LSTM-U-net for the robust segmentation of veins in ultrasound sequences

Daniel Mensing^{1,2}, Johannes Gregori¹, Jürgen Walter Jenne^{1,2,3}, MichaelStritt¹, Björn Gerold⁴, and Matthias Günther^{1,2,5}

¹mediri GmbH, 69115 Heidelberg, Germany, ²Fraunhofer MEVIS, 28359 Bremen, Germany, ³German Cancer Research Center, 69120 Heidelberg, Germany, ⁴Theraclion S. A., 92240

Malakoff, France, ⁵Universität Bremen, 28359 Bremen, Germany

Introduction

- High Focused Ultrasound (HIFU) treatment for varicose veins is a non-invasive technique to ablate insufficient veins
- The therapy is monitored by diagnostic Ultrasound B-mode imaging
- The course of the targeted vein must be followed during the procedure in order to ablate the entire vessel

Figure 3. Diagram of the proposed LSTM-U-net architecture

Methods

We propose a LSTM-U-net architecture which is able to track and segment the vein in real-time in diagnostic ultrasound image series. We conducted multiple experiments:

Experiment 1: Prediction of future frames

- Trained the model on ultrasound time series while replacing the last three frames with zeros
- Skipped frames randomly to account for rapid changes of the veins appearance

Experiment 2: Tracking of structures outside of the image edges on whole and on cropped image series

- Trained the model on images series in which the edges are replaced by zeros (See **Figure 2.**)
- Trained the model on patches of images series in which the edges are replaced by zeros

Experiment 3: Evaluation of usage of ConvLSTM layers in the U-net architecture

- Implemented two architectures derived from the LSTM-U-net
- The "Encoder" architecture in which the ConvLSTM layers in the decoder part were replaced by regular 2D convolution layers
- The "Decoder" architecture, which employs ConvLSTM layers in the decoder part and regular 2D convolution layers in the encoder
- Evaluated all three architectures with the same training setup (See Table 1.)

Results

- Model based on LSTM-U-net architecture is well suited for the robust tracking of veins in ultrasound series in real-time
- ConvLSTM layers are more important in the encoder part of a U-net in term of DSC and can be omitted in the decoder in order to make the model smaller for a little reduction in the DSC

Figure 1. Result of Experiment 1: Segmentation of the vein over several time steps with predicted position for the last three time steps

Figure 2. Result of Experiment 2: Segmentation of the vein if it moves outside of the visible image

Table 1. Comparison of different architectures from **Experiment 3**

Acknowledgement

The CURE-OP (01QE1848B E! 12491) project has received funding from the Eurostars-2 joint programme with co-funding from the European Union Horizon 2020 research and innovation programme.

The German partners were funded by the German Federal Ministry of Education and Research.

