PETERSON SCHUBERT CALCULUS

Rebecca Goldin

George Mason University

AMS Central Sectional Meeting, St. Louis

FLAG VARIETIES

 $Sl(n,\mathbb{C})/B$, B upper triangular special linear matrices: Identify with set $\{V_{\bullet}\}$ of nested vector spaces:

$$\{\{0\}\subset V_1\subset V_2\subset\cdots\subset V_n=\mathbb{C}^n\}$$

$$\dim(V_i)=i.$$

G complex semisimple Lie group, with Lie algebra $\mathfrak g$

 ${\it B}$ choice of Borel, with Lie algebra ${\it b}$, and ${\it B}^-$ opposite Borel

 $T = B \cap B^-$ a maximal torus, with Lie algebra \mathfrak{t}

G/B the flag variety.

HESSENBERG VARIETY/PETERSON VARIETY, TYPE A

For $h: \{1, ..., n\} \to \{1, ..., n\}, \quad i \le h(i) \le h(i+1) \ x \in \mathfrak{g}$, the Hessenberg variety associated with x, h is

$$\mathcal{H}ess(x,h) = \{V_{\bullet} : xV_i \subseteq V_{h(i)}\} \subset G/B.$$

Special case: $h_0 = (2, 3, ..., n - 1, n, n)$ and

$$x = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ & & & & & & \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

$$\mathbf{P} := \mathcal{H}ess(\mathbf{x}, h) = \{V_{\bullet} : xV_{i} \subseteq V_{i+1}\}$$

is the **Peterson variety** (in type A)

4□▶4∰▶4분▶4분▶ 분 90<</p>

(GMU)

HESSENBERG VARIETY/PETERSON VARIETY, TYPE A

For $h: \{1, ..., n\} \to \{1, ..., n\}, \quad i \le h(i) \le h(i+1) \ x \in \mathfrak{g}$, the Hessenberg variety associated with x, h is

$$\mathcal{H}ess(x,h) = \{V_{\bullet} : xV_i \subseteq V_{h(i)}\} \subset G/B.$$

Special case: $h_0 = (2, 3, ..., n - 1, n, n)$ and

$$x = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 0 & 1 & 0 \\ \vdots & & & & & \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

$$\mathbf{P} := \mathcal{H}ess(\mathbf{x}, h) = \{V_{\bullet} : xV_i \subseteq V_{i+1}\}$$

is the **Peterson variety** (in type A)

(GMU) OCTOBER 19, 2025 3/16

ON THE COHOMOLOGY

- There are distinguished classes $\sigma_w \in H^*(G/B)$ for $w \in W$ that form a basis $\{\sigma_w | w \in W\}$ of the cohomology ring. It is Poincaré dual to the basis $\{X_w = BwB/B\}$.
- But each element σ_w is "the" Poincaré dual to the opposite Schubert variety $X^w = B^- wB/B$.
- This holds equivaraiantly as well: the set $\{\sigma_w \in H_T^*(G/B), w \in W\}$ form a linear basis, as a module over $H_T^*(pt)$. The module structure comes from the map $G/B \rightarrow pt$ inducing a map (going the other way) on cohomology.
- The product in $H^*(G/B)$ or $H^*_{\tau}(G/B)$

$$\sigma_{u}\sigma_{v}=\sum c_{uv}^{w}\sigma_{w}$$

OCTOBER 19, 2025 4/16

ON THE COHOMOLOGY

- There are distinguished classes $\sigma_w \in H^*(G/B)$ for $w \in W$ that form a basis $\{\sigma_w | w \in W\}$ of the cohomology ring. It is Poincaré dual to the basis $\{X_w = BwB/B\}$.
- But each element σ_w is "the" Poincaré dual to the opposite Schubert variety $X^w = B^- wB/B$.
- This holds equivaraiantly as well: the set $\{\sigma_w \in H_T^*(G/B), w \in W\}$ form a linear basis, as a module over $H_T^*(pt)$. The module structure comes from the map $G/B \rightarrow pt$ inducing a map (going the other way) on cohomology.
- The product in $H^*(G/B)$ or $H^*_{\tau}(G/B)$

$$\sigma_{u}\sigma_{v}=\sum c_{uv}^{w}\sigma_{w}$$

defines coefficients c_{uv}^w . They are **nonnegative** in $H^*(pt) \cong \mathbb{Z}$ or **Graham nonnegative** in $H_T^*(pt)$, identified with polynomials in the positive simple roots Δ .

