The Math Behind Transformer

Training Transformer LLMs

Learning goals

- Learn to calculate Transformer number of parameters
- Understand Transformer computation and memory load
- Learn about Flash Attentions
- Understand Scaling Laws and Chinchilla

LLM PARAMETERS: MAIN COMPONENTS

- Model parameters are half-precision (bfloat16) numbers of 2 bytes
- One block (decoder unit) consists of:
 - W_q , W_k , W_v matrices which are each $d_{model} \cdot n_{heads} \cdot d_{head}$ and project the input into the query, key, and value used in self-attention.
 - A W_0 matrix which is also $d_{model} \cdot n_{heads} \cdot d_{head}$ used on the output of self-attention, before the MLP (feedforward) layer
 - MLP weights, which are two matrices each of $d_{model}^2 \cdot 4$. Here the 4 is based on calculations and means that the MLP is 4 times the size of the model embedding dimension.
- In most architectures, $d_{model} = n_{heads} \cdot d_{head}$

LLM PARAMETERS: FORMULA

Combining the above, for one layer/block we get this formula:

$$P_{layer} = 3 \cdot d_{model} \cdot n_{heads} \cdot d_{head} + \cdot d_{model} \cdot n_{heads} \cdot d_{head} + 2 \cdot 4 \cdot d_{model}^2$$
 $P_{layer} = 4 \cdot d_{model} \cdot n_{heads} \cdot d_{head} + 8 \cdot d_{model}^2$
 $P_{layer} = 4 \cdot d_{model} \cdot d_{model} + 8 \cdot d_{model}^2$
 $P_{layer} = 12 \cdot d_{model}^2$

For a LLM of *n* layers, we get:

$$P = 12 \cdot n_{layers} \cdot d_{model}^2$$

LLM PARAMETERS: EXAMPLE

GPT-3 Small has:

$$n_{params} = 125 M$$
 ; $n_{layers} = 12$; $d_{model} = 768$; $n_{heads} = 12$; $d_{head} = 64$

GPT-3 Medium has:

$$n_{params}=350~M$$
 ; $n_{layers}=24$; $d_{model}=1024$; $n_{heads}=16$; $d_{head}=64$

Applying the above formula we get \sim 85 M parameters for GPT-3 Small and \sim 302 M parameters for GPT-3 Medium.

What are we missing ... ?!

LLM PARAMETERS: OTHER COMPONENTS

- Word Embedding parameters
- Position Embedding parameters
- Token Type Embedding parameters
- Embedding Layer Normalization, weight and Bias
- Other model-specific parameters

They do not scale with model size.

COMPUTE REQUIREMENTS

$$C \approx \tau T = 6PD$$

where:

- C is compute to train the model, in total floating point operations
- $C = C_{forward} + C_{backward}$
- $C_{forward} \approx 2PD$
- $C_{backward} \approx 4PD$
- τ is throughput of hardware: (No. GPUs) x (FLOPs/GPU)
- T is the time spent training the model, in seconds
- P is the number of parameters in the model
- D is the dataset size, in tokens

COMPUTE UNITS

C can be measured in different units:

- FLOP-seconds which is [Floating Point Ops / Second] x [Seconds]
 - We also use multiples GFLOP-seconds, TFLOP-seconds etc.
 - Other multiples like PFLOP-days are used in papers
 - 1 PFLOP-day = $10^{15} \cdot 24 \cdot 3600$ FLOP-seconds
- GPU-hours which is [No. GPUs] x [Hours]
 - GPU model is also required, since they have different compute capacities
 - For any GPU model, its Actual FLOPs are always lower than the advertised theoretical FLOPs

PARAMETER VS DATASET

- Model performance depends on number of parameters P, but also on number of training tokens D
- We need to decide about P and D, so that we get the best performance withing the compute budget
- The optimal tradeoff between P and D is: D = 20P
 - This is usually true for Chinchilla models, but not for all LLMs
- Training a LLM for less than 200 billion tokens is not recommended
- Rule of thumb: First determine the upmost inference cost, and then train the biggest model within that boundary.

MEMORY REQUIREMENTS

Common questions:

- How big is this model in bytes?
- Will it fit/train in my GPUs?

