

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

($\bigcirc 0$		
(\bigcirc_1	$\bigcirc 1$	
(\bigcirc_2	$\bigcirc 2$	
($\bigcirc 3$	\bigcirc 3	$\bigcirc 3$
($\bigcirc 4$		
($\bigcirc 5$		
($\bigcirc 6$		
($\bigcirc 7$		
($\bigcirc 8$		
($\bigcirc 9$		

← 学生番号を左にマークし、下に氏名を記入 してください。

氏名:	 	

問1 函数 $f(x) = 2x^4 + 6x^3 + 4x^2 + 2x + 7$ の導函数 f'(x) を求めなさい。

問2 函数 $f(x) = 4 - \frac{2}{x} + \frac{4}{x^2}$ の導函数 f'(x) を求めなさい。

$$\bigcirc 4 - \frac{2}{x} \qquad \bigcirc \frac{2}{x^2} - \frac{8}{x^3} \qquad \bigcirc \frac{2}{x^2} - \frac{4}{x^3} \qquad \bigcirc -\frac{2}{x^2} + \frac{8}{x^3} \qquad \bigcirc -\frac{2}{x^2} + \frac{4}{x^3}$$

 $\bigcirc \quad \frac{5}{2}x^{\frac{3}{2}} \qquad \bigcirc \quad \frac{3}{2}x^{\frac{3}{2}} \qquad \bigcirc \quad \frac{3}{2}x^{\frac{3}{2}} \qquad \bigcirc \quad \frac{5}{2}x^{\frac{5}{2}} \qquad \bigcirc \quad \frac{7}{2}x^{\frac{3}{2}}$

問3 函数 $f(x) = x^{\frac{5}{2}}$ の導函数 f'(x) を求めなさい。

 $\bigcirc 3x^2 + 6x + 5$ $\bigcirc 2x$ $\bigcirc 3x^2 + 6x + 6$

問 5 函数 $f(x) = (x^2 + 5)(1x + 3)$ の導函数 f'(x) を求めなさい。

問 6 函数
$$f(x)=\frac{7}{4x^2+3x+4}$$
 の導函数 $f'(x)$ を求めなさい。
$$\bigcirc \frac{56x+21}{4x^2+3x+4} \bigcirc \frac{56x+21}{(4x^2+3x+4)^2} \bigcirc -\frac{56x+21}{(4x^2+3x+4)^2} \bigcirc -\frac{56x+21}{4x^2+3x+4}$$

問7 函数 $f(x) = \frac{8x+7}{5x+2}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \frac{8}{5x+2} \qquad \bigcirc \frac{8}{(5x+2)^2} \qquad \bigcirc \frac{-17}{5x+2} \qquad \bigcirc \frac{-19}{(5x+2)^2} \qquad \bigcirc \frac{-19}{5x+2}$$

問8 函数 $f(x) = (8x+5)^{10}$ の導函数 f'(x) を求めなさい。

$$\bigcirc 10(8x+5)^{10} \qquad \bigcirc 80(8x+5)^9 \qquad \bigcirc 10(8x+5)^9 \qquad \bigcirc 80(8x+5)^{10}$$

 $\bigcirc 11(6x+2)^{10} \qquad \bigcirc 66(6x+2)^{11} \qquad \bigcirc 11(6x+2)^{11} \qquad \bigcirc 66(6x+2)^{10}$

		+3/1	/58+
応用数学 演習 03	2022年4月27	日応用数学 演習 02	2022年4月20日
01 01 01 0 02 02 02 0 03 03 03 0 04 04 04 0 05 05 05 0 06 06 06 0 07 07 07 0 08 08 08 0		← 学生番号を左にマークしてください。 氏名:	
問 1 函数 $f(x) =$	$5x^4 + 7x^3 + 2x^2 + 3x + 8$	の導函数 $f'(x)$ を求めなさい	`` _o
-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	
問 2 函数 $f(x) =$	$4-\frac{5}{x}+\frac{2}{x^2}$ の導函数 $f'(x)$	を求めなさい。	
$\bigcirc -\frac{5}{x^2} + \frac{4}{x^3}$	$\bigcirc 4 - \frac{5}{x} \qquad \bigcirc -$	$-\frac{5}{x^2} + \frac{2}{x^3}$ $\frac{5}{x^2} - \frac{2}{x^3}$	$\frac{5}{x^2} - \frac{4}{x^3}$
問 3 函数 $f(x) =$	$x^{\frac{5}{2}}$ の導函数 $f'(x)$ を求めな	さい。	
$\bigcirc \frac{3}{2}$	$x^{\frac{3}{2}}$ $\left(\begin{array}{cc} \frac{7}{2}x^{\frac{3}{2}} \end{array}\right)$	$\frac{5}{2}x^{\frac{5}{2}} \qquad \qquad \bigcirc \frac{5}{2}x^{\frac{3}{2}}$	$\bigcirc \frac{3}{2}x^{\frac{3}{2}}$
問 4 函数 $f(x) =$	$x^{\frac{7}{2}} - x^{-\frac{13}{6}}$ の導函数 $f'(x)$	を求めなさい。	
$ \bigcirc \frac{5}{2}x^{\frac{5}{2}} - \frac{13}{6}x^{\frac{7}{6}} $	$ \begin{array}{ccc} & \frac{7}{2}x^{\frac{5}{2}} + \frac{13}{6}x^{-\frac{19}{6}} \\ & \frac{5}{2}x^{\frac{7}{2}} + \frac{13}{6}x^{-\frac{7}{6}} \end{array} $	$ \begin{array}{ccc} & \frac{7}{2}x^{\frac{5}{2}} - \frac{13}{6}x^{-\frac{19}{6}} \\ & \frac{7}{2}x^{-\frac{5}{2}} + \frac{13}{6}x^{-\frac{7}{6}} \end{array} $	$\bigcirc \frac{7}{2}x^{\frac{7}{2}} + \frac{13}{6}x^{-\frac{7}{6}}$
問 5 函数 $f(x) =$	$(x^2+4)(5x+1)$ の導函数.	f'(x) を求めなさい。	

 $\bigcirc \quad 15x^2 + 2x \qquad \quad \bigcirc \quad 10x \qquad \quad \bigcirc \quad 15x^2 + 2x + 21 \qquad \quad \bigcirc \quad 15x^2 + 2x + 20$

 $\bigcirc \quad \frac{32x+16}{(2x^2+2x+4)^2} \qquad \quad \bigcirc \quad -\frac{32x+16}{2x^2+2x+4} \qquad \quad \bigcirc \quad \frac{32x+16}{2x^2+2x+4} \qquad \quad \bigcirc \quad -\frac{32x+16}{(2x^2+2x+4)^2}$

 $\bigcirc \quad \frac{2}{(5x+8)^2} \qquad \quad \bigcirc \quad \frac{-19}{(5x+8)^2} \qquad \quad \bigcirc \quad \frac{2}{5x+8} \qquad \quad \bigcirc \quad \frac{-11}{5x+8} \qquad \quad \bigcirc \quad \frac{-19}{5x+8}$

 $\bigcirc \ \ 8(6x+9)^8 \qquad \ \bigcirc \ \ 48(6x+9)^8 \qquad \ \bigcirc \ \ 48(6x+9)^7 \qquad \ \bigcirc \ \ 8(6x+9)^7$

函数 $f(x) = \frac{8}{2x^2 + 2x + 4}$ の導函数 f'(x) を求めなさい。

函数 $f(x) = \frac{2x+7}{5x+8}$ の導函数 f'(x) を求めなさい。

函数 $f(x) = (6x+9)^8$ の導函数 f'(x) を求めなさい。

問 6

問 7

問8

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

$\bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0$	$)_0$
$\bigcirc 1 \bigcirc 1$	$)_1$
$\bigcirc 2 \bigcirc 2$	$)_2$
$\bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc$	$)_3$
$\bigcirc 4 \bigcirc 4$	$)_4$
$\bigcirc 5$	$)_5$
$\bigcirc 6 \bigcirc 6$)6
\bigcirc 7	$)_7$
08 08 08 08 08 08 ()8
$\bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc$	9

← 学生番号を左にマークし、下に氏名を記入

氏名:	 	 	

問1 函数 $f(x) = 6x^4 + 5x^3 + 3x^2 + 4x + 2$ の導函数 f'(x) を求めなさい。

$$\bigcirc 6x^4 + 10x^3 + 3x^2 + 4x \qquad \bigcirc 24x^3 + 15x^2 + 8x + 4 \qquad \bigcirc 24x^3 + 15x^2 + 6x + 6$$

$$\bigcirc 24x^3 + 15x^2 + 8x + 4$$

$$\bigcirc 24x^3 + 15x^2 + 6x + 6$$

$$\bigcirc 6x^4 + 5x^3 + 3x^2 + 4x + 2$$
 $\bigcirc 24x^3 + 15x^2 + 6x + 4$

$$\bigcirc 24x^3 + 15x^2 + 6x + 4$$

問2 函数 $f(x) = 1 - \frac{3}{x} + \frac{3}{x^2}$ の導函数 f'(x) を求めなさい。

$$-\frac{3}{x^2} + \frac{3}{x^3}$$

$$\bigcirc \quad \frac{3}{x^2} - \frac{3}{x^3}$$

$$\bigcirc \quad -\frac{3}{x^2} + \frac{3}{x^3} \qquad \bigcirc \quad \frac{3}{x^2} - \frac{3}{x^3} \qquad \bigcirc \quad -\frac{3}{x^2} + \frac{6}{x^3} \qquad \bigcirc \quad 1 - \frac{3}{x} \qquad \bigcirc \quad \frac{3}{x^2} - \frac{6}{x^3}$$

$$\bigcirc 1 - \frac{3}{r}$$

$$\bigcirc \quad \frac{3}{x^2} - \frac{6}{x^3}$$

問3 函数 $f(x) = x^{\frac{5}{3}}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{5}{3}x^{\frac{2}{3}} \qquad \bigcirc \quad \frac{7}{3}x^{\frac{2}{3}} \qquad \bigcirc \quad \frac{3}{3}x^{\frac{2}{3}} \qquad \bigcirc \quad \frac{2}{3}x^{\frac{2}{3}}$$

$$\int \frac{7}{3}x$$

$$\bigcirc \quad \frac{3}{3}x$$

$$\int \frac{2}{3}x^{\frac{3}{2}}$$

$$\bigcirc \quad \frac{5}{3}x^{\frac{5}{3}}$$

函数 $f(x) = x^{\frac{11}{2}} - x^{-\frac{11}{4}}$ の導函数 f'(x) を求めなさい。 問 4

$$0 \quad \frac{9}{2}x^{\frac{9}{2}} - \frac{11}{4}x^{\frac{7}{4}}$$

$$0 \frac{9}{2}x^{\frac{11}{2}} + \frac{11}{4}x^{-\frac{7}{4}}$$

$$\bigcirc \quad \frac{11}{2}x^{\frac{9}{2}} - \frac{11}{4}x^{-\frac{15}{4}} \qquad \bigcirc \quad \frac{9}{2}x^{\frac{9}{2}} - \frac{11}{4}x^{\frac{7}{4}} \qquad \bigcirc \quad \frac{9}{2}x^{\frac{11}{2}} + \frac{11}{4}x^{-\frac{7}{4}} \qquad \bigcirc \quad \frac{11}{2}x^{-\frac{9}{2}} + \frac{11}{4}x^{-\frac{7}{4}} \qquad \bigcirc \quad \frac{11}{2}x^{\frac{9}{2}} + \frac{11}{4}x^{-\frac{7}{4}} \qquad \bigcirc \quad \frac{11}{2}x^{\frac{15}{2}} + \frac{11}{4}x^{-\frac{7}{4}}$$

函数 $f(x) = (x^2 + 3)(1x + 6)$ の導函数 f'(x) を求めなさい。 問 5

$$\bigcirc 3x^2 + 12x + 3$$

$$\bigcirc 3x^2 + 12x + 3$$
 $\bigcirc 3x^2 + 12x + 4$ $\bigcirc 3x^2 + 12x$ $\bigcirc 2x$

$$\bigcirc 3x^2 + 12x$$

$$\bigcirc$$
 2x

函数 $f(x) = \frac{2}{5x^2+9x+7}$ の導函数 f'(x) を求めなさい。 問 6

$$\frac{20x+18}{5x^2+9x+7}$$

$$\bigcirc \quad \frac{20x+18}{5x^2+9x+7} \qquad \quad \bigcirc \quad -\frac{20x+18}{(5x^2+9x+7)^2} \qquad \quad \bigcirc \quad -\frac{20x+18}{5x^2+9x+7} \qquad \quad \bigcirc \quad \frac{20x+18}{(5x^2+9x+7)^2}$$

$$-\frac{20x+18}{5x^2+9x+7}$$

函数 $f(x) = \frac{4x+11}{7x+8}$ の導函数 f'(x) を求めなさい。 問 7

$$\bigcirc \quad \frac{4}{7x+8}$$

$$\bigcirc \quad \frac{4}{(7x+8)^2}$$

$$\bigcirc \quad \frac{4}{7x+8} \qquad \bigcirc \quad \frac{4}{(7x+8)^2} \qquad \bigcirc \quad \frac{-45}{(7x+8)^2} \qquad \bigcirc \quad \frac{-45}{7x+8} \qquad \bigcirc \quad \frac{-37}{7x+8}$$

$$\frac{-45}{7x+8}$$

$$\bigcirc \quad \frac{-37}{7x+8}$$

函数 $f(x) = (3x+4)^8$ の導函数 f'(x) を求めなさい。 問8

$$0 8(3x+4)^8$$

$$\bigcirc 8(3x+4)^8 \qquad \bigcirc 24(3x+4)^7 \qquad \bigcirc 8(3x+4)^7 \qquad \bigcirc 24(3x+4)^8$$

$$0 8(3x+4)^7$$

$$\bigcirc 24(3x+4)^8$$

問 4

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

\bigcirc	\circ	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
()($0\bigcirc$	()0	()0	()0	()0	()0	()0
().	1 ()1	()1	()1	()1	()1	()1	()1
-		-	-	-	-	-	
()	$2\bigcirc 2$	()	()2	()2	()2	()	()
()	$3 \bigcirc 3$	()3	()3	()3	()3	()3	()3
\cap	$4 \bigcirc 4$	\bigcap_{A}	\bigcap_{A}	\bigcap_{A}	\bigcap ₄	\bigcap ₄	\bigcap ₄
\bigcup^{ι}	± U4	\bigcirc^4	\bigcirc 4	\bigcirc 4	\bigcirc 4	\bigcirc 4	\bigcirc 4
\bigcap	$5 \bigcirc 5$	\bigcap_{Γ}	\bigcap_{Γ}	\bigcap_{Γ}	\bigcap_{Γ}	\bigcap_{Γ}	\bigcap_{Γ}
\bigcup ;	э Оэ	\bigcirc 5	\bigcirc 5				
\bigcirc	$6 \bigcirc 6$	$\bigcap_{\mathcal{C}}$	$\bigcap_{\mathcal{C}}$	$\bigcap_{\mathcal{C}}$	$\bigcap_{\mathcal{C}}$	$\bigcap_{\mathcal{C}}$	\bigcap_{C}
\cup	\cup 6	\bigcirc 6	\bigcirc 6	\bigcirc 6	\bigcirc 6	\bigcirc 6	$\bigcup 6$
\bigcirc	- 0-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcup_{i}	7 🔾 7	$\bigcup \mathcal{T}$	$\bigcup \gamma$	$\bigcup \gamma$	$\bigcup \gamma$	$\bigcup \gamma$	$\bigcup \gamma$
	\sim	\bigcap	\bigcap	\bigcap	\bigcap	\bigcap	\bigcirc
\cup	$8 \bigcirc 8$	$\bigcup 8$	$\bigcup 8$	$\bigcup 8$	$\bigcup 8$	$\bigcup 8$	\cup 8
Ō.	. Ō.	Ō.	Ō	Ō	Ō.	Ō.	Ō
- ()!	9 🔾 9	$\bigcirc 9$	$\bigcup 9$	$\bigcup 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcup 9$

← 学生番号を左にマークし、下に氏名を記入してください。

氏名:	 	

問1 函数 $f(x) = 7x^4 + 6x^3 + 3x^2 + 2x + 6$ の導函数 f'(x) を求めなさい。

問 2 函数 $f(x)=5-\frac{3}{x}+\frac{1}{x^2}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{3}{x^2} - \frac{2}{x^3} \qquad \bigcirc \quad -\frac{3}{x^2} + \frac{1}{x^3} \qquad \bigcirc \quad 5 - \frac{3}{x} \qquad \bigcirc \quad -\frac{3}{x^2} + \frac{2}{x^3} \qquad \bigcirc \quad \frac{3}{x^2} - \frac{1}{x^3}$$

問3 函数 $f(x) = x^{\frac{7}{3}}$ の導函数 f'(x) を求めなさい。

函数
$$f(x) = x^{\frac{11}{3}} - x^{-\frac{13}{5}}$$
 の導函数 $f'(x)$ を求めなさい。

 $\bigcirc \quad 15x^2 + 4x + 21 \qquad \qquad \bigcirc \quad 15x^2 + 4x \qquad \qquad \bigcirc \quad 10x \qquad \qquad \bigcirc \quad 15x^2 + 4x + 20$

 $\bigcirc \quad \frac{5}{2}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{4}{2}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{9}{2}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{7}{2}x^{\frac{4}{3}}$

問 5 函数 $f(x) = (x^2 + 4)(5x + 2)$ の導函数 f'(x) を求めなさい。

問 6 函数
$$f(x)=\frac{6}{3x^2+4x+4}$$
 の導函数 $f'(x)$ を求めなさい。
$$\bigcirc \quad \frac{36x+24}{3x^2+4x+4} \quad \bigcirc \quad -\frac{36x+24}{(3x^2+4x+4)^2} \quad \bigcirc \quad -\frac{36x+24}{3x^2+4x+4} \quad \bigcirc \quad \frac{36x+24}{(3x^2+4x+4)^2}$$

問7 函数 $f(x) = \frac{8x+11}{3x+4}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{-1}{3x+4} \qquad \bigcirc \quad \frac{3}{3x+4} \qquad \bigcirc \quad \frac{8}{(3x+4)^2} \qquad \bigcirc \quad \frac{8}{3x+4} \qquad \bigcirc \quad \frac{-1}{(3x+4)^2}$$

問8 函数 $f(x) = (4x+2)^8$ の導函数 f'(x) を求めなさい。

$$\bigcirc 32(4x+2)^8 \qquad \bigcirc 8(4x+2)^8 \qquad \bigcirc 8(4x+2)^7 \qquad \bigcirc 32(4x+2)^7$$

2022年4月20日

2022 年 4 月 27 日応用数学 演習 02 応用数学 演習 03 $\bigcirc 0 \bigcirc 0$ $\bigcirc 1$ $\bigcirc 2 \bigcirc 2$ ← 学生番号を左にマークし、下に氏名を記入 $\bigcirc 3 \bigcirc 3$ $\bigcirc 4 \bigcirc 4$ $\bigcirc 5 \bigcirc 5 \bigcirc 5 \bigcirc 5 \bigcirc 5 \bigcirc 5 \bigcirc 5$ $\bigcirc 6 \bigcirc 6$ \bigcirc 7 08 08 08 08 08 08 08 $\bigcirc 9 \bigcirc 9$ 問 1 函数 $f(x) = 2x^4 + 3x^3 + 5x^2 + 4x + 2$ $\bigcirc 2x^4 + 3x^3 + 5x^2 + 4x + 2 \qquad \bigcirc 8x^3$ $\bigcirc 8x^3 + 9x^2 + 10x + 4$ 問2 函数 $f(x) = 2 - \frac{4}{x} + \frac{2}{x^2}$ の導函数 f'(x) $\bigcirc \quad 2 - \frac{4}{x} \qquad \bigcirc \quad -\frac{4}{x^2} + \frac{4}{x^3} \qquad \bigcirc$ 問3 函数 $f(x) = x^{\frac{7}{3}}$ の導函数 f'(x) を求めた

函数 $f(x) = (x^2 + 3)(5x + 7)$ の導函数 f'(x) を求めなさい。

函数 $f(x) = \frac{2}{4x^2 + 5x + 8}$ の導函数 f'(x) を求めなさい。

函数 $f(x) = \frac{4x+7}{3x+8}$ の導函数 f'(x) を求めなさい。

函数 $f(x) = (6x+9)^7$ の導函数 f'(x) を求めなさい。

 $\bigcirc 10x \qquad \bigcirc 15x^2 + 14x + 15 \qquad \bigcirc 15x^2 + 14x \qquad \bigcirc 15x^2 + 14x + 16$

 $\bigcirc \quad -\frac{16x+10}{4x^2+5x+8} \qquad \quad \bigcirc \quad -\frac{16x+10}{(4x^2+5x+8)^2} \qquad \quad \bigcirc \quad \frac{16x+10}{4x^2+5x+8} \qquad \quad \bigcirc \quad \frac{16x+10}{(4x^2+5x+8)^2}$

 $\bigcirc \quad \frac{4}{3x+8} \qquad \bigcirc \quad \frac{11}{(3x+8)^2} \qquad \bigcirc \quad \frac{19}{3x+8} \qquad \bigcirc \quad \frac{4}{(3x+8)^2} \qquad \bigcirc \quad \frac{11}{3x+8}$

 $\bigcirc 7(6x+9)^6 \qquad \bigcirc 42(6x+9)^7 \qquad \bigcirc 42(6x+9)^6 \qquad \bigcirc 7(6x+9)^7$

問 4

問 5

問 6

問 7

問8

○3 ○3 ○3 ○3 ○3 ○3 ○3 ○3 ○3 ○3 ○3 ○4 ○4 ○4 ○4 ○4 ○4 ○4 ○4 ○4 ○4 ○4 ○4 ○4
函数 $f(x) = 2x^4 + 3x^3 + 5x^2 + 4x + 2$ の導函数 $f'(x)$ を求めなさい。
$2x^{4} + 3x^{3} + 5x^{2} + 4x + 2 \qquad \bigcirc 8x^{3} + 9x^{2} + 12x + 4 \qquad \bigcirc 8x^{3} + 9x^{2} + 10x + 6$ $\bigcirc 8x^{3} + 9x^{2} + 10x + 4 \qquad \bigcirc 2x^{4} + 6x^{3} + 5x^{2} + 4x$
函数 $f(x)=2-\frac{4}{x}+\frac{2}{x^2}$ の導函数 $f'(x)$ を求めなさい。
$) 2 - \frac{4}{x} \qquad \bigcirc -\frac{4}{x^2} + \frac{4}{x^3} \qquad \bigcirc -\frac{4}{x^2} + \frac{2}{x^3} \qquad \bigcirc \frac{4}{x^2} - \frac{2}{x^3} \qquad \bigcirc \frac{4}{x^2} - \frac{4}{x^3} $
函数 $f(x) = x^{\frac{7}{3}}$ の導函数 $f'(x)$ を求めなさい。
$\bigcirc \frac{7}{3}x^{\frac{7}{3}} \qquad \bigcirc \frac{5}{3}x^{\frac{4}{3}} \qquad \bigcirc \frac{4}{3}x^{\frac{4}{3}} \qquad \bigcirc \frac{7}{3}x^{\frac{4}{3}} \qquad \bigcirc \frac{9}{3}x^{\frac{4}{3}}$
函数 $f(x) = x^{\frac{11}{3}} - x^{-\frac{11}{6}}$ の導函数 $f'(x)$ を求めなさい。
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

応用数学 演習 03	2022 年 4 月 27 日応用数学 演習 02 2022 年 4 月 20 日
$ \begin{array}{c cccc} $	○2 ○2 ○2 ○2 ← 学生番号を左にマークし、下に氏名を記入してください。 ○3 ○3 ○3 ○3 ○3 ○4 ○4 ○4 ○4 ○4 ○4 ○5 ○5 ○5 ○5 ○5 ○6 ○6 ○6 ○6 ○6 ○6 ○6 ○7 ○7 ○7 ○7 氏名:
問 1 函数 $f(x) = 2x$	$x^4 + 3x^3 + 2x^2 + 4x + 4$ の導函数 $f'(x)$ を求めなさい。
	$4x + 4 \qquad \bigcirc 2x^4 + 6x^3 + 2x^2 + 4x \qquad \bigcirc 8x^3 + 9x^2 + 4x + 8$ $8x^3 + 9x^2 + 6x + 4 \qquad \bigcirc 2x^4 + 3x^3 + 2x^2 + 4x + 4$
問 2 函数 $f(x) = 3$	$-rac{5}{x}+rac{4}{x^2}$ の導函数 $f'(x)$ を求めなさい。
$\bigcirc \frac{5}{x^2} - \frac{8}{x^3}$	$ \bigcirc \frac{5}{x^2} - \frac{4}{x^3} \qquad \qquad \bigcirc -\frac{5}{x^2} + \frac{4}{x^3} \qquad \qquad \bigcirc 3 - \frac{5}{x} \qquad \qquad \bigcirc -\frac{5}{x^2} + \frac{8}{x^3} $
問 3 函数 $f(x) = x$	$rac{1}{2}$ の導函数 $f'(x)$ を求めなさい。
$\bigcirc \frac{2}{3}x^{\frac{2}{3}}$	$\bigcap \ \ \frac{5}{3}x^{\frac{2}{3}} \qquad \ \ \bigcap \ \ \frac{3}{3}x^{\frac{2}{3}} \qquad \ \ \bigcap \ \ \frac{7}{3}x^{\frac{2}{3}} \qquad \ \ \bigcap \ \ \frac{5}{3}x^{\frac{5}{3}}$
問 4 函数 $f(x) = x$	$rac{7}{6}-x^{-rac{7}{6}}$ の導函数 $f'(x)$ を求めなさい。
	$ \bigcirc \frac{7}{2}x^{\frac{5}{2}} - \frac{7}{6}x^{-\frac{13}{6}} \qquad \bigcirc \frac{7}{2}x^{\frac{7}{2}} + \frac{7}{6}x^{-\frac{1}{6}} \qquad \bigcirc \frac{5}{2}x^{\frac{7}{2}} + \frac{7}{6}x^{-\frac{1}{6}} \\ \bigcirc \frac{7}{2}x^{\frac{5}{2}} + \frac{7}{6}x^{-\frac{13}{6}} \qquad \bigcirc \frac{5}{2}x^{\frac{5}{2}} - \frac{7}{6}x^{\frac{1}{6}} $
問 5 函数 $f(x) = (x)$	$(x^2+4)(1x+4)$ の導函数 $f'(x)$ を求めなさい。
\bigcirc 2x	$\bigcirc 3x^2 + 8x + 4$ $\bigcirc 3x^2 + 8x$ $\bigcirc 3x^2 + 8x + 5$
問 6 函数 $f(x) = \frac{1}{2x}$	$rac{4}{s^2+6x+4}$ の導函数 $f'(x)$ を求めなさい。
	$ \bigcirc -\frac{16x+24}{(2x^2+6x+4)^2} \qquad \bigcirc -\frac{16x+24}{2x^2+6x+4} \qquad \bigcirc \frac{16x+24}{2x^2+6x+4} $
問7 函数 $f(x) = \frac{8x}{11}$	$rac{x+11}{x+8}$ の導函数 $f'(x)$ を求めなさい。
$\bigcirc \frac{8}{(11x+8)^2}$	$\bigcirc \frac{-49}{11x+8} \qquad \bigcirc \frac{-57}{11x+8} \qquad \bigcirc \frac{-57}{(11x+8)^2} \qquad \bigcirc \frac{8}{11x+8}$

 $\bigcirc 60(5x+5)^{12} \qquad \bigcirc 12(5x+5)^{11} \qquad \bigcirc 12(5x+5)^{12} \qquad \bigcirc 60(5x+5)^{11}$

問8 函数 $f(x) = (5x+5)^{12}$ の導函数 f'(x) を求めなさい。

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

\bigcirc	\circ	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
()($0\bigcirc$	()0	()0	()0	()0	()0	()0
().	1 ()1	()1	()1	()1	()1	()1	()1
-		-	-	-	-	-	
()	$2\bigcirc 2$	()	()2	()2	()2	()	()
()	$3 \bigcirc 3$	()3	()3	()3	()3	()3	()3
\cap	$4 \bigcirc 4$	\bigcap ₄	\bigcap_{A}	\bigcap_{A}	\bigcap ₄	\bigcap ₄	\bigcap ₄
\bigcup^{ι}	± U4	\bigcirc^4	\bigcirc 4	\bigcirc 4	\bigcirc 4	\bigcirc 4	\bigcirc 4
\bigcap	$5 \bigcirc 5$	\bigcap_{Γ}	\bigcap_{Γ}	\bigcap_{Γ}	\bigcap_{Γ}	\bigcap_{Γ}	\bigcap_{Γ}
\bigcup ;	э Оэ	\bigcirc 5	\bigcirc 5				
\bigcirc	$6 \bigcirc 6$	$\bigcap_{\mathcal{C}}$	$\bigcap_{\mathcal{C}}$	$\bigcap_{\mathcal{C}}$	$\bigcap_{\mathcal{C}}$	$\bigcap_{\mathcal{C}}$	\bigcap_{C}
\cup	\cup 6	\bigcirc 6	\bigcirc 6	\bigcirc 6	\bigcirc 6	\bigcirc 6	$\bigcup 6$
\bigcirc	- 0-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcup_{i}	7 🔾 7	$\bigcup \mathcal{T}$	$\bigcup \gamma$	$\bigcup \gamma$	$\bigcup \gamma$	$\bigcup \gamma$	$\bigcup \gamma$
	\sim	\bigcap	\bigcap	\bigcap	\bigcap	\bigcap	\bigcirc
\cup	$8 \bigcirc 8$	$\bigcup 8$	$\bigcup 8$	$\bigcup 8$	$\bigcup 8$	$\bigcup 8$	\cup 8
Ō.	. Ō.	Ō.	Ō	Ō	Ō.	Ō.	Ō
- ()!	9 🔾 9	$\bigcirc 9$	$\bigcup 9$	$\bigcup 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcup 9$

← 学生番号を左にマークし、下に氏名を記入

問1 函数 $f(x) = 3x^4 + 7x^3 + 7x^2 + 4x + 1$ の導函数 f'(x) を求めなさい。

$$\bigcirc 12x^3 + 21x^2 + 14x + 5 \qquad \bigcirc 12x^3 + 21x^2 + 14x + 4 \qquad \bigcirc 12x^3 + 21x^2 + 16x + 4$$

$$\bigcap$$
 12 $x^3 + 21x^2 + 14x + 4$

$$12x^3 + 21x^2 + 16x + 4$$

$$0 \quad 3x^4 + 14x^3 + 7x^2 + 4x$$

問 2 函数 $f(x) = 1 - \frac{3}{x} + \frac{3}{x^2}$ の導函数 f'(x) を求めなさい。

$$0 1 - \frac{3}{x}$$

$$\bigcirc \quad \frac{3}{x^2} - \frac{3}{x^3}$$

$$\bigcirc \quad 1 - \frac{3}{x} \qquad \bigcirc \quad \frac{3}{x^2} - \frac{3}{x^3} \qquad \bigcirc \quad -\frac{3}{x^2} + \frac{6}{x^3} \qquad \bigcirc \quad -\frac{3}{x^2} + \frac{3}{x^3} \qquad \bigcirc \quad \frac{3}{x^2} - \frac{6}{x^3}$$

$$-\frac{3}{x^2} + \frac{3}{x^3}$$

$$\bigcirc \quad \frac{3}{x^2} - \frac{6}{x^3}$$

問3 函数 $f(x) = x^{\frac{11}{2}}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \frac{9}{2}x^{\frac{9}{2}}$$

$$\bigcirc \frac{9}{2}x^{\frac{9}{2}}$$

$$\left(\right) \frac{13}{2}x$$

$$\int \frac{11}{2} x^{\frac{9}{2}}$$

$$\bigcirc \quad \frac{9}{2}x^{\frac{9}{2}} \qquad \quad \bigcirc \quad \frac{9}{2}x^{\frac{9}{2}} \qquad \quad \bigcirc \quad \frac{13}{2}x^{\frac{9}{2}} \qquad \quad \bigcirc \quad \frac{11}{2}x^{\frac{9}{2}} \qquad \quad \bigcirc \quad \frac{11}{2}x^{\frac{11}{2}}$$

問4 函数 $f(x) = x^{\frac{11}{2}} - x^{-\frac{13}{4}}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{9}{2}x^{\frac{9}{2}} - \frac{13}{4}x^{\frac{9}{4}}$$

$$0 \frac{9}{2}x^{\frac{11}{2}} + \frac{13}{4}x^{-\frac{9}{4}}$$
$$0 \frac{11}{4}x^{\frac{9}{2}} + \frac{13}{4}x^{-\frac{1}{4}}$$

$$\bigcap_{11} \frac{11}{2} x^{\frac{9}{2}} - \frac{13}{4} x^{-\frac{17}{4}}$$

$$\bigcirc \ \, \frac{9}{2}x^{\frac{9}{2}} - \frac{13}{4}x^{\frac{9}{4}} \qquad \bigcirc \ \, \frac{9}{2}x^{\frac{11}{2}} + \frac{13}{4}x^{-\frac{9}{4}} \qquad \bigcirc \ \, \frac{11}{2}x^{\frac{9}{2}} - \frac{13}{4}x^{-\frac{17}{4}} \qquad \bigcirc \ \, \frac{11}{2}x^{-\frac{9}{2}} + \frac{13}{4}x^{-\frac{9}{4}} \\ \bigcirc \ \, \frac{11}{2}x^{\frac{9}{2}} + \frac{13}{4}x^{-\frac{17}{4}} \qquad \bigcirc \ \, \frac{11}{2}x^{\frac{11}{2}} + \frac{13}{4}x^{-\frac{9}{4}}$$

