Física do Corpo Humano

Módulo: Mecânica do Corpo Humano

Docente: Luís Cunha

Physics of the Human Body, Herman, Irving P., Springer; 1st ed. 2007. Corr. 2nd printing 2008 Physics of the Human Body, Richard P. McCall Johns Hopkins University Press; 1 edition (April 2010) Introdução à Biofísica, Lídia Salgueiro, J. Gomes Ferreira, Serviço de Educação da Fundação Calouste Gulbenkian (1991)

CALEND	ARIZAÇÃO DA UC – FÍSICA (DO CORPO HUMANO		
Mês / dia - hora	Terça 09-11	Quinta 17-19		
021				
	***********	7	Mecânica do Corpo Humano (L. Cunha)	
Outubro	12	14		
Outubio	19	21		
	26 - Avaliação MCH	28	Som. Fala e audição (M. Almeida)	
			_	
	2	4		
	9	11	Energia, calor e trabalho. Metabolismo (P.	
Novembro	16	18	Coutinho)	
	23	25		
	30 – Avaliação SFA+ECTM			
			¬	
D	_	2	Ótica e visão (S. Nascimento)	
Dezembro	7	9		
	14	16		
122		,		
Janeiro	4	6	Fluidos e pressão. Sistema cardiovascular (F.	
Janeiro	11 18 - Avaliação FPC + OVIS	13	Macedo)	
	18 - Avalleção FPC + OVIS			

Mecânica do Corpo Humano

Programa

- 1. Propriedades Mecânicas
- 2. Estática do corpo humano
- 3.0 movimento

	2017/18	2018/19	2019/20	2020/21
Média	15.2	12.3	10.5	12.2

Terças-feiras, 9h-11h	Quintas-feiras, 17h-19h
5/10 - FERIADO	7/10 - Introdução. Propriedades Mecânicas
12/10 - Discussão de questões/problemas Estática do corpo humano (Alavancas)	14/10 - Discussão de questões/problemas Estática do corpo humano (Contração muscular e atrito nas articulações)
19/10 - Discussão de questões/problemas O movimento	21/10 - Discussão de questões/problemas
26/10 - Avaliação	

Propriedades mecânicas em tecidos do corpo humano

Objetivo: Caracterizar o comportamento mecânico de tecidos do corpo humano, usando modelos que são usados em ciências e engenharia dos materiais.

Depois de ter o modelo, usa-se o modelo para entender as consequências dessas propriedades (e.g. para um determinado impacto, o osso parte? Que características deve ter o material de uma prótese?)

O corpo humano é bastante complexo. Todas as propriedades tem **origem biológica**, que por sua vez tem **origem química**, e se traduzem em **propriedades físicas**. Neste capítulo interessam-nos somente as propriedades mecânicas. O comportamento macroscópico é uma consequência da estrutura sub microscópica! Grande parte dos resultados ou valores tabelados correspondem a uma média entre seres humanos. A distribuição varia com genes, género, idade, saúde, etc.

No corpo humano há **componentes passivos** (ossos e tendões), que só respondem a forças exteriores, e os **componentes ativos (músculos)**, que geram forças.

Mas nem é tudo preto e branco. Os músculos são elementos ativos e passivos também, porque respondem a estímulos.

Relembrar a lei de Hooke

Os elementos passivos reagem a forças aplicadas: Caso da mola elástica

$$F_{el\acute{a}stica} = -kx$$
$$m_2 = 2m_1$$

No regime elástico de uma mola, Se for aplicada uma força duas vezes maior, a mola elástica tem um alongamento duplo do primeiro.

A força que a mola exerce (força elástica) também duplica

$$\vec{F}_{aplicada2} = 2 \times \vec{F}_{aplicada1}$$

$$\vec{F}_{elástica2} = 2 \times \vec{F}_{elástica1}$$

O declive dá o valor da constante elástica k: $k = \frac{\Delta F}{\Delta \lambda}$

VoxVote 1

Que representa a área sombreada do gráfico F(x), em que F representa a força elástica e x a elongação da mola?

