Supplement Material to Self-Normalization for CUSUM-based Change Detection in Locally Stationary Time Series

Florian Heinrichs

F.HEINRICHS@FH-AACHEN.DE

FH Aachen Heinrich-Mußmann-Straße 1 52428 Jülich, Germany

1 Empirical rejection rates under the alternative

1.1 Empirical rejection rates under the alternative, for n = 100

μ	ε	σ	std	R1	R2	SN	ВТ	LRV	(8)	(9) (v1)	(9) (v2)
μ_1	iid	σ_0	0.25	100.0	100.0	0.0	100.0	100.0	99.9	12.0	16.8
μ_1	iid	σ_0	0.5	100.0	100.0	0.0	99.0	99.8	88.0	10.0	11.4
μ_1	iid	σ_0	1	2.7	62.5	0.0	81.3	70.1	57.4	5.9	8.6
μ_1	iid	σ_1	0.25	100.0	100.0	0.0	100.0	100.0	99.9	9.7	16.0
μ_1	iid	σ_1	0.5	99.7	100.0	0.0	99.1	99.7	91.9	4.7	6.5
μ_1	iid	σ_1	1	2.7	54.3	0.1	76.0	67.5	48.5	2.3	4.4
μ_1	iid	σ_2	0.25	100.0	100.0	0.0	100.0	100.0	100.0	13.2	22.2
μ_1	iid	σ_2	0.5	99.9	100.0	0.0	99.2	99.9	86.8	7.5	11.6
μ_1	iid	σ_2	1	1.6	58.4	0.3	83.2	72.9	50.4	4.6	7.2
μ_1	iid	σ_3	0.25	100.0	100.0	0.0	100.0	100.0	100.0	7.6	12.2
μ_1	iid	σ_3	0.5	97.5	99.9	0.0	98.2	98.9	84.9	6.2	8.5
μ_1	iid	σ_3	1	0.8	46.0	0.9	73.6	67.1	40.2	1.8	2.7
μ_1	ar	σ_0	0.25	100.0	100.0	0.7	100.0	100.0	100.0	15.1	20.3
μ_1	ar	σ_0	0.5	99.8	100.0	0.5	91.3	96.5	84.5	11.2	14.4
μ_1	ar	σ_0	1	9.9	78.0	1.4	70.0	62.2	59.8	11.4	14.8
μ_1	ar	σ_1	0.25	100.0	100.0	4.2	99.9	100.0	100.0	10.2	19.4
μ_1	ar	σ_1	0.5	99.2	100.0	0.1	89.5	92.9	87.5	7.6	10.0
μ_1	ar	σ_1	1	6.7	79.5	0.3	67.7	62.7	60.4	4.0	6.0
μ_1	ar	σ_2	0.25	100.0	100.0	0.1	100.0	100.0	99.6	16.2	27.0
μ_1	ar	σ_2	0.5	99.2	100.0	0.0	92.0	97.4	85.5	7.5	10.9
μ_1	ar	σ_2	1	8.7	77.4	0.2	76.2	65.4	58.3	10.0	11.7
μ_1	ar	σ_3	0.25	100.0	100.0	0.0	99.7	100.0	99.8	7.3	13.3
μ_1	ar	σ_3	0.5	97.5	100.0	0.1	86.4	91.7	85.8	4.9	8.4
μ_1	ar	σ_3	1	6.0	79.1	0.3	59.9	60.3	52.8	2.6	4.3
μ_1	ma	σ_0	0.25	100.0	100.0	0.0	100.0	100.0	99.8	10.8	16.6
μ_1	ma	σ_0	0.5	99.0	100.0	0.0	95.9	98.1	86.5	8.4	13.2
μ_1	ma	σ_0	1	1.0	56.5	0.8	70.9	55.7	51.5	5.4	8.5
μ_1	ma	σ_1	0.25	100.0	100.0	1.3	100.0	100.0	99.5	8.8	14.4
μ_1	ma	σ_1	0.5	97.1	99.8	0.3	95.4	95.4	88.1	2.8	5.5

				1							
μ_1	ma	σ_1	1	1.3	60.2	4.9	65.9	52.7	54.1	2.6	4.2
μ_1	$_{\mathrm{ma}}$	σ_2	0.25	100.0	100.0	0.7	100.0	100.0	99.8	16.8	28.7
μ_1	$_{\mathrm{ma}}$	σ_2	0.5	97.9	100.0	0.0	96.3	98.9	86.4	9.7	14.4
μ_1	$_{\mathrm{ma}}$	σ_2	1	1.0	57.6	0.3	72.8	56.2	46.3	6.3	9.3
μ_1	$_{\mathrm{ma}}$	σ_3	0.25	100.0	100.0	0.0	100.0	100.0	99.8	6.4	13.3
μ_1	ma	σ_3	0.5	91.2	99.5	0.0	92.5	94.8	82.9	2.6	4.3
μ_1	ma	σ_3	1	1.1	51.9	2.7	63.4	54.3	50.4	1.9	2.9
μ_2	iid	σ_0	0.25	100.0	100.0	81.9	100.0	100.0	60.5	100.0	100.0
μ_2	iid	σ_0	0.5	100.0	100.0	38.2	100.0	100.0	46.6	98.2	99.8
μ_2	iid	σ_0	1	75.3	100.0	4.1	100.0	100.0	39.3	80.5	87.9
	iid		0.25	100.0	100.0	66.5	100.0	100.0	59.1	100.0	100.0
μ_2		σ_1		100.0	100.0	22.9	100.0	100.0	49.0	97.6	99.8
μ_2	iid	σ_1	0.5								
μ_2	iid	σ_1	1	58.6	100.0	1.6	100.0	100.0	35.7	81.9	90.4
μ_2	iid	σ_2	0.25	100.0	100.0	92.2	100.0	100.0	78.3	100.0	100.0
μ_2	iid	σ_2	0.5	100.0	100.0	57.4	100.0	100.0	52.1	100.0	100.0
μ_2	iid	σ_2	1	51.6	99.6	11.8	100.0	100.0	37.9	89.5	96.4
μ_2	iid	σ_3	0.25	100.0	100.0	58.6	100.0	100.0	72.7	100.0	100.0
μ_2	iid	σ_3	0.5	100.0	100.0	14.5	100.0	100.0	56.8	95.8	99.8
μ_2	iid	σ_3	1	36.5	99.6	1.5	100.0	100.0	32.7	72.2	82.5
μ_2	ar	σ_0	0.25	100.0	100.0	71.5	100.0	100.0	63.8	100.0	100.0
μ_2	ar	σ_0	0.5	100.0	100.0	31.7	100.0	100.0	72.1	99.5	100.0
μ_2	ar	σ_0	1	39.9	99.6	2.3	100.0	100.0	49.0	83.1	94.7
μ_2	ar	σ_1	0.25	100.0	100.0	83.2	100.0	100.0	85.8	100.0	100.0
μ_2	ar	σ_1	0.5	100.0	100.0	12.5	100.0	100.0	58.0	98.6	99.9
μ_2	ar	σ_1	1	32.9	98.5	2.1	100.0	100.0	40.2	86.3	96.0
μ_2	ar	σ_2	0.25	100.0	100.0	84.3	100.0	100.0	83.7	100.0	100.0
μ_2	ar	σ_2	0.5	100.0	100.0	32.8	100.0	100.0	59.6	100.0	100.0
μ_2	ar	σ_2	1	28.9	97.0	6.4	100.0	100.0	47.1	95.0	99.0
μ_2	ar	σ_3	0.25	100.0	100.0	69.5	100.0	100.0	82.8	100.0	100.0
μ_2	ar	σ_3	0.5	100.0	100.0	5.8	100.0	100.0	49.5	99.3	100.0
μ_2	ar	σ_3	1	20.6	98.2	1.6	100.0	100.0	52.9	80.2	92.1
μ_2	ma	σ_0	0.25	100.0	100.0	77.4	100.0	100.0	72.7	100.0	100.0
μ_2	ma	σ_0	0.5	100.0	100.0	22.6	100.0	100.0	46.9	97.7	100.0
	ma		1	24.3	98.6	3.0	100.0	100.0	46.2	78.3	90.2
μ_2		σ_0		100.0	100.0	63.2	100.0	100.0	82.7	100.0	100.0
μ_2	ma	σ_1	0.25	100.0			100.0			95.2	
μ_2	ma	σ_1	0.5		100.0	15.9		100.0	48.0		99.8
μ_2	ma	σ_1	1	18.3	97.4	1.5	100.0	100.0	41.5	78.1	89.6
μ_2	ma	σ_2	0.25	100.0	100.0	88.4	100.0	100.0	79.6	100.0	100.0
μ_2	ma	σ_2	0.5	100.0	100.0	30.2	100.0	100.0	55.8	99.8	100.0
μ_2	ma	σ_2	1	15.7	92.1	5.3	100.0	100.0	38.3	89.6	98.0
μ_2	ma	σ_3	0.25	100.0	100.0	64.5	100.0	100.0	61.6	100.0	100.0
μ_2	ma	σ_3	0.5	100.0	100.0	18.4	100.0	100.0	45.1	95.9	99.7
μ_2	ma	σ_3	1	9.6	96.0	1.0	100.0	100.0	32.4	74.4	88.1
μ_3	iid	σ_0	0.25	100.0	100.0	8.1	100.0	100.0	100.0	76.2	57.8
μ_3	iid	σ_0	0.5	99.9	100.0	2.4	100.0	100.0	99.9	43.4	35.4
μ_3	iid	σ_0	1	8.5	73.1	0.1	100.0	98.9	90.3	18.3	18.6
μ_3	iid	σ_1	0.25	100.0	100.0	2.2	100.0	100.0	100.0	61.4	41.0
μ_3	iid	σ_1	0.5	99.9	100.0	0.1	100.0	100.0	100.0	39.4	33.8
μ_3	iid	σ_1	1	8.6	71.0	0.1	100.0	98.4	90.2	12.9	13.1
μ_3	iid	σ_2	0.25	100.0	100.0	10.7	100.0	100.0	100.0	88.7	73.3
μ_3	iid	σ_2	0.5	100.0	100.0	2.7	100.0	100.0	100.0	54.3	44.7
μ_3	iid	σ_2	1	6.2	72.7	0.1	100.0	99.6	89.1	20.8	21.7
μ_3	iid	σ_3	0.25	100.0	100.0	3.5	100.0	100.0	100.0	70.0	54.7
, -		~		ı							

				ı							
μ_3	iid	σ_3	0.5	99.9	100.0	0.2	100.0	100.0	100.0	29.9	25.0
μ_3	iid	σ_3	1	3.5	60.9	0.4	99.3	97.0	88.9	10.5	13.8
μ_3	ar	σ_0	0.25	100.0	100.0	0.9	100.0	100.0	100.0	78.1	64.6
μ_3	ar	σ_0	0.5	100.0	100.0	0.0	100.0	100.0	99.7	47.5	45.9
μ_3	ar	σ_0	1	10.3	81.1	0.3	98.4	92.3	86.6	22.8	24.0
μ_3	ar	σ_1	0.25	100.0	100.0	1.0	100.0	100.0	100.0	73.9	59.4
μ_3	ar	σ_1	0.5	99.7	100.0	0.0	100.0	100.0	100.0	34.1	33.6
μ_3	ar	σ_1	1	11.6	83.0	0.1	96.2	91.1	88.6	12.0	16.9
μ_3	ar	σ_2	0.25	100.0	100.0	2.4	100.0	100.0	100.0	84.3	67.8
μ_3	ar	σ_2	0.5	99.6	100.0	0.5	100.0	100.0	99.5	58.3	50.8
μ_3	ar	σ_2	1	9.4	83.0	0.3	98.2	93.8	82.4	32.9	31.3
	ar	σ_3	0.25	100.0	100.0	0.9	100.0	100.0	100.0	70.9	56.7
μ_3				99.3	100.0	0.0	100.0	100.0	100.0	32.2	34.2
μ_3	ar	σ_3	0.5								
μ_3	ar	σ_3	1	5.5	86.1	0.4	93.2	87.1	86.2	12.6	16.2
μ_3	ma	σ_0	0.25	100.0	100.0	0.5	100.0	100.0	100.0	81.3	71.1
μ_3	ma	σ_0	0.5	100.0	100.0	0.5	100.0	100.0	99.8	46.1	44.9
μ_3	ma	σ_0	1	2.9	65.6	0.3	99.2	95.1	88.6	17.9	22.6
μ_3	ma	σ_1	0.25	100.0	100.0	0.8	100.0	100.0	100.0	66.9	54.7
μ_3	ma	σ_1	0.5	99.4	99.9	0.5	100.0	100.0	100.0	28.9	34.0
μ_3	ma	σ_1	1	1.5	60.1	0.4	98.4	93.9	89.8	10.3	14.8
μ_3	ma	σ_2	0.25	100.0	100.0	2.2	100.0	100.0	100.0	84.1	71.3
μ_3	ma	σ_2	0.5	98.5	100.0	0.9	100.0	100.0	99.4	47.1	44.3
μ_3	ma	σ_2	1	2.0	67.4	0.6	99.9	95.4	84.3	23.9	24.8
μ_3	ma	σ_3	0.25	100.0	100.0	0.8	100.0	100.0	100.0	69.7	63.7
μ_3	ma	σ_3	0.5	94.8	99.4	0.2	100.0	100.0	99.7	27.9	30.6
μ_3	ma	σ_3	1	1.0	65.2	0.9	97.4	90.5	86.3	7.3	11.2
μ_4	iid	σ_0	0.25	100.0	100.0	0.0	100.0	100.0	100.0	47.9	63.4
μ_4	iid	σ_0	0.5	100.0	100.0	0.0	100.0	100.0	96.2	28.7	35.4
μ_4	iid	σ_0	1	2.6	62.6	0.0	97.6	71.5	58.1	15.7	16.4
μ_4	iid	σ_1	0.25	100.0	100.0	0.0	100.0	100.0	100.0	46.2	63.1
μ_4	iid	σ_1	0.5	99.6	100.0	0.0	100.0	99.3	93.3	27.9	36.6
μ_4	iid	σ_1	1	1.7	54.3	0.1	99.6	65.2	59.9	6.7	10.8
μ_4	iid	σ_2	0.25	100.0	100.0	0.0	100.0	100.0	100.0	51.7	73.7
μ_4	iid	σ_2	0.5	99.5	100.0	0.0	100.0	100.0	93.7	34.1	46.3
μ_4	iid	σ_2	1	1.9	57.2	0.1	98.9	70.4	60.9	16.3	18.9
μ_4	iid	σ_3	0.25	100.0	100.0	0.3	100.0	100.0	99.9	40.5	59.5
μ_4	iid	σ_3	0.5	98.5	99.9	0.0	100.0	99.3	95.4	18.0	28.8
μ_4	iid	σ_3	1	1.2	42.7	0.5	100.0	63.2	57.0	9.1	13.5
	ar		0.25	100.0	100.0	0.9	100.0	100.0	100.0	44.4	61.1
μ_4		σ_0	0.25	99.8	100.0	0.3	99.5	96.0	96.0	32.2	45.5
μ_4	ar	σ_0									
μ_4	ar	σ_0	1	10.1	72.0	0.2	88.2	60.6	68.4	15.6	23.3
μ_4	ar	σ_1	0.25	100.0	100.0	1.0	100.0	100.0	100.0	41.0	60.2
μ_4	ar	σ_1	0.5	99.6	100.0	0.0	100.0	93.1	95.3	28.3	39.2
μ_4	ar	σ_1	1	7.4	82.2	0.2	91.4	60.7	71.1	11.0	14.8
μ_4	ar	σ_2	0.25	100.0	100.0	0.7	100.0	100.0	100.0	50.2	73.8
μ_4	ar	σ_2	0.5	99.3	100.0	0.0	99.9	98.2	94.2	37.3	52.8
μ_4	ar	σ_2	1	9.5	79.1	0.4	89.7	65.4	70.8	20.7	28.2
μ_4	ar	σ_3	0.25	100.0	100.0	1.1	100.0	100.0	100.0	39.9	59.1
μ_4	ar	σ_3	0.5	96.9	100.0	0.2	100.0	92.8	95.4	23.2	34.0
μ_4	ar	σ_3	1	5.3	74.9	0.2	92.0	58.3	71.5	8.9	14.1
μ_4	ma	σ_0	0.25	100.0	100.0	0.3	100.0	100.0	99.8	46.8	66.3
μ_4	ma	σ_0	0.5	99.5	100.0	0.0	99.9	97.3	95.0	31.9	41.4
μ_4	ma	σ_0	1	0.9	57.5	1.1	91.7	57.6	59.0	14.8	19.1
				•							

			0.05	1,000	100.0	0.0	100.0	100.0	100.0	44.0	00.0
μ_4	ma	σ_1	0.25	100.0	100.0	2.0	100.0	100.0	100.0	44.0	62.6
μ_4	ma	σ_1	0.5	98.2	100.0	0.0	100.0	96.3	93.5	21.8	31.6
μ_4	ma	σ_1	1	1.0	50.4	1.0	96.1	54.0	62.2	9.1	13.4
μ_4	ma	σ_2	0.25	100.0	100.0	0.1	100.0	100.0	100.0	53.4	73.6
μ_4	ma	σ_2	0.5	96.8	99.9	0.5	100.0	98.9	91.1	37.7	51.0
μ_4	ma	σ_2	1	0.9	59.6	4.0	95.0	56.2	58.8	17.3	24.5
μ_4	ma	σ_3	0.25	100.0	100.0	0.2	100.0	100.0	99.8	38.4	59.3
μ_4	ma	σ_3	0.5	93.8	99.6	2.2	100.0	94.3	92.9	20.4	29.8
μ_4	ma	σ_3	1	0.8	59.7	3.5	97.0	54.4	55.1	4.6	10.5
μ_5	iid	σ_0	0.25	100.0	100.0	79.2	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_0	0.5	100.0	100.0	39.0	100.0	100.0	100.0	88.9	99.5
μ_5	iid	σ_0	1	69.7	100.0	4.1	100.0	100.0	100.0	68.9	88.4
μ_5	iid	σ_1	0.25	100.0	100.0	61.5	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_1	0.5	100.0	100.0	25.0	100.0	100.0	100.0	93.7	99.5
μ_5	iid	σ_1	1	57.2	99.8	1.3	100.0	100.0	100.0	62.3	86.2
μ_5	iid	σ_2	0.25	100.0	100.0	90.0	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_2	0.5	100.0	100.0	57.0	100.0	100.0	100.0	98.8	100.0
μ_5	iid	σ_2	1	51.7	99.9	13.7	100.0	100.0	99.9	81.2	97.6
μ_5	iid	σ_3	0.25	100.0	100.0	58.5	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_3	0.5	100.0	100.0	9.8	100.0	100.0	100.0	88.0	99.4
μ_5	iid	σ_3	1	37.3	99.6	1.0	100.0	100.0	100.0	59.7	81.6
μ_5	ar	σ_0	0.25	100.0	100.0	48.6	100.0	100.0	100.0	99.9	100.0
μ_5	ar	σ_0	0.5	100.0	100.0	10.8	100.0	100.0	100.0	97.9	100.0
μ_5	ar	σ_0	1	45.1	99.6	1.0	100.0	100.0	100.0	85.8	98.8
μ_5	ar	σ_1	0.25	100.0	100.0	52.6	100.0	100.0	100.0	100.0	100.0
μ_5	ar	σ_1	0.5	100.0	100.0	10.5	100.0	100.0	100.0	92.4	100.0
μ_5	ar	σ_1	1	32.0	98.3	1.1	100.0	100.0	100.0	59.4	88.0
μ_5	ar	σ_2	0.25	100.0	100.0	68.1	100.0	100.0	100.0	100.0	100.0
μ_5	ar	σ_2	0.5	100.0	100.0	11.4	100.0	100.0	100.0	100.0	100.0
μ_5	ar	σ_2	1	28.2	96.1	2.4	100.0	100.0	100.0	89.4	99.5
μ_5	ar	σ_3	0.25	100.0	100.0	58.2	100.0	100.0	100.0	100.0	100.0
μ_5	ar	σ_3	0.5	99.9	100.0	8.2	100.0	100.0	100.0	91.9	99.9
μ_5	ar	σ_3	1	18.7	98.6	0.5	100.0	100.0	100.0	63.9	91.0
μ_5	ma	σ_0	0.25	100.0	100.0	60.1	100.0	100.0	100.0	100.0	100.0
μ_5	ma	σ_0	0.5	100.0	100.0	20.3	100.0	100.0	100.0	96.2	100.0
μ_5	ma	σ_0	1	23.1	99.3	2.3	100.0	100.0	99.9	65.7	91.2
μ_5	ma	σ_1	0.25	100.0	100.0	45.9	100.0	100.0	100.0	99.7	100.0
μ_5	ma	σ_1	0.5	100.0	100.0	11.0	100.0	100.0	100.0	88.7	99.7
μ_5	ma	σ_1	1	19.1	98.3	0.9	100.0	100.0	100.0	71.2	93.3
μ_5	ma	σ_2	0.25	100.0	100.0	61.1	100.0	100.0	100.0	100.0	100.0
μ_5	ma	σ_2	0.5	100.0	100.0	23.0	100.0	100.0	100.0	97.9	100.0
μ_5	ma	σ_2	1	15.6	94.9	7.1	100.0	100.0	100.0	80.6	98.1
μ_5	ma	σ_3	0.25	100.0	100.0	44.0	100.0	100.0	100.0	99.8	100.0
μ_5	ma	σ_3	0.5	100.0	100.0	7.7	100.0	100.0	100.0	89.0	99.8
μ_5	ma	σ_3	1	10.6	94.6	0.3	100.0	100.0	99.9	62.5	89.7
μ_6	iid	σ_0	0.25	100.0	100.0	11.9	100.0	100.0	100.0	84.4	97.7
μ_6	iid	σ_0	0.5	100.0	100.0	0.8	100.0	100.0	100.0	60.9	81.3
μ_6	iid	σ_0	1	7.0	75.5	0.0	100.0	99.5	98.0	41.8	54.6
	iid	σ_0	0.25	100.0	100.0	3.0	100.0	100.0	100.0	77.6	96.5
μ_6	iid	σ_1 σ_1	0.25	99.9	100.0	0.1	100.0	100.0	100.0	59.3	78.5
μ_6	iid		1	6.6	67.4	0.0	100.0	98.5	97.3	27.7	42.1
μ_6	iid	σ_1	0.25	100.0	100.0	10.8	100.0	100.0	100.0	95.0	99.9
μ_6	iid	σ_2 σ_2	0.25 0.5	99.8	100.0	2.1	100.0	100.0	99.9	95.0 70.0	99.9 89.0
μ_6	пu	02	0.0	33.0	100.0	4.1	100.0	100.0	33.3	70.0	09.0

