

PATENTSTYRET

Styret for det industrielle rettsvern

► ADRESSE

Postboks 8160 Dep.
Københavngaten 10
0033 Oslo

► TELEFON

22 38 73 00

► TELEFAK

22 38 73 00

BANKGIRO

8276.01.00192

Faks: 22 38 73 00

E-post: [PATENTSTYRET@post.no](mailto:patentstyrnet@post.no)

2000 -04- 12

Søknad om patent

Søknadsskriv

1a - c

00-04-12*20001905

Utfilles av styret
Behandlende medlem
Int. Cl⁶

KC

COTC

Alm. tilgj. 16.10.00

KOPI

Søkers/fullmektingens referanse
(angis hvis ønsket):

ASK/bbc 29368

Oppfinnelsens
benevnelse:

"Forbindelser og deres anvendelse i farmasøyttiske eller
kosmetiske preparater"

Hvis søknaden er
en internasjonal søknad
som videreføres etter
patentlovens § 31:

Den internasjonale søknads nummer

Den internasjonale søknads inngivelsesdag

L'OREAL
14, rue Royale
75008 Paris, FR

Søker:
Navn, bopel og adresse.
(Hvis patent søkes av flere:
opplysning om hvem som skal
være bemyndiget til å motta
meddelelser fra Styret på vegne
av søkerne).

(Fortsett om nødvendig på neste side)

Oppfinner:
Navn og (privat-) adresse

(Fortsett om nødvendig på neste side)

Se oppfinnerliste

Fullmektig:

J.K. THORSENS PATENTBUREAU A/S, Oslo

Hvis søknad tidligere
er inngitt i eller
utenfor riket:

Prioritet kreves fra dato 15.04.99 sted FR nr. 9.904745

(Fortsett om nødvendig på neste side)

Prioritet kreves fra dato sted nr.

Prioritet kreves fra dato sted nr.

Hvis avdelt søknad:

Den opprinnelige søknads nr.: og deres inngivelsesdag

Hvis utskilt søknad:

Den opprinnelige søknads nr.: begjært inngivelsesdag

Deponert kultur av
mikroorganisme:

Søknaden omfatter kultur av mikroorganisme

Utlevering av prøve av
kulturen:

Prøve av den deponerte kultur av mikroorganisme skal bare utleveres til en særlig sakkyndig,

jfr. patentlovens § 22 åttende ledd og patentforskriftenes § 38 første ledd

2000 1905

Angivelse av tegnings-
figur som ønskes
publisert sammen med
sammendraget

Fig. nr.

Patentsøknad nr. 2000 1905
LEH/cr
20.09.00

3c
PATENTSTYRET

00-09-20*20001905

Søker: L'Oreal

Tittel: (Poly)tiaalkynforbindelser og deres derivater,
preparerer omfattende disse og deres anvendelse.

Oppfinnelsen vedrører (poly)alkynforbindelser som nye og
nyttige industrielle produkter. Oppfinnelsen vedrører også
anvendelse av disse nye forbindelser i farmasøytske prepa-
rater som er ment for bruk i human eller veterinær medisin,
5 eller alternativt i kosmetiske preparater.

Disse forbindelsene med generell formel (I) i samsvar med
oppfinnelsen utviser aktivitet med hensyn til transaktivver-
ingen av reseptorer av PPAR-type og mer spesielt av resep-
10 torer av PPAR- α undertype, og finner anvendelse spesielt ved
behandling av inflammatoriske lidelser slik som revmatoid
artritt, lupus og psoriasis spesielt.

Det er også mulig å anvende forbindelsene i samsvar med opp-
15 finnelsen i kosmetiske preparater for kropps- og hårpleie for
spesielt å regulere metabolismen til kutanlipider, å gjenopp-
rette hudbarrierefunksjonen eller å fremme differensiering og
inhibere epidermal proliferasjon.

- 20 Det er kjent at et antall substanser spiller en viktig rolle
i den inflammatoriske prosess i huden slik som akne, derma-
toser, slik som for eksempel psoriasis, eksem og lignende.
Disse substansene, idet prostaglandiner, hydroksyeikosatetra-
ensyrer, tromboksaner og leukotriener er blant disse, har
25 alle en felles opprinnelse som er arakidonsyre (se spesielt
"VOORHEES Leukotrienes and other Lipoxygenase Products in the
Pathogenesis and Therapy of Psoriasis and Other Dermathoses"
Arch. Dermatol., Vol. 119, juli 1983, 541-547).
- 30 Dannelsen av disse substansene resulterer hovedsakelig fra
omdanning, etter frigivelse av arakidonsyren som er bundet
ved en esterbinding til lipidene som er til stede i epidermen
(for eksempel fosfolipider).
- 35 For behandling av hudsykdommer er det tidligere blitt an-
befalt enten cykloooksygenaseinhibitorer som hindrer dannelsen
av prostaglandiner slik som indometacin, vitamin E og lign-
ende, eller substanser som er i stand til å inhibere lipoksy-
genaser slik som eikosatetraynsyre.

- For behandling av psoriasis er det også blitt foreslått
 5,8,11,14-eikosatetraynsyre så vel som 5,8,11-eikosatriynsyre
 og deres lavere alkylestere, spesielt i patent US-A-
 4.190.669, eller alternativt erstattning av metylengruppen ved
 5 3-stillingen i strukturen til 5,8,11-eikosatriynsyrmen eller
 5,8,11,14-eikosatetraynsyre med et heteroatom slik som svovel
 eller med en sulfoksyd- eller sulfongruppe, spesielt i patent
 EP 342 115. *umettede fettsyrer med svovel i 3-pos.*
- 10 Søkeren har overraskende funnet at ved å forkorte lengden av
 kjeden til umettede fettsyrer av tiaeikosa(poly)yn-type, ble
 det oppnådd produkter som er aktivatorer av PPAR-type resep-
 torer og mer spesielt aktivatorer som er selektive for en
 undertype av PPAR- α reseptorer.
 15
- Disse syrene har i tillegg den fordel at de har en kostpris
 som er meget mer fordelaktig enn deres homologer med lengre
 kjede.
- 20 Søkeren har overraskende også funnet at ved å erstatte
 metylengruppen ved 8-stillingen i den umettede 3-tiafett-
 syrekjede med et heteroatom slik som svovel eller med en
 sulfoksyd- eller sulfongruppe, ble det også oppnådd akti-
 vatorer av PPAR-type reseptorer og mere spesielt aktivatorer
 25 som er selektive for en undertype av PPAR- α reseptorer.

Oppfinnelsen vedrører derfor disse nye syrer så vel som deres
 derivater slik som estere og amider.

30 Forbindelsene i samsvar med oppfinnelsen kan representeres
 ved den følgende generelle formel (I): *Kan være (DAD)*

35 hvor:

- Y representerer:

- (a) et $-S(O)t$ radikal,
 idet t er et helt tall lik 0, 1 eller 2,
- (b) et $-CH_2$ radikal,

- (c) et $-C\equiv C$ radikal,
 (d) et $-C=C$ radikal,

- R_1 representerer et rettkjedet eller forgrenet alkylradikal som har fra 1 til 18 karbonatomer som er eventuelt substi-
 5 tuert med ett eller flere halogenatomer, et rettkjedet eller forgrenet alkenylradikal som har fra 1 til 18 karbonatomer eller et rettkjedet eller forgrenet alkynylradikal som har fra 1 til 18 karbonatomer, idet dette radikalet i tillegg kan omfatte ett eller flere oksygenatomer og/eller nitrogenatomer
 10 og/eller svovelatomer, idet det forstås at:
 - når Y representerer (b) da omfatter R_1 et antall atomer på mellom 1 og 12 og foretrukket mellom 4 og 12 og mer fore-
 trukket mellom 6 og 12,
 - når Y representerer (c) da omfatter R_1 et antall atomer på
 15 mellom 1 og 10 og foretrukket mellom 4 og 10 og mer fore-
 trukket mellom 6 og 10,
 - når Y representerer er forskjellig fra (b) og R_1 er et umettet radikal eller omfatter et heteroatom, da kan ikke umettetheten og/eller heteroatomet til R_1 være ved α -still-
 20 ingen med hensyn til Y ,

- R_2 representerer:

- (a) et tetrazolylradikal med formel

25

- (b) et nitrilradikal,
 (c) et oksazolinylradikal med formel

30

- (d) et $-CH_2OR_3$ radikal,
 (e) et $-CO-R_4$ radikal,

idet R_3 og R_4 har betydningene gitt nedenfor,

- R_3 representerer et hydrogenatom, et lavere alkylradikal,
 35 et monohydroksyalkylradikal som har fra 1 til 6 karbonatomer eller et polyhydroksyalkylradikal som har fra 2 til 6 karbonatomer, et cykloalifatisk radikal som har fra 3 til 6 karbonatomer, idet R_3 i tillegg kan representere et tetrahydropyranylradikal,

- R_4 representerer:

- (a) et hydrogenatom,
 - (b) et lavere alkylradikal,
 - (c) et $-NR'(R'')$ radikal,
- 5 idet R' og R'' har betydningene gitt nedenfor,
- (d) et $-OR_5$ radikal,
- idet R_5 har betydningen gitt nedenfor,

- R_5 representerer:

- (a) et hydrogenatom,
- 10 (b) et rettkjedet er forgrenet alkylradikal som har fra 1 til 18 karbonatomer,
- (c) et monohydroksyalkylradikal som har fra 1 til 6 karbonatomer,
- (d) et polyhydroksyalkylradikal som har fra 2 til 6 karbonatomer og som omfatter fra 2 til 5 hydroksylgrupper,
- 15 (e) et arylradikal,
- (f) et aralkylradikal som er eventuelt substituert med:
 - ett eller flere rettkjedede eller forgrenede alkylradikaler som har fra 1 til 18 karbonatomer,
 - ett eller flere $-CO-R''$ radikaler,
 - ett eller flere $-O-R''$ radikaler,
 idet R'' har betydningen gitt nedenfor,
- R' og R'' som er like eller forskjellige representerer et hydrogensatom, et lavere alkylradikal, et alkenylradikal som har fra 3 til 4 karbonatomer, et cykloalifatisk radikal som har fra 3 til 6 karbonatomer, et aryl- eller aralkylradikal som eventuelt er substituert, en aminosyre- eller amino-sukkerrest, eller alternativt kan de sammen danne en hetero-30 syklus,
- R'' representerer et hydrogenatom, eller en rettkjedet eller forgrenet alkylkjede som har fra 1 til 18 karbonatomer.

Oppfinnelsen vedrører også salter av forbindelsene med formel (I) hvor R_2 representerer en karboksylsyrefunksjon og de geometriske og optiske isomerer av forbindelsene med formel (I).

Når forbindelsene i samsvar med oppfinnelsen er tilveiebragt i form av addisjonssalter med en base, er de salter av et

alkalimetall eller jordalkalimetall, eller alternativt salter av sink, magnesium eller strontium, av et organisk amin eller de kvaternære ammoniumsalter, når de inneholder minst en fri syrefunksjon.

5

- Når forbindelsene i henhold til oppfinnelsen er tilveiebragt i form av addisjonssalter med en syre, er de farmasøytisk eller kosmetisk akseptable salter som er oppnådd ved addisjon av en uorganisk eller organisk syre, spesielt saltsyre,
- 10 hydrobromsyre, svovelsyre, eddiksyre, sitronsyre, fumarsyre, hemiravsyre, maleinsyre og mandelsyre.

I samsvar med den foreliggende oppfinnelse forstås lavere alkylradikal å bety et rettkjedet eller forgrenet radikal som

15 har fra 1 til 6 karbonatomer og foretrukket methyl-, etyl-, isopropyl-, n-butyl-, tert-butyl-, pentyl- eller heksyl- radikaler.

Alkylradikal forstås å bety et rettkjedet eller forgrenet

20 radikal som har fra 1 til 18 karbonatomer som eventuelt er substituert med ett eller flere halogenatomer. Blant halogenatomene er et fluoratom, kloratom eller bromatom foretrukket.