- Força em função da elongação
- Elongação em função da força
- Energia elástica acumulada na mola
- Trabalho realizado pla força elástica

$$F_{\text{conservativa}} = -\frac{dU}{dx}$$

$$F_{\text{elástica}} = -kx$$

A energia acumulada na deformação da mola (energia potencial elástica) pode ser facilmente calculada:

$$F_{\text{elástica}} = -\frac{dU_{\text{elástica}}}{dx}$$

$$F_{\text{elástica}} = -\frac{dU_{\text{elástica}}}{dx}$$
 \Rightarrow $W = \int_{x_0}^{x} -kx dx$

$$W = -k\left(\frac{x^2}{2} - \frac{x_0^2}{2}\right)$$

$$W = \frac{1}{2}kx_0^2 - \frac{1}{2}kx^2$$

 $U_{\rm elástica} = \frac{1}{2}kx^2$

A energia potencial armazenada nestes sistemas pode ser obtida de volta.

Os ossos e os tendões obedecem razoavelmente a este modelo (elástico).

A natureza elástica dos tendões é importantes para armazenar e devolver essa energia durante o movimento.

Colocar um corpo sob tração (ou compressão)

As respostas elástica dos elementos passivos nem sempre é simples como no caso da mola. *E.g.* molas diferentes de um mesmo material podem ter constantes elásticas diferente (mais espessa/mais fina, mais comprida/mais curta, geometria diferente); e há elementos passivos que podem responder à forças dependentemente do tempo, ou seja, podem responder às forças aplicadas no momento, mas também podem responder condicionadas a forças aplicadas anteriormente.

<u>Imagine-se uma experiência</u>:

usam-se fios de cobre nos quais se aplicam forças tracção de magnitude conhecida e mede-se as alterações de comprimento provocadas.

Registo de observações:

L (m)	A (m²)	m (kg)	F (N)	ΔL (m)	
1	10-6	0	0	0	
1	10-6	5	49	5 × 10-4	
1	10-6	10	98	10-3	
0.1	10-6	0	0	0	
0.1	10-6	10	98	10-4	
1	10-5	0	0	0	
1	10-5	10	98	10-4	
2	10-6	10	98	2 × 10 ⁻³	
1	5 × 10 ⁻⁶	10	98	2 × 10 ⁻⁴	

0 0 98 10-4

Variando F e medindo a deformação ΔL

Mantendo constante: L A

Características dos fios

 $\Lambda L \propto F$

Mantendo constante: F A

Variando L e medindo a deformação ΔL

Observação: Nos casos em que a experiência foi realizada, quando se remove a massa o fio retoma o

comprimento original = **DEFORMAÇÃO ELÁSTICA**

 $\Lambda L \propto L$

Mantendo constante: F L

Variando A e medindo a deformação ΔL

Resultado do estudo controlando as variáveis:

$$\Delta L \propto \frac{LF}{A} \quad \Rightarrow \quad \frac{F}{A} \propto \frac{\Delta L}{L}$$

$$\Delta L \propto \frac{1}{A}$$

$\frac{F}{A} \propto \frac{\Delta L}{I}$

F (N)	A (m²)	ΔL (m)	L (m)	F/A (N/m²)	ΔL/L
0	10-6	0	1	0	0
49	10-6	5 × 10-4	1	49 × 10 ⁸	5 × 10 -4
98	10-6	10-3	1	98 × 10 ⁶	10 ⁻³
0	10-6	0	0.1	0	0
98	10-6	10 -4	0.1	98 × 10 ⁶	10 ⁻³
0	10-5	0	1	0	0
98	10-5	10 -4	1	98 × 10 ⁵	10 -4
98	10-6	2 × 10-3	2	98 × 10 ⁶	10 ⁻³
98	5 × 10 ⁻⁸	2 × 10 ⁻⁴	1	196× 10 ⁵	2 × 10 ⁻⁴

Tensão aplicada (Stress)

$$\left(\frac{F}{A}\right) = E \left(\frac{\Delta L}{L}\right)$$

Defromação relativa (Strain)

Módulo de Young (módulo de elasticidade) de um material

O Módulo de Young (E) é uma propriedade intensiva dum material e é uma medida da resistência à deformação elástica de um material.

A constante elástica é uma propriedade extensiva (depende de massa, volume,...)

