IAP15 RGC'd PCT/PTO 11 APR 2006

SEQUENCE LISTING

<11	0>	Sand	oz G	mbH											
<12	0>	Organische Verbindungen													
<13	0>	PCT/EP2004/011566													
<16	0>	8													
<17	0>	PatentIn version 3.1													
<210 <210 <210 <210	1> 2>	1 411 PRT Peni	cill	ium	chry	soge	num								
<400	O>	1													
Met 1	Val	Asp	Pro	Ser 5	Val	Ser	Gly	Ile	Thr 10	Lys	Met	Asp	Thr	Asn 15	Asp
Ile	Lys	Gln	Asn 20	Asp	Ile	Pro	Lys	Asp 25	Gln	Pro	Thr	Leu	Val 30	Arg	Trr
Tyr	Met	Asp 35	Val	Arg	Arg	Trp	Asp 40	Glu	Lys	Туr	Phe	Asp 45	Leu	Pro	Leu
Leu	Glu 50	Thr	Leu	Thr	Gln	Pro 55	Asp	Gln	Ala	Ala	Val 60	Lys	Lys	Tyr	туг
G1n 65	Thr	Ser	Asp	Lys	Arg 70	Leu	Ser	Leu	Ala	Ser 75	Gln	Leu	Leu	Lys	Тут 80
Tyr	Туr	Ile	His	Gln 85	Ala	Thr	Gly	Thr	Pro 90	Trp	Ser	Lys	Ile	Glu 95	Ile
Gln	Arg	Thr	Pro 100	Met	Pro	Glu	Asn	Arg 105	Pro	Phe	Tyr	Asp	Ser 110	Ser	Leu
Asp	Phe	Asn 115	Val	Ser	His	Gln	Ala 120	Gly	Leu	Thr	Leu	Phe 125	Ala	Gly	Thr
Arg	Ala 130	Ala	Thr	Ala	His	Ser 135	Leu	Ser	Gly	Gly	Pro 140	Gln	Thr	Leu	Pro
Arg 145	Val	Gly	Ile	Asp	Val 150	Ala	Cys	Val	Asp	Glu 155	Pro	Ser	Arg	Arg	Arg

Val Phe Ser Asp Val Leu Ser Leu Arg Glu Leu Ala Thr Ile Lys Asn Pro Tyr Ala Thr Leu Lys Leu Ala Arg Glu Leu Gly Leu Asn Lys Ser Asp Pro Ser Lys Asp Asp Gln Glu Val Leu Ala Ala Tyr Gly Ile Arg Leu Phe Tyr Ser Ile Trp Ala Leu Lys Glu Ala Tyr Leu Lys Met Thr Gly Asp Gly Leu Leu Ala Ser Trp Ile Lys Asp Leu Glu Phe Thr Asn Val Val Pro Pro Glu Pro Val Gln Thr Val Gly Phe Ala Gly Asp Pro Ser Ala Thr His Ala Pro Ser Val Gln Asn Trp Gly Arg Pro Tyr Ser Asp Val Lys Ile Ser Leu Arg Gly Ile Pro Asp His Ser Val Arg Val . 295 Gln Pro Val Gly Phe Glu Ser Asp Tyr Ile Val Ala Thr Ala Ala Ser Gly Pro Asn Ile Gly Ser Val Ser Arg Gln Val Val Val Asn Asp Ser Asp His His Leu Pro Gly Arg Ile Thr Ala Phe Asp Ser Glu Thr Gly Leu Gln Asn Val Arg Ile Pro Pro Ile Ala Leu Arg Ser Ile Gly Asp Gly Asp Pro Trp Arg Val Asp Ser Lys Ile Ser Asp Pro Trp Leu Pro

