КДЗ 4 по Дискретной Математике

Татаринов Никита, БПИ196

2020 май, 15

Задача №1

A - некое множество, $R \subseteq A^2$ - некое бинарное отношение на этом множжестве A. Для решения задачи выпишем ряд определений.

R рефлексивно тогда и только тогда, когда $\forall x \in A \quad xRx$, и антирефлексивно тогда и только тогда, когда $\forall x \in A \quad \neg (xRx)$.

R симметрично тогда и только тогда, когда $\forall x, y \in A \quad xRy \Rightarrow yRx$, и антисимметрично тогда и только тогда, когда $\forall x, y \in A \quad xRy \land yRx \Rightarrow x = y$.

R транзитивно тогда и только тогда, когда $\forall x,y,z \in A \quad (xRy \land yRz) \Rightarrow xRz$, и антитранзитивно если $\forall x,y,z \in A \quad (xRy \land yRz) \Rightarrow \neg (xRz)$.

Замечание (1.1). Нерефлексивность не то же самое, что антирефлексивность! R нерефлексивно тогда и только тогда, когда $\neg \forall x \in A$ xRx (т.е. антирефлексивность - частный случай нерефлексивности). Аналогично и для несимметричности, нетранзитивности.

Теперь вернёмся к решению задачи. Необходимо привести пример для A и R, таких что R:

- а) рефлексивно, симметрично, не транзитивно. Пусть $A = \{1,2,3\}$, $R = \{(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1)\}$. Тогда явно видно, что R рефлексивно и симметрично. Проверим нетранзитивность. Для тройки чисел x = 1, y = 1, z = 1 транзитивность выполняется (1R1, 1R1, 1R1), а для тройки чисел x = 2, y = 1, z = 3 не выполняется $(2R1, 1R3, \neg(2R3))$, значит, нетразитивность выполняется, чтд.
- б) антисимметрично, транзитивно, не рефлексивно. Пусть $A = \{1,2,3\},\ R = \{(1,2),(2,3),(3,1)\}$. Тогда явно видно, что R не рефлексивно и антисимметрично (более того, R антирефлексивно, но это, как было сказано ранее, частный случай нерефлексивности), причём данные 3 пары чисел зациклены по круг, то есть транзитивны, значит, и R транзитивно, чтд.
- в) симметрично, транзитивно, не рефлексивно. Пусть $A = \{1,2\},\ R = \{(1,1)\}$. Тогда, явно видно, что R симметрично, транзитивно и не рефлексивно, чтд.

Omeem:

- a) $A = \{1, 2, 3\}, R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (1, 3), (3, 1)\};$
- 6) $A = \{1, 2, 3\}, R = \{(1, 2), (2, 3), (3, 1)\};$
- B) $A = \{1, 2\}, R = \{(1, 1)\}.$

Задача №2

P и Q антирефлексивны, то есть, $\forall x$ из множества, на котором заданы данные бинарные отношения (пусть A), выполняется $\neg(xPx)$ и $\neg(xQx)$.

1. $P \cup Q = \{(x,y) \mid x \in A \mid xPy \lor xQy\}$, т.е. $P \cup Q$ не может содержать такие $x \in A$, что $x(P \cup Q)x$, так как P и Q не содержат таких пар.

- 2. $P \cap Q = \{(x,y) \mid x \in A \mid xPy \wedge xQy\}$, т.е. $P \cap Q$ не может содержать такие $x \in A$, что $x(P \cap Q)x$, так как P и Q не содержат таких пар.
- 3. $P^{-1} = \{(x,y) \mid x \in A \mid y \in A \mid y \in A \mid y \in A \}$, т.е. P^{-1} не может содержать такие $x \in A$, что $x(P^{-1})x$, так как P не содержит таких пар.

Задача №3

Необходимо доказать, что \forall ч.у.м. $\mathcal{A} = (A, \leqslant)$ найдётся множество $S \subseteq \mathcal{P}(A)$, такое что $\mathcal{A} \cong (S, \subseteq)$.

Пусть $\varphi(a \in A) = \{b \in A \mid b \leqslant a\}$ вспомогательное множество. Во-первых, заметим, что $\varphi(a) \in \mathcal{P}(A)$, т.е. $\{\varphi(a)a \in A\} \subseteq \mathcal{P}(A)$. Во-вторых, докажем, что $\{\varphi(a) \ \forall a \in A\}$ - пример искомного S.

Докажем, что $f:(a\in A)\to \varphi(a)$ - биекция.

- 1. Докажем, что f суръекция. $\varphi(a)$ всегда задаётся через a, т.е. $\forall \varphi(a) = a$ всегда прообраз, т.е. f суръекция, чтд.
- 2. Докажем, что f инъекция. Рассмотрим $a_1,a_2\in A:a_1\neq a_2$. Заметим, что $\varphi(a_1)\ni a_1,\varphi(a_2)\ni a_2$. Значит, $\varphi(a_1)\neq \varphi(a_2)$, т.е. f инъекция, чтд.

