Reliable Data

Why reliable data matters

- Engineering decisions are only as good as the data behind them
- Unreliable data = unsafe designs, wasted costs, poor performance
- Reliable data ensures:
 - Safety critical in aerospace, automotive, medical devices.
 - Quality products meet specifications and standards.
 - Efficiency reduces rework, delays, and resource waste.

Example of where unreliable data went wrong

- The challenger disaster happened on the 28th of January 1986
- The shuttle broke apart 73 seconds after launch, killing all 7 crew
- The O-rings became brittle and failed to seal properly in the unusually cold launch conditions (~2 °C)
- **Problem with data:** Most tests were at warmer temperatures. The limited cold-weather data already showed problems but was judged "not conclusive."
- NASA proceeded with the launch despite engineers warning of the risk.

Key Terms

Accuracy

- Closeness of a measurement to the true or accepted value.
- Example: A micrometre giving 10.00 mm when the part is actually 10.00 mm.

Precision

- How consistent repeated measurements are with each other.
- Example: Five readings of 9.98 mm, 9.99 mm, 9.97 mm close together, but maybe not accurate.

Reliability

- Confidence that results are repeatable and consistent under the same conditions.
- Combines accuracy and precision.

Validity

- Whether the test measures what it is supposed to measure.
- Example: Using a voltmeter to measure resistance is not valid.

Accuracy vs Precision

Accuracy

- How close a measurement is to the true value.
- Example: A voltmeter reads 5.01 V when the actual value is 5.00 V \rightarrow accurate.

Precision

- How close repeated measurements are to each other.
- Example: Three readings of 4.85 V, 4.86 V, 4.85 V \rightarrow precise.

Key Difference

- Accuracy = correctness
- Precision = consistency
- Reliable data needs both.

Human Error

Definition

 Mistakes made by the experimenter during measurement, observation, or recording.

- Misreading an analogue scale (parallax error).
- Incorrectly recording values in a logbook or spreadsheet.
- Using the wrong unit or conversion (e.g. inches instead of millimetres).
- Inconsistent use of measuring technique between operators.

Human Error

Impact on Reliability

- Introduces random variation between repeated measurements.
- Can reduce both precision and accuracy of results.

Reducing Human Error

- Use digital instruments where possible.
- Provide clear training and measurement procedures.
- Double-check readings and data entries.
- Automate data logging to reduce manual recording.

Instrument Error

Definition

 Errors caused by the limitations, faults, or calibration of measuring equipment.

- A micrometre that is not zeroed correctly.
- A voltmeter drifting due to low battery or calibration issues.
- A digital sensor with limited resolution (e.g. only reads to 0.1 V).
- Wear and tear on tools (e.g. dull calipers, stretched tape measures).

Instrument Error

Impact on Reliability

- Can cause systematic errors (all results shifted the same way).
- May reduce accuracy even if results are precise.

Reducing Instrument Error

- Regular calibration against standards.
- Use the appropriate instrument for the measurement range.
- Maintain equipment properly.
- Cross-check with a second instrument where possible.

Environmental Error

Definition

 Errors caused by external conditions in the testing or measurement environment.

- Temperature changes causing metal expansion/contraction during measurement.
- Vibrations affecting sensitive instruments (e.g. strain gauges, balances).
- Humidity or dust interfering with electronic sensors.
- Air currents disturbing scales or delicate setups.

Environmental Error

Impact on Reliability

- Can introduce random variations or systematic shifts.
- Makes repeated measurements less consistent.

Reducing Environmental Error

- Carry out tests in controlled conditions (labs, insulated enclosures).
- Allow instruments to stabilise before use.
- Use shielding or damping to reduce vibration and interference.
- Record environmental conditions alongside data for context.

Bias

Definition

 When results are skewed by preference, expectation, or selective reporting, rather than true measurement.

- Choosing only data that supports a design or hypothesis.
- Rounding results to "fit" expected values.
- Operator unconsciously influencing results (e.g. applying extra force to match a target reading).
- Ignoring outliers without valid justification.

Bias

Impact on Reliability

- Creates systematic distortion of results.
- Makes data appear more reliable than it actually is.
- Undermines trust in engineering decisions.

Reducing Bias

- Use blind testing where possible.
- Apply consistent procedures and standards.
- Ensure independent verification of results.
- Report all data, including anomalies.

Improving Reliability of Data

Repeat Measurements

Take multiple readings and calculate an average.

Calibration

Regularly check and adjust instruments against known standards.

Control Variables

Keep conditions consistent (temperature, operator, method).

Appropriate Equipment

Use the right tool for the level of accuracy needed.

Independent Verification

Have results checked or repeated by others.

Automated Recording

Use digital logging to reduce manual errors.