

Novembro 2013

Redes Neurais Artificiais

Como é possível o cérebro processar tantas informações de imagem, sons e outros dados ao mesmo tempo e de forma eficiente?

Computador altamente complexo, não-linear e paralelo

O que é uma rede neural?

Uma rede neural é um processador maciçamente paralelamente distribuído constituído de unidades de processamento simples, que tem a propensão natural de armazenar conhecimento experimental e torná-lo disponível para uso.

Haykin, 2001

Principais características

- Não-linearidade: consegue mapear fenômenos não-lineares, por exemplo, sinal de voz.
- Capacidade de aprendizado: aprendizado a partir de uma sequência de treinamento (exemplos) com saídas desejadas associadas à entradas únicas;
- Adaptabilidade: capacidade de adaptar seus pesos sinápticos a partir de modificações do meio-ambiente (novo treinamento);
- Habilidade de generalização: após o processo de treinamento da rede, essa é capaz de generalizar o conhecimento adquirido (estimar soluções desconhecidas);
- Organização de dados: a rede é capaz de realizar a sua organização interna visando possibilitar o agrupamento de padrões;

Principais características, cont.

- Informação contextual: cada neurônio da rede é potencialmente afetado pela atividade de todos os outros neurônios na rede.
- Tolerância à falhas: perdas de neurônios não representam degradação significativas na respostas de forma global (hardware);
- Implementação em larga escala: adequada para implementação utilizando tecnologia de integração em larga escala (natureza paralela);
- Analogia neurobiológica: motivado pela semelhança com o cérebro (prova viva de que o processamento paralelo é rápido e poderoso);
- Facilidade de prototipagem: pode ser implementada facilmente em software e hardware (processo de execução).

Resumo histórico

1943

- Primeira publicação relacionada à neurocomputação (McCulloch & Pitts);
- Primeiro modelamento matemático inspirado em um neurônio biológico;

1949

 Primeiro método de treinamento para redes neurais denominado regra de aprendizado de Hebb;

1958

• Primeiro neurcomputador (Mark I) desenvolvido por Frank Rosenblatt;

1960

 Widrow & Hoff desenvolveram um tipo de rede denominada Adaline cujo aprendizado é fundamentado na chamada regra Delta;

1969

- Minsky & Papert apresentaram a limitação das redes neurais, como Perceptron e Adaline, com problemas não linearmente separáveis;
- Congelamento da área de RN;

Resumo histórico, cont.

1982

 Hopsfield propôs a proposição de redes recorrentes baseadas em funções de energia; Retomada da área de RN;

1986

 Publicação do livro Parallel distributed processing [Rumelhart et all], propondo um algoritmo que permitia ajustar os pesos em uma rede com mais de uma camada (backpropagation); Resolveram problemas não linearmente separáveis;

1994

 Algoritmos de aprendizado baseados no método Levenberg-Marquardt que permite incrementar a eficiência do treinamento de redes neurais artificiais [Hagan & Menhaj];

1998

 Redes neurais artificiais baseadas em máquinas de vetores suporte (support vector machines - SVM) que podem ser utilizadas em classificação de padrões e regressão linear [Vapnik];

2003

 Implementação de circuitos integrados neurais com diversas configurações de tipologia [Beiu et all];

Áreas de aplicações

- Aproximador universal de funções: tem como objetivo mapear o relacionamento funcional entre as variáveis (reais) de um sistema a partir de um conjunto de valores conhecidos;
 - ✓ Mapeamento de processos diversos
- Controle de processos: tem como objetivo identificar ações de controle que permitam o alcance dos requisitos de um processo;
 - ✓ Robótica, aeronaves, elevadores, etc.
- Reconhecimento / classificação de padrões: tem com oobjetivo associar um padrão de entrada para uma das classes previamente definidas;
 - ✓ Reconhecimento de imagens, voz, escrita, etc.
- Otimização de sistemas: tem como objetivo minimizar ou maximizar uma função de custo (objetivo);
 - ✓ Otimização restrita, programação dinâmica, otimização combinatorial

Áreas de aplicações, cont.

