

Algoritmos y Estructuras de Datos

Cursada 2016 Redictado

Prof. Alejandra Schiavoni Prof. Catalina Mostaccio

Facultad de Informática – UNLP

GRAFOS

Agenda - Grafos

- 1. Ejemplos y terminología
- 2. Representaciones
- 3. Recorridos

Agenda - Grafos

- 1. Ejemplos y terminología
- 2. Representaciones
- 3. Recorridos

Ejemplo 2: Mapa de ciudades

Ejemplo 3: Prerrequisitos de un curso

Cursos conectados por sus correlativas (*relación* de "prerrequisito")

Ejemplo 4: Mapa de rutas áreas entre ciudades

Ciudades conectadas por *Rutas áreas* con sus respectivos *tiempos de vuelo*

Terminología

- ▶ Grafo→ modelo para representar relaciones entre elementos de un conjunto.
- ▶ **Grafo**: (V,E), V es un conjunto de vértices o nodos, con una relación entre ellos; E es un conjunto de pares (u,v), u,v ∈ V, llamados aristas o arcos.
- ► **Grafo dirigido**: la relación sobre V no es simétrica. Arista \equiv par ordenado (u,v). (Ejemplo 3)
- ► **Grafo no dirigido**: la relación sobre V es simétrica. Arista \equiv par no ordenado $\{u,v\}$, $u,v \in V$ y $u \neq v$. (Ejemplos 1 y 2)

Terminología (cont. 1)

Ejemplos

Grafo dirigido G(V,E).

$$V = \{C,D,E,F,H\}$$

 $E = \{(C,D),(D,F),(E,C),(E,H),$
 $(H,E)\}$

Grafo no dirigido G(V,E).

$$V = \{2,3,5,7,9\}$$

$$E = \{\{2,3\},\{2,7\},\{2,9\},\{3,9\},\{5,7\},\{5,9\}\}$$

Terminología (cont. 2)

- \triangleright v es adyacente a u si existe una arista (u,v) \in E.
 - \triangleright en un grafo no dirigido, $(u,v) \in E$ incide en los nodos u,v.
 - \triangleright en un grafo dirigido, $(u,v) \in E$ incide en v, y parte de u.
- En grafos no dirigidos:
 - El grado de un nodo: número de arcos que inciden en él.
- > En grafos dirigidos:
 - existen el grado de salida (**grado_out**) y el grado de entrada (**grado_in**).
 - > el grado_out es el número de arcos que parten de él y
 - > el grado_in es el número de arcos que inciden en él.
 - El grado del vértice será la suma de los grados de entrada y de salida.
- Grado de un grafo: máximo grado de sus vértices.

Terminología (cont. 3)

► Camino desde $u \in V$ a $v \in V$: secuencia $v_1, v_2, ..., v_k$ tal que $u=v_1, v=v_k, y(v_{i-1},v_i) \in E$, para i=2,...,k. Ej: camino desde \mathbf{a} a $\mathbf{d} \rightarrow \langle a,b,e,c,d \rangle$.

► Longitud de un camino: número de arcos del camino. Ejs: long. del camino desde \mathbf{a} a $\mathbf{d} \rightarrow \langle a,b,e,c,d \rangle$ es 4. (a) long. del camino desde \mathbf{a} a $\mathbf{d} \rightarrow \langle a,b,e,f,b,e,c,d \rangle$ es 7. (b)

M

Terminología (cont. 4)

➤ Camino simple: camino en el que todos sus vértices, excepto, tal vez, el primero y el último, son distintos. P1 es un camino simple desde U a Z.

Ejemplos anteriores: (a) es camino simple, (b) no lo es.

Terminología (cont. 5)

 \triangleright Ciclo: camino desde $v_1, v_2, ..., v_k$ tal que $v_1 = v_k$

Ej: $\langle 2,5,4,2 \rangle$ es un ciclo de longitud 3.

El ciclo es simple si el camino es simple.

> Bucle: ciclo de longitud 1.

> Grafo acíclico: grafo sin ciclos.

Terminología (cont. 6)

▶ Dado un grafo G=(V, E), se dice que G'=(V', E') es un subgrafo de G, si $V'\subseteq V$ y $E'\subseteq E$.

Torminolog

Terminología (cont. 7)

► Un subgrafo inducido por $V' \subseteq V : G' = (V',E')$ tal que $E' = \{(u,v) \in E \mid u,v \in V'\}$.

Terminología (cont. 8)

➤ Un grafo ponderado, pesado o con costos: cada arco o arista tiene asociado un valor o etiqueta. (Ejemplos 2 y 4)

Conectividad en grafos no dirigidos

Un grafo no dirigido es conexo si hay un camino entre cada par de vértices.

