Dynamic Programming

Contents

- Assembly-line scheduling
- Rod cutting
- Longest common subsequence
- Matrix-chain multiplication

assembly line

The problem: Determine the fastest assembly time

line 1

line 2

line 1

line 2

line 1

line 2

Transfer time: $t_{i,j}$

6

Brute-force approach

- Enumerate all possible ways and find a fastest way.
- There are 2^n possible ways: Too many.

The fastest way to $S_{i,j}$ goes through $S_{1,j-1}$ or $S_{2,j-1}$.

Dynamic programming

S	1	2	3	4	5	6
1	9	18	20	24	32	35
2	12	16	22	25	30	37

$$s* = 38$$

Fastest time

S	1	2	3	4	5	6
1	9	18	20	24	32	35
2	12	16	22	25	30	37

$$s* = 38$$

Fastest way

S	1	2	3	4	5	6
1	9	18	20	24	32	35
2	12	16	22	25	30	37

$$s* = 38$$

Fastest way

S	1	2	3	4	5	6
1	9	18	20	24	32	35
2	12	16	22	25	30	37

$$s* = 38$$

$oxed{L}$	1	2	3	4	5	6
1	-	1	2	1	1	2
2	_	1	2	1	2	2

$$l^* = 1$$

S	1	2	3	4	5	6
1	9	18	20	24	32	35
2	12	16	22	25	30	37

$$s* = 38$$

$$l^* = 1$$

```
FASTEST-WAY (a, t, e, x, n)
      s[1][1] = e[1] + a[1][1]
     s[2][1] = e[2] + a[2][1]
     for j = 2 to n
 4
        if s[1][j-1] \le s[2][j-1] + t[2][j-1]
 5
          s[1][j] = s[1][j-1] + a[1][j]
 6
          l[1][i] = 1
        else s[1][j] = s[2][j-1] + t[2][j-1] + a[1][j]
 8
          l[1][i] = 2
 9
        if s[2][j-1] \le s[1][j-1] + t[1][j-1]
10
          s[2][j] = s[2][j-1] + a[2][j]
11
          l[2][j] = 2
        else s[2][j] = s[1][j-1] + t[1][j-1] + a[2][j]
12
13
          l[2][j] = 1
      if s[1][n] + x[1] \le s[2][n] + x[2]
14
15
        s^* = s[1][n] + x[1]
16
       l^* = 1
17
      else s^* = s[2][n] + x[2]
18
        l^* = 2
```

```
PRINT-STATIONS (l, l^*, n)

1  i = l^*

2  print "line " i ", station" n

3  for j = n downto 2

4  i = l[i][j]

5  print "line " i ", station" j - 1
```

Result of PRINT-STATIONS

line 1, station 6 line 2, station 5 line 2, station 4 line 1, station 3 line 2, station 2 line 1, station 1

L	1	2	3	4	5	6
1	1	1	2	1	1	2
2	ı	0	2	1	2	2

Space consumption

- Table *s*: 2*n*
- Table *l*: 2*n*
- $\Theta(n)$ elements in total.

Running time

- Computing each element requires $\Theta(1)$ time.
- $\Theta(n)$ time in total

Fastest time only

- $\Theta(1)$ space
 - Table *l* is not necessary.
 - Table s
 - 2n elements \rightarrow 4 elements

S	1	2	3	4	5	6
1	9					
2	12					

S	1	2	3	4	5	6
1	9	18				
2	12	16				

S	1	2	3	4	5	6
1		18				
2		16				

S	1	2	3	4	5	6
1		18	20			
2		16	22			

S	1	2	3	4	5	6
1			20			
2			22			

24

S	1	2	3	4	5	6
1			20	24		
2			22	25		

25

S	1	2	3	4	5	6
1				24		
2				25		

S	1	2	3	4	5	6
1				24	32	
2				25	30	

S	1	2	3	4	5	6
1					32	
2					30	

S	1	2	3	4	5	6
1					32	35
2					30	37

- Fastest time only
 - $\Theta(1)$ space
 - Table s
 - -2n elements \rightarrow 4 elements

