投影方法求解双 curl 问题

PDE

$$\left\{ \begin{array}{cccc} \nabla \times \nabla \times \boldsymbol{u} - \omega^2 \boldsymbol{u} = \boldsymbol{f} & \text{in } \Omega \\ \nabla \cdot \boldsymbol{u} = \boldsymbol{g} & \text{in } \Omega \\ \boldsymbol{n} \times \left((\nabla \times \boldsymbol{u}) \times \boldsymbol{n} \right) = \boldsymbol{\lambda} & \boldsymbol{u} \cdot \boldsymbol{n} = \boldsymbol{\phi} & \text{on } \partial \Omega \end{array} \right.$$
 (2D)
$$\left\{ \begin{array}{ccccc} \nabla \times \nabla \times \boldsymbol{u} - \omega^2 \boldsymbol{u} = \boldsymbol{f} & \text{in } \Omega \\ \nabla \times \nabla \times \boldsymbol{u} - \omega^2 \boldsymbol{u} = \boldsymbol{f} & \text{in } \Omega \\ \nabla \cdot \boldsymbol{u} = \boldsymbol{g} & \text{in } \Omega \\ \nabla \times \boldsymbol{u} = \boldsymbol{\lambda} & \boldsymbol{u} \cdot \boldsymbol{n} = \boldsymbol{\phi} & \text{on } \partial \Omega \end{array} \right.$$

有限元空间

$$U_h = \{v \in H^1(\Omega) : v|_T \in \mathbb{P}_m(T) \ , \forall T \in \mathcal{T}_h\} \quad , \boldsymbol{U}_h = [\ U_h]^2$$

投影有限元

Find $\boldsymbol{u}_h \in \boldsymbol{U}_h$, s.t.

$$\begin{split} &(\nabla \times \boldsymbol{u}_h \ , \nabla \times \boldsymbol{v}) + (\nabla \cdot \boldsymbol{u}_h \ , \nabla \cdot \boldsymbol{v}) - \omega^2(\boldsymbol{u}_h \ , \boldsymbol{v}) + \mathcal{L} \ \left(R_h(\boldsymbol{u}_h \cdot \boldsymbol{n}), R_h(\boldsymbol{v} \cdot \boldsymbol{n}) \right) \\ &+ \sum_{F \in \partial \Omega} h_F \int_F (\boldsymbol{u}_h \cdot \boldsymbol{n})(\boldsymbol{v} \cdot \boldsymbol{n}) = (\boldsymbol{f} \ , \boldsymbol{v}) + (\boldsymbol{g} \ , \nabla \cdot \boldsymbol{v}) + \int_{\partial \Omega} \lambda(\boldsymbol{v} \cdot \boldsymbol{t}) + \int_{\partial \Omega} \phi \cdot R_h(\boldsymbol{v} \cdot \boldsymbol{n}) \\ &+ \sum_{F \in \partial \Omega} h_F \int_F \phi(\boldsymbol{v} \cdot \boldsymbol{n}) \qquad , \ \forall \ \boldsymbol{v} \in \boldsymbol{V}_h. \end{split}$$

上式中的 t 是切向。

投影定义

Find $R_h(\boldsymbol{v}\cdot\boldsymbol{n})\in W_h$, s.t.

$$\mathcal{L} \left(R_h(\boldsymbol{v} \cdot \boldsymbol{n}) \right. , z) = \int_{\partial \Omega} (\boldsymbol{v} \cdot \boldsymbol{n}) \, z \qquad , \forall z \in W_h$$

其中

$$W_h = \{ q \in H^1(\Omega) : q|_T \in \mathbb{P}_1(T) , \forall T \in \mathcal{T}_h \}$$

$$\mathcal{L} (w, z) = (\nabla w, \nabla z) + (w, z)$$

混合有限元形式

Find
$$(\boldsymbol{u}_h, w_h) \in \boldsymbol{U}_h \times W_h$$
, s.t.

