République Tunisienne

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

> Concours Nationaux d'Entrée aux Cycles de Formation d'Ingénieurs Session 2019

المناظرات الوطنية للدخول إلى مراحل تكوين المهندسين دورة 2019

Concours Mathématiques et Physique Corrigé de l'épreuve de Mathématiques II

I.1.1. $S_n(\mathbb{R})$ est le noyau de l'endomorphisme $M \longmapsto M - {}^tM$ et $\mathcal{A}_n(\mathbb{R})$ est le noyau de l'endomorphisme $M \longmapsto M + {}^tM$ donc $S_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont des sous-espaces vectoriels de $\mathcal{M}_n(\mathbb{R})$. Soit $A \in S_n(\mathbb{R}) \cap \mathcal{A}_n(\mathbb{R})$. On a $A = {}^tA = -A$ donc A = 0. On a :

$$orall M \in \mathcal{M}_n(\mathbb{R})$$
 , $M = rac{M + {}^t M}{2} + rac{M - {}^t M}{2}$.

 $\text{Mais } \frac{M+\,{}^t\!M}{2}\in\mathcal{S}_n(\mathbb{R}) \text{ et } \frac{M-\,{}^t\!M}{2}\in\mathcal{A}_n(\mathbb{R}) \text{ donc } \mathcal{M}_n(\mathbb{R})=\mathcal{S}_n(\mathbb{R})\oplus\mathcal{A}_n(\mathbb{R}).$

I.1.2. Soient $A, B \in \mathcal{M}_n(\mathbb{R})$. On a $\langle A, B \rangle = Tr({}^t A B) = Tr({}^t ({}^t A B)) = Tr({}^t B A) = \langle B, A \rangle$. Soient $A_1, A_2, B \in \mathcal{M}_n(\mathbb{R})$ et $\alpha \in \mathbb{R}$. On a

$$\langle \alpha A_1 + A_2, B \rangle = Tr({}^t(\alpha A_1 + A_2)B) = Tr((\alpha {}^tA_1 + {}^tA_2)B) = \alpha Tr({}^tA_1B) + Tr({}^tA_2B) = \alpha \langle A_1, B \rangle + \langle A_2, B \rangle.$$

Soit $A \in \mathcal{M}_n(\mathbb{R})$. On note C_{ij} les coefficients de la matrice ${}^t\!AA$. Pour tout $1 \le i \le n$, on a

$$C_{ii} = \sum_{j=1}^{n} {}^{t}A_{ij}A_{ji} = \sum_{j=1}^{n} A_{ji}^{2}. \text{ Ainsi } \langle A, A \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ji}^{2} \geq 0 \text{ et } \langle A, A \rangle = 0 \Leftrightarrow A = 0. \text{ Alors, } \langle ., . \rangle \text{ est un}$$

produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.

I.1.3. Soit $A \in \mathcal{S}_n(\mathbb{R})$. Pour tout $B \in \mathcal{A}_n(\mathbb{R})$,

$$\langle A,B\rangle = Tr(AB) = Tr({}^t(AB)) = Tr({}^tB{}^tA) = -Tr(BA) = -Tr(AB) = -\langle A,B\rangle$$
.

Alors, $\langle A, B \rangle = 0$ et par suite, $S_n(\mathbb{R}) \subset A_n(\mathbb{R})^{\perp}$.

Mais $\dim \mathcal{S}_n(\mathbb{R}) = \dim \mathcal{M}_n(\mathbb{R}) - \dim \mathcal{A}_n(\mathbb{R}) = \dim \mathcal{A}_n(\mathbb{R})^{\perp} \operatorname{donc} \mathcal{S}_n(\mathbb{R}) = \mathcal{A}_n(\mathbb{R})^{\perp}.$

I.2.1. $I_n \in \mathcal{O}_n(\mathbb{R})$ et si $U \in \mathcal{O}_n(\mathbb{R})$ alors U est inversible et $U^{-1} = {}^tU$. Soit $(U_1, U_2) \in \mathcal{O}_n(\mathbb{R})^2$. On a ${}^t(U_1U_2^{-1})(U_1U_2^{-1}) = U_2{}^tU_1U_1{}^tU_2 = U_2{}^tU_2 = I_n$ donc $U_1U_2^{-1} \in \mathcal{O}_n(\mathbb{R})$.

