Figure 1: Simulation with $B=500,\ p=13,\ \mu_{\alpha}=10,\ X_{i,t}\stackrel{iid}{\sim}\Gamma(1,10),\ \delta_{i}\sim\mathcal{N}(2\mathbf{1}_{p},\sigma_{\delta}^{2}\mathbf{I}_{p}),\ \gamma_{i}\sim\mathcal{N}(2\mathbf{1}_{p},\sigma_{\gamma}^{2}\mathbf{I}_{p})$ with $\sigma_{\alpha}=\sigma_{\delta}=\sigma_{\gamma}=\xi$ and $\sigma=1$

		B	ias				Consistency			
					Guess			Proposition		
n	ξ	$ \hat{\alpha}_{\mathrm{adj}}^{\dagger} - \mathrm{E}(\hat{\alpha}_{\mathrm{adj}}) $	$ \hat{\alpha}_{\mathrm{wadj}}^{\dagger} - \mathrm{E}(\alpha_1) $	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{ m wadj}$	$\hat{lpha}_{ m IVW}$	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{ m wadj}$	$\hat{lpha}_{ m IVW}$	Best
	0.01	0.49 (0.025)	87.849 (5.435)	1 (0)	1 (0)	1 (0)	0.994 (0.006)	0.994 (0.006)	0.994 (0.006)	0.547 (0.038)
5	0.1	$2.522 \ (0.145)$	87.943 (5.439)	1 (0)	1 (0)	1 (0)	$0.994 \ (0.006)$	1 (0)	$0.994 \ (0.006)$	$0.535 \ (0.038)$
9	1	$24.742 \ (1.416)$	94.691 (5.73)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	$0.482 \ (0.038)$
	10	247.144 (14.155)	340.365 (20.666)	$0.81 \ (0.03)$	1 (0)	$0.785 \ (0.032)$	$0.624\ (0.037)$	$0.618\ (0.037)$	$0.6 \ (0.038)$	$0.418 \; (0.038)$
10	0.01 0.1 1 10	0.318 (0.018) 1.761 (0.104) 17.24 (1.068) 172.201 (10.724)	73.775 (4.612) 74.152 (4.582) 81.285 (4.698) 303.791 (17.261)	1 (0) 1 (0) 1 (0) 0.785 (0.032)	1 (0) 1 (0) 1 (0) 0.995 (0.006)	1 (0) 1 (0) 1 (0) 0.78 (0.032)	1 (0) 1 (0) 0.994 (0.006) 0.594 (0.038)	1 (0) 1 (0) 0.994 (0.006) 0.63 (0.038)	1 (0) 1 (0) 0.994 (0.006) 0.606 (0.038)	0.606 (0.038) 0.606 (0.038) 0.515 (0.039) 0.388 (0.038)
15	0.01 0.1 1 10	0.27 (0.017) 1.464 (0.086) 14.269 (0.853) 142.469 (8.536)	71.654 (4.19) 71.711 (4.205) 76.912 (4.646) 296.668 (17.064)	1 (0) 1 (0) 1 (0) 0.775 (0.033)	1 (0) 1 (0) 1 (0) 1 (0)	1 (0) 1 (0) 1 (0) 0.77 (0.033)	1 (0) 1 (0) 1 (0) 0.506 (0.039)	1 (0) 1 (0) 1 (0) 0.562 (0.039)	1 (0) 1 (0) 1 (0) 0.506 (0.039)	0.63 (0.038) 0.617 (0.038) 0.519 (0.039) 0.37 (0.038)
25	0.01 0.1 1 10	0.232 (0.013) 1.256 (0.073) 12.162 (0.723) 121.364 (7.22)	64.937 (4.244) 65.025 (4.247) 70.93 (4.515) 284.488 (16.044)	1 (0) 1 (0) 1 (0) 0.755 (0.034)	1 (0) 1 (0) 1 (0) 1 (0)	1 (0) 1 (0) 1 (0) 0.75 (0.034)	1 (0) 1 (0) 1 (0) 0.561 (0.039)	1 (0) 1 (0) 1 (0) 0.598 (0.038)	1 (0) 1 (0) 1 (0) 0.573 (0.039)	0.72 (0.035) 0.707 (0.036) 0.543 (0.039) 0.341 (0.037)

