Résumé de cours : Semaine 35, du 27 juin au 30 juin.

Les probabilités (suite et fin)

Espérance et variance

L'espérance 1.1

Définition. Soit X est une variable aléatoire discrète à valeurs réelles. \diamond Si X est à valeurs dans \mathbb{R}_+ , $E(X) \stackrel{\triangle}{=} \sum_{d \in X(\Omega)} d.P(X=d) \in \mathbb{R}_+ \cup \{+\infty\}.$

 \diamond Sinon, on dit que X est d'espérance finie si et seulement si $(d.P(X=d))_{d\in X(\Omega)}$ est sommable, et dans ce cas, $E(X) \stackrel{\Delta}{=} \sum_{d \in X(\Omega)} d.P(X = d)$.

Remarque. E(X) ne dépend que de la loi de X.

Propriété. Si Ω est fini ou dénombrable, alors $E(X) = \sum_{x \in \Omega} X(\omega) P(\{\omega\})$.

Propriété. Si A est un événement de l'espace probabilisé (Ω, \mathcal{F}, P) , alors $P(A) = E(1_A)$, où 1_A désigne la fonction caractéristique de la partie A de Ω .

Définition. Une variable aléatoire réelle est dite centrée si et seulement si E(X) = 0.

Exercice. Montrer qu'une variable aléatoire réelle et positive est centrée si et seulement si elle est nulle presque sûrement.

Il faut savoir le démontrer.

Théorème de transfert : Soit $X: \Omega \longrightarrow E$ une variable aléatoire discrète et $g: E \longrightarrow \mathbb{R}$

une application.
$$g(X)$$
 est d'espérance finie si et seulement si la famille $(g(d).P(X=d))_{d\in X(\Omega)}$ est sommable, et dans ce cas,
$$E(g(X)) = \sum_{d\in X(\Omega)} g(d)P(X=d)$$
.

Il faut savoir le démontrer lorsque $\overline{X}(\Omega)$ est fini.

Linéarité de l'espérance :

On note $L^1(\Omega, P)$ l'ensemble des variables aléatoires discrètes de Ω dans $\mathbb R$ d'espérance finie. $L^1(\Omega, P)$ est un espace vectoriel et pour tout $X, Y \in L^1(\Omega, P), E(\alpha X + \beta Y) = \alpha E(X) + \beta E(Y).$ Il faut savoir le démontrer.

Propriété. Si $X \in L^1(\Omega, P)$, pour tout $a, b \in \mathbb{R}$, $aX + b \in L^1(\Omega, P)$ et E(aX + b) = aE(X) + b.

Propriété. Soit $X \in L^1(\Omega, P)$. Si X est presque sûrement constante égale à c, alors E(X) = c. X est presque sûrement constante si et seulement si X est presque sûrement égale à son espérance.

Propriété. $X \ge 0 \Longrightarrow E(X) \ge 0$.

Propriété. Croissance de l'espérance : $X \le Y \Longrightarrow E(X) \le E(Y)$.

Propriété. Inégalité triangulaire : Pour tout $X \in L^1(\Omega, P)$, |E(X)| < E(|X|).

Propriété de comparaison : Soit X et Y deux variables aléatoires réelles que $|X| \leq Y$ et Y est d'espérance finie. Alors X est aussi d'espérance finie.

Formule. Inégalité de Markov : Si $X \ge 0$ et a > 0, alors $P(X \ge a) \le \frac{E(X)}{a}$. Il faut savoir le démontrer.

Théorème. Si X_1, \ldots, X_k sont k variables aléatoires discrètes réelles d'espérances finies et mutuellement indépendantes, alors $X_1 \times \cdots \times X_k$ est d'espérance finie et

 $E(X_1 \times \cdots \times X_k) = E(X_1) \times \cdots \times E(X_k)$. La réciproque est fausse.

À savoir démontrer lorsque les $X_i(\Omega)$ sont finis.

1.2La variance

Définition. Soit $k \in \mathbb{N}^*$ et X une variable aléatoire réelle. Si X^k est d'espérance finie, on dit que $E(X^k)$ est le moment d'ordre k de X.

