1º DE GRADO EN MATEMÁTICAS Y DOBLE GRADO INFORMÁTICA-MATEMÁTICAS. Curso 2016-17. DEPARTAMENTO DE MATEMÁTICAS

Hoja 0: pasatiempo

Emparejar cada uno de los 8 dibujos con su correspondiente ecuación.

(a)
$$z = 1 - x^2 - y^2$$
.

(b)
$$z = x^2 + y^2 + 1$$
.

$$(c) x^2 \pm x^2 - 4$$

(d)
$$z^2 = x^2 + y^2$$

$$(e) = r^2 - u^2$$

(a)
$$z = 1 - x^2 - y^2$$
.
(b) $z = x^2 + y^2 + 1$.
(c) $x^2 + z^2 = 4$.
(d) $z^2 = x^2 + y^2$.
(e) $z = x^2 - y^2$.
(f) $4x^2 + y^2 + 4z^2 = 16$.
(g) $z^2 = 1 + x^2 + y^2$.
(h) $z^2 = x^2 + y^2 - 1$.

$$(a) z^2 = 1 + c^2 + u^2$$

(h)
$$z^2 = x^2 + y^2 - 1$$

$$Z = 1 - x^2 - y^2$$

$$x^2 + z^2 = 4$$

Cálculo II.

1º de Grado en Matemáticas y Doble Grado Informática-Matemáticas. Curso 2016-17. Departamento de Matemáticas

Hoja 1

Introducción al espacio euclídeo \mathbb{R}^n

1.- Demostrar que para cualesquiera $x, y \in \mathbb{R}^n$ se cumple

(a)
$$||x + y||^2 + ||x - y||^2 = 2 ||x||^2 + 2 ||y||^2$$
.

(b)
$$||x - y|| \cdot ||x + y|| \le ||x||^2 + ||y||^2$$
.

(c)
$$\langle x, y \rangle = 0$$
 si y sólo si $||x + y|| = ||x - y||$.

(d)
$$\langle x, y \rangle = 0$$
 si y sólo si $||x + \lambda y|| \ge ||x||$ para todo $\lambda \in \mathbb{R}$.

(e)
$$||x|| - ||y|| | \le ||x - y||$$
.

(*) LEMA: Sean x,y I u y Z= xx + By (x,B & R)

Z L U.

Dem: <Z,u> = < \ax+ \begin{array}{c} \array \chi \array \c

- 2.- (a) Determinar todos los valores posibles del parámetro real λ para que los vectores $\lambda \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ y $\lambda \mathbf{i} + \mathbf{j} \lambda \mathbf{k}$ (en \mathbb{R}^3) sean ortogonales.
 - (b) Hallar todos los valores de a y b para los que los vectores $\mathbf{x} = (4, b, 1)$ e $\mathbf{y} = (a, b, 0)$ sean ortogonales en \mathbb{R}^3 . ¿Cuál es el lugar geométrico, en el plano ab, determinado por tales a y b?
 - (c) Hallar dos vectores ortogonales a (1,1,1) que no sean paralelos entre sí. ¿Se pueden elegir dos que sean también mutuamente ortogonales? (**)
- 3.- (a) Sean $\mathbf{i} = (1,0,0)$, $\mathbf{j} = (0,1,0)$, $\mathbf{k} = (0,0,1) \in \mathbb{R}^3$. Determinar el ángulo entre los vectores $u = \mathbf{i} + 2\mathbf{j}$ y $v = \sqrt{5/3}\mathbf{j} + \mathbf{k}$.
 - (b) Lo mismo para el ángulo entre los vectores (1, -1, 0) y (0, 1, -1).
 - (c) Explicar la diferencia entre los valores $\|3\mathbf{i} 4\mathbf{k}\| \cdot \|2\mathbf{j} + \mathbf{k}\| \ \mathbf{y} \ |(3\mathbf{i} 4\mathbf{k}) \cdot (2\mathbf{j} + \mathbf{k})|$. ¿Puede decidirse que ambos valores son diferentes, sin necesidad de calcularlos explícitamente?
- 4.- Calcúlese el coseno del ángulo entre una diagonal de un cubo y una diagonal de una de sus caras.
- 5.- Comprobar que las siguientes funciones tienen todas las propiedades que se requieren de una métrica en \mathbb{R}^n :

$$d_{\infty}(x,y) = \max_{1 \le k \le n} |x_k - y_k|, \qquad d_1(x,y) = \sum_{k=1}^n |x_k - y_k|.$$

