Eksploracja Danych 2014/2015

Porównanie metod walidacji znajdowania grup w sieciach społecznych

SPRAWOZDANIE

Autorzy: Radosław Trzcionkowski, Łukasz Szczygłowski

Zawartość

1.	Opis problemu	3
2.	Opis zastosowanych metodyk i algorytmów	
a.	Zaimplementowane sposoby obliczania odległości	4
b.	Zaimplementowane kryteria	4
c.	Zaimplementowane sposoby wyliczania ewaluacji zewnętrznej	4
d.	Zastosowane sposoby obliczania korelacji wektorów	4
3.	Opis wykorzystanych danych	5
4.	Przeprowadzone eksperymenty oraz wyniki	7
a.	Eksperyment porównawczy kryterium	7
b.	Eksperyment porównawczy algorytmów klastrujących	11
5.	Wnioski oraz podobieństwa z artykułem źródłowym	18
6.	Podsumowanie	19
7.	Źródła	19

1. Opis problemu

Obserwowalny jest wyraźny trend rozwoju algorytmów znajdujących grupy w sieciach społecznościowych. Ich początkowe formy prostych heurystyk z dnia na dzień wyewoluowały na bardziej wyrafinowane, zorientowane na optymalizację zadanego kryterium, których wyniki są coraz dokładniejsze. Pomimo tak dobrze rozwijanych metodyk, problemem stała się bardzo uboga gama sposobów weryfikacji klastrowań uzyskanych przez wszelakie algorytmy. Prawdziwy problem pojawił się w momencie, kiedy dla zadanej, sklastrowanej różnym sposobem sieci, nie było znane jej optymalne, rzeczywiste podzielenie. Nie było możliwości bezpośredniego porównania dwóch sposobów podziału, co w efekcie wymusiło poszukiwanie sposobów, swoistych algorytmów, służących do określenia jakości pogrupowania zadanej sieci społecznej.

Celem heurystyk stojących za algorytmem klastrujących jest wyszukiwanie najbardziej satysfakcjonującego rozwiązania względem zadanego kryterium stopu. Większość obecnych algorytmów klastrujących bazuje swoją implementację na jednym ze znanych sposobów weryfikacji grupowania, modularności. Metoda ta ma podstawowy problem związany z limitem rozdzielczości, który w konsekwencji powoduje, że wyniki uzyskane podczas grupowania sprowadzają się do dużej ilości małych społeczności. Równolegle rozwijająca się gałąź uczenia maszynowego pokazała inne, również skuteczne metody walidacji znalezionych społeczności w sieci, takich jak: indeks Davies-Bouldin oraz Silhouette. Problem na tym etapie sprowadza się do znalezienia takiej metody walidacji grupowań, która - obok modularności - mogłaby również służyć jako fundament budowy przyszłych algorytmów klastrujących.

2. Opis zastosowanych metodyk i algorytmów

W eksperymencie wykorzystane zostały różne podejścia definiowania kryterium dla grupowania zadanej sieci społecznościowej. Wszystkie z nich, za wyjątkiem modularności Q, wymagają określenia sposobu wyznaczania odległości pomiędzy dwoma węzłami sieci. Poniżej przedstawione zostaną zaimplementowane w projekcie sposoby obliczania odległości, a następnie zaimplementowane kryteria.

a. Zaimplementowane sposoby obliczania odległości

- 1) Adjacency Relation Distance (ARD)
- 2) Edge Path Distance
- 3) Neighbour Overlap Distance (NOD)
- 4) Pearson Correlation Distance (PCD)

b. Zaimplementowane kryteria

- 1) C Index Criteria
- 2) Davies Bouldin Criteria
- 3) Dunn Index
- 4) Modularity Q
- 5) PBM Criteria
- 6) Point Biserial Criteria
- 7) Silhouette Width Criteria (wariant SWC 2)
- 8) Variance Ratio Criteria
- 9) Z Statistics Criteria

c. Zaimplementowane sposoby wyliczania ewaluacji zewnętrznej

1) Jaccard Coefficient

d. Zastosowane sposoby obliczania korelacji wektorów

- 1) Spearman Correlation
- 2) Pearson Correlation

3. Opis wykorzystanych danych

W eksperymencie zostały wykorzystane, analogicznie do bazowego artykułu, 3 sieci społecznościowe:

Zahary's Weightened Karate Dataset

http://spaghetti-os.blogspot.com/2014/05/zacharys-karate-club.html

Sawmill Strike Dataset

http://webdocs.cs.ualberta.ca/~rabbanyk/TopLeader/strike.jpg

NCAA Football Bowl Subdivision Network

http://webdocs.cs.ualberta.ca/~rabbanyk/TopLeader/footbal.png

4. Przeprowadzone eksperymenty oraz wyniki

a. Eksperyment porównawczy kryterium

Eksperyment został przeprowadzony w analogiczny sposób jak w artykule bazowym z zastosowanymi modyfikacjami w zakresie generowania zestawu domyślnych klastrowań. Proces eksperymentu rozpoczynał się od doboru testowanych zbiorów danych. Wykorzystane zostały zbiory przedstawione w punkcie 3. Dla każdego ze zbiorów generowany był zbiór N losowych klastrowań tworzony jako modyfikacja stopnia K rzeczywistego pogrupowania sieci ("ground truth"). Następnie dla każdego z testowanych kryteriów, w każdym wariancie sposobu obliczania odległości - jeśli było to konieczne - obliczana była jego wartość dla poszczególnego z losowych pogrupowań. W ten sposób powstawał pierwszy wektor danych eksperymentalnych. Następnie obliczany był wektor korelacji tworzony na podstawie wartości ewaluacji zewnętrznej każdego z losowych klastrowań z rzeczywistym klastrowaniem ("ground truth"). W ten sposób dla każdego z kryterium uzyskiwane były 2 wektory: E - wektor ewaluacji zewnętrznej oraz wektor I - wektor wartości danego kryterium dla wszystkich losowych klastrowań. Następnie celem wyznaczenia poprawności zachowania kryterium obliczana była korelacja obu tych wektorów i w ten sposób uzyskiwana została ocena końcowa dla zadanego kryterium.

