```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
sns.set_style("white")
plt.style.use("seaborn-dark")
from google.colab import drive
drive.mount('/content/drive')
     Mounted at /content/drive
```

- DATA PREPARATION

```
import os
for dirname, _, filenames in os.walk('/content/Healthcare_Data'):
   for filename in filenames:
        print(os.path.join(dirname, filename))
train = pd.read csv('/content/drive/MyDrive/Healthcare Data/train data.csv')
test = pd.read_csv('/content/drive/MyDrive/Healthcare_Data/test_data.csv')
dictionary = pd.read csv('/content/drive/MyDrive/Healthcare Data/train data dictionary.csv')
sample = pd.read csv('/content/drive/MyDrive/Healthcare Data/sample sub.csv')
dictionary
```

Description	Column	
Case_ID registered in Hospital	case_id	0
Unique code for the Hospital	Hospital_code	1
Unique code for the type of Hospital	Hospital_type_code	2
City Code of the Hospital	City_Code_Hospital	3
Region Code of the Hospital	Hospital_region_code	4
Number of Extra rooms available in the Hospital	Available Extra Rooms in Hospital	5
Department overlooking the case	Department	6
Code for the Ward type	Ward Type	7

- DATA EXPLORATION

train.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 318438 entries, 0 to 318437 Data columns (total 18 columns):

#	Column	Non-Null Count	Dtype
0	case_id	318438 non-null	int64
1	Hospital_code	318438 non-null	int64
2	Hospital_type_code	318438 non-null	object
3	City_Code_Hospital	318438 non-null	int64
4	Hospital_region_code	318438 non-null	object
5	Available Extra Rooms in Hospital	318438 non-null	int64
6	Department	318438 non-null	object
7	Ward_Type	318438 non-null	object
8	Ward_Facility_Code	318438 non-null	object
9	Bed Grade	318325 non-null	float64
10	patientid	318438 non-null	int64
11	City_Code_Patient	313906 non-null	float64
12	Type of Admission	318438 non-null	object
13	Severity of Illness	318438 non-null	object
14	Visitors with Patient	318438 non-null	int64
15	Age	318438 non-null	object
16	Admission_Deposit	318438 non-null	float64
17	Stay	318438 non-null	object

dtypes: float64(3), int64(6), object(9)

memory usage: 43.7+ MB

train.tail(5)

case_id Hospital_code Hospital_type_code City_Code_Hospital Hospital_region

318433	318434	6	а	6
318434	318435	24	а	1
318435	318436	7	а	4
318436	318437	11	b	2
318437	318438	19	а	7

plt.figure(figsize=(10,7)) train.Stay.value_counts().plot(kind="bar", color = ['blue'])

<matplotlib.axes._subplots.AxesSubplot at 0x7ff8d3b69890>

train.isnull().sum()

```
case id
Hospital_code
                                          0
Hospital_type_code
                                          0
City Code Hospital
                                          0
Hospital region code
                                          0
Available Extra Rooms in Hospital
                                          0
                                          0
Department
Ward Type
                                          0
Ward_Facility_Code
                                          0
Bed Grade
                                        113
patientid
                                          0
City_Code_Patient
                                       4532
Type of Admission
                                          0
Severity of Illness
                                          0
Visitors with Patient
                                          0
Age
                                          0
Admission Deposit
                                          0
Stay
dtype: int64
```

DATA PREPROCESSING

```
train.dropna(inplace=True)
test.dropna(inplace=True)
# Combining test and train dataset for processing
new_set = [train, test]
from sklearn.preprocessing import LabelEncoder
for data in new set:
   label = LabelEncoder()
   data['Department'] = label.fit_transform(data['Department'])
for dataset in new set:
   label = LabelEncoder()
   dataset['Hospital_type_code'] = label.fit_transform(dataset['Hospital_type_code'])
   dataset['Ward_Facility_Code'] = label.fit_transform(dataset['Ward_Facility_Code'])
   dataset['Ward_Type'] = label.fit_transform(dataset['Ward_Type'])
   dataset['Type of Admission'] = label.fit transform(dataset['Type of Admission'])
   dataset['Severity of Illness'] = label.fit_transform(dataset['Severity of Illness'])
new_set[0]
```

	case_id	Hospital_code	Hospital_type_code	City_Code_Hospital	Hospital_region
0	1	8	2	3	
1	2	2	2	5	
2	3	10	4	1	
3	4	26	1	2	
4	5	26	1	2	
318433	318434	6	0	6	
318434	318435	24	0	1	
318435	318436	7	0	4	
318436	318437	11	1	2	
318437	318438	19	0	7	
212702 ro	wo v 19 oo	Jumpo			