- 6.- Sea $f:[0,\infty)\to\mathbb{R}$ una función de clase C^1 y cóncava con $f(0)\geq 0$.
 - (a) Demuestre que $f(tx) \ge tf(x)$ para todos $x \ge 0$, $0 \le t \le 1$;
 - (b) Use lo anterior para demostrar que f es subaditiva, es decir, $f(a+b) \le f(a) + f(b)$.
 - (c) Deduzca que las funciones $d(x,y) = \text{arc} \operatorname{tg} \|x-y\|$ y $\delta(x,y) = \frac{\|x-y\|}{1+\|x-y\|}$ definen sendas métricas en \mathbb{R}^n , $n \ge 1$.
- 7.- Hallar, si existe, el límite de la sucesión $\{x_k\}_{k=1}^{\infty}$ en \mathbb{R}^2 cuando

$$x_k = \left(\frac{\ln k}{k}, k^{1/k}\right), \quad x_k = \left(\sqrt{k^2 + 2} - k, \frac{(-1)^k}{k}\right), \quad x_k = \left(\frac{\sin k}{k}, k(e^{1/k} - 1)\right).$$

8.- Para cada uno de los siguientes subconjuntos de \mathbb{R}^2 , se pide hallar su frontera y decidir si es abierto o cerrado.

$$A = \{(x, y) \in \mathbb{R}^2 : x^2 - y^2 = 1\}, \quad B = \{(x, y) \in \mathbb{R}^2 : |x| < 1, |y| < 1\}.$$

9.- Determinar el cierre, el interior y la frontera de los siguientes conjuntos:

$$A = \{(x, y) \in \mathbb{R}^2 : |x - y| < 1\}, \qquad B = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1, \ x^2 + y^2 + z^2 \le 1\}.$$

- 10.- (a) Sea A el conjunto de \mathbb{R}^2 formado por la unión del segmento horizontal $I_0 = \{(x,0) : 0 \le x \le 1\}$ y los segmentos verticales cerrados I_n de altura 1 y de extremo inferior $P_n = (1/n, 0)$, $n = 1, 2, 3, \ldots$ Demostrar que A no es cerrado (Indicación: falta el segmento vertical en x = 0).
 - (b) Sea $B = \left\{ \left(x, \operatorname{sen} \frac{1}{x} \right) \in \mathbb{R}^2 : 0 < x \leq 1 \right\}.$

Demostrar que B no es cerrado. (Indicación: utilizar la caracterización de cerrados por medio de sucesiones).

- 11.- Demostrar que la unión arbitraria de abiertos es abierta. Mediante un ejemplo, comprobar que aunque sea abierto cada A_i de una familia infinita $\{A_i\}_i$, la intersección $\bigcap_{i=1}^{\infty} A_i$ no es necesariamente un conjunto abierto. ¿Qué ocurre con las familias de conjuntos cerrados?
- 12.- ¿Cuáles de los siguientes conjuntos son compactos? Razonar la respuesta.

$$A = \{x \in \mathbb{R} : |x| \le 1, \ x \in \mathbb{R} \setminus \mathbb{Q}\}, \qquad B = \{(x, y) \in \mathbb{R}^2 : |x| \le 1\}, \qquad C = \{(x, y) \in \mathbb{R}^2 : |x| + |y| = 1\}.$$

