```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
1. Load the dataset
df = pd.read csv('/content/Churn Modelling.csv')
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):
                      Non-Null Count
#
     Column
                                       Dtype
- - -
     -----
                      -----
 0
     RowNumber
                      10000 non-null
                                      int64
 1
     CustomerId
                      10000 non-null
                                       int64
 2
     Surname
                      10000 non-null
                                       object
 3
     CreditScore
                      10000 non-null
                                       int64
 4
                      10000 non-null
     Geography
                                       object
 5
     Gender
                      10000 non-null
                                       object
 6
     Age
                      10000 non-null
                                       int64
 7
     Tenure
                      10000 non-null
                                      int64
 8
     Balance
                      10000 non-null
                                      float64
 9
     NumOfProducts
                      10000 non-null
                                       int64
                      10000 non-null
 10 HasCrCard
                                       int64
 11
     IsActiveMember
                      10000 non-null
                                       int64
    EstimatedSalary
                      10000 non-null
 12
                                      float64
 13 Exited
                      10000 non-null
                                       int64
dtypes: float64(2), int64(9), object(3)
memory usage: 1.1+ MB
df.shape
(10000, 14)
df.describe()
                      CustomerId
                                   CreditScore
         RowNumber
                                                          Age
Tenure
count
       10000.00000
                    1.000000e+04
                                  10000.000000
                                                 10000.000000
10000.000000
        5000.50000
mean
                    1.569094e+07
                                     650.528800
                                                    38.921800
5.012800
        2886.89568 7.193619e+04
                                     96.653299
                                                    10.487806
std
2.892174
           1.00000
                    1.556570e+07
                                     350.000000
                                                    18.000000
min
0.000000
25%
        2500.75000
                    1.562853e+07
                                     584,000000
                                                    32.000000
3.000000
        5000.50000 1.569074e+07
                                     652,000000
                                                    37.000000
50%
5.000000
```

```
7500.25000
75%
                                      718.000000
                                                      44.000000
                     1.575323e+07
7.000000
                    1.581569e+07
max
       10000.00000
                                      850.000000
                                                      92.000000
10.000000
                       NumOfProducts
                                                     IsActiveMember
              Balance
                                         HasCrCard
count
        10000.000000
                        10000.000000
                                       10000.00000
                                                       10000.000000
        76485.889288
mean
                             1.530200
                                            0.70550
                                                            0.515100
std
        62397.405202
                                            0.45584
                                                            0.499797
                             0.581654
min
            0.000000
                             1.000000
                                            0.00000
                                                            0.000000
25%
            0.000000
                             1.000000
                                            0.00000
                                                            0.000000
50%
        97198.540000
                             1.000000
                                            1.00000
                                                            1.000000
75%
       127644.240000
                             2,000000
                                            1.00000
                                                            1.000000
max
       250898.090000
                             4.000000
                                            1.00000
                                                            1.000000
       EstimatedSalary
                                Exited
          10000.000000
                         10000.000000
count
         100090.239881
mean
                              0.203700
std
          57510.492818
                              0.402769
              11.580000
                              0.000000
min
25%
          51002.110000
                              0.000000
50%
         100193.915000
                              0.000000
75%
         149388.247500
                              0.000000
         199992.480000
                              1.000000
max
df.isnull().sum()
RowNumber
                    0
CustomerId
                    0
Surname
                    0
CreditScore
                    0
Geography
                    0
Gender
                    0
Age
                    0
Tenure
                    0
Balance
                    0
NumOfProducts
                    0
HasCrCard
                    0
IsActiveMember
                    0
EstimatedSalary
                    0
Exited
                    0
dtype: int64
# Data Cleaning
df.drop(['RowNumber', 'CustomerId', 'Surname'], axis=1, inplace=True)
df.head(5)
   CreditScore Geography
                           Gender
                                    Age
                                         Tenure
                                                    Balance
NumOfProducts
                                               2
0
           619
                   France
                           Female
                                     42
                                                       0.00
1
```

```
1
           608
                    Spain Female
                                     41
                                              1
                                                  83807.86
1
2
                                                 159660.80
           502
                   France
                           Female
                                     42
                                              8
3
3
           699
                   France
                           Female
                                     39
                                              1
                                                       0.00
2
4
                    Spain
                                     43
                                              2
                                                 125510.82
           850
                           Female
1
              IsActiveMember
   HasCrCard
                               EstimatedSalary
                                                 Exited
0
                                      101348.88
           1
                            1
                                                       1
1
           0
                            1
                                      112542.58
                                                       0
2
           1
                            0
                                      113931.57
                                                       1
```

