# Redes Neurais Convolucionais

Arthur Abrahão Santos Barbosa Universidade Federal de Pernambuco Centro de Informática Pernambuco, Brasil aasb2@cin.ufpe.br Filipe Samuel da Silva

Universidade Federal de Pernambuco

Centro de Informática

Pernambuco, Brasil

fss8@cin.ufpe.br

#### I. OBJETIVOS

# A. Objetivo Geral

Desnvolver um Classificador Multiclasse que reconheça as imagens do dataset CIFAR100 [?].

# B. Objetivos Específicos

- Compreender a implementação de uma Rede Neural Convolucional
- Demonstrar a Importância do Aprendizado Profundo e suas aplicações
- Demonstrar a eficiência de três arquiteturas importantes para a história do Deep Learning

#### II. JUSTIFICATIVA

Este projeto foi escolhido com base no fato deste dataset ser bastante usado para testar redes neurais com imagens coloridas, e pelo fato de ter uma divisão bastante equilibrada dos dados. [?].

Sua função é verificar a qual das classes pertence uma imagem de tamanho 32x32.

#### III. BASE DE DADOS

O dataset usado durante o projeto é o CIFAR-100. Ele tem 100 classes contendo 600 imagens cada, totalizando 60.000 imagens. Das 600 imagens que cada classe possui 100 delas são separadas para teste e 500 delas para treino. As 100 classes do dataset estão agrupadas em 20 super classes do seguinte modo [?]:

- aquatic mammals: beaver, dolphin, otter, seal, whale
- fish: aquarium fish, flatfish, ray, shark, trout
- flowers: orchids, poppies, roses, sunflowers, tulips
- food containers: bottles, bowls, cans, cups, plates
- fruit and vegetables: apples, mushrooms, oranges, pears, sweet peppers
- household electrical devices: clock, computer keyboard, lamp, telephone, television
- household furniture: bed, chair, couch, table, wardrobe
- insects: bee, beetle, butterfly, caterpillar, cockroach
- large carnivores: bear, leopard, lion, tiger, wolf
- large man-made outdoor things: bridge, castle, house, road, skyscraper
- large natural outdoor scenes: cloud, forest, mountain, plain, sea

- large omnivores and herbivores: camel, cattle, chimpanzee, elephant, kangaroo
- medium-sized mammals: fox, porcupine, possum, raccoon, skunk
- non-insect invertebrates: crab, lobster, snail, spider, worm
- people: baby, boy, girl, man, woman
- reptiles: crocodile, dinosaur, lizard, snake, turtle
- small mammals: hamster, mouse, rabbit, shrew, squirrel
- trees: maple, oak, palm, pine, willow
- vehicles 1: bicycle, bus, motorcycle, pickup truck, train
- vehicles 2: lawn-mower, rocket, streetcar, tank, tractor

[?]

#### IV. ANÁLISE EXPLORATÓRIA DOS DADOS

# A. Quantidade de Imagens Por Classes

Tanto o dataset de teste quanto o de treino são bastante equilibrados, possuindo a mesma quantidade de imagens para cada classe:

# B. Descrição Estatística dos dados

Porque os dados trabalhados são imagens em vez de tabelas, é mais difícil descrevê-las estatisticamente. Portanto as descrevemos do seguinte modo:

- 1) Média das Imagens por Classe: Um método possível de analisar as imagens estatisticamente é cálcular o valor médio por pixel, e deste modo conseguir uma imagem média que representaria a classe.
  - Média da Imagens Não Normalizadas



Fig. 1: Da esquerda para a direita, de cima para a baixo: apple, aquarium\_fish, baby, bear, beaver, bed, bee, beetle, bicycle, bottle, bowl, boy, bridge, bus, butterfly, camel, can, castle, caterpillar, cattle, chair, chimpanzee, clock, cloud, cockroach



Fig. 3: Da esquerda para a direita, de cima para a baixo: mouse, mushroom, oak\_tree, orange, orchid, otter, palm\_tree, pear, pickup\_truck, pine\_tree, plain, plate, poppy, porcupine, possum, rabbit, raccoon, ray, road, rocket, rose, sea, seal, shark, shrew



