Lif10 – Fondements des bases de données TD – Introduction aux dépendances

Licence informatique - printemps 2012-2013

Résumé

Exemples d'exercices LATFX 2_{ε}

Exercise 1 : vérification des dépendances en SQL

Prouver que $r, s \models R[X] \subseteq S[Y]$ si et seulement si $|\pi_X(r) \setminus \pi_Y(s)| = 0$, en déduire une requête SQL qui permet de tester la satisfaction d'une dépendance d'inclusion.

Answer of exercise 1

On procède par équivalence successives. Par définition, $r,s \models R[X] \subseteq S[Y]$ est équivalent à $\pi_X(r) \subseteq \pi_Y(s)$ ce qui à son tour équivaut à $\pi_X(r) \setminus \pi_Y(s) = \emptyset$ qui équivaut à $|\pi_X(r) \setminus \pi_Y(s)| = 0$. Pour SQL, on va traduire assez directement $|\pi_X(r) \setminus \pi_Y(s)|$ et tester si le résultat est 0:

```
SELECT COUNT(*)
FROM (SELECT DISTINCT X FROM r
MINUS
SELECT DISTINCT Y FROM s)
```

Exercise 2 : inférence de dépendances

On rappelle les règles d'inférences suivantes pour les dépendances fonctionnelles.

$$\begin{array}{lll} Y\subseteq X \ \sigma_R \ (\text{r\'eflexivit\'e}) \ X\to Y & X\to Y \\ \sigma_A \ (\text{augmentation}) \ WX\to WY & X\to Y \\ Y\to Z \ \sigma_T \ (\text{transitivit\'e}) \ X\to Z & X\to YZ \ \sigma_D \ (\text{d\'ecomposition}) \\ & X\to Y \ X\to Y \ X\to Y \ WY\to Z \ \sigma_P \\ & (\text{pseudo-transitivit\'e}) \ WX\to Z \end{array}$$

Soit Σ l'ensemble des dépendances suivantes

$$BC \rightarrow A$$
 $D \rightarrow BE$ $AC \rightarrow B$ $B \rightarrow DE$ $C \rightarrow E$

- 1. En utilisant les règles le système d'Armstrong augmenté des règles de composition et décomposition, prouver que les DF suivantes appartiennent à $\Sigma^+ = \{f \mid \Sigma \models f\}$:
 - 1. $AD \rightarrow C$
 - 2. $CD \rightarrow A$
- 2. Même question en calculant la fermeture des parties gauches à partir de l'algorithme de fermeture.

Answer of exercise 2

- 1. 1. $D \to BE$ aug. $AD \to ABE$ $AE \subseteq ABE$ refl. $ABE \to AE$ trans. $AD \to AE$ $AE \to C$ trans. $AD \to C$
 - 2. $D \to BE$ decomp. $D \to B$ aug. $CD \to BC$ $BC \to A$ trans. $CD \to A$
- 2. 1. Pour $AD \rightarrow C$, les étapes successives de l'algorithme sont les suivantes :

- (a) closure = AD
- (b) closure = ABDE en utilisant $D \rightarrow BE$
- (c) closure = ABCDE en utilisant $AE \rightarrow C$
- (d) comme $C \subseteq AD^+$, on en déduit $AD \to C$ par correction de l'algorithme
- 2. Pour $CD \rightarrow A$, les étapes successives de l'algorithme sont les suivantes :
 - (a) closure = CD
 - (b) closure = BCDE en utilisant $D \rightarrow BE$
 - (c) closure = ABCDE en utilisant $BC \rightarrow A$
 - (d) comme $A\subseteq CD^+$, on en déduit $CD\to A$ par correction de l'algorithme

```
Algorithme 1: fermeture d'un ensemble d'attributs par des dépendances fonctionnelles

Data: \Sigma un ensemble de DF, X un ensemble d'attributs.

Result: X^+, la fermeture de X par \Sigma.

1 unused := \Sigma
2 closure := X
3 repeat

4 closure' := closure;
5 if W \to Z \in unused \ and \ W \subseteq closure \ then
6 unused := unused - \{W \to Z\};
7 closure := closure \cup Z;
8 until closure' = closure;
9 return closure;
```