Notation. On note $L^2(\Omega, P)$ l'ensemble des variables aléatoires X discrètes à valeurs réelles possédant un moment d'ordre 2, définies sur l'espace probabilisé (Ω, \mathcal{F}, P) .

Lemme: Si $X_1, X_2 \in L^2(\Omega, P)$, alors $X_1 X_2 \in L^1(\Omega, P)$.

Corollaire. $L^2(\Omega, P)$ est un sous-espace vectoriel de $L^1(\Omega, P)$.

Définition. Si $X_1, X_2 \in L^2(\Omega, P)$, la covariance est $Cov(X_1, X_2) = E[(X_1 - E(X_1))(X_2 - E(X_2))]$.

Propriété. Cov est une forme bilinéaire symétrique positive sur $L^2(\Omega, P)$, mais ce n'est pas un produit scalaire.

Définition. Si $X \in L^2(\Omega, P)$, la variance de X est $Var(X) = E[(X - E(X))^2]$. L'écart type de X est $\sigma(X) = \sqrt{Var(X)}$.

Remarque. Var(X) = 0 si et seulement si X est presque sûrement constante.

Définition. X est réduite si et seulement si $X \in L^2(\Omega, P)$ et Var(X) = 1.

Propriété. Formule de Koenig-Huygens : Si $X \in L^2(\Omega, P)$, $Var(X) = E(X^2) - E(X)^2$. Si $X_1, X_2 \in L^2(\Omega, P)$, alors $Cov(X_1, X_2) = E(X_1X_2) - E(X_1)E(X_2)$: donc, si deux variables aléatoires de $L^2(\Omega, P)$ sont indépendantes, elles sont orthogonales au sens de Cov (la réciproque est fausse).

Propriété. Pour $a, b \in \mathbb{R}$ et $X \in L^2(\Omega, P)$, $Var(aX + b) = a^2 Var(X)$.

Propriété. Si $X \in L^2(\Omega, P)$ avec $\sigma(X) \neq 0$, alors $\frac{X - E(X)}{\sigma(X)}$ est centrée et réduite.

Propriété.

$$\diamond \ \ \text{Si} \ X_1, X_2 \in L^2(\Omega, P), \ Var(X_1 + X_2) = Var(X_1) + Var(X_2) + 2Cov(X_1, X_2).$$

$$\Rightarrow \text{ Si } X_1, X_2 \in L^2(\Omega, P), \ Var(X_1 + X_2) = Var(X_1) + Var(X_2) + 2Cov(X_1, X_2).$$

$$\Rightarrow \text{ Si } X_1, \dots, X_k \in L^2(\Omega, P), \ Var(X_1 + \dots + X_k) = \sum_{i=1}^k Var(X_i) + 2\sum_{1 \le i < j \le k} Cov(X_i, X_j).$$

 \diamond Si X_1, \ldots, X_k sont k variables aléatoires de $L^2(\Omega, P)$ que l'on suppose **deux à deux indépendantes**, alors $Var(X_1 + \cdots + X_k) = Var(X_1) + \cdots + Var(X_k)$. Il faut savoir le démontrer.

Propriété. Inégalité de Cauchy-Schwarz : pour tout $X,Y \in L^2(\Omega,P), E(XY)^2 \leq E(X^2)E(Y^2),$ avec égalité ssi il existe $\alpha, \beta \in \mathbb{R}$ tel que $(\alpha, \beta) \neq (0, 0)$ et $\alpha X + \beta Y$ est presque sûrement nulle.

pour tout $X, Y \in L^2(\Omega, P)$, $Cov(X, Y)^2 \leq Var(X)Var(Y)$, avec égalité ssi il existe $\alpha, \beta \in \mathbb{R}$ tel que $(\alpha, \beta) \neq (0, 0)$ et $\alpha X + \beta Y$ est presque sûrement constante.