- 13.- Decimos que x es un punto de acumulación de $E \subset \mathbb{R}^n$ si toda bola abierta de centro x contiene un punto de E distinto de x. Escribimos E' para denotar al conjunto de puntos de acumulación de E.
 - (a) Dado el subconjunto de $\mathbb R$ definido por $A=\left\{\frac{1}{k}: k=1,2,\ldots\right\}$, hallar A'. Lo mismo para $A=\mathbb Q$.
 - (b) Determinar los conjuntos A' y \overline{A} para $A = \{(0,2)\} \cup ([0,1] \times [0,1)) \subset \mathbb{R}^2$.
 - (c) Probar que un conjunto $E \subset \mathbb{R}^n$ es cerrado si y sólo si contiene todos sus puntos de acumulación.
 - (d) Probar que $\overline{E} = E \cup E'$.
- 14.- Probar que \mathbb{R}^2 es completo (es decir, que toda sucesión de Cauchy es convergente), siguiendo los pasos indicados. (Este razonamiento se puede generalizar a \mathbb{R}^N , $N \ge 2$.)
 - (a) Probar que máx $\{|a|, |b|\} \le ||(a, b)|| \le \sqrt{2} \max\{|a|, |b|\}$.
 - (b) Sea $\{v_n\}_k$ una sucesión en \mathbb{R}^2 tal que $v_n=(a_n,b_n)$. Probar que $\{v_n\}_n$ es de Cauchy si y sólo si las sucesiones de números reales $\{a_n\}_n$, $\{b_n\}_n$ son sucesiones de Cauchy en \mathbb{R} .
 - (c) Usando que \mathbb{R} es completo, concluir que \mathbb{R}^2 es completo.

HOJA 1: INTRODUCCIÓN AL ESPACIO EUCLÍDEO R^

[1.] Seau x,y $\in \mathbb{R}^n$ cualesquiera, probar:

a)
$$||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$$

$$||x+y||^2 = \overline{x+y} \cdot \overline{x+y} = \overline{x} \cdot \overline{x} + \overline{x} \cdot \overline{y} + \overline{y} \cdot \overline{x} + \overline{y} \cdot \overline{y}$$

$$||x+y||^2 = \overline{x+y} \cdot \overline{x+y} = \overline{x} \cdot \overline{x} + \overline{x} \cdot \overline{y} + \overline{y} \cdot \overline{x} + \overline{y} \cdot \overline{y}$$
PARALELOGRAMO

$$|x-y|^2 = \overline{x-y} \cdot \overline{x-y} = \frac{\overrightarrow{x} \cdot \overrightarrow{x}}{|\overrightarrow{x}|^2} + \frac{-\overrightarrow{x} \cdot \overrightarrow{y}}{-2\overrightarrow{x} \cdot \overrightarrow{y}} + \frac{\overrightarrow{y} \cdot \overrightarrow{y}}{|\overrightarrow{y}|^2}$$

$$|x+y|^2 + |x-y|^2 = |\vec{x}|^2 + 2\vec{x}\cdot\vec{y} + |\vec{y}|^2 + |\vec{x}|^2 + (-2\vec{x}\cdot\vec{y}) + |\vec{y}|^2 = 2|\vec{x}|^2 + 2|\vec{y}|^2$$

 $e^{-i t} e^{-i t} e^{-i t} = e^{-i t} e^{-i t} e^{-i t} e^{-i t} = e^{-i t} e^{-i t} e^{-i t} = e^{-i t} e^{-i t} e^{-i t} = e^{-i t} e^{-i t} e^{-i t} e^{-i t} = e^{-i t} e^{-i t} e^{-i t} e^{-i t} = e^{-i t} e^{-i t} e^{-i t} e^{-i t} e^{-i t} = e^{-i t} e^{-$

b) $||x-y|| \cdot ||x+y|| \le ||x||^2 + ||y||^2$

Vsaudo lo probado en el (a) sabemos:

$$\frac{[x-y]^2, |x+y|^2 = ([x]^2 + |y|^2 - 2(x,y))([x]^2 + [y]^2 + 2(x,y))}{A} = \frac{[x-y]^2, |x+y|^2 = ([x]^2 + |y|^2 - 2(x,y))([x]^2 + [y]^2 + 2(x,y))}{A} = \frac{[x-y]^2, |x+y|^2 = ([x]^2 + |y|^2 - 2(x,y))([x]^2 + [y]^2 + 2(x,y))}{A} = \frac{[x-y]^2, |x+y|^2 = ([x]^2 + |y|^2 - 2(x,y))([x]^2 + [y]^2 + 2(x,y))}{A} = \frac{[x-y]^2, |x+y|^2 = ([x]^2 + [y]^2 + [y]^2 + 2(x,y))}{A} = \frac{[x-y]^2, |x+y|^2 = ([x]^2 + [y]^2 + [y]^2 + 2(x,y))}{A} = \frac{[x-y]^2, |x+y|^2 + 2(x,y)]}{A} = \frac{[x-y]^2, |x+y|^2 + 2(x,y)}{A} = \frac{[x-y]^2, |x+y|^2 + 2(x,y)}{A} = \frac{[x-y]^2, |x+y|^2 + 2(x,y)]}{A} = \frac{[x-y]^2, |x+y|^2 + 2(x,y)}{A} = \frac{[x-y]^2, |x+y|^2 + 2(x,y)]}{A} = \frac{[x-y]^2, |x+y|^2 + 2(x,y)}{A} =$$

