DYNAMIC ADJUSTING PROSTHETIC SOCKET

Joshua Friscia (RBE/ME), Meagan Hiatt (RBE/ECE), Mollie Myers (BME), Jacob Zizmor (RBE)

Advisors: Gregory Fischer, Cagdas Onal

Co-Advisors: Michael Delph, Christopher Nycz

Project significance

- 1.6 million Americans with limb loss (2005)¹
- Importance of Prostheses
 - Return to activities
 - Increased mobility
- Many challenges with prosthetic use
 - Unnatural forces → injury²
 - Poor fit → prosthesis misuse²
 - Increased energy from user³

Acute erthyema and edema⁴

Current Prosthesis

- Adjustable
 - Mechanical
 - Inflatable Inserts
- Daily Fit
 - Vacuum
 - Suction
- Static Fit
 - Compression Release Stabilized (CRS) Socket
 - Conventional Sockets

Socket with Pump [6]

Purpose

- Controllable smart variable geometry socket
- Utilize compression/release stabilized (CRS) socket ideas⁹

Improvements

- Bladder system
 - Pneumatic vs. hydraulic
- Custom electrical system
- Advanced sensor systems
- Lighter weight/increase portability
- Safety Regulations

Previous MQP Project [10]

Project Objectives

Safe

- Must not cause more harm than current socket technologies
- Meet FDA device requirements¹¹

Reliable

• Must fail in predictable ways which shall not harm user

Comfortable

• Be comparable in comfort to current technologies

Minimal user-input

No need for adjustments throughout the day after initial donning

Long-lasting (daily use)

 No need to recharge or adjust for minimum of average shopping trip length (58 minutes)¹²

Compact

Able to be mounted on the socket

Able to be worn under clothing

Lightweight

Within 25% of the current heaviest socket on market

RESEARCH ANALYSIS

FDA/CDRH Certification

- 3 Categories
- Based upon regulatory control required for safety
- Detailed testing data recorded for future certification

Class I Class II Class III External limb Most hearing Stair climbing wheelchair aids components Socket C-leq components microprocessor knee Foot drop orthosis Powered wheelchair Other limb [11] braces [13] [14] [15]

Types of Socket Solutions

- Mechanically adjusting
- Vacuum Suspension
- Inflatable Inserts/Bladders
- Compression Release Stabilized (CRS) Socket

Mechanically Adjusting

- Examples:
 - LIM¹⁶
 - Revolimb¹⁷
- Pros:
 - Fully adjustable
- Cons:
 - Potential to over-tighten and occlude circulation

Vacuum Suspension

Examples:

Vacuum Assisted Suspension
System (VASS) 18

Pros:

Better adhesion to socket

Cons:

 Possibility of soft tissue damage if donned incorrectly

Inflatable Air Inserts

- Examples:
 - Pump it up! ¹⁹
 - Pneu-fit²⁰
- Pros:
 - Easy to use and inflate
- Cons:
 - Do not work over wide volume range

Inflatable Liquid Bladder

Example:

Smart Variable Geometry
Socket²¹

Pros:

 Wider volume management range

Cons:

 Requires pumping or hydraulic system

Compression Release Stabilized

- Currently in development
- Pros:
 - Better torque transfer from limb to socket
- Cons:
 - Static system

Dynamic Adjusting Prosthetic Socket (DAPS)

Our Project Approach

Bladder Types

- Variation in shape²²⁻²⁴
 - Rectangular
 - Cuff
 - Cylindrical (tubing)
 - Custom
- Materials
 - Silicon
 - Canvas
 - Kevlar
 - Neoprene
 - Polyurethanes
 - Nylon
 - Etc.

Electromyograms (EMG)

- Research Tool²⁵
- Upper limb prosthesis²⁶

Signal Noise

- Electrode inherent noise²⁷
- Movement artifact
- Electromagnetic noise
- Internal noise
- Inherent noise

- Design techniques^{27,28}
 - Pre-amplifications
- Electrical Filtering^{29,34}
 - Why we need it?
 - 10-20Hz Min.
 - 400-450Hz Max.

- Electrical filtering
 - Butterworth filter^{29.30}
 - Chebyshev filter³⁰
 - Elliptical filter³⁰
 - Bessel filter^{30,31}

- Electrical filtering
 - Butterworth filter^{29.30}
 - Chebyshev filter³⁰
 - Elliptical filter³⁰
 - Bessel filter^{30,31}
 - Laguerre filter^{32,33}
 - All Pass

- Electrical filtering
 - Butterworth filter^{29.30}
 - Chebyshev filter³⁰
 - Elliptical filter³⁰
 - Bessel filter^{30,31}
 - Laguerre filter^{32,33}
 - All Pass

- Electrical filtering
 - Butterworth filter^{29.30}
 - Chebyshev filter³⁰
 - Elliptical filter³⁰
 - Bessel filter^{30,31}
 - Laguerre filter^{32,33}
 - All Pass
 - High/low pass³⁴
 - Rectifiers³⁴

