

Study and development of a solidification model using CFD

Final Thesis developed by:

Bazán Escoda, Aitor

Directed by:

Castilla, Robert

Master in:

Numerical methods in Engineering

Barcelona, date

Department of Fluid mechanics

FINAL MASTE

Universitat Politècnica de Catalunya

MASTER THESIS

Study and development of a solidification model using CFD

Author: Aitor Bazán Escoda Supervisor: Dr. Robert CASTILLA

A thesis submitted in fulfillment of the requirements for the degree of Master Thesis

in the

Research Group Name Escola Tècnica Superior d'Enginyeria de Camins, Canals i Ports de Barcelona

April 20, 2022

Declaration of Authorship

I, Aitor BAZÁN ESCODA, declare that this thesis titled, "Study and development of a solidification model using CFD" and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this University.
- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
- Where I have consulted the published work of others, this is always clearly attributed.
- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
- I have acknowledged all main sources of help.
- Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Signea:		
Date:		

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Abstract

Faculty Name Escola Tècnica Superior d'Enginyeria de Camins, Canals i Ports de Barcelona

Master Thesis

Study and development of a solidification model using CFD

by Aitor Bazán Escoda

Phase-changes, but specifically solidification processes are of great interest in automotive industry for the windshield washer tank design. This Master thesis will produce a comprehensive state of the art of current used methods to effectively represent solidification processes.

The content of this thesis is organized in the following way: the

Acknowledgements

The acknowledgments and the people to thank go here, don't forget to include your project advisor. . .

Contents

De	eclara	tion of	f Authorship	iii			
Al	ostrac	et		\mathbf{v}			
A	knov	vledge	ments	vii			
1	Intro	Introduction					
	1.1	Thesis	s Statement	. 1			
	1.2	Phase	-Change Process	. 1			
		1.2.1	Freezing Phenomena				
		1.2.2 State of Art. Numerical Methods					
		1.2.3	Stefan Problem	. 1			
	1.3	Conju	igate Heat Transfer	. 1			
		1.3.1	Mechanisms of Heat Transfer	. 1			
			1.3.1.1 Heat Conduction	. 1			
			1.3.1.2 Heat Convection	. 1			
		1.3.2	Governing Equations	. 1			
			1.3.2.1 Governing Equations for the Fluid	. 1			
			1.3.2.2 Governing Equations for the Solid	. 1			
		1.3.3	Boundary Conditions	. 1			
2	CEE	Cons	iderations	3			
4	2.1		FOAM. General Aspects				
	2.1	2.1.1	_				
		2.1.1	Boundary Conditions Directory Constant Proporties Directory				
		2.1.2	Constant Properties Directory				
		2.1.3	2.1.3.1 fvSchemes. Discretization Schemes				
			2.1.3.1 fvSchemes. Discretization Schemes				
			2.1.3.3 controlDict				
		2.1.4	Mesh Specifications				
	2.2		ne-of-Fluid Method: General Aspects				
	2.3		erical Methods for Phase-Change Phenomena				
	2.0	2.3.1	Enthalpy-Porosity Model. Governing Equations				
		2.0.1	2.3.1.1 Momentum Equation	. 3			
			2.3.1.2 Pressure Equation	_			
			2.3.1.3 Energy Equation	. 3			
		2.3.2	Lee Model. Governing Equations	. 3			
		2.0.2	2.3.2.1 Momentum Equation				
			2.3.2.2 Pressure Equation	. 3			
			2.3.2.2 Freesure Equation	. 3			

3	Nur	nerical	Simulation of Solidification Process	5			
	3.1		odology	6			
	3.2		FOAM: BuoyantBoussinesqPimpleFOAM. Natural Convection .	6			
			Control Loop	6			
		3.2.2	•	6			
			3.2.2.1 Momentum Equation	6			
			3.2.2.2 Pressure Equation	6			
			3.2.2.3 Energy Equation	6			
	3.3	Case I	Description.	6			
	0.0	3.3.1	Hypotheses And Assumptions	6			
		3.3.2	Case Setup	6			
		3.3.3	•	6			
	3.4		FOAM: IcoReactingMultiphaseInterFOAM. Phase-Change Pro-	U			
	5.4	-		6			
				6			
			Control Loop	6			
		3.4.2	0 1				
			3.4.2.1 Momentum Equation	6			
			3.4.2.2 Pressure Equation	6			
	2.5	<i>C</i> I	3.4.2.3 Energy Equation	6			
	3.5		Description	6			
		3.5.1	Hypotheses And Assumptions	6			
		3.5.2	Case Setup	6			
		3.5.3	Validation of Results and Conclusions	6			
4	Nui	nerical	Simulation of Heat Transfer	7			
	4.1	.1 Methodology					
	4.2		FOAM: chtMultiRegionFOAM. Conjugate Heat Transfer	7			
		-	Control Loop	7			
		4.2.2	· · · · · · · · · · · · · · · · · · ·	7			
			4.2.2.1 Momentum Equation	7			
			4.2.2.2 Pressure Equation	7			
			4.2.2.3 Energy Equation	7			
		4.2.3	Governing Equations of the Solid Region	7			
		1.2.0	4.2.3.1 Energy Equation	7			
		4.2.4	Case Setup	7			
		4.2.5	Validation of Results and Conclusions	7			
		1.2.0	validation of results and conclusions	,			
5	Con	clusion	ıs	9			
6	Futi	are Wo	rks	11			
A	Fred	quently	Asked Questions	13			
-	A 1	How	do I change the colors of links?	13			
				10			

