BAB II GRAFIK FUNGSI

Pertemuan 6-8

Relasi

Definisi:

Himpunan A dan B dikatakan mempunyai relasi apabila ada cara atau aturan tertentu untuk mengkaitkan antara anggota A dengan anggota B Relasi antara himpunan A dan B dituliskan ;

 $R: A \to B = \{(a,b) \mid a \in A \land b \in B\}$

Contoh

Diketahui himpunan $A = \{1,2,3\}$ dan $B = \{2,5\}$, gambarkan Relasi $A \to B$ yang menyatakan : a lebih kecil dari b, $\forall a \in A$ dan $\forall b \in B$

Penyelesaian

Relasi dengan aturan R = 'a lebih kecil dari b' jika digambarkan:

Dapat ditulis: $A \rightarrow B = \{(1,2), (1,5), (2,5), (3,5)\}$

Fungsi

Definisi:

Jika A dan B merupakan himpunan, maka relasi $F:A\to B$ disebut fungsi jika **setiap** anggota A dikawankan atau dipetakan tepat **satu** anggota B, atau jika untuk setiap x_1 dan x_2 anggota A maka jika $x_1=x_2$, maka berlaku $f(x_1)=f(x_2)$

Jika $\forall x \in A \text{ dan } \forall y \in B$, maka fungsi dapat ditulis :

$$F;A\to B=\left\{\left(x,y\right)/\,x\in A.\wedge.y\in B,y=f(x)\right\}$$

Catatan:

Karena fungsi akan berkaitan dengan sistem koordinat XOY, maka $x \in A$ merupakan domain atau daerah asal yang diwakili oleh Sumbu-X, sedangkan $y \in B$ merupakan daerah kawan atau kodomain yang diwakili oleh Sumbu-Y.

X disebut Variabel Bebas

Y disebut Variabel Tak Bebas

A. Fungsi Aljabar

Fungsi yang dapat dinyatakan sebagai penjumlahan, pengurangan, hasil kali, hasil bagi pengkat ataupun akar atau dengan kata lain Suatu fungsi dikatakan Fungsi Aljabar jika antara variabel bebas x dan variabel tak bebas y dihubungkan dengan operasi hitung tambah (+), kurang (-), kali (x), bagi (/), pangkat rasional atau akar.
Fungsi Aljabar terbagi menjadi 3 jenis, yaitu :

a. Fungsi Bulat

Yaitu fungsi yang penyebutnya = 1 Contoh:

 Fungsi Konstan yaitu fungsi yang variable bebasnya x pangkatnya nol, secara umum fungsi konstan dituliskan sebagai berikut :

$$y = c$$
 atau $f(x) = c$

Contoh:

- $y = 2 \operatorname{atau} f(x) = 2$
- y = 4 atau f(x) = 4
- Fungsi Linier yaitu fungsi yang variable bebasnya x pangkatnya satu, secara umum fungsi linier dituliskan sebagai berikut :

$$y = ax + b$$
 atau $f(x) = ax + b$

- $y = 2x + 1 \underbrace{\text{atau}} f(x) = 2x + 1$
- y = 3 x atau f(x) = 3 x

 Fungsi Kuadrat yaitu fungsi yang variable bebasnya x pangkatnya dua, secara umum fungsi kuadrat dituliskan sebagai berikut :

$$y = ax^2 + bx + c$$
 atau $f(x) = ax^2 + bx + c$

Contoh:

•
$$y = 2x^2 + 2x + 3$$
 atau $f(x) = 2x^2 + 2x + 3$

•
$$y = 3x - x^2$$
 atau $f(x) = 3x - x^2$

4). Polinomial merupakan sebutan untuk fungsi bulat yang variable bebasnya berpangkat tiga atau lebih, polynomial mempunyai bentuk umum yaitu :

$$P(x) = a_0 + a_1 x^1 + a_2 x^2 + \dots + a_n x^n$$

- $P(x) = 2 + 2x + x^2 + 3x^3 4x^4$
- $P(x) = 3 + 4x + 3x^2 + 3x^3 5x^4 + x^5 x^8$

b. Fungsi Rasional

Yaitu fungsi yang mempunyai bentuk umum $f(x) = \frac{h(x)}{g(x)}$ dimana $g(x) \neq c$ tetapi g(x)merupakan fungsi yang mempunyai variable bebas x pangkat lebih besar nol