Contents

Problems	Space	Time
Assembly-line scheduling	$\Theta(n)$	$\Theta(n)$
Rod cutting		
Longest common subsequence		
Matrix-chain multiplication		

The *rod-cutting problem*: Given a rod of length n inches and a table of prices p_i for i = 1, 2, ..., n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces.

length i	1	2	3	4	5	6	7	8	9	10
price p_i	1	5	8	9	10	17	17	20	24	30

$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$$

i	0	1	2	3	4	5	6	7	8	9	10
		1	5	8	9	10	17	17	20	24	30
r[i]	0) 1									

$$r[0] = 0$$

 $r[1] = p[1] + r[0] = 1 + 0 = 1$

	1	1									
p[i]	0	1	5	8	9	10	17	17	20	24	30
r[i]	0	1	5								

$$r[0] = 0$$

$$r[1] = p[1] + r[0] = 1 + 0 = 1$$

$$r[2] = \begin{cases} p[1] + r[1] = 1 + 1 = 2\\ p[2] + r[0] = 5 + 0 = 5 \end{cases}$$

$$r[0] = 0$$

$$r[1] = p[1] + r[0] = 1 + 0 = 1$$

$$r[2] = \begin{cases} p[1] + r[1] = 1 + 1 = 2\\ p[2] + r[0] = 5 + 0 = 5 \end{cases}$$

$$r[3] = \begin{cases} p[1] + r[2] = 1 + 5 = 6\\ p[2] + r[1] = 5 + 1 = 6\\ p[3] + r[0] = 8 + 0 = 8 \end{cases}$$

i	0	1	2	3	4	5	6	7	8	9	10
p[i] $r[i]$	0	1	5	8	9	10	17	17	20	24	30
r[i]	0	1	5	8	10	13	17	18	22	25	30

$$r[0] = 0$$

$$r[1] = p[1] + r[0] = 1 + 0 = 1$$

$$r[2] = \begin{cases} p[1] + r[1] = 1 + 1 = 2 \\ p[2] + r[0] = 5 + 0 = 5 \end{cases}$$

$$r[3] = \begin{cases} p[1] + r[2] = 1 + 5 = 6 \\ p[2] + r[1] = 5 + 1 = 6 \\ p[3] + r[0] = 8 + 0 = 8 \end{cases}$$

$$r[1] = p[1] + r[0] = 1 + 0 = 1$$

$$r[2] = \begin{cases} p[1] + r[1] = 1 + 1 = 2 \\ p[2] + r[0] = 5 + 0 = 5 \end{cases}$$

$$r[3] = \begin{cases} p[1] + r[2] = 1 + 5 = 6 \\ p[2] + r[1] = 5 + 1 = 6 \\ p[3] + r[0] = 8 + 0 = 8 \end{cases}$$

$$r[10] = \begin{cases} p[1] + r[9] = 1 + 25 = 26 \\ p[2] + r[8] = 5 + 22 = 27 \\ \vdots \\ p[10] + r[0] = 30 + 0 = 30 \end{cases}$$

i	0	1	2	3	4	5	6	7	8	9	10
p[i] $r[i]$ $s[i]$	0	1	5	8	9	10	17	17	20	24	30
r[i]	0	1	5	8	10	13	17	18	22	25	30
s[i]	0	1	2	3	2	2	6	1	2	3	10

EXTENDED-BOTTOM-UP-CUT-ROD (p, n)

- 1 let r[0 ... n] and s[0 ... n] be new arrays
- 2 r[0] = 0
- 3 **for** j = 1 **to** n
- 4 $q = -\infty$
- 5 **for** i = 1 **to** j
- 6 **if** q < p[i] + r[j-i]
- 7 q = p[i] + r[j-i]
- 8 s[j] = i
- 9 r[j] = q
- 10 **return** r and s

PRINT-CUT-ROD-SOLUTION(p, n)

- 1 (r, s) = EXTENDED-BOTTOM-UP-CUT-ROD(p, n)
- 2 while n > 0
- 3 print s[n]
- 4 n = n s[n]

i											
r[i]	0	1	5	8	10	13	17	18	22	25	30
S[i]											

- Space consumption
 - $\Theta(n)$
- Running time
 - $-\Theta(n^2)$
 - $1 + 2 + 3 + 4 + \dots + n = n(n+1)/2$

 Table r can be reduced like table s in assembly-line scheduling?