Par conséquent, $\mathcal{O}_n(\mathbb{R})$ est un sous-groupe de $\mathcal{GL}_n(\mathbb{R})$.

I.2.2. Puisque $U \in \mathcal{O}_n(\mathbb{R})$, les colonnes de U sont des vecteurs unitaires dans \mathbb{R}^n . Ainsi, pour tout $j \in \{1,2,\ldots,n\}$ on a $\sum_{i=1}^n U_{ij}^2 = 1$ donc pour tous $i,j \in \{1,2,\ldots,n\}$, $|U_{ij}| \leq 1$.

I.2.3. Pour tout $U \in \mathcal{O}_n(\mathbb{R})$, $\sup_{1 \leq i,j \leq n} |U_{ij}| \leq 1$. $\mathcal{M}_n(\mathbb{R})$ est de dimension finie donc toutes les

normes sur $\mathcal{M}_n(\mathbb{R})$ sont équivalentes et alors $\mathcal{O}_n(\mathbb{R})$ est borné dans $\mathcal{M}_n(\mathbb{R})$. On considère les applications

$$f: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathcal{M}_n(\mathbb{R}), \qquad \ell: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathcal{M}_n(\mathbb{R}) \times \mathcal{M}_n(\mathbb{R}),$$

$$A \longmapsto {}^t A A \qquad A \longmapsto ({}^t A, A)$$

$$b: \mathcal{M}_n(\mathbb{R}) \times \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathcal{M}_n(\mathbb{R})$$

$$(A,B) \longmapsto AB$$

On a, $f = b \circ \ell$. Mais ℓ est linéaire et b est bilinéaire donc elles sont continues. Alors, f est continue. D'autre part, $\mathcal{O}_n(\mathbb{R}) = f^{-1}(\{I_n\})$ et $\{I_n\}$ est un fermé de $\mathcal{M}_n(\mathbb{R})$ donc $\mathcal{O}_n(\mathbb{R})$ est un fermé de $\mathcal{M}_n(\mathbb{R})$. $\mathcal{M}_n(\mathbb{R})$ est de dimension finie et $\mathcal{O}_n(\mathbb{R})$ est un fermé borné de $\mathcal{M}_n(\mathbb{R})$ donc $\mathcal{O}_n(\mathbb{R})$ est un compact de $\mathcal{M}_n(\mathbb{R})$.

I.2.4.a. On a pour tout $1 \le i \le n$ $(M_X)_{ii} = x_i^2$ et donc $Tr(M_X) = \sum_{i=1}^n x_i^2 = 1$. Les vecteurs colonnes

de la matrice M_X sont colinéaires au vecteur $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, par suite $rg(M_X) \le 1$. De plus M_X

est non nulle puisque sa trace est non nulle donc $rg(M_X) = 1$.

I.2.4.b. On a ${}^t(M_X) = {}^t(X{}^tX) = X{}^tX = M_X$ donc M_X est symétrique réelle et alors M_X est diagonalisable dans $\mathcal{M}_n(\mathbb{R})$. Puisque M_X est de rang 1, 0 est une valeur propre de M_X de multiplicité égale au moins à n-1. La somme des valeurs propres de M_X est égale à sa trace= 1 donc 1 est aussi une valeur propre de M_X . Par conséquent, M_X est semblable à la matrice diagonale $D = diag(0,0,\ldots,0,1)$.

I.2.4.c. On a ${}^tU_XU_X={}^t(I_n-2M_X)(I_n-2M_X)=(I_n-2M_X)(I_n-2M_X)=I_n-4M_X+4M_X^2$. Mais $M_X^2=X{}^tXX{}^tX$ et ${}^tXX=(X|X)=1$ donc $M_X^2=M_X$ et par suite, ${}^tU_XU_X=I_n$. La matrice U_X est alors orthogonale.

Autrement: Il existe $P \in \mathcal{O}_n(\mathbb{R})$ telle que $M_X = Pdiag(0,0,...,0,1)^t P$ donc $U_X = Pdiag(1,1,..,1,-1)^t P$. Par suite U_X est produit des trois matrices orthogonales donc elle est orthogonale.

De plus $U_X^2 = I_n$ par suite U_X représente une symétrie orthogonale.

