Curs 3

Verificarea problemei consecinței logice

- În principiu, sistemul poate verifica problema consecinței logice construind un tabel de adevăr, cu câte o linie pentru fiecare interpretare posibilă.
- ☐ În cazul în care programul și ținta conțin *n* atomi diferiți, tabelul de adevăr rezultat o să aibă 2ⁿ rânduri.
- □ Această metodă este atât de costisitoare computațional, încât este irealizabilă. (Timp exponențial)
- ☐ Problemă deschisă de un milion de dolari:

Este posibil să găsim o metodă mai bună pentru a decide problema consecinței logice în cazul propozițional care să funcționeze în timp polinomial față de intrarea programului și a țintei?

Echivalent, este adevărată P = NP? (Institutul de Matematica Clay – Millennium Prize Problems)

Cum salvăm situția?

- Folosirea metodelor sintactice pentru a stabili problema consecinței logice (*proof search*)
- Restricţionarea formulelor din "programele logice"

Această metodologie este eficientă și flexibilă.

- O clauză definită este o formulă care poate avea una din formele:
 - q (clauză unitate)

unde q, p_1, \ldots, p_n sunt variabile propoziționale

```
    O clauză definită este o formulă care poate avea una din formele:

            q (clauză unitate)
            (un fapt în Prolog q.)
            p₁ ∧ ... ∧ pk → q
            (o regulă în Prolog q :- p₁,...,pk)

    unde q, p₁,..., pn sunt variabile propoziționale

            (constante în Prolog).

    Numim variabilele propoziționale și atomi.
```

```
    O clauză definită este o formulă care poate avea una din formele:

            q (clauză unitate) (un fapt în Prolog q.)
            p₁ ∧ ... ∧ pk → q (o regulă în Prolog q :- p₁,...,pk)
            unde q, p₁,..., pn sunt variabile propoziționale (constante în Prolog).

    □ Numim variabilele propoziționale și atomi.
    Programare logică – cazul logicii propoziționale
    □ Un "program logic" este o listă F₁,..., Fn de clauze definite.
```

```
    O clauză definită este o formulă care poate avea una din formele:

            q (clauză unitate)
            p₁ ∧ ... ∧ pk → q
            q (o regulă în Prolog q :- p₁,...,pk)
            unde q, p₁,..., pn sunt variabile propoziționale (constante în Prolog).

    Numim variabilele propoziționale și atomi.
    Programare logică – cazul logicii propoziționale
    Un "program logic" este o listă F₁,..., Fn de clauze definite.
    O țintă (întrebare, goal) este o listă g₁,..., gm de atomi.
```

O clauză definită este o formulă care poate avea una din formele: g (clauză unitate) (un fapt în Prolog q.) (o regulă în Prolog q :- p_1, \ldots, p_k) 2 $p_1 \wedge \ldots \wedge p_k \rightarrow q$ unde q, p_1, \ldots, p_n sunt variabile propoziționale (constante în Prolog). Numim variabilele propoziționale și atomi. Programare logică – cazul logicii propozitionale \square Un "program logic" este o listă F_1, \ldots, F_n de clauze definite. O țintă (întrebare, goal) este o listă g_1, \ldots, g_m de atomi. Sarcina sistemului este să stabilească: $F_1, \ldots, F_n \models g_1 \wedge \ldots \wedge g_m$

O clauză definită este o formulă care poate avea una din formele: g (clauză unitate) (un fapt în Prolog q.) (o regulă în Prolog q :- p_1, \ldots, p_k) 2 $p_1 \wedge \ldots \wedge p_k \rightarrow q$ unde q, p_1, \ldots, p_n sunt variabile propoziționale (constante în Prolog). Numim variabilele propoziționale și atomi. Programare logică – cazul logicii propozitionale \square Un "program logic" este o listă F_1, \ldots, F_n de clauze definite. O țintă (întrebare, goal) este o listă g_1, \ldots, g_m de atomi. Sarcina sistemului este să stabilească: $F_1, \ldots, F_n \models g_1 \wedge \ldots \wedge g_m$ Scop: Vrem să găsim metode sintactice pentru a rezolva problema de mai sus!

Sistem de deducție CDP pentru clauze definite propoziționale

Pentru o mulțime S de clauze definite propoziționale, avem

Sistem de deducție CDP pentru clauze definite propoziționale

Pentru o mulțime S de clauze definite propoziționale, avem

 \square Axiome (premise): orice clauză din S

Sistem de deducție CDP pentru clauze definite propoziționale

Pentru o mulțime S de clauze definite propoziționale, avem

- \square Axiome (premise): orice clauză din S
- □ Reguli de deducție:

$$rac{P \quad P
ightarrow Q}{Q} \; (\textit{MP}) \qquad \qquad rac{P \quad Q}{P \wedge Q} \; (\textit{andl})$$

- Aceste reguli ne permit să deducem formula de sub linie din formulele de deasupra liniei.
- □ Sunt regulile $(\rightarrow e)$ și $(\land i)$ din deducția naturală pentru logica propozițională.

$$rac{P \quad P
ightarrow Q}{Q} \; (MP) \qquad \qquad rac{P \quad Q}{P \wedge Q} \; (andl)$$

Exemplu

```
\begin{array}{ccc} & \text{oslo} & \rightarrow & \text{windy} \\ & \text{oslo} & \rightarrow & \text{norway} \\ & \text{norway} & \rightarrow & \text{cold} \\ & \text{cold} \, \land \, \text{windy} & \rightarrow & \text{winterIsComing} \\ & & & \text{oslo} \end{array}
```

$$\frac{P \quad P \to Q}{Q} \quad (MP) \qquad \qquad \frac{P \quad Q}{P \land Q} \quad (and I)$$

Exemplu

$$\begin{array}{ccc} \text{oslo} & \rightarrow & \text{windy} \\ \text{oslo} & \rightarrow & \text{norway} \\ \text{norway} & \rightarrow & \text{cold} \\ \text{cold} \land \text{windy} & \rightarrow & \text{winterIsComing} \\ & & \text{oslo} \end{array}$$

0510	osio → norway	norway o cold		
	norway		oslo	oslo o windy
	cold			windy

 $cold \land windy$

$$\frac{P \quad P \rightarrow Q}{Q} \ \ (MP) \qquad \qquad \frac{P \quad Q}{P \wedge Q} \ \ (\text{andl})$$