Ala Asn Arg Pro Pro Lys Thr Leu Ala Asp Leu Ala Thr Phe Val Asp

Met Gln Glu Val Asp Ile Glu Ile Asp Ile Arg Pro Cys Ala Asp Gly 385 390 395 400

Arg Cys Glu His Leu Arg Asp Leu Pro Ser Phe 405 410

<210> 2

<211> 1284

<212> DNA

<213> Penicillium chrysogenum

<400> 2

	<400>	2						
	atggtag	jacc	ccagtgtgtc	tggaattgtg	agtagccaca	tagcctccat	gagtgcaccc	60
	actgaco	aat	ttcagaccaa	aatggatacc	aatgatatca	aacagaatga	catccccaag	120
	gaccago	cca	cgttggtccg	atggtacatg	gatgtcagac	gttgggatga	aaaatacttt	180
	gatetec	ctt	tgcttgaaac	cttaacacag	cctgatcagg	cagctgtcaa	gaagtactat	240
	caaacat	cgg	acaagcgcct	gtccttggcc	tcccagttgc	tgaaatatta	ctacattcac	300
	caagcca	ctg	gcactccctg	gagcaagatt	gagatccagc	gtactccgat	gcccgaaaat	360
	cgaccat	tct	acgattcaag	cctggatttc	aacgtcagcc	atcaggctgg	tctcactctg	420
	ttcgcag	gca	cgcgtgccgc	aacagcccac	tccttatccg	gtggacctca	aacattgcct	480
	cgcgtgg	rgaa	ttgacgttgc	gtgtgttgat	gaaccctctc	gtcgtcgtgc	taatcgtccc	540
	ccgaaga	cac	ttgccgacct	tgcaaccttc	gtggatgtct	tcagtgacgt	tctctcactc	600
	cgtgagc	ttg	cgaccatcaa	gaacccgtac	gcgactctta	aattggctcg	tgagcttggt	660
	ctgaata	aaa	gtgacccgag	caaagacgac	caggaagtcc	ttgctgccta	cggcattcgg	720
	ctgttct	act	cgatttgggc	tctcaaggag	gcttacttga	aaatgaccgg	agacggcctt	780
	ctggcct	ctt	ggataaagga	tctggaattc	acaaacgttg	ttccccccga	accagttcaa	840
	acagtcg	gat	ttgctggtga	tccttctgcc	actcacgcgc	cctcggtcca	aaattggggc	900
	cggcctt	act	ccgatgtcaa	aatctccttg	cgtggcattc	ctgaccattc	tgtgcgcgtt	960
	cagctcg	tcg	gcttcgagtc	cgactacata	gttgccacgg	ccgcgtcggg	ccccaatatt	1020
,	ggatccg	ttt	cgcggcaggt	agtcgtgaat	gacagcgatc	accatctgcc	agggcgtatc	1080
	acagcct	tcg	actctgagac	tggactccag	aacgtccgca	ttcccccaat	cgcgcttcga	1140
	tcaattg	gcg	atggggaccc	ctggcgtgtg	gactcgaaaa	tcagcgaccc	ctggctcccc	1200
	atgcagg	agg	tcgatattga	aatcgatatc	cggccctgtg	cggatggtcg	ttgcgagcac	1260

