		$32.5 \leftarrow 31.5$	651 867.538	50	- 105	
$23_{3,21} \leftarrow 22_{2,20}$	$21.5 \leftarrow 20.5$ $24.5 \leftarrow 23.5$	567 365.275	150	+ 171	172.46	$38_{3,35} \leftarrow 37_{4,34}$	$33.5 \leftarrow 32.5 \\ 38.5 \leftarrow 37.5$	655 950.346	100	- 207	476.88
	$22.5 \leftarrow 21.5$ $23.5 \leftarrow 22.5$	567 369.832	150	- 245			$37.5 \leftarrow 36.5$ $39.5 \leftarrow 38.5$	655 952.504	100	+ 157	
$25_{3,23} \leftarrow 24_{2,22}$	$23.5 \leftarrow 22.5$	580 207.778	130	+ 153	203.20		$36.5 \leftarrow 35.5$				
	$26.5 \leftarrow 25.5$					$37_{1,37} \leftarrow 36_{0,36}$		657 957.766	50	- 76	400.24
	$24.5 \leftarrow 23.5$ $25.5 \leftarrow 24.5$	580 211.887	130	- 217		$36_{2,34} \leftarrow 35_{3,33}$ $17_{4,14} \leftarrow 16_{3,13}$	15.5 ← 14.5	662 119.599 665 189.528	120 80	- 146 + 19	414.92 102.42
12 _{4,8} ← 11 _{3,9}	20.0 - 24.0	580 980.969	25	- 15	57.24	174,14 . 103,13	18.5 ← 17.5	000 100.020	00	, 10	102112
$124,8 \leftarrow 113,9$ $16_{3,13} \leftarrow 15_{2,14}$	$16.5 \leftarrow 15.5$ $15.5 \leftarrow 14.5$	590 678.390	50	- 95	82.72		$16.5 \leftarrow 15.5$ $17.5 \leftarrow 16.5$	665 191.415	80	- 120	
	$17.5 \leftarrow 14.5$ $17.5 \leftarrow 16.5$	590 682.835	50	+ 65		$38_{0,38} \leftarrow 37_{1,37}$		675 431.622	25	- 24	422.19
	$14.5 \leftarrow 13.5$,		$12_{5,7} \leftarrow 11_{4,8}$		681 012.743	30	- 37	68.94
$27_{3,25} \leftarrow 26_{2,24}$	$25.5 \leftarrow 24.5$	594 076.597	100	+ 156	236.37	$39_{1,39} \leftarrow 38_{0,38}$ $19_{4,16} \leftarrow 18_{3,15}$	17.5 ← 16.5	692 955.782 694 187.076	20 100	-24 + 82	444.72 125.17
	28.5 ← 27.5	*01.000.100	100			154,16 - 153,15	20.5 ← 19.5	054 101.010	100	+ 02	120.11
	$26.5 \leftarrow 25.5$ $27.5 \leftarrow 26.5$	594 080.136	100	- 115			$18.5 \leftarrow 17.5$ $19.5 \leftarrow 18.5$	694 189.609	100	- 149	
36 _{3,33} ← 35 _{4,32}	36.5 ← 35.5	595 395.147	50	- 89	430.33	$13_{5, 9} \leftarrow 12_{4, 8}$		699 934.556	40	- 29	76.62
	$35.4 \leftarrow 34.5 \\ 37.5 \leftarrow 36.5$	595 397.904	50	+ 74		$38_{2,36} \leftarrow 37_{3,35}$		702 197.513	80	- 137	460.56
	$34.5 \leftarrow 33.5$	550 551.504	50	T 14		$37_{3,35} \leftarrow 36_{2,34}$	$35.5 \leftarrow 34.5 \\ 38.5 \leftarrow 37.5$	706 095.323	100	- 57	437.01
$13_{4,10} \leftarrow 12_{3,9}$	$11.5 \leftarrow 10.5$ $14.5 \leftarrow 13.5$	597 591.249	100	+ 92	64.99		$36.5 \leftarrow 35.5$ $37.5 \leftarrow 36.5$	706 095.915	100	+ 61	
	$12.5 \leftarrow 11.5$ $13.5 \leftarrow 12.5$	597 591.815	100	- 82		$12_{4,8} \leftarrow 12_{1,11}$	$10.5 \leftarrow 10.5$	706 851.775	250	+ 372	53.04
34 0.34 ← 33 1.33	10.0 - 12.0	605 367.499	25	- 4	337.91		$13.5 \leftarrow 13.5$ $11.5 \leftarrow 11.5$	706 855.042	250	- 272	
$14_{4.10} \leftarrow 13_{3.11}$		619 508.714	30	- 1	73.22		$11.5 \leftarrow 11.5$ $12.5 \leftarrow 12.5$	700 000.042	200	2.2	
$16_{2,14} \leftarrow 15_{1,15}$	$16.5 \leftarrow 15.5$	627 801.793	50	+ 52	74.50	$39_{2,38} \leftarrow 38_{1,37}$		711 158.874	100	- 107	465.52
2,17	15.5 ← 14.5	00 m 00 ·				$40_{3,37} \leftarrow 39_{4,36}$	40.5 ← 39.5	711 730.405	100	- 233	525.85
	$17.5 \leftarrow 16.5$	627 814.220	50 50	- 36 39			39.5 ← 38.5	711 720 050	100	上 115	
36 _{7,29} ← 36 _{6,30}	14.5 ← 13.5	627 815.565 629 000.736	50 250	- 29 + 380	487.12		$41.5 \leftarrow 40.5$ $38.5 \leftarrow 37.5$	711 732.058	100	+ 115	
1,25 . 00 0,30		320 0001100	200	, 500			5010 1 0110				