Hanyang Univ.

Contents

Problems	Space	Time
Assembly-line scheduling	$\Theta(n)$	$\Theta(n)$
Rod cutting	$\Theta(n)$	$\Theta(n^2)$
Longest common subsequence		
Matrix-chain multiplication		

Definition

- Character
- String (or sequence): A list of characters
 - ex> strings over $\{0,1\}$: Binary strings
 - ex> strings over $\{A,C,G,T\}$: DNA sequences

Substring

• *CBD* is a substring of *ABCBDAB*

Subsequence

BCDB is a subsequence of ABCBDAB

Common subsequence

BCA is a common subsequence of
 X=ABCBDAB and Y=BDCABA

- Longest common subsequence (LCS)
 - BCBA is the longest common subsequence of X and Y

$$X = A B C B D A B$$

$$/ | | |$$

$$Y = B D C A B A$$

Brute force approach

- Enumerate all subsequences of X and check each subsequence if it is also a subsequence of Y and find the longest one.
- Infeasible!
 - The number of subsequences of X is 2^m .

Dynamic programming

- The *i*th *prefix* X_i of X is $X_i = x_1x_2...x_i$
- If X = ABCBDAB
 - $X_4 = ABCB$
 - $X_0 =$

1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .

$$X = A B C B D A B$$

$$Y = B D C A B$$

2. If $x_m \neq y_n$, Z is an LCS of X_{m-1} and Y or an LCS of X and Y_{n-1} .

$$X = A B C B D A B$$

$$Y = B D C A A$$

$$X = A B C B D A B$$

$$Y = B D C A A$$

• c[i][j]: The length of an LCS of the sequences X_i and Y_j .

$$c[i][j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1][j-1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j, \\ \max(c[i][j-1], c[i-1][j]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j. \end{cases}$$

	j	0	1	2	3	4	5	6
i		\mathcal{Y}_{j}	$\bigcirc B$	D	\bigcirc	A	$\bigcirc B$	\bigcirc A
0	x_i	0	0	0	0	0	0	0
1	A	0	Ô	$\hat{0}$	Ô	1	← 1	1
2	$\bigcirc B$	0	1	← 1	← 1	Î	2	← 2
3	\bigcirc	0	Î	Î	$\begin{bmatrix} \zeta \\ 2 \end{bmatrix}$	← 2	$\stackrel{\uparrow}{2}$	\uparrow 2
4	$\bigcirc B$	0	1	Î	$\stackrel{\uparrow}{2}$	\uparrow	3	← 3
5	D	0	Î	2	$\stackrel{\uparrow}{2}$	$\hat{1}$	$\begin{bmatrix} \uparrow \\ 3 \end{bmatrix}$	1 3
6	\bigcirc A	0	Î	$\hat{1}$	$\hat{2}$	3	1 3	4
7	B	0	1	$\hat{1}$	$\stackrel{\uparrow}{2}$	1 3	4	4

53

Hanyang Univ.

```
LCS-LENGTH (X, Y)
     m = X.length
 2 	 n = Y.length
    let b[1 ... m][1 ... n] and c[0 ... m][0 ... n] be new tables
 4 for i = 1 to m
 5 	 c[i][0] = 0
    for j = 0 to n
    c[0][j] = 0
    for i = 1 to m
       for j = 1 to n
10
         \mathbf{if} \ x_i == y_i
11
           c[i][j] = c[i-1][j-1] + 1
12
           b[i][j] = " \setminus "
13
         elseif c[i-1][j] \ge c[i][j-1]
14
    c[i][j] = c[i-1][j]
15
    b[i][j] = "\uparrow"
16
         else c[i][j] = c[i][j-1]
17
           b[i][j] = "\leftarrow"
18
     return c and b
```

```
PRINT-LCS (b, X, i, j)

1 if i == 0 or j == 0

2 return

3 if b[i][j] == " \ "

4 PRINT-LCS (b, X, i - 1, j - 1)

5 print x_i

6 elseif b[i][j] == " \ "

7 PRINT-LCS (b, X, i - 1, j)

8 else PRINT-LCS (b, X, i, j - 1)
```

55

Hanyang Univ.

