

Introduction to normalization

> TEAM INFDEV

Lesson overview

Introduction

Normal forms

General

normal forms

Summary

Introduction to normalization

TEAM INFDEV

Hogeschool Rotterdam Rotterdam, Netherlands

Lesson topics

Introduction to normalization TEAM INFDEV

Lesson overview

Introduction

Normal forms

General

normal forms

- Problems caused by bad database implementations.
- Reasons behind Normalization.
- Functional dependencies.
- Normal forms.

Introduction

Reasons behind normalization

Introduction to normalization

> TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

- It is a process to improve the design of the database.
- Objective 1: minimize the storage space used by the relations.
- Objective 2: eliminate anomalies in the database.
- Objective 3: eliminate spurious tuples.

Introduction

Introduction to normalization

> TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

Summary

Create tables with a lot of information is prone to waste of storage space.

				_
EM	PL	O)	Έ	Ε

ENAME	SSN	BDATE	ADDRESS	DNUMBE
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4
Narayan, Remesh K.	666884444	1962-09-15	975 Fire Oak, Humble, TX	5
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5
Jabbar,Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1

DEPARTMENT

DNAME	DNUMBER	DMGRSSN
Research	5	333445555
Administration	4	987654321
Headquarters	1	888665555

VS

ENAME	SSN	BDATE	ADDRESS	DNUMBER	DNAME	DMGRSSN
Smith John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5	Research	333445555
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5	Research	333445555
Zeiava, Alicia J.	999887777	1968-07-19	3321 Castle Spring TX	4	Administration	987654321
Wallace Jennifer S.	987654321	1941-06-20	291 Berry Bellaire, TX	4	Administration	987654321
Narayan,Ramesh K.	666884444	1962-09-15	975 FireOak, Humble, TX	5	Research	333445555
English Joyce A.	453453453	1972-07-31	5631 Rice.Houston,TX	5	Research	333445555
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4	Administration	987654321
Boro James E.	888665555	1937-11-10	450 Stone, Houston, TX	1	Headquarters	888665555

Introduction Waste of storage space

Introduction to normalization

TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

- Using two separate tables and joining them uses less storage space then putting everything in the same table.
- The values of the attributes of the department are repeated for every employee who works in that department.
- It means that, if a department has 300 employees, we waste 300 times the memory space than the approach with two tables.

Introduction Update Anomalies

Introduction to normalization

> TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

EMP_DEPT					redur	ndancy
ENAME	SSN	BDATE	ADDRESS	DNUMBER	DNAME	DMGRSSN
Smith John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5	Research	333445555
Nong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5	Research	333445555
Jelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administration	987654321
Vallace, Jennifer S.	987654321	1941-06-20	291 Berry,Bellaire,TX	4	Administration	987654321
laravan.Ramesh K.	666884444	1962-09-15	975 FireOak, Humble, TX	5	Research	333445555
naish Joyce A.	453453453	1972-07-31	5631 Rice. Houston, TX	5	Research	333445555
abbar.Ahmad V.	987987987	1969-03-29	980 Dallas.Houston.TX	4	Administration	987654321
Port Ismae E	23333999	1027-11-10	450 Stone Houston TY	1	Haadquartore	99966555

- The values contained in DNAME are always coupled with the same values in DMGRSSN. For example 'Research' is always coupled with 333445555. This is called redundancy.
- Inserting a new employee requires to repeat this coupling manually (manual consistency).
- If you add a new department, then we have to enter a null value for each attribute of the employee.

Introduction Update Anomalies (deletion)

Introduction to normalization

TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

- Deleting the tuple of the last employee of the department also removes all the information about that department.
- We must manually apply null values to the attributes of the employee in order to remove the last employee from the department.
- Example: Deleting Borg, James E. also removes all the information about the 'Headquarters' department.

Introduction Update Anomalies (modification)

Introduction to normalization

TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

- Modifying the information of a department in one tuple is not reflected in the other tuples.
- If we want to update the information about a department we must repeat the update for all the tuples containing the employees of that department
- **Example:** If we change the name of the department 'Research' into 'Research and development' we have to repeat this change for 4 tuples.

Introduction Spurious tuples

Introduction to normalization

> TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

Summary

EMP LOCS

Borg,James E.

