MATH 135 Fall 2020: Extra Practice 10

Warm-Up Exercises

WE01. Express $\frac{2-i}{3+4i}$ in standard form.

Solution. Multiply numerator and denominator by the conjugate of the denominator:

$$\frac{2-i}{3+4i} = \frac{(2-i)(3-4i)}{9+16} = \frac{2-11i}{25} = \frac{2}{25} - \frac{11}{25}i$$

WE02. Write $x = \frac{9+i}{5-4i}$ in polar form, $r(\cos\theta + i\sin\theta)$, with $0 \le \theta < 2\pi$.

Solution. We express first in standard form by multiplying through the conjugate:

$$\frac{9+i}{5-4i} = \frac{(9+i)(5+4i)}{41} = \frac{41+41i}{41} = 1+i$$

We can geometrically interpret this as $\sqrt{2} \operatorname{cis} \frac{\pi}{4}$.

WE03. Write $(\sqrt{3} + i)^4$ in standard form.

Solution. We first place the quantity within the brackets in polar form. By inspection, this is $2 \operatorname{cis} \frac{\pi}{6}$. Now, applying DMT, we have $(2 \operatorname{cis} \frac{\pi}{6})^4 = 2^4 \operatorname{cis}^4 \frac{\pi}{6} = 16 \operatorname{cis} \frac{2\pi}{3}$.

Expressing in standard form,
$$16(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}) = 16(-\frac{1}{2} + i \frac{\sqrt{3}}{2}) = -8 + 8\sqrt{3}i$$

WE04. Find all $z \in \mathbb{C}$ such that $z^5 = 1$ and plot the solutions in the complex plane. (You may state values in polar form.)

Solution. Note that $1 = 1 \operatorname{cis} 0$. Applying the CRNT, we have that the five roots are given by $\sqrt[5]{1} \operatorname{cis} \left(\frac{2k\pi}{n}\right)$ for k = 0, 1, 2, 3, 4. These values are $\{1, \operatorname{cis} \frac{\pi}{5}, \operatorname{cis} \frac{4\pi}{5}, \operatorname{cis} \frac{6\pi}{5}, \operatorname{cis} \frac{8\pi}{5}\}$. I am too lazy to learn tikz to draw the diagram.

WE05. Find all
$$z \in \mathbb{C}$$
 such that $z^2 = \frac{1+i}{1-i}$.

Solution. Simplifying the fraction on the right-hand side, $\frac{(1+i)(1+i)}{2} = \frac{1+2i-1}{2} = i$. On the complex plane, i=1 cis $\frac{\pi}{2}$. Then, by CRNT, the solutions are cis $\frac{\pi}{4}$ and cis $\frac{5\pi}{4}$. Evaluating to get standard form, we have $z=\pm(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i)$.

Recommended Problems

RP01. Express the following complex numbers in standard form.

(a)
$$\frac{(\sqrt{2}-i)^2}{(\sqrt{2}+i)(1-\sqrt{2}i)}$$

Solution. Multiply through conjugates of the denominator:

$$\frac{(\sqrt{2}-i)^2}{(\sqrt{2}+i)(1-\sqrt{2}i)} = \frac{(1-2\sqrt{2}i)(\sqrt{2}-i)(1+\sqrt{2}i)}{(3)(3)}$$

$$= -\frac{(5-\sqrt{2}i)(\sqrt{2}-i)}{9}$$

$$= -\frac{4\sqrt{2}-7i}{9}$$

$$= -\frac{4\sqrt{2}}{9} + \frac{7}{9}i$$

(b)
$$(\sqrt{5} - i\sqrt{3})^4$$

Solution. Let
$$z = \sqrt{5} - i\sqrt{3}$$
. We have $z^2 = 5 - 2\sqrt{15}i - 3 = 2 - 2\sqrt{15}i$. Finally, $z^4 = (z^2)^2 = 4 - 8\sqrt{15}i - 60 = -56 - 8\sqrt{15}i$.

RP02. Prove all of the Properties of Complex Arithmetic that were not proved in the notes or in class.

