Week 12 FLO (Friday Learning Opportunity)

- 1. Find each of the following limits:
 - (a) $\lim_{x \to \infty} \frac{e^x}{x^2}$
 - (b) $\lim_{x \to 0^{(+)}} x \ln(x)$
 - (c) $\lim_{x \to -\infty} x e^x$
 - (d) $\lim_{x \to \infty} x^{1/x}$
 - $(e) \lim_{x \to 0^{(+)}} x^x$
 - (f) $\lim_{x \to 0} \frac{\sin(x) x}{x^3}$
 - (g) $\lim_{x\to 0} \frac{\cos(x)-1}{x^2}$
 - (h) $\lim_{x \to \infty} \frac{x + \cos(x)}{x}$
- 2. I need to design a soup can with height h and radius r. The volume V of the can is $V = \pi r^2 h$ and its surface area A is $A = 2\pi r^2 + 2\pi r h$. Let's say the surface area is 2π . Thus $2\pi = 2\pi r^2 + 2\pi r h$. And that makes $1 = r^2 + 2r h$. For the constraint $1 = r^2 + 2r h$, find r and h that maximize the volume $V = \pi r^2 h$.