μ_6	iid	σ_2	1	7.2	71.4	0.0	100.0	99.7	96.3	40.9	63.4
μ_6	iid	σ_3	0.25	100.0	100.0	1.6	100.0	100.0	100.0	83.3	98.3
μ_6	iid	σ_3	0.5	99.4	100.0	0.2	100.0	100.0	100.0	43.3	71.3
μ_6	iid	σ_3	1	3.7	66.4	0.0	100.0	97.4	96.1	27.6	42.8
μ_6	ar	σ_0	0.25	100.0	100.0	1.8	100.0	100.0	100.0	83.6	99.3
μ_6	ar	σ_0	0.5	100.0	100.0	0.1	100.0	100.0	100.0	73.4	91.3
μ_6	ar	σ_0	1	11.7	80.4	0.1	99.9	92.5	97.4	38.0	53.8
μ_6	ar	σ_1	0.25	100.0	100.0	0.7	100.0	100.0	100.0	78.5	98.2
μ_6	ar	σ_1	0.5	99.6	100.0	0.0	100.0	100.0	100.0	52.8	81.7
μ_6	ar	σ_1	1	10.3	81.9	0.0	100.0	92.3	98.2	38.2	57.1
μ_6	ar	σ_2	0.25	100.0	100.0	3.5	100.0	100.0	100.0	97.2	100.0
μ_6	ar	σ_2	0.5	99.8	100.0	0.7	100.0	100.0	100.0	80.5	95.4
μ_6	ar	σ_2	1	8.8	84.0	0.2	100.0	93.6	96.3	47.4	69.9
μ_6	ar	σ_3	0.25	100.0	100.0	0.2	100.0	100.0	100.0	77.9	98.6
μ_6	ar	σ_3	0.5	98.5	100.0	0.0	100.0	99.9	100.0	54.8	82.0
μ_6	ar	σ_3	1	7.4	83.9	0.2	100.0	85.2	97.5	32.3	49.6
μ_6	ma	σ_0	0.25	100.0	100.0	4.9	100.0	100.0	100.0	83.2	99.0
μ_6	ma	σ_0	0.5	99.8	99.9	1.5	100.0	100.0	100.0	55.7	79.1
μ_6	ma	σ_0	1	2.4	61.8	0.2	100.0	94.8	97.1	31.5	46.6
μ_6	ma	σ_1	0.25	100.0	100.0	2.0	100.0	100.0	100.0	82.5	98.5
μ_6	ma	σ_1	0.5	98.9	100.0	0.1	100.0	100.0	100.0	44.2	70.9
μ_6	ma	σ_1	1	1.8	59.5	0.0	100.0	92.4	95.1	28.4	42.5
μ_6	ma	σ_2	0.25	100.0	100.0	6.4	100.0	100.0	100.0	96.2	99.9
μ_6	ma	σ_2	0.5	98.5	99.9	1.3	100.0	100.0	100.0	70.2	91.5
μ_6	ma	σ_2	1	2.0	66.4	0.8	100.0	95.3	94.5	44.5	68.1
μ_6	ma	σ_3	0.25	100.0	100.0	0.9	100.0	100.0	100.0	69.1	95.6
μ_6	ma	σ_3	0.5	95.9	99.7	0.1	100.0	100.0	100.0	52.4	77.4
μ_6	ma	σ_3	1	0.7	71.1	0.3	100.0	89.1	94.9	26.1	39.1

1.2 Empirical rejection rates under the alternative, for $n=200\,$

μ	ε	σ	std	R1	R2	SN	BT	LRV	(8)	(9) (v1)	(9) (v2)
μ_1	iid	σ_0	0.25	100.0	100.0	51.0	100.0	100.0	100.0	24.4	65.2
μ_1	iid	σ_0	0.5	100.0	100.0	19.1	100.0	100.0	99.7	13.4	30.1
μ_1	iid	σ_0	1	9.0	92.1	1.9	95.7	95.8	73.9	10.2	13.9
μ_1	iid	σ_1	0.25	100.0	100.0	23.8	100.0	100.0	100.0	26.2	62.4
μ_1	iid	σ_1	0.5	100.0	100.0	6.3	100.0	100.0	99.1	11.9	25.8
μ_1	iid	σ_1	1	5.8	86.1	0.7	94.5	92.6	72.9	5.5	10.6
μ_1	iid	σ_2	0.25	100.0	100.0	72.0	100.0	100.0	100.0	35.9	79.3
μ_1	iid	σ_2	0.5	100.0	100.0	35.5	100.0	100.0	97.7	13.9	27.7
μ_1	iid	σ_2	1	3.7	83.4	6.4	95.6	97.5	73.5	5.9	8.6
μ_1	iid	σ_3	0.25	100.0	100.0	29.2	100.0	100.0	100.0	18.1	49.1
μ_1	iid	σ_3	0.5	100.0	100.0	5.1	100.0	100.0	99.0	14.8	25.4
μ_1	iid	σ_3	1	1.9	70.6	1.4	90.7	91.6	59.8	5.3	9.5
μ_1	ar	σ_0	0.25	100.0	100.0	3.2	100.0	100.0	100.0	17.5	58.1
μ_1	ar	σ_0	0.5	100.0	100.0	0.2	99.2	100.0	96.8	18.4	39.4
μ_1	ar	σ_0	1	4.7	80.1	0.0	82.3	79.4	73.2	10.9	20.2
μ_1	ar	σ_1	0.25	100.0	100.0	1.6	100.0	100.0	100.0	23.9	63.1
μ_1	ar	σ_1	0.5	100.0	100.0	0.0	98.5	99.9	96.9	16.8	38.8
μ_1	ar	σ_1	1	4.7	86.4	0.2	74.9	76.3	68.6	8.6	16.3
μ_1	ar	σ_2	0.25	100.0	100.0	2.5	100.0	100.0	100.0	20.6	66.9

μ_1	ar	σ_2	0.5	99.9	100.0	1.3	99.3	100.0	95.2	15.6	33.6
μ_1	ar	σ_2	1	2.6	85.5	0.6	86.4	84.1	73.0	8.4	16.4
μ_1	ar	σ_3	0.25	100.0	100.0	0.7	100.0	100.0	100.0	16.9	53.6
μ_1	ar	σ_3	0.5	99.8	100.0	0.2	96.3	99.9	94.1	10.1	24.5
μ_1	ar	σ_3	1	1.1	85.0	0.0	70.9	74.2	66.1	5.8	13.3
μ_1	$_{\mathrm{ma}}$	σ_0	0.25	100.0	100.0	11.3	100.0	100.0	100.0	20.0	59.1
μ_1	$_{\mathrm{ma}}$	σ_0	0.5	100.0	100.0	3.0	100.0	100.0	97.4	17.3	37.3
μ_1	ma	σ_0	1	0.3	71.1	1.5	87.4	83.4	69.8	8.2	14.4
μ_1	$_{\mathrm{ma}}$	σ_1	0.25	100.0	100.0	8.2	100.0	100.0	100.0	19.8	60.1
μ_1	ma	σ_1	0.5	100.0	100.0	0.7	100.0	100.0	97.6	10.8	27.8
μ_1	$_{\mathrm{ma}}$	σ_1	1	0.8	71.8	1.5	81.2	78.9	66.3	6.3	12.1
μ_1	ma	σ_2	0.25	100.0	100.0	19.3	100.0	100.0	100.0	17.6	63.5
μ_1	ma	σ_2	0.5	100.0	100.0	8.6	99.9	100.0	97.1	10.5	24.5
μ_1	ma	σ_2	1	0.8	72.2	1.7	87.7	87.6	66.9	5.6	9.6
μ_1	$_{\mathrm{ma}}$	σ_3	0.25	100.0	100.0	4.1	100.0	100.0	100.0	21.7	56.8
μ_1	$_{ m ma}$	σ_3	0.5	99.3	100.0	1.6	99.9	100.0	95.9	11.9	29.5
μ_1	ma	σ_3	1	0.4	66.5	0.9	80.1	79.1	64.5	5.1	11.1
μ_2	iid	σ_0	0.25	100.0	100.0	99.6	100.0	100.0	100.0	100.0	100.0
μ_2	iid	σ_0	0.5	100.0	100.0	90.4	100.0	100.0	95.1	99.5	100.0
μ_2	iid	σ_0	1	94.2	100.0	58.6	100.0	100.0	73.5	69.6	99.5
μ_2	iid	σ_1	0.25	100.0	100.0	96.1	100.0	100.0	100.0	100.0	100.0
μ_2	iid	σ_1	0.5	100.0	100.0	80.6	100.0	100.0	96.7	98.0	100.0
μ_2	iid	σ_1	1	84.6	100.0	45.7	100.0	100.0	71.2	79.4	99.8
μ_2	iid	σ_2	0.25	100.0	100.0	99.0	100.0	100.0	100.0	100.0	100.0
μ_2	iid	σ_2	0.5	100.0	100.0	98.2	100.0	100.0	97.0	98.0	100.0
μ_2	iid	σ_2	1	79.4	100.0	88.6	100.0	100.0	63.5	81.3	99.8
μ_2	iid	σ_3	0.25	100.0	100.0	96.3	100.0	100.0	99.7	100.0	100.0
μ_2	iid	σ_3	0.5	100.0	100.0	75.3	100.0	100.0	93.5	98.2	100.0
μ_2	iid	σ_3	1	63.0	100.0	37.0	100.0	100.0	70.3	72.0	99.1
μ_2	ar	σ_0	0.25	100.0	100.0	85.3	100.0	100.0	99.9	100.0	100.0
μ_2	ar	σ_0	0.5	100.0	100.0	21.0	100.0	100.0	94.2	97.8	100.0
μ_2	ar	σ_0	1	46.5	99.7	1.9	100.0	100.0	77.0	84.7	100.0
μ_2	ar	σ_1	0.25	100.0	100.0	80.0	100.0	100.0	99.7	100.0	100.0
μ_2	ar	σ_1	0.5	100.0	100.0	16.0	100.0	100.0	90.8	97.7	100.0
μ_2	ar	σ_1	1	35.0	99.7	1.9	100.0	100.0	75.0	76.8	99.9
μ_2	ar	σ_2	0.25	100.0	100.0	93.4	100.0	100.0	99.3	100.0	100.0
μ_2	ar	σ_2	0.5	100.0	100.0	18.8	100.0	100.0	89.0	98.7	100.0
μ_2	ar	σ_2	1	25.8	95.5	4.3	100.0	100.0	79.4	85.1	100.0
μ_2	ar	σ_3	0.25	100.0	100.0	78.3	100.0	100.0	99.7	100.0	100.0
μ_2	ar	σ_3	0.5	100.0	100.0	21.9	100.0	100.0	85.5	93.8	100.0
μ_2	ar	σ_3	1	16.1	99.3	2.5	100.0	100.0	49.1	63.7	99.6
μ_2	ma	σ_0	0.25	100.0	100.0	89.5	100.0	100.0	99.8	100.0	100.0
μ_2	$_{\mathrm{ma}}$	σ_0	0.5	100.0	100.0	38.7	100.0	100.0	91.8	98.7	100.0
μ_2	$_{\mathrm{ma}}$	σ_0	1	38.7	99.7	28.5	100.0	100.0	79.2	77.0	99.8
μ_2	ma	σ_1	0.25	100.0	100.0	87.5	100.0	100.0	99.3	99.9	100.0
μ_2	ma	σ_1	0.5	100.0	100.0	37.8	100.0	100.0	89.1	93.3	100.0
μ_2	ma	σ_1	1	25.1	99.2	13.1	100.0	100.0	62.8	69.3	99.5
μ_2	ma	σ_2	0.25	100.0	100.0	91.3	100.0	100.0	99.8	100.0	100.0
μ_2	ma	σ_2	0.5	100.0	100.0	46.0	100.0	100.0	88.7	93.5	100.0
μ_2	ma	σ_2	1	21.2	97.3	37.0	100.0	100.0	60.8	87.3	100.0
μ_2	ma	σ_3	0.25	100.0	100.0	76.7	100.0	100.0	100.0	97.9	100.0
μ_2	ma	σ_3	0.5	100.0	100.0	30.0	100.0	100.0	91.1	88.2	100.0
μ_2	$_{\mathrm{ma}}$	σ_3	1	11.2	98.9	21.1	100.0	100.0	60.5	65.9	99.1

μ_3	iid	σ_0	0.25	100.0	100.0	42.9	100.0	100.0	100.0	19.1	99.9
μ_3	iid	σ_0	0.5	100.0	100.0	33.1	100.0	100.0	100.0	20.4	78.6
μ_3	iid	σ_0	1	18.8	94.6	11.8	100.0	100.0	98.4	16.4	40.7
μ_3	iid	σ_1	0.25	100.0	100.0	31.8	100.0	100.0	100.0	10.7	99.7
μ_3	iid	σ_1	0.5	100.0	100.0	17.9	100.0	100.0	100.0	13.8	74.2
μ_3	iid	σ_1	1	11.4	91.6	4.6	100.0	100.0	99.8	20.6	44.0
μ_3	iid	σ_2	0.25	100.0	100.0	66.3	100.0	100.0	100.0	6.0	99.4
μ_3	iid	σ_2	0.5	100.0	100.0	62.8	100.0	100.0	100.0	18.4	79.3
μ_3	iid	σ_2	1	9.4	90.4	21.7	100.0	100.0	98.8	21.9	46.3
μ_3	iid	σ_3	0.25	100.0	100.0	34.9	100.0	100.0	100.0	9.3	98.3
μ_3	iid	σ_3	0.5	100.0	100.0	17.8	100.0	100.0	100.0	19.4	72.5
μ_3	iid	σ_3	1	3.6	82.9	4.5	100.0	100.0	97.1	19.5	38.7
μ_3	ar	σ_0	0.25	100.0	100.0	0.3	100.0	100.0	100.0	16.4	99.9
μ_3	ar	σ_0	0.5	100.0	100.0	0.5	100.0	100.0	100.0	20.8	81.5
μ_3	ar	σ_0	1	8.8	82.5	0.2	99.9	99.6	96.7	22.0	51.1
μ_3	ar	σ_1	0.25	100.0	100.0	2.2	100.0	100.0	100.0	11.7	99.9
μ_3	ar	σ_1	0.5	100.0	100.0	1.0	100.0	100.0	100.0	15.3	83.3
μ_3	ar	σ_1	1	4.2	86.1	0.0	99.7	99.1	94.2	15.3	44.7
μ_3	ar	σ_2	0.25	100.0	100.0	2.7	100.0	100.0	100.0	18.5	100.0
μ_3	ar	σ_2	0.5	99.8	100.0	1.8	100.0	100.0	100.0	20.4	80.7
μ_3	ar	σ_2	1	3.3	88.3	1.9	99.8	99.6	96.4	16.8	45.5
μ_3	ar	σ_3	0.25	100.0	100.0	1.9	100.0	100.0	100.0	13.1	98.7
μ_3	ar	σ_3	0.5	99.9	100.0	1.9	100.0	100.0	100.0	15.1	69.5
μ_3	ar	σ_3	1	1.2	89.1	0.4	99.2	97.7	94.0	12.8	36.8
μ_3	ma	σ_0	0.25	100.0	100.0	9.5	100.0	100.0	100.0	11.1	99.1
μ_3	ma	σ_0	0.5	100.0	100.0	5.6	100.0	100.0	100.0	21.1	79.3
μ_3	$_{\mathrm{ma}}$	σ_0	1	0.4	70.7	3.1	100.0	100.0	97.4	18.7	45.0
μ_3	ma	σ_1	0.25	100.0	100.0	4.4	100.0	100.0	100.0	13.6	100.0
μ_3	ma	σ_1	0.5	100.0	100.0	2.6	100.0	100.0	100.0	23.9	82.9
μ_3	$_{\mathrm{ma}}$	σ_1	1	1.5	72.1	2.2	100.0	99.6	96.7	18.0	44.4
μ_3	$_{\mathrm{ma}}$	σ_2	0.25	100.0	100.0	8.5	100.0	100.0	100.0	20.4	99.5
μ_3	ma	σ_2	0.5	99.8	100.0	18.2	100.0	100.0	100.0	16.6	72.4
μ_3	$_{\mathrm{ma}}$	σ_2	1	0.7	75.7	2.9	100.0	99.9	96.3	19.0	41.9
μ_3	$_{\mathrm{ma}}$	σ_3	0.25	100.0	100.0	4.9	100.0	100.0	100.0	13.6	98.0
μ_3	$_{\mathrm{ma}}$	σ_3	0.5	99.4	100.0	3.1	100.0	100.0	100.0	18.2	67.9
μ_3	$_{\mathrm{ma}}$	σ_3	1	0.3	67.7	1.2	99.9	99.2	95.2	12.1	29.3
μ_4	iid	σ_0	0.25	100.0	100.0	37.6	100.0	100.0	100.0	98.9	97.6
μ_4	iid	σ_0	0.5	100.0	100.0	16.9	100.0	100.0	99.6	75.0	77.3
μ_4	iid	σ_0	1	10.3	91.1	2.3	100.0	96.9	84.4	28.2	33.3
μ_4	iid	σ_1	0.25	100.0	100.0	23.7	100.0	100.0	100.0	99.1	98.5
μ_4	iid	σ_1	0.5	100.0	100.0	5.0	100.0	100.0	99.8	67.9	73.3
μ_4	iid	σ_1	1	3.5	87.7	0.8	100.0	92.6	86.7	22.2	27.1
μ_4	iid	σ_2	0.25	100.0	100.0	71.1	100.0	100.0	100.0	99.6	99.5
μ_4	iid	σ_2	0.5	100.0	100.0	46.0	100.0	100.0	99.4	79.6	79.6
μ_4	iid	σ_2	1	4.6	85.5	6.6	100.0	97.0	77.8	34.8	35.9
μ_4	iid	σ_3	0.25	100.0	100.0	23.0	100.0	100.0	100.0	95.8	96.5
μ_4	iid	σ_3	0.5	100.0	100.0	6.2	100.0	100.0	99.3	64.1	70.3
μ_4	iid	σ_3	1	1.4	71.7	0.4	100.0	91.0	78.6	18.2	24.8
μ_4	ar	σ_0	0.25	100.0	100.0	7.4	100.0	100.0	100.0	97.7	98.8
μ_4	ar	σ_0	0.5	100.0	100.0	0.8	100.0	99.7	99.3	67.5	76.3
μ_4	ar	σ_0	1	6.0	78.8	0.2	96.4	80.0	83.4	35.5	44.5
μ_4	ar	σ_1	0.25	100.0	100.0	3.5	100.0	100.0	100.0	97.1	99.5
μ_4	ar	σ_1	0.5	100.0	100.0	0.5	100.0	99.8	99.3	58.6	75.0