987987987

987654321 30

987654321 20

888665555

ENAME	PLOCATION
Smith, John B.	Bellaire
Smith, John B.	Sugarland
Narayan, Ramesh K.	Houston
English, Joyce A.	Bellaire
English, Joyce A.	Sugarland
Wong, Franklin T.	Sugarland
Wong, Franklin T.	Houston
Wong, Franklin T.	Stafford
Zelaya, Alicia J.	Stafford
Jabbar, Ahmad V.	Stafford
Wallace, Jennifer S.	Stafford
Wallace, Jennifer S.	Houston

5.0

20.0

15.0

nul

EMP_PROJ1

redundancy

Stafford

Stafford

Houston

Houston

	_				
Γ	SSN	PNUMBER	HOURS	PNAME	PLOCATION
-	123456789	1	32.5	Product X	Bellaire
	123456789	2	7.5	Product Y	Sugarland
	666884444	3	40.0	Product Z	Houston
	453453453	1	20.0	Product X	Bellaire
	453453453	2	20.0	Product Y	Sugarland
	333445555	2	10.0	Product Y	Sugarland
	333445555	3	10.0	Product Z	Houston
	333445555	10	10.0	Computerization	Stafford
	333445555	20	10.0	Reorganization	Houston
-	999887777	30	30.0	Newbenefits	Stafford
	999887777	10	10.0	Computerization	Stafford
	987987987	10	35.0	Computerization	Stafford
	987987987	30	5.0	Newbenefits	Stafford
	987654321	30	20.0	Newbenefits	Stafford
	987654321	20	15.0	Reorganization	Houston
	888665555	20	null	Reorganization	Houston

EMP_PROJ PNUMBER HOURS ENAME PNAME PLOCATION 32.5 123456789 Smith,John B. ProductX Bellaire 123456789 7.5 Smith,John B. ProductY Sugarland 666884444 40.0 Narayan, Ramesh K. ProductZ Houston Bellaire 453453453 20.0 English,Joyce A. ProductX 20.0 453453453 English,Joyce A. ProductY Sugarland 333445555 10.0 Wong, Franklin T. ProductY Sugarland 333445555 10.0 Wong Franklin T. ProductZ Houston 333445555 10 10.0 Wong Franklin T. Computerization Stafford Wong Franklin T. 333445555 20 10.0 Reorganization Houston 999887777 30 30.0 Zelava, Alicia J. Newbenefits Stafford 999887777 10 10.0 Zelava Alicia J. Computerization Stafford 987987987 10 35.0 Jabbar, Ahmad V. Computerization Stafford

Jahhar Ahmad V.

Borg, James E.

Wallace, Jennifer S.

Wallace Jennifer S.

Newbenefits

Newbenefits

Reorganization

Reorganization

Houston

redundancy

Introduction Spurious tuples

Introduction to normalization

> TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

- Normalization uses decomposition to eliminate anomalies and remove redundancy.
- The two tables above in the previous slide are a decomposition of the bottom one.
- If we join the two tables, we get more tuples than those that were in the original table
- Those below the dotted line are extra tuples called spurious tuples.
- Normalization must ensure that the decomposition does not create spurious tuples after a join.

Normal forms

Introduction to normalization TEAM

INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

- Normalization is the process of converting the relations (tables) of a database into other relations in some normal form.
- Normal forms are properties that a relation must satisfy.
- There are two different kinds of definitions of normal forms:
- Historical definitions: The original definitions defined by Codd, taking into account only the primary key.
- Refined definitions: A refinement of the normal forms that takes into account also the candidate keys.

Introduction to normalization TEAM

INFDEV

overview

Introduction

Normal forms

General

Normal forms

Functional dependencies

Introduction to normalization

> TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

- Both kinds of definitions of normal forms rely on the concept of functional dependency.
- In what follows we write $t_i[X]$ to indicate the values of the row i of a table for a set of attributes X

Introduction to normalization

> TEAM INFDEV

overview

Lesson

Normal forms

General

normal forms

- Both kinds of definitions of normal forms rely on the concept of functional dependency.
- In what follows we write $t_i[X]$ to indicate the values of the row i of a table for a set of attributes X
- **Example**: t_3 [SSN,HOURS,NAME] in the table below is the combination of values: t_3 [SSN,HOURS,NAME] = { 666884444,40.0,Narayan, Ramesh K. }

