Social Media Metadata as Sociolinguistic Evidence

Jacob Eisenstein @jacobeisenstein

Georgia Institute of Technology

March 9, 2016

Social media

- A diverse array of communicative platforms
 - Mostly text

Mia Matthias @miamatthias - 25 Oct 2015 Everyone I've ever cited is here #NWAV44 #undergrad

99 10

- Largely informal
- Several platforms support large-scale data acquisition

- Scale
- Variation and change
- Metadata

Scale: quantification of rare phenomena

(From Jack Grieve at NWAV44)

Scale: discovery of new variables

lbvs: laughing but very serious

- ▶ i wanna rent a hotel room just to swim lbvs
- ▶ tell ur momma 2 buy me a car lbvs

- Scale
- Variation and change
- Metadata

- Scale
- Variation and change
- Metadata

Change: Emerging norms

- In social media, writing is being used in new, speech-like contexts.
- It is constantly acquiring new affordances for paralinguistic communication:
 - from the linguistic creativity of individual users...
 - ... and from the platforms themselves.
- These affordances are highly contested! (?)

Change: Emojis versus emoticons

Does the introduction of predefined *emoji* symbols replace the functions of nonstandard orthography, such as emoticons? (?)

Change: Emojis versus emoticons

Does the introduction of predefined *emoji* symbols replace the functions of nonstandard orthography, such as emoticons? (?)

?: Emojis crowd out emoticons...

Change: Emojis versus emoticons

Does the introduction of predefined *emoji* symbols replace the functions of nonstandard orthography, such as emoticons? (?)

?: Emojis crowd out emoticons...

... and encourage more standard spellings!

- Scale
- Variation and change
- Metadata

- Scale
- Variation and change
- Metadata
 - Social media often includes sociolinguistically relevant metadata:
 - social networks
 - demographics

- Scale
- Variation and change
- Metadata
 - Social media often includes sociolinguistically relevant metadata:
 - social networks
 - demographics

Social networks in sociolinguistics

- Reveal the microstructure of language change (??).
- Modulate the influence of demographic categories (?).
- Define local communities of linguistic practice (?).

Social networks in social media

Social media platforms offer a number of forms of metadata that capture social networks.

Articulated network Explicitly-defined connections; undirected in Facebook, directed in Twitter.

Behavioral network Inferred from conversational interactions, such as replies or mentions.

(?)

Social networks on Twitter

- Twitter users often follow 1000s of other users.
- Mention networks are smaller, and arguably more socially meaningful.
- Twitter query rate limiting makes mention network much easier to obtain.

(?)

Case study 1: Online audience design

Do social media users modulate the standardness of their language according to the audience?

- Social media services offer digital affordances to control the likely audience for a message.
- ► The connection between language variation and these affordances can reveal the social meaning of each.
- ► Geographical variables (like lbvs) that are reserved for more local audiences may be more stable.

Addressed

Logistic regression

- ▶ Dependent variable: does the tweet contain a non-standard, geographically-specific word (e.g., lbvs, hella, jawn)
- Predictors
 - ▶ **Message type**: broadcast, addressed, #-initial
 - Controls: message length, author statistics

Small audience \rightarrow less standard language

Distinguishing local ties

To distinguish **local** audiences:

- Use GPS metadata to identify author locations
- Associate metro m with user u if u is @-mentioned by:
 - at least three users within metro m;
 - nobody outside metro m.

Distinguishing local ties

To distinguish **local** audiences:

- Use GPS metadata to identify author locations
- Associate metro m with user u if u is @-mentioned by:
 - at least three users within metro m;
 - nobody outside metro m.

The social network lets us impute the locations of unknown users from the 1-2% of users who reveal their GPS! (?)

Local audience → less standard language

Local ties make non-standard language even more likely.

Local audience → less standard language

- Scale
- Variation and change
- Metadata
 - Social media often includes sociolinguistically relevant metadata:
 - social networks
 - demographics

- Scale
- Variation and change
- Metadata
 - Social media often includes sociolinguistically relevant metadata:
 - social networks
 - demographics

Demographics in social media

	2013	2014
All internet users	18%	23%*
Men	17	24*
Women	18	21
White, Non-Hispanic	16	21 *
Black, Non-Hispanic	29	27
Hispanic	16	25
18-29	31	37
30-49	19	25
50-64	9	12
65+	5	10*
High school grad or less	17	16
Some college	18	24
College+ (n= 685)	18	30*
Less than \$30,000/yr	17	20
\$30,000-\$49,999	18	21
\$50,000-\$74,999	15	27*
\$75,000+	19	27*
Urban	18	25*
Suburban	19	23
Rural	11	17

Demographics in social media

Women Are More Likely to Use Pinterest, Facebook and Instagram, While Online Forums Are Popular Among Men

% of online adults by gender who use the following social media and discussion sites

Pew Research Center surveys conducted March 17-April 12, 2015.

PEW RESEARCH CENTER

Demographics from geography

- The U.S. Census collects detailed demographics for multiple levels of geographic detail.
- For each geotagged message, treat the average census demographics as a predictor.
- Possible objections:
 - Census regions are too demographically heterogeneous.
 - People move around too much.
 - Social media users are not a representative sample of their census region.

