Classification ML project ¶

```
In [2]: import itertools
   import numpy as np
   import matplotlib.pyplot as plt
   from matplotlib.ticker import NullFormatter
   import pandas as pd
   import numpy as np
   import matplotlib.ticker as ticker
   from sklearn import preprocessing
%matplotlib inline
```

About dataset

This dataset is about past loans. The **Loan_train.csv** data set includes details of 346 customers whose loan are already paid off or defaulted. It includes following fields:

Description	Field
Whether a loan is paid off on in collection	Loan_status
Basic principal loan amount at the	Principal
Origination terms which can be weekly (7 days), biweekly, and monthly payoff schedule	Terms
When the loan got originated and took effects	Effective_date
Since it's one-time payoff schedule, each loan has one single due date	Due_date
Age of applicant	Age
Education of applicant	Education
The gender of applicant	Gender

Load Data From CSV File

```
In [3]: df = pd.read_csv('loan_train.csv')
    df.head()
```

Out[3]:

	Unnamed: 0	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	edu
0	0	0	PAIDOFF	1000	30	9/8/2016	10/7/2016	45	Scl
1	2	2	PAIDOFF	1000	30	9/8/2016	10/7/2016	33	В€
2	3	3	PAIDOFF	1000	15	9/8/2016	9/22/2016	27	(
3	4	4	PAIDOFF	1000	30	9/9/2016	10/8/2016	28	(
4	6	6	PAIDOFF	1000	30	9/9/2016	10/8/2016	29	(
4									

```
In [4]: df.shape
Out[4]: (346, 10)
```

Convert to date time object

```
In [5]: df['due_date'] = pd.to_datetime(df['due_date'])
    df['effective_date'] = pd.to_datetime(df['effective_date'])
    df.head()
```

Out[5]:

	Unnamed: 0	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	edu
0	0	0	PAIDOFF	1000	30	2016-09-08	2016-10- 07	45	Scł
1	2	2	PAIDOFF	1000	30	2016-09-08	2016-10- 07	33	Ве
2	3	3	PAIDOFF	1000	15	2016-09-08	2016-09- 22	27	С
3	4	4	PAIDOFF	1000	30	2016-09-09	2016-10- 08	28	С
4	6	6	PAIDOFF	1000	30	2016-09-09	2016-10- 08	29	С

Data visualization and pre-processing

260 people have paid off the loan on time while 86 have gone into collection

Lets plot some columns to underestand data better:

```
In [8]: import seaborn as sns

bins = np.linspace(df.Principal.min(), df.Principal.max(), 10)
g = sns.FacetGrid(df, col="Gender", hue="loan_status", palette="Set 1", col_wrap=2)
g.map(plt.hist, 'Principal', bins=bins, ec="k")

g.axes[-1].legend()
plt.show()
```



```
In [9]: bins=np.linspace(df.age.min(), df.age.max(), 10)
g = sns.FacetGrid(df, col="Gender", hue="loan_status", palette="Set
1", col_wrap=2)
g.map(plt.hist, 'age', bins=bins, ec="k")

g.axes[-1].legend()
plt.show()
```


Pre-processing: Feature selection/extraction

Lets look at the day of the week people get the loan

```
In [10]: df['dayofweek'] = df['effective_date'].dt.dayofweek
bins=np.linspace(df.dayofweek.min(), df.dayofweek.max(), 10)
g = sns.FacetGrid(df, col="Gender", hue="loan_status", palette="Set
1", col_wrap=2)
g.map(plt.hist, 'dayofweek', bins=bins, ec="k")
g.axes[-1].legend()
plt.show()
```


