

Cesty v grafoch

Stanislav Palúch

Fakulta riadenia a informatiky, Žilinská univerzita

22. marca 2011

Definícia

Nech G = (V, H) je graf.

Sled $(v_1-v_k \text{ sled})$ v grafe G je ľubovoľná alternujúca (striedavá) postupnosť vrcholov a hrán tvaru

$$\mu(v_1, v_k) = (v_1, \{v_1, v_2\}, v_2, \{v_2, v_3\}, v_3, \dots, \{v_{k-1}, v_k\}, v_k).$$
 (1)

Ťah $(v_1-v_k \text{ tah})$ v grafe G je taký v_1-v_k sled v grafe G, v ktorom sa žiadna hrana neopakuje.

Cesta (v_1 – v_k **cesta)** v grafe G je taký v_1 – v_k sled v grafe G, v ktorom sa žiaden vrchol neopakuje.

Pripúšťame aj tzv. **triviálny sled**, pre k = 1, t. j. sled tvaru (v_1) .

Orientovaný sled, orientovaný ťah, orientovaná cesta

Definícia

Nech $\overrightarrow{G} = (V, H)$ je digraf.

Orientovaný sled (orientovaný v_1-v_k sled) v digrafe \overrightarrow{G} je ľubovoľná alternujúca (striedavá) postupnosť vrcholov a hrán tvaru

$$\mu(v_1, v_k) = (v_1, (v_1, v_2), v_2, (v_2, v_3), v_3, \dots, (v_{k-1}, v_k), v_k).$$
 (2)

Orientovaný ťah v digrafe \overrightarrow{G} je taký orientovaný v_1-v_k sled v digrafe \overrightarrow{G} , v ktorom sa žiadna hrana neopakuje.

Orientovaná cesta v digrafe \overrightarrow{G} je taký orientovaný v_1-v_k sled v digrafe \overrightarrow{G} , v ktorom sa žiaden vrchol neopakuje.

Polosled, poloťah, polocesta

Definícia

Nech $\overrightarrow{G} = (V, H)$ je digraf.

Polosled (v_1-v_k **polosled)** v digrafe \overrightarrow{G} je l'ubovolná alternujúca (striedavá) postupnosť vrcholov a hrán tvaru

$$\mu(v_1, v_k) = (v_1, h_1, v_2, h_2, \dots, v_{k-1}, h_{k-1}, v_k),$$

v ktorej je každá hrana h_i incidentná s obomi susednými vrcholmi v_i , v_{i+1} tak, že jeden z nich je začiatočným a druhý koncovým vrcholom hrany h.

Poloťah (v_1-v_k **poloťah)** v digrafe \overrightarrow{G} je taký v_1-v_k polosled v digrafe \overrightarrow{G} , v ktorom sa žiadna hrana neopakuje.

Polocesta (v_1-v_k polocesta) v digrafe \overrightarrow{G} je taký v_1-v_k polosled v digrafe \overrightarrow{G} , v ktorom sa žiaden vrchol neopakuje.

Definícia

Sled (polosled, ťah, poloťah)

$$\mu(v_1, v_k) = (v_1, h_1, v_2, h_2, \dots, v_{k-1}, h_{k-1}, v_k)$$

nazveme **uzavretý**, ak $v_1 = v_k$.t.j. začiatočný a koncový vrchol sa rovnajú Inak sled (polosled, ťah, poloťah) $\mu(v_1, v_k)$ nazveme **otvorený**.

Poznámka

Uzavretú cestu a polocestu nemožno týmto spôsobom definovať, pretože by došlo k sporu s požiadavkou, že jeden vrchol sa v týchto štruktúrach nesmie vyskytovať viackrát.

Namiesto uzavretej cesty a polocesty budeme mať cyklus a polocyklus.

Presná definícia týchto pojmov je nasledujúca:

Cyklus (orientovaný cyklus, polocyklus)

Definícia

Cyklus (orientovaný cyklus, polocyklus) je netriviálny uzavretý ťah (orientovaný ťah, poloťah), v ktorom sa okrem prvého a posledného vrchola žiaden vrchol nevyskytuje viac než raz.

