ITU-T

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU **G.711 Amendment 2**(11/2009)

SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

Digital terminal equipments – Coding of voice and audio signals

Pulse code modulation (PCM) of voice frequencies

Amendment 2: New Appendix III – Audio quality enhancement toolbox

Recommendation ITU-T G.711 (1988) - Amendment 2

ITU-T G-SERIES RECOMMENDATIONS

TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS	G.100-G.199
GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER-	G.200–G.299
TRANSMISSION SYSTEMS	0.200 0.255
INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON METALLIC LINES	G.300–G.399
GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH METALLIC LINES	G.400–G.449
COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY	G.450-G.499
TRANSMISSION MEDIA AND OPTICAL SYSTEMS CHARACTERISTICS	G.600-G.699
DIGITAL TERMINAL EQUIPMENTS	G.700-G.799
General	G.700-G.709
Coding of voice and audio signals	G.710-G.729
Principal characteristics of primary multiplex equipment	G.730-G.739
Principal characteristics of second order multiplex equipment	G.740-G.749
Principal characteristics of higher order multiplex equipment	G.750-G.759
Principal characteristics of transcoder and digital multiplication equipment	G.760-G.769
Operations, administration and maintenance features of transmission equipment	G.770-G.779
Principal characteristics of multiplexing equipment for the synchronous digital hierarchy	G.780-G.789
Other terminal equipment	G.790-G.799
DIGITAL NETWORKS	G.800-G.899
DIGITAL SECTIONS AND DIGITAL LINE SYSTEM	G.900-G.999
MULTIMEDIA QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER- RELATED ASPECTS	G.1000–G.1999
TRANSMISSION MEDIA CHARACTERISTICS	G.6000-G.6999
DATA OVER TRANSPORT – GENERIC ASPECTS	G.7000-G.7999
PACKET OVER TRANSPORT ASPECTS	G.8000-G.8999
ACCESS NETWORKS	G.9000-G.9999

For further details, please refer to the list of ITU-T Recommendations.

Recommendation ITU-T G.711

Pulse code modulation (PCM) of voice frequencies

Amendment 2

New Appendix III – Audio quality enhancement toolbox

Summary

Appendix III to ITU-T Recommendation G.711 describes a toolbox to provide audio quality enhancements to ITU-T G.711. The toolbox comprises four tools that are algorithms initially developed in the context of ITU-T G.711.1 wideband speech and audio codec.

The four tools aim at enhancing the quality of ITU-T G.711 legacy for both encoder and decoder sides. At the encoder side is a noise shaping tool which is used in combination with a modified ITU-T G.711 encoder to perceptually shape the coding noise of the PCM encoder and produce a compatible bit stream. At the decoder, the three tools offer an improved audio quality and/or a better robustness against packet losses. The first tool is a noise gate which is used to increase the clearness of the audio signal during quasi-silent periods. The second tool is a postfilter which reduces the PCM quantization noise of legacy ITU-T G.711. The third is a frame erasure concealment algorithm which is used to extrapolate the signal in case of erased frames. The toolbox has been tested with a frame size of 5 ms. The overall complexity of the toolbox is about 4 WMOPS.

All of these tools can be used separately or in combination.

This appendix contains an electronic attachment containing the respective ANSI-C source code.

Source

Amendment 2 to Recommendation ITU-T G.711 (1988) was agreed on 6 November 2009 by ITU-T Study Group 16 (2009-2012).

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2010

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

CONTENTS

		Page
III.1	Scope	1
III.2	References	1
III.3	Definitions	1
III.4	Abbreviations and acronyms	1
III.5	Conventions	2
III.6	General description of the toolbox	2
III.7	Functional description of the toolbox for the encoder	4
III.8	Functional description of the toolbox for the decoder	4
III.9	Bit-exact description of the audio quality enhancement toolbox for ITU-T G.711	5

Electronic attachment: ANSI-C source code.

Recommendation ITU-T G.711

Pulse code modulation (PCM) of voice frequencies

Amendment 2

New Appendix III – Audio quality enhancement toolbox¹

III.1 Scope

This appendix contains the description of a toolbox to provide audio quality enhancements to the legacy ITU-T G.711 codec.

This appendix is organized as follows. The references, definitions, abbreviations and acronyms, and conventions used throughout this appendix are defined in clauses III.2, III.3, III.4, and III.5, respectively. Clause III.6 gives a general outline of the four algorithms. The noise shaping (NS) is discussed in clause III.7.1. The frame erasure concealment (FERC) is presented in clause III.8.1. The noise gate (NG) and the postfilter (PF) are described in clauses III.8.2 and III.8.3, respectively. Clause III.9 describes the software that defines this toolbox in 16-32-bit fixed-point arithmetic.

