3D Object Reconstruction and Visualization using Kinect and Cardboard

Paige Hinkle, Jon Lee, Siena McFetridge, Rohan Ramchand, Jaime Rivera (Group 7)

Objective and Key Results

- Create a 3D mesh of an object using Microsoft Kinect
 - Rotate the object using a lazy Susan
 - Create a 3D object from the Kinect's data

Objective and Key Results

Create a 3D mesh of a scene using

Microsoft Kinect

- Rotate the Kinect
- Create a 3D scene from the Kinect

Objective and Key Results

- Display the 3D mesh in Google Cardboard for virtual reality viewing
 - Use a web harness to display the object
 - Rotate mesh using phone movements

Results

Creating a Mesh

Using the Kinect

Object Rotation

Creating a Mesh

Mapping the Point Clouds together

Feature Matching

Iterative Closest Point

1 iteration 5 iterations 15 iterations

Creating a Mesh

The Final Product

Creating a Mesh

The Unexpected Product

Viewing on Cardboard

Setting up the Harness

Virtual Reality Offset

Viewing on Cardboard

Viewing a Point Cloud or Object

DEMO

Obstacles and Challenges

Linear Algebra

Quick Point Matching

Kinect 2.0

Small oversights can set you back

Documentation

Cardboard has limited documentation

Time

Not able to complete OKR 2

Questions?