Lecture 27: Magnetic Materials and Inductance

ECE221: Electric and Magnetic Fields

Prof. Sean V. Hum

Winter 2019

Outline

Properties of Magnetic Materials

2 Inductance

Nature of Magnetic Materials

- Just as we did for dielectrics, we now consider the magnetic properties of "magnetic" materials
- We gain invoke a simple atomic model where there is a positively charged nucleus around which there are electronics in various orbits

Source: Ulaby, Ravaioli: Fundamentals of Applied Electromagnetics, 7th ed.

Magnetization

- From a macroscopic perspective we now differentiate between free currents and bound currents
- \bullet A bound current I_b circulates around a path enclosing a differential area ds

$$m = I_b ds$$

If there are N magnetic dipoles per unit volume and we consider a Generalized Amperes Law volume $\Delta \nu$, then the total magentic dipole moment is

$$\oint \vec{B}_{\mu} \cdot d\vec{t} = I_{7001} = I_{b+I_f}$$

$$m{m}_{total} = \sum_{i=1}^{N\Delta
u} m{m}_i$$

Define magnetization as magnetic dipole moment per unit volume, just as we did for polarization

$$oldsymbol{M} = \lim_{\Delta
u o 0} rac{1}{\Delta
u} \sum_{i=1}^{N \Delta
u} oldsymbol{m}_i$$

per unit volume, $I_{b} = \oint \vec{n} \cdot d\vec{l} \qquad I_{f} = \oint \vec{H} \cdot d\vec{l}$

Let M= 7m H

Differential Analysis

For a differential volume dv', the magnetic moment is $d\boldsymbol{m} = \boldsymbol{M} dv'$. What is the vector magnetic potential produced by the volume?

Almost all dielectrics have ur = 1>u=no

Types of Magnetic Materials: Diamagnetic Materials

Diamagnetic materials:

- Have no permanent magnetic moments
- Electron orbit moment and spin moment nearly cancel
- An applied B field causes a very slight reduction in m_a
- In most diamagnetic materials, $\chi_m \approx -10^{-5} \text{ and } \mu_r \approx 1$
- In very special materials (superconductors), the internal magnetic field can completely cancel the external one, producing $\mu_r=-1$

Types of Magnetic Materials: Paramagnetic Materials

Paramagnetic materials:

- Have no permanent magnetic moments
- Electron spin moment very slightly larger than electron orbit moment
- An applied B field torques the moments, causing them to align with the applied field

Source: Ulaby, Ravaioli: Fundamentals of Applied Electromagnetics, 7th ed.

- In most paramagnetic materials,
 - $\chi_m pprox 10^{-5}$ and $\mu_r pprox 1$

Types of Magnetic Materials: Ferromagnetic Materials

Ferromagnetic materials:

- Have permanent magnetic moments resulting from electron spin moments
- Interatomic forces cause these moments to line up in parallel over regions containing large numbers of atoms called domains
- An applied B field magnetized the material to cause regular and semi-permanent alignment of the dipoles

Source: Wikipedia

Types of Magnetic Materials: Ferromagnetic Materials

- A magnetic materials spontaneously divides into domains to minimize the *magnetostatic energy* stored in the internal field.
- Domains can be reoriented by an external magnetic field
- Domains will remain aligned when external field is removed, since domain walls become pinned to defects in the crystal structure
- The material can be *demagnetized* by applying another field, or heating the material passed its *Curie temperature*

Summary of Magnetic Materials

	Diamagnetism	Paramagnetism	Ferromagnetism
Permanent magnetic	No	Yes, but weak	Yes, and strong
dipole moment			
Primary magnetiza-	Electron orbital	Electron spin mag-	Magnetized domains
tion mechanism	magnetic moment	netic moment	
Direction of induced	Opposite	Same	Hysteresis*
magnetic field (rela-			
tive to external field)			
Common substances	Bismuth, copper, di-	Aluminmum,	Iron, nickel, cobalt
	amond, gold, lead,	chromium, mag-	
	mercury, silber, sili-	nesium, niobium,	
	con	platinum, tungsten	
Typical value of χ_m	$\approx -10^{-5}$	$\approx 10^{-5}$	$ \chi_m \gg 1$ and hys-
			teretic
Typical value of μ_r	≈ 1	≈ 1	$ \mu_r \gg 1$ and hys-
			teretic

(0000 or more

Hysteresis of Magnetic Materials

- ullet A magnetization curve describes the relationship between B and H in a material
- You might think it is a line because $B = \mu H$, but this is not true in ferromagnetic materials where the relationship is nonlinear

$$B = \mu(H)H$$

 Ferromagnetic materials have magnetic hysteresis (to lag behind)

Magnetic Flux

$$\Psi = \iint_S \boldsymbol{D} \cdot d\boldsymbol{s} = \oint_C \boldsymbol{A} \cdot d\boldsymbol{\ell}$$

Recall: toroid example

Source: Ulaby and Ravaoili, Fundamentals of Electromagnetics

(ramp down current +0 0) > Az 4. Further reduce H (reverse I) > Az (demognetized) 5. A4 (saturation)

What flux **links** each turn?

$$m{H} = \hat{m{\phi}} rac{NI}{2\pi r}$$

$$\boldsymbol{B} = \hat{\boldsymbol{\phi}} \frac{\mu NI}{2\pi r}$$

6. Devlose I

Inductance

Flux linkage Λ is the product of the number of turns N and the flux Ψ linkng each of them.

$$\Lambda = N\Psi$$

Example: for a single-turn toroid, the flux linkage is equal to the total flux.

Self inductance

$$L = \frac{N\Psi}{I} = \frac{\Lambda}{I}$$

Units of inductance are **Henrys**.

Example: Inductance of a Solenoid

Source: Ulaby and Ravaoili, Fundamentals of Electromagnetics