Case study 2: Dialect in writing

Some non-standard spellings hint at dialectal pronunciations:

How do the demographic properties of these spellings align with the demographics of the associated pronunciations? (?)

G-deletion

	Log odds	%	N
Verb	.227	.200	89,173
Noun	013	.083	18,756
Adjective	213	.149	4,964
monosyllable	-2.57	.001	108,804

Total	.178	112,893
-------	------	---------

("high"/"low" = top/bottom quartile)

G-deletion

	Log odds	%	N
Verb	.227	.200	89,173
Noun	013	.083	18,756
Adjective	213	.149	4,964
monosyllable	-2.57	.001	108,804
High Euro-Am county	194	.117	28,017
High Afro-Am county	.145	.241	27,022
High pop density county Low pop density county	.055	.228	27,773
	017	.144	28,228
Total		.178	112,893

("high"/"low" = top/bottom quartile)

-t,-d deletion

	Weight	Log odds	%	N
Vowel succeeding context	.483	066	.385	9,004

Total .423 89,174

-t,-d deletion

	Weight	Log odds	%	N
Vowel succeeding context	.483	066	.385	9,004
@-message	.519	.075	.436	35,240

,174
9

-t,-d deletion

	Weight	Log odds	%	N
Vowel succeeding context	.483	066	.385	9,004
@-message	.519	.075	.436	35,240
High Euro-Am county High Afro-Am county	.422 .516	313 .065	.311 .508	19,992 19,854
High income county Medium income county Low income county	.473 .495 .532	107 .019 .127	.388 .406 .482	20,653 43,135 25,386
Total			.423	89,174

Dialect in writing

- Both non-standard spellings are...
 - less frequent in counties with many European Americans;
 - more frequent in counties with many African Americans.
- (ing) is more frequent in urban counties.
- ► (-t,-d) is more frequent in low-income counties.

Dialect in writing

- Both non-standard spellings are...
 - less frequent in counties with many European Americans;
 - more frequent in counties with many African Americans.
- (ing) is more frequent in urban counties.
- (-t,-d) is more frequent in low-income counties.

Next questions:

- ▶ Do these observations generalize to the writers themselves?
- Does linguistic systematicity vary with demographics? (?)

Why you should care about social media

- Scale
- Variation and change
- Metadata
 - Social media often includes sociolinguistically relevant metadata:
 - social networks
 - demographics

Why you should care about social media

- Scale
- Variation and change
- Metadata
 - Social media often includes sociolinguistically relevant metadata:
 - social networks
 - demographics

Case study 3: gender and social networks

We started with a painfully simple idea: train a classifier to predict author gender from language and social network features (?)

- Prior work shows that text predicts author gender (?)
- Social networks are often assortative with respect to gender (?).
- Can we build a better classifier by putting these two features together?

Data

14,464 Twitter users from 2011 (56% male)

- geolocation in USA
- must use 50 of 1000 most frequent words
- no more than 1000 follow connections

In total: 9.2M tweets, from January to June 2011

Demographics from names

The U.S. Social Security Administration collects yearly statistics on given names and gender.

$$P(\text{age}, \text{gender} \mid \text{name}) = \frac{\text{count}(\text{age}, \text{gender}, \text{name})}{\text{count}(\text{name})}$$

Demographics from names

- Limited to names that occur at least 1000 times in the Census data.
 - \sim 9,000 names in total
 - ► Most infrequent: Cherylann, Kailin, Zeno
- ► The median author's name is 99.6% homogeneous by gender.
- ▶ 95% of all authors have a name that is at least 85% associated with one gender.

Social network

Behavioral network induced from **mutual** @-mentions

- Mentions must occur over a period of at least two weeks.
- Moderate gender assortativity:
 - Women have 58% female friends.
 - Men have 67% male friends.

Automatic classification

Logistic regression from bag-of-words features gives 88% accuracy.

- ▶ This is similar to prior work (??).
- Will social network homophily help fix the remaining errors?

Adding social network features

Logistic regression, 10-fold cross-validation:

► Text alone: 88% accuracy

Adding social network features

Logistic regression, 10-fold cross-validation:

- Text alone: 88% accuracy
- ► Text+network: 88% accurate

Adding social network features

Logistic regression, 10-fold cross-validation:

Text alone: 88% accuracy

► Text+network: 88% accurate

With ≥ 1000 words per author, adding network info does not improve accuracy. Why not?

female authors

classifier confidence male decile

male authors

classifier confidence male decile

Why social network features don't help

	text vs network correlation
female authors male authors	$0.38 \ (.35 \le r \le .40)$ $0.33 \ (.30 \le r \le .36)$

Why social network features don't help

	text vs network correlation
female authors male authors	$0.38 \ (.35 \le r \le .40)$ $0.33 \ (.30 \le r \le .36)$

- ► Language and social network are correlated even after controlling for author gender.
- Rather than seeing linguistic features as revealing the author's gender, they reveal an attitude towards gender.

Summary of case studies

1. Audience design on the Twitter social network

2. Demographic profiles of spelling variables

3. Linking language, gender, and social networks