

Clustering: algoritmo C-medias 1

Alfons Juan Albert Sanchis Jorge Civera

Departamento de Sistemas Informáticos y Computación

¹Para una correcta visualización, se requiere Acrobat Reader v. 7.0 o superior

Objetivos formativos

- Analizar el problema del clustering particional bajo el criterio
 Suma de Errores Cuadráticos
- Aplicar el *algoritmo C-medias de Duda y Hart*
- Aplicar el algoritmo C-medias convencional

Índice

1	Clustering particional	3
2	Criterio "Suma de Errores Cuadráticos" (SEC)	4
3	Algoritmo C-medias de Duda y Hart	6
4	Algoritmo C-medias convencional	Q

1. Clustering particional

El *aprendizaje no supervisado* o *clustering* es un problema clásico del *aprendizaje automático*

El *clustering particional* es una de sus aproximaciones usuales:

■ Asumimos disponible una *función criterio* J para evaluar la calidad de cualquier partición de N datos en C clústers:

$$J(\Pi) : \Pi = \{X_1, \dots, X_C\}$$

■ El problema del clustering se aproxima como:

$$\Pi^* = \underset{\Pi = \{X_1, \dots, X_C\}}{\operatorname{arg \, min}} J(\Pi)$$

2. Criterio "Suma de Errores Cuadráticos" (SEC)

La SEC de una partición $\Pi = \{X_1, \dots, X_C\}$ se define como:

$$J(\Pi) = \sum_{c=1}^{C} J_c$$

donde J_c es la **distorsión** del clúster c,

$$J_c = \sum_{\boldsymbol{x} \in X_c} \|\boldsymbol{x} - \boldsymbol{m}_c\|^2,$$

siendo m_c la *media* o *centroide* del clúster c,

$$\boldsymbol{m}_c = \frac{1}{n_c} \sum_{\boldsymbol{x} \in X_c} \boldsymbol{x}$$

y n_c su talla.

Ejemplo de cálculo de la SEC

3. Algoritmo C-medias de Duda y Hart

Dada una partición $\Pi = \{X_1, \dots, X_C\}$, el incremento de la SEC debido a la transferencia de un dato \boldsymbol{x} del clúster i al j es:

$$\Delta J = \frac{n_j}{n_j + 1} \| \boldsymbol{x} - \boldsymbol{m}_j \|^2 - \frac{n_i}{n_i - 1} \| \boldsymbol{x} - \boldsymbol{m}_i \|^2$$

La transferencia será provechosa si $\triangle J < 0$, esto es, si:

$$\frac{n_j}{n_j+1} \| \boldsymbol{x} - \boldsymbol{m}_j \|^2 < \frac{n_i}{n_i-1} \| \boldsymbol{x} - \boldsymbol{m}_i \|^2$$

Dada una partición inicial, el *algoritmo C-medias de Duda y Hart* [1, 2] aplica transferencias provechosas sucesivas ...

Algoritmo C-medias de Duda y Hart (cont.)

- *Entrada:* una partición inicial, $\Pi = \{X_1, \dots, X_C\}$
- *Salida:* una partición optimizada, $\Pi^* = \{X_1, \dots, X_C\}$
- Método:

Calcular medias y J

repetir

para todo dato x

Sea i el clúster en el que se encuentra x

Hallar un $j^* \neq i$ que minimice $\triangle J$ al transferir \boldsymbol{x} de i a j^*

Si $\triangle J < 0$, transferir \boldsymbol{x} de i a j^* y actualizar medias y J

hasta no encontrar transferencias provechosas

Ejemplo: aplicación del C-medias de Duda y Hart

4. Algoritmo C-medias convencional

La condición de Duda y Hart se cumple si se cumple la condición:

$$\|\boldsymbol{x} - \boldsymbol{m}_j\|^2 < \|\boldsymbol{x} - \boldsymbol{m}_i\|^2$$

Esta condición es la base del algoritmo C-medias convencional:

- Entrada: una partición inicial
- Salida: una partición optimizada
- Método:

repetir

Calcular las medias de los clústers

Reclasificar los datos según sus medias más cercanas

hasta que no se reclasifique ningún dato

Ejemplo: aplicación del C-medias convencional

Referencias

- [1] R. O. Duda and P. E. Hart. *Pattern Classification and Scene Analysis*. Wiley, 1973.
- [2] R. O. Duda, P. E. Hart, and D. G. Stork. *Pattern Classification*. Wiley, 2001.

