Trabalho 02 de EI – Estatística Indutiva

Nome: Matheus Vieira Lopes de Souza R.A.: N666773

Curso: Eng. Básico Semestre: 3° () 4° (x) Turma: EB4Q06

Unidade: Alphaville Período: Noturno

Obs.:

- Valor Total deste Trabalho: 1,67 pontos.

- Valor de cada questão: 0,42 pontos.

- 1. A tabela a seguir mostra os resultados de uma pesquisa que apreciou o peso de um veículo (em ton) e o número médio de peças defeituosas que tiveram de ser repostas no primeiro ano de uso do automóvel. Pedem-se:
- a) o coeficiente de correlação linear e a equação da regressão linear N(P);
- b) o diagrama de dispersão e o gráfico da equação de regressão linear.

P _i : Peso do Veículo (ton)	N _i : Número de peças defeituosas
1,00	2
1,25	5
1,50	5
1,75	7
2,00	10
2,25	11
2,50	15

- 2. A tabela a seguir mostra os resultados de uma pesquisa realizada durante o mês de julho, em um hospital pediátrico na qual foram apreciados: temperatura média do dia e número de atendimentos de casos de problemas respiratórios. Pedem-se:
- a) o coeficiente de correlação linear e a equação da regressão linear -N(T);
- b) o diagrama de dispersão e o gráfico da equação de regressão linear.

T _i : Temperatura média (°C)	N _i : Número de problemas respiratórios
9	28
11	26
14	22
15	22
17	22
18	16
20	12
21	6
22	6

- 3. Uma amostra extraída de uma população "normal" apresentou os seguintes valores:
- 12, 15, 16, 18, 20, 22, 24 e 25.
- a) Construa um intervalo de confiança de 95% para a média populacional;
- b) Construa um intervalo de confiança de 90% para a média populacional.
- 4. Uma amostra extraída de uma população normalmente distribuída apresentou a seguinte distribuição de frequências:

classes	frequências
2 ⊦ 6	2
6 ⊦ 10	4
10 ⊦ 14	6
14 ⊦ 18	5
18 ⊦ 22	3

Construir um intervalo de confiança de 95% para a variância populacional e para o desvio-padrão populacional.

Respostas:

1. Criando a tabela (para o cálculo de correlação):

xi	yi	xi ²	yi ²	xi.yi
1	2	1	4	2
1,25	5	1,5625	25	6,25
1,5	5	2,25	25	7,5
1,75	7	3,0625	49	12,25
2	10	4	100	20
2,25	11	5,0625	121	24,75
2,5	15	6,25	225	37,5
Σxi=12,25	Σyi=55	Σxi ² =23,1875	Σyi²=549	Σxi.yi=110,25

1. Criando tabela (para o cálculo de desvio padrão)

Xi	Xi-Xm	(Xi-Xm) ²		
1	-0,75	0,5625		
1,25	-0,5	0,25		
1,5	-0,25	0,0625		
1,75	0	0		
2	0,25	0,0625		
2,25	0,5	0,25		
2,5	0,75	0,5625		

yi	yi-ym	(yi-ym) ²			
2	-5,857	34,306			
5	-2,857	8,1633			
5	-2,857	8,1633			
7	-0,857	0,7347			
10	2,1429	4,5918			
11	3,1429	9,8776			
15	7,1429	51,02			
ym=	7,8571	syi2=	19,476	syi=	4,4132

1.2) += n.(Exivi) - (Exi).(Exi) [n.(Exai) - (Exi)2].[n(Exi)-(Exi)]

1-7.1025-12,25.55 1(7.231875-150,0625).(7.549-3025)

7 = 98 - + = 98 - + = 0,979//
12,25.818 100,1024 " Carpicinte de carrelação linion R: Carrelação partira Parte.

Equação geral de regressão

y*= ky. xi+(y-ky.x); ky=+(Sy/Sx)

Ky=0,979. (4,4132/0,5401) -> ky=7,999

 $\bar{x} = \sum_{x} x_i \rightarrow \bar{x} = 12,25 \rightarrow \bar{x} = 1,75$ $\bar{y} = \sum_{x} x_i \rightarrow \bar{y} = 55 \rightarrow \bar{y} = 7,857$

\$=7,999.xi+(7,857-0,979.1,75)

7= 7,999xi+6,1437/

b. Diagrama de dispersão

xi	yi
1	2
1,25	5
1,5	5
1,75	7
2	10
2,25	11
2,5	15

b. gráfico da equação de regressão linear.

xi	yi
1	14,143
1,25	16,142
1,5	18,142
1,75	20,142
2	22,142
2,25	24,141
2,5	26,141

