

Departamento de Matemática, Universidade de Aveiro

Cálculo II — Agrup. IV

$1.\underline{^{a}}$ Prova de Avaliação Discreta; 13 de abril de 2018

Duração: 2h00

- Justifique todas as respostas e indique os cálculos efetuados -

- 1. Considere a seguinte série de potências $\sum_{n=0}^{+\infty} \frac{4^n}{n+1} (x-1)^n$.
- [17pts] (a) Calcule o raio de convergência da série.
- [18pts] (b) Determine o seu domínio de convergência.
 - 2. Seja $f(x) = e^{-x}, x \in \mathbb{R}$.
- [15pts] (a) Sabendo que $f^{(n)}(x) = (-1)^n e^{-x}$, para todo o $n \in \mathbb{N}$, determine o polinómio de MacLaurin de ordem n de f, isto é, $T_0^n f(x)$.
- [25pts] (b) Usando o polinómio $T_0^2 f(x)$, calcule um valor aproximado de $\frac{1}{\sqrt{e}}$ e mostre que o erro absoluto cometido nessa aproximação é inferior a $\frac{1}{48}$.
- [20pts] 3. (a) Tendo em conta que $\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$, |x| < 1, mostre que

$$\ln(1+x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{n+1}}{n+1} , |x| < 1 .$$

- [15pts] (b) Determine um desenvolvimento em série de potências da função $h(x)=x^3\ln(1+x^2)$, para $x\in]-1,1[$.
 - 4. Seja g a função real de variável real 2π -periódica tal que $g(x)=\pi-2|x|,\ -\pi\leq x\leq \pi.$ Na resolução das alíneas seguintes, quando pertinente, considere como provado que: g é par, contínua e seccionalmente diferenciável em \mathbb{R} .
- [20pts] (a) Determine a série de Fourier de g.
- [10pts] (b) Justifique que $g(x)=rac{8}{\pi}\sum_{n=1}^{+\infty}rac{\cos[(2n-1)x]}{(2n-1)^2},\ x\in\mathbb{R}.$
- [15pts] (c) Mostre que a série de Fourier de g é uniformemente convergente em \mathbb{R} .
 - 5. Considere f a função de domínio contido em \mathbb{R}^2 tal que $f(x,y)=\frac{x^2y}{x^4+u^2}$.
- [10pts] (a) Determine o domínio de f.
- [20pts] (b) Determine as curvas de nível C_k de f, para k=0 e $k=\frac{1}{2}$, respetivamente. Faça os seus esboços gráficos.
- [15pts] (c) Mostre que não existe $\lim_{(x,y)\to(0,0)} f(x,y)$.