Math 3302: Exam 3 Practice problems

Nov 24, 2018

Name:				
my honor, I have	neither given	nor received	aid on this e	exam
,	J			
Signature				

The following will be the instructions on your in-class exam (although the number of questions may vary):

- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- No calculators or other electronic devices are permitted without the explicit consent of the instructor. Please turn your cell phone off and keep it out of sight at all times.
- This exam is open book and open notes.

On

- Circle or otherwise indicate your final answers.
- This test has xx problems and is worth xxx points. It is your responsibility to make sure that you have all of the pages.
- Good luck!

#	Score
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
Total	

- 1. The boundary of a lamina consists of the semicircles $y = \sqrt{1-x^2}$ and $y = \sqrt{4-x^2}$, together with the portions of the x-axis that join them. If the density of the lamina is inversely proportional to its distance from the origin, find the location for its center of mass.
- **2.** Bacteria is growing on a slide which corresponds to $[0, 20] \times [0, 5]$, where distances are in centimeters. If the density of the bacteria is determined to be

$$\rho(x,y) = 1000xy (20-x) (5-y) \frac{bacteria}{cm^2}$$

about how many bacteria are on the slide?

3. Rewrite the integral

$$\int_{-1}^{1} \int_{y^2}^{1} \int_{0}^{z} f(x, y, z) \, \mathrm{d}x \, \mathrm{d}z \, \mathrm{d}y$$

in the form

$$\int_{?}^{?} \int_{?}^{?} \int_{?}^{?} f(x, y, z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z,$$

i.e. fill in the correct integration limits.

4. Set up the integral

$$\iiint_V x \, \mathrm{d}V,$$

where V is the tetrahedron bounded by the coordinate planes and the plane 6x + 3y + 2z = 6. Do not evaluate the integral, just set it up.

5. Set up the integral

$$\iiint_{\mathcal{B}} (x^3z + xy^2z) \, \mathrm{d}V$$

Figure 1: Problem 4

in cylindrical coordinates, where R is the solid enclosed by the surface $z + x^2 + y^2 = 0$ and the plane z = -9. Do not evaluate the integral, just set it up.

- **6.** What is the volume of the following region described in spherical coordinates: $1 \le \rho \le 3$, $0 \le \theta \le \frac{\pi}{2}$, $\frac{\pi}{6} \le \phi \le \frac{\pi}{4}$?
- 7. Find the gradient vector field of $f(x,y) = x \ln(y-2z)$.
- **8.** Which of the vector fields $\langle x, x y \rangle$, $\langle y, x y \rangle$, $\langle x, x + y \rangle$, and $\langle y, x + y \rangle$ describes the plot below?

Figure 2: Problem 8

- **9.** Find the work done by the force field $\vec{F}(x,y,z) = \langle z,x,y \rangle$ in moving a particle from the point (3,0,0) to the point $(0, \pi/2, 3)$ along
- (a) a straight line
- (b) the helix $x = 3\cos t$, y = t, $z = \sin t$
- 10. Show that $\vec{F}(x,y,z) = \langle e^y, xe^y + e^z, ye^z \rangle$ is conservative and use this fact to evaluate $\int_C \vec{F} \cdot d\vec{r}$ along the line segment from (0,2,0) to (4,0,3).
- 11. Consider the conservative vector field $\vec{F} = \langle 3y^2 4 + 4xy, 2 + 2x^2 + 6xy \rangle$.
- (a) Find a scalar field f such that $\vec{F} = \nabla f$.
- (b) Use your result from part (a) to compute

$$\int_C \vec{F} \cdot d\vec{r},$$

where C is given by the space curve $\vec{r}(t) = \langle 2t^2, t-2 \rangle$, with $0 \le t \le 1$.

(c) Without using the fundamental theorem of line integrals, compute

$$\int_C \vec{F} \cdot d\vec{r}$$

as in part (b), i.e. you should use the standard approach for computing line integrals from section 13.2.

12. Compute

$$\int_C \left\langle y, -x, xy^2 \right\rangle \cdot d\vec{r},$$

where C is given by $\vec{r}(t) = \langle \sin(t), \cos(t), 3t \rangle, 0 \le t \le 2$.

13. Use Green's theorem to evaluate

$$\int_C y^4 \, \mathrm{d}x + 2xy^3 \, \mathrm{d}y$$

where C is the triangle with line segments from (0,0) to (2,2), from (2,2) to (5,0), and from (5,0) to (0,0).