Definícia

Hovoríme, že graf G = (V, H) je **súvislý**, ak pre každú dvojicu vrcholov $u, v \in V$ existuje u–v cesta. Inak hovoríme, že graf G je **nesúvislý**.

Definícia

Komponent grafu G = (V, H) je jeho ľubovoľný maximálny súvislý podgraf.

Definícia

Mostom v grafe G = (V, H) nazveme takú hranu grafu G, po vylúčení ktorej vzrastie počet komponentov.

Artikuláciou v grafe G nazveme taký vrchol, po vylúčení ktorého spolu s incidentnými hranami vzrastie počet komponentov.

Typy súvislosti digrafov, komponent grafu

Definícia

Nech $\overrightarrow{G} = (V, H)$ je digraf.

Povieme, že digraf \overrightarrow{G} je **neorientovane súvislý**, alebo **slabo súvislý**, ak pre každú dvojicu vrcholov $u, v \in V$ existuje v G u–v polosled; inak je digraf \overrightarrow{G} **nesúvislý**.

Povieme, že digraf \overrightarrow{G} je **orientovane súvislý**, alebo **jednostranne súvislý**, ak pre každú dvojicu vrcholov $u, v \in V$ existuje $v \overrightarrow{G}$ u–v sled alebo v–u sled.

Digraf \overrightarrow{G} je **silne súvislý**, ak pre každú dvojicu vrcholov $u, v \in V$ existuje aj orientovaný u-v sled aj orientovaný v-u sled.

Komponent digrafu \overrightarrow{G} je maximálny neorientovane súvislý podgraf digrafu \overrightarrow{G} .

Obr.: Digrafy s rôznymi typmi súvislosti.

a) neorientovane súvislý b) orientovane súvislý c) silne súvislý

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita

Algoritmus

Tarryho algoritmus na konštrukciu takého sledu v grafe G = (V, H), ktorý začína v ľubovoľnom vrchole $s \in V$, prejde všetkými hranami komponentu grafu G a skončí vo vrchole s. Výsledný sled budeme volať **Tarryho sled**.

- Krok 1. Začni z ľubovoľného vrchola s ∈ V, polož u := s, T = (u). {T je inicializačne triviálny sled, obsahujúci jediný vrchol.}
- Krok 2. Ak môžeš, vyber k poslednému vrcholu u sledu T ďalšiu incidentnú hranu {u, v} podľa nižšie uvedených pravidiel T1, T2 a zaraď ju do sledu T. Zaznač si smer použitia hrany {u, v}. Ak doteraz vrchol v ešte nebol zaradený do sledu T, označ hranu {u, v} ako hranu prvého príchodu. Pri výbere hrany dodržuj nasledujúce pravidlá:

T1: Každú hranu možno v jednom smere použiť iba raz

T2: Hranu prvého príchodu možno použiť, iba ak niet in žmožnosti

Krok 3. Ak taká hrana neexistuje – STOP.
 Inak polož u := v a pokračuj Krokom 2.

Definícia

Nech $\mu(u,v)$ je u–v sled (resp. orientovaný sled, resp. polosled) v hranovo ohodnotenom grafe G=(V,H,c) (resp. digrafe $\overrightarrow{G}=(V,H,c)$). **Dĺžkou sledu (polosledu)** $\mu(u,v)$ alebo tiež **cenou sledu (polosledu)** nazveme <u>súčet ohodnotení jeho hrán</u>, pričom ohodnotenie každej hrany započítavame toľkokrát, koľkokrát sa táto hrana v slede vyskytuje.

Dĺžku sledu $\mu(u, v)$ budeme značiť $d(\mu(u, v))$.

Poznámka

Podľa definície sledu sa pripúšťa aj triviálny sled s jediným vrcholom a žiadnou hranou. Dĺžka takéhoto sledu je nulová.

