

ARBOR AN INTRODUCTION

June 2024 \mid H. Lu, **T. Hater** \mid SDL Neuroscience \mid Forschungszentrum Jülich

Zooming In

From Points to Dendrites

Def.: Point

The (adult) human eye has a resolution of roughly $30\mu m$.

Thus going from a point to a typical neuron — a pyramidal cell — with dimensions of $10\mu m$ (soma) – $1\mu m$ (axon), we need to magnify by $3-30\times$.

At this level, we can model the electrical processes within a cell and resolve the distribution of dynamics across the cell's surface.

Cells will still communicate using action potentials.

^=arbor≡

- Design goals:
 Usability, performance portability, and strong separation of concerns.
- Made to exploit Multicore, SIMD, and GPU
- Scales extremely well: 768 nodes × 4 A100 on JUWELS booster. 70 Million cells.
- HPB since 2016 by CSCS and FZJ
- C++17 and Python3
- Linux and MacOS
- FOSS with a permissive BSD3 license
- Modern dev cycle in the open:
 Git, Code Review, CI, tests, sanitizers, ...

The Bio-Physical Model

Consider a cell as a bi-lipid membrane suffused with ion channels, gating proteins, separating charged solutions of ions.

$$\frac{1}{C_m} \partial_t \mathbf{U_m} = \partial_x \left(\frac{1}{R_l} \partial_x \mathbf{U_m} \right) + I_m$$

- C_m : Membrane capacitance.
- *I_m*: Transmembrane current.
- *U_m*: Membrane potential.
- R_l: axial resistance.

The interplay of ion channels, in particular their dependence on the the membrane potential, creates action potentials and dynamics of the cells.

Performance

