

Like QuickSort, Merge Sort is a Divide and Conquer algorithm. It divides input array in two halves, calls itself for the two halves and then merges the two sorted halves. **The merge() function** is used for merging two halves. The merge(arr, I, m, r) is key process that assumes that arr[I..m] and arr[m+1..r] are sorted and merges the two sorted sub-arrays into one. See following C implementation for details.

The following diagram from wikipedia shows the complete merge sort process for an example array {38, 27, 43, 3, 9, 82, 10}. If we take a closer look at the diagram, we can see that the array is recursively divided in two halves till the size becomes 1. Once the size becomes 1, the merge processes comes into action and starts merging arrays back till the complete array is merged.

Recommended: Please solve it on "<u>PRACTICE</u>" first, before moving on to the solution.

```
/* C program for <a href="#">Merge Sort</a> */
#include<stdlib.h>
#include<stdlib.h>
#include<stdio.h>

// Merges two subarrays of arr[].
// First subarray is arr[m+1..m]
// Second subarray is arr[m+1..r]
void merge(int arr[], int l, int m, int r)
{
   int i, j, k;
   int n1 = m - l + 1;
   int n2 = r - m;

   /* create temp arrays */
   int L[n1], R[n2];

   /* Copy data to temp arrays L[] and R[] */
   for (i = 0; i < n1; i++)
        L[i] = arr[l + i];</pre>
```

```
for (j = 0; j < n2; j++)
        R[j] = arr[m + 1 + j];
    /* Merge the temp arrays back into arr[1..r]*/
    i = 0; // Initial index of first subarray
    j = 0; // Initial index of second subarray
    k = 1; // Initial index of merged subarray
    while (i < n1 && j < n2)</pre>
        if (L[i] <= R[j])</pre>
        {
            arr[k] = L[i];
            i++;
        else
        {
            arr[k] = R[j];
            j++;
        k++;
    }
    /* Copy the remaining elements of L[], if there
       are any */
    while (i < n1)
    {
        arr[k] = L[i];
        i++;
        k++;
    /* Copy the remaining elements of R[], if there
       are any */
    while (j < n2)
        arr[k] = R[j];
        j++;
        k++;
    }
/* 1 is for left index and r is right index of the
  sub-array of arr to be sorted */
void mergeSort(int arr[], int 1, int r)
{
    if (1 < r)
        // Same as (l+r)/2, but avoids overflow for
        // large l and h
        int m = 1+(r-1)/2;
        // Sort first and second halves
        mergeSort(arr, 1, m);
        mergeSort(arr, m+1, r);
        merge(arr, 1, m, r);
    }
/* UTILITY FUNCTIONS */
/* Function to print an array */
void printArray(int A[], int size)
    int i;
    for (i=0; i < size; i++)</pre>
        printf("%d ", A[i]);
    printf("\n");
}
/* Driver program to test above functions */
int main()
{
    int arr[] = {12, 11, 13, 5, 6, 7};
    int arr_size = sizeof(arr)/sizeof(arr[0]);
```

```
printf("Given array is \n");
printArray(arr, arr_size);

mergeSort(arr, 0, arr_size - 1);

printf("\nSorted array is \n");
printArray(arr, arr_size);
return 0;
}
```

Run on IDE

```
/* Java program for <a href="#">Merge Sort</a> */
class MergeSort
    // Merges two subarrays of arr[].
    // First subarray is arr[1..m]
    // Second subarray is arr[m+1..r]
    void merge(int arr[], int 1, int m, int r)
        // Find sizes of two subarrays to be merged
        int n1 = m - 1 + 1;
        int n2 = r - m;
        /* Create temp arrays */
        int L[] = new int [n1];
        int R[] = new int [n2];
        /*Copy data to temp arrays*/
        for (int i=0; i<n1; ++i)</pre>
            L[i] = arr[l + i];
        for (int j=0; j<n2; ++j)</pre>
            R[j] = arr[m + 1 + j];
        /* Merge the temp arrays */
        // Initial indexes of first and second subarrays
        int i = 0, j = 0;
        // Initial index of merged subarry array
        int k = 1;
        while (i < n1 && j < n2)
            if (L[i] <= R[j])</pre>
                arr[k] = L[i];
            else
                arr[k] = R[j];
                j++;
            k++;
        /* Copy remaining elements of L[] if any */
        while (i < n1)
            arr[k] = L[i];
            i++;
            k++;
        /* Copy remaining elements of R[] if any */
        while (j < n2)
```

```
arr[k] = R[j];
            j++;
            k++;
        }
    }
    // Main function that sorts arr[l..r] using
    // merge()
    void sort(int arr[], int l, int r)
    {
        if (1 < r)
            // Find the middle point
            int m = (1+r)/2;
            // Sort first and second halves
            sort(arr, 1, m);
            sort(arr , m+1, r);
            // Merge the sorted halves
            merge(arr, 1, m, r);
        }
    /* A utility function to print array of size n */
    static void printArray(int arr[])
        int n = arr.length;
        for (int i=0; i<n; ++i)</pre>
            System.out.print(arr[i] + " ");
        System.out.println();
    }
    // Driver method
    public static void main(String args[])
        int arr[] = {12, 11, 13, 5, 6, 7};
        System.out.println("Given Array");
        printArray(arr);
        MergeSort ob = new MergeSort();
        ob.sort(arr, 0, arr.length-1);
        System.out.println("\nSorted array");
        printArray(arr);
    }
/* This code is contributed by Rajat Mishra */
                                                                                 Run on IDE
```

