

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
12 April 2001 (12.04.2001)

PCT

(10) International Publication Number
WO 01/24810 A1

(51) International Patent Classification⁷: A61K 38/08,
38/10, 38/16, 39/295, 39/21, C07K 7/00, 9/00, 14/155

MN 55902 (US). KUBO, Ralph, T. [US/US]; 6921 Pear
Tree Drive, Carlsbad, CA 92009 (US). GREY, Howard,
M. [US/US]; 1461 Caminito Batea, La Jolla, CA 92037
(US).

(21) International Application Number: PCT/US00/27766

(74) Agents: LOCKYER, Jean, M. et al.; Townsend and
Townsend and Crew LLP, Eighth Floor, Two Embarcadero
Center, San Francisco, CA 94111 (US).

(22) International Filing Date: 5 October 2000 (05.10.2000)

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(25) Filing Language: English

(84) Designated States (*regional*): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(26) Publication Language: English

Published:

(30) Priority Data:
09/412,863 5 October 1999 (05.10.1999) US

- With international search report.
- With amended claims.

(71) Applicant (*for all designated States except US*): EPIM-
MUNE INC. [US/US]; 5820 Nancy Ridge Drive, San
Diego, CA 92121 (US).

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): SETTE, Alessandro
[IT/US]; 5551 Linda Rosa Avenue, La Jolla, CA 92037
(US). SIDNEY, John [US/US]; 4218 Corte de la Siena,
San Diego, CA 92130 (US). SOUTHWOOD, Scott
[US/US]; 19679 Strathmore Drive, Santee, CA 92071
(US). LIVINGSTON, Brian, D. [US/US]; 13555 Chaco
Court, San Diego, CA 92129 (US). CHESNUT, Robert
[US/US]; 1473 Kings Cross Drive, Cardiff-by-the-Sea,
CA 92007 (US). BAKER, Denise, Marie [US/US]; 11575
Caminito LaBar #21, San Diego, CA 92126 (US). CELIS,
Esteban [US/US]; 3683 Wright Road S.W., Rochester,

WO 01/24810 A1

(54) Title: INDUCING CELLULAR IMMUNE RESPONSES TO HUMAN IMMUNODEFICIENCY VIRUS-1 USING PEPTIDE
AND NUCLEIC ACID COMPOSITIONS

(57) Abstract: This invention uses our knowledge of the mechanisms by which antigen is recognized by T cells to identify and pre-
pare human immunodeficiency virus (HIV) epitopes, and to develop epitope-based vaccines directed towards HIV. More specifically,
this application communicates our discovery of pharmaceutical compositions and methods of use in the prevention and treatment of
HIV infection.

5

**INDUCING CELLULAR IMMUNE RESPONSES TO HUMAN
IMMUNODEFICIENCY VIRUS-1 USING PEPTIDE AND NUCLEIC ACID
COMPOSITIONS**

10

CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims priority to U.S. Application No. 09/412,863 filed October 5, 1999, which is herein incorporated by reference.

15

FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT

This invention was funded, in part, by the United States government under grants with the National Institutes of Health. The U.S. government has certain rights in this invention.

INDEX

- 20 I. Background of the Invention
- II. Summary of the Invention
- III. Brief Description of the Figures
- IV. Detailed Description of the Invention
 - A. Definitions
 - 25 B. Stimulation of CTL and HTL responses
 - C. Binding Affinity of Peptide Epitopes for HLA Molecules
 - D. Peptide Epitope Binding Motifs and Supermotifs
 - 1. HLA-A1 supermotif
 - 2. HLA-A2 supermotif
 - 30 3. HLA-A3 supermotif
 - 4. HLA-A24 supermotif
 - 5. HLA-B7 supermotif
 - 6. HLA-B27 supermotif

7. HLA-B44 supermotif
8. HLA-B58 supermotif
9. HLA-B62 supermotif
10. HLA-A1 motif
- 5 11. HLA-A2.1 motif
12. HLA-A3 motif
13. HLA-A11 motif
14. HLA-A24 motif
15. HLA-DR-1-4-7 supermotif
- 10 16. HLA-DR3 motifs

E. Enhancing Population Coverage of the Vaccine

F. Immune Response-Stimulating Peptide Epitope Analogs

G. Computer Screening of Protein Sequences from Disease-Related Antigens for Supermotif- or Motif-Containing Epitopes

15 H. Preparation of Peptide Epitopes

I. Assays to Detect T-Cell Responses

J. Use of Peptide Epitopes for Evaluating Immune Responses

K. Vaccine Compositions

1. Minigene Vaccines
- 20 2. Combinations of CTL Peptides with Helper Peptides

L. Administration of Vaccines for Therapeutic or Prophylactic Purposes

M. Kits

V. Examples

VI. Claims

25 VII. Abstract

I. BACKGROUND OF THE INVENTION

Acquired immunodeficiency syndrome (AIDS) caused by infection with human immunodeficiency virus-1 (HIV-1) represents a major world health problem. Estimates indicate that about 16,000 people worldwide are infected with HIV each day.

The development of anti-viral drugs has been a major advancement in reducing viral loads in HIV infected patients. Highly active retroviral therapy (HAART) has been shown to reduce viremia to nearly undetectable levels. However, current drug therapies are not practicable as a long term solution to the HIV epidemic. HAART therapy is severely limited due to poor tolerance for the drugs and the emergence of drug-resistant virus. Moreover, replication competent HIV persists in the lymphoid tissue of patients who have responded to HAART, thus serving as a reservoir of virus. Lastly, current anti-retroviral drug therapies have little impact upon the global epidemic: almost 90% of the world's HIV infected population resides within countries lacking financial resources for these drugs. Thus, a need exists for an efficacious vaccine to both prevent and treat HIV infection.

Virus-specific, human leukocyte antigen (HLA) class I-restricted cytotoxic T lymphocytes (CTL) are known to play a major role in the prevention and clearance of virus infections *in vivo* (Oldstone *et al.*, *Nature* 321:239, 1989; Jamieson *et al.*, *J. Virol.* 61:3930, 1987; Yap *et al.*, *Nature* 273:238, 1978; Lukacher *et al.*, *J. Exp. Med.* 160:814, 1994; McMichael *et al.*, *N. Engl. J. Med.* 309:13, 1983; Sethi *et al.*, *J. Gen. Virol.* 64:443, 1983; Watari *et al.*, *J. Exp. Med.* 165:459, 1987; Yasukawa *et al.*, *J. Immunol.* 143:2051, 1989; Tigges *et al.*, *J. Virol.* 66:1622, 1993; Reddenhase *et al.*, *J. Virol.* 55:263, 1985; Quinnan *et al.*, *N. Engl. J. Med.* 307:6, 1982). HLA class I molecules are expressed on the surface of almost all nucleated cells. Following intracellular processing of antigens, epitopes from the antigens are presented as a complex with the HLA class I molecules on the surface of such cells. CTL recognize the peptide-HLA class I complex, which then results in the destruction of the cell bearing the HLA-peptide complex directly by the CTL and/or via the activation of non-destructive mechanisms *e.g.*, the production of interferon, that inhibit viral replication.

While immune correlates of protective immunity against HIV infection are not well defined, there is a growing body of evidence that suggests CTL are important in controlling HIV infection. HIV-specific CTL responses can be detected early in infection and the appearance of the responses corresponds to the time in infection at which initial viremia is reduced (Pantaleo *et al.*, *Nature* 370:463, 1994; Walker *et al.*, *Proc. Natl.*

Acad. Sci. 86:9514, 1989). In addition, HIV replication in infected lymphocytes can be inhibited by incubation with autologous CTL (see, e.g., Tsubota *et al.*, *J. Exp. Med.* 169:1421, 1989). These data are supported by recent studies that indicate CTL are required for controlling viral replication in a SIV/rhesus animal model (Schmitz *et al.*, 5 *Science* 283:857, 1999), and additionally supported by studies that demonstrate that CTL exert selective pressure on HIV populations as evidenced by the eventual predominance of viruses with amino acid replacements in those regions of the virus to which CTL responses are directed (see, e.g., Borrow *et al.*, *Nature Med.* 3:205-211, 1997; Price *et al.*, *Proc. Nat. Acad. Sci.* 94:12890-12895, 1997; Koenig *et al.*, *Nature Med.* 1:330-336, 1995; 10 and Haas *et al.*, *J. Immunol.* 157:4212-4221, 1996)

Virus-specific T helper lymphocytes are also known to be critical for maintaining effective immunity in chronic viral infections. Historically, HTL responses were viewed as primarily supporting the expansion of specific CTL and B cell populations; however, more recent data indicate that HTL may directly contribute to the control of virus 15 replication. For example, a decline in CD4⁺ T cells and a corresponding loss in HTL function characterize infection with HIV (Lane *et al.*, *New Engl. J. Med.* 313:79, 1985). Furthermore, studies in HIV infected patients have also shown that there is an inverse relationship between virus-specific HTL responses and viral load, suggesting that HTL play a role in viremia (see, e.g., Rosenberg *et al.*, *Science* 278:1447, 1997).

A fundamental challenge in the development of an efficacious HIV vaccine is the heterogeneity observed in HIV. The virus, like other retroviruses, rapidly mutates during replication resulting in the generation of virus that can escape anti-viral therapy and immune recognition (Borrow *et al.*, *Nature Med.* 3:205, 1997). In addition, HIV can be classified into a variety of subtypes that exhibit significant sequence divergence (see, e.g., 20 Lukashov *et al.*, *AIDS* 12:S43, 1998). In view of the heterogeneous nature of HIV, and the heterogeneous immune response observed with HIV infection, induction of a multi-specific cellular immune response directed simultaneously against multiple HIV epitopes 25 appears to be important for the development of an efficacious vaccine against HIV. There is a need to establish such vaccine embodiments which elicit immune responses of sufficient breadth and vigor to prevent and/or clear HIV infection.

The epitope approach, as we have described, may represent a solution to this challenge, in that it allows the incorporation of various antibody, CTL and HTL epitopes, from various proteins, in a single vaccine compositions. Such a composition may

simultaneously target multiple dominant and subdominant epitopes and thereby be used to achieve effective immunization in a diverse population.

The information provided in this section is intended to disclose the presently understood state of the art as of the filing date of the present application. Information is included in this section which was generated subsequent to the priority date of this application. Accordingly, information in this section is not intended, in any way, to delineate the priority date for the invention.

II. SUMMARY OF THE INVENTION

This invention applies our knowledge of the mechanisms by which antigen is recognized by T cells, for example, to develop epitope-based vaccines directed towards HIV. More specifically, this application communicates our discovery of specific epitope pharmaceutical compositions and methods of use in the prevention and treatment of HIV infection.

Upon development of appropriate technology, the use of epitope-based vaccines has several advantages over current vaccines, particularly when compared to the use of whole antigens in vaccine compositions. There is evidence that the immune response to whole antigens is directed largely toward variable regions of the antigen, allowing for immune escape due to mutations. The epitopes for inclusion in an epitope-based vaccine may be selected from conserved regions of viral or tumor-associated antigens, which thereby reduces the likelihood of escape mutants. Furthermore, immunosuppressive epitopes that may be present in whole antigens can be avoided with the use of epitope-based vaccines.

An additional advantage of an epitope-based vaccine approach is the ability to combine selected epitopes (CTL and HTL), and further, to modify the composition of the epitopes, achieving, for example, enhanced immunogenicity. Accordingly, the immune response can be modulated, as appropriate, for the target disease. Similar engineering of the response is not possible with traditional approaches.

Another major benefit of epitope-based immune-stimulating vaccines is their safety. The possible pathological side effects caused by infectious agents or whole protein antigens, which might have their own intrinsic biological activity, is eliminated.

An epitope-based vaccine also provides the ability to direct and focus an immune response to multiple selected antigens from the same pathogen. Thus, patient-by-patient variability in the immune response to a particular pathogen may be alleviated by inclusion

of epitopes from multiple antigens from the pathogen in a vaccine composition. In the case of HIV, epitopes derived from multiple strains may also be included. A "pathogen" may be an infectious agent or a tumor associated molecule.

One of the most formidable obstacles to the development of broadly efficacious epitope-based immunotherapeutics, however, has been the extreme polymorphism of HLA molecules. To date, effective non-genetically biased coverage of a population has been a task of considerable complexity; such coverage has required that epitopes be used that are specific for HLA molecules corresponding to each individual HLA allele. Impractically large numbers of epitopes would therefore have to be used in order to cover ethnically diverse populations. Thus, there has existed a need for peptide epitopes that are bound by multiple HLA antigen molecules for use in epitope-based vaccines. The greater the number of HLA antigen molecules bound, the greater the breadth of population coverage by the vaccine.

Furthermore, as described herein in greater detail, a need has existed to modulate peptide binding properties, *e.g.*, so that peptides that are able to bind to multiple HLA antigens do so with an affinity that will stimulate an immune response. Identification of epitopes restricted by more than one HLA allele at an affinity that correlates with immunogenicity is important to provide thorough population coverage, and to allow the elicitation of responses of sufficient vigor to prevent or clear an infection in a diverse segment of the population. Such a response can also target a broad array of epitopes. The technology disclosed herein provides for such favored immune responses.

In a preferred embodiment, epitopes for inclusion in vaccine compositions of the invention are selected by a process whereby protein sequences of known antigens are evaluated for the presence of motif or supermotif-bearing epitopes. Peptides corresponding to a motif- or supermotif-bearing epitope are then synthesized and tested for the ability to bind to the HLA molecule that recognizes the selected motif. Those peptides that bind at an intermediate or high affinity *i.e.*, an IC₅₀ (or a K_D value) of 500 nM or less for HLA class I molecules or an IC₅₀ of 1000 nM or less for HLA class II molecules, are further evaluated for their ability to induce a CTL or HTL response.

Immunogenic peptide epitopes are selected for inclusion in vaccine compositions.

Supermotif-bearing peptides may additionally be tested for the ability to bind to multiple alleles within the HLA supertype family. Moreover, peptide epitopes may be analogued to modify binding affinity and/or the ability to bind to multiple alleles within an HLA supertype.

The invention also includes embodiments comprising methods for monitoring or evaluating an immune response to HIV in a patient having a known HLA-type. Such methods comprise incubating a T lymphocyte sample from the patient with a peptide composition comprising an HIV epitope that has an amino acid sequence described in
5 Tables VII to Table XX which binds the product of at least one HLA allele present in the patient, and detecting for the presence of a T lymphocyte that binds to the peptide. A CTL peptide epitope may, for example, be used as a component of a tetrameric complex for this type of analysis.

An alternative modality for defining the peptide epitopes in accordance with the
10 invention is to recite the physical properties, such as length; primary structure; or charge, which are correlated with binding to a particular allele-specific HLA molecule or group of allele-specific HLA molecules. A further modality for defining peptide epitopes is to recite the physical properties of an HLA binding pocket, or properties shared by several allele-specific HLA binding pockets (e.g. pocket configuration and charge distribution)
15 and reciting that the peptide epitope fits and binds to the pocket or pockets.

As will be apparent from the discussion below, other methods and embodiments are also contemplated. Further, novel synthetic peptides produced by any of the methods described herein are also part of the invention.

20 III. BRIEF DESCRIPTION OF THE FIGURES

Figure 1: Figure 1 provides a graph of total frequency of genotypes as a function of the number of PF candidate epitopes bound by HLA-A and B molecules, in an average population.

Figure 2: Figure 2 illustrates the position of peptide epitopes in an experimental
25 model minigene construct.

IV. DETAILED DESCRIPTION OF THE INVENTION

The peptide epitopes and corresponding nucleic acid compositions of the present invention are useful for stimulating an immune response to HIV by stimulating the
30 production of CTL or HTL responses. The peptide epitopes, which are derived directly or indirectly from native HIV protein amino acid sequences, are able to bind to HLA molecules and stimulate an immune response to HIV. The complete sequence of the HIV proteins to be analyzed can be obtained from Genbank. Peptide epitopes and analogs thereof can also be readily determined from sequence information that may subsequently

be discovered for heretofore unknown variants of HIV, as will be clear from the disclosure provided below.

The peptide epitopes of the invention have been identified in a number of ways, as will be discussed below. Also discussed in greater detail is that analog peptides have
5 been derived and the binding activity for HLA molecules modulated by modifying specific amino acid residues to create peptide analogs exhibiting altered immunogenicity. Further, the present invention provides compositions and combinations of compositions that enable epitope-based vaccines that are capable of interacting with HLA molecules encoded by various genetic alleles to provide broader population coverage than prior
10 vaccines.

IV.A. Definitions

The invention can be better understood with reference to the following definitions, which are listed alphabetically:

15 A "computer" or "computer system" generally includes: a processor; at least one information storage/retrieval apparatus such as, for example, a hard drive, a disk drive or a tape drive; at least one input apparatus such as, for example, a keyboard, a mouse, a touch screen, or a microphone; and display structure. Additionally, the computer may include a communication channel in communication with a network. Such a computer
20 may include more or less than what is listed above.

A "construct" as used herein generally denotes a composition that does not occur in nature. A construct can be produced by synthetic technologies, e.g., recombinant DNA preparation and expression or chemical synthetic techniques for nucleic or amino acids. A construct can also be produced by the addition or affiliation of one material with
25 another such that the result is not found in nature in that form.

"Cross-reactive binding" indicates that a peptide is bound by more than one HLA molecule; a synonym is degenerate binding.

A "cryptic epitope" elicits a response by immunization with an isolated peptide, but the response is not cross-reactive *in vitro* when intact whole protein which comprises
30 the epitope is used as an antigen.

A "dominant epitope" is an epitope that induces an immune response upon immunization with a whole native antigen (see, e.g., Sercarz, *et al.*, *Annu. Rev. Immunol.* 11:729-766, 1993). Such a response is cross-reactive *in vitro* with an isolated peptide epitope.

With regard to a particular amino acid sequence, an "epitope" is a set of amino acid residues which is involved in recognition by a particular immunoglobulin, or in the context of T cells, those residues necessary for recognition by T cell receptor proteins and/or Major Histocompatibility Complex (MHC) receptors. In an immune system setting, *in vivo* or *in vitro*, an epitope is the collective features of a molecule, such as primary, secondary and tertiary peptide structure, and charge, that together form a site recognized by an immunoglobulin, T cell receptor or HLA molecule. Throughout this disclosure epitope and peptide are often used interchangeably. It is to be appreciated, however, that isolated or purified protein or peptide molecules larger than and comprising an epitope of the invention are still within the bounds of the invention.

It is to be appreciated that protein or peptide molecules that comprise an epitope of the invention as well as additional amino acid(s) are still within the bounds of the invention. In certain embodiments, there is a limitation on the length of a peptide of the invention which is not otherwise a construct. An embodiment that is length-limited occurs when the protein/peptide comprising an epitope of the invention comprises a region (i.e., a contiguous series of amino acids) having 100% identity with a native sequence. In order to avoid the definition of epitope from reading, e.g., on whole natural molecules, there is a limitation on the length of any region that has 100% identity with a native peptide sequence. Thus, for a peptide comprising an epitope of the invention and a region with 100% identity with a native peptide sequence (and is not otherwise a construct), the region with 100% identity to a native sequence generally has a length of: less than or equal to 600 amino acids, often less than or equal to 500 amino acids, often less than or equal to 400 amino acids, often less than or equal to 250 amino acids, often less than or equal to 100 amino acids, often less than or equal to 85 amino acids, often less than or equal to 75 amino acids, often less than or equal to 65 amino acids, and often less than or equal to 50 amino acids. In certain embodiments, an "epitope" of the invention is comprised by a peptide having a region with less than 51 amino acids that has 100% identity to a native peptide sequence, in any increment of (49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5) down to 5 amino acids.

Accordingly, peptide or protein sequences longer than 600 amino acids are within the scope of the invention, so long as they do not comprise any contiguous sequence of more than 600 amino acids that have 100% identity with a native peptide sequence, if they are not otherwise a construct. For any peptide that has five contiguous residues or

less than correspond to a native sequence, there is no limitation on the maximal length of that peptide in order to fall within the scope of the invention. It is presently preferred that a CTL epitope be less than 600 residues long in any increment down to eight amino acid residues.

5 "Human Leukocyte Antigen" or "HLA" is a human class I or class II Major Histocompatibility Complex (MHC) protein (*see, e.g.,* Stites, *et al.*, IMMUNOLOGY, 8TH ED., Lange Publishing, Los Altos, CA (1994).

An "HLA supertype or family", as used herein, describes sets of HLA molecules grouped on the basis of shared peptide-binding specificities. HLA class I molecules that 10 share somewhat similar binding affinity for peptides bearing certain amino acid motifs are grouped into HLA supertypes. The terms HLA superfamily, HLA supertype family, HLA family, and HLA xx-like molecules (where xx denotes a particular HLA type), are synonyms.

Throughout this disclosure, results are expressed in terms of "IC₅₀'s." IC₅₀ is the 15 concentration of peptide in a binding assay at which 50% inhibition of binding of a reference peptide is observed. Given the conditions in which the assays are run (*i.e.*, limiting HLA proteins and labeled peptide concentrations), these values approximate K_D values. Assays for determining binding are described in detail, *e.g.*, in PCT publications WO 94/20127 and WO 94/03205. It should be noted that IC₅₀ values can change, often 20 dramatically, if the assay conditions are varied, and depending on the particular reagents used (*e.g.*, HLA preparation, *etc.*). For example, excessive concentrations of HLA molecules will increase the apparent measured IC₅₀ of a given ligand.

Alternatively, binding is expressed relative to a reference peptide. Although as a 25 particular assay becomes more, or less, sensitive, the IC₅₀'s of the peptides tested may change somewhat, the binding relative to the reference peptide will not significantly change. For example, in an assay run under conditions such that the IC₅₀ of the reference peptide increases 10-fold, the IC₅₀ values of the test peptides will also shift approximately 10-fold. Therefore, to avoid ambiguities, the assessment of whether a peptide is a good, intermediate, weak, or negative binder is generally based on its IC₅₀, relative to the IC₅₀ 30 of a standard peptide.

Binding may also be determined using other assay systems including those using: live cells (*e.g.*, Cappellini *et al.*, *Nature* 339:392, 1989; Christnick *et al.*, *Nature* 352:67, 1991; Busch *et al.*, *Int. Immunol.* 2:443, 1990; Hill *et al.*, *J. Immunol.* 147:189, 1991; del Guercio *et al.*, *J. Immunol.* 154:685, 1995), cell free systems using detergent lysates (*e.g.*,

Cerundolo *et al.*, *J. Immunol.* 21:2069, 1991), immobilized purified MHC (e.g., Hill *et al.*, *J. Immunol.* 152, 2890, 1994; Marshall *et al.*, *J. Immunol.* 152:4946, 1994), ELISA systems (e.g., Reay *et al.*, *EMBO J.* 11:2829, 1992), surface plasmon resonance (e.g., Khilko *et al.*, *J. Biol. Chem.* 268:15425, 1993); high flux soluble phase assays (Hammer 5 *et al.*, *J. Exp. Med.* 180:2353, 1994), and measurement of class I MHC stabilization or assembly (e.g., Ljunggren *et al.*, *Nature* 346:476, 1990; Schumacher *et al.*, *Cell* 62:563, 1990; Townsend *et al.*, *Cell* 62:285, 1990; Parker *et al.*, *J. Immunol.* 149:1896, 1992).

As used herein, "high affinity" with respect to HLA class I molecules is defined as binding with an IC_{50} , or K_D value, of 50 nM or less; "intermediate affinity" is binding with an IC_{50} or K_D value of between about 50 and about 500 nM. "High affinity" with respect to binding to HLA class II molecules is defined as binding with an IC_{50} or K_D value of 100 nM or less; "intermediate affinity" is binding with an IC_{50} or K_D value of between about 100 and about 1000 nM.

The terms "identical" or percent "identity," in the context of two or more peptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues that are the same, when compared and aligned for maximum correspondence over a comparison window, as measured using a sequence comparison algorithm or by manual alignment and visual inspection.

An "immunogenic peptide" or "peptide epitope" is a peptide that comprises an allele-specific motif or supermotif such that the peptide will bind an HLA molecule and induce a CTL and/or HTL response. Thus, immunogenic peptides of the invention are capable of binding to an appropriate HLA molecule and thereafter inducing a cytotoxic T cell response, or a helper T cell response, to the antigen from which the immunogenic peptide is derived.

The phrases "isolated" or "biologically pure" refer to material which is substantially or essentially free from components which normally accompany the material as it is found in its native state. Thus, isolated peptides in accordance with the invention preferably do not contain materials normally associated with the peptides in their *in situ* environment.

"Link" or "join" refers to any method known in the art for functionally connecting peptides, including, without limitation, recombinant fusion, covalent bonding, disulfide bonding, ionic bonding, hydrogen bonding, and electrostatic bonding.

"Major Histocompatibility Complex" or "MHC" is a cluster of genes that plays a role in control of the cellular interactions responsible for physiologic immune responses.

In humans, the MHC complex is also known as the HLA complex. For a detailed description of the MHC and HLA complexes, see, Paul, FUNDAMENTAL IMMUNOLOGY, 3RD ED., Raven Press, New York, 1993.