Contoh:

$$f(x) = \frac{2x+1}{x+2}$$

•
$$f(x) = \frac{2x^2 + 3x + 1}{x + 1}$$

•
$$f(x) = \frac{2x^2 + 3x + 1}{x + 1}$$

• $f(x) = \frac{x + 1}{2x^3 - x^2 + x - 2}$

Fungsi Irrasional

Yaitu fungsi yang mempunyai bentuk umum $f(x) = \sqrt{g(x)}$, dimana fungsi g(x) dapat berupa fungsi bulat maupun fungsi pecah

•
$$f(x) = \sqrt{2x+3}$$

•
$$f(x) = \sqrt{\frac{2x+1}{x^2-2x+3}}$$

B. Fungsi Transenden

Fungsi transenden adalah fungsi yang melibatkan sinus, cosinus, logaritma, eksponensial, sinh, cosh dan lain-lain, fungsi transenden terdiri atas beberapa jenis fungsi lain yaitu :

a. Fungsi Goniometri

Fungsi Goniometri adalah fungsi yang melibatkan Sinus, Cosinus, Tangen, Cotangen, Secan, Cosecan dan lainnya

Contoh:

• y = Sin(x)

b. Fungsi Logaritma

Fungsi yang melibatkan perhitungan Logaritma

- $y=^2Log(x-3)$
- $y={}^{3}Log\left(\frac{x+1}{x-1}\right)$

c. Fungsi Eksponen

Fungsi yang variabel bebas x sebagai pangkat

Contoh:

- $y = 2^{2x+3}$
- $y = 8^{x+1}$

d. Fungsi Hiperbolis

Yaitu fungsi yang melobatkan hiperbolis, antara lain Sinh, Cosh, Tgnh, Cotgnh, Sech dan Cosch

- y = Sinh(2x)
- y = Cosh(3x)

Menggambar Grafik Fungsi

1. Grafik Fungsi Konstan

Fungsi Konstan adalah fungsi yang variabel bebasnya pangkat nol dan dituliskan sebagai berikut:

$$y = C$$
 Atau $f(x) = C$

Ciri-ciri grafik fungsi konstan :

- ⇒ grafiknya berupa garis lurus yang horizontal atau mendatar
- \Rightarrow selalu memotong sumbu y di titik (0,C)

sehingga untuk membuat grafik fungsi konstan, cukup kita buat garis lurus yang mendatar dan melalui titik (0,C)

Contoh 1:

Buat grafik fungsi konstan y = 2 atau f(x) = 2

Penyelesaian:

• karena C=2, maka garis lurus tersebut melalui titik (0,2)dan sejajar sumbu x Grafiknya:

2. Grafik Fungsi Linier

Fungsi Linier adalah fungsi yang variabel bebasnya pangkat satu dan dituliskan sebagai berikut:

$$y = ax + b$$
 Atau $f(x) = ax + b$

Ciri-ciri grafik fungsi Linier:

- ⇒ grafiknya berupa garis lurus yang mempunyai kemiringan
- \Rightarrow selalu memotong sumbu y di titik (0,b) dan memotong sumbu y di titik $\left(-\frac{b}{a},0\right)$

Contoh 1:

Buat grafik fungsi linier y = 2x + 4

Penyelesaian

Dari fungsi di atas, diketahui bahwa nilai a = 2 dan b = 4, sehingga grafiknya garis lurus yang memotong sumbu y di titik (0,4) dan memotong sumbu x di titik (-2,0).