Python

Python program for implementation of MergeSort

```
# Merges two subarrays of arr[].
# First subarray is arr[1..m]
# Second subarray is arr[m+1..r]

def merge(arr, 1, m, r):
    n1 = m - 1 + 1
    n2 = r- m

# create temp arrays
L = [0] * (n1)
R = [0] * (n2)

# Copy data to temp arrays L[] and R[]
for i in range(0 , n1):
    L[i] = arr[1 + i]
```

```
for j in range(0 , n2):
        R[j] = arr[m + 1 + j]
    # Merge the temp arrays back into arr[1..r]
    i = 0 # Initial index of first subarray
    j = 0
              # Initial index of second subarray
              # Initial index of merged subarray
    k = 1
    while i < n1 and j < n2:
        if L[i] <= R[j]:
    arr[k] = L[i]</pre>
            i += 1
        else:
            arr[k] = R[j]
            j += 1
        k += 1
    # Copy the remaining elements of L[], if there
    # are any
    while i < n1:
        arr[k] = L[i]
        i += 1
        k += 1
    # Copy the remaining elements of R[], if there
    # are any
    while j < n2:
        arr[k] = R[j]
        j += 1
        k += 1
# l is for left index and r is right index of the
# sub-array of arr to be sorted
def mergeSort(arr,1,r):
    if 1 < r:
        # Same as (1+r)/2, but avoids overflow for
        # large 1 and h
        m = (1+(r-1))/2
        # Sort first and second halves
        mergeSort(arr, 1, m)
        mergeSort(arr, m+1, r)
        merge(arr, 1, m, r)
# Driver code to test above
arr = [12, 11, 13, 5, 6, 7]
n = len(arr)
print ("Given array is")
for i in range(n):
    print ("%d" %arr[i]),
mergeSort(arr,0,n-1)
print ("\n\nSorted array is")
for i in range(n):
    print ("%d" %arr[i]),
# This code is contributed by Mohit Kumra
                                                                                   Run on IDE
```

Output:

```
Given array is
12 11 13 5 6 7

Sorted array is
5 6 7 11 12 13
```

Time Complexity: Sorting arrays on different machines. Merge Sort is a recursive algorithm and time complexity can be expressed as following recurrence relation.

$$\mathsf{T}(\mathsf{n}) = 2\mathsf{T}(\mathsf{n}/2) + \Theta(n)$$

The above recurrence can be solved either using Recurrence Tree method or Master method. It falls in case II of Master Method and solution of the recurrence is $\Theta(nLogn)$.

Time complexity of Merge Sort is $\Theta(nLogn)$ in all 3 cases (worst, average and best) as merge sort always divides the array in two halves and take linear time to merge two halves.

Auxiliary Space: O(n)

Algorithmic Paradigm: Divide and Conquer

Sorting In Place: No in a typical implementation

Stable: Yes

Applications of Merge Sort

1. Merge Sort is useful for sorting linked lists in O(nLogn) time. In case of linked lists the case is different mainly due to difference in memory allocation of arrays and linked lists. Unlike arrays, linked list nodes may not be adjacent in memory. Unlike array, in linked list, we can insert items in the middle in O(1) extra space and O(1) time. Therefore merge operation of merge sort can be implemented without extra space for linked lists.

In arrays, we can do random access as elements are continuous in memory. Let us say we have an integer (4-byte) array A and let the address of A[0] be x then to access A[i], we can directly access the memory at $(x + i^4)$. Unlike arrays, we can not do random access in linked list. Quick Sort requires a lot of this kind of access. In linked list to access i'th index, we have to travel each and every node from the head to i'th node as we don't have continuous block of memory. Therefore, the overhead increases for quick sort. Merge sort accesses data sequentially and the need of random access is low.

- 2. Inversion Count Problem
- 3. Used in External Sorting

Snapshots:

Asked in: Boomerang, Goldman Sachs, Grofers, Medlife , Microsoft, Oracle, Qualcomm, Target Corporation

- Recent Articles on Merge Sort
- Coding practice for sorting.
- Quiz on Merge Sort

Other Sorting Algorithms on GeeksforGeeks:

3-way Merge Sort, Selection Sort, Bubble Sort, Insertion Sort, Merge Sort, Heap Sort, QuickSort, Radix Sort, Counting Sort, Bucket Sort, ShellSort, Comb Sort

Please write comments if you find anything incorrect, or you want to share more informabout the topic discussed above.

GATE CS Corner Company Wise Coding Practice

Divide and Conquer Sorting

Login to Improve this Article

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

Recommended Posts:

QuickSort

Heap Sort

Count Inversions in an array | Set 1 (Using Merge Sort)

Insertion Sort

Merge Sort for Linked Lists

Iterative Fast Fourier Transformation for polynomial multiplication

Fast Fourier Transformation for poynomial multiplication

The painter's partition problem | Set 2

Find closest number in array

Number of days after which tank will become empty

(Login to Rate)

Writing code in comment? Please use ide.geeksforgeeks.org, generate link and share the link here.

Load Comments

Share this post!

@geeksforgeeks, Some rights reserved

Contact Us!

About Us!

Careers!

Privacy

Policy

