

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

3 6 7 7 5 9 3 5 3 3

FURTHER MATHEMATICS

9231/22

Paper 2 Further Pure Mathematics 2

May/June 2022

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages.

Given that the length of C is s , find α in terms of s .	[:

(a)	Starting from the definitions of cosn and sinn in terms of exponentials, prove that	
	$\cosh 2x = 2\sinh^2 x + 1.$	[3]
(b)	Find the set of values of k for which $\cosh 2x = k \sinh x$ has two distinct real roots.	[5]

		$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{\mathrm{d}x}{\mathrm{d}t} + x = t^2 + 1.$	
(a)	Find the general solution for x is	in terms of t .	[6
			• • • • • • • •

			•••••
1. N	Deduce an approximate value of	f $\frac{d^2x}{dt^2}$ for large positive values of t.	[2]
D)	Beaute an approximate variety	1.2 for large positive values of i.	
D)	Deduce an approximate value of	dt^2	
D)		dt^2 for large positive values of t .	
D)		dt^2 for large positive values of t .	
(D)		dt^2 for large positive values of t .	
(D)		dt^2 for large positive values of t .	
(D)		dt^2 for large positive values of t .	
D)		dt^2 for large positive values of t .	
D)		dt^2 for large positive values of t .	
D)			

4 The diagram shows the curve with equation $y = 2^x$ for $0 \le x \le 1$, together with a set of N rectangles each of width $\frac{1}{N}$.

(a) By considering the sum of the areas of these rectangles, show that $\int_0^1 2^x dx < U_N$, where

1	J 0	
$2\frac{1}{N}$		
$II = Z^N$		Γ <i>1</i> 1
$U_N = \frac{2}{N\left(2^{\frac{1}{N}} - 1\right)}.$		141
$N = \frac{1}{\sqrt{2}}$		
N(2N-1)		
1 · _ 1/		

Find the least value of N such that $U_N - L_N < 10^{-4}$.	

	$(x+1)y + (x+y+1)^3 = 1.$	
(a)	Show that $\frac{dy}{dx} = -\frac{3}{4}$ when $x = 0$.	[:
		•••••
		•••••
<i>a</i> .		
(b)	Find the Maclaurin's series for y up to and including the term in x^2 .	[
(b)		
 (b)		
 (b)		
 (b)		
(b)		
(b)		
 (b)		
 (b)		

•••••
•••••
•••••
,
•••••

Use the substitution y = vx to find the solution of the differential equation

6

		[10
 ••••••	 	••••••

 	••••••	
 		 •••••

	12			
7	(a)	Use de Moivre's theorem to show that		
		$\csc 7\theta = \frac{\csc^7 \theta}{7 \csc^6 \theta - 56 \csc^4 \theta + 112 \csc^2 \theta - 64}.$		
		cosec /θ =	$\frac{1}{7\operatorname{cosec}^6\theta - 56\operatorname{cosec}^4\theta + 112\operatorname{cosec}^2\theta - 64}$	[6

(b) Hence obtain the roots of the equation

7	$14x^6 +$	1124	224-2	1 120	_ 0
x' —	$14x^{\circ} +$	112x ⁻ -	- 224x²	+128	= ()

in the form $\csc q\pi$, where q is rational.	[5]

a)	Find the value of a for which the system of equations	
	3x + ay = 0,	
	5x-y = 0,	
	x + 3y + 2z = 0,	
	does not have a unique solution.	
		•••••
Γhe	matrix A is given by	
	$\mathbf{A} = \begin{pmatrix} 3 & 0 & 0 \\ 5 & -1 & 0 \\ 1 & 3 & 2 \end{pmatrix}.$	
	\1 3 2/	
(b)	$1 3 2$ Find a matrix P and a diagonal matrix D such that $\mathbf{A}^2 = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.	
(b)		
(b)	Find a matrix P and a diagonal matrix D such that $\mathbf{A}^2 = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.	
(b)	Find a matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that $\mathbf{A}^2 = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.	
(b)	Find a matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that $\mathbf{A}^2 = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.	
(b)	Find a matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that $\mathbf{A}^2 = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.	
(b)	Find a matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that $\mathbf{A}^2 = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.	
(b)	Find a matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that $\mathbf{A}^2 = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.	
(b)	Find a matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that $\mathbf{A}^2 = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.	
(b)	Find a matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that $\mathbf{A}^2 = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.	
(b)	Find a matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that $\mathbf{A}^2 = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.	
(b)	Find a matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that $\mathbf{A}^2 = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.	
(b)	Find a matrix P and a diagonal matrix D such that $A^2 = PDP^{-1}$.	
(b)	Find a matrix P and a diagonal matrix D such that $A^2 = PDP^{-1}$.	
(b)	Find a matrix P and a diagonal matrix D such that $A^2 = PDP^{-1}$.	

$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2,$	where b is an integer to be determined.			
$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2,$ where b is an integer to be determined.	$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2,$ where b is an integer to be determined.			
$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2,$ where b is an integer to be determined.	$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2,$ where b is an integer to be determined.			
$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2,$ where b is an integer to be determined.	$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2,$ where b is an integer to be determined.			
$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2$, where b is an integer to be determined.	$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2,$ where b is an integer to be determined.			
$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2$, where b is an integer to be determined.	$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2$, where b is an integer to be determined.			
$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2$, where b is an integer to be determined.	$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2$, where b is an integer to be determined.			
$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2$, where b is an integer to be determined.	$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2$, where b is an integer to be determined.			
$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2$, where b is an integer to be determined.	$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2$, where b is an integer to be determined.			
$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2$, where b is an integer to be determined.	$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2$, where b is an integer to be determined.			
$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2$, where b is an integer to be determined.	$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2$, where b is an integer to be determined.			
$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2$, where b is an integer to be determined.	$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2,$ where b is an integer to be determined.			
$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2$, where b is an integer to be determined.	$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2$, where b is an integer to be determined.			
$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2$, where b is an integer to be determined.	$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2$, where b is an integer to be determined.			
$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2$, where b is an integer to be determined.	$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2$, where b is an integer to be determined.			
$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2$, where b is an integer to be determined.	$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2$, where b is an integer to be determined.			
$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2$, where b is an integer to be determined.	$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2,$ where b is an integer to be determined.			
$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2$, where b is an integer to be determined.	$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2,$ where b is an integer to be determined.			
$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2,$ where b is an integer to be determined.	$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2,$ where b is an integer to be determined.			
$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2,$ where b is an integer to be determined.	$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2,$ where b is an integer to be determined.			
$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2$, where b is an integer to be determined.	$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2,$ where b is an integer to be determined.			
$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2$, where b is an integer to be determined.	$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2,$ where b is an integer to be determined.			•••••
$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2$, where b is an integer to be determined.	$(\mathbf{A} + 6\mathbf{I})^2 = \mathbf{A}^4 (\mathbf{A} + b\mathbf{I})^2,$ where b is an integer to be determined.	Use the characteristic equation of	A to show that	
where b is an integer to be determined.	where b is an integer to be determined.	Ose the characteristic equation of	A to show that	
where b is an integer to be determined.	where b is an integer to be determined.		$(-4.0)^2 - 4^4 (4 + 51)^2$	
		(F	$\mathbf{A} + \mathbf{O}\mathbf{I}) = \mathbf{A} \left(\mathbf{A} + \mathbf{D}\mathbf{I} \right) ,$	
			•••••	
			•••••	

Additional page

If you use the following page to complete the answer to any question, the que shown.	estion number must be clearly

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.