$\mu_4 \ \mu_4 \ \mu_4$	ar ar	σ_1 σ_2	$\frac{1}{0.25}$	2.4	79.6	0.0	98.2	74.5	78.9	22.1	35.4
	ar				100 0	4 5	100.0	100.0	100 0		00.0
μ_4				100.0	100.0	4.5	100.0	100.0	100.0	99.1	99.8
		σ_2	0.5	100.0	100.0	3.3	100.0	100.0	98.4	73.3	81.2
μ_4		σ_2	1	2.2	86.4	0.4	96.9	82.9	81.7	34.7	41.9
μ_4	ar	σ_3	0.25	100.0	100.0	1.2	100.0	100.0	100.0	90.5	95.6
μ_4	ar	σ_3	0.5	99.1	100.0	0.5	100.0	99.7	98.8	59.1	74.2
μ_4	ar	σ_3	1	1.9	85.8	0.4	99.3	73.4	80.9	18.4	31.9
μ_4	ma	σ_0	0.25	100.0	100.0	16.4	100.0	100.0	100.0	96.0	97.6
μ_4	ma	σ_0	0.5	99.9	100.0	4.7	100.0	100.0	99.6	65.5	75.5
μ_4	ma	σ_0	1	0.8	65.8	1.0	98.7	83.6	78.6	28.7	39.0
μ_4	ma	σ_1	0.25	100.0	100.0	5.8	100.0	100.0	100.0	96.8	98.9
μ_4	ma	σ_1	0.5	100.0	100.0	0.8	100.0	100.0	99.4	58.1	72.3
μ_4	ma	σ_1	1	0.8	67.2	0.5	100.0	80.5	77.3	21.9	33.9
μ_4	ma	σ_2	0.25	100.0	100.0	20.0	100.0	100.0	100.0	99.6	99.8
μ_4	ma	σ_2	0.5	100.0	100.0	8.5	100.0	100.0	97.8	72.4	76.8
μ_4	ma	σ_2	1	0.5	69.2	2.2	99.4	86.9	75.7	25.3	28.3
μ_4	ma	σ_3	0.25	100.0	100.0	4.5	100.0	100.0	100.0	93.8	96.4
μ_4	ma	σ_3	0.5	99.3	100.0	1.3	100.0	100.0	98.0	48.4	64.3
μ_4	ma	σ_3	1	0.5	69.0	1.6	100.0	77.7	80.3	15.1	24.7
μ_5	iid	σ_0	0.25	100.0	100.0	99.3	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_0	0.5	100.0	100.0	93.8	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_0	1	94.9	100.0	67.1	100.0	100.0	100.0	99.4	100.0
μ_5	iid	σ_1	0.25	100.0	100.0	97.5	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_1	0.5	100.0	100.0	79.8	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_1	1	85.3	100.0	45.1	100.0	100.0	100.0	98.8	100.0
μ_5	iid	σ_2	0.25	100.0	100.0	99.2	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_2	0.5	100.0	100.0	97.7	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_2	1	76.7	100.0	87.4	100.0	100.0	100.0	99.9	100.0
μ_5	iid	σ_3	0.25	100.0	100.0	95.3	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_3	0.5	100.0	100.0	74.3	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_3	1	63.1	100.0	42.7	100.0	100.0	100.0	96.3	99.9
μ_5	ar	σ_0	0.25	100.0	100.0	50.4	100.0	100.0	100.0	100.0	100.0
μ_5	ar	σ_0	0.5	100.0	100.0	10.3	100.0	100.0	100.0	100.0	100.0
μ_5	ar	σ_0	1	48.4	99.1	2.5	100.0	100.0	100.0	98.9	100.0
μ_5	ar	σ_1	0.25	100.0	100.0	47.9	100.0	100.0	100.0	100.0	100.0
μ_5	ar	σ_1	0.5	100.0	100.0	6.4	100.0	100.0	100.0	100.0	100.0
μ_5	ar	σ_1	1	31.4	99.8	2.1	100.0	100.0	100.0	95.7	100.0
μ_5	ar	σ_2	0.25	100.0	100.0	53.8	100.0	100.0	100.0	100.0	100.0
μ_5	ar	σ_2	0.5	100.0	100.0	10.9	100.0	100.0	100.0	100.0	100.0
μ_5	ar	σ_2	1	24.3	95.1	2.1	100.0	100.0	100.0	99.7	100.0
μ_5	ar	σ_3	0.25	100.0	100.0	38.6	100.0	100.0	100.0	100.0	100.0
μ_5	ar	σ_3	0.5	100.0	100.0	8.7	100.0	100.0	100.0	100.0	100.0
μ_5	ar	σ_3	1	14.9	97.9	2.2	100.0	100.0	100.0	97.5	100.0
	ma	σ_0	0.25	100.0	100.0	85.9	100.0	100.0	100.0	100.0	100.0
μ_5	ma	σ_0	0.5	100.0	100.0	35.8	100.0	100.0	100.0	100.0	100.0
μ_5			1	38.4	99.5	29.9	100.0	100.0	100.0	97.0	99.9
μ_5	ma ma	σ_0 σ_1	0.25	100.0	100.0	65.9	100.0	100.0	100.0	100.0	100.0
μ_5			0.25 0.5	100.0	100.0	34.8	100.0	100.0	100.0	100.0	100.0
μ_5	ma	σ_1	0.5 1	26.3	99.7	18.1	100.0	100.0	100.0	96.9	
μ_5	ma	σ_1						100.0			100.0
μ_5	ma	σ_2	0.25	100.0	100.0	54.8 37.4	100.0		100.0	100.0	100.0
μ_5	ma	σ_2	0.5	100.0	100.0	37.4	100.0	100.0	100.0	100.0	100.0
μ_5	ma	σ_2	1	19.3	93.0	21.5	100.0	100.0	100.0	99.3	100.0
μ_5	$_{\mathrm{ma}}$	σ_3	0.25	100.0	100.0	58.5	100.0	100.0	100.0	100.0	100.0

μ_5	ma	σ_3	0.5	100.0	100.0	34.4	100.0	100.0	100.0	100.0	100.0
μ_5	ma	σ_3	1	12.5	98.7	9.2	100.0	100.0	100.0	92.8	100.0
μ_6	iid	σ_0	0.25	100.0	100.0	43.2	100.0	100.0	100.0	99.9	100.0
μ_6	iid	σ_0	0.5	100.0	100.0	34.7	100.0	100.0	100.0	94.1	98.8
μ_6	iid	σ_0	1	16.3	95.2	11.7	100.0	100.0	99.5	73.4	82.2
μ_6	iid	σ_1	0.25	100.0	100.0	28.6	100.0	100.0	100.0	99.8	100.0
μ_6	iid	σ_1	0.5	100.0	100.0	21.5	100.0	100.0	100.0	93.6	99.2
μ_6	iid	σ_1	1	8.8	92.2	4.9	100.0	100.0	99.8	67.0	78.7
μ_6	iid	σ_2	0.25	100.0	100.0	72.1	100.0	100.0	100.0	100.0	100.0
μ_6	iid	σ_2	0.5	100.0	100.0	69.9	100.0	100.0	100.0	99.3	100.0
μ_6	iid	σ_2	1	9.5	88.7	26.2	100.0	100.0	99.4	79.9	89.3
μ_6	iid	σ_3	0.25	100.0	100.0	43.2	100.0	100.0	100.0	99.7	100.0
μ_6	iid	σ_3	0.5	100.0	100.0	16.7	100.0	100.0	100.0	92.4	99.5
μ_6	iid	σ_3	1	2.9	81.0	4.2	100.0	100.0	99.2	58.4	73.1
μ_6	ar	σ_0	0.25	100.0	100.0	0.6	100.0	100.0	100.0	100.0	100.0
μ_6	ar	σ_0	0.5	100.0	100.0	1.3	100.0	100.0	100.0	92.3	99.3
μ_6	ar	σ_0	1	7.0	78.5	0.0	100.0	98.3	99.6	67.8	83.7
μ_6	ar	σ_1	0.25	100.0	100.0	0.9	100.0	100.0	100.0	99.6	100.0
μ_6	ar	σ_1	0.5	100.0	100.0	1.0	100.0	100.0	100.0	89.8	99.3
μ_6	ar	σ_1	1	4.2	85.0	0.1	100.0	98.7	99.6	58.4	80.1
μ_6	ar	σ_2	0.25	100.0	100.0	2.7	100.0	100.0	100.0	100.0	100.0
μ_6	ar	σ_2	0.5	100.0	100.0	2.9	100.0	100.0	100.0	97.7	100.0
μ_6	ar	σ_2	1	3.9	84.4	1.3	100.0	99.7	99.2	75.4	91.0
μ_6	ar	σ_3	0.25	100.0	100.0	2.8	100.0	100.0	100.0	99.8	100.0
μ_6	ar	σ_3	0.5	99.9	100.0	1.0	100.0	100.0	100.0	82.0	96.6
μ_6	ar	σ_3	1	3.0	87.3	0.2	100.0	97.0	98.6	50.1	74.4
μ_6	$_{\mathrm{ma}}$	σ_0	0.25	100.0	100.0	15.2	100.0	100.0	100.0	99.7	100.0
μ_6	$_{\mathrm{ma}}$	σ_0	0.5	100.0	100.0	6.8	100.0	100.0	100.0	89.5	98.8
μ_6	$_{\mathrm{ma}}$	σ_0	1	1.1	72.4	2.6	100.0	99.9	99.1	62.6	80.4
μ_6	ma	σ_1	0.25	100.0	100.0	3.7	100.0	100.0	100.0	99.4	100.0
μ_6	ma	σ_1	0.5	99.9	100.0	3.0	100.0	100.0	100.0	80.3	97.4
μ_6	ma	σ_1	1	1.1	75.4	0.8	100.0	99.9	99.6	55.2	76.6
μ_6	ma	σ_2	0.25	100.0	100.0	23.1	100.0	100.0	100.0	100.0	100.0
μ_6	ma	σ_2	0.5	100.0	100.0	14.2	100.0	100.0	100.0	97.5	100.0
μ_6	ma	σ_2	1	0.5	74.6	5.2	100.0	100.0	98.1	75.7	87.8
μ_6	ma	σ_3	0.25	100.0	100.0	7.1	100.0	100.0	100.0	99.1	100.0
μ_6	ma	σ_3	0.5	99.8	100.0	4.1	100.0	100.0	100.0	88.7	98.8
μ_6	ma	σ_3	1	0.4	70.9	1.1	100.0	99.2	99.1	50.7	70.7

1.3 Empirical rejection rates under the alternative, for n=500

μ	ε	σ	std	R1	R2	SN	BT	LRV	(8)	(9) (v1)	(9) (v2)
μ_1	iid	σ_0	0.25	100.0	100.0	96.8	100.0	100.0	100.0	99.7	99.2
μ_1	iid	σ_0	0.5	100.0	100.0	90.8	100.0	100.0	100.0	83.3	80.2
μ_1	iid	σ_0	1	53.6	99.9	76.1	100.0	100.0	98.6	40.8	37.3
μ_1	iid	σ_1	0.25	100.0	100.0	91.2	100.0	100.0	100.0	99.7	98.7
μ_1	iid	σ_1	0.5	100.0	100.0	88.1	100.0	100.0	100.0	76.4	71.8
μ_1	iid	σ_1	1	29.9	100.0	63.0	100.0	100.0	97.7	25.8	23.8
μ_1	iid	σ_2	0.25	100.0	100.0	99.7	100.0	100.0	100.0	100.0	100.0
μ_1	iid	σ_2	0.5	100.0	100.0	97.0	100.0	100.0	100.0	92.5	91.9
μ_1	iid	σ_2	1	25.0	100.0	80.0	99.9	100.0	97.0	41.7	44.3

