FI 9a

MATHEMATIK

 $3^{-2} =$

2011-12

AB – Potenzrechenregeln – Lösung

1. Aufgabe - Nur 10er-Potenzen...

Notiere in Hochschreibweise!

$$a) - 0.001$$

b) 0,0375

c) 100000

d) 18495700

Zu a): -10^{-3} oder -1.10^{-3} . Der Faktor 1 vorne tut ja nix ;-)

Zu b): 3,75·10⁻². Das ist die Standardnotation; immer x,yz... mal 10 hoch!

Zu c): 10⁵ oder 1·10⁵.

Zu d): Das ist in Hochschreibweise nicht wirklich schöner, aber egal: 1,84957·10⁷.

2. Aufgabe - Nur Kommazahlen...

Schreibe als Dezimalzahl!

a)
$$10^{-4}$$

b)
$$123 \cdot 10^{-4}$$

c)
$$-0.135 \cdot 10^4$$

Zu a): 0,0001.

Zu b): 0,0123. Im Endeffekt kannst du dir erst 10⁻⁴ als 0,0001 notieren (siehe a)!) und dann mal 123 nehmen!

Zu c): -1350. Denn 10⁴ ist 10000!

3. Aufgabe – Mischmasch

Vereinfache!

a)
$$9,23 \cdot 10^4 - 0,032 \cdot 10^6$$

b)
$$123 \cdot 10^{-4} + 0.02$$

c)
$$-0.135 \cdot 10^4 + 301$$

Zu a): Wir bringen beides auf 10⁴, denn dann kann man die Zahlen vor der 10er-Potenz zusammenaddieren: 0,032·10⁶=3,2·10⁴ und damit ist das Ergebnis einfach 12,43·10⁴ oder 1,243·10⁵.

Zu b): Der erste Summand ist 0,0123 (siehe letzte Aufgabe), also 0,0323.

Zu c): -1350+301=-1049.

4. Aufgabe

Vereinfache!

a)
$$10^4 \cdot 10^6$$

c)
$$\frac{6x^2y^3}{2x^2y^5}$$

Zu a): 10¹⁰, denn bei gleicher Basis UND einem Malpunkt addieren sich die **Hochzahlen:** 4+6=10.

Zu b): 2000 ist 2·1000 oder 2·103. Also haben wir $10^{-4} \cdot 2 \cdot 10^3 = 2 \cdot 10^{3-4} = 2 \cdot 10^{-1} =$ 2.0,1=0,2.

Zu c): Oben finden wir x2, unten auch. Das kürzt sich! Oben 6, unten 2 kürzt sich zu einer 3 oben (im Zähler). Unten sind 5 ypsilons, oben nur 3. Also bleiben unten 2 übrig. Insgesamt ist das also 3/v²!

5. Aufgabe

Vereinfache!

a) $3^4 + 9 \cdot 3^4$ b) 7^{-3} c) $3^4 \cdot 9^{-2}$ d) $4^4 \cdot 3^4$ e) $3^4 \cdot 2^3$

Zu a): Gleiche Basis, gleicher Exponent und ein Plus: Das geht! 3⁴ ist ja 1·3⁴ und damit ist der Ausdruck 10·3⁴.

Zu b): Viel geht hier nicht; $1/7^3 = 1/343$ kann man notieren.

Zu c): Hier kann man tricksen; 3⁴ ist ja 3·3·3·3 oder (3·3) · (3·3) bzw. einfach 9²! Andererseits ist 9⁻² gerade 1/9². Man kann kürzen und übrig bleibt 1.

Zu d): Verschiedene Basis, aber gleiche Hochzahl. Dann kann man 12⁴ notieren! Denn 3.4=12. Es ist ja egal, ob ich viermal den Faktor 4 verrechne und dann nochmal viermal den Faktor 3, oder gleich viermal 3.4...

Zu e): Hier geht nix! Verschiedene Basis, verschiedene Hochzahl, Pech gehabt! Allerhöchstens kann man 3⁴=81 und 2³=8 bestimmen und das multiplizieren.

6. Aufgabe – Neuerungen!

Überlege selbst! Was könnte das sein?

a) $(10^4)^2$

b) 0^{0}

c) $(-10^2)^3$

d) $9^{1/2}$

Zu a): Das ()² bedeutet, es gibt zwei Päckchen je 10⁴! Also 10⁴·10⁴, was wegen der Potenzrechenregeln 10⁸ ist.

Zu b): Das könnte Null sein, ist aber in der Mathematik als 1 definiert. Komisch, macht aber Sinn, wenn man genauer in die Welt der Mathe schaut. Insgesamt ist immer $x^0=1$, egal was x ist! Das hatten wir bereits notiert.

Zu c): Hier hast du drei Päckchen zu je -10². Insgesamt sind das -10⁶, denn du hast 3 Minuszeichen, was Minus bleibt und 10²·10²·10², was 10⁶ ist. Du kannst dir merken: Wird eine Hochzahl hoch eine 2.Hochzahl genommen, kannst du beide Hochzahlen multiplizieren! Diese Regel notieren wir noch!

