CSE 208: Data Structure and Algorithms II

Introduction and Graph Basics

Dr. Mohammed Eunus Ali Professor CSE, BUET

GRAPHS

- ? A graph G = (V, E)
 - V = set of vertices
 - $E = set of edges = subset of V \times V$
 - Thus $|E| = O(|V|^2)$

Graph Variations

- ? Variations:
 - A *connected graph* has a path from every vertex to every other
 - In an undirected graph:
 - ? Edge (u,v) = edge(v,u)
 - ? No self-loops
 - In a *directed* graph:
 - ? Edge (u,v) goes from vertex u to vertex v, notated u→v
 - ? Self loops are allowed.

Graph Variations

- ? More variations:
 - A weighted graph associates weights with either the edges or the vertices
 - ? E.g., a road map: edges might be weighted w/ distance
 - A *multigraph* allows multiple edges between the same vertices
 - ? E.g., the call graph in a program (a function can get called from multiple points in another function)

GRAPHS

- ? We will typically express running times in terms of |E| and |V| (often dropping the |'s)
 - If $|E| \approx |V|^2$ the graph is *dense*
 - If $|E| \approx |V|$ the graph is *sparse*
- ? If you know you are dealing with dense or sparse graphs, different data structures may make sense

Representing Graphs

- ? Assume $V = \{1, 2, ..., n\}$
- ? An *adjacency matrix* represents the graph as a *n* x *n* matrix A:
 - A[i, j] = 1 if edge $(i, j) \in E$ (or weight of edge) = 0 if edge $(i, j) \notin E$

? Example:

A	1	2	3	4
1				
2				
3			??	
4				

? Example:

A	1	2	3	4
1	0	1	1	0
2	\cap	0	1	0
3	0	0	0	0
4	0	0	1	0

- ? Space: $\Theta(V^2)$.
 - Not memory efficient for large graphs.
- ? Time: to list all vertices adjacent to u: $\Theta(V)$.
- ? Time: to determine if $(u, v) \in E$: $\Theta(1)$.

- ? The adjacency matrix is a dense representation
 - Usually too much storage for large graphs
 - But can be very efficient for small graphs
- ? Most large interesting graphs are sparse
 - E.g., planar graphs, in which no edges cross, have |E| = O(|V|) by Euler's formula
 - For this reason the *adjacency list* is often a more appropriate respresentation

Graphs: Adjacency List

- ? Adjacency list: for each vertex $v \in V$, store a list of vertices adjacent to v
- ? Example:
 - $Adj[1] = \{2,3\}$
 - $Adj[2] = \{3\}$
 - $Adj[3] = {}$
 - $Adj[4] = \{3\}$
- ? Variation: can also keep a list of edges coming *into* vertex

Graphs: Adjacency List

? For directed graphs:

Sum of lengths of all adj. lists is

$$\sum_{v \in V} \text{out-degree}(v) = |E|$$

• Total storage: $\Theta(V+E)$ leaving v

? For undirected graphs:

Sum of lengths of all adj. lists is

$$\sum_{v \in V} \text{degree}(v) = 2 | E |$$
No. of edges incident on v . Edge (u,v) is

• Total storage: $\Theta(V+E)$ incident on vertices u and v.

- ? Path
 - Sequence of nodes $n_1, n_2, \dots n_k$
 - Edge exists between each pair of nodes n_i , n_{i+1}
 - Example
 - ? A, B, C is a path

- ? Path
 - Sequence of nodes $n_1, n_2, \dots n_k$
 - Edge exists between each pair of nodes n; , n; , n; , 1
 - Example
 - ? A, B, C is a path
 - ? A, E, D is not a path

- ? Cycle
 - Path that ends back at starting node
 - Example
 - ? A, E, A

- ? Cycle
 - Path that ends back at starting node
 - Example
 - ? A, E, A
 - ? A, B, C, D, E, A
- ? Simple path
 - No cycles in path
- ? Acyclic graph
 - No cycles in graph

GRAPH SEARCHING

- ? Given: a graph G = (V, E), directed or undirected
- ? Goal: methodically explore every vertex and every edge
- ? Ultimately: build a tree on the graph
 - Pick a vertex as the root
 - Choose certain edges to produce a tree
 - Note: might also build a *forest* if graph is not connected

Breadth-First Search

- ? "Explore" a graph, turning it into a tree
 - One vertex at a time
 - Expand frontier of explored vertices across the *breadth* of the frontier
- ? Builds a tree over the graph
 - Pick a *source vertex* to be the root
 - Find ("discover") its children, then their children, etc.