Exemplu

$$\frac{P \quad P \rightarrow Q}{Q} \ \ (MP) \qquad \qquad \frac{P \quad Q}{P \land Q} \ \ (\textit{andl})$$

Exemplu

 $\begin{array}{ccc} \text{oslo} & \rightarrow & \text{windy} \\ \text{oslo} & \rightarrow & \text{norway} \\ \text{norway} & \rightarrow & \text{cold} \\ \text{cold} \land \text{windy} & \rightarrow & \text{winterIsComing} \\ & & & \text{oslo} \end{array}$

- $1. \ \textit{oslo} \rightarrow \textit{windy}$
- $2. \ \textit{oslo} \rightarrow \textit{norway}$
- 3. $norway \rightarrow cold$
- 4. $cold \land windy \rightarrow winterIsComing$
- 5. oslo

6. norway	(MP 5,2)
7. cold	(MP 6,3)
8. windy	(MP 5,1)
9. cold ∧ windy	(andl 7,8)
10. winterIsComing	(MP 9,4)

O formulă Q se poate deduce din S în sistemul de deducție CDP, notat

$$S \vdash Q$$
,

dacă există o secvență de formule Q_1, \ldots, Q_n astfel încât $Q_n = Q$ și fiecare Q_i :

- \square fie aparține lui S
- □ fie se poate deduce din Q_1, \ldots, Q_{i-1} folosind regulile de deducție (MP) și (andl)

Putem folosi sistemul de deducție CDP pentru a deduce alți atomi:

Putem folosi sistemul de deducție CDP pentru a deduce alți atomi:

- □ Clauzele unitate din S (atomii $p_i \in S$) sunt considerate adevărate.
 - Sunt deduşi ca axiome.

Putem folosi sistemul de deducție CDP pentru a deduce alți atomi:

- □ Clauzele unitate din S (atomii $p_i \in S$) sunt considerate adevărate.
 - Sunt deduşi ca axiome.
- □ Putem deduce că un nou atom r este adevărat dacă
 - \square am dedus că p_1, \ldots, p_n sunt adevărați, și
 - \square $p_1 \wedge \ldots \wedge p_n \rightarrow r$ este în S.
 - O astfel de derivare folosește de n-1 ori (andl) și o data (MP).

Putem folosi sistemul de deducție CDP pentru a deduce alți atomi:

- \square Clauzele unitate din S (atomii $p_i \in S$) sunt considerate adevărate.
 - Sunt deduşi ca axiome.
- □ Putem deduce că un nou atom r este adevărat dacă
 - \square am dedus că p_1, \ldots, p_n sunt adevărați, și
 - \square $p_1 \wedge \ldots \wedge p_n \rightarrow r$ este în S.
 - O astfel de derivare folosește de n-1 ori (andl) și o data (MP).

Deci putem construi mulțimi din ce în ce mai mari de atomi care sunt consecințe logice din S, și pentru care există derivări din S.

Completitudinea sistemului de deducție CDP

- Se poate demonstra că aceste reguli sunt corecte, folosind tabelele de adevăr.
 - Dacă formulele de deasupra liniei sunt adevărate, atunci și formula de sub linie este adevărată.

Completitudinea sistemului de deducție CDP

- Se poate demonstra că aceste reguli sunt corecte, folosind tabelele de adevăr.
 - Dacă formulele de deasupra liniei sunt adevărate, atunci și formula de sub linie este adevărată.
- ☐ Mai mult, sistemul de deducție este și complet. Adică dacă $S \models Q$, atunci $S \vdash Q$.
 - Dacă Q este o consecință logică a lui S, atunci există o derivare a sa din S folosind sistemul de deductie CDP

Completitudinea sistemului de deducție CDP

- Se poate demonstra că aceste reguli sunt corecte, folosind tabelele de adevăr.
 - Dacă formulele de deasupra liniei sunt adevărate, atunci și formula de sub linie este adevărată.
- ☐ Mai mult, sistemul de deducție este și complet. Adică dacă $S \models Q$, atunci $S \vdash Q$.
 - Dacă Q este o consecință logică a lui S, atunci există o derivare a sa din S folosind sistemul de deductie CDP
- □ Pentru a demonstra completitudinea vom folosi teorema Knaster-Tarski.

Puncte fixe. Teorema Knaster-Tarski

Mulțimi parțial ordonate

- \square O mulțime parțial ordonată (mpo) este o pereche (M, \le) unde $\le \subseteq M \times M$ este o relație de ordine.
 - relație de ordine: reflexivă, antisimetrică, tranzitivă

Mulțimi parțial ordonate

- □ O mulțime parțial ordonată (mpo) este o pereche (M, \leq) unde $\leq \subseteq M \times M$ este o relație de ordine.
 - relație de ordine: reflexivă, antisimetrică, tranzitivă
- □ O mpo (L, \leq) se numește lanț dacă este total ordonată, adică $x \leq y$ sau $y \leq x$ pentru orice $x, y \in L$. Vom considera lanțuri numărabile, i.e.

 $x_1 \leq x_2 \leq x_3 \leq \dots$

Mulțimi parțial ordonate complete

- O mpo (C, \leq) este completă (cpo) dacă:
 - \Box *C* are prim element \bot ($\bot \le x$ oricare $x \in C$),
 - $\square \bigvee_n x_n$ există în C pentru orice lanț $x_1 \le x_2 \le x_3 \le \dots$

Mulțimi parțial ordonate complete

- O mpo (C, \leq) este completă (cpo) dacă:
 - \Box *C* are prim element \bot ($\bot \le x$ oricare $x \in C$),
 - $\square \bigvee_n x_n$ există în C pentru orice lanț $x_1 \le x_2 \le x_3 \le \dots$

Exempli

Fie X o mulțime și $\mathcal{P}(X)$ mulțimea submulțimilor lui X.

