

FACULTY of SCIENCE and ENGINEERING

Department of Computer Science and Information Systems

MIDTERM Assessment Paper

Academic Year:2024-2025 (06/March/24)Semester:SpringModule Title:Deep Reinforcement LearningModule Code:CS6482Duration of Exam:1 HoursPercent of Total Marks:20Lecturer(s):J.J. CollinsPaper marked out of:20

Instructions to Candidates:

- Answer all 10 Questions.
- All Questions are worth 2 marks each.

NAME		
ID Number	 	

SOLUTIONS

Q1. Name an application that is typical of Symbolic/Old AI. Describe its key features. Is this application an example of Machine Learning? State the reason(s) for your answer?

Name: MYCIN, Expert System 1980

Features:

- Knowledge Base: It had a knowledge base of around 600 rules, which were derived from medical experts
- Backward Chaining: MYCIN used a backward chaining approach to infer conclusions from a set of rules
- Inference Engine: The system used an inference engine to apply these rules to the patient's data and symptoms

Is it an example Machine Learning;

No. It does not improve with Experience E at task T. Rules are fixed.

Q2: What is the formula for the update applied to a weight in a hidden layer when performing Back Propagation (BP) in a Multi-Layer Perceptron (MLP)?

For each output unit k

$$\delta_k \leftarrow o_k(1-o_k)(t_k-o_k)$$

For each hidden unit h

$$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{h,k} \delta_k$$

Update

$$w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$$

where

$$\Delta w_{i,j} = \eta \delta_j x_{i,j}$$

Q3: Given an grayscale input image of dimensions 100 x 100, and a convolutional layer with 5 x 5 kernels stride 1, outputting 50 feature maps of size 100 x 100. How many parameters in the convolutional layer? How many connections are there from the input layer? How many computations/operations does it perform. How much memory is required for this layer? Please show your calculations in the answer.

Number of parameters = $(kh \times kw \times cin + 1) \times cout$ where:

- kh and kw are the height and width of the kernel.
- cin is the number of input channels.
- cout is the number of output channels.
- The +1 accounts for the bias term.

Parameters = $((5 \times 5 \times 1) + 1) \times 50 = (26 \times 50) = 1,300$.

Each feature map contains 100×100 neurons = 10,000 neurons Each neuron computes a sum of $(5 \times 5 \times 1) = 25$ inputs Total computations = $10,000 \times 25 \times (50) = 12.5$ million computations

Memory for Parameters: The memory required for the parameters of a convolutional layer is given by: Memoryparams = $(kh \times kw \times cin+1) \times cout \times size$ of each parameter where:

- kh and kw are the height and width of the kernel.
- cin is the number of input channels.
- cout is the number of output channels.
- The +1 accounts for the bias term.
- The size of each parameter depends on the data type (e.g., 4 bytes for a 32-bit float).

32 bit floating point

MemoryParams $(5 \times 5 \times 1+1) \times 50 \times 32$ Output = 41,600 bits = 5200 bytes

Memory for Activations: The memory required for the activations of a convolutional layer is given by: Memory for Activations = hout \times wout \times cout \times batch size \times size of each activation where:

- houthout and woutwout are the height and width of the output feature map.
- coutcout is the number of output channels.
- The batch size is the number of samples processed together in one forward/backward pass.
- The size of each activation depends on the data type (e.g., 4 bytes for a 32-bit float).

= (100 *100) *50 *16 * 32 = 256,000,000 bits = 32 MB

Total Memory = Memory for Parameters + Memory for Activations = 32,000,000 + 5200 = 32,005,200 bytes

Q4: What is the formula for the calculation of cross entropy? What is cross entropy? What is the approximate value for the cross entropy of containers in Figure 1?

Formula
$$H(p,q) = -\sum_{n=1} p(x) \log(q(x))$$

Cross entropy is:

A measure from the field of information theory, often used in machine learning to quantify the difference between two probability distributions. Here's a breakdown:

Approximate Cross Entropy → Container 1: 0.5 Container 2: 1.0 Container 3: 0

Q5: What do the acronyms RELU and ELU stand for? Draw a diagram of both. Briefly critique RELUs. Discuss why the the ELU an improvement on RELU?

RELU =

ELU = Exponential Linear Unit

Diagrams

<u>Critique of RELU.</u> Does not provide gradient information for Z < = 0.

Why ELU is an improvement on RELU: has a slope for z <= 0 i.e. provides gradient information

Q6. Sketch a diagram for LeNet-5 CNN. You should include input size, kernel size, and number of feature maps for the first layer.

Q7: Explain why the number of parameters in GoogleLeNet using Inception modules is significantly less than AlexNet - 6 million v of 60 million. The answer should focus exclusively on the Inception module. Illustrate the answer with a diagram and/or calculations.

Parameters Naïve Inception = $((5 \times 5 \times 192) + 1) \times 32 = 153,632$.

Num ops: multiply the number of outputs that are required to be provided (28x28x32), with the number of multipliers needed to work out a single value within the output (5x5x192).

Num multiplier ops = (output dimensions) * (filter dimensions) * (depth of input channel)

Num multiplier ops = $(28 \times 28 \times 32) \times (5 \times 5) \times (192) = 120, 244, 400$

Parameters Inception = $(((1 \times 1 \times 16) + 1) \times 16) + (((5 \times 5 \times 16) + 1) \times 32) = 256 + 12,832 = 13,088$

Num multiplication ops = $((28 \times 28 \times 16) * (1 \times 1 \times 192)) + ((28 \times 28 \times 32) * (5 \times 5 \times 15))$ Num multiplication ops =(2,408,448) + (10,976,000) = 12,443,648.

Q8: Describe the solution implemented in ResNet to differing input sizes when the stride changes from 1 to 2 in a convolutional layer of a residual unit.

Number of feature maps doubled every few residual units at the same time as width and height reduced → Inputs cannot be added to outputs

Solution: 1x1 with stride 2

Q9: Write the code to freeze the weights of the pre-trained layers in the base model when using transfer learning?

- 21. **for** layer **in** base_model.layers:
- 22. layer.trainable = False

Q10: Write the implementation for ϵ -greedy action selection.

 \square : select the best lever with probability 1- ϵ (exploit), otherwise select a random lever (explore)