- 1. Формулирайте критерия на Абел-Дирихле за сходимост на несобствени интеграли от вида $\int_a^{+\infty} f(x) \ dx$. Нека f и g са интегруеми в [a,u] за всяко a < u и f е монотонна
 - Ако $\lim_{x\to +\infty} f(x)=0$ и функцията $\int_a^u f(x)\ dx$ е ограничена, тогава $\int_a^{+\infty} f(x)g(x)\ dx$ е
 - Ако $\lim_{x \to +\infty} f(x) = L$ (число) и интегралът $\int_a^{+\infty} f(x) \ dx$ е сходящ, тогава $\int_a^{+\infty} f(x) g(x) \ dx$ е
- 2. Необходимо и достатъчно условие на Коши за сходимост на несобствен интеграл
 - $ullet \int_a^{+\infty}f(x)dx$ е сходящ \Longleftrightarrow за всяко arepsilon>0 има B, т.ч. $\left|\int_u^vf(x)dx
 ight|<arepsilon$ за всеки $u,v\in(B,+\infty)$
 - $\int_a^b f(x) dx$ е сходящ(с особеност b) \Leftrightarrow за всяко $\varepsilon > 0$ има δ , т.ч. $\left| \int_u^v f(x) dx \right| < \varepsilon$ за всеки $u, v \in (b - \delta, b)$
- 3. Критерий за сравнение на несобствени интеграли
 - Нека $0 \le f(x) \le g(x)$ за всяко $x \in (a, b)$. Тогава:
 - ightharpoonup Ако $\int_a^b g(x)dx$ е сходящ, то $\int_a^b f(x)dx$ е сходящ
 - Ако \$\int_a^b f(x) dx\$ е разходящ, то \$\int_a^b g(x) dx\$ е разходящ
 Логически факт: \$(\mathcal{A} \Rightarrow \mathcal{B}) \leftrightarrow (\squarestarrow \mathcal{B} \Rightarrow \squarestarrow \mathcal{A}\$)
 - (Гранична форма): Нека f(x) > 0 за всяко $x \in (a,b)$ и $\lim_{x \to b} \frac{g(x)}{f(x)} = L \neq 0$ (число).
 - ightharpoonup Тогава: $\int_a^b g(x)dx$ е сходящ $\Leftrightarrow \int_a^b f(x)dx$ е сходящ
- 4. Необходимо и достатъчно условие на Коши за сходимост на ред
 - Редът $\sum_{n=1}^{+\infty}\,a_n$ е сходящ тогава и само тогава, когато за всяко arepsilon>0 има N, т. ч. $\left|\sum_{k=n+1}^{n+p} a_k \right| < arepsilon$ за всяко $n > N(n \in \mathbb{N})$ и за всяко $p \in \mathbb{N}$
 - ullet Тоест ако $\sum_{n=1}^{+\infty} a_n$ е сходящ, то $\lim_{n \to +\infty} a_n = 0$
- 5. Критерий за сравнение на редове
 - Интегрален Нека $f:[1,+\infty) \to \mathbb{R}$ е монотонна. Тогава $\sum_{n=1}^\infty f(n)$ е сходящ \Leftrightarrow $\int_{1}^{+\infty} f(x) dx$ е сходящ
 - (Съществен случай)Нека $f(x) \geq 0$ за всяко $x \in [1, +\infty)$, монотонно намалява и $\lim_{x \to +\infty} f(x) = 0$. Тогава $\sum_{n=1}^{\infty} f(n)$ е сходящ $\iff \int_{1}^{+\infty} f(x) dx$ е сходящ
 - ightharpoonup Доказателство: За $x \in [n, n+1]$ е изпълнено $f(n+1) \le f(x) \le f(n)$, откъдето $f(n+1) \leq \int_n^{n+1} f(x) dx \leq f(n)$. Следователно $\sum_{k=2}^{n+1} f(k) \leq \int_1^{n+1} f(x) dx \leq f(n)$ $\sum_{k=1}^n f(k)$. Твърдението следва от нарастването на $F(u) = \int_1^u f(x) dx$.
 - Спрямо големината на събираемите Нека $0 \leq a_n \leq b_n$ за всяко $n > n_0 (b \in \mathbb{N})$. Тогава:

