### Exercices

Corr. exo. 1.

- a) On a  $1 \div 7 = 0$ ,  $\overline{142857}$ , donc une période de six chiffres. On divise 1000 par 6 et on obtient 166 reste 4. Le millième chiffre après la virgule est le quatrième chiffre de la période soit 8.
- b) On a  $17 \div 41 = 0, \overline{41463}$ , donc une période de cinq chiffres. On divise 1000 par 5 et on obtient 200 reste 0. Le millième chiffre après la virgule est le cinquième chiffre de la période soit 3.

Corr. exo. 2.

a) 
$$\frac{35}{10} = \frac{7}{2}$$

b) 
$$\frac{35}{99}$$

c) 
$$\frac{349}{999}$$

$$d) \ \frac{3}{10} + \frac{49}{990} = \frac{173}{495}$$

e) 
$$\frac{3}{10} + \frac{5}{90} = \frac{32}{90} = \frac{16}{45}$$

e) 
$$\frac{3}{10} + \frac{5}{90} = \frac{32}{90} = \frac{16}{45}$$
 f)  $\frac{34}{100} + \frac{9}{900} = \frac{7}{20}$ . g)  $1 + \frac{2}{9} = \frac{11}{9}$  h)  $\frac{325}{100} = \frac{13}{4}$  Noter que  $0, \overline{9} = 0, 01$ .

$$g) 1 + \frac{2}{9} = \frac{11}{9}$$

h) 
$$\frac{325}{100} = \frac{13}{4}$$

i) 
$$\frac{15}{100} = \frac{3}{20}$$

j) 
$$1 + \frac{4}{10000} = \frac{251}{250}$$
 k)  $\frac{80}{99}$ 

k) 
$$\frac{80}{99}$$

1) 
$$\frac{16}{100} = \frac{4}{25}$$

n) 
$$3 + \frac{141}{999} = \frac{1046}{333}$$

Corr. exo. 3.

a) 
$$\frac{12}{10}$$
;  $\frac{13}{10}$ ;  $\frac{14}{10}$ ;

b) 
$$1, \overline{1} = \frac{10}{9}; \frac{11}{9}; \frac{12}{9};$$
 c)  $\sqrt{2}; \sqrt{3}; \frac{\sqrt{5}}{2}.$ 

c) 
$$\sqrt{2}$$
;  $\sqrt{3}$ ;  $\frac{\sqrt{5}}{2}$ .

Corr. exo. 4.

a) 
$$\frac{1}{7} = 0, \overline{142857}; \frac{2}{7} = 0, \overline{285714}; \frac{3}{7} = 0, \overline{428571}; \frac{4}{7} = 0, \overline{571428}; \frac{5}{7} = 0, \overline{714285}; \frac{6}{7} = 0, \overline{857142}.$$

- b) À remarquer.
- c)  $\frac{22}{23} = 0,\overline{9565217391304347826086}$

Corr. exo. 5.

$$a) \{2n+1 \mid n \in \mathbb{Z}\}\$$

b) 
$$\{2n \mid n \in \mathbb{N}\}$$

c) 
$$\{n^2 \mid n \in \mathbb{N}^*\}$$

Corr. exo. 6.



#### Corr. exo. 7.

|                                 | $\mathbb{N}$ | $\mathbb{Z}$ | $\mathbb{Q}$ | $\mathbb{R}$ | aucun |
|---------------------------------|--------------|--------------|--------------|--------------|-------|
| $\frac{3}{2}$                   |              |              | X            | X            |       |
| $\frac{3,14}{0,01}$             | X            | X            | X            | X            |       |
| $\sqrt{7}$                      |              |              |              | X            |       |
| $\frac{2-\sqrt{8}}{\sqrt{2}-1}$ |              | X            | X            | X            |       |
| $\sqrt{9}$                      | X            | X            | X            | X            |       |
| $\pi$                           |              |              |              | X            |       |
| $-\sqrt{100}$                   |              | X            | X            | X            |       |

# Corr. exo. 8.

a) 
$$\frac{3-7}{2} = \frac{-4}{2} = -2 \in \mathbb{Z}$$

c) 
$$2, 5: 3+1=\frac{25}{30}+1=\frac{5}{6}+1=\frac{11}{6}\in \mathbb{Q}$$

e) 
$$(\sqrt{2}-1): 2 = \frac{\sqrt{2}}{2} - \frac{1}{2} \in \mathbb{R}$$

g) 
$$\sqrt{3 \cdot 27} = \sqrt{81} = 9 \in \mathbb{N}$$

i) 
$$\sqrt{\sqrt{25} - \frac{3}{\sqrt{9}}} = \sqrt{5 - \frac{3}{3}} = \sqrt{4} = 2 \in \mathbb{N}$$

k) 
$$\frac{\sqrt{2}}{\sqrt{81} - \frac{16}{2}} = \frac{\sqrt{2}}{9 - 8} = \frac{\sqrt{2}}{1} = \sqrt{2} \in \mathbb{R}$$