Con
$$C = |x-y| \cdot |x+y|$$
; $C^2 = A^2 - B^2 \in A^2 = (|x|^2 + |y|^2)$

Así pues, hemos probado $C^2 \le A^2 \Rightarrow C \le A$ con $C, A \ge 0$.

x y "x es ortogonal a y"

De nuevo, usando lo probado en (a).

De nuevo, osalido 20 presente (1)
$$|\langle x,y\rangle| = |x+y|^2 - |x|^2 - |y|^2 = 1 + |x+y|^2 - |x-y|^2$$

$$|\langle x,y\rangle| = |x-y|^2 - |x|^2 - |y|^2$$

Si
$$\langle x,y \rangle = 0 \iff |x+y|^2 - |x-y|^2 = 0 \iff |x+y|^2 = |x-y|^2 \iff$$

 $\iff |x+y| = |x-y|$ porque $|x \pm y| \ge 0$ porque es el módulo de un vector

Para esto AD y L x AD (x,y>=0 Den: |x+ly| > |x| YhER => ⇔ |x+dy|2 ≥ |x|2 YdeR (>) CHD IXI2 < < x + hy, x + hy> Vh & R => ⇒ |x|² ≤ |x|² + λ²|y|² + 2λ(x,y> <⇒
</p> $\Leftrightarrow 0 \leq |\lambda^2|y|^2 + 2\lambda < x,y>$ $= \mathcal{O}(\lambda)$ $= \mathcal{O}(\lambda)$ $\Rightarrow ||x + \lambda y|| = ||x|| \quad \forall \lambda \in \mathbb{R}$ $\Rightarrow (x, y) = 0 \Rightarrow \mathcal{O}(\lambda) = ||x||^2 > 0 \quad \forall \lambda \in \mathbb{R}$ 1€ Si ||x+hyll>||x|| Vhere > x Ly > cx,y>=0 Vernos que si $\mathcal{Q}(\lambda) \ge 0$ $\forall \lambda \in \mathbb{R} \implies c \times , y > = 0$ - caso 1: Sea <x,y> +0 y <x,y>>0

Vermos que si $\ell(\lambda) \ge 0$ $\forall \lambda \in \mathbb{R} \Rightarrow cx, y > = 0$ - caso 1: Sea $(x,y) \ne 0$ $(x,y) \ne 0$ Entonces $\ell(\lambda) = 2\lambda < x, y > 1$ $(x,y) \ne 0$ $(x,y) \ne$

e) $||x|| - ||y|| \le ||x - y||$ (x,y $\in \mathbb{R}^n$) 25: Esta designaldad implica que $f: \mathbb{R}^n \to \mathbb{R}$ dada por f(x) = |x|es continua en todo x e TRn. Lew: Recordemos la designal dad triangular: $\forall x,y \in \mathbb{R}^n |x+y| \leq |x|+|$ Enfonces: $|x| - |y| = |(x - y) + y| - |y| \le (|x - y| + |y|) - |y| = |x - y|$ (1) Asimismo: $|x|-|y| = |x|-|(y-x)+x| \leq |y-x|+|x| = |x-y|+|x| >$ |v| = |-v| $\geq |x| - (|x-y| + |x|) = -|x-y|$ (2) Con (1) y (2) $\Rightarrow -|x-y| \leq |x|-|y| \leq |x-y| \Rightarrow ||x|-|y|| \leq |x-y|$ 2. a) Determinar $\lambda \in \mathbb{R}$ para que $\lambda \vec{l} + 2\vec{l} + 3\vec{k}$ $\perp \lambda \vec{l} + \vec{l} - \lambda \vec{k}$ Si $\vec{u} \perp \vec{v} \Leftrightarrow \langle \vec{u}, \vec{v} \rangle = 0$ $\langle u, v \rangle = \lambda^2 - 3\lambda + 2 \Rightarrow \boxed{\lambda = 1} \wedge \boxed{\lambda = 2}$ b) Hallar a y b para que $\vec{X} = (4,b,1)$ e $\vec{y} = (a,b,0)$ sean ortogonales. ¿ lugar geométrico en el plano al de tales valores? マーマ > ベチ>=0 $\langle \vec{x}, \vec{y} \rangle = 4a + b^2 = 0$ (parábola en el plano ab) c) Hallar 2 vectores en TR3 ortogonales a (1,1,1) que no sean paralelos entre si. ¿ Se pueden elegir perpendiculares? Sean $\begin{cases} x = (-1,1,0) \perp (1,1,1) \\ y = (0,1,-1) \perp (1,1,1) \end{cases}$ Buscamos $Z = x + \alpha y$ con $Z \perp Z \Rightarrow Z \cdot \overline{x + \alpha y} = 0 \Rightarrow$ $\exists |x|^2 + x < x / y > \Rightarrow [x = -2]; Z = x - 2y = (-1, -1, 2) \perp \overrightarrow{X}$ Por otra parte, Z_L (1,1,1) porque Z es una combinación lineal do vertores ortogonales a (1,1,1)

