Aufgabe 1 (Frühjahr 1999). Seien U und V Untergruppen einer endlichen Gruppe G mit $U \cap V = \{e\}$. Es bezeichne $\langle U \cup V \rangle$ die von $U \cup V$ erzeugte Untergruppe von G. Man zeige:

- (a) $|U| \cdot |V| \leq |\langle U \cup V \rangle|$. (Wurde bereits letzte Woche besprochen.)
- (b) In (a) gilt Gleichheit, wenn U Normalteiler in G ist.
- (c) Man gebe eine Gruppe G mit zwei Untergruppen U und V mit $U \cap V = \{e\}$ an, so daß in (a) nicht Gleichheit besteht. (Wurde bereits letzte Woche besprochen.)

Lösung. (b) Wir zeigen, daß jedes Element in $\langle U \cup V \rangle$ eine Darstellung der Form uv hat mit $u \in U$ und $v \in V$. Ein Element $x \in \langle U \cup V \rangle$ kann nach Definition geschrieben werden als endliches Produkt $x = x_1 \cdots x_n$ mit $x_i \in U \cup V$, dh. $x_i \in U$ oder $x_i \in V$. Wir werden nun Induktion nach n anwenden. Sei n = 1, dann ist $x = x_1 \in U$ oder $x = x_1 \in V$, Im ersten Fall ist unsere gewünschte Darstellung xe und im zweiten Fall ex.

Sei n=2, dann ist $x=x_1x_2$. Die Fälle $x_1,x_2\in U$, oder $x_1,x_2\in V$, oder $x_1\in U$ und $x_2\in V$ sind trivial. Sei also $x_1\in V$ und $x_2\in U$. Da U Normalteiler ist, gilt $x_1U=Ux_1$. Insbesondere gibt es $x_2'\in U$ mit $x=x_1x_2=x_2'x_1$. Wir setzen also $u:=x_2'$ und $v:=x_1$ und sind fertig.

Für den Induktionsschritt nehmen wir an, daß wir für $n \ge 1$ bereits gezeigt haben, daß jedes Produkt $x = x_1 \cdots x_n$ wie oben aus n Elementen eine Darstellung hat der Form uv. Sei nun $x = x_1 \cdots x_{n+1}$ ein Produkt aus n+1 Elementen. MIt dem Assoziativgesetz gilt $x = (x_1 \cdots x_n) x_{n+1}$ und nach Induktionsannahme können wir $x_1 \cdot x_n$ schreiben als uv. Ist $x_{n+1} \in V$, so ist $x = (uv) x_{n+1} = u(vx_{n+1})$ bereits in der gewünschten Form. Ist $x_{n+1} \in U$, so gibt es, da U Normalteiler ist ein $x'_{n+1} \in U$ mit $vx_{n+1} = x'_{n+1}v$, also $x = u(vx_{n+1}) = (ux'_{n+1})v$, und damit ist x in der gewünschten Form.

Aufgabe 2. Sei p prim, G Gruppe der Ordnung p^2 . Man zeige, daß entweder $G \cong \mathbb{Z} / \mathbb{Z} p^2$, oder $\mathbb{Z} \cong \mathbb{Z} / \mathbb{Z} p \times \mathbb{Z} / \mathbb{Z} p$.

Lösung. Wir wissen, daß G abelsch ist. Falls für alle $e \neq x \in G$ gilt $\operatorname{ord}(x) = p$: sei $e \neq x, y \in G$ mit $y \in G \setminus \langle x \rangle$. Da $\langle x \rangle$ und $\langle y \rangle$ die Ordnung p haben, gilt

$$\langle x \rangle \cap \langle y \rangle = \{e\}.$$

Wir zeigen: die Abbildung

$$h: \mathbb{Z} / \mathbb{Z} p \times \mathbb{Z} / \mathbb{Z} p \to G, (\overline{a}, \overline{b}) \mapsto x^a y^b$$

ist Isomorphismus, dabei ist $\overline{a} = a + \mathbb{Z} p$ und $\overline{b} = b + \mathbb{Z} p$.

$$\begin{array}{lcl} h((\overline{a}_1,\overline{b}_1)+(\overline{a}_2,\overline{b}_2)) & = & h(\overline{a}_1+\overline{a}_2,\overline{b}_1+\overline{b}_2) \\ & = & h(\overline{a}_1+a_2,\overline{b}_1+\overline{b}_2) \\ & = & x^{a_1+a_2}y^{b_1+b_2} \\ & = & x^{a_1}x^{a_2}y^{b_1}y^{b_2} \\ & = & x^{a_1}y^{b_1}x^{a_2}y^{b_2} = h(\overline{a}_1\overline{b}_1)h(\overline{a}_2,\overline{b}_2). \end{array}$$

h ist injektiv: Aus $h(\overline{a}, \overline{b}) = e$ folgt $x^a y^b = e$ also $x^a = y^{-b} \in \langle x \rangle \cap \langle y \rangle = \{e\}$, das heißt $x^a = y^b = e$ und es muß gelten p|a, b in anderen Worten $a, b \in \mathbb{Z}$ p oder $a = \overline{b} = \overline{0}$. Also $(\overline{a}, \overline{b}) = (\overline{0}, \overline{0})$. Da beide Seiten p^2 Elemente haben, ist h Isomorphismus.

