ECON2300 - Introductory Econometrics

Tutorial 9: Regression with a Binary Dependent Variable

Tutor: Francisco Tavares Garcia

Quiz 8 is available!

Quiz 9 Now Available

The following test has been made available in Quizzes: Problem Solving, Data Analysis and Short Report: ECON2300 Quiz 9 (Semester 1, 2025).

The due date is 16:00 Thursday, 15 May, 2025.

Course Link /Assessment/Quizzes: Problem Solving, Data Analysis and Short Report/ECON2300 Quiz 9 (Semester 1, 2025)

Posted by: April Deng

Posted to: [ECON2300] Introductory Econometrics (St Lucia). Semester 1, 2025 ECON2300_7520_20889

- Download the files for tutorial 09 from Blackboard,
- save them into a folder for this tutorial.

Now, let's download the script for the tutorial.

- Copy the code from Github,
 - https://github.com/tavaresgarcia/teaching
- Save the scripts in the same folder as the data.

$$\widehat{deny} = -0.080 + 0.604 P/I \ ratio.$$
(0.032) (0.098)

FIGURE 11.1 Scatterplot of Mortgage Application Denial and the Payment-to-Income Ratio Mortgage applicants with a Deny high ratio of debt payments 1.4 to income (P/I ratio) are more 1.2 likely to have their applica-1.0 tion denied (deny = 1Mortgage denied if denied; deny = 0 if 0.8 approved). The linear prob-0.6 ability model uses a straight Linear probability model 0.4line to model the probability of denial, conditional on the 0.2P/I ratio. 0.0Mortgage approved -0.2-0.40.2 0.4 0.7 0.10.30.5 0.8 0.00.6 P/I ratio

Source: Stock, J. H., & Watson, M. W. (2019). Introduction to econometrics (Fourth edition, global edition.). Pearson Education Limited.

$$\widehat{\Pr(deny = 1 | P/I \, ratio)} = \Phi(-2.19 + 2.97 \, P/I \, ratio). \tag{11.7}$$

$$(0.16) \ (0.47)$$

Source: Stock, J. H., & Watson, M. W. (2019). Introduction to econometrics (Fourth edition, global edition.). Pearson Education Limited.

Adm - Tut 09 - E11.2 - a - b - c - d - e - f - g - h

E11.2 Believe it or not, workers used to be able to smoke inside office buildings. Smoking bans were introduced in several areas during the 1990s. In addition to eliminating the externality of secondhand smoke, supporters of these bans argued that they would encourage smokers to quit by reducing their opportunities to smoke. In this question you will estimate the effect of workplace smoking bans on smoking, using data on a sample of 10,000 U.S. indoor workers from 1991 to 1993, in the file smoking.csv. The dataset contains information on whether individuals were or were not subject to a workplace smoking ban, whether the individuals smoked, and other individual characteristics. A detailed description is given in Smoking_Description.pdf.

Variable Definitions

Variable	Definition
smoker	=1 if current smoker, =0 otherwise
smkban	=1 if there is a work area smoking ban, =0 otherwise
age	age in years
hsdrop	=1 if high school dropout, =0 otherwise
hsgrad	=1 if high school graduate, =0 otherwise
colsome	=1 if some college, =0 otherwise
colgrad	=1 if college graduate, =0 otherwise
black	=1 if black, =0 otherwise
hispanic	=1 if Hispanic =0 otherwise
female	=1 if female, =0 otherwise

Note: The educational binary indicators refer to the *highest level attained* and thus are mutually exclusive. An individual with a Master's degree or higher has values of 0 for *hsdrop*, *hsgrad*, *colsome*, and *colgrad*.

