Preface of Park 확률론은 통계학을 공부하는 데 있어 굉장히 중요한 과목이다. 그러므로 열심히 공부해야 한다. 덤으로 극단값 이론의 기초도 수록하였다. 최대한 제가 이해할 수 있는 수준의 내용으로 구성하였으므로, 그러므로 기초 레벨에 해당이 된다. This is a Quarto book. Park To learn more about Quarto books visit https://quarto.org/docs/books. Seoncheol Par 1 + 1Seoncheol Farl2 Seoncheal Park

Park	Seonches	, park	
Seoncheol P			
Seonches			
Seoncher			
Seoner			
cheol Park			
conc			
Seon			
oncheol Park			
CP(
, park			
Seoncheol Park			
	Seoncheol Park Pa	ort I park	
ol Park	Sec	ncheol Park	
Seoncheol Park	ı park		
	Seoncheol Park In	tro Se	
Seoncheol Park		Ero Seoncheol Park	
Seoncheo			
Seoncheol Park			
Seonche			
Seoncheol Park			
ark			
Seoncheol Pa			
l Park			
[Pair			
Seoncheol			
ieol Park			
6011			
Seonch			
ncheol Park			
ncheot .			
		3	
	Seoncheol Park		
	Seonche	park	-ncheol'

1 Introduction

1.1 Probability Theory

- Probability models: random experiment를 묘사하는데 목적이 있음
- Random experiment: 무작위성이 있어 미래에 일어날 결과물을 정확하게 예측할 수 없는 실험
- Probability space: 확률론의 기초가 됨, 확률공간의 키가 되는 아이디어는 stabilization of the relative frequencies임

Seoncheol Park 우리가 random experiement를 독립적으로, 반복적으로 수행한다고 하고 어떤 특정한 사건(event) A가 일어나는지 아닌지를 기록한다고 하자. $f_n(A)$ 를 처음 n개의 독립시행에서 A 사건이 일어난 횟 수라고 하고, $r_n(A)=f_n(A)/n$ 이라고 하자. 그러면 이 relative frequency $r_n(A)$ 는 $n\to\infty$ 일 때 다음과 같다고 생각하는 것이다(stabilization). Seoncheol Park Seoncheol F

 $r_n(A) \overset{n \to \infty}{\longrightarrow}$ some real number.

Seonche of Park

park	Seonches	, park	
Seoncheol Park			
ol Park			
Seoncheol Park			
Seoficii			
cheol Park			
Seoncheol Par			
Seone			
oncheol Park			
Seoncheol'			
Seon			
Seoncheol Park		Seonch	
Seonche Seonche	Park Dark	Seoner'	
park	ran	theol Park	
Seoncheol Park			
Seon	Probabilit	A LIIGOLA	
al Park		sheol Par	
Seoncheol Park			
Se			
Seoncheol Park			
Seoncheut			
Seoncheol Park			
ark			
Seoncheol Park			
Seonor			
l Park			
Seoncheol Park			
Seom			
ieol Park			
Seoncheol Park			
Seo.			
ncheol Park			
Seoncheol Pa			
Seo	seonche 5		
	Seuli J		
ı park			
Seoncheol Park			
	neol Park		ncheol

2 The Elements of Proability Theory Seoncheol Park

2.1 Probability Triples

Seoncheol Park 다음은 콜모고로프 가 정리한 수리적 기반의 확률론이다.