Définition. (hors programme): Soient $X, Y \in L^2(\Omega, P)$ telles que Var(X)Var(Y) > 0. Le coefficient de corrélation linéaire entre X et Y est $Corr(X,Y) \stackrel{\Delta}{=} \frac{\text{Cov}(X,Y)}{\sigma(X)\sigma(Y)}$.

Propriété. $Corr(X,Y) \in [-1,1].$

Propriété. |Corr(X,Y)|=1 si et seulement si il existe $(a,b)\in\mathbb{R}^2$ tel que P(Y=aX+b)=1.

Remarque. Corr(X,Y) indique dans quelle mesure Y dépend linéairement de X, mais Corr(X,Y)ne mesure pas les dépendances non linéaires (on peut avoir par exemple $Corr(X, X^2) = 0$).

Formule. Espérance et variance pour les lois au programme.

 \diamond Loi de Bernoulli de paramètre $p \in [0,1]: P(X=1) = p$ et P(X=0) = 1 - p.

|E(X) = p et Var(X) = p(1-p)|.

 \diamond Loi binomiale de paramètres $n \in \mathbb{N}^*$ et $p \in [0,1]$: Pour tout $k \in \{0,\ldots,n\}$,

 $P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$ (et P(X=m) = 0 pour $m \notin \{0, \dots, n\}$).

 $\overline{E(X) = np \text{ et } Var(X)} = np(1-p)$.

 \diamond Loi géométrique de paramètre $p \in]0,1[$: Pour tout $n \in \mathbb{N}^*, P(X=n)=(1-p)^{n-1}p$ (et

$$P(X=0)=0). \quad E(X)=\frac{1}{p} \text{ et } Var(X)=\frac{1-p}{p^2}.$$

$$\Rightarrow \text{ Loi de Poisson de paramètre } \lambda \in \mathbb{R}_+^*:$$

pour tout $n \in \mathbb{N}$, $P(X = n) = e^{-\lambda} \frac{\lambda^n}{n!}$. $E(X) = \lambda = Var(X)$.

$\mathbf{2}$ Propriétés de convergence

Formule. Inégalité de Bienaymé-Tchebychev : Soit X une variable aléatoire réelle. Alors, pour tout $\varepsilon > 0$, $\left| P(|X - E(X)| \ge \varepsilon) \le \frac{Var(X)}{\varepsilon^2} \right|$.

Définition. (hors programme) Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires et soit X une variable aléatoire. X_n converge vers X en probabilité ssi pour tout $\varepsilon > 0$, $P(|X_n - X| \ge \varepsilon) \xrightarrow[n \to +\infty]{} 0$.

Théorème. Loi faible des grands nombres :

Soit (X_n) une suite de variables aléatoires dans $L^2(\Omega, P)$ que l'on suppose toutes de même loi et deux à deux indépendantes. Posons $\mu = E(X_n)$, qui est indépendante de n. Alors $\frac{X_1 + \cdots + X_n}{n}$ converge en probabilité vers la variable aléatoire constante égale à μ .

Il faut savoir le démontrer.

Théorie de l'intégration

Notation. $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}, a, b \in \mathbb{R} \text{ avec } a < b, E \text{ est un Banach, i.e un } \mathbb{K}\text{-espace vectoriel normé}$ complet, f est une application de [a, b] dans E.

3 Intégration des applications en escalier

3.1 Les applications en escalier

Définition. On appelle subdivision de [a, b] toute famille finie $(a_i)_{0 \le i \le n}$ de réels telle que $a = a_0 < a_1 < \cdots < a_n = b$.

Notation. On notera S l'ensemble des subdivisions de [a, b].

Exemple. $\left(a+i\frac{b-a}{n}\right)_{0\leq i\leq n}\in\mathcal{S}.$ On dit que c'est une subdivision uniforme.

Définition. Le pas de $\sigma = (a_i)_{0 \le i \le n} \in \mathcal{S}$ est $\delta(\sigma) = \max_{1 \le i \le n} (a_i - a_{i-1})$.

Notation. Le support de la subdivision σ est l'ensemble $A(\sigma) \stackrel{\Delta}{=} \{a_i / 0 \le i \le n\}$.

