import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

loading the dataset to Pandas DataFrame
cdd=pd.DataFrame()
cdd=pd.read_csv("/content/crd_data.csv")
cdd

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	• • •	V21	V22	V23
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787		-0.018307	0.277838	-0.110474
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425		-0.225775	-0.638672	0.101288
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654		0.247998	0.771679	0.909412
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024		-0.108300	0.005274	-0.190321
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739		-0.009431	0.798278	-0.137458
•••														
284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918215	7.305334	1.914428		0.213454	0.111864	1.014480
284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330	0.294869	0.584800		0.214205	0.924384	0.012463
284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827	0.708417	0.432454		0.232045	0.578229	-0.037501
284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180	0.679145	0.392087		0.265245	0.800049	-0.163298
284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006	-0.414650	0.486180		0.261057	0.643078	0.376777
284807 rd	ows × 31 col	umns												

First 5 rows of the dataset
cdd.head()

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	•••	V21	
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787		-0.018307	0.277
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425		-0.225775	-0.638
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654		0.247998	0.771
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024		-0.108300	0.005
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739		-0.009431	0.798
5 ro	5 rows × 31 columns												

Last 5 rows of the dataset cdd.tail()

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9		\
284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918215	7.305334	1.914428		0.2134
284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330	0.294869	0.584800		0.2142
284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827	0.708417	0.432454		0.2320
284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180	0.679145	0.392087		0.2652
284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006	-0.414650	0.486180		0.2610
5 rows × 3	5 rows × 31 columns											

information about the dataset cdd.info()

<class 'pandas.core.frame.dataframe'=""></class>										
RangeIndex: 284807 entries, 0 to 284806										
Data columns (total 31 columns):										
#	Column	Non-Null Count Dtype								
0	Time	284807 non-null float64								
1	V1	284807 non-null float64								
2	V2	284807 non-null float64								
3	V3	284807 non-null float64								
4	V4	284807 non-null float64								
5	V5	284807 non-null float64								
6	V6	284807 non-null float64								

```
7
   V7
            284807 non-null float64
8
   V8
            284807 non-null float64
9
    V9
            284807 non-null float64
            284807 non-null float64
10
   V10
   V11
            284807 non-null float64
11
   V12
            284807 non-null float64
12
13
   V13
            284807 non-null float64
14
   V14
            284807 non-null float64
            284807 non-null float64
15
   V15
   V16
            284807 non-null float64
16
            284807 non-null float64
17
   V17
   V18
            284807 non-null float64
18
19
   V19
            284807 non-null float64
   V20
            284807 non-null float64
20
   V21
            284807 non-null float64
21
22 V22
            284807 non-null float64
   V23
            284807 non-null float64
23
24
   V24
            284807 non-null float64
25
   V25
            284807 non-null float64
26
   V26
            284807 non-null float64
            284807 non-null float64
27
   V27
   V28
28
            284807 non-null float64
   Amount 284807 non-null float64
30 Class
           284807 non-null int64
```

dtypes: float64(30), int64(1)

memory usage: 67.4 MB

Checking the missing values in each column cdd.isna().sum()

> Time 0 0 ٧1 V2 0 V3 0 0 ۷4 V5 0 0 V6 V7 0 V8 0 V9 0 V10 0 V11 0 V12 0 V13 0 V14 V15 0 V16 V17 0 0 V18

```
V19
          0
V20
          0
V21
V22
          0
V23
          0
V24
          0
V25
          0
V26
          0
V27
          0
V28
          0
Amount
          0
Class
dtype: int64
```

Distribution of legit transaction and fradulant transaction
cdd['Class'].value_counts()

```
0 2843151 492
```

Name: Class, dtype: int64

The dataset is highly unbalanced.

