数学实验第十次实验报告

计 76 张翔 2017011568

2020年6月1日

1 实验目的

- 1. 了解回归分析的基本原理,掌握 MATLAB 实现的方法;
- 2. 练习用回归分析解决实际问题。

2 Ch13-P7 耗氧能力

2.1 模型建立

本题不同小问需要建立不同模型,由于缺乏专业的先验知识,并且提供的数据量不大,因此采用简单的线性回归模型处理该问题。首先可以绘制年龄、体重、1500 米跑所用时间、静止心速与跑后心速这些单一变量对于耗氧能力的影响,确定函数选取。这里使用的线性回归模型的基本形式如下,当相应项不需要时,将系数 β 置为 0 即可

$$y = \beta_0 + \sum_{i=1}^{5} \beta_i x_i + \sum_{1 \le i, j \le 5} \beta_{ij} x_i x_j + \epsilon$$

在分析时,从最简单的一次函数关系入手,当它的拟合效果较差时,再考虑引入上述式子中的高次项或是交互项 $\beta_{ij}x_ix_j$ 。

根据题目中的不同小问限制的选取变量个数,这里需要采用多种不同模型,具体的模型将在下面计算结果部分单独说明,这里不再赘述。当模型选定后,可以通过残差和置信区间寻找异常点,将其剔除后重新计算,以使得模型更加准确。

2.2 算法设计

对于第 (1) 小问,要求只能使用一种变量,可以使用 MATLAB 的 regress 函数对每个变量单独进行回归,得到回归系数估计值、置信区间及统计量等。

对于第(2)问,可选择2个变量,可以使用 rstool 进行分析,考虑交互项和二次项的影响。

对于第(3)问,在此基础上可以使用 stepwise 进行交互式逐步分析,得到剩余方差最小的模型。 在第(4)问中,可以使用 rcplot 作出残差图,判断异常点并移除。

2.3 Matlab 程序

数据输入处理的代码如下

```
x1 = data(:, 2);
x2 = data(:, 3);
x3 = data(:, 4);
x4 = data(:, 5);
x5 = data(:, 6);
```

第(1)问作图与拟合的代码如下

第(2)问使用逐步回归的代码如下

```
stepwise([x1, x2, x3, x4, x5], y);
rstool([x1, x3], y, 'linear');
```

第 (3)(4) 问仍然使用 stepwise 进行交互式处理,不再赘述。

2.4 计算结果与分析

2.4.1 单变量模型

首先作出5个变量的散点图,如下

图 1: 单一变量作用时的散点图

可以看出只有 x_3 与 y 之间有较为明显的线性关系(负相关),对于其他自变量都难以直接观测出其对于因变量的影响。根据上述结果,可以假设自变量 x_3 与耗氧能力直接相关。使用只有一次项的模型 $y = \beta_0 + \beta_1 x + \epsilon$,对各个自变量进行单参数回归如下:

自变量	β_{0}	β_1	β_0 置信区间	β_1 置信区间	\mathbb{R}^2	F	p	s^2
x_1	64.3812	-0.3599	[42.3913, 86.3711]	[-0.8309, 0.1111]	0.1025	2.5115	0.1273	31.2484
x_2	52.8008	-0.0651	[23.6261,81.9755]	[-0.4344, 0.3042]	0.0060	0.1337	0.7181	34.6053
x_3	83.4438	-5.6682	[74.1644, 92.7232]	[-7.1252, -4.2112]	0.7474	65.0909	5.13×10^{-8}	8.7943
x_4	67.1094	-0.3599	[52.5706, 81.6483]	[-0.6262, -0.0936]	0.2631	7.8560	0.0104	25.6547
x_5	94.0024	-0.2739	[54.1047, 133.9001]	[-0.5095, -0.0384]	0.2091	5.8169	0.0247	27.5352

表 1: 单变量回归结果

从上述回归结果可以证明 x_3 (1500m 跑时间) 反映 y (耗氧能力) 的能力最强。 x_1, x_2 的 β_1 置信 区间均包含了 0,说明 y 可能与这两个参数无关,且它们的 p 值也明显大于 $\alpha=0.05$,可以不选择这两个自变量。比较 x_3, x_4, x_5 ,可以发现 x_3 的决定系数 R^2 明显大于后两者,其对因变量的决定作用更大,并且用其拟合的 s^2 与 p 更小,可以确定单变量的情况下 x_3 反映 y 的能力最好,这与散点图的观测结果吻合。