EMP_PROJ					lundancy	
SSN	PNUMBER	HOURS	ENAME	PNAME	PLOCATION	
123456789	1	32.5	Smith.John B.	ProductX	Bellaire	
123456789	2	7.5	Smith,John B.	ProductY	Sugarland	
666884444	3	40.0	Naravan, Ramesh K.	ProductZ	Houston	
453453453	1	20.0	English, Joyce A.	ProductX	Bellaire	
453453453	2	20.0	English, Joyce A.	ProductY	Sugarland	
333445555	2	10.0	Wong, Franklin T.	ProductY	Sugarland	
333445555	3	10.0	Wong, Franklin T.	ProductZ	Houston	
333445555	10	10.0	Wong,Franklin T.	Computerization	Stafford	
333445555	20	10.0	Wong, Franklin T.	Reorganization	Houston	
999887777	30	30.0	Zelaya, Alicia J.	Newbenefits	Stafford	
999887777	10	10.0	Zelaya, Alicia J.	Computerization	Stafford	
967967987	10	35.0	Jabbar, Ahmad V.	Computerization	Stafford	
987987987	30	5.0	Jabbar, Ahmad V.	Newbenefits	Stafford	
987654321	30	20.0	Wallace, Jennifer S.	Newbenefits	Stafford	
987654321	20	15.0	Wallace Jennifer S.	Reorganization	Houston	
33222222	20	out	Rom Inmos E	Reorganization	Houston	

Introduction to normalization

TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

Summary

Definition:

Given a subset of attributes X and Y in a relation, we say that Y depends on X, and we write $X \to Y$, if for any pair of rows where we have $t_i[X] = t_j[X]$ we also have $t_i[Y] = t_j[Y]$.

Introduction to normalization

TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

Summary

Definition:

Given a subset of attributes X and Y in a relation, we say that Y depends on X, and we write $X \to Y$, if for any pair of rows

where we have $t_i[X] = t_j[X]$ we also have $t_i[Y] = t_j[Y]$.

Example: In the table below we have, if we assume that there is a dependency PNAME \rightarrow PLOCATION, then when $t_i[\text{PNAME}] = t_j[\text{PNAME}]$ we also have $t_i[\text{PLOCATION}] = t_j[\text{PLOCATION}]$. For instance every time we have the value 'ProductY' in the column PNAME, we also have 'Sugarland' in the column PLOCATION. It is not possible that a row has 'ProductY' in the column PNAME and 'Belaire' in the column PLOCATION.

EMP_PROJ			edundancy	redu	ndancy
SSN	PNUMBER	HOURS	ENAME	PNAME	PLOCATION
123456789	1	32.5	Smith,John B.	ProductX	Bellaire
123456789	2	7.5	Smith,John B.	ProductY	Sugarland
666884444	3	40.0	Naravan, Ramesh K.	ProductZ	Houston
453453453	1	20.0	English, Joyce A.	ProductX	Bellaire
453453453	2	20.0	English Joyce A.	ProductY	Sugarland
333445555	2	10.0	Wong, Franklin T.	ProductY	Sugarland
333445555	3	10.0	Wong, Franklin T.	ProductZ	Houston
333445555	10	10.0	Wong, Franklin T.	Computerization	Stafford
333445555	20	10.0	Wong, Franklin T.	Reorganization	Houston
999887777	30	30.0	Zelava, Alicia J.	Newbenefits	Stafford
999887777	10	10.0	Zelaya, Alicia J.	Computerization	Stafford
987987987	10	35.0	Jabbar, Ahmad V.	Computerization	Stafford
987987987	30	5.0	Jabbar, Ahmad V.	Newbenefits	Stafford
987654321	30	20.0	Wallace, Jennifer S.	Newbenefits	Stafford
987654321	20	15.0	Wallace, Jennifer S.	Reorganization	Houston
888665555	20	null	Borg, James E.	Reorganization	Houston

Functional dependencies

Important observations

Introduction to normalization

> TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

- Functional dependencies are defined by the database designer.
- It is not possible to infer functional dependencies by reading the data from the table.
- Functional dependencies should be read in the documentation of the database or asked to the designer.
- If you need to normalize a database and there is no documentation or the designer is unavailable, as last resort, you can try to infer functional dependencies from the data.

Functional dependencies

Bad practice - An example

Introduction to normalization

> TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

<u>ssn</u>	name	salary
299260	John Smith	2500
993693	Walter White	3000
388528	John Smith	2500
396926	James Garnett	1800

Functional dependencies

Bad practice - An example

Introduction to normalization

TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

Summary

<u>ssn</u>	name	salary
299260	John Smith	2500
993693	Walter White	3000
388528	John Smith	2500
396926	James Garnett	1800

By looking at the data in the table I could infer that name \rightarrow salary because two employees with the name John Smith earn 2500 euros per month. If later I add the tuple (395935, John Smith, 2000) (another employee with the same name but different salary) the dependency is gone! This because clearly the salary of an employee should not depend on a person's name, but this is what we could infer just by looking at the data

Normal forms 1st Normal form

Introduction to normalization

> TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

Summary

- The first normal form is automatically granted by the relational model.
- If you designed the conceptual model properly and translated correctly the ERD into the relational model, then all your relations should be in 1NF.

