Bioinformatics & Phylogenetics

Winter Semester 2017

WEEK 4

Overview

- BLAST: **B**asic **L**ocal **A**lignment **T**ool
 - Local alignment!
 - Used to compare sequences to database
 - Described by Altschul et al. 1990

Overview

- BLAST: **B**asic **L**ocal **A**lignment **T**ool
 - Identify highest scoring pair (HSP) between sequences
 - Produces ungapped alignments
 - Newer versions allow for gaps in alignment

Database (e.g., genome)

C C A A G G T C A G T

How do we find the best subset of sequences that match between query and database?

We want to find the best ungapped local alignment...

Database (e.g., genome)

C C A A G G T C A G

A C

QG

u G

e r G

v T

T

T

7

1) Scoring matrix with:

$$Sii = +1$$

$$Sij = -1$$

$$i \neq j$$

How do we find the best matching subsequences?

1) Scoring matrix with:

$$Sii = +1$$

$$Sij = -1$$

$$i \neq j$$

1) Scoring matrix with:

$$Sii = +1$$

$$Sij = -1$$

$$i \neq j$$

1) Scoring matrix with:

$$Sii = +1$$

$$Sij = -1$$

$$i \neq j$$

1) Scoring matrix with:

$$Sii = +1$$

$$Sij = -1$$

$$i \neq j$$

2) Determine highest segment score → Highest Scoring Pair (HSP)

Could we set Sij = 0?

1) Scoring matrix with:

$$Sii = +1$$

$$Sij = -1$$

$$i \neq j$$

1.5

1) Scoring matrix with:

$$Sii = +1$$

$$Sij = -1$$

$$i \neq j$$

2) Determine highest segment score → Highest Scoring Pair (HSP)

By chance ¾ of comparisons will be mismatches → negative trend.

1) Scoring matrix with:

$$Sii = +1$$

$$Sij = -1$$

$$i \neq j$$

2) Determine highest segment score → Highest Scoring Pair (HSP)

Without going into much detail: we can calculate our confidence in the HSP by comparing the best **S**core to the background.

1) Scoring matrix with:

$$Sii = +1$$

$$Sij = -1$$

$$i \neq j$$

2) Determine highest segment score → Highest Scoring Pair (HSP)

Without going into much detail: we can calculate our confidence in the HSP by comparing the best **S**core to the background.

1) Scoring matrix with:

$$Sii = +1$$

$$Sij = -1$$

$$i \neq j$$

2) Determine highest segment score → Highest Scoring Pair (HSP)

Without going into much detail: we can calculate our confidence in the HSP by comparing the best **S**core to the background.

M E N G G P A P E S

Create all Words of length 3 (kmers)

- Create all Words of length 3 (kmers)
- 2) Find exact matches for all **W**

- Create all Words of length 3 (kmers)
- 2) Find exact matches for all **W**
- 3) Score all hits

- Create all Words of length 3 (kmers)
- 2) Find exact matches for all **W**
- 3) Score all hits
- 4) Keep hits aboveThreshold (19)

- 1) Create all **W**ords of length 3 (kmers)
- 2) Find exact matches for all **W**
- 3) Score all hits
- 4) Keep hits above Threshold (19)
- 5) Extend alignment until **T** drops

21 N G G P A

Current versions produce
gapped alignments
Multiple seeds of short
kmer matches are
kept during initial
search
These matches are
extended
Final alignment reported
is a Smith-Waterman
alignment

BLAST

BLOSUM62 Scoring Matrix

								В	SLO o	k Sl	J bst	itut	ion I	M at	rix					
A	4	1			By Henikoff and Henikoff (1992)															
R	-1	5	l)efa	ult s	cori	ng r	natr	ix fo	or pa	airw	ise a	align	nme	nt o
N	-2	0	6	Ì							es u	1000								
D	-2	-2	1	6			1									L:		المائلة	الحمرم	
C	0	-3	-3	-3	9	lő.						-	card	obse	erva	tion	SOI	dist	anti	y-
Q	-1	1	0	0	-3	5		r	elat	ed p	rote	eins								
E	-1	0	0	2	-4	2	5													
\mathbf{G}	0	-2	0	-1	-3	-2	-2	6												
H	-2	0	1	-1	-3	0	0	-2	8		<u> 188</u>									
I	-1	-3	-3	-3	-1	-3	-3	-4	-3	4		100								
\mathbf{L}	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4		1							
K	-1	2	0	-1	-1	1	1	-2	-1	-3	-2	5								
\mathbf{M}	-1	-2	-2	-3	-1	0	-2	-3	-2	1	2	-1	5		1					
F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6						
P	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7	- 10	1			
S	1	-1	1	0	-1	0	0	0	-1	-2	-2	0	-1	-2	-1	4				
T	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	5		1:	
W	-3	-3	-4	-4	-2	-2	-3	-2	-2	-3	-2	-3	-1	1	-4	-3	-2	11		
Y	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	7	
V	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4
o.	A	R	N	D	\mathbf{C}	Q	E	G	H	I	L	K	\mathbf{M}	F	P	S	T	W	Y	V

BLAST

Query NLYENFVQATFNALTAEKV

NY ENF+Q+ + L

Subject NYAENTIQSIISTVEPAQR

Centerline provides the following information:

- Letter designates identity of high similarity
- Plus indicates similarity but not very similar
- No symbol equals low similarity

BLAST

Nucleotide scoring matrices for ungapped (left) and gapped alignments (right)

	Α	Т	С	G		Α	Т	С	G
Α	5				Α	1			
Т	-4	5			Т	-3	1		
С	-4	-4	5		С	-3	-3	1	
G	-4	-4	-4	5	G	-3	-3	-3	1

BLAST statistics

- Score (Bits)
 - a conversion of of summed substitution scores
- Expect(e) value
 - Function of the score and database size
 - 1 alignment using a query of this size will by chance produce a score of this value in a database of this size
 - e-value is specific to a database of a certain size

BLAST statistics

Rules of thumb

- e value of =< e-5: often used for annotating genes
- E value of =< e-30: strong evidence of homolgy
- Length of hit is important when evaluating e values

BLAST programs

Search	Query	Database
blastn	nucleotide	nucleotide
blastx	translated nucleotide in all 6 frames	protein
tblastx	translated nucleotide in all 6 frames	translated nucelotide in all 6 frames
blastp	protein	protein

BLAST programs

Second letter

		U	С	Α	G		
A	U	UUU Phe UUC Leu UUA Leu UUG	UCU UCC UCA UCG	UAU Tyr UAC Stop UAG Stop	UGU Cys UGA Stop UGG Trp	UCAG	
	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAC GIn CAG	CGU CGC CGA CGG	UCAG	Third I
	Α	AUU AUC AUA IIIe AUA Met	ACU ACC ACA ACG	AAU AAC AAA AAG Lys	AGU Ser AGA AGA AGG	U C A G	letter
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC Asp GAA Glu	GGU GGC GGA GGG	UCAG	

SearchQueryDatabaseblastnnucleotidenucleotideblastxtranslated nucleotide in all 6 framesproteintblastxtranslated nucleotide in all 6 framestranslated nucleotide in all 6 framesblastpproteinprotein