$ μ_1 ma σ_2 0.5 $ $ μ_1 ma σ_2 1 $ $ 0.3 81.7 21.0 99.5 100.0 93.1 27.4 $ $ μ_1 ma σ_3 0.25 $ $ 100.0 100.0 34.2 100.0 100.0 99.1 27.4 $ $ μ_1 ma σ_3 0.5 $ $ 100.0 100.0 34.2 100.0 100.0 100.0 99.9 54.7 $ $ μ_1 ma σ_3 1 $ $ 0.2 80.2 15.8 96.4 98.9 92.3 20.5 $ $ μ_2 iid σ_0 0.5 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_0 1 $ $ 0.5 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.8 100.0 $ $ μ_2 iid σ_1 0.5 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_1 1 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.7 100.0 $ $ 100.0 100.0 99.7 100.0 $ $ 100.0 100.0 99.7 100.0 $ $ 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.7 100.0 $ $ 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.6 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.6 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.6 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.6 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.6 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.6 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.6 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 99.1 99.9 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 99.1 99.9 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 99.1 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $												
$μ_1$ iii $σ_0$ $σ_0$ 2.5 100.0 100.0 0.4 100.0 100.0 100.0 100.0 99.9 96.8 24.9 $μ_1$ ar $σ_0$ 0.25 100.0 100.0 0.0 100.0 100.0 100.0 100.0 98.7 $μ_1$ ar $σ_0$ 1 0.6 65.9 0.0 97.3 97.7 92.9 33.5 $μ_1$ ar $σ_1$ 0.25 100.0 100.0 0.3 100.0 100.0 100.0 0	98.2	99.0	100.0	100.0	100.0	90.8	100.0	100.0	0.25	σ_3	iid	μ_1
$μ_1$ ar $σ_0$ 0.25 100.0 100.0 0.4 100.0 100.0 100.0 71.6 $μ_1$ ar $σ_0$ 1 0.5 100.0 100.0 0.0 100.0 100.0 100.0 $μ_1$ ar $σ_1$ 0.25 100.0 100.0 0.3 100.0 100.0 100.0 $μ_1$ ar $σ_1$ 0.5 100.0 100.0 0.3 100.0 100.0 100.0 $μ_1$ ar $σ_1$ 0.5 100.0 100.0 0.3 100.0 100.0 100.0 $μ_1$ ar $σ_2$ 0.25 100.0 100.0 1.8 100.0 100.0 100.0 $μ_1$ ar $σ_2$ 0.25 100.0 100.0 1.8 100.0 100.0 100.0 $μ_1$ ar $σ_2$ 1 0.0 72.5 0.7 97.6 99.5 89.5 40.3 $μ_1$ ar $σ_3$ 0.25 100.0 100.0 0.2 100.0 100.0 100.0 $μ_1$ ar $σ_3$ 1 0.1 80.9 0.1 92.0 95.2 91.3 18.5 $μ_1$ ma $σ_0$ 0.5 100.0 100.0 25.8 100.0 100.0 100.0 69.9 $μ_1$ ma $σ_1$ 1 0.3 80.4 19.1 99.8 99.7 93.3 28.0 $μ_1$ ma $σ_1$ 1 0.0 83.5 15.6 98.4 99.1 99.8 $μ_1$ ma $σ_2$ 1 0.0 83.5 15.6 98.4 99.1 93.2 24.6 $μ_1$ ma $σ_3$ 0.5 100.0 100.0 32.8 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_3$ 0.5 100.0 100.0 32.8 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_3$ 0.5 100.0 100.0 32.8 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_3$ 0.5 100.0 100.0 32.8 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_3$ 0.5 100.0 100.0 32.8 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_3$ 0.5 100.0 100.0 32.8 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_3$ 0.5 100.0 100.0 32.8 100.0 100.0 100.0 99.9 $μ_2$ iid $σ_0$ 0.25 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_0$ 0.25 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_0$ 1 99.9 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_0$ 1 99.9 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_0$ 1 99.9 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_3$ 1 92.5 100.0 100.0 99.9 100.0 100.0 100.0 $μ_2$ iid $σ_3$ 1	54.2	60.4	100.0	100.0	100.0	86.5	100.0	100.0	0.5	σ_3	iid	μ_1
$μ_1$ ar $σ_0$ 0.5 100.0 100.0 0.0 100.0 100.0 71.6 $μ_1$ ar $σ_1$ 0.25 100.0 100.0 2.4 100.0 100.0 100.0 97.2 $μ_1$ ar $σ_1$ 0.5 100.0 100.0 2.4 100.0 100.0 100.0 97.2 $μ_1$ ar $σ_1$ 0.5 100.0 100.0 0.3 100.0 100.0 100.0 66.3 $μ_1$ ar $σ_2$ 0.25 100.0 100.0 0.3 100.0 100.0 100.0 99.4 $μ_1$ ar $σ_2$ 0.25 100.0 100.0 0.2 100.0 100.0 100.0 99.4 $μ_1$ ar $σ_2$ 0.5 100.0 100.0 0.2 100.0 100.0 100.0 81.9 $μ_1$ ar $σ_3$ 0.25 100.0 100.0 0.2 100.0 100.0 100.0 96.0 $μ_1$ ar $σ_3$ 0.5 100.0 100.0 0.2 100.0 100.0 100.0 96.0 $μ_1$ ar $σ_3$ 0.5 100.0 100.0 0.2 100.0 100.0 100.0 96.0 $μ_1$ ar $σ_3$ 0.5 100.0 100.0 0.2 100.0 100.0 100.0 96.0 $μ_1$ ar $σ_3$ 0.5 100.0 100.0 0.2 100.0 100.0 100.0 96.0 $μ_1$ ar $σ_3$ 0.5 100.0 100.0 0.2 100.0 100.0 100.0 96.0 $μ_1$ ar $σ_3$ 0.5 100.0 100.0 25.8 100.0 100.0 100.0 98.4 $μ_1$ ma $σ_0$ 0.5 100.0 100.0 25.8 100.0 100.0 100.0 98.4 $μ_1$ ma $σ_1$ 0.25 100.0 100.0 25.8 100.0 100.0 100.0 97.6 $μ_1$ ma $σ_1$ 0.5 100.0 100.0 25.8 100.0 100.0 100.0 97.6 $μ_1$ ma $σ_1$ 0.5 100.0 100.0 25.8 100.0 100.0 100.0 97.6 $μ_1$ ma $σ_2$ 0.5 100.0 100.0 25.8 100.0 100.0 100.0 97.6 $μ_1$ ma $σ_2$ 1 0.8 83.5 15.6 88.4 99.1 83.2 24.6 $μ_1$ ma $σ_2$ 1 0.8 83.5 15.6 88.4 99.1 83.2 24.6 $μ_1$ ma $σ_2$ 1 0.3 81.7 21.0 99.5 100.0 100.0 00.0 $μ_2$ iid $σ_0$ 0.5 100.0 100.0 28.2 100.0 100.0 100.0 $μ_2$ iid $σ_0$ 0.5 100.0 100.0 28.2 100.0 100.0 100.0 $μ_2$ iid $σ_0$ 1 99.9 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_2$ 1.5 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid	22.8	24.9	96.8	99.9	100.0	60.4	99.5	7.9	1	σ_3	iid	μ_1
$μ_1$ ar $σ_0$ 1 0.6 65.9 0.0 97.3 97.7 92.9 33.5 $μ_1$ ar $σ_1$ 0.25 100.0 100.0 0.3 100.0 100.0 100.0 66.3 $μ_1$ ar $σ_1$ 1 0.2 76.7 0.1 93.0 96.4 88.8 23.6 $μ_1$ ar $σ_2$ 0.25 100.0 100.0 0.2 100.0 100.0 100.0 99.4 $μ_1$ ar $σ_2$ 0.25 100.0 100.0 0.2 100.0 100.0 100.0 81.9 $μ_1$ ar $σ_2$ 0.5 100.0 100.0 0.2 100.0 100.0 100.0 81.9 $μ_1$ ar $σ_3$ 0.25 100.0 100.0 0.2 100.0 100.0 100.0 96.0 $μ_1$ ar $σ_3$ 0.5 100.0 100.0 0.2 100.0 100.0 100.0 96.0 $μ_1$ ar $σ_3$ 1 0.1 80.9 0.1 92.0 95.2 91.3 18.5 $μ_1$ ma $σ_0$ 0.5 100.0 100.0 25.8 100.0 100.0 100.0 98.4 $μ_1$ ma $σ_0$ 0.5 100.0 100.0 25.8 100.0 100.0 100.0 98.4 $μ_1$ ma $σ_1$ 0.25 100.0 100.0 25.8 100.0 100.0 100.0 97.6 $μ_1$ ma $σ_1$ 0.5 100.0 100.0 37.7 100.0 100.0 100.0 69.9 $μ_1$ ma $σ_1$ 0.5 100.0 100.0 37.7 100.0 100.0 100.0 97.6 $μ_1$ ma $σ_2$ 0.25 100.0 100.0 42.9 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_2$ 1.0 0.3 81.5 15.6 98.4 $μ_1$ ma $σ_2$ 1.0 100.0 100.0 42.9 100.0 100.0 100.0 $μ_1$ ma $σ_2$ 1.1 0.3 81.7 21.0 99.5 100.0 33.1 $μ_1$ ma $σ_2$ 1.1 0.3 81.7 21.0 99.5 100.0 39.2 $μ_1$ ma $σ_3$ 1.2 100.0 100.0 28.2 100.0 100.0 100.0 $μ_2$ iid $σ_0$ 0.25 100.0 100.0 28.2 100.0 100.0 100.0 $μ_2$ iid $σ_0$ 0.5 100.0 100.0 28.2 100.0 100.0 100.0 $μ_2$ iid $σ_0$ 0.5 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_0$ 0.5 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_0$ 1.5 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_0$ 1.5 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_0$ 1.5 100.0 100.0 99.9 100.0 100.0 100.0 $μ_2$ iid	98.8	98.7	100.0	100.0	100.0	0.4	100.0		0.25	σ_0	ar	μ_1
$μ_1$ ar $σ_1$ 0.25 100.0 100.0 2.4 100.0 100.0 97.2 $μ_1$ ar $σ_1$ 1. 0.2 76.7 0.1 93.0 96.4 88.8 23.6 $μ_1$ ar $σ_2$ 0.5 100.0 100.0 1.8 100.0 100.0 100.0 99.4 $μ_1$ ar $σ_2$ 0.5 100.0 100.0 0.2 100.0 100.0 99.5 89.5 40.3 $μ_1$ ar $σ_3$ 0.5 100.0 100.0 0.2 100.0 100.0 90.0 100.0 90.0 90.0 90.0 96.0 96.0 $μ_1$ ar $σ_3$ 0.5 100.0 100.0 0.2 100.0 100.0 90.0 95.2 91.3 18.5 $μ_1$ ar $σ_3$ 0.5 100.0 100.0 33.7 100.0 100.0 99.2 95.2 91.3 28.2 <	76.7	71.6	100.0	100.0	100.0	0.0	100.0	100.0	0.5	σ_0	ar	μ_1
$μ_1$ ar $σ_1$ 0.5 100.0 100.0 0.3 100.0 100.0 100.0 66.3 $μ_1$ ar $σ_1$ 1 0.2 76.7 0.1 93.0 96.4 88.8 23.6 $μ_1$ ar $σ_2$ 0.25 100.0 100.0 100.0 100.0 100.0 100.0 99.4 $μ_1$ ar $σ_2$ 0.5 100.0 100.0 0.2 100.0 100.0 100.0 81.9 $μ_1$ ar $σ_2$ 1 0.0 72.5 0.7 97.6 99.5 89.5 40.3 $μ_1$ ar $σ_3$ 0.25 100.0 100.0 0.9 100.0 100.0 100.0 96.0 $μ_1$ ar $σ_3$ 0.5 100.0 100.0 0.2 100.0 100.0 100.0 49.9 $μ_1$ ar $σ_3$ 1 0.1 80.9 0.1 92.0 95.2 91.3 18.5 $μ_1$ ma $σ_0$ 0.25 100.0 100.0 25.8 100.0 100.0 100.0 69.9 $μ_1$ ma $σ_0$ 0.5 100.0 100.0 25.8 100.0 100.0 100.0 69.9 $μ_1$ ma $σ_0$ 1 0.3 80.4 19.1 99.8 99.7 93.3 28.0 $μ_1$ ma $σ_1$ 0.25 100.0 100.0 37.7 100.0 100.0 100.0 97.6 $μ_1$ ma $σ_1$ 0.25 100.0 100.0 42.9 100.0 100.0 100.0 63.1 $μ_1$ ma $σ_2$ 0.25 100.0 100.0 42.9 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_2$ 0.25 100.0 100.0 42.9 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_2$ 0.25 100.0 100.0 42.9 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_2$ 0.25 100.0 100.0 32.8 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_3$ 0.5 100.0 100.0 32.8 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_3$ 0.5 100.0 100.0 32.8 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_3$ 0.5 100.0 100.0 28.2 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_3$ 1 0.2 80.2 15.8 96.4 98.9 92.3 20.5 $μ_2$ iid $σ_0$ 0.25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_0$ 1 99.9 100.0 99.9 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_1$ 1 99.1 100.0 99.9 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_1$ 1 99.7 100.0 99.9 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_3$ 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_3$ 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_3$ 0.5 100.0 100.0 99.5 100.0 100.0 100.0 $μ_2$ ar $σ_0$ 0.5 100.0 100.0 99.5 10	37.2	33.5	92.9	97.7	97.3	0.0	65.9	0.6	1	σ_0	ar	μ_1
$μ_1$ ar $σ_1$ 1 0.2 76.7 0.1 93.0 96.4 88.8 23.6 $μ_1$ ar $σ_2$ 0.25 100.0 100.0 1.8 100.0 100.0 100.0 99.4 $μ_1$ ar $σ_2$ 0.5 100.0 100.0 0.2 100.0 100.0 100.0 81.9 $μ_1$ ar $σ_2$ 1 0.0 72.5 0.7 97.6 99.5 89.5 40.3 $μ_1$ ar $σ_3$ 0.5 100.0 100.0 0.9 100.0 100.0 100.0 96.0 $μ_1$ ar $σ_3$ 0.5 100.0 100.0 0.9 100.0 100.0 100.0 49.9 $μ_1$ ar $σ_3$ 0.5 100.0 100.0 33.7 100.0 100.0 100.0 100.0 98.4 $μ_1$ ma $σ_0$ 0.25 100.0 100.0 25.8 100.0 100.0 100.0 98.4 $μ_1$ ma $σ_0$ 0.5 100.0 100.0 25.8 100.0 100.0 100.0 69.9 $μ_1$ ma $σ_0$ 1 0.5 100.0 100.0 25.8 100.0 100.0 100.0 97.6 $μ_1$ ma $σ_1$ 0.25 100.0 100.0 15.9 100.0 100.0 100.0 97.6 $μ_1$ ma $σ_1$ 0.5 100.0 100.0 15.9 100.0 100.0 100.0 97.6 $μ_1$ ma $σ_1$ 0.5 100.0 100.0 33.7 100.0 100.0 100.0 97.6 $μ_1$ ma $σ_1$ 0.5 100.0 100.0 37.7 100.0 100.0 100.0 97.6 $μ_1$ ma $σ_1$ 0.5 100.0 100.0 37.7 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_2$ 0.5 100.0 100.0 37.7 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_2$ 0.5 100.0 100.0 32.8 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_2$ 0.5 100.0 100.0 32.8 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_2$ 0.5 100.0 100.0 34.2 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_3$ 0.25 100.0 100.0 34.2 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_3$ 0.25 100.0 100.0 34.2 100.0 100.0 100.0 96.1 $μ_1$ ma $σ_3$ 0.25 100.0 100.0 28.2 100.0 100.0 100.0 99.9 54.7 $μ_1$ ma $σ_3$ 0.5 100.0 100.0 28.2 100.0 100.0 100.0 99.9 54.7 $μ_1$ ma $σ_3$ 1 0.2 80.2 15.8 96.4 98.9 92.3 20.5 $μ_2$ iid $σ_0$ 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_1$ 0.25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_1$ 0.25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_1$ 0.25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_1$ 1 99.1 100.0 99.9 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_2$ 1 98.7 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_3$ 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_3$ 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 $μ_2$ ar $σ_0$ 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $μ_2$ ar $σ_0$ 1 21.4 99.4 1.6 100.0 100.0 100.0 100.0 100.0	96.4	97.2	100.0	100.0	100.0	2.4	100.0	100.0	0.25	σ_1	ar	μ_1
$μ_1$ ar $σ_2$ 0.25 100.0 100.0 1.8 100.0 100.0 100.0 99.4 $μ_1$ ar $σ_2$ 0.5 100.0 100.0 0.2 100.0 100.0 100.0 81.9 $μ_1$ ar $σ_2$ 1 0.0 72.5 0.7 97.6 99.5 89.5 40.3 $μ_1$ ar $σ_3$ 0.25 100.0 100.0 0.9 100.0 100.0 100.0 0.00 $μ_1$ ar $σ_3$ 0.5 100.0 100.0 0.9 100.0 100.0 100.0 49.9 $μ_1$ ar $σ_3$ 1 0.1 80.9 0.1 92.0 95.2 91.3 18.5 $μ_1$ ma $σ_0$ 0.25 100.0 100.0 25.8 100.0 100.0 100.0 000.0 98.4 $μ_1$ ma $σ_0$ 0.5 100.0 100.0 25.8 100.0 100.0 100.0 69.9 $μ_1$ ma $σ_0$ 1 0.3 80.4 19.1 99.8 99.7 93.3 28.0 $μ_1$ ma $σ_1$ 0.25 100.0 100.0 37.7 100.0 100.0 100.0 97.6 $μ_1$ ma $σ_1$ 0.5 100.0 100.0 15.9 100.0 100.0 100.0 63.1 $μ_1$ ma $σ_1$ 0.5 100.0 100.0 15.9 100.0 100.0 100.0 63.1 $μ_1$ ma $σ_2$ 0.25 100.0 100.0 32.8 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_2$ 0.25 100.0 100.0 32.8 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_2$ 0.25 100.0 100.0 32.8 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_2$ 0.25 100.0 100.0 32.8 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_3$ 0.5 100.0 100.0 34.2 100.0 100.0 100.0 96.1 $μ_1$ ma $σ_3$ 0.5 100.0 100.0 28.2 100.0 100.0 100.0 99.9 54.7 $μ_1$ ma $σ_3$ 1 0.2 80.2 15.8 96.4 98.9 92.3 20.5 $μ_2$ iid $σ_0$ 0.25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_0$ 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_1$ 0.5 100.0 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_2$ 0.25 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_2$ 0.25 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_2$ 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_3$ 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_3$ 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_3$ 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $μ_2$	67.6	66.3	100.0	100.0	100.0	0.3	100.0	100.0	0.5	σ_1	ar	μ_1
$μ_1$ ar $σ_2$ 0.5 100.0 100.0 0.2 100.0 100.0 100.0 81.9 $μ_1$ ar $σ_2$ 1 0.0 72.5 0.7 97.6 99.5 89.5 40.3 $μ_1$ ar $σ_3$ 0.25 100.0 100.0 0.9 100.0 100.0 100.0 96.0 $μ_1$ ar $σ_3$ 0.5 100.0 100.0 100.0 0.9 100.0 100.0 100.0 49.9 $μ_1$ ar $σ_3$ 1 0.1 80.9 0.1 92.0 95.2 91.3 18.5 $μ_1$ ma $σ_0$ 0.25 100.0 100.0 25.8 100.0 100.0 100.0 98.4 $μ_1$ ma $σ_0$ 0.5 100.0 100.0 25.8 100.0 100.0 100.0 98.4 $μ_1$ ma $σ_0$ 1 0.5 100.0 100.0 33.7 100.0 100.0 100.0 69.9 $μ_1$ ma $σ_0$ 1.5 100.0 100.0 37.7 100.0 100.0 100.0 97.6 $μ_1$ ma $σ_1$ 0.25 100.0 100.0 37.7 100.0 100.0 100.0 97.6 $μ_1$ ma $σ_1$ 0.5 100.0 100.0 15.9 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_2$ 0.25 100.0 100.0 15.9 100.0 100.0 100.0 63.1 $μ_1$ ma $σ_2$ 0.25 100.0 100.0 42.9 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_2$ 0.5 100.0 100.0 32.8 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_2$ 0.5 100.0 100.0 32.8 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_3$ 0.5 100.0 100.0 32.8 100.0 100.0 100.0 99.9 54.7 $μ_1$ ma $σ_3$ 0.5 100.0 100.0 28.2 100.0 100.0 100.0 99.9 54.7 $μ_1$ ma $σ_3$ 0.5 100.0 100.0 100.0 28.2 100.0 100.0 99.9 54.7 $μ_1$ ma $σ_3$ 0.5 100.0 100.0 100.0 100.0 100.0 99.9 54.7 $μ_1$ ma $σ_3$ 0.5 100.0 100.0 100.0 100.0 100.0 100.0 99.9 54.7 $μ_1$ ma $σ_3$ 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_0$ 0.25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_0$ 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_0$ 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_0$ 1 99.9 100.0 98.9 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_2$ 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_2$ 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_2$ 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_2$ 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_2$ 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_3$ 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_3$ 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 $μ_2$ iid $σ_3$ 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 $μ_2$ ar $σ_0$	24.3	23.6	88.8	96.4	93.0	0.1	76.7	0.2	1	σ_1	ar	μ_1
$ μ_1 \text{ ar } \sigma_2 \text{ 1} $ $ 0.0 72.5 0.7 97.6 99.5 89.5 $ $ 40.3 94.1 1 1 3 3 0.25 $ $ \mu_1 1 1 3 3 0.5 $ $ \mu_1 1 1 3 3 0.5 $ $ 100.0 100.0 0.00 0.00 100.0 100.0 100.0 $ $ 0.1 80.9 0.1 92.0 95.2 91.3 18.5 $ $ \mu_1 1 1 1 3 3 1 $ $ 0.1 80.9 0.1 92.0 95.2 91.3 18.5 $ $ \mu_1 1 1 1 3 0 0.5 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 0.25 100.0 100.0 100.0 100.0 100.0 $ $ 0.84.4 \mu_1 1 1 3 0.5 $ $ 0.1 1 80.9 0.1 92.0 95.2 91.3 18.5 $ $ \mu_1 1 1 1 3 0 0.5 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 0.00.0 100.0 100.0 100.0 100.0 $ $ 0.00.0 100.0 100.0 100.0 100.0 $ $ 0.00.0 100.0 100.0 100.0 100.0 $ $ 0.00.0 100.0 100.0 100.0 100.0 $ $ 0.00.0 100.0 100.0 $	99.3	99.4	100.0	100.0	100.0	1.8	100.0	100.0	0.25	σ_2	ar	μ_1
$μ_1$ ar $σ_3$ 0.25 100.0 100.0 0.9 100.0 100.0 100.0 49.9 $μ_1$ ar $σ_3$ 1 0.1 80.9 0.1 92.0 95.2 91.3 18.5 $μ_1$ ma $σ_0$ 0.25 100.0 100.0 33.7 100.0 100.0 98.4 $μ_1$ ma $σ_0$ 0.5 100.0 100.0 33.7 100.0 100.0 100.0 69.9 $μ_1$ ma $σ_1$ 0.25 100.0 100.0 37.7 100.0 100.0 100.0 97.6 $μ_1$ ma $σ_1$ 0.5 100.0 100.0 37.7 100.0 100.0 100.0 99.9 $μ_1$ ma $σ_1$ 0.0 83.5 15.6 98.4 99.1 93.2 24.6 $μ_1$ ma $σ_2$ 100.0 100.0 32.8 100.0 100.0 100.0 100.0 <	83.6	81.9	100.0	100.0	100.0	0.2	100.0	100.0	0.5	σ_2	ar	μ_1
$μ_1$ ar $σ_3$ 1.0 100.0 </td <td>45.7</td> <td>40.3</td> <td>89.5</td> <td>99.5</td> <td>97.6</td> <td>0.7</td> <td>72.5</td> <td>0.0</td> <td>1</td> <td>σ_2</td> <td>ar</td> <td>μ_1</td>	45.7	40.3	89.5	99.5	97.6	0.7	72.5	0.0	1	σ_2	ar	μ_1
$ μ_1 \text{ ar } σ_3 \text{ 1} $ $ μ_1 \text{ ma } σ_0 \text{ 0.25} $ $ 100.0 \text{ 100.0} $ $ 33.7 \text{ 100.0} $ $ 100.0 $	95.0	96.0	100.0	100.0	100.0	0.9	100.0	100.0	0.25	σ_3	ar	μ_1
$ μ_1 ma σ_0 0.25 100.0 100.0 33.7 100.0 100.0 100.0 98.4 μ_1 ma σ_0 0.5 100.0 100.0 25.8 100.0 100.0 100.0 69.9 μ_1 ma σ_0 1 1 0.3 80.4 19.1 99.8 99.7 93.3 28.0 μ_1 ma σ_1 0.5 100.0 100.0 15.9 100.0 100.0 100.0 100.0 97.6 μ_1 ma σ_1 0.5 100.0 100.0 15.9 100.0 100.0 100.0 100.0 63.1 μ_1 ma σ_1 1 1 0.0 83.5 15.6 98.4 99.1 93.2 24.6 μ_1 ma σ_2 0.25 100.0 100.0 42.9 100.0 100.0 100.0 100.0 99.9 μ_1 ma σ_2 0.5 100.0 100.0 32.8 100.0 100.0 100.0 99.9 μ_1 ma σ_2 1 1 0.3 81.7 21.0 99.5 100.0 93.1 27.4 μ_1 ma σ_3 0.5 100.0 100.0 32.8 100.0 100.0 100.0 99.9 54.7 μ_1 ma σ_3 1 1 0.2 80.2 15.8 96.4 98.9 92.3 20.5 μ_2 iid σ_0 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_0 1 1 99.9 100.0 98.9 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_1 0.25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_1 0.25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_2 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_2 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_2 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_2 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_2 0.5 100.0 100.0 99.4 100.0 100.0 100.0 100.0 μ_2 iid σ_2 0.5 100.0 100.0 99.3 100.0 100.0 100.0 100.0 μ_2 iid σ_3 0.5 100.0 100.0 99.3 100.0 100.0 100.0 100.0 μ_2 iid σ_3 0.5 100.0 100.0 99.3 100.0 100.0 100.0 100.0 μ_2 iid σ_3 0.5 100.0 100.0 99.3 100.0 100.0 100.0 100.0 μ_2 iid σ_3 0.5 100.0 100.0 99.3 100.0 100.0 100.0 100.0 $	55.7	49.9	100.0	100.0	100.0	0.2	100.0	100.0	0.5	σ_3	ar	μ_1
$ μ_1 ma σ_0 0.5 $ $ μ_1 ma σ_0 1 $ $ 0.3 80.4 19.1 99.8 99.7 93.3 28.0 μ_1 ma σ_1 0.25 100.0 100.0 15.9 100.0 100.0 100.0 100.0 97.6 μ_1 ma σ_1 0.5 100.0 100.0 15.9 100.0 100.0 100.0 100.0 63.1 μ_1 ma σ_1 1 1 0.0 83.5 15.6 98.4 99.1 93.2 24.6 μ_1 ma σ_2 0.25 100.0 100.0 100.0 32.8 100.0 100.0 100.0 100.0 99.9 μ_1 ma σ_2 0.5 100.0 100.0 32.8 100.0 100.0 100.0 100.0 99.9 μ_1 ma σ_2 1 1 0.3 81.7 21.0 99.5 100.0 93.1 27.4 μ_1 ma σ_3 0.25 100.0 100.0 34.2 100.0 100.0 100.0 99.9 96.1 μ_1 ma σ_3 0.5 100.0 100.0 34.2 100.0 100.0 100.0 99.9 96.1 μ_1 ma σ_3 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_0 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_0 1 1 99.9 100.0 98.9 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_1 0.5 1 00.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_1 0.5 1 00.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_2 0.5 1 00.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_2 0.5 1 00.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_2 0.5 1 00.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_3 0.5 1 00.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_3 0.5 1 00.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_3 0.5 1 00.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_3 0.5 1 00.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_3 0.5 1 00.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_3 1 1 0.5 100.0 100.0 99.3 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_3 0.5 1 00.0 100.0 99.3 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_3 0.5 1 00.0 100.0 99.3 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_3 1 1 0.5 100.0 100.0 99.3 100.0 100.0 100.0 100.0 1 0.0 100.0 100.0 99.6 100.0 1 0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1 0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1 0.0 100.0 100.0 100.0 100.0 100.0 $	19.8	18.5	91.3	95.2	92.0	0.1	80.9	0.1	1	σ_3	ar	μ_1
$ μ_1 ma σ_0 1 $ $ 0.3 80.4 19.1 99.8 99.7 93.3 28.0 μ_1 ma σ_1 0.25 100.0 100.0 37.7 100.0 100.0 100.0 100.0 0.3 1.7 100.0 100.0 100.0 100.0 100.0 0.3 1.7 100.0 100.0 100.0 100.0 100.0 0.3 1.7 100.0 100.0 100.0 100.0 100.0 0.3 1.7 100.0 100.0 100.0 100.0 100.0 0.3 1.7 100.0 100.0 100.0 100.0 100.0 0.3 1.7 100.0 100.0 100.0 100.0 100.0 0.3 1.7 100.0 100.0 100.0 100.0 100.0 0.3 1.7 100.0 100.0 100.0 100.0 100.0 0.3 1.7 100.0 100.0 100.0 100.0 100.0 100.0 0.3 1.7 100.0 100.0 100.0 100.0 100.0 100.0 0.3 1.7 100.0 100.0 100.0 100.0 100.0 100.0 0.3 1.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.3 1.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.3 1.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.3 1.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.3 1.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1$	98.6	98.4	100.0	100.0	100.0	33.7	100.0	100.0	0.25	σ_0	ma	μ_1
$ μ_1 ma σ_1 0.25 100.0 100.0 37.7 100.0 100.0 100.0 97.6 $ $ μ_1 ma σ_1 1 0.5 100.0 100.0 15.9 100.0 100.0 100.0 63.1 $ $ μ_1 ma σ_1 1 0.0 83.5 15.6 98.4 99.1 93.2 24.6 $ $ μ_1 ma σ_2 0.25 100.0 100.0 42.9 100.0 100.0 100.0 99.9 $ $ μ_1 ma σ_2 0.5 100.0 100.0 32.8 100.0 100.0 100.0 99.9 $ $ μ_1 ma σ_2 1 0.3 81.7 21.0 99.5 100.0 93.1 27.4 $ $ μ_1 ma σ_3 0.25 100.0 100.0 34.2 100.0 100.0 100.0 99.9 $ $ μ_1 ma σ_3 0.5 100.0 100.0 28.2 100.0 100.0 100.0 99.9 $ $ μ_1 ma σ_3 0.5 100.0 100.0 28.2 100.0 100.0 100.0 99.9 $ $ μ_2 iid σ_0 0.25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_0 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_1 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_1 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_1 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_2 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_3 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_3 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_3 0.5 100.0 100.0 99.4 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_3 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_3 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_3 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_3 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_3 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_3 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_3 1 $	73.2	69.9	100.0	100.0	100.0	25.8	100.0	100.0	0.5	σ_0	ma	μ_1
$ μ_1 ma σ_1 0.25 100.0 100.0 37.7 100.0 100.0 100.0 97.6 $ $ μ_1 ma σ_1 0.5 100.0 100.0 15.9 100.0 100.0 100.0 63.1 $ $ μ_1 ma σ_1 1 0.0 83.5 15.6 98.4 99.1 93.2 24.6 $ $ μ_1 ma σ_2 0.25 100.0 100.0 32.8 100.0 100.0 100.0 99.9 $ $ μ_1 ma σ_2 0.5 100.0 100.0 32.8 100.0 100.0 100.0 99.9 $ $ μ_1 ma σ_2 1 0.3 81.7 21.0 99.5 100.0 93.1 27.4 $ $ μ_1 ma σ_3 0.5 100.0 100.0 28.2 100.0 100.0 100.0 99.9 54.7 $ $ μ_1 ma σ_3 1 0.2 80.2 15.8 96.4 98.9 92.3 20.5 $ $ μ_2 iid σ_0 0.25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_0 1 99.9 100.0 100.0 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_1 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_1 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_1 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_2 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_3 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_3 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_3 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_3 0.5 100.0 100.0 99.4 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_3 0.5 100.0 100.0 99.3 100.0 100.0 99.7 100.0 $ $ μ_2 iid σ_3 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_3 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_3 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_3 0.5 100.0 100.0 99.3 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_3 0.5 100.0 100.0 99.3 100.0 100.0 100.0 100.0 μ_2 iid σ_3 0.5 100.0 100.0 99.6 100.0 100.0 100.0 μ_2 iid σ_3 0.5 100.0 100.0 99.6 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_3 0.5 100.0 100.0 99.6 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_3 0.5 100.0 100.0 99.1 100.0 100.0 100.0 100.0 μ_2 iid σ_3 0.5 100.0 100.0 99.1 100.0 100.0 100.0 100.0 μ_2 ar σ_0 0.5 100.0 100.0 99.1 100.0 100.0 100.0 100.0 μ_2 ar σ_1 0.5 100.0 100.0 99.1 100.0 100.0 100.0 100.0 μ_2 ar σ_2 0.5 100.0 100.0 99.1 100.0 100.0 100.0 100.0 μ_2 ar σ_3 0.5 100.0 100.0 100.0 99.1 100.0 100.0 μ_$	32.5	28.0	93.3	99.7	99.8	19.1	80.4	0.3	1	σ_0	ma	μ_1
$ μ_1 ma σ_1 10.5 $ $ 100.0 100.0 15.9 100.0 100.0 100.0 100.0 100.0 63.1 μ_1 ma σ_1 1 0.0 83.5 15.6 98.4 99.1 93.2 24.6 μ_1 ma σ_2 0.25 100.0 100.0 100.0 42.9 100.0 100.0 100.0 99.9 μ_1 ma σ_2 0.5 100.0 100.0 32.8 100.0 100.0 100.0 93.1 27.4 μ_1 ma σ_3 0.25 100.0 100.0 34.2 100.0 100.0 100.0 99.9 54.7 μ_1 ma σ_3 0.5 100.0 100.0 28.2 100.0 100.0 99.9 54.7 μ_1 ma σ_3 1 0.2 80.2 15.8 96.4 98.9 92.3 20.5 μ_2 iid σ_0 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_0 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_1 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_1 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_1 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_1 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_1 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_2 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_2 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_3 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_3 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_3 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 μ_2 iid σ_3 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.$	97.0	97.6	100.0	100.0	100.0	37.7	100.0	100.0	0.25	σ_1	ma	
$ μ_1 ma σ_1 1 $ $ 0.0 83.5 15.6 98.4 99.1 93.2 24.6 $ $ μ_1 ma σ_2 0.25 100.0 100.0 42.9 100.0 100.0 100.0 99.9 $ $ μ_1 ma σ_2 1 $ $ 0.3 81.7 21.0 99.5 100.0 100.0 93.1 27.4 $ $ μ_1 ma σ_3 0.25 100.0 100.0 34.2 100.0 100.0 100.0 96.1 $ $ μ_1 ma σ_3 0.5 100.0 100.0 28.2 100.0 100.0 99.9 54.7 $ $ μ_1 ma σ_3 0.5 100.0 100.0 28.2 100.0 100.0 99.9 54.7 $ $ μ_1 ma σ_3 1 $ $ 0.2 80.2 15.8 96.4 98.9 92.3 20.5 $ $ μ_2 iid σ_0 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_0 1 $ $ 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_1 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_1 0.5 100.0 100.0 99.4 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_2 0.25 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_2 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_2 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_2 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_3 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_2 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_3 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_3 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_3 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_3 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_3 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_3 0.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 $ $ μ_2 iid σ_3 1 94.7 100.0 99.3 100.0 100.0 99.6 100.0 $ $ μ_2 ar σ_0 0.5 100.0 100.0 99.6 100.0 100.0 100.0 100.0 $ $ μ_2 ar σ_0 1 21.4 99.4 1.6 100.0 100.0 99.6 100.0 $ $ μ_2 ar σ_1 0.5 100.0 100.0 92.1 100.0 100.0 99.1 99.9 $ $ μ_2 ar σ_2 0.5 100.0 100.0 92.1 100.0 100.0 100.0 100.0 $ $ μ_2 ar σ_2 0.5 100.0 100.0 92.1 100.0 100.0 100.0 100.0 $ $ μ_2 ar σ_2 0.5 100.0 100.0 93.0 100.0 100.0 100.0 100.0 $ $ μ_2 ar σ_2 0.5 100.0 100.0 93.0 100.0 100.0 100.0 100.0 $ $ μ_2 ar σ_2 0.5 100.0 100.0 93.0 100.0 100.0 100.0 100.0 $ $ μ_2 ar σ_2 0.5 100.0 100.0 99.1 99.9 $ $ μ_2 ar σ_3 0.5 100.0 100.0 100.0 99.1 100.0 100.0 $ $ μ_2 ar σ_3 0.5 100.0 10$	61.4	63.1	100.0	100.0	100.0	15.9	100.0	100.0	0.5	σ_1	ma	
$ μ_1 ma σ_2 0.25 $ $ μ_1 ma σ_2 0.5 $ $ μ_1 ma σ_2 0.5 $ $ μ_1 ma σ_2 1 $ $ 0.3 81.7 21.0 99.5 100.0 100.0 99.1 $ $ μ_1 ma σ_3 0.25 $ $ μ_1 ma σ_3 0.25 $ $ 100.0 100.0 32.8 100.0 100.0 100.0 99.1 $ $ 100.0 100.0 32.8 100.0 100.0 100.0 99.1 $ $ 100.0 100.0 32.8 100.0 100.0 100.0 99.1 $ $ 100.0 100.0 100.0 34.2 100.0 100.0 100.0 99.9 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 99.9 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.$	27.9	24.6	93.2	99.1	98.4	15.6	83.5	0.0	1	σ_1	ma	
$ μ_1 ma σ_2 0.5 $ $ μ_1 ma σ_2 1 $ $ 0.3 81.7 21.0 99.5 100.0 93.1 27.4 $ $ μ_1 ma σ_3 0.25 $ $ 100.0 100.0 34.2 100.0 100.0 99.1 27.4 $ $ μ_1 ma σ_3 0.5 $ $ 100.0 100.0 34.2 100.0 100.0 100.0 99.1 $ $ 100.0 100.0 100.0 99.9 54.7 $ $ μ_1 ma σ_3 0.5 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 99.9 54.7 $ $ μ_1 ma σ_3 1 $ $ 0.2 80.2 15.8 96.4 98.9 92.3 20.5 $ $ μ_2 iid σ_0 0.5 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.8 100.0 $ $ 100.0 100.0 99.8 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.4 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.7 100.0 99.7 100.0 $ $ 100.0 100.0 99.7 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.6 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.6 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.6 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 99.1 99.9 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 92.1 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 92.1 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 92.1 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 93.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 93.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 93.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 93.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 $ $ 100.0 100.0 100.0 1$	100.0	99.9	100.0	100.0	100.0	42.9	100.0	100.0	0.25	σ_2	ma	
$μ_1$ ma $σ_2$ 1	86.4	82.5	100.0	100.0	100.0	32.8	100.0	100.0	0.5	σ_2	ma	
$\begin{array}{c} \mu_1 \text{ma} \sigma_3 0.25 \\ \mu_1 \text{ma} \sigma_3 0.5 \\ \mu_1 \text{ma} \sigma_3 0.5 \\ \mu_1 \text{ma} \sigma_3 0.5 \\ \mu_2 \text{iid} \sigma_0 0.25 \\ \mu_2 \text{iid} \sigma_0 0.25 \\ \mu_2 \text{iid} \sigma_0 0.5 \\ \mu_2 \text{iid} \sigma_0 1 \\ \mu_2 \text{iid} \sigma_0 1 \\ \mu_2 \text{iid} \sigma_1 0.25 \\ \mu_2 \text{iid} \sigma_1 0.25 \\ \mu_2 \text{iid} \sigma_1 0.5 \\ \mu_2 \text{iid} \sigma_2 0.25 \\ \mu_2 \text{iid} \sigma_2 0.5 \\ \mu_2 \text{iid} \sigma_3 0.25 \\ \mu_2 \text{iid} \sigma_3 0.5 \\ \mu_3 0.5 \\ \mu_4 0.5 0.5 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 \\ \mu_2 \text{iid} \sigma_3 0.5 \\ \mu_2 \text{iid} \sigma_3 0.5 \\ \mu_2 \text{iid} \sigma_3 0.5 0.5 0.00 0.$	33.4	27.4	93.1	100.0	99.5	21.0	81.7	0.3	1		ma	
$\begin{array}{c} \mu_1 \text{ma} \sigma_3 0.5 \\ \mu_1 \text{ma} \sigma_3 1 \\ \mu_2 \text{iid} \sigma_0 0.25 \\ \mu_2 \text{iid} \sigma_0 0.25 \\ \mu_2 \text{iid} \sigma_0 0.5 \\ \mu_2 \text{iid} \sigma_0 1 \\ \mu_2 \text{iid} \sigma_0 1 \\ \mu_2 \text{iid} \sigma_0 1 \\ \mu_2 \text{iid} \sigma_1 0.25 \\ \mu_2 \text{iid} \sigma_1 0.25 \\ \mu_2 \text{iid} \sigma_1 0.5 \\ \mu_2 \text{iid} \sigma_1 0.5 \\ \mu_2 \text{iid} \sigma_1 0.5 \\ \mu_2 \text{iid} \sigma_1 1 \\ \mu_3 \text{iid} \sigma_2 0.5 \\ \mu_4 \text{iid} \sigma_2 0.25 \\ \mu_5 \text{iid} \sigma_2 0.5 \\ \mu_5 \text{iid} \sigma_2 0.5 \\ \mu_5 \text{iid} \sigma_3 0.25 \\ \mu_5 \text{iid} \sigma_3 0.5 \\ \mu_5 \text{iid} \sigma_3 1 \\ \mu_5 \text{iid} 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 \\ \mu_5 \text{iid} \sigma_3 1 \\ \mu_5 \text{iid} 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 \\ \mu_5 \text{iid} \sigma_3 1 \\ \mu_5 \text{iid} \sigma_3 $	94.9			100.0								
$\begin{array}{c} \mu_1 \\ \mu_2 \\ \text{iid} \\ \sigma_0 \\ 0.25 \\ 0.25 \\ \text{iid} \\ \sigma_0 \\ 0.5$	57.5								0.5			
$\begin{array}{c} \mu_2 & \mathrm{iid} & \sigma_0 & 0.25 \\ \mu_2 & \mathrm{iid} & \sigma_0 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_0 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_0 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_1 & 0.25 \\ \mu_2 & \mathrm{iid} & \sigma_1 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_2 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_2 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_2 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.25 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_3 $	19.5											
$\begin{array}{c} \mu_2 & \mathrm{iid} & \sigma_0 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_0 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_0 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_1 & 0.25 \\ \mu_2 & \mathrm{iid} & \sigma_1 & 0.25 \\ \mu_2 & \mathrm{iid} & \sigma_1 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_1 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_1 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_2 & 0.25 \\ \mu_2 & \mathrm{iid} & \sigma_2 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_2 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_2 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.25 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.5 \\ 100.0 & 100.0 & 99.6 & 100.0 & 100.0 & 100.0 & 100.0 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.5 \\ 100.0 & 100.0 & 99.6 & 100.0 & 100.0 & 100.0 & 100.0 \\ \mu_2 & \mathrm{ar} & \sigma_0 & 0.5 \\ \mu_2 & \mathrm{ar} & \sigma_0 & 0.5 \\ 100.0 & 100.0 & 96.5 & 100.0 & 100.0 & 100.0 & 100.0 \\ \mu_2 & \mathrm{ar} & \sigma_1 & 0.5 \\ 100.0 & 100.0 & 92.1 & 100.0 & 100.0 & 100.0 & 100.0 \\ \mu_2 & \mathrm{ar} & \sigma_1 & 0.5 \\ 100.0 & 100.0 & 93.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ \mu_2 & \mathrm{ar} & \sigma_2 & 0.5 \\ 100.0 & 100.0 & 93.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ \mu_2 & \mathrm{ar} & \sigma_2 & 0.5 \\ 100.0 & 100.0 & 93.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ \mu_2 & \mathrm{ar} & \sigma_3 & 0.25 \\ 100.0 & 100.0 & 97.1 & 100.0 & 100.0 & 100.0 & 100.0 \\ \mu_2 & \mathrm{ar} & \sigma_3 & 0.25 \\ 100.0 & 100.0 & 97.1 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 10$	100.0											
$\begin{array}{c} \mu_2 & \mathrm{iid} & \sigma_0 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_1 & 0.25 \\ \mu_2 & \mathrm{iid} & \sigma_1 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_1 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_1 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_2 & 0.25 \\ \mu_2 & \mathrm{iid} & \sigma_2 & 0.25 \\ \mu_2 & \mathrm{iid} & \sigma_2 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_2 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_2 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.25 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.25 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.5 \\ 100.0 & 100.0 & 99.6 & 100.0 & 100.0 & 100.0 & 100.0 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.5 \\ 100.0 & 100.0 & 96.5 & 100.0 & 100.0 & 100.0 & 100.0 \\ \mu_2 & \mathrm{ar} & \sigma_0 & 0.5 & 100.0 & 100.0 & 96.5 & 100.0 & 100.0 & 100.0 \\ \mu_2 & \mathrm{ar} & \sigma_0 & 1 & 21.4 & 99.4 & 1.6 & 100.0 & 100.0 & 100.0 & 100.0 \\ \mu_2 & \mathrm{ar} & \sigma_1 & 0.5 & 100.0 & 100.0 & 92.1 & 100.0 & 100.0 & 100.0 \\ \mu_2 & \mathrm{ar} & \sigma_1 & 0.5 & 100.0 & 100.0 & 92.1 & 100.0 & 100.0 & 100.0 \\ \mu_2 & \mathrm{ar} & \sigma_2 & 0.5 & 100.0 & 100.0 & 93.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ \mu_2 & \mathrm{ar} & \sigma_2 & 0.5 & 100.0 & 100.0 & 93.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ \mu_2 & \mathrm{ar} & \sigma_3 & 0.25 & 100.0 & 100.0 & 97.1 & 100.0 & 100.0 & 100.0 & 100.0 \\ \mu_2 & \mathrm{ar} & \sigma_3 & 0.25 & 100.0 & 100.0 & 97.1 & 100.0 & 100.0 & 100.0 & 100.0 \\ \mu_2 & \mathrm{ar} & \sigma_3 & 0.5 & 100.0 & 100.0 & 97.1 & 100.0 & 100.0 & 100.0 & 100.0 \\ \mu_2 & \mathrm{ar} & \sigma_3 & 0.5 & 100.0 & 100.0 & 97.1 & 100.0 & 100.0 & 100.0 & 100.0 \\ \mu_2 & \mathrm{ar} &$	100.0		100.0	100.0	100.0	100.0	100.0	100.0	0.5		iid	
$\begin{array}{c} \mu_2 & \mathrm{iid} & \sigma_1 & 0.25 \\ \mu_2 & \mathrm{iid} & \sigma_1 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_1 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_1 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_1 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_2 & 0.25 \\ \mu_2 & \mathrm{iid} & \sigma_2 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.25 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.25 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.5 \\ \mu_2 & \mathrm{iid} &$	100.0											
$\begin{array}{c} \mu_2 & \mathrm{iid} & \sigma_1 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_1 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_1 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_2 & 0.25 \\ \mu_2 & \mathrm{iid} & \sigma_2 & 0.25 \\ \mu_2 & \mathrm{iid} & \sigma_2 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_2 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_2 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.25 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.25 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.5 \\ \mu_2 & iid$	100.0											
$\begin{array}{c} \mu_2 & \mathrm{iid} & \sigma_1 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_2 & 0.25 \\ \mu_2 & \mathrm{iid} & \sigma_2 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_2 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_2 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_2 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.25 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.25 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.5 \\ \mu_3 & 0.5 \\ \mu_$	100.0											
$\begin{array}{c} \mu_2 \ \ \text{iid} \sigma_2 \ \ 0.25 \\ \mu_2 \ \ \text{iid} \sigma_2 \ \ 0.5 \\ \mu_2 \ \ \text{iid} \sigma_2 \ \ 0.5 \\ \mu_2 \ \ \text{iid} \sigma_2 \ \ 1 \\ \mu_3 \ \ \text{iid} \sigma_2 \ \ 1 \\ \mu_4 \ \ \text{iid} \sigma_2 \ \ 1 \\ \mu_5 \ \ \text{iid} \sigma_3 \ \ 0.25 \\ \mu_6 \ \ \text{iid} \sigma_3 \ \ 0.25 \\ \mu_7 \ \ \text{iid} \sigma_3 \ \ 0.25 \\ \mu_8 \ \ \text{iid} \sigma_3 \ \ 0.25 \\ \mu_9 \ \ \text{iid} \sigma_3 \ \ 0.5 \\ \mu_9 \ \ \text{iid} \sigma_3 \ \ 0.5 \\ \mu_9 \ \ \text{iid} \sigma_3 \ \ 0.5 \\ \mu_9 \ \ \text{iid} \sigma_3 \ \ 0.5 \\ \mu_9 \ \ \text{iid} \sigma_3 \ \ 0.5 \\ \mu_9 \ \ \text{iid} \sigma_3 \ \ 0.5 \\ \mu_9 \ \ \text{iid} \sigma_3 \ \ 1 \\ \mu_9 \ \ \text{iid} 0.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \\ \mu_9 \ \ \text{iid} \sigma_3 \ \ 1 \\ \mu_9 \ \ \text{iid} \sigma_3 \ \ 1 \\ \mu_9 \ \ \text{iid} 0.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \\ \mu_9 \ \ \text{iid} \sigma_3 \ \ 1 \\ \mu_9 \ \ \text{iid} 0.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \\ \mu_9 \ \ \text{iid} \sigma_3 \ \ 1 \\ \mu_9 \ \ \text{iid} 0.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \\ \mu_9 \ \ \text{ar} \sigma_0 \ \ 0.5 \\ \mu_0 \ \ \text{o} \ \ 100.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \\ \mu_2 \ \ \text{ar} \sigma_0 \ \ 1 \\ \mu_0 \ \ \text{ar} \sigma_1 \ \ 0.5 \\ \mu_0 \ \ \text{o} \ \ 100.0 \ \ 100.0 \ \ 0.7 \ \ 100.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \\ \mu_2 \ \ \text{ar} \sigma_1 \ \ 0.5 \\ \mu_0 \ \ \text{o} \ \ 100.0 \ \ 100.0 \ \ 0.7 \ \ 100.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \\ \mu_2 \ \ \text{ar} \sigma_2 \ \ 0.5 \\ \mu_0 \ \ \text{ar} \sigma_2 \ \ 0.5 \\ \mu_0 \ \ \text{o} \ \ 100.0 \ \ 100.0 \ \ 99.1 \ \ 100.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \\ \mu_2 \ \ \text{ar} \sigma_2 \ \ 0.5 \\ \mu_00 \ \ \ 100.0 \ \ 100.0 \ \ 97.1 \ \ 100.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \\ \mu_0 \ \ \text{ar} \sigma_3 \ \ 0.25 \\ \mu_00 \ \ \ 100.0 \ \ 100.0 \ \ 97.1 \ \ 100.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \\ \mu_0 \ \ \text{ar} \sigma_3 \ \ 0.25 \\ \mu_00 \ \ \ 100.0$	100.0											
$\begin{array}{c} \mu_2 & \mathrm{iid} & \sigma_2 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_2 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_2 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.25 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.25 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.25 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.25 \\ \mu_2 & \mathrm{iid} & 0.00 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ \mu_3 & 0.00 & 100$	100.0											
$\begin{array}{c} \mu_2 \ \ \text{iid} \sigma_2 \ \ 1 \\ \mu_2 \ \ \text{iid} \sigma_3 \ \ 0.25 \\ \mu_2 \ \ \text{iid} \sigma_3 \ \ 0.25 \\ \mu_2 \ \ \text{iid} \sigma_3 \ \ 0.5 \\ \mu_2 \ \ \text{iid} \sigma_3 \ \ 0.5 \\ \mu_2 \ \ \text{iid} \sigma_3 \ \ 0.5 \\ \mu_2 \ \ \text{iid} \sigma_3 \ \ 0.5 \\ \mu_2 \ \ \text{iid} \sigma_3 \ \ 1 \\ 94.7 \ \ 100.0 \ \ 99.6 \ \ 100.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \\ 99.6 \ \ 100.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \\ 100.0 \ \ 100.0 \ \ 99.6 \ \ 100.0 \ \ 100.0 \\ 100.0 \ \ 99.6 \ \ 100.0 \ \ 100.0 \ \ 99.6 \\ 100.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \\ 100.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \\ 100.0 \ \ \ 100.0 \ \ 100.0 \ \ 100.0 \ \ 100.0 \\ 100.0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	100.0		100.0				100.0		0.5			
$\begin{array}{c} \mu_2 & \mathrm{iid} & \sigma_3 & 0.25 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 1 \\ \mu_2 & \mathrm{ar} & \sigma_0 & 0.25 \\ \mu_2 & \mathrm{ar} & \sigma_0 & 0.5 \\ \mu_2 & \mathrm{ar} & \sigma_0 & 0.5 \\ \mu_2 & \mathrm{ar} & \sigma_0 & 1 \\ \mu_2 & \mathrm{ar} & \sigma_1 & 0.25 \\ \mu_2 & \mathrm{ar} & \sigma_1 & 0.5 \\ \mu_2 & \mathrm{ar} & \sigma_1 & 1 \\ \mu_2 & \mathrm{ar} & \sigma_2 & 0.5 \\ \mu_2 & \mathrm{ar} & \sigma_3 & 0.25 \\ \mu_2 & \mathrm{ar} & \sigma_3 & 0.25 \\ \mu_2 & \mathrm{ar} & \sigma_3 & 0.5 \\ \end{array}$	100.0											
$\begin{array}{c} \mu_2 & \mathrm{iid} & \sigma_3 & 0.5 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 1 \\ \mu_2 & \mathrm{iid} & \sigma_3 & 1 \\ \mu_2 & \mathrm{ar} & \sigma_0 & 0.25 \\ \mu_2 & \mathrm{ar} & \sigma_0 & 0.25 \\ \mu_2 & \mathrm{ar} & \sigma_0 & 0.5 \\ \mu_2 & \mathrm{ar} & \sigma_0 & 1 \\ \mu_2 & \mathrm{ar} & \sigma_0 & 1 \\ \mu_2 & \mathrm{ar} & \sigma_1 & 0.25 \\ \mu_2 & \mathrm{ar} & \sigma_1 & 0.5 \\ \mu_2 & \mathrm{ar} & \sigma_1 & 0.5 \\ \mu_2 & \mathrm{ar} & \sigma_1 & 0.5 \\ \mu_2 & \mathrm{ar} & \sigma_1 & 1 \\ \mu_2 & \mathrm{ar} & \sigma_1 & 1 \\ \mu_2 & \mathrm{ar} & \sigma_2 & 0.5 \\ \mu_2 & \mathrm{ar} & \sigma_2 & 0.5 \\ \mu_2 & \mathrm{ar} & \sigma_2 & 0.5 \\ \mu_2 & \mathrm{ar} & \sigma_2 & 1 \\ \mu_2 & \mathrm{ar} & \sigma_3 & 0.25 \\ \mu_2 & \mathrm{ar} & \sigma_3 & 0.5 \\ \end{array}$ $\begin{array}{c} 100.0 & 100.0 & 99.6 & 100.0 & 100.0 & 100.0 & 100.0 \\ 1.9 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\ 100.0 & 100.0 $	100.0											
$\begin{array}{c} \mu_2 & \text{iid} \sigma_3 1 \\ \mu_2 & \text{ar} \sigma_0 0.25 \\ \mu_2 & \text{ar} \sigma_0 0.25 \\ \end{array} \begin{array}{c} 100.0 100.0 95.3 100.0 100.0 99.6 100.0 \\ \end{array} \begin{array}{c} 100.0 100.0 100.0 100.0 100.0 100.0 \\ \end{array} \begin{array}{c} 100.0 100.0 100.0 100.0 100.0 100.0 \\ \end{array} \begin{array}{c} 100.0 100.0 100.0 100.0 100.0 100.0 \\ \end{array} \begin{array}{c} 100.0 100.0 100.0 \\ \end{array} \begin{array}{c} 100.0 100.0 100.0 100.0 \\ \end{array} \begin{array}{c} 100.0 100.0 100.0 \\ \end{array} \begin{array}{c} 100.0 100.0 100.0 100.0 \\ \end{array} \begin{array}{c} 100.0 100.0 $	100.0											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99.9											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.0											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.0											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99.9											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.0											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.0											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.0											
μ_2 ar σ_2 0.5 100.0 100.0 4.4 100.0 100.0 100.0 100.0 μ_2 ar σ_2 1 5.1 94.4 1.1 100.0 100.0 98.9 100.0 μ_2 ar σ_3 0.25 100.0 100.0 97.1 100.0 100.0 100.0 100.0 μ_2 ar σ_3 0.5 100.0 100.0 103 100.0 100.0 100.0 100.0	100.0											
μ_2 ar σ_2 1 5.1 94.4 1.1 100.0 100.0 98.9 100.0 μ_2 ar σ_3 0.25 100.0 100.0 97.1 100.0 100.0 100.0 100.0 μ_2 ar σ_3 0.5 100.0 100.0 10.3 100.0 100.0 100.0 100.0	100.0											
μ_2 ar σ_3 0.25 100.0 100.0 97.1 100.0 100.0 100.0 100.0 μ_2 ar σ_3 0.5 100.0 100.0 10.3 100.0 100.0 100.0 100.0	100.0											
μ_2 ar σ_3 0.5 100.0 100.0 10.3 100.0 100.0 100.0 100.0	100.0											
	100.0											
	99.8	99.7	98.6	100.0	100.0	10.3	98.6	3.5	1	σ_3	ar	
	100.0											μ_2
μ_2 ma σ_0 0.25 100.0 100.0 94.5 100.0 100.0 100.0 100.0	100.0	100.0	100.0	100.0	100.0	68.1	100.0	100.0	0.25	σ_0	ma	μ_2 μ_2
μ_2 ma σ_0 0.5 100.0 100.0 68.1 100.0 100.0 100.0	100.0	100.0	100.0	100.0	100.0	00.1	100.0	100.0	0.0	00	1110	μ_2

