ACM/CS 114 Parallel algorithms for scientific applications

Michael A. G. Aïvázis

California Institute of Technology

Winter 2010

A sorting algorithm

Algorithm 1: Insertion-Sort(S)

1 for
$$j \leftarrow 2$$
 to $length[S]$ do
2 $key \leftarrow S[j]$
3 $i \leftarrow j - 1$
4 while $i > 0$ and $S[i] > key$ do
5 $S[i+1] \leftarrow S[i]$
6 $i \leftarrow i-1$
7 $S[i+1] \leftarrow key$

- ▶ valid inputs:
 - empty sequence, singlet, other sequences of finite length
 - ▶ what kinds of objects in S?
- \triangleright walk through it by hand with S = (5, 2, 4, 6, 1, 3)

Pseudocode conventions

- ▶ the symbol "▷" indicates a comment through to the end of the line
- ▶ block structure is indicated by the indentation level
- all variables are local; no global variables, unless explicitly marked
- ▶ $i \leftarrow j \leftarrow k$ assigns the rightmost expression to all the other variables
- ▶ indexing: S[i]; slicing: S[i..j]
- conditionals, looping constructs, function calls should be familiar
- compound objects have attributes or fields that are referenced using indexing, e.g. length[S]
- variables assigned to objects or containers are references
- parameters passed to procedures by assignment

Python implementation

▶ direct translation of pseudocode in python, with no attempt to improve

```
def insertion_sort(A):
    for j in range(1, len(A)):
        key = A[j]
4        i = j-1
5        while i>=0 and A[i]>key:
6         A[i+1] = A[i]
7        i = i-1
8        A[i+1] = key
```

only minor adjustments to loop indices since python lists are zero based

Analyzing algorithms

- algorithm analysis is the computation of resource requirements
 - memory, communication bandwidth, computational time
- need a model for the implementation environment
 - ► RAM: random access machine
 - an abstraction of a single processor sequential execution machine that has access to a single block of memory with uniform access cost
 - even though the model is extermely simple, algorithm analysis remains a hard problem, full of subtleties
- ▶ in general, we seek to relate the running time to input size
 - definition of input size is problem dependent could be number of items to sort, or number of grid points in a mesh, etc.
 - running time counts the number of primitive steps executed
 - different lines have different costs
 - but each execution of a given line is assumed to cost the same
- ▶ *exercise*: decorate Alg. 1 with the number of times each line is executed

Designing algorithms

- ► INSERTION-SORT is *incremental*:
 - ▶ having sorted A[i..j], put A[j] in its proper place
 - ▶ how would you break this up into tasks that can be executed in parallel?
- ▶ one alternative is *divide-and-conquer*: MERGE-SORT
 - ► divide: split A into two parts of roughly equal length
 - conquer: sort the subsequences recursively
 - combine: merge the two sorted subsequences to produce the sorted output

Sorting by divide-and-conquer

Algorithm 2: MERGE-SORT(S, p, r)

- 1 if p < r then
- $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 3 MERGE-SORT(S, p, q)
- 4 MERGE-SORT(S, q + 1, r)
- 5 MERGE(S, p, q, r)
- exercise: write MERGE; can be done in $\Theta(r-p+1)$
- analysis of running time:
 - involves solving a recurrence relation
 - worst case:

$$T(n) = \left\{ \begin{array}{ll} \Theta(1) & \text{if } n = 1\\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{array} \right\} \to \Theta(n \log n)$$

▶ is this a better candidate for parallel sorting?