Istotne było wydzielenie 3 różnych przypadków losowego klastrowania zbiorów względem rzeczywistego pogrupowania: pesymistyczne, optymistyczne oraz średnie. Przypadki określane były średnią wartością ewaluacji zewnętrznej dla wszystkich losowych klastrowań składowych. W czasie eksperymentu można było to uzyskiwać odpowiednio modyfikując stopnień K modyfikacji rzeczywistego pogrupowania sieci (definiując na przykład, że co drugi węzeł z klastra był losowo przerzucany do innego).

Zaimplementowany zestaw 9 kryterium oraz 4 metryk tworzą zestaw testowy 33 permutacji (ponieważ modularność nie wykorzystuje metryki) kryterium, które były testowane podczas eksperymentu.

Poniżej przedstawione zostały wyniki eksperymentów dla trzech, hermetycznych przypadków. Ewaluacja zewnętrzna została wyliczona za pomocą formuły Jaccard'a. Korelacja między wektorami testowymi była liczona według wzorów Spearman'a i Pearson'a.

Przypadek pesymistyczny					
	Spe	earman	Pearson		
1	C Index	Adjacency Relation Distance	1	C Index	Adjacency Relation Distance
2	C Index	Pearson Correlation Distance	2	C Index	Pearson Correlation Distance
3	SWC 2	Pearson Correlation Distance	3	C Index	Neighbour Overlap Distance
					Pearson Correlation
	C Index	Neighbour Overlap Distance	4	SWC 2	Distance
	Modularity Q		5	Modularity Q	
6	SWC 2	Neighbour Overlap Distance	6	PBM	Neighbour Overlap Distance
7	PBM	Pearson Correlation Distance	7	PBM	Pearson Correlation Distance
8	C Index	Edge Path Distance	8	C Index	Edge Path Distance
9	Z Statistics	Edge Path Distance	9	Z Statistics	Edge Path Distance
10	PBM	Neighbour Overlap Distance	10	SWC 2	Neighbour Overlap Distance
11	Z Statistics	Neighbour Overlap Distance	11	SWC 2	Adjacency Relation Distance
12	PBM	Adjacency Relation Distance	12	Z Statistics	Neighbour Overlap Distance
10		E. B. W. B	40	5514	Adjacency Relation
	Variance Ratio	Edge Path Distance	13	PBM	Distance
	SWC 2	Adjacency Relation Distance	14	Dunn Index	Neighbour Overlap Distance
15	Z Statistics	Pearson Correlation Distance	15	Point Biserial	Edge Path Distance
16	Variance Ratio	Adjacency Relation Distance	16	Dunn Index	Adjacency Relation Distance
17		Adjacency Relation Distance	17	Davies Bouldin	Pearson Correlation Distance
18	PBM	Edge Path Distance	18	Davies Bouldin	Neighbour Overlap Distance
19	Point Biserial	Adjacency Relation Distance	19	Variance Ratio	Edge Path Distance
00	D . D	D 0 1 1: D: 1	00	5	Pearson Correlation
20	Davies Bouldin	Pearson Correlation Distance	20	Dunn Index	Distance Regreen Correlation
21	Point Biserial	Edge Path Distance	21	Z Statistics	Pearson Correlation Distance
22	Point Biserial	Neighbour Overlap Distance	22	Point Biserial	Adjacency Relation Distance
00	D In day	Nainbhann Orantan Distance	00	Vaniana Datia	Pearson Correlation
23	Dunn Index	Neighbour Overlap Distance	23	Variance Ratio	Distance
24	Davies Bouldin	Edge Path Distance	24	Variance Ratio	Adjacency Relation Distance
25	Dunn Index	Adjacency Relation Distance	25	Variance Ratio	Neighbour Overlap Distance
26	Variance Ratio	Pearson Correlation Distance	26	Point Biserial	Neighbour Overlap Distance
27	Point Biserial	Pearson Correlation Distance	27	Point Biserial	Pearson Correlation Distance
28		Neighbour Overlap Distance	28	Davies Bouldin	Adjacency Relation Distance
29	Variance Ratio	Neighbour Overlap Distance	29	Z Statistics	Adjacency Relation Distance
	Z Statistics	Adjacency Relation Distance	30	SWC 2	Edge Path Distance
31		Pearson Correlation Distance	31	PBM	Edge Path Distance
32		Edge Path Distance	32	Davies Bouldin	Edge Path Distance
33		Edge Path Distance	33	Dunn Index	Edge Path Distance
	Daini Iliacx	Lago i atti Distalloc	- 55	1 Daniir Iriacx	Lago i atti Distance

