6. Método do Lugar das Raízes

6.1 Introdução

O Método do Lugar das Raízes (M.L.R.) é uma **técnica gráfica** que permite visualizar de que forma os **polos** de um sistema em **malha fechada** variam quando se altera o valor de um parâmetro específico (o **ganho**, em geral).

Originalmente, a técnica era utilizada para determinar o **valor numérico** dos polos de malha fechada de um sistema. Por essa razão era necessário efetuar a construção gráfica da forma mais **precisa** possível. Foi desenvolvido um instrumento auxiliar, chamado espírula, para esse fim.

Atualmente, porém, é possível obter os polos do sistema em malha fechada de maneira rápida e precisa usando programas computacionais. Apesar disso, o M.L.R. continua sendo uma ferramenta de grande utilidade no projeto de sistemas de controle por permitir ao projetista definir adequadamente a estrutura do controlador apropriado a cada problema.

6.2 O Lugar Geométrico das Raízes

O Lugar Geométrico das Raízes (L.G.R.) é um gráfico construído a partir do conhecimento dos polos e zeros do sistema em **malha aberta**. Tomando o ganho como parâmetro, o L.G.R. é o conjunto dos pontos no plano complexo que correspondem aos polos do sistema em **malha fechada**.

Consideremos então o sistema em malha fechada representado pelo diagrama de blocos ao lado. Conforme já vimos, sua Função de Transferência em malha fechada é dada por:

$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s) \cdot H(s)}$$

e, portanto, os **polos** do sistema em **malha fechada** (que, naturalmente, determinam as características da resposta do sistema em malha fechada) são as raízes da equação:

$$1 + G(s) \cdot H(s) = 0$$

ou seja:

$$G(s) \cdot H(s) = -1 + j \cdot 0$$

A forma complexa foi usada para enfatizar que se trata de uma igualdade de números complexos. Por esta razão, a equação desdobra-se em uma **condição de fase**:

$$G(s) \cdot H(s) = 180^{\circ} \pm i \cdot 360^{\circ}$$
 $(i = 0,1,2,...)$

e uma condição de módulo (ou de ganho):

$$\left| G(s) \cdot H(s) \right| = 1$$

Consideremos o caso geral em que:

$$G(s) \cdot H(s) = \frac{k \cdot (s - z_1) \cdot (s - z_2) \cdot \dots \cdot (s - z_m)}{(s - p_1) \cdot (s - p_2) \cdot \dots \cdot (s - p_n)}$$
 (Forma de polos e zeros)

onde z_1, z_2, \ldots, z_m são os zeros em malha aberta; p_1, p_2, \ldots, p_n são os polos em malha aberta e k é o ganho (ou, mais apropriadamente, o ganho aparente), que, por simplicidade, vamos supor positivo:

$$k > 0$$
.

Antes de prosseguir, note que os polos do sistema em malha fechada são as raízes de $1 + G(s) \cdot H(s) = 0$, isto é, as raízes do polinômio característico:

$$(s-p_1)\cdot(s-p_2)\cdot\ldots\cdot(s-p_n)+k\cdot(s-z_1)\cdot(s-z_2)\cdot\ldots\cdot(s-z_m)=0$$

e que, em geral, é impossível calculá-las analiticamente para n>5.

Voltando ao problema, a condição de fase pode ser escrita como:

$$|s - z_1| + |s - z_2| + \dots + |s - z_m| - |s - p_1| - |s - p_2| - \dots - |s - p_n| = 180^o \pm i \cdot 360^o$$

$$(i = 0, 1, 2, \dots)$$

O L.G.R. é definido como sendo o conjunto dos pontos s do plano complexo que satisfazem a esta condição.

Esta forma de escrever a condição de fase serve de base para a obtenção de regras que facilitam o traçado do L.G.R..

Note que s-z_i, por exemplo, é um número complexo que pode ser representado no plano complexo conforme ilustrado na figura ao lado, onde:

$$\phi_i = s - z_i$$

é seu ângulo de fase, medido no sentido anti-horário a partir do eixo real.