Figure 2: Simulation with $B=500,\ p=13,\ \mu_{\alpha}=10,\ X_{i,t}\stackrel{iid}{\sim}\Gamma(1,10),\ \delta_i\sim\mathcal{N}(2\mathbf{1}_p,\sigma_{\delta}^2\mathbf{I}_p),\ \gamma_i\sim\mathcal{N}(2\mathbf{1}_p,\sigma_{\gamma}^2\mathbf{I}_p)$ with $\sigma_{\alpha}=\sigma_{\delta}=\sigma_{\gamma}=\xi$ and $\sigma=1$

			Distance to α_1			Distance	to y_{1,T_1^*+1}	
n	ξ	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{\mathrm{wadj}}$	$\hat{lpha}_{ ext{IVW}}$	Original	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{\mathrm{wadj}}$	$\hat{lpha}_{ ext{IVW}}$
	0.01	92.181 (5.464)	87.929 (5.429)	92.945 (5.38)	530.941 (8.26)	93.09 (5.466)	88.921 (5.425)	80.044 (5.572)
5	0.10	92.318 (5.438)	88.749(5.4)	92.877 (5.376)	531.7 (8.237)	93.106 (5.448)	89.688 (5.41)	$80.098 \ (5.557)$
9	1.00	$110.408 \ (6.359)$	112.895 (6.552)	111.143 (6.292)	539.293 (9.574)	109.803 (6.456)	113.673 (6.7)	97.704 (6.383)
	10.00	608.083 (40.543)	658.75 (41.166)	$609.478 \ (40.379)$	765.376 (43.2)	603.461 (40.802)	$663.964 \ (42.019)$	551.147 (39.204)
	0.01	85.761 (4.759)	73.781 (4.611)	85.251 (4.74)	531.34 (7.832)	88.001 (4.75)	75.942 (4.725)	71.843 (5.031)
10	0.10	85.596 (4.751)	74.36 (4.589)	85.115 (4.726)	531.207 (7.831)	87.862 (4.751)	76.32 (4.716)	72.035(4.998)
10	1.00	98.904 (5.657)	96.941 (5.8)	97.58 (5.694)	529.882 (9.24)	101.594 (5.697)	97.905 (5.945)	85.258 (5.777)
	10.00	552.629 (34.136)	607.916 (38.656)	550.047 (34.131)	683.331 (39.175)	554.845 (34.507)	605.65 (39.468)	485.177 (33.536)
	0.01	87.845 (4.815)	71.604 (4.189)	88.125 (4.791)	522.679 (7.39)	82.717 (4.425)	67.234 (3.908)	66.963 (4.715)
15	0.10	87.665 (4.817)	71.361 (4.214)	87.888 (4.799)	521.797 (7.332)	81.85 (4.372)	66.395 (3.884)	$66.524 \ (4.638)$
15	1.00	97.832 (6.358)	90.733(5.995)	$97.7 \ (6.377)$	512.982 (8.56)	87.039 (5.482)	81.835 (5.463)	73.372(5.429)
	10.00	574.299 (37.641)	654.146 (39.801)	575.021 (37.553)	637.811 (40.745)	542.636 (37.393)	642.185 (39.776)	472.829 (35.937)
	0.01	87.619 (5.42)	64.935 (4.244)	87.506 (5.452)	536.46 (8.637)	89.397 (5.392)	64.912 (4.341)	73.355 (5.577)
25	0.10	87.71 (5.422)	$65.27 \ (4.254)$	87.66 (5.45)	536.872 (8.656)	89.643 (5.381)	65.457 (4.347)	73.752 (5.557)
25	1.00	102.741 (6.359)	89.279 (5.823)	103.025 (6.374)	540.993 (10.266)	105.581 (6.364)	91.855 (5.991)	88.773 (6.427)
	10.00	549.418 (35.903)	622.006 (39.938)	550.127 (35.928)	727.414 (44.214)	564.311 (37.046)	645.792 (41.356)	483.044 (36.321)

