NAME – SOURAV SAHA
ROLL No – 001811001027
DEPARTMENT – INFORMATION TECHNOLOGY
YEAR – 4th Year
SEMESTER – 1st Semester
SUBJECT – Machine Learning LAB EVALUATION

Pre-requisite -

- 1. WINE DATASET
- 2. IONOSPHERE DATASET
- 3. DIABETES DATASET
- 4. IRIS DATASET

Question 1:

For Wine Dataset

a. SVM Classifier

SVC Linear:
Confusion Matrix
[[15 0 0]
 [1 19 0]
 [0 0 19]]

Preformance Evaluation:

	preci	lsion 1	recall	f1-score	support
	1 2 3	0.94 1.00 1.00	1.00 0.95 1.00	0.97 0.97 1.00	15 20 19
accurac macro av weighted av	.d	0.98	0.98	0.98 0.98 0.98	54 54 54

b. Decision Tree

Decision Tree Classifier:
Confusion Matrix
[[21 2 0]
[1 16 1]
[0 0 13]]

Preformano	ce E	valuation:			
		precision	recall	f1-score	support
	1	0.95	0.91	0.93	23
	2	0.89	0.89	0.89	18
	3	0.93	1.00	0.96	13
accura	су			0.93	54
macro a	ıvg	0.92	0.93	0.93	54
weighted a	ıvg	0.93	0.93	0.93	54

c. Random Forest

Random Forest:

Confusion Matrix

[[15 0 0]

[0 20 0]

[0 0 19]]

Preformance Evaluation:

	precision	recall	f1-score	support
1 2 3	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	15 20 19
accuracy macro avg weighted avg	1.00	1.00	1.00 1.00 1.00	54 54 54

Accuracy Score:

1.0

d. Naïve Bayes a. Multinomial

Multinomial Naive Bayes: Confusion Matrix

[[17 2 4]

[2 14 2]

[0 2 11]]

Preformance Evaluation:

	precision	recall	f1-score	support
1 2 3	0.89 0.78 0.65	0.74 0.78 0.85	0.81 0.78 0.73	23 18 13
accuracy macro avg weighted avg	0.77	0.79	0.78 0.77 0.78	54 54 54

Accuracy Score:

0.77777777777778

b. Bernoulli

1 2	0.00	0.00	0.00	23 18
3	0.00	0.00	0.00	13
accuracy			0.33	54
macro avg	0.11	0.33	0.17	54
weighted avg	0.11	0.33	0.17	54

Accuracy Score:

0.3333333333333333

c. Gaussian

Gaussian Naive Bayes:

Confusion Matrix

[[20 3 0] [0 18 0] [0 0 13]]

Preformance	Evaluation.
TTETOTHIANCE	Evaluation.

rieioimance	precision	recall	f1-score	support
-	1.00	0.87	0.93	23
7	0.86	1.00	0.92	18
3	1.00	1.00	1.00	13
accuracy	·		0.94	54
macro avo	0.95	0.96	0.95	54
weighted avo	g 0.95	0.94	0.94	54

For IONOSPHERE Dataset

a. SVM Classifier

SVC Linear:

Confusion Matrix

[[24 11]

[5 66]]

Preformance Evaluation:

	precision	recall	f1-score	support
a p	0.83	0.69	0.75	35 71
accuracy macro avg weighted avg	0.84	0.81	0.85 0.82 0.85	106 106 106

b. Decision Tree

g	0.89	0.94	0.92	71
accuracy	0.00	0.06	0.89	106
macro avg	0.88	0.86	0.87	106
weighted avg	0.89	0.89	0.88	106

Accuracy Score: 0.8867924528301887

c. Random Forest

Random Forest: Confusion Matrix

[[30 5] [0 71]]

Preformance Evaluation:

	precision	recall	f1-score	support
b b	1.00	0.86	0.92 0.97	35 71
accuracy macro avg weighted avg	0.97 0.96	0.93 0.95	0.95 0.94 0.95	106 106 106

d. Naïve Bayes

a. Multinomial

Multinomial Naive Bayes:

Confusion Matrix [[9 26]

[3 68]]

Preformance Evaluation:

	precision	recall	f1-score	support
g	0.75 0.72	0.26	0.38	35 71
accuracy macro avg weighted avg	0.74	0.61 0.73	0.73 0.60 0.68	106 106 106

b. Bernoulli

b g	0.84	0.74	0.79	35 71
accuracy macro avg weighted avg	0.86 0.87	0.84	0.87 0.85 0.87	106 106 106

Gaussian

Gaussian Naive Bayes:
Confusion Matrix

CONTUSTON M

[[26 9] [1 70]]

Preformance Evaluation:

	precision	recall	f1-score	support
g p	0.96	0.74	0.84	35 71
accuracy macro avg weighted avg	0.92 0.91	0.86 0.91	0.91 0.89 0.90	106 106 106

CONCLUSION –

For both WINE dataset and IONOSOHERE dataset, Random Forest Classifier had more accuracy than the others. (Values Marked Bold in the table)