				1							
μ_2	ma	σ_0	1	64.2	100.0	50.2	100.0	100.0	98.8	100.0	99.9
μ_2	ma	σ_1	0.25	100.0	100.0	89.9	100.0	100.0	100.0	100.0	100.0
μ_2	$_{\mathrm{ma}}$	σ_1	0.5	100.0	100.0	44.6	100.0	100.0	100.0	100.0	100.0
μ_2	$_{\mathrm{ma}}$	σ_1	1	39.6	99.8	48.0	100.0	100.0	99.2	99.8	99.9
μ_2	ma	σ_2	0.25	100.0	100.0	89.0	100.0	100.0	100.0	100.0	100.0
μ_2	ma	σ_2	0.5	100.0	100.0	59.5	100.0	100.0	100.0	100.0	100.0
μ_2	ma	σ_2	1	35.4	98.1	52.9	100.0	100.0	99.3	100.0	100.0
μ_2	ma	σ_3	0.25	100.0	100.0	84.2	100.0	100.0	100.0	100.0	100.0
μ_2	ma	σ_3	0.5	100.0	100.0	56.8	100.0	100.0	100.0	100.0	100.0
μ_2	ma	σ_3	1	15.3	99.8	39.6	100.0	100.0	98.9	100.0	99.9
μ_3	iid	σ_0	0.25	100.0	100.0	90.8	100.0	100.0	100.0	100.0	100.0
	iid		0.5	100.0	100.0	90.3	100.0	100.0	100.0	99.1	100.0
μ_3		σ_0									
μ_3	iid	σ_0	1	70.1	100.0	88.3	100.0	100.0	100.0	82.3	89.2
μ_3	iid	σ_1	0.25	100.0	100.0	81.2	100.0	100.0	100.0	100.0	100.0
μ_3	iid	σ_1	0.5	100.0	100.0	86.0	100.0	100.0	100.0	99.1	99.7
μ_3	iid	σ_1	1	44.0	99.8	78.0	100.0	100.0	100.0	65.3	75.4
μ_3	iid	σ_2	0.25	100.0	100.0	96.6	100.0	100.0	100.0	100.0	100.0
μ_3	iid	σ_2	0.5	100.0	100.0	97.4	100.0	100.0	100.0	99.1	100.0
μ_3	iid	σ_2	1	36.2	100.0	90.6	100.0	100.0	100.0	88.6	97.1
μ_3	iid	σ_3	0.25	100.0	100.0	86.7	100.0	100.0	100.0	100.0	100.0
μ_3	iid	σ_3	0.5	100.0	100.0	81.9	100.0	100.0	100.0	96.4	99.4
μ_3	iid	σ_3	1	13.1	99.4	77.5	100.0	100.0	100.0	68.2	77.9
μ_3	ar	σ_0	0.25	100.0	100.0	1.2	100.0	100.0	100.0	100.0	100.0
μ_3	ar	σ_0	0.5	100.0	100.0	0.4	100.0	100.0	100.0	94.8	99.7
μ_3	ar	σ_0	1	0.2	54.9	0.0	100.0	100.0	100.0	60.4	75.3
μ_3	ar	σ_1	0.25	100.0	100.0	1.0	100.0	100.0	100.0	100.0	100.0
μ_3	ar	σ_1	0.5	100.0	100.0	0.4	100.0	100.0	100.0	96.5	98.9
μ_3	ar	σ_1	1	0.1	80.6	0.1	100.0	100.0	100.0	57.8	68.3
μ_3	ar	σ_2	0.25	100.0	100.0	0.9	100.0	100.0	100.0	100.0	100.0
μ_3	ar	σ_2	0.5	100.0	100.0	0.6	100.0	100.0	100.0	97.8	100.0
μ_3	ar	σ_2	1	0.2	76.8	0.6	100.0	100.0	99.9	69.8	87.2
μ_3	ar	σ_3	0.25	100.0	100.0	0.4	100.0	100.0	100.0	100.0	100.0
μ_3	ar	σ_3	0.5	100.0	100.0	0.1	100.0	100.0	100.0	91.5	98.2
μ_3	ar	σ_3	1	0.1	82.1	0.1	100.0	100.0	99.8	46.2	60.1
	ma	σ_0	0.25	100.0	100.0	18.0	100.0	100.0	100.0	100.0	100.0
μ_3			0.5	100.0	100.0	28.3	100.0	100.0		96.6	99.6
μ_3	ma	σ_0							100.0		
μ_3	ma	σ_0	1	1.0	76.0	22.2	100.0	100.0	100.0	65.0	76.3
μ_3	ma	σ_1	0.25	100.0	100.0	25.6	100.0	100.0	100.0	100.0	100.0
μ_3	ma	σ_1	0.5	100.0	100.0	19.3	100.0	100.0	100.0	93.2	98.7
μ_3	ma	σ_1	1	0.1	80.7	19.3	100.0	100.0	100.0	65.0	74.4
μ_3	ma	σ_2	0.25	100.0	100.0	19.3	100.0	100.0	100.0	100.0	100.0
μ_3	ma	σ_2	0.5	100.0	100.0	39.2	100.0	100.0	100.0	98.6	100.0
μ_3	ma	σ_2	1	0.2	86.5	29.9	100.0	100.0	100.0	75.9	89.7
μ_3	ma	σ_3	0.25	100.0	100.0	17.0	100.0	100.0	100.0	100.0	100.0
μ_3	ma	σ_3	0.5	100.0	100.0	26.4	100.0	100.0	100.0	87.5	97.8
μ_3	$_{\mathrm{ma}}$	σ_3	1	0.2	84.9	13.0	100.0	100.0	100.0	58.5	68.7
μ_4	iid	σ_0	0.25	100.0	100.0	96.4	100.0	100.0	100.0	100.0	99.9
μ_4	iid	σ_0	0.5	100.0	100.0	93.2	100.0	100.0	100.0	90.9	83.7
μ_4	iid	σ_0	1	51.8	100.0	73.6	100.0	100.0	99.6	56.7	56.2
μ_4	iid	σ_1	0.25	100.0	100.0	88.5	100.0	100.0	100.0	99.8	99.4
μ_4	iid	σ_1	0.5	100.0	100.0	83.6	100.0	100.0	100.0	87.7	76.0
μ_4	iid	σ_1	1	30.3	100.0	60.2	100.0	100.0	99.5	46.8	40.1
μ_4	iid	σ_2	0.25	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
		_		1							