函数 $f(x) = (x^2 + 4)(4x + 7)$ の導函数 f'(x) を求めなさい。 問 5

$$\bigcap$$
 8x

$$\bigcirc$$
 8x \bigcirc 12x² + 14x + 17 \bigcirc 12x² + 14x \bigcirc 12x² + 14x + 16

$$\bigcap 12x^2 + 14x$$

$$\bigcap$$
 12 $x^2 + 14x + 16$

函数 $f(x) = \frac{1}{7x^2+4x+2}$ の導函数 f'(x) を求めなさい。 問 6

$$\frac{14x+4}{7x^2+4x+2}$$

$$-\frac{14x+4}{7x^2+4x+2}$$

$$\bigcirc \quad \frac{14x+4}{7x^2+4x+2} \qquad \quad \bigcirc \quad -\frac{14x+4}{7x^2+4x+2} \qquad \quad \bigcirc \quad -\frac{14x+4}{(7x^2+4x+2)^2} \qquad \quad \bigcirc \quad \frac{14x+4}{(7x^2+4x+2)^2}$$

函数 $f(x) = \frac{2x+5}{7x+4}$ の導函数 f'(x) を求めなさい。 問 7

$$\bigcirc$$
 $\frac{2}{7x+4}$

$$\bigcirc$$
 $\frac{-27}{7x+4}$

$$\bigcirc \quad \frac{-23}{7x+4}$$

$$\bigcirc \quad \frac{2}{7x+4} \qquad \bigcirc \quad \frac{-27}{7x+4} \qquad \bigcirc \quad \frac{-23}{7x+4} \qquad \bigcirc \quad \frac{-27}{(7x+4)^2} \qquad \bigcirc \quad \frac{2}{(7x+4)^2}$$

$$\bigcirc \quad \frac{2}{(7x+4)^2}$$

函数 $f(x) = (4x+7)^8$ の導函数 f'(x) を求めなさい。 問8

$$\bigcirc 32(4x+7)^8$$

$$\bigcirc 32(4x+7)^7$$

$$\bigcirc 32(4x+7)^8 \qquad \bigcirc 32(4x+7)^7 \qquad \bigcirc 8(4x+7)^7 \qquad \bigcirc 8(4x+7)^8$$

$$\bigcirc 8(4x+7)^8$$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

\bigcap	\bigcirc	\bigcap	\bigcap	\bigcirc	\bigcap	\bigcap	\bigcap
$\bigcup 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$	$\bigcirc 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$
\bigcap_{1}	\bigcap_{1}	\bigcap_{1}	\bigcap_{1}	$\bigcirc 1$	\bigcap_{1}	\bigcap_{1}	\bigcap_{1}
\bigcap_{2}	\bigcap_{2}	\bigcap_{2}	\bigcap_{2}	$\bigcirc 2$	\bigcap_{2}	\bigcap_{2}	\bigcap_{2}
()3	()3	()3	()3	$\bigcirc 3$	()3	()3	()3
-		-	-	-	-	-	-
				$\bigcirc 4$			
\bigcap_{Σ}	\bigcap 5	\bigcap_{Σ}	\bigcap_{Σ}	$\bigcirc 5$	\bigcap_{Σ}	\bigcap_{Σ}	\bigcap 5
()6	()6	()6	()6	$\bigcirc 6$	()6	()6	()6
$\bigcup 7$	$\bigcup 7$	$\bigcup 7$	$\bigcup 7$	$\bigcirc 7$	$\bigcup 7$	$\bigcup 7$	$\bigcup 7$
\bigcap	\bigcap	\bigcap	\bigcap	$\bigcirc 8$	\bigcap	\bigcap	\bigcap
_	_	_	_	_	_	_	_
\bigcap a	\bigcap a	\bigcap q	\bigcap q	$\bigcirc 9$	\bigcap a	\bigcap α	\bigcap α
くノジ							くりひ

← 学生番号を左にマークし、下に氏名を記入してください。

氏名:	 	

問1 函数 $f(x) = 2x^4 + 2x^3 + 6x^2 + 2x + 4$ の導函数 f'(x) を求めなさい。

- **問2** 函数 $f(x) = 4 \frac{5}{x} + \frac{4}{x^2}$ の導函数 f'(x) を求めなさい。
- $\bigcirc \quad \frac{5}{x^2} \frac{8}{x^3} \qquad \bigcirc \quad -\frac{5}{x^2} + \frac{4}{x^3} \qquad \bigcirc \quad -\frac{5}{x^2} + \frac{8}{x^3} \qquad \bigcirc \quad \frac{5}{x^2} \frac{4}{x^3} \qquad \bigcirc \quad 4 \frac{5}{x}$
- 問3 函数 $f(x) = x^{\frac{11}{3}}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad \frac{9}{3}x^{\frac{8}{3}} \qquad \quad \bigcirc \quad \frac{13}{3}x^{\frac{8}{3}} \qquad \quad \bigcirc \quad \frac{8}{3}x^{\frac{8}{3}} \qquad \quad \bigcirc \quad \frac{11}{3}x^{\frac{11}{3}} \qquad \quad \bigcirc \quad \frac{11}{3}x^{\frac{8}{3}}$
- **問4** 函数 $f(x) = x^{\frac{11}{2}} x^{-\frac{7}{4}}$ の導函数 f'(x) を求めなさい。
- $\bigcirc \quad \frac{11}{2}x^{-\frac{9}{2}} + \frac{7}{4}x^{-\frac{3}{4}} \qquad \bigcirc \quad \frac{11}{2}x^{\frac{9}{2}} \frac{7}{4}x^{-\frac{11}{4}} \qquad \bigcirc \quad \frac{11}{2}x^{\frac{9}{2}} + \frac{7}{4}x^{-\frac{11}{4}} \qquad \bigcirc \quad \frac{11}{2}x^{\frac{11}{2}} + \frac{7}{4}x^{-\frac{3}{4}} \\ \bigcirc \quad \frac{9}{2}x^{\frac{9}{2}} \frac{7}{4}x^{\frac{3}{4}} \qquad \bigcirc \quad \frac{9}{2}x^{\frac{11}{2}} + \frac{7}{4}x^{-\frac{3}{4}}$
- **問 5** 函数 $f(x) = (x^2 + 4)(4x + 7)$ の導函数 f'(x) を求めなさい。
 - $\bigcirc 12x^2 + 14x \qquad \bigcirc 8x \qquad \bigcirc 12x^2 + 14x + 17 \qquad \bigcirc 12x^2 + 14x + 16$
- 問 6 函数 $f(x) = \frac{4}{5x^2 + 5x + 5}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad -\frac{40x+20}{5x^2+5x+5} \qquad \qquad \bigcirc \quad \frac{40x+20}{(5x^2+5x+5)^2} \qquad \qquad \bigcirc \quad -\frac{40x+20}{(5x^2+5x+5)^2} \qquad \qquad \bigcirc \quad \frac{40x+20}{5x^2+5x+5}$
- **問7** 函数 $f(x) = \frac{4x+3}{11x+4}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad \frac{4}{(11x+4)^2} \qquad \bigcirc \quad \frac{-17}{(11x+4)^2} \qquad \bigcirc \quad \frac{4}{11x+4} \qquad \bigcirc \quad \frac{-13}{11x+4} \qquad \bigcirc \quad \frac{-17}{11x+4}$
- 問8 函数 $f(x) = (4x+3)^7$ の導函数 f'(x) を求めなさい。
 - $\bigcirc 28(4x+3)^6 \qquad \bigcirc 7(4x+3)^7 \qquad \bigcirc 28(4x+3)^7 \qquad \bigcirc 7(4x+3)^6$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

$\bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0$	
$\bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1$	$\bigcirc 1$
$\bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2$	$\bigcirc 2$
$\bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3$	$\bigcirc 3$
$\bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4$	$\bigcirc 4$
$\bigcirc 5 \bigcirc 5 \bigcirc 5 \bigcirc 5 \bigcirc 5 \bigcirc 5 \bigcirc 5$	$\bigcirc 5$
$\bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6$	$\bigcirc 6$
$\bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7$	$\bigcirc 7$
$\bigcirc 8 \bigcirc 8 \bigcirc 8 \bigcirc 8 \bigcirc 8 \bigcirc 8$	$\bigcirc 8$
$\bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9$	$\bigcirc 9$

← 学生番号を左にマークし、下に氏名を記入 してください。

氏征	名:	 										

問1 函数 $f(x) = 7x^4 + 5x^3 + 6x^2 + 3x + 6$ の導函数 f'(x) を求めなさい。

- $\bigcirc 7x^4 + 5x^3 + 6x^2 + 3x + 6 \qquad \bigcirc 7x^4 + 10x^3 + 6x^2 + 3x \qquad \bigcirc 28x^3 + 15x^2 + 12x + 9$ $\bigcirc 28x^3 + 15x^2 + 14x + 3 \qquad \bigcirc 28x^3 + 15x^2 + 12x + 3$
- 問 2 函数 $f(x)=5-\frac{5}{x}+\frac{4}{x^2}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad \frac{5}{x^2} \frac{4}{x^3} \qquad \quad \bigcirc \quad -\frac{5}{x^2} + \frac{8}{x^3} \qquad \quad \bigcirc \quad \frac{5}{x^2} \frac{8}{x^3} \qquad \quad \bigcirc \quad 5 \frac{5}{x} \qquad \quad \bigcirc \quad -\frac{5}{x^2} + \frac{4}{x^3}$
- 問 3 函数 $f(x) = x^{\frac{7}{2}}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad \frac{7}{2}x^{\frac{7}{2}} \qquad \bigcirc \quad \frac{7}{2}x^{\frac{5}{2}} \qquad \bigcirc \quad \frac{5}{2}x^{\frac{5}{2}} \qquad \bigcirc \quad \frac{9}{2}x^{\frac{5}{2}} \qquad \bigcirc \quad \frac{5}{2}x^{\frac{5}{2}}$
- 問 4 函数 $f(x) = x^{\frac{7}{2}} x^{-\frac{11}{6}}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad \frac{5}{2}x^{\frac{5}{2}} \frac{11}{6}x^{\frac{5}{6}} \qquad \bigcirc \quad \frac{7}{2}x^{-\frac{5}{2}} + \frac{11}{6}x^{-\frac{5}{6}} \qquad \bigcirc \quad \frac{7}{2}x^{\frac{5}{2}} \frac{11}{6}x^{-\frac{17}{6}} \qquad \bigcirc \quad \frac{7}{2}x^{\frac{7}{2}} + \frac{11}{6}x^{-\frac{5}{6}} \qquad \bigcirc \quad \frac{7}{2}x^{\frac{7}{2}} + \frac{11}{6}x^{-\frac{5}{6}} \qquad \bigcirc \quad \frac{7}{2}x^{\frac{5}{2}} + \frac{11}{6}x^{-\frac{17}{6}}$
- **問 5** 函数 $f(x) = (x^2 + 2)(3x + 7)$ の導函数 f'(x) を求めなさい。
 - $\bigcirc 9x^2 + 14x + 6$ $\bigcirc 6x$ $\bigcirc 9x^2 + 14x + 7$ $\bigcirc 9x^2 + 14x$
- 問 6 函数 $f(x) = \frac{6}{5x^2 + 4x + 6}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad -\frac{60x+24}{(5x^2+4x+6)^2} \qquad \quad \bigcirc \quad \frac{60x+24}{5x^2+4x+6} \qquad \quad \bigcirc \quad \frac{60x+24}{(5x^2+4x+6)^2} \qquad \quad \bigcirc \quad -\frac{60x+24}{5x^2+4x+6}$
- 問 7 函数 $f(x)=rac{2x+11}{11x+8}$ の導函数 f'(x) を求めなさい。
- $\bigcirc \quad \frac{2}{(11x+8)^2} \qquad \bigcirc \quad \frac{-97}{11x+8} \qquad \bigcirc \quad \frac{-105}{11x+8} \qquad \bigcirc \quad \frac{2}{11x+8} \qquad \bigcirc \quad \frac{-105}{(11x+8)^2}$
- 問8 函数 $f(x) = (3x+3)^{10}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad 30(3x+3)^9 \qquad \quad \bigcirc \quad 10(3x+3)^{10} \qquad \quad \bigcirc \quad 10(3x+3)^9 \qquad \quad \bigcirc \quad 30(3x+3)^{10}$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

$\bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0$	$)_0$
$\bigcirc 1 \bigcirc 1$	$)_1$
$\bigcirc 2 \bigcirc 2$	$)_2$
$\bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc$	$)_3$
$\bigcirc 4 \bigcirc 4$	$)_4$
$\bigcirc 5$	$)_5$
$\bigcirc 6 \bigcirc 6$)6
\bigcirc 7	$)_7$
08 08 08 08 08 08 ()8
$\bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc$	9

← 学生番号を左にマークし、下に氏名を記入してください。

氏名:	 	

問1 函数 $f(x) = 6x^4 + 5x^3 + 6x^2 + 7x + 4$ の導函数 f'(x) を求めなさい。

$$\bigcirc 24x^3 + 15x^2 + 14x + 7 \qquad \bigcirc 6x^4 + 5x^3 + 6x^2 + 7x + 4 \qquad \bigcirc 24x^3 + 15x^2 + 12x + 11$$

$$\bigcirc 24x^3 + 15x^2 + 12x + 7 \qquad \bigcirc 6x^4 + 10x^3 + 6x^2 + 7x$$

問2 函数 $f(x) = 2 - \frac{4}{x} + \frac{4}{x^2}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{4}{x^2} - \frac{4}{x^3} \qquad \bigcirc \quad -\frac{4}{x^2} + \frac{4}{x^3} \qquad \bigcirc \quad 2 - \frac{4}{x} \qquad \bigcirc \quad -\frac{4}{x^2} + \frac{8}{x^3} \qquad \bigcirc \quad \frac{4}{x^2} - \frac{8}{x^3}$$

問3 函数 $f(x) = x^{\frac{7}{3}}$ の導函数 f'(x) を求めなさい。

 $\bigcirc \quad \frac{4}{3}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{9}{3}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{5}{3}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{7}{3}x^{\frac{4}{3}}$

問 5 函数 $f(x) = (x^2 + 1)(4x + 3)$ の導函数 f'(x) を求めなさい。

$$\bigcirc 12x^2 + 6x$$
 $\bigcirc 8x$ $\bigcirc 12x^2 + 6x + 4$ $\bigcirc 12x^2 + 6x + 5$

問 6 函数 $f(x) = \frac{4}{5x^2 + 2x + 9}$ の導函数 f'(x) を求めなさい。

問7 函数
$$f(x) = \frac{4x+5}{5x+8}$$
 の導函数 $f'(x)$ を求めなさい。
$$\bigcirc \frac{15}{5x+8} \qquad \bigcirc \frac{4}{(5x+8)^2} \qquad \bigcirc \frac{7}{(5x+8)^2} \qquad \bigcirc \frac{7}{5x+8} \qquad \bigcirc \frac{4}{5x+8}$$

問8 函数 $f(x) = (8x+2)^{12}$ の導函数 f'(x) を求めなさい。

$$\bigcirc 96(8x+2)^{12} \qquad \bigcirc 96(8x+2)^{11} \qquad \bigcirc 12(8x+2)^{12} \qquad \bigcirc 12(8x+2)^{11}$$

 $\bigcirc \quad -\frac{40x+8}{5x^2+2x+9} \qquad \qquad \bigcirc \quad -\frac{40x+8}{(5x^2+2x+9)^2} \qquad \qquad \bigcirc \quad \frac{40x+8}{(5x^2+2x+9)^2} \qquad \qquad \bigcirc \quad \frac{40x+8}{5x^2+2x+9}$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

	$\overline{}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
(()0	()0	$\bigcirc 0$	()0	()0	()0	()0
(. J1	()1	()1	$\bigcirc 1$	()1	()1	()1	()1
($^{\circ}$	$\bigcup 2$	$\bigcup 2$	$\bigcirc 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$
($\cup 3$	$\bigcup 3$	$\bigcup 3$	$\bigcirc 3$	$\bigcup 3$	$\bigcup 3$	$\bigcup 3$	$\bigcup 3$
($\bigcup 4$	$\bigcup 4$	$\bigcup 4$	$\bigcirc 4$	$\bigcup 4$	$\bigcup 4$	$\bigcup 4$	$\bigcup 4$
-	7-	0-	\bigcirc -	$\bigcirc 5$	0-	\bigcirc	\bigcirc -	0-
(\cup 5	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$
- ($\bigcap_{\mathcal{C}}$	$\bigcap_{\mathcal{C}}$	$\bigcap_{\mathcal{C}}$	$\bigcirc 6$	$\bigcap_{\mathcal{C}}$	$\bigcap_{\mathcal{C}}$	\bigcap_{C}	\bigcap_{C}
(\mathcal{O}_{0}	\bigcirc 0	\bigcirc 6	\bigcirc 6	\bigcirc 0	\bigcirc 6	\bigcirc 6	\bigcup_{0}
- (\bigcap_{τ}	\bigcap_{7}	\bigcap_{7}	\bigcirc 7	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}
()1	$\bigcup i$	$\bigcup i$	$\bigcup i$	$\bigcup i$	$\bigcup i$	$\bigcup i$	$\bigcup i$
- (\cap	\cap	\cap	$\bigcirc 8$	\cap	\cap	\cap	\cap
1	\bigcap_{α}	\bigcap	\bigcap	$\bigcirc 9$	\bigcap	\bigcap	\bigcap	\bigcap
١	JÐ	(J)	CJB	(J)	(J)	(J)	(Ja	()3

← 学生番号を左にマークし、下に氏名を記入 してください。

氏名:	 	

問1 函数 $f(x) = 5x^4 + 3x^3 + 2x^2 + 3x + 1$ の導函数 f'(x) を求めなさい。

$$\bigcirc 20x^3 + 9x^2 + 4x + 4 \qquad \bigcirc 20x^3 + 9x^2 + 6x + 3 \qquad \bigcirc 5x^4 + 3x^3 + 2x^2 + 3x + 1$$

$$\bigcirc 20x^3 + 9x^2 + 4x + 3 \qquad \bigcirc 5x^4 + 6x^3 + 2x^2 + 3x$$

問 2 函数 $f(x)=4-\frac{1}{x}+\frac{5}{x^2}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{1}{x^2} - \frac{5}{x^3} \qquad \quad \bigcirc \quad -\frac{1}{x^2} + \frac{5}{x^3} \qquad \quad \bigcirc \quad \frac{1}{x^2} - \frac{10}{x^3} \qquad \quad \bigcirc \quad -\frac{1}{x^2} + \frac{10}{x^3} \qquad \quad \bigcirc \quad 4 - \frac{1}{x^2}$$

問3 函数 $f(x) = x^{\frac{7}{2}}$ の導函数 f'(x) を求めなさい。

 $\bigcirc \quad 10x \qquad \bigcirc \quad 15x^2 + 12x + 6 \qquad \bigcirc \quad 15x^2 + 12x \qquad \bigcirc \quad 15x^2 + 12x + 5$

 $\bigcirc \quad \frac{7}{2}x^{\frac{7}{2}} \qquad \bigcirc \quad \frac{9}{2}x^{\frac{5}{2}} \qquad \bigcirc \quad \frac{5}{2}x^{\frac{5}{2}} \qquad \bigcirc \quad \frac{7}{2}x^{\frac{5}{2}}$

問 5 函数 $f(x) = (x^2 + 1)(5x + 6)$ の導函数 f'(x) を求めなさい。

問 6 函数
$$f(x) = \frac{1}{3x^2 + 8x + 7}$$
 の導函数 $f'(x)$ を求めなさい。
$$\bigcirc \frac{6x + 8}{3x^2 + 8x + 7} \bigcirc -\frac{6x + 8}{(3x^2 + 8x + 7)^2} \bigcirc \frac{6x + 8}{(3x^2 + 8x + 7)^2} \bigcirc -\frac{6x + 8}{3x^2 + 8x + 7}$$

問 7 函数 $f(x)=rac{4x+5}{7x+4}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{-19}{7x+4} \qquad \bigcirc \quad \frac{-19}{(7x+4)^2} \qquad \bigcirc \quad \frac{-15}{7x+4} \qquad \bigcirc \quad \frac{4}{(7x+4)^2} \qquad \bigcirc \quad \frac{4}{7x+4}$$

問8 函数 $f(x) = (7x+3)^{12}$ の導函数 f'(x) を求めなさい。

$$\bigcirc 12(7x+3)^{12} \qquad \bigcirc 12(7x+3)^{11} \qquad \bigcirc 84(7x+3)^{12} \qquad \bigcirc 84(7x+3)^{11}$$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

	\bigcap_{α}	\bigcirc	\bigcap	\bigcirc	\bigcap	\bigcap	\bigcirc	\bigcirc
	$\bigcup 0$	$\bigcup 0$	$\bigcirc 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$
1	\bigcap_1	\bigcap_1	$\bigcirc 1$	\bigcap_1	\bigcap_1	\bigcap_1	\bigcap_1	\bigcap_1
-)2	()2	$\bigcirc 2$	()2	()2	()2	()2	()2
	$\cup 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcup 3$
1	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
1	٦	Ō۴	$\bigcirc 5$	Ō۴	Ō۴	Ō۴	Ō۴	Ō۴
-	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
1	\bigcap_{7}	\bigcap_{7}	\bigcirc 7	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}
-	$\bigcup 8$	$\bigcup 8$	$\bigcirc 8$	$\bigcup 8$	$\bigcup 8$	$\bigcup 8$	$\bigcup 8$	$\bigcup 8$
1	\bigcap_{α}	\bigcap	$\bigcirc 9$	\bigcap	\bigcap	\bigcap	\bigcap a	\bigcap
,	しょう	()0	くりひ	()0	()0	()0	()0	() ご

← 学生番号を左にマークし、下に氏名を記入

氏名:	 	

問1 函数 $f(x) = 5x^4 + 7x^3 + 2x^2 + 5x + 6$ の導函数 f'(x) を求めなさい。

$$\bigcirc 20x^3 + 21x^2 + 4x + 11 \qquad \bigcirc 5x^4 + 14x^3 + 2x^2 + 5x \qquad \bigcirc 20x^3 + 21x^2 + 4x + 5$$

$$0 \quad 5x^4 + 14x^3 + 2x^2 + 5x$$

$$\bigcirc 20x^3 + 21x^2 + 4x + 5$$

$$\bigcirc 20x^3 + 21x^2 + 6x +$$

函数 $f(x) = 2 - \frac{4}{x} + \frac{5}{x^2}$ の導函数 f'(x) を求めなさい。 問 2

$$\bigcirc \quad -\frac{4}{x^2} + \frac{5}{x^3} \qquad \bigcirc \quad \frac{4}{x^2} - \frac{5}{x^3} \qquad \bigcirc \quad \frac{4}{x^2} - \frac{10}{x^3} \qquad \bigcirc \quad 2 - \frac{4}{x} \qquad \bigcirc \quad -\frac{4}{x^2} + \frac{10}{x^3}$$

$$\bigcirc \quad \frac{4}{x^2} - \frac{5}{x^3}$$

$$\bigcirc \quad \frac{4}{x^2} - \frac{10}{x^3}$$

$$O$$
 $2-\frac{4}{x}$

$$-\frac{4}{x^2} + \frac{10}{x^3}$$

問3 函数 $f(x) = x^{\frac{5}{2}}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{3}{2}x^{\frac{3}{2}}$$

$$\bigcirc \ \ \frac{3}{2}x^{\frac{3}{2}} \qquad \bigcirc \ \ \frac{3}{2}x^{\frac{3}{2}} \qquad \bigcirc \ \ \frac{7}{2}x^{\frac{3}{2}} \qquad \bigcirc \ \ \frac{5}{2}x^{\frac{3}{2}}$$

$$\bigcap \frac{7}{2}x$$

$$\int \frac{5}{2}x^{\frac{5}{2}}$$

$$\bigcirc \quad \frac{5}{2}x^{\frac{5}{2}}$$

問4 函数 $f(x) = x^{\frac{7}{3}} - x^{-\frac{7}{4}}$ の導函数 f'(x) を求めなさい。

$$0 \quad \frac{4}{3}x^{\frac{4}{3}} - \frac{7}{4}x^{\frac{3}{4}}$$

$$\bigcap_{x \to 7} \frac{7}{3}x^{-\frac{4}{3}} + \frac{7}{4}x^{-\frac{3}{4}}$$

$$\bigcirc \quad \frac{7}{3}x^{\frac{7}{3}} + \frac{7}{4}x^{-\frac{3}{4}}$$

$$\bigcirc \quad \frac{4}{3}x^{\frac{4}{3}} - \frac{7}{4}x^{\frac{3}{4}} \qquad \bigcirc \quad \frac{7}{3}x^{-\frac{4}{3}} + \frac{7}{4}x^{-\frac{3}{4}} \qquad \bigcirc \quad \frac{7}{3}x^{\frac{7}{3}} + \frac{7}{4}x^{-\frac{3}{4}} \qquad \bigcirc \quad \frac{7}{3}x^{\frac{4}{3}} - \frac{7}{4}x^{-\frac{11}{4}}$$

問 5 函数 $f(x) = (x^2 + 4)(5x + 5)$ の導函数 f'(x) を求めなさい。

$$\bigcap$$
 15 $x^2 + 10x + 20$

$$\bigcap$$
 10x

$$\bigcap$$
 15x² + 10x

$$\bigcirc 15x^2 + 10x + 20 \qquad \bigcirc 10x \qquad \bigcirc 15x^2 + 10x \qquad \bigcirc 15x^2 + 10x + 21$$

函数 $f(x) = \frac{6}{8x^2 + 2x + 5}$ の導函数 f'(x) を求めなさい。 問 6

$$-\frac{96x+12}{8x^2+2x+5}$$

$$\frac{96x+12}{(8x^2+2x+5)^2}$$

$$\frac{96x+12}{8x^2+2x+5}$$

$$\bigcirc \quad -\frac{96x+12}{8x^2+2x+5} \qquad \quad \bigcirc \quad \frac{96x+12}{(8x^2+2x+5)^2} \qquad \quad \bigcirc \quad \frac{96x+12}{8x^2+2x+5} \qquad \quad \bigcirc \quad -\frac{96x+12}{(8x^2+2x+5)^2}$$

函数 $f(x) = \frac{4x+5}{5x+2}$ の導函数 f'(x) を求めなさい。 問 7

$$\frac{-17}{(5x+2)^2}$$

$$\bigcirc \quad \frac{-17}{5x+2}$$

$$\bigcirc \quad \frac{-15}{5x+2}$$

$$\bigcirc \quad \frac{4}{5x+2}$$

$$\bigcirc \quad \frac{-17}{(5x+2)^2} \qquad \bigcirc \quad \frac{-17}{5x+2} \qquad \bigcirc \quad \frac{-15}{5x+2} \qquad \bigcirc \quad \frac{4}{5x+2} \qquad \bigcirc \quad \frac{4}{(5x+2)^2}$$

問8 函数 $f(x) = (9x+6)^{12}$ の導函数 f'(x) を求めなさい。

$$0 12(9x+6)^{11}$$

$$0 12(9x+6)^{12}$$

$$\bigcirc 12(9x+6)^{11} \qquad \bigcirc 12(9x+6)^{12} \qquad \bigcirc 108(9x+6)^{12} \qquad \bigcirc 108(9x+6)^{11}$$

$$0 108(9x+6)^{11}$$

応用数学 演習 03	2022年4月27	日応用数学 演習 02	2022年4月20日
$ \begin{array}{c cccc} \bigcirc 0 & \bigcirc 0 & \bigcirc 0 & \bigcirc 0 \\ \bigcirc 1 & \bigcirc 1 & \bigcirc 1 & \bigcirc 1 \\ \bigcirc 2 & \bigcirc 2 & \bigcirc 2 & \bigcirc 2 \\ \bigcirc 3 & \bigcirc 3 & \bigcirc 3 & \bigcirc 3 \\ \bigcirc 4 & \bigcirc 4 & \bigcirc 4 & \bigcirc 4 \\ \bigcirc 5 & \bigcirc 5 & \bigcirc 5 & \bigcirc 5 \\ \bigcirc 6 & \bigcirc 6 & \bigcirc 6 & \bigcirc 6 \\ \bigcirc 7 & \bigcirc 7 & \bigcirc 7 & \bigcirc 7 \\ \bigcirc 8 & \bigcirc 8 & \bigcirc 8 & \bigcirc 8 \\ \bigcirc 9 & \bigcirc 9 & \bigcirc 9 & \bigcirc 9 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	してください。	マークし、下に氏名を記入
問 1 函数 $f(x) = 5x$	$4 + 3x^3 + 2x^2 + 4x + 9$	の導函数 $f'(x)$ を求め	なさい。
_	$+13 \qquad \bigcirc 5x^4 + 3x^4 + 3x^2 + 4x + 4$	_	$0 5x^4 + 6x^3 + 2x^2 + 4x + 6x + 4$
問 2 函数 $f(x) = 5$ -	$-rac{3}{x}+rac{3}{x^2}$ の導函数 $f'(x)$	を求めなさい。	
$\bigcirc 5 - \frac{3}{x} \qquad \bigcirc$	$\frac{3}{x^2} - \frac{6}{x^3} \qquad \qquad \bigcirc \frac{3}{x^2}$	$-\frac{3}{x^3} \qquad \qquad \bigcirc -\frac{3}{x^2}$	$+\frac{3}{x^3}$ $-\frac{3}{x^2} + \frac{6}{x^3}$
問 3 函数 $f(x) = x^{\frac{1}{3}}$	$^{rac{1}{3}}$ の導函数 $f'(x)$ を求め	なさい。	
$\bigcirc \tfrac{8}{3}x^{\frac{8}{3}}$	$\bigcirc \frac{11}{3}x^{\frac{11}{3}} \qquad \bigcirc$	$\frac{11}{3}x^{\frac{8}{3}}$ $\frac{9}{3}x$	$\frac{8}{3}$ $\frac{13}{3}x^{\frac{8}{3}}$
問 4 函数 $f(x) = x^{\frac{7}{2}}$	$-x^{-\frac{11}{5}}$ の導函数 $f'(x)$	を求めなさい。	
$\bigcirc \frac{7}{2}x^{\frac{7}{2}} + \frac{11}{5}x^{-\frac{6}{5}}$		$ \begin{array}{ccc} $	$ \begin{array}{ccc} & x^{\frac{6}{5}} & & \\ & x^{\frac{6}{5}} & & \\ & x^{-\frac{6}{5}} & & \\ & & x^{\frac{6}{5}} & & \\ \end{array} $
問 5 函数 $f(x) = (x)$	(2+2)(3x+7) の導函数	f'(x) を求めなさい。	
$0 9x^2 + 14x$	$x+6$ \bigcirc $9x^2+3$	$0 9x^2 + 1$	$4x+7$ \bigcirc $6x$
問6 函数 $f(x) = \frac{1}{6x^2}$	$\frac{9}{2+3x+8}$ の導函数 $f'(x)$ る	を求めなさい。	
			$\frac{108x+27}{6x^2+3x+8}$
問7 函数 $f(x) = \frac{2x}{112}$	$\frac{+11}{r+4}$ の導函数 $f'(x)$ を求	めなさい。	
$\bigcirc \frac{-109}{11x+4}$	$\bigcirc \frac{-113}{11x+4} \qquad \bigcirc$	$\frac{2}{(11x+4)^2} \qquad \qquad \bigcirc \frac{2}{11x}$	$\frac{2}{c+4}$
問8 函数 $f(x) = (6a)$	$(x+4)^{12}$ の導函数 $f'(x)$	を求めなさい。	

 $\bigcirc 12(6x+4)^{11} \qquad \bigcirc 72(6x+4)^{11} \qquad \bigcirc 12(6x+4)^{12} \qquad \bigcirc 72(6x+4)^{12}$

2022年4月20日

← 学生番号を左にマーク してください。	し、下に氏名を記入
氏名:	