- Agrupamento de dados (clusterização): tem como objetivo identificar e detectar semelhanças e particularidades entre os diversos padrões de entrada para efetuar o agrupamento;
 - ✓ Identificação automática de classes
- Sistemas de previsão: tem como objetivo estimar valores futuros de um processo levando-se em consideração diversas medidas prévias observadas em seu domínio;
 - ✓ Previsão de séries temporais, mercados financeiros, previsões climáticas
- Memórias associativas: tem como objetivo recuperar padrões corretos mesmo se os seus elementos constituintes forem apresentados de forma incerta ou imprecisa;
 - ✓ Processamento de imagens, transmissão de sinais, etc.

O cérebro humano

Figura 1 Representação em diagrama em blocos do sistema nervoso.

Fonte: Neural Networks and Learning Machines, Third Edition

Simon Haykin

O neurônio

Unidade de processamento de informação que é fundamental para a operação de uma rede neural.

Potencial de ativação

A célula piramidal.

Dendritic spines

Neurônio artificial

Modelo matemático não-linear de um neurônio k. (McCulloch & Pitts)

Elementos básicos do modelo

- Sinais de entrada $\{x_1, x_2, ..., x_m\}$: sinais ou medidas do meio externo que representam os valores das variáveis;
- Pesos sinápticos {w_{k1}, w_{k2}, ..., w_{km}}: valores que servirão para ponderar cada uma das variáveis de entrada (indicam a relevância de cada entrada na rede);
- ➤ Combinador linear {∑}: sua função é agregar todos os sinais de entrada que foram ponderados pelos respectivos pesos sinápticos a fim de gerar um valor de potencial de ativação;

Elementos básicos do modelo, cont.

Limiar de ativação $\{\theta\}$ ou $\{b_k\}$: variável que especifica qual será o patamar apropriado para que o resultado produzido pelo combinador linear possa gerar um valor de disparo em direção a saída do neurônio;

Campo local induzido ou potencial de ativação

Elementos básicos do modelo, cont.

Potencial de ativação $\{v_k\}$: resultado produzido pela diferença do valor produzido entre o combinador linear e o limiar de ativação. Se tal valor é positivo, ou seja, se $u_k + b_k \ge 0$ então o neurônio produz um potencial excitatório; caso contrário, o potencial será inibitório;

$$u_k = \sum_{j=1}^m w_{kj} \cdot x_j \qquad v_k = u_k + b_k$$

Elementos básicos do modelo, cont.

Função de ativação {φ}: seu objetivo é limitar a saída do neurônio dentro de um intervalo de valores razoáveis a serem assumidos pela sua própria imagem funcional;

Sinal de saída $\{y_k\}$: valor final produzido pelo neurônio em relação a um determinado conjunto de sinais de entrada, podendo ser também utilizado por outros neurônios que estão sequencialmente interligados.;

$$y_k = \varphi(u_k + b_k) = \varphi(v_k)$$

Outro modelo de neurônio

Outro modelo matemático não-linear de um neurônio

(a) Função de limiar ou função de heaviside.

$$\varphi(v) = \begin{cases} 1 & se & v \ge 0 \\ 0 & se & v < 0 \end{cases}$$

(b) Função de heaviside simétrica.

$$\varphi(v) = \begin{cases} +1 \text{ se } v \ge 0\\ 0 \text{ se } v = 0\\ -1 \text{ se } v < 0 \end{cases}$$

(c) Função de ativação logística (sigmóid).

$$\varphi(v) = \frac{e^{pv}}{e^{pv} + 1} = \frac{1}{1 + e^{-pv}}$$

$$\frac{\partial \varphi(v)}{\partial v} = pv(1-v) > 0$$

(d) Função de ativação tangente hiperbólica.

