ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ

Лабораторная работа № 2.5.1 Измерение коэффициента поверхностного натяжения жидкости

Баранов Даниил Группа Б02-103 **Цель работы:** 1) измерение температурной зависимости коэффициента поверхностного натяжения дистиллированной воды с использованием известного коэффициента поверхностного натяжения спирта; 2) определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости при различной температуре.

В работе используются: прибор Ребиндера с термостатом и микроманометром; исследуемые жидкости; стаканы.

1 Теоретическая часть

Наличие поверхностного слоя приводит к различию давлений по разные стороны от искривленной границы раздела двух сред. Для сферического пузырька с воздухом внутри жидкости избыточное давление даётся формулой Лапласа:

$$\Delta P = \frac{2\sigma}{r},\tag{1}$$

где σ — коэффициент поверхностного натяжения, ΔP — разница давлений внутри и снаружи пузырька, r — радиус кривизны поверхности раздела двух фаз. Эта формула лежит в основе предлагаемого метода определения коэффициента поверхностного натяжения жидкости.

2 Экспериментальная установка

Исследуемая жидкость (дистиллированная вода) наливается в сосуд (колбу) В (рис. 1). Тестовая жидкость (этиловый спирт) наливается в сосуд Е. При измерениях колбы герметично закрываются пробками. Через одну из двух пробок проходит полая металлическая игла С. Этой пробкой закрывается сосуд, в котором проводятся измерения. Верхний конец иглы открыт в атмосферу, а нижний погружен в жидкость. Другой сосуд герметично закрывается второй пробкой. При создании достаточного разряжения воздуха в колбе с иглой пузырьки воздуха начинают пробулькивать через жидкость. Поверхностное натяжение можно определить по величине разряжения ΔP (1), необходимого для прохождения пузырьков (при известном радиусе иглы). Разряжение в системе создается с помощью аспиратора А. Кран К2 разделяет две полости аспиратора. Верхняя полость при закрытом кране **К2** заполняется водой. Затем кран **К2** открывают и заполняют водой нижнюю полость аспиратора. Разряжение воздуха создается в нижней полости при открывании крана K1, когда вода вытекает из неё по каплям. В колбах В и С, соединённых трубками с нижней полостью аспиратора, создается такое же пониженное давление. Разность давлений в полостях с разряженным воздухом и атмосферой измеряется спиртовым микроманометром.

Рис. 1: Схема установки для измерения температурной зависимости коэффициента поверхностного натяжения.

3 Экспериментальные данные

В таблице 1 приведены константы, используемые в лабораторной работе.

Таблица 1: Постоянные величины.

Плотность этанола ρ_0 , $\kappa \Gamma/M^3$	Плотность воды ρ , кг/м ³	Ускорение свободного падения $g, \text{м/c}^2$	Пересчетный коэффициент k	Коэффициент поверхностного натяжения этанола ($T=20^{\circ}C$) σ_0 , м $H/м$
809,5	1000,0	9,81	0,2	22,75

В таблице 2 приведены значения и случайные ошибки измерения величин, определяемых в ходе эксперимента.

Таблица 2: Некоторые величины и их погрешность.

	Томпоражура	Длина столба спирта	Пересчитанные показания		
	Температура T, K	в микроманометре	микроманометра		
	I, K	h, mm	P , Πa		
Величина	294,5	175,0	277,9		
Погрешность	0,2	0,5	0,8		
ε , %	0,03	0,3	0,3		

Результаты измерений радиуса иглы приведены в таблице 3. Для проверки достоверности полученного результата диаметр иглы был измерен дополнительно на микроскопе: $d=1{,}05\pm0{,}02$ мм.

Таблица 3: Радиус используемой иглы.

T, °C	h, MM	ΔP , Πa	r, MM	σ_r , mm	$\sigma_r/r, \%$
21,4	41	80,4	0,56	0,008	1,4

В таблице 4 приведены результаты измерений, позволяющих исследовать зависимость $\sigma = \sigma(T)$.

Таблица 4: Результаты измерений.

T, °C	h, mm	ΔP , Πa	σ , м H /м	σ_{σ} , м $H/$ м	σ_{σ}/σ , %
21,4	231,0	257,0	66,8	1,5	2,3
25,4	230,0	255,3	66,4	1,5	2,3
30,3	228,0	251,3	65,3	1,5	2,3
35,2	227,0	249,4	64,8	1,5	2,3
39,9	226,0	247,4	64,3	1,5	2,3
45,0	224,0	243,5	63,3	1,5	2,3
49,9	222,5	240,5	62,5	1,5	2,3
54,9	219,0	233,7	60,8	1,5	2,3
59,8	218,0	231,7	60,2	1,5	2,3

По полученным данным построим график зависимости $\sigma = \sigma(T)$ (рис. 2) и проанализируем его (5).

Рис. 2: Зависимость $\sigma = \sigma(T)$.

Таблица 5: Анализ зависимости $\sigma = \sigma(T)$.

$d\sigma/dT$, MH/M·°C	Погрешность, мН/м·°С	ϵ , %
-0,17	0,01	5,9

Дополнительно найдем зависимость теплоты образования единицы поверхности жидкости $q=-T\frac{d\sigma}{dT}$ и поверхностной энергии единицы площади $U/\Pi=\sigma+q$ от

температуры. Результаты вычислений представлены в таблице 6, а графики на рис. 3 и рис. 4.

Таблица 6: Результаты дополнительных вычислений.

T, K	/	/ /	,	,	,		322,9	,	,
q , мДж/м 2	50	51	52	52	53	54	55	56	57
U/Π , мДж/м ²	116,8	117,4	117,3	116,8	117,3	117,3	117,5	116,8	117,2

Рис. 3: Зависимость q = q(T).

Рис. 4: Зависимость U/Π от T.

Обсуждение полученных результатов

- В интервале температур от 23°C до 60°C зависимость $\sigma = \sigma(T)$ является линейной с коэффициентом наклона $d\sigma/dT = (-0.17 \pm 0.01) \text{ мH/м·°C.Стоит}$ отметить, что наш результат в пределах погрешности совпадает с табличным значением $d\sigma/dT \approx -0.16$.
- Теплоты образования единицы поверхности жидкости q = q(T) линейно зависит от температуры на исследуемом интервале температур.
- Внутренняя энергия поверхности U/Π не зависит от температуры и есть константа $U=117~{\rm MДж/m^2}.$