Unimetry: Energy in a Phase–Space

Timur Abizgeldin

September 6, 2025

Abstract

We propose a phase–space formulation (*Unimetry*) where mass is a volume–normalized structural coefficient of a flow, and the standard relativistic energy–momentum relation emerges from the geometry of two orthogonal components of the flow. We develop a compact dictionary to SR, motivate the cubic scaling behind rest mass, and derive a scalar phase–space energy density whose observed energy is obtained by kinematic projection. Consequences and empirical anchors (binding energy, heat, stress/pressure) are discussed.

Keywords: phase–space, relativistic energy, structural mass, volumetric normalization, emergent time.

1 Introduction

Why does relativistic energy take the form it does, and how can "mass" be read off from internal structure rather than postulated? Unimetry treats an object as a flow in phase–space with modulus \tilde{H} split into an internal (temporal) and external (spatial) part. This viewpoint suggests a cubic (volumetric) normalization for rest mass and recovers standard SR kinematics as a rotation in the (\tilde{S}, \tilde{L}) -plane.

Contributions. (i) We model rest mass as a volume–normalized structural coefficient $\kappa \propto k^3$ of a cyclic normalization k; (ii) we derive $E = \gamma m_0 c^2$ and $E^2 = m_0^2 c^4 + p^2 c^2$ directly from the phase geometry; (iii) we clarify why Euclidean quadratic invariants built from a cubic scale yield sixth–power laws; (iv) we identify a scalar phase–space energy density $e = \kappa \dot{H}^3$ and relate it to empirical effects (binding, heat, stress/pressure).

Roadmap. Sec. 2 fixes notation; Sec. 3 introduces structural mass; Sec. 4 derives relativistic energy; Sec. 5 justifies volume normalization and the " \times 3 rule"; Sec. 6 generalizes energy formulas, where we *show* (Proposition #) that e defines a phase–space invariant; Sec. 7 discusses verification paths.

Postulates (informal)

- 1. (Phase flow) Each physical object is represented by a flow with modulus \tilde{H} and orthogonal components (\tilde{S}, \tilde{L}) such that $\tilde{H}^2 = \tilde{S}^2 + \tilde{L}^2$.
- 2. (Kinematic angle) Define $\beta = \sin \theta = \tilde{L}/\tilde{H}$ and $\gamma = \sec \theta = 1/\sqrt{1-\beta^2}$.
- 3. (Gauge) The speed of light c is identified with the local-time phase speed: $c \equiv \dot{H}$.
- 4. (Cyclic time) Local time arises as a cyclic action with frequency $\nu = \dot{\chi} = k \tilde{H}$, where $k = R_1/R_2$ is a normalization factor of the cycle radii.

2 Preliminaries and Notation

We employ tilded symbols for proto-space quantities and dots for local-time derivatives. The basic geometric decomposition reads

$$\tilde{H}^2 = \tilde{S}^2 + \tilde{L}^2, \qquad \tilde{S} = \tilde{H}\cos\theta, \quad \tilde{L} = \tilde{H}\sin\theta, \quad \beta = \sin\theta, \quad \gamma = \sec\theta.$$
 (1)

The cyclic-time normalization gives

$$\nu = \frac{\mathrm{d}\chi}{\mathrm{d}\tau} = \dot{\chi} = k\,\tilde{H}, \qquad k = \frac{R_1}{R_2}.\tag{2}$$

Why does $\nu = k \tilde{H}$? Three equivalent derivations

(A) Flux continuity on the two circles. View the internal dynamics as a steady flow on a two-torus $\mathbb{T}^2 = S^1_\chi \times S^1_\tau$ with circumferences $C_\chi = 2\pi R_1$ and $C_\tau = 2\pi R_2$. One tick corresponds to transporting the arc length $\Delta \chi = C_\chi$ while advancing the time circle by $\Delta \tau = C_\tau/\tilde{H}$ (since the speed along the τ -fiber is \tilde{H} by the gauge $c \equiv \dot{H}$). Equating the steady fluxes through the two fundamental cycles,

$$J_{\chi} = \tilde{H} C_{\chi}, \qquad J_{\tau} = \nu C_{\tau},$$

forces $\nu \equiv d\chi/d\tau = (C_{\chi}/C_{\tau})\,\tilde{H} = (R_1/R_2)\,\tilde{H}$.