Propriété. Notons $\mathcal{P}_f([a,b])$ l'ensemble des parties finies de [a,b] contenant a et b.

$$\begin{array}{ccccc} \text{L'application} & A: & \mathcal{S} & \longrightarrow & \mathcal{P}_f([a,b]) \\ & \sigma & \longmapsto & A(\sigma) \end{array} \quad \text{est bijective}.$$

Définition. $\sigma \in \mathcal{S}$ est plus fine que $\sigma' \in \mathcal{S}$ ssi $A(\sigma) \supseteq A(\sigma')$. Dans ce cas, on note $\sigma' \preceq \sigma$.

Propriété. \leq est une relation d'ordre partiel.

Définition. Si $\sigma, \sigma' \in \mathcal{S}$, on pose $\sigma \cup \sigma' \stackrel{\Delta}{=} A^{-1}(A(\sigma) \cup A(\sigma'))$: c'est l'unique subdivision de [a, b] dont le support est la réunion des supports de σ et de σ' . C'est $\sup \{\sigma, \sigma'\}$.

Définition. f est une application en escalier sur [a,b] si et seulement s'il existe une subdivision $(a_i)_{0 \le i \le n}$ de [a,b] telle que, pour tout $i \in \mathbb{N}_n$, f est constante sur l'intervalle $]a_{i-1},a_i[$.

Définition. Si f est en escalier et $\sigma = (a_i)_{0 \le i \le n} \in \mathcal{S}$, σ est une subdivision adaptée à f si et seulement si, pour tout $i \in \mathbb{N}_n$, f est constante sur l'intervalle $]a_{i-1}, a_i[$.

Propriété. Les applications en escalier de [a, b] sont bornées.

Propriété. Soit f une application en escalier et σ une subdivision de [a,b] adaptée à f. Alors toute subdivision plus fine que σ est aussi adaptée à f.

3.2 Intégrale d'une application en escalier

Définition. Soit f une application en escalier et $\sigma = (a_i)_{0 \le i \le n}$ une subdivision adaptée à f. Pour tout $i \in \mathbb{N}_n$, notons λ_i la valeur constante de f sur $|a_{i-1}, a_i|$. On pose

$$\int_{a}^{b} f(t)dt = \sum_{i=1}^{n} (a_i - a_{i-1})\lambda_i.$$

Cette quantité est indépendante du choix de σ parmi les subdivisions adaptées à f. Il faut savoir le démontrer.

Remarque. Lorsque $E=\mathbb{R}, \int_a^b f$ représente une somme d'aires de rectangles, affectées d'un signe négatif lorsque $\lambda_i < 0$, donc $\int_a^b f$ est l'aire algébrique de la surface située entre le graphe de f et l'axe des abscisses.

Propriété. Supposons que f est en escalier et soit g une application de [a,b] dans E qui ne diffère de f qu'en un nombre fini de points de [a,b]. Alors g en escalier et $\int_a^b g = \int_a^b f$.

Théorème. Notons $\mathcal{E}([a,b],E)$ l'ensemble des applications en escalier de [a,b] dans E. C'est un \mathbb{K} -espace vectoriel et l'application $f \mapsto \int_{-\infty}^{b} f$ est linéaire.

Il faut savoir le démontrer.

Propriété. Soient F un second \mathbb{K} -espace vectoriel de dimension finie et $u \in L(E, F)$. Si f est en escalier, $u \circ f$ est en escalier et $\int_a^b u \circ f = u\left(\int_a^b f\right)$.

Propriété. Si f est une application en escalier à valeurs dans \mathbb{R}_+ , $\int_a^b f \geq 0$.

Corollaire. Si $f, g \in \mathcal{E}([a, b], E)$, alors $[\forall t \in [a, b], f(t) \leq g(t)] \Longrightarrow \int_a^b f \leq \int_a^b g$.

Inégalité triangulaire : Pour tout $f \in \mathcal{E}([a,b],E)$, $\left\| \int_a^b f(t)dt \right\| \leq \int_a^b \|f(t)\|dt$.