^	smoker	÷	smkban	а	age [‡]	hsdrop [‡]	hsgrad [‡]	colsome	colgrad [‡]	black [‡]	hispanic [‡]	female [‡]	age2 [‡]
1		1	1		41	0	1	0	0	0	0	1	1681
2		1	1		44	0	0	1	0	0	0	1	1936
3		0	C)	19	0	0	1	0	0	0	1	361
4		1	C)	29	0	1	0	0	0	0	1	841
5		0	1		28	0	0	1	0	0	0	1	784
6		0	С)	40	0	0	1	0	0	0	0	1600
7		1	1		47	0	0	1	0	0	0	1	2209
8		1	C)	36	0	0	1	0	0	0	0	1296
9		0	1		49	0	0	1	0	0	0	1	2401
10		0	C)	44	0	0	1	0	0	0	0	1936
11		0	C)	33	0	0	1	0	0	0	1	1089
12		0	С)	49	0	1	0	0	0	0	1	2401

Adm - Tut 09 - E11.2 - a - b - c - d - e - f - g - h


```
library(readr)
                   # package for fast read rectangular data
library(dplyr)
                   # package for data manipulation
library(estimatr)
                   # package for commonly used estimators with robust SE
library(texreg)
                   # package converting R regression output to LaTeX/HTML tables
                   # package for functions used in "An R Companion to Applied Regression"
library(car)
rm(list = ls())
setwd("/Users/uqdkim7/Dropbox/Teaching/R tutorials/Data")
smoking <- read_csv("smoking.csv") %>% mutate(age2 = age^2)
attach(smoking)
lpm1 = lm_robust(smoker ~ smkban, data = smoking, se_type = "stata")
lpm2 = lm_robust(smoker ~ smkban + female + age + age2 + hsdrop + hsgrad + colsome +
                 colgrad + black + hispanic, data = smoking, se_type = "stata")
# fit Probit model
probit = glm(smoker ~ smkban + female + age + age2 + hsdrop + hsgrad + colsome +
            colgrad + black + hispanic, data = smoking,
            family = binomial(link = "probit"))
# fit Logit model
logit = glm(smoker ~ smkban + female + age + age2 + hsdrop + hsgrad + colsome +
            colgrad + black + hispanic, data = smoking,
            family = binomial(link = "logit"))
```


