TERM PROJECT

H/EV Modeling and Simulation Exercise

Zhaofeng Tian

gy8217

Advisor 2002 (or Advisor 2003) is a GUI software program that utilizes Matlab/Simulink to model and simulate vehicle (ICE vehicle, HEV, EV, and FCV) fuel economy, emission, and performance under various conditions including acceleration tests and various driving cycles. This exercise is to perform some introductory studies on electric vehicles. Please utilize this program to better understand H/EV system components and their interactions and effects on performance. Report on your results. The approach follows:

Four ready-made files for conventional and H/EV models are already available in Advisor 2002 (or Avisor 2003): Small_car_in (Default conventional small car) Focus_in (Ford Focus EV) gm_ev1_in (GM EV1) INSIGHT_defults_in (Honda Insight HEV)

Start with the "Small_car_in" file that represents the typically conventional small car. Answer questions 1 to 3 for all four vehicles (Small car, Ford Focus EV, GM-EV1, and Honda Insight).

Qestion1:Obtain and/or derive key input information in this file (available from main screen) including:

Vehicle weight Vehicle Cd and Af,

Motor-Controller type, base speed, peak torque, peak power, peak efficiency, mass.

Battery pack voltage and weight.

Battery module type and number of modules Battery OCV and resistance at 50% SOC

Answer:

Small car in

From the picture we can find these values as follow.

Vehicle weight: 1171kg Calculated. 1171

Vehicle Cd: 0.335 Variables veh_CD

Vehicle Af: 2m² Variables veh_FA

2

Motor-Controller type: not available

Motor base speed: not available

Motor peak torque: not available

Motor peak power: not available

Motor peak efficiency: not available

Motor mass: not available

Battery pack voltage: not available

Battery pack weight: not available

Battery module type: not available

number of modules: not available

Battery OCV and resistance at 50% SOC: not available

Focus_in

From the picture we can find these values as follow.

Vehicle weight: 1445kg

Vehicle Cd: 0.312

|--|

Vehicle Af: 2.06 m²

Motor-Controller type: AC propulsion AC-150 motor controller

```
Data loaded: MC_AC150_Focus_draft - AC Propulsion AC-150 motor controller - draft file mc_description='AC Propulsion AC-150 motor controller - draft file';
```

We can get the information about the motor from the Matlab file.

Motor base speed: 5000rpm

```
mc_max_trq=[225 225 225 225 225 225 190.98 185.1 179 150 133.7 70];% (N*m)
mc_map_spd=[0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000]*(2*pi/60);
```


I get this data from the Matlab file of Motor. The motor torque could correspond to the motor speed underneath. So the point that motor toque changes could be when torque is 225Nm and speed is 5000rpm. In this case we can get motor base speed as 5000rpm. We could also get the base speed from the diagram directly.

Motor peak torque: 225N

Both from Matlab file of the diagram we can find that the max torque is 225Nm.

From this picture we can get the information about motor and battery.

Motor peak power: 150kW

From this picture we can find that the max power of the motor is 15kW.

Motor peak efficiency: 0.91

From the same picture above we can find that the motor peak efficiency is 0.91

Motor mass: 82kg

From the picture above we can find that the motor mass is 82kg.

Battery pack voltage: 353V

From the picture above we can find that the battery pack voltage is 353V.

Battery pack weight: 546kg

From the picture above we can find that the battery pack weight is 546kg.

Number of modules: 28

From the picture above we can find that the number of modules is 28.

Battery module type: Horizon 12N85 Lead-Acid battery

```
ess_description='Horizon 12N85 lead-acid battery';
ess_version=2002; % version of ADVISOR for which the file was generated
ess_proprietary=0; % 0=> non-proprietary, l=> proprietary, do not distribute
ess_validation=0; % 0=> no validation, l=> data agrees with source data,
% 2=> data matches source data and data collection methods have been verified
```

From the Matlab file data we can find that battery module type is Horizon 12N85 Lead-Acid battery.

Battery OCV at 50% SOC: 12.65V

```
% module's open-circuit (a.k.a. no-load) voltage, indexed by ess_soc and ess_tmp
ess_voc=[
    11.8 12.2 12.5 12.8 13.05 13.2
    11.8 12.2 12.5 12.8 13.05 13.2
    11.8 12.2 12.5 12.8 13.05 13.2
]; % (V)
ess_soc=[0:.2:1]; % (--)
```

From the picture above, six values of the OCV is corresponding to six values of SOC (0, 0.2, 0.4, 0.6, 0.8, 1). So, I use the average of the OCV When SOC is 0.4 and 0.6 to represent the OCV when SOC is 50%.

```
OCV_{SOC50\%} = (12.5 + 12.8)/2 = 12.65V
```

Battery resistance at 50% SOC: 0.015 Ohms(40C-discharge); 0.047 Ohms (40C-charge)

```
ess_r_dis=[
    0.090 0.030 0.020 0.010 0.005 0.0028
    0.090 0.030 0.020 0.010 0.005 0.0028
    0.090 0.030 0.020 0.010 0.005 0.0028
]; % (ohm)

% module's resistance to being charged, indexed by ess_soc and ess_tmp
% changed the high soc charge values to match results where good data unavailable
ess_r_chg=[
    0.018 0.025 0.044 0.050 0.100 0.250
    0.018 0.025 0.044 0.050 0.100 0.250
    0.018 0.025 0.044 0.050 0.100 0.250
]; % (ohm)
ess_soc=[0:.2:1]; % (--)
```

From the picture above, six values of the resistance (both discharge and charge) is corresponding to six values of SOC (0, 0.2, 0.4, 0.6, 0.8, 1)

So, I use the average of the resistance When SOC is 0.4 and 0.6 to represent the resistance when SOC is 50%.

40C-discharge resistance: (0.02+0.01)/2=0.015 Ohms

40C-charge resistance: (0.044+0.050)/2=0.047 Ohms

gm_ev1_in (Has two problem that motor parameter and battery parameter do not match the Matlab file, so I change the motor to AC75 and click the energy option "Ess_NIMH80_EV1", it change to correct number.)

From the picture we can find these values as follow.

Vehicle Cd: 0.19

Vehicle Af: 2.0379 m²

Motor-Controller type: GM EV1 traction motor based on Westinghouse 75-KW (continuous) AC induction motor/converter

```
mc description='GM EV1 traction motor based on Westinghouse 75-kW (continuous) AC induction motor/inverter';
```

We can get the information about the motor from the Matlab file.

Motor base speed: 2000rpm (I change the former motor which is AC124 because that the Matlab file shows that the motor should be AC75)

```
mc_max_trq=[200 200 200 175.2 131.4 105.1 87.6 75.1 65.7 58.4 52.5]*...
      4.448/3.281; % (N*m)

mc_map_spd=[0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000]*(2*pi/60);
```

I get this data from the Matlab file of Motor. The motor torque could correspond to the motor speed underneath. So the point that motor toque changes could be when torque is 200*4.448/3.281=271.14 Nm and speed is 2000rpm. In this case we can get motor base speed as 2000rpm. We could also get the base speed from the following diagram directly.

Motor peak torque: 271.14N

mc_max_trq=[200 200 200 175.2 131.4 105.1 87.6 75.1 65.7 58.4 52.5]*...
4.448/3.281; % (N*m)

Both from Matlab file of the diagram we can find that the max torque is 271.14Nm(200*4.448/3.281=271.14 Nm).

Exhaust Artertreat	Y	_:_	Y	EX_U _▼	#of mod	V nom	
Energy Storage	rint 💌	?	nimh _▼	ESS_NIMH80_EV1_draft 💌	25	335	290
Energy Storage 2	¥	?	7	ess 2 options			
Motor	_	?	_ ▼	MC_AC75 <u>▼</u>	75	0.92	91

From this picture we can get the information about motor and battery.

Motor peak power: 75kW

From this picture we can find that the max power of the motor is 75kW.

Motor peak efficiency: 0.92

From the same picture above we can find that the motor peak efficiency is 0.92

Motor mass: 91kg

From the picture above we can find that the motor mass is 91kg.

Battery pack voltage: 335V

From the picture above we can find that the battery pack voltage is 353V.

Battery pack weight: 290kg

From the picture above we can find that the battery pack weight is 546kg.

Number of modules: 25

From the picture above we can find that the number of modules is 25.

```
ess_module_num=25; %a default value for number of modules
```

Battery module type: Horizon 12N85 Lead-Acid battery

```
ess_description='Horizon 12N85 lead-acid battery';
ess_version=2002; % version of ADVISOR for which the file was generated
ess_proprietary=0; % 0=> non-proprietary, 1=> proprietary, do not distribute
ess_validation=0; % 0=> no validation, 1=> data agrees with source data,
% 2=> data matches source data and data collection methods have been verified
```

From the Matlab file data we can find that battery module type is Horizon 12N85 Lead-Acid battery.

Battery OCV at 50% SOC: 13.4V

```
% module's open-circuit (a.k.a. no-load) voltage, indexed by ess_soc and ess_tmp
%ess_voc=[11.9 12.3 12.6 12.8 12.9 12.9 13 13.1 13.2 13.4 13.7;
% 11.9 12.3 12.6 12.8 12.9 12.9 13 13.1 13.2 13.4 13.7;
% 11.9 12.3 12.6 12.8 12.9 12.9 13 13.1 13.2 13.4 13.7]; % (V), Source: Ovonic Charge-decreasing
ess_voc=[12.5 12.8 13.1 13.3 13.4 13.4 13.5 13.6 13.7 13.9 14.2;
    12.5 12.8 13.1 13.3 13.4 13.4 13.5 13.6 13.7 13.9 14.2;
    12.5 12.8 13.1 13.3 13.4 13.4 13.5 13.6 13.7 13.9 14.2;
    12.5 12.8 13.1 13.3 13.4 13.4 13.5 13.6 13.7 13.9 14.2;
% 12.8 13.1 13.3 13.4 13.4 13.5 13.6 13.7 13.9 14.2]; % (V), Source: Ovonic Charge-sustaining
%ess_voc=[12.8 13.2 13.5 13.7 13.8 13.8 13.9 14 14.1 14.3 14.6;
% 12.8 13.2 13.5 13.7 13.8 13.8 13.9 14 14.1 14.3 14.6;
% 12.8 13.2 13.5 13.7 13.8 13.8 13.9 14 14.1 14.3 14.6;
% 12.8 13.2 13.5 13.7 13.8 13.8 13.9 14 14.1 14.3 14.6]; % (V), Source: Ovonic Charge-increasing
ess_soc=[0:.2:1]; % (--)
```

From the pictures above, 11 values of the OCV is corresponding to the values of SOC (0, 0.2, 0.4, 0.6, 0.8, 1). So, when SOC is 50% the OCV is 13.4V.

Battery resistance at 50% SOC: 0.0076 Ohms (40C-charge and 40C-discharge)

```
% module's resistance to being discharged, indexed by ess_soc and ess_tmp
ess_r_dis=[1.167 0.905 0.851 0.792 0.775 0.760 0.750 0.768 0.823
                                                                        0.881
                                                                                0.839
                                           0.760 0.750 0.768
         1.167 0.905 0.851
                             0.792
                                    0.775
                                                                 0.823
                                                                                0.839
                                                                        0.881
         1.167 0.905 0.851 0.792 0.775 0.760 0.750 0.768
                                                                                0.839
                                                                0.823
                                                                        0.881
       ]*10/1000; % (ohm)
% module's resistance to being charged, indexed by ess_soc and ess_tmp
ess r chg=ess r dis;% (ohm), no other data available
ess soc=[0:.2:1]; % (--)
```

From the pictures above, eleven values of the resistance is corresponding to the values of SOC (0, 0.2, 0.4, 0.6, 0.8, 1) and resistance when discharge and charge is same,

So, when SOC is 50% the resistance should be sixth value which equals 0.76*10/1000=0.0076 Ohms.

