

# **GROUP T11**

# BASMA FADEL ZAIN KOSSOUS JELENA RADOSAVOVIC YARA SERAGELDIN

TES PROJECT DEC 17th 2019 PROF. BEHZAD NAJAFI

# BUILDING GEOMETRY OPEN OFFICE

occupancy: 10-15m2 per person ~ 240-360 employees

**INTERNAL HEAT GAIN** 

**PEOPLE** 

**DEGREE OF ACTIVITY** 

MODERETLY ACTIVE OFFICE WORK

**TYPICAL APPLICATION** 

OFFICES, HOTELS, APARTMENTS

TOTAL HEAT (W)

ADULT MALE SENSIBLE HEAT (W) LATENT HEAT (W

**140 75 55** 

#### **EQUIPMENT**

HEAT GIVEN OFF DUE TO INEFFICIENCY FROM COMPUTERS, PRINTERS, FANS.. etc

#### LIGHTING

#### **RECOMMENDED LED LIGHTING**





## **CASE STUDY CITIES**

TORONTO LYON CAIRO







Lake Ontario takes some of the edge off Toronto's humid continental climate. Summer (June to August) tends to be hot and very humid, while winter (December to February) is severe with heavy snowfall. The average maximum temperature in January is -2°C, while the average maximum temperature in July is 27°C. Rainfall tends to occur throughout the year, but summer, though the sunniest season, is also usually the wettest.

Lyon has a humid subtropical climate influenced by its position in the Rhône Valley. Winters (December to February) are cold, with average temperatures around 2°C and winds that make the temperature seem lower. Snow and freezing rain are common. Summers (June to August) are warm and sunny, with average temperatures between 14°C and 28°C, although temperatures can occasionally climb as high as 35°C. Precipitation is fairly steady throughout the year, with an average of 8-10 rainy days per month, although Lyon receives

Egypt has a desert climate and the weather in Cairo is always warm, or hot, and the nights cool. There are only two seasons: a very hot summer, with average temperatures reaching 35°C between May and October, and a mild winter from November to April. Cairo is very dry, receiving on average only about a centimetre of rain a year, but it does have high humidity levels in summer due to its location by the Nile River.

# **WALL TYPES**

| STUCCO                 | 1"     |
|------------------------|--------|
| LIGHT WEIGHT CONCRETE  | 250MM  |
| GLASS FIBER INSULATION | 79.4MM |
| GYPSUM BOARD           | 1/2"   |
| ACOUSTIC TILE          | 19MM   |
|                        |        |
|                        | 4. 3.0 |





WALL 1 WALL 2

# **EXTERNAL WALL U-VALUES**

R-VALUE THE UNIT THERMAL RESISTENCE OF A WALL

| WALL 1         | WALL 2  | WALL 3 |
|----------------|---------|--------|
| <b>~~~~~~~</b> | <b></b> |        |

| MATERIAL                          | <b>R- VALUE</b> | MATERIAL                       | <b>R-VALUE</b> | MATERIAL                     | <b>R-VALUE</b> |
|-----------------------------------|-----------------|--------------------------------|----------------|------------------------------|----------------|
| (OUTSIDE) (m                      | 2·C/W)          | (OUTSIDE)                      | (m2·K/W)       | (OUTSIDE)                    | (m2·K/W)       |
| STUCCO 1 INCH                     | 0.037           | STUCCO 1 INCH                  | 0.037          | <b>GYPSUM 0.5INCH</b>        | 0.079          |
| <b>LIGHTWEIGHT CONCRETE 250mm</b> | n 1.463         | <b>CONCRETE 8 INCH</b>         | 0.12           | PLYWOOD 12mm                 | 0.1038         |
| GLASS FIBER                       |                 | MINERAL FIBER BATT             |                | <b>URETHANE RIGID</b>        |                |
| <b>INSULATION 79.4mm</b>          | 2.189           | <b>WALL INSULATION 56.66mm</b> | 1.472          | <b>WALL INSULATION 110mm</b> | 4.243          |
| GYPSUM 0.5 inch                   | 0.079           | <b>GYPSUM 0.5 inch</b>         | 0.079          | PLYWOOD 12mm                 | 0.1038         |
| <b>ACCOUSTIC TILE 19mm</b>        | 0.32            | (INSIDE)                       |                | <b>GYPSUM 0.5 inch</b>       | 0.079          |
| (INSIDE)                          |                 |                                |                | (INSIDE)                     |                |
| U=1/R                             |                 | U=1/R                          |                | U=1/R                        |                |
| R=0.037+1.463+2.189+0.079+0       | .32             | R=0.037+0.12+1.472+0.079       |                | R=0.079+0.1038+4.243+ 0.     | 1038+0.079     |
| R=4.088                           |                 | R=1.708                        |                | R=4.609                      |                |
| U=1/4.088=0.2446                  |                 | U=1/1.848=0.585                |                | U=0.217                      |                |