i) (Positivi dad):
$$d_{\lambda}(x,y) \ge 0 \quad \forall x,y \quad (valor absoluto)$$

$$d_{\lambda}(x_{1}y) = 0 \iff \sum_{i=1}^{n} |x_{i} - y_{i}| = 0 \iff x_{1} - y_{1} = 0$$

$$x_{2} - y_{2} = 0 \iff x = y$$

$$x_{n} - y_{n} = 0$$

ii) (Simetria) :
$$d_1(y_1x) = \sum_{i=1}^{n} |y_i - x_i| = \sum_{i=1}^{n} |-(x_i - y_i)| = \sum_{i=1}^{n} |X_i - y_i| = d_1(x_iy)$$

$$d_1(x_iz) = \sum_{i=1}^{n} |X_i - Z_i| = \sum_{i=1}^{n} |(X_i - Y_i) + (Y_i - Z_i)| \le$$

$$\leq \sum_{i=1}^{n} |X_{i}-Y_{i}| + |Y_{i}-Z_{i}| = \sum_{i=1}^{n} |X_{i}-Y_{i}| + \sum_{i=1}^{n} |Y_{i}-Z_{i}| = d_{1}(x,y) + d_{2}(y,z)$$

6. Sea f: [0,00) -> 1K una punaun de clase

concava con $f(0) \geq 0$. a) Probar que si $x \ge 0$ y $0 \le t \le 1$, enfonces $f(tx) \ge t f(x)$

Como f es concava en [o,∞), dado x≥0 y 0≤t≤1 $f(tx) = f(tx + (1-t).0) \ge t f(x) + (1-t) f(0) \ge t f(x)$

concava f por encima de la merde

b) Probar que 1 es subaditiva (f(a+b) \le f(a) + f(b))

-si a=0 5 b=0

 $f(a+0) = f(a) \leq f(a) + f(0)$

Si $a,b>0 \Rightarrow a+b>0$

 $f(a) = f\left(\frac{a}{(a+b)}, (a+b)\right) \ge \frac{a}{a+b} \cdot f(a+b) \quad [1]$ $f(a) = f\left(\frac{a}{(a+b)}, (a+b)\right) \ge \frac{a}{a+b} \cdot f(a+b)$

 $f(b) = f\left(\frac{b}{(a+b)}, (a+b)\right) \ge \frac{b}{a+b} \cdot f(a+b)$ [2]

 $f(a) + f(b) \ge \left(\frac{a}{a+b} + \frac{b}{a+b}\right) f(a+b)$ Sumando [1] y [2]

