Week 7

Nucleophilic Aromatic Substitution

7.1 Office Hours (Salinas)

- 2/21: Setup drawings points for Eucalypt
 - Setup drawings points for Eucalyptus Oil and Bromination of Vanillin notebook pages? No new glassware setups so no drawings needed, right?
 - Nope, not needed we can just refer back.
 - Go over Eucalyptus Oil reagent table column entries; make sure I have everything I need.
 - Any hydrocarbon component.
 - Crude yield and percent recovery calculations?
 - I did them correctly.
 - \bullet Do we not need an entry for one of the substances this week? Perhaps EtOH in H₂O? Since there are only 15 points on Canvas, that leads me to think you're only looking for 5 entries.
 - Do all six reagents.
 - Just treat 50% EtOH in H₂O as EtOH (though there might be slight safety differences; check to make sure there isn't a separate MSDS for EtOH in H₂O).

7.2 Nucleophilic Aromatic Substitution

- 2/22: Office hours Wednesday/Thursday at 4:00 PM.
 - 1 page notes sheet for the exam next week.
 - Alkyl groups activate aromatic rings via induction.
 - Halogens.
 - Electron-withdrawing due to induction.
 - Unlike alkyl groups, however, they have lone pairs that can contribute to resonance once the electrophile is added (i.e., in the carbocation intermediate).
 - Halogens with greater electronegativity are more strongly electron-withdrawing and thus more deactivating.
 - Two major problems:
 - 1. Predicting the products based off of the substituents present on a ring.
 - 2. Synthesizing a ring with multiple substituents on it (the order you add them matters!).

- Practice problem takeaways.
 - When you have an ortho/para-directing substituent, you don't have to indicate major/minor products.
 - However, when doing a synthesis, try and make the reaction more selective by precluding one of the sites with another functional group. You could synthesize ortho/para products and then purify (throw away half of your yield), and while this is an acceptable answer, it is not the best answer when there are other options.
 - t-butyl groups generate significant steric hindrance, so groups will avoid adding ortho to them (even though t-butyl is an ortho/para-director by induction).
 - We will not see trick questions where something is so deactivating that we don't have a reaction; in these cases in reality, raising the temperature would suffice to force the reaction.
 - Resonance donation outcompetes induction donation.

• Rules.

- 1. If all substituents direct to the same place, EAS happens there.
- 2. If not, the strongest activator wins.
 - This is because deactivators slow everything down (but just the meta site less) whereas activators specifically accelerate particular sites.
- 3. If one site is significantly more crowded than a second (out of two choices), sterics can play a role.
 - You do need a really big t-butyl group (or something larger) though to see this effect.
- Synthesis practice problem.
 - Benzene to 3-bromoaniline.
 - Preferentially use $H_2 + Pd/C$ to form an amine from a nitro group. The others are less common.
- Nucleophilic aromatic substitution. Also known as NAS, S_NAr .
- Reacting various aromatic compounds with methoxide and methanol.
 - Chlorobenzene: No reaction.
 - para-chloronitrobenzene: The methoxide substitutes the chloride (at high temperatures).
 - 1-chloro-2,4-dinitrobenzene: The methoxide substitutes the chloride (much faster at lower temperatures).
 - meta-chloronitrobenzene: No reaction.
- Mechanism.

Figure 7.1: Nucleophilic aromatic substitution mechanism.

- The driving force for the reaction is having the better leaving group leave.
 - Between methoxide and chloride, for example, chloride is the better LG.
- To form the Meisenheimer complex, you need a strongly electron-withdrawing group (such as a nitro group) or an intramolecular kinetic driving force.
 - You also need the EWG in the right position to be able to accept electron density through resonance.
- Meisenheimer complex: The intermediate with a double-bonded nitrogen in a nitrobenzene derivative undergoing S_NAr.
 - Can be isolated at very low temperatures.
- 1,2-dichloro-4-nitrobenzene becomes 2-chloro-1-methoxy-4-nitrobenzene due to the para-activation of the nitro group.
- Reduction of aromatic compounds.
 - Useful when you want to create a cyclohexane derivative you can put on functional groups with EAS and NAS, and then reduce at the end.
- High pressure catalyzed.
- General form.

- Only one of the listed transition metals is needed.
- This is not practical because you don't want such high pressure bombs in the lab.
- Birch reduction.
- General form.

$$\frac{2 \operatorname{Li}}{\operatorname{NH}_3 / \operatorname{EtOH}} + 2 \operatorname{LiOEt}$$

- Creates a singly-reduced, dearomatized system.
- Sodium and potassium metals can also be used (in place of lithium).
- This is similar to alkyne reduction.
- Mechanism.

Figure 7.2: Birch reduction mechanism.

Although we draw the lithium radical directly attacking benzene, in reality, lithium gives up one
of its electrons to become a cation, and this electron is solvated by NH₃.

- One more reaction.
- General form.

$$PhBr \xrightarrow{NaNH_2} PhNH_2$$

- Also works with other alkali metals.
- A radiolabeling study.

Figure 7.3: Radiolabeling bromobenzene and transforming it into aniline.

