Manual for Package: tide

Karl Kastner

July 5, 2019

Contents

1	$@T_T$	de	4
	1.1	$T_{-}Tide \dots \dots$	4
	1.2	build_index	4
	1.3	from_tpxo	4
	1.4	get_constituents	5
	1.5	reorder	5
	1.6	select	5
	1.7	shift_time_zone	5
2	@Tida	l_Envelope	5
	2.1	Tidal_Envelope	5
	2.2	init	5
3	@Tide	$-\mathbf{wft}$	5
	3.1	$\mathrm{Tide_wft} \dots $	5
	3.2	transform	6
4	@Tide	table	6
	4.1	Tidetable	6
	4.2	analyze	6
	4.3	export_csv	6
	4.4	generate	7
	4.5	generate_tpxo_input	7
	4.6	$import_tpxo $	7
	4.7	plot_neap_spring	7
5			7
	5.1	constituents	7
	5.2	doodson	7
	5.3	envelope_amplitude	7
	5.4	$envelope_slack_water \ldots \ldots \ldots \ldots \ldots$	8

	5.5	interval_extrema								
	5.6	interval_extrema2								
	5.7	interval_zeros								
	5.8	lunar_phase								
	5.9	rayleigh_criterion								
6	river-tide/@River_Tide									
	6.1	River_Tide								
	6.2	bcfun								
	6.3	decompose								
	6.4	friction_coefficient_dronkers								
	6.5	friction_coefficient_godin								
	6.6	friction_coefficient_lorentz								
	6.7	friction_dronkers								
	6.8	friction_exponential_dronkers								
	6.9	friction_godin								
	6.10	friction_trigonometric_dronkers								
	6.11	friction_trigonometric_godin								
	6.12	friction_trigonometric_lorentz								
	6.13	init								
	6.14	mwl_offset								
	6.15	odefun								
	6.16	odefun0								
	6.17	odefun1								
	6.18	odefun2								
	6.19	q2z								
	6.20	solve								
	6.21	solve_swe								
	6.22	solve_wave								
	6.23	wave_number_analytic								
	6.24	wave_number_approximation								
7	river-t	${ m cide/@River_Tide_Cai}$								
	7.1	Gamma								
	7.2	River_Tide_Cai								
	7.3	river_tide_cai								
	7.4	rt_quantities								
8	river-t	cide/@River_Tide_Empirical								
	8.1	River_Tide_Empirical								
	8.2	fit_amplitude								
	8.3	fit_mwl								
	8.4	fit_phase								
	8.5	fit range 13								

	8.6	predict_amplitude
	8.7	predict_mwl
	8.8	predict_phase
	8.9	predict_range
	8.10	rt_model
9	river-	${ m tide/@River_Tide_Map}$
	9.1	River_Tide_Map
	9.2	d2au1_dx2
	9.3	d2az1_dx2
	9.4	dkq_dx
	9.5	dkz_dx
	9.6	fun
	9.7	key
	9.8	plot
10) rivor-	tide/@Tidal_River_Network 15
10	10.1	Tidal_River_Network
	10.1 10.2	discharge_amplitude
	10.2 10.3	mean_water_level
	10.3 10.4	plot_mean_water_level
	10.4 10.5	1
	10.5 10.6	•
		solve
	10.7	water_level_amplitude
11	river-	$tide/River_Tide_JK$ 17
	11.1	River_Tide_JK
	11.2	jk_damping_modulus
	11.3	jk_mean_level
	11.4	jk_rivertide_predict
	11.5	jk_rivertide_regress
	11.6	jk_tidal_discharge
	11.7	jk_tidal_range
12	2 river-	tide 18
	12.1	damped_wave_bvp
	12.2	damped_wave_ivp
	12.3	damping_modulus_river
	12.4	damping_modulus_tide
	12.5	rdamping_to_cdrag_tide
	12.6	rt_celerity
	12.7	rt_quasi_stationary_complex
	12.8	rt_quasi_stationary_trigonometric
	12.0 12.9	rt_reflection_coefficient_gradual
	14.0	ivionocommonute graduar

	12.10	rt_wave_equation	19
	12.11	rt_z2q	20
	12.12	test_rt_wave_number	20
	12.13	tidal_ellipse	20
	12.14	wavetrainz	20
	12.15	wavetwopassz	20
13	test	2	20
	13.1	$test_tidal_harmonic_analysis$	20
14		2	20
	14.1	tidal_constituents	20
	14.2	tidal_energy_transport_1d	21
	14.3	tidal_envelope	21
	14.4	tidal_envelope2	21
	14.5	tidal_harmonic_analysis	22
15	tide-sa	venije	22
	15.1	savenije_phase_lag	22
	15.2	savenije_tidal_range	22
	15.3	savenije_tidal_range1	22
	15.4	savenije_timing_hw_lw	23
	15.5	tide-savenije '	23