We see that people who get the loan at the end of the week dont pay it off, so lets use Feature binarization to set a threshold values less then day 4

n [11]:	<pre>df['weekend']= df['dayofweek'].apply(lambda x: 1 if (x>3) else 0) df.head()</pre>									0)
t[11]:		Unnamed: 0	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	edu
	0	0	0	PAIDOFF	1000	30	2016-09-08	2016-10- 07	45	Scł
	1	2	2	PAIDOFF	1000	30	2016-09-08	2016-10- 07	33	Ве
	2	3	3	PAIDOFF	1000	15	2016-09-08	2016-09- 22	27	С
	3	4	4	PAIDOFF	1000	30	2016-09-09	2016-10- 08	28	С
	4	6	6	PAIDOFF	1000	30	2016-09-09	2016-10- 08	29	c

Convert Categorical features to numerical values

Lets look at gender:

86 % of female pay there loans while only 73 % of males pay there loan

Lets convert male to 0 and female to 1:

```
In [13]: df['Gender'].replace(to_replace=['male','female'], value=[0,1],inpl
ace=True)
df.head()
```

Out[13]:

	Unnamed: 0	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	edu
0	0	0	PAIDOFF	1000	30	2016-09-08	2016-10- 07	45	Scł
1	2	2	PAIDOFF	1000	30	2016-09-08	2016-10- 07	33	Ве
2	3	3	PAIDOFF	1000	15	2016-09-08	2016-09- 22	27	С
3	4	4	PAIDOFF	1000	30	2016-09-09	2016-10- 08	28	С
4	6	6	PAIDOFF	1000	30	2016-09-09	2016-10- 08	29	С

One Hot Encoding

How about education?

```
df.groupby(['education'])['loan_status'].value_counts(normalize=Tru
Out[14]: education
                                loan_status
         Bechalor
                                PAIDOFF
                                                0.750000
                                                0.250000
                                COLLECTION
                                                0.741722
         High School or Below
                                PAIDOFF
                                COLLECTION
                                                0.258278
         Master or Above
                                                0.500000
                                COLLECTION
                                PAIDOFF
                                                0.500000
         college
                                PAIDOFF
                                                0.765101
                                                0.234899
                                COLLECTION
         Name: loan status, dtype: float64
```

Feature befor One Hot Encoding

```
In [15]: df[['Principal','terms','age','Gender','education']].head()
```

Out[15]:

	Principal	terms	age	Gender	education
0	1000	30	45	0	High School or Below
1	1000	30	33	1	Bechalor
2	1000	15	27	0	college
3	1000	30	28	1	college
4	1000	30	29	0	college

Use one hot encoding technique to conver categorical variables to binary variables and append them to the feature Data Frame

Out[16]:

	Principal	terms	age	Gender	weekend	Bechalor	High School or Below	college
0	1000	30	45	0	0	0	1	0
1	1000	30	33	1	0	1	0	0
2	1000	15	27	0	0	0	0	1
3	1000	30	28	1	1	0	0	1
4	1000	30	29	0	1	0	0	1

Feature selection

Lets defind feature sets, X:

```
In [17]: X = Feature
X[0:5]
```

Out[17]:

	Principal	terms	age	Gender	weekend	Bechalor	High School or Below	college
0	1000	30	45	0	0	0	1	0
1	1000	30	33	1	0	1	0	0
2	1000	15	27	0	0	0	0	1
3	1000	30	28	1	1	0	0	1
4	1000	30	29	0	1	0	0	1

What are our lables?

Normalize Data

Data Standardization give data zero mean and unit variance (technically should be done after train test split)

```
In [19]: | X = preprocessing.StandardScaler().fit(X).transform(X)
Out[19]: array([[ 0.51578458, 0.92071769, 2.33152555, -0.42056004, -1.205
         77805,
                 -0.38170062, 1.13639374, -0.86968108],
                [0.51578458, 0.92071769, 0.34170148, 2.37778177, -1.205]
         77805,
                  2.61985426, -0.87997669, -0.86968108],
                [0.51578458, -0.95911111, -0.65321055, -0.42056004, -1.205]
         77805,
                 -0.38170062, -0.87997669, 1.14984679],
                [0.51578458, 0.92071769, -0.48739188, 2.37778177, 0.829]
         34003,
                 -0.38170062, -0.87997669, 1.14984679],
                [0.51578458, 0.92071769, -0.3215732, -0.42056004, 0.829]
         34003,
                 -0.38170062, -0.87997669, 1.14984679]])
```