使用 Polytool 可以检验 x_3 的高次项情况,结果如下

图 2: 使用 Polytool 检验 x₃ 的二次项

- $\beta_0 = 122.7242$, 置信区间 [67.1878, 178.2605]
- $\beta_1 = -17.9072$, 置信区间 [-35.0387, -0.7757]
- $\beta_2 = 0.9356$, 置信区间 [-0.3695, 2.2408]

可以看出,相比一次函数拟合的结果, β_0 , β_1 的置信区间明显变宽,而 β_2 的置信区间包含 0,说明引入二次项是不必要的。

综上所述, 只能使用单变量时, 使用如下模型描述 y 是最准确的:

$$y = \beta_0 + \beta_1 x_3$$
 其中 $\beta_0 = 83.4438$, $\beta_1 = -5.6682$

2.4.2 双变量模型

在 (1) 问的基础上,认为 x_3 对因变量有较大影响,预先选择该变量,之后使用 stepwise 从 x_1, x_2, x_4, x_5 中选取,结果如下

变量	变量		x_4	x_5	
RMSE	2.87035	3.03307	3.03247	2.98927	

表 2: 选取不同变量时的 RMSE

图 3: 逐步回归示例 (选择 x_3, x_5)

由上述结果可看出,选定 x_3 后,添加 x_1 变量得到的 s 最小,且输出的模型的 F, P 可以通过有效性检验,故双变量的情况下应选择 x_1 , x_3 。使用 rstool 进行高次项和交互项检验,结果如下

	β_0	$\beta_1 x_1$	$\beta_2 x_3$	$\beta_3 x_1^2$	$\beta_4 x_3^2$	$\beta_5 x_1 x_3$	RMSE
purequadratic	142.8835	-1.1718	-14.7911	0.0109	0.7111		2.9028
quadratic	144.4666	-1.0199	-16.4515	0.6818	0.0450	0.0062	2.9786
interaction	120.1929	-0.8364	-10.1096			0.1025	2.9033
linear	90.8529	-0.1870	-5.4671				2.8704

表 3: 选择 x3, x1 变量的 4 个模型的输出

可以看出,使用纯线性的模型得到的 RMSE 最小,且高次项和相关项的系数都非常小,说明它们

对 y 的影响不大, 因此最终选择的模型如下

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_3$$
 其中 $\beta_0 = 90.8529$, $\beta_1 = -0.1870$, $\beta_2 = -5.4671$

2.4.3 不限制变量时的模型

根据上述分析,可知本题中的交互项与高次项对于 y 的影响应较小,因此最终模型中不再考虑它们,而是仅使用一次项进行回归分析。类似于上述两变量的情况,使用 stepwise 逐个选取变量,取 RMSE 最小的模型,选取过程如下

- 基于上述双变量的最佳模型,选取 x_1, x_3 ,此时 RMSE = 2.87035;
- 增加变量 x_5 , 此时 RMSE = 2.66669;
- 如果再增加剩余的两个变量之一,均会使得 RMSE 上升,故不再选取更多变量。

最终选取了 x_1, x_3, x_5 变量做为最终模型,即

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_3 + \beta_3 x_5$$
 $\sharp + \beta_0 = 118.013, \beta_1 = -0.3254, \beta_2 = -4.5694, \beta_3 = -0.1561$

其中 β_1 , β_2 , β_3 的置信区间分别为 [-0.594, -0.0568], [-6.1842, -2.9546], [-0.3126, 0.0004]。 $R^2=0.8143,\ F=29.2364,\ RMSE=2.66669,\ P=1.6437\times 10^{-7}$ 。

2.4.4 残差观察、剔除异常点

将最终模型的残差可视化,结果如下

图 4: 初始时模型的残差

可以看出 10 号与 15 号数据点异常,剔除后再次观察,结果如下

Residual Case Order Plot

图 5: 残差 (剔除 10, 15 号)