Przypadek średni					
	Spe	earman		I	Pearson
1	C Index	Adjacency Relation Distance	1	C Index	Adjacency Relation Distance
2	C Index	Pearson Correlation Distance	2	C Index	Pearson Correlation Distance
3	C Index	Neighbour Overlap Distance	3	C Index	Neighbour Overlap Distance
4	Modularity Q		4	Modularity Q	
5	PBM	Pearson Correlation Distance	5	Z Statistics	Edge Path Distance
6	PBM	Neighbour Overlap Distance	6	C Index	Edge Path Distance
					Pearson Correlation
7	Z Statistics	Edge Path Distance	7	PBM	Distance
8	C Index	Edge Path Distance	8	PBM	Neighbour Overlap Distance
9	SWC 2	Pearson Correlation Distance	9	Davies Bouldin	Neighbour Overlap Distance
10	Davies Bouldin	Neighbour Overlap Distance	10	SWC 2	Pearson Correlation Distance
		·			Pearson Correlation
11	Point Biserial	Edge Path Distance	11	Z Statistics	Distance
12	Z Statistics	Pearson Correlation Distance	12	SWC 2	Edge Path Distance
13	Davies Bouldin	Pearson Correlation Distance	13	Point Biserial	Edge Path Distance
					Pearson Correlation
14	Z Statistics	Adjacency Relation Distance	14	Davies Bouldin	Distance
15	SWC 2	Neighbour Overlap Distance	15	Z Statistics	Adjacency Relation Distance
4.0	014/0.0	E. D. (1 D) (40		Pearson Correlation
	SWC 2	Edge Path Distance	16	Variance Ratio	Distance
17	SWC 2	Adjacency Relation Distance	17	Dunn Index	Neighbour Overlap Distance
10	Variance Ratio	Pearson Correlation Distance	18	SWC 2	Adjacency Relation Distance
10	variance reado	l carson correlation distance	10	3VVC 2	Adjacency Relation
19	Dunn Index	Neighbour Overlap Distance	19	Point Biserial	Distance
		3			Adjacency Relation
20	Dunn Index	Adjacency Relation Distance	20	Dunn Index	Distance
21	Point Biserial	Adjacency Relation Distance	21	Z Statistics	Neighbour Overlap Distance
22	Variance Ratio	Edge Path Distance	22	SWC 2	Neighbour Overlap Distance
					Pearson Correlation
23	PBM	Adjacency Relation Distance	23	Dunn Index	Distance
24	Z Statistics	Neighbour Overlap Distance	24	Point Biserial	Pearson Correlation Distance
		'	25		
25		Edge Path Distance Pearson Correlation Distance		Variance Ratio	Neighbour Overlap Distance
26 27			26 27	Variance Ratio	Edge Path Distance
21	Variance Ratio	Neighbour Overlap Distance	21	Point Biserial	Neighbour Overlap Distance Adjacency Relation
28	Davies Bouldin	Adjacency Relation Distance	28	РВМ	Distance
29	Dunn Index	Pearson Correlation Distance	29	Variance Ratio	Adjacency Relation Distance
30	PBM	Edge Path Distance	30	Davies Bouldin	Adjacency Relation Distance
31		Neighbour Overlap Distance	31	PBM	Edge Path Distance
		·			
32		Adjacency Relation Distance	32	Davies Bouldin	Edge Path Distance
33	Dunn Index	Edge Path Distance	33	Dunn Index	Edge Path Distance

Przypadek optymistyczny						
	Spearman			Pearson		
1	C Index	Neighbour Overlap Distance	1	C Index	Neighbour Overlap Distance	
2	PBM	Pearson Correlation Distance	2	PBM	Pearson Correlation Distance	
3	PBM	Neighbour Overlap Distance	3	C Index	Adjacency Relation Distance Pearson Correlation	
4	C Index	Pearson Correlation Distance	4	C Index	Distance	
5	Modularity Q		5	Davies Bouldin	Pearson Correlation Distance	
6	C Index	Adjacency Relation Distance	6	PBM	Neighbour Overlap Distance	
7	Z Statistics	Edge Path Distance	7	Z Statistics	Edge Path Distance	
8	C Index	Edge Path Distance	8	C Index	Edge Path Distance	
9	Davies Bouldin	Pearson Correlation Distance	9	Modularity Q		
	SWC 2	Neighbour Overlap Distance	10	SWC 2	Edge Path Distance	
	SWC 2	Edge Path Distance	11	SWC 2	Pearson Correlation Distance	
12	PBM	Adjacency Relation Distance	12	SWC 2	Neighbour Overlap Distance	
					Pearson Correlation	
13	Dunn Index	Pearson Correlation Distance	13	Variance Ratio	Distance	
14	SWC 2	Adjacency Relation Distance	14	SWC 2	Adjacency Relation Distance	
15	Dunn Index	Adjacency Relation Distance	15	PBM	Adjacency Relation Distance	
16	Davies Bouldin	Adjacency Relation Distance	16	Dunn Index	Adjacency Relation Distance	
17		Pearson Correlation Distance	17	Point Biserial	Edge Path Distance	
17	Variance Natio	realson Correlation Distance	17	FUIII DISCHAI	Adjacency Relation	
18	Variance Ratio	Adjacency Relation Distance	18	Variance Ratio	Distance	
	Davies Bouldin	Neighbour Overlap Distance	19	Davies Bouldin	Neighbour Overlap Distance	
	SWC 2	Pearson Correlation Distance	20	Z Statistics	Pearson Correlation Distance	
					Pearson Correlation	
21	Point Biserial	Edge Path Distance	21	Dunn Index	Distance	
22	Z Statistics	Pearson Correlation Distance	22	Davies Bouldin	Adjacency Relation Distance	
23	Dunn Index	Neighbour Overlap Distance	23	Z Statistics	Neighbour Overlap Distance	
24	Z Statistics	Neighbour Overlap Distance	24	Dunn Index	Neighbour Overlap Distance	
25	Variance Ratio	Neighbour Overlap Distance	25	Z Statistics	Adjacency Relation Distance	
26	Z Statistics	Adjacency Relation Distance	26	Variance Ratio	Neighbour Overlap Distance	
27	Variance Ratio	Edge Path Distance	27	Point Biserial	Adjacency Relation Distance	
28	PBM	Edge Path Distance	28	Point Biserial	Pearson Correlation Distance	
29	Point Biserial	Adjacency Relation Distance	29	Point Biserial	Neighbour Overlap Distance	
30	Point Biserial	Pearson Correlation Distance	30	PBM	Edge Path Distance	
31		Neighbour Overlap Distance	31	Variance Ratio	Edge Path Distance	
32		Edge Path Distance	32	Davies Bouldin	Edge Path Distance	
	Dunn Index	Edge Path Distance	33	Dunn Index	Edge Path Distance	
	a macx	1 = ago i atti Diotarioo		1 Daill Hidek		