Q. 왜 probability triple이 필요한가? Single도 아니고 double도 아니고 왜 triple이어야 하는가?

- Sample space Ω (표본공간): 이것은 any non-empty set이면 된다. 예를 들어 uniform distribution일 때 $\Omega=[0,1]$ 이 있다. \circ
- **Probability** P: a mapping from $\mathcal F$ to [0,1] with P with P subset P to P with P to P P P P P• \mathcal{F} : σ -algebra 또는 σ -field: 이것은 Ω 의 subset들의 collection으로 \emptyset , Ω 등을 포함한다.
 - - $-P(\Omega) = 1_{ncheol \, Park}$
 - P is countably additive, $P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$ Seoncheol Park

2.2 Field and σ -field park

See **Definition 2.1** (Field). The class $\mathcal A$ of subsets of Ω is called a **field** if it contains Ω and is closed under the formulation of complements and finite unions, that is if: Seoncheol Park

- 1. $\Omega \in \mathcal{A}$
- 2. $A \in \mathcal{A} \Longrightarrow A^c \in \mathcal{A}$
 - 3. $A_1,A_2\in\mathcal{A}\Longrightarrow A_1\cup A_2\in\mathcal{A}$

Definition 2.2 (σ -field). The class $\mathcal F$ of subsets of Ω is called a σ -field if it is a field and if it is closed under the formulation of countable unions, that is if:

- 4. $A_1, A_2, \ldots \in \mathcal{F} \Longrightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$
- Recall that the elements of any field or σ -field are called **random events** (or simply and events) events).

2.3 $\pi - \lambda$ System

Some intuition for $\pi-\lambda$ is that you can take a finite non π -system such as $S=\{\{1,2\},\{2,3\}\}$, and this is not enought to guarantee uniqueness on the σ -algebra generated by S, which includes sets like $\{2\},\{1,2,3\}$. But, at least in the countable case, you can use the π -system property to do disjointification/partitioning on Ω , which finished the proof.

Lemma 2.1 (σ -algebra and π - λ system). A family of sets is a σ -algebra iff it is both π and λ .

2.4 Probabilities

Seoncheol Pair Definition 2.3 (Probability).

- Let Ω be any set and $\mathcal A$ be a field of its subsets. We say that P is a **probability** on the measurable space $(\Omega,\mathcal A)$ if P is defined for all events $A\in\mathcal A$ and satisfies the following axioms.
 - 1. $P(A) \geq 0$ for each $A \in \mathcal{A}$; $P(\Omega) = 1$
 - 2. P is **finitely additive**. That is, for any finite number of pairwise disjoint events $A_1,\dots,A_n\in\mathcal{A}$ we have

$$P\Big(\cup_{i=1}^n A_i\Big) = \sum_{i=1}^n P(A_i).$$

3. P is continuous at \emptyset . That is, for any events $A_1,A_2,\ldots,\mathcal{A}$ such that $A_{n+1}\subset A_n$ and $\bigcap_{n=1}^\infty A_n=\emptyset$, it is true that

$$\lim_{\mathrm{Seoncheol}} \lim_{n \to \infty} P(A_n) = 0.$$

Note that conditions 2 and 3 are equivalent to the next one 4.

4. P is σ -additive (countably additive), that is

$$P\Big(\cup_{n=1}^{\infty}A_n\Big) = \sum_{n=1}^{\infty}P(A_n)^{(n+1)}$$

for any events $A_1,A_2,\ldots\in\mathcal{A}$ which are pairwise disjoint.

Example 2.1 (A probability measure which is additive but not σ -additive). Let Ω be the set of all rational numbers r of the unit interval [0,1] and \mathcal{F}_1 the class of the subsets of Ω of the form [a,b], (a,b], (a,b) or [a,b) where a and b are rational numbers. Denote by \mathcal{F}_2 the class of all finite sums of disjoint sets of \mathcal{F}_1 . Then \mathcal{F}_2 is a field. Let us define the probability measure P as follows:

$$P(A) = b - a, \quad \text{if } A \in \mathcal{F}_1,$$

$$P(B) = \sum_{i=1}^n P(A_i), \quad \text{if } B \in \mathcal{F}_2, \text{ that is, } B = \sum_{i=1}^n A_i, A_i \in \mathcal{F}_1.$$

