HW#1 solution

- 1 Omitted
- 2 a) Insertion sort takes $\Theta(n^2)$ Each list has k elements, so that insertion sort takes $\Theta(k^2)$ There has $\frac{n}{k}$ lists, so totally takes $\Theta(\frac{n}{k}*k^2) = \Theta(nk)$
 - b) Pairwise merging starting with $\frac{n}{k}$ lists and finishing with 1 list

 We can draw result lists as binary tree, so that tree's height is $\lg \frac{n}{k}$ Each list takes $\Theta(k)$ to put result, so that $\frac{n}{k}$ lists takes $\Theta(\frac{n}{k} * k) = \Theta(n)$ Finally, each level of tree takes $\Theta(n)$, so that it totally need $\Theta(n \lg \frac{n}{k})$
 - C) The modified algorithm takes $\Theta\left(nk + n\lg\frac{n}{k}\right)$ Obviously, k cannot more than $\Theta(\lg n)$ If k more than $\Theta(\lg n)$, modified algorithm will take more than $\Theta(n\lg n)$ $k = \Theta(\lg n)$ into $\Theta\left(nk + n\lg\frac{n}{k}\right) = \Theta(nk + n\lg n - n\lg k)$ We can get $\Theta(n\lg n + n\lg n - n\lg\lg n) = \Theta(2n\lg n - n\lg\lg n)$ $= \Theta(n\lg n)$
 - d) The k should be the largest list length on which insertion sort is faster than merge sort
- 3 a) Lemma 1 $\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$ $Proof \text{ of } \subseteq$ $f(n) = \Theta(g(n))$ $\Rightarrow \exists c_1, c_2 > 0 \text{ and } n_0 \text{ such that } c_2g(n) \leq f(n) \leq c_1g(n) \ \forall n \geq n_0$ $\Rightarrow f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n))$ $Proof \text{ of } \supseteq$ $f(n) = O(g(n)) \Rightarrow \exists c_1 > 0 \text{ and } n_1 \text{ such that } f(n) \leq c_1g(n) \ \forall n \geq n_1$ $f(n) = \Omega(g(n)) \Rightarrow \exists c_2 > 0 \text{ and } n_2 \text{ such that } c_2g(n) \leq f(n) \ \forall n \geq n_2$ Thus, $c_2g(n) \leq f(n) \leq c_1g(n) \ \forall n \geq \max(n_1, n_2)$ $\Rightarrow f(n) = \Theta(g(n))$

b) LEMMA 2 $o(g(n)) \cap \Omega(g(n)) = \emptyset$,

Proof

$$f(n) = \Omega(g(n))$$

$$\Rightarrow \exists c_1 > 0 \text{ and } n_1 \text{ such that } c_1 g(n) \le f(n) \quad \forall n \ge n_1$$
 (1)

f(n) = o(g(n))

- $\Rightarrow \forall c > 0 \ \exists n_0 \ \text{such that} \ f(n) < cg(n) \ \forall n \geq n_0$
- $\Rightarrow \exists n'_0$ (that depends on c_1) such that $f(n) < c_1 g(n) \ \forall n \ge n'_0$ (2)

It follows from (1) and (2) that

$$c_1 g(n) \le f(n) < c_1 g(n) \quad \forall n \ge \max(n_1, n'_0)$$

which is impossible.

COROLLARY $o(g(n)) \subseteq O(g(n)) - \Theta(g(n))$

Proof

Let
$$f(n) = o(g(n))$$

Then,
$$f(n) = O(g(n))$$
 $\because o(g(n)) = O(g(n))$
Also, $f(n) \neq \Omega(g(n))$ \because LEMMA 2

Also,
$$f(n) \neq \Omega(g(n))$$
 :: LEMMA 2

Thus,
$$f(n) \neq \Theta(g(n))$$
 : LEMMA 1

Therefore, $f(n) = O(g(n)) - \Theta(g(n))$

Have to give an example to show that $O(g(n)) - \Theta(g(n)) \nsubseteq o(g(n))$

Let
$$f(n) = n(1 + \sin n), g(n) = n$$

Then,
$$f(n) = O(g(n))$$
 : $f(n) \le 2g(n)$ $\forall n \ge 0$

But,
$$f(n) \neq \Omega(g(n))$$

 $\therefore \exists c > 0$ such that $cg(n) \le f(n) = 0$, for $n = 2k\pi + 3\pi/2$, for any k

Thus,
$$f(n) = O(g(n)) - \Theta(g(n))$$

But,
$$f(n) \neq o(g(n))$$
 : $\lim_{n \to \infty} \frac{f(n)}{g(n)}$ doesn't exist.

