

Alex Hatzis
Engineering Co-op I
August 1, 2019
ahatzis@moog.com

(End Date: August 16, 2019)

About Me

- Cornell University
 - Class of 2020
 - Rising Senior
- Major: Electrical and Computer Engineering
- Minor: Business
- Interested in embedded systems and board-level design
- Member of Cornell Rocketry Team
 - Radio Communications
 - Test and Validation
- Enjoy playing music
- Crew

A&T Rotations

- Electronics
- F35
- V22
- Body Cell/EDM/Deburr
 - EDM = Electrical Discharge Machining
- Was not FAA trained
 - Couldn't touch anything

V-22 Again

AFSA Program

- Autonomous Flight Systems for Air Vehicles
- Part of Innovation Group

Electric Vertical Takeoff/Landing eVTOL

Optionally Piloted Vehicle OPV

Projects

- Taranis RC Controller Documentation
 - Comparing and logging different control configurations
- Current and Voltage Monitor
 - Tracking power information for quadrotor vehicles

In-Depth Look: Current & Voltage Monitor

- Battery powered quadrotors for testing
- Problem: Want to be able to track remaining battery charge
 - Prevent unexpected loss of power
 - Protect batteries by not draining them too low
- Should integrate with the existing flight computer
 - Use information to create an estimate of remaining flight time itself
 - Provide sufficient information for flight computer to make this prediction
- How do we estimate battery life remaining?

In-Depth Look: Current & Voltage Monitor

Brief Explanation of Current and Voltage

Estimating State-of-Charge

- State-of-Charge (SoC) is the amount of energy currently stored in the battery relative to its full capacity
- There is no known way to directly measure SoC

- What are ways to estimate the amount of water in the tank?
- Measure pressure at opening
- Keep track of how much water flows out

Estimating SoC using Voltage

- Can use battery voltage to estimate SoC
- Voltage is relatively flat for most of the discharge curve
 - Can make this measurement prone to inaccuracies
- Temperature, battery age, and discharge rate change the curve
- Batteries experience voltage hysteresis
 - Recommendation: batteries should settle for 1-2 hours before voltage is accurate indication of SoC
- A minimum voltage threshold can be used to combat shortcomings of just using battery life

Estimating SoC using Current

- Coulomb Counting
- Battery capacity is measured in amp-hours
- 12 Amp-Hours:
 - 1 amp for 12 hours
 - 2 amps for 6 hours
 - 12 amps for 1 hour
 - 60 amps for 12 minutes
- Current is the rate at which charge is drawn from the battery
- Taking time integral of current will give the total charge drawn in amp-hours
- Example: Start at full charge, draw 6A for one hour, 50% charge remains
- Shortcomings:
 - Requires knowing the initial amount of charge in the battery

SoC Estimation Summary

- Use voltage to estimate initial SoC of settled battery
- Use coulomb counting to calculate total charge drawn
- Take difference of total charge drawn and initial charge to determine remaining charge
- These steps should result in a reasonably accurate prediction of SoC

Current & Voltage Monitor Design

- Requirements:
- Measure Current
 - Hall-effect sensors
- Measure Voltage
 - Voltage dividers and analog to digital converter
- Log and Process Values
- Forward data over RS-232 Serial Interface
 - Microcontroller

Hardware Design

- Designed a printed circuit board (PCB)
- Included balance connector plugs to monitor individual cell voltages
- Voltages are multiplexed to ADC

 RS-232 transceiver chosen to handle voltage difference between microcontroller and flight computer

- Need to measure a large current range with good accuracy
 - Trade-off between range and resolution
- Trying to measure up to 130A with high accuracy

- Packaging data efficiently to increase effective transfer speed over serial link
 - Using minimum number of bytes to encode information
- Send and identify data:
 - Four batteries
 - Immediate Current draw
 - Cumulative current draw
 - Estimated %
 - 6 cells/battery
 - Voltage level
 - Low voltage warning

- Low-pass HW filters were added but noise was still present
- Processing current sensor output to obtain cleaner readout

Going Forward

- Vehicle Integration
 - Packaging Specifications/Schematic Updates
- Battery Testing
 - Obtaining characteristic voltage curves
- Ground/Flight Performance Testing
- Flight Time Prediction

Takeaways

- It is important to always keep the high-level function of a system in mind
 - Easy to get caught up in implementation
- Documentation is important

Lack of documentation can let work go to waste/become unusable

- Acronyms are confusing
 - Does this make me a failure as an engineer?

Summary

moog

MOOG

- Wish Moog did more to facilitate meeting other co-ops
- Got to fully own a project
- Moog is cool

Questions

Thank you for coming!

ahatzis@moog.com