The term "motif" refers to the pattern of residues in a peptide of defined length, 5 usually a peptide of from about 8 to about 13 amino acids for a class I HLA motif and from about 6 to about 25 amino acids for a class II HLA motif, which is recognized by a particular HLA molecule. Peptide motifs are typically different for each protein encoded by each human HLA allele and differ in the pattern of the primary and secondary anchor residues.

10 A "negative binding residue" or "deleterious residue" is an amino acid which, if present at certain positions (typically not primary anchor positions) in a peptide epitope, results in decreased binding affinity of the peptide for the peptide's corresponding HLA molecule.

A "non-native" sequence or "construct" refers to a sequence that is not found in 15 nature, *i.e.*, is "non-naturally occurring". Such sequences include, *e.g.*, peptides that are lipidated or otherwise modified, and polyepitopic compositions that contain epitopes that are not contiguous in a native protein sequence.

The term "peptide" is used interchangeably with "oligopeptide" in the present specification to designate a series of residues, typically L-amino acids, connected one to 20 the other, typically by peptide bonds between the α -amino and carboxyl groups of adjacent amino acids. The preferred CTL-inducing peptides of the invention are 13 residues or less in length and usually consist of between about 8 and about 11 residues, preferably 9 or 10 residues. The preferred HTL-inducing oligopeptides are less than about 50 residues in length and usually consist of between about 6 and about 30 residues, 25 more usually between about 12 and 25, and often between about 15 and 20 residues.

"Pharmaceutically acceptable" refers to a generally non-toxic, inert, and/or physiologically compatible composition.

A "primary anchor residue" is an amino acid at a specific position along a peptide sequence which is understood to provide a contact point between the immunogenic 30 peptide and the HLA molecule. One to three, usually two, primary anchor residues within a peptide of defined length generally defines a "motif" for an immunogenic peptide. These residues are understood to fit in close contact with peptide binding grooves of an HLA molecule, with their side chains buried in specific pockets of the binding grooves themselves. In one embodiment, for example, the primary anchor

residues are located at position 2 (from the amino terminal position) and at the carboxyl terminal position of a 9-residue peptide epitope in accordance with the invention. The primary anchor positions for each motif and supermotif are set forth in Table 1. For example, analog peptides can be created by altering the presence or absence of particular residues in these primary anchor positions. Such analogs are used to modulate the binding affinity of a peptide comprising a particular motif or supermotif.

5 "Promiscuous recognition" is where a distinct peptide is recognized by the same T cell clone in the context of various HLA molecules. Promiscuous recognition or binding is synonymous with cross-reactive binding.

10 A "protective immune response" or "therapeutic immune response" refers to a CTL and/or an HTL response to an antigen derived from an infectious agent or a tumor antigen, which prevents or at least partially arrests disease symptoms or progression. The immune response may also include an antibody response which has been facilitated by the stimulation of helper T cells.

15 The term "residue" refers to an amino acid or amino acid mimetic incorporated into an oligopeptide by an amide bond or amide bond mimetic.

20 A "secondary anchor residue" is an amino acid at a position other than a primary anchor position in a peptide which may influence peptide binding. A secondary anchor residue occurs at a significantly higher frequency amongst bound peptides than would be expected by random distribution of amino acids at one position. The secondary anchor residues are said to occur at "secondary anchor positions." A secondary anchor residue can be identified as a residue which is present at a higher frequency among high or intermediate affinity binding peptides, or a residue otherwise associated with high or intermediate affinity binding. For example, analog peptides can be created by altering the 25 presence or absence of particular residues in these secondary anchor positions. Such analogs are used to finely modulate the binding affinity of a peptide comprising a particular motif or supermotif.

30 A "subdominant epitope" is an epitope which evokes little or no response upon immunization with whole antigens which comprise the epitope, but for which a response can be obtained by immunization with an isolated peptide, and this response (unlike the case of cryptic epitopes) is detected when whole protein is used to recall the response *in vitro* or *in vivo*.

A "supermotif" is a peptide binding specificity shared by HLA molecules encoded by two or more HLA alleles. Preferably, a supermotif-bearing peptide is recognized with high or intermediate affinity (as defined herein) by two or more HLA antigens.

"Synthetic peptide" refers to a peptide that is man-made using such methods as
5 chemical synthesis or recombinant DNA technology.

As used herein, a "vaccine" is a composition that contains one or more peptides of the invention. There are numerous embodiments of vaccines in accordance with the invention, such as by a cocktail of one or more peptides; one or more epitopes of the invention comprised by a polyepitopic peptide; or nucleic acids that encode such peptides
10 or polypeptides, e.g., a minigene that encodes a polyepitopic peptide. The "one or more peptides" can include any whole unit integer from 1-150, e.g., at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115,
15 120, 125, 130, 135, 140, 145, or 150 or more peptides of the invention. The peptides or polypeptides can optionally be modified, such as by lipidation, addition of targeting or other sequences. HLA class I-binding peptides of the invention can be admixed with, or linked to, HLA class II-binding peptides, to facilitate activation of both cytotoxic T lymphocytes and helper T lymphocytes. Vaccines can also comprise peptide-pulsed antigen presenting cells, e.g., dendritic cells.

20 The nomenclature used to describe peptide compounds follows the conventional practice wherein the amino group is presented to the left (the N-terminus) and the carboxyl group to the right (the C-terminus) of each amino acid residue. When amino acid residue positions are referred to in a peptide epitope they are numbered in an amino to carboxyl direction with position one being the position closest to the amino terminal
25 end of the epitope, or the peptide or protein of which it may be a part. In the formulae representing selected specific embodiments of the present invention, the amino- and carboxyl-terminal groups, although not specifically shown, are in the form they would assume at physiologic pH values, unless otherwise specified. In the amino acid structure formulae, each residue is generally represented by standard three letter or single letter designations. The L-form of an amino acid residue is represented by a capital single letter or a capital first letter of a three-letter symbol, and the D-form for those amino acids having D-forms is represented by a lower case single letter or a lower case three letter symbol. Glycine has no asymmetric carbon atom and is simply referred to as "Gly" or G.
30 Symbols for the amino acids are shown below.

Single Letter Symbol	Three Letter Symbol	Amino Acids
A	Ala	Alanine
C	Cys	Cysteine
D	Asp	Aspartic Acid
E	Glu	Glutamic Acid
F	Phe	Phenylalanine
G	Gly	Glycine
H	His	Histidine
I	Ile	Isoleucine
K	Lys	Lysine
L	Leu	Leucine
M	Met	Methionine
N	Asn	Asparagine
P	Pro	Proline
Q	Gln	Glutamine
R	Arg	Arginine
S	Ser	Serine
T	Thr	Threonine
V	Val	Valine
W	Trp	Tryptophan
Y	Tyr	Tyrosine

IV.B. Stimulation of CTL and HTL responses

5 The mechanism by which T cells recognize antigens has been delineated during
 the past ten years. Based on our understanding of the immune system we have developed
 efficacious peptide epitope vaccine compositions that can induce a therapeutic or
 prophylactic immune response to HIV in a broad population. For an understanding of the
 value and efficacy of the claimed compositions, a brief review of immunology-related
 10 technology is provided.

 A complex of an HLA molecule and a peptidic antigen acts as the ligand
 recognized by HLA-restricted T cells (Buus, S. *et al.*, *Cell* 47:1071, 1986; Babbitt, B. P.

et al., *Nature* 317:359, 1985; Townsend, A. and Bodmer, H., *Annu. Rev. Immunol.* 7:601, 1989; Germain, R. N., *Annu. Rev. Immunol.* 11:403, 1993). Through the study of single amino acid substituted antigen analogs and the sequencing of endogenously bound, naturally processed peptides, critical residues that correspond to motifs required for specific binding to HLA antigen molecules have been identified and are described herein and are set forth in Tables I, II, and III (see also, e.g., Southwood, et al., *J. Immunol.* 160:3363, 1998; Rammensee, et al., *Immunogenetics* 41:178, 1995; Rammensee et al., SYFPEITHI, access via web at : <http://134.2.96.221/scripts.hlaserver.dll/home.htm>; Sette, A. and Sidney, J. *Curr. Opin. Immunol.* 10:478, 1998; Engelhard, V. H., *Curr. Opin. Immunol.* 6:13, 1994; Sette, A. and Grey, H. M., *Curr. Opin. Immunol.* 4:79, 1992; Sinigaglia, F. and Hammer, J. *Curr. Biol.* 6:52, 1994; Ruppert et al., *Cell* 74:929-937, 1993; Kondo et al., *J. Immunol.* 155:4307-4312, 1995; Sidney et al., *J. Immunol.* 157:3480-3490, 1996; Sidney et al., *Human Immunol.* 45:79-93, 1996; Sette, A. and Sidney, J. *Immunogenetics*, in press, 1999).

Furthermore, x-ray crystallographic analysis of HLA-peptide complexes has revealed pockets within the peptide binding cleft of HLA molecules which accommodate, in an allele-specific mode, residues borne by peptide ligands; these residues in turn determine the HLA binding capacity of the peptides in which they are present. (See, e.g., Madden, D.R. *Annu. Rev. Immunol.* 13:587, 1995; Smith, et al., *Immunity* 4:203, 1996; Fremont et al., *Immunity* 8:305, 1998; Stern et al., *Structure* 2:245, 1994; Jones, E.Y. *Curr. Opin. Immunol.* 9:75, 1997; Brown, J. H. et al., *Nature* 364:33, 1993; Guo, H. C. et al., *Proc. Natl. Acad. Sci. USA* 90:8053, 1993; Guo, H. C. et al., *Nature* 360:364, 1992; Silver, M. L. et al., *Nature* 360:367, 1992; Matsumura, M. et al., *Science* 257:927, 1992; Madden et al., *Cell* 70:1035, 1992; Fremont, D. H. et al., *Science* 257:919, 1992; Saper, M. A. , Bjorkman, P. J. and Wiley, D. C., *J. Mol. Biol.* 219:277, 1991.)

Accordingly, the definition of class I and class II allele-specific HLA binding motifs, or class I or class II supermotifs allows identification of regions within a protein that have the potential of binding particular HLA antigen(s).

The present inventors have found that the correlation of binding affinity with immunogenicity, which is disclosed herein, is an important factor to be considered when evaluating candidate peptides. Thus, by a combination of motif searches and HLA-peptide binding assays, candidates for epitope-based vaccines have been identified. After determining their binding affinity, additional confirmatory work can be performed to

select, amongst these vaccine candidates, epitopes with preferred characteristics in terms, of population coverage, antigenicity, and immunogenicity.

Various strategies can be utilized to evaluate immunogenicity, including:

- 1) Evaluation of primary T cell cultures from normal individuals (*see, e.g.,* Wentworth, P. A. *et al.*, *Mol. Immunol.* 32:603, 1995; Celis, E. *et al.*, *Proc. Natl. Acad. Sci. USA* 91:2105, 1994; Tsai, V. *et al.*, *J. Immunol.* 158:1796, 1997; Kawashima, I. *et al.*, *Human Immunol.* 59:1, 1998); This procedure involves the stimulation of peripheral blood lymphocytes (PBL) from normal subjects with a test peptide in the presence of antigen presenting cells *in vitro* over a period of several weeks. T cells specific for the peptide become activated during this time and are detected using, *e.g.*, a ^{51}Cr -release assay involving peptide sensitized target cells.
- 2) Immunization of HLA transgenic mice (*see, e.g.,* Wentworth, P. A. *et al.*, *J. Immunol.* 26:97, 1996; Wentworth, P. A. *et al.*, *Int. Immunol.* 8:651, 1996; Alexander, J. *et al.*, *J. Immunol.* 159:4753, 1997); In this method, peptides in incomplete Freund's adjuvant are administered subcutaneously to HLA transgenic mice. Several weeks following immunization, splenocytes are removed and cultured *in vitro* in the presence of test peptide for approximately one week. Peptide-specific T cells are detected using, *e.g.*, a ^{51}Cr -release assay involving peptide sensitized target cells and target cells expressing endogenously generated antigen.
- 3) Demonstration of recall T cell responses from immune individuals who have effectively been vaccinated, recovered from infection, and/or from chronically infected patients (*see, e.g.,* Rehermann, B. *et al.*, *J. Exp. Med.* 181:1047, 1995; Doolan, D. L. *et al.*, *Immunity* 7:97, 1997; Bertoni, R. *et al.*, *J. Clin. Invest.* 100:503, 1997; Threlkeld, S. C. *et al.*, *J. Immunol.* 159:1648, 1997; Diepolder, H. M. *et al.*, *J. Virol.* 71:6011, 1997); In applying this strategy, recall responses are detected by culturing PBL from subjects that have been naturally exposed to the antigen, for instance through infection, and thus have generated an immune response "naturally", or from patients who were vaccinated against the infection. PBL from subjects are cultured *in vitro* for 1-2 weeks in the presence of test peptide plus antigen presenting cells (APC) to allow activation of "memory" T cells, as compared to "naive" T cells. At the end of the culture period, T cell activity is detected using assays for T cell activity including ^{51}Cr release involving peptide-sensitized targets, T cell proliferation, or lymphokine release.

The following describes the peptide epitopes and corresponding nucleic acids of the invention.

IV.C. Binding Affinity of Peptide Epitopes for HLA Molecules

5 As indicated herein, the large degree of HLA polymorphism is an important factor to be taken into account with the epitope-based approach to vaccine development. To address this factor, epitope selection encompassing identification of peptides capable of binding at high or intermediate affinity to multiple HLA molecules is preferably utilized, most preferably these epitopes bind at high or intermediate affinity to two or more allele-specific HLA molecules.

10 CTL-inducing peptides of interest for vaccine compositions preferably include those that have an IC₅₀ or binding affinity value for class I HLA molecules of 500 nM or better (*i.e.*, the value is ≤ 500 nM). HTL-inducing peptides preferably include those that have an IC₅₀ or binding affinity value for class II HLA molecules of 1000 nM or better, (i.e., the value is ≤ 1,000 nM). For example, peptide binding is assessed by testing the capacity of a candidate peptide to bind to a purified HLA molecule *in vitro*. Peptides exhibiting high or intermediate affinity are then considered for further analysis. Selected peptides are tested on other members of the supertype family. In preferred embodiments, peptides that exhibit cross-reactive binding are then used in cellular screening analyses or 15 vaccines.

20 As disclosed herein, higher HLA binding affinity is correlated with greater immunogenicity. Greater immunogenicity can be manifested in several different ways. Immunogenicity corresponds to whether an immune response is elicited at all, and to the vigor of any particular response, as well as to the extent of a population in which a 25 response is elicited. For example, a peptide might elicit an immune response in a diverse array of the population, yet in no instance produce a vigorous response. In accordance with these principles, close to 90% of high binding peptides have been found to be immunogenic, as contrasted with about 50% of the peptides which bind with intermediate affinity. Moreover, higher binding affinity peptides lead to more vigorous immunogenic 30 responses. As a result, less peptide is required to elicit a similar biological effect if a high affinity binding peptide is used. Thus, in preferred embodiments of the invention, high affinity binding epitopes are particularly useful.

The relationship between binding affinity for HLA class I molecules and immunogenicity of discrete peptide epitopes on bound antigens has been determined for the first time in the art by the present inventors. The correlation between binding affinity and immunogenicity was analyzed in two different experimental approaches (*see, e.g.*, 5 Sette, *et al.*, *J. Immunol.* 153:5586-5592, 1994). In the first approach, the immunogenicity of potential epitopes ranging in HLA binding affinity over a 10,000-fold range was analyzed in HLA-A*0201 transgenic mice. In the second approach, the antigenicity of approximately 100 different hepatitis B virus (HBV)-derived potential epitopes, all carrying A*0201 binding motifs, was assessed by using PBL from acute 10 hepatitis patients. Pursuant to these approaches, it was determined that an affinity threshold value of approximately 500 nM (preferably 50 nM or less) determines the capacity of a peptide epitope to elicit a CTL response. These data are true for class I binding affinity measurements for naturally processed peptides and for synthesized T cell epitopes. These data also indicate the important role of determinant selection in the 15 shaping of T cell responses (*see, e.g.*, Schaeffer *et al.* *Proc. Natl. Acad. Sci. USA* 86:4649-4653, 1989).

An affinity threshold associated with immunogenicity in the context of HLA class II DR molecules has also been delineated (*see, e.g.*, Southwood *et al.* *J. Immunology* 160:3363-3373, 1998, and co-pending U.S.S.N. 09/009,953 filed 1/21/98). In order to 20 define a biologically significant threshold of DR binding affinity, a database of the binding affinities of 32 DR-restricted epitopes for their restricting element (*i.e.*, the HLA molecule that binds the motif) was compiled. In approximately half of the cases (15 of 32 epitopes), DR restriction was associated with high binding affinities, *i.e.* binding affinity values of 100 nM or less. In the other half of the cases (16 of 32), DR restriction was 25 associated with intermediate affinity (binding affinity values in the 100-1000 nM range). In only one of 32 cases was DR restriction associated with an IC₅₀ of 1000 nM or greater. Thus, 1000 nM can be defined as an affinity threshold associated with immunogenicity in the context of DR molecules.

The binding affinity of peptides for HLA molecules can be determined as 30 described in Example 1, below.

IV.D. Peptide Epitope Binding Motifs and Supermotifs

Through the study of single amino acid substituted antigen analogs and the sequencing of endogenously bound, naturally processed peptides, critical residues

required for allele-specific binding to HLA molecules have been identified. The presence of these residues correlates with binding affinity for HLA molecules. The identification of motifs and/or supermotifs that correlate with high and intermediate affinity binding is an important issue with respect to the identification of immunogenic peptide epitopes for 5 the inclusion in a vaccine. Kast *et al.* (*J. Immunol.* 152:3904-3912, 1994) have shown that motif-bearing peptides account for 90% of the epitopes that bind to allele-specific HLA class I molecules. In this study all possible peptides of 9 amino acids in length and overlapping by eight amino acids (240 peptides), which cover the entire sequence of the E6 and E7 proteins of human papillomavirus type 16, were evaluated for binding to five 10 allele-specific HLA molecules that are expressed at high frequency among different ethnic groups. This unbiased set of peptides allowed an evaluation of the predictive value of HLA class I motifs. From the set of 240 peptides, 22 peptides were identified that bound to an allele-specific HLA molecule with high or intermediate affinity. Of these 22 peptides, 20 (*i.e.* 91%) were motif-bearing. Thus, this study demonstrates the value of 15 motifs for the identification of peptide epitopes for inclusion in a vaccine: application of motif-based identification techniques will identify about 90% of the potential epitopes in a target antigen protein sequence.

Such peptide epitopes are identified in the Tables described below.

Peptides of the present invention may also comprise epitopes that bind to MHC 20 class II DR molecules. A greater degree of heterogeneity in both size and binding frame position of the motif, relative to the N and C termini of the peptide, exists for class II peptide ligands. This increased heterogeneity of HLA class II peptide ligands is due to the structure of the binding groove of the HLA class II molecule which, unlike its class I counterpart, is open at both ends. Crystallographic analysis of HLA class II DRB*0101- 25 peptide complexes showed that the major energy of binding is contributed by peptide residues complexed with complementary pockets on the DRB*0101 molecules. An important anchor residue engages the deepest hydrophobic pocket (*see, e.g.*, Madden, D.R. *Ann. Rev. Immunol.* 13:587, 1995) and is referred to as position 1 (P1). P1 may represent the N-terminal residue of a class II binding peptide epitope, but more typically 30 is flanked towards the N-terminus by one or more residues. Other studies have also pointed to an important role for the peptide residue in the 6th position towards the C-terminus, relative to P1, for binding to various DR molecules.

In the past few years evidence has accumulated to demonstrate that a large fraction of HLA class I and class II molecules can be classified into a relatively few

supertypes, each characterized by largely overlapping peptide binding repertoires, and consensus structures of the main peptide binding pockets. Thus, peptides of the present invention are identified by any one of several HLA-specific amino acid motifs (*see, e.g.*, Tables I-III), or if the presence of the motif corresponds to the ability to bind several 5 allele-specific HLA antigens, a supermotif. The HLA molecules that bind to peptides that possess a particular amino acid supermotif are collectively referred to as an HLA “supertype.”

The peptide motifs and supermotifs described below, and summarized in Tables I-III, provide guidance for the identification and use of peptide epitopes in accordance with 10 the invention.

Examples of peptide epitopes bearing a respective supermotif or motif are included in Tables as designated in the description of each motif or supermotif below. The Tables include a binding affinity ratio listing for some of the peptide epitopes. The ratio may be converted to IC₅₀ by using the following formula: IC₅₀ of the standard 15 peptide/ratio = IC₅₀ of the test peptide (*i.e.*, the peptide epitope). The IC₅₀ values of standard peptides used to determine binding affinities for Class I peptides are shown in Table IV. The IC₅₀ values of standard peptides used to determine binding affinities for Class II peptides are shown in Table V. The peptides used as standards for the binding assays described herein are examples of standards; alternative standard peptides can also 20 be used when performing binding studies.

To obtain the peptide epitope sequences listed in each Table, protein sequence data for all of the HIV-1 isolates present in the 1999 Los Alamos database (<http://hiv-web.lanl.gov>) were evaluated for the presence of the designated supermotif or motif. A listing of the strains is provided in Table XXVI. Nine HIV-1 structural and regulatory 25 proteins, gag, pol, env, nef, rev, tat, vif, vpr, and vpu, were included in the analysis. Peptide epitopes were additionally evaluated on the basis of their conservancy (*i.e.*, the amount of variance) among the available protein sequences for each HIV antigen. A criterion for conservancy used to generate the peptides set out in Tables VII-XX requires that the entire sequence of an HLA class I binding peptide be totally conserved in 15% of 30 the sequences available for a specific HIV antigen. Similarly, a criterion for conservancy requires that the entire 9-mer core region of an HLA class II binding peptide be totally conserved in 15% of the sequences available for a specific protein. The percent conservancy of the selected peptide epitopes is indicated on the Tables. The frequency, *i.e.* the number of sequences of the HIV protein antigen in which the totally conserved

peptide sequence was identified, is also shown. The "pos" (position) column in the Tables designates the amino acid position in the HIV protein that corresponds to the first amino acid residue of the epitope. The "number of amino acids" indicates the number of residues in the epitope sequence.

5

HLA Class I Motifs Indicative of CTL Inducing Peptide Epitopes:

The primary anchor residues of the HLA class I peptide epitope supermotifs and motifs delineated below are summarized in Table I. The HLA class I motifs set out in Table I(a) are those most particularly relevant to the invention claimed here. Primary and secondary anchor positions are summarized in Table II. Allele-specific HLA molecules that comprise HLA class I supertype families are listed in Table VI. In some cases, peptide epitopes may be listed in both a motif and a supermotif Table. The relationship of a particular motif and respective supermotif is indicated in the description of the individual motifs.

15

IV.D.1. HLA-A1 supermotif

The HLA-A1 supermotif is characterized by the presence in peptide ligands of a small (T or S) or hydrophobic (L, I, V, or M) primary anchor residue in position 2, and an aromatic (Y, F, or W) primary anchor residue at the C-terminal position of the epitope. 20 The corresponding family of HLA molecules that bind to the A1 supermotif (*i.e.*, the HLA-A1 supertype) is comprised of at least A*0101, A*2601, A*2602, A*2501, and A*3201 (*see, e.g.*, DiBrino, M. *et al.*, *J. Immunol.* 151:5930, 1993; DiBrino, M. *et al.*, *J. Immunol.* 152:620, 1994; Kondo, A. *et al.*, *Immunogenetics* 45:249, 1997). Other allele-specific HLA molecules predicted to be members of the A1 superfamily are shown in 25 Table VI. Peptides binding to each of the individual HLA proteins can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.

Representative peptide epitopes that comprise the A1 supermotif are set forth in 30 Table VII.

IV.D.2. HLA-A2 supermotif

Primary anchor specificities for allele-specific HLA-A2.1 molecules (*see, e.g.*, Falk *et al.*, *Nature* 351:290-296, 1991; Hunt *et al.*, *Science* 255:1261-1263, 1992; Parker *et al.*, *J. Immunol.* 149:3580-3587, 1992; Ruppert *et al.*, *Cell* 74:929-937, 1993) and

cross-reactive binding among HLA-A2 and -A28 molecules have been described. (See, e.g., Fruci *et al.*, *Human Immunol.* 38:187-192, 1993; Tanigaki *et al.*, *Human Immunol.* 39:155-162, 1994; Del Guercio *et al.*, *J. Immunol.* 154:685-693, 1995; Kast *et al.*, *J. Immunol.* 152:3904-3912, 1994 for reviews of relevant data.) These primary anchor residues define the HLA-A2 supermotif; which presence in peptide ligands corresponds to the ability to bind several different HLA-A2 and -A28 molecules. The HLA-A2 supermotif comprises peptide ligands with L, I, V, M, A, T, or Q as a primary anchor residue at position 2 and L, I, V, M, A, or T as a primary anchor residue at the C-terminal position of the epitope.