b. Eksperyment porównawczy algorytmów klastrujących

Eksperyment porównawczy algorytmów klastrujących został utworzony analogicznie jak eksperyment porównania kryterium z modyfikacją etapu tworzenia klastrowań - tym razem tworzone było N klastrowań za pomocą danego algorytmu, a nie losowego przerzucania węzłów pomiędzy klastrami względem rzeczywistego klastrowania. Podczas prowadzonego eksperymentu część z kryterium. Proces był prowadzony dla jednego ze zbiorów danych - Karate.

Porównane zostały następujące algorytmy klastrujące:

Z biblioteki Jung: Bicomponent Clustering, Edge Betweenness Clustering, Voltage Clustering Z biblioteki JavaML: Density Based Spatial Clustering, KNode Clustering, Self Organizing Maps Clustering

Ze wszystkich uzyskanych danych, jako kryterium decydujące został wybrany C-Index - metryka, która wypadła najlepiej w poprzednim eksperymencie.

	Jaccard Ex.			
Name	Evaluation	C-Index NOD	C-Index ARD	C-Index PCD
Jung				
Bicomponent	0.4605089949506484	0.18064609786610283	0.4985120814096288	0.2258478458692724
Jung Edge				
Betweenness	0.4866310160427806	0.3	0.4285714285714287	-0.20000000000000001
Jung Voltage				
Clustering	0.5187105584220729	0.2475895522660684	0.43187310694120346	0.2789870794384364
JavaML Density				
Based Spatial	0.4526717087868168	0.262039093595844	0.558564512088685	0.3547832539308114
JavaML Knode	0.495616880650531	0.16444965781240056	0.13367560477810442	0.19711628953958574
JavaML Self				
Organizing Maps	0.6724051154863459	0.22555020106813498	0.3239879888281027	0.24271250242535564

Poniżej przedstawione zostały całościowe wyniki eksperymentu:

Jung Bicomponent Clusterer				
[Jaccard] Jaccard Co	pefficient External Evaluation: 0.4	605089949506484		
Modularity Q Criteria	Neighbour Overlap Distance	0.10046756994808943		
Modularity Q Criteria	Edge Path Distance	0.10046756994808943		
Modularity Q Criteria	Adjacency Relation Distance	0.10046756994808943		
Modularity Q Criteria	Pearson Correlation Distance	0.10046756994808943		
C Index Criteria	Neighbour Overlap Distance	0.18064609786610283		
C Index Criteria	Edge Path Distance	0.916919457375983		
C Index Criteria	Adjacency Relation Distance	0.4985120814096288		
C Index Criteria	Pearson Correlation Distance	0.2258478458692724		
Davies Bouldin Criteria	Neighbour Overlap Distance	1.1022267881136072		
Davies Bouldin Criteria	Edge Path Distance	Infinity		
Davies Bouldin Criteria	Adjacency Relation Distance	1.4570405169471183		
Davies Bouldin Criteria	Pearson Correlation Distance	0.9654637132956236		
Silhouette Width Criteria 2	Neighbour Overlap Distance	-0.027344210837022036		
Silhouette Width Criteria 2	Edge Path Distance	-0.9399403239556694		
Silhouette Width Criteria 2	Adjacency Relation Distance	-0.15745426903474244		
Silhouette Width Criteria 2	Pearson Correlation Distance	-0.09474537669292894		
Variance Ratio Criteria	Neighbour Overlap Distance	19.239870629476638		
Variance Ratio Criteria	Edge Path Distance	0.5		
Variance Ratio Criteria	Adjacency Relation Distance	3.4789342341615765		
Variance Ratio Criteria	Pearson Correlation Distance	12.6025350107332		
PBM Criteria	Neighbour Overlap Distance	0.014039332551747304		
PBM Criteria	Edge Path Distance	0.0166666666666666		
PBM Criteria	Adjacency Relation Distance	0.013773725298722669		
PBM Criteria	Pearson Correlation Distance	0.01756247213035195		
Dunn Index Criteria	Neighbour Overlap Distance	0.7574074074074079		
Dunn Index Criteria	Edge Path Distance	5.562684646268003E-309		
Dunn Index Criteria	Adjacency Relation Distance	0.2548235957188129		
Dunn Index Criteria	Pearson Correlation Distance	0.3292723778722483		
Z-Statistics Criteria	Neighbour Overlap Distance	390.23776422909236		
Z-Statistics Criteria	Edge Path Distance	32.89135968974835		
Z-Statistics Criteria	Adjacency Relation Distance	316.6988678293565		
Z-Statistics Criteria	Pearson Correlation Distance	194.52756369360802		
Point Biserial Criteria	Neighbour Overlap Distance	55.63821204182208		
Point Biserial Criteria	Edge Path Distance	50.91231568412392		
Point Biserial Criteria	Adjacency Relation Distance	59.291096242048255		
Point Biserial Criteria	Pearson Correlation Distance	46.487156918183686		