Proof. Let u = a + bi, v = c + di, and z = f + gi be complex numbers. We must show the Properties of Complex Arithmetic, i.e., that

1. Complex addition is associative.

First, u+v=(a+c)+(b+d)i and (u+v)+z=((a+c)+f)+((b+d)+g)i. Then, v+z=(c+f)+(d+g)i, so u+(v+z)=(a+(c+f))+(b+(d+g))i. The result follows by the associativity of real addition.

2. Complex addition is commutative.

We have u + v = (a + c) + (b + d)i = (c + a) + (d + b)i = v + u by the commutativity of real addition.

- 3. The complex additive identity is 0 = 0 + 0i. (Example 3, p. 159)
- 4. A complex additive inverse -z exists. (Example 3, p. 159)
- 5. Complex multiplication is associative.

By definition, uv = (ac - bd) + (ad + bc)i, so we have

$$(uv)w = ((ac - bd)f - (ad + bc)g) + ((ac - bd)g + (ad + bc)f)i$$

We also have vw = (cf - dg) + (cg + df)i and by extension

$$u(vw) = (a(cf - dg) - b(cg + df)) + (a(cg + df) + b(cf - dg))i$$

$$= (acf - adg - bcg - bdf) + (acg + adf + bcf - bdg)i$$

$$= (acf - bdf - adg - bcg) + (acg - bdg + adf + bcf)i$$

$$= ((ac - bd)f - (ad + bc)g) + ((ac - bd)g + (ad + bc)f)i$$

$$= (uv)w$$

as desired.

6. Complex multiplication is commutative.

Again, uv = (ac - bd) + (ad + bc)i and vu = (ca - db) + (cb + da)i. The result follows from the commutativity of real multiplication and addition.

- 7. The complex multiplicative identity is 1 = 1 + 0i. (Example 3, p. 159)
- 8. A complex multiplicative inverse z^{-1} exists iff $z \neq 0$. (Proposition 1, p. 159)
- 9. Complex multiplication distributes over addition.

We have u + v = (a + c) + (b + d)i. Then,

$$z(u+v) = (f(a+c) - g(b+d)) + (f(b+d) + g(a+c))i$$

Now, zu = (fa - gb) + (fb + ga)i and zv = (fc - gd) + (fd + gc)i, so by definition,

$$zu + zv = ((fa - gb) + (fc - gd)) + ((fb + ga) + (fd + gc))i$$

$$= (fa + fc - gb - gd) + (fb + fd + ga + gc)i$$

$$= (f(a + c) - g(b + d)) + (f(b + d) + g(a + c))i$$

$$= z(u + v)$$

completing the proof.

RP03. Let $n \in \mathbb{N}$. Prove that if $n \equiv 1 \pmod{4}$, then $i^n = i$.

Proof. Let n be a natural number congruent to 1 modulo 4. Then, we may write n = 4k+1 for some integer k. Notice that $i^4 = (i^2)^2 = (-1)^2 = 1$.

Therefore,
$$i^{4k+1} = (i^4)^k i^1 = (1)^k i = i$$
, as desired.

RP04. Find all $z \in \mathbb{C}$ which satisfy

(a)
$$z^2 + 2z + 1 = 0$$

Solution. Factor:
$$z^2 + 2z + 1 = (z+1)^2$$
 so $z = -1 + 0i$ (by RP06)

(b)
$$z^2 + 2\bar{z} + 1 = 0$$

Solution. Let z = a + bi so $\bar{z} = a - bi$ for two real numbers a and b. Then,

$$0 = z^{2} + 2\bar{z} + 1$$

$$0 = (a+bi)^{2} + 2(a-bi) + 1$$

$$0 = (a^{2} + 2a - b^{2} + 1) + (2ab - 2b)i$$

which is true if and only if both $a^2 + 2a - b^2 + 1 = 0$ and 2ab - 2b = 0.

The second equation implies 2ab = 2b so a = 1 or b = 0.

If
$$a = 1$$
 then $a^2 + 2a - b^2 + 1 = 4 - b^2 = 0$, so $b = \pm 2$.

