#### Cumulative-Killed-Shot Graphics 2014-2022

#### MCC

#### 2022-06-09

```
library(readr)
library(lubridate)
library(ggplot2)
library(tidyverse)
library(knitr)

pagebreak <- function() {
   if(knitr::is_latex_output())
     return("\\newpage")
   else
     return('<div style="page-break-before: always;" />')
}
```

#### Read Gun Violence dataframes

```
read_gva_data
```

```
read gva data <- function(i) {</pre>
  file_year = paste("~/Desktop/gun_violence_research/001_data/001A_ORIGINAL/gva-", i, ".csv", sep="")
  # print("======="")
  # print(file_year)
  gva_df <- read_csv(file_year,</pre>
        col_types = cols(`Incident ID` = col_skip(),
        `Incident Date` = col_date(format = "%B %d, %Y"),
       State = col_skip(), `City Or County` = col_skip(),
        Address = col_skip(), Operations = col_skip()))
  # Simplify Names & Order data frame by 'ID' (incident date)
  names(gva_df) <- c("ID", "Killed", "Injured")</pre>
  gva_df <- gva_df[order(gva_df$`ID`), ]</pre>
  ## Calculate Killed/Injured/Grand Totals
  date <- ymd(gva_df$`ID`)</pre>
  gva_df$Days <- yday(date) - 1 # so Jan 1 = day 0</pre>
  gva_df$Cum_Killed <- cumsum(gva_df$Killed)</pre>
  gva_df$Cum_Injured <- cumsum(gva_df$Injured)</pre>
  gva_df$Grand_Total <- gva_df$Cum_Killed + gva_df$Cum_Injured</pre>
  return(gva_df)
```

#### Graphic of Cumulative Deaths vs Days for Given Year

#### graph\_deaths

```
graph_deaths <- function(gva_df, i){
    #print("graph_deaths")
    require(ggplot2)
    plot(ggplot(gva_df, aes(x=gva_df$Days, y=gva_df$Cum_Killed)) +
        geom_line() +
        ggtitle("Cumulative Killed Per Year", subtitle = i) +
        labs(x='Day No. of 365 Days', y="Cumulative Killed") +
        geom_smooth(method = "lm"))
}</pre>
```

#### Regression Numbers For Killed vs Days for Given Year

calc\_regression\_killed

```
calc_regression_killed <- function(gva_df, i){
    #print("calc_regression_killed")
    #print(names(gva_df))
    #fit simple linear regression model
    model <- lm(gva_df$Cum_Killed ~ gva_df$Days)
    print(paste("Regression Values For Year: ", i, sep=""))
    print(model)
}</pre>
```

#### Cumulative Total Shot (Killed + Injured) vs Days For Given Year

#### graph total shot

#### Calculate Regression Numbers For Total Shot vs Days for Given Year

calc\_regression\_total\_shot

```
calc_regression_total_shot <- function(gva_df, i){
    #print("calc_regression_total_shot")
    #fit simple linear regression model
    model <- lm(gva_df$Grand_Total ~ gva_df$Days)
    print(paste("Regression Values For Year: ", i, sep=""))
    print(model)
}</pre>
```

