PHYSICS 20323: Scientific Analysis & Modeling - Fall 2023 Project: Anthony Gerg

1. The following questions refer to the stars in the table below

Note: there may be multiple answers

Name	Mass	Luminosity	Lifetime	Temperature	Radius
η Car.	60. M _☉	$10^6 L_{\odot}$	8.0×10^5 years		
ϵ Eri.	$6.0~M_{\odot}$	$10^3 L_{\odot}$		20,000 K	
σ Scu.	$2.0~M_{\odot}$		5.0×10^8 years		$2 R_{\odot}$
β Cyg.	$1.3~M_{\odot}$	$3.5 L_{\odot}$			
α Cen.	$1.0~M_{\odot}$				1 R _⊙
γ Del.	$0.7~M_{\odot}$		4.5×10^10 years	5000 K	

- (a) (4 points) Which of these stars will produce a planetary nebula.
- (b) (4 points) Elements heavier than *Carbon* will be produced in which stars.
- 2. An electron is found to be in the spin state (in the z-basis): $\chi = A \begin{pmatrix} 3i \\ 4 \end{pmatrix}$
 - (a) (5 points) Determine the values of A such that the state is normalized
 - (b) (5 points) Find the expectation values of S_x , S_y , S_z , and $\vec{S^2}$

The matrix representation in the z-basis for the matrix for the components of the electrons spin operators are given by:

$$oldsymbol{S_x} = rac{\hbar}{2}igg(egin{array}{cc} 0 & l \ l & 0 \end{array}igg); \quad oldsymbol{S_y} = rac{\hbar}{2}igg(egin{array}{cc} 0 & -i \ i & 0 \end{array}igg); \quad oldsymbol{S_z} = rac{\hbar}{2}igg(egin{array}{cc} 0 & -i \ i & 0 \end{array}igg);$$

3. The average electrostatic field in Earth's atmosphere in fair weather is given by:

$$\vec{E} = E_o(Ae^{-\alpha z} + Be^{-\beta z})\hat{z} \tag{1}$$

where A, B, α , β are positive constants and z it the height above the (locally flat) earth surface.

- (a) (5 points) Find the average charge density in the atmosphere as a function of height.
- (b) (5 points) Find the electric potential as a function height above the earth.