Superspreading negative binomial simulations

##		cases	n
##	1	0	52155
##	2	1	18382
##	3	2	9737
##	4	3	5745
##	5	4	3644
##	6	5	2320
##	7	6	1596
##	8	7	1130
##	9	8	780
##	10	9	581
##	11	10	426
##	12	11	320
##	13	12	275
##	14	13	224
##	15	14	204
##	16	15	194

##	17	16	177
##	18	17	173
##	19	18	134
##	20	19	114
##	21	20	122
##	22	21	103
##	23	22	88
##	24	23	85
##	25	24	86
##	26	25	73
##	27	26	69
##	28	27	62
##	29	28	61
##	30	29	45
##	31	30	56
##	32	31	50
##	33	32	51
##	34	33	41
##	35	34	50
##	36	35	48
##	37	36	31
##	38	37	46
##	39	38	34
##	40	39	39
##	41	40	18
##	42	41	16
##	43	42	25
##	44	43	19
##	45	44	13
##	46	45	20
##	47	46	15
##	48	47	13
##	49	48	18
##	50	49	17
##	51	50	22
##	52	51	16
##	53	52	12
##	54	53	12
##	55	54	12
##	56	55	12
##	57	56	9
##	58	57	13
##	59	58	9
##	60	59	3
##	61	60	6
##	62	61	6
		62	
##	63 64	63	9
##			4
##	65	64	9
##	66	65	8
##	67	66	6
##	68	67	8
##	69	68	2
##	70	69	6

```
## 71
            70
                   10
## 72
            71
                    5
   73
##
            72
                   10
                    2
##
   74
            73
##
   75
            74
                    4
##
   76
            75
                    5
##
   77
            76
                    3
## 78
            77
                    1
##
   79
            78
                    3
   80
            79
                    4
##
##
   81
            80
                    2
                    3
   82
            81
##
   83
            82
                    2
##
##
   84
            83
                    4
## 85
            85
                    2
## 86
            87
                    4
## 87
            88
                    1
                    2
##
   88
            90
##
   89
            91
                    5
##
   90
            93
                    1
## 91
            94
                    1
## 92
            95
                    1
## 93
            96
                    1
## 94
            98
                    1
## 95
          103
                    1
##
   96
          104
                    1
##
   97
          105
                    1
##
   98
                    1
          111
## 99
          115
                    1
## 100
          117
                    1
## 101
          121
                    1
## 102
          123
                    1
## 103
          126
                    1
                    2
## 104
          127
##
   105
          143
                    1
## 106
          162
                    1
## 107
          181
                    1
```

If p is small but δ is large, then the range of cases is large.

Now we wish to plot typical chains.

First lets look at the mean size of small (clusters < 10) and large clusters (>10). The median clusters are typically bigger in the standard model than the mixture model but the mean is smaller, and mean chain sizes conditioned on extinction are similar in both models. If chopping the chain should condition on extinction/non-extinction?

```
## [1] 8461.335 10.000 144973.000

## [1] 2504

## [1] 1.709763

## [1] 5526.246 10.000 38535.000
```

```
## [1] 3389
```