$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Table 1: Statistical models				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		LPM(1)	LPM(2)	Probit	Logit
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(Intercept)	0.29***	-0.01	-1.73***	-3.00***
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(0.04)	(0.15)	(0.27)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	smkban	-0.08***	-0.05***	-0.16***	-0.26***
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.01)	(0.01)	(0.03)	(0.05)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	female		-0.03***	-0.11***	-0.19***
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(0.01)	(0.03)	(0.05)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	age		0.01***	0.03***	0.06***
hsdrop $ \begin{array}{c} (0.00) & (0.00) & (0.00) \\ 0.32^{***} & 1.14^{***} & 2.02^{***} \\ (0.02) & (0.07) & (0.13) \\ \\ hsgrad & 0.23^{***} & 0.88^{***} & 1.58^{***} \\ (0.01) & (0.06) & (0.11) \\ \\ colsome & 0.16^{***} & 0.68^{***} & 1.23^{***} \\ (0.01) & (0.06) & (0.12) \\ \\ colgrad & 0.04^{***} & 0.23^{***} & 0.45^{***} \\ (0.01) & (0.07) & (0.13) \\ \\ black & -0.03 & -0.08 & -0.16 \\ (0.02) & (0.05) & (0.09) \\ \\ hispanic & -0.10^{***} & -0.34^{***} & -0.60^{***} \\ (0.01) & (0.05) & (0.08) \\ \\ \hline R^2 & 0.01 & 0.06 \\ \\ Adj. R^2 & 0.01 & 0.06 \\ \\ Adj. R^2 & 0.01 & 0.06 \\ \\ Num. obs. & 10000 & 10000 & 10000 & 10000 \\ \\ RMSE & 0.43 & 0.42 \\ \\ AIC & 10493.74 & 10490.00 \\ \\ BIC & 10573.05 & 10569.31 \\ \\ Log Likelihood & -5235.87 & -5234.00 \\ \\ \end{array} $			(0.00)	(0.01)	(0.01)
hsdrop $ \begin{array}{c} (0.00) & (0.00) & (0.00) \\ 0.32^{***} & 1.14^{***} & 2.02^{***} \\ (0.02) & (0.07) & (0.13) \\ 0.23^{***} & 0.88^{***} & 1.58^{***} \\ (0.01) & (0.06) & (0.11) \\ \text{colsome} & 0.16^{***} & 0.68^{***} & 1.23^{***} \\ (0.01) & (0.06) & (0.12) \\ \text{colgrad} & 0.04^{***} & 0.23^{***} & 0.45^{***} \\ (0.01) & (0.07) & (0.13) \\ \text{black} & -0.03 & -0.08 & -0.16 \\ (0.02) & (0.05) & (0.09) \\ \text{hispanic} & -0.10^{***} & -0.34^{***} & -0.60^{***} \\ (0.01) & (0.05) & (0.08) \\ \hline R^2 & 0.01 & 0.06 \\ \text{Adj. R}^2 & 0.01 & 0.06 \\ \text{Num. obs.} & 10000 & 10000 & 10000 & 10000 \\ \text{RMSE} & 0.43 & 0.42 \\ \hline \text{AIC} & 10493.74 & 10490.00 \\ \text{BIC} & 10573.05 & 10569.31 \\ \text{Log Likelihood} & -5235.87 & -5234.00 \\ \hline \end{array} $	age2		-0.00***	-0.00***	-0.00***
hsgrad $ \begin{array}{c} (0.02) & (0.07) & (0.13) \\ 0.23^{***} & 0.88^{***} & 1.58^{***} \\ (0.01) & (0.06) & (0.11) \\ \text{colsome} & 0.16^{***} & 0.68^{***} & 1.23^{***} \\ (0.01) & (0.06) & (0.12) \\ \text{colgrad} & 0.04^{***} & 0.23^{***} & 0.45^{***} \\ (0.01) & (0.07) & (0.13) \\ \text{black} & -0.03 & -0.08 & -0.16 \\ (0.02) & (0.05) & (0.09) \\ \text{hispanic} & -0.10^{***} & -0.34^{***} & -0.60^{***} \\ (0.01) & (0.05) & (0.08) \\ \hline R^2 & 0.01 & 0.06 \\ \text{Adj. R}^2 & 0.01 & 0.06 \\ \text{Num. obs.} & 10000 & 10000 & 10000 & 10000 \\ \text{RMSE} & 0.43 & 0.42 \\ \hline \text{AIC} & 10493.74 & 10490.00 \\ \text{BIC} & 10573.05 & 10569.31 \\ \text{Log Likelihood} & -5235.87 & -5234.00 \\ \hline \end{array} $			(0.00)	(0.00)	(0.00)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	hsdrop		0.32***	1.14***	2.02***
$ \begin{array}{c} \text{colsome} \\ \text{colsome} \\ \text{colsome} \\ \\ \text{colgrad} \\ \text{colgrad} \\ \\ \text{black} \\ \text{lool} \\ \\ \\ \text{lool} \\ \\ \text{lool} \\ \\ \\ \text{lool} \\ \\ \\ \text{lool} \\ \\ \\ \text{lool} \\ \\ \\ lo$			(0.02)	(0.07)	(0.13)
$\begin{array}{c} \text{colsome} & \begin{array}{c} 0.16^{***} & 0.68^{***} & 1.23^{***} \\ (0.01) & (0.06) & (0.12) \\ 0.04^{***} & 0.23^{***} & 0.45^{***} \\ (0.01) & (0.07) & (0.13) \\ 0.02) & (0.07) & (0.13) \\ 0.02) & (0.05) & (0.09) \\ 0.02) & (0.05) & (0.09) \\ 0.03) & 0.05) & (0.09) \\ 0.04^{***} & -0.34^{***} & -0.60^{***} \\ 0.01) & (0.05) & (0.08) \\ 0.08) & 0.01 & 0.06 \\ 0.09) & 0.09) & 0.09 \\ 0.09) & 0.09) & 0.09 \\ 0.09) & 0.09) & 0.09 \\ 0.09) & 0.09) & 0.09 \\ 0.09) & 0.09) & 0.09 \\ 0.09) & 0.09) & 0.09 \\ 0.09) & 0.09) & 0.09 \\ 0.09) & 0.09) & 0.09 \\ 0.09) & 0.09) & 0.090 \\ 0.09) & 0.09) & 0.090 \\ 0.09) & 0.09) & 0.090 \\ 0.09) & 0.09) & 0.090 \\ 0.09) & 0.09) & 0.090 \\ 0.09) & 0.09) & 0.090 \\ 0.09) & 0.09) & 0.090 \\ 0.09) & 0.09) & 0.090 \\ 0.09) & 0.09) & 0.090 \\ 0.09) & 0.09) & 0.090 \\ 0.09) & 0.09) & 0.090 \\ 0.09) & 0.09) & 0.090 \\ 0.09) & 0.09) & 0.090 \\ 0.09) & 0.09) & 0.090 \\ 0.09) & 0.09) & 0.090 \\ 0.09) & 0.09) & 0.090 \\ 0.09) & 0.09) & 0.090 \\ 0.09) & 0.09) & 0.090 \\ 0.09) & 0.09) & 0.090 \\ 0$	hsgrad		0.23***	0.88***	1.58***
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(0.01)	(0.06)	(0.11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	colsome		0.16***	0.68***	1.23***
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(0.01)	(0.06)	(0.12)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	colgrad		0.04***	0.23***	0.45***
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(0.01)	(0.07)	(0.13)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	black		-0.03	-0.08	-0.16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(0.02)	(0.05)	(0.09)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	hispanic		-0.10***	-0.34***	-0.60***
Adj. R² 0.01 0.06 Num. obs. 10000 10000 10000 RMSE 0.43 0.42 AIC 10493.74 10490.00 BIC 10573.05 10569.31 Log Likelihood -5235.87 -5234.00			(0.01)	(0.05)	(0.08)
Num. obs. 10000 10000 10000 10000 RMSE 0.43 0.42 AIC 10493.74 10490.00 BIC 10573.05 10569.31 Log Likelihood -5235.87 -5234.00	\mathbb{R}^2	0.01	0.06		
Num. obs. 10000 10000 10000 10000 RMSE 0.43 0.42 AIC 10493.74 10490.00 BIC 10573.05 10569.31 Log Likelihood -5235.87 -5234.00	Adj. \mathbb{R}^2	0.01	0.06		
AIC 10493.74 10490.00 BIC 10573.05 10569.31 Log Likelihood -5235.87 -5234.00		10000	10000	10000	10000
BIC 10573.05 10569.31 Log Likelihood -5235.87 -5234.00	RMSE	0.43	0.42		
Log Likelihood -5235.87 -5234.00	AIC			10493.74	10490.00
	BIC			10573.05	10569.31
	Log Likelihood			-5235.87	-5234.00

