Digital Signal Processing for Music

Part 12: Non-linear Quantization

alexander lerch

non-linear quantization introduction

we have previously looked at quantization steps that are uniformly distributed over amplitude range:

- \Rightarrow all neighboring steps have the same distance from each other on both input and output scale
 - this is sometimes referred to as uniform (as opposed to non-linear) quantization (which is confusing as any quantization represents a **nonlinear** system)

but: what if the quantization steps are not uniformly distributed?

non-linear quantization introduction

we have previously looked at quantization steps that are uniformly distributed over amplitude range:

- \Rightarrow all neighboring steps have the same distance from each other on both input and output scale
 - this is sometimes referred to as uniform (as opposed to non-linear) quantization (which is confusing as any quantization represents a **nonlinear** system)

but: what if the quantization steps are not uniformly distributed?

non-linear quantization introduction: uniform quantization—SNR & PDF

$$SNR = 6.02 \cdot w + c_S$$
 [dB]

 $\Rightarrow c_{\rm S}$ depends on signal's PDF (and scaling)

PDF	SNR
square wave	$c_S = 4.8$
sine wave	$c_S = 1.8$
rect	
tri	$c_S \approx -3$
Gauss	$c_S \approx -7$
Laplace	$c_S \approx -9$
	$c_S \approx -10\ldots -15$

intro 0•0

$$SNR = 6.02 \cdot w + c_S \quad [dB]$$

 $\Rightarrow c_{\rm S}$ depends on signal's PDF (and scaling)

PDF	SNR
square wave	$c_S = 4.8$
sine wave	$c_{S} = 1.8$
rect	$c_S=0$
tri	$c_S \approx -3$
Gauss	$c_S \approx -7$
Laplace	$c_S pprox -9$
speech	$c_S pprox -10\ldots -15$

intro

- approach 1
 - 1 flatten PDF (companding)
 - 2 linear quantization
 - 3 extract signal (expanding)
- approach 2
 - adapt quantization step size to PDF
- ⇒ both approaches are equivalent in their result

- approach 1
 - 1 flatten PDF (companding)
 - 2 linear quantization
 - 3 extract signal (expanding)
- approach 2
 - adapt quantization step size to PDF

⇒ both approaches are equivalent in their result

- approach 1
 - 1 flatten PDF (companding)
 - 2 linear quantization
 - 3 extract signal (expanding)
- approach 2
 - 1 adapt quantization step size to PDF

⇒ both approaches are equivalent in their result

- approach 1
 - 1 flatten PDF (companding)
 - 2 linear quantization
 - 3 extract signal (expanding)
- approach 2
 - 1 adapt quantization step size to PDF
- ⇒ both approaches are equivalent in their result

non-linear quantization A-Law quantization (ITU-T G.711) 1/3

Georgia Center for Music Tech II Technology

$$F(x) = sign(x) \left\{ \begin{array}{ll} \frac{A|x|}{1 + \log(A)}, & |x| \leq \frac{1}{A} \\ \frac{1 + \log(A|x|)}{1 + \log(A)}, & \frac{1}{A} \leq |x| \leq 1 \end{array} \right.$$

$$F^{-1}(y) = sign(y) \left\{ \begin{array}{ll} \frac{|y|(1 + \log(A))}{A}, & |y| \leq \frac{1}{1 + \log(A)} \\ \frac{\exp\left(|y|(1 + \log(A)) - 1\right)}{A}, & \frac{1}{1 + \log(A)} \leq |y| \leq 1 \end{array} \right.$$

with A = 87.7

- linear and high resolution for small amplitudes
- log and increasingly low resolution for high amplitudes

non-linear quantization A-Law quantization (ITU-T G.711) 1/3

Georgia Center for Music Tech Market Technology

$$F(x) = sign(x) \left\{ \begin{array}{ll} \frac{A|x|}{1 + \log(A)}, & |x| \leq \frac{1}{A} \\ \frac{1 + \log(A|x|)}{1 + \log(A)}, & \frac{1}{A} \leq |x| \leq 1 \end{array} \right.$$

$$F^{-1}(y) = sign(y) \begin{cases} \frac{|y|(1 + \log(A))}{A}, & |y| \le \frac{1}{1 + \log(A)} \\ \frac{\exp(|y|(1 + \log(A)) - 1)}{A}, & \frac{1}{1 + \log(A)} \le |y| \le 1 \end{cases}$$

with A = 87.7

- linear and high resolution for small amplitudes
- log and increasingly low resolution for high amplitudes

non-linear quantization A-Law quantization 2/3

non-linear quantization A-Law quantization 3/3

- range I: SNR is linear regardless of input level
- range II: SNR increases with input level

$$F(x) = sign(x) \frac{\log(1 + \mu|x|)}{\log(1 + \mu)}$$

$$F^{-1}(y) = sign(y) \frac{1}{\mu} \left((1 + \mu)^{|y|} - 1 \right)$$

with $\mu = 255$

- higher dynamic range
- higher error at small amplitudes

$$F(x) = sign(x) \frac{\log(1 + \mu|x|)}{\log(1 + \mu)}$$

$$F^{-1}(y) = sign(y) \frac{1}{\mu} \left((1+\mu)^{|y|} - 1 \right)$$

with $\mu = 255$

compared to A-Law:

- higher dynamic range
- higher error at small amplitudes

non-linear quantization summary

- advantages of non-linear quantization
 - takes advantage of non-uniform distribution of input
 - in line with non-linear loudness perception of the ear
 - \Rightarrow similar perceptual quality as higher resolution linear quantization

disadvantages

- processing not easily implemented in non-linear amplitude space
- \Rightarrow only used for transmission