

Modulhandbuch des Studienganges

Bachelor Internationales Bauingenieurwesen

BaICE

Stand 25.02.2022

Inhaltsverzeichnis BalCE

Studienverlaufsplan	1
Bauinformatik	5
Baukonstruktion	7
Bauphysik	9
Baustoffkunde	11
Hydromechaniik	13
Mathematik 1	15
Mathematik 2	17
Physics	19
Technische Mechanik 1	21
Technische Mechanik 2	23
Traffic Infrastructures	26
Vermessungskunde	28
Baustatik 1	30
Baustatik 2	32
Bauverfahrenstechnik	35
Geotechnik 1	37
Geotechnik 2	39
International Project Management	41
Massivbau 1	43
Massivbau 2	45
Siedlungswasserwirtschaft 1	47
Steel Construction	49
Verkehrswesen 2	51
Wasser- und Abfallwirtschaft	53
Äquivalenter Prüfungsplan für das Auslandsstudium	55
Module Descriptors for Units Taught in English	56

Semester 1		WL	SWS	LP	GW	FG	Prüfungsleistung	Studienleistung
Mathematik 1	Р	180	5	6	5	M1	Klausur 180 min	
Technische Mechanik 1	Р	180	5	6	5	M1	Klausur 140 min	Testat als PV (2 x 60 min)
Physik	Р	120	4	4	5	M1	Klausur 120 min	Testat als PV (60 min)
Baukonstruktion	Р	180	6	6	5	M2	80% Klausur 120 min 20% Hausarbeit	Testat als PV (60 min)
Baustoffkunde	Р	120	4	4	5	M2	Klausur 120 min	
Bauinformatik	Р	120	4	4	5	M2	50% Klausur 60 min 50% Hausarbeit	
Summe Semester 1:		900	28	30			6 PL	3 SL

Semester 2		WL	SWS	LP	GW	FG	Prüfungsleistung	Studienleistung
Mathematik 2	Р	180	5	6	5	M1	Klausur 180 min	
Technische Mechanik 2	Р	180	5	6	5	M1	Klausur 180 min	Testat als PV (2 x 90 min)
Bauphysik	Р	120	4	5	5	M2	Klausur 120 min	Testat als PV (1x90min)
Vermessungskunde	Р	120	4	4	5	M2	60% Klausur 90 min 40% Hausarbeit	
Hydromechanik	Р	180	5	5	5	M4	Klausur 120 min	Testat als PV (1 x 90 min)
Verkehrswesen 1	Р	120	4	4	5	M5	Klausur 120 min	Studienarbeit
Summe Semester 2		900	27	30			6 PL	4 SL

Semester 3		WL	SWS	LP	GW	FG	Prüfungsleistung	Studienleistung
Baustatik 1	Р	150	4	5	5	М3	Klausur 180 min	
Massivbau 1	Р	150	4	5	5	М3	Klausur 120 min	
Geotechnik 1	Р	150	5	5	5	М3	Klausur 120 min	Laborpraktikum mit Bericht und Kolloquium als PV
Wasser- und Abfallwirtschaft	Р	150	4	5	5	M4	Klausur 120 min	
Verkehrswesen 2	Р	150	4	5	5	M5	Klausur 120 min	
Bauverfahrenstechnik	Р	150	4	5	5	M6	80% Klausur 90 min 20% mündliche Prüfung	
Summe Semester 3		900	25	30			6 PL	1 SL

Semester 4		WL	SWS	LP	GW	FG	Prüfungsleistung	Studienleistung
Baustatik 2	Р	150	4	5	5	M3	Klausur 180 min	
Massivbau 2	Р	150	4	5	5	М3	Klausur 120 min	
Geotechnik 2	Р	150	5	5	5	М3	Klausur 180 min	
Stahlbau 1	Р	150	4	5	5	М3	Klausur 120 min	
Siedlungswasserwirtschaft 1	Р	150	4	5	5	M4	Klausur 120 min	
International Project Management	Р	150	4	5	5	M6	Klausur 120 min	
Summe Semester 4		900	25	30			6 PL	

Praxisprojekt und Auslandsstudium

Semester 5		WL	SWS	LP	GW	FG	Prüfungsleistung	Studienleistung
Praxisprojekt	Р	900	20	30		M7		Praxistätigkeit mit Praxisbericht und Kolloquium (23 Wochen)
Summe		900	20	30				1 SL

Semester 6 und 7		WL	SWS	LP	GW	FG	Prüfungsleistung	Studienleistung
Auslandsstudium gem. § 11	Р	1800	40	60	60		gem. Learning Agreement (inkl. Bachelor-Arbeit und Abschlusskolloquium)	
Summe		1800	40	60	60			

alternativ:

Semester 5 und 6		WL	SWS	LP	GW	FG	Prüfungsleistung	Studienleistung
Auslandsstudium gem. § 11	Р	1800	40	60	60		gem. Learning Agreement (inkl. Bachelor-Arbeit und Abschlu kolloquium)	
Summe		1800	40	60	60			

Semester 7		WL	SWS	LP	GW	FG	Prüfungsleistung	Studienleistung
Praxisprojekt	Р	900	20	30		M7		Praxistätigkeit mit Praxisbericht und Kolloquium (23 Wochen)
Summe		900	20	30				1 SL

Fach	gebiete und Auslandsstudium (§ 22 Abs. 2 und § 23 PO-BaFbT)	WL	SWS	LP	GW
M1	Mathematische und naturwissenschaftliche Grundlagen	840	24	28	25
M2	Fachspezifische Grundlagen	660	22	22	25
М3	Konstruktiver Ingenieurbau	1050	30	35	35
M4	Wasserwesen und Abfallwirtschaft	480	13	16	15
M5	Verkehrswesen und Raumplanung	270	8	9	10
M6	Baubetrieb und Baumanagement	300	8	10	10
M7	Praxisprojekt	900	20	30	-
	Module aus dem Auslandsstudium	1800	40	60	60
Sumn	ne Bachelor-Studium	6300	165	210	180

Anlage 2

Äquivalenter Prüfungsplan für das Auslandsstudium

Semester 5	WL	SWS	LP	GW	FG	Prüfungsleistung	Studienleistung
Applied Infrastructure Engineering	180	4	6	6		Hausarbeit	
Applied Substructure Engineering	180	4	6	6		Hausarbeit	
Applied Superstructure Engineering	180	5	6	6		Hausarbeit	
Applied Facilities Management ¹⁾	180	4	6	6		Hausarbeit	
International Project Management ¹⁾	180	4	6	6		Hausarbeit	
Sustainability ¹⁾	180	4	6	6		Hausarbeit	
Summe	900	25	30	30		5 PL	

¹⁾ Aus diesem Angebot sind zwei Module im Umfang von 12 LP zu erbringen

Semester 6	WL	SWS	LP	GW	FG	Prüfungsleistung	Studienleistung
Bachelor Thesis	420		12 + 2	14	Bachelor-Arbeit (12 Wochen) Kolloquium (20 min)		
Integrated Design Project	480		16	16		Projektarbeit	
Summe	900		30	30		2 PL	

Anlage 1

zur Fachprüfungsordnung für den Bachelor-Studiengang Internationales Bauingenieurwesen (BaICE) im Fachbereich Technik an der Hochschule Mainz

Prüfungsplan

Abkürzungen:

- FG Fachgebiet
- GW Gewichtung (§ 22 PO-BaFbT)
- LP Leistungspunkte gemäß dem European Credit Transfer System (ECTS)
- P Pflichtmodul (§ 5 Abs. 4 Nr. 1 PO-BaFbT)
- PL Prüfungsleistung (§ 7 Abs. 3 PO-BaFbT)
- PV Studienleistung als Prüfungsvorleistung (§ 7 Abs. 2 der PO-BaFbT)
- SL Studienleistung (§ 7 Abs. 2 PO-BaFbT)
- SWS Semesterwochenstunden
- W Wahlmodul (§ 5 Abs. 4 Nr. 3 PO-BaFbT)
- WL Workload = Zeitaufwand für Lehr- oder Präsenzzeit (SWS) + Lern-, Übungs- und Prüfungszeit (Gesamtstundenzahl)
- WP Wahlpflichtmodul (§ 5 Abs. 4 Nr. 2 PO-BaFbT)

Bauinformatik

<u>Prüfungsnummer</u>	Buchstabe-Ziffer-Kombination	Studienverlauf BalCE
BaBau/BalCE (PO 2012) 700, BalCE (PO 2015) 410, BaWI 280	BINF	Grundstudium

Lehr- und Lernformen

Vorlesung mit integrierten Übungen, Workshop, invertet Classroom, E-Learning

Voraussetzungen für die Teilnahme

obligatorisch: Logisches und analytisches Denken wünschenswert: Digitales Grundverständnis

Verwendbarkeit

Grundlagenbildung für Module im Bereich der fortgeschrittenen BIM Anwendung in den Bachelor-Studiengängen des Bau und Wirtschaftsingenieurwesens (Bau)

Voraussetzungen für die Vergabe von ECTS-Leistungspunkten

Bestandene Prüfungsleistung

ECTS-Leistungspun	<u>Arbeitsaufwand</u>	<u>Angebotsturnus</u>	Dauer des Moduls	<u>Sprache</u>
4	120h	Jedes Semester	2 SWS + 2 SWS Übung	Deutsch

<u>Studienleistung</u>

<u>Prüfungsleistung</u>

50% Klausur (60 min) und 50% Hausarbeit

<u>Modulverantwortlicher</u>	<u>Dozenten</u>
Seeboth	Seeboth; Beck

Qualifikationsziele (Kompetenzen)

Die Studierenden lernen:

- die methodischen Grundlagen des BIM Prozesses anzuwenden,
- die methodischen Unterscheidungen zum klassischen Planungsprozess und sind im Stande die Grundprinzipien der digitalen

Werkzeuge wie bspw. CAD anwenden zu können. Hierzu zählt zum einen, die Erstellung dreidimensionaler Gebäudemodelle, zum anderen, die Ableitung zweidimensionaler Planunterlagen aus dem Gebäudemodell, die fachliche Korrespondenzfähigkeit mit Auftraggebern, Behörden, Fachplanern und Bauunternehmen.

