P1 Chapter 5: Linear Graphs

Linear Formulae

Lines and Equations of Lines

 \mathscr{P} A line consists of the set of all points which satisfy some formula in terms of x and/or y.

A line L_1 is defined by the set of points $\{(x,y): y=3x+2\}.$

A curved line L_2 is defined by the set of points $\{(x,y): y=x^2\}$.

A straight line L_1 is defined by the set of points $\{(x,y): y=mx+c\}$ where m and c are real-number constants.

This chapter will focus on straight lines of the last example type.

Examples

This means we can <u>substitute</u> the values of a coordinate into our equation whenever we know the point lies on the line.

The point (5, a) lies on the line with equation y = 3x + 2. Determine the value of a.

?

Find the coordinate of the point where the line 2x + y = 5 cuts the x-axis.

Ż

Examples

This means we can <u>substitute</u> the values of a coordinate into our equation whenever we know the point lies on the line.

The point (5, a) lies on the line with equation y = 3x + 2. Determine the value of a.

Substituting in *x* and *y* value:

$$a = 3(5) + 2$$

 $a = 17$

Find the coordinate of the point where the line 2x + y = 5 cuts the *x*-axis.

On the x-axis, y = 0. Substituting:

$$2x + 0 = 5$$

$$x = \frac{5}{2} \rightarrow \left(\frac{5}{2}, 0\right)$$

Test Your Understanding

Determine where the line x + 2y = 3 crosses the:

a) y-axis:

?

b) x-axis:

?

What mistakes do you think it's easy to make?

•

7

Test Your Understanding

Determine where the line x + 2y = 3 crosses the:

a)
$$y$$
-axis: Let $x=0$.
$$2y=3 \rightarrow y=\frac{3}{2}$$

$$\left(0,\frac{3}{2}\right)$$
 b) x -axis: Let $y=0$
$$x+0=3$$

$$(3,0)$$

What mistakes do you think it's easy to make?

- Mixing up x/y: Putting answer as (0,3) rather than (3,0).
- Setting y = 0 to find the y-intercept, or x = 0 to find the x-intercept.

Recap of gradient

The steepness of a line is known as the **gradient**. It tells us what y changes by as x increases by 1.

So if the y value increased by 6 as the x value increased by 2, what is y increasing by for each unit increase of x? How would that give us a suitable formula for the gradient m?

Δ is the (capital) Greek letter "delta" and means "change in".

Textbook Note:

The textbook uses $m = \frac{y_2 - y_1}{x_2 - x_1}$ for two points (x_1, y_1) and (x_2, y_2) . Reasons I don't use it for non-algebraic coordinates:

- Students often get the y_1 and y_2 the wrong way round (or with the x's)
- Students often make sign errors when dealing with negatives, e.g. (-3) (-4)
- It can't be done as easily mentally,
- Students see it as "yet another formula to learn" when really all you need is to appreciate is what gradient is, i.e. "y change per x change".

Examples

Find the gradient of the line that goes through the points:

$$m = ?$$

$$[2]$$
 $(5,7)$ $(8,1)$

$$m =$$
?

$$(2,2)$$
 $(-1,10)$

$$m = ?$$

Show that the points A(3,4), B(5,5), C(11,8) all lie on a straight line.

Examples

Find the gradient of the line that goes through the points:

$$m = 3$$

$$[2]$$
 $(5,7)$ $(8,1)$

$$m = -2$$

$$(2,2)$$
 $(-1,10)$

$$m = -\frac{8}{3}$$

Show that the points A(3,4), B(5,5), C(11,8) all lie on a straight line.

$$m_{AB} = \frac{1}{2}$$
 $m_{BC} = \frac{3}{6} = \frac{1}{2}$

Gradients the same ∴ 'collinear'.

If points are 'collinear' they lie on the same line.

Further Example

The line joining (2, -5) to (4, a) has gradient -1. Work out the value of a.

Further Example

The line joining (2, -5) to (4, a) has gradient -1. Work out the value of a.

$$\frac{a--5}{4-2} = -1$$

$$\frac{a+5}{2} = -1$$

$$a = -7$$

$$y = mx + c$$

The gradient-intercept form for straight lines is:

$$y = mx + c$$
Gradient y-intercept

Why does it work?

