Paris-Saclay University

A2: Embedded Electronic Systems

Heterogeneous architecture for Big Data algorithms Final presentation

Presented by:
DOU Yuhan
FORCIOLI Quentin
GHAOUI Mohamed Anis
TERRACHER Audrey

2020 February 03

TEAM

- Software:
 - DOU Yuhan
 - TERRACHER Audrey
- Hardware:
 - FORCIOLI QUENTIN
- HLS and lead:
 - GHAOUI Mohamed Anis

Objective: Complete a full development cycle

Our approach and algorithms chosen

K-Means

BMM

PCA/SVD

Pi Estimator

Pearson correlation

BMM	М	P	N	blocksize	temps (us)
	40	25	30	3	73
	250	470	316	3	97875
	250	470	316	7	70285
	1000	500	200	15	172542
Pi Estimator	nb d'itérations				
	1000				77
	10000				467
	100000				4773
	1000000				44501
K-Means	K (clusters)	D (dimension)	N (nb données)	Itération	
			450	00	0577
	3	4	150	20	9577
	3 20	4 2	3000	20	9577 30049
Pearson	20	2	3000	20	30049
Pearson	20 16	2	3000 1024	20	30049
Pearson PCA	20 16 row	2	3000 1024 col	20	30049 92520
	20 16 row 10	2	3000 1024 col 2	20	30049 92520
	20 16 row 10 ligne	2	3000 1024 col 2 colonne	20	30049 92520 62
PCA	20 16 row 10 ligne 10	2	3000 1024 col 2 colonne 2	20	30049 92520 62
PCA	20 16 row 10 ligne 10 ligne	2	3000 1024 col 2 colonne 2 colonne	20	30049 92520 62 72

Design on Vivado SDK

1/ Tools Chain: Xilinx ARM v7 GNU Toolchain

Generator: GNU make

2/ Modification of heap and stack sizes :

1 KB (default) → 250 MB

	M	P	N	blocsize	nb de cycles	temps (µs)
Dia Matrin	40	25	30	3	1694524	5088. 66066
Bloc-Matrix-	250	470	316	3	2045606949	6142963. 81081
Multipication	250	470	316	7	1740020211	5225285. 91892
	1000	500	200	15	4428594020	13299081. 14114
		nb d'it	ération		nb de cycles	temps (μs)
		10	00		69204	207. 81982
PiEstimator		100	000		674408	2025. 24925
		100	000		6867433	20622. 92192
		1000	0000		68545278	205841. 67586
	K (clusters)	D (dimension)	N (nb données)	Itération	nb de cycles	temps (μs)
K-means	3	4	150	20	3729634	11200. 10210
K-means	20	2	3000	20	265058761	795972. 25526
	16	32	1024	20	860685779	2584641. 97898
	row (nb	données)	col (dimension)		nb de cycles	temps (μs)
Deaucon	1	10		2		62. 66976
Pearson	4	50	4		244682	734. 78078
	2	00	1	0	3627683	10893. 94294
	lig	gne	colonne		nb de cycles	temps (μs)
DCA	10		2		5680	17. 05706
PCA	50		4		52591	157. 93093
	200		10		2992348	8986. 03003
	ligne		colonne		nb de cycles	temps (μs)
CVD	13		7		215159	646. 12312
SVD	3	30	35		6042542	18145. 77177
	1	00	20	00	666164879	2000495. 13213

Software optimization

Three main aspects:

1/ branches delays

2/ use of cache

3/ data dependencies

Optimization options for GNU:

- 00 : no optimization

- O1 : optimization on branches

- O2 : optimization at the registers and instruction level

- O3: optimization at the highest level (eSIMD vectorization, "inline"...)

- Os : optimization on code size

Code size (segmentation "text")

Execution times

	ordre	optimisation	text
	ijk	-O0	58716
Bloc-Matrix-	ikj	-O0	58716
	ikj	-01	58412
Multiplication	ikj	-O2	58328
	ikj	-O3	59352
	ikj	-Os	58260
		optimisation	text
		-O0	63104
K-mean		-O1	58792
K-mean	18	-O2	58764
		-O3	59324
		-Os	58628
		optimisation	text
		-O0	59244
Pearson		-01	58548
rearson	1	-O2	58560
		-O3	61400
		-Os	58436

\mathbf{M}	N	P	blocsize	cycles	temps (μs)
1000	500	200	15	4428594020	13299081. 14114
1000	500	200	15	3822785564	11479836.52853
1000	500	200	15	531048961	1594741.62462
1000	500	200	15	564442618	1695022.87688
1000	500	200	15	545292506	1637515.03303
1000	500	200	15	809730905	2431624.33934
K	D	N	Itération	cycles	temps (μs)
16	32	1024	20	860685779	2584641.97898
16	32	1024	20	123736936	371582.39039
16	32	1024	20	138956312	417286.22222
16	32	1024	20	139265209	418213.84084
16	32	1024	20	149756615	449719.56456
row (nb	données) col (dimension)		cycles	temps (μs)	
20	00	10		3627683	10893.94294
20	200		10	695048	2087.23123
20	200		10		2066.45946
20	00	10		617540	1854.47447
20	00	10		805517	2418.96997