可以看出 4 号数据异常,再次剔除,观察残差图仍有异常点。总共操作 4 次后,去掉 5 个数据点 (4,10,15,17,23) 后得到没有异常点的模型:

图 6: 残差(无异常点)

此时有

可以看出,这些系数与(3)的结果相比有了较大差异。不过,考虑到剔除异常点后虽然能在一定程度上降低其对整体的干扰,但同时也放大了其他正常点的异常性,使得新的异常点不断产生。剔除过多时,数据量过少会降低模型反映总体的能力,因此最终考虑只进行一次剔除,即去除 10,15 号数据点,得到最终结果

参数的置信区间依次为 [94.6827, 144.3084], [-0.5991, -0.1255], [-5.3617, -2.7205], [-0.3030, -0.0518]。 $R^2=0.8625,\,F=37.6269,\,s^2=4.44,\,P=0.0000$ 。与剔除异常点之前的模型相比,此模型的结果更加准确了。

2.5 结论

1. 若只能选择 1 个变量,应建立模型为: $y = \beta_0 + \beta_1 x_3$ 其中 $\beta_0 = 83.4438$, $\beta_1 = -5.6682$, 即 1500 米跑所用时间是耗氧能力的决定因素;

- 2. 若选择 2 个变量,应建立模型为: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_3$ 其中 $\beta_0 = 90.8529$, $\beta_1 = -0.1870$, $\beta_2 = -5.4671$,即 1500 米跑所用时间、年龄均对耗氧能力有一定影响;
- 3. 若不限制变量个数, 剔除异常点后得到模型: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_3 + \beta_3 x_5$ 其中 $\beta_0 = 119.4955$, $\beta_1 = -0.3623$, $\beta_2 = -4.0411$, $\beta_3 = -0.1774$, 即认为跑步后心速也是影响耗氧能力的因素;
- 4. 通过模型可以看出,其他条件相同时,年龄越大,耗氧能力越低;1500米跑所用时间越长,耗氧能力越低;而跑步后心速越慢,说明耗氧能力越高。

3 Ch13-P9 泡沫高度

3.1 模型建立与算法设计

根据题面描述,本题可以使用线性回归模型来处理,使用搅拌程度 x_1 与洗衣粉用量 x_2 ,将搅拌程度视为普通变量时,可以建立如下模型

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \epsilon$$

为了求解上述模型,可以选择 MATLAB 的 rstool,根据剩余方差的情况判断是否需要加入交互项。得到模型结果后,可以使用 rcoplot 作出残差图,判断模型是否合理。

如果将搅拌程度视为没有定量关系的 3 个水平,此时可以选用 2 个 0-1 变量 z_0 , z_1 来描述它们,其中 (0,0) 表示搅拌程度 1, (0,1) 表示搅拌程度 2, (1,0) 表示搅拌程度 3, 此时只需要将上述模型中的一次项和交互项更改为使用 z_0 , z_1 变量即可。该模型的处理方法与上述模型相同,具体过程在计算结果部分描述。

3.2 Matlab 程序

第(1)问代码 如下

```
""" import data
data = reshape(readmatrix('p9.txt'), 15, []);
x1 = data(:, 1);
x2 = data(:, 2);
y = data(:, 3);

""" plot
figure(1);
subplot(1, 2, 1), plot(x1, y, '*'), grid, xlabel('Level of Stirring'),
ylabel('Height of Foams');
subplot(1, 2, 2), plot(x2, y, '*'), grid, xlabel('Amount of Detergent'),
ylabel('Height of Foams');

[b, bint, r, rint, s] = regress(y, [ones(size(x1)), x1, x2]);
figure(2);
rcoplot(r, rint);
```

第 (2) **问代码** 使用如下代码将 x_1 转换为 0-1 变量并回归

第 (3) 问代码 如下

```
rstool([x1, x2], y, 'interaction');
```

3.3 计算结果与分析

3.3.1 搅拌程度 x1 视为普通变量

首先可以作出 x_1, x_2 作为单一变量时与因变量 y 的图线,如下

图 7: y 关于 x_1, x_2 的图线

从图中可以看出,y 与 x_1, x_2 之间应有近似线性的关系。使用 regress 进行回归,得到如下结果

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$
, $\sharp + \beta_0 = -12.74$, $\beta_1 = 26.3$, $\beta_2 = 3.0867$