 ^a Frequencies given in MHz.
 ^b Frequencies given in kHz.
 ^c Energies E' given in cm⁻¹. For frequencies that are not resolved in hyperfine structure, the hyperfine quantum numbers F and F' are omitted.

TABLE 1—Continued

Transition	$F \leftarrow F'$	v _{ezp} a	$\Delta \nu_{exp}^{b}$	Residuumb	E'c
22 _{4.18} ← 22 _{1.21}	$22.5 \leftarrow 22.5$	715 318.281	100	+ 191	165.16
,	$21.5 \leftarrow 21.5$				
	$23.5 \leftarrow 23.5$	715 322.277	100	- 199	
	$20.5 \leftarrow 20.5$				
$34_{10.24} \leftarrow 34_{9.25}$		944 801.861	100	+ 460	515.4
$32_{10,22} \leftarrow 32_{9,23}$		945 581.125	100	+ 363	472.5
$31_{10.22} \leftarrow 31_{9.23}$		945 907.936	100	+ 307	452.13
$30_{10,20} \leftarrow 30_{9,21}$		946 196.588	100	- 266	432.3
$29_{10,20} \leftarrow 29_{9,21}$		946 449.981	100	+ 214	413.13
$28_{10.18} \leftarrow 28_{9.19}$		946 670.683	100	+ 197	394.6
$27_{10.18} \leftarrow 27_{9.19}$		946 861.206	100	- 152	376.7
$26_{10,16} \leftarrow 26_{9,17}$		947 023.896	50	+ 38	359.4
$25_{10.16} \leftarrow 25_{9.17}$		947 161.334	50	+ 103	342.8
$24_{10,14} \leftarrow 24_{9,15}$		947 275.468	50	+ 81	326.8
$23_{10,14} \leftarrow 23_{9,15}$		947 368.332	50	- 124	311.5
$10_{10, 0} \leftarrow 10_{9, 1}$		947 465.747	50	- 15	170.4
$11_{10, 2} \leftarrow 11_{9, 3}$		947 493.325	50	+ 29	177.4
$21_{10,12} \leftarrow 21_{9,13}$		947 499.407	25	+ 30	282.80
$12_{10, 2} \leftarrow 12_{9, 3}$		947 519.555	25	- 15	185.13
$20_{10,10} \leftarrow 20_{9,11}$		947 541.003	40	- 30	269.3
$13_{10,4} \leftarrow 13_{9,5}$		947 543.475	80	+ 74	193.4
$14_{10,4} \leftarrow 14_{9,5}$		947 563.732	25	- 27	202.3
$19_{10,10} \leftarrow 19_{9,11}$		947 569.215	25	- 10	256.6
$15_{10, 6} \leftarrow 15_{9, 7}$		947 579.434	80	+ 86	211.9
$18_{10, 8} \leftarrow 18_{9, 9}$		947 585.589	80	+ 11	244.49
$16_{10, 6} \leftarrow 16_{9, 7}$		947 589.169	80	- 62	222.1
$17_{10, 8} \leftarrow 17_{9, 9}$		947 591,794	80	+ 150	233.00

APPENDIX

The well-known Hamiltonian for asymmetric tops, employed here in the axis choice of I', was developed by Watson:

$$\hat{H}_{\text{rot}}^{A} = \frac{1}{2} (B+C) \hat{J}^{2} + \left\{ A - \frac{1}{2} (B+C) \right\} \hat{J}_{z}^{2} - \Delta_{J} \hat{J}^{4}$$

$$- \Delta_{JK} \hat{J}^{2} \hat{J}_{z}^{2} - \Delta_{K} \hat{J}_{z}^{4} + \Phi_{J} \hat{J}^{6} + \Phi_{JK} \hat{J}^{4} \hat{J}_{z}^{2} + \Phi_{KJ} \hat{J}^{2} \hat{J}_{z}^{4}$$

$$+ \Phi_{K} \hat{J}_{z}^{6} + \left\{ \frac{1}{4} (B-C) - \delta_{J} \hat{J}^{2} + \Phi_{J} \hat{J}^{4} \right\}$$

$$\times (\hat{J}_{+}^{2} + \hat{J}_{-}^{2}) + \frac{1}{2} [-\delta_{K} \hat{J}_{z}^{2} + \phi_{JK} \hat{J}^{2} \hat{J}_{z}^{2}$$