Jung Edge Betweenness Clusterer					
[Jaccard] Jaccard Co	[Jaccard] Jaccard Coefficient External Evaluation: 0.4866310160427806				
Modularity Q Criteria	Neighbour Overlap Distance	0.025552369708213844			
Modularity Q Criteria	Edge Path Distance	0.025552369708213844			
Modularity Q Criteria	Adjacency Relation Distance	0.025552369708213844			
Modularity Q Criteria	Pearson Correlation Distance	0.025552369708213844			
C Index Criteria	Neighbour Overlap Distance	0.3			
C Index Criteria	Edge Path Distance	0.5			
C Index Criteria	Adjacency Relation Distance	0.4285714285714287			
C Index Criteria	Pearson Correlation Distance	-0.2000000000000001			
Davies Bouldin Criteria	Neighbour Overlap Distance	4.9E-324			
Davies Bouldin Criteria	Edge Path Distance	4.9E-324			
Davies Bouldin Criteria	Adjacency Relation Distance	4.9E-324			
Davies Bouldin Criteria	Pearson Correlation Distance	4.9E-324			
Silhouette Width Criteria 2	Neighbour Overlap Distance	0.029411764705882356			
Silhouette Width Criteria 2	Edge Path Distance	0.029411764705882356			
Silhouette Width Criteria 2	Adjacency Relation Distance	0.029411764705882356			
Silhouette Width Criteria 2	Pearson Correlation Distance	0.029411764705882356			
Variance Ratio Criteria	Neighbour Overlap Distance	FAILED			
Variance Ratio Criteria	Edge Path Distance	FAILED			
Variance Ratio Criteria	Adjacency Relation Distance	FAILED			
Variance Ratio Criteria	Pearson Correlation Distance	FAILED			
PBM Criteria	Neighbour Overlap Distance	0.0			
PBM Criteria	Edge Path Distance	1.668805393880401E-308			
PBM Criteria	Adjacency Relation Distance	0.0			
PBM Criteria	Pearson Correlation Distance	0.0			
Dunn Index Criteria	Neighbour Overlap Distance	FAILED			
Dunn Index Criteria	Edge Path Distance	FAILED			
Dunn Index Criteria	Adjacency Relation Distance	FAILED			
Dunn Index Criteria	Pearson Correlation Distance	FAILED			
Z-Statistics Criteria	Neighbour Overlap Distance	609.0603919263048			
Z-Statistics Criteria	Edge Path Distance	36.07588943941051			
Z-Statistics Criteria	Adjacency Relation Distance	479.01752235192373			
Z-Statistics Criteria	Pearson Correlation Distance	315.0580627947995			
Point Biserial Criteria	Neighbour Overlap Distance	0.0			
Point Biserial Criteria	Edge Path Distance	0.0			
Point Biserial Criteria	Adjacency Relation Distance	0.0			
Point Biserial Criteria	Pearson Correlation Distance	0.0			

Jung Voltage Clusterer						
[Jaccard] Jaccard Co	[Jaccard] Jaccard Coefficient External Evaluation: 0.5187105584220729					
Modularity Q Criteria	Neighbour Overlap Distance	0.12809729952587093				
Modularity Q Criteria	Edge Path Distance	0.12809729952587093				
Modularity Q Criteria	Adjacency Relation Distance	0.12809729952587093				
Modularity Q Criteria	Pearson Correlation Distance	0.12809729952587093				
C Index Criteria	Neighbour Overlap Distance	0.2475895522660684				
C Index Criteria	Edge Path Distance	0.8263149947000463				
C Index Criteria	Adjacency Relation Distance	0.43187310694120346				
C Index Criteria	Pearson Correlation Distance	0.2789870794384364				
Davies Bouldin Criteria	Neighbour Overlap Distance	1.392261098430386				
Davies Bouldin Criteria	Edge Path Distance	Infinity				
Davies Bouldin Criteria	Adjacency Relation Distance	2.307484603443498				
Davies Bouldin Criteria	Pearson Correlation Distance	1.1875274297517227				
Silhouette Width Criteria 2	Neighbour Overlap Distance	-0.004260816262939314				
Silhouette Width Criteria 2	Edge Path Distance	-0.7537472707243592				
Silhouette Width Criteria 2	Adjacency Relation Distance	-0.008712130142009744				
Silhouette Width Criteria 2	Pearson Correlation Distance	-0.024243677206292433				
Variance Ratio Criteria	Neighbour Overlap Distance	28.65923300477113				
Variance Ratio Criteria	Edge Path Distance	8.274223223783693E-306				
Variance Ratio Criteria	Adjacency Relation Distance	10.490549192511583				
Variance Ratio Criteria	Pearson Correlation Distance	28.44695419805719				
PBM Criteria	Neighbour Overlap Distance	0.019660098204090756				
PBM Criteria	Edge Path Distance	3.80249229034177E-309				
PBM Criteria	Adjacency Relation Distance	0.013509172937091585				
PBM Criteria	Pearson Correlation Distance	0.02323102775825919				
Dunn Index Criteria	Neighbour Overlap Distance	0.5061823361823361				
Dunn Index Criteria	Edge Path Distance	5.562684646268003E-309				
Dunn Index Criteria	Adjacency Relation Distance	0.15921612870199006				
Dunn Index Criteria	Pearson Correlation Distance	0.18740978296128236				
Z-Statistics Criteria	Neighbour Overlap Distance	346.8773762962795				
Z-Statistics Criteria	Edge Path Distance	29.52579699323996				
Z-Statistics Criteria	Adjacency Relation Distance	272.93485473967434				
Z-Statistics Criteria	Pearson Correlation Distance	172.19629018537836				
Point Biserial Criteria	Neighbour Overlap Distance	29.00668096788241				
Point Biserial Criteria	Edge Path Distance	40.113261178543624				
Point Biserial Criteria	Adjacency Relation Distance	27.75077753608798				
Point Biserial Criteria	Pearson Correlation Distance	20.57098804580455				