Consider two disjoint sets of \mathcal{F}_2 say

$$B=\sum_{i=1}^n A_i \text{ and } B'=\sum_{j=1}^m A'_j,$$

where $A_i,A_j'\in\mathcal{F}_1$ and all A_i,A_j' are disjoint. Then $B+B'=\sum_{k=1}^{m+n}C_k$ where either $C_k=A_i$ for some $i=1,\dots,n$, or $C_k=A_j'$ for some $j=1,\dots,m$. Moreover,

$$\begin{split} P(B+B') &= P\Big(\sum_k C_k\Big) = \sum_k P(C_k) = \sum_{i,j} (P(A_i) + P(A'_j)) \\ &= P(A_i) + \sum_j P(A'_j) = P(B) + P(B'). \end{split}$$

Obviously every one-point set $\{r\}\in\mathcal{F}_2$ and $P(\{r\})=0$. Since Ω is a countable set and $\Omega=\sum_{i=1}^\infty\{r_i\}$, we get

get
$$P(\Omega)=1\neq 0=\sum_{i=1}^{\infty}P(\{r_i\}).$$
 that P is not σ -additive.

This contradiction shows that P is not σ -additive. Seoncheol Park

Random Variables Seoncheol Park

3.1 Random Variables

Definition 3.1 (Random Variables). Given a probability triple (Ω, \mathcal{F}, P) , a random variable is a function X from Ω to $\mathbb R$ such that

$$\{\omega\in\Omega;X(\omega)\leq x\}\in\mathcal{F},\quad x\in\mathbb{R}.$$

Seoncheol Park Q. Random variable을 정의하는데 왜 inverse image를 쓰는가?

> Commonly a probability measure P is added to (Ω, \mathcal{F}) . Then sets like $\{X \in A\} :=$ $\{\omega\in\Omega|X(\omega)\in A\}$ can $=X^{-1}(A)$ be **measured** if they belong to \mathcal{F} . 예를 들면 $X\,:\,\Omega\, o\,\mathbb{R}$ 이 확률변수일 때 $X\,<\,1$ 일 확률을 구하려면 $X^{-1}(-\infty,1)$ 이 가측이어야 할 Seoncheol Par 것이다.

3.2 Radon-nikodym derivative

Figure 3.1: Change of measures.

확률측도는 volume element의 일반화라고 볼 수 있다.

• $\mu(x)$: probability measure, interval이나 set of points들을 인풋으로 받고 area/volume 이 해당하는 화료(야스)은 아우프으로 조무 하시다 에 해당하는 확률(양수)을 아웃풋으로 주는 함수다.

• $\lambda(x)$: reference measure. We often take $\lambda(x)$ as the Lebesgue measure which is essentially just a uniform function over the sample space.

The reference measure $\lambda(x)$ is essentially just a meter-stick that allows us to express the probability measure as a simple function f(x). That is, we represent the probability meameasure $\lambda(x)$. This is essentially the intuition that is given by the Radon-Nikodym derivative

$$f(x) = \frac{d\mu(x)}{d\lambda(x)}$$

Seoncheol Park or equivalently

height = area / width.

Note that we can also represent the same idea by

$$\mu(A) = \int_{A \in X}^{\text{concheol Park}} \mu(A) d\lambda(x),$$

where $\mu(A)$ is the sum of the probability of events in the set A which is itself a subset of the entire sample space X. Note that when A=X then the integral must equal 1 by definition of probability.

라돈-니코딤 정리는 조건부 확률에 응용된다고 함. Seoncheol Park

3.3 Integration Seoncheol Park

Seo 3.4 리만-스틸체스 적분

종종 헷갈리는 표현이 기댓값을 다음과 같이 분포함수를 이용해 표현하는 경우가 있다.

Second
$$E(X) = \int x dF(x)$$
.