$1 \quad @T_{-}Tide$

$1.1 T_{-}Tide$

wrapper for TPXO generated tidal time series

1.2 build_index

build a structure whose field names contain the index

1.3 from_tpxo

read TPXO output into tidetable object

1.4 get_constituents

extract constituents of tpxo object

1.5 reorder

order constituents as specified by "name"

1.6 select

select a subsect of constituents

1.7 shift_time_zone

shift phase according to time zone

2 @Tidal_Envelope

2.1 Tidal_Envelope

process tidal data to extrac the tidal envelope

2.2 init

initialize with data

3 @Tide_wft

$3.1 \quad Tide_wft$

wavelet transform of tidal time series

3.2 transform

```
wavelet transform tidal time series
input:
time : [1xn] abszissa of input vector, for example time, must be
   equally spaced
     : [1xn] signal, input data series (e.g water level or
   velocity)
      : [1xm] base frequencies, 1, 1, 2, ... for mean level,
   diurnal, semidirunal ...
             base periods from base frequencies T=1/F
      : [1xm] wavelet window length in multiple of periods
fc, nc : [scalar] low frequency cutoff and window length in periods
winstr : [char] fourier windows (kaiser (recommended), hanning, box
    , etc)
{\tt dt\_max} : [scalar] maximum time to fill gaps in input data series (
   recommended 3/24 for tide)
tide : struct with fields
        w_coeff : [1xn] wavelet coefficients (complex)
        amplitude : amplitude
        phase
                : phase
        range
        h_tide
        h_low
        h
```

4 @Tidetable

4.1 Tidetable

Tide table

4.2 analyze

extract tidal envelope from time series

4.3 export_csv

export tide table to csv file

4.4 generate

run TPXO to generate time series

4.5 generate_tpxo_input

generate tpxo input table
Note: superseeded by perl script

4.6 import_tpxo

import TPXO data into tidetable object

4.7 plot_neap_spring

plot average neap and spring tide

5

5.1 constituents

5.2 doodson

frequency of tidal constituents method of doodson source: wikipedia

5.3 envelope_amplitude

compute envelopes of hw and low water

5.4 envelope_slack_water

slack water envelope of the tide

5.5 interval_extrema

times and evelations for high and low water

5.6 interval_extrema2

mimimum and maximum within intervals of constant length, intended for periodic functions

5.7 interval_zeros

times of slack water determined frim velocity u

5.8 lunar_phase

lunar phase

5.9 rayleigh_criterion

raleigh criterion for resolving tidal constituents T > 1/|f1-f2|

6 river-tide/@River_Tide

6.1 River_Tide

river tide in a single 1D channel

6.2 bcfun

boundary conditions

6.3 decompose

decompose the tide into a right and left travelling wave, i.e. into incoming and reflected wave

6.4 friction_coefficient_dronkers

friction coefficient

6.5 friction_coefficient_godin

friction coefficient of Godin

6.6 friction_coefficient_lorentz

Loren't friction coefficient c.f. cai c.f. dronkers

6.7 friction_dronkers

friction determined by Dronker's method

6.8 friction_exponential_dronkers

friction computed by dronkers method

6.9 friction_godin

compute friction by the method of Godin

6.10 friction_trigonometric_dronkers

friction computed by dronkers method expressed as Fourier series coefficients c.f. dronkers 1964 eq 8.2 and 8.4 Note: Cai dennominates alpha as phi

6.11 friction_trigonometric_godin

friction computed by the method of godin expressed in fourier series coefficients

6.12 friction_trigonometric_lorentz

friction computed by the method of Lorent'z expressed as Fourier series coefficients

6.13 init

solve backwater equation for surface level
TODO this should not be solved as a ivp but included in the bvp
iteration
TODO generate the mesh here and precompute fixed values instead of

6.14 mwl_offset

passing functions

offset of the tidally averaged surface elevation caused by tidal friction

Linear estimate of the mean water level offset (ignoring feed-back of tide)

6.15 odefun

coefficients of the backwater and wave equation for river-tides

6.16 odefun0

coefficients of the backwater equation for the river tide

6.17 odefun1

differential equation coefficients of the main tidal species f1 Q'' + f2 Q' + f3 Q + f4 = 0