BFS - Version -1

```
BFS (s,Adj)
    level = {s:0}
    parent ={s:null}
    i = 0
    frontiers = [s]
    while frontiers:
         next = []
         for u in frontiers
             for v in Adj[u]
                  if v is not in level
                      level[v] = i
                      paren[v] = u
                      next.append(v)
         i = i+1
         frontiers = next
```

Breadth-First Search

? Input: Graph G = (V, E), either directed or undirected, and source vertex $s \in V$.

? Output:

- d[v] = distance (smallest # of edges, or shortest path) from s to v, for all $v \in V$. $d[v] = \infty$ if v is not reachable from s.
- $\pi[v] = u$ such that (u, v) is last edge on shortest path $s \sim v$.
 - ? *u* is *v*'s predecessor.
- Builds breadth-first tree with root *s* that contains all reachable vertices.

Breadth-First Search

- ? Associate vertex "colors" to guide the algorithm
 - White vertices have not been discovered
 - ? All vertices start out white
 - Grey vertices are discovered but not fully explored
 - ? They may be adjacent to white vertices
 - Black vertices are discovered and fully explored
 - ? They are adjacent only to black and gray vertices
- ? Explore vertices by scanning adjacency list of grey vertices

```
BFS(G,s)
1. for each vertex u in V[G] - \{s\}
2
           color[u] \leftarrow \text{white}
                                                        initialization
          d[u] \leftarrow \infty
          \pi[u] \leftarrow \text{nil}
  \operatorname{color}[s] \leftarrow \operatorname{gray}
6 \text{ d}[s] \leftarrow 0
                                                        access source s
7 \pi[s] \leftarrow \text{nil}
8 Q \leftarrow \Phi
  enqueue(Q,s)
10 while Q \neq \Phi
      u \leftarrow dequeue(Q)
      for each v in Adj[u]
13
             if color[v] = white
14
                   color[v] \leftarrow gray
                   d[v] \leftarrow d[u] + 1
15
16
                   \pi[v] \leftarrow u
                   enqueue(Q,v)
17
      color[u] \leftarrow black
18
```

white: undiscovered gray: discovered black: finished

Q: a queue of discovered vertices

 $\operatorname{color}[v]$: color of v

d[v]: distance from s to v

 $\pi[u]$: predecessor of v

 \mathbf{Q} :

 $\mathbf{Q:} \quad \mathbf{r} \quad \mathbf{t} \quad \mathbf{x}$

 $\mathbf{Q:} \quad \mathbf{t} \quad \mathbf{x} \quad \mathbf{v}$

 $\mathbf{Q}: \mathbf{x} \quad \mathbf{v} \quad \mathbf{u}$

Q: v u y

Q: u y

Q: Ø

Analysis of BFS

- ? Initialization takes O(|V|).
- ? Traversal Loop
 - After initialization, each vertex is enqueued and dequeued at most once, and each operation takes O(1). So, total time for queuing is O(|V|).
 - The adjacency list of each vertex is scanned at most once. The total time spent in scanning adjacency lists is O(|E|).
- ? Summing up over all vertices => total running time of BFS is O(|V| + |E|)

Breadth-first Tree

- ? For a graph G = (V, E) with source s, the **predecessor subgraph** of G is $G_{\pi} = (V_{\pi}, E_{\pi})$ where
 - $V_{\pi} = \{ v \subseteq V : \pi[v] \neq nil \} \square \{s\}$
 - $E_{\pi} = \{(\pi[v], v) \in E : v \in V_{\pi} \{s\}\}$
- ? The predecessor subgraph G_{π} is a **breadth-first tree** if:
 - ullet V_{π} consists of the vertices reachable from s and
 - for all $v \in V_{\pi}$, there is a unique simple path from s to v in G_{π} that is also a shortest path from s to v in G.
- ? The edges in E_{π} are called **tree edges**. $|E_{\pi}| = |V_{\pi}| 1$.

Depth-first Search (DFS)

- ? Explore edges out of the most recently discovered vertex v.
- ? When all edges of v have been explored, backtrack to explore other edges leaving the vertex from which v was discovered (its predecessor).
- ? "Search as deep as possible first."
- ? Continue until all vertices reachable from the original source are discovered.
- ? If any undiscovered vertices remain, then one of them is chosen as a new source and search is repeated from that source.

