Computación Distribuida Tarea 5

González Montiel Luis Fernando

24 de septiembre de 2019

1. Sean A y B dos procesos cuyos relojes no estan sincronizados pero ambos tienen drift acotado. Cuando A manda un mensaje a B, el tiempo maximo real que tarda en llegar el mensaje es a lo mas D. Supon que tienes un algoritmo en el que A manda mensajes cada T unidades de su tiempo. Para ir midiendo las unidades de tiempo, A tiene un contador que aumenta cada tanto (evento de computo local).

Dibuja una ejecución α donde A manda 3 mensajes a B. Solución:

De la ejecución α , menciona cuáles son los eventos y su relación de causalidad:

Solución:

Eventos: $\phi 1$, $\phi 2$, $\phi 3$, $\phi 4$, $\phi 5$, $\phi 6$

Relación de Causalidad:

 $\phi 1 = > \phi 2$

 $\phi 2 => \phi 3$

 $\phi 4 = > \phi 5$

 $\phi 5 = > \phi 6$

 $\phi 1 = > \phi 4$

 $\phi 2 = > \phi 5$

 $\phi 3 = > \phi 6$

 $\phi 1 = > \phi 3$

 $\phi 4 = > \phi 6$

¿Cuánto tiempo puede tardar a lo mas en terminar α ?

Solución:

$$\phi 1 => \phi 2 + \phi 2 => \phi 3 + \phi 4 => \phi 5 + \phi 5 => \phi 6$$

2. Considera la ejecucion α de la Figura 2. Los retardos maximos para cada uno de los eventos son los siguientes: a \longrightarrow b es Ba,b, b \longrightarrow c es Bb,c, c \longrightarrow d es Bc,d, d \longrightarrow e es Bd,e, a \longrightarrow e es Ba,e y b \longrightarrow d es Bb,d. Los retardos mínimos son similares, pero invirtiendo el orden de las letras en B, i.e. el mínimo tiempo que puede tomar en pasar a \longrightarrow b es Bb,a.

¿Cuánto vale el retardo maximo de c
 a e en términos de las B0 s? Es decir, dado z(e) - z(c) \leq x ,

¿Cuánto vale x?

Solución:

Bc,d + Bd,e

¿Cuánto vale el retardo mínimo de toda la ejecución?

Solución:

$$Bb,\!a+Bc,\!b+Bd,\!c+Be,\!d$$

Anotar los eventos con los relojes lógicos y los relojes vectoriales. Solución:

3. Sea α una ejecución y sea $\phi 1$ y $\phi 2$ dos eventos en α . Si $\phi 1 => \phi 2$ entonces $LT(\phi 1) < LT(\phi 2)$