In der Vorlesung werden die folgenden Themen behandelt:

- CAD Schulung mit Festlegung auf einem exemplarischen Softwarepaket.
- Erlernen der dreidimensionalen Planungstools,
- Erzeugen von zweidimensionalen Ableitungen von dreidimensionalen Modellen,
- Ausblick auf einen späteren Datenaustausch (Anknüpfungspunkt für bezüglich BIM im Bereich Baumanagement AVA),
- Nutzung der erzeugten 3D Modelle für die Erzeugung von Türlisten / Massen Datenaustausch (Anknüpfungspunkt bezüglich

BIM im Bereich Baumanagement AVA),

- Die Funktionsweise eines Datenbankmodells in Zusammenhang mit einem Gebäudemodell wird an Beispielübungen erarbeitet Datenaustausch (Anknüpfungspunkt bezüglich BIM im Bereich Baumanagement AVA),
- Die Übungen in diesem Bereich zeugen von einer klaren Ausrichtung für eine spätere integrale Planung nach dem Open BIM

Prinzip und legen den Grundstein um in späteren Modulen anzuknüpfen.

Literaturhinweise

BIM - Das digitale Miteinander - ISBN-10: 9783410273271

Weitere Literaturhinweise finden Sie im Skript zur Vorlesung.

N.N.: Skript Modul Bauinformatik in der jeweils aktuellen Ausgabe

Baukonstruktion

<u>Prüfungsnummer</u>	Buchstabe-Ziffer-Kombination	Studienverlauf BalCE
BaBau/BaICE 800, BaICE 420, BaWI 150, BaWI 140, BaTGM/BaBIM 170	Bauko	Grundstudium

Lehr- und Lernformen

Vorlesung, Übung

Voraussetzungen für die Teilnahme

obligatorisch: keine

wünschenswert: abgeschlossenes Vorpraktikum

Verwendbarkeit

Grundlagen der Konstruktion und Gebäudetypologien für alle Bachelor-Studiengänge

Voraussetzungen für die Vergabe von ECTS-Leistungspunkten

Bestandene Modulprüfung

ECTS-Leistungspun	<u>Arbeitsaufwand</u>	<u>Angebotsturnus</u>	Dauer des Moduls	<u>Sprache</u>
6	180h	Jedes Semester	6 SWS	Deutsch

<u>Studienleistung</u>

Prüfungsvorleistung: Testat (60 min)

<u>Prüfungsleistung</u>

80% Klausur (120min) und 20% Hausarbeit

<u>Modulverantwortlicher</u>	<u>Dozenten</u>
Schober	Chahade; Schober

Qualifikationsziele (Kompetenzen)

Die Studierenden erfassen Tragelemente für Baukonstruktionen und werden befähigt, Gebäude sowohl in ebene als auch

Inhalt

In der Vorlesung werden die folgenden Themen behandelt:

Von der Konstruktion zum Modell

(Einwirkungen, Anforderungen, Kräfte und Lasten, Modellieren von Tragwerken, Auswirkungen)

Ebene Tragsysteme

(Allgemeines, stabförmige Tragsysteme, flächenförmige Tragsysteme)

Räumliche Tragsysteme

(Trägerroste, Raumfachwerke, Faltwerke, einfach gekrümmte Schalen, Rauten-Lamellenkonstruktionen, doppelt

gekrümmte Schalen,

Stabwerksschalen, Hängedachkonstruktionen, Seilnetz-Tragwerke, Membran-Tragwerke, freie Formfindung)

Räumliche Aussteifung und Stabilität

(instabile Systeme, Aussteifungselemente, Wand- und Skelettbau, Aussteifung von Skelettbauten, Aussteifung von

Wandbauten)

Sicherheitskonzept im Bauwesen

(Allgemeines, Einwirkung und Widerstand, Struktur des Nachweiskonzepts, Nachweis der Grenzzustände der Tragfähigkeit und der

Gebrauchstauglichkeit, Bemessungswert der Einwirkungen, vereinfachte Kombinationsregel für den Hochbau)

Einwirkungen auf Tragwerke

(Bestandteile des Eurocode 1 [Stand 2014-07], Eigenlasten nach DIN EN 1991-1-1, Nutzlasten nach DIN EN 1991-1-1.

Schneelasten nach DIN1991-1-3, Windlasten nach DIN EN 1991-1-4)

Grundlagen der technischen Darstellung

(Maßtoleranzen, Modulordnung, Maßordnung, Bauzeichnungen, Maßstabsebenen, Zeichnungsgrößen, Planinhalt und

Schriftfeld, Linienarten und Strichstärken, Ansichten, Schnittebenen, Bemaßung und Beschriftung)

Baustoffe

(Einteilung der Baustoffe, Werkstoffkennlinien, Mauerwerk, Beton – Stahlbeton – Spannbeton, Bindemittel, Stahl, Holz

und Holzwerkstoffe, Glas, Kunststoffe)

Bauphysikalische Grundlagen

(Wärme- und Feuchteschutz, Baulicher Brandschutz, Schallschutz)

Interaktion Bauwerk – Baugrund

(Allgemeines, Gründungen, Baugruben, Fundamentunterfangungen, Wasserhaltung, Arbeitsräume)

Wände

(Mauerwerk aus künstlichen Steinen, Wände aus Beton und Stahlbeton, Wände aus Holz und Holzwerkstoffen, Trennwände)

Decken

(Einwirkungen und Anforderungen an Deckenkonstruktionen, Decken aus Holz, Ebene Massivdecken, Gewölbte

Massivdecken, Unterdecken)

Fußböden

(Fußbodenkonstruktionen, Zwischen- und Ausgleichsschichten, Nutzschichten, Installationssysteme in der Bodenebene, Fußbodenbeläge)

Dächer

(Allgemeines, Dacheindeckungen, Wärmeschutz, Geneigte Dächer, Flachdächer)

Treppen

(Allgemeine Hinweise, Vorschriften, Treppenneigungen, Treppenregeln, Tragprinzipien,

Treppenkonstruktionen)

Literaturhinweise

Literaturhinweise finden Sie im Skript zur Vorlesung. - Schober, K.U.: Skript Modul Baukonstruktionslehre in der jeweils aktuellen Ausgabe

V	0	d	u	lr	าล	m	ne
---	---	---	---	----	----	---	----

Bauphysik

<u>Prüfungsnummer</u>	Buchstabe-Ziffer-Kombination	Studienverlauf BalCE
BaBau/BaICE (PO 2012) 420, BaICE (PO 2015) 220		Grundstudium

Lehr- und Lernformen

Vorlesung mit Hörsaalübungen

Voraussetzungen für die Teilnahme

obligatorisch: -

wünschenswert: Bestandenes Modul Physik

<u>Verwendbarkeit</u>

Massvibau, Holzbau, Stahlbau 1, Umweltschutz

Voraussetzungen für die Vergabe von ECTS-Leistungspunkten

Studienleistung 50% der zu erreichenden Punkte Klausur 50 % der zu erreichenden Punkte

ECTS-Leistungspun	<u>Arbeitsaufwand</u>	<u>Angebotsturnus</u>	Dauer des Moduls	<u>Sprache</u>
5	150h	Jedes Semester	4 SWS	Deutsch

<u>Studienleistung</u>

Testat als Prüfungsvorleistung 1x90min.

Prüfungsleistung

Klausur 120 min.

<u>Modulverantwortlicher</u>	<u>Dozenten</u>
Buchmann	-

Qualifikationsziele (Kompetenzen)

Die Studierenden können (durch Prüfung nachgewiesen)

mit Hilfe von genormten Berechnungsverfahren bauphysikalische Aufgabenstellungen lösen. Insbesondere können sie die schall-, wärme- und feuchte-technischen Eigenschaften eines Bauteils sowie der gesamten Baukonstruktion ermitteln und bewerten.