# b) $\frac{4}{4-1} = \frac{4}{3} \in \mathbb{Q}$

d) 
$$\frac{2^0}{1^2} = \frac{1}{1} = 1 \in \mathbb{N}$$

f) 
$$\frac{3-\sqrt{9}}{\pi} = \frac{3-3}{\pi} = 0 \in \mathbb{N}$$

h) 
$$\frac{\sqrt{3} - \sqrt{12}}{\sqrt{27}} = \frac{\sqrt{3} - 2\sqrt{3}}{3\sqrt{3}} = \frac{1-2}{3} = -\frac{1}{3} \in \mathbb{Q}$$

j) 
$$\frac{14}{\sqrt{25} - \sqrt{144}} = \frac{14}{5 - 12} = \frac{14}{-7} = -2 \in \mathbb{Z}$$

1) 
$$\frac{5-\sqrt{3}}{\sqrt{3}-5} = \frac{5-\sqrt{3}}{-(5-\sqrt{3})} = -1 \in \mathbb{Z}$$

#### Automatismes -

#### Corr. aut. 1.

a) 
$$(-9\sqrt{7})^2 = (-9)^2 \cdot (\sqrt{7})^2$$
  
=  $81 \cdot 7$   
=  $567$ 

c) 
$$\sqrt{\frac{484}{4}} = \sqrt{\frac{11^2 \cdot 4}{4}}$$
  
=  $\sqrt{11^2}$ 

$$= 11$$

b) 
$$8\sqrt{7} \cdot 8\sqrt{7} = 8 \cdot 8\sqrt{7} \cdot \sqrt{7}$$
  
=  $64 \cdot 7$   
=  $448$ 

d) 
$$\sqrt{6} + \sqrt{5}$$
 n'est pas simplifiable

e) 
$$-4\sqrt{6}(-9 - 9\sqrt{6}) = -4\sqrt{6} \cdot (-9) - 4\sqrt{6} \cdot (-9)\sqrt{6}$$
 f)  $\sqrt{64} + \sqrt{25} = 8 + 5 = 13$   
=  $36\sqrt{6} - 4 \cdot (-9) \cdot 6$   
=  $36\sqrt{6} + 216$ 

f) 
$$\sqrt{64} + \sqrt{25} = 8 + 5 = 13$$

g) 
$$\sqrt{12} \cdot \sqrt{4} = \sqrt{12 \cdot 4}$$
  
=  $\sqrt{3 \cdot 4 \cdot 4}$   
=  $4\sqrt{3}$ 

h)  $\sqrt{3} + \sqrt{11}$  n'est pas simplifiable

i) 
$$-9\sqrt{7}(5-6\sqrt{7}) = -9\sqrt{7} \cdot 5 - 9\sqrt{7} \cdot (-6)\sqrt{7}$$
 j)  $3\sqrt{2} \cdot 4\sqrt{2} = 3 \cdot 4\sqrt{2} \cdot \sqrt{2}$   
 $= -45\sqrt{7} - 9 \cdot (-6) \cdot 7$   $= 12 \cdot 2$   
 $= -45\sqrt{7} + 378$   $= 24$ 

j) 
$$3\sqrt{2} \cdot 4\sqrt{2} = 3 \cdot 4\sqrt{2} \cdot \sqrt{2}$$
  
=  $12 \cdot 2$   
=  $24$ 

## Corr. aut. 2.

- a) On simplifie  $\sqrt{500}$  en  $10\sqrt{5}$ , car  $\sqrt{500} = \sqrt{10^2 \cdot 5} = \sqrt{10^2} \cdot \sqrt{5} = 10\sqrt{5}$ .
- b) On simpifie  $\sqrt{54}$  en  $3\sqrt{6}$ , car  $\sqrt{54} = \sqrt{3^2 \cdot 6} = \sqrt{3^2} \cdot \sqrt{6} = 3\sqrt{6}$ .
- c) On simpifie  $\sqrt{27}$  en  $3\sqrt{3}$ , car  $\sqrt{27} = \sqrt{3^2 \cdot 3} = \sqrt{3^2} \cdot \sqrt{3} = 3\sqrt{3}$ .
- d) On simplifie  $\sqrt{98}$  en  $7\sqrt{2}$ , car  $\sqrt{98} = \sqrt{7^2 \cdot 2} = \sqrt{7^2} \cdot \sqrt{2} = 7\sqrt{2}$ .
- e) On simpifie  $\sqrt{44}$  en  $2\sqrt{11}$ , car  $\sqrt{44} = \sqrt{2^2 \cdot 11} = \sqrt{2^2} \cdot \sqrt{11} = 2\sqrt{11}$ .