우리가 알고 있는 정적분은 x축을 따라가며 함수값 f(x)가 만드는 면적을 계산한다. 다. 이런 세산한다. $\int_a^b f(x) dx$. Seoncheol Park

$$\int_{a}^{b} f(x)dx$$

위 식을 더 확장하면 x 대신 임의의 곡선 g(x)를 적분 변수로 두고 f(x)를 단순하게 정적분 할 수도 Seoncheol Park 있다.onch

$$\int_{x=a}^{b} f(x)dg(x).$$
 Seoncheol Park

여기서 dg(x)는 g(x)의 미분소(differential)로, g(x)의 움직임을 결정하는 x는 단조 증가하거 나 감소한다. 위와 같이 리만 적분을 일반화한 정적분을 리만-스틸체스 적분(Riemann-Stieltjes Integral)이라 한다. 리만 적분의 정의를 이용해 리만-스틸체스의 적분을 표현할 수도 있다.

$$\int_{x=a}^{b} f(x) dg(x) = \lim_{N \to \infty} \sum_{n=0}^{N-1} f(t_n) [g(x_{n+1}) - g(x_n)].$$

여기서 x_n 은 정적분을 위해 구간 [a,b]를 나눈 점, t_n 은 닫힌 세부공간 $[x_n,x_{n+1}]$ 사이에 있는 임의점이다.

3.5 리만 적분과 르베그 적분

여기는 Confused when changing from Lebesgue Integral to Riemann Integral 에 올라왔던 내용을 살펴보기로 한다. 여기서 질문자는 리만 적분을 어떻게 르베그 적분으로 바꾸는지에 대해 관심이 있다.

다음과 같이 확률공간 (Ω,\mathcal{F},P) 에서 정의된 음이 아닌 확률변수 X 가 지수분포를 따른다고 하자. Seoncheol Park

$$P(X < x) = 1 - e^{-\lambda x}.$$

한편, 르베그 적분으로 X의 기댓값을 쓰면 다음과 같다.

기댓값을 쓰면 다음과 같다.
$$E[X] = \int_{\{\omega \mid X(\omega) \geq 0\}} X(\omega) dP(\omega).$$

여기서 질문자는 이것을 리만 적분으로 어떻게 바꾸냐

를 물어보고 있다.

답변은 이것이 적분의 문제가 아닌 변수변환의 문제라고 한다.

By definition, given $X:\Omega \to \mathbb{R}$ a random variable, $E[X]=\int_{\Omega}X.$ X defines a measure \tilde{m} in \mathbb{R} , called the **push-forward**, by $\tilde{m}(A) = P(X^{-1}(A))$. By definition, this measure is invariant under X and hence is invariant under X, and hence

$$\int_{\mathbb{R}} f d \tilde{m} = \int_{\Omega} f \circ X dP.$$
 Seen cheel Park

The equality follows from the usual arguments (prove for characteristics, simple functions, then use convergence. Recall that $1_A \circ X = 1_{X^{-1}(A)}$).

Let h be the density of X. We then have, by definition of density, that $\tilde{m}(A) =$ $P(X^{-1}(A)) = \int_A h dm$ for any $A \in \mathcal{B}(\mathbb{R})$, where m is the Lebesgue measure. By change of variables, we have

$$\int_{\mathbb{R}} f d\tilde{m} = \int_{\mathbb{R}} f \cdot h dm.$$

Combining these equations,

e equations,
$$\int_{\mathbb{R}} f \cdot h dm = \int_{\Omega} f \circ X dP.$$

 $\mathsf{Taking}\, f = \mathsf{Id}\, \mathsf{yields}$

$$\int_{\mathbb{R}} x h(x) dx = \int_{\Omega} X dP = E[X].$$

Taking $f=\operatorname{Id}\cdot \mathbf{1}_I$, where I is some interval (for example, $(0,+\infty)$ as in your case), we Seoncheol Park

$$\int_{I} xh(x)dx = \int_{X^{-1}} XdP,$$

recalling again that $\mathbf{1}_A \circ X = \mathbf{1}_{X^{-1}(A)}$. Since P(X < 0) in your case is 0, this last integral is actually equal to the integral over the whole space, and hence to E[X], which gives your equality.

