EE 538B CMOS RF IC DESIGN

Midterm Examination No. 2: May 15, 2002

Time A	llowed:	110	Minutes
--------	---------	-----	---------

Student Name: Solutions

UW Student ID #: 123 - 45 - 6789

You are allowed two sheets of notes. Write legibly. Show all work. State assumptions.

Problem #	Points Possible	Points
1	20	20
2	30	30
3	20	20
4	30	30
<u> </u>		(100)

1. (20 points) Find the noise factor of the circuit shown with respect to the source resistance Rs. Neglect channel length modulation effects and all parasitic capacitors. Consider only the drain current noise component of M₁.

The three noise sources are uncorrelated:

$$V_{gs} = \frac{SL}{SL+R_S}V_{s} = \frac{SL/R_S}{SL/R_S+1}$$

$$V_{gs}^{2} = \frac{(\omega L/R_{s})^{2}}{(\omega L/R_{s})^{2}+1} V_{s}^{2}$$
 (Here we neglect phase shift since we're dealing with we're dealing with $V_{s}^{2} = q_{m}^{2} V_{gs}^{2} = q_{m}^{2} (\omega L/R_{s})^{2} - V_{s}^{2}$ uncorrelated noise)

$$F = \frac{1^{2} + n^{2} + n^{2}}{13^{2}} = 1 + \frac{4kT}{Rp} \text{ Af} + \frac{4kT}{Rp} \frac{8}{4kT} \frac{8}{4kT} \frac{4kT}{Rp} \frac{8}{4kT} \frac{8}{4kT} \frac{4kT}{Rs} \frac{8}{4kT} \frac{4kT}{Rs} \frac{8}{4kT} \frac{4kT}{Rs} \frac{8}{4kT} \frac{4kT}{Rs} \frac{8}{4kT} \frac$$

(30 points) Assume that M₁ and M₂ switch completely and instantaneously at the zero crossings of the RF signal that has a 50% duty cycle. The LO signal is V_{LO}cosω_{LO}t and the tail current is (I_{DC} + I_{RF}cosω_{RF}t). For simplicity, let ω_{LO}=10 and ω_{RF}=9.

Determine and plot on the graph below the peak voltage frequency components in V_{out} . Carefully label both the amplitude and frequency of each component. (Neglect switching frequency components higher than the third harmonic)

2. (cont-blank work page)

$$V_{TF} = \begin{bmatrix} \frac{1}{2} + \frac{2}{77} \cos \omega_{\text{LO}}t - \frac{2}{377} \cos 3\omega_{\text{LO}}t \end{bmatrix} \cdot \begin{bmatrix} I_{DC} + I_{RF} \cos \omega_{RF}t \end{bmatrix} R$$

$$= \begin{bmatrix} \frac{1}{2} \cos \omega_{\text{LO}}t + \frac{2}{377} \cos \omega_{\text{RF}}t + \frac{2}{2} I_{DC} \cos \omega_{\text{LO}}t + \frac{2}{377} \cos \omega_{\text{LO}}t + \frac{2}{377} \cos \omega_{\text{LO}}t + \frac{2}{377} \cos \omega_{\text{LO}}t \cos \omega_{\text{RF}}t + \frac{2}{377} \cos \omega_{\text{LO}}t \cos \omega_{\text{RF}}t \end{bmatrix} R$$

$$= \begin{bmatrix} \frac{1}{2} \cos \omega_{\text{LO}}t + \frac{2}{377} \cos \omega_{\text{LO}}t$$

Interpretation of terms: (Plotted on graph on previous page.)