The corresponding family of HLA molecules (*i.e.*, the HLA-A2 supertype that binds these peptides) is comprised of at least: A*0201, A*0202, A*0203, A*0204, A*0205, A*0206, A*0207, A*0209, A*0214, A*6802, and A*6901. Other allele-specific HLA molecules predicted to be members of the A2 superfamily are shown in Table VI. As explained in detail below, binding to each of the individual allele-specific HLA molecules can be modulated by substitutions at the primary anchor and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.

Representative peptide epitopes that comprise an A2 supermotif are set forth in Table VIII. The motifs comprising the primary anchor residues V, A, T, or Q at position 2 and L, I, V, A, or T at the C-terminal position are those most particularly relevant to the invention claimed herein.

IV.D.3. HLA-A3 supermotif

The HLA-A3 supermotif is characterized by the presence in peptide ligands of A, L, I, V, M, S, or, T as a primary anchor at position 2, and a positively charged residue, R or K, at the C-terminal position of the epitope, *e.g.*, in position 9 of 9-mers (*see, e.g.*, Sidney *et al.*, *Hum. Immunol.* 45:79, 1996). Exemplary members of the corresponding family of HLA molecules (the HLA-A3 supertype) that bind the A3 supermotif include at least A*0301, A*1101, A*3101, A*3301, and A*6801. Other allele-specific HLA molecules predicted to be members of the A3 supertype are shown in Table VI. As explained in detail below, peptide binding to each of the individual allele-specific HLA proteins can be modulated by substitutions of amino acids at the primary and/or secondary anchor positions of the peptide, preferably choosing respective residues specified for the supermotif.

Representative peptide epitopes that comprise the A3 supermotif are set forth in Table IX.

IV.D.4. HLA-A24 supermotif

5 The HLA-A24 supermotif is characterized by the presence in peptide ligands of an aromatic (F, W, or Y) or hydrophobic aliphatic (L, I, V, M, or T) residue as a primary anchor in position 2, and Y, F, W, L, I, or M as primary anchor at the C-terminal position of the epitope (see, e.g., Sette and Sidney, *Immunogenetics*, in press, 1999). The corresponding family of HLA molecules that bind to the A24 supermotif (*i.e.*, the A24 supertype) includes at least A*2402, A*3001, and A*2301. Other allele-specific HLA molecules predicted to be members of the A24 supertype are shown in Table VI. Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.

10 Representative peptide epitopes that comprise the A24 supermotif are set forth in Table X.

IV.D.5. HLA-B7 supermotif

15 The HLA-B7 supermotif is characterized by peptides bearing proline in position 2 as a primary anchor, and a hydrophobic or aliphatic amino acid (L, I, V, M, A, F, W, or Y) as the primary anchor at the C-terminal position of the epitope. The corresponding family of HLA molecules that bind the B7 supermotif (*i.e.*, the HLA-B7 supertype) is comprised of at least twenty six HLA-B proteins including: B*0702, B*0703, B*0704, B*0705, B*1508, B*3501, B*3502, B*3503, B*3504, B*3505, B*3506, B*3507, B*3508, B*5101, B*5102, B*5103, B*5104, B*5105, B*5301, B*5401, B*5501, B*5502, B*5601, B*5602, B*6701, and B*7801 (see, e.g., Sidney, *et al.*, *J. Immunol.* 154:247, 1995; Barber, *et al.*, *Curr. Biol.* 5:179, 1995; Hill, *et al.*, *Nature* 360:434, 1992; Rammensee, *et al.*, *Immunogenetics* 41:178, 1995 for reviews of relevant data). Other allele-specific HLA molecules predicted to be members of the B7 supertype are shown in Table VI. As explained in detail below, peptide binding to each of the individual allele-specific HLA proteins can be modulated by substitutions at the primary and/or secondary anchor positions of the peptide, preferably choosing respective residues specified for the supermotif.

Representative peptide epitopes that comprise the B7 supermotif are set forth in Table XI.

IV.D.6. HLA-B27 supermotif

The HLA-B27 supermotif is characterized by the presence in peptide ligands of a positively charged (R, H, or K) residue as a primary anchor at position 2, and a hydrophobic (F, Y, L, W, M, I, A, or V) residue as a primary anchor at the C-terminal position of the epitope (see, e.g., Sidney and Sette, *Immunogenetics*, in press, 1999). Exemplary members of the corresponding family of HLA molecules that bind to the B27 supermotif (*i.e.*, the B27 supertype) include at least B*1401, B*1402, B*1509, B*2702, B*2703, B*2704, B*2705, B*2706, B*3801, B*3901, B*3902, and B*7301. Other allele-specific HLA molecules predicted to be members of the B27 supertype are shown in Table VI. Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.

Representative peptide epitopes that comprise the B27 supermotif are set forth on Table XII.

IV.D.7. HLA-B44 supermotif

The HLA-B44 supermotif is characterized by the presence in peptide ligands of negatively charged (D or E) residues as a primary anchor in position 2, and hydrophobic residues (F, W, Y, L, I, M, V, or A) as a primary anchor at the C-terminal position of the epitope (see, e.g., Sidney et al., *Immunol. Today* 17:261, 1996). Exemplary members of the corresponding family of HLA molecules that bind to the B44 supermotif (*i.e.*, the B44 supertype) include at least: B*1801, B*1802, B*3701, B*4001, B*4002, B*4006, B*4402, B*4403, and B*4006. Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary and/or secondary anchor positions; preferably choosing respective residues specified for the supermotif.

IV.D.8. HLA-B58 supermotif

The HLA-B58 supermotif is characterized by the presence in peptide ligands of a small aliphatic residue (A, S, or T) as a primary anchor residue at position 2, and an aromatic or hydrophobic residue (F, W, Y, L, I, V, M, or A) as a primary anchor residue at the C-terminal position of the epitope (see, e.g., Sidney and Sette, *Immunogenetics*, in

press, 1999 for reviews of relevant data). Exemplary members of the corresponding family of HLA molecules that bind to the B58 supermotif (*i.e.*, the B58 supertype) include at least: B*1516, B*1517, B*5701, B*5702, and B*5801. Other allele-specific HLA molecules predicted to be members of the B58 supertype are shown in Table VI.

5 Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.

Representative peptide epitopes that comprise the B58 supermotif are set forth on Table XIII.

10

IV.D.9. HLA-B62 supermotif

The HLA-B62 supermotif is characterized by the presence in peptide ligands of the polar aliphatic residue Q or a hydrophobic aliphatic residue (L, V, M, I, or P) as a primary anchor in position 2, and a hydrophobic residue (F, W, Y, M, I, V, L, or A) as a primary anchor at the C-terminal position of the epitope (*see, e.g.*, Sidney and Sette, *Immunogenetics*, in press, 1999). Exemplary members of the corresponding family of HLA molecules that bind to the B62 supermotif (*i.e.*, the B62 supertype) include at least: B*1501, B*1502, B*1513, and B5201. Other allele-specific HLA molecules predicted to be members of the B62 supertype are shown in Table VI. Peptide binding to each of the 15 allele-specific HLA molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.

20

Representative peptide epitopes that comprise the B62 supermotif are set forth on Table XIV.

25

IV.D.10. HLA-A1 motif

The HLA-A1 motif is characterized by the presence in peptide ligands of T, S, or M as a primary anchor residue at position 2 and the presence of Y as a primary anchor residue at the C-terminal position of the epitope. An alternative allele-specific A1 motif 30 is characterized by a primary anchor residue at position 3 rather than position 2. This motif is characterized by the presence of D, E, A, or S as a primary anchor residue in position 3, and a Y as a primary anchor residue at the C-terminal position of the epitope (*see, e.g.*, DiBrino *et al.*, *J. Immunol.*, 152:620, 1994; Kondo *et al.*, *Immunogenetics* 45:249, 1997; and Kubo *et al.*, *J. Immunol.* 152:3913, 1994 for reviews of relevant data).

Peptide binding to HLA A1 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.

Representative peptide epitopes that comprise either A1 motif are set forth on 5 Table XV. Those epitopes comprising T, S, or M at position 2 and Y at the C-terminal position are also included in the listing of HLA-A1 supermotif-bearing peptide epitopes listed in Table VII, as these residues are a subset of the A1 supermotif primary anchors.

IV.D.11. HLA-A*0201 motif

An HLA-A2*0201 motif was determined to be characterized by the presence in 10 peptide ligands of L or M as a primary anchor residue in position 2, and L or V as a primary anchor residue at the C-terminal position of a 9-residue peptide (*see, e.g., Falk et al., Nature* 351:290-296, 1991) and was further found to comprise an I at position 2 and I or A at the C-terminal position of a nine amino acid peptide (*see, e.g., Hunt et al., Science* 15 255:1261-1263, March 6, 1992; Parker *et al.*, *J. Immunol.* 149:3580-3587, 1992). The A*0201 allele-specific motif has also been defined by the present inventors to additionally comprise V, A, T, or Q as a primary anchor residue at position 2, and M or T as a primary anchor residue at the C-terminal position of the epitope (*see, e.g., Kast et al., J. Immunol.* 152:3904-3912, 1994). Thus, the HLA-A*0201 motif comprises peptide 20 ligands with L, I, V, M, A, T, or Q as primary anchor residues at position 2 and L, I, V, M, A, or T as a primary anchor residue at the C-terminal position of the epitope. The preferred and tolerated residues that characterize the primary anchor positions of the HLA-A*0201 motif are identical to the residues describing the A2 supermotif. (For reviews of relevant data, *see, e.g., Del Guercio et al., J. Immunol.* 154:685-693, 1995; 25 Ruppert *et al., Cell* 74:929-937, 1993; Sidney *et al., Immunol. Today* 17:261-266, 1996; Sette and Sidney, *Curr. Opin. in Immunol.* 10:478-482, 1998). Secondary anchor residues that characterize the A*0201 motif have additionally been defined (*see, e.g., Ruppert et al., Cell* 74:929-937, 1993). These are shown in Table II. Peptide binding to 30 HLA-A*0201 molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.

Representative peptide epitopes that comprise an A*0201 motif are set forth on Table VIII. The A*0201 motifs comprising the primary anchor residues V, A, T, or Q at position 2 and L, I, V, A, or T at the C-terminal position are those most particularly relevant to the invention claimed herein.

IV.D.12. HLA-A3 motif

The HLA-A3 motif is characterized by the presence in peptide ligands of L, M, V, I, S, A, T, F, C, G, or D as a primary anchor residue at position 2, and the presence of K, 5 Y, R, H, F, or A as a primary anchor residue at the C-terminal position of the epitope (see, e.g., DiBrino *et al.*, *Proc. Natl. Acad. Sci USA* 90:1508, 1993; and Kubo *et al.*, *J. Immunol.* 152:3913-3924, 1994). Peptide binding to HLA-A3 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.

10 Representative peptide epitopes that comprise the A3 motif are set forth on Table XVI. Those peptide epitopes that also comprise the A3 supermotif are also listed in Table IX. The A3 supermotif primary anchor residues comprise a subset of the A3- and A11-allele specific motif primary anchor residues.

15 IV.D.13. HLA-A11 motif

The HLA-A11 motif is characterized by the presence in peptide ligands of V, T, M, L, I, S, A, G, N, C, D, or F as a primary anchor residue in position 2, and K, R, Y, or H as a primary anchor residue at the C-terminal position of the epitope (see, e.g., Zhang *et al.*, *Proc. Natl. Acad. Sci USA* 90:2217-2221, 1993; and Kubo *et al.*, *J. Immunol.* 152:3913-3924, 1994). Peptide binding to HLA-A11 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.

20 Representative peptide epitopes that comprise the A11 motif are set forth on Table XVII; peptide epitopes comprising the A3 allele-specific motif are also present in this 25 Table because of the extensive overlap between the A3 and A11 motif primary anchor specificities. Further, those peptide epitopes that comprise the A3 supermotif are also listed in Table IX.

IV.D.14. HLA-A24 motif

30 The HLA-A24 motif is characterized by the presence in peptide ligands of Y, F, W, or M as a primary anchor residue in position 2, and F, L, I, or W as a primary anchor residue at the C-terminal position of the epitope (see, e.g., Kondo *et al.*, *J. Immunol.* 155:4307-4312, 1995; and Kubo *et al.*, *J. Immunol.* 152:3913-3924, 1994). Peptide binding to HLA-A24 molecules can be modulated by substitutions at primary and/or

secondary anchor positions; preferably choosing respective residues specified for the motif.

Representative peptide epitopes that comprise the A24 motif are set forth on Table XVIII. These epitopes are also listed in Table X, which sets forth HLA-A24-supermotif-bearing peptide epitopes, as the primary anchor residues characterizing the A24 allele-specific motif comprise a subset of the A24 supermotif primary anchor residues.

Motifs Indicative of Class II HTL Inducing Peptide Epitopes

The primary and secondary anchor residues of the HLA class II peptide epitope 10 supermotifs and motifs delineated below are summarized in Table III.

IV.D.15. HLA DR-1-4-7 supermotif

Motifs have also been identified for peptides that bind to three common HLA class II allele-specific HLA molecules: HLA DRB1*0401, DRB1*0101, and DRB1*0701 15 (see, e.g., the review by Southwood *et al.* *J. Immunology* 160:3363-3373, 1998). Collectively, the common residues from these motifs delineate the HLA DR-1-4-7 supermotif. Peptides that bind to these DR molecules carry a supermotif characterized by a large aromatic or hydrophobic residue (Y, F, W, L, I, V, or M) as a primary anchor residue in position 1, and a small, non-charged residue (S, T, C, A, P, V, I, L, or M) as a 20 primary anchor residue in position 6 of a 9-mer core region. Allele-specific secondary effects and secondary anchors for each of these HLA types have also been identified (Southwood *et al.*, *supra*). These are set forth in Table III. Peptide binding to HLA-DRB1*0401, DRB1*0101, and/or DRB1*0701 can be modulated by substitutions at 25 primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.

Conserved 9-mer core regions (*i.e.*, sequences that are 100% conserved in at least 15% of the HIV antigen protein sequences used for the analysis), comprising the DR-1-4-7 supermotif, wherein position 1 of the supermotif is at position 1 of the nine-residue core, are set forth in Table XIXa. Respective exemplary peptide epitopes of 15 amino acid residues in length, each of which comprise a conserved nine residue core, are also 30 shown in section "a" of the Table. Cross-reactive binding data for exemplary 15-residue supermotif-bearing peptides are shown in Table XIXb.

IV.D.16. HLA DR3 motifs

Two alternative motifs (*i.e.*, submotifs) characterize peptide epitopes that bind to HLA-DR3 molecules (see, e.g., Geluk *et al.*, *J. Immunol.* 152:5742, 1994). In the first motif (submotif DR3A) a large, hydrophobic residue (L, I, V, M, F, or Y) is present in

5 anchor position 1 of a 9-mer core, and D is present as an anchor at position 4, towards the carboxyl terminus of the epitope. As in other class II motifs, core position 1 may or may not occupy the peptide N-terminal position.

The alternative DR3 submotif provides for lack of the large, hydrophobic residue at anchor position 1, and/or lack of the negatively charged or amide-like anchor residue at 10 position 4, by the presence of a positive charge at position 6 towards the carboxyl terminus of the epitope. Thus, for the alternative allele-specific DR3 motif (submotif DR3B): L, I, V, M, F, Y, A, or Y is present at anchor position 1; D, N, Q, E, S, or T is present at anchor position 4; and K, R, or H is present at anchor position 6. Peptide binding to HLA-DR3 can be modulated by substitutions at primary and/or secondary 15 anchor positions, preferably choosing respective residues specified for the motif.

Conserved 9-mer core regions (*i.e.*, those sequences that are 100% conserved in at least 15% of the HIV antigen protein sequences used for the analysis) corresponding to a nine residue sequence comprising the DR3A submotif (wherein position 1 of the motif is at position 1 of the nine residue core) are set forth in Table XXa. Respective exemplary 20 peptide epitopes of 15 amino acid residues in length, each of which comprise a conserved nine residue core, are also shown in Table XXa. Table XXb shows binding data of exemplary DR3 submotif A-bearing peptides.

Conserved 9-mer core regions (*i.e.*, those that are 100% conserved in at least 15% of the HIV antigen protein sequences used for the analysis) comprising the DR3B 25 submotif and respective exemplary 15-mer peptides comprising the DR3 submotif-B epitope are set forth in Table XXc. Table XXd shows binding data of exemplary DR3 submotif B-bearing peptides.

Each of the HLA class I or class II peptide epitopes set out in the Tables herein are deemed singly to be an inventive aspect of this application. Further, it is also an 30 inventive aspect of this application that each peptide epitope may be used in combination with any other peptide epitope.

IV.E. Enhancing Population Coverage of the Vaccine

Vaccines that have broad population coverage are preferred because they are more commercially viable and generally applicable to the most people. Broad population coverage can be obtained using the peptides of the invention (and nucleic acid compositions that encode such peptides) through selecting peptide epitopes that bind to HLA alleles which, when considered in total, are present in most of the population. Table XXI lists the overall frequencies of the HLA class I supertypes in various ethnicities (Table XXIa) and the combined population coverage achieved by the A2-, A3-, and B7-supertypes (Table XXIb). The A2-, A3-, and B7 supertypes are each present on the average of over 40% in each of these five major ethnic groups. Coverage in excess of 80% is achieved with a combination of these supermotifs. These results suggest that effective and non-ethnically biased population coverage is achieved upon use of a limited number of cross-reactive peptides. Although the population coverage reached with these three main peptide specificities is high, coverage can be expanded to reach 95% population coverage and above, and more easily achieve truly multispecific responses upon use of additional supermotif or allele-specific motif bearing peptides.

The B44-, A1-, and A24-supertypes are each present, on average, in a range from 25% to 40% in these major ethnic populations (Table XXIa). While less prevalent overall, the B27-, B58-, and B62 supertypes are each present with a frequency >25% in at least one major ethnic group (Table XXIa). Table XXIb summarizes the estimated prevalence of combinations of HLA supertypes that have been identified in five major ethnic groups. The incremental coverage obtained by the inclusion of A1-, A24-, and B44-supertypes to the A2, A3, and B7 coverage and coverage obtained with all of the supertypes described herein, is shown.

The data presented herein, together with the previous definition of the A2-, A3-, and B7-supertypes, indicates that all antigens, with the possible exception of A29, B8, and B46, can be classified into a total of nine HLA supertypes. By including epitopes from the six most frequent supertypes, an average population coverage of 99% is obtained for five major ethnic groups..

30

IV.F. Immune Response-Stimulating Peptide Analogs

In general, CTL and HTL responses are not directed against all possible epitopes. Rather, they are restricted to a few "immunodominant" determinants (Zinkernagel, *et al.*, *Adv. Immunol.* 27:5159, 1979; Bennink, *et al.*, *J. Exp. Med.* 168:19351939, 1988; Rawle,

et al., *J. Immunol.* 146:3977-3984, 1991). It has been recognized that immunodominance (Benacerraf, *et al.*, *Science* 175:273-279, 1972) could be explained by either the ability of a given epitope to selectively bind a particular HLA protein (determinant selection theory) (Vitiello, *et al.*, *J. Immunol.* 131:1635, 1983); Rosenthal, *et al.*, *Nature* 267:156-5 158, 1977), or to be selectively recognized by the existing TCR (T cell receptor) specificities (repertoire theory) (Klein, J., IMMUNOLOGY, THE SCIENCE OF SELFNONSELF DISCRIMINATION, John Wiley & Sons, New York, pp. 270-310, 1982). It has been demonstrated that additional factors, mostly linked to processing events, can also play a key role in dictating, beyond strict immunogenicity, which of the many potential 10 determinants will be presented as immunodominant (Sercarz, *et al.*, *Annu. Rev. Immunol.* 11:729-766, 1993).

The concept of dominance and subdominance is relevant to immunotherapy of both infectious diseases and cancer. For example, in the course of chronic viral disease, recruitment of subdominant epitopes can be important for successful clearance of the 15 infection, especially if dominant CTL or HTL specificities have been inactivated by functional tolerance, suppression, mutation of viruses and other mechanisms (Franco, *et al.*, *Curr. Opin. Immunol.* 7:524-531, 1995). In the case of cancer and tumor antigens, CTLs recognizing at least some of the highest binding affinity peptides might be functionally inactivated. Lower binding affinity peptides are preferentially recognized at 20 these times, and may therefore be preferred in therapeutic or prophylactic anti-cancer vaccines.

In particular, it has been noted that a significant number of epitopes derived from known non-viral tumor associated antigens (TAA) bind HLA class I with intermediate affinity (IC_{50} in the 50-500 nM range). For example, it has been found that 8 of 15 25 known TAA peptides recognized by tumor infiltrating lymphocytes (TIL) or CTL bound in the 50-500 nM range. (These data are in contrast with estimates that 90% of known viral antigens were bound by HLA class I molecules with IC_{50} of 50 nM or less, while only approximately 10% bound in the 50-500 nM range (Sette, *et al.*, *J. Immunol.*, 153:558-5592, 1994). In the cancer setting this phenomenon is probably due to 30 elimination or functional inhibition of the CTL recognizing several of the highest binding peptides, presumably because of T cell tolerization events.

Without intending to be bound by theory, it is believed that because T cells to dominant epitopes may have been clonally deleted, selecting subdominant epitopes may allow existing T cells to be recruited, which will then lead to a therapeutic or prophylactic

response. However, the binding of HLA molecules to subdominant epitopes is often less vigorous than to dominant ones. Accordingly, there is a need to be able to modulate the binding affinity of particular immunogenic epitopes for one or more HLA molecules, and thereby to modulate the immune response elicited by the peptide, for example to prepare 5 analog peptides which elicit a more vigorous response. This ability would greatly enhance the usefulness of peptide epitope-based vaccines and therapeutic agents.

Although peptides with suitable cross-reactivity among all alleles of a superfamily are identified by the screening procedures described above, cross-reactivity is not always as complete as possible, and in certain cases procedures to increase cross-reactivity of 10 peptides can be useful; moreover, such procedures can also be used to modify other properties of the peptides such as binding affinity or peptide stability. Having established the general rules that govern cross-reactivity of peptides for HLA alleles within a given motif or supermotif, modification (*i.e.*, analoging) of the structure of peptides of particular interest in order to achieve broader (or otherwise modified) HLA binding 15 capacity can be performed. More specifically, peptides which exhibit the broadest cross-reactivity patterns, can be produced in accordance with the teachings herein. The present concepts related to analog generation are set forth in greater detail in co-pending U.S.S.N. 09/226,775 filed 1/6/99.

In brief, the strategy employed utilizes the motifs or supermotifs which correlate 20 with binding to certain HLA molecules. The motifs or supermotifs are defined by having primary anchors, and in many cases secondary anchors. Analog peptides can be created by substituting amino acid residues at primary anchor, secondary anchor, or at primary and secondary anchor positions. Generally, analogs are made for peptides that already bear a motif or supermotif. Preferred secondary anchor residues of supermotifs and 25 motifs that have been defined for HLA class I and class II binding peptides are shown in Tables II and III, respectively.

For a number of the motifs or supermotifs in accordance with the invention, residues are defined which are deleterious to binding to allele-specific HLA molecules or members of HLA supertypes that bind the respective motif or supermotif (Tables II and 30 III). Accordingly, removal of such residues that are detrimental to binding can be performed in accordance with the present invention. For example, in the case of the A3 supertype, when all peptides that have such deleterious residues are removed from the population of peptides used in the analysis, the incidence of cross-reactivity increased from 22% to 37% (*see, e.g.*, Sidney, J. *et al.*, *Hu. Immunol.* 45:79, 1996). Thus, one

strategy to improve the cross-reactivity of peptides within a given supermotif is simply to delete one or more of the deleterious residues present within a peptide and substitute a small "neutral" residue such as Ala (that may not influence T cell recognition of the peptide). An enhanced likelihood of cross-reactivity is expected if, together with 5 elimination of detrimental residues within a peptide, "preferred" residues associated with high affinity binding to an allele-specific HLA molecule or to multiple HLA molecules within a superfamily are inserted.

To ensure that an analog peptide, when used as a vaccine, actually elicits a CTL response to the native epitope *in vivo* (or, in the case of class II epitopes, elicits helper T 10 cells that cross-react with the wild type peptides), the analog peptide may be used to immunize T cells *in vitro* from individuals of the appropriate HLA allele. Thereafter, the immunized cells' capacity to induce lysis of wild type peptide sensitized target cells is evaluated. It will be desirable to use as antigen presenting cells, cells that have been either infected, or transfected with the appropriate genes, or, in the case of class II 15 epitopes only, cells that have been pulsed with whole protein antigens, to establish whether endogenously produced antigen is also recognized by the relevant T cells.

Another embodiment of the invention is to create analogs of weak binding peptides, to thereby ensure adequate numbers of cross-reactive cellular binders. Class I binding peptides exhibiting binding affinities of 500-5000 nM, and carrying an acceptable 20 but suboptimal primary anchor residue at one or both positions can be "fixed" by substituting preferred anchor residues in accordance with the respective supertype. The analog peptides can then be tested for crossbinding activity.