OCTOBER 19, 2025 4/16

THE PETERSON VARIETY

$$\textbf{P} = \{ \textit{V}_{\bullet} : x \textit{V}_{\textit{i}} \subset \textit{V}_{\textit{i}+1} \} \hookrightarrow^{\iota} \textit{Fl}^{*}(\mathbb{C}^{\textit{n}}),$$

$$X = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ & & \dots & & \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

EXAMPLE

Example (n = 3): Flags in **P** may be represented by elements:

$$\mathbf{P} = \begin{pmatrix} a & b & 1 \\ b & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \cup \begin{pmatrix} c & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cup \begin{pmatrix} 1 & 0 & 0 \\ 0 & d & 1 \\ 0 & 1 & 0 \end{pmatrix} \cup \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- Cells $C_A = Bw_AB/B \cap \mathbf{P}$ are indexed by subsets $A \subset \Delta$, where w_A is the largest element of the Weyl group generated by the simple roots in A
- **P** has a $S := \mathbb{C}^*$ action, by diagonal matrices w entries (t^n, t^{n-1}, \dots, t) .
- $\iota^*: H^*_S(G/B) \longrightarrow H^*_S(\mathbf{P})$ induced from inclusion ι is a surjection.

GMU) OCTOBER 19, 2025 5/16

THE PETERSON VARIETY

$$\mathbf{P} = \{V_{\bullet} : \mathsf{x} V_i \subset V_{i+1}\} \hookrightarrow^{\iota} \mathsf{F} l^*(\mathbb{C}^n), \qquad \mathbf{x} = \begin{pmatrix} 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ & & \cdots & & \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

EXAMPLE

Example (n = 3): Flags in **P** may be represented by elements:

$$\mathbf{P} = \begin{pmatrix} a & b & 1 \\ b & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \cup \begin{pmatrix} c & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cup \begin{pmatrix} 1 & 0 & 0 \\ 0 & d & 1 \\ 0 & 1 & 0 \end{pmatrix} \cup \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- Cells $C_A = Bw_AB/B \cap \mathbf{P}$ are indexed by subsets $A \subset \Delta$, where w_A is the largest element of the Weyl group generated by the simple roots in A.
- **P** has a $S := \mathbb{C}^*$ action, by diagonal matrices w entries (t^n, t^{n-1}, \dots, t) .
- $\iota^*: H^*_S(G/B) \longrightarrow H^*_S(\mathbf{P})$ induced from inclusion ι is a surjection.

MU) OCTOBER 19, 2025 5/16

PETERSON SCHUBERT CALCULUS POSITIVITY, TYPE A

For $A \subset \{1, 2, ..., n-1\}$, let $v_A = \prod_{j \in A} s_j$, Define $p_A = \iota^*(\sigma_{v_A})$, where $\sigma_{v_A} \in H^*_S(G/B)$ is the corresponding Schubert class.

THEOREM (TYMOCZKO-HARADA)

 $H_S^*(\mathbf{P})$ has a linear basis $\{p_A : A \subset \{1, \dots, n-1\}\}$, where p_A is the restriction of the Schubert class σ_{V_A} to \mathbf{P} .

Expand the product to get coefficients $b_{AB}^{C} \in \mathbb{Z}[t]$ defined by:

$$p_A p_B = \sum_C b_{AB}^C p_C.$$

THEOREM (G-GORBUTT)

The coefficients b_{AB}^{C} are nonnegative monomials in t.

THEOREM (G.-MIHALCEA-SINGH)

The class p_A is Poincaré dual to the varieties

 $\{\overline{Bw_AB/B} \cap \overline{\mathbf{P}} | A \subset \{1, 2, ..., n-1\}\}$, where w_A is a longest element in the Weyl group associated with A.

