Keyword Search Based on WFST Indexing

Wang Jian

Feb. 2, 2016

Introduction

Keyword Search

WFST-based Keyword Search

WFST-based Indexing
Utterance Level Keyword Search
Timed Keyword Search

Experiments

Setup

Results

References

Keyword Search

- also known as Spoken Term Detection
- Traditional Approaches
 - LVCSR-based
 - LVCSR followed by a text searching
 - Acoustic KWS
 - Viterbi search on a network consists of keywords and garbage models
 - Phonetic Search
 - search on a lattice of phonemes

WFST-based Indexing

- ▶ Indexation WFST(T)
 - every path of indexation WFST represents
 - input: keyword
 - output: all utterances contain the keyword (with timing information)
- Search Method
 - convert keyword to a WFST(T)
 - ightharpoonup compose two WFSTs $R = X \circ T$
 - paths on R produce the result utterance set

WFST-based Indexing

- ► Indexation WFST(*T*)
 - every path of indexation WFST represents
 - input: keyword
 - output: all utterances contain the keyword (with timing information)
- Search Method
 - convert keyword to a WFST(T)
 - ▶ compose two WFSTs $R = X \circ T$
 - paths on R produce the result utterance set

WFST-based Indexing

- Factor WEST
 - Given two strings u and v, v is a factor (substring) of u, if u = xvy for some x and y
 - ► The factor WFST F(u) of a string u is the minimal deterministic WFST recognizing exactly the set of factors of u

Utterance Level Keyword Search

- Indexing
 - 1. run a LVCSR system and output a lattice for every utterance
 - convert every lattice to a WFST(A) with word/phoneme as input/output and probability as weight
 - 3. construct F(A) for every A
 - 4. take the union of all F(A)s
- Searching
 - 1. convert query/keyword to a WFST(X)
 - 2. compose the two WFST $R = \Pi_2(X \circ T)$
 - 3. extract the most likely paths of R

Utterance Level Keyword Search

- Indexing
 - 1. run a LVCSR system and output a lattice for every utterance
 - convert every lattice to a WFST(A) with word/phoneme as input/output and probability as weight
 - 3. construct F(A) for every A
 - 4. take the union of all F(A)s
- Searching
 - 1. convert query/keyword to a WFST(X)
 - 2. compose the two WFST $R = \Pi_2(X \circ T)$
 - 3. extract the most likely paths of R

► Cluster the arcs with the same input label and overlapping time-spans.

generate factor with timing informations

merge arc with same input-output pair(overlapped labels)

► factor disambiguation

factor optimization

Setup

- ► Scripts Kaldi egs/babel/s5c/
- dataset 57904 utters, 41 hours
- ▶ model SAT fmllr gmm model (tri5a) with same dataset

Results

lmwt	ATWV	OTWV	STWV	MTWV/THRESH	Recall
8	0.5750	0.6318	0.9618	0.6318/0.260	0.9627
9	0.5767	0.6353	0.9618	0.6353/0.305	0.9627
10	0.5818	0.6352	0.9618	0.6291/0.252	0.9627
11	0.5750	0.6410	0.9618	0.6275/0.291	0.9627
12	0.5803	0.6352	0.9618	0.6237/0.299	0.9627

References

- utterance level search
 - Allauzen, Cyril, Mehryar Mohri, and Murat Saraclar. General Indexation of Weighted Automata: Application to Spoken Utterance Retrieval. In Proceedings of the Workshop on Interdisciplinary Approaches to Speech Indexing and Retrieval at HLT-NAACL 2004, 3340.
- timed search
 - Can, Doan, and Murat Saraclar. Lattice Indexing for Spoken Term Detection. Audio, Speech, and Language Processing, IEEE Transactions on 19, no. 8 (2011): 233847.