Gibt es $x \in G$ der Ordnung p^2 , dann ist $G = \langle x \rangle$ und es gibt einen Ismorphismus

$$\mathbb{Z}/\mathbb{Z}p^2 \to \langle x \rangle$$
.

Aufgabe 3 (Frühjahr 1991). Sei $\alpha: G \to H$ ein Gruppenhomomorphismus, wobei H abelsch sei. Man zeige: α ist genau dann surjektiv, wenn für je zwei Gruppenhomomorphismen $\beta, \gamma: H \to K$ mit $\beta \circ \alpha = \gamma \circ \alpha$ gilt $\beta = \gamma$.

Lösung. Wir nehmen zuerst an, daß α surjektiv ist. Seien $\beta, \gamma: H \to K$ beliebige Homomorphismen mit $\beta \circ \alpha = \gamma \circ \alpha$. Wir müssen zeigen, daß $\beta = \gamma$. Dazu genügt es zu zeigen, daß für alle $h \in H$ gilt $\beta(h) = \gamma(h)$. Aber da α surjektiv ist, gibt es für jedes $h \in H$ ein $g \in G$ mit $h = \alpha(g)$ und es gilt

$$\beta(h) = \beta(\alpha(g)) = \beta \circ \alpha(g) = \gamma \circ \alpha(g) = \gamma(\alpha(g)) = \gamma(h).$$

Und wir sind fertig.

Nehmen wir andererseits an, daß für je zwei Homomorphismen $\beta, \gamma: H \to K$ mit $\beta \circ \alpha = \gamma \circ \alpha$ gilt $\beta = \gamma$. Da H abelsch ist, ist $\alpha(G) \subset H$ als Untergruppe Normalteiler und der Quotient $H/\alpha(G)$ eine Faktorgruppe. Sei $\beta: H \to H/\alpha(G), h \mapsto \overline{0}$, die triviale Abbildung. Sei andererseits $\gamma: H \to H/\alpha(G), h \mapsto \overline{h}$ die kanonische Abbildung. Für $g \in G$ gilt $\beta \circ \alpha(g) = \overline{0} = \gamma \circ \alpha(g)$, das heißt

$$\beta \circ \alpha = \overline{0} = \gamma \circ \alpha$$

und damit nach Voraussetzung $\beta = \gamma$. Da γ surjektiv ist, ist also $H/\alpha(G) = \{\overline{0}\}$ und damit $\alpha(G) = H$. Also ist α surjektiv.

Aufgabe 4 (Herbst 1977). G sei eine endliche Gruppe und φ ein Automorphismus von G, für den $\varphi(x) = x$ nur für x = e gilt. Man zeige:

- (a) Die Abbildung $y \mapsto y^{-1}\varphi(y)$ von G in sich ist injektiv.
- (b) Zu jedem $x \in G$ gibt es ein $y \in G$ mit $x = y^{-1}\varphi(y)$.
- (c) Wenn zusätzlich $\varphi^2 = id$ gilt, dann folgt
 - (i) $\varphi(x) = x^{-1}$ für alle $x \in G$,
 - (ii) G ist abelsch.

Lösung. (a) Sei für $x, y \in G$

$$x^{-1}\varphi(x) = y^{-1}\varphi(y).$$

Wir multiplizieren von links mit y und von rechts mit $\varphi(x)^{-1} = \varphi(x^{-1})$

$$yx^{-1} = \varphi(y)\varphi(x)^{-1} = \varphi(y)\varphi(x^{-1}) = \varphi(yx^{-1}).$$

Dann gilt nach Voraussetzung $yx^{-1} = e$, also y = x. Dies zeigt, daß die Abbildung injektiv ist.

- (b) Da G endliche Gruppe, also insbesondere endliche Menge ist, und eine injektive Selbstabbildung einer endlichen Menge automatisch surjektiv ist, ist die Abbildung aus (a) surjektiv und es gibt für jedes $x \in G$ ein $y \in G$ mit $x = y^{-1}\varphi(y)$ wie gewünscht.
- (c.i) Sei $x \in G$. Nach (b) gibt es $y \in G$ mit $x = y^{-1}\varphi(y)$. Dann ist $\varphi(x) = \varphi(y^{-1})\varphi^2(y) = \varphi(y)^{-1}y$. Also

$$x\varphi(x) = y^{-1}\varphi(y)\varphi(y)^{-1}y = e.$$

Das heitßt $\varphi(x)$ ist Inverses von x.

