Merging, Joining, and Concatenating

There are 3 main ways of combining DataFrames together: Merging, Joining and Concatenating. In this lecture we will discuss these 3 methods with examples.

Example DataFrames

```
In [1]:
```

```
1 import pandas as pd
```

In [2]:

```
df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                                  'B': ['B0', 'B1', 'B2', 'B3'], 'C': ['C0', 'C1', 'C2', 'C3'],
2
3
                                  'D': ['D0', 'D1', 'D2', 'D3']},
4
                                  index=[0, 1, 2, 3])
5
```

In [3]:

```
1 df1
```

Out[3]:

```
С
           D
  Α
     В
0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
```

In [4]:

```
df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
1
                                           'B': ['B4', 'B5', 'B6', 'B7'],
'C': ['C4', 'C5', 'C6', 'C7'],
'D': ['D4', 'D5', 'D6', 'D7']},
2
3
4
                                             index=[4, 5, 6, 7])
5
```

```
In [5]:
```

```
1 df2
```

Out[5]:

```
С
A B
       D
A4 B4 C4
```

- **5** A5 B5 C5 D5
- **6** A6 B6 C6 D6
- **7** A7 B7 C7 D7

In [6]:

```
2
3
4
5
```

In [7]:

```
df3
1
```

Out[7]:

```
С
    Α
         В
                D
    Α8
        B8
            C8
                 D8
8
9
    Α9
        В9
            C9
                D9
10 A10 B10 C10 D10
11 A11 B11 C11 D11
```

In [7]:

```
1 df1
```

Out[7]:

```
\mathbf{A} \quad \mathbf{B} \quad \mathbf{C} \quad \mathbf{D}
0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
```

```
In [8]:
```

1 df2

Out[8]:

	Α	В	С	D
4	A4	B4	C4	D4

- **5** A5 B5 C5 D5
- 6 A6 B6 C6 D6
- **7** A7 B7 C7 D7

In [8]:

1 df3

Out[8]:

	Α	В	С	D
8	A8	В8	C8	D8
9	A9	В9	C9	D9
10	A10	B10	C10	D10
11	A11	B11	C11	D11

In [11]:

```
1 res = pd.concat([df1,df2,df3])
```

```
In [12]:
```

res

Out[12]:

	Α	В	С	D
0	A0	В0	C0	D0
1	A1	B1	C1	D1
2	A2	B2	C2	D2
3	A3	В3	C3	D3
4	A4	B4	C4	D4
5	A5	B5	C5	D5
6	A6	В6	C6	D6
7	A7	В7	C7	D7
8	A8	В8	C8	D8
9	A9	В9	C9	D9
10	A10	B10	C10	D10
11	A11	B11	C11	D11

Concatenation

Concatenation basically glues together DataFrames. Keep in mind that dimensions should match along the axis you are concatenating on. You can use **pd.concat** and pass in a list of DataFrames to concatenate together:

In [13]:

```
pd.concat([df1,df2,df3])
```

Out[13]:

	Α	В	С	D
0	A0	В0	C0	D0
1	A1	B1	C1	D1
2	A2	B2	C2	D2
3	A3	В3	C3	D3
4	A4	B4	C4	D4
5	A5	В5	C5	D5
6	A6	В6	C6	D6
7	A7	B7	C7	D7
8	A8	В8	C8	D8
9	A9	В9	C9	D9
10	A10	B10	C10	D10
11	A11	B11	C11	D11

In [14]:

pd.concat([df1,df2,df3],axis=1)

Out[14]:

	Α	В	С	D	Α	В	С	D	Α	В	С	D
0	A0	В0	C0	D0	NaN							
1	A1	B1	C1	D1	NaN							
2	A2	B2	C2	D2	NaN							
3	А3	В3	C3	D3	NaN							
4	NaN	NaN	NaN	NaN	A4	B4	C4	D4	NaN	NaN	NaN	NaN
5	NaN	NaN	NaN	NaN	A5	В5	C5	D5	NaN	NaN	NaN	NaN
6	NaN	NaN	NaN	NaN	A6	В6	C6	D6	NaN	NaN	NaN	NaN
7	NaN	NaN	NaN	NaN	A7	В7	C7	D7	NaN	NaN	NaN	NaN
8	NaN	A8	В8	C8	D8							
9	NaN	A9	В9	C9	D9							
10	NaN	A10	B10	C10	D10							
11	NaN	A11	B11	C11	D11							

In [18]:

pd.concat([df1,df2,df3],axis=1)

Out[18]:

	Α	В	С	D	Α	В	С	D	Α	В	С	D
0	A0	В0	C0	D0	NaN							
1	A1	B1	C1	D1	NaN							
2	A2	B2	C2	D2	NaN							
3	A3	В3	C3	D3	NaN							
4	NaN	NaN	NaN	NaN	A4	B4	C4	D4	NaN	NaN	NaN	NaN
5	NaN	NaN	NaN	NaN	A5	B5	C5	D5	NaN	NaN	NaN	NaN
6	NaN	NaN	NaN	NaN	A6	В6	C6	D6	NaN	NaN	NaN	NaN
7	NaN	NaN	NaN	NaN	A7	В7	C7	D7	NaN	NaN	NaN	NaN
8	NaN	A8	В8	C8	D8							
9	NaN	A9	В9	C9	D9							
10	NaN	A10	B10	C10	D10							
11	NaN	A11	B11	C11	D11							

