ML: Пример

Inputs Output

3 things are happening here. First, each input is multiplied by a weight:

$$x_1 \rightarrow x_1 * w_1$$

$$x_2
ightarrow x_2 * w_2$$

Next, all the weighted inputs are added together with a bias b:

$$(x_1 * w_1) + (x_2 * w_2) + b$$

Finally, the sum is passed through an activation function:

$$y = f(x_1 * w_1 + x_2 * w_2 + b)$$

feedforward

Combining Neurons into a Neural Network

Input Layer Hidden Layer Output Layer

Name	Weight (lb)	Height (in)	Gender
Anna	133	65	F
Denis	160	72	M
Ivan	152	70	M
Polina	120	60	F

Input Layer

Hidden Layer

Output Layer

Loss function

We'll use the **mean squared error** (MSE) loss:

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (y_{true} - y_{pred})^2$$

Training a network = trying to minimize its loss

Terminology

- Population
- Chromosomes
- Gene

1. Selection Operator

It prefers individuals with better fitness scores and lets them pass genes on to successive generations.

2. Crossover Operator

Crossover Operator

2. Crossover Operator

One Point Crossover

Multi Point Crossover

Uniform Crossover

3. Mutation Operator

Mutation Operator

Mutation Operators:

-Bit Flip Mutation

- -Random Resetting
- -Swap Mutation

Scramble Mutation

Inversion Mutation

GA- TERMINATION CONDITION

- When there has been no improvement in the population for X iterations.
- When we reach an absolute number of generations.
- When the objective function value has reached a certain pre-defined value