6.18 odefun2

ordinary differential quation coefficients of the even overtide

$6.19 \quad \mathbf{q2z}$

 $\begin{array}{c} {\tt tidal} \ {\tt component} \ {\tt of} \ {\tt surface} \ {\tt elevation} \ {\tt determined} \ {\tt from} \ {\tt tidal} \\ {\tt discharge} \end{array}$

by continuity

```
% dz/dt + dq/dx = 0

=> i o z = - dq/dx

=> z = -1/(io) dq/dx

=> z = 1i/o dq/dx
```

TODO allow ${\bf Q}$ as input

6.20 solve

call stationary or non-stationary solver respectively

6.21 solve_swe

determine river tide by the fully non-stationary FVM and then extract the tide $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$

6.22 solve_wave

solve for the oscillatory (tidal) componets

6.23 wave_number_analytic

analytic expression of the wave number

valid for both tidally, river dominated and low friction conditions and converging channels

k : complex wave number in a reach with constant width and bed slope

im(k) : damping modulus (rate of amplitude change)
re(k) : actual wave number (rate of phase change)

c.f. derive_wave_number

6.24 wave_number_approximation

approximate wave number of the left and right traveling wave for variable coefficients

7 river-tide/@River_Tide_Cai

7.1 Gamma

Gamma parameter for tidal propagation c.f. Cai 2014

7.2 River_Tide_Cai

prediction of river tide by the method of Cai (2014)

7.3 river_tide_cai_

determine the surface amplitude of the river tide ${\tt c.f.}$ Cai

7.4 rt_quantities

determine the quantities that determine the tidal propagation $\ensuremath{\text{c.f.}}$ Cai

Note: this computes 4 unknowns following Cai, however, lambda, mu and epsilon can be substituted making it an equation in one unknown (delta) only

8 river-tide/@River_Tide_Empirical

8.1 River_Tide_Empirical

class for fitting models to at-a-station time series of tidal elevation $% \left(1\right) =\left(1\right) \left(1\right) \left($

8.2 $fit_amplitude$

fit the oscillatory components

8.3 fit_mwl

fit the tidally averaged water level

8.4 fit_-phase

fit the phase of the oscillatory components

8.5 fit_range

fit the tidal range

8.6 predict_amplitude

predict the oscillatory components

8.7 predict_mwl

predict the mean water level

8.8 predict_phase

predict tidal phase

8.9 predict_range

predict the tidal range

8.10 rt_model

select the model for fitting

9 river-tide/@River_Tide_Map

9.1 River_Tide_Map

container class to store individual river tide scenarios

$9.2 d2au1_dx2$

second derivative of the tidal velocity magnitude

note: this is for finding zeros, the true derivative has to be scaled up by \boldsymbol{z}

$9.3 d2az1_dx2$

second derivative of the tidal surface elevation

note: this is for finding zeros, the true derivative has to be scaled up by \boldsymbol{z}

$9.4 dkq_dx$

along-channel derivative of the wave number of the discharge neglects width variation $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$

TODO, rederive with g as variable

$9.5 ext{ } ext{dkz_dx}$

along channel derivative of the wave number of the tidal surface elevation ignores width variation dh/dx and second order depth variation $(d^2 h/dx^2)$

TODO rederive with g symbolic

9.6 fun

compute a specific river tide scenario and store it in the hash, or retrive the scenario, if it was already computed

9.7 key

key for storing a scenario

9.8 plot

plot result

10 river-tide/@Tidal_River_Network

10.1 Tidal_River_Network

tide in a fluvial delta channel network, extension of 1D river tide the network is a directed graph

10.2 discharge_amplitude

discharge amplitude

10.3 mean_water_level

predict the mean water level

10.4 plot_mean_water_level

plot tidally averaged water level

10.5 plot_water_level_amplitude

plot surface elevation amplitude

10.6 solve

solve for the tide in a fluvial chanel network

boundary condition at end points not connected to junctions
 [channel 1 id, endpoint id (1 or 2), s0, c0
 ...
 channel n id, endpoint id (1 or 2), s0, c0]

conditions at junctions are specified as cells
 each cell contains an nx2 array
 n : number of connecting channels
 [channel id1, endpoint id (1 or 2), ...
 channel idn, endpoint id (1 or 2)]

every tidal species for each channel has 4 unknowns these are 2x2 unknowns for the sin + cos of left and right going wave

10.7 water_level_amplitude

 ${\tt predict\ the\ surface\ elevation\ amplitude}$

11 river-tide/River_Tide_JK

11.1 River_Tide_JK

11.2 jk_damping_modulus

damping modulus of the river tide $\ensuremath{\text{c.f.}}$ Jay and Kukula

11.3 jk_mean_level

tidally averaged surface elevation c.f. Jay and Kukulka

11.4 jk_rivertide_predict

predict river tide by the method of jay and kukulka

11.5 jk_rivertide_regress

Regression of tidal coefficients according to Jay & Kulkulka coefficients of the r-regression factor 2 apart for specis (jay C7) this can be repeated for each tidal species (diurnal, semidiurnal)