25 Alkylradikalene er foretrukket valgt fra methyl-, etyl-, propyl-, isopropyl-, butyl-, tert-butyl-, pentyl-, heksyl- eller 2-etylheksyl-, oktyl-, nonyl-, decyl-, dodecyl-, dodekanyl-, tetradekanyl- eller 3,3,4,4,5,5,6,6,7,7,8,8,8-tridekafluoroktylradikaler.

30

Alkenylradikal forstås å bety et rettkjedet eller forgrenet radikal som har fra 1 til 18 karbonatomer omfattende en eller flere dobbeltbindinger og foretrukket allyl-, butenyl-, heksenyl-, oktenyl-, decenyl-, dodecenyl- eller tetradecenyl-

35 radikaler.

Alkynylradikal forstås å bety et rettkjedet eller forgrenet radikal som har fra 1 til 18 karbonatomer omfattende en eller flere trippelbindinger og foretrukket propynyl-, butyn-2-yl-,

pentyn-2-yl-, heksyn-2-yl-, oktyn-2-yn-, decyn-2-yl- eller
2-dodecyn-2-ylradikaler.

Monohydroksyalkylradikal forstås å bety et radikal som har
5 fra 1 til 6 karbonatomer, spesielt et 2-hydroksyethyl-,
2-hydroksypropyl- eller 3-hydroksypropylradikal.

Polyhydroksyalkylradikal forstås å bety et radikal som
inneholder fra 2 til 6 karbonatomer og fra 1 til 5 hydroksyl-
10 grupper, slik som 2,3-dihydroksypropyl-, 2,3,4-trihydroksy-
butyl- eller 2,3,4,5-tetrahydroksypentylradikaler eller en
pentaerytritolrest.

Cykloalifatisk radikal som har fra 3 til 6 karbonatomer
15 forstås å bety foretrukket et cyklopropylradikal, et cyklo-
pentylradikal eller et cykloheksylradikal.

Arylradikal forstås å bety et fenyrradikal, eventuelt substi-
tuert med minst ett halogen, lavere alkyl, hydroksyl,
20 alkoksyl, nitrofunksjon, polyeterradikal eller aminofunksjon
som eventuelt er beskyttet med en acetylgruppe eller som
eventuelt er substituert med minst ett lavere alkyl.

Aralkylradikal forstås å bety et benzyl- eller fenetylradikal
25 som eventuelt er substituert med minst ett halogen, lavere
alkyl, hydroksyl, alkoksyl, nitrofunksjon, polyeterradikal
eller aminofunksjon som eventuelt er beskyttet med en acetyl-
gruppe eller som eventuelt er substituert med minst ett
lavere alkyl.

30 Aminosyrerest forstås å bety en rest som er avledet fra en av
de 20 aminosyreene av L- eller D-konfigurasjon som utgjør
pattedyrproteiner, og er foretrukket en rest som er avledet
fra lysin, glycine eller asparaginsyre.

35 Aminosukkerrest forstås å bety foretrukket slike som er
avledet fra glukosamin, galaktosamin, mannosamin eller
meglumin.

Heterosyklus forstås å bety foretrukket et piperidin-, morfolino-, pyrrolidino- eller piperazinoradikal som eventuelt er substituert ved 4-stillingen med et C₁-C₆ alkyl- eller mono- eller polyhydroksyalkylradikal som definert 5 ovenfor.

Blant forbindelsene med formel (I) som faller innenfor rammen av den foreliggende oppfinnelse, kan det spesielt nevnes:

- metyl-3,8-ditia-11,11,12,12,13,13,14,14,15,15,16,16,16-tridekafluor-5-heksadecynoat,
- 3,8-ditia-11,11,12,12,13,13,14,14,15,15,16,16,16-tridekafluor-5-heksadecynsyre,
- metyl-3,8-ditia-5-dokosynoat,
- 3,8-ditia-5-dokosynsyre,
- metyl-3,8-ditia-5-heksadecynoat,
- 3,8-ditia-5-heksadecynsyre,
- 3-tia-5-heksadecynsyre,
- metyl-3,8-ditia-5-heptadecynoat,
- 3,8-ditia-5-heptadecynsyre,
- 3-tia-5,8-heptadekadadiynsyre,
- 3-tia-5,8-oktadekadadiynsyre,
- 3-tia-5,8-pentadekadadiynsyre,
- 3-tia-5,8,11-oktadekatriiynsyre,
- 3-tia-5-oktadekaynsyre,
- 3-tia-5,8,11-heptadekatriiynsyre,
- 3-tia-5-heptadekaynsyre,
- 3-tia-5,8,11-heksadekatriiynsyre,
- 3-tia-5,8-heksadekadadiynsyre,
- 3-tia-5,8,11-pentadekatriiynsyre,
- 3-tia-5-pentadekaynsyre,
- 3-tia-5-tetradekaynsyre,
- 3-tia-5,8,11-heptadekatriiynsyre.

I samsvar med den foreliggende oppfinnelse er de forbindelser 35 med formel (I) som er mer spesielt foretrukket slike hvor minst en, og foretrukket alle, av de følgende betingelser er oppfylt:

- R₂ er et -CO-R₄ radikal,
- R₄ er et hydroksylradikal,

- Y er valgt fra
 - radikalet (c) og R₁ er et alkylradikal som har fra 4 til 10 karbonatomer,
 - eller radikalet (a) hvor t er lik 0 og R₁ er et alkyl-
- 5
- radikal som har fra 4 til 12 karbonatomer,
 - eller radikalet (b) og R₁ er et fluorert radikal som har fra 4 til 12 karbonatomer.

Den foreliggende oppfinnelse vedrører også metoder for fremstilling av forbindelsene med formel (I), spesielt i samsvar med reaksjonsskjemaene som er gitt i figurene 1, 2, 3, 4, 5, 6 og 7.

Når Y tilsvarer en metylen eller en trippelbinding, kan forbindelsene med formel (I) i samsvar med oppfinnelsen således fremstilles ved anvendelse av en av de to metodene som fremvises i figurene 1 og 2.

Den første metoden (fig. 1) består i å fremstille anionet av et alkyn med formel (1) med en sterk base slik som et alkylhalomagnesium og deretter å reagere dette med et overskudd av 1,4-dihalobutyn til å danne 1-halo-2,5-diyn-derivatet (2). Noen alkyner er kommersielt tilgjengelige slik som for eksempel 1-heptyn eller 1-decyn. De andre alkyner med formel R₁-C≡C-H fremstilles ved å reagere natriumacetylid med det tilsvarende halogenid R₁-X.

2,5,8-triyn-derivatene (4) oppnås ved å reagere derivatet (2) med dianionet av propargylalkohol. Den således triynalkohol (3) omdannes til det tilsvarende halogenid til å gi 1-halo-2,5,8-triyn-derivatet som har strukturen (4).

Alkynhalogenidene (2) eller (4) fører ved behandling med dianionet av tioglykolsyre eller med tiolatet av en merkaptan til forbindelsene i henhold til oppfinnelsen med formel (I) hvor Y tilsvarer en trippelbinding, idet R₁ er enten et mettet alkylradikal eller et alkylradikal som omfatter en umettethet og særlig en trippelbinding lokalisert ved

β -stillingen med hensyn til Y, eller alternativt et perfluorert alkylradikal.

- Dianionet av tioglykolsyre dannes ved å behandle sistnevnte
 5 med 2 ekvivalenter av en base. Tiolatet av et markaptan
 fremstilles med 1 ekvivalent av en base. Denne basen er en
 uorganisk eller organisk base, idet de foretrukne baser er
 natriumhydroksyd, kaliumhydroksyd eller natriummetoksyd.
 10 Etter at dianionet av tioglykolsyre er reagert med alkynhalo-
 genidet, renses 3-tiaalkylsyren med formel (I) ved krystalli-
 sering fra et passende løsningsmiddel når den er et faststoff
 ved romtemperatur, eller ved kromatografi på silikagel for en
 forbindelse som er flytende ved denne temperaturen. Etter at
 15 anionet av et alkylmerkaptan er reagert med alkynhalogenidet,
 blir den oppnådde esteren av 3-tiaalkynsyren generelt renset
 ved hjelp av kromatografi på en silikakolonne.

Den andre metoden (fig. 2) består i å direkte fremstille
 20 alkyn-mellomprodukter hvor trippelbindingen er 2-stillingen
 med hensyn til funksjonen som er til stede ved enden av
 kjeden.

- "Propyn-leddet" podes via propargylalkohol på et alkylhalo-
 25 genid med formel 5 når alkoholen 6 ikke er kommersielt til-
 gjengelig. Alkynylalkoholen 6 omdannes til det tilsvarende
 halogenid 7 når 7 ikke er kommersielt tilgjengelig. For-
 lengelsen av kjeden oppnås ved å pode dianionet av propargyl-
 alkohol. Den oppnådde alkohol omdannes deretter til det til-
 30 svarende halogenid 2 som også kan oppnås i samsvar med fig.
 1. Dette halogenidet 2 fører når det behandles med dianionet
 av propargylalkohol til alkoholen 3 som igjen omdannes til et
 halogenid 4.
 35 Fremstillingen av 1-halo-2,5-tetradekadiyn er beskrevet for
 eksempel i fransk patent 2.584.400.

Dianionet av propargylalkohol fremstilles ved å behandle
 denne alkoholen med 2 ekvivalenter av en base. Basene som

- benyttes er sterke baser slik som organolithiumførbindelser slik som for eksempel n-butyllithium eller organomagnesium-forbindelser slik som etyl- eller propylhalomagnesium i et vannfritt løsningsmiddel, foretrukket en eter slik som tetrahydrofuran eller dietyleter. Etter reaksjon av dette dianionet og surgjøring av reaksjonsmediet, renses alkynylalkoholen ved destillasjon eller rekrystallisering. Denne alkoholen behandles i et klorert løsningsmiddel slik som diklormetan eller 1,2-dikloretan, eller en eter, med et fosfortrihalogenid eller et karbontetrahalogenid, trifenylfosfin-blanding. Det således oppnådde alkynhalogenid renses, avhengig av dets fremstillingsmåte, ved destillasjon (når dets stabilitet tillater dette) eller ved kromatografi.
- Når Y tilsvarer et svovelatom kan forbindelsene med formel (I) i samsvar med oppfinnelsen således fremstilles ved anvendelse av en av de to metodene som er fremvist i figurene 3 og 4.
- Den første metoden (fig. 3) består i å fremstille forbindelsene i henhold til den foreliggende oppfinnelse fra esteren $\underline{\text{8}}$ oppnådd ved reaksjon av anionet av alkyltioglykolat slik som metyltioglykolat, som reageres med 1,4-diklorbutyn anvendt i overskudd for å fremme monosubstitusjonsreaksjonen.
- Den således oppnådde haloester $\underline{\text{8}}$ reageres deretter med anionene av merkaptanene som har strukturen $\text{R}_1\text{-SH}$. Disse reaksjonene utføres i de alminnelige dipolare løsningsmidler slik som alkoholer slik som metanol eller etere slik som tetrahydrofuran.
- Det forstås at tiolatet R_1S^- kan reagere på et overskudd av 1,4-diklor-2-butyn til å danne alkynet $\text{R}_1\text{-S-CH}_2\text{-C}\equiv\text{C-CH}_2\text{-Cl}$ som igjen kan reagere med dianionet av tioglykolsyre eller tiolatet av et merkaptan til å danne derivatene som har strukturen (I) (fig. 4).