- (B) Circle-group homomorphism (winding). The only smooth homomorphisms of the circle group S^1 are rotations with degree k; in angle variables $\theta_{\tau} = k \theta_{\chi} \pmod{2\pi}$. Passing to arc-length coordinates $\chi = R_1 \theta_{\chi}$ and $\zeta = R_2 \theta_{\tau}$ and differentiating with respect to τ gives $\dot{\zeta} = R_2 \dot{\theta}_{\tau} = k(R_2/R_1)\dot{\chi}$. Identifying $\dot{\zeta} = \tilde{H}$ (the speed along the time-fiber under the gauge) yields $\dot{\chi} = k \tilde{H}$, i.e. $\nu = k \tilde{H}$.
- (C) Dimensional and symmetry argument. A frequency must be built from the available scalars \tilde{H} (a speed) and the two radii R_1, R_2 . Rotational invariance rules out vectorial combinations; scale invariance on each circle restricts the dependence to their ratio. Thus the unique invariant with dimensions of s⁻¹ is $\nu \propto \tilde{H}(R_1/R_2)$. Fixing the proportionality by the rest calibration leads to $\nu = k \tilde{H}$ with $k = R_1/R_2$.

Remark. Alternative bookkeeping that treats k as carrying inverse-length units and \tilde{H} as a speed is equivalent after absorbing constants into κ ; all physical relations (e.g., $E = \gamma m_0 c^2$) are unchanged.

3 Mass as a Structural Coefficient

We define a structural (volumetric) coefficient κ and rest mass

$$\kappa(k) = \kappa_* \left(\frac{k}{k_*}\right)^3, \qquad m_0(k) := \kappa(k) c, \qquad E_0(k) := \kappa(k) c^3 = m_0(k)c^2.$$
(3)

The cubic dependence reflects a volumetric Jacobian of the internal phase normalization. Small variations obey

$$\frac{\Delta m_0}{m_0} = \frac{\Delta E_0}{E_0} = 3 \frac{\Delta k}{k}.\tag{4}$$

A simple (structureless) flow (photon) has $\tilde{S} = 0$, hence $m_0 = 0$, while $E \propto c^3$ via its own scale factor κ_{γ} .

4 Relativistic Energy from Phase Geometry

With ?? and the gauge $c \equiv \dot{H}$, pure boosts are rotations in the (\tilde{S}, \tilde{L}) plane that leave \tilde{H} and k invariant. Calibrating energy by rest we obtain

$$E(\theta, k) = \frac{E_0(k)}{\cos \theta} = \gamma \, m_0(k)c^2, \qquad p = \frac{E}{c} \sin \theta = \gamma m_0(k)v, \quad v = c \sin \theta. \tag{5}$$

Immediately,

$$E^2 = m_0^2 c^4 + p^2 c^2, (6)$$

with the usual low-velocity expansion $E = m_0 c^2 + \frac{1}{2} m_0 v^2 + O(v^4/c^2)$.

Anisotropic inertia (geometry)

For a boost along x the transverse flows remain unchanged $(\tilde{L}_y, \tilde{L}_z \text{ invariant})$, yielding the geometric form of longitudinal and transverse inertial responses:

$$m_{\parallel} = \frac{\mathrm{d}p_x}{\mathrm{d}v_x} = \gamma^3 m_0, \qquad m_{\perp} = \frac{\mathrm{d}p_y}{\mathrm{d}v_y} = \gamma m_0.$$
 (7)

5 Justification of Volume–Normalized Mass

5.1 Composites and Jensen inequality

For a composite where k varies internally,

$$m_0 \propto \langle k^3 \rangle \ge (\langle k \rangle)^3,$$
 (8)

so inhomogeneities (internal stresses/pressures) increase m_0 at fixed average normalization.

5.2 Empirical anchors

- Mass defect: negative binding lowers k and m_0 , consistent with nuclear data.
- Heat/fields/rotation: added internal energy raises m_0 by $\Delta E/c^2$, i.e. $\Delta k/k = \frac{1}{3} \Delta E/E_0$.
- Gravitational redshift of clocks: $\Delta \nu / \nu \simeq \Delta \Phi / c^2$ implies $\Delta k / k \simeq \Delta \Phi / c^2$ for the normalization factor.
- Stress-energy link: isotropic radiation with $p = \rho/3$ contributes via $(\rho + 3p)$, mirroring the "cubic" internal degrees of freedom.

6 Generalized Energy in Phase–Space

At the kinematic level a convenient "mixed" representation is

$$E = \gamma \kappa \dot{H}^2 \tilde{H}, \quad \text{(with } c \equiv \dot{H}),$$
 (9)

which collapses to $E = \gamma \kappa c^3$ under dynamic renormalization $\tilde{H} \to \dot{H}$. For a photon (simple flow) in vacuum: $m_0 = 0$, $E = \kappa_{\gamma} c^3$, p = E/c.

6.1 Quadratic invariants and the sixth-power law

Let $e := \kappa \dot{H}^3$ denote the local intensive energy scale of a single flow. Any Euclidean quadratic invariant built from a field with this scaling (e.g., self–energy bilinears, L^2 norms in the phase domain, quadratic action densities) takes the form

$$\mathcal{I}_2 = \int e^2 \, dV_\chi \propto \int \kappa^2 \, \dot{H}^6 \, dV_\chi. \tag{10}$$

Thus a quadratic invariant maps the cubic phase–speed scaling into a sixth–power law. More generally, m–linear invariants scale as \dot{H}^{3m} .