Se representarmos por θ_i a fase de s- p_i , isto é,

$$\theta_i = s - p_i \quad ,$$

a condição de fase pode ser reescrita como:

$$\phi_1 + \phi_2 + ... + \phi_m - \theta_1 - \theta_2 - ... - \theta_n = 180^\circ \pm i \cdot 360^\circ$$
 $(i = 0,1,2,...)$.

Esta é, pois, a condição **geométrica** que permite determinar se um dado ponto do plano complexo pertence ou não ao L.G.R..

Observe que essa condição é **independente** do valor do ganho k, pois sendo k positivo, sua fase é **nula**.

Considere então um ponto s particular do plano complexo para o qual a condição de fase é satisfeita. A condição de ganho permite determinar o valor de k associado a este ponto s em particular, pois:

$$|G(s) \cdot H(s)| = k \cdot \frac{|s - z_1| \cdot |s - z_2| \cdot \dots \cdot |s - z_m|}{|s - p_1| \cdot |s - p_2| \cdot \dots \cdot |s - p_n|} = 1$$

e, portanto:

$$k = \frac{|s - p_1| \cdot |s - p_2| \cdot \dots \cdot |s - p_n|}{|s - z_1| \cdot |s - z_2| \cdot \dots \cdot |s - z_m|}$$

Em resumo, a condição de fase permite, em tese, traçar o L.G.R. e a condição de ganho, parametrizá-lo em termos do ganho k.

Exemplo: Seja o sistema:

O L.G.R. associado a este sistema é o seguinte:

<u>Exercício</u>: verifique que todos os pontos do diagrama acima de fato pertencem ao L.G.R., isto é, satisfazem a condição de fase. Verifique também que, conforme ilustra a figura:

- para k=1: os polos do sistema em malha fechada são reais e iguais a -1;
- para k=2: os polos em malha fechada são -l+j;

6.3 Regras para o Traçado do L.G.R.

Uma vez definido o L.G.R., passemos a elaborar regras que permitam simplificar e sistematizar o seu traçado.

Continuidade do L.G.R.

Como as raízes dos polinômios são funções contínuas dos coeficientes, o L.G.R. é constituído por curvas contínuas no plano complexo.

Simetria do L.G.R.

Como o polinômio característico tem coeficientes reais, suas raízes podem ser de dois tipos apenas:

- * raízes reais:
 - * pares de raízes complexas conjugadas.

Sendo assim, é imediato concluir que o L.G.R. é simétrico em relação ao eixo real do plano complexo.

Número de ramos do L.G.R.

Como o polinômio característico de malha fechada

$$(s-p_1)(s-p_2)...(s-p_n)+k(s-z_1)(s-z_2)...(s-z_m)$$

tem grau n, ele tem n raízes e, portanto, o L.G.R. também tem n ramos, isto é, os polos de malha fechada descrevem n curvas.

Pontos de Início e Término do L.G.R.

O passo preliminar para se construir o L.G.R. consiste em marcar os polos e zeros de malha aberta no plano complexo. Utilizam-se para isso os símbolos "x" e "o", respectivamente.

O ganho k pode variar, em princípio, no intervalo:

$$0 < k < +\infty$$

Consideraremos como pontos de **início** (ou **partida**) do L.G.R. aqueles correspondentes a $k \to 0^+$ e, como de **término** (ou **chegada**), os associados a $k \to +\infty$.

Conforme vimos, os polos de malha fechada são as raízes da equação característica:

$$(s-p_1)\cdot(s-p_2)\cdot\ldots\cdot(s-p_n)+k\cdot(s-z_1)\cdot(s-z_2)\cdot\ldots\cdot(s-z_m)=0$$

e, portanto, o L.G.R. tem início (k=0) nos polos de malha aberta.

Para determinar os pontos de **término** do L.G.R., é necessário analisar o ângulo de chegada nos zeros, o que será feito adiante. No entanto, apenas **como indicação** de que os zeros de malha aberta constituem pontos de término do LGR, note-se que a condição de módulo pode ser reescrita como:

$$\frac{|s-z_1|\cdot|s-z_2|\ldots|s-z_m|}{|s-p_1|\cdot|s-p_2|\ldots|s-p_n|} = \frac{1}{k}.$$

Assim, quando $k \to +\infty$, o L.G.R. tende aos zeros de malha aberta do sistema.