Tutorial 9: Regression with a Binary Dependent Variable

(a) Estimate the probability of smoking for (i) all workers, (ii) workers affected by workplace smoking bans, and (iii) workers not affected by workplace smoking bans.

```
# run regression with intercept only
Pa = lm(smoker ~ 1, data = smoking)
P0 = lm(smoker ~ 1, data = subset(smoking, smkban == 0))
P1 = lm(smoker ~ 1, data = subset(smoking, smkban == 1))
```

	Table :	2: Statistical models	3
	All Workers	No Smoking Ban	Smoking Ban
\hat{p}	0.24***	0.29***	0.21***
$\mathrm{SE}(\hat{p})$	(0.00)	(0.01)	(0.01)

 $^{^{***}}p < 0.001, \, ^{**}p < 0.01, \, ^{*}p < 0.05$

Adm - Tut 09 - E11.2 - a - b - c - d - e - f - g - h

(b) What is the difference in the probability of smoking between workers affected by a workplace smoking ban and workers not affected by a workplace smoking ban? Use a linear probability model to determine whether this difference is statistically significant.

```
> summary(lpm1)
                                                                                                      Table 1: \S
Call:
lm_robust(formula = smoker ~ smkban, se_type = "stata")
                                                                                                      0.29***
                                                                              (Intercept)
Standard error type: HC1
                                                                                                       (0.01)
Coefficients:
           Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper
                                                                             smkban
                                                                                                     -0.08***
(Intercept)
           0.28960
                     0.007262 39.879 7.905e-323 0.27536 0.30383 9998
smkban
           -0.07756
                     0.008952 -8.664 5.271e-18 -0.09511 -0.06001 9998
                                                                                                       (0.01)
Multiple R-squared: 0.007796, Adjusted R-squared: 0.007697
F-statistic: 75.06 on 1 and 9998 DF, p-value: < 2.2e-16
```

From LPM(1), the difference is -0.08 with a standard error of 0.01. The resulting t-statistic is -8, so the coefficient is statistically significant.