Karboksylsyrene som har strukturen (I) kan omdannes til de tilsvarende estere i samsvar med alminnelige metoder for omdanning av en karboksylsyre til en ester, det vil si ved

reaksjon av en alkohol i et surt medium eller ved reaksjon for å fortrenge halogenet fra et alkylhalogenid med natrium- eller kaliumkarboksylatfunksjonen til syren (I) eller alternativt ved å reagere en aktivert form av syrene med 5 formel (I) med en alkohol R_5-OH . Aktivert form forstås å bety mellomproduktet som dannes ved addisjon, til en syreoppløsning, av karbonyldiimidazol (CDI), dicykloheksylkarbodiimid (DCC) eller ethvert annet reagens som er ment å danne en aktivert form av syre, som er valgt fra slike som er kjent 10 i litteraturen (fig. 5).

En annen fremstillingsrute er å reagere tiolatet av et alkyltioglykolat, behandlet med 1 ekvivalent av en base, med et halogenid med formel 2, 4 eller 7.

15 De amider som faller innenfor definisjonen av den generelle formel (I), hvor R_2 betegner COR_4 gruppen og R_4 betegner aminoradikalet $-NR'(R'')$ i samsvar med oppfinnelsen, oppnås ved å reagere en aktivert form av syrene med formel (I) med 20 et amin i et organisk løsningsmiddel. Denne aktiverete formen av syren kan være enten et syreklorid, eller et anhydrid eller alternativt mellomproduktet dannet ved addisjon, til en sur oppløsning, av karbonyldiimidazol (CDI), dicykloheksylkarbodiimid (DCC) eller enhver annen reagens som var ment å 25 danne en aktivert form av en syre, som er valgt fra slike som er kjent i litteraturen. Den sistnevnte reaksjonen utføres foretrukket i et løsningsmiddelmedium slik som dimetylformamid eller alternativt et klorert løsningsmiddel slik som diklormetan eller 1,2-dikloretan. Denne reaksjonen foregår i 30 samsvar med reaksjonsskjemaet gitt i fig. 6.

Når tioglykolamidene er lett tilgjengelige, kan amidene oppnås direkte uten behandling via denne syren med formel (I) ved å behandle halogenidene 2, 4 eller 7 med tiolatet dannet 35 på forhånd fra tioglykolamidet 9. Det sistnevnte fremstilles ved virkningen av et amin $H-NR'(R'')$ på etyltioglykolat $HS-CH_2-CO_2Et$ (fig. 7).

Denne metoden er faktisk enklere. Halogenidene 2, 4 eller 7, på den ene siden, og kalium- eller natriumsaltet av tio-glykolamidet 9, på den annen side, fremstilles i metanol eller etanol. Halogenidene 2, 4 eller 7 renses ikke og deres 5 reaksjonsblanding tilsettes direkte til en oppløsning av tio-glykolamidet saltdannet med 1 ekvivalent av en base.

Forbindelsene i henhold til oppfinnelsen utviser egenskaper med aktivering av PPAR-type reseptorer. Mer spesielt utviser 10 forbindelsene i henhold til oppfinnelsen egenskaper med selektiv aktivering av reseptorer av PPAR- α undertype.

Aktivator av PPAR- α -type reseptorer forstås i samsvar med oppfinnelsen å bety enhver forbindelse som i en transaktiver- 15 ingstest, som beskrevet i Kliewer et al., Nature 358, 771-774, 1992, utviser en AC50 i forhold til PPAR- α på mindre enn eller lik 10 μ M. Aktivatoren av PPAR- α -type reseptorene utviser en AC50 i forhold til PPAR- α på mindre eller lik 3,5 μ M og fordelaktig mindre enn eller lik 3 μ M.

20 Foretrukket er aktivatoren av PPAR- α -type reseptorene selektiv, det vil si at den utviser et forhold R1 mellom AC50 i forhold til PPAR- α og AC50 i forhold til de andre undertypene av PPAR (PPAR- δ eller PPAR- γ) på mindre enn eller lik 10^{-1} . 25 Foretrukket er R1 mindre enn eller lik 0,05, og mer fordel- aktig mindre enn eller lik 0,02.

En AC50 er den konsentrasjon av "aktivatorforbindelse" som er nødvendig for å utvise 50% av aktiviteten til et referanse- 30 molekyl. Denne aktiviteten bestemmes med hjelp av et rapporteringsenzym (luciferase) for aktivering som skyldes forbindelsen via en av PPAR reseptorene, og mer spesielt av PPAR- α -type.

35 Aktiviteten til PPAR-type reseptorene og mer spesielt PPAR- α undertypene har vært gjenstand for mange undersøkelser. Alle referansene antyder at PPAR-type reseptorene har en rolle i reguleringen av metabolismen og homeostasen til lipider. Som en rettledning kan det nevnes publikasjonen med tittelen

"Differential Expression of Peroxisome Proliferator-Activated Receptor Subtypes During the Differentiation of Human Keratinocytes", Michel Rivier et al., J. Invest. Dermatol 111, 1998, s. 1116-1121, hvor et stort antall bibliografiske 5 referanser vedrørende PPAR-type reseptorene er opplistet.

PPAR- α reseptorene er involvert i kontrollen av inflammasjon.

Anvendelsen av aktivatorene av PPAR- α -type reseptorene for å 10 gjenopprette barrierefunksjonen, fremme differensiering og inhibere epidermal proliferasjon er blitt beskrevet i internasjonal patentsøknad WO 98/32444.

Videre er anvendelsen av aktivatorene av PPAR- α - og/eller 15 PPAR- γ -type reseptorene til å behandle hudsykdommer knyttet til en abnormalitet i differensieringen av epidermcellene blitt beskrevet i publikasjonen til Michel Rivier et al., J. Invest. Dermatol 111, 1998, s. 1116-1121. Hudsykdommene knyttet til en abnormitet i differensieringen av epiderm- 20 cellene er spesielt psoriasis, eksem, lichen planus, hudskader forbundet med lupus, dermatitter slik som atopiske, seborroiske eller solare dermatitter, keratoser slik som seborroisk, senil, aktinisk, fotoindusert eller follikulær keratose, akne vulgaris, keloider, nevi, vorter, ichtyoser og 25 hudkreft.

Forbindelsene med formel (I) i henhold til oppfinnelsen finner anvendelse på det kosmetiske området, spesielt i kropps- og hårpleie og mer spesielt for regulering av metabolismen til kutanlipider, for behandling av hudtyper som er 30 utsatt for akner, for bekjempelse av den fettaktige fremtreden til hud eller hår, eller i behandling av fysiologisk tørre hudtyper.

35 Anvendelsen av minst en forbindelse med formel (I) gjør det også mulig å gjenopprette hudbarrierefunksjonen og/eller fremme differensiering og inhibere epidermal proliferasjon. Sammenlignet med tidligere kjente produkter har disse forbindelsene med formel (I) den fordel at de dessuten utviser

andre fordelaktige egenskaper, spesielt antiinflammatoriske eller lindrende egenskaper, noe som gjør dem til forbindelser som er mindre irriterende og som derfor tolereres bedre.

- 5 Den foreliggende oppfinnelse vedrører derfor et kosmetisk preparat som i en kosmetisk akseptabel bærer inneholder minst en forbindelse med formel (I), en av dens optiske eller geometriske isomerer eller ett av dens salter, idet dette preparatet er tilveiebragt spesielt i form av en krem, en
- 10 melk, en lotion, en gel, lipid- eller polymer-mikrokuler eller -nanokuler eller -vesikler, en såpe eller en sjampo.

Konsentrasjonen av forbindelsen med formel (I) i de kosmetiske preparater er mellom 0,0001 og 3 vekt%, foretrukket mellom 0,001 og 1 vekt%, i forhold til den totale vekt av preparatet.

Den foreliggende oppfinnelse vedrører også, som et medikament, forbindelsene med formel (I) som beskrevet ovenfor.

- 20 Forbindelsene i samsvar med oppfinnelsen er spesielt velegnet på de følgende behandlingsområder:
 - 1) dermatologiske lidelser knyttet til en abnormitet i differensieringen av epidermceller og spesielt psoriasis, eksem, lichen planus, hudskader forbundet med lupus, dermatitter slik som atopiske, seborroiske eller solare dermatitter, keratoser slik som seborroisk, senil, aktinisk, fotoindusert eller follikulær keratose, akne vulgaris, keloider, nevi, vorter, ichtyoser og hudkreft.
 - 25 2) inflammatoriske lidelser som ikke utviser noen keratiniseringsforstyrrelser, slik som artritt.

Den foreliggende oppfinnelse vedrører også farmasøytiske preparater som inneholder minst en forbindelse med formel (I) som definert ovenfor, en av dens optiske eller geometriske isomerer eller ett av dens salter.

Den foreliggende oppfinnelse vedrører også et farmasøytisk preparat som er ment spesielt for behandling av de ovennevnte

lidelser, som er kjennetegnet ved at det i en farmasøytisk akseptabel bærer omfatter minst en forbindelse med formel (I), en av dens optiske eller geometriske isomerer, eller ett av dens salter.

5

Andre egenskaper, aspekter, formål og fordeler ved oppfinnelsen vil gå enda klarere frem ved å lese den etterfølgende beskrivelse, så vel som ulike konkrete eksempler som er ment å illustrere denne, men ikke på noen måte være begrensende.

10

Administrering av preparatet i samsvar med oppfinnelsen kan utføres ved den enterale, parenterale eller topiske rute. Det farmasøytiske preparat er foretrukket emballert i en form som er egnet for tilføring ved den topiske rute.

15

For enteral administrering kan preparatet, mer spesielt det farmasøytiske preparat, være tilveiebragt i form av tabletter, gelatinkapsler, sukkerbelagte tabletter, siruper, suspensjoner, oppløsninger, pulvere, granuler, emulsjoner, 20 lipid- eller polymer-mikrokuler eller -nanokuler eller -vesikler som tillater en kontrollert frigivelse. For parenteral administrering kan preparatet være tilveiebragt i form av oppløsninger eller suspensjoner for infusjon eller injeksjon.

25

Forbindelsene som anvendes i samsvar med oppfinnelsen administreres generelt i en daglig dose på omtrent 0,001 mg/kg til 100 mg/kg kroppsvekt i 1 til 3 doser.

30

For topisk administrering er det farmasøytiske preparat i samsvar med oppfinnelsen mer spesielt ment for behandling av huden og slimhinnene og kan være tilveiebragt i form av salver, kremer, melk, pomader, pulvere, impregnerte puter, oppløsninger, geler, sprayer, lotioner eller suspensjoner.

35

Det kan også være tilveiebragt i form av lipid- eller polymer-mikrokuler eller -nanokuler eller -vesikler eller polymerplastere og hydrogeler som tillater kontrollert frigivelse. Dette preparatet for topisk administrering kan være tilveiebragt enten i vannfri form eller i vandig form.

Forbindelsene anvendes ved den topiske rute i en koncentrasjon som er generelt mellom 0,001 og 10 vekt%, foretrukket mellom 0,01 og 1 vekt%, i forhold til den totale vekt av preparatet.

5

Preparatene beskrevet i det foregående kan naturligvis i tillegg inneholde inerte eller til og med farmakodynamisk aktive additiver eller kombinasjoner av slike additiver, og spesielt: fuktemidler, avpigmenteringsmidler slik som hydrokinon, azelansyre, koffeinsyre eller kojinsyre, bløtgjøringsmidler, fuktighetsbevarende/givende midler slik som glyserol, PEG 400, tiamorfolinon og dets derivater eller alternativt urea, antiseborroiske eller anti-aknemidler slik som S-karboksylmetyl cystein, S-benzylcysteamin, deres salter eller deres derivater eller benzoylperoksyd, antisoppmidler slik som ketokonazol eller 4,5-polymetylen-3-isotiazolidoner, antibakterielle midler, karotenoider og spesielt β -karoten, antipsoriasismidler slik som antralin og dets derivater, 5,8,11,14-eikosatetraynsyre og 5,8,11-eikosatriynsyre, deres estere og amider og til sist retinoider.

