COM 205 - Digital Logic Design Boolean Algebra and Logic Gates

-||

Assist. Prof. Özge ÖZTİMUR KARADAĞ ALKÜ

Last Week

Boolean Algebra

Postulates, proofs etc.

Postula ⁻	te	Z
----------------------	----	---

(a)
$$x+0=x$$

$$(b)x \cdot 1 = x$$

(a)
$$x+x'=1$$

(b)
$$x \cdot x' = 0$$

(a)
$$x+x=x$$

(b)
$$x \cdot x = x$$

Theorem 2

(a)
$$x+1=x$$

(b)
$$X \cdot 0 = 0$$

Theorem 3 (involution)

$$(x')'=x$$

Postulate 3, commutative

(a)
$$x+y=y+x$$

(b)
$$x \cdot y = y \cdot x$$

Theorem 4, associative

$$(a)x+(y+z)=(x+y)+z$$

(b)
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

Postulate 4, distributive

(a)
$$x \cdot (y+z)=(x\cdot y)+(x\cdot z)$$

(b)
$$x+(y\cdot z)=(x+y)\cdot(x+z)$$

Theorem 5, DeMorgan

(a)
$$(x+y)'=x' \cdot y'$$

(b)
$$(xy)'=x'+y'$$

Theorem 6, Absorption

(a)
$$x+x\cdot y=x$$

(b)
$$x \cdot (x+y)=x$$

Boolean Algebra

Operator Presedence

- Can you sort these operators considering their presedence?
 - Not, or, and, paranthesis
 - Parenthesis
 - Not
 - And
 - Or

Boolean Algebra

- Venn Diagram
 - xy'
 - x'y
 - xy

Boolean Functions

- Boolean algebra deals with
 - Binary variables
 - Logic operations
- Boolean functions consist of
 - Binary variables
 - Constants 0 and 1
 - Logic operation symbols
- Boolean function can be in
 - Algebraic form f = xyz'
 - Truth table; for n Binary variables, 2ⁿ combinations in truth table

Boolean Functions

• Ex: $F_1 = xyz'$, $F_2 = x+y'z$, $F_3 = x'y'z + x'yz+xy'$, $F_4 = xy'+x'z$

	x	у	z	F ₁	F ₂	F ₃	F ₄
1	0	0	0	0	0	0	0
2	0	0	1	0	1	1	1
3	0	1	0	0	0	0	0
4	0	1	1	0	0	1	1
5	1	0	0	0	1	1	1
6	1	0	1	0	1	1	1
7	1	1	0	1	1	0	0
8	1	1	1	0	1	0	0

Boolean Functions

Gate implementation of the Boolean Function:

- Which Boolean function does the given logic gate iimplementation correspond to?
- F₃ and F₄ in the previous example are the same!
- Boolean algebra is used to simplify boolean expressions.

Algebraic Manipulation

- A literal is a single variable with a term, in a complemented or uncomplemented form.
- F=x'y'z+x'yz+xy' \rightarrow has three terms and eight literals
- By reducing the number of terms, the number of literals, or both in a Boolean expression, it is often possible to obtain a simpler circuit.
- There are various methods for simplifying Boolean functions but there is not an exact way to do that.
- We will learn map method. Designers make use of minimization programs.

Algebraic Manipulation

- Ex: Simplify the Boolean functions to a minimum number of literals.
- x+x'y = (x+x')(x+y) =1(x+y) =x+y

By distributive law of + over .

- x(x'+y)=xx'+xy=0+xy=xy
- x'y'z+x'yz+xy' = x'z(y'+y)+xy' =x'z+xy'

 Postulate 2
 (a) x+0=x (b) $x \cdot 1 = x$

 Postulate 5
 (a) x+x'=1 (b) $x \cdot x'=0$

 Theorem 1
 (a) x+x=x (b) $x \cdot x = x$

 Theorem 2
 (a) x+1=x (b) $x \cdot 0 = 0$

Theorem 3 (involution) (x')'=x

Postulate 3, commutative (a) x+y=y+x

Theorem 4, associative (a)x+(y+z)=(x+y)+z

Postulate 4, distributive (a) $x \cdot (y+z)=(x\cdot y)+(x\cdot z)$

Theorem 5, DeMorgan (a) $(x+y)'=x' \cdot y'$

Theorem 6, Absorption (a) x+

(a) x+x·y=x

(b) (xy)'=x'+y'

(b) $x \cdot (y \cdot z) = (x \cdot y) \cdot z$

(b) $x+(y\cdot z)=(x+y)\cdot (x+z)$

(b) $x \cdot (x+y)=x$

(b) $x \cdot y = y \cdot x$

Algebraic Manipulation

```
• Ex:
```

```
• xy+x'z+yz
   =xy+x'z+yz(x+x')
   =xy+x'z+xyz+x'yz
   =xy(1+z)+x'z(1+y)
   =xy+x'z
• (x+y)(x'+z)(y+z)
   =(x+y)(x'+z)(y+z+(xx)')
   =(x+y)(x'+z)(x+y+z)(x'+y+z)
   =(x+y)(1+z)(x'+z)(1+y)
   =(x+y)(x'+z)
```

