отчёта по лабораторной работе 2

Гебриал Ибрам Есам Зекри НПИ-01-18

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы 3.1 Постановка задачи	
4	Выводы	13

List of Tables

List of Figures

3.1	Положение катера и лодки в начальный момент времени	7
3.2	Разложение скорости катера на тангенциальную и радиальную со-	
	ставляющие	8
3.3	Случай 1	12
3.4	Случай 2	12

1 Цель работы

Решить задачу о погоне, построить графики с помощью sci.

2 Задание

Вариант 42

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 16,1 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 3,9 раза больше скорости браконьерской лодки.

- 1. Запишите уравнение, описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени).
- 2. Постройте траекторию движения катера и лодки для двух случаев.
- 3. Найдите точку пересечения траектории катера и лодки

3 Выполнение лабораторной работы

3.1 Постановка задачи

- 1.1. Принимаем за $t_0=0$, $x_0=0$ место нахождения лодки браконьеров в момент обнаружения, $x_0=16,1$ км место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки.
- 1.2. Введем полярные координаты. Считаем, что полюс это точка обнаружения лодки браконьеров $x_0(\theta=x_0=0)$, а полярная ось r проходит через точку нахождения катера береговой охраны. (рис. 3.1)

Figure 3.1: Положение катера и лодки в начальный момент времени

1.3. Траектория катера должна быть такой, чтобы и катер, и лодка все время были на одном расстоянии от полюса θ , только в этом случае траектория катера пересечется с траекторией лодки. Поэтому для начала катер береговой охраны должен двигаться некоторое время прямолинейно, пока не окажется на том же расстоянии от полюса, что и лодка браконьеров. После этого катер береговой охраны должен двигаться вокруг полюса удаляясь от него с той же скоростью, что и лодка браконьеров.

1.4. Чтобы найти расстояние x (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии x от полюса. За это время лодка пройдет x, а катер k-x (или k+x, в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как x/v или (k-x)/3,9v (во втором случае (k+v)/3,9v). Так как время одно и то же, то эти величины одинаковы.

Тогда неизвестное расстояние x можно найти из следующего уравнения: $\frac{x}{v}=\frac{k+x}{3,9v}$ и $\frac{x}{v}=\frac{k-x}{3,9v}$. Отсюда мы найдем два значения x_1 =k/4,9 и x_2 =k/2,9, задачу будем решать для двух случаев.

1.5. После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на две составляющие: v_r – радиальная скорость и v_{τ} – тангенциальная скорость. (рис. 3.2).

Figure 3.2: Разложение скорости катера на тангенциальную и радиальную составляющие

Радиальная скорость – это скорость, с которой катер удаляется от полюса, $v_r=\frac{\partial r}{\partial t}.$ Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем $v_r=\frac{\partial r}{\partial t}=v.$

Тангенциальная скорость – это линейная скорость вращения катера относи-

тельно полюса. Она равна произведению угловой скорости на радиус, $v_{ au}=r\frac{\partial \theta}{\partial t}.$ Из рис. 3.2 по теореме Пифагора: $v_{ au}=\sqrt{14,21}v$

1.6. Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений:

$$\begin{cases} \frac{\partial r}{\partial t} = v \\ r \frac{\partial \theta}{\partial t} = \sqrt{14, 21}v; \end{cases}$$

Исключая из полученной системы производную по t, можно перейти к следующему уравнению:

$$\frac{\partial r}{\partial \theta} = \frac{r}{\sqrt{14, 21}}$$

Решив это уравнение, я получу траекторию движения катера в полярных координатах. Начальные условия:

$$\begin{cases} \theta_0 = 0 \\ r_0 = x_1 \end{cases}$$

$$\begin{cases} \theta_0 = 0 \\ r_0 = x_2 \end{cases}$$

3.2 Моделирование задачи

n=3.9;

разница в скорости между катером и лодкой

k=16.1;

начальное расстояние между катером и лодкой

```
fi=3*%pi/4;
функция, описывающая движение катера береговой охраны
function dr=f(tetha, r)
dr=r/sqrt(n*n-1);
endfunction;
начальные условия в первом случае
r0=k/(n+1);
tetha0=0;
tetha=0:0.01:2*%pi;
r=ode(r0,tetha0,tetha,f);
функция, описывающая движение лодки браконьеров
function xt=f2(t)
xt=cos(fi)*t;
endfunction
t=0:1:800;
```

```
plot2d(t,f2(t),style = color('red'));
построение траектории движения браконьерской лодки
polarplot(tetha,r,style = color('green'));
построение траектории движения катера в полярных координатах
r0=k/(n-1);
tetha0=-%pi;
figure();
r=ode(r0,tetha0,tetha,f);
plot2d(t,f2(t),style = color('red'));
построение траектории движения браконьерской лодки
polarplot(tetha,r,style = color('green'));
построение траектории движения катера в полярных координатах
 Для случая 1 получил точку пересечения примерно (12,1, -8,5) (рис. 3.3).
```


Figure 3.3: Случай 1

Для случая 2 получил точку пересечения примерно (47, -33) (рис. 3.4).

Figure 3.4: Случай 2

4 Выводы

Я решил задачу о погоне и построил графики с помощью sci.