Homework 11

Jaden Wang

Problem (20.2). Since 11 is prime, \mathbb{Z}_{11} is a field, and $\phi(11) = 10$. Therefore, we are trying to find a generator from 1 to 10 that generates the group $U(\mathbb{Z}_{11})$ under \times_{11} . 7 happens to work:

$$\times_{11}$$
 | 7 | 5 | 2 | 3 | 10 | 4 | 6 | 9 | 8 | 1

Thus, $\langle 7 \rangle = U(\mathbb{Z}_{11})$.

Problem (20.4). By FIT, since 23 is prime, $3^{23-1} = 3^{22} \equiv 1 \mod 23$.

$$3^{47} = 3^{44} \cdot 3^3$$

$$\equiv 1 \cdot 27 \mod 23$$

$$\equiv 4 \mod 23$$

Problem (20.5). Since 7 is a prime, by FlT $37^6 = 1 \mod 7$.

$$37^{49} = 37^{6 \times 8} \cdot 37$$

$$\equiv 1 \cdot 37 \mod 7$$

$$\equiv 2 \mod 7$$

Problem (20.8). Notice that since \mathbb{Z}_{p^2} only has factor p which is prime, only multiples of p are not coprime with p^2 in \mathbb{Z}_{p^2} . There are (p-1) such multiples in \mathbb{Z}_{p^2} . These multiples are the only zero divisors of \mathbb{Z}_{p^2} . Thus by theorem, the number of units are the group order of nonzero elements (p^2-1) subtracting the number of zero divisors p-1:

$$\phi(p^2) = (p^2 - 1) - (p - 1) = (p + 1)(p - 1) - (p - 1) = p(p - 1).$$

Problem (20.10). Since gcd(7, 24) = 1, we can apply Euler and obtain $7^{23} = 1 \mod 24$. Also notice $7^2 \mod 24 = 1$, so 7 to the odd power mod 24 is 7. Therefore,

$$7^{1000} = 7^{43 \times 23} \cdot 7^{11} \equiv 7 \bmod 24.$$

Problem (20.13). $d = \gcd(36, 24) = 12$. Clearly d doesn't divide 15, so there is no solution by theorem.

Problem (20.14). $d = \gcd(45, 24) = 3$. And 3/15. Now let's divide everything by 3: $a' = \frac{45}{3} = 15, m' = \frac{24}{3}, b' = \frac{15}{3} = 5$. Thus we have

$$a'x \equiv b' \mod m'$$

$$15x \equiv 5 \mod 8$$

$$8x + 7x \equiv 5 \mod 8$$

$$7x \equiv 5 \mod 8$$

The units in \mathbb{Z}_8 are 1,3,5,7. Notice $7 \times_8 7 \equiv 49 \mod 8 \equiv 1 \mod 8$. So 7 is its own inverse in \mathbb{Z}_8 . Multiplying 7 on both sides:

$$7 \times_8 7x \equiv 7 \times_8 5$$
$$x \equiv 3$$

Problem (20.23).

- a) False. If $a = 0 \in \mathbb{Z}$, then $a^{p-1} \equiv 0 \mod p$.
- b) True.
- c) True. Since \mathbb{Z}_n has order n, the number of units must be less or equal to n.
- d) False. If n = 1, then $\phi(n)$ is defined as $1 \neq 1 1 = 0$.
- e) True. By theorem.
- f) True. Given units $a, b \in \mathbb{Z}_n$, then $b^{-1}, a^{-1} \in \mathbb{Z}_n$, and the inverse of ab is $b^{-1}a^{-1} \in \mathbb{Z}_n$.
- g) False. If $a, \in \mathbb{Z}_n$ are nonunits, then $\gcd(a, n) \neq 1$ and $\gcd(b, n) \neq 1$. It follows that $\gcd(ab, n) \neq 1$, which makes it not a unit.
- h) False. By the same gcd argument as above.
- i) False. Let $a = 0, b = 1, 0x \equiv b \mod p$ has no solution.
- j) True. By theorem.

	\times_{12}	1	5	7	11
	1	1	5	7	11
•	5	5	1	11	7
	7	7	11	1	5
	11	11	7	5	1

Problem (20.24). This is V_4 because all elements are their own inverses.

Problem (21.1). We guess that $F = \{p+qi : p, q \in \mathbb{Q}\}$ is the field of fraction of D. Recall that we have shown in HW9 18.12 that structures similar to this is a field. Moreover, given $d = a + bi \in D$, $a, b \in \mathbb{Z} \subseteq \mathbb{Q}$, so $d \in F \Rightarrow D \subseteq F$. It remains to show that F is "not too big". That is, every element in F can be expressed as a fraction of two elements in D.

Given $\frac{r}{s} + \frac{t}{u}i \in F, r, s, t, u \in \mathbb{Z}, s, u \neq 0$, we have

$$\frac{r}{s} + \frac{t}{u}i = \frac{ru + sti}{su} = \frac{ru + sti}{su + 0i}.$$

Since ru + sti, $su + 0i \in D$, s, $u \neq 0 \Rightarrow su + 0i \neq 0$ since D has no zero divisors, this is indeed a well-defined fraction representation, as required.

Problem (21.2). We guess that $F = \{p + q\sqrt{2} : p, q \in \mathbb{Q}\}$ is the field of fraction of D. Recall that we have shown in HW9 18.12 that this is a field. Moreover, given $d = a + b\sqrt{2} \in D$, $a, b \in \mathbb{Z} \subseteq \mathbb{Q}$, so $d \in F \Rightarrow D \subseteq F$. It remains to show that F is "not too big". That is, every element in F can be expressed as a fraction of two elements in D.

Given $\frac{r}{s} + \frac{t}{u}\sqrt{2} \in F, r, s, t, u \in \mathbb{Z}, s, u \neq 0$, we have

$$\frac{r}{s} + \frac{t}{u}i = \frac{ru + st\sqrt{2}}{su} = \frac{ru + st\sqrt{2}}{su + 0\sqrt{2}}.$$

Since $ru + st\sqrt{2}$, $su + 0\sqrt{2} \in D$, $s, u \neq 0 \Rightarrow su + 0\sqrt{2} \neq 0$ since D has no zero divisors, this is indeed a well-defined fraction representation, as required.

Problem (21.4).

a) True.

- b) False. Q is and field of fraction is unique up to isomorphism.
- c) True. By theorem.
- d) False. \mathbb{R} is and it's unique up to isomorphism.
- e) True. By theorem and uniqueness up to isomorphism.
- f) True. The first time was for cancellation law to prove transitivity. The second time was for proving the 2nd element is non zero in addition and multiplication operations.
- g) False. $0 \in D$ but 0 cannot be a unit.
- h) True. By definition of a field and D is contained in F.
- i) Since $D' \subseteq D \subseteq F$, so F is a field containing D'. Since F' is the smallest field containing D', it follows that $F' \subseteq F$.
- j) True. Since it's unique up to isomorphism.

Problem (21.5). Since \mathbb{Q} is a field, it is also a domain by theorem. Let $D' = \mathbb{Z}$, and we know $\mathbb{Z}leq\mathbb{Q}$ is a subdomain. Moreover, we know $F' = \mathbb{Q}$, which is also the field of fractions of \mathbb{Q} itself as required.