Grafiknya:

Contoh 2:

Buat grafik fungsi linier y = 3x

Penyelesaian

Dari fungsi di atas, diketahui bahwa nilai a=3 dan b=0, karena nilai b=0, maka grafik akan melalui titik pusat koordinat yaitu (0,0), untuk mendapatkan satu titik lagi, maka kita mengambil nilai x sembarang (bebas), misalnya

x=2 jika dimasukan ke dalam fungsi y=3x maka akan diperoleh nilai y=6, sehingga satu titik koordinat yang terletak pada grafik itu adalah (2,6), sehingga grafiknya garis lurus yang melalui titik (0,0) dan (2,6)

Grafiknya:

3. Grafik Fungsi Kuadrat

Fungsi Kuadrat adalah fungsi yang pangkat tertinggi variabel bebasnya adalah dua dan dituliskan sebagai berikut :

$$y = ax^2 + bx + c \quad \text{atau} \quad f(x) = ax^2 + bx + c$$

Ciri-ciri grafik fungsi kuadrat :

- ⇒ grafiknya berupa garis melengkung (parabola)
- \Rightarrow grafiknya selalu memotong sumbu y di titik (0,C)
- ⇒ grafik fungsi kuadrat, ada tiga bentuk berdasarkan nilai Diskriminan :
- a. grafik akan memotong sumbu x di dua titik

b. grafik tidak memotong sumbu x

c. grafik menyinggung sumbu x

Langkah – langkah menggambar fungsi kuadrat f(x) = ax² + bx + c, dengan D=b² – 4ac

- 1. Jika D>0, maka Grafik akan memotong sumbuxdi Dua Titik yaitu $(x_1,0)$ dan $(x_2,0)$ Tiga titik yang harus dicari adalah :
 - a. Titik Puncak dengan rumus $(p,q) = \left(-\frac{b}{2a}, -\frac{D}{4a}\right)$
 - b. Titik potong sumbux yaitu $(x_1,0)$ dan $(x_2,0)$ dimana x_1 dan x_2 diperoleh dengan syarat y=0, yaitu :

$$y = ax^2 + bx + c$$

Karena
$$y = 0$$
, maka $ax^2 + bx + c = 0$

Untuk memperoleh nilai x_1 dan x_2 , maka $ax^2 + bx + c = 0$

1). Difaktorkan:

$$ax^{2} + bx + c = 0$$

 $(x - x_{1})(x - x_{2}) = 0$

 $x = x_1$ dan $x = x_2$ sehingga diperoleh dua titik potong terhadap sumbu x vaitu $(x_1,0)$ dan $(x_2,0)$

2). Dengan Rumus abc:

$$x_1 = \frac{-b + \sqrt{D}}{2a}$$

$$x_2 = \frac{-b - \sqrt{D}}{2a}$$

 \Rightarrow sehingga diperoleh dua titik potong terhadap sumbu x yaitu $(x_1,0)$ dan $(x_2,0)$

Contoh 1:

Buat grafik fungsi kuadrat $f(x) = x^2 - 2x$

Penyelesaian

Diketahui $f(x) = x^2 - 2x$, maka nilai a = 1, b = -2 dan c = 0 sehingga Diskriminannya: $\Rightarrow D = b^2 - 4ac = (-2)^2 - 4(1)(0) = 4 - 0 = 4$

karena D > 0 maka grafik akan memtotong sumbu x di dua titik Tiga titik yang harus dicari adalah :

1. Titik Puncak dengan rumus $(p,q) = \left(-\frac{b}{2a}, -\frac{D}{4a}\right)$

$$(p,q) = \left(-\frac{(-2)}{2(1)}, -\frac{4}{4(1)}\right) = \left(-\frac{(-2)}{2}, -\frac{4}{4}\right) = (1,-1)$$

2. Titik potong sumbu x yaitu $(x_1,0)$ dan $(x_2,0)$ dimana x_1 dan x_2 diperoleh dengan syarat y=0 atau f(x)=0, yaitu:

$$\Rightarrow f(x) = x^2 - 2x$$

$$\Rightarrow x^2 - 2x = 0$$

$$\Rightarrow x(x-2)=0$$

 $x_1 = 0$ atau $x_2 = 2$ sehingga diperoleh dua titik potong terhadap sumbu x yaitu (0,0) atau (2,0)

