# Term Premia and Credit Risk in Emerging Markets: The Role of U.S. Monetary Policy

Pavel Solís

January 15, 2021

Johns Hopkins University

# **U.S. Monetary Policy Spillovers**

U.S. monetary policy influences asset prices abroad

- Stocks
- Exchange rates
- Bonds
  - Foreign currency (FC)
  - Local currency (LC): more than 80% of emerging market sovereign debt

Understand transmission channels to mitigate undesired effects

Traditional decompositions of bond yields assume no credit risk

# Do Sovereigns Default on Local Currency Debt?



# **This Paper**

How to decompose the sovereign yields of emerging markets (EMs)?

Accounting for credit risk

How does U.S. monetary policy transmit to EM sovereign yields?

- Expectations of future policy rates?
- Term premium?
- · Creditworthiness?

# **Traditional Yield Curve Decomposition**



# **Proposed EM Yield Curve Decomposition**



# U.S. Monetary Policy Spillovers to EM Yields

- 1. Response of EM yields is economically significant, yet delayed
  - Response sometimes lasts longer in EM than in U.S. yields

- 2. All three components react to U.S. monetary policy
  - EM central banks expected to follow Fed's monetary stance
  - EM term premia response is similar to U.S. term premium
  - Fiscal implications in EMs of U.S. monetary policy

- 3. Unconventional policies limit EM monetary autonomy along yield curve
  - · Global financial cycle more relevant at the long end

#### **Related Literature**

## Synthetic yields and covered interest rate parity deviations

• Du and Schreger (2016); Du, Im, and Schreger (2018a); Du, Tepper, and Verdelhan (2018b)

# Sovereign default in EM local currency bonds

• Reinhart and Rogoff (2011); Du and Schreger (2016); Erce and Mallucci (2018); Ottonello and Perez (2019)

# Global financial cycle

• Rey (2013); Turner (2014); Obstfeld (2015); Kalemli-Özcan (2019); Kolasa and Wesołowski (2020)

# Spillovers of U.S. monetary policy to EM yields

• Hausman and Wongswan (2011); Bowman, Londono, and Sapriza (2015); Curcuru, Kamin, Li, and Rodriguez (2018); Albagli, Ceballos, Claro, and Romero (2019); Adrian, Crump, Durham, and Moench (2019)

**Yield Curves** 

#### **Nominal Yield Curves**

Bloomberg par yield curves  $\rightarrow$  Zero-coupon yield curves  $(y_{t,n}^{LC})$ 

• But credit risk in  $y_{t,n}^{LC}$ 

**Approach**: Synthetic LC yields  $(\widetilde{y}_{t,n}^{LC})$  as free of credit risk

• Swap U.S. Treasury yields into LC yields using currency derivatives

**Assumption**: Frictionless financial markets (Du and Schreger, 2016)

- Arbitrageurs have access to U.S. and LC bonds
- Derivatives have no counterparty risk
- U.S. yields are free of default risk

# **Synthetic Yield Curves**

$$\widetilde{\mathbf{y}}_{\mathsf{t},\mathsf{n}}^{\mathsf{LC}} = \mathbf{y}_{\mathsf{t},\mathsf{n}}^{\mathsf{US}} + 
ho_{\mathsf{t},\mathsf{n}}$$

 $\widetilde{y}_{t,n}^{LC}$ : n-period zero-coupon synthetic yield in LC at time t

 $y_{t,n}^{US}$ : n-period zero-coupon U.S. yield at time t

 $ho_{t,n}$ : n-period foreign exchange forward premium from USD to LC at time t

- < 1 Year: Currency forwards
- ≥ 1 Year: Cross-currency swaps
  - Interest rate swaps
  - Cross-currency basis swaps

# **Deviations from CIP (Covered Interest Parity)**

$$\phi_{\mathsf{t},\mathsf{n}} = \mathbf{y}_{\mathsf{t},\mathsf{n}}^{\mathsf{LC}} - \widetilde{\mathbf{y}}_{\mathsf{t},\mathsf{n}}^{\mathsf{LC}}$$