Table 1. Statistical r

(c) Estimate a linear probability model with smoker as the dependent variable and the following regressors: smkban, female, age, age2, hsdrop, hsgrad, colsome, colgrad, black, and hispanic. Compare the estimated effect of a smoking ban from this regression with your answer from (b). Suggest a reason, based on the substance of this regression, explaining the change in

the estimated effect of a smoking ban between (b) and (c).

From LPM(2) the estimated difference is -0.05, smaller than the effect in LPM(1). Evidently (1) suffers from omitted variable bias. That is, smkban may be correlated with the education/race/gender or with age. For example, workers with a college degree are more likely to work in an office with a smoking ban than high-school dropouts, and college graduates are less likely to smoke than high-school dropouts.

	Table 1: S	<u>Statistical n</u>
	LPM(1)	LPM (2)
(Intercept)	0.29***	-0.01
	(0.01)	(0.04)
smkban	-0.08***	-0.05***
	(0.01)	(0.01)
female		-0.03***
		(0.01)
age		0.01^{***}
		(0.00)
age2		-0.00***
		(0.00)
hsdrop		0.32^{***}
		(0.02)
hsgrad		0.23***
		(0.01)
$\operatorname{colsome}$		0.16^{***}
		(0.01)
$\operatorname{colgrad}$		0.04***
		(0.01)
black		-0.03
		(0.02)
hispanic		-0.10***
		(0.01)
T)	0.04	14

(d) Test the hypothesis that the coefficient on smkban is zero in the population version of the regression in (c) against the alternative that it is nonzero, at the 5% significance level.

The t-statistic is -5, so the coefficient is statistically significant at the 1% level.

	rearree rever.		
		Table 1: S	Statistical m
		LPM(1)	LPM(2)
	(Intercept)	0.29***	-0.01
		(0.01)	(0.04)
	smkban	-0.08***	-0.05***
		(0.01)	(0.01)
	female		-0.03***
			(0.01)
	age		0.01^{***}
			(0.00)
	age2		-0.00***
			(0.00)
	hsdrop		0.32^{***}
			(0.02)
	hsgrad		0.23^{***}
			(0.01)
	colsome		0.16***
			(0.01)
	colgrad		0.04***
			(0.01)
	black		-0.03
			(0.02)
	hispanic		-0.10***
е			(0.01)

