E6312: Problem Set 4

Miles Sherman

March 12, 2013

1 Bullet Point 1

INSERT SCAN HERE

2 Bullet Point 2

INSERT SCAN HERE

To build the folded cascade OTA, I began by sizing transistors M0, M1, and M2 (see figure 1 for instance names). Because I want $160\mu A$ through transistor M9 and that transistor is sized with $W=42\mu m$ and I want $320\mu A$ through transistor M2, I sized M2 at $84\mu A$. For the sake of convenience, I decided to use a $320\mu A$ current source so I sized transistors M0 and M1 at $84\mu A$ as well. In addition, because I will eventually put this circuit into feedback and I would like my output to be close to mid-rail, I set $V_{cm}=800mV$ which is close to the ceiling of input voltage. This is an acceptable value because the small signal input will never be above 1V.

To bias V_{b1} , V_{b2} , and V_{b3} I utilized two branches of self-biasing current mirrors (see Figure 1). The first branch, which consists of one PMOS and four NMOS transistors, serves a number of purposes. The PFET (M21) mirrors current from M0 and cuts it in half (sized $42\mu A$). The four NMOS receive the $160\mu A$ of current and are sized as follows. M28 will have half the current of M14 and its gate voltage will bias V_{b1} so it must be half the width of M14, $10.5\mu m$. M29 will have the same current as M13 and its gate voltage will bias V_{b2} so it must be the same width as M13, $10.5\mu A$. M27 will also take the same width as M29 and M28. M20 will take one third of that width. Using a very similar methodology, I built the second self-biasing current mirror branch but this time mirroring the current with an NMOS and receiving the current with four PMOS transistors. M31 mirrors the current of $160\mu A$ so it is sized the same as M28. M44, M45, and M40 will all have the same current as M10 and the gate of M45 will bias V_{b3} so they are all sized the same as M10 at $42\mu A$. M4 is sized one third of that. As can be seen in Figure 2, the biasing is successful.

Figure 1: Schematic Diagram for the Folded Cascode OTA with Associated Biasing Circuitry

Figure 2: Schematic Diagram for the Folded Cascode OTA with Annotated DC Operating Point Values

3 Bullet Point 3

I performed a DC sweep of V_{out-OL} against V_{in-OTA} with the OTA in stand alone and the expected transfer function for a differential amplifier is attained (see Figure 3).

Figure 3: Voltage Transfer Characteristic for the Folded Cascode OTA in Stand Alone

4 Bullet Point 4

I applied a small-signal differential input as well as some preliminary feedback circuitry in order to simulate the open loop gain. Because the open loop gain does not consider feedback, I wanted to build a circuit that would block all feedback. To do this I implemented an RC lowpass filter with a negligible cutoff voltage as can be seen in Figure 4. I performed an AC simulation of the open loop gain of the circuit (see Figure 5 and was able to attain $A(s) = 486.47 \frac{V}{V} = 53.74 dB$. Because the transistor M44 does directly affect any bias voltages of my amplifier, decreasing its size provides me with an increased gain. By optimizing the size of this device to $W_{M44} = 17.4 \mu A$, I was able to attain $A(s) = 549.43 \frac{V}{V} = 54.80 dB$ with only minor affects on my amplifier's biasing (see Figure 6).

From the optimized plot, I estimate that there are poles at 100kHz and 0.6GHz and a zero at a very high frequency. I estimate the gain-bandwidth product (taken at -3dB from the maximum gain) to be 48.2MHz.

Figure 4: Schematic Diagram for the Folded Cascode OTA for Open Loop Gain Simulation

Figure 5: Bode Plot of the Open Loop Gain of the OTA

Figure 6: Bode Plot of the Open Loop Gain of the OTA After Optimization