The physics of black hole binaries: geodesic properties, quasinormal modes and interaction with fundamental fields

- Part II -

Taishi Ikeda (CENTRA in Lisbon) Laura Bernard, Vitor Cardoso, Miguel Zilhão

arXiv:1905.05204

- 1. Summary of Part I
- 2. Further discussion of QNM
- 3. Energy extraction
- 4. Summary

- 1. Summary of Part I
- 2. Further discussion of QNM
- 3. Energy extraction
- 4. Summary

Summary of Part I

- We found the 3 types of closed null geodesic around the BH binary
- We found the exponentially decaying sinusoid in late time of massless scalar field scattered by BH binary.

- 1. Summary of Part I
- 2. Further discussion of QNM
- 3. Energy extraction
- 4. Summary

Further discussion of QNM

Quasi-normal mode of BH spacetime

$$\Phi_{lm} \sim e^{i\omega_{\rm QNM}t}$$
 Re $(\omega_{\rm QNM})$: frequency of oscillation Im $(\omega_{\rm QNM})$: decay late of the mode

 Relation between QNM and closed null orbit around BH (based on WKB approximation)

$$\omega_{\text{QNM}} = \Omega_{\text{c}}l - i\left(n + \frac{1}{2}\right)|\lambda|$$

 Ω_c : angular velocity at the unstable closed orbit

l : angular momentum of perturbation

n: overtone number

 λ : Lyapunov exponent

• Period of QNM:
$$T_{\text{QNM}} = \frac{1}{l} \times \frac{2\pi}{\Omega_{\text{c}}}$$

Further discussion of QNM

• We apply this formula to global null orbit.

global null orbit

cf:
$$T_{\text{QNM}} = \frac{1}{l} \times \frac{2\pi}{\Omega_c}$$

• Estimation of the period for l = 2 mode

$$T_{\text{QNM}} \simeq \frac{1}{2} \left(2L + \underline{T_{\text{LR}}} \right) \simeq L + 8M$$

where

$$T_{\rm LR} = 6\sqrt{3} \frac{M}{2} \simeq 16.3M$$

Further discussion of QNM

• The period of late time exponentially decaying sinusoid agree with expectation. cf: $T_{\rm QNM} \simeq L + 8M$

This is global QNM which corresponds to global closed null geodesic.

- 1. Summary of Part I
- 2. Further discussion of QNM
- 3. Energy extraction
- 4. Summary

Black hole bomb

cf: super-radiant instability

- Question
 - ▶ Can we realize the BH binary bomb?

- Probably, the time scale of BH binary bomb is very long.
- As a toy mode, we consider a confined scalar field around two rotating reflecting ball in 2+1 dim flat spacetime.

Energy density

$$R_{\rm ext} = 30, \ \Omega = 0.14, \ r_{\rm b} = 0.5$$

• The energy of the scalar field grows exponentially.

- Preliminary result
 - ▶ Vector field inside cavity around BH binary (3+1 dim)

- Preliminary result
 - ▶ Vector field inside cavity around BH binary (3+1 dim)

- 1. Summary of Part I
- 2. Further discussion of QNM
- 3. Energy extraction
- 4. Summary

Summary

- We found
 - global QNM in BH binary spacetime.

- ▶ the energy extraction of confined scalar field around the two rotating reflecting ball in 2+1 dim flat spacetime.
- Future work
 - ▶ BH binary bomb of scalar field and vector field in 3+1 dim spacetime (more detailed analysis).

Thank you!!