Macroeconomia Dinâmica

A economia descentralizada: a dinâmica do trabalho

João Ricardo Costa Filho

Modelos

Sobre modelos

Good ideas shine far more brightly when supported by good models

Avinash Dixit ("The making of Economic Policy", 1996, p. 17)

All models are wrong.

George Box

Models are to be used, not believed. **Henri Theil** ("Principles of Econometrics", 1971, p. vi)

A economia descentralizada

Consideremos agora que a quantidade de horas trabalhadas não é fixa, mas sim fruto de uma decisão das famílias. A função utilidade é dada por $U\left(c_t,I_t\right)=U\left(c_t,1-n_t\right)$, com $U_c>0$, $U_l<0$, $U_{cc}\leqslant0$, $U_{ll}\leqslant0$, $U_{n,t}=-U_l$.

Consideremos agora que a quantidade de horas trabalhadas não é fixa, mas sim fruto de uma decisão das famílias. A função utilidade é dada por $U\left(c_{t},I_{t}\right)=U\left(c_{t},1-n_{t}\right)$, com $U_{c}>0$, $U_{l}<0$, $U_{cc}\leqslant0$, $U_{ll}\leqslant0$, $U_{n,t}=-U_{l}$. A restrição orçamentária é dada por:

$$\Delta a_{t+1} + c_t = w_t n_t + x_t + r_t a_t. \tag{1}$$

Note que o autor ainda trata x_t como uma renda exógena, mas agora ela exclui a renda do trabalho.

$$\mathcal{L} = \sum_{s=0}^{\infty} \left\{ \beta^{s} U\left(c_{t+s}, 1 - n_{t+s}\right) + \lambda_{t+s} \left[w_{t} n_{t} + x_{t} + (1 + r_{t+s}) a_{t+s} - c_{t+s} - a_{t+s}\right] \right\}$$

$$(2)$$

$$\frac{\partial \mathcal{L}}{\partial c_{t+s}} = \beta^s U_{c,t+s} - \lambda_{t+s} = 0, \quad s \geqslant 0$$
 (3)

$$\frac{\partial \mathcal{L}}{\partial n_{t+s}} = -\beta^{s} U_{l,t+s} + \lambda_{t+s} w_{t+s} = 0, \quad s \geqslant 0$$
 (4)

$$\frac{\partial \mathcal{L}}{\partial a_{t+s}} = \lambda_{t+s} \left(1 + r_{t+s} \right) - \lambda_{t+s-1} = 0, \quad s > 0, \tag{5}$$

Ao combinarmos (3) e (4), temos:

$$\frac{U_{l,t}}{U_{c,t}} = w_t. (6)$$

Ao combinarmos (3) e (5), temos:

$$\frac{\beta U_{c,t+1}}{U_{c,t}} \left(1 + r_{t+1} \right) = 1 \tag{7}$$

Trabalhemos com a equação (6), considerando $U(c_t, l_t) = \frac{c_t^{1-\sigma}-1}{1-\sigma} + \ln l_t$, onde $l_t = 1 - n_t$. A equação da oferta de trabalho é dada por:

$$n_t = 1 - \frac{c^{(\sigma)}_t}{w_t}.$$
(8)

Trabalhemos com a equação (6), considerando $U(c_t, l_t) = \frac{c_t^{1-\sigma}-1}{1-\sigma} + \ln l_t$, onde $l_t = 1 - n_t$. A equação da oferta de trabalho é dada por:

$$n_t = 1 - \frac{c^(\sigma)_t}{w_t}.$$
(8)

• $\uparrow w_t \Longrightarrow \uparrow n_t$: relação tradicional entre quantidade ofertada de trabalho e salário real.

7

Trabalhemos com a equação (6), considerando $U(c_t, l_t) = \frac{c_t^{1-\sigma}-1}{1-\sigma} + \ln l_t$, onde $l_t = 1 - n_t$. A equação da oferta de trabalho é dada por:

$$n_t = 1 - \frac{c^(\sigma)_t}{w_t}.$$
(8)

- $\uparrow w_t \Longrightarrow \uparrow n_t$: relação tradicional entre quantidade ofertada de trabalho e salário real.
- $\uparrow c_t \Longrightarrow \downarrow n_t$: e.g. um aumento da renda que leve ao aumento do consumo faz com que a oferta de trabalho diminua.