Como o número de ramos do L.G.R. deve, obviamente, ser igual ao número de polos do sistema em malha fechada (n, no nosso caso) e como, em geral, $m \le n$, há n-m ramos que tendem para **zeros no infinito** quando $k \to +\infty$. Estes ramos constituem as chamadas **assíntotas**. Discutiremos a sua determinação posteriormente.

L.G.R. Sobre o Eixo Real

Vejamos, inicialmente, qual é a contribuição de um par de polos complexos conjugados de malha aberta para a condição de fase sobre o eixo real.

Da figura, é imediato que $\theta_1 + \theta_2 = 360^\circ$ e, portanto, o referido par de polos não contribui para a condição de fase.

É evidente que o mesmo se verifica para pares de zeros complexos conjugados de malha aberta.

Sendo assim, para determinar quais os pontos do eixo real que pertencem ao L.G.R., é necessário considerar **unicamente** os polos e zeros **reais**.

Considere-se um ponto sobre o eixo real. Neste caso, as possíveis contribuições para a condição de fase são:

- * $+\phi_i = +180^\circ$ para cada zero real de malha aberta z_i à direita de s;
- * $-\theta_i = -180^\circ$ para cada polo real de malha aberta p_i à direita de s;
- * $\phi_i = \theta_i = 0^\circ$ para cada zero real z_i ou polo real p_i de malha aberta à esquerda de s;

Dessa maneira, para que o referido ponto s do eixo real pertença ao L.G.R., o número **total** de polos e zeros reais de malha aberta à **direita** de s deve ser **ímpar**.

Exemplo: Ilustração de L.G.R. sobre o eixo real.

Note-se que este exemplo está em concordância também com as regras anteriores vistas, a saber: continuidade do LGR, número de ramos do LGR, pontos de início e término do L.G.R. e simetria com respeito ao eixo real;

Assíntotas

Como vimos anteriormente, as assíntotas para $k \to +\infty$ são em número igual ao excesso de polos sobre zeros. Sendo assim, esta regra deve ser aplicada apenas no caso em que n > m.

O argumento que serve de base para a determinação das assíntotas é bastante simples. Imaginemos então um ponto *s* suficientemente afastado da origem do plano complexo, isto é, tal que seu módulo seja muito maior do que aqueles dos polos e zeros de malha aberta do sistema.

Nessas condições, são praticamente iguais os ângulos ϕ_i e θ_i , isto é:

$$\phi_i \cong \theta_j \cong \alpha \qquad (1 \le i \le m, 1 \le j \le n)$$

onde α é o ângulo da assíntota com o eixo real. A condição para que o ponto s pertença ao L.G.R. reduz-se então a:

$$m\alpha - n\alpha = 180^{\circ} \pm i \cdot 360^{\circ} \quad (i = 0,1,2,\ldots)$$

ou, equivalentemente:

$$\alpha = \frac{180^{\circ}}{n-m} \pm \frac{i}{n-m} \cdot 360^{\circ} \quad (i = 0,1,2,...)$$

A segunda parcela desta expressão mostra claramente a existência de n-m assíntotas. Dessa maneira, seria mais apropriado denotar os ângulos das assíntotas por α_i $(0 \le i \le n - m - 1)$.

Pode-se mostrar que o ponto de cruzamento das assíntotas sobre o eixo real é dado por:

$$S_0 = \frac{\sum_{i=1}^{n} p_i - \sum_{i=1}^{m} z_i}{n - m}$$

Exemplo: considere o sistema da figura ao lado. Em malha aberta, este sistema tem um zero (m=1) em z_i = -1 e três polos (n=3) em p_i = 0, p_2 = -2 e p_3 = -3. Há, portanto, um excesso de n-m=2 polos sobre zeros e o L.G.R. contém duas assíntotas. Seus ângulos são dados por:

$$\alpha_i = 90^o \pm i \cdot 180^o \qquad (i = 0,1)$$

isto é:

$$\alpha_0 = 90^o$$
 $\alpha_1 = 90^o \pm 180^o = -90^o \text{ (ou } 270^o\text{)}$

Note que, para pontos **suficientemente afastados**, localizados sobre a assíntota de ângulo 90⁰, as contribuições dos polos e zeros para a condição de ângulo são:

$$\phi_1 \cong 90^\circ$$

$$\theta_1 \cong 90^\circ; \theta_2 \cong 90^\circ; \theta_3 \cong 90^\circ$$

o que indica que tais pontos pertencem ao L.G.R..

