EHB222E QUESTIONS 3th week

Q

- Covalent
- b) Electrovalent
- c) Co-ordinate
- d) Slope
- e) None of the above

Si = Silicon Nucleus with 14 Protons

a) Goes up

- Goes down
- c) Remains the same d) Can't say
- e) None of the above

A semiconductor has generally valence electrons.

a) 2 b) 3 c) 6

e) None of the above

- Equals the number of holes
- b) Is greater than the number of holes
- c) Is less than the number of holes
- d) Are sometimes less than number of holes
- e) None of the above

Semi-conductor

What is a semiconductor? How does a semiconductor differ from a conductor? Explain within two sentences.

Answer:

In an n-type material, the donor atom density is 10e17 atoms/cm³. What is free electron density?

Answer:

 $N_D \approx n$

Free electron density is 10e17 atoms/cm³ after doping

You have a diode with the following doping properties: $N_D = 10^{18} \, \text{cm}^{-3}$ and $N_A = 10^{15} \, \text{cm}^{-3}$.

$$n_i = 1.5 \ x \ 10^{10} \, cm^{-3}, \ q = 1.602 \ x \ 10^{-19} \, C, \ \mu_n = 1600 \ cm^2/Vs, \ \mu_p = 400 \ cm^2/Vs, \ V_T = 25 \ mV$$

You have a diode with the following doping properties: $N_D = 10^{18}$ cm⁻³ and $N_A = 10^{15}$ cm⁻³. $n_i = 1.5 \times 10^{10}$ cm⁻³, $q = 1.602 \times 10^{-19}$ C, $\mu_n = 1600$ cm²/Vs, $\mu_p = 400$ cm²/Vs, $V_T = 25$ mV

Region	Majority Carriers	Minority Carriers
n-type		
p-type		

You have a diode with the following doping properties: $N_D = 10^{18}$ cm⁻³ and $N_A = 10^{15}$ cm⁻³. $n_i = 1.5 \times 10^{10}$ cm⁻³, $q = 1.602 \times 10^{-19}$ C, $\mu_n = 1600$ cm²/Vs, $\mu_p = 400$ cm²/Vs, $V_T = 25$ mV

Region	Majority Carriers	Minority Carriers
n-type	$n_n = N_D = 10^{18} \text{cm}^{-3}$	
p-type		

You have a diode with the following doping properties: $N_D = 10^{18}$ cm⁻³ and $N_A = 10^{15}$ cm⁻³. $n_i = 1.5 \times 10^{10}$ cm⁻³, $q = 1.602 \times 10^{-19}$ C, $\mu_n = 1600$ cm²/Vs, $\mu_p = 400$ cm²/Vs, $V_T = 25$ mV

Region	Majority Carriers	Minority Carriers
n-type	$n_n = N_D = 10^{18} \text{cm}^{-3}$	$p_n = n_i^2 / N_D = 255 \text{ cm}^{-3}$
p-type		

You have a diode with the following doping properties: $N_D = 10^{18}$ cm⁻³ and $N_A = 10^{15}$ cm⁻³. $n_i = 1.5 \times 10^{10}$ cm⁻³, $q = 1.602 \times 10^{-19}$ C, $\mu_n = 1600$ cm²/Vs, $\mu_p = 400$ cm²/Vs, $V_T = 25$ mV

Region	Majority Carriers	Minority Carriers
n-type	$n_n = N_D = 10^{18} \text{cm}^{-3}$	$p_n = n_i^2 / N_D = 255 \text{ cm}^{-3}$
p-type	$p_p = N_A = 10^{15} \text{cm}^{-3}$	

You have a diode with the following doping properties: $N_D = 10^{18}$ cm⁻³ and $N_A = 10^{15}$ cm⁻³. $n_i = 1.5 \times 10^{10}$ cm⁻³, $q = 1.602 \times 10^{-19}$ C, $\mu_n = 1600$ cm²/Vs, $\mu_p = 400$ cm²/Vs, $V_T = 25$ mV