$$A = \frac{I}{\pi} \left[\cos \left(\frac{\omega_{LO} + \omega_{RF}}{\omega_{LO} + \omega_{RF}} \right) t + \cos \left(\frac{\omega_{LO} - \omega_{RF}}{\omega_{LO} + \omega_{RF}} \right) t \right]$$

$$\frac{1}{\pi} \left[\frac{\omega_{LO} + \omega_{RF}}{\omega_{LO} + \omega_{RF}} \right] t + \cos \left(\frac{\omega_{LO} - \omega_{RF}}{\omega_{LO} + \omega_{RF}} \right) t$$

$$\frac{1}{\pi} \left[\frac{\omega_{LO} + \omega_{RF}}{\omega_{LO} + \omega_{RF}} \right] t + \cos \left(\frac{\omega_{LO} - \omega_{RF}}{\omega_{LO} + \omega_{RF}} \right) t$$

$$\frac{1}{\pi} \left[\frac{\omega_{LO} + \omega_{RF}}{\omega_{LO} + \omega_{RF}} \right] t + \cos \left(\frac{\omega_{LO} - \omega_{RF}}{\omega_{LO} + \omega_{RF}} \right) t$$

$$\frac{1}{\pi} \left[\frac{\omega_{LO} + \omega_{RF}}{\omega_{LO} + \omega_{RF}} \right] t + \cos \left(\frac{\omega_{LO} - \omega_{RF}}{\omega_{LO} + \omega_{RF}} \right) t$$

$$\frac{1}{\pi} \left[\frac{\omega_{LO} + \omega_{RF}}{\omega_{LO} + \omega_{RF}} \right] t + \cos \left(\frac{\omega_{LO} - \omega_{RF}}{\omega_{LO} + \omega_{RF}} \right) t$$

$$\frac{1}{\pi} \left[\frac{\omega_{LO} + \omega_{RF}}{\omega_{LO} + \omega_{RF}} \right] t + \cos \left(\frac{\omega_{LO} - \omega_{RF}}{\omega_{LO} + \omega_{RF}} \right) t$$

3. (20 points) An amplifier with NF₁= 6dB, power gain A_{P1}= 4dB, and IIP_{3,1}= 0dBm is cascaded with a second amplifier with NF₂= 10dB, power gain A_{P2}= 10dB, and IIP_{3,1}= -6dBm. Assuming a matched condition at all nodes, what are the overall NF, A_P and IIP₃ values?

$$V_{i\eta}^{c} \stackrel{R_{S}}{R_{S}} \stackrel{V_{i}}{V_{i}} = R_{i}, \quad \Delta A_{V} \stackrel{R_{N}}{V_{i}} \stackrel{V_{i}}{V_{i}} = V_{i} \stackrel{V_{i}}{V_{i}} \stackrel{V_{i}}{V_{i}} = V_{i} \stackrel{V_{i}}{V_{i}} \stackrel{V_{i}}{V_{i}} = V_{i} \stackrel{V_{i}}{V_{i}} \stackrel{V_{i}}{V_{i}} = V_{i} \stackrel{V_{i}}{V_{i}} = A_{V_{i}} = A_{V_{i}} \stackrel{V_{i}}{V_{i}} = A_{V_{i}} \stackrel{V_{i}}{V_{i}} =$$

4. (20 points) A passive mixer circuit is shown below. Assume V_{RF,DC}=3.85V, V_{LO,DC}=1.15V, V_{DD} =5.0V, and V_{T} =1.0V. Also assume that V_{RF} = $V_{COS}\omega_{RF}$ t and V_{LO} = $V_{COS}\omega_{RF}$ t. Determine the maximum value of V for which the circuit behaves properly as a passive mixer

Note VRF = VRF - VRF and VLO = VLO - VLO VRF = VRF, OC + 4 cas WEFT; VRF = VRF, OC - 1 cas WEFT and Vit = Vio, or + x cas whot; Vio = Vio, or - x cas whot

Transistors M,-My must remain on and in non-saturation:

1 (Ves-4) = for M4 VRF, De - Yeas WEFT - VLO, DC - 4- 20

COS WRET=1 - VRF, OC - 4 - VRO, DC - 4 = 0 3.85V-4-1.15V-1.0VZO WORST-CASE must be satisfied : V < 3.4V

@ VDS < (V65- 4) for My in non-saturation: (VLO-VLO, DC) < (VAF - VLO, DC-4) VLO < (VRF-VT)

(VLD, DC + y cos whot) < (VRF, DC - Y cos WRFT - 4) WORST-CASE { (1.15V + \frac{1}{2}) < (3.85V - \frac{1}{2} - 1.0)

V < 1.7V

Condition & dominates VZ 1.7V