Signal Analysis

DESIGN REVIEW

Bladder Actuation Design

- Why hydraulics?⁴²
 - Wider volume range than air
 - More precise fluid control
 - More independent control of bladder
 - Easier to implement than pump-reservoir system
 - Can create a "dynamic" CRS control

Bladder Actuation Design

- Considerations⁴³
 - Actuation of syringes
 - Type of fluid
 - Waterproofing electronics/leak prevention
 - Syringe/bladder volumes
 - Sensors
 - System weight

Hydraulics Diagram

Hydraulics Calculations

- Force Plate Testing
- Motor criteria⁴⁴
 - Meet F₁ value: ~40.86N
 - Stroke length d₁: ~15.4cm
 - Adequate speed
- Further testing
 - Syringe-bladder test rig

- Blood pressure cuffs
- Fabric
- Silicone rubber mold
- Surgical tubing

- Blood pressure cuffs
- Fabric
- Silicone rubber mold
- Surgical tubing

- Blood pressure cuffs
- Fabric
- Silicone rubber mold
- Surgical tubing

- Blood pressure cuffs
- Fabric
- Silicone rubber mold
- Surgical tubing

Design Matrix

Quality	Weight
Force (N)	33%
Cost (\$)	12%
Durability	12%
Effectiveness (x minutes)	11%
Manufacturability	10%
Customization	10%
Weight (g)	7%
Volume (mL)	5%

Sensing & Control

Filtering Circuit

- High and low pass filters
- Full wave rectifiers

Filtering Circuit

- High and low pass filters
- Full wave rectifiers

System Control

- Microcontroller (NXP1764FBD100)
 - I/O Pins
 - 32-bits
 - High clock speed
 - USART to USB

[51]

System Control

- Motor Control
 - Drivers
 - Battery requirements
 - Voltage regulators

System Control

- User Interface
 - Warnings visual and audible
 - Reset
 - LCD
 - Sleep/wake
 - Battery life
 - On/off button
 - Load/unload
 - Debug/calibrate

EMG Wiring

- Flex wires with coating
- Fitting sock with EMGs

EMG Wiring

- Flex wires with coating
- Fitting sock with EMGs

[55]

EMG Placement

- Muscles to control leg extension/flexion
 - Abduction and adduction
- Superficial muscles

Control Algorithms

Control Algorithms

Safety

Bladders are too pressurized Sensor information informs system to retract syringes

Safety

Safety

PROJECT TIMELINE

A-Term Schedule

Robo Knee Gantt Chart

B-Term Schedule Robo Knee Gantt Chart

Week Highlight: 5 Planned % Complete

C- Term Schedule Robo Knee Gantt Chart

Week Highlight: 5 Planned % Complete

	PLAN	PLAN	ACTUAL	ACTUAL	PERCENT																						
ACTIVITY	START	DURATION	START	DURATION	COMPLETE	Wee	eks																				
						1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	7 18	8 19	20	21	
Final Testing	13	4	13	4	0%																						
Complete Write-Up	15	4	15	4	0%																						
Edit Report	19	3	19	3	0%																						

THANK YOU!

Questions?

References

- 1. 2. K. Ziegler-Graham, E. J. MacKenzie, P. L. Ephraim, T. G. Travison, and R. Brookmeyer, "Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050," *Arch. Phys. Med. Rehabil.*, vol. 89, no. 3, pp. 422–429, Mar. 2008.
- 2. A. F. T. Mak, M. Zhang, and D. A. Boone, "State-of-the-art research in lower-limb prosthetic biomechanics- socket interface: A review," *J. Rehabil. Res. Dev.*, vol. 38, no. 2, pp. 161–174, Apr. 2001.
- 3. R. Alley, CP, LP, T. W. Williams, MA, M. J. Albuquerque, CPO, and D. E. Altobelli, MD, "Prosthetic sockets stabilized by alternating areas of tissue compression and release," *J. Rehabil. Dev.*, vol. 48, no. 6, pp. 679–696, Jun. 2011.
- 4. J. T. Highsmith and M. J. Highsmith, "Common skin pathology in LE prosthesis users," JAAPA Off. J. Am. Acad. Physician Assist., vol. 20, no. 11, pp. 33–36, 47, Nov. 2007.
- 5. http://www.amputee-center.com/pump.htm
- 6. Smart Pump
- 7. R. Alley, CP, LP, T. W. Williams, MA, M. J. Albuquerque, CPO, and D. E. Altobelli, MD, "Prosthetic sockets stabilized by alternating areas of tissue compression W. A. Haines, J. M. Colvin, M. L. Haynes, C. T. Kelley, M. W. Ford, M. W. Groves, and J. A. Denune, "Prosthetic device utilizing electric vacuum pump," US7947085 B2, 24-May-2011.
- 8. W. A. Haines, J. M. Colvin, M. L. Haynes, C. T. Kelley, M. W. Ford, M. W. Groves, and J. A. Denune, "Prosthetic device utilizing electric vacuum pump," US7947085 B2, 24-May-2011. Previous MQP Project Smart Socket 2014-15
- 9. U.S. Food and Drug Administration Regulation of Prosthetic Research, Development, and Testing
- 10. Kornum, N., & Bjerre, M. (n.d.). *Grocery E-commerce: Consumer Behaviour and Business Strategies*. Retrieved from https://books.google.com/books?id=cwEUj22Dlj8C&pg=PA82&lpg=PA82&dq=average+time+spent+in+grocery+store&source=web&ots=a9Yrom4v3x&sig=B4AOx9KoOWEt JKol9o6r61RS8Fs&hl=en&sa=X&oi=book_result&resnum=10&ct=result#v=onepage&q=average%20time%20spent%20in%20grocery%20store&f=false
- 11. COMFORTFLEX SOCKET SYSTEM
- 12. C-Leg 4
- 13. RHEO-KNEE
- 14. http://revolimb.com/
- 15. http://liminnovations.com/
- 16. http://www.aetna.com/cpb/medical/data/600_699/0630.html
- 17. http://www.amputee-center.com/pump.htm
- 18. http://www.oandp.com/shop/product.asp?supplier_id=B4AA5F60-C5E1-4DD5-A25F-E81B96DFB789&product_id=7C850D5A-894C-452B-94B0-94A7513D8F2C&department_id=0EA0CF9B-EB15-4377-8B60-ADA00B0FFBDD
- 19. http://www.oandp.org/jpo/library/2003_03_107.asp
- 20. http://www.bloodpressureatwatch.com/wp-content/uploads/2014/11/Omron-H-003DS-Small-Adult-Blood-Pressure-Cuff-for-IntelliSense-Monitors-0.jpg
- http://uobds.com/Locksmith-Tools/
- 22. http://2kdk833xvsai3k7qcq368ael.wpengine.netdna-cdn.com/wp-content/uploads/2013/01/Surgical_Tubing_4c7e6cd42f4a3.jpg
- EMG's as a Research tool
- 24. EMG in upper limb prostetichs
- 25. EMG Noise
- 26. Design tech

