

Universidad Nacional de San Agustín de Arequipa **Escuela Profesional de Ciencia de la Computación** Curso: Computación Bioinspirada

LABORATORIO 11 ALGORITMO DE SELECCIÓN NEGATIVA

Docente: Edward Hinojosa Cárdenas

04 de Agosto del 2020

1 COMPETENCIA DEL CURSO

Conoce, comprende e implementa algoritmos dentro de la familia de algoritmos de Sistemas Inmunes Artificiales para resolver problemas de optimización complejos.

2 COMPETENCIA DEL LABORATORIO

Implementa el Algoritmo de Selección Negativa para resolver problemas de optimización complejos.

3 CONCEPTOS BÁSICOS

3.1 Algoritmo de Selección Clonal (CLONALG)

```
Algorithm: Negative Selection Algorithm

Initialise the detector set D to be the empty set;

repeat

Create a random vector x, drawn from [0,1]^n;

for every s_i in S, i = 1, 2, ..., m do

Calculate the Euclidean distance d_i between s_i and x;

end

if d_i > r_s for all i then

Add x (a valid nonself detector) to set D;

end

until D contains the required number N of valid detectors;
```

UNSA-EPCC/CB 2

4 EQUIPOS Y MATERIALES

- Un computador.
- · Material del curso.
- Bibliografía del curso [1] [2].

5 EJERCICIOS

1. Implemente el algoritmo de Selección Negativa para clasificar la Base de Datos Iris (test):

Iris Dataset

Fisher's/Anderson's iris data set:
measurements (cm) of the sepal length and width and petal length and width (4 features) for 50 flowers from each of 3 species (*Iris setosa*, versicolor, and virginica)

- · Considere dos Clases
- · Considere dos Atributos
- En combinación las Clases y Atributos no deben ser los mismos de los vistos en clase.
- Muestre los valores de los datos propios, detectores y tasa de clasificación en los archivos test.
- Muestre el gráfico con los valores propios, detectores y datos test.
- Los demás parámetros los puede definir Ud.

6 ENTREGABLES

Al finalizar el estudiante deberá:

- 1. Generar un archivo .txt con el resultado obtenido al ejecutar la implementación en cada uno de los ejercicios.
- $2. \ \ Generar \ una \ imagen \ que \ muestre \ los \ resultados \ obtenidos.$
- 3. Compactar el(los) código(s) fuente junto al(los) archivo(s) .txt en un archivo .zip. Subir el archivo compactado al aula virtual (teniendo del día domingo 16/08 hasta las 23:55pm) con el nombre: Laboratorio_XX_ApellidoPaterno_ApellidoMaterno_PrimerNombre_UNSA_EPCC_CB.zip

UNSA-EPCC/CB 3

7 RÚBRICA DE EVALUACIÓN

Criterios	Muy Bueno	Bueno	Regular	Malo
Resolución del Laboratorio	Resuelve todos los	Resuelve todos los	Resuelve todos los	
	ejercicios sin errores	ejercicios con pocos	ejercicios con varios	No resuelve todos los
	mostrando cada uno	errores mostrando	errores y mostrando	ejercicios o no
	de los puntos	casi o todos todos los	todos o pocos de los	entrega el laboratorio.
	solicitados. Puntaje:	puntos solicitados.	puntos solicitados.	Puntaje: 0 puntos
	20 puntos	Puntaje: 14 puntos	Puntaje: 7 puntos	

• IMPORTANTE En caso de copia o plagio o similares todos los alumnos implicados tendrán sanción en toda la evaluación del curso.

BIBLIOGRAFÍA

- [1] BRABAZON, A.; O'NEILL, M.; MCGARRAGHY, S. **Natural Computing Algorithms**. 1st. Edition: Springer Publishing Company, Incorporated, 2015. ISBN 3662436302.
- [2] CASTRO, L. de. **Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications**. 1st. Edtion: Chapman & Hall/CRC, 2006. ISBN 9781584886433.