Classification Modeling

K Nearest Neighbor(KNN)

```
In [21]: \# We split the X into train and test to find the best k
         from sklearn.model selection import train test split
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size
         =0.2, random state=4)
         print ('Train set:', X_train.shape, y_train.shape)
         print ('Test set:', X test.shape, y test.shape)
         Train set: (276, 8) (276,)
         Test set: (70, 8) (70,)
In [45]: # Modeling
         from sklearn.neighbors import KNeighborsClassifier
         #Train Model and Predict
         kNN model = KNeighborsClassifier(n neighbors=k).fit(X train,y train
         kNN model
Out[45]: KNeighborsClassifier(algorithm='auto', leaf size=30, metric='minko
         wski',
                    metric params=None, n jobs=1, n neighbors=3, p=2,
                    weights='uniform')
In [46]: # just for sanity chaeck
         yhat = kNN model.predict(X test)
         yhat[0:5]
Out[46]: array(['PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF'], dty
         pe=object)
```

```
In [67]: # Best k
         Ks=15
         mean_acc=np.zeros((Ks-1))
         std acc=np.zeros((Ks-1))
         ConfustionMx=[];
         for n in range(1,Ks):
             #Train Model and Predict
             kNN_model = KNeighborsClassifier(n_neighbors=n).fit(X_train,y_t
         rain)
             yhat = kNN model.predict(X test)
             mean acc[n-1]=np.mean(yhat==y test);
             std_acc[n-1]=np.std(yhat==y_test)/np.sqrt(yhat.shape[0])
         mean_acc
Out[67]: array([ 0.67142857, 0.65714286, 0.71428571, 0.68571429,
                                                                     0.7571
         4286,
                 0.71428571, 0.78571429, 0.75714286, 0.75714286,
                                                                     0.6714
         2857,
                 0.7
                           , 0.72857143, 0.7
                                                , 0.7
                                                                  ])
In [68]: # Building the model again, using k=7
         from sklearn.neighbors import KNeighborsClassifier
         k = 7
         #Train Model and Predict
         kNN model = KNeighborsClassifier(n neighbors=k).fit(X train,y train
         kNN model
Out[68]: KNeighborsClassifier(algorithm='auto', leaf size=30, metric='minko
         wski',
                    metric params=None, n jobs=1, n neighbors=7, p=2,
```

Decision Tree

weights='uniform')

```
In [84]:
         from sklearn.tree import DecisionTreeClassifier
         DT model = DecisionTreeClassifier(criterion="entropy", max depth =
         DT model.fit(X train,y train)
         DT model
Out[84]: DecisionTreeClassifier(class weight=None, criterion='entropy', max
         depth=4,
                     max features=None, max leaf nodes=None,
                     min impurity decrease=0.0, min impurity split=None,
                     min samples leaf=1, min samples split=2,
                     min weight fraction leaf=0.0, presort=False, random st
         ate=None,
                     splitter='best')
In [85]: yhat = DT model.predict(X test)
         yhat
Out[85]: array(['COLLECTION', 'COLLECTION', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF'
                'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'COLLECTION', '
         PAIDOFF',
                'COLLECTION', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
                'COLLECTION', 'PAIDOFF', 'COLLECTION', 'PAIDOFF', 'PAIDOFF'
                'COLLECTION', 'COLLECTION', 'COLLECTION', 'PAIDOFF', 'COLLE
         CTION',
                'COLLECTION', 'PAIDOFF', 'COLLECTION', 'PAIDOFF', 'COLLECTI
         ON',
                'COLLECTION', 'COLLECTION', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF'
                'COLLECTION', 'PAIDOFF', 'COLLECTION', 'PAIDOFF', 'COLLECTI
         ON',
                'PAIDOFF', 'PAIDOFF', 'COLLECTION', 'PAIDOFF', 'COLLECTION'
                'COLLECTION', 'COLLECTION', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF'
                'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAI
         DOFF',
                'PAIDOFF', 'COLLECTION', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', '
         PAIDOFF '
                'COLLECTION', 'PAIDOFF', 'COLLECTION', 'PAIDOFF', 'COLLECTI
         ON',
                'PAIDOFF', 'PAIDOFF'], dtype=object)
```

