Programação e modelagem básicas em biologia

Renato Marques de Oliveira

Universidade Federal do Ceará Departamento de Bioquímica e Biologia Molecular

09/03/2016

Sumário

- Programação
 - Linguagens e estrutura
 - Sintaxe
 - Controle de Fluxo
- Integração numérica
 - Método de Euler
 - Método de Runge-Kutta
 - Exercício 4
- Sistemas dinâmicos
 - Pontos fixos
 - Análise de estabilidade
 - Estudo de caso

Nível e Tipo

- Máquina (Binário)
- Assembly
- Baixo nível
 - C
 - Fortran
- Alto nível
 - Java
 - C++
- Dinâmica (interpretada)
 - Python
 - Matlab

- Procedural
- 00P
- Functional

Variáveis, funções e objetos

Um script é estruturado e partir de alguns elementos básicos. Destacam-se:

- Objetos Objetos ou Classes são protótipos de elementos manipuláveis. São hierarquizados, maleáveis e podem estar presentes em diferentes scripts e arquivos, necessitando serem definidos apenas uma vez.
- Variáveis São blocos da memória que armazenam algum valor ou elemento (fixo ou mutável). Esse elemento pode ser desde de um número até uma instância de uma classe.
- Funções São blocos de código que executam comandos pré-determinados. Podem trabalhar a partir de entradas e fornecer valores de saída.

Exemplos

```
import numpy as np
import pylab as py

v1 = np.array([3,2,1])
v1.sort()

v2 = np.empty([2,2])
v2
```

Classes e namespaces

Namespace

Mapeameneto de nomes à objetos. Um *namespace* é gerado quando módulos e objetos são invocados ou instanciados. Não existem relações entre nomes pertencentes a *namespaces* diferentes.

Escopo

O **Escopo** é o bloco onde um *namespace* é diretamente acessível.

```
class Complex:
    def __init__(x, realpart, imagpart):
        x.r = realpart
        x.i = imagpart
x = Complex(2,1)
x.i,x.r
```

Stack

A Stack

A *stack* ou "Pilha" é uma região da memória que armazena variáveis temporárias criadas por cada função ou classe.

Call stack

A *Call stack* ou "Pilha de chamadas" é onde cada chamada de função é armazenada, por ordem de invocação, até que seja resolvida.

Variáveis e tipos

- Números
 - int Representam números inteiros entre 2^{32} e -2^{32} .
 - long int Representam números inteiros ilimitados, sujeitos à disponibilidade da memória virtual.
 - float Representam aproximações de números reais através de números inteiros. Se assemelham à notação científica, e são divididos em significando e expoente.
 - boolean Representam os valores True (1) ou False (0).
- Strings
- Listas
- Arrays

Floats

Туре	Sign	Exponent	Significand field	Total bits		Exponent bias	Bits precision	Number of decimal digits
Half (IEEE 754-2008)	1	5	10	16	П	15	11	~3.3
Single	1	8	23	32	П	127	24	~7.2
Double	1	11	52	64		1023	53	~15.9
x86 extended precision	1	15	64	80	П	16383	64	~19.2
Quad	1	15	112	128		16383	113	~34.0

Figura: Informações gerais sobre diferentes tipos de *floating point numbers*

Declarações

```
import numpy as np
import pylab as py
def f(x,c):
    return x**2 + c
x = np.linspace(-2,2,30)
py.plot(x, f(x, .05))
py.plot([0,2],[0,2])
py.show()
```

Exercício 1

Alerta!

Antes de fazer testes, é sempre bom resetar o *kernel* do seu Jupyter notebook.

- Visite a documentação do Numpy.
- 2 Abra um terminal de Python.
- Execute os comandos abaixo, tente exibir e recuperar elementos das variáveis v1, v2 e v3.

```
v1 = [1,2,3]
v2 = [v1,v1]
v3 = range(10)
```

Exercício 1

- Crie vetores que guardem o seno e o logaritmo natural de v1, v2 e v3.
- ② Descubra a média, a variância e o desvio padrão de v1, v2 e v3.
- 3 Crie um vetor unidimensional de 5 zeros.
- Crie uma matriz 3x3 de uns.