If
$$b = 0$$
, then $a^2 + 2a + 1 = (a + 1)^2 = 0$, so $a = -1$.

Therefore, the solutions are -1 + 0i, 1 + 2i, and 1 - 2i.

(c)
$$z^2 = \frac{1+i}{1-i}$$

Solution. Simplify: $z^2 = \frac{(1+i)^2}{2} = \frac{2i}{2} = i$. The square roots of i are $\pm (\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i)$.

RP05.

(a) Find all $w \in \mathbb{C}$ satisfying $w^2 = -15 + 8i$.

Solution. We rewrite w = a + bi for some reals a and b. Then, $(a + bi)^2 = (a^2 - b^2) + (2ab)i = -15 + 8i$. Equating real and complex parts, $a^2 - b^2 = -15$ and 2ab = 8.

Now, $|w^2| = |ww| = |w||w| = |w|^2$ by PM4. Then, $a^2 + b^2 = \sqrt{(-15)^2 + (8)^2} = 17$. Solving the system in a^2 and b^2 , $a^2 = 1$ and $b^2 = 16$.

Therefore, $a = \pm 1$ and $b = \pm 4$. To satisfy 2ab = 8, we must have $z = \pm (1 + 4i)$.

(b) Find all $z \in \mathbb{C}$ satisfying $z^2 - (3+2i)z + 5 + i = 0$.

Solution. We apply the quadratic formula. The discriminant is a solution to $w^2 = (3+2i)^2 - 4(1)(5+i) = (5+12i) - (20+4i) = -15+8i$. From above, a solution is w = 1+4i. Therefore, the solutions are $z = \frac{(3+2i)\pm(1+4i)}{2(1)}$.

The first is $z = \frac{(3+2i)+(1+4i)}{2} = 2+3i$ and the second is $z = \frac{(3+2i)-(1+4i)}{2} = 1-i$.

RP06. Let $z, w \in \mathbb{C}$. Prove that if zw = 0 then z = 0 or w = 0.

Proof. Let z and w be complex numbers such that zw=0. Suppose for a contradiction that both z and w are non-zero. Then, by PM1, $|z| \neq 0$ and $|w| \neq 0$. However, by PM4, $|zw| = |z||w| \neq 0$, which is a contradiction, since zw=0.

Therefore, z or w is zero.

RP07. Let $a, b, c \in \mathbb{C}$. Prove: if |a| = |b| = |c| = 1, then $\overline{a+b+c} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$.

Proof. First, consider some arbitrary complex number z=a+bi with modulus 1. By definition, $a^2+b^2=1^2=1$. Then, $z^{-1}=\frac{1}{a+bi}=\frac{a-bi}{(a+bi)(a-bi)}=\frac{a-bi}{1}=a-bi=\bar{z}$

Let a, b, and c be complex numbers with modulus 1. From above, $a^{-1} = \bar{a}, b^{-1} = \bar{b},$ and $c^{-1} = \bar{c}$. The conclusion immediately follows from PCJ2:

$$\overline{a+b+c} = \overline{a} + \overline{b} + \overline{c}$$

$$= \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$

RP08. Find all $z \in \mathbb{C}$ satisfying $z^2 = |z|^2$.

Proof. Let z be a complex number. Recall that $|z|^2 = \bar{z}z$ by PM3. Then, we have $z^2 = \bar{z}z$ so $z = \bar{z}$, that is, $z - \bar{z} = 0$. By PCJ3, this is true if $2\operatorname{Im}(z)i = 0$, which means that z is purely real. Therefore, z is any purely real number.

RP09. Find all $z \in \mathbb{C}$ satisfying $|z+1|^2 \leq 3$ and shade the corresponding region in the complex plane.

Solution. We write z = a + bi, so $|z + 1|^2 = |(a + 1) + bi|^2 = (\sqrt{(a + 1)^2 + b^2})^2 = (a + 1)^2 + b^2$. Then, we are shading the inside of the circle defined by $(a + 1)^2 + b^2 = 3$.

This is the circle centered at (-1,0) with radius $\sqrt{3}$.