Figure 3: Simulation with B = 500, p = 2, $\mu_{\alpha} = 10$, $X_{i,t} \stackrel{iid}{\sim} \Gamma(1,10)$, $\delta_i \sim \mathcal{N}(2\mathbf{1}_p, \sigma_{\delta}^2\mathbf{I}_p)$, $\gamma_i \sim \mathcal{N}(2\mathbf{1}_p, \sigma_{\gamma}^2\mathbf{I}_p)$

Conditioned on donor pool	a	$\sigma_lpha = \sigma_\delta = \sigma_\gamma$	$\begin{array}{c} \text{Bias} \\ \hat{\alpha}_{\text{adj}}^{\dagger} - \\ \text{Mean} \end{array}$	$\mathrm{E}(\hat{lpha}_{\mathrm{adj}}) \ \mathrm{SD}$	$ \hat{lpha}_{ m wadj}^{\dagger} ^{-}$	$\left egin{array}{c} - \operatorname{E}(lpha_1) & & \\ \operatorname{SD} & & & \end{array} ight $	$\hat{lpha}_{ m adj}$ Mean	Consistency dj SD Me	ency $\hat{lpha}_{ m wadj}$ Mean	adj SD	$\hat{lpha}_{ ext{IVW}}$ Mean	w SD
	ಗು	0.01 0.1 1 10	0.378 0.376 0.475 3.211	0.278 0.280 0.361 2.310	23.501 23.898 37.088 262.724	24.750 25.036 35.880 248.469	0.883 0.883 0.819 0.479	0.322 0.322 0.386 0.501	0.968 0.963 0.899 0.399	0.176 0.190 0.302 0.491	0.888 0.888 0.846 0.489	0.316 0.316 0.362 0.501
Yes	10	0.010 0.1 1 10	0.288 0.288 0.368 2.482	0.204 0.206 0.289 1.991	14.047 14.308 29.406 269.148	17.544 17.230 27.615 237.737	0.908 0.913 0.875 0.484	0.290 0.283 0.332 0.501	0.978 0.978 0.940 0.424	0.146 0.146 0.238 0.496	0.924 0.929 0.859 0.473	0.266 0.257 0.349 0.501
	15	0.01 0.1 1 10	0.228 0.228 0.306 2.244	0.156 0.159 0.250 1.687	13.238 13.429 27.568 241.401	20.303 20.757 34.442 258.458	$0.918 \\ 0.918 \\ 0.874 \\ 0.571$	0.276 0.276 0.333 0.496	$\begin{array}{c} 0.989 \\ 0.989 \\ 0.934 \\ 0.495 \end{array}$	$0.105 \\ 0.105 \\ 0.249 \\ 0.501$	0.923 0.923 0.879 0.571	0.267 0.267 0.327 0.496
	25	0.01 0.1 1 10	0.166 0.165 0.224 1.637	0.130 0.130 0.177 1.234	9.429 10.167 26.818 236.164	17.388 17.436 27.688 219.509	$0.951 \\ 0.941 \\ 0.870 \\ 0.476$	0.216 0.237 0.337 0.501	1.000 1.000 0.973 0.470	0.000 0.000 0.163 0.500	0.946 0.941 0.876 0.470	0.227 0.237 0.331 0.500
	5 10	0.01 0.1 1 10 0.01 1	0.563 0.572 0.780 4.576 0.397 0.505	0.416 0.418 0.541 3.430 0.334 0.332 0.402	23.309 23.287 31.936 234.162 14.389 14.587 25.992	21.997 22.063 31.629 233.069 14.932 15.244 24.056	0.881 0.876 0.859 0.497 0.903 0.908	0.325 0.331 0.348 0.501 0.297 0.290 0.384	0.973 0.978 0.941 0.508 0.995 0.995	0.163 0.146 0.237 0.501 0.074 0.074	0.886 0.886 0.854 0.503 0.930 0.924 0.849	0.318 0.318 0.354 0.501 0.256 0.265
	15	0.01 0.01 0.1 1	3.201 0.328 0.330 0.429 2.848	2.082 0.263 0.261 0.330 2.084	15.241 15.140 15.302 27.192 215.233	20.615 20.544 26.992 206.064	0.935 0.930 0.881 0.557	0.247 0.256 0.325 0.498	0.995 0.995 0.930 0.481	0.074 0.074 0.256 0.501	0.941 0.946 0.892 0.568	0.237 0.227 0.311 0.497
	22	0.01 0.1 1 10	0.272 0.273 0.345 2.228	0.217 0.220 0.292 1.658	10.929 11.164 24.009 210.408	16.447 16.300 23.306 191.603	0.929 0.929 0.896 0.503	0.258 0.258 0.306 0.501	$ \begin{array}{c} 1.000 \\ 1.000 \\ 0.973 \\ 0.514 \end{array} $	0.000 0.000 0.163 0.501	0.951 0.945 0.896 0.503	0.217 0.228 0.306 0.501