#### Measures:

- Convenience yield for AEs (Du, Im, and Schreger, 2018a)
- Sovereign credit risk for EMs (Du and Schreger, 2016)
- Financial frictions for banks (Du, Tepper, and Verdelhan, 2018b)

**Here**: Emphasis also on  $\widetilde{y}_{t,n}^{LC}$ 

# **Yield Data**

#### 15 EMs:

Brazil, Colombia, Hungary, Indonesia, Israel, Korea, Malaysia, Mexico, Peru,
 Philippines, Poland, Russia, Thailand, Turkey, South Africa

Daily data: January 2000 to January 2019

Maturities: 0.25, 0.5, 1, 2, ..., 10 years

Synthetic yields:

- $y_{t,n}^{US}$ : CRSP risk-free rates; Gürkaynak, Sack, and Wright (2007)
- $\rho_{t,n}$ : Bloomberg; Datastream

**Affine Term Structure Model** 

#### **Model Overview**

#### Standard discrete-time nominal affine term structure model

- Assumes default-free bonds  $\rightarrow$  Synthetic yields  $(\widetilde{y}_{t,n}^{LC})$  for EMs
- Augmented with survey forecasts

#### Intuition:

- Yields driven by pricing factors X<sub>t</sub>
- Dynamics of pricing factors ( $\mathbb P$  and  $\mathbb Q$  measures)
- · No-arbitrage restrictions ensure consistency







# **EM Yield Decomposition**

$$y_{t,n}^{LC} = y_{t,n}^{\mathbb{Q}} + \phi_{t,n} = y_{t,n}^{\mathbb{P}} + \tau_{t,n} + \phi_{t,n}$$

$$y_{t,n}^{\mathbb{Q}} = A_n^{\mathbb{Q}} + B_n^{\mathbb{Q}} X_t$$
: Fitted synthetic yields

$$y_{t,n}^{\mathbb{P}} = A_n^{\mathbb{P}} + B_n^{\mathbb{P}} X_t$$
: Average expected future short rates

$$au_{t,n} = y_{t,n}^{\mathbb{Q}} - y_{t,n}^{\mathbb{P}}$$
 : Term premium

$$\phi_{\mathsf{t},n} = \mathsf{y}^{\mathsf{LC}}_{\mathsf{t},n} - \mathsf{y}^{\mathbb{Q}}_{\mathsf{t},n}$$
 : Credit risk compensation

#### **Weak Identification**

Yields accurately identify  $\mathbb Q$  parameters, yet  $\mathbb P$  ones are poorly identified

- · Bond yields are persistent
- Unstable yield decompositions

**Solutions**: Survey data, parameter restrictions, bias-corrected estimators Surveys provide robust decompositions of AE yields (Guimarães, 2014)

- Surveys anchor the long run mean of interest rates.
- Important for EM yields given small sample sizes

# **Survey Data**

No data on long-term forecasts for EM short rates Implied forecast for EM short rates from existing data

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

- EM inflation forecasts: 5 years ahead and long-term
  - From Consensus Economics (CE), available twice a year
- Implied long-term expectations of U.S real interest rate using
  - T-bill rate, CPI inflation from Survey of Professional Forecasters (SPF)

# **Model Estimation**

Estimate parameters by ML with monthly data on yields

• Joslin, Singleton, and Zhu (2011) normalization

Estimate survey-augmented model by Kalman filter (missing data)

Surveys as 'noisy' expectations measures (Kim and Orphanides, 2012)

Standard errors by delta method

Estimate pricing factors at daily frequency

**EM Yield Decomposition** 





#### **10Y**



# **Term Premium and Inflation Uncertainty**

Term premia in AEs compensates for inflation uncertainty (Wright, 2011)

Inflation higher and more volatile in EMs than in AEs (Ha et al., 2019)

**Question**: Is inflation uncertainty relevant for EM term premia?

$$\tau_{i,t} = \alpha_i + \beta_1 \sigma_{i,t}^{\pi} + \beta_2 \mathbf{g}_{i,t} + \mathbf{u}_{i,t},$$

