## **Problem Set 4 Solutions**

1.

## a. Figure



**b.** See attached handwritten work at end of document.  $f''(x) \le 0$  for all real values of x, making f(x) concave (concave down).

## c. Output

```
Bisection method output:

maximum (x_max, f(x_max)) = (0.916912, 8.697930)

approx. relative error = 0.000416

iterations = 20
```

## 2. Output

Golden-section method output: time at maximum (s) = 3.831523maximum altitude (m) = 192.860863approx. relative error = 0.021326iterations = 20

## 3. Output

```
Parabolic interpolation output:
minimum (x_min, f(x_min)) = (1.427552, -1.775726)
approx. relative error = 0.000026
iterations = 7
```

BIOE 391 Numerical Methods – Due 13 February 2022

# 4. Output

```
Fminbnd output:
minimum of cost function (x_A, cost) = (0.587699, 11.149510)
```

5.

# a. Output

Fminbnd output: minimum of drag function (V min, D min) = (509.818120, 3118.974190)

# b. Output

Fminbnd output:

| W:    | V_min:   | D_min:    |
|-------|----------|-----------|
| 12000 | 441.5154 | 2339.2306 |
| 13000 | 459.5438 | 2534.1665 |
| 14000 | 476.8912 | 2729.1024 |
| 15000 | 493.6293 | 2924.0383 |
| 16000 | 509.8181 | 3118.9742 |
| 17000 | 525.5085 | 3313.9101 |
| 18000 | 540.7438 | 3508.8460 |
| 19000 | 555.5614 | 3703.7819 |
| 20000 | 569.9940 | 3898.7177 |

# 6. Output

Fminbnd output: optimum velocity (m/s) = 248.586834drag force (N) = 45938.710896ratio drag force to velocity = 184.799453

BIOE 391 Numerical Methods – Due 13 February 2022

## **Complete MATLAB Code**

```
% Robert Heeter
% BIOE 391 Numerical Methods
% HOMEWORK 4 MATLAB SCRIPT
clc, clf, clear, close all
%% P1. PROBLEM 7.4
disp('P1. PROBLEM 7.4');
% Plot function (PART A)
fx = \theta(x) (-1.5.*(x.^6)) - (2.*(x.^4)) + (12.*x); % function f(x)
figure
fplot(fx,[-2.5, 2.5],'-k','LineWidth',2);
xlabel('x','FontSize',12,'FontWeight','bold');
ylabel('f(x) = -1.5x^6-2x^4+12x', 'FontSize', 12, 'FontWeight', 'bold');
title('Function f(x) plot', 'FontSize', 14, 'FontWeight', 'bold');
ax = gca;
ax.XAxisLocation = 'origin';
axis([-3 3 -500 50]);
% Maximum value (PART C)
dfdx = @(x) (-9.*(x.^5)) - (8.*(x.^3)) + (12); % derivative of f(x)
[x max,~,ea,iter] = bisection(dfdx,-2,2,0,20); % use bisection function (below)
fx max = fx(x max); % evaluate f(x) at x max
disp('Bisection method output:') % display results
%d\n\n',x_max,fx_max,ea,iter);
%% P2. PROBLEM 7.17
disp('P2. PROBLEM 7.17');
g = 9.81; % gravitational acceleration (m/s^2)
z_0 = 100; % initial altitude (m)
v_0 = 55; % initial velocity (m/s)
m = 80; % mass (kg)
c = 15; % linear drag coefficient (kg/s)
z = \emptyset(t) \ z_0 + ((m/c)*(v_0+(m*g/c))*(1-\exp(-1*(c/m)*t))) - (m*g*t/c); \ \% \ motion \ of \ bungee \ jumper \ function
[t,z_max,ea,iter] = goldensectionmax(z,0,20,0,20); % use golden-section function (below)
% Display results
disp('Golden-section method output:')
fprintf('time at maximum (s) = %f\nmaximum altitude (m) = %f\napprox. relative error = %f\niterations =
%d\n\n',t,z max,ea,iter);
%% P3. PROBLEM 7.19
disp('P3. PROBLEM 7.19');
f = Q(x) ((x^2)/10) - (2*sin(x)); % function f(x)
x1 = 0; % initial guesses
xu = 4;
[x min,fx min,ea,iter] = parabolicinterpolationmin(f,xl,xu,0.001,10); % use parabolic interpolation
function (below)
% Display results
disp('Parabolic interpolation output:')
fprintf('minimum (x min, f(x min)) = (%f, %f) \setminus napprox. relative error = %f \setminus niterations =
%d\n\n',x_min,fx_min,ea,iter);
```