$$+ \phi_{K} \hat{J}_{z}^{4} (\hat{J}_{+}^{2} + \hat{J}_{-}^{2})]_{+}.$$

In addition the ³³SO₂ rotational transitions reported here are split in hyperfine structure, partially (Table 1). The electric quadrupole hyperfine interaction requires the following expansion for the Hamiltonian:

$$\langle J'K'F'S'I|\hat{H}_{Q}|JKFSI\rangle$$

$$= \frac{1}{2} eQ \, \delta_{F',F} \delta_{S',S} (-)^{I+J'+F}$$

$$\times \sqrt{\frac{(I+1)(2I+1)(2I+3)}{I(2I-1)}} \, (2J+1)(2J'+1)$$

$$\times \sum_{q=-2}^{2} (-)^{N'-K'} \begin{Bmatrix} F & J' & I \\ 2 & I & J \end{Bmatrix} \begin{pmatrix} J' & 2 & J \\ -K' & q & K \end{pmatrix}$$

$$\times \langle \gamma' | T_q^{(2)}(\nabla \mathbf{E}) | \gamma \rangle.$$

The Hfs expression above, as well as the transformation between the irreducible tensor notation and the Cartesian notation for the components $\langle T_q^{(2)}(\nabla \mathbf{E})\rangle$, was developed by Bowater (8). Since SO_2 is a planar asymmetric top and for the $^{33}SO_2$ both, the axes of the electric quadrupole interaction and the main axes of inertia, are almost identical, the off-diagonal components for the electric field gradient become infinitely small and were not included. The asymmetry parameter η has been determined (Table 2) in accordance with the work of van Riet (3). The term η represents the position of the electric quadrupole tensor due to the bonding axes of the molecule. The value for $\eta = 1.050(17)$ determined here is in line with the value for ^{33}S -substituted deuterodisulfane

TABLE 2 Molecular Parameters of $^{33}SO_2$ in the Ground Vibrational State Determined Using an A-Reduced Hamiltonian with an I^r Axis Choice

Parameter	This work	van Riet	Unit'
A	59 856.472 3 (62)	59 856.49	MHz
${f B}$	10 318.301 2 (15)	10 318.20	MHz
\mathbf{C}	8 780.136 3 (15)	8 780.23	MHz
κ^a	- 0.939 769 963 (82)	- 0.939 777 5	_
Δ_J	6.591 5 (13)	6.153	kHz
Δ_{JK}	- 114.192 (10)	-109.405	\mathbf{kHz}
Δ_K	2.511 68 (10)	2.481827	MHz
${\delta}_J$	1.713 06 (47)		kHz
δ_K	25.230 (41)	_	kHz
Φ_J	11.81 (44)	_	mHz
Φ_{JK}	138 (12)	_	mHz
Φ_{KJ}	-18.363(51)	_	Hz
Φ_K	$341.34\ (54)$	_	Hz
ϕ_J	$5.79\ (13)$	_	mHz
ϕ_{JK}	36.8^{b}		mHz
ϕ_K	22.25~(54)	_	Hz
eQq_{aa}	- 0.60 (22)	- 1.7	MHz
eQq_{bb}	24.70 (24)	25.71	MHz
$e\mathrm{Qq}_{cc}$	- 24.10 (24)	- 24.01	MHz
η^a	1.050 (17)	1.14	_

a Derived value.

^bFixed to the value obtained by ³²SO₂.

318 KLISCH ET AL.

($\eta = 1.528(32)$ for H³³SSD, $\eta = 1.595(23)$ for HS³³SD) and therefore states a typical attribute of ³³S containing species (9).

ACKNOWLEDGMENTS

The work was supported in part by the Deutsche Forschungsgemeinschaft (DFG) via Special Grant SFB-301 and special funding from the Science Ministry of the Land Nordrhein-Westfalen. The stay of S.P.B. at Köln was financed by the DFG through grants aimed to support Eastern and Central European countries and the Republics of the former Soviet Union. G. W. acknowledges support from the MAX PLANCK Award.

REFERENCES

- 1. G. Winnewisser, Vib. Spectrosc. 8, 241-253 (1995).
- 2. G. R. Bird and C. H. Townes, Phys. Rev. 94, 1203-1208 (1954).
- 3. R. van Riet, Ann. Soc. Sci. Bruxelles 76, 56 (1962).
- 4. R. van Riet, Bull. Class. Sci. Acad. Roy. Belge 48, 659 (1962).
- L. E. Snyder, J. M. Hollis, B. L. Ulrich, F. J. Lovas, D. R. Johnson, and D. Buhl, *Astrophys. J.* 198, L81–L84 (1975).
- J. K. G. Watson, in "Vibrational Spectra and Structure" (J. R. During, Ed.), Vol. 6, Elsevier, Amsterdam, 1977.
- P. Schilke, T. D. Groesbeck, G. A. Blake, and T. G. Phillips, *Astrophys. J. Suppl.* 108, 301–337 (1997).
- I. C. Bowater, J. M. Brown, and A. Carrington, *Proc. R. Soc. London A.* 333, 265–288 (1973).
- 9. E. Klisch and G. Winnewisser, in preparation.