Multiple LCSs

	j	0	1	2	3	4	5	6
i		\mathcal{Y}_{j}	$\bigcirc B$	D	\bigcirc	A	$\bigcirc B$	\bigcirc A
0	x_i	0	0	0	0	0	0	0
1	A	0	← ↑	← ↑	← ↑	1	← 1	1
2	$\bigcirc B$	0	1	← 1	← 1	← ↑	2	← 2
3	\bigcirc	0	Î	← ↑	2	← 2	← ↑	← ↑
4	$\bigcirc B$	0	1	← ↑	\uparrow	← ↑	3	← 3
5	D	0	Î	2	$\left[\begin{array}{c} \leftarrow \uparrow \\ 2 \end{array}\right]$	← ↑	$\begin{bmatrix} \uparrow \\ 3 \end{bmatrix}$	← ↑
6	\bigcirc A	0	Î	<u></u>	← ↑	3	← ↑ 3	4
7	B	0	1	$\hat{1}$	← ↑	† 3	4	← ↑ 4

56 Hanyang Univ.

Multiple LCSs

	j	0	1	2	3	4	5	6
i		\mathcal{Y}_{j}	$\bigcirc B$	D	\bigcirc	A	$\bigcirc B$	\bigcirc A
0	x_i	0	0	0	0	0	0	0
1	A	0	← ↑ 0	← ↑	← ↑ 0	1	← 1	1
2	$\bigcirc B$	0	1	1	← 1	← ↑	2	← 2
3	\bigcirc	0	Î	← ↑	2	← 2	← ↑	← ↑
4	$\bigcirc B$	0	1	← ↑	$\begin{bmatrix} \uparrow \\ 2 \end{bmatrix}$	← ↑	3	← 3
5	D	0	Î	2	$\left[\begin{array}{c} \leftarrow \uparrow \\ 2 \end{array}\right]$	← ↑ 2	$\begin{bmatrix} \uparrow \\ 3 \end{bmatrix}$	← ↑
6	\bigcirc A	0	Î	$\frac{\uparrow}{2}$	← ↑	3	← ↑ 3	4
7	В	0	1	$\hat{1}$	← ↑	↑ 3	4	$\left[\begin{array}{c} \leftarrow \uparrow \\ 4 \end{array}\right]$

Multiple LCSs

	j	0	1	2	3	4	5	6
i		y_j	$\bigcirc B$	D	\bigcirc	\bigcirc A	$\bigcirc B$	A
0	x_i	0	0	0	0	0	0	0
1	A	0	← ↑	← ↑	← ↑	<u>ر</u> 1	← 1	<u>\</u>
2	$\bigcirc B$	0	1	1	← 1	← ↑ 1	2	← 2
3	\bigcirc	0	Î	← ↑	2	2	← ↑	← ↑
4	B	0	1	← ↑	$\frac{\uparrow}{2}$	← ↑	3	← 3
5	D	0	Î	2	$\left[\begin{array}{c} \leftarrow \uparrow \\ 2 \end{array}\right]$	← ↑ 2	$\begin{bmatrix} \uparrow \\ 3 \end{bmatrix}$	← ↑
6	$\bigcirc A$	0	Î	<u></u>	← ↑	3	← ↑ 3	4
7	$\bigcirc B$	0	1	$\stackrel{\uparrow}{2}$	← ↑ 2	1 3	4	$\left[\begin{array}{c} \leftarrow \uparrow \\ 4 \end{array}\right]$

