Pseudomonas and clinically important aerobic non-fermenters

Dr Nadisha Badanasinghe
Dept. of Medical Microbiology

Aerobic non fermenters

- Pseudomonas aeruginosa
- Burkholderia spp.
 - Burkholderia cepacia
 - Burkholderia pseudomallei
- Stenotrophomonas maltophilia
- Acinetobacter baumannii

Aerobic non fermenters

- Oxidative gram-negative bacilli
- Produce acid from glucose or other carbohydrates only in the presence of oxygen (nonfermenters).
 - NOTE: Enterobacteriaceae, Aeromonas and Vibrio are fermentative and can utilize carbohydrates in the absence of oxygen.
- Ubiquitous
- Opportunistic pathogens
- Obligate aerobes
- Slow growers

Pseudomonas spp.

- Belongs to the family Pseudomonadaceae
- Containing 211 validly described species
- Motile by means of one or more polar flagella
- Have a very strict aerobic respiratory metabolism with oxygen
- Most species are oxidase positive and catalase positive

Pseudomonas aeruginosa

- Non fermenting, non capsulated, aerobic, motile, gram negative bacilli
- Meaning of "Pseudomonas"
 - Greek pseudo ('false') and monas ('a single unit').
- Meaning of Aeruginosa
 - Latin word for copper rust, as seen with the oxidized copper patina on the Statue of Liberty.
 - describes the blue-green bacterial pigment seen in laboratory cultures
- Grow in moist environments and hospital equipment, disinfectants and antiseptics

Culture characteristics

- Grow in ordinary media
- Non-lactose fermenter (NLF) on MacConkey
- Positive oxidase test and catalase test
- Blue-green pigment in cultures/ pus samples
 - combination of two metabolites, pyocyanin (blue- only in P. aerugenosa) and pyoverdine (yellow)
- Sweet grape like smell in cultures

Other characteristics

- Adaptability
- Innate resistance to antibiotics and antiseptics
- Virulent factors

- Increasingly recognized as an emerging opportunistic pathogen
- antibiotic resistance is increasing in clinical isolates
- One in ten hospital-acquired infections are from *Pseudomonas*

Virulent factors

- Exotoxin A (=to diphtheria toxin)
- Pyocyanin
- Proteases, phospholypases
- Exopolysaccharides (slime layer)- biofilm formation
- Quorum sensing cell-cell communication

SDL

- Biofilms
- Quorum sensing

Habitat

- Found in soil, water, most man-made environments, hospital environment and disinfectants
- Commensal in skin and GIT
- Can colonize many natural and artificial environments (hospital equipment)
- Infect damaged tissues or people with reduced immunity (opportunistic)
- Can survive in pharmaceuticals (antibiotics, ophthalmic solutions, creams), hospital devices (catheters)

Clinical presentations

Respiratory tract-

- Commonly cause pneumonia in patients on ventilators in the ICUventilator associated pneumonias (VAP)
- pneumonia in cystic fibrosis patients
- rarely cause community-acquired pneumonias

Urinary tract

- catheter related/ Hospital acquired
- Infection of burn wounds- commonest cause
- Otitis externa commonest cause

Lab diagnosis

- Specimen- mid stream urine/ catheter urine, blood, pus, sputum
- Gram stain- GNB with no particular arrangement
- Culture
 - BA flat colonies (pigment is poorly observed), with a metallic sheen
 - MacConkey colorless colonies (non lactose fermentor)
 - Nutrient agar- Blue-green pigment
 - Has a characteristic fruity smell
 - KIA- no reaction
- Identification oxidase+ , blue green pigment

Treatment

- Naturally resistant to a large range of antibiotics (Intrinsic resistance)
- Additional resistance after unsuccessful treatment (Acquired resistance)

Mechanisms of Antibiotic Resistance in Pseudomonas aeruginosa

Antibiotic	Resistance Mechanisms
β-lactams	β-lactamase hydrolysis, decreased permeability, altered binding proteins
Aminoglycosides	Enzymatic hydrolysis by acetylation, adenylation, or phosphorylation; decreased permeability; altered ri- bosomal target
Chloramphenicol	Enzymatic hydrolysis by acetyl- transferase; decreased permeability
Fluoroquinolones	Altered target (DNA gyrase); de- creased permeability

Anti-Pseudomonal antibiotics

- Aminoglycosides (gentamicin, amikacin)
- Quinolones (ciprofloxacin and levofloxacin but not moxifloxacin)
- Cephalosporins (ceftazidime, cefepime, cefpirome, but not cefuroxime, ceftriaxone, cefotaxime)
- Ureidopenicillins and carboxypenicillins (piperacillin, ticarcillin: P. aeruginosa is intrinsically resistant to all other penicillins)
- Carbapenems (meropenem, imipenem)
- Polymyxins (polymyxin B and colistin)
- Monobactams (aztreonam)

Burkholderia species

- Currently 82 validly published species
- Medically important
 - Burkholderia cepacia
 - Burkholderia pseudomallei
- Aerobic gram negative non-fermenters
- Opportunistic pathogens
- Ubiquitous in the environment, hospital devices/ surfaces

Burkholderia cepacia

Causes

- Pneumonia specially in cystic fibrosis pts
- Rapidly fatal RTI and septicaemia in cystic fibrosis pts (capacia syndrome)
- HAI (ICU)- antibiotic resistant
 - Pneumonia
 - Wound infection

- Intrinsically resistant to most antibiotics
 - Antibiotics Co-trim, meropenem, doxycycline