(e) Test the hypothesis that the probability of smoking does not depend on the level of education in the regression in (c). Does the probability of smoking increase or decrease with the level of education?

```
> ## (e)
> linearHypothesis(lpm2, c("hsdrop=0", "hsgrad=0", "colsome=0", "colgrad=0"),
                   test=c("F"))
Linear hypothesis test
Hypothesis:
hsdrop = 0
hsgrad = 0
colsome = 0
colgrad = 0
Model 1: restricted model
Model 2: smoker ~ smkban + female + age + age2 + hsdrop + hsgrad + colsome +
    colgrad + black + hispanic
                      Pr(>F)
  Res.Df Df
    9993
    9989 4 140.09 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

The F-statistic has a p-value of 0.00, so the coefficients are significant. The omitted education status is "Masters degree or higher." Thus the coefficients show the increase in probability relative to someone with a postgraduate degree. For example, the coefficient on colgrad is 0.045, so the probability of smoking for a college graduate is 0.04 (4%) higher than for someone with a postgraduate degree. Similarly, the coefficient on hsdrop is 0.32, so the probability of smoking for a high school dropout is 0.32 (32%) higher than for someone with a postgraduate degree. Because the coefficients are all positive and get smaller as educational attainment increases, the probability of smoking falls as educational attainment increases.

Adm - Tut 09 - E11.2 - a - b - c - d - e - f - g - h

(f) Repeat (c)–(e) using a probit model.

Probit Regression, continued

So,
$$Pr(Y_i = 1 | X_i = 0.4) = \Phi(-0.8) = 0.2119$$
.

	Table 1: Statistical models						
	LPM(1)	LPM(2)	Probit	Logit			
(Intercept)	0.29***	-0.01	-1.73***	-3.00***			
	(0.01)	(0.04)	(0.15)	(0.27)			
smkban	-0.08***	-0.05***	-0.16***	-0.26***			
	(0.01)	(0.01)	(0.03)	(0.05)			
female		-0.03***	-0.11***	-0.19***			
		(0.01)	(0.03)	(0.05)			
age		0.01^{***}	0.03***	0.06***			
		(0.00)	(0.01)	(0.01)			
age2		-0.00***	-0.00***	-0.00***			
		(0.00)	(0.00)	(0.00)			
hsdrop		0.32^{***}	1.14***	2.02***			
		(0.02)	(0.07)	(0.13)			
hsgrad		0.23***	0.88***	1.58***			
		(0.01)	(0.06)	(0.11)			
colsome		0.16^{***}	0.68***	1.23***			
		(0.01)	(0.06)	(0.12)			
$\operatorname{colgrad}$		0.04***	0.23***	0.45^{***}			
		(0.01)	(0.07)	(0.13)			
black		-0.03	-0.08	-0.16			
		(0.02)	(0.05)	(0.09)			
hispanic		-0.10***	-0.34***	-0.60***			
		(0.01)	(0.05)	(0.08)			

The estimated effect of the smoking ban in the probit model depends on the values of the other variable included in the regression. The estimated effects for various values of these regressors is given question (h). The t-statistic for the coefficient on smkban is -5.33, very similar to the value for the linear probability and probit models. The F-statistic is significant at the 1% level, as in the linear probability model.

(g) Repeat (c)–(e) using a logit model.

Comparison: probit vs logit

The predicted probabilities from the probit and logit models are very close in these HMDA regressions:

	Table 1: Statistical models					
	LPM(1)	LPM(2)	Probit	Logit		
(Intercept)	0.29***	-0.01	-1.73***	-3.00***		
	(0.01)	(0.04)	(0.15)	(0.27)		
smkban	-0.08***	-0.05***	-0.16***	-0.26***		
	(0.01)	(0.01)	(0.03)	(0.05)		
female		-0.03***	-0.11***	-0.19***		
		(0.01)	(0.03)	(0.05)		
age		0.01***	0.03***	0.06***		
		(0.00)	(0.01)	(0.01)		
age2		-0.00***	-0.00***	-0.00***		
		(0.00)	(0.00)	(0.00)		
hsdrop		0.32***	1.14***	2.02***		
		(0.02)	(0.07)	(0.13)		
hsgrad		0.23***	0.88***	1.58***		
		(0.01)	(0.06)	(0.11)		
colsome		0.16***	0.68***	1.23***		
		(0.01)	(0.06)	(0.12)		
colgrad		0.04***	0.23***	0.45^{***}		
		(0.01)	(0.07)	(0.13)		
black		-0.03	-0.08	-0.16		
		(0.02)	(0.05)	(0.09)		
hispanic		-0.10***	-0.34***	-0.60***		
		(0.01)	(0.05)	(0.08)		
C (1 (1	. 11	-				

The estimated effect of the smoking ban in the logit model depends on the values of the other variable included in the regression. The estimated effects for various values of these regressors is given question (h). The t-statistic for the coefficient on smkban is -5.2, very similar to the value for the linear probability and probit models. The F-statistic is significant at the 1% level, as in the linear probability model.

(h) i. Mr. A is white, non-Hispanic, 20 years old, and a high school dropout. Using the probit regression and assuming that Mr. A is not subject to a workplace smoking ban, calculate the probability that Mr. A smokes. Carry out the calculation again, assuming that he is subject to a workplace smoking ban. What is the effect of the smoking ban on the probability of smoking?

