

Arhitectura Sistemelor de Calcul – Curs 14

Universitatea Politehnica Bucuresti Facultatea de Automatica si Calculatoare cs.pub.ro curs.cs.pub.ro

Cuprins

- Top 500 Supercomputers (http://www.top500.org)
 - Prezentare generala
 - Benchmark LINPACK(HPL)
- Top 10
 - Motivatie
 - Info locatie/furnizor
 - Arhitectura
 - Performante LINPACK
 - OS & Software
 - Aplicatii
- Concluzii Top 500
- Cate ceva despre examen: mod de notare, etc...

www.top500.org

- Proiect demarat in 1993 (Iunie 1993)
- Lista actualizata a celor mai puternice 500 de sisteme de calcul de uz general, disponibile comercial in lume si folosite la aplicatii complexe
- Statisticile referitoare la supercalculatoare sunt interesante pentru
 - Dezvoltatorii de sisteme (producatorii de HW & SW)
 - Utilizatori
 - Potentialii viitori utilizatori
- Se doreste cunoasterea
 - Numarului si locatiei sistemelor
 - Domeniilor de aplicatie ale sistemelor → facilitarea unor potentiale colaborari

www.top500.org

- Lista este publicata de 2 ori pe an
- Benchmark versiune paralela a Linpack HPL (Jack Dongarra @ ICL, University of Tennessee)
 - http://www.netlib.org/benchmark/hpl/
 - Rezolvarea unui sistem dens de ecuatii liniare
 - Nu reflecta intr-un mod exhaustiv performanta intregului sistem!
 - Dimensiunea problemei poate fi modificata pentru a se potrivi cel mai bine pe arhitectura sistemului masurat
- A 40-a lista a fost publicata la SC12 (Supercomputing Conference – US)
- A 41-a va fi publicata la ISC13 (International Supercomputing Conference – Leipzig, Germania)

The LINPACK Benchmark

- Linpack a fost ales pentru ca
 - Este extrem de raspandit si utilizat
 - Date si teste pentru acest program sunt disponibile pentru "toate" sitemele relevante din lume
- Benchmark-ul masoara cat de repede rezolva computer-ul un sistem dens de ecuatii liniare A·x=b de dimensiune n · n
- Solutia se bazeaza pe metoda eliminarii Gaussiene, utilizand pivotarea partiala
- Conduce la 2/3 · n³ + n² operatii in virgula mobila O(n³)
- Se exclude utilizarea metodelor optimizate de inmultire a matricelor de genul metodei lui Strassen O(n²)
- In acest mod se vor genera milioane de operatii in virgula mobila pe secunda (Mflop/s)
- Rezolvarea sistemelor de ecuatii liniare este o problema intalnita frecvent in aproape orice aplicatie stiintifica sau inginereasca

The LINPACK Benchmark

6

- Avantaje
 - Rpeak = performanta maxima teoretica de varf (in functie de CPU)
 - Linpack ofera ca rezultat un singur numar
 - Rmax = performanta maxima realizata
 - Usor de definit si usor de clasificat pe baza lui
 - Permite modificarea dimensiunii problemei Jaguar 5.4x10⁶
 - Ocupa sistemul testat cu un job de lunga durata
- Dezavantaje
 - Scoate in evidenta doar viteza "peak" si numarul de procesoare
 - Nu evidentiaza rata de transfer locala (bandwidth)
 - Nu evidentiaza reteaua de comutare
 - Nu testeaza mecanisme de tipul gather/scatter
- Un singur numar nu poate caracteriza performanta totala a unui sistem de calcul!

Cuprins

- Top 500 Supercomputers (http://www.top500.org)
 - Prezentare generala
 - Benchmark LINPACK(HPL)
- Top 10
 - Motivatie
 - Info locatie/furnizor
 - Arhitectura
 - Performante LINPACK
 - OS & Software
 - Aplicatii
- Concluzii Top 500
- Cate ceva despre examen: mod de notare, etc...