Figure 4: Simulation with B = 500, p = 2, $\mu_{\alpha} = 10$, $X_{i,t} \stackrel{iid}{\sim} \Gamma(1,10)$, $\delta_i \sim \mathcal{N}(2\mathbf{1}_p, \sigma_{\delta}^2\mathbf{I}_p)$, $\gamma_i \sim \mathcal{N}(2\mathbf{1}_p, \sigma_{\gamma}^2\mathbf{I}_p)$

Figure 5: Simulation with $B=1000,\,p=2,\,\mu_{\alpha}=10,\,X_{i,t}\stackrel{iid}{\sim}\Gamma(1,10),\,\delta_{i}\sim\mathcal{N}(2\mathbf{1}_{p},\sigma_{\delta}^{2}\mathbf{I}_{p}),\,\gamma_{i}\sim\mathcal{N}(2\mathbf{1}_{p},\sigma_{\gamma}^{2}\mathbf{I}_{p})$

(ī	$\hat{lpha}_{ m IVW}$	17.641	11.061	27.514	18.248	14.943	32.878	32.954	56.198	168.301	3.940	67.157	0.900	33.251	478.784	49.766	143.608
Risk (RMSE)	$\hat{lpha}_{ m wadj}$	28.751	0.128	1.210	1.106	9.815	0.243	2.406	4.447	164.310	19.915	31.870	6.461	74.734	398.102	225.368	39.428
R	$\hat{lpha}_{ m adj}$	15.990	9.152	27.020	16.671	19.527	32.712	35.230	54.996	169.681	3.467	66.393	206.9	35.600	494.029	120.853	140.890
ıcy	$\hat{lpha}_{ m IVW}$	\vdash	П	1	\vdash	П	П	П	\vdash	П	П	0	П	П	0	0	\vdash
Consistency	$\hat{lpha}_{ m wadj}$	\vdash	Н	П	\vdash	П	Н	П	\vdash	\vdash	П	0	\vdash	0	0	0	\vdash
Ď	$\hat{lpha}_{ m adj}$	\vdash	П	П	\vdash	П	Н	Н	\vdash	П	Н	0	\vdash	1	0	0	-
α_1	$\hat{lpha}_{ m IVW}$	20.433	10.958	26.787	16.792	16.075	31.999	36.201	56.049	169.204	1.682	64.982	13.788	32.894	477.584	51.038	144.553
Distance to $lpha_1$	$\hat{lpha}_{ m wadj}$	31.543	0.231	0.483	0.350	8.683	1.121	0.842	4.297	165.212	17.658	29.695	10.349	75.090	396.902	226.641	38.483
Dis	$\hat{lpha}_{ m adj}$	18.782	9.050	26.292	15.215	20.659	31.834	38.477	54.846	170.584	1.209	64.219	10.795	35.244	492.828	122.126	141.835
Bias	$ \hat{\alpha}_{\mathrm{wadj}}^{\dagger} - \mathrm{E}(\hat{\alpha}_{\mathrm{wadj}}) $	31.551	0.229	0.484	0.354	8.599	1.130	0.866	4.273	163.417	19.168	29.582	11.948	70.552	402.211	233.576	32.038
М.	$ \hat{lpha}_{adj}^{\dagger} - E(\hat{lpha}_{adj}) \hat{lpha}_{wadj}^{\dagger} -$	0.427	0.345	0.366	0.051	0.411	0.004	0.252	0.017	0.559	0.732	0.191	0.098	2.643	2.169	1.652	1.361
	n	ಬ	10	15	25	ro	10	15	25	ರ	10	15	25	τo	10	15	25
	$\sigma_\alpha = \sigma_\delta = \sigma_\gamma$		0 0	0.01			-	0.1				T			10	IO	

