Teams

- A team is just a set of assignments for a model.
- Special cases:
 - Empty team \emptyset .
 - Database with no rows.
 - The team $\{\emptyset\}$ with the empty assignment.
 - Database with no columns, and hence with at most one row.

8

11

$$\mathfrak{M} \vDash_X t_1 = t_2 \quad iff \quad \forall s \in X(t_1^{\mathfrak{M}} \langle s \rangle = t_2^{\mathfrak{M}} \langle s \rangle)$$
$$\mathfrak{M} \vDash_X t_1 \neq t_2 \quad iff \quad \forall s \in X(t_1^{\mathfrak{M}} \langle s \rangle \neq t_2^{\mathfrak{M}} \langle s \rangle)$$

Dependence logic **D**

$$t = t', Rt_1...t_n$$

= $(t_1, ..., t_n)$

$$\varphi \vee \psi, \neg \varphi, \exists x_n \varphi$$

A team satisfies a relation Rt₁...t_n if every team member does.

A team satisfies a relation $\neg Rt_1...t_n$ if every team member does.

	X ₀	X ₁	X ₂
S ₀	0	0	0
S ₁	0	1	1
S ₂	2	5	5

$$\mathfrak{M} \vDash_X = (t_1, \dots, t_n)$$

$$\forall s, s' \in X(t_1^{\mathfrak{M}}\langle s \rangle \neq t_1^{\mathfrak{M}}\langle s' \rangle \text{ or } \\ \dots \text{ or } t_{n-1}^{\mathfrak{M}}\langle s \rangle \neq t_{n-1}^{\mathfrak{M}}\langle s' \rangle \text{ or } t_n^{\mathfrak{M}}\langle s \rangle = t_n^{\mathfrak{M}}\langle s' \rangle)$$

 $\mathfrak{M} \vDash_X \phi \lor \psi$

there are X_0 and X_1 such that $\mathfrak{M} \vDash_{X_0} \phi$, $\mathfrak{M} \vDash_{X_1} \psi$, and $X \subseteq X_0 \cup X_1$

16

$$\mathfrak{M} \vDash_X \phi \wedge \psi$$

both $\mathfrak{M} \vDash_X \phi$ and $\mathfrak{M} \vDash_X \psi$

$$\mathfrak{M} \vDash_X \exists x \phi$$

there is Y such that $\mathfrak{M} \vDash_Y \phi$ and for every $s \in X$ we have $s[a/x] \in Y$ for some $a \in M$

19

$$\mathfrak{M} \vDash_X \forall x \phi$$

there is Y such that $\mathfrak{M} \vDash_Y \phi$ and for every $s \in X$ we have $s[a/x] \in Y$ for every $a \in M$

23

Armstrong's rules

Always =(x,x)

If =(x,y,z), then =(y,x,z).

If =(x,x,y), then =(x,y).

If =(x,z), then =(x,y,z).

If =(x,y) and =(y,z), then =(x,z).

Logical consequence and equivalence

 ψ follows logically from ϕ

 $\phi \Rightarrow \psi$

 $\mathcal{M} \models_X \phi$ implies $\mathcal{M} \models_X \psi$

 ψ is logically equivalent with ϕ

 $\phi \equiv \psi$, if $\phi \Rightarrow \psi$ and $\psi \Rightarrow \phi$

26

Propositional rules

• From $\varphi \wedge \psi$ follows $\psi \wedge \varphi$.

Commutative

- From φνψ follows ψνφ.
- From $\varphi \wedge (\psi \wedge \theta)$ follows $(\varphi \wedge \psi) \wedge \theta$.
- Associative
- From $\varphi \vee (\psi \vee \theta)$ follows $(\varphi \vee \psi) \vee \theta$.
- From $(\phi \lor \eta) \land (\psi \lor \theta)$ follows $(\phi \land \psi) \lor (\phi \land \theta) \lor (\eta \land \psi) \lor (\eta \land \theta)$.
- From $(\phi \wedge \eta) \vee (\psi \wedge \theta)$ follows $(\phi \vee \psi) \wedge (\phi \vee \theta) \wedge (\eta \vee \psi) \wedge (\eta \vee \theta)$.
- From φ and ψ follows φλψ.
- "Almost" distributive

- From $\varphi \wedge \psi$ follows φ .
- From ϕ follows $\phi v \psi$.