Inhalt

In der Vorlesung werden die folgenden Themen behandelt:

Schallschutz

• Grundlagen des Schallschutzes

- Schwingungen, Schallwellen, schalltechnische Größen
- Berechnung von Schallpegeln
- Grundlagen der Raumakustik, Sabinesche Formel
- Baulicher Schallschutz
- Luftschalldämmung und Trittschalldämmung
- Schalltechnische Eigenschaften von Bauteilen, Bergersche Massenformel
- Schallausbreitung im Freien, Punkt- und Linienschallquellen
- Bauteilresonanzen, Spuranpassung und Koinzidenzeffekt
- Schalltechnische Eigenschaften von zweischaligen Bauteilen

Wärmeschutz

- Grundlagen des Wärme- und Feuchteschutzes:
- Wärmeübertragung
- Wärmedämmung einzelner Bauteile,
- Nutzung der Solarenergie
- Energieeinsparverordnung
- Bewertung von Wärmedämm-Maßnahmen
- Jahresheizwärmebedarf und Jahresenergiebedarf

Feuchteschutz

- Grundlagen des Feuchteschutzes
- Gasgesetze, Verhalten von idealen Gasen und von Dämpfen
- Feuchtebilanz in Räumen
- Tauwasserbildung an Oberflächen
- Wasserdampfdiffusion
- Tauwasserbildung im Bauteilinnern
- Glaserdiagramm

<u>Literaturhinweise</u>

- Skript zur Vorlesung
- Zenger/Buchmann: Schallschutz
- Zenger/Buchmann: Wärme- und Feuchtelehre
- 10 Übungsblätter mit Musterlösungen in OLAT
- Lutz, Jenisch, Klopfer, Freymuth, Krampf, Lehrbuch der Bauphysik, Teubner Verlag

Baustoffkunde

<u>Prüfungsnummer</u>	Buchstabe-Ziffer-Kombination	Studienverlauf BalCE
BaBau / BaICE (PO 2012) 500, BaICE(PO 2015) 230, BaWI (PO		Grundstudium
2014) 160,BaWI (PO 2016) 150,		

Lehr- und Lernformen

Vorlesung mit Hörsaal- und Praxisübungen

Lehrgebiet: Baustoffkunde

Voraussetzungen für die Teilnahme

obligatorisch: -

wünschenswert: Technische Mechanik 1 und 2, Baukonstruktion

Verwendbarkeit

Bachelor-Studiengänge Bauingenieurwesen, International Civil Engineering, Wirtschaftsingenieur (Bau)

Voraussetzungen für die Vergabe von ECTS-Leistungspunkten

Bestandene Prüfungsleistung: Klausur 120 min

ECTS-Leistungspun	<u>Arbeitsaufwand</u>	<u>Angebotsturnus</u>	Dauer des Moduls	<u>Sprache</u>
4	120h	Jedes Semester	3 SWS + 1 SWS	Deutsch
			Übung	

<u>Studienleistung</u>

<u>Prüfungsleistung</u>

Klausur 120 min.

<u>Modulverantwortlicher</u>	<u>Dozenten</u>
Merle	Hörnel-Metzger

Qualifikationsziele (Kompetenzen)

Nach der Teilnahme an den Modulveranstaltungen

- verfügen die Studierenden über das Wissen und das Verständnis für die sachgerechte Auswahl und Anwendung der Werkstoffe im Bauwesen,
- kennen die Studierenden die Grundlagen für eine gezielte Optimierung der Materialien,
- können die Studierenden die geeigneten Materialien anwendungsbezogen auswählen und entsprechend den Anforderungen an ihre Eigenschaften einsetzen, sind die Studierenden in der Lage, die Eignung der Werkstoffe für spezifische Anwendungsbereiche zu begründen sowie deren mechanischen oder bauphysikalischen Eigenschaften zu beurteilen und ihre Qualität zu prüfen.

In der Vorlesung werden die folgenden Themen behandelt:

- Grundlagen der Bauchemie,
- Aufbau, Struktur und Herstellung von Werkstoffen
- Maßsysteme,
- Kurzzeichen von Materialien
- Handelsformen
- Mechanische und bauphysikalische Werkstoffeigenschaften
- Langzeitverhalten
- Chemische Beständigkeit
- Materialien:
- Beton
- Metallische Werkstoffe (Stahl, Aluminium)
- Korrosionsschutzsysteme
- Estriche und Mauer- und Putzmörtel
- Glas
- (Holz und Holzwerkstoffe: Siehe Modul Baukonstruktion)
- Kunststoffe (z.B. Dämmstoffe)
- (Mauerwerk, künstliche Steine: Siehe Modul Baukonstruktion)
- Qualitätsmerkmale
- Prüfverfahren
- Bedeutung der Prüfzeichen
- Statistische (Versuchs-)Auswertungen

- Grübl, P.; Weigler, H.; Karl, S.: Beton Arten, Herstellung und Eigenschaften
- König, G.; Dehn, F.; Marzahn, G.: Konstruktionswerkstoffe im Bauwesen

Hydromechanik

<u>Prüfungsnummer</u>	Buchstabe-Ziffer-Kombination	Studienverlauf BalCE
BaBau/BalCE (PO 2012) 310, BalCE (PO 2015) 150	Hydro	Grundstudium

Lehr- und Lernformen

Vorlesung mit Hörsaalübungen

Voraussetzungen für die Teilnahme

Obligatorisch: keine

Wünschenswert: erfolgreiche Teilnahme an den Modulen "Physik" und "Mathematik 1", Teilnahme an dem Modul "Technische Mechanik I"

Verwendbarkeit

Im Studienverlauf von besonderer Bedeutung für die Module "Wasser- und Abfallwirtschaft", "Wasserbau und Wasserwirtschaft", "Siedlungswasserwirtschaft 1" und "Siedlungswasserwirtschaft 2", "Fachübergreifendes Projekt" und "Wasser-Abfall-Projekt".

Voraussetzungen für die Vergabe von ECTS-Leistungspunkten

Bestehen der Studienleistung und der Klausur

5 Jedes Semester 4 SWS + 1 SWS Deutsch	ECTS-Leistungspun	<u>Arbeitsaufwand</u>	<u>Angebotsturnus</u>	Dauer des Moduls	<u>Sprache</u>
Obalig	5	180h	Jedes Semester	4 SWS + 1 SWS Übung	Deutsch

<u>Studienleistung</u>

Prüfungsvorleistung: Leistungsüberprüfung während des Semesterfortschritt. Zum Bestehen der Prüfungsvorleistung als Bedingung für das Ablegen der Prüfungsleistung sind 50% der vergebenen Gesamtpunkte zu erreichen (1 x 90 min)

<u>Prüfungsleistung</u>

Klausur 120 min.

<u>Modulverantwortlicher</u>	<u>Dozenten</u>
Mai	-

Qualifikationsziele (Kompetenzen)

Die Studierenden können die grundlegenden Gesetzmäßigkeiten der Hydromechanik mathematisch beschreiben. Die Studierenden verstehen es hydromechanischen Problemen die zur Lösung nötigen Gesetzmäßigkeiten zuzuordnen. Mit Hilfe der vermittelten Grundlagen und Verfahren der Hydromechanik können die Studierenden hydromechanische Aufgabenstellungen lösen.

Inhalt

In der Vorlesung werden die folgenden Themen behandelt:

- 1. Grundlagen
- Begriffe, Formelzeichen, Maßeinheiten
- Physikalische Eigenschaften des Wassers

Freitag, 18. März 2022 Seite 13 von 56

- 2. Hydrostatik
- Theorie
- Druck und Kraft auf ebene Flächen
- Druck und Kraft auf gekrümmte Flächen
- Auftrieb und Schwimmstabilität
- 3. Hydrodynamik
- Grundlagen
- Impulssatz
- Energiegleichung
- Rohrströmung, Rohrhydraulik
- Gerinneströmung
- Wehrüberfall
- Ausfluss

In der Übung werden die in der Vorlesung aufgeführten Themen anhand von Aufgaben vertieft dargestellt. Es werden Lösungsverfahren für verschiedene Fragestellung mit den Studierenden erarbeitet bzw. diesen erläutert.

- Unser, K.: Hydromechanik, Shaker Verlag Aachen, 2013
- Freimann, R.: Hydraulik für Bauingenieure, Carl Hanser Verlag, 2014
- Preser, F.: Klausurtrainer Hydromechanik für Bauingenieure, Vieweg+Teubner, 2011
- Strybny, J.: Ohne Panik Strömungsmechanik, Vieweg+Teubner Verlag, 2012

Mathematik 1

<u>Prüfungsnummer</u>	Buchstabe-Ziffer-Kombination	Studienverlauf BalCE
BaBau/BaICE 110		Grundstudium

Lehr- und Lernformen

Vorlesung mit Hörsaalübungen, Gruppenübung

Voraussetzungen für die Teilnahme

obligatorisch: -

wünschenswert: Mathematik bis zur Fachhochschulreife

Verwendbarkeit

Die Mathematik 1 bildet die Grundlage für baukonstruktive und baubetriebliche Fächer im Kern- und Vertieferstudium.

Voraussetzungen für die Vergabe von ECTS-Leistungspunkten

Klausur 50 % der Punkte

ECTS-Leistungspun	<u>Arbeitsaufwand</u>	<u>Angebotsturnus</u>	Dauer des Moduls	<u>Sprache</u>
6	180h	Jedes Semester	4 SWS + 1 SWS Übung	Deutsch

<u>Studienleistung</u>

<u>Prüfungsleistung</u>

Klausur 180 min.

<u>Modulverantwortlicher</u>	<u>Dozenten</u>			
Buchmann	Witt			
0				

Qualifikationsziele (Kompetenzen)

Die Studierenden können (durch Prüfung nachgewiesen):

- Für eine Funktion Definition und Wertebereich, Nullstellen, Polstellen und Lücken definieren und ihren Verlauf abschätzen,
- Extremwertaufgaben lösen,
- Integrale mit einer Variablen aufstellen und lösen,
- Differentialgleichungen 1. und 2. Ordnung lösen.

In der Vorlesung werden die folgenden Themen behandelt:

- Folgen und Reihen
- Grenzwerte und Stetigkeit von Funktionen
- Methoden der Differentialrechnung und ihre Anwendungen
- Kurvendiskussion und Extremwertprobleme
- Methoden der Integralrechnung und ihre Anwendungen
- Unbestimmtes und bestimmtes Integral
- Integrationsregeln, Flächen- und Volumenberechnung
- Verfahren der numerischen Integration
- Einfache Differentialgleichungen und ihre Lösungen
- Funktionenreihen, Taylorreihen

- Skript zur Vorlesung
- Übungsaufgaben in OLAT
- Arnfried Kemnitz, Mathematik zum Studienbeginn, Springer Verlag

Mathematik 2

<u>Prüfungsnummer</u>	Buchstabe-Ziffer-Kombination	Studienverlauf BalCE
BaBau/BalCE 120		Grundstudium

Lehr- und Lernformen

Lehrgebiet Mathematik (Lineare Algebra)/Numerische Mathematik: Vorlesung 4 SWS, Übung 1 SWS

Voraussetzungen für die Teilnahme

obligatorisch: -

wünschenswert: Mathematik bis zur Fachhochschulreife, Mathematik 1

Verwendbarkeit

Die Grundlagen und Verfahren der Mathematik 2 bilden eine wesentliche Voraussetzung für eine erfolgreichen Abschluß der baufachlichen Vertiefungsfächer.