?

$$y = mx + c$$

The gradient-intercept form for straight lines is:

$$y = mx + c$$
Gradient y-intercept

Why does it work?

• The y-intercept by definition is the y value when x = 0. Substituting:

$$y = (m \times 0) + c = c$$
 as expected.

By the definition of gradient, if we increase x by 1, y should increase by m:

$$y = m(x + 1) + c = mx + m + c$$
 which indeed has increased by m .

y = mx + c

Determine the gradient and y-intercept of the line with equation 4x - 3y + 5 = 0

y = mx + c

Determine the gradient and y-intercept of the line with equation 4x - 3y + 5 = 0

$$3y = 4x + 5 y = \frac{4}{3}x + \frac{5}{3}$$

$$\therefore m = \frac{4}{3}, \qquad c = \frac{5}{3}$$

Make y the subject so we have the form y = mx + cPut y on the side it's positive.

Divide <u>each</u> term by 3; don't write $y = \frac{4x+5}{3}$ otherwise it's not in the form y = mx + c

This is algebra, so use improper fractions, and not mixed numbers or recurring decimals.

$$ax + by + c = 0$$

Another common form is ax + by + c = 0, where a, b, c are integers. This is known as the 'standard' form.

Express
$$y = \frac{1}{3}x - \frac{2}{3}$$
 in the form $ax + by + c = 0$, where a, b, c are integers.

?

We'll see on the next slide WHY we might want to put an equation in this form over y = mx + c...

ax + by + c = 0

Another common form is ax + by + c = 0, where a, b, c are integers. This is known as the 'standard' form.

Express
$$y = \frac{1}{3}x - \frac{2}{3}$$
 in the form $ax + by + c = 0$, where a, b, c are integers.

$$3y = x - 2$$
$$x - 3y - 2 = 0$$

We don't want fractions, so multiply by an appropriate number.

Put everything on either side of equation. -x + 3y + 2 = 0 would also be OK.

We'll see on the next slide WHY we might want to put an equation in this form over y = mx + c...

Test Your Understanding

Express
$$y = \frac{2}{5}x + \frac{3}{5}$$
 in the form $ax + by + c = 0$, where a, b, c are integers.

?

Test Your Understanding

Express
$$y = \frac{2}{5}x + \frac{3}{5}$$
 in the form $ax + by + c = 0$, where a, b, c are integers.

$$5y = 2x + 3$$
$$2x - 5y + 3 = 0$$

Just for your interest...

Why might we want to put a straight-line equation in the form ax + by + c = 0?

y = mx + c"Slope-Intercept Form"

ax + by + c = 0"Standard Form"

Coverage

y = mx + c doesn't allow you to represent vertical lines. Standard form allows us to do this by just making b zero.

Symmetry

In general, the 'linear combination' of two variables x and y is ax + by, i.e. "some amount of x and some amount of y". There is a greater elegance and symmetry to this form over y = mx + c because x and y appear similarly within the expression.

Usefulness

This more 'elegant' form also means it ties in with vectors and matrices. For vectors, you will learn about the 'dot product' of two vectors:

$$\begin{pmatrix} a \\ b \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = ax + by$$

Since ax + by + c = 0, we can represent a straight line using:

$$\begin{pmatrix} a \\ b \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} + c = 0 \qquad (1)$$

We can extend to 3D points to get the equation of a **plane**:

Conveniently, in equation (1),

the vector
$$\begin{pmatrix} a \\ b \end{pmatrix}$$
 is **perpendicular**

to the line. And in equation (2),

the vector $\begin{pmatrix} a \\ b \end{pmatrix}$ is perpendicular

to the plane. Nice!

$$2x + y = 4 \implies {2 \choose 1} \cdot {x \choose y} = 4 \implies {2 \choose 1} \cdot {2 \choose 1}$$

