Analysis: Sherlock and Watson Gym Secrets

View problem and solution walkthrough video

The problem translates to given A, B, N, K, find number of pairs (i, j) which satisfy the following conditions:

1. $i \neq j$ 2. $1 \leq i \leq \mathbf{N}$ and $1 \leq j \leq \mathbf{N}$ 3. $(i^{\mathbf{A}} + j^{\mathbf{B}}) \mod \mathbf{K} = 0$

Test Set 1

We can brute force through all possible pairs (i,j) which satisfy the first two conditions and calculate if $(i^{\mathbf{A}}+j^{\mathbf{B}})\mod \mathbf{K}=0$. As $1\leq i\leq \mathbf{N}$ and $1\leq j\leq \mathbf{N}$, we have \mathbf{N}^2 pairs and for each pair we need to compute $(i^{\mathbf{A}}+j^{\mathbf{B}})\mod \mathbf{K}$, If we compute this naively, we will require $O(\mathbf{A}+\mathbf{B})$ operations, but we can use exponentiation by squaring to compute this efficiently in $O(\log(\mathbf{A})+\log(\mathbf{B}))$.

Since we need to compute this sum for each pair (i, j), we get $O(\mathbf{N}^2(log(\mathbf{A}) + log(\mathbf{B})))$.

Test Set 2

As **N** is quite large for this test set, the previous approach would not work here, Let us try another approach. For $(i^{\mathbf{A}} + j^{\mathbf{B}}) \mod \mathbf{K} = 0$, we know that $j^{\mathbf{B}} \mod \mathbf{K} = -i^{\mathbf{A}} \mod \mathbf{K}$.

For each possible i, let us try to find how many such i exists.

Let us create an array L, where L[x] denotes the number of possible values of j such that $j^{\mathbf{B}} \mod \mathbf{K} = x$. Now, we can iterate over all possible values of i i.e. $(1,2,3,\ldots,\mathbf{N})$ and add $L[-i^{\mathbf{A}} \mod \mathbf{K}]$ to the answer. One more thing which is left to handle here is the condition $i \neq j$, for which we can simply check if $(i^{\mathbf{A}} + i^{\mathbf{B}}) \mod \mathbf{K} = 0$ and decrement 1 from the answer.

The complexity of this approach would be $O(\mathbf{N}(log(\mathbf{A}) + log(\mathbf{B})))$ which is better than the previous approach but still exceeds the time limit. But we can try to optimize more from here.

You can note that even though i can take ${\bf N}$ possible values, $i \mod {\bf K}$ can only take ${\bf K}$ possible values. Can we take advantage of this ?

We defined L[x] = number of j such that $j^{\mathbf{B}}\mod \mathbf{K}=x$. A more optimized way to construct L can be: Consider a variable $q,0\leq q< K$. (The number of values $j\mod \mathbf{K}$ can take), we can iterate over all possible values of q i.e. $(1,2,3,\ldots,\mathbf{K})$ and increment $L[q^{\mathbf{B}}\mod \mathbf{K}]$ by number of j's such that $j\mod \mathbf{K}=q$. This reduces the time complexity of constructing L from $O(\mathbf{N}log(\mathbf{B}))$ to $O(\mathbf{K}log(\mathbf{B}))$.

Similarly, instead of iterating over all possible values of i, Consider a variable $p,0 \leq p < \mathbf{K}$ (The number of values $i \mod \mathbf{K}$ can take), Let z = number of i's such that $i \mod \mathbf{K} = p$, and add $z \times L[-p^\mathbf{A} \mod \mathbf{K}]$ to the answer.

We still need to handle the condition of $i \neq j$, for which we can simlpy check for each p if $(p^{\mathbf{A}} + p^{\mathbf{B}}) \mod \mathbf{K} = 0$ and subtract z from the answer.

As we are iterating over p and q which take only $\mathbf K$ distinct values instead of $\mathbf N$ distinct values for i and j, the complexity of this approach reduces to $O(\mathbf K(log(\mathbf A) + log(\mathbf B)))$.

A small mistake which can happen in exponention by squaring is $x^0=1$, which would be wrong in case of ${\bf K}=1$, hence take $x^0=1 \mod {\bf K}$.