I.3.1. En utilisant la continuité de l'application linéaire $A \longrightarrow {}^t A$ on obtient

$$e^{tM} = \lim_{N \longrightarrow +\infty} \sum_{k=0}^{N} \frac{(tM)^k}{k!} = \lim_{N \longrightarrow +\infty} \sum_{k=0}^{t} \frac{(M)^k}{k!} = t(e^M)$$

En utilisant la continuité de l'application linéaire $A \longrightarrow PAP^{-1}$ on obtient

$$e^{PMP^{-1}} = \lim_{N \longrightarrow +\infty} \sum_{k=0}^N \frac{(PMP^{-1})^k}{k!} = \lim_{N \longrightarrow +\infty} \sum_{k=0}^N \frac{PM^kP^{-1}}{k!} = P\left(\lim_{N \longrightarrow +\infty} \sum_{k=0}^N \frac{M^k}{k!}\right) P^{-1} = Pe^MP^{-1}.$$

I.3.2. Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice diagonalisable. Il existe $\lambda_1, \lambda_2, ..., \lambda_k$ des réels distincts et $P \in \mathcal{GL}_n(\mathbb{R})$ tels que

$$A = P \begin{pmatrix} \lambda_1 I_{n_1} & 0 & & \\ & \lambda_2 I_{n_2} & & \\ 0 & & \cdot & \\ & 0 & & \lambda_k I_{n_k} \end{pmatrix} P^{-1}.$$

Par conséquent, on a

$$e^{A} = P \begin{pmatrix} e^{\lambda_{1}}I_{n_{1}} & 0 & & \\ & e^{\lambda_{2}}I_{n_{2}} & & \\ & 0 & & \cdot & \\ & 0 & & e^{\lambda_{k}}I_{n_{k}} \end{pmatrix} P^{-1}.$$

Donc e^A est diagonalisable. Soit Q un polynôme interpolateur de Lagrange tel que $Q(e^{\lambda_i}) = \lambda_i$ pour tout $1 \le i \le k$. Ainsi on obtient

$$Q(e^{A}) = PQ \begin{pmatrix} e^{\lambda_{1}}I_{n_{1}} & 0 & & \\ & e^{\lambda_{2}}I_{n_{2}} & & \\ 0 & & \cdot & \\ & 0 & & e^{\lambda_{k}}I_{n_{k}} \end{pmatrix} P^{-1} = P. \begin{pmatrix} Q(e^{\lambda_{1})}I_{n_{1}} & 0 & & \\ & Q(e^{\lambda_{2}})I_{n_{2}} & & \\ & 0 & & \cdot & \\ & 0 & & Q(e^{\lambda_{k}})I_{n_{k}} \end{pmatrix} P^{-1} = A.$$

I.3.3. Soit S une matrice symétrique. On a ${}^t(e^S)=e^{tS}=e^S$ donc $e^S\in\mathcal{S}_n(\mathbb{R})$. D'après le théorème spectral, S est diagonalisable. D'aprés la question précédente, e^S est diagonalisable et ses valeurs propres sont les exponentielles des valeurs propres de S donc sont toutes positives. Par suite e^S est symétrique positive.

I.3.4. Soit A une matrice antisymétrique. On a ${}^tAA = -A^2 = A{}^tA$. Par conséquent, ${}^t(e^A)e^A = e^{{}^tA}e^A = e^{({}^tA+A)} = e^0 = I_n$ donc $e^A \in \mathcal{O}_n(\mathbb{R})$.

II.1.1. Soient
$$D = diag(D_{11}, D_{22}, ..., D_{nn})$$
 une matrice diagonale avec $D_{ii} \ge 0$, pour tout $i \in \{1, 2, ..., n\}$ et $U = (U_{ij})_{1 \le i,j \le n} \in \mathcal{O}_n(\mathbb{R})$. On a $Tr(UD) = \sum_{i=1}^n D_{ii}U_{ii}$. Mais, pour tout $i \in \{1, 2, ..., n\}$,

 $-1 \le U_{ii} \le 1$ donc $Tr(UD) \le \sum_{i=1}^{n} D_{ii} = Tr(D)$.