INSIGHT_defults_in

From this picture we can get the information about this vehicle.

Vehicle weight: 962kg

Vehicle Cd: 0.25

Variables	veh_CD	¥	0.25	
Vehic	le Af: 1.9m²			
Variables	veh_FA	▼	1.9	

Motor-Controller type: Preliminary Model of Honda 10kW (continuous), permanent magnet motor/ controller.

mc_description='Preliminary Model of Honda 10 KW (continuous), permanent magnet motor/controller';

Motor base speed: 2000rpm

```
mc_max_trq=[46.5 46.5 46.5 46.5 46.5 38.2 31.8 27.3 23.9 21.2 19.1 17.4 15.9 14.7 13.6 12.7 11.9 11.2];% (N*m) mc_max_gen_trq=-1*mc_max_trq;

% (rad/s), speed range of the motor
mc map spd=[0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500]*(2*pi)/60;
```

I get this data from the Matlab file of Motor. The motor torque could correspond to the motor speed underneath. So the point that motor toque changes could be when torque is 46.5Nm and speed is 2000rpm. In this case we can get motor base speed as 2000rpm. We could also get the base speed from the diagram directly.

Motor peak torque: 46.5Nm

mc_max_trq=[46.5 46.5 46.5 46.5 46.5 38.2 31.8 27.3 23.9 21.2 19.1 17.4 15.9 14.7 13.6 12.7 11.9 11.2];% (N*m) mc_max_gen_trq=-1*mc_max_trq;

From this picture we can get the information about motor and battery.

Motor peak power: 10kW

Motor peak efficiency: 0.96

Motor mass: 60kg

Battery pack voltage: 154V

Battery pack weight: 20kg

Number of modules: 20

Battery module type: NiMH Spiral Wound

Nominal Cell Voltage: 1.2V

Total Cells:120 (6 cells * 20 modules)

Nominal Voltage: 144V

Published Capacity: 6.5Ah

```
% Insight file created from NREL lab test data
% NREL test data from testing entire Insight Battery Pack Jan.2001 (Insight Model Year 2000)
%
% Insight pack is reported to be same technology as Japanese Prius (1998) with 20 modules instead of 40
% Battery Type: NiMH Spiral Wound
% Nominal Cell Voltage: 1.2V
% Total Cells: 120 (6 cells x 20 modules) (40 modules for Japanese Prius)
% Nominal Voltage: 144 V (288 V for Japanese Prius)
% Published Capacity: 6.5 Ah
```

Battery OCV at 50% SOC: 7.6909V(25C-charge)

From the pictures above, 11 values of the OCV is corresponding to 11 values of SOC. So, when SOC is 50% the OCV is 7.6909V.

Battery resistance at 50% SOC: 0.0196 Ohms(25C-charge); 0.0268 Ohms(25C-discharge)

```
% module's resistance to being discharged, indexed by ess soc and ess tmp
% The discharge resistance is the average of 4 tests from 10 to 90% soc at the following
% discharge currents: 6.5, 6.5, 18.5 and 32 Amps
% The 0 and 100 % soc points were extrapolated
ess_r_dis=[
   0.0377 0.0338 0.0300 0.0280 0.0275 0.0268 0.0269 0.0273 0.0283 0.0298 0.0312
   0.0377 0.0338 0.0300 0.0280 0.0275 0.0268 0.0269 0.0273 0.0283 0.0298 0.0312
   1;
% module's resistance to being charged, indexed by ess soc and ess tmp
% The discharge resistance is the average of 4 tests from 10 to 90% soc at the following
% discharge currents: 5.2, 5.2, 15 and 26 Amps
% The 0 and 100 % soc points were extrapolated
ess r chg=[
  0.0235 0.0220 0.0205 0.0198 0.0198 0.0196 0.0198 0.0197 0.0203 0.0204 0.0204
   0.0235 0.0220 0.0205 0.0198 0.0198 0.0196 0.0198 0.0197 0.0203 0.0204 0.0204
% SOC RANGE over which data is defined
************
ess soc=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1]; % (--)
```

From the pictures above,11 values of the resistance is corresponding to 11 values of SOC (both discharge and charge).

So, when SOC is 50% the resistance should be 0.0268 Ohms when discharge and 0.0196 Ohms when charge.

Question 2. Determine base vehicle performance by simulation (push "continue" on main screen to get to simulations page): 0 to 60 mph acceleration time by simulation Wh/mile energy consumption and fuel economy (mpg) on UDDS, HWFET, USO6, and NEDC schedules. (Hint: energy consumption is negative "energy stored" under "energy use figure") (Issue: depending on computer operation system, you might not be able to see this screen. If this problem occurs, try Advisor 2003).

Answer:

Small car in

UDDS

From this diagram we get that:

0 to 60 mph acceleration time: 8.8s

0-60 mph (s): **8.8**

Wh/mile energy consumption:1095.63Wh/mile

Energy Usage Ta		POWER MODE			REGE	N MODE		
	In	Out	Loss	Eff.	ln .	Out	Loss	Eff.
Fuel	0	29582						
Fuel Converter	29582	5575	24006	0.19			341	
Clutch	4783	4646	137	0.97	509	509	0	1
Hyd. Torque Converte	r							
Generator								
Torque Coupling								
Energy Storage								
Energy Stored								
Motor/Controller								
Gearbox	4646	4352	294	0.94	561	509	52	0.91
Final Drive	4352	4352	0	1	561	561	0	1
Wheel/Axle	4352	4037	315	0.93	1742	1744	-2	1
Braking							1183	
Aux Loads	958	0	958	0				
Aero			1056					
Rolling			1240	L				
						*Overall Sys	tem Efficiency	
						0.0	078	
							rgy efficiency is o g)/(fuel in - ess s	
	Loss	Plot (Power Mode)		Loss Plot (Re	egen Mode)			DON

Fuel Converter 29582

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the input of fuel converter which is 29582kJ=8217.22Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 7.5 mile from the diagram. Distance (miles) 7.5 Then we can get Wh/mile consumption=8217.22Wh/7.5mile=1095.63Wh/mile

fuel economy (mpg): 30.4

Fuel Economy (mpg)	30.4
Gasoline Equivalent	30.4
Distance (miles)	7.5

HWFET:

From this diagram we get that:

0 to 60 mph acceleration time: 8.8s

0-60 mph (s): 8.8

Wh/mile energy consumption:812.84Wh/mile

Fuel	In	POWER MODE			REGE	N MODE		
Fuel		Out	Loss	Eff. □	In	Out	Loss	Eff.
		30140			•••			
Fuel Converter	30140	6997	23143	0.23			157	
Clutch	6503	6498	23143 5	1	196	196	0	1
Hyd. Torque Convert		6436	э	'	136	136	U	'
Generator	er							
Torque Coupling Energy Storage								
Energy Storage								
Motor/Controller								
Gearbox	6498	6019	479	0.93	221	196	24	0.89
Final Drive	6019	6019	0	1	221	221	0	1
Wheel/Axle	6019	5624	394	0.93	486	485	1	1
Braking	0013	J024	334	0.55	400	403	264	
Aux Loads	536	0	536	0			204	
Aux Ludus	330	·	3432	٥				
Rolling			1706					
Holling			1700	_				
						*Overall Sys	etem Efficiency	
						0	.17	
						*Overall ene (aero + rollin	rgy efficiency is o g)/(fuel in - ess s	calculated a :torage)
	Loss	Plot (Power Mode)		Loss Plot (Re	gen Mode)			

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the input of fuel converter which is 30140kJ=8372.22Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 10.3 mile from the diagram.

Distance [miles] 10.3 Then we can get Wh/mile consumption=8372.22Wh/10.3mile=812.84Wh/mile

30140

Fuel Converter

fuel economy (mpg): 41.1

Fuel Economy (mpg)	41.1
Gasoline Equivalent	41.1
Distance (miles)	10.3

US06:

From this diagram we get that:

0 to 60 mph acceleration time: 8.8s

0-60 mph (s): 8.8

Wh/mile energy consumption:1097.64Wh/mile

Energy Usage Ta		POWER MODE			REGE	N MODE		
	In	Out	Loss	Eff. ∏	In	Out	Loss	Eff.
Fuel	0	31612						
Fuel Converter	31612	8336	23277	0.26			468	
Clutch	7987	7937	50	0.99	538	538	0	1
yd. Torque Converter								
Generator								
Torque Coupling								
Energy Storage								
Energy Stored								
Motor/Controller								
Gearbox	7937	7502	436	0.95	584	538	46	0.92
Final Drive	7502	7502	0	1	584	584	0	1
Wheel/Axle	7502	7092	409	0.95	1773	1801	-28	1.02
Braking							1217	
Aux Loads	420	0	420	0				
Aero			3987					
Rolling			1332	Ц				
						*Overall Sys	stem Efficiency	
						0.	168	
							rgy efficiency is o g)/(fuel in - ess s	
	Loss	Plot (Power Mode)		Loss Plot (Re	gen Mode)			DON
	LUSS	Flocili owei intode)		EUSST TOC (FIE	germodej			DOIN

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the input of fuel converter which is 31612kJ=8781.11Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 8 mile from the diagram.

Distance (miles)

8 Then we can get Wh/mile consumption=8781.11Wh/8mile=1097.64Wh/mile

fuel economy (mpg): 30.6

Fuel Economy (mpg)	30.6
Gasoline Equivalent	30.6
Distance (miles)	8

NEDC:

From this diagram we get that:

0 to 60 mph acceleration time: 8.8s

0-60 mph (s): 8.8

Wh/mile energy consumption:1080.03Wh/mile

Energy Usage Ta		POWER MODE			REGE	N MODE		
	In	Out	Loss	Eff.	∏ In	Out	Loss	Eff.
Fuel	0	26439						
Fuel Converter	26439	5163	21276	0.2			360	
Clutch	4439	4355	84	0.98	466	466	0	1
lyd. Torque Converter	r							
Generator								
Torque Coupling								
Energy Storage								
Energy Stored								
Motor/Controller								
Gearbox	4355	4066	289	0.93	505	466	39	0.92
Final Drive	4066	4066	0	1	505	505	0	1
Wheel/Axle	4066	3786	280	0.93	1056	1065	-9	1.01
Braking							560	
Aux Loads	829	0	829	0				
Aero			1600					
Rolling			1130		Ц			
						*Overall Sys	stem Efficiency	
						0.	103	
							rgy efficiency is (g)/(fuel in - ess s	
		Distriction in the Co		Less Die 1/2) W- d-)			
	Loss	Plot (Power Mode)		Loss Plot (F	Regen Mode)			

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the input of fuel converter which is 26439kJ=7344.17Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 6.8 mile from the diagram.