Figure 6: Simulation with B = 1000, p = 2, $\mu_{\alpha} = 10$, $X_{i,t} \stackrel{iid}{\sim} \Gamma(1,10)$, $\delta_i \sim \mathcal{N}(2\mathbf{1}_p, \sigma_{\delta}^2\mathbf{I}_p)$, $\gamma_i \sim \mathcal{N}(2\mathbf{1}_p, \sigma_{\gamma}^2\mathbf{I}_p)$ Non-Parametric Bootstrap on Disparate Time-series and Parametric Bootstrap on AR(1)

	.dj $\hat{lpha}_{ m IVW}$	51 17.641	66 49.951	93 55.353	56 27.884	22 26.431	09 50.420	90 19.026	17 34.384	73 73.937	150 77.489	53 59.799	15 16.655	557 132.862	93 17.235	791 148.242	95 218.061
	$\hat{lpha}_{ m wadj}$	28.751	32.966	0.493	0.056	16.722	14.209	1.890	1.217	40.273	138.150	62.653	20.015	119.557	78.493	347.791	55.895
(SE)	$\hat{lpha}_{ m adj}$	15.990	52.770	55.106	28.941	26.927	50.708	19.025	34.736	70.334	75.918	55.290	18.664	164.165	16.400	149.775	211.948
$\operatorname{Risk} \left(\operatorname{RMSE}\right)$	$\hat{lpha}_{ m IVW}$	1	П	0	\vdash	П	0	П	П	0	0	0	\vdash	0	Н	0	0
R	$\hat{lpha}_{ m wadj}$	1	П	1	П	П	1	П	П	П	0	0	\vdash	0	0	Н	1
	$\hat{lpha}_{ m adj}$	1	1	0	П	1	0	П	П	0	0	0	П	0	П	0	П
Consistency	$\hat{lpha}_{ m IVW}$	20.433	50.732	56.176	27.829	26.033	49.589	18.979	35.103	74.051	77.281	59.130	16.631	131.336	17.950	147.408	217.682
ဘိ 	$\hat{lpha}_{ m wadj}$	31.543	33.746	1.315	0.001	16.324	13.378	1.843	1.936	40.387	137.942	61.984	19.991	118.031	77.778	346.958	55.516
	$\hat{lpha}_{ m adj}$	18.782	53.551	55.929	28.886	26.529	49.877	18.978	35.455	70.448	75.710	54.621	18.639	162.639	17.116	148.942	211.568
Distance to α_1	$ \hat{lpha}_{ m wadj}^{\dagger} - { m E}(\hat{lpha}_{ m wadj}) $	28.114	38.905	11.330	3.808	15.456	16.352	6.139	4.348	49.543	114.715	58.683	25.270	125.588	0.123	248.954	75.169
Q	$ \hat{lpha}_{\mathrm{adj}}^{\dagger} - \mathrm{E}(\hat{lpha}_{\mathrm{adj}}) \hat{lpha}_{\mathrm{wadj}}^{\dagger} -$	0.878	0.188	0.444	0.152	0.043	0.909	0.071	0.494	0.693	1.503	0.527	0.102	6.774	0.136	0.863	1.411
	u	ಬ	10	15	25	ည	10	15	25	ಬ	10	15	25	ည	10	15	25
	$\sigma_\alpha = \sigma_\delta = \sigma_\gamma$		0.01	0.01			-	0.1				T			10	IO	