Relation de Chasles : Soit $f \in \mathcal{E}([a,b],E)$ et $c \in]a,b[.$

Alors $f_{/[a,c]}$ et $f_{/[c,b]}$ sont des applications en escalier et $\int_a^b f = \int_a^c f + \int_c^b f$.

4 Les applications réglées (hors programme)

4.1 Définition

Définition. On dit que $f:[a,b] \to E$ est réglée si et seulement si c'est la limite uniforme d'une suite d'applications en escalier, c'est-à-dire si et seulement si il existe une suite $(f_n) \in \mathcal{E}([a,b],E)^{\mathbb{N}}$ telle que $\sup_{x \in [a,b]} ||f_n(t) - f(t)|| \underset{n \to +\infty}{\longrightarrow} 0$. On note $\mathcal{R}([a,b],E)$ l'ensemble des applications réglées.

Propriété. $\mathcal{R}([a,b],E)$ est l'adhérence de $\mathcal{E}([a,b],E)$ dans $(\mathcal{B}([a,b],E),\|.\|_{\infty})$.

4.2 Les applications continues par morceaux

Propriété. $C([a,b],E) \subset \mathcal{R}([a,b],E)$: toute application continue est réglée. Il faut savoir le démontrer.

Définition. $f:[a,b] \to E$ est continue par morceaux si et seulement si il existe une subdivision $\sigma=(a_i)_{0\leq i\leq n}$ de [a,b] telle que, pour tout $i\in\mathbb{N}_n,\ f_{/]a_{i-1},a_i[}$ est prolongeable par continuité sur $[a_{i-1},a_i]$, ce qui est équivalent à f est continue sur $[a,b]\setminus\{a_0,\ldots,a_n\}$ et f admet en chaque a_i une limite à droite (sauf en b) et une limite à gauche (sauf en a). Dans ce cas, on dit que la subdivision σ est adaptée à f.

Définition. Si I est un intervalle quelconque de \mathbb{R} , $f:I\longrightarrow E$ est continue par morceaux si et seulement si toutes ses restrictions aux segments inclus dans I sont continues par morceaux.

Propriété. Les applications continues par morceaux de [a,b] dans E sont réglées.

Théorème. (Hors programme) Une application de [a,b] dans E est réglée si et seulement si elle admet en tout point de [a,b] une limite à droite (sauf en b) et une limite à gauche (sauf en a).

Corollaire. Les applications monotones de [a, b] dans \mathbb{R} sont réglées.

Corollaire. Le produit de deux applications réglées est réglé.

5 Intégration des applications réglées

5.1 Construction

Définition. Soit $f:[a,b] \longrightarrow E$ une application réglée.

Il existe
$$(f_n)_{n\in\mathbb{N}}\in\mathcal{E}([a,b],E)^{\mathbb{N}}$$
 telle que $f_n\overset{\|\cdot\|_{\infty}}{\underset{n\to+\infty}{\longrightarrow}}f$. On pose $\int_a^b f(t)\ dt=\lim_{n\to+\infty}\Big(\int_a^b f_n(t)\ dt\Big)$.

Il faut savoir le démontrer.

Remarque. Seule la construction de l'intégrale sur [a, b] d'une application continue par morceaux est au programme.

5.2 Propriétés

Théorème. $\mathcal{R}([a,b],E)$ est un \mathbb{K} -espace vectoriel et $f \mapsto \int_a^b f$ est linéaire.

Il faut savoir le démontrer.

Propriété. Soit F un second \mathbb{K} -espace vectoriel de Banach et $u \in L(E,F)$ que l'on suppose continue.

Si
$$f \in \mathcal{R}([a,b], E)$$
, alors $u \circ f \in \mathcal{R}([a,b], F)$ et $\int_a^b u \circ f = u \left(\int_a^b f\right)$.

Il faut savoir le démontrer

Propriété. On suppose que E est de dimension finie et que $e = (e_1, \ldots, e_p)$ est une base de E. Soit $f \in \mathcal{R}([a,b],E)$. Notons f_1,\ldots,f_p les applications coordonnées de f, de sorte que, pour tout $t \in [a,b]$, $f(t) = \sum_{j=1}^{n} f_j(t)e_j$. Alors f_1,\ldots,f_p sont réglées et $\int_a^b f(t) dt = \sum_{j=1}^n \left(\int_a^b f_j(t) dt\right) e_j$.