Poznámka

Predchádzajúcou definíciou je definovaná i dĺžka ťahu, orientovaného ťahu, cesty, poloťahu a polocesty, pretože všetky tieto pojmy sú špeciálnym prípadom sledu, resp. polosledu.

Dĺžka ťahu, dĺžka cesty

Poznámka

Pre ťah, poloťah, cestu, a polocestu, (v ktorých sa podľa ich definície každá hrana môže vyskytovať len raz), môžeme zjednodušene definovať:

Dĺžka $d(\mu(u,v))$ ťahu (poloťahu, cesty alebo polocesty) $\mu(u,v)$ je súčet ohodnotení ich hrán, t. j.

$$d(\mu(u,v)) = \sum_{h \in \mu(u,v)} c(h).$$

Poznámka

Často býva užitočné definovať dĺžku sledu $\mu(u,v)$ v grafe G=(V,H), resp. digrafe $\overrightarrow{G}=(V,H)$, ktorý nie je hranovo ohodnotený, ako počet hrán sledu $\mu(u,v)$. Takto definovaná dĺžka sledu je totožná s dĺžkou sledu v hranovo ohodnotenom grafe, (resp. digrafe) G'=(V,H,c), kde c(h)=1 pre každú hranu $h\in H$.

Najkratšia cesta v grafe a digrafe

Definícia

Najkratšia u-v cesta v hranovo ohodnotenom grafe G = (V, H, c) (resp. v hranovo ohodnotenom digrafe $\overrightarrow{G} = (V, H, c)$) je tá u-v cesta v G (resp. tá orientovaná u-v cesta v \overrightarrow{G}), ktorá má najmenšiu dĺžku.

Dohoda

- Predpokladáme, že 0 ∉ V.

Základný algoritmus pre hľadanie najkratšej cesty

Algoritmus

Základný algoritmus na hľadanie najkratších orientovaných u–v ciest z pevného vrchola $u \in V$ do všetkých dosiahnuteľných vrcholov $v \in V$ v hranovo ohodnotenom digrafe $\overrightarrow{G} = (V, H, c)$ s nezápornou cenou hrany c(h) (a $kde\ 0 \notin V$).

- Krok 1. Inicializácia.
 - Pre každý vrchol $i \in V$ priraď dve značky t(i) a x(i). {Značka t(i) predstavuje horný odhad dĺžky doteraz nájdenej najlepšej u–i cesty a x(i) jej predposledný vrchol.}
 - Polož t(u) := 0, $t(i) := \infty$ pre $i \in V$, $i \neq u$ a x(i) := 0 pre každé $i \in V$.
- Krok 2. Zisti, či existuje orientovaná hrana (i, j) ∈ H, pre ktorú platí

$$t(j) > t(i) + c(i,j). \tag{3}$$

Ak taká hrana $(i,j) \in H$ existuje, potom polož

$$t(j) := t(i) + c(i, j), \quad x(j) := i$$

a opakuj Krok 2.

• Krok 3. Ak taká orientovaná hrana (z kroku 2.) neexistuje, STOP.

Dijkstrov algoritmus

Algoritmus

Dijkstrov algoritmus Algoritmus pre zostrojenie najkratšej orientovanej u–v cesty v hranovo ohodnotenom digrafe $\overrightarrow{G} = (V, H, c)$ s nezáporným ohodnotením hrán (a kde $0 \notin V$).

ohodnotením hrán (a kde $0 \notin V$).

• Krok 1. Inicializácia. Pre každý vrchol $i \in V$ priraď dve značky t(i) a x(i). Značky t(i) budú dvojakého druhu, a to dočasné (ktoré sa ešte v priebehu výpočtu môžu zmeniť) a definitívne (ktoré sa už nemôžu zmeniť).