Buat grafik fungsi kuadrat $f(x) = -x^2 + x + 2$

Penyelesaian

Diketahui $f(x) = -x^2 + x + 2$, maka nilai a = -1, b = 1 dan c = 2 sehingga Diskriminannya: $\Rightarrow D = b^2 - 4ac = (1)^2 - 4(-1)(2) = 1 + 8 = 9$

karena D>0 maka grafik akan memtotong sumbu x di dua titik Tiga titik yang harus dicari adalah :

- 1. Titik Puncak dengan rumus $(p,q) = \left(-\frac{b}{2a}, -\frac{D}{4a}\right) = \left(-\frac{(1)}{2(-1)}, -\frac{9}{4(-1)}\right) = \left(\frac{1}{2}, \frac{9}{4}\right)$
- 2. Titik potong sumbux yaitu $(x_1,0)$ dan $(x_2,0)$ dimana x_1 dan x_2 diperoleh dengan syarat y=0 atau f(x)=0, yaitu :

$$\Rightarrow f(x) = -x^2 + x + 2$$

$$\Rightarrow 0 = -x^2 + x + 2$$

$$\Rightarrow -x^2 + x + 2 = 0$$

$$\Rightarrow (x+1)(2-x)=0$$

 $x_1 = -1 \operatorname{dan} x_2 = 2$ sehingga diperoleh dua titik potong terhadap sumbu x yaitu (-1,0) $\operatorname{dan}(2,0)$

- 2. Jika D < 0, maka Grafik Fungsi Kuadarat tidak akan memotong sumbux Tiga titik yang harus dicari adalah :
- 1. Titik Puncak dengan rumus $(p,q) = \left(-\frac{b}{2a}, -\frac{D}{4a}\right)$
- 2. Dua Titik Sembarang yaitu $(x_1, f(x_1))$ dan $(x_2, f(x_2))$ dimana x_1 dan x_2 adalah suatu titik yang terletak di sebelah kanan titik $x = -\frac{b}{2a}$ yang berjarak m dan disebelah kiri

titik $x = -\frac{b}{2a}$ yang juga berjarak m, sehingga kedua titik dapat diperoleh yaitu:

$$\Rightarrow x_1 = -\frac{b}{2a} + m \quad \text{maka} \quad f(x_1) = f\left(-\frac{b}{2a} + m\right) \Rightarrow (x_1, f(x_1))$$

$$\Rightarrow x_2 = -\frac{b}{2a} - m \text{ maka } f(x_1) = f\left(-\frac{b}{2a} + m\right) \Rightarrow (x_2, f(x_2))$$

Contoh 1:

Buat grafik fungsi kuadrat $f(x) = -x^2 + 2x - 2$

Penyelesaian:

Diketahui
$$f(x) = -x^2 + 2x - 2$$
, maka nilai $a = -1$, $b = 2$ dan $c = -2 \Rightarrow D = b^2 - 4ac$
 $\Rightarrow D = (2)^2 - 4(-1)(-2) = 4 - 8 = -4$

karena D < 0, maka Grafik Fungsi Kuadarat tidak akan memotong sumbu x

1. Titik Puncak dengan rumus
$$(p,q) = \left(-\frac{b}{2a}, -\frac{D}{4a}\right)$$

$$(p,q) = \left(-\frac{2}{2(-1)}, -\frac{(-4)}{4(-1)}\right) = \left(\frac{-2}{-2}, \frac{4}{-4}\right) = (1,-1)$$

2. Dua Titik Sembarang yaitu
$$(x_1, f(x_1)) \operatorname{dan}(x_2, f(x_2))$$

Misalkan x_1 dan x_2 adalah suatu titik yang terletak di sebelah kanan titik yang berjarak 2 dan disebelah kiri titik yang juga berjarak 2, sehingga diperoleh

$$\Rightarrow x_1 = -\frac{b}{2a} + m \Rightarrow x_1 = -\frac{2}{2(-1)} + 2 = 1 + 2 = 3$$

Sehingga
$$f(x_1) = f(3) = -(3)^2 + 2(3) - 2 = -5$$
 titiknya (3,-5)

$$\Rightarrow x_2 = -\frac{b}{2a} - m \Rightarrow x_2 = -\frac{2}{2(-1)} - 2 = 1 - 2 = -1$$

$$f(x_2) = f(-1) = -(-1)^2 + 2(-1) - 2 = -5$$
 titiknya $(-1, -5)$

Contoh 2:

Buat grafik fungsi kuadrat $f(x) = x^2 - 4x + 5$

Penyelesaian :

Diketahui $f(x) = x^2 - 4x + 5$, maka nilai a = 1, b = -4 dan c = 5 sehingga Diskriminannya: $\Rightarrow D = b^2 - 4ac = (-4)^2 - 4(1)(5) = 16 - 20 = -4$

karena D < 0, maka Grafik Fungsi Kuadarat tidak akan memotong sumbu x

- 1. Titik Puncak dengan rumus $(p,q) = \left(-\frac{b}{2a}, -\frac{D}{4a}\right)$ $(p,q) = \left(-\frac{(-4)}{2(1)}, -\frac{(-4)}{4(1)}\right) = \left(\frac{4}{2}, \frac{4}{4}\right) = (2,1)$
- 2. Dua Titik Sembarang yaitu $(x_1, f(x_1)) \operatorname{dan}(x_2, f(x_2))$

Misalkan x_1 adalah suatu titik yang terletak di sebelah kanan titik yang berjarak 3 dan x_2 disebelah kiri titik yang juga berjarak 3, sehingga diperoleh yaitu:

$$\Rightarrow x_1 = -\frac{b}{2a} + m \Rightarrow x_1 = -\frac{(-4)}{2(1)} + 3 = 2 + 3 = 5$$

$$f(x_1) = f(5) = (5)^2 - 4(5) + 5 = 10 \text{ titiknya} (5,10)$$

$$\Rightarrow x_2 = -\frac{b}{2a} - m \Rightarrow x_2 = -\frac{(-4)}{2(1)} - 3 = 2 - 3 = -1$$

$$f(x_2) = f(-1) = (-1)^2 - 4(-1) + 5 = 10 \text{ titiknya} (-1,10)$$

Soal Latihan

1. Gambarkan grafik fungsi kuadrat di bawah ini

a.
$$y = x^2 + 1$$

b.
$$y = -x^2 + 1$$

c.
$$y = 2x^2 - 4x + 3$$

d.
$$y = 2x^2 + 4x + 2$$

e.
$$y = x^2 - x - 1$$

f.
$$y = x^2 - 4$$

g.
$$v = 4 - x^2$$

h.
$$y = x^2 + x + 1$$

i.
$$y = -x^2 + 2x - 2$$

j.
$$y = -x^2 + 2x - 1$$

k.
$$v = 2x^2 - 2$$

1.
$$y = x^2 + 2$$

m.
$$y = x^2 - 3x + 2$$

n.
$$y = 2x - x^2$$

o.
$$y = -x^2 - 1$$

p.
$$y = -x^2 + 1$$

Grafik Sepotong-sepotong

Fungsi sepotong-sepotong didefinisikan seperti di bawah ini :

$$f(x) = \begin{cases} f_1(x) & x \le x_1 \\ f_2(x) & x_1 \le x \le x_2 \\ \vdots & \vdots \\ f_n(x) & x \ge x_{n-1} \end{cases}$$

Dimana fungsi f(x) dibangun dari potongan-potongan n buah fungsi yaitu potongan fungsi $f_1(x)$ dimana domain fungsi $f_1(x)$ adalah hanya $x \le x_1$ dimana x_1 sebuah bilangan tertentu, demikian juga fungsi $f_2(x)$ merupakan potongan fungsi dimana domainnya hanya dari $x_1 \le x \le x_2$ dimana x_1 dan x_2 merupakan bilangan sebagai batas fungsi begitu seterusnya sampai dengan potongan fungsi $f_n(x)$

Buat grafik fungsi sepotong-sepotong berikut

$$f(x) = \begin{cases} 2 & x \le 0 \\ 2 - x & x \ge 0 \end{cases}$$

Penyelesaian

Langkah membuat grafik :

Dari Fungsi di atas diketahui :