 $(\mathcal{P}(X),\subseteq)$ este o cpo:

- $\square \subseteq$ este o relație de ordine
- \square \emptyset este prim element ($\emptyset \subseteq Q$ pentru orice $Q \in \mathcal{P}(X)$)
- \square pentru orice șir (numărabil) de submulțimi ale lui X $Q_1 \subseteq Q_2 \subseteq \ldots$ evident $\bigcup_n Q_n \in \mathcal{P}(X)$

□ Fie (A, \leq_A) și (B, \leq_B) mulțimi parțial ordonate. O funcție $f: A \to B$ este monotonă (crescătoare) dacă $a_1 \leq_A a_2$ implică $f(a_1) \leq_B f(a_2)$ oricare $a_1, a_2 \in A$.

□ Fie (A, \leq_A) și (B, \leq_B) mulțimi parțial ordonate. O funcție $f: A \to B$ este monotonă (crescătoare) dacă $a_1 \leq_A a_2$ implică $f(a_1) \leq_B f(a_2)$ oricare $a_1, a_2 \in A$.

Exemplu

Fie următoarele funcții $f_i: \mathcal{P}(\{1,2,3\}) \to \mathcal{P}(\{1,2,3\})$ cu $i \in \{1,2,3\}$

□ Fie (A, \leq_A) și (B, \leq_B) mulțimi parțial ordonate. O funcție $f: A \to B$ este monotonă (crescătoare) dacă $a_1 \leq_A a_2$ implică $f(a_1) \leq_B f(a_2)$ oricare $a_1, a_2 \in A$.

Exemplu

Fie următoarele funcții $f_i: \mathcal{P}(\{1,2,3\}) \to \mathcal{P}(\{1,2,3\})$ cu $i \in \{1,2,3\}$

 \square $f_1(Y) = Y \cup \{1\}$ este monotonă.

□ Fie (A, \leq_A) și (B, \leq_B) mulțimi parțial ordonate. O funcție $f: A \to B$ este monotonă (crescătoare) dacă $a_1 \leq_A a_2$ implică $f(a_1) \leq_B f(a_2)$ oricare $a_1, a_2 \in A$.

Exempli

Fie următoarele funcții $f_i: \mathcal{P}(\{1,2,3\}) \to \mathcal{P}(\{1,2,3\})$ cu $i \in \{1,2,3\}$

- \Box $f_1(Y) = Y \cup \{1\}$ este monotonă.

□ Fie (A, \leq_A) și (B, \leq_B) mulțimi parțial ordonate. O funcție $f: A \to B$ este monotonă (crescătoare) dacă $a_1 \leq_A a_2$ implică $f(a_1) \leq_B f(a_2)$ oricare $a_1, a_2 \in A$.

Exemplu

Fie următoarele funcții $f_i: \mathcal{P}(\{1,2,3\}) \to \mathcal{P}(\{1,2,3\})$ cu $i \in \{1,2,3\}$

Funcție monotonă

□ Fie (A, \leq_A) și (B, \leq_B) mulțimi parțial ordonate.

O funcție $f: A \to B$ este monotonă (crescătoare) dacă $a_1 \leq_A a_2$ implică $f(a_1) \leq_B f(a_2)$ oricare $a_1, a_2 \in A$.

Exempli

Fie următoarele funcții $f_i: \mathcal{P}(\{1,2,3\}) \to \mathcal{P}(\{1,2,3\})$ cu $i \in \{1,2,3\}$

- \Box $f_1(Y) = Y \cup \{1\}$ este monotonă.

Funcție monotonă

- \square Fie (A, \leq_A) și (B, \leq_B) mulțimi parțial ordonate.
 - O funcție $f: A \to B$ este monotonă (crescătoare)

dacă $a_1 \leq_A a_2$ implică $f(a_1) \leq_B f(a_2)$ oricare $a_1, a_2 \in A$.

Exempli

Fie următoarele funcții $f_i: \mathcal{P}(\{1,2,3\}) \to \mathcal{P}(\{1,2,3\})$ cu $i \in \{1,2,3\}$

- \Box $f_1(Y) = Y \cup \{1\}$ este monotonă.

Funcție continuă

□ Fie (A, \leq_A) și (B, \leq_B) mulțimi parțial ordonate complete.

O funcție $f: A \to B$ este continuă dacă $f(\bigvee_n a_n) = \bigvee_n f(a_n) \text{ pentru orice lanț } \{a_n\}_n \text{ din } A.$

Funcție continuă

- \square Fie (A, \leq_A) și (B, \leq_B) mulțimi parțial ordonate complete.
 - O funcție $f: A \to B$ este continuă dacă

$$f(\bigvee_n a_n) = \bigvee_n f(a_n)$$
 pentru orice lanț $\{a_n\}_n$ din A .

☐ Observăm că orice funcție continuă este crescătoare.

Funcție continuă

- \square Fie (A, \leq_A) și (B, \leq_B) mulțimi parțial ordonate complete.
 - O funcție $f: A \rightarrow B$ este continuă dacă

$$f(\bigvee_n a_n) = \bigvee_n f(a_n)$$
 pentru orice lanț $\{a_n\}_n$ din A .

☐ Observăm că orice funcție continuă este crescătoare.

Exemplu

Fie următoarele funcții $f_i: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ cu $i \in \{1, 2\}$.

- \Box $f_1(Y) = Y \cup \{1\}$ este continuă.
- $\Box f_2(Y) = \begin{cases} \emptyset & \text{dacă } Y \text{ este finita} \\ Y & \text{altfel} \end{cases}$ este monotonă, nu este continuă.

Teorema de punct fix

□ Un element $a \in C$ este punct fix al unei funcții $f: C \to C$ dacă f(a) = a.

Teorema de punct fix

□ Un element $a \in C$ este punct fix al unei funcții $f: C \to C$ dacă f(a) = a.

Teorema Knaster-Tarski pentru CPO

Fie (C, \leq) o mulțime parțial ordonată completă și $\mathbf{F}: C \to C$ o funcție continuă. Atunci

$$a = \bigvee_{n} \mathbf{F}^{n}(\perp)$$

este cel mai mic punct fix al funcției F.

Teorema de punct fix

□ Un element $a \in C$ este punct fix al unei funcții $f: C \to C$ dacă f(a) = a.

Teorema Knaster-Tarski pentru CPO

Fie (C, \leq) o mulțime parțial ordonată completă și $\mathbf{F}: C \to C$ o funcție continuă. Atunci

$$a = \bigvee_{n} \mathbf{F}^{n}(\perp)$$

este cel mai mic punct fix al funcției F.