 - ightharpoonup Ако $\sum_{n=1}^{+\infty}\,b_n$ е сходящ, то $\sum_{n=1}^{+\infty}\,a_n$ е сходящ ightharpoonup Ако $\sum_{n=1}^{+\infty}\,a_n$ е разходящ, то $\sum_{n=1}^{+\infty}\,b_n$ е разходящ
 - ightharpoonup Логически факт: $(\mathcal{A}\Rightarrow\mathcal{B})\Leftrightarrow (\neg\mathcal{B}\Rightarrow\neg\mathcal{A})$
 - ightarrow (Гранична форма): Нека $a_n>0$ за всяко $x\in(a,b)$ и $\lim_{n\to+\infty}rac{b_n}{a_n}=L
 eq 0$ (число). Тогава: $\sum_{n=1}^{+\infty} b_n$ е сходящ $\iff \sum_{n=1}^{+\infty} a_n$ е сходящ
 - ullet Спрямо "скоростта" Нека $a_n>0$, $b_n>0$ и $rac{a_{n+1}}{a_n}\leq rac{b_{n+1}}{b_n}$ за всяко $n>n_0 (n\in\mathbb{N}).$ Тогава:

 - ightharpoonup Ако $\sum_{n=1}^{+\infty} b_n$ е сходящ, то $\sum_{n=1}^{+\infty} a_n$ е сходящ ightharpoonup Ако $\sum_{n=1}^{+\infty} a_n$ е разходящ, то $\sum_{n=1}^{+\infty} b_n$ е разходящ
 - ightharpoonup Логически факт: $(\mathcal{A} \Rightarrow \mathcal{B}) \Leftrightarrow (\neg \mathcal{B} \Rightarrow \neg \mathcal{A})$

- 6. Критерий за сходимост на Абел-Дирихле на редове
 - Нека а_n е монотонна
 - Ако $\lim_{n \to +\infty} a_n = 0$ и сумите $\sum_{k=1}^n b_k$ са ограничени, тогава редът $\sum_{n=1}^\infty a_n b_n$ е сходящ.
 - Ако $\lim_{n \to \infty} a_n = L$ (число) и редът $\sum_{n=1}^\infty b_n$ е сходящ, тогава редът $\sum_{n=1}^\infty a_n b_n$ е сходящ.
- 7. Критерий на Даламбер за сходимост на редове
 - Нека $a_n > 0$ за всяко $n \in \mathbb{N}$.
 - Ако има 0 < q < 1, за което $\frac{a_{n+1}}{a_n} \le \mathsf{q}$ за всяко $\mathsf{n} > n_0$ $(n \in \mathbb{N})$, то $\sum_{n=1}^{+\infty} \, a_n$ е сходящ. Следва от $0 \le a_n \le q^n$.
 - (Гранична форма) Нека съществува $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = L$. Тогава ако L < 1, то $\sum_{n=1}^{+\infty} a_n$ е сходящ; ако > 1, то $\sum_{n=1}^{+\infty} a_n$ е разходящ
- 8. Критерий на Коши за сходимост на редове
 - Нека $a_n \ge 0$ за всяко $n \in \mathbb{N}$.
 - ullet Ако има 0 < q < 1, за което $\sqrt[n]{a_n} \le {\mathsf q}$ за всяко n > n_0 ($n \in \mathbb{N}$), то $\sum_{n=1}^{+\infty} \, a_n$ е сходящ. Следва от $0 \le a_n \le q^n$.
 - (гранична форма) Нека съществува $\lim_{n \to +\infty} \sqrt[n]{a_n} = L$. Тогава ако L < 1, то $\sum_{n=1}^{+\infty} a_n$ е сходящ; ако > 1, то $\sum_{n=1}^{+\infty} a_n$ е разходящ
- 9. Критерий на Гаус за сходимост на редове
 - Нека $a_n>0$ и $\frac{a_n}{a_{n+1}}=\lambda+\frac{\mu}{n}+\frac{c_n}{n^{1+\delta}}$ за всяко $n\in\mathbb{N}$, където $\delta>0$, а редицата $\{c_n\}_{n+1}^\infty$ е ограничена. Тогава:
 - ullet При $\lambda>1$ редът $\sum_{n=1}^{\infty}a_n$ е сходящ
 - ullet При $\lambda < 1$ редът $\sum_{n=1}^{\infty} a_n$ е разходящ
 - При $\lambda = 1$:

 - ightarrow При $\mu>1$ редът $\sum_{n=1}^{\infty}a_n$ е сходящ ightarrow При $\mu\leq1$ редът $\sum_{n=1}^{\infty}a_n$ е разходящ
- 10. Радиус на сходимост на степенни редове
 - Трихотомия: За степенния ред $\sum_{n=1}^{+\infty} \, a_n \, x^n$ е изпълнено точно едно от трите:
 - Редът е сходящ само за x = 0.
 - Редът е абсолютно сходящ за всяко $x \in \mathbb{R}$
 - ∃ число R > 0, т. ч.:
 - ightharpoonup при |x| < R редът е абсолютно сходящ
 - ightharpoonup при |x| > R редът е разходящ
 - $R \in [0, +\infty) \cup \{+\infty\}$ се нарича радиус на сходимост на ред $\sum_{n=1}^{+\infty} a_n x^n$, ако II.
 - при |x| < R редът е абсолютно сходящ (включва и $R = 0, R = +\infty$)
 - при |x| > R редът е разходящ (включва и $R = 0, R = +\infty$)
- 11. Функцията F(x, y) се нарича диференцируема в точката (x_0, y_0) , ако:
 - Нека $a(x_0,y_0)$ и нека X=(x_0,y_0) е вътрешна точка за D_f на функцията $f\colon \mathbb{R}^k o\mathbb{R}$. Казваме, че f е диференцируема в точката a ако има линейна функция $L: \mathbb{R}^k \to \mathbb{R}$, за която $\lim_{x \to a} \frac{f(x) - f(a) - L(x - a)}{||x - a||} = 0$

12. Критерий на Раабе-Дюамел за сходимост на редове

- Нека $a_n > 0$ за всяко $n \in \mathbb{N}$.
- ullet Ако има q>1, за което $\operatorname{n}\left(rac{a_n}{a_{n+1}}-1
 ight)\geq q$ за всяко $\operatorname{n}>n_0$ $(n\in\mathbb{N})$, то $\sum_{n=1}^{+\infty}\,a_n$ е сходящ. Следва от $0 \le a_n \le q^n$.
- (Гранична форма) Нека съществува $\lim_{n \to +\infty} n\left(\frac{a_n}{a_{n+1}}-1\right) = L$. Тогава ако L>1, то $\sum_{n=1}^{+\infty} a_n$ е сходящ; ако < 1, то $\sum_{n=1}^{+\infty} a_n$ е разходящ. • Доказателство: $k\left(\frac{a_k}{a_{k+1}}-1\right) \geq q$

$$k(a_k - a_{k+1}) \ge q(a_{k+1}) \mid -a_{k+1}$$

$$ka_k - (k+1)a_{k+1} \ge (q-1)a_{k+1}$$

$$(k+1)a_{k+1} - (k+2)a_{k+2} \ge (q-1)a_{k+2}$$

$$n_0 a_{n_0} \ge n_0 a_{n_0} - n a_n \ge (q - 1) \sum_{k=n_0}^{+\infty} a_{k+1}$$

$$ightharpoonup \frac{n_0}{q-1}a_{n_0} \geq \sum_{k=n_0}^{+\infty}a_{k+1} \Rightarrow \text{orp. otrope}$$

$$\blacktriangleright$$
 $\Rightarrow \sum_{k=n_0}^{+\infty} a_{k+1}$ е сходящ $\Rightarrow \sum_{n=0}^{+\infty} a_{n+1}$ е сходящ.