Fig. 2: Da esquerda para a direita, de cima para a baixo: couch, crab, crocodile, cup, dinosaur, dolphin, elephant, flatfish, forest, fox, girl, hamster, house, kangaroo, keyboard, lamp, lawn\_mower, leopard, lion, lizard, lobster, man, maple\_tree, motorcycle, mountain



Fig. 4: Da esquerda para a direita, de cima para a baixo: skunk, skyscraper, snail, snake, spider, squirrel, streetcar, sunflower, sweet\_pepper, table, tank, telephone, television, tiger, tractor, train, trout, tulip, turtle, wardrobe, whale, willow\_tree, wolf, woman, worm

• Média da Imagens Normalizadas



Fig. 5: Da esquerda para a direita, de cima para a baixo: apple, aquarium\_fish, baby, bear, beaver, bed, bee, beetle, bicycle, bottle, bowl, boy, bridge, bus, butterfly, camel, can, castle, caterpillar, cattle, chair, chimpanzee, clock, cloud, cockroach



Fig. 6: Da esquerda para a direita, de cima para a baixo: couch, crab, crocodile, cup, dinosaur, dolphin, elephant, flatfish, forest, fox, girl, hamster, house, kangaroo, keyboard, lamp, lawn\_mower, leopard, lion, lizard, lobster, man, maple\_tree, motorcycle, mountain



Fig. 7: Da esquerda para a direita, de cima para a baixo: mouse, mushroom, oak\_tree, orange, orchid, otter, palm\_tree, pear, pickup\_truck, pine\_tree, plain, plate, poppy, porcupine, possum, rabbit, raccoon, ray, road, rocket, rose, sea, seal, shark, shrew



Fig. 8: Da esquerda para a direita, de cima para a baixo: skunk, skyscraper, snail, snake, spider, squirrel, streetcar, sunflower, sweet\_pepper, table, tank, telephone, television, tiger, tractor, train, trout, tulip, turtle, wardrobe, whale, willow\_tree, wolf, woman, worm

# V. Sobre as Métricas Utilizadas

# A. Precision

Precision é a razão

$$\frac{A_c}{A_c + A_e} \tag{1}$$

onde:

- $A_c$  é o número de amostras corretamente classificadas de uma determinada classe.
- $A_e$  é o número de amostras erroneamente classificadas como sendo desta determinada classe.

Precision é intuitivamente a habilidade do classificador não marcar como pertencente a uma classe uma amostra que não pertence a esta. O melhor valor de Precision é 1 e o pior é zero. [?]

# B. Accuracy

Accuracy é a fração de amostras preditas corretamente, e é dada pela seguinte fórmula:

$$\frac{\sum_{1}^{n} A_{c}}{\sum_{1}^{n} A_{t}} \tag{2}$$

onde:

- n é o número de classes
- $A_c$  é o número de amostras corretamente classificadas de uma determinada classe.
- $A_t$  é o número de amostras que pertencem a uma determinada classe

[?]

#### C. Recall-Score

O Recall Score é a razão:

$$\frac{A_c}{A_t} \tag{3}$$

onde:

- $A_c$  é o número de amostras classificadas corretamente de uma determinada classe
- $A_t$  é o número de amostras que pertencem a esta classe

O Recall Score é intuitivamente a habilidade do classificador de encontrar todas as amostras pertencentes a uma classe especifica. O melhor valor do Recall Score é 1 e o pior valor é 0. [?]

# D. F1-Score

O F1 Score pode ser interpretado como a média ponderada da precisão e recall. O melhor valor que o F1 score pode alcançar é 1, o pior é 0. A contribuição relativa da precisão e recall para o F1 score são iguais. A fórmula para o F1 score é:

$$F1 = \frac{2 \cdot (precision \cdot recall)}{precision + recall} \tag{4}$$

# E. Confusion Matrix

No caso de classificação multiclasse, uma confusion matrix é dividida em NxN categorias(onde N é o número de classes do problema), cada uma apresentando a quantidade de amostras que se encaixam nesta. A diagonal do meio representa a quantidade de amostras classificadas corretamente e as demais seções da matriz demonstram o número de amostras classificados erroneamente, a quais classes eles pertencem e em quais classes eles foram classificados.

