1032F Test 1a Solutions

Questions

- 1. (a) What is the potential difference between two points that are situated 10 cm and 20 cm from a 3.0 μC charge?
 - (b) To what location should the point at 20 cm be moved to double that potential difference?
- 2. (a) Find the current through each of these four resistors.
 - (b) Find the voltage across each of these four resistors.

- 3. An electron is accelerated from rest by a potential difference of 350 V. It then enters a uniform magnetic field of magnitude 200 mT with its velocity perpendicular to the field. Calculate
 - (a) the speed of the electron.
 - (b) the radius of its path in the magnetic field.

Answers

1. (a) The potential due to a point charge q at a distance r away from that point charge is given by $V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$. So

$$V_1 = 9 \times 10^9 \,\mathrm{kg \cdot m^3 s^{-4} A^{-2}} \frac{3 \times 10^{-6} \,\mathrm{C}}{0.01 \,\mathrm{m}} = 2.7 \times 10^5 \,\mathrm{V}$$
$$V_2 = 9 \times 10^9 \,\mathrm{kg \cdot m^3 s^{-4} A^{-2}} \frac{3 \times 10^{-6} \,\mathrm{C}}{0.02 \,\mathrm{m}} = 1.35 \times 10^5 \,\mathrm{V}$$

We can find the potential difference by subtracting one from the other. For convenience we subtract the smaller from the larger.

$$\Delta V = V_1 - V_2 = 1.35 \times 10^5 \,\mathrm{V}$$

(b) In order to double the potential difference, we require

$$\Delta V = 2.7 \times 10^5 \text{ V}$$

$$\implies 2.7 \times 10^5 \text{ V} = 2.7 \times 10^5 \text{ V} - V_2$$

$$\implies V_2 = 0$$

In order for the potential at a point to be zero, we must have that point be infinitely far from the charge. Thus the point must be <u>moved to infinity</u> in order to double the potential difference.

2. (a) To find the current through the whole circuit we first need to find the resistance of the whole circuit. R_3 and R_4 just add as they are in series, then that must be combined with R_2 according to the parallel rules, then finally we can add that to R_1 as it is in series.

$$R_{tot} = R_1 + \frac{1}{\frac{1}{R_2} + \frac{1}{R_3 + R_4}}$$
$$= 5\Omega + \frac{1}{\frac{1}{10\Omega} + \frac{1}{5\Omega + 5\Omega}}$$
$$= 10\Omega$$

Then the total current is simply $I = \frac{V}{R_{tot}} = 1 \,\text{A}.$

The current through elements in series is all identical so $\underline{I_1 = 1 \text{ A}}$. Then since $R_2 = R_3 + R_4$, the current splits equally between R_2 and the $\overline{R_{3,4}}$. Thus $\underline{I_2 = 0.5 \text{ A}}$ and $I_{3,4} = 0.5 \text{ A}$.

(b) Finding the voltage across each resistor is now simple as we know the current and the resistance, so we just use V = IR.

$$V_1 = 5 \text{ V}, \quad V_2 = 5 \text{ V}, \quad V_3 = 2.5 \text{ V}, \quad V_1 = 2.5 \text{ V}$$

3. (a) From the definition of an electron volt, an electron gains 1 eV of energy when accelerated by one Volt of potential difference. So the electron gains 350 eV. Converting this to Joules we find 5.6×10^{-17} J. This is its kinetic energy, so we can find the velocity from $E_K = \frac{1}{2}mv^2$:

$$v = \sqrt{\frac{2E_K}{m}}$$

$$= \sqrt{\frac{2 \cdot 5.6 \times 10^{-17} \text{ J}}{9.1 \times 10^{-31} \text{ kg}}}$$

$$= 11.09 \times 10^6 \text{ ms}^{-2}$$

(b) The radius of its path is simply found from $r = \frac{mv}{qB}$. We can simply plug the values in and find

$$r = \frac{9.1 \times 10^{-31} \,\mathrm{kg} \cdot 11.09 \times 10^{6} \,\mathrm{ms}^{-2}}{1.6 \times 10^{-19} \,\mathrm{C} \cdot 200 \times 10^{-3} \,\mathrm{T}} = \underline{3.155 \times 10^{-4} \,\mathrm{m}}.$$
 (0.1)