RP10. Let $z, w \in \mathbb{C}$ such that $\overline{z}w \neq 1$. Prove that if |z| = 1 or |w| = 1, then $\left|\frac{z-w}{1-\overline{z}w}\right| = 1$.

Proof (by sooshi). Let z and w be complex numbers such that $\overline{z}w \neq 1$. Suppose that |z| = 1 or |w| = 1. If z = w and |z| = |w| = 1, then $\overline{z}w = \overline{z}z = |z|^2 = 1$. Therefore, $z \neq w$.

Now, consider the case when |z| = 1. Then,

$$\left|\frac{z-w}{1-\overline{z}w}\right| = \frac{|z-w|}{|1-\overline{z}w|} = \frac{|z||z-w|}{|z||1-\overline{z}w|} = \frac{(1)|z-w|}{|z-z\overline{z}w|} = \frac{|z-w|}{|z-w|} = 1$$

Likewise, if |w| = 1, then

$$\left|\frac{z-w}{1-\overline{z}w}\right| = \frac{|z-w|}{|1-\overline{z}w|} = \frac{|z-w|}{|w\overline{w}-\overline{z}w|} = \frac{|z-w|}{|w||\overline{w}-\overline{z}|} = \frac{|z-w|}{|w-z|} = 1$$

since |w-z|=|-(z-w)|=|-1||z-w|=|z-w|, completing the proof.

RP11. Show that for all complex numbers z, $|\operatorname{Re}(z)| + |\operatorname{Im}(z)| \leq \sqrt{2}|z|$.

Proof. Let $z = r \operatorname{cis} \theta$ be a complex number. Then, |z| = r, $\operatorname{Re}(z) = r \operatorname{cos} \theta$ and $\operatorname{Im}(z) = r \operatorname{sin} \theta$. Due to the symmetry of sine and cosine, instead of taking absolute values, we

restrict without loss of generality to the first quadrant $0 \le \theta \le \frac{\pi}{2}$. Now,

$$\operatorname{Re}(z) + \operatorname{Im}(z) = r(\cos\theta + \sin\theta)$$

$$= r\sqrt{2}\frac{\sqrt{2}}{2}(\cos\theta + \sin\theta)$$

$$= r\sqrt{2}\left(\frac{\sqrt{2}}{2}\cos\theta + \frac{\sqrt{2}}{2}\sin\theta\right)$$

$$= r\sqrt{2}\left(\sin\frac{\pi}{4}\cos\theta + \cos\frac{\pi}{4}\sin\theta\right)$$

$$= r\sqrt{2}\sin\left(\frac{\pi}{4} + x\right)$$

$$\leq r\sqrt{2}(1)$$

$$= \sqrt{2}|z|$$

completing the proof.

RP12. Use De Moivre's Theorem (DMT) to prove that $\sin 4\theta = 4 \sin \theta \cos^3 \theta - 4 \sin^3 \theta \cos \theta$ for all $\theta \in \mathbb{R}$.

Proof. Let $\theta \in \mathbb{R}$ and note that by DMT, we have

$$(\cos\theta + i\sin\theta)^4 = \cos 4\theta + i\sin 4\theta$$

so we may say that $\sin 4\theta = \text{Im}((\cos \theta + i \sin \theta)^4)$. Expanding this quantity by hand,

$$(\cos \theta + i \sin \theta)^4 = (\cos^2 \theta + 2i \cos \theta \sin \theta - \sin^2 \theta)^2$$
$$= \cos^4 \theta + \sin^4 \theta - 2\cos^2 \theta \sin^2 \theta + 4i \cos^3 \theta \sin \theta - 4i \sin^3 \theta \cos \theta$$
$$= (\cos^4 \theta - 2\cos^2 \theta \sin^2 \theta + \sin^4 \theta) + (4\cos^3 \theta \sin \theta - 4\sin^3 \theta \cos \theta)i$$

and we have that

$$\sin 4\theta = \operatorname{Im}((\cos \theta + i \sin \theta)^{4}) = 4 \cos^{3} \theta \sin \theta - 4 \sin^{3} \theta \cos \theta$$

as desired. \Box

RP13. Let $n \in \mathbb{N}$ and $a, b \in \mathbb{R}$. Show that $z = (a + bi)^n + (a - bi)^n$ is real.