問 1	函数 $f(x) =$	$=6x^4+3x^3+$	$-5x^2 + 6x + 7$	の導函数 f'(:	r) を求めなさい。

- $\bigcirc 24x^3 + 9x^2 + 12x + 6 \qquad \bigcirc 24x^3 + 9x^2 + 10x + 6 \qquad \bigcirc 24x^3 + 9x^2 + 10x + 13$ $\bigcirc 6x^4 + 3x^3 + 5x^2 + 6x + 7 \qquad \bigcirc 6x^4 + 6x^3 + 5x^2 + 6x$
- 問 2
- $\bigcirc \quad \frac{4}{x^2} \frac{4}{x^3} \qquad \quad \bigcirc \quad 5 \frac{4}{x} \qquad \quad \bigcirc \quad -\frac{4}{x^2} + \frac{4}{x^3} \qquad \quad \bigcirc \quad -\frac{4}{x^2} + \frac{2}{x^3} \qquad \quad \bigcirc \quad \frac{4}{x^2} \frac{2}{x^3}$
- **問3** 函数 $f(x) = x^{\frac{11}{3}}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \frac{11}{2}x^{\frac{8}{3}} \qquad \bigcirc \frac{13}{2}x^{\frac{8}{3}} \qquad \bigcirc \frac{8}{2}x^{\frac{8}{3}} \qquad \bigcirc \frac{11}{2}x^{\frac{11}{3}} \qquad \bigcirc \frac{9}{2}x^{\frac{8}{3}}$
- 函数 $f(x) = x^{\frac{7}{3}} x^{-\frac{11}{5}}$ の導函数 f'(x) を求めなさい。 問 4
 - $\bigcirc \quad \frac{7}{3}x^{\frac{4}{3}} + \frac{11}{5}x^{-\frac{16}{5}} \qquad \bigcirc \quad \frac{4}{3}x^{\frac{4}{3}} \frac{11}{5}x^{\frac{6}{5}} \qquad \bigcirc \quad \frac{4}{3}x^{\frac{7}{3}} + \frac{11}{5}x^{-\frac{6}{5}} \qquad \bigcirc \quad \frac{7}{3}x^{-\frac{4}{3}} + \frac{11}{5}x^{-\frac{6}{5}} \qquad \bigcirc \quad \frac{7}{3}x^{\frac{7}{3}} + \frac{11}{5}x^{-\frac{6}{5}} \qquad \bigcirc \quad \frac{7}{3}x^{\frac{7}{3}} + \frac{11}{5}x^{-\frac{6}{5}}$
- 函数 $f(x) = (x^2 + 4)(4x + 7)$ の導函数 f'(x) を求めなさい。 問 5
 - $\bigcirc 12x^2 + 14x \qquad \bigcirc 12x^2 + 14x + 16 \qquad \bigcirc 8x \qquad \bigcirc 12x^2 + 14x + 17$
- 函数 $f(x) = \frac{7}{3x^2 + 2x + 4}$ の導函数 f'(x) を求めなさい。 問 6
 - $\bigcirc \quad \frac{42x+14}{(3x^2+2x+4)^2} \qquad \quad \bigcirc \quad -\frac{42x+14}{3x^2+2x+4} \qquad \quad \bigcirc \quad -\frac{42x+14}{(3x^2+2x+4)^2} \qquad \quad \bigcirc \quad \frac{42x+14}{3x^2+2x+4}$
- 函数 $f(x) = \frac{2x+7}{5x+8}$ の導函数 f'(x) を求めなさい。 問 7
- $\bigcirc \frac{2}{5x+8} \qquad \bigcirc \frac{-19}{(5x+8)^2} \qquad \bigcirc \frac{2}{(5x+8)^2} \qquad \bigcirc \frac{-19}{5x+8} \qquad \bigcirc \frac{-11}{5x+8}$
- **問8** 函数 $f(x) = (9x+5)^{11}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc 99(9x+5)^{10} \bigcirc 11(9x+5)^{10} \bigcirc 11(9x+5)^{11} \bigcirc 99(9x+5)^{11}$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

	$\overline{}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
(()0	()0	$\bigcirc 0$	()0	()0	()0	()0
(. J1	()1	()1	$\bigcirc 1$	()1	()1	()1	()1
($^{\circ}$	$\bigcup 2$	$\bigcup 2$	$\bigcirc 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$
($\cup 3$	$\bigcup 3$	$\bigcup 3$	$\bigcirc 3$	$\bigcup 3$	$\bigcup 3$	$\bigcup 3$	$\bigcup 3$
($\bigcup 4$	$\bigcup 4$	$\bigcup 4$	$\bigcirc 4$	$\bigcup 4$	$\bigcup 4$	$\bigcup 4$	$\bigcup 4$
-	7-	0-	\bigcirc -	$\bigcirc 5$	0-	\bigcirc	\bigcirc -	0-
(\cup 5	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$
- ($\bigcap_{\mathcal{C}}$	$\bigcap_{\mathcal{C}}$	$\bigcap_{\mathcal{C}}$	$\bigcirc 6$	$\bigcap_{\mathcal{C}}$	$\bigcap_{\mathcal{C}}$	\bigcap_{C}	\bigcap_{C}
(\mathcal{O}_{0}	\bigcirc 0	\bigcirc 6	\bigcirc 6	\bigcirc 0	\bigcirc 6	\bigcirc 6	\bigcup_{0}
- (\bigcap_{τ}	\bigcap_{7}	\bigcap_{7}	\bigcirc 7	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}
()1	$\bigcup i$	$\bigcup i$	$\bigcup i$	$\bigcup i$	$\bigcup i$	$\bigcup i$	$\bigcup i$
- (\cap	\cap	\cap	$\bigcirc 8$	\cap	\cap	\cap	\cap
1	\bigcap_{α}	\bigcap	\bigcap	$\bigcirc 9$	\bigcap	\bigcap	\bigcap	\bigcap
١	JÐ	(J)	CJB	(J)	(J)	(J)	(Ja	()3

← 学生番号を左にマークし、下に氏名を記入してください。

氏名:	 	

問1 函数 $f(x) = 5x^4 + 7x^3 + 2x^2 + 4x + 7$ の導函数 f'(x) を求めなさい。

$$\bigcirc 20x^3 + 21x^2 + 6x + 4 \qquad \bigcirc 20x^3 + 21x^2 + 4x + 4 \qquad \bigcirc 5x^4 + 7x^3 + 2x^2 + 4x + 7$$

$$\bigcirc 5x^4 + 14x^3 + 2x^2 + 4x \qquad \bigcirc 20x^3 + 21x^2 + 4x + 11$$

問 2 函数 $f(x)=2-\frac{1}{x}+\frac{3}{x^2}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{1}{x^2} - \frac{6}{x^3} \qquad \bigcirc \quad -\frac{1}{x^2} + \frac{3}{x^3} \qquad \bigcirc \quad \frac{1}{x^2} - \frac{3}{x^3} \qquad \bigcirc \quad -\frac{1}{x^2} + \frac{6}{x^3} \qquad \bigcirc \quad 2 - \frac{1}{x}$$

 $\bigcirc \frac{11}{2}x^{\frac{11}{2}} \qquad \bigcirc \frac{13}{2}x^{\frac{9}{2}} \qquad \bigcirc \frac{11}{2}x^{\frac{9}{2}} \qquad \bigcirc \frac{9}{2}x^{\frac{9}{2}}$

問 3 函数 $f(x)=x^{\frac{11}{2}}$ の導函数 f'(x) を求めなさい。

```
問 4 函数 f(x) = x^{\frac{13}{2}} - x^{-\frac{13}{4}} の導函数 f'(x) を求めなさい。  \bigcirc \frac{13}{2}x^{\frac{11}{2}} + \frac{13}{4}x^{-\frac{17}{4}} \qquad \bigcirc \frac{13}{2}x^{\frac{13}{2}} + \frac{13}{4}x^{-\frac{9}{4}} \qquad \bigcirc \frac{13}{2}x^{-\frac{11}{2}} + \frac{13}{4}x^{-\frac{9}{4}}   \bigcirc \frac{11}{2}x^{\frac{11}{2}} - \frac{13}{4}x^{\frac{9}{4}} \qquad \bigcirc \frac{13}{2}x^{\frac{11}{2}} - \frac{13}{4}x^{-\frac{17}{4}} \qquad \bigcirc \frac{11}{2}x^{\frac{13}{2}} + \frac{13}{4}x^{-\frac{9}{4}}
```

問 5 函数 $f(x) = (x^2 + 1)(1x + 2)$ の導函数 f'(x) を求めなさい。

$$\bigcirc 3x^2 + 4x$$
 $\bigcirc 3x^2 + 4x + 2$ $\bigcirc 3x^2 + 4x + 1$ $\bigcirc 2x$

問 6 函数 $f(x) = \frac{7}{8x^2 + 8x + 9}$ の導函数 f'(x) を求めなさい。

問 7 函数 $f(x)=rac{4x+3}{11x+8}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{-1}{11x+8} \qquad \bigcirc \quad \frac{-1}{(11x+8)^2} \qquad \bigcirc \quad \frac{4}{(11x+8)^2} \qquad \bigcirc \quad \frac{4}{11x+8} \qquad \bigcirc \quad \frac{7}{11x+8}$$

問8 函数 $f(x) = (2x+6)^9$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad 18(2x+6)^9 \qquad \quad \bigcirc \quad 18(2x+6)^8 \qquad \quad \bigcirc \quad 9(2x+6)^9 \qquad \quad \bigcirc \quad 9(2x+6)^8$$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

$\bigcirc 0$ $\bigcirc 0$						
$\bigcirc 1$ $\bigcirc 1$	$\bigcirc 1$					
$\bigcirc 2 \bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$
$\bigcirc 3 \bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	\bigcirc 3	$\bigcirc 3$	$\bigcirc 3$
$\bigcirc 4 \bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
$\bigcirc 5 \bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$
$\bigcirc 6 \bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
\bigcirc 7	\bigcirc 7	$\bigcirc 7$				
$\bigcirc 8 \bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$
$\bigcirc 9 \bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$

← 学生番号を左にマークし、下に氏名を記入してください。

氏名:	 	

問1 函数 $f(x) = 7x^4 + 4x^3 + 6x^2 + 6x + 1$ の導函数 f'(x) を求めなさい。

- 問 2 函数 $f(x)=4-\frac{5}{x}+\frac{3}{x^2}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad -\frac{5}{x^2} + \frac{6}{x^3} \qquad \bigcirc \quad 4 \frac{5}{x} \qquad \bigcirc \quad \frac{5}{x^2} \frac{6}{x^3} \qquad \bigcirc \quad \frac{5}{x^2} \frac{3}{x^3} \qquad \bigcirc \quad -\frac{5}{x^2} + \frac{3}{x^3}$
- 問 3 函数 $f(x) = x^{\frac{5}{2}}$ の導函数 f'(x) を求めなさい。
- $\bigcirc \quad \frac{7}{2}x^{\frac{3}{2}} \qquad \quad \bigcirc \quad \frac{3}{2}x^{\frac{3}{2}} \qquad \quad \bigcirc \quad \frac{5}{2}x^{\frac{5}{2}} \qquad \quad \bigcirc \quad \frac{3}{2}x^{\frac{3}{2}} \qquad \quad \bigcirc \quad \frac{5}{2}x^{\frac{3}{2}}$
- **問4** 函数 $f(x) = x^{\frac{7}{2}} x^{-\frac{11}{6}}$ の導函数 f'(x) を求めなさい。
- $\bigcirc \quad \frac{7}{2}x^{\frac{7}{2}} + \frac{11}{6}x^{-\frac{5}{6}} \qquad \bigcirc \quad \frac{5}{2}x^{\frac{7}{2}} + \frac{11}{6}x^{-\frac{5}{6}} \qquad \bigcirc \quad \frac{7}{2}x^{-\frac{5}{2}} + \frac{11}{6}x^{-\frac{5}{6}} \qquad \bigcirc \quad \frac{7}{2}x^{\frac{5}{2}} \frac{11}{6}x^{-\frac{17}{6}}$ $\bigcirc \quad \frac{7}{2}x^{\frac{5}{2}} + \frac{11}{6}x^{-\frac{17}{6}} \qquad \bigcirc \quad \frac{5}{2}x^{\frac{5}{2}} \frac{11}{6}x^{\frac{5}{6}}$
- **問 5** 函数 $f(x) = (x^2 + 1)(3x + 1)$ の導函数 f'(x) を求めなさい。
 - $\bigcirc 9x^2 + 2x$ $\bigcirc 9x^2 + 2x + 3$ $\bigcirc 9x^2 + 2x + 4$ $\bigcirc 6x$
- 問 6 函数 $f(x) = \frac{1}{9x^2 + 6x + 3}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad \frac{18x+6}{9x^2+6x+3} \qquad \quad \bigcirc \quad \frac{18x+6}{(9x^2+6x+3)^2} \qquad \quad \bigcirc \quad -\frac{18x+6}{9x^2+6x+3} \qquad \quad \bigcirc \quad -\frac{18x+6}{(9x^2+6x+3)^2}$
- 問7 函数 $f(x) = \frac{2x+5}{3x+8}$ の導函数 f'(x) を求めなさい。
- $\bigcirc \quad \frac{9}{3x+8} \qquad \quad \bigcirc \quad \frac{2}{3x+8} \qquad \quad \bigcirc \quad \frac{2}{(3x+8)^2} \qquad \quad \bigcirc \quad \frac{1}{3x+8} \qquad \quad \bigcirc \quad \frac{1}{(3x+8)^2}$
- **問8** 函数 $f(x) = (2x+2)^{12}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc 12(2x+2)^{11} \qquad \bigcirc 12(2x+2)^{12} \qquad \bigcirc 24(2x+2)^{11} \qquad \bigcirc 24(2x+2)^{12}$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

$\bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc$	
$\bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1$	1 🔾 1
$\bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc$	$2\bigcirc 2$
$\bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc$	3 O 3
$\bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc$	$4 \bigcirc 4$
$\bigcirc 5$ $\bigcirc 5$ $\bigcirc 5$ $\bigcirc 5$ $\bigcirc 5$ $\bigcirc 5$	5 🔾 5
$\bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc$	6 06
\bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc	7 🔾 7
08 08 08 08 08 0	8 08
$\bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc$	9 09

← 学生番号を左にマークし、下に氏名を記入

問1 函数 $f(x) = 7x^4 + 3x^3 + 4x^2 + 4x + 2$ の導函数 f'(x) を求めなさい。

$$\bigcirc 28x^3 + 9x^2 + 10x + 4 \qquad \bigcirc 7x^4 + 6x^3 + 4x^2 + 4x \qquad \bigcirc 28x^3 + 9x^2 + 8x + 6$$

$$0 7x^4 + 6x^3 + 4x^2 + 4x$$

$$\bigcirc 28x^3 + 9x^2 + 8x + 6$$

$$\bigcirc 28x^3 + 9x^2 + 8x + 4$$

$$\bigcirc 28x^3 + 9x^2 + 8x + 4 \qquad \bigcirc 7x^4 + 3x^3 + 4x^2 + 4x + 2$$

問2 函数 $f(x) = 5 - \frac{2}{x} + \frac{5}{x^2}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad -\frac{2}{x^2} + \frac{5}{x^3}$$

$$\int \frac{2}{x^2} - \frac{10}{x^3}$$

$$\bigcirc \quad -\frac{2}{x^2} + \frac{5}{x^3} \qquad \quad \bigcirc \quad \frac{2}{x^2} - \frac{10}{x^3} \qquad \quad \bigcirc \quad -\frac{2}{x^2} + \frac{10}{x^3} \qquad \quad \bigcirc \quad \frac{2}{x^2} - \frac{5}{x^3} \qquad \quad \bigcirc \quad 5 - \frac{2}{x^2} + \frac{10}{x^3}$$

$$\bigcirc \quad \frac{2}{x^2} - \frac{5}{x^3}$$

$$\int 5-\frac{2}{x}$$

問3 函数 $f(x) = x^{\frac{11}{3}}$ の導函数 f'(x) を求めなさい。

- $\bigcirc \quad \frac{8}{3}x^{\frac{8}{3}} \qquad \bigcirc \quad \frac{13}{3}x^{\frac{8}{3}} \qquad \bigcirc \quad \frac{11}{3}x^{\frac{11}{3}} \qquad \bigcirc \quad \frac{9}{3}x^{\frac{8}{3}} \qquad \bigcirc \quad \frac{11}{3}x^{\frac{8}{3}}$

函数 $f(x) = x^{\frac{11}{3}} - x^{-\frac{13}{5}}$ の導函数 f'(x) を求めなさい。 問 4

$$\bigcirc \quad \frac{11}{3}x^{\frac{8}{3}} - \frac{13}{5}x^{-\frac{18}{5}} \qquad \bigcirc \quad \frac{8}{3}x^{\frac{8}{3}} - \frac{13}{5}x^{\frac{8}{5}} \qquad \bigcirc \quad \frac{11}{3}x^{-\frac{8}{3}} + \frac{13}{5}x^{-\frac{8}{5}} \qquad \bigcirc \quad \frac{8}{3}x^{\frac{11}{3}} + \frac{13}{5}x^{-\frac{8}{5}} \qquad \bigcirc \quad \frac{8}{3}x^{\frac{11}{3}} + \frac{13}{5}x^{-\frac{8}{5}} \qquad \bigcirc \quad \frac{11}{3}x^{\frac{11}{3}} + \frac{13}{5}x^{-\frac{8}{5}}$$

$$0 \quad \frac{8}{3}x^{\frac{8}{3}} - \frac{13}{5}x^{\frac{8}{5}}$$

$$0 \quad \frac{11}{3}x^{-\frac{8}{3}} + \frac{13}{5}x^{-\frac{8}{5}}$$

$$\bigcirc \quad \frac{8}{3}x^{\frac{11}{3}} + \frac{13}{5}x^{-\frac{5}{5}}$$

函数 $f(x) = (x^2 + 5)(2x + 1)$ の導函数 f'(x) を求めなさい。 問 5

- $\bigcirc 6x^2 + 2x + 10$ $\bigcirc 4x$ $\bigcirc 6x^2 + 2x$ $\bigcirc 6x^2 + 2x + 11$

函数 $f(x) = \frac{2}{3x^2+4x+6}$ の導函数 f'(x) を求めなさい。 問 6

- $\bigcirc \quad -\frac{12x+8}{3x^2+4x+6} \qquad \quad \bigcirc \quad \frac{12x+8}{(3x^2+4x+6)^2} \qquad \quad \bigcirc \quad \frac{12x+8}{3x^2+4x+6} \qquad \quad \bigcirc \quad -\frac{12x+8}{(3x^2+4x+6)^2}$

函数 $f(x) = \frac{2x+5}{3x+4}$ の導函数 f'(x) を求めなさい。 問 7

- $\bigcirc \quad \frac{-7}{3x+4} \qquad \bigcirc \quad \frac{-3}{3x+4} \qquad \bigcirc \quad \frac{-7}{(3x+4)^2} \qquad \bigcirc \quad \frac{2}{3x+4} \qquad \bigcirc \quad \frac{2}{(3x+4)^2}$

函数 $f(x) = (4x+6)^{10}$ の導函数 f'(x) を求めなさい。 問8

- $\bigcirc 40(4x+6)^{10} \qquad \bigcirc 40(4x+6)^{9} \qquad \bigcirc 10(4x+6)^{10} \qquad \bigcirc 10(4x+6)^{9}$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

$\bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0$	$\bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0$
$\bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1$	$\bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1$
$\bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2$	$\bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2$
$\bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3$	$\bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3$
$\bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4$	$\bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4$
$\bigcirc 5 \bigcirc 5 \bigcirc 5 \bigcirc 5$	$\bigcirc 5$ $\bigcirc 5$ $\bigcirc 5$ $\bigcirc 5$
$\bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6$	$\bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6$
$\bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7$	\bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7
$\bigcirc 8 \bigcirc 8 \bigcirc 8 \bigcirc 8$	$\bigcirc 8 \bigcirc 8 \bigcirc 8 \bigcirc 8$
$\bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9$	$\bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9$

← 学生番号を左にマークし、下に氏名を記入してください。

氏名:	 	

問1 函数 $f(x) = 3x^4 + 5x^3 + 6x^2 + 3x + 6$ の導函数 f'(x) を求めなさい。

$$\bigcirc 3x^4 + 5x^3 + 6x^2 + 3x + 6 \qquad \bigcirc 12x^3 + 15x^2 + 14x + 3 \qquad \bigcirc 12x^3 + 15x^2 + 12x + 9$$

$$\bigcirc 3x^4 + 10x^3 + 6x^2 + 3x \qquad \bigcirc 12x^3 + 15x^2 + 12x + 3$$

問 2 函数 $f(x) = 5 - \frac{4}{x} + \frac{1}{x^2}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad -\frac{4}{x^2} + \frac{2}{x^3} \qquad \bigcirc \quad \frac{4}{x^2} - \frac{2}{x^3} \qquad \bigcirc \quad 5 - \frac{4}{x} \qquad \bigcirc \quad -\frac{4}{x^2} + \frac{1}{x^3} \qquad \bigcirc \quad \frac{4}{x^2} - \frac{1}{x^3}$$

問3 函数 $f(x) = x^{\frac{11}{2}}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{11}{2}x^{\frac{9}{2}} \qquad \quad \bigcirc \quad \frac{9}{2}x^{\frac{9}{2}} \qquad \quad \bigcirc \quad \frac{9}{2}x^{\frac{9}{2}} \qquad \quad \bigcirc \quad \frac{13}{2}x^{\frac{9}{2}} \qquad \quad \bigcirc \quad \frac{11}{2}x^{\frac{11}{2}}$$

問4 函数 $f(x) = x^{\frac{11}{2}} - x^{-\frac{7}{4}}$ の導函数 f'(x) を求めなさい。

問 5 函数 $f(x) = (x^2 + 5)(1x + 5)$ の導函数 f'(x) を求めなさい。

①
$$3x^2+10x$$
 ② $3x^2+10x+6$ ② $3x^2+10x+5$ ② $2x$ 問 6 函数 $f(x)=\frac{6}{8x^2+9x+9}$ の導函数 $f'(x)$ を求めなさい。

$$\bigcirc \quad \frac{96x+54}{8x^2+9x+9} \qquad \quad \bigcirc \quad \frac{96x+54}{(8x^2+9x+9)^2} \qquad \quad \bigcirc \quad -\frac{96x+54}{(8x^2+9x+9)^2} \qquad \quad \bigcirc \quad -\frac{96x+54}{8x^2+9x+9}$$

問7 函数 $f(x) = \frac{8x+3}{5x+4}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{17}{5x+4} \qquad \quad \bigcirc \quad \frac{8}{5x+4} \qquad \quad \bigcirc \quad \frac{21}{5x+4} \qquad \quad \bigcirc \quad \frac{8}{(5x+4)^2} \qquad \quad \bigcirc \quad \frac{17}{(5x+4)^2}$$

問8 函数 $f(x) = (5x+6)^{10}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad 10(5x+6)^{10} \qquad \quad \bigcirc \quad 10(5x+6)^{9} \qquad \quad \bigcirc \quad 50(5x+6)^{9} \qquad \quad \bigcirc \quad 50(5x+6)^{10}$$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

1	γ_{α}	\bigcirc	\bigcap	\bigcirc	\bigcap	\bigcap	\bigcap	\bigcirc
($\bigcup 0$	$\bigcup 0$	$\bigcirc 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$
(\bigcap_1	\bigcap_1	$\bigcirc 1$	\bigcap_1	\bigcap_1	\bigcap_1	\bigcap_1	\bigcap_1
	-	-	-	-	-	-	-	-
($\bigcup 2$	$\bigcup 2$	$\bigcirc 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$
(\bigcirc	\bigcirc 3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcap_{n}
($\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
			O_5					
	_							_
($\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
			Ŏ7					
()8	$\bigcirc 8$	$\bigcirc 8$					
(\bigcap_{α}	\bigcap	$\bigcirc 9$	\bigcap	\bigcap	\bigcap	\bigcap_{α}	\bigcap o
(. 13	()3	()3	くりり	()3	()3	()3	くりり

← 学生番号を左にマークし、下に氏名を記入

氏名:	 	

問1 函数 $f(x) = 2x^4 + 7x^3 + 3x^2 + 5x + 3$ の導函数 f'(x) を求めなさい。

$$\bigcirc 2x^4 + 14x^3 + 3x^2 + 5x \qquad \bigcirc 8x^3 + 21x^2 + 8x + 5 \qquad \bigcirc 8x^3 + 21x^2 + 6x + 8$$

$$\bigcirc 8x^3 + 21x^2 + 8x + 5$$

$$\bigcirc 2x^4 + 7x^3 + 3x^2 + 5x + 3 \qquad \bigcirc 8x^3 + 21x^2 + 6x + 5$$

$$0 8x^3 + 21x^2 + 6x + 5$$

問2 函数 $f(x) = 4 - \frac{2}{x} + \frac{3}{x^2}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad -\frac{2}{x^2} + \frac{6}{x^3}$$

$$\bigcirc \quad \frac{2}{x^2} - \frac{6}{x^3}$$

$$\frac{2}{x^2} - \frac{3}{x^3}$$

$$0 4 - \frac{2}{x}$$

$$\bigcirc \quad -\frac{2}{x^2} + \frac{6}{x^3} \qquad \bigcirc \quad \frac{2}{x^2} - \frac{6}{x^3} \qquad \bigcirc \quad \frac{2}{x^2} - \frac{3}{x^3} \qquad \bigcirc \quad 4 - \frac{2}{x} \qquad \bigcirc \quad -\frac{2}{x^2} + \frac{3}{x^3}$$

問3 函数 $f(x) = x^{\frac{5}{2}}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{5}{2}x^{\frac{5}{2}}$$

$$\bigcirc \quad \frac{5}{2}x^{\frac{5}{2}} \qquad \bigcirc \quad \frac{3}{2}x^{\frac{3}{2}} \qquad \bigcirc \quad \frac{3}{2}x^{\frac{3}{2}} \qquad \bigcirc \quad \frac{5}{2}x^{\frac{3}{2}} \qquad \bigcirc \quad \frac{7}{2}x^{\frac{3}{2}}$$

$$\int \frac{3}{2}x^{3}$$

$$\int \frac{5}{2}x^{\frac{1}{2}}$$

$$\bigcirc \quad \frac{7}{2}x^{\frac{3}{2}}$$

函数 $f(x) = x^{\frac{7}{2}} - x^{-\frac{13}{5}}$ の導函数 f'(x) を求めなさい。 問 4

$$0 \quad \frac{7}{2}x^{\frac{5}{2}} + \frac{13}{5}x^{-\frac{1}{2}}$$

$$0 \quad \frac{7}{2}x^{\frac{5}{2}} - \frac{13}{5}x^{-\frac{18}{5}}$$

$$\bigcirc \quad \frac{7}{2}x^{\frac{5}{2}} + \frac{13}{5}x^{-\frac{18}{5}} \qquad \bigcirc \quad \frac{7}{2}x^{\frac{5}{2}} - \frac{13}{5}x^{-\frac{18}{5}} \qquad \bigcirc \quad \frac{5}{2}x^{\frac{5}{2}} - \frac{13}{5}x^{\frac{8}{5}} \qquad \bigcirc \quad \frac{7}{2}x^{\frac{7}{2}} + \frac{13}{5}x^{-\frac{8}{5}} \qquad \bigcirc \quad \frac{7}{2}x^{\frac{7}{2}} + \frac{13}{5}x^{-\frac{8}{5}}$$

函数 $f(x) = (x^2 + 4)(2x + 4)$ の導函数 f'(x) を求めなさい。 問 5

$$\bigcirc$$
 $6x^2 + 8x$

$$\bigcirc$$
 4x

$$\bigcirc 6x^2 + 8x$$
 $\bigcirc 4x$ $\bigcirc 6x^2 + 8x + 8$ $\bigcirc 6x^2 + 8x + 9$

$$6x^2 + 8x + 9$$

函数 $f(x) = \frac{3}{8x^2 + 3x + 6}$ の導函数 f'(x) を求めなさい。 問 6

$$\frac{48x+9}{8x^2+3x+6}$$

$$-\frac{48x+9}{8x^2+3x+6}$$

$$\bigcirc \quad \frac{48x+9}{8x^2+3x+6} \qquad \quad \bigcirc \quad -\frac{48x+9}{8x^2+3x+6} \qquad \quad \bigcirc \quad -\frac{48x+9}{(8x^2+3x+6)^2} \qquad \quad \bigcirc \quad \frac{48x+9}{(8x^2+3x+6)^2}$$

$$\bigcirc \quad \frac{48x+9}{(8x^2+3x+6)^2}$$

函数 $f(x) = \frac{4x+11}{7x+4}$ の導函数 f'(x) を求めなさい。 問 7

$$\bigcirc \quad \frac{4}{7x+4}$$

$$\bigcirc \quad \frac{-57}{7x+4}$$

$$\bigcirc \quad \frac{4}{7x+4} \qquad \bigcirc \quad \frac{-57}{7x+4} \qquad \bigcirc \quad \frac{4}{(7x+4)^2} \qquad \bigcirc \quad \frac{-61}{7x+4} \qquad \bigcirc \quad \frac{-61}{(7x+4)^2}$$

$$\bigcirc \quad \frac{-61}{7x+4}$$

$$\frac{-61}{(7x+4)^2}$$

問8 函数 $f(x) = (8x+7)^{11}$ の導函数 f'(x) を求めなさい。

$$11(8x+7)^{10}$$

$$0 11(8x+7)^1$$

$$\bigcirc 11(8x+7)^{10} \qquad \bigcirc 11(8x+7)^{11} \qquad \bigcirc 88(8x+7)^{11} \qquad \bigcirc 88(8x+7)^{10}$$

$$0$$
 88(8x + 7)¹⁰

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

(\bigcirc_0	$\bigcirc 0$						
(\bigcup_1	$\bigcirc 1$						
($\bigcirc 2$							
(\bigcirc_3	$\bigcirc 3$						
				$\bigcirc 4$				
				$\bigcirc 5$				
($\bigcirc 6$							
	_	_	_	$\bigcirc 7$	_	_	_	_
				$\bigcirc 8$				
($\bigcirc 9$							

← 学生番号を左にマークし、下に氏名を記入 してください。

氏名:	 	

問1 函数 $f(x) = 3x^4 + 3x^3 + 4x^2 + 6x + 3$ の導函数 f'(x) を求めなさい。

$$\bigcirc 12x^3 + 9x^2 + 10x + 6 \qquad \bigcirc 3x^4 + 6x^3 + 4x^2 + 6x \qquad \bigcirc 12x^3 + 9x^2 + 8x + 6$$

$$3x^4 + 6x^3 + 4x^2 + 6x$$

$$12x^3 + 9x^2 + 8x + 6$$

$$0 12x^3 + 9x^2 + 8x + 9$$

$$0 12x^3 + 9x^2 + 8x + 9 0 3x^4 + 3x^3 + 4x^2 + 6x + 3$$

問 2 函数 $f(x) = 3 - \frac{1}{x} + \frac{5}{x^2}$ の導函数 f'(x) を求めなさい。

$$-\frac{1}{x^2} + \frac{5}{x^3}$$

$$\bigcirc$$
 3 $-\frac{1}{x}$

$$\bigcirc \quad -\frac{1}{x^2} + \frac{5}{x^3} \qquad \bigcirc \quad 3 - \frac{1}{x} \qquad \bigcirc \quad -\frac{1}{x^2} + \frac{10}{x^3} \qquad \bigcirc \quad \frac{1}{x^2} - \frac{5}{x^3} \qquad \bigcirc \quad \frac{1}{x^2} - \frac{10}{x^3}$$

$$\frac{1}{x^2} - \frac{10}{x^3}$$

問3 函数 $f(x) = x^{\frac{11}{3}}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{13}{2}x^{\frac{8}{3}} \qquad \bigcirc \quad \frac{8}{2}x^{\frac{8}{3}} \qquad \bigcirc \quad \frac{11}{2}x^{\frac{11}{3}} \qquad \bigcirc \quad \frac{11}{2}x^{\frac{8}{3}} \qquad \bigcirc \quad \frac{9}{2}x^{\frac{8}{3}}$$

$$\bigcirc$$
 $\frac{8}{3}x$

$$\int \frac{11}{3}x^{\frac{11}{3}}$$

$$\int \frac{11}{3}x^{\frac{5}{2}}$$

$$\bigcirc \quad \frac{9}{3}x^{\frac{8}{3}}$$

函数 $f(x) = x^{\frac{7}{2}} - x^{-\frac{11}{4}}$ の導函数 f'(x) を求めなさい。 問 4

$$0 \quad \frac{7}{2}x^{-\frac{5}{2}} + \frac{11}{4}x^{-\frac{7}{4}}$$

$$0 \quad \frac{7}{2}x^{\frac{7}{2}} + \frac{11}{4}x^{-\frac{7}{4}}$$

$$0 \quad \frac{5}{2}x^{\frac{7}{2}} + \frac{11}{4}x^{-\frac{7}{4}}$$

$$\bigcirc \quad \frac{7}{2}x^{-\frac{5}{2}} + \frac{11}{4}x^{-\frac{7}{4}} \qquad \bigcirc \quad \frac{7}{2}x^{\frac{7}{2}} + \frac{11}{4}x^{-\frac{7}{4}} \qquad \bigcirc \quad \frac{5}{2}x^{\frac{7}{2}} + \frac{11}{4}x^{-\frac{7}{4}} \qquad \bigcirc \quad \frac{7}{2}x^{\frac{5}{2}} - \frac{11}{4}x^{-\frac{15}{4}} \\ \bigcirc \quad \frac{7}{2}x^{\frac{5}{2}} + \frac{11}{4}x^{-\frac{15}{4}} \qquad \bigcirc \quad \frac{5}{2}x^{\frac{5}{2}} - \frac{11}{4}x^{\frac{7}{4}}$$