$$\varphi(v) = \tanh(pv) = \frac{e^{pv} - e^{-pv}}{e^{pv} + e^{-pv}}$$

$$\frac{\partial \varphi(v)}{\partial v} = p(1 - v^2) > 0$$

(e) Função de ativação semi-linear.

$$\varphi(v) = \begin{cases} +1 \text{ se } pv \ge 0\\ pv \text{ se } 0 < pv < 1\\ 0 \text{ se } pv < 0 \end{cases}$$

$$\frac{\partial \varphi(v)}{\partial v} = p$$

- A arquitetura de uma rede neural define a forma como os seus diversos neurônios estão arranjados, ou dispostos, uns em relação aos outros;
- Uma rede neural pode ser dividida em três partes básicas:
 - a) Camada de entrada: responsável pelo recebimento de informações (dados) do meio externo;
 - b) Camadas escondidas: compostas por neurônios que possuem a responsabilidade de extrair as características associadas ao processo ou sistema a ser inferido;
 - c) Camada de saída: também constituída de neurônios sendo responsável pela produção e apresentação dos resultados finais da rede;

Camada de entrada

Camada escondida ou intermediária

Arquiteturas básicas

Redes alimentadas adiante (feedforward) com camada única

 Uma camada de entrada de nós de fonte que se projeta sobre uma camada de saída de neurônios.

Arquiteturas básicas, cont.

Redes alimentadas adiante com múltiplas camadas

Os nós de fonte da camada de entrada da rede fornecem os respectivos elementos do padrão de ativação, que constituem os sinais de entrada aplicados aos neurônios na segunda camada.

Arquiteturas básicas, cont.

Redes recorrentes ou realimentadas

Difere da rede neural alimentada adiante por ter pelo menos um laço de realimentação.

Arquiteturas básicas, cont.

Redes em estrutura reticulada

 Tem como principal característica a disposição espacial dos neurônios. Muito aplicada em problemas de agrupamento (Kohonen)

Processo de aprendizado

- Um dos destaques mais relevantes das redes neurais artificiais é a capacidade de aprender a partir de amostras (exemplos) que exprimem o comportamento do sistema;
- Isso é feito através de passos ordenados a fim de sintonizar os pesos sinápticos e limiares de seus neurônios, etapa conhecida como processo de treinamento;
- O aprendizado ocorre quando a rede neural atinge uma solução generalizada para o sistema.

Representação do conhecimento

- Tipos de exemplos:
 - Rotulados: cada exemplo que representa um sinal de entrada é associado a uma resposta desejada.
 - Não-rotulados: ocorrências diferentes dos próprios sinais de entrada.
- Um conjunto de pares de entrada-saída é referido como um conjunto de dados de treinamento ou amostra de treinamento.
- O conjunto total de amostras disponíveis sobre o comportamento do sistema é dividido em dois subconjuntos: subconjunto de treinamento (60 a 90% do conjunto total) e subconjunto de teste (10 a 40%);
- Cada apresentação completa dos dados de treinamento é denominado época.

Regras para o aprendizado

- Sinais de entrada similares provenientes de classes de eventos ou objetos similares devem produzir representações similares dentro da rede e devem ser classificados como pertencentes à mesma categoria;
- Itens que devem ser classificados em categorias separadas devem provocar representações bastante distintas dentro da rede;
- Se uma característica é importante, então deve haver um grande número de neurônios envolvidos na sua representação;
- Informações conhecidas a priori e invariância devem ser embutidas no projeto da rede.

Similaridade entre entradas

$$X_{i} = [x_{i1}, x_{i2}, ..., x_{iN}]^{T}$$
 $X_{j} = [x_{j1}, x_{j2}, ..., x_{jN}]^{T}$

Distância euclidiana

$$d(X_i, X_j) = ||X_i - X_j|| = \left[\sum_{n=1}^{N} (x_{in} - x_{jn})^2\right]^{1/2}$$

Produto escalar ou produto interno

$$(X_i, X_j) = X_i^T X_{j=} = \sum_{n=1}^{N} x_{in} x_{jn}$$

Similaridade: inverso da distância

Similaridade entre entradas

- Relação entra as medidas de similaridade
 - A distância euclidiana $||X_i X_j||$ entre os vetores X_i e X_j está relacionada com a "projeção" do vetor X_i sobre o vetor X_j .
 - Quanto mais similares forem X_i e X_j , maior será o produto interno $X_i^T X_j$.