JavaML Density Based Spatial Clustering				
[Jaccard] Jaccard Co	pefficient External Evaluation: 0.4	526717087868168		
Modularity Q Criteria	Neighbour Overlap Distance	0.021675221126581313		
Modularity Q Criteria	Edge Path Distance	0.021675221126581313		
Modularity Q Criteria	Adjacency Relation Distance	0.021675221126581313		
Modularity Q Criteria	Pearson Correlation Distance	0.021675221126581313		
C Index Criteria	Neighbour Overlap Distance	0.262039093595844		
C Index Criteria	Edge Path Distance	0.8492958328170821		
C Index Criteria	Adjacency Relation Distance	0.558564512088685		
C Index Criteria	Pearson Correlation Distance	0.3547832539308114		
Davies Bouldin Criteria	Neighbour Overlap Distance	1.1127941772401195		
Davies Bouldin Criteria	Edge Path Distance	Infinity		
Davies Bouldin Criteria	Adjacency Relation Distance	1.2980264106305408		
Davies Bouldin Criteria	Pearson Correlation Distance	0.8386866098842202		
Silhouette Width Criteria 2	Neighbour Overlap Distance	-0.016609213100506857		
Silhouette Width Criteria 2	Edge Path Distance	-0.7273075301279422		
Silhouette Width Criteria 2	Adjacency Relation Distance	-0.03514983343082651		
Silhouette Width Criteria 2	Pearson Correlation Distance	-0.04840170272804344		
Variance Ratio Criteria	Neighbour Overlap Distance	5.0978434527518806		
Variance Ratio Criteria	Edge Path Distance	5.81683752699527E-306		
Variance Ratio Criteria	Adjacency Relation Distance	4.234576743879832		
Variance Ratio Criteria	Pearson Correlation Distance	5.696712179536347		
PBM Criteria	Neighbour Overlap Distance	0.019614075103632243		
PBM Criteria	Edge Path Distance	1.650263111726175E-309		
PBM Criteria	Adjacency Relation Distance	0.017460327313029173		
PBM Criteria	Pearson Correlation Distance	0.023525812774654476		
Dunn Index Criteria	Neighbour Overlap Distance	0.6032223871104515		
Dunn Index Criteria	Edge Path Distance	9.3947562914749E-310		
Dunn Index Criteria	Adjacency Relation Distance	0.24376003116884168		
Dunn Index Criteria	Pearson Correlation Distance	0.21459624380632653		
Z-Statistics Criteria	Neighbour Overlap Distance	503.46955871547294		
Z-Statistics Criteria	Edge Path Distance	27.83821941138085		
Z-Statistics Criteria	Adjacency Relation Distance	411.2798888028743		
Z-Statistics Criteria	Pearson Correlation Distance	277.5012953846243		
Point Biserial Criteria	Neighbour Overlap Distance	85.09624107865456		
Point Biserial Criteria	Edge Path Distance	32.721512240961836		
Point Biserial Criteria	Adjacency Relation Distance	81.6617565661445		
Point Biserial Criteria	Pearson Correlation Distance	82.78286251258804		

