Proof that a perfect cuboid does not exist

Hiram Kihoro Irungu

June 2021

Introduction

An Euler brick is a rectangular cuboid characterized by having all edges and all face diagonals that are of integer length. A perfect cuboid that's also known as a perfect Euler brick is an Euler brick whose space diagonal is also of integer length [Kni08]. As per the Wikipedia on this date 6/27/2021 9:02:04 AM, neither has a perfect cuboid been found nor been proven nonexistent [Wik21]. Good news is that this hundreds of years old mathematics problem gracefully comes to a close here.

Reference cuboid

Consider the cuboid below with vertices P, Q, R, S, T, U, V, and W. For clarity, similar edges and similar diagonals are labelled alike where needed.

Figure 1: Reference cuboid

Observations and analysis

By definition, for any cuboid, all edges and all diagonals must be greater than zero. In the case of a perfect cuboid, all edges and all diagonals must also be integers [Kni08]. Therefore, it follows that, for any solution of a perfect cuboid, face diagonals ${\bf e}$ and ${\bf f}$ must intersect with edge ${\bf d}$ and space diagonal ${\bf g}$ at a point ${\bf P}$ such that every edge and every diagonal of the cuboid is an integer greater than zero. If you perceive ${\bf d}$, ${\bf e}$, ${\bf f}$, and ${\bf g}$ as a system of vectors originating at point ${\bf P}$, you notice that ${\bf d}$ is an eigenvector [Kre07]. However, this proof does not require any vector analysis.

1. Let edge **a** be of any length **n** where,

$$\{n \in \mathbb{Z} \mid n > 0\}$$

Thus, for $(\mathbf{a},\,\mathbf{b},\,\mathbf{c})$ to be a Pythagorean triple [Mao19], \mathbf{b} must be of any length \mathbf{m} such that

$$\{m \in \mathbb{Z} \mid m > 0\}$$

and

$$\left\{\sqrt{(n^2+m^2)}\in\mathbb{Z}\mid\sqrt{(n^2+m^2)}>0\right\}$$

where $\sqrt{(n^2 + m^2)}$ is the length of face diagonal **c**.

2. Consider triangle (a, d, e) where a is of any length n where

$$\{n \in \mathbb{Z} \mid n > 0\}$$

as in the case of triangle (\mathbf{a} , \mathbf{b} , \mathbf{c}). It follows that for (\mathbf{a} , \mathbf{d} , \mathbf{e}) to be a Pythagorean triple [Mao19], \mathbf{d} must be of integer length which can be expressed as ($\mathbf{n} \tan \theta$) using Pythagoras Theorem [Mao19] where θ is the angle of intersection between \mathbf{e} and \mathbf{d} such that

$$\{\tan \theta \in \mathbb{R} \mid \tan \theta > 0\}$$

and e must be of length

$$\sqrt{(n^2 + (n\tan\theta)^2)}$$

where

$$\left\{\sqrt{(n^2 + (n\tan\theta)^2)} \in \mathbb{Z} \mid \sqrt{(n^2 + (n\tan\theta)^2)} > 0\right\}$$

3. To make a perfect cuboid with Pythagorean triples $(\mathbf{a}, \mathbf{b}, \mathbf{c})$ and $(\mathbf{a}, \mathbf{d}, \mathbf{e})$, its deduced that \mathbf{f} must be of length

$$\sqrt{(n\tan\theta)^2 + (m^2)}$$

where

$$\left\{ \sqrt{(n\tan\theta)^2 + (m^2)} \in \mathbb{Z} \mid \sqrt{(n\tan\theta)^2 + (m^2)} > 0 \right\}$$

and \mathbf{g} must be of length

$$\sqrt{\left(\sqrt{(n\tan\theta)^2+(m^2)}\right)^2+n^2}$$

where

$$\left\{ \sqrt{\left(\sqrt{(n \tan \theta)^2 + (m^2)} \right)^2 + n^2} \in \mathbb{Z} \mid \sqrt{\left(\sqrt{(n \tan \theta)^2 + (m^2)} \right)^2 + n^2} > 0 \right\}$$

