More on Linear Regression

Stat 120

May 29 2023

Simple Linear Regression: Linear Regression of BAC (y) on Beers (x)

$$\hat{\mu}(BAC \mid X) = -0.0127 + 0.0180 (ext{ Beers} \) \ \hat{\sigma} = 0.02044$$

```
Call:
lm(formula = BAC ~ Beers, data = bac)
Residuals:
                10 Median
     Min
                                   30
                                           Max
-0.027118 -0.017350 0.001773 0.008623 0.041027
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.012701 0.012638 -1.005
                                         0.332
Beers
        0.017964 0.002402 7.480 2.97e-06 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.02044 on 14 degrees of freedom
Multiple R-squared: 0.7998, Adjusted R-squared: 0.7855
F-statistic: 55.94 on 1 and 14 DF, p-value: 2.969e-06
```

Inference using R-output

Inference uses t-distributions with df = n-2

Test: Does X have an effect on the mean of Y?

Hypotheses:

 $egin{aligned} & \mathrm{H}_0: & eta_i = 0 \ & \mathrm{H}_A: & eta_i
eq 0 \end{aligned} \qquad egin{aligned} & \mathrm{(no~effect~for~predictor~i~i)} \ & \mathrm{H}_A: & eta_i \neq 0 \end{aligned}$

Test Stat: labeled t-value in R output

$$t = rac{{{\hateta}_i} - {f 0}}{{
m SE}{\left({{{\hateta}_i}}
ight)}}$$

P-value: two-tailed, label "Pr $(>|\mathbf{t}|)$ " in R output

Confidence Interval

C% confidence interval for eta_i is $\hat{eta}_i \pm t^*\operatorname{SE}\!\left(\hat{eta}_i
ight)$

 Get CIs for slope/intercept with confint command or compute using qt(.975, df=) to get t* for 95% CI

Inference for slope (effect of Beers on BAC)

$$egin{aligned} &\mathrm{H}_0: η_i = 0 \ &\mathrm{H}_A: η_i
eq 0 \end{aligned} \qquad egin{aligned} &\mathrm{(no\ effect\ for\ predictor\ i\)} \ &\mathrm{H}_A: &\mathrm{(predictor\ i\ has\ an\ effect\ on\ y\)} \end{aligned}$$

term	estimate	std.error	statistic	p.value
(Intercept)	[-0.0127006]	0.0126375	[-1.004993]	0.3319551
Beers	0.0179638	0.0024017	7.479592	0.0000030

(a) For this example, the slope test statistic is

$$t = \frac{(0.018 - 0)}{0.0024} = 7.48$$

and the p-value is less than 0.0001.

(b) Inference for slope (effect of Beers on BAC)

- ullet The observed slope of 0.018 is $7.48{
 m SE}$'s away from the hypothesized slope of 0 .
- If we repeated this experiment many times, less than 0.01% of the time we would see an observed slope that is $7.48\mathrm{SE}$'s or more away from 0 if the true slope was 0.
- The effect of the number of beers on BAC is statistically significant $(t=7.48, \mathrm{df}=14, p<0.0001).$

How much of an effect?

(c) Inference for slope (effect of Beers on BAC)

```
95% CI for true slope (effect on the mean):
```

```
bac <- read.csv("https://raw.githubusercontent.com/deepbas/statdatasets/main/BAC.csv")
bac.lm <- lm(BAC ~ Beers, data = bac) # fit the model
knitr::kable(confint(bac.lm)) # confidence interval</pre>
```

	2.5 %	97.5 %
(Intercept)	-0.0398054	0.0144041
Beers	0.0128126	0.0231149

$$0.018 \pm 2.1448 (0.0024) = (0.013, 0.023)$$

Each additional beer is associated with an average increase in BAC of 0.018 (95% CI 0.013 to 0.023).

Inference for intercept (predicted BAC at 0 beers)

$$egin{aligned} & \mathrm{H}_0: & eta_0 = 0 \ & \mathrm{H}_A: & eta_0 \neq 0 \end{aligned} \qquad & \mathrm{(true\ (population)\ intercept} = 0) \ & \mathrm{H}_A: & \mathrm{$$

term	estimate	std.error	statistic	p.value
(Intercept)	[-0.0127006]	0.0126375	-1.004993	0.3319551
Beers	0.0179638	0.0024017	7.479592	0.0000030

For this example, the intercept test statistic is

$$t = \frac{(-0.0127 - 0)}{0.0126} = -1.005$$

and the p-value is 0.332. The predicted BAC at 0 beers is not significantly different from 0 $(t=-1.01, df=14, p\text{-value}\,=0.33)$.

Summary

- Number of beers has a statistically significant effect on ${\rm BAC}\,.$
- We can explain about 80% of the variation in BAC by knowing the number of beers drank.
- How can we explain the other 20% of variation in BAC observed in this data?
- Multiple regression: include more predictors (explanatory variables) of BAC.

Multiple Linear Regression Model

Suppose you have p explanatory variables

- Mean of Y is a linear function of $m{x}_1, m{x}_2, \dots, m{x}_p$ $\mu(Y \mid X) = eta_0 + eta_1 X_1 + eta_2 X_2 + \dots + eta_p X_p$
- Model SD is σ for all values of X.