11.6 jk_tidal_discharge

tidal discharge c.f. Jay and Kukulka

11.7 jk_tidal_range

predict tidal range

12 river-tide

analysis and prediction of river tides

12.1 damped_wave_bvp

```
analytic solution to the river tide formulated as boundary value
    problem
in a river with finite length
c.f. Godin 1986
```

12.2 damped_wave_ivp

```
linearly damped wave in rectangular channel x_t = Ax + b
```

12.3 damping_modulus_river

damping modulus of the tidal wave for river flow only

12.4 damping_modulus_tide

```
damping modulus of the tide without river flow
c.f. friedrichs, ippen harleman
output :
k : wave number
re(k) : rate of phase change
```

12.5 rdamping_to_cdrag_tide

```
converts damping rate to drag coefficient
c.f. friedrichs, ippen harleman
```

12.6 rt_celerity

im(k) : damping rate

celerity of the tidal wave

12.7 rt_quasi_stationary_complex

```
quasi-stationary solution of the SWE TODO staggered grid does not help: q1' needed
```

12.8 rt_quasi_stationary_trigonometric

quasi statinary form of the SWE

12.9 rt_reflection_coefficient_gradual

reflection coefficient for gradual varying cross section geometry without damping $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1$

12.10 rt_wave_equation

```
solve river tide as boundary value problem
input:
omega : [nfx1] angluar frequency of tidal component, zero for mean
   flow
reach : [nrx1] struct
   : [1x1] length of reaches
       .width(x,h) width
       .bed(x,h)
                   bed level
       .surface(x,h) surface elevation
       .Cd(x,h)
                   drag coefficient
    : [nd,nf] boundary/junction conditions
       bc(id,if).type : {surface, velocity, discharge} (dirichlet)
       bc(id,if).val : value
opt : [1x1] struct
      - constant surface elevation
      - deactivative advective acceleration
      .dx : spatial resolution
```

dimensions:

 nr : $\operatorname{nurmber}$ or $\operatorname{reaches}$

nd : upstream/downstream index

nf : frequency index

$12.11 \text{ rt}_{-}\text{z}2q$

determine tidal discharge from water level for tidal wave

12.12 test_rt_wave_number

12.13 tidal_ellipse

tidal ellipse, numerical ode solution

12.14 wavetrainz

determine river tide by iterated integration of the surface elevation $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

12.15 wavetwopassz

two pass solution for the linearised wave equation, for surface elevation $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right$

13 test

$13.1 \quad test_tidal_harmonic_analysis$

14

14.1 tidal_constituents

14.2 tidal_energy_transport_1d

energy transport of a tidal wave

14.3 tidal_envelope

envelope of the tide

input : t time in days
 f surface elevation

ouput : tl time of low water
 vl surface elevation at low water
 ldx index of low water
 th time of high water
 vh surface elevation at high water
 vh surface elevation at high water
 hdx index of high water
 ndx neap index
 sdx spring index
 dmax:
 drange: range per day

14.4 tidal_envelope2

surface levelation envelope of the tide low water, high water and tidal range for lunar each day input: time : : surface elevation order : interpolation order (default 2) ouput: timei : vector eqispaced lmini : minimum level lmaxi : maximum level rangei : range midrangei : (min + max)/2, usually different from mean phii : pseudo phase Note: the pseudo phase phi jumps, this is because if the tide is semidiurnal, sometimes the lower hw becomes the next day higher then than current high water, e.g. there is no smooth transition by

14.5 tidal_harmonic_analysis

tidal_harmonic analysis

15 tide-savenije

15.1 savenije_phase_lag

```
phase lag of high and low water
phi : u_river/u_tide < 1

delta_eps_hw = omega*(t_hws - t_hw)
delta_eps_hw = omega*(t_lws - t_lw)
c.f. savenije</pre>
```

15.2 savenije_tidal_range

15.3 savenije_tidal_range1

```
tidal range
based on Horrevoets/Savenije, 2004
```

 ${\tt HO}$: tidal range at river mouth

h0 : initial water depth
v : velocity scale
b : convergence length

sine : phase lag

 $\begin{array}{lll} {\tt K} & : \ {\tt Mannings} \ {\tt coefficient} \\ {\tt Q_r} & : \ {\tt river} \ {\tt discharge} \end{array}$

$15.4 \quad savenije_timing_hw_lw$

time of high water and low water c.f. savenije 2012

15.5 tide-savenije