Definição de aprendizagem

- É o processo no qual os parâmetros livres de uma rede neural são alterados pela estimulação contínua causada pelo ambiente na qual a rede está inserida;
- O tipo do aprendizado é determinado pela maneira pela qual os parâmetros são alterados

Aprendizado em redes neurais artificiais

- ✓ Algoritmos
 - Correção de erro
 - Máquina de Boltzman
 - Lei de Hebb
 - Competição

- ✓ Paradigmas
 - Supervisionado
 - Não supervisionado
 - Reforço

Objetivo final do aprendizado: obtenção de um modelo implícito dos conhecimentos adquiridos.

Aprendizado em redes neurais artificiais, cont.

- Aprendizado supervisionado, quando é utilizado um agente externo que indica à rede a resposta desejada para o padrão de entrada;
- Aprendizado não supervisionado (autoorganização), quando não existe uma agente externo indicando a resposta desejada para os padrões de entrada;
- Reforço, quando um crítico externo avalia a resposta fornecida pela rede.

Instituto Nacional de Telecomunicações

Rede de múltiplas camadas alimentadas adiante

Elementos da rede:

- $d_k(n)$: resposta desejada para o neurônio k no instante n;
- $y_k(n)$: resposta observada e obtida através de um estímulo x(n) na entrada da rede;
- x(n) e $d_k(n)$ constituem um exemplo de par "estímuloresposta" apresentados à rede no instante n, retirados de um ambiente ruidoso, cujas distribuições de probabilidade são, em geral, desconhecidas;
- $e_k(n) = d_k(n) y_k(n)$: sinal de erro no instante n.

- ✓ **Objetivo**: minimizar um critério funcional baseado em $e_k(n)$, de modo que, para n suficientemente grande, $y_k(n)$ esteja próximo de $d_k(n)$ no sentido estatístico.
- Um critério muito adotado é o do erro quadrático médio

$$J = E \left| \frac{1}{2} \sum_{k} e_k^2(n) \right|$$

- ➤ A minimização de J leva ao chamado método do decréscimo do gradiente, o qual necessita do conhecimento das características estatísticas do sistema.
- Uma aproximação deste método utiliza o valor instantâneo da energia do erro.

$$E(n) = \frac{1}{2}e_k^2(n)$$

 \triangleright e a minimização de E(n) é realizada em relação aos pesos sinápticos da rede.

Regra Delta:

- Regra delta, ou regra Widrow-Hoff, é a minimização da função E(n).
- Supondo que $w_{kj}(n)$ represente o valor do peso sináptico w_{kj} do neurônio k excitado por um elemento $x_j(n)$ do vetor do sinal x(n) no passo de tempo n.

$$\Delta\omega_{kj}(n) = \eta e_k(n) x_j(n)$$

 Onde η é uma constante positiva que determina a taxa de aprendizagem.

Aprendizagem Hebbiana

✓ Regras:

- Se dois neurônios em ambos os lados de uma sinapse são ativados simultaneamente (sincronamente), então a força daquela sinapse é seletivamente aumentada.
- Se dois neurônios em ambos os lados de uma sinapse são ativados assincronamente, então aquela sinapse é seletivamente enfraquecida ou eliminada.

$$\Delta\omega_{kj}(n) = \eta y_k(n) x_j(n)$$

Aprendizagem competitiva

- Os neurônios de saída de uma rede neural competem para se tornar ativos.
- Na aprendizagem competitiva, apenas um neurônio pode estar ativo em um determinado instante.