Controle de Fluxo

O loop For

O bloco If

Exercício 2

- 1 Crie um vetor numérico ao seu gosto.
- Escreva um código que imprima (print) na tela todos os elementos do vetor cujo seno seja maior que 0.5.

Exemplo

```
x = np.ones(10)
for i in x:
    if np.sin(i) > .5:
        print(i)
```

Exercício 3

- 1 Crie um vetor numérico unidimensional a seu gosto.
- Ignore a função mean do Numpy e defina uma nova função que retorne a média de um vetor unidimensional e aplique ao vetor que você criou.
- Orie uma matriz de pelo menos dez linhas a seu gosto, e um vetor com um número correspondente de colunas.
- Neste último vetor, armazene a saída da função que você definiu quando aplicada à matriz que você criou. Plote este vetor.

Exemplo

```
Exemplo
```

```
x = np.ones(10)
def media(vetor):
    return np.sum(vetor)/len(vetor)
a = np.random.rand(30,3)
#y = np.zeros(30)
    [media(i) for i in a] #opa! Trapaça!
py.plot(y)
```

Método de Euler

Método de Euler

Teorema do Valor Médio

$$F(b) - F(a) = F'(c)(b - a)$$

Método de Euler

$$F(t_{n}) - F(t_{n-1}) = h = F'(c)(t_{n} - t_{n-1})$$

$$F(t_{n}) = F(t_{n-1}) + h = F(t_{1}) + F'(c)(\Delta t)$$

$$F(t_{n}) \approx F(t_{n-1}) + F'(t_{n-1})(\Delta t)$$
(1)

A estabilidade e a precisão são razoáveis enquanto for satisfeita a condição de Courant-Friedrichs-Lewy, que determina que não se deve tomar um intervalo de tempo maior do que alguma quantidade computável (dada uma discretização do espaço).

Método de Runge-Kutta

$$F'(t_{n}) = f(t, x)$$

$$F(t_{n+1}) \approx F(t_{n}) + \frac{h}{6}(a + 2b + 2c + d)$$
onde
$$a = f(t_{n}, x_{n})$$

$$b = f(t_{n} + \frac{h}{2}, x_{n} + \frac{h}{2}a)$$

$$c = f(t_{n} + \frac{h}{2}, x_{n} + \frac{h}{2}b)$$

$$d = f(t_{n} + h, x_{n} + hc)$$
(2)

Exercício 4

Defina um método em Python que resolva uma equação diferencial ordinária de primeira ordem.

Teste esse método com várias equações diferenciais.

Sistemas dinâmicos

Wikipedia

A Teoria de sistemas dinâmicos é a área da matemática utilizada para descrever o comportamento de sistemas dinâmicos complexos, geralmente através da aplicação de equações diferenciais ou equações de diferença. Um sistema dinâmico é um sistema em que uma função descreve a dependência temporal de um ponto situado num espaço geométrico. Exemplos incluem modelos de pêndulos de relógios, o fluxo de água dentro um tubo e a quantidade de peixes em um lago durante a primavera.

Wolfram MathWorld

[Sistema dinâmico] é um modo de descrever como um estado evolui para outro ao longo do tempo. Tecnicamente, um sistema dinâmico é uma ação comportada dos reais ou inteiros sobre outro objeto (normalmente uma *variante*).

