厦门大学高等代数教案 网站 IP 地址: 59.77.1.116; 域名: gdjpkc.xmu.edu.cn

§4.4 **像与核**

1. 设 $\varphi: F^{n \times n} \to F, A \mapsto \mathrm{tr}(A)$ 是线性映射. 求 $\mathrm{Ker} \varphi, \mathrm{Im} \varphi,$ 并求它们的一个基和维数.

解 Ker $\varphi = \{A \in F^{n \times n} | \operatorname{tr}(A) = 0\}$, Im $\varphi = \{\operatorname{tr}(A) | A \in F^{n \times n}\}$; Ker φ 的一个基为 E_{ij} $(i \neq j), E_{ii} - E_{nn}$ $(i = 1, 2, \dots, n - 1)$, 故 dimKer $\varphi = n^2 - 1$; Im φ 的一个基为 1, 故 dimIm $\varphi = 1$.

2. 设

$$A = \left(\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array}\right).$$

定义线性映射 $\varphi_A: F^{2\times 2} \to F^{2\times 2}, B \mapsto AB$. 求 $\operatorname{Ker} \varphi_A, \operatorname{Im} \varphi_A,$ 并求它们的一个基和维数.

解(法一)

$$\operatorname{Im}\varphi_{A} = \{AB|B \in F^{2\times 2}\} = \{ \begin{pmatrix} a-c & b-d \\ c-a & d-b \end{pmatrix} | \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in F^{2\times 2} \}$$
$$= \{ \begin{pmatrix} a & b \\ -a & -b \end{pmatrix} | a, b \in F \}.$$

可得 $\operatorname{Im}\varphi_A$ 的一个基为 $\begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}$, 故 $\operatorname{dim}\operatorname{Im}\varphi_A=2$;

$$\operatorname{Ker}\varphi_A = \{B|AB = 0, B \in F^{2\times 2}\} = \{\begin{pmatrix} a & b \\ a & b \end{pmatrix} | a, b \in F\}.$$

可得 $\operatorname{Ker}\varphi_A$ 的一个基为 $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$, 故 $\operatorname{dim}\operatorname{Ker}\varphi_A = 2$.

(法二) 直接计算得

$$\varphi_A(E_{11}, E_{12}, E_{21}, E_{22}) = (E_{11}, E_{12}, E_{21}, E_{22})A,$$

其中

$$A = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

所以 dim $\text{Im}\varphi_A = r(A) = 2$, $\text{Im}\varphi_A = \langle E_{11} - E_{21}, E_{12} - E_{22} \rangle$, $\text{Im}\varphi_A$ 的一个基为 $E_{11} - E_{21}, E_{12} - E_{22}$.

AX = 0 的基础解系为 $(1,0,1,0)^T$, $(0,1,0,1)^T$, 所以 dimKer $\varphi_A = 2$, Ker $\varphi_A = \langle E_{11} + E_{21}, E_{12} + E_{22} \rangle$, Ker φ_A 的一个基为 $E_{11} + E_{21}, E_{12} + E_{22}$.

3. 设 V 是四维线性空间, $\xi_1, \xi_2, \xi_3, \xi_4$ 是 V 的一个基, U 是三维线性空间, η_1, η_2, η_3 是 U 的一个基, $\varphi \in \mathfrak{L}(V, U)$,

$$\varphi(\xi_1, \xi_2, \xi_3, \xi_4,) = (\eta_1, \eta_2, \eta_3) \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix},$$

求 $Im\varphi$ 与 $Ker\varphi$.

解 记 φ 在基 $\xi_1, \xi_2, \xi_3, \xi_4$ 和 η_1, η_2, η_3 下的矩阵为 A, 则

$$A = \left(\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{array}\right) \to \left(\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right).$$

所以, $\operatorname{Im}\varphi = \{a_1(\eta_1 + \eta_3) + a_2(\eta_2 + \eta_3) | a_1, a_2 \in F\}; \ \text{而} \ AX = 0 \text{ 的基础解系为}$ $(-1, 0, 1, 0)^T, (0, -1, 0, 1)^T,$ 故 $\operatorname{Ker}\varphi = \{a_1(-\xi_1 + \xi_3), a_2(-\xi_2 + \xi_4) | a_1, a_2 \in F\}.$

4. 用线性映射的观点证明: 设 A 是 $m \times n$ 矩阵, B 是 $n \times s$ 矩阵, 则 $r(AB) \leq \min\{r(A), r(B)\}$.

证明 定义

$$\varphi_A: F^n \to F^m, \quad X \mapsto AX;$$

$$\varphi_B: F^s \to F^n, \quad Y \mapsto BY;$$

$$\varphi_{AB}: F^s \to F^m, \quad Y \mapsto ABY;$$

$$\varphi: \operatorname{Im} \varphi_B \to F^m, \quad BY \mapsto ABY;$$

对 φ 用维数公式得: $r(B) = \dim \operatorname{Im} \varphi_B = \dim \operatorname{Ker} \varphi + \dim \operatorname{Im} \varphi = (\dim \operatorname{Im} \varphi_B \cap \operatorname{Ker} \varphi_A) + r(AB)$, 即得 $r(AB) \leq r(B)$.

 $\operatorname{Im}\varphi_B\subseteq F^n$, 由 φ 的定义即得 $\operatorname{Im}\varphi_{AB}=\operatorname{Im}\varphi\subseteq\operatorname{Im}\varphi_A$, 所以 $r(AB)\leq r(A)$, 综上, $r(AB)\leq \min\{r(A),r(B)\}$. \square

(万琴解答)