DFS - 1

Depth-first Search

- ? Input: G = (V, E), directed or undirected. No source vertex given!
- ? Output:
 - 2 timestamps on each vertex.
 - ? d[v] = discovery time (v turns from white to gray)
 - f[v] = finishing time (v turns from gray to black)
 - $\pi[v]$: predecessor of v = u, such that v was discovered during the scan of u's adjacency list.
 - Depth-first forest

Depth-first Search

- ? Coloring scheme for vertices as BFS.
 - A vertex is "discovered" the first time it is encountered during the search.
 - A vertex is "finished" if it is a leaf node or all vertices adjacent to it have been finished.
 - White before discovery, gray while processing and black when finished processing

$$1 \le d[u] < f[u] \le 2 |V|$$

PSEUDOCODE

$\overline{\mathrm{DFS}(G)}$

- 1. **for** each vertex $u \in V[G]$
- 2. **do** $color[u] \leftarrow$ white
- 3. $\pi[u] \leftarrow \text{NIL}$
- 4. $time \leftarrow 0$
- 5. **for** each vertex $u \in V[G]$
- 6. **do if** color[u] = white
- 7. **then** DFS-Visit(u)

Uses a global timestamp *time*.

DFS-Visit(u)

- 1. $color[u] \leftarrow GRAY$ // White vertex u has been discovered
- 2. $time \leftarrow time + 1$
- $|3. d[u] \leftarrow time$
- 4. **for** each $v \in Adj[u]$
 - . **do if** color[v] = WHITE
- 6. $\mathbf{then} \ \pi[v] \leftarrow u$
- 7. DFS-Visit(v)
- 8. $color[u] \leftarrow BLACK$ // Blacken u; it is finished.
- 9. $f[u] \leftarrow time \leftarrow time + 1$

Analysis of DFS

- ? Loops on lines 1-3 & 5-7 take $\Theta(V)$ time, excluding time to execute DFS-Visit.
- ? DFS-Visit is called once for each white vertex $v \in V$ when it's painted gray the first time. Lines 4-7 of DFS-Visit is executed $|\operatorname{Adj}[v]|$ times. The total cost of executing DFS-Visit is $\sum_{v \in V} |\operatorname{Adj}[v]| = \Theta(E)$
- ? Total running time of DFS is $\Theta(|V| + |E|)$.

Depth-First Trees

- ? Predecessor subgraph defined slightly different from that of BFS.
- ? The predecessor subgraph of DFS is $G_{\pi} = (V, E_{\pi})$ where $E_{\pi} = \{(\pi[v], v) : v \in V \text{ and } \pi[v] \neq nil\}.$
 - How does it differ from that of BFS?
 - The predecessor subgraph G_{π} forms a depth-first forest composed of several depth-first trees. The edges in E_{π} are called tree edges.

TIME-STAMP STRUCTURE IN DFS

? There is also a nice structure to the time stamps, which is referred to as *Parenthesis Structure*.

Theorem 22.7

For all u, v, exactly one of the following holds:

- 1. d[u] < f[u] < d[v] < f[v] or d[v] < f[v] < d[u] < f[u] and neither u nor v is a descendant of the other.
- 2. d[u] < d[v] < f[v] < f[u] and v is a descendant of u.
- 3. d[v] < d[u] < f[u] < f[v] and u is a descendant of v.

DFS: KINDS OF EDGES

- ? Consider a directed graph G = (V, E). After a DFS of graph G we can put each edge into one of four classes:
 - A **tree edge** is an edge in a DFS-tree.
 - A back edge connects a vertex to an ancestor in a DFS-tree. Note that a self-loop is a back edge.
 - A **forward edge** is a non-tree edge that connects a vertex to a descendent in a DFS-tree.
 - A **cross edge** is any other edge in graph G. It connects vertices in two different DFS-tree or two vertices in the same DFS-tree neither of which is the ancestor of the other.