Comment

For another example, see Chap 04, pp27~28.

The three sets for A, B and C follow immediately from the theorems given in the lecture on Chap 03, pp13~15.

4 a)
$$f(n) = O(g(n)) \Rightarrow 2^{f(n)} = 2^{O(g(n))}$$

Always true

This follows immediately from the definition of $2^{O(g(n))}$:

$$2^{O(g(n))} = \left\{ 2^{f(n)} : f(n) = O(g(n)) \right\}$$

b)
$$f(n) = O(f(n)^2)$$

Sometimes true

For f(n) = n, it is true.

For f(n) = 1/n, it is false.

c)
$$f(n) + o(f(n)) = \Theta(f(n))$$

Always true

Let
$$g(n) = o(f(n))$$

Let c > 0 be any constant, then g(n) < cf(n) for sufficiently large n

Thus, for sufficiently large n

$$f(n) \le f(n) + g(n) \le (1+c)f(n)$$

Another proof

Let
$$g(n) = o(f(n))$$
, then $\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$

Thus,
$$\lim \frac{f(n)+g(n)}{f(n)} = 1 \Rightarrow f(n) + g(n) = \Theta(f(n))$$

d)
$$O(f(n)) + O(f(n)) = O(f(n))$$

Always true

$$O(f(n)) + O(f(n)) = O(\max(f(n), f(n))) = O(f(n))$$

e)
$$f(n) = n^2 + O(n)$$
 and $g(n) = n^2 + O(n)$ implies $f(n) = g(n)$

Sometimes true

It could be

$$f(n) = g(n) = n^2 + n.$$

or

$$f(n) = n^2 + 2n$$
, but $g(n) = n^2 + \lg n$

5 a) **Solution:** *True*

Let $\hat{O}(n) = \text{book's definition on big-}0$.

We show that $O(n) = \hat{O}(n)$

$$O(n) \subseteq \hat{O}(n)$$

This is trivial – simply pick $n_0 = 1$.

$$\hat{O}(n) \subseteq O(n)$$

Let
$$f(n) = \hat{O}(n)$$

Then, $0 \le f(n) \le cn \ \forall \ n \ge n_0$, for some c and n_0

For $n < n_0$, it is possible that f(n) > cn.

However, we may choose a large enough constant c' to handle these cases.

For each
$$0 < i < n_0$$
, let $c_i = f(i)/i$

Let
$$c' = \max\{c, \max_{0 < i < n_0} c_i\}$$

Then,
$$0 \le f(n) \le c'n \ \forall \ n > 0$$

b) **Solution:** False

1
$$O(n^k) = O(n)^k \text{ for } k > 0$$

Proof of the one-way equality $O(n^k) = O(n)^k$

$$f(n) = O(n^k)$$

$$\Rightarrow f(n) \le c n^k \quad \forall n \ge n_0$$

$$\Rightarrow f(n) \le \left(\sqrt[k]{c} n\right)^k \quad \forall n \ge n_0$$

$$\Rightarrow f(n) = O(n)^k \quad : O(n)^k = \{f^k(n)|f(n) = O(n)\}$$

Proof of the one-way equality $O(n)^k = O(n^k)$

$$f(n) = O(n)^k$$

$$\Rightarrow f(n) = g^k(n) \text{ for some } g(n) = O(n)$$

$$\Rightarrow f(n) \le (cn)^k \quad \forall n \ge n_0$$

$$\Rightarrow f(n) \le c^k n^k \quad \forall n \ge n_0$$

$$\Rightarrow f(n) = O(n^k)$$

$$2 \qquad O(n^0) \neq O(n)^0$$

$$\because O(n^0) = O(1).$$

But,
$$O(n)^0 = \{f^0(n) : f(n) = O(n)\}$$

$$= \{g(n) : g(n) = 1 \text{ for all large enough } n\}$$

$$3 O(n^k) \neq O(n)^k for k < 0.$$

In fact, $O(n)^k = \Omega(n^k)$ for k < 0. See Chap03 p.36.