# モンテカルロ木特徴探索に基づく非線形グラフ分類回帰

白川 稜, 中村 篤祥, 工藤 峰一 北海道大学 Email: sira@ist.hokudai.ac.jp

# 概要

- グラフに対する教師付き学習(分類・回帰)
- 特徴量に部分グラフ指示子を利用
- 部分グラフの総数は膨大、全列挙困難
- 特徴探索及びモデル構築の同時学習
- モンテカルロ木探索を利用した効率的な部分グラフ指示子の探索・ 選択
- 回帰木勾配ブースティングによる非線形モデルの構築

## 背景

グラフ は広く用いられる重要なデータ構造

- 化学構造式
- RNA二次構造
- 構文木

#### グラフに対する教師付き学習

- 様々な分野での応用
  - 創薬
  - 材料科学



# グラフに対する教師付き学習

入力 ラベル (y: 離散, 実数値) 付きグラフ集合

| $y_1$ | $y_2$ | $y_3$ |     | $y_n$ |
|-------|-------|-------|-----|-------|
| 0.1   | 0.7   | 1.2   | ••• | 0.9   |
| $G_1$ | $G_2$ | $G_3$ |     | $G_n$ |
|       |       |       | ••• |       |

出力 未知のグラフに対するラベルを予測する予測モデル 特徴量 部分グラフ指示子

| y   | G                 | o | 00 | 0 | ٥ | 000 | 000 | 000 | <b>~</b> |    |
|-----|-------------------|---|----|---|---|-----|-----|-----|----------|----|
| 0.1 | \$\$<br>\$\$*\$\$ | 1 | 1  | 1 | 1 | 1   | 1   | 1   | 1        |    |
| 0.7 |                   | 1 | 1  | 1 | 0 | 1   | 1   | 1   | 1        |    |
| 0.9 |                   | 1 | 1  | 1 | 0 | 1   | 1   | 1   | 1        | :: |

#### 既存研究

- 2-step 手法(Wale+ 2007)
  - 事前選択された特徴の列挙 + 任意モデルでの学習 → 事前に選択される特徴に大きく影響
- gBoost(Saigo+ 2009)

適応的部分グラフ指示子の探索・選択に基づく線形モデル → 全部分グラフ指示子の考慮が可能 厳密探索により、探索コスト大

### アプローチ

- 適応的な特徴探索に基づく回帰木モデルの学習(全部分グラフ指示子を考慮)
- 精度及び不安定性向上のためアンサンブル学習(勾配ブースティング)を基にした非線形モデルの構築
- 特徴探索において、モンテカルロ木探索を利用することで探索コストを削減

# 提案手法

# 非線形グラフ分類回帰モデル

#### 回帰木

入力データに対して 内部ノードで質問し最適な分割を行う 葉ノードで定数値を返す

質問:

ある部分グラフを含むor含まない



#### 勾配ブースティング

加法的アンサンブルモデル

 $F(G) = T_0(G) + sT_1(G) + sT_2(G) + sT_3(G) + \cdots$ 

 $T_k$ : 各反復における残差 $r_i$ に対する回帰木.

$$r_i = \frac{\partial L(y_i, F_{k-1}(G_i))}{\partial F}$$

s: 学習率, L: 損失関数.

### 内部ノードにおける分割ルールの学習

二乗誤差和を最小化する分割ルール(部分グラフ)の学習

$$\arg\min_{x_j \in X} \left[ TSS(D_1(x_j)) + TSS(D_0(x_j)) \right]$$

X:全部分グラフ集合(全列挙は困難)

 $D_1(x_i): \{x_i$ を含むグラフ集合 $\}$ ,  $D_0(x_i): \{x_i$ を含まないグラフ集合 $\}$ 

TSS(D): 残差 $r_i$ に対する二乗誤差和

### 枝刈り規則

#### 探索空間の特性

子ノード(c)は親ノード(p)の拡大グラフとなる  $(p \subset c)$  $\rightarrow$  子孫ノードcを含むグラフ集合は親ノードpを含むグラフ集合の部分集 合となる

 $D_1(c) \subseteq D_1(p)$ 

### 評価値の上限

 $D_1(g)$ と $D_0(g)$ が与えられる時,  $g'\supset g$ を満たす全ての部分グラフに対して 以下が成立

 $TSS(D_1(g')) + TSS(D_0(g')) \ge \min_{(\diamond, k)} \left[ TSS(D_1(g) \setminus S_{\diamond, k}) + TSS(D_0(g) \cup S_{\diamond, k}) \right]$ 

 $(\diamond,k) \in \{\leq,>\} \times \{2,\ldots,|D_1(g)-1|\}$ ,  $S_{\diamond,k} \subset D_1(g)$ ,

 $S_{<,k}$ は $D_1(g)$ を残差に関して降順にした際の上からk番目までの集合.

 $S_{>,k}$ は昇順.

内部ノードにおける分割ルールの学習

探索空間