Лекция.

Тема: Уравнение касательной к графику функции. Производные суммы, разности, произведения и частного. Производные основных элементарных функций.

Геометрическая интерпретация производной, впервые данная в конце XVII века Лейбницем, состоит в следующем:

Значение производной функции y=f(x) в точке x равно угловому коэффициенту касательной, проведенной к графику функции в той же точке x,

T.e.
$$k = f'(x) = tg \varphi$$

Рассмотрим задачу.

Задача о касательной к данной кривой. Пусть на плоскости xOy дана кривая уравнением y = f(x). Требуется провести касательную к данной кривой в данной точке $M_0(x_0; f(x_0))$. Так как точка касания M_0 дана, то для решения задачи потребуется найти угловой коэффициент искомой касательной, т.е. $tg\phi$ — тангенс угла наклона касательной к положительному направлению оси Ox (рис. 3.1).

Через точки $M_0(x_0;f(x_0))$ и $M'(x_0+\Delta x;f(x_0+\Delta x))$ проведем секущую M_0M' . Из рис. 3.1 очевидно, что угловой коэффициент $tg\alpha$ секущей M_0M' равен отношению

$$tg \alpha = \frac{\Delta y}{\Delta x}$$

где

$$\Delta y = f(x_0 + \Delta x) - f(x_0).$$

Угловой коэффициент касательной M_0T к данной кривой в точке M_0 может быть найден на основании следующего определения: касательной к кривой в точке M_0 называется прямая M_0T , угловой коэффициент которой равен пределу углового коэффициента секущей M_0M' , когда $\Delta x \to 0$. Отсюда следует, что

$$tg \varphi = \lim_{\Delta x \to 0} tg \alpha = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}.$$

Определение: прямая, проходящая через точку касания, перпендикулярно касательной, называется **нормалью** к кривой в этой точке.

Если кривая определена уравнением y = f(x), то уравнение касательной к ней в точке $M(x_0, y_0)$ имеет вид:

$$y - y_0 = y'(x_0)(x - x_0)$$

а уравнение нормали:

$$y - y_0 = -\frac{1}{y'(x_0)}(x - x_0)$$

Как Вы заметили нам нужно найти производную, чтобы написать уравнение касательной или нормали.

Операцию отыскания производной некоторой функции называют дифференцированием функции, а раздел математики, изучающий свойства этой операции, — дифференциальным исчислением.

Если функция имеет производную в точке x = a, то говорят, что она дифференцируема в этой точке. Если функция имеет производную в каждой точке данного промежутка, то говорят, что она дифференцируема на этом промежутке.

Существуют общие правила нахождения производной:

 1^{0} . Находят новое значение функции, подставив в данную функцию вместо x новое значение аргумента $x + \Delta x$:

$$y_{\rm H} = f(x + \Delta x) = y + \Delta y$$
.

2°. Определяют приращение функции, вычитая данное значение функции из ее нового значения:

$$\Delta y = y_{\text{H}} - y = f(x + \Delta x) - f(x).$$

3°. Составляют отношение приращения функции к приращению аргумента:

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
.

 ${\bf 4}^0$. Переходят к пределу при $\Delta x {
ightarrow} 0$ и находят производную:

$$y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$

(в пояснении $y_{\rm H}$ – это у(х $+\Delta$ х))

Применим эти правила и найдем производную функции у=5х

1.
$$y(x + \Delta x) = 5(x + \Delta x) = 5x + 5\Delta x$$

2.
$$\Delta y = y(x + \Delta x) - y(x) = (5x + 5\Delta x) - 5x = 5\Delta x$$

3.
$$\frac{\Delta y}{\Delta x} = \frac{5\Delta x}{\Delta x} = 5$$

4.
$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} 5 = 5$$

Таким образом, мы нашли производную функции, пользуясь непосредственным определением производной.

Но это не очень удобно, хотя и позволяет вычислить производную любой элементарной функции.

Вспомним, элементарные функции — функции, которые можно получить с помощью конечного числа арифметических действий и композиций из следующих основных элементарных функций: степенная функция с любым действительным показателем; показательная и логарифмическая функции; тригонометрические и обратные тригонометрические функции.

Формулы производных основных элементарных функций

1.
$$c' = 0$$
, $c = const$

$$2. \left(x^n\right)' = nx^{n-1}$$

3.
$$\left(a^{x}\right)' = a^{x} \cdot \ln a$$

$$4. \left(e^{x}\right)' = e^{x}$$

$$5. \left(\log_a x\right)' = \frac{1}{x \ln a}$$

$$6. \left(\ln x \right)' = \frac{1}{x}$$

$$7. \left(\sin x \right)' = \cos x$$

$$8. (\cos x)' = -\sin x$$

$$9. \left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$$

10.
$$(tgx)' = \frac{1}{\cos^2 x}$$

11.
$$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$$

12.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$

13.
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

14.
$$(\arctan x)' = \frac{1}{1+x^2}$$

15.
$$(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$$

$$16. \left(\sinh x \right)' = \cosh x$$

17.
$$(\cosh x)' = \sinh x$$

18.
$$(\operatorname{th} x)' = \frac{1}{\operatorname{ch}^2 x}$$

19.
$$(\operatorname{th} x)' = -\frac{1}{\operatorname{sh}^2 x}$$

Правила вычисления производных

Вычисление <u>производных</u> основано на применении следующих правил, которые мы будем использовать

Правило 1 (производная от произведения числа на функцию). Справедливо равенство $(c\,f\,(x))'=c\,f\,'\,(x)$, где c-любое число.

Другими словами, производная от произведения числа на функцию равна произведению этого числа на производную функции.

Правило 2 (производная суммы функций).

Производная суммы функций вычисляется по формуле

$$(f(x) + g(x))' = f'(x) + g'(x),$$

то есть производная от суммы функций равна сумме производных этих функций.

Правило 3 (производная разности функций).

Производная разности функций вычисляется по формуле

$$(f(x) - g(x))' = f'(x) - g'(x),$$

то есть производная от разности функций равна разности производных этих функций.

Правило 4 (производная произведения двух функций).

Производная произведения двух функций вычисляется по формуле

$$(f(x) g(x))' = f'(x) g(x) + f(x) g'(x),$$

Другими словами, производная от произведения двух функций равна производной от первой функции, умноженной на вторую функцию, плюс первая функция, умноженная на производную от второй функции.

Правило 5 (производная частного двух функций).

Производная от дроби (частного двух функций) вычисляется по формуле

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{\left(g(x)\right)^2}$$

Рассмотрим пример нахождения производной.

Найти производную функции $y = 8x^6 - 2x^{-3} + 15x - 61$

Решение
$$y' = 8 \cdot 6x^{6-1} - 2 \cdot (-3) \cdot x^{-3-1} + 15 = 48x^5 + 6x^{-4} + 15$$
.

Подробно рассмотрим примеры из видеоурока.

В учебнике Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия: учеб. для студ. учреждений сред.проф. образования/ М.И. Башмаков. – 4-е изд., стер. – М.: ИЦ «Академия», 2017, - 256 с.

Занятие 5 «Производные элементарных функций» стр. 180-182. Вопросы и упражнения, задание 5, примеры 1-6.

Список использованных интернет-ресурсов:

- 1. https://urait.ru/
- 2. https://www.resolventa.ru/
- **3.** https://egemaximum.ru/