函数 $f(x) = (x^2 + 2)(3x + 5)$ の導函数 f'(x) を求めなさい。 問 5

$$9x^2 + 10x$$

$$\bigcirc 9x^2 + 10x$$
 $\bigcirc 9x^2 + 10x + 6$ $\bigcirc 6x$ $\bigcirc 9x^2 + 10x + 7$

$$\bigcap$$
 6x

$$0 - 9x^2 + 10x + 7$$

函数 $f(x) = \frac{3}{2x^2+3x+2}$ の導函数 f'(x) を求めなさい。 問 6

$$\frac{12x+9}{(2x^2+3x+2)^2}$$

$$-\frac{12x+9}{2x^2+3x+2}$$

$$\bigcirc \quad \frac{12x+9}{(2x^2+3x+2)^2} \qquad \quad \bigcirc \quad -\frac{12x+9}{2x^2+3x+2} \qquad \quad \bigcirc \quad -\frac{12x+9}{(2x^2+3x+2)^2} \qquad \quad \bigcirc \quad \frac{12x+9}{2x^2+3x+2}$$

$$\frac{12x+9}{2x^2+3x+2}$$

函数 $f(x) = \frac{4x+11}{3x+2}$ の導函数 f'(x) を求めなさい。 問 7

$$\frac{-25}{(3x+2)^2}$$

$$\bigcirc$$
 $\frac{4}{3x+3}$

$$\bigcirc \quad \frac{-25}{(3x+2)^2} \qquad \bigcirc \quad \frac{4}{3x+2} \qquad \bigcirc \quad \frac{4}{(3x+2)^2} \qquad \bigcirc \quad \frac{-25}{3x+2} \qquad \bigcirc \quad \frac{-23}{3x+2}$$

$$\bigcirc \quad \frac{-25}{3x+2}$$

$$\bigcirc \quad \frac{-23}{3x+2}$$

函数 $f(x) = (5x+2)^{11}$ の導函数 f'(x) を求めなさい。 問 8

$$\bigcap$$
 11(5x + 2)¹¹

$$0 55(5x+2)^{11}$$

$$\bigcirc 11(5x+2)^{11} \qquad \bigcirc 55(5x+2)^{11} \qquad \bigcirc 55(5x+2)^{10} \qquad \bigcirc 11(5x+2)^{10}$$

$$0 11(5x+2)^{10}$$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

$\bigcirc 0$	0 00	$\bigcirc 0$				
$\bigcirc 1$ \bigcirc	$1 \bigcirc 1$	$\bigcirc 1$				
$\bigcirc 2 \bigcirc$	$2\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$
\bigcirc 3 \bigcirc	3 O3	$\bigcirc 3$	\bigcirc 3	\bigcirc 3	\bigcirc 3	$\bigcirc 3$
$\bigcirc 4$ \bigcirc	$4 \bigcirc 4$	$\bigcirc 4$				
\bigcirc 5 \bigcirc	5 🔾 5	$\bigcirc 5$				
$\bigcirc 6 \bigcirc$	$6 \bigcirc 6$	$\bigcirc 6$				
\bigcirc 7 \bigcirc	7 🔾 7	\bigcirc 7	\bigcirc 7	\bigcirc 7	$\bigcirc 7$	$\bigcirc 7$
$\bigcirc 8 \bigcirc$	$8 \bigcirc 8$	$\bigcirc 8$				
$\bigcirc 9 \bigcirc$	9 09	$\bigcirc 9$				

← 学生番号を左にマークし、下に氏名を記入 してください。

氏名:	 	

問1 函数 $f(x) = 7x^4 + 7x^3 + 4x^2 + 6x + 1$ の導函数 f'(x) を求めなさい。

- $\bigcirc 28x^3 + 21x^2 + 8x + 6 \qquad \bigcirc 28x^3 + 21x^2 + 10x + 6 \qquad \bigcirc 28x^3 + 21x^2 + 8x + 7$ $\bigcirc 7x^4 + 14x^3 + 4x^2 + 6x \qquad \bigcirc 7x^4 + 7x^3 + 4x^2 + 6x + 1$
- 問 2 函数 $f(x)=4-\frac{1}{x}+\frac{5}{x^2}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad 4 \frac{1}{x} \qquad \bigcirc \quad -\frac{1}{x^2} + \frac{5}{x^3} \qquad \bigcirc \quad \frac{1}{x^2} \frac{5}{x^3} \qquad \bigcirc \quad \frac{1}{x^2} \frac{10}{x^3} \qquad \bigcirc \quad -\frac{1}{x^2} + \frac{10}{x^3}$
- 問**3** 函数 $f(x) = x^{\frac{7}{3}}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad \frac{7}{3}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{7}{3}x^{\frac{7}{3}} \qquad \bigcirc \quad \frac{4}{3}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{5}{3}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{9}{3}x^{\frac{4}{3}}$
- **問4** 函数 $f(x) = x^{\frac{7}{3}} x^{-\frac{13}{6}}$ の導函数 f'(x) を求めなさい。
- $\bigcirc \quad \frac{4}{3}x^{\frac{7}{3}} + \frac{13}{6}x^{-\frac{7}{6}} \qquad \bigcirc \quad \frac{7}{3}x^{\frac{7}{3}} + \frac{13}{6}x^{-\frac{7}{6}} \qquad \bigcirc \quad \frac{7}{3}x^{\frac{4}{3}} + \frac{13}{6}x^{-\frac{19}{6}} \qquad \bigcirc \quad \frac{7}{3}x^{-\frac{4}{3}} + \frac{13}{6}x^{-\frac{7}{6}}$ $\bigcirc \quad \frac{4}{3}x^{\frac{4}{3}} \frac{13}{6}x^{\frac{7}{6}} \qquad \bigcirc \quad \frac{7}{3}x^{\frac{4}{3}} \frac{13}{6}x^{-\frac{19}{6}}$
- **問 5** 函数 $f(x) = (x^2 + 5)(3x + 7)$ の導函数 f'(x) を求めなさい。
 - $\bigcirc 9x^2 + 14x + 16$ $\bigcirc 9x^2 + 14x$ $\bigcirc 9x^2 + 14x + 15$ $\bigcirc 6x$
- 問 6 函数 $f(x) = \frac{1}{4x^2 + 7x + 6}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad \frac{8x+7}{4x^2+7x+6} \qquad \quad \bigcirc \quad -\frac{8x+7}{(4x^2+7x+6)^2} \qquad \quad \bigcirc \quad \frac{8x+7}{(4x^2+7x+6)^2} \qquad \quad \bigcirc \quad -\frac{8x+7}{4x^2+7x+6}$
- 問 7 函数 $f(x)=rac{2x+11}{7x+2}$ の導函数 f'(x) を求めなさい。
- $\bigcirc \quad \frac{-73}{7x+2} \qquad \bigcirc \quad \frac{2}{(7x+2)^2} \qquad \bigcirc \quad \frac{-71}{7x+2} \qquad \bigcirc \quad \frac{2}{7x+2} \qquad \bigcirc \quad \frac{-73}{(7x+2)^2}$
- 問8 函数 $f(x) = (5x+7)^8$ の導函数 f'(x) を求めなさい。
 - $\bigcirc 40(5x+7)^7 \qquad \bigcirc 8(5x+7)^8 \qquad \bigcirc 40(5x+7)^8 \qquad \bigcirc 8(5x+7)^7$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

\bigcap	0 0	\bigcap 0	\bigcap 0	\bigcap 0	\bigcap 0	\bigcap 0	\bigcap 0
	1 ()1						
_	_	_	_	_	_	_	_
\bigcup_{i}	$2\bigcirc 2$	$\bigcup 2$					
\bigcirc :	3	$\bigcirc 3$					
\bigcirc 4	1 04	$\bigcirc 4$					
\bigcirc	5 05	\bigcirc 5	$\bigcirc 5$				
$\bigcirc \epsilon$	6 06	$\bigcirc 6$					
\bigcirc	7 🔾 7	\bigcirc 7	\bigcirc 7	$\bigcirc 7$	\bigcirc 7	$\bigcirc 7$	$\bigcirc 7$
\bigcirc 8	$8 \bigcirc 8$	$\bigcirc 8$					
\bigcirc	9 ()9	$\bigcirc 9$					

← 学生番号を左にマークし、下に氏名を記入 してください。

氏名:	 	

問1 函数 $f(x) = 5x^4 + 2x^3 + 4x^2 + 4x + 1$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad 5x^4 + 2x^3 + 4x^2 + 4x + 1 \qquad \qquad \bigcirc \quad 5x^4 + 4x^3 + 4x^2 + 4x \qquad \qquad \bigcirc \quad 20x^3 + 6x^2 + 8x + 5$$

$$\int 5x^4 + 4x^3 + 4x^2 + 4x$$

$$20x^3 + 6x^2 + 8x + 5$$

$$\bigcirc 20x^3 + 6x^2 + 10x + 4 \qquad \bigcirc 20x^3 + 6x^2 + 8x + 4$$

$$0 20x^3 + 6x^2 + 8x + 6x^2 +$$

函数 $f(x) = 2 - \frac{5}{x} + \frac{4}{x^2}$ の導函数 f'(x) を求めなさい。 問 2

$$\bigcirc \quad -\frac{5}{x^2} + \frac{8}{x^3} \qquad \bigcirc \quad \frac{5}{x^2} - \frac{4}{x^3} \qquad \bigcirc \quad \frac{5}{x^2} - \frac{8}{x^3} \qquad \bigcirc \quad -\frac{5}{x^2} + \frac{4}{x^3} \qquad \bigcirc \quad 2 - \frac{5}{x}$$

$$\bigcirc \quad \frac{5}{x^2} - \frac{4}{x^3}$$

$$\int \frac{5}{x^2} - \frac{8}{x^3}$$

$$-\frac{5}{x^2} + \frac{4}{x^3}$$

$$O$$
 $2-\frac{5}{x}$

問3 函数 $f(x) = x^{\frac{7}{2}}$ の導函数 f'(x) を求めなさい。

- $\bigcirc \quad \frac{7}{2}x^{\frac{7}{2}} \qquad \bigcirc \quad \frac{7}{2}x^{\frac{5}{2}} \qquad \bigcirc \quad \frac{5}{2}x^{\frac{5}{2}} \qquad \bigcirc \quad \frac{9}{2}x^{\frac{5}{2}}$

函数 $f(x) = x^{\frac{11}{3}} - x^{-\frac{11}{4}}$ の導函数 f'(x) を求めなさい。 問 4

$$0 \quad \frac{8}{3}x^{\frac{8}{3}} - \frac{11}{4}x^{\frac{5}{4}}$$

$$\bigcap_{\substack{\frac{11}{3}x^{-\frac{8}{3}} + \frac{11}{4}x^{-\frac{7}{4}}}} \frac{11}{4}x^{-\frac{7}{4}}$$

$$\bigcirc \quad \frac{8}{3}x^{\frac{8}{3}} - \frac{11}{4}x^{\frac{7}{4}} \qquad \qquad \bigcirc \quad \frac{11}{3}x^{-\frac{8}{3}} + \frac{11}{4}x^{-\frac{7}{4}} \qquad \qquad \bigcirc \quad \frac{11}{3}x^{\frac{11}{3}} + \frac{11}{4}x^{-\frac{7}{4}} \qquad \qquad \bigcirc \quad \frac{11}{3}x^{\frac{8}{3}} - \frac{11}{4}x^{-\frac{15}{4}} \\ \bigcirc \quad \frac{8}{3}x^{\frac{11}{3}} + \frac{11}{4}x^{-\frac{7}{4}} \qquad \qquad \bigcirc \quad \frac{11}{3}x^{\frac{8}{3}} + \frac{11}{4}x^{-\frac{15}{4}}$$

函数 $f(x) = (x^2 + 2)(2x + 7)$ の導函数 f'(x) を求めなさい。 問 5

- $\bigcirc 6x^2 + 14x$ $\bigcirc 4x$ $\bigcirc 6x^2 + 14x + 5$ $\bigcirc 6x^2 + 14x + 4$

函数 $f(x) = \frac{1}{2x^2 + 3x + 4}$ の導函数 f'(x) を求めなさい。 問 6

- $\bigcirc \quad -\frac{4x+3}{(2x^2+3x+4)^2} \qquad \quad \bigcirc \quad \frac{4x+3}{2x^2+3x+4} \qquad \quad \bigcirc \quad \frac{4x+3}{(2x^2+3x+4)^2} \qquad \quad \bigcirc \quad -\frac{4x+3}{2x^2+3x+4}$

函数 $f(x) = \frac{8x+7}{3x+4}$ の導函数 f'(x) を求めなさい。 問 7

- $\bigcirc \ \ \, \frac{8}{3x+4} \qquad \ \ \, \bigcirc \ \, \frac{11}{3x+4} \qquad \ \ \, \bigcirc \ \, \frac{11}{(3x+4)^2} \qquad \ \ \, \bigcirc \ \, \frac{15}{3x+4} \qquad \ \ \, \bigcirc \ \, \frac{8}{(3x+4)^2}$

函数 $f(x) = (6x+9)^7$ の導函数 f'(x) を求めなさい。 問8

- $\bigcirc 7(6x+9)^6 \qquad \bigcirc 42(6x+9)^7 \qquad \bigcirc 7(6x+9)^7 \qquad \bigcirc 42(6x+9)^6$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

\bigcap 0	\bigcap	\bigcap 0	\bigcap 0	$\bigcirc 0$	\bigcap 0	\bigcap 0	\bigcap
				$\bigcirc 1$			
$\bigcirc 2$							
\bigcirc 3	$\bigcirc 3$						
$\bigcirc 4$							
$\bigcirc 5$							
$\bigcirc 6$							
\bigcirc 7	$\bigcirc 7$						
$\bigcirc 8$							
$\bigcirc 9$							

← 学生番号を左にマークし、下に氏名を記入してください。

氏名:	 	 	

問1 函数 $f(x) = 5x^4 + 4x^3 + 6x^2 + 6x + 9$ の導函数 f'(x) を求めなさい。

$$\bigcirc 20x^3 + 12x^2 + 14x + 6 \qquad \bigcirc 20x^3 + 12x^2 + 12x + 6 \qquad \bigcirc 5x^4 + 4x^3 + 6x^2 + 6x + 9$$

$$\bigcirc 5x^4 + 8x^3 + 6x^2 + 6x \qquad \bigcirc 20x^3 + 12x^2 + 12x + 15$$

問2 函数 $f(x) = 5 - \frac{1}{x} + \frac{2}{x^2}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{1}{x^2} - \frac{2}{x^3} \qquad \qquad \bigcirc \quad \frac{1}{x^2} - \frac{4}{x^3} \qquad \qquad \bigcirc \quad -\frac{1}{x^2} + \frac{2}{x^3} \qquad \qquad \bigcirc \quad 5 - \frac{1}{x} \qquad \qquad \bigcirc \quad -\frac{1}{x^2} + \frac{4}{x^3}$$

問3 函数 $f(x) = x^{\frac{7}{3}}$ の導函数 f'(x) を求めなさい。

```
問 4 函数 f(x) = x^{\frac{13}{2}} - x^{-\frac{13}{6}} の導函数 f'(x) を求めなさい。
```

 $\bigcirc \quad \frac{5}{2}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{7}{2}x^{\frac{7}{3}} \qquad \bigcirc \quad \frac{7}{2}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{4}{2}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{9}{2}x^{\frac{4}{3}}$

問 5 函数 $f(x) = (x^2 + 4)(1x + 2)$ の導函数 f'(x) を求めなさい。

①
$$2x$$
 ② $3x^2+4x+5$ ② $3x^2+4x$ ② $3x^2+4x+4$ 問 6 函数 $f(x)=\frac{9}{5x^2+4x+6}$ の導函数 $f'(x)$ を求めなさい。

$$\bigcirc \quad \frac{90x+36}{5x^2+4x+6} \qquad \bigcirc \quad -\frac{90x+36}{5x^2+4x+6} \qquad \bigcirc \quad \frac{90x+36}{(5x^2+4x+6)^2} \qquad \bigcirc \quad -\frac{90x+36}{(5x^2+4x+6)^2}$$

問 7 函数 $f(x) = \frac{2x+5}{7x+4}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{-27}{(7x+4)^2} \qquad \bigcirc \quad \frac{-27}{7x+4} \qquad \bigcirc \quad \frac{2}{(7x+4)^2} \qquad \bigcirc \quad \frac{2}{7x+4} \qquad \bigcirc \quad \frac{-23}{7x+4}$$

問8 函数 $f(x) = (3x+3)^{10}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad 30(3x+3)^{10} \qquad \bigcirc \quad 30(3x+3)^{9} \qquad \bigcirc \quad 10(3x+3)^{9} \qquad \bigcirc \quad 10(3x+3)^{10}$$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

(\bigcirc_0	$\bigcirc 0$						
(\bigcup_1	$\bigcirc 1$						
($\bigcirc 2$							
(\bigcirc_3	$\bigcirc 3$						
				$\bigcirc 4$				
				$\bigcirc 5$				
($\bigcirc 6$							
	_	_	_	$\bigcirc 7$	_	_	_	_
				$\bigcirc 8$				
($\bigcirc 9$							

← 学生番号を左にマークし、下に氏名を記入 してください。

氏名:	 	

問1 函数 $f(x) = 6x^4 + 6x^3 + 5x^2 + 7x + 3$ の導函数 f'(x) を求めなさい。

$$\bigcirc 24x^3 + 18x^2 + 10x + 7 \qquad \bigcirc 24x^3 + 18x^2 + 12x + 7 \qquad \bigcirc 6x^4 + 6x^3 + 5x^2 + 7x + 3$$

 $\bigcirc 24x^3 + 18x^2 + 10x + 10 \qquad \bigcirc 6x^4 + 12x^3 + 5x^2 + 7x$

問 2 函数 $f(x) = 5 - \frac{4}{x} + \frac{1}{x^2}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad -\frac{4}{x^2} + \frac{2}{x^3} \qquad \bigcirc \quad 5 - \frac{4}{x} \qquad \bigcirc \quad \frac{4}{x^2} - \frac{1}{x^3} \qquad \bigcirc \quad \frac{4}{x^2} - \frac{2}{x^3} \qquad \bigcirc \quad -\frac{4}{x^2} + \frac{1}{x^3}$$

問3 函数 $f(x) = x^{\frac{7}{3}}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{7}{3}x^{\frac{7}{3}} \qquad \bigcirc \quad \frac{5}{3}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{7}{3}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{4}{3}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{9}{3}x^{\frac{4}{3}}$$

問4 函数 $f(x) = x^{\frac{11}{2}} - x^{-\frac{11}{4}}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{9}{2}x^{\frac{11}{2}} + \frac{11}{4}x^{-\frac{7}{4}} \qquad \bigcirc \quad \frac{9}{2}x^{\frac{9}{2}} - \frac{11}{4}x^{\frac{7}{4}} \qquad \bigcirc \quad \frac{11}{2}x^{-\frac{9}{2}} + \frac{11}{4}x^{-\frac{7}{4}} \qquad \bigcirc \quad \frac{11}{2}x^{\frac{11}{2}} + \frac{11}{4}x^{-\frac{7}{4}} \\ \bigcirc \quad \frac{11}{2}x^{\frac{9}{2}} + \frac{11}{4}x^{-\frac{15}{4}} \qquad \bigcirc \quad \frac{11}{2}x^{\frac{9}{2}} - \frac{11}{4}x^{-\frac{15}{4}}$$

問 5 函数 $f(x) = (x^2 + 3)(2x + 3)$ の導函数 f'(x) を求めなさい。

$$\bigcirc 6x^2 + 6x + 6$$
 $\bigcirc 4x$ $\bigcirc 6x^2 + 6x + 7$ $\bigcirc 6x^2 + 6x$

問 6 函数 $f(x) = \frac{3}{3x^2+3x+5}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{18x+9}{3x^2+3x+5} \qquad \quad \bigcirc \quad -\frac{18x+9}{(3x^2+3x+5)^2} \qquad \quad \bigcirc \quad -\frac{18x+9}{3x^2+3x+5} \qquad \quad \bigcirc \quad \frac{18x+9}{(3x^2+3x+5)^2}$$

問7 函数 $f(x) = \frac{4x+7}{7x+8}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{-9}{7x+8} \qquad \bigcirc \quad \frac{4}{7x+8} \qquad \bigcirc \quad \frac{-17}{(7x+8)^2} \qquad \bigcirc \quad \frac{-17}{7x+8} \qquad \bigcirc \quad \frac{4}{(7x+8)^2}$$

問8 函数 $f(x) = (8x+2)^{11}$ の導函数 f'(x) を求めなさい。

$$\bigcirc 88(8x+2)^{10} \bigcirc 11(8x+2)^{11} \bigcirc 11(8x+2)^{10} \bigcirc 88(8x+2)^{11}$$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

$\bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0$	$\bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0$
$\bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1$	$\bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1$
$\bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2$	$\bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2$
$\bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3$	$\bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3$
$\bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4$	$\bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4$
$\bigcirc 5 \bigcirc 5 \bigcirc 5 \bigcirc 5$	$\bigcirc 5$ $\bigcirc 5$ $\bigcirc 5$ $\bigcirc 5$
$\bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6$	$\bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6$
$\bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7$	\bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7
$\bigcirc 8 \bigcirc 8 \bigcirc 8 \bigcirc 8$	$\bigcirc 8 \bigcirc 8 \bigcirc 8 \bigcirc 8$
$\bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9$	$\bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9$

← 学生番号を左にマークし、下に氏名を記入してください。

氏名:	 	 	

問1 函数 $f(x) = 4x^4 + 3x^3 + 7x^2 + 2x + 9$ の導函数 f'(x) を求めなさい。

- **問2** 函数 $f(x) = 4 \frac{4}{x} + \frac{5}{x^2}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad -\frac{4}{x^2} + \frac{10}{x^3} \qquad \bigcirc \quad \frac{4}{x^2} \frac{5}{x^3} \qquad \bigcirc \quad 4 \frac{4}{x} \qquad \bigcirc \quad \frac{4}{x^2} \frac{10}{x^3} \qquad \bigcirc \quad -\frac{4}{x^2} + \frac{5}{x^3}$
- 問 3 函数 $f(x) = x^{\frac{7}{3}}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad \frac{7}{3}x^{\frac{4}{3}} \qquad \qquad \bigcirc \quad \frac{4}{3}x^{\frac{4}{3}} \qquad \qquad \bigcirc \quad \frac{5}{3}x^{\frac{4}{3}} \qquad \qquad \bigcirc \quad \frac{9}{3}x^{\frac{4}{3}} \qquad \qquad \bigcirc \quad \frac{7}{3}x^{\frac{7}{3}}$
- **問 4** 函数 $f(x) = x^{\frac{11}{2}} x^{-\frac{7}{4}}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad \frac{11}{2}x^{\frac{11}{2}} + \frac{7}{4}x^{-\frac{3}{4}} \qquad \bigcirc \quad \frac{9}{2}x^{\frac{9}{2}} \frac{7}{4}x^{\frac{3}{4}} \qquad \bigcirc \quad \frac{11}{2}x^{\frac{9}{2}} \frac{7}{4}x^{-\frac{11}{4}} \qquad \bigcirc \quad \frac{11}{2}x^{\frac{9}{2}} + \frac{7}{4}x^{-\frac{11}{4}} \\ \bigcirc \quad \frac{11}{2}x^{-\frac{9}{2}} + \frac{7}{4}x^{-\frac{3}{4}} \qquad \bigcirc \quad \frac{9}{2}x^{\frac{11}{2}} + \frac{7}{4}x^{-\frac{3}{4}}$
- **問 5** 函数 $f(x) = (x^2 + 2)(3x + 5)$ の導函数 f'(x) を求めなさい。
- $\bigcirc 9x^2 + 10x + 7$ $\bigcirc 9x^2 + 10x$ $\bigcirc 6x$ $\bigcirc 9x^2 + 10x + 6$
- **問 6** 函数 $f(x) = \frac{9}{9x^2+2x+2}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad \frac{162x+18}{9x^2+2x+2} \qquad \quad \bigcirc \quad \frac{162x+18}{(9x^2+2x+2)^2} \qquad \quad \bigcirc \quad -\frac{162x+18}{(9x^2+2x+2)^2} \qquad \quad \bigcirc \quad -\frac{162x+18}{9x^2+2x+2}$
- 問 7 函数 $f(x) = \frac{4x+3}{3x+8}$ の導函数 f'(x) を求めなさい。
- $\bigcirc \quad \frac{23}{3x+8} \qquad \bigcirc \quad \frac{4}{3x+8} \qquad \bigcirc \quad \frac{31}{3x+8} \qquad \bigcirc \quad \frac{23}{(3x+8)^2} \qquad \bigcirc \quad \frac{4}{(3x+8)^2}$
- **問8** 函数 $f(x) = (7x+8)^{10}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc 70(7x+8)^{10} \qquad \bigcirc 70(7x+8)^9 \qquad \bigcirc 10(7x+8)^9 \qquad \bigcirc 10(7x+8)^{10}$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

$\bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0$	$\bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0$
$\bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1$	$\bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1$
$\bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2$	$\bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2$
$\bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3$	$\bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3$
$\bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4$	$\bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4$
$\bigcirc 5 \bigcirc 5 \bigcirc 5 \bigcirc 5$	$\bigcirc 5$ $\bigcirc 5$ $\bigcirc 5$ $\bigcirc 5$
$\bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6$	$\bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6$
$\bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7$	\bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7
$\bigcirc 8 \bigcirc 8 \bigcirc 8 \bigcirc 8$	$\bigcirc 8 \bigcirc 8 \bigcirc 8 \bigcirc 8$
$\bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9$	$\bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9$

← 学生番号を左にマークし、下に氏名を記入

氏名:	 	 	

函数 $f(x) = 6x^4 + 5x^3 + 5x^2 + 4x + 1$ の導函数 f'(x) を求めなさい。 問 1

$$\bigcirc 24x^3 + 15x^2 + 10x + 4 \qquad \bigcirc 24x^3 + 15x^2 + 10x + 5 \qquad \bigcirc 24x^3 + 15x^2 + 12x + 4$$

$$\bigcirc 24x^3 + 15x^2 + 10x + 5$$

$$\bigcirc$$
 24 $x^3 + 15x^2 + 12x + 4$

$$0 6x^4 + 10x^3 + 5x^2 + 4x$$

$$\bigcirc 6x^4 + 10x^3 + 5x^2 + 4x$$

$$\bigcirc 6x^4 + 5x^3 + 5x^2 + 4x + 1$$

函数 $f(x) = 5 - \frac{2}{x} + \frac{1}{x^2}$ の導函数 f'(x) を求めなさい。 問 2

$$\int 5-\frac{2}{x}$$

$$\bigcirc \quad 5 - \frac{2}{x} \qquad \bigcirc \quad -\frac{2}{x^2} + \frac{1}{x^3} \qquad \bigcirc \quad \frac{2}{x^2} - \frac{2}{x^3} \qquad \bigcirc \quad \frac{2}{x^2} - \frac{1}{x^3} \qquad \bigcirc \quad -\frac{2}{x^2} + \frac{2}{x^3}$$

$$\frac{2}{r^2} - \frac{2}{r^3}$$

$$\frac{2}{x^2} - \frac{1}{x^3}$$

$$-\frac{2}{x^2} + \frac{2}{x^3}$$

問3 函数 $f(x) = x^{\frac{11}{3}}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \frac{11}{2}x^{\frac{11}{3}} \qquad \bigcirc \frac{11}{2}x^{\frac{8}{3}} \qquad \bigcirc \frac{9}{2}x^{\frac{8}{3}} \qquad \bigcirc \frac{13}{2}x^{\frac{8}{3}} \qquad \bigcirc \frac{8}{2}x^{\frac{8}{3}}$$

$$\bigcirc \quad \frac{11}{3}x^{\frac{5}{3}}$$

$$\frac{9}{3}x^{\frac{8}{3}}$$

$$\bigcirc \frac{13}{3}x$$

$$\bigcirc \quad \frac{8}{3}x^{\frac{8}{3}}$$

函数 $f(x) = x^{\frac{13}{3}} - x^{-\frac{7}{5}}$ の導函数 f'(x) を求めなさい。 問 4

$$\bigcirc \quad \frac{13}{3}x^{\frac{10}{3}} + \frac{7}{5}x^{-\frac{1}{5}}$$

$$0 \frac{10}{3}x^{\frac{10}{3}} - \frac{7}{5}x^{\frac{2}{5}}$$

$$0 \quad \frac{10}{3}x^{\frac{13}{3}} + \frac{7}{5}x^{-\frac{2}{5}}$$

$$\bigcirc \quad \frac{13}{3}x^{\frac{10}{3}} + \frac{7}{5}x^{-\frac{12}{5}} \qquad \bigcirc \quad \frac{10}{3}x^{\frac{10}{3}} - \frac{7}{5}x^{\frac{2}{5}} \qquad \bigcirc \quad \frac{10}{3}x^{\frac{13}{3}} + \frac{7}{5}x^{-\frac{2}{5}} \qquad \bigcirc \quad \frac{13}{3}x^{\frac{13}{3}} + \frac{7}{5}x^{-\frac{2}{5}} \qquad \bigcirc \quad \frac{13}{3}x^{\frac{13}{3}} + \frac{7}{5}x^{-\frac{2}{5}} \qquad \bigcirc \quad \frac{13}{3}x^{\frac{10}{3}} - \frac{7}{5}x^{-\frac{12}{5}} \qquad \bigcirc \quad \frac{13}{3}x^{-\frac{10}{3}} + \frac{7}{5}x^{-\frac{2}{5}}$$

函数 $f(x) = (x^2 + 1)(5x + 5)$ の導函数 f'(x) を求めなさい。 問 5

$$\bigcap$$
 10 r

$$\bigcirc 10x \qquad \bigcirc 15x^2 + 10x + 5 \qquad \bigcirc 15x^2 + 10x + 6 \qquad \bigcirc 15x^2 + 10x$$

$$\bigcap$$
 15 $x^2 + 10x + 6$

$$\bigcap$$
 15 $x^2 + 10x^2 +$

函数 $f(x) = \frac{1}{3x^2+4x+3}$ の導函数 f'(x) を求めなさい。 問 6

$$\bigcirc \quad -\frac{6x+4}{(3x^2+4x+3)^2} \qquad \bigcirc \quad \frac{6x+4}{(3x^2+4x+3)^2} \qquad \bigcirc \quad -\frac{6x+4}{3x^2+4x+3} \qquad \bigcirc \quad \frac{6x+4}{3x^2+4x+3}$$

$$\frac{6x+4}{(3x^2+4x+3)^2}$$

$$-\frac{6x+4}{3x^2+4x+3}$$

$$\bigcirc \quad \frac{6x+4}{3x^2+4x+3}$$

函数 $f(x) = \frac{8x+3}{3x+8}$ の導函数 f'(x) を求めなさい。 問 7

$$\bigcirc \quad \frac{8}{(3x+8)^2}$$

$$\bigcirc$$
 $\frac{63}{3x+3}$

$$\bigcirc \quad \frac{55}{3x+8}$$

$$\bigcirc \quad \frac{8}{(3x+8)^2} \qquad \bigcirc \quad \frac{63}{3x+8} \qquad \bigcirc \quad \frac{55}{3x+8} \qquad \bigcirc \quad \frac{55}{(3x+8)^2} \qquad \bigcirc \quad \frac{8}{3x+8}$$

$$\bigcirc \quad \frac{8}{3x+8}$$

函数 $f(x) = (7x+5)^7$ の導函数 f'(x) を求めなさい。 問8

$$\bigcirc$$
 49(7x + 5)6

$$(7(7x+5)^7)$$

$$\bigcirc 49(7x+5)^6 \qquad \bigcirc 7(7x+5)^7 \qquad \bigcirc 7(7x+5)^6 \qquad \bigcirc 49(7x+5)^7$$

$$\bigcirc$$
 49(7x + 5)

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

\bigcap	\bigcirc	\bigcap	\bigcap	\bigcirc	\bigcap	\bigcap	\bigcap
$\bigcup 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$	$\bigcirc 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$
\bigcap_{1}	\bigcap_{1}	\bigcap_{1}	\bigcap_{1}	$\bigcirc 1$	\bigcap_{1}	\bigcap_{1}	\bigcap_{1}
\bigcap_{2}	\bigcap_{2}	\bigcap_{2}	\bigcap_{2}	$\bigcirc 2$	\bigcap_{2}	\bigcap_{2}	\bigcap_{2}
()3	()3	()3	()3	$\bigcirc 3$	()3	()3	()3
-		-	-	-	-	-	-
				$\bigcirc 4$			
\bigcap_{Σ}	\bigcap 5	\bigcap_{Σ}	\bigcap_{Σ}	$\bigcirc 5$	\bigcap_{Σ}	\bigcap_{Σ}	\bigcap 5
()6	()6	()6	()6	$\bigcirc 6$	()6	()6	()6
$\bigcup 7$	$\bigcup 7$	$\bigcup 7$	$\bigcup 7$	$\bigcirc 7$	$\bigcup 7$	$\bigcup 7$	$\bigcup 7$
\bigcap	\bigcap	\bigcap	\bigcap	$\bigcirc 8$	\bigcap	\bigcap	\bigcap
_	_	_	_	_	_	_	_
\bigcap a	\bigcap a	\bigcap q	\bigcap q	$\bigcirc 9$	\bigcap a	\bigcap α	\bigcap α
くノジ							くりひ

← 学生番号を左にマークし、下に氏名を記入

氏名:.....