- $\sigma^\pi_{i,t}$  of permanent component in UCSV model (Stock and Watson, 2007)
- Domestic real GDP growth  $g_{i,t}$  controls for the business cycle

# **EM Term Premia and Inflation Uncertainty**

|                                              | 6 Me              | onths                             | 1 Y               | 'ear                              | 2 Ye              | ars                                 | 5 Yea              | ars                                   | 10 Ye              | ars                                    |
|----------------------------------------------|-------------------|-----------------------------------|-------------------|-----------------------------------|-------------------|-------------------------------------|--------------------|---------------------------------------|--------------------|----------------------------------------|
| UCSV-Perm GDP Growth                         | 93.0<br>(52.2)    | 75.3<br>(49.5)<br>-2.56<br>(3.37) | 85.7*<br>(37.1)   | 83.2<br>(43.7)<br>-2.62<br>(4.00) | 88.7***<br>(24.7) | 97.8**<br>(31.6)<br>-1.91<br>(3.53) | 103.1***<br>(15.3) | 124.2***<br>(18.7)<br>-2.14<br>(1.67) | 121.9***<br>(16.1) | 151.3***<br>(18.3)<br>-3.97*<br>(1.55) |
| No. Countries<br>Observations $\mathbb{R}^2$ | 15<br>870<br>0.04 | 14<br>796<br>0.03                 | 15<br>870<br>0.04 | 14<br>796<br>0.03                 | 15<br>870<br>0.05 | 14<br>796<br>0.05                   | 15<br>870<br>0.10  | 14<br>796<br>0.11                     | 15<br>870<br>0.11  | 14<br>796<br>0.15                      |

Notes: Driscoll-Kraay standard errors are in parenthesis. \*, \*\*, \*\*\* asterisks respectively indicate significance at the 10%, 5% and 1% level.

# U.S. Monetary Policy Spillovers

#### The Yield Curve Channel

U.S. monetary policy key driver of the global financial cycle (Rey, 2013)

Long-term yields more influenced by global forces

EM monetary autonomy declines along yield curve (Obstfeld, 2015)

U.S. unconventional monetary policies affect EM yields

- Long-term via the term premium (Turner, 2014)
- Short-term via expected short rate (Kalemli-Özcan, 2019)

# **Implications of Yield Curve Channel**

Long-term EM yields comove more than short-term ones

Direct relationship that varies by maturity

- U.S. term premium o EM term premium
- U.S. expected future short rates  $\rightarrow$  EM expected future short rates

Cross relationships at the short end

• **Risk spillovers**: U.S. term premium  $\rightarrow$  EM expected future short rates

# **EM Yields Comovement**



# Is There A Yield Curve Channel?

$$\mathbf{y}_{i,t} = \alpha_i + \gamma_1' \mathbf{z}_{i,t}^1 + \gamma_2' \mathbf{z}_{i,t}^2 + \mathbf{u}_{i,t}$$

 $y_{i,t}$ : EM nominal yields and their three components

 $\alpha_i$ : country fixed effects

 $z_{i,t}^1$ : U.S. yield curve decomposition (Kim and Wright, 2005)

 $z_{i,t}^2$ : Global and domestic drivers

- VIX, EPU (Baker et al., 2016) & global activity (Hamilton, 2019) indexes
- Policy rate, inflation, unemployment, exchange rate (standardized)