Distance (miles)

6.8 Then we can get Wh/mile consumption=7344.17Wh/6.8mile=1080.03Wh/mile

26439

Fuel Converter

fuel economy (mpg): 31

Fuel Economy (mpg)	31
Gasoline Equivalent	31
Distance (miles)	6.8

Focus_in

UDDS

0 to 60 mph acceleration time:20.4s

Wh/mile energy consumption:286Wh/mile

fuel economy (mpg):93.2

From this diagram we can get that:

0 to 60 mph acceleration time: 20.4 S

0-60 mph 20.4

Wh/mile energy consumption:286Wh/mile

	ible (kJ) P	OWER MODI	E		REGEN MODE			
	In	Out	Loss	Eff. ∏	In	Out	Loss	Eff.
Fuel	0							
Fuel Converter								
Clutch								
lyd. Torque Convert	er							
Generator								
Torque Coupling								
Energy Storage	864	8129	354	0.68				
Energy Stored	-7619							
Motor/Controller	7330	5526	1804	0.75	1271	1032	239	0.81
Gearbox	5526	5016	509	0.91	1370	1271	99	0.93
Final Drive	5016	5015	1	1	1369	1370	-1	1
Wheel/Axle	5015	4700	316	0.94	2219	2188	31	0.99
Braking							819	
Aux Loads	966	0	966	0				
Aero			1013					
Rolling			1467	U				
							ll System iency	
							325	
								cy is calculated as:
						(aero + roll	ing)/(fuel in -	ess storage)
	las 5	let (Deves M	-2	Lass Black				DOVE
	Loss P	lot (Power Mod	ej	Loss Plot (Re	gen Modej			DONE

Energy Stored -7619

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals energy stored which is 7619kJ=2116.39Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We

also can find the distance of this cycle which is 7.4 mile from the diagram. Distance (miles) 7.4 Then we can get Wh/mile consumption=2116.39Wh/7.4mile=286Wh/mile

fuel economy (mpg): 93.2(Gasoline Equivalent)

Fuel Economy (mpg)	0
Gasoline Equivalent	93.2
Distance (miles)	7.4

HWFET:

From this diagram we can get that:

0 to 60 mph acceleration time: 20.4 S

0-60 mph 20.4

Wh/mile energy consumption:230.56Wh/mile

Energy Usage Ta								
	Р	OWER MODI	E		REGE	N MODE		
	In	Out	Loss	Eff. ∏	In	Out	Loss	Eff.
Fuel	0							
Fuel Converter								
Clutch								
Hyd. Torque Convert	er							
Generator								
Torque Coupling								
Energy Storage	272	8643	178	0.68				
Energy Stored	-8549							
Motor/Controlle	8146	6984	1161	0.86	364	315	49	0.87
Gearbox	6984	6380	605	0.91	406	364	43	0.89
Final Drive	6380	6379	0	1	406	406	0	1
Wheel/Axle	6379	5975	404	0.94	664	650	14	0.98
Braking		_		_			244	
Aux Loads	540	0	540	0				
Aero			3292					
Rolling			2019	Ш				
							II System ciency	
							621	
						*Overall er		cy is calculated as: ess storage)
	Loss P	lot (Power Mod	e)	Loss Plot (Re	gen Mode)			DONE
					- '			

Energy Stored -8549

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals energy stored which is 8549kJ=2374.72Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 10.3 mile from the diagram.

Distance (miles) 10.3 Then we can get Wh/mile consumption=2374.72Wh/10.3mile=230.56Wh/mile

fuel economy (mpg): 120.5(Gasoline Equivalent)

Fuel Economy (mpg)	0
Gasoline Equivalent	120.5
Distance (miles)	10.3

US06:

From this diagram we can get that:

0 to 60 mph acceleration time: 20.4 S

0-60 mph 20.4

Wh/mile energy consumption:366.91Wh/mile

Energy Usage Ta		OWER MODE							
	REGEN	MODE							
	In	Out	Loss	Eff.	n In	Out	Loss	Eff.	
Fuel	0								
Fuel Converter									
Clutch									
Hyd. Torque Convert	ter								
Generator									
Torque Coupling									
Energy Storage	784	10776	574	0.64					
Energy Stored	-10567								
Motor/Controlle	10438	8769	1668	0.84	971	869	102	0.89	
Gearbox	8769	8206	563	0.94	1046	971	75	0.93	
Final Drive	8206	8205	1	1	1044	1046	-1	1	
Wheel/Axle	8205	7777	428	0.95	2375	2370	5	1	
Braking							1326		
Aux Loads	424	0	424	0					
Aero			3825						
Rolling			1576		Ц				
							III System ciency		
							лепсу 511		
								:	
							nergy emciend ling)/(fuel in -	cy is calculated as: ess storage)	
					1				
	Loss F	lot (Power Mod	e)	Loss Plot (R	egen Mode)			DONE	

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals energy stored which is 10567kJ=2935.28Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 8 mile from the diagram.

Energy Stored -10567

Then we can get Wh/mile consumption=2935.28Wh/8mile=366.91Wh/mile

fuel economy (mpg): 74.2(Gasoline Equivalent)

Fuel Economy (mpg)	0
Gasoline Equivalent	74.2
Distance (miles)	8

NEDC:

From this diagram we can get that:

0 to 60 mph acceleration time: 20.4 S

0-60 mph 20.4

Wh/mile energy consumption:278.72Wh/mile

Energy Usage Ta		OWER MODI	F		BECE	N MODE		
			_					
	In	Out	Loss	Eff.	In	Out	Loss	Eff.
Fuel	0							
Fuel Converter								
Clutch								
Hyd. Torque Convert	er							
Generator								
Torque Coupling								
Energy Storage	592	7147	267	0.67				
Energy Stored	-6823							
Motor/Controlle	6409	5003	1405	0.78	810	689	121	0.85
Gearbox	5003	4528	475	0.9	865	810	55	0.94
Final Drive	4528	4527	1	1	864	865	-1	1
Wheel/Axle	4527	4242	285	0.94	1370	1363	7	0.99
Braking							498	
Aux Loads	836	0	836	0				
Aero			1535					
Rolling			1337	L				
							ll System	
							iency	
							4 21	
						*Overall er	nergy efficiend	cy is calculated as:
						(aero + roll	ing)/(fuel in -	ess storagej
					1			
	Loss P	lot (Power Mod	e)	Loss Plot (Re	egen Mode)			DONE
					conn			
			Energ	y Stored	-6823			

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals energy stored which is 6823kJ=1895.28Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 6.8 mile from the diagram.

Distance [miles]

6.8 Then we can get Wh/mile consumption=1895.28Wh/6.8mile=278.72Wh/mile

fuel economy (mpg): 96.5(Gasoline Equivalent)

Fuel Economy (mpg)	0
Gasoline Equivalent	96.5
Distance (miles)	6.8

gm_ev1_in UDDS

From this diagram we can get that:

0 to 60 mph acceleration time:7 S

0-60 mph **7**

Wh/mile energy consumption:187.04Wh/mile

Energy Usage Ta		OWER MODI	REGE	N MODE				
	In	Out	Loss	Eff.	In	Out	Loss	Eff.
Fuel	0							
Fuel Converter								
Clutch								
Hyd. Torque Convert	ter							
Generator								
Torque Coupling								
Energy Storage	1048	5949	149	0.94				
Energy Stored	-5050							
Motor/Controlle	5546	4260	1285	0.77	1518	1124	394	0.74
Gearbox	4260	3905	355	0.92	1649	1518	131	0.92
Final Drive	3905	3905	0	1	1649	1649	0	1
Wheel/Axle	3905	3594	311	0.92	2006	1985	21	0.99
Braking							336	
Aux Loads	479	0	479	0				
Aero			610					
Rolling			978					
							ll System	
							iency	
						0.3	315	
							nergy efficiend ling)/(fuel in -	cy is calculated as: ess storage)
	Loss F	lot (Power Mod	le)	Loss Plot (Re	gen Mode)			DONE

Energy Stored -5050

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals energy stored which is 5050kJ=1402.78Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 7.5 mile from the diagram. Distance [miles] 7.5 Then we can get Wh/mile consumption=1402.78Wh/7.5mile=187.04Wh/mile

fuel economy (mpg): 144.8(Gasoline Equivalent)

Fuel Economy (mpg)	0
Gasoline Equivalent	144.8
Distance (miles)	7.5

HWFET:

From this diagram we can get that:

0 to 60 mph acceleration time:7 S

0-60 mph **7**

Wh/mile energy consumption:165.56Wh/mile

Energy Usage Ta		OWER MOD	E		REGE	N MODE		
	In	Out	Loss	Eff. ∏	In	Out	Loss	Eff.
Fuel	0							
Fuel Converter								
Clutch								
Hyd. Torque Convert	er							
Generator								
Torque Coupling								
Energy Storage	394	6390	143	0.94				
Energy Stored	-6139		4005					
Motor/Controlle	6144	4938	1207	0.8	542	416	126	0.77
Gearbox Final Drive	4938	4378	559 0	0.89 1	607	542 607	65 0	0.89 1
Wheel/Axle	4378 4378	4378 3991	u 387	0.91	607 661	647	U 14	0.98
	4378	3991	387	0.91	661	647	40	0.38
Braking Aux Loads	268	0	268	0			40	
Aero	200	·	1983	ı ı				
Rolling			1347					
						Effic 0 . *Overall e	all System ciency 542 nergy efficien ling)/(fuel in -	cy is calculated as: ess storage)
	Loss P	lot (Power Mod	de)	Loss Plot (Re	gen Mode)			DONE

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals energy stored which is 6139kJ=1705.28Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 10.3 mile from the diagram. Distance (miles) 10.3 Then we can get Wh/mile consumption=1705.28Wh/10.3mile=165.56Wh/mile

fuel economy (mpg): 185.4(Gasoline Equivalent)

Fuel Economy (mpg)	0
Gasoline Equivalent	185.4
Distance (miles)	10.3

US06:

From this diagram we can get that:

0 to 60 mph acceleration time:7 S

0-60 mph **7**

Wh/mile energy consumption:227.99Wh/mile

Energy Usage Ta		OWER MOD	E		REGE	N MODE		
	In	Out	Loss	Eff.	In	Out	Loss	Eff.
Fuel Fuel Converter Clutch Hyd. Torque Convert	0							
Generator Torque Coupling	-							
Energy Storage Energy Stored	1570 -6566	7642	494	0.9				
Motor/Controlle Gearbox	7476 6455	6455 5981	1021 475	0.86 0.93	1910 2046	1614 1910	296 137	0.84 0.93
Final Drive Wheel/Axle	5981 5981	5981 5583	0 397	1 0.93	2046 2227	2046 2221	0 7	1
Braking					2221	2221	175	•
Aux Loads Aero Rolling	210	0	210 2304 1051	0				
						Effic	l System iency	
								cy is calculated as: ess storage)
	Loss F	lot (Power Mod	le)	Loss Plot (Re	egen Mode)			DONE
			Ener	gy Stored	-6566			

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals energy stored which is 6566kJ=1823.89Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 8 mile from the diagram.