Para a assíntota de ângulo -90º (ou 270º):

$$\phi_1 \cong -90^{\circ}$$

$$\theta_1 \cong -90^{\circ}; \theta_2 \cong -90^{\circ}; \theta_3 \cong -90^{\circ}$$

e, portanto:

$$\phi_1 - \theta_1 - \theta_2 - \theta_3 \cong 180^\circ$$

de onde se conclui que, também neste caso, os pontos fazem parte do L.G.R..

O ponto de cruzamento das assíntotas é dado por:

$$s_0 = \frac{\left[(0) + (-2) + (-3) \right] - \left[-1 \right]}{3 - 1} = \frac{-4}{2} = -2$$

Verifique, por fim, que as demais regras já discutidas são obedecidas pelo diagrama apresentado.

Pontos de Partida e de Chegada Sobre o Eixo Real

Se houver dois polos de malha aberta adjacentes sobre o eixo real e se o segmento entre eles for parte do L.G.R., então existirá pelo menos um ponto de **partida** nesse segmento.

De maneira análoga, se houver dois zeros adjacentes sobre o eixo real e se o segmento entre eles fizer parte do L.G.R., então haverá pelo menos um ponto de chegada pertencente a esse segmento. Esta regra se aplica também ao caso em que um dos zeros é infinito.

Se o segmento entre um polo e um zero reais pertencer ao L.G.R., então o número de pontos de partida sobre o segmento igualará o número de chegadas, **incluindo-se** aí o caso em que tal **número** é **nulo**.

Essas regras derivam diretamente da propriedade dos L.G.R.'s de terem início em polos e terminarem em zeros de malha aberta.

Exemplo:

Regra empírica

Zeros atraem o L.G.R. e polos repelem-no.

Outras Regras

As regras de construção do L.G.R. vistas até este ponto permitem **esboçar** o diagrama com relativa rapidez. Com base apenas nesse esboço, o projetista pode, muitas vezes, definir a **estrutura** do controlador mais adequada a um problema específico.

A escolha dos **valores numéricos dos parâmetros** do compensador, contudo, requer normalmente que se obtenha o L.G.R. de forma mais precisa. Atualmente esta tarefa se encontra grandemente facilitada pelo barateamento progressivo dos recursos computacionais.

As regras a serem vistas a seguir têm como característica permitir **detalhar** com **precisão** alguns pontos do L.G.R. e, pelas razões acima, perderam parte da importância original.

No entanto, em situações particulares, tais regras podem ser de utilidade.

Determinação dos pontos de partida e chegada sobre o eixo real:

Definindo os polinômios:

$$A(s) = (s - p_1) \cdot (s - p_2) \cdot ... \cdot (s - p_n)$$

$$B(s) = (s - z_1) \cdot (s - z_2) \cdot \dots \cdot (s - z_m)$$

a equação característica pode ser escrita como:

$$A(s) + k \cdot B(s) = 0$$
 \Rightarrow $k = -\frac{A(s)}{B(s)}$

Para cada ponto s do L.G.R. podemos encarar essa equação como definindo k na forma de uma função implícita de s.

