МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информатика»

Тема: Машина Тьюринга

Студент гр. 3342	Иванов Д. М.
Преподаватель	Иванов Д. В.

Санкт-Петербург

2023

Цель работы

Изучить устройство Машины Тьюринга и реализовать ее на зыке Python для работы со строками.

Задание

На вход программе подается строка неизвестной длины. Каждый элемент является значением в ячейке памяти ленты Машины Тьюринга.

На ленте находится последовательность латинских букв из алфавита {a, b, c}.

Напишите программу, которая заменяет в исходной строке символ, идущий после последних двух встретившихся символов 'a', на предшествующий им символ(гарантируется, что это не пробел). Наличие в строке двух подряд идущих символов 'a' гарантируется.

Указатель на текущее состояние Машины Тьюринга изначально находится слева от строки с символами (но не на первом ее символе). По обе стороны от строки находятся пробелы.

Алфавит:

- a
- b
- c
- "" (пробел)

Соглашения:

- 1. Направление движения автомата может быть одно из R (направо), L (налево), N (неподвижно).
 - 2. Гарантируется, что длинна строки не менее 5 символов и не более 15.
 - 3. В середине строки не могут встретиться пробелы.
- 4. При удалении или вставке символов направление сдвигов подстрок не принципиально (т. е. результат работы алгоритма может быть сдвинут по ленте в любую ее сторону на любое число символов).
- 5. Курсор по окончании работы алгоритма может находиться на любом символе.

Выполнение работы

Первым делом необходимо смоделировать Машину Тьюринга.

Таблица 1 – Схема Машины Тьюринга.

	a	b	С	66)
q1	a; R; q2	b; R; q2	c; R; q2	""; R; q1
q2	a; R; q2	b; R; q2	c; R; q2	""; L; q3
q3	a; L; q4	b; L; q3	c; L; q3	
q4	a; L; q5	b; L; q3	c; L; q3	
q5	a; R; q6	b; R; q7	c; R; q8	
q6	a; R; q6	a; N; q9	a; N; q9	a; N; q9
q7	a; R; q7	b; N; q9	b; N; q9	b; N; q9
q8	a; R; q8	c; N; q9	c; N; q9	c; N; q9

Состояния:

- q1 проход от левых пробелов до первой буквы
- q2 проход от буква строки до первого пробела справа
- q3 нахождения первой буквы "а"
- q4 случай, когда найдена первая а, если на q4 тоже она будет, то нужная подстрока найдена и переход к q5
- q5 выбор буквы слева от подстроки "аа"
- q6 замена буквы после "аа" на "а"
- q7– замена буквы после "аа" на "а"
- q8– замена буквы после "аа" на "а"
- q9 выход из Машины

Теперь осталось это реализовать на языке Python. Схему Машины сохраним в виде словаря, будем считывать строку, проходить по ней циклом. В зависимости от символа и текущего состояния брать значения ключа.

Тестирование

Результаты тестирования представлены в табл. 1.

Таблица 1 – Результаты тестирования

№ п/п	Входные данные	Выходные данные	Комментарии
1.	abcaabc	abcaacc	Верный вывод
2.	aabbaa	aabbaab	Верный вывод

Выводы

Была разработана программа на языке Python, которая проводит работу со строкой по определенному алгоритму Машины Тьюринга. Изучена Машина Тьюринга.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

```
Название файла: main.py
dic = {
    'q1': {
         'a': ('a', 1, 'q2'),
         'b': ('b', 1, 'q2'),
         'c': ('c', 1, 'q2'),
         ' ': (' ', 1, 'q1')
    },
    'q2': {
         'a': ('a', 1, 'q2'),
         'b': ('b', 1, 'q2'),
         'c': ('c', 1, 'q2'),
'': ('', -1, 'q3')
    },
    'q3': {
         'a': ('a', -1, 'q4'),
'b': ('b', -1, 'q3'),
         'c': ('c', -1, 'q3')
    },
    'q4': {
         'a': ('a', -1, 'q5'),
         'b': ('b', -1, 'q3'),
         'c': ('c', -1, 'q3')
    },
    'q5': {
         'a': ('a', 1, 'q6'),
         'b': ('b', 1, 'q7'),
         'c': ('c', 1, 'q8')
    } ,
    'q6': {
         'a': ('a', 1, 'q6'),
         'b': ('a', 0, 'q9'),
         'c': ('a', 0, 'q9'),
         ' ': ('a', 0, 'q9')
    },
    'q7': {
         'a': ('a', 1, 'q7'),
         'b': ('b', 0, 'q9'),
         'c': ('b', 0, 'q9'),
         ' ': ('b', 0, 'q9')
    },
    'q8': {
         'a': ('a', 1, 'q8'),
         'b': ('c', 0, 'q9'),
         'c': ('c', 0, 'q9'),
         ' ': ('c', 0, 'q9')
    }
}
a = list(input())
index = 0
sost = ['q1']
while True:
    new s, step, new sost = dic[sost[-1]][a[index]]
```

```
a[index] = new_s
index += step
sost.append(new_sost)
if sost[-1] == 'q9':
    break

print(''.join(a))
```