Definition 3.2 (Integrable Random Variable). Gut (2014) 의 53쪽에 따르면, $E|X|<\infty$ 인 경우 random varible X 가 integrable 하다고 부른다.

Example 3.1. Given a probability measure P and sample space Ω , it is true that

Second
$$dP = 1$$
.

 $\int_{\Omega} dP = P(\Omega) = 1.$ Seoncheol Park Seoncheol Park Because $\int_A dP = \int_{\Omega} 1_A dP = P(A), \quad A \in \mathcal{F}.$ Seoncheol Park More generally **Definition 3.3** (\mathcal{L}^p) . 다음과 같은 확률공간 (Ω,\mathcal{F},P) 를 생각하자. p>1에 대해, 확률변수 XSeoncheol Park

4 Probability Inequalities

4.1 왜 concentration inequality가 필요한가?

- 출처: Concentration Inequalities, eoncheol Park
- High-Dimensional Probability 책에 있는 동전 던지기 예제 생각 Seoncheol Park
- i 번째 동전던지기: 앞면이 나오면 1, 뒷면이 나오면 0인 Bernoulli random variable로 간주 가능
- N 번 던졌을 때 나온 앞면의 수: $S_N = \sum_i X_i$
- de Moivre-Laplace theorem (Binomial $\$ CLT)

$$Z_N \overset{D}{\to} \mathcal{N}(0,1)$$

이때 Seoncheol Park

$$Z_N = rac{S_N - N_p}{\sqrt{Np(1-p)}}$$

 ${f Q}.~N$ 번 시행 시 $rac{3}{4}$ 이상 앞면이 나올 확률을 구하고 싶다. Seoncheol Park

Seoncheol Park

- Gaussian density는 exponential decay하는데, Z_N 이 분포수렴하는 속도는 훨씬 느림 Seoncheol Park
- CLT의 quantitative version인 Berry-Essen CLT를 보면

$$|P\{Z_n \geq t\} - P\{Z \geq t\}| \leq \frac{C}{\sqrt{N}} e^{\log N}$$

이때 C는 상수이며, convergence의 order가 $\frac{1}{\sqrt{N}}$ 임을 (아래 그림에 녹색으로 표시) 확인 가능

Figure 4.2: Figure: Berry-Essen bound와 empirical difference.

4.2 Markov inequality

Theorem 4.1 (Markov inequality). 음이 아는 확률변수 X에 대해

$$P\{X \geq t\} \leq \frac{E[X]}{t \, \mathrm{concheol} \, \mathrm{park}}$$

Proof

확률공간 (Ω, Σ, P) 을 생각하자.

$$EX = \int_{X} X dP \ge \int_{\{X \ge t\}}^{\text{ncheol Park}} X dP \ge t \int_{\{X \ge t\}} dP \ge t \cdot P\{X \ge t\}$$
Seoncheol Park

i Remark

- 마르코프 bound는 매우 약한 (즉 true probabilty로의 수렴이 느린) bound
- 그러나 X에 대한 제약조건이 없음 (기댓값 계산 필요, 음이 아닌 확률변수)

4.3 Chebyshev inequality

Theorem 4.2 (Chebyshev inequality). 어떤 확률변수 X에 대해 Seoncheol Park

(Chebyshev inequality). 어떤 확률변수
$$X$$
에 대해 Section Park $P\{|X-E(X)|\geq t\}\leq rac{{
m Var}(X)}{t^2}$ Section Park Section Park