c) Deducir que $d(x_1y) = arctg||x-y||$ $y S(x_1y) = \frac{||x-y||}{1+||x-y||}$ son distancia en 1Rn. d y δ son de la forma f(11x-y11) con $f:[0,\infty) \rightarrow \mathbb{R}$ $f(t) = \operatorname{arctg} t$ (para d) $y g(t) = \frac{t}{1+t}$ (para S) Esas funciones son ≥ 0 (en $[0, \infty)$) y se anulan si y En particular, la positividad y la simetria de d y 8 inmodiatas solo si t=0. En cuanto a la desigualdad triangular, se deduce si son inmediatas. podemos probar que f y g son <u>subaditivas</u> y <u>no decrecient</u> P. ej: $d(x, z) = f(||x-z||) = f(||(x-y)| + (y-y||) \le f(||x-y|| + ||y-z||) \le f(||x-y|| + ||y-z||)$ f subadichiva $\int d(x_1y_1): f'(t) = (\operatorname{arctq} t)' = \frac{1}{1+t^2} > 0 \implies f \text{ es de hecho,}$ $\frac{1}{1+t^2} > 0 \implies \frac{1}{1+t^2} = \frac{1}{1+t^2} > 0$ $\frac{1}{1+t^2} = \frac{1}{1+t^2} > 0$ $\left| \int_{0}^{\infty} |f''(t)|^{2} = \left(\frac{1}{1+t^{2}} \right)^{2} = \frac{-2t}{(1+t^{2})^{2}} \le 0 \quad \forall t \ge 0 \implies f \text{ en } \frac{\cos(\alpha t + \alpha t)}{[\alpha_{1}, \infty)} \right|$ $g(x,y): g'(t) = \left(\frac{t}{1+t}\right)' = \frac{1}{(1+t)^2} > 0$ si y solo si $t \ge 0$ $\Rightarrow g \text{ creciente} \text{ en } [0,\infty)$ $g''(t) = \left(\frac{1}{(1+t)^2}\right)' = \frac{-2t}{(1+t)^4} \le 0$ si y solo si $t \ge 0 \Rightarrow$ => 9 concava en [0,00)

f.] Successiones en "

a)
$$X_{k} = \left(\frac{\ln k}{k}, \frac{k''^{k}}{k'}\right) \rightarrow e^{\circ} = 1$$

$$\lim_{k \to \infty} X_{k} = \left(0, 1\right)$$

c)
$$X_{K} = \left(\frac{\text{sen } K}{K}, K\left(\frac{e^{1/K} - 1}{K}\right)\right)$$

$$\frac{-1}{K} \leq \frac{\text{sen } K}{K} \leq \frac{1}{K}$$

$$\frac{e^{1/K} - 1}{1/K} = \frac{e^{1/K} - 1}{1/K} = \frac{e^{1/K}}{1/K} = \frac{e^{1/K} - 1}{1/K} = \frac{e^{1/K}}{1/K} = \frac{e^{1/K} - 1}{1/K} = \frac{e^{1/K} - 1}{1/K}$$

lin X = (0, 1)

[8.] Hallar frontera y decidir si es abierto o cerrado: $A = \{(x,y) \in \mathbb{R}^2 : x^2 - y^2 = 1\}$ $= \{(x,y) \in \mathbb{R}^2: f(x,y) \in \{1\} = f(x,y) \in \{1\}$ f es continua en todo 122 (1) es cerrado en IR (parque 11)°= IR/11 es abierto). y como f es continua y 111 es cerrado => A es cerrado Si una función es continua y toma valores de un conjunto/ cerrado/abierto, su imagen sera otro conjunto cerrado/abierto Frontera $A = \partial A = \overline{A} \setminus int A$ ----- cierre de A: el menor cerrado que confiene a A. ⇒ Como A cerrado ⇒ A = A Si veo que int $A = \emptyset \implies \partial A = \overline{A} = A$

Si veo que int
$$A = \emptyset \implies \partial A = \overline{A} = A$$

int $A \subset f^{-1}(\underbrace{int (1)}) \implies \emptyset \subset int A \subset \emptyset \implies int A = \emptyset$.

B = 2(x,y) EK : 1x1<2 , 171<27

[9.]
a) Gerre, interior y frontera de $A = f(x_1y_1) \in \mathbb{R}^2 : |x-y| < 1$ $A = f(x_1y_1) \in \mathbb{R}^2 : |x-y| < 1 = f^{-1}((-\infty,1)) \text{ con } f(x_1y_1) = |x-y_1|$ $f: A \subset \mathbb{R}^n \longrightarrow \mathbb{R} \text{ continua}, \text{ entouces}:$

Si BCR es cerrado, f⁻¹(B) es cerrado en A. Si BCR es abierto, f⁻¹(B) es abierto en A.

f es continua en todo \mathbb{R}^2 y $(-\infty,1)$ es abierto en \mathbb{R} \Rightarrow \mathbb{R}

Figure de A (A) $\overline{A} = f^{-1}((-\infty, 1)) \in f^{-1}((-\infty, 1)) = f^{-$

Obs: $B \subseteq \mathbb{R} \Rightarrow B \subset \overline{B} \subset \mathbb{R} \Rightarrow f^{-1}(B) \subset f^{-1}(\overline{B})$: cerrado en \mathbb{R}^2 porque \overline{B} es cerrado en \mathbb{R}^2 y f es continua en \mathbb{R}^2 .