Conexo

No Conexo

Conectividad: bosque y árbol

- ➤ Un bosque es un grafo sin ciclos.
- Un árbol libre es un bosque conexo.
- Un árbol es un árbol libre en el que un nodo se ha designado como raíz.

Propiedades

> Sea G un grafo no dirigido con n vértices y m arcos, entonces

$$\sum_{v \in G} deg(v) = 2*m$$

$$m \leq (n*(n-1))/2$$

$$m \ge n-1$$

$$m=n-1$$

20

Conectividad en grafos dirigidos

- > v es alcanzable desde u, si existe un camino de u a v.
- > Un grafo dirigido se denomina **fuertemente conexo** si existe un camino desde cualquier vértice a cualquier otro vértice

Fuertemente Conexo

No Fuertemente Conexo Débilmente Conexo

➤ Si un grafo dirigido no es fuertemente conexo, pero el grafo subyacente (sin sentido en los arcos) es conexo, el grafo es **débilmente conexo**.

Componentes conexas

En un grafo no dirigido, una componente conexa es un subgrafo conexo tal que no existe otra componente conexa que lo contenga.

Es un subgrafo conexo maximal.

Un grafo no dirigido es **no conexo** si está formado por varias componentes conexas.

Componentes fuertemente conexas

En un grafo dirigido, una componente fuertemente conexa, es el máximo subgrafo fuertemente conexo.

Un grafo dirigido es **no fuertemente conexo** si está formado por varias componentes fuertemente conexas.

Fuertemente Conexo

No Fuertemente Conexo

Agenda - Grafos

- 1. Ejemplos y terminología
- 2. Representaciones
- 3. Recorridos

Agenda - Grafos

- Representaciones
 - Matriz de Adyacencias
 - Lista de Adyacencias

- ightharpoonup G = (V, E): matriz A de dimensión $|V| \times |V|$.
- ➤ Valor a_{ii} de la matriz:

$$a_{ij} = \begin{cases} 1 & \text{si } (i,j) \in E \\ 0 & \text{en cualquier otro caso} \end{cases}$$

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

Representaciones: Matriz de Adyacencias

- ➤ Costo espacial: O (/V/²)
- ➤ Representación es útil para grafos con número de vértices pequeño, o grafos densos $(|E|\approx|V|\times/V|)$
- > Comprobar si una arista (u,v) pertenece a $E \rightarrow$ consultar posición A(u,v)
 - ightharpoonup Costo de tiempo T(|V|,|E|) = O(1)

Representaciones: Matriz de Adyacencias

- > Representación aplicada a Grafos pesados
- ► El peso de (i,j) se almacena en A (i, j)

$$a_{ij} = \begin{cases} w(i,j) & \text{si } (i,j) \in E \\ 0 & o \infty \end{cases}$$
 en cualquier otro caso

	1	2	3	4	5	6
	0	10	0	8	0	0
2	0	0	0	0	7	0
3	0	0	0	0	-1	15
	0	12	0	0	0	0
	0	0	0	9	0	0
5	0	0	0	0	0	9

Representaciones: Lista de Adyacencias

- ightharpoonup G = (V, E): vector de tamaño |V|.
- ightharpoonup Posición i
 ightharpoonup puntero a una lista enlazada de elementos (lista de adyacencia).

Los elementos de la lista son los vértices adyacentes a i

Representaciones: Lista de Adyacencias

- ➤ Si G es dirigido, la suma de las longitudes de las listas de adyacencia será |E|.
- ➤ Si G es no dirigido, la suma de las longitudes de las listas de adyacencia será 2/E/.
- ightharpoonup Costo espacial, sea dirigido o no: <math>O(|V|+|E|).
- > Representación apropiada para grafos con |E| menor que |V|².
- ▶ **Desventaja**: si se quiere comprobar si una arista (u,v) pertenece a $E \Rightarrow$ buscar v en la lista de adyacencia de u.
 - ► Costo temporal T(|V|,|E|) será $O(Grado G) \subseteq O(|V|)$.

- > Representación aplicada a Grafos pesados
- ightharpoonup El **peso de** (u,v) se almacena en el nodo de v de la lista de adyacencia de u.

Agenda - Grafos

- 1. Ejemplos y terminología
- 2. Representaciones
- 3. Recorridos

Agenda - Grafos

- Recorridos
 - en profundidad: DFS (Depth First Search)
 - > en amplitud: BFS (Breath First Search)
 - Bosque de expansión DFS
 - Aplicaciones

Problema: El Guía de Turismo

El señor H es un guía de turismo de la ciudad de Buenos Aires. Su trabajo consiste en mostrar a grupos de turistas diferentes **puntos de interés** de la ciudad. Estos puntos de interés están **conectados por rutas en ambos sentidos**. Dos puntos de interés vecinos tienen un servicio de bus que los conecta, con una limitación en el **número máximo de pasajeros** que puede transportar. No es siempre posible para el señor H transportar de una única vez a todos los turistas a un destino en particular.