μ_4	iid	σ_2	0.5	100.0	100.0	97.6	100.0	100.0	100.0	96.7	92.9
μ_4	iid	σ_2	1	25.0	99.9	78.6	100.0	100.0	99.0	62.3	57.9
μ_4	iid	σ_3	0.25	100.0	100.0	90.5	100.0	100.0	100.0	99.7	98.6
μ_4	iid	σ_3	0.5	100.0	100.0	80.0	100.0	100.0	100.0	83.8	73.9
μ_4	iid	σ_3	1	8.6	99.6	62.1	100.0	100.0	99.6	46.1	41.7
μ_4	ar	σ_0	0.25	100.0	100.0	0.6	100.0	100.0	100.0	99.8	99.3
μ_4	ar	σ_0	0.5	100.0	100.0	0.1	100.0	100.0	100.0	84.6	80.2
μ_4	ar	σ_0	1	0.1	65.8	0.7	99.8	98.1	97.4	47.8	49.3
μ_4	ar	σ_1	0.25	100.0	100.0	0.8	100.0	100.0	100.0	97.9	95.6
μ_4	ar	σ_1	0.5	100.0	100.0	5.5	100.0	100.0	100.0	84.6	76.3
μ_4	ar	σ_1	1	0.1	76.2	0.3	100.0	95.8	98.0	35.0	38.8
μ_4	ar	σ_2	0.25	100.0	100.0	1.4	100.0	100.0	100.0	100.0	99.5
μ_4	ar	σ_2	0.5	100.0	100.0	1.0	100.0	100.0	100.0	93.9	89.3
μ_4	ar	σ_2	1	0.0	69.1	0.1	100.0	99.5	96.5	58.0	59.2
μ_4	ar	σ_3	0.25	100.0	100.0	2.3	100.0	100.0	100.0	96.2	92.6
μ_4	ar	σ_3	0.5	100.0	100.0	1.0	100.0	100.0	100.0	80.1	72.4
μ_4	ar	σ_3	1	0.0	78.2	0.3	100.0	96.2	96.7	34.3	35.7
μ_4	ma	σ_0	0.25	100.0	100.0	38.5	100.0	100.0	100.0	99.6	98.9
μ_4	ma	σ_0	0.5	100.0	100.0	33.9	100.0	100.0	100.0	84.7	80.6
μ_4	ma	σ_0	1	0.5	78.4	17.1	100.0	99.6	97.7	46.9	48.1
μ_4	ma	σ_1	0.25	100.0	100.0	31.1	100.0	100.0	100.0	98.7	96.3
μ_4	ma	σ_1	0.5	100.0	100.0	27.3	100.0	100.0	100.0	84.4	77.9
	ma		1	0.5	84.7	14.5	100.0	99.1	98.4	36.2	34.6
μ_4		σ_1	0.25	100.0	100.0	47.8	100.0	100.0	100.0	100.0	99.8
μ_4	ma ma	σ_2	0.25	100.0	100.0	34.5	100.0	100.0	100.0	96.6	94.4
μ_4		σ_2	1	0.0	80.9		100.0	100.0	97.2	48.4	52.0
μ_4	ma	σ_2	0.25		100.0	17.2 27.7	100.0	100.0	100.0		
μ_4	ma	σ_3		100.0	100.0	21.0	100.0	100.0	100.0	99.0 74.3	95.7 70.7
μ_4	ma	σ_3	0.5								
μ_4	ma ::.J	σ_3	1	0.0	81.5	13.5	100.0	98.9	97.1	29.2	28.4
μ_5	iid	σ_0	0.25	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_0	0.5	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_0	1	100.0	100.0	98.9	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_1	0.25	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_1	0.5	100.0	100.0	99.4	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_1	1	99.2	100.0	96.6	100.0	100.0	100.0	100.0	99.9
μ_5	iid	σ_2	0.25	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_2	0.5	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_2	1	98.8	100.0	99.8	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_3	0.25	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_3	0.5	100.0	100.0	99.1	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_3	1	93.6	100.0	96.0	100.0	100.0	100.0	100.0	99.7
μ_5	ar	σ_0	0.25	100.0	100.0	43.8	100.0	100.0	100.0	100.0	100.0
μ_5	ar	σ_0	0.5	100.0	100.0	3.8	100.0	100.0	100.0	100.0	100.0
μ_5	ar	σ_0	1	25.5	99.3	0.5	100.0	100.0	100.0	99.9	99.5
μ_5	ar	σ_1	0.25	100.0	100.0	21.3	100.0	100.0	100.0	100.0	100.0
μ_5	ar	σ_1	0.5	100.0	100.0	1.8	100.0	100.0	100.0	100.0	100.0
μ_5	ar	σ_1	1	10.6	99.5	0.9	100.0	100.0	100.0	100.0	99.4
μ_5	ar	σ_2	0.25	100.0	100.0	13.9	100.0	100.0	100.0	100.0	100.0
μ_5	ar	σ_2	0.5	100.0	100.0	3.0	100.0	100.0	100.0	100.0	100.0
μ_5	ar	σ_2	1	6.5	96.2	1.7	100.0	100.0	100.0	100.0	100.0
μ_5	ar	σ_3	0.25	100.0	100.0	15.1	100.0	100.0	100.0	100.0	100.0
μ_5	ar	σ_3	0.5	100.0	100.0	7.1	100.0	100.0	100.0	100.0	100.0
μ_5	ar	σ_3	1	2.8	99.4	0.8	100.0	100.0	100.0	99.8	99.5

μ_5	ma	σ_0	0.25	100.0	100.0	68.5	100.0	100.0	100.0	100.0	100.0
μ_5	ma	σ_0	0.5	100.0	100.0	52.3	100.0	100.0	100.0	100.0	100.0
μ_5	ma	σ_0	1	60.0	99.8	35.8	100.0	100.0	100.0	100.0	100.0
μ_5	ma	σ_1	0.25	100.0	100.0	73.0	100.0	100.0	100.0	100.0	100.0
μ_5	ma	σ_1	0.5	100.0	100.0	47.9	100.0	100.0	100.0	100.0	100.0
μ_5	$_{\mathrm{ma}}$	σ_1	1	36.2	100.0	44.3	100.0	100.0	100.0	99.9	99.6
μ_5	$_{\mathrm{ma}}$	σ_2	0.25	100.0	100.0	62.7	100.0	100.0	100.0	100.0	100.0
μ_5	ma	σ_2	0.5	100.0	100.0	59.7	100.0	100.0	100.0	100.0	100.0
μ_5	ma	σ_2	1	29.4	96.9	36.2	100.0	100.0	100.0	100.0	100.0
μ_5	$_{\mathrm{ma}}$	σ_3	0.25	100.0	100.0	65.5	100.0	100.0	100.0	100.0	100.0
μ_5	$_{\mathrm{ma}}$	σ_3	0.5	100.0	100.0	54.2	100.0	100.0	100.0	100.0	100.0
μ_5	ma	σ_3	1	14.1	99.5	33.9	100.0	100.0	100.0	99.9	98.7
μ_6	iid	σ_0	0.25	100.0	100.0	90.5	100.0	100.0	100.0	100.0	100.0
μ_6	iid	σ_0	0.5	100.0	100.0	89.6	100.0	100.0	100.0	99.5	98.3
μ_6	iid	σ_0	1	71.2	100.0	86.3	100.0	100.0	100.0	90.4	83.1
μ_6	iid	σ_1	0.25	100.0	100.0	80.3	100.0	100.0	100.0	100.0	100.0
μ_6	iid	σ_1	0.5	100.0	100.0	82.9	100.0	100.0	100.0	99.0	96.6
μ_6	iid	σ_1	1	45.8	99.6	81.8	100.0	100.0	100.0	85.5	75.8
μ_6	iid	σ_2	0.25	100.0	100.0	95.5	100.0	100.0	100.0	100.0	100.0
μ_6	iid	σ_2	0.5	100.0	100.0	97.5	100.0	100.0	100.0	100.0	100.0
μ_6	iid	σ_2	1	36.7	99.9	90.9	100.0	100.0	100.0	94.4	90.3
μ_6	iid	σ_3	0.25	100.0	100.0	80.1	100.0	100.0	100.0	100.0	100.0
μ_6	iid	σ_3	0.5	100.0	100.0	83.4	100.0	100.0	100.0	99.7	96.9
μ_6	iid	σ_3	1	12.3	99.5	74.1	100.0	100.0	100.0	79.0	69.3
μ_6	ar	σ_0	0.25	100.0	100.0	0.7	100.0	100.0	100.0	100.0	100.0
μ_6	ar	σ_0	0.5	100.0	100.0	0.0	100.0	100.0	100.0	96.8	94.6
μ_6	ar	σ_0	1	0.1	68.2	0.9	100.0	100.0	100.0	81.1	76.3
μ_6	ar	σ_1	0.25	100.0	100.0	0.4	100.0	100.0	100.0	100.0	100.0
μ_6	ar	σ_1	0.5	100.0	100.0	0.6	100.0	100.0	100.0	98.0	95.0
μ_6	ar	σ_1	1	0.0	76.7	0.2	100.0	100.0	100.0	78.8	72.1
μ_6	ar	σ_2	0.25	100.0	100.0	1.7	100.0	100.0	100.0	100.0	100.0
μ_6	ar	σ_2	0.5	100.0	100.0	0.6	100.0	100.0	100.0	100.0	99.6
μ_6	ar	σ_2	1	0.0	75.8	0.3	100.0	100.0	100.0	95.0	91.1
μ_6	ar	σ_3	0.25	100.0	100.0	0.2	100.0	100.0	100.0	100.0	99.9
μ_6	ar	σ_3	0.5	100.0	100.0	1.0	100.0	100.0	100.0	97.4	92.5
μ_6	ar	σ_3	1	0.0	82.6	0.3	100.0	100.0	100.0	73.5	66.7
μ_6	ma	σ_0	0.25	100.0	100.0	22.5	100.0	100.0	100.0	100.0	100.0
μ_6	ma	σ_0	0.5	100.0	100.0	22.9	100.0	100.0	100.0	98.4	96.4
μ_6	ma		1	1.1	77.2		100.0			80.1	76.1
μ_6	ma		0.25	100.0	100.0	13.1	100.0	100.0	100.0	100.0	100.0
μ_6	ma	σ_1	0.5	100.0	100.0	22.9	100.0	100.0	100.0	98.4	96.1
μ_6	ma	σ_1	1	0.5	86.0	22.0	100.0	100.0	100.0	70.5	65.1
μ_6	ma	σ_2	0.25	100.0	100.0	30.3	100.0	100.0	100.0	100.0	100.0
μ_6	ma	σ_2	0.5	100.0	100.0	50.7	100.0	100.0	100.0	99.8	99.5
μ_6	ma	σ_2	1	0.6	85.2	31.6	100.0	100.0	100.0	87.7	82.5
μ_6	ma	σ_3	0.25	100.0	100.0	11.8	100.0	100.0	100.0	100.0	100.0
μ_6	ma	σ_3	0.5	100.0	100.0	18.4	100.0	100.0	100.0	96.7	94.3
μ_6	ma	σ_3	1	0.0	86.6	28.0	100.0	100.0	100.0	74.3	63.8
μ6	1110	03	-	1 0.0	00.0	20.0	100.0	100.0	100.0	14.0	55.5