(GMU) OCTOBER 19, 2025

6/16

POSITIVE FORMULA FOR PETERSON SCHUBERT CALCULUS

$$p_A p_B = \sum_C b_{AB}^C p_C.$$

For any set $A \subset \{1, \dots, n-1\}$ with $\mathcal{H}_A := max(A)$ and $\mathcal{T}_A := min(A)$.

$$T_A$$
 2345 8910 H_A

THEOREM (G.-GORBUTT)

Let $A, B, C \subseteq \{1, ..., n-1\}$ be nonempty consecutive subsets. If $C \supseteq A \cup B$ and $|C| \le |A| + |B|$, then

$$b_{A,B}^{C} = d! \begin{pmatrix} \mathcal{H}_{A} - \mathcal{T}_{B} + 1 \\ d, \ \mathcal{T}_{A} - \mathcal{T}_{C}, \ \mathcal{H}_{C} - \mathcal{H}_{B} \end{pmatrix} \begin{pmatrix} \mathcal{H}_{B} - \mathcal{T}_{A} + 1 \\ d, \ \mathcal{T}_{B} - \mathcal{T}_{C}, \ \mathcal{H}_{C} - \mathcal{H}_{A} \end{pmatrix} t^{d}$$

for d := |A| + |B| - |C|.

(GMU) OCTOBER 19, 2025

7/16

ON (FORWARD) STABILITY, TYPE A

Let \mathbf{P}_n denote the Peterson for FI(n). Then let $FI(n) \hookrightarrow FI(n+1)$ by

$$V_{ullet}\mapsto (V_{ullet}\oplus 0\subset V_n\oplus \mathbb{C})$$

Let x_n be regular nilpotent $n \times n$ of Joran type (n). Then x_{n+1} has a copy of x_n inside, as the NW $n \times n$ entries. $\mathbf{P}_n \hookrightarrow \mathbf{P}_{n+1}$ under this inclusion. Let $A, B, C \subseteq \{1, \dots, n-1\}$ be nonempty consecutive subsets. If $C \supseteq A \cup B$ and $|C| \le |A| + |B|$, then

$$b_{A,B}^{C} = d! \begin{pmatrix} \mathcal{H}_{A} - \mathcal{T}_{B} + 1 \\ d, \ \mathcal{T}_{A} - \mathcal{T}_{C}, \ \mathcal{H}_{C} - \mathcal{H}_{B} \end{pmatrix} \begin{pmatrix} \mathcal{H}_{B} - \mathcal{T}_{A} + 1 \\ d, \ \mathcal{T}_{B} - \mathcal{T}_{C}, \ \mathcal{H}_{C} - \mathcal{H}_{A} \end{pmatrix} t^{d}$$

for d := |A| + |B| - |C|.

Forward stability: Lower bound for n: $max(\mathcal{H}_A, \mathcal{H}_B) + |A \cap B|$.

34567 5678910

3|4|5|6|7|8|9|101111213 | 2|3|4|5|6|7|8|9|101112 | 1|2|3|4|5|6|7|8|9|101

012345678910

MU) OCTOBER 19, 2025 8/16

$$b_{A,B}^{C} = d! \binom{\mathcal{H}_A - \mathcal{T}_B + 1}{d,~\mathcal{T}_A - \mathcal{T}_C,~\mathcal{H}_C - \mathcal{H}_B} \binom{\mathcal{H}_B - \mathcal{T}_A + 1}{d,~\mathcal{T}_B - \mathcal{T}_C,~\mathcal{H}_C - \mathcal{H}_A} t^d,$$

EXAMPLE

Let
$$A = \{1, 2\}$$
, $B = \{2, 3\}$ and $C = \{1, 2, 3\}$, so $d = 1$.

$$\mathcal{T}_A = 1$$
 $\mathcal{H}_A = 2$

1 2 3 4 5 A
$$\mathcal{T}_C = 1, \mathcal{H}_C = 3$$

$$T_B = 2$$
 $\mathcal{H}_B = 3$

$$b_{12,23}^{123} = 1! {2-2+1 \choose 1, 1-1, 3-3} {3-1+1 \choose 1, 2-1, 3-2} t = {1 \choose 1} \frac{3!}{1!1!1!} = 6t.$$

Similarly,
$$b_{12,23}^{1234} = 3$$
. All other $b_{12,23}^{C} = 0$. Thus $p_{12}p_{23} = (6t)p_{123} + 3p_{1234}$.

