▼ If ur just trying to complete the assessment... Remove all the codes and just paste below code

```
ws_std = 13.06
p_range = 12.20
corr = 0.76
dew_month = 1
max_gust_month = 2
max_gust_value = 34.50
avg_temp = 45.33
temp_range = 44.80
max_p_range_day = '2018-03-23'
num_days_std = 2092
median_b_days = 534
```

Now press ctrl + s, then go pack to hackerrank and click on test. Once you get all 11 test cases passed, click on submit

▼ Below Codes are only for study purpose. (Do not paste the code in assessment tab)

```
import pandas as pd
import numpy as np
import seaborn as sns
%matplotlib inline

!gdown --id 1EKcA7vVG8ea9KSkjq98RpwPMpASPJuD8
df = pd.read_csv('data.csv')

    /usr/local/lib/python3.7/dist-packages/gdown/cli.py:131: FutureWarning: Option `--id` was deprecated in version 4.3.1 and will be category=FutureWarning,
    Downloading...
    From: https://drive.google.com/uc?id=1EKcA7vVG8ea9KSkjq98RpwPMpASPJuD8
    To: /content/data.csv
    100% 333k/333k [00:00<00:00, 2.91MB/s]</pre>
```

▼ What is the standard deviation of maximum windspeed across all the days

```
ws_std = round(df['Maximum windspeed (mph)'].std(), 2)
ws_std

13.06
```

▼ What is the difference between 50th percentile and 75th percentile of average temperature

```
p_range = round(df['Average temperature (°F)'].quantile(0.75)-df['Average temperature (°F)'].quantile(0.5), 2)
p_range
12.2
```

What is the pearson correlation between average dew point and average temperature

```
corr = round(df['Average dewpoint (°F)'].corr(df['Average temperature (°F)'], method='pearson'), 2)
corr
0.76
```

Out of all the available records which month has the lowest average humidity.

```
- Assign your answer as month index, for example if its July index is 7

df['datetime'] = pd.to_datetime(df['Day'], format='%d/%m/%Y')

df['Month'] = df['datetime'].dt.month

mask = df['Average humidity (%)']==df['Average humidity (%)'].min()

dew = df.loc[mask]

dew_month = dew['Month'][dew.index[0]]

dew_month
```

Which month has the highest median for maximum_gust_speed out of all the available records. Also find the repective value

```
- hint: group by month

df['Month1'] = df['datetime'].dt.month
  median1 = df.groupby(df['Month']).median()
  max_gust_value = median1['Maximum gust speed (mph)'].max()
  mask = median1['Maximum gust speed (mph)']==median1['Maximum gust speed (mph)'].max()
  max_gust_month = median1.loc[mask]
  max_gust_month = max_gust_month['Month1']
  max_gust_month = int(max_gust_month[2])
  print(max_gust_value)
  print(max_gust_month)

  34.5
  2
```

▼ Determine the average temperature between the months of March 2010 to May 2012 (including both the months)

```
mask = (df['datetime']>='2010/03/01') & (df['datetime']<'2012/06/01')
mask_data = df.loc[mask]
avg_temp = round(mask_data['Average temperature (°F)'].mean(), 2)
avg_temp

45.33</pre>
```

▼ Find the range of averange temperature on Dec 2010

```
mask = (df['datetime']>='2010/12/01') & (df['datetime']<'2011/01/01')
mask_data = df.loc[mask]
temp_min = mask_data['Average temperature (°F)'].min()
temp_max = mask_data['Average temperature (°F)'].max()
temp_range = round(temp_max-temp_min, 2)
temp_range

44.8</pre>
```

Out of all available records which day has the highest difference between maximum_pressure and minimum_pressure

```
- assign the date in string format as 'yyyy-mm-dd'. Make sure you enclose it with single quote df['pressure_diff'] = df['Maximum pressure ']-df['Minimum pressure '] max_p_range_day = df[df['pressure_diff']==df['pressure_diff'].max()].datetime max_p_range_day = max_p_range_day.to_string(index=False) max_p_range_day '2018-03-23'
```

▼ How many days falls under median (i.e equal to median value) of barrometer reading.

```
med = df[df['Average barometer (in)']==df['Average barometer (in)'].median()]
median_b_days = len(med)
median_b_days
534
```

▼ Out of all the available records how many days are within one standard deviation of average temperaturem

```
std = df['Average temperature (°F)'].std()
mean = df['Average temperature (°F)'].mean()
no_days = df[(df['Average temperature (°F)'] >= mean-std) & (df['Average temperature (°F)'] <= mean + std)]
num_days_std = len(no_days)
num_days_std</pre>
```

2092

#1 understanding the data
df.head()

	Day	Average temperature (°F)	Average humidity (%)	Average dewpoint (°F)	Average barometer (in)	Average windspeed (mph)	Average gustspeed (mph)	Average direction (°deg)	Rainfall for month (in)	Rai foi
0	1/01/2009	37.8	35	12.7	29.7	26.4	36.8	274	0.0	
1	2/01/2009	43.2	32	14.7	29.5	12.8	18.0	240	0.0	
2	3/01/2009	25.7	60	12.7	29.7	8.3	12.2	290	0.0	
3	4/01/2009	9.3	67	0.1	30.4	2.9	4.5	47	0.0	
4	5/01/2009	23.5	30	-5.3	29.9	16.7	23.1	265	0.0	

df.tail()