問1 函数 $f(x) = 5x^4 + 2x^3 + 6x^2 + 2x + 7$ の導函数 f'(x) を求めなさい。

$$\bigcirc 20x^3 + 6x^2 + 12x + 2 \qquad \bigcirc 5x^4 + 2x^3 + 6x^2 + 2x + 7 \qquad \bigcirc 5x^4 + 4x^3 + 6x^2 + 2x$$

$$5x^4 + 2x^3 + 6x^2 + 2x + 7$$

$$0 \quad 5x^4 + 4x^3 + 6x^2 + 2x$$

$$\bigcirc 20x^3 + 6x^2 + 14x + 2 \qquad \bigcirc 20x^3 + 6x^2 + 12x + 9$$

$$\bigcirc 20x^3 + 6x^2 + 12x + 9$$

問 2 函数 $f(x) = 3 - \frac{4}{x} + \frac{1}{x^2}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad -\frac{4}{x^2} + \frac{1}{x^3} \qquad \bigcirc \quad \frac{4}{x^2} - \frac{2}{x^3} \qquad \bigcirc \quad 3 - \frac{4}{x} \qquad \bigcirc \quad \frac{4}{x^2} - \frac{1}{x^3} \qquad \bigcirc \quad -\frac{4}{x^2} + \frac{2}{x^3}$$

$$\bigcirc \quad \frac{4}{x^2} - \frac{2}{x^3}$$

$$\bigcirc$$
 3 $-\frac{4}{x}$

$$\frac{4}{x^2} - \frac{1}{x^3}$$

$$-\frac{4}{x^2} + \frac{2}{x^3}$$

問3 函数 $f(x) = x^{\frac{7}{2}}$ の導函数 f'(x) を求めなさい。

- $\bigcirc \frac{7}{2}x^{\frac{7}{2}} \qquad \bigcirc \frac{9}{2}x^{\frac{5}{2}} \qquad \bigcirc \frac{5}{2}x^{\frac{5}{2}} \qquad \bigcirc \frac{7}{2}x^{\frac{5}{2}} \qquad \bigcirc \frac{5}{2}x^{\frac{5}{2}}$

問4 函数 $f(x) = x^{\frac{11}{2}} - x^{-\frac{11}{5}}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{11}{2}x^{\frac{9}{2}} - \frac{11}{5}x^{-\frac{16}{5}} \qquad \bigcirc \quad \frac{11}{2}x^{\frac{9}{2}} + \frac{11}{5}x^{-\frac{16}{5}} \qquad \bigcirc \quad \frac{11}{2}x^{-\frac{9}{2}} + \frac{11}{5}x^{-\frac{6}{5}} \qquad \bigcirc \quad \frac{9}{2}x^{\frac{9}{2}} - \frac{11}{5}x^{\frac{6}{5}} \qquad \bigcirc \quad \frac{9}{2}x^{\frac{11}{2}} + \frac{11}{5}x^{-\frac{6}{5}} \qquad \bigcirc \quad \frac{9}{2}x^{\frac{11}{2}} + \frac{11}{5}x^{-\frac{6}{5}}$$

$$\int \frac{9}{2}x^{\frac{9}{2}} - \frac{1}{2}$$

函数 $f(x) = (x^2 + 2)(1x + 3)$ の導函数 f'(x) を求めなさい。 問 5

- $\bigcirc 3x^2 + 6x + 2$ $\bigcirc 3x^2 + 6x + 3$ $\bigcirc 2x$ $\bigcirc 3x^2 + 6x$

函数 $f(x) = \frac{7}{6x^2 + 3x + 4}$ の導函数 f'(x) を求めなさい。 問 6

- $\bigcirc \quad -\frac{84x+21}{(6x^2+3x+4)^2} \qquad \quad \bigcirc \quad -\frac{84x+21}{6x^2+3x+4} \qquad \quad \bigcirc \quad \frac{84x+21}{6x^2+3x+4} \qquad \quad \bigcirc \quad \frac{84x+21}{(6x^2+3x+4)^2}$

函数 $f(x) = \frac{2x+5}{7x+4}$ の導函数 f'(x) を求めなさい。 問 7

- $\bigcirc \quad \frac{2}{7x+4} \qquad \bigcirc \quad \frac{-23}{7x+4} \qquad \bigcirc \quad \frac{-27}{7x+4} \qquad \bigcirc \quad \frac{2}{(7x+4)^2} \qquad \bigcirc \quad \frac{-27}{(7x+4)^2}$

函数 $f(x) = (3x+8)^{10}$ の導函数 f'(x) を求めなさい。 問8

- $\bigcirc \quad 30(3x+8)^{10} \qquad \quad \bigcirc \quad 30(3x+8)^{9} \qquad \quad \bigcirc \quad 10(3x+8)^{10} \qquad \quad \bigcirc \quad 10(3x+8)^{9}$

問 4

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

	$\overline{}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
(()0	()0	$\bigcirc 0$	()0	()0	()0	()0
(. J1	()1	()1	$\bigcirc 1$	()1	()1	()1	()1
($^{\circ}$	$\bigcup 2$	$\bigcup 2$	$\bigcirc 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$
($\cup 3$	$\bigcup 3$	$\bigcup 3$	$\bigcirc 3$	$\bigcup 3$	$\bigcup 3$	$\bigcup 3$	$\bigcup 3$
($\bigcup 4$	$\bigcup 4$	$\bigcup 4$	$\bigcirc 4$	$\bigcup 4$	$\bigcup 4$	$\bigcup 4$	$\bigcup 4$
-	7-	0-	\bigcirc -	$\bigcirc 5$	0-	\bigcirc	\bigcirc -	0-
(\cup 5	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$
- ($\bigcap_{\mathcal{C}}$	$\bigcap_{\mathcal{C}}$	$\bigcap_{\mathcal{C}}$	$\bigcirc 6$	$\bigcap_{\mathcal{C}}$	$\bigcap_{\mathcal{C}}$	\bigcap_{C}	\bigcap_{C}
(\mathcal{O}_{0}	\bigcirc 0	\bigcirc 6	\bigcirc 6	\bigcirc 0	\bigcirc 6	\bigcirc 6	\bigcup_{0}
- (\bigcap_{τ}	\bigcap_{7}	\bigcap_{7}	\bigcirc 7	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}
()1	$\bigcup i$	$\bigcup i$	$\bigcup i$	$\bigcup i$	$\bigcup i$	$\bigcup i$	$\bigcup i$
- (\cap	\cap	\cap	$\bigcirc 8$	\cap	\cap	\cap	\cap
1	\bigcap_{α}	\bigcap	\bigcap	$\bigcirc 9$	\bigcap	\bigcap	\bigcap	\bigcap
١	JÐ	(J)	CJB	(J)	(J)	(J)	(Ja	()3

← 学生番号を左にマークし、下に氏名を記入してください。

氏名:	 	 	

問1 函数 $f(x) = 2x^4 + 4x^3 + 2x^2 + 3x + 9$ の導函数 f'(x) を求めなさい。

$$\bigcirc 2x^4 + 8x^3 + 2x^2 + 3x \qquad \bigcirc 2x^4 + 4x^3 + 2x^2 + 3x + 9 \qquad \bigcirc 8x^3 + 12x^2 + 4x + 12$$

$$\bigcirc 8x^3 + 12x^2 + 6x + 3 \qquad \bigcirc 8x^3 + 12x^2 + 4x + 3$$

問2 函数 $f(x) = 1 - \frac{1}{x} + \frac{1}{x^2}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad 1 - \frac{1}{x} \qquad \bigcirc \quad -\frac{1}{x^2} + \frac{2}{x^3} \qquad \bigcirc \quad -\frac{1}{x^2} + \frac{1}{x^3} \qquad \bigcirc \quad \frac{1}{x^2} - \frac{2}{x^3} \qquad \bigcirc \quad \frac{1}{x^2} - \frac{1}{x^3}$$

 $\bigcirc \quad \frac{7}{2}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{4}{2}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{7}{2}x^{\frac{7}{3}} \qquad \bigcirc \quad \frac{9}{2}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{5}{2}x^{\frac{4}{3}}$

問3 函数 $f(x) = x^{\frac{7}{3}}$ の導函数 f'(x) を求めなさい。

 $\bigcirc 9x^2 + 14x$ $\bigcirc 9x^2 + 14x + 9$ $\bigcirc 6x$ $\bigcirc 9x^2 + 14x + 10$

問 5 函数 $f(x) = (x^2 + 3)(3x + 7)$ の導函数 f'(x) を求めなさい。

問6 函数
$$f(x) = \frac{9}{9x^2 + 8x + 9}$$
 の導函数 $f'(x)$ を求めなさい。
$$\bigcirc \frac{162x + 72}{(9x^2 + 8x + 9)^2} \bigcirc -\frac{162x + 72}{9x^2 + 8x + 9} \bigcirc -\frac{162x + 72}{(9x^2 + 8x + 9)^2} \bigcirc \frac{162x + 72}{9x^2 + 8x + 9}$$

問7 函数 $f(x) = \frac{2x+5}{3x+4}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{2}{3x+4} \qquad \bigcirc \quad \frac{-7}{3x+4} \qquad \bigcirc \quad \frac{-3}{3x+4} \qquad \bigcirc \quad \frac{2}{(3x+4)^2} \qquad \bigcirc \quad \frac{-7}{(3x+4)^2}$$

問 8 函数 $f(x) = (7x+6)^7$ の導函数 f'(x) を求めなさい。

$$\bigcirc 49(7x+6)^6 \qquad \bigcirc 49(7x+6)^7 \qquad \bigcirc 7(7x+6)^6 \qquad \bigcirc 7(7x+6)^7$$

応用数学	演習 03	2022年4月27	日応用数学 演習 02	2022年4月20日
$ \begin{array}{c} \bigcirc 1 \\ \bigcirc 2 \\ \bigcirc 3 \\ \bigcirc 4 \\ \bigcirc 5 \\ \bigcirc 6 \\ \bigcirc 7 \\ \bigcirc 8 \end{array} $		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	してください。	マークし、下に氏名を記入
問1 図	函数 $f(x) = 2x^4 + 6x$	$3 + 6x^2 + 6x + 9$	の導函数 $f'(x)$ を求め)なさい。
\bigcirc $2x^4$		_		$0 8x^3 + 18x^2 + 12x + 6 + 12x + 15$
問 2	函数 $f(x) = 2 - \frac{4}{x} + \frac{4}{x}$	$\frac{1}{x^2}$ の導函数 $f'(x)$	を求めなさい。	
$\bigcirc 2$	$2 - \frac{4}{x} \qquad \qquad \bigcirc -\frac{4}{x^2}$	$+\frac{1}{x^3}$	$-\frac{4}{x^2} + \frac{2}{x^3} \qquad \bigcirc$	$\frac{4}{x^2} - \frac{2}{x^3}$ $\frac{4}{x^2} - \frac{1}{x^3}$
問3 函	函数 $f(x) = x^{\frac{11}{2}}$ の導	函数 $f'(x)$ を求めた	ここと い。	
	$\bigcirc \frac{9}{2}x^{\frac{9}{2}} \qquad \bigcirc$	$\frac{13}{2}x^{\frac{9}{2}} \qquad \bigcirc$	$\frac{11}{2}x^{\frac{11}{2}} \qquad \qquad \bigcirc \frac{9}{2}x^{\frac{11}{2}}$	$x^{\frac{9}{2}} \qquad \qquad \bigcirc \frac{11}{2}x^{\frac{9}{2}}$
問4 函	函数 $f(x) = x^{\frac{13}{2}} - x^{-1}$	$\frac{11}{4}$ の導函数 $f'(x)$	を求めなさい。	
			$\begin{array}{ccc} \frac{11}{2} + \frac{11}{4}x^{-\frac{7}{4}} & & \\ &$	
問 5 図	函数 $f(x) = (x^2 + 1)($	4x+4) の導函数	f'(x) を求めなさい。	
	$\bigcirc 12x^2 + 8x + 4$	\bigcirc 8x	$\bigcirc 12x^2 + 8x$	$\bigcirc 12x^2 + 8x + 5$
問 6 図	函数 $f(x) = \frac{9}{5x^2 + 3x + 9}$	の導函数 $f'(x)$ を	求めなさい。	
C	$-\frac{90x+27}{(5x^2+3x+9)^2}$	$\bigcirc -\frac{90x + 27}{5x^2 + 3x + 9}$	$\bigcirc \frac{90x + 27}{5x^2 + 3x + 9}$	$\bigcirc \frac{90x + 27}{(5x^2 + 3x + 9)^2}$
問7 函	函数 $f(x) = \frac{4x+3}{11x+2}$ の	導函数 $f'(x)$ を求め	かなさい 。	
C) $\frac{4}{11x+2}$ \bigcirc $\frac{1}{2}$	$\frac{-23}{11x+2}$	$\frac{-25}{11x+2)^2}$ $\frac{-}{11}$	$\frac{-25}{x+2}$ $\frac{4}{(11x+2)^2}$
問8 図	函数 $f(x) = (3x+3)^9$	⁾ の導函数 $f'(x)$ を	求めなさい。	
	$9(3x+3)^9$	$9(3x+3)^8$	$\bigcirc 27(3x+3)^8$	$0 27(3x+3)^9$

応用数学 演習 03	2022 年 4 月 27 日応用数学 演習 02 2022 年 4 月 20 日
$ \begin{array}{c cccc} \bigcirc 0 & \bigcirc 0 & \bigcirc 0 & \bigcirc 0 & \bigcirc 0 \\ \bigcirc 1 & \bigcirc 1 \\ \bigcirc 2 & \bigcirc 2 \\ \bigcirc 3 & \bigcirc 3 \\ \bigcirc 4 & \bigcirc 6 &$	①1 ①1 ①1 ①1 ②2 ②2 ②2 ②2 ← 学生番号を左にマークし、下に氏名を記入 ○3 ③3 ③3 ③3 してください。 ○4 ○4 ○4 ○4 ○4 ○5 ○5 ○5 ○5 ○6 ○6 ○6 ○6 ○7 ○7 ○7 ○7 ○8 ②8 ②8 ②8
問 1 函数 $f(x) = 6x^4$	$\frac{1}{4}+7x^3+2x^2+6x+1$ の導函数 $f'(x)$ を求めなさい。
•	$+7$ $\bigcirc 6x^4 + 7x^3 + 2x^2 + 6x + 1$ $\bigcirc 24x^3 + 21x^2 + 4x + 6$ $24x^3 + 21x^2 + 6x + 6$ $\bigcirc 6x^4 + 14x^3 + 2x^2 + 6x$
問 2 函数 $f(x) = 5$ —	$-rac{3}{x}+rac{4}{x^2}$ の導函数 $f'(x)$ を求めなさい。
$\bigcirc -\frac{3}{x^2} + \frac{8}{x^3}$	$ \bigcirc \frac{3}{x^2} - \frac{8}{x^3} \qquad \qquad \bigcirc 5 - \frac{3}{x} \qquad \qquad \bigcirc \frac{3}{x^2} - \frac{4}{x^3} \qquad \qquad \bigcirc -\frac{3}{x^2} + \frac{4}{x^3} $
問 3 函数 $f(x) = x^{\frac{11}{3}}$	の導函数 $f'(x)$ を求めなさい。
$\bigcirc \tfrac{9}{3}x^{\frac{8}{3}}$	$\bigcirc \frac{11}{3}x^{\frac{11}{3}} \qquad \bigcirc \frac{8}{3}x^{\frac{8}{3}} \qquad \bigcirc \frac{11}{3}x^{\frac{8}{3}} \qquad \bigcirc \frac{13}{3}x^{\frac{8}{3}}$
問 4 函数 $f(x) = x^{\frac{13}{2}}$	$\frac{1}{2}-x^{-rac{7}{6}}$ の導函数 $f'(x)$ を求めなさい。
	$ \bigcirc \frac{11}{2}x^{\frac{13}{2}} + \frac{7}{6}x^{-\frac{1}{6}} \qquad \bigcirc \frac{13}{2}x^{\frac{11}{2}} - \frac{7}{6}x^{-\frac{13}{6}} \qquad \bigcirc \frac{11}{2}x^{\frac{11}{2}} - \frac{7}{6}x^{\frac{1}{6}} \\ \bigcirc \frac{13}{2}x^{\frac{11}{2}} + \frac{7}{6}x^{-\frac{13}{6}} \qquad \bigcirc \frac{13}{2}x^{\frac{13}{2}} + \frac{7}{6}x^{-\frac{1}{6}} $
問 5 函数 $f(x) = (x^2)$	f+1)(1x+7) の導函数 $f'(x)$ を求めなさい。
\bigcirc 2x	
問 6 函数 $f(x) = \frac{1}{6x^2}$	$rac{1}{+3x+7}$ の導函数 $f'(x)$ を求めなさい。
	$ \bigcirc \frac{12x+3}{(6x^2+3x+7)^2} \qquad \bigcirc \frac{12x+3}{6x^2+3x+7} \qquad \bigcirc \frac{12x+3}{6x^2+3x+7} $
問7 函数 $f(x) = \frac{2x}{11x}$	$rac{+7}{+8}$ の導函数 $f'(x)$ を求めなさい。
$\bigcirc \frac{2}{11x+8}$	$ \bigcirc \frac{-61}{11x+8} \qquad \bigcirc \frac{2}{(11x+8)^2} \qquad \bigcirc \frac{-53}{11x+8} \qquad \bigcirc \frac{-61}{(11x+8)^2} $
問8 函数 $f(x) = (2x)$	$(x+8)^{11}$ の導函数 $f'(x)$ を求めなさい。

 $\bigcirc 11(2x+8)^{11} \qquad \bigcirc 11(2x+8)^{10} \qquad \bigcirc 22(2x+8)^{10} \qquad \bigcirc 22(2x+8)^{11}$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

\bigcap	0 0	\bigcap 0	\bigcap 0	\bigcap 0	\bigcap 0	\bigcap 0	\bigcap 0
	1 ()1						
_	_	_	_	_	_	_	_
\bigcup_{i}	$2\bigcirc 2$	$\bigcup 2$					
\bigcirc :	3	$\bigcirc 3$					
\bigcirc 4	1 04	$\bigcirc 4$					
\bigcirc	5 05	\bigcirc 5	$\bigcirc 5$				
$\bigcirc \epsilon$	6 06	$\bigcirc 6$					
\bigcirc	7 🔾 7	\bigcirc 7	\bigcirc 7	$\bigcirc 7$	\bigcirc 7	$\bigcirc 7$	$\bigcirc 7$
\bigcirc 8	$8 \bigcirc 8$	$\bigcirc 8$					
\bigcirc	9 ()9	$\bigcirc 9$					

← 学生番号を左にマークし、下に氏名を記入 してください。

氏名:	 	

問1 函数 $f(x) = 3x^4 + 2x^3 + 7x^2 + 6x + 7$ の導函数 f'(x) を求めなさい。

$$\bigcirc 3x^4 + 2x^3 + 7x^2 + 6x + 7 \qquad \bigcirc 12x^3 + 6x^2 + 14x + 6 \qquad \bigcirc 12x^3 + 6x^2 + 16x + 6$$

$$\bigcirc 3x^4 + 4x^3 + 7x^2 + 6x \qquad \bigcirc 12x^3 + 6x^2 + 14x + 13$$

問2 函数 $f(x) = 5 - \frac{5}{x} + \frac{3}{x^2}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad 5 - \frac{5}{x} \qquad \bigcirc \quad \frac{5}{x^2} - \frac{3}{x^3} \qquad \bigcirc \quad -\frac{5}{x^2} + \frac{6}{x^3} \qquad \bigcirc \quad -\frac{5}{x^2} + \frac{3}{x^3} \qquad \bigcirc \quad \frac{5}{x^2} - \frac{6}{x^3}$$

問 3 函数 $f(x) = x^{\frac{11}{3}}$ の導函数 f'(x) を求めなさい。

問 4 函数
$$f(x) = x^{\frac{11}{3}} - x^{-\frac{11}{5}}$$
 の導函数 $f'(x)$ を求めなさい。
$$\bigcirc \frac{11}{3}x^{\frac{8}{3}} - \frac{11}{5}x^{-\frac{16}{5}} \qquad \bigcirc \frac{8}{3}x^{\frac{11}{3}} + \frac{11}{5}x^{-\frac{6}{5}} \qquad \bigcirc \frac{11}{3}x^{\frac{8}{3}} + \frac{11}{5}x^{-\frac{16}{5}} \qquad \bigcirc \frac{8}{3}x^{\frac{8}{3}} - \frac{11}{5}x^{\frac{6}{5}}$$

$$\bigcirc \frac{11}{3}x^{\frac{11}{3}} + \frac{11}{5}x^{-\frac{6}{5}} \qquad \bigcirc \frac{11}{3}x^{-\frac{8}{3}} + \frac{11}{5}x^{-\frac{6}{5}}$$

 $\bigcirc \quad \frac{13}{3}x^{\frac{8}{3}} \qquad \bigcirc \quad \frac{9}{3}x^{\frac{8}{3}} \qquad \bigcirc \quad \frac{8}{3}x^{\frac{8}{3}} \qquad \bigcirc \quad \frac{11}{3}x^{\frac{11}{3}} \qquad \bigcirc \quad \frac{11}{3}x^{\frac{8}{3}}$

問 5 函数 $f(x) = (x^2 + 1)(3x + 4)$ の導函数 f'(x) を求めなさい。

$$\bigcirc 9x^2 + 8x + 3$$
 $\bigcirc 9x^2 + 8x$ $\bigcirc 9x^2 + 8x + 4$ $\bigcirc 6x$

問 6 函数 $f(x) = \frac{7}{4x^2+6x+7}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad -\frac{56x+42}{(4x^2+6x+7)^2} \qquad \bigcirc \quad \frac{56x+42}{(4x^2+6x+7)^2} \qquad \bigcirc \quad -\frac{56x+42}{4x^2+6x+7} \qquad \bigcirc \quad \frac{56x+42}{4x^2+6x+7}$$

問 7 函数 $f(x) = \frac{2x+3}{11x+8}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{-17}{(11x+8)^2} \qquad \bigcirc \quad \frac{-17}{11x+8} \qquad \bigcirc \quad \frac{2}{(11x+8)^2} \qquad \bigcirc \quad \frac{-9}{11x+8} \qquad \bigcirc \quad \frac{2}{11x+8}$$

問8 函数 $f(x) = (3x+7)^{11}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \ \ 33(3x+7)^{11} \qquad \ \bigcirc \ \ 11(3x+7)^{11} \qquad \ \bigcirc \ \ 33(3x+7)^{10} \qquad \ \bigcirc \ \ 11(3x+7)^{10}$$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

\bigcap	\bigcirc	\bigcap	\bigcap	\bigcirc	\bigcirc	\bigcap	\bigcap
$\bigcup 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$	$\bigcirc 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$
\bigcap_{1}	\bigcap_{1}	\bigcap_{1}	\bigcap_{1}	$\bigcirc 1$	\bigcap_{1}	\bigcap_{1}	\bigcap_{1}
\bigcap_{2}	\bigcap_{2}	\bigcap_{2}	\bigcap_{2}	$\bigcirc 2$	\bigcap_{2}	\bigcap_{2}	\bigcap_{2}
()3	()3	()3	()3	$\bigcirc 3$	()3	()3	()3
-		-	-	-	-	-	-
				$\bigcirc 4$			
\bigcap_{Σ}	\bigcap 5	\bigcap_{Σ}	\bigcap_{Σ}	$\bigcirc 5$	\bigcap_{Σ}	\bigcap_{Σ}	\bigcap 5
()6	()6	()6	()6	$\bigcirc 6$	()6	()6	()6
$\bigcup 7$	$\bigcup 7$	$\bigcup 7$	$\bigcup 7$	$\bigcirc 7$	$\bigcup 7$	$\bigcup 7$	$\bigcup 7$
\bigcap	\bigcap	\bigcap	\bigcap	$\bigcirc 8$	\bigcap	\bigcap	\bigcap
_	_	_	_	_	_	_	_
\bigcap a	\bigcap a	\bigcap q	\bigcap q	$\bigcirc 9$	\bigcap a	\bigcap α	\bigcap α
くノジ							くりひ

← 学生番号を左にマークし、下に氏名を記入

氏名:	 	

問1 函数 $f(x) = 2x^4 + 5x^3 + 5x^2 + 7x + 9$ の導函数 f'(x) を求めなさい。

$$\bigcirc 2x^4 + 10x^3 + 5x^2 + 7x \qquad \bigcirc 2x^4 + 5x^3 + 5x^2 + 7x + 9 \qquad \bigcirc 8x^3 + 15x^2 + 12x + 7x + 9$$

$$2x^4 + 5x^3 + 5x^2 + 7x + 9$$

$$0 8x^3 + 15x^2 + 12x + 7$$

$$0 8x^3 + 15x^2 + 10x + 7$$

函数 $f(x) = 3 - \frac{5}{x} + \frac{4}{x^2}$ の導函数 f'(x) を求めなさい。 問 2

$$\bigcirc \quad \frac{5}{x^2} - \frac{8}{x^3}$$

$$\bigcirc$$
 3 $-\frac{5}{x}$

$$\bigcirc \quad \frac{5}{x^2} - \frac{8}{x^3} \qquad \bigcirc \quad 3 - \frac{5}{x} \qquad \bigcirc \quad -\frac{5}{x^2} + \frac{4}{x^3} \qquad \bigcirc \quad -\frac{5}{x^2} + \frac{8}{x^3} \qquad \bigcirc \quad \frac{5}{x^2} - \frac{4}{x^3}$$

$$-\frac{5}{x^2} + \frac{8}{x^3}$$

$$\bigcirc \quad \frac{5}{x^2} - \frac{4}{x^3}$$

函数 $f(x) = x^{\frac{11}{2}}$ の導函数 f'(x) を求めなさい。 問 3

- $\bigcirc \ \ \frac{9}{2}x^{\frac{9}{2}} \qquad \bigcirc \ \ \frac{13}{2}x^{\frac{9}{2}} \qquad \bigcirc \ \ \frac{9}{2}x^{\frac{9}{2}} \qquad \bigcirc \ \ \frac{11}{2}x^{\frac{9}{2}} \qquad \bigcirc \ \ \frac{11}{2}x^{\frac{11}{2}}$

函数 $f(x) = x^{\frac{11}{3}} - x^{-\frac{11}{6}}$ の導函数 f'(x) を求めなさい。 問 4

函数 $f(x) = (x^2 + 4)(1x + 7)$ の導函数 f'(x) を求めなさい。 問 5

- $\bigcirc 3x^2 + 14x + 5$ $\bigcirc 3x^2 + 14x$ $\bigcirc 3x^2 + 14x + 4$ $\bigcirc 2x$

函数 $f(x) = \frac{9}{4x^2+3x+5}$ の導函数 f'(x) を求めなさい。 問 6

- $\bigcirc \quad -\frac{72x+27}{(4x^2+3x+5)^2} \qquad \quad \bigcirc \quad \frac{72x+27}{(4x^2+3x+5)^2} \qquad \quad \bigcirc \quad \frac{72x+27}{4x^2+3x+5} \qquad \quad \bigcirc \quad -\frac{72x+27}{4x^2+3x+5}$

函数 $f(x) = \frac{8x+7}{11x+4}$ の導函数 f'(x) を求めなさい。 問 7

- $\bigcirc \quad \frac{-41}{11x+4} \qquad \bigcirc \quad \frac{-45}{(11x+4)^2} \qquad \bigcirc \quad \frac{8}{(11x+4)^2} \qquad \bigcirc \quad \frac{8}{11x+4} \qquad \bigcirc \quad \frac{-45}{11x+4}$

函数 $f(x) = (8x+2)^{10}$ の導函数 f'(x) を求めなさい。 問8

- $\bigcirc \quad 80(8x+2)^9 \qquad \quad \bigcirc \quad 10(8x+2)^9 \qquad \quad \bigcirc \quad 80(8x+2)^{10} \qquad \quad \bigcirc \quad 10(8x+2)^{10}$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

\bigcap	0 0	\bigcap 0	\bigcap 0	\bigcap 0	\bigcap 0	\bigcap 0	\bigcap 0
	1 ()1						
_	_	_	_	_	_	_	_
\bigcup_{i}	$2\bigcirc 2$	$\bigcup 2$					
\bigcirc :	3	$\bigcirc 3$					
\bigcirc 4	1 04	$\bigcirc 4$					
\bigcirc	5 05	\bigcirc 5	$\bigcirc 5$				
$\bigcirc \epsilon$	6 06	$\bigcirc 6$					
\bigcirc	7 🔾 7	\bigcirc 7	\bigcirc 7	$\bigcirc 7$	$\bigcirc 7$	$\bigcirc 7$	$\bigcirc 7$
\bigcirc 8	$8 \bigcirc 8$	$\bigcirc 8$					
\bigcirc	9 ()9	$\bigcirc 9$					

← 学生番号を左にマークし、下に氏名を記入

氏名:	 	

問1 函数 $f(x) = 5x^4 + 3x^3 + 3x^2 + 3x + 3$ の導函数 f'(x) を求めなさい。

$$\bigcirc 20x^3 + 9x^2 + 6x + 3 \qquad \bigcirc 20x^3 + 9x^2 + 8x + 3 \qquad \bigcirc 20x^3 + 9x^2 + 6x + 6$$

$$0 20x^3 + 9x^2 + 8x + 3$$

$$0 20x^3 + 9x^2 + 6x + 6$$

$$0 5x^4 + 6x^3 + 3x^2 + 3x$$

函数 $f(x) = 5 - \frac{5}{x} + \frac{1}{x^2}$ の導函数 f'(x) を求めなさい。 問 2

$$-\frac{5}{x^2} + \frac{2}{x^3}$$

$$\bigcirc \quad -\frac{5}{x^2} + \frac{2}{x^3} \qquad \bigcirc \quad -\frac{5}{x^2} + \frac{1}{x^3} \qquad \bigcirc \quad \frac{5}{x^2} - \frac{2}{x^3} \qquad \bigcirc \quad \frac{5}{x^2} - \frac{1}{x^3} \qquad \bigcirc \quad 5 - \frac{5}{x}$$

$$\int \frac{5}{x^2} - \frac{2}{x^3}$$

$$\int \frac{5}{x^2} - \frac{1}{x^3}$$

$$\int 5-\frac{5}{x}$$

問3 函数 $f(x) = x^{\frac{7}{3}}$ の導函数 f'(x) を求めなさい。

- $\bigcirc \quad \frac{4}{3}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{5}{3}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{9}{3}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{7}{3}x^{\frac{4}{3}}$

函数 $f(x) = x^{\frac{13}{3}} - x^{-\frac{11}{5}}$ の導函数 f'(x) を求めなさい。 問 4

$$\bigcirc \frac{13}{3}x^{\frac{10}{3}} - \frac{11}{5}x^{-\frac{16}{5}} \qquad \bigcirc \frac{13}{3}x^{-\frac{10}{3}} + \frac{11}{5}x^{-\frac{6}{5}} \qquad \bigcirc \frac{10}{3}x^{\frac{10}{3}} - \frac{11}{5}x^{\frac{6}{5}}$$

$$\bigcirc \frac{13}{3}x^{\frac{10}{3}} + \frac{11}{5}x^{-\frac{16}{5}} \qquad \bigcirc \frac{10}{3}x^{\frac{13}{3}} + \frac{11}{5}x^{-\frac{6}{5}} \qquad \bigcirc \frac{13}{3}x^{\frac{13}{3}} + \frac{11}{5}x^{-\frac{6}{5}}$$

$$\bigcirc \quad \frac{13}{3}x^{-\frac{10}{3}} + \frac{11}{5}x^{-\frac{6}{5}}$$

$$\bigcirc \quad \frac{10}{3}x^{\frac{10}{3}} - \frac{11}{5}x^{\frac{6}{5}}$$

$$\bigcirc \quad \frac{13}{3}x^{\frac{10}{3}} + \frac{11}{5}x^{-\frac{16}{5}}$$

$$\bigcirc \quad \frac{10}{3}x^{\frac{13}{3}} + \frac{11}{5}x^{-\frac{6}{5}}$$

$$\bigcirc \quad \frac{13}{3}x^{\frac{13}{3}} + \frac{11}{5}x^{-\frac{6}{5}}$$

函数 $f(x) = (x^2 + 2)(3x + 2)$ の導函数 f'(x) を求めなさい。 問 5

- $\bigcirc 9x^2 + 4x + 7$ $\bigcirc 9x^2 + 4x$ $\bigcirc 6x$ $\bigcirc 9x^2 + 4x + 6$

函数 $f(x) = \frac{3}{7x^2+3x+4}$ の導函数 f'(x) を求めなさい。 問 6

- $\bigcirc \quad -\frac{42x+9}{7x^2+3x+4} \qquad \quad \bigcirc \quad \frac{42x+9}{7x^2+3x+4} \qquad \quad \bigcirc \quad -\frac{42x+9}{(7x^2+3x+4)^2} \qquad \quad \bigcirc \quad \frac{42x+9}{(7x^2+3x+4)^2}$

函数 $f(x) = \frac{4x+5}{7x+2}$ の導函数 f'(x) を求めなさい。 問 7

- $\bigcirc \quad \frac{-27}{7x+2} \qquad \bigcirc \quad \frac{-27}{(7x+2)^2} \qquad \bigcirc \quad \frac{4}{(7x+2)^2} \qquad \bigcirc \quad \frac{-25}{7x+2} \qquad \bigcirc \quad \frac{4}{7x+2}$

函数 $f(x) = (5x+2)^7$ の導函数 f'(x) を求めなさい。 問8

- $\bigcirc \ \ 35(5x+2)^7 \qquad \ \ \bigcirc \ \ \ 7(5x+2)^7 \qquad \ \ \bigcirc \ \ \ 7(5x+2)^6 \qquad \ \ \bigcirc \ \ \ 35(5x+2)^6$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

\bigcirc	0 0	$\bigcap 0$					
	. Ŏ1						
	O(2)	-	-	-	-	-	-
	s Ŏз						
	$\bigcup_{i=1}^{n} 4$	-	-	-	-	-	
	O_5						
	O6						
	, <u>Ŏ</u> 7						
	$\tilde{\otimes}8$						
_	$\bigcap g$	_	_	_	_	_	_