(GMU) OCTOBER 19, 2025 9/16

イロト 不倒 トイヨト イヨト

$$b_{A,B}^{C} = d! \binom{\mathcal{H}_A - \mathcal{T}_B + 1}{d,~\mathcal{T}_A - \mathcal{T}_C,~\mathcal{H}_C - \mathcal{H}_B} \binom{\mathcal{H}_B - \mathcal{T}_A + 1}{d,~\mathcal{T}_B - \mathcal{T}_C,~\mathcal{H}_C - \mathcal{H}_A} t^d,$$

EXAMPLE

Let
$$A = \{1, 2\}$$
, $B = \{2, 3\}$ and $C = \{1, 2, 3\}$, so $d = 1$.

$$\mathcal{T}_A = 1$$
 $\mathcal{H}_A = 2$

$$(1)(2)(3)(4)(5) A \qquad \mathcal{T}_C = 1, \mathcal{H}_C = 3$$

$$(1)$$
 (2) (3) (4) (5) (5)

$$T_B = 2$$
 $H_B = 3$

$$b_{12,23}^{123} = 1! \binom{2-2+1}{1,1-1,3-3} \binom{3-1+1}{1,2-1,3-2} t = \binom{1}{1} \frac{3!}{1!1!1!} = 6t.$$

Similarly, $b_{12,23}^{1234} = 3$. All other $b_{12,23}^{C} = 0$. Thus $p_{12}p_{23} = (6t)p_{123} + 3p_{1234}$.

(GMU) OCTOBER 19, 2025 9/16

イロト 不倒 トイヨト イヨト

$$b_{A,B}^{C} = d! \binom{\mathcal{H}_A - \mathcal{T}_B + 1}{d,~\mathcal{T}_A - \mathcal{T}_C,~\mathcal{H}_C - \mathcal{H}_B} \binom{\mathcal{H}_B - \mathcal{T}_A + 1}{d,~\mathcal{T}_B - \mathcal{T}_C,~\mathcal{H}_C - \mathcal{H}_A} t^d,$$

EXAMPLE

Let
$$A = \{1, 2\}$$
, $B = \{2, 3\}$ and $C = \{1, 2, 3\}$, so $d = 1$.

$$\mathcal{T}_A = 1$$
 $\mathcal{H}_A = 2$

1 2 3 4 5 A
$$\mathcal{T}_C = 1, \mathcal{H}_C = 3$$

$$\mathcal{T}_B = 2$$
 $\mathcal{H}_B = 3$ $b_{12,23}^{123} = 1! \binom{2-2+1}{1,1-1,3-3} \binom{3-1+1}{1,2-1,3-2} t = \binom{1}{1} \frac{3!}{1!1!1!} = 6t.$

OCTOBER 19, 2025 9/16

$$b_{A,B}^{C} = d! \binom{\mathcal{H}_A - \mathcal{T}_B + 1}{d,~\mathcal{T}_A - \mathcal{T}_C,~\mathcal{H}_C - \mathcal{H}_B} \binom{\mathcal{H}_B - \mathcal{T}_A + 1}{d,~\mathcal{T}_B - \mathcal{T}_C,~\mathcal{H}_C - \mathcal{H}_A} t^d,$$

EXAMPLE

Let
$$A = \{1, 2\}$$
, $B = \{2, 3\}$ and $C = \{1, 2, 3\}$, so $d = 1$.

$$\mathcal{T}_A = 1$$
 $\mathcal{H}_A = 2$

1 2 3 4 5 A
$$T_C = 1, H_C = 3$$

$$\mathcal{T}_B = 2$$
 $\mathcal{H}_B = 3$

$$b_{12,23}^{123} = 1! \binom{2-2+1}{1,1-1,3-3} \binom{3-1+1}{1,2-1,3-2} t = \binom{1}{1} \frac{3!}{1!1!1!} = 6t.$$

Similarly,
$$b_{12.23}^{1234} = 3$$
. All other $b_{12.23}^{C} = 0$. Thus $p_{12}p_{23} = (6t)p_{123} + 3p_{1234}$.

(GMU) OCTOBER 19, 2025 9/16

4 D > 4 A > 4 B > 4 B > -

$$b_{A,B}^{C} = d! \binom{\mathcal{H}_A - \mathcal{T}_B + 1}{d, \ \mathcal{T}_A - \mathcal{T}_C, \ \mathcal{H}_C - \mathcal{H}_B} \binom{\mathcal{H}_B - \mathcal{T}_A + 1}{d, \ \mathcal{T}_B - \mathcal{T}_C, \ \mathcal{H}_C - \mathcal{H}_A} t^d,$$

EXAMPLE

Let
$$A = \{1, 2\}$$
, $B = \{2, 3\}$ and $C = \{1, 2, 3\}$, so $d = 1$.

$$\mathcal{T}_A = 1$$
 $\mathcal{H}_A = 2$

1 2 3 4 5 A
$$T_C = 1, H_C = 3$$

$$(1)$$
 (2) (3) (4) (5) (5)

$$\mathcal{T}_B = 2$$
 $\mathcal{H}_B = 3$
 $b_{12,23}^{123} = 1! \binom{2-2+1}{1,1-1,3-3} \binom{3-1+1}{1,2-1,3-2} t = \binom{1}{1} \frac{3!}{1!1!1!} = 6t.$

Similarly,
$$b_{12,23}^{1234}=3$$
. All other $b_{12,23}^{C}=0$. Thus $p_{12}p_{23}=(6t)p_{123}+3p_{1234}$.