|                    | Nominal  | E. Short Rate | Term Premium | Credit Risk |  |  |
|--------------------|----------|---------------|--------------|-------------|--|--|
|                    | 10Y      |               |              |             |  |  |
| U.S. Term Premium  | 0.97***  | 0.54***       | 0.85***      | -0.42***    |  |  |
|                    | (0.14)   | (0.08)        | (0.09)       | (0.11)      |  |  |
| U.S. E. Short Rate | 0.17     | 0.25***       | 0.08         | -0.17**     |  |  |
|                    | (0.09)   | (0.05)        | (0.06)       | (0.06)      |  |  |
| Local Policy Rate  | 0.24***  | 0.30***       | 0.01         | -0.06***    |  |  |
|                    | (0.03)   | (0.02)        | (0.02)       | (0.02)      |  |  |
| Log(Vix)           | 49.95*** | -20.18        | 30.13**      | 40.01***    |  |  |
|                    | (12.63)  | (10.45)       | (10.49)      | (9.59)      |  |  |
| $R^2$              | 0.68     | 0.71          | 0.49         | 0.23        |  |  |
|                    |          | 2             | Y            |             |  |  |
| U.S. Term Premium  | 1.59***  | 1.68***       | 0.58***      | -0.68**     |  |  |
|                    | (0.22)   | (0.17)        | (0.17)       | (0.21)      |  |  |
| U.S. E. Short Rate | -0.03    | -0.02         | 0.05         | -0.06       |  |  |
|                    | (0.04)   | (0.03)        | (0.03)       | (0.04)      |  |  |
| Local Policy Rate  | 0.64***  | 0.56***       | 0.13***      | -0.05       |  |  |
| Ť                  | (0.03)   | (0.03)        | (0.02)       | (0.03)      |  |  |
| Log(Vix)           | 46.41*** | -20.29        | -9.10        | 75.79***    |  |  |
| 10(1)              | (8.16)   | (13.92)       | (7.68)       | (11.92)     |  |  |
| $R^2$              | 0.80     | 0.75          | 0.35         | 0.29        |  |  |
| No. Countries      | 15       | 15            | 15           | 15          |  |  |
| Observations       | 2194     | 2194          | 2194         | 2194        |  |  |

▶ 10Y

\_

Notes: Driscoll–Kraay standard errors in parenthesis. \*, \*\*\*, \*\*\* asterisks respectively indicate significance at the 10%, 5% and 1% level.

|                    | Nominal  | E. Short Rate | Term Premium | Credit Risk |  |  |
|--------------------|----------|---------------|--------------|-------------|--|--|
|                    | 10Y      |               |              |             |  |  |
| U.S. Term Premium  | 0.97***  | 0.54***       | 0.85***      | -0.42***    |  |  |
|                    | (0.14)   | (0.08)        | (0.09)       | (0.11)      |  |  |
| U.S. E. Short Rate | 0.17     | 0.25***       | 0.08         | -0.17**     |  |  |
|                    | (0.09)   | (0.05)        | (0.06)       | (0.06)      |  |  |
| Local Policy Rate  | 0.24***  | 0.30***       | 0.01         | -0.06***    |  |  |
|                    | (0.03)   | (0.02)        | (0.02)       | (0.02)      |  |  |
| Log(Vix)           | 49.95*** | -20.18        | 30.13**      | 40.01***    |  |  |
|                    | (12.63)  | (10.45)       | (10.49)      | (9.59)      |  |  |
| $R^2$              | 0.68     | 0.71          | 0.49         | 0.23        |  |  |
|                    |          | 2             | Y            |             |  |  |
| U.S. Term Premium  | 1.59***  | 1.68***       | 0.58***      | -0.68**     |  |  |
|                    | (0.22)   | (0.17)        | (0.17)       | (0.21)      |  |  |
| U.S. E. Short Rate | -0.03    | -0.02         | 0.05         | -0.06       |  |  |
|                    | (0.04)   | (0.03)        | (0.03)       | (0.04)      |  |  |
| Local Policy Rate  | 0.64***  | 0.56***       | 0.13***      | -0.05       |  |  |
|                    | (0.03)   | (0.03)        | (0.02)       | (0.03)      |  |  |
| Log(Vix)           | 46.41*** | -20.29        | -9.10        | 75.79***    |  |  |
|                    | (8.16)   | (13.92)       | (7.68)       | (11.92)     |  |  |
| $R^2$              | 0.80     | 0.75          | 0.35         | 0.29        |  |  |
| No. Countries      | 15       | 15            | 15           | 15          |  |  |
| Observations       | 2194     | 2194          | 2194         | 2194        |  |  |

Notes: Driscoll–Kraay standard errors in parenthesis. \*, \*\*, \*\*\* asterisks respectively indicate significance at the 10%, 5% and 1% level.