Multiple LCSs

	j	0	1	2	3	4	5	6
i		\mathcal{Y}_{j}	$\bigcirc B$	\bigcirc	C	\bigcirc A	$\bigcirc B$	A
0	x_i	0	0	0	0	0	0	0
1	A	0	← ↑	← ↑	← ↑ 0	1	← 1	1
2	B	0	1	1	← 1	← ↑ 1	2	← 2
3	C	0	Î	← ↑	2	2	← ↑	← ↑
4	$\bigcirc B$	0	1	← ↑	$\frac{\uparrow}{2}$	← ↑	3	← 3
5	\bigcirc	0	Î	2	$\left(\begin{array}{c} \leftarrow \\ 2 \end{array}\right)$	← ↑	$\begin{bmatrix} \uparrow \\ 3 \end{bmatrix}$	← ↑
6	$\bigcirc A$	0	Î	<u></u>	← ↑	3	← ↑	4
7	$\bigcirc B$	0	1	$\stackrel{\uparrow}{2}$	← ↑	1 3	4	$\left[\begin{array}{c} \leftarrow \uparrow \\ 4 \end{array}\right]$

- Space: $\Theta(mn)$
- Time: $\Theta(mn)$
- Space reduction: $\Theta(\min(m,n))$ (LCS length only)

Hanyang Univ.

	j	0	1	2	3	4	5	6
i		\mathcal{Y}_j	В	D	C	A	В	A
0	x_i	0	0	0	0	0	0	0
1	A							
2	B							
3	C							
4	B							
5	D							
6	A							
7	B							

	j	0	1	2	3	4	5	6
i		\mathcal{Y}_j	В	D	C	A	В	A
0	x_i	0	0	0	0	0	0	0
1	A	0	0	0	0	1	1	1
2	В							
3	C							
4	B							
5	D							
6	A							
7	В							

	j	0	1	2	3	4	5	6
i		\mathcal{Y}_j	В	D	C	A	В	A
0	x_i							
1	A	0	0	0	0	1	1	1
2	B							
3	C							
4	B							
5	D							
6	A							
7	B							

	\dot{J}	0	1	2	3	4	5	6
i		\mathcal{Y}_j	В	D	C	A	В	A
0	x_i							
1	A	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	C							
4	В							
5	D							
6	A							
7	В							

	\dot{J}	0	1	2	3	4	5	6
i		\mathcal{Y}_j	В	D	C	A	В	A
0	x_i							
1	A							
2	B	0	1	1	1	1	2	2
3	C							
4	B							
5	D							
6	A							
7	B							

65

Hanyang Univ.

	j	0	1	2	3	4	5	6
i		\mathcal{Y}_{j}	B	D	C	A	B	A
0	x_i							
1	A							
2	B	0	1	1	1	1	2	2
3	C	0	1	1	2	2	2	2
4	В							
5	D							
6	A							
7	B							

	\dot{J}	0	1	2	3	4	5	6
i		\mathcal{Y}_{j}	B	D	\boldsymbol{C}	A	В	A
0	x_i							
1	A							
2	B							
3	C	0	1	1	2	2	2	2
4	B							
5	D							
6	A							
7	B							

	j	0	1	2	3	4	5	6
i		\mathcal{Y}_{j}	В	D	C	A	В	A
0	x_i							
1	A							
2	B							
3	C	0	1	1	2	2	2	2
4	В	0	1	1	2	2	3	3
5	D							
6	A							
7	В							

68

Hanyang Univ.

	\dot{J}	0	1	2	3	4	5	6
i		\mathcal{Y}_j	В	D	C	A	В	A
0	x_i							
1	A							
2	В							
3	C							
4	B	0	1	1	2	2	3	3
5	D							
6	A							
7	B							

	\dot{J}	0	1	2	3	4	5	6
i		\mathcal{Y}_{j}	B	D	C	A	B	A
0	x_i							
1	A							
2	В							
3	C							
4	B	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	A							
7	B							
7	B							

70

Hanyang Univ.

	j	0	1	2	3	4	5	6
i		\mathcal{Y}_j	В	D	C	A	В	A
0	x_i							
1	A							
2	B							
3	C							
4	В							
5	D	0	1	2	2	2	3	3
6	A							
7	B							

