

Lecture 11

Finish Model Checking

Implementation of WLS and robust variance estimation in R

The material in this video is subject to the copyright of the owners of the material and is being provided for educational purpose: under rules of fair use for registered students in this course only. No additional copies of the copyrighted work may be made or distributed.

Key Assumptions by Order of Importance

- E(Y|X) = Xβ, i.e. the mean model is "correctly" specified
 - \triangleright Misspecification of Xβ can lead to biased β / misinterpretations
 - Omitted variable Bias
 - Correct functional form for continuous X
- Residuals are independent
 - ▶ This assumption is violated due to the design of the study
 - Longitudinal study
 - Clustered design
 - ▶ Show today: ignoring the correlation will impact $Var(\hat{\beta})$ and derive weighted least squares
- Variance of residuals is constant
 - Often the variance is a function of some X
 - Show today: same impact and solution as violation of independence
- Residuals are normally distributed
 - CLT, bootstrap procedure
- ▶ There are not a small number of highly influencial observations
 - Sensitivity analyses

Leverage and Influence

- Leverage: A measure of how far an individual's predictors (X_i) are from the mean X_i
 - $\blacktriangleright \text{ Hat matrix: } h_{ii} = \frac{(X_i \bar{X})^2}{\sum (X_i \bar{X})^2}$
- Influence: An observation (Y_i, X_i) such that including this value would greatly change the fitted values: $\hat{\beta}$ and \hat{Y} .

Influence statistics

There are several influence statistics that are used in practice:

•
$$DBETA_{ij} = \hat{\beta}_j - \hat{\beta}_{j(-i)}$$

•
$$DBETAS_{ij} = \frac{DBETA_{ij}}{\hat{se}(\hat{\beta}_{j(-i)})}$$

•
$$DFIT_i = \hat{Y}_i - \hat{Y}_{i(-i)}$$

•
$$DFITS_i = \frac{DFIT_i}{\hat{se}(\hat{Y}_{i(-i)})}$$

Example: Nepali Anthropometry Data

Example: Nepali Anthropometry Data

Example: Nepali Anthropometry Data

Implementation of WLS in R

- For the remainder of the lecture, we will work through some analyses to demonstrate how to fit WLS in R
- ▶ In addition, I will show one approach for obtained robust variance estimates for different working correlation models. Here we will use the *gee* package in R.
- ► See Handout 11.