Another embodiment for generating effective peptide analogs involves the substitution of residues that have an adverse impact on peptide stability or solubility in, 25 e.g., a liquid environment. This substitution may occur at any position of the peptide epitope. For example, a cysteine (C) can be substituted out in favor of α -amino butyric acid. Due to its chemical nature, cysteine has the propensity to form disulfide bridges and sufficiently alter the peptide structurally so as to reduce binding capacity. Substituting α -amino butyric acid for C not only alleviates this problem, but actually improves binding 30 and crossbinding capability in certain instances (*see, e.g.*, the review by Sette *et al.*, In: Persistent Viral Infections, Eds. R. Ahmed and I. Chen, John Wiley & Sons, England, 1999). Substitution of cysteine with α -amino butyric acid may occur at any residue of a peptide epitope, *i.e.* at either anchor or non-anchor positions.

IV.G. Computer Screening of Protein Sequences from Disease-Related Antigens for Supermotif- or Motif-Bearing Peptides

In order to identify supermotif- or motif-bearing epitopes in a target antigen, a native protein sequence, e.g., a tumor-associated antigen, or sequences from an infectious organism, or a donor tissue for transplantation, is screened using a means for computing, such as an intellectual calculation or a computer, to determine the presence of a supermotif or motif within the sequence. The information obtained from the analysis of native peptide can be used directly to evaluate the status of the native peptide or may be utilized subsequently to generate the peptide epitope.

Computer programs that allow the rapid screening of protein sequences for the occurrence of the subject supermotifs or motifs are encompassed by the present invention; as are programs that permit the generation of analog peptides. These programs are implemented to analyze any identified amino acid sequence or operate on an unknown sequence and simultaneously determine the sequence and identify motif-bearing epitopes thereof; analogs can be simultaneously determined as well. Generally, the identified sequences will be from a pathogenic organism or a tumor-associated peptide. For example, the target molecules considered herein include, without limitation, the gag, pol, env, nef, rev, tat, vif, vpr, and vpu proteins of HIV.

In cases where the sequence of multiple variants of the same target protein are available, potential peptide epitopes can also be selected on the basis of their conservancy. For example, a criterion for conservancy may define that the entire sequence of an HLA class I binding peptide or the entire 9-mer core of a class II binding peptide, be conserved in a designated percentage, of the sequences evaluated for a specific protein antigen.

Because HIV rapidly mutates thereby resulting in the generation of virus strains that have divergent amino acid sequences, an alternative method of selecting epitopes for inclusion in a vaccine composition is employed herein. In order to target a broad population that may be infected with a number of different strains, it is preferable to include in vaccine compositions epitopes that are representative of HIV antigen sequences from different HIV strains. For example, by selecting 5 epitopes from the same region, each of which is 20% conserved among HIV strains, the combination of the epitopes achieves 100% coverage of that region. As appreciated by those in the art, lower or higher degrees of conservancy, such as the 15% conservancy used for identification of

the epitopes set out in Tables VII-XX, can be employed as appropriate for a given antigenic target.

It is important that the selection criteria utilized for prediction of peptide binding are as accurate as possible, to correlate most efficiently with actual binding. Prediction of peptides that bind, for example, to HLA-A*0201, on the basis of the presence of the appropriate primary anchors, is positive at about a 30% rate (see, e.g., Ruppert, J. *et al.* *Cell* 74:929, 1993). However, by extensively analyzing peptide-HLA binding data disclosed herein, data in related patent applications, and data in the art, the present inventors have developed a number of allele-specific polynomial algorithms that dramatically increase the predictive value over identification on the basis of the presence of primary anchor residues alone. These algorithms take into account not only the presence or absence of primary anchors, but also consider the positive or deleterious presence of secondary anchor residues (to account for the impact of different amino acids at different positions). The algorithms are essentially based on the premise that the overall affinity (or ΔG) of peptide-HLA interactions can be approximated as a linear polynomial function of the type:

$$\Delta G = a_{1i} \times a_{2i} \times a_{3i} \dots \times a_{ni}$$

where a_{ji} is a coefficient that represents the effect of the presence of a given amino acid (j) at a given position (i) along the sequence of a peptide of n amino acids. An important assumption of this method is that the effects at each position are essentially independent of each other. This assumption is justified by studies that demonstrated that peptides are bound to HLA molecules and recognized by T cells in essentially an extended conformation. Derivation of specific algorithm coefficients has been described, for example, in Gulukota, K. *et al.*, *J. Mol. Biol.* 267:1258, 1997.

Additional methods to identify preferred peptide sequences, which also make use of specific motifs, include the use of neural networks and molecular modeling programs (see, e.g., Milik *et al.*, *Nature Biotechnology* 16:753, 1998; Altuvia *et al.*, *Hum. Immunol.* 58:1, 1997; Altuvia *et al.*, *J. Mol. Biol.* 249:244, 1995; Buus, S. *Curr. Opin. Immunol.* 11:209-213, 1999; Brusic, V. *et al.*, *Bioinformatics* 14:121-130, 1998; Parker *et al.*, *J. Immunol.* 152:163, 1993; Meister *et al.*, *Vaccine* 13:581, 1995; Hammer *et al.*, *J. Exp. Med.* 180:2353, 1994; Sturniolo *et al.*, *Nature Biotechnol.* 17:555 1999).

For example, it has been shown that in sets of A*0201 motif-bearing peptides containing at least one preferred secondary anchor residue while avoiding the presence of

any deleterious secondary anchor residues, 69% of the peptides will bind A*0201 with an IC₅₀ less than 500 nM (Ruppert, J. et al. *Cell* 74:929, 1993). These algorithms are also flexible in that cut-off scores may be adjusted to select sets of peptides with greater or lower predicted binding properties, as desired.

5 In utilizing computer screening to identify peptide epitopes, a protein sequence or translated sequence may be analyzed using software developed to search for motifs, for example the "FINDPATTERNS" program (Devereux, et al. *Nucl. Acids Res.* 12:387-395, 1984) or MotifSearch 1.4 software program (D. Brown, San Diego, CA) to identify potential peptide sequences containing appropriate HLA binding motifs. The identified 10 peptides can be scored using customized polynomial algorithms to predict their capacity to bind specific HLA class I or class II alleles. As appreciated by one of ordinary skill in the art, a large array of computer programming software and hardware options are available in the relevant art which can be employed to implement the motifs of the invention in order to evaluate (e.g., without limitation, to identify epitopes, identify 15 epitope concentration per peptide length, or to generate analogs) known or unknown peptide sequences.

In accordance with the procedures described above, HIV peptide epitopes and analogs thereof that are able to bind HLA supertype groups or allele-specific HLA molecules have been identified (Tables VII-XX).

20

IV.H. Preparation of Peptide Epitopes

Peptides in accordance with the invention can be prepared synthetically, by recombinant DNA technology or chemical synthesis, or from natural sources such as native tumors or pathogenic organisms. Peptide epitopes may be synthesized individually 25 or as polyepitopic peptides. Although the peptide will preferably be substantially free of other naturally occurring host cell proteins and fragments thereof, in some embodiments the peptides may be synthetically conjugated to native fragments or particles.

The peptides in accordance with the invention can be a variety of lengths, and either in their neutral (uncharged) forms or in forms which are salts. The peptides in 30 accordance with the invention are either free of modifications such as glycosylation, side chain oxidation, or phosphorylation; or they contain these modifications, subject to the condition that modifications do not destroy the biological activity of the peptides as described herein.

When possible, it may be desirable to optimize HLA class I binding peptide epitopes of the invention to a length of about 8 to about 13 amino acid residues, preferably 9 to 10. HLA class II binding peptide epitopes may be optimized to a length of about 6 to about 30 amino acids in length, preferably to between about 13 and about 20 residues. Preferably, the peptide epitopes are commensurate in size with endogenously processed pathogen-derived peptides or tumor cell peptides that are bound to the relevant HLA molecules.

In alternative embodiments, epitopes of the invention can be linked as a polyepitopic peptide, or as a minigene that encodes a polyepitopic peptide.

In another embodiment, it is preferred to identify native peptide regions that contain a high concentration of class I and/or class II epitopes. Such a sequence is generally selected on the basis that it contains the greatest number of epitopes per amino acid length. It is to be appreciated that epitopes can be present in a nested or overlapping manner, e.g. a 10 amino acid long peptide could contain two 9 amino acid long epitopes and one 10 amino acid long epitope; upon intracellular processing, each epitope can be exposed and bound by an HLA molecule upon administration of such a peptide. This larger, preferably multi-epitopic, peptide can be generated synthetically, recombinantly, or via cleavage from the native source.

The peptides of the invention can be prepared in a wide variety of ways. For the preferred relatively short size, the peptides can be synthesized in solution or on a solid support in accordance with conventional techniques. Various automatic synthesizers are commercially available and can be used in accordance with known protocols. (See, for example, Stewart & Young, SOLID PHASE PEPTIDE SYNTHESIS, 2D. ED., Pierce Chemical Co., 1984). Further, individual peptide epitopes can be joined using chemical ligation to produce larger peptides that are still within the bounds of the invention.

Alternatively, recombinant DNA technology can be employed wherein a nucleotide sequence which encodes an immunogenic peptide of interest is inserted into an expression vector, transformed or transfected into an appropriate host cell and cultivated under conditions suitable for expression. These procedures are generally known in the art, as described generally in Sambrook *et al.*, MOLECULAR CLONING, A LABORATORY MANUAL, Cold Spring Harbor Press, Cold Spring Harbor, New York (1989). Thus, recombinant polypeptides which comprise one or more peptide sequences of the invention can be used to present the appropriate T cell epitope.

The nucleotide coding sequence for peptide epitopes of the preferred lengths contemplated herein can be synthesized by chemical techniques, for example, the phosphotriester method of Matteucci, *et al.*, *J. Am. Chem. Soc.* 103:3185 (1981). Peptide analogs can be made simply by substituting the appropriate and desired nucleic acid base(s) for those that encode the native peptide sequence; exemplary nucleic acid substitutions are those that encode an amino acid defined by the motifs/supermotifs herein. The coding sequence can then be provided with appropriate linkers and ligated into expression vectors commonly available in the art, and the vectors used to transform suitable hosts to produce the desired fusion protein. A number of such vectors and suitable host systems are now available. For expression of the fusion proteins, the coding sequence will be provided with operably linked start and stop codons, promoter and terminator regions and usually a replication system to provide an expression vector for expression in the desired cellular host. For example, promoter sequences compatible with bacterial hosts are provided in plasmids containing convenient restriction sites for insertion of the desired coding sequence. The resulting expression vectors are transformed into suitable bacterial hosts. Of course, yeast, insect or mammalian cell hosts may also be used, employing suitable vectors and control sequences.

IV.I. Assays to Detect T-Cell Responses

Once HLA binding peptides are identified, they can be tested for the ability to elicit a T-cell response. The preparation and evaluation of motif-bearing peptides are described in PCT publications WO 94/20127 and WO 94/03205. Briefly, peptides comprising epitopes from a particular antigen are synthesized and tested for their ability to bind to the appropriate HLA proteins. These assays may involve evaluating the binding of a peptide of the invention to purified HLA class I molecules in relation to the binding of a radioiodinated reference peptide. Alternatively, cells expressing empty class I molecules (*i.e.* lacking peptide therein) may be evaluated for peptide binding by immunofluorescent staining and flow microfluorimetry. Other assays that may be used to evaluate peptide binding include peptide-dependent class I assembly assays and/or the inhibition of CTL recognition by peptide competition. Those peptides that bind to the class I molecule, typically with an affinity of 500 nM or less, are further evaluated for their ability to serve as targets for CTLs derived from infected or immunized individuals, as well as for their capacity to induce primary *in vitro* or *in vivo* CTL responses that can give rise to CTL populations capable of reacting with selected target cells associated with

a disease. Corresponding assays are used for evaluation of HLA class II binding peptides. HLA class II motif-bearing peptides that are shown to bind, typically at an affinity of 1000 nM or less, are further evaluated for the ability to stimulate HTL responses.

Conventional assays utilized to detect T cell responses include proliferation assays, lymphokine secretion assays, direct cytotoxicity assays, and limiting dilution assays. For example, antigen-presenting cells that have been incubated with a peptide can be assayed for the ability to induce CTL responses in responder cell populations. Antigen-presenting cells can be normal cells such as peripheral blood mononuclear cells or dendritic cells. Alternatively, mutant non-human mammalian cell lines that are 10 deficient in their ability to load class I molecules with internally processed peptides and that have been transfected with the appropriate human class I gene, may be used to test for the capacity of the peptide to induce *in vitro* primary CTL responses.

Peripheral blood mononuclear cells (PBMCs) may be used as the responder cell source of CTL precursors. The appropriate antigen-presenting cells are incubated with 15 peptide, after which the peptide-loaded antigen-presenting cells are then incubated with the responder cell population under optimized culture conditions. Positive CTL activation can be determined by assaying the culture for the presence of CTLs that kill radio-labeled target cells, both specific peptide-pulsed targets as well as target cells expressing endogenously processed forms of the antigen from which the peptide sequence 20 was derived.

More recently, a method has been devised which allows direct quantification of antigen-specific T cells by staining with Fluorescein-labelled HLA tetrameric complexes (Altman, J. D. *et al.*, *Proc. Natl. Acad. Sci. USA* 90:10330, 1993; Altman, J. D. *et al.*, *Science* 274:94, 1996). Other relatively recent technical developments include staining 25 for intracellular lymphokines, and interferon release assays or ELISPOT assays. Tetramer staining, intracellular lymphokine staining and ELISPOT assays all appear to be at least 10-fold more sensitive than more conventional assays (Lalvani, A. *et al.*, *J. Exp. Med.* 186:859, 1997; Dunbar, P. R. *et al.*, *Curr. Biol.* 8:413, 1998; Murali-Krishna, K. *et al.*, *Immunity* 8:177, 1998).

30 HTL activation may also be assessed using such techniques known to those in the art such as T cell proliferation and secretion of lymphokines, e.g. IL-2 (see, e.g. Alexander *et al.*, *Immunity* 1:751-761, 1994).

Alternatively, immunization of HLA transgenic mice can be used to determine immunogenicity of peptide epitopes. Several transgenic mouse models including mice

with human A2.1, A11 (which can additionally be used to analyze HLA-A3 epitopes), and B7 alleles have been characterized and others (e.g., transgenic mice for HLA-A1 and A24) are being developed. HLA-DR1 and HLA-DR3 mouse models have also been developed. Additional transgenic mouse models with other HLA alleles may be generated as necessary. Mice may be immunized with peptides emulsified in Incomplete Freund's Adjuvant and the resulting T cells tested for their capacity to recognize peptide-pulsed target cells and target cells transfected with appropriate genes. CTL responses may be analyzed using cytotoxicity assays described above. Similarly, HTL responses may be analyzed using such assays as T cell proliferation or secretion of lymphokines.

10 Exemplary immunogenic peptide epitopes are set out in Table XXIII.

IV.J. Use of Peptide Epitopes as Diagnostic Agents and for Evaluating Immune Responses

HLA class I and class II binding peptides as described herein are used, in one embodiment of the invention, as reagents to evaluate an immune response. The immune response to be evaluated may be induced by using as an immunogen any agent that may result in the production of antigen-specific CTLs or HTLs that recognize and bind to the peptide epitope(s) to be employed as the reagent. The peptide reagent need not be used as the immunogen. Assay systems that may be used for such an analysis include relatively recent technical developments such as tetramers, staining for intracellular lymphokines and interferon release assays, or ELISPOT assays.

For example, a peptide of the invention can be used in a tetramer staining assay to assess peripheral blood mononuclear cells for the presence of antigen-specific CTLs following exposure to a pathogen or immunogen. The HLA-tetrameric complex is used to directly visualize antigen-specific CTLs (see, e.g., Ogg *et al.*, *Science* 279:2103-2106, 1998; and Altman *et al.*, *Science* 174:94-96, 1996) and determine the frequency of the antigen-specific CTL population in a sample of peripheral blood mononuclear cells.

A tetramer reagent using a peptide of the invention can typically be generated as follows: A peptide that binds to an HLA molecule is refolded in the presence of the corresponding HLA heavy chain and β_2 -microglobulin to generate a trimolecular complex. The complex is biotinylated at the carboxyl terminal end of the heavy chain at a site that was previously engineered into the protein. Tetramer formation is then induced by the addition of streptavidin. By means of fluorescently labeled streptavidin, the

tetramer can be used to stain antigen-specific cells. The cells may then be identified, for example, by flow cytometry. Such an analysis may be used for diagnostic or prognostic purposes.

Peptides of the invention are also used as reagents to evaluate immune recall responses. (see, e.g., Bertoni *et al.*, *J. Clin. Invest.* 100:503-513, 1997 and Penna *et al.*, *J. Exp. Med.* 174:1565-1570, 1991.) For example, patient PBMC samples from individuals infected with HIV may be analyzed for the presence of antigen-specific CTLs or HTLs using specific peptides. A blood sample containing mononuclear cells may be evaluated by cultivating the PBMCs and stimulating the cells with a peptide of the invention. After an appropriate cultivation period, the expanded cell population may be analyzed, for example, for CTL or for HTL activity.

The peptides are also used as reagents to evaluate the efficacy of a vaccine. PBMCs obtained from a patient vaccinated with an immunogen may be analyzed using, for example, either of the methods described above. The patient is HLA typed, and peptide epitope reagents that recognize the allele-specific molecules present in that patient are selected for the analysis. The immunogenicity of the vaccine is indicated by the presence of HIV epitope-specific CTLs and/or HTLs in the PBMC sample.

The peptides of the invention are also used to make antibodies, using techniques well known in the art (see, e.g. *CURRENT PROTOCOLS IN IMMUNOLOGY*, Wiley/Greene, NY; and *Antibodies A Laboratory Manual* Harlow, Harlow and Lane, Cold Spring Harbor Laboratory Press, 1989), which may be useful as reagents to diagnose HIV infection. Such antibodies include those that recognize a peptide in the context of an HLA molecule, i.e., antibodies that bind to a peptide-MHC complex.

25 IV.K. Vaccine Compositions

Vaccines and methods of preparing vaccines that contain an immunogenically effective amount of one or more peptides as described herein are further embodiments of the invention. Once appropriately immunogenic epitopes have been defined, they can be sorted and delivered by various means, herein referred to as "vaccine" compositions. Such vaccine compositions can include, for example, lipopeptides (e.g., Vitiello, A. *et al.*, *J. Clin. Invest.* 95:341, 1995), peptide compositions encapsulated in poly(DL-lactide-co-glycolide) ("PLG") microspheres (see, e.g., Eldridge, *et al.*, *Molec. Immunol.* 28:287-294, 1991; Alonso *et al.*, *Vaccine* 12:299-306, 1994; Jones *et al.*, *Vaccine* 13:675-681, 1995), peptide compositions contained in immune stimulating complexes (ISCOMS) (see, e.g.,

Takahashi *et al.*, *Nature* 344:873-875, 1990; Hu *et al.*, *Clin Exp Immunol.* 113:235-243, 1998), multiple antigen peptide systems (MAPs) (see e.g., Tam, J. P., *Proc. Natl. Acad. Sci. U.S.A.* 85:5409-5413, 1988; Tam, J.P., *J. Immunol. Methods* 196:17-32, 1996), peptides formulated as multivalent peptides; peptides for use in ballistic delivery systems, 5 typically crystallized peptides, viral delivery vectors (Perkus, M. E. *et al.*, In: *Concepts in vaccine development*, Kaufmann, S. H. E., ed., p. 379, 1996; Chakrabarti, S. *et al.*, *Nature* 320:535, 1986; Hu, S. L. *et al.*, *Nature* 320:537, 1986; Kieny, M.-P. *et al.*, *AIDS Bio/Technology* 4:790, 1986; Top, F. H. *et al.*, *J. Infect. Dis.* 124:148, 1971; Chanda, P. K. *et al.*, *Virology* 175:535, 1990), particles of viral or synthetic origin (e.g., Kofler, N. *et al.*, *J. Immunol. Methods*. 192:25, 1996; Eldridge, J. H. *et al.*, *Sem. Hematol.* 30:16, 1993; 10 Falo, L. D., Jr. *et al.*, *Nature Med.* 7:649, 1995), adjuvants (Warren, H. S., Vogel, F. R., and Chedid, L. A. *Annu. Rev. Immunol.* 4:369, 1986; Gupta, R. K. *et al.*, *Vaccine* 11:293, 1993), liposomes (Reddy, R. *et al.*, *J. Immunol.* 148:1585, 1992; Rock, K. L., *Immunol. Today* 17:131, 1996), or, naked or particle absorbed cDNA (Ulmer, J. B. *et al.*, *Science* 259:1745, 1993; Robinson, H. L., Hunt, L. A., and Webster, R. G., *Vaccine* 11:957, 1993; 15 Shiver, J. W. *et al.*, In: *Concepts in vaccine development*, Kaufmann, S. H. E., ed., p. 423, 1996; Cease, K. B., and Berzofsky, J. A., *Annu. Rev. Immunol.* 12:923, 1994 and Eldridge, J. H. *et al.*, *Sem. Hematol.* 30:16, 1993). Toxin-targeted delivery technologies, also known as receptor mediated targeting, such as those of Avant Immunotherapeutics, 20 Inc. (Needham, Massachusetts) may also be used.

Vaccine compositions of the invention include nucleic acid-mediated modalities. DNA or RNA encoding one or more of the peptides of the invention can also be administered to a patient. This approach is described, for instance, in Wolff *et. al.*, *Science* 247:1465 (1990) as well as U.S. Patent Nos. 5,580,859; 5,589,466; 5,804,566; 25 5,739,118; 5,736,524; 5,679,647; WO 98/04720; and in more detail below. Examples of DNA-based delivery technologies include "naked DNA", facilitated (bupivacaine, polymers, peptide-mediated) delivery, cationic lipid complexes, and particle-mediated ("gene gun") or pressure-mediated delivery (see, e.g., U.S. Patent No. 5,922,687).

For therapeutic or prophylactic immunization purposes, the peptides of the 30 invention can be expressed by viral or bacterial vectors. Examples of expression vectors include attenuated viral hosts, such as vaccinia or fowlpox. This approach involves the use of vaccinia virus, for example, as a vector to express nucleotide sequences that encode the peptides of the invention. Upon introduction into an acutely or chronically infected host or into a non-infected host, the recombinant vaccinia virus expresses the

immunogenic peptide, and thereby elicits a host CTL and/or HTL response. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Patent No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover *et al.*, *Nature* 351:456-460 (1991). A wide variety of other vectors 5 useful for therapeutic administration or immunization of the peptides of the invention, e.g. adeno and adeno-associated virus vectors, retroviral vectors, *Salmonella typhi* vectors, detoxified anthrax toxin vectors, and the like, will be apparent to those skilled in the art from the description herein.

Furthermore, vaccines in accordance with the invention encompass compositions 10 of one or more of the claimed peptides. A peptide can be present in a vaccine individually. Alternatively, the peptide can exist as a homopolymer comprising multiple copies of the same peptide, or as a heteropolymer of various peptides. Polymers have the advantage of increased immunological reaction and, where different peptide epitopes are used to make up the polymer, the additional ability to induce antibodies and/or CTLs that 15 react with different antigenic determinants of the pathogenic organism or tumor-related peptide targeted for an immune response. The composition can be a naturally occurring region of an antigen or can be prepared, e.g., recombinantly or by chemical synthesis.

Carriers that can be used with vaccines of the invention are well known in the art, and include, e.g., thyroglobulin, albumins such as human serum albumin, tetanus toxoid, 20 polyamino acids such as poly L-lysine, poly L-glutamic acid, influenza, hepatitis B virus core protein, and the like. The vaccines can contain a physiologically tolerable (*i.e.*, acceptable) diluent such as water, or saline, preferably phosphate buffered saline. The vaccines also typically include an adjuvant. Adjuvants such as incomplete Freund's adjuvant, aluminum phosphate, aluminum hydroxide, or alum are examples of materials 25 well known in the art. Additionally, as disclosed herein, CTL responses can be primed by conjugating peptides of the invention to lipids, such as tripalmitoyl-S-glycerylcysteinylseryl-serine (P₃CSS).

Upon immunization with a peptide composition in accordance with the invention, via injection, aerosol, oral, transdermal, transmucosal, intrapleural, intrathecal, or other 30 suitable routes, the immune system of the host responds to the vaccine by producing large amounts of CTLs and/or HTLs specific for the desired antigen. Consequently, the host becomes at least partially immune to later infection, or at least partially resistant to developing an ongoing chronic infection, or derives at least some therapeutic benefit when the antigen was tumor-associated.

In some embodiments, it may be desirable to combine the class I peptide components with components that induce or facilitate neutralizing antibody and/or helper T cell responses to the target antigen of interest. A preferred embodiment of such a composition comprises class I and class II epitopes in accordance with the invention. An alternative embodiment of such a composition comprises a class I and/or class II epitope in accordance with the invention, along with a PanDR molecule, e.g., PADRE™ (Epimmune, San Diego, CA; described, e.g., in U.S. Patent Number 5,736,142).