Adequado para descobrir características estatisticamente salientes que podem ser utilizadas para classificar um conjunto de padrões de entrada.

Inatel Instituto Nacional de Telecomunicações

Aprendizagem competitiva, cont.

- Elementos básicos da aprendizagem competitiva:
 - Um conjunto de neurônios que são todos iguais entre si, exceto por alguns pesos sinápticos distribuídos aleatoriamente;
 - Um limite imposto sobre a "força" de cada neurônio;
 - Um mecanismo que permite que o neurônio compita pelo direito de responder a um dado subconjunto de entradas, de forma que somente um neurônio de saída, ou somente um neurônio por grupo, esteja ativo.

nateAprendizagem competitiva, cont.

- Para um neurônio k ser o neurônio vencedor, seu campo local induzido u_k para um padrão especificado X deve ser o maior entre todos os neurônios da rede.
- \triangleright A saída y_k do neurônio vencedor é colocada em 1 e a saída dos demais neurônios são colocadas em 0.

$$\Delta w_{kj} = \begin{cases} \eta(x_j - w_{kj}) & se & vencedor \\ 0 & se & perdedor \end{cases}$$

Aprendizagem com professor

✓ Conhecida como aprendizagem supervisionada.

Inatel

Aprendizagem com professor, cont.

- Ambiente desconhecido pela rede neural.
- O conhecimento é apresentado por um conjunto de exemplos entrada-saída.
- A partir de um conhecimento prévio, o professor é capaz de fornecer uma resposta desejada para o vetor de treinamento;
- Os parâmetros da rede são ajustados sob a influência combinada do vetor de treinamento e do sinal de erro.
- Este ajuste é realizado passo a passo, iterativamente com o objetivo de fazer a rede emular o professor.

Aprendizagem sem professor

✓ Conhecida como aprendizagem auto-organizada.

Instituto Nacional de Telecomunicações

InateAprendizagem sem professor, cont.

- Não há professor para supervisionar o processo de aprendizagem.
- Não há exemplos rotulados da função a ser aprendida pela rede.
- São dadas condições para realizar um medida independente da tarefa da qualidade da representação que a rede deve aprender.
- Pode-se utilizar a regra de aprendizagem competitiva.

Tarefas de aprendizagem

- ✓ Associação de padrões
 - A rede neural armazena um conjunto de padrões (vetores), que são apresentados repetidamente à rede.
 - Posteriormente, apresenta-se à rede uma descrição parcial ou distorcida (ruidosa) de um padrão original armazenado pela rede e a tarefa é recuperar aquele padrão.

✓ Reconhecimento de padrões

- A rede neural passa por um processo de treinamento onde são apresentados repetidamente um conjunto de padrões de entrada junto com a categoria ao qual cada padrão pertence.
- Posteriormente é apresentado à rede um padrão ainda não visto antes mas que pertence à mesma população de padrões utilizados no treinamento e a mesma é capaz de identificar a classe daquele padrão.

✓ Reconhecimento de padrões

- ✓ Aproximação de funções
 - A rede neural pode ser utilizada para a aproximação de funções desconhecidas.
 - Utilização de uma aprendizagem supervisionada.
 - A habilidade de aproximar o mapeamento entrada-saída desconhecido pode ser aplicado para a identificação de sistemas desconhecidos ou para obter o sistema inverso.

✓ Aproximação de funções: identificação de sistemas

✓ Aproximação de funções: obtenção de sistemas inversos

✓ Controle

 O controle de um processo ou parte crítica de um sistema é uma tarefa de aprendizagem que pode ser feita por uma rede neural.

✓ Filtragem

- A rede neural pode ser utilizada para filtragem, ou seja, extrair informações sobre uma determinada grandeza de interesse a partir de um conjunto de dados ruidosos.
- O filtro pode realizar: filtragem, suavização ou previsão.

Inatel Instituto Nacional de Telecomunicações

Fim

Edielson Prevato Frigieri edielson@inatel.br