JavaML KNode Clustering					
[Jaccard] Jaccard C	[Jaccard] Jaccard Coefficient External Evaluation: 0.495616880650531				
Modularity Q Criteria	Neighbour Overlap Distance	0.03703325880534378			
Modularity Q Criteria	Edge Path Distance	0.03703325880534378			
Modularity Q Criteria	Adjacency Relation Distance	0.03703325880534378			
Modularity Q Criteria	Pearson Correlation Distance	0.03703325880534378			
C Index Criteria	Neighbour Overlap Distance	0.16444965781240056			
C Index Criteria	Edge Path Distance	0.5844549976285407			
C Index Criteria	Adjacency Relation Distance	0.13367560477810442			
C Index Criteria	Pearson Correlation Distance	0.19711628953958574			
Davies Bouldin Criteria	Neighbour Overlap Distance	1.1335422983649406			
Davies Bouldin Criteria	Edge Path Distance	Infinity			
Davies Bouldin Criteria	Adjacency Relation Distance	1.049729747166226			
Davies Bouldin Criteria	Pearson Correlation Distance	0.9536897948681037			
Silhouette Width Criteria 2	Neighbour Overlap Distance	-0.004485760022268611			
Silhouette Width Criteria 2	Edge Path Distance	-0.4214964398268393			
Silhouette Width Criteria 2	Adjacency Relation Distance	0.007091764324836521			
Silhouette Width Criteria 2	Pearson Correlation Distance	-0.011291886027816427			
Variance Ratio Criteria	Neighbour Overlap Distance	5.963973383298846			
Variance Ratio Criteria	Edge Path Distance	3.840000000000003			
Variance Ratio Criteria	Adjacency Relation Distance	5.849053892822862			
Variance Ratio Criteria	Pearson Correlation Distance	7.24247488735247			
PBM Criteria	Neighbour Overlap Distance	0.01903750785850099			
PBM Criteria	Edge Path Distance	4.406110624662539E305			
PBM Criteria	Adjacency Relation Distance	0.030778091073152398			
PBM Criteria	Pearson Correlation Distance	0.02329879384851664			
Dunn Index Criteria	Neighbour Overlap Distance	0.63421199445618			
Dunn Index Criteria	Edge Path Distance	1.020708484299335E-309			
Dunn Index Criteria	Adjacency Relation Distance	0.4724121677126524			
Dunn Index Criteria	Pearson Correlation Distance	0.36767879767031264			
Z-Statistics Criteria	Neighbour Overlap Distance	505.3776222990005			
Z-Statistics Criteria	Edge Path Distance	20.73916072443412			
Z-Statistics Criteria	Adjacency Relation Distance	373.87650297977484			
Z-Statistics Criteria	Pearson Correlation Distance	272.46424185337514			
Point Biserial Criteria	Neighbour Overlap Distance	72.45628572158397			
Point Biserial Criteria	Edge Path Distance	10.995626375615204			
Point Biserial Criteria	Adjacency Relation Distance	51.594122637732426			
Point Biserial Criteria	Pearson Correlation Distance	65.78926192806186			

JavaML Self Organizing Maps Clustering				
[Jaccard] Jaccard Co	pefficient External Evaluation: 0.6	724051154863459		
Modularity Q Criteria	Neighbour Overlap Distance	0.14105094518991249		
Modularity Q Criteria	Edge Path Distance	0.14105094518991249		
Modularity Q Criteria	Adjacency Relation Distance	0.14105094518991249		
Modularity Q Criteria	Pearson Correlation Distance	0.14105094518991249		
C Index Criteria	Neighbour Overlap Distance	0.22555020106813498		
C Index Criteria	Edge Path Distance	0.6250526576632385		
C Index Criteria	Adjacency Relation Distance	0.3239879888281027		
C Index Criteria	Pearson Correlation Distance	0.24271250242535564		
Davies Bouldin Criteria	Neighbour Overlap Distance	1.4269828253455654		
Davies Bouldin Criteria	Edge Path Distance	Infinity		
Davies Bouldin Criteria	Adjacency Relation Distance	2.796286048908365		
Davies Bouldin Criteria	Pearson Correlation Distance	2.5186522430574736		
Silhouette Width Criteria 2	Neighbour Overlap Distance	-0.008997308056958845		
Silhouette Width Criteria 2	Edge Path Distance	-0.6793731631175604		
Silhouette Width Criteria 2	Adjacency Relation Distance	-0.07055159848826993		
Silhouette Width Criteria 2	Pearson Correlation Distance	-0.03648795844706942		
Variance Ratio Criteria	Neighbour Overlap Distance	15.23164284430627		
		1.9887006968390017E-		
Variance Ratio Criteria	Edge Path Distance	306		
Variance Ratio Criteria	Adjacency Relation Distance	8.649157608140422		
Variance Ratio Criteria	Pearson Correlation Distance	18.621652270917544		
PBM Criteria	Neighbour Overlap Distance	0.016728882461919194		
PBM Criteria	Edge Path Distance	0.057726063829787226		
PBM Criteria	Adjacency Relation Distance	0.012264561334440144		
PBM Criteria	Pearson Correlation Distance	0.02157046392335171		
Dunn Index Criteria	Neighbour Overlap Distance	0.7024086106047137		
Dunn Index Criteria	Edge Path Distance	1.140791835393377E-309		
Dunn Index Criteria	Adjacency Relation Distance	0.23328003635899983		
Dunn Index Criteria	Pearson Correlation Distance	0.3995453059532888		
Z-Statistics Criteria	Neighbour Overlap Distance	271.73976122845016		
Z-Statistics Criteria	Edge Path Distance	19.88964268316983		
Z-Statistics Criteria	Adjacency Relation Distance	203.26084429280385		
Z-Statistics Criteria	Pearson Correlation Distance	138.698551214181		
Point Biserial Criteria	Neighbour Overlap Distance	-13.363267709961429		
Point Biserial Criteria	Edge Path Distance	15.161422543982209		
Point Biserial Criteria	Adjacency Relation Distance	-23.032266645955286		
Point Biserial Criteria	Pearson Correlation Distance	-23.69162105436469		

5. Wnioski oraz podobieństwa z artykułem źródłowym

Podsumowując dane przedstawione w punkcie 4. dla eksperymentu porównawczego kryterium klastrowania sieci społecznościowych zauważalne są następujące wnioski:

- najbardziej uniwersalnym kryterium dla wszystkich skrajnych przypadków jest C Index, korzystający z metryki Neighbour Overlap Distance, Pearson Correlation Distance czy Adjacency Relationship Distance do obliczania odległości pomiędzy węzłami;
- klasyczna metryka, modularność, zajęła również wysoką pozycję. Tendencja ta mogłaby zostać zaburzona w przypadku, gdyby wykorzystane zostały sieci społecznościowe o dużej ilości węzłów - wtedy to widoczna byłaby słabość modularności;
- aktualnie najczęściej stosowaną metryką określania jakości pogrupowania jest modularność.
 Powyższy eksperyment wykazał, że w przyszłości korzystniejsze może okazać się implementowanie heurystyk służących do znajdowania grup w sieciach społecznych bazujących na optymalizacji innych kryterium na przykład C Index.