Значит, f - биекция. Тогда, $\{\varphi(a) \mid \forall a \in A\}$ действительно является примером для S, чтд.

Задача №4

Дано ч.у.м. ($\mathcal{P}(\mathbb{N})$, ⊆). Необходимо найти непустую цепь, в которой нет ни минимального, ни максимального элемента.

Возьмём множество нечётных чисел $\{n \in \mathbb{N} \mid n \equiv 1 \pmod{2}\}$ (обозначим за A).

Тогда $\{ ... A \setminus \{1,3,5,...,2n+1\} ... A \setminus \{1,3\}, A \setminus \{1\}, A, A \cup \{0\}, A \cup \{0,2\}, ... A \cup \{0,2,4...2n\} ... \}$ - искомая цепь, так как все элементы данного множества принадлежат $\mathcal{P}(\mathbb{N})$ и каждый элемент является подмножеством всех последующих, что говорит, во-первых, о сравнимости всех элементов по операции \subseteq , а во-вторых, об отсутствии минимального и максимального элемента (так как множество уходит на бесконечность в обе стороны).

Ответ: { ... $A \setminus \{1,3,5, \dots, 2n+1\}$... $A \setminus \{1,3\}$, $A \setminus \{1\}$, A, $A \cup \{0\}$, $A \cup \{0,2\}$, ... $A \cup \{0,2,4\dots 2n\}$... }, где A - множество нечётных чисел.

Задача №5

A - некоторое конечное множество, A = (A, <) - ч.у.м., $max_{<} A = \{x\}$. Необходимо доказать, что элемент x - наибольший в A.

Задача №6

Необходимо явно определить какой-либо линейный порядок на \mathbb{R}^2 . Тогда, зададим линейный порядок $\mathcal{A}=(\mathbb{R}^2,\preccurlyeq)$, в котором $\forall (x_1,y_1),(x_2,y_2)\in\mathbb{R}^2 \quad ((x_1,y_1)\preccurlyeq$

 $(x_2,y_2))\Leftrightarrow (x_1+y_1\leqslant x_2+y_2)$. В таком случая, операция сравнения \prec определена для любых пар из \mathbb{R}^2 , т.е. мы нашли пример линейного порядка.

Ombem: $A = (\mathbb{R}^2, \preccurlyeq): \forall (x_1, y_1), (x_2, y_2) \in \mathbb{R}^2 \quad ((x_1, y_1) \preccurlyeq (x_2, y_2)) \Leftrightarrow (x_1 + y_1 \leqslant x_2 + y_2).$

Задача №7

Задача №8

S - бинарное отношение на множестве \mathbb{N}^2 , обладающее свойством $(a,b)S(c,d)\Leftrightarrow ((ad=bc)\land (b\neq 0\neq d)\lor (a=c)\land (b=0=d)), \quad (a,b),(c,d)\in \mathbb{N}^2$. Требуется проверить, является ли S отношением эквивалентности.

Отношение эквивалентности - рефлексивное симметрично транзитивное бинарное отношение. Вспомним определения из задачи №1 и проверим данные свойства.

- 1. Проверим рефлексивность, рассмотрев (a,b)S(a,b) $\forall (a,b) \in \mathbb{N}^2$. $(a,b)S(a,b \Leftrightarrow ((ab=ba) \land (b \neq 0 \neq b) \lor (a=a) \land (b=0=b)) \Leftrightarrow (b \neq 0) \lor (b=0)$, что всегда является верным, то есть рефлексивность выполняется.
- 2. Проверим симметричность, рассмотрев произвольный элемент (a,b)S(c,d). $(a,b)S(c,d)\Leftrightarrow ((ad=bc)\wedge(b\neq0\neq d)\vee(a=c)\wedge(b=0=d))$, при этом $(c,d)S(a,b)\Leftrightarrow ((cb=da)\wedge(d\neq0\neq b)\vee(c=a)\wedge(d=0=b))$, что является тем же самым, что и (a,b)S(c,d), то есть симметричность выполняется.
- 3. Проверим транзитивность, рассмотрев произвольные элементы (a,b)S(c,d) и (c,d)S(e,f) (если такие существуют одновременно в S; если не существуют транзитивность гарантированно выполняется). $(a,b)S(c,d) \Leftrightarrow ((ad=bc) \land (b \neq 0 \neq d) \lor (a=c) \land (b=0=d))$. $(c,d)S(e,f) \Leftrightarrow ((cf=de) \land (d \neq 0 \neq f) \lor (c=e) \land (d=0=f))$. Тогда, $(a,b)S(c,d)\land (c,d)S(e,f) \Leftrightarrow (((ad=bc)\land (b \neq 0 \neq d) \lor (a=c)\land (b=0=d))\land ((cf=de) \land (d \neq 0 \neq f) \lor (c=e) \land (d=0=f))) \Leftrightarrow ((ad=bc) \land (b \neq 0 \neq d) \land (cf=de) \land (d \neq 0 \neq f) \lor (ad=bc) \land (b \neq 0 \neq d) \land (c=e) \land (d=0=f)) \Leftrightarrow ((ad=bc) \land (b=0=d) \land (cf=de) \land (d \neq 0 \neq f) \lor (a=c) \land (b=0=d) \land (c=e) \land (d=0=f)) \Leftrightarrow ((ad=bc) \land (cf=de) \land (d \neq 0 \neq f) \lor (a=c) \land (b=0=d) \land (cf=de) \land (b \neq 0 \neq d \neq f) \lor (a=c=e) \land (b=0=d=f))$. При этом $(a,b)S(e,f) \Leftrightarrow ((af=be) \land (b \neq 0 \neq f) \lor (a=e) \land (b=0=f))$. Заметим, что: из $(ad=bc)\land (cf=de)$ следует $ad \cdot cf=bc \cdot de$, т.е. af=be; из $(b \neq 0 \neq d \neq f)$ следует $b \neq 0 \neq f$; из (a=c=e) следует (a=e); из (a=c)0 следует (a=c)1. Значит, $(a,b)S(c,d) \land (c,d)S(e,f) \Rightarrow (a,b)S(e,f)$ 1, то есть транзитивность выполняется.