Definition:

A table is in 1st normal form (1NF) if no row has multiple values for an attribute.

Example:

The table to the right violates the 1NF since some rows have multiple values for PNUMBER and HOURS.

SSN	ENAME	PNUMBER	HOURS
123456789	Smith John B.	1	32.5
		2	7.5
666884444	Narayan,Ramesh	K. 3	40.0
453453453	English, Joyce A.	1	20.0
		2	20.0
333445555	Wong,Franklin T.	2	10.0
		3	10.0
		10	10.0
		20	10.0
999887777	Zelaya,Alicia J.	30	30.0
		10	10.0
987987987	Jabbar, Ahmad V.	10	35.0
		30	5.0
987654321	Wallace, Jennifer S	. 30	20.0
	-	20	15.0
888665555	Borg,James E.	20	nul

Normal forms 2nd Normal form

Introduction to normalization

> TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

Summary

Definition: A table is in 2nd normal form (2NF) if it is in 1NF and every attribute that is not part of a key depends on the whole primary key.

Normal forms 2nd Normal form

Introduction to normalization

> TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

Summary

Definition: A table is in 2nd normal form (2NF) if it is in 1NF and every attribute that is not part of a key depends on the whole primary key.

Normal forms 2nd Normal form

Introduction to normalization

> TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

Summary

Definition: A table is in 2nd normal form (2NF) if it is in 1NF and every attribute that is not part of a key depends on the whole primary key.

Example:

The table to the right is not in 2NF because PNAME depends only on PNUMBER and not on the whole key.

The same for PLOCATION

Normal forms 2nd Normal Form

Introduction to normalization TEAM

INFDEV

overview
Introduction

.....

Normal forms

General normal forms

Summary

Useful trick: If you have a table where the primary key is made of only one attribute, the table is always in 2NF. You can say this without any additional check

Why?

Normal forms 2nd Normal Form

Introduction to normalization

TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

Summary

Useful trick: If you have a table where the primary key is made of only one attribute, the table is always in 2NF. You can say this without any additional check

Why? Because to break the 2NF there must exist a functional dependency where the left side is a part of the primary key, but this is impossible if you have only one attribute.

Normal forms 2nd Normal Form - Reson

Introduction to normalization

TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

Summary

		redundancy		redundancy		
EN	IP_PROJ					
SSN	PNUMBER	HOURS	ENAME	PNAME	PLOCATION	
123456789	1	32.5	Smith,John B.	ProductX	Bellaire	
123456789	2	7.5	Smith,John B.	ProductY	Sugarland	
666884444	3	40.0	Narayan, Ramesh K.	ProductZ	Houston	
453453453	1	20.0	English, Joyce A.	ProductX	Bellaire	
453453453	2	20.0	English, Joyce A.	ProductY	Sugarland	
333445555	2	10.0	Wong, Franklin T.	ProductY	Sugarland	
333445555	3	10.0	Wong, Franklin T.	ProductZ	Houston	
333445555	10	10.0	Wong,Franklin T.	Computerization	Stafford	
333445555	20	10.0	Wong, Franklin T.	Reorganization	Houston	
999887777	30	30.0	Zelaya, Alicia J.	Newbenefits	Stafford	
9998877777	10	10.0	Zelaya, Alicia J.	Computerization	Stafford	
967967987	10	35.0	Jabbar,Ahmad V.	Computerization	Stafford	
987987987	30	5.0	Jabbar, Ahmad V.	Newbenefits	Stafford	
987654321	30	20.0	Wallace, Jennifer S.	Newbenefits	Stafford	
987654321	20	15.0	Wallace, Jennifer S.	Reorganization	Houston	
888665555	20	null	Borg,James E.	Reorganization	Houston	

If I want to assign an employee to an existing project, I have to manually repeat the data in PNAME and PLOCATION for the new tuple even if they already exist in other tuples.

For example if I add the employee 394394343 to project 1, I have to repeat the values ProductX and Bellaire in the new tuple manually.

Normal forms Transitive dependency

Introduction to normalization

> TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

Summary

The 3rd normal form requires to define a *transitive dependency*

Definition: A functional dependency $X \to Y$ is transitive if there is a set of attributes Z, which is neither a candidate key nor a subset of any key, and both $X \to Z$ and $Z \to Y$ are valid functional dependency

Example: In the table above the functional dependency SSN \rightarrow { DNAME,DMGRSSN } is transitive because also SSN \rightarrow DNUMBER and DNUMBER \rightarrow { DNAME,DMGRSSN } are valid functional dependencies.