Proof. Let n be a natural number and u = a + bi be a complex number. Then, $\overline{u} = a - bi$. It inductively follows from PCJ4 and the associativity of multiplication that $(\overline{u})^n = \overline{u^n}$.

Now, the fact that $z = u^n + \overline{u^n}$ is real follows immediately from PCJ3.

RP14. An *n*-th root of unity is any complex solution to $z^n = 1$. Prove that if w is an *n*-th root of unity, $\frac{1}{w}$ is also an *n*-th root of unity.

Proof. Let n be a natural number and w be an n-th root of unity, so $w^n = 1$. Knowing that $1 = \operatorname{cis} 0$, the CNRT states that $w = \operatorname{cis}(\frac{2k\pi}{n})$ for some $0 \le k < n$.

By PMC, notice that $w \operatorname{cis}(-\frac{2k\pi}{n}) = \operatorname{cis}(\frac{2k\pi}{n} - \frac{2k\pi}{n}) = \operatorname{cis}0 = 1$, so $\operatorname{cis}(-\frac{2k\pi}{n})$ is the multiplicative inverse w^{-1} of w. Now, since $\operatorname{cis} 2\pi$ -periodic, we have

$$\operatorname{cis}\left(-\frac{2k\pi}{n}\right) = \operatorname{cis}\left(2\pi - \frac{2k\pi}{n}\right) = \operatorname{cis}\left(\frac{2n\pi - 2k\pi}{n}\right) = \operatorname{cis}\left(\frac{2(n-k)\pi}{n}\right)$$

but since $0 \le k < n$, we also have that $0 \le n - k < n$. Therefore, by the CNRT, w^{-1} is an *n*-th root of unity.

RP15. A complex number z is called a *primitive* n-th root of unity if $z^n = 1$ and $z^k \neq 1$ for all $1 \leq k \leq n-1$.

(a) For each n = 1, 3, 5, 6 list all the primitive n-th roots of unity.

Solution. Recall that $1^x = 1$ for any real x. Applying the CNRT, there are n n-th roots of unity, of the form

$$z = \operatorname{cis}\left(\frac{2\pi k}{n}\right)$$

for some integer $0 \le k < n$. Note that 1 is always an *n*-th root of unity but only a primitive first root of unity. Therefore, we can ignore the case k = 0.

The only primitive 1st root of unity is 1.

The primitive 3rd roots of unity are cis $\frac{2\pi}{3} = \frac{\sqrt{3}}{2} - \frac{1}{2}i$ and cis $\frac{4\pi}{3} = \frac{\sqrt{3}}{2} + \frac{1}{2}i$.

For this, we remain in polar form as calculating sines and cosines of fractions over 5 is pain. The primitive 5th roots of unity are $\operatorname{cis} 0 = 1$, $\operatorname{cis} \frac{2\pi}{5}$, $\operatorname{cis} \frac{4\pi}{5}$, $\operatorname{cis} \frac{6\pi}{5}$, and $\operatorname{cis} \frac{8\pi}{5}$.

The 6th roots of unity are $\operatorname{cis} \frac{2\pi k}{6} = \operatorname{cis} \frac{\pi k}{3}$. However, when k = 2, k = 3, and k = 4, these are also 2nd/3rd roots of unity. Thus, the primitive roots of unity are $\operatorname{cis} \frac{\pi}{3} = \frac{1}{2} + \frac{\sqrt{3}}{2}i$ and $\operatorname{cis} \frac{5\pi}{3} = \frac{1}{2} - \frac{\sqrt{3}}{2}i$.

- (b) Let z be a primitive n-th root of unity. Prove the following statements:
 - i. For any $j \in \mathbb{Z}$, $z^j = 1$ if and only if $n \mid j$.

Proof. Let n be a natural number, j be an integer, and z be a primitive n-th root of unity so $z^n = 1$. Proceed by mutual implication.