<210>	3
<211>	1236
<212>	DNA
<213>	Penicillium chrysogenum
44005	

atggtagacc ccagtgtgtc tggaattacc aaaatggata ccaatgatat caaacagaat 60 gacatcccca aggaccagcc cacgttggtc cgatggtaca tggatgtcag acgttgggat 120 gaaaaatact ttgatctccc tttgcttgaa accttaacac agcctgatca ggcagctgtc 180 aagaagtact atcaaacatc ggacaagege etgteettgg eeteecagtt getgaaatat 240 tactacattc accaagccac tggcactccc tggagcaaga ttgagatcca gcgtactccg 300 atgecegaaa ategaeeatt etaegattea ageetggatt teaaegteag ceateagget 360 ggtctcactc tgttcgcagg cacgcgtgcc gcaacagccc actccttatc cggtggacct 420 caaacattgc ctcgcgtggg aattgacgtt gcgtgtgttg atgaaccctc tcgtcgtcgt 480 gctaatcgtc ccccgaagac acttgccgac cttgcaacct tcgtggatgt cttcagtgac 540 gttctctcac tccgtgagct tgcgaccatc aagaacccgt acgcgactct taaattggct 600 cgtgagettg gtetgaataa aagtgaeeeg ageaaagaeg aeeaggaagt eettgetgee 660 tacggcattc ggctgttcta ctcgatttgg gctctcaagg aggcttactt gaaaatgacc 720 ggagacggcc ttctggcctc ttggataaag gatctggaat tcacaaacgt tgttccccc 780 gaaccagttc aaacagtcgg atttgctggt gatccttctg ccactcacgc gccctcggtc 840 caaaattggg gccggcctta ctccgatgtc aaaatctcct tgcgtggcat tcctgaccat 900 tetgtgegeg tteagecegt eggettegag teegaetaca tagttgeeae ggeegegteg 960 ggccccaata ttggatccgt ttcgcggcag gtagtcgtga atgacagcga tcaccatctg 1020 ccagggcgta tcacagcctt cgactctgag actggactcc agaacgtccg cattcccca 1080 atcgcgcttc gatcaattgg cgatggggac ccctggcgtg tggactcgaa aatcagcgac 1140 ccctggctcc ccatgcagga ggtcgatatt gaaatcgata tccggccctg tgcggatggt 1200 cgttgcgagc acctacggga tttaccaagc ttttaa 1236

<210> 4

<211> 3188

<212> DNA

<213> Penicillium chrysogenum

gtcgaccgaa gtggtttcgg ttcactcgca catcaagacc accgatcagc tcttgcccgc 60 ccttctttgt cttgttggca gactcggcaa gcaaaatgag cccggcgcat gtaccccacg 120 teggtttgeg atceactetg cataacceac gtattagate gaattgatat ggactaacce 180 ggttcactca ctttacgaat tctcgcagtg gctcgagaag atttgacctt gctgcgacta 240 aagacatagt ggtactctcg cctccgggca agaccaggcc gtcgcatgtt gccagttctt 300 gtggcgtccg tacttcaatg aagtgccatt ccgacggctg cgcttgctca gcggcctttt 360 tcaaaagctg cacatgctca aagaatgcgc cctgtagggc caggactcca acagtgatag 420 ccatttcctc tgaagatcgg aattgcggac cctccgagct cgggtgcttc ttgatattga 480 tgactctttt taaagcacat gactttgact ttccggcggg gaacgtatca acacgtgatg 540 gcggcttatc tccatcttta attccacgcg acatcaggat atcgtgagag ctctcggacg 600 attcctgcgc actttgaaaa cagactgcat aaccgaggca ttatagtata aaacaaatag 660 actcacctac agaaagagtg ataagttagg tcctatacct gtttccaatg tttctctctc 720 ttgctggatc agctttaaca tatctatgga tggtatcttg gatagtcata gtcatattgc 780 gcttgctatt gcatgtctct ttgctacatc ctatttatgg tattatgtac acggcctgtt 840 tctcgtttgc cggcctattg atgtatacat gtattggtgt aggtagttat tgcctcgcct 900 tatcgacacg tgctgataga taaggacccc gataagacgc caacatggct tctatccagg 960 1020 gtgtgtctgg aattgtgagt agccacatag cctccatgag tgcacccact gaccaatttc 1080 agaccaaaat ggataccaat gatatcaaac agaatgacat ccccaaggac cagcccacgt 1140 tggtccgatg gtacatggat gtcagacgtt gggatgaaaa atactttgat ctccctttgc 1200 ttgaaacctt aacacagcct gatcaggcag ctgtcaagaa gtactatcaa acatcggaca 1260 agcgcctgtc cttggcctcc cagttgctga aatattacta cattcaccaa gccactggca 1320 ctccctggag caagattgag atccagcgta ctccgatgcc cgaaaatcga ccattctacg 1380 attcaagcct ggatttcaac gtcagccatc aggctggtct cactctgttc gcaggcacgc 1440 gtgccgcaac agcccactcc ttatccggtg gacctcaaac attgcctcgc gtgggaattg 1500 acgttgcgtg tgttgatgaa ccctctcgtc gtcgtgctaa tcgtcccccg aagacacttg 1560 ccgaccttgc aaccttcgtg gatgtcttca gtgacgttct ctcactccgt gagcttgcga 1620 ccatcaagaa cccgtacgcg actcttaaat tggctcgtga gcttggtctg aataaaagtg 1680