313793 rows × 18 columns

new_set[1]

case_id Hospital_code Hospital_type_code City_Code_Hospital Hospital_region

0	318439	21	2	3
1	318440	29	0	4
2	318441	26	1	2
3	318442	6	0	6
4	318443	28	1	11
137052	455491	11	1	2

new_set[0].Age.hist()

<matplotlib.axes. subplots.AxesSubplot at 0x7ff8d2dc6b50>


```
new_set[0].Age.unique()
```

```
array(['51-60', '71-80', '31-40', '41-50', '81-90', '61-70', '21-30',
       '11-20', '0-10', '91-100'], dtype=object)
```

age_dict = {'0-10': 0, '11-20': 1, '21-30': 2, '31-40': 3, '41-50': 4, '51-60': 5, '61-70': 6

for dataset in new_set: dataset['Age'] = dataset['Age'].replace(age_dict.keys(), age_dict.values()) new_set[0].Age.hist()

new_set[0].Stay.unique()

new_set[0].Stay.hist()

<matplotlib.axes._subplots.AxesSubplot at 0x7ff8d2c81990>

for data in new_set: print(data.shape)

(313793, 18)

(134865, 17)

```
new_set[0].info()
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 313793 entries, 0 to 318437 Data columns (total 18 columns):

#	Column	Non-Null Count	Dtype
0	case_id	313793 non-null	int64
1	Hospital_code	313793 non-null	int64
2	Hospital_type_code	313793 non-null	int64
3	City_Code_Hospital	313793 non-null	int64
4	Hospital_region_code	313793 non-null	object
5	Available Extra Rooms in Hospital	313793 non-null	int64
6	Department	313793 non-null	int64
7	Ward_Type	313793 non-null	int64
8	Ward_Facility_Code	313793 non-null	int64
9	Bed Grade	313793 non-null	float64
10	patientid	313793 non-null	int64
11	City_Code_Patient	313793 non-null	float64
12	Type of Admission	313793 non-null	int64
13	Severity of Illness	313793 non-null	int64
14	Visitors with Patient	313793 non-null	int64
1 5	Age	313793 non-null	int64
16	Admission_Deposit	313793 non-null	float64
17	Stay	313793 non-null	int64

dtypes: float64(3), int64(14), object(1)

memory usage: 45.5+ MB

new_set[1].info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 134865 entries, 0 to 137056 Data columns (total 17 columns):

Data	columns (cocal 17 columns).		
#	Column	Non-Null Count	Dtype
0	case_id	134865 non-null	int64
1	Hospital_code	134865 non-null	int64
2	Hospital_type_code	134865 non-null	int64
3	City_Code_Hospital	134865 non-null	int64
4	Hospital_region_code	134865 non-null	object
5	Available Extra Rooms in Hospital	134865 non-null	int64
6	Department	134865 non-null	int64
7	Ward_Type	134865 non-null	int64
8	Ward_Facility_Code	134865 non-null	int64
9	Bed Grade	134865 non-null	float64
10	patientid	134865 non-null	int64
11	City_Code_Patient	134865 non-null	float64
12	Type of Admission	134865 non-null	int64
13	Severity of Illness	134865 non-null	int64
14	Visitors with Patient	134865 non-null	int64
1 5	Age	134865 non-null	int64
16	Admission_Deposit	134865 non-null	float64

```
dtypes: float64(3), int64(13), object(1)
     memory usage: 18.5+ MB
columns_list = ['Type of Admission', 'Available Extra Rooms in Hospital', 'Visitors with Pati
len(columns_list)
     4
from sklearn.preprocessing import StandardScaler
s1= StandardScaler()
for dataset in new_set:
   dataset[columns_list] = s1.fit_transform(dataset[columns_list].values)
plt.figure(figsize=(17,17))
sns.heatmap(new_set[0].corr(), annot=True, cmap='BuPu')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7ff8d2c15e50>

MODELLING THE DATA

```
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC, LinearSVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
```