BIOE 391 Numerical Methods – Due 13 February 2022

```
%% P4. PROBLEM 7.29
disp('P4. PROBLEM 7.29');
C = 1; % proportionality constant (assume basis of C = 1)
cost = @(x) C*((1./((1-x).^2)).^0.6)+(6*((1./x).^0.6)); % cost function
[x,fx] = fminbnd(cost,0,1); % use fminbnd function
% Display results
disp('Fminbnd output:')
fprintf('minimum of cost function (x A, cost) = (%f, %f) \n', x, fx);
%% P5. PROBLEM 7.35
disp('P5. PROBLEM 7.35');
% PART A
sigma = 0.6; % ratio of air density between flight altitude and sea level
W = 16000; % weight
D = @(V) (0.01*sigma*(V^2)) + ((0.95/sigma)*((W/V)^2)); % drag function
[V mina, D mina] = fminbnd(D, 0, 5000); % use fminbnd function
disp('Fminbnd output:') % display results
% Sensitivity analysis (PART B)
sigma = 0.6; % ratio of air density between flight altitude and sea level
W range = (12000:1000:20000)'; % weight range
V minb = zeros(size(W range)); % preallocate result vectors
D minb = zeros(size(W range));
for i = 1:length(W range)
       W = W range(i);
       D = Q(V) (0.01*sigma*(V^2)) + ((0.95/sigma)*((W/V)^2)); % drag function
       [V minb(i),D minb(i)] = fminbnd(D,0,5000); % use fminbnd function
disp('Fminbnd output:') % display results
disp(' ');
%% P6. PROBLEM 7.42
disp('P6. PROBLEM 7.42');
W = 670000; % weight (N)
A = 150; % wing platform area (m^2)
AR = 6.5; % aspect ratio
C D0 = 0.018; % drag coefficent at zero lift
rho = 0.413; % air desnity (kg/m^3)
C_L = @(v) (2*W)/(rho*(v^2)*A); % lift equation
C_D = @(v) C_D0 + (((C_L(v))^2)/(pi*AR)); % drag equation
F_D = Q(v) W*(C_D(v)/C_L(v)); % drag force equation
[v, ratio] = fminbnd(@(v) F D(v)/v, 0,500); % use fminbnd function to find minimum ratio of drag force to
velocity
disp('Fminbnd output:') % display results
fprintf('optimum velocity (m/s) = %f \land ndrag force (N) = %f \land ndrag force to velocity = (ndrag force
f^n, v, F_D(v), ratio);
%% Additional Functions
function [root, fx, ea, iter] = bisection(func, xl, xu, es, maxit, varargin)
% ABOUT: Bisection method for finding roots, adapted from textbook .m file.
% INPUTS: func = function; x1, xu = lower and upper bounds; es = desired
```

## BIOE 391 Numerical Methods - Due 13 February 2022

```
% relative error (as percent); maxit = maximum iterations
% OUTPUTS: root = real root; fx = function value at root; ea = approximate
% relative error (as percent); iter = number of iterations
if nargin < 3
   error('At least 3 input arguments required.')
test = func(x1, varargin(:)) *func(xu, varargin(:));
if test > 0
   error('No sign change.')
if nargin < 4 || isempty(es)</pre>
   es = 0.0001;
if nargin < 5 || isempty(maxit)</pre>
   maxit = 50;
iter = 0;
xr = x1;
ea = 100;
while (1)
   xrold = xr;
    xr = (x1 + xu)/2;
   iter = iter + 1;
    if xr ~= 0
       ea = abs((xr - xrold)/xr) * 100;
    test = func(x1, varargin{:}) *func(xr, varargin{:});
    if test < 0</pre>
       xu = xr;
    elseif test > 0
       x1 = xr;
    else
       ea = 0;
    end
    if ea <= es || iter >= maxit
    end
end
root = xr;
fx = func(xr, varargin(:));
end
function [x,fx,ea,iter] = goldensectionmax(f,xl,xu,es,maxit,varargin)
\mbox{\ensuremath{\$}} ABOUT: Golden-section method for finding maximums, adapted from textbook
% .m file.
% INPUTS: f = function; x1, xu = lower and upper bounds; es = desired
% relative error (as percent); maxit = maximum iterations
% = 0 OUTPUTS: x = 1 ocation of maximum; fx = 1 function value at maximum; ea = 1
% approximate relative error (as percent); iter = number of iterations
if nargin < 3
   error('At least 3 input arguments required.')
if nargin < 4 || isempty(es)</pre>
   es = 0.0001;
if nargin < 5 || isempty(maxit)</pre>
   maxit = 50;
phi = (1+sqrt(5))/2;
```

