

Prof. Dr. Dirk Lebiedz M.Sc. Pascal Heiter

Universität Ulm Institut für Numerische Mathematik Sommersemester 2015

Numerik gewöhnlicher Differenzialgleichungen Projekt 10 - Maximal Range Flight

Modelliert werden soll ein 2-dimensionaler Flug eines Flugzeugs in der x-h-Ebene, bei dem man den Auftriebsbeiwert und den Schub steuern kann, wobei ein maximaler Staudruck nicht überschritten werden darf. Betrachte dazu folgende Skizze

Dabei seien

 \bullet x(t): x-Koordinate des Massenschwerpunktes S

 \bullet h(t): h-Koordinate des Massenschwerpunktes S

• v(t): Geschwindigkeit

• $\gamma(t)$: Anstellwinkel

• T(t): Schub, Steuerung

• $C_L(t)$: Auftriebsbeiwert, Steuerung.

Auf das Flugzeug wirken einige Kräfte

• Auftriebskraft

$$L(v(t), h(t), C_L(t)) := F \cdot C_L(t) \cdot q(v(t), h(t))$$

wobei F die wirksame Fläche, d.h. die von der Luft angeströmte Fläche, ist.

• Luftwiderstand

$$D(v(t), h(t), C_L(t)) := F \cdot C_D(C_L(t)) \cdot q(v(t), h(t)).$$

• Luftwiderstandsbeiwert

$$C_D(C_L(t)) := C_{D_0} + kC_L^2(t)$$
 mit $k = \frac{1}{\pi eAR}$

wobei C_{D_0} der Nullluftwiderstandsbeiwert, e die Oswald Effizienz Zahl und AR die Streckung (aspect ratio) bezeichnet.

• Erdanziehungskraft

$$W = mg$$

• Staudruck

$$q(v(t), h(t)) := \frac{1}{2} \cdot \rho(h(t)) \cdot v^2(t).$$

• Luftdichte mit $\alpha = 1.247015$ und $\beta = 0.000104$

$$\rho(h(t)) := \alpha e^{-\beta h(t)}.$$

Das Ziel ist den Flug eines Flugzeuges von einer gegebenen Anfangsposition so zu steuern, dass eine vorgegebene Reisehöhe erreicht wird, der Anstellwinkel dort 0 Grad und die Reichweite maximal ist. Es ergibt sich folgendes Optimalsteuerungsproblem

$$\begin{aligned} & \min \quad -(x(t_f)-x_0) \\ & \text{s.t.} \quad & \text{Dynamik} \\ & & \dot{x}(t) & = \quad v(t)\cos\gamma(t) \\ & & \dot{h}(t) & = \quad v(t)\sin\gamma(t) \\ & & \dot{v}(t) & = \quad \frac{1}{m}\left(T(t)-D(v(t),h(t),C_L(t))-mg\sin\gamma(t)\right) \\ & & \dot{\gamma}(t) & = \quad \frac{1}{mv(t)}\left(L(v(t),h(t),C_L(t))-mg\cos\gamma(t)\right) \\ & & t & \in \quad [0,t_f] \end{aligned}$$

Anfangs-/End-/Zustands-/Steuerbedingungen

$$\begin{array}{rcl} (x,h,v,\gamma)(0) & = & (x_0,h_0,v_0,\gamma_0) \\ \\ (h,\gamma)(t_f) & = & (h_f,0) \\ \\ q(v(t),h(t)) & \leq & q_{\max} \quad \forall \ t \in [0,t_f] \\ \\ T(t) & \in & [0,T_{\max}] \quad \forall \ t \in [0,t_f] \\ \\ C_L(t) & \in & [C_{L,\min},C_{L,\max}] \quad \forall \ t \in [0,t_f]. \end{array}$$

Wir wählen die Modellparameter für einen Airbus A380-800

Parameter	Bedeutung	Wert
g	Erdbeschleunigung	9.81 m/s^2
t_f	Endzeitpunkt	$1800~\mathrm{s}$
C_{D_0}	${\bf Null luftwiders tands beiwert}$	0.032
AR	Steckung	7.5
e	Oswald Effizienz Zahl	0.8
F	wirksame Fläche	845 m^2
m	Masse	$276800~\mathrm{kg}$
$T_{ m max}$	maximale Schubkraft	$1260000~{\rm N}$
$C_{L, \mathrm{min}}$	minimaler Auftriebsbeiwert	0
$C_{L,\mathrm{max}}$	maximaler Auftriebsbeiwert	1.48

und als Start- sowie Endwerte

$$x_0 = 0$$
, $v_0 = 0$, $h_0 = 0$, $\gamma_0 = 0.27$ und $h_f = 10\,668$ m.