```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
```

- data=pd.read_csv("/content/sample_data/store_data.csv")
- data.info()
- <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 200 entries, 0 to 199
 Data columns (total 5 columns):

```
# Column Non-Null Count Dtype

O CustomerID 200 non-null int64
Gender 200 non-null object
Age 200 non-null int64
Annual Income (k$) 200 non-null int64
Spending Score (1-100) 200 non-null int64
dtypes: int64(4), object(1)
memory usage: 7.9+ KB
```

[] data

- 4	\sim	h
ч		7
	-	_

	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	Male	19	15	39
1	Male	21	15	81
2	Female	20	16	6
3	Female	23	16	77
4	Female	31	17	40
195	Female	35	120	79
196	Female	45	126	28
197	Male	32	126	74
198	Male	32	137	18
199	Male	30	137	83

200 rows × 4 columns

```
[ ] #Dropping the CustomerID column
data.drop('CustomerID',inplace=True,axis=1)
```

```
data.shape
```

(200, 4)

```
[ ] X = data.iloc[:, [2, 3]].values
```

```
[ ] from sklearn.cluster import KMeans
    wcss = []
    for i in range(1, 11):
        kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)
        kmeans.fit(X)
        wcss.append(kmeans.inertia_)
    plt.plot(range(1, 11), wcss)
    plt.title('The Elbow Method')
    plt.xlabel('Number of clusters')
    plt.ylabel('WCSS')
    plt.show()
```



```
[ ] kmeans = KMeans(n_clusters = 5, init = 'k-means++', random_state = 42)
    y_kmeans = kmeans.fit_predict(X)
```

```
plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s = 100, c = 'red', label = 'Cluster 1')
plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 100, c = 'blue', label = 'Cluster 2')
plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s = 100, c = 'green', label = 'Cluster 3')
plt.scatter(X[y_kmeans == 3, 0], X[y_kmeans == 3, 1], s = 100, c = 'cyan', label = 'Cluster 4')
plt.scatter(X[y_kmeans == 4, 0], X[y_kmeans == 4, 1], s = 100, c = 'magenta', label = 'Cluster 5')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 300, c = 'yellow', label = 'Centroids')
plt.title('Clusters of customers')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()
```