Remarque. Réciproquement, si f_1, \ldots, f_p sont réglées, alors f est aussi réglée.

Propriété. Supposons que $E = \prod_{i=1}^{p} E_i$, où pour tout $i \in \mathbb{N}_p$, E_i est un espace de Banach. Soit $f \in \mathcal{R}([a,b],E)$. Notons f_1,\ldots,f_p les applications composantes de f, de sorte que, pour tout $t \in [a,b]$, $f(t) = (f_1(t),\ldots,f_p(t))$. Alors f_1,\ldots,f_p sont réglées et $\int_a^b f = \left(\int_a^b f_i\right)_{1 \leq i \leq p}$.

Remarque. Réciproquement, si f_1, \ldots, f_p sont réglées, alors f est aussi réglée.

Inégalité triangulaire : Pour tout
$$f \in \mathcal{R}([a,b],E), \left\| \int_a^b f(t)dt \right\| \leq \int_a^b \|f(t)\|dt$$
.

Propriété. Si f est une application réglée à valeurs dans \mathbb{R}_+ , $\int_a^b f \geq 0$.

Corollaire. Si $f,g \in \mathcal{R}([a,b],E)$, alors $[\forall t \in [a,b], \ f(t) \leq g(t)] \Longrightarrow \int_a^b f \leq \int_a^b g$: l'intégrale est croissante.

Exemple. Si
$$f$$
 est réglée, $\left\| \int_a^b f(t)dt \right\| \le (b-a) \sup_{t \in [a,b]} \|f(t)\|$.

Propriété. Soit f une application réglée (resp : continue par morceaux) de [a,b] dans E. Si g est une application de [a,b] dans E qui ne diffère de f qu'en un nombre fini de points de [a,b], alors g est réglée (resp : continue par morceaux) et $\int_a^b f = \int_a^b g$.

Relation de Chasles : soit $f \in \mathcal{R}([a,b],E)$ et $c \in]a,b[$. Alors $f|_{[a,c]}$ et $f|_{[c,b]}$ sont réglées et $\int_a^b f = \int_a^c f + \int_c^b f$.

Convention : Si f est une application définie en $\alpha \in \mathbb{R}$, on convient $\int_{0}^{\alpha} f = 0$.

Convention : Si $f:[a,b] \longrightarrow E$ est réglée, on convient que $\int_{b}^{a} f = -\int_{a}^{b} f$.

Propriété. La relation de Chasles se généralise au cas d'une application f réglée sur l'intervalle $[\min(a, b, c), \max(a, b, c)]$, les réels (a, b, c) étant quelconques.

Remarque. Avec ces conventions, les égalités établies dans ce paragraphe restent valables, mais ce n'est pas le cas des inégalités.

6 Sommes de Riemann

Notation. On fixe une application f de [a, b] dans E.

Définition. On appelle subdivision pointée de [a,b] tout couple (σ,ξ) , où $\sigma=(a_i)_{0\leq i\leq n}$ est une subdivision de [a,b] et où $\xi=(\xi_i)_{1\leq i\leq n}$ vérifie $\forall i\in\mathbb{N}_n$ $\xi_i\in[a_{i-1},a_i]$.

Notation. Notons \mathcal{S}' l'ensemble des subdivisions pointées de [a,b]. Si $(\sigma,\xi)=((a_i),(\xi_i))\in\mathcal{S}'$, on notera $f_{\sigma,\xi}$ l'application en escalier définie par $\forall i\in\mathbb{N}_n\quad \forall x\in]a_{i-1},a_i[\quad f(x)=f(\xi_i),$

Définition. Soit $(\sigma, \xi) = ((a_i)_{0 \le i \le n}, (\xi_i)_{1 \le i \le n}) \in \mathcal{S}'$. On appelle somme de Riemann associée à f et à (σ, ξ) la quantité $S(f, \sigma, \xi) = \int_a^b f_{\sigma, \xi} = \sum_{i=1}^n (a_i - a_{i-1}) f(\xi_i)$.