III.2 References

- ITU-T Recommendation G.191 (2005), Software tools for speech and audio coding standardization.
- ITU-T Recommendation G.192 (1996), A common digital parallel interface for speech standardization activities.
- ITU-T Recommendation G.711.1 (2008), Wideband embedded extension for G.711 pulse code modulation.

III.3 Definitions

This clause is intentionally left blank.

III.4 Abbreviations and acronyms

This appendix uses the abbreviations and acronyms listed in Table III.1.

Table III.1 – Glossary of abbreviations and acronyms

Acronym	Description		
FERC	Frame Erasure Concealment		
NB	Narrow-Band		
NG	Noise Gate		
NS	Noise Shaping		
PCM	Pulse Code Modulation		
PF	PostFilter		
WMOPS	Weighted Millions of Operations Per Second		

¹ This appendix includes an electronic attachment containing the respective ANSI-C source code.

III.5 Conventions

Time-domain signals are denoted by their symbol and a sample index between parentheses, e.g., s(n). The variable n is used as sample index.

Table III.2 lists the most relevant symbols used throughout this appendix.

Table III.2 – Glossary of most relevant symbols

Type	Name	Description			
Filters	F(z)	Perceptual weighting filter			
	$S_{NB}(n)$	Input signal			
	$S_{LB}(n)$	Pre-processed input signal			
	$s'_{LB}(n)$	Perceptually weighted target signal			
	$d_{L0}(n)$	Difference signal of $s_{LB}(n)$ and $s'_{LB}(n)$			
Signals	$s'_{L0}(n)$	Decoded signal of ITU-T G.711 bit stream, without offset c_{Loff}			
	$\hat{s}_{L0}(n)$	Decoded signal of ITU-T G.711			
	$\hat{s}_{LB1}(n)$	Signal after decoding and FERC			
	$\hat{s}_{LB}(n)$	Signal after postfilter			
$\hat{s}_{NB}(n)$ Si		Signal after noise gate			
	$c_{{\scriptscriptstyle Loff}}$	Encoder offset value			
Parameters	a_{i}	LP coefficient of the perceptual filter			
I_{L0}		ITU-T G.711 compatible bit stream			

III.6 General description of the toolbox

This toolbox contains four algorithms for audio quality enhancement of the legacy ITU-T G.711. The noise shaping (NS) is applied only in the encoder, the frame erasure concealment (FERC), the noise gate (NG) and the postfilter (PF) are applied only in the decoder. These algorithms have been extracted from ITU-T G.711.1 scalable coder/decoder and can be used with ITU-T G.711 legacy coder/decoder. The tools may be used separately or in combination. This toolbox is implemented in fixed point using basic operators version 2.2 defined in the ITU-T G.191 software tool library. This appendix provides a detailed description of all four algorithms.

III.6.1 Tools for ITU-T G.711 encoder

Only one tool is applied in the encoder: the noise shaping (NS) tool. Figure III.1 shows the high-level block diagram of an ITU-T G.711 encoder with the NS tool. Figure III.1 is described in detail in clause III.7.

Figure III.1 – High-level block diagram of the noise shaping tool

III.6.2 Tools for ITU-T G.711 decoder

Figure III.2 shows a high-level block diagram of an ITU-T G.711 decoder combined with three tools: the frame erasure concealment (FERC), the noise gate (NG) and the postfilter (PF). This figure illustrates the recommended execution order of the tools when they are combined.

Figure III.2 - High-level block diagram of decoder toolbox

III.6.3 Algorithmic delay

Table III.3 gives the algorithmic delay of each tool and the algorithmic delay for the combination of the three tools at the decoder side. Note that these algorithmic delays are given for 5 ms frame size.

Table III.3 – Algorithmic delay of the toolbox (ms)

NS	NG	PF	FERC	FERC+PF+NG
0	0	2	5	5

III.6.4 Computational complexity and storage requirements

The observed worst-case complexity of the toolbox is based on the implementation with basic operators of the ITU-T software tool library STL2005 v2.2 in ITU-T G.191. The worst computational complexity is detailed in Table III.4, and all the figures show the observed worst complexity either in μ -law or A-law. The storage requirements in 16-bit words for the four tools are given in Tables III.5. Note that the RAM figures are based on the arrays which form the dominant part, but not on singular variables. It was found that the number of such variables was insignificant when compared with size required by arrays.