$$(\nabla \times \boldsymbol{u}_h, \nabla \times \boldsymbol{v}) + (\nabla \cdot \boldsymbol{u}_h, \nabla \cdot \boldsymbol{v}) - \omega^2(\boldsymbol{u}_h, \boldsymbol{v}) + \int_{\partial\Omega} (\boldsymbol{v} \cdot \boldsymbol{n}) w_h - \int_{\partial\Omega} (\boldsymbol{u}_h \cdot \boldsymbol{n}) z$$

$$+ \mathcal{L} (w_h, z) + \sum_{F \in \partial\Omega} h_F \int_F (\boldsymbol{u}_h \cdot \boldsymbol{n}) (\boldsymbol{v} \cdot \boldsymbol{n})$$

$$= (\boldsymbol{f}, \boldsymbol{v}) + (\boldsymbol{g}, \nabla \cdot \boldsymbol{v}) + \int_{\partial\Omega} \lambda(\boldsymbol{v} \times \boldsymbol{n}) + \int_{\partial\Omega} \phi \cdot R_h(\boldsymbol{v} \cdot \boldsymbol{n}) + \sum_{F \in \partial\Omega} h_F \int_F \phi(\boldsymbol{v} \cdot \boldsymbol{n})$$

$$, \forall (\boldsymbol{v}, z) \in \boldsymbol{U}_h \times W_h$$

右端投影项处理

Find $\bar{R}_h(\phi) \in W_h$, s.t.

$$\mathcal{L}\left(\bar{R}_{h}(\phi),z\right)=\int_{\partial\Omega}\phi\cdot z$$
 , $\forall z\in W_{h}$

And then

$$\int_{\partial \Omega} \boldsymbol{\phi} \cdot R_h(\boldsymbol{v} \cdot \boldsymbol{n}) = \int_{\partial \Omega} (\boldsymbol{v} \cdot \boldsymbol{n}) \cdot \bar{R}_h(\boldsymbol{\phi})$$

右端项投影处理也可以一并同时纳入计算:

Find $\mathbf{u} \in H(\mathbf{curl}; \Omega) \cap H(\mathrm{div}; \Omega), w \in H^1(\Omega), p \in H^1(\Omega)$ such that

$$\begin{aligned} &(\mathbf{curl}\,\mathbf{u},\mathbf{curl}\,\mathbf{v}) - \omega^2(\mathbf{u},\mathbf{v}) \\ &+ (\operatorname{div}\,\mathbf{u},\operatorname{div}\,\mathbf{v}) + \langle \mathbf{v}\cdot\mathbf{n},w\rangle_{\Gamma} + L(w,z) - \langle \mathbf{u}\cdot\mathbf{n},z\rangle_{\Gamma} \\ &+ L(p,q) - \langle \mathbf{v}\cdot\mathbf{n},p\rangle_{\Gamma} + \sum_{F\subset\Gamma} h_F \int_F (\mathbf{u}\cdot\mathbf{n})(\mathbf{v}\cdot\mathbf{n}) \\ &= (\mathbf{f},\mathbf{v}) + (g,\operatorname{div}\,\mathbf{v}) + \int_{\Gamma} (\mathbf{n}\times\mathbf{v}) \cdot \lambda + \int_{\Gamma} \phi q + \sum_{F\subset\Gamma} h_F \int_F \phi(\mathbf{v}\cdot\mathbf{n}), \end{aligned}$$

for all $\mathbf{v} \in H(\mathbf{curl}; \Omega) \cap H(\mathrm{div}; \Omega), z \in H^1(\Omega), q \in H^1(\Omega).$

有 限 元 $\mathbf{u}_h \in U_h, w_h \in W_h, p_h \in Q_h = W_h$, 检 验 函 数 $\mathbf{v}_h \in U_h, z_h \in W_h, q_h \in Q_h = W_h$ 。都没有任何边界条件。