	\dot{J}	0	1	2	3	4	5	6
i		\mathcal{Y}_j	В	D	C	A	В	A
0	x_i							
1	A							
2	B							
3	C							
4	В							
5	D	0	1	2	2	2	3	3
6	A	0	1	2	2	3	3	4
7	В							

	j	0	1	2	3	4	5	6
i		\mathcal{Y}_j	В	D	C	A	В	A
0	x_i							
1	A							
2	В							
3	C							
4	В							
5	D							
6	A	0	1	2	2	3	3	4
7	B							

73

	\dot{J}	0	1	2	3	4	5	6
i		\mathcal{Y}_{j}	В	D	C	A	B	A
0	x_i							
1	A							
2	В							
3	C							
4	В							
5	D							
6	A	0	1	2	2	3	3	4
7	B	0	1	2	2	3	4	4

76

• Space reduction: Θ (min(m,n)) (LCS length only)

Contents

Problems	Space	Time
Assembly-line scheduling	$\Theta(n)$	$\Theta(n)$
Rod cutting	$\Theta(n)$	$\Theta(n^2)$
Longest common subsequence	$\Theta(mn)$ $\Theta(n^2)$	$\Theta(mn)$ $\Theta(n^2)$
Matrix-chain multiplication		

78

Multiplying two matrices A and B

- $A(p \times q)$ and $B(r \times s)$ can be multiplied only if q = r.

$$\begin{bmatrix}
\bigcirc \bigcirc \bigcirc \bigcirc \\
\bigcirc \bigcirc \bigcirc \bigcirc
\end{bmatrix} \times \begin{bmatrix}
\bigcirc \bigcirc \bigcirc \\
\bigcirc \bigcirc \bigcirc
\end{bmatrix} = \begin{bmatrix}
\bigcirc \bigcirc \bigcirc \\
\bigcirc \bigcirc \bigcirc
\end{bmatrix}$$

$$(A 2x3) \qquad (B 3x2) \qquad (C 2x2)$$

79

Multiplying two matrices A and B

- $A(p \times q)$ and $B(r \times s)$ can be multiplied only if q = r.

- If A is a p×q matrix and B is a q×r matrix,
 the resulting matrix is a p×r matrix.
- The number of scalar multiplications is pqr.
 - pr elements are computed and each element needs q scalar multiplications.

The order of multiplications

$$(A_1 \cdot A_2) \cdot A_3 = A_1 \cdot (A_2 \cdot A_3)$$

- It does not change the value of computation.
- However, it changes the amount of computation.

- Computing $A_1A_2A_3$ where $A_1: 10 \times 100$ $A_2: 100 \times 5$ $A_3: 5 \times 50$
 - $(A_1 A_2) A_3$
 - $(A_1 A_2) = 10*100*5 = 5000$, $(10 \times 5) A_3 = 10*5*50 = 2500$ =>5000 + 2500 = **7,500**
 - $A_1 (A_2 A_3)$
 - $(A_2 A_3) = 100*5*50 = 25000$, $A_1(100 \times 50) = 10*100*50 = 50000$ =>25000 + 50000 = **75,000**
 - Computing $(A_1 A_2) A_3$ is 10 times faster.

Matrix-chain multiplication problem

- Given a chain $A_1, A_2, ..., A_n$ of n matrices, where matrix A_i has dimension $p_{i-1} \times p_i$, find the order of matrix multiplications minimizing the scalar multiplications to compute the product.
- That is, to fully parenthesize the product of matrices minimizing scalar
- $A_1: p_0 \times p_1, A_2: p_1 \times p_2, A_3: p_2 \times p_3 \dots$

• The product $A_1 A_2 A_3 A_4$ can be fully parenthesized in five distinct ways.

$$A_1(A_2(A_3 A_4)), A_1((A_2 A_3) A_4),$$

 $(A_1 A_2)(A_3 A_4),$
 $(A_1(A_2 A_3))A_4, ((A_1 A_2) A_3) A_4.$

The Brute-force approach is inefficient.

