Assignment 2

ANNU,EE21RESCH01010

FPGA Assignment-2

1 Introduction

We have to perform the problem presented in Assignment-1 on arduino and verify the output. Draw the truth table for the inputs nd outputs given above and write POS expressions for it

2 SOLUTION

A	B	C	D	X
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	0	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	0
0	1	0		1
0	1	1	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	0
0 0 0 0 0 0 0 0 1 1	1	$\begin{array}{ c c }\hline 1\\1\\0\\\end{array}$		0
1	0	0	$\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$	0
1	0	0	1	0
1	0	1	0	0
1	0	1		0
1 1 1	1 0 0 0 0 1 1	0	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
1	1	0		0
1	1	1	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	0
1	1	1	1	0

Table 1: Truth Table

3 Code

```
#include<Arduino.h>
#define A 2
#define B 3
#define C 4
#define D 5
#define NAND_OUTPUT 12
//defining Variables
int a , b, c ,d , kmap_output , nand_output, temp1,temp2;
//Function for NAND
int NAND(int i1 , int i2)
{
        return !(i1 && i2);
}
int NAND2(int i1,int i2,int i3)
        return !(i1 && i2 && i3);
}
void setup() {
 pinMode(LED_BUILTIN,OUTPUT);
 pinMode(NAND_OUTPUT,OUTPUT);
 pinMode(A,INPUT);
 pinMode(B,INPUT);
 pinMode(C,INPUT);
 pinMode(D,INPUT);
 // put your setup code here, to run once:
void loop() {
        a = digitalRead(A);
        b = digitalRead(B);
        c = digitalRead(C);
        d = digitalRead(D);
         kmap_output = ((a||d) \&\&((^a)||b) \&\&((^b)||(^c)) \&\&(b||c||(a)) \&\&(a||c||(^cd)));
```

4 Result

The assignment has been completed and truth table isverified.