Example DataFrames

```
In [15]:
```

```
2
3
4
  right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
5
                         'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']})
6
7
```

In [16]:

```
1 left
```

Out[16]:

	key	Α	В
0	K0	Α0	В0
1	K1	A1	В1
2	K2	A2	B2
3	K3	А3	ВЗ

In [18]:

```
1 right
```

Out[18]:

	key	С	D
0	K0	C0	D0
1	K1	C1	D1
2	K2	C2	D2
3	K3	СЗ	D3

In [20]:

```
1 pd.merge(left,right,how='inner',on='key')
```

Out[20]:

	key	Α	В	С	D
0	K0	Α0	В0	C0	D0
1	K1	A1	В1	C1	D1
2	K2	A2	B2	C2	D2
3	K3	А3	ВЗ	СЗ	D3

Merging

The merge function allows you to merge DataFrames together using a similar logic as merging SQL Tables together. For example:

In [35]:

```
1 pd.merge(left,right,how='inner',on='key')
```

Out[35]:

	Α	В	key	С	D
0	Α0	В0	K0	C0	D0
1	A1	В1	K1	C1	D1
2	A2	B2	K2	C2	D2
3	А3	ВЗ	K3	СЗ	D3

Or to show a more complicated example:

In [22]:

```
left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
2
                         'key2': ['K0', 'K1', 'K0', 'K1'],
                            'A': ['A0', 'A1', 'A2', 'A3'],
3
                            'B': ['B0', 'B1', 'B2', 'B3']})
4
5
6
  right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                                   'key2': ['K0', 'K0', 'K0', 'K0'],
7
                                      'C': ['C0', 'C1', 'C2', 'C3'],
8
                                      'D': ['D0', 'D1', 'D2', 'D3']})
9
```

In [24]:

```
1 left
```

Out[24]:

	key1	key2	Α	В
0	K0	K0	Α0	В0
1	K0	K1	A1	B1
2	K1	K0	A2	B2
3	K2	K1	А3	ВЗ

```
In [26]:
```

1 right

Out[26]:

	key1	key2	С	D
0	K0	K0	C0	D0
1	K1	K0	C1	D1
2	K1	K0	C2	D2
3	K2	K0	C3	D3

In [27]:

```
pd.merge(left,right,on=['key1','key2'])
```

Out[27]:

	key1	key2	Α	В	С	D
0	K0	K0	Α0	В0	C0	D0
1	K1	K0	A2	B2	C1	D1
2	K1	K0	A2	B2	C2	D2

In [39]:

```
1 pd.merge(left, right, on=['key1', 'key2'])
```

Out[39]:

	Α	В	key1	key2	С	D
0	A0	В0	K0	K0	C0	D0
1	A2	B2	K1	K0	C1	D1
2	A2	B2	K1	K0	C2	D2

In [28]:

```
pd.merge(left, right, how='outer', on=['key1', 'key2'])
```

Out[28]:

	key1	key2	Α	В	С	D
0	K0	K0	A0	В0	C0	D0
1	K0	K1	A1	B1	NaN	NaN
2	K1	K0	A2	B2	C1	D1
3	K1	K0	A2	B2	C2	D2
4	K2	K1	A3	В3	NaN	NaN
5	K2	K0	NaN	NaN	C3	D3

```
In [41]:
```

```
pd.merge(left, right, how='right', on=['key1', 'key2'])
```

Out[41]:

	Α	В	key1	key2	С	D
0	A0	В0	K0	K0	C0	D0
1	A2	B2	K1	K0	C1	D1
2	A2	B2	K1	K0	C2	D2
3	NaN	NaN	K2	K0	C3	D3

In [42]:

```
1 pd.merge(left, right, how='left', on=['key1', 'key2'])
```

Out[42]:

	Α	В	key1	key2	С	D
0	A0	В0	K0	K0	C0	D0
1	A1	В1	K0	K1	NaN	NaN
2	A2	B2	K1	K0	C1	D1
3	A2	B2	K1	K0	C2	D2
4	А3	ВЗ	K2	K1	NaN	NaN

Joining

Joining is a convenient method for combining the columns of two potentially differently-indexed DataFrames into a single result DataFrame.

In [29]:

```
2
3
4
  right = pd.DataFrame({'C': ['C0', 'C2', 'C3'], 'D': ['D0', 'D2', 'D3']},
5
6
                     index=['K0', 'K2', 'K3'])
7
```

```
In [31]:
 1 left
Out[31]:
       В
    Α
K0 A0 B0
K1 A1 B1
K2 A2 B2
In [32]:
 1 right
Out[32]:
    C D
K0 C0 D0
K2 C2 D2
K3 C3 D3
In [33]:
 1 left.join(right)
Out[33]:
    А В
          С
                 D
K0 A0 B0
           C0
                D0
K1 A1 B1 NaN NaN
K2 A2 B2
           C2
                D2
In [34]:
 1 left.join(right, how='outer')
Out[34]:
          В
               С
                   D
      Α
K0
     A0
         B0
              C0
                  D0
K1
     Α1
         B1 NaN NaN
K2
     A2
              C2
                  D2
         B2
K3 NaN NaN
              C3
                  D3
```

Great Job!