CORRELATION

- 1 Review: Statistical tests
- 2 Review: *t*-test
- 3 Review: Chi-squared test
- 4 Correlation

1. Statistical tests

Additional references

Leahey, "Alphas and Asterisks: The Development of Statistical Significance Testing Standards in Sociology", *Social Forces*, 2005.

Ziliak and McCloskey, *The Cult of Statistical Significance: How the Standard Error Costs Us Jobs, Justice, and Lives*, University of Michigan Press, 2008.

Hypothesis testing

Substantive hypotheses

There is an association between *X* and *Y*, ... There is a difference of *X* between groups of *Y*, ...

Null hypothesis tests

 H_0 : the association of X by Y is likely to be random.

 H_0 : the difference in X between groups of Y is likely to be random.

Rejecting the null

 H_0 estimates the likelihood of an association or difference being attributable to sampling error under a certain level of confidence.

Hypothesis testing

2. *t*-test

t-test

Measuring association as the difference in means between two groups of i.i.d. observations:

- Population notation: $\delta = \mu_1 \mu_2$
- Sample notation: $D = \bar{X}_1 \bar{X}_2$

The *t*-test computes a 95% CI around the difference of their means and returns its *p*-value against the *t*-distribution.

- Null hypothesis H_0 : $\mu_1 \mu_2 = 0$
- Test statistic: $t = \frac{D}{SE_D}$

t-test

ttest v1, by(v2)

- v1 is continuous, v2 is a dummy
- use prtest if v1 is also a dummy (proportions test)
- use tab, gen() to create dummies from categorical variables

use datasets/qog2011, clear

- Variables: d gol_enep gol_est2
- Create dummies and compare parties across electoral systems.

t-test

use datasets/qog2011, clear

Explore the variables and interpret the output below.

. prtest no_mes, by(gol_polreg)

Two-sample test of proportions

0. Democracy: Number of obs =

1. Dictators: Number of obs =

109

79

Variable	Mean	Std. Err.	z	P> z	[95% Conf.	Interval]
Democracy Dictators	.293578 .2911392	.0436195 .0511113			.2080853 .1909628	.3790706 .3913156
diff	.0024387 under Ho:	.067194 .0672205	0.04	0.971	129259	.1341365

diff = prop(0. Democracy) - prop(1. Dictators) z = 0.0363

Ho: diff = 0

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0 Pr(Z < z) = 0.5145 Pr(|Z| < |z|) = 0.9711 Pr(Z > z) = 0.4855

3. Chi-squared test

Chi-squared test

The Chi-squared test is a nonparametric test of association that measures the deviation in orthogonality between groups:

- Null hypothesis H_0 : $\chi^2 = 0$
- Test statistic: $\chi^2 = \sum_{i=1}^n \frac{(O_i E_i)^2}{E_i}$ (deviation between observed frequencies O_i and expected frequencies E_i for each table cell i)

tab v1 v2, exp chi2 V

- lacksquare add V to measure the association with Cramér's V (0 < V < 1)
- use tabchi to inspect residuals, tabodds for odds ratios

Chi-squared test

use datasets/nhis2009, clear

- Variables: d raceb marstat
- Analyze the frequencies and residuals with tabchi

. tab marstat raceb if marstat < 8, chi2 V

	Race							
Legal marital status	White	Black	Hispanic	Asian	Total			
Married	7,151	1,059	2,231	780	11,221			
	,							
Widowed	1,215	352	223	84	1,874			
Divorced	2,367	641	595	93	3,696			
Separated	343	264	274	25	906			
Total	11,076	2,316	3,323	982	17,697			

Pearson chi2(9) = 733.4437 Pr = 0.000

4. Correlation

Pearson correlation coefficient

Measuring association as the linear dependence of two variables:

Population notation
$$\rho = \frac{\operatorname{Cov}(X,Y)}{\operatorname{Var}_X \operatorname{Var}_Y}, \quad -1 \le \rho \le 1$$
Sample notation $r = \frac{1}{n-1} \sum_{i=1}^n (\frac{X_i - \bar{X}}{\operatorname{s}_X}) (\frac{Y_i - \bar{Y}}{\operatorname{s}_Y})$

Detects linear correlation

- Uncorrelated ≠ unrelated
- Correlated ≠ unconfounded

Perfect (positive, negative) correlation

Significant (moderate, strong) correlation

Insignificant (weak, non-linear) correlation

Pearson correlation coefficient

Significance test:

Null hypothesis
$$H_0$$
 $r=0$
Test statistic $T=r\sqrt{\frac{n-2}{1-r^2}}$

Sanity check

- Uncorrelated \neq independent
- Correlated ≠ causally related

Source: Messerli, "Chocolate Consumption, Cognitive Function, and Nobel Laureates", New England Journal of Medicine, 2012.

