

Learning Transferable Skills in Complex 3D Scenarios via Deep Reinforcement Learning

Lim You Rong

Supervised by Associate Professor Bo An

Markov Decision Process

- State
- Actions
- Reward
- Transition Probability
- Discount Factor

Policy Iteration

Value Function

Estimate value for all actions at all states

Policy Gradient

Optimize the policy directly using Gradient Ascend

Policy Iteration (Exploration vs Exploitation)

Actor Critic Method

Deep Reinforcement Learning

Specialised model based off training data

Memory efficient using function approximation

Problem & Challenges

Algorithms

Soft Actor Critic (SAC)

Off Policy

Proximal Policy Optimization (PPO)

On Policy

Policy Design

Key Feature

Replay Buffer & Entropy Regularization

Clipping Function using Trust Region

Strengths

Sample Efficiency

Training Stability

Problem Introduction

- Agent Blue
- Ball Red
- Scoring Area Yellow
- Target White

Sparse Reward Environment

Lack appropriate feedback for improvement

Time and resource intensive

$$r_{\mathcal{M}}(\mathbf{s}, \mathbf{a}) = egin{cases} \delta_{\mathbf{s}_g}(\mathbf{s}) & ext{if } d(\mathbf{s}, \mathbf{s}_g) \leq \epsilon \\ 0 & ext{else}, \end{cases}$$

Reward System

Reward Shaping (PPO vs SAC)

Reward Shaping (PPO vs SAC)

Curriculum Learning

Curriculum Learning

Curriculum Learning

Transfer Learning

Baseline

- Threshold performance
- Jump Start
- Min Episode Length above Threshold

Transfer For Cuboid Agent

Transfer For Cuboid Agent

"Transferring skills **is possible** in complex Sparse Reward scenarios trained with Deep Reinforcement Learning."

Future Work

• Transfer to agent with different movement scheme

Failed Strategies

Do you have any questions?

youremail@freepik.com +91 620 421 838 yourcompany.com

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**

Please keep this slide for attribution

References

Images from

R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction / Richard S. Sutton and Andrew G. Barto., Second edition. Cambridge, Massachusetts: The MIT Press, 2018.

M. Taylor, Transfer in Reinforcement Learning Domains [electronic resource] / by Matthew Taylor., 1st ed. 2009. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. doi: 10.1007/978-3-642-01882-4.

https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Learning-Environment-Examples.md