(\Rightarrow) Suppose $z^j=1$. By the Division Algorithm, j=qn+r for integers q and $0 \le r < n$. Then, $1=z^j=z^{qn+r}=z^{qn}z^r=(z^n)^qz^r=1^qz^r=z^r$.

If r = 0, then j = qn and $j \mid n$. Otherwise, we have $1 \le r \le n - 1$ and $z^r = 1$, which is a contradiction to the fact that z is a primitive n-th root of unity.

Therefore, r = 0 and $j \mid n$.

$$(\Leftarrow)$$
 If $n \mid j$ and $j = nk$ for an integer k , then $z^j = z^{nk} = (z^n)^k = 1^k = 1$.

ii. For any $m \in \mathbb{Z}$, if gcd(m, n) = 1, then z^m is a primitive n-th root of unity.

Proof (new and improved by sooshi). Let z be a primitive n-th root of unity and m an integer coprime to n.

Suppose for a contradiction that z^m is a k-th root of unity for some $1 \le k < n$. Then, $(z^m)^k = z^{mk} = 1$. From above, this implies that $n \mid mk$ and by CAD, $n \mid k$. However, BBD gives that $n \le k$, which is a contradiction.

Therefore, z^m is a primitive n-th root of unity.

RP16. Let u and v be fixed complex numbers. Let ω be a non-real cube root of unity. For each $k \in \mathbb{Z}$, define $y_k \in \mathbb{C}$ by the formula

$$y_k = \omega^k u + \omega^{-k} v$$

(a) Compute y_1 , y_2 , and y_3 in terms of u, v, and ω .

Solution. From RP15(a), the only real cube root of unity is 1, so $\omega \neq 1$. In fact, $\omega = \operatorname{cis} \frac{n\pi}{3}$ for either n = 2 or n = 4.

If
$$n = 2$$
, then $\omega^{-1} = \operatorname{cis} \frac{-2\pi}{3} = \operatorname{cis} \frac{4\pi}{3}$. If $n = 4$, then $\omega^{-1} = \operatorname{cis} \frac{-4\pi}{3} = \operatorname{cis} \frac{2\pi}{3}$.

However, using the standard form from RP15(a), $\operatorname{cis} \frac{2\pi}{3} = \overline{\operatorname{cis} \frac{4\pi}{3}}$. Therefore, $\omega^{-1} = \overline{\omega}$.

Now,
$$y_1 = \omega u + \overline{\omega}v$$
, $y_2 = \omega^2 u + \overline{\omega}^2 v$, and $y_3 = \omega^3 u + \overline{\omega}^3 v = u + v$.

(b) Show that $y_k = y_{k+3}$ for any $k \in \mathbb{Z}$.

Proof. Let k be an integer. Then, knowing that both ω and $\overline{\omega}$ are cube roots of unity,

$$y_{k+3} = \omega^{k+3}u + \overline{\omega}^{k+3}v$$
$$= \omega^k \omega^3 u + \overline{\omega}^k \overline{\omega}^3 v$$
$$= \omega^k u + \overline{\omega}^k v$$
$$= y_k$$

completing the proof.

(c) Show that for any $k \in \mathbb{Z}$,

$$y_k - y_{k+1} = \omega^k (1 - \omega)(u - \omega^{k-1}v)$$

Proof. Let k be an integer. Expand the right-hand side:

$$\omega^{k}(1-\omega)(u-\omega^{k-1}v) = (\omega^{k} - \omega^{k+1})(u-\omega^{k-1}v)$$

$$= \omega^{k}u - \omega^{2k+1}v - \omega^{k+1}u + \omega^{2k+2}v$$

$$= (\omega^{k}u + \omega^{2k+2}v) - (\omega^{k+1}u + \omega^{2k+1}v)$$

To simplify, we show that $\omega^{2k+2} = \omega^{-k}$. Equivalently, $\omega^{2k+2}\omega^k = \omega^{3k+2} = 1$. Let j = k+1. Then,

$$\omega^{3k+2} = \omega^{3(j-1)+2} = \omega^{3j-1} = (\omega^3)^j \omega^{-1} = 1^j \omega^{-1} = \omega^{-1}$$

as desired. Now, we have $\omega^{2k+2} = \omega^{-k}$ and $\omega^{2k+1} = \omega^{-(k+1)}$ so

$$\omega^{k}(1-\omega)(u-\omega^{k-1}v) = (\omega^{k}u + \omega^{2k+2}v) - (\omega^{k+1}u + \omega^{2k+1}v)$$
$$= (\omega^{k}u + \omega^{-k}v) - (\omega^{k+1}u + \omega^{-(k+1)}v)$$
$$= y_{k} - y_{k+1}$$

Challenges

C01. Let $z, w \in \mathbb{C}$.