□ Observăm că în ipotezele ultimei teoreme secvența

$$\mathbf{F}^0(\perp) = \perp \leq \mathbf{F}(\perp) \leq \mathbf{F}^2(\perp) \leq \cdots \leq \mathbf{F}^n(\perp) \leq \cdots$$

este un lanţ, deci $\bigvee_{n} \mathbf{F}^{n}(\bot)$ există.

Demonstrație

Fie (C, \leq) o mulțime parțial ordonată completă și $\mathbf{F}: C \to C$ o funcție continuă.

 \square Arătăm că $a = \bigvee_n \mathbf{F}^n(\bot)$ este punct fix, i.e. $\mathbf{F}(a) = a$

Demonstrație

Fie (C, \leq) o mulțime parțial ordonată completă și $\mathbf{F}: C \to C$ o funcție continuă.

 \square Arătăm că $a = \bigvee_n \mathbf{F}^n(\bot)$ este punct fix, i.e. $\mathbf{F}(a) = a$

$$F(a) = F(\bigvee_n F^n(\bot))$$

Demonstrație

Fie (C, \leq) o mulțime parțial ordonată completă și $\mathbf{F}: C \to C$ o funcție continuă.

 \square Arătăm că $a = \bigvee_n \mathbf{F}^n(\bot)$ este punct fix, i.e. $\mathbf{F}(a) = a$

$$F(a) = F(\bigvee_n F^n(\bot))$$

= $\bigvee_n F(F^n(\bot))$ din continuitate

Demonstrație

Fie (C, \leq) o mulțime parțial ordonată completă și $\mathbf{F}: C \to C$ o funcție continuă.

$$\square$$
 Arătăm că $a = \bigvee_n \mathbf{F}^n(\bot)$ este punct fix, i.e. $\mathbf{F}(a) = a$

$$\mathbf{F}(a) = \mathbf{F}(\bigvee_{n} \mathbf{F}^{n}(\bot))$$

$$= \bigvee_{n} \mathbf{F}(\mathbf{F}^{n}(\bot)) \text{ din continuitate}$$

$$= \bigvee_{n} \mathbf{F}^{n+1}(\bot)$$

Demonstrație

Fie (C, \leq) o mulțime parțial ordonată completă și $\mathbf{F}: C \to C$ o funcție continuă.

$$\square$$
 Arătăm că $a = \bigvee_n \mathbf{F}^n(\bot)$ este punct fix, i.e. $\mathbf{F}(a) = a$

$$\mathbf{F}(a) = \mathbf{F}(\bigvee_{n} \mathbf{F}^{n}(\bot))$$

$$= \bigvee_{n} \mathbf{F}(\mathbf{F}^{n}(\bot)) \text{ din continuitate}$$

$$= \bigvee_{n} \mathbf{F}^{n+1}(\bot)$$

$$= \bigvee_{n} \mathbf{F}^{n}(\bot) = a$$

Demonstrație (cont.)

☐ Arătăm că *a* este cel mai mic punct fix.

Demonstrație (cont.)

☐ Arătăm că a este cel mai mic punct fix.

Fie b un alt punct fix, i.e. F(b) = b.

Demonstrăm prin inducție după $n \ge 1$ că $\mathbf{F}^n(\bot) \le b$.

Demonstrație (cont.)

☐ Arătăm că a este cel mai mic punct fix.

Fie b un alt punct fix, i.e. $\mathbf{F}(b) = b$.

Demonstrăm prin inducție după $n \geq 1$ că $\mathbf{F}^n(\perp) \leq b$.

Pentru n=0, $\mathbf{F}^0(\bot)=\bot\le b$ deoarece \bot este prim element.

Demonstrație (cont.)

☐ Arătăm că a este cel mai mic punct fix.

Fie b un alt punct fix, i.e. $\mathbf{F}(b) = b$.

Demonstrăm prin inducție după $n \geq 1$ că $\mathbf{F}^n(\perp) \leq b$.

Pentru n=0, $\mathbf{F}^0(\perp)=\perp\leq b$ deoarece \perp este prim element.

Dacă $\mathbf{F}^n(\perp) \leq b$, atunci $\mathbf{F}^{n+1}(\perp) \leq \mathbf{F}(b)$, deoarece \mathbf{F} este crescătoare.

Deoarece $\mathbf{F}(b) = b$ rezultă $\mathbf{F}^{n+1}(\bot) \leq b$.

Demonstrație (cont.)

☐ Arătăm că *a* este cel mai mic punct fix.

Fie b un alt punct fix, i.e. $\mathbf{F}(b) = b$.

Demonstrăm prin inducție după $n \geq 1$ că $\mathbf{F}^n(\perp) \leq b$.

Pentru n=0, $\mathbf{F}^0(\bot)=\bot\le b$ deoarece \bot este prim element.

Dacă $\mathbf{F}^n(\perp) \leq b$, atunci $\mathbf{F}^{n+1}(\perp) \leq \mathbf{F}(b)$, deoarece \mathbf{F} este crescătoare. Deoarece $\mathbf{F}(b) = b$ rezultă $\mathbf{F}^{n+1}(\perp) < b$.

Ştim $\mathbf{F}^n(\perp) \leq b$ oricare $n \geq 1$, deci $a = \bigvee_n \mathbf{F}^n(\perp) \leq b$.

Demonstrație (cont.)

☐ Arătăm că *a* este cel mai mic punct fix.

Fie b un alt punct fix, i.e. $\mathbf{F}(b) = b$.

Demonstrăm prin inducție după $n \ge 1$ că $\mathbf{F}^n(\bot) \le b$.

Pentru n=0, $\mathbf{F}^0(\bot)=\bot\leq b$ deoarece \bot este prim element.

Dacă $\mathbf{F}^n(\perp) \leq b$, atunci $\mathbf{F}^{n+1}(\perp) \leq \mathbf{F}(b)$, deoarece \mathbf{F} este crescătoare. Deoarece $\mathbf{F}(b) = b$ rezultă $\mathbf{F}^{n+1}(\perp) \leq b$.

