PALAK SHARMA

```
73
// Floyd-Warshall Algorithm in C
#include <stdio.h>
// defining the number of vertices
#define nV 4
#define INF 999
void printMatrix(int matrix[][nV]);
// Implementing floyd warshall algorithm
void floydWarshall(int graph[][nV]) {
 int matrix[nV][nV], i, j, k;
 for (i = 0; i < nV; i++)
   for (j = 0; j < nV; j++)
    matrix[i][j] = graph[i][j];
 // Adding vertices individually
 for (k = 0; k < nV; k++) {
   for (i = 0; i < nV; i++) {
    for (j = 0; j < nV; j++) {
      if (matrix[i][k] + matrix[k][j] < matrix[i][j])</pre>
       matrix[i][j] = matrix[i][k] + matrix[k][j];
    }
   }
 printMatrix(matrix);
void printMatrix(int matrix[][nV]) {
 for (int i = 0; i < nV; i++) {
   for (int j = 0; j < nV; j++) {
    if (matrix[i][j] == INF)
      printf("%4s", "INF");
      printf("%4d", matrix[i][j]);
   }
   printf("\n");
 }
int main() {
 int graph[nV][nV] = \{\{0, 3, INF, 5\},
         {2, 0, INF, 4},
         {INF, 1, 0, INF},
         {INF, INF, 2, 0}};
 floydWarshall(graph);
```

~ _2	7					
0	3	7	5			
2	0	6	4			
3	1	0	5			
5	3	2	0			
Program finished with exit code 0						
Press	ENT	ER to	o exit	consc	ole.	