Algoritmy a grafy 1 (BI-AG1), Cvičení č. 1 Složitost algoritmů, základy grafů

Paralelka 104, Úterý 16:15-17:45

Cvičící: Šimon Lomič lomicsim@fit.cvut.cz

Informace: lomicsim.github.io

Fakulta informačních technologií České vysoké učení technické v Praze https://courses.fit.cvut.cz/BI-AG1

(Verze dokumentu: 15. 10. 2018 22:40)

Obsah cvičení

- Grafy
 - Složitost algoritmů, grafy
 - Grafy cesty, souvislost, stromy, kostry, DFS
 - Vzdálenost v (neohod.) grafech, BFS, topologické třídění
- Algoritmy a datové struktury
 - Třídící algoritmy, binární haldy
 - Binomiální hlady a amortizovaná složitost
 - Binární vyhledávací stromy a AVL stromy
 - Pravděpodobnost, hashování
 - Rozděl a panuj
 - Třídění
 - Dynamické programování
- Opět grafy
 - Minimální kostry
 - Nejkratší cesty v grafu

Hodnocení – Zápočet

Semestrální písemka:

- V 10. týdnu semestru.
- Maximum 20, minimum 10.
- Možnost opravy v posledním týdnu semestru.

Kvízy v Marastu:

- Každý 2. týden 1 otázka, celkem 6 otázek.
- Správná odpověď: 1 bod, špatná nebo žádná odpověď: -1 bod.
- Celkem lze získat nejvýše 6 bodů a nejméně -6 bodů.

• Programovací úlohy v Progtestu:

- ▶ Během semestru **tři** programovací úlohy v jazyce C/C++.
- Celkem 30 bodů.
- ▶ Na každou úlohu 2 týdny, za vyřešení v 1.týdnu 25% bonus.

Hodnocení – Zápočet – Pokračování

- Aktivita během cvičení:
 - Lze získat 0 až 5 bodů.
 - Body lze získávat za řešení bodovaných úloh ve cvičení a za domácí úlohy.
- Účast v soutěži ACM ICPC:
 - Za každou vyřešenou úlohu na CTU Open 2 body, ve vyšších kolech 6 bodů.

Celkem je možno získat 56 bodů + bonusy.

Udělení zápočtu je podmíněno splněním 2 podmínek:

- získáním minimálně 10 bodů ze semestrální písemku
- a získáním minimálně 28 bodů celkově.

- Analýza složitosti algoritmů
- Úpravy známých algoritmů
- Úlohy na dynamické programování
- Návrh algoritmu ve formě pseudokódu
- Důkaz korektnosti algoritmu (konečnost a správnost)

1.1 Motivační úloha (1/2 bodu)

Mějme pole $A = (a_1, a_2, \ldots, a_n)$ n seřazených čísel $(a_i \in \mathbb{N})$ a přirozené číslo $K \in \mathbb{N}$. Rozhodněte, zda existují indexy i, j, $1 < i, j < n, i \neq j$ takové, že $a_i + a_j = K$.

- Navrhněte efektivní algoritmus, který tento problém řeší, a popište jej pseudokódem.
- Dokažte korektnost Vašeho algoritmu (alespoň hlavní myšlenku).
- Proveďte analýzu časové a paměťové složitosti algoritmu.

1.2 Složitost algoritmů

Analyzujte následující algoritmy na výpis hvězdiček a co nejpřesněji určete kolik hvězdiček program vypíše a kolik kroků program vykoná.

- a) for i:=1 to n do
 for j:=1 to n do
 print "*"
- b) for i:=1 to n do
 for j:=1 to i do
 print "*"
- c) while n > 0 do
 print "*"
 n := n/2

- d) while n > 0 do
 for i:= 1 to n do
 print "*"
 n := n/2
- e) while n > 0 do
 if (n is odd) then
 print "*"
 n := n/2
- f) while n > 0 do
 if (n is odd) then
 for i:= 1 to n do
 print "*"
 n := n/2

