Thinking

...inside the box

The Design Space of Control Options for Computer-game Als

Bob Wray 25th Soar Workshop 16 Jun 2005

Other Contributors: Mike van Lent, Jonathan Beard, Paul Brobst

Problem

- Want 100's 1000's realistic entities on a single PC (simulation or game platform)
- Current technology forces a difficult tradeoff:
 - Finite state machines (FSMs)
 - High multi-entity scalability
 - Limited knowledge scalability
 - Limited realism (especially coordination)
 - Agent-based approaches (E.g., Soar)
 - Much greater levels of realism feasible
 - Individual entities are resource intensive (relatively large memory and CPU footprints)
 - o Current multi-entity scalability: 20-40 Soar agents (MOUTBots)
- Initial Research:
 - Define space of possible hybrid solutions
 - Analysis to identify approaches that promise greater realism and greater entity scalability
 - (Paper to be presented at IJCAI 2005 workshop)

- Most computer games & many simulation systems use simple behavior representation technology
 - > Finite state machines
 - "State" of agent defines actions available
 - ◆ Combinatorial explosion in states generally limits knowledge representation
 - Simulation examples: JCATS state editor, OneSAF CBT
- Strengths
 - > Cheap to build
 - Small computational overhead

Agent technology

 Agents are often constructed from a "virtual machine" that attempts to capture processes and representations needed for intelligent decision making

- Built-in support for:
 - ◆ Pattern-directed processing
 - Least commitment (run-time decisions)
 - Conflict resolution (choosing between available options)
 - Learning
- Often have some validation wrt human psychology (e.g., both Soar and ACT-R used for cognitive modeling and HBRs)

Evaluation Dimensions (for game AI)

- Believability
 - Quality of behavior generated by entities
 - Not an absolute measure; dependent on overall requirements (observational fidelity)
- Multi-entity scalability
 - Maximum number of entities supportable in a specific game environment
 - More entities: richer (potential) interactions among agents and player(s)
- Knowledge scalability
 - Ability of technology to support increasingly large knowledge store
 - Assumption: Knowledge scalability is required for realism and rich interaction
- Simplicity of systems engineering
 - > Ease of use, ease of integration with simulation environment
 - Implementation technology needs to fit in game software development cycle

Potential Hybridizations

- Controller point-of-view
 - > Entity (egocentric)
 - Commander (global view)
- Grain-size of behavior representation
 - Individual (one entity in simulation)
 - Aggregated (control of a group of entities)
 - ◆ Assume multiple vehicle control (platoon of tanks vs. tank crew)
- Implementation technology
 - Homogeneous (Agent XOR FSM)

OR

- Heterogeneous (both)
- Examples:
 - Entity, Individual, FSM: Typical game approach
 - > Entity, Individual, Agent: Typical Soar approach
 - See paper for review of (almost) all combinations

PoV: Entity

Multiple controllers/entity Grain-size: Individual Grain-size: Indiv

Distinct sub-options

- 1. Static mix: Use Soar to select behaviors; use FSMs to execute them
 - Comparable to 3T(iered) architectures (sequencing & reactive layers)

- Requires both Soar and FSMs; likely will not improve multientity scalability
- 2. Dynamic mix: Switch back-and-forth between FSM and Soar
 - Potentially improves both scalability and realism by matching right technology to situation
 - Selectively reduce overall Soar footprint
 - Selectively generate high-fidelity behavior when needed
 - Research needed: When to choose between FSMs & Soar
 - More complex & costly development process (duplicate behavior representations)
 - Related Research: IMPRINT & ACT-R dynamic switching

PoV: Entity Grain-size: Aggregate Multiple entities/controller echnology: Heterogeneous

- Single agent instance controls small number of entities
- Strengths
 - Best case: scale to nX entities, where n is number of entities/unit
 - Simplifies coordination between entities within a unit
- Limitations
 - Need to support multiple, parallel goals (not well suited to Soar constraints -- but see Randy's talk)
 - Additional KE requirements (master control)
 - Additional implementation complexity
- Soar Tech: (initial) RAID architecture
- ICT: Full Spectrum Command

Game player controllers

PoV: Commander Grain-size: Individual Technology: Heterogeneous

- Commander agent directly controls all the entities in the simulation
 - Agent1 (move-to 10,7)
 - Agent2 (shoot, Threat6)
 - Agent3 (go prone)
- Feasible for chess, likely not feasible for dynamic games
- Soar: Many of same limitations as Multiple entities/controller

PoV: Commander & Entity Grain-size: Individual nology: Heterogeneous

Combine
 agent commander
 with entity level
 (FSM) controllers

- Assumption: Global perspective of commander can increase realism (e.g., increased coordination) at the entity level
- Significantly increases communication bandwidth
- Soar Tech: CIANC3

Summary of Initial Analysis

Summary of Initial Analysis

Architecture Considerations for JFETS

Future Work, Nuggets & Coal

Future work

- Explore options empirically (JFETS project)
- > Develop (better) metrics for evaluation dimensions
- Are these the right dimensions?
- ➤ Are there additional/alternative dimensions for other applications? (e.g., training)

Nuggets

- Hybrid approaches look promising for addressing some scalability limitations of Soar
- Potential research areas (unit leaders, commander, control switching)

Coal

- Soar not the right tool for 100+ entities on one PC
- > Operator bottleneck limits consideration of some options