Figure 7: Simulation with B = 1000, p = 2, $\mu_{\alpha} = 10$, $X_{i,t} \stackrel{iid}{\sim} \Gamma(1,10)$, $\delta_i \sim \mathcal{N}(2\mathbf{1}_p, \sigma_{\delta}^2\mathbf{I}_p)$, $\gamma_i \sim \mathcal{N}(2\mathbf{1}_p, \sigma_{\gamma}^2\mathbf{I}_p)$, n = 10

		B	Bias	Di	Distance to α_1	α_1		Consistency	ıcy
$\sigma_lpha = \sigma_\delta = \sigma_\gamma$	σ	$ \hat{lpha}_{ m adj}^{\dagger} - { m E}(\hat{lpha}_{ m adj}) $	$ \hat{\alpha}_{\mathrm{adj}}^{\dagger} - \mathrm{E}(\hat{\alpha}_{\mathrm{adj}}) \hat{\alpha}_{\mathrm{wadj}}^{\dagger} - \mathrm{E}(\hat{\alpha}_{\mathrm{wadj}}) $	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{ m wadj}$	$\hat{lpha}_{ m IVW}$	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{ m wadj}$	$\hat{lpha}_{ m IVW}$
	0.01	0.005	26.505	68.635	26.523	70.356	П	1	П
C	0.1	0.008	32.825	66.651	32.833	66.038	1	1	1
0.01	1	0.209	55.052	77.779	55.048	78.677	I	1	1
	10	0.659	8.906	18.182	8.942	16.392	П	П	1
	0.01	0.041	4.850	48.389	4.856	48.773	1	1	1
·	0.1	0.022	9.665	28.105	9.704	32.457	П	1	П
0.1	1	0.284	7.249	34.603	7.087	33.139	I	1	1
	10	4.720	1.418	23.743	1.188	18.955	\vdash	\vdash	1
	0.01	0.249	126.966	144.470	126.197	145.266	1	1	1
	0.1	0.344	1.140	37.688	0.809	36.918	Н	П	П
Т	Н	0.744	39.141	44.573	38.778	45.929	0	0	0
	10	0.557	5.551	5.608	060.9	0.695	Н	П	1
	0.01	2.555	195.978	198.593	195.032	194.004	0	0	0
0	0.1	3.715	356.227	381.530	362.799	385.934	Н	П	П
10	П	0.820	532.508	463.159	536.718	477.354	0	0	0
	10	5.600	297.116	89.179	276.026	86.527	0	0	0

 $= 10, X_{i,t} \overset{iid}{\sim} \mathcal{N}(10, 10), \, \delta_i \sim \mathcal{N}(2\mathbf{1}_p, \sigma_{\lambda}^2 \mathbf{I}_p), \, \gamma_i \sim \mathcal{N}(2\mathbf{1}_p, \sigma_{\lambda}^2 \mathbf{I}_p)$ Figure 8: Simulation with $B=1000,\,p=2,\,\mu_{\alpha}$

