

A2XP: Towards Private Domain Generalization

Geunhyeok Yu Hyoseok Hwang

ERM [4]

DANN [5]

MIRO [6]

78.66

Comparison: Other methods in the target domain. DART [4] was applied to the baselines (not ours) for their best performance.

	Adaptation					
	$A \rightarrow A$	$C \rightarrow C$	$P \rightarrow P$	$R \rightarrow R$	Avg.	
Zero	21.18	38.95	61.93	43.10	41.29	
Uniform	21.63	32.94	44.92	46.71	36.55	
Normal	28.92	32.51	40.17	23.36	31.24	
Meta [7]	47.05	54.39	69.66	52.03	56.35	
Generalization						
	$CPR \rightarrow A$	$APR \to C$	$ACR \rightarrow P$	$ACP \rightarrow R$	Avg.	
Zero	67.57	57.98	66.55	71.29	65.85	
Uniform	67.41	58.33	67.27	71.77	66.20	
Normal	67.74	58.35	67.83	71.22	66.29	
Meta [7]	77.42	65.73	81.93	83.15	77.06	

Analysis: Impact of meta [7] initialization in Office-Home [8].

I. Private Domain Generalization

We generalize an objective network.

Previous methods modify while ours does not modify neither the architecture nor the parameters of the network.

III. The Proposed Attend to eXpert Prompts (A2XP)

Two-Phase Approach

i. Expert Adaptation

$$\mathbf{p}_i = \underset{\mathbf{p}}{\operatorname{argmin}} \operatorname{KL}(\mathcal{N}(\mathbf{x} + \overleftarrow{\mathbf{p}}), \mathbf{y}), (\mathbf{x}, \mathbf{y}) \in X_i$$

ii. Attention-based Generalization

$$(\Theta_{\mathrm{T}}, \Theta_{\mathrm{E}}) = \underset{(\tau, \epsilon)}{\operatorname{argmin}} \Sigma_{i=1}^{N} J(\overleftarrow{\mathcal{E}_{\tau}}(\mathbf{x}) \overleftarrow{\mathcal{E}_{\epsilon}}(\mathbf{p}_{i})^{\mathrm{T}}), \mathbf{x} \in X_{N+1}$$

II. Problem Formulation

$$\mathbf{p}_{N+1} = \sum_{i=1}^{N} \lambda_i \mathbf{p}_i$$
, $\lambda_i = \Lambda(\mathbf{p}_i | \mathbf{x} \in X_i)$

$$J(\lambda_i) = \mathrm{KL}(\mathcal{N}(\mathbf{x}_{N+1} + \mathbf{p}_{N+1}) || \mathcal{D}_{N+1})$$

$$L(\mathcal{D}_{N+1}|\mathcal{N}(\mathbf{x}_{N+1}+\mathbf{p}_{N+1})) \in e^{-J(\lambda_i)}$$

$$J(\lambda_i) \propto -\log L(\mathcal{D}_{N+1}|\mathcal{N}(\mathbf{x}_{N+1} + \mathbf{p}_{N+1}))$$

∴ minimizing I by optimizing Λ is equivalent to maximizing likelihood L.

IV. Qualitative Results

X Contributions **X**

- ✓ A novel and simple DG method that **preserves** privacy, inspired by VP [1].
- ✓ Mathematically **analyze** the **DG task** as an optimization of a **linear combination**.
- ✓ **Demonstrate the effectiveness** and characteristics of A2XP through **extensive experiments**.
- ✓ A2XP achieves **SOTA** with **significantly lower** computational resource requirements.

[1] Bahng et al. "Exploring visual prompts for adapting large-scale models." arXiv:2203.17274. [2] Da et al. "Deeper, broader and artier domain generalization." ICCV 2017. [3] Antonio et al. "Domain et al. "Domain et al. "Domain et al. "Domain generalization by mutual-information regularization with pre-trained models." ECCV 2022. [7] Huang et al. "Domain generalization by mutual-information regularization by mutual-information regularization by mutual-information." CVPR 2017.