

Schriftliche Maturitätsprüfung 2009

Kantonsschule Reussbühl

Fach	Mathematik Grundlagen
Prüfende Lehrpersonen	Rita Barmet-Bajor (Rita.Barmet@edulu.ch) Yves Gärtner (Yves.Gaertner@edulu.ch) Hannes Ernst (Hannes.Ernst@edulu.ch) Roland Reichmuth (Roland.Reichmuth@edulu.ch) Urs Schwegler (Urs.Schwegler@edulu.ch)
Klassen	6a / 6b / 6c / 6d / 6e / 6K
Prüfungsdatum	29. Mai 2009
Prüfungsdauer	3 Stunden
Erlaubte Hilfsmittel	Fundamentum Mathematik und Physik Taschenrechner TI 83 bzw. TI voyage200
Anweisungen zur Lösung der Prüfung	Bei jeder Aufgabe muss ein formaler Lösungsweg angegeben werden.
Anzahl erreichbarer Punkte	Aufgabe 1: 10 Aufgabe 2: 10 Aufgabe 3: 10 Aufgabe 4: 10 Aufgabe 5: 10 Total: 50 Für 40 Punkte wird die Note 6 erteilt (Notenskala linear)
Anzahl Seiten (inkl. Titelblatt)	3

Schriftliche Maturitätsprüfung 2009

Kantonsschule Reussbühl

- 1. Gegeben ist die Funktion $f:]0;\infty[\,\to\mathbb{R}:x\mapsto\frac{2\sqrt{x}-x}{x}\,.$
 - a) Bestimmen Sie die Nullstelle x₀ und die Gleichungen der Asymptoten der Funktion f und zeichnen Sie dann ihren Graphen samt Asymptoten.
 - b) Berechnen Sie den Inhalt der Fläche A(p) im 1. Quadranten, die vom Graphen von f, der x-Achse und der Geraden x = p mit 0 0</sub> begrenzt wird (abhängig vom Parameter p).
 Untersuchen Sie dann lim A(p), d.h. den Inhalt der Fläche, die vom Graphen von f und den beiden Koordinatenachsen begrenzt wird.
 - c) Ein Punkt P(x|y) befindet sich auf dem Stück des Graphen von f, das zwischen der y-Achse und der Nullstelle x₀ von f verläuft. Der Punkt P spannt mit dem Ursprung ein achsenparalleles Rechteck R auf. Bestimmen Sie die Koordinaten von P so, dass das Rechteck R den grösstmöglichen Flächeninhalt hat.
 - d) Das Stück des Graphen von f, das zwischen der Nullstelle x_0 von f und der Geraden x=9 verläuft wird um die x-Achse gedreht. Berechnen Sie das Volumen V des so entstehenden Rotationskörpers.
- Ein dreiseitiges schiefes Prisma ABCEFG hat als Grundfläche das Dreieck ABC und als Deckfläche das dazu kongruente Dreieck EFG (Beschriftung siehe Skizze).

A(-2|5|6), B(3|6|1), C(1|2|3), E(-1|3|-5)

- a) Geben Sie die Koordinaten der Punkte F und G an.
- b) Geben Sie eine Parametergleichung und eine Koordinatengleichung der Ebene ϵ , die durch die Punkte A, B und C gegeben ist, an.
- c) Wie gross ist der Winkel ϕ zwischen der Grundkante AC und der Seitenkante AE des Prismas?
- d) Zeigen Sie, dass das Dreieck ABC rechtwinklig ist. Bei welcher Ecke liegt der rechte Winkel?
- e) Bestimmen Sie die Koordinaten des Lotfusspunktes H des Punktes E auf die Ebene ϵ und dann damit den Abstand von E zu ϵ (Höhe des Prismas).
- f) Berechnen Sie den Flächeninhalt des Dreiecks ABC und das Volumen des Prismas ABCEFG.

Schriftliche Maturitätsprüfung 2009

Kantonsschule Reussbühl

- 3. Auf den sechs Seiten eines Spielwürfels sind je einmal die negativen Augenzahlen –1, –3 und –5, sowie die positiven Augenzahlen +2, +4 und +6 aufgetragen. Dieser Würfel wird dreimal geworfen.
 - a) Mit welcher Wahrscheinlichkeit werden drei positive Zahlen geworfen?
 - b) Mit welcher Wahrscheinlichkeit wird mindestens die Summe 16 geworfen?
 - c) Mit welcher Wahrscheinlichkeit beträgt die Summe genau 0?
 - d) Der Würfel wird 10mal geworfen. Mit welcher Wahrscheinlichkeit werden mindestens zwei positive Augenzahlen geworfen?
 - e) Die Würfelflächen mit den beiden Augenzahlen +4 und +6 sind rot eingefärbt, die übrigen Flächen sind weiss. Wie oft muss der Würfel geworfen werden, damit die Wahrscheinlichkeit, mindestens einmal eine rote Fläche zu werfen, grösser als 99% ist?
 - f) Bei einem Spiel kann jemand einen Einsatz von 5 Franken bezahlen und dann den Würfel dreimal werfen. Bei drei positiven Zahlen werden 9 Franken, bei zwei positiven Zahlen 6 Franken und bei einer positiven Zahl werden 3 Franken ausbezahlt. Sonst wird nichts ausbezahlt.
 - Welcher Gewinn bzw. Verlust kann bei diesem Spiel erwartet werden?
- 4. Gegeben sind die Funktionen $f: x \mapsto y = -e^x + 3$ und $g: x \mapsto y = 2 \cdot e^{t \cdot x}$ mit dem Paramater t > 0.

Wählen Sie für die Aufgabenteile a), b) und c) für t den Wert t = 1.

- a) Zeichnen Sie die Graphen von f und g in dasselbe Koordinatensystem (1 Einheit = 2 Häuschen).
- b) Berechnen Sie Koordinaten des Schnittpunktes der Graphen von f und g und die Nullstelle $\, {\bf x}_0 \,$ von f
- c) Welchen Inhalt hat die Fläche, die von den Graphen von f und g und der x-Achse im Intervall $]-\infty;x_0]$ begrenzt wird?
- d) Es sei nun t ein variabler Parameter (t > 0). Die Tangente und die Normale an den Graphen von g im Punkt P(0|g(0)) begrenzen mit der x-Achse ein Dreieck. Wie gross ist der Flächeninhalt dieses Dreiecks in Abhängigkeit von t?
- 5. Zwei unabhängige Kurzaufgaben
 - a) Der Kreis k wird von der Geraden t: y = -2x 19 im Punkt B(-10|y_B) berührt. Sein Mittelpunkt M liegt auf der Geraden g durch die Punkte P(2|4) und Q(6|3). Bestimmen Sie die Koordinatengleichung des Kreises k.
 - b) Die geometrische Reihe $s(q) = \sum_{i=1}^{\infty} 2q^{i-1} = 2 + 2q + 2q^2 + 2q^3 + 2q^4 + \dots$ und ihre n-ten

Teilsummen
$$s_n(q) = \sum_{i=1}^n 2q^{i-1} = 2 + 2q + 2q^2 + \ldots + 2q^{n-1}$$
 sind gegeben.

Berechnen Sie den exakten Wert von s(0.4). Bestimmen Sie dann das kleinste n mit der Eigenschaft, dass die Differenz $s(0.4) - s_n(0.4)$ höchstens ein Milliardstel von s(0.4) beträgt.