

MÉTODO DE MÍNIMOS CUADRADOS O REGRESIÓN LINEAL

¿ Qué es el Método de Mínimos Cuadrados ?

Es un método que a partir de datos posicionados en un sistema de referencia (XY) los ajusta de manera lineal .

Esto implica que a partir de las coordenadas (datos) iniciales, obtendremos al finalizar el método, una expresión del tipo:

ECUACIÓN DE UNA RECTA		
y = mx + b	y = Variable dependiente.	
	m = Pendiente.	
y (x) = y en función de x	x = Variable independiente.	
	b = Ordenada al origen.	

Ejemplo: Después de realizar una serie de mediciones en el laboratorio se obtuvieron los siguientes resultados:

Altura h (m)	Tiempo t (s)
0.2	0.0324
0.4	0.0625
0.6	0.1024
0.8	0.1369

Obtenga la expresión que ajuste los siguientes datos de manera lineal a la altura en función del tiempo, es decir \mathbf{h} (\mathbf{t}) . OBSERVE QUE EN ESTE CASO \mathbf{h} ES LA VARIABLE DEPENDIENTE \mathbf{Y} \mathbf{t} LA VARIABLE INDEPENDIENTE.

1. Se sugiere realizar la siguiente tabla:

Altura h (m)	Tiempo t (s)	x;²	X _i Y i
y i	Xi	Al	Ai y i
0.2	0.0324	$(0.0324)^2 = 0.00104976$	(0.2)(0.0324) = 0.00648
0.4	0.0625	0.00390625	0.0250
0.6	0.1024	0.01048576	0.06144
0.8	0.1369	0.01874161	0.10952
$\Sigma y_i = 2.0$	$\Sigma x_i = 0.3342$	$\Sigma x_i^2 = 0.03418338$	$\sum x_i y_i = 0.20244$

2. Usando las fórmulas del Método de Mínimos Cuadrados.

$$m = \frac{n\sum x_i y_i - \left(\sum x_i\right)\left(\sum y_i\right)}{n\sum x_i^2 - \left(\sum x_i\right)^2}$$

$$m = \frac{n\sum x_i y_i - \left(\sum x_i\right)\left(\sum y_i\right)}{n\sum x_i^2 - \left(\sum x_i\right)^2}$$

$$b = \frac{\left(\sum y_i\right)\left(\sum x_i^2\right) - \left(\sum x_i y_i\right)\left(\sum x_i\right)}{n\sum x_i^2 - \left(\sum x_i\right)^2}$$

donde:

y = variable dependiente

m = pendientex = variable independiente b = ordenada al origen

n = número de eventos.

3. Sustituyendo los valores obtenidos en la tabla.

$$\mathbf{m} = \frac{4 (0.20244) - (0.3342) (2.0)}{4 (0.03418338) - (0.3342)^2} = 0.14136 / 0.02504388 = \mathbf{5.6445}$$

$$\mathbf{b} = \frac{(2.0)(0.03418338) - (0.20244)(0.3342)}{4(0.03418338) - (0.3342)^2} = 0.000711312 / 0.02504388 = \mathbf{0.0284}$$

Finalmente se tiene la ecuación:

$$h = 5.6445 t + 0.0284$$

Ahora bien si deseo el valor de **h** para $\mathbf{t} = \mathbf{1}$ s , sustituyo este valor en la ecuación:

$$h = 5.6445 (1) + 0.0284 = 5.6729 (m)$$

NOTA: TENGAN MUCHO CUIDADO AL ELEGIR LA VARIABLE DEPENDIENTE E INDEPENDIENTE.

> TENGAN MUCHO CUIDADO AL ELEGIR LOS VALORES DE LAS ELONGACIONES, SI SON LOS PARCIALES O LOS ACUMULADOS.