1. $f_1(x) = 2$ daerah grafiknya berada pada daerah $x \le 0$ atau disebelah kiri x = 0, maka Grafiknya seperti Gambar 1

2. $f_2(x) = 2 - x$ daerah grafiknya berada pada daerah $x \ge 0$ atau disebelah kanan x = 0,

maka Grafiknya seperti Gambar 2

Jika potongan grafik pada Gambar 1 dan Gambar 2 digambar dalam satu system koordinat, maka diperoleh grafik fungsi sepotong-sepotong seperti gambar di bawah

Buat grafik fungsi sepotong-sepotong berikut

$$f(x) = \begin{cases} -x & x \le 0 \\ x & 0 \le x \le 2 \\ 2 & x \ge 2 \end{cases}$$

Penyelesaian

Langkah membuat grafik :

Dari Fungsi di atas diketahui :

- 1. $f_1(x) = -x$ daerah grafiknya berada pada daerah $x \le 0$ atau disebelah kiri x = 0
- 2. $f_2(x) = x$ daerah grafiknya berada pada daerah $0 \le x \le 2$ atau disebelah kanan x = 0 dan disebelah kiri x = 2
- 3. $f_3(x) = 2$ daerah grafiknya berada pada daerah $x \ge 2$ atau disebelah kanan x = 2

Buat grafik fungsi sepotong-sepotong berikut

$$f(x) = \begin{cases} -x & x \le 0 \\ 2x - x^2 & 0 \le x \le 2 \\ 2 & x \ge 2 \end{cases}$$

Penyelesaian

Langkah membuat grafik :

Dari Fungsi di atas diketahui :

- 1. $f_1(x) = -x$ daerah grafiknya berada pada daerah $x \le 0$ atau disebelah kiri x = 0
- 2. $f_2(x) = 2x x^2$ daerah grafiknya berada pada daerah $0 \le x \le 2$ atau disebelah kanan x = 0 dan disebelah kiri x = 2
- 3. $f_3(x) = 2$ daerah grafiknya berada pada daerah $x \ge 2$ atau disebelah kanan x = 2

Buat grafik fungsi sepotong-sepotong berikut

$$f(x) = \begin{cases} x+2 & x \le -2 \\ x^2 + 2x & -2 \le x \le 0 \\ x^2 - 2x & 0 \le x \le 2 \\ 2 - x & x \ge 2 \end{cases}$$

Penyelesaian

Langkah membuat grafik :

Dari Fungsi di atas diketahui :

- 1. $f_1(x) = x + 2$ daerah grafiknya berada pada daerah $x \le -2$ atau disebelah kiri x = -2
- 2. $f_2(x) = x^2 + 2x$ daerah grafiknya berada pada daerah $-2 \le x \le 0$ atau disebelah kanan x = -2 dan disebelah kiri x = 0
- 3. $f_3(x) = x^2 2x$ daerah grafiknya berada pada daerah $0 \le x \le 2$ atau disebelah kanan x = 0 dan disebelah kiri x = 2
- 4. $f_4(x) = 2 x$ daerah grafiknya berada pada daerah $x \ge 2$ atau disebelah kanan x = 2

LinierNaik
$$(x, a, b) = \begin{cases} 0, & x \le a \\ (x-a)/(b-a), & a < x \le b \end{cases}$$

LinierTurun
$$(x,a,b) = \begin{cases} (b-x)/(b-a), & a \le x < b \\ 0, & x \ge b \end{cases}$$

Soal Latihan

Gambarkan grafik fungsi sepotong-sepotong berikut ini dalam satu system koordinat.

