ĐẠI HỌC QUỐC GIA TPHCM

TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

KHOA CÔNG NGHÊ THÔNG TIN

BÀI TẬP TUẦN 2

Môn học: Thực hành Đại số tuyến tính

Ca 1 - Nhóm 2:

23120006 - Trần Minh Hiếu Học

23120007 - Đỗ Trọng Huy

23120008 - Thái Gia Huy

23120009 - Nguyễn Thanh Khôi

23120010 - Hoàng Ngọc Phú

BÀI TẬP TUẦN 2

Mục lục

1	Bài 1.42	2
2	Bài 1.43	2
3	Bài 1.44	3
4	Bài 1.45	4
5	Bài 1.46	6
6	Bài 1.47	7
7	Bài 1.48	9
8	Bài 1.49	12
9	Bài 1.50	17
10	Bài 1.51	20
11	Bài 1.52	21
12	Bài 1.53	23

1 Bài 1.42

Chứng minh rằng, nếu m>n thì với mọi ma trận $A\in M_{m\times n}(\mathbb{R})$, $B\in M_{n\times m}(\mathbb{R})$ ta có AB không khả nghịch.

🙇 Lời giải

Bổ đề 1. Cho A là ma trận kích thước $m \times n$, B là ma trận kích thước $n \times p$, khi đó $r(AB) \le min\{r(A), r(B)\}$, với r(A) là hạng của ma trận A.

Chứng minh. Qua một số phép biến đổi ta được:

$$A \sim A'$$
 $B \sim B'$

với A' là ma trận bậc thang theo dòng, B' là ma trận bậc thang theo cột.

Do tính chất của ma trận bậc thang (các dòng khác 0 được đặt ở trên, các dòng toàn 0 được đặt ở dưới) nên số dòng khác 0 của A'B' luôn không vượt quá số dòng khác 0 của A', hay $r(A'B') \leq r(A')$.

Ngoài ra ta còn có

$$AB \sim A'B \sim A'B'$$

hay r(AB) = r(A'B').

Do đó $r(AB) \le r(A') = r(A)$. Tương tự nhưng trên dòng, ta có $r(AB) \le r(B)$. Suy ra $r(AB) \le min\{r(A), r(B)\}$.

Quay lại bài toán. Ta có:

- $r(A) \leq m$
- r(B) <= n < m

Áp dụng bổ đề: $r(AB) <= min\{r(A), r(B)\} < m$. Từ đó AB không khả nghịch.

2 Bài 1.43

Cho A, B là hai ma trận vuông cấp n thõa A + B = AB. Chứng minh AB = BA.

Ta có:

$$AB = A + B$$

$$\Leftrightarrow AB - A - B = 0$$

$$\Leftrightarrow AB - A \cdot I_n - B \cdot I_n + I_n^2 = I_n$$

$$\Leftrightarrow (A - I_n) \cdot (B - I_n) = I_n$$

Khi đó ta có $A - I_n$ và $B - I_n$ là hai ma trận nghịch đảo của nhau. Do đó ta có thể viết lại:

$$(B - I_n) \cdot (A - I_n) = I_n$$

$$\Leftrightarrow BA - I_n \cdot A - B \cdot I_n + I_n^2 = I_n$$

$$\Leftrightarrow BA = A + B$$

$$\Rightarrow AB = BA \ (= A + B)$$

Từ đó ta có điều phải chứng minh.

3 Bài 1.44

Cho $A \in M_n(\mathbb{R})$. Chứng minh rằng nếu A không khả nghịch thì tồn tại $B \in M_n(\mathbb{R})$, $B \neq 0$ sao cho AB = 0.

\land Lời giải

Bổ đề 2. Nếu A là một ma trận suy biến thì tồn tại ma trận $b \in \mathbb{R}_{n \times 1}$ để:

$$Ab = 0$$

Chứng minh.

Xét ma trận:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$
 và b =
$$\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Xét hệ phương trình:

$$\begin{cases} a_{11}b_1 + a_{12}b_2 + \dots + a_{1n}b_n &= 0 \\ a_{21}b_1 + a_{22}b_2 + \dots + a_{2n}b_n &= 0 \\ \vdots & & & \\ a_{n1}b_1 + a_{n2}b_2 + \dots + a_{nn}b_n &= 0 \end{cases}$$

Dễ thấy rằng hệ phương trình có nghiệm $(b_1, b_2, \ldots, b_n) = (0, 0, \ldots, 0)$. Khi đó ta có $r(A) = r(\tilde{A})$. Mà A không khả nghịch nên $r(A) < n \Rightarrow r(\tilde{A}) < n$. Vì vậy hệ phương trình đã cho có vô số nghiệm b và tồn tại $b \neq 0$ và $b \in \mathbb{R}_{\times 1}$ sao cho Ab = 0.

Quay lại bài toán. Khi này ta chọn ma trận B với cột đầu tiên là ma trận b, những cột còn lại mang giá trị bằng 0, như bên dưới:

$$B = \begin{bmatrix} b_1 & 0 & \dots & 0 \\ b_2 & 0 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ b_n & 0 & \dots & 0 \end{bmatrix}$$

Vì ma trận $b \neq 0$, ma trận B đương nhiên cũng khác 0. Khi này ta có:

$$AB = A \begin{bmatrix} b_1 & 0 & \dots & 0 \\ b_2 & 0 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ b_n & 0 & \dots & 0 \end{bmatrix}$$
$$= \begin{bmatrix} Ab & A0 & \dots & A0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}$$
$$= 0_n$$

Chứng minh hoàn tất.

4 Bài 1.45

 $lue{ }$ Bài 1.45 Cho $A,B\in M_n(\mathbb{R}).$

- a) Giả sử A là ma trận tam giác và $AA^T = I_n$. Chứng minh rằng A là ma trận đường chéo và các phần tử trên đường chéo là 1 hoặc -1.
- b) Giả sử A đối xứng, B phản đối xứng, (A B) khả nghịch và AB = BA. Đặt $C = (A + B)(A - B)^{-1}$. Chứng minh rằng $CC^T = I_n$.

