

Modelado de la Calidad del Aire AERMOD: Fundamentos

FAUBA

8 de junio de 2023

AERMOD

Sistema de modelado

AERMOD

Características generales

- Modelo de pluma gaussiano de estado estacionario.
- ▶ Usa parametrización continua para los coeficientes de dispersión $(\sigma_{y,z})$.
- Caracteriza la capa límite, usando la teoria de similitud para representar las variables en el perfil de esta.
- Contempla inhomogeneidades de la PBL mediante el uso de variables efectivas.
- Representa la dispersión en terrenos complejos.
- Contempla corrientes ascendentes y descendentes mediante una distribución vertical bi-gaussiana.
- ▶ Representa *plume lofting* y la inyección de plumas flotantes a capas estables.

Cálculo de concentraciones

Terreno complejo

AERMOD calcula dos plumas: una ignorando el terreno y otra siguiendo el terreno.

la concentración final es la suma ponderada de estas dos: 1

$$C_{tot} = f C_{ref} + (1 - f) C_{terr}$$

¹donde $f = 0.5 + 0.5\varphi_p$ y $\varphi_p = M_b/M_a M_b$. M_a Masa sobre H_c y M_b masa por debajo de H_c . H_c : critical dividing streamline, depende de h_c : hill slope scale (calculado en AERMAP).

===

Fórmula general

$$\overline{c} = rac{Q}{ ilde{u}} \, arphi_y \, arphi_z$$

 φ_{v} es la dispersión horizontal:

$$\varphi_y = \frac{1}{\sqrt{2\pi}\sigma_y} \exp\left(-\frac{1}{2}\frac{y^2}{\sigma_y^2}\right)$$

la dispersión vertical φ_z tambien tiene forma gaussiana en atmósferas estables:

$$\varphi_z = \frac{1}{\sqrt{2\pi}\sigma_z} \left\{ \exp\left[-\frac{1}{2} \frac{(z+h_c)^2}{\sigma_z^2} \right] + \exp\left[-\frac{1}{2} \frac{(z-h_c)^2}{\sigma_z^2} \right] \right\}$$

donde h_c es la altura del centro de la pluma.

$$h_c = h_s + \Delta z$$

Updrafts y Downdrafts

Bajo condiciones inestables hay corrientes verticales ascendentes y descendentes:

la concentración promedio resultante es una función Gaussiana asimétrica, que AERMOD calcula usando un φ_z bi-gaussiano.

en atmósferas convectivas

Para atmósferas convectivas la distribución vertical es bi-gaussiana:²

$$\varphi_{z} = \underbrace{\frac{\lambda_{1}}{\sqrt{2\pi}\sigma_{z1}}}_{updraft} \exp\left(-\frac{(z-z_{c1})^{2}}{2\sigma_{z1}^{2}}\right) + \underbrace{\frac{\lambda_{2}}{\sqrt{2\pi}\sigma_{z2}}}_{downdraft} \exp\left(-\frac{(z-z_{c2})^{2}}{2\sigma_{z2}^{2}}\right)$$

donde z_c es la altura del centro de la pluma:

$$z_{c1} = h_s + \Delta z + \frac{w_1 x}{u}$$
 $z_{c2} = h_s + \Delta z + \frac{w_2 x}{u}$

 $^{^{2}\}lambda_{i}$ coeficiente de partición tal que: $\lambda_{1}+\lambda_{2}=1$

en atmosferas convectivas

Para representar el efecto de *lofting* y el ingreso de la pluma a una capa estable se calculan 3 tipos de plumas: *directa*, *indirecta* y *penetrada*.

en atmósferas convectivas

Pluma directa:³

$$\varphi_{z} = \frac{\lambda_{1} \frac{f_{p}}{f_{p}}}{\sqrt{2\pi}\sigma_{z1}} \exp\left(-\frac{(z - z_{d1})^{2}}{2\sigma_{z1}^{2}}\right) + \frac{\lambda_{2} \frac{f_{p}}{f_{p}}}{\sqrt{2\pi}\sigma_{z2}} \exp\left(-\frac{(z - z_{d2})^{2}}{2\sigma_{z2}^{2}}\right)$$

Pluma indirecta:

$$\varphi_{z} = \frac{\lambda_{1} f_{p}}{\sqrt{2\pi} \sigma_{z1}} \exp\left(-\frac{(z - z_{r1} - 2z_{i})^{2}}{2\sigma_{z1}^{2}}\right) + \frac{\lambda_{2} f_{p}}{\sqrt{2\pi} \sigma_{z2}} \exp\left(-\frac{(z - z_{r2} - 2z_{i})^{2}}{2\sigma_{z2}^{2}}\right)$$

Pluma penetrada:

$$\varphi_z = \frac{1 - f_p}{\sqrt{2\pi}\sigma_{zp}} \exp\left(-\frac{(z - h_{ep})^2}{2\sigma_{zp}^2}\right)$$

 $^{^3}f_p$: es la fracción que se mantiene atrapada en la CBL.