Consideremos, para fixar idéias, o caso de um trecho do L.G.R. entre dois polos adjacentes sobre o eixo real conforme ilustrado na figura ao lado. À medida que k cresce, os polos de malha fechada se distanciam de p_1 e p_2 até que, quando $k=k^*$, eles coincidem (se continuarmos aumentando k além de k^* , os polos se tornarão complexos conjugados). Neste ponto, evidentemente, k assume o valor máximo sobre o eixo real. Uma condição necessária para isso é que:

$$\frac{dk}{ds} = 0 \quad \Rightarrow \quad \frac{dA(s)}{ds} \cdot B(s) - A(s) \cdot \frac{dB(s)}{ds} = 0$$

As raízes desta equação polinomial fornecem os possíveis candidatos a solução do problema. Note que, por hipótese, só nos interessam as soluções $s^* \in \Re$ tais que:

$$k^* = -\frac{A(s^*)}{B(s^*)} > 0$$

É importante observar que a obtenção das soluções da equação polínomial acima pode, muitas vezes, ser uma tarefa bastante trabalhosa (ou mesmo impossível analiticamente, dependendo dos graus dos polinômios envolvidos).

Determinação dos ângulos de partida ou chegada:

Neste tópico trataremos da questão de como determinar os ângulos de partida de polos e ângulos de chegada a zeros.

Para fixar idéias, consideremos o caso ilustrado na figura ao lado e suponhamos que o problema seja determinar o ângulo de partida do polo p_I . Se nos restringirmos a pontos s numa região do plano complexo suficientemente pequena em torno de p_I , poderemos considerar que as contribuições dos zeros e **demais** polos para a condição de ângulo são praticamente constantes e dadas por:

$$\phi_{i} = \frac{p_{1} - z_{i}}{p_{1} - p_{i}} \quad (i = 1, 2, ..., m)$$

$$\theta_{i} = \frac{p_{1} - z_{i}}{p_{1} - p_{i}} \quad (i = 2, 3, ..., n)$$

Por outro lado, a contribuição do polo p_1 pode variar entre 0° e 360° , dependendo da posição do ponto s:

$$\theta_1 = |s - p_i|$$
 , $0^{\circ} \le \theta_1 < 360^{\circ}$

A condição de fase permite determinar o ângulo de partida θ_l como sendo a primeira determinação de:

$$\theta_1 = \sum_{j=1}^{m} \phi_j - \sum_{j=2}^{n} \theta_j - 180^{\circ} \pm i \cdot 360^{\circ}$$
 ($i = 0, 1, 2, ...$)

A mesma argumentação se aplica à determinação dos ângulos de chegada em zeros.

Exemplo: no caso ilustrado na figura ao lado, para determinarmos o ângulo de partida do polo duplo na origem, notamos que a contribuição angular do polo p_3 para a condição de fase nas vizinhanças da origem é:

$$\theta_3 = p_1 - p_3 = 0^\circ$$

Por outro lado, para pontos s numa vizinhança suficientemente pequena da origem:

$$\theta_1 = \theta_2 = s - p_1$$

devem ser tais que a condição de fase se verifique:

$$-2\theta_1 - 0^\circ = 180^\circ \pm i \cdot 360^\circ \ (i = 0, 1, 2 \dots)$$

e, portanto:

$$\theta_1 = -90^{\circ} \pm i \cdot 180^{\circ}$$
 ($i = 0, 1, 2 \dots$)

o que fornece duas soluções em primeira determinação:

$$\theta_1 = 90^{\circ}$$
 e $\theta_2 = 270^{\circ}$

Para sistemas de ordem superior a 4, esta etapa pode ser extremamente trabalhosa, sendo freqüentemente omitida quando se traça o L.G.R. manualmente.

A primeira maneira de calcular os pontos de intersecção com o eixo imaginário consiste em:

- * utilizando o Critério de Routh, obtém-se os valores do ganho *k* correspondentes a cruzamentos do eixo imaginário (tanto no sentido S.P.E.→S.P.D., quanto no sentido S.P.D.→S.P.E.);
- * substituem-se esses valores de k na equação característica, faz-se $s = j\omega$ e obtém-se os valores de ω procurados após igualar a zero as partes real e imaginária.

A outra forma de se obter os pontos de intersecção do L.G.R. com o eixo imaginário corresponde a considerar k como incógnita e substituir $s = j\omega$ na equação característica. Igualando as partes real e imaginária a zero, obtém-se duas equações que, em tese, permitem determinar k e ω .