Disse preparatene kan også inneholde smaksforbedrende midler, konserveringsmidler slik som para-hydroksybenzosyreestere, stabiliseringsmidler, fuktighetsregulerende midler, pH-regulerende midler, midler for modifisering av osmotisk trykk, emulgeringsmidler, UV-A og UV-B filtreringsmidler, anti-oksidasjonsmidler slik som α -tokoferol, butylert hydroksy-anisol eller butylert hydroksytoluen.

30 Fagkyndige på området vil naturligvis være nøyne med å velge den eller de mulige forbindelser som skal tilsettes til disse preparatene slik at de fordelaktige egenskaper som er iboende knyttet til den foreliggende oppfinnelse ikke eller ikke i betydelig grad endres ved den vurderte tilsetning.

35

Flere eksempler på fremstilling av aktive forbindelser med formel (I) i samsvar med oppfinnelsen, så vel som ulike konkrete formuleringer basert på slik forbindelser, vil nå gis som illustrasjon og uten å være begrensende. I den

etterfølgende tekst eller i den forutgående tekstu er prosentangivelser gitt på vektbasis med mindre annet er angitt.

De ulike produkter i henhold til oppfinnelsen er fremstilt fra halogenerte mellomprodukter idet fremstillingen av disse er beskrevet i eksemplene 1, 6, 9, 13, 16, 18 og 20.

Eksempel 1

Fremstilling av methyl-7-klor-3-tia-5-heptynoat

4,22 ml av en 30% oppløsning av natriummetoksyd i metanol tilsettes dråpevis (slik at temperaturen ikke overstiger 15°C) til en oppløsning av 2 ml metylioglykolat i 20 ml metanol ved 10°C, under en inert atmosfære. Blandingen holdes under omrøring i 30 minutter og tilsettes deretter til en oppløsning av 6,1 ml 1,4-diklor-2-butyn i 25 ml metanol, under en inert atmosfære. Blandingen holdes under omrøring i 6 timer ved romtemperatur og deretter helles reaksjonsmediet over 100 ml syrevann (98 ml vann + 2 ml konsentrert H₂SO₄) og ekstraheres deretter 3 ganger med etyleter. De kombinerte organiske faser vaskes 3 ganger med vann og deretter med en mettet vandig oppløsning av NaCl før de tørkes (Na₂SO₄), filtreres og konsentreres under vakuum i en rotasjonsfordamper. 1,4-diklor-2-butynet i overskudd i den således oppnådde oljen fjernes ved destillasjon under redusert trykk. Den oppnådde oljeaktige destillasjonsrest kromatograferes på en silikagelkolonne (CH₂Cl₂) hvilket gir 2 gram methyl-7-klor-3-tia-5-heptynoat i form av en blekgul olje (utbytte 65%).

¹H NMR 200 MHz CDCl₃: 3.39 (s, 2H), 3.44 (t, 2H), 3.73 (s, 3H), 4.15 (t, 2H).

¹³C NMR 50 MHz CDCl₃: 20.16, 30.45, 32.41, 52.42, 78.25, 81.67, 170.28.

Eksempel 2Fremstilling avmetyl-3,8-ditia-11,11,12,12,13,13,14,14,15,15,15,16,16,16-tridekafluor-5-heksadecynoat

- 5 1,5 ml av en 30% oppløsning av natriummetoksyd i metanol tilsettes dråpevis til en oppløsning av 3,02 g Foralkyl EM6 i 30 ml metanol, under en inert atmosfære. Blandingen holdes under omrøring i 30 minutter og tilsettes deretter til en oppløsning av 1,53 g methyl-7-klor-3-tia-5-heptynoat i 10 ml 10 metanol, under en inert atmosfære. Blandingen holdes under omrøring i 12 timer ved romtemperatur og deretter i 2 timer ved 50°C, og deretter hellas reaksjonsmediet over 100 ml syrevann (98 ml vann + 2 ml konsentrert H₂SO₄) og ekstraheres så 3 ganger med etyleter. De kombinerte organiske faser 15 vaskes 3 ganger med vann og deretter med en mettet vandig oppløsning av NaCl før tørking (Na₂SO₄), filtrering og konsentrering under vakuum i en rotasjonsfordamper. Den således oppnådde olje kromatograferes på en silikagelkolonne (CH₂Cl₂/heptan 60/40) hvilket gir 2 gram methyl-3,8-ditia- 20 11,11,12,12,13,13,14,14,15,15,16,16,16-tridekafluor-5-heksadecynoat i form av en blekgul olje (utbytte 73,5%).

¹H NMR 200 MHz CDCl₃: 2.30-2.56 (m, 2H), 2.95-2.86 (m, 2H), 3.34 (t, 2H), 3.39 (s, 2H), 3.43 (t, 2H), 3.74 (s, 3H).

¹³C NMR 50 MHz CDCl₃: 19.87, 20.29, 22.24, 31.17, 31.61, 32.05, 32.37, 52.34, 78.61, 170.31 (kun 1 acetylenisk 30 C-atom, fluorbærende C-atomer ikke ut).

Eksempel 3Fremstilling av3,8-ditia-11,11,12,12,13,13,14,14,15,15,16,16,16-tridekafluor-5-heksadecynsyre

Syren fremstilles ved forsåpning av methyl-3,8-ditia-11,11,12,12,13,13,14,14,15,15,16,16,16-tridekafluor-5-

heksadecynoatensteren og renses ved hurtigkromatografi på en kort silikagelkolonne ($\text{CH}_2\text{Cl}_2/\text{MeOH}$). Syren isoleres således i form av en beige voks med et utbytte på 87%.

5 $^1\text{H NMR } 200 \text{ MHz } \text{CDCl}_3$: 2.20-2.60 (m, 2H), 2.85-2.93 (m, 2H), 3.34 (t, 2H), 3.42 (s, 2H), 3.46 (t, 2H).

Elementæranalyse:

	C	H	S	F
Beregnet	32.19	2.12	12.28	47.28
Funnet	32.32	2.11	12.36	47.27

Eksempel 4

15 Fremstilling av methyl-3,8-ditia-5-dokosynoat

460 μl av en 30% oppløsning av natriummetoksyd i metanol tilsettes til en oppløsning av 665 μl tetradekantiol i en 5 ml metanol/2 ml THF blanding, under en inert atmosfære. Blandingen holdes under omrøring i 30 minutter og deretter 20 tilsettes 0,47 g methyl-7-klor-3-tia-5-heptynoat i 5 ml metanol, under en inert atmosfære. Blandingen holdes under omrøring i 8 timer ved romtemperatur og deretter helles reaksjonsmediet over 100 ml syrevann (98 ml vann + 2 ml konsentrert H_2SO_4) og ekstraheres så 3 ganger med etyleter. 25 De kombinerte organiske faser vaskes 3 ganger med vann og deretter med en mettet vandig oppløsning av NaCl før tørking (Na_2SO_4), filtrering og konsentrering under vakuum i en rotasjonsfordamper. Den således oppnådde voks kromatograferes på 30 en silikagelkolonne (CH_2Cl_2) hvilket gir 1,05 g methyl-3,8-ditia-5-dokosynoat i form av en olje (kvantitativt utbytte).

$^1\text{H NMR } 200 \text{ MHz } \text{CDCl}_3$: 0.88 (s, 3H), 1.15-1.50 (m, 22H), 1.50-1.75 (m, 2H), 2.66 (t, 2H), 2.28 (m, 2H), 3.42 (s, 2H), 3.43-3.47 (m, 4H), 3.75 (s, 3H).

$^{13}\text{C NMR } 50 \text{ MHz } \text{CDCl}_3$: 14.08, 19.71, 20.63, 22.68, 28.87, 29.09, 29.24, 29.34, 29.53, 29.61, 29.67, 31.81, 31.92, 32.55, 52.40, 77.53, 80.08, 170.47.

Eksperiment 5

Fremstilling av 3,8-ditia-5-dokosynsyre

5 Syren fremstilles ved forsåpning av methyl-3,8-ditia-5-dokosynoatesteren og renses ved rekrystallisering fra kokende heptan. 3,8-ditia-5-dokosynsyre isoleres således i form av et hvitt faststoff med et utbytte på 81,5%.

10 $^1\text{H NMR}$ 200 MHz CDCl_3 : 0.87 (t, 3H), 1.15-1.46 (m, 22H), 1.46-1.76 (m, 2H), 2.65 (t, 2H), 3.28 (s, 2H), 3.46 (m, 4H).

15 $^{13}\text{C NMR}$ 50 MHz CDCl_3 : 14.01, 19.53, 20.55, 22.58, 28.76, 28.92, 29.14, 29.25, 29.44, 29.56, 31.68, 31.81, 32.27, 80.34, 175.73.

Elementæranalyse:

	C	H	O	S
Beregnet	64.47	9.74	8.59	17.21
Funnet	64.09	9.64	9.24	17.06

25

Eksperiment 6

Fremstilling av 1-klor-5-tia-2-tridecyn

6,46 ml av en 30% oppløsning av natriummetoksyd i metanol tilsettes dråpevis til en oppløsning av 5 g oktantiol i 60 ml 30 metanol, under en inert atmosfære. Blandingen holdes under omrøring i 30 minutter og tilsettes deretter til 9,35 ml 1,4-diklor-2-butyn i 70 ml metanol, under en inert atmosfære. Blandingen holdes under omrøring i 12 timer ved romtemperatur og deretter helles reaksjonsmediet over 100 ml syrevann (98 ml vann + 2 ml konsentrert H_2SO_4) og ekstraheres så 35 3 ganger med etyleter. De kombinerte organiske faser vaskes 3 ganger med vann og deretter med en mettet veldig oppløsning av NaCl før tørking (Na_2SO_4), filtrering og konsentrering under vakuum i en rotasjonsfordamper. 1,4-diklor-2-butynet i

overskudd i den således oppnådde okse fjernes ved destilla-
 sjon under redusert trykk. Den oppnådde oljeaktige destilla-
 sjonsrest kromatograferes på en silikagelkolonne (CH_2Cl_2)
 hvilket gir 7,5 g 1-klor-5-tia-2-tridecyn i form av en blek-
 5 gul olje (utbytte 94%).

¹H NMR 200 MHz CDCl_3 : 0.82 (s, 3H), 1.1-1.3 (m, 10H),
 10 1.30-1.65 (m, 2H), 2.65 (t, 2H), 3.22 (t, 2H), 4.15 (t,
 2H).

¹³C NMR 50 MHz CDCl_3 : 14.21, 19.62, 19.83, 22.77, 28.93,
 29.11, 29.30, 30.87, 31.92, 77.45, 83.25.

15

Eksempel 7

Fremstilling av methyl-3,8-ditia-5-heksadecynoat

2,03 ml av en 30% oppløsning av natriummetoksyd i metanol
 tilsettes dråpevis (slik at temperaturen ikke overstiger
 20 15°C) til en oppløsning av 980 μl metyltioglykolat i 10 ml
 metanol ved 10°C, under en inert atmosfære. Blandingen
 holdes under omrøring i 30 minutter og tilsettes deretter til
 en oppløsning av 2,5 g 1-klor-5-tia-2-tridecyn i en blanding
 av 7 ml metanol med 3 ml THF under en inert atmosfære.
 25 Blandingen holdes under omrøring i 15 timer ved romtemperatur
 og reaksjonsmediet helles deretter over 100 ml syrevann
 (98 ml vann + 2 ml koncentrert H_2SO_4) og ekstraheres så
 30 3 ganger med etyleter. De kombinerte organiske faser vaskes
 3 ganger med vann og deretter med en mettet vandig oppløsning
 av NaCl før tørking (Na_2SO_4), filtrering og konentrering
 under vakuum i en rotasjonsfordamper. Den oppnådde olje-
 aktige rest kromatograferes på en silikagelkolonne (CH_2Cl_2)
 hvilket gir 2,3 gram methyl-3,8-ditia-5-heksadecynoat i form
 av en olje med blekorange farge (utbytte 71%).