Software - Microblaze Implementation

Blocks design

Software - Microblaze Implementation

Design on Vivado SDK

1/ Changes in libraries and functions used for timing :
xtime_l.h for ARM Implementation
xtmrctr.h for Microblaze Implementation

2/ Several bugs launching FPGA programming..


```
pri mb test.sdk - Debug - bmm/src/BMM main.c.c - Xilinx SDK
File Edit Source Refactor Navigate Search Project Run Xilinx Window Help
▼ 수 ▼ 수 ♥ 🐼 ▼ 🦠 ▼ 🧿 ▼ # 1 🗞 🔳 🔞 🛊 🖸 🔯 본 1 의 중 지 🗷 의 표 (제 | 🗷 😭 | 🕼 🗑 ▼ 🎦
                                                                           * Debug Project Explorer ™
 v 🐸 bmm
  > & Binaries
  Debug
  > @ SEC
  bmm bsp
  Ø design mb wrapper hw platform 0
 🗈 system.hdf 🗈 .cproject 🗈 .project 🗈 .sdkproject 🗅 Makefile 庙 system.mss 🗵 BMM_main.c.
   #include "xtmrctr.h"
   #include "xintc.h"
   #include "xparameters.h"
   int main()
       XTmrCtr* gpTmrCtr;
       XTmrCtr tmrctr:
       u32 Start Time:
       u32 End Time:
       u32 cTmrCtr;
       gpTmrCtr = &tmrctr:
       init_platform();
       int status = XST_FAILURE;
       u32 options = 0:
        // Tuinialian aba Ciasa assumas
```

High - Level Synthesis

- 1) Reanalyse the algorithms
- 2) Directive usage to infer RTL blocks
- 3) Implement Axi/Axilite interfaces
- 4) Manage and reshape memory
- 5) Automated material optimisations

High - Level Synthesis

Control sequence conversion:

```
While (condition){

do_stuff();
}
```

- AXI/lite Interface directives :
- Top-Level function : BUS CONTROL
- Inputs
- Outputs
- Addresses managed by the CPU


```
multiply_block_32_1

+ s_axi_CONTROL_BUS
ap_clk
ap_rst_n

m_axi_INPUT_r +
m_axi_OUTPUT_r +
interrupt

Multiply_block_32 (Pre-Production)
```

High - Level Synthesis

High - Level Synthesis : scheduler

- Analyse dependencies
- Minimise Initialisation interval
- Respect timing and FPGA resources limits
- If necessary : reshape the arrays

Resou	rce Usago	е		
SLICE LUT	VHDL 0 3570 5049 7 5			DS Ex FII Ins
	quired hieved po	ost-syn	VHDL 10.000 8.254	Re To Av

_						
	Name	BRAM_18K	DSP48E	FF	LUT	URAM
	DSP					
	Expression			0	7244	
	FIFO					
	Instance	4	10	1870	2814	
	Memory	6		0	0	0
	Multiplexer				2096	
1	Register	0		6410	224	
)	Total	10	10	8280	12378	0
1	Available	120	80	35200	17600	0
	Utilization (%)	8	12	23	70	0

High - Level Synthesis : Synthesis

- Not always necessary/ possible to pipeline all the loops
- HLS must respect time constraints
- Optimisation can be very time/resource costly

Architecture exploration

- First design used by the SW team
- 2nd design using BRAM
- 3rd design with BRAM and HLS IP (still in development)

Interfacing Zynq to HLS IP

- Using ACP port => Cache coherency
- Having different clock domains

HP Slave AXI Interface

ACP Slave AXI Interface

S AXI ACP interface

PS-PL Cross Trigger interface

Tie off AxUSER

DMA Controller

Clock Configuration

DDR Configuration

Interrupts

SMC Timing Calculation

Improving clock with timing

- Using Timing report to increase HLS clock frequency
- Using more performance-oriented placement and synthesis strategies

Performance

- First time @ 100MHZ
- Test on MUL64:
 - AXI@180MHZ
 - HLS@131MHZ
 - Acceleration: 320%

IP	HW time (μs)	SW time (µs)	Improved clock	Improve HW times (µs)	Best acceleration
mul64	10280	26132	130MHZ	7042	271%
mul32	2412	3282	125 MHZ	1810	81%
pearson	32	5	115 MHZ	21	-74%
kmeans	1297	1527	120MHZ	1082	41%

Future improvement

- Using interruption instead of polling
- A microblaze handle every task involving IP
- Multi-microblazes multi-IPs.

Conclusion

- 6 Algorithms implemented and tested
- 3 IP conceived and implemented
- Multi-clock periods for a heterogeneous functionning
- Development method is satisfying with room for improuvement
- Set up the usage of automated development tools
- Develop multi-microblazes multi-lps
- Maximise board usages

Completed a full development cycle: objective achieved

Conclusion

Thank you for you attention