← 学生番号を左にマークし、下に氏名を記入 してください。

氏名:	 	

問1 函数 $f(x) = 2x^4 + 6x^3 + 2x^2 + 5x + 4$ の導函数 f'(x) を求めなさい。

$$\bigcirc 8x^3 + 18x^2 + 4x + 9 \qquad \bigcirc 2x^4 + 12x^3 + 2x^2 + 5x \qquad \bigcirc 8x^3 + 18x^2 + 4x + 5$$

$$8x^{2} + 4x + 9$$
 0 $2x^{3} + 12x^{3} + 2x^{2} + 5x$ 0 $8x^{3} + 18x^{2} + 4x + 4x + 1$
 0 $8x^{3} + 18x^{2} + 6x + 5$ 0 $2x^{4} + 6x^{3} + 2x^{2} + 5x + 4$

函数 $f(x)=2-rac{5}{x}+rac{4}{x^2}$ の導函数 f'(x) を求めなさい。 問 2

$$\bigcirc \quad -\frac{5}{x^2} + \frac{8}{x^3} \qquad \bigcirc \quad 2 - \frac{5}{x} \qquad \bigcirc \quad -\frac{5}{x^2} + \frac{4}{x^3} \qquad \bigcirc \quad \frac{5}{x^2} - \frac{4}{x^3} \qquad \bigcirc \quad \frac{5}{x^2} - \frac{8}{x^3}$$

問3 函数 $f(x) = x^{\frac{11}{3}}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{13}{3}x^{\frac{8}{3}} \qquad \bigcirc \quad \frac{11}{3}x^{\frac{11}{3}} \qquad \bigcirc \quad \frac{9}{3}x^{\frac{8}{3}} \qquad \bigcirc \quad \frac{8}{3}x^{\frac{8}{3}} \qquad \bigcirc \quad \frac{11}{3}x^{\frac{8}{3}}$$

函数 $f(x) = x^{\frac{11}{3}} - x^{-\frac{13}{6}}$ の導函数 f'(x) を求めなさい。 問 4

$$\bigcirc \quad \frac{11}{3}x^{\frac{8}{3}} - \frac{13}{6}x^{-\frac{19}{6}} \qquad \bigcirc \quad \frac{8}{3}x^{\frac{8}{3}} - \frac{13}{6}x^{\frac{7}{6}} \qquad \bigcirc \quad \frac{11}{3}x^{\frac{8}{3}} + \frac{13}{6}x^{-\frac{19}{6}} \qquad \bigcirc \quad \frac{8}{3}x^{\frac{11}{3}} + \frac{13}{6}x^{-\frac{7}{6}}$$

函数 $f(x) = (x^2 + 5)(1x + 5)$ の導函数 f'(x) を求めなさい。 問 5

$$\bigcirc 3x^2 + 10x$$
 $\bigcirc 3x^2 + 10x + 5$ $\bigcirc 3x^2 + 10x + 6$ $\bigcirc 2x$

函数 $f(x) = \frac{4}{5x^2+4x+3}$ の導函数 f'(x) を求めなさい。 問 6

$$\bigcirc \quad \frac{40x+16}{(5x^2+4x+3)^2} \qquad \quad \bigcirc \quad -\frac{40x+16}{5x^2+4x+3} \qquad \quad \bigcirc \quad -\frac{40x+16}{(5x^2+4x+3)^2} \qquad \quad \bigcirc \quad \frac{40x+16}{5x^2+4x+3}$$

函数 $f(x) = \frac{8x+3}{5x+2}$ の導函数 f'(x) を求めなさい。 問 7

$$\bigcirc \quad \frac{1}{(5x+2)^2} \qquad \bigcirc \quad \frac{8}{5x+2} \qquad \bigcirc \quad \frac{8}{(5x+2)^2} \qquad \bigcirc \quad \frac{3}{5x+2} \qquad \bigcirc \quad \frac{1}{5x+2}$$

函数 $f(x) = (7x+8)^{10}$ の導函数 f'(x) を求めなさい。 問8

$$\bigcirc 10(7x+8)^{10} \qquad \bigcirc 70(7x+8)^{10} \qquad \bigcirc 10(7x+8)^{9} \qquad \bigcirc 70(7x+8)^{9}$$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

	$\overline{}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
(()0	()0	$\bigcirc 0$	()0	()0	()0	()0
(. J1	()1	()1	$\bigcirc 1$	()1	()1	()1	()1
($^{\circ}$	$\bigcup 2$	$\bigcup 2$	$\bigcirc 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$
($\cup 3$	$\bigcup 3$	$\bigcup 3$	$\bigcirc 3$	$\bigcup 3$	$\bigcup 3$	$\bigcup 3$	$\bigcup 3$
($\bigcup 4$	$\bigcup 4$	$\bigcup 4$	$\bigcirc 4$	$\bigcup 4$	$\bigcup 4$	$\bigcup 4$	$\bigcup 4$
-	7-	0-	\bigcirc -	$\bigcirc 5$	0-	\bigcirc	\bigcirc -	0-
(\cup 5	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$
- ($\bigcap_{\mathcal{C}}$	$\bigcap_{\mathcal{C}}$	$\bigcap_{\mathcal{C}}$	$\bigcirc 6$	$\bigcap_{\mathcal{C}}$	$\bigcap_{\mathcal{C}}$	\bigcap_{C}	\bigcap_{C}
(\mathcal{O}_{0}	\bigcirc 0	\bigcirc 6	\bigcirc 6	\bigcirc 0	\bigcirc 6	\bigcirc 6	\bigcup_{0}
- (\bigcap_{τ}	\bigcap_{7}	\bigcap_{7}	\bigcirc 7	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}
()1	$\bigcup i$	$\bigcup i$	$\bigcup i$	$\bigcup i$	$\bigcup i$	$\bigcup i$	$\bigcup i$
- (\cap	\cap	\cap	$\bigcirc 8$	\cap	\cap	\cap	\cap
1	\bigcap_{α}	\bigcap	\bigcap	$\bigcirc 9$	\bigcap	\bigcap	\bigcap	\bigcap
١	JÐ	(J)	CJB	(J)	(J)	(J)	(Ja	()3

← 学生番号を左にマークし、下に氏名を記入

氏名:	

問1 函数 $f(x) = 6x^4 + 2x^3 + 5x^2 + 7x + 2$ の導函数 f'(x) を求めなさい。

$$\bigcirc 24x^3 + 6x^2 + 10x + 9 \qquad \bigcirc 24x^3 + 6x^2 + 12x + 7 \qquad \bigcirc 24x^3 + 6x^2 + 10x + 7$$

$$\bigcirc 24x^3 + 6x^2 + 12x + 7$$

$$\bigcirc 24x^3 + 6x^2 + 10x + 7$$

$$0 6x^4 + 4x^3 + 5x^2 + 7x 0 6x^4 + 2x^3 + 5x^2 + 7x + 2$$

$$0 \quad 6x^4 + 2x^3 + 5x^2 + 7x + 5$$

問 2 函数 $f(x) = 3 - \frac{5}{x} + \frac{4}{x^2}$ の導函数 f'(x) を求めなさい。

$$\int \frac{5}{x^2} - \frac{4}{x^3}$$

$$\bigcirc$$
 3 $-\frac{5}{x}$

$$\bigcirc \quad \frac{5}{x^2} - \frac{4}{x^3} \qquad \bigcirc \quad 3 - \frac{5}{x} \qquad \bigcirc \quad -\frac{5}{x^2} + \frac{8}{x^3} \qquad \bigcirc \quad -\frac{5}{x^2} + \frac{4}{x^3} \qquad \bigcirc \quad \frac{5}{x^2} - \frac{8}{x^3}$$

$$-\frac{5}{x^2} + \frac{4}{x^3}$$

$$\int \frac{5}{x^2} - \frac{8}{x^3}$$

問3 函数 $f(x) = x^{\frac{5}{3}}$ の導函数 f'(x) を求めなさい。

- $\bigcirc \quad \frac{5}{2}x^{\frac{2}{3}} \qquad \bigcirc \quad \frac{2}{2}x^{\frac{2}{3}} \qquad \bigcirc \quad \frac{3}{2}x^{\frac{2}{3}} \qquad \bigcirc \quad \frac{5}{2}x^{\frac{5}{3}} \qquad \bigcirc \quad \frac{7}{2}x^{\frac{2}{3}}$

函数 $f(x) = x^{\frac{13}{3}} - x^{-\frac{7}{5}}$ の導函数 f'(x) を求めなさい。 問 4

$$\bigcirc \quad \frac{10}{3}x^{\frac{10}{3}} - \frac{7}{5}x^{\frac{2}{5}}$$

$$\bigcirc \quad \frac{13}{3}x^{\frac{13}{3}} + \frac{7}{5}x^{-\frac{2}{5}}$$

$$0 \frac{13}{3}x^{-\frac{10}{3}} + \frac{7}{5}x^{-\frac{2}{5}}$$

$$\bigcirc \quad \frac{10}{3}x^{\frac{10}{3}} - \frac{7}{5}x^{\frac{2}{5}} \qquad \bigcirc \quad \frac{13}{3}x^{\frac{13}{3}} + \frac{7}{5}x^{-\frac{2}{5}} \qquad \bigcirc \quad \frac{13}{3}x^{-\frac{10}{3}} + \frac{7}{5}x^{-\frac{2}{5}} \qquad \bigcirc \quad \frac{10}{3}x^{\frac{13}{3}} + \frac{7}{5}x^{-\frac{2}{5}} \qquad \bigcirc \quad \frac{13}{3}x^{\frac{10}{3}} + \frac{7}{5}x^{-\frac{12}{5}} \qquad \bigcirc \quad \frac{13}{3}x^{\frac{13}{3}} + \frac{7}{5}x^{-\frac{12}{5}}$$

函数 $f(x) = (x^2 + 1)(4x + 6)$ の導函数 f'(x) を求めなさい。 問 5

- $\bigcirc 12x^2 + 12x \qquad \bigcirc 12x^2 + 12x + 4 \qquad \bigcirc 8x \qquad \bigcirc 12x^2 + 12x + 5$

函数 $f(x) = \frac{2}{2x^2+6x+8}$ の導函数 f'(x) を求めなさい。 問 6

- $\bigcirc \quad -\frac{8x+12}{2x^2+6x+8} \qquad \quad \bigcirc \quad \frac{8x+12}{2x^2+6x+8} \qquad \quad \bigcirc \quad -\frac{8x+12}{(2x^2+6x+8)^2} \qquad \quad \bigcirc \quad \frac{8x+12}{(2x^2+6x+8)^2}$

函数 $f(x) = \frac{8x+11}{3x+8}$ の導函数 f'(x) を求めなさい。 問 7

- $\bigcirc \quad \frac{8}{(3x+8)^2} \qquad \bigcirc \quad \frac{8}{3x+8} \qquad \bigcirc \quad \frac{39}{3x+8} \qquad \bigcirc \quad \frac{31}{(3x+8)^2} \qquad \bigcirc \quad \frac{31}{3x+8}$

函数 $f(x) = (7x+3)^7$ の導函数 f'(x) を求めなさい。 問8

- $\bigcirc \ \ 49(7x+3)^6 \qquad \ \ \bigcirc \ \ \ 49(7x+3)^7 \qquad \ \ \bigcirc \ \ \ 7(7x+3)^6 \qquad \ \ \bigcirc \ \ \ 7(7x+3)^7$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

\bigcap	0 0	\bigcap 0	\bigcap 0	\bigcap 0	\bigcap 0	\bigcap 0	\bigcap 0
	1 ()1						
_	_	_	_	_	_	_	_
\bigcup_{i}	$2\bigcirc 2$	$\bigcup 2$					
\bigcirc :	3	$\bigcirc 3$					
\bigcirc 4	1 04	$\bigcirc 4$					
\bigcirc	5 05	\bigcirc 5	$\bigcirc 5$				
$\bigcirc \epsilon$	6 06	$\bigcirc 6$					
\bigcirc	7 🔾 7	\bigcirc 7	\bigcirc 7	$\bigcirc 7$	$\bigcirc 7$	$\bigcirc 7$	$\bigcirc 7$
\bigcirc 8	$8 \bigcirc 8$	$\bigcirc 8$					
\bigcirc	9 ()9	$\bigcirc 9$					

← 学生番号を左にマークし、下に氏名を記入してください。

氏名:	 	

問1 函数 $f(x) = 6x^4 + 7x^3 + 7x^2 + 3x + 7$ の導函数 f'(x) を求めなさい。

$$\bigcirc 24x^3 + 21x^2 + 14x + 10 \qquad \bigcirc 6x^4 + 7x^3 + 7x^2 + 3x + 7 \qquad \bigcirc 24x^3 + 21x^2 + 14x + 3$$

$$\bigcirc 6x^4 + 14x^3 + 7x^2 + 3x \qquad \bigcirc 24x^3 + 21x^2 + 16x + 3$$

問2 函数
$$f(x) = 1 - \frac{5}{x} + \frac{3}{x^2}$$
 の導函数 $f'(x)$ を求めなさい。

\bigcirc	$\frac{5}{x^2} - \frac{3}{x^3}$	$\bigcirc -\frac{5}{x^2} + \frac{6}{x^3}$	$\bigcirc \frac{5}{x^2} - \frac{6}{x^3}$	$\bigcirc -\frac{5}{x^2} + \frac{3}{x^3}$	$\bigcirc 1 - \frac{5}{x}$
------------	---------------------------------	--	---	--	----------------------------

問 3 函数 $f(x) = x^{\frac{5}{2}}$ の導函数 f'(x) を求めなさい。

```
\bigcirc \quad \frac{7}{2}x^{\frac{3}{2}} \qquad \bigcirc \quad \frac{5}{2}x^{\frac{5}{2}} \qquad \bigcirc \quad \frac{3}{2}x^{\frac{3}{2}} \qquad \bigcirc \quad \frac{3}{2}x^{\frac{3}{2}} \qquad \bigcirc \quad \frac{5}{2}x^{\frac{3}{2}}
```

問4 函数 $f(x) = x^{\frac{7}{3}} - x^{-\frac{13}{4}}$ の導函数 f'(x) を求めなさい。

 $\bigcirc 12x^2 + 12x + 17$ $\bigcirc 8x$ $\bigcirc 12x^2 + 12x + 16$ $\bigcirc 12x^2 + 12x$

問 5 函数 $f(x) = (x^2 + 4)(4x + 6)$ の導函数 f'(x) を求めなさい。

問 6 函数
$$f(x) = \frac{7}{8x^2 + 8x + 5}$$
 の導函数 $f'(x)$ を求めなさい。
$$\bigcirc \frac{112x + 56}{(8x^2 + 8x + 5)^2} \bigcirc -\frac{112x + 56}{8x^2 + 8x + 5} \bigcirc -\frac{112x + 56}{(8x^2 + 8x + 5)^2} \bigcirc \frac{112x + 56}{8x^2 + 8x + 5}$$

問 7 函数 $f(x)=rac{4x+11}{3x+4}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{4}{3x+4} \qquad \bigcirc \quad \frac{-13}{3x+4} \qquad \bigcirc \quad \frac{-17}{(3x+4)^2} \qquad \bigcirc \quad \frac{-17}{3x+4} \qquad \bigcirc \quad \frac{4}{(3x+4)^2}$$

問8 函数 $f(x) = (6x+2)^{10}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad 60(6x+2)^{10} \qquad \quad \bigcirc \quad 60(6x+2)^{9} \qquad \quad \bigcirc \quad 10(6x+2)^{10} \qquad \quad \bigcirc \quad 10(6x+2)^{9}$$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

$\bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0$	$\bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0$
$\bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1$	$\bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1$
$\bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2$	$\bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2$
$\bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3$	$\bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3$
$\bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4$	$\bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4$
$\bigcirc 5 \bigcirc 5 \bigcirc 5 \bigcirc 5$	$\bigcirc 5$ $\bigcirc 5$ $\bigcirc 5$ $\bigcirc 5$
$\bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6$	$\bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6$
$\bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7$	\bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7
$\bigcirc 8 \bigcirc 8 \bigcirc 8 \bigcirc 8$	$\bigcirc 8 \bigcirc 8 \bigcirc 8 \bigcirc 8$
$\bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9$	$\bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9$

← 学生番号を左にマークし、下に氏名を記入 してください。

氏名:	 	

問1 函数 $f(x) = 4x^4 + 6x^3 + 6x^2 + 5x + 4$ の導函数 f'(x) を求めなさい。

$$\bigcirc 16x^3 + 18x^2 + 14x + 5 \qquad \bigcirc 4x^4 + 6x^3 + 6x^2 + 5x + 4 \qquad \bigcirc 16x^3 + 18x^2 + 12x + 9$$

$$\bigcirc 4x^4 + 12x^3 + 6x^2 + 5x \qquad \bigcirc 16x^3 + 18x^2 + 12x + 5$$

函数 $f(x) = 4 - \frac{3}{x} + \frac{3}{x^2}$ の導函数 f'(x) を求めなさい。 問 2

$$\bigcirc \quad -\frac{3}{x^2} + \frac{3}{x^3} \qquad \bigcirc \quad \frac{3}{x^2} - \frac{3}{x^3} \qquad \bigcirc \quad 4 - \frac{3}{x} \qquad \bigcirc \quad \frac{3}{x^2} - \frac{6}{x^3} \qquad \bigcirc \quad -\frac{3}{x^2} + \frac{6}{x^3}$$

問3 函数 $f(x) = x^{\frac{7}{2}}$ の導函数 f'(x) を求めなさい。

$$\bigcap_{\frac{7}{2}}x^{\frac{7}{2}}$$
 $\bigcap_{\frac{7}{2}}x^{\frac{5}{2}}$ $\bigcap_{\frac{5}{2}}x^{\frac{5}{2}}$ $\bigcap_{\frac{5}{2}}x^{\frac{5}{2}}$ $\bigcap_{\frac{9}{2}}x^{\frac{5}{2}}$ 問 $\mathbf{4}$ 函数 $f(x)=x^{\frac{13}{2}}-x^{-\frac{13}{6}}$ の導函数 $f'(x)$ を求めなさい。

函数 $f(x) = (x^2 + 2)(4x + 6)$ の導函数 f'(x) を求めなさい。 問 5

$$\bigcirc 12x^2 + 12x + 8$$
 $\bigcirc 12x^2 + 12x + 9$ $\bigcirc 12x^2 + 12x$ $\bigcirc 8x$

函数 $f(x) = \frac{4}{3x^2 + 5x + 5}$ の導函数 f'(x) を求めなさい。 問 6

$$\bigcirc \quad \frac{24x+20}{(3x^2+5x+5)^2} \qquad \quad \bigcirc \quad -\frac{24x+20}{(3x^2+5x+5)^2} \qquad \quad \bigcirc \quad -\frac{24x+20}{3x^2+5x+5} \qquad \quad \bigcirc \quad \frac{24x+20}{3x^2+5x+5}$$

函数 $f(x) = \frac{8x+3}{3x+4}$ の導函数 f'(x) を求めなさい。 問 7

$$\bigcirc \quad \frac{23}{3x+4} \qquad \bigcirc \quad \frac{27}{3x+4} \qquad \bigcirc \quad \frac{23}{(3x+4)^2} \qquad \bigcirc \quad \frac{8}{3x+4} \qquad \bigcirc \quad \frac{8}{(3x+4)^2}$$

函数 $f(x) = (8x+2)^9$ の導函数 f'(x) を求めなさい。 問8

$$\bigcirc 72(8x+2)^{8} \qquad \bigcirc 72(8x+2)^{9} \qquad \bigcirc 9(8x+2)^{8} \qquad \bigcirc 9(8x+2)^{9}$$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

	\bigcap_{α}	\bigcirc	\bigcap	\bigcirc	\bigcap	\bigcap	\bigcirc	\bigcap
	$\bigcup 0$	$\bigcup 0$	$\bigcirc 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$
1	\bigcap_1	\bigcap_1	$\bigcirc 1$	\bigcap_1	\bigcap_1	\bigcap_1	\bigcap_1	\bigcap_1
-)2	()2	$\bigcirc 2$	()2	()2	()2	()2	()2
	$\cup 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcup 3$
1	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
1	٦	Ō۴	$\bigcirc 5$	Ō۴	Ō۴	Ō۴	Ō۴	Ō۴
1	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
1	\bigcap_{7}	\bigcap_{7}	\bigcirc 7	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}
-	$\bigcup 8$	$\bigcup 8$	$\bigcirc 8$	$\bigcup 8$	$\bigcup 8$	$\bigcup 8$	$\bigcup 8$	$\bigcup 8$
1	\bigcap_{α}	\bigcap	$\bigcirc 9$	\bigcap	\bigcap	\bigcap	\bigcap a	\bigcap
,	しょう	()0	くりひ	()0	()0	()0	()0	() ご

← 学生番号を左にマークし、下に氏名を記入 してください。

氏名:	 	

問1 函数 $f(x) = 3x^4 + 5x^3 + 4x^2 + 6x + 1$ の導函数 f'(x) を求めなさい。

- **問2** 函数 $f(x) = 1 \frac{3}{x} + \frac{3}{x^2}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc 1 \frac{3}{x} \qquad \bigcirc -\frac{3}{x^2} + \frac{6}{x^3} \qquad \bigcirc -\frac{3}{x^2} + \frac{3}{x^3} \qquad \bigcirc \frac{3}{x^2} \frac{3}{x^3} \qquad \bigcirc \frac{3}{x^2} \frac{6}{x^3}$
- 問 3 函数 $f(x) = x^{\frac{5}{2}}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad \frac{7}{2}x^{\frac{3}{2}} \qquad \bigcirc \quad \frac{5}{2}x^{\frac{5}{2}} \qquad \bigcirc \quad \frac{5}{2}x^{\frac{3}{2}} \qquad \bigcirc \quad \frac{3}{2}x^{\frac{3}{2}} \qquad \bigcirc \quad \frac{3}{2}x^{\frac{3}{2}}$
- **問4** 函数 $f(x) = x^{\frac{11}{2}} x^{-\frac{11}{4}}$ の導函数 f'(x) を求めなさい。
- $\bigcirc \quad \frac{9}{2}x^{\frac{9}{2}} \frac{11}{4}x^{\frac{7}{4}} \qquad \bigcirc \quad \frac{11}{2}x^{-\frac{9}{2}} + \frac{11}{4}x^{-\frac{7}{4}} \qquad \bigcirc \quad \frac{11}{2}x^{\frac{11}{2}} + \frac{11}{4}x^{-\frac{7}{4}} \qquad \bigcirc \quad \frac{11}{2}x^{\frac{9}{2}} + \frac{11}{4}x^{-\frac{15}{4}} \\ \bigcirc \quad \frac{11}{2}x^{\frac{9}{2}} \frac{11}{4}x^{-\frac{15}{4}} \qquad \bigcirc \quad \frac{9}{2}x^{\frac{11}{2}} + \frac{11}{4}x^{-\frac{7}{4}}$
- **問 5** 函数 $f(x) = (x^2 + 3)(2x + 3)$ の導函数 f'(x) を求めなさい。
 - $\bigcirc 6x^2 + 6x + 6$ $\bigcirc 6x^2 + 6x + 7$ $\bigcirc 6x^2 + 6x$ $\bigcirc 4x$
- 問 6 函数 $f(x) = \frac{1}{3x^2+6x+2}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad -\frac{6x+6}{(3x^2+6x+2)^2} \qquad \bigcirc \quad -\frac{6x+6}{3x^2+6x+2} \qquad \bigcirc \quad \frac{6x+6}{(3x^2+6x+2)^2} \qquad \bigcirc \quad \frac{6x+6}{3x^2+6x+2}$
- 問7 函数 $f(x) = \frac{8x+11}{5x+4}$ の導函数 f'(x) を求めなさい。
- $\bigcirc \quad \frac{8}{(5x+4)^2} \qquad \quad \bigcirc \quad \frac{8}{5x+4} \qquad \quad \bigcirc \quad \frac{-23}{5x+4} \qquad \quad \bigcirc \quad \frac{-19}{5x+4} \qquad \quad \bigcirc \quad \frac{-23}{(5x+4)^2}$
- **問8** 函数 $f(x) = (7x+7)^{11}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc 11(7x+7)^{11} \qquad \bigcirc 11(7x+7)^{10} \qquad \bigcirc 77(7x+7)^{11} \qquad \bigcirc 77(7x+7)^{10}$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

$\bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0$	
$\bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1$	$\bigcirc 1$
$\bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2$	$\bigcirc 2$
$\bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3$	$\bigcirc 3$
$\bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4$	$\bigcirc 4$
$\bigcirc 5 \bigcirc 5 \bigcirc 5 \bigcirc 5 \bigcirc 5 \bigcirc 5 \bigcirc 5$	$\bigcirc 5$
$\bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6$	$\bigcirc 6$
$\bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7$	$\bigcirc 7$
$\bigcirc 8 \bigcirc 8 \bigcirc 8 \bigcirc 8 \bigcirc 8 \bigcirc 8$	$\bigcirc 8$
$\bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9$	$\bigcirc 9$

← 学生番号を左にマークし、下に氏名を記入

問1 函数 $f(x) = 2x^4 + 5x^3 + 6x^2 + 5x + 8$ の導函数 f'(x) を求めなさい。

- $\bigcirc 2x^4 + 5x^3 + 6x^2 + 5x + 8 \qquad \bigcirc 8x^3 + 15x^2 + 14x + 5 \qquad \bigcirc 8x^3 + 15x^2 + 12x + 13$

- 0 $8x^3 + 15x^2 + 12x + 5$ 0 $2x^4 + 10x^3 + 6x^2 + 5x$

函数 $f(x) = 2 - \frac{5}{x} + \frac{4}{x^2}$ の導函数 f'(x) を求めなさい。 問 2

- $\bigcirc \quad 2 \frac{5}{x} \qquad \bigcirc \quad -\frac{5}{x^2} + \frac{8}{x^3} \qquad \bigcirc \quad \frac{5}{x^2} \frac{8}{x^3} \qquad \bigcirc \quad -\frac{5}{x^2} + \frac{4}{x^3} \qquad \bigcirc \quad \frac{5}{x^2} \frac{4}{x^3}$

問3 函数 $f(x) = x^{\frac{5}{2}}$ の導函数 f'(x) を求めなさい。

- $\bigcirc \ \ \frac{3}{2}x^{\frac{3}{2}} \qquad \bigcirc \ \ \frac{5}{2}x^{\frac{3}{2}} \qquad \bigcirc \ \ \frac{3}{2}x^{\frac{3}{2}} \qquad \bigcirc \ \ \frac{5}{2}x^{\frac{3}{2}}$

函数 $f(x) = x^{\frac{11}{2}} - x^{-\frac{11}{6}}$ の導函数 f'(x) を求めなさい。 問 4

- 函数 $f(x) = (x^2 + 5)(3x + 6)$ の導函数 f'(x) を求めなさい。 問 5

- $\bigcirc 6x \qquad \bigcirc 9x^2 + 12x + 15 \qquad \bigcirc 9x^2 + 12x \qquad \bigcirc 9x^2 + 12x + 16$

函数 $f(x) = \frac{8}{6x^2 + 2x + 2}$ の導函数 f'(x) を求めなさい。 問 6

- $\bigcirc \quad \frac{96x+16}{(6x^2+2x+2)^2} \qquad \quad \bigcirc \quad \frac{96x+16}{6x^2+2x+2} \qquad \quad \bigcirc \quad -\frac{96x+16}{6x^2+2x+2} \qquad \quad \bigcirc \quad -\frac{96x+16}{(6x^2+2x+2)^2}$

函数 $f(x) = \frac{8x+5}{7x+8}$ の導函数 f'(x) を求めなさい。 問 7

- $\bigcirc \quad \frac{29}{(7x+8)^2} \qquad \bigcirc \quad \frac{29}{7x+8} \qquad \bigcirc \quad \frac{37}{7x+8} \qquad \bigcirc \quad \frac{8}{(7x+8)^2} \qquad \bigcirc \quad \frac{8}{7x+8}$

函数 $f(x) = (3x+5)^9$ の導函数 f'(x) を求めなさい。 問8

- $\bigcirc 9(3x+5)^9 \qquad \bigcirc 27(3x+5)^8 \qquad \bigcirc 27(3x+5)^9 \qquad \bigcirc 9(3x+5)^8$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

$\bigcirc 0 \bigcirc 0 \bigcirc$	0 00	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$
$\bigcirc 1 \bigcirc 1 \bigcirc$)1 ()1	$\bigcirc 1$	$\bigcirc 1$	$\bigcirc 1$	$\bigcirc 1$
$\bigcirc 2 \bigcirc 2 \bigcirc$	$)_2 \bigcirc_2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$
$\bigcirc 3 \bigcirc 3 \bigcirc$)3 ()3	$\bigcirc 3$	\bigcirc 3	\bigcirc 3	$\bigcirc 3$
$\bigcirc 4 \bigcirc 4 \bigcirc$	$)4 \bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
$\bigcirc 5 \bigcirc 5 \bigcirc$)5 ()5	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$
$\bigcirc 6 \bigcirc 6 \bigcirc$	6 ()6	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
$\bigcirc 7 \bigcirc 7 \bigcirc$	7)7	\bigcirc 7	\bigcirc 7	\bigcirc 7	$\bigcirc 7$
$\bigcirc 8 \bigcirc 8 \bigcirc$	$)8 \bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$
$\bigcirc 9 \bigcirc 9 \bigcirc$	9 ()9	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$

← 学生番号を左にマークし、下に氏名を記入してください。

氏名:	 	

問1 函数 $f(x) = 6x^4 + 3x^3 + 2x^2 + 4x + 3$ の導函数 f'(x) を求めなさい。

$$\bigcirc 24x^3 + 9x^2 + 6x + 4 \qquad \bigcirc 6x^4 + 3x^3 + 2x^2 + 4x + 3 \qquad \bigcirc 6x^4 + 6x^3 + 2x^2 + 4x$$

$$\bigcirc 24x^3 + 9x^2 + 4x + 7 \qquad \bigcirc 24x^3 + 9x^2 + 4x + 4$$

問 2 函数 $f(x)=4-\frac{1}{x}+\frac{5}{x^2}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{1}{x^2} - \frac{5}{x^3} \qquad \qquad \bigcirc \quad -\frac{1}{x^2} + \frac{10}{x^3} \qquad \qquad \bigcirc \quad 4 - \frac{1}{x} \qquad \qquad \bigcirc \quad -\frac{1}{x^2} + \frac{5}{x^3} \qquad \qquad \bigcirc \quad \frac{1}{x^2} - \frac{10}{x^3}$$

 $\bigcirc \quad \frac{7}{2}x^{\frac{7}{2}} \qquad \bigcirc \quad \frac{5}{2}x^{\frac{5}{2}} \qquad \bigcirc \quad \frac{7}{2}x^{\frac{5}{2}} \qquad \bigcirc \quad \frac{9}{2}x^{\frac{5}{2}} \qquad \bigcirc \quad \frac{5}{2}x^{\frac{5}{2}}$

問3 函数 $f(x) = x^{\frac{7}{2}}$ の導函数 f'(x) を求めなさい。

```
問4 函数 f(x)=x^{\frac{13}{3}}-x^{-\frac{13}{4}} の導函数 f'(x) を求めなさい。  \bigcirc \frac{13}{3}x^{\frac{13}{3}}+\frac{13}{4}x^{-\frac{9}{4}} \qquad \bigcirc \frac{10}{3}x^{\frac{13}{3}}+\frac{13}{4}x^{-\frac{9}{4}} \qquad \bigcirc \frac{13}{3}x^{\frac{10}{3}}+\frac{13}{4}x^{-\frac{17}{4}}   \bigcirc \frac{10}{3}x^{\frac{10}{3}}-\frac{13}{4}x^{\frac{9}{4}} \qquad \bigcirc \frac{13}{3}x^{\frac{10}{3}}-\frac{13}{4}x^{-\frac{17}{4}}   \bigcirc \frac{13}{3}x^{\frac{10}{3}}-\frac{13}{4}x^{-\frac{17}{4}}
```

問 5 函数 $f(x) = (x^2 + 2)(5x + 3)$ の導函数 f'(x) を求めなさい。

〇
$$10x$$
 〇 $15x^2+6x$ 〇 $15x^2+6x+10$ ○ $15x^2+6x+11$ 問 6 函数 $f(x)=\frac{3}{7x^2+8x+9}$ の導函数 $f'(x)$ を求めなさい。
$$\bigcirc \frac{42x+24}{(7x^2+8x+9)^2}$$
 ○ $\frac{42x+24}{7x^2+8x+9}$ ○ $-\frac{42x+24}{(7x^2+8x+9)^2}$ ○ $-\frac{42x+24}{7x^2+8x+9}$

問 7 函数 $f(x) = \frac{4x+5}{11x+4}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{-35}{11x+4} \qquad \bigcirc \quad \frac{-39}{(11x+4)^2} \qquad \bigcirc \quad \frac{4}{(11x+4)^2} \qquad \bigcirc \quad \frac{4}{11x+4} \qquad \bigcirc \quad \frac{-39}{11x+4}$$

問8 函数 $f(x) = (2x+3)^8$ の導函数 f'(x) を求めなさい。

$$\bigcirc 8(2x+3)^8 \qquad \bigcirc 16(2x+3)^8 \qquad \bigcirc 16(2x+3)^7 \qquad \bigcirc 8(2x+3)^7$$