35

¹H NMR 200 MHz CDCl_3 : 0.81 (t, 3H), 0.90-1.50 (m, 10H),
 1.50-1.61 (m, 2H), 2.62 (t, 2H), 3.25 (t, 2H), 3.39 (s,
 2H), 3.41 (t, 2H), 3.72 (s, 3H).

¹³C NMR 50 MHz CDCl_3 : 14.0, 19.53, 20.47, 22.54, 28.75,

28.92, 29.08, 31.61, 31.70, 32.35, 52.35, 77.38, 79.91,
170.38.

5

Eksempel 8

Fremstilling av 3,8-ditia-5-heksadecynsyre

Syren fremstilles ved forsåpning av methyl-3,8-ditia-5-heksadecynoatesteren og renses ved rekrystallisering fra kokende heptan og deretter fra diisopropyleter. 3,8-ditia-5-heksadecynsyre isoleres således i form av et beige faststoff med et utbytte på 67%.

¹H NMR 200 MHz CDCl₃: 0.84 (t, 3H), 1.1-1.45 (m, 10H),

15 1.45-1.7 (m, 2H), 2.62 (t, 2H), 3.25 (t, 2H), 3.41 (s, 2H), 3.43 (t, 2H).

¹³C NMR 50 MHz CDCl₃: 14.09, 19.61, 20.63, 22.64, 28.84,

20 29.00, 29.17, 31.76, 32.35, 80.55, 176.01.

Elementæranalyse:

	C	H	O	S
Beregnet	58.29	8.39	11.09	22.23
Funnet	58.57	8.44	11.26	21.94

Eksempel 9

Fremstilling av 1-brom-2-tridecyn

1-brom-2-tridecyn (fargeløs olje) fremstilles fra 2-tridecyn-1-ol ved anvendelse av en CBr₄/trifenylfosfin-blanding i diklorometan for å utføre halogeneringen. 1-brom-2-tridecyn (fargeløs olje) dannes således med et utbytte på 91%.

35

¹H NMR 200 MHz CDCl₃: 0.84 (t, 3H), 1.15-1.57 (m, 16H), 2.20 (t.t, 2H), 3.89 (t, 2H).

Eksempel 10Fremstilling av 3-tia-5-heksadecynsyre

2,20 ml av en 30% oppløsning av natriummetoksyd i metanol tilsettes dråpevis til en oppløsning av 422 μ l tioglykolsyre i 5 ml metanol, under en inert atmosfære. Blandingen holdes under omrøring i 30 minutter og tilsettes deretter til en oppløsning av 1,5 g 1-brom-2-tridecyn i 10 ml metanol, under en inert atmosfære. Blandingen holdes under omrøring i 15 timer ved romtemperatur og deretter helles reaksjonsmediet over 100 ml syrevann (98 ml vann + 2 ml konsentrert H_2SO_4) og ekstraheres så 3 ganger med etyleter. De kombinerte organiske faser vaskes 3 ganger med vann og deretter med en mettet vandig oppløsning av NaCl før tørking (Na_2SO_4), filtrering og konsentrering under vakuum i en rotasjonsfordamper. Den oppnådde oljeaktige rest krystalliserer ved avkjøling. 3-tia-5-heksadecynsynren rekrystalliseres fra heptan og deretter fra diisopropyleter og isoleres i form av hvite flak med et utbytte på 25%.

1H NMR 200 MHz $CDCl_3$: 0.87 (t, 3H), 1.1-1.65 (m, 16H),
2.19 (m, 2H), 3.42 (t, 2H), 3.46 (s, 2H).

^{13}C NMR 50 MHz $CDCl_3$: 14.11, 18.78, 20.81, 22.68, 28.72,
28.89, 29.12, 29.31, 29.54, 31.90, 32.31, 74.16, 85.04,
175.44.

Elementæranalyse:

	C	H	O	S
Beregnet	66.62	9.69	11.83	11.86
Funnet	66.77	9.64	12.05	

Eksempel 11Fremstilling av methyl-3,8-ditia-5-heptadecynoat

2 ml av en 30% oppløsning av natriummetoksyd i metanol tilsettes til en oppløsning av 2 ml nonantiol i en 20 ml metanol/5 ml THF blanding, under en inert atmosfære. Blandingen holdes under omrøring i 30 minutter og tilsettes deretter til

en oppløsning av 2 g methyl-7-klor-3-tia-5-heptynoat i en blanding av 20 ml metanol, under en inert atmosfære. Blandingen holdes under omrøring i 15 timer ved romtemperatur og deretter helles reaksjonsmediet over 100 ml syrevann (98 ml vann + 2 ml konsentrert H_2SO_4) og ekstraheres så 3 ganger med etyleter. De kombinerte organiske faser vaskes 3 ganger med vann og deretter med en mettet vandig oppløsning av NaCl før tørking (Na_2SO_4), filtrering og konsentrering under vakuum i en rotasjonsfordamper. Den således oppnådde olje krömatograferes på en silikagelkolonne ($CH_2Cl_2/heptan\ 85/15$) hvilket gir 2,1 g methyl-3,8-ditia-5-heptadecynoat i form av en orange-farget olje (utbytte 64%).

1H NMR 200 MHz $CDCl_3$: 0.83 (t, 3H), 1.0-1.65 (m, 14H),
 15 2.64 (t, 2H), 3.26 (t, 2H), 3.39 (s, 2H), 3.42 (t, 2H),
 3.73 (s, 3H).

^{13}C NMR 50 MHz $CDCl_3$: 14.11, 19.64, 20.58, 22.66, 28.85,
 20 29.02, 29.25, 29.48, 31.71, 31.86, 32.46, 52.46, 77.47,
 80.02, 170.50.

25 **Eksempel 12**

Fremstilling av 3,8-ditia-5-heptadecynsyre

Syren fremstilles ved forsåpning av methyl-3,8-ditia-5-heptadecynoatesteren og renses ved rekrystallisering fra diisopropyleter. 3,8-ditia-5-heptadecynsyre isoleres således i
 30 form av et hvitt faststoff med et utbytte på 44%.

1H NMR 200 MHz $CDCl_3$: 0.84 (t, 3H), 1.1-1.45 (m, 12H),
 1.45-1.7 (m, 2H), 2.65 (t, 2H), 3.27 (t, 2H), 3.44 (s,
 2H), 3.46 (t, 2H).

^{13}C NMR 50 MHz $CDCl_3$: 14.10, 19.60, 20.62, 22.65, 28.83,
 28.99, 29.22, 29.46, 31.74, 31.90, 32.35, 80.41,
 176.10.

Elementæranalyse:

	C	H	O	S
Beregnet	59.56	8.66	10.58	21.20
Funnet	59.75	8.70	10.42	20.96

5

Eksempel 13Fremstilling av 1-klor-2,5-tetradekadiyn

- 10 38 ml av en 1M oppløsning av etylmagnesiumbromid i THF tilsettes dråpevis ved romtemperatur til en oppløsning av 5 g 1-decyn i 15 ml vannfritt THF, under en inert atmosfære. Når tilsetningen er fullført holdes blandingen under omrøring i 30 minutter ved romtemperatur og oppvarmes deretter under 15 tilbakeløp i 1 time og 30 minutter. Blandingen avkjøles til romtemperatur og deretter tilsettes 286 mg kobber(I) klorid og blandingen oppvarmes igjen under tilbakeløp i 1 time. Den avkjøles deretter til mellom 40 og 50°C og 12,5 g 1,4-diklor-2-butyn oppløst i 25 ml vannfritt THF tilsettes. Blandingen 20 kokes under tilbakeløp i 1 time og holdes deretter under omrøring i 15 timer ved romtemperatur før oppvarming på ny under tilbakeløp i 2 timer. Reaksjonsmediet avkjøles deretter til 4°C og hydrolyseres med forsiktighet med en mettet vandig oppløsning av NH₄Cl. Mediet ekstraheres deretter 25 3 ganger med dietyleter og de kombinerte organiske faser vaskes 3 ganger med vann og deretter med en mettet vandig oppløsning av NaCl før tørking over Na₂SO₄, filtrering og konsentrering under vakuum i en rotasjonsfordamper. Den oljaktige rest inneholdende 1,4-diklor-2-butyn i overskudd 30 renses ved destillasjon under redusert trykk til å gi 1-klor-2,5-tetradekadiyn (k.p. = 111-114°C, 0,36 mbar) i form av en orangefarget olje (utbytte 52,4%).

¹H NMR 200 MHz CDCl₃: 0.87 (t, 3H), 1.1-1.5 (m, 12H),

2.13 (t.t., 2H), 3.19 (m, 2H), 4.11 (t, 2H).

35

¹³C NMR 50 MHz CDCl₃: 9.92, 14.05, 18.62, 22.62, 28.62,

28.84, 29.06, 19.14, 30.68, 31.79, 72.68, 74.87, 81.39,

81.71.

Eksempel 14Fremstilling av 3-tia-5,8-heptadekadiynsyre

2,02 ml av en 30% oppløsning av natriummetoksyd i metanol tilsettes dråpevis til en oppløsning av 372 μ l tioglykolsyre i 5 ml metanol, under en inert atmosfære. Blandingen holdes under omrøring i 30 minutter og deretter tilsettes en opp-løsning av 1,2 g 1-klor-2,5-tetradekadiyn i 6 ml metanol under en inert atmosfære. Blandingen holdes under omrøring i 20 timer ved romtemperatur og reaksjonsmediet helles deretter over 100 ml syrevann (98 ml vann + 2 ml konsentrert H_2SO_4) og ekstraheres så 3 ganger med etyleter. De kombinerte organiske faser vaskes 3 ganger med vann og deretter med en mettet vandig oppløsning av NaCl før tørking (Na_2SO_4), filtrering og konsentrering under vakuum i en rotasjonsfordamper. Den oppnådde oljeaktige rest krystalliserer ved avkjøling. 3-tia-5,8-heptadekadiynsyre rekrystalliseres fra heptan og deretter fra heksan og til sist fra diisopropyleter. Syren isoleres således i form av beige krystaller med et utbytte på 49,4%.

1H NMR 200 MHz $CDCl_3$: 0.84 (t, 3H), 1.05-1.50 (m, 12H),
2.13 (m, 2H), 3.17 (m, 2H), 3.42 (t, 2H), 3.45 (t, 2H),
9.75 (bred s, 1H).

^{13}C NMR 50 MHz $CDCl_3$: 9.88, 14.08, 18.66, 20.53, 22.64,
28.68, 28.88, 29.09, 29.17, 31.82, 32.36, 73.32, 74.62,
79.13, 81.17, 176.21.

Elementæranalyse:

	C	H	O	S
Beregnet	68.53	8.63	11.41	11.43
Funnet	67.88	8.59	12.02	12.21

Eksempel 15Fremstilling av 3-tia-5,8-heptadekadiyn-1-ol

1,06 ml av en 30% oppløsning av natriummetoksyd i metanol tilsettes dråpevis ved romtemperatur til en oppløsning av

374 μ l 2-merkaptoetanol i 5 ml vannfri metanol, under en inert atmosfære. Blandingen holdes under omrøring i 30 minutter og tilsettes deretter til en oppløsning av 1,2 g 1-klor-2,5-tetradekadiyn i 6 ml metanol, under en inert atmosfære. Blandingen holdes under omrøring i 15 timer ved romtemperatur og deretter hellas reaksjonsmediet over 100 ml syrevann (98 ml vann + 2 ml konsentrert H_2SO_4) og ekstraheres så 3 ganger med etyleter. De kombinerte organiske faser vaskes 3 ganger med vann og deretter med en mettet vändig oppløsning av NaCl før tørking (Na_2SO_4), filtrering og konsentrering under vakuum i en rotasjonsfordamper. Den således oppnådde olje krystalliserer ved avkjøling. Den rennes ved rekrystallisering fra en heptan/pentan-blanding og deretter fra heptan/pentan/diisopropyleter-blanding. 3-tia-5,8-heptadekadiyn-1-ol isoleres således i form av blekgule flak med et utbytte på 61%.