Model size components:

- Model parameters
- Optimizer states
- Gradients
- Activations

MODEL PARAMETERS

Parameter size depends on chosen representation:

- Pure fp32: $Mem_{model} = 4 \ bytes/param \cdot N_{params}$
- fp16 or bf16: $Mem_{model} = 2 \ bytes/param \cdot N_{params}$
- int8: $Mem_{model} = 1 \ byte/param \cdot N_{params}$

It is practically common to use mixed representations:

- fp32 + fp16
- fp32 + bf16

OPTIMIZER STATES

AdamW: $Mem_{AdamW} = 12 \ bytes/param \cdot N_{params}$

fp32 copy of parameters: 4 bytes/param

Momentum: 4 bytes/param

Variance: 4 bytes/param

bitsandbytes (8-bit optimizer): $Mem_{AdamW} = 6 \ bytes/param \cdot N_{params}$

• fp32 copy of parameters: 4 bytes/param

Momentum: 1 byte/param

Variance: 1 byte/param

SGD: $Mem_{AdamW} = 8 \ bytes/param \cdot N_{params}$

fp32 copy of parameters: 4 bytes/param

Momentum: 4 bytes/param

GRADIENTS

They are usually stored in the same datatype as the model parameters.

Their memory overhead contribution is:

- fp32: Mem_{grad} = 4 bytes/param ⋅ N_{params}
- fp16 or bf16: $Mem_{grad} = 2 \ bytes/param \cdot N_{params}$
- int8: $Mem_{grad} = 1 \ byte/param \cdot N_{params}$

ACTIVATIONS

- GPUs are bottlenecked by memory, not FLOPs
- Save GPU memory by recomputing activations of certain layers
- Various schemes for selecting which layers to clear
- They take some extra memory, but save even more

Total memory when training without activations:

$$Mem_{training} = Mem_{params} + Mem_{opt} + Mem_{grad}$$

Total memory when training **using** activations:

$$Mem_{training} = Mem_{params} + Mem_{opt} + Mem_{grad} + Mem_{activ}$$

In the latter case, Mem_{params} , Mem_{opt} and Mem_{grad} are significantly smaller than in the former.

DISTRIBUTED TRAINING

- Training LLMs faster on many GPUs
- Avoiding OOM issues
- Data parallelism: split the data on different model replicas
- Tensor parallellism: split model parameters accross GPUs
- Sharded optimizers: reduce optimizer overhead by No. GPUs
 - ZeRO (Zero Redundancy Optimizer)
 - Requires low extra communication between GPUs
 - Decreases optimizer memory requirement
 - Improves training speed

THE $O(n^2)$ PROBLEM OF TRANSFORMER LLMs

Quadratic time & memory complexity of Self-Attention

- Inductive bias of Transformer models: Connect all tokens in a sequence to each other
- Pro: Can (theoretically) learn contexts of arbitrary length
- Con: Bad (quadratic)scalability limiting context size

Resulting Problems:

- Several tasks require models to consume longer sequences
 - Text summarization of documents
 - Sentiment analysis of documents
 - Classification of EEG trace of thousand time steps
 - Classification of coding or non-coding genes
 - ... many more from biology/medicine
- Efficiency: Are there more efficient (e.g., linear) implementations which achieve similar or even better performance?

EFFICIENT TRANSFORMERS

Broad overview on so-called "X-formers":

- Efficient & fast Transformer-based models
 - \rightarrow Reduce complexity from $\mathcal{O}(n^2)$ to (up to) $\mathcal{O}(n)$
- Claim on-par (or even) superior performance
- Different techniques used:
 - Fixed/Factorized/Random Patterns
 - Learnable Patterns (extension of the above)
 - Low-Rank approximations or Kernels
 - Recurrence (see e.g. ▶ Transformer-XL (Dai et al., 2019)
 - Memory modules

Side note:

- Most Benchmark data sets not explicitly designed for evaluating long-range abilities of the models.

INTRODUCING PATTERNS

Reasoning:

- Making every token attend to every other token might be unnecessary
- Introduce sparsity in the commonly dense attention matrix

Example:

Figure 1: Building blocks of the attention mechanism used in BIGBIRD. White color indicates absence of attention. (a) random attention with r=2, (b) sliding window attention with w=3 (c) global attention with q=2. (d) the combined BIGBIRD model.

Source: Zaheer et al. (2020)

FlashAttention

Fast and Memory-Efficient Exact Attention with IO-Awareness

- Fast
 - 15% faster than BERT
 - 3x faster than GPT-2
 - 2.4x faster than Megatron-LM
- Memory-efficient
 - Reducing from $O(n^2)$ to O(n)
- Exact
 - Same as "vanilla attention", not an approximation
- IO aware
 - Reducing memory load/store operations

GPU MEMORY HIERARCHY

Source: Dao et al. (2022)

COMPUTING CONSIDERATIONS

- GPU compute has been growing faster than memory bandwidth
 - GPU has to wait for data
- Transformer operations are memory-bound
 - Elementwise operations with high memory access
- IO aware means reducing memory load/store operations
- FlashAttention implements the following:
 - Operation fusion to reduce memory access
 - Tiling or chunking the softmax matrix into blocks
 - Recomputation for better memory utilization