Figure 1: Frequencies of the words "hamster" and "contraception" in Google Books, 1900-2000

Source: Harkness, "Seduced by Stats?", Significance, 2012.

Correlation matrixes

```
pwcorr [varlist], [obs sig]
```

- obs shows the number of observations
- sig shows the coefficient's *p*-value

```
gr mat [varlist], [half etc.]
```

- half plots only half of all graphs (quicker)
- accepts scatterplot options (jitter, mlab, etc.)

Correlation matrixes

mkcorr [varlist], lab num sig log(file.txt) replace

- ssc install mkcorr to install
- help mkcorr to understand the options

Computer skills

- Import as a table in a spreadsheet editor.
- Convert from text to table in a rich text editor.

use datasets/qog2011, clear

- Variables: d wdi_puhegdp wdi_the wdi_prhe
- Visualize, compute, export and import the correlation matrix.

gr mat

Showing only Africa and the Middle East (N = 68).

From Stata output...

. pwcorr wdi_hiv wdi_hec wdi_prhe wdi_puhegdp, obs sig star(.05)

	wdi_hiv	wdi_hec v	vdi_prhe w	di_pu~p		
wdi_hiv	1.0000					
	141				r =2	
wdi_hec	-0.1953*	1.0000			<i>p</i> < .02	
_	0.0207				N = 140	
	140	187				
wdi_prhe	0.0979	-0.0555	1.0000			
	0.2497 140	0.4509 187	188		cc· ·	
	140	107	100		coefficie	nt
wdi_puhegdp	-0.0607	0.5490*	-0.2099*	1.0000	<i>p</i> -value	
	0.4759	0.0000	0.0038		p-value	
	140	187	188	188	observa	tion
					onserva	uon

... to publishing standard

Table 4
Pearson pairwise correlations among the dependent and explanatory variables

	ETRC	ETRI	CAPINT	LEV	SIZE	POLCON1	POLCON2	MKBV	INVINT	ROA
ETRC	1									
ETRI	0.031	1								
CAPINT	-0.033**	-0.044**	1							
LEV	-0.051°	-0.021	-0.041**	1						
SIZE	-0.124	-0.190	-0.163**	0.337**	1					
POLCON1	-0.023**	-0.047**	0.129	0.031**	0.146	1				
POLCON2	-0.011^*	-0.044°	-0.064	0.116	0.179	0.138	1			
MKBV	0.045	-0.036	-0.051	-0.035	-0.077**	-0.130	-0.026	1		
INVINT	0.020	-0.014	0.067**	-0.128**	-0.195**	0.193**	-0.005	-0.041	1	
ROA	0.073*	0.047*	0.067**	-0.038	0.073	0.049	0.012	0.053	-0.019	1

Variable definitions: ETRC = (Tax expenses – Deferred tax expenses)/(Operating cash flows); ETRI = (Tax expenses – Deferred tax expenses)/(Profit before interest and tax); POLCON1 = Percentage of government equity ownership; POLCON2 = 1 if the firm is connected with top politicians; of otherwise; SIZE = Natural log of total assets; LEV = (Total debt)/(Total assets); CAPINT = (Property, plant and equipment)/(Total assets); INVINT = (Inventory/Total assets); ROA = (Pre-tax profits)/(Total assets); MKBV = (Market price of share)/(Shareholders equity/Number of ordinary shares outstanding).

Source: Adhikari *et al.*, "Public Policy, Political Connections, and Effective Tax Rates: Longitudinal Evidence from Malaysia", *Journal of Accounting and Public Policy*, 2006.

^{*} Correlation is significant at the 0.05 level (2-tailed).

^{**} Correlation is significant at the 0.01 level (2-tailed).

Coursework

Project

- Start testing associations in your data
- Refine hypotheses and write draft findings

Readings

- Stata Guide, Sec. 10 (association)
- Making History Count, ch. 3 (correlation)

Practice

- Replicate do-file
- Exercises in slides