Министерство науки и образования Российской Федерации Санкт-Петербургский Государственный Политехнический Университет

Plunge Drone

Поднятие проб

Подъем проб

Для поднятия груза будем использовать дночерпатель массой 8 килограмм,

При этом мы должны поднять по крайней мере 2 килограмма грунта, а также 2 литра воды, тогда необходимо поднять 12 килограмм и поэтому необходимо рассчитать требую мощность двигателя.

Для удобства эксплуатации положим, что за минуту мы поднимем груз на 5 метров.

Масса груза ($m = 12 \, \text{кг}$)

Ускорение свободного падения ($g = 9.81 \frac{M}{c^2}$)

Радиус шкива (r = 50 мм

Глубина опускания (h = 5 м)

Время опускания (t = 60 c)

Плотность воды ($\rho = 1000 \frac{\kappa r}{M^3}$) (предполагается, что груз полностью погружается в воду)

Сила тяжести действующая на груз

$$F_{\scriptscriptstyle
m T} = mg$$

12 кг * 9,81 $\frac{{
m M}}{{
m c}^2}$ = 117,72 H

Сила Архимеда, действующая на груз:

Предположим, что $V = 0.005 \text{ м}^3$

Тогда:

$$F_A = \rho * g * V$$

 $1000 \frac{\text{K}\Gamma}{\text{M}^3} * 9.81 \frac{\text{M}}{\text{c}^2} * 0.005 \text{ M}^3 = 49.05 \text{ H}$

Сила подъема в воде:

$$F_r = F_{\text{\tiny T}} - F_A$$

117,72 H $-$ 49,05 H $=$ 68,87 H

Скорость подъема:

$$v = \frac{h}{t}$$

$$\frac{5 \text{ M}}{60 \text{ c}} \approx 0,083 \frac{\text{M}}{\text{c}}$$

Необходимая угловая скорость барабана:

$$w = \frac{v}{r}$$
 $\frac{0,083 \frac{M}{C}}{0,05 \text{ M}} = 1,66 \frac{\text{рад}}{C}$

Мощность ротора:

$$P = F_r * v$$
 $P = 68,87 \text{ H} * 0.083 \frac{M}{C} \approx 5.7 \text{ BT}$

Необходимый крутящий момент:

$$T = \frac{P}{w}$$

$$T = \frac{5,7 \text{ BT}}{1,66 \frac{\text{рад}}{\text{c}}} \approx 3,43 \text{ HM}$$

Получили необходимый момент для поднятия груза.