Kap. 3:

Elektronen in Metallen: Drude-Theorie

3. Drude-Theorie (1)

Metalle: mobile Elektronen = freie Elektronen (?)

Historischer Kontext:

1870 – 1900: Entwicklung der kinetischen Gastheorie (Boltzmann)

1896: Entdeckung des Elektrons (Thomson)

1900: Anwendung der kinetischen Gastheorie auf freie Elektronen in Metallen (Drude)

Grundannahmen der Drude-Theorie:

- 1. Elektronen unterliegen Streuprozessen. Mittlere Zeit zwischen zwei Streuprozessen ist die Relaxationszeit τ (material- u. temperaturabhängig).
- 2. Nach einem Streuprozess besitzt ein Elektron einen Impuls von Null.
- 3. Zwischen Streuprozessen reagieren Elektronen aufgrund ihrer Ladung auf angelegte äußere elektrische und magnetische Felder.

Rechnungen:

- Drude-Bewegungsgleichung
- Ohmsches Gesetz

ionsequenzen:

Wahrscheinlichkeit für Streuprozeß im Zeitintervall
$$dt: \frac{dt}{\tau}$$
 \Rightarrow Zeitliche Entwicklung des Impalses \vec{p} (Ensemble-Mittelwert):

 $\vec{p}(t+dt) = \vec{0} \cdot \frac{dt}{\tau} + (\vec{p}(t) + \vec{F}dt)(1 - \frac{dt}{\tau})$

Wahrscheinlichkeit

Listreuung mit Wahrscheinlichkeit

Resultat $\vec{p} = 0$
 $\vec{p}(t) + \frac{d\vec{p}}{dt} dt = \vec{p}(t) - \vec{p}(t) \frac{dt}{\tau} + \vec{F}dt - \vec{F}dt \frac{dt}{\tau}$

externe Kraft
$$\vec{F} = -e (\vec{E} + \vec{v} \times \vec{B})$$
Dissipationsterm
(mikroskop. Analogon zur Reibung)

F = -e (E+V×B)

O (dt2), vernachlässigt

Ohmsches Gesetz und Leitfähigkeit

Ziel: mikroskop. Verständnis des Ohmschen Gesetzes

Start:
$$\vec{O} = \frac{d\vec{p}}{dt} = -e\vec{E} - \frac{\vec{p}}{z} \Rightarrow \vec{p} = -ez\vec{E} = m\vec{v} \Rightarrow \vec{v} = \frac{-ez}{m}\vec{E}$$

Start: $\vec{O} = \frac{d\vec{p}}{dt} = -e\vec{E} - \frac{\vec{p}}{z} \Rightarrow \vec{p} = -ez\vec{E} = m\vec{v} \Rightarrow \vec{v} = \frac{-ez}{m}\vec{E}$

Ohmsches Gesetz:
$$U = RJ \rightarrow mikroskop$$
: $\vec{j}(\vec{r},t) = \sigma \vec{t}(\vec{r},t)$

Ansatz: $\vec{j} = g\vec{v}$

$$= -en\vec{v} = -en\frac{-e\tau\vec{t}}{m} = \frac{e^2n\tau}{m}\vec{E} \Rightarrow \sigma = \frac{e^2n\tau}{m}$$

The second section of the second s

Dissipation: $\vec{V} = -\frac{ez}{m} \vec{E} \sim \vec{F}$ gilt nur in Aissipativen Systemen $\vec{V} := \mu \vec{E}$ Def Mobilität μ

3. Hall-Effekt (2)

Experimenteller Befund:

Messung einer Spannung quer zum Stromfluss bei Anlegen eines Magnetfeldes

Fig. 3.1 Edwin Hall's 1879 experiment. The voltage measured perpendicular to both the magnetic field and the current is known as the Hall voltage which is proportional to B and inversely proportional to the electron density (at least in Drude theory).

Table 3.1 Comparison of the valence of various atoms to the valence predicted from the measured Hall coefficient.