Distance (miles)

Then we can get Wh/mile consumption=1823.89Wh/8mile=227.99Wh/mile

fuel economy (mpg): 117.2(Gasoline Equivalent)

Fuel Economy (mpg)	0
Gasoline Equivalent	117.2
Distance (miles)	8

NEDC:

From this diagram we can get that:

0 to 60 mph acceleration time:7 S

0-60 mph **7**

Wh/mile energy consumption:182.72Wh/mile

Energy Usage Ta								
	P	OWER MODI	E		REGE	N MODE		
	In	Out	Loss	Eff.	∏ In	Out	Loss	Eff.
Fuel	0							
Fuel Converter								
Clutch								
Hyd. Torque Convert	ter							
Generator								
Torque Coupling								
Energy Storage	746	5092	127	0.94				
Energy Stored	-4473							
Motor/Controlle	4725	3689	1036	0.78	994	794	200	0.8
Gearbox	3689	3343	346	0.91	1065	994	71	0.93
Final Drive	3343	3343	0	1	1065	1065	0	1
Wheel/Axle	3343	3061	283	0.92	1244	1247	-3	1
Braking							183	
Aux Loads	414	0	414	0				
Aero			925					
Rolling			892		Ш			
							ll System	
							iency	
							406	
						*Overall er (aero + roll	nergy efficiend ing)/(fuel in -	cy is calculated as: ess storage)
	Laur D	lak (Damas kita d	1-2	Land Diet (C) M - d -)			DONE
	Loss P	lot (Power Mod		Loss Plot (F	Regen Mode)			DONE

Energy Stored -4473

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals energy stored which is 4473kJ=1242.5Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 6.8 mile from the diagram. Distance (miles) 6.8 Then we can get Wh/mile consumption=1242.5Wh/6.8mile=182.72Wh/mile

fuel economy (mpg): 154.2(Gasoline Equivalent)

Fuel Economy (mpg)	0
Gasoline Equivalent	154.2
Distance (miles)	6.8

INSIGHT_defults_in

UDDS

From this diagram we can get that:

0 to 60 mph acceleration time:11.8 S

0-60 mph 11.8

Wh/mile energy consumption:547.19Wh/mile

Energy Usage Table (kJ) POWER MODE REGEN MODE								
		Out	Loss	Eff.		Out	Loss	Eff.
	In		F022	EII.	In	Out	F022	
Fuel	0	14774						
Fuel Converter	14774	3638	11135	0.25			431	
Clutch	3688	3582	106	0.97	1114	1114	0	1
Hyd. Torque Convert	er							
Generator								
Torque Coupling	3688	3688	0	1	1116	1116	0	1
Energy Storage	557	402	98	0.82				
Energy Stored	57							
Motor/Controller	285	256	29	0.9	892	714	178	0.8
Gearbox	3582	3298	284	0.92	1206	1114	92	0.92
Final Drive	3298	3298	0	1	1206	1206	0	1
Wheel/Axle	3298	3016	282	0.91	1632	1625	6	1
Braking							420	
Aux Loads	274	0	274	0				
Aero			749					
Rolling			635					
						*Overa	II System	
							iency	
						0.0	094	
								cy is calculated as:
							ing)/(fuel in -	
	Loss F	lot (Power Mod	eì	Loss Plot (R	egen Mode)			DONE
					-3			23.12

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the input of fuel converter which is 14774kJ=4103.89Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 7.5 mile from the diagram. Distance (miles) 7.5 Then we can get Wh/mile consumption=14774Wh/7.5mile=547.19Wh/mile

fuel economy (mpg): 60.9

Fuel Economy (mpg)	60.9
Gasoline Equivalent	60.9
Distance (miles)	7.5

HWFET:

From this diagram we can get that:

0 to 60 mph acceleration time:11.8 S

0-60 mph 11.8

Wh/mile energy consumption:403.18Wh/mile

Energy Usage Table (kJ) POWER MODE REGEN MODE								
	In	Out	Loss	Eff.	In	Out	Loss	Eff.
Fuel	0	14950						
Fuel Converter	14950	4689	10262	0.31			138	
Clutch	4586	4581	4	1	336	336	0	1
Hyd. Torque Convert	ter							
Generator								
Torque Coupling	4586	4586	0	1	336	336	0	1
Energy Storage	160	129	32	0.8				
Energy Stored	-1							
Motor/Controller	109	97	12	0.89	397	293	105	0.74
Gearbox	4581	4155	427	0.91	373	336	37	0.9
Final Drive	4155	4155	0	1	373	373	0	1
Wheel/Axle	4155	3805	350	0.92	497	493	4	0.99
Braking							120	
Aux Loads	153	0	153	0				
Aero			2433					
Rolling			874		U			
							all System	
							ciency	
							221	
							nergy efficien lling)/(fuel in -	cy is calculated as: ess storage)
Loss Plot (Power Mode) Loss Plot (Regen Mode) DONE								

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the input of fuel converter which is 14950kJ=4152.78Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 10.3 mile from the diagram. Distance (miles) 10.3 Then we can get Wh/mile consumption=4152.78Wh/10.3mile=403.18Wh/mile

fuel economy (mpg): 82.9

Fuel Economy (mpg)	82.9
Gasoline Equivalent	82.9
Distance (miles)	10.3

US06:

From this diagram we can get that:

0 to 60 mph acceleration time:11.8 S

0-60 mph 11.8

Wh/mile energy consumption:629.17Wh/mile

Energy Usage Ta								
	P	OWER MODI	E		REGEI	N MODE		
	In	Out	Loss	Eff.	ln .	Out	Loss	Eff.
Fuel	0	18120						
Fuel Converter	18120	5776	12344	0.32			333	
Clutch	5986	5951	35	0.99	958	958	0	1
Hyd. Torque Convert Generator	ter							
Torque Coupling	5986	5986	0	1	960	960	0	1
Energy Storage	528	396	141	0.74				
Energy Stored	-9							
Motor/Controller	358	323	34	0.9	740	610	130	0.82
Gearbox	5951	5575	375	0.94	1042	958	84	0.92
Final Drive	5575	5575	0	1	1042	1042	0	1
Wheel/Axle	5575	5205	371	0.93	1682	1703	-21	1.01
Braking							661	
Aux Loads	120	0	120	0				
Aero			2824					
Rolling			682					
						Effic	ll System iency 193	
							nergy efficiend ling)/(fuel in -	cy is calculated as: ess storage)
Loss Plot (Power Mode) Loss Plot (Regen Mode) DONE								

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the input of fuel converter which is 18120kJ=5033.33Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 8mile from the diagram.

Distance [miles]

Then we can get Wh/mile consumption=5033.33Wh/8mile=629.17Wh/mile

fuel economy (mpg): 53.3

Fuel Econ	53.3	
Ga	asoline Equivalent	53.3
Distance (8	

NEDC:

From this diagram we can get that:

0 to 60 mph acceleration time:11.8 S

0-60 mph 11.8

Wh/mile energy consumption:550.78Wh/mile

Energy Usage T		OWER MODI	REGEI	REGEN MODE				
	In	Out	Loss	Eff.	∏ In	Out	Loss	Eff.
Fuel	0	13483						
Fuel Converter	13483	3308	10175	0.25			366	
Clutch	3297	3238	59	0.98	718	718	0	1
Hyd. Torque Conver	ter							
Generator								
Torque Coupling	3297	3297	0	1	734	734	0	1
Energy Storage	297	297	54	0.82				
Energy Stored	-55							
Motor/Controlle	200	172	28	0.86	551	436	114	0.79
Gearbox	3238	2959	279	0.91	767	718	49	0.94
Final Drive	2959	2959	0	1	767	767	0	1
Wheel/Axle	2959	2703	255	0.91	990	1000	-9	1.01
Braking							232	
Aux Loads	237	0	237	0				
Aero			1134					
Rolling			579		J			
							ll System ciency	
						0.1	127	
*Overall energy efficiency is calculated as: (aero + rolling)/(fuel in - ess storage)								
	Loss F	lot (Power Mod	e)	Loss Plot (R	egen Mode)			DONE

13483

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the input of fuel converter which is 13483kJ=3745.28Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 6.8 mile from the diagram. Distance (miles) 6.8 Then we can get Wh/mile consumption=3745.28Wh/6.8mile=550.78Wh/mile

fuel economy (mpg): 60.8

Fuel Economy (mpg)	60.8
Gasoline Equivalent	60.8
Distance (miles)	6.8

3. Determine effect of overall vehicle parameters such as **weight** and **aerodynamic drag** on acceleration, energy consumption performance, and range. You may input different values or do a parametric study using that option.

Answer: In this question, I use tree values of weight and three values of Cd in UDDS cycle to find their impact on acceleration, energy consumption and range. Change the vehicle mass without changing Cd to see the impact of mass and change the Cd without changing vehicle mass to see the impact of Cd.

Small_car_in

(Range is not available because the tank volume cannot be found in the data)

We can change vehicle weight by changing the weight of cargo. The former setting is

In this setting, running an UDDS cycle we can get the data from question2:

0 to 60 mph acceleration time: 8.8s

Wh/mile energy consumption:1095.63Wh/mile

fuel economy (mpg): 30.4

Now change cargo mass to 25kg and the vehicle weight will become 1060kg.

Running an UDDS cycle we can get:

From this diagram we can get that:

0 to 60 mph acceleration time:8.3 S

Wh/mile energy consumption:1061.7Wh/mile

Energy Usage Table (kJ) POWER MODE REGEN MODE								
		UWER MUDI	_		HEUEI	N MUDE		
	In	Out	Loss	Eff.	In	Out	Loss	Eff.
Fuel	0	28666						
Fuel Converter	28666	5246	23420	0.18			319	
Clutch	4448	4322	126	0.97	482	482	0	1
Hyd. Torque Conver	ter							
Generator								
Torque Coupling								
Energy Storage								
Energy Stored								
Motor/Controller								
Gearbox	4322	4037	285	0.93	533	482	51	0.9
Final Drive	4037	4037	0	1	533	533	0	1
Wheel/Axle	4037	3738	299	0.93	1560	1568	-8	1
Braking							1035	
Aux Loads	958	0	958	0				
Aero			1056					
Rolling			1122		Ц			
							ll System	
							ciency	
							076	
							nergy etticiend ling)/(fuel in - e	y is calculated as: ess storage)
		N . 45	. 1	. 51.75	1			s ous
	Loss F	Plot (Power Mod	ej	Loss Plot (F	egen Mode)			DONE

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the input of fuel converter which is 28666kJ=7962.78Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 7.5mile from the diagram. Then we can get Wh/mile consumption=7962.78Wh/7.5mile=1061.7Wh/mile

fuel economy (mpg): 31.4(Gasoline Equivalent)

Fuel Economy (mpg)	31.4
Gasoline Equivalent	31.4
Distance (miles)	7.5

Now change cargo mass to 225kg and the vehicle weight will become 1260kg.

Running an UDDS cycle we can get:

From this diagram we can get that:

0 to 60 mph acceleration time: 9.4S

Wh/mile energy consumption:1120.22Wh/mile

Energy Usage Ta		OWER MOD	E		REGE	N MODE		
	In	Out	Loss	Eff.] In	Out	Loss	Eff.
Fuel	0	30426						
Fuel Converter	30426	5850	24576	0.19			358	
Clutch	5060	4909	152	0.97	530	530	0	1
Hyd. Torque Convert	er							
Generator								
Torque Coupling								
Energy Storage								
Energy Stored								
Motor/Controller								
Gearbox	4909	4606	303	0.94	582	530	52	0.91
Final Drive	4606	4606	0	1	582	582	0	1
Wheel/Axle	4606	4278	328	0.93	1888	1886	2	1
Braking							1304	
Aux Loads	958	0	958	0				
Aero			1056					
Rolling			1334	l				
							II System	
							ciency	
							079	
							nergy efficiend ling)/(fuel in -	cy is calculated as: ess storage)
	Loss P	lot (Power Mod	le)	Loss Plot (R	egen Mode)			DONE

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the input of fuel converter which is 30246kJ=8401.67Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 7.5mile from the diagram. Then we can get Wh/mile consumption=8401.67Wh/7.5mile=1120.22Wh/mile

fuel economy (mpg): 29.6

Fuel Economy (mpg)	29.6
Gasoline Equivalent	29.6
Distance (miles)	7.5

The former setting of Cd is 0.335

	Variables veh_CD	▼	0.335	
Now change Cd to	o 0.2			
	Variables veh_CD	V	0.2	

Running an UDDS cycle we can get:

From this diagram we can get that:

0 to o 60 mph acceleration time: 8.6S

Wh/mile energy consumption:1065.44Wh/mile

Energy Usage Ta		OWER MOD	F		BEGE	N MODE				
	In .	Out	Loss	Eff.	n.zaz. ⊓ In	Out	Loss	Eff.		
Fuel	0	28767								
Fuel Converter	28767	5201	23566	0.18			362			
Clutch	4418	4281	137	0.97	540	540	0	1		
Hyd. Torque Convert	Hyd. Torque Converter									
Generator										
Torque Coupling										
Energy Storage										
Energy Stored										
Motor/Controller										
Gearbox	4281	4001	281	0.93	597	540	57	0.9		
Final Drive	4001	4001	0	1	597	597	0	1		
Wheel/Axle	4001	3693	308	0.92	1823	1820	3	1		
Braking							1224			
Aux Loads	958	0	958	0						
Aero			630							
Rolling			1240		Ц					
						_				
							ll System ciency			
							065			
								y is calculated as:		
							ling)/(fuel in - e			
	Loss F	lot (Power Mod	le)	Loss Plot (F	legen Mode)			DONE		

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the input of fuel converter which is 28767kJ=7990.83Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 7.5mile from the diagram. Then we can get Wh/mile consumption=7990.83Wh/7.5mile=1065.44Wh/mile

fuel economy (mpg): 31.3

Fuel Economy (mpg)	31.3
Gasoline Equivalent	31.3
Distance (miles)	7.5

Now change Cd to 0.44

From this diagram we can get that:

0 to 60 mph acceleration time:9 S

Wh/mile energy consumption:1119.85Wh/mile

Energy Usage T		OWER MOD	E		REGE	N MODE		
	In	Out	Loss	Eff.	∏ In	Out	Loss	Eff.
Fuel	0	30236						
Fuel Converter	30236	5873	24363	0.19			326	
Clutch	5074	4937	137	0.97	488	488	0	1
Hyd. Torque Convert	ter							
Generator								
Torque Coupling								
Energy Storage								
Energy Stored								
Motor/Controller								
Gearbox	4937	4634	303	0.94	537	488	49	0.91
Final Drive	4634	4634	0	1	537	537	0	1
Wheel/Axle	4634	4316	319	0.93	1689	1693	-4	1
Braking							1156	
Aux Loads	958	0	958	0				
Aero			1387					
Rolling			1240		П			
							all System ciency	
							087	
						*Overall e		cy is calculated as ess storage)
	Loss F	Plot (Power Mod	le)	Loss Plot (F	Regen Mode)			DONE

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the input of fuel converter which is 30236kJ=8398.89Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 7.5mile from the diagram. Then we can get Wh/mile consumption=8398.89Wh/7.5mile=1119.85Wh/mile

fuel economy (mpg): 29.8

Fuel Economy (mpg)	29.8
Gasoline Equivalent	29.8
Distance (miles)	7.5

In summary, we can get the information presented in this following table.

Vehicle	1060	1171	1260
Mass(kg)			
0 to 60 mph acceleration time(s)	8.3	8.8	9.4
energy consumption (Wh/mile)	1061.7	1095.63	1120.22
fuel economy (mpg)	31.4	30.4	29.6

Cd	0.2	0.335	0.44
0 to 60 mph acceleration time(s)	8.6	8.8	9
energy consumption (Wh/mile)	1065.44	1095.63	1119.85
fuel economy (mpg)	31.3	30.4	29.8

We can find that with increasing weight of vehicle or Cd, the acceleration time from 0 to 60mph, Wh/mile energy consumption will increase correspondingly, meanwhile the fuel economy will decrease.

Focus_in

We can change vehicle weight by changing the weight of cargo. The former setting is

In this setting, running an UDDS cycle we can get the data from question2:

0 to 60 mph acceleration time:20.4s

Wh/mile energy consumption:286Wh/mile

fuel economy (mpg):93.2(Gasoline Equivalent)

Range: 47.52 mile

```
ess_max_ah_cap=[
   55
   55
   55
]; % (A*h), max. capacity at C/5 rate, indexed by ess_tmp
% average coulombic (a.k.a. amp-hour) efficiency below, indexed by ess tmp
```

We can get the capacity of battery from the Matlab file, which is 55Ah(in C/5 rate). The nominal voltage of battery pack is 353V

The energy of Battery=55Ah*353V=19415Wh

We set the DOD is 70% then we can get the range:

Range=19415Wh*70%/ (286Wh/mile)=47.52 mile

Now change cargo mass to 25kg and the vehicle weight will become 1334kg.

Running an UDDS cycle we can get:

0 to 60 mph acceleration time:18.9S

Wh/mile energy consumption:271.92Wh/mile

fuel economy (mpg): 98.1(Gasoline Equivalent)

Range: 49.98 mile

From this diagram we can get that:

0 to 60 mph acceleration time:18.9S

Wh/mile energy consumption:271.92Wh/mile

Energy Usage Ta		OWER MODI	REGE	N MODE				
	In	Out	Loss	Eff.	ln	Out	Loss	Eff.
Fuel	0							
Fuel Converter								
Clutch								
Hyd. Torque Convert	er							
Generator								
Torque Coupling								
Energy Storage	804	7726	322	0.68				
Energy Stored	-7244							
Motor/Controlle	6921	5197	1725	0.75	1191	966	225	0.81
Gearbox	5197	4704	493	0.91	1288	1191	97	0.92
Final Drive	4704	4702	1	1	1287	1288	-1	1
Wheel/Axle	4702	4401	302	0.94	2033	2009	24	0.99
Braking				_			722	
Aux Loads	966	0	966	0				
Aero			1013					
Rolling			1354	L				
						×Ouera	ll System	
							iency	
						0.3	327	
							nergy efficien ling)/(fuel in -	cy is calculated a ess storage)
Loss Plot (Power Mode) Loss Plot (Regen Mode) DONE								
		•	_		- /			

Energy Stored -7244

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the energy stored which is 7244kJ=2012.22Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 7.4mile from the diagram. Then we can get Wh/mile consumption=2012.22Wh/7.4mile=271.92Wh/mile

fuel economy (mpg): 98.1(Gasoline Equivalent)

Fuel Economy (mpg)	0
Gasoline Equivalent	98.1
Distance (miles)	7.4

Range: 49.98 mile

```
ess_max_ah_cap=[
55
55
55
55
]; % (A*h), max. capacity at C/5 rate, indexed by ess_tmp
% average coulombic (a.k.a. amp-hour) efficiency below, indexed by ess_tmp
```

We can get the capacity of battery from the Matlab file, which is 55Ah(in C/5 rate). The nominal voltage of battery pack is 353V

The energy of Battery=55Ah*353V=19415Wh

We set the DOD is 70% then we can get the range:

Range=19415Wh*70%/ (271.92Wh/mile)=49.98 mile

Now change cargo mass to 225kg and the vehicle weight will become 1534kg.

Running an UDD cycle we can get:

0 to 60 mph acceleration time:21.7S

Wh/mile energy consumption:297.48Wh/mile

fuel economy (mpg): 89.5(Gasoline Equivalent)

Range: 45.69 mile

From this diagram we can get that:

0 to 60 mph acceleration time:21.7S

Wh/mile energy consumption:297.48Wh/mile

Energy Usage Ta		OWER MODI	E			REGE	N MODE			
	In	Out	Loss	Eff.	∏ Ir	1	Out	Loss	Eff.	
Fuel	0									
Fuel Converter										
Clutch										
Hyd. Torque Convert	er									
Generator										
Torque Coupling										
Energy Storage	910	8457	378	0.67						
Energy Stored	-7925									
Motor/Controlle	7662	5791	1871	0.76		1332	1082	250	0.81	
Gearbox	5791	5268	523	0.91	H	1433	1332	101	0.93	
Final Drive	5268	5267	1	1		1432	1433	-1	1	
Wheel/Axle	5267	4940	327	0.94	:	2368	2332	36	0.98	
Braking								900		
Aux Loads	966	0	966	0						
Aero			1013							
Rolling			1557		Ш					
								l System iency		
								324		
								nergy efficiend ing)/(fuel in -	cy is calculated ess storage)	d as:
Loss Plot (Power Mode) Loss Plot (Regen Mode) DONE										

Energy Stored -7925

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the energy stored which is 7925kJ=2201.39Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 7.4mile from the diagram. Then we can get Wh/mile consumption=2201.39Wh/7.4mile=297.48Wh/mile

fuel economy (mpg): 89.5(Gasoline Equivalent)

Fuel Economy (mpg)	0
Gasoline Equivalent	89.5
Distance (miles)	7.4

Range: 45.69 mile

```
ess_max_ah_cap=[
   55
   55
   55
]; % (A*h), max. capacity at C/5 rate, indexed by ess_tmp
% average coulombic (a.k.a. amp-hour) efficiency below, indexed by ess tmp
```

We can get the capacity of battery from the Matlab file, which is 55Ah(in C/5 rate). The nominal voltage of battery pack is 353V

The energy of Battery=55Ah*353V=19415Wh

We set the DOD is 70% then we can get the range:

Range=19415Wh*70%/ (297.48Wh/mile)=45.69mile

The former setting of Cd is 0.312

	Variables veh_CD	▼ 0.312	
Now change Cd to 0).2		
	Variables veh_CD	▼ 0.2	

Running an UDDS cycle we can get:

0 to 60 mph acceleration time: 19.6S

Wh/mile energy consumption:272.07Wh/mile

fuel economy (mpg): 97.4 (Gasoline Equivalent)

Range: 49.95mile

From this diagram we can get that:

0 to 60 mph acceleration time: 19.6S

Wh/mile energy consumption:272.07Wh/mile

Energy Usage Ta		OWER MODI	E		REGE	N MODE		
	In	Out	Loss	Eff.	In	Out	Loss	Eff.
Fuel Fuel Converter Clutch Hyd. Torque Convert Generator	O er							
Torque Coupling Energy Storage Energy Stored	887 -7248	7778	357	0.68				
Motor/Controlle Gearbox Final Drive	6987 5218 4723	5218 4723 4721	1770 495 1	0.75 0.91 1	1310 1415 1413	1062 1310 1415	248 105 -1	0.81 0.93 1
Wheel/Axle Braking Aux Loads Aero	4721 966	44 12 0	309 966 649	0.93	2295	2260	35 846	0.98
Rolling			1467					
						Effic	ll System iency 292	
						*Overall er		cy is calculated as: ess storage)
	Loss F	lot (Power Mod	le)	Loss Plot (F	egen Mode)			DONE

Energy Stored -7248

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the energy stored which is 7248kJ=2013.33Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 7.4mile from the diagram. Then we can get Wh/mile consumption=2013.33Wh/7.4mile=272.07Wh/mile

fuel economy (mpg): 97.4 (Gasoline Equivalent)

Fuel Economy (mpg)	0
Gasoline Equivalent	97.4
Distance (miles)	7.4

Range: 49.95mile

```
ess_max_ah_cap=[
   55
   55
   55
]; % (A*h), max. capacity at C/5 rate, indexed by ess_tmp
% average coulombic (a.k.a. amp-hour) efficiency below, indexed by ess_tmp
```

We can get the capacity of battery from the Matlab file, which is 55Ah(in C/5 rate). The nominal voltage of battery pack is 353V

The energy of Battery=55Ah*353V=19415Wh

We set the DOD is 70% then we can get the range:

Range=19415Wh*70%/ (272.07Wh/mile)=49.95 mile

Now change Cd to 0.44

Running an UDDS cycle we can get:

0 to 60 mph acceleration time: 21.5S

Wh/mile energy consumption:302.21Wh/mile

fuel economy (mpg): 88.6 (Gasoline Equivalent)

Range: 44.97mile

From this diagram we can get that:

0 to 60 mph acceleration time: 21.5S

Wh/mile energy consumption:302.21Wh/mile

Energy Usage Ta		OWER MODI	REGE	N MODE				
	ln .	Out	Loss	Eff. [In	Out	Loss	Eff.
Fuel	0							
Fuel Converter	_							
Clutch								
Hyd. Torque Convert	er							
Generator								
Torque Coupling								
Energy Storage	841	8540	352	0.68				
Energy Stored	-8051							
Motor/Controller	7734	5889	1845	0.76	1233	1001	232	0.81
Gearbox	5889	5365	524	0.91	1328	1233	95	0.93
Final Drive	5365	5364	1	1	1327	1328	-1	1
Wheel/Axle	5364	5040	324	0.94	2144	2118	25	0.99
Braking							791	
Aux Loads	966	0	966	0				
Aero			1429					
Rolling			1467					
						*Overal	l System	
							iency	
						0.	36	
							nergy efficien ing)/(fuel in -	cy is calculated as: ess storage)
Loss Plot (Power Mode) Loss Plot (Regen Mode) DONE								

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the energy stored which is 8051 kJ=2236.39Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 7.4mile from the diagram. Then we can get Wh/mile consumption=2236.39Wh/7.4mile=302.21Wh/mile

-8051

Energy Stored

fuel economy (mpg): 88.6 (Gasoline Equivalent)

Fuel Economy (mpg)	0
Gasoline Equivalent	88.6
Distance (miles)	7.4

Range: 44.97mile

```
ess_max_ah_cap=[
   55
   55
   55
]; % (A*h), max. capacity at C/5 rate, indexed by ess_tmp
% average coulombic (a.k.a. amp-hour) efficiency below, indexed by ess_tmp
```

We can get the capacity of battery from the Matlab file, which is 55Ah(in C/5 rate). The nominal voltage of battery pack is 353V

The energy of Battery=55Ah*353V=19415Wh

We set the DOD is 70% then we can get the range:

Range=19415Wh*70%/ (302.21Wh/mile)=44.97 mile

In summary, we can get the information presented in this following table.

Vehicle Mass(kg)	1334	1445	1534
0 to 60 mph acceleration time(s)	18.9	20.4	21.7
energy consumption (Wh/mile)	271.92	286	297.48
fuel economy (mpg) (Gasoline Equivalent)	98.1	93.2	89.5
Range(mile)	48.98	47.52	45.69

Cd	0.2	0.315	0.44
0 to 60 mph acceleration time(s)	19.6	20.4	21.5
energy consumption (Wh/mile)	272.07	286	302.21
fuel economy (mpg) (Gasoline Equivalent)	97.4	93.2	88.6
Range(mile)	49.95	47.52	44.97

We can find that with increasing weight of vehicle or Cd, the acceleration time from 0 to 60mph, Wh/mile energy consumption will increase correspondingly, meanwhile the fuel economy and range will decrease.

gm_ev1_in

We can change vehicle weight by changing the weight of cargo. The former setting is

In this setting, running an UDDS cycle we can get the data from question2:

To 60 mph acceleration time:7S

Wh/mile energy consumption:187.04Wh/mile

fuel economy (mpg): 144.8(Gasoline Equivalent)

Range: 100.3 mile

```
ess_max_ah_cap=[
  80
  80
  80
  80
]; % (A*h), max. capacity at C/5 rate, indexed by ess_tmp
```

We can get the capacity of battery from the Matlab file, which is 80 Ah(in C/5 rate). The nominal voltage of battery pack is 335V

The energy of Battery=80Ah*335V=26800Wh

We set the DOD is 70% then we can get the range:

Range=26800Wh*70%/ (187.04Wh/mile)=100.3mile

Now change cargo mass to 10kg and the vehicle weight will become 1112kg.

Running an UDDS cycle we can get:

To 60 mph acceleration time:6.7S

Wh/mile energy consumption:178.93Wh/mile

fuel economy (mpg): 153.4(Gasoline Equivalent)

Range: 104.85 mile

From this diagram we can get that:

To 60 mph acceleration time: 6.7S

Wh/mile energy consumption:178.93Wh/mile

	In				REGE	N MODE		
_	III	Out	Loss	Eff. ∏	In	Out	Loss	Eff.
Fuel	0							
Fuel Converter								
Clutch								
Hyd. Torque Converter	г							
Generator								
Torque Coupling								
	921	5623	129	0.95				
	4831							
Motor/Controller !	5218	3953	1265	0.76	1364	995	369	0.73
Gearbox	3953	3606	347	0.91	1486	1364	122	0.92
Final Drive	3606	3606	0	1	1486	1486	0	1
	3606	3310	296	0.92	1811	1798	13	0.99
Braking							312	
Aux Loads	479	0	479	0				
Aero			610					
Rolling			889	Ц				
							System	
							iency	
						0.		
							nergy efficiend ing)/(fuel in -	cy is calculated as: ess storage)
Loss Plot (Power Mode) Loss Plot (Regen Mode) DONE								

Energy Stored -4831

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the energy stored which is 4831kJ=1341.94Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 7.5mile from the diagram. Then we can get Wh/mile consumption=1341.94Wh/7.5mile=178.93Wh/mile

fuel economy (mpg): 153.4(Gasoline Equivalent)

Fuel Economy (mpg)	0
Gasoline Equivalent	153.4
Distance (miles)	7.5

Range: 104.85 mile

```
ess_max_ah_cap=[
  80
  80
  80
  80
]; % (A*h), max. capacity at C/5 rate, indexed by ess tmp
```

We can get the capacity of battery from the Matlab file, which is 80 Ah(in C/5 rate). The nominal voltage of battery pack is 335V

The energy of Battery=80Ah*335V=26800Wh

We set the DOD is 70% then we can get the range:

Range=26800Wh*70%/ (178.93Wh/mile)=104.85mile

Now change cargo mass to 225kg and the vehicle weight will become 1534kg.

Running an UDDS cycle we can get:

To 60 mph acceleration time: 7.3S

Wh/mile energy consumption:193.85Wh/mile

fuel economy (mpg): 138.4(Gasoline Equivalent)

Range: 96.78 mile

From this diagram we can get that:

To 60 mph acceleration time:7.3S

Wh/mile energy consumption:193.85Wh/mile

Energy Usage Ta		OWER MODE	E		REGE	N MODE			
	In	Out	Loss	Eff.	∏ In	Out	Loss	Eff.	
Fuel Fuel Converter	0								
Clutch									
Hyd. Torque Convert	ter								
Generator									
Torque Coupling									
Energy Storage	1148	6215	167	0.94					
Energy Stored	-5234								
Motor/Controlle	5815	4504	1311	0.77	1639	1227	413	0.75	
Gearbox	4504	4145	359	0.92	1774	1639	135	0.92	
Final Drive	4145	4145	0	1	1774	1774	0	1	
Wheel/Axle Braking	4145	3823	322	0.92	2163	2135	28 361	0.99	
Aux Loads	479	0	479	0					
Aero			610						
Rolling			1049		П				
							ll System		
							317		
						*Overall er		cy is calculate ess storage)	ed as:
	Loss P	lot (Power Mod	le)	Loss Plot (F	Regen Mode)			DI	ONE

Energy Stored

-5234

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the energy stored which is 5234kJ=1453.89Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 7.5mile from the diagram. Then we can get Wh/mile consumption=1453.89/7.5mile=193.85Wh/mile

fuel economy (mpg): 138.4(Gasoline Equivalent)

Fuel Economy (mpg)	0
Gasoline Equivalent	138.4
Distance (miles)	7.5

Range: 96.78 mile

```
ess_max_ah_cap=[
  80
  80
  80
]; % (A*h), max. capacity at C/5 rate, indexed by ess_tmp
```

We can get the capacity of battery from the Matlab file, which is 80 Ah(in C/5 rate). The nominal voltage of battery pack is 335V

The energy of Battery=80Ah*335V=26800Wh

We set the DOD is 70% then we can get the range:

Range=26800Wh*70%/ (193.85Wh/mile)=96.78mile

The former setting of Cd is 0.19

	Variables	veh_CD	▼	0.19	
Now change Cd to 0.0	5				
Varia	ables veh	_CD	▼	0.05	

Running an UDDS cycle we can get:

To 60 mph acceleration time: 6.9S

Wh/mile energy consumption: 169.93Wh/mile

fuel economy (mpg): 155.3 (Gasoline Equivalent)

Range: 110.4 mile

From this diagram we can get that:

To 60 mph acceleration time: 6.9S

Wh/mile energy consumption: 169.93Wh/mile

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the energy stored which is 4588kJ=1274.44Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 7.5mile from the diagram. Then we can get Wh/mile consumption=1274.44Wh/7.5mile=169.93Wh/mile

fuel economy (mpg): 155.3 (Gasoline Equivalent)

Fuel Economy (mpg)	0
Gasoline Equivalent	155.3
Distance (miles)	7.5

Range: 110.4 mile

```
ess_max_ah_cap=[
  80
  80
  80
]; % (A*h), max. capacity at C/5 rate, indexed by ess_tmp
```

We can get the capacity of battery from the Matlab file, which is 80 Ah(in C/5 rate). The nominal voltage of battery pack is 335V

The energy of Battery=80Ah*335V=26800Wh

We set the DOD is 70% then we can get the range:

Range=26800Wh*70%/ (169.93Wh/mile)=110.4mile

Now change Cd to 0.3

Running an UDDS cycle we can get:

To 60 mph acceleration time: 7.1S

Wh/mile energy consumption:200.56Wh/mile

fuel economy (mpg): 137.3 (Gasoline Equivalent)

Range: 93.54 mile

From this diagram we can get that:

To 60 mph acceleration time: 7.1S

Wh/mile energy consumption:200.56Wh/mile

Energy Usage Ta		OWER MODE	E		REGE	N MODE			
	In	Out	Loss	Eff.	∏ In	Out	Loss	Eff.	
Fuel Fuel Converter Clutch Hyd. Torque Convert Generator Torque Coupling Energy Storage Energy Stored Motor/Controller Gearbox Final Drive Wheel/Axle Braking Aux Loads Aero	0	6269 4557 4188 4188 3871	158 1307 369 0 317 479 964	0.94 0.78 0.92 1 0.92	1461 1580 1580 1929	1086 1461 1580 1913	375 119 0 16 333	0.74 0.92 1 0.99	
Rolling	Loss F	Ylot (Power Mod	978	Loss Plot (F	u Regen Mode)	Effic 0. 3 *Overall er	ll System iency 359 nergy efficien ing)/[fuel in -	cy is calculated ess storage) DON	

Energy Stored -5415

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the energy stored which is 5415 kJ=1504.17Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 7.5mile from the diagram. Then we can get Wh/mile consumption=1504.17Wh/7.5mile=200.56Wh/mile

fuel economy (mpg): 137.3 (Gasoline Equivalent)

Fuel Economy (mpg)	0
Gasoline Equivalent	137.3
Distance (miles)	7.5

Range: 93.54 mile

```
ess_max_ah_cap=[
  80
  80
  80
  80
]; % (A*h), max. capacity at C/5 rate, indexed by ess_tmp
```

We can get the capacity of battery from the Matlab file, which is 80 Ah(in C/5 rate). The nominal voltage of battery pack is 335V

The energy of Battery=80Ah*335V=26800Wh

We set the DOD is 70% then we can get the range:

Range=26800Wh*70%/ (200.56Wh/mile)=93.54mile

In summary, we can get the information presented in this following table.

