

Unidade de Ensino:4

Competência da Unidade: Desenvolver do raciocínio lógico e estruturado, possibilitando a análise, avaliação e criação de demonstrações matemáticas, fazendo uso de linguagem simbólica, tabela-verdade e técnicas dedutivas.

Resumo: Nessa aula abordaremos uma introdução à lógica matemática, analisando as proposições, tabelas-verdade e argumentações.

Palavras-chave :Tabela-verdade; Argumentação.

Título da Teleaula: Tabela-Verdade

Teleaula nº: 4

Contextualização

A tabela-verdade das proposições foram criadas para chegarmos aos nossos resultados lógicos.

Elas foram construídas para traduzir o raciocínio humano e interpretá-lo.

Vamos aprender tabela-verdade?

Contextualizando

Como funcionário *trainee* na área de *analytics* de uma empresa de varejo, você deve ser capaz de resolver os problemas propostos pela equipe a fim de ajudá-la e, em breve, ser promovido a júnior.
Seu primeiro desafio consiste em construir uma tabela verdade

Seu primeiro desafio consiste em construir uma tabela verdade com os resultados dos conectores de conjunção, disjunção e negação para insights de vendas.

Seu segundo desafio é completar a tabela verdade com novos

Seu segundo desafio é completar a tabela verdade com novos insights, baseados no conector de implicação, a fim de direcionar uma campanha promocional.

Após completar as duas primeiras etapas, você deverá utilizar os novos dados recebidos para extrair *insights* para uma campanha

Contextualizando

promocional personalizada.

Para solucionar os desafios propostos, você aprenderá a construir tabelas verdades com os conectores lógicos, analisar os resultados obtidos e solucionar fórmulas mais complexas. Conceitos

Construção da Tabela Verdade

Contextualizando

Você foi recentemente contratado como um funcionário *trainee* na área de *analytics* e almeja se tornar júnior em breve, mas para isso deve cumprir seus desafios e ajudar a equipe.

Você recebeu uma planilha com os dados de compras de clientes, conforme ilustrado na Tabela 4.1.

Dadas as seguintes proposições:

p: o cliente é do sexo feminino,

q: o cliente tem idade entre 20 e 30 anos, o seu desafio é construir uma Tabela Verdade que generalize a solução fazendo a conjunção e a disjunção para as proposições p e q, além de criar os resultados para a negação de ambas as fórmulas.

Contextualizando

Após criar a tabela verdade, você poderá analisar cada registro informando se o resultado é verdadeiro ou falso para cada um dos conectores lógicos propostos na Tabela 4.1.

Tal resultado ajudará a equipe de vendas a criar rotinas para tomada decisões.

Tabela 4.1 | Dados de compra dos clientes

comgo_cn	nome_cu	genero_cn	idade_cii	vanor_compra	E	00
53682	Karly Dillon	F	40	74,84	3	?
58246	Channing Vaz- quez	М	49	98,04	2	?
27022	Adria Key	F	47	65,93	7	?
82075	Ella Nelson	F	34	94,01	3	?
90657	Arden Battle	M	48	21,73	2	?
80330	Brittany Ramirez	F	38	42,23	3	?
53989	Moses Graham	M	42	37,20	3	- 2
61370	Jin Fuller	М	49	65,60	3	- ?
41807	Phelan Blair	M	46	77,40	3	?
94269	Porter West	м	22	67,19	2	12

Matrizes de Conectivos - AND

Como você pode ver, tanto o hardware como o software computacional dependem da Lógica Formal.

Sabemos que os fundamentos da lógica computacional estão baseados nas proposições e nos conectivos (ou operadores) lógicos, mas como podemos organizar os resultados das operações lógicas para facilitar nosso trabalho?

Podemos seguir a sugestão de Silva, Finger e Melo (2017) e construir matrizes de conectivos, conforme mostra o Quadro 4.1. No canto superior esquerdo, temos a operação lógica a ser feita, no caso AND (E).

Nas linhas abaixo da operação, temos a proposição "P" e os possíveis valores que ela pode assumir, ou seja, verdadeira / falsa.

Matrizes de Conectivos - AND

Nas colunas ao lado da operação, temos os valores da proposição "Q", ou seja, também verdadeira / falsa.