OCTOBER 19, 2025 9/16

OTHER LIE TYPES

Let G be a complex algebraic Lie group, with Lie algebra \mathfrak{g} .

B a Borel with Lie algebra \mathfrak{b} .

 $H \subset \mathfrak{g}$ is a **Hessenberg space** if $\mathfrak{b} \subset H$ and H is \mathfrak{b} -invariant: $[H, \mathfrak{b}] \subset H$.

DEFINITION

For $x \in \mathfrak{g}$ and H a Hessenberg space, the associated Hessenberg variety in G/B is

$$\mathcal{H}ess(\mathsf{x},H) := \{ gB \in G/B : Ad(g^{-1})\mathsf{x} \in H \}$$

Decompose

$$\mathfrak{g} = \mathfrak{b} \oplus \bigoplus_{\alpha \in \Phi^+} \mathfrak{g}_{-\alpha}$$

Let

$$H=H_0=\mathfrak{b}\oplus\bigoplus_{lpha\in\Delta}\mathfrak{g}_{-lpha}\quad ext{and}\quad ext{$x=n=\sum_{lpha\in\Delta}\emph{e}_{lpha},\quad 0
eq\emph{e}_{lpha}\in\mathfrak{g}_{lpha}.$}$$

The **Peterson variety** is

$$\mathbf{P} := \mathcal{H} ess(\mathsf{n}, H_0)$$

MU)

Still have:

- T action on G/B. Restricts to a circle action S on \mathbf{P} .
- Schubert classes $\sigma_w \in H_T^*(G/B)$ forming a basis, and satisfying Graham positivity.
- Classes $\sigma_{v_A} \in H_T^*(G/B)$ for Coxeter elements v_A associated to each $A \subset \Delta$.

THEOREM (DRELLICH)

There is a linear basis $\{p_A : A \subset \Delta\}$ of $H_S^*(\mathbf{P})$, where p_A is the restriction of the Schubert class σ_{V_A} to \mathbf{P} .

THEOREM (G.-MIHALCEA-SINGH)

The coefficients b_{AB}^{C} are monomials with positive, integral coefficients.

GMU) OCTOBER 19, 2025 11/16

KEY IDEA

- The intersection of certain Schubert varieties with the Peterson is a smaller Peterson variety.
- There are enough of these intersections to get the whole cohomology.

 W_A Weyl group generated by simple reflections from A. w_A maximal element of W_A .

$$\mathbf{P}_{A}^{o} = \mathbf{P} \cap Bw_{A}B/B \qquad \mathbf{P}_{A} = \overline{\mathbf{P}_{A}^{o}} \subset \mathbf{P}$$

THEOREM (G.-MIHALCEA-SINGH: DUALITY THEOREM)

Let A, B be subsets of the set of simple roots and let $v_A \in W$ be a Coxeter element for A. Then

$$\langle \iota^* \sigma_{\mathsf{v}_{\mathsf{A}}}, [\mathsf{P}_{\mathsf{B}}]_{\mathcal{S}} \rangle = \mathsf{m}(\mathsf{v}_{\mathsf{A}}) \delta_{\mathsf{A},\mathsf{B}},$$

where $m(v_A)$ is the multiplicity of the (unique) point of $X^{v_A} \cap \mathbf{P}_A$.

Change of basis
$$\{p_A = \iota^* \sigma_{v_A}\}$$
 to $\{\Omega_A = \frac{p_A}{m(v_A)}\}$

(GMU) OCTOBER 19, 2025 12/16

EQUIVARIANT MONK RULE, ALL LIE TYPES

For $\alpha \in \Phi$ (any root), α^{\vee} denotes the coroot corresponding to α , i.e.

$$\alpha^{\vee} = 2(\alpha|-)/(\alpha|\alpha)$$

For $A \subset \Delta$, C_A denotes the Cartan matrix of A (entries are $\langle \beta^{\vee}, \alpha \rangle$) $f_A := \det(C_A)$ (the **connection index** of A). ϖ_{α} (resp. ϖ_{α}^{\vee}) for the fundamental weights (resp. coweights) for Δ . ϖ_{α}^{A} fundamental weights, such that $\langle \beta^{\vee}, \varpi_{\alpha}^{A} \rangle = \delta_{\alpha\beta}$ for all $\beta \in A$.

