Algebraic Geometry.

Alec Zabel-Mena

September 19, 2023

Contents

1	Affine Algebraic Sets	5
	1.1 Affine <i>n</i> -Space and Algebraic Sets	5

4 CONTENTS

Chapter 1

Affine Algebraic Sets

1.1 Affine *n*-Space and Algebraic Sets

Definition. Let k be a field. We define **affine** n-space over k to be the cartesian product $\mathbb{A}^n(k) = \underbrace{k \times \cdots \times k}_{n\text{-times}}$. If the field k is understood, we write \mathbb{A}^n . We call the elements of

 $\mathbb{A}^{(k)}$ affine points. We call $\mathbb{A}^{(k)}$ and $\mathbb{A}^{(k)}$ the affine line and affine plane over k, respectively.

Definition. Let k be a field, and let $f \in k[x_1, \ldots, x_n]$. We call an affine point $P \in \mathbb{A}^n(k)$ a **zero**, or **root** of f if f(P) = 0, where f(P) is understood to be $f(a_1, \ldots, a_n)$, where $P = (a_1, \ldots, a_n)$. We call the set of zeros of f, V(f) the **hypersurface** defined by f. We call hypersurfaces in $\mathbb{A}^2(k)$ affine plane curves. If deg f = 1, we call V(f) a **hyperplane**. We call hypersurfaces in $\mathbb{A}^1(k)$ lines.

Example 1.1.

Definition. Let k be a field, and S any set of polynomials in $k[x_1, \ldots, x_n]$. We define the **set of zeros** of S to be the set $V(S) = \{P \in \mathbb{A}^n(k) : f(P) = 0 \text{ for all } f \in S\}$. We call a subset X of $\mathbb{A}^n(k)$ an **affine algebraic set** if X = V(S) for some set S of polynomials.

Lemma 1.1.1. The following are true for any field k.

- (1) If \mathfrak{a} is an ideal in $k = [x_1, \dots, x_n]$ generated by a set $S \subseteq k[x_1, \dots, x_n]$, then $V(\mathfrak{a}) = V(S)$.
- (2) If $\{\mathfrak{a}_{\alpha}\}$ is a collection of ideals of $k[x_1,\ldots,x_n]$, then

$$V\Big(\bigcup\mathfrak{a}_{\alpha}\Big)=\bigcap V(\mathfrak{a}_{\alpha})$$

- (3) If $\mathfrak{a} \subseteq \mathfrak{b}$ are ideals, then $V(\mathfrak{b}) \subseteq V(\mathfrak{a})$.
- (4) If $f, g \in k[x_1, ..., x_n]$, then $V(fg) = V(f) \cup V(g)$.
- (5) $V(0) = \mathbb{A}^n(k) \text{ and } V(1) = \emptyset.$

Figure 1.1: Affine Algebraic Sets in $\mathbb{A}^2(\mathbb{R})$ and $\mathbb{A}^3(\mathbb{R})$.

Proof. First, let S be a set of polynomials in $k[x_1, \ldots, x_n]$. Let $\mathfrak{a} = (S)$ the ideal generated by S. Then if $f \in S$ is a polynomia, $f \in I$. Then if $P \in \mathbb{A}^n$ is a zero of f in S, it is a zero of f in \mathfrak{a} , hence $V(S) \subseteq V(\mathfrak{a})$. Conversely, we have that if $f \in \mathfrak{a}$, then by suppostion, $f(x_1, \ldots, x_n) = f_1(x_1, \ldots, x_n) + \cdots + f_n(x_1, \ldots, x_n) + \ldots$ Now, if f(P) = 0 in I, then we have $f_i(P) = 0$ for every i. This makes f(P) = 0 in S, so that $V(\mathfrak{a}) \subseteq V(S)$.

Now, consider the collection $\{\mathfrak{a}_{\alpha}\}$ of ideals in $k[x_1,\ldots,x_n]$. Let $P \in V(\bigcup \mathfrak{a}_{\alpha})$. Then for every $f \in \bigcup \mathfrak{a}_{\alpha}$, f(P) = 0 for each α . So that $P \in \bigcap V(\mathfrak{a}_{\alpha})$. Again, on the otherhand, if $P \in \bigcap V(\mathfrak{a}_{\alpha})$, $P \in V(\mathfrak{a}_{\alpha})$ for all α so that $P \in V(\bigcup \mathfrak{a}_{\alpha})$.

Let \mathfrak{a} and \mathfrak{b} ideals in $k[x_1, \ldots, x_n]$, where $\mathfrak{a} \subseteq \mathfrak{b}$. Let $P \in V(\mathfrak{b})$. Then for every polynomial $f \in \mathfrak{b}$, f(P) = 0, so that f(P) = 0 when $f \in \mathfrak{a}$, hence $P \in V(\mathfrak{a})$. This makes $V(\mathfrak{b}) \subseteq V(\mathfrak{a})$.

Consider now the polynomials $f, g \in k[x_1, ..., x_n]$. Certainly if $P \in V(fg)$ it is a root of fg; i.e.e. fg(P) = 0. This makes f(P) = 0 or g(P) = 0 so that $V(fg) \subseteq V(f) \cup V(g)$. On the other hand if P is a root of f, or a root of f, it is a root of f making $V(f) \cup V(f) \subseteq V(fg)$, and equality is established.

Finally, observe that the zero polynomial $0(x_1, \ldots, x_n)$ has all its coefficients 0, so that any point $P \in \mathbb{A}^n$ is a zero. This makes $V(0) = \mathbb{A}^n$. Likewise, the constant polynomial

 $1(x_1,\ldots,x_n)$ has its 0-th coefficient 1 so that it has not points $P\in\mathbb{A}^n$ as roots. That is $V(1)=\emptyset$.

Bibliography

- [1] D. Dummit, Abstract algebra. Hoboken, NJ: John Wiley & Sons, Inc, 2004.
- [2] I. N. Herstein, Topics in algebra. New York: Wiley, 1975.
- [3] M. Atiyah and I. MacDonald, *Introduction to Commutative Algebra*. Addison-Wesly Series in Mathematics, CRC Press.
- [4] D. Eisenbud, Commutative Algebra: Wit a View Toward Algebraic Geometry. Graduate Texts in Mathematics, Springer Verlag.
- [5] R. Hartshorne, Algebraic Geometry. Graduate Texts in Mathematics, Springer Verlag.
- [6] W. Fulton, Algebraic Curves: An Introduction to Algebraic Geometry. Advanced Book Classics, Addison-Wesley.