

Introducción (II)

Programación (tics 100) Semestre 01/2021

¿Qué veremos hoy?

Algoritmos

Programación

Me gustó la introducción, pero no me veo aplicando esto en donde quiero trabajar en el futuro

¡Piénsalo de nuevo!

Smart Tooth Brush

The Beam Brush is a connected toothbrush that engages users with their daily hygiene routine.

http://www.beamtoothbrush.com/toothbrush/

Blood Pressure Monitor

Simply slip on the cuff, turn on the Wireless Blood Pressure Monitor and the Health Mate app will automatically launch. Trens is a constant to the second sec

http://www.withings.com/us/blood-pressure-monitor.html

Petnet

Petnet will control your pet's feeding from anywhere and tracks their nutrition.

http://www.petnet.io/

FEED

Smart

Reloj para niños que permite localizar, enviar mensajes, solicitud de emergencia SOS a través de comunicación GPRS, incluye mapas \$31.791

Ralph Lauren's Polo Tech Shirt

streams distance covered, calories burned, movement intensity, heart rate, and other data to the wearer's mobile device.

jy de muchas formas!

- Sitios web
- Aplicaciones móviles
- Videojuegos
- Dispositivos
- jy más!

Programación no es solo sentarse a escribir código

- Hay TODO un elemento de relaciones sociales (conversar con el cliente, saber lo que realmente quiere)
- Hay diseño (algoritmos)
- Toma de decisiones a nivel de desarrollo (tipos de lenguajes a utilizar, paradigmas más adecuados) y a nivel empresarial (¿qué automatizamos?)

Programar

Lógica

- Resolver un problema
- Definir los pasos a seguir (algoritmo)

Codificación

- Definir el lenguaje de programación
- Escribir el algoritmo como código

¿Cómo definimos un algoritmo?

- En lenguaje natural
- En lenguaje estructurado
- Como diagrama de flujo
- etc

Pseudocódigo

Pseudo-código

Definir la resolución de un problema expresándola de manera natural

- Tener muy claro el problema para poder realizar lo que realmente se requiere
- Como dijimos, parte de la programación es la comunicación

Cuando expresemos el algoritmo, este debe ser CLARO, CONCISO, COMPLETO

Ejemplo de algoritmo

Nota final del ramo

Si recordamos el syllabus, la nota final del ramo está dada por la siguiente fórmula:

Donde:

- P1 es la nota de la prueba 1
- P2 es la nota de la prueba 2
- P3 es la nota de la prueba 3
- T es el promedio de las tareas
- P es el proyecto
- C es el promedio de los controles

Escriba un algoritmo para calcular la nota final de un alumno

¿Cuáles eran los componentes de un Algoritmo?

- Entradas
- Salidas
- Acciones (Proceso)
- + Datos de prueba para comprobar que el algoritmo sea correcto

Entradas

Para poder calcular la nota final necesito cada una de las notas intermedias:

- La nota de la prueba 1
- La nota de la prueba 2
- La nota de la prueba 3
- El promedio de las tareas (o el total de tareas y cada una de las notas de tareas)
- La nota del proyecto
- El promedio de los controles (o el total de controles y cada una de las notas de controles)

Salidas

La salida es simple, la nota final obtenida por el estudiante

Discusión

¿Cómo realizarían el proceso?

Proceso

- Preguntar la nota de la prueba 1
- Guardar la nota de la prueba 1
- Preguntar la nota de la prueba 2
- Guardar la nota de la prueba 2
- Preguntar la nota de la prueba 3
- Guardar la nota de la prueba 3
- Preguntar la nota promedio de las tareas
- Guardar la nota promedio de las tareas
- Preguntar la nota del proyecto
- Guardar la nota del proyecto
- Preguntar la nota promedio de los controles
- Guardar la nota promedio de los controles

Proceso

NF=0.2*(P1+P2)+0.25*P3+0.1*T+0.1*P+0.15*C

- Asignar la nota final como la suma de la nota de la prueba 1 y la prueba 2
- Multiplicar por 0.2 la nota final
- Multiplicar la nota de la prueba 3 por 0.25 y sumar el resultado a la nota final
- Multiplicar la nota promedio de las tareas por 0.1 y sumar el resultado a la nota final
- Multiplicar la nota del proyecto por 0.1 y sumar el resultado a la nota final
- Multiplicar la nota promedio de controles por 0.15 y sumar el resultado a la nota final

Proceso

Entregar el valor de la nota final al estudiante

Algoritmo

El algoritmo anterior puede verse como tedioso, pero eso es lo que tenemos que hacer con el computador, describir el paso a paso, aunque para nosotros sea obvio. El computador NO es inteligente ni tonto, solo sigue las instrucciones dadas por Ustedes, es decir, es un ejecutor.

Datos de prueba

Para comprobar el algoritmo deben utilizar datos de prueba y verificar el resultado. Caso 1) Si las notas del alumno son solamente 7, entonces la nota final debe ser 7 Caso 2) Si las notas del alumno son solamente 1, entonces la nota final debe ser 1 Caso 3) Si el alumno tiene P1=4, P2=3, P3=3.5, T=5.5, P=4.5 y C=4, entonces NF debe ser 3.875

Datos de prueba

Notas:

- Los casos 1 y 2 se pueden generalizar (Si el alumno tiene la misma nota en todas las evaluaciones entonces debe tener esa nota como nota final)
- Mientras más casos mejor
- No piensen solo en los casos obvios
 - Piensen como "hackers" y traten de hacer fallar el algoritmo

¡Comprueba el algoritmo!

Reflexión

Cuando encuentran un primer algoritmo, deben pasar a un proceso reflexivo.

A veces la solución encontrada no es buena, ya sea porque es lenta, es muy cara en recursos, u otra razón.

Por eso, SIEMPRE reflexionen si:

- Existe otra forma de resolver el problema
- Dada la forma actual, ¿es posible mejorarla?
- ¿Se puede aplicar su algoritmo en otras situaciones?

Actividad

Describe cuáles serían los pasos a modificar/agregar para calcular la raíz cuadrada de un número aplicando el siguiente método. Identifica, entradas, salidas y los pasos a seguir.

¿Preguntas?