🕰 Lời giải

a) Không mất tính tổng quát, giả sử A là ma trận tam giác dưới. Khi đó

$$A_{ij} = 0, \quad \forall i, j \in \{1, 2, \dots, n\}; i < j$$
 (1.45.1)

Ta có

$$(I_n)_{ij} = (AA^T)_{ij} = \sum_{k=1}^n A_{ik} (A^T)_{kj}$$

$$= \sum_{k=1}^n A_{ik} A_{jk}$$

$$= \sum_{k=1}^{\min\{i,j\}} A_{ik} A_{jk}$$
(1.45.2)

(do với $k > \min\{i, j\}$ thì theo (1.45.1) thì $A_{ik} = 0 \lor A_{jk} = 0$) Ta chứng minh quy nạp theo m khẳng định sau:

$$\forall m \in \{1, 2, ..., n\} : A_{mm} = \pm 1 \land A_{im} = 0, \forall i \in \{1, 2, ..., n\} \setminus \{m\}$$
 (*)

- Với m=1. Ta có, thay i=j=1 vào (1.45.2) ta được $A_{11}^2=1$ suy ra $A_{11}=\pm 1$. Sau đó, thay lần lượt $i=\overline{2,n}, j=1$ vào (1.45.2) ta được $A_{i1}A_{11}=0$ và suy ra $A_{i1}=0$ với mọi $i=\overline{2,n}$. Do đó (*) đúng với m=1.
- Giả sử (*) đúng với $m=\overline{1,z}$ với $z\in\mathbb{N}$. Ta chứng minh (*) đúng với m=z+1. Thật vậy, ta có $A_{1(z+1)}=A_{2(z+1)}=\cdots=A_{z(z+1)}$ (theo (1.45.1)). Thay i=j=z+1 vào (1.45.2) ta được

$$1=\sum_{k=1}^{z+1}A_{(z+1)k}^2$$

$$=A_{(z+1)(z+1)}^2\quad \text{(do }A_{(z+1)k}=0, \forall k=\overline{1,z} \text{ theo giả thiết quy nạp)}$$

Suy ra $A_{(z+1)(z+1)}=\pm 1$. Sau đó, thay lần lượt $i=\overline{z+2,n}, j=z+1$ vào (1.45.2) ta được

$$0=\sum_{k=1}^{z+1}A_{ik}A_{(z+1)k}$$

$$=A_{i(z+1)}A_{(z+1)(z+1)}\quad \text{(do }A_{(z+1)k}=0, \forall k=\overline{1,z} \text{ theo giả thiết quy nạp)}$$

Suy ra $A_{i(z+1)}=0$ với mọi $i=\overline{z+2,n}$. Từ đó suy ra (*) đúng với m=z+1.

Theo nguyên lý quy nạp thì (*) đúng. Vậy A là ma trận đường chéo và các phần tử trên đường chéo là 1 hoặc -1 (đpcm).

b) Ta có các nhận xét sau

i)
$$(A - B) = (A + B)^T$$
. Ta có

$$(A - B)_{ij} = A_{ij} - B_{ij}$$

$$= A_{ji} + B_{ji}$$

$$= (A + B)_{ji}$$

$$= ((A + B)^T)_{ij}$$

với mọi $i, j \in \{1, 2, ..., n\}$.

ii)
$$(A+B)(A-B)=(A-B)(A+B)$$
. Thật vậy, ta có

$$(A + B)(A - B) = A^{2} - AB + BA - B^{2}$$

= $A^{2} - BA + AB - B^{2}$ (do $AB = BA$)
= $(A - B)(A + B)$

iii) Nếu ma trận $X \in M_n(\mathbb{R})$ khả nghịch thì $(X^T)^{-1} = (X^{-1})^T$. Ta có

$$(X^{-1})^T X^T = (XX^{-1})^T$$
$$= I_n^T$$
$$= I_n$$

Quay lại bài toán, ta có

$$C^{T}C = ((A - B)^{-1})^{T}(A + B)^{T}(A + B)(A - B)^{-1}$$

$$= ((A - B)^{T})^{-1}(A - B)(A + B)(A - B)^{-1}$$

$$= (A + B)^{-1}(A + B)(A - B)(A - B)^{-1}$$

$$= I_{n}$$

Vậy $CC^T = I_n$ (đpcm).

5 Bài 1.46

Cho $A \in M_n(\mathbb{R})$. Chứng minh rằng nếu A không khả nghịch thì tồn tại $B \in M_n(\mathbb{R})$, $B \neq 0$ sao cho AB = BA = 0.

\land Lời giải

Ta có:

• A không khả nghịch nên theo bài 1.44, tồn tại ma trận $C \in M_n(\mathbb{R}), C \neq 0$ sao cho

$$AC = 0 \tag{1.46.1}$$

• A không khả nghịch nên A^T không khả nghịch, theo bài 1.44 tồn tại ma trận $F \neq 0$ sao cho

$$A^{T}F = 0$$

$$\Rightarrow (A^{T}F)^{T} = 0$$

$$\Rightarrow F^{T}A = 0$$
(1.46.2)

• Từ (1.46.1) và (1.46.2) ta suy ra được: $\begin{cases} ACF^T = 0 \\ CF^TA = 0 \end{cases}$ Ta cần chọn C, F sao cho $CF^T \in M_n(\mathbb{R}), CF^T \neq 0$:

$$C = \begin{bmatrix} c_1 & 0 & \dots & 0 \\ c_2 & 0 & \dots & 0 \\ \vdots & & & & \\ c_n & 0 & \dots & 0 \end{bmatrix}, \quad F = \begin{bmatrix} f_1 & 0 & \dots & 0 \\ f_2 & 0 & \dots & 0 \\ \vdots & & & & \\ f_n & 0 & \dots & 0 \end{bmatrix} \Rightarrow F^T = \begin{bmatrix} f_1 & f_2 & \dots & f_n \\ 0 & 0 & \dots & 0 \\ \vdots & & & & \\ 0 & 0 & \dots & 0 \end{bmatrix}$$

với $c_i, f_i \neq 0 \quad \forall i = \overline{1, n}$. Khi đó $(CF^T)_{ij} = c_i f_j \neq 0$, hay $CF^T \neq 0$. Chọn $B = CF^T$ ta có điều phải chứng minh.