```
> # (i)
> # computation and results
> # predict probability of binary responses
> probA.probit <- predict(probit, type = "response",</pre>
                          newdata = data.frame(smkban = c(0, 1), age = 20,
+
                                                age2 = 20^2, hsdrop = 1,
                                                hsgrad = 0, colsome = 0, colgrad = 0,
                                                female = 0, black = 0, hispanic = 0)
> probA.probit
0.4641020 0.4017831
> # compute difference in response probabilities
> diff(probA.probit)
-0.06231886
```


ii. Repeat (i) for Ms. B, a female, black, 40-year-old college graduate.

iii. Repeat (i) – (ii) using the linear probability model.

```
> # (iii)
> # computation and results
> probA.lpm <- predict(lpm2,</pre>
                       newdata = data.frame(smkban = c(0, 1), age = 20,
                                             age2 = 20^2, hsdrop = 1,
                                             hsqrad = 0, colsome = 0, colgrad = 0,
                                             female = 0, black = 0, hispanic = 0)
> probA.lpm
0.4493721 0.4021323
> diff(probA.lpm)
-0.04723987
> probB.lpm <- predict(lpm2,</pre>
                       newdata = data.frame(smkban = c(0, 1), age = 40,
                                             age2 = 40^2, hsdrop = 0,
                                             hsgrad = 0, colsome = 0, colgrad = 1,
                                             female = 1, black = 1, hispanic = 0)
> probB.lpm
0.14596103 0.09872116
> diff(probB.lpm)
-0.04723987
```


iv. Repeat (i) - (ii) using the logit model.

```
> # (iv)
> # computation and results
> probA.logit <- predict(logit, type = "response",
                         newdata = data.frame(smkban = c(0, 1), age = 20,
                                               age2 = 20^2, hsdrop = 1,
                                               hsgrad = 0, colsome = 0, colgrad = 0,
                                               female = 0, black = 0, hispanic = 0))
> probA.logit
0.4723103 0.4078402
> diff(probA.logit)
-0.06447005
> probB.logit <- predict(logit, type = "response",</pre>
                         newdata = data.frame(smkban = c(0, 1), age = 40,
                                               age2 = 40^2, hsdrop = 0,
                                               hsgrad = 0, colsome = 0, colgrad = 1,
                                               female = 1, black = 1, hispanic = 0)
> probB.logit
0.1405121 0.1117418
> diff(probB.logit)
-0.02877033
```


v. Based on your answers to (i) – (iv), do the logit, probit, and linear probability models differ? If they so, which results make most sense? Are the estimated effects large in a real world sense?

To calculate the probabilities, take the estimation results from the probit model to calculate $\hat{z} = x^T \hat{\beta}$ and calculate the cumulative standard normal distribution at i.e., $\Pr(\mathtt{smoke}) = \Phi(\hat{z})$. Do a similar calculation for the logit and linear probability models.

The linear probability model assumes that the marginal impact of workplace smoking bans on the probability of an individual smoking is not dependent on the other characteristics of the individual. On the other hand, the probit and logit models' predicted marginal impact of workplace smoking bans on the probability of smoking depends on individual characteristics. Therefore, in the linear probability model, the marginal impact of workplace smoking bans is the same for Mr. A and Mr. B, although their profiles would suggest that Mr. A has a higher probability of smoking based on his characteristics. Looking at the probit results, the marginal impact of workplace smoking bans on the odds of smoking are different for Mr. A and Ms. B, because their different characteristics are incorporated into the impact of the laws on the probability of smoking. The same is true of the logit model. In this sense the probit and logit model are likely more appropriate, and they give very similar answers.

Are the impacts of workplace smoking bans "large" in a real-world sense? Most people might believe the impacts are large. For example, for people with characteristics like Mr. A the reduction on the probability is great than 6% (from the probit and logit models). Applied to a large number of people, this translates into a 6% reduction in the number of people smoking.

Thank you

Francisco Tavares Garcia

Academic Tutor | School of Economics

tavaresgarcia.github.io

Reference

Stock, J. H., & Watson, M. W. (2019). Introduction to Econometrics, Global Edition, 4th edition. Pearson Education Limited.

CRICOS code 00025B