Exemplo: Seja o sistema tal que

$$G(s) \cdot H(s) = \frac{k}{s^3 + 8s^2 + 32s}$$

cuja equação característica em malha fechada é:

$$s^3 + 8s^2 + 32s + k = 0$$

Pelo primeiro procedimento apresentado, aplicamos o Critério de Routh e obtemos k = 256 como sendo o valor de k correspondente à ocorrência de cruzamento do eixo imaginário. Fazendo $s = j\omega$ e substituindo k = 256 na equação característica, obtemos:

$$\left(-8\omega^2 + 256\right) + j \cdot \left(-\omega^3 + 32\omega\right) = 0$$

De onde resulta:

$$\omega = \pm \sqrt{32}$$

O segundo procedimento apresentado conduz diretamente a:

$$(-8\omega^2 + k) + j \cdot (-\omega^3 + 32\omega) = 0$$

que tem como única solução de interesse:

$$\omega = \pm \sqrt{32}$$
 e $k = 256$

6.4 Exemplos de Aplicação

Além de servirem como exemplos de aplicação das regras vistas até aqui, os problemas que se seguem procuram ilustrar também o significado da regra heurística mencionada anteriormente.

Exemplo 1: Seja o sistema indicado na figura ao lado que pode, por exemplo, representar um sistema de controle de posição de uma inércia pura através de um controlador proporcional.

1

- 1. <u>Pontos de início e término do L.G.R</u>: o L.G.R. parte da origem do plano complexo (polo duplo);
- 2. L.G.R. sobre o eixo real: não há;
- 3. Assíntotas: neste caso, m = 0 e n = 2, de maneira que existem duas assíntotas. Seus ângulos são:

$$\alpha_1 = 90^{\circ}$$
 e $\alpha_2 = 270^{\circ}$.

O cruzamento das assíntotas sobre o eixo real se dá no ponto de abscissa $s_0 = 0$, o que significa que as assíntotas coincidem com os semi-eixos imaginários positivo e negativo, respectivamente.

- 4. <u>Pontos de partida e de chegada sobre o eixo real</u>: não há, pois não existe parte do L.G.R. sobre o eixo real no caso presente.
- 5. Ângulo de partida: os ângulos de partida são ±90° (já que a contribuição dos zeros para a condição de fase é nula, uma vez que o sistema não tem zeros).
- 6. Esboço do L.G.R.: é imediato concluir que, neste caso, o L.G.R. coincide com o eixo imaginário. O sistema resulta marginalmente estável para qualquer k > 0.

Exemplo 2: Consideremos agora o sistema indicado na figura ao lado. Podemos encarar este caso como sendo correspondente ao de controle de posição de uma inércia pura através de um controlador PD (proporcional + derivativo).

¹ Este, por sinal, talvez seja o modelo mais simples utilizado em problemas de controle de atitude de satélites artificiais.

1. Pontos de início e témino do L.G.R

2. L.G.R. sobre o eixo real

3. Assíntotas: como m = 1 e n = 2, existe apenas uma assíntota, cujo ângulo é

$$\alpha = 180^{\circ} \pm i \cdot 360^{\circ}$$

Neste caso, a assíntota coincide com a parte do semi-eixo real negativo situada à esquerda do ponto -1.

Note também que, em razão da simetria do L.G.R. com relação ao eixo real, a **única** possibilidade de existência de **uma** só assíntota corresponde a ela estar contida no eixo real.

4. Pontos de partida e de chegada sobre o eixo real: como o L.G.R. é simétrico em relação ao eixo e como ele se inicia nos polos e termina nos zeros, concluímos que existe um ponto de chegada do L.G.R. sobre o eixo real (podemos imaginar que existe um zero em $-\infty$).

Para obter os pontos de partida e chegada, escrevemos:

$$A(s) = s^2$$

$$B(s) = s + 1$$

Daí

$$\frac{dA(s)}{ds} \cdot B(s) - A(s) \cdot \frac{dB(s)}{ds} = 2s \cdot (s+1) - s^2 = s \cdot (s+2) = 0$$

Portanto o ponto de chegada sobre o eixo real se localiza em:

$$s = -2$$

5. Ângulo de partida: neste caso, o ângulo de partida é $\pm 90^{\circ}$.