28

Incorrect rules

No absortion

- From φνφ follows φ. Wrong!
- From $(\phi \wedge \psi) \vee (\phi \wedge \theta)$ follows $\phi \wedge (\psi \vee \theta)$. wrong!
- From $(\phi \lor \psi) \land (\phi \lor \theta)$ follows $\phi \lor (\psi \land \theta)$. Wrong!

Non-distributive

29

Conservative over FO

Corollary 22 Let ϕ be a first order L-formula of dependence logic. Then:

- 1. $\mathcal{M} \models_{\{s\}} \phi \text{ if and only if } \mathcal{M} \models_s \phi.$
- 2. $\mathcal{M} \models_X \phi$ if and only if $\mathcal{M} \models_s \phi$ for all $s \in X$.

Quantifier rules

- From $\forall x \phi \wedge \forall x \psi$ follows $\forall x (\phi \wedge \psi)$, and vice versa.
- From $\exists x \varphi \lor \exists x \psi$ follows $\exists x (\varphi \lor \psi)$, and vice versa.
- From $\varphi \vee \forall x \psi$ follows $\forall x (\varphi \vee \psi)$, and vice versa, provided that x is not free in φ .
- From $\varphi \wedge \exists x \psi$ follows $\exists x (\varphi \wedge \psi)$, and vice versa, provided that x is not free in φ .
- From $\forall x \forall y \varphi$ follows $\forall y \forall x \varphi$.
- From $\exists x \exists y \varphi$ follows $\exists y \exists x \varphi$.
- From φ follows $\exists x \varphi$.
- From $\forall x \phi$ follows ϕ .

33

Example: even cardinality

$$\forall x_0 \exists x_1 \forall x_2 \exists x_3 (=(x_2, x_3) \land \neg (x_0 = x_1)$$

 $\land (x_0 = x_2 \rightarrow x_1 = x_3)$
 $\land (x_1 = x_2 \rightarrow x_3 = x_0))$

38

Example: infinity

$$\exists x_4 \forall x_0 \exists x_1 \forall x_2 \exists x_3 (=(x_2, x_3) \land \neg (x_1 = x_4) \land (x_0 = x_2 \leftrightarrow x_1 = x_3))$$

"There is a bijection to a proper subset."

Uniform strategy

- A strategy of II is uniform if whenever the game ends in $(=(t_1,...,t_n),s)$ with the same $=(t_1,...,t_n)$ and the same values of $t_1,...,t_{n-1}$, then also the value of t_n is the same.
- Imperfect information game!

52

Game theoretical semantics of D

 φ A

 ϕ is true in ${\mathcal A}$ if and only if II has a uniform winning strategy

53

Application

Theorem 58 (Compactness Theorem of \mathcal{D}) Suppose Γ is an arbitrary set of sentences of dependence logic such that every finite subset of Γ has a model. Then Γ itself has a model.

Application

Theorem 59 (Löwenheim-Skolem Theorem of \mathcal{D}) Suppose ϕ is a sentence of dependence logic such that ϕ either has an infinite model or has arbitrarily large finite models. Then ϕ has models of all infinite cardinalities, in particular, ϕ has a countable model and an uncountable model.

(

From ESO to D

Theorem 68 ([4],[30]) For every Σ_1^1 -sentence ϕ there is a sentence ϕ^* in dependence logic such that for all \mathcal{M} : $\mathcal{M} \models \phi \iff \mathcal{M} \models \phi^*$.

Current developments

- Also independence atoms.
- See Doctoral Thesis of Pietro Galliani: <u>www.illc.uva.nl/Research/Dissertations/DS-2012-07.text.pdf</u>
- See paper by Kontinen-Väänänen: http://arxiv.org/abs/1208.0176
- See paper by Grädel-Väänänen: http://logic.helsinki.fi/people/ jouko.vaananen/graedel vaananen.pdf

69

63