6 Bài 1.47

Bài 1.47 Giải các hệ phương trình sau:

a)
$$\begin{cases} 5x - 3y + 2z = 1; \\ 2y - 5z = 2; \\ 4z = 8. \end{cases}$$

b)
$$\begin{cases} 2x + 4y - z = 11; \\ 5y + z = 2; \\ 3z = -9. \end{cases}$$

c)
$$\begin{cases} 2x - 3y + 5z - 2t = 9; \\ 5y - z + 3t = 1; \\ 7z - t = 3; \\ 2t = 8. \end{cases}$$

d)
$$\begin{cases} x - 2y + 3z - t = 5; \\ 2y - z + t = 0; \\ z - t = 1; \\ 4t = 6. \end{cases}$$

П

🙇 Lời giải

a) Hệ tương đương

$$\begin{cases} 5x - 3y + 2z = 1 \\ 2y - 5z = 2 \Leftrightarrow \end{cases} \begin{cases} 5x - 3y + 2z = 1 \\ y = 6 \Leftrightarrow \begin{cases} x = 3 \\ y = 6 \end{cases} \\ z = 2 \end{cases}$$

b) Hệ tương đương

$$\begin{cases} 2x + 4y - z = 11 \\ 5y + z = 2 \\ z = -3 \end{cases} \Leftrightarrow \begin{cases} 2x + 4y - z = 11 \\ y = 1 \\ z = -3 \end{cases} \Leftrightarrow \begin{cases} x = 2 \\ y = 1 \\ z = -3 \end{cases}$$

c) Hệ tương đương

$$\begin{cases} 2x - 3y + 5z - 2t = 9 \\ 5y - z + 3t = 1 \\ 7z - t = 3 \end{cases} \Leftrightarrow \begin{cases} 2x - 3y + 5z - 2t = 9 \\ 5y - z + 3t = 1 \end{cases} \\ 7z - t = 3 \\ t = 4 \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x - 3y + 5z - 2t = 9 \\ 5y - z + 3t = 1 \end{cases} \\ z = 1 \\ t = 4 \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x - 3y + 5z - 2t = 9 \\ 5y - z + 3t = 1 \end{cases} \\ z = 1 \\ t = 4 \end{cases} \Leftrightarrow \begin{cases} x = 3 \\ y = -2 \\ z = 1 \\ t = 4 \end{cases}$$

d) Hệ tương đương

$$\begin{cases} x - 2y + 3z - t = 5 \\ 2y - z + t = 0 \\ z - t = 1 \end{cases} \Leftrightarrow \begin{cases} x - 2y + 3z - t = 5 \\ 2y - z + t = 0 \\ z - t = 1 \end{cases}$$

$$4t = 6 \qquad t = \frac{3}{2}$$

$$\begin{cases} x - 2y + 3z - t = 5 \\ 2y - z + t = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \\ 2y - z + t = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \\ 2y - z + t = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \\ 2y - z + t = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \\ z = \frac{5}{2} \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \\ z = \frac{5}{2} \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + 3z - t = 5 \end{cases}$$

7 Bài 1.48

➡ Bài 1.48 Giải các hệ phương trình sau:

a)
$$\begin{cases} x_1 + 4x_2 - 3x_3 + 2x_4 = 5 \\ x_3 - 4x_4 = 2 \end{cases}$$

b)
$$\begin{cases} 2x_1 - 3x_2 + 6x_3 + 2x_4 - 5x_5 = 3\\ x_2 - 4x_3 + x_4 = 1\\ x_4 - 3x_5 = 2 \end{cases}$$

c)
$$\begin{cases} 3x_1 + 2x_2 - 5x_3 - 6x_4 + 2x_5 = 4\\ x_3 + 8x_4 - 3x_5 = 6\\ x_4 - 5x_5 = 5 \end{cases}$$

П

\land Lời giải

a) Xét hệ phương trình:

$$\begin{cases} x_1 + 4x_2 - 3x_3 + 2x_4 = 5 \\ x_3 - 4x_4 = 2 \end{cases}$$

Đặt $x_1 = a$, $x_2 = b$ là các nghiêm tự do, ta có:

$$\begin{cases} x_1 = a \\ x_2 = b \\ a + 4b - 10x_4 = 11 \\ x_3 - 4x_4 = 2 \end{cases}$$

Giải hệ phương trình trên, ta được:

$$\begin{cases} x_1 = a \\ x_2 = b \\ x_3 = \frac{2a + 8b - 12}{5} \\ x_4 = \frac{a + 4b - 11}{10} \end{cases}$$

b) Xét hệ phương trình

$$\begin{cases} 2x_1 - 3x_2 + 6x_3 + 2x_4 - 5x_5 = 3\\ x_2 - 4x_3 + x_4 = 1\\ x_4 - 3x_5 = 2 \end{cases}$$

Đặt $x_2 = a$, $x_5 = b$ là các nghiệm tự do, ta có:

$$\begin{cases} x_2 = a \\ x_5 = b \\ 2x_1 - 3a + 6x_3 + 2x_4 - 5b = 3 \Leftrightarrow \begin{cases} x_2 = a \\ x_5 = b \\ 2x_1 - 3a + 6x_3 + 2x_4 - 5b = 3 \end{cases} \\ a - 4x_3 + x_4 = 1 \\ x_4 - 3b = 2 \end{cases} \Leftrightarrow \begin{cases} x_1 = \frac{3a - 11b - 5}{4} \\ x_2 = a \\ x_3 = \frac{a + 3b + 1}{4} \\ x_4 = 2 + 3b \\ x_5 = b \end{cases}$$

c) Xét hệ phương trình

$$\begin{cases} 3x_1 + 2x_2 - 5x_3 - 6x_4 + 2x_5 = 4\\ x_3 + 8x_4 - 3x_5 = 6\\ x_4 - 5x_5 = 5 \end{cases}$$