Vehicle Mass(kg)	1112	1223	1312
0 to 60 mph acceleration time(s)	6.7	7	7.3
energy consumption (Wh/mile)	178.93	187.04	193.85
fuel economy (mpg) (Gasoline Equivalent)	153.4	144.8	138.4

Range(mile)	104.85	100.3	96.78

Cd	0.05	0.19	0.3
0 to 60 mph acceleration time(s)	6.9	7	7.1
energy consumption (Wh/mile)	169.93	187.04	200.56
fuel economy (mpg) (Gasoline Equivalent)	155.3	144.8	137.3
Range(mile)	110.4	100.3	93.54

We can find that with increasing weight of vehicle or Cd, the acceleration time from 0 to 60mph, Wh/mile energy consumption will increase correspondingly, meanwhile the fuel economy and range will decrease.

INSIGHT_defults_in

We can change vehicle weight by changing the weight of cargo. The former setting is

In this setting, running an UDDS cycle we can get the data from question2:

To 60 mph acceleration time: 11.5s

Wh/mile energy consumption:537.89Wh/mile

fuel economy (mpg): 62

Now change cargo mass to 25kg and the vehicle weight will become 851kg.

Running an UDDS cycle we can get:

To 60 mph acceleration time:11.4 S

Wh/mile energy consumption:513.56Wh/mile

fuel economy (mpg): 64.9

From this diagram we can get that:

To 60 mph acceleration time:11.4 S

Wh/mile energy consumption:513.56Wh/mile

Energy Usage T		OWER MODE	E		REGEI	N MODE		
	In	Out	Loss	Eff.	∏ In	Out	Loss	Eff.
Fuel	0	13866						
Fuel Converter	13866	3251	10615	0.23			398	
Clutch	3282	3189	94	0.97	957	957	0	1
Hyd. Torque Convert Generator	ter							
Torque Coupling	3282	3282	0	1	961	961	0	1
Energy Storage	456	392	80	0.83				
Energy Stored	-16							
Motor/Controller	277	241	36	0.87	772	614	158	0.8
Gearbox	3189	2917	272	0.91	1042	957	84	0.92
Final Drive	2917	2917	0	1	1042	1042	0	1
Wheel/Axle	2917	2655	262	0.91	1366	1369	-3	1
Braking							327	
Aux Loads	274	0	274	0				
Aero			749					
Rolling			540		U			
							II System ciency	
							093	
						*Overall er		cy is calculated as ess storage)
	Loss F	lot (Power Mod	le)	Loss Plot (F	Regen Mode)			DONE

Fuel Converter 13866

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the input of fuel converter which is 13866kJ=3851.67Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 7.5mile from the diagram. Then we can get Wh/mile consumption=3851.67Wh/7.5mile=513.56Wh/mile

fuel economy (mpg): 64.9

Fuel Economy (mpg)	64.9
Gasoline Equivalent	64.9
Distance (miles)	7.5

Now change cargo mass to 225kg and the vehicle weight will become 1051kg.

Running an UDDS cycle we can get:

To 60 mph acceleration time:12.3S

Wh/mile energy consumption:557.56Wh/mile

fuel economy (mpg): 59.8(Gasoline Equivalent)

From this diagram we can get that:

To 60 mph acceleration time:12.3S

Wh/mile energy consumption:557.56Wh/mile

Energy Usage T		OWER MOD	E		REGE	REGEN MODE			
	In	Out	Loss	Eff.	In	Out	Loss	Eff.	
Fuel	0	15054							
Fuel Converter	15054	3765	11289	0.25			441		
Clutch	3826	3715	111	0.97	1166	1166	0	1	
Hyd. Torque Convert	ter								
Generator									
Torque Coupling	3826	3826	0	1	1169	1169	0	1	
Energy Storage	592	415	105	0.82					
Energy Stored	72								
Motor/Controlle	297	266	31	0.9	933	748	186	0.8	
Gearbox	3715	3429	287	0.92	1260	1166	94	0.93	
Final Drive	3429	3429	0	1	1260	1260	0	1	
Wheel/Axle	3429	3140	289	0.92	1723	1713	10	0.99	
Braking							453		
Aux Loads	274	0	274	0					
Aero			749						
Rolling			667	Ц					
							ll System		
							iency		
							095		
							nergy efficiend ling)/(fuel in -		
	Loss F	Plot (Power Mod	le)	Loss Plot (Re	gen Mode)			D	
	LOSS F	Tot (Fower Mod		Loss Flot (He	gen Mode)			_	

Fuel Converter 15054

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the input of fuel converter which is 15054kJ=4181.67Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 7.5mile from the diagram. Then we can get Wh/mile consumption=4181.67Wh/7.5mile=557.56Wh/mile

fuel economy (mpg): 59.8

The former setting of Cd is 0.25

To 60 mph acceleration time: 11.1S

Wh/mile energy consumption:513.22Wh/mile

fuel economy (mpg): 64.9

Running an UDDS cycle we can get:

From this diagram we can get that:

To 60 mph acceleration time: 11.1S

Wh/mile energy consumption:513.22Wh/mile

Energy Usage T		OWER MOD	E		REGE	N MODE		
	In	Out	Loss	Eff.	∏ In	Out	Loss	Eff.
Fuel	0	13857						
Fuel Converter	13857	3178	10679	0.23			449	
Clutch	3219	3116	103	0.97	1155	1155	0	1
Hyd. Torque Conver	ter							
Generator								
Torque Coupling	3219	3219	0	1	1158	1158	0	1
Energy Storage	573	389	98	0.82				
Energy Stored	86							
Motor/Controller	273	244	29	0.89	913	731	181	0.8
Gearbox	3116	2878	238	0.92	1256	1155	101	0.92
Final Drive	2878	2878	0	1	1256	1256	0	1
Wheel/Axle	2878	2587	291	0.9	1676	1688	-11	1.01
Braking							432	
Aux Loads	274	0	274	0				
Aero			299					
Rolling			611					
							ll System ciency	
						0.0	D66	
							nergy efficien ling)/(fuel in -	cy is calculated ess storage)
	Loss F	lot (Power Mod	le)	Loss Plot (R	egen Mode)			DON

Fuel Converter 13857

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the input of fuel converter which is 13857kJ=3849.17Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 7.5mile from the diagram. Then we can get Wh/mile consumption=3849.17Wh/7.5mile=513.22Wh/mile

fuel economy (mpg): 64.9

Fuel Economy (mpg)	64.9
Gasoline Equivalent	64.9
Distance (miles)	7.5

To 60 mph acceleration time:11.7S

Wh/mile energy consumption:556.93Wh/mile

fuel economy (mpg): 59.8

From this diagram we can get that:

To 60 mph acceleration time:11.7S

Wh/mile energy consumption:556.93Wh/mile

Energy Usage T		OWER MODI	F		REGE	N MODE			
	In .	Out	Loss	Eff.	∏ In	Out	Loss	Eff.	
Fuel		15037							
Fuel Converter	15037	3790	11247	0.25			420		
Clutch	3840	3737	103	0.25	1032	1032	0	1	
Hyd. Torque Conve		3/3/	103	0.37	1032	1032	U		
Generator	itei								
Torque Coupling	3840	3840	0	1	1035	1035	0	1	
Energy Storage	498	406	89	0.82	1055	1033	٠	•	
Energy Stored	2	400	00	0.02					
Motor/Controller	290	258	31	0.89	824	655	169	0.8	
Gearbox	3737	3446	291	0.92	1115	1032	83	0.93	
Final Drive	3446	3446	0	1	1115	1115	0	1	
Wheel/Axle	3446	3165	281	0.92	1505	1504	1	1	
Braking		0.00		0.02			389	•	
Aux Loads	274	0	274	0					
Aero			1048						
Rolling			611						
						*Overa	ll System		
							iency		
						0.	11		
						*Overall er	nergy efficiend	cy is calculated as:	
						(aero + rol	ling)/(fuel in -	ess storage)	
	Loss F	Plot (Power Mod	e)	Loss Plot (F	Regen Mode)			DONE	

Fuel Converter 15037

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the input of fuel converter which is 15037kJ=4176.94Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 7.5mile from the diagram. Then we can get Wh/mile consumption=4176.94Wh/7.5mile=556.93Wh/mile

fuel economy (mpg): 59.8

Fuel Economy (mpg)	59.8
Gasoline Equivalent	59.8
Distance (miles)	7.5

In summary, we can get the information presented in this following table.

Vehicle Mass(kg)	851	962	1051
0 to 60 mph acceleration time(s)	11.4	11.5	12.3
energy consumption (Wh/mile)	513.56	537.89	557.56
fuel economy (mpg)	64.9	62	59.8

Cd	0.1	0.25	0.35
0 to 60 mph acceleration time(s)	11.1	11.5	11.7
energy consumption (Wh/mile)	513.22	537.89	556.93
fuel economy (mpg)	64.9	62	59.8

We can find that with increasing weight of vehicle or Cd, the acceleration time from 0 to 60mph, Wh/mile energy consumption will increase correspondingly, meanwhile the fuel economy will decrease.

Answer questions 4 to 5 based on electrification of one Sport Utility Vehicle (SUV) Now you are an electric-drive vehicle engineer in one

major automotive OEM, you are assigned to convert one conventional SUV to a pure battery SUV.

4. Use ready-made file for conventional SUV (Sport_Utility_in) as a baseline vehicle. Determine baseline vehicle performance by simulation: 0 to 60 mph acceleration time by simulation Wh/mile energy consumption and fuel economy (mpg) on UDDS, HWFET, US06, and NEDC schedules.

Sport_Utility_in

Vehicle Mass: 1924kg

Calculated, Mass 1924

Cd: 0.44

UDDS

Af: 2.66

From this diagram we get that:

To 60 mph acceleration time: 11.7s

0-60 mph 11.7

Wh/mile energy consumption:1917.57Wh/mile

Energy Usage Ta		OWER MOD	E		REGE	N MODE		
	In	Out	Loss	Eff.] In	Out	Loss	Eff.
Fuel	0	51084						
Fuel Converter	51084	9483	41601	0.19			858	
Clutch	8339	8024	315	0.96	1093	1093	0	1
Hyd. Torque Convert	ter							
Generator								
Torque Coupling								
Energy Storage								
Energy Stored								
Motor/Controller								
Gearbox	8024	7653	371	0.95	1156	1093	63	0.95
Final Drive	7653	7653	0	1	1156	1156	0	1
Wheel/Axle	7653	7254	399	0.95	2681	2668	13	0.99
Braking							1512	
Aux Loads	1369	0	1369	0				
Aero			1843					
Rolling			2714					
							ll System	
							ciency	
							089	
							nergy efficien ling)/(fuel in -	cy is calculated a ess storage)
	Loss F	lot (Power Mod	le)	Loss Plot (R	egen Mode)			DONE

Fuel Converter 51084

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the input of fuel converter which is 51084kJ=14190Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 7.4 mile from the diagram. Distance (miles) 7.4 Then we can get Wh/mile consumption=14190Wh/7.4mile=1917.57Wh/mile

fuel economy (mpg): 17.6

Fuel Economy (mpg)	17.6
Gasoline Equivalent	17.6
Distance (miles)	7.4

HWFET:

From this diagram we get that:

To 60 mph acceleration time: 11.7s

0-60 mph 11.7

Wh/mile energy consumption:1313.11Wh/mile

Energy Usage T		OWER MODI	E		REGEI	N MODE		
	In	Out	Loss	Eff.	∏ In	Out	Loss	Eff.
Fuel	0	48690						
Fuel Converter	48690	12206	36484	0.25			276	
Clutch	11498	11484	14	1	334	334	0	1
Hyd. Torque Convert	ter							
Generator								
Torque Coupling								
Energy Storage								
Energy Stored								
Motor/Controller								
Gearbox	11484	10952	532	0.95	357	334	23	0.93
Final Drive	10952	10952	0	1	357	357	0	1
Wheel/Axle	10952	10453	500	0.95	718	713	5	0.99
Braking							356	
Aux Loads	765	0	765	0				
Aero			5995					
Rolling			3738		U			
							all System ciency	
						().2	
							nergy efficien lling)/(fuel in -	cy is calculated a ess storage)
	Loss F	lot (Power Mod	e)	Loss Plot (F	Regen Mode)			DONE

Fuel Converter 48690

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the input of fuel converter which is 48690kJ=13525Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 10.3mile from the diagram.

