Symbolic networks

PDE Net 2.0, постановка задачи

Предположим, мы хотим описать системой уравнений в частных производных набор данных, полученный экспериментально.

В биологии к таким задачам относится, например, задача фармакокинетики.

Мы полагаем что наша система будет иметь вид:

$$U_t = F(U, \nabla U, \nabla^2 U, \ldots), \quad x \in \Omega \subset \mathbb{R}^2, \quad t \in [0, T].$$

У нас есть экспериментальные данные со значением функции U в некотором объеме (или плоскости) на заданном интервале времени.

И нам необходимо знать какую форму принимают уравнения нашей системы, т.е. определить функцию F

PDE-NET 2.0: LEARNING PDES FROM DATA WITH A NUMERIC-SYMBOLIC HYBRID DEEP NETWORK

Zichao Long

School of Mathematical Sciences Peking University zlong@pku.edu.cn

Yiping Lu

School of Mathematical Sciences Peking University luyiping9712@pku.edu.cn

Bin Dong

Beijing International Center for Mathematical Research and Center for Data Science Peking University dongbin@math.pku.edu.cn

$$U_t = F(U, \nabla U, \nabla^2 U, \ldots), \quad x \in \Omega \subset \mathbb{R}^2, \quad t \in [0, T].$$

$$\tilde{U}(t+\delta t,\cdot) \approx \tilde{U}(t,\cdot) + \delta t \cdot SymNet_m^k(D_{00}\tilde{U},D_{01}\tilde{U},D_{10}\tilde{U},\cdots)$$

Здесь оператор D_{ij} это оператор свертки с фильтром q_{ij} , т.е. D_{ij} $u = q_{ij} ⊗ u$. Операторы D_{10} , D_{01} , D_{11} и т. д. аппроксимируют дифференциальные операторы, т.е.

$$D_{ij}u \approx \frac{\partial^{i+j}u}{\partial^i x \partial^j y}$$

Оператор D_{00} - оператор усреднения.

Схема расчета

Для фильтра q размером NxN определим матрицу моментов как

$$M(q) = (m_{i,j})_{N \times N}, \quad m_{i,j} = \frac{1}{i!j!} \sum_{k_1, k_2 = -\frac{N-1}{2}}^{\frac{N-1}{2}} k_1^i k_2^j q[k_1, k_2], i, j = 0, 1, \dots, N-1$$

Для любой гладкой функции $f: \mathbb{R}^2 \to \mathbb{R}$, мы применяем свертку к кусочной интерполяции f относительно фильтра q. Используя разложение Тейлора, можно легко получить следующую формулу

$$\sum_{k_{1},k_{2}=-\frac{N-1}{2}}^{\frac{N-1}{2}} q[k_{1},k_{2}]f(x+k_{1}\delta x,y+k_{2}\delta y) = \sum_{k_{1},k_{2}=-\frac{N-1}{2}}^{\frac{N-1}{2}} q[k_{1},k_{2}] \sum_{i,j=0}^{N-1} \frac{\partial^{i+j}f}{\partial^{i}x\partial^{j}y} \Big|_{(x,y)} \frac{k_{1}^{i}k_{2}^{j}}{i!j!} \delta x^{i}\delta y^{j} + o(|\delta x|^{N-1} + |\delta y|^{N-1})$$

$$= \sum_{i,j=0}^{N-1} m_{i,j}\delta x^{i}\delta y^{j} \cdot \frac{\partial^{i+j}f}{\partial^{i}x\partial^{j}y} \Big|_{(x,y)} + o(|\delta x|^{N-1} + |\delta y|^{N-1}). \tag{2}$$

Т.е. фильтр q можно спроектировать для аппроксимации любого дифференциального оператора с заданным порядком точности, наложив ограничения на M(q).

Архитектура Equation Learner (EQL) для L = 3, u = 4, v = 1. Нелинейный этап имеет u + v выходов и u + 2v входов.

$$z^{(l)} = W^{(l)}y^{(l-1)} + b^{(l)} \quad y^{(l)} := \left(f_1(z_1^{(l)}), f_2(z_2^{(l)}), \dots, f_u(z_u^{(l)}), g_1(z_{u+1}^{(l)}, z_{u+2}^{(l)}), \dots, g_v(z_{u+2v-1}^{(l)}, z_{u+2v}^{(l)})\right)$$

Тестирование PDE Net проведено на двумерном уравнении Бюргера с периодическим граничным условием Ω = [0; 2π] x [0; 2π],

$$\begin{cases} \frac{\partial U}{\partial t} &= -U \cdot \nabla U + \nu \Delta U, U = (u, v)^{\top} \\ U|_{t=0} &= U_0(x, y), \end{cases}$$

Данные обучения сгенерированы с добавлением шума в начальные условия. Кроме того шум добавлен и полученным значениям $U = (u; v)^T$.

