## EEEN 474 Wireless Communication - Spring 2018

## **Reference Equations, Tables and Charts**

| Reference Equations, Tables and Charts                                                                        |                                                         |              |                                                                                                     |                 |  |  |  |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------|-----------------|--|--|--|
| $N = i^2 + ij + j^2$                                                                                          |                                                         | C = MS = MkN |                                                                                                     | $Q = \sqrt{3N}$ |  |  |  |
|                                                                                                               |                                                         | TA = ITM     |                                                                                                     | \$ - Y 021      |  |  |  |
| $SIR = \frac{Q^n}{i_0}$                                                                                       | $A = UA_u = U\lambda H$                                 |              |                                                                                                     |                 |  |  |  |
|                                                                                                               | Pr[delay > t] = Pr[delay > 0] Pr[delay > t   delay > 0] |              |                                                                                                     |                 |  |  |  |
|                                                                                                               | = Pr[delay > 0] exp(-(C-A)t/H)                          |              |                                                                                                     |                 |  |  |  |
| $\lambda = \frac{c}{f}$                                                                                       | $d_f = \frac{2D^2}{\lambda}$ $d_f \gg D$                |              |                                                                                                     |                 |  |  |  |
| $c \approx 3 \cdot 10^8 m/s$ $\lambda$ $d_f \gg \lambda$                                                      |                                                         |              |                                                                                                     |                 |  |  |  |
| $PL(d)[dB] = P_t[dB] - P_r(d)[dB]$                                                                            |                                                         |              |                                                                                                     |                 |  |  |  |
| Friis free space equation: $P_r(d) = \frac{P_t G_t G_r \lambda^2}{(4\pi)^2 d^2 L}$                            |                                                         |              | $P_r(d)[dB] = P_r(d_0)[dB] + 20log(\frac{d_0}{d})$ $PL(d)[dB] = PL(d_0)[dB] + 20log(\frac{d}{d_0})$ |                 |  |  |  |
| Log-distance path loss model: $\overline{PL}(d)[dB] = \overline{PL}(d_0)[dB] + 10nlog(\frac{d}{d_0})$         |                                                         |              |                                                                                                     |                 |  |  |  |
| Log-normal shadowing:                                                                                         |                                                         |              |                                                                                                     |                 |  |  |  |
| $PL(d)[dB] = \overline{PL}(d)[dB] + X_{\sigma} = \overline{PL}(d_0)[dB] + 10nlog(\frac{d}{d_0}) + X_{\sigma}$ |                                                         |              |                                                                                                     |                 |  |  |  |
| $Pr[P_r(d) > \gamma] = Q(\frac{\gamma - \overline{P_r(d)}}{\sigma})$ (powers, $\gamma$ , $\sigma$ are in dB)  |                                                         |              |                                                                                                     |                 |  |  |  |
| $Q(z) = 1 - Q(-z) = \frac{1}{2}[1 - erf(\frac{z}{\sqrt{2}})]$                                                 |                                                         |              |                                                                                                     |                 |  |  |  |
| Link budget:                                                                                                  |                                                         |              |                                                                                                     |                 |  |  |  |
| $P_r[dBm] = P_t[dBm] + Gains[dB] - Losses[dB]$                                                                |                                                         |              |                                                                                                     |                 |  |  |  |
| Okumura model:                                                                                                |                                                         |              |                                                                                                     |                 |  |  |  |
| $L_{50}[dB] = L_F + A_{mu}(f, d) - G(h_{te}) - G(h_{re}) - G_{AREA}$                                          |                                                         |              |                                                                                                     |                 |  |  |  |

$$L_{50}[dB] = L_F + A_{mu}(f, d) - G(h_{te}) - G(h_{re}) - G_{AREA}$$

$$G(h_{te}) = 20\log(\frac{h_{te}}{200}) \qquad 1000 \text{ m} > h_{te} > 30 \text{ m}$$

$$G(h_{re}) = 10\log(\frac{h_{re}}{3}) \qquad h_{re} \le 3 \text{ m}$$

$$G(h_{re}) = 20\log(\frac{h_{re}}{3}) \qquad 10 \text{ m} > h_{re} > 3 \text{ m}$$

$$B_S = \frac{1}{T_S}$$

$$\sigma_{\tau} = \sqrt{\overline{\tau^2} - (\overline{\tau})^2}$$

$$B_C = \frac{1}{50\sigma_{\tau}} \quad \text{(Threshold is 0.9 correlation)}$$

$$\overline{\tau^2} = \frac{\sum_k P(\tau_k)\tau_k^2}{\sum_k P(\tau_k)}$$

$$B_C = \frac{1}{5\sigma_{\tau}} \quad \text{(Threshold is 0.5 correlation)}$$

$$B_S \ll B_C \quad B_S > B_C$$

$$T_S \gg \sigma_{\tau} \quad T_S < \sigma_{\tau}$$

$$T_S < 10\sigma_{\tau}$$

$$f_d = \frac{v}{\lambda} \cdot \cos\theta \quad B_D = f_d$$

$$T_C = \sqrt{\frac{9}{16\pi f_m^2}} \quad B_S < B_D$$

$$T_S \gg B_D$$

Table 3.2 Path Loss Exponents for Different Environments

| Environment                   | Path Loss Exponent, n |  |  |
|-------------------------------|-----------------------|--|--|
| Free space                    | 2                     |  |  |
| Urban area cellular radio     | 2.7 to 3.5            |  |  |
| Shadowed urban cellular radio | 3 to 5                |  |  |
| In building line-of-sight     | 1.6 to 1.8            |  |  |
| Obstructed in building        | 4 to 6                |  |  |
| Obstructed in factories       | 2 to 3                |  |  |



The Erlang B chart showing the probability of blocking as functions of the number of channels and traffic intensity in Erlangs.



Figure 2.7 The Erlang C chart showing the probability of a call being delayed as a function of the number of channels and traffic intensity in Erlangs.

Table D.2 Tabulation of the Error Function eff(z)

| z   | erf(z)  | z   | erf(z)  |
|-----|---------|-----|---------|
|     |         |     | 2.7(2)  |
| 0.1 | 0.11246 | 1.6 | 0.97635 |
| 0.2 | 0.22270 | 1.7 | 0.98379 |
| 0.3 | 0.32863 | 1.8 | 0.98909 |
| 0.4 | 0.42839 | 1.9 | 0.99279 |
| 0.5 | 0.52049 | 2.0 | 0.99532 |
| 0.6 | 0.60385 | 2.1 | 0.99702 |
| 0.7 | 0.67780 | 2.2 | 0.99814 |
| 0.8 | 0.74210 | 2.3 | 0.99885 |
| 0.9 | 0.79691 | 2.4 | 0.99931 |
| 1.0 | 0.84270 | 2.5 | 0.99959 |
| 1.1 | 0.88021 | 2.6 | 0.99976 |
| 1.2 | 0.91031 | 2.7 | 0.99987 |
| 1.3 | 0.93401 | 2.8 | 0.99993 |
| 1.4 | 0.95228 | 2.9 | 0.99996 |
| 1.5 | 0.96611 | 3.0 | 0.99998 |