#### **ANNUAL OVERVIEW**

# **TORONTO**

**ANNUAL HEATING ANNUAL COOLING** 

**841,145kBTu 227,855kBTu** 



# LYON

**ANNUAL HEATING ANNUAL COOLING** 

**370,369kBTu 271,038kBTu** 



# **CAIRO**

ANNUAL HEATING ANNUAL COOLING

**12,862kBTu 941,742kBTu** 



#### **MONTHLY LOAD CONSUMPTION**

UNIT: kBTu > The amount of heat required to raise the temperature of one pound of water by one degree Fahrenheit

|                                  | Jan   | Feb    | Mar    | Apr  | May   | Jun   | Jul   | Aug   | Sep   | Oct   | Nov   | Dec    |
|----------------------------------|-------|--------|--------|------|-------|-------|-------|-------|-------|-------|-------|--------|
| Average Outdoor Air Dry Bulb (F) | 21.5  | 21.7   | 30.8   | 42.3 | 53.5  | 63.8  | 69.5  | 67.7  | 59.0  | 47.2  | 38.3  | 27.6   |
| Cooling Load (MBtu)              | 0.0   | 0.0    | 0.0    | 0.74 | 10.93 | 45.41 | 75.01 | 67.99 | 23.67 | 4.08  | 0.02  | 0.0    |
| Heating Load (MBtu)              | 195.7 | 169.65 | 124.14 | 53.7 | 13.05 | 0.85  | 0.27  | 0.29  | 3.76  | 35.88 | 86.64 | 157.48 |



|                                  | Jan   | Feb   | Mar   | Apr   | Мау   | Jun   | Jul   | Aug   | Sep   | Oct  | Nov   | Dec   |
|----------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|-------|
| Average Outdoor Air Dry Bulb (F) | 37.7  | 38.3  | 46.5  | 51.4  | 59.6  | 66.3  | 70.6  | 68.9  | 61.4  | 55.2 | 44.8  | 38.5  |
| Cooling Load (MBtu)              | 0.0   | 0.0   | 1.88  | 3.78  | 26.53 | 53.57 | 80.73 | 66.47 | 34.53 | 3.25 | 0.3   | 0.0   |
| Heating Load (MBtu)              | 92.54 | 72.73 | 35.52 | 13.85 | 3.32  | 0.75  | 0.21  | 0.63  | 2.95  | 8.38 | 50.08 | 89.42 |



|                                  | Jan  | Feb   | Mar   | Apr  | Мау  | Jun    | Jul   | Aug    | Sep    | Oct   | Nov  | Dec  |
|----------------------------------|------|-------|-------|------|------|--------|-------|--------|--------|-------|------|------|
| Average Outdoor Air Dry Bulb (F) | 57.1 | 58.0  | 61.8  | 71.2 | 76.4 | 82.3   | 82.7  | 82.3   | 79.8   | 74.9  | 66.2 | 59.5 |
| Cooling Load (MBtu)              | 7.46 | 12.42 | 29.89 | 67.5 | 97.1 | 138.52 | 150.8 | 156.77 | 124.03 | 92.74 | 47.4 | 17.1 |
| Heating Load (MBtu)              | 4.68 | 3.04  | 1.75  | 0.27 | 0.07 | 0.0    | 0.0   | 0.0    | 0.0    | 0.02  | 0.48 | 2.55 |



# COMPARING RESULTS (ENERGY +)

UNIT: GJ > gigajoule ( GJ ) is the equivalent to 1 billion joules. It is a unit of work or energy is equal to the work done by a force of one newton acting through one metre.



## **COMPARING DIFFERENT WALLS IN CAIRO**

UNIT: GJ > gigajoule ( GJ ) is the equivalent to 1 billion joules. It is a unit of work or energy is equal to the work done by a force of one newton acting through one metre.



## CONCLUSION

TORONTO LYON CAIRO







More energy is consumed on heating a building in Toronto due to its harsh climate. Thicker insulation is required for Toronto's typical long winters in order to reduce on overall yearly heating costs. We recommend using Urethane Rigid Wall Insulation in Toronto since it has the highest R-value therefore is most efficient in terms of thermal resistence.

Lyon consumes the least amount of energy in terms of heating and cooling a building. This is because it has the lowest  $\Delta T$  (difference between indoor and outdoor temperature) compared to the the other extremes we chose.

More energy is consumed on cooling than heating. Shading devices are more necessary in Cairo in order to reduce solar heat gain therefore reducing cooling costs. We recommend using Fiber Glass Insulation in Cairo since it is the least expensive and has the lowest R-value.