II.1.2. S est symétrique réelle donc il existe $P \in \mathcal{O}_n(\mathbb{R})$ et $D = diag(D_{11}, D_{22}, \dots, D_{nn})$ telles que $S = PD^tP$. De plus, S est positive donc, pour tout $i \in \{1, 2, ..., n\}$, $D_{ii} \geq 0$. Mais, pour tout $U \in \mathcal{O}_n(\mathbb{R}), \ ^tPUP \in \mathcal{O}_n(\mathbb{R}) \ \mathbf{donc} \ Tr(US) = Tr(^tPUPD) \leq Tr(D) = Tr(S).$

II.2.1. On considère les applications

$$g: \mathbb{R} \longrightarrow M_n(\mathbb{R}), \quad \ell: M_n(\mathbb{R}) \longrightarrow \mathbb{R}$$
 $x \longmapsto e^{xA} \qquad M \longmapsto Tr(MS)$

On sait que g est dérivable sur \mathbb{R} et que, pour tout $x \in \mathbb{R}$, $g'(x) = Ae^{xA}$. Mais $f = \ell \circ g$ et ℓ est linéaire donc f est dérivable sur \mathbb{R} et on a

$$\forall x \in \mathbb{R}, \quad f'(x) = \ell(g'(x)) = Tr(Ae^{xA}S).$$

II.2.2. Soit $x \in \mathbb{R}$. xA est antisymétrique donc $e^{xA} \in \mathcal{O}_n(\mathbb{R})$, et alors on a

$$\forall x \in \mathbb{R}, \quad f(x) = Tr(e^{xA}S) \le Tr(S) = f(0).$$

Par conséquent, f possède un maximum en 0 donc f'(0) = 0 et alors Tr(AS) = 0. On obtient,

 $\langle S, A \rangle = \langle A, S \rangle = Tr({}^t A S) = -Tr(A S) = 0.$

II.2.3. D'après ce qui précède, pour tout $A \in \mathcal{A}_n(\mathbb{R})$, $\langle S,A \rangle = 0$. Alors, $S \in \mathcal{A}_n(\mathbb{R})^\perp = \mathcal{S}_n(\mathbb{R})$.

II.2.4. On a $Tr(U_XS) = Tr(S) - 2Tr(M_XS) = Tr(S) - 2Tr(SX^tX)$, mais $SX = \lambda X$ donc $Tr(U_XS) = Tr(S) - 2Tr(SX^tX)$ $Tr(S) - 2\lambda Tr(M_X) = Tr(S) - 2\lambda$.

II.2.5. $U_X \in \mathcal{O}_n(\mathbb{R})$ donc $2\lambda = Tr(S) - Tr(U_XS) \ge 0$ et alors toutes les valeurs propres de S sont positives donc $S \in \mathcal{S}_n^+(\mathbb{R})$.

III.1. On considère l'application

$$\varphi : \mathcal{O}_n(\mathbb{R}) \longrightarrow \mathbb{R}$$

$$U \longmapsto Tr(UA)$$

 φ est la restriction, sur $\mathcal{O}_n(\mathbb{R})$, d'une application linéaire de $\mathcal{M}_n(\mathbb{R})$ dans \mathbb{R} donc φ est continue sur $\mathcal{O}_n(\mathbb{R})$. Mais $\mathcal{O}_n(\mathbb{R})$ est compact donc φ est bornée et atteint son maximum en une matrice $U_0 \in \mathcal{O}_n(\mathbb{R}).$

III.2. Soit $U \in \mathcal{O}_n(\mathbb{R})$. On a $\mathit{Tr}(US) = \mathit{Tr}(UU_0A) = \varphi(UU_0) \leq \varphi(U_0) = \mathit{Tr}(S)$. On déduit de la partie **II** que $S \in \mathcal{S}_n^+(\mathbb{R})$.

III.3. On a $S = U_0 \stackrel{n}{A} \in \stackrel{n}{S_n^+}(\mathbb{R})$. On pose $O = U_0^{-1} = {}^tU_0$, $O \in \mathcal{O}_n(\mathbb{R})$ et A = OS. III.4. On a A = OS où $O \in \mathcal{O}_n(\mathbb{R})$ et $S \in S_n^+(\mathbb{R})$. On sait qu'il existe $V \in \mathcal{O}_n(\mathbb{R})$ et D une matrice diagonale à coefficients positifs telles que $S = {}^{t}VDV$. En posant, $U = O{}^{t}V$ on trouve que l'on a $U \in O_n(\mathbb{R})$ et A = UDV.