Extr

train = new_set[0] test = new_set[1]

sample

0.8

0.4

0.2

0.0

```
case_id Stay
         0
               318439
                       0-10
         1
               318440
                       0-10
         2
               318441
                       0-10
               318442
         3
                       0-10
               318443
                       0-10
      137052
               455491
                       0-10
X_train = train.drop(['case_id', 'Stay', 'Hospital_region_code'], axis=1)
Y_train = train["Stay"]
X_test = test.drop(['case_id','Hospital_region_code'], axis=1).copy()
X_train.shape, Y_train.shape, X_test.shape
     ((313793, 15), (313793,), (134865, 15))
     IUIUUI IUWO ~ Z UUIUIIIIIO
X_train = X_train.astype(int)
Y_train = Y_train.astype(int)
X_test = X_test.astype(int)
sample.shape
     (137057, 2)
X_test.columns
     Index(['Hospital_code', 'Hospital_type_code', 'City_Code_Hospital',
             'Available Extra Rooms in Hospital', 'Department', 'Ward_Type',
             'Ward_Facility_Code', 'Bed Grade', 'patientid', 'City_Code_Patient',
             'Type of Admission', 'Severity of Illness', 'Visitors with Patient',
             'Age', 'Admission_Deposit'],
           dtype='object')
Y_train
     0
     1
     2
               3
     3
     318433
               1
     318434
               3
     318435
               1
     318436
```

```
318437
     Name: Stay, Length: 313793, dtype: int64
# Accuracy while using KNN
knn = KNeighborsClassifier(n_neighbors = 3)
knn.fit(X_train, Y_train)
Y_pred = knn.predict(X_test)
knn_accuracy = round(knn.score(X_train, Y_train) * 100, 2)
print("Accuracy of KNN ")
knn_accuracy
     Accuracy of KNN
     54.92
# Accuracy while using Decision Tree
decision_tree = DecisionTreeClassifier()
decision_tree.fit(X_train, Y_train)
Y_pred = decision_tree.predict(X_test)
decision_tree_accuracy = round(decision_tree.score(X_train, Y_train) * 100, 2)
print("Accuracy of Decision Tree ")
decision tree accuracy
     Accuracy of Decision Tree
     99.64
# Accuracy while using Random Forest
random forest = RandomForestClassifier(n estimators=100)
random_forest.fit(X_train, Y_train)
Y pred = random forest.predict(X test)
random_forest.score(X_train, Y_train)
acc_random_forest = round(random_forest.score(X_train, Y_train) * 100, 2)
print("Accuracy of Random Forest ")
acc_random_forest
     Accuracy of Random Forest
     99.64
sns.barplot(x= ['KNN','Decision Tree','Random Forest'],y= [knn_accuracy, decision_tree_accura
```

<matplotlib.axes._subplots.AxesSubplot at 0x7ff8cdd1fbd0>

RESULT - LOS Predicted Data

sample

})

```
case_id Stay
        0
               318439
                       0-10
        1
               318440 0-10
        2
               318441 0-10
        3
               318442 0-10
        4
               318443 0-10
      137052
              455491
                       0-10
      137053
              455492 0-10
      137054
              455493 0-10
      137055
              455494
                      0-10
      137056
              455495 0-10
     137057 rows × 2 columns
LOS_predicted = pd.DataFrame({
        "case_id": test["case_id"],
        "Stay": Y_pred
LOS_predicted['Stay'] = LOS_predicted['Stay'].replace(stay_dict.values(), stay_dict.keys())
LOS_predicted.to_csv('LOS.csv', index = False)
LOS = pd.read_csv('/content/LOS.csv')
LOS.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 134865 entries, 0 to 134864
     Data columns (total 2 columns):
```

```
Column Non-Null Count
                           Dtype
           -----
0
   case_id 134865 non-null int64
1
    Stay
            134865 non-null object
dtypes: int64(1), object(1)
memory usage: 2.1+ MB
```

LOS.head(10)

	case_id	Stay	7
0	318439	21-30	
1	318440	31-40	
2	318441	21-30	
3	318442	51-60	
4	318443	21-30	
5	318444	21-30	
6	318445	21-30	
7	318453	31-40	
8	318454	11-20	
9	318455	41-50	

```
plt.figure(figsize=(10,5))
LOS.Stay.value_counts().plot(kind="bar", color = ['green'])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7ff8cdc8cf50>

Colab paid products - Cancel contracts here

✓ 0s completed at 6:33 PM

×