Empresas

Consideremos o caso no qual as empresas combinam capital e trabalho, na ausência de custos de ajustamento, com o objetivo de maximizar lucros:

$$\sum_{s=0}^{\infty} (1+r)^{-s} \Pi_{t+s}$$
 (9)

no qual r é uma taxa de desconto constante e

$$\Pi_t = y_t - w_t n_t - i_t + \Delta b_{t+1} - r b_t, \tag{10}$$

Considere $y_t = F(k_t, n_t)$; dada a lei de movimento do capital, $\Delta k_{t+1} = i_t - \delta k_t$, podemos reescrever o lucro da empresa como:

$$\Pi_{t} = F(k_{t}, n_{t}) - w_{t}n_{t} - k_{t+1} + (1 - \delta k_{t}) + b_{t+1} - (1 + r)b_{t},$$
(11)

$$\max_{n_{t+s}, k_{t+s+1}, b_{t+s+1}} P_t = \sum_{s=0}^{\infty} (1+r)^{-s} \{ F(k_{t+s}, n_{t+s}) - w_{t+s} n_{t+s} - k_{t+s+1} + (1-\delta) k_{t+s} + b_{t+s+1} - (1+r) b_{t+s} \}$$
(12)

$$\frac{\partial \mathcal{P}_t}{\partial I_{t+s}} = (1+r)^{-s} \left\{ F_{n,t+s} - w_{t+s} \right\} = 0, \quad s \geqslant 0, \quad (13)$$

$$\frac{\partial \mathcal{P}_t}{\partial k_{t+s}} = (1+r)^{-s} \left[F_{k,t+s} + 1 - \delta \right] - (1+r)^{-(s-1)} = 0, \quad s > 0,$$
(14)

$$\frac{\partial \mathcal{P}_t}{\partial b_{t+s}} = (1+r)^{-s} (1+r) - (1+r)^{-(s-1)} = 0, \quad s > 0 \quad (15)$$

A equação de demanda por trabalho é dada por

$$F_{n,t} = w_t, \tag{16}$$

e a equação de demanda por capital é dada por

$$F_{k,t+1} = r + \delta. \tag{17}$$

A equação de demanda por trabalho é dada por

$$F_{n,t} = w_t, (16)$$

e a equação de demanda por capital é dada por

$$F_{k,t+1} = r + \delta. \tag{17}$$

Como isso muda na presença de custos de ajustamento?

Trabalhemos agora na presença de custos de ajustamento do fator trabalho. Até o momento, nós trabalhamos com **as horas de trabalho por trabalhador**. Mas podemos ter mudanças tanto na quantidade de horas trabalhadas, quanto no número de trabalhadores.

Trabalhemos agora na presença de custos de ajustamento do fator trabalho. Até o momento, nós trabalhamos com **as horas de trabalho por trabalhador**. Mas podemos ter mudanças tanto na quantidade de horas trabalhadas, quanto no número de trabalhadores.

 Vamos introduzir custos para contração e demissão de empregados.

Trabalhemos agora na presença de custos de ajustamento do fator trabalho. Até o momento, nós trabalhamos com **as horas de trabalho por trabalhador**. Mas podemos ter mudanças tanto na quantidade de horas trabalhadas, quanto no número de trabalhadores.

- Vamos introduzir custos para contração e demissão de empregados.
- Assuma $y_t = F(n_t, h_t)$.

A lei de movimento na força de trabalho é dada por:

$$n_t = v_t - q_t + n_{t-1} (18)$$

onde v_t são as contrações e q_t as demissões.