Por ejemplo, consideremos el siguiente mapa con 7 puntos de interés, donde las aristas representan las rutas y el peso de ellas representa el límite máximo de pasajeros a transportar por el servicio de bus. Su misión es indicarle al Sr. H cuál es el menor número de viajes que deberá realizar para llevar al grupo de turistas de un origen a un destino.

En este ejemplo, el señor H debe transportar a **99 turistas** del punto **1** al punto **7**.

Veamos cuáles son los recorridos posibles y elijamos el que implique realizar el menor número de viajes.

Problema: El Guía de Turismo

νé	vértices del recorrido		corrido	cant. turistas/viaje	cant. de viajes		
1			_	6	7	20	6
1	2	4	7			25	5
1	2	5	7			20	6
1	3	4	2	5	7	15	8
1	3	4	7			15	8
1	3	6	7			15	8
1	4	2	5	7		10	11
1	4	3	6	7		10	11
1	4	7				10	11

Entonces, para transportar a los **99 turistas** del punto 1 al punto 7, se necesitarán 5 viajes, eligiendo la ruta:

En cada viaje el servicio de bus puede transportar como máximo a 25 pasajeros, 24 turistas + al señor H, en los cuatro primeros viajes transporta a 96 turistas y en el último a los restantes 3.

Recorrido en profundidad: DFS

→ Generalización del recorrido preorden de un árbol.

Estrategia:

- > Partir de un vértice determinado v.
- > Cuando se visita un nuevo vértice, explorar cada camino que salga de él.
- ➤ Hasta que no se haya finalizado de explorar uno de los caminos no se comienza con el siguiente.
- ➤ Un camino deja de explorarse cuando se llega a un vértice ya visitado.
- ➤ Si existían vértices no alcanzables desde v el recorrido queda incompleto; entonces, se debe seleccionar algún vértice como nuevo vértice de partida, y repetir el proceso.

Recorrido en profundidad: DFS

Si tomamos como vértice de partida a D

Se Muestra:

DCRHTAB

Recorrido en profundidad: DFS

Esquema recursivo: dado G = (V, E)

- 1. Marcar todos los vértices como no visitados.
- 2. Elegir vértice u como punto de partida.
- 3. Marcar **u** como visitado.
- 4. \forall \mathbf{v} advacente a \mathbf{u} , $(\mathbf{u}$, \mathbf{v}) \in E, si \mathbf{v} no ha sido visitado, repetir recursivamente (3) y (4) para \mathbf{v} .
- Finalizar cuando se hayan visitado todos los nodos alcanzables desde u.
- Si desde **u** no fueran alcanzables todos los nodos del grafo: volver a (2), elegir un nuevo vértice de partida **v** no visitado, y repetir el proceso hasta que se hayan recorrido todos los vértices.

r.

Recorrido en profundidad: DFS

```
dfs (v: vértice)
   marca[v]:= visitado;
   para cada nodo w adyacente a v
         si (marca[w] == noVisitado)
                dfs(w);
main:dfs (grafo)
     inicializar marca en false (arreglo de booleanos);
     para cada vértice v del grafo
         si (marca[v] == noVisitado)
           dfs(v);
```

Recorrido DFS: Tiempo de ejecución

- ightharpoonup G(V, E) se representa mediante listas de adyacencia.
- El método dfs(v) se aplica únicamente sobre vértices no visitados
 → sólo una vez sobre cada vértice.
- > dfs(v) depende del número de vértices adyacentes que tenga (longitud de la lista de adyacencia).
 - \rightarrow el tiempo de todas las llamadas a **dfs(v)**: O(|E|)
- ightharpoonup añadir el tiempo asociado al bucle de main_dfs(grafo): O(|V|).
 - \Rightarrow Tiempo del recorrido en profundidad es O(|V|+|E|).

Recorrido en amplitud: BFS

→ Generalización del recorrido por niveles de un árbol.

Estrategia:

- Partir de algún vértice **u**, visitar **u** y, después, visitar cada uno de los vértices adyacentes a **u**.
- > Repetir el proceso para cada nodo adyacente a **u**, siguiendo el orden en que fueron visitados.