Ştim $\mathbf{F}^n(\perp) \leq b$ oricare $n \geq 1$, deci $a = \bigvee_n \mathbf{F}^n(\perp) \leq b$.

Am arătat că a este cel mai mic punct fix al funției F.

Completitudinea sistemului de deducție CDP

Fie A mulțimea atomilor p_1, p_2, \ldots care apar în S.

Fie A mulțimea atomilor p_1, p_2, \ldots care apar în S.

Fie $Baza = \{p_i \mid p_i \in S\}$ mulțimea clauzelor unitate din S.

Fie A mulțimea atomilor p_1, p_2, \ldots care apar în S.

Fie $Baza = \{p_i \mid p_i \in S\}$ mulțimea clauzelor unitate din S.

Exemplu

```
\begin{array}{ccc} & \text{oslo} & \rightarrow & \text{windy} \\ & \text{oslo} & \rightarrow & \text{norway} \\ & \text{norway} & \rightarrow & \text{cold} \\ & \text{cold} \, \land \, \text{windy} & \rightarrow & \text{winterIsComing} \\ & & & \text{oslo} \end{array}
```

 $\textit{A} = \{\textit{oslo}, \textit{windy}, \textit{norway}, \textit{cold}, \textit{winterIsComing}\}$

 $Baza = \{oslo\}$

Fie A mulțimea atomilor p_1, p_2, \ldots care apar în S.

Fie $Baza = \{p_i \mid p_i \in S\}$ mulțimea atomilor care apar în clauzele unitate din S.

Definim funcția $f_S: \mathcal{P}(A) \to \mathcal{P}(A)$ prin

$$f_S(Y) = Y \cup \textit{Baza}$$
 $\cup \ \{ a \in A \mid (s_1 \wedge \ldots \wedge s_n o a) \ ext{este \hat{in}} \ S, \ s_1 \in Y, \ldots, s_n \in Y \}$

Fie A mulțimea atomilor p_1, p_2, \ldots care apar în S.

Fie $Baza = \{p_i \mid p_i \in S\}$ mulțimea atomilor care apar în clauzele unitate din S.

Definim funcția $f_S: \mathcal{P}(A) \to \mathcal{P}(A)$ prin

$$f_S(Y) = Y \cup \textit{Baza}$$
 $\cup \ \{ a \in A \mid (s_1 \wedge \ldots \wedge s_n o a) \ \text{este în } S, \ s_1 \in Y, \ldots, s_n \in Y \}$

Exercițiu. Arătați că funcția f_S este monotonă.

Fie A mulțimea atomilor p_1, p_2, \ldots care apar în S.

Propoziție

Funcția $f_S: \mathcal{P}(A) \to \mathcal{P}(A)$ este continuă.

Fie A mulțimea atomilor p_1, p_2, \ldots care apar în S.

Propoziție

Funcția $f_S: \mathcal{P}(A) \to \mathcal{P}(A)$ este continuă.

Demonstrație

Arătăm că dacă $Y_1 \subseteq Y_2 \subseteq Y_3 \subseteq \dots$ atunci $f_S(\bigcup_k Y_k) = \bigcup_k f_S(Y_k)$.

Fie A mulțimea atomilor p_1, p_2, \ldots care apar în S.

Propoziție

Funcția $f_S: \mathcal{P}(A) \to \mathcal{P}(A)$ este continuă.

Demonstrație

Arătăm că dacă $Y_1 \subseteq Y_2 \subseteq Y_3 \subseteq \dots$ atunci $f_S(\bigcup_k Y_k) = \bigcup_k f_S(Y_k)$.

Din faptul că f_S este crescătoare rezultă $f_S(\bigcup_k Y_k) \supseteq \bigcup_k f_S(Y_k)$

Fie A mulțimea atomilor p_1, p_2, \ldots care apar în S.

Propoziție

Funcția $f_S: \mathcal{P}(A) \to \mathcal{P}(A)$ este continuă.

Demonstrație

Arătăm că dacă $Y_1 \subseteq Y_2 \subseteq Y_3 \subseteq \ldots$ atunci $f_S(\bigcup_k Y_k) = \bigcup_k f_S(Y_k)$.

Din faptul că f_S este crescătoare rezultă $f_S(\bigcup_k Y_k) \supseteq \bigcup_k f_S(Y_k)$

Demonstrăm în continuare că $f_S(\bigcup_k Y_k) \subseteq \bigcup_k f_S(Y_k)$. Fie $a \in f_S(\bigcup_n Y_k)$. Sunt posibile trei cazuri

Fie A mulțimea atomilor p_1, p_2, \ldots care apar în S.

Propoziție

Funcția $f_S: \mathcal{P}(A) \to \mathcal{P}(A)$ este continuă.

Demonstrație

Arătăm că dacă $Y_1 \subseteq Y_2 \subseteq Y_3 \subseteq \ldots$ atunci $f_S(\bigcup_k Y_k) = \bigcup_k f_S(Y_k)$.

Din faptul că f_S este crescătoare rezultă $f_S(\bigcup_k Y_k) \supseteq \bigcup_k f_S(Y_k)$

Demonstrăm în continuare că $f_S(\bigcup_k Y_k) \subseteq \bigcup_k f_S(Y_k)$. Fie $a \in f_S(\bigcup_n Y_k)$. Sunt posibile trei cazuri

 \Box $a \in \bigcup_k Y_k$ Există un $k \ge 1$ astfel încât $a \in Y_k$, deci $a \in f_S(Y_k) \subseteq \bigcup_k f_S(Y_k)$.

Fie A mulțimea atomilor p_1, p_2, \ldots care apar în S.

Propoziție

Funcția $f_S: \mathcal{P}(A) \to \mathcal{P}(A)$ este continuă.

Demonstrație

Arătăm că dacă $Y_1 \subseteq Y_2 \subseteq Y_3 \subseteq \ldots$ atunci $f_S(\bigcup_k Y_k) = \bigcup_k f_S(Y_k)$.

