Gradient Boosting for Regression

Sunday, January 26, 2025 3:17 PM

Steps:

1. Initialize
$$f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y, \gamma)$$

2. For
$$m = 1$$
 to M

a. For
$$i=1,2,3,...,N$$

Compute $r_{im}=\left[\frac{\delta L(y,\gamma)}{\delta f(x_i)}\right]$

Compute $r_{im}=\left[\frac{\delta L(y,\gamma)}{\delta f(x_i)}\right]$ b. Fit the regression tree to the targets r_{im} giving terminal regions R_{jm} , $j=1,2,3,\ldots,J_m$

c. For
$$j=1,2,3,...,J_m$$

Compute $\gamma_{jm}=\arg\min_{\gamma}\sum_{x_i\in R_{jm}}L(y_i,f_{m-1}(x_i)+\gamma)$

d. Update
$$f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$$

3. Update
$$\hat{f}(x) = f_M(x)$$

Step 1:

It states that we should have a loss function that should be differentiable

$$f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y, \gamma)$$

$$f_0(x) = \arg\min_{\gamma} \frac{1}{2} \sum_{i=1}^{N} L(y_i, \gamma)$$

$$\frac{\delta f_0(x)}{\delta \gamma} = \frac{1}{2} \sum_{i=1}^{n} \frac{\delta (y_i - \gamma)^2}{\delta \gamma}$$

$$\frac{\delta f_0(x)}{\delta \gamma} = \sum_{i=1}^{n} (y_i - \gamma)^2 \frac{\delta (y_i - \gamma)}{\delta \gamma}$$

$$\frac{\delta f_0(x)}{\delta \gamma} = -\sum_{i=1}^{n} (y_i - \gamma) = \sum_{i=1}^{n} (\gamma - y_i) = 0$$

R&D Spend	Administration	Marketing Spend	Profit
165	137	472	192
101	92	250	144
29	127	201	91

$$\frac{\delta f_0(x)}{\delta \gamma} = \sum_{i=1}^{3} (\gamma - y_i) = (\gamma - 192) + (\gamma - 144) + (\gamma - 91) = 0$$

$$\frac{\delta f_0(x)}{\delta \gamma} = (\gamma - 192) + (\gamma - 144) + (\gamma - 91) = 0$$
$$3\gamma = 192 + 144 + 91$$
$$\gamma = 142.33$$

R&D Spend	Administration	Marketing Spend	Profit	$f_0(x)$
165	137	472	192	142.33
101	92	250	144	142.33
29	127	201	91	142.33

Step 2:

For
$$i=1,2,3,...,N$$
 Compute $r_{lm}=-\left[\frac{\delta L(y,f(x_l))}{\delta f(x_l)}\right]_{f=f_{m-1}}$; $i=row,m=decision\ tree$

For
$$m=1$$

$$r_{i1} = -\left[\frac{\delta L(y, f(x_i))}{\delta f(x_i)}\right]_{f=f_0}$$

$$r_{i1} = (y_i - \gamma)_{f=f_0}$$

$$r_{11} = 192 - 142.33 = 49.67$$

$$r_{21} = 144 - 142.33 = 1.67$$

$$r_{31} = 91 - 142.33 = -51.33$$

R&D Spend	Administration	Marketing Spend	Profit	$f_0(x)$	r_{im}
165	137	472	192	142.33	49.67
101	92	250	144	142.33	1.67
29	127	201	91	142.33	-51.33

Calculate Output values

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma)$$

$$\begin{split} \gamma_{j1} &= \arg\min_{\gamma} \sum_{x_i \in R_{j1}} L(y_i, f_0(x_i) + \gamma) \\ \text{For } j &= 1 \\ \gamma_{11} &= \arg\min_{\gamma} \sum_{x_i \in R_{11}} L(y_i, f_0(x_i) + \gamma) \\ \gamma_{11} &= \frac{1}{2} (y_i - (f_0(x_i) + \gamma))^2 = 0 \\ \frac{\delta \gamma_{11}}{\delta \gamma} &= (y_i - f_0(x_i) - \gamma) \frac{\delta (y_i - f_0(x_i) - \gamma)}{\delta \gamma} = 0 \\ (y_i - f_0(x_i) - \gamma) &= 0 \\ 91 - 142.33 - \gamma &= 0 \\ \gamma_{11} &= -51.33 \end{split}$$

$$\begin{split} \gamma_{21} &= \arg\min_{\gamma} \sum_{x_i \in R_{11}} L(y_i, f_0(x_i) + \gamma) \\ \gamma_{21} &= \frac{1}{2} (y_i - (f_0(x_i) + \gamma))^2 = 0 \\ \frac{\delta \gamma_{21}}{\delta \gamma} &= \sum_{1}^{2} (y_i - f_0(x_i) - \gamma) \frac{\delta (y_i - f_0(x_i) - \gamma)}{\delta \gamma} = 0 \\ (y_1 - f_0(x_1) - \gamma) + (y_2 - f_0(x_2) - \gamma) &= 0 \\ (192 - 142.33 - \gamma) + (144 - 142.33 - \gamma) &= 0 \\ (49.67 - \gamma) + (1.67 - \gamma) &= 51.34 - 2\gamma &= 0 \\ \gamma_{21} &= 25.67 \end{split}$$

$$f_1(x) = f_0(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$$
 Output from Decision Tree