Diseño y desarrollo de un sistema de ayuda al diagnóstico de enfermedades cardiovasculares a partir de electrocardiogramas:

Aprendizaje profundo semisupervisado

Pablo Martín Redondo

2020

Índice

- Contexto
- Objetivos
- Deep Learning
- Procesamiento de datos
- Aumento de datos: Redes generativas adversarias
- Aumento de datos: Transformaciones
- Clasificación de enfermedades
- Herramienta de ayuda al diagnóstico
- Demo
- Conclusiones y líneas futuras

Problemática: Enfermedades cardiovasculares

▶ 413,153 M de defunciones al año

Población cada vez mas envejecida

Riesgo alto en ancianos

El electrocardiograma

► Forma de la señal

Procesado clásico: Algoritmo Pam-Tompkins (1985)

12 derivaciones

- **▶** ||
- **▶** III
- aVR
- ► aVL
- ▶ aVF
- ► V1-V6

Enfermedades cardiovasculares

Enfermedades cardiovasculares

Diseño y desarrollo de una herramienta de ayuda al diagnóstico

Objetivos

- Preprocesado de los datos
- Datos balanceados
- Clasificación
- ► Herramienta para su uso en entorno clínico

Deep Learning

Redes neuronales artificiales

Red neuronal clásica

Elementos

- $ightharpoonup A^{[i]} =$ salida de la capa i
- ▶ g = función de activación
- $W^{[i]} = \text{matriz de pendientes}$ de la capa i
- $b^{[i]} = matriz de ordenadas en el origen de la capa i$

Arquitecturas

Redes neuronales convolucionales

Redes neuronales recurrentes

Hochreiter and Schmidhuber, "Long short-term memory", 1997.

Simonyan and Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition", 2014.

Arquitecturas

Redes generativas adversarias

Goodfellow et al., "Generative adversarial nets", 2014.

Los datos de entrenamiento

Computing in cardiology challenge

Características

- ► 6877 muestras
- ► Casi 50/50 por sexo
- ▶ 12 derivaciones
- ▶ 500Hz
- ► Entre 6 y 144 segundos

Distribución por edad

- physionetchallenges.github.io/2020
- Distribución por enfermedad

	\mathbf{AF}	I-AVB	LBBB	Normal	PAC	PVC	RBBB	STD	STE
Cantidad	1.221	722	236	918	616	700	1.857	869	220

Preprocesado

1. Filtrar el ruido

2. Separación y submuestreo

3. Normalización
$$\vec{x}_{norm} = \frac{\vec{x} - min(\vec{x})}{min(\vec{x}) - max(\vec{x})}$$

Distribución final por enfermedad

	AF	I-AVB	LBBB	Normal	PAC	PVC	RBBB	STD	STE
Cantidad	27.789	15.537	5.289	21.705	19.401	24.202	41.013	21.154	5.950

Aumento de datos: Redes generativas adversarias

Arquitectura

Auxiliary Classifier Generative Adversarial Network (AC-GAN)

Mirza and Osindero, "Conditional generative adversarial nets", 2014. Odena, Olah, and Shlens, "Conditional image synthesis with auxiliary classifier gans", 2017.

Arquitectura del generador

Generador

Configuración

- Recomendaciones DCGAN
- Primera y última capa libres
- ▶ Batch Normalization $\alpha = 0.8$
- ▶ Dropout 25%

- ReLu
- ► Salida tanh
- ► Filtros de 3 unidades
- Padding same

Radford, Metz, and Chintala, "Unsupervised representation learning with deep convolutional generative adversarial networks", 2015.

Arquitectura del discriminador

Discriminador

Configuración

- Recomendaciones DCGAN
- Primera y última capa libres
- Sin batch normalization
- ▶ Dropout 25%

- ► LeakyReLu
- ▶ Salidas $\sigma(x)$ y softmax
- ► Filtros de 3 unidades
- ► Padding same y stride 2

Entrenamiento y resultados

- Adam $\alpha = 10^{-4}$ $\beta_1 = 0,5 \text{ y}$ $\beta_2 = 0,999$
- ► 200 épocas
- 64 señales por lote
- 4 sesiones
- ► 12h/sesión
- ▶ 280.225 parámetros

Muestras generadas

Transformaciones

- 1. Tomar ventanas aleatorias de 50 muestras
- 2. Intercambiarlas
- 3. Ruido gaussiano de entre -0.02 y 0.02
- 4. Filtrado y normalización

Arquitectura: primera entrada

- ► Interpretación de datos cualitativos
- ▶ Primera entrada: Embedding3-192
- Crea una representación de esa entrada en un vocabulario de 192 símbolos

Arquitectura: segunda entrada

- Interpretación de la señal
- ► Segunda entrada: 2BiLSTM-Conv4

► Forma + temporalidad

Capa convolucional

- ► Filtro con kernel 3, padding same y stride 1
- Batch normalization
- Dropout

Arquitectura

Modelo completo

Hiper-parámetros

- ▶ Batch normalization $\alpha = 0.8$
- Dropout 25%
- 4 capas de FCL

Entrenamiento

Entrenamiento con las 2 técnicas de aumento de datos

Configuración

- ➤ Datos 95/5
- ► 400 épocas
- ▶ 7 horas

- ▶ 64 vectores por lote
- Adam $\alpha = 10^{-4}$, $\beta_1 = 0,9$ y $\beta_2 = 0,999$

Resultados

- Utilizar ambos
- 1. Evaluación de los trozos
- 2. Media aritmética
- 3. Filtro de sesgos
- 4. 1 si > 0.6/máximo

	Transformaciones	GANs	Final
Precisión	$88{,}19\%$	$94{,}78\%$	$95{,}11\%$

- ► Falsos positivos 0,45%
- ► Falsos negativos 0,47%

Matriz de confusión final

- 80

Componentes

- Arquitectura orientada a servicios
- Como personal médico quiero poder enviar los ficheros necesarios para obtener una ayuda en el diagnóstico de enfermedades cardiovasculares.

Componentes

Proveedor

- Python
- Tensorflow
- ► Flask
- ► Singleton almacén

Consumidor

- ► React
- ► Material-UI
- nivo

Despliegue

Despliegue en contenedores

Contenedores

- ► NGINX Alpine Linux
- ► React Alpine Linux Node
- Flask Python container

Máquina

- CPU 1 núcleo
- ▶ 1,75 GB de RAM
- Certificado
- Puertos 80 y 443

Demo

Conclusiones

Objetivos

- Documentación
- ► Aumento de datos
- Clasificación
- ► Herramienta
- ► Hospital 12 de Octubre

Líneas futuras

Potencial

- Continuación
- ► Formato de los archivos
- ► Gestión de pacientes
- ► Mejorar el modelo
- ► Utilización entorno real

Gracias