UNIVERSIDAD DE SAN ANDRÉS - Matemática 2 (Administración- Contador- Negocios Digitales)

Ejercitación 4: Derivadas (Parte II)

- 1. Calcular el plano tangente de $f(x,y) = x^2 + y^4 + e^{xy}$ en el punto (1,0).
- 2. Calcular el plano tangente de $f(x,y) = \ln(\sqrt{1+xy})$ en los puntos (0,0) y (1,2).
- 3. Calcular el plano tangente de $f(x,y)=\sqrt{a^2-x^2-y^2}$ en el punto $(\frac{a}{2},\frac{a}{2})$.
- 4. Calcular el plano tangente de $f(x,y) = e^{2x}\cos(bx+y)$ en el punto $(\frac{2\pi}{b},0)$.
- 5. Comparar los planos tangentes de $f(x,y)=x^2+y^2$ y de $g(x,y)=-x^2-y^2+xy^3$ en el punto (0,0), cómo son uno respecto del otro.
- 6. ¿ Dónde corta el eje z al plano tangente de $f(x,y) = e^{x-y}$ en el punto (1,1)?
- 7. Sean $f: \mathbb{R}^2 \to \mathbb{R}$ \mathcal{C}^1 tal que su plano tangente en (1,-1) es x+y+2z=3, y sea $g(x,y)=e^{x^2-1}y$. Calcular el plano tangente de 2f+g en (1,-1).
- 8. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ \mathcal{C}^1 tal que $\nabla f(0,0) = (4,-1)$ y el plano tangente de f en (0,0) es $\alpha x + \beta y + z = 4$. Hallar α, β y f(0,0).
- 9. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ \mathcal{C}^1 tal que $f_v(1,2) = \sqrt{2}$ para v = (1,-1). Hallar todos los $k \in \mathbb{R}$ tales que 6x + ky 2k = z + 3 es el plano tangente de f en (1,2).
- 10. Calcular las matrices diferenciales de f en P:
 - (a) f(x,y,z) = 2x + y + 4z en P = (1,-1,2).
 - **(b)** $f(x,y,z) = x^2y^3z^4$ en P = (1,1,1).
 - (c) $f(x,y,z) = (3x^2 + z 1, \sin(xe^{zy}))$ en P = (2,1,0).
 - (d) $f(t) = (\cos t, \sin t, t)$ en P = 0.
 - (e) $f(x,y) = (x^2 + y^2 \sin(xy), e^x \cos y, 3x)$ en P = (1,0).
- 11. Si $f(u,v) = (u+v,u,v^2)$ y $g(x,y) = (x^2+1,y^2)$, calcular $D(f \circ g)(1,1)$.

Regla de la cadena:

- 12. Si $f(u,v) = (\cos(v) + u^2, e^{u+v})$ y $g(x,y) = (e^{x^2}, x \sin(y))$, calcular $D(f \circ g)(0,0)$.
- 13. Sea $f(u,v)=\dfrac{u^2+v^2}{u^2-v^2}$. Sea h(x,y)=f(u(x,y),v(x,y)) siendo las funciones $u(x,y)=e^{-x-y}$ y $v(x,y)=e^{xy}$. Calcular la matriz diferencial de h(x,y).
- 14. Si $f(x,y)=(x+y^3,x,e^{x-y})$ y $g(x,y,z)=x^2+1+zy^2$, calcular el plano tangente de $g\circ f$ en (1,1).
- 15. Sean $f:\mathbb{R}^2\to\mathbb{R}^2$ y $g:\mathbb{R}^2\to\mathbb{R}$ \mathcal{C}^1 tales que $f(2,1)=(1,0),\ Df(2,1)=\begin{pmatrix}3&-1\\2&-3\end{pmatrix}$ y $\nabla g(x,y)=(2x+y,3x^4+\sin(y)).$ Hallar el plano tangente de $g\circ f$ en (2,1).
- 16. Sean $f:\mathbb{R}^2 \to \mathbb{R}$ y $g:\mathbb{R}^2 \to \mathbb{R}^2$ \mathcal{C}^1 tales que $f\circ g(x,y)=y\sin(x)+y^2+x$, g(0,1)=(0,2) $Dg(0,1)=\left(egin{array}{cc} 2 & -2 \\ 2 & -4 \end{array}\right)$. Hallar el plano tangente de f en (0,2).
- 17. Sean $f: \mathbb{R}^2 \to \mathbb{R}$ \mathcal{C}^1 y $g(x,y) = (3x(y+1), e^y)$, tales que el plano tangente de $f \circ g$ en (-1,0) es 2x-z=2. Calcular el plano tangente de f en (-3,1).