No centro da matriz estão os possíveis resultados lógicos para a operação AND.

Veja que, quando $P \to Q$ são verdadeiras, o resultado é V. Para todos os demais casos, o resultado é falso (F).

P AND Q	Q = V	Q = F
P = V	v	F
P = F	F	F

Resolução da SP

Tabela verdade

Banca UFMT – Politec- MT , 2017 (adaptada)

Considere a tabela-verdade abaixo, em que nas duas primeiras colunas encontram-se os valores-verdade de duas proposições A e B.

Considere que V é usado para proposição verdadeira e F para proposição falsa.

ivamente

Assinale a sequência que cor Conder-A como a rappleo de A a tabela com os valores-verdade de x, y, z, t.

a) V, F, V, V

b) V, F, F, F

c) F, V, V, F d) F, V, F, V

e) V, V, V, V

Construção de Tabela -verdade Segundo Jacob Daghlian (2006), para se construir a tabela-verdade de uma proposição composta dada, procede-se da seguinte maneira: a) Determina-se o número de linhas da tabela-verdade que se quer construir; b) Observa-se a precedência entres os conectivos, isto é, determina-se a forma das proposições que ocorrem no problema; c)Aplicam-se as definições das operações lógicas que o problema exigir.

Tabela-ve	rdade da d	onjunção:	_
p	q	$p \wedge q$	
F	F	F	
F	V	F	
V	F	F	
V	V	V	
: José é mú	sico. (V)	q: Larissa e	studa poesia. (V)
∧ q			
D: f-:	um grand	o artista /\	/) s: Van Gogh foi

Resolução da SP

Tabela verdade de clientes

Como membro da equipe de *analytics* de uma empresa de varejo, dadas as seguintes proposições: p: o cliente é do sexo feminino e q: o cliente tem idade entre 20 e 30 anos, você foi encarregado de construir uma Tabela Verdade para as operações de conjunção e disjunção, além de criar a negação para as fórmulas. Com a Tabela Verdade criada, você deve avaliar os registros de clientes que foi lhe passado na Tabela 4.1, completando as colunas E/OU com V ou F.

A Tabela Verdade é um mecanismo que permite valorar fórmulas de forma genérica a partir de entradas binárias e conectores lógicos. Pois bem, como o problema proposto apresenta duas proposições, serão necessárias 4 linhas para contemplar todas as combinações possíveis das entradas. Além disso, serão necessárias 6 colunas, sendo 2 para as proposições (p, q), uma

para a fórmula da conjunção, outra para a disjunção, outra para a negação da conjunção e uma última com a negação da disjunção. O resultado da Tabela Verdade deve estar conforme o Quadro 4.2. Quadro 4.2 | Tabela Verdade para time de *analytics*

P	q	$p \wedge q$	$p \lor q$	$\neg(p \land q)$	$\neg (p \lor q)$
V	v	v	v	F	F
V	F	F	v	V	F
F	v	F	v	V	F
E	T.	E	E.	v	V

A Tabela Verdade pode ser usada como um gabarito para as operações lógicas, pois contempla todas as entradas possíveis e suas combinações para as fórmulas em estudo. Com esse gabarito em mãos, podemos passar para a segunda etapa do desafio, que é fazer a valoração das fórmulas $p^{\Lambda}q$ e pV q para cada registro da

base de clientes. Pois bem, vejamos na Tabela 4.2, como ficaram os resultados. $\,$

Na linha 1, o cliente Karly é do sexo feminino, portanto, p é verdadeiro, e tem 40 anos, logo, a proposição q é falsa para esse cliente. Nesse caso, ao consultar a Tabela Verdade, a conjunção com entradas *VF* tem como resultado F, mas a disjunção tem resultado V, pois basta que uma proposição seja V.

resultado V, pois basta que uma proposição seja V. Na linha 2, o cliente é do sexo masculino e possui 49 anos; nesse caso, tanto p quanto q são falsas, logo, ambas fórmulas são valoradas como F.