$$n \left(\frac{a_n}{a_{n+1}} - 1 \right) \le 1$$

$$ho \quad \frac{a_n}{a_{n+1}} \le \frac{n+1}{n} \Rightarrow \frac{a_{n+1}}{a_n} \ge \frac{n}{n+1} = \frac{\frac{1}{n+1}}{\frac{1}{n}}$$
 (харм. ред)

$$ightarrow$$
 $\sum_{n=1}^{+\infty} rac{1}{n}$ е разходящ \Rightarrow $\sum_{n=1}^{+\infty} a_n$ е разходящ

13. Критерия на Лайбниц за сходимост на редове

- Нека $a_n \geq 0$ монотонно намалява и $\lim_{n \to +\infty} a_n = 0$. Тогава редът $\sum_{n=1}^{+\infty} (-1)^{n-1} a_n$ е сходящ.
- Доказателство:

$$> S_n = \sum_{k=1}^n (-1)^{k-1} a_k;$$

$$S_{2m+2} - S_{2m} = (-1)^{2m+1-1} a_{2m+1} + (-1)^{2m+2-1} a_{2m+2} = a_{2m+1} - a_{2m+2} \ge 0,$$
 Ppacte

$$ho$$
 $S_{2m+1}-S_{2m-1}=(-1)^{2m+1-1}a_{2m+1}+(-1)^{2m-1}a_{2m}=a_{2m+1}-a_{2m}\leq 0$, \checkmark намалява

$$\gt S_{2m+1} - S_{2m} = (-1)^{2m+1-1} a_{2m+1} = a_{2m+1} \Rightarrow S_{2m} \le S_{2m+1}$$

$$ightharpoonup S_{2m+1} \ge S_{2m} \ge S_{2p} \ (m \ge p) \qquad S_{2n} \le S_{2n+2} \le S_{2n+1} \le S_{2n-1}$$

$$ightharpoonup S_{2m+1} \ge S_{2p+1} \ge S_{2p} (p > m)$$

$$ightharpoonup$$
 $ightharpoonup$ отгоре от S_1 (коя да е нечетна сума)

$$\blacktriangleright$$
 $\lim_{m \to +\infty} S_{2m} = S^{**}$; $\lim_{m \to +\infty} S_{2m+1} = S^* \Rightarrow S_{2m} - S_{2m+1} = a_{2m+1} = S^{**} - S^* \Rightarrow$ цялата редица е сходяща

$$|S_{n+p} - S_n| \le a_{n+1}$$

- 14. Формулирайте и докажете теоремата за равенство на смесените производни:
 - Нека $f: \mathbb{R}^k \to \mathbb{R}$ има частни производни $\frac{\partial f}{\partial x_i}$, $\frac{\partial f}{\partial x_j}$, $i \neq j$, и втори частни производни $\frac{\partial^2 f}{\partial x_i \partial x_j}$, $\frac{\partial^2 f}{\partial x_i \partial x_j}$ в $B^o(a, \delta_o)$.
 - Ако $\frac{\partial^2 f}{\partial x_i \partial x_j}$ и $\frac{\partial^2 f}{\partial x_j \partial x_i}$ са непрекъснати в a, то $\frac{\partial^2 f}{\partial x_i \partial x_j}$ (a) = $\frac{\partial^2 f}{\partial x_j \partial x_i}$ (a).
 - Доказателство: Можем да предполагаме, че k=2, $a=(x_0,y_0)$. Нека $0 \le c_1,c_2,c_3,c_4 \le 1$.