Recorrido en amplitud: BFS

Si tomamos como vértice de partida a D

Se Muestra:

DCHBRTA

Cola:

DCHBRTA

Recorrido en amplitud: BFS

```
Esquema iterativo: dado G = (V, E)
```

- 1. Encolar el vértice origen **u**.
- 2. Marcar el vértice **u** como visitado.
- 3. Procesar la cola.
- 4. Desencolar **u** de la cola
- 5. \forall advacente a u, $(u,v) \in E$,
- 6. si v no ha sido visitado
- 7. encolar y visitar **v**
- Si desde **u** no fueran alcanzables todos los nodos del grafo: volver a (1), elegir un nuevo vértice de partida no visitado, y repetir el proceso hasta que se hayan recorrido todos los vértices
- \triangleright Costo T(|V|,|E|) es de O(|V|+|E|)

Bosque de expansión del DFS

- El recorrido **no es único**: depende del nodo inicial y del orden de visita de los adyacentes.
- El orden de visita de unos nodos a partir de otros puede ser visto como un árbol: árbol de expansión (o abarcador) en profundidad asociado al grafo.
- Si aparecen varios árboles: bosque de expansión (o abarcador) en profundidad.

Grafo no dirigido y no Conexo

Grafo dirigido y no fuertemente Conexo

Grafo dirigido y no fuertemente Conexo

Bosque de expansión, empezando el recorrido en el vértice a

Bosque de expansión del DFS

Clasificación de los arcos de un grafo dirigido en el bosque de expansión de un DFS.

- Arcos tree (del árbol): son los arcos en el bosque depth-first-search, arcos que conducen a vértices no visitados durante la búsqueda.
- Arcos forward: son los arcos $u \rightarrow v$ que no están en el bosque, donde v es descendiente, pero no es hijo en el árbol.
- Arcos backward: son los arcos $u \rightarrow v$, donde v es antecesor en el árbol. Un arco de un vértice a si mismo es considerado un arco back.
- Arcos **cross**: son todos los otros arcos $u \rightarrow v$, donde v no es ni antecesor ni descendiente de u. Son arcos que pueden ir entre vértices del mismo árbol o entre vértices de diferentes árboles en el bosque depth-first-search

• **Problema 1:** encontrar las componentes conexas de un grafo no dirigido.

- Problema 2: prueba de aciclicidad. Dado un grafo (dirigido o no dirigido) comprobar si tiene algún ciclo o no.
- **Problema 3:** encontrar las componentes fuertemente conexas de un grafo dirigido.

- Problema 1: Encontrar las componentes conexas de un grafo no dirigido
 - Si el grafo es conexo
 - > Un recorrido desde cualquier vértice
 - Visitará a TODOS los vértices del grafo
 - Si no lo es
 - > Partiendo de un vértice, tendremos una componente conexa
 - → conjunto de vértices recorrido
 - > Para descubrir otras
 - o Repetir recorrido desde un vértice no visitado
 - o Hasta que todos los vértices hayan sido visitados

• Problema 1: Encontrar las componentes conexas de un grafo no dirigido

- Problema 2: Prueba de aciclicidad
 - ➤ **Grafo no dirigido.** Hacer un recorrido dfs. Existe algún ciclo si y sólo si aparece algún arco que no es del árbol de expansión.
 - ➤ **Grafo dirigido.** Hacer un dfs. Existe un ciclo si y sólo si aparece algún arco de retroceso.
- Orden de complejidad de la prueba de aciclicidad: igual que los recorridos.
 - \triangleright Con matrices de adyacencia: $O(|V|^2)$.
 - \triangleright Con listas de adyacencia: O(|V| + |E|).

• Problema 3: Encontrar las componentes fuertemente conexas

Una aplicación clásica del depth-first search es descomponer un grafo dirigido en componentes fuertemente conexas (o conectadas).

Una *componente fuertemente conexa* de un grafo dirigido G=(V,E) es el conjunto máximo de vértices V' $\subseteq V$ tal que para cada par de vértices u y v en V', existe un camino tanto $u \rightarrow v$ como $v \rightarrow u$.

Encontrar las componentes fuertemente conexas de un grafo dirigido: Algoritmo de Kosaraju

Pasos:

- 1. Aplicar DFS(G) rotulando los vértices de G en post-orden (apilar).
- 2. Construir el grafo reverso de G, es decir G^R (invertir los arcos).
- 3. Aplicar DFS (G^R) comenzando por los vértices de mayor rótulo (tope de la pila).
- 4. Cada árbol de expansión resultante del paso 3 es una componente fuertemente conexa.

Si resulta un único árbol entonces el digrafo es fuertemente conexo.

Algoritmo de Kosaraju

 Aplicar el recorrido en profundidad, por ejemplo, desde **B** y rotular los vértices en post-orden

Complejidad del algoritmo

- Se realizan dos DFS
- Se recorren todas las aristas una vez para crear el grafo reverso

$$\mathbf{O}(|\mathbf{V}| + |\mathbf{E}|)$$