93826.63

79084.10

2. Univariate Analysis

Categorical Data

```
# Gender
sns.countplot(df.Gender)
plt.show()
# HasCrCard
sns.countplot(df.HasCrCard)
plt.show()
# IsActiveMember
sns.countplot(df.IsActiveMember)
plt.show()
# Geography
sns.countplot(df.Geography)
plt.show()
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

Numerical Data

```
# Age
fig1, axes1 = plt.subplots(1, 2, figsize=(12,6))
sns.distplot(df.Age, hist=True, kde=True, color="b", bins=30,
ax=axes1[0]
sns.boxplot(df.Age, color='r', ax=axes1[1])
plt.show()
# CreditScore
fig2, axes2 = plt.subplots(1, 2, figsize=(12,6))
sns.distplot(df.CreditScore, hist=True, kde=True, color="b", bins=30,
ax=axes2[0])
sns.boxplot(df.CreditScore, color='r', ax=axes2[1])
plt.show()
# Tenure
fig3, axes3 = plt.subplots(1, 2, figsize=(12,6))
sns.distplot(df.Tenure, hist=True, kde=True, color="b", bins=30,
ax=axes3[0]
sns.boxplot(df.Tenure, color='r', ax=axes3[1])
plt.show()
# Balance
fig4, axes4 = plt.subplots(1, 2, figsize=(12,6))
sns.distplot(df.Balance, hist=True, kde=True, color="b", bins=30,
ax=axes4[0]
sns.boxplot(df.Balance, color='r', ax=axes4[1])
plt.show()
# NumOfProducts
fig5, axes5 = plt.subplots(1, 2, figsize=(12,6))
sns.distplot(df.NumOfProducts, hist=True, kde=True, color="b",
```

```
bins=30, ax=axes5[0])
sns.boxplot(df.NumOfProducts, color='r', ax=axes5[1])
plt.show()
# EstimatedSalary
fig6, axes6 = plt.subplots(1, 2, figsize=(12,6))
sns.distplot(df.EstimatedSalary, hist=True, kde=True, color="b", bins=30, ax=axes6[0])
sns.boxplot(df.EstimatedSalary, color='r', ax=axes6[1])
plt.show()
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an

error or misinterpretation. FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

Bivariate Analysis

Between COntinuous Variables

	CreditScore	Age	Tenure	Balance	
<pre>NumOfProducts \ CreditScore</pre>	1.000000	-0.003965	0.000842	0.006268	
0.012238 Age	-0.003965	1.000000	-0.009997	0.028308	
0.030680 Tenure	0.000842	-0.009997	1.000000	-0.012254	
0.013444 Balance	0.006268	0.028308	-0.012254	1.000000	
0.304180 NumOfProducts	0.012238	-0.030680	0.013444	-0.304180	
1.000000 EstimatedSalary	-0.001384	-0.007201	0.007784	0.012797	
0.014204					

```
EstimatedSalary
CreditScore -0.001384
Age -0.007201
Tenure 0.007784
Balance 0.012797
NumOfProducts 0.014204
EstimatedSalary 1.000000
```

```
sns.scatterplot(df.Age, df.CreditScore)
plt.show()
sns.scatterplot(df.Age, df.EstimatedSalary)
plt.show()
sns.scatterplot(df.EstimatedSalary, df.Balance)
plt.show()
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

Between Continuous and Categorical Variables

df.groupby(by='Exited').agg('mean')[['CreditScore', 'Age', 'Tenure',
'Balance', 'NumOfProducts', 'EstimatedSalary']]

	CreditScore	Age	Tenure	Balance	NumOfProducts
\ Exited					
0	651.853196	37.408389	5.033279	72745.296779	1.544267
1	645.351497	44.837997	4.932744	91108.539337	1.475209

EstimatedSalary

Exited 99738.391772 1 101465.677531

Between Categorical Variables

sns.countplot(df.Exited, hue=df.Gender)