Порядок частных производных ограничен 2. Авторы использовали два SymNet⁵₁₂ для покомпонентной аппроксимации правой нелинейной функции и получили следующий результат:

Correct PDE	$u_t = -uu_x - vu_y + 0.05(u_{xx} + u_{yy})$ $v_t = -uv_x - vv_y + 0.05(v_{xx} + v_{yy})$
Frozen-PDE-Net 2.0	$u_t = -0.906uu_x - 0.901vu_y + 0.033u_{xx} + 0.037u_{yy}$ $v_t = -0.907vv_y - 0.902uv_x + 0.039v_{xx} + 0.032v_{yy}$
PDE-Net 2.0	$u_t = -0.979uu_x - 0.973u_yv + 0.052u_{xx} + 0.051u_{yy}$ $v_t = -0.973uv_x - 0.977vv_y + 0.053v_{xx} + 0.051v_{yy}$

Коэффициенты остаточных членов для u-компонента (слева) и v-компонента (справа) с ограничением разреженности в SymNet (оранжевый) и без ограничения разреженности (синий). Полосы для обоих случаев рассчитаны на основе 20 независимых тренировок.

RNA динамика

iScience

Article

RNA velocity prediction via neural ordinary differential equation

RNA динамика

Начальный подход к моделированию динамики RNA (для каждого гена отдельно):

$$\frac{du}{dt} = \alpha(t) - \beta u(t)$$

$$\frac{ds}{dt} = \beta u(t) - \gamma s(t)$$

где u(t), s(t) представляют собой нормированные концентрации несплайсированной и сплайсированной мРНК. α(t) - скорость транскрипции гена, β - скорость сплайсинга, 8 - скорость деградации.

Подход, предложенный авторами:

RNA динамика

Нейросети и символические обучающиеся системы

Восприятие, представленное нейронными системами, и познание, представленное символизмом или символическими системами, являются двумя фундаментальными парадигмами в области искусственного интеллекта (ИИ), каждая из которых преобладала на протяжении нескольких десятилетий.

Systems	Processing Methods	Knowledge representation	Primary algorithms	Advantages	Disadvantages
Symbolic systems	Deductive reasoning	Logical representation	Logical deduction	 Strong generalization ability Good interpretability Knowledge-driven 	 Weak at handling unstructured data Weak robustness Slow reasoning
Neural systems (Sub-symbolic systems)	Inductive learning	Distributed representation	BP algorithms	 Strong at handling unstructured data Strong robustness Fast learning 	 Weak generalizability (adaptability) Lack of interpretability Data-driven

Этот раздел лекции построен на публикациях:

- 1. A Survey on Neural-symbolic Learning Systems, Dongran Yu,Bo Yang,Dayou Liu,Hui Wang,Shirui Pan, 2023
- 2. Learn to explain efficiently via neural logic inductive learning, Yuan Yang & Le Song, Georgia Institute of Technology, 2020
- 3. Tunneling Neural Perception and Logic Reasoning through Abductive Learning, Wang-Zhou Daiy и др., Nanjing University, 2018

Логическое программирование

Логическая система первого порядка состоит из трех компонентов: сущности, предиката и правила.

Сущности это объекты $x \in X$.

Предикаты это функции, которые сопоставляют сущности с 0 или 1, например. Person: $x \to \{0,1\}, x \in \textbf{X}$. Предикаты могут принимать несколько аргументов, например. Inside это предикат с двумя аргументами. Атом — это предикат, применяемый к логической переменной, например. Person (X) или Inside (X, X'). Логическая переменная X может быть инициализирована любым объектом x.

Правила логики первого порядка (FOL) представляют собой комбинацию атомов с использованием логических операций $\{\Lambda, V, \neg\}$.

Для множества предикатов $P = \{P1, ...; PK\}$, мы определяем предикат Pk как FOL правило:

 \forall X, X' \exists Pk (X, X') \leftarrow A (X, X', Y1; Y2,...)

Person (X) \leftarrow Inside (X; Y1) \wedge Car (Y1) \wedge On (Y2;X) \wedge Clothing (Y2)

KB - база знаний - состоит из набора фактов $\{\langle xi, Pk, xi' \rangle\}$, i = 1...N, k = 1...K, где xi, xi' $\in X$, Pk $\in P$

Learning for reasoning

Reasoning for learning

Learning-reasoning

Многошаговые рассуждения (миты-нор reasoning)

Задачу LP можно решать как задачу многошагового рассуждения на графе знаний. Задача на графе оперирует базой знаний, состоящей из набора предикатов Р. Здесь объекты - узлы графа, предикаты - ребра. Предикат Рк можно представить в виде двоичной матрицы смежности Мк. Факт(xi, Pk, xj) находится в базе данных тогда и только тогда, когда Мк [i, j] равна 1.

