

Kaveh G. Siah, Steven S. Perakis, Julie C. Pett-Ridge, Gregory van der Heijden, Douglas A. Maguire

Background

- Focused on the Oregon Coast Range (OCR)
 - Douglas-fir forests
 - Nutrient depletion and effects on yield

- 3 interacting factors
 - Soil N
 - Soil mineralogy (parent material/bedrock type)
 - Logging disturbance

Soil N

- OCR soils have high soil N
 - High soil N can drive nutrient limitation
 - Nitrification promotes coupled nitrate-Ca leaching

Parent Material

- Basaltic and Sedimentary bedrock
 - Basalt: high nutrient content
 - Sedimentary: lower nutrient content

Fig. 1 Simplified geologic map and sampling locations in the Oregon Coast Range, USA.

Hynicka et al., 2016

Logging Disturbance

- Highly productive Douglas-fir forests are grown and harvested along these gradients
- They are managed along different harvest types (BO, WTH) and rotation lengths (40, 80 years).
- Forest management affects the nature and rate of nutrient depletion (which nutrient is being depleted)

Harvest Type Influences Longterm Yield

- What is the effect of harvest on longterm yield?
- What nutrients are limiting over the course of the simulations?

The NutsFor Model

- Nutrient Cycling in Forest Ecosystems
- Simulates biogeochemistry, mineral weathering, hydrology, and tree growth
- Originates from soil-chemical models designed to study soil acidity
- Lead developer: Gregory van der Heijden (INRAE)

Ca, Mg, K, Na, NO₃, NH₄, SO₄, Cl, P, DOC, DON*, DOP*, H, pH, Al, R, HR, Si

Experimental Design: Nitrogen x Rock x Harvest

1						
Table 2 Site Conditions	Harvest Scenarios					
	40-year, WTH	40-year, BO	80-year, WTH	80-year, BO		
Low N, Sedimentary						
High N, Sedimentary						
Low N, Basaltic						
High N, Basaltic						

Experimental Design: Nitrogen x Rock x Harvest

Table 2 Site Conditions	Harvest Scenarios					
	40-year, WTH	40-year, BO	80-year, WTH	80-year, BO		
Low N, Sedimentary						
High N, Sedimentary						
Low N, Basaltic						
High N, Basaltic						

Experimental Design: Nitrogen x Rock x Harvest

Table 2 Site Conditions	Harvest Scenarios				
	40-year, WTH	40-year, BO	80-year, WTH	80-year, BO	
Low N,	40-year, WTH,	40-year, BO,	80-year, WTH,	80-year, BO,	
Sedimentary	Low N, Sed	Low N, Sed	Low N, Sed	Low N, Sed	
High N,	40-year, WTH,	40-year, BO,	80-year, WTH,	80-year, BO,	
Sedimentary	High N, Sed	High N, Sed	High N, Sed	High N, Sed	
Low N, Basaltic	40-year, WTH,	40-year, BO,	80-year, WTH,	80-year, BO,	
	Low N, Basalt	Low N, Basalt	Low N, Basalt	Low N, Basalt	
High N, Basaltic	40-year, WTH,	40-year, BO,	80-year, WTH,	80-year, BO,	
	High N, Basalt	High N, Basalt	High N, Basalt	High N, Basalt	

Results

- Compare biomass accrual
 - Over time and cumulatively
- Track nutrient uptake and limitation

40 BO

40 BO

40 WTH

80 BO

80 WTH

Harvest Type Influences Longterm Yield

- What nutrients are limiting over the course of the simulations?
 - High N Sites: Ca and K
 - Low N Sites: N
 - Low N Basalt: K (less certain)
 - Low N Sedimentary: P
- What is the effect of harvest on nutrient depletion?

Management Implications

- High N sites experience base cation limitation
 - Biomass "crashes" after first harvest event
 - Harvest type and rotation length not enough
 - Amendments

Conclusion

- Long term N saturation determines the potential for growth limitation
- Logging intensity can alleviate some nutrient limitation
 - Not by much, growth limitation still occurs at high N sites

Thanks For Listening!

List of Collaborators and Contact Info:

Kaveh G. Siah: kavehsiah@gmail.com

Steven S. Perakis: sperakis@usgs.gov

Julie C. Pett-Ridge: julie.pett-ridge@oregonstate.edu

Gregory van der Heijden: gregory.van-der-heijden@inrae.fr

Douglas A. Maguire: doug.maguire@oregonstate.edu