1.4 Empirical rejection rates under the alternative, for n=1000

	e	σ	std	R1	R2	SN	ВТ	LRV	(8)	(9) (v1)	(9) (v2)
$\frac{\mu}{}$	ε	σ									
μ_1	iid	σ_0	0.25	100.0	100.0	100.0	100.0	100.0	100.0	99.5	99.9
μ_1	iid	σ_0	0.5	100.0	100.0	99.8	100.0	100.0	100.0	83.4	93.2
μ_1	iid	σ_0	1	97.0	100.0	95.2	100.0	100.0	99.9	53.0	61.9
μ_1	iid	σ_1	0.25	100.0	100.0	99.7	100.0	100.0	100.0	99.4	100.0
μ_1	iid	σ_1	0.5	100.0	100.0	99.3	100.0	100.0	100.0	81.0	91.4
μ_1	iid	σ_1	1	87.0	100.0	87.8	100.0	100.0	99.9	44.3	58.9
μ_1	iid	σ_2	0.25	100.0	100.0	100.0	100.0	100.0	100.0	99.9	100.0
μ_1	iid	σ_2	0.5	100.0	100.0	99.9	100.0	100.0	100.0	90.0	97.5
μ_1	iid	σ_2	1	77.1	100.0	97.2	100.0	100.0	99.9	64.5	75.6
μ_1	iid	σ_3	0.25	100.0	100.0	99.2	100.0	100.0	100.0	98.6	100.0
μ_1	iid	σ_3	0.5	100.0	100.0	98.6	100.0	100.0	100.0	80.8	91.7
μ_1	iid	σ_3	1	41.1	100.0	84.7	100.0	100.0	100.0	38.5	50.0
μ_1	ar	σ_0	0.25	100.0	100.0	0.2	100.0	100.0	100.0	97.4	100.0
μ_1	ar	σ_0	0.5	100.0	100.0	0.0	100.0	100.0	100.0	73.0	89.2
μ_1	ar	σ_0	1	0.0	46.8	0.0	100.0	99.9	99.1	33.7	48.8
μ_1	ar	σ_1	0.25	100.0	100.0	0.4	100.0	100.0	100.0	94.5	99.6
μ_1	ar	σ_1	0.5	100.0	100.0	0.0	100.0	100.0	100.0	65.6	85.1
μ_1	ar	σ_1	1	0.0	75.1	0.0	100.0	99.8	98.6	29.7	45.5
μ_1	ar	σ_2	0.25	100.0	100.0	0.3	100.0	100.0	100.0	99.3	100.0
μ_1	ar	σ_2	0.5	100.0	100.0	0.0	100.0	100.0	100.0	81.3	94.3
μ_1	ar	σ_2	1	0.0	62.5	0.1	100.0	100.0	97.3 100.0	37.4	52.2
μ_1	ar	σ_3	0.25	100.0	100.0	0.5	100.0	100.0		93.3	99.5
μ_1	ar	σ_3	0.5	100.0	100.0	0.0	100.0	100.0	100.0	65.8	84.3
μ_1	ar	σ_3	1	0.0	78.7	0.0	99.5	99.7	98.4	25.1	41.0
μ_1	ma	σ_0	0.25	100.0	100.0	54.3	100.0	100.0	100.0	95.9	99.7
μ_1	ma	σ_0	0.5	1.5	100.0 76.4	39.9 30.9	100.0 100.0	100.0 100.0	100.0 99.5	76.5 42.6	89.8
μ_1	ma	σ_0	1	100.0	100.0	45.0	100.0	100.0	100.0	96.0	54.1 99.5
μ_1	ma	σ_1	0.25	100.0	100.0	43.1	100.0	100.0	100.0	64.8	82.8
μ_1	ma ma	σ_1	0.5 1	0.6	88.0	22.8	100.0	100.0	99.4	33.7	46.6
μ_1	ma	σ_1 σ_2	0.25	100.0	100.0	51.8	100.0	100.0	100.0	99.7	100.0
μ_1 μ_1	ma	σ_2	0.5	100.0	100.0	50.4	100.0	100.0	100.0	90.8	98.0
μ_1	ma	σ_2	1	0.0	84.3	33.9	100.0	100.0	99.5	42.2	53.2
μ_1	ma	σ_3	0.25	100.0	100.0	38.4	100.0	100.0	100.0	94.9	99.5
μ_1	ma	σ_3	0.5	100.0	100.0	52.2	100.0	100.0	100.0	71.1	87.5
μ_1	ma	σ_3	1	0.1	84.6	16.8	100.0	100.0	99.7	27.8	36.4
μ_2	iid	σ_0	0.25	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_2	iid	σ_0	0.5	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_2	iid	σ_0	1	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_2	iid	σ_1	0.25	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_2	iid	σ_1	0.5	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_2	iid	σ_1	1	100.0	100.0	99.7	100.0	100.0	100.0	100.0	100.0
μ_2	iid	σ_2	0.25	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_2	iid	σ_2	0.5	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_2	iid	σ_2	1	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_2	iid	σ_3	0.25	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_2	iid	σ_3	0.5	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_2	iid	σ_3	1	99.5	100.0	99.5	100.0	100.0	100.0	100.0	100.0
μ_2	ar	σ_0	0.25	100.0	100.0	99.3	100.0	100.0	100.0	100.0	100.0
μ_2	ar	σ_0	0.5	100.0	100.0	0.4	100.0	100.0	100.0	100.0	100.0

μ_2	ar	σ_0	1	25.3	99.7	0.0	100.0	100.0	100.0	100.0	100.0
μ_2	ar	σ_1	0.25	100.0	100.0	92.7	100.0	100.0	100.0	100.0	100.0
μ_2	ar	σ_1	0.5	100.0	100.0	0.6	100.0	100.0	100.0	100.0	100.0
μ_2	ar	σ_1	1	6.3	99.9	0.0	100.0	100.0	100.0	100.0	100.0
μ_2	ar	σ_2	0.25	100.0	100.0	96.8	100.0	100.0	100.0	100.0	100.0
μ_2	ar	σ_2	0.5	100.0	100.0	1.1	100.0	100.0	100.0	100.0	100.0
μ_2	ar	σ_2	1	3.5	94.2	0.0	100.0	100.0	100.0	100.0	100.0
μ_2	ar	σ_3	0.25	100.0	100.0	51.1	100.0	100.0	100.0	100.0	100.0
μ_2	ar	σ_3	0.5	100.0	100.0	6.6	100.0	100.0	100.0	100.0	100.0
μ_2	ar	σ_3	1	1.7	99.4	0.7	100.0	100.0	99.7	100.0	100.0
μ_2	$_{\mathrm{ma}}$	σ_0	0.25	100.0	100.0	98.5	100.0	100.0	100.0	100.0	100.0
μ_2	$_{\mathrm{ma}}$	σ_0	0.5	100.0	100.0	60.5	100.0	100.0	100.0	100.0	100.0
μ_2	$_{\mathrm{ma}}$	σ_0	1	80.3	99.9	53.1	100.0	100.0	100.0	100.0	100.0
μ_2	ma	σ_1	0.25	100.0	100.0	88.7	100.0	100.0	100.0	100.0	100.0
μ_2	$_{\mathrm{ma}}$	σ_1	0.5	100.0	100.0	51.0	100.0	100.0	100.0	100.0	100.0
μ_2	$_{\mathrm{ma}}$	σ_1	1	58.6	100.0	55.5	100.0	100.0	100.0	100.0	100.0
μ_2	$_{\mathrm{ma}}$	σ_2	0.25	100.0	100.0	82.8	100.0	100.0	100.0	100.0	100.0
μ_2	ma	σ_2	0.5	100.0	100.0	51.2	100.0	100.0	100.0	100.0	100.0
μ_2	ma	σ_2	1	44.2	97.8	39.1	100.0	100.0	100.0	100.0	100.0
μ_2	ma	σ_3	0.25	100.0	100.0	77.8	100.0	100.0	100.0	100.0	100.0
μ_2	ma	σ_3	0.5	100.0	100.0	48.1	100.0	100.0	100.0	100.0	100.0
μ_2	ma	σ_3	1	25.1	100.0	44.4	100.0	100.0	100.0	99.8	100.0
μ_3	iid	σ_0	0.25	100.0	100.0	99.8	100.0	100.0	100.0	100.0	100.0
μ_3	iid	σ_0	0.5	100.0	100.0	99.4	100.0	100.0	100.0	99.8	100.0
μ_3	iid	σ_0	1	98.5	100.0	97.9	100.0	100.0	100.0	88.8	98.8
μ_3	iid	σ_1	0.25	100.0	100.0	98.5	100.0	100.0	100.0	100.0	100.0
μ_3	iid	σ_1	0.5	100.0	100.0	97.5	100.0	100.0	100.0	99.4	100.0
μ_3	iid	σ_1	1	87.5	100.0	96.1	100.0	100.0	100.0	82.8	94.8
μ_3	iid	σ_2	0.25	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_3	iid	σ_2	0.5	100.0	100.0	99.9	100.0	100.0	100.0	99.9	100.0
μ_3	iid	σ_2	1	80.1	100.0	99.6	100.0	100.0	100.0	95.5	99.9
μ_3	iid	σ_3	0.25	100.0	100.0	98.0	100.0	100.0	100.0	100.0	100.0
μ_3	iid	σ_3	0.5	100.0	100.0	96.9	100.0	100.0	100.0	99.6	100.0
μ_3	iid	σ_3	1	45.8	100.0	95.0	100.0	100.0	100.0	83.1	96.4
μ_3	ar	σ_0	0.25	100.0	100.0	0.1	100.0	100.0	100.0	100.0	100.0
μ_3	ar	σ_0	0.5	100.0	100.0	0.0	100.0	100.0	100.0	98.0	99.9
μ_3	ar	σ_0	1	0.0	44.8	0.0	100.0	100.0	100.0	76.1	92.9
μ_3	ar	σ_1	0.25	100.0	100.0	0.4	100.0	100.0	100.0	100.0	100.0
μ_3	ar	σ_1	0.5	100.0	100.0	0.0	100.0	100.0	100.0	96.5	100.0
μ_3	ar	σ_1	1	0.0	80.4	0.0	100.0	100.0	100.0	75.7	93.5
μ_3	ar	σ_2	0.25	100.0	100.0	0.1	100.0	100.0	100.0	100.0	100.0
μ_3	ar	σ_2	0.5	100.0	100.0	0.3	100.0	100.0	100.0	99.9	100.0
μ_3	ar	σ_2	1	0.0	77.7	0.1	100.0	100.0	100.0	82.0	97.4
μ_3	ar	σ_3	0.25	100.0	100.0	0.0	100.0	100.0	100.0	100.0	100.0
μ_3	ar	σ_3	0.5	100.0	100.0	0.0	100.0	100.0	100.0	90.5	99.8
μ_3	ar	σ_3	1	0.0	77.7	0.0	100.0	100.0	100.0	68.8	90.0
μ_3	ma	σ_0	0.25	100.0	100.0	29.4	100.0	100.0	100.0	100.0	100.0
μ_3	ma	σ_0	0.5	100.0	100.0	39.3	100.0	100.0	100.0	99.4	100.0
μ_3	ma	σ_0	1	3.4	71.9	28.8	100.0	100.0	100.0	76.8	93.2
μ_3	ma	σ_1	0.25	100.0	100.0	25.8	100.0	100.0	100.0	100.0	100.0
μ_3	ma	σ_1	0.5	100.0	100.0	42.2	100.0	100.0	100.0	98.7	100.0
μ_3	ma	σ_1	1	0.7	87.8	25.4	100.0	100.0	100.0	68.5	91.8
μ_3	ma	σ_2	0.25	100.0	100.0	34.3	100.0	100.0	100.0	100.0	100.0

				l							
μ_3	ma	σ_2	0.5	100.0	100.0	45.0	100.0	100.0	100.0	99.4	100.0
μ_3	ma	σ_2	1	0.2	90.5	36.9	100.0	100.0	100.0	89.4	98.8
μ_3	ma	σ_3	0.25	100.0	100.0	34.5	100.0	100.0	100.0	100.0	100.0
μ_3	ma	σ_3	0.5	100.0	100.0	31.9	100.0	100.0	100.0	97.8	100.0
μ_3	ma	σ_3	1	0.1	89.4	31.0	100.0	100.0	100.0	68.1	89.0
μ_4	iid	σ_0	0.25	100.0	100.0	99.9	100.0	100.0	100.0	100.0	100.0
μ_4	iid	σ_0	0.5	100.0	100.0	99.8	100.0	100.0	100.0	99.4	99.6
μ_4	iid	σ_0	1	96.0	100.0	96.0	100.0	100.0	100.0	79.2	81.1
μ_4	iid	σ_1	0.25	100.0	100.0	99.9	100.0	100.0	100.0	100.0	100.0
μ_4	iid	σ_1	0.5	100.0	100.0	99.3	100.0	100.0	100.0	98.8	98.1
μ_4	iid	σ_1	1	83.2	100.0	84.8	100.0	100.0	100.0	74.8	76.5
μ_4	iid	σ_2	0.25	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_4	iid	σ_2	0.5	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_4	iid	σ_2	1	80.8	100.0	96.0	100.0	100.0	100.0	93.2	92.5
μ_4	iid	σ_3	0.25	100.0	100.0	99.9	100.0	100.0	100.0	100.0	100.0
μ_4	iid	σ_3	0.5	100.0	100.0	98.1	100.0	100.0	100.0	97.3	98.2
μ_4	iid	σ_3	1	37.9	100.0	89.3	100.0	100.0	100.0	67.1	71.5
μ_4	ar	σ_0	0.25	100.0	100.0	0.1	100.0	100.0	100.0	100.0	100.0
μ_4	ar	σ_0	0.5	100.0	100.0	0.0	100.0	100.0	100.0	97.1	99.1
μ_4	ar	σ_0	1	0.0	56.4	0.0	100.0	100.0	99.8	57.2	67.5
μ_4	ar	σ_1	0.25	100.0	100.0	0.1	100.0	100.0	100.0	99.9	100.0
μ_4	ar	σ_1	0.5	100.0	100.0	0.1	100.0	100.0	100.0	96.8	99.0
μ_4	ar	σ_1	1	0.0	73.0	0.0	100.0	99.7	99.7	49.3	64.0
μ_4	ar	σ_2	0.25	100.0	100.0	0.0	100.0	100.0	100.0	100.0	100.0
μ_4	ar	σ_2	0.5	100.0	100.0	0.0	100.0	100.0	100.0	99.3	99.9
μ_4	ar	σ_2	1	0.0	71.5	0.0	100.0	100.0	99.2	74.3	79.8
μ_4	ar	σ_3	0.25	100.0	100.0	0.4	100.0	100.0	100.0	100.0	100.0
μ_4	ar	σ_3	0.5	100.0	100.0	0.4	100.0	100.0	100.0	91.3	95.1
μ_4	ar	σ_3	1	0.0	76.9	0.1	100.0	100.0	99.6	48.1	59.2
μ_4	ma	σ_0	0.25	100.0	100.0	46.4	100.0	100.0	100.0	100.0	100.0
	ma	σ_0	0.5	100.0	100.0	46.1	100.0	100.0	100.0	98.0	98.7
μ_4	ma		1	2.2	78.0	25.0	100.0	100.0	100.0	70.2	74.3
μ_4		σ_0	0.25	100.0	100.0	42.8	100.0	100.0	100.0	100.0	100.0
μ_4	ma	σ_1	0.25	100.0	100.0	48.5	100.0	100.0	100.0	95.4	96.3
μ_4	ma	σ_1		0.6	92.7	35.5	100.0	100.0	100.0	50.4	57.6
μ_4	ma	σ_1	1								
μ_4	ma	σ_2	0.25	100.0	100.0	56.2	100.0	100.0	100.0	100.0	100.0
μ_4	ma	σ_2	0.5	100.0	100.0	46.8	100.0	100.0	100.0	99.6	99.9
μ_4	ma	σ_2	1	0.6	89.6	42.5	100.0	100.0	99.6	78.4	81.1
μ_4	ma	σ_3	0.25	100.0	100.0	36.7	100.0	100.0	100.0	100.0	100.0
μ_4	ma	σ_3	0.5	100.0	100.0	29.4	100.0	100.0	100.0	94.4	96.3
μ_4	ma	σ_3	1	0.0	89.9	26.3	100.0	99.9	99.8	49.1	60.8
μ_5	iid	σ_0	0.25	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_0	0.5	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_0	1	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_1	0.25	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_1	0.5	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_1	1	100.0	100.0	99.9	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_2	0.25	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_2	0.5	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_2	1	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_3	0.25	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_3	0.5	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
μ_5	iid	σ_3	1	99.1	100.0	99.5	100.0	100.0	100.0	100.0	100.0