Opakování z přednášky – Neorientovaný graf

- ullet Neorientovaný graf je uspořádaná dvojice (V,E), kde
 - $lackbox{ }V$ je neprázdná konečná množina ${\bf vrcholů}$ (nebo také ${\bf uzlů}$),
 - ightharpoonup E je množina **hran**.
 - \star Hrana je dvouprvková podmnožina V, $E\subset {V\choose 2}\subset 2^V$.
- \bullet Množinu vrcholů a hran grafu G budeme značit V(G) a E(G).
- Stupeň vrcholu v v grafu G, $\deg_G(v)$ značí počet hran grafu G obsahujících vrchol v.
- k-regulární graf: $\forall v \in V(G) : \deg(v) = r$.
- (Otevřené) okolí $N_G(v)$ množina všech sousedů.
- Uzavřené okolí $N_G[v] = N_G(v) \cup \{v\}.$
- Princip sudosti Pro každý graf G = (V, E) platí

$$\sum_{v \in V} \deg_G(v) = 2|E|.$$

1.3 Vlastnosti grafů

- (a) Uveďte příklady použití grafů na reálných objektech.
- (b) Existuje soubor stupňů grafu (multiset čísel velikosti n), který splňuje princip sudosti a přesto graf s tímto souborem neexistuje? A když jsou všechna čísla v multisetu menší jak n?
- **0.5b** Máme graf G=(V,E) pro který platí |E|=2|V|+5. V grafu je 10 vrcholů stupně 1 a ostatní jsou stupně 6. Kolik má celkem vrcholů?

Opakování z přednášky – Důležité grafy

- Úplný graf $K_n = (V, {V \choose 2})$, kde |V| = n.
- Úplný bipartitní graf $K_{n,m}=(A\cup B,\{\{a,b\}\mid a\in A,b\in B\})$, kde $A\cap B=\emptyset$, |A|=n a |B|=m.
- Cesta $P_m = (\{0, \dots, m\}, \{\{i, i+1\} \mid i \in \{0, \dots, m-1\}\}).$
- Kružnice C_n = $(\{1,\ldots,n\},\{\{i,i+1\}\mid i\in\{1,\ldots,n-1\}\}\cup\{\{1,n\}\}).$
- Hvězda $S_n = K_{1.n}$.

Cvičení: Uveďte maximální délku nejdelší cesty v každém z těchto grafů.

1.4 Existence grafu s požadovanými vlastnostmi

Nakreslete graf s požadovanými vlastnostmi nebo uveďte, proč takový graf neexistuje:

- (a) Devět kamarádů si na Vánoce dalo dárky. Každý dal dárky třem svým kamarádům. Ukažte, že není možné, aby každý dostal dárky právě od těch tří kamarádů, kterým dárky sám dal.
- (b) 6 vrcholů a všechny jsou stupně 3,
- (c) 6 vrcholy a všechny jsou stupně 1,
- (d) 4 vrcholy se stupni 1, 2, 3, 4,
- (e) 5 vrcholů se stupni 2, 3, 3, 4, 4.
- (f) Pro která n existuje graf na n vrcholech, ve kterém má každý vrchol jiný stupeň?
- **0.5b** Pro která n existuje graf na n vrcholech, ve kterém má každý vrchol jiný stupeň, kromě dvou, které mají stejné?

Opakování z přednášky – Izomorfismus

Nechť G a H jsou dva grafy.

- (a) izomorfismus grafů: bijekce $f:V(G)\to V(H)$, kde $\forall u,v\in V(G)$ platí $\{u,v\}\in E(G)\Leftrightarrow \{f(u),f(v)\}\in E(H)$.
- (b) G a H jsou **izomorfní**, pokud existuje izomorfismus grafů G a H, značíme $G \simeq H$.
- (c) **Automorfismus** grafu G je izomorfismus se sebou samým (izomorfismus $f:V(G)\to V(G)$).

Cvičení: Mějme vzájemně izomorfní grafy G,H ($G\simeq H$). Víme že G má n automorfismů. Kolik atomorfismů má graf H?

1.5 Izomorfismus

- (a) Jsou každé dva (n-1)-regulární grafy izomorfní?
- (b) Jsou každé dva (n-2)-regulární grafy izomorfní?
- (c) Jsou každé dva (n-3)-regulární grafy izomorfní?
- (d) Rozhodněte, zda jsou následující grafy izomorfní.

1.6 Počet automorfismů určitých grafů

Určete počet automorfismů následujících grafů pro m, n > 1:

- (a) úplný graf K_n , z něhož je odstraněna jedna hrana,
- (b) úplný graf K_n , z něhož jsou odstraněny dvě sousední hrany,
- (c) úplný graf K_n , z něhož jsou odstraněny dvě nesousední hrany.
- (d) Najděte příklad grafu, který má právě jeden automorfismus (na alespoň dvou vrcholech).

1.7 Domácí úkol

Definice

Doplněk \overline{G} grafu G = (V, E) je graf $(V, \binom{V}{2} \setminus E)$.

• Ukažte, že G je izomorfní H právě tehdy, když \overline{G} je izomorfní $\overline{H}.$ (1/2 bodu)

Úkol odevzdejte na příštím cvičení (případně e-mailem).