 $\text{III.5. Les \'el\'ements de } O_2(\mathbb{R}) \text{ sont de la forme } R_\theta = \left(\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array}\right) \text{ ou bien } s_\theta = \left(\begin{array}{cc} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{array}\right),$

où $\theta \in \mathbb{R}$. On a $Tr(R_{\theta}A) = 2\sin\theta$ et $Tr(s_{\theta}A) = 2\cos\theta$. Ainsi, pour tout $U \in O_2(\mathbb{R})$ $Tr(UA) \le 2 = Tr(s_0A) \text{ donc max} \{Tr(UA) \mid U \in O_2(\mathbb{R})\} = 2.$

Posons
$$S = s_0 A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
. Les valeurs propres de S sont 0 et 2 . Si $P = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$ alors

 $A=s_0P\left(\begin{array}{cc}0&0\\0&2\end{array}\right){}^tP\ . \ \ \text{On trouve ainsi une décomposition en valeurs singulières de }A,\ \ A=UDV$

avec
$$U = s_0 P = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$
, $D = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$ et $V = {}^t P = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \\ \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$.

IV.1.1. Supposons que A est inversible. On a $AA^{-1} = A^{-1}A = I_n$ donc AA^{-1} et $A^{-1}A$ sont symétriques. D'autre part, $AA^{-1}A = A$ et $A^{-1}AA^{-1} = A^{-1}$ donc A^{-1} est une pseudo-inverse de A.

IV.1.2. On considère la matrice, $D^* = \begin{pmatrix} 0_{n-k} & 0 \\ 0 & D_1^{-1} \end{pmatrix}$. On a $DD^* = D^*D = \begin{pmatrix} 0_{n-k} & 0 \\ 0 & I_k \end{pmatrix}$ qui est symétrique. D'autre part,

$$DD^*D = \begin{pmatrix} 0_{n-k} & 0 \\ 0 & D_1 \end{pmatrix} \begin{pmatrix} 0_{n-k} & 0 \\ 0 & D_1^{-1} \end{pmatrix} \begin{pmatrix} 0_{n-k} & 0 \\ 0 & D_1 \end{pmatrix} = \begin{pmatrix} 0_{n-k} & 0 \\ 0 & D_1 \end{pmatrix} = D, \text{ et}$$

$$D^{\star}DD^{\star} = \left(\begin{array}{cc} 0_{n-k} & 0 \\ 0 & D_1^{-1} \end{array} \right) \left(\begin{array}{cc} 0_{n-k} & 0 \\ 0 & D_1 \end{array} \right) \left(\begin{array}{cc} 0_{n-k} & 0 \\ 0 & D_1^{-1} \end{array} \right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & D_1^{-1} \end{array} \right) = D^{\star} \quad \mathrm{donc}$$

 D^* est une pseudo-inverse de D.

IV.1.3. Si A=0 alors A est une pseudo-inverse d'elle même. Supposons que $A\neq 0$. Il existe une matrice diagonale à coefficients positifs $D = diag(0, ..., 0, D_{i+1, i+1}, ..., D_{n,n})$ et deux matrices orthogonales U et V telles ques A = UDV.

Posons $D^* = diag(0, ..., 0, \hat{D}_{i+1, i+1}^{-1}, ..., D_{n,n}^{-1})$ et $A^* = {}^tVD^*{}^tU$. Ainsi on a, $AA^* = UDD^*{}^tU$ et $A^*A = UDD^*{}^tU$ ${}^{t}VD^{*}DV$. AA^{*} et $A^{*}A$ sont symétriques. D'autre part,

 $AA^*A = UDV^tVD^*UUDV = UDD^*DV = UDV = A$ et

 $A^*AA^* = {}^tVD^*{}^tUUDV{}^tVD^*{}^tU = {}^tVD^*DD^*{}^tU = {}^tVD^*{}^tU = A^*$. Par conséquent, A^* est une pseudoinverse de A.

