Pós-Graduação Engenharia de Software

Modelagem de

Modelo ER

Objetivo

 Estudar o modelo Entidade-Relacionamento; um modelo conceitual amplamente difundido e utilizado pelos projetistas de bancos de dados.

Principais tópicos

- Introdução ao Modelo Entidade-Relacionamento
- Conceitos:
 - Entidades e Atributos
 - Atributos Compostos
 - Atributos Multivalorados
 - Atributos Derivados
 - Valores Nulos de Atributos
 - Tipos de Entidades
 - Atributos-Chaves

Modelo ER

Principais tópicos (continuação)

- Relacionamentos e Tipos de Relacionamentos
- Graus de um Tipo de Relacionamento
- Relacionamento como um Atributo
- Papéis e Relacionamentos Recursivos
- Restrições sobre Tipos de Relacionamentos
 - Razão de Cardinalidade
 - Restrição de Participação
 - Restrição Estrutural
- Atributo de Relacionamento
- Tipo de Entidade-Fraca
- Notação do DER
 - O DER do Sistema Companhia
- Questões

Introdução ao Modelo ER

O Modelo Entidade-Relacionamento (MER):

- é um modelo de dados de alto-nível criado com o objetivo de representar a semântica associada aos dados do minimundo.
- utilizado na fase de projeto conceitual, onde o esquema conceitual do banco de dados da aplicação é concebido.
- Seus conceitos são intuitivos, permitindo que projetistas de banco de dado capturem os conceitos associados aos dados da aplicação, sem a interferência da tecnologia específica de implementação do banco de dados.

Introdução ao Modelo ER

 O esquema conceitual criado usando-se o MER é chamado Diagrama Entidade-Relacionamento (DER).

MER: Conjunto de conceitos e elementos de modelagem que o projetista de banco de dados precisa <u>conhecer</u>.

DER: Resultado do processo de modelagem executado pelo projetista de dados que conhece o MER.

Entidades e Atributos

- O objeto mais elementar que o MER representa é a entidade.
- Uma entidade é algo do mundo real que possui uma existência independente.
 - Objetos, pessoas, empregado, entes, conceitos, "coisas", etc. do mundo real são representados como <u>Entidades</u>.
 - Cada Entidade tem propriedades particulares que são chamadas de Atributos.

Exemplo de uma Entidade

- Uma entidade EMPREGADO pode ser descrita pelo seu nome,idade, endereço, salário, etc.
- Uma entidade em particular terá um valor para cada um de seus atributos.

Atributos Compostos

 Alguns atributos podem ser divididos em subpartes com significados independentes.

Atributos Multivalorados

 Muitos atributos têm apenas um valor (univalorados). Porém existem atributos que podem ter um conjunto de valores (<u>Multivalorados</u>)

Atributos Derivados

- São atributos cujos valores devem ser obtidos após algum processamento utilizando informações obtidas do próprio banco de dados:
 - Idade = Data_Atual Data_Nascimento
 - Número de empregados de um determinado departamento

Valores Nulos de Atributos

- Algumas vezes pode acontecer de um atributo não possuir valor. Nesses casos, atribui-se um valor nulo (null) para esse atributo.
 - Apartamento = null para aqueles empregados que não residam em um prédio. (não aplicável)
- O valor null pode ser aplicado também para denotar que o valor é desconhecido.

Tipos de Entidades

 Entidades que têm a mesma "estrutura" e a mesma semântica, são representadas como Tipo de Entidade.

Atributo-Chave

- Uma restrição importante sobre entidades de um tipo de entidade é a restrição de atributo-chave.
 - Todo Tipo de Entidade deve ter um atributo-chave, seja ele um atributo simples ou composto.
 - Os valores de um atributo-chave devem ser distintos. Esta unicidade deve valer para quaisquer extensões desse tipo de entidade.

Relacionamentos e Tipos de Relacionamentos

 Um relacionamento é uma associação entre uma ou mais entidades

Grau de um Tipo de Relacionamento

 O Grau de um Tipo de Relacionamento = número de Tipos de Entidades Envolvidas

Relacionamento como Atributo

- O Tipo de Relacionamento
 - EMPREGADO TRABALHA_PARA DEPARTAMENTO
- Pode ser pensado como:
 - EMPREGADO possuindo um atributo DEPARTAMENTO ou
 - DEPARTAMENTO possuindo um atributo EMPREGADO (multivalorado)

Papéis

- Cada tipo de entidade que participa de um tipo de relacionamento possui um <u>papel</u> específico.
- No caso de:
 - EMPREGADO TRABALHA PARA DEPARTAMENTO,
- O papel de EMPREGADO é empregado ou trabalhador e do DEPARTAMENTO é empregador.
- A escolha do nome nem sempre é simples.

Papéis em Relacionamentos Recursivos

- Existem casos em que a indicação do papel é OBRIGATÓRIA.
- Por exemplo:
 - Em Tipos de Relacionamentos Recursivos

Papéis em Relacionamentos com Semântica Ambígua

- Em Tipos de Relacionamentos cuja semântica não fique clara ou seja ambígua:
 - EMPRESA CONTRATA DEPARTAMENTO
 - EMPRESA INVESTE PESSOA
 - DEPARTAMENTO GERENCIA PESSOA

Restrições sobre Tipos de Relacionamentos

Razão de Cardinalidade:

 especifica a quantidade de instâncias de relacionamentos em que uma entidade pode participar (1:1, 1:N, N:N)

Participação:

- especifica se a existência de uma entidade depende dela estar relacionada com outra entidade através de um relacionamento.
 - Total (Dependência existencial)
 - Parcial

Restrição Estrutural:

 Define o mínimo e máximo em que uma entidade pode participar de um relacionamento.

