SOLUTION FOR HOMEWORK ASSIGNMENT NO. 09

Nils Hoyer, Maurice Morgenthaler

Exercise 9.1

In this exercise we have to do a simple hypothesis testing on our own. The test statistic to use is defined by the Neyman-Pearson lemma,

$$\Lambda\left(\left\{x\right\}\right) = \frac{\mathcal{L}\left(\left\{x\right\} \mid H_{1}\right)}{\mathcal{L}\left(\left\{x\right\} \mid H_{0}\right)} \tag{1}$$

where $\{x\}$ stands for the data set, H_0 for the hypothesis for background-only signal and H_1 for the background+signal hypothesis.

The theory predicts the following parameters:

The particle mass of 751 GeV, a peak-width of 30 GeV, an exponential background $e^{-a \cdot x}$ with $a = 1 \times 10^{-3} \, \text{GeV}^{-1}$ and an production rate of 3 signal events for 10 background events.

First, we generate Monte Carlo data. As said before we use an exponential function for the background and an exponential function plus a gaussian function for background and signal

$$f_{\text{bkg}} = A_{\text{bkg}} \cdot \exp(-a \cdot x) \tag{2}$$

$$f_{\text{sig}} = A_{\text{sig}} \cdot \exp\left(\frac{(x-\mu)^2}{\sigma}\right)$$
 (3)

with the amplitudes $A_{\rm bkg}$ and $A_{\rm sig}$. We generate 1000 times 1×10^5 datapoints for the *background-only* and the *background+signal* hypothesis. You can find a visualisation of the first iteration of datapoints in figure 1.

Figure 1: Visualisation of datapoints for the background-only (blue, dashed) and background+signal (orange, filled) hypothesis. Each histogram contains 1×10^5 data points.

Next, we calculate the test statistic Λ for every iteration. The histograms for H_0 and H_1 can be found in figure 1.