Din faptul că f_S este crescătoare rezultă $f_S(\bigcup_k Y_k) \supseteq \bigcup_k f_S(Y_k)$

Demonstrăm în continuare că $f_S(\bigcup_k Y_k) \subseteq \bigcup_k f_S(Y_k)$. Fie $a \in f_S(\bigcup_n Y_k)$. Sunt posibile trei cazuri

- $\square \ a \in \bigcup_k Y_k$ Există un $k \ge 1$ astfel încât $a \in Y_k$, deci $a \in f_S(Y_k) \subseteq \bigcup_k f_S(Y_k)$.
- \square $a \in Baza \subseteq \bigcup_k f_S(Y_k)$

Fie A mulțimea atomilor p_1, p_2, \ldots care apar în S.

Propoziție

Funcția $f_S: \mathcal{P}(A) \to \mathcal{P}(A)$ este continuă.

Demonstrație

Arătăm că dacă $Y_1 \subseteq Y_2 \subseteq Y_3 \subseteq \dots$ atunci $f_S(\bigcup_k Y_k) = \bigcup_k f_S(Y_k)$.

Din faptul că f_S este crescătoare rezultă $f_S(\bigcup_k Y_k) \supseteq \bigcup_k f_S(Y_k)$

Demonstrăm în continuare că $f_S(\bigcup_k Y_k) \subseteq \bigcup_k f_S(Y_k)$. Fie $a \in f_S(\bigcup_n Y_k)$. Sunt posibile trei cazuri

- \Box $a \in \bigcup_k Y_k$ Există un $k \ge 1$ astfel încât $a \in Y_k$, deci $a \in f_S(Y_k) \subseteq \bigcup_k f_S(Y_k)$.
- \square $a \in Baza \subseteq \bigcup_k f_S(Y_k)$
- \square Există s_1, \ldots, s_n în $\bigcup_k Y_k$ astfel încât $(s_1 \wedge \ldots \wedge s_n \to a)$ este în S.

Demonstrație (cont.)

 \square Există s_1, \ldots, s_n în $\bigcup_k Y_k$ astfel încât $(s_1 \wedge \ldots \wedge s_n \to a)$ este în S.

Demonstrație (cont.)

 \square Există s_1, \ldots, s_n în $\bigcup_k Y_k$ astfel încât $(s_1 \wedge \ldots \wedge s_n \to a)$ este în S. Pentru fiecare $i \in \{1, \ldots, n\}$ există $k_i \in \mathbb{N}$ astfel încât $s_i \in Y_{k_i}$.

Demonstrație (cont.)

Există s_1,\ldots,s_n în $\bigcup_k Y_k$ astfel încât $(s_1\wedge\ldots\wedge s_n\to a)$ este în S. Pentru fiecare $i\in\{1,\ldots,n\}$ există $k_i\in\mathbb{N}$ astfel încât $s_i\in Y_{k_i}$. Dacă $k_0=\max\{k_1,\ldots,k_n\}$ atunci $Y_{k_i}\subseteq Y_{k_0}$ pentru orice $i\in\{1,\ldots,n\}$.

Demonstrație (cont.)

 \square Există s_1, \ldots, s_n în $\bigcup_k Y_k$ astfel încât $(s_1 \wedge \ldots \wedge s_n \to a)$ este în S.

Pentru fiecare $i \in \{1,\ldots,n\}$ există $k_i \in \mathbb{N}$ astfel încât $s_i \in Y_{k_i}$.

Dacă $k_0 = \max\{k_1, \dots, k_n\}$ atunci $Y_{k_i} \subseteq Y_{k_0}$ pentru orice $i \in \{1, \dots, n\}$.

Rezultă că $s_1,\ldots,s_n\in Y_{k_0}$, deci $a\in f_S(Y_{k_0})\subseteq\bigcup_k f_S(Y_k)$.

Demonstrație (cont.)

 \square Există s_1, \ldots, s_n în $\bigcup_k Y_k$ astfel încât $(s_1 \wedge \ldots \wedge s_n \to a)$ este în S.

Pentru fiecare $i \in \{1, \ldots, n\}$ există $k_i \in \mathbb{N}$ astfel încât $s_i \in Y_{k_i}$.

Dacă $k_0 = \max\{k_1, \dots, k_n\}$ atunci $Y_{k_i} \subseteq Y_{k_0}$ pentru orice $i \in \{1, \dots, n\}$.

Rezultă că $s_1,\ldots,s_n\in Y_{k_0}$, deci $a\in f_S(Y_{k_0})\subseteq\bigcup_k f_S(Y_k)$.

Am demonstrat că f_S este continuă.

Pentru funcția continuă $f_S:\mathcal{P}(A) o\mathcal{P}(A)$

$$f_S(Y) = Y \cup \textit{Baza}$$
 $\cup \ \{ a \in A \mid (s_1 \wedge \ldots \wedge s_n o a) \ ext{este în } S, \ s_1 \in Y, \ldots, s_n \in Y \}$

aplicând Teorema Knaster-Tarski pentru CPO, obținem că

$$\bigcup_{n} f_{S}^{n}(\emptyset)$$

este cel mai mic punct fix al lui f_S .

Analizați ce se întamplă când considerăm succesiv

$$\emptyset$$
, $f_S(\emptyset)$, $f_S(f_S(\emptyset))$, $f_S(f_S(f_S(\emptyset)))$,...

La fiecare a lui f_S , rezultatul fie se mărește, fie rămâne neschimbat.

Analizați ce se întamplă când considerăm succesiv

$$\emptyset$$
, $f_S(\emptyset)$, $f_S(f_S(\emptyset))$, $f_S(f_S(f_S(\emptyset)))$,...

La fiecare aplicare a lui f_S , rezultatul fie se mărește, fie rămâne neschimbat.

□ Să presupunem că în S avem k atomi. Atunci după k+1 aplicări ale lui f_S , trebuie să existe un punct în șirul de mulțimi obținute de unde o nouă aplicare a lui f_S nu mai schimbă rezultatul (punct fix):

$$f_S(X) = X$$

Analizați ce se întamplă când considerăm succesiv

$$\emptyset$$
, $f_S(\emptyset)$, $f_S(f_S(\emptyset))$, $f_S(f_S(f_S(\emptyset)))$,...

La fiecare aplicare a lui f_S , rezultatul fie se mărește, fie rămâne neschimbat.