Para ver que $\overline{A} = f(x_1y_1) \in \mathbb{R}^2 / |x-y_1| \le 1 \} := A$, hacemos lo siguiente:

Sea $(x_0, y_0) \in A_1$ y sea $0 \le t \le 1$. Entonces $f(x_0, y_0) \in A$ porque $f(x_0, y_0) \in A$ porque $f(x_0, y_0) \in A$ porque $f(x_0, y_0) \in A$ $f(x_0, y_0) \in A$

Haciendo $t \to 1^+$, $t(x_0, y_0) \mapsto (x_0, y_0) \Rightarrow (x_0, y_0) \in \overline{A} \Rightarrow A_1 \subset \overline{A}$;

como $\overline{A} \subset A_1 \Rightarrow \overline{A} = A_1 \Rightarrow \overline{A} = A_1 \Rightarrow \overline{A} = f(x_1 y_1) \in \mathbb{R}^2 / |x - y_1| \leq 1$

● Interior de A = intA = A porque A es abierto.

• Frontera de $A = \partial A = \overline{A} \setminus \inf A = \frac{1}{|x-y| \in \mathbb{R}^2/|x-y| \in \mathbb{R}^2/|x-y|}$ $= D \partial A = \frac{1}{|x-y| \in \mathbb{R}^2/|x-y|} = 1$

continuación 9

b) Gierre, interior y frontera de
$$B = \{(x_1y_1z) \in \mathbb{R}^3 : x+y+z=1 \land x^2+y^2+z^2 \le 1\}$$

$$B = B_4 \cap B_2 \begin{cases} B_1 = \{(x_1y_1z) \in \mathbb{R}^3 / x+y+z=1\} \\ B_2 = \{(x_1y_1z) \in \mathbb{R}^3 / x^2+y^2+z^2 \le 1\} \end{cases}$$

$$B_3 = 4^{-1}(111)$$
 con $f(x,y,z) = x+y+z$

$$B_z = g^{-1}((-\infty,1])$$
 con $g(x,y,z) = x^2 + y^2 + z^2$

f y g son continuas en R³; {1} y (-∞, 1] son ambos cerrados en $\mathbb{R} \Rightarrow B_1 \wedge B_2$ son cerrados en \mathbb{R}^3 .

Como B es intersección finita de cerrados = D B es cerrado • Cierre de $B = \overline{B} = B$ porque B es cerrado.

· Sabemos que intB c intB1

B1 es un plano en IR3, por lo que cogiendo un punto p Po(xo,yo, 70) no existe un r>0 (por muy pequeño que sea) tal que $B_r(P_0) \in B_1 \implies \text{ int } B_1 = \emptyset$.

Como intB c intB1 y intB1 = \emptyset intB = \emptyset .

• $\partial B = \overline{B} \setminus \text{int } B \Rightarrow \partial B = \overline{B} \setminus \emptyset \Rightarrow \partial B = \overline{B} = B \text{ (terrado)}$

12. (teorema)

Criterio: A C Rn es compacto (=>) es cerrado y acotado.

a) (x & R: |x| <1, x & R\Q\ = A

Es acotado porque A C [-1,1]

RIQ es denso en R: Dado XER y E>O, BE(x) n (RIQ) + & "a distancia LE

existe un irracional

Ā= (xeR/IXI S1) ZA

⇒ A no es cerrado ⇒ A no es compacto.

b) B = {(x,y) ∈ R2: |x|≤ 1 } =

= $f^{-1}((-\infty,1])$ con f(x,y) = |x|

4 es continua en \mathbb{R}^2 y $(-\infty, 1]$ es cerrado en $\mathbb{R} \Rightarrow$

⇒ B es cerrado en 122.