|                    | Nominal  | E. Short Rate | Term Premium | Credit Risk |  |  |
|--------------------|----------|---------------|--------------|-------------|--|--|
|                    | 10Y      |               |              |             |  |  |
| U.S. Term Premium  | 0.97***  | 0.54***       | 0.85***      | -0.42***    |  |  |
|                    | (0.14)   | (0.08)        | (0.09)       | (0.11)      |  |  |
| U.S. E. Short Rate | 0.17     | 0.25***       | 0.08         | -0.17**     |  |  |
|                    | (0.09)   | (0.05)        | (0.06)       | (0.06)      |  |  |
| Local Policy Rate  | 0.24***  | 0.30***       | 0.01         | -0.06***    |  |  |
|                    | (0.03)   | (0.02)        | (0.02)       | (0.02)      |  |  |
| Log(Vix)           | 49.95*** | -20.18        | 30.13**      | 40.01***    |  |  |
|                    | (12.63)  | (10.45)       | (10.49)      | (9.59)      |  |  |
| $R^2$              | 0.68     | 0.71          | 0.49         | 0.23        |  |  |
|                    |          | 2             | Y            |             |  |  |
| U.S. Term Premium  | 1.59***  | 1.68***       | 0.58***      | -0.68**     |  |  |
|                    | (0.22)   | (0.17)        | (0.17)       | (0.21)      |  |  |
| U.S. E. Short Rate | -0.03    | -0.02         | 0.05         | -0.06       |  |  |
|                    | (0.04)   | (0.03)        | (0.03)       | (0.04)      |  |  |
| Local Policy Rate  | 0.64***  | 0.56***       | 0.13***      | -0.05       |  |  |
|                    | (0.03)   | (0.03)        | (0.02)       | (0.03)      |  |  |
| Log(Vix)           | 46.41*** | -20.29        | -9.10        | 75.79***    |  |  |
|                    | (8.16)   | (13.92)       | (7.68)       | (11.92)     |  |  |
| $R^2$              | 0.80     | 0.75          | 0.35         | 0.29        |  |  |
| No. Countries      | 15       | 15            | 15           | 15          |  |  |
| Observations       | 2194     | 2194          | 2194         | 2194        |  |  |

Notes: Driscoll–Kraay standard errors in parenthesis. \*, \*\*, \*\*\* asterisks respectively indicate significance at the 10%, 5% and 1% level.



|                    | Nominal  | E. Short Rate | Term Premium | Credit Risk |  |  |
|--------------------|----------|---------------|--------------|-------------|--|--|
|                    | 10Y      |               |              |             |  |  |
| U.S. Term Premium  | 0.97***  | 0.54***       | 0.85***      | -0.42***    |  |  |
|                    | (0.14)   | (0.08)        | (0.09)       | (0.11)      |  |  |
| U.S. E. Short Rate | 0.17     | 0.25***       | 0.08         | -0.17**     |  |  |
|                    | (0.09)   | (0.05)        | (0.06)       | (0.06)      |  |  |
| Local Policy Rate  | 0.24***  | 0.30***       | 0.01         | -0.06***    |  |  |
|                    | (0.03)   | (0.02)        | (0.02)       | (0.02)      |  |  |
| Log(Vix)           | 49.95*** | -20.18        | 30.13**      | 40.01***    |  |  |
|                    | (12.63)  | (10.45)       | (10.49)      | (9.59)      |  |  |
| $R^2$              | 0.68     | 0.71          | 0.49         | 0.23        |  |  |
|                    | 2Y       |               |              |             |  |  |
| U.S. Term Premium  | 1.59***  | 1.68***       | 0.58***      | -0.68**     |  |  |
|                    | (0.22)   | (0.17)        | (0.17)       | (0.21)      |  |  |
| U.S. E. Short Rate | -0.03    | -0.02         | 0.05         | -0.06       |  |  |
|                    | (0.04)   | (0.03)        | (0.03)       | (0.04)      |  |  |
| Local Policy Rate  | 0.64***  | 0.56***       | 0.13***      | -0.05       |  |  |
|                    | (0.03)   | (0.03)        | (0.02)       | (0.03)      |  |  |
| Log(Vix)           | 46.41*** | -20.29        | -9.10        | 75.79***    |  |  |
|                    | (8.16)   | (13.92)       | (7.68)       | (11.92)     |  |  |
| $R^2$              | 0.80     | 0.75          | 0.35         | 0.29        |  |  |
| No. Countries      | 15       | 15            | 15           | 15          |  |  |
| Observations       | 2194     | 2194          | 2194         | 2194        |  |  |

Notes: Driscoll–Kraay standard errors in parenthesis. \*, \*\*, \*\*\* asterisks respectively indicate significance at the 10%, 5% and 1% level.

