Mesh Networks

IEEE 802.15.5

C. Moustakakis

A. Baltas

Mesh Networks

Mesh networks usually consist of PAN (Personal Area Network) devices.

Two connection arrangements:

- Full mesh topology
- Partial mesh topology

Mesh networks can be wired or wireless.

Mesh Networks vs ad hoc networks

Mesh are related to ad hoc networks. Actually mesh networks can be seen as a type of ad hoc networks.

Important Attributes

 Each and every node must not only send and receive its own data, but also serve as a relay for other nodes by forwarding data for them - everyone in the network contributes resources and cooperates. (CommunityBox!)

Important Attributes

 Nodes are able to cofigure automatically, and re-configure dynamically when needed to maintain mesh connectivity with selfhealing algorithms.

Important Attributes

 Intelligent dynamic Routing. Each node participates in routing by forwarding data for others. Information is routed dynamically from source to destination over multiple hops.

Mesh networks offer

- Redundancy in routes: When a node fails, or leaves the network, others can still communicate, and network reroutes the information.
- Scalable Network: New nodes can easily join the network.

Mesh networks offer

- Self-Healing Network: Once restored, a node can easily rejoin the network.
- Community Ownership.

IEEE 802.15.5

Standard providing the framework that enables WPAN devices to form a stable and scalable mesh network.

Includes:

- Network initialization
- Addressing
- Multihop unicasting

IEEE 802.15.5

Two Parts:

Low Data Rate

Runs over IEEE 802.15.4 (Low Data Rate WPAN) which defines the Physical and the Data Link Layer (Layers 1 & 2) of OSI model.

Also supports:

- Multicasting
- Reliable broadcasting
- Portability support
- Energy-saving function

IEEE 802.15.5

High Data Rate

Runs over IEEE 802.15.3 which is a MAC and Physical Layer standard for High-rate WPANs.