Infos:

o Wünsche für die letzte Stunde?

- Z. B.; - Prūfung Eusammen durchlösen -Mini-Prūfung für euch vorbereiten - Zusammenfassung der Theorie in Logik

Aufgaben zu Logik

- etwas lustiges/entspanntes

Feedback:

o gut gelöst U

Bonus, Generator bestimmen: F=Z3[x] 2+x+2=m(x) 2x+2 istein Generator von F*

|F*|=|F1(0)|=9-1=8=> mogl. Ordnungen: 1, 2,4,8

$$2 \times + 2$$

$$-m(x)$$

$$2 \times + 2)^{2} = 4x^{2} + 8x + 4 = x^{2} + 2x + 1 = x - 1 = x + 2 = 1$$

$$-m(x)$$

$$4 \quad (2x+2)^{4} = ((2x+2)^{2})^{2} = (x+2)^{2} = x^{2} + 4x + 4 = x^{2} + x + 1 = -1 = 2 = 1$$

=> ord(2x+2)= x und 2x+2 ist ein Generator

Let F be a finite field. Show that there exists a non-constant polyomial $p(x) \in F[x]$ with no roots.

Idee: Wie der Beweis, dass es & viele Primzahlen gibt.

Nehme an nur endlich viele PZ pa, pz, ... PK

Sei M=P1.P2. ... PR+7 => Rp; (m) =1 => p; Km Vi

Aber Widerspruch, da M≠p; Vi und m muss ein Primfaktorhaben.

Sei F= { a, a, ..., a, }.

Wir wollen pWEFIX s.d. plazo VaEF.

+⇒ Wir nehmen uns alle Nullstellen a; und "+1"

=> p hat keine Nullstelle

Prove or disprove: If Π complete, then Π_1 complete or Π_2 complete.

Nehme an T_3 complete and T_1 nicht complete Sei $S_2 \in S_2 \Rightarrow J$. $T_2(S_2) = 1$.

Da TI complete gibt es (paips) & PaxP2

S.d.
$$\&((S_1, S_2), (p_1, p_1)) = 1$$

Wie konnen wir ausschließen?

"Es gibt Aussagen, die wir nicht beweisen Künnen

=> wähle sq wie oben.

(b) Prove or disprove: If Π_1 sound or Π_2 sound, then Π sound.

Nehme an o.E. d.A. ITy sound.

Sei (51,52) & S1 x S2 s.d. / &((51,52), (p1, p2))=7

 $mi+ (\rho_1, \rho_1) \in \rho_1 \times \rho_2.$ $\Rightarrow & (5_1, \rho_1) = 1 \quad oder \quad & (5_2, \rho_2) = 1.$

Fall (1): => Ty (5y) = 1 * (da Ty sound)

Fall (2): keine Info da Wir nichts über Tz wissenu

=> wir können T(51,52)=U nicht ausschliessen.

VIt. Gegenbsp.?

Wirbrauchen: & (s, p)=0

 $\& (S_2, \rho_2) = 1$

begenson möglichst einfach wählen?

withle S== S== P1=P2={0}.

z.Z. Tz complete - finde Beweis pre P s.d. $\&_2(s_2, p_2) = 1$

 $T_1(0) = 0$, $\&_1(0,0) = 0$ ($\rightarrow T_1$ complete) $T_2(0) = 0$, $\&_2(0,0) = 1$ (T_2 unsound) $\Rightarrow T(0) = 0$, &(0,0), (0,0) = 1 $\Rightarrow T$ unsound ∇ Logical Calculi;

· Wichtig: nichts von Lemma 2.7. anwenden?

Die nötige Theorie wird sehr gut in Abschnitt 6.4.2 vom Skript erklärt :)

$$\varnothing \vdash_{R_1} F \to F$$

$$\{F\} \vdash_{R_2} F \vee F$$

$$\{\neg F \vee \neg F\} \vdash_{R_3} F \to (\neg F \vee \neg F)$$

$$\{F \to (G \vee H), G \to H\} \vdash_{R_4} F \to H$$
 Formally derive $A \to \neg A$ from $\{\neg A\}$.

Strategie: von hinten anfangen

1 letzter Schrittmuss Ry Sein, der Rest passt nicht.

=> wir mussen A > Gv7A) und G-17A herleiten

a) [A+(Lv(Gv7A)), L+(Gv7A)]+R4 A+(Gv7A)

so et was können wir

nicht bekommen.

Nur Ræpasstiaber hann bekommen Wir das Gleiche einfach länger.

 $\Rightarrow X \vdash_{R_1} 1A + 1A (1)$ $\{1A\} \vdash_{R_2} 1A \vee 1A (2)$ $\{(2)\} \vdash_{R_3} A \rightarrow (1A \vee 1A) (3)$ So muss am Ende eure Abgabe aussehen { (3), (1)} + Re A -> 7 A