Đặt $x_1 = a$, $x_5 = b$ là các nghiệm tự do, ta có:

$$\begin{cases} x_1 = a \\ x_5 = b \\ 3a + 2x_2 - 5x_3 - 6x_4 + 2b = 4 \Leftrightarrow \begin{cases} 3a + 2x_2 - 5x_3 - 6x_4 + 2b = 4 \\ x_3 + 8x_4 - 3b = 6 \\ x_4 - 5b = 5 \end{cases} & x_3 = -37b - 34 \\ x_4 = 5 + 5b \end{cases}$$

$$\Leftrightarrow \begin{cases} x_1 = a \\ x_2 = \frac{-3a - 157b - 136}{2} \\ x_3 = -37b - 34 \\ x_4 = 5 + 5b \end{cases}$$

$$x_5 = b$$

8 Bài 1.49

➡ Bài 1.49 Giải các hệ phương trình sau:

a)
$$\begin{cases} 2x_1 + x_2 - 2x_3 &= 10\\ 3x_1 + 2x_2 + 2x_3 &= 1\\ 5x_1 + 4x_2 + 3x_3 &= 4 \end{cases}$$

d)
$$\begin{cases} 2x_1 - 5x_2 + 3x_3 + 2x_4 &= 4\\ 3x_1 - 7x_2 + 2x_3 + 4x_4 &= 9\\ 5x_1 - 10x_2 - 5x_3 + 7x_4 &= 22 \end{cases}$$

b)
$$\begin{cases} x_1 - 2x_2 + x_3 &= 7 \\ 2x_1 - x_2 + 4x_3 &= 17 \\ 3x_1 - 2x_2 + 2x_3 &= 14 \end{cases}$$

e)
$$\begin{cases} x_1 + 2x_2 - x_3 + 4x_4 &= 2\\ 2x_1 + 5x_2 - 2x_3 + x_4 &= 1\\ 5x_1 + 12x_2 - 7x_3 + 6x_4 &= 7 \end{cases}$$

c)
$$\begin{cases} x_1 + 2x_2 - 3x_3 &= 1\\ 2x_1 + 5x_2 - 8x_3 &= 4\\ 3x_1 + 8x_2 - 13x_3 &= 7 \end{cases}$$

f)
$$\begin{cases} x_1 + 2x_2 + 3x_3 - 2x_4 &= 1\\ 2x_1 - x_2 - 2x_3 - 3x_4 &= 2\\ 3x_1 + 2x_2 - x_3 + 2x_4 &= -5\\ 2x_1 - 3x_2 + 2x_3 + x_4 &= 11 \end{cases}$$

🙇 Lời giải

a) Ta có:

Ma trận hóa hệ phương trình ta được:

$$\tilde{\mathbf{A}} = [A|B] = \begin{bmatrix} 2 & 1 & -2 & 10 \\ 3 & 2 & 2 & 1 \\ 5 & 4 & 3 & 4 \end{bmatrix}$$

Bằng các phép biến đổi ta có:

$$\tilde{A} = \begin{bmatrix} 2 & 1 & -2 & | & 10 \\ 3 & 2 & 2 & | & 1 \\ 5 & 4 & 3 & | & 4 \end{bmatrix} \xrightarrow{d_2 - d_1} \begin{bmatrix} 1 & 1 & 4 & | & -9 \\ 2 & 1 & -2 & | & 10 \\ 5 & 4 & 3 & | & 4 \end{bmatrix}$$

$$\xrightarrow{d_3 - 5d_1} \begin{bmatrix} 1 & 1 & 4 & | & -9 \\ 0 & -1 & -10 & | & 28 \\ 0 & -1 & -17 & | & 49 \end{bmatrix}$$

$$\xrightarrow{d_3 - d_2} \begin{bmatrix} 1 & 1 & 4 & | & -9 \\ 0 & -1 & -10 & | & 28 \\ 0 & 0 & -7 & | & 21 \end{bmatrix}$$

Đưa ma trận cuối về hệ phương trình và giải ta thu được nghiệm của hệ phương trình đã cho là:

$$\begin{cases} x_1 = 1 \\ x_2 = 2 \\ x_3 = -3 \end{cases}$$

b) Ta có:

Ma trận hóa hệ phương trình ta được:

$$\tilde{A} = [A|B] = \begin{bmatrix} 1 & -2 & 1 & 7 \\ 2 & -1 & 4 & 17 \\ 3 & -2 & 2 & 14 \end{bmatrix}$$

Bằng các phép biến đổi ta có:

$$\tilde{A} = \begin{bmatrix} 1 & -2 & 1 & 7 \\ 2 & -1 & 4 & 17 \\ 3 & -2 & 2 & 14 \end{bmatrix} \xrightarrow{d_2 - 2d_1} \begin{bmatrix} 1 & -2 & 1 & 7 \\ 0 & 3 & 2 & 3 \\ 0 & 4 & -1 & -7 \end{bmatrix}$$

$$\xrightarrow{3d_3 - 4d_2} \begin{bmatrix} 1 & -2 & 1 & 7 \\ 0 & 3 & 2 & 3 \\ 0 & 0 & -11 & -33 \end{bmatrix}$$

Đưa ma trận cuối về hệ phương trình và giải ta thu được nghiệm của hệ phương trình đã cho là:

$$\begin{cases} x_1 = 2 \\ x_2 = -1 \\ x_3 = 3 \end{cases}$$

c) Ta có:

Ma trận hóa hệ phương trình ta được:

$$\tilde{A} = [A|B] = \begin{bmatrix} 1 & 2 & -3 & 1 \\ 2 & 5 & -8 & 4 \\ 3 & 8 & -13 & 7 \end{bmatrix}$$

