Formal Language and Automata Theory/ CS-3003/CSE&IT/5th/2017 Mid-Semester Examination

School of Computer Engineering KIIT University, Bhubaneswar-24

Time:1 hr 30 min Full Mark: 25

(Answer Any Five Questions including Q1)

- Q1. $[1\times5]$
 - a. Construct an NFA for the regular expression ab(a*ab*)*ba over $\Sigma = \{a,b\}$
 - b. Design an NFA in 5 states for the set $\{abab^n: n \ge 0\}$ U $\{aba^n: n \ge 0\}$.
 - c. Is the distinguishability relation of states of a DFA transitive. Answer with justification.
 - d. Let L_1 and L_2 be two languages over the same alphabet. Then $L_1 \oplus L_2 = L_1 \cap L_2$. (True/False). Answer with justification.
 - e. L={wxw^R | w,x \in {0,1}+} is regular. (True/False), where, W^R= Reverse of w. Justify your answer.
- Q2. a. Construct a DFA that recognizes the language L={ w| w is any string except 11 and 111} over $\Sigma = \{0,1\}$.
 - b. Using pumping lemma prove that the language $L=\{a^ib^j\mid i,j\geq 0 \text{ and } |i-j| \text{ is prime is not regular } \}$
- Q3. Write the Regular Expression for the following languages over $\Sigma = \{a,b\}$. [1×5]
 - a. $L_1=\{w \mid w \text{ contains all strings with at most two occurrences of substring aa.}\}$
 - b. $L_2=\{w| \text{ w contains set of strings of the form } a^mb^n \text{ such that } (m+n) \text{ is even}\}.$
 - c. $L_3=\{w | w \text{ does not end with aba}\}$
 - d. $L_4=\{w| w \text{ has an odd number of a's and starts and ends with b}\}$
 - e. $L_5=\{ w | w \text{ ends with a and does not contain bb} \}$
- Q4. a. Construct a minimal DFA which accepts all the strings which neither contains aa nor ends with ab over $\Sigma = \{a,b\}$.
 - b. Let r_1 = (aba+b) and r_2 =(ba*+a). Construct an nfa which accepts L(r), where, r=(aba+b)*(ba*+a). [2]
- Q5.a. Construct a DFA that accepts the language L={w| w does not contain a substring abc} over $\Sigma = \{a,b,c\}$. Convert this DFA to regular expression using state elimination method. [3]

b. Let L_1 and L_2 are two languages over the same alphabet Σ . Given that L_1 and L_1L_2 both are regular. Prove or disprove L_2 must be regular. [2]

[3]

Q6.a. Consider the following DFA

δ	0	1
\rightarrow A	В	F
В	G	С
*C	A	С
D	C	G
Е	Н	F
F	C	G
G	G	Е
П	C	C

Construct the equivalent minimal DFA for it.

b. What languages do the regular expressions ϕ^* , $a\phi$, λ^* denote? [2]

- Q7. a. Consider the language $L=\{a^n| \text{ n is not a perfect square}\}$. Prove that above language is not regular using pumping lemma. [3]
 - b. State pumping lemma for regular languages. [2]