[?]

# F. O Nosso Modelo

O modelo que escolhemos não é tão robusto na quantidade de parâmetros, porém é inspirado em soluções modernas de redes convolucionais. Possui quatro camadas convolucionais, além de Batch Normalization e DropOut, que são técnicas para evitar alguns problemas advindos do treinamento com o conjunto de treino e validação com o conjunto de teste. Além da camadas totalmente conectadas, para transformação dos parâmetros de saída das convoluções em valores das classes de saida do problema.

#### G. LeNet

Um modelo bem simples e que vem dos primórdios da estrutura de rede neural convolucional, proposto por Yann LeCun, em 1989, para lidar com a extração de características das imagens de entrada, aplicando os princípios de redes convolucionais, que são boas para obtenção de características, em dados que têm dependência espacial.

# H. AlexNet

Modelo mais moderno, porém já utilizado como base para geração de outros modelos. Possui uma estrutura bem robusta, porém sua grande sacada, é a idéia proposta pelo trio Krizhevsky, Sutskever e Hinton, que utilizou do grande poder das GPUs para realizar o treinamento das redes, com uma rede apropriada para se utilizar desse potencial de processamento.



Fig. 9: Diferença entre os modelos LeNet e AlexNet

Os Modelos da LeNet e AlexNet foram modificados de maneira a receber como entrada imagem de resolução 32x32,

sem precisar de um resize. Outra modificação q se mostrou interessante foi a aplicação da Relu ao invés da Sigmoid.

#### VI. EXPERIMENTOS

#### A. CIFAR10

Foram realizados experimentos com o CIFAR10 que é como um subconjunto de classes pertencentes ao CIFAR100, possui 10 categorias de saída, e é util para fazer uma avaliação rápida e com pouco treinamento, garantindo ainda assim, boa performance dos modelos.

#### B. Similaridade de Pixel

Baseado na abordagem do fastai [?] iremos criar um modelo básico que não utiliza aprendizado de máquina, para ter uma precisão como base para verificar o desempenho dos próximos modelos. Esse método basicamente cálcula uma imagem média para cada classe do conjunto de treino, esta imagem média é basicamente uma imagem formada pela média de cada pixel das imagens de uma classe.

Para fazer a predição esta arquitetura basicamente cálcula a distância de uma imagem a imagem média, e escolhe a classe com a menor distância. Podemos usar o erro quadrático médio ou o valor absoluto das diferenças como valor da distância total entre uma imagem e a média da sua classe.

Porém, ao contrário da abordagem original do fastai para o dataset mnist com apenas duas classes com imagens em preto e branco, que teve uma 'accuracy' razoável com este método, temos que a 'accuracy' que tivemos com o CIFAR 100 que possui muito mais classes, e imagens coloridas, não é melhor do que selecionarmos uma classe ao acaso.

#### C. Treinando os Modelos

Os dados do dataset que foram separados, agora serão usados para o treinamento e avaliação da performance das redes neurais. Para realizar o treino os dados foram separados em batchs, e todos os três modelos foram treinados durante 50 épocas, para que houvesse um período de aprendizagem razoável de acordo com o tamanho das redes. A cada época de treino e alguns batchs foram selecionados para mostrar a o valor da função loss, e mostrar a evolução do treinamento em diferentes épocas.