2.a. Criando a tabela (para o cálculo de correlação):

xi	yi	Xi ²	yi²	xi.yi
9	28	81	784	252
11	26	121	676	286
14	22	196	484	308
15	22	225	484	330
17	22	289	484	374
18	16	324	256	288
20	12	400	144	240
21	6	441	36	126
22	6	484	36	132

Σxi=	147 Σyi=	160 Σxi ² =	2561 Σyi ² =	3384 Σxi.yi=	2336

2.a. Criando tabela de variância xi:

xi	xi-xm	(xi-xm) ²	
9	-7,333	53,778	
11	-5,333	28,444	
14	-2,333	5,4444	
15	-1,333	1,7778	
17	0,6667	0,4444	
18	1,6667	2,7778	
20	3,6667	13,444	
21	4,6667	21,778	
22	5,6667	32,111	
xm=	16,333	sxi ² =	20

Criando tabela de variância yi :

yi	yi-ym	(yi-ym) ²	
28	10,222	104,49	
26	8,2222	67,605	
22	4,2222	17,827	
22	4,2222	17,827	
22	4,2222	17,827	
16	-1,778	3,1605	
12	-5,778	33,383	
6	-11,78	138,72	
6	-11,78	138,72	_
ym=	17,778	syi²=	67,444

$$t = 9.2336 - 147.160$$
 $t = -2496$
 $t = -0.9439 \%$ Coordagio reguliza Porto.

savergor el larg sapoups

$$y^* = ky.xi + (y - kyx); S_x = \sqrt{20} + S_x = 4,472$$

 $S_y = \sqrt{67,449} + S_y = 8,212; k_y = t(S_1/S_x) + k_y = -0,9439(8,212)$
 $4,472) + k_y = -1,7333$
 $\bar{x} = \sum_{x} xi + \bar{x} = \frac{147}{9} + \bar{x} = 16,333; \bar{y} = \sum_{x} xi + \bar{y} = \frac{160}{9} = 17,778$

$$y^* = -1,7333.xi + (17,778 - (-1,7333.16,333))$$

 $y^* = -1,7333.xi + (46,088)$

2b. O diagrama de dispersão:

xi	yi
9	28
11	26
14	22
15	22
17	22
18	16
20	12
21	6
22	6

2b. O gráfico da equação de regressão linear:

xi	yi
9	30,4883
11	27,0217
14	21,8218
15	20,0885
17	16,6219
18	14,8886
20	11,422
21	9,6887
22	7,9554

3.a

xi	xi-xm	(xi-xm) ²
12	-7	49
15	-4	16
16	-3	9
18	-1	1
20	1	1
22	3	9
24	5	25
25	6	36

	xm=	19	sxi ² =	20,857
--	-----	----	--------------------	--------

$$gl = N-1$$
 $E = t_c S$ $X = 19$; $N = 8$; $S = 4.567$, $C = 95\%$
 \sqrt{N}
 $gl = 8-1=7 \rightarrow t_c = 0.365$; $E = 2.365.4.567 = 3.8187$
 $\overline{X} - E \leq \mu \leq \overline{X} + E \rightarrow 19 - 3.8187 \leq \mu \leq 19 + 3.8187$
 $15.1813 \leq \mu \leq 22.8187$
 $loo_{\infty}C = 90\% \rightarrow t_{c} = 1.895 \rightarrow E = 1.895.4.567 = 3.0598$
 $19 - 3.0598 \leq \mu \leq 19 + 3.0598 \rightarrow 15.9402 \leq \mu \leq 22.0598$

4. Criando tabela para encontra a variância e o desvio padrão:

classes	classes	PM	freq	PM.Freq	PM-Xm	(Pm-Xm) ² .freq
2	6	4	2	8	-8,6	147,92
6	10	8	4	32	-4,6	84,64
10	14	12	6	72	-0,6	2,16
14	18	16	5	80	3,4	57,8
18	22	20	3	60	7,4	164,28
xm=	12,6	S ² =	24,0421	S=	4,90328	

4. gl = n - 1 = 20 - 1 = 19, $x_1 = 1 - C + x_1 = 1 - 0.92 = 0.025$ $x_2 = 1 + C - 1 \times 2 = 1 + 0.95 = 0.975$ $2 \times 2 = 3 \times 2 = 3.627 = 3.907$ 32,852 $(n - 1) s^2 < 6^2 < (n - 1) s^2.$ $x^2 = 32,852$ $(20 - 1),24,0421 < 6^2 < (20 - 1),24,0421$ 32,852 = 3,907 $13,9048 < 6^2 < 51,2855//$ 3,7289 < 6 < 7,1614 //