CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the March 2016 series

9702 PHYSICS

9702/22

Paper 2 (AS Level Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE® and Cambridge International A and AS Level components.

В1

B1

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9702	22

1 (a) metre rule/tape measure

(b) (i)
$$v = [(1.8 \times 126 \times 10^{-2}) / 5.1 \times 10^{-3}]^{1/2}$$
 C1
= 21.1 (m s⁻¹)

(ii) percentage uncertainty = 4% or fractional uncertainty = 0.04
$$\Delta v = 0.04 \times 21.1$$
 = 0.84 C1 $v = 21.1 \pm 0.8 \, (\text{m s}^{-1})$

- 2 (a) change in velocity/time (taken) or rate of change of velocity
 - **(b) (i)** $v_X = (24/1.5) = 16 \,(\text{m s}^{-1})$

(ii)
$$\tan 28^\circ = v_Y/v_X$$
 or $v_X = v \cos 28^\circ$ and $v_Y = v \sin 28^\circ$ C1
 $v_Y = 16 \tan 28^\circ$ or $v_Y = 16 \times (\sin 28^\circ /\cos 28^\circ)$ so $v_Y = 8.5 \,(\text{m s}^{-1})$ A1

(iii)
$$v = u + at$$

 $t = (0 - 8.5)/(-9.81)$
 $= 0.87(s)$

- (iv) straight line from positive v_Y at t = 0 to negative v_Y at t = 1.5 s M1 line starts at (0, 8.5) and crosses t-axis at (0.87, 0) and does not go beyond t = 1.5 s. A1
- (c) (i) $(v^2 = u^2 + 2as)$ $0 = 8.5^2 + 2(-9.81)s$ or $(s = ut + \frac{1}{2}at^2)$ $s = 8.5 \times 0.87 + \frac{1}{2} \times (-9.81) \times 0.87^2$ or $(s = vt - \frac{1}{2}at^2)$ $s = 0 - \frac{1}{2} \times (-9.81) \times 0.87^2$ or $(s = \frac{1}{2}(u + v)t)$ or area under graph) $s = 0.5 \times 8.5 \times 0.87$

$$s = 3.7 \text{ (m)}$$

(ii)
$$\Delta E_P = mg\Delta h$$
 (allow $E = mgh$) C1
 $m = 22 / (9.81 \times 3.7)$
 $= 0.61 \text{ (kg)}$

(d) acceleration (of freefall) is unchanged/not dependent on mass, and so no effect (on maximum height)

or explanation in terms of energy:

(initial) KE
$$\propto$$
 mass, (Δ)KE = (Δ)PE, (max) PE \propto mass, and so no effect (on maximum height)

- 3 (a) (i) (work =) force × distance moved in the direction of the force.
 - (ii) the energy <u>stored</u> (in an object) due to extension/compression/change of shape B1

(b) (i)
$$E_K = \frac{1}{2}mv^2$$
 C1
= $0.5 \times 0.40 \times 0.30^2$
= 1.8×10^{-2} (J)

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9702	22

- (ii) (change in) kinetic energy = work done on spring/(change in) elastic potential energy C1 $1.8 \times 10^{-2} = \frac{1}{2} \times F \times 0.080$ C1 $F_{\text{MAX}} = 0.45 \text{ (N)}$
- (iii) a = F/m = 0.45/0.40= 1.1 (m s⁻²)
- (iv) 1. constant velocity/resultant force is zero, so in equilibrium B1
 - 2. decelerating/resultant force is not zero, so not in equilibrium B1
- (c) curved line from the origin M1 with decreasing gradient A1
- 4 (a) (i) Displacement of particles perpendicular to direction of energy propagation B1
 - (ii) waves meet/overlap (at a point)
 (resultant) displacement is sum of the individual displacements

 B1
 - (b) (i) $\lambda = vT$ or $\lambda = v/f$ and f = 1/T C1 $\lambda = 4.0 \times 1.5$ $\lambda = 6.0 \text{ (cm)}$
 - (ii) path difference $[= (44 \text{ cm} 29 \text{ cm})/6 \text{ cm}] = 2.5\lambda$

either waves have path difference = $(n + \frac{1}{2})\lambda$ or waves have phase difference = 180° M1

so destructive interference A1

- (c) (i) intensity \propto (amplitude)² C1 ratio = $(0.60^2/0.90^2) = 0.44$
 - (ii) phase difference = 90° A1
- 5 (a) (i) movement/flow of charge carriers B1
 - (ii) work (done) or energy (transformed)(from electrical to other forms) charge
 - (b) (i) p.d. across one lamp = 2.5 V C1 resistance = $[(8.7 7.5)/0.3]/2 = 2.0 (\Omega)$
 - (ii) straight line through the origin M1 with gradient of 0.5

В1

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9702	22
(ii	i) $P = I^2R$ or $P = VI$ and $V = IR$ or $P = V^2 / R$ and $V = IR$ = $0.30^2 \times 2.0$ = 0.60×0.30 = $0.60^2 / 2.0$ = 0.18 (W)	₹	C1 A1
(iv	1 $R = \rho l/A$ $l = (2.0 \times 0.40 \times 10^{-6}) / 1.7 \times 10^{-8}$ = 47 (m)		C1 A1
	2 $I = Anvq$ $v = 0.30 / (0.40 \times 10^{-6} \times 8.5 \times 10^{28} \times 1.6 \times 10^{-19})$ $= 5.5 \times 10^{-5} \text{ (m s}^{-1})$		C1 A1
6 (a)	$^1_1 p$ $^0_1 \beta^-$ and $^0_0 \overline{\nu}$		B1 B1
(b) a	n (electron) antineutrino		B1
(c) le	epton(s)		B1
(d) (i) down, down, up/ddu		B1

(ii) a down/d (quark) changes to an up/u (quark) or $ddu \rightarrow uud$