$$ightharpoonup$$
 Пол. $G(x,y) = F(x,y) - F(x_0,y) - F(x,y_0) + F(x_0,y_0)$

$$G(x,y) = (x - x_0) \left(\frac{\partial f}{\partial x} (x_0 + c_1(x - x_0), y) - \frac{\partial f}{\partial x} (x_0 + c_1(x - x_0), y_0) \right) =$$

$$(x - x_0) (y - y_0) \left(\frac{\partial^2 f}{\partial x \partial y} (x_0 + c_1(x - x_0), y_0 + c_2(y - y_0)) \right)$$

$$\blacktriangleright$$
 Аналог. $G(x,y) = F(x,y) - F(x,y_0) - F(x_0,y) + F(x_0,y_0)$

$$G(x,y) = (y - y_0) \left(\frac{\partial f}{\partial y} (x, y_0 + c_3 (y - y_0)) - \frac{\partial f}{\partial y} (x_0, y_0 + c_3 (x - x_0)) \right) = (x - x_0) (y - y_0) \left(\frac{\partial^2 f}{\partial y \partial x} (x_0 + c_4 (x - x_0), y_0 + c_3 (y - y_0)) \right)$$

$$ightharpoonup$$
 При $x \neq x_0, y \neq y_0$ имаме $\frac{\partial^2 f}{\partial x \partial y} \Big(x_0 + c_1 (x - x_0), y_0 + c_2 (y - y_0) \Big) = \frac{\partial^2 f}{\partial x \partial y} \Big(x_0 + c_4 (x - x_0), y_0 + c_3 (y - y_0) \Big)$

- ightharpoonup Предвид непрекъснатостта, исканото се получава с граничен преход $(x,y)
 ightharpoonup (x_0,y_0)$
- 15. Теорема за интегруемост на непрекъсната функция върху правоъгълник
 - ullet Ако f е непрекъсната в $\Delta = [a,b] imes [p,q]$, то f е интегруема върху Δ
 - Доказателство: Съгласно теоремата за равномерна непрекъснатост, f е равномерно непрекъсната върху Δ . Следователно за всяко $\varepsilon>0$ $\exists \delta>0$, за което от $\sqrt{(x^{**}-x^*)^2+(y^{**}-y^*)^2}<\delta$ следва $|f(x^*,y^*)-f(x^{**},y^{**})|<\frac{\varepsilon}{S(\Delta)}$

$$\blacktriangleright$$
 Избираме n толкова голямо, че $\frac{\sqrt{(b-a)^2+(q-p)^2}}{n} < \delta$. Полагаме $x_i = a+i\frac{b-a}{n}$, $i=0,1,\ldots,n$ и $y_j = p+j\frac{q-p}{n}$, $j=0,1,\ldots,n$. Имаме $S\left(\Delta_{i,j}\right) = \frac{S(\Delta)}{n^2}$. От теоремата на Вайерщрас, $m_{i,j} = f\left(x_i^*,y_j^*\right), \left(x_i^*,y_j^*\right) \in \Delta_{i,j}$ и $M_{i,j} = f\left(x_i^{**},y_j^{**}\right), \left(x_i^{**},y_j^{**}\right) \in \Delta_{i,j}$ $M_{i,j} = m_{i,j} < \frac{\varepsilon}{S(\Delta)} \Rightarrow$

$$> S(f, \Delta, (\tilde{x}, \tilde{y})) - s(f, \Delta, (\tilde{x}, \tilde{y})) = \frac{S(\Delta)}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} (M_{i,j} - m_{i,j}) < \frac{S(\Delta)}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\varepsilon}{S(\Delta)} = \varepsilon$$

16. Довършете дефинициите:

- Казваме, че множеството $\mathcal{A} \subset \mathbb{R}^2$ е с мярка нула (в смисъл на Пеано-Жордан), ако за всяко $\varepsilon > 0$ съществува число $n \in \mathbb{N} : \exists \Delta_1, ..., \Delta_n$ правоъгълници, такива че $\mathcal{A} \subset \Delta_1 \cup ... \cup \Delta_n$ и $\sum_{i=1}^n S(\Delta_i) < \varepsilon$, където $S(\Delta_i)$ е лицето на правоъгълника Δ_i
- Казваме, че множеството $\mathcal{A} \subset \mathbb{R}^2$ е измеримо в смисъл на Пеано-Жордан, ако
 - ightharpoonup Съществува правоъгълник $\Delta=[a,b]\times[p,q],$ $\Delta^0=\Delta=(a,b)\times(p,q),$ $S(\Delta)=S(\Delta^0)=(b-a)(q-p).$
 - \blacktriangleright "Елементарна" фигура: $\Phi = \bigcup_{s=1}^m \Delta_s$, $\Delta_i^0 \cap \Delta_i^0 = \emptyset$ за $i \neq j$, $S(\Phi) = \sum_{s=1}^m S(\Delta_s)$