Material	$\frac{1}{-eR_Hn_{atomic}}$	Valence
Li	.8	1
Na	1.2	1
\mathbf{K}	1.1	1
Cu	1.5	1
${ m Be}$	-0.2*	2
${ m Mg}$	-0.4	2
Ca	1.5	2

Rechnung: Hall-Effekt

Elektronen in elektrischen und magnetischen Feldern

Ziel: mikroskop. Erklärung des Hall-Effektes
$$\frac{1}{6} = \frac{1}{6} = \frac{1}{6}$$

$$\frac{d\vec{p}}{dt} = \vec{0} = -e(\vec{E} + \vec{v} \times \vec{B}) - \frac{P}{Z}$$

$$\vec{0} = \vec{E} + \vec{v} \times \vec{B} + \frac{P}{ez}$$

 $\vec{E} = -\vec{v} \times \vec{B} - \vec{P}$

$$= \frac{1}{ne} \vec{3} \times \vec{B} - \frac{m \vec{3}}{(e\tau)(-ne)} = \frac{3}{2} \vec{3}$$

$$\frac{1}{\sqrt{2}} = \frac{5}{\sqrt{2}} \frac{8}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}} = \frac{5}{\sqrt{2}} \frac{8}{\sqrt{2}}$$

nur E-Feld

E = 18 = 88

 $=\begin{pmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yy} & S_{yz} \end{pmatrix} \begin{pmatrix} J_x \\ J_y \\ S_{zz} \end{pmatrix} \begin{pmatrix} J_x \\ J_y \\ S_{zz} \end{pmatrix}$

Hull-Kue M:
$$R_{H} = \frac{\Lambda}{n(-e)}$$

Tost: 1) (homie $n = Valenz \cdot n_{Atom} = Dichle frier Elehtr.$

einwertige Metalle V

2) Strenzeit (= Relaxation)ziit z)

 $\sigma = \frac{e^{2}n}{m}z$
 $\Lambda = \frac{e^{2}n}{m}z$

EH = AX B2 =: PH Jx B2

3. Wärmeleitung (3)

Wärmeleitung: Transport thermischer Energie ohne Materietransport

Wärmestrom: $I = \frac{dQ}{dt}$

Wärmestromdichte:

Einheit: 1 W

 $j_0 = \frac{1}{4}$ Ein

Einheit: 1 W / m²

$$\frac{dQ}{dt} = \kappa A \frac{\Delta T}{L}$$

Ursache für Wärmestrom: Temperaturgefälle

Vektorielles Wärmeleitungsgesetz (Fourier-Gesetz):

$$\vec{J}_Q = -\kappa \ \nabla T$$

k: Wärmeleitfähigkeit

Einheit 1 W / K m
Minus: Wärme fließt
von warm nach kalt

3. Wiedemann-Franz-Gesetz (4)

Der größte Erfolg der Drude-Theorie:

- Erklärung des zuvor rein empirischen Wiedemann-Franz-Gesetzes
- Zurückführung auf fundamentale Konstanten k_B und e

Tab	\mathbf{le}	3.2	Lorenz	numb	ers $\kappa/($	$T\sigma$)
for	va	rious	metal	s in	units	of
10^{-8}	3 W	attOl	$_{ m nm/K^2}$			

Material	L
Lithium (Li)	2.22
Sodium (Na)	2.12
Copper (Cu)	2.20
Iron (Fe)	2.61
Bismuth (Bi)	3.53
Magnesium (Mg)	2.14

Rechnung: Wiedemann-Franz-Gesetz

Thermische Leitfähigkeit und Wiedemann-Franz-Gesetz

Kinetische Gastheorie:
$$k = \frac{1}{3} n c_V \langle v \rangle \lambda$$

Teilchen diehte Spia. Warme proteinlien

 $c_V = \frac{3}{7} h_B$
 $c_V = \frac{3}{7} h_B$
 $c_V = \frac{3}{7} h_B$
 $c_V = \frac{3}{7} h_B$
 $c_V = \frac{3}{7} h_B$

$$\Rightarrow K = \frac{1}{3}n \frac{3}{7}hB \frac{8hBT}{m} = \frac{4nhBT}{m} = \frac{4nhBT}{m} = \frac{4nhBT}{m} = \frac{4nhBT}{m} = \frac{1}{m} =$$

Prublem	mit Wiolemann - Franz - Gesetz	
Richtiges	Eugebnis wg. Kompensation	
Drule	au groß au Milia.	
		Bomeis: $V = \mu E$ $E \approx 1 V cm$
	therms elehtr. Koeff.	M = = = = = = 2, 0. 10-4 m2 1. Al
	2 Größenordnungen Falsch	$=> V = 7.9.10^{-7} \text{m/s}$
		$\Rightarrow \lambda = VZ = 5.10^{17} \text{ m (AD)}$ viel zu hlein!
		1% vom Kern- darchmesser!