Equivalently, in the rest-normalization $\kappa \propto k^3$ one has $e_0 \propto k^3$ and any quadratic invariant in the varying normalization k scales as k^6 . This is the precise sense in which a Euclidean quadratic norm preserves an invariant built from a cubic structural coefficient.

6.2 Energy as a phase–space invariant

Proposition (phase-space energy). Define the phase-space energy density by

$$e(\chi) := \kappa(\chi) \dot{H}^3, \qquad (c \equiv \dot{H} \ extconst).$$
 (11)

Boost invariance. Pure boosts are rotations in (\tilde{S}, \tilde{L}) that leave \tilde{H}, \dot{H} and κ unchanged; hence e is invariant. The integral

$$E_{\chi} := \int_{\Sigma_{\chi}} e \, \mathrm{d}V_{\chi} \equiv m_0 c^2 \tag{12}$$

— the energy measured in the intrinsic phase frame — is a scalar independent of the state of motion. The observed (laboratory) energy and momentum are projections

$$E = \gamma E_{\chi}, \qquad p = \frac{E}{c} \sin \theta = \gamma m_0 v,$$
 (13)

so that

$$E^2 - (pc)^2 = E_\chi^2 = (m_0 c^2)^2,$$
 (14)

which makes the usual SR invariant explicit as the square of the phase energy.

Reparameterization invariance. Under a local reparametrization $\chi \mapsto \chi'(\chi)$ with Jacobian $J = \mathrm{d}\chi'/\mathrm{d}\chi$, the structural density transforms as a 3-density $\kappa' = \kappa/J^3$ while $\mathrm{d}V_{\chi'} = J^3\mathrm{d}V_{\chi}$, so that $e\,\mathrm{d}V_{\chi}$ and E_{χ} are invariant.

Dynamics vs kinematics. Changes in internal structure (massogenesis) modify κ and thus e physically; the invariance statements above refer to kinematic transformations (boosts and phase reparametrizations), not to dynamics that pump energy into or out of the system.

6.3 Continuity and Noether-like view (sketch)

Treat $\kappa(k)$ as a density on internal phase: local conservation takes the form

$$\partial_{\tau}(\kappa c^3) + \nabla_{\chi} \cdot (\kappa c^2 \mathbf{J}) = 0, \tag{15}$$

where J is a phase–space current; energy emerges as the charge of τ –translations.

7 Verification and Predictions

- 1. High-Q cavity: trapped field energy and pressure (T^{ii}) increase weight by $(E+\text{pressure term})/c^2$.
- 2. Flywheel test: compare mass at rest vs spinning, including elastic stress contribution; prediction from ?????.
- 3. Nonuniform heating: at fixed ΔE , inhomogeneous $k(\boldsymbol{x})$ gives slightly larger $\langle k^3 \rangle$ than uniform heating.

8 Discussion and Outlook

We summarized how relativistic energy is recovered from a phase–geometric decomposition with mass as a volume–normalized structural coefficient. Open directions include: a full Lagrangian on phase–space, coupling to curvature (mapping to $T^{\mu\nu}$ in GR), and quantum extensions where k becomes an operator linked to cyclic spectra.

Acknowledgments ——

A Dimensional Analysis and Units

With [E] = J and $[\dot{H}] = m s^{-1}$, one has $[\kappa] = [E]/[\dot{H}]^3 = J s^3 m^{-3}$. Using $m_0 = \kappa c$ yields $[\kappa] = kg s m^{-1}$.

Cyclic-time normalization. In $\nu = k \tilde{H}$, if k is taken dimensionless (e.g., $k = R_1/R_2$), we treat \tilde{H} here as an effective frequency scale inherited from the normalization map; equivalently, if \tilde{H} is regarded as a speed, then k carries units of inverse length so that ν has units of s⁻¹. Both conventions are equivalent after absorbing constants into κ and do not affect $E = \gamma m_0 c^2$.

B Derivation details for ??

Using $E_0 = m_0 c^2$ and the rotation in (\tilde{S}, \tilde{L}) with invariant \tilde{H} , the energy scales as $1/\cos\theta = \gamma$, while $p = (E/c)\sin\theta$; eliminating θ gives ??.

C Dictionary to standard SR variables

 $\tilde{S} \leftrightarrow \text{internal (proper-time)}$ projection; $\tilde{L} \leftrightarrow \text{spatial projection}$; θ is the boost rapidity angle via $\tan \theta = v/\sqrt{c^2 - v^2}$; k encodes internal normalization of the cyclic time.