□ Să presupunem că în S avem k atomi. Atunci după k+1 aplicări ale lui f_S , trebuie să existe un punct în șirul de mulțimi obținute de unde o nouă aplicare a lui f_S nu mai schimbă rezultatul (punct fix):

$$f_S(X) = X$$

Dacă aplicăm f_S succesiv ca mai devreme până găsim un X cu proprietatea $f_S(X) = X$, atunci găsim cel mai mic punct fix al lui f_S .

Cel mai mic punct fix

$$\begin{array}{ccc} \textit{cold} & \rightarrow & \textit{wet} \\ \textit{wet} \land \textit{cold} & \rightarrow & \textit{scotland} \end{array}$$

Se observă că
$$f_S(\emptyset) =$$

$$\begin{split} &f_{S}(\textit{Y}) = \textit{Y} \cup \textit{Baza} \\ &\cup \{ \textit{a} \in \textit{A} \mid (\textit{s}_{1} \land \ldots \land \textit{s}_{\textit{n}} \rightarrow \textit{a}) \text{ este în } \textit{S}, \\ &\textit{s}_{1} \in \textit{Y}, \ldots, \textit{s}_{\textit{n}} \in \textit{Y} \} \end{split}$$

Cel mai mic punct fix

Exemplu

$$cold
ightarrow wet$$
 $wet \wedge cold
ightarrow scotland$

$$\begin{split} &f_{S}(\textit{Y}) = \textit{Y} \cup \textit{Baza} \\ &\cup \{ \textit{a} \in \textit{A} \mid (\textit{s}_{1} \land \ldots \land \textit{s}_{\textit{n}} \rightarrow \textit{a}) \text{ este în } \textit{S}, \\ &\textit{s}_{1} \in \textit{Y}, \ldots, \textit{s}_{\textit{n}} \in \textit{Y} \} \end{split}$$

Se observă că $f_S(\emptyset) = \emptyset$, deci \emptyset este cel mai mic punct fix.

De aici deducem că niciun atom nu este consecință logică a formulelor de mai sus.

```
\begin{array}{ccc} \textit{cold} & & \\ \textit{cold} & \rightarrow & \textit{wet} \\ \textit{windy} & \rightarrow & \textit{dry} \\ \textit{wet} \land \textit{cold} & \rightarrow & \textit{scotland} \end{array}
```

$$\begin{split} f_{\mathcal{S}}(\mathit{Y}) &= \mathit{Y} \cup \mathit{Baza} \\ \cup \{ \mathit{a} \in \mathit{A} \mid (\mathit{s}_1 \wedge \ldots \wedge \mathit{s}_n \rightarrow \mathit{a}) \text{ este în } \mathit{S}, \\ \mathit{s}_1 \in \mathit{Y}, \ldots, \mathit{s}_n \in \mathit{Y} \} \end{split}$$

```
\begin{array}{ccc} \textit{cold} & & \\ \textit{cold} & \rightarrow & \textit{wet} \\ \textit{windy} & \rightarrow & \textit{dry} \\ \textit{wet} \land \textit{cold} & \rightarrow & \textit{scotland} \end{array}
```

$$\begin{split} &f_{S}(\textit{Y}) = \textit{Y} \cup \textit{Baza} \\ &\cup \{a \in \textit{A} \mid (s_{1} \wedge \ldots \wedge s_{n} \rightarrow \textit{a}) \text{ este în } \textit{S}, \\ &s_{1} \in \textit{Y}, \ldots, s_{n} \in \textit{Y}\} \end{split}$$

$$f_S(\emptyset) = \{ cold \}$$

```
\begin{array}{ccc} \textit{cold} & & \\ \textit{cold} & \rightarrow & \textit{wet} \\ \textit{windy} & \rightarrow & \textit{dry} \\ \textit{wet} \land \textit{cold} & \rightarrow & \textit{scotland} \end{array}
```

```
\begin{split} f_{\mathcal{S}}(\textit{Y}) &= \textit{Y} \cup \textit{Baza} \\ \cup \{ \textit{a} \in \textit{A} \mid (\textit{s}_1 \land \ldots \land \textit{s}_n \rightarrow \textit{a}) \text{ este în } \textit{S}, \\ \textit{s}_1 \in \textit{Y}, \ldots, \textit{s}_n \in \textit{Y} \} \end{split}
```

```
f_S(\emptyset) = \{ cold \}
f_S(\{ cold \}) = \{ cold, wet \}
```

```
cold
                                           f_S(Y) = Y \cup Baza
        cold \rightarrow wet
                                           \cup \{a \in A \mid (s_1 \wedge \ldots \wedge s_n \rightarrow a) \text{ este în } S,
      windy \rightarrow dry
                                          s_1 \in Y, \ldots, s_n \in Y
wet \wedge cold \rightarrow scotland
                                      f_S(\emptyset) = \{ cold \}
                             f_S(\{ cold \}) = \{ cold, wet \}
                      f_S(\{ cold, wet \}) = \{ cold, wet, scotland \}
          f_S(\{ cold, wet, scotland \}) = \{ cold, wet, scotland \}
```

Exemplu

 $f_S(\{ cold \}) = \{ cold, wet \}$ $f_S(\{ cold, wet \}) = \{ cold, wet, scotland \}$ $f_S(\{ cold, wet, scotland \}) = \{ cold, wet, scotland \}$

Deci cel mai mic punct fix este { cold, wet, scotland }.

Teoremă

Fie X este cel mai mic punct fix al funcției f_S. Atunci

$$q \in X$$
 ddacă $S \models q$.

Intuiție: Cel mai mic punct fix al funcției f_S este mulțimea tuturor atomilor care sunt consecințe logice ale programului.

Funcția $f_{\mathcal{S}}: \mathcal{P}(A) o \mathcal{P}(A)$ este definită prin

$$f_S(Y) = Y \cup Baza$$

$$\cup \{a \in A \mid (s_1 \wedge \ldots \wedge s_n \to a) \text{ este în } S, s_1 \in Y, \ldots, s_n \in Y\}$$

unde A este mulțimea atomilor din S și $Baza = \{p_i \mid p_i \in S\}$ este mulțimea atomilor care apar în clauzele unitate din S.

Demonstrație

- $(\Rightarrow) q \in X \Rightarrow S \models q.$
 - \square Funcția f_S conservă atomii adevărați.
 - Deci, dacă fiecare clauză unitate din S este adevărată, după fiecare aplicare a funcției f_S obținem o mulțime adevărată de atomi.