三个参数的置信区间分别为 [-29.0268, 3.5468], [23.1059, 29.4941], [1.2426, 4.9308]。 $R^2=0.9654,\,F=167.5754,\,P=1.706\times 10^{-9},\,s^2=21.49$ 。使用 rcoplot 得到残差图,如下

图 8: 将 x1 视为普通变量时的残差图

从上述图片可以发现一个明显的问题: 搅拌程度为 2 的残差与其他不同, 说明该模型存在问题, 下面尝试将 x_1 视为没有定量关系的 3 个水平。

3.3.2 将搅拌程度 x_1 视为没有定量关系的 3 个水平

使用 2 个 0-1 变量 z_0 , z_1 来描述搅拌程度,其中 (0,0) 表示搅拌程度 1, (0,1) 表示搅拌程度 2, (1,0) 表示搅拌程度 3。

使用 stepwise 可知, 当 z_0 , z_1 , x_2 均使用时, 模型的 RMSE 最小, 此时模型为

$$y = \beta_0 + \beta_1 z_0 + \beta_2 z_1 + \beta_3 x_2$$
, $\sharp + \beta_0 = 10.6867$, $\beta_1 = 52.60$, $\beta_2 = 34.92$, $\beta_3 = 3.0867$

模型的 $R^2=0.9986,$ F=2675.5, $P=5.01\times 10^{-16},$ $s^2=0.9282.$ 可以看到 s^2 与 R^2 相比前一个模型有了显著提升。使用 rcoplot 得到残差图,如下

图 9: 将 x1 视为没有定量关系的水平时的残差图

可以看出5号数据为异常点,剔除后再运行程序,得到

$$y = \beta_0 + \beta_1 z_0 + \beta_2 z_1 + \beta_3 x_2$$
, $\sharp + \beta_0 = 11.66$, $\beta_1 = 53.184$, $\beta_2 = 35.504$, $\beta_3 = 2.892$

模型的 $R^2=0.9994,\,F=5141.1,\,P=3.09\times 10^{-16},\,s^2=0.4526,\,$ 可以看出,结果相比剔除异常点前有了进一步提升。此时残差图为

图 10: 剔除异常点后的残差图

3.3.3 引入交互项

当 x_1 视为普通变量时,使用 rstool 容易验证,引入交互项后 RMSE 增大 $(3.87 \rightarrow 4.55)$,故最佳模型仍为只有一次项。

当 x_1 为没有定量关系的 3 个水平时,使用 stepwise 手动选取引入哪些交互项,容易得到引入 z_0x_2, z_1x_2 之后模型的 RMSE 最小,使用 regress 回归后作出残差图,得到 10 号点异常,去除后结果如下

$$y = \beta_0 + \beta_1 z_0 + \beta_2 z_1 + \beta_3 x_2 + \beta_4 z_0 x_2 + \beta_5 z_1 x_2,$$

其中
$$\beta_0 = 6.02$$
, $\beta_1 = 59.4$, $\beta_2 = 45.83$, $\beta_3 = 3.67$, $\beta_4 = -0.85$, $\beta_5 = -1.43$

模型的 $R^2 = 0.9997$, F = 5108.1, $P = 8.67 \times 10^{-14}$, $s^2 = 0.2856$ 。

可以看出,此模型的剩余方差比前面的其他模型都要小,是比较好的模型。

3.4 结论

- 将搅拌程度 x_1 视为没有定量关系的 3 个水平的建模方式在本题的情境中最为合理;
- 引入交互项后,仅对 x_1 视为没有定量关系的 3 个水平的模型有效,且引入交互项为表示搅拌程度的变量与洗衣粉用量,说明二者之间存在明显的相互作用;
- 最佳模型为引入交互项的 x₁ 视为没有定量关系的 3 个水平的模型,具体数值参见计算结果部分。

