INDAD - Individual Assignment 3

Problem 1

1

- a) Yes
- b) Yes
- c) Yes
- d) Yes
- e) No

2

No

3

4

No, for a schedule to be conflict serializable, it has to be serializable. Also, for a schedule to be conflict serializable, its dependency graph must be acyclic. As described in the answer to question 3, the dependency graph for this schedule includes a cycle.

5

No

Problem 2

1

From top to bottom:

- IS(D)
- S(M)

2

From top to bottom:

- SIX(D)
- SIX(M7 M21)
- X(M10 : 10)

3

From top to bottom:

- IX(D)
- IX(P)

```
IX(P1 - P600)
X(P1 : 1, P2 : 1, P3 : 1, P4 : 1, ... P600 : 1 )
```

4

From top to bottom:

- SIX(D)
- X(M)

We don't know yet which records should be written to, so instead of locking all records in all pages, we simply lock the table.

5

- SIX(D)
- S(P), X(M)

6

- IX(D)
- X(M, P)

Though, let it be known that the tables themselves will not be dropped.

Question 3

Time	t ₁	t ₂	t ₃	t ₄	t ₅	t ₆	t ₇	t ₈	t ₉
T ₁	S(D)		S(A)			X(C)		S(B)	
T ₂				S(A)	X(B)				
T ₃							S(C)		
T ₄		S(C)							X(C)
LM	g	g	g	g	g	b	b	b	b

Yes. There exists a cycle between T_1 , T_4 and T_3 .