Politecnico di Bari

Complementi di Analisi Matematica

Laurea Ingegneria Informatica e Automazione

Laurea Ingegneria Elettronica e Telecomunicazioni

A.A. 2015/2016

Appello 9 settembre 2016

Traccia A

Cog	nome	Nome	Nº Matricola	
Programma:		precedente AA 2014/2015 \square	da AA 2014/2015 in poi \square	
1)		eriodo 2, e g il segnale $g(t) = \cos t$	alla funzione $t \in [0, 2] \mapsto t^2$, estesa per $+(t-2)$. Calcolare la trasformata di I	
				7 pts.
Per gli anni accademici precedenti al 2014/2015, si sostituisca l'esercizio 1) con il seguente:				
1)	Dimostrare che la	serie		
		$\sum_{n=0}^{+\infty} \frac{f(t)}{n^2}$	$\frac{\sqrt{nt}}{1}$,	
	dove f è una funz	ione limitata su $[0, a], a > 0$, conv		
	J	[/]/ /	[/]	7 pts
0)	Ct. P		· 1·	7 pts.
2)	Studiare convergenza puntuale e uniforme della serie di potenze in \mathbb{R}			
		$\sum_{n=1}^{+\infty} \frac{2^n - 3^n + 1}{4^n - 2^n}$	$\frac{4^n}{x^n}(x-1)^n.$	
				7 pts.
3)		e di funzione armonica su un ape uria di una funzione olomorfa su u	rto del piano. Dimostrare poi che la pa in aperto sono ivi armoniche.	arte reale e
				5 pts.
4)	Ricavare la serie d	li Maclaurin della funzione $f(x)$ =	$= \frac{x^2}{1+x^4}.$ Determinare, poi, $D^{(8)}f(0)$.	
				6 pts.
5)	Enunciare e dimos	strare la I formula di rappresenta	zione di Cauchy.	
				5 pts.

6) Calcolare

$$\int_{\partial^+ Q} \frac{e^{-\frac{1}{z}}}{(z - \frac{i}{2})(z + \frac{1}{4})(z - \frac{1}{4})} dz,$$

dove Q è il quadrato di vertici $-1-i,\ -1+i,\ 1+i,\ 1-i.$