 - $\triangleright \ \mu(\mathcal{A}) = \sup S(\Phi_{in}) \leq \inf S(\Phi_{out}) = \overline{\mu}(\mathcal{A})$
 - ightarrow $\mathcal A$ се нарича измеримо, ако $\underline{\mu}(\mathcal A)=\overline{\mu}(\mathcal A)$

- 17. Представяне на двоен интеграл като повторни
 - Нека f(x,y) е интегруема върху правоъгълника $\Delta = [a,b] \times [p,q]$ и за всяко $x \in [a,b]$ функцията $\psi_x = f(x,y)$ е интегруема в [p,q]. Тогава функцията $\varphi(x) = \int_p^q \psi_x(y) \; dy$ е интегруема в [a,b] и $\int_a^b \varphi(x) \; dx = \iint_{\Lambda} f(x,y) \; dx dy$.
 - Доказателство: Нека \tilde{x}, \tilde{y} е разрязване на Δ и $(x,y) \in \Delta_{i,j}$. Тогава $m_{i,j} \leq f(x,y) \leq M_{i,j}$.
 - ightarrow След интегриране получаваме: $m_{i,j}(y_j-y_{j-1}) \leq \int_{y_{j-1}}^{y_j} f(x,y) dy \leq M_{i,j}(y_j-y_{j-1})$
 - ho Следователно $\sum_{j=1}^l m_{i,j} (y_j y_{j-1}) \leq \int_p^q f(x,y) dy \leq \sum_{j=1}^l M_{i,j} (y_j y_{j-1})$, което означава, че $\varphi(x)$ е ограничена във всеки един от интервалите $[x_{i-1},x_i]$ (а значи и в [a,b]) и $\sum_{j=1}^l m_{i,j} (y_j y_{j-1}) \leq m_i^\varphi = \inf \left\{ \varphi(x) \colon x \in [x_{i-1},x_i] \right\} \leq \sup \{ \varphi(x) \colon x \in [x_{i-1},x_i] \} = M_i^\varphi \leq \sum_{j=1}^l M_{i,j} (y_j y_{j-1})$
 - \succ След умножаване с $x_i x_{i-1}$ и сумиране по i получаваме: $s(f, \Delta, (\tilde{x}, \tilde{y})) \le s(\varphi, [a, b], \tilde{x}) \le S(\varphi, [a, b], \tilde{x}) \le S(f, \Delta, (\tilde{x}, \tilde{y}))$
 - ightarrow За arepsilon>0 избираме разрязване ilde x, ilde y на Δ с $Sig(f,\Delta,(ilde x, ilde y)ig)-sig(f,\Delta,(ilde x, ilde y)ig)<arepsilon$. Тогава $S(arphi,[a,b], ilde x)-c(arphi,[a,b], ilde x)\leq Sig(f,\Delta,(ilde x, ilde y)ig)-sig(f,\Delta,(ilde x, ilde y)ig)<arepsilon$, което означава, че arphi(x) е интегруема в [a,b]. За всяко разрязване ilde x, ilde y на Δ е изпълнено $sig(f,\Delta,(ilde x, ilde y)ig)\leq sig(arphi,[a,b], ilde x)\leq \int_a^b arphi(x)dx\leq Sig(arphi,[a,b], ilde x)\leq Sig(f,\Delta,(ilde x, ilde y)ig)$
 - ightharpoonup Следователно $\int_a^b \varphi(x) \ dx = \iint_\Delta f(x,y) \ dx dy$, защото $\int_a^b \varphi(x) \ dx$ е между малките и големите суми на Дарбу за f(x,y) в Δ , а $\iint_\Delta f(x,y) \ dx dy$ е единственото такова число.