Exercise 5.1

Pearson Pure Mathematics Year 1/AS Page 37

Homework Exercise

Work out the gradients of the lines joining these pairs of points:

b
$$(-1, 3), (5, 4)$$

$$c$$
 (-4, 5), (1, 2)

$$\mathbf{d}$$
 (2, -3), (6, 5)

$$e(-3,4), (7,-6)$$

$$g(-2, -4), (10, 2)$$

h
$$(\frac{1}{2}, 2), (\frac{3}{4}, 4)$$

d
$$(2, -3), (6, 5)$$
 e $(-3, 4), (7, -6)$ **f** $(-12, 3), (-2, 8)$ **g** $(-2, -4), (10, 2)$ **h** $(\frac{1}{2}, 2), (\frac{3}{4}, 4)$ **i** $(\frac{1}{4}, \frac{1}{2}), (\frac{1}{2}, \frac{2}{3})$

$$\mathbf{m}$$
 (3b, -2b), (7b, 2b) \mathbf{n} (p, p²), (q, q²)

$$\mathbf{n} \ (p, p^2), (q, q^2)$$

The line joining (3, -5) to (6, a) has a gradient 4. Work out the value of a.

The line joining (5, b) to (8, 3) has gradient -3. Work out the value of b.

The line joining (c, 4) to (7, 6) has gradient $\frac{3}{4}$. Work out the value of c.

The line joining (-1, 2d) to (1, 4) has gradient $-\frac{1}{4}$. Work out the value of d.

The line joining (-3, -2) to (2e, 5) has gradient 2. Work out the value of e.

The line joining (7, 2) to (f, 3f) has gradient 4. Work out the value of f.

The line joining (3, -4) to (-g, 2g) has gradient -3. Work out the value of g.

Show that the points A(2, 3), B(4, 4) and C(10,7) can be joined by a straight line.

Problem-solving

Find the gradient of the line joining the points A and B and the line joining the points A and C.

10 Show that the points A(-2a, 5a), B(0, 4a)and points C(6a, a) are collinear. (3 marks)

Notation Points are collinear if they all lie on the same straight line.

Homework Answers

- 2 7 3 12

- 26
- -5
- Gradient of AB = gradient of BC = 0.5; point B is common
- **10** Gradient of AB = gradient of BC = -0.5; point B is common

Homework Exercise

Work out the gradients of these lines:

a
$$v = -2x + 5$$

d
$$y = \frac{1}{2}x - 2$$

g
$$2x - 4y + 5 = 0$$
 h $10x - 5y + 1 = 0$ **i** $-x + 2y - 4 = 0$

$$\mathbf{j} -3x + 6y + 7 = 0$$
 $\mathbf{k} 4x + 2y - 9 = 0$

b
$$y = -x + 7$$

e
$$y = -\frac{2}{3}x$$

$$\mathbf{h} \ 10x - 5y + 1 = 0$$

$$\mathbf{k} \ 4x + 2y - 9 = 0$$

$$v = 4 + 3x$$

f
$$y = \frac{5}{4}x + \frac{2}{3}$$

$$i - x + 2y - 4 = 0$$

1
$$9x + 6y + 2 = 0$$

These lines cut the y-axis at (0, c). Work out the value of c in each case.

a
$$y = -x + 4$$

b
$$y = 2x - 5$$

d
$$y = -3x$$

e
$$y = \frac{6}{7}x + \frac{7}{5}$$

f
$$y = 2 - 7x$$

c $y = \frac{1}{2}x - \frac{2}{3}$

$$\mathbf{g} \ 3x - 4y + 8 = 0$$

$$\mathbf{h} 4x - 5y - 10 = 0$$

g
$$3x - 4y + 8 = 0$$
 h $4x - 5y - 10 = 0$ **i** $-2x + y - 9 = 0$

$$\mathbf{j}$$
 $7x + 4y + 12 = 0$

i
$$7x + 4y + 12 = 0$$
 k $7x - 2y + 3 = 0$

$$1 -5x + 4y + 2 = 0$$

3 Write these lines in the form
$$ax + by + c = 0$$
.

a
$$v = 4x + 3$$

b
$$y = 3x - 2$$

$$v = -6x + 7$$

d
$$y = \frac{4}{5}x - 6$$

e
$$y = \frac{5}{3}x + 2$$

f
$$y = \frac{7}{3}x$$

$$y = 2x - \frac{4}{7}$$

g
$$y = 2x - \frac{4}{7}$$
 h $y = -3x + \frac{2}{9}$

i
$$y = -6x - \frac{2}{3}$$

j
$$y = -\frac{1}{3}x + \frac{1}{2}$$

$$\mathbf{k} \ \ y = \frac{2}{3}x + \frac{5}{6}$$

1
$$y = \frac{3}{5}x + \frac{1}{2}$$

4 The line
$$y = 6x - 18$$
 meets the x-axis at the point P. Work out the coordinates of P.

5 The line
$$3x + 2y = 0$$
 meets the x-axis at the point R. Work out the coordinates of R.

The line 5x - 4y + 20 = 0 meets the y-axis at the point A and the x-axis at the point B. Work out the coordinates of A and B.