A vaccine of the invention can also include antigen-presenting cells (APC), such as dendritic cells (DC), as a vehicle to present peptides of the invention. Vaccine compositions can be created *in vitro*, following dendritic cell mobilization and harvesting, whereby loading of dendritic cells occurs *in vitro*. For example, dendritic cells are transfected, e.g., with a minigene in accordance with the invention, or are pulsed with peptides. The dendritic cell can then be administered to a patient to elicit immune responses *in vivo*.

Vaccine compositions, either DNA- or peptide-based, can also be administered *in vivo* in combination with dendritic cell mobilization whereby loading of dendritic cells occurs *in vivo*.

Antigenic peptides are used to elicit a CTL and/or HTL response *ex vivo*, as well. The resulting CTL or HTL cells, can be used to treat chronic infections, or tumors in patients that do not respond to other conventional forms of therapy, or will not respond to a therapeutic vaccine peptide or nucleic acid in accordance with the invention. *Ex vivo* CTL or HTL responses to a particular antigen (infectious or tumor-associated antigen) are induced by incubating in tissue culture the patient's, or genetically compatible, CTL or HTL precursor cells together with a source of APC, such as DC, and the appropriate immunogenic peptide. After an appropriate incubation time (typically about 7-28 days), in which the precursor cells are activated and expanded into effector cells, the cells are infused back into the patient, where they will destroy or facilitate destruction of their specific target cell (an infected cell or a tumor cell). Transfected dendritic cells may also be used as antigen presenting cells.

The vaccine compositions of the invention can also be used in combination with other treatments used for HIV infection, including use in combination with therapy regimens including protease inhibitors and other immune adjuvants such as IL-2.

Preferably, the following principles are utilized when selecting an array of epitopes for inclusion in a polyepitopic composition for use in a vaccine, or for selecting discrete epitopes to be included in a vaccine and/or to be encoded by nucleic acids such as a minigene. Exemplary epitopes that may be utilized in a vaccine to treat or prevent HIV infection are set out in Tables XXXVII and XXXVIII. It is preferred that each of the following principles are balanced in order to make the selection. The multiple epitopes to be incorporated in a given vaccine composition can be, but need not be, contiguous in sequence in the native antigen from which the epitopes are derived.

5 1.) Epitopes are selected which, upon administration, mimic immune responses that have been observed to be correlated with HIV clearance. For HLA Class I this includes 3-4 epitopes that come from at least one antigen of HIV. For HLA Class II a similar rationale is employed; again 3-4 epitopes are selected from at least one HIV antigen (see e.g., Rosenberg *et al.*, *Science* 278:1447-1450).

10 2.) Epitopes are selected that have the requisite binding affinity established to be correlated with immunogenicity: for HLA Class I an IC₅₀ of 500 nM or less, or for Class II an IC₅₀ of 1000 nM or less.

15 3.) Sufficient supermotif bearing-peptides, or a sufficient array of allele-specific motif-bearing peptides, are selected to give broad population coverage. For example, it is preferable to have at least 80% population coverage. A Monte Carlo analysis, a statistical evaluation known in the art, can be employed to assess the breadth, or redundancy of, population coverage.

20 4.) When selecting epitopes from cancer-related antigens it is often useful to select analogs because the patient may have developed tolerance to the native epitope. When selecting epitopes for infectious disease-related antigens it is preferable to select either native or analoged epitopes.

25 5.) Of particular relevance are epitopes referred to as "nested epitopes." Nested epitopes occur where at least two epitopes overlap in a given peptide sequence. A nested peptide sequence can comprise both HLA class I and HLA class II epitopes. When providing nested epitopes, a general objective is to provide the greatest number of epitopes per sequence. Thus, an aspect is to avoid providing a peptide that is any longer than the amino terminus of the amino terminal epitope and the carboxyl terminus of the carboxyl terminal epitope in the peptide. When providing a multi-epitopic sequence, such as a sequence comprising nested epitopes, it is generally important to screen the sequence

in order to insure that it does not have pathological or other deleterious biological properties.

6.) If a polyepitopic protein is created, or when creating a minigene, an objective is to generate the smallest peptide that encompasses the epitopes of interest.

5 This principle is similar, if not the same as that employed when selecting a peptide comprising nested epitopes. However, with an artificial polyepitopic peptide, the size minimization objective is balanced against the need to integrate any spacer sequences between epitopes in the polyepitopic protein. Spacer amino acid residues can, for example, be introduced to avoid junctional epitopes (an epitope recognized by the

10 immune system, not present in the target antigen, and only created by the man-made juxtaposition of epitopes), or to facilitate cleavage between epitopes and thereby enhance epitope presentation. Junctional epitopes are generally to be avoided because the recipient may generate an immune response to that non-native epitope. Of particular concern is a junctional epitope that is a "dominant epitope." A dominant epitope may

15 lead to such a zealous response that immune responses to other epitopes are diminished or suppressed.

7.) In cases where the sequences of multiple variants of the same target protein are available, potential peptide epitopes can also be selected on the basis of their conservancy. For example, a criterion for conservancy may define that the entire

20 sequence of an HLA class I binding peptide or the entire 9-mer core of a class II binding peptide be conserved in a designated percentage of the sequences evaluated for a specific protein antigen.

IV.K.1. Minigene Vaccines

25 A number of different approaches are available which allow simultaneous delivery of multiple epitopes. Nucleic acids encoding the peptides of the invention are a particularly useful embodiment of the invention. Epitopes for inclusion in a minigene are preferably selected according to the guidelines set forth in the previous section. A preferred means of administering nucleic acids encoding the peptides of the invention

30 uses minigene constructs encoding a peptide comprising one or multiple epitopes of the invention.

The use of multi-epitope minigenes is described below and in, e.g., co-pending application U.S.S.N. 09/311,784; Ishioka *et al.*, *J. Immunol.* 162:3915-3925, 1999; An, L. and Whittom, J. L., *J. Virol.* 71:2292, 1997; Thomson, S. A. *et al.*, *J. Immunol.* 157:822,

1996; Whitton, J. L. *et al.*, *J. Virol.* 67:348, 1993; Hanke, R. *et al.*, *Vaccine* 16:426, 1998. For example, a multi-epitope DNA plasmid encoding nine dominant HLA-A*0201- and A11-restricted epitopes derived from the polymerase, envelope, and core proteins of HBV and human immunodeficiency virus (HIV), a PADRE™ universal helper T cell (HTL) epitope, and an endoplasmic reticulum-translocating signal sequence was engineered.

5 The immunogenicity of a multi-epitopic minigene can be tested in transgenic mice to evaluate the magnitude of CTL induction responses against the epitopes tested. Further, the immunogenicity of DNA-encoded epitopes *in vivo* can be correlated with the *in vitro* responses of specific CTL lines against target cells transfected with the DNA 10 plasmid. Thus, these experiments can show that the minigene serves to both: 1.) generate a CTL response and 2.) that the induced CTLs recognized cells expressing the encoded epitopes.

For example, to create a DNA sequence encoding the selected epitopes (minigene) 15 for expression in human cells, the amino acid sequences of the epitopes may be reverse translated. A human codon usage table can be used to guide the codon choice for each amino acid. These epitope-encoding DNA sequences may be directly adjoined, so that when translated, a continuous polypeptide sequence is created. To optimize expression and/or immunogenicity, additional elements can be incorporated into the minigene 20 design. Examples of amino acid sequences that can be reverse translated and included in the minigene sequence include: HLA class I epitopes, HLA class II epitopes, a ubiquitination signal sequence, and/or an endoplasmic reticulum targeting signal. In addition, HLA presentation of CTL and HTL epitopes may be improved by including synthetic (*e.g.* poly-alanine) or naturally-occurring flanking sequences adjacent to the 25 CTL or HTL epitopes; these larger peptides comprising the epitope(s) are within the scope of the invention.

The minigene sequence may be converted to DNA by assembling oligonucleotides 30 that encode the plus and minus strands of the minigene. Overlapping oligonucleotides (30-100 bases long) may be synthesized, phosphorylated, purified and annealed under appropriate conditions using well known techniques. The ends of the oligonucleotides can be joined, for example, using T4 DNA ligase. This synthetic minigene, encoding the epitope polypeptide, can then be cloned into a desired expression vector.

Standard regulatory sequences well known to those of skill in the art are preferably included in the vector to ensure expression in the target cells. Several vector

elements are desirable: a promoter with a down-stream cloning site for minigene insertion; a polyadenylation signal for efficient transcription termination; an *E. coli* origin of replication; and an *E. coli* selectable marker (e.g. ampicillin or kanamycin resistance). Numerous promoters can be used for this purpose, e.g., the human cytomegalovirus 5 (hCMV) promoter. See, e.g., U.S. Patent Nos. 5,580,859 and 5,589,466 for other suitable promoter sequences.

Additional vector modifications may be desired to optimize minigene expression and immunogenicity. In some cases, introns are required for efficient gene expression, and one or more synthetic or naturally-occurring introns could be incorporated into the 10 transcribed region of the minigene. The inclusion of mRNA stabilization sequences and sequences for replication in mammalian cells may also be considered for increasing minigene expression.

Once an expression vector is selected, the minigene is cloned into the polylinker region downstream of the promoter. This plasmid is transformed into an appropriate *E. coli* strain, and DNA is prepared using standard techniques. The orientation and DNA 15 sequence of the minigene, as well as all other elements included in the vector, are confirmed using restriction mapping and DNA sequence analysis. Bacterial cells harboring the correct plasmid can be stored as a master cell bank and a working cell bank.

In addition, immunostimulatory sequences (ISSs or CpGs) appear to play a role in 20 the immunogenicity of DNA vaccines. These sequences may be included in the vector, outside the minigene coding sequence, if desired to enhance immunogenicity.

In some embodiments, a bi-cistronic expression vector which allows production of both the minigene-encoded epitopes and a second protein (included to enhance or decrease immunogenicity) can be used. Examples of proteins or polypeptides that could 25 beneficially enhance the immune response if co-expressed include cytokines (e.g., IL-2, IL-12, GM-CSF), cytokine-inducing molecules (e.g., LeIF), costimulatory molecules, or for HTL responses, pan-DR binding proteins (PADRE™, Epimmune, San Diego, CA). Helper (HTL) epitopes can be joined to intracellular targeting signals and expressed separately from expressed CTL epitopes; this allows direction of the HTL epitopes to a 30 cell compartment different than that of the CTL epitopes. If required, this could facilitate more efficient entry of HTL epitopes into the HLA class II pathway, thereby improving HTL induction. In contrast to HTL or CTL induction, specifically decreasing the immune

response by co-expression of immunosuppressive molecules (e.g. TGF- β) may be beneficial in certain diseases.

Therapeutic quantities of plasmid DNA can be produced for example, by fermentation in *E. coli*, followed by purification. Aliquots from the working cell bank are used to inoculate growth medium, and grown to saturation in shaker flasks or a bioreactor according to well known techniques. Plasmid DNA can be purified using standard bioseparation technologies such as solid phase anion-exchange resins supplied by QIAGEN, Inc. (Valencia, California). If required, supercoiled DNA can be isolated from the open circular and linear forms using gel electrophoresis or other methods.

Purified plasmid DNA can be prepared for injection using a variety of formulations. The simplest of these is reconstitution of lyophilized DNA in sterile phosphate-buffer saline (PBS). This approach, known as "naked DNA," is currently being used for intramuscular (IM) administration in clinical trials. To maximize the immunotherapeutic effects of minigene DNA vaccines, an alternative method for formulating purified plasmid DNA may be desirable. A variety of methods have been described, and new techniques may become available. Cationic lipids, glycolipids, and fusogenic liposomes can also be used in the formulation (see, e.g., as described by WO 93/24640; Mannino & Gould-Fogerite, *BioTechniques* 6(7): 682 (1988); U.S. Pat No. 5,279,833; WO 91/06309; and Felgner, *et al.*, *Proc. Nat'l Acad. Sci. USA* 84:7413 (1987)). In addition, peptides and compounds referred to collectively as protective, interactive, non-condensing compounds (PINC) could also be complexed to purified plasmid DNA to influence variables such as stability, intramuscular dispersion, or trafficking to specific organs or cell types.

Target cell sensitization can be used as a functional assay for expression and HLA class I presentation of minigene-encoded CTL epitopes. For example, the plasmid DNA is introduced into a mammalian cell line that is suitable as a target for standard CTL chromium release assays. The transfection method used will be dependent on the final formulation. Electroporation can be used for "naked" DNA, whereas cationic lipids allow direct *in vitro* transfection. A plasmid expressing green fluorescent protein (GFP) can be co-transfected to allow enrichment of transfected cells using fluorescence activated cell sorting (FACS). These cells are then chromium-51 (^{51}Cr) labeled and used as target cells for epitope-specific CTL lines; cytolysis, detected by ^{51}Cr release, indicates both production of, and HLA presentation of, minigene-encoded CTL epitopes. Expression of

HTL epitopes may be evaluated in an analogous manner using assays to assess HTL activity.

In vivo immunogenicity is a second approach for functional testing of minigene DNA formulations. Transgenic mice expressing appropriate human HLA proteins are 5 immunized with the DNA product. The dose and route of administration are formulation dependent (e.g., IM for DNA in PBS, intraperitoneal (IP) for lipid-complexed DNA). Twenty-one days after immunization, splenocytes are harvested and restimulated for one week in the presence of peptides encoding each epitope being tested. Thereafter, for CTL effector cells, assays are conducted for cytolysis of peptide-loaded, ⁵¹Cr-labeled target 10 cells using standard techniques. Lysis of target cells that were sensitized by HLA loaded with peptide epitopes, corresponding to minigene-encoded epitopes, demonstrates DNA vaccine function for *in vivo* induction of CTLs. Immunogenicity of HTL epitopes is evaluated in transgenic mice in an analogous manner.

Alternatively, the nucleic acids can be administered using ballistic delivery as 15 described, for instance, in U.S. Patent No. 5,204,253. Using this technique, particles comprised solely of DNA are administered. In a further alternative embodiment, DNA can be adhered to particles, such as gold particles.

IV.K.2. Combinations of CTL Peptides with Helper Peptides

20 Vaccine compositions comprising the peptides of the present invention, or analogs thereof, which have immunostimulatory activity may be modified to provide desired attributes, such as improved serum half life, or to enhance immunogenicity.

For instance, the ability of a peptide to induce CTL activity can be enhanced by linking the peptide to a sequence which contains at least one epitope that is capable of 25 inducing a T helper cell response. The use of T helper epitopes in conjunction with CTL epitopes to enhance immunogenicity is illustrated, for example, in the co-pending applications U.S.S.N. 08/820,360, U.S.S.N. 08/197,484, and U.S.S.N. 08/464,234.

Although a CTL peptide can be directly linked to a T helper peptide, often CTL epitope/HTL epitope conjugates are linked by a spacer molecule. The spacer is typically 30 comprised of relatively small, neutral molecules, such as amino acids or amino acid mimetics, which are substantially uncharged under physiological conditions. The spacers are typically selected from, e.g., Ala, Gly, or other neutral spacers of nonpolar amino acids or neutral polar amino acids. It will be understood that the optionally present spacer need not be comprised of the same residues and thus may be a hetero- or homo-oligomer.

When present, the spacer will usually be at least one or two residues, more usually three to six residues and sometimes 10 or more residues. The CTL peptide epitope can be linked to the T helper peptide epitope either directly or via a spacer either at the amino or carboxy terminus of the CTL peptide. The amino terminus of either the immunogenic peptide or the T helper peptide may be acylated.

In certain embodiments, the T helper peptide is one that is recognized by T helper cells present in the majority of the population. This can be accomplished by selecting peptides that bind to many, most, or all of the HLA class II molecules. These are known as "loosely HLA-restricted" or "promiscuous" T helper sequences. Examples of amino acid sequences that are promiscuous include sequences from antigens such as tetanus toxoid at positions 830-843 (QYIKANSKFIGITE; SEQ ID NO: 51484), *Plasmodium falciparum* circumsporozoite (CS) protein at positions 378-398 (DIEKKIAKMEKASSVFNVVNS; SEQ ID NO: 51485), and *Streptococcus* 18kD protein at positions 116 (GAVDSILGGVATYGAA; SEQ ID NO: 51486). Other examples include peptides bearing a DR 1-4-7 supermotif, or either of the DR3 motifs.

Alternatively, it is possible to prepare synthetic peptides capable of stimulating T helper lymphocytes, in a loosely HLA-restricted fashion, using amino acid sequences not found in nature (see, e.g., PCT publication WO 95/07707). These synthetic compounds called Pan-DR-binding epitopes (e.g., PADRE™, Epimmune, Inc., San Diego, CA) are designed to most preferably bind most HLA-DR (human HLA class II) molecules. For instance, a pan-DR-binding epitope peptide having the formula: aKXVAATLKAa, where "X" is either cyclohexylalanine, phenylalanine, or tyrosine, and a is either D-alanine or L-alanine, has been found to bind to most HLA-DR alleles, and to stimulate the response of T helper lymphocytes from most individuals, regardless of their HLA type. An alternative of a pan-DR binding epitope comprises all "L" natural amino acids and can be provided in the form of nucleic acids that encode the epitope.

HTL peptide epitopes can also be modified to alter their biological properties. For example, they can be modified to include D-amino acids to increase their resistance to proteases and thus extend their serum half life, or they can be conjugated to other molecules such as lipids, proteins, carbohydrates, and the like to increase their biological activity. For example, a T helper peptide can be conjugated to one or more palmitic acid chains at either the amino or carboxyl termini.

III.K.3. Combinations of CTL Peptides with T Cell Priming Agents

In some embodiments it may be desirable to include in the pharmaceutical compositions of the invention at least one component which primes cytotoxic T lymphocytes. Lipids have been identified as agents capable of priming CTL *in vivo*

5 against viral antigens. For example, palmitic acid residues can be attached to the ε-and α-amino groups of a lysine residue and then linked, *e.g.*, via one or more linking residues such as Gly, Gly-Gly-, Ser, Ser-Ser, or the like, to an immunogenic peptide. The lipidated peptide can then be administered either directly in a micelle or particle, incorporated into a liposome, or emulsified in an adjuvant, *e.g.*, incomplete Freund's

10 adjuvant. In a preferred embodiment, a particularly effective immunogenic composition comprises palmitic acid attached to ε- and α- amino groups of Lys, which is attached via linkage, *e.g.*, Ser-Ser, to the amino terminus of the immunogenic peptide.

As another example of lipid priming of CTL responses, *E. coli* lipoproteins, such as tripalmitoyl-S-glycerylcysteinylseryl-serine (P₃CSS) can be used to prime virus specific CTL when covalently attached to an appropriate peptide (*see, e.g.,* Deres, *et al.*, *Nature* 342:561, 1989). Peptides of the invention can be coupled to P₃CSS, for example, and the lipopeptide administered to an individual to specifically prime a CTL response to the target antigen. Moreover, because the induction of neutralizing antibodies can also be primed with P₃CSS-conjugated epitopes, two such compositions can be combined to more effectively elicit both humoral and cell-mediated responses.

CTL and/or HTL peptides can also be modified by the addition of amino acids to the termini of a peptide to provide for ease of linking peptides one to another, for coupling to a carrier support or larger peptide, for modifying the physical or chemical properties of the peptide or oligopeptide, or the like. Amino acids such as tyrosine, cysteine, lysine, glutamic or aspartic acid, or the like, can be introduced at the C- or N-terminus of the peptide or oligopeptide, particularly class I peptides. However, it is to be noted that modification at the carboxyl terminus of a CTL epitope may, in some cases, alter binding characteristics of the peptide. In addition, the peptide or oligopeptide sequences can differ from the natural sequence by being modified by terminal-NH₂ acylation, *e.g.*, by alkanoyl (C1-C20) or thioglycolyl acetylation, terminal-carboxyl amidation, *e.g.*, ammonia, methylamine, *etc.* In some instances these modifications may provide sites for linking to a support or other molecule.

IV.K.4. Vaccine Compositions Comprising DC Pulsed with CTL and/or HTL**Peptides**

An embodiment of a vaccine composition in accordance with the invention comprises *ex vivo* administration of a cocktail of epitope-bearing peptides to PBMC, or isolated DC therefrom, from the patient's blood. A pharmaceutical to facilitate harvesting of DC can be used, such as Progenipoietin™ (Monsanto, St. Louis, MO) or GM-CSF/IL-4. After pulsing the DC with peptides and prior to reinfusion into patients, the DC are washed to remove unbound peptides. In this embodiment, a vaccine comprises peptide-pulsed DCs which present the pulsed peptide epitopes complexed with HLA molecules on their surfaces.

The DC can be pulsed *ex vivo* with a cocktail of peptides, some of which stimulate CTL responses to one or more HIV antigens of interest. Optionally, a helper T cell (HTL) peptide such as a PADRE family molecule, can be included to facilitate the CTL response. Thus, a vaccine in accordance with the invention, preferably comprising epitopes from multiple HIV antigens, is used to treat HIV infection.

IV.L. Administration of Vaccines for Therapeutic or Prophylactic Purposes

The peptides of the present invention and pharmaceutical and vaccine compositions of the invention are useful for administration to mammals, particularly humans, to treat and/or prevent HIV infection. Vaccine compositions containing the peptides of the invention are administered to a patient infected with HIV or to an individual susceptible to, or otherwise at risk for, HIV infection to elicit an immune response against HIV antigens and thus enhance the patient's own immune response capabilities.

As discussed herein, peptides comprising CTL and/or HTL epitopes of the invention induce immune responses when presented by HLA molecules and contacted with a CTL or HTL specific for an epitope comprised by the peptide. The peptides (or DNA encoding them) can be administered individually or as fusions of one or more peptide sequences. The manner in which the peptide is contacted with the CTL or HTL is not critical to the invention. For instance, the peptide can be contacted with the CTL or HTL either *in vivo* or *in vitro*. If the contacting occurs *in vivo*, the peptide itself can be administered to the patient, or other vehicles, e.g., DNA vectors encoding one or more

compositions. Thus, liposomes either filled or decorated with a desired peptide of the invention can be directed to the site of lymphoid cells, where the liposomes then deliver the peptide compositions. Liposomes for use in accordance with the invention are formed from standard vesicle-forming lipids, which generally include neutral and negatively charged phospholipids and a sterol, such as cholesterol. The selection of lipids is generally guided by consideration of, e.g., liposome size, acid lability and stability of the liposomes in the blood stream. A variety of methods are available for preparing liposomes, as described in, e.g., Szoka, *et al.*, *Ann. Rev. Biophys. Bioeng.* 9:467 (1980), and U.S. Patent Nos. 4,235,871, 4,501,728, 4,837,028, and 5,019,369.

For targeting cells of the immune system, a ligand to be incorporated into the liposome can include, e.g., antibodies or fragments thereof specific for cell surface determinants of the desired immune system cells. A liposome suspension containing a peptide may be administered intravenously, locally, topically, etc. in a dose which varies according to, *inter alia*, the manner of administration, the peptide being delivered, and the stage of the disease being treated.

For solid compositions, conventional nontoxic solid carriers may be used which include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate, and the like. For oral administration, a pharmaceutically acceptable nontoxic composition is formed by incorporating any of the normally employed excipients, such as those carriers previously listed, and generally 10-95% of active ingredient, that is, one or more peptides of the invention, and more preferably at a concentration of 25%-75%.

For aerosol administration, the immunogenic peptides are preferably supplied in finely divided form along with a surfactant and propellant. Typical percentages of peptides are 0.01%-20% by weight, preferably 1%-10%. The surfactant must, of course, be nontoxic, and preferably soluble in the propellant. Representative of such agents are the esters or partial esters of fatty acids containing from 6 to 22 carbon atoms, such as caproic, octanoic, lauric, palmitic, stearic, linoleic, linolenic, olesteric and oleic acids with an aliphatic polyhydric alcohol or its cyclic anhydride. Mixed esters, such as mixed or natural glycerides may be employed. The surfactant may constitute 0.1%-20% by weight of the composition, preferably 0.25-5%. The balance of the composition is ordinarily propellant. A carrier can also be included, as desired, as with, e.g., lecithin for intranasal delivery.

IV.M. Kits

The peptide and nucleic acid compositions of this invention can be provided in kit form together with instructions for vaccine administration. Typically the kit would include desired peptide compositions in a container, preferably in unit dosage form and 5 instructions for administration. An alternative kit would include a minigene construct with desired nucleic acids of the invention in a container, preferably in unit dosage form together with instructions for administration. Lymphokines such as IL-2 or IL-12 may also be included in the kit. Other kit components that may also be desirable include, for example, a sterile syringe, booster dosages, and other desired excipients.