```
plt.show()
sns.countplot(df.Exited, hue=df.Geography)
plt.show()
sns.countplot(df.Exited, hue=df.HasCrCard)
plt.show()
sns.countplot(df.Exited, hue=df.IsActiveMember)
plt.show()
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

Multivariate Analysis

```
Exited = {0: 'X', 1: 'Y'}
sns.pairplot(data=df[['CreditScore', 'Age', 'Tenure', 'Balance',
'NumOfProducts', 'EstimatedSalary']])
```

<seaborn.axisgrid.PairGrid at 0x7f36f4f60f90>

3. Descriptive Analysis df.head()

Mii	CreditScore mOfProducts	Geography \	Gender	Age	Tenure	Balance
0 1	619	France	Female	42	2	0.00
1	608	Spain	Female	41	1	83807.86
2	502	France	Female	42	8	159660.80
3	699	France	Female	39	1	0.00
2 4 1	850	Spain	Female	43	2	125510.82

HasCrCard	IsActiveMember	EstimatedSalary	Exited
1	1	101348.88	1
0	1	112542.58	0
1	0	113931.57	1
Θ	0	93826.63	0
1	1	79084.10	0
	HasCrCard 1 0 1 0 1	HasCrCard IsActiveMember 1 1 0 1 1 0 0 0 0 1 1 1	0 1 112542.58 1 0 113931.57 0 0 93826.63

df.describe()

CreditScore	Age	Tenure	Balance
NumOfProducts \			
count 10000.000000	10000.000000	10000.000000	10000.000000
10000.000000			
mean 650.528800	38.921800	5.012800	76485.889288
1.530200			
std 96.653299	10.487806	2.892174	62397.405202
0.581654			
min 350.000000	18.000000	0.00000	0.000000
1.000000			
25% 584.000000	32.000000	3.000000	0.000000
1.000000	27 000000	F 000000	07100 540000
50% 652.000000	37.000000	5.000000	97198.540000
1.000000	44 000000	7 000000	127644 240000
75% 718.000000	44.000000	7.000000	127644.240000
2.000000	02 000000	10 000000	250000 000000
max 850.000000 4.000000	92.000000	10.000000	250898.090000
4.000000			

	HasCrCard	IsActiveMember	EstimatedSalary	Exited
count	10000.00000	10000.000000	10000.000000	10000.000000
mean	0.70550	0.515100	100090.239881	0.203700
std	0.45584	0.499797	57510.492818	0.402769
min	0.00000	0.000000	11.580000	0.000000
25%	0.00000	0.000000	51002.110000	0.000000
50%	1.00000	1.000000	100193.915000	0.000000
75%	1.00000	1.000000	149388.247500	0.000000
max	1.00000	1.000000	199992.480000	1.000000

df.var()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

"""Entry point for launching an IPython kernel.

