SECTION A (40 MARKS)

1. Solve the equation: $9^{x+1} - 3^{x+3} - 3^x + 3 = 0$.

(5 marks)

162)

- 2. Solve the equation $3\sec^2 2x = \tan 2x + 5$ for $-90^0 \le x \le 90^0$. (5 marks)
- 3. Find the locus of a point which moves so that its distance from the line x + y 2 = 0 is equal to the distance from the point (-1, -1). (5 marks)
- 4. Evaluate: $\int_{6}^{7} \frac{x-3}{(x^2-6x+5)^2} dx$. (5 marks)
- 5. Find the coordinates of the point of intersection of the lines $l_1 = \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} \text{ and } l_2 = \frac{x-4}{5} = \frac{y-1}{2} = z.$ (5 marks)
- 6. Solve: $\frac{24}{x^2 + 5x} + 10 = -5x x^2$. (5 marks)
- 7. Differentiate from first principles: $y = 5x 3x^3$ (5 marks)
- 8. Evaluate: $\int_0^{\frac{\pi}{2}} x \sin 2x \, dx$ (5 marks)

SECTION B: 60 MARKS

ATTEMPT ONLY 5 QUESTIONS IN THIS SECTION

- 9a) Expand $f(x) = e^{2x+1}$ using Maclaurin's expansion as far as the term in x^3 . (5 marks)
- b) Given x = t + In2t and y = t In2t, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ in terms of t in the simplest form. (7 marks)
- 10. Show that the curve whose parametric equations are $x = 5 + \sqrt{3}\cos\theta$, $y = -2 + \sqrt{3}\sin\theta$, is a circle, hence, find the center and radius. (5 marks)

- 16a) Solve the differential equation: $(1 + \cos x) \frac{dy}{dx} = 1$, given $x = \pi$. y = 1 (6 marks)
- b) Solve the differential equation given $\frac{dy}{dx} + 2y \tan x = \sin x$, for y = 0 and $x = \frac{\pi}{3}$. (6 marks)

GOOD LUCK