算例 1

区域: L型域

图 1. L 型域内网格尺度为 1/8 的网格剖分

真解

$$u_1(x, y) = \sin(\pi y)\cos(\pi x)$$

$$u_2(x, y) = -\sin(\pi x)\cos(\pi y)$$

图 2. 算例 1 的真解 u_1 , u_2

取 ω = 1时,应用 P1-P1 元时,有限元解在边界表现异常,如图 3。P2-P1、P3-P1 元图像正常,收敛阶符合理论值。取 ω = 0时,收敛正常,如图 4 及表 1~2。表 2 的最后一格的异常是机器精度所限,难以得到更小的误差。

图 3. $\omega=1$ 时,应用 P1-P1 元,算例 1 在网格尺度为 1/16 时的有限元解 \mathbf{u}_1 , \mathbf{u}_2

图 4. $\omega=0$ 时,应用 P1-P1 元,算例 1 在网格尺度为 1/16 时的有限元解 \mathbf{u}_1 , \mathbf{u}_2

表 1. 算例 1 的速度 u 的能量范数绝对误差

h*	P1-P1 eler	nent	P2-P1 eler	ment	P3-P1 ele	ment
II.	error	order	error	order	error	order
1/4	3.01E+00	-	4.44E-01	-	2.72E-02	-
1/8	1.57E+00	0.94	1.17E-01	1.93	3.34E-03	3.03
1/16	7.95E-01	0.98	2.95E-02	1.99	4.18E-04	3.00
1/32	3.94E-01	1.01	7.37E-03	2.00	5.25E-05	2.99
1/64	1.94E-01	1.02	1.84E-03	2.00	6.83E-06	2.94

表 2. 算例 1 的速度 \mathbf{u} 的 L^2 范数绝对误差

h*	P1-P1 eler	ment	P2-P1 elei	ment	P3-P1 ele	ment
n*	error	order	error	order	error	order
1/4	2.79E-01	-	2.59E-02	-	1.28E-03	-
1/8	1.25E-01	1.15	4.25E-03	2.61	7.03E-05	4.19
1/16	5.42E-02	1.21	6.58E-04	2.69	4.17E-06	4.08
1/32	1.94E-02	1.48	1.09E-04	2.59	3.81E-07	3.45
1/64	5.99E-03	1.70	1.85E-05	2.56	2.85E-07	0.42

算例 2

区域: L型域

真解

$$q(x,y) = r^{2/3} \cdot \sin\left(\frac{2\theta}{3}\right)$$

$$u_1(x,y) = -\frac{2}{3}r^{-1/3} \cdot \sin\left(\frac{\theta}{3}\right)$$

$$u_2(x,y) = \frac{2}{3}r^{-1/3} \cdot \cos\left(\frac{\theta}{3}\right)$$

图 5. 算例 2 的真解u₁,u₂

类似的,若取 $\omega=1$,随着网格的加密,三种有限元都逐渐地偏离真解,如图 6~7。但 若取 $\omega=0$, $\omega=0.5$ 或 $\omega=i$,则计算结果符合收敛阶 (0.33/0.44/0.5),如图 8~10 及表 3~8。

图 6. $\omega=1$ 时,应用 P2-P1 元,算例 2 在网格尺度为 1/8 时的有限元解 \mathbf{u}_1 , \mathbf{u}_2

图 7. $\omega=1$ 时,应用 P2-P1 元,算例 2 在网格尺度为 1/16 时的有限元解 $\mathbf{u_1}$, $\mathbf{u_2}$

图 8. $\omega=0$ 时,应用 P2-P1 元,算例 2 在网格尺度为 1/16 时的有限元解 u_1 , u_2

图 9. $\omega=0.5$ 时,应用 P2-P1 元,算例 2 在网格尺度为 1/16 时的有限元解 u_1 , u_2

图 10. $\omega=i$ 时,应用 P2-P1 元,算例 2 在网格尺度为 1/16 时的有限元解 u_1 , u_2

P1-P1 element P2-P1 element P3-P1 element h* error Order error order error order 6.29E-01 4.06E-01 2.96E-01 1/4 ---5.27E-01 0.25 3.04E-01 0.42 2.10E-01 0.49 1/8 1/16 4.29E-01 0.30 2.25E-01 0.43 1.51E-01 0.47 3.43E-01 0.32 1.67E-01 1.09E-01 1/32 0.43 0.48