3. Seebeck-Koeffizient (5)

Seebeck-Effekt: Temperatur-Differenz bewirkt elektrische Potentialdifferenz

Vorhersage der Drude-Theorie:

$$S = \frac{-k_B}{2 e} = -4.3 \ 10^{-4} \ \text{V/K}$$

2 Größenordnungen zu groß

Grund: Wärmekapazität des Elektronengases zu groß angesetzt.

Table 3.3 Seebeck coefficients of various metals at room temperature, in units of 10^{-6} V/K

*	Material	S
	Sodium (Na)	-5
	Potassium (K) Copper (Cu)	-12.5 1.8
	Beryllium (Be) Aluminum (Al)	1.5 - 1.8

Rechnung: Transport-Kopplungen

Transport als Nichtgleichgewichtsphänomen

Elektrischer Strom \rightarrow Ohmsches Gesetz \bar{j} el = $\sigma \bar{E}$ = $-\sigma \nabla \phi$ Wärmestrom \rightarrow Fouriersches Gesetz \bar{j} el = $-E \nabla T$ Teilchenstrom \rightarrow Erstes Ficksches Gesetz \bar{j} 004 = $-D \nabla c$

Ursache	Wirkung: elektrischer Strom	Teilchenstrom	Wärmesfrom
Vφ	Ohm	(Elehtromigration)	Peltier
Vc		Fick	
VT	Seebeck	(Thermonigration)	Fourier

Nichtdiagonal-Elleht: Kopplung nach Poltier

$$\int a = T \int e$$

$$\int e^{-\ln x} - \ln x$$

$$\int a = \frac{1}{3} (\cot x) + \ln x$$

$$\int a = \frac{3}{3} (\cot x) + \ln x$$

$$\int a = \frac{3}{3} \frac{3}{2} \ln x + \ln x$$

$$\int e^{-\ln x} = \frac{1}{3} \frac{3}{2} \ln x + \ln x$$

$$\int e^{-\ln x} = \frac{1}{3} \frac{3}{2} \ln x + \ln x$$

$$\int e^{-\ln x} = \frac{1}{3} \frac{3}{2} \ln x + \ln x$$

3. Grenzen der Drude-Theorie (6)

Erfolg und Versagen der Drude-Theorie nebeneinander:

Table 3.2 Lorenz numbers $\kappa/(T\sigma)$ for various metals in units of 10^{-8} WattOhm/K²

Material	L
Lithium (Li)	2.22
Sodium (Na)	2.12
Copper (Cu)	2.20
Iron (Fe)	2.61
Bismuth (Bi)	3.53
Magnesium (Mg)	2.14

Table 3.3 Seebeck coefficients of various metals at room temperature, in units of 10^{-6} V/K

Material	S
Sodium (Na)	-5
Potassium (K)	-12.5
Copper (Cu)	1.8
Beryllium (Be)	1.5
Aluminum (Al)	-1.8

Exkurs: Elektromigration

- Koppeleffekt: aufgrund eines elektrischen Stroms wird auch Materie transportiert.
- Phänomen seit mehr als 100 Jahren bekannt.
- Ursache: atomare Diffusion bekommt Vorzugsrichtung (hauptsächlich: Stöße mit Elektronen, Wirkung elektrisches Feld)
- Konsequenzen: u.a. relevanter Ausfallmechanismus für integrierte Schaltkreise

← Leiterbahnausfall durch Unterbrechung (Breite ca. 800 nm)

Leiterbahn-Material wird lateral oder in die dritte Dimension wegtransportiert

Bildquelle: Wikipedia

Exkurs: Elektromigration

Der Transport kann extreme Formen annehmen:

Weiträumige Unterbrechung

Ausbildung von Hügeln ("hillocks")

Exkurs: Elektromigration

Der Transport kann extreme Formen annehmen:

Extreme Anisotropie: metallische Fäden ("Whisker")

- Kurzschlussgefahr

Ausbildung von Hügeln

("hillocks")

Bildquelle: Wikipedia