μ	5	ar	σ_0	0.25	100.0	100.0	6.6	100.0	100.0	100.0	100.0	100.0
μ	5	ar	σ_0	0.5	100.0	100.0	0.1	100.0	100.0	100.0	100.0	100.0
μ	5	ar	σ_0	1	22.8	98.9	0.2	100.0	100.0	100.0	100.0	100.0
μ	5	ar	σ_1	0.25	100.0	100.0	19.1	100.0	100.0	100.0	100.0	100.0
μ	5	ar	σ_1	0.5	100.0	100.0	0.9	100.0	100.0	100.0	100.0	100.0
μ	5	ar	σ_1	1	3.7	99.2	0.1	100.0	100.0	100.0	100.0	100.0
μ	5	ar	σ_2	0.25	100.0	100.0	25.2	100.0	100.0	100.0	100.0	100.0
μ	5	ar	σ_2	0.5	100.0	100.0	0.6	100.0	100.0	100.0	100.0	100.0
μ	5	ar	σ_2	1	1.8	82.8	0.0	100.0	100.0	100.0	100.0	100.0
μ	5	ar	σ_3	0.25	100.0	100.0	9.1	100.0	100.0	100.0	100.0	100.0
μ	5	ar	σ_3	0.5	100.0	100.0	1.0	100.0	100.0	100.0	100.0	100.0
μ	5	ar	σ_3	1	1.1	98.4	0.3	100.0	100.0	100.0	100.0	100.0
μ	5	ma	σ_0	0.25	100.0	100.0	78.5	100.0	100.0	100.0	100.0	100.0
μ	5	ma	σ_0	0.5	100.0	100.0	63.4	100.0	100.0	100.0	100.0	100.0
μ	5	ma	σ_0	1	82.9	100.0	48.8	100.0	100.0	100.0	100.0	100.0
μ		ma	σ_1	0.25	100.0	100.0	73.9	100.0	100.0	100.0	100.0	100.0
μ		ma	σ_1	0.5	100.0	100.0	57.7	100.0	100.0	100.0	100.0	100.0
μ		ma	σ_1	1	56.5	100.0	56.4	100.0	100.0	100.0	100.0	100.0
μ		ma	σ_2	0.25	100.0	100.0	66.2	100.0	100.0	100.0	100.0	100.0
μ		ma	σ_2	0.5	100.0	100.0	53.4	100.0	100.0	100.0	100.0	100.0
μ		ma	σ_2	1	48.4	98.2	50.7	100.0	100.0	100.0	100.0	100.0
μ		ma	σ_3	0.25	100.0	100.0	72.8	100.0	100.0	100.0	100.0	100.0
μ		ma	σ_3	0.5	100.0	100.0	53.3	100.0	100.0	100.0	100.0	100.0
μ		ma	σ_3	1	24.3	99.9	46.4	100.0	100.0	100.0	100.0	100.0
μ		iid	σ_0	0.25	100.0	100.0	99.8	100.0	100.0	100.0	100.0	100.0
μ		iid	σ_0	0.5	100.0	100.0	99.2	100.0	100.0	100.0	100.0	100.0
μ		iid	σ_0	1	98.0	100.0	98.3	100.0	100.0	100.0	97.0	99.0
μ		iid	σ_1	0.25	100.0	100.0	98.8	100.0	100.0	100.0	100.0	100.0
μ		iid	σ_1	0.5	100.0	100.0	97.5	100.0	100.0	100.0	100.0	100.0
μ		iid	σ_1	1	85.0	100.0	95.6	100.0	100.0	100.0	95.4	99.4
μ		iid	σ_2	0.25	100.0	100.0	99.9	100.0	100.0	100.0	100.0	100.0
		iid	σ_2	0.5	100.0	100.0	99.9	100.0	100.0	100.0	100.0	100.0
μ		iid	σ_2	1	81.2	100.0	98.3	100.0	100.0	100.0	99.6	99.8
μ		iid	σ_3	0.25	100.0	100.0	98.1	100.0	100.0	100.0	100.0	100.0
μ		iid	σ_3	0.25	100.0	100.0	97.7	100.0	100.0	100.0	100.0	100.0
μ		iid	σ_3	1	41.5	100.0	92.4	100.0	100.0	100.0	96.6	98.9
μ		ar		0.25	100.0	100.0	0.1	100.0	100.0	100.0	100.0	100.0
μ		ar	σ_0 σ_0	0.25	100.0	100.0	0.0	100.0	100.0	100.0	99.9	100.0
μ		ar		1	0.1	51.2		100.0			92.7	98.6
μ			σ_0	0.25	100.0	100.0	0.0	100.0	100.0	100.0	100.0	100.0
μ		ar	σ_1	0.5	100.0	100.0	0.1	100.0	100.0	100.0	99.9	100.0
μ		ar	σ_1			73.9	0.0	100.0	100.0	100.0	90.3	97.8
μ		ar	σ_1	1	100.0	100.0	0.0	100.0	100.0	100.0	100.0	
μ		ar	σ_2	0.25								100.0
μ		ar	σ_2	0.5	100.0	100.0	0.3	100.0	100.0	100.0	100.0	100.0
μ		ar	σ_2	1	0.0	74.5	0.0	100.0	100.0	100.0	98.5	100.0
μ		ar	σ_3	0.25	100.0	100.0	0.5	100.0	100.0	100.0	100.0	100.0
μ		ar	σ_3	0.5	100.0	100.0	0.1	100.0	100.0	100.0	99.8	100.0
μ		ar	σ_3	1	0.1	76.6	0.0	100.0	100.0	100.0	87.9	97.1
μ		ma	σ_0	0.25	100.0	100.0	31.3	100.0	100.0	100.0	100.0	100.0
μ		ma	σ_0	0.5	100.0	100.0	43.8	100.0	100.0	100.0	100.0	100.0
μ		ma	σ_0	1	3.0	68.7	23.1	100.0	100.0	100.0	94.0	98.7
μ		ma	σ_1	0.25	100.0	100.0	33.9	100.0	100.0	100.0	100.0	100.0
μ	6	ma	σ_1	0.5	100.0	100.0	31.4	100.0	100.0	100.0	100.0	100.0

μ_6	ma	σ_1	1	0.7	88.0	28.7	100.0	100.0	100.0	90.3	97.1
μ_6	$_{\mathrm{ma}}$	σ_2	0.25	100.0	100.0	29.7	100.0	100.0	100.0	100.0	100.0
μ_6	$_{\mathrm{ma}}$	σ_2	0.5	100.0	100.0	30.6	100.0	100.0	100.0	100.0	100.0
μ_6	$_{\mathrm{ma}}$	σ_2	1	0.5	90.1	42.4	100.0	100.0	100.0	98.0	99.7
μ_6	$_{\mathrm{ma}}$	σ_3	0.25	100.0	100.0	33.3	100.0	100.0	100.0	100.0	100.0
μ_6	ma	σ_3	0.5	100.0	100.0	35.4	100.0	100.0	100.0	100.0	100.0
μ_6	ma	σ_3	1	0.0	87.9	34.0	100.0	100.0	100.0	90.0	97.3

2 Empirical rejection rates under the null hypothesis

		_	-4.1	D.	Do	CNT	DŒ	I DV	(0)	(0) (1)	(0) (-0)
n 	ε	σ	std	R1	R2	SN	ВТ	LRV	(8)	(9) (v1)	(9) (v2)
100	iid	σ_0	0.25	91.8	97.8	8.5	39.7	4.4	5.8	4.3	5.4
100	iid	σ_0	0.5	39.4	69.7	15.4	40.3	5.7	5.9	3.6	5.5
100	iid	σ_0	1	0.0	14.2	15.7	43.2	4.3	5.4	5.6	5.6
100	iid	σ_1	0.25	90.4	97.9	10.9	30.3	8.4	5.5	1.4	2.1
100	iid	σ_1	0.5	42.7	68.9	8.6	28.1	7.3	4.6	1.4	2.1
100	iid	σ_1	1	0.4	16.0	10.9	27.8	7.0	6.0	1.3	1.7
100	iid	σ_2	0.25	93.8	98.5	11.1	50.7	4.9	4.5	2.8	4.8
100	iid	σ_2	0.5	49.3	75.3	18.1	50.1	4.4	5.3	3.7	4.4
100	iid	σ_2	1	0.6	24.8	10.5	53.5	3.7	5.0	2.6	4.4
100	iid	σ_3	0.25	90.5	97.8	16.0	27.0	8.8	5.9	1.6	2.7
100	iid	σ_3	0.5	40.1	65.8	15.3	26.7	8.4	5.1	1.8	2.9
100	iid	σ_3	1	0.4	21.5	10.8	27.0	8.8	6.0	1.0	3.2
100	ar	σ_0	0.25	100.0	100.0	0.4	51.7	27.0	38.3	10.4	12.2
100	ar	σ_0	0.5	93.3	97.7	0.5	55.6	26.8	34.3	11.0	13.3
100	ar	σ_0	1	7.5	63.1	0.3	54.8	25.0	34.6	9.5	11.7
100	ar	σ_1	0.25	100.0	100.0	2.7	42.7	31.8	34.2	3.7	6.6
100	ar	σ_1	0.5	93.6	98.7	0.6	42.1	31.1	30.2	2.7	4.5
100	ar	σ_1	1	4.2	63.7	2.3	42.4	30.3	35.3	3.8	5.2
100	ar	σ_2	0.25	100.0	100.0	0.6	64.6	24.0	33.4	9.9	11.8
100	ar	σ_2	0.5	98.4	99.5	2.8	66.0	23.3	35.8	10.3	13.0
100	ar	σ_2	1	5.8	73.4	1.5	64.1	22.2	37.7	9.6	12.9
100	ar	σ_3	0.25	99.3	99.9	2.4	39.6	31.1	31.4	3.6	5.4
100	ar	σ_3	0.5	89.2	96.0	1.1	38.8	35.2	31.5	2.2	3.6
100	ar	σ_3	1	4.7	77.0	0.5	42.8	33.5	37.0	2.9	4.7
100	ma	σ_0	0.25	96.7	99.6	4.3	42.7	10.1	13.6	5.6	7.3
100	ma	σ_0	0.5	60.0	83.7	8.2	44.7	10.2	13.2	7.0	9.0
100	ma	σ_0	1	1.3	35.9	6.5	44.7	8.9	17.7	4.4	6.6
100	ma	σ_1	0.25	97.0	98.6	6.6	31.7	12.0	15.1	1.9	3.1
100	ma	σ_1	0.5	78.6	91.3	8.1	32.8	12.8	13.8	1.2	3.3
100	ma	σ_1	1	1.4	38.8	6.1	34.4	13.1	14.7	1.5	1.9
100	ma	σ_2	0.25	99.7	99.9	9.0	53.1	9.2	20.1	4.9	7.5
100	ma	σ_2	0.5	82.0	95.6	7.5	53.7	8.3	17.8	4.9	9.2
100	ma	σ_2	1	0.5	43.6	7.9	51.5	9.1	19.2	6.6	9.5
100	$_{\mathrm{ma}}$	σ_3	0.25	94.8	98.5	6.2	28.8	13.8	16.6	1.6	2.9
100	$_{\mathrm{ma}}$	σ_3	0.5	68.9	86.9	7.5	29.5	16.7	19.1	1.2	3.3
100	$_{\mathrm{ma}}$	σ_3	1	1.6	59.1	14.2	29.9	15.8	19.4	1.4	3.0
200	iid	σ_0	0.25	90.1	98.3	0.9	35.2	4.8	5.2	4.8	7.3
200	iid	σ_0	0.5	38.5	70.5	1.7	38.6	5.3	5.2	6.6	7.9
200	iid	σ_0	1	0.0	13.5	1.2	38.7	5.9	6.0	4.5	6.1

				ı							
200	iid	σ_1	0.25	88.9	97.1	2.6	26.9	6.5	5.1	2.4	4.2
200	iid	σ_1	0.5	35.3	63.7	1.5	25.8	5.3	4.5	1.7	2.7
200	iid	σ_1	1	0.1	15.9	2.3	25.1	6.1	4.5	2.5	3.6
200	iid	σ_2	0.25	90.7	97.7	2.5	50.5	4.7	7.4	1.3	1.3
200	iid	σ_2	0.5	43.1	71.9	2.1	52.4	4.2	6.6	2.4	2.9
200	iid	σ_2	1	0.1	22.2	2.1	48.7	5.5	6.4	1.7	1.5
200	iid	σ_3	0.25	84.1	96.2	2.8	22.4	7.9	4.7	1.2	2.2
200	iid	σ_3	0.5	38.9	63.7	2.8	23.3	8.3	6.6	1.9	3.9
200	iid	σ_3	1	0.0	21.5	4.6	23.5	10.5	4.8	2.2	3.5
200	ar	σ_0	0.25	100.0	100.0	0.1	45.8	23.0	27.1	9.2	15.5
200	ar	σ_0	0.5	98.0	99.1	0.2	49.9	22.0	34.3	9.3	17.1
200	ar	σ_0	1	1.2	54.0	0.0	50.2	21.3	27.8	7.1	14.0
200	ar	σ_1	0.25	99.9	100.0	0.0	35.9	26.6	28.4	3.8	9.5
200	ar	σ_1	0.5	98.4	99.9	0.1	37.4	27.1	24.2	4.3	9.1
200	ar	σ_1	1	1.3	71.1	0.6	36.2	24.6	28.1	4.1	9.9
200	ar	σ_2	0.25	99.9	100.0	0.3	59.2	19.0	32.3	4.3	7.4
200	ar	σ_2	0.5	99.0	99.9	0.3	58.0	19.0	30.8	4.6	8.3
200	ar	σ_2	1	0.8	75.4	0.0	60.6	19.3	31.8	3.0	6.2
200	ar	σ_3	0.25	99.9	99.9	0.2	33.4	29.6	26.2	2.9	7.5
200	ar	σ_3	0.5	97.9	99.3	0.0	32.5	30.1	24.4	2.4	5.5
200	ar	σ_3	1	1.0	79.2	0.1	32.3	27.7	28.7	3.0	7.6
200	ma	σ_0	0.25	98.5	99.5	15.1	41.1	10.3	15.4	6.2	8.8
200	ma		0.5	78.4	92.3	3.6	41.8	10.5	12.8	5.5	9.3
200		σ_0			36.0	5.4	39.6	11.1	10.6		9.3
	ma	σ_0	1	2.3		_				6.0	
200	ma	σ_1	0.25	98.0	99.5	8.9	29.8	12.1	11.4	2.8	8.6
200	ma	σ_1	0.5	80.6	91.6	7.5	27.0	12.6	13.3	2.6	8.2
200	ma	σ_1	1	1.0	37.6	5.5	30.4	11.7	12.2	3.5	5.6
200	ma	σ_2	0.25	97.2	99.4	3.3	50.7	8.4	15.7	3.1	4.1
200	ma	σ_2	0.5	70.1	87.2	3.3	51.0	7.7	18.9	2.0	3.6
200	ma	σ_2	1	0.7	44.3	3.0	51.3	8.5	13.0	1.1	3.2
200	ma	σ_3	0.25	91.0	97.0	2.6	27.2	13.8	14.7	2.1	4.0
200	ma	σ_3	0.5	79.9	90.7	5.4	25.6	13.1	12.3	2.1	4.6
200	ma	σ_3	1	1.0	52.3	2.6	27.5	14.2	14.4	1.8	4.1
500	iid	σ_0	0.25	91.0	97.5	6.5	37.3	4.3	5.6	5.5	4.3
500	iid	σ_0	0.5	41.4	72.1	5.3	35.3	4.5	3.6	4.9	4.2
500	iid	σ_0	1	0.0	12.7	8.5	37.6	3.7	3.8	4.8	4.7
500	iid	σ_1	0.25	89.2	98.1	2.6	24.0	7.9	4.6	2.6	2.5
500	iid	σ_1	0.5	36.3	64.7	3.0	23.7	6.8	5.9	2.5	3.4
500	iid	σ_1	1	0.0	14.1	4.4	23.4	6.5	6.1	2.2	2.9
500	iid	σ_2	0.25	91.9	97.9	6.2	49.0	4.8	7.5	2.8	2.4
500	iid	σ_2	0.5	43.7	69.8	4.2	46.2	3.8	5.8	2.2	2.8
500	iid	σ_2	1	0.0	19.0	4.6	47.0	5.4	5.3	2.0	2.1
500	iid	σ_3	0.25	85.3	95.5	3.6	19.7	8.7	5.0	2.4	2.2
500	iid	σ_3	0.5	39.3	63.5	2.9	20.5	9.4	5.3	2.2	3.1
500	iid	σ_3	1	0.0	22.9	3.1	19.5	8.8	6.2	3.1	2.2
500	ar	σ_0	0.25	100.0	100.0	0.0	43.9	15.4	24.3	6.8	9.2
500	ar	σ_0	0.5	98.6	99.9	0.0	45.6	17.0	29.7	7.1	9.3
500	ar	σ_0	1	0.0	31.8	0.0	43.6	14.8	27.2	7.6	9.0
500	ar	σ_1	0.25	100.0	100.0	0.2	30.4	22.7	23.7	4.7	6.1
500	ar	σ_1	0.5	99.6	100.0	0.1	31.9	20.6	24.7	6.9	6.9
500	ar	σ_1	1	0.0	61.7	0.1	33.8	20.2	24.9	4.2	4.2
500	ar	σ_2	0.25	100.0	100.0	0.2	51.9	16.1	23.3	4.7	6.3
500	ar	σ_2	0.5	99.5	99.8		55.6	15.5	23.5	5.5	5.8
		- 2					•	2.0		2.2	

500	ar	σ_2	1	0.0	65.0	0.0	54.4	16.4	25.5	4.8	4.3
500	ar	σ_3	0.25	99.9	100.0	0.1	30.4	22.5	26.6	3.7	4.3
500	ar	σ_3	0.5	99.8	100.0	0.1	26.3	25.3	24.6	4.1	4.6
500	ar	σ_3	1	0.0	70.2	0.0	26.6	21.4	23.7	4.0	4.6
500	ma	σ_0	0.25	98.1	99.5	2.5	38.7	7.2	13.3	4.9	4.8
500	ma	σ_0	0.5	89.3	96.5	4.2	37.4	9.2	11.2	6.2	6.8
500	ma	σ_0	1	0.7	19.4	2.8	36.6	9.1	10.3	7.0	5.7
500	ma	σ_1	0.25	96.5	99.1	2.1	24.3	12.5	13.1	3.1	2.9
500	ma	σ_1	0.5	81.0	90.2	6.2	26.0	12.1	13.4	3.7	3.8
500	ma	σ_1	1	2.4	45.0	4.0	24.7	9.8	12.9	2.7	3.1
500	ma	σ_2	0.25	97.0	99.4	3.9	50.9	8.1	12.7	2.9	2.9
500	ma	σ_2	0.5	89.0	95.5	9.1	50.8	8.0	11.5	3.5	3.9
500	ma	σ_2	1	2.2	51.7	4.4	47.1	8.2	12.6	3.1	3.2
500	ma	σ_3	0.25	97.3	99.2	6.4	24.0	15.5	11.3	2.9	3.1
500	ma	σ_3	0.5	81.5	89.2	4.5	22.2	13.9	11.8	2.9	4.4
500	ma	σ_3	1	0.3	44.2	2.3	23.7	15.8	12.3	3.4	2.5
1000	iid	σ_0	0.25	93.9	98.3	8.4	35.1	4.7	5.7	3.5	4.2
1000	iid	σ_0	0.5	39.6	73.2	6.2	36.0	6.5	7.3	3.5	4.4
1000	iid	σ_0	1	0.0	12.2	11.1	38.6	3.4	5.9	4.2	4.5
1000	iid	σ_1	0.25	91.2	98.2	6.2	22.2	8.3	4.0	2.7	3.3
1000	iid	σ_1	0.5	39.6	67.6	4.7	21.9	7.3	4.9	1.9	2.3
1000	iid	σ_1	1	0.0	15.6	6.6	20.3	7.6	4.3	3.7	4.0
1000	iid	σ_2	0.25	90.6	99.0	11.8	48.3	5.5	6.5	1.6	1.9
1000	iid	σ_2	0.5	43.8	72.5	7.5	48.3	4.1	5.4	2.5	3.0
1000	iid	σ_2	1	0.0	20.2	6.2	47.4	4.6	5.4	2.2	2.5
1000	iid	σ_3	0.25	86.4	96.8	8.1	18.6	8.4	4.6	1.5	3.8
1000	iid	σ_3	0.5	44.8	67.3	4.2	20.1	11.2	4.5	1.7	2.6
1000	iid	σ_3	1	0.0	21.3	8.6	18.5	9.6	4.6	2.3	3.3
1000	ar	σ_0	0.25	100.0	100.0	0.0	40.8	12.6	19.8	6.0	9.9
1000	ar	σ_0	0.5	99.1	99.9	0.0	39.5	13.6	22.3	6.7	10.2
1000	ar	σ_0	1	0.0	17.6	0.0	40.9	13.6	22.3	7.7	12.2
1000	ar	σ_1	0.25	100.0	100.0	0.0	30.3	17.5	27.0	2.9	4.7
1000	ar	σ_1	0.5	99.8	99.9	0.0	27.8	16.5	17.7	4.2	7.3
1000	ar	σ_1	1	0.0	59.8	0.0	27.5	15.1	22.2	3.0	5.3
1000	ar	σ_2	0.25	100.0	100.0	0.0	49.2	13.9	19.0	2.1	4.5
1000	ar	σ_2	0.5	99.9	100.0	0.0	52.1	12.8	21.5	3.4	4.8
1000	ar	σ_2	1	0.0	61.9	0.0	53.6	13.0	22.3	2.9	5.8
1000	ar	σ_3	0.25	100.0	100.0	0.0	25.4	17.0	19.7	3.5	5.5
1000	ar	σ_3	0.5	100.0	100.0	0.0	26.7	19.2	22.9	3.8	6.4
1000	ar	σ_3	1	0.0	63.6	0.0	24.9	18.7	19.0	2.1	6.9
1000	$_{\mathrm{ma}}$	σ_0	0.25	97.7	99.6	2.5	37.4	9.7	12.0	5.2	7.4
1000	$_{\mathrm{ma}}$	σ_0	0.5	80.7	90.6	2.9	36.6	6.9	9.8	4.0	6.7
1000	ma	σ_0	1	0.1	15.5	2.0	34.3	6.6	9.3	4.4	6.6
1000	$_{\mathrm{ma}}$	σ_1	0.25	95.6	98.5	3.6	25.5	9.9	10.7	2.5	3.5
1000	$_{\mathrm{ma}}$	σ_1	0.5	88.1	93.1	2.5	23.8	10.3	7.9	3.5	5.7
1000	ma	σ_1	1	0.7	35.2	3.4	22.8	9.8	8.9	3.2	4.9
1000	$_{\mathrm{ma}}$	σ_2	0.25	97.7	99.7	2.3	49.2	8.1	8.9	3.6	3.4
1000	ma	σ_2	0.5	82.7	92.4	3.5	50.5	8.4	11.0	4.3	3.9
1000	ma	σ_2	1	0.0	39.4	4.3	52.1	7.9	13.1	1.9	2.4
1000	ma	σ_3	0.25	96.4	98.3	3.5	19.4	12.7	9.8	2.2	4.2
1000	ma	σ_3	0.5	78.8	89.0	2.5	23.2	11.6	13.3	1.7	4.1
1000	ma	σ_3	1	0.3	40.7	4.8	21.6	12.9	8.5	2.6	4.3