Burkholderia pseudomallei

- Formerly known as Pseudomonas pseudomallei
- Saprophyte widespread in soil and surface water in endemic areas
- Gram negative, non-fermentor, oxidase positive, motile (= to Pseudomonas spp.)
- Causative agent of melioidosis
- Almost universally resistant to Gentamicin and Colistin

Epidemiology

- Endemic in South-East Asia (highest in Thailand) and Northern Australia – tropical/ subtropical areas
 - Thailand 20% of CA-septicaemia and The third most frequent cause of death from infectious diseases
 - Northern Aus commonest cause of fatal CAP
- Caribbean, the Middle East, South America
- Post –war (Vietnamese time bomb) / post Tsunami
- Associated with monsoonal rains and winds
 - 75% of cases presenting during the rainy season.
- Found in Rice paddies (mud), stagnant water
- Mortality 30% to 47%. \rightarrow 90%
- SL –endemic

Pathogenesis

Presentations

- Pneumonia (acute/ sub-acute/ chronic)
- Fulminant septicaemia
- Deep organ abscesses
- Skin/ soft tissue abscesses, necrotizing fascitis
- GU prostatic melioidosis
- Suppurative parotitis
- Nuerological brain stem enceph., CN palsy
- Orthopedic- Septic arthritis, osteomyelitis
- GI mucosal ulcers/LN, pancreatic & gall bladder
- Eye orbital celluitis, corneal ulcers, hypopyon
- Cardiac pyopericardium, myocardial abscesses, endocarditis

Risk factors

- Type II DM
- Renal disease
- Alchoholism
- Chronic lung disease (CF/ bronchiectasis)
- Thalasaemia
- CGD
- Steroid therapy
- Malignancy
- TB
- Iron overload
- Exposure to surface water /soil

Diagnosis

- Culture definitive diagnosis (Gold Standard)
 - Isolation and identification of the organism from blood, sputum, pus, urine, synovial fluid, peritoneal fluid and other sterile fluid
- Specimens
 - blood, urine, throat swab, respiratory secretions, pus, tissues and swabs from surface wounds
- Identification difficult
 - Gram stain, colony characteristics, oxidase test, R to certain antibiotics
 - Commercial ID systems –API
 - Hazard group 3

Diagnosis

- Serology (IHA, ELISA, IF, IB)
 - high single titer in the presence of clinical signs
 - 4 fold rise in paired sera

- Cut-offs IHA titre
 - 1:10–1:40 \rightarrow indicate exposure
 - 1:40–1:160 \rightarrow indicate active disease
- Ag detection (ELISA, IF, LA)
- Genetic PCR, restriction fragment length polymorphism, pulse-field gel electrophoresis, 16S rRNA sequencing, multilocus sequence typing (MLST)
 - Haematological -WBC/DC, CRP, ESR, BP
 - Radiological –X-ray, USSS, CTS
 - Biochemical liver/renal functions

Treatment

- Phase 1 (I.V.) initial treatment (in acute stage)
- Phase2 (oral) eradication therapy (to remove any residual infection)
- Need combination of antibiotics
- Need lengthy courses of treatment
- The combination, and duration depends on
 - Type
 - Severity
 - ABST

Stenotrophomonas maltophilia

- Gram negative glucose non-fermenter
- Oxidase negative and motile
- may cause a wide range of infections HAI
 - intravascular line associated bacteraemia
 - nosocomial pneumonia
 - Rarely meningitis, wound infection
 - in susceptible patients, notably those with an underlying haematological malignancy

Stenotrophomonas maltophilia

EPIDEMIOLOGY

- Hospital Epidemics from Contaminated Moist Reservoirs:
 - Disinfectant solutions
 - Respiratory equipment
 - Ice machines
 - Flower vases
- Risk Factors
 - Hospitalization
 - Impaired host defense mechanisms (e.g., highly immunocompromised)
 - Long-term broad-spectrum antibiotics (e.g., bone marrow transplant patients)

Diagnosis

- Colonies may appear yellow or green on blood agar.
- Some strains may produce slight beta-haemolysis

Resistance to imipenem in vitro is a useful indicator to suspect

S. maltophilia.

Acinetobacter baumanii

- Saprophyte
 - Moist environment
 - Hospital environment
- Strict aerobe
- Gram negative cocco-bacillus
- Source of infection
 - Hospital surfaces/ equipment/ disinfectants
 - Carriers commensals in skin, oropharynx, GIT

Acinetobacter infections

- HAI
 - HAP/ VAP
 - CLBSI
 - CA-UTI
 - Wound and soft tissue infections
 - Burn infections

Outbreaks in ICU and wards

Characterized by infections due to multi-resistant strains

Acinetobacter – laboratory diagnosis

- Culture grow in ordinary media
 - Non-lactose fermenter
 - Oxidase negative
 - Non motile
 - KIA- no reaction

Acinetobacter baumanii

CLINICAL SYNDROMES

Opportunistic Infections

- Respiratory tract
- ➤ Urinary tract
- > Wounds
- > Septicemia

EPIDEMIOLOGY

- > Niches Include:
 - Natural environments
 - Moist surfaces in hospitals (e.g., respiratory therapy equipment)
 - Dry surfaces (e.g., human skin); rare for gram-negative bacilli
 - Occasionally normal flora in oropharynx

TREATMENT, PREVENTION & CONTROL

- > Antibiotic Resistance Common
- > Empirical Treatment for Acute Infections: β-lactam + Aminoglycoside
- Specific Therapy According to Antibiotic Susceptibility

Summary

- Clinical presentations, ccharacteristics, lab diagnosis and treatment of
 - Pseudomonas
 - Burkholderia
 - Stenotrophomonas
 - Acinetobacter