BIOE 391 Numerical Methods - Due 13 February 2022

```
iter = 0;
d = (phi-1) * (xu-x1);
x1 = x1 + d;
x2 = xu - d;
f1 = f(x1, varargin\{:\});
f2 = f(x2, varargin\{:\});
while(1)
    xint = xu-xl;
    if f1 > f2 % changed condition to f1 > f2 to identify a maximum instead of minimum
       xopt = x1;
        x1 = x2;
       x2 = x1;
       f2 = f1;
        x1 = x1 + (phi-1) * (xu-x1);
        f1 = f(x1, varargin\{:\});
    else
       xopt = x2;
        xu = x1;
       x1 = x2;
       f1 = f2;
       x2 = xu - (phi-1) * (xu-x1);
       f2 = f(x2, varargin\{:\});
    iter = iter+1;
    if xopt ~= 0
       ea = (2-phi) * abs(xint/xopt)*100;
    if ea <= es || iter >= maxit
x = xopt;
fx = f(xopt, varargin{:});
end
function [x,fx,ea,iter] = parabolicinterpolationmin(f,xl,xu,es,maxit,varargin)
% ABOUT: Parabolic interpolation method for finding minimums.
% INPUTS: f = function; xl, xu = lower and upper guesses; es = desired
% relative error (as percent); maxit = maximum iterations
% OUTPUTS: x = location of minimum; fx = function value at minimum; ea = location value at minimum
% approximate relative error (as percent); iter = number of iterations
if nargin < 3
   error('At least 3 input arguments required.')
if x1 >= xu
   error('Check lower and upper guesses.')
xm = xl + (xu-xl)/2; % midpoint of initial interval
x1 = x1;
x2 = xm;
x3 = xu;
if f(x^2, varargin\{:\}) >= f(x^1, varargin\{:\}) \mid | f(x^2, varargin\{:\}) >= f(x^3, varargin\{:\}) % check whether
guesses bracket minimum
   error('Guesses do not bracket minimum.')
end
if nargin < 4 || isempty(es)</pre>
   es = 0.0001;
if nargin < 5 || isempty(maxit)</pre>
   maxit = 50;
```

BIOE 391 Numerical Methods – Due 13 February 2022

```
iter = 0;
while(1)
   % use formula for parabolic fit
   xn_numerator = (((x2-x1)^2)*(f(x2,varargin{:}))-f(x3,varargin{:}))) -
(((x2-x3)^2)*(f(x2,varargin{:}))-f(x1,varargin{:})));
   xn_denominator = ((x2-x1)*(f(x2,varargin{:}))-f(x3,varargin{:}))) -
((x2-x3)*(f(x2,varargin{:}))-f(x1,varargin{:})));
   xn = x2 - (0.5)*(xn_numerator/xn_denominator);
   iter = iter+1;
   if xn ~= 0
       ea = abs((xn - x2)/xn) * 100;
   if ea <= es || iter >= maxit
    % adjust points for parabolic fit and iterate
   if xn < x2
      x1 = x2;
       x2 = xn;
   else
      x3 = x2;
       x2 = xn;
   end
end
x = xn;
fx = f(xn, varargin{:});
```

Problem Set # 4

1. b.  $f(x) = -1.5x^6 - 2x^4 + 12x$   $f'(x) = -9x^5 = 8x^3 + 12$  First derivative

 $f''(x) = -45x^4 - 24x^2$  second derivative

Because f"(x) <0 for all real valves of x, f(x) is concave, x4 and x2 are always positive for any real number x, so -45 x 4 - 24x2 is always negative (or zero).