Demonstrație

- $(\Rightarrow) q \in X \Rightarrow S \models q$.
 - \square Funcția f_S conservă atomii adevărați.
 - Deci, dacă fiecare clauză unitate din S este adevărată, după fiecare aplicare a funcției f_S obținem o mulțime adevărată de atomi.
- (\Leftarrow) $S \models q \Rightarrow q \in X$.
 - \square Fie $S \models q$. Presupunem prin absurd că $q \notin X$.
 - Căutăm o evaluare e care face fiecare clauză din S adevărată, dar q falsă.

Demonstrație (cont.)

$$e(p) = egin{cases} 1, & \mathsf{dac\check{a}} \ p \in X \ 0, & \mathsf{altfel} \end{cases}$$

Demonstrație (cont.)

☐ Fie evaluarea

$$e(p) = egin{cases} 1, & \mathsf{dac}\ a \neq X \ 0, & \mathsf{altfel} \end{cases}$$

 \square Evident, această interpretare face q falsă.

Demonstrație (cont.)

$$e(p) = egin{cases} 1, & \mathsf{dac} \ p \in X \ 0, & \mathsf{altfel} \end{cases}$$

- ☐ Evident, această interpretare face q falsă.
- \square Arătăm că $e^+(P)=1$, pentru orice clauză $P\in S$.

Demonstrație (cont.)

$$e(p) = egin{cases} 1, & \mathsf{dac} \ a \ p \in X \ 0, & \mathsf{altfel} \end{cases}$$

- Evident, această interpretare face q falsă.
- \square Arătăm că $e^+(P)=1$, pentru orice clauză $P \in S$.
- \square Fie $P \in S$. Avem două cazuri:

Demonstrație (cont.)

$$e(p) = egin{cases} 1, & \mathsf{dac}\ a \in X \\ 0, & \mathsf{altfel} \end{cases}$$

- Evident, această interpretare face q falsă.
- \square Arătăm că $e^+(P)=1$, pentru orice clauză $P \in S$.
- \square Fie $P \in S$. Avem două cazuri:
 - 1 P este o clauză unitate. Atunci $P \in X$, deci e(P) = 1.

Demonstrație (cont.)

$$e(p) = egin{cases} 1, & \mathsf{dac}\ a \in X \\ 0, & \mathsf{altfel} \end{cases}$$

- Evident, această interpretare face q falsă.
- \square Arătăm că $e^+(P)=1$, pentru orice clauză $P\in S$.
- \square Fie $P \in S$. Avem două cazuri:
 - **1** P este o clauză unitate. Atunci $P \in X$, deci e(P) = 1.
 - **2** P este de forma $p_1 \wedge \ldots \wedge p_n \rightarrow r$. Atunci avem două cazuri:

Demonstrație (cont.)

$$e(p) = egin{cases} 1, & \mathsf{dac} \ p \in X \ 0, & \mathsf{altfel} \end{cases}$$

- Evident, această interpretare face q falsă.
- \square Arătăm că $e^+(P)=1$, pentru orice clauză $P\in S$.
- \square Fie $P \in S$. Avem două cazuri:
 - 1 P este o clauză unitate. Atunci $P \in X$, deci e(P) = 1.
 - 2 P este de forma $p_1 \wedge ... \wedge p_n \rightarrow r$. Atunci avem două cazuri: • există un p_i , i = 1, ..., n, care nu este în X. Deci $e^+(P) = 1$.

Demonstrație (cont.)

$$e(p) = egin{cases} 1, & \mathsf{dac} \ p \in X \ 0, & \mathsf{altfel} \end{cases}$$

- Evident, această interpretare face q falsă.
- \square Arătăm că $e^+(P)=1$, pentru orice clauză $P\in S$.
- \square Fie $P \in S$. Avem două cazuri:
 - 1 P este o clauză unitate. Atunci $P \in X$, deci e(P) = 1.
 - 2 P este de forma $p_1 \wedge \ldots \wedge p_n \rightarrow r$. Atunci avem două cazuri:
 - există un p_i , i = 1, ..., n, care nu este în X. Deci $e^+(P) = 1$.
 - toţi p_i , i = 1, ..., n, sunt în X. Atunci $r \in f_S(X) = X$, deci e(r) = 1. În concluzie $e^+(P) = 1$.

Sistemul de deducție CDP

Corolar

Sistemul de deducție pentru clauze definite propoziționale este complet pentru a arăta clauze unitate:

dacă
$$S \models q$$
, atunci $S \vdash q$.

Sistemul de deducție CDP

Corolar

Sistemul de deducție pentru clauze definite propoziționale este complet pentru a arăta clauze unitate:

dacă
$$S \models q$$
, atunci $S \vdash q$.

Demonstrație

- \square Presupunem $S \models q$.
- \square Atunci $q \in X$, unde X este cel mai mic punct fix al funcției f_S .
- □ Fiecare aplicare a funcției f_S produce o mulțime demonstrabilă de atomi.
- \square Cum cel mai mic punct fix este atins după un număr finit de aplicări ale lui f_S , orice $a \in X$ are o derivare.

Metodă de decizie

Avem o metodă de decizie (decision procedure) pentru a verifica $S \vdash q$:

Metoda constă în:

- \square calcularea celui mai mic punct fix X al funcției f_S
- \square dacă $q \in X$ atunci returnăm **true**, altfel returnăm **false**

Metodă de decizie

Avem o metodă de decizie (decision procedure) pentru a verifica $S \vdash q$:

Metoda constă în:

- \square calcularea celui mai mic punct fix X al funcției f_S
- \square dacă $q \in X$ atunci returnăm **true**, altfel returnăm **false**

Această metodă se termină.

Exercițiu. De ce?

Metodă de decizie

Avem o metodă de decizie (decision procedure) pentru a verifica $S \vdash q$:

Metoda constă în:

- \square calcularea celui mai mic punct fix X al funcției f_S
- \square dacă $q \in X$ atunci returnăm **true**, altfel returnăm **false**

Această metodă se termină.

Exercițiu. De ce?

Nu acesta este algoritmul folosit de Prolog!

Pe săptămâna viitoare!