- 14. Let f be a scalar field and \vec{F} be a vector field. State whether each expression is meaningful. If it is not meaningful explain why. If it is meaningful state whether the result is a scalar field or vector field.
 - $\begin{array}{ll} \textbf{(a)} & (\nabla f) \times (\nabla \cdot \vec{F}) \\ \textbf{(b)} & \nabla (\nabla \cdot \vec{F}) \\ \textbf{(c)} & \nabla \cdot (\nabla f) \end{array}$

 $\begin{array}{ll} \textbf{(f)} & \nabla(\nabla \cdot f) \\ \textbf{(g)} & \nabla f \end{array}$

(d) $\nabla \cdot (\nabla \times (\nabla f))$

 $\begin{array}{ll} \textbf{(i)} & \nabla \cdot (\nabla \cdot \vec{F}) \\ \textbf{(j)} & \nabla \cdot \vec{F} \\ \textbf{(k)} & \nabla \times (\nabla f) \\ \textbf{(j)} & \nabla \times (\nabla \times \vec{F}) \end{array}$

15. Consider the surface defined by the portion of the cone

$$z = \sqrt{x^2 + y^2}$$

that lies over the rectangle $(x, y) \in [0, 2] \times [1, 4]$.

- (a) Find parametric equations for this surface.
- (b) Compute the area of this surface.

- **16.(a)** Show that the parametric equations $x = a \sin u \cos v, y = b \sin u \sin v, z = c \cos u, 0 \le u \le \pi, 0 \le v \le 2\pi$, represent an ellipsoid.
- **16.(b)** Set up, but do not evaluate, a double integral for the surface area of the ellipsoid with a = 1, b = 2, and c = 3.
- 17. Let the surface S be the portion of the cylinder $x^2 + y^2 = 1$, which lies between the planes z = 0 and z = 1 + y, with normal pointing away from the z-axis. Let the curve C be the intersection of the cylinder with the second plane (as pictured). Finally, let the vector field

$$\vec{\mathbf{v}} = 2(x - y)\vec{i} + 2(x + y)\vec{j} + z\vec{k}.$$

Now, set up integrals that give

- (a) the length of the curve C.
- (b) the work done by $\vec{\mathbf{v}}$ around \mathcal{C} .
- (c) the area of the surface S.
- (d) the flux of $\vec{\mathbf{v}}$ through \mathcal{S} .

Simplify the integrands, but do not evaluate the integrals.

Figure 3: Problem 17

18. Evaluate the surface integral

$$\iint_{S} \vec{F} \cdot d\vec{S},$$

where $\vec{F}(x,y,z) = \langle 0,z,z \rangle$ and S is the hemisphere $x = \sqrt{16 - y^2 - z^2}$, oriented in the direction of the positive x axis.

19. Use Stokes' Theorem to compute the line integral

$$\int_C \vec{F} \cdot d\vec{r},$$

where $\vec{F}(x,y,z) = \langle xy, 2z, 3y \rangle$, and C is the curve of intersection of the plane x+z=5 and the cylinder $x^2+y^2=9$.

20. Use the Divergence Theorem to compute the surface integral

$$\iint_{S} \vec{F} \cdot d\vec{S},$$

where $\vec{F}(x, y, z) = \langle x^2yz, xy^2z, xyz^2 \rangle$ and S is the surface of the box enclosed by the planes x = 0, x = 2, y = 0, y = 3, z = 0 and z = 5.

- 21. Here you will show some interesting facts using integral theorems. Each of these demonstrations should take only 2-3 lines.
- (a) A vector field $\vec{\mathbf{v}}$ is called *conservative* if it can be represented as the gradient of a scalar function ϕ :

$$\vec{\mathbf{v}} = \nabla \phi$$
.

Here ϕ is called the *scalar potential*. Use a vector identify to show that conservative vector fields have no curl. Then, use an integral theorem to show that line integrals of conservative vector fields around any closed curve \mathcal{C} are zero:

$$\oint_C \vec{\mathbf{v}} \cdot \vec{\mathbf{T}} \, \mathrm{d}s = 0$$

(b) A vector field $\vec{\mathbf{v}}$ is called *solenoidal* if it can be written as the curl of another vector field $\vec{\psi}$:

$$\vec{\mathbf{v}} = \nabla \times \vec{\psi}.$$

Here $\vec{\psi}$ is called the *vector potential*. Use a vector identity to show that solenoidal vector fields have no divergence. Then, use an integral theorem to show that surface integrals of solenoidal vector fields over any closed surface \mathcal{S} are zero:

$$\iint_{\mathcal{S}} \mathbf{v} \cdot \vec{\mathbf{N}} \, \mathrm{d}A = 0$$

- 22. Each of the following integrals is much simpler if you first apply an integral theorem. Compute all three values.
- (a) $\oint_{\mathcal{C}} \vec{\mathbf{v}} \cdot \vec{\mathbf{T}} ds$, where \mathcal{C} is the unit circle, and $\vec{\mathbf{v}} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$
- (b) $\oiint_{\mathcal{S}} \vec{\mathbf{n}} \cdot \vec{\mathbf{v}} dA$, where \mathcal{S} is the surface of the unit sphere, and $\vec{\mathbf{v}} = 3z\vec{i} + 2y\vec{j} + x\vec{k}$.
- (c) $\int_{\mathcal{S}} \vec{\mathbf{n}} \cdot (\nabla \times \vec{\mathbf{v}}) dA$, where \mathcal{S} is the top half of the unit sphere, and $\vec{\mathbf{v}} = -y\vec{i} + x\vec{j}$.