Neuron-Matrix Documentation

Release 1.0

Hadrien Renaud-Lebret, Guillaume Bressan, Pierre Browne

CONTENTS:

1	NeuralNetwork module	1
	Processing Utilitaries 2.1 getdata module	
3 Indices and tables		
Рy	ython Module Index	7

NEURALNETWORK MODULE

Python module for NeuralNetwork class.

It provides an implementation of a NeuralNetwork with utilitaries. It is NOT bounded to learning on images or even to learning on samples in different files.

class neuralnet.NeuralNetwork (geometry, functions=[(<ufunc 'tanh'>, <function inv_cosh>)], learning factor=0.1, momentum=0)

NeuralNetwork class.

___call___(input_values)

Apply the Neural Network to the input values.

Warning DOESN'T SAVE the result for a learning after. Use apply() in this case.

Parameters input_values – as an iterable of numeric values between 0 and 1.

Returns an numpy array of values between 0 and 1.

__init__(geometry, functions=[(<ufunc 'tanh'>, <function inv_cosh>)], learning_factor=0.1, momentum=0) Initialisation of the NeuralNetwork.

Parameters

- **geometry** (str) string describing the format of the NeuralNetwork: '456:12:24:3' will create a network with a first layer with 456 neurons, a second with 12, a third with 24 and the last with 3.
- **functions** (*list*) list of tuple of vectorized functions (see numpy.vectorize) [(fun1, deri_fun1), (fun2, deri_fun2), ...]
- **logistic_function_param** (tuple) (mu, x0) parameters send to :iso_fonction: and :deri_iso_fonction: slope and offset of the logistic function.

apply (input_values)

Apply the NeuralNetwork to the input values.

Parameters input_values – as an iterable of numeric values between 0 and 1.

Returns an numpy array of values between 0 and 1.

backpropagation (expected_output)

Apply the backpropagation algorithm.

Note You have to apply () the Network on the sample before.

Parameters expected_output (numpy.array) - expected results

Execution

•computing of the errors:

-Initialisation at the bottom of the NeuralNetwork $e_{-1} := f'(x_{-1}) \times (y - x_{-1})$

-backpropagation of the gradient $e_{i-1} := f'(x_{i-1}) \times (e_{i+1} \cdot t_i^T)$

•correction of the transition matrix :

-computing of the differencial matrix: $\Delta t_i := \tau (1 - \mu)(x_i^T \cdot e_{i+1}) + \mu \Delta t_i$

-correcting the transition matrix: $t_i := t_i + \Delta t_i$

dist(expected_output)

Calc the distance of the result to the expected_output.

It computes the distance between the results found in process_archives with the formula : $\sqrt{\sum_i (y_i - x_{-1,i})^2}$

Parameters expected_output (numpy.array) - expected result $(y_i)_i$

Note the distance is not an average distance on the two arrays.

Note compute the euclidian norm of the difference between the two arrays.

Return float
$$\sqrt{\sum_i (y_i - x_i)^2}$$

get_geometry()

Return self.geometry.

Returns self.geometry modified to render like the one passed as an argument of init ().

Return type str

get_learning_factor()

Return the learning_factor of the NeuralNetwork.

learn (sample, results, limit_iterations=50, maximal_distance=0.2)

Learning algorithm on the given examples.

First algorithm.

learn2 (sample, results, limit_iterations=50, maximal_distance=0.2)

Learning algorithm on the given examples.

Method given by Hélène Milhem here.

randomize_factors()

Randomize the transition matrix.

set_learning_factor(tau)

Set the learning factor to the value passed as an argument.

set_transition_matrix (matrixes)

Set the transition_matrix to the correct values.

to_json()

Return an expression of the NeuralNetwork in json.

neuralnet.learning_progress_display(**args)

Display the progress of the learning algorithm.

neuralnet.alphabet

Alphabet used. The order is the most important thing. Only the \$n\$ first values are considered, where \$n\$ is the length of the alphabet.

neuralnet.default_values

CHAPTER

TWO

PROCESSSING UTILITARIES

2.1 getdata module

```
Module for neuron-matrix.
```

```
class getdata.IteratorMultiple(lengths)
    Bases: object
```

Iterator through an unknown number of lists.

```
getdata.get_data(proc='1', ranges={'learning_factor': [0.1], 'momentum': [0.5], 'learning_algo': ['default'], 'limit_iterations': [50], 'maximal_distance': [0.2]}, **kwargs)

Process with different parameters the sample.
```

```
getdata.procedure1 (alphabet='abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789, ?;::!éàè\'()+-"=", learning_algo='default', learning_directory='LearningSample', testing_directory='TestSample', learning_factor=0.1, momentum=0.5, limit_iterations=50, maximal_distance=0.2)

Function that execute procedure1.
```

It does: - create a new NeuralNetwork object - randomize its transition_matrix - learn on a given dataset - test on a given dataset

```
getdata.default_ranges
```

Ranges on which it iterate by default.

2.2 fileio module

Python module for neuron-matrix.

It implements the main input/output functions used in neuron-matrix.

```
fileio.find_examples(directory, alphabet)
```

Iterate through the directory to find all processable examples and return them.

```
fileio.is_convertible_to_float(string)
```

Function that determine if a string can be safely convert to a float.

```
fileio.learn_on_folder (neurnet, directory, alphabet, learning_algo='default', **args)

Make neurnet learn on every example in the directory.
```

```
fileio.read sample(file text)
```

Function reading an sample in a file and returning the corresponding matrix.

Return the result as a numpy array.

fileio.save_image(matrix, file_name)

Function saving matrix as an image.

fileio.test_on_folder(neurnet, directory, alphabet, **args)

Make neurnet test every example in the directory.

CHAPTER

THREE

INDICES AND TABLES

- genindex
- modindex
- search

PYTHON MODULE INDEX

```
f
fileio,3
g
getdata,3
n
neuralnet,1
```

INDEX

Symbols	P
call() (neuralnet.NeuralNetwork method), 1 init() (neuralnet.NeuralNetwork method), 1	procedure1() (in module getdata), 3
A alphabet (in module neuralnet), 2 apply() (neuralnet.NeuralNetwork method), 1	R randomize_factors() (neuralnet.NeuralNetwork method), 2 read_sample() (in module fileio), 3
В	S
backpropagation() (neuralnet.NeuralNetwork method), 1	<pre>save_image() (in module fileio), 3 set_learning_factor() (neuralnet.NeuralNetwork method),</pre>
default_ranges (in module getdata), 3 default_values (in module neuralnet), 2 dist() (neuralnet.NeuralNetwork method), 2	set_transition_matrix() (neuralnet.NeuralNetwork method), 2
F fileio (module), 3 find_examples() (in module fileio), 3	T test_on_folder() (in module fileio), 4 to_json() (neuralnet.NeuralNetwork method), 2
G	
get_data() (in module getdata), 3 get_geometry() (neuralnet.NeuralNetwork method), 2 get_learning_factor() (neuralnet.NeuralNetwork method), 2 getdata (module), 3	
- 	
is_convertible_to_float() (in module fileio), 3 IteratorMultiple (class in getdata), 3	
L	
learn() (neuralnet.NeuralNetwork method), 2 learn2() (neuralnet.NeuralNetwork method), 2 learn_on_folder() (in module fileio), 3 learning_progress_display() (in module neuralnet), 2	
N	
neuralnet (module), 1	

NeuralNetwork (class in neuralnet), 1