

Tutorium 17, #11

Max Göckel- uzkns@student.kit.edu

Institut für Theoretische Informatik - Grundbegriffe der Informatik

Algorithmen: O-Kalkül

Um Algorithmen zu vergleichen und einzuordnen gibt es verschiedene Schranken:

- Obere Schranke O (Groß-O): In O(f(n)) sind alle Funktionen die langsamer oder gleich schnell wie f wachsen.
 - $||g(n)||\exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geq n_0 : g(n) \leq c \cdot f(n)||$
- Untere Schranke Ω (Omega): In $\Omega(f(n))$ sind alle Funktionen die schneller oder gleich schnell wie f wachsen.
 - $\{g(n)|\exists c \in \mathbb{R}_+: \exists n_0 \in \mathbb{N}_0: \forall n \geq n_0: g(n) \geq c \cdot f(n) \}$
- Mittlere Schranke Θ (Theta): In $\Theta(f(n))$ sind alle Funktionen die genau gleich schnell wie f wachsen.
 - $\{g(n)|\exists c_1,c_2\in\mathbb{R}_+:\exists n_0\in\mathbb{N}_0:\forall n\geq n_0:c_1f(n)\leq g(n)\leq c_2f(n)\}$
 - $O(f(n)) \cap \Omega(f(n))$

O-Kalkül: Beispiel

Sei
$$f(n) = \Pi \cdot n^{10}$$
 und $g(n) = \frac{1}{n^9} \cdot n^{10}$.

Finde passende c, n_0 um das Laufzeitverhalten von f und g zu vergleichen.

O-Kalkül: Beispiel

Sei
$$f(n) = \Pi \cdot n^{10}$$
 und $g(n) = \frac{1}{e^9} \cdot n^{10}$.

- $f(n) = \Pi n^{10} \le (e^9 \Pi) \cdot \frac{1}{e^9} n^{10} = e^9 \Pi \cdot g(n)$
 - $f(n) \in O(g(n))$ mit $n_0 = 1$ und $c = e^9\Pi$
- $g(n) = \frac{1}{e^9} \cdot n^{10} \le n^{10} \le \Pi n^{10} = 1 \cdot f(n)$
 - $g(n) \in O(f(n))$ mit $n_0 = 1$ und c = 1

Also ist $g(n) \in \Theta(f(n))$.

O-Kalkül: Aufgaben

- $f(n) = 5n^2 + 3$ und $g(n) = \frac{1}{2}n^2$
- $f(n) = 3^n \text{ und } g(n) = 5^n$
- $f(n) = 3n^7 + 4n^6 n^3 + n \text{ und } g(n) = 2n^7 n^5 + 3n^2$

Finde passende c, n_0 um das Laufzeitverhalten von f und g zu vergleichen.

Mastertheorem

Das Mastertheorem ermöglicht Laufzeitabschätzungen für rekursive Algorithmen.

Die Funktionen der Algorithmen müssen folgende Form besitzen, damit das Mastertheorem angewendet werden kann:

$$T(n) = a \cdot T(\frac{n}{b}) + f(n).$$

Mastertheorem

$$T(n) = a \cdot T(\frac{n}{h}) + f(n).$$

- a: Anzahl der Teilprobleme
- $\frac{n}{b}$: Größe der Teilprobleme
- f(n): Von T(n) unabhängige Funktion zur Kombination der Teilprobleme

Bsp.:
$$T_1(n) = a \cdot T_1(\frac{n}{10}) + 3n^2$$

Mastertheorem: Fälle

Bei der Laufzeit der Form $T(n) = a \cdot T(\frac{n}{b}) + f(n)$ gibt es 3 Fälle:

- 1. Ist $f(n) \in O(n^{\log_b a \epsilon})$ für ein $\epsilon > 0 \Rightarrow T(n) \in \Theta(n^{\log_b a})$
- 2. Ist $f(n) \in \Theta(n^{log_b a}) \Rightarrow T(n) \in \Theta(n^{log_b a} \cdot log(n))$
- 3. Ist $f(n) \in \Omega(n^{\log_b a + \epsilon})$ für ein $\epsilon > 0$ und $\exists d \in (0, 1)$, sodass für ein großes n gilt: $a \cdot f(\frac{n}{b}) \le d \cdot f(n) \Rightarrow T(n) \in \Theta(f(n))$

Mastertheorem: Aufgaben

1.
$$T(n) = 2T(\frac{n}{2}) + 10n$$

2.
$$20n^2 + T(\frac{n}{2}) \cdot 8$$

3.
$$4T(\frac{n}{4}) + n^2$$

Mastertheorem: Lösung

1.
$$a = 2, b = 2, f(n) = 10n; log_b a = 1;$$

 $f(n) = 10n \in \Theta(n^1) \Rightarrow T(n) \in \Theta(n \cdot logn)$

2.
$$a = 8$$
, $b = 2$, $f(n) = 20n^2$; $log_b a = 3$; $f(n) = 20n^2 \in O(n^{log_b a - \epsilon}) = O(n^{3 - \epsilon})$ für $\epsilon = \frac{1}{2} \Rightarrow T(n) \in \Theta(n^3)$

Mastertheorem: Lösung der 3.

$$\begin{split} a &= 4, b = 4, f(n) = n^2, \\ log_b a &= 1, \\ f(n) &= n^2 \in \Omega(n^{log_b a + \epsilon}) = \Omega(n^{1 + \epsilon}), \\ \text{Für } \epsilon &= \frac{1}{2}. \text{ Es soll gelten } af(\frac{n}{b}) \leq df(n), d \in (0, 1). \\ af(\frac{n}{b}) &= 4f(\frac{n}{4}) = \frac{n^2}{4} \leq dn^2 = df(n) \text{ mit } d = \frac{1}{4}. \end{split}$$

$$\Rightarrow T(n) \in \Theta(n^2)$$

Klausuraufgaben

Um der Vorlesung nicht zu weit "voraus" zu sein, machen wir jetzt ein paar Klausuraufgaben zu Themen die wir schon hatten.