0:- Normal transaction

mean

std

min

1 :- Fradulant transaction

88.291022

0.000000

250.105092

```
25% 5.650000
50% 22.000000
75% 77.050000
max 25691.160000
```

Name: Amount, dtype: float64

fraud.Amount.describe()

count	492.000000
mean	122.211321
std	256.683288
min	0.000000
25%	1.000000
50%	9.250000
75%	105.890000
may	2125 870000

Name: Amount, dtype: float64

cdd.groupby('Class').mean()

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	•••	
Class												
0	94838.202258	0.008258	-0.006271	0.012171	-0.007860	0.005453	0.002419	0.009637	-0.000987	0.004467		-0.0
1	80746.806911	-4.771948	3.623778	-7.033281	4.542029	-3.151225	-1.397737	-5.568731	0.570636	-2.581123		0.3
2 rows >	30 columns											

Under Sampling

Build a sample dataset containing similar distribution of Normal Transaction and Fradulant Transaction

Number of Fradulant Transaction: - 492

legit_sample=legit.sample(n=492)

Concatinating two dataframes

new_dataset=pd.concat([legit_sample, fraud], axis=0)
new_dataset.head()

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	• • •	1	
208301	137056.0	2.142093	0.648832	-3.614811	0.347483	1.857524	-0.707254	0.725239	-0.291990	-0.217878		-0.0843	
162107	114828.0	-0.104303	1.107666	-0.352884	-0.474848	0.473886	-1.151622	0.867878	-0.033408	0.371437		-0.3624	
274298	165946.0	-0.479484	1.323058	0.163166	0.391006	1.669099	-0.315946	1.700516	-0.490564	-1.289008		0.2148	
238296	149607.0	1.995117	-0.201209	-1.085143	0.017048	-0.027372	-0.027326	-0.613795	0.184730	1.097077		-0.2510	
79897	58228.0	1.364625	-0.849058	0.360596	-0.524372	-1.196476	-0.523307	-0.778607	0.030202	0.015735		-0.1316	
5 rows × 3	5 rows × 31 columns												

new_dataset.tail()

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	• • •	V2	
279863	169142.0	-1.927883	1.125653	-4.518331	1.749293	-1.566487	-2.010494	-0.882850	0.697211	-2.064945		0.77858	
280143	169347.0	1.378559	1.289381	-5.004247	1.411850	0.442581	-1.326536	-1.413170	0.248525	-1.127396		0.37061	
280149	169351.0	-0.676143	1.126366	-2.213700	0.468308	-1.120541	-0.003346	-2.234739	1.210158	-0.652250		0.75182	
281144	169966.0	-3.113832	0.585864	-5.399730	1.817092	-0.840618	-2.943548	-2.208002	1.058733	-1.632333		0.58327	
281674	170348.0	1.991976	0.158476	-2.583441	0.408670	1.151147	-0.096695	0.223050	-0.068384	0.577829		-0.16435	
5 rows × 3	5 rows × 31 columns												

new_dataset['Class'].value_counts()

0 4921 492

Name: Class, dtype: int64

Now, the data is uniformly distributed.