Region	Majority Carriers	Minority Carriers
n-type	$n_n = N_D = 10^{18} \text{cm}^{-3}$	$p_n = n_i^2 / N_D = 255 \text{ cm}^{-3}$
p-type	$p_p = N_A = 10^{15} \text{cm}^{-3}$	$n_p = n_i^2 / N_A = 2.55 \times 10^5 \text{ cm}^{-3}$

You have a diode with the following doping properties: $N_D = 10^{18} \, \text{cm}^{-3}$ and $N_A = 10^{15} \, \text{cm}^{-3}$.

$$n_i = 1.5 \ x \ 10^{10} \ cm^{-3}, \ q = 1.602 \ x \ 10^{-19} \ C, \ \mu_n = 1600 \ cm^2/Vs, \ \mu_p = 400 \ cm^2/Vs, \ V_T = 25 \ mV$$

b) Find the barrier voltage.

You have a diode with the following doping properties: $N_D = 10^{18} \, \text{cm}^{-3}$ and $N_A = 10^{15} \, \text{cm}^{-3}$.

$$n_i = 1.5 \ x \ 10^{10} \ cm^{-3}, \ q = 1.602 \ x \ 10^{-19} \ C, \ \mu_n = 1600 \ cm^2/Vs, \ \mu_p = 400 \ cm^2/Vs, \ V_T = 25 \ mV$$

b) Find the barrier voltage.

$$V_B = -V_T \ln \left(\frac{n_i^2}{N_A N_D} \right) = -25 mV \ln \left(\frac{(1.5 \times 10^{10})^2}{10^{18} \times 10^{15}} \right) = 728 mV$$

You have a diode with the following doping properties: $N_D = 10^{18} \, \text{cm}^{-3}$ and $N_A = 10^{15} \, \text{cm}^{-3}$.

$$n_i = 1.5 \ x \ 10^{10} \ cm^{-3}, \ q = 1.602 \ x \ 10^{-19} \ C, \ \mu_n = 1600 \ cm^2/Vs, \ \mu_p = 400 \ cm^2/Vs, \ V_T = 25 \ mV$$

c) Calculate the specific conductivities of n- and p-type doped silicon.

You have a diode with the following doping properties: $N_D = 10^{18} \, \text{cm}^{-3}$ and $N_A = 10^{15} \, \text{cm}^{-3}$.

$$n_i = 1.5 \ x \ 10^{10} \ cm^{-3}, \ q = 1.602 \ x \ 10^{-19} \ C, \ \mu_n = 1600 \ cm^2/Vs, \ \mu_p = 400 \ cm^2/Vs, \ V_T = 25 \ mV$$

c) Calculate the specific conductivities of n- and p-type doped silicon.

$$\sigma = q(n\mu_n + p\mu_p)$$

You have a diode with the following doping properties: $N_D = 10^{18} \, \text{cm}^{-3}$ and $N_A = 10^{15} \, \text{cm}^{-3}$.

$$n_i = 1.5 \ x \ 10^{10} \ cm^{-3}, \ q = 1.602 \ x \ 10^{-19} \ C, \ \mu_n = 1600 \ cm^2/Vs, \ \mu_p = 400 \ cm^2/Vs, \ V_T = 25 \ mV$$

c) Calculate the specific conductivities of n- and p-type doped silicon.

$$\sigma_n = q \mu_n N_D = 256 \text{ S/cm}$$

$$\sigma_p = q\mu_p N_A = 0.06 S/cm$$

You have a diode with the following doping properties: $N_D = 10^{18} \, \text{cm}^{-3}$ and $N_A = 10^{15} \, \text{cm}^{-3}$.

$$n_i = 1.5 \times 10^{10} \text{ cm}^{-3}, q = 1.602 \times 10^{-19} \text{ C}, \mu_n = 1600 \text{ cm}^2/\text{Vs}, \mu_p = 400 \text{ cm}^2/\text{Vs}, V_T = 25 \text{ mV},$$

 $\varepsilon_0 = 8.85 \times 10^{-12} F/m, \varepsilon_r = 12$

You have a diode with the following doping properties: $N_D = 10^{18} \, \text{cm}^{-3}$ and $N_A = 10^{15} \, \text{cm}^{-3}$.

