Data Science Project

Social Media Data Analysis

INTRODUCTION

Social media is everywhere, and platforms like Twitter, Instagram, and Facebook generate huge amounts of data.

Challenge: Analyzing this data is complex but key to understanding user engagement, trends, and preferences.

This Project: uses simulated tweet data to explore user preferences based on likes.

TABLE OF CONTENTS

4 Project Scope

Generation Loading and Inspection Data

7 <u>Data Visualization</u>

Data Analysis

Insights and Conclusions

Project Scope

Objective

Analyze simulated tweet data to understand user engagement (likes).

Key Steps

- Data Loading and Cleaning: Handle missing values and outliers.
 Exploratory Data Analysis (EDA):
 Visualize data distributions and relationships.
- Statistical Analysis: Apply ANOVA and correlation analysis.
- Time Series Analysis: Examine trends over time.
- **Draw Conclusions:** Identify key insights and limitations.

Data Generation

- Simulated a dataset of 1000 tweets.
- **Features:** tweet_id, category, likes, date, user_id.
- Categories: News, Sports, Entertainment, Tech, Food, Travel, Fashion.
- Intentionally included:
 - Skewed distribution of likes (exponential).
 - Outliers (a few tweets with very high likes).
 - Missing values (5% for 'category' and 'likes').

Data Loading and Inspection

- Data loaded from generated csv file using pandas.
- First 5 rows of data are printed for the user.

Data Cleaning

Step 4

Missing Values:

- category: Dropped rows with missing values (categorical feature).
- likes: Imputed missing values with the median (robust to outliers).

Date Conversion:

Converted date column to datetime objects.

Data Visualization

Distribution of Likes

Observation:

Highly skewed distribution.
Most tweets have few likes, a few have many (outliers).

Data Visualization

Likes by Category

Observation:

- Variation in distribution across categories.
- Some categories (e.g., Entertainment) have higher medians and more outliers.
- Other categories
 (e.g., Food) have
 tighter distributions.

Data Visualization

Count categories

Observation: Categories

have different count.

Data Visualization

Rolling Average of Likes Over Time

Observation:

Fluctuations over time, showing periods of higher and lower average engagement. No strong overall trend.

Data Visualization

Top 10 Users by Total Likes Received

Observation:

Top 10 user by Total Likes Received in descending order.

Data Analysis

ANOVA (Analysis of Variance) Test

Purpose: Determine if there's a statistically significant difference in *mean likes* between categories.

Results:

- F-statistic: **0.90**

- P-value: **0.494**

Conclusion:There is NO statistically significant difference in mean likes between categories

Step 6. 2

Data Analysis

Correlation Matrix

Purpose:

Examine linear relationships between likes' and one-hot encoded categories.

Observation:

Correlations are very close to zero, indicating a weak or no linear relationship. (Negative correlations between categories are expected due to one-hot encoding).

Step 6.3

Data Analysis

Daily Average Likes

Observation:

Considerable day-to-day variability. Suggests external factors (news, events) might influence engagement.

Insights

Summary of Findings

- **Likes Distributio**n: Highly skewed, most tweets have few likes, a few have many.
- Likes by Category: Variation in distribution, but ANOVA shows no statistically significant difference in means.
- Correlation: Very weak correlation between 'likes' and 'category'.
- **Time Series:** Fluctuations in rolling average and daily average likes.

Recommendations and Next Steps

- Investigate Outliers: Why do some tweets have very high likes?
- Explore Temporal Patterns:Day of week/time of day effects?Correlation with external events?

 - Deeper time series analysis.
- Content Analysis: Analyze tweet text (NLP) for keywords, topics, sentiment.
- **User Segmentation:** Identify different user groups.
- **Predictive Modeling:** Build a model to predict likes (requires more features).

Conclusion

- This project analyzed simulated tweets to understand user engagement based on likes.
- Likes were unevenly distributed: most tweets had few likes, while a few had many

- 2
- No significant difference in mean likes between categories, and a weak correlation between likes and category.

Engagement changed over time, likely due to external factors.

THANK YOU

Oleksii Malovanyi February 2025

Project on GitHub