NEC Earth-Simulator

Site: The Earth Simulator Center

Familia de sisteme: NEC Vector

Model: SX6

Procesor: NEC 1000MHz

OS: Super-UXArhitectura: MPP

· Aplicatii: studiul mediului

Anul instalarii: 2002

Numar de procesoare: 5120

Rmax(TFlops): 35.86Rpeak(TFlops): 40.96

Interconectare: Multi-stage crossbar

No 1 intre 2002-2004

Columbia - SGI Altix

Site: NASA/Ames Research Center/NAS

Familia de sisteme: SGI® Altix™

Model: SGI® Altix™ 3700, Voltaire Infiniband

Procesoare: Intel IA-64 Itanium 2 1.5 GHz

OS: SuSE Linux Enterprise Server 9

Arhitectura: MPP

Aplicatii: Cercetari aerospatiale

Anul instalarii: 2004

Numar de procesoare: 10240

Rmax(TFlops): 51.870

Rpeak(TFlops): 60.960

Interconectare: Numalink/Infiniband

Columbia - Arhitectura

- Botezat astfel în memoria echipajului de pe Columbia (1 februarie 2001)
- Utilizeaza 20 superclustere Altix™ din seria 3000
 - 8 SGI Altix 3700 si 12 Altix 3700 Bx2
 - 4 din Bx2-uri formeaza un 2048-PE (processor shared

memory environment)

- Are 10.240 procesoare Intel Itanium 2 (1.5GHz, 6MB Cache)
- Pana la 24 TB de Global shared memory pe fiecare cluster

Columbia - Interconectare

- Nodurile sunt conectate prin Voltaire InfiniBand si prin Ethernet de 1 si 10 Gb/s
- Columbia este conectat la un on-line RAID printr-o conexiune Fibre Channel → 440TB
- Conectarea procesoarelor prin SGI®NUMAlink™ → design modular
 - 2048 de procesoara folosesc NumaLink si pentru conectarea dintre noduri
 - Singura tehnologie care ofera global shared memory si intre noduri, nu doar in cadrul clusterului

Columbia - Software

- OS: SGI ProPack 4 bazat pe SUSE Linux
- Compilatoare Intel® Fortran/C/C++ & Gnu
- Fiecare nod de 512 procesoare ofera
 - Latenţă mică la accesul mem (<1 ms) → reduce overheadul in comunicatie
 - Global shared mem de 1TB → procesele mari rămân rezidente
- Optim pentru aplicatii cu comunicatie masiva intre procesoare
 - Simulari fizice in care domeniul este discretizat → CFD
 - Prognoza meteo & Nanotehnologii
 - N-Body simulations → Astrofizica

	5		7	Гор		
Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
•	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560640	17590.0	27112.5	8209
2	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1572864	16324.8	20132.7	7890
3	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705024	10510.0	11280.4	12660
4	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786432	8162.4	10066.3	3945
5	Forschungszentrum Juelich (FZJ) Germany	JUQUEEN - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect IBM	393216	4141.2	5033.2	1970
6	Leibniz Rechenzentrum Germany	SuperMUC - iDataPlex DX360M4, Xeon E5-2680 8C 2.70GHz, Infiniband FDR IBM	147456	2897.0	3185.1	3423
7	Texas Advanced Computing Center/Univ. of Texas United States	Stampede - PowerEdge C8220, Xeon E5-2680 8C 2.700GHz, Infiniband FDR, Intel Xeon Phi Dell	204900	2660.3	3959.0	
8	National Supercomputing Center in Tianjin China	Tianhe-1A - NUDT YH MPP, Xeon X5670 6C 2.93 GHz, NVIDIA 2050 NUDT	186368	2566.0	4701.0	4040
9	CINECA	Fermi - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	163840	1725.5	2097.2	822
10	IBM Development Engineering United States	DARPA Trial Subset - Power 775, POWER7 8C 3.836GHz, Custom Interconnect IBM	63360	1515.0	1944.4	3576

10 - DARPA Trial Subset

Site: IBM Development Engineering

• Familia de sisteme: Power 775

• Model: Power7

• Procesor: POWER7 8C 3.836GHz

• OS: Linux

Arhitectura: MPPAplicatii: CercetareAnul instalarii: 2012

• Numar de core-uri: 63.360

Rmax(PFlops): 1,515Rpeak(PFlops): 1,944Consum: 3.576 KW

Interconectare: Custom

PowerPC@ASC

9 - Fermi

Site: CINECA

Familia de sisteme: 10 BGQ Power Frames

Model: IBM-BG/Q

Procesor: IBM PowerA2, 1.6 GHz

OS: CNK/LinuxArhitectura: MPP

Aplicatii: Cercetare

Anul instalarii: 2012

Numar de core-uri: 163.840

Rmax(PFlops): 1,726Rpeak(PFlops): 2,097

Consum: 822 kW

Interconectare: Custom 5D Torus – 11 Links

BG@uvt.ro

Arhitectura IBM BlueGene

- 30
- Program initiat de IBM in 1999 pentru a construi "a petaflop scale machine"
- BlueGene/L primul pas, bazat pe procesoare PowerPC
 - Spatiu de adresare mare
 - Compilatoare standard
 - Bazat pe middleware de "message passing" deja existent
 - A necesitat adaugiri semnificative fata de sistemul PowerPC standard
- Un nod computational = computer-on-a-chip ASIC:
 - Procesoare IBM PowerPC
 - Memorie DRAM embedded
 - L1-3 cache embedded
 - Multiple module de interconectare folosind retele de comutare de mare viteza

- - 512 nodes with 2 Quadcore Xeon & 32GB memory
- Interconnection subsystem
 - Infiniband QDR: 40Gbps bandwidth & MPI latency 1.2us
- I/O storage subsystem:
 - Lustre parallel file system in 64 nodes and 1PB
- Compiling system
 - Supporting C/C++, Fortran77/90/95, Java, OpenMP and MPI
 - Providing a programming framework for hybrid architecture, which supports adaptive task partition and streaming data access

Tianhe-1 - Aplicatii

- Resource management subsystem:
 - Providing a uniform view of heterogeneous resources in the TH-1
 - Support multiple policies for task scheduling and resource allocation
 - Supporting multi-level Checkpoint/Restart
- Development kit for parallel programming:
 - Integrated Development Environment & Multiple debugging tools
- Applications:
 - Petroleum exploration
 - Biological medicine research
 - Simulation of large aircraft design
 - Remote sensing data processing
 - Data analyzing of financial engineering
 - Simulation of environment research

7 - Stampede

- Site: Texas Advanced Computing Center/Univ. of Texas
- Familia de sisteme: Dell PowerEdge
- Model: PowerEdge C8220
- Procesor: Xeon E5-2680 8c 2.700 GHz, Xeon Phi
- OS: Linux (CentOS)
- Arhitectura: MPP
- Aplicatii: Cercetare
- Anul instalarii: 2012
- Numar de core-uri: 204.900
- Rmax(PFlops): 2,660
- Rpeak(PFlops): 3,959
- Memorie: 205TB
- Interconectare: Infiniband FDR

6 - SuperMUC

Site: Leibniz Rechenzentrum

Familia de sisteme: iDataPlexModel: iDataPlex DX360M4

Procesor: Xeon E5-2680 8C 2.70GHz

OS: Linux

Arhitectura: MPP

Aplicatii: Cercetare

Anul instalarii: 2012

Numar de core-uri: 147.456

Rmax(PFlops): 2,897

Rpeak(PFlops): 3,185

Consum: 3.423 kWInterconectare: Infiniband FDR

IEM C

ASC@UPB: Alin Murarasu

5 - JuQueen BlueGene/Q

Site: Forschungszentrum Juelich (FZJ)

Familia de sisteme: BGQ Power

Model: IBM-BG/Q – 28 Frames

Procesor: IBM PowerA2, 1.6 GHz

OS: CNK/Linux

Arhitectura: MPP

Aplicatii: Cercetare

Anul instalarii: 2012

Numar de core-uri: 393.216

Rmax(PFlops): 4,141

Rpeak(PFlops): 5,033

Consum: 1.970 kW

Interconectare: Custom

ASC@UPB: Monica Bugeanu & Alex Calatoiu

4 - Mira BlueGene/Q

Site: DOE/SC/Argonne National Laboratory

Familia de sisteme: BGQ Power

Model: IBM-BG/Q – 48 Frames

Procesor: IBM PowerA2, 1.6 GHz

OS: CNK/Linux

Arhitectura: MPP

Aplicatii: Cercetare

Anul instalarii: 2012

Numar de core-uri: 786.432

Rmax(PFlops): 8,162

Rpeak(PFlops): 10,066

Consum: 3.945 kW

Interconectare: Custom

3 - K Computer

- Site: RIKEN Advanced Institute for Computational Science
- Familia de sisteme: Fujistu SPARC64 VIIIfx 2.0GHz
- Model: IBM-BG/Q 48 Frames
- Procesor: SPARC64 VIIIfx 2.0GHz (8-core)
- OS: Linux
- Arhitectura: Cluster
- Aplicatii: Cercetare
- Anul instalarii: 2011
- Numar de core-uri: 705.024
- Rmax(PFlops): 10,510
- Rpeak(PFlops): 11,280
- Consum: 12.660 kW
- Interconectare: Custom Tofu

K Computer Processor

- 8 cores @ 2GHz SoC design
- Embedded Memory Controller
- Shared 5M L2 Cache
- 45nm 760M tranzistori
- 128GFlops (peak)
- 64GB/s transfer la memorie
- 58W si racire cu apa
- Set de registri mare
 - 192 registri int
 - 256 registri fp
- Unitati SIMD
- Software Managed Cache

Examen la ASC

- Examenul consta din doua parti distincte
 - Partea de teorie 50min:
 - · Subiecte din temele prezentate la curs
 - · Examenul de teorie poate fi sustinut si oral
 - Partea de probleme 30min-45min:
 - · Subiecte similare cu unele din problemele propuse ca teme de laborator
- Nota finala este calculata cu formula:
 - Teorie Examen*0.40 + Problema Examen*0.10 + Laborator*0.50
- Punctajul fiecarei parti este in intervalul 0..10
- Intrarea in examen si promovarea nu poate avea loc decat daca nota finala de la laborator este strict mai mare ca 2.5
 - Restantierii din anii 4/5: minim o tema din 1 si 2 si una din 3 si 4 + minim 2.5 puncte
- Examen:
 - CA
 - CB 01 & 02 Iunie 2013
 - CC

Bibliografie vs. Cursuri

- Introduction to Parallel Computing: Design & Analysis of Algorithms
 - Cursurile 6, 8, 11
- The Sourcebook of Parallel Computing
 - Cursurile 4, 13, 14
- · Computer Architecture: A Quantitative Approach
 - Cursurile 3, 4, 7, 9, 10, 11
- Introduction to Parallel Processing; Algorithms and Architectures
 - Cursurile 6, 7, 8, 9, 10, 11
- Techniques for Optimizing Applications: High Performance Computing:
 - Cursul 4
- Practical Computing on the Cell Broadband Engine
 - Cursul 5
- www.top500.org, http://www.netlib.org/benchmark/hpl/, http://icl.cs.utk.edu/hpcc/
 - Cursurile 13, 14
- Structura si Arhitectura Sistemelor Numerice
 - Cursurile 2, 3, 6, 7, 8, 9, 10, 11, 12

What Next?

- Q & A?
- Next time:
 - Exam...
 - Last but not least: va rugam ca completati feedback-ul!