School of Computing and Information Systems The University of Melbourne

COMP90049 Knowledge Technologies (Semester 2, 2019)

Workshop exercises: Week 8

Consider the following dataset:

id	apple	ibm	lemon	sun	label
А	4	0	1	1	fruit
В	5	0	5	2	fruit
C	2	5	0	0	comp
D	1	2	1	7	comp
E	2	0	3	1	?
F	1	0	1	0	?

- 1. Treat the problem as an unsupervised machine learning problem (excluding the id and label attributes), and calculate the clusters according to k-means with k = 2, using the Manhattan distance:
 - (a) Starting with seeds A and D.
 - (b) Starting with seeds A and F.
- 2. Perform **agglomerative clustering** of the above dataset (excluding the *id* and *label* attributes):
 - (a) Using the Euclidean distance and calculating the group average as the cluster centroid.
 - (b) Do you expect to observe a different dendrogram if we were instead using the *single link* method?

- 3. Using the same dataset
 - (a) Classify the test instances (E and F) using the 1-NN method. (using the Euclidean distance measure)
 - (b) Classify the test instances (\mathbb{E} and \mathbb{F}) using the **weighted 3-NN** method. (using the Manhattan distance measure)
- 4. For the following dataset:

_	apple	ibm	lemon	sun	CLASS			
	Training Instances							
	Y	N	Y	Y	FRUIT			
	Y N Y		Y	Y	FRUIT			
	\mathbf{Y}	\mathbf{Y}	N	N	COMPUTER			
	Y	Y	Y	Y	COMPUTER			
	Test Instances							
	Y	N	Y	Y	?			
	\mathbf{Y}	N	Y	N	?			

Use the method of **Naive Bayes** classification, as shown in lectures, to classify the test instances. Revise some of the assumptions that are built into the model.