Voraussetzungen für die Vergabe von ECTS-Leistungspunkten

Bestandene Klausur

ECTS-Leistungspun	<u>Arbeitsaufwand</u>	<u>Angebotsturnus</u>	Dauer des Moduls	<u>Sprache</u>
6	180h	Jedes Semester	3 SWS + 2 SWS Übung	Deutsch

<u>Studienleistung</u>

Prüfungsleistung

Klausur 180 min

Lineare Algebra, Gewicht: 3/4; Numerische Mathematik, Gewicht: 1/4

<u>Modulverantwortlicher</u>	<u>Dozenten</u>
Buchmann	Buchmann

Qualifikationsziele (Kompetenzen)

Die Studierenden können (durch Prüfung nachgewiesen):

• Lineare Algebra

Die Studierenden haben die Grundlagen und Methoden der analytischen Geometrie und linearen Algebra (siehe Modulinhalte) erlernt und können (durch Prüfung nachgewiesen) die vermittelten Verfahren bei der Lösung ingenieurwissenschaftlicher Probleme anwenden.

• Numerische Mathematik:

Die Studierenden können allgemein formulierte Ingenieuraufgaben in rechenbare Algorithmen umsetzen und mit gewünschter Genauigkeit lösen. Außerdem können sie Rechenergebnisse auf Plausibilität und Fehlerempfindlichkeit überprüfen.

In der Vorlesung werden die folgenden Themen behandelt:

Lineare Algebra

- Reelle Vektorräume
- Vektorrechnung und analytische Geometrie
- Geraden und Ebenen im Raum
- Linearkombination und lineare Unabhängigkeit von Vektoren
- Basis und Dimension eines Vektorraums
- Gram-Schmidt-Orthonormierungsverfahren
- Matrizen, Determinanten, Inverse Matrix
- Lineare Gleichungssysteme und Cramersche Regel
- Basis- und Koordinatentransformationen
- Lineare Abbildungen
- Kern und Rang einer linearen Abbildung
- Allgemeine lineare Gleichungssysteme
- Eigenwerte und Eigenvektoren
- Matrixdiagonalisation

Numerische Mathematik:

- Fehler und Fehlerfortpflanzung
- Iterative Lösung algebraischer Gleichungen (Newton-Verfahren)
- Lösungsverfahren für Lineare Gleichungssysteme (Gaussalgorithmus)
- Numerische Differentiation
- Lösung gewöhnlicher Differentialgleichungen (Euler-Verfahren)
- Numerische Integration (Simpson Verfahren)
- Numerische Berechnung von Eigenwerten und Eigenvektoren

- L. Papula, Mathematik f
 ür Ingenieure und Naturwissenschaftler, Bd2, Vieweg-Teubner Verlag
- · P. Gramlich, Lineare Algebra, Hauser Verlag

۷	1	0	d	u	lr	าล	n	ne	١
---	---	---	---	---	----	----	---	----	---

Physics

<u>Prüfungsnummer</u>	Buchstabe-Ziffer-Kombination	Studienverlauf BalCE
BalCE		Grundstudium

Lehr- und Lernformen

Lecture

Voraussetzungen für die Teilnahme

obligatorisch: -

wünschenswert: High school level physics

Verwendbarkeit

Physics is the foundation of most civil engineering subjects. This applies in particular to building physics, and structural enigneering

Voraussetzungen für die Vergabe von ECTS-Leistungspunkten

Passed midterm and final exams 50% of total points

ECTS-Leistungspun	<u>Arbeitsaufwand</u>	<u>Angebotsturnus</u>	Dauer des Moduls	<u>Sprache</u>
4	120h	each Semester	4 SWS	English

<u>Studienleistung</u>

Midterm exam (60 min)

<u>Prüfungsleistung</u>

Written Final exam 120 min

<u>Modulverantwortlicher</u>	<u>Dozenten</u>
Buchmann	Buchmann

Qualifikationsziele (Kompetenzen)

Students are able to describe and analyze various physical phenomena using the principals and laws of Newtonian mechanics. Furthermore, based on these principles and laws they can solve physical problems in mechanics.

Inhalt

The lecture Physics (Mechanics) covers the following topics:

Kinematics

- Coordinate systems and vectors
- Velocity and acceleration
- Superposition of motions, projectile motion
- Translational- and rotational motions

Dynamics

- Newton's laws
- Mechanical forces
- Force and torque equilibrium
- Stress and pressure
- Hooke's law and elastic oscillations
- Mechanical work, energy, and power
- Energy conservation law
- Linear momentum and linear momentum conservation
- Angular momentum and angular momentum conservation

Mechanical properties of materials

- Density, raw density, bulk density
- Tensile stress, pressure, shearing stress
- Stress-strain diagram, modulus of elasticity E
- Shear modulus G
- Transverse contraction, Poisson number
- Relation between elastic constants

- lecture notes: Physics 1 (Mechanics)
- 10 problem sheets with solution on OLAT
- Pearson, Boston, 2015
- Fundamentals of Physics, Wiley, Hoboken, 2013

Technische Mechanik 1

<u>Prüfungsnummer</u>	Buchstabe-Ziffer-Kombination	Studienverlauf BalCE
BaBau/BalCE (PO 2012) 210, BalCE (PO 2015) 130, BaWI 110	TM1	Grundstudium

Lehr- und Lernformen

Vorlesung und Hörsaalübung

Voraussetzungen für die Teilnahme

obligatorisch: Mathematisches und physikalisches Grundverständnis wünschenswert: -

Verwendbarkeit

Die Inhalte des Moduls behandeln Themen der Mechanik und bilden die Grundlage für die Technische Mechanik 2, Baustatik sowie die Veranstaltungen Stahlbau, Massivbau, Holzbau und das Fachübergreifende Projekt.

Voraussetzungen für die Vergabe von ECTS-Leistungspunkten

75% Anwesenheit in den Übungen, zwei schriftliche Testate Prüfungsleistung: Klausur 140 min.

ECTS-Leistungspun	<u>Arbeitsaufwand</u>	<u>Angebotsturnus</u>	Dauer des Moduls	<u>Sprache</u>
6			4 SWS + 1 SWS Übung	Deutsch

<u>Studienleistung</u>

75% Anwesenheit in den Übungen, zwei schriftliche Testate (2 x 60 min)

<u>Prüfungsleistung</u>

Klausur 140 min.

<u>Modulverantwortlicher</u>	<u>Dozenten</u>
Merle	-

Qualifikationsziele (Kompetenzen)

Die Studierenden besitzen die Fähigkeit, reale Konstruktionen in mechanische Modelle zu überführen. An den Modellen können die Studierenden die Wirkung von Kräften mechanisch beschreiben. Sie besitzen die Fähigkeit, Kraftzustände zu analysieren und in äquivalente Zustände zu überführen. Darüberhinaus können Sie den Kraftfluss innerhalb des Modells anhand der Schnittgrößen berechnen und beurteilen. Sie sind in der Lage den Gleichgewichtszustand eines Systems zu bewerten und abzuleiten. Sie können dabei alternative Lösungsverfahren anwenden. Die Studierenden können die verschiedenen Tragwerkselemente erkennen, unterscheiden und hinsichtlich ihres Tragverhaltens bewerten. Des weiteren können sie die Brauchbarkeit von statischen Systemen hinsichtlich der Freiheitsgrade in der Ebene bewerten. Durch die Arbeit in den Übungen sind die Studierenden in der Lage, koordiniert in einer Gruppe zu arbeiten. Der Umgang mit dezidiertem Feedback und das eigenständige Studium sowie Selbstreflexion werden geschult und weiterentwickelt.

In der Vorlesung werden die folgenden Themen behandelt:

- Physikalische Größen
- Vektorrechnung mit Kraft- und Momentenvektoren
- Zentrale und allgemeine Kraftsysteme
- Gleichgewicht des starren Körpers und Gleichgewichtsbedingungen
- Modellbildung, Auflagerbedingungen und Übergangsbedingungen
- Auflagerreaktionen und Verbindungskräfte mit Hilfe der Gleichgewichtsbedingungen
- Bestimmung der statischen Bestimmtheit
- Auflagerreaktionen und Stabkräfte in Fachwerken, Rahmen und Bögen
- Schwerpunkte von Kraftgruppen, Kraftfunktionen, Körpern, Flächen und Linien
- Ermittlung von Stabkräften mittels Schnittprinzip und Integration an statisch bestimmten Systemen
- Arbeitssatz
- Haftung und Reibung

- Skript zur Vorlesung Technische Mechanik 1, Heiko Merle, aktuelle Fassung
- Technische Mechanik 1 Statik, Dietmar Gross et al., Springer Vieweg, aktuelle Auflage

Technische Mechanik 2

<u>Prüfungsnummer</u>	Buchstabe-Ziffer-Kombination	Studienverlauf BalCE
BaBau/BaICE (PO 2012) 220, BaICE (PO 2015) 140, BaWI 120	TM2	Grundstudium

Lehr- und Lernformen

Vorlesung mit Hörsaalübung, freiwillige Tutorien

Voraussetzungen für die Teilnahme

obligatorisch: -

wünschenswert: bestandene Module Mathematik 1, Technischne Mechanik 1

Verwendbarkeit

Grundlagenmodul aller Ingenieurwissenschaften und Denkschule. Im Bauingenieurwesen insbesondere Anwendung im Konstruktiven Ingenieurbau. Teilweise von Bedeutung für den Baubetrieb sowie den Bereich Wasser und Umwelt.