Polož t(u) = 0, $\underline{t(i)} = \infty$ pre $i \in V$, $\underline{i} \neq u$ a x(i) = 0 pre každé $i \in V$. Zvoľ riadiaci vrchol r := u a značku t() pri vrchole r = u prehlás za definitívnu, ostatné značky za dočasné.

• Krok 2. Ak je r = v, STOP. Ak $t(v) < \infty$, značka t(v) predstavuje dĺžku najkratšej u-v cesty, ktorú zostroj spätne z v pomocou smerníkov x(i). Inak pre všetky hrany tvaru $(r,j) \in H$, kde j je vrchol s dočasnou značkou, vrob:

Ak t(j) > t(r) + c(r,j), potom t(j) := t(r) + c(r,j), x(j) := r.

Ponechaj zmenené značky ako dočasné.

Algoritmus (- pokračovanie)

• **Krok 3.** Zo všetkých dočasne označených vrcholov nájdi ten vrchol i, ktorý má značku t(i) minimálnu.

Značku pri tomto vrchole i prehlás za definitívnu a zvoľ za nový riadiaci vrchol r := i.

{Pokiaľ existuje viac vrcholov s rovnakou minimálnou značkou, akú má vrchol i, za definitívnu značku môžeme prehlásiť len značku pri jednom z týchto vrcholov – ten potom berieme za riadiaci. Na tie ďalšie dôjde v nasledujúcich krokoch výpočtu.}
GOTO Krok 2.

Poznámka

Ak upravíme podmienku zastavenia v Kroku 2. na podmienku:

Ak sú značky všetkých vrcholov definitívne, STOP, dostaneme verziu algoritmu, ktorá hľadá najkratšie cesty z vrchola u do

Floydov algoritmus na výpočet matice vzdialeností

Algoritmus

Floydov algoritmus na výpočet matice vzdialeností vrcholov v hranovo ohodnotenom grafe, resp. digrafe G = (V, H, c), kde $c(h) \ge 0$.

• Krok 1. Zostroj maticu $C = (c_{ij})$, ktorej prvky sú definované nasledovne:

$$c_{ii} = 0$$
 pre všetky $i \in V$

a pre všetky $i, j, také, že i \neq j$

$$c_{ij} = \begin{cases} c(i,j), & \text{ak } \{i,j\} \in H, \text{ resp. } (i,j) \in H \\ \infty, & \text{ak } \{i,j\} \notin H, \text{ resp. } (i,j) \notin H \end{cases}$$

Zostroj aj maticu $\mathbf{X} = (x_{ij})$, kde

$$x_{ii} = i$$
 pre všetky $i \in V$

a pre všetky i, j, také, že $i \neq j$

$$x_{ij} = \begin{cases} i &, & \text{ak } \{i,j\} \in H, \text{ resp. } (i,j) \in H \\ \infty, & \text{ak } \{i,j\} \notin H, \text{ resp. } (i,j) \notin H \end{cases}$$

Floydov algoritmus na výpočet matice vzdialeností

Algoritmus (- pokračovanie)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita

• Krok 2. Urob pre všetky $k=1,2,\ldots,n=|V|$: Pre všetky $i\neq k$ také, že $c_{ik}\neq \infty$, a pre všetky $j\neq k$ také, že $c_{kj}\neq \infty$, urob:

Ak $c_{ij} > c_{ik} + c_{kj}$, potom polož:

$$c_{ij} := c_{ik} + c_{kj}$$
$$x_{ij} := x_{kj}$$

Po skončení Floydovho algoritmu je matica ${\bf C}$ maticou vzdialeností vrcholov grafu, resp. digrafu G.

Matica \mathbf{X} obsahuje pre každú dvojicu vrcholov i, j takú, že j je dosiahnuteľný z i, predposledný vrchol najkratšej i-j cesty.

Ak potrebujeme nájsť najkratšiu i-j cestu, využijeme maticu smerníkov ${\bf X}$ nasledovne:

Pre predposledný vrchol j_1 najkratšej i-j cesty je $j_1 = x_{ij}$. Ďalší vrchol tejto cesty (odzadu) je $j_2 = x_{ij_1}$, ďalší $j_3 = x_{ij_2}$ atď., pokiaľ nedôjdeme do vrchola i.