1.23E-01

0.44

1/64

2.73E-01

0.33

7.76E-02

0.48

表 3. $\omega = 0$ 时,算例 2 的速度 \mathbf{u} 的能量范数绝对误差

表 4. $\omega = 0$ 时,算例 2 的速度 \mathbf{u} 的 L^2 范数绝对误差

h*	P1-P1 eler	ment	P2-P1 elei	ment	P3-P1 ele	ment
II.	error	Order	error	order	error	order
1/4	3.17E-01	-	1.94E-01	-	1.38E-01	-
1/8	2.60E-01	0.29	1.50E-01	0.37	1.05E-01	0.39
1/16	2.10E-01	0.31	1.15E-01	0.39	7.86E-02	0.42
1/32	1.68E-01	0.32	8.70E-02	0.40	5.80E-02	0.44
1/64	1.35E-01	0.32	6.54E-02	0.41	4.24E-02	0.45

表 5. $\omega = 0.5$ 时,算例 2 的速度 \mathbf{u} 的能量范数绝对误差

h*	P1-P1 eler	nent	P2-P1 eler	ment	P3-P1 eler	ment
П	error	Order	error	order	error	order
1/4	6.24E-01	-	4.00E-01	-	2.91E-01	-
1/8	5.20E-01	0.26	2.98E-01	0.42	2.06E-01	0.50
1/16	4.22E-01	0.30	2.21E-01	0.43	1.48E-01	0.48
1/32	3.37E-01	0.33	1.63E-01	0.44	1.06E-01	0.48
1/64	2.68E-01	0.33	1.20E-01	0.44	7.60E-02	0.49

表 6. $\omega = 0.5$ 时,算例 2 的速度 \mathbf{u} 的 \mathbf{L}^2 范数绝对误差

h*	P1-P1 eler	ment	P2-P1 elei	ment	P3-P1 ele	ment
11.	error	Order	error	order	error	order
1/4	3.34E-01	-	2.02E-01	-	1.42E-01	-
1/8	2.76E-01	0.28	1.55E-01	0.38	1.08E-01	0.39
1/16	2.22E-01	0.31	1.19E-01	0.39	8.07E-02	0.42
1/32	1.78E-01	0.32	8.98E-02	0.40	5.95E-02	0.44
1/64	1.42E-01	0.33	6.75E-02	0.41	4.35E-02	0.45

表 7. $\omega = i$ 时,算例 2 的速度 \mathbf{u} 的能量范数绝对误差

h*	P1-P1 eler	nent	P2-P1 elei	ment	P3-P1 ele	ment
II.	error	Order	error	order	error	order
1/4	6.73E-01	-	4.33E-01	-	3.15E-01	-
1/8	5.65E-01	0.25	3.26E-01	0.41	2.24E-01	0.49
1/16	4.59E-01	0.30	2.43E-01	0.42	1.62E-01	0.47
1/32	3.67E-01	0.32	1.80E-01	0.43	1.17E-01	0.47
1/64	2.93E-01	0.33	1.33E-01	0.43	8.38E-02	0.48

表 8. $\omega = i$ 时,算例 2 的速度 \mathbf{u} 的 L^2 范数绝对误差

h*	P1-P1 eler	ment	P2-P1 elei	ment	P3-P1 ele	ment
n*	error	Order	error	order	error	order
1/4	2.80E-01	-	1.77E-01	-	1.28E-01	-
1/8	2.28E-01	0.30	1.38E-01	0.36	9.79E-02	0.38
1/16	1.84E-01	0.30	1.06E-01	0.38	7.35E-02	0.41
1/32	1.49E-01	0.31	8.04E-02	0.40	5.44E-02	0.43
1/64	1.19E-01	0.32	6.06E-02	0.41	3.99E-02	0.45