Voraussetzungen für die Vergabe von ECTS-Leistungspunkten

Bestandene Prüfungsvorleistung: 2 Tests (90 Minuten/Test) Bestandene Klausur (180 Minuten)

ECTS-Leistungspun	<u>Arbeitsaufwand</u>	<u>Angebotsturnus</u>	Dauer des Moduls	<u>Sprache</u>
6	180h	Jedes Semester	4 SWS + 1 SWS Übung	Deutsch
			J	

<u>Studienleistung</u>

Testat als Prüfungsleistung (2 x 90 min)

<u>Prüfungsleistung</u>

Klausur 180 min.

<u>Modulverantwortlicher</u>	<u>Dozenten</u>
Neujahr	-

Qualifikationsziele (Kompetenzen)

Die Studierenden können (durch Prüfung nachgewiesen):

- Verformungen und Kräfte in Stäben mit Hilfe der Differentialgleichung ermitteln.
- · Verformungsmöglichkeiten (Freiheitsgrade) von Stabsystemen erkennen und darstellen.
- Symmetrische und antimetrische Freiheitsgrade in symmetrischen Systemen erkennen und darstellen.
- Verformungen und Kräfte in statisch bestimmten und statisch unbestimmten Stabsystemen ermitteln.
- Mechanische Schaltungen in Stabsystemen identifizieren und Ersatzfedersteifigkeiten bestimmen.
- Eindimensionale-, zweidimensionale- (ebene) und dreidimensionale Spannungszustände unterscheiden.
- Ebene Spannungszustände rechnerisch und graphisch (Kreis von Mohr) transformieren und darstellen.
- Hauptspannungen und Hauptschubspannungen eines ebenen Spannungszustands ermitteln und darstellen.
- Ebene Verzerrungszustände rechnerisch und graphisch (Kreis von Mohr) transformieren und darstellen.
- Hauptdehnungen und Hauptgleitungen eines ebenen Verzerrungszustands ermitteln und darstellen.

- Verzerrungen aus Verschiebungen und Verschiebungen aus Verzerrungen ermitteln.
- Statische-, kinematische und gekoppelte Randbedingungen eines räumlichen Körpers definieren.
- Einfache Spannungs- und Verzerrungszustände aus dem räumlichen Werkstoffgesetz ermitteln.
- Geeignete Festigkeitshypothesen üblichen Werkstoffen des Bauwesens zuordnen und diese anwenden.
- Querschnittswerte des schubstarren Balkens für die vier Starrkörperverformungen des Querschnitts ermitteln.
- Spannungen und Dehnungen in schubstarren Balken aus gegebenen Kraftgrößen ermitteln.
- Verformungen und Kraftgrößen in schubstarren Balken mit Hilfe der Differentialgleichung bestimmen.
- Verformungen in Stab-Balken-Systemen mit Hilfe des Prinzips der virtuellen Kräfte berechnen.
- Verformungen und Kraftgrößen in schubstarren Balken mit Hilfe der Differentialgleichung bestimmen.
- Mechanische Schaltungen in Stab-Balken-Systemen identifizieren und Ersatzfedersteifigkeiten bestimmen.
- Knicklängen und Knickkräfte (Eigenwerte) einfacher Stab-Balken-Systeme anschaulich mit Knickfiguren ermitteln.
- Knickkräfte und Knickfiguren einfacher Stabsysteme mit dem Prinzip vom Minimum des Gesamtpotentials ermitteln.

In der Lehrveranstaltung werden die folgenden Themen behandelt:

- 1. Stab
- Werkstoffverhalten bei einachsiger Beanspruchung.
- Konstitutive Beziehungen: Werkstoffgesetz, Federgesetz des Querschnitts und des Stabs.
- Kinematische Annahmen der Theorie des Stabs.
- Differentialgleichung des Stabs (Längung).
- Lösung der DGL: Statische, kinematische und gekoppelte Randbedingungen.
- 2. Stabsysteme
- Statische und kinematische Annahmen.
- Kinematik, Pole.
- Freiheitsgrade und lineare Abhängigkeit.
- Mechanische Parallelschaltung und Reihenschaltung.
- Steifigkeit und Steifigkeitsmatrix.
- Verformungen und Kräfte infolge einwirkender Kraftgrößen und Temperaturänderung.
- 3. Kontinuumsmechanik
- Spannungsvektor und Spannungstensor.
- Rechnerische und graphische Transformation von Spannungen, Hauptspannungen, Hauptschubspannungen.
- Verschiebungsvektor und Verzerrungstensor.
- Rechnerische und graphische Transformation von Verzerrungen, Hauptdehnungen, Hauptgleitungen.
- Werkstoffgesetz des isotropen Werkstoffs.
- 4 Balken
- Definition kinematische Annahmen (Bernoulli-Hypothesen) der Theorie des schubstarren Balkens.
- Konstitutive Beziehung (Federgesetz) des Querschnitts
- Querschnittsentkopplungswerte: Schwerpunkt, Hauptachsen, Schubmittelpunkt, Durchschnittswölbung.
- Querschnittswerte: Fläche, statische Momente, Trägheitsmomente, Deviationsmomente, Wölbträgheitsmoment, Flächentorsionsmomente, Torsionsträgheitsmoment.
- Differentialgleichungen des Balkens (Biegung, Torsion), Analogie Längung/Biegung und Schub-/Wölbtorsion
- Lösung der DGL'n: Statische, kinematische und gekoppelte Randbedingungen.
- 5. Arbeit und Potential (Energie)
- Definition der Eigenarbeit und der Verschiebearbeit.
- Arbeitssatz elastischer Systeme.
- Prinzip der virtuellen Kräfte: Berechnung von Verschiebungen, Verdrehungen und Federsteifigkeiten.
- Prinzip der virtuellen Verrückung: Aufstellen der Gleichgewichtsbedingungen.
- Prinzip vom Minimum des Gesamtpotentials: Ermittlung von Systemgleichungen/Stabilitätsbedingungen einfacher Stabsysteme.
- 6. Einführung in die Stabilität der Tragwerke
- Einführendes Beispiel
- Begriffe: Differentialgleichung, Systemgleichung, Eigenwertproblem, Eigenwert (Knickkraft), Eigenform (Knickfigur, Knicklänge), Theorie II. Ordnung und zugehöriges Spannungsproblem.
- Balken: Eulerfälle, Knicklängen und Knickkräfte.
- Balkensysteme: Knickfiguren, Knicklängen und Knickkräfte einfacher Systeme.
- Stabsysteme: Systemgleichungen, Eigenwertproblem, Knickkraft, Knickfigur einfacher Systeme

- Gross, Hauger et.al.: Technische Mechanik 1, Statik, Springer Verlag.
- Gross, Hauger et.al.: Formeln und Aufgaben zur Technischen Mechanik 1, Springer Verlag.
- Gross, Hauger et.al.: Technische Mechanik 2, Elastostatik, Springer Verlag.
- Gross, Hauger et.al.: Formeln und Aufgaben zur Technischen Mechanik 2, Springer Verlag.
- Hornbogen, Eggeler, Werner: Werkstoffe, Aufbau und Eigenschaften, Springer Verlag.
- Papula: Mathematik für Ingenieure und Naturwissenschaftler, Band 1, Analysis, Vieweg Verlag.
- Papula: Mathematik für Ingenieure und Naturwissenschaftler, Band 2, Lineare Algebra, Vieweg Verlag.
- Papula: Mathematik für Ingenieure und Naturwissenschaftler, Klausur- und Übungsaufgaben, Vieweg Verlag.

<u>Modulname</u>				
Traffic Infrastructures				
	_		_	
<u>Prüfungsnummer</u>	Buc	hstabe-Ziffer-Kombina	studienverla	uf BalCE
			Grundstudiun	n
Lehr- und Lernforme	en			
Lecture and Exercises				
V	a dia Tailmahasa			
Voraussetzungen für obligatorisch: Completio		es is desirable		
wünschenswert: A suc				
<u>Verwendbarkeit</u>				
· · · · · · · · · · · · · · · · · · ·		E0T0 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1		
Voraussetzungen full Passed exam and appro		ECTS-Leistungspunkte	<u>en</u>	
r asseu exam and appro	wed Seminal Work			
ECTS-Leistungspun		<u>Angebotsturnus</u>	Dauer des Moduls	<u>Sprache</u>
4	120h	Winter Semester	4 SWS	English
Studienleistung				
Study work				
Duitfus salaiatus s				
<u>Prüfungsleistung</u> Written Exam 120 mir	.			
Willen Exam 120 mil	l			
Modulverantwortlich	<u>er</u>	<u>Dozente</u>	<u>n</u>	
Hess		-		
<u>Qualifikationsziele (I</u>				
Students are able to (pro	oven by exam):			

Field of Road Design

• Students hold basic knowledge about planning processes and road design. They are able to design highways and motorways in horizontal, vertical and 3D alignment as well as cross sections in detail and to perform the related calculations (axis and gradients). They should be able to design interchanges and intersections.

Field of Traffic Planning

• Students are able to analyse traffic planning tasks and develop traffic concepts. They are furthermore able to prepare and to perform each step to fulfil the necessary verifications in the dimensioning process for road traffic infrastructures.