1H NMR 200 MHz $CDCl_3$: 0.86 (t, 3H), 1.1-1.6 (m, 12H),
2.12 (m, 2H), 2.89 (t, 2H), 3.15 (m, 2H), 3.26 (t, 2H),
3.78 (t, 2H).

^{13}C NMR 50 MHz $CDCl_3$: 9.84, 14.06, 18.63, 19.39, 22.61,
28.65, 28.85, 29.06, 29.14, 31.79, 34.84, 60.24, 73.36,
75.86, 78.24, 81.10.

Eksempel 16

Fremstilling av 1-klor-2,5-pentadekadiyn

34,5 ml av en 1M oppløsning av etylmagnesiumbromid i THF tilsettes dråpevis ved romtemperatur til en oppløsning av 5 g 1-undecyn i 15 ml vannfritt THF, under en inert atmosfære. Når tilsetningen er fullført holdes blandingen under omrøring i 30 minutter ved romtemperatur og oppvarmes deretter under tilbakeløp i 1 time og 30 minutter. Blandingen avkjøles til romtemperatur og deretter tilsettes 260 mg kobber(I) klorid og blandingen oppvarmes igjen under tilbakeløp i 1 time. Blandingen avkjøles deretter til romtemperatur og 11,3 g 1,4-diklor-2-butyn tilsettes ganske hurtig. Blandingen kokes

under tilbakeløp i 1 time og 30 minutter og holdes deretter under omrøring i 15 timer ved romtemperatur før oppvarming på ny under tilbakeløp i 3 timer. Reaksjonsmediet avkjøles deretter til 4°C og hydrolyses med forsiktighet med en mettet vandig oppløsning av NH₄Cl. Mediet ekstraheres deretter 3 ganger med dietyleter og de kombinerte organiske faser vaskes 3 ganger med vann og deretter med en mettet vandig oppløsning av NaCl før tørking over Na₂SO₄, filtrering og konsentrering under vakuum i en rotasjonsfordamper. Den oljaktige rest inneholdende 1,4-diklor-2-butyn i overskudd renses ved destillasjon under redusert trykk til å gi 1-klor-2,5-pentadekadiniyn i form av en fargeløs olje med et utbytte på 37,8%.

¹H NMR 200 MHz CDCl₃: 0.87 (t, 3H), 1.1-1.55 (m, 14H),
2.14 (m, 2H), 3.19 (m, 2H), 4.13 (t, 2H).

¹³C NMR 50 MHz CDCl₃: 9.96, 14.10, 18.66, 22.66, 28.64,
28.86, 29.13, 29.27, 29.47, 30.73, 31.86, 72.67, 74.91,
80.86, 81.76.

Eksempel 17

Fremstilling av 3-tia-5,8-oktadekadiniynsyre

3,2 ml av en 30% oppløsning av natriummetoksyd i metanol tilsettes dråpevis til en oppløsning av 611 µl tioglykolsyre i 7 ml metanol, under en inert atmosfære. Blandingen holdes under omrøring i 30 minutter og deretter tilsettes en opp-løsning av 2 g 1-klor-2,5-pentadekadiniyn i 20 ml metanol under en inert atmosfære. Blandingen holdes under omrøring i 20 timer ved romtemperatur og deretter helles reaksjonsmediet over 100 ml syrevann (98 ml vann + 2 ml konsentrert H₂SO₄) og ekstraheres så 3 ganger med etyleter. De kombinerte organiske faser vaskes 3 ganger med vann og deretter med en mettet vandig oppløsning av NaCl før tørking (Na₂SO₄), filtrering og konsentrering under vakuum i en rotasjonsfordamper. Den opp-nådde oljeaktige rest krystalliserer ved avkjøling. 3-tia-5,8-oktadekadiniynsyre rekrystalliseres fra diisopropyleter og

isoleres således i form av et hvitt faststoff med et utbytte på 26%.

5 ^1H NMR 200 MHz CDCl_3 , 0.87 (t, 3H), 1.1-1.6 (m, 14H),
 2.13 (t.t., 2H), 3.17 (m, 2H), 3.42 (t, 2H), 3.45
 (s, 2H), 10.78 (bred s, 1H).

10 ^{13}C NMR 50 MHz CDCl_3 : 9.87, 14.10, 18.65, 20.52, 22.66,
 28.67, 29.13, 29.26, 29.46, 31.85, 32.35, 73.30, 74.62,
 79.11, 81.16, 176.25.

Elementæranalyse:

	C	H	O	S
Beregnet	69.34	8.90	10.87	10.89
Funnet	69.17	8.91	10.70	10.66

Eksempel 18

Fremstilling av 1-klor-2,5-dodekadiyn

38,1 ml av en 1M oppløsning av etylmagnesiumbromid i THF til-settes dråpevis ved romtemperatur til en oppløsning av 4 g 25 1-oktyn i 15 ml vannfritt THF, under en inert atmosfære. Når tilsetningen er fullført holdes blandingen under omrøring i 30 minutter ved romtemperatur og oppvarmes deretter under tilbakeløp i 1 time og 30 minutter. Blandingen avkjøles til romtemperatur og deretter tilsettes 287 mg kobber(I) klorid 30 og blandingen oppvarmes igjen under tilbakeløp i 1 time. Blandingen avkjøles deretter til romtemperatur og 9,95 ml 35 1,4-diklor-2-butyn oppløst i 20 ml vannfritt THF tilsettets hurtig dråpevis. Blandingen holdes under omrøring i 30 minutter ved romtemperatur, den oppvarmes deretter under tilbakeløp i 2 timer og så holdes den under omrøring i 15 timer ved romtemperatur før oppvarming under tilbakeløp i ytterligere 2 timer. Reaksjonsmediet avkjøles deretter til 4°C og hydrolyseres med forsiktighet med en mettet vandig oppløsning av NH_4Cl . Mediet ekstraheres deretter 3 ganger

med dietyleter og de kombinerte organiske fasér vaskes 3 ganger med vann og deretter med en mettet vandig oppløsning av NaCl før tørking over Na₂SO₄, filtrering og konsentrering under vakuum i en rotasjonsfordamper. Den oljaktige rest 5 inneholdende 1,4-diklor-2-butyn i overskudd renses ved destillasjon under redusert trykk og 1-klor-2,5-dodekadiyn isoleres i form av en blekgul olje (utbytte på 36%).

¹H NMR 200 MHz CDCl₃: 0.88 (t, 3H), 1.1-1.5 (m, 8H),
10 2.14 (t.t, 2H), 3.20 (m, 2H), 4.13 (t, 2H).
¹³C NMR 50 MHz CDCl₃: 9.97, 14.04, 18.66, 22.53, 28.53,
28.60, 30.74, 31.31, 72.71, 74.89, 81.46, 81.76.

15

Eksempel 19

Fremstilling av 3-tia-5,8-pentadekadiynsyre

3,85 ml av en 30% oppløsning av natriummetoksyd i metanol 20 tilsettes dråpevis til en oppløsning av 742 µl tioglykolsyre i 8 ml metanol, under en inert atmosfære. Blandingen holdes under omrøring i 30 minutter og deretter tilsettes en opp-losning av 2 g 1-klor-2,5-dodekadiyn i 20 ml metanol under en inert atmosfære. Blandingen holdes under omrøring i 15 timer 25 ved romtemperatur og deretter helles reaksjonsmediet over 100 ml syrevann (98 ml vann + 2 ml konsentrert H₂SO₄) og ekstraheres så 3 ganger med etyleter. De kombinerte organ-iske fasér vaskes 3 ganger med vann og deretter med en mettet vandig oppløsning av NaCl før tørking (Na₂SO₄), filtrering og 30 konsentrering under vakuum i en rotasjonsfordamper. Den oppnådde oljeaktige rest krystalliserer ved kald temperatur. 3-tia-5,8-pentadekadiynsyre rekrystalliseres fra diisopropyl-eter.

35

Eksempel 20Fremstilling av 1-klor-2,5-undekadiyn

54,6 ml av en 1M oppløsning av etylmagnesiumbromid i THF tilsettes dråpevis ved romtemperatur til en oppløsning av 5 g
 5 1-heptyn i 15 ml vannfritt THF, under en inert atmosfære.
 Når tilsetningen er fullført holdes blandingen under omrøring
 i 30 minutter ved romtemperatur og oppvarmes deretter under
 tilbakeløp i 1 time og 30 minutter. Blandinga avkjøles til
 romtemperatur og deretter tilsettes 412 mg kobber(I) klorid
 10 og blandingen oppvarmes igjen under tilbakeløp i 1 time.
 Blandinga avkjøles deretter til romtemperatur og 14,2 ml
 1,4-diklor-2-butyn tilsettes ganske hurtig. Blandinga kokes
 under tilbakeløp i 1 time og 30 minutter og holdes deretter
 under omrøring i 15 timer ved romtemperatur, før oppvarming
 15 på ny under tilbakeløp i 2 timer og 30 minutter. Reaksjons-
 mediet avkjøles deretter til 4°C og hydrolyseres med for-
 siktighet med en mettet vandig oppløsning av NH₄Cl. Mediet
 ekstraheres deretter 3 ganger med dietyleter og de kombinerte
 organiske faser vaskes 3 ganger med vann og deretter med en
 20 mettet vandig oppløsning av NaCl før tørking over Na₂SO₄,
 filtrering og konsentrering under vakuum i en rotasjonsfor-
 damper. Den oljaktige rest inneholdende 1,4-diklor-2-butyn i
 overskudd renses ved destillasjon under redusert trykk til å
 gi 6,55 g 1-klor-2,5-undekadiyn i form av en blekgul olje
 25 (utbytte på 69%).

¹H NMR 200 MHz CDCl₃: 0.88 (t, 3H), 1.1-1.5 (m, 6H),

2.13 (t.t., 2H), 3.19 (m, 2H), 4.13 (t, 2H).

¹³C NMR 50 MHz CDCl₃: 9.92, 13.94, 18.58, 22.17, 28.32,

30.71, 31.02, 72.68, 74.86, 81.38, 81.72.

Eksempel 21Fremstilling av 3-tia-5,8,11-heptadekatriynsyre

Denne syntesen utføres i fire trinn:

- Det første trinnet består i å fremstille, fra kommersielt tilgjengelig heptyn, 1-klor-2,5-undekadiyn ved kondensering av 1,4-diklorbutyn (se eksempel 20).
- I det andre trinnet oppnås 2,5,8-tetradekatriynol ved reaksjon av dianionet av propargylalkohol med 1-klor-2,5-undekadiyn.
- I det tredje trinnet omdannes 2,5,8-tetradekatriynol til det tilsvarende bromid ved virkningen av fosfortribromid.
- I fjerde trinnet reageres dette bromidet til sist med dianionet av tioglykolsyre.

15 a) *Fremstilling av 2,5,8-tetradekatriynol*

Dianionet av propargylalkohol fremstilles ved bytting av sure protoner (alkohol og acetylenisk) med propylmagnesiumklorid. En fortynnet oppløsning av $4,8 \text{ cm}^3$ propargylalkohol (0,082 mol) fortynnet med 10 cm^3 vannfritt THF tilsettes dråpevis til en suspensjon inneholdende 2,1 ekvivalenter av propylmagnesiumklorid omrørt ved 0°C under en inert atmosfære i 100 cm^3 THF. Denne organomagnesiumforbindelse (0,17 mol) fremstilles ved å reagere 14 cm^3 klorpropan med 4,2 g magnesium i THF.

25

Så snart avgivelsen av propan har opphört, får temperaturen stige opp til 20°C og deretter oppvarmes blandingen til koke-temperaturen til løsningsmiddelet i 1 time og 30 minutter. 0,7 g kobber(I) cyanid som gradvis solubiliseres i mediet tilsettes deretter. Det oppnås en klar oppløsning og ved en temperatur på 50°C tilsettes deretter 15 g 1-klor-2,5-undekadiyn (0,082 mol) fortynnet med 10 cm^3 THF til dette dianionet, og deretter oppvarmes blandingen under omrøring i 3 timer ved kokepunktet til løsningsmiddelet - og får deretter stå ved romtemperatur over natten.

