Projet migration d'une bulle

Etude de la dynamique de remontée d'une bulle

Analyse phénoménologique

- Bulle qui remonte à vitesse constante ;
- La forme de la bulle est ovale dûe à tension dans le tube ;
- Autour de la bulle il y a un fin filet de fluide ;
- La forme de la bulle reste constante durant la remontée.

Protocoles de mesures:

- Variation angle d'écoulement
- Variation diamètre du tube
- Variation de la viscosité du fluide

Tableau de valeurs

Vitesse (m/s)	Tension de surface (kg/s²)	Nombre de Reynolds (sans unité)	
U1 réf = 0.098	9×10^{-8}	1073	
U1 angle = 0.099	9×10^{-8}	1084	
U2 diamètre augmenté = 0.1326	5×10^{-8}	2375	
U3 viscosité augmentée = 0.073 1.15×10^{-4}		23	

Conclusion sur les valeurs expérimentales

- Vitesse augmente avec le diamètre et diminue avec la viscosité.
- Tension de surface sur le fluide non modifiable à notre niveau d' étude, donc considéré ici comme négligeable dans le théorème de PI
- , il suffit d'une petite $Re_{visco} << Re_{ref} \cong Re_{angle} << Re_{diametre}$ namique de la bulle.

Analyse dimensionnelle : théorème de PI:

$$lacksquare$$
 $\Pi_1 = rac{U_b}{\sqrt{g.h}}$, nombre de Froude

$$ightharpoonup \Pi_2 = \frac{D_t}{h}$$
, rapport diamètre/longueur

$$ightharpoonup \Pi_4 = \frac{\sigma}{\rho.g.h^2}$$

$$U_b = cte \times \frac{D_t \cdot \mu}{h^2 \cdot \rho}$$

Expression finale et recherche de la constante

cste	<i>U_b</i> (m/s)	$D_t^{(m)}$	μ (mPa.s)	h (m)	ρ (kg/m^3)
323.12	0.098	0.011	1.005	0.18	1.225
326.42	0.099	0.011	1.005	0.18	1.225
37.02	0.1326	0.018	1.005	0.067	1.225
6.91	0.073	0.011	35.5	0.18	1.225

Variation des valeurs expérimentales, et calcul de la constante en conséquence

cte = 173.23

Conflit entre la courbe expérimentale et la courbe théorique (ici Ub augmente quand la viscosité augmente, expérimentalement Ub diminuait)

Ouverture:

- obstacle dans le tube (forme de la bulle qui varie avec la remontée)
- fluide non newtonien (forme de la bulle qui varie avec l'écoulement)
- → Variation de la forme qui implique une variation des forces (certaines ont plus d'influences, d'autres ne peuvent plus être négligées)

Conclusion:

Conclusion sur le fonctionnement de notre système et ce que l'on peut en dire après ce projet.

Au final on avait plusieur grandeurs mais certaines ont été négligée : teta, masse volumique de l'air << masse volumique de l'eau, on suppose par ailleurs les effets des bords latéraux de la cellule négligeables