Distance [miles] 10.3 Then we can get Wh/mile consumption=13525Wh/10.3mile=1313.11Wh/mile

fuel economy (mpg): 25.4

Fuel Economy (mpg)	25.4
Gasoline Equivalent	25.4
Distance (miles)	10.3

US06:

From this diagram we get that:

To 60 mph acceleration time: 11.7s

0-60 mph 11.7

Wh/mile energy consumption:1935.17Wh/mile

Fuel Fuel Converter Clutch Hyd. Torque Conver Generator Torque Coupling	In 0 55733 13978	OWER MODI Out 55733 14488	Loss	Eff.	In	N MODE Out	Loss	Eff.
Fuel Converter Clutch Hyd. Torque Conver Generator Torque Coupling	0 55733	55733	LUSS	L11.				11 -1
Fuel Converter Clutch Hyd. Torque Conver Generator Torque Coupling	55733						LUSS	
Clutch Hyd. Torque Conve Generator Torque Coupling		14488	44045	0.00			005	
Hyd. Torque Conve Generator Torque Coupling	13978	40000	41245	0.26	000	000	885	
Generator Torque Coupling		13882	96	0.99	988	988	0	1
Torque Coupling	rter							
Energy Storage								
Energy Stored								
Motor/Controller								
Gearbox	13882	13331	551	0.96	1038	988	50	0.95
Final Drive	13331	13331	0	1	1038	1038	0	1
Wheel/Axle	13331	12710	621	0.95	2745	2761	-16	1.01
Braking							1723	
Aux Loads	600	0	600	0				
Aero			6956					
Rolling			2910	Ш				
							ll System	
							iency	
							177	
							nergy efficiend ling)/(fuel in -	
	Loss F	lat (Pawar Mad	ы	Loss Plat (Pa	ann Mada)			
	LOSS F	lot (Power Mod	(e)	Loss Plot (Re	gen Mode)			

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the input of fuel converter which is 55733kJ=15481.39Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 8 mile from the diagram.

Distance (miles)

8 Then we can get Wh/mile consumption=15481.39Wh/8mile=1935.17Wh/mile

Fuel Converter 55733

fuel economy (mpg): 17.3

Fuel Economy (mpg)	17.3
Gasoline Equivalent	17.3
Distance (miles)	8

NEDC:

From this diagram we get that:

To 60 mph acceleration time: 11.7s

0-60 mph 11.7

Wh/mile energy consumption:1874.71Wh/mile

Energy Usage Ta			_					
	Р	OWER MOD	E	REGEN MODE				
	In	Out	Loss	Eff.	In	Out	Loss	Eff.
Fuel	0	45893						
Fuel Converter	45893	8836	37056	0.19			655	
Clutch	7794	7584	210	0.97	803	803	0	1
Hyd. Torque Convert	er							
Generator								
Torque Coupling								
Energy Storage								
Energy Stored								
Motor/Controller								
Gearbox	7584	7238	345	0.95	847	803	44	0.95
Final Drive	7238	7238	0	1	847	847	0	1
Wheel/Axle	7238	6891	348	0.95	1620	1619	1	1
Braking							772	
Aux Loads	1184	0	1184	0				
Aero			2795					
Rolling			2476	L				
							III System	
							ciency	
							115	
							nergy efficien ling)/(fuel in -	cy is calculated ess storage)
	Lear 5	llat (Dawer ht	le)	Less Blak (D.	ann Made)			DO
	LOSS F	lot (Power Mod	iej	Loss Plot (Re	gen Mode)			00

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals the input of fuel converter which is 45893kJ=12748.06Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 6.8 mile from the diagram.

Distance (miles)

6.8 Then we can get Wh/mile consumption=12748.06Wh/6.8mile=1874.71Wh/mile

Fuel Converter 45893

fuel economy (mpg): 17.9

Fuel Economy (mpg)	17.9
Gasoline Equivalent	17.9
Distance (miles)	6.8

- 5. Convert this conventional SUV (Sport_Utility_in) to a pure battery SUV using the same vehicle parameters of mass, Af, Cd, etc.). Name your designed EV as SUV_EV_in.
- (a) Component sizing on battery, motor, etc. You need to determine/select the battery type (NiMH, Li-ion, etc.) and size, motor type and size, motor control, etc.

Vehicle Mass: 1933kg

Calculated, Mass 1933

A little heavier than conventional version(1924kg).

Battery selecting:

Li-ion battery =ss_description='6 Ah Saft Lithium Ion battery';

40 modules: 120 cells (each module contains 3 cells)

Battery pack nominal voltage: 427V

Battery pack weight: 454kg

Capacity:6*10=60

Variables	ess_cap_scale			-	10	Ah
ess_desc	ription='6	Ah	Saft	Lithium	Ion	battery';

The nominal capacity of this battery is 6Ah according the data above. Change capacity scale factor to 10, so the total capacity could be 6*10=60Ah.

Motor selecting:

AC187 electric motor

Max power: 187kw

Peak efficiency: 0.92

Electric motor weight: 91kg

Transmission:

Transmission and wheel are same to the conventional version.

Cd: no change still 0.44

Af: no change still 2.66

(b) Determine performance by simulation: 0 to 60 mph acceleration time by simulation Wh/mile energy consumption and fuel economy (mpg) on UDDS, HWFET, US06, and NEDC schedules.

UDDS

From this diagram we can get that:

To 60 mph acceleration time:7 S

0-60 mph 7

Wh/mile energy consumption:447.26Wh/mile

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals energy stored which is 12076kJ=3354.44Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 7.5mile from the diagram. Distance (miles) 7.5 Then we can get Wh/mile consumption=3354.44Wh/7.5mile=447.26Wh/mile

fuel economy (mpg): 70.2(Gasoline Equivalent)

Fuel Economy (mpg)	0
Gasoline Equivalent	70.2
Distance (miles)	7.5

HWFET:

From this diagram we can get that:

To 60 mph acceleration time:7 S

0-60 mph **7**

Wh/mile energy consumption:441.13Wh/mile

Energy Usage Ta		POWER MODE			REGE	N MODE		
	In	Out	Loss	Eff.	∏ In	Out	Loss	Eff.
Fuel	0							
Fuel Converter								
Clutch								
Hyd. Torque Converte	г							
Generator								
Torque Coupling		40007						
Energy Storage	203	16397	164	0.97				
Energy Stored	-16357	11050	45.44	0.70	445	203	24.0	0.40
Motor/Controller Gearbox	16397	11856 10975	4541 881	0.72 0.93	415	203 415	212	0.49 0.9
Geardox Final Drive	11856 10975	10975	881	0.93 1	461 461	461	47 0	0.5 1
		10979	o 501	0.95	723	461 717	0 6	0.99
Wheel/Axle	10975	10474	201	0.95	723	/1/	ь 255	0.99
Braking Aux Loads	0	0	0	0			200	
Aux Loads Aero	U	U	5995	U				
Rolling			3756					
nolling			3130		П			
						*Overall Sys	tem Efficiency	
						0.1	596	
						^Uverall ene (aero + rollin	rgy efficiency is (g)/(fuel in - ess s	calculated as: torage)
	Lass Plot (Power Mode) Lass Plot (Regen Mode) DONE							

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals energy stored which is 16357kJ=4543.61Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 10.3mile from the diagram. Distance (miles) 10.3 Then we can get Wh/mile consumption=4543.61Wh/10.3mile=441.13Wh/mile

-16357

Energy Stored

fuel economy (mpg): 73.6(Gasoline Equivalent)

Fuel Economy (mpg)	0
Gasoline Equivalent	73.6
Distance (miles)	10.3

US06:

From this diagram we can get that:

To 60 mph acceleration time:7 S

0-60 mph **7**

Wh/mile energy consumption:570.17Wh/mile

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals energy stored which is 16421kJ=4561.39Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 8 mile from the diagram.

Then we can get Wh/mile consumption=4561.39Wh/8mile=570.17Wh/mile

fuel economy (mpg): 54.6(Gasoline Equivalent)

Fuel Economy (mpg)	0
Gasoline Equivalent	54.6
Distance (miles)	8

NEDC:

From this diagram we can get that:

To 60 mph acceleration time:7 S

0-60 mph **7**

Wh/mile energy consumption:456.21Wh/mile

Energy Usage Ta	ble (kJ)	POWER MODE			BEGE	N MODE		
	In	Out	Loss	Eff.	ln ln	Out	Loss	Eff.
Fuel								
Fuel Converter	Ů							
Clutch								
Hyd. Torque Converter								
Generator								
Torque Coupling								
Energy Storage	281	11336	113	0.98				
Energy Stored	-11168							
Motor/Controller	11336	7792	3543	0.69	882	281	601	0.32
Gearbox	7792	7260	532	0.93	960	882	78	0.92
Final Drive	7260	7260	0	1	960	960	0	1
Wheel/Axle	7260	6911	349	0.95	1630	1627	2	1
Braking							667	
Aux Loads	0	0	0	0				
Aero			2795					
Rolling			2487					
						*Overall Sys	tem Efficiency	
						0	473	
							rgy efficiency is g)/(fuel in - ess s	
	Loss	s Plot (Power Mode)		Loss Plot (Re	egen Mode)			

Open the energy use figure we can find that the total consumption of energy in this cycle. The consumption equals energy stored which is 11168kJ=3102.22Wh (1Watt hour (Wh) is equal to 3.6 kilojoules KJ). We also can find the distance of this cycle which is 6.8 mile from the diagram. Distance [miles] 6.8 Then we can get Wh/mile consumption=3102.22Wh/6.8mile=456.21Wh/mile

-11168

Energy Stored

fuel economy (mpg): 70.5(Gasoline Equivalent)

Fuel Economy (mpg)	0
Gasoline Equivalent	70.5
Distance (miles)	6.8

(c) Your designed electrified SUV could be heavier than the conventional SUV, but vehicle performance and fuel economy should be better than conventional one.

COMPARISON:

UDDS:

Version	Conventional	EV
0 to 60 mph	11.7	7
acceleration time(s)		
energy consumption	1892	447.26
(Wh/mile)		
Fuel economy (mpg)	17.6	70.2

HWFET:

Version	Conventional	EV
0 to 60 mph	11.7	7
acceleration time(s)		
energy consumption	1313.11	441.13
(Wh/mile)		
Fuel economy (mpg)	25.4	73.6

US06:

Version	Conventional	EV
0 to 60 mph	11.7	7
acceleration time(s)		
energy consumption	1935.17	570.17
(Wh/mile)		
Fuel economy (mpg)	17.3	54.6

NEDC:

Version	Conventional	EV
0 to 60 mph	11.7	7
acceleration time(s)		
energy consumption	1874.71	456.21
(Wh/mile)		
Fuel economy (mpg)	17.9	70.5

By comparisons in four cycles we can find that EV has faster acceleration which means that EV costs less time from 0 to 60mph in just 7s, reduces about 40% acceleration time compared with conventional one. Energy consumption could be reduced about 66%~76% by using EV version. Fuel economy increases significantly by using EV version that in NEDC, HWFET, UDDS EV could achieve 70+ mpg, which is far above the conventional one. So, in aspect of both dynamic and fuel economy, EV would achieve a better performance than the conventional one.