I - Fonction racine carrée

a) Découverte de la fonction racine carrée

Rappel : Pour tout nombre réel a positif ou nul, on définit la racine carrée de a comme l'unique nombre réel positif dont le carré vaut a.

- La fonction racine carrée est définie sur $\mathbb{R}^+ = [0; +\infty[$ par $f(x) = \sqrt{x}$.
- Pour tout réel $x, \sqrt{x} \geqslant 0$. La courbe représentative est alors située au-dessus de l'axe des abscisses.

- Pour tout réel $x \ge 0$, $(\sqrt{x})^2 = x$. ATTENTION : l'égalité $\sqrt{x^2} = x$ n'est valable **que pour les réels** x **positifs**.
- La fonction racine carrée est strictement croissante sur $[0; +\infty[$.

$x = 0 + \infty$

Conséquence des variations de la fonction racine carrée :

La fonction racine carrée étant strictement croissante sur $[0; +\infty[$, pour tous réels a et b positifs, si a < b alors $\sqrt{a} < \sqrt{b}$ (l'application de la fonction **conserve** l'ordre).

Exemples:

- 1. Comparer les nombres suivants sans utiliser la calculatrice : $\sqrt{5}$ et $\sqrt{\frac{7}{3}}$
- 2. Donner un encadrement de \sqrt{x} sachant que $2 \leqslant x < 144$.

Solution:

1. La fonction racine carrée étant strictement croissante sur $[0; +\infty[$, l'inégalité $5 > \frac{7}{3}$ implique que $\sqrt{5} > \sqrt{\frac{7}{3}}$ (le sens de l'inégalité est conservé).

Remarque : Cela revient finalement à comparer les carrés de ces deux nombres, ce qu'on ferait pour comparer par exemple $\sqrt{5}$ et 2; comme 5 > 4, on conclut que $\sqrt{5} > \sqrt{4} \iff \sqrt{5} > 2$.

2. De nouveau, la fonction racine carrée étant strictement croissante sur $[0\,;\,+\infty[$, l'encadrement $2\leqslant x<144$ implique $\sqrt{2}\leqslant \sqrt{x}<\sqrt{144}$ (le sens des inégalités a été conservé). On conclut en simplifiant ce qui peut l'être : $\sqrt{2}\leqslant \sqrt{x}<12$.