References

- 28. Design tech
- 29. Butterworth Filter Design. (n.d.). Retrieved from http://www.electronics-tutorials.ws/filter/filter_8.html
- 30. Filter Basics: Anti-Aliasing. (n.d.). Retrieved from https://www.maximintegrated.com/en/app-notes/index.mvp/id/928
- 31. Wazir, L., Mohammad, B., Muhammad, M., & Syed, S. (2014). Performance Analysis of Analog Butterworth Low Pass Filter as Compared to Chebyshev Type-I Filter, Chebyshev Type-II Filter and Elliptical Filter. *Circuits and Systems*, 5, 209–216. http://doi.org/http://dx.doi.org/10.4236/cs.2014.59023
- 32. Masnadi-Shirazi, M. A., & Aleshams, M. (2003). Laguerre discrete-time filter design. Computers & Electrical Engineers, 29(1), 173–192.
- 33. Manosube, A., Koseeyaporn, J., & Wardkein, P. (2014). PLI Cancellation in ECG Signal Based on Adaptive Filter by Using Wiener-Hopf Equation for Providing Initial Condition. Computational and Mathematical Methods in Medicine, 2014, 11. http://doi.org/http://dx.doi.org/10.1155/2014/471409
- 34. Transversal Filter drawn by Meagan H.
- 35. All-Pass Filter drawn by Meagan H.
- 36. Transversal Filter Response, http://www.tc.umn.edu/~erick205/Papers/paper.html
- 37. Hihg-Pass Filters, Low-Pass Filters, 2015 http://www.allaboutcircuits.com/textbook/alternating-current/chpt-8/high-pass-filters/
- 38. Filter Compare
- 39. Transversal Filter drawn by Meagan H.
- 40. All Pass Filter Filter drawn by Meagan H.
- 41. Transversal Response
- 42. http://www.oandp.org/jpo/library/2003_03_107.aspConsiderations Outlined by Josh, Jake and Meagan
- 43. Hydraulics System Outline drawn by Josh F.
- 44. https://www.physicsforums.com/threads/pressure-diameter-and-flow-in-a-pneumatic-system.742188/ Photo Taken by Jake Z. of Vinyl Fabric
- 45. Filter drawn by Meagan H.
- 46. Photo taken by Jake Z. of plastic mold
- 47. SURGICAL TUBING | Brownells
- 48. Outline of Circuit drawn by Meagan H. Photo of NXP LCP176x from http://www.nxp.com/
- 49. http://www.ebay.com/itm/NXP-ARM-Cortex-M3-LPC1768-Mini-DK2-Development-board-/181045434143?hash=item2a2726171f
- 50. http://www.firgelli.com/products.php?id=41
- 51. User Interface outline Drawn by Meagan H.
- 52. Flex Wires, http://en.esskabel.de/ffc-fdc/C21/
- 53. Prosthetic Sock, http://www.knitrite.com/about.html
- 54. http://www.rehab.research.va.gov/jour/2013/504/images/pantall504f01lb.jpg
- 55. Main Control Diagram drawn by Jake Z.
- 56. Control Interrupt Diagram drawn by Jake Z.