Homework Exercise

- 7 A line l passes through the points with coordinates (0, 5) and (6, 7).
 - a Find the gradient of the line.
 - **b** Find an equation of the line in the form ax + by + c = 0.
- 8 A line l cuts the x-axis at (5, 0) and the y-axis at (0, 2).
 - a Find the gradient of the line.

(1 mark)

b Find an equation of the line in the form ax + by + c = 0.

(2 marks)

- 9 Show that the line with equation ax + by + c = 0has gradient $-\frac{a}{b}$ and cuts the y-axis at $-\frac{c}{b}$
- 10 The line l with gradient 3 and y-intercept (0, 5) has the equation ax 2y + c = 0. Find the values of a and c. (2 marks)

Problem-solving

Try solving a similar problem with numbers first:

Find the gradient and y-intercept of the straight line with equation 3x + 7y + 2 = 0.

- 11 The straight line l passes through (0, 6) and has gradient -2. It intersects the line with equation 5x 8y 15 = 0 at point P. Find the coordinates of P. (4 marks)
- 12 The straight line l_1 with equation y = 3x 7 intersects the straight line l_2 with equation ax + 4y 17 = 0 at the point P(-3, b).

a Find the value of b. (1 mark)

b Find the value of a. (2 marks)

Challenge

Show that the equation of a straight line through (0, a) and (b, 0) is ax + by - ab = 0.

Homework Answers

1 a -2 b -1 c 3 d
$$\frac{1}{3}$$

e $-\frac{2}{3}$ f $\frac{5}{4}$ g $\frac{1}{2}$ h 2
i $\frac{1}{2}$ j $\frac{1}{2}$ k -2 l $-\frac{3}{2}$
2 a 4 b -5 c $-\frac{2}{3}$ d 0
e $\frac{7}{5}$ f 2 g 2 h -2
i 9 j -3 k $\frac{3}{2}$ l $-\frac{1}{2}$
3 a $4x - y + 3 = 0$ b $3x - y - 2 = 0$
c $6x + y - 7 = 0$ d $4x - 5y - 30 = 0$
e $5x - 3y + 6 = 0$ f $7x - 3y = 0$
g $14x - 7y - 4 = 0$ h $27x + 9y - 2 = 0$
i $18x + 3y + 2 = 0$ j $2x + 6y - 3 = 0$
k $4x - 6y + 5 = 0$ l $6x - 10y + 5 = 0$

c 3 d
$$\frac{1}{3}$$

g $\frac{1}{2}$ h 2
k -2 l $-\frac{3}{2}$
c $-\frac{2}{3}$ d 0
g 2 h -2
k $\frac{3}{2}$ l $-\frac{1}{2}$
b $3x - y - 2 = 0$
d $4x - 5y - 30 = 0$
f $7x - 3y = 0$
h $27x + 9y - 2 = 0$
j $2x + 6y - 3 = 0$
l $6x - 10y + 5 = 0$

4 (3, 0)
5 (0, 0)
6 (0, 5), (-4, 0)
7 **a**
$$\frac{1}{3}$$
 b $x - 3y + 15 = 0$
8 **a** $-\frac{2}{5}$ **b** $2x + 5y - 10 = 0$
9 $ax + by + c = 0$
 $by = -ax - c$
 $y = \left(-\frac{a}{b}\right)x - \left(\frac{c}{b}\right)$
10 $a = 6, c = 10$
11 $P(3,0)$
12 **a** -16 **b** -27

Challenge

Gradient = $-\frac{a}{b}$; y-intercept = a. So $y = -\frac{a}{b}x + a$ Rearrange to give ax + by - ab = 0