Jeżeli chodzi o wyniki uzyskane w eksperymencie, są one dość zbliżone do rezultatów uzyskanych w bazowym artykule w przypadku bliskim przypadkowi optymistycznemu. Zauważalne jest natomiast pewne odchylenie w średnim i skrajnie pesymistycznym przypadku pogrupowania sieci. Po części może to wynikać z innego sposobu losowego modyfikowania rzeczywistego klastrowania niż miało to miejsce w artykule, na którym wzorowany był całościowy eksperyment.

	Near	Optimal Sam	ples		
Rank	Criterion	AMI _{corr}	ARI	Jaccard	NMI
1	Q	0.736 ± 0.266	5	5	2
2	CIndex PCD	0.72±0.326	1	1	3
3	SWC2 SPD	0.718 ± 0.389	3	3	4
4	CIndex SPD	0.716±0.14	4	4	1
5	SWC2 ICD	0.713 ± 0.396	2	2	5
6	ASWC2 ICD	0.687±0.334	11	10	7
	Medi	um Far Samı	oles	2 1	
Rank	Criterion	AMI _{corr}	ARI	Jaccard	NMI
1	CIndex PCD	0.608 ± 0.202	8	18	1
2	CIndex NOD	0.58±0.053	39	13	2
3	CIndex ARD	0.513±0.313	26	62	2 5
4	Dunn01 ICD	0.457±0.173	58	83	8
5	SWC2 NOD	0.447±0.19	5	9	3
6	ASWC2 PCD	0.446 ± 0.191	7	3	9
7	SWC2 PCD	0.446 ± 0.19	6	2	10
8	Dunn03 ICD	0.439 ± 0.109	43	37	11
9	Dunn31 SPD	0.437±0.177	56	47	15
10	Dunn01 SPD	0.434 ± 0.205	29	67	7
11	Q	0.409 ± 0.353	4	7	16
12	DB ICD	0.405 ± 0.072	40	38	18
	Fa	r Far Sample	S.		
Rank	Criterion	AMI_{corr}	ARI	Jaccard	NMI
1	SWC2 NOD	0.634 ± 0.217	3	13	1
2	ASWC2 NOD	0.583 ± 0.191	5	21	2
3	Q	0.498 ± 0.179	4	38	2 5
4	CIndex PCD	0.493 ± 0.282	2	4	13
5	CIndex SPD	0.437±0.291	1	11	4
6	SWC3 NOD	0.436 ± 0.344	8	2	25

Wyniki uzyskane w artykule bazowym.

Dla eksperymentu porównywawczego zestawu algorytmów klastrujących, którego wyniki zostały przedstawione w punkcie 4. - najlepszym algorytmem dla klastrowanego zbioru według najlepiej wypadającego kryterium C-Index jest algorytm K Node zaimplementowany w bibliotece JavaML. Co ciekawe zauważalna jest rozbieżność w rankingu tworzonym przez wartości kryterium C-Index, a rzeczywistym stosunkiem do klastrowania ground-truth.

6. Podsumowanie

Zaimplementowany i przeprowadzony w projekcie eksperyment porównawczy kryterium klastrujących został wykonany dla wszystkich kryterium opisanych w artykule bazowym oraz części zawartych tam metryk obliczania odległości pomiędzy węzłami sieci (tylko 4). Wszystkie kryteria w raz z metrykami implementowane były od podstaw bazując na formułach zawartych w artykule bazowym jak i innych artykułach, zawartych w źródłach tej dokumentacji. Wykorzystane zostały wszystkie 3 sieci społecznościowe użyte w źródłowej publikacji. Proces eksperymentu przeprowadzony został dla skrajnych przypadków celem wykrycia najbardziej uniwersalnego kryterium klastrującego. Uzyskane wyniki są zadowalające, jednak w pewnym stopniu różnią się od bazowego artykułu - szczególnie dla pesymistycznego przypadku. Najlepsze kryterium według pierwszego eksperymentu - C-Index zostało wykorzystane jako kryterium rozstrzygające, który z algorytmów grupujących testowanych w drugiej części projektu był najlepszy.

7. Źródła

- http://webdocs.cs.ualberta.ca/~zaiane/postscript/SNA-Encyclopedia.pdf
- http://webdocs.cs.ualberta.ca/~rabbanyk/criteriaComparison/ASONAM/cameraReadyVersion/asonam12rabbanyk.pdf
- Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance, Nguyen Xuan Vinh http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf
- http://spaghetti-os.blogspot.com/2014/05/zacharys-karate-club.html
- http://hal.elte.hu/~lanna/Publications/GraphEPLFinal_6o.pdf
- http://webdocs.cs.ualberta.ca/~rabbanyk/TopLeader/
- http://cran.r-project.org/web/packages/clusterCrit/vignettes/clusterCrit.pdf