Reaksjonsblandinga hellas deretter sakte i 200 cm^3 av en 1 N vandig oppløsning av svovelsyre, og ekstraheres deretter 3 ganger med 100 cm^3 etylacetat. De organiske fasene

kombineres, vaskes med hjelp av en ammoniumklóridoppløsning, tørkes over magnesiumsulfat og etylacetatet fjernes deretter. Det rå 2,5,8-tetradekatriynol oppløses i 150 cm³ kokende heptan.

5

Oppløsningen filtreres deretter og avkjøles så til -20°C. De dannede krystaller avvannes hurtig og tørkes. 7 g 2,5,8-tetradekatriynol oppnås således i form av beige krystaller.

10

b) *Fremstilling av 1-brom-2,5,8-tetradekatriyn*

Alkoholen oppnådd ovenfor omdannes direkte til det tilsvarende bromid ved tilsetning av 2 cm³ fosfortribromid (0,0216 mol) til denne alkoholen fortynnet i 50 cm³ etyleter. Denne omrørte blandingen under en inert atmosfære og beskyttet mot lys oppvarmes til kokepunktet til løsningsmiddelet i 2 timer og vaskes deretter ved romtemperatur med hjelp av en mettet vandig oppløsning av ammoniumklorid.

20

Den organiske fasen avdekanteres og tørkes deretter over magnesiumsulfat. 3 timer senere fjernes magnesiumsulfatet ved filtrering. Filtratet inneholdende 1-brom-2,5,8-tetradekatriyn anvendes direkte i det neste trinnet.

25

c) *Fremstilling av 3-tia-5,8,11-heptadekatriynsyre*

En oppløsning inneholdende 0,0346 mol av dianionet av tioglykolsyren tilsettes med omrøring og under en inert atmosfære til det således oppnådde filtrat. Dette dianionet er fremstilt på forhånd ved behandling, ved romtemperatur og under en inert atmosfære, av 2,4 cm³ tioglykolsyre (0,0346 mol) oppløst i 50 cm³ metanol med 4,2 g natriummetoksyd (0,076 mol).

1 time etter tilsetningen av dette dianionet til oppløsningen inneholdende 1-brom-2,5,8-tetradekatriyn er sistnevnte fullstendig omdannet.

Reaksjonsblandingen helles i en oppløsning av 350 cm^3 iskald 1 N svovelsyre. Blandingen ekstraheres 3 ganger med etyl-eter. De eteriske faser vaskes med vann, tørkes over natrium-sulfat og konsentreres deretter. Den således oppnådde rå 5 3-tia-5,8,11-heptadekatriynsyre i form av en viskøs væske oppløses i 100 cm^3 isopropyleter. Beinkull tilsettes til den oppnådde oppløsning, blandingen omrøres i en quart time ved romtemperatur og filtreres deretter. Filtratet konsentreres til omtrent 40 cm^3 og heptan tilsettes inntil uklarhet frem-10 trer. Blandingens avkjøles deretter til -5°C . De dannede krystaller filtreres hurtig, tørkes og lagres ved 0°C . Det oppnås 3 g 3-tia-2,5,8-heptadekatriynsyre som har en beige farge.

15 ^1H og ^{13}C NMR spektrene er i overensstemmelse med strukturen.

^1H NMR 80 MHz CDCl_3 : 0.80 (t, 3H), 1.1-1.65 (m, 6H),
2.15 (t.t., 2H), 3.16 (s, 4), 3.44 (s, 4H), 10.0-11.0
20 (uløst kompleks, H).
 ^{13}C NMR 100 MHz CDCl_3 : 9.76, 9.95, 14.00, 18.67, 20.52,
22.22, 28.42, 31.08, 32.48, 73.55, 73.75, 75.09, 75.21,
78.33, 81.06, 176.47.

25

Eksempel 22

I dette eksempelet er ulike konkrete formuleringer basert på 30 forbindelsene i samsvar med oppfinnelsen blitt illustrert.

A - ORAL RUTE

	(a) 0,2 g tablett	
5	- forbindelse ifølge eksempel 2	0,001 g
	- stivelse	0,114 g
	- dikalsiumfosfat	0,020 g
	- silika	0,020 g
	- laktose	0,030 g
10	- talk	0,010 g
	- magnesumstearat	0,005 g
	(b) Oral suspensjon i 5 ml ampuller	
	- forbindelse ifølge eksempel 3	0,001 g
15	- glyserin	0,500 g
	- sorbitol ved 70%	0,500 g
	- natriumsakkarinat	0,010 g
	- metylpara-hydroksybenzoat	0,040 g
	- smaksstoffer qs	
20	- renset vann qs	5 ml
	(c) 0,8 g tablett	
	- forbindelse ifølge eksempel 5	0,500 g
	- forgelatinert stivelse	0,100 g
25	- mikrokrySTALLinsk cellulose	0,115 g
	- laktose	0,075 g
	- magnesiumstearat	0,010 g
	(d) Oral suspensjon i 10 ml ampuller	
30	- forbindelse ifølge eksempel 15	0,05 g
	- glyserin	1,000 g
	- sorbitol ved 70%	1,000 g
	- natriumsakkarinat	0,010 g
	- metylpara-hydroksybenzoat	0,080 g
35	- smaksstoffer qs	
	- renset vann qs	10 ml

B - TOPISK RUTE

	(a) Salve	
5	- forbindelse ifølge eksempel 10	0,020 g
	- isopropylmyristat	81,700 g
	- flytende parafin	9,100 g
	- silika (Aerosil 200 solgt av DEGUSSA)	9,180 g
10	(b) Salve	
	- forbindelse ifølge eksempel 8	0,300 g
	- vaselin	100 g
	(c) Ikke-ionisk vann-i-olje krem	
15	- forbindelse ifølge eksempel 7	0,100 g
	- blanding av emulgerende lanolinalkoholer, vokstyper og oljer (Anhydrous eucerin solgt av BDF)	39,900 g
	- metylpara-hydroksybenzoat	0,075 g
20	- propyl-parahydroksybenzoat	0,075 g
	- sterilt demineralisert vann qs	100 g
	(d) Lotion	
25	- forbindelse ifølge eksempel 4	0,100 g
	- polyetylenglykol (PEG 400)	69,900 g
	- etanol ved 95%	30,000 g
	(e) Hydrofob salve	
30	- forbindelse ifølge eksempel 14	0,300 g
	- isopropylmyristat	36,400 g
	- silikonolje (Rhodorsil 47 V 300 solgt av RHONE-POULENC)	36,400 g
	- bivoks	13,600 g
35	- silikonolje (Abil 300,000 cst solgt av GOLDSCHMIDT)	100 g

	(f) Ikke-ionisk vann-i-olje krem	
-	forbindelse ifølge eksempel 4	0,500 g
-	cetylalkohol	4,000 g
-	glyserylmonostearat	2,500 g
5	- PEG 50 stearat	2,500 g
-	bassiasmør	9,200 g
-	propylenglykol	2,000 g
-	metylpara-hydroksybenzoat	0,075 g
-	propylpara-hydroksybenzoat	0,075 g
10	- sterilt demineralisert vann	100 g

Eksempel 23

Flere av resultatene av biologiske tester av forbindelsene i henhold til oppfinnelsen, så vel som av sammenlignings-
15 eksempler, er blitt illustrert i dette eksempelet.

De utførte biologiske tester tilsvarer slike som er beskrevet i søknaden. Metoden benyttet til å bestemme AC50 verdiene er den som er beskrevet i Kliewer et al., Nature 358, 771-774,
20 1992. Den aktiverende kraft via PPAR- α , PPAR- γ eller PPAR- δ av molekyler kan således vurderes med en transaktiveringstest hvor HeLa celler ble kotransfisert med en ekspresjonsvektor som koder for disse reseptorer og et rapporteringsplasmid som inneholder et PPRE responselement som er klonet oppstrøms av
25 en del av en promoter av SV40 viruset og av luciferasegenet. De kotransfiserte celler behandler i 24 timer med molekylene som skal testes og aktiviteten av luciferasen bestemmes ved hjelp av luminescens.

30 Referanse 1, referanseomolekyl for PPAR- α reseptorene er [4-klor-6(2,3-dimetylfenylamino)pyrimidin-2-ylsulfanyl]eddiksyre,
referanse 2, referanseomolekyl for PPAR- δ og PPAR- γ reseptorene er 5-{4-[2-metylpyridin-2-ylamino]etoksy}benzyl}-
35 tiazolidin-2,4-dion,
sammenligningseksempler 1 og 2 er umettede fettsyrer av tiaeikosa(poly)yn-type som er oppnådd fra europeisk patent-søknad EP 342115.

Sammenligningseksempel 1 er 3-tia-5,8,11,14-eikosatetraynsyre.

Sammenligningseksempel 2 er 3-tia-5,8,11-eikosatriynsyre.

- 5 Resultatene oppnådd i testene for transaktivering av PPAR-type reseptorene er samlet i den etterfølgende tabell:

	Forbindelser	α		γ		δ	
		Ymax%	AC50 μ M	Ymax%	AC50 μ M	Ymax%	AC50 μ M
10	Referanse 1	100	1,4	i.a.	i.a.	i.a.	i.a.
	Referanse 2	i.a.	i.a.	100	0,07	100	0,13
	Eksempel 8	91	2,9	i.a.	i.a.	i.a.	i.a.
	Eksempel 10	142	1,5	i.a.	i.a.	i.a.	i.a.
	Eksempel 14	116	1	i.a.	i.a.	i.a.	i.a.
15	Eksempel 21	138	3	i.a.	i.a.	i.a.	i.a.
	Sammenlign.eksempel 1	128	4	83	3	125	7
	Sammenlign.eksempel 2	112	5	58	4	74	11

i.a. betyr ikke aktiv

20

Disse resultatene viser den selektive aktivering av forbindelsene i henhold til oppfinnelsen for PPAR- α -type reseptorene.

- 25 Disse resultatene viser også at umettede fettsyrer av tiaeikosa(poly)ynype, oppnådd fra europeisk patentsøknad EP 342115, ikke utviser denne egenskapen med selektiv aktivering av PPAR- α -type reseptorene.