Órbitas

Definição

A órbita de um sistema é o conjunto de pontos por ele visitados a cada intervalo de tempo. (Tecnicamente, uma órbita é uma sequência de iterações da regra de evolução de um sistema dinâmico a partir dos valores iniciais das variáveis dependentes)

Para observar a órbita do nosso sistema, precisamos escolher um valor inicial x_0 . Em seguida, calculamos a posição do sistema no instante seguinte por $x_1 = F(x_0)$. Depois, repetimos o procedimento, $x_2 = F(x_1)$ e assim por diante, até o instante n. A posição no instante n é dada por

$$\underbrace{F(F(...(F(x_0))))}_{n \text{ vezes}} = \underbrace{F \circ F \circ ... \circ F(x_0)}_{n \text{ vezes}} = F^n(x_0)$$

Teorema do Valor Médio

Teorema

Seja $a, b \in \mathbb{R}$, a < b e F uma função real contínua em [a, b] e diferenciável em (a, b). Então existe $c \in (a, b)$ tal que

$$F(b) - F(a) = F'(c)(b - a)$$
 (3)

Prova (Esboço)

Defina

$$G(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a} \cdot (b - a)$$

G(a) = 0 e G(b) = 0 e portanto deve existir algum $c \in (a,b)$ tal que

$$G'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0$$

Teorema do Ponto Fixo

Teorema

Suponha uma função real $F:[a,b] \longrightarrow [a,b]$ diferenciável no intervalo [a,b] e um número real não-negativo k<1 e $|F'(p)| \le k$ tal que para qualquer $p,q\in [a,b]$ tenhamos

$$|F(p) - F(q)| \le k|p - q|$$

Então existe um P em [a,b] tal que F(P)=P. Adicionalmente, para $p_0 \in [a,b]$,

$$\lim_{n\to\infty}F^n(p_0)=P$$

Esboço de prova

 $F^n(p_0)$ é uma forma abreviada de expressar "n iterações de F sobre o valor inicial p_0 ", e não serve para representar uma potência.

Mas como descobrir um ponto fixo? Uma dica: observe a derivada de F. Se |F'(p)| < 1, a distância

$$|F^{n+1}(p) - F^n(p)| = |F'(p_n)||(p_{n+1} - p_n)|$$

tende a diminuir a cada iteração de F, para p_n próximos de P, pois

$$\lim_{n \to \infty} |p_{n+1} - p_n| = \lim_{n \to \infty} k^n |p_1 - p_0| = 0$$

Outro Teorema do Ponto Fixo

<u>Te</u>orema

Suponha uma função real $F: [a, b] \longrightarrow [a, b]$ contínua. Existe um ponto fixo para F em [a, b].

Prova

Tome $x \in [a, b]$ e defina H(x) = F(x) - x. Então

$$H(a) = F(a) - a \ge 0$$

$$H(b) = F(b) - b \leq 0$$

portanto existe H(c) = F(c) - c = 0

Pontos fixos

Definição

Um ponto fixo atrator é um ponto X dentro de um intervalo aberto I para o qual, se $x_0 \in I$, então $F^n(x_0) \in I$ para todo n, além disso $F^n(x_0) \to X$ quando $n \to \infty$.

Definição

Um ponto fixo repulsor é um ponto X dentro de um intervalo I para o qual, se $x_0 \in I$ e $x_0 \neq X$, existe n tal que $F^n(x_0) \notin I$.

Autovalores

Sistema linear homogêneo de 2 dimensões

$$\frac{dx}{dt} = f(x, y) = \frac{\partial f(x, y)}{\partial x} x + \frac{\partial f(x, y)}{\partial y} y$$
$$\frac{dy}{dt} = g(x, y) = \frac{\partial g(x, y)}{\partial x} x + \frac{\partial g(x, y)}{\partial y} y$$

Representação matricial

Representação matricial

$$\begin{bmatrix} \frac{\partial f(x,y)}{\partial x} & \frac{\partial f(x,y)}{\partial y} \\ \frac{\partial g(x,y)}{\partial x} & \frac{\partial g(x,y)}{\partial y} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \lambda \begin{bmatrix} x \\ y \end{bmatrix}$$