Os desempenhos da nossa rede, foram melhores que as duas outras, em 50 épocas de treinamento: O nosso modelo, garantiu a acurácia

• Nosso: de  $\frac{5520}{10000}$  = 55.2%

• LeNet: 1%

• AlexNet: de  $\frac{4906}{10000}$  = 49.05999999999995%

E um exemplo do desempenho do nosso modelo para cada classe do dataset:

## D. Apenas um Epoch

Para o treinamento com apenas uma época, nós restauramos o modelo ao estado sem treinamento, e determinamos o num epochs como 1. Esse tipo de treinamento serve para avaliar a perfomance inicial do modelo ao ser corrigido pelas funções de perda.

|               | precision | recall | f1-score | support |
|---------------|-----------|--------|----------|---------|
| apple         | 0.78      | 0.77   | 0.77     | 100     |
| aquarium_fish | 0.67      | 0.71   | 0.69     | 100     |
| baby          | 0.42      | 0.42   | 0.42     | 100     |
| bear          | 0.46      | 0.22   | 0.30     | 100     |
| beaver        | 0.32      | 0.40   | 0.36     | 100     |
| bed           | 0.36      | 0.55   | 0.43     | 100     |
| bee           | 0.62      | 0.66   | 0.64     | 100     |
| beetle        | 0.54      | 0.66   | 0.59     | 100     |
| bicycle       | 0.79      | 0.76   | 0.78     | 100     |
| bottle        | 0.54      | 0.74   | 0.62     | 100     |
| bowl          | 0.48      | 0.32   | 0.38     | 100     |
| boy           | 0.50      | 0.34   | 0.40     | 100     |
| bridge        | 0.56      | 0.60   | 0.58     | 100     |
| bus           | 0.51      | 0.53   | 0.52     | 100     |
| butterfly     | 0.57      | 0.54   | 0.55     | 100     |
| camel         | 0.34      | 0.59   | 0.43     | 100     |
| can           | 0.64      | 0.55   | 0.59     | 100     |
| castle        | 0.73      | 0.69   | 0.71     | 100     |
| caterpillar   | 0.40      | 0.49   | 0.44     | 100     |
| cattle        | 0.55      | 0.41   | 0.47     | 100     |
| chair         | 0.79      | 0.74   | 0.76     | 100     |
| chimpanzee    | 0.66      | 0.72   | 0.69     | 100     |
| clock         | 0.66      | 0.44   | 0.53     | 100     |
| cloud         | 0.76      | 0.71   | 0.74     | 100     |
| cockroach     | 0.76      | 0.67   | 0.71     | 100     |
| couch         | 0.46      | 0.36   | 0.40     | 100     |

Fig. 10: Desempenho 50 Épocas

O nosso modelo, também garantiu melhor desempenho com apenas uma época, com acurácia de 14.85%, enquanto a acurácia da AlexNet foi de 14.85%, já a LeNet apenas 1%.

### E. Limitando os Dados

O treinamento com limitação de dados também é uma boa opção para avaliar a capacidade das redes em aprender com poucos exemplos. É possível perceber que os desempenhos de todas as redes acaba caindo, pois existe um princípio, de que, quanto mais exemplos de todas as classes você tiver, mais preciso e mais acurado ele tenderá a ser. Ou seja, ele irá aprender mais sobre aquelas classes. Foi utilizado então, como objetivo de atingir esse experimento, a utilização dos dados de treinamento como dados de teste, e os dados de teste serviram como treinamento. Nesse caso, apesar da perda de desempenho, nosso modelo teve a performance de 30.194%, a AlexNet de 19.054% e a LeNet de 1%

# F. Sem Normalização e sem Data Augmentation

Por último, foi realizado o treinamento sem normalização. A normalização é uma estratégia para que o treinamento seja realizado mais rapidamente, e para evitar alguns problemas que podem surgir nas métricas das funções de erro. Os desempenhos sem normalização foram um pouco menores, o que nos mostra que essa estratégia é realmente útil para se aplicar nos treinamentos da rede. A nossa rede obteve, 49.76% de acurácia, a AlexNet 42.1% e a LeNet apenas 0.67%

Esse desempenho da LeNet nos levou a uma modificação.

# VII. ANÁLISE DOS RESULTADOS

- A. LeNet com Relu
- B. Desempenho da rede com os dados ruidosos VIII. CONCLUSÕES E DISCUSSÕES