ElMag - Formelsammlung

S. Reinli Inhaltsverzeichnis	
8. Oktober 2016	
Elektrostatische Analyse 1.1 Grundgesetze	2 2
Anwendung: pn-Übergang	3
Stationäre Strömungsanalyse	4

5

6

1

2

Magnetostatische Analyse

Idiotenseite

1 Elektrostatische Analyse

Die **Elektrostatische Analyse** ist ein Hauptbestandteil des Designs von Hoch- und Mittelspannungsgeräten. Wird unter anderem für die Berechnung der Ersatzkapazität von elektrischen Komponenten und Leitungen verwendet.

1.1 Grundgesetze

Gausssches Gesetz:

Der Fluss des Vektors $\vec{D} = \varepsilon \cdot \vec{E}$ durch eine geschlossene orientierte Fläche (A) ist gleich der gesamten elektrischen Ladung Q, die von der Fläche (A) umgeben ist:

$$\iint\limits_{(A)} \vec{D} \cdot \vec{dA} = Q \quad oder \quad \iint\limits_{(A)} \vec{E} \cdot \vec{dA} = \frac{Q}{\varepsilon}$$

 \vec{D} - elektrische Flussdichte

 \vec{E} - elektrisches Feld

 ε - elektrische Permittivität

Wirbelfreiheit des elektrostatischen Feldes:

Das Kurvenintegral des elektrostatischen Feldes \vec{E} über jede geschlossene orientierte Kurve (C) ist gleich null:

$$(C_2)$$
 E
 (C_1)
 dl

$$\oint\limits_{(C)} \vec{E} \cdot \vec{dl} = 0$$

$$\oint\limits_{(C)} \vec{E} \cdot \vec{dl} = \oint\limits_{\substack{P_1 \\ (C_1)}}^{P_2} \vec{E} \cdot \vec{dl} - \oint\limits_{\substack{P_1 \\ (C_2)}}^{P_2} \vec{E} \cdot \vec{dl} = 0$$

Das elektrische Skalarpotential eines Punktes gegenüber dem Bezugspunkt (P_B):

$$U_{P_1 P_2} = \varphi_{P_1} - \varphi_{P_2} = \oint_{P_1}^{P_2} \vec{E} \cdot \vec{dl}$$

Poisson-Gleichung

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = -\frac{\rho}{\varepsilon}$$

Laplace-Gleichung

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = 0$$

Randbedingungen

Der geerdete Rand:

$$\varphi = 0$$

Der Rand mit bekannten Potential:

$$\varphi = A$$
,

Der Rand der Symmetrie:

$$\frac{\partial \varphi}{\partial n} = 0$$

2 Anwendung: pn-Übergang

Einige Elektronen füllen die Löcher des Gitters und dadurch entsteht eine Raumladungszone. In dieser Zone ist eine Ladung verteilt, aber die Elektronen sind in diesem Bereich nicht frei. Durch diese Zone können die Elektronen nicht mehr die Löcher füllen.

$$\varrho_p = \frac{Q_p}{d_p \cdot d \cdot L}$$

$$\varrho_n = \frac{Q_n}{d_n \cdot d \cdot L}$$

$$\iint\limits_{(A)} \vec{E} \cdot d\vec{A} = -\frac{\varrho_p}{\varepsilon} \cdot d \cdot L \cdot (x + d_p) \Rightarrow E_{x1}(x) = -\frac{\varrho_p}{\varepsilon} \cdot (x + d_p)$$

$$\iint\limits_{(A)} \vec{E} \cdot \vec{n} \cdot \vec{dA} = \frac{Q}{\varepsilon} = \frac{\varrho \cdot V}{\varepsilon} = -\frac{\varrho_p}{\varepsilon}$$

S. Reinli 8. Oktober 2016

3 Stationäre Strömungsanalyse

Elektrische Stromdichte

$$\vec{J} = \frac{dI}{dA} \cdot \vec{n} \qquad [\vec{J}] = \frac{A}{m^2}$$

$$I = \iint_{(A)} \vec{J} \cdot d\vec{A}$$

$$I = -\frac{dQ}{dt} = -\frac{d}{dt} \iiint\limits_{(V)} \varrho \cdot dV = - \iiint\limits_{(V)} \frac{d\varrho}{dt} \cdot dV$$

$$\iint\limits_{(A)} \vec{J} \cdot d\vec{A} = - \iiint\limits_{(V)} \frac{d\varrho}{dt} \cdot dV$$