Support Vector Machine

```
In [77]: from sklearn import svm
                        SVM model = svm.SVC()
                        SVM model.fit(X train, y train)
Out[77]: SVC(C=1.0, cache size=200, class_weight=None, coef0=0.0,
                             decision function shape='ovr', degree=3, gamma='auto', kernel='r
                       bf',
                             max iter=-1, probability=False, random state=None, shrinking=Tru
                             tol=0.001, verbose=False)
In [82]: | yhat = SVM model.predict(X test)
                        yhat
Out[82]: array(['COLLECTION', 'PAIDOFF', 'PAIDOFF'
                        PAIDOFF',
                                           'COLLECTION', 'COLLECTION', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF'
                                           'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'COL
                        LECTION',
                                           'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'COL
                       LECTION',
                                           'COLLECTION', 'PAIDOFF', 'COLLECTION', 'COLLECTION', 'PAIDO
                       FF',
                                           'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAI
                        DOFF',
                                           'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'COLLECTION', '
                        PAIDOFF',
                                            'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'COLLECTION', 'PAIDOFF', '
                        PAIDOFF',
                                           'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAI
                        DOFF',
                                           'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAI
                        DOFF',
                                           'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'COL
                        LECTION',
                                           'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAI
                        DOFF'], dtype=object)
```

Logistic Regression

```
In [80]: from sklearn.linear_model import LogisticRegression
                        LR model = LogisticRegression(C=0.01).fit(X train,y train)
                        LR model
Out[80]: LogisticRegression(C=0.01, class weight=None, dual=False, fit inte
                        rcept=True,
                                                  intercept scaling=1, max iter=100, multi class='ovr', n
                        jobs=1,
                                                 penalty='12', random state=None, solver='liblinear', tol
                        =0.0001,
                                                 verbose=0, warm start=False)
In [81]: yhat = LR model.predict(X test)
Out[81]: array(['COLLECTION', 'PAIDOFF', 'PAIDOFF'
                       PAIDOFF',
                                          'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAI
                       DOFF',
                                           'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'COLLECTION', '
                       PAIDOFF',
                                           'COLLECTION', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'COLLECTION'
                                          'PAIDOFF', 'PAIDOFF', 'COLLECTION', 'COLLECTION', 'PAIDOFF'
                                          'COLLECTION', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', '
                       PAIDOFF',
                                           'PAIDOFF', 'PAIDOFF', 'COLLECTION', 'PAIDOFF', 'PAIDOFF', '
                       PAIDOFF',
                                           'COLLECTION', 'PAIDOFF', 'PAIDOFF', 'COLLECTION', 'PAIDOFF'
                                          'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAI
                       DOFF',
                                          'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAI
                       DOFF',
                                          'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAI
                       DOFF',
                                           'COLLECTION', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', '
                        PAIDOFF',
                                          'PAIDOFF'], dtype=object)
```

Model Evaluation using Test set

```
In [93]: from sklearn.metrics import jaccard_similarity_score
    from sklearn.metrics import f1_score
    from sklearn.metrics import log_loss
```

First, download and load the test set:

Load Test set for evaluation

```
In [100]: test_df = pd.read_csv('loan_test.csv')
test_df.head()
```

Out[100]:

	Unnamed: 0	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	edu
0	1	1	PAIDOFF	1000	30	9/8/2016	10/7/2016	50	В€
1	5	5	PAIDOFF	300	7	9/9/2016	9/15/2016	35	Ма
2	21	21	PAIDOFF	1000	30	9/10/2016	10/9/2016	43	Scl
3	24	24	PAIDOFF	1000	30	9/10/2016	10/9/2016	26	(
4	35	35	PAIDOFF	800	15	9/11/2016	9/25/2016	29	Вє

```
In [101]: ## Preprocessing
          test df['due date'] = pd.to datetime(test df['due date'])
          test df['effective date'] = pd.to datetime(test df['effective date'
          test df['dayofweek'] = test df['effective date'].dt.dayofweek
          test df['weekend'] = test df['dayofweek'].apply(lambda x: 1 if (x>3
          ) else 0)
          test_df['Gender'].replace(to_replace=['male','female'], value=[0,1]
          ,inplace=True)
          test Feature = test df[['Principal', 'terms', 'age', 'Gender', 'weekend
          test Feature = pd.concat([test Feature,pd.get dummies(test df['educ
          ation'])], axis=1)
          test Feature.drop(['Master or Above'], axis = 1,inplace=True)
          test X = preprocessing.StandardScaler().fit(test Feature).transform
          (test Feature)
          test_X[0:5]
Out[101]: array([[ 0.49362588,  0.92844966,  3.05981865,  1.97714211, -1.303
          84048,
                   2.39791576, -0.79772404, -0.86135677],
                 [-3.56269116, -1.70427745, 0.53336288, -0.50578054, 0.766]
          96499,
                  -0.41702883, -0.79772404, -0.86135677],
                 [ 0.49362588,  0.92844966,  1.88080596,  1.97714211,  0.766
          96499,
                  -0.41702883, 1.25356634, -0.86135677],
                 [0.49362588, 0.92844966, -0.98251057, -0.50578054, 0.766]
          96499,
                  -0.41702883, -0.79772404, 1.16095912],
                 [-0.66532184, -0.78854628, -0.47721942, -0.50578054, 0.766]
          96499,
                   2.39791576, -0.79772404, -0.86135677]])
In [102]: test y = test df['loan status'].values
          test y[0:5]
Out[102]: array(['PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF'], dty
          pe=object)
In [103]: knn yhat = kNN model.predict(test X)
          print("KNN Jaccard index: %.2f" % jaccard similarity score(test y,
          knn yhat))
          print("KNN F1-score: %.2f" % f1 score(test y, knn yhat, average='we
          ighted') )
          KNN Jaccard index: 0.67
          KNN F1-score: 0.63
```

```
In [104]: DT yhat = DT model.predict(test X)
          print("DT Jaccard index: %.2f" % jaccard similarity score(test y, D
          T yhat))
          print("DT F1-score: %.2f" % f1_score(test_y, DT_yhat, average='weig
          hted') )
          DT Jaccard index: 0.72
          DT F1-score: 0.74
In [105]: SVM yhat = SVM model.predict(test X)
          print("SVM Jaccard index: %.2f" % jaccard_similarity_score(test_y,
          SVM yhat))
          print("SVM F1-score: %.2f" % f1 score(test y, SVM yhat, average='we
          ighted') )
          SVM Jaccard index: 0.80
          SVM F1-score: 0.76
In [106]: LR yhat = LR model.predict(test X)
          LR yhat prob = LR model.predict proba(test X)
          print("LR Jaccard index: %.2f" % jaccard similarity score(test y, L
          R yhat))
          print("LR F1-score: %.2f" % f1 score(test y, LR yhat, average='weig
          hted') )
          print("LR LogLoss: %.2f" % log_loss(test_y, LR_yhat_prob))
          LR Jaccard index: 0.74
          LR F1-score: 0.66
          LR LogLoss: 0.57
```

Report

Algorithm	Jaccard	F1-score	LogLoss
KNN	0.67	0.63	NA
Decision Tree	0.72	0.74	NA
SVM	0.80	0.76	NA
LogisticRegression	0.74	0.66	0.57