#### Corr. aut. 3.

a) Il suffit de multiplier le numéra-b) Ici, il faut multiplier le numérateur et le dénominateur de la fraction par  $\sqrt{2}$ .

$$A = \frac{9}{\sqrt{2}} = \frac{9 \cdot \sqrt{2}}{\sqrt{2} \cdot \sqrt{2}}$$
$$A = \frac{9\sqrt{2}}{2}$$

teur et le dénominateur de la fraction par  $3-4\sqrt{10}$ .

$$B = \frac{4}{3 + 4\sqrt{10}}$$

$$B = \frac{4 \cdot (3 - 4\sqrt{10})}{(3 + 4\sqrt{10})(3 - 4\sqrt{10})}$$

$$B = \frac{12 - 16\sqrt{10}}{(3)^2 - (4\sqrt{10})^2}$$

$$B = \frac{12 - 16\sqrt{10}}{9 - (16 \cdot 10)}$$

$$B = \frac{12 - 16\sqrt{10}}{9 - 160}$$

$$B = \frac{12 - 16\sqrt{10}}{-151}$$

$$B = \frac{-12 + 16\sqrt{10}}{151}$$

c) Ici, il faut multiplier le numérateur et le dénominateur de la fraction par  $8-7\sqrt{11}$ .

$$C = \frac{11}{8 + 7\sqrt{11}}$$

$$C = \frac{11 \cdot (8 - 7\sqrt{11})}{(8 + 7\sqrt{11})(8 - 7\sqrt{11})}$$

$$C = \frac{88 - 77\sqrt{11}}{(8)^2 - (7\sqrt{11})^2}$$

$$C = \frac{88 - 77\sqrt{11}}{64 - (49 \cdot 11)}$$

$$C = \frac{88 - 77\sqrt{11}}{64 - 539}$$

$$C = \frac{88 - 77\sqrt{11}}{-475}$$

$$C = \frac{-88 + 77\sqrt{11}}{475}$$

d) Il suffit de multiplier le numérateur et le dénominateur de la fraction par  $\sqrt{7}$ .

$$D = \frac{10}{\sqrt{7}} = \frac{10 \cdot \sqrt{7}}{\sqrt{7} \cdot \sqrt{7}}$$
$$D = \frac{10\sqrt{7}}{7}$$

e) Il suffit de multiplier le numérateur et le dénominateur de la fraction par  $\sqrt{6}$ .

$$E = \frac{3}{\sqrt{6}} = \frac{3 \cdot \sqrt{6}}{\sqrt{6} \cdot \sqrt{6}}$$
$$E = \frac{3\sqrt{6}}{6}$$
$$E = \frac{\sqrt{6}}{2}$$

f) Ici, il faut multiplier le numérateur et le dénominateur de la fraction par  $3 - 3\sqrt{6}$ .

$$F = \frac{11}{3+3\sqrt{6}}$$

$$F = \frac{11 \cdot (3-3\sqrt{6})}{(3+3\sqrt{6})(3-3\sqrt{6})}$$

$$F = \frac{33-33\sqrt{6}}{(3)^2 - (3\sqrt{6})^2}$$

$$F = \frac{33-33\sqrt{6}}{9-(9\cdot 6)}$$

$$F = \frac{33-33\sqrt{6}}{9-54}$$

$$F = \frac{33-33\sqrt{6}}{-45}$$

$$F = \frac{11-11\sqrt{6}}{-15}$$

$$F = \frac{-11+11\sqrt{6}}{15}$$

g) Il suffit de multiplier le numérateur et le dénominateur de la fraction par  $\sqrt{6}$ .

$$G = \frac{9}{\sqrt{6}} = \frac{9 \cdot \sqrt{6}}{\sqrt{6} \cdot \sqrt{6}}$$

$$G = \frac{9\sqrt{6}}{6}$$

$$G = \frac{3\sqrt{6}}{2}$$