Таким образом, все 3 свойства выполняются, то есть S является отношением эквивалентности. Omeem: да, верно.

Задача №9

R - некоторое бинарное отношение на некоем множестве A. Необходимо определить, когда R является одновременно частичным порядком и отношением эквивалентности. Вспомним определения.

Частичный порядок - рефлективное транзитивное антисимметричное бинарное отношение.

Отношение эквивалентности - рефлексивное симметрично транзитивное бинарное отношение. Различия заключаются только в симметричности и антисимметричности. Переделаем определения, данные в задаче №1, и запишем их словами.

Если бинарное отношение симметрично, то элементы xRy, где x=y, всегда могут принадлежать подмножеству, а элементы xRy могут принадлежать подмножеству, только если yRx. Если бинарное отношение антисимметрично, то элементы xRy, где x=y, всегда могут принадлежать подмножеству, а элементы xRy могут принадлежать подмножеству, только если $\neg (yRx)$.

Условия yRx и $\neg(yRx)$ не могут выполняться одновременно, значит, R может одновременно являться частичным порядком и отношением эквивалентности тогда и только тогда, когда R состоит из элементов вида xRx.

Ответ: когда R состоит из элементов вида $xRx, x \in A$.

Задача №10

E - бинарное отношение на множестве $\underline{2}^{\mathbb{N}}$. Каждый элемент в E (являющийся функцией из \mathbb{N} в $\underline{2}$) представим в виде последовательности из 0 и 1, i-й элемент которой отражает, во что отражается натуральное число i, причём $fEg \Leftrightarrow f=g \circ \sigma$, где $\sigma: \mathbb{N} \to \mathbb{N}$ - некоторая биекция (то есть f - некоторая перестановка g). Необходимо доказать, что:

- а) E отношение эквивалентности. Для этого, воспользовавшись определением из предыдущих задач, проверим свойства рефлексивности, симметричности и транзитивности. $fEf \quad \forall f \in 2^{\mathbb{N}}$, так всегда существует $\sigma = id$, т.е. рефлексивность выполняется. $fEg \Leftrightarrow f = g \circ \sigma$. При этом, $f = g \circ \sigma \Rightarrow g = f \circ \sigma^{-1}$, значит, $fEg \Rightarrow gEf$, т.е. симметричность выполняется. $(fEg \wedge gEh) \Leftrightarrow (f = g \circ \sigma_1 \wedge g = h \circ \sigma_2)$. При этом, $(f = g \circ \sigma_1 \wedge g = h \circ \sigma_2) \Rightarrow (f = h \circ \sigma_2 \circ \sigma_1) \Rightarrow (\exists \sigma_3 = \sigma_2 \circ \sigma_1 : f = h \circ \sigma_3)$, т.е. $(fEg \wedge gEh) \Leftrightarrow fEh$, т.е. транзитивность выполняется. Таким образом, все 3 свойства выполняются, то есть E отношение эквивалентности, чтд.
- 6) $2^{\mathbb{N}}/E$ счётно. $2^{\mathbb{N}}/E$ множество классов эквивалентности. Так как все последовательности, между которыми есть некоторая биекция σ , эквивалентны (по определению же), они и образуют классы эквивалентности (так как $fEg \Leftrightarrow f = g \circ \sigma$, то есть $\neg (fEg) \Leftrightarrow \nexists \sigma : f = g \circ \sigma$). Значит, класс эквивалентности определяется количеством нулей и единиц в последовательности, что равнозначно определяется просто количеством нулей или единиц. Тогда, класс эквивалентности равномощен $\mathbb{N} \cup \{0\}$, так как количество 0 в последовательности натуральное число или 0. Значит, $2^{\mathbb{N}}/E$ счётно, чтд.