Bằng các phép biến đổi ta có:

$$\tilde{A} = \begin{bmatrix} 1 & 2 & -3 & | & 1 \\ 2 & 5 & -8 & | & 4 \\ 3 & 8 & -13 & | & 7 \end{bmatrix} \xrightarrow{d_2 - 2d_1} \begin{bmatrix} 1 & 2 & -3 & | & 1 \\ 0 & 1 & -2 & | & 2 \\ 0 & 2 & -4 & | & 4 \end{bmatrix}$$

$$\xrightarrow{d_3 - 2d_2} \begin{bmatrix} 1 & 2 & -3 & | & 1 \\ 0 & 1 & -2 & | & 2 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Đưa ma trận cuối về hệ phương trình và giải ta thu được nghiệm của hệ phương trình đã cho là:

$$\begin{cases} x_1 = -a - 3 \\ x_2 = 2a + 2 \end{cases} \quad \text{v\'oi } a \in \mathbb{R}$$
$$x_3 = a$$

d) Ta có:

Ma trận hóa hệ phương trình ta được:

$$\tilde{A} = [A|B] = \begin{bmatrix} 2 & -5 & 3 & 2 & | & 4 \\ 3 & -7 & 2 & 4 & | & 9 \\ 5 & -10 & -5 & 7 & | & 22 \end{bmatrix}$$

Bằng các phép biến đổi ta có:

$$\tilde{A} = \begin{bmatrix} 2 & -5 & 3 & 2 & | & 4 \\ 3 & -7 & 2 & 4 & | & 9 \\ 5 & -10 & -5 & 7 & | & 22 \end{bmatrix} \xrightarrow{d_2 - d_1} \begin{bmatrix} 1 & -2 & -1 & 2 & | & 5 \\ 2 & -5 & 3 & 2 & | & 4 \\ 5 & -10 & -5 & 7 & | & 22 \end{bmatrix}$$
$$\xrightarrow{d_3 - 5d_1} \begin{bmatrix} 1 & -2 & -1 & 2 & | & 5 \\ 0 & -1 & 5 & -2 & | & -6 \\ 0 & 0 & 0 & -3 & | & -3 \end{bmatrix}$$

Đưa ma trận cuối về hệ phương trình và giải ta thu được nghiệm của hệ phương trình đã cho là:

$$\begin{cases} x_1 &= a \\ x_2 &= \frac{5a - 11}{11} \\ x_3 &= \frac{a - 11}{11} \\ x_4 &= 1 \end{cases}$$
 với $a \in \mathbb{R}$

e) Ta có:

Ma trận hóa hệ phương trình ta được:

$$\tilde{A} = [A|B] = \begin{bmatrix} 1 & 2 & -3 & 4 & 2 \\ 2 & 5 & -2 & 1 & 1 \\ 5 & 12 & -7 & 6 & 7 \end{bmatrix}$$

Bằng các phép biến đổi ta có:

$$\tilde{A} = \begin{bmatrix} 1 & 2 & -3 & 4 & 2 \\ 2 & 5 & -2 & 1 & 1 \\ 5 & 12 & -7 & 6 & 7 \end{bmatrix} \xrightarrow{d_2 - 2d_1} \begin{bmatrix} 1 & 2 & -1 & 4 & 2 \\ 0 & 1 & 4 & -7 & -3 \\ 0 & 2 & 8 & -14 & -3 \end{bmatrix}$$

$$\xrightarrow{d_3 - 2d_2} \begin{bmatrix} 1 & 2 & -1 & 4 & 2 \\ 0 & 1 & 4 & -7 & -3 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$

Suy ra phương trình vô nghiệm.

f) Ta có:

Ma trận hóa hệ phương trình ta được:

$$\tilde{A} = [A|B] = \begin{bmatrix} 1 & 2 & 3 & -2 & 1 \\ 2 & -1 & -2 & -3 & 2 \\ 3 & 2 & -1 & 2 & -5 \\ 2 & -3 & 2 & 1 & 11 \end{bmatrix}$$

Bằng các phép biến đổi ta có:

$$\tilde{A} = \begin{bmatrix} 1 & 2 & 3 & -2 & 1 \\ 2 & -1 & -2 & -3 & 2 \\ 3 & 2 & -1 & 2 & -5 \\ 2 & -3 & 2 & 1 & 11 \end{bmatrix} \xrightarrow{d_2 - 2d_1} \begin{bmatrix} 1 & 2 & 3 & -2 & 1 \\ 0 & -5 & -8 & 1 & 0 \\ 0 & -4 & -10 & 8 & -8 \\ 0 & -7 & -4 & 5 & 9 \end{bmatrix}$$

$$\xrightarrow{\frac{5d_4 - 7d_2}{5d_3 - 4d_2}} \begin{bmatrix} 1 & 2 & 3 & -2 & 1 \\ 0 & -5 & -8 & 1 & 0 \\ 0 & 0 & -18 & 36 & -40 \\ 0 & 0 & 36 & 18 & 45 \end{bmatrix}$$

$$\xrightarrow{\frac{d_4 + 2d_3}{3}} \begin{bmatrix} 1 & 2 & 3 & -2 & 1 \\ 0 & -5 & -8 & 1 & 0 \\ 0 & 0 & -18 & 36 & -40 \\ 0 & 0 & 0 & 90 & -35 \end{bmatrix}$$

Đưa ma trận cuối về hệ phương trình và giải ta thu được nghiệm của hệ phương trình đã cho là:

$$\begin{cases} x_1 = \frac{2}{3} \\ x_2 = -\frac{43}{18} \\ x_3 = \frac{13}{9} \\ x_4 = -\frac{7}{18} \end{cases}$$

