Business Decisions Under Uncertainty:

A Hurricane is on its way – Do we evacuate the hospital?

Delores Mincarelli

Levels of Uncertainty

How to Use the Four Levels of Uncertainty

A Clear-Enough Future

What Can Be Known?

Analytic Tools

Examples

· A single forecast precise enough for determining strategy

· Strategy against low-cost airline entrant

- · "Traditional" strategy tool kit
 - · Option valuation models
 - Game theory

 - · Capacity strategies for chemical plants

Alternate Futures

- · A few discrete outcomes that define the future
- · Decision analysis

- · Long-distance telephone carriers' strategy to enter deregulated local-service market

A Range of Futures

- . A range of possible outcomes, but no natural scenarios
- · Latent-demand research
- · Technology forecasting
- · Scenario planning
- · Entering emerging markets, such as India
- . Developing or acquiring emerging technologies in consumer electronics

True Ambiguity

- . No basis to forecast the future
- · Analogies and pattern recognition
- · Nonlinear dynamic models
- . Entering the market for consumer multimedia applications
- . Entering the Russian market in 1992

What Can Be Known?

Analytic Tools

Examples

Considerations

Evacuate Decision

- Transportation cost of evacuating
- Probability & cost of an adverse event occurring during transport (Random Variable)

Do Not Evacuate Decision

- Probability of a direct hurricane hit from 72, 48, 24, 12-hour forecast
- Probability of a power outage
- Probability the power outage >=
 3 days (Random Variable with Indicator)
- Probability of an adverse event due to power outage
- Cost of adverse event during power outage (Random Variable)

National Hurricane Center Error Data

Tracking Error Definition

<u>Tracking Error Example</u>

Thursday at 1am a 72 hr. forecast of the hurricane center is made

In 72 hours we think it will be here

However, the actual location measured 72 hours later is here...

The distance between forecasted location and actual is the error (nautical miles)

Forecasting Error as Function of Time

Tracking Error	T=12	T=24	T=48	T=72	T=120
Average N-Mi off	23	35.9	63.9	92.6	170
Standard Deviation	16.3	27.8	57.2	74	115.3
Prob Direct Hit (<=30N-Mi)	0.75	0.51	0.28	0.1	0.042
N	1168	1039	804	614	378

Decision Tree 101

Green Square = Decision

Red Circle = Probability Node

FALSE

FALSE - Non-Optimal Path

TRUE

TRUE - Optimal Path

101300.2231

-- Intermediate Expected Value

1891.290667

-- Final Expected Value

222880 # -- Summary

72 hr. Forecast Optimal Decision is... Evacuate

Non-Optimal Branch - Expected Value

Non-Optimal: \$2564

Got CDF from LogNormal distribution of tracking error in order to get the probability of tracking error <= 30 miles (aka, direct hit)

Non-Optimal Branch Expected Value

Expected Value calculations are Probability *
Cost, multiplied at each probability node
moving from right to left

Simulating the Variation in Optimal Decision

Iteration	Should we evacuate	Yes-EvacuateBranch	No-DontEvacuate
1	1980.593034	1980.593034	2810.311696
2	2036.088078	2036.088078	2543.026743
3	1689.441197	1689.441197	2574.87485
4	1990.119219	1990.119219	2584.14462
5	1685.732698	1685.732698	2470.195703
6	1918.920248	1918.920248	2785.472384
7	2099.676223	2099.676223	2517.561333
8	1789.296511	1789.296511	2256.718299
9	1735.052827	1735.052827	2743.899795
10	1555.4471	1555.4471	2408.686523

Tree determines Optimal Branch based on Expected Value and then runs simulation just on the Optimal Branch..

The Value of Perfect Information

Iteration	Should we evacuate	Yes-EvacuateBranch	No-DontEvacuate
1	1491.190982	1491.190982	2434.454544
2	1856.004103	1856.004103	2463.185112
3	2435.079642	2435.079642	2669.855769
4	1469.475956	1469.475956	2466.60025
5	1396.14795	1396.14795	2472.823146
6	2353.948481	2353.948481	2638.294654
7	2180.540865	2180.540865	2449.931244
8	2093.505483	2093.505483	2341.444984
9	1998.987209	1998.987209	2525.010455
10	1795.703966	1795.703966	2233.426068
11	1977.207324	1977.207324	2586.572475
12	1560.949181	1560.949181	2692.546476
13	1743.764011	1743.764011	2676.027673
14	2084.370817	2084.370817	2630.95973
15	2269.592996	2269.592996	3094.838839
16	1923.375485	1923.375485	2346.088873
17	1787.993565	1787.993565	1945.848242
18	2396.838349	2466.843447	2396.838349

Forecasting Horizon of 48 Hours vs 72....