Sin embargo, B no es acotado => ⇒ B no es compacto

c) $C = \int (x_i y) \in \mathbb{R}^2 / |x_i| + |y_i| = 1$

 $C = 4^{-1}(\{1\}) \text{ con } f(x_1y) = |x| + |y|$

f es continua en $\mathbb{R}^2 \Rightarrow$ C es cerrado

Además C es acotado:

Si $(x,y) \in C \Rightarrow |x|, |y| \leq 1 \Rightarrow x^2, y^2 \leq 1 \Rightarrow x^2 + y^2 \leq 2 \Rightarrow$

→ C C B, [0,0]

=) (es compacto.

Decimos que x es de acumulación de $E \subset \mathbb{R}^n (x \in E')$ > Yr>o, B'(x) n E + Ø, siendo B'(x) = Br(x) / 1x/= B((x) = 1 y & Rn: 0 < 1y-x | < rb a) Determinar A' y después para $A = \mathbb{Q}$ $A = \{\frac{1}{K} : K = 1, 2, ...\} \subset \mathbb{R}$ $A \subset [0, 1]$ Afirmo que A'=10} a.1) Si x=0, $0=\lim_{k\to\infty} \frac{1}{k}=0$ $\forall k \Rightarrow 0 \in A'$ a.2)-sea x co Entoncer $B'_{|x|}(x) \subset (-\infty,0) \subset A^{C}$. Si 0 < r < |x| $\Rightarrow B'_{i}(x) \land A \neq 0 \Rightarrow x \notin A'$ a.3)s: x>1, $B_{x-1}^{1}(x) \cap A = \emptyset \implies x \notin A^{1}$ (0.4) si $0 < x \leq 1$ coma $a_k = \frac{1}{k}$ es monétona decreciente y su tiende a cero, I. K=1,2,... tal que 1/21 < X ≤ 1/2 a.4.1) Si $\frac{1}{kH}$ $\leq x \leq \frac{1}{k}$ tomo $S = \min \left\{ \frac{1}{k} - x, x - \frac{1}{k+1} \right\} > 0$ $\Rightarrow B'_{s}(x) \cap A \neq \emptyset \Rightarrow x \notin A'.$ a.4.2) Si $x = \frac{1}{K}$ tomo $S = \frac{1}{K} - \frac{1}{K+1} > 0$ $B'_{\delta}(x) \cap A \neq \emptyset \implies x \notin A'$. Por lo tanto, A'=10%

 $\Rightarrow B = R$ y B' = R ya que todo x real se puede escribir como límite de una sucesión de racionales, todos los cuales son $\pm x$.

b)
$$A = \{(0,2) \mid V ([0,1] \times [0,1]) \text{ en } \mathbb{R}^2$$

$$A = \{(0,2) \mid V ([0,1] \times [0,1]) \text{ en } \mathbb{R}^2$$

$$A = [0,1]^2 V$$

$$A' = [0,1]^2$$

$$A' = [0,1]^2$$
 ya que para el elemento $(0,2)$ coges un $0 < r < 1$ y $B'_r(0,2) \cap A = \emptyset \Rightarrow (0,2) \notin A'$.

a) XEE (=> Yr>0, Br(x) NE + Ø

En particular si XEE' y 1>0, Ø # B'(X) NEC Br(X) NE (⇒) x ∈ Ē = Ē ⇔ E es cerrado

b) Veamos que si E'CE ⇒ E es cerrado:

Sea $(X_n)_{n=1}^{\infty}$ una sucesión en \in convergente a $x \in \mathbb{R}^N$ kueremos probar que $x \in E$, Hay dos casos:

i) FN∈ N tal que Xn=X ∀n≥N. Como Xn es una sucesión en E, en particular, X E E .

ii) Si no ocurre le anterior, ZN tal que Xn=x ∀n≥N. Elegimos una subsucesión $(X_{n_k})_{k=1}^{\infty}$ de $(X_n)_{n=1}^{\infty}$ del signiente modo: Eligimos 11, como el 1er n t.q. Xn + X. inacabado -> muxa mierda.

d.1) Supongamos que $(X_n)_{n=1}^{\infty}$ es una sucesión en E convergente a $x \in \mathbb{R}^n$ d) == EVE' x & E. Entonces Xn = x Vn = x EE'. Portanto, x EE | E = x EE' = ECE' d.2) S: $(x_n)_{n=1}^{\infty}$ es una sucesión en E' convergente a $x \in \mathbb{R}^n$ bla bla bla => EVE'EE = EVEL