Normal forms Decomposition rule

Introduction to normalization TEAM

Lesson

Introduction

Normal forms

General

normal forms
Summary

Another useful trick: We do not give the proof of this, but remember that you can always decompose a functional dependency, with a right side containing more than one attribute, into two smaller functional dependencies. This procedure is recursive, so you can apply it again to the two functional dependencies created at the previous step.

Example: DNUMBER \rightarrow { DNAME,DMGRSSN } can be decomposed into the two functional dependencies DNUMBER \rightarrow DNAME and DNUMBER \rightarrow DMGRSSN

Normal forms 3rd normal form

Introduction to normalization

> TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

Summary

Definition (3NF): A table is in 3rd normal form (3NF) if it is in 2NF and no attribute that is not part of a key is transitively dependent on the primary key.

Example: The table below is in 2NF but not in 3NF because of the transitive dependency SSN \rightarrow { DNAME,DMGRSSN }

Normal forms 3rd normal form - Reason

Introduction to normalization

TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

Summary

EMP_DE	redundancy					
ENAME	SSN	BDATE	ADDRESS	DNUMBER	DNAME	DMGRSSN
Smith John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5	Research	333445555
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5	Research	333445555
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administration	987654321
Wallace Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4	Administration	987654321
Narayan, Ramesh K.	666884444	1962-09-15	975 FireOak, Humble, TX	5	Research	333445555
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5	Research	333445555
Jabbar Ahmad V.	987987987	1969-03-29	980 Dallas.Houston.TX	4	Administration	987654321
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1	Headquarters	888665555

If I add a new employee to a department I have to repeat DNAME and DMGRSSN for that department because of the transitive dependency.

If I add employee 394394343 to department number 5 I have to repeat the value Research and 333445555 for that department manually.

Introduction to normalization

> TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

- All the normal forms defined so far are defined for the primary key only.
- Anomalies might aries also with depndencies on the candidate key.
- We give more general definitions of normal forms that take into account also the candidate keys.
- The definition of 1NF is not affected since it only requires that each tuple has a single value for all the attributes (not based on a property on the primary key).

General 2nd normal form

Introduction to normalization

TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

Summary

Definition: A table is in 2NF if every attribute that is not part of a key is not partially dependent on any key of the table (primary or candidate)

General 2nd normal form

Introduction to normalization

TEAM INFDEV

Lesson overview

Introduction

Normal forms

General

normal forms
Summary

Definition: A table is in 2NF if every attribute that is not part of a key is not partially dependent on any key of the table (primary or candidate)

Example: The table is

not in 2NF because a candidate key is

{ COUNTY_NAME,LOT# }

and the attribute TAX_RATE depends on COUNTY_NAME.

General 2nd normal form - Reason

Introduction to normalization

> TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

Summary

If I want to add a new property in an existing county, I have to manually repeat the data about AREA, PRICE, and TAX RATE.

General 3rd normal form

Introduction to normalization

> TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

Summary

Trivial functional dependency: A functional dependency

 $\mathsf{X}\to\mathsf{Y}$

is trivial if Y is part of X.

Definition: A table is in 3rd normal form if it is in 2NF and for any non-trivial functional dependency $X \to A$ one of the two conditions is satisfied:

- X is a superkey.
- A is part of a key.

General 3rd normal form - Reason

Introduction to normalization

> TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

Summary

If I want to add a new property in a lot with the same area of another one, I have to manually repeat the data about the PRICE for that AREA.

It can be seen as a generalization of the previous 3NF where there must not be a transitive dependency also on a candidate key of the table

Boyce-Codd normal form

Introduction to normalization

TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

Summary

Definition: A table is in Boyce-Codd normal form (BCNF) if for all non-trivial dependencies $X \to A$ then X is a superkey of the table.

NOTE: If a table is in BCNF then it is also in 3NF. Indeed to esnure the 3NF it is enough that only one between the BCNF condition and the other one (see the previous slide) is met.

Example:

The table to the right is in 3NF but not in BCNF because COUNTY_NAME depends on AREA, which is not a superkey.

Summary

Introduction to normalization

> TEAM INFDEV

Lesson overview

Introduction

Normal forms

General normal forms

- Unnormalized tables might contain data redundancy and cause anomalies.
- Normal forms are a way to solve these problems.
- There are normal form definitions for tables with just one key (the primary key and no candidate keys).
- There are normal form definitions for tables with candidate keys.