ICV	$\hat{lpha}_{ m IVW}$	П	П	0	П	1	1	1	П	1	П	П	П	0	0	1	0
Consistency	$\hat{lpha}_{ m wadj}$	\vdash	П	П	\vdash	П	П	П	\vdash	П	\vdash	\vdash	\vdash	0	0	П	0
	$\hat{lpha}_{ m adj}$	1	П	1	П	1	П	П	П	1	Н	Н	П	0	0	1	0
, FO	$\hat{lpha}_{ m IVW}$	11.876	70.475	39.294	44.056	4.424	53.642	14.124	25.711	41.000	5.740	32.635	18.918	194.041	476.112	245.405	218.913
Distance to α_1	$\hat{lpha}_{ m wadj}$	6.246	67.091	0.427	1.278	1.176	3.877	7.683	0.646	12.346	47.802	17.757	22.514	220.413	747.898	287.948	322.499
) Dis	$\hat{lpha}_{ m adj}$	9.817	70.703	37.747	43.263	3.147	51.714	13.325	27.716	40.189	3.982	32.923	19.373	197.780	494.622	242.758	207.077
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$ \hat{lpha}_{\mathrm{adj}}^\dagger - \mathrm{E}(\hat{lpha}_{\mathrm{adj}}) \hat{lpha}_{\mathrm{wadj}}^\dagger - \mathrm{E}(\hat{lpha}_{\mathrm{wadj}}) $	6.226	67.109	0.418	1.324	1.153	3.897	7.656	0.666	11.998	46.131	17.527	22.422	213.822	754.690	302.770	298.133
K B	$ \hat{lpha}_{ m adj}^{\dagger} - { m E}(\hat{lpha}_{ m adj}) $	0.261	0.026	0.160	0.081	0.556	0.076	0.083	0.029	0.613	0.969	0.349	0.012	6.004	3.039	0.923	1.703
	u	ಬ	10	15	25	ಬ	10	15	25	ಬ	10	15	25	ಬ	10	15	25
0	$\sigma_\alpha = \sigma_\delta = \sigma_\gamma$		6	0.01			-	0.1				Т			7	10	

X. $iid \Gamma(1 10) S$. Figure

ıcy	$\hat{lpha}_{ m IVW}$	П	1	1	1	0	1	П	П	П	_	П	1	0	_	0	0
Consistency	$\hat{lpha}_{ m adj}$ $\hat{lpha}_{ m wadj}$	\vdash	П	П	0	0	П	Н	\vdash	0	\vdash	П	\leftarrow	0	0	0	0
D 	$\hat{lpha}_{ m adj}$	1	\vdash	1	П	0	1	П	П	1	Н	П	Н	0	Н	0	0
χ_1	$\hat{lpha}_{ m IVW}$	31.390	1.176	35.608	57.710	71.856	20.709	54.809	56.731	99.075	11.229	0.154	36.478	102.973	85.908	571.320	171.404
Distance to α_1	$\hat{lpha}_{ m wadj}$	5.559	0.162	16.621	9.860	29.792	3.301	17.399	19.521	40.849	11.610	59.195	24.517	272.595	88.656	647.793	118.156
Dis	$\hat{lpha}_{ m adj}$	30.823	4.072	37.504	59.918	71.619	24.438	52.090	55.848	99.657	11.913	3.435	34.353	83.313	103.570	591.299	166.808
Bias	$ \hat{lpha}_{ m adj}^{\dagger} - { m E}(\hat{lpha}_{ m adj}) \hat{lpha}_{ m wadj}^{\dagger} - { m E}(\hat{lpha}_{ m wadj}) \ $	5.558	0.169	16.604	9.673	29.621	3.244	17.347	19.863	38.132	10.813	59.262	23.931	282.806	75.597	642.765	105.833
Щ	$ \hat{lpha}_{ m adj}^{\dagger} - { m E}(\hat{lpha}_{ m adj}) $	0.009	0.001	0.766	3.169	0.024	0.020	0.031	1.969	0.102	0.840	0.300	0.027	2.659	2.148	1.339	8.033
	ρ	0.01	0.1	1	10	0.01	0.1	П	10	0.01	0.1	1	10	0.01	0.1	1	10
	$\sigma_\alpha = \sigma_\delta = \sigma_\gamma$		0	0.01			-	0.1			.	T			0,1	IO	