Termine de analisar suas respostas comparando os resultados com a Tabela Verdade.

com a Tabela Verdade. Tabela 4.2 | Valoração das fórmulas *p^q* e *pVq*

linha	codi- go_cli	nome_cli	gene- ro_cli	idade_cli	valor_compra	E	ot
1	53682	Karly Dillon	F	40	74,84	F	V
2	58246	Channing Vazquez	М	49	98,04	F	F
3	27022	Adria Key	F	47	65,93	F	V
4	82075	Ella Nelson	F	34	94,01	F	v
5	90657	Arden Battle	M	48	21,73	F	F
6	80330	Brittany Ramirez	F	38	42,23	F	v
7	53989	Moses Graham	M	42	37,20	F	F
8	61370	Jin Fuller	М	49	65,60	F	F
9	41807	Phelan Blair	М	46	77,40	F	F
10	94269	Porter West	M	22	67,19	F	v

Conceitos

Resultados na Tabela

Verdade

Contextualizando

Como funcionário trainee na área de analytics de uma empresa de varejo, você deve ajudar a equipe de marketing em uma campanha para o dia internacional da mulher.

Dadas as proposições:
A: o cliente é do sexo feminino.

B: o cliente fez um compra com valor superior a R\$ 50,00.

C: ganhar cupom com 10% de desconto.

Seu desafio consiste primeiro em avaliar a fórmula ABÙ para cada um dos registros da Tabela 4.3.

Essa avaliação lhe permitirá classificar a proposição C para cada um dos clientes, ou seja, se o cliente ganhará ou não o cupom de 10% de desconto.

Contextualizando

Após a classificação, você deverá generalizar, por meio de uma Tabela Verdade, as possíveis respostas para a fórmula P extstyle Q, sendo P e Q duas proposições genéricas. Para cumprir seu desafio, nesta seção veremos a Tabela Verdade do conector de implicação, bem como outros importantes resultados da Tabela

Tabela 4.3 | Dados de compra dos clientes

80330	Brittany Ramirez	F	38	42,23	ŧ
53989	Moses Geaham	М	42	37,20	ŧ
61370	Jin Puller	м	49	65,60	ŧ
11807	Phelan Hair	М	46	77,40	
94369	Porter West	М	22	67.19	
56516	Zena Skinner	F	54	73,98	
38904	Tengan Rico	м	34	61.57	t

Condicional

Tabela-verdade da condicional:

rabera rer	uuuc uu c	on an on on an
p	q	$p \rightarrow q$
F	F	V
F	V	V
V	F	F
V	V	V

p: Hoje é quarta-feira.(V)

q: Hoje tem futebol na televisão.(V)

Observe as seguintes proposições:

r: Todos os brasileiros sabem sambar.(F)

s: Alguns sambistas são ricos.(V)

Considerando a proposição r falsa e a proposição s verdadeira, determine o valor lógico de cada uma das proposições compostas a seguir:

P (r, s): Todos os brasileiros sabem sambar e alguns sambistas são ricos.(F)

Q (r, s): Se todos os brasileiros sabem sambar, então alguns

sambistas são ricos.(V) T (r, s): Ou todos os brasileiros sabem sambar ou alguns sambistas são ricos. (V)

Nesse caso, os valores lógicos das proposições compostas P, Q e T são, respectivamente:

a)V –V –V b)F - F - F

c)V – F – V

d)F - F - V e)F - V - V

Considere as seguintes proposições p e q:

p: Otacílio se casou domingo.

q: Manuela estuda lógica.

Diante das proposições acima p e q, escreva, usando a linguagem usual, as proposições compostas abaixo

formadas a partir de p e q:

R(p,q): $p \underline{v} q$ Ou Otacílio se casou domingo ou Manuela estuda lógica.

S(p,q): ~p ^ q Otacílio não se casou domingo e Manuela estuda lógica.

T(p,q): p→~q Se Otacílio se casou domingo, então Manuela não estuda lógica.

Resolução da SP

Você foi encarregado da missão de direcionar a equipe de marketing em uma campanha para o dia internacional da mulher. Dada as proposições:

A: o cliente é do sexo feminino.

B: o cliente fez um compra com valor superior a R\$ 50,00. C: ganhar cupom com 10% de desconto.

Você deve primeiro avaliar a fórmula A^B para cada um dos registros da Tabela 4.3 classificando a proposição C, como V ou F, para cada um dos clientes, ou seja, se o cliente ganhará ou não o

cupom de 10% de desconto. Pois bem, vamos analisar o primeiro registro:

A: O cliente é do sexo feminino. (SIM – V)

B: O cliente fez um compra com valor superior a R\$ 50,00. (SIM - V) Portanto, para o primeiro registro a fórmula ABÙ resulta em V, pois

^V=V, então a proposição C é V.