IV.1.4.a. On pose $F=\operatorname{Im} A=\{AX\mid X\in\mathbb{R}^n\}.$ On sait que le projeté orthogonal de $b,\ p_{\scriptscriptstyle F}(b),$ sur F vérifie, $\|p_{\scriptscriptstyle F}(b)-b\|=\inf\{\|AX-b\|\mid X\in\mathbb{R}^n\}$ donc il existe $X_0\in\mathbb{R}^n$ tel que

$$||AX_0 - b|| = \inf\{||AX - b|| \mid X \in \mathbb{R}^n\}.$$

IV.1.4.b. Soit $X \in \mathbb{R}^n$. Pour tout $h \in \mathbb{R}^n$, on a

 $\varphi(X+h) = (AX-b+Ah|AX-b+Ah) = \varphi(X) + (AX-b|Ah) + (Ah|AX-b) + (Ah|Ah) \,.$

On a, d'une part, (AX - b|Ah) + (Ah|AX - b) = 2(AX - b|Ah) = 2(tAAX - tAb|h) et d'autre part, $(Ah|Ah) = ||Ah||^2 \le C||h||^2$ où C est une constante positive.

Posons $\ell(h) = 2({}^tAAX - {}^tAb|h)$ et, pour $h \neq 0$, $\varepsilon(h) = \frac{(Ah|Ah)}{||h||}$. ℓ est une application linéaire de \mathbb{R}^n dans \mathbb{R} et $\varepsilon(h) \xrightarrow[k \to 0]{} 0$. Il vient

$$\varphi(X+h) = \varphi(X) + \ell(h) + ||h|| \varepsilon(h).$$

Par conséquent, φ est différentiable sur \mathbb{R}^n et on a :

$$\forall h \in \mathbb{R}^n$$
, $d\varphi(X).h = 2({}^tAAX - {}^tAb|h)$.

IV.1.4.c. φ possède un minimum en X_0 donc $d\varphi(X_0) = 0$ et alors on a :

$$\forall h \in \mathbb{R}^n$$
, $({}^tAAX_0 - {}^tAb|h) = 0$.

Par conséquent, on a ${}^{t}AAX_{0} = {}^{t}Ab$. Mais AA^{\star} est symétrique donc

$$AA^*b = {}^t(A^*){}^tAb = {}^t(A^*){}^tAAX_0 = {}^t(AA^*)AX_0 = AA^*AX_0 = AX_0.$$

Finalement on trouve

$$\inf\{\|AX - b\| \mid X \in \mathbb{R}^n\} = \|AA^*b - b\|.$$

 $\textbf{IV.2.1. Soit } D = \textit{diag}(D_{11}, \dots, D_{nn}) \textbf{ une matrice diagonale. S'il existe } i_0 \in \{1, \dots, n\} \textbf{ tel que } |D_{i_0 i_0}| > 1 \text{ tel que } |D_{i$ 1 alors $|D_{i_0i_0}|^k \underset{k \to +\infty}{\longrightarrow} +\infty$. La suite $(D^k)_{k \in \mathbb{N}}$ est bornée si et seulement si, pour tout $k \in \mathbb{N}$ et tout $i \in \{1,...,n\}$, la suite $(D_{ii}^k)_{k \in \mathbb{N}}$ est bornée. Ce qui équivaut à $|D_{ii}| \leq 1$, pour tout $i \in \{1,2,..,n\}$.

IV.2.2. Si $D \in G$ alors D est inversible et $D^{-1} \in G$. Par suite pour tout $i \in \{1,...,n\}, \ |D_{ii}| \le 1$ et $\left|\frac{1}{D_{ii}}\right| \le 1$. Ainsi on a, $|D_{i,i}| = 1$, pour tout $i \in \{1,2,...,n\}$.

IV.2.3. Soit $A \in G$. On écrit A = UDV une décomposition en valeurs singulières de A. Puisque $U, V \in \mathcal{O}_n(\mathbb{R})$ et $\mathcal{O}_n(\mathbb{R}) \subset G$, on a $D = {}^tUA{}^tV \in G$. Comme D est diagonale à coefficients positifs, d'après la question précédente, $D_{ii} = 1$, pour tout $i \in \{1, ..., n\}$, et donc $D = I_n$. Par suite $A = UV \in \mathcal{O}_n(\mathbb{R})$ et alors $G = \mathcal{O}_n(\mathbb{R})$.