算例 3

区域: 裂缝区域 $[-1,1] \times [-1,1]$, 裂缝 $[0,1] \times [0]$ 。

真解

$$u_1(x, y) = -\frac{1}{2}r^{-1/2} \cdot \sin\left(\frac{\theta}{2}\right)(x+1)(y+1)$$

$$u_2(x, y) = \frac{1}{2}r^{-1/2} \cdot \cos\left(\frac{\theta}{2}\right)(x+1)(y+1)$$

图 11. 算例 3 的真解u₁,u₂

满足

$$\nabla \times \boldsymbol{u} = \frac{1}{2} r^{-1/2} \left(\cos \left(\frac{\theta}{2} \right) (y+1) + \sin \left(\frac{\theta}{2} \right) (x+1) \right) \in H^{1/2}$$

$$\nabla \cdot \boldsymbol{u} = \frac{1}{2} r^{-1/2} \left(\cos \left(\frac{\theta}{2} \right) (x+1) - \sin \left(\frac{\theta}{2} \right) (y+1) \right) \in H^{1/2}$$

取 $\omega = 0.5$,由于解奇异性较强,数值积分误差较大,所以计算结果勉强符合收敛阶(0.25/0.33/0.38),如表 9~10 所示。

h*	P1-P1 eler	ment	P2-P1 eler	ment	P3-P1 element		
	error	Order	error	order	error	order	
1/4	1.81E+00	-	8.98E-01	-	7.12E-01	-	
1/8	1.52E+00	0.25	7.49E-01	0.26	5.78E-01	0.30	
1/16	1.28E+00	0.25	6.17E-01	0.28	4.68E-01	0.30	
1/32	1.07E+00	0.25	5.04E-01	0.29	3.77E-01	0.31	
1/64	8.99E-01	0.25	4.10E-01	0.30	3.01E-01	0.33	

表 9. $\omega = 0.5$ 时,算例 4 的速度 \mathbf{u} 的能量范数绝对误差

表 10. $\omega = 0.5$ 时,算例 4 的速度 \mathbf{u} 的 L^2 范数绝对误差

h*	P1-P1 eler	ment	P2-P1 elei	ment	P3-P1 ele	ment
II.	error	Order	error	order	error	order
1/4	6.63E-01	-	4.10E-01	-	3.38E-01	-
1/8	6.06E-01	0.13	3.82E-01	0.10	3.08E-01	0.13
1/16	5.46E-01	0.15	3.37E-01	0.18	2.66E-01	0.21
1/32	4.86E-01	0.17	2.88E-01	0.23	2.23E-01	0.26
1/64	4.28E-01	0.18	2.42E-01	0.25	1.83E-01	0.29

另一种有限元格式

对于计算依赖 ω 的问题,考虑到 ω =1 时,算例 1 是边界出现问题、算例 2 是随着网格加密而恶化,应该是有限元形式中最后一项的问题。因此对有限元形式稍作更改如下:

Find
$$(\boldsymbol{u}_h, w_h) \in \boldsymbol{U}_h \times W_h$$
, s.t.

$$(\nabla \times \boldsymbol{u}_h, \nabla \times \boldsymbol{v}) + (\nabla \cdot \boldsymbol{u}_h, \nabla \cdot \boldsymbol{v}) - \omega^2(\boldsymbol{u}_h, \boldsymbol{v}) + \int_{\partial\Omega} (\boldsymbol{v} \cdot \boldsymbol{n}) w_h - \int_{\partial\Omega} (\boldsymbol{u}_h \cdot \boldsymbol{n}) z$$

$$+ \mathcal{L} (w_h, z) + \sum_{F \in \partial\Omega} \int_F (\boldsymbol{u}_h \cdot \boldsymbol{n}) (\boldsymbol{v} \cdot \boldsymbol{n})$$

$$= (\boldsymbol{f}, \boldsymbol{v}) + (\boldsymbol{g}, \nabla \cdot \boldsymbol{v}) + \int_{\partial\Omega} \lambda(\boldsymbol{v} \times \boldsymbol{n}) + \int_{\partial\Omega} \phi \cdot R_h(\boldsymbol{v} \cdot \boldsymbol{n}) + \sum_{F \in \partial\Omega} \int_F \phi(\boldsymbol{v} \cdot \boldsymbol{n})$$