10

Summary

Epitopes in accordance with the present invention were successfully used to induce an immune response. Immune responses with these epitopes have been induced by administering the epitopes in various forms. The epitopes have been administered as 15 peptides, as nucleic acids, and as viral vectors comprising nucleic acids that encode the epitope(s) of the invention. Upon administration of peptide-based epitope forms, immune responses have been induced by direct loading of an epitope onto an empty HLA molecule that is expressed on a cell, and via internalization of the epitope and processing via the HLA class I pathway; in either event, the HLA molecule expressing the epitope 20 was then able to interact with and induce a CTL response. Peptides can be delivered directly or using such agents as liposomes. They can additionally be delivered using ballistic delivery, in which the peptides are typically in a crystalline form. When DNA is used to induce an immune response, it is administered either as naked DNA, generally in a dose range of approximately 1-5mg, or via the ballistic "gene gun" delivery, typically in 25 a dose range of approximately 10-100 µg. The DNA can be delivered in a variety of conformations, e.g., linear, circular etc. Various viral vectors have also successfully been used that comprise nucleic acids which encode epitopes in accordance with the invention.

Accordingly compositions in accordance with the invention exist in several forms. Embodiments of each of these composition forms in accordance with the invention have 30 been successfully used to induce an immune response.

One composition in accordance with the invention comprises a plurality of peptides. This plurality or cocktail of peptides is generally admixed with one or more pharmaceutically acceptable excipients. The peptide cocktail can comprise multiple

copies of the same peptide or can comprise a mixture of peptides. The peptides can be analogs of naturally occurring epitopes. The peptides can comprise artificial amino acids and/or chemical modifications such as addition of a surface active molecule, *e.g.*, lipidation; acetylation, glycosylation, biotinylation, phosphorylation etc. The peptides 5 can be CTL or HTL epitopes. In a preferred embodiment the peptide cocktail comprises a plurality of different CTL epitopes and at least one HTL epitope. The HTL epitope can be naturally or non-naturally (*e.g.*, PADRE®, Epimmune Inc., San Diego, CA). The number of distinct epitopes in an embodiment of the invention is generally a whole unit integer from one through one hundred fifty (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 10 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, or 150).

An additional embodiment of a composition in accordance with the invention 15 comprises a polypeptide multi-epitope construct, *i.e.*, a polyepitopic peptide. Polyepitopic peptides in accordance with the invention are prepared by use of technologies well-known in the art. By use of these known technologies, epitopes in accordance with the invention are connected one to another. The polyepitopic peptides 20 can be linear or non-linear, *e.g.*, multivalent. These polyepitopic constructs can comprise artificial amino acids, spacing or spacer amino acids, flanking amino acids, or chemical modifications between adjacent epitope units. The polyepitopic construct can be a heteropolymer or a homopolymer. The polyepitopic constructs generally comprise epitopes in a quantity of any whole unit integer between 2-150 (*e.g.*, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 25 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, or 150). The polyepitopic construct can comprise CTL and/or HTL epitopes. One or more of the epitopes in the construct can be modified, *e.g.*, by addition of a surface active material, 30 *e.g.* a lipid, or chemically modified, *e.g.*, acetylation, *etc.* Moreover, bonds in the multiepitopic construct can be other than peptide bonds, *e.g.*, covalent bonds, ester or ether bonds, disulfide bonds, hydrogen bonds, ionic bonds *etc.*

Alternatively, a composition in accordance with the invention comprises construct which comprises a series, sequence, stretch, *etc.*, of amino acids that have homology to (

i.e., corresponds to or is contiguous with) to a native sequence. This stretch of amino acids comprises at least one subsequence of amino acids that, if cleaved or isolated from the longer series of amino acids, functions as an HLA class I or HLA class II epitope in accordance with the invention. In this embodiment, the peptide sequence is modified, so 5 as to become a construct as defined herein, by use of any number of techniques known or to be provided in the art. The polyepitopic constructs can contain homology to a native sequence in any whole unit integer increment from 70-100%, e.g., 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or, 100 percent.

10 A further embodiment of a composition in accordance with the invention is an antigen presenting cell that comprises one or more epitopes in accordance with the invention. The antigen presenting cell can be a "professional" antigen presenting cell, such as a dendritic cell. The antigen presenting cell can comprise the epitope of the invention by any means known or to be determined in the art. Such means include 15 pulsing of dendritic cells with one or more individual epitopes or with one or more peptides that comprise multiple epitopes, by nucleic acid administration such as ballistic nucleic acid delivery or by other techniques in the art for administration of nucleic acids, including vector-based, e.g. viral vector, delivery of nucleic acids.

Further embodiments of compositions in accordance with the invention comprise 20 nucleic acids that encode one or more peptides of the invention, or nucleic acids which encode a polyepitopic peptide in accordance with the invention. As appreciated by one of ordinary skill in the art, various nucleic acids compositions will encode the same peptide due to the redundancy of the genetic code. Each of these nucleic acid compositions falls within the scope of the present invention. This embodiment of the invention comprises 25 DNA or RNA, and in certain embodiments a combination of DNA and RNA. It is to be appreciated that any composition comprising nucleic acids that will encode a peptide in accordance with the invention or any other peptide based composition in accordance with the invention, falls within the scope of this invention.

It is to be appreciated that peptide-based forms of the invention (as well as the 30 nucleic acids that encode them) can comprise analogs of epitopes of the invention generated using principles already known, or to be known, in the art. Principles related to analoging are now known in the art, and are disclosed herein; moreover, analoging principles (heteroclitic analoging) are disclosed in co-pending application serial number

U.S.S.N. 09/226,775 filed 6 January 1999. Generally the compositions of the invention are isolated or purified.

The invention will be described in greater detail by way of specific examples. The following examples are offered for illustrative purposes, and are not intended to limit 5 the invention in any manner. Those of skill in the art will readily recognize a variety of non-critical parameters that can be changed or modified to yield alternative embodiments in accordance with the invention.

V. EXAMPLES

10 The following examples illustrate identification, selection, and use of immunogenic Class I and Class II peptide epitopes for inclusion in vaccine compositions.

Example 1. HLA Class I and Class II Binding Assays

15 The following example of peptide binding to HLA molecules demonstrates quantification of binding affinities of HLA class I and class II peptides. Binding assays can be performed with peptides that are either motif-bearing or not motif-bearing.

Cell lysates were prepared and HLA molecules purified in accordance with disclosed protocols (Sidney *et al.*, *Current Protocols in Immunology* 18.3.1 (1998); Sidney, *et al.*, *J. Immunol.* 154:247 (1995); Sette, *et al.*, *Mol. Immunol.* 31:813 (1994)).
20 The cell lines used as sources of HLA molecules (Table XXIV) and the antibodies used for the extraction of the HLA molecules from the cell lysates (Table XXV) are also described in these publications.

Epstein-Barr virus (EBV)-transformed homozygous cell lines, fibroblasts, CIR, or 721.221-transfectants were used as sources of HLA class I molecules. These cells were 25 cultured in RPMI 1640 medium supplemented with 2mM L-glutamine (GIBCO, Grand Island, NY), 50µM 2-ME, 100µg/ml of streptomycin, 100U/ml of penicillin (Irvine Scientific) and 10% heat-inactivated FCS (Irvine Scientific, Santa Ana, CA).

Cell lysates were prepared as follows. Briefly, cells were lysed at a concentration of 10^8 cells/ml in 50 mM Tris-HCl, pH 8.5, containing 1% Nonidet P-40 (Fluka 30 Biochemika, Buchs, Switzerland), 150 mM NaCl, 5 mM EDTA, and 2 mM PMSF. Lysates were cleared of debris and nuclei by centrifugation at 15,000 x g for 30min.

HLA molecules were purified from lysates by affinity chromatography. Lysates were passed twice through two pre-columns of inactivated Sepharose CL4-B and protein

A-Sepharose. Next, the lysate was passed over a column of Sepharose CL-4B beads coupled to an appropriate antibody. The anti-HLA column was then washed with 10-column volumes of 10mM Tris-HCL, pH 8.0, in 1% NP-40, PBS, 2-column volumes of PBS, and 2-column volumes of PBS containing 0.4% n-octylglucoside. Finally, MHC molecules were eluted with 50mM diethylamine in 0.15M NaCl containing 0.4% n-octylglucoside, pH 11.5. A 1/25 volume of 2.0M Tris, pH 6.8, was added to the eluate to reduce the pH to ~8.0. Eluates were then concentrated by centrifugation in Centriprep 30 concentrators at 2000 rpm (Amicon, Beverly, MA). Protein content was evaluated by a BCA protein assay (Pierce Chemical Co., Rockford, IL) and confirmed by SDS-PAGE.

A detailed description of the protocol utilized to measure the binding of peptides to Class I and Class II MHC has been published (Sette *et al.*, *Mol. Immunol.* 31:813, 1994; Sidney *et al.*, in *Current Protocols in Immunology*, Margulies, Ed., John Wiley & Sons, New York, Section 18.3, 1998). Briefly, purified MHC molecules (5 to 500nM) were incubated with various unlabeled peptide inhibitors and 1-10nM 125 I-radiolabeled probe peptides for 48h in PBS containing 0.05% Nonidet P-40 (NP40) (or 20% w/v digitonin for H-2 IA assays) in the presence of a protease inhibitor cocktail. The final concentrations of protease inhibitors (each from CalBioChem, La Jolla, CA) were 1 mM PMSF, 1.3 nM 1,10 phenanthroline, 73 μ M pepstatin A, 8mM EDTA, 6mM N-ethylmaleimide (for Class II assays), and 200 μ M N alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK). All assays were performed at pH 7.0 with the exception of DRB1*0301, which was performed at pH 4.5, and DRB1*1601 (DR2w21 β_1) and DRB4*0101 (DRw53), which were performed at pH 5.0. pH was adjusted as described elsewhere (*see* Sidney *et al.*, in *Current Protocols in Immunology*, Margulies, Ed., John Wiley & Sons, New York, Section 18.3, 1998).

Following incubation, MHC-peptide complexes were separated from free peptide by gel filtration on 7.8 mm x 15 cm TSK200 columns (TosoHaas 16215, Montgomeryville, PA), eluted at 1.2 mls/min with PBS pH 6.5 containing 0.5% NP40 and 0.1% NaN₃. Because the large size of the radiolabeled peptide used for the DRB1*1501 (DR2w2 β_1) assay makes separation of bound from unbound peaks more difficult under these conditions, all DRB1*1501 (DR2w2 β_1) assays were performed using a 7.8mm x 30cm TSK2000 column eluted at 0.6 mls/min. The eluate from the TSK columns was passed through a Beckman 170 radioisotope detector, and radioactivity was plotted and

integrated using a Hewlett-Packard 3396A integrator, and the fraction of peptide bound was determined.

Radiolabeled peptides were iodinated using the chloramine-T method. Representative radiolabeled probe peptides utilized in each assay, and its assay specific IC₅₀ nM, are summarized in Tables IV and V. Typically, in preliminary experiments, each MHC preparation was titered in the presence of fixed amounts of radiolabeled peptides to determine the concentration of HLA molecules necessary to bind 10-20% of the total radioactivity. All subsequent inhibition and direct binding assays were performed using these HLA concentrations.

Since under these conditions [label]<[HLA] and IC₅₀≥[HLA], the measured IC₅₀ values are reasonable approximations of the true K_D values. Peptide inhibitors are typically tested at concentrations ranging from 120 µg/ml to 1.2 ng/ml, and are tested in two to four completely independent experiments. To allow comparison of the data obtained in different experiments, a relative binding figure is calculated for each peptide by dividing the IC₅₀ of a positive control for inhibition by the IC₅₀ for each tested peptide (typically unlabeled versions of the radiolabeled probe peptide). For inter-experiment comparisons, relative binding values are compiled. These values can subsequently be converted back into IC₅₀ nM values by dividing the IC₅₀ nM of the positive controls for inhibition by the relative binding of the peptide of interest. This method of data compilation has proven to be the most accurate and consistent for comparing peptides that have been tested on different days, or with different lots of purified MHC.

Because the antibody used for HLA-DR purification (LB3.1) is α-chain specific, β₁ molecules are not separated from β₃ (and/or β₄ and β₅) molecules. The β₁ specificity of the binding assay is obvious in the cases of DRB1*0101 (DR1), DRB1*0802 (DR8w2), and DRB1*0803 (DR8w3), where no β₃ is expressed. It has also been demonstrated for DRB1*0301 (DR3) and DRB3*0101 (DR52a), DRB1*0401 (DR4w4), DRB1*0404 (DR4w14), DRB1*0405 (DR4w15), DRB1*1101 (DR5), DRB1*1201 (DR5w12), DRB1*1302 (DR6w19) and DRB1*0701 (DR7). The problem of β chain specificity for DRB1*1501 (DR2w2β₁), DRB5*0101 (DR2w2β₂), DRB1*1601 (DR2w21β₁), DRB5*0201 (DR51Dw21), and DRB4*0101 (DRw53) assays is circumvented by the use of fibroblasts. Development and validation of assays with regard to DRβ molecule specificity have been described previously (see, e.g., Southwood *et al.*, *J. Immunol.* 160:3363-3373, 1998).

Binding assays as outlined above may be used to analyze supermotif and/or motif-bearing epitopes as, for example, described in Example 2.

Example 2. Identification of HLA Supermotif- and Motif-Bearing CTL Candidate

5 Epitopes

Vaccine compositions of the invention may include multiple epitopes that comprise multiple HLA supermotifs or motifs to achieve broad population coverage. This example illustrates the identification of supermotif- and motif-bearing epitopes for the inclusion in such a vaccine composition. Calculation of population coverage was 10 performed using the strategy described below.

Computer searches and algorithms for identification of supermotif and/or motif-bearing epitopes

The searches performed to identify the motif-bearing peptide sequences in 15 Examples 2 and 5 employed the protein sequence data from HIV-1 clade B virus strains that were available in the 1994 Los Alamos database.

Computer searches for epitopes bearing HLA Class I or Class II supermotifs or motifs were performed as follows. All translated HIV protein sequences were analyzed using a text string search software program, e.g., MotifSearch 1.4 (D. Brown, San Diego) 20 to identify potential peptide sequences containing appropriate HLA binding motifs; alternative programs are readily produced in accordance with information in the art in view of the motif/supermotif disclosure herein. Furthermore, such calculations can be made mentally. Identified A2-, A3-, and DR-supermotif sequences were scored using polynomial algorithms to predict their capacity to bind to specific HLA-Class I or Class II molecules. These polynomial algorithms take into account both extended and refined 25 motifs (that is, to account for the impact of different amino acids at different positions), and are essentially based on the premise that the overall affinity (or ΔG) of peptide-HLA molecule interactions can be approximated as a linear polynomial function of the type:

$$\text{"}\Delta G\text{"} = a_{1i} \times a_{2i} \times a_{3i} \dots \times a_{ni}$$

30 where a_{ji} is a coefficient which represents the effect of the presence of a given amino acid (j) at a given position (i) along the sequence of a peptide of n amino acids. The crucial assumption of this method is that the effects at each position are essentially independent of each other (i.e., independent binding of individual side-chains). When residue j occurs

at position i in the peptide, it is assumed to contribute a constant amount j_i to the free energy of binding of the peptide irrespective of the sequence of the rest of the peptide. This assumption is justified by studies from our laboratories that demonstrated that peptides are bound to MHC and recognized by T cells in essentially an extended 5 conformation (data omitted herein).

The method of derivation of specific algorithm coefficients has been described in Gulukota *et al.*, *J. Mol. Biol.* 267:1258-126, 1997; (see also Sidney *et al.*, *Human Immunol.* 45:79-93, 1996; and Southwood *et al.*, *J. Immunol.* 160:3363-3373, 1998). Briefly, for all i positions, anchor and non-anchor alike, the geometric mean of the 10 average relative binding (ARB) of all peptides carrying j is calculated relative to the remainder of the group, and used as the estimate of j_i . For Class II peptides, if multiple alignments are possible, only the highest scoring alignment is utilized, following an iterative procedure. To calculate an algorithm score of a given peptide in a test set, the ARB values corresponding to the sequence of the peptide are multiplied. If this product 15 exceeds a chosen threshold, the peptide is predicted to bind. Appropriate thresholds are chosen as a function of the degree of stringency of prediction desired.

Selection of HLA-A2 supertype cross-reactive peptides

Complete protein sequences from nine HIV structural and regulatory proteins 20 were aligned, then scanned, utilizing motif identification software, to identify conserved 9- and 10-mer sequences containing the HLA-A2-supermotif main anchor specificity. The analysis included all isolates in the 1994 Los Alamos database. The conservation criteria varied according to antigen: greater than 80% of clade B isolates for gag, pol, env; greater than 70% for nef, rev, tat, vif, vpr; great than 60% for vpu.)

25 A total of 233 conserved, HLA-A2 supermotif-positive sequences were identified. The peptides corresponding to the sequences were then synthesized and tested for their capacity to bind purified HLA-A*0201 molecules *in vitro* (HLA-A*0201 is considered a prototype A2 supertype molecule). Thirty peptides bound A*0201 with IC₅₀ values \leq 500 nM; of these 30, 5 bound with high binding affinities (IC₅₀ values \leq 50 nM) and 25 bound 30 with intermediate binding affinities, in the 50-500 nM range (Table XXVII).

The thirty A*0201-binding peptides were subsequently tested for the capacity to bind to additional A2-supertype molecules (A*0202, A*0203, A*0206, and A*6802). As

shown in Table XXVII, 20 of the 30 peptides were found to be A2-supertype cross-reactive binders, binding at least 3 of the 5 A2-supertype alleles tested.

Selection of HLA-A3 supermotif-bearing epitopes

5 The HIV protein sequences scanned above were also examined for the presence of peptides with the HLA-A3-supermotif primary anchors. A total of 353 conserved 9- or 10-mer motif-containing sequences were identified. The corresponding peptides were synthesized and tested for binding to HLA-A*0301 and HLA-A*1101 molecules, the two most prevalent A3-supertype alleles. Sixty-six of the peptides were found to bind one of
10 the two alleles with binding affinities of ≤ 500 nM (Table XXVIII). These peptides were then tested for binding cross-reactivity to the other common A3-supertype alleles (A*3101, A*3301, and A*6801). Twenty one of the peptides bound at least three of the five HLA-A3-supertype molecules tested (Table XXVIII). Table XXVIII also includes two 11-mer peptides that were not selected using the search criteria outlined above, but
15 have been shown to be A3-supertype cross-reactive binders.

Selection of HLA-B7 supermotif bearing epitopes

When the same HIV target antigen protein sequences were also analyzed for the presence of conserved 9- or 10-mer peptides with the HLA-B7-supermotif, 54 sequences
20 were identified. The corresponding peptides were synthesized and tested for binding to HLA-B*0702, the most common B7-supertype allele (*i.e.*, the prototype B7 supertype allele). Sixteen peptides bound B*0702 with IC₅₀ of ≤ 500 nM (Table XXIX). These peptides were then tested for binding to other common B7-supertype molecules (B*3501, B*5101, B*5301, and B*5401). As shown in Table XXIX, eight of the sixteen peptides
25 were capable of binding to three or more of the five B7-supertype alleles tested.

Selection of A1 and A24 motif-bearing epitopes

To further increase population coverage, HLA-A1 and -A24 epitopes can also be incorporated into vaccine constructs. An analysis of the protein sequence data from the
30 HIV target antigens utilized above is also performed to identify HLA-A1- and A24-motif-containing conserved sequences.

Five conserved HIV-derived peptides that bind to A*0101 with an IC₅₀ of 500 nM or less (Table XXX) have been identified. Eleven conserved HLA-A*2402-binding HIV-

derived peptides have also been identified, five of which bind with an IC₅₀ of 100 nM or less (Table XXXI).

Example 3. Confirmation of Immunogenicity

5 *Evaluation of A*0201 immunogenicity*

It has been shown that CTL induced in A*0201/K^b transgenic mice exhibit specificity similar to CTL induced in the human system (*see, e.g.*, Vitiello *et al.*, *J. Exp. Med.* 173:1007-1015, 1991; Wentworth *et al.*, *Eur. J. Immunol.* 26:97-101, 1996). Accordingly, these mice were used to evaluate the immunogenicity of 19 of the 20 A2-supertype cross-reactive peptides identified in Example 2 above.

10 CTL induction in transgenic mice following peptide immunization has been described (Vitiello *et al.*, *J. Exp. Med.* 173:1007-1015, 1991; Alexander *et al.*; *J. Immunol.* 159:4753-4761, 1997). In these studies, mice were injected subcutaneously at the base of the tail with each peptide (50 µg/mouse) emulsified in IFA in the presence of 15 an excess of an IA^b-restricted helper peptide (140 µg/mouse) (HBV core 128-140, Sette *et al.*, *J. Immunol.* 153:5586-5592, 1994). Eleven days after injection, splenocytes were incubated in the presence of peptide-loaded syngenic LPS blasts. After six days, cultures were assayed for cytotoxic activity using peptide-pulsed targets. The data, summarized in Table XXXII, indicate that eight peptides were capable of inducing primary CTL 20 responses in A*0201/K^b transgenic mice. (For these studies, a peptide was considered positive if it induced CTL (L.U. 30/10⁶ cells ≥2 in at least two transgenic animals (Wentworth *et al.*, *Eur. J. Immunol.* 26:97-101, 1996).

25 The cross-reactive candidate CTL epitopes were also tested for the ability to stimulate recall CTL responses HIV-infected patients. Briefly, PBMC from patients infected with HIV were cultured in the presence of 10 µg/ml of synthetic peptide. After 7 and 14 days, the cultures were restimulated with peptide. The cultures were assayed for cytolytic activity on day 21 using target cells pulsed with the specific peptide in a ⁵¹Cr release assay. These data are also summarized in Table XXXII. As shown, 15 of the 19 peptides analyzed were recognized in recall CTL responses using PBMC from HIV- 30 infected patients.

The set of peptides screened for immunogenicity contained two redundant peptides, 1261.14 and 1261.04, which differ in length by a single amino acid. While both peptides exhibit supertype degenerate binding, only the short of the two peptides

exhibited immunogenicity. One supertype peptide not tested, 1211.09, has been reported to be recognized by CTL lines isolated from HIV-infected patients.

In summary, 16 A2-supertype cross-reactive peptides have been identified that are immunogenic in humans; 53% of these peptides are also recognized in HLA-A2 transgenic mice. The sixteen peptides represent epitopes from five HIV antigens: env, gag, pol, vpr, and nef.

*Evaluation of A*03/A11 immunogenicity*

Twenty one of the A3-supertype cross-reactive peptides identified in Example 2 above were evaluated for immunogenicity (Table XXXIII). Peptides were screened using HLA-A11/K^b transgenic mice, using the protocol described above for HLA-A2 transgenic mice (Alexander *et al.*, *J. Immunol.* 159:4753-4761, 1997) and using PBMC obtained from HIV-infected patients to test for the ability to stimulate CTL recall responses. Ten peptides that were capable of inducing CTL in HLA-A11 transgenic mice were identified.

Three peptides, 966.01, 940.03, and 1069.47, have been shown by collaborators to be immunogenic in HIV-infected patients. Peptides 966.01 and 1069.47 also induced CTL responses in transgenic mice, peptide 940.03 exhibited immunogenicity in patients only.

In summary, 11 of 23 A3-supertype cross-reactive binding peptides were found to be immunogenic in either HLA-A11 transgenic mice or HIV-infected patients. These peptides represent epitopes from three HIV antigens: pol, env, and nef.

Evaluation of B7 immunogenicity

Immunogenicity screening of the B7-supertype cross-reactive binding peptides identified in Example 2 is used to evaluate immunogenicity using HLA-B7 transgenic mice and PBMC from in HIV-infected patients in a manner analogous to the evaluation of A2-and A3-supermotif-bearing peptides. Three of these peptides have been reported as being immunogenic in HIV-infected patients.

30 Example 4. Implementation of the Extended Supermotif to Improve the Binding Capacity of Native Epitopes by Creating Analogs

HLA motifs and supermotifs (comprising primary and/or secondary residues) are useful in the identification and preparation of highly cross-reactive native peptides, as demonstrated herein. Moreover, the definition of HLA motifs and supermotifs also

allows one to engineer highly cross-reactive epitopes by identifying residues within a native peptide sequence which can be analoged, or "fixed" to confer upon the peptide certain characteristics, e.g. greater cross-reactivity within the group of HLA molecules that comprise a supertype, and/or greater binding affinity for some or all of those HLA 5 molecules. Examples of analog peptides that exhibit modulated binding affinity are set forth in this example.

Analoging at Primary Anchor Residues

As shown in Example 2, twenty HIV-derived, A2-supertype-restricted epitopes 10 were identified. Peptide engineering strategies are implemented to further increase the cross-reactivity of the candidate epitopes identified above which bind 3/5 of the A2 supertype alleles tested. On the basis of the data disclosed, e.g., in related and co-pending U.S.S.N 09/226,775, the main anchors of A2-supermotif-bearing peptides are altered, for example, to introduce a preferred L, I, V, or M at position 2, and I or V at the C-terminus.

15 To analyze the cross-reactivity of the analog peptides, each engineered analog is initially tested for binding to the prototype A2 supertype allele A*0201, then, if A*0201 binding capacity is maintained, for A2-supertype cross-reactivity.