(a) Prove that $|z + w| \le |z| + |w|$.

Proof. This is the Triangle Inequality, for which a geometric proof is provided in Chapter 10.3. In short, for complex numbers z=a+bi and w=c+di, we consider a triangle $\triangle OZW$ with points O(0,0), Z(a,b), and W(c,d) in the complex plane. Then, $|z|=\ell_{OZ}$, $|w|=\ell_{OW}$, and $|z+w|=\ell_{ZW}$. The length of one side of a triangle cannot exceed the sum of the lengths of the other two sides.

Equivalently,
$$\ell_{ZW} \leq \ell_{OZ} + \ell_{OW}$$
.

(b) Prove that $||z| - |w|| \le |z - w| \le |z| + |w|$.

Proof. Let z and w be complex numbers. We prove the inequalities separately.

We apply the Triangle Inequality with z and -w. Then, $|z+(-w)| \le |z|+|-w|$ but |-w| = |-1||w| = |w| by PM4, so we have $|z-w| \le |z|+|w|$.

Now, notice that $|z| = |(z - w) + w| \le |z - w| + |w|$ so $|z| - |w| \le |z - w|$.

Likewise,
$$|w| = |(w - z) + z| \le |w - z| + |z|$$
 so $|z| - |w| \ge -|w - z|$.

Like the absolute value in \mathbb{R} , we have by PM4 |w-z| = |-1||z-w| = 1|z-w| = |z-w|, so if we combine the above two inequalities, we have $||z| - |w|| \le |z-w|$.

Equivalently, using the same triangle from above, this follows from the fact that any one side of a triangle is longer than the difference of the other two sides. \Box

C02. Let $a, b, c \in \mathbb{C}$. Show that if $\frac{b-a}{a-c} = \frac{a-c}{c-b}$ then |b-a| = |a-c| = |c-b|.

C03. Let $n \geq 2$ be an integer. Prove that

$$\sum_{k=0}^{n-1} \cos\left(\frac{2k\pi}{n}\right) = 0 = \sum_{k=0}^{n-1} \sin\left(\frac{2k\pi}{n}\right)$$

Proof (with help from Ainsley, Kenson, Mabel). Let $n \neq 1$ be a natural number. Then, we have that the n-th roots of unity are given by

$$\cos\left(\frac{2k\pi}{n}\right) + i\sin\left(\frac{2k\pi}{n}\right)$$

for $k = 0, 1, 2, \dots, n - 1$. Let z be the sum of the n-th roots of unity. Then,

$$z = \sum_{k=0}^{n-1} \left(\cos \left(\frac{2k\pi}{n} \right) + i \sin \left(\frac{2k\pi}{n} \right) \right)$$

The conclusion can equivalently be stated as that Re(z) = 0 and Im(z) = 0. The only complex number that satisfies this is z = 0.

Now, let $a = \cos(\frac{2\pi}{n}) + i\sin(\frac{2\pi}{n})$, the root of unity with k = 1. Then, we have that each root of unity is given by a^j for j = 1, 2, ..., n. Since $n \neq 1$, $a = \cos(\frac{2\pi}{n}) \neq 1$ and $z = 1 + a + a^2 + \cdots + a^{n-1}$.

Recall that the polynomial $a^n - 1$ for $n \ge 2$ factors as $(a-1)(a^{n-1} + a^{n-2} + \dots + a^2 + a + 1)$. It follows that $a^n - 1 = 1 - 1 = 0$ and 0 = (a-1)z so, from above, $a \ne 1$ so z = 0.