Já para o segundo registro, temos *FVF*=, pois o cliente é do sexo masculino. Então a proposição C é falsa para esse caso.

Ao analisar todos os registros, você deve chegar ao resultado da

Tabela 4.4. Tabela 4.4 |

Resultado para equipe de marketing

linha	codigo_cli	nome_di	genero_cli	tdade_clt	valor_ compra	cupom_10
1	53682	Karly Dillon	F	40	74,84	v
2	58246	Channing Vacquez	М	49	98,04	E
3	27022	Adria Key	F	47	65,93	v
4	82075	Ella Nelson	F	34	94,01	v
5	90657	Arden Battle	M	48	21,73	P
6	80330	Brittany Ra- mirez	F	38	42,23	E
7.	53989	Moses Graham	M	42	37,20	F
8	61370	Jin Fuller	M	49	65,60	F
9	41807	Phelan Blair	M	46	77,40	F
10	94269	Porter West	M	22	67,19	F
11	56516	Zena Skinner	F	54	73,98	v
12	38904	Teagan Rios	M	34	61,57	E

Aplicações Tabela Verdade

Contextualizando

Como funcionário trainee na área de *analytics* de uma empresa de varejo, você deve dar continuidade em seu trabalho, fornecendo novos insights para a equipe de marketing realizar sua campanha promocional. Para esse novo desafio foi enviada a você uma base com novas informações, conforme ilustra a Tabela 4.5. Nessa base é possível encontrar o valor gasto na última compra do cliente, o total de compras já feito por ele e o ticket médio (valor médio gasto em cada compra). A partir desses dados você deve usar as regras da lógica para classificar se o cliente tem potencial para comprar na nova campanha e, se tiver, então ele ganhará um cupom com desconto de 10%.

Caso não seja um cliente com potencial então ele ganhará

Contextualizando

somente um cupom com 5%. Vamos às regras: para ser classificado como um cliente com potencial de compra, não importa o gênero (pode ser feminino ou masculino), o cliente deve ter idade entre 30 e 45 anos, ter feito acima de 10 compras e ter um ticket médio acima de R\$ 50,00. Seu desafio é montar uma fórmula que traduza essa regra e, então preencher a coluna "cliente_potencial" com o resultado da fórmula para cada registro.

Dada a classificação, você deve escrever uma nova fórmula que traduza "Se o cliente tem potencial de compra, então ele deve ganhar um cupom com 10% de desconto", e outra fórmula que traduza "Se é falso que o cliente tem potencial de compra, então

Tautologia

Proposições compostas que sempre assumem valor lógico verdadeiro.

Proposição composta cuja última coluna de sua tabela-verdade assume o valor lógico verdadeiro, independentemente dos valores lógicos das proposições simples que a constituam.

Exemplo:

$$(p \to q) \to (\sim q \to \sim p)$$

Contradição

Proposições compostas que sempre assumem valor lógico falso.

Proposição composta cuja última coluna de sua tabela-verdade assume o valor lógico falso, independentemente dos valores lógicos das proposições simples que a constituam.

Exemplo:

$$p \leftrightarrow {\sim} p$$

Contingência

Proposição que não é tautologia e nem uma contradição.

Proposição composta que pode assumir tanto valores lógicos verdadeiros quanto falsos, em função dos valores das proposições simples que a constituam.

Exemplo:

$$\sim p \rightarrow q$$

Proposições compostas:

Se houver chuva e as plantas forem adubadas, então estas produzirão.

p: ocorrência de chuvas

q: plantas adubadas

r: existência de produção

Pensando na resolução : 2³ = 8 linhas

 $p \wedge q \rightarrow r$

Tabela-Verdade

p	q	r	$p \land q$	$p \wedge q \rightarrow r$
V	V	V	V	V
V	V	F	V	F
V	F	V	F	V
V	F	F	F	V
F	V	V	F	V
F	V	F	F	V
F	F	V	F	V
F	F	F	F	V

Caro estudante, chegou o momento de resolvermos mais um desafio. Como funcionário na área de *analytics* de uma empresa de vareio, você recebeu uma nova base de dados e precisa identificar os clientes que têm potencial de comprar na nova campanha. A regra para dizer se o cliente tem ou não potencial para comprar é dada pelas seguintes condições.