20 Alternatively, a peptide can be tested for binding to one or all supertype members and then analogued to modulate binding affinity to any one (or more) of the supertype members to add population coverage.

Similarly, analogs of HLA-A3 supermotif-bearing epitopes are also generated. For example, peptides binding to 3/5 of the A3-supertype molecules can be engineered at 25 primary anchor residues to possess a preferred residue (V, S, M, or A) at position 2.

The analog peptides are then tested for the ability to bind A*03 and A*11 (prototype A3 supertype alleles). Typically, those peptides that demonstrate ≤ 500 nM 30 binding capacity are then tested for A3-supertype cross-reactivity.

Similarly to the A2- and A3- motif bearing peptides, B7 supermotif-bearing peptides are also analoged. For example, peptides binding 3 or more B7-supertype alleles are modulated to achieve increased cross-reactive binding. B7 supermotif-bearing 35 peptides can, for example, be engineered to possess a preferred residue (V, I, L, or F) at the C-terminal primary anchor position, as demonstrated by Sidney *et al.* (*J. Immunol.* 157:3480-3490, 1996).

Analoging at Secondary Anchor Residues

Secondary anchor residues defined for HLA motifs and/or supermotifs are also used to engineer peptide with modified binding activity, typically increased cross-reactive binding and/or increased affinity. For example, the binding capacity of a B7 supermotif-bearing peptide representing a discreet single amino acid substitution at position 1 is analyzed. A peptide such as Peptide 1261.01 (Table XXIX), can, for example, be analogued to substitute L for F at position 1 and subsequently be evaluated for modulated binding activity, e.g., increased binding affinity/ and or increased cross-reactivity. This procedure identifies analoged peptides with modified binding properties.

Engineered analogs with improved binding capacity or cross-reactivity are tested for immunogenicity in HLA-B7-transgenic mice, following for example, IFA immunization or lipopeptide immunization. The analoged peptides are typically additionally tested for the ability to stimulate a recall response using PBMC from HIV-infected patients.

Thus, by the use of even single amino acid substitutions, it is possible to increase the binding affinity and/or cross-reactivity of peptide ligands for HLA supertype molecules.

Example 5. Identification of HIV-derived sequences with HLA-DR binding motifs

Peptide epitopes bearing an HLA class II supermotif or motif are identified as outlined below using methodology similar to that described in Examples 1-3.

Selection of HLA-DR-supermotif-bearing epitopes.

To identify HIV-derived, HLA class II HTL epitopes, the protein sequences from the same HIV antigens used for the identification of HLA Class I supermotif/motif sequences were analyzed for the presence of sequences bearing an HLA-DR-motif or supermotif. Specifically, 15-mer sequences were selected comprising a DR-supermotif, further comprising a 9-mer core, and three-residue N- and C-terminal flanking regions (15 amino acids total).

Protocols for predicting peptide binding to DR molecules have been developed (Southwood *et al.*, *J. Immunol.* 160:3363-3373, 1998). These protocols, specific for individual DR molecules, allow the scoring, and ranking, of 9-mer core regions. Each protocol not only scores peptide sequences for the presence of DR-supermotif primary anchors (i.e., at position 1 and position 6) within a 9-mer core, but additionally evaluates

sequences for the presence of secondary anchors. Using allele specific selection tables (see, e.g., Southwood *et al.*, *ibid.*), it has been found that these protocols efficiently select peptide sequences with a high probability of binding a particular DR molecule. Additionally, it has been found that performing these protocols in tandem, specifically 5 those for DR1, DR4w4, and DR7, can efficiently select DR cross-reactive peptides.

The HIV-derived peptides identified above were tested for their binding capacity for various common HLA-DR molecules. All peptides were initially tested for binding to the DR molecules in the primary panel: DR1, DR4w4, and DR7. Peptides binding at least 2 of these 3 DR molecules were then tested for binding to DR2w2 β 1, DR2w2 β 2, 10 DR6w19, and DR9 molecules in secondary assays. Finally, peptides binding at least 2 of the 4 secondary panel DR molecules, and thus cumulatively at least 4 of 7 different DR molecules, were screened for binding to DR4w15, DR5w11, and DR8w2 molecules in tertiary assays. Peptides binding at least 7 of the 10 DR molecules comprising the primary, secondary, and tertiary screening assays were considered cross-reactive DR 15 binders. The composition of these screening panels, and the phenotypic frequency of associated antigens, are shown in Table XXXIV.

Thirteen HIV-derived peptides were found to bind at least 7 of 10 common HLA-DR alleles. The sequence of these 13 peptides, and their binding capacity for each assay in the primary through tertiary panels, are shown in Table XXXV. This set of peptide 20 epitopes is predominantly derived from pol, but also includes epitopes from gag and env.

Selection of DR3 motif peptides

Because HLA-DR3 is an allele that is prevalent in Caucasian, Black, and Hispanic populations, DR3 binding capacity is an important criterion in the selection of HTL 25 epitopes. However, data generated previously indicated that DR3 only rarely cross-reacts with other DR alleles (Sidney *et al.*, *J. Immunol.* 149:2634-2640, 1992; Geluk *et al.*, *J. Immunol.* 152:5742-5748, 1994; Southwood *et al.*, *J. Immunol.* 160:3363-3373, 1998). This is not entirely surprising in that the DR3 peptide-binding motif appears to be distinct 30 from the specificity of most other DR alleles. For maximum efficiency in developing vaccine candidates it would be desirable for DR3 motifs to be clustered in proximity with DR supermotif regions. Thus, peptides shown to be candidates may also be assayed for their DR3 binding capacity. However, in view of the distinct binding specificity of the

DR3 motif, peptides binding only to DR3 can also be considered as candidates for inclusion in a vaccine formulation.

To efficiently identify peptides that bind DR3, the nine target HIV antigens were analyzed for conserved sequences carrying one of the two DR3 specific binding motifs 5 reported by Geluk *et al.* (*J. Immunol.* 152:5742-5748, 1994). The corresponding peptides were then synthesized and tested for the ability to bind DR3 with an affinity of 1 μ M or better, *i.e.*, less than 1 μ M. Five peptides were found that met this binding criterion (Table XXXVI), and thereby qualify as HLA class II high affinity binders. Of these five, four represent epitopes from pol, and one is from vpu.

10 DR3 binding epitopes can also be included in vaccine compositions.

Example 6. Immunogenicity of HIV-derived HTL epitopes

Immunogenicity of HTL epitopes is typically evaluated in a manner analogous to the determination of immunogenicity of CTL epitopes using appropriate transgenic mice 15 models and/or assessing the ability to stimulate recall responses using PBMC isolated from HIV-infected individuals.

The immunogenicity of 11 of the 13 HLA class II DR-supermotif binding epitopes identified in Example 5 was evaluated in a study testing PBMC isolated from HIV-infected individuals for recall proliferative responses. All eleven of these peptides were 20 found to stimulate DR-restricted proliferative responses (Table XXXVII).

DR3-motif bearing peptides are typically evaluated in a similar manner. Such studies demonstrate the immunogenicity of class II epitopes derived from HIV proteins.

Example 7. Calculation of phenotypic frequencies of HLA-supertypes in various ethnic backgrounds to determine breadth of population coverage

This example illustrates the assessment of the breadth of population coverage of a vaccine composition comprised of multiple epitopes comprising multiple supermotifs and/or motifs.

In order to analyze population coverage, gene frequencies of HLA alleles were 30 determined. Gene frequencies for each HLA allele were calculated from antigen or allele frequencies utilizing the binomial distribution formulae $gf=1-(SQRT(1-af))$ (see, *e.g.*, Sidney *et al.*, *Human Immunol.* 45:79-93, 1996). To obtain overall phenotypic frequencies, cumulative gene frequencies were calculated, and the cumulative antigen frequencies derived by the use of the inverse formula [$af=1-(1-Cgf)^2$].

Where frequency data was not available at the level of DNA typing, correspondence to the serologically defined antigen frequencies was assumed. To obtain total potential supertype population coverage no linkage disequilibrium was assumed, and only alleles confirmed to belong to each of the supertypes were included (minimal 5 estimates). Estimates of total potential coverage achieved by inter-loci combinations were made by adding to the A coverage the proportion of the non-A covered population that could be expected to be covered by the B alleles considered (e.g., total=A+B*(1-A)). Confirmed members of the A3-like supertype are A3, A11, A31, A*3301, and A*6801. Although the A3-like supertype may also include A34, A66, and A*7401, these alleles 10 were not included in overall frequency calculations. Likewise, confirmed members of the A2-like supertype family are A*0201, A*0202, A*0203, A*0204, A*0205, A*0206, A*0207, A*6802, and A*6901. Finally, the B7-like supertype-confirmed alleles are: B7, B*3501-03, B51, B*5301, B*5401, B*5501-2, B*5601, B*6701, and B*7801 (potentially 15 also B*1401, B*3504-06, B*4201, and B*5602).

Population coverage achieved by combining the A2-, A3- and B7-supertypes is approximately 86% in five major ethnic groups (see Table XXI). Coverage may be extended by including peptides bearing the A1 and A24 motifs. On average, A1 is present in 12% and A24 in 29% of the population across five different major ethnic groups (Caucasian, North American Black, Chinese, Japanese, and Hispanic). Together, 20 these alleles are represented with an average frequency of 39% in these same ethnic populations. The total coverage across the major ethnicities when A1 and A24 are combined with the coverage of the A2-, A3- and B7-supertype alleles is >95%. An analogous approach can be used to estimate population coverage achieved with combinations of class II motif-bearing epitopes.

25

Summary of preferred HLA class I epitopes

In summary, on the basis of the data presented in the above examples, 47 immunogenic and/or cross-reactive binding preferred CTL peptide epitopes derived from HIV were identified (see, Table XXXVIII). Of these 47 epitopes, 6 are derived from gag, 30 22 from pol, 10 from env, 3 from nef, and one epitope each from rev, vif, and vpr. This set of epitopes includes 16 HLA-A2 supermotif-bearing epitopes (two from gag, eight from pol, three from env, two from vpr, and one from nef), all of which are recognized in HIV-infected patients. The 10 HLA-A3 supermotif-bearing candidate epitopes include 6 pol-derived epitopes, two env-derived epitopes and one epitope each from gag, vif, and

nef. With the exception of peptides 1273.08 and 1273.03, all of the epitopes are immunogenic in HLA transgenic mice. The two additional peptides are included to enhance antigen diversity.

The CTL epitope set also includes 8 B7-restricted peptides. Of these eight, 3
5 epitopes have been reported as immunogenic in patients. Five B7-supermotif-bearing peptides were included as candidates based on supertype binding. Immunogenicity studies in humans (e.g., Bertoni *et al.*, *J. Clin. Invest.* 100:503, 1997; Doolan *et al.*, *Immunity* 7:97, 1997; and Threlkeld *et al.*, *J. Immunol.* 159:1648, 1997) have shown that highly cross-reactive binding peptides are almost always recognized as epitopes. Given
10 these results, and in view of the limited immunogenicity data available for B7 supermotif-bearing peptides, the use of B7-supertype binding affinity is an important selection criterion in identifying candidate epitopes for inclusion in a vaccine that is immunogenic in a diverse population.

Similarly, A1- and A24-restricted peptides were included on the basis of both
15 demonstrated immunogenicity of the candidate epitopes and on the basis of binding affinity. Five of the preferred epitopes have been reported to be recognized in recall CTL responses from HIV-infected patients. Because a high percentage of the peptides with binding affinities \leq 100 nM are found to be immunogenic, four A24-restricted peptides were included as vaccine candidates. An additional five A24-restricted epitopes and four
20 A1-restricted epitopes that bound their respective alleles with an IC₅₀ of \leq 500 nM were also included to provide a greater degree of population coverage.

With these 47 CTL epitopes, an average population coverage is predicted to be greater than 95% in each of five major ethnic populations. Using the game theory Monte Carlo simulation analysis, which is known in the art (see e.g., Osborne, M.J. and
25 Rubinstein, A. "A course in game theory" MIT Press, 1994), it is estimated that 90% of the individuals in a population comprised of the Caucasian, North American Black, Japanese, Chinese, and Hispanic ethnic groups would recognize 7 or more of the vaccine epitopes described herein (Figure 1)

30 *Summary of preferred HLA class II epitopes*

A list of preferred HIV-derived HTL epitopes for vaccine compositions is summarized in Table XXXIX. The set of HTL epitopes includes 13 DR supermotif-bearing peptides and 5 DR3 motif-bearing peptides. The majority of the epitopes are

derived from pol, 3 are from gag, 2 are from env and one is derived from vpu. The total estimated population coverage represented by this panel of HTL epitopes is estimated to be greater than 91% in each of five major ethnic groups (Table XL).

5 Example 8. CTL Recognition Of Endogenous Processed Antigens After Priming

This example determines that CTL induced by native or analoged peptide epitopes identified and selected as described in Examples 1-6 recognize endogenously synthesized, *i.e.*, native antigens.

Effector cells isolated from transgenic mice that are immunized with peptide epitopes as in Example 3, for example HLA-A2 supermotif-bearing epitopes, are re-stimulated *in vitro* using peptide-coated stimulator cells. Six days later, effector cells are assayed for cytotoxicity and the cell lines that contain peptide-specific cytotoxic activity are further re-stimulated. An additional six days later, these cell lines are tested for cytotoxic activity on ^{51}Cr labeled Jurkat-A2.1/K^b target cells in the absence or presence of peptide, and also tested on ^{51}Cr labeled target cells bearing the endogenously synthesized antigen, *i.e.* cells that are stably transfected with HIV expression vectors.

The result will demonstrate that CTL lines obtained from animals primed with peptide epitope recognize endogenously synthesized HIV antigen. The choice of transgenic mouse model to be used for such an analysis depends upon the epitope(s) that is being evaluated. In addition to HLA-A*0201/K^b transgenic mice, several other transgenic mouse models including mice with human A11, which may also be used to evaluate A3 epitopes, and B7 alleles have been characterized and others (*e.g.*, transgenic mice for HLA-A1 and A24) are being developed. HLA-DR1 and HLA-DR3 mouse models have also been developed, which may be used to evaluate HTL epitopes.

25

Example 9. Activity Of CTL-HTL Conjugated Epitopes In Transgenic Mice

This example illustrates the induction of CTLs and HTLs in transgenic mice by use of a HIV CTL/HTL peptide conjugate whereby the vaccine composition comprises peptides administered to an HIV-infected patient or an individual at risk for HIV. The peptide composition can comprise multiple CTL and/or HTL epitopes. This analysis demonstrates enhanced immunogenicity that can be achieved by inclusion of one or more HTL epitopes in a vaccine composition. Such a peptide composition can comprise an HTL epitope conjugated to a preferred CTL epitope containing, for example, at least one CTL epitope selected from Table XXVI-XXIX, or an analog of that epitope. The HTL

epitope is, for example, selected from Table XXXII. The peptides may be lipidated, if desired.

Immunization procedures: Immunization of transgenic mice is performed as described (Alexander *et al.*, *J. Immunol.* 159:4753-4761, 1997). For example, A2/K^b mice, which are transgenic for the human HLA A2.1 allele and are useful for the assessment of the immunogenicity of HLA-A*0201 motif- or HLA-A2 supermotif-bearing epitopes, are primed subcutaneously (base of the tail) with a 0.1 ml of peptide in Incomplete Freund's Adjuvant, or if the peptide composition is a lipidated CTL/HTL conjugate, in DMSO/saline or if the peptide composition is a polypeptide, in PBS or Incomplete Freund's Adjuvant. Seven days after priming, splenocytes obtained from these animals are restimulated with syngenic irradiated LPS-activated lymphoblasts coated with peptide.

Cell lines: Target cells for peptide-specific cytotoxicity assays are Jurkat cells transfected with the HLA-A2.1/K^b chimeric gene (e.g., Vitiello *et al.*, *J. Exp. Med.* 15 173:1007, 1991).

In vitro CTL activation: One week after priming, spleen cells (30x10⁶ cells/flask) are co-cultured at 37°C with syngeneic, irradiated (3000 rads), peptide coated lymphoblasts (10x10⁶ cells/flask) in 10 ml of culture medium/T25 flask. After six days, effector cells are harvested and assayed for cytotoxic activity.

Assay for cytotoxic activity: Target cells (1.0 to 1.5x10⁶) are incubated at 37°C in the presence of 200 µl of ⁵¹Cr. After 60 minutes, cells are washed three times and resuspended in R10 medium. Peptide is added where required at a concentration of 1 µg/ml. For the assay, 10⁴ ⁵¹Cr-labeled target cells are added to different concentrations of effector cells (final volume of 200 µl) in U-bottom 96-well plates. After a 6 hour incubation period at 37°C, a 0.1 ml aliquot of supernatant is removed from each well and radioactivity is determined in a Micromedic automatic gamma counter. The percent specific lysis is determined by the formula: percent specific release = 100 x (experimental release - spontaneous release)/(maximum release - spontaneous release). To facilitate comparison between separate CTL assays run under the same conditions, % ⁵¹Cr release data is expressed as lytic units/10⁶ cells. One lytic unit is arbitrarily defined as the number of effector cells required to achieve 30% lysis of 10,000 target cells in a 6 hour ⁵¹Cr release assay. To obtain specific lytic units/10⁶, the lytic units/10⁶ obtained in the absence of peptide is subtracted from the lytic units/10⁶ obtained in the presence of peptide. For example, if 30% ⁵¹Cr release is obtained at the effector (E): target (T) ratio

of 50:1 (i.e., 5×10^5 effector cells for 10,000 targets) in the absence of peptide and 5:1 (i.e., 5×10^4 effector cells for 10,000 targets) in the presence of peptide, the specific lytic units would be: $[(1/50,000)-(1/500,000)] \times 10^6 = 18$ LU.

The results are analyzed to assess the magnitude of the CTL responses of animals
5 injected with the immunogenic CTL/HTL conjugate vaccine preparation and are compared to the magnitude of the CTL response achieved using the CTL epitope as outlined in Example 3. Analyses similar to this may be performed to evaluate the immunogenicity of peptide conjugates containing multiple CTL epitopes and/or multiple HTL epitopes. In accordance with these procedures it is found that a CTL response is
10 induced, and concomitantly that an HTL response is induced upon administration of such compositions.

Example 10. Selection of CTL and HTL epitopes for inclusion in an HIV-specific vaccine.

15 This example illustrates the procedure for the selection of peptide epitopes for vaccine compositions of the invention. The peptides in the composition can be in the form of a nucleic acid sequence, either single or one or more sequences (i.e., minigene) that encodes peptide(s), or can be single and/or polyepitopic peptides.

20 The following principles are utilized when selecting an array of epitopes for inclusion in a vaccine composition. Each of the following principles is balanced in order to make the selection.

Epitopes are selected which, upon administration, mimic immune responses that correlate with virus clearance. For example, if it has been observed that patients who clear HIV generate an immune response to at least 3 epitopes on at least one HIV antigen,
25 then 3-4 epitopes should be included for HLA class I. A similar rationale is used to determine HLA class II epitopes.

When selecting an array of HIV epitopes, it is preferred that at least some of the epitopes are derived from early and late proteins. The early proteins of HIV are expressed when the virus is replicating, either following acute or dormant infection.
30 Therefore, it is particularly preferred to use epitopes from early stage proteins to alleviate disease manifestations at the earliest stage possible.

Epitopes are often selected that have a binding affinity of an IC₅₀ of 500 nM or less for an HLA class I molecule, or for class II, an IC₅₀ of 1000 nM or less.

Sufficient supermotif bearing peptides, or a sufficient array of allele-specific motif bearing peptides, are selected to give broad population coverage. For example, epitopes are selected to provide at least 80% population coverage. A Monte Carlo analysis, a statistical evaluation known in the art, can be employed to assess breadth, or redundancy, 5 of population coverage.

When creating a polyepitopic compositions, e.g. a minigene, it is typically desirable to generate the smallest peptide possible that encompasses the epitopes of interest. The principles employed are similar, if not the same, as those employed when selecting a peptide comprising nested epitopes.

10 In cases where the sequences of multiple variants of the same target protein are available, potential peptide epitopes can also be selected on the basis of their conservancy. For example, a criterion for conservancy may define that the entire sequence of an HLA class I binding peptide or the entire 9-mer core of a class II binding peptide be conserved in a designated percentage of the sequences evaluated for a specific 15 protein antigen.

Peptide epitopes for inclusion in vaccine compositions are, for example, selected from those listed in Tables XXVI-XXIX and Table XXXII. A vaccine composition comprised of selected peptides, when administered, is safe, efficacious, and elicits an immune response similar in magnitude of an immune response that clears an acute HIV 20 infection.

Example 11. Construction of Minigene Multi-Epitope DNA Plasmids

This example provides general guidance for the construction of a minigene expression plasmid. Minigene plasmids may, of course, contain various configurations of 25 CTL and/or HTL epitopes or epitope analogs as described herein. Expression plasmids have been constructed and evaluated as described, for example, in co-pending U.S.S.N. 09/311,784 filed 5/13/99 and in Ishioka *et al.*, *J. Immunol.* 162:3915-3925, 1999. An example of such a plasmid for the expression of HIV epitopes is shown in Figure 2, which illustrates the orientation of HIV peptide epitopes in a minigene construct.

30 A minigene expression plasmid typically includes multiple CTL and HTL peptide epitopes. In the present example, HLA-A2, -A3, -B7 supermotif-bearing peptide epitopes and HLA-A1 and -A24 motif-bearing peptide epitopes are used in conjunction with DR supermotif-bearing epitopes and/or DR3 epitopes (Figure 2). Preferred epitopes are identified, for example, in Tables XXVI-XXIX and XXXII. HLA class I supermotif or

motif-bearing peptide epitopes derived from multiple HIV antigens, are selected such that multiple supermotifs/motifs are represented to ensure broad population coverage.

Similarly, HLA class II epitopes are selected from multiple HIV antigens to provide broad population coverage, *i.e.* both HLA DR-1-4-7 supermotif-bearing epitopes and

5 HLA DR-3 motif-bearing epitopes are selected for inclusion in the minigene construct. The selected CTL and HTL epitopes are then incorporated into a minigene for expression in an expression vector.

Such a construct may additionally include sequences that direct the HTL epitopes to the endoplasmic reticulum. For example, the Ii protein may be fused to one or more

10 HTL epitopes as described in co-pending application U.S.S.N. 09/311,784 filed 5/13/99, wherein the CLIP sequence of the Ii protein is removed and replaced with an HLA class II epitope sequence so that HLA class II epitope is directed to the endoplasmic reticulum, where the epitope binds to an HLA class II molecules.

This example illustrates the methods to be used for construction of a minigene-bearing expression plasmid. Other expression vectors that may be used for minigene compositions are available and known to those of skill in the art.

The minigene DNA plasmid contains a consensus Kozak sequence and a consensus murine kappa Ig-light chain signal sequence followed by CTL and/or HTL epitopes selected in accordance with principles disclosed herein. The construct can also

20 include, for example, The sequence encodes an open reading frame fused to the Myc and His antibody epitope tag coded for by the pcDNA 3.1 Myc-His vector.

Overlapping oligonucleotides, for example eight oligonucleotides, averaging approximately 70 nucleotides in length with 15 nucleotide overlaps, are synthesized and HPLC-purified. The oligonucleotides encode the selected peptide epitopes as well as

25 appropriate linker nucleotides, Kozak sequence, and signal sequence. The final multiepitope minigene is assembled by extending the overlapping oligonucleotides in three sets of reactions using PCR. A Perkin/Elmer 9600 PCR machine is used and a total of 30 cycles are performed using the following conditions: 95°C for 15 sec, annealing temperature (5° below the lowest calculated Tm of each primer pair) for 30 sec, and 72°C

30 for 1 min.

For the first PCR reaction, 5 µg of each of two oligonucleotides are annealed and extended: Oligonucleotides 1+2, 3+4, 5+6, and 7+8 are combined in 100 µl reactions containing *Pfu* polymerase buffer (1x= 10 mM KCL, 10 mM (NH₄)₂SO₄, 20 mM Tris-chloride, pH 8.75, 2 mM MgSO₄, 0.1% Triton X-100, 100 µg/ml BSA), 0.25 mM each

dNTP, and 2.5 U of *Pfu* polymerase. The full-length dimer products are gel-purified, and two reactions containing the product of 1+2 and 3+4, and the product of 5+6 and 7+8 are mixed, annealed, and extended for 10 cycles. Half of the two reactions are then mixed, and 5 cycles of annealing and extension carried out before flanking primers are added to 5 amplify the full length product for 25 additional cycles. The full-length product is gel-purified and cloned into pCR-blunt (Invitrogen) and individual clones are screened by sequencing.

Example 12. The plasmid construct and the degree to which it induces immunogenicity.

