Familienname:			ı	i		
Vorname:					$\sum /40$	
Matrikelnummer:						
Studienkennzahl(en):	Note:					

Analysis in einer Variable für LAK Roland Steinbauer, Wintersemester 2012/13 6. Prüfungstermin (16.12.2013) Gruppe A

- 1. Definitionen, Sätze, Beweise.
 - (a) Definiere die folgenden Begriffe und fertige jeweils eine instruktive Skizze an: (je 1+2 Punkte) konvexe Teilmenge des \mathbb{R}^2 , uneigentliches Integral $\int_a^b f$ für $f:(a,b)\to\mathbb{R}$ mit $-\infty \le a < b \le \infty$ (,,3. Fall").
 - (b) Beweise die folgende Aussage und begründe alle Beweisschritte: Sei $f:(a,b)\to\mathbb{R}$ differenzierbar. Falls $\xi\in(a,b)$ eine lokale Extremstelle ist, so verschwindet $f'(\xi)$. Wie muss die Aussage (um)formuliert werden, falls (a,b) durch ein nicht notwendigerweise offenes Intervall I ersetzt wird. An welcher Stelle im Beweis muss hier aufgepasst werden? (4 Punkte)
 - (c) Formuliere und beweise den Mittelwertsatz der Integralrechnung (für allgemeines, nicht-negatives φ). Begründe jeden deiner Beweisschritte genau! (4 Punkte)
- 2. Beispiele und Gegenbeispiele.
 - (a) Berechne (je 2 Punkte): $(x^x)''$, $\int \arctan(x) dx$.
 - (b) Gib eine Funktion an, die weder konkav noch konvex ist (1 Punkt).
 - (c) Sei $f:[0,1] \to \mathbb{R}$, $f(x) = \sqrt{x}$. Bekannterweise ist f stetig und somit auch gleichmäßig stetig ([0,1] ist kompakt). Zeige bzw. argumentiere nun (je 1 Punkt):
 - f ist diffenzierbar für alle $x \neq 0$.
 - f ist nicht differenzierbar in x = 0.
 - f ist nicht Lipschitz stetig.

Bitte umblättern!

- 3. Grundideen.
 - (a) Differenzierbarkeit. Bekanntlich (Vo. $\boxed{3}$ Thm. 1.19) ist eine Funktion $f: I \to \mathbb{R}$ genau dann in $\xi \in I$ differenzierbar, falls

$$f(\xi + h) - f(\xi) = ah + r(h),$$

wobei $a \in \mathbb{R}$ eine fixe Zahl und r eine reelle Funktion mit $r(h)/h \to 0$ für $h \to 0$ ist. In diesem Falle ist $a = f'(\xi)$.

Diskutiere die Bedeutung dieser Aussage, fertige eine Skizze an und gehe insbesondere auf das Verhalten des "Fehlers", d.h. $r(h)/h \to 0$ ein. (4 Punkte)

- (b) Integral für Treppenfunktionen. Definiere das Integral für Treppenfunktionen und erläutere die Bedeutung der Aussage: Das Integral ist ein lineares und monotones Funktional auf dem Vektorraum $\mathcal{T}[a,b]$ der Treppenfunktionen auf [a,b]. (3 Punkte)
- 4. Vermischtes.
 - (a) Ableitung und Monotonie. Sei $f:[a,b]\to\mathbb{R}$ stetig und differenzierbar auf (a,b). Zeige:

$$f'(x) \ge 0 \quad \forall x \in (a, b) \implies f \text{ monoton wachsend auf } [a, b].$$

Gilt auch die Umkehrung? Gib einen Beweis oder ein Gegenbeispiel an. (4 Punkte)

(b) Darstellung von e. Zeige unter Verwendung der Tatsache $\log'(1) = 1$, dass

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$

Begründe alle deine Schritte! (2 Punkte)

- (c) Arcustangens. Berechne Extrema und Wendestellen des Arcustangens. Fertige eine Skizze an. (4 Punkte)
- 5. Richtig oder falsch?

Sind die folgenden Aussagen richtig oder falsch? Gib jeweils eine kurze Begründung oder ein Gegenbeispiel. (je 2 Punkte)

- (a) Jede differenzierbare Funktion ist auch \mathcal{C}^1 .
- (b) Für jede konvexe Funktion $f: I \to \mathbb{R}$ gilt f(x)'' > 0 für alle $x \in I$.