 $\varpi_{\alpha}^{A\vee}$ fundamental coweights dual to the roots $\alpha \in A$.

THEOREM (G-SINGH)

For
$$A\subset \Delta$$
, let $\Omega_A=\prod_{eta\in A} p_{\{eta\}}$. For any $lpha\in \Delta$,

$$\Omega_{\alpha}\Omega_{A} = \begin{cases} \Omega_{A\cup\{\alpha\}} & \text{if } \alpha \not\in A, \\ 2\left\langle \rho_{A}^{\vee}, \varpi_{\alpha}^{A} \right\rangle t\Omega_{A} + \sum\limits_{\substack{\gamma \in \Delta \backslash A \\ B = A \cup \{\gamma\}}} \frac{f_{B}}{f_{A}} \left\langle \varpi_{\gamma}^{B \vee}, \varpi_{\alpha}^{B} \right\rangle \Omega_{B} & \text{if } \alpha \in A. \end{cases}$$

where $ho_A^{\lor} = \frac{1}{2} \sum_{\alpha \in \Phi_A^+} \alpha^{\lor}$

13/16

(GMU) OCTOBER 19, 2025

TOWARD K-THEORY

K-theory of G/B

- 2 "natural bases" rather than 1 for K(G/B). 4 natural bases rather than 2 for $K_T(G/B)$.
- For the appropriate basis $\{\mathcal{O}_w : w \in W\}$ of $K_T(G/B)$, positivity is an alternating sum:

$$\mathcal{O}_{\it u}\mathcal{O}_{\it v} = \sum_{\it w \in \it W} \it c_{\it uv}^{\it w}\mathcal{O}_{\it w}$$

where $(-1)^{\ell(w)-\ell(u)-\ell(v)}c_{uv}^w$ is positive in variables $e^{\alpha_i}-1$ for $\alpha_i\in\Delta$.

What about for Peterson varieties?

- There is an analogous basis $\{\mathcal{O}_A\}$, $A \subset \{1, \dots, n-1\}$
- Calculations suggest positivity
- Some standard results about vanishing of higher sheaf cohomology for G/B do not hold for P.

GMU) OCTOBER 19, 2025 14/16

TOWARD K-THEORY

K-theory of G/B

- 2 "natural bases" rather than 1 for K(G/B). 4 natural bases rather than 2 for $K_T(G/B)$.
- For the appropriate basis $\{\mathcal{O}_w : w \in W\}$ of $K_T(G/B)$, positivity is an alternating sum:

$$\mathcal{O}_{\it u}\mathcal{O}_{\it v} = \sum_{\it w \in \it W} \it c_{\it uv}^{\it w}\mathcal{O}_{\it w}$$

where $(-1)^{\ell(w)-\ell(u)-\ell(v)}c_{uv}^w$ is positive in variables $e^{\alpha_i}-1$ for $\alpha_i\in\Delta$.

What about for Peterson varieties?

- There is an analogous basis $\{\mathcal{O}_A\}$, $A \subset \{1, \dots, n-1\}$
- Calculations suggest positivity
- Some standard results about vanishing of higher sheaf cohomology for G/B do not hold for P.

GMU) OCTOBER 19, 2025 14/16

THANK YOU!

15/16

(GMU) OCTOBER 19, 2025

HAVE YOU SEEN THIS IDENTITY?

 $m, n, w, x, y, z \in \mathbb{Z}$ with w + x = y + z

THEOREM (G-GORBUTT)

$$\textstyle \binom{w+m}{w}\binom{y+m}{x}\binom{y+m}{y}\binom{z+n}{z} = \sum_{\substack{0 \leq i \leq m \\ 0 \leq j \leq n}} \binom{w+m+j}{i, \ j, \ m-i, \ x-i-j, \ z-x+j, \ y-x+i} \binom{w+i+n}{n-j}.$$

(We have a bijections of sets that proves this, but maybe there's a nicer proof?)

GMU) OCTOBER 19, 2025 16/16