Seoncheol Park

Proof

Proof
$$|X-E(X)| \geq t \equiv \text{제곱한 후 마르코프 부등식을 적용}$$

$$P\{|X-E(X)|^2 \geq t^2\} \leq \frac{E[(X-E(X))]^2}{t^2} = \frac{\text{Var}(X)}{t^2}$$
 i Remark

i Remark

emark • 체비세프 부등식을 쓰려면 분산이 정의되어야 함

See 4.4 Hoeffding's Inequality

- ullet (드디어) $\sum_i X_i$ 에 대한 exponential bound를 줌
- Seo 그러나 독립 가정이 필요

Theorem 4.3 (Symmetric Bernoulli에서의 Hoeffding's inequality). X_1,\dots,X_N 이 symmetric Bernoulli 확률변수라고 하자. 어떤 $t\geq 0$ 에 대해 $a\in\mathbb{R}^n$ 이 존재해

$$P\{\sum_{i=1}^N a_i X_i \geq t\} \leq \exp\Big(-\frac{t^2}{2\|a\|^2}\Big)$$

마르코프 부등식을 적용하면 다음과 같다.eol Park

$$P\{\sum_{i=1}^{N}a_{i}X_{i} \geq t\} = P\{\exp(\lambda\sum_{i=1}^{N}a_{i}X_{i}) \geq e^{\lambda t}\} \leq e^{-\lambda t}E\{\exp(\lambda\sum_{i=1}^{N}a_{i}X_{i})\}$$

Seon cheol Park

Seoncheol Park

$$E\{\exp(\lambda\sum_{i=1}^N a_i X_i)\} = E\{\prod_{i=1}^N \exp(\lambda a_i X_i)\} = \prod_{i=1}^N E\{\exp(\lambda a_i X_i)\}$$

 X_i 를 1/2의 확률로 -1과 1을 갖는 확률변수라고 제한했으므로, 위의 기댓값을 쉽게 구할 수 있다.

$$E\{\exp(\lambda a_i X_i)\} = \frac{e^{\lambda a_i} + e^{-\lambda a_i}}{2} \leq e^{\lambda^2 a_i^2/2} \leq e^{\lambda^2 a_i^2/2}$$

$$E\{\exp(\lambda a_i X_i)\} = \frac{e^{-t} + e^{-t}}{2} \le e^{\lambda^2 a_i^2/2}$$
 지수함수의 테일러 급수 전개를 이용하면
$$e^x = \sum_{k=0}^\infty \frac{x^k}{k!}, \quad \frac{e^x + e^{-x}}{2} = \sum_{k=0}^\infty \frac{x^{2k}}{(2k)!}, \quad e^{x^2/2} = \sum_{k=0}^\infty \frac{x^{2k}}{2^k k!}, \quad \Longrightarrow \quad \frac{e^x + e^{-x}}{2} \le e^{x^2/2}.$$

$$\|a\|^2 = 1 \text{ 이라 두고 위의 결과를 대입해보자}.$$

$$P\{\sum_{i=1}^{N}a_{i}X_{i}\geq t\}\leq e^{-\lambda t}(\prod_{i=1}^{N}e^{\lambda^{2}a_{i}^{2}/2})\leq e^{-\lambda t}(e^{\lambda^{2}\sum_{i=1}^{N}a_{i}^{2}/2})=e^{-\lambda t}(e^{\lambda^{2}/2})=e^{\lambda^{2}/2-\lambda t}.$$

위의 부등식은 모든 λ 에 대해 성립하고, $\lambda=t$ 일 때 최소화된다. 따라서

$$P\{\sum_{i=1}^{N} a_i X_i \ge t\} \le e^{-t^2/2}.$$

따라서, homogeneity에 의해 $\|a\|=1$ 을 가정하면 다음과 같다. $\|a\|$

$$P\{\sum_{i=1}^{N} \frac{a_i}{\|a\|} X_i \ge \frac{t}{\|a\|}\} \le e^{-\frac{t^2}{2\|a\|^2}}.$$

 X_i 가 1 또는 0을 갖는 베르누이 확률변수라고 할 때, $Y_i=2(X_i-rac{1}{2})$ 로 놓으면 Y_i 는 symmetric Seoncheol Park