STAT 215A Problem Set 3, Spring 2022

- 1. Out of 12 balls in an urn, 5 of them are green. Consider a sample of size n=4 without replacement. Let A_k be the event that a sample of size 4 contains exactly k green balls for $0 \le k \le 4$. Moreover, let B_j be the event that the ball selected at the j^{th} step is green for $1 \le j \le 4$.
 - (a) Determine $P(B_j)$ for each $1 \le j \le 4$.
 - (b) Compute $P(A_3|B_2)$.
 - (c) Compute $P(B_i|A_3)$ for each $1 \le j \le 4$.
 - (d) Would your answers to any of the parts (a)-(c) above change if the sampling is done with replacement?
- 2. Prove the following for indicator functions $I_A(\omega)$ where $\omega \in \Omega$ and $A \in \mathcal{F}$ in a measurable space (Ω, \mathcal{F}) :
 - (a) $I_{\emptyset} = 0, I_{\Omega} = 1, I_A + I_{A^c} = 1, I_{A \cap B} = I_A I_B, I_{A \cup B} = I_A + I_B I_A I_B, I_{A \Delta B} = (I_A I_B)^2;$
 - (b) $I_{\bigcup_{i=1}^{n} A_i} = 1 \prod_{i=1}^{n} (1 I_{A_i})$; and
 - (c) $I_{\bigcup_{i=1}^n A_i} = \sum_{i=1}^n I_{A_i}$, if $\{A_i\}_{i=1}^n$ is a disjoint collection.
- 3. Let X and Y be random variables on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Moreover, assume g is a continuous and strictly increasing function. Show that:
 - (a) the function $g(X): \Omega \to \mathbb{R}$ is a random variable;
 - (b) the expressions X + Y and $X \cdot Y$ are random variables (on the same space).
- 4. Let F be a cdf, $n \in \mathbb{N}$ and $0 < \lambda < 1$. Prove that F^n and $1 (1 F)^n$ are also cdf.
- 5. Let f and g be two probability density functions (pdf) and $0 < \lambda < 1$. Prove that:
 - (a) $\lambda f + (1 \lambda)g$ is a pdf
 - (b) fg is not necessarily a pdf
- 6. Let $X \sim Unif(0,1)$ with pdf f(x) = 1 for 0 < x < 1. Define $Y = -\ln(X)/2$.
 - (a) Show that Y is a continuous r.v. with range $(0, \infty)$.
 - (b) Determine the cdf of Y.
 - (c) Determine a pdf for Y.
 - (d) Compute P(Y > 2).
- 7. Let X be a r.v. in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and $\{x_n\}_{n\in\mathbb{N}}$ be a strictly increasing sequence that converges to $x \in \mathbb{R}$. If $B_n = \{\omega \in \Omega : x_n < X(\omega) \le x\}$ for $n \in \mathbb{N}$, prove that:
 - (a) $B_n \in \mathcal{F}$ for each $n \in \mathbb{N}$;
 - (b) $\{B_n\}_{n\in\mathbb{N}}$ is an increasing sequence of events;
 - (c) $\bigcap_{n=1}^{\infty} B_n = \{ \omega \in \Omega : X(\omega) = x \}.$
- 8. Let X be a r.v. in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that $P(X \geq 0) = 1$. For $x \geq 0$ and $n \in \mathbb{N}$, define a sequence of events $\{A_n(x)\}_{n\in\mathbb{N}}$ as follows: $A_n(x) = \{\omega \in \Omega : X(\omega) > x 1/n\}$ for $n \in \mathbb{N}$. Prove that:

1

- (a) $\bigcap_{n=1}^{\infty} A_n(x) \in \mathcal{F}$ for all $x \ge 0$;
- (b) $\{\omega \in \Omega : X(\omega) \ge x\} \in F$ for all real x.