Os lucros das empresas, em cada período t, são dados por:

$$\Pi_{t} = F(n_{t}, h_{t}) - W_{t}(h_{t}) n_{t} - \frac{1}{2} \lambda (\Delta n_{t+1})^{2}.$$
 (19)

Os lucros das empresas, em cada período t, são dados por:

$$\Pi_{t} = F(n_{t}, h_{t}) - W_{t}(h_{t}) n_{t} - \frac{1}{2} \lambda (\Delta n_{t+1})^{2}.$$
 (19)

C.P.O.:

$$\frac{\partial P_t}{\partial n_{t+s}} = (1+r)^{-s} \left(F_{n,t+s} - W_{t+s} + \lambda \Delta n_{t+s+1} \right) + (1+r)^{-(s-1)} \lambda \Delta n_{t+s}$$
(20)

$$\frac{\partial \mathcal{P}_t}{\partial h_{t+s}} = (1+r)^{-s} \left(F_{h,t+s} - W'_{t+s} n_{t+s} \right) = 0 \tag{21}$$

Da equação (21), temos:

$$\frac{F_{h,t}}{n_t} = W_t'. \tag{22}$$

Ou seja, o produto marginal por trabalhador (lado esquerdo) é igual ao salário marginal (lado direito).

Dinâmica do emprego (Wickens 2012)

Da equação (20), temos:

$$\Delta n_t = \frac{1}{1+r} \Delta n_{t+1} + \frac{1}{\lambda(1+r)} (F_{n,t} - W_t), \qquad (23)$$

a qual, em equilíbrio ($\Delta n_t = \Delta n_{t+1} = 0$), resulta na mesma condição que o modelo sem custo de ajustamentos ($F_{n,t} = W_t$).

Dinâmica do emprego (Wickens 2012)

Podemos reescrever a equação anterior em níveis de emprego:

$$n_{t} = \frac{1}{2+r} n_{t+1} + \frac{1+r}{2+r} n_{t-1} + \frac{1}{\lambda(2+r)} (F_{n,t} - W_{t}).$$
 (24)

Equilíbrio Geral

Mercados e agentes

• Famílias e empresas se encontram em três mercados:

Mercados e agentes

- Famílias e empresas se encontram em três mercados:
 - Mercado de bens e servi
 ços (determinam o PIB, o consumo e o investimento).
 - Mercado de trabalho (determinam o número de trabalhadores e a horas trabalhadas).
 - Mercados financeiros (coordenam a alocação da poupança em ativos financeiros – ações e títulos)

Da contabilidade social, nós sabemos que:

$$y_t = c_t + i_t = F(k_t, n_t)$$
 (25)

A restrição das famílias é dada por:

$$\Delta a_{t+1} + c_t = w_t n_t + x_t + r_t a_t. \tag{26}$$

A lei de movimento do capital é dada por:

$$\Delta k_{t+1} = i_t - \delta k_t. \tag{27}$$

Ao combinarmos as três equações anteriores, temos:

$$x_t = F(k_t, n_t) - w_t n_t - \Delta k_{t+1} - \delta k_t + \Delta a_{t+1} - r a_t.$$
 (28)

Dado que

$$\Pi_t = y_t - w_t n_t - i_t + \Delta b_{t+1} - r b_t, \tag{29}$$

temos:

$$x_t - \Pi_t = \Delta (a_{t+1} - b_{t+1}) - r (a_t - b_t).$$
 (30)

e como os ativos das famílias (a) são iguais às dívidas das empresas (b), temos que $x_t=\Pi_t$

Como $F_{n,t}=w_t$ e $F_{k,t}=r+\delta$, podemos reescrever a equação de lucro como:

$$\Pi_{t} = F(k_{t}, n_{t}) - F_{n,t}n_{t} - \Delta k_{t+1} - (F_{k,t+1} - r)k_{t} + \Delta b_{t+1} - rb_{t}$$

$$= F(k_{t}, n_{t}) - F_{n,t}n_{t} - F_{k,t}k_{t} - \Delta (k_{t+1} - b_{t+1}) + r(k_{t} - b_{t}).$$
(31)

O Teorema de Euler nos diz que, se a função de produção for homogêna de grau 1 (e.g. retornos constantes de escala), temos

$$F(k_t, n_t) = F_{n,t} n_t + F_{k,t} k_t, (32)$$

podemos reescrever a equação de lucro como:

$$\Pi_{t} = -(k_{t+1} - b_{t+1}) + (1+r)(k_{t} - b_{t}), \qquad (33)$$

onde $k_t - b_t$ pode ser interpretado como o valor líquido da empresa.