[1] 1.666116

[1] 57.73043

[1] 30

[1] 1.824859

[1] 20.05

[1] 16.5

[1] 1.666667

##		[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]
##	[1,]	1	1	1	1	1	1	1	1	1	1
##	[2,]	1	2	0	5	0	0	4	1	0	1
##	[3,]	1	5	0	6	0	0	8	2	0	0
##	[4,]	0	2	0	14	0	0	4	1	0	0
##	[5,]	0	0	0	13	0	0	1	2	0	0
##	[6,]	0	0	0	16	0	0	0	2	0	0
##	[7,]	0	0	0	15	0	0	0	2	0	0
##	[8,]	0	0	0	13	0	0	0	3	0	0
##	[9,]	0	0	0	20	0	0	0	1	0	0
##	[10,]	0	0	0	7	0	0	0	0	0	0
##	[11,]	0	0	0	11	0	0	0	0	0	0
##	[12,]	0	0	0	7	0	0	0	0	0	0
##	[13,]	0	0	0	2	0	0	0	0	0	0
##	[14,]	0	0	0	1	0	0	0	0	0	0
##	[15,]	0	0	0	0	0	0	0	0	0	0
##	[16,]	0	0	0	0	0	0	0	0	0	0
##	[17,]	0	0	0	0	0	0	0	0	0	0
##	[18,]	0	0	0	0	0	0	0	0	0	0
##	[19,]	0	0	0	0	0	0	0	0	0	0
##	[20,]	0	0	0	0	0	0	0	0	0	0
##	[21,]	0	0	0	0	0	0	0	0	0	0

Probability of a major outbreak for mixture model is about 0.1.

##		[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]
##	[1,]	1	1	1	1	1	1	1	1	1	1
##	[2,]	0	0	5	0	2	0	0	1	0	0
##	[3,]	0	0	8	0	0	0	0	0	0	0
##	[4,]	0	0	23	0	0	0	0	0	0	0
##	[5,]	0	0	63	0	0	0	0	0	0	0
##	[6,]	0	0	299	0	0	0	0	0	0	0
##	[7,]	0	0	773	0	0	0	0	0	0	0
##	[8,]	0	0	1247	0	0	0	0	0	0	0
##	[9,]	0	0	2503	0	0	0	0	0	0	0
##	[10,]	0	0	4698	0	0	0	0	0	0	0
##	[11,]	0	0	9545	0	0	0	0	0	0	0

Probability of a major outbreak for standard model is about 0.4. Here four have taken off, but none are as large as the mixture that has taken off?

##		[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]
##	[1,]	1	1	1	1	1	1	1	1	1	1
##	[2,]	0	0	0	0	1	0	0	0	6	0
##	[3,]	0	0	0	0	3	0	0	0	13	0
##	[4,]	0	0	0	0	9	0	0	0	22	0
##	[5,]	0	0	0	0	5	0	0	0	64	0
##	[6,]	0	0	0	0	8	0	0	0	111	0
##	[7,]	0	0	0	0	17	0	0	0	243	0
##	[8,]	0	0	0	0	41	0	0	0	499	0
##	[9,]	0	0	0	0	61	0	0	0	1022	0
##	[10,]	0	0	0	0	120	0	0	0	2015	0
##	[11,]	0	0	0	0	279	0	0	0	3946	0

Plot the mixture chains assuming k=1/2:

##	[8,]	90	8	0	568	0	0	0	0	902	129
##	[9,]	234	16	0	1288	0	0	0	0	1735	293
##	[10,]	412	22	0	2446	0	0	0	0	4001	589
##	[11.]	948	45	0	4897	0	0	0	0	8064	1228

Plot the mixture chains assuming \$k=2:

##		[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]
##	[1,]	1	1	1	1	1	1	1	1	1	1
##	[2,]	5	3	7	0	4	0	0	1	5	0
##	[3,]	9	8	17	0	7	0	0	1	21	0
##	[4,]	17	27	28	0	8	0	0	3	47	0
##	[5,]	22	64	46	0	20	0	0	2	107	0
##	[6,]	39	123	103	0	35	0	0	6	197	0
##	[7,]	91	270	195	0	64	0	0	11	407	0
##	[8,]	172	541	352	0	107	0	0	18	831	0
##	[9,]	322	1085	686	0	165	0	0	34	1571	0
##	[10,]	667	2250	1309	0	278	0	0	77	3198	0
##	[11,]	1299	4474	2482	0	542	0	0	174	6234	0

Median generation time same for all mixtures. Generation time has most variability for p=0.05, with 25% taking 11 generations or more to take off. 25% take 3 generations or less (most explosive for p=0.05, 0.1). 75%

take 9 generations or less if p=0.1 (most explosive?)