new dataset.groupby('Class').mean()

```
Time
                            ۷1
                                      V2
                                                 ٧3
                                                                      V5
                                                                                ۷6
                                                                                          V7
                                                                                                     V8
                                                                                                               V9 ...
Class
        94003.871951 -0.048218 -0.041500
                                           0.041474 -0.048248
                                                               0.013213
                                                                          0.055639
                                                                                    0.051425 -0.002005
                                                                                                         0.071083
                                                                                                                     ... 0.0
        80746.806911 -4.771948 3.623778 -7.033281
                                                     4.542029 -3.151225 -1.397737 -5.568731 0.570636 -2.581123
                                                                                                                    ... 0.3
2 rows × 30 columns
```

```
# Splitting the data into features and targets
x = new_dataset.drop(columns='Class', axis=1)
y= new_dataset['Class']
print(x)
                Time
                           ٧1
                                     V2
                                               V3
                                                         V4
                                                                  V5
                                                                            V6 \
    208301 137056.0 2.142093 0.648832 -3.614811 0.347483 1.857524 -0.707254
    162107
            114828.0 -0.104303 1.107666 -0.352884 -0.474848 0.473886 -1.151622
    274298
           165946.0 -0.479484 1.323058 0.163166 0.391006 1.669099 -0.315946
    238296 149607.0 1.995117 -0.201209 -1.085143 0.017048 -0.027372 -0.027326
    79897
             58228.0 1.364625 -0.849058 0.360596 -0.524372 -1.196476 -0.523307
     279863
           169142.0 -1.927883 1.125653 -4.518331 1.749293 -1.566487 -2.010494
```

```
280143
      169347.0 1.378559 1.289381 -5.004247 1.411850 0.442581 -1.326536
280149 169351.0 -0.676143 1.126366 -2.213700 0.468308 -1.120541 -0.003346
281144 169966.0 -3.113832 0.585864 -5.399730 1.817092 -0.840618 -2.943548
281674 170348.0 1.991976 0.158476 -2.583441 0.408670 1.151147 -0.096695
             V7
                       V8
                                V9
                                              V20
                                                       V21
                                                                 V22 \
208301 0.725239 -0.291990 -0.217878
                                   ... -0.057340 -0.084325 -0.048553
162107 0.867878 -0.033408 0.371437
                                    ... 0.018130 -0.362419 -0.913134
274298 1.700516 -0.490564 -1.289008
                                    ... 0.002507 0.214844 0.750064
238296 -0.613795 0.184730 1.097077
                                    ... -0.150184 -0.251018 -0.645947
79897 -0.778607 0.030202 0.015735
                                    ... -0.033862 -0.131643 -0.476452
279863 -0.882850 0.697211 -2.064945
                                    ... 1.252967 0.778584 -0.319189
280143 -1.413170 0.248525 -1.127396
                                    ... 0.226138 0.370612 0.028234
280149 -2.234739 1.210158 -0.652250
                                    ... 0.247968 0.751826 0.834108
281144 -2.208002 1.058733 -1.632333
                                    ... 0.306271 0.583276 -0.269209
281674 0.223050 -0.068384 0.577829
                                    ... -0.017652 -0.164350 -0.295135
            V23
```

V26

V27

V28

Amount

V25

V24

```
208301 -0.191678 -0.509830 0.526800 0.726535 -0.084407 -0.033064
                                                                         0.76
    162107 0.180855 0.992046 -0.489897 0.094163 0.319381 0.143981
                                                                         4.49
     274298 -0.414222 0.728890 0.475903 -0.437212 -0.320117 -0.112640
                                                                         3.50
     238296 0.344530 0.136674 -0.464391 -0.307700 0.012947 -0.017958
                                                                         3.69
     79897 -0.026151 -0.166936 0.416095 -0.296530 -0.000416 0.011999
                                                                        37.00
     279863 0.639419 -0.294885
                                0.537503
                                         0.788395
                                                   0.292680
                                                             0.147968
                                                                       390.00
     280143 -0.145640 -0.081049 0.521875
                                         0.739467
                                                   0.389152 0.186637
                                                                         0.76
     280149 0.190944 0.032070 -0.739695
                                         0.471111 0.385107 0.194361
                                                                        77.89
     281144 -0.456108 -0.183659 -0.328168
                                         0.606116 0.884876 -0.253700
                                                                       245.00
     281674 -0.072173 -0.450261 0.313267 -0.289617 0.002988 -0.015309
                                                                        42.53
     [984 rows x 30 columns]
print(y)
     208301
              0
     162107
     274298
     238296
     79897
     279863
              1
     280143
     280149
              1
     281144
              1
     281674
              1
     Name: Class, Length: 984, dtype: int64
# Splitting the data into training data and testing data
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.2,random_state=2, stratify=y)
print(x.shape, x_train.shape, x_test.shape)
     (984, 30) (787, 30) (197, 30)
Model training
```

Logistic Regression

```
model = LogisticRegression()
# Training the Logistic Regression model with Training Data
 model.fit(x_train, y_train)
     ▼ LogisticRegression
     LogisticRegression()
model evaluation on the basis of the accuracy score
# Accuracy on training data
x_train_prediction = model.predict(x_train)
training data accuracy = accuracy score(x train prediction, y train)
print('Accuracy on training data :', training_data_accuracy)
     Accuracy on training data : 0.9148665819567979
# Accuracy on test data
x test prediction = model.predict(x test)
test_data_accuracy = accuracy_score(x_test_prediction, y_test)
print('Accuracy on test data :', test_data_accuracy)
    Accuracy on test data : 0.9137055837563451
```

Could not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge.