CMSC 417 Computer Networks

Fall 2017

Final Exam

Open book and notes; In class

Tuesday, Dec. 19th, 1030a

- \oplus Do not forget to write your name on the first page. Initial each subsequent page.
- \oplus Be neat and precise. I will not grade answers I cannot read.
- \oplus You should draw simple figures if you think it will make your answers clearer.
- \oplus Good luck and remember, brevity is the soul of wit
- All problems are mandatory
- I cannot stress this point enough: **Be precise**. If you have written something incorrect along with the correct answer, you should **not** expect to get all the points. I will grade based upon what you **wrote**, not what you **meant**.
- Maximum possible points: 50.

Name:		
name:		

Problem	Points
1	
2	
3	
4	
5	
Total	

1. Nomenclature

- (a) Describe the following: (2 points each)
 - \bullet Burst error

• Distribution System (DS)

• DNS Zone

 \bullet Go-Back-N

• Exposed Node Problem

2. Network and Trans	sport
----------------------	-------

(a) List two uses of the AS-path attribute in BGP. (3 points)

(b) Why does TCP require the TIME-WAIT state? (3 points)

(c) Suppose you enable the TCP window scale (WSCALE) option (and use maximum scaling), but do *not* enable the Timestamps (TS). What is the maximum throughput you can achieve on a 40Gbps, 100ms RTT end-to-end link? Explain why. (4 points)

3. MAC Protocols
(a) How does 802.3 (Ethernet) address "hidden" nodes? (2 points)
(b) A 802.11 DCF sender waits for one DIFS prior to sending even if the channel is sensed free. Why? (2 points)
(c) Suppose you increased the data transmission rate on 802.3 (Ethernet) to 100Mbps, without changing the MAC protocol or any protocol parameters. Explain one problem that would ensue. (2 points)

4.	4. DNS/Application Layer					
	(a)	Why do typographic errors form a major fraction of queries received at DNS root servers? (2 points)				
	(b)	What is the per-peer state kept by BitTorrent peers? (Describe each state, as opposed to just naming them.) (2 points)				
	(c)	Suppose all the peers in a BitTorrent swarm are behind NATs. (How) Would the protocol function? (3 points)				

(d) Consider a Chord alternate that replicates items r times by "naming" an item using r different hash functions, and inserting each item at these r names. Compare this design to Chord's original

technique of replicating at r-1 successors. (3 points)

5. General

- (a) A CRC with divisor degree n can detect all n bit burst errors. Can a n-bit CRC detect all errors in a message with n bits of data? Why/why not? (2 points)
- (b) The Ethernet CRC polynomial is $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + 1$. Can it detect an odd number of errors? If yes, explain why. If not, give an example of a transmitted message and received where an odd number of errors is not detected. (4 +1 bonus points)

(c) Suppose you administer the domain ispyon.everyone and have delegated a subdomain secret.ispyon.everyone. (How) can you ensure that you can log every IP address that looks up a name in the delegated domain? (4 +1 bonus points)