Fuzzy Logic - II

Neural Networks & Fuzzy Logic (BITS F312)

Neuro-Fuzzy-GA Hybrid Systems

Why Hybridization?

- The three members have strengths in different contexts
- Objective is to combine their strengths
- And overcome their weaknesses
- Improved performance over wider ranges of variables
- Higher complexity

GA based Tuning of Fuzzy Systems

 Success of an FLC heavily depends on how appropriately the membership functions and the rule base have been defined

- They are designed from domain expertise
- For a few input-output variables may be manageable
- Difficult and less accurate when the variables and/or fuzzy parameters grow
- An optimizer helps in arriving at an optimal setting of the parameters

• Because of large number of parameters, traditional optimization tools are nearly inapplicable

 Requires some input-output data to be acquired along with the qualitative understanding about the behaviour of the phenomenon

Membership functions, scaling factors and rule base are tuned

Tuning of MF:

31.No.	24	2/2	y
1.	5.0	2.5	10 . 1
2.	3.5	-4.5	-8.2
3,	,	,	3
,	>	,	
1		1	,
*			
T		1	1,

Let, $a_1 \in [-25, -15]$ $a_2 \in [-15, -5]$ $a_3 \in [5, 15]$ $a_4 \in [15, 25]$

b, ∈ [5,15]

X1 . 12	NB	NS	2	PS	PB
NB	NB	NB	NS	NS	7
NS	NB			-2	
2	NS	NS	2	PS	PS
Ps	NS	2	PS	PS	PB
PB	2	PS	PS	PB	PB

Initial Population -

1	GA Str	. (3	6 bit)	Deviation	fitness
Sl. No.	010011	111000	0 001	$\overline{d}_1 = \pm \sum_{i=1}^{n} d_i $	$f_i = \frac{1}{\overline{d_i}}$
==	bi	b ₂		b ₆	,
2	S	*	Y		,
;				2	
N			,		

Tuning of Scaling Factors:

Tuning of Rule Base:

- ✓ Some rules may be redundant
- ✓ They may be removed taking help from the database

X1 , X2	NB	NS	2	PS	₽B
NB	NB	NB	NS	NS	7
NS	NB	NS	NS	-2	PS
2	NS	NS	2	PS	PS
Ps	NS	2	PS	PS	PB
PB	2	PS	PS	PB	PB

st.No.	24	2/2	y
1.	5.0	2.5	10 · 1
2.	3.5	-4.5	-8.2
3,	,	,	3
1	,)	1
T			1,

- ✓ Let '0' imply absence and '1' imply presence of a rule
- ✓ Hence a 25 bit long string will represent the entire rule base

String #1 corresponds to the following RB -

21 22	NB.	NS	7	PS	PB
NB	NB		NS	NS	-
NS	NB	-	_	-	PS
2	-	NS	2	PS	PS
PS	-	_	PS	PS	_
PB	2	PS	PS	-	-
	2	PS			_

fitness,
$$f_1 = \frac{1}{\overline{d_1} + P_1}$$
 where $P_1 = no. of rules present$

Generation of Rule Base:

- ✓ Designer does not have enough intuition to design the initial rule base
- ✓ GA can design the rule base that will fit the input-output data set

Let
$$NB \equiv 000$$

 $NS \equiv 001$
 $Z \equiv 010$
 $PS \equiv 011$
 $PB \equiv 100$

- ✓ Three bits are assigned to the consequent part of each rule
- ✓ Hence a 75 bit string for the consequent parts of the entire rule base

SLINO	GAS	tring (136 bi	+)			fitness
1.	110010	011110	10110 11100	001100	. 011	51
	bı	66	RB (25 bits)	Con. Con. of R1 of R2	Con. of R25	
1			1	•		i
N	N.		1			

Some Observations:

- ✓ Too long GA strings
- ✓ Switch to Real Coded GA

$$NB \equiv 000$$
 $NS \equiv 001$
 $Z \equiv 010$
 $PS \equiv 011$
 $PB \equiv 100$

✓ Mixed Real and Integer Valued Optimization

SENO	GA String	(136 bit	-)			fitness
1.	110010	011110	10110 11100			fi
	ы	6	RB (25 bits)	of RI of R2	con. of R25	. ,
			1			i
N			*			

- ✓ After going through the GA operations, we may not arrive at a valid consequent
- ✓ Hence number of output fuzzy sets may be increased to 8 or decreased to 4
- ✓ But neither will be symmetrical
- ✓ May be made symmetrical by dropping the Zero fuzzy set
- ✓ However, may lead to complexity in forming some Rules

SENO	GA String (136 bit)						fitness	
1.	110010		011110	10110 11100	001	100	.011	51
	bı		6	RB (25 bits)	Con. of RI	Con. of R2	Con. of R25	. ,
				1				ž.
N				,		4		

Michigan Approach:

- ✓ Each Rule is represented by a GA string
- ✓ Population size = Number of rules
- ✓ Hence RB is represented by the whole population

R1: 1 1 1

R2: 1 2 1

R3: 1 3 2

R25: 5 5 5

Pittsburgh Approach:

✓ Entire RB is represented by a single GA string

$$NB = 1$$
 $NS = 2$
 $2 = 3$
 $PS = 4$
 $PB = 5$

Fuzzy based Tuning of GA Parameters:

- \checkmark GA parameters p_c , p_m and N are set beforehand
- ✓ They are chosen intuitively

 ✓ An FLC is brought in to make the search more effective (i.e. to avoid premature convergence)

