SPE Curve Comparison between NOAA's COMPASS model and CSS calculations.

Ryan N. Kinzer Nez Perce Tribe, Department of Fisheries Resources Management

Table 1. Minimum and maximum power house capacity assumption differences between NOAA's COMPASS model and the values currently used in the Nez Perce Tribe's PITPH web application tool.

Project	Minimum - NOAA	Minimum - PITPH	Maximum - NOAA	Maximum - PITPH
LWG	12.4	12.0	130	118.0
LGS	11.6	12.0	130	118.0
LMN	11.6	14.5	130	115.5
IHR	9.1	10.5	106	95.5
MCN	55.0	55.0	232	177.0
JDA	55.0	51.2	322	270.8
TDA	55.0	56.0	375	319.0
BON1	35.0	42.0	136	349
BON2			152	

Figure 1: Spill passage efficiency (SPE) curve comparison at low, medium and high flow volumes; Snake River: 50, 100 and 150 kcfs and Columbia River: 175, 250, and 400 kcfs.

Figure 2: Spill passage efficiency (SPE) curves for NOAA's COMPASS model at low, medium and high flow volumes; Snake River: 50, 100 and 150 kcfs and Columbia River: 175, 250, and 400 kcfs.