9 Bài 1.50

Bài 1.50 Giải các hệ phương trình tuyến tính thuần nhất sau:

a)
$$\begin{cases} x_1 + 2x_2 + x_3 = 0; \\ 2x_1 + 5x_2 - x_3 = 0; \\ 3x_1 - 2x_2 - x_3 = 0. \end{cases}$$

c)
$$\begin{cases} x_1 - x_2 + 2x_3 - 3x_4 &= 0; \\ x_1 + 4x_2 - x_3 - 2x_4 &= 0; \\ x_1 - 4x_2 + 3x_3 - 2x_4 &= 0; \\ x_1 - 8x_2 + 5x_3 - 2x_4 &= 0. \end{cases}$$

b)
$$\begin{cases} x_1 + x_2 - 2x_3 + 3x_4 &= 0; \\ 2x_1 + 3x_2 + 3x_3 - x_4 &= 0; \\ 5x_1 + 7x_2 + 4x_3 + x_4 &= 0. \end{cases}$$

d)
$$\begin{cases} x_1 - 2x_2 - x_3 + x_4 &= 0; \\ 2x_1 - 3x_2 + x_3 + 5x_4 &= 0; \\ x_1 + x_2 + 8x_3 - 5x_4 &= 0; \\ 3x_1 - 5x_2 &+ 9x_4 &= 0. \end{cases}$$

\land Lời giải

a) Ta có:

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & -1 \\ 3 & -2 & -1 \end{bmatrix} \xrightarrow{d_2 - 2d_1} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -3 \\ 0 & -8 & -4 \end{bmatrix} \xrightarrow{\frac{d_3 + 8d_2}{-\frac{1}{28}d_3}} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\xrightarrow{\frac{d_2 + 3d_3}{-\frac{1}{28}d_3}} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\frac{d_1 - 2d_2}{d_1 - d_3}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Như vậy, nghiệm của hệ phương trình là:

$$\begin{cases} x_1 = 0, \\ x_2 = 0, \\ x_3 = 0. \end{cases}$$

b) Ta có:

$$\begin{bmatrix} 1 & 1 & -2 & 3 \\ 2 & 3 & 3 & -1 \\ 5 & 7 & 4 & 1 \end{bmatrix} \xrightarrow[d_3-5d_1]{d_2-2d_1} \begin{bmatrix} 1 & 1 & -2 & 3 \\ 0 & 1 & 7 & -7 \\ 0 & 2 & 14 & -14 \end{bmatrix} \xrightarrow[d_1-d_2]{d_3-2d_2} \begin{bmatrix} 1 & 0 & -9 & 10 \\ 0 & 1 & 7 & -7 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Như vậy, hệ phương trình ban đầu tương đương với:

$$\begin{cases} x_1 - 9x_3 + 10x_4 = 0, \\ x_2 + 7x_3 - 7x_4 = 0. \end{cases}$$

Ta chọn x_3 , x_4 là các nghiệm tự do. Do đó, nghiệm của hệ phương trình là:

$$\begin{cases} x_1 = 9s - 10t, \\ x_2 = -7s + 7t, \\ x_3 = s \in \mathbb{R}, \\ x_4 = t \in \mathbb{R}. \end{cases}$$

c) Ta có:

$$\begin{bmatrix} 1 & -1 & 2 & -3 \\ 1 & 4 & -1 & -2 \\ 1 & -4 & 3 & -2 \\ 1 & -8 & 5 & -2 \end{bmatrix} \xrightarrow{d_2-d_1} \begin{bmatrix} 1 & -1 & 2 & -3 \\ 0 & 5 & -3 & 1 \\ 0 & -3 & 1 & 1 \\ 0 & -7 & 3 & 1 \end{bmatrix}$$

$$\xrightarrow{\frac{5d_3+3d_2}{5d_4+7d_2}} \begin{bmatrix} 1 & -1 & 2 & -3 \\ 0 & 5 & -3 & 1 \\ 0 & 0 & -7 & 3 & 1 \end{bmatrix}$$

$$\xrightarrow{\frac{1}{4}d_3} \begin{bmatrix} 1 & -1 & 2 & -3 \\ 0 & 5 & -3 & 1 \\ 0 & 0 & -4 & 8 \\ 0 & 0 & -6 & 12 \end{bmatrix}$$

$$\xrightarrow{\frac{1}{4}d_3} \begin{bmatrix} \frac{1}{6}d_4 \\ \frac{1}{6}d_4 \\ \frac{1}{d_4-d_3} \end{bmatrix}} \begin{bmatrix} 1 & 14 & -7 & 0 \\ 0 & 5 & -3 & 1 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Như vậy, hệ phương trình ban đầu tương đương với:

$$\begin{cases} x_1 + 14x_2 - 7x_3 = 0, \\ 5x_2 - 3x_3 + x_4 = 0, \\ -x_3 + 2x_4 = 0. \end{cases}$$

Ta chọn x_4 là nghiệm tự do. Do đó, nghiệm của hệ phương trình là:

$$\begin{cases} x_1 = 0, \\ x_2 = t, \\ x_3 = 2t, \\ x_4 = t \in \mathbb{R} \end{cases}$$

d) Ta có:

$$\begin{bmatrix} 1 & -2 & -1 & 1 \\ 2 & -3 & 1 & 5 \\ 1 & 1 & 8 & -5 \\ 3 & -5 & 0 & 9 \end{bmatrix} \xrightarrow{d_2 - 2d_1} \begin{bmatrix} 1 & -2 & -1 & 1 \\ 0 & 1 & 3 & 3 \\ 0 & 3 & 9 & -6 \\ 0 & 1 & 3 & 6 \end{bmatrix}$$

$$\xrightarrow{d_3 - 3d_2} \begin{bmatrix} 1 & -2 & -1 & 1 \\ 0 & 1 & 3 & 3 \\ 0 & 1 & 3 & 3 \\ 0 & 0 & 0 & -15 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

$$\xrightarrow{5d_4 + d_3} \begin{bmatrix} 1 & 0 & 5 & 7 \\ 0 & 1 & 3 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Như vậy, hệ phương trình ban đầu tương đương với:

$$\begin{cases} x_1 + 5x_3 + 7x_4 &= 0, \\ x_2 + 3x_3 + 3x_4 &= 0, \\ x_4 &= 0 \end{cases}$$