A equação anterior pode ser reescrita como:

$$k_t - b_t = \frac{\prod_t + (k_{t+1} - b_{t+1})}{1 + r},$$
 (34)

ou

$$k_t - b_t = \sum_{s=0}^{\infty} \frac{\prod_{t+s}}{(1+r)^{s+1}},$$
 (35)

com a seguinte condição de transversalidade:

$$\lim_{s \to \infty} \frac{k_{t+s} - b_{t+s}}{(1+r)^s} = 0 \tag{36}$$

O equilíbro no mercado de trabalho é dado por:

$$F_{n,t} = w_t,$$
 (Demanda)

$$U_{n,t} = -w_t U_{c,t},$$
 (Oferta)

$$w_t = F_{n,t} = -\frac{U_{n,t}}{U_{c,t}}.$$
 (Equilíbrio)

Trabalhemos com uma função de produção Cobb-Douglas: $y_t = A_t k_t^\alpha n_t^{1-\alpha}$, na qual $F_{n,t} = (1-\alpha) A_t \left(\frac{k_t}{n_t}\right)^\alpha$. Consideremos também $U\left(c_t, I_t\right) = \frac{c_t^{1-\sigma}-1}{1-\sigma} + \ln\left(1-n_t\right)$. Portanto,

Trabalhemos com uma função de produção Cobb–Douglas: $y_t = A_t k_t^\alpha n_t^{1-\alpha}$, na qual $F_{n,t} = (1-\alpha) A_t \left(\frac{k_t}{n_t}\right)^\alpha$. Consideremos também $U(c_t, I_t) = \frac{c_t^{1-\sigma}-1}{1-\sigma} + \ln\left(1-n_t\right)$. Portanto,

$$n_t^d = \left[\frac{w_t}{(1-\alpha)A_t}\right]^{-\alpha} k_t,$$
 (Demanda)

Trabalhemos com uma função de produção Cobb–Douglas: $y_t = A_t k_t^\alpha n_t^{1-\alpha}$, na qual $F_{n,t} = (1-\alpha) A_t \left(\frac{k_t}{n_t}\right)^\alpha$. Consideremos também $U(c_t, I_t) = \frac{c_t^{1-\sigma}-1}{1-\sigma} + \ln\left(1-n_t\right)$. Portanto,

$$n_t^d = \left[\frac{w_t}{(1-lpha)A_t}\right]^{-lpha} k_t,$$
 (Demanda)

$$n_t^s = 1 - \frac{c^(\sigma)_t}{w_t},$$
 (Oferta)

Trabalhemos com uma função de produção Cobb-Douglas: $y_t = A_t k_t^\alpha n_t^{1-\alpha}$, na qual $F_{n,t} = (1-\alpha) A_t \left(\frac{k_t}{n_t}\right)^\alpha$. Consideremos também $U\left(c_t, I_t\right) = \frac{c_t^{1-\sigma}-1}{1-\sigma} + \ln\left(1-n_t\right)$. Portanto,

$$n_t^d = \left[\frac{w_t}{(1-lpha)A_t}\right]^{-lpha} k_t,$$
 (Demanda)

$$n_t^s = 1 - \frac{c^{(\sigma)}_t}{w_t},$$
 (Oferta)

$$n_t = \left[\frac{w_t}{(1-\alpha)A_t}\right]^{-\alpha} k_t = 1 - \frac{c(\sigma)_t}{w_t}.$$
 (Equilíbrio)

Mercado de bens e serviços

No mercado de bens e seviços, temos que:

$$y_t^d = c_t + i_t,$$
 (Demanda)

e com as definições sobre a dinâmica do capital e da função de produção, podemos reescrever a equação acima da seguinte forma:

$$y_t^d = c_t + \left[\frac{\alpha A_t}{r+\delta}\right]^{1/(1-\alpha)} n_t - (1-r-\delta)k_t,$$
 (Demanda)

е

$$y_t^s = A_t k_t^{\alpha} n_t^{1-\alpha}$$
 (Oferta)

Mercado de bens e serviços

Portanto, em equilíbrio, temos:

$$A_t k_t^{\alpha} n_t^{1-\alpha} = c_t + \left[\frac{\alpha A_t}{r+\delta}\right]^{1/(1-\alpha)} n_t - (1-r-\delta)k_t$$
, (Demanda)

Referências i

Wickens, Michael. 2012. *Macroeconomic Theory: A Dynamic General Equilibrium Approach*. Princeton University Press.