OPERATION FUSION

Source: https://horace.io/brrr_intro.html

LIMITATIONS AND PROSPECTS

- FlashAttention requires writing attention to CUDA language
 - A new CUDA kernel for each new attention implementation
 - CUDA is lower-level than PyTorch
 - Implementation may not be transferable accross GPUs
- Towards IO-Aware Deep Learning
 - Extending beyonde attention
- Multi-GPU IO-Aware Methods
 - FlashAttention computation may be parallelizable accross multiple GPUs

SCALING LAWS

- Performance depends strongly on scale, weakly on model shape
 - Scale means: parameters N, data D, and compute C
 - Shape means: depth and width
- Smooth power laws
 - Performance has power-law relation with each factor N, D, C
 - When not bottlenecked by the other two
 - Trend spanning more than six orders of magnitude
- Universality of overfitting
 - Performance enters regime of diminishing returns if N or D held fixed while the other increases
 - Performance penalty depends on $N^{0.74}/D$

SCALING LAWS

- Universality of training
 - Training curves follow predictable power-laws
 - Their parameters are roughly independent of model size
 - It is possible to predict by extrapolating the early part of the training curve
- Transfer improves with test performance
 - When evaluating on text with different distribution from training text, results are strongly correlated to those on the validation set
 - Transfer to different distribution incurs a constant penalty but improves in line with performance on training set
- Sample efficiency
 - Large models are more sample-efficient than small models
 - They reach same performance with fewer optimization steps

SCALING LAWS

- Convergence is inefficient
 - When C is fixed but N and D are not, optimal performance is achived by training very large models and stopping significantly short of convergence
- Optimal batch size
 - Ideal size is a power of the loss only
 - ullet It is \sim 1-2 million tokens for the largest models we can train

Larger language models will perform better and be more sample efficient than current models.

COMPUTE-OPTIMAL LLMs

```
➤ Hoffmann et al. (2022)
```

Given a fixed FLOPs budget, how should we trade-off model size and text size to optimize performance?

- Find N and D so that FLOPs(N, D) = C and L(N, D) is minimal
- Empirically estimated N and D based on 400 models.
 - Ranging from 70 M to 16 B parameters
 - Trained on 5 B to 400 B tokens
- Different results from those of ► Kaplan et al. (2020)
- Results verified using Chinchilla
 - Chinchilla has 70 B parameters and is trained on 1.4 T tokens
 - 4x less parameters and 4x more tokens than Gopher
 - Chinchilla outruns Gopher and has reduced memory footprint and inference cost

COMPUTE-OPTIMAL LLMs

CHINCHILLA AND THE OTHER LLMs

Model	Size (# Parameters)	Training Tokens
LaMDA (Thoppilan et al., 2022)	137 Billion	168 Billion
GPT-3 (Brown et al., 2020)	175 Billion	300 Billion
Jurassic (Lieber et al., 2021)	178 Billion	300 Billion
Gopher (Rae et al., 2021)	280 Billion	300 Billion
MT-NLG 530B (Smith et al., 2022)	530 Billion	270 Billion
Chinchilla	70 Billion	1.4 Trillion

Source: Hoffmann et al. (2022)

Model	Layers	Number Heads	Key/Value Size	$\mathbf{d}_{\text{model}}$	Max LR	Batch Size
Gopher 280B	80	128	128	16,384	4×10^{-5}	$3M \rightarrow 6M$
Chinchilla 70B	80	64	128	8,192	1×10^{-4}	$1.5\text{M} \rightarrow 3\text{M}$

CHINCHILLA ON MMLU

Random	25.0%
Average human rater	34.5%
GPT-3 5-shot	43.9%
Gopher 5-shot	60.0%
Chinchilla 5-shot	67.6%
Average human expert performance	89.8%
June 2022 Forecast	57.1%
June 2023 Forecast	63.4%

CHINCHILLA ON QA

	Method	Chinchilla	Gopher	GPT-3	SOTA (open book)
	0-shot	16.6%	10.1%	14.6%	
Natural Questions (dev)	5-shot	31.5%	24.5%	-	54.4%
	64-shot	35.5%	28.2%	29.9%	
TriviaQA (unfiltered, test)	0-shot	67.0%	52.8%	64.3 %	
	5-shot	73.2%	63.6%	-	-
	64-shot	72.3%	61.3%	71.2%	
TriviaQA (filtered, dev)	0-shot	55.4%	43.5%	-	
	5-shot	64.1%	57.0%	-	72.5%
	64-shot	64.6%	57.2%	-	