CreditScore	9.341860e+03
Age	1.099941e+02
Tenure	8.364673e+00
Balance	3.893436e+09

```
NumOfProducts
                   3.383218e-01
HasCrCard
                   2.077905e-01
IsActiveMember
                   2.497970e-01
                   3.307457e+09
EstimatedSalary
Exited
                   1.622225e-01
dtype: float64
df.describe(include='object')
       Geography Gender
           10000 10000
count
unique
               3
                      2
                   Male
top
          France
            5014
                   5457
freq
df['Gender'].value_counts().to_frame()
        Gender
Male
          5457
          4543
Female
df['Geography'].value_counts().to_frame()
         Geography
France
              5014
              2509
Germany
Spain
              2477
```

4. Handle the Missing Values

df.dropna(axis=0, inplace=True)

5. Find the outliers and replace the outliers df

NumOfl	CreditScore Products \	Geography	Gender	Age	Tenure	Balance
0	619	France	Female	42	2	0.00
1	608	Spain	Female	41	1	83807.86
2	502	France	Female	42	8	159660.80
3	699	France	Female	39	1	0.00
2 4 1	850	Spain	Female	43	2	125510.82
9995	771	France	Male	39	5	0.00
2 9996	516	France	Male	35	10	57369.61

```
9997
               709
                      France
                               Female
                                        36
                                                  7
                                                          0.00
9998
               772
                     Germany
                                 Male
                                        42
                                                  3
                                                      75075.31
9999
               792
                      France
                               Female
                                        28
                                                     130142.79
1
      HasCrCard
                  IsActiveMember
                                   EstimatedSalary
0
                                         101348.88
               1
                                1
                                                           1
1
               0
                                1
                                         112542.58
                                                          0
2
               1
                                0
                                         113931.57
                                                           1
3
               0
                                0
                                          93826.63
                                                          0
4
               1
                                1
                                          79084.10
                                                          0
                                                         . .
                                          96270.64
                                                          0
9995
               1
                                0
9996
               1
                                1
                                         101699.77
                                                          0
9997
                                1
                                                          1
               0
                                          42085.58
9998
               1
                                0
                                          92888.52
                                                           1
9999
               1
                                0
                                          38190.78
                                                          0
[10000 \text{ rows } \times 11 \text{ columns}]
from scipy import stats
z = np.abs(stats.zscore(df[['CreditScore', 'Age', 'Tenure', 'Balance',
'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'EstimatedSalary']]))
print(np.where(z > 3))
                       85, 158, 230, 252, 310, 371, 602, 766,
(array([
           7.
                 70.
888,
       1009, 1039, 1055, 1205, 1254, 1342, 1405, 1410, 1469, 1488,
1614,
       1631, 1701, 1790, 1838, 1876, 1933, 1962, 2002, 2012, 2108,
2124,
       2159, 2164, 2196, 2285, 2433, 2458, 2462, 2473, 2499, 2509,
2541,
       2553, 2614, 2617, 2772, 2778, 2855, 2872, 2901, 2925, 3033,
3110,
       3142, 3152, 3311, 3317, 3365, 3366, 3378, 3382, 3387, 3396,
3499,
       3531. 3602. 3651. 3691. 3702. 3813. 3826. 3841. 3880. 3888.
3994,
       4013, 4014, 4162, 4166, 4256, 4260, 4273, 4318, 4366, 4378,
4403,
       4501, 4511, 4516, 4590, 4606, 4644, 4654, 4748, 4801, 4815,
4822,
       4832, 4931, 5010, 5068, 5137, 5197, 5223, 5235, 5299, 5313,
5377,
       5386, 5490, 5508, 5664, 5671, 5700, 5783, 5840, 5904, 5957,
```

```
6116,
       6150, 6167, 6172, 6173, 6230, 6278, 6279, 6366, 6443, 6530,
6581,
       6721, 6750, 6759, 6875, 7057, 7058, 7063, 7202, 7243, 7257,
7272,
       7302, 7362, 7375, 7457, 7499, 7523, 7526, 7552, 7567, 7692,
7698.
       7719, 7724, 7729, 7788, 7898, 7956, 8019, 8041, 8156, 8217,
8458,
       8469, 8590, 8683, 8686, 8723, 8762, 8787, 8850, 8865, 8900,
8923,
       9080, 9112, 9215, 9255, 9292, 9309, 9323, 9324, 9333, 9370,
9411,
       9425, 9472, 9490, 9540, 9555, 9565, 9587, 9589, 9624, 9646,
9671,
       9736, 9894, 9936]), array([4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
      1, 4, 1, 0, 1, 4, 4, 1,
       0, 4, 1, 0, 4, 1, 0, 1, 1, 1, 4, 1, 1, 4, 4, 1, 1, 4, 0, 4, 4,
4,
       1, 4, 4, 1, 1, 1, 4, 1, 1, 1, 1, 1, 4, 1, 1, 4, 1, 1, 1, 1, 1,
1,
       1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 4, 4, 1, 4, 1, 4, 1, 1, 1, 1,
4,
       1, 4, 4, 1, 4, 1, 4, 4, 1, 1, 4, 1, 1, 4, 1, 4, 1, 1, 4, 1, 1,
1,
       4, 1, 1, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 4, 1, 1, 1, 1, 1, 1, 1,
1,