Zu d): 3 oder -3. Denn hoch 1/2 ist hoch 0,5 und das hatten wir letztes Schuljahr. Macht auch Sinn, denn $9^{1/2} \cdot 9^{1/2} = 9^{1/2+1/2} = 9^1 = 9$. Und -3 oder 3 lösen das!

7. Aufgabe – "Logarithmus" – umgedreht gedacht!

Ergänze richtig!

a)
$$2^x = 16$$

b)
$$2 \cdot 5^x = 0.4$$

c)
$$1.07^x = 2$$

d)
$$2^x = 1000$$

Zu a): 2 hoch 4 ist 16, also x=4.

Zu b): Wir teilen beide Seiten durch 2 und so muss $5^x=0.2$ sein! 0.2 ist aber 1/5, was gerade 5^{-1} ist. Daher ist x=-1 die Lösung.

Zu c): Das können wir noch nicht: Man fragt sich hier, wie lange es dauert (=x), wenn man 7% Zuschlag je Rechenschritt bekommt (Verzinsung!), bis man sein Guthaben verdoppelt. Das geht mit der Log-Taste auf dem GTR. Machen wir noch!

Zu d): Gleiches wie in c), aber ungefähr 10. Probier es aus!

8. Aufgabe – Monster aus Buchstaben!

Vereinfache, so weit es geht und notiere dein Ergebnis OHNE Bruch!

a)
$$\frac{5 \cdot x^4 \cdot \frac{1}{3^{-2}} \cdot 4 \cdot y^4 \cdot 4^y \cdot x^{-1} \cdot 4^{-x}}{20 \cdot x^3 \cdot 9 \cdot y^2 \cdot 4^{-2x} \cdot 3^{-y}}$$

b)
$$\frac{-2 \cdot z^{x} \cdot \frac{x}{y^{-2}} \cdot y \cdot 2^{-4} \cdot z^{4} \cdot z^{-x} \cdot 4^{-x}}{(-2)^{3} \cdot y^{2} \cdot z^{-2x} \cdot 3^{-z}}$$

Zu a): Das sind Monster, aber man kann sie zähmen... Zuerst einmal sammeln wir im Zähler (=das was oben steht) und sortieren. Die "reinen" Zahlen sind 5 und 4, was 20 ergibt. Dann ist da noch $1/3^{-2}$, was $3^2 = 9$ entspricht. Also 180. Dann sind da noch die 4er mit Hochzahlen, die kann man zu 4^{y-x} zusammenfassen! Die x-e fasst man zu $x^{4-1}=x^3$ zusammen und das y^4 steht alleine. Insgesamt ist also der Zähler dieses: $180 \cdot 4^{y-x} \cdot x^3 y^4$. Schon mal besser. Im Nenner schaut es ähnlich aus: Die reinen Zahlen sind 20 und 9, also auch 180. Die x-e sind alleine, also x^3 , genauso das y^2 . Dann haben wir noch das 4^{-2x} und das 3^{-y} alleine. Insgesamt kann man den Nenner zu $180 \cdot x^3 \cdot y^2 \cdot 4^{-2x} \cdot 3^{-y}$ notieren. Vergleicht man den Zähler mit dem Nenner, so kann man $180x^3$ kürzen! Außerdem noch y^4 gegen y^2 zu y^2 oben. Wir halten dieses Zwischenergebnis fest:

$$\frac{y^2\cdot 4^{y-x}}{4^{-2x}\cdot 3^{-y}}$$

Das sieht schon viel besser aus! Es geht aber noch besser, denn die Hochzahlen im Nenner sind negativ und man kann daher "1 durch" dafür schreiben:

$$\frac{y^2 \cdot 4^{y-x}}{(1/4^{2x}) \cdot (1/3^y)}$$

Das sind aber jetzt Doppelbrüche und wir können sie auflösen, indem wir 4^{2x} und 3^y nach oben schreiben!!! Dann haben wir gar keinen Bruch mehr: $y^2 \cdot 4^{y-x} \cdot 4^{2x} \cdot 3^y$. Jetzt haben wir sogar nochmal eine gleiche Basis; die 4. Und da fassen wir das so zusammen: $4^{y-x} \cdot 4^{2x} = 4^{y-x+2x} = 4^{y+x}$ und finden als endgültige Lösung $y^2 \cdot 4^{y+x} \cdot 3^y$. Monster bezwungen!

Zu b): Mit dem gleichen Vorgehen wie in a) findest du dieses Ergebnis:

• Zwischenergebnis Zähler: -1/8·y³·x·z⁴·4^{-x}.

- Zwischenergebnis Nenner: so wie es dasteht, nur dass (-2)³=8 ist.
 Gesamtergebnis: 1/64·y·x·4^{-x}·3^z·z^{4+2x}.