Théorème. Si f est une application réglée de [a,b] dans E,

$$\forall \varepsilon \in \mathbb{R}_+^* \ \exists \alpha \in \mathbb{R}_+^* \ \forall (\sigma, \xi) \in \mathcal{S}' \ (\delta(\sigma) \leq \alpha \Longrightarrow \|S(f, \sigma, \xi) - \int_a^b f\| \leq \varepsilon).$$

À savoir démontrer lorsque f est continue.

Corollaire. Soit $(\sigma_n, \xi_n)_{n \in \mathbb{N}} \in \mathcal{S}'^{\mathbb{N}}$ une suite de subdivisions pointées dont le pas tend vers 0. Alors, si f est réglée, la suite des sommes de Riemann associée à f et à (σ_n, ξ_n) converge vers $\int_a^b f$. Plus précisément, en notant, pour tout $n \in \mathbb{N}$, $\sigma_n = (a_{i,n})_{0 \le i \le \varphi(n)}$ et $\xi_n = (\xi_{i,n})_{1 \le i \le \varphi(n)}$, si f est réglée et si $\max_{1 \le i \le \varphi(n)} (a_{i,n} - a_{i-1,n}) \xrightarrow[n \to +\infty]{} 0$,

alors
$$\sum_{i=1}^{\varphi(n)} (a_{i,n} - a_{i-1,n}) f(\xi_{i,n}) \underset{n \to +\infty}{\longrightarrow} \int_a^b f$$
.

Cas particulier: si f est continue par morceaux, $\frac{b-a}{n} \sum_{i=1}^{n} f(a+i\frac{b-a}{n}) \xrightarrow[n \to +\infty]{} \int_{a}^{b} f$.

7 Primitives

Notation. Conformément au programme officiel, on se limite au cas où E est un \mathbb{K} -espace vectoriel **de dimension finie**. On sait alors qu'il est complet, donc c'est bien un espace de Banach. On fixe un intervalle I de \mathbb{R} d'intérieur non vide et une application $f:I\longrightarrow E$.

Définition. $g: I \longrightarrow E$ est une primitive de f si et seulement si g est dérivable sur I et g' = f.

Propriété. Si f admet une primitive g_0 sur I, alors g est une primitive de f si et seulement si il existe $k \in E$ tel que $\forall x \in I$ $g(x) = g_0(x) + k$.

Propriété. On suppose que f est réglée sur I (c'est-à-dire que les restrictions de f aux intervalles compacts inclus dans I sont réglées). Soit $a \in I$. Alors $x \longmapsto \int_a^x f(t) \ dt$ est continue sur I.

Théorème fondamental de l'analyse : On suppose que f est continue sur I. Soit $a \in I$.

Il faut savoir le démontrer.

Corollaire. Soient $(a,b) \in \mathbb{R}^2$ avec $a \neq b$ et f une application continue de [a,b] dans E. Si F est une primitive de f, alors $\int_a^b f(t)dt = F(b) - F(a) \stackrel{\text{notation}}{=} [F(t)]_a^b$.

Corollaire. Si f est une application de classe C^1 sur [a,b], $\int_a^b f'(t)dt = f(b) - f(a)$.

Théorème. Soit f une application de [a, b] dans \mathbb{R} .

Si f est **continue**, positive et si $\int_a^b f = 0$, alors f est identiquement nulle sur [a, b]. Il faut savoir le démontrer.

Définition. Si $f:[a,b] \longrightarrow E$ est réglée, la valeur moyenne de f est $\frac{1}{b-a} \int_a^b f(t) \ dt$.

Propriété. Si $f:[a,b] \longrightarrow \mathbb{R}$ est une application continue, f atteint sa valeur moyenne : il existe $c \in]a,b[$ tel que $f(c)=\frac{1}{b-a}\int_a^b f(t)\ dt.$