# **U.S. Monetary Policy Surprises**

Asset price changes in 2-hour windows around FOMC meetings

- Target: change in yield on federal funds futures (Kuttner, 2001)
- Forward guidance: residual of change in yield for 8<sup>th</sup> Eurodollar futures onto target surprise (Gürkaynak et al., 2005)
- Asset purchases: residual of change in yield of 10Y Treasury futures onto target and FG surprises (Swanson, 2018)



# Measuring the Effects on EM Yields

## Panel local projections:

$$\mathbf{y}_{i,t+h} - \mathbf{y}_{i,t-1} = \alpha_{h,i} + \sum_{j=1}^{3} \beta_{h}^{j} \epsilon_{t}^{j} + \gamma_{h} \Delta \mathbf{y}_{i,t-1} + \eta_{h} s_{i,t-1} + u_{i,t+h}$$

- $y_{i,t}$ : 10Y and 2Y EM nominal yields and their components
- $h = 0, 1, \dots, 45 \text{ days}$
- $\alpha_{h,i}$ : country fixed effects
- $\epsilon_t^j$ : three types of monetary policy surprises
- $s_{i,t-1}$ : one-day lag in the exchange rate

# **Effects of Target Easing on EM Yields**



→ US

## Effects of Forward Guidance Easing on EM Yields: Pre-GFC



→ US

# Effects of Forward Guidance Easing on EM Yields: Post-GFC



▶ US

31

# Effects of Asset Purchase Easing on EM Yields



▶ US

# Conclusions

#### **Conclusions**

#### **Three**-part decomposition of EM sovereign yields

- Average expected short rates
- Term premium
- Credit risk compensation

#### U.S. monetary policy **spillovers** to EM sovereign yields

- 1. Responses are economically significant yet delayed
- 2. Reassessment of policy rate expectations and repricing of risks
- 3. Evidence of a yield curve channel since 2008

# Appendix

#### **Credit Risk in Local Currency Yields**



## **Descriptive Statistics**

✓ Yield Data

|                  |                    | 3M  | 6M  | 1Y  | 2Y  | 5Y  | 10Y |
|------------------|--------------------|-----|-----|-----|-----|-----|-----|
|                  | Emerging Markets   |     |     |     |     |     |     |
| Nominal Yields   | Average            | 5.1 | 5.3 | 5.4 | 5.7 | 6.3 | 6.8 |
|                  | S. Dev.            | 3.2 | 3.3 | 3.2 | 3.2 | 3.0 | 2.9 |
|                  | Advanced Economies |     |     |     |     |     |     |
|                  | Average            | 2.0 | 2.1 | 2.1 | 2.3 | 2.7 | 3.2 |
|                  | S. Dev.            | 2.1 | 2.1 | 2.1 | 2.1 | 2.0 | 1.8 |
|                  | Emerging Markets   |     |     |     |     |     |     |
| Synthetic Yields | Average            | 5.1 | 5.2 | 5.3 | 5.3 | 5.8 | 6.3 |
|                  | S. Dev.            | 4.3 | 4.1 | 4.0 | 3.7 | 3.4 | 3.2 |
|                  | Advanced Economies |     |     |     |     |     |     |
|                  | Average            | 1.6 | 1.7 | 1.8 | 2.0 | 2.5 | 3.2 |
|                  | S. Dev.            | 2.1 | 2.1 | 2.2 | 2.1 | 2.0 | 2.0 |

Notes: All figures are expressed in annualized percentage points. Advanced economies: Australia, Canada, Denmark, Germany, Japan, Norway, New Zealand, Sweden, Switzerland and the U.K.