- When we radiolabel the carbon to which bromine is initially bonded, we see that two products are formed in equimolar ratios.
- This means that something other than S_NAr is occurring, and that whatever is happening is proceeding through some sort of symmetric intermediate.
- Mechanism.

Figure 7.4: Bromobenzene to aniline mechanism.

- With a strong enough base, we can formally abstract a hydrogen from benzene to create an alkyne-like species.
- Orbitally, we can picture the triple bond in benzyne as a weak interaction (weak because of the nonlinearity/intense angle strain) between adjacent p orbitals in the molecular plane.
- Applications of this reaction and further mechanistic evidence.
 - 1. Using the strong base KNH₂, we can generate the benzyne intermediate and then trap it with other nucleophiles, leading to an equimolar mixture of products.
 - 2. We can also trap benzyne by using it as the diene in a Diels-Alder reaction.
 - 3. Lastly, we note that 2-bromo-1,3-dimethylbenzene does not react under these conditions, confirming the need for an α -proton to make the benzyne intermediate.

7.3 Review / Alcohols

2/24: • Practice synthesis problems.

- Takeaways.
 - Don't be afraid to get another isomer than what you need and chuck it out if you have to.
 - It's always better to activate first and deactivate later if possible.
- One new reaction.

Figure 7.5: Protecting groups.

- Make use of a protecting group.
- Note that the sulfate group adds para due to sterics.
- To finish the synthesis, just chlorinate para $(Cl_2 / AlCl_3)$ and reduce the nitro groups $(H_2 + Pd/C)$.
- If they want us to draw all of the resonance structures, they'll ask. Most likely yes in a mechanism but no in a synthesis.
- Answer to PSet 4, Q6 given.
- For PSet 4, Q7a, recall that you can't run F-C alkylation when you have EWGs on the ring.
- PSet 4, Q7b's issue is not the reactivity. Guessing the actual product is p-bromoisopropylbenzene.
- Hint for PSet 4, Q8: You can create an aromatic ring by brominating one of the alkenes in cyclohexa-1,4-diene and then doing E2 twice.
 - Looks like Dickinson may be asking us to invent new stuff on PSets and the exam.
- Synthesis and reactivity of alcohols.
- Alcohols have unique properties.
 - Boiling points: Alcohols significantly raise the boiling points of the compounds to which they're attached (because of hydrogen bonding).
- General reactivity of alcohols.
 - Adding acid to an alcohol makes water a leaving group, yielding an alkyl carbocation that can then react with nucleophiles.

- Adding a very strong base/good nucleophile (a Grignard reagent) leads to the creation of an alkoxide (and the fully protonated Grignard species as a side product).
- Relative strengths of nucleophiles.

$$^-$$
NRH $>$ RO $^-$ / HO $^ >$ Br $^ >$ NR $_3$ $>$ Cl $^ >$ F $^ >$ H $_2$ O / ROH $>$ alkene $>$ benzene

- Acidity effects.
 - $-1^{\circ} > 2^{\circ} > 3^{\circ}$.
 - More inductive donating effects (e.g., from alkyl groups) means more destabilization of the conjugate base.
 - On the other hand, CF_3CH_2OH has a much lower p K_a because of the strong inductive withdrawing effects and resultant delocalization.
 - Similarly, phenoxide is stabilized via resonance.
 - At the extreme, $(CF_3)_3COH$ is a true acid (will be predominantly deprotonated in water).
 - Inductive and resonance effects can be mixed, too: 2,4,6-trinitrophenol^[1] is a very strong acid (p $K_a = 0.6$).
- Alkoxide generation.
 - 1. $EtOH + NaOH \Longrightarrow NaOEt + H_2O$.
 - 2. EtOH + Na° \longrightarrow NaOEt + $\frac{1}{2}$ H₂.
 - Na $^{\circ}$ is sodium metal.
 - This is a strongly exothermic reaction and a dangerous one (since H₂ is explosive).
 - It is common in laboratory use, though.
 - 3. $CyOH + NaNH_2 \longrightarrow NaOCy + NH_3$.
 - A more common form of this reaction uses LDA (lithium diisopropylamine), a sterically hindered strong base, instead of NaNH₂.
 - 4. i-BuOH + NaH \longrightarrow NaOBu i + H₂.
 - 5. $CH_3OH + LiMe \xrightarrow{} LiOMe + CH_4$.
 - We can also use LiBu, MeMgBr, etc. as other sources of carbanions.
 - 6. $PhOH + NaOH \longrightarrow NaOPh + H_2O$.

7.4 Office Hours (Dickinson)

- Is the order of the deactivating halogens reversed?
 - Yes fluorine should be the most deactivating. The way I have it drawn in Figure 6.8 is correct.
- Why would the Clemmensen reduction work for reducing a nitro group to an amine isn't it for carbonyls?
 - Don't get caught up on the name. The same reagents do the same thing in a few contexts; it's just using them to reduce ketones in particular that is termed the "Clemmensen reduction."
- Electron flow in Figure 7.4?
- Sulfonation vs. sulfation?
 - Would have to ask the IUPAC, but he could have it backwards. There probably isn't any issue though.

¹Also known as picric acid.