Neural Networks Multilayer Perceptron

A Neuron (= a perceptron)

• The n-dimensional input vector \mathbf{x} is mapped into variable y by means of the scalar product and a nonlinear function mapping

Perceptron - Example

Threshold >=1.5

Threshold > -1.5

X1	x2	У
-1	-1	-1
-1	1	1
1	-1	1
1	1	1

X1	x2	У
-1	-1	-1
-1	1	-1
1	-1	-1
1	1	1

AND ---OR

XOR

XOR Problem

f=h1h2'+h1'h2

A Powerful model

Classification by Backpropagation

- Backpropagation: A neural network learning algorithm
- Started by psychologists and neurobiologists to develop and test computational analogues of neurons
- A neural network: A set of connected input/output units where each connection has a weight associated with it
- During the learning phase, the **network learns by adjusting the weights** so as to be able to predict the correct class label of the input tuples
- Also referred to as **connectionist learning** due to the connections between units.

A multilayer feed-forward neural network.

A Multi-Layer Feed-Forward Neural Network

Backpropagation Algorithm

Algorithm: Backpropagation. Neural network learning for classification or prediction, using the backpropagation algorithm.

Input:

- \blacksquare *D*, a data set consisting of the training tuples and their associated target values;
- l, the learning rate;
- network, a multilayer feed-forward network.

Output: A trained neural network.

Method:

```
Initialize all weights and biases in network;
      while terminating condition is not satisfied {
(2)
(3)
           for each training tuple X in D {
(4)
                   // Propagate the inputs forward:
(5)
                   for each input layer unit j {
(6)
                          O_i = I_i; // output of an input unit is its actual input value
(7)
                   for each hidden or output layer unit j {
(8)
                          I_j = \sum_i w_{ij} O_i + \Theta_j; //compute the net input of unit j with respect to the
                                previous layer, i
                          O_j = \frac{1}{1 + e^{-l_j}}; \(\) // compute the output of each unit j
(9)
                   // Backpropagate the errors:
(10)
                   for each unit j in the output layer
(11)
                          Err_j = O_j(1 - O_j)(T_j - O_j); // compute the error
(12)
                   for each unit j in the hidden layers, from the last to the first hidden layer
(13)
                          Err_j = O_j(1 - O_j) \sum_k Err_k w_{jk}; // compute the error with respect to the
(14)
                                    next higher layer, k
                   for each weight wij in network {
(15)
                          \Delta w_{ij} = (l) \dot{E} r r_j O_i; // weight increment
(16)
                          w_{ij} = w_{ij} + \Delta w_{ij}; \(\right\) // weight update
(17)
                   for each bias \theta_i in network {
(18)
                          \Delta \theta_j = (l)Err_j; // bias increment
(19)
                          \theta_i = \theta_i + \Delta \theta_i; \(\right\) // bias update
(20)
(21)
```

How A Multi-Layer Neural Network Works?

- The inputs to the network correspond to the attributes measured for each training tuple
- Inputs are fed simultaneously into the units making up the input layer
- They are then weighted and fed simultaneously to a **hidden layer**
- The number of hidden layers is arbitrary, although usually only one
- The weighted outputs of the last hidden layer are input to units making up the output layer, which emits the network's prediction
- The network is feed-forward in that none of the weights cycles back to an input unit or to an output unit of a previous layer
- From a statistical point of view, networks perform nonlinear regression: Given enough hidden units and enough training samples, they can closely approximate any function

Neural Networks - Weakness & Strength

Weakness

- Long training time
- Require a number of parameters typically best determined empirically, e.g., the network topology or ``structure."
- Poor interpretability: Difficult to interpret the symbolic meaning behind the learned weights and of `hidden units" in the network

Strength

- High tolerance to noisy data
- Ability to classify untrained patterns
- Well-suited for continuous-valued inputs and outputs
- Successful on a wide array of real-world data
- Algorithms are inherently parallel
- Techniques have recently been developed for the extraction of rules from trained neural networks

Defining a Network Topology

- First decide the network topology: # of units in the input layer, # of hidden layers(if > 1), # of units in each hidden layer, and # of units in the output layer
- Normalizing the input values for each attribute measured in the training tuples to [0.0—1.0]
- One input unit per domain value.
- Output: if for classification and more than two classes, one output unit per class is used
- Once a network has been trained and its accuracy is unacceptable, repeat the training process with a different network topology or a different set of initial weights

Table 6.3 Initial input, weight, and bias values.

x_1	x_2	<i>x</i> ₃	w ₁₄	w ₁₅	w ₂₄	w ₂₅	w34	w35	w46	W56	θ_4	θ_5	θ_6
1	0	1	0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	-0.4	0.2	0.1

Solution

Table 6.4 The net input and output calculations.

Unit j	Net input, I_j	Output, O_j
4	0.2 + 0 - 0.5 - 0.4 = -0.7	$1/(1+e^{0.7}) = 0.332$
5	-0.3 + 0 + 0.2 + 0.2 = 0.1	$1/(1+e^{-0.1}) = 0.525$
6	(-0.3)(0.332) - (0.2)(0.525) + 0.1 = -0.105	$1/(1 + e^{0.105}) = 0.474$

Table 6.5 Calculation of the error at each node.

Unit j	Err _j
6	(0.474)(1-0.474)(1-0.474) = 0.1311
5	(0.525)(1-0.525)(0.1311)(-0.2) = -0.0065
4	(0.332)(1-0.332)(0.1311)(-0.3) = -0.0087

Table 6.6 Calculations for weight and bias updating.

Weight or bias	New value
W46	-0.3 + (0.9)(0.1311)(0.332) = -0.261
W56	-0.2 + (0.9)(0.1311)(0.525) = -0.138
w ₁₄	0.2 + (0.9)(-0.0087)(1) = 0.192
w ₁₅	-0.3 + (0.9)(-0.0065)(1) = -0.306
w ₂₄	0.4 + (0.9)(-0.0087)(0) = 0.4
w ₂₅	0.1 + (0.9)(-0.0065)(0) = 0.1
w ₃₄	-0.5 + (0.9)(-0.0087)(1) = -0.508
w35	0.2 + (0.9)(-0.0065)(1) = 0.194
θ_6	0.1 + (0.9)(0.1311) = 0.218
θ_5	0.2 + (0.9)(-0.0065) = 0.194
θ_4	-0.4 + (0.9)(-0.0087) = -0.408