USP

João Victor Alcantara Pimenta, 11820812

Trabalho em Astronomia e Astrofísica

Dos efeitos da precessão nos limites da esfera celeste

joaovictorpimenta@usp.br

2021-07-14

1 Motivação

Astronomia é, e sempre foi, um tema de extrema popularidade e importância em nossa sociedade. Ao mesmo tempo, pode se misturar com astrologia muito facilmente por quem não estuda o tema. Tanto por compartilharem uma origem quanto por tratarem (ainda que de formas muito diferentes) de objetos que tem alguma intersecção. Um destes é o zodíaco. Para a astronomia, este é composto das constelações que se localizam sobre a eclíptica. Todas as treze. Uma delas não reconhecida classicamente como parte do zodíaco pela astrologia. Mas inegavelmente parte da eclíptica. Essa discussão sobre inclusão do que seria um novo signo para a astrologia gerou confusão e foi em muitas ocasiões, misturado com a discussão sobre o 'caminhar' do ponto vernal, sendo possível causa para a falsa crença de que a eclíptica caminha sobre a esfera celeste, inserindo novas constelações, como a de Ophiucus. Não sendo claro o porquê do descrito ser falso, é cabível uma discussão e demonstrações para esclarecer o tema.

2 Métodos e preparação

Para o projeto, foi utilizado um notebook jupyter, em Python (acessar em Notebook WebPage). Neste, os passos e decisões de implementação estão bem documentados. Em suma, se discute melhor os erros no pensamento de que a eclíptica deve caminhar e suas possíveis origens. Logo depois, procura-se enriquecer a visão do assunto com simulações computacionais. Começamos mapeando a esfera celeste em uma mapa utilizando de coordenadas esféricas. Depois que o método estático é dominado, cria-se animações que demonstram o movimento relativo da eclíptica/equador

com a esfera celeste e também o movimento relativo de planetas. Todas animações e imagens importantes estão também guardadas em uma pasta, em 'assets'. Para fazer em outra máquina, basta rodar os blocos em ordem se atentando às dependências.

2.1 Depedências

Importante notar que para as simulações, muitas dependências são usadas e podem gerar erro se não estiverem presentes na máquina. Entre elas, estão: 'matplotlib', 'numpy', 'pandas', 'cartopy', 'astropy' e 'astroquery.jplhorizons'.

3 Escolhas de implementação

Muitas das decisões estão bem explicadas no documento do notebook, contudo algumas merecem nota externa.

3.1 Mudança de perspectiva

Ao se começar as animações, esbarrou em uma dificuldade. Como a eclíptica deve manter sua posição relativa às estrelas, animar seu movimento diretamente implica animar também todos os objetos estáticos em sua relação. Logo, decidiu-se rotacionar a esfera para que a eclíptica se encontre linear e o equador como uma curva, que podemos animar mais facilmente. Tal feito poderia ter sido alcançado mais facilmente com a utilização de quaternions. Para os quais deixo uma classe preparado com o projeto, mas que não foram implementados por serem explorados posteriormente ao código. Tal implementação diminuiria a complexidade do código mas não é essencial. De qual-

quer forma, optou-se por não rotacionar os limites das constelações, que pouco acrescentariam.

3.1.1 Sobre Saturno

Aqui alguns comentários são cabíveis. O primeiro é referente às diferentes simulações feitas. Separar os mecanismos em diferentes simulações auxilia a visualização e entendimento individual de cada um e por isso foi assim feito. Uma simulação representa as translações e auxilia a ver tanto o movimento retrógrado planetário quando o 'andar' do planeta pelas constelações zodiacais. A segunda mostra sua variação em latitude e reforça o movimento pelas constelações.