$$, \forall (\boldsymbol{v}, z) \in \boldsymbol{U}_h \times W_h$$

由此得到的结果如表 11~14 所示。有限元解收敛,如图 12, 只是收敛阶比较奇怪。

P1-P1 element P2-P1 element P3-P1 element h* Order order error error order error 9.81E+00 4.53E-01 2.76E-02_ 1/4 -1/8 2.02E+00 2.28 1.16E-01 1.96 3.34E-03 3.05 1/16 8.16E-01 1.31 2.92E-02 1.99 4.18E-04 3.00 3.89E-01 1.07 7.31E-03 2.99 1/32 2.00 5.25E-05 1/64 1.91E-01 1.02 1.83E-03 2.00 6.81E-06 2.95

表 11. 算例 1 的速度 u 的能量范数绝对误差

表 12	質 毎 □ 1	的读度』	的 L ² 范数绝对误差
4X 14.	-TT-1711 I	11.17v/2 II	111 L (15 3X 5E A) 17 /-

h*	P1-P1 eler	ment	P2-P1 elei	ment	P3-P1 ele	ment
n*	error	Order	error	order	error	order
1/4	4.82E+00	-	2.84E-02	-	1.65E-03	-
1/8	4.76E-01	3.34	3.10E-03	3.19	6.97E-05	4.56
1/16	6.36E-02	2.90	3.27E-04	3.25	3.99E-06	4.13
1/32	1.14E-02	2.48	3.53E-05	3.21	3.67E-07	3.44
1/64	2.29E-03	2.31	3.81E-06	3.21	2.58E-07	0.51

表 13. 算例 2 的速度 u 的能量范数绝对误差

h*	P1-P1 eler	ment	P2-P1 elei	ment	P3-P1 ele	ment
n*	error	Order	error	order	error	order
1/4	1.25E+00	-	7.66E-01	-	5.29E-01	-
1/8	1.07E+00	0.23	5.73E-01	0.42	4.02E-01	0.40
1/16	8.48E-01	0.33	4.40E-01	0.38	3.15E-01	0.35
1/32	6.62E-01	0.36	3.50E-01	0.33	2.54E-01	0.31
1/64	5.26E-01	0.33	2.87E-01	0.28	2.12E-01	0.27

表 14. 算例 2 的速度 \mathbf{u} 的 L^2 范数绝对误差

h*	P1-P1 element		P2-P1 element		P3-P1 element	
	error	Order	error	order	error	order
1/4	6.82E-01	-	3.80E-01	-	2.30E-01	-
1/8	5.56E-01	0.30	2.48E-01	0.62	1.47E-01	0.65
1/16	4.03E-01	0.46	1.60E-01	0.63	9.41E-02	0.64
1/32	2.76E-01	0.54	1.03E-01	0.64	6.04E-02	0.64
1/64	1.86E-01	0.57	6.64E-02	0.63	3.91E-02	0.63

图 12. 应用 P2-P1 元,算例 2 在网格尺度为 1/16 和 1/32 时的有限元解 u_1 , u_2 在 L 型域上计算算例 3,应用 P1-P1 元得到的误差如图 13.

图 13. 应用 P1-P1 元,两种有限元形式由不同的 ω 得到的能量误差

由图 13 中可看出, ω 在 1 附近时,虽然两种有限元形式在网格尺度为 1/64 时得到的误差相近,但是第二种方法的误差随着网格加密而递减的。类似的,函数值图如图 14~15。

图 14. 第一种有限元形式应用 P1-P1 元,算例 4 在 h=1/32 时的有限元解 \mathbf{u}_1 , \mathbf{u}_2

图 15. 第二种有限元形式应用 P1-P1 元,算例 4 在 h=1/32 时的有限元解 \mathbf{u}_1 , \mathbf{u}_2