Homework 1: Conceptual Foundations

November 6, 2021

Due Date: Sunday, 14 Nov 2021 Note: You must email your homework before the deadline to be graded. Part 1 can be submitted as per your convenience (scanned handwork or a word/pdf document), whereas Part 2 has to be submitted as the notebook file. Both parts should be in a zipped folder (format: H01 yourfullname), emailed to asim.dilawar@mcs.edu.pk.

Part I: Mathematical Foundations (20) 1

- 1. Compute the following sums and products:
 - (a) $\sum_{0}^{N} 1$
 - (b) $\sum_{0}^{N} C$
 - (c) $\sum_{k=1}^{K} \sum_{t=1}^{T} 1$
 - (d) $\sum_{k=1}^{K} \sum_{t=1}^{T} 0.5^k$
 - (e) $\sum_{k=1}^{\infty} \sum_{t=1}^{T} 0.5^{k}$ (f) $\prod_{i=1}^{M} \frac{1}{\theta}$

 - (g) $\prod_{k=1}^{K} \frac{k}{k+1}$
 - (h) $\ln\left(\prod_{k=1}^{K} e^{k}\right)$
- 2. For $f(x) = \max(0, x)$, answer following:
 - (a) $\lim_{x \to -\infty} f(x) = ?$
 - (b) $\lim_{x \to +\infty} f(x) = ?$
 - (c) What are the intervals of x where f(x) is differentiable, i.e. $\frac{d}{dx}f(x)$ exists.
 - (d) What are the intervals of x where $f'(x) = \frac{d}{dx} f(x) > 0$.
- 3. What is the length (euclidean norm) $\|\mathbf{x}\|$ of the vector $\mathbf{x} = \begin{bmatrix} 0.4 \\ 0.3 \end{bmatrix}$?
- 4. What is the angle (in radians) between $\mathbf{x}_1 = \begin{bmatrix} 0.4 \\ 0.3 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} -0.15 \\ 0.2 \end{bmatrix}$?

- 5. Are \mathbf{x}_1 and \mathbf{x}_2 in above question orthogonal to each other?
- 6. If probability density function (pdf) of a Gaussian random variable X is given by $f_X(x) = \frac{n}{3\sqrt{2\pi}} \exp\left(-\frac{n^2(x-2)^2}{18}\right)$, then what is the mean μ and variance σ^2 of X?
- 7. Given X from Question 6, can you write the pdf of the random variable Y when Y = 2X?
- 8. What is the rank of the matrix $\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ 0.5 & 1 & 0.5 \\ 2 & 1 & 2 \end{bmatrix}$?
- 9. Compute A^{-1} ?
- 10. Let $\mathbf{A} = \begin{bmatrix} 3 & 0 \\ 0.5 & 2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Suppose furthermore that $\mathbf{A}\mathbf{v} = \lambda_1\mathbf{v}$ and $\mathbf{A}\mathbf{w} = \lambda_2\mathbf{w}$. What will be the value of λ_1 and λ_2 ?

2 Part 2: Coding Exercise (5)

Refer to the notebook H01-kNN-MNIST-Classification.ipynb in the homeworks folder.