Razão de Cardinalidade

- 1:N
 - EMPREGADO TRABALHA_PARA DEPARTAMENTO

Razão de Cardinalidade

- 1:1:
 - EMPREGADO GERENCIA DEPARTAMENTO

Razão de Cardinalidade

- N:N
 - EMPREGADO TRABALHA_EM PROJETO

Restrição de Participação

- EMPREGADO TRABALHA_PARA DEPARTAMENTO

Empregado existe somente se estiver relacionado com algum departamento (Total)

Departamento pode existir mesmo não tendo nenhum empregado (Parcial)

Restrição Estrutural

- A restrição estrutural de:
 - EMPREGADO é (1,1), pois participa em
 - No mínimo em 1 e no máximo em 1 relacionamento
 - DEPARTAMENTO é (0, N), pois participa em
 - No mínimo 0 e no máximo N relacionamentos

Atributo de Relacionamento

 Os Tipos de Relacionamentos também podem ter Atributos.

• Exemplos:

- Quantidade de horas trabalhadas por um empregado em um dado projeto (Horas)
 - Pode ser representado como um atributo do relacionamento TRABALHA_EM
- Data em que um gerente começou a gerenciar um departamento (DataInício)
 - Pode ser representado como um atributo do relacionamento GERENCIA

Atributo de Relacionamento

- Atributos de Tipos de Relacionamentos 1:1 podem ser colocados em um dos Tipos de Entidades participantes
 - DataInício em
 - EMPREGADO GERENCIA DEPARTAMENTO

Atributo de Relacionamento

- Atributos de TR 1:N podem ser colocados no TE que está no lado N do relacionamento
 - DataInício em
 - EMPREGADO <u>TRABALHA_PARA</u> DEPARTAMENTO

Tipo de Entidade-Fraca

 São Tipos de Entidades que não têm atributoschaves. Entidades só podem ser identificadas através da associação com uma outra Entidade.

Tipo de Entidade-Fraca

- Um tipo de entidade-fraca sempre tem restrição de participação total (dependência existencial) com respeito ao seu tipo de relacionamento de identificação, uma vez que não é possível identificar uma entidade-fraca sem o correspondente tipo de entidade proprietária.
- Um tipo de entidade-fraca pode ter uma chaveparcial, que é um conjunto de atributos que pode univocamente identificar entidades-fracas relacionadas à mesma entidade proprietária.

Notação do DER

O DER do Sistema Companhia

Questões

- Discuta o papel de um modelo de dados de alto-nível no projeto de banco de dados.
- Cite alguns possíveis casos onde o valor nulo (null) pode ser aplicado.
- 3. Defina os seguintes termos: entidade, atributo, valor de atributo, instância de relacionamento, atributo composto, atributo univalorado, atributo multivalorado, atributo derivado e atributo-chave.
- 4. Defina tipo de entidade. Descreva as diferenças entre entidade e tipo de entidade.

Questões

- 5. Defina tipo de relacionamento. Descreva as diferenças entre relacionamento e tipo de relacionamento.
- 6. Quando é necessário indicar papéis num DER?
- 7. Descreva as formas alternativas de especificar restrições sobre tipos de relacionamentos. Quais são as vantagens e desvantagens de cada uma?
- 8. Sobre quais condições um tipo de relacionamento pode se tornar um atributo de um tipo de entidade?
- 9. Qual o significado de um tipo de relacionamento recursivo? Dê alguns exemplos diferentes daquele apresentado.

Questões

- 10. Defina os termos: tipo de entidade proprietário da identificação, tipo de relacionamento de identificação e chave-parcial.
- 11. Um tipo de relacionamento de identificação pode ter grau maior que dois? Justifique a sua resposta através de um exemplo. (Pesquise na Internet ou em [EMLASRI 2005] para responder esta questão).
- 12. No DER do Sistema Companhia, indique as Restrições Estruturais em todos os seus Tipos de Relacionamentos.

Modelo ER

Referências Bibliográficas

- 1. Batini, C.; Ceri, S.; Navathe, S. Conceptual Database Design: An Entity-Relationship Approach. Benjamin/Cummings, Redwood City, Calif., 1992.
- 2. Date, C.J., Introdução a Sistemas de Banco de Dados, tradução da 8 edição americana, Campus, 2004.
- 3. Elmasri, R.; Navathe, S.B. Fundamentals of Database Systems, 4th ed. Addison-Wesley, Reading, Mass., 2003.
- 4. Ferreira, J.E.; Finger, M., Controle de concorrência e distribuição de dados: a teoria clássica, suas limitações e extensões modernas, Coleção de textos especialmente preparada para a Escola de Computação, 12a, São Paulo, 2000.

Modelo ER

Referências Bibliográficas

- Heuser, C.A., Projeto de Banco de Dados., Sagra Luzzatto, 1 edição, 1998.
- 6. Korth, H.; Silberschatz, A. Sistemas de Bancos de Dados. 3a. Edição, Makron Books, 1998.
- 7. Ramakrishnan, R.; Gehrke, J., Database Management Systems, 2 nd ed., McGraw-Hill, 2000.
- 8. Teorey, T.; Lightstone, S.; Nadeau, T. Projeto e modelagem de bancos de dados. Editora Campus, 2007.

Referências Web

 Takai, O.K; Italiano, I.C.; Ferreira, J.E. Introdução a Banco de Dados. Apostila disponível no site: http://www.ime.usp.br/~jef/apostila.pdf. (07/07/2005).

Pós-Graduação Engenharia de Software

Obrigado!

