Cours - Le second degré

Niveau : Première

1. Définition d'un trinôme du second degré

Définition

On appelle **trinôme du second degré** toute fonction f définie sur $\mathbb R$ par :

$$f(x) = ax^2 + bx + c$$
 avec $a \neq 0$ et $a, b, c \in \mathbb{R}$

- a est le coefficient dominant; b est le coefficient de x; c est le terme constant.
- Le domaine de définition est toujours \mathbb{R} .

2. Forme canonique d'un trinôme

2.1 Objectif

La forme canonique permet d'obtenir facilement :

- les **variations** de la fonction
- les coordonnées du sommet de la parabole

2.2 Démonstration

Théorème

Tout trinôme $f(x) = ax^2 + bx + c$ s'écrit sous la forme :

$$f(x) = a(x - \alpha)^2 + \beta$$
 où $\alpha = -\frac{b}{2a}$, $\beta = f(\alpha)$

Démonstration:

$$f(x) = ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left[\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right] + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a} + c$$

$$= a\left(x - \alpha\right)^{2} + \beta \quad \text{où } \alpha = -\frac{b}{2a}, \ \beta = f(\alpha)$$

2.3 Conséquences

- Le sommet de la parabole est le point $S(\alpha, \beta)$.
- Si a>0 : parabole tournée vers le haut, f a un minimum en α .
- Si a < 0 : parabole tournée vers le bas, f a un maximum en α .

3. Discriminant et résolution de l'équation f(x) = 0

Définition

Une **équation du second degré** est une équation de la forme :

$$ax^2 + bx + c = 0$$
 où $a \neq 0$ et $a, b, c \in \mathbb{R}$

Discriminant

Le discriminant est défini par :

$$\Delta = b^2 - 4ac$$

Il permet de déterminer le nombre et la nature des racines de l'équation.

Démonstration de la formule du discriminant :

$$ax^{2} + bx + c = 0$$

$$\Rightarrow x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \quad \text{(formule quadratique)}$$

Cette formule provient de la résolution par la méthode du carré complété.

— $\Delta > 0$: deux racines réelles distinctes

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}, \quad x_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

— $\Delta = 0$: une racine double

$$x_0 = -\frac{b}{2a}$$

— $\Delta < 0$: pas de racines réelles (racines complexes)

4. Factorisation

— Si $\Delta > 0$: L'équation f(x) = 0 possède deux racines réelles distinctes x_1 et x_2 . On peut alors factoriser le trinôme sous la forme :

$$f(x) = a(x - x_1)(x - x_2)$$

Cette factorisation est utile pour étudier le signe ou résoudre des inéquations.

— Si $\Delta = 0$: L'équation possède une racine double x_0 . Le trinôme se factorise alors sous la forme :

$$f(x) = a(x - x_0)^2$$

Cette forme est pratique pour montrer que f(x) est toujours du signe de a, sauf en x_0 .

— Si $\Delta < 0$: L'équation n'admet aucune solution réelle. Il est donc impossible de factoriser f(x) sur \mathbb{R} , car il n'existe pas de racines.

5. Signe du trinôme

L'étude du signe d'un trinôme s'appuie sur la forme factorisée de f(x) lorsque cela est possible.

- Si $\Delta > 0$: Le trinôme admet deux racines réelles distinctes x_1 et x_2 avec $x_1 < x_2$.
 - Si a > 0, alors f(x) > 0 sur les intervalles $] \infty, x_1[\cup]x_2, +\infty[$, et f(x) < 0 sur $]x_1, x_2[$.
 - Si a < 0, les signes sont inversés.
- Si $\Delta = 0$: Le trinôme a une racine double x_0 . Le signe de f(x) est celui de a sur \mathbb{R} , sauf en x_0 où f(x) = 0.
- Si $\Delta < 0$: Le trinôme ne s'annule jamais. f(x) est toujours du signe de a sur tout \mathbb{R} .

6. Résolution d'inéquations

Pour résoudre une inéquation du type $f(x) \ge 0$, il faut :

- 1. **Résoudre l'équation** f(x) = 0 pour déterminer les racines (ou constater qu'il n'y en a pas).
- 2. Étudier le signe de f(x) à l'aide de la factorisation (si possible) ou de la forme canonique.
- 3. Construire un tableau de signes qui précise les valeurs de x pour lesquelles $f(x) \ge 0$ ou f(x) < 0.

- 4. Exprimer l'ensemble des solutions sous forme d'intervalles, en fonction des valeurs de Δ :
 - Si $\Delta > 0$: intervalles délimités par x_1 et x_2 .
 - Si $\Delta = 0$: solution unique $x = x_0$ ou tous les réels si a > 0.
 - Si $\Delta < 0$: soit tous les réels (si a > 0 et ≥ 0), soit aucun (si < 0).

7. Synthèse finale

- Une fonction polynôme de degré 2 est de la forme $f(x) = ax^2 + bx + c$, avec $a \neq 0$.
- Sa représentation graphique est une parabole orientée vers le haut si a > 0, ou vers le bas si a < 0.
- La forme canonique $f(x) = a(x \alpha)^2 + \beta$ donne le sommet $S(\alpha, \beta)$ de la parabole.
- Le **discriminant** $\Delta = b^2 4ac$ permet de déterminer le nombre et la nature des racines de l'équation f(x) = 0.
- Le **signe de** a détermine les variations, la concavité de la parabole et le signe global de f(x) hors des racines.