Запрос q = \langle x, P*, x' \rangle сводится к поиску на графе пути $\qquad \mathbf{X} \xrightarrow{P^{(1)}} \dots \xrightarrow{P^{(T)}} \mathbf{X'}$

Пусть Vx это one hot вектор объекта x с размерностью |X|. Тогда t-й шаг пути

$$\mathbf{v}^{(0)} = \mathbf{v}_{\mathbf{x}}, \qquad \qquad \mathbf{v}^{(t)} = \mathbf{M}^{(t)} \mathbf{v}^{(t-1)}$$

; где $M^{(t)}$ — матрица смежности предиката, используемого на t-м переходе. $v^{(t)}$ — это path features вектор, где j-й элемент $v^{(t)}$ j подсчитывает количество уникальных путей от x до xj

После T шагов рассуждения оценка запроса вычисляется как $\operatorname{score}(\mathbf{x},\mathbf{x}') = \mathbf{v}_{\mathbf{x}'}^{\top} \prod_{t=1} \mathbf{M}^{(t)} \cdot \mathbf{v}_{\mathbf{x}}$

Для каждого q цель состоит в том, чтобы a) найти подходящее T и b) для каждого t = [1;2; :::; T], найти подходящее М^(t) так, чтобы значение score было максимальным. Эти два дискретных выбора можно "смягчить", обучая взвешенную сумму оценок всех возможных путей и взвешенную сумму матриц на каждом этапе.

$$\kappa(\mathbf{s}_{\psi}, \mathbf{S}_{\varphi}) \equiv \sum_{t'=1}^{T} s_{\psi}^{(t')} \left(\prod_{t=1}^{t'} \sum_{k=1}^{K} s_{\varphi,k}^{(t)} \mathbf{M}_{k} \right)$$

это soft path selection функция, параметризованная a) path attention вектором: $\mathbf{S}_{\psi} = [s_{\psi}^{(1)},...,s_{\psi}^{(T)}]^{\top}$ который выбирает лучший путь длиной от 1 до Т, и b) operator attention вектором: $\mathbf{S}_{\varphi} = [\mathbf{s}_{\varphi}^{(1)},...,\mathbf{s}_{\varphi}^{(T)}]^{\top}$ где $\mathbf{S}_{\varphi}^{(t)}$ выбирает М^(t) на t-м шаге. Эти два вектора генерируются с помощью модели

$$\mathbf{s}_{\psi}, \mathbf{S}_{\varphi} = \mathbb{T}(\mathbf{x}; \mathbf{w})$$

$$\underset{\mathbf{w}}{\operatorname{arg max}} \sum_{q} \mathbf{v}_{\mathbf{x}'}^{\top} \kappa(\mathbf{s}_{\psi}, \mathbf{S}_{\varphi}) \mathbf{v}_{\mathbf{x}}$$

В таком виде путь в многошаговом рассуждении можно интерпретировать как решение проблемы LP с помощью цепочки правил FOL:

$$P^*(X, X') \leftarrow P^{(1)}(X, Y_1) \wedge P^{(2)}(Y_1, Y_2) \wedge ... \wedge P^{(T)}(Y_{n-1}, X')$$

Пространство правил, в котором вызовы операторов, оценки операторов и логические комбинации сводятся к весовым суммам по отношению к attention векторам $\mathbf{S}_{\varphi}, \mathbf{S}_{\psi}, \mathbf{S}_{f}', \mathbf{S}_{f}, \mathbf{S}_{f}'$ и s0. W/sum обозначает взвешенную сумму, Matmul обозначает матричное произведение, Neg обозначает not, XEnt обозначает cross-entropy loss.

Abductive logic program

Definition 1 Given an abductive logic theory T = (KB, A, IC), an abductive explanation for observed data X, is a set, Δ , of ground abducibles of A, such that:

- $KB \cup \Delta \models X$
- $KB \cup \Delta \models IC$
- $KB \cup \Delta$ is consistent.

where \models denotes the logical entailment relation.

Абдуктивное объяснение △ служит гипотезой, объясняющей, как наблюдение X может иметь место в соответствии с логической теорией Т.

Абдуктивное обучение (Abductive Learning)

Пример использования логического абдукции для обучения слоя восприятия. Во-первых, нейронный слой восприятия неправильно интерпретирует два изображения положительных примеров и передает их в Neural Logical Tunnel (черные стрелки вниз). Затем логический уровень обнаруживает их несогласованность (красные стрелки) и отправляет запрос оптимизации на замену символов в переменных _ (зеленые стрелки). Наконец, логический уровень успешно получает согласованную интерпретацию двух изображений (синяя стрелка) и использует их в качестве меток для переобучения нейронного слоя восприятия (черная стрелка вверх).

KB: eq --> digits,[+],digits,[=],digits, пример: [1,+,1,0,1,=,1,1,0], абдуктивные утверждения - правила сложения