In summary

- \bullet a = n
- b = m
- $c = \sqrt{(n^2 + m^2)}$
- $d = (n \tan \theta)$
- $e = \sqrt{(n^2 + (n \tan \theta)^2)}$
- $f = \sqrt{(n \tan \theta)^2 + (m^2)}$
- $g = \sqrt{\left(\sqrt{(n\tan\theta)^2 + (m^2)}\right)^2 + n^2}$

Where edge d, face diagonals e and f, and space diagonal g intersect

1. If **d** intersects with **e**, then $\mathbf{d} = \mathbf{e}$ at the point of intersection

$$(n \tan \theta) = \sqrt{(n^2 + (n \tan \theta)^2)}$$

$$n = 0$$
(1)

2. If **d** intersects with **f**, then $\mathbf{d} = \mathbf{f}$ at the point of intersection

$$(n \tan \theta) = \sqrt{(n \tan \theta)^2 + (m^2)}$$

$$m = 0$$
(2)

3. If **d** intersects with **g**, then $\mathbf{d} = \mathbf{g}$ at the point of intersection

$$(n\tan\theta) = \sqrt{\left(\sqrt{(n\tan\theta)^2 + (m^2)}\right)^2 + n^2}$$

$$n = \sqrt{-(m^2)}$$
(3)

4. If e intersects with f, then e = f at the point of intersection

$$\sqrt{(n^2 + (n\tan\theta)^2)} = \sqrt{(n\tan\theta)^2 + (m^2)}$$

$$n = m$$
(4)

5. If e intersects with \mathbf{g} , then $\mathbf{e} = \mathbf{g}$ at the point of intersection

$$\sqrt{(n^2 + (n\tan\theta)^2)} = \sqrt{\left(\sqrt{(n\tan\theta)^2 + (m^2)}\right)^2 + n^2}$$

$$m = 0$$
(5)

6. If **f** intersects with **g**, then $\mathbf{f} = \mathbf{g}$ at the point of intersection

$$\sqrt{(n\tan\theta)^2 + (m^2)} = \sqrt{\left(\sqrt{(n\tan\theta)^2 + (m^2)}\right)^2 + n^2}$$

$$n = 0$$
(6)

Results

Equations (1), (2), and (4) show that edge **d** and face diagonals **e** and **f** intersect only when n = m = 0. Equations (5) and (6) show that face diagonals **e** and **f** only intersect with space diagonal **g** when n = m = 0. Equation (3) shows that **d** intersects with **g** only when the square of **n** is negative. Such a real number whose square is negative does not exist [Wei]. These results can be visualized by graphing **d**, **e**, **f**, and **g** for any qualified **n**.

Discussion

When \mathbf{d} , \mathbf{e} , \mathbf{f} , and \mathbf{g} intersect at a point P, they create a three-dimensional space with vertices PQRSTU which when n=m=0 is reduced to a point where the point is as defined in classical Euclidean geometry, and therefore PQRSTU does not exist when n=m=0.

Conclusion

In the above analysis, the three-dimensional space PQRSTU and its mirror on the plane PQTU is a perfect cuboid which exists if and only if n=m=0, which accordingly does not exist.

References

- [Kre07] Erwin Kreyszig. Advanced Engineering Mathematics 9th Edition with Wiley Plus Set. John Wiley & Sons, 2007, p. 334.
- [Kni08] Oliver Knill. "Hunting for Perfect Euler Bricks". In: 0 From the Editors Zachary Abel'10 and Ernest E. Fontes' 10 3 (2008), p. 102.
- [Mao19] Eli Maor. The Pythagorean theorem: a 4,000-year history. Princeton University Press, 2019.
- [Wik21] Wikipedia. Euler brick Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/w/index.php?title=Euler\%20brick&oldid=1029720909. [Online; accessed 27-June-2021]. 2021.
- [Wei] Eric W. Weisstein. Square Root. URL: https://mathworld.wolfram.com/SquareRoot.html.