Ta chọn x_3 là nghiệm tự do. Do đó, nghiệm của hệ phương trình là:

$$\begin{cases} x_1 = -5s, \\ x_2 = -3s, \\ x_3 = s \in \mathbb{R}, \\ x_4 = 0. \end{cases}$$

10 Bài 1.51

○ Bài 1.51 Cho hệ phương trình

$$\begin{cases} x_1 + x_2 - 3x_3 = -1; \\ x_1 + mx_2 + 3x_3 = 2; \\ 2x_1 + x_2 + mx_3 = m + 1. \end{cases}$$
 (I)

Xác định giá trị của tham số $m \in \mathbb{R}$ sao cho:

- a) hệ có một nghiệm duy nhất;
- b) hệ vô nghiệm;
- c) hệ có vô số nghiệm.

🖾 Lời giải

Xét các ma trận

$$A = \begin{bmatrix} 1 & 1 & -3 \\ 1 & m & 3 \\ 2 & 1 & m \end{bmatrix}, \quad B = \begin{bmatrix} -1 \\ 2 \\ m+1 \end{bmatrix}, \quad X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Ta có hệ phương trình (I) tương đương

$$AX = B$$

Xét ma trận mở rộng

$$\tilde{A} = [A \mid B]$$

Ta có

$$\tilde{A} = \begin{bmatrix} 1 & 1 & -3 & | & -1 \\ 1 & m & 3 & | & 2 \\ 2 & 1 & m & | & m+1 \end{bmatrix} \xrightarrow{d_2-d_1} \begin{bmatrix} 1 & 1 & -3 & | & -1 \\ 0 & m-1 & 6 & | & 3 \\ 0 & -1 & m+6 & | & m+3 \end{bmatrix}$$

$$\xrightarrow{-d_2-md_3} \begin{bmatrix} 1 & 1 & | & -1 & | & -1 \\ 0 & 1 & -6-m(m+6) & | & -3-m(m+3) \\ 0 & 0 & | & -m(m+5) & | & -m(m+2) \end{bmatrix}$$

- a) Để (I) có một nghiệm duy nhất thì $r(A) = r(\tilde{A}) = 3$ hay $m \neq 0 \land m \neq -5$.
- b) Để (I) vô nghiệm thì $r(\tilde{A}) > r(A)$ hay $-m(m+5) = 0 \land -m(m+2) \neq 0$ hay m = -5.

c) Để (I) có vô số nghiệm thì $r(\tilde{A}) = r(A) < 3$ hay -m(m+5) = -m(m+2) = 0 hay m=0.

11 Bài 1.52

Bài 1.52 Giải và biện luận các hệ phương trình sau theo các tham số m:

a)
$$\begin{cases} x_1 + x_2 - x_3 = 1; \\ 2x_1 + 3x_2 + mx_3 = 3; \\ x_1 + mx_2 + 3x_3 = 2. \end{cases}$$
 b)
$$\begin{cases} mx_1 + x_2 + x_3 = 1; \\ x_1 + mx_2 + x_3 = 1; \\ x_1 + x_2 + mx_3 = 1. \end{cases}$$

\land Lời giải

a) Ma trận hóa hệ phương trình:

$$\tilde{A} = [A|B] = \begin{bmatrix} 1 & 1 & -1 & 1 \\ 2 & 3 & m & 3 \\ 1 & m & 3 & 2 \end{bmatrix}$$

$$\xrightarrow[d_3-d_1]{d_2-2d_1} \left[\begin{array}{ccc|c} 1 & 1 & -1 & 1 \\ 0 & 1 & m+2 & 1 \\ 0 & m-1 & 4 & 1 \end{array} \right] \xrightarrow[d_1-d_2]{d_3-(m-1)d_2} \left[\begin{array}{ccc|c} 1 & 0 & -m-3 & 0 \\ 0 & 1 & m+2 & 1 \\ 0 & 0 & (2-m)(m+3) & 2-m \end{array} \right]$$

- Biên luân:
 - Với m = -3, hệ phương trình vô nghiệm, ta có:

$$\tilde{A} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$

• Với m = 2, hệ phương trình có vô số nghiệm, ta có:

$$ilde{\mathrm{A}} \sim \left[egin{array}{ccc|c} 1 & 0 & -5 & 0 \\ 0 & 1 & 4 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

Do đó, nghiệm của hệ phương trình là:

$$\begin{cases} x_1 = 5s, \\ s_2 = 1 - 4s, \\ x_3 = s \in \mathbb{R}. \end{cases}$$

• Với $m \neq 2 \land m \neq -3$, ta có:

$$\tilde{A} \sim \begin{bmatrix} 1 & 0 & -m-3 & 0 \\ 0 & 1 & m+2 & 1 \\ 0 & 0 & m+3 & 1 \end{bmatrix}$$

Do đó, nghiệm của hệ phương trình là:

$$\begin{cases} x_1 = 1, \\ x_2 = \frac{1}{m+3}, \\ x_3 = \frac{1}{m+3}. \end{cases}$$

b) Ma trận hóa hệ phương trình:

$$\tilde{A} = [A|B] = \begin{bmatrix} m & 1 & 1 & 1 \\ 1 & m & 1 & 1 \\ 1 & 1 & m & 1 \end{bmatrix} \xrightarrow{d_2 \leftrightarrow d_1} \begin{bmatrix} 1 & 1 & m & 1 \\ m & 1 & 1 & 1 \\ 1 & m & 1 & 1 \end{bmatrix}$$

$$\xrightarrow{d_2 - md_1} \begin{bmatrix} 1 & 1 & m & 1 \\ 0 & 1 - m & 1 - m^2 & 1 - m \\ 0 & m - 1 & 1 - m & 0 \end{bmatrix}$$

$$\xrightarrow{d_3 + d_2} \begin{bmatrix} 1 & 1 & m & 1 \\ 0 & 1 - m & 1 - m^2 & 1 - m \\ 0 & 0 & (1 - m)(2 + m) & 1 - m \end{bmatrix}$$