#### **Asset Pricing**

Under no arbitrage  $\rightarrow \exists$  a stochastic discount factor  $M_{t+1} > 0$ 

 $\mathit{M}_{t+1}$  prices all nominal bonds under probability measure  $\mathbb{P}$ 

$$P_{t,n} = \mathrm{E}_t^{\mathbb{P}}\left[\mathsf{M}_{t+1}\mathsf{P}_{t+1,n-1}
ight]$$

 $M_{t+1} \rightarrow \exists$  a risk-neutral measure  $\mathbb Q$  defined as

$$P_{t,n} = \mathrm{E}_{t}^{\mathbb{Q}} \left[ \exp \left( -i_{t} \right) P_{t+1,n-1} \right]$$



#### **Stochastic Discount Factor**

Stochastic discount factor

$$\mathbf{M}_{t+1} = \exp\left(-\mathbf{i}_t - \frac{1}{2}\lambda_t'\lambda_t - \lambda_t'\nu_{t+1}^{\mathbb{P}}\right)$$

Market prices of risk

$$\lambda_t = \lambda_0 + \lambda_1 X_t$$

One-period interest rate

$$\mathbf{i}_{t} = \delta_{0} + \delta_{1}' \mathbf{X}_{t}$$



#### **Bond Pricing**

Pricing factors under P measure

$$\mathbf{X}_{t+1} = \boldsymbol{\mu}^{\mathbb{P}} + \boldsymbol{\Phi}^{\mathbb{P}} \mathbf{X}_{t} + \boldsymbol{\Sigma} \boldsymbol{\nu}_{t+1}^{\mathbb{P}}$$

**Bond prices** 

$$P_{t,n} = \exp\left(A_n + B_n X_t\right),\,$$

$${\sf A_n}={\cal A}(\delta_0,\delta_1,\mu^{\mathbb{P}},\Phi^{\mathbb{P}},\Sigma,{m n})$$
 ,  ${\sf B_n}={\cal B}(\delta_1,\Phi^{\mathbb{P}},{m n})$ 

Pricing factors under  $\mathbb Q$  measure

$$\mathbf{X}_{t+1} = \mu^{\mathbb{Q}} + \Phi^{\mathbb{Q}} \mathbf{X}_t + \Sigma \nu_{t+1}^{\mathbb{Q}}$$



#### **Survey-Augmented Model**

Expected average short rate

$$y_{t,n}^e = \frac{1}{n} \mathrm{E}_t^{\mathbb{P}} \left[ \sum_{j=0}^{n-1} i_{t+j} \right] = A_n^e + B_n^e X_t,$$

Forward rate from *n* to *m* periods hence

$$f_{t,n|m}^e = rac{1}{m-n} \mathrm{E}_{\mathrm{t}}^{\mathbb{P}} \left| \sum_{j=n}^{m-1} i_{t+j} \right| = A_{n|m}^e + B_{n|m}^e X_{\mathrm{t}}.$$