- 18. Множеството от граничните точки $\partial \mathcal{A}$ има мярка 0 в смисъл на Пеано-Жордан, когато \mathcal{A} е измеримо ($S(\partial \mathcal{A})=0$). Измеримо \Rightarrow мярка 0
 - Доказателство: Нека \mathcal{A} е измеримо, $\mathcal{A} \subset \Delta$ и $\varepsilon > 0$. Съществува разрязване \tilde{x}, \tilde{y} на Δ , за което $S(\chi_{\mathcal{A}}, \Delta, \tilde{x}, \tilde{y}) s(\chi_{\mathcal{A}}, \Delta, \tilde{x}, \tilde{y}) < \frac{\varepsilon}{2}$, или $\sum_{m_{ij}=0, \ M_{ij}=1} S(\Delta_{i,j}) < \frac{\varepsilon}{2}$.
 - ullet Нека $h=rac{arepsilon}{4(k(b-a)+n(q-p))}$. Разглеждаме правоъгълниците:
 - ho $\Delta^*{}_i=[x_i-h,x_{\underline{i}}+h] imes[p,q]$, вместо x_0-h вземаме x_0 , вместо x_0+h вземаме x_n
 - $m{\lambda}^{**}_{j}=[a,b] imes [y_{j}-h,y_{j}+h]$, вместо $y_{0}-h$ вземаме y_{0} , вместо $y_{0}+h$ вземаме y_{k}
 - За правоъгълниците $\Delta_{i,j}$, $m_{i,j}=0$, $M_{i,j}=1$, Δ_i^* , $0\leq i\leq n$, Δ_i^{**} , $0\leq j\leq k$ имаме:
 - \triangleright Сумарно лице по-малко от ε
 - $\succ \ \partial \mathcal{A} \subset \ \cup_{m_{i,j}=0, M_{i,j}=1} \Delta_{i,j} \ \cup \ \bigcup_{i=0}^n \ \Delta_i^* \cup \ \bigcup_{j=0}^k \ \Delta_i^{**}.$
 - Ако $(x,y) \in \partial \mathcal{A}$ I $(x,y) \notin \bigcup_{i=0}^n \Delta_i^* \cup \bigcup_{j=0}^k \Delta_i^{**}$, то (x,y) е вътрешна за някой правоъгълник $\Delta_{i,j}$. За него $m_{i,j} = 0$, $M_{i,j} = 1$.
 - Следователно, $\partial \mathcal{A}$ има мярка 0 в смисъл на Пеано-Жордан.
 - Обратната посока се получава от факта, че точките на прекъсване на $\chi_{\mathcal{A}}$ са $\partial \mathcal{A}$ и достатъчното условие за интегруемост върху правоъгълник
- 19. Множеството $\mathcal A$ е измеримо в смисъл на Пеано-Жордан, когато множеството от граничните точки има $\partial \mathcal A$ мярка 0. Мярка 0 \Rightarrow измеримо
 - Нека множеството от граничните точки $\partial \mathcal{A}$ има мярка 0. Ако сме вътре в множеството, то $\chi_{\mathcal{A}}$ в околност е 1, $\chi_{\mathcal{A}}=1$. Ако сме извън множеството $\chi_{\mathcal{A}}$ в околност е 0, т.е. $\chi_{\mathcal{A}}=0$.
 - Единствено по границата имаме точки на прекъсване, т.е. имаме точки на прекъсване на $\chi_{\mathcal{A}}$. Тъй като границата е с мярка $0 \Rightarrow \partial \mathcal{A}$ е с мярка $0 \Rightarrow \chi_{\mathcal{A}}$ е интегруема върху \mathcal{A} , т.е. \mathcal{A} е измеримо