Rapport uart MSS

Donnée

Réaliser un circuit logisim permettant de transmettre une trame de 20 bits à un récepteur uart avec un baudrate de 9600. La fréquence d'horloge du récepteur de de l'émetteur est à 30 MHz. Le circuit doit contenir un registre à décalage de 24 bits, un timer 12 bits et un bloc de contrôle de la MSS. Lorsqu'aucune transmission n'est faite, la lignes doit rester à 1. Le bit de start est 0, le bit de parité n'est pas imposé et les deux bits de stop sont à 0. La conception de cette MSS est de type Moore.

Sorties synchrones

1.	Mode0 -> Bit 0 de l'entrée mode du registre à 24 bits	M0
2.	Mode1 -> Bit 1 de l'entrée mode du registre à 24 bits	M1
3.	TxDone -> La sortie indiquant la fin de la transmission	TD

Entrées synchrones

1.	Done -> Entrée indiquant la fin de la trame à envoyer	D
2.	Begin -> Entrée indiquant le début de la séquence d'envoi	В
3.	Timer -> Entrée indiquant qu'un bit doit être envoyé dans la trame	Т

Graphe d'état

Codage one-hot

•	Wait	0001
•	Load	0010
•	Wait_timer	0100
•	Shift	1000

Table des états futurs

Etats présents				Etats futurs / entrées							Sorties			
shift	wait_timer	load	wait	B/T/D	B/T/D	B/T/D	B/T/D	B/T/D	B/T/D	B/T/D	B/T/D	M1	M0	TyDone
0	0	0	1	(0001)	(0001)	(0001)	(0001)	0010	0010	0010	0010	0	0	1
0	0	1	0	0100	0100	0100	0100	0100	0100	0100	0100	0	1	0
0	1	0	0	(0010)	0001	1000	0001	(0100)	0001	1000	0001	0	0	0
1	0	0	0	0100	0001	0100	0001	0100	0001	0100	0001	1	0	0

(xxxx) signifie que l'état ne change pas

Equations décodeur des états futurs

```
\label{eq:wait} \begin{split} wait^+ &= wait \cdot \overline{B} + D(shift + wait\_timer) \\ load^+ &= wait \cdot B \\ wait\_timer^+ &= load + \left(\overline{D} \cdot shift\right) + \left(\overline{D} \cdot \overline{T} \cdot wait\_timer\right) \\ shift^+ &= wait\_timer \cdot T \end{split}
```

Equations décodeur des sorties

$$m_0 = load$$

 $m_1 = shift$
 $TxDone = wait$

Schéma logique de la MSS

