Exposing the Rat in the Tunnel:

Using Traffic Analysis for Tor-based Malware Detection

Priyanka G. Dodia: Qatar Computing Research Institute (QCRI)

Mashael S. Al-Sabah: Qatar Computing Research Institute (QCRI)

Omar Alrawi: Georgia Institute of Technology

Tao Wang: Simon Fraser University

Motivation: The 'WannaCry' Ransomware Case Study

Enterprise Logs

- Real network traffic from industry partners in Qatar
 - Zeek logs with 600 million TCP/ICMP/UDP connections
- Hundreds of Tor connections
- High frequency of C&C Tor hidden service (.onion)
 leaks and kill switch domain accesses in the data

Command line snapshots of malware traces in network logs

```
175 "57g7spgrzlojinas.onion"
170 "76jdd2ir2embyv47.onion"
168 "cwwnhwhlz52ma.onion"
172 "cwwnhwhlz52maqm7.onion"
167 "gx7ekbenv2riucmf.onion"
170 "sqjolphimrr7jqw6.onion"
173 "xxlvbrloxvriy2c5.onion"
```

Traffic Analysis for Tor-based Malware Detection

Research Questions

- Can we distinguish between benign and malware related Tor connections?
- Can we deduce the **type** of malware?
- Can we do this for unknown 'zero-day' malware accurately?

Tor-based Malware Binary Collection

Tor-based Malware Binary Verification

Consensus

TLS

- + www.2ahmrvssyrvsiyg3zc6l.com
- + www.33rt6up6k7oexutgdtjuanf.com
- + www.4g4ewmccgm337hggem4jgb.com
- + www.6pr3k3djr.com
- + www.7le5trltjeptd.com
- + www.cednrx6tp3mtpn5lbp4uf26.com
- + www.dphwwn6earpeyrm3d4d2.com
- + www.duwax35nwqs7z3jub7xgddou.com

DETECTION	DETAILS	RELATIONS	BEHAVIOR	COMMUNITY
Security Vendors' A	nalysis ①			
AegisLab		① Trojan.Win3	2.Bulz.4lc	
ALYac		① Gen:Trojan.l	Heur.RP.cmGfb0qTo	ер
Avast		① Win32:Malw	are-gen	
Avira (no cloud)		① TR/Redcap.	z <mark>x</mark> hpp	
Cynet		() Malicious (s	core: 85)	
eScan		(Gen:Variant.	Bulz.316791	
F-Secure		① Trojan.TR/D	ropper.Gen	
GData		(Gen:Trojan.	Heur.RP.cmGfb0qTo	ер
Kaspersky		() HEUR:Trojar	n.MSIL.Injuke.gen	
MAX		① Malware (ai	Score=87)	
Microsoft		① Trojan:Win3	2/Ymacco.AAFB	
Qihoo-360		() Win32/Troja	n.Injuke.HqcASO8A	
Sangfor Engine Zero	0	① Trojan.Win3	2.Save.a	
Sophos		(Mal/Generic	-S	

Tor-based Malware Traffic Collection

Analysis Overview

▲Request Report Deletion ⑤ Sample (1.2MiB)

Traffic Characteristics

Malware

- Malware traffic
 - Collection period: 3 months
 - PCAPs: ~6000 (362 active/523 binaries)
 - o Classes: 10
 - o Families: 80
 - Tor connections: ~30,500

Classifier Features

Classifier Features

Classifier Features

Host-level: 40 global PCAP-level features [NOVEL]

Connection-level: 150 WF features [USENIX 2016]

Packet inter-arrival time

Packet concentration

Outgoing packets

Rate of packets

Host-level Feature Categories

Traffic Characteristics

Malware & Benign

- Benign traffic
 - Different browsing profiles
 - Overlapping distribution with malware traffic
 - Unbiased training data
 - Representative of real world scenario

Features	Best Performing Model	Precision (%)	Recall (%)	False Positive Rate (%)
Connection-level only	XGBoost	86.13	63.37	1.53
Host-level only	LightGBM	90.96	76.34	1.45

Features	Best Performing Model	Precision (%)	Recall (%)	False Positive Rate (%)
Connection-level only	XGBoost	86.13	63.37	1.53
Host-level only	LightGBM	90.96	76.34	1.45

Features	Best Performing Model	Precision (%)	Recall (%)	False Positive Rate (%)
Connection-level only	XGBoost	86.13	63.37	1.53
Host-level only	LightGBM	90.96	76.34	1.45

Useful for detection in the absence of raw PCAPs!