問 4

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

	\bigcap_{α}	\bigcirc	\bigcap	\bigcirc	\bigcap	\bigcap	\bigcirc	\bigcap
	$\bigcup 0$	$\bigcup 0$	$\bigcirc 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$
1	\bigcap_1	\bigcap_1	$\bigcirc 1$	\bigcap_1	\bigcap_1	\bigcap_1	\bigcap_1	\bigcap_1
-)2	()2	$\bigcirc 2$	()2	()2	()2	()2	()2
	$\cup 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcup 3$
1	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
1	٦	Ō۴	$\bigcirc 5$	Ō۴	Ō۴	Ō۴	Ō۴	Ō۴
1	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
1	\bigcap_{7}	\bigcap_{7}	\bigcirc 7	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}
-	$\bigcup 8$	$\bigcup 8$	$\bigcirc 8$	$\bigcup 8$	$\bigcup 8$	$\bigcup 8$	$\bigcup 8$	$\bigcup 8$
1	\bigcap_{α}	\bigcap	$\bigcirc 9$	\bigcap	\bigcap	\bigcap	\bigcap_{α}	\bigcap
,	しょう	()0	くりひ	()0	()0	()0	()0	() ご

← 学生番号を左にマークし、下に氏名を記入してください。

氏名:	 	

問1 函数 $f(x) = 2x^4 + 4x^3 + 6x^2 + 4x + 2$ の導函数 f'(x) を求めなさい。

$$\bigcirc 2x^4 + 8x^3 + 6x^2 + 4x \qquad \bigcirc 8x^3 + 12x^2 + 14x + 4 \qquad \bigcirc 8x^3 + 12x^2 + 12x + 6$$

$$\bigcirc 2x^4 + 4x^3 + 6x^2 + 4x + 2 \qquad \bigcirc 8x^3 + 12x^2 + 12x + 4$$

問2 函数 $f(x) = 5 - \frac{3}{x} + \frac{3}{x^2}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{3}{x^2} - \frac{3}{x^3} \qquad \bigcirc \quad 5 - \frac{3}{x} \qquad \bigcirc \quad -\frac{3}{x^2} + \frac{6}{x^3} \qquad \bigcirc \quad -\frac{3}{x^2} + \frac{3}{x^3} \qquad \bigcirc \quad \frac{3}{x^2} - \frac{6}{x^3}$$

問3 函数 $f(x)=x^{\frac{5}{2}}$ の導函数 f'(x) を求めなさい。 $\bigcirc \ \ \frac{5}{2}x^{\frac{5}{2}} \qquad \bigcirc \ \ \frac{3}{2}x^{\frac{3}{2}} \qquad \bigcirc \ \ \frac{5}{2}x^{\frac{3}{2}} \qquad \bigcirc \ \ \frac{7}{2}x^{\frac{3}{2}}$

```
 \bigcirc \quad \frac{13}{3}x^{\frac{10}{3}} + \frac{7}{4}x^{-\frac{11}{4}} \qquad \bigcirc \quad \frac{10}{3}x^{\frac{10}{3}} - \frac{7}{4}x^{\frac{3}{4}} \qquad \bigcirc \quad \frac{10}{3}x^{\frac{13}{3}} + \frac{7}{4}x^{-\frac{3}{4}} \qquad \bigcirc \quad \frac{13}{3}x^{-\frac{10}{3}} + \frac{7}{4}x^{-\frac{3}{4}} 
 \bigcirc \quad \frac{13}{3}x^{\frac{10}{3}} - \frac{7}{4}x^{-\frac{11}{4}} \qquad \bigcirc \quad \frac{13}{3}x^{\frac{13}{3}} + \frac{7}{4}x^{-\frac{3}{4}}
```

 \bigcirc 8x \bigcirc 12x² + 14x + 21 \bigcirc 12x² + 14x + 20 \bigcirc 12x² + 14x

問 5 函数 $f(x) = (x^2 + 5)(4x + 7)$ の導函数 f'(x) を求めなさい。

函数 $f(x) = x^{\frac{13}{3}} - x^{-\frac{7}{4}}$ の導函数 f'(x) を求めなさい。

問 6 函数
$$f(x) = \frac{2}{8x^2 + 2x + 7}$$
 の導函数 $f'(x)$ を求めなさい。
$$\bigcirc \frac{32x + 4}{8x^2 + 2x + 7}$$

$$\bigcirc \frac{32x + 4}{(8x^2 + 2x + 7)^2}$$

$$\bigcirc -\frac{32x + 4}{8x^2 + 2x + 7}$$

$$\bigcirc -\frac{32x + 4}{(8x^2 + 2x + 7)^2}$$

問 7 函数 $f(x)=rac{2x+7}{5x+2}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{2}{5x+2} \qquad \bigcirc \quad \frac{2}{(5x+2)^2} \qquad \bigcirc \quad \frac{-29}{5x+2} \qquad \bigcirc \quad \frac{-31}{5x+2} \qquad \bigcirc \quad \frac{-31}{(5x+2)^2}$$

問8 函数 $f(x) = (3x+8)^7$ の導函数 f'(x) を求めなさい。

$$\bigcirc 21(3x+8)^7$$
 $\bigcirc 7(3x+8)^6$ $\bigcirc 7(3x+8)^7$ $\bigcirc 21(3x+8)^6$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

	$\overline{}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
(.)()	()0	()0	$\bigcirc 0$	()0	()0	()0	()0
(. J1	()1	()1	$\bigcirc 1$	()1	()1	()1	()1
($^{\circ}$	$\bigcup 2$	$\bigcup 2$	$\bigcirc 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$
($\cup 3$	$\bigcup 3$	$\bigcup 3$	$\bigcirc 3$	$\bigcup 3$	$\bigcup 3$	$\bigcup 3$	$\bigcup 3$
($\bigcup 4$	$\bigcup 4$	$\bigcup 4$	$\bigcirc 4$	$\bigcup 4$	$\bigcup 4$	$\bigcup 4$	$\bigcup 4$
-	7-	0-	\bigcirc -	$\bigcirc 5$	0-	\bigcirc	\bigcirc -	0-
(\cup 5	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$
- ($\bigcap_{\mathcal{C}}$	$\bigcap_{\mathcal{C}}$	$\bigcap_{\mathcal{C}}$	$\bigcirc 6$	$\bigcap_{\mathcal{C}}$	$\bigcap_{\mathcal{C}}$	\bigcap_{C}	\bigcap_{C}
(\mathcal{O}_{0}	\bigcirc 0	\bigcirc 6	\bigcirc 6	\bigcirc 0	\bigcirc 6	\bigcirc 6	\bigcup_{0}
- (\bigcap_{τ}	\bigcap_{7}	\bigcap_{7}	\bigcirc 7	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}
()1	$\bigcup i$	$\bigcup i$	$\bigcup i$	$\bigcup i$	$\bigcup i$	$\bigcup i$	$\bigcup i$
- (\cap	\cap	\cap	$\bigcirc 8$	\cap	\cap	\cap	\cap
1	\bigcap_{α}	\bigcap	\bigcap	$\bigcirc 9$	\bigcap	\bigcap	\bigcap	\bigcap
١	JÐ	(J)	CJB	(J)	(J)	(Ja	(Ja	()3

← 学生番号を左にマークし、下に氏名を記入 してください。

氏名:....

問1 函数 $f(x) = 6x^4 + 7x^3 + 3x^2 + 7x + 9$ の導函数 f'(x) を求めなさい。

- $\bigcirc 24x^3 + 21x^2 + 6x + 7 \qquad \bigcirc 24x^3 + 21x^2 + 8x + 7 \qquad \bigcirc 6x^4 + 7x^3 + 3x^2 + 7x + 9$ $\bigcirc 24x^3 + 21x^2 + 6x + 16 \qquad \bigcirc 6x^4 + 14x^3 + 3x^2 + 7x$
- **問2** 函数 $f(x) = 4 \frac{4}{x} + \frac{2}{x^2}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad -\frac{4}{x^2} + \frac{4}{x^3} \qquad \bigcirc \quad -\frac{4}{x^2} + \frac{2}{x^3} \qquad \bigcirc \quad \frac{4}{x^2} \frac{4}{x^3} \qquad \bigcirc \quad 4 \frac{4}{x} \qquad \bigcirc \quad \frac{4}{x^2} \frac{2}{x^3}$
- **問3** 函数 $f(x) = x^{\frac{7}{3}}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad \frac{5}{3}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{4}{3}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{7}{3}x^{\frac{7}{3}} \qquad \bigcirc \quad \frac{7}{3}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{9}{3}x^{\frac{4}{3}}$
- **問4** 函数 $f(x) = x^{\frac{13}{3}} x^{-\frac{7}{5}}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad \frac{13}{3}x^{\frac{10}{3}} + \frac{7}{5}x^{-\frac{12}{5}} \qquad \bigcirc \quad \frac{10}{3}x^{\frac{13}{3}} + \frac{7}{5}x^{-\frac{2}{5}} \qquad \bigcirc \quad \frac{10}{3}x^{\frac{10}{3}} \frac{7}{5}x^{\frac{2}{5}} \qquad \bigcirc \quad \frac{13}{3}x^{\frac{13}{3}} + \frac{7}{5}x^{-\frac{2}{5}} \\ \bigcirc \quad \frac{13}{3}x^{-\frac{10}{3}} + \frac{7}{5}x^{-\frac{2}{5}} \qquad \bigcirc \quad \frac{13}{3}x^{\frac{10}{3}} \frac{7}{5}x^{-\frac{12}{5}}$
- **問 5** 函数 $f(x) = (x^2 + 5)(1x + 6)$ の導函数 f'(x) を求めなさい。
 - $\bigcirc 3x^2 + 12x + 5$ $\bigcirc 2x$ $\bigcirc 3x^2 + 12x$ $\bigcirc 3x^2 + 12x + 6$
- 問 6 函数 $f(x) = \frac{9}{9x^2 + 9x + 6}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad -\frac{162x+81}{(9x^2+9x+6)^2} \qquad \quad \bigcirc \quad \frac{162x+81}{(9x^2+9x+6)^2} \qquad \quad \bigcirc \quad -\frac{162x+81}{9x^2+9x+6} \qquad \quad \bigcirc \quad \frac{162x+81}{9x^2+9x+6}$
- 問 7 函数 $f(x) = \frac{8x+7}{7x+4}$ の導函数 f'(x) を求めなさい。
- $\bigcirc \quad \frac{-13}{7x+4} \qquad \bigcirc \quad \frac{8}{(7x+4)^2} \qquad \bigcirc \quad \frac{-17}{(7x+4)^2} \qquad \bigcirc \quad \frac{-17}{7x+4} \qquad \bigcirc \quad \frac{8}{7x+4}$
- **問8** 函数 $f(x) = (8x+5)^7$ の導函数 f'(x) を求めなさい。
 - $\bigcirc 7(8x+5)^6 \qquad \bigcirc 7(8x+5)^7 \qquad \bigcirc 56(8x+5)^6 \qquad \bigcirc 56(8x+5)^7$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

\bigcap	0 0	\bigcap 0	\bigcap 0	\bigcap 0	\bigcap 0	\bigcap 0	\bigcap 0
	1 ()1						
_	_	_	_	_	_	_	_
\bigcup_{i}	$2\bigcirc 2$	$\bigcup 2$					
\bigcirc :	3	$\bigcirc 3$					
\bigcirc 4	1 04	$\bigcirc 4$					
\bigcirc	5 05	\bigcirc 5	$\bigcirc 5$				
$\bigcirc \epsilon$	6 06	$\bigcirc 6$					
\bigcirc	7 🔾 7	\bigcirc 7	\bigcirc 7	$\bigcirc 7$	$\bigcirc 7$	$\bigcirc 7$	$\bigcirc 7$
\bigcirc 8	$8 \bigcirc 8$	$\bigcirc 8$					
\bigcirc	9 ()9	$\bigcirc 9$					

← 学生番号を左にマークし、下に氏名を記入 してください。

氏名:	 	

問1 函数 $f(x) = 7x^4 + 5x^3 + 6x^2 + 7x + 3$ の導函数 f'(x) を求めなさい。

- $\bigcirc 28x^3 + 15x^2 + 12x + 7 \qquad \bigcirc 7x^4 + 5x^3 + 6x^2 + 7x + 3 \qquad \bigcirc 7x^4 + 10x^3 + 6x^2 + 7x$ $\bigcirc 28x^3 + 15x^2 + 14x + 7 \qquad \bigcirc 28x^3 + 15x^2 + 12x + 10$
- **問2** 函数 $f(x) = 4 \frac{2}{x} + \frac{2}{x^2}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad 4 \frac{2}{x} \qquad \bigcirc \quad -\frac{2}{x^2} + \frac{2}{x^3} \qquad \bigcirc \quad -\frac{2}{x^2} + \frac{4}{x^3} \qquad \bigcirc \quad \frac{2}{x^2} \frac{4}{x^3} \qquad \bigcirc \quad \frac{2}{x^2} \frac{2}{x^3}$
- **問3** 函数 $f(x) = x^{\frac{11}{3}}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad \frac{13}{3}x^{\frac{8}{3}} \qquad \bigcirc \quad \frac{9}{3}x^{\frac{8}{3}} \qquad \bigcirc \quad \frac{11}{3}x^{\frac{8}{3}} \qquad \bigcirc \quad \frac{8}{3}x^{\frac{8}{3}} \qquad \bigcirc \quad \frac{11}{3}x^{\frac{11}{3}}$
- **問4** 函数 $f(x) = x^{\frac{13}{3}} x^{-\frac{11}{4}}$ の導函数 f'(x) を求めなさい。
- 問 5 函数 $f(x) = (x^2 + 5)(2x + 5)$ の導函数 f'(x) を求めなさい。
- $\bigcirc 6x^2 + 10x + 11$ $\bigcirc 6x^2 + 10x + 10$ $\bigcirc 4x$ $\bigcirc 6x^2 + 10x$
- 問 6 函数 $f(x) = \frac{3}{9x^2 + 3x + 6}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad \frac{54x+9}{(9x^2+3x+6)^2} \qquad \quad \bigcirc \quad -\frac{54x+9}{9x^2+3x+6} \qquad \quad \bigcirc \quad -\frac{54x+9}{(9x^2+3x+6)^2} \qquad \quad \bigcirc \quad \frac{54x+9}{9x^2+3x+6}$
- 問7 函数 $f(x) = \frac{8x+3}{7x+4}$ の導函数 f'(x) を求めなさい。
- $\bigcirc \quad \frac{11}{7x+4} \qquad \bigcirc \quad \frac{8}{7x+4} \qquad \bigcirc \quad \frac{15}{7x+4} \qquad \bigcirc \quad \frac{11}{(7x+4)^2} \qquad \bigcirc \quad \frac{8}{(7x+4)^2}$
- 問8 函数 $f(x) = (9x+4)^7$ の導函数 f'(x) を求めなさい。
 - $\bigcirc 7(9x+4)^7 \qquad \bigcirc 63(9x+4)^6 \qquad \bigcirc 7(9x+4)^6 \qquad \bigcirc 63(9x+4)^7$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

\bigcap 0	\bigcap	\bigcap 0	\bigcap 0	$\bigcirc 0$	\bigcap 0	\bigcap 0	\bigcap
				$\bigcirc 1$			
$\bigcirc 2$							
\bigcirc 3	$\bigcirc 3$						
$\bigcirc 4$							
$\bigcirc 5$							
$\bigcirc 6$							
$\bigcirc 7$							
$\bigcirc 8$							
$\bigcirc 9$							

← 学生番号を左にマークし、下に氏名を記入

氏名:	 	

問1 函数 $f(x) = 5x^4 + 2x^3 + 4x^2 + 5x + 1$ の導函数 f'(x) を求めなさい。

$$\bigcirc 20x^3 + 6x^2 + 8x + 6 \qquad \bigcirc 20x^3 + 6x^2 + 8x + 5 \qquad \bigcirc 5x^4 + 4x^3 + 4x^2 + 5x$$

$$0 20x^3 + 6x^2 + 8x + 5$$

$$0 \quad 5x^4 + 4x^3 + 4x^2 + 5x^4 + 5x^4 + 5x^4 + 5x^2 + 5x^4 + 6x^2 + 6x^$$

$$\bigcirc 20x^3 + 6x^2 + 10x +$$

問2 函数 $f(x) = 1 - \frac{2}{x} + \frac{5}{x^2}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad -\frac{2}{x^2} + \frac{5}{x^3}$$

$$\bigcirc \quad -\frac{2}{x^2} + \frac{5}{x^3} \qquad \bigcirc \quad -\frac{2}{x^2} + \frac{10}{x^3} \qquad \bigcirc \quad \frac{2}{x^2} - \frac{10}{x^3} \qquad \bigcirc \quad \frac{2}{x^2} - \frac{5}{x^3} \qquad \bigcirc \quad 1 - \frac{2}{x}$$

$$\int \frac{2}{x^2} - \frac{10}{x^3}$$

$$\bigcirc \quad \frac{2}{r^2} - \frac{5}{r^3}$$

$$\int 1-\frac{2}{x}$$

問3 函数 $f(x) = x^{\frac{5}{2}}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{7}{2}x^{\frac{3}{2}}$$

$$\bigcirc \quad \frac{7}{2}x^{\frac{3}{2}} \qquad \bigcirc \quad \frac{5}{2}x^{\frac{5}{2}} \qquad \bigcirc \quad \frac{3}{2}x^{\frac{3}{2}} \qquad \bigcirc \quad \frac{5}{2}x^{\frac{3}{2}} \qquad \bigcirc \quad \frac{3}{2}x^{\frac{3}{2}}$$

$$\int \frac{3}{2}x^{\frac{3}{2}}$$

$$\int \frac{5}{2}x^{\frac{5}{2}}$$

$$\bigcirc \quad \frac{3}{2}x^{\frac{3}{2}}$$

問4 函数 $f(x) = x^{\frac{13}{2}} - x^{-\frac{7}{5}}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{13}{2}x^{-\frac{11}{2}} + \frac{7}{5}x^{-\frac{2}{5}}$$

$$\bigcirc \quad \frac{13}{2}x^{\frac{13}{2}} + \frac{7}{5}x^{-\frac{2}{5}}$$

函数 $f(x) = (x^2 + 4)(4x + 7)$ の導函数 f'(x) を求めなさい。 問 5

$$\bigcirc 12x^2 + 14x + 17$$
 $\bigcirc 8x$ $\bigcirc 12x^2 + 14x + 16$ $\bigcirc 12x^2 + 14x$

$$\bigcap$$
 8r

$$12x^2 + 14x + 16$$

$$\bigcap$$
 12 $x^2 \perp 14x$

函数 $f(x) = \frac{1}{4x^2 + 7x + 3}$ の導函数 f'(x) を求めなさい。 問 6

$$\frac{8x+7}{4x^2+7x+3}$$

$$-\frac{8x+7}{4x^2+7x+3}$$

$$\bigcirc \quad \frac{8x+7}{4x^2+7x+3} \qquad \quad \bigcirc \quad -\frac{8x+7}{4x^2+7x+3} \qquad \quad \bigcirc \quad -\frac{8x+7}{(4x^2+7x+3)^2} \qquad \quad \bigcirc \quad \frac{8x+7}{(4x^2+7x+3)^2}$$

函数 $f(x) = \frac{8x+7}{5x+4}$ の導函数 f'(x) を求めなさい。 問 7

$$\bigcirc \quad \frac{-3}{5x+4}$$

$$\frac{-3}{(5x+4)^2}$$

$$\bigcirc \quad \frac{-3}{5x+4} \qquad \bigcirc \quad \frac{-3}{(5x+4)^2} \qquad \bigcirc \quad \frac{8}{(5x+4)^2} \qquad \bigcirc \quad \frac{8}{5x+4} \qquad \bigcirc \quad \frac{1}{5x+4}$$

$$\bigcirc \quad \frac{8}{5x+4}$$

$$\bigcirc \quad \frac{1}{5x+4}$$

函数 $f(x) = (5x+6)^7$ の導函数 f'(x) を求めなさい。 問8

$$()$$
 $7(5x+6)^6$

$$\bigcirc 7(5x+6)^6 \qquad \bigcirc 35(5x+6)^7 \qquad \bigcirc 7(5x+6)^7 \qquad \bigcirc 35(5x+6)^6$$

$$\bigcap$$
 $7(5x+6)$

$$\bigcirc 35(5x+6)^6$$

応用数:	学 演習 03	2022年4月27	日応用数学 演習 02	2022年4月20日
(((((0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01	← 学生番号を左にマ してください。 氏名:	
問 1	函数 $f(x) = 6x^4 + 5x$	$x^3 + 3x^2 + 6x + 1$	の導函数 $f'(x)$ を求めた	
0		_	$0x^3 + 3x^2 + 6x$ $0x^3 + 3x^2 + 6x$ $24x^3 + 15x$	$0 24x^3 + 15x^2 + 6x + 7$ $x^2 + 8x + 6$
問 2	函数 $f(x) = 3 - \frac{2}{x} +$	$\frac{4}{x^2}$ の導函数 $f'(x)$	を求めなさい。	
0	$\frac{2}{x^2} - \frac{8}{x^3} \qquad \qquad \bigcirc -$	$\frac{2}{x^2} + \frac{4}{x^3} \qquad \bigcirc$	$\frac{2}{x^2} - \frac{4}{x^3} \qquad \bigcirc 3$	$-\frac{2}{x} \qquad \bigcirc -\frac{2}{x^2} + \frac{8}{x^3}$
問 3	函数 $f(x) = x^{\frac{5}{2}}$ の導図	国数 $f'(x)$ を求めな	さい 。	
	$\bigcap rac{5}{2}x^{rac{5}{2}}$	$\bigcirc \frac{7}{2}x^{\frac{3}{2}} \qquad \bigcirc$	$\frac{3}{2}x^{\frac{3}{2}}$ $\left(\frac{5}{2}x^{\frac{3}{2}} \right)$	$\bigcirc \tfrac{3}{2}x^{\frac{3}{2}}$
問 4	函数 $f(x) = x^{\frac{11}{3}} - x^{-\frac{1}{3}}$	- ⁷ / ₅ の導函数 $f'(x)$	を求めなさい。	
0			$ \begin{array}{ccc} & \frac{11}{3}x^{\frac{8}{3}} + \frac{7}{5}x^{-\frac{12}{5}} \\ & \frac{11}{3}x^{\frac{11}{3}} + \frac{7}{5}x^{-\frac{12}{5}} \end{array} $	$ \bigcirc \frac{11}{3}x^{\frac{8}{3}} - \frac{7}{5}x^{-\frac{12}{5}} $
問 5	函数 $f(x) = (x^2 + 4)$	(2x+6) の導函数	f'(x) を求めなさい。	
	$\bigcirc 6x^2 + 12x + 8$	\bigcirc 4x	$\bigcirc 6x^2 + 12x$	$\bigcirc 6x^2 + 12x + 9$
問 6	函数 $f(x) = \frac{1}{7x^2 + 8x + 5}$	$_{\overline{5}}$ の導函数 $f'(x)$ を	求めなさい。	
		$\bigcirc \frac{14x+8}{7x^2+8x+5}$	$\bigcirc -\frac{14x+8}{7x^2+8x+5}$	
問 7	函数 $f(x) = \frac{8x+3}{3x+8}$ の製	導函数 $f'(x)$ を求め	なさい。	
	$\bigcirc \frac{55}{3x+8} \qquad \bigcirc$	$\frac{63}{3x+8}$	$\frac{55}{(3x+8)^2} \qquad \qquad \bigcirc \frac{8}{(3x+8)^2}$	$\frac{8}{3x+8}$
問8	函数 $f(x) = (9x+8)^6$	9 の導函数 $f'(x)$ を	求めなさい。	

 $\bigcirc 9(9x+8)^8$ $\bigcirc 9(9x+8)^9$ $\bigcirc 81(9x+8)^9$ $\bigcirc 81(9x+8)^8$

応用数学 演習 03	2022年4月27日応用数学演習02 2022年4月20日
$ \begin{array}{c cccc} \bigcirc 0 & \bigcirc 0 & \bigcirc 0 & \bigcirc 0 \\ \bigcirc 1 & \bigcirc 1 & \bigcirc 1 & \bigcirc 1 \\ \bigcirc 2 & \bigcirc 2 & \bigcirc 2 & \bigcirc 2 \\ \bigcirc 3 & \bigcirc 3 & \bigcirc 3 & \bigcirc 3 \\ \bigcirc 4 & \bigcirc 4 & \bigcirc 4 & \bigcirc 4 \\ \bigcirc 5 & \bigcirc 5 & \bigcirc 5 & \bigcirc 5 \\ \bigcirc 6 & \bigcirc 6 & \bigcirc 6 & \bigcirc 6 \\ \bigcirc 7 & \bigcirc 7 & \bigcirc 7 & \bigcirc 7 \\ \bigcirc 8 & \bigcirc 8 & \bigcirc 8 & \bigcirc 8 \\ \bigcirc 9 & \bigcirc 9 & \bigcirc 9 & \bigcirc 9 \end{array} $	 ○1 ○1 ○1 ○1 ○2 ○2 ○2 ○2 ○3 ○3 ○3 ○3 ○3 ○4 ○4 ○4 ○4 ○4 ○5 ○5 ○5 ○5 ○6 ○6 ○6 ○6 ○6 ○7 ○7 ○7 ○7 ○8 ○8 ○8 ○8
問 1 函数 $f(x) = 4x$	$\frac{1}{4}+3x^3+2x^2+4x+9$ の導函数 $f'(x)$ を求めなさい。
•	$6x^{2} + 4x$ \bigcirc $16x^{3} + 9x^{2} + 4x + 4$ \bigcirc $16x^{3} + 9x^{2} + 4x + 13$ \bigcirc $16x^{3} + 9x^{2} + 6x + 4$ \bigcirc $4x^{4} + 3x^{3} + 2x^{2} + 4x + 9$
問 2 函数 $f(x) = 3$ -	$-rac{4}{x}+rac{4}{x^2}$ の導函数 $f'(x)$ を求めなさい。
$\bigcirc -\frac{4}{x^2} + \frac{4}{x^3}$	$\bigcirc \frac{4}{x^2} - \frac{4}{x^3} \qquad \bigcirc \frac{4}{x^2} - \frac{8}{x^3} \qquad \bigcirc -\frac{4}{x^2} + \frac{8}{x^3} \qquad \bigcirc 3 - \frac{4}{x}$
問 3 函数 $f(x) = x^{\frac{5}{3}}$	の導函数 $f'(x)$ を求めなさい。
$\bigcirc \frac{5}{3}x^{\frac{5}{3}}$	$\bigcirc \frac{2}{3}x^{\frac{2}{3}} \qquad \bigcirc \frac{5}{3}x^{\frac{2}{3}} \qquad \bigcirc \frac{3}{3}x^{\frac{2}{3}} \qquad \bigcirc \frac{7}{3}x^{\frac{2}{3}}$
問 4 函数 $f(x) = x^{\frac{1}{3}}$	$\frac{1}{3}-x^{-rac{7}{4}}$ の導函数 $f'(x)$ を求めなさい。
$ \bigcirc \frac{8}{3}x^{\frac{11}{3}} + \frac{7}{4}x^{-\frac{3}{4}} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
問 5 函数 $f(x) = (x^2 + x^2)$	(2+2)(1x+6) の導函数 $f'(x)$ を求めなさい。
$\bigcirc 3x^2 + 12x$	x + 3
問 6 函数 $f(x) = \frac{1}{4x^2}$	$rac{9}{^2+7x+2}$ の導函数 $f'(x)$ を求めなさい。
	$ \bigcirc \qquad -\frac{72x+63}{4x^2+7x+2} \qquad \bigcirc \qquad \frac{72x+63}{4x^2+7x+2} \qquad \bigcirc \qquad \frac{72x+63}{(4x^2+7x+2)^2} $
問7 函数 $f(x) = \frac{2x}{110}$	$rac{c+5}{x+4}$ の導函数 $f'(x)$ を求めなさい。
$\bigcirc \frac{2}{11x+4}$	$ \bigcirc \frac{-43}{11x+4} \qquad \bigcirc \frac{2}{(11x+4)^2} \qquad \bigcirc \frac{-47}{11x+4} \qquad \bigcirc \frac{-47}{(11x+4)^2} $
問8 函数 $f(x) = (3x)$	$(x+2)^{10}$ の導函数 $f'(x)$ を求めなさい。

 $\bigcirc \quad 10(3x+2)^9 \qquad \quad \bigcirc \quad 10(3x+2)^{10} \qquad \quad \bigcirc \quad 30(3x+2)^{10} \qquad \quad \bigcirc \quad 30(3x+2)^9$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

\bigcap	0 0	\bigcap 0	\bigcap 0	\bigcap 0	\bigcap 0	\bigcap 0	\bigcap 0
	1 ()1						
_	_	_	_	_	_	_	_
\bigcup_{i}	$2\bigcirc 2$	$\bigcup 2$					
\bigcirc :	3	$\bigcirc 3$					
\bigcirc 4	1 04	$\bigcirc 4$					
\bigcirc	5 05	\bigcirc 5	$\bigcirc 5$				
$\bigcirc \epsilon$	6 06	$\bigcirc 6$					
\bigcirc	7 🔾 7	\bigcirc 7	\bigcirc 7	$\bigcirc 7$	$\bigcirc 7$	$\bigcirc 7$	$\bigcirc 7$
\bigcirc 8	$8 \bigcirc 8$	$\bigcirc 8$					
\bigcirc	9 ()9	$\bigcirc 9$					

← 学生番号を左にマークし、下に氏名を記入してください。

氏名:	 	

問1 函数 $f(x) = 2x^4 + 7x^3 + 4x^2 + 5x + 4$ の導函数 f'(x) を求めなさい。

$$\bigcirc 8x^3 + 21x^2 + 8x + 9 \qquad \bigcirc 8x^3 + 21x^2 + 8x + 5 \qquad \bigcirc 2x^4 + 7x^3 + 4x^2 + 5x + 4$$

$$\bigcirc 8x^3 + 21x^2 + 10x + 5 \qquad \bigcirc 2x^4 + 14x^3 + 4x^2 + 5x$$

問2 函数 $f(x) = 4 - \frac{3}{x} + \frac{5}{x^2}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{3}{x^2} - \frac{10}{x^3} \qquad \quad \bigcirc \quad -\frac{3}{x^2} + \frac{5}{x^3} \qquad \quad \bigcirc \quad 4 - \frac{3}{x} \qquad \quad \bigcirc \quad -\frac{3}{x^2} + \frac{10}{x^3} \qquad \quad \bigcirc \quad \frac{3}{x^2} - \frac{5}{x^3}$$

 $\bigcirc \ \ \frac{2}{5}x^{\frac{2}{3}} \qquad \bigcirc \ \ \frac{5}{2}x^{\frac{2}{3}} \qquad \bigcirc \ \ \frac{3}{2}x^{\frac{2}{3}} \qquad \bigcirc \ \ \frac{7}{2}x^{\frac{2}{3}}$

問3 函数 $f(x) = x^{\frac{5}{3}}$ の導函数 f'(x) を求めなさい。

```
問 4 函数 f(x) = x^{\frac{13}{3}} - x^{-\frac{13}{5}} の導函数 f'(x) を求めなさい。

\bigcirc \frac{13}{2}x^{\frac{10}{3}} - \frac{13}{5}x^{-\frac{18}{5}} \qquad \bigcirc \frac{10}{2}x^{\frac{10}{3}} - \frac{13}{5}x^{\frac{8}{5}} \qquad \bigcirc \frac{13}{2}x^{\frac{13}{3}} + \frac{13}{5}x^{-\frac{8}{5}}
```

問 5 函数 $f(x) = (x^2 + 2)(2x + 4)$ の導函数 f'(x) を求めなさい。

$$\bigcirc 6x^2 + 8x \qquad \bigcirc 6x^2 + 8x + 4 \qquad \bigcirc 6x^2 + 8x + 5 \qquad \bigcirc 4x$$

問 6 函数 $f(x) = \frac{4}{6x^2 + 5x + 7}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad -\frac{48x+20}{6x^2+5x+7} \qquad \quad \bigcirc \quad \frac{48x+20}{6x^2+5x+7} \qquad \quad \bigcirc \quad \frac{48x+20}{(6x^2+5x+7)^2} \qquad \quad \bigcirc \quad -\frac{48x+20}{(6x^2+5x+7)^2}$$

問 7 函数 $f(x) = \frac{4x+11}{5x+4}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{-39}{(5x+4)^2} \qquad \bigcirc \quad \frac{4}{(5x+4)^2} \qquad \bigcirc \quad \frac{-35}{5x+4} \qquad \bigcirc \quad \frac{4}{5x+4} \qquad \bigcirc \quad \frac{-39}{5x+4}$$

問8 函数 $f(x) = (8x+8)^8$ の導函数 f'(x) を求めなさい。

$$\bigcirc 64(8x+8)^8 \qquad \bigcirc 64(8x+8)^7 \qquad \bigcirc 8(8x+8)^7 \qquad \bigcirc 8(8x+8)^8$$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