acccgagcaa	agacgaccag	gaagtccttg	ctgcctacgg	cattcggctg	ttctactcga	1740
tttgggctct	caaggaggct	tacttgaaaa	tgaccggaga	cggccttctg	gcctcttgga	1800
taaaggatct	ggaattcaca	aacgttgttc	ccccgaacc	agttcaaaca	gtcggatttg	1860
ctggtgatcc	ttctgccact	cacgcgccct	cggtccaaaa	ttggggccgg	ccttactccg	1920
atgtcaaaat	ctccttgcgt	ggcattcctg	accattctgt	gcgcgttcag	ctcgtcggct	1980
tcgagtccga	ctacatagtt	gccacggccg	cgtcgggccc	caatattgga	tccgtttcgc	2040
ggcaggtagt	cgtgaatgac	agcgatcacc	atctgccagg	gcgtatcaca	gccttcgact	2100
ctgagactgg	actccagaac	gtccgcattc	ccccaatcgc	gcttcgatca	attggcgatg	2160
gggacccctg	gcgtgtggac	tcgaaaatca	gcgacccctg	gctccccatg	caggaggtcg	2220
atattgaaat	cgatatccgg	ccctgtgcgg	atggtcgttg	cgagcaccta	cgggatttac	2280
caagctttta	aattccttct	tgctgggata	tgaccaggcg	accatgcacc	cgagttattt	2340
gcatattgca	tctcctcatc	tcatattcct	ttctgagcgt	gtttttcgga	gcgataatta	2400
cccttgaaca	tatttctgca	ttgctgtatt	gccattagcg	aaaattcccg	agctagttgt	2460
agttgatttc	ctggaacgct	gggggagtgc	cgctcagatg	ttcatctcca	ataagcccct	2520
caatgaatct	tcacttcatc	ggatccaagg	tcaatcttcg	agatcaagtg	caagttgccc	2580
agaaagcacg	ggtaaagaaa	ccaagcctat	ttctattcta	tggtctaatg	taaactaaaa	2640
atgtagaagg	aagaaaagca	agtatccaac	agtaggcggg	tcatgacatg	cgtgtgcgct	2700
aaggatatat	acatttcgaa	ttgcaaagag	ggaagaggtg	aatcaggagt	gaaatgtgtg	2760
tcaagaggca	atgtcaatgt	caagatcatt	gttgctctca	tgagcagtca	cggattgtgt	2820
cggattgttc	ggcgtctggg	gccctcagat	tctatttctg	ggtcatgagc	ttgagagtag	2880
gtaccgaaga	agtgagcagt	attatactgc	agtgagtgtt	tagggggaat	tccttctggt	2940
gaattgtggc	gttcggggtt	gctctccggt	cttatgggtc	ttaatctgga	tgcccgatag	3000
tgcacccaag	ttaggagaaa	aacatatggt	aagtgttaat	cgtggagcag	tgtggcgaat	3060
cgcgaattgg	gtttggcact	tagatttcga	tggcgctaga	gacgccgttg	gcgcgagcac	3120
catcgacctc	atttttatgc	gcgtgggaca	ttgctgcaag	agttttgagc	atcgaatccc	3180
gcgtcgac						3188

<210> 5

<211> 37

<212> DNA

<213> Artificial Sequence

<220>		
<223>	cligonucleotide primer	
<400>	5	
ccccgt	cgac cgaagtggtt tcggttcact cgcacat	37
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	oligonucleotide primer	
<400>	6	
ccccgt	cgac gcgggattcg atgctcaaaa ctcttgc	37
<210>	7	
<211>	41	
<212>		
<213>	Artificial Sequence	
<220>	·	
<223>	oligonucleotide primer	
<400>	7	
gggggc	cgag gcggcccatg gataccaatg atatcaaaca g	41
	·	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	oligonucleotide primer	
<400>	8	
aaaaac	catt atggeeteat teaggaetae etgeeggaa aeg	13

•

.