Worksheet 1 – Introduction to Linear Algebra

1 Properties of $A^{\top}A$

Let $A \in \mathbb{R}^{m \times n}$ be a rectangular matrix, show the following properties of $A^{\top}A$:

- 1. $A^{\top}A$ is symmetric.
- 2. $A^{\top}A$ is positive semi-definite.
- 3. $ker(A^{\top}A) = ker(A)$.
- 4. $\mathbf{Im}(A^{\top}A) = \mathbf{Im}(A^{\top}).$

2 On the SVD of a matrix of size 2×3

Consider the following rectangular matrix $A \in \mathbb{R}^{2\times 3}$ such that

$$A = \left[\begin{array}{ccc} 4 & 11 & 14 \\ 8 & 7 & -2 \end{array} \right].$$

Our goal is to write A of the form $U\Sigma V^{\top}$ where $U\in\mathbb{R}^{2\times 2}$ and $V\in\mathbb{R}^{3\times 3}$ are two orthogonal matrices and $\Sigma=\left[\begin{array}{ccc}\sigma_1 & 0 & 0\\ 0 & \sigma_2 & 0\end{array}\right]\in\mathbb{R}^{2\times 3}$ is a bloc diagonal matrix $(\sigma_1>0 \text{ and }\sigma_2>0 \text{ are the singular values}).$

Consider the matrix $B = A^{\top}A \in \mathbb{R}^{3\times 3}$.

- 1. Verify that $B = \begin{bmatrix} 80 & 100 & 40 \\ 100 & 170 & 140 \\ 40 & 140 & 200 \end{bmatrix}$.
- 2. Compute the eigenvalues of the matrix B.

3. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1/3 \\ 2/3 \\ 2/3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -2/3 \\ -1/3 \\ 2/3 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} 2/3 \\ -2/3 \\ 1/3 \end{bmatrix}$.

Show that the vectors v_1 , v_2 , and v_3 are the eigenvectors of the matrix B.

- 4. Verify that the vectors v_1 , v_2 , and v_3 are orthonormal. Deduce the matrices V and Σ .
- 5. Let $u_1 = \frac{1}{\sigma_1} A v_1$ and $u_2 = \frac{1}{\sigma_2} A v_2$. Compute u_1 and u_2 and verify that are orthonormal. Deduce the matrix U.
- 6. Let $C \in \mathbb{R}^{3 \times 2}$ such that

$$C = \left[\begin{array}{cc} 4 & 8 \\ 11 & 7 \\ 14 & -2 \end{array} \right].$$

1

Give an SVD of the matrix C.

3 On the SVD of a matrix of size 3×2

Let $A \in \mathbb{R}^{3 \times 2}$ such that

$$A = \left[\begin{array}{rr} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{array} \right].$$

- 1. Show that the eigenvalues of $A^{\top}A$ are 18 and 0, with the corresponding unit vectors $\mathbf{v}_1 = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$.
- 2. Find an SVD of the matrix A.

4 Pseudo inverse and linear systems

Consider the following linear system of 3 unknowns \boldsymbol{x} and 2 linear equations given by

- 1. Write the linear system on the form Ax = b where $A \in \mathbb{R}^{2\times 3}$ and $b \in \mathbb{R}^2$.
- 2. Is there any $\mathbf{x} \in \mathbb{R}^3$ such that $A\mathbf{x} = \mathbf{b}$?
- 3. Using the SVD of A, compute A^+ the pseudo-inverse of A.
- 4. Find the solution with minimal norm of the problem $\min_{x \in \mathbb{R}^2} ||Ax b||$.

5 Matrix norm and singular values*

Let $A \in \mathbb{R}^{n \times m}$ be a rectangular matrix, the induced matrix ℓ_2 -norm of A is given by

$$||A||_2 = \max_{\boldsymbol{x} \neq 0} \frac{||A\boldsymbol{x}||_2}{||\boldsymbol{x}||_2},$$

where $\|x\|_2 = \sqrt{x^\top x}$ and $\|Ax\|_2$ designate the Euclidian norm of the vectors x and Ax.

The Frobenius norm of $A = [A_{ij}]$ is given by

$$\|A\|_F = \sqrt{tr(A^{\top}A)} = \sqrt{\sum_{i,j=1}^n A_{ij}^2}.$$

Let $U\Sigma V^{\top}$ be an SVD of the matrix $A \in \mathbb{R}^{n \times m}$ with $U = [\boldsymbol{u}_1, \dots, \boldsymbol{u}_m], V = [\boldsymbol{v}_1, \dots, \boldsymbol{v}_n]$, and $\sigma_i = [\Sigma]_{ii}$ for all $i \leq \min\{m, n\}$. Using the SVD of the matrix A, show that

$$||A||_F = \sqrt{\sum_{i=1}^{\min\{m,n\}} \sigma_i^2} \text{ and } ||A||_2 = \sigma_1,$$

where $\sigma_1 \geq \ldots \geq \sigma_{\min\{m,n\}} \geq 0$ are the singular values of A.