Równanie różniczkowe y'' + py' + qy = f(x),  $x \in [a, b]$  z warunkami  $y(a) = y_a$ ,  $y(b) = y_b$  rozwiązać można sprowadzając go poprzez jego "dyskretyzację" do układu równań liniowych. Zastąpmy więc pochodne odpowiednimi centralnymi ilorazami różnicowymi:

$$y_i' = \frac{y_{i+1} - y_{i-1}}{2h}, \quad y_i'' = \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2},$$
 (1)

gdzie h jest odległością pomiędzy każdą parą sąsiednich iksów, z których pierwszy  $x_1=a,$ a ostatni  $x_n=b.$ 

Po wstawieniu równań (1) do wejściowego równania i po prostym przekształceniu tego równania otrzymamy to równanie w postaci

$$y_{i-1}(2-ph) + y_i(2qh^2 - 4) + y_{i+1}(2+ph) = 2h^2 f_i,$$
(2)

gdzie  $f_i = f(x_i)$ . Wstawiając teraz kolejno i = 2, 3, ..., n-1, otrzymamy układ równań, który w zapisie "macierzowym", po wprowadzeniu oznaczeń:  $w_1 = 2 - ph$ ,  $w_2 = 2(qh^2 - 2)$ ,  $w_3 = 2 + ph$ ,  $w_4^i = 2h^2 f_i$ , przyjmie postać:

|           | $y_2$ | $y_3$ | $y_4$ | $y_5$ |       | $y_{n-3}$ | $y_{n-2}$ | $y_{n-1}$ |                                  |
|-----------|-------|-------|-------|-------|-------|-----------|-----------|-----------|----------------------------------|
| i=2       | $w_2$ | $w_3$ | 0     | 0     |       | 0         | 0         | 0         | $w_4^2 - y_a w_1$                |
| i = 3     | $w_1$ | $w_2$ | $w_3$ | 0     |       | 0         | 0         | 0         | $w_4^3$                          |
| i = 4     | 0     | $w_1$ | $w_2$ | $w_3$ | • • • | 0         | 0         | 0         | $w_4^4$                          |
|           |       |       |       |       |       |           |           |           | • • •                            |
| i = n - 3 | 0     | 0     | 0     |       | $w_1$ | $w_2$     | $w_3$     | 0         | $w_4^{n-3}$                      |
| i = n - 2 | 0     | 0     | 0     | 0     | 0     | $w_1$     | $w_2$     | $w_3$     | $w_{\scriptscriptstyle A}^{n-2}$ |
| i = n - 1 | 0     | 0     | 0     | 0     | 0     | 0         | $w_1$     | $w_2$     | $w_4^{n-1} - y_b w_3$            |

Rozwiązując ten układ równań (*LinearSolve*) otrzymamy brakujące (poza pierwszym i ostatnim, które znamy) wartości igreków.

Napisz program rrr2 zależny od argumentów f, p, q, a, b,  $y_a$ ,  $y_b$  i n oznaczających odpowiednio: funkcję f(x), współczynniki równania, lewy i prawy koniec przedziału, w którym rozwiązujemy równanie różniczkowe, wartości z warunku początkowego i ilość punktów (łącznie z punktami a i b), w których odtwarzana jest poszukiwana funkcja y(x). Program ma zwracać dwa rysunki: na pierwszym znajdują się wykresy rozwiązania dokładnego i rozwiązania uzyskanego za pomocą tej metody (dyskretnego), na drugim znajduje się wykres błędów bezwzględnych tego odtworzenia. Program przetestuj dla danych:  $f(x) = x - e^x$ , p = 3, q = -4, a = 0, b = 3,  $y_a = 1$ ,  $y_b = 0.5$  i n = 31.



Rysunek 1: Rozwiązanie (linia ciągła) i odtworzenie oraz błędy bezwzględne.

Uwaga: Projekt należy przesyłać jako plik imię\_nazwisko\_projekt\_1.nb