During the lecture the following topics are presented:

Field of Road Design

- Planning principles and processes
- Network design
- Basics in driving dynamics
- Horizontal and vertical alignment, design of cross sections
- 3D alignment
- Interchange and intersection design

Field of Traffic Planning

- Planning methodology
- Traffic census, traffic count
- Traffic prognosis
- Principles of traffic flow
- Capacity and level of service of roads
- Design according to the German HBS

- Richtlinien für die Anlage von Landstraßen (RAL), FGSV Nr. 201, FGSV-Verlag, Köln
- Handbuch für die Bemessung von Straßenverkehrsanlagen (HBS), FGSV Nr. 299, FGSV-Verlag, Köln

Vermessungskunde

<u>Prüfungsnummer</u>	Buchstabe-Ziffer-Kombination	Studienverlauf BalCE
BaBau/BalCE (PO 2012) 900, BalCE (PO 2015) 430, BaTGM 410	Vermk	Grundstudium
24.02 (1 0 2010) 100; 24.0.III 110		

Lehr- und Lernformen

Vorlesung mit anschließender Messübung in Gruppenarbeit Einweisung zur Bedienung der Messinstrumente mit praktischem Einsatz

Voraussetzungen für die Teilnahme

obligatorisch: Bestandenes Modul Physik

wünschenswert: Bestandenes Modul Mathematik 1

Verwendbarkeit

Pflichtmodul im Studiengang Bauingenieurwesen sowie im Studiengang International Civil Engineering

Voraussetzungen für die Vergabe von ECTS-Leistungspunkten

Regelmäßige Teilnahme an den Messübungen und bestandene Prüfungsleistung

4 Jedes Semester 2 SWS + 2 SWS Deutsch Übung	ECTS-Leistungspun	<u>Arbeitsaufwand</u>	<u>Angebotsturnus</u>	Dauer des Moduls	Sprache
	4	120h	Jedes Semester		Deutsch

<u>Studienleistung</u>

Eigenständige Leistung: Übungsausarbeitung

<u>Prüfungsleistung</u>

60% Klausur (90 min) und 40% Hausarbeit

<u>Modulverantwortlicher</u>	<u>Dozenten</u>	
Küchler	Vogt	
0		

Qualifikationsziele (Kompetenzen)

Die Studierenden können (durch Prüfung nachgewiesen):

- Die Studierenden sollen mit den für die Tätigkeit als Bauingenieur/in erforderlichen Verfahren der Vermessungskunde vertraut gemacht und zu deren Anwendung im Rahmen praxisorientierter Aufgaben befähigt werden. Diese Ziele werden erreicht durch Vorlesung, Vorlesungsbegleitende Hörsaalübungen und praktische Feldübungen.
- Die Studierenden werden dadurch in die Lage versetzt, die im Bauwesen anfallenden alltäglichen Vermessungsarbeiten eigenständig durchzuführen und auszuwerten. Die Studierenden sollen in der Lage sein, die Leistungsfähigkeit der verschiedenen Vermessungsverfahren generell zu beurteilen und qualifizierte Kommunikation mit vermessungstechnischen Fachleuten zu führen.
- Durch die Gruppenarbeit werden Teamfähigkeit, Kommunikation und soziale Kompetenzen gefördert.

In der Vorlesung werden die folgenden Themen behandelt:

- Lagemessung und Absteckungen
- Verfahren der Höhenmessung
- Geometrisches Nivellement
- Trigonometrische Höhenmessung
- Koordinatensysteme
- Verfahren der Lagemessung mit Theodolit / Tachymeter
- Koordinatenbestimmung
- Polygonzug
- Topografische Geländeaufnahme
- Grundlagen der Punktbestimmung mit GPS
- Grundlagen der Kartographie und Geoinformatik

- Albert, W.: Skript zur Vorlesung
- Witte / Schmidt: Vermessungskunde und Grundlagen der Statistik für das Bauwesen
- Schütze / Engler / Weber: Lehrbuch Vermessung –Grundwissen
- Matthews: Vermessungskunde Teil 1 und 2
- Groß: Vermessungstechnische Berechnungen

Baustatik 1

<u>Prüfungsnummer</u>	Buchstabe-Ziffer-Kombination	Studienverlauf BalCE
BaBau/BalCE (PO 2012) 2010, BalCE (PO 2015) 610	Statik 1	Kernstudium

Lehr- und Lernformen

Vorlesung mit integrierten Hörsaalübungen

Voraussetzungen für die Teilnahme

obligatorisch: Solide Kenntnisse in Mathematik, technischer Mechanik und Baustoffkunde wünschenswert: Bestandene Prüfungsleistungen in Technische Mechanik 1+2

Verwendbarkeit

Die Vorlesung und die zugehörigen Übungen bauen insbesondere auf den Kenntnissen der Technischen Mechanik 1 auf. Die Baustatik bildet die Grundlage für alle weiteren konstruktiven Fachdisziplinen des Bauingenieurwesens.

Voraussetzungen für die Vergabe von ECTS-Leistungspunkten

Bestandene Klausur

ECTS-Leistungspun	<u>Arbeitsaufwand</u>	<u>Angebotsturnus</u>	Dauer des Moduls	<u>Sprache</u>
5	150h	Jedes Semester	3 SWS + 1 SWS Übung	Deutsch

<u>Studienleistung</u>

<u>Prüfungsleistung</u>

Klausur 180 min.

<u>Modulverantwortlicher</u>	<u>Dozenten</u>
Garg	Loh

Qualifikationsziele (Kompetenzen)

Die Studierenden können (durch Prüfung nachgewiesen):

- Tragwerke, Baustoffe und Einwirkungen für baustatische Berechnungen idealisieren
- Auflagerkräfte, Schnittgrößen und Verformungen für statisch bestimmte und statisch unbestimmte Stabtragwerke unter verschiedenen Belastungen berechnen und die Ergebnisse auf Plausibilität prüfen
- Einflusslinien für Kraftgrößen an statisch bestimmten Systemen erstellen und auswerten

Inhalt

In der Vorlesung werden die folgenden Themen behandelt:

- Historische Entwicklung und Aufgaben der Baustatik
- Tragwerksmodelle, Lager und Verbindungen, Werkstoffe, Einwirkungen und deren Idealisierung für die baustatische Berechnung
- Gleichgewicht am Gesamtsystem und an Teilsystemen von Stabtragwerken
- Ermittlung von Schnittkraftlinien an Stabtragwerken mit dem Schnittprinzip; Zusammenhänge von Schnittkraftlinien; Superpositionsprinzip
- Prinzip der virtuellen Kräfte (PdvK) Ermittlung von Verformungen an statisch bestimmten Stabtragwerken; Verformungsfiguren
- Statische Unbestimmtheit und Brauchbarkeit von Systemen
- Kraftgrößenverfahren (KGV) Ermittlung von Schnittkraftlinien an einfach oder mehrfach statisch unbestimmten Stabtragwerken; Kontrolle der Berechnungen
- Reduktionssatz Ermittlung von Verformungen an statisch unbestimmten Stabtragwerken; Verformungsfiguren
- Ermittlung von Einflusslinien für Kraftgrößen an statisch bestimmten Systemen unter Anwendung der statischen und der kinematischen Methode; Interpretation und Auswertung von Einflusslinien
- Software für die Berechnung von Stabtragwerken

- Dinkler, D.: Grundlagen der Baustatik Modelle und Berechnungsmethoden für ebene Stabtragwerke, 4. Auflage 2016,
 Springer Vieweg Verlag.
- Dallmann, R.: Baustatik 1 Berechnung statisch bestimmter Tragwerke, 5. Auflage 2015, Carl Hanser Verlag, München.
- Dallmann, R.: Baustatik 2 Berechnung statisch unbestimmter Tragwerke, 4. Auflage 2015, Carl Hanser Verlag, München.
- Bletzinger, K.-U. et al.: Aufgabensammlung zur Baustatik Übungsaufgaben zur Berechnung ebener Stabtragwerke, 2015, Carl Hanser Verlag, München.

Baustatik 2

<u>Prüfungsnummer</u>	Buchstabe-Ziffer-Kombination	Studienverlauf BalCE
BaBau/BaICE (PO 2012) 2020, BaICE (PO 2015) 620	BS2	Kernstudium

Lehr- und Lernformen

Vorlesung mit Hörsaalübung, freiwillige Tests

Voraussetzungen für die Teilnahme

obligatorisch: -

wünschenswert: Bestandene Module Mathematik 1, Mathematik 2, Technische Mechanik 1, Technische Mechanik 2, Baustatik 1

Verwendbarkeit

Grundlagenmodul des konstruktiven Ingenieurbaus und Denkschule. Im Bauingenieurwesen aber auch von Bedeutung für den Baubetrieb, die Verkehrsplanung, den Wasserbau und die Siedlungswasserwirtschaft.

Voraussetzungen für die Vergabe von ECTS-Leistungspunkten

Bestandene Klausur (180 Minuten)

ECTS-Leistungspun	<u>Arbeitsaufwand</u>	<u>Angebotsturnus</u>	Dauer des Moduls	<u>Sprache</u>
5	150h	Jedes Semester		Deutsch
			Ubung	

<u>Studienleistung</u>

Prüfungsleistung

Klausur 180 min.

<u>Modulverantwortlicher</u>	<u>Dozenten</u>
Neujahr	-

Qualifikationsziele (Kompetenzen)

Die Studierenden können (durch Prüfung nachgewiesen):

- Die Unterschiede zwischen der direkten Steifigkeitsmethode und dem Drehwinkelverfahren benennen.
- Konstitutive Beziehungen für Stäbe und Balken basierend auf den entsprechenden Differentialgleichungen herleiten.
- Den Einfluss einer elastischen Bettung auf das Trag- und Verformungsverhalten eines Stabs und eines Balkens abschätzen.
- Die Genauigkeit von Finiten-Elementen abschätzen und eine sinnvolle Elementeinteilung für die Berechnung eines Systems mit diesen Elementen festlegen.
- Die Anzahl der Freiheitsgrade ebener und einfacher räumlicher Systeme bestimmen und sinnvolle Freiheitsgrade eindeutig skizzieren.
- Kinematische Beziehungen, konstitutive Beziehungen und Gleichgewichtsbedingungen als Grundgleichungen aufstellen und Systemgleichungen ebener und einfacher räumlicher Systeme formal herleiten.