$$\begin{split} &n_i = 1.5 \text{ x } 10^{10} \text{ cm}^{-3}, \, q = 1.602 \text{ x } 10^{-19} \text{ C}, \, \mu_n = 1600 \text{ cm}^2/\text{Vs}, \, \mu_p = 400 \text{ cm}^2/\text{Vs}, \, V_T = 25 \text{ mV}, \\ &\epsilon_o = 8.85 \, \text{x } 10^{-12} F/m, \, \epsilon_r = 12 \end{split}$$

$$W = \sqrt{\frac{2.\varepsilon_o.\varepsilon_r.V_B}{q} \left[\frac{1}{N_D} + \frac{1}{N_A} \right]}$$
 V_B is found in the previous pages as 0.728 V

You have a diode with the following doping properties: $N_D = 10^{18} \, \text{cm}^{-3}$ and $N_A = 10^{15} \, \text{cm}^{-3}$.

$$\begin{aligned} &n_i = 1.5 \text{ x } 10^{10} \text{ cm}^{-3}, \text{ q} = 1.602 \text{ x } 10^{-19} \text{ C}, \mu_n = 1600 \text{ cm}^2/\text{Vs}, \mu_p = 400 \text{ cm}^2/\text{Vs}, V_T = 25 \text{ mV}, \\ &\epsilon_o = 8.85 \, \text{x } 10^{-12} F/m, \; \epsilon_r = 12 \end{aligned}$$

$$W = \sqrt{\frac{2.(8.85x10^{-12}F/m).12.(0.728V)}{1.602x10^{-19}C} \left[\frac{1}{10^{18}cm^{-3}} + \frac{1}{10^{15}cm^{-3}} \right]}$$

You have a diode with the following doping properties: $N_D = 10^{18} \, \text{cm}^{-3}$ and $N_A = 10^{15} \, \text{cm}^{-3}$.

$$\begin{split} &n_i = 1.5 \text{ x } 10^{10} \text{ cm}^{-3}, \ q = 1.602 \text{ x } 10^{-19} \text{ C}, \ \mu_n = 1600 \text{ cm}^2/\text{Vs}, \ \mu_p = 400 \text{ cm}^2/\text{Vs}, \ V_T = 25 \text{ mV}, \\ &\epsilon_o = 8.85 \, \text{x } 10^{-12} F/m, \ \epsilon_r = 12 \end{split}$$

$$W = 0.98 \,\mu m \qquad x_n N_D = x_p N_A$$

You have a diode with the following doping properties: $N_D = 10^{18} \, \text{cm}^{-3}$ and $N_A = 10^{15} \, \text{cm}^{-3}$.

$$\begin{split} &n_i = 1.5 \text{ x } 10^{10} \text{ cm}^{-3}, \text{ q} = 1.602 \text{ x } 10^{-19} \text{ C}, \mu_n = 1600 \text{ cm}^2/\text{Vs}, \mu_p = 400 \text{ cm}^2/\text{Vs}, V_T = 25 \text{ mV}, \\ &\epsilon_o = 8.85 \, \text{x } 10^{-12} \text{F/m}, \; \epsilon_r = 12 \end{split}$$

$$N_D/N_A = 1000$$
 $x_p/x_n = 1000$ $w \cong x_p$

You have a diode with the following doping properties: $N_D = 10^{18} \, \text{cm}^{-3}$ and $N_A = 10^{15} \, \text{cm}^{-3}$.

$$n_i = 1.5 \times 10^{10} \text{ cm}^{-3}, q = 1.602 \times 10^{-19} \text{ C}, \mu_n = 1600 \text{ cm}^2/\text{Vs}, \mu_p = 400 \text{ cm}^2/\text{Vs}, V_T = 25 \text{ mV},$$
 $\varepsilon_o = 8.85 \times 10^{-12} F/m, \varepsilon_r = 12$

$$x_p \cong 0.98 \, \mu m$$
 $x_n = \frac{x_p}{1000} \cong 0.98 \, nm$