4 Ch13-P13 高压锅销量

4.1 模型建立与算法设计

题目中给定了两种可用于拟合高压锅销量的模型,分别为 Logistic 模型

$$y_t = \frac{L}{1 + ae^{-kt}}$$

与 Gompertz 模型

$$y_t = Le^{-be^{-kt}}$$

当 L 不是固定参数时,上述两种模型显然不是可线性化的。当 L 给定后,Logistic 模型可以转化为如下的线性模型

$$-kt + \ln a = \ln(\frac{L}{y_t} - 1)$$

$$\ln(\frac{L}{u_t} - 1) = \beta_0 + \beta_1 t$$

此模型的因变量 $\ln(\frac{L}{y_t}-1)$ 相对于参数 β_0 , β_1 是线性的。 同理, L 给定后, Gompertz 模型也可以转化为如下的模型

$$\ln(\ln\frac{y_t}{L}) = \ln(-b) - kt$$

令 $\beta_0 = \ln(-b)$, $\beta_1 = -k$, 得到的因变量对新参数也是线性的。

模型转化为线性模型后,可以使用 MATLAB 自带的 regress 函数进行回归。通过线性模型估计出非线性模型的参数后,以此为初值,可以对非线性模型进行拟合,这可以使用 MATLAB 的 nlinfit或 nlintool 实现。

4.2 Matlab 程序

第 (1)(2) 问 代码如下

```
%% import data
  data = reshape(readmatrix('p13.txt'), 13, []);
  t = data(:, 1);
  y = data(:, 2);
 %% linearize Logistics
 L = 3000;
  Y = log(L ./ y - 1);
  [b,bint,r,rint,stats] = regress(Y, [ones(size(t)), t]);
  a = \exp(b(1));
  k = -b(2);
13
  %% non-linear Logistics
  b0 = [L, a, k];
  nlintool(t, y, @logistics, b0);
17
18
```

第(3)问 只需要修改拟合函数如下即可

```
function y = gompertz(b, x)
y = b(1) .* exp(-b(2) .* exp(-b(3) .* x));
end
```

4.3 计算结果与分析

4.3.1 线性化 Logistic 模型回归

根据上面的分析,当 L 未知时,模型不可线性化;当 L 给定后,Logistic 模型是可线性化的。此时模型为

$$Y = \ln\left(\frac{L}{y_t} - 1\right) = \beta_0 + \beta_1 t, \ \beta_0 = \ln a, \ \beta_1 = -k$$

使用 regress 可以得到

$$\beta_0 = 3.8032, \, \beta_1 = -0.4941$$

线性化模型的 $R^2=0.9905,\,F=1150.8,\,P=1.7485\times 10^{-12},\,s^2=0.0386$ 。由上述结果得到估计的 $a=44.8463,\,k=0.4941$ 。

4.3.2 Logistic 模型非线性回归

使用上述线性模型得到的结果作为初值 $a^{(0)}=44.8463,\,k^{(0)}=0.4941,\,L^{(0)}=3000,\,$ 利用 nlintool 进行拟合,结果如下

图 11: nlintool 交互式拟合 Logistics 模型的结果

拟合得到参数为

$$L = 3260.4, a = 30.5351, k = 0.4148$$

参数置信区间分别为 [2996.7, 3524.1], [24.8155, 36.2548], [0.3743, 0.4553], RMSE=42.0134。

4.3.3 Gompertz 模型非线性回归

使用初值 $b^{(0)}=30,\,k^{(0)}=0.4,\,L^{(0)}=3000$ 拟合 Gompertz 模型,结果如下

图 12: nlintool 交互式拟合 Gompertz 模型的结果

拟合得到参数为

$$L = 4810.1, b = 4.5920, k = 0.1747$$

参数置信区间分别为 [4428.9, 5191.3], [4.4429, 4.7410], [0.1622, 0.1873], RMSE=17.5539。

与 Logistics 模型相比, Gompertz 模型的 RMSE 明显下降,从拟合图线中也可以直观地观察到该模型比 Logistics 模型拟合效果更好,说明题给的情境更适用 Gompertz 模型。

4.4 结论

- 1. 使用 Logistics 与 Gompertz 模型拟合得到的结果见前一部分;
- 2. 题中所给的高压锅销量问题更适合使用 Gompertz 模型拟合。

5 收获与建议

通过这次实验,我掌握了使用 MATLAB 求解回归问题的一般方法,并对相关知识有了更深刻的理解。非常感谢本学期老师和助教的辛苦付出。