Statistics Review

junyan.xu*

April 6, 2019

Contents

1	Sup	port Vector Machine and Regression	2
	1.1	Separable	2
	1.2	Non Separable	2
	1.3	Solver	2
	1.4	Dual Problem	2
	1.5	Regression	3

^{*}junyanxu5513@gmail.com

1 Support Vector Machine and Regression

1.1 Separable

A distance of a point a to a plane $w \cdot x + b = 0$ is $\frac{a \cdot w + b}{\|w\|}$. Define margin ζ to be the value that all (x_i, y_i) are having distance larger that this.

$$\frac{x_i \cdot w + b}{\|w\|} \ge \zeta \tag{1}$$

Then if we fix ζ to be 1, mathematically the margin is $\frac{1}{\|w\|}$. The we are actually minimize $\frac{1}{2} \|w\|^2$

1.2 Non Separable

If the data is not separable, then we add penalty to the optimization function (constant muliply soft margin).

$$loss = \frac{1}{2} ||w||^2 + C \sum_{i=1}^{n} \xi_i$$

s.t. $\forall i, y_i(w.x_i + b) >= 1 - \xi_i$ (2)

The x_i represent the hinge loss, an "option" style loss function. Which could be rewrite as $max\{0, 1 - y(w \cdot x + b)\}$

1.3 Solver

Currently according to Stanford course this one should use SGD to solve.

1.4 Dual Problem

According to representer theorem the w can be a linear combination of x_i and is $w = \sum_{i=1}^{n} \alpha_i x_i$. Then we have $f(x_i) = y_i \sum_{j=1}^{n} \alpha_j x_j^T x_i + b$ The primal problem of this is minimize:

$$\frac{1}{2} \sum_{jk} \alpha_j \alpha_k y_j y_k(x_j^{\top}) + \sum_{i=1}^n C \cdot max(0, 1 - y_i \sum_{j=1}^n \alpha_j x_j^T x_i + b)$$
 (3)

The dual problem is maximize

$$-\frac{1}{2}\sum_{jk}\alpha_{j}\alpha_{k}y_{j}y_{k}(x_{j}^{\top}) + \sum_{i=1}^{n}\alpha_{i}$$

$$0 \le \alpha_{i} \le C$$

$$\sum_{i}\alpha_{i}y_{i} = 0$$

$$(4)$$

1.5 Regression

For regression part. The we assume the regression lies in range ϵ . Also the penalty of upper ϵ is ξ_u and down is ξ_d So the primal problem is

$$loss = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{\infty} (max\{f(x_i) - y_i - \epsilon, 0\} + max\{y_i - f(x_i) - \epsilon, 0\})$$
 (5)