Közlekedési táblák felismerése Konvolúciós Neuronháló (CNN) segítségével

Miről lesz szó?

×

Az adathalmaz	Hogyan állítottam össze az adathalmazt?
CNN modell felépítése	Hogyan építettem fel a modellt, milyen stratégiát használtam
A modell képzése, validálása, tesztelés	A modell fokozatos javítása, tesztelési adathalmaz
Statisztika	A kapott mérési adatok

×

AZ ADATHALMAZ

×

ROBOFLOW

5 különböző adatforrás Előre feldolgozott képek Csoportosítva, de tévedésekkel

×

DATASET NINJA

Egy adathalmaz Képek a mindennapi környezetből Csoportosítva, de más módszerrel

A13b

Terreston and Co.

273-519

Közötti adatmennyiség/csoport

csoport

Az adatok feldolgozása a modellhez

ÁTMÉRETEZÉS

Képméretek csökkentése 128x128 méretre

CÍMKÉZÉS

Az adatok címkézése az osztályok szerint

FELBONTÁS

Tanítási és tesztelési halmazra bontás

DÚSÍTÁS

A képek dúsítása ImageDataGenerator segítségével

A rossz modell felépítése

- ReLU
- Max Pooling
- A validációs adathalmaz 11.61%-a volt jól osztályozva

A rossz modell felépítése

Model: "sequential_1"			
Layer (type)	Output	Shape	Param #
conv2d_3 (Conv2D)	(None,	150, 150, 32)	
max_pooling2d_3 (MaxPoolin g2D)	(None,	75, 75, 32)	0
conv2d_4 (Conv2D)	(None,	75, 75, 64)	18496
<pre>max_pooling2d_4 (MaxPoolin g2D)</pre>	(None,	37, 37, 64)	0
conv2d_5 (Conv2D)	(None,	37, 37, 128)	73856
max_pooling2d_5 (MaxPoolin g2D)	(None,	18, 18, 128)	0
dropout_1 (Dropout)	(None,	18, 18, 128)	0
flatten_1 (Flatten)	(None,	41472)	0
dense_2 (Dense)	(None,	256)	10617088
 Total params: 10714699 (40.8 Trainable params: 10714699 (Non-trainable params: 0 (0.0	40.87 M	В)	

Az alap, rossz CNN modell felépítése

A végső modell felépítése

- Dupla konvolúció
- LeakyReLU
- Average Pooling
- A validációs adathalmaz
 93,7%-a volt jól osztályozva

A végső modell felépítése

190				
Model: "sequential_3"			conv2d_25 (Conv2D)	conv2d_25 (Conv2D) (None, 16, 16, 128)
Layer (type)	Output Shape	Param #	37 97	37 97 92
conv2d 20 (Conv2D)	(None, 128, 128, 32)	2432	conv2d_26 (Conv2D)	conv2d_26 (Conv2D) (None, 16, 16, 128)
conv2d_21 (Conv2D)	(None, 128, 128, 32)	9248	leaky_re_lu_17 (LeakyReLU)	leaky_re_lu_17 (LeakyReLU) (None, 16, 16, 128)
leaky_re_lu_14 (LeakyReLU)	(None, 128, 128, 32)	0	[2] 이번에 N. 나는 아이를 하면 하는 것이 되었다. 그 아이를 하는 것이 되었다. 그 아이를 하는 것이다.	average_pooling2d_14 (Aver (None, 8, 8, 128)
average_pooling2d_11 (Aver	(None, 64, 64, 32)	0	agePooling2D)	agePooling2D)
agePooling2D)			flatten_3 (Flatten)	flatten_3 (Flatten) (None, 8192)
conv2d_22 (Conv2D)	(None, 64, 64, 64)	18496	dense_6 (Dense)	dense 6 (Dense) (None, 128)
leaky_re_lu_15 (LeakyReLU)	(None, 64, 64, 64)	0	delise_o (belise)	delise_0 (belise) (noile, 120)
average_pooling2d_12 (AveragePooling2D)	(None, 32, 32, 64)	0	leaky_re_lu_18 (LeakyReLU)	leaky_re_lu_18 (LeakyReLU) (None, 128)
conv2d_23 (Conv2D)	(None, 32, 32, 64)	36928	dense_7 (Dense)	dense_7 (Dense) (None, 11)
conv2d_24 (Conv2D)	(None, 32, 32, 64)	36928	Total params: 1375595 (5.25	Total params: 1375595 (5.25 MB)
leaky_re_lu_16 (LeakyReLU)	(None, 32, 32, 64)	0	그 그 그 그리 하지 않아 되었다면 하는 가지가 되었다면 하는 것이 되었다면 하는 것이 되었다면 하는 것이 없다.	Trainable params: 1375595 (5.25 MB)
<pre>average_pooling2d_13 (Aver agePooling2D)</pre>	(None, 16, 16, 64)	0	Non-trainable params: 0 (0.0	Non-trainable params: 0 (0.00 Byte)

, A modell kiértékelése

Képzés, validálás:

- Google Colab környezetben
- ReduceLROnPlateau 3 várakozás (val_accuracy)
- ModelCheckpoint mentés
- EarlyStopping 5 várakozás (val_loss)
- ♦ 150 epoch alapjáraton
- ImageDataGenerator
- Optimizálás Adam-mel

×

Validálási kimutatások

A modell tanítási és tesztelési **hibája**

A modell tanítási és tesztelési **pontossága**

A modell kiértékelése

Tesztelés:

- Az adatok 25%-a
- A Dice-érték 88-99%
 közötti értékeket ér el
- Nincs számottevő összetévesztés, ez korábbi modellek esetében jelen volt

Konfúziós mátrix a valós és a jósolt címkék függvényében