Não importa o gênero (pode ser feminino ou masculino).

Ele ou ela deve ter idade entre 30 e 45 anos.

Ele ou ela deve ter feito acima de 10 compras

Ele ou ela deve ter um ticket médio acima de R\$ 50,00. A primeira parte do desafio consiste em escrever uma fórmula que traduza essas regras e, então classificar o resultado da fórmula para cada registro da base da dados.

Primeiro ponto importante para montar a fórmula é entender que

todas as condições precisam ser satisfeitas, ou seja, estamos diante de conjunções. Como não importa o gênero – pode ser F ou M –, usaremos a disjunção. Agora é montar essa disjunção com as várias conjunções, utilizando os parênteses para indicar a ordem da valoração. Vamos começar escrevendo os itens já em

(feminino OU masculino). (idade >=30 E idade <=45). (compra >= 10). (ticket médio >= 50).

Agora é só juntar os itens com a conjunção:

(feminino OU masculino) E (idade >=30 E idade <=45) E (compra >= 10) E (ticket médio >= 50).

Veja que temos conectores que não são tão evidentes, como no caso da idade, em que precisamos usar a conjunção para delimitar a idade procurada. Agora vamos avaliar a fórmula para

os dados. Observe os resultados na coluna "cliente_potencial" na Tabela 4.7.

Vamos analisar juntos alguns registros. Na linha 1, o gênero, a idade e o valor da última compra são satisfeitos, porém, o total de compras e o ticket médio não são, o que resulta em falso para a coluna que indica se o cliente é ou não potencial. Já na linha 4, todos os itens são atendidos, logo o cliente é classificado como V, ou seja, é um cliente com potencial de compra na campanha.

lmha	cod- go_cl	nome_ di	par- m_di	idə- də_di	ultera_ compra	coes- pran	ticket, medio	te_po- tencial	cupom _10	cupom _5
T	53682	Karly Dillon	ř.	40	74.84	5	45.00	8	1	(8)
2	58246	Chan- ning Varquer	м	49	98,04	20	200,00	1	3	1
3	27922	Adria Key	7	47	65,93	12	34.00	7.	3	2
4	82975	Ella Nelson	8	34	94,01	16	150,00	v	2	2
5	90657	Arden Battle	м	48	21.73	4	23.00	9.	2	
6	86530	Britishy Rami-	F	38	42,23	1	42,23		a	
7	53989	Moses Graham	м	42	37,20	29	45,00	1	3	7
8	61370	In Biller	м	31	86,80	35	123,00	v	3	2
0	41907	Pholas Elair	м	45	77,40	23	95,00	v	3	2
90	94269	Porter West	м	22	67,19	6	35,00	ř.	9	2
11	56516	Zena Skinner	Ŧ	154	73,98	15	60,00			
12	38904	Yeagan Rios	м	34	61,57	17	71,00	v	3	

lisha	codi- go_cli	nome_ di	gene- ro_cli	ida- de_cli	valor_ uhima_ compra	total_ core- pras	ticket_ medio	dien- te po- tencial	cupom _10	cupom _5
i	53682	Karly Diffen	F	40	74,84	5	45,00	E	F	v
2	58246	Chan- ning Vanquez	м	49	98,04	20	200,00	E	7	v
3	27022	Adria Key	F	47	65,93	12	34,00	F	F	·v
4	82075	Ella Nelson	F	34	94,01	16	150,00	v	v	F
3	90657	Arden Eastle	м	48	21,73	4	23,00	8	y	v
	80330	Brittany Rami- rez	F	38	42.23	£	42.23	E	F	v
7	53989	Moses Grahan	М	42	37,20	29	45,00	E	ÿ	v
	61370	Jin Fuller	м	31	86,00	35	123,00	v	v	F
9	41807	Pholas Blair	м	45	77,40	23	95,00	v	v.	E
10	94269	Porter West	м	22	67,19	6	35,00	F	7	v
11	56516	Zena Skinner	F	54	73,98	15	60,00	E	F	v
12	39934	Tengan Rios	М	34	61,57	17	71,00	V.	v	p

