quantum programming languages

John Scott, Oliver Thomas

Reference

Python quantum programming languages

John Scott, Oliver Thomas

Quantum Engineering CDT University of Bristol

September 17, 2018

Overview

John Scott, Oliver Thomas

Reference:

- Python based quantum programming libraries
- We tried to program the common programs (e.g. Grover's algorithm, Shor's algorithm, etc.)
- We tried compiling a simple program for different hardware platforms (i.e. with gate restrictions, etc.)
- We've written a programming guide - under an internal review

```
# Do quantum stuff
qvm = QVMConnection()
qprog = Program()
# do X on q1, q3, q7
# remember HZH is X
qprog.inst(H(1), Z(1),
\rightarrow H(1))
qprog.inst(X(3))
qprog.inst(X(7))
# do measurement over
→ all 8 qubits
for i in range(0, 8):
    qprog.measure(i, i)
```

Short comparison

What is there

- Focussed on quantum circuits
- Apply gates to specific qubits
- Classical control in the same source code
- Python syntax is beginner friendly
- Simulators are available
- Hardware compilers are available

What is lacking

- Lack of support for custom unitaries
- Compilers are not highly developed
- Some languages target specific hardware
- Some simulators are cloud based and require accounts
- No real quantum programming contructs (e.g. quantum if etc.)

Cloud based quantum computing

Python quantum programming languages John Scott,

Reference

IBM recently introduced their new API [1] which uses JSON files to control runs. They have added pulse shaping. 1

¹way to specific and the examples look incredibly confusing

Long term programming languages

John Scott,

Reference

- Don't see Python being the long term quantum language
- Existing Python libraries not built to be scalable languages. Heavy focus on quantum circuits ²
- Need a quantum instruction set that isn't just listing gates

 $^{^2}$ I don't think thinking in terms of quantum circuits is useful for new algorithms

Types of

Python quantum programming languages

John Scott, Oliver Thoma

Reference

Figure: Two source HOM dip

²These are two-mode squeezers

References

quantum programming languages John Scott,

References

[1] David C McKay, Thomas Alexander, Luciano Bello, Michael J Biercuk, Lev Bishop, Jiayin Chen, Jerry M Chow, Antonio D Córcoles, Daniel Egger, Stefan Filipp, et al. Qiskit backend specifications for openqasm and openpulse experiments. arXiv preprint arXiv:1809.03452, 2018.