Example of Classifying Edges

CLASSIFYING EDGES OF A DIGRAPH

- ? (u, v) is:
 - Tree edge if v is white
 - Back edge if v is gray
 - Forward or cross if v is black
- ? (u, v) is:
 - Forward edge if v is black and d[u] < d[v] (v was discovered after u)
 - Cross edge if v is black and d[u] > d[v] (u discovered after v)

DFS: KINDS OF EDGES

```
by with edge classification. G must be a
DFS-Visit(u)
directed graph
        color[u] \leftarrow GRAY
2.
        time \leftarrow time + 1
3.
        d[u] \leftarrow time
4.
5.
        for each vertex v adjacent to u
           do if color[v] \leftarrow BLACK
6.
               then if d[u] < d[v]
7.
8.
                       then Classify (u, v) as a forward edge
                       else Classify (u, v) as a cross edge
9.
               if color[v] \leftarrow GRAY
10.
                       then Classify (u, v) as a back edge
11.
               if color[v] \leftarrow WHITE
12.
                       then \pi[v] \leftarrow u
13.
                               Classify (u, v) as a tree edge
                              DFS-Visit(v)
14.
         color[u] \leftarrow BLACK
15.
         time \leftarrow time + 1
16.
17.
         f[u] \leftarrow time
```

DFS: KINDS OF EDGES

- ? Suppose G be an undirected graph, then we have following edge classification:
 - **Tree Edge** an edge connects a vertex with its parent.
 - **Back Edge** a non-tree edge connects a vertex with an ancestor.
 - **Forward Edge** There is no forward edges because they become back edges when considered in the opposite direction.
 - **Cross Edge** There cannot be any cross edge because every edge of G must connect an ancestor with a descendant.

Some Applications of BFS and DFS

? BFS

- To find the shortest path from a vertex *s* to *a* vertex *v* in an unweighted graph
- To find the length of such a path
- Find the bipartiteness of a graph.

? DFS

- To find a path from a vertex s to a vertex v.
- To find the length of such a path.
- To find out if a graph contains cycles

Application of BFS: Bipartite Graph

? Graph G = (V,E) is **bipartite** iff V can be partitioned into two sets of nodes A and B such that each edge has one end in A and the other end in B

Alternatively:

- Graph G = (V,E) is bipartite iff all its cycles have even length
- Graph G = (V,E) is bipartite iff nodes can be coloured using two colours

Note: graphs without cycles (trees) are bipartite

Application of BFS: Bipartite Graph

Question: given a graph G, how to test if the graph is bipartite?

Application of BFS: Bipartite Graph

```
For each vertex u in V[G] - \{s\}
  do \operatorname{color}[u] \leftarrow \operatorname{WHITE}
       d[u] \leftarrow \infty
       partition[u] \leftarrow 0
\operatorname{color}[s] \leftarrow \operatorname{GRAY}
partition[s] \leftarrow 1
d[s] \leftarrow 0
Q \leftarrow [s]
while Queue 'Q' is non-empty
     do u \leftarrow \text{head} [Q]
         for each v in Adj[u] do
              if partition [u] = partition [v] then
         return 0
               else if color[v] \leftarrow WHITE then
                               color[v] \leftarrow gray
                               d[v] = d[u] + 1
                               partition[v] \leftarrow 3 - partition[u]
                               ENQUEŬĔ (Q, v)
         DEQUEUE (Q)
  Color[u] \leftarrow BLACK
Return 1
```

Application of DFS: Detecting Cycle for Directed Graph

```
DFS_{visit}(u)
color(u) \leftarrow GRAY
d[u] \leftarrow time \leftarrow time + 1
for each v adjacent to u do
   if color[v] \leftarrow GRAY then
             return "cycle exists"
   else if color[v] \leftarrow WHITE then
             predecessor[v] \leftarrow u
             DFS_visit(v)
color[u] \leftarrow BLACK
f[u] \leftarrow time \leftarrow time + 1
```

Application of DFS: Detecting Cycle for Underected Graph

```
DFS_{visit}(u)
color(u) \leftarrow GRAY
d[u] \leftarrow time \leftarrow time + 1
for each v adjacent to u do
   if \operatorname{color}[v] \leftarrow \operatorname{GRAY} and \pi[u] \neq v then
              return "cycle exists"
   else if color[v] \leftarrow WHITE then
              predecessor[v] \leftarrow u
              DFS_visit(v)
color[u] \leftarrow BLACK
f[u] \leftarrow time \leftarrow time + 1
```

TOPOLOGICAL SORT

Want to "sort" a directed acyclic graph (DAG).

Think of original DAG as a partial order.

Want a total order that extends this partial order.

TOPOLOGICAL SORT

- ? Performed on a DAG.
- ? Linear ordering of the vertices of G such that if $(u, v) \in E$, then u appears somewhere before v.

Topological-Sort (G)

- 1. call DFS(G) to compute finishing times f[v] for all $v \in V$
- 2. as each vertex is finished, insert it onto the front of a linked list
- **3. return** the linked list of vertices

Time: $\Theta(V + E)$.

THE END