Lógica de Programação II

Matrizes

Matrizes

- Variável composta multidimensional
 - É equivalente a um vetor, contudo permite a utilização de diversas dimensões acessadas via diferentes índices
 - Pode ser pensada como um vetor cujo tipo é outro vetor, recursivamente
 - Em diversas situações matrizes são necessárias para correlacionar informações

Exemplo Motivacional

 Assumindo que um aluno é avaliado com cinco notas, seria necessário um vetor de três posições para guardar as notas de um aluno...

E se fossem 3 alunos?

 Contudo, assumindo que uma turma tem três alunos, seria necessária uma matriz bidimensional para guardar as notas de todos os alunos de uma turma...

turma = [[5.0, 4.5, 7.0, 5.2, 6.1], [2.1, 6.5, 8.0, 7.0, 6.7], [8.6, 7.0, 9.1, 8.7, 9.3]]

Exemplo motivacional

 Na verdade, na memória turma seria algo assim...

Acesso aos valores: [linha][coluna]

Segunda nota do primeiro aluno

```
>>> turma[0][1]
```

4.5

Quinta nota do terceiro aluno

```
>>> turma[2][4]
```

9.3

		notas				
	_	0		2	3	4
	0	5.0	4.5	7.0	5.2	6.1
alunos	I	2.1	6.5	8.0	7.0	6.7
	2	8.6	7.0	9.1	8.7	9.3

Calcular a média da turma

```
turma = [[5.0, 4.5, 7.0, 5.2, 6.1], [2.1,6.5,
8.0, 7.0, 6.7], [8.6, 7.0, 9.1, 8.7, 9.3]]
#calcula a média
media = 0
#for para percorrer as linhas
for i in range(3):
    #for para percorrer as colunas
    for j in range(5):
        media = media + turma[i][j]
media = media / 15
print(media)
```

Preencher a matriz por leitura

```
turma = []
for i in range(3):
    # cria linha vazia
    linha = []
    for j in range(5):
        #vai adicionando as notas na linha
        linha.append(eval(input('Digite a
nota[' + str(i) + ',' + str(j) + ']:')))
    #adiciona a linha na matriz turma
    turma.append(linha)
```

Exemplo

 Programa que cria uma matriz n x m preenchida com zeros

```
n = eval(input('Digite a dimensão n da
matriz: ')
m = eval(input('Digite a dimensão m da
matriz: '))
matriz = []
for i in range(n):
    linha = []
    for j in range(m):
        linha.append(0)
        matriz.append(linha)
print(matriz)
```

Imprimir em forma de matriz

 Programa que cria uma matriz n x m preenchida com zeros e a imprime no formato de matriz

```
n = eval(input('Digite a dimensão n da matriz: '))
m = eval(input('Digite a dimensão m da matriz: '))
matriz = []
for i in range(n):
    matriz.append([0]*m)
#imprimir em formato de matriz
for i in range(n):
    print(matriz[i])
```

Exemplo Contar Pares

 Programa que lê uma matriz 3x3 digitada pelo usuário e conta quantos números pares existem na matriz, imprimindo na tela o resultado e a matriz.

Exemplo Contar Pares

```
matriz = []
for i in range(3):
   linha = []
   for j in range(3):
         linha.append(eval(input('Digite o valor de [' + str(i) + ',' +
   str(i) + 'l:')))
   matriz.append(linha)
#contar pares
pares = 0
for i in range(3):
   for j in range(3):
         if matriz[i][j] % 2 == 0:
                   pares = pares + 1
#imprimir em formato de matriz
for i in range(3):
   print(matriz[i])
#imprimir qtde de números pares
print('A matriz contém', pares, 'números pares')
```

Variação Exemplo Contar Pares

```
matriz = []
for i in range(3):
   linha = []
   for j in range(3):
         linha.append(eval(input('Digite o valor de [' + str(i) + ',' +
   str(i) + 'l:')))
   matriz.append(linha)
#contar pares
pares = 0
for linha in matriz:
   for valor in linha:
         if valor % 2 == 0:
                   pares = pares + 1
#imprimir em formato de matriz
for i in range(3):
   print(matriz[i])
#imprimir qtde de números pares
print('A matriz contém', pares, 'números pares')
```

Python permite misturar tipos em uma matriz

 Exemplo: programa que armazena os nomes e idades de 10 pessoas em uma matriz, e imprime o nome da pessoa mais nova

Encontra a pessoa mais nova

```
m = \lceil \rceil
#preenche a matriz
for i in range(10):
   linha = []
   linha.append(input('Digite o nome da pessoa ' + str(i) + ':'))
   linha.append(eval(input('Digite a idade de ' + linha[0] + ':')))
       m.append(linha)
#procura a pessoa mais nova
menor = m[0][1]
pos = 0
for i in range (10):
   if m[i][1] < menor:
         menor = m[i][1]
         pos = i
#imprime a matriz
for i in range (10):
   print(m[i])
print('A pessoa mais nova é', m[pos][0])
```

Matrizes

 Uma matriz pode ter um número qualquer de dimensões! Basta usar um índice para cada dimensão.

Exemplo motivacional

 Ainda, assumindo que um curso tem duas turmas, seria necessária uma matriz tridimensional para guardar as notas de todos os alunos de todas as turmas do curso.

Atribuição

```
>>> m = [[5.0, 4.5, 7.0, 5.2,
5.1], [2.1, 6.5, 8.0, 7.0, 6.7], [8.6, 7.0, 9.1, 8.7
,9.3]],[[A.2,5.1,6.0,5.4,5.1],[9.0,8.0,7.5,
8.1,8.8, [2.3,4.4,6.7,6.6,7.0]]
                                     notas
     Aluno
                                                 6.1
                                         7.0
                                    4.5
                                5.0
                                             7.0
                                         8.0
                    alunos
                                     6.5
                                              8.7
                                2.1
                                     7.0
                                8.6
```

Atribuição

```
>>> m = [[5.0, 4.5, 7.0, 5.2,
5.1], [2.1,6.5,8.0,7.0,6.7], [8.6,7.0,9.1,8.7,
9.3]], [[4.2,5.1,6.0,5.4,5.1], [9.0,8.0,7.5,8.
1,8.8],[2.3,4.4,6,7,6.6,7.0]]]
                                    notas
                                                      turmas
                 Turma
                                              5.1
                                      6.0
                                             5.2
                                         7.0
                                    4.5
                                             7.0
                                         8.0
                    alunos
                                    6.5
                                             8.7
                                    7.0
                                8.6
```

Acesso a elemento

Referências

 Slides baseados no curso de Programação de Computadores I da Prof. Vanessa Braganholo