Tutorial

-> n=0 or a" #a"  $\rightarrow m \leq n$ .

Mark am and an to see if myn or m≤n.

If m < n, TMark first m a's after the # < Continue (after #) to mark sets of m a's. If at any point in the middle we encounter is, then reject. O/w, check if there is an a after # unmarked. If there is, continue loop. If not, accept.



- (=) TM => implement 2D Tape 1-head TM.
- (=>) 2D Tape 1-head TM =>

bijection  $\leftarrow f: M \times M \rightarrow M$   $(i,j) \rightarrow f(i,j)$ 

 $\begin{cases}
f(i,j) = 2^{i} 3^{j} \\
\text{Sinear in } i_{j} \\
\text{quadratic in } i_{j}
\end{cases}$ 

21(21-1)

| Diring. | T1 [       | [X]     |
|---------|------------|---------|
| 1 / B   |            | f(i;()) |
| '/      | 12 Row     |         |
|         | T3 [Column |         |
|         |            | -       |



4. Design an NTM for  $L = \{uxvxy | ux,v,y \in \{0,1\}^*, |x| > 100\}$ 

Nondet choice for when x starts.
Copying x to 2nd tape till next 100 positions (reject if not possible)
Nondet choice to keep going with copying or to stop.
Nondet choice where v stops.
Check if 2nd version of x metches.

## 5. Give an unrestricted grammer for {aiblekd! | i=k, j=l}.

Generate equal number of a's and c's.

equal "" b's and d's.

Shifting of b's & c's.

auc 46VD

 $Dc \rightarrow cD$ 

 $S \rightarrow UV$   $U \rightarrow \varepsilon \mid aUC$   $V \rightarrow T \mid bVd$   $Cb \rightarrow bC$   $CT \rightarrow Tc$   $T \rightarrow \varepsilon$ .

aaa CCC bbTdd.

aaa bb CCC Tdd

aaa bb CCTcdd

aaa bb Tcccdd.

aae bb cccdd.