1.
$$f(x) = \begin{cases} x^2 & x \le 1 \\ 1 & x \ge 1 \end{cases}$$

3.
$$f(x) = \begin{cases} x+1 & x \le -1 \\ x^2+1 & -1 \le x \le 1 \\ 1 & x \ge 1 \end{cases}$$
 4. $f(x) = \begin{cases} x^2 & x \le 0 \\ x & 0 \le x \le 1 \\ 1+x^2 & x \ge 1 \end{cases}$

5.
$$f(x) = \begin{cases} 2 & x \le -1 \\ -x & -1 \le x \le 1 \\ x - 2 & x \ge 1 \end{cases}$$

7.
$$f(x) = \begin{cases} -x & x \le 0 \\ x & 0 \le x \le 1 \\ 2-x & x \ge 1 \end{cases}$$

$$9. \ f(x) = \begin{cases} x^2 + 3x + 2 & x \le -1 \\ 0 & -1 \le x \le 1 \\ x^2 - 3x + 2 & x \ge 1 \end{cases} \quad 10. \ f(x) = \begin{cases} -x^2 - x & x \le 0 \\ -x^2 + 1 & 0 \le x \le 2 \\ -2 & x \ge 2 \end{cases}$$

11.
$$f(x) = \begin{cases} 3x+6 & x \le -2 \\ x^2 - 6x & -2 \le x \le 1 \\ 3x-12 & x \ge 1 \end{cases}$$

$$2. \ f(x) = \begin{cases} x+1 & x \le 0 \\ 1 & 0 \le x \le 1 \\ x & x \ge 1 \end{cases}$$

4.
$$f(x) = \begin{cases} x^2 & x \le 0 \\ x & 0 \le x \le 1 \\ 1 + x^2 & x \ge 1 \end{cases}$$

5.
$$f(x) = \begin{cases} 2 & x \le -1 \\ -x & -1 \le x \le 1 \\ x - 2 & x \ge 1 \end{cases}$$
 6. $f(x) = \begin{cases} -x - 2 & x \le -1 \\ -x^2 & -1 \le x \le 1 \\ x - 2 & x \ge 1 \end{cases}$

7.
$$f(x) = \begin{cases} -x & x \le 0 \\ x & 0 \le x \le 1 \\ 2 - x & x \ge 1 \end{cases}$$
 8.
$$f(x) = \begin{cases} x + 2 & x \le -1 \\ 1 + x^2 & -1 \le x \le 1 \\ -x + 2 & x \ge 1 \end{cases}$$

10.
$$f(x) = \begin{cases} -x^2 - x & x \le 0 \\ -x^2 + 1 & 0 \le x \le 2 \\ -2 & x \ge 2 \end{cases}$$

$$11. \ f(x) = \begin{cases}
3x+6 & x \le -2 \\
x^2 - 6x & -2 \le x \le 1 \\
3x-12 & x \ge 1
\end{cases}$$

$$12. \ f(x) = \begin{cases}
2x+4 & x \le -2 \\
2x^2 + 4x & -2 \le x \le 1 \\
-2x+8 & x \ge 1
\end{cases}$$

Garis Lurus

Misalnya diketahui dua titik yaitu titik A(2,3) dan B(4,8), maka garis lurus yang melalui kedua titik tersebut adalah garis AB seperti pada Gambar berikut ini:

.Gradien dan Persamaan Garis

$$Gradien(m) = \frac{PerubahanTegak}{PerubahanMendatar} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{y_1 - y_2}{x_1 - x_2}$$

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 2}{8 - 5} = \frac{0}{3} = 0$$

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 2}{8 - 5} = \frac{2}{3}$$

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{0 - 2}{7 - 5} = \frac{-2}{2} = -1$$

Persamaan Linier (Hyperplane)

$$y = mx + b$$

$$Ax + By + C = 0$$

Bentuk eksplisit

Bentuk Umum

$$w_1 x_1 + w_2 x_2 + ... + w_n x_n + b = 0$$

Jaringan Syaraf Tiruan

Input layer Hidden layer Output layer

Sehingga dapat kita simpulkan persamaan garis lurus yang melalui titik (x_1, y_1) dengan Gradien m adalah

$$y - y_1 = m(x - x_1)$$

Sekarang bagaimana jika persamaan garis lurus yang melalui dua buah titik yaitu $A(x_1, y_1)$ dan titik $B(x_2, y_2)$, perhatikan penjelasan di bawah ini.

Gradien mempunyai rumus:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Rumus persamaan garis yang melalui titik $A(x_1, y_1)$ dengan Gradien m adalah :

$$\Rightarrow y - y_1 = m(x - x_1)$$

$$\Rightarrow y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$

TERIMA KASIH