6. <u>Pontos de cruzamento com o eixo imaginário</u>: o polinômio característico em malha fechada é:

$$s^2 + ks + k = 0$$

A Tabela de Routh equivalente é mostrada ao lado. Como k > 0, podemos concluir que o sistema em malha fechada será sempre estável. Portanto, não haverá cruzamento do eixo imaginário.

s^2	1	k
s^{I}	k	
s^{o}	k	

7. Esboço do L.G.R.: o L.G.R. pode ser esboçado conforme ilustrado abaixo, após aplicar a condição de fase a alguns pontos do plano s.

Comparando este diagrama com o do Exemplo 1, notamos que a presença do zero produziu uma "atração" do L.G.R. para próximo do ponto -1.

Neste caso, o sistema resultante é estável para qualquer valor do ganho k>0.

Se quisermos, por exemplo, determinar o valor de k que corresponde a $\xi=\sqrt{2}$ / 2 , basta traçarmos as retas de amortecimento constante com ângulo $\beta=45^\circ$, obtermos os pontos de intersecção delas com o L.G.R. e, utilizando a condição de ganho, calcularmos o valor de k.

A condição de ganho, neste caso, fica:

$$k = \frac{|s - 0| \cdot |s - 0|}{|s + 1|} \bigg|_{s = -1 + j} = \frac{\sqrt{2} \cdot \sqrt{2}}{1} = 2$$

Neste exemplo, a parte do L.G.R. fora do eixo real tem a forma de uma circunferência e, por isso, o valor de k acima pode ser obtido de imediato. No entanto, em casos mais gerais, é necessário desenhar o L.G.R. com uma precisão razoável e, no diagrama, **medir** os comprimentos dos segmentos $|s - p_1|$, $|s - p_2|$, ..., $|s - p_n|$, $|s - z_1|$, $|s - z_2|$, ..., $|s - z_m|$, para então calcular o valor de k através da condição de ganho.

Exemplo 3: Seja agora o sistema indicado na figura ao lado. Podemos imaginar que o projetista, no Exemplo 2, tenha deixado de incluir no modelo o polo em s = -4.

1. Pontos de início e témino do L.G.R

2. L.G.R. sobre o eixo real

3. <u>Assíntotas</u>: neste caso, n = 3 e m = 1, portanto há duas assíntotas, cujos ângulos são:

$$\alpha_1 = 90^{\circ}$$
 e $\alpha_2 = 270^{\circ}$

O ponto de intersecção das assíntotas com o eixo real tem abscissa dada por:

$$s_0 = \frac{[0+0-4]-[-1]}{3-1} = -1.5$$

4. Pontos de partida e de chegada sobre o eixo real: no caso presente, o único trecho do eixo real onde **podem** ocorrer pontos de partida e de chegada é aquele situado entre o polo em s = -4 e o zero em s = -1. No entanto, o número de possíveis pontos de chegada deve ser igual ao de pontos de partida (eventualmente, ambos nulos).

- 5. <u>Ângulo de partida</u>: os ângulos de partida dos polos na origem são ±90°, já que as demais contribuições para a condição de fase nesse ponto são nulas.
- 6. Pontos de cruzamento com o eixo imaginário: o polinômio característico em malha fechada é:

$$s^3 + 4s^2 + ks + k = 0$$

A Tabela de Routh equivalente é mostrada ao lado. Como k>0, concluímos que o sistema será sempre estável. Ou seja, não haverá cruzamento entre o L.G.R. e o eixo imaginário.

7. <u>Esboço do L.G.R.</u>: aplicando a condição de fase a alguns pontos do plano *s* e utilizando as considerações feitas até este ponto, podemos esboçar o L.G.R. (figura abaixo).

Comparando este diagrama com aquele obtido no Exemplo 2, notamos que a presença do polo adicional em s = -4 teve, dentre outros, o efeito de "repelir" o L.G.R. para longe de si.

Além disso, neste exemplo, a presença do referido polo fez com que se alterasse qualitativamente o comportamento do L.G.R. para valores elevados de ganho: enquanto no Exemplo 2 o sistema se tornava superamortecido (par de polos reais) para ganhos altos, neste caso, o sistema se torna oscilatório (par de polos complexos conjugados).