In der stationären Strömungsanalyse:

$$\iint\limits_{(A)} \vec{J} \cdot d\vec{A} = 0$$

Ohmsches Gesetz:

Der gesamte Strom durch die Fläche A

$$\iint\limits_{(A)} \vec{J} \cdot d\vec{A} = - \iiint\limits_{(V)} \frac{d\varrho}{dt} \cdot dV$$

und stationär sieht diese Gleichung folgendermassen aus:

$$\iint\limits_{(A)} \vec{J} \cdot d\vec{A} = 0$$

Ohmsches Gesetz:

$$R = \varrho \cdot \frac{l}{A}$$

$$\sigma = \frac{1}{\varrho}$$

$$G = \sigma \cdot \frac{A}{1}$$

4 Magnetostatische Analyse

Ampèresches Gesetz:

$$\oint\limits_{(C)} \vec{H} \cdot d\vec{l} = \sum_{k=1}^{n} I_k = \theta$$

S. Reinli 8. Oktober 2016

5 Idiotenseite

5.1 SI-Vorsätze

Symbol	Name	Wert	Binär	Symbol	Name	Wert
da	Deka	10 ¹		d	Dezi	10^{-1}
h	Hekto	10 ²		С	Centi	10-2
k	Kilo	10 ³	$2^{10} = 1024$	m	Mili	10^{-3}
M	Mega	106	2 ²⁰	y, μ	Mikro	10^{-6}
G	Giga	109	2 ³⁰	n	Nano	10-9
T	Tera	10 ¹²	2 ⁴⁰	р	Piko	10^{-12}
P	Peta	10^{15}	2 ⁵⁰	f	Femto	10^{-15}

5.2 Dreiecksformeln

Cosinussatz

$$c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos \gamma$$

Sinussatz

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2r = \frac{u}{\pi}$$

Pythagoras beim Sinus

$$\sin^2(b) + \cos^2(b) = 1$$
 $\tan(b) = \frac{\sin(b)}{\cos(b)}$

$$\sin \beta = \frac{b}{a} = \frac{\text{Gegenkathete}}{\text{Hypotenuse}}$$
 $\cos \beta = \frac{c}{a} = \frac{\text{Ankathete}}{\text{Hypotenuse}}$

$$\tan \beta = \frac{c}{b} = \frac{\text{Gegenkathete}}{\frac{\text{Ankathete}}{\text{Ankathete}}}$$
$$\cot \beta = \frac{c}{b} = \frac{\frac{c}{\text{Ankathete}}}{\frac{\text{Gegenkathete}}{\text{Gegenkathete}}}$$

5.3 Funktionswerte für Winkelargumente

deg	rad	sin	cos	tan
0	0	0	1	0
30	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$

deg	rad	sin	cos
90	$\frac{\pi}{2}$	1	0
120	$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$
135	$\frac{3\pi}{4}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$
150	$\frac{5\pi}{6}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$

deg	rad	sin	cos
180	π	0	-1
210	$\frac{7\pi}{6}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$
225	$\frac{5\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$
240	$\frac{4\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$

deg	rad	sin	cos
270	$\frac{3\pi}{2}$	-1	0
300	$\frac{5\pi}{3}$	$-\frac{\sqrt{3}}{2}$	<u>1</u> 2
315	$\frac{7\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
330	$\frac{11\pi}{6}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$

5.4 Periodizität

$$\cos(a + k \cdot 2\pi) = \cos(a)$$
 $\sin(a + k \cdot 2\pi) = \sin(a)$ $(k \in \mathbb{Z})$

5.5 Quadrantenbeziehungen

$$sin(-a) = -\sin(a)
sin(\pi - a) = \sin(a)
sin(\pi + a) = -\sin(a)
sin(\frac{\pi}{2} - a) = \sin(\frac{\pi}{2} + a) = \cos(a)$$

$$cos(-a) = \cos(a)
cos(\pi - a) = -\cos(a)
cos(\pi + a) = -\cos(\frac{\pi}{2} + a) = \sin(a)$$