✓ Two diversity measure PDM1 and PDM2 are defined in Dynamic Parametric GA
(DPGA)

$$\checkmark PDM_1 = \frac{\bar{f}}{f_{best}} \in [0,1]$$

$$PDM_2 = \frac{f_{worst}}{\bar{f}} \in [0,1]$$

Typical Rules: If PDM1 is High Then $\triangle Pc$ is Positive

If PDM2 is Low Then \triangle Pm is Negative

Neuro-Fuzzy Systems

- ✓ Fuzzy parameters are learned
- ✓ Adaptivity and generalization
- ✓ On-line applications

Adaptive Neuro-Fuzzy Inference System (ANFIS)

- ✓ Sugeno Inference
- ✓ Algebraic Product T-norm
- ✓ Backpropagation learning

$$A_1(x_1) = \frac{1}{1 + e^{-b(x_1 - a_1)}}, A_2(x_1) = \frac{1}{1 + e^{-b(x_1 - a_1)}}$$

$$B_1(x_2) = \frac{1}{1 + e^{b_2(x_2 - a_2)}}$$
 $B_2(x_2) = \frac{1}{1 + e^{-b_2(x_2 - a_2)}}$

$$A_1$$
 A_2 $A_3(\cdot,\cdot)$ $A_4(\cdot,\cdot)$

$$y_1 = f_1 = C_{11} x_1 + C_{12} x_2 + C_{13}$$

$$y_2 = f_2 = C_{21} x_1 + C_{22} x_2 + C_{23}$$

$$y_3 = f_3 = C_{31} x_1 + C_{32} x_2 + C_{33}$$

$$y_4 = f_4 = C_{41} x_1 + C_{42} x_2 + C_{43}$$

$$\omega_{1} = A_{1}(\alpha_{1}) B_{1}(\alpha_{2})$$
 $\omega_{2} = A_{1}(\alpha_{1}) B_{2}(\alpha_{2})$
 $\omega_{3} = A_{2}(\alpha_{1}) B_{1}(\alpha_{2})$
 $\omega_{4} = A_{2}(\alpha_{1}) B_{2}(\alpha_{2})$

$$y = \frac{w_1 y_1 + w_2 y_2 + w_3 y_3 + w_4 y_4}{w_1 + w_2 + w_3 + w_4}$$

$$= \overline{w_1} y_1 + \overline{w_2} y_2 + \overline{w_3} y_3 + \overline{w_4} y_4$$

. 0		
	2.5	10.1
.5	-4.5	-8.2
,	*	1
,	,	1
	,5	.5 -4.5

$$E = \frac{1}{2} (T-y)^2$$

$$\Delta c_{ij} = -\eta \frac{\partial E}{\partial c_{ij}} = -\eta \frac{\partial E}{\partial y_i} \cdot \frac{\partial y_j}{\partial c_{ij}} = -\eta \frac{\partial E}{\partial y_i} \cdot \frac{\partial y_j}{\partial z_{ij}} \cdot \frac{\partial y_j}{\partial c_{ij}} = \eta \left(T - y\right) \cdot \overline{\omega}_i \cdot x_j$$

$$4e_{12} = -\eta \frac{\partial E}{\partial c_{12}} = -\eta \frac{\partial E}{\partial y_1} \cdot \frac{\partial y_1}{\partial c_{12}} = -\eta \frac{\partial E}{\partial y} \cdot \frac{\partial y}{\partial y_1} \cdot \frac{\partial y_1}{\partial c_{12}} = \eta \left(\tau - y\right) \cdot \overline{\omega}_1 \cdot \chi_2$$

$$\Delta C_{13} = -\eta \frac{\partial E}{\partial C_{13}} = -\eta \frac{\partial E}{\partial y_{1}} \cdot \frac{\partial y_{1}}{\partial c_{13}} = -\eta \frac{\partial E}{\partial y} \cdot \frac{\partial y_{1}}{\partial y_{1}} \cdot \frac{\partial y_{1}}{\partial c_{13}} = \eta \left(\tau - y \right) \overline{\omega}_{1}.$$

$$\Delta C_{21} = -\eta \frac{\partial E}{\partial C_{21}} = -\eta \frac{\partial E}{\partial Y_{2}} \cdot \frac{\partial Y_{2}}{\partial C_{21}} = -\eta \frac{\partial E}{\partial Y} \cdot \frac{\partial Y_{2}}{\partial Y_{2}} \cdot \frac{\partial Y_{2}}{\partial C_{21}} = \eta \left(\tau - \eta \right) \cdot \omega_{2} \cdot \kappa_{1}$$

Next tunable parameters are: a1, b1, a2, b2.

$$\Delta a_1 = -\eta \frac{\partial E}{\partial a_1} = -\eta \cdot \left[\frac{\partial E}{\partial A_1} \frac{\partial A_1}{\partial a_1} + \frac{\partial E}{\partial A_2} \cdot \frac{\partial A_2}{\partial a_1} \right]$$

$$N_{\text{TNS}}, \frac{\partial A_{1}}{\partial a_{1}} = \frac{\partial}{\partial a_{1}} \left(\frac{1}{1 + e^{b_{1}(x_{1} - a_{1})}} \right) = b_{1} \cdot A_{1} \cdot (1 - A_{1}) = b_{1} \cdot A_{1} \cdot A_{2}$$

$$2 \cdot \frac{\partial A_{2}}{\partial a_{1}} = \frac{\partial}{\partial a_{1}} \left(\frac{1}{1 + e^{b_{1}(x_{1} - a_{1})}} \right) = -b_{1} \cdot A_{2} \left(1 - A_{2} \right) = -b_{1} \cdot A_{1} \cdot A_{2}.$$

Now,
$$\frac{\partial E}{\partial A_1} = \frac{\partial E}{\partial y} \cdot \frac{\partial y}{\partial A_1}$$

$$= -(t-y) \cdot \frac{\partial y}{\partial A_1}$$

$$y = \overline{w}_1 y_1 + \overline{w}_2 y_2 + \overline{w}_3 y_3 + \overline{w}_4 y_4$$

= $\overline{w}_1(A_1) y_1 + \overline{w}_2(A_1) y_2 + \overline{w}_3(A_1) y_3 + \overline{w}_4(A_1) y_4$

$$\frac{\partial y}{\partial A_1} = \sum_{i=1}^{4} \frac{\partial \overline{\omega}_i}{\partial A_1} y_i$$

$$\frac{\partial A_{1}}{\partial A_{1}} = \frac{\partial}{\partial A_{1}} \left[\frac{\omega_{1}}{\omega_{1} + \omega_{2} + \omega_{3} + \omega_{4}} \right] = \frac{\partial}{\partial A_{1}} \left[\frac{A_{1}B_{1}}{A_{1}B_{1} + A_{1}B_{2} + A_{2}B_{1}} + A_{2}B_{2} \right]$$

$$= \frac{B_{1} \left(A_{1}B_{1} + A_{1}B_{2} + A_{2}B_{1} + A_{2}B_{2} \right) - \left(B_{1} + B_{2} \right) A_{1}B_{1}}{\left(A_{1}B_{1} + A_{1}B_{2} + A_{2}B_{1} + A_{2}B_{2} \right)^{2}}$$

$$-\eta \frac{\partial E}{\partial A_1} \cdot \frac{\partial A_1}{\partial a_1} = \eta \left(\tau - y \right) \left(\sum_{i=1}^{4} \frac{\partial \overline{\omega}_i}{\partial A_1} y_i \right) \cdot b_1 \cdot A_1 \cdot A_2$$

Similarly,

$$-\eta \frac{\partial E}{\partial A_2} \cdot \frac{\partial A_2}{\partial a_1} = -\eta \left(T - y\right) \left(\frac{1}{2} \frac{\partial \overline{a_1}}{\partial A_2} y_i\right) b_1 \cdot A_1 \cdot A_2$$

$$i \quad \Delta a_1 = \eta \left(\tau - y \right) \cdot b_1 \cdot A_1 \cdot A_2 \left[\sum_{i=1}^{4} \left(\frac{\partial \overline{w_i}}{\partial A_i} - \frac{\partial \overline{w_i}}{\partial A_2} \right) y_i \right]$$

$$\Delta a_1 = \eta (T-y) \cdot b_1 \cdot A_1 \cdot A_2 - \frac{B_1 y_1 + B_2 y_2 + B_1 y_3 + B_2 y_4}{A_1 B_1 + A_1 B_2 + A_2 B_1 + A_2 B_2}$$

Similarly, Δb_1 , Δa_2 , Δb_2 can be computed

Pseudoinverse Method

- Consequent parameters can be updated at one go in a batch mode

C11
C12
C13
C21
C22
C23
C31
C32
C33
C41
C42
C43

$$T_1 = p_1 \underline{c}$$

$$\begin{bmatrix} T_1 \\ \vdots \\ T_N \end{bmatrix} = \begin{bmatrix} p_1 \\ \vdots \\ p_N \end{bmatrix} \underline{c}$$

$$\underline{c} = pinv\left(\begin{bmatrix} p_1 \\ \vdots \\ p_N \end{bmatrix}\right) \begin{bmatrix} T_1 \\ \vdots \\ T_N \end{bmatrix} \quad : \text{least square error solution}$$

Genetic Neuro-Fuzzy System Based on Mamdani Inference

$$20_1 = \mu_{\widetilde{A}_1}(a_1, a_2, a_3)$$

$$20_2 = M_{A_2}(a_1, a_2, a_3)$$

$$20_3 = \mu_{\tilde{A}_3}(a_1, a_2, a_3)$$

$$20_4 = M_{\widetilde{B}_1}(b_1, b_2, b_3)$$

$$20_5 = M_{\widetilde{B}_2}(b_1, b_2, b_3)$$

$$40_2 = A_2, Y_2, A_3, Y_3$$

$$y = \frac{A_1 y_1 + A_2 y_2 + A_3 y_3 + A_4 y_4}{A_1 + A_2 + A_3 + A_4}$$

Fuzzy PID Control

A Primer on PID Control

- ✓ Nicholas Minorsky in 1922
- ✓ Became well known from late 1930's
- ✓ Intuitive
- ✓ No guarantee of stability
- ✓ Linear Controller
- ✓ Three design parameters
- ✓ They can be set analytically or experimentally or through trial and error

$$u(t) = K_P e(t) + K_I \int_0^t e(t)dt + K_D \frac{de(t)}{dt}$$

- ✓ Some Requirements:
 - Fast response
 - Low overshoot/undershoot
 - Oscillations dying out fast
 - Zero or low steady state error

- ✓ Other Requirements:
 - Robustness to disturbance and plant uncertainties
 - Robust stability
 - Robust performance
 - Handling nonlinearities, time delays

✓ P-term:
$$u(t) = K_P e(t)$$

- Control effort is proportional to instantaneous error
- Makes the response faster
- Usually leaves some steady state error
- Higher K_P may reduce steady state error but at the cost of higher overshoot
- Very high K_P may even lead to instability

✓ I-term:
$$u(t) = K_I \int_0^t e(t) dt$$

- Control effort is proportional to accumulation of error over time
- Reduces steady state error to a great extent
- Response becomes more oscillatory
- Closed loop system becomes more prone to instability

✓ D-term:
$$u(t) = K_D \frac{de(t)}{dt}$$

- Control action is proportional to inertia
- Reduces overshoot
- Takes no action if there is steady state error (always used along with a P-controller)

✓ PI, PD, PID Controllers

Discretization of a PID Controller

$$\dot{u}(t) = K_P \dot{e}(t) + K_I e(t) + K_D \ddot{e}(t)$$
$$= K_P v(t) + K_I d(t) + K_D a(t)$$

$$\frac{u(k) - u(k-1)}{T_S} = K_P v(k) + K_I d(k) + K_D a(k)$$
$$\Delta u(k) = K_I d(k) + K_P v(k) + K_D a(k)$$

where
$$d(k) = error$$

 $v(k) = change in error$
 $a(k) = change in change in error$

$$u(k) = u(k-1) + \Delta u(k)$$

Advantages of Fuzzy PID

- ✓ A relatively easy way of designing nonlinear PID Control
- ✓ Bypassing the rigor of nonlinear control theory
- ✓ Without much dependence on the mathematical model of the plant

Fuzzy PI Controller

$$u(t) = K_P e(t) + K_I \int e(t) dt$$

$$\dot{u}(t) = K_P \dot{e}(t) + K_I e(t)$$

$$\frac{u(k) - u(k-1)}{T_S} = K_P \frac{e(k) - e(k-1)}{T_S} + K_I e(k)$$

$$\Delta u(k) = K_I e(k) + K_P \Delta e(k)$$

$$\Delta u(k) = f\{ d(k), v(k) \}$$

Fuzzy PD Controller

$$u(t) = K_P e(t) + K_D \dot{e}(t)$$

$$u(k) = K_P e(k) + K_D \frac{e(k) - e(k-1)}{T_S}$$

$$u(k) = K_P e(k) + K_D \Delta e(k)$$

$$u(k) = f\{d(k), v(k)\}$$

Three Term Fuzzy PID Controller

$$\Delta u(k) = f\{d(k), v(k), a(k)\}\$$

✓ Higher number of rules ($3^3 = 27$, $5^3 = 125$ etc.)

Two Term Fuzzy PID Controller

- ✓ Less number of rules (2 × $3^2 = 18$, 2 × $5^2 = 50$ etc.)
- ✓ Scaling factors need to be properly tuned

- ✓ Sometimes Fuzzy PI and Fuzzy PD may have identical rule base!
- ✓ No. of rules: 9, 25, ...
- ✓ Many other structures are possible and proposed in the literature

A Fuzzy PI Controller as a Conventional Linear PI Controller

$$\mu_P(d) = \begin{cases} 0 & \text{, d(k) < -L} \\ \frac{K_d \ d + L}{2L} & \text{, -L <= d(k) <= L} \\ 1 & \text{, d(k) > L} \end{cases} \qquad \mu_P(v) = \begin{cases} 0 & \text{, v(k) < -L} \\ \frac{K_v \ v + L}{2L} & \text{, -L <= v(k) <= L} \\ 1 & \text{, v(k) > L} \end{cases}$$

$$\mu_N(d) = \begin{cases} 1 & \text{, } d(k) < -L \\ \frac{-K_d \ d + L}{2L} & \text{, } -L <= d(k) <= L \\ 0 & \text{, } d(k) > L \end{cases} \qquad \mu_N(v) = \begin{cases} 1 & \text{, } v(k) < -L \\ \frac{-K_v \ v + L}{2L} & \text{, } -L <= v(k) <= L \\ 0 & \text{, } v(k) > L \end{cases}$$

- ✓ Mamdani model with singleton output sets (or zero order Sugeno model)
- ✓ Algebraic product t-norm

Weight of Rule1 = w1 =
$$\mu_P(d) * \mu_P(v)$$

Weight of Rule2 = w2 =
$$\mu_P(d) * \mu_N(v)$$

Weight of Rule3 = w3 =
$$\mu_N(d) * \mu_P(v)$$

Weight of Rule4 = w4 =
$$\mu_N(d) * \mu_N(v)$$

$$w1+w2+w3+w4 = \mu_P(d)*\mu_P(v)+\mu_P(d)*\mu_N(v)+\mu_N(d)*\mu_P(v)+\mu_N(d)*\mu_N(v)$$

$$= \mu_P(d) \{\mu_P(v)+\mu_N(v)\} + \mu_N(d) \{\mu_P(v)+\mu_N(v)\}$$

$$= \mu_P(d)+\mu_N(d)=1$$

$$\Delta u(k) = K_{\Delta u} \frac{w^{1*H} + w^{4*(-H)}}{w^{1+w^{2}+w^{3}+w^{4}}}$$

$$= K_{\Delta u} \{ \mu_{P}(d) * \mu_{P}(v) * H + \mu_{N}(d) * \mu_{N}(v) * (-H) \}$$

$$= K_{\Delta u} \left\{ \frac{K_{d} d + L}{2L} * \frac{K_{v} v + L}{2L} * H - \frac{-K_{d} d + L}{2L} * \frac{-K_{v} v + L}{2L} * H \right\}$$

$$= K_{\Delta u} \{ (K_{d} d + L) * (K_{v} v + L) - (-K_{d} d + L) * (-K_{v} v + L) \} \frac{H}{4L^{2}}$$

$$= \frac{K_{\Delta u} K_{d} H}{2L} d(k) + \frac{K_{\Delta u} K_{v} H}{2L} v(k)$$

$$[\Delta u(k) = K_{I} e(k) + K_{P} \Delta e(k)]$$

✓ Holds for Fuzzy PD Controller also (and therefore PID too)

A Fuzzy PI Controller as a Nonlinear PI Controller

- ✓ Minimum t-norm
- ✓ Singleton output sets
- ✓ Linear and symmetric membership functions for both d(k) and v(k)
- ✓ Mamdani/ Zero order Sugeno Inference

IC: Input Combination

IC1:
$$0 \le d(k) \le L$$
 and $-L \le v(k) \le L$

IC2:
$$-L \le d(k) \le L$$
 and $0 \le v(k) \le L$

IC3:
$$-L \le d(k) \le 0$$
 and $-L \le v(k) \le L$

IC4:
$$-L \le d(k) \le L$$
 and $-L \le v(k) \le 0$

Rule4	Rule3	Rule2	Rule1	IC
$\mu_N(d)$	$\mu_N(d)$	$\mu_N(v)$	$\mu_P(v)$	IC1
$\mu_N(d)$	$\mu_N(d)$	$\mu_N(v)$	$\mu_P(v)$	IC2
$\mu_N(d)$	$\mu_N(d)$	$\mu_N(v)$	$\mu_P(v)$	IC3
$\mu_N(d)$	$\mu_N(d)$	$\mu_N(v)$	$\mu_P(v)$	IC4

Output for IC1 (and IC3):

$$\Delta u(k) = K_{\Delta u} \frac{\mu_{P}(v) * H + \mu_{N}(d) * (-H)}{\mu_{P}(v) + \mu_{N}(v) + \mu_{N}(d) + \mu_{N}(d)}$$

$$= K_{\Delta u} \frac{\mu_{P}(v) - \mu_{N}(d)}{1 + 2 \mu_{N}(d)} H$$

$$= K_{\Delta u} \frac{\frac{K_{v} v + L}{2L} - \frac{-K_{d} d + L}{2L}}{1 + 2 \frac{-K_{d} d + L}{2L}} H$$

$$= K_{\Delta u} \frac{K_{d} d + K_{v} v}{2L + 2(-K_{d} d + L)} H$$

$$= \frac{K_{\Delta u} H}{4L - 2 K_{d} d} (K_{d} d + K_{v} v)$$

$$= \frac{0.5 K_{\Delta u} H}{2L - K_{d} d} (K_{d} d + K_{v} v)$$

$$\Delta u(k) = \frac{0.5 K_{\Delta u} H}{2L - K_v v} (K_d d + K_v v)$$

- ✓ Controller Gains are error or error rate dependent
- ✓ Higher gains for higher error or rate
- ✓ Faster convergence with less overshoot even for linear systems
- ✓ Gains vary smoothly across various regions (i.e. ICs)
- ✓ Larger no. of controller parameters
- ✓ Similar for Fuzzy PD Controller (and therefore PID controller)

Fuzzy Clustering

- What is Clustering?
 - It deals with finding a structure in a collection of unlabeled data
 - This is an unsupervised study where data of similar types are put into one cluster while data of another types are put into different cluster

- A good clustering method will produce high quality clusters with
 - HIGH <u>INTRA-CLASS</u> <u>SIMILARITY</u>
 (Similar to one another within the same cluster)
 - LOW <u>INTER-CLASS</u> <u>SIMILARITY</u>
 (Dissimilar to the objects in other clusters)

- The <u>quality</u> of a clustering method is also measured by its ability to discover some or all of the <u>hidden</u> patterns
- Lot of applications in image processing, medical diagnosis etc.

Clustering can be classified as:

- Hard Clustering (or Exclusive Clustering)
- Soft Clustering (Overlapping Clustering)
- K-means is an important hard clustering technique
- Fuzzy C Means (FCM) is a very popular soft clustering technique

K-Means Clustering

- ✓ K means clustering cluster the entire dataset into
 - K number of clusters where a data should belong to only one cluster

✓ Membership or partition matrix U is of the form:

$$U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ & \cdot & \cdot \\ 0 & 1 \end{bmatrix}$$

- ✓ One of the simplest Similarity measure is "Euclidean distance" between pairs of
 - feature vectors in the feature space
 - (Distance between the points in the same cluster will be considerably less
 - than distance between points in different clusters)

✓ The first step is normalization of the data. This step is very important when dealing with parameters of different units and scales.

$$X_{normalized[0,1]} = \frac{X_{current} - X_{\min}}{X_{\max} - X_{\min}}$$

$$X_{normalized[-1, 1]} = \frac{X_{current} - (X_{max} + X_{min})/2}{(X_{max} - X_{min})/2}$$

✓ In case there are outliers in the data, we prefer standardization

(When using standardization, your new data aren't bounded unlike normalization)

$$x_{new} = \frac{x - \mu}{\sigma}$$

Objective function is developed to

- 1. Minimize Euclidian distance between each data points in a cluster and its cluster centre
- 2. Maximize the Euclidian distance between cluster centers (centroids)

Algorithmic Steps for K-Means Clustering:

1) Set K- choose a number of desired clusters, k

2) Initialization – choose k starting points which are used as initial estimates of the cluster centroids

3) Classification – Examine each point in the dataset and assign it to the cluster whose centroid is nearest to it.

4) Centroid calculation – When each point in the data set is assigned to a cluster, it is needed to recalculate the new k centroids.

This is done by taking average of the members of the particular cluster

5) Convergence criteria – Steps 3 & 4 of to be repeated until no point changes its cluster assignment or until the centroids no longer move

A Numerical Example: two dimensional feature space (using K = No. of clusters = 2)

Individual	Variable 1	Variable 2
1	1	1
2	1.5	2
3	3	4
4	5	7
5	3.5	5
6	4.5	5
7	3.5	4.5

Step 1:

<u>Initialization</u>: Randomly choose following two centroids (k=2) for two clusters as m1=(1.0,1.0) and m2=(5.0,7.0)

Individual	Variable 1	Variable 2
1	1	1
2	1.5	2
3	3	4
4	5	7
5	3.5	5
6	4.5	5
7	3.5	4.5

Individual	Distance from Centroid 1 (1,1)	Distance from Centroid 2 (5,7)
1(1.0,1.0)	0	7.21
2(1.5,2)	1.12	6.1
3(3,4)	3.51	3.51
4(5,7)	7.21	0
5(3.5,5)	4.72	2.5
6(4.5,5)	5.31	2.06
7(3.5,4.5)	4.3	2.92

$$d(m_1,2) = \sqrt{|1-1.5|^2 + |1-2|^2} = 1.12 \qquad d(m_2,1) = \sqrt{(|5-1|^2 + |7-1|^2)} = 7.21$$

$$d(m_2,2) = \sqrt{|5-1.5|^2 + |7-2|^2} = 6.1$$

Distance of point/individual 3 is same from both centroids

$$d(m_2,1) = \sqrt{(|5-1|^2 + |7-1|^2)} = 7.21$$

$$d(m_1,6) = \sqrt{(|1-4.5|^2 + |1-5|^2)} = 5.31$$

$$d(m_2,6) = \sqrt{|5-4.5|^2 + |7-5|^2} = 2.06$$

Individual	Distance from Centroid 1 (1,1)	Distance from Centroid 2 (5,7)
1(1.0,1.0)	0	7.21
2(1.5,2)	1.12	6.1
3(3,4)	3.51	3.51
4(5,7)	7.21	0
5(3.5,5)	4.72	2.5
6(4.5,5)	5.31	2.06
7(3.5,4.5)	4.3	2.92

Step 2: Thus, we obtain two clusters containing:

{1,2,3} and {4,5,6,7}. Their new centroids are:

$$m_1 = \frac{1}{3}(1.0 + 1.5 + 3.0), \frac{1}{3}(1.0 + 2.0 + 4.0) = (1.83, 2.33)$$

 $m_2 = \frac{1}{4}(5.0 + 3.5 + 4.5 + 3.5), \frac{1}{4}(7.0 + 5.0 + 5.0 + 4.5) = (4.12, 5.38)$

Individual	Distance from Centroid 1 (1.83,2.33)	Distance from Centroid 2 (4.12,5.38)
1(1.0,1.0)	1.57	5.38
2(1.5,2)	0.47	4.28
3(3,4)	2.04	1.78
4(5,7)	5.64	1.84
5(3.5,5)	3.15	0.73
6(4.5,5)	3.78	0.54
7(3.5,4.5)	2.74	1.08

$$d(m_1,2) = \sqrt{|1.83 - 1.5|^2 + |2.33 - 2|^2} = 0.47$$

$$d(m_2,2) = \sqrt{|4.12 - 1.5|^2 + |5.38 - 2|^2} = 4.28$$

Individual	Distance from Centroid 1 (1.83,2.33)	Distance from Centroid 2 (4.12,5.38)
1(1.0,1.0)	1.57	5.38
2(1.5,2)	0.47	4.28
3(3,4)	2.04	1.78
4(5,7)	5.64	1.84
5(3.5,5)	3.15	0.73
6(4.5,5)	3.78	0.54
7(3.5,4.5)	2.74	1.08

Therefore, the new clusters are: {1,2} and {3,4,5,6,7} Next centroids are:

$$m_1 = \frac{1}{2}(1.0 + 1.5), \frac{1}{2}(1.0 + 2.0) = (1.25, 1.5)$$

 $m_1 = \frac{1}{5}(3 + 5.0 + 3.5 + 4.5 + 3.5), \frac{1}{5}(4 + 7.0 + 5.0 + 5.0 + 4.5) = (3.9, 5.1)$

(with K=3)

Individual	Variable 1	Variable 2
1	1	1
2	1.5	2
3	3	4
4	5	7
5	3.5	5
6	4.5	5
7	3.5	4.5

individual	Distance from cenroid 1(1,1)	Distance from cenroid 2(1.5,2)	Distance from cenroid 3(3,4)	Cluster
1(1,1)	0	1.11	3.61	1
2(1.5,2)	1.12	0	2.5	2
3(3,4)	3.61	2.5	0	3
4(5,7)	7.21	6.1	3.61	3
5(3.5,5)	4.72	3.61	1.12	3
6(4.5,5)	5.31	4.24	1.8	3
7(3.5,4.5)	4.3	3.2	0.71	3

New third centroid =
$$(3+5+3.5+4.5+3.5)/5$$
, $(4+7+5+5+4.5)/5$ = $(3.9,5.1)$

Some Features:

- 1) Apriori knowledge of number of clusters
 - may be problem specific
 - otherwise may be determined by trial and error

- 2) Sensitivity to initialization
 - suffers from local minima problem
 - initial centroids should be well spread out

Fuzzy C-Means Clustering

✓ Every point in the feature space belongs to all C clusters with varied membership grades

✓ Membership or partition matrix U takes the form:

✓ Proposed by Bezdek in 1973

Dissimilarity,
$$F = \sum_{i=1}^{C} \sum_{j=1}^{N} \mu_{ij}^2 d_{ij}^2$$
 where

where
$$\sum_{j=1}^{C} \mu_{ij} = 1.0$$

$$\mathcal{L} = \sum_{j=1}^{C} \sum_{i=1}^{N} \mu_{ij}^{2} \|\underline{C}_{j} - \underline{x}_{i}\|^{2} + \sum_{i=1}^{N} \lambda_{i} \left\{ \sum_{j=1}^{C} \mu_{ij} - 1.0 \right\}$$

$$\underline{C}_{j} = \frac{\sum_{N} \mu_{ij}^{2} \underline{x}_{i}}{\sum_{N} \mu_{ij}^{2}}$$

$$\mu_{ij} = \frac{1}{\sum_{C} \left(\frac{d_{ij}}{d_{im}}\right)^2}$$
 where, $d_{ij} = \left\| \underline{C}_j - \underline{x}_i \right\|$

Steps for FCM Algorithm:

1) Choose the number of clusters C

2) Choose a cluster fuzziness level (g > 1)

3) Initialize the membership or partition matrix U at random (satisfying the constraint that row sum = 1)

4) Compute the cluster centers as

$$\underline{C}_{j} = \frac{\sum_{N} \mu_{ij}^{g} \underline{x}_{i}}{\sum_{N} \mu_{ij}^{2}}$$

5) Compute the Euclidean distance,

$$d_{ij} = \left\| \underline{C}_j - \underline{x}_i \right\|$$

6) Update the membership matrix as

$$\mu_{ij} = \frac{1}{\sum_{C} \left(\frac{d_{ij}}{d_{im}}\right)^{2/(g-1)}}$$

if $d_{ij} = 0$, then $\mu_{ij} = 1$

7) Repeat steps 4, 5 and 6 till change in μ_{ij} values fall below a small value

Numerical Example:

Memebship value	X ₁ (2,12)	X ₂ (4,9)	X ₃ (7,13)	X ₄ (11,5)	X ₅ (12,7)	X ₆ (14,4)
C ₁ (5,5)	0.5397	0.6852	0.2093	0.4194	0.197	0.3881
C ₂ (10,10)	0.4603	0.3148	0.7907	0.5806	0.803	0.6119

	X ₁ (2,12)	X ₂ (4,9)	X ₃ (7,13)	X ₄ (11,5)	X ₅ (12,7)	X ₆ (14,4)
C ₁	0.5397	0.6852	0.2093	0.4194	0.197	0.3881
C ₂	0.4603	0.3148	0.7907	0.5806	0.803	0.6119

Calculate coordinates of new centre of cluster 1

$$(0.5397)^{2} \times (2,12) + (0.6852)^{2} \times (4,9) + (0.2093)^{2} \times (7,13) +$$

$$\mathbf{c}_{1} = \frac{(0.4194)^{2} \times (11,5) + (0.197)^{2} \times (12,7) + (0.3881)^{2} \times (14,4)}{(0.5397)^{2} + (0.6852)^{2} + (0.2093)^{2} + (0.4194)^{2} + (0.197)^{2} + (0.3881)^{2}}$$

$$=(6.6273,9.1484)$$

	X ₁ (2,12)	X ₂ (4,9)	X ₃ (7,13)	X ₄ (11,5)	X ₅ (12,7)	X ₆ (14,4)
C ₁	0.5397	0.6852	0.2093	0.4194	0.197	0.3881
C ₂	0.4603	0.3148	0.7907	0.5806	0.803	0.6119

Calculate coordinates of new centre of cluster 2

$$(0.4603)^{2} \times (2,12) + (0.3148)^{2} \times (4,9) + (0.7907)^{2} \times (7,13) +$$

$$C_{2} = \frac{(0.5806)^{2} \times (11,5) + (0.803)^{2} \times (12,7) + (0.6119)^{2} \times (14,4)}{(0.4603)^{2} + (0.3148)^{2} + (0.7907)^{2} + (0.5806)^{2} + (0.803)^{2} + (0.6119)^{2}}$$

$$= (9.7374, 8.4887)$$

$$U = \begin{bmatrix} 0.5397 & 0.4603 \\ 0.6852 & 0.3148 \\ 0.2093 & 0.7907 \\ 0.4194 & 0.5806 \\ 0.1970 & 0.8030 \end{bmatrix}$$

0.6119

0.3881

$$\mu_{11} = \frac{1}{\sum_{C} \left(\frac{d_{ij}}{d_{im}}\right)^{2/(g-1)}} = \frac{1}{1 + \left(\frac{d_{11}}{d_{12}}\right)^{2}}$$

$$\mu_{21} = \frac{1}{\sum_{C} \left(\frac{d_{ij}}{d_{im}}\right)^{2/(g-1)}} = \frac{1}{1 + \left(\frac{d_{21}}{d_{22}}\right)^{2}}$$

$$\mu_{31} = \frac{1}{\sum_{C} \left(\frac{d_{ij}}{d_{im}}\right)^{2/(g-1)}} = \frac{1}{1 + \left(\frac{d_{31}}{d_{32}}\right)^{2}}$$

$$U = \begin{bmatrix} 0.5397 & 0.4603 \\ 0.6852 & 0.3148 \\ 0.2093 & 0.7907 \\ 0.4194 & 0.5806 \\ 0.1970 & 0.8030 \\ 0.3881 & 0.6119 \end{bmatrix}$$

$$\mu_{41} = \frac{1}{\sum_{C} \left(\frac{d_{ij}}{d_{im}}\right)^{2/(g-1)}} = \frac{1}{1 + \left(\frac{d_{41}}{d_{42}}\right)^{2}}$$

$$\mu_{51} = \frac{1}{\sum_{C} \left(\frac{d_{ij}}{d_{im}}\right)^{2/(g-1)}} = \frac{1}{1 + \left(\frac{d_{51}}{d_{52}}\right)^{2}}$$

$$\mu_{61} = \frac{1}{\sum_{C} \left(\frac{d_{ij}}{d_{im}}\right)^{2/(g-1)}} = \frac{1}{1 + \left(\frac{d_{61}}{d_{62}}\right)^{2}}$$

New centers:

$$c_1 = (6.6273, 9.1484)$$

 $c_2 = (9.7344, 8.4887)$

$$d_{ij} = \left\| \underline{C}_i - \underline{x}_i \right\|$$

$$d_{11}^{2} = \left\| \underline{C}_{1} - \underline{x}_{1} \right\|^{2} = \left\| \begin{bmatrix} 6.6273 - 2 \\ 9.1484 - 12 \end{bmatrix} \right\|^{2} = 29.5435$$

$$d_{12}^{2} = \left\| \underline{C}_{2} - \underline{x}_{1} \right\|^{2} = \left\| \begin{bmatrix} 9.7344 - 2 \\ 8.4887 - 12 \end{bmatrix} \right\|^{2} = 72.1502$$

$$\mu_{11} = \frac{1}{1 + \left(\frac{d_{11}}{d_{12}}\right)^2} = 0.7095$$

$$d_{21}^{2} = \left\| \underline{C}_{1} - \underline{x}_{2} \right\|^{2} = \left\| \begin{bmatrix} 6.6273 - 4 \\ 9.1484 - 9 \end{bmatrix} \right\|^{2} = 6.9247$$

$$d_{22}^{2} = \left\| \underline{C}_{2} - \underline{x}_{2} \right\|^{2} = \left\| \begin{bmatrix} 9.7344 - 4 \\ 8.4887 - 9 \end{bmatrix} \right\|^{2} = 33.1448$$

$$\mu_{21} = 0.8272$$

New centers:

$$c_1 = (6.6273, 9.1484)$$

 $c_2 = (9.7344, 8.4887)$

$$d_{ij} = \left\| \underline{C}_j - \underline{x}_i \right\|$$

$$d_{31}^2 = \left\| \underline{C}_1 - \underline{x}_3 \right\|^2 = \left\| \begin{bmatrix} 6.6273 - 7 \\ 9.1484 - 13 \end{bmatrix} \right\|^2 = 14.9737$$

$$d_{32}^2 = \left\| \underline{C}_2 - \underline{x}_3 \right\|^2 = \left\| \begin{bmatrix} 9.7344 - 7 \\ 8.4887 - 13 \end{bmatrix} \right\|^2 = 27.8288$$

$$\mu_{31} = 0.6502$$

$$d_{41}^{2} = \|\underline{C}_{1} - \underline{x}_{4}\|^{2} = \|\begin{bmatrix}6.6273 - 11\\9.1484 - 5\end{bmatrix}\|^{2} = 36.3297$$

$$d_{42}^{2} = \|\underline{C}_{2} - \underline{x}_{4}\|^{2} = \|\begin{bmatrix}9.7344 - 11\\8.4887 - 5\end{bmatrix}\|^{2} = 13.7728$$

$$\mu_{41} = 0.2749$$

New centers:

$$c_1 = (6.6273, 9.1484)$$

 $c_2 = (9.7344, 8.4887)$

$$d_{ij} = \left\| \underline{C}_j - \underline{x}_i \right\|$$

$$d_{51}^2 = \left\| \underline{C}_1 - \underline{x}_5 \right\|^2 = \left\| \begin{bmatrix} 6.6273 - 12 \\ 9.1484 - 7 \end{bmatrix} \right\|^2 = 33.4815$$

$$d_{52}^2 = \left\| \underline{C}_2 - \underline{x}_5 \right\|^2 = \left\| \begin{bmatrix} 9.7344 - 12 \\ 8.4887 - 7 \end{bmatrix} \right\|^2 = 7.3492$$

$$\mu_{51} = 0.1800$$

$$d_{61}^{2} = \left\| \underline{C}_{1} - \underline{x}_{6} \right\|^{2} = \left\| \begin{bmatrix} 6.6273 - 14 \\ 9.1484 - 4 \end{bmatrix} \right\|^{2} = 80.8627$$

$$d_{62}^{2} = \left\| \underline{C}_{2} - \underline{x}_{6} \right\|^{2} = \left\| \begin{bmatrix} 9.7344 - 14 \\ 8.4887 - 4 \end{bmatrix} \right\|^{2} = 38.3438$$

$$\mu_{61} = 0.3217$$

$$U = \begin{bmatrix} 0.5397 & 0.4603 \\ 0.6852 & 0.3148 \\ 0.2093 & 0.7907 \\ 0.4194 & 0.5806 \\ 0.1970 & 0.8030 \\ 0.3881 & 0.6119 \end{bmatrix}$$

$$U = \begin{bmatrix} 0.7095 & 0.2905 \\ 0.8272 & 0.1728 \\ 0.6502 & 0.3498 \\ 0.2749 & 0.7251 \\ 0.1800 & 0.8200 \\ 0.3217 & 0.6783 \end{bmatrix}$$

Some Features:

- 1) Apriori knowledge of number of clusters
 - may be problem specific
 - may be determined by trial and error
 - some other simpler clustering algorithm may be used to have a rough idea about the number of clusters

- 2) Sensitivity to initialization
 - suffers from local minima problem

3) Higher 'g' value implies higher fuzziness; results in slower convergence