10 The degree to which a plasmid construct, for example a plasmid constructed in accordance with Example 11, is able to induce immunogenicity can be evaluated *in vitro* by testing for epitope presentation by APC following transduction or transfection of the APC with an epitope-expressing nucleic acid construct. Such a study determines “antigenicity” and allows the use of human APC. The assay determines the ability of the 15 epitope to be presented by the APC in a context that is recognized by a T cell by quantifying the density of epitope-HLA class I complexes on the cell surface. Quantitation can be performed by directly measuring the amount of peptide eluted from the APC (see, e.g., Sijts *et al.*, *J. Immunol.* 156:683-692, 1996; Demotz *et al.*, *Nature* 342:682-684, 1989); or the number of peptide-HLA class I complexes can be estimated 20 by measuring the amount of lysis or lymphokine release induced by infected or transfected target cells, and then determining the concentration of peptide necessary to obtain equivalent levels of lysis or lymphokine release (see, e.g., Kageyama *et al.*, *J. Immunol.* 154:567-576, 1995).

25 Alternatively, immunogenicity can be evaluated through *in vivo* injections into mice and subsequent *in vitro* assessment of CTL and HTL activity, which are analysed using cytotoxicity and proliferation assays, respectively, as detailed e.g., in copending U.S.S.N. 09/311,784 filed 5/13/99 and Alexander *et al.*, *Immunity* 1:751-761, 1994.

30 For example, to assess the capacity of a DNA minigene construct (e.g., a pMin minigene construct generated as described in U.S.S.N. 09/311,784) containing at least one HLA-A2 supermotif peptide to induce CTLs *in vivo*, HLA-A2.1/K^b transgenic mice, for example, are immunized intramuscularly with 100 µg of naked cDNA. As a means of comparing the level of CTLs induced by cDNA immunization, a control group of animals is also immunized with an actual peptide composition that comprises multiple epitopes synthesized as a single polypeptide as they would be encoded by the minigene.

Splenocytes from immunized animals are stimulated twice with each of the respective compositions (peptide epitopes encoded in the minigene or the polyepitopic peptide), then assayed for peptide-specific cytotoxic activity in a ^{51}Cr release assay. The results indicate the magnitude of the CTL response directed against the A2-restricted epitope, thus indicating the *in vivo* immunogenicity of the minigene vaccine and polyepitopic vaccine. It is, therefore, found that the minigene elicits immune responses directed toward the HLA-A2 supermotif peptide epitopes as does the polyepitopic peptide vaccine. A similar analysis is also performed using other HLA-A3 and HLA-B7 transgenic mouse models to assess CTL induction by HLA-A3 and HLA-B7 motif or 10 supermotif epitopes.

To assess the capacity of a class II epitope encoding minigene to induce HTLs *in vivo*, DR transgenic mice, or for those epitope that cross react with the appropriate mouse MHC molecule, I-A^b-restricted mice, for example, are immunized intramuscularly with 100 μg of plasmid DNA. As a means of comparing the level of HTLs induced by DNA 15 immunization, a group of control animals is also immunized with an actual peptide composition emulsified in complete Freund's adjuvant. CD4+ T cells, *i.e.* HTLs, are purified from splenocytes of immunized animals and stimulated with each of the respective compositions (peptides encoded in the minigene). The HTL response is measured using a ^3H -thymidine incorporation proliferation assay, (*see, e.g.*, Alexander et 20 al. *Immunity* 1:751-761, 1994). The results indicate the magnitude of the HTL response, thus demonstrating the *in vivo* immunogenicity of the minigene.

DNA minigenes, constructed as described in Example 11, may also be evaluated as a vaccine in combination with a boosting agent using a prime boost protocol. The boosting agent can consist of recombinant protein (*e.g.*, Barnett *et al.*, *Aids Res. and Human Retroviruses* 14, Supplement 3:S299-S309, 1998) or recombinant vaccinia, for example, expressing a minigene or DNA encoding the complete protein of interest (*see, e.g.*, Hanke *et al.*, *Vaccine* 16:439-445, 1998; Sedegah *et al.*, *Proc. Natl. Acad. Sci USA* 95:7648-53, 1998; Hanke and McMichael, *Immunol. Letters* 66:177-181, 1999; and Robinson *et al.*, *Nature Med.* 5:526-34, 1999).

For example, the efficacy of the DNA minigene used in a prime boost protocol is 30 initially evaluated in transgenic mice. In this example, A2.1/K^b transgenic mice are immunized IM with 100 μg of a DNA minigene encoding the immunogenic peptides including at least one HLA-A2 supermotif-bearing peptide. After an incubation period

(ranging from 3-9 weeks), the mice are boosted IP with 10^7 pfu/mouse of a recombinant vaccinia virus expressing the same sequence encoded by the DNA minigene. Control mice are immunized with 100 µg of DNA or recombinant vaccinia without the minigene sequence, or with DNA encoding the minigene, but without the vaccinia boost. After an 5 additional incubation period of two weeks, splenocytes from the mice are immediately assayed for peptide-specific activity in an ELISPOT assay. Additionally, splenocytes are stimulated *in vitro* with the A2-restricted peptide epitopes encoded in the minigene and recombinant vaccinia, then assayed for peptide-specific activity in an IFN- γ ELISA.

It is found that the minigene utilized in a prime-boost protocol elicits greater 10 immune responses toward the HLA-A2 supermotif peptides than with DNA alone. Such an analysis can also be performed using HLA-A11 or HLA-B7 transgenic mouse models to assess CTL induction by HLA-A3 or HLA-B7 motif or supermotif epitopes.

The use of prime boost protocols in humans is described in Example 20.

15 Example 13. Peptide Composition for Prophylactic Uses

Vaccine compositions of the present invention can be used to prevent HIV infection in persons who are at risk for such infection. For example, a polyepitopic peptide epitope composition (or a nucleic acid comprising the same) containing multiple CTL and HTL epitopes such as those selected in Examples 9 and/or 10, which are also 20 selected to target greater than 80% of the population, is administered to individuals at risk for HIV infection.

For example, a peptide-based composition can be provided as a single polypeptide that encompasses multiple epitopes. The vaccine is typically administered in a physiological solution that comprises an adjuvant, such as Incomplete Freunds Adjuvant. 25 The dose of peptide for the initial immunization is from about 1 to about 50,000 µg, generally 100-5,000 µg, for a 70 kg patient. The initial administration of vaccine is followed by booster dosages at 4 weeks followed by evaluation of the magnitude of the immune response in the patient, by techniques that determine the presence of epitope-specific CTL populations in a PBMC sample. Additional booster doses are administered 30 as required. The composition is found to be both safe and efficacious as a prophylaxis against HIV infection.

Alternatively, a composition typically comprising transfecting agents can be used for the administration of a nucleic acid-based vaccine in accordance with methodologies known in the art and disclosed herein.

5 Example 14. Polyepitopic Vaccine Compositions Derived from Native HIV Sequences

A native HIV polyprotein sequence is screened, preferably using computer algorithms defined for each class I and/or class II supermotif or motif, to identify "relatively short" regions of the polyprotein that comprise multiple epitopes and is preferably less in length than an entire native antigen. This relatively short sequence that 10 contains multiple distinct, even overlapping, epitopes is selected and used to generate a minigene construct. The construct is engineered to express the peptide, which corresponds to the native protein sequence. The "relatively short" peptide is generally less than 250 amino acids in length, often less than 100 amino acids in length, preferably less than 75 amino acids in length, and more preferably less than 50 amino acids in 15 length. The protein sequence of the vaccine composition is selected because it has maximal number of epitopes contained within the sequence, *i.e.*, it has a high concentration of epitopes. As noted herein, epitope motifs may be nested or overlapping, for example, two 9-mer epitopes and one 10-mer epitope can be present in a 10 amino acid peptide. Such a vaccine composition is administered for therapeutic or prophylactic 20 purposes.

The vaccine composition will preferably include, for example, three CTL epitopes and at least one HTL epitope from HIV. This polyepitopic native sequence is administered either as a peptide or as a nucleic acid sequence which encodes the peptide. Alternatively, an analog can be made of this native sequence, whereby one or more of the 25 epitopes comprise substitutions that alter the cross-reactivity and/or binding affinity properties of the polyepitopic peptide.

The embodiment of this example provides for the possibility that an as yet undiscovered aspect of immune system processing will apply to the native nested sequence and thereby facilitate the production of therapeutic or prophylactic immune 30 response-inducing vaccine compositions. Additionally such an embodiment provides for the possibility of motif-bearing epitopes for an HLA makeup that is presently unknown. Furthermore, this embodiment (absent analogs) directs the immune response to multiple peptide sequences that are actually present in native HIV antigens thus avoiding the need

to evaluate any junctional epitopes. Lastly, the embodiment provides an economy of scale when producing nucleic acid vaccine compositions.

Related to this embodiment, computer programs can be derived in accordance with principles in the art, which identify in a target sequence, the greatest number of epitopes per sequence length.

Example 15. Polyepitopic Vaccine Compositions Directed To Multiple Diseases

The HIV peptide epitopes of the present invention are used in conjunction with peptide epitopes from target antigens related to one or more other diseases, to create a vaccine composition that is useful for the prevention or treatment of HIV as well as the one or more other disease(s). Examples of the other diseases include, but are not limited to, HCV and HBV.

For example, a polyepitopic peptide composition comprising multiple CTL and HTL epitopes that target greater than 98% of the population may be created for administration to individuals at risk for both HBV and HIV infection. The composition can be provided as a single polypeptide that incorporates the multiple epitopes from the various disease-associated sources, or can be administered as a composition comprising one or more discrete epitopes.

Example 16. Use of peptides to evaluate an immune response

Peptides of the invention may be used to analyze an immune response for the presence of specific CTL or HTL populations directed to HIV. Such an analysis may be performed in a manner as that described by Ogg *et al.*, *Science* 279:2103-2106, 1998. In the following example, peptides in accordance with the invention are used as a reagent for diagnostic or prognostic purposes, not as an immunogen.

In this example highly sensitive human leukocyte antigen tetrameric complexes ("tetramers") are used for a cross-sectional analysis of, for example, HIV HLA-A*0201-specific CTL frequencies from HLA A*0201-positive individuals at different stages of infection or following immunization using an HIV peptide containing an A*0201 motif. Tetrameric complexes are synthesized as described (Musey *et al.*, *N. Engl. J. Med.* 337:1267, 1997). Briefly, purified HLA heavy chain (A*0201 in this example) and β2-microglobulin are synthesized by means of a prokaryotic expression system. The heavy chain is modified by deletion of the transmembrane-cytosolic tail and COOH-terminal

addition of a sequence containing a BirA enzymatic biotinylation site. The heavy chain, β 2-microglobulin, and peptide are refolded by dilution. The 45-kD refolded product is isolated by fast protein liquid chromatography and then biotinylated by BirA in the presence of biotin (Sigma, St. Louis, Missouri), adenosine 5' triphosphate and magnesium. Streptavidin-phycoerythrin conjugate is added in a 1:4 molar ratio, and the tetrameric product is concentrated to 1 mg/ml. The resulting product is referred to as tetramer-phycoerythrin.

For the analysis of patient blood samples, approximately one million PBMCs are centrifuged at 300 x g for 5 minutes and resuspended in 50 μ l of cold phosphate-buffered saline. Tri-color analysis is performed with the tetramer-phycoerythrin, along with anti-CD8-Tricolor, and anti-CD38. The PBMCs are incubated with tetramer and antibodies on ice for 30 to 60 min and then washed twice before formaldehyde fixation. Gates are applied to contain >99.98% of control samples. Controls for the tetramers include both A*0201-negative individuals and A*0201-positive uninfected donors. The percentage of cells stained with the tetramer is then determined by flow cytometry. The results indicate the number of cells in the PBMC sample that contain epitope-restricted CTLs, thereby readily indicating the extent of immune response to the HIV epitope, and thus the stage of infection with HIV, the status of exposure to HIV, or exposure to a vaccine that elicits a protective or therapeutic response.

20

Example 17. Use of Peptide Epitopes to Evaluate Recall Responses

The peptide epitopes of the invention are used as reagents to evaluate T cell responses, such as acute or recall responses, in patients. Such an analysis may be performed on patients who have recovered from infection, who are chronically infected with HIV, or who have been vaccinated with an HIV vaccine.

For example, the class I restricted CTL response of persons who have been vaccinated may be analyzed. The vaccine may be any HIV vaccine. PBMC are collected from vaccinated individuals and HLA typed. Appropriate peptide epitopes of the invention that, optimally, bear supermotifs to provide cross-reactivity with multiple HLA supertype family members, are then used for analysis of samples derived from individuals who bear that HLA type.

PBMC from vaccinated individuals are separated on Ficoll-Histopaque density gradients (Sigma Chemical Co., St. Louis, MO), washed three times in HBSS (GIBCO

Laboratories), resuspended in RPMI-1640 (GIBCO Laboratories) supplemented with L-glutamine (2mM), penicillin (50U/ml), streptomycin (50 µg/ml), and Hepes (10mM) containing 10% heat-inactivated human AB serum (complete RPMI) and plated using microculture formats. A synthetic peptide comprising an epitope of the invention is
5 added at 10 µg/ml to each well and HBV core 128-140 epitope is added at 1 µg/ml to each well as a source of T cell help during the first week of stimulation.

In the microculture format, 4×10^5 PBMC are stimulated with peptide in 8 replicate cultures in 96-well round bottom plate in 100 µl/well of complete RPMI. On days 3 and 10, 100 ml of complete RPMI and 20 U/ml final concentration of rIL-2 are
10 added to each well. On day 7 the cultures are transferred into a 96-well flat-bottom plate and restimulated with peptide, rIL-2 and 10^5 irradiated (3,000 rad) autologous feeder cells. The cultures are tested for cytotoxic activity on day 14. A positive CTL response requires two or more of the eight replicate cultures to display greater than 10% specific
15 ^{51}Cr release, based on comparison with uninfected control subjects as previously described (Rehermann, *et al.*, *Nature Med.* 2:1104,1108, 1996; Rehermann *et al.*, *J. Clin. Invest.* 97:1655-1665, 1996; and Rehermann *et al.* *J. Clin. Invest.* 98:1432-1440, 1996).

Target cell lines are autologous and allogeneic EBV-transformed B-LCL that are either purchased from the American Society for Histocompatibility and Immunogenetics (ASHI, Boston, MA) or established from the pool of patients as described (Guilhot, *et al.*
20 *J. Virol.* 66:2670-2678, 1992).

Cytotoxicity assays are performed in the following manner. Target cells consist of either allogeneic HLA-matched or autologous EBV-transformed B lymphoblastoid cell line that are incubated overnight with the synthetic peptide epitope of the invention at 10 µM, and labeled with 100 µCi of ^{51}Cr (Amersham Corp., Arlington Heights, IL) for 1
25 hour after which they are washed four times with HBSS.

Cytolytic activity is determined in a standard 4-h, split well ^{51}Cr release assay using U-bottomed 96 well plates containing 3,000 targets/well. Stimulated PBMC are tested at effector/target (E/T) ratios of 20-50:1 on day 14. Percent cytotoxicity is determined from the formula: 100 x [(experimental release-spontaneous
30 release)/maximum release-spontaneous release)]. Maximum release is determined by lysis of targets by detergent (2% Triton X-100; Sigma Chemical Co., St. Louis, MO). Spontaneous release is <25% of maximum release for all experiments.

The results of such an analysis indicate the extent to which HLA-restricted CTL populations have been stimulated by previous exposure to HIV or an HIV vaccine.

The class II restricted HTL responses may also be analyzed. Purified PBMC are cultured in a 96-well flat bottom plate at a density of 1.5×10^5 cells/well and are stimulated with 10 µg/ml synthetic peptide, whole antigen, or PHA. Cells are routinely plated in replicates of 4-6 wells for each condition. After seven days of culture, the medium is removed and replaced with fresh medium containing 10U/ml IL-2. Two days later, 1 µCi ³H-thymidine is added to each well and incubation is continued for an additional 18 hours. Cellular DNA is then harvested on glass fiber mats and analyzed for ³H-thymidine incorporation. Antigen-specific T cell proliferation is calculated as the ratio of ³H-thymidine incorporation in the presence of antigen divided by the ³H-thymidine incorporation in the absence of antigen.

Example 18. Induction Of Specific CTL Response In Humans

A human clinical trial for an immunogenic composition comprising CTL and HTL epitopes of the invention is set up as an IND Phase I, dose escalation study and carried out as a randomized, double-blind, placebo-controlled trial. Such a trial is designed, for example, as follows:

A total of about 27 subjects are enrolled and divided into 3 groups:

- Group I: 3 subjects are injected with placebo and 6 subjects are injected with 5 µg of peptide composition;
- Group II: 3 subjects are injected with placebo and 6 subjects are injected with 50 µg peptide composition;
- Group III: 3 subjects are injected with placebo and 6 subjects are injected with 500 µg of peptide composition.

After 4 weeks following the first injection, all subjects receive a booster inoculation at the same dosage.

The endpoints measured in this study relate to the safety and tolerability of the peptide composition as well as its immunogenicity. Cellular immune responses to the peptide composition are an index of the intrinsic activity of this the peptide composition, and can therefore be viewed as a measure of biological efficacy. The following summarize the clinical and laboratory data that relate to safety and efficacy endpoints.

Safety: The incidence of adverse events is monitored in the placebo and drug treatment group and assessed in terms of degree and reversibility.

Evaluation of Vaccine Efficacy: For evaluation of vaccine efficacy, subjects are bled before and after injection. Peripheral blood mononuclear cells are isolated from fresh heparinized blood by Ficoll-Hypaque density gradient centrifugation, aliquoted in freezing media and stored frozen. Samples are assayed for CTL and HTL activity.

5 The vaccine is found to be both safe and efficacious.

Example 19. Phase II Trials In Patients Infected With HIV

Phase II trials are performed to study the effect of administering the CTL-HTL peptide compositions to HIV-infected patients. The main objectives of the trials are to 10 determine an effective dose and regimen for inducing CTLs in chronically infected HIV patients, to establish the safety of inducing a CTL and HTL response in these patients, and to see to what extent activation of CTLs improves the clinical picture of chronically infected HIV patients, as manifested by a reduction in viral load and an increase in CD4⁺ cells counts. Such a study is designed, for example, as follows:

15 The studies are performed in multiple centers. The trial design is an open-label, uncontrolled, dose escalation protocol wherein the peptide composition is administered as a single dose followed six weeks later by a single booster shot of the same dose. The dosages are 50, 500 and 5,000 micrograms per injection. Drug-associated adverse effects (severity and reversibility) are recorded.

20 There are three patient groupings. The first group is injected with 50 micrograms of the peptide composition and the second and third groups with 500 and 5,000 micrograms of peptide composition, respectively. The patients within each group range in age from 21-65, include both males and females, and represent diverse ethnic backgrounds. All of them are infected with HIV for over five years and are HCV, HBV 25 and delta hepatitis virus (HDV) negative, but have positive levels of HIV antigen.

The viral load and CD4⁺ levels are monitored to assess the effects of administering the peptide compositions. The vaccine composition is found to be both safe and efficacious in the treatment of HIV infection.

30 Example 20. Induction of CTL Responses Using a Prime Boost Protocol

A prime boost protocol can also be used for the administration of the vaccine to humans. Such a vaccine regimen can include an initial administration of, for example, naked DNA followed by a boost using recombinant virus encoding the vaccine, or recombinant protein/polypeptide or a peptide mixture administered in an adjuvant.

For example, the initial immunization is performed using an expression vector, such as that constructed in Example 11, in the form of naked nucleic acid administered IM (or SC or ID) in the amounts of 0.5-5 mg at multiple sites. The nucleic acid (0.1 to 1000 µg) can also be administered using a gene gun. Following an incubation period of 5 weeks, a booster dose is then administered. The booster is, for example, recombinant fowlpox virus administered at a dose of $5 \cdot 10^7$ to 5×10^9 pfu. An alternative recombinant virus, such as an MVA, canarypox, adenovirus, or adeno-associated virus, can also be used for the booster, or the polyepitopic protein or a mixture of the peptides can be administered. For evaluation of vaccine efficacy, patient blood samples are obtained 10 before immunization as well as at intervals following administration of the initial vaccine and booster doses of the vaccine. Peripheral blood mononuclear cells are isolated from fresh heparinized blood by Ficoll-Hypaque density gradient centrifugation, aliquoted in freezing media and stored frozen. Samples are assayed for CTL and HTL activity.

Analysis of the results indicates that a magnitude of sufficient response to achieve 15 protective immunity against HIV is generated.

Example 21. Administration of Vaccine Compositions Using Dendritic Cells

Vaccines comprising peptide epitopes of the invention can be administered using APCs, or "professional" APCs such as DC. In this example, the peptide-pulsed DC are 20 administered to a patient to stimulate a CTL response *in vivo*. In this method, dendritic cells are isolated, expanded, and pulsed with a vaccine comprising peptide CTL and HTL epitopes of the invention. The dendritic cells are infused back into the patient to elicit CTL and HTL responses *in vivo*. The induced CTL and HTL then destroy or facilitate destruction of the specific target cells that bear the proteins from which the epitopes in the 25 vaccine are derived.

For example, a cocktail of epitope-bearing peptides is administered *ex vivo* to PBMC, or isolated DC therefrom. A pharmaceutical to facilitate harvesting of DC can be used, such as Progenipoietin™ (Monsanto, St. Louis, MO) or GM-CSF/IL-4. After pulsing the DC with peptides and prior to reinfusion into patients, the DC are washed to 30 remove unbound peptides.

As appreciated clinically, and readily determined by one of skill based on clinical outcomes, the number of DC reinfused into the patient can vary (*see, e.g., Nature Med.* 4:328, 1998; *Nature Med.* 2:52, 1996 and *Prostate* 32:272, 1997). Although $2 \cdot 50 \times 10^6$

DC per patient are typically administered, larger number of DC, such as 10^7 or 10^8 can also be provided. Such cell populations typically contain between 50-90% DC.

In some embodiments, peptide-loaded PBMC are injected into patients without purification of the DC. For example, PBMC containing DC generated after treatment 5 with an agent such as Progenipoietin™ are injected into patients without purification of the DC. The total number of PBMC that are administered often ranges from 10^8 to 10^{10} . Generally, the cell doses injected into patients is based on the percentage of DC in the blood of each patient, as determined, for example, by immunofluorescence analysis with specific anti-DC antibodies. Thus, for example, if Progenipoietin™ mobilizes 2% DC in 10 the peripheral blood of a given patient, and that patient is to receive 5×10^6 DC, then the patient will be injected with a total of 2.5×10^8 peptide-loaded PBMC. The percent DC mobilized by an agent such as Progenipoietin™ is typically estimated to be between 2-10%, but can vary as appreciated by one of skill in the art.

15 *Ex vivo activation of CTL/HTL responses*

Alternatively, *ex vivo* CTL or HTL responses to HIV antigens can be induced by incubating in tissue culture the patient's, or genetically compatible, CTL or HTL precursor cells together with a source of APC, such as DC, and the appropriate immunogenic peptides. After an appropriate incubation time (typically about 7-28 days), 20 in which the precursor cells are activated and expanded into effector cells, the cells are infused back into the patient, where they will destroy or facilitate destruction of their specific target cells.

Example 22. Alternative Method of Identifying Motif-Bearing Peptides

25 Another way of identifying motif-bearing peptides is to elute them from cells bearing defined MHC molecules. For example, EBV transformed B cell lines used for tissue typing have been extensively characterized to determine which HLA molecules they express. In certain cases these cells express only a single type of HLA molecule. These cells can then be infected with a pathogenic organism or transfected with nucleic acids that express the antigen of interest, e.g. HIV regulatory or structural proteins. 30 Thereafter, peptides produced by endogenous antigen processing of peptides produced consequent to infection (or as a result of transfection) will bind to HLA molecules within the cell and be transported and displayed on the cell surface.

The peptides are then eluted from the HLA molecules by exposure to mild acid conditions and their amino acid sequence determined, e.g., by mass spectral analysis (e.g., Kubo *et al.*, *J. Immunol.* 152:3913, 1994). Because the majority of peptides that bind a particular HLA molecule are motif-bearing, this is an alternative modality for obtaining 5 the motif-bearing peptides correlated with the particular HLA molecule expressed on the cell.

Alternatively, cell lines that do not express any endogenous HLA molecules can be transfected with an expression construct encoding a single HLA allele. These cells can then be used as described, *i.e.*, they can be infected with a pathogenic organism or 10 transfected with nucleic acid encoding an antigen of interest to isolate peptides corresponding to the pathogen or antigen of interest that have been presented on the cell surface. Peptides obtained from such an analysis will bear motif(s) that correspond to binding to the single HLA allele that is expressed in the cell.

As appreciated by one in the art, one can perform a similar analysis on a cell 15 bearing more than one HLA allele and subsequently determine peptides specific for each HLA allele expressed. Moreover, one of skill would also recognize that means other than infection or transfection, such as loading with a protein antigen, can be used to provide a source of antigen to the cell.

20 The above examples are provided to illustrate the invention but not to limit its scope. For example, the human terminology for the Major Histocompatibility Complex, namely HLA, is used throughout this document. It is to be appreciated that these principles can be extended to other species as well. Thus, other variants of the invention will be readily apparent to one of ordinary skill in the art and are encompassed by the 25 appended claims. All publications, patents, and patent application cited herein are hereby incorporated by reference for all purposes.