What is the cost/benefit of delaying decision?

- 1. Price Increase on Evacuation Transportation -- 20%
- 2. Probability of a Direct Hit doubles from 72 hours, to 28%

Result is an increase in the Mean from \$1891 to \$1980.

Summary of Costs

Patients are evacuated from United Medical Rehabilitation Hospital in New Orleans on Aug. 31, 2005, after flooding from Hurricane Katrina. Peuters/Rick Writking

Expected Cost

Forecast inAdvance	Optimal-	Evacuate	Not	Optimal - Stay	Evacuation after the hit
72 hours	\$	1,891.00	\$	2,564.00	
48 hours	\$	1,981.00	\$	6,710.00	
24 hours	\$	2,071.00	\$	12,399.00	
12 hours	\$	2,141.00	\$	19,180.00	\$\$\$\$\$?

But wait....consider the C-Suite perspective

Value	Change (%)
\$ (0.00)	-100.00%
\$ 49,033.60	-89.00%
\$ 98,067.20	-78.00%
\$ 147,100.80	-67.00%
\$ 196,134.40	-56.00%
\$ 245,168.00	-45.00%
\$ 294,201.60	-34.00%
\$ 343,235.20	-23.00%
\$ 392,268.80	-12.00%
\$ 441,302.40	-1.00%

Evacuate...

Based on 10% probability of direct hit from the 72-hour forecast. ?

Limitations & Opportunities

- Decision Tree is heavily reliant on subject matter expertise
- Difficulty getting data decision makers have to be confident we have accurate estimates
- Sequential Decisions: Output from one Decision Tree feeds next one
- Difficulty in quantifying certain factors in terms of cost

References

Data

https://www.nhc.noaa.gov/verification/verify7.shtml?

Adverse Events

https://www.oecd.org/els/health-systems/The-economics-of-patient-safety-March-2017.pdf

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5598051/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5618745/

 $\underline{https://pubmed.ncbi.nlm.nih.gov/15942342/\#: ``:text=Daily\%20 costs\%20 were\%20 greatest\%20 or the state of the state of$

n,mechanical%20ventilation%2C%203%2C968%20dollars%3B%20no

Evacuation Costs

https://www.frontiersin.org/files/Articles/385950/fpubh-07-00149-HTML/image m/fpubh-07-00149-t003.jpg

Hurricane Katrina

https://www.urban.org/sites/default/files/publication/50896/411348-Hospitals-in-Hurricane-Katrina.PDF

https://en.wikipedia.org/wiki/Memorial Medical Center and Hurricane Katrina#Outcome

https://en.wikipedia.org/wiki/Ochsner Baptist Medical Center#Post-Katrina

Evacuation Proceedure

https://www.ahrq.gov/research/shuttered/hospevac4.html

https://www.mass.gov/doc/evacuation-toolkit-planning-guide-0/download

SLOSH & Storm Surge

https://www.nhc.noaa.gov/surge/

https://www.nhc.noaa.gov/surge/faq.php#2

https://www.nhc.noaa.gov/surge/faq.php#2

https://slosh.nws.noaa.gov/sloshPub/

https://coast.noaa.gov/slr/#/layer/cof/2/-

10536486.547926376/3775255.185074186/6/satellite/none/0.8/2050/interHigh/midAccretion

Uncertainty

https://link.springer.com/referenceworkentry/10.1057%2F978-1-349-94848-2_250-1#:~:text=Risk%20refers%20to%20decision%2Dmaking,unknown%20to%20the%20decision%2Dmaker.

https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/strategy-under-uncertainty

Outage Data

https://data.tallahassee.com/storm-power-outages/

https://www.eversource.uconn.edu/predicting-outages/

https://www.sciencedirect.com/science/article/pii/S2352340918307182#s0015