Representação matricial no equilíbrio

$$\begin{bmatrix} \frac{\partial f(x,y)}{\partial x} - \lambda & \frac{\partial f(x,y)}{\partial y} \\ \frac{\partial g(x,y)}{\partial x} & \frac{\partial g(x,y)}{\partial y} - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Equação característica

$$\left(\frac{\partial f(x,y)}{\partial x} - \lambda\right) \left(\frac{\partial g(x,y)}{\partial y} - \lambda\right) - \frac{\partial f(x,y)}{\partial y} \frac{\partial g(x,y)}{\partial x} = 0$$

Estudo de caso - Sekerci & Petrovskii (2015)

Mathematical Modelling of Plankton-Oxygen Dynamics Under the Climate Change

Yadigar Sekerci¹ · Sergei Petrovskii¹

Received: 27 June 2015 / Accepted: 12 November 2015

© Society for Mathematical Biology 2015

Figura: Modelo populacional de plâncton

Motivação

O plâncton é formado por dois tipos básicos em constante interação: o fitoplâncton produtor de oxigênio e o zooplâncton que é seu predador direto. O fitoplâncton é responsável por aproximadamente 70% do oxigênio da atmosfera via fotossíntese. Antes de chegar à atmosfera, esse oxigênio é antes liberado na água e consumido pelo fitoplâncton durante a noite via respiração. Tanto o consumo de oxigênio pelo fitoplâncton quanto a taxa de difusão do oxigênio da água para a atmosfera são função da temperatura, portanto, variações significativas de temperaturas podem influenciar ambos os processos e seu monitoramento é se vital importância.

Esquema do modelo simples

Fig. 1 Structure of our conceptual model describing the interactions between oxygen, phytoplankton, and zooplankton. *Arrows* show flows of matter through the system.

Phytoplankton produces oxygen through photosynthesis during the daytime and consumes it during the night. Zooplankton feeds on phytoplankton and consumes oxygen through breathing; more details are given in the text

Figura: Dinâmica do oxigênio (dissolvido na água)

Modelo esquemático

$$\frac{dc}{dt} = Af(c)u - u_r(c, u) - v_r(c, v) - mc$$

$$\frac{du}{dt} = g(c, u) - e(u, v) - \sigma u$$

$$\frac{dv}{dt} = \kappa(c)e(u, v) - \mu v$$
(6)

$$\frac{du}{dt} = g(c, u) - e(u, v) - \sigma u \tag{5}$$

$$\frac{dv}{dt} = \kappa(c)e(u, v) - \mu v \tag{6}$$

- Concentração de oxigênio
- Densidade de fitoplâncton
- Densidade de zooplâncton

Parâmetros

Termos	Descrição			
A	Fator ambiental na produção de ${\it O}_2$			
f(c)	Dissolução de ${\it O}_{ m 2}$ do citosol para a água			
g(c,u)	Taca de crescimento do fitoplâncton			
$u_r(c,u)$	Taxa de consumo de \mathcal{O}_2 por fitoplâncton			
$\overline{v_r(c,v)}$	Taxa de consumo de O_2 por zooplâncton			
m	Declínio natural de ${\it O}_{2}$			
e(u,v)	Taxa de consumo fitoplâncton por zooplâncton			
σ	Coeficiente de mortalidade de fitoplâncton			
$\kappa(c)$	Eficiência de conversão de biomassa			
μ	Coeficiente de mortalidade de zooplâncton			

Modelo expandido

Modelo sem zooplâncton $(v(t) \equiv 0)$

$$\frac{dc}{dt} = \frac{Au}{c+1} - \frac{\delta uc}{c+c2} - c \tag{7}$$

$$\frac{du}{dt} = \left(\frac{Bc}{c + c_1} - u\right)u - \sigma u \tag{8}$$

Isóclinas nulas

$$u\left(\frac{Bc}{c+c_1}-u\right)-\sigma u=0 \Rightarrow u=0$$
ou, assumindo $u>0$

$$\left(\frac{Bc}{c+c_1}-u\right)u\times\frac{1}{u}=-\sigma u\times\frac{1}{u}$$

$$\frac{Bc}{c+c_1}-u=\sigma$$

$$u=\frac{Bc}{c+c_1}-\sigma$$