			Semester: I / II		
		BASICS C	F ELECTRICAL ENGINEERING		
		(Ca	tegory: Engineering Science)		
			(Theory)		
Course Code	:	22ES14D	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	40L	SEE Duration	:	3.00 Hours

DC circuits:

Ohm's law and Kirchhoff's laws, analysis of series, parallel and series-parallel circuits excited by independent voltage sources. Derivation for Power and energy, Thevenin Theorem & Maximum Power Transfer Theorem applied to the series circuit and its applications.

Unit – II 08 Hrs

AC Fundamentals:

Generation of sinusoidal voltage, frequency of generated voltage, average value, RMS value, form, and peak factors. Voltage and current relationship, with phasor diagrams, in R, L, and C circuits.

Single-phase Circuits:

Analysis of single-phase ac series circuits R, L, C, RL, RC, RLC, resonance in series RLC circuit

Unit –III 08 Hrs

Three phase circuits.:

Generation of three-phase power, representation of balanced star and delta connected loads the relation between phase and line values of voltage and current from phasor diagrams, advantages of three-phase systems. Measurement of three-phase power by two-wattmeter method.

Transformers: Single phase transformers: Construction, principle of working, EMF equations, voltage and current ratios, losses, definition of regulation and efficiency.

Unit –IV 08 Hrs

Three Phase Induction motors:

Three-phase induction motors. Principle of operation, construction, types. Rotating magnetic field, significance of torque-slip characteristic.

Single Phase Induction Motor:

Single-phase induction motor. Construction, Principle of operation, Types of single-phase induction motors.

Unit –V 08 Hrs

Power transmission and distribution:

Concept of power transmission and power distribution. through block diagrams only.

Electricity bill:

Calculation of electricity bill for domestic consumers.

Equipment Safety measures:

Working principle of Fuse and Miniature circuit breaker (MCB), merits and demerits.

Personal safety measures:

Electric Shock, Earthing and its types, Safety Precautions to avoid shock.

Course Outcomes: After completing the course, the students will be able to					
CO1:	Understand the working of electric circuits, transformer, electrical machines, and safety devices.				
CO2:	Evaluate the AC & DC circuit parameters and characteristics of A.C machines and transformers				
CO3:	Analyze the performance of Electrical machines and methods of power transmission & distribution.				
CO4:	Apply the knowledge of electrical equipment, tariff, safety measures for engineering applications.				

Reference Books					
1	D. C. Kulshreshtha, Basic Electrical Engineering, McGraw-Hill Education, 1 st Edition, 2019.				
2	D.P. Kothari and Nagrath Theory and Problems in electrical Engineering, PHI Edition 2011.				
3	V. K. Mehta, "Basic Electrical Engineering", S.Chandand Company Ltd., New Delhi.				
4	V. N. Mittal, "Basic Electrical Engineering", TMH Publication, New Delhi.				

ASSESSMENT AND EVAI	LUATION PATTERN	
WEIGHTAGE	50%	50%
QUIZZES		
Quiz-I	Each quiz is evaluated for 10 marks	****
Quiz-I	adding up to 20 MARKS.	
THEORY COURSE (Bloom's Taxonomy Levels: Remembering, Understanding, A Creating)		
Test – I	Each test will be conducted for 50 Marks adding upto 100 marks. Final	
Test – II	test marks will be reduced to 40 MARKS	****
EXPERIENTIAL LEARNING	40	****
Case Study-based Teaching-Learning	10	
Sector wise study & consolidation (viz., Engg. Semiconductor Design, Healthcare & Pharmaceutical, FMCG, Automobile, Aerospace and IT/ITeS)	20	****
Video based seminar (4-5 minutes per student)	10	
MAXIMUM MARKS FOR THE THRORY	100 MARKS	100 MARKS
TOTAL MARKS FOR THE COURSE	100	100