	\bigcap_{α}	\bigcirc	\bigcap	\bigcirc	\bigcap	\bigcap	\bigcirc	\bigcap
	$\bigcup 0$	$\bigcup 0$	$\bigcirc 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$
1	\bigcap_1	\bigcap_1	$\bigcirc 1$	\bigcap_1	\bigcap_1	\bigcap_1	\bigcap_1	\bigcap_1
-)2	()2	$\bigcirc 2$	()2	()2	()2	()2	()2
	$\cup 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcup 3$
1	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
1	٦	Ō۴	$\bigcirc 5$	Ō۴	Ō۴	Ō۴	Ō۴	Ō۴
1	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
1	\bigcap_{7}	\bigcap_{7}	\bigcirc 7	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}
-	$\bigcup 8$	$\bigcup 8$	$\bigcirc 8$	$\bigcup 8$	$\bigcup 8$	$\bigcup 8$	$\bigcup 8$	$\bigcup 8$
1	\bigcap_{α}	\bigcap	$\bigcirc 9$	\bigcap	\bigcap	\bigcap	\bigcap_{α}	\bigcap
,	しょう	()0	くりひ	()0	()0	()0	()0	() ご

← 学生番号を左にマークし、下に氏名を記入してください。

氏名:	 	

問1 函数 $f(x) = 4x^4 + 7x^3 + 3x^2 + 2x + 2$ の導函数 f'(x) を求めなさい。

- 問 2 函数 $f(x)=2-\frac{3}{x}+\frac{4}{x^2}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad \frac{3}{x^2} \frac{4}{x^3} \qquad \bigcirc \quad -\frac{3}{x^2} + \frac{8}{x^3} \qquad \bigcirc \quad \frac{3}{x^2} \frac{8}{x^3} \qquad \bigcirc \quad 2 \frac{3}{x} \qquad \bigcirc \quad -\frac{3}{x^2} + \frac{4}{x^3}$
- 問3 函数 $f(x) = x^{\frac{5}{3}}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad \frac{7}{3}x^{\frac{2}{3}} \qquad \bigcirc \quad \frac{5}{3}x^{\frac{5}{3}} \qquad \bigcirc \quad \frac{5}{3}x^{\frac{2}{3}} \qquad \bigcirc \quad \frac{2}{3}x^{\frac{2}{3}} \qquad \bigcirc \quad \frac{3}{3}x^{\frac{2}{3}}$
- **問4** 函数 $f(x) = x^{\frac{11}{2}} x^{-\frac{11}{5}}$ の導函数 f'(x) を求めなさい。
- $\bigcirc \quad \frac{11}{2}x^{\frac{9}{2}} + \frac{11}{5}x^{-\frac{16}{5}} \qquad \bigcirc \quad \frac{11}{2}x^{-\frac{9}{2}} + \frac{11}{5}x^{-\frac{6}{5}} \qquad \bigcirc \quad \frac{9}{2}x^{\frac{11}{2}} + \frac{11}{5}x^{-\frac{6}{5}} \qquad \bigcirc \quad \frac{9}{2}x^{\frac{9}{2}} \frac{11}{5}x^{\frac{6}{5}} \qquad \bigcirc \quad \frac{9}{2}x^{\frac{9}{2}} \frac{11}{5}x^{\frac{6}{5}} \qquad \bigcirc \quad \frac{9}{2}x^{\frac{9}{2}} \frac{11}{5}x^{\frac{6}{5}}$
- **問 5** 函数 $f(x) = (x^2 + 2)(5x + 3)$ の導函数 f'(x) を求めなさい。
 - $\bigcirc 15x^2 + 6x + 11$ $\bigcirc 10x$ $\bigcirc 15x^2 + 6x$ $\bigcirc 15x^2 + 6x + 10$
- **問 6** 函数 $f(x) = \frac{2}{3x^2+4x+6}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad \frac{12x+8}{3x^2+4x+6} \qquad \quad \bigcirc \quad \frac{12x+8}{(3x^2+4x+6)^2} \qquad \quad \bigcirc \quad -\frac{12x+8}{(3x^2+4x+6)^2} \qquad \quad \bigcirc \quad -\frac{12x+8}{3x^2+4x+6}$
- 問7 函数 $f(x) = \frac{8x+11}{3x+4}$ の導函数 f'(x) を求めなさい。
- $\bigcirc \quad \frac{8}{(3x+4)^2} \qquad \quad \bigcirc \quad \frac{-1}{(3x+4)^2} \qquad \quad \bigcirc \quad \frac{-1}{3x+4} \qquad \quad \bigcirc \quad \frac{8}{3x+4} \qquad \quad \bigcirc \quad \frac{3}{3x+4}$
- 問8 函数 $f(x) = (4x+8)^{11}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc 11(4x+8)^{10} \qquad \bigcirc 44(4x+8)^{10} \qquad \bigcirc 44(4x+8)^{11} \qquad \bigcirc 11(4x+8)^{11}$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

$\bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc$	
$\bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1$	1 🔾 1
$\bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc$	$2\bigcirc 2$
$\bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc$	3 O 3
$\bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc$	$4 \bigcirc 4$
$\bigcirc 5$ $\bigcirc 5$ $\bigcirc 5$ $\bigcirc 5$ $\bigcirc 5$ $\bigcirc 5$	5 🔾 5
$\bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc$	6 06
\bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc	7 🔾 7
08 08 08 08 08 0	8 08
$\bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc$	9 09

← 学生番号を左にマークし、下に氏名を記入してください。

氏名:....

問1 函数 $f(x) = 6x^4 + 6x^3 + 5x^2 + 7x + 1$ の導函数 f'(x) を求めなさい。

- $\bigcirc 6x^4 + 6x^3 + 5x^2 + 7x + 1 \qquad \bigcirc 24x^3 + 18x^2 + 10x + 8 \qquad \bigcirc 6x^4 + 12x^3 + 5x^2 + 7x$ $\bigcirc 24x^3 + 18x^2 + 12x + 7 \qquad \bigcirc 24x^3 + 18x^2 + 10x + 7$
- **問2** 函数 $f(x) = 3 \frac{2}{x} + \frac{1}{x^2}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad 3 \frac{2}{x} \qquad \bigcirc \quad \frac{2}{x^2} \frac{2}{x^3} \qquad \bigcirc \quad \frac{2}{x^2} \frac{1}{x^3} \qquad \bigcirc \quad -\frac{2}{x^2} + \frac{2}{x^3} \qquad \bigcirc \quad -\frac{2}{x^2} + \frac{1}{x^3}$
- **問3** 函数 $f(x) = x^{\frac{7}{3}}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad \frac{7}{3}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{9}{3}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{7}{3}x^{\frac{7}{3}} \qquad \bigcirc \quad \frac{4}{3}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{5}{3}x^{\frac{4}{3}}$
- **問4** 函数 $f(x) = x^{\frac{7}{2}} x^{-\frac{11}{4}}$ の導函数 f'(x) を求めなさい。
- **問 5** 函数 $f(x) = (x^2 + 4)(5x + 1)$ の導函数 f'(x) を求めなさい。
 - $\bigcirc 15x^2 + 2x + 21 \qquad \bigcirc 10x \qquad \bigcirc 15x^2 + 2x \qquad \bigcirc 15x^2 + 2x + 20$
- 問 6 函数 $f(x) = \frac{1}{2x^2+4x+2}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc \quad -\frac{4x+4}{(2x^2+4x+2)^2} \qquad \quad \bigcirc \quad -\frac{4x+4}{2x^2+4x+2} \qquad \quad \bigcirc \quad \frac{4x+4}{2x^2+4x+2} \qquad \quad \bigcirc \quad \frac{4x+4}{(2x^2+4x+2)^2}$
- 問 7 函数 $f(x) = \frac{4x+5}{5x+8}$ の導函数 f'(x) を求めなさい。
- $\bigcirc \quad \frac{4}{5x+8} \qquad \bigcirc \quad \frac{7}{5x+8} \qquad \bigcirc \quad \frac{15}{5x+8} \qquad \bigcirc \quad \frac{7}{(5x+8)^2} \qquad \bigcirc \quad \frac{4}{(5x+8)^2}$
- **問8** 函数 $f(x) = (4x+4)^{12}$ の導函数 f'(x) を求めなさい。
 - $\bigcirc 12(4x+4)^{12} \qquad \bigcirc 12(4x+4)^{11} \qquad \bigcirc 48(4x+4)^{12} \qquad \bigcirc 48(4x+4)^{11}$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

$\bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc$	
$\bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1$	1 🔾 1
$\bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc$	$2\bigcirc 2$
$\bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc$	3 O 3
$\bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc$	$4 \bigcirc 4$
$\bigcirc 5$ $\bigcirc 5$ $\bigcirc 5$ $\bigcirc 5$ $\bigcirc 5$ $\bigcirc 5$	5 🔾 5
$\bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc$	6 06
\bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc	7 🔾 7
08 08 08 08 08 0	8 08
$\bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc$	9 09

← 学生番号を左にマークし、下に氏名を記入

氏名: .	 	 	

函数 $f(x) = 6x^4 + 5x^3 + 7x^2 + 4x + 3$ の導函数 f'(x) を求めなさい。 問 1

$$\bigcirc 6x^4 + 10x^3 + 7x^2 + 4x \qquad \bigcirc 24x^3 + 15x^2 + 16x + 4 \qquad \bigcirc 24x^3 + 15x^2 + 14x + 4$$

$$\bigcirc 24x^3 + 15x^2 + 16x + 4$$

$$\bigcirc 24x^3 + 15x^2 + 14x + 4$$

$$\bigcirc 24x^3 + 15x^2 + 14x + 7$$

$$\bigcirc 24x^3 + 15x^2 + 14x + 7 \qquad \bigcirc 6x^4 + 5x^3 + 7x^2 + 4x + 3$$

函数 $f(x) = 3 - \frac{5}{x} + \frac{2}{x^2}$ の導函数 f'(x) を求めなさい。 問 2

$$-\frac{5}{x^2} + \frac{2}{x^3}$$

$$\bigcirc \quad -\frac{5}{x^2} + \frac{2}{x^3} \qquad \bigcirc \quad -\frac{5}{x^2} + \frac{4}{x^3} \qquad \bigcirc \quad \frac{5}{x^2} - \frac{4}{x^3} \qquad \bigcirc \quad 3 - \frac{5}{x} \qquad \bigcirc \quad \frac{5}{x^2} - \frac{2}{x^3}$$

$$\bigcirc \quad \frac{5}{x^2} - \frac{4}{x^3}$$

$$\bigcirc 3 - \frac{5}{x}$$

問3 函数 $f(x) = x^{\frac{7}{3}}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{5}{3}x^{\frac{4}{3}}$$

$$\bigcirc \quad \frac{5}{2}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{9}{2}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{7}{2}x^{\frac{4}{3}} \qquad \bigcirc \quad \frac{7}{2}x^{\frac{7}{3}} \qquad \bigcirc \quad \frac{4}{2}x^{\frac{4}{3}}$$

$$\int \frac{7}{3}x^{\frac{2}{3}}$$

$$\int \frac{7}{3}x^{\frac{3}{2}}$$

$$\bigcirc \quad \frac{4}{3}x^{\frac{4}{3}}$$

問4 函数 $f(x) = x^{\frac{7}{3}} - x^{-\frac{7}{6}}$ の導函数 f'(x) を求めなさい。

$$0 \quad \frac{4}{3}x^{\frac{7}{3}} + \frac{7}{6}x^{-\frac{1}{6}}$$

$$\bigcap_{3} \frac{4}{3}x^{\frac{4}{3}} - \frac{7}{6}x^{\frac{1}{6}}$$

$$\bigcirc \quad \frac{7}{3}x^{\frac{4}{3}} - \frac{7}{6}x^{-\frac{13}{6}} \qquad \bigcirc \quad \frac{4}{3}x^{\frac{7}{3}} + \frac{7}{6}x^{-\frac{1}{6}} \qquad \bigcirc \quad \frac{4}{3}x^{\frac{4}{3}} - \frac{7}{6}x^{\frac{1}{6}} \qquad \bigcirc \quad \frac{7}{3}x^{\frac{4}{3}} + \frac{7}{6}x^{-\frac{13}{6}} \\ \bigcirc \quad \frac{7}{3}x^{\frac{7}{3}} + \frac{7}{6}x^{-\frac{1}{6}} \qquad \bigcirc \quad \frac{7}{3}x^{-\frac{4}{3}} + \frac{7}{6}x^{-\frac{1}{6}}$$

函数 $f(x) = (x^2 + 1)(3x + 4)$ の導函数 f'(x) を求めなさい。 問 5

$$9x^2 + 8x + 4$$

$$\bigcirc 9x^2 + 8x$$

$$\bigcirc$$
 6x

$$\bigcirc 9x^2 + 8x + 4$$
 $\bigcirc 9x^2 + 8x$ $\bigcirc 6x$ $\bigcirc 9x^2 + 8x + 3$

函数 $f(x) = \frac{3}{7x^2 + 2x + 5}$ の導函数 f'(x) を求めなさい。 問 6

$$-\frac{42x+6}{7x^2+2x+5}$$

$$\frac{42x+6}{7x^2+2x+5}$$

$$\bigcirc \quad -\frac{42x+6}{7x^2+2x+5} \qquad \qquad \bigcirc \quad \frac{42x+6}{7x^2+2x+5} \qquad \qquad \bigcirc \quad -\frac{42x+6}{(7x^2+2x+5)^2} \qquad \qquad \bigcirc \quad \frac{42x+6}{(7x^2+2x+5)^2}$$

函数 $f(x) = \frac{8x+3}{7x+8}$ の導函数 f'(x) を求めなさい。 問 7

$$\bigcirc \quad \frac{43}{(7x+8)^2} \qquad \bigcirc \quad \frac{51}{7x+8} \qquad \bigcirc \quad \frac{8}{7x+8} \qquad \bigcirc \quad \frac{43}{7x+8} \qquad \bigcirc \quad \frac{8}{(7x+8)^2}$$

$$\bigcirc \quad \frac{51}{7x+8}$$

$$\bigcirc \quad \frac{8}{7x+8}$$

$$\frac{43}{7\pi+8}$$

$$\bigcirc \quad \frac{8}{(7x+8)^2}$$

函数 $f(x) = (6x+3)^8$ の導函数 f'(x) を求めなさい。 問8

$$0 8(6x+3)^8$$

$$\bigcirc 8(6x+3)^8 \qquad \bigcirc 48(6x+3)^8 \qquad \bigcirc 8(6x+3)^7 \qquad \bigcirc 48(6x+3)^7$$

$$0 8(6x+3)$$

$$\bigcirc$$
 48(6x + 3)

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

)_	\bigcap	\bigcap	\bigcap	\bigcap	\bigcap	\bigcap	\bigcap
			$\bigcirc 0$					
)1	$\bigcup 1$	$\bigcirc 1$	$\bigcup 1$	$\bigcup 1$	$\bigcup 1$	$\bigcup 1$	$\bigcup 1$
)2	\bigcap_{2}	$\bigcirc 2$	\bigcap_{2}	\bigcap_{2}	\bigcap_{2}	\bigcap_{2}	\bigcap_{2}
)3	$\bigcup 3$	$\bigcirc 3$	$\bigcup 3$	$\bigcup 3$	$\bigcup 3$	$\bigcup 3$	$\bigcup 3$
	$)_4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
Č)5	O 5	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$
Č	6	$\tilde{\bigcirc}6$	O 6	$\bigcirc 6$				
Č	7	$\overline{\bigcirc}7$	$\bigcirc 7$	07	07	$\bigcirc 7$	$\bigcirc 7$	$\bigcirc 7$
	8($\bigcirc 8$	08	$\bigcirc 8$				
	9	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcap 9$	$\bigcap 9$

← 学生番号を左にマークし、下に氏名を記入

問1 函数 $f(x) = 4x^4 + 4x^3 + 5x^2 + 4x + 1$ の導函数 f'(x) を求めなさい。

$$\bigcirc 16x^3 + 12x^2 + 12x + 4 \qquad \bigcirc 4x^4 + 8x^3 + 5x^2 + 4x \qquad \bigcirc 16x^3 + 12x^2 + 10x + 4$$

$$0 \quad 4x^4 + 8x^3 + 5x^2 + 4x$$

$$0 16x^3 + 12x^2 + 10x + 4$$

$$\bigcirc 4x^4 + 4x^3 + 5x^2 + 4x + 1$$
 $\bigcirc 16x^3 + 12x^2 + 10x + 5$

$$0 16x^3 + 12x^2 + 10x + 5$$

函数 $f(x) = 2 - \frac{2}{x} + \frac{3}{x^2}$ の導函数 f'(x) を求めなさい。 問 2

$$\bigcirc \quad -\frac{2}{x^2} + \frac{6}{x^3}$$

$$\bigcirc \quad -\frac{2}{x^2} + \frac{6}{x^3} \qquad \bigcirc \quad -\frac{2}{x^2} + \frac{3}{x^3} \qquad \bigcirc \quad \frac{2}{x^2} - \frac{6}{x^3} \qquad \bigcirc \quad \frac{2}{x^2} - \frac{3}{x^3} \qquad \bigcirc \quad 2 - \frac{2}{x}$$

$$\frac{2}{r^2} - \frac{6}{r^3}$$

$$\frac{2}{x^2} - \frac{3}{x^3}$$

$$O$$
 $2-\frac{2}{x}$

問3 函数 $f(x) = x^{\frac{11}{3}}$ の導函数 f'(x) を求めなさい。

$$0 \frac{9}{2}x^{\frac{8}{3}}$$

$$\bigcirc \ \ \frac{9}{3}x^{\frac{8}{3}} \qquad \bigcirc \ \ \frac{11}{3}x^{\frac{11}{3}} \qquad \bigcirc \ \ \frac{13}{3}x^{\frac{8}{3}} \qquad \bigcirc \ \ \frac{11}{3}x^{\frac{8}{3}}$$

$$\bigcirc \frac{13}{3}x^{\frac{5}{2}}$$

$$\int \frac{11}{3}x^{\frac{8}{3}}$$

$$\bigcirc$$
 $\frac{8}{3}x^{\frac{5}{3}}$

函数 $f(x) = x^{\frac{11}{3}} - x^{-\frac{13}{6}}$ の導函数 f'(x) を求めなさい。 問 4

問 5

$$0 \quad \frac{8}{3}x^{\frac{8}{3}} - \frac{13}{6}x^{\frac{1}{3}}$$

函数
$$f(x) = (x^2 + 3)(1x + 1)$$
 の導函数 $f'(x)$ を求めなさい。

$$\bigcap 2x$$

$$\bigcirc 3x^2 + 2x$$

$$\bigcirc 2x$$
 $\bigcirc 3x^2 + 2x$ $\bigcirc 3x^2 + 2x + 3$ $\bigcirc 3x^2 + 2x + 4$

$$3x^2 + 2x + 4$$

函数 $f(x) = \frac{1}{6x^2 + 4x + 5}$ の導函数 f'(x) を求めなさい。 問 6

$$-\frac{12x+4}{6x^2+4x+5}$$

$$\bigcirc \quad -\frac{12x+4}{6x^2+4x+5} \qquad \quad \bigcirc \quad -\frac{12x+4}{(6x^2+4x+5)^2} \qquad \quad \bigcirc \quad \frac{12x+4}{6x^2+4x+5} \qquad \quad \bigcirc \quad \frac{12x+4}{(6x^2+4x+5)^2}$$

$$\frac{12x+4}{6x^2+4x+5}$$

$$\frac{12x+4}{(6x^2+4x+5)^2}$$

函数 $f(x) = \frac{2x+11}{7x+4}$ の導函数 f'(x) を求めなさい。 問 7

- $\bigcirc \quad \frac{-69}{7x+4} \qquad \bigcirc \quad \frac{-65}{7x+4} \qquad \bigcirc \quad \frac{2}{7x+4} \qquad \bigcirc \quad \frac{-69}{(7x+4)^2} \qquad \bigcirc \quad \frac{2}{(7x+4)^2}$

函数 $f(x) = (8x+6)^8$ の導函数 f'(x) を求めなさい。 問8

- $\bigcirc \ \ 64(8x+6)^8 \qquad \ \ \bigcirc \ \ 8(8x+6)^7 \qquad \ \ \bigcirc \ \ 8(8x+6)^8 \qquad \ \ \bigcirc \ \ 64(8x+6)^7$

2022 年 4 月 27 日応用数学 演習 02

2022年4月20日

\bigcap	0 0	\bigcap 0	\bigcap 0	\bigcap 0	\bigcap 0	\bigcap 0	\bigcap 0
	. ()1						
_	_	_	_	_	_	_	_
$\bigcup 2$	$2\bigcirc 2$	$\bigcup 2$					
\bigcirc 3	3	$\bigcirc 3$					
$\bigcirc 4$	1 04	$\bigcirc 4$					
$\bigcirc 5$	5 05	\bigcirc 5	$\bigcirc 5$				
$\bigcirc \epsilon$	6 06	$\bigcirc 6$					
$\bigcirc 7$	7 07	\bigcirc 7	$\bigcirc 7$				
$\bigcirc 8$	$8 \bigcirc 8$	$\bigcirc 8$					
\bigcirc 6	9	$\bigcirc 9$					

← 学生番号を左にマークし、下に氏名を記入してください。

氏名:	 	

問1 函数 $f(x) = 5x^4 + 2x^3 + 4x^2 + 7x + 6$ の導函数 f'(x) を求めなさい。

問2 函数 $f(x) = 4 - \frac{3}{x} + \frac{1}{x^2}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad -\frac{3}{x^2} + \frac{1}{x^3} \qquad \bigcirc \quad -\frac{3}{x^2} + \frac{2}{x^3} \qquad \bigcirc \quad \frac{3}{x^2} - \frac{2}{x^3} \qquad \bigcirc \quad 4 - \frac{3}{x} \qquad \bigcirc \quad \frac{3}{x^2} - \frac{1}{x^3}$$

問3 函数 $f(x) = x^{\frac{11}{3}}$ の導函数 f'(x) を求めなさい。

問 4 函数
$$f(x)=x^{\frac{7}{2}}-x^{-\frac{7}{5}}$$
 の導函数 $f'(x)$ を求めなさい。
$$\bigcirc \frac{7}{2}x^{\frac{5}{2}}-\frac{7}{5}x^{-\frac{12}{5}} \qquad \bigcirc \frac{7}{2}x^{\frac{7}{2}}+\frac{7}{5}x^{-\frac{2}{5}} \qquad \bigcirc \frac{5}{2}x^{\frac{5}{2}}-\frac{7}{5}x^{\frac{2}{5}} \qquad \bigcirc \frac{7}{2}x^{-\frac{5}{2}}+\frac{7}{5}x^{-\frac{2}{5}}$$

$$\bigcirc \frac{7}{2}x^{\frac{5}{2}}+\frac{7}{5}x^{-\frac{12}{5}} \qquad \bigcirc \frac{5}{2}x^{\frac{7}{2}}+\frac{7}{5}x^{-\frac{2}{5}}$$

 $\bigcirc \quad \frac{11}{3}x^{\frac{8}{3}} \qquad \bigcirc \quad \frac{13}{3}x^{\frac{8}{3}} \qquad \bigcirc \quad \frac{9}{3}x^{\frac{8}{3}} \qquad \bigcirc \quad \frac{11}{3}x^{\frac{11}{3}} \qquad \bigcirc \quad \frac{8}{3}x^{\frac{8}{3}}$

問 5 函数
$$f(x) = (x^2 + 5)(1x + 5)$$
 の導函数 $f'(x)$ を求めなさい。

$$\bigcirc 3x^2 + 10x + 6$$
 $\bigcirc 2x$ $\bigcirc 3x^2 + 10x + 5$ $\bigcirc 3x^2 + 10x$

問 6 函数 $f(x) = \frac{6}{9x^2+6x+7}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad -\frac{108x+36}{9x^2+6x+7} \qquad \quad \bigcirc \quad -\frac{108x+36}{(9x^2+6x+7)^2} \qquad \quad \bigcirc \quad \frac{108x+36}{9x^2+6x+7} \qquad \quad \bigcirc \quad \frac{108x+36}{(9x^2+6x+7)^2}$$

問7 函数 $f(x) = \frac{2x+3}{11x+4}$ の導函数 f'(x) を求めなさい。

$$\bigcirc \quad \frac{-25}{(11x+4)^2} \qquad \bigcirc \quad \frac{2}{11x+4} \qquad \bigcirc \quad \frac{2}{(11x+4)^2} \qquad \bigcirc \quad \frac{-25}{11x+4} \qquad \bigcirc \quad \frac{-21}{11x+4}$$

問8 函数 $f(x) = (4x+9)^7$ の導函数 f'(x) を求めなさい。

$$\bigcirc 7(4x+9)^7$$
 $\bigcirc 28(4x+9)^7$ $\bigcirc 28(4x+9)^6$ $\bigcirc 7(4x+9)^6$

応用数学 演習 03	2022 年 4 月 27 日応用数学 演習 02	2022年4月20日
$ \begin{array}{c cccc} \bigcirc 0 & \bigcirc 0 & \bigcirc 0 & \bigcirc 0 \\ \bigcirc 1 & \bigcirc 1 & \bigcirc 1 & \bigcirc 1 \\ \bigcirc 2 & \bigcirc 2 & \bigcirc 2 & \bigcirc 2 \\ \bigcirc 3 & \bigcirc 3 & \bigcirc 3 & \bigcirc 3 \\ \bigcirc 4 & \bigcirc 4 & \bigcirc 4 & \bigcirc 4 \\ \bigcirc 5 & \bigcirc 5 & \bigcirc 5 & \bigcirc 5 \\ \bigcirc 6 & \bigcirc 6 & \bigcirc 6 & \bigcirc 6 \\ \bigcirc 7 & \bigcirc 7 & \bigcirc 7 & \bigcirc 7 \\ \bigcirc 8 & \bigcirc 8 & \bigcirc 8 & \bigcirc 8 \\ \bigcirc 9 & \bigcirc 9 & \bigcirc 9 & \bigcirc 9 \end{array} $	 ○1 ○1 ○1 ○1 ○2 ○2 ○2 ○2 ○3 ○3 ○3 ○3 ○4 ○4 ○4 ○4 ○5 ○5 ○5 ○5 ○6 ○6 ○6 ○6 ○7 ○7 ○7 ○7 ○8 ○8 ○8 ○8 	
問 1 函数 $f(x) = 7x$	$x^4 + 6x^3 + 5x^2 + 2x + 4$ の導函数 $f'(x)$ を求めなさい。	
_	$-2x + 4 \qquad \bigcirc 28x^3 + 18x^2 + 12x + 2 \qquad \bigcirc 7$ $28x^3 + 18x^2 + 10x + 6 \qquad \bigcirc 28x^3 + 18x^2 + 10x + 6$	
問 2 函数 $f(x) = 4$ -	$-rac{2}{x}+rac{2}{x^2}$ の導函数 $f'(x)$ を求めなさい。	
$\bigcirc -\frac{2}{x^2} + \frac{4}{x^3}$	$ \bigcirc \frac{2}{x^2} - \frac{2}{x^3} \qquad \qquad \bigcirc -\frac{2}{x^2} + \frac{2}{x^3} \qquad \qquad \bigcirc 4 - \frac{2}{x} $	$\bigcirc \frac{2}{x^2} - \frac{4}{x^3}$
問3 函数 $f(x) = x^{\frac{5}{2}}$	$^{rac{5}{2}}$ の導函数 $f'(x)$ を求めなさい。	
$\bigcirc \tfrac{5}{2}x^{\frac{5}{2}}$	$\bigcirc \frac{7}{2}x^{\frac{3}{2}} \qquad \bigcirc \frac{3}{2}x^{\frac{3}{2}} \qquad \bigcirc \frac{3}{2}x^{\frac{3}{2}} \qquad ($	$) \frac{5}{2}x^{\frac{3}{2}}$
問4 函数 $f(x) = x^{\frac{7}{3}}$	$\frac{7}{3}-x^{-\frac{11}{4}}$ の導函数 $f'(x)$ を求めなさい。	
$\bigcirc \frac{7}{3}x^{\frac{7}{3}} + \frac{11}{4}x^{-\frac{7}{4}}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\bigcirc \frac{7}{3}x^{\frac{4}{3}} - \frac{11}{4}x^{-\frac{15}{4}}$
問 5 函数 $f(x) = (x^2 - x^2)$	$(x^2+4)(3x+7)$ の導函数 $f'(x)$ を求めなさい。	
$\bigcirc 9x^2 + 14x$	$x + 13$ \bigcirc $6x$ \bigcirc $9x^2 + 14x + 12$ \bigcirc	$9x^2 + 14x$
問6 函数 $f(x) = \frac{1}{8x^2}$	$rac{4}{x^2+5x+3}$ の導函数 $f'(x)$ を求めなさい。	
$\bigcirc \frac{64x + 20}{(8x^2 + 5x + 3)^2}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$-\frac{64x+20}{(8x^2+5x+3)^2}$
問7 函数 $f(x) = \frac{4x}{113}$	$rac{x+5}{x+2}$ の導函数 $f'(x)$ を求めなさい。	
$\bigcirc \frac{-45}{11x+2}$	$ \bigcirc \frac{4}{(11x+2)^2} \qquad \bigcirc \frac{4}{11x+2} \qquad \bigcirc \frac{-47}{(11x+2)^2} $	$\bigcirc \frac{-47}{11x+2}$
問8 函数 $f(x) = (5x)$	$(x+2)^7$ の導函数 $f'(x)$ を求めなさい。	
$\bigcap 7(5r+2)^6$	$\bigcirc 35(5x+2)^7 \bigcirc 7(5x+2)^7 \bigcirc$	$35(5x+2)^6$

応用数学	学 演習 03	2022年4月27	日応用数学 演習 02	2022年4月20日
	0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	してください。	マークし、下に氏名を記入
問 1	函数 $f(x) = 7x^4 +$	$4x^3 + 7x^2 + 7x + 2$	の導函数 $f'(x)$ を求め	なさい。
0 28		_	$12x^2 + 16x + 7$ $28x^3 + 12x^2$	$7x^4 + 4x^3 + 7x^2 + 7x + 2 + 14x + 7$
問 2	函数 $f(x) = 4 - \frac{4}{x}$	$+\frac{2}{x^2}$ の導函数 $f'(x)$	を求めなさい。	
0	$\frac{4}{x^2} - \frac{4}{x^3} \qquad \bigcirc$	$4 - \frac{4}{x}$ \bigcirc $-$	$\frac{4}{x^2} + \frac{2}{x^3} \qquad \qquad \bigcirc -\frac{2}{x^2}$	$\frac{4}{2} + \frac{4}{x^3}$ $\frac{4}{x^2} - \frac{2}{x^3}$
問 3	函数 $f(x) = x^{\frac{7}{2}}$ の	導函数 $f'(x)$ を求めた	なさい。	
	$\bigcirc \frac{5}{2}x^{\frac{5}{2}}$	$\bigcirc \frac{7}{2}x^{\frac{5}{2}} \qquad \bigcirc$) $\frac{7}{2}x^{\frac{7}{2}}$ $\left(\begin{array}{ccc} \frac{5}{2}x^{\frac{5}{2}} \end{array}\right)$	$\bigcirc \frac{9}{2}x^{\frac{5}{2}}$
問 4	函数 $f(x) = x^{\frac{13}{3}}$ —	$x^{-\frac{13}{5}}$ の導函数 $f'(x)$) を求めなさい。	
	$ \bigcirc \frac{13}{3}x^{-\frac{10}{3}} + \frac{1}{5} $ $ \bigcirc \frac{10}{3}x^{\frac{10}{3}} - \frac{1}{5} $	$\frac{3}{5}x^{-\frac{8}{5}}$ $\frac{13}{5}x^{\frac{8}{5}}$ $\frac{10}{3}x^{\frac{8}{5}}$	$x^{\frac{10}{3}} + \frac{13}{5}x^{-\frac{18}{5}} \qquad \bigcirc$ $x^{\frac{10}{3}} + \frac{13}{5}x^{-\frac{8}{5}} \qquad \bigcirc$	$ \frac{13}{3}x^{\frac{10}{3}} - \frac{13}{5}x^{-\frac{18}{5}} $ $ \frac{13}{3}x^{\frac{13}{3}} + \frac{13}{5}x^{-\frac{8}{5}} $
問 5	函数 $f(x) = (x^2 +$	2)(1x+6) の導函数	f'(x) を求めなさい。	
	$\bigcirc 3x^2 + 12x +$	$2 \qquad \bigcirc 3x^2 + 1$	$2x+3$ \bigcirc $2x$	$\bigcirc 3x^2 + 12x$
問 6	函数 $f(x) = \frac{2}{8x^2 + 6x}$	$\overline{x_{+4}}$ の導函数 $f'(x)$ る	を求めなさい。	
		$\bigcirc \frac{32x+12}{8x^2+6x+4}$		$\bigcirc \frac{32x+12}{(8x^2+6x+4)^2}$

問7 函数 $f(x) = \frac{8x+5}{11x+8}$ の導函数 f'(x) を求めなさい。

 $\bigcirc \quad \frac{17}{11x+8} \qquad \quad \bigcirc \quad \frac{9}{(11x+8)^2} \qquad \quad \bigcirc \quad \frac{9}{11x+8} \qquad \quad \bigcirc \quad \frac{8}{11x+8} \qquad \quad \bigcirc \quad \frac{8}{(11x+8)^2}$

問8 函数 $f(x) = (7x+3)^{11}$ の導函数 f'(x) を求めなさい。

 $\bigcirc 77(7x+3)^{10} \bigcirc 77(7x+3)^{11} \bigcirc 11(7x+3)^{10} \bigcirc 11(7x+3)^{11}$