- Biện luận:

• Với m = -2 hệ phương trình vô nghiệm do ta có:

$$\tilde{A} \sim \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 3 & -3 & 3 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

• Với m = 1 hệ phương trình có vô số nghiệm, ta có:

$$ilde{\mathrm{A}} \sim \left[egin{array}{ccc|c} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}
ight]$$

Do đó, nghiệm của hệ phương trình là:

$$\begin{cases} x_1 = 1 - s - t, \\ x_2 = s \in \mathbb{R}, \\ x_3 = t \in \mathbb{R}. \end{cases}$$

• Với $m \neq -2 \land m \neq 1$, hệ có nghiệm duy nhất bởi:

$$ilde{A} \sim \left[egin{array}{ccc|c} 1 & 1 & m & 1 \\ 0 & 1 & 1+m & 1 \\ 0 & 0 & 2+m & 1 \end{array}
ight]$$

Do đó, nghiệm của hệ phương trình là:

$$\begin{cases} x_1 = \frac{1}{m+2}, \\ x_2 = \frac{1}{m+2}, \\ x_3 = \frac{1}{m+2}. \end{cases}$$

12 Bài 1.53

 $igcolone{\Box}$ Bài 1.53 Giải và biện luận các hệ phương trình sau theo tham số m:

a)
$$\begin{cases} x_1 - 2x_2 + x_3 + 2x_4 = m; \\ x_1 + x_2 - x_3 + x_4 = 2m + 1; \\ x_1 + 7x_2 - 5x_3 - x_4 = -m \end{cases}$$

b)
$$\begin{cases} x_1 + 2x_2 - 3x_3 + 4x_4 = 1; \\ 2x_1 + 4x_2 - 7x_3 + 9x_4 = 2; \\ 5x_1 + 10x_2 - 17x_3 + 23x_4 = 1; \\ 3x_1 + 6x_2 - 10x_3 + mx_4 = 13 - m \end{cases}$$

\land Lời giải

a) Ta có

$$\tilde{A} = \begin{bmatrix} 1 & -2 & 1 & 2 & m \\ 1 & 1 & -1 & 1 & 2m+1 \\ 1 & 7 & -5 & -1 & -m \end{bmatrix} \xrightarrow{d_3-d_1} \begin{bmatrix} 1 & -2 & 1 & 2 & m \\ 0 & 3 & -2 & -1 & m+1 \\ 0 & 9 & -6 & -3 & -2m \end{bmatrix}$$

$$\xrightarrow{d_3-3d_2} \begin{bmatrix} 1 & -2 & 1 & 2 & m \\ 0 & 3 & -2 & -1 & m+1 \\ 0 & 0 & 0 & 0 & -5m-3 \end{bmatrix}$$

- Nếu $-5m 3 \neq 0 \Leftrightarrow m \neq -\frac{3}{5}$ thì hệ vô nghiệm.
- Nếu $m = -\frac{3}{5}$ thì hệ có vô số nghiệm, cụ thể:

$$ilde{A} \sim \left[egin{array}{ccc|ccc} 1 & -2 & 1 & 2 & -rac{3}{5} \ 0 & 3 & -2 & -1 & rac{2}{5} \ 0 & 0 & 0 & 0 & 0 \end{array}
ight]$$

Hay hệ tương đương $\begin{cases} x_1 - 2x_2 + x_3 + 2x_4 = -\frac{3}{5} \\ 3x_2 - 2x_3 - x_4 = \frac{2}{5} \end{cases} \Leftrightarrow \begin{cases} x_1 = \frac{t - 4s - 1}{3} \\ x_2 = \frac{2 + 10t + 5s}{15} \\ x_3 = t \in \mathbb{R} \\ x_4 = s \in \mathbb{R} \end{cases}$

Do đó nghiệm của hệ là:

$$\begin{cases} x_1 = \frac{t - 4s - 1}{3} \\ x_2 = \frac{2 + 10t + 5s}{15} \\ x_3 = t \in \mathbb{R} \\ x_4 = s \in \mathbb{R} \end{cases}$$

với $t, s \in \mathbb{R}$ tùy ý.

b) Ta có

$$\tilde{A} = \begin{bmatrix} 1 & 2 & -3 & 4 & 1 \\ 2 & 4 & -7 & 9 & 2 \\ 5 & 10 & -17 & 23 & 1 \\ 3 & 6 & -10 & m & 13 - m \end{bmatrix} \xrightarrow{d_2 - 2d_1 \atop d_3 - 5d_1 \atop d_4 - 3d_1} \begin{bmatrix} 1 & 2 & -3 & 4 & 1 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & -2 & 3 & -4 \\ 0 & 0 & -1 & m - 12 & 10 - m \end{bmatrix}$$

$$\xrightarrow{d_3 - 2d_2 \atop d_4 - d_2} \begin{bmatrix} 1 & 2 & -3 & 4 & 1 \\ 0 & 0 & -1 & m - 12 & 10 - m \end{bmatrix}$$

$$\xrightarrow{d_4 - (m-13)d_3} \begin{bmatrix} 1 & 2 & -3 & 4 & 1 \\ 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 3(m-14) \end{bmatrix}$$

- Nếu $m \neq 14$ thì hệ vô nghiệm.
- Nếu m=14 thì hệ có vô số nghiệm, hệ tương đương

$$\begin{cases} x_1 + 2x_2 - 3x_3 + 4x_4 = 1 \\ -x_3 + x_4 = 0 \\ x_4 = -4 \end{cases} \Leftrightarrow \begin{cases} x_1 = 5 - 2t \\ x_2 = t \in \mathbb{R} \\ x_3 = -4 \\ x_4 = -4 \end{cases}$$

Vậy khi m = 14, hệ có vô số nghiệm: $(x_1, x_2, x_3, x_4) = (5 - 2t; t; -4; -4)$.