Use set builder notation and logical equivalences to establish the first De Morgan law $\overline{A \cap B} = \overline{A \cup B}$.

Prove the second distributive law from Table 1, which states that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ for all sets A, B, and C.

Let A, B, and C be sets. Show that

$$\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}.$$

Let f_1 and f_2 be functions from **R** to **R** such that $f_1(x) = x^2$ and $f_2(x) = x - x^2$. What are the functions $f_1 + f_2$ and $f_1 f_2$?

Determine whether the function $f(x) = x^2$ from the set of integers to the set of integers is one-to-one.

Determine whether the function f(x) = x + 1 from the set of real numbers to itself is one-to-one.

Let f be the function from $\{a, b, c, d\}$ to $\{1, 2, 3\}$ defined by f(a) = 3, f(b) = 2, f(c) = 1, and f(d) = 3. Is f an onto function?

Is the function $f(x) = x^2$ from the set of integers to the set of integers onto?

Is the function f(x) = x + 1 from the set of integers to the set of integers onto?

Let f be the function from $\{a, b, c, d\}$ to $\{1, 2, 3, 4\}$ with f(a) = 4, f(b) = 2, f(c) = 1, and f(d) = 3. Is f a bijection?

Let f be the function from $\{a, b, c\}$ to $\{1, 2, 3\}$ such that f(a) = 2, f(b) = 3, and f(c) = 1. Is f invertible, and if it is, what is its inverse?

Let $f : \mathbf{Z} \to \mathbf{Z}$ be such that f(x) = x + 1. Is f invertible, and if it is, what is its inverse?

Let f be the function from **R** to **R** with $f(x) = x^2$. Is f invertible?

.....

Show that if we restrict the function $f(x) = x^2$ in the previous problem to a function from the set of all nonnegative real numbers to the set of all nonnegative real numbers, then f is invertible.

Let g be the function from the set $\{a, b, c\}$ to itself such that g(a) = b, g(b) = c, and g(c) = a. Let f be the function from the set $\{a, b, c\}$ to the set $\{1, 2, 3\}$ such that f(a) = 3, f(b) = 2, and f(c) = 1. What is the composition of f and g, and what is the composition of g and f?

Let f and g be the functions from the set of integers to the set of integers defined by f(x) = 2x + 3 and g(x) = 3x + 2. What is the composition of f and g? What is the composition of g and f?

Data stored on a computer disk or transmitted over a data network are usually represented as a string of bytes. Each byte is made up of 8 bits. How many bytes are required to encode 100 bits of data?

In asynchronous transfer mode (ATM) (a communications protocol used on backbone networks), data are organized into cells of 53 bytes. How many ATM cells can be transmitted in 1 minute over a connection that transmits data at the rate of 500 kilobits per second?