Floydov algoritmus 5 (str. 117) možno tiež modifikovať tak, že v prípade všeobecného digrafu nájde záporný cyklus.

Stačí v kroku 1. definovať začiatočnú maticu C nasledovne

$$c_{ij} = \begin{cases} c(i,j), & \text{ak } \{i,j\} \in H, & \text{resp.} \quad (i,j) \in H \\ \mathbf{\infty}, & \text{ak } \{i,j\} \notin H, & \text{resp.} \quad (i,j) \notin H \end{cases}$$

Matica \mathbf{C} má na rozdiel od štandardného Floydovho algoritmu na hlavnej diagonále ∞ . Matica \mathbf{X} je bez zmeny. Krok 2. je rovnaký. Pozor! Treba meniť aj prvky hlavnej diagonály!!!

Po ukončení práce tohto algoritmu budú prvky c_{ii} na diagonále rovné dĺžke najkratšieho i-i cyklu.

Ak sa na hlavnej diagonále matice \mathbf{C} v priebehu výpočtu Floydovým algoritmom objaví záporné číslo c_{jj} , objavili sme tým cyklus zápornej ceny obsahujúci vrchol j.

Tento cyklus určíme pomocou matice smerníkov X.

Label-set a Label-correct implementácia

Algoritmus

Label-set a Label-correct implementácia algoritmu na hľadanie najkratších orientovaných u–v ciest z pevného vrchola $u \in V$ do všetkých ostatných vrcholov $v \in V$ v hranovo ohodnotenom digrafe $\overrightarrow{G} = (V, H, c)$ s nezápornou cenou orientovanej hrany c(h), kde $0 \notin V$.

- Krok 1: Inicializácia.
 - Polož t(u) := 0, $\underline{t(i)} := \infty$ pre $i \in V$, $\underline{i \neq u}$ a x(i) := 0 pre každé $\underline{i \in V}$. Polož $\mathcal{E} := \{u\}$.
- **Krok 2:** Vyber $r \in \mathcal{E}$, polož $\mathcal{E} := \mathcal{E} \{r\}$. Pre všetky orientované hrany tvaru $(r, j) \in H$ urob: $Ak \ t(j) > t(r) + c(r, j)$, potom

$$t(j) := t(r) + c(r,j), x(j) := r, \mathcal{E} := \mathcal{E} \cup \{j\}.$$

• Krok 3: $Ak \ \mathcal{E} \neq \emptyset$, choď na Krok 2. $Ak \ \mathcal{E} = \emptyset$, potom t(i) predstavuje dĺžku najkratšej orientovanej u-i cesty pre každý vrchol i. Najkratšiu orientovanú u-i cestu zostroj potom spätne pomocou značiek x(i)

Label-set a Label-correct implementácia

'Ak v druhom kroku posledného algoritmu vyberáme $r \in \mathcal{E}$ ľubovoľne, dostávame implementáciu základného algoritmu, ktorú voláme **label correct algoritmus**.

Ak za prvok $r \in \mathcal{E}$ vyberáme prvok z najmenšou značkou t(), potom dostaneme implementáciu Dijkstrovho algoritmu, ktorú voláme **label set algoritmus**.

Ak potrebujeme len jednu u-v cestu, label set algoritmus zastavíme v okamihu vybratia vrchola v z množiny \mathcal{E} .

Pre label correct algoritmus je výhodné organizovať $\mathcal E$ ako zásobník, pre label set algoritmus sa $\mathcal E$ organizuje ako prioritný front, prípadne ako halda

Aby sme do zásobníka, resp. do prioritného frontu $\mathcal E$ nevkladali ten istý vrchol viackrát, je vhodné ku každému vrcholu $v\in V$ udržiavať indikátor hovoriaci, či vrchol v je v množine $\mathcal E$.