#### Main

```
for (i in 2014:2021) {
    #print (i)
    gva_df <- data.frame()
    gva_df <- read_gva_data(i)
    pagebreak()
    graph_deaths(gva_df, i)
    calc_regression_killed(gva_df, i)
    graph_total_shot(gva_df, i)
    calc_regression_total_shot(gva_df, i)
}</pre>
```



```
## [1] "Regression Values For Year: 2014"
##
## Call:
## lm(formula = gva_df$Cum_Killed ~ gva_df$Days)
##
## Coefficients:
## (Intercept) gva_df$Days
## -15.8279 0.7628
```



```
## [1] "Regression Values For Year: 2014"
##
## Call:
## lm(formula = gva_df$Grand_Total ~ gva_df$Days)
##
## Coefficients:
## (Intercept) gva_df$Days
## -81.016 4.024
```



```
## [1] "Regression Values For Year: 2015"
##
## Call:
## lm(formula = gva_df$Cum_Killed ~ gva_df$Days)
##
## Coefficients:
## (Intercept) gva_df$Days
## -4.445 1.059
```



```
## [1] "Regression Values For Year: 2015"
##
## Call:
## lm(formula = gva_df$Grand_Total ~ gva_df$Days)
##
## Coefficients:
## (Intercept) gva_df$Days
## -122.869 5.158
```



```
## [1] "Regression Values For Year: 2016"
##
## Call:
## lm(formula = gva_df$Cum_Killed ~ gva_df$Days)
##
## Coefficients:
## (Intercept) gva_df$Days
## -25.412 1.385
```



```
## [1] "Regression Values For Year: 2016"
##
## Call:
## lm(formula = gva_df$Grand_Total ~ gva_df$Days)
##
## Coefficients:
## (Intercept) gva_df$Days
## -215.696 6.204
```



```
## [1] "Regression Values For Year: 2017"
##
## Call:
## lm(formula = gva_df$Cum_Killed ~ gva_df$Days)
##
## Coefficients:
## (Intercept) gva_df$Days
## -8.026 1.233
```



```
## [1] "Regression Values For Year: 2017"
##
## Call:
## lm(formula = gva_df$Grand_Total ~ gva_df$Days)
##
## Coefficients:
## (Intercept) gva_df$Days
## -167.138 6.457
```



```
## [1] "Regression Values For Year: 2018"
##
## Call:
## lm(formula = gva_df$Cum_Killed ~ gva_df$Days)
##
## Coefficients:
## (Intercept) gva_df$Days
## -15.203 1.062
```



```
## [1] "Regression Values For Year: 2018"
##
## Call:
## lm(formula = gva_df$Grand_Total ~ gva_df$Days)
##
## Coefficients:
## (Intercept) gva_df$Days
## -140.031 5.378
```



```
## [1] "Regression Values For Year: 2019"
##
## Call:
## lm(formula = gva_df$Cum_Killed ~ gva_df$Days)
##
## Coefficients:
## (Intercept) gva_df$Days
## -25.586 1.348
```



```
## [1] "Regression Values For Year: 2019"
##
## Call:
## lm(formula = gva_df$Grand_Total ~ gva_df$Days)
##
## Coefficients:
## (Intercept) gva_df$Days
## -180.71 6.54
```



```
## [1] "Regression Values For Year: 2020"
##
## Call:
## lm(formula = gva_df$Cum_Killed ~ gva_df$Days)
##
## Coefficients:
## (Intercept) gva_df$Days
## -60.651 1.589
```



```
## [1] "Regression Values For Year: 2020"
##
## Call:
## lm(formula = gva_df$Grand_Total ~ gva_df$Days)
##
## Coefficients:
## (Intercept) gva_df$Days
## -529.08 10.33
```



```
## [1] "Regression Values For Year: 2021"
##
## Call:
## lm(formula = gva_df$Cum_Killed ~ gva_df$Days)
##
## Coefficients:
## (Intercept) gva_df$Days
## -19582.82 56.17
```

```
2500 -
(Denilative Total Short | 1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000 -
1000
```

```
## [1] "Regression Values For Year: 2021"
##
## Call:
## lm(formula = gva_df$Grand_Total ~ gva_df$Days)
##
## Coefficients:
## (Intercept) gva_df$Days
## -52969.4 151.9
```

| YEAR | Killed    | Total    | AVG |
|------|-----------|----------|-----|
| 2014 | 0.7628257 | 4.024422 | 5.3 |
| 2015 | 1.059014  | 5.157974 | 4.9 |
| 2016 | 1.384732  | 6.204191 | 4.5 |
| 2017 | 1.232796  | 6.456688 | 5.2 |
| 2018 | 1.062215  | 5.377669 | 5.1 |
| 2019 | 1.348324  | 6.540035 | 4.9 |
| 2020 | 1.588776  | 10.33217 | 6.5 |
| 2021 | 56.16621  | 151.9159 | 2.7 |
|      |           | Avg      | 4.9 |