Unidades SI?

 $\sigma = E \varepsilon$

Se os materiais forem homogéneos e isotrópicos, o módulo de Young é o mesmo em qualquer direcção. Para materiais anisotrópicos (por exemplo nos cristais), o módulo de Young varia com a direcção.

Esta relação só é válida na região elástica (pequenas deformações $\Rightarrow \varepsilon \ll 1$)

Para maiores deformações o material sofre deformações permanentes (plásticas) e/ou fratura (dependendo do material e da dimensão da deformação)

YP (yield point — ponto de cedência) corresponde a uma tensão superior ao limite elástico (YS - Yield Stress). Acima deste valor a elongação aumenta muito para pouco aumento de tensão. Estima-se como a interseção da curva de tensão deformação com uma linha paralela à região linear intercetando o eixo da deformação a 0.002.

UTS (ultimate tensile strength – Tensão máxima de tração) corresponde à maior tensão de tração que o material pode suportar antes de partir. Quanto maior, maior é a resistência do material à fratura. Existe o equivalente para a compressão (UCS - ultimate compressive strength).

	ultimate	percent	elongatio
organ	UTS	UPE	Y
	(MPa)	(%)	(MPa)
hair (head)	197	40	12,000
dentin (wet teeth) (compression)	162	4.2	6,000
femoral compact bone (compression)	162	1.8	10,600
femoral compact bone	109	1.4	10,600
tendons (calcaneal =Achilles)	54	9.0	250
nail	18	14	160
nerves	13	18	10
intervertebral disc (compression)	11	32	6.0
skin (face)	3.8	58	0.3
vertebrae	3.5	0.8	410
elastic cartilage (external ear)	3.1	26	4.5
hyaline cartilage (synovial joints)	2.9	18	24
intervertebral disc	2.8	57	2.0
cardiac valves	2.5	15	1.0
ligaments (cattle)	2.1	130	0.5
gall bladder (rabbit)	2.1	53	0.05
umbilical cord	1.5	59	0.7
vena cava (longitudinal direction)	1.5	100	0.04
wet spongy bone (vertebrae)	1.2	0.6	200
coronary arteries	1.1	64	0.1
large intestine (longitudinal direction)	0.69	117	0.02
esophagus (longitudinal direction)	0.60	73	0.03
stomach (longitudinal direction)	0.56	93	0.015
small intestine (longitudinal direction)	0.56	43	0.2
skeletal muscle (rectus abdominis)	0.11	61	0.02
cardiac muscle	0.11	64	0.08
liver (rabbit)	0.024	46	0.02

material	$Y = (\times 10^3 \text{MPa} = \text{GPa})$	UCS (MPa)	UTS (MPa)
hard steel	207	552	827
rubber	0.0010	_	2.1
nylon 66	1.2 - 2.9	_	59 - 83
gold	78	_	_
tungsten	411	_	_
granite	51.7	145	4.8
concrete	16.5	21	2.1
oak	10.0	59	117
fused quartz	73	_	69
diamond	965	_	_
porcelain	_	552	55
alumina (85% dense)	220	1,620	125
alumina (99.8% dense)	385	2,760	205
compact bone	17.9	170	120
trabecular bone	0.076	2.2	_

Estes valores são os valores típicos na direção preferencial de funcionamento (normalmente longitudinal).

O **módulo de Young é uma medida da rigidez de um material**. Para deformar um material mais rígido é necessário aplicar uma tensão maior.

Não confundir **Rigidez** com **Resistência mecânica** (Tensão máxima, Tensão de Ruptura, Limite de Proporcionalidade, etc. – unidades SI: N m⁻²).

Não confundir **Rigidez** com **Dureza (H)** (Resistência à deformação plástica localizada induzida por indentação mecânica – unidades SI: N m⁻²).

Checkpoint

Quanto é que o fémur encurta se estiver apoiado num só pé?

Qual a energia elástica acumulada no fémur devido a este encurtamento?

Admitindo um comportamento linear, qual a deformação máxima que o fémur pode suportar, sob compressão, antes de quebrar?

A deformação máxima que o fémur pode suportar, sob tração é igual, maior ou menor que no caso da compressão?