(c.ii) Sei $x, y \in G$. Setze a = xy. Wir üssen zeigen, daß xy = yx, oder äquivalent dazu $xyx^{-1}y^{-1} = e$. Nach (c.i) gilt

$$xyx^{-1}y^{-1} = xy\varphi(x)\varphi(y) = xy\varphi(xy) = a\varphi(a) = e.$$

Aufgabe 5 (Herbst 1993). Es bezeichne $M(2 \times 2, S)$ den RIng aller 2-reihigen atrizen mit Koeffizienten in eine Ring S. Sei

$$O(2) := \{ A \in M(2 \times 2, \mathbb{R}) : A^t A = 1 \}$$

die Gruppe der reellen orthogonalen 2-reihigen Matrizen.

(a) Man zeige:

$$G:=0(2)\cap M(2\times 2,\mathbb{Z})$$

is eine Gruppe der Ordnung 8.

- (b) G besitzt genau eine zyklische Untergruppe G_0 der Ordnung 4.
- (c) Für alle $d \in G_0$ und $s \in G \setminus G_0$ gilt

$$sd = d^{-1}s.$$

Lösung. (a) Die Gruppe O(2) sind die reellen orthogonalen Matrizen und stellen Drehspiegelungen dar. Sie haben Determinante 1 (für Drehungen) oder -1 (für Spiegelungen). Sei

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \qquad \text{dann ist} \qquad A^t = \left(\begin{array}{cc} a & c \\ b & d \end{array} \right).$$

Und die Gleichung $A^tA=1$ liefert die Gleichungen

$$a^{2} + c^{2} = 1$$
$$b^{2} + d^{2} = 1$$
$$ab + cd = 0$$

Über \mathbb{R} erhält man damit

$$A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} = D(\alpha) \qquad \text{oder} \qquad A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix} = S(\alpha),$$

mit $0 \le \alpha \le 2\pi$. Ersteres ist eine Drehung um den Winkel α mit Drehzentrum im Ursprung, und letzteres eine Spiegelung an der Achse $\mathbb{R}\left(\begin{array}{c} \cos\frac{\alpha}{2} \\ \sin\frac{\alpha}{2} \end{array}\right)$.

Über \mathbb{Z} ergeben die obigen Gleichungen:

Die Menge G enthält also die acht Matrizen

$$\left\{\left(\begin{array}{cc}1&0\\0&1\end{array}\right),\left(\begin{array}{cc}1&0\\0&-1\end{array}\right),\left(\begin{array}{cc}-1&0\\0&1\end{array}\right),\left(\begin{array}{cc}-1&0\\0&-1\end{array}\right),\left(\begin{array}{cc}0&1\\1&0\end{array}\right),\left(\begin{array}{cc}0&-1\\1&0\end{array}\right),\left(\begin{array}{cc}0&-1\\1&0\end{array}\right)\right\}$$

Es gilt

$$1 = \det \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \det \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \det \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \det \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
$$-1 = \det \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \det \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \det \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \det \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

Die Menge G ist eine Gruppe, da

- $E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in O(2) \cap M(2 \times 2, \mathbb{Z}),$
- für $A, B \in O(2) \cap M(2 \times 2, \mathbb{Z})$ gilt $AB \in O(2)$, da O(2) Gruppe ist, und $AB \in M(2 \times 2, \mathbb{Z})$ wegen der Definition der Matrixmultiplikation,
- für $A \in O(2)$ gilt $A^{-1} \in O(2)$, da O(2) eine Gruppe ist, und $A^{-1} \in M(2 \times 2, \mathbb{Z})$, da $A = A^t$.
- (b) Für die Elemente gilt

$$1 = \operatorname{ord} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$2 = \operatorname{ord} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \operatorname{ord} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \operatorname{ord} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \operatorname{ord} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \operatorname{ord} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

$$4 = \operatorname{ord} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \operatorname{ord} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Und

$$G_0 := \left\langle \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \right\rangle = \left\langle \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right) \right\rangle = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right), \left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array} \right), \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right) \right\}$$

ist die einzige Untergruppe der Ordnung 4.

(c) Sie Elemente in $G \setminus G_0$ sind genau die Elemente der Ordnung 2, die nicht in G_0 enthalten sind, also

$$G \setminus G_0 = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right), \left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array} \right) \right\}.$$

Für d = e gilt die Gleichung trivialerweise für alls $s \in G \setminus G_0$.

Für $d = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -1e$ ist $d^{-1} = d$ und die Gleichung sd = ds gilt ebenso trivialerweise da d ein Vielfaches der Einheitsmatrix ist.

Für $d = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ ist $d^{-1} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ und die Gleichungen

$$sd = d^{-1}s$$
 und $sd^{-1} = ds$

sind äquivalent. Dies kann man leicht nachrechnen:

$$\begin{split} s &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \colon \quad sd = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = d^{-1}s \\ s &= \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \colon \quad sd = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = d^{-1}s \\ s &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \colon \quad sd = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = d^{-1}s \\ s &= \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \colon \quad sd = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = d^{-1}s \end{split}$$