- Systemgleichungen ebener und einfacher räumlicher Systeme anschaulich aus den Freiheitsgraden herleiten.
- Weggrößen ebener und einfacher räumlicher Systeme ermitteln, Kraftgrößen (Schnittgrößen) der Systeme aus den Weggrößen rückrechnen und die Verläufe der Kraftgrößen darstellen.
- Gleichgewichtsbedingungen sicher zur Berechnung von Lagerreaktionen und Schnittgrößen ebener und einfacher räumlicher Systeme anwenden.
- Den Schubmittelpunkt von Aussteifungssystemen des Hochbaus für reine Balkensysteme (Wände) und reine Schubstabsysteme (Rahmen, Fachwerke) bestimmen.
- Systemgleichungen von Aussteifungssystemen des Hochbaus für reine Balkensysteme (Wände), reine Schubstabsysteme (Rahmen, Fachwerke) und kombinierte Systeme bestimmen.
- Weggrößen vorgenannter Aussteifungssysteme ermitteln, Kraftgrößen (Schnittgrößen) der Systeme aus den Weggrößen und Gleichgewichtsbedingungen ermitteln und die Verläufe der Kraftgrößen darstellen.
- Für vorgenannte Systeme die Auswirkungen unterschiedlicher Randbedingungen und Steifigkeitsverhältnisse auf die Weggrößen und Kraftgrößen abschätzen.
- Vorgenannte Systeme ohne Berücksichtigung von Aspekten der Stabilität und Dynamik in Stahlbeton und Stahl sinnvoll im Sinne der Festlegung von Abmessungen vordimensionieren.
- Die Ästhetik einfacher Tragwerke in einen Zusammenhang mit mechanischen Aspekten der Tragwerksgestaltung bringen.

In der Lehrveranstaltung werden die folgenden Themen behandelt:

- 1. Einführung in die Weggrößenmethode
- Historie und Bedeutung.
- Exemplarische Einführung: Stabsystem.
- Exemplarischer Vergleich mit der Kraftgrößenmethode.
- Direkte Steifigkeitsmethode: Modernes Elementkonzept.
- Drehwinkelverfahren: Historisches Handrechnungskonzept.
- 2. Elementgleichungen der Weggrößenmethode
- Elemente hergeleitet basierend auf der Differentialgleichung.
- Idee der Elemente basierend auf dem Konzept der Finite-Elemente-Methode.
- Stab (Dehnstab).
- Schubstarrer Balken nach Bernoulli
- Schubstab (Schubtranslation).
- Schubelastischer Balken nach Timoshenko.
- Elastisch gebetteter Stab.
- Elastisch gebetteter Balken.
- Schubelastisch gebetteter Balken (Wölbkrafttranslation).
- Torsionsstab (Schubtorsion) nach St. Venant.
- Torsionsbalken (Wölbkrafttorsion).
- 3. Anwendung der Weggrößenmethode
- Kinematik: Annahmen, Polpläne, Freiheitsgrade.
- Gleichgewichtsbedingungen: Statische Methode, kinematische Methode.
- Formaler Berechnungsablauf: Grundgleichungen-Systemgleichung-Weggrößen-Kraftgrößen (Rückrechnung).
- Anschaulicher Berechnungsablauf: Systemgleichung anschaulich aus den Freiheitsgraden.
- Stab-Balken-Systeme.
- Systeme mit elastischer Bettung.
- Gitterroste und einfache räumliche Systeme mit Schubtorsion.
- Einfache Systeme mit Wölbtorsion.
- Aussteifungssysteme von Hochbauten.
- 4. Modellbildung und Tragverhalten
- Rand- und Übergangsbedingungen.
- Einfluss der Steifigkeitsverhältnisse.
- Einsatz Finiter Makroelemente.
- Tragverhalten unter Kraftgrößen- und Weggrößeneinwirkung.
- Besonderheiten: Exemplarisch für Stahlbetonkonstruktionen und Stahlkonstruktionen.
- 5. Einführung in den Tragwerksentwurf
- Bedeutung, Ziel und Einordnung (HOAI) des Entwurfs.
- Vordimensionierung: Exemplarisch für Stahlbetonkonstruktionen und Stahlkonstruktionen.

- Konstruktive Besonderheiten für einwirkende Weggrößen.
- Ästhetische Aspekte einfacher Tragwerke (z.B. Fußgängerbrücken).

- Gross, Hauger et.al.: Technische Mechanik 1, Statik, Springer Verlag.
- Gross, Hauger et.al.: Formeln und Aufgaben zur Technischen Mechanik 1, Springer Verlag.
- Gross, Hauger et.al.: Technische Mechanik 2, Elastostatik, Springer Verlag.
- Gross, Hauger et.al.: Formeln und Aufgaben zur Technischen Mechanik 2, Springer Verlag.
- Dinkler: Grundlagen der Baustatik, Vieweg Verlag.
- Wunderlich, Kiener: Statik der Stabtragwerke, Vieweg Verlag.
- Krätzig, Wittek: Tragwerke 1, Statisch bestimmte Stabtragwerke, Springer Verlag.
- Krätzig: Tragwerke 2, Statisch unbestimmte Stabtragwerke, Springer Verlag.
- Dallmann: Baustatik 1: Berechnung statisch bestimmte Stabtragwerke, Hanser Verlag.
- Dallmann: Baustatik 2: Berechnung statisch unbestimmte Stabtragwerke, Hanser Verlag.
- Bletzinger et.al.: Aufgabensammlung zur Baustatik, Hanser Verlag.

Bauverfahrenstechnik

<u>Prüfungsnummer</u>	Buchstabe-Ziffer-Kombination	Studienverlauf BalCE
BaBau 1010, BaWI 260 BaTGM 210, BaBIM 470	BVT	Kernstudium

Lehr- und Lernformen

Vorlesung

Voraussetzungen für die Teilnahme

obligatorisch: -

wünschenswert: Bestandene Module Mathematik 1 und Mathematik 2

Verwendbarkeit

Bachelor-Studiengänge Bauingenieurwesen, Wirtschaftsingenieur (Bau), Grundstudium Pflichtmodul, Bau- und Immobilenmanagement WPF

Voraussetzungen für die Vergabe von ECTS-Leistungspunkten

Bestandene Prüfungsleistung

ECTS-Leistungspun	<u>Arbeitsaufwand</u>	<u>Angebotsturnus</u>	Dauer des Moduls	<u>Sprache</u>
5	150h	Jedes Semester	3 SWS + 1 SWS Übung	Deutsch

<u>Studienleistung</u>

<u>Prüfungsleistung</u>

Klausur 90 min. (80%) und eigenständiger Referatsvortrag (20%)

<u>Modulverantwortlicher</u>	<u>Dozenten</u>
Lüer	-

Qualifikationsziele (Kompetenzen)

Die Studierenden können (durch Prüfung nachgewiesen):

• Kenntnis der wesentlichen Baustelleneinrichtungselemente, grundlegender Berechnungsverfahren zur Ermittlung von Geräteleistungen und Gerätekosten, typischen Verfahrenstechniken des Hoch- und Tiefbaus sowie in die Grundzügen der Kalkulation des Bauunternehmens. Selbständiges Erarbeiten und Durchführen einer Präsentation zum Themengebiet.

Inhalt

In der Vorlesung werden die folgenden Themen behandelt:

Baubetriebliche Basiselemente

- Arbeitskräfte Leistungen und Kosten
- Geräte Arten, Kosten und Leistungen, Baugeräteliste
- Materialien Arten und Kosten
- Planung mittels Building Information Modeling BIM)

Verfahren des Beton- und Stahlbetonbaus, z.B.

- Schalung und Rüstung
- Bewehrungsarbeiten
- Schalungsdruckberechnung

Verfahren des Stahlbaus

- Montagetechnologien
- Verbindungstechniken

Verfahren des Erdbaus, z.B.

- Hydraulikbagger und Bagger-Lkw-Betrieb
- Bodenverdichtung und Bodenverbesserung
- Straßenbau

Verfahren der Baugrubensicherung und des Spezialtiefbaus, z.B.

- Geräte
- Verankerungen
- Injektionen

Verfahren der Hebetechnik, z.B.

- Druck- bzw. Zughebezeuge
- Turmdrehkrane
- Mobilkrane
- Anschlagmittel

Methodens des Abbruchs

• Geräte und Werkzeuge

Gesamtstruktur der Baustelleneinrichtung

- Baustelleninfrastruktur und Baustellenlogistik
- Planung und Zuordnung der Baustelleneinrichtungselemente

Kalkulatorischer Verfahrensvergleich

• Ermittlung des wirtschaftlichen Bauverfahrens

Grundzüge der Kostenermittlung und Preisbildung

- Betriebswirtschaftliche und zeitliche Einordnung der Kostenermittlung (=Kalkulation)
- Divisionskalkulation
- Kalkulation über die Angebotssumme

Literaturhinweise

Literaturhinweise finden Sie im Skript zur Vorlesung.