Table III.4 – Worst computational complexity of the toolbox [WMOPS]

NS	NG	PF	FERC	FERC+PF+NG
0.87	0.23	2.02	2.05	3.31

Table III.5 – Storage requirements of the toolbox

Memory type	NS	NG	PF	FERC
Static RAM (kWords)	0.093	0.003	0.353	0.984
Scratch RAM (kWords)	0.107	0.012	0.529	0.314
Data ROM (kWords)	0.088	0	0.191	0.121
Program ROM (number of basic ops)	191	37	593	728

III.6.5 Toolbox description

The description of the toolbox algorithms is made in terms of bit-exact fixed-point mathematical operations. The ANSI-C code indicated in clause III.9, which constitutes an integral part of this appendix, reflects this bit-exact, fixed-point descriptive approach. The mathematical descriptions of the encoder and decoder can be implemented in other fashions, possibly leading to a codec implementation not complying with this appendix. Therefore, the algorithm description of the ANSI-code of clause III.9 shall take precedence over the mathematical descriptions whenever discrepancies are found.

III.7 Functional description of the toolbox for the encoder

III.7.1 Noise shaping (NS) tool

The input signal $s_{NB}(n)$ is encoded using μ -law or A-law pulse code modulation (PCM) with noise feedback to perceptually shape the coding noise of the PCM encoder. The encoder with weighted noise feedback loop is shown in Figure III.1. First, the input signal $s_{NB}(n)$ is pre-processed by a high-pass filter with a cut-off frequency of 50 Hz. Then, the pre-processed signal $s_{LB}(n)$ is added to a noise feedback signal and the offset value c_{Loff} , and the resulting signal $s'_{LB}(n)$ is fed to the legacy ITU-T G.711 encoder. Based on the obtained bit stream $I_{L0}(n)$ the legacy ITU-T G.711 decoder locally decodes the signal $\hat{s}'_{L0}(n)$ and the offset value c_{Loff} is removed to obtain $\hat{s}'_{L0}(n)$. An LP analysis is then performed on $\hat{s}'_{L0}(n)$ to obtain the coefficients a_i , and the perceptual filter F(z) is calculated. Then the quantization noise $d_{L0}(n)$, filtered by F(z), is fed back to be added to the input signal $s_{LB}(n)$. It should be noted that for very low energy signals, the legacy ITU-T G.711 encoding, based on log-PCM, is replaced by a different encoding scheme called "dead-zone quantizer". This is described later in clause III.7.1.4.

III.7.1.1 Pre-processing high-pass filter

Same as clause 7.1 of ITU-T G.711.1.

III.7.1.2 PCM encoder based on G.711

Same as clause 7.3.1 of ITU-T G.711.1.

III.7.1.3 Perceptual filtering

Same as clause 7.3.2 of ITU-T G.711.1.

III.7.1.4 Dead-zone quantizer

Same as clause 7.3.3 of ITU-T G.711.1.

III.8 Functional description of the toolbox for the decoder

The toolbox includes three tools at the decoder side. All these tools can be used either in combination or alone. Figure III.2 describes the tool position in the processing chain. The algorithmic descriptions of the tools are given in the following clauses.

III.8.1 Narrow-band frame erasure concealment (FERC)

Same as clause 8.4 of ITU-T G.711.1.

III.8.2 Noise gate (NG)

Same as clause 8.7 of ITU-T G.711.1.

III.8.3 Postfilter (PF)

Same as Appendix I of ITU-T G.711.1.

III.9 Bit-exact description of the audio quality enhancement toolbox for ITU-T G.711

The ANSI-C code simulating the audio quality enhancement toolbox in 16-bit fixed-point is available as an electronic attachment to this appendix. The following subclauses summarize the use of this simulation code, and how the software is organized.

III.9.1 Use of the simulation software

The C code consists of two main programs, encoder.c and decoder.c which simulate the toolbox for encoder and decoder, respectively.

The command line for the encoder is as follows:

encoder [-options] <law> <infile> <codefile>

where

law is the desired ITU-T G.711 law (A or μ) infile is the name of the input file to be encoded codefile is the name of the output bit stream file

options:

-ns indicates that noise shaping tool is activated

-hardbit output bit stream file is in multiplexed hardbit format

-quiet quiet processing

The command line for the decoder is as follows:

decoder [-options] <law> <codefile> <outfile>

where

law is the desired ITU-T G.711 law (A or μ) codefile is the name of the input bit stream file outfile is the name of the decoded output file

options:

-ng indicates that noise gate tool is activated-pf indicates that postfilter tool is activated

-ferc indicates that frame erasure concealment tool is

activated

-hardbit input bit stream file is in multiplexed hardbit format

-quiet quiet processing

The encoder input and the decoder output files are sampled data files containing 16-bit PCM signals. The encoder output and decoder input files follow the ITU-T G.192 bit stream format by default. The frame erasure can only be simulated with the ITU-T G.192 bit stream format.