Decomposition



Decomposition

#### **EM Yields Comovement**



|                    | Nominal  | E. Short Rate | Term Premium | Credit Risk |
|--------------------|----------|---------------|--------------|-------------|
| U.S. Term Premium  | 0.97***  | 0.54***       | 0.85***      | -0.42***    |
|                    | (0.14)   | (0.08)        | (0.09)       | (0.11)      |
| U.S. E. Short Rate | 0.17     | 0.25***       | 0.08         | -0.17**     |
|                    | (0.09)   | (0.05)        | (0.06)       | (0.06)      |
| Policy Rate        | 0.24***  | 0.30***       | 0.01         | -0.06***    |
|                    | (0.03)   | (0.02)        | (0.02)       | (0.02)      |
| Inflation          | 15.26*** | 1.77          | 7.06***      | 6.43***     |
|                    | (2.27)   | (1.56)        | (1.36)       | (1.73)      |
| Unemployment       | 23.88*** | 1.14          | 10.74***     | 12.00***    |
|                    | (3.43)   | (2.09)        | (1.65)       | (2.23)      |
| LC per USD (Std.)  | 41.58*** | 33.11***      | 22.07***     | -13.61***   |
|                    | (5.74)   | (3.52)        | (3.18)       | (3.85)      |
| Log(Vix)           | 49.95*** | -20.18        | 30.13**      | 40.01***    |
|                    | (12.63)  | (10.45)       | (10.49)      | (9.59)      |
| $Log(EPU\ U.S.)$   | 7.08     | -3.81         | -0.44        | 11.32**     |
|                    | (5.58)   | (2.69)        | (2.72)       | (3.93)      |
| Log(EPU Global)    | -61.04** | -38.72***     | -19.64       | -2.68       |
|                    | (20.51)  | (6.98)        | (11.75)      | (10.72)     |
| Global Ind. Prod.  | 1.16     | 0.79          | -0.10        | 0.46        |
|                    | (1.13)   | (0.86)        | (0.46)       | (0.93)      |
| Fixed Effects      | Yes      | Yes           | Yes          | Yes         |
| Lags               | 4        | 4             | 4            | 4           |
| No. Countries      | 15       | 15            | 15           | 15          |
| Observations       | 2194     | 2194          | 2194         | 2194        |
| $R^2$              | 0.68     | 0.71          | 0.49         | 0.23        |

 $Notes: \ {\it Driscoll-Kraay} \ {\it standard} \ {\it errors} \ {\it in} \ {\it parenthesis}.$ 

|                    | Nominal   | E. Short Rate | Term Premium | Credit Risk |
|--------------------|-----------|---------------|--------------|-------------|
| U.S. Term Premium  | 1.59***   | 1.68***       | 0.58***      | -0.68**     |
|                    | (0.22)    | (0.17)        | (0.17)       | (0.21)      |
| U.S. E. Short Rate | -0.03     | -0.02         | 0.05         | -0.06       |
|                    | (0.04)    | (0.03)        | (0.03)       | (0.04)      |
| Policy Rate        | 0.64***   | 0.56***       | 0.13***      | -0.05       |
|                    | (0.03)    | (0.03)        | (0.02)       | (0.03)      |
| Inflation          | 8.91***   | -0.15         | 7.40**       | 1.67        |
|                    | (2.25)    | (2.58)        | (2.25)       | (2.50)      |
| Unemployment       | 9.39**    | -0.62         | 0.04         | 9.97***     |
|                    | (2.91)    | (2.14)        | (1.61)       | (2.14)      |
| LC per USD (Std.)  | 27.18***  | 25.67***      | 17.86***     | -16.36**    |
|                    | (4.84)    | (4.86)        | (4.04)       | (4.91)      |
| Log(Vix)           | 46.41***  | -20.29        | -9.10        | 75.79***    |
|                    | (8.16)    | (13.92)       | (7.68)       | (11.92)     |
| Log(EPU U.S.)      | 8.42*     | -0.66         | -7.01*       | 16.10***    |
|                    | (3.82)    | (3.91)        | (2.79)       | (4.15)      |
| Log(EPU Global)    | -60.39*** | -44.01***     | -10.88       | -5.50       |
|                    | (13.69)   | (9.62)        | (9.32)       | (12.88)     |
| Global Ind. Prod.  | 2.61***   | 0.36          | -1.16*       | 3.41***     |
|                    | (0.68)    | (0.93)        | (0.57)       | (0.76)      |
| Fixed Effects      | Yes       | Yes           | Yes          | Yes         |
| Lags               | 4         | 4             | 4            | 4           |
| No. Countries      | 15        | 15            | 15           | 15          |
| Observations       | 2194      | 2194          | 2194         | 2194        |
| $R^2$              | 0.80      | 0.75          | 0.35         | 0.29        |

Notes: Driscoll–Kraay standard errors in parenthesis.

# Effects of Target Easing on U.S. Yields



4 EM

## Effects of Forward Guidance Easing on U.S. Yields: Pre-GFC



**■** EM

## Effects of Forward Guidance Easing on U.S. Yields: Post-GFC



**■** EM

## Effects of Asset Purchase Easing on U.S. Yields



**■** EM