PATENTKRAV

1. (Poly)tiaalkynforbindelser,
 karakterisert ved at de tilsvarer den
 5 følgende formel (I):

hvor:

10 - Y representerer:

- (a) et $-S(O)t$ radikal,
 t er et helt tall lik 0, 1 eller 2,
- (b) et $-CH_2$ radikal,
- (c) et $-C\equiv C$ radikal,
- 15 (d) et $-C=C$ radikal,

- R_1 representerer et rettkjedet eller forgrenet alkylradikal som har fra 1 til 18 karbonatomer som er eventuelt substi-
 tuert med ett eller flere halogenatomer, et rettkjedet eller forgrenet alkenylradikal som har fra 1 til 18 karbonatomer
 20 eller et rettkjedet eller forgrenet alkynylradikal som har fra 1 til 18 karbonatomer, idet dette radikalet i tillegg kan omfatte ett eller flere oksygenatomer og/eller nitrogenatomer og/eller svovelatomer,
 idet det forstås at:

25 - når Y representerer (b), da omfatter R_1 et antall atomer på mellom 1 og 12, foretrukket mellom 4 og 12 og mer foretrukket mellom 6 og 12,

- når Y representerer (c) da omfatter R_1 et antall atomer på mellom 1 og 10, foretrukket mellom 4 og 10 og mer foretrukket mellom 6 og 10,

30 - når Y representerer er forskjellig fra (b) og R_1 er et umettet radikal eller omfatter et heteroatom, da kan ikke umettetheten og/eller heteroatomet av R_1 være ved α -still-
 ingen med hensyn til Y,

35 - R_2 representerer:

- (a) et tetrazolylradikal med formel

- (b) et nitrilradikal,
 (c) et oksazolinylradikal med formel

5

- (d) et $-\text{CH}_2\text{OR}_3$ radikal,
 (e) et $-\text{CO-R}_4$ radikal,

idet R_3 og R_4 har betydningene gitt nedenfor,

- R_3 representerer et hydrogenatom, et lavere alkylradikal,

10 et monohydroksyalkylradikal som har fra 1 til 6 karbonatomer eller et polyhydroksyalkylradikal som har fra 2 til 6 karbonatomer, et cykloalifatisk radikal som har fra 3 til 6 karbonatomer, idet R_3 i tillegg kan representerere et tetrahydropyranylradikal,

15 - R_4 representerer:

- (a) et hydrogenatom,
 (b) et lavere alkylradikal,
 (c) et $-\text{NR}'(\text{R}'')$ radikal,

idet R' og R'' har betydningene gitt nedenfor,

20 (d) et $-\text{OR}_5$ radikal,

idet R_5 har betydningene gitt nedenfor,

- R_5 representerer:

- (a) et hydrogenatom,
 (b) et rettkjedet er forgrenet alkylradikal som har fra 1 til 18 karbonatomer,

25 (c) et monohydroksyalkylradikal som har fra 1 til 6 karbonatomer,

- (d) et polyhydroksyalkylradikal som har fra 2 til 6 karbonatomer og som omfatter fra 2 til 5 hydroksylgrupper,

30 (e) et arylradikal,

- (f) et aralkylradikal som eventuelt er substituert med:

- ett eller flere rettkjededede eller forgrenede alkylradikaler som har fra 1 til 18 karbonatomer,

- ett eller flere $-\text{CO-R}''$ radikaler,

- ett eller flere $-\text{O-R}''$ radikaler,

idet R'' har betydningen gitt nedenfor,

- R' og R'' som er like eller forskjellige representerer et hydrogenatom, et lavere alkylradikal, et alkenylradikal som

har fra 3 til 4 karbonatomer, et cykloalifatisk radikal som har fra 3 til 6 karbonatomer, et aryl- eller aralkylradikal som eventuelt er substituert, en aminosyre- eller aminosukkerrest, eller alternativt kan de sammen danne en heterosyklus,

5 - R''' representerer et hydrogenatom, eller en rettkjedet eller forgrenet alkylkjede som har fra 1 til 18 karbonatomer, og de optiske og geometriske isomerer av forbindelsene med formel (I) så vel som deres salter.

10 2. Forbindelser som angitt i krav 1,
k a r a k t e r i s e r t v e d at de er tilveiebragt i
form av salter av et alkalimetall eller jordalkalimetall, av
sink, av et organisk amin eller av en uorganisk eller
organisk syre.

15

3. Forbindelser som angitt i krav 1 eller 2,
k a r a k t e r i s e r t v e d at de lavere alkylradi-
kaler er valgt fra methyl-, etyl-, isopropyl-, n-butyl-, tert-
butyl-, pentyl- eller heksylradikaler.

20

4. Forbindelser som angitt i ett av de foregående krav,
k a r a k t e r i s e r t v e d at de rettkjedede eller
forgrenede alkylradikaler med fra 1 til 18 karbonatomer som
eventuelt er substituert med ett eller flere halogenatomer er
25 valgt fra methyl-, etyl-, propyl-, isopropyl-, butyl-, tert-
butyl-, pentyl-, heksyl- eller 2-etylheksyl-, oktyl-, nonyl-,
decyl-, dodecyl-, dodekanyl-, tetradekanyl- eller
3,3,4,4,5,5,6,6,7,7,8,8,8-tridekafluoroktylradikaler.

30 5. Forbindelser som angitt i ett av de foregående krav,
k a r a k t e r i s e r t v e d at de rettkjedede eller
forgrenede alkenylradikaler med fra 1 til 18 karbonatomer er
valgt fra allyl-, butenyl-, heksenyl-, oktenyl-, decenyl-,
dodecenyl- eller tetradecenylradikaler.

6. Forbindelser som angitt i ett av de foregående krav,
k a r a k t e r i s e r t v e d at de rettkjedede eller
forgrenede alkynylradikaler med fra 1 til 18 karbonatomer er
valgt fra propynyl-, butyn-2-yl-, pentyn-2-yl-, heksyn-2-yl-,
5 oktyn-2-yn-, decyn-2-yl- eller 2-dodecyn-2-ylradikaler.
7. Forbindelser som angitt i ett av de foregående krav,
k a r a k t e r i s e r t v e d at monohydroksyalkyl-
radikalene som har fra 1 til 6 karbonatomer er valgt fra
10 2-hydroksyethyl-, 2-hydroksypropyl- eller 3-hydroksypropyl-
radikaler.
8. Forbindelser som angitt i ett av de foregående krav,
k a r a k t e r i s e r t v e d at polyhydroksyalkyl-
radikalene som har fra 2 til 6 karbonatomer er valgt fra
15 2,3-dihydroksypropyl-, 2,3,4-trihydroksybutyl- eller
2,3,4,5-tetrahydroksypentylradikaler eller en pentaerytritol-
rest.
- 20 9. Forbindelser som angitt i ett av de foregående krav,
k a r a k t e r i s e r t v e d at arylradikalene til-
svarer et fenyrradikal, eventuelt substituert med minst ett
halogen, lavere alkyl, hydroksyl, alkoxsy, nitrofunksjon,
polyeterradikal eller aminofunksjon som eventuelt er be-
25 skyttet med en acetylgruppe eller som eventuelt er substi-
tuert med minst ett lavere alkyl.
10. Forbindelser som angitt i ett av de foregående krav,
k a r a k t e r i s e r t v e d at aralkylradikalene er
30 valgt fra et benzyl- eller fenetylradikal som eventuelt er
substituert med minst ett halogen, lavere alkyl, hydroksyl,
alkoxsy, nitrofunksjon, polyeterradikal eller aminofunksjon
som eventuelt er beskyttet med en acetylgruppe eller som
eventuelt er substituert med minst ett lavere alkyl.

11. Forbindelser som angitt i ett av de foregående krav,
k a r a k t e r i s e r t v e d at de cykloalifatiske
radikaler som har fra 3 til 6 karbonatomer er valgt fra et
cyklopropylradikal, et cyklopentylradikal eller et cyklo-
5 heksylradikal.

12. Forbindelser som angitt i ett av de foregående krav,
k a r a k t e r i s e r t v e d at aminosyrerestene er
valgt fra gruppen bestående av rester som er avledet fra
10 lysin, glycin eller asparaginsyre.

13. Forbindelser som angitt i ett av de foregående krav,
k a r a k t e r i s e r t v e d at aminosukkerrestene er
valgt fra gruppen bestående av rester som er avledet fra
15 glukosamin, galaktosamin, mannosamin eller meglumin.

14. Forbindelser som angitt i ett av de foregående krav,
k a r a k t e r i s e r t v e d at de heterocyklistiske
radikaler valgt fra gruppen bestående av piperidino-, morfo-
20 lino-, pyrrolidino- eller piperazinoradikaler som eventuelt
er substituert ved 4-stillingen med et C₁-C₆ alkylradikal
eller med et mono- eller polyhydroksyalkyl.

15. Forbindelser som angitt i krav 1,
25 k a r a k t e r i s e r t v e d at de er tatt, alene
eller i form av blandinger, fra gruppen bestående av:
- metyl-3,8-ditia-11,11,12,12,13,13,14,14,15,15,16,16,16-tri-
dekafluor-5-heksadecynoat,
- 3,8-ditia-11,11,12,12,13,13,14,14,15,15,16,16,16-tri-
30 dekafluor-5-heksadecynsyre,
- metyl-3,8-ditia-5-dokosynoat,
- 3,8-ditia-5-dokosynsyre,
- metyl-3,8-ditia-5-heksadecynoat,
- 3,8-ditia-5-heksadecynsyre,
35 - 3-tia-5-heksadecynsyre,
- metyl-3,8-ditia-5-heptadecynoat,
- 3,8-ditia-5-heptadecynsyre,
- 3-tia-5,8-heptadekadadiynsyre,
- 3-tia-5,8-oktadekadadiynsyre,

- 3-tia-5,8-pentadekadiynsyre,
- 3-tia-5,8,11-oktadekatriynsyre,
- 3-tia-5-oktadekaynsyre,
- 3-tia-5,8,11-heptadekatriynsyre,
- 5 - 3-tia-5-heptadekaynsyre,
- 3-tia-5,8,11-heksadekatriynsyre,
- 3-tia-5,8-heksadekadiynsyre,
- 3-tia-5,8,11-pentadekatriynsyre,
- 3-tia-5-pentadekaynsyre,
- 10 - 3-tia-5-tetradekaynsyre,
- 3-tia-5,8,11-heptadekatriynsyre.

16. Forbindelser som angitt i krav 1,
k a r a k t e r i s e r t v e d at de utviser minst en,
15 og foretrukket alle, av de følgende egenskaper:

- R₂ er et -CO-R₄ radikal,
- R₄ er et hydroksylradikal,
- Y er valgt fra
 - radikalet (c) og R₁ er et alkylradikal som har fra 4 til
20 10 karbonatomer,
eller radikalet (a) hvor t er lik 0 og R₁ er et alkyl-
radikal som har fra 4 til 12 karbonatomer,
eller radikalet (b) og R₁ er et alkylradikal substituert
med ett eller flere fluoratomer som har fra 4 til 12
25 karbonatomer.

17. Kosmetisk preparat,
k a r a k t e r i s e r t v e d at det i en kosmetisk
akseptabel bærer omfatter minst en av forbindelsene som
30 definert i ett eller flere av kravene 1 til 16.

18. Preparat som angitt i krav 17,
k a r a k t e r i s e r t v e d at konsentrasjonen av
forbindelsen eller forbindelsene som angitt i ett eller flere
35 av kravene 1 til 16 er mellom 0,0001 og 3 vekt% i forhold til
hele preparatet.

19. Anvendelse av et kosmetisk preparat som definert i krav
17 eller 18 for kropps- og hårpleie og mer spesielt for å
regulere metabolismen til kutanlipider, for behandling av
hudtyper som er utsatt for akner, for å bekjempe den fett-
5 aktige fremtreden til huden eller håret, eller ved behandling
av fysiologisk tørre hudtyper.
20. Anvendelse av et kosmetisk preparat som definert i krav
17 eller 18 for å forbedre hudbarrierefunksjonen eller fremme
10 differensiering og inhibere epidermal proliferasjon.
21. Forbindelser som angitt i ett eller flere av kravene 1
til 16 som et medikament.
- 15 22. Anvendelse av en forbindelse som angitt i ett eller
flere av kravene 1 eller 16 for fremstilling av et medikament
som er ment for behandling av dermatologiske lidelser knyttet
til en abnormalitet i differensieringen av epidermceller og
spesielt psoriasis, eksem, lichen planus, hudskader forbundet
20 med lupus, dermatitter slik som atopiske, seborroiske eller
solare dermatitter, keratoser slik som seborroisk, senil,
aktinisk, fotoindusert eller follikulær keratose, akne
vulgaris, keloider, nevi, vorter, ichtyoser og hudkreft,
eller inflammatoriske tilstander som ikke utviser noen
25 keratiniseringsforstyrrelser, slik som artritt.
23. Farmasøytisk preparat,
k a r a k t e r i s e r t v e d at ved at det i en
farmasøytisk akseptabel bærer omfatter minst en av for-
30 bindelsene som definert ovenfor i ett eller flere av kravene
1 til 16.
24. Preparat som angitt i krav 23,
k a r a k t e r i s e r t v e d at konsentrasjonen av
35 forbindelsen eller forbindelsene som angitt i ett av kravene
1 til 16 er mellom 0,001 og 10 vekt% i forhold til hele
preparatet.