III.9.2 Organization of the simulation software

Tables III.6 to III.9 describe the organization of the simulation software.

Table III.6 – Tables in C-code

Table name	Symbol	Size	Form at	Description
NS_window	$W_{LP1}(i)$	80	Q15	LPC analysis window for noise shaping
NS_lag_h	w (i)	4	Q15	Lag windowing for noise shaping (MSB of double precision format)
NS_lag_l	$w_{lag}(i)$	4	Q16	Lag windowing for noise shaping (LSB of double precision format)
LBFEC_lag_h	$w_{lag}^{FERC}(i)$	16	Q15	Lag windowing for FERC (MSB and LSB of double precision format)
LBFEC_lag_l	W _{lag} (1)	16	Q16	Lag windowing for FERC (LSB of double precision format)
LBFEC_lpc_win_80	$W_{LP2}(i)$	80	Q15	LPC analysis window for FERC
LBFEC_fir_lp	$H_{dec}(z)$	9	Q16	FIR decimation filter coefficients in FERC
max_err_quant	$d'_{\max}(j)$	16	Q0	A-law quantization step size
Hann_sh16	$w_a(n)$	64	Q15	Asymmetric Hanning window (for 64-point FFT processing)
Hann_sh16_p6	$\gamma_w(n)$	7	Q15	Half of 16-point Hanning window for filter interpolation
Hann_sh16_p6m1	$1-\gamma_{_{\scriptscriptstyle W}}(n)$	7	Q15	Complementary half of Hanning window for filter interpolation
WinFilt	$Wt_p(n)$	17	Q15	Truncating window for impulse response of noise reduction filter

Table III.7 – Summary of specific routines for encoder toolbox

Filename	Description		
encoder.c	ITU-T G.711 toolbox encoder interface		
G711Appenc.c	ITU-T G.711 toolbox main encoder		
prehpf.c	High-pass pre-filter		
lowband_enc.c	Encoder toolbox		

Table III.8 – Summary of specific routines for decoder toolbox

Filename	Description	
decoder.c	ITU-T G.711 toolbox decoder interface	
g711Appdec.c	ITU-T G.711 toolbox main decoder	
fec_lowband.c	Frame erasure concealment (FERC)	
lowband_dec.c	Decoder toolbox	
post.c	Main routine that calls all post-processing subroutines	
post_anasyn.c	Analysis/synthesis subroutines for post-processing	
post_gainfct.c	Subroutines for estimating of the post-processing filter	
post_rfft.c	64-point real FFT and ifft	
table_post.c	Tables for postfilter	

Table III.9 – Summary of common routines

Filename	Description		
softbit.c	Conversion between hardbit and softbit		
autocorr_ns.c	Autocorrelation of signal for noise shaping		
g711a.c	PCM coder and decoder (A-law)		
g711mu.c	PCM coder and decoder (μ-law)		
lpctools.c	Linear prediction tools		
table_lowband.c	Tables for lower-band modules		
dsputil.c	Fixed-point utility routines		
errexit.c	Exit routine		
mathtool.c	Square-root routines		
oper_32b.c	Basic operators in double precision (32 bits)		
table_mathtool.c	Tables for square-root routines		

SERIES OF ITU-T RECOMMENDATIONS

Series A	Organization of the work of ITU-T
Series D	General tariff principles
Series E	Overall network operation, telephone service, service operation and human factors
Series F	Non-telephone telecommunication services
Series G	Transmission systems and media, digital systems and networks
Series H	Audiovisual and multimedia systems
Series I	Integrated services digital network
Series J	Cable networks and transmission of television, sound programme and other multimedia signals
Series K	Protection against interference
Series L	Construction, installation and protection of cables and other elements of outside plant
Series M	Telecommunication management, including TMN and network maintenance
Series N	Maintenance: international sound programme and television transmission circuits
Series O	Specifications of measuring equipment
Series P	Terminals and subjective and objective assessment methods
Series Q	Switching and signalling
Series R	Telegraph transmission
Series S	Telegraph services terminal equipment
Series T	Terminals for telematic services
Series U	Telegraph switching
Series V	Data communication over the telephone network
Series X	Data networks, open system communications and security
Series Y	Global information infrastructure, Internet protocol aspects and next-generation networks
Series Z	Languages and general software aspects for telecommunication systems