Postulate 2	(a) x+0=x	$(b)x \cdot 1 = x$
Postulate 5	(a) x+x'=1	(b)x · x'=0
Theorem 1	(a) x+x=x	(b) $x \cdot x = x$
Theorem 2	(a) x+1=x	(b) $X \cdot 0 = 0$
Theorem 3 (involution)	(x')'=x	
Postulate 3, commutative	(a) x+y=y+x	(b) $x \cdot y = y \cdot x$
Theorem 4 , associative	(a)x+(y+z)=(x+y)+z	(b) $x \cdot (y \cdot z) = (x \cdot y) \cdot z$
Postulate 4, distributive	(a) $x \cdot (y+z)=(x\cdot y)+(x\cdot z)$	(b) $x+(y\cdot z)=(x+y)\cdot (x+z)$
Theorem 5, DeMorgan	(a) (x+y)'=x' · y'	(b) (xy)'=x'+y'

(a) $x+x\cdot y=x$

(b) $x \cdot (x+y)=x$

Theorem 6, Absorption

Complement of a Function

- The complement of a function F is F' and is obtained from an interchange of 0's for 1's and 1's for 0's in the value of F.
- The complement of a function may be derived algebraically through DeMorgan's theorems:
 - For two variables:
 - (x+y)'=x'y'
 - (xy)'=x'+y'
 - For three variables:
 - (A+B+C)'=(A+x)' (B+C)=x
 - =A'x' DeMorgan theorem
 - =A'(B+C)' (B+C)=x
 - =A'(B'C')
 - =A'B'C' Associative Rule

Complement of a Function

- Generalization of DeMorgan's Theorem:
 - (A+B+C+...+F)'=A'B'C'...F'
 - (ABCD..F)'=A'+B'+C'+D'+...+F'
- The complement of a function can be obtained by interchanging AND and OR operators (taking dual) and complementing each literal.
 - Ex: F1'=(x'yz'+x'y'z)'
 - =(x'yz')'(x'y'z)'
 - $\bullet = (x+y'+z)(x+y+z')$

- A Binary variable may appear either in its normal form (x) or in its complement form x'.
- Venn diagram for two variables:

3 terms			Minterms		Maxterms	
x	У	Z	term	Designation	term	designation
0	0	0	x'y'z'	m0	x+y+z	MO
0	0	1	x'y'z	m1	x+y+z'	M1
0	1	0	x'yz'	m2	x+y'+z	M2
0	1	1	x'yz	m3	x+y'+z'	M3
1	0	0	xy'z'	m4	x'+y+z	M4
1	0	1	xy'z	m5	x'+y+z'	M5
1	1	0	xyz'	m6	x'+y'+z	M6
1	1	1	хух	m7	x'+y'+z'	M7

Minterm: standard product

Maxterm: standard sum

Each maxterm is the complement of its corresponding minterm.

 A Boolean Function can be expressed algebraically from a given truth table by forming a minterm for each combination of the variables that produces a 1 in the function and then taking the OR of all those terms. Canonical and Standard

• Ex:

- $f_1 = ?$
 - =x'y'z+xy'z'+xyz
 - $= m_1 + m_4 + m_7$
- $f_2 = ?$
 - =x'yz+xy'z+xyz'+xyz
 - $=m_3+m_5+m_6+m_7$

X	У	Z	f_1	f_2	f ₂ '	
do Fo	orms	0	0	0	1	•
0	0	1	1	0	1	
0	1	0	0	0	1	
0	1	1	0	1	0	
1	0	0	1	0	1	
1	0	1	0	1	0	
1	1	0	O	1	0	
1	1	1	1	1	0	

 f_2

Ζ

- Any Boolean function can be expressed as a sum of minterms (sum meaning OR)
- How to find the complement of a function?
- Complement of a function can be obtained by forming a minterm for each combination that produces 0 in the function and then OR ing these terms.

```
Ex: f_2' = ?

f_2' = (x'y'z' + x'yz' + x'yz + xy'z + xyz')'

f_2 = ?

f_2 = (x+y+z)(x+y'+z)(x+y'+z')(x'+y+z')(x'+y'+z)

= M_0 M_2 M_3 M_5 M_6
```

- Any Boolean Function can be expressed as a product of maxterms (product meaning AND)
 - For each term that produces 0 in the function find the corresponding maxterm
 - AND those terms.

- Expressing Boole functions in the form of sums of minterms or product of maxterms is referred as the canonical forms.
- Sum of Minterms:
 - In order to express a function as the sum of minterm variables
 - Expand the expression into a sum of AND terms
 - Inspect terms to see if it contains all variables. If it misses one or more variables, it is ANDed with an expression such as x+x'

- Ex: F=A+B'C Express as a sum of minterms
 - A=A(B+B')=AB+AB'
 - A=AB(C+C')+AB'(C+C')
 - =ABC+ABC'+AB'C+A'B'C
 - B'C = A'B'C+AB'C
 - F=A+B'C
 - =ABC+ABC'+AB'C+AB'C'+AB'C+A'B'C
 - =A'B'C+AB'C'+ABC'+ABC'+ABC
 - =m1+m4+m5+m6+m7
 - $F(A,B,C)=\sum (1,4,5,6,7)$

• An alternative procedure for deriving minterms of a Boolean function is to obtain the truth table of the function directly from the algebraic expression and then read the minterms from the truth table.

• Ex: F = A+B'C

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1