- The number of parenthesizations of a product of n matrices, denoted by P(n), is as follows.

$$P(n) = \begin{cases} 1 & \text{if } n=1\\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \ge 2 \end{cases}$$

– The number of enumerated parenthesizations is $\Omega(4^n/n^{3/2})$.

Dynamic programming

Optimal substructure

- m[i][j]: The minimum number of scalar multiplications for computing $A_i A_{i+1} ... A_i$.

$$m[i][j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i][k] + m[k+1][j] + p_{i-1}p_k p_j\} & \text{if } i < j \end{cases}$$

- matrix A_i : $p_{i-1} \times p_i$
- computing $A_{i\cdots k}A_{k+1\cdots j}$ takes $p_{i-1}p_kp_j$ scalar multiplications.
- s[i][j] stores the optimal k for tracing the optimal solution.

i j	1	2	3	4	5	6
1	0	15750	7875	9375	11875	15125
2		<u></u>	2625			10500
3			0	750	2500	5375
4				0	1000	3500
5					0	5000
6						0

i\j	2	3	4	5	6
1	1	1	3	3	3
2		2	3	3	3
3			\3	3	3
4				4	5
5					5

S

m

$$m[2][5] = \min \{ m[2][2] + m[3][5] + p[1]p[2]p[5] = 0 + 2500 + 35 \cdot 15 \cdot 20 = 13000, \\ m[2][5] = \min \{ m[2][3] + m[4][5] + p[1]p[3]p[5] = 2625 + 1000 + 35 \cdot 5 \cdot 20 = 7125, \\ m[2][4] + m[5][5] + p[1]p[4]p[5] = 4375 + 0 + 35 \cdot 10 \cdot 20 = 11375$$

$$(A_2)(A_3A_4A_5)$$

 $(A_2A_3)(A_4A_5)$

$$(A_2 A_3 A_4)(A_5)$$

0	30
1	35
2	15
3	5
4	10
5	20
6	25
_	-

```
MATRIX-CHAIN-ORDER (p)
     n = p.length - 1
    let m[1 ... n][1 ... n] and s[1 ... n - 1][2 ... n] be new tables
 3
    for i = 1 to n
 4 	 m[i][i] = 0
 5
    for l = 2 to n
                   // l is the chain length
    for i = 1 to n - l + 1
   j = i + l - 1
        m[i][j] = \infty
 9
        for k = i to j - 1
10
          q = m[i][k] + m[k+1][j] + p[i-1]p[k]p[j]
11
          if q \leq m[i][j]
            m[i][j] = q
12
13
            S[i][j] = k
14
     return m and s
```

```
PRINT-OPTIMAL-PARENS (s, i, j)

1 if i == j

2 print "A_i"

3 else print "("

4 PRINT-OPTIMAL-PARENS(s, i, s[i][j])

5 PRINT-OPTIMAL-PARENS(s, s[i][j] + 1, j)

6 print ")"
```

Space consumption

- $\Theta(n^2)$ space to store m and s tables.

Running time

$$-\Theta(n^{3})$$

$$1 \cdot n + 1 \cdot n \cdot 1 + 2 \cdot n \cdot 2 + \cdots + (n-1) \cdot 1$$

$$= 1 \cdot n + \sum_{k=1}^{n-1} k(n-k)$$

$$= 1 \cdot n + \sum_{k=1}^{n-1} kn - \sum_{k=1}^{n-1} k^{2}$$

$$= n + n^{2}(n-1)/2 - n(n-1)(2n-1)/6$$

$$= (n^{3} + 5n)/6$$

$$= \Theta(n^{3})$$

Conclusion

Problems	Space	Time
Assembly-line scheduling	$\Theta(n)$	$\Theta(n)$
Rod cutting	$\Theta(n)$	$\Theta(n^2)$
Longest common subsequence	$\Theta(n^2)$	$\Theta(n^2)$
Matrix-chain multiplication	$\Theta(n^2)$	$\Theta(n^3)$