1	OLIECTION 1							
2	QUESTION 1							
3								
4	DATASET	CLASS	SIFIER	PRECISION	RECALL	FI-SCORE	SUPPORT	ACCURACY
5		SV	/M	0.98	0.98	0.98	54	0.9814
6		Decisio	on Tree	0.92	0.93	0.93	54	0.9259
7		Randon	n Forest	1	1	1	54	1
	WINE	Naive						
8	DATASET	Bayes -						
9		Multi	nomial	0.77	0.79	0.77	54	0.7777
10		Berr	noulli	0.11	0.33	0.17	54	0.3333
11		Gaussian		0.95	0.96	0.95	54	0.9444
12								
13		SV	/M	0.84	0.81	0.82	106	0.849
14		Decisio	on Tree	0.88	0.86	0.87	106	0.8867
15	IONOS-	Randon	n Forest	0.97	0.93	0.95	106	0.9528
16	PHERE DATASET	Naive Bayes -						
17		Multi	nomial	0.74	0.61	0.6	106	0.7264
18	Bern		noulli	0.86	0.84	0.85	106	0.8679
19		Gau	ssian	0.92	0.86	0.89	106	0.9056
20								

Question 5:

a. K-means versus, K-medoids/PAM

a.1 K-means

Performance Evaluation:
Silhouette Coefficient 0.571138193786884
Calinski Harabasz Score 561.815657860671
Davies Bouldin Score 0.5342431775436273

a.2 K-medoids

Performance Evaluation:
Silhouette Coefficient 0.5708303868116225
Calinski Harabasz Score

Davies Bouldin Score 0.5316801818576816

COMPARISON

23 24	QUESTION 5					
25 26	Performance Measures	K Means	K Me	edoids		
27	Silhouette Coefficient	0.571138	0.5708	330387		
28	Calinski-Harabasz Score	561.8157	556.14	159974		
29	Davies-Bouldin Score	0.534243	0.5316	580182		

b. DBSCAN versus OPTICS

b.1 DBSCAN

Performance Evaluation:
Silhouette Coefficient 0.5131593970763382
Calinski Harabasz Score 55.59856582586847
Davies Bouldin Score 0.37396418544796095

b.2 OPTICS

COMPARISON

31 32	Performance Measures	DBSCAN	OPTICS
33	Silhouette Coefficient	0.513159	0.265456675
34	Calinski-Harabasz Score	55.59857	28.19895225
35	Davies-Bouldin Score	0.373964	5.752797762

Question 3:

a. For IRIS dataset

1. Gaussian HMM

```
Confusion Matrix [[13 1 0]
```

[0 18 0] [0 13 0]]

Performance Evaluation:

	precision	recall	f1-score	support
0	1.00	0.93	0.96	14
1	0.56	1 00	0.72	1.8

2	0.00	0.00	0.00	13
accuracy			0.69	45
macro avg	0.52	0.64	0.56	45
weighted avg	0.54	0.69	0.59	45

Accuracy Score: 0.68888888888888

2. GMMHMM

Confusion Matrix

[[18 1 0]

[0 15 0]

[0 11 0]]

Performance Evaluation:

	precision	recall	f1-score	support
0	1.00	0.95	0.97	19
2	0.56 0.00	1.00	0.71	15 11
accuracy			0.73	45
macro avg weighted avg	0.52 0.61	0.65 0.73	0.56 0.65	45 45

b. For Diabetes Dataset

1. Gaussian

Confusion Matrix

[[46 26] [20 41]]

Performance Evaluation:

precision recall f1-score support

0 0.70 0.64 0.67 72
1 0.61 0.67 0.64 61

accuracy			0.65	133
macro avg	0.65	0.66	0.65	133
weighted avg	0.66	0.65	0.65	133

______ _____

Accuracy Score: 0.6541353383458647

2. GMMHMM

Confusion Matrix [[45 30] [16 42]]

Performance E	valuation: precision	recall	f1-score	support
0 1	0.74 0.58	0.60 0.72	0.66 0.65	75 58
accuracy macro avg weighted avg	0.66 0.67	0.66 0.65	0.65 0.65 0.65	133 133 133

Accuracy Score: 0.6541353383458647

c. For lonosphere Dataset

1. Gaussian

Confusion Matrix [[29 4]

[23 50]]

Performance Evaluation:

	precision	recall	f1-score	support
0 1	0.56	0.88	0.68 0.79	33 73
accuracy macro avg weighted avg	0.74	0.78 0.75	0.75 0.73 0.75	106 106 106

Accuracy Score: 0.7452830188679245

2. GMMHM

Confusion Matrix

[[34 4] [24 44]]

Performance Evaluation:

	precision	recall	f1-score	support
0 1	0.59	0.89	0.71 0.76	38 68
accuracy macro avg weighted avg	0.75 0.80	0.77	0.74 0.73 0.74	106 106 106

Accuracy Score: 0.7358490566037735

40 41		QUESTIC	DN 3				
42 43	DATASET	CLASSIFIER	PRECISION	RECALL	FI-SCORE	SUPPORT	ACCURACY
44	4 IRIS	Gaussian HMM	0.52	0.64	0.56	45	0.688
45	IKIS	GMMHMM	0.52	0.65	0.56	45	0.733
46	46						
47	📰 Diabetes 🖯	Gaussian HMM	0.65	0.66	0.65	133	0.654
48		GMMHMM	0.66	0.66	0.65	133	0.654
49							
50	IONOS-	Gaussian HMM	0.74	0.78	0.73	106	0.745
51	PHERE	GMMHMM	0.75	0.77	0.73	106	0.735
52							

NOTE - Multinomial HMM was not working with the above dataset, ans gave errors regarding values < 0.

GITHUB LINK FOR ML LAB EVALUATION-

https://github.com/SouravSaha1999/ML-Lab-Evaluation

The repo contains PDF file, python notebook, excel sheet and required images used in this PDF.