Scatterplot matrix for BAC example

```
library(GGally)
ggpairs(bac[, -c(1,2,3)]) + theme(axis.text.x = element_text(size = 3))
```


Regression of BAC on Beers and Weight

```
Call:
lm(formula = BAC ~ Beers + Weight, data = bac)
Residuals:
      Min
                  10
                        Median
                                       30
                                                Max
-0.0162968 -0.0067796 0.0003985 0.0085287 0.0155621
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.986e-02 1.043e-02 3.821 0.00212 **
Beers
        1.998e-02 1.263e-03 15.817 7.16e-10 ***
Weight -3.628e-04 5.668e-05 -6.401 2.34e-05 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.01041 on 13 degrees of freedom
Multiple R-squared: 0.9518, Adjusted R-squared: 0.9444
F-statistic: 128.3 on 2 and 13 DF, p-value: 2.756e-09
```

(d) The fitted model for BAC is

$$\widehat{BAC} = \hat{\mu}(BAC \mid X) = 0.0399 + 0.0200(Beers) - 0.00036(Weight).$$

Knowing number of beers and weight allows us to explain about 95% of the charved varieties in PAC levels

Interpreting parameters in $\mu(Y\mid X)=eta_0+eta_1X_1+eta_2X_2+\cdots+eta_pX_p$

The fitted model for BAC is

$$\widehat{BAC} = \hat{\mu}(BAC \mid X) = 0.0399 + 0.0200(Beers) - 0.00036(Weight).$$

(e) John: weighs 160 lbs, drank 4 beers

$$\widehat{BAC} = 0.0399 + 0.0200(4) - 0.00036(160) = 0.0623$$

(e) Bob: weighs 160 lbs, drank 5 beers

$$\widehat{BAC} = 0.0399 + 0.0200(5) - 0.00036(160) = 0.0823$$

(e) Difference between John and Bob's predicted BAC?

$$0.0823 - 0.0623 = 0.0200$$

Inference

$$egin{aligned} H_0: eta_i &= 0 \ H_A: eta_i
eq 0 \end{aligned} \qquad ext{(no effect for predictor i)} \qquad \qquad t = rac{eta_i - 0}{ ext{SE}ig(\hat{eta}_iig)} \end{aligned}$$

- Inference (p-values, CI) based on t-distribution with $df = n (p+1) = n (betas \ in \ model)$
- R-squared: proportion of variation in y explained by the model
- Test: Is X_i needed in a model that already contains all other predictors?
- C% confidence interval for eta_i is $\hat{eta}_i \pm t^* \mathbf{SE}\left(\hat{eta}_i\right)$

Regression of BAC on Beers and Weight

term		estimat	е	std.error	statistic	p.value
(Intercept	$\left[\cdot \right]$	0.0398634	4	0.0104333	3.820787	[0.0021219]
Beers		0.0199757	7	0.0012629	15.817343	0.0000000
Weight		-0.0003628	3	0.0000567	-6.401230	0.0000234
				2.5 %	97.5 %	
	(Intercept) Beers Weight			0.0173236	0.0624031	
				0.0172474	0.0227040	
			_	-0.0004853	-0.0002404	

(h) Both number of beers and weight are statistically significant predictors of BAC (p-value <0.0001). Holding weight constant, we are 95% confident that the true effect of drinking one more beer is a 0.017 to 0.23 unit increase in mean $\rm BAC$.

Scatterplot Matrix for BAC example


```
lm2.bac <- lm(BAC ~ Beers + Weight + Gender, data = bac) # fit the model
summary(lm2.bac)</pre>
```

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.871e-02 1.097e-02 3.528 0.004164 **

Beers 1.990e-02 1.309e-03 15.196 3.35e-09 ***

Weight -3.444e-04 6.842e-05 -5.034 0.000292 ***

Gendermale -3.240e-03 6.286e-03 -0.515 0.615584

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01072 on 12 degrees of freedom

Multiple R-squared: 0.9528, Adjusted R-squared: 0.941

F-statistic: 80.81 on 3 and 12 DF, p-value: 3.162e-08
```

The fitted model for BAC is

$$\widehat{BAC} = 0.039 + 0.020 (Beers) - 0.00034 (Weight) - 0.0032 ext{ (Male)}$$

$$\widehat{BAC} = 0.039 + 0.020(Beers) - 0.00034(Weight) - 0.0032 \text{ (Male)}$$

"Male" is an indicator variable that equals 1 when we want to predict male ${\rm BAC}$ and 0 when we want to predict Female BAC.

(i) Barb drank 4 beers, weighs 160 lbs and is female:

$$\widehat{BAC} = 0.039 + 0.020(4) - 0.00034(160) - 0.0032(0) = 0.0646$$

(i) John drank 4 beers, weighs 160 lbs and is male:

$$\widehat{BAC} = 0.039 + 0.020(4) - 0.00034(160) - 0.0032(1) = 0.0614$$

How is the effect of GenderMale -0.0032 interpreted?

(j) Holding weight and beers constant, we predict that the BAC of males is 0.0032 units lower than females.

- (k) But, is the effect of Gender statistically significant?
 - No the p-value of 0.6155 shows that there is no statistically significant difference between the mean BAC of males and females after accounting for their weight and number of beers drank!

There is a lot more to cover ...

Model diagnostic tools

- Are model conditions met?
- linearity, constant variance, independent observation

Outlier checks

- What is an "outlier" in multiple regression?
- Can we determine how influential a case is?

More sophisticated models

- Transformations (logs, square roots)
- Predictor interactions (does the effect of weight on BAC depend on gender?)
- Logistic regression: response is categorical!

2 YOUR TURN1

- Go over to the in class activity file
- Complete the remaining activity