Features	Best Performing Model	Precision (%)	Recall (%)	False Positive Rate (%)
Connection-level only	XGBoost	86.13	63.37	1.53
Host-level only	LightGBM	90.96	76.34	1.45
Connection- & Host-level	LightGBM	93.33	81.60	0.88

Zeroday Malware: Identifying Tor Connections

- Zeroday Test: New zeroday binaries collected 2 months after training binaries
- Not used in training

Zeroday Malware: Identifying Tor Connections

Zeroday dataset: New zeroday binaries
 2 months after training binaries

- Binaries with active Tor traffic from
 'EternalRocks' family
 - Use Tor browser for C&C
 - Bonus Challenge!

Malware Instances in Test	False Positive Rate (%)	Precision (%)	Recall (%)
1%	1.1	54.5	
5%	0.7	87.5	100
10%	1.0	91.3	
20%	1.2	95.4	

Zeroday Malware: Identifying Malware Classes

Evaluate Random Forest models trained with multi labelling techniques

Class prediction performance:

- At least one correct class label
- High precision (94 100%) & Low Hamming Loss (false labels in predictions)

Takeaways

- Goal: Identify Tor-based malware connections
- Traffic analysis to fingerprint Tor-based malware activity
- Malware class labels can be deduced using connection- & host-level features
- Validate usability with zeroday test and real world enterprise data

Expose the Rats Yourself!

Code and datasets available at Github:

https://github.com/malfp/tormalwarefp

Contact us for full malware corpus, PCAPs and more:

Priyanka Dodia

pgdodia@hbku.edu.qa

Cybersecurity

Qatar Computing Research Institute (QCRI)

Supplementary Slides

Classifying Real Ransomware Connections

Enterprise Logs

- Examine best performing LightGBM model trained using D5
- Enterprise test dataset:
 - Tor connections: 207 (Infected host: 197, Benign hosts: 10)
 - Classification Instances: 63
 - Features used: **Host-only**
- Classification results: 16/63 >= 80% confidence trace back to malicious host with onion leaks
 - Misidentified: 29/63 with very low confidence (< 64%) belonging to benign hosts

Malware Class Identification

Multi-class classifier performance trained with D5

Classification technique	Hamming loss	Micro- average precision(%)	Micro- average recall(%)
Binary Relevance	0.1	68.12	70.77
Classifier Chains	0.1	67.77	71.05
Label Powerset	0.1	66.81	72.37

Existing Malicious Traffic Detection Efforts

Related work	Detection point	Detection artifact	Detection approach	Scope	Class detection
BotMiner [34]	Network	TCP/UDP flow size	Unsupervised network	Coordinated	×
. ,	(client side)	DNS, SMTP, C&C IP	flow clustering	bots	
Jackstraws [39]	End Host	System calls	Supervised system call	Generic	×
jackstraws [33]			behaviour graph clustering	malware	
TorWard [41]	Network	TCP flow DPI, DNS	Signature-based	Tor exit	✓
Torward [41]	(Tor exit OR)	C&C IP	DPI	traffic abuse	
POT-stiss [00]	Network	TCP/UDP/ICMP connection	Connection state	Bots w/ bursty	√
BOTection [22]	(client side)	state, protocols (eg. DNS)	stochastic modeling	connection behavior	
This work	Network	Tor cell sequences (TCP),	Traffic analysis on	Tor-based	✓
THIS WOFK	(client side)	connection states, DNS	encrypted flows	malware	