List of Figures

List of Tables

List of Abbreviations

LAH List Abbreviations HereWSF What (it) Stands For

Physical Constants

Speed of Light $c_0 = 2.99792458 \times 10^8 \,\mathrm{m \, s^{-1}}$ (exact)

xix

List of Symbols

a distance r

P power $W(J s^{-1})$

 ω angular frequency rad

Introduction

1.1 Thesis Statement

Enthalpy-porosity for modeling the melting process and UDF (user defined function) to describe the expansion of PCM (phase-change material) as a result of the variation between the solid and liquid density.

Numerical modeling of a solid-liquid phase change in a closed 2D cavity with density change, elastic wall and natural convection.

1.2 Phase-Change Process

1.2.1 Freezing Phenomena

LATEX is not a WYSIWYG (What You See is What You Get) program, unlike word processors such as Microsoft Word or Apple's Pages. Instead, a document written for LATEX is actually a simple, plain text file that contains *no formatting*. You tell LATEX how you want the formatting in the finished document by writing in simple commands amongst the text, for example, if I want to use *italic text for emphasis*, I write the \emph{text} command and put the text I want in italics in between the curly braces. This means that LATEX is a "mark-up" language, very much like HTML.

- 1.2.2 State of Art. Numerical Methods
- 1.2.3 Stefan Problem
- 1.3 Conjugate Heat Transfer
- 1.3.1 Mechanisms of Heat Transfer
- 1.3.1.1 Heat Conduction
- 1.3.1.2 Heat Convection
- 1.3.2 Governing Equations
- 1.3.2.1 Governing Equations for the Fluid
- 1.3.2.2 Governing Equations for the Solid
- 1.3.3 Boundary Conditions

CFD Considerations

2.1 OpenFOAM. General Aspects

- 2.1.1 Boundary Conditions Directory
- 2.1.2 Constant Properties Directory
- 2.1.3 System Directory
- 2.1.3.1 fvSchemes. Discretization Schemes
- 2.1.3.2 fvSolution. Solver Solution Schemes
- 2.1.3.3 controlDict
- 2.1.4 Mesh Specifications
- 2.2 Volume-of-Fluid Method: General Aspects

2.3 Numerical Methods for Phase-Change Phenomena

- 2.3.1 Enthalpy-Porosity Model. Governing Equations
- 2.3.1.1 Momentum Equation
- 2.3.1.2 Pressure Equation
- 2.3.1.3 Energy Equation
- 2.3.2 Lee Model. Governing Equations
- 2.3.2.1 Momentum Equation
- 2.3.2.2 Pressure Equation
- 2.3.2.3 Energy Equation

Numerical Simulation of Solidification Process

3.1 Methodolog	gy
----------------	----

- 3.2 OpenFOAM: BuoyantBoussinesqPimpleFOAM. Natural Convection
- 3.2.1 Control Loop
- 3.2.2 Governing Equations
- 3.2.2.1 Momentum Equation
- 3.2.2.2 Pressure Equation
- 3.2.2.3 Energy Equation
- 3.3 Case Description.
- 3.3.1 Hypotheses And Assumptions
- 3.3.2 Case Setup
- 3.3.3 Validation of Results and Conclusions
- 3.4 OpenFOAM: IcoReactingMultiphaseInterFOAM. Phase-Change Process
- 3.4.1 Control Loop
- 3.4.2 Governing Equations
- 3.4.2.1 Momentum Equation
- 3.4.2.2 Pressure Equation
- 3.4.2.3 Energy Equation
- 3.5 Case Description.
- 3.5.1 Hypotheses And Assumptions
- 3.5.2 Case Setup
- 3.5.3 Validation of Results and Conclusions

Numerical Simulation of Heat Transfer

- 4.1 Methodology
- 4.2 OpenFOAM: chtMultiRegionFOAM. Conjugate Heat Transfer
- 4.2.1 Control Loop
- 4.2.2 Governing Equations of the Fluid Region
- 4.2.2.1 Momentum Equation
- 4.2.2.2 Pressure Equation
- 4.2.2.3 Energy Equation
- 4.2.3 Governing Equations of the Solid Region
- 4.2.3.1 Energy Equation
- 4.2.4 Case Setup
- 4.2.5 Validation of Results and Conclusions

Conclusions

Future Works

Appendix A

Frequently Asked Questions

A.1 How do I change the colors of links?

The color of links can be changed to your liking using:

\hypersetup{urlcolor=red}, or

\hypersetup{citecolor=green}, or

\hypersetup{allcolor=blue}.

If you want to completely hide the links, you can use:

\hypersetup{allcolors=.}, or even better:

\hypersetup{hidelinks}.

If you want to have obvious links in the PDF but not the printed text, use:

\hypersetup{colorlinks=false}.