Laboratorio #7, Cálculo Diferencial Martes 5 de marzo 2019

Nombre y Apellidos:

Tema:	1	2	3	Total
Puntos:	50	30	20	100
Nota:				

1. Encuentre la derivada de cada una de las siguietnes funciones:

(a) (10 pts.)
$$f(x) = 3x^2 - 2\cos(x)$$

(b) (10 pts.)
$$g(x) = \sqrt{x} \sin(x)$$

(c) (10 pts.)
$$h(x) = \frac{\cot(t)}{e^t}$$

(d) (10 pts.)
$$i(x) = \frac{x}{2 - \tan(x)}$$

(e) (10 pts.)
$$j(x) = xe^x \csc(x)$$

2. Grafique las siguientes funciones en el intervalo $[0, 2\pi]$.

(a) (10 pts.)
$$f(x) = \cos\left(\frac{x}{3}\right) + 2$$

(b) (10 pts.)
$$k(x) = \tan\left(\frac{\pi}{2} - x\right)$$
 - 1

(c) (10 pts.)
$$u(x) = 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right) + 3$$

Utilice la identidad trigonomértica de doble ángulo $\sin 2x = 2 \sin x \cos x$

3. Una masa está sujeta a un resorte y alcanza su posición de equilibrio en (x=0). Su movimiento está dado por la función $x(t) = 10\cos(t)$ donde x está dado en centímetros y t es medido en segundos.

(a) (10 pts.) Encuentre la velocidad del resorte en
$$t=0,\,t=\frac{\pi}{3}$$
 y en $t=\frac{3\pi}{4}$.

(b) (10 pts.) Encuentre la aceleración de la masa cuando
$$t=0,\,t=\frac{\pi}{3}$$
 y en $t=\frac{3\pi}{4}$.