       1, 4, 1, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 4, 1, 1, 1, 1, 4, 1,
4,
       1, 4, 4, 1, 1, 1, 1, 4, 1, 1, 1, 1, 4, 4, 1, 0, 0, 1, 4, 1, 1,
4,
       1, 1, 4, 4, 1, 1, 4, 1, 1, 4, 4, 1, 1, 1, 4, 1, 4, 1, 1, 0, 1,
1,
       1, 1, 1]))
df = df[(z < 3).all(axis=1)]
df
      CreditScore Geography
                              Gender
                                      Age
                                           Tenure
                                                      Balance
NumOfProducts
              619
                      France
                              Female
                                       42
                                                 2
                                                         0.00
1
1
              608
                       Spain
                              Female
                                       41
                                                     83807.86
                                                 1
1
2
              502
                      France
                              Female
                                       42
                                                    159660.80
3
3
              699
                      France
                              Female
                                       39
                                                 1
                                                         0.00
2
4
              850
                       Spain
                              Female
                                       43
                                                 2
                                                    125510.82
1
```

```
9995
              771
                      France
                                Male
                                       39
                                                         0.00
                                                 5
2
9996
              516
                      France
                                Male
                                       35
                                                10
                                                     57369.61
1
9997
              709
                      France
                             Female
                                       36
                                                 7
                                                         0.00
1
9998
              772
                    Germany
                                       42
                                                     75075.31
                                Male
                                                 3
2
9999
              792
                      France Female
                                       28
                                                    130142.79
1
      HasCrCard
                 IsActiveMember
                                  EstimatedSalary
                                                    Exited
0
                                         101348.88
                                                          1
1
              0
                               1
                                         112542.58
                                                         0
2
                                                         1
              1
                               0
                                         113931.57
3
                                          93826.63
                                                         0
              0
                               0
4
              1
                               1
                                          79084.10
                                                         0
                                                        . . .
                             . . .
9995
                                          96270.64
              1
                               0
                                                         0
                                                         0
9996
              1
                               1
                                         101699.77
                                          42085.58
                                                         1
9997
              0
                               1
9998
              1
                                          92888.52
                                                         1
                               0
              1
                               0
                                          38190.78
                                                         0
9999
[9799 rows x 11 columns]
5. Encoding Categorical Columns
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['Geography'] = le.fit_transform(df['Geography'])
df['Gender'] = le.fit transform(df['Gender'])
df
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation:
https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#
returning-a-view-versus-a-copy
  """Entry point for launching an IPython kernel.
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:2:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

N O. C	CreditScore	Geography	Gender	Age	Tenure	Balance
0	Products \ 619	0	0	42	2	0.00
1	608	2	0	41	1	83807.86
1 2	502	0	0	42	8	159660.80
2 3 3 2	699	0	0	39	1	0.00
2 4 1	850	2	0	43	2	125510.82
9995	771	0	1	39	5	0.00
2 9996	516	0	1	35	10	57369.61
1 9997	709	0	0	36	7	0.00
1 9998	772	1	1	42	3	75075.31
2 9999 1	792	0	0	28	4	130142.79
0 1 2 3 4	HasCrCard 1 0 1 0 1	IsActiveMemb	er Esti 1 1 0 0	101 112 113 93	Salary 348.88 542.58 931.57 826.63 084.10	Exited 1 0 1 0 0
9995 9996 9997 9998 9999	1 1 0 1 1		0 1 1 0 0	101 42 92	 270.64 699.77 085.58 888.52 190.78	0 0 1 1

[9799 rows x 11 columns]

6. Split the data into dependent and independent variables

indep_var = df.iloc[:,0:10].values
indep_var

