Lab 2: FPGA Emulation

103061207 徐安廷 An-Ting Hsu

Design Specification

1. Full Adder

✓ Experiment Goal:

Alter the full adder in Lab1-1 to make the calculation result be shown on the LEDs.

✓ Block Diagram:

✓ I/O:

Inputs: x, y, cin.

Outputs: s, cout.

2. BCD to 14-Segment Display Decoder

✓ Experiment Goal:

Give a BCD code to the FPGA board, and let the 14-segment display show the code in decimal numbers.

✓ Block Diagram:

✓ I/O:

Inputs: bcd[3:0].

Outputs: led[3:0], display[3:0].

Design Implementation

1. Full Adder

✓ Logic Function: $s=x^y^c$ in, $cout=x'\cdot y \mid x\cdot cin \mid y\cdot cin$

✓ I/O Pin Assignment:

x	y	cin	S	cout
T1	P2	P1	H5	H6

2. BCD to 14-Segment Display Decoder

✓ I/O Pin Assignment:

bcd[0]~bcd[3]	N2, P1, P2, T1
led[0]~led[3]	F2, F1, H6, H5
display[0]~display[14]	U5, T7, R7, V7, V4, T4, T3, R5, N5, R3, U7, T5, V5, N4, P6

Discussion

✓ It has been one of my dream to handle an electrical board. It was excited that I saw the LEDs and 14-segment display showing the result. Since the experiment only need to follow the instruction, I did not meet any bogs or errors.

Conclusion

✓ I have got much familiar with the use of Verilog, know how to assign the I/O pins, and how to write my logic program to FPGA. Hope those basic concept and technique may help me in the following labs.

References

1. Full Adder

- ✓ Teaching Handout <FPGA Emulation> p.14~25
 - →Helps me to learn how to assign the I/O pins.

2. BCD to 14-Segment Display Decoder

- ✓ Teaching Handout < Verilog HDL (2) > p.28
 - →Telling me how to write the display decoder.