Ableitungen

5.7 Additionstheoreme

$$\sin(a \pm b) = \sin(a) \cdot \cos(b) \pm \cos(a) \cdot \sin(b)$$

$$\cos(a \pm b) = \cos(a) \cdot \cos(b) \mp \sin(a) \cdot \sin(b)$$

$$\tan(a \pm b) = \frac{\tan(a) \pm \tan(b)}{1 \mp \tan(a) \cdot \tan(b)}$$

5.9 Geradengleichung Interpolieren

$$y(x) = y_1 + \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$

5.8 Doppel- und Halbwinkel

$$\sin(2a) = 2\sin(a)\cos(a)
\cos(2a) = \cos^{2}(a) - \sin^{2}(a) = 2\cos^{2}(a) - 1 = 1 - 2\sin^{2}(a)
\cos^{2}(\frac{a}{2}) = \frac{1 + \cos(a)}{2} \qquad \sin^{2}(\frac{a}{2}) = \frac{1 - \cos(a)}{2}$$

5.10 Grad <-> Rad

$$lpha_{rad} = lpha_{grad} \cdot \frac{\pi}{180}$$

$$lpha_{grad} = lpha_{rad} \cdot \frac{180}{\pi}$$

5.11 Grundelemente

Ohmscher Widerstand R

u und *i* können sprunghaft ändern

$$u(t) = R \cdot i(t)$$

$$\downarrow U \qquad i(t) = \frac{u(t)}{R}$$

$$Z_R = R$$

$$\text{nicht linear:} \qquad R_=(u) = \frac{U}{I(u)}, r_D = \frac{\mathrm{d}U}{\mathrm{d}I}|_{U_0}$$

$$P = I^2 \cdot R = \frac{U^2}{R}$$

Kapazitität C

u kann nicht sprunghaft ändern

$$u(t) = \frac{1}{C} \int_{0}^{t} i(\tau) d\tau + u(0)$$

$$i(t) = C \frac{du(t)}{dt}$$

$$Z_{C} = \frac{1}{j\omega C} = -\frac{j}{\omega C}$$

$$X_{C} = -\frac{1}{\omega C} \quad B_{C} = \omega C$$

$$Q_{C} = -U^{2} \cdot \omega C = -\frac{I^{2}}{\omega C}$$

$$W_{C} = \frac{1}{2}CU_{C}^{2}$$

Induktivität L

i kann nicht sprunghaft ändern

$$u(t) = L \frac{di(t)}{dt}$$

$$i(t) = \frac{1}{L} \int_{0}^{t} u(\tau) d\tau + i(0)$$

$$\frac{Z_{L}}{dt} = j\omega L$$

$$X_{L} = \omega L \quad B_{L} = -\frac{1}{\omega L}$$

$$Q_{L} = I^{2} \cdot \omega L = \frac{U^{2}}{\omega L}$$

$$W_{L} = \frac{1}{2} L I_{L}^{2}$$

5.12 Begriffe der Impedanz und Admittanz

Scheinwiderstand		$Z = \frac{U_{eff}}{I_{eff}}$	$= \sqrt{R^2 + X^2}$	Ohm
Komplexer Widerstand	Impedanz	$\underline{Z} = R + jX = Z \cdot e^{j\varphi}$	$= \frac{\underline{U}}{\underline{I}} = \frac{\underline{U} \cdot \underline{U}^*}{\underline{S}^*} = \frac{\underline{U}^2}{\underline{S}^*} = \frac{\underline{S}}{\underline{I}^2}$	Ohm
Komplexer Leitwert	Admittanz	$\underline{Y} = G + jB = \frac{1}{\underline{Z}} = \frac{1}{\overline{Z}}e^{-j\varphi}$	$=\frac{\underline{I}}{\underline{\overline{u}}}$	Siemens
Wirkwiderstand	Resistanz	$R = \operatorname{Re}(\underline{Z})$	$=Z\cdot cos(\varphi)$	Ohm
Wirkleitwert	Konduktanz	$G = \text{Re}(\underline{Y})$	$\neq \frac{1}{R}$	Siemens
Blindwiderstand	Reaktanz	$X = \operatorname{Im}(\underline{Z})$	$=Z\cdot sin(\varphi)$	Ohm
Blindleitwert	Suszeptanz	$B = \operatorname{Im}(\underline{Y})$	$\neq \frac{1}{X}$	Siemens
Phasenverschiebung		$\varphi = \varphi_u - \varphi_i = \arctan\left(\frac{\operatorname{Im}(\underline{Z})}{\operatorname{Re}(\underline{Z})}\right)$		Radiant