CEE432/CEE532 Developing Software for Engineering Applications MAE 541 CAD Tools for Engineers

Lecture 1: Overview (Chapter 1)

Course Objectives

- Understand the link between engineering software development and structural engineering
- Learn the concepts associated with
 - object-oriented problem solving
 - algorithm development, implementation and debugging
 - resource allocation and performance tuning in engineering software
- Understand basics of finite element analysis

Blackboard Web Site

- Use http://myasucourses.asu.edu
- There will be no handouts in class
- Read the course syllabus

C++ Textbooks

- Horstmann and Budd, *Big C++*, Wiley.
- Deitel and Deitel, *C*++ *How to Program*, 4th Ed, Prentice Hall.
- Shtern, Core C++ A Software Engineering Approach, Prentice Hall.
- Lipmann et. al., *C*++ *Primer*, Addison Wesley
- Stroustrup, *The C++ Programming Language*, Addison Wesley.

Books on STL

- Josuttis, The C++ Standard Library: A Tutorial and Reference, Addison-Wesley.
- Musser, Derge and Saini, *STL Tutorial and Reference Guide*, 2nd Edition, Addison Wesley.

Numerical Analysis Books

- Chapra and Canale, *Numerical Methods for Engineers*, 4th Ed, McGraw-Hill.
- Press, Teukolsky, Vetterling and Flannery, Numerical Recipes in C++: The Art of Scientific Computing, Cambridge University Press.

FEA Books

- Rajan, Introduction to Structural Analysis & Design, Wiley.
- Several books available in Noble library

Ethics

- Know and practice ethical behavior
- Assignment 0: Read, understand and acknowledge the class ethical policy. There are serious repercussions if you do not practice ethical behavior.
- I am here to guide you and help you help yourself.

Computing Resources

- Operating Systems
 - Microsoft Windows 7 or 8
 - Linux
- C++ Compilers and IDE
 - Windows: Microsoft Visual Studio 2012
 - Linux: Eclipse with Intel C++, gcc

Terminology

- Program A set of instructions
- OS Operating System
- Programming Language
- Compiler
- Executable image
- We will learn ISO C++11 (though not all the latest language features)

Engineering Software

- Usually is
 - Described by a PDE, ODE or integral equations
 - Requires a numerical, approximate solution
 - Needs to be as general as possible
- Usually requires large resources
 - Memory
 - Compute intensive
 - Input and output are graphics-based

Numerical Simulation

- Requires an array of solution techniques and has traits such as
 - One and multi-dimensional arrays
 - Real and complex numbers
 - Precision is an issue
 - Linear and nonlinear equation solvers
 - Numerical integration and differentiation
 - Statistical operations

Algorithm

- Describes the solution steps involved in a numerical analysis procedure
- Should be detailed enough so that it is
 - Accurate
 - Robust
 - Can be translated readily into a computer program or module

An Example

- Find the maximum of a set of numbers.
 - Input: A set of numbers
 - Output: A single number that is the maximum value of the input set.
- Assumptions
 - Input set contains real numbers
 - Numbers are not necessarily unique
 - Numbers are randomly placed (not sorted)

Algorithm

- Step 1: Ask user for size of input set, *n*.
- Step 2: Read in the input set storing the values in a vector *a* of size *n*.
- Step 3: Set the maximum value, $a_{max} = -10^{20}$.
- Step 4: Loop thro' all the numbers, i=1 through n.
- Step 5: Compare a_i to a_{max} . If a_i is greater than a_{max} set $a_{max} = a_i$.
- Step 6: End loop.
- Step 7: Display a_{max} .

What are Objects?

• Objects are routinely identified by human beings. They are given a name, defined as having properties (what is it?) and capabilities to do something (what does it do?). Computer scientists term these characteristics as *attributes* and *behavior*.

Object-Oriented (OO) Numerical Analysis

- The proficiency of higher-level OO model should provide the software designer with real-world, programmable components, thereby reducing software development costs.
- Its capability to share and reuse code with OO techniques will reduce time to develop an application.
- Its capability to localize and minimize the effects of modifications through programming abstraction mechanisms will allow for faster enhancement development and will provide more reliable and more robust software.
- Its capability to manage complexity allows developers to address more difficult applications.

Terminology

- Building a Program
 - Source Code High-level language
 - Compiler Binary code
 - Linker Executable image

Terminology

- Integrated Development Environment
 - Editor
 - Compiler
 - Linker
 - Debugger

Building a Program

- Microsoft Visual C++ IDE
 - Installation
 - Executing
 - Exiting
 - Saving and handling files

The Simplest C++ Program

```
#include <iostream>
using std::cout;
int main ()
 cout << "Hello World";</pre>
 return (0);
```

- The Visual C++ Environment
- What is a project?
- Creating a simple program
- Compiling
- Building (Compiling and Linking)
- Executing the program

Exercise: Using Visual C++

- Launch Visual C++
- Create the simple program
- Execute the simple program
- Modify the simple program

Startup Screen

• Click on File, New, Project

- ProjectType:VisualC++Projects
- Template: Win32 Console Project

- Select Location and Type Name
- Click OK

Click Next

- Check Empty project.
- Uncheck SDL.
- Click Finish.

- Right click Source Files
- Select Add, New Item.
- Enter Name.
- Click Add.

• Type in the program

Click on Build, Build Test1.

Executing the Project

Click on
Debug,
Start
Without
Debugging

Executing the Project

```
C:\Windows\system32\cmd.exe

Hello World.

Press any key to continue . . .
```

Summary

- Computerspeak
 - Computer
 - Hardware
 - Software
 - Firmware
 - Operating System

Summary

- Can you tell the differences between
 - Programming language
 - Compiler
 - Linker
 - Executable image
 - Source Code
 - Editor
 - Debugger