• Lüer, J.: Skript Modul Bauverfahrenstechnik in der jeweils aktuellen Ausgabe

Geotechnik 1

<u>Prüfungsnummer</u>	Buchstabe-Ziffer-Kombination	Studienverlauf BalCE
BaBau/BalCE (PO 2012) 2310 BalCE (PO 2015) 910	GT1	Kernstudium

Lehr- und Lernformen

Vorlesung mit integrierter Hörsaalübung, Inverted Classroom, Laborpraktikum als Gruppenübung

Voraussetzungen für die Teilnahme

obligatorisch: -

wünschenswert: Abgeschlossenes Grundstudium des Bachelorstudiengangs Bauingenieurwesen bzw. Internationales Bauingenieurwesen, v.a. Mathematik und Technische Mechanik

Verwendbarkeit

Die Studierenden können für Bauprojekte anderer Bauingenieurdisziplinen Baugrunderkundungsmaßnahmen planen, die Eigenschaften des erkundeten Bodens analysieren sowie Erddrücke auf Bauwerke berechnen und Setzungen im Boden ermitteln.

Voraussetzungen für die Vergabe von ECTS-Leistungspunkten

Bestandene Prüfungsleistung (Klausur: 120 min)

ECTS-Leistungspun	<u>Arbeitsaufwand</u>	<u>Angebotsturnus</u>	Dauer des Moduls	<u>Sprache</u>
5	150h	Jedes Semester	5 SWS	Deutsch

<u>Studienleistung</u>

Prüfungsvorleistung: Teilnahme am Laborpraktikum, Bericht und Kolloquium über das Laborpraktikum

<u>Prüfungsleistung</u>

Klausur 120 min.

<u>Modulverantwortlicher</u>	<u>Dozenten</u>
Kluge	-

Qualifikationsziele (Kompetenzen)

Die Studierenden verfügen über praxisbezogene Kenntnisse der Geotechnik, insbesondere der ingenieurgeologischen Grundlagen, der Bodenmechanik und des Erdbaus.

Sie können Bodenarten benennen, Böden klassifizieren und deren bautechnische Eignung und Eigenschaften beurteilen. Die Studierenden kennen geotechnische Untersuchungsverfahren und können die für eine Baumaßnahme erforderlichen Feld- und Laborversuche sinnvoll auswählen. Sie können die gängigsten bodenmechanischen Laborversuche selbständig durchführen und per Hand und mittels geotechnischer Software auswerten. Die Studierenden sind in der Lage, aus Laborversuchen Bodenkennwerte abzuleiten, diese zu plausibilisieren und z.T. in weiterführenden Planungs- und Berechnungsaufgaben zu verwenden.

Die Studierenden verstehen, wie sich Böden unter Belastung verhalten. Sie können für einfache Fälle die Spannungsverteilung unter Bauwerken berechnen und die daraus resultierenden Setzungen ermitteln. Sie sind mit der Erddrucktheorie vertraut und können Erddrücke auf Bauwerke bestimmen.

<u>Inhalt</u>

Die Lehrveranstaltung vermittelt die Grundlagen der Bodenmechanik und Erdstatik und umfasst folgende Inhalte:

- Grundlagen der Ingenieurgeologie
- Baugrunderkundung (direkte und indirekte Aufschlüsse, Probennahme)
- Laborversuche
- Ermittlung von Bodenkennwerten
- Klassifikation von Böden
- Spannungen im Boden und Setzungsberechnung
- Erddrucktheorie und Erddruckberechnung
- Bodenmechanisches Laborpraktikum mit eigenständiger Durchführung und Auswertung von Laborversuchen
- Einsatz von Software zur Auswertung von Laborversuchen

Literaturhinweise

In der Vorlesung verwendete Literatur:

- Möller, G.Geotechnik kompakt, Band 1 und 2
- Kempfert, H.-G., Bodenmechanik und Grundbau, Band 1 und 2
- Dörken/DehneGrundbau in Beispielen Teil 1, 2 und 3
- PressAllgemeine Geologie, Verlag Elsevier

Geotechnik 2

<u>Prüfungsnummer</u>	Buchstabe-Ziffer-Kombination	Studienverlauf BalCE
BaBau/BalCE (PO 2012) 2320, BalCE (PO 2015) 910	GT2	Kernstudium

Lehr- und Lernformen

Vorlesung mit integrierter Hörsaalübung, Inverted Classroom

Voraussetzungen für die Teilnahme

obligatorisch: Vorherige Teilnahme am Modul Geotechnik 1

wünschenswert: Abgeschlossenes Grundstudium des Bachelorstudiengangs Bauingenieurwesen und Kenntnisse aus dem Modul Bauverfahrenstechnik

Verwendbarkeit

Die Studierenden können für einfache Bauprojekte anderer Bauingenieurdisziplinen geotechnische Standsicherheitsberechnungen durchführen und auf Grundlage deren Ergebnisse Empfehlungen für Gründungsmaßnahmen und -abmessungen geben. Sie können Stützbauwerke und Baugrubenverbauten planen und bemessen sowie eine erforderliche Wasserhaltung dimensionieren.

Voraussetzungen für die Vergabe von ECTS-Leistungspunkten

Bestandene Prüfungsleistung (Klausur: 180 min)

ECTS-Leistungspun	<u>Arbeitsaufwand</u>	<u>Angebotsturnus</u>	Dauer des Moduls	<u>Sprache</u>
5	150h	Jedes Semester	5 SWS	Deutsch
Studionloistung				

<u>Studienleistung</u>

Prüfungsleistung Klausur 180 min.

<u>Modulverantwortlicher</u>	<u>Dozenten</u>
Kluge	Gutberlet

Qualifikationsziele (Kompetenzen)

Die Studierenden verfügen über praxisbezogene Kenntnisse der Geotechnik, insbesondere des Grundbaus und der Bemessung geotechnischer Bauwerke. Sie kennen die Nachweiskonzepte des Eurocode 7 für den Grenzzustand der Tragfähigkeit und den Grenzzustand der Gebrauchstauglichkeit für die Bemessung geotechnischer Bauwerke und können diese anwenden. Die Studierenden können geotechnische Bauwerke, insbesondere Flach- und Tiefgründungen, Stützbauwerke, Baugruben und Böschungen planen und selbständig bemessen und die Standsicherheit bestehender Bauwerke überprüfen. Die Bemessung und Überprüfung ausgewählter Bauwerke können sie auch mittels geotechnischer Software durchführen. Neben der Betrachtung des Endzustands können sie Anfangs- und Zwischenzustände überprüfen und temporäre Bauhilfsmaßnahmen wie z.B. Wasserhaltungen dimensionieren.

<u>Inhalt</u>

Die Lehrveranstaltung vermittelt Kenntnisse der Planung und Bemessung von geotechnischen Bauwerken nach Eurocode 7 und umfasst folgende Inhalte:

- Grundlagen des Bemessungskonzepts nach Eurocode 7
- Planung und Bemessung von Flachgründungen
- Planung und Bemessung von Böschungen und Geländesprüngen inkl. Stützkonstruktionen
- Planung und Bemessung von Tiefgründungen
- Planung und Bemessung von Baugrubenverbauten
- Dimensionierung von Bauhilfsmaßnahmen, z.B. Wasserhaltung
- Einsatz geotechnischer Software

Literaturhinweise

In der Vorlesung verwendete Literatur:

- Möller, G.Geotechnik kompakt, Band 1 und 2
- Kempfert, H.-G., Bodenmechanik und Grundbau, Band 1 und 2
- Dörken/DehneGrundbau in Beispielen Teil 1, 2 und 3
- DGGT EAB, Empfehlung des Arbeitsausschuss "Baugruben", Verlag Ernst und Sohn

International Project Management

<u>Prüfungsnummer</u>	Buchstabe-Ziffer-Kombination	Studienverlauf BalCE
510	IPM	Kernstudium

Lehr- und Lernformen

Formal lectures, tutorials, student led seminars and on-line learning resources will provide theoretical and practical underpinning for the Learning Outcomes.

Voraussetzungen für die Teilnahme

obligatorisch: To have passed ALL Level 1 and 2 Modules

wünschenswert: B2 Englischkenntnisse

<u>Verwendbarkeit</u>

Preparation for study abroad

Voraussetzungen für die Vergabe von ECTS-Leistungspunkten

Passed final exam

ECTS-Leistungspun	<u>Arbeitsaufwand</u>	<u>Angebotsturnus</u>	Dauer des Moduls	<u>Sprache</u>
5	150h	Wintersemester	4 SWS	English

<u>Studienleistung</u>

<u>Prüfungsleistung</u>

Written examination 120 min

<u>Modulverantwortlicher</u>	<u>Dozenten</u>
Petersen	Lehrbeauftragte

Qualifikationsziele (Kompetenzen)

On successful completion of this unit, student should be able, at Level 3 threshold level, to:

- Assess the contractural, economic and social impacts of International Projects during their life cycle
- Investigate reasons for failure of some International Projects and suggest alternative modern methods of procurement
- Write a Business Plan

Inhalt

The lecture International Project Management covers the following topics:

- 1 Lecture International Project Management Introduction
- 2 Lecture History of Management
- 3 Lecture Modern Management

- 4 Lecture Culture
- 5 Lecture Oral Presentations
- 6 Lecture Society
- 7 Lecture Basis of the Law and Land Law
- 8 Lecture Traditional Contracts
- 9 Lecture Classification of Contracts
- 10 Lecture FIDIC
- 11 Lecture Latham Report
- 12 Lecture Egan Report
- 13 Lecture Modern Contracts and Procurement Management
- 14 Lecture PMBoK Procurement Management
- 15 Lecture Handover
- 16 Lecture World Politics 21st Century
- 17 Lecture Macro Economics
- 18 Lecture Micro Economics
- 19 Lecture Accountancy
- 20 Lecture Depreciation and Property Valuation
- 21 Lecture Whole Life Cycle Costs