```
array([[6.1900000e+02, 0.0000000e+00, 0.0000000e+00, ...,
1.0000000e+00,
        1.0000000e+00, 1.013488e+05],
       [6.0800000e+02, 2.0000000e+00, 0.0000000e+00, ...,
0.0000000e+00.
        1.0000000e+00, 1.1254258e+05],
       [5.0200000e+02.0.0000000e+00.0.0000000e+00....
1.0000000e+00,
        0.0000000e+00, 1.1393157e+05],
       [7.0900000e+02, 0.0000000e+00, 0.0000000e+00, ...,
0.0000000e+00,
        1.0000000e+00, 4.2085580e+04],
       [7.7200000e+02, 1.0000000e+00, 1.0000000e+00, ...,
1.0000000e+00,
        0.0000000e+00, 9.2888520e+04],
       [7.9200000e+02, 0.0000000e+00, 0.0000000e+00, ...,
1.0000000e+00,
        0.0000000e+00, 3.8190780e+04]])
dep var = df.iloc[:,10:].values
dep var
array([[1],
       [0],
       [1].
       [1],
       [1],
       [0]])
7. Splitting the data into train and test
from sklearn.model selection import train test split
xtrain, xtest, ytrain, ytest = train test split(indep var, dep var,
test size=0.3, random state=0)
xtrain
array([[5.5600000e+02, 0.0000000e+00, 0.0000000e+00, ...,
1.0000000e+00,
        0.0000000e+00, 1.7514920e+051,
       [6.6100000e+02, 2.0000000e+00, 0.0000000e+00, ...,
1.0000000e+00,
        0.0000000e+00, 6.9586270e+04],
       [7.6400000e+02, 0.0000000e+00, 1.0000000e+00, ...,
0.0000000e+00,
        0.0000000e+00. 1.3487834e+051.
       [8.1100000e+02, 0.0000000e+00, 1.0000000e+00, ...,
1.0000000e+00,
```

```
1.0000000e+00, 3.7977900e+031,
       [4.8700000e+02, 2.0000000e+00, 0.0000000e+00, ...,
1.0000000e+00,
        0.0000000e+00, 1.5875013e+05],
       [7.3200000e+02, 1.0000000e+00, 0.0000000e+00, ...,
1.0000000e+00,
        1.0000000e+00. 1.5752760e+0511)
xtest
array([[5.7900000e+02, 2.0000000e+00, 1.0000000e+00, ...,
0.0000000e+00,
        0.0000000e+00, 1.2021914e+05],
       [6.4600000e+02, 0.0000000e+00, 1.0000000e+00, ...,
0.0000000e+00,
        1.0000000e+00, 1.6425569e+05],
       [7.2100000e+02, 2.0000000e+00, 0.0000000e+00, ...,
1.0000000e+00,
        1.0000000e+00, 1.0393149e+05],
       [7.6700000e+02, 2.0000000e+00, 1.0000000e+00, ...,
1.0000000e+00,
        1.0000000e+00, 1.9566800e+05],
       [7.5900000e+02, 1.0000000e+00, 1.0000000e+00, ...,
0.0000000e+00,
        0.0000000e+00, 8.6938000e+03],
       [5.0100000e+02, 0.0000000e+00, 1.0000000e+00, ...,
1.0000000e+00,
        1.0000000e+00, 4.7847190e+04]])
vtrain
array([[1],
       [1],
       [0],
       [0],
       [0],
       [1]])
ytest
array([[0],
       [0].
       [0],
       [0],
       [0],
       [0]])
```