EES Ver. 10.644: #100: For use only by Students and Faculty, College of Engineering University of Wisconsin - Madison

"Scenario 14 - Constant temperature then constant volume"

F\$ = 'Steam_IAPWS' "water" "ignore cases A and B" T[1] = 125[c]"initial temperature inside and outside" "1 liter volume" vol[1] = 1e-3[m3]vol[2]=0.5e-3[m3] "0.5 liter volume after pressure rised" A $P = pi*dia^2/4$ "cross sectional area of the piston" m2 = 100[kg]"added mass" "piston diameter" dia = 0.1[m]//delta P = m2*g#/A P*convert(Pa, kPa) "added pressure from mass m2" "Case C - superheated vapor" "state 1C" TC[1]=T[1] "temperature at state 1" PC[1] = 101.325[kPa]"pressure at state 1" vC[1] = volume(F\$, T=TC[1], P=PC[1])"specific volume at state 1" hC[1] = enthalpy(F\$, T=TC[1], P=PC[1])"specific enthalpy at state 1" uC[1] = intenergy(F\$, T=TC[1], P=PC[1])"specific internal energy at state 1" sC[1] = entropy(F\$, T=TC[1], P=PC[1])"specific entropy at state 1" mass_C = vol[1]/vC[1]"mass of H2O" "state 2C" //PC[2] = PC[1] + delta_P "pressure at state 2" TC[2] = TC[1]"constant temperature" $vC[2] = vol[2]/mass_C$ "specific volume at state 2" PC[2] = pressure(F\$, T=TC[2], v=vC[2])"pressure at state 2" hC[2] = enthalpy(F\$, T=TC[2], v=vC[2])"specific enthalpy at state 2" uC[2] = intenergy(F\$, T=TC[2], v=vC[2])"specific internal energy at state 2" sC[2] = entropy(F\$, T=TC[2], v=vC[2])"specific entropy at state 2" "time for the process 1-2" time12C=0.1[s] Q_12C*time12C/mass_C = (uC[2] - uC[1]) + PC[1]*vC[1]*ln(vC[2]/vC[1]) "determine heat transfer Q_12C from 1st law" "state 3C" vC[3]=vC[2] "constant volume" //Q_23=-1[kW] "rate of removing heat" PC[3]=3[kPa] "final pressure at state 3" TC[3]=temperature(F\$, v=vC[3], P=PC[3]) "temperature at state 3" hC[3] = enthalpy(F\$, T=TC[3], v=vC[3])"specific enthalpy at state 3" uC[3] = intenergy(F\$, T=TC[3], v=vC[3])"specific internal energy at state 3" sC[3] = entropy(F\$, T=TC[3], v=vC[3])"specific entropy at state 3" $//Q_23*time23C/mass_C = (uC[3] - uC[2])$ "1st law at constant volume, no work"

SOLUTION

Unit Settings: SI C kPa kJ mass deg

 $A_P = 0.007854 \text{ [m}^2\text{]}$ dia = 0.1 [m] m2 = 100 [kg]F\$ = 'steam iapws' massc = 0.0005577 [kg] $Q_{12C} = -0.7463 \text{ [kW]}$ time12C = 0.1 [s]

No unit problems were detected.

Arrays Table: Main

	vol _i	T_{i}	PC_i	TC_i	hC _i	sC_i	uC_i	vC_i	
	[m ³]	[C]	[kPa]	[C]	[kJ/kg]	[kJ/kg-K]	[kJ/kg]	[m3/kg]	
1	0.001	125	101.3	125	2727	7.487	2545	1.793	_
2	0.0005		200.3	125	2717	7.152	2537	0.8966	
3			3	24.08	148.9	0.5156	146.2	0.8966	

Parametric Table: Case C23

	PC ₃	vC ₃	TC ₃
	[kPa]	[m3/kg]	[C]
Run 1	200.3	0.8966	125.1
Run 2	178.4	0.8966	116.6
Run 3	156.5	0.8966	112.6
Run 4	134.5	0.8966	108.1
Run 5	112.6	0.8966	103
Run 6	90.69	0.8966	96.9
Run 7	68.77	0.8966	89.46
Run 8	46.84	0.8966	79.7
Run 9	24.92	0.8966	64.89
Run 10	3	0.8966	24.08

