

Exercise 4B

Question 3:

Since ∠BOD and ∠DOA from a linear pair of angles.

$$\Rightarrow$$
 \angle BOD + \angle DOA = 180 $^{\circ}$

$$\Rightarrow \angle BOD + \angle DOC + \angle COA = 180^{\circ}$$

$$\Rightarrow$$
 x° + (2x - 19)° + (3x + 7)° = 180°

$$\Rightarrow$$
 6x - 12 = 180

$$\Rightarrow$$
 6x = 180 + 12 = 192

$$\Rightarrow$$
 x = 192/6 = 32

$$\Rightarrow$$
 x = 32

$$\Rightarrow \angle AOC = (3x + 7)^{\circ} = (3 \ 32 + 7)^{\circ} = 103^{\circ}$$

$$\Rightarrow$$
 \angle COD = $(2x - 19)^{\circ}$ = $(232 - 19)^{\circ}$ = 45°

and
$$\angle BOD = x^0 = 32^0$$

Question 4:

x: y: z = 5: 4: 6

The sum of their ratios = 5 + 4 + 6 = 15

But
$$x + y + z = 180^{\circ}$$

[Since, XOY is a straight line]

So, if the total sum of the measures is 15, then the measure of x is 5. If the sum of angles is 180° , then, measure of x = $5/15 \times 180 = 60$ And, if the total sum of the measures is 15, then the measure of y is 4

If the sum of the angles is 180° , then, measure of $y = 4/15 \times 180 = 48$

And
$$\angle z = 180^{\circ} - \angle x - \angle y$$

$$= 180^{\circ} - 108^{\circ} = 72^{\circ}$$

$$x = 60$$
, $y = 48$ and $z = 72$.

********* END ********