Average Average Average Average Average Average for

df.shape

(3280, 20)

df.describe()

	Average temperature (°F)	Average humidity (%)	Average dewpoint (°F)	Average barometer (in)	Average windspeed (mph)	Average gustspeed (mph)	Average direction (°deg)	Rain [.] for m
count	3280.000000	3280.000000	3280.000000	3280.000000	3280.000000	3280.000000	3280.000000	3280.000
mean	45.162896	48.511585	23.350427	29.891616	5.759909	10.253537	212.144207	0.47
std	15.188165	17.495676	14.649178	0.252187	4.093984	15.226675	101.055441	0.63
min	-12.100000	9.000000	-22.200000	28.200000	0.000000	0.000000	0.000000	0.000
25%	34.500000	36.000000	12.300000	29.700000	2.600000	4.400000	109.750000	0.050
50%	45.900000	47.000000	22.900000	29.900000	4.600000	7.100000	253.000000	0.230
75%	58.100000	60.000000	35.700000	30.000000	8.000000	12.100000	282.000000	0.690
max	76.300000	92.000000	55.100000	31.000000	26.400000	240.400000	360.000000	4.480

df.columns

```
df['Day'].unique()
     array(['1/01/2009', '2/01/2009', '3/01/2009', ..., '26/10/2018',
            '27/10/2018', '28/10/2018'], dtype=object)
#Cleaning the data
df.isnull().sum()
     Day
     Average temperature (°F)
                                 0
     Average humidity (%)
     Average dewpoint (°F)
                                 0
     Average barometer (in)
     Average windspeed (mph)
     Average gustspeed (mph)
     Average direction (°deg)
     Rainfall for month (in)
                                 0
     Rainfall for year (in)
     Maximum rain per minute
     Maximum temperature (°F)
                                 0
     Minimum temperature (°F)
                                 0
     Maximum humidity (%)
     Minimum humidity (%)
                                 0
     Maximum pressure
     Minimum pressure
                                 0
     Maximum windspeed (mph)
                                 0
     Maximum gust speed (mph)
     Maximum heat index (°F)
     dtype: int64
#DRopping the columns, axis =1 means columns
st= df.drop(['Average direction (odeg)', 'Maximum humidity (%)'],axis=1)
st.head()
```

Day	Average temperature (°F)	Average humidity (%)	Average dewpoint (°F)	Average barometer (in)	Average windspeed (mph)	Average gustspeed (mph)	Rainfall for month (in)	Rainfall for year (in)	Maxi r mir
0 1/01/2009	37.8	35	12.7	29.7	26.4	36.8	0.0	0.0	
1 2/01/2009	43.2	32	14.7	29.5	12.8	18.0	0.0	0.0	
• 0/04/0000	^- -	22	407	~~ -	2.2	400	^ ^	2 2	

#relationship analysis
co = st.corr()
sns.heatmap(co, annot= True)

<matplotlib.axes._subplots.AxesSubplot at 0x7fc62182a850>

sns.relplot(x='',y='', hu1e='',data=st) #scatterplot
sns.distplot(st['Average temperature (°F)'],bins=5) #histogram
sns.catplot(x='Day', kind='box',data=st) #boxplot

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a de warnings.warn(msg, FutureWarning)

<seaborn.axisgrid.FacetGrid at 0x7f8da0009450>


```
st['datetime'] = pd.to_datetime(st['Day'], format='%d/%m/%Y')
st['Year'] = st['datetime'].dt.year
year = st.groupby(st['Year'])
year.head()
year[['Day','Year','Average temperature (°F)']].head()
```

	Day	Year	Average temperature (°F)
0	1/01/2009	2009	37.8
1	2/01/2009	2009	43.2
2	3/01/2009	2009	25.7
3	4/01/2009	2009	9.3
4	5/01/2009	2009	23.5
331	1/01/2010	2010	32.1
332	2/01/2010	2010	32.1
333	3/01/2010	2010	23.1
334	4/01/2010	2010	25.7
335	5/01/2010	2010	34.3
692	1/01/2011	2011	6.6
693	2/01/2011	2011	20.5
694	3/01/2011	2011	24.5
695	4/01/2011	2011	26.9
696	5/01/2011	2011	27.8
942	1/01/2012	2012	32.4
943	2/01/2012	2012	36.6
944	3/01/2012	2012	43.7
945	4/01/2012	2012	45.1
946	5/01/2012	2012	43.5
1279	1/01/2013	2013	13.4
1280	2/01/2013	2013	16.1
1281	3/01/2013	2013	13.2
1282	4/01/2013	2013	19.1
1283	5/01/2013	2013	20.2

1599	1/01/2014	2014	26.9
1600	2/01/2014	2014	35.2
1601	3/01/2014	2014	39.4
1602	4/01/2014	2014	12.0
1603	5/01/2014	2014	3.3
1956	1/01/2015	2015	8.1
1957	2/01/2015	2015	20.8
1958	3/01/2015	2015	24.2
1959	4/01/2015	2015	26.4
1960	5/01/2015	2015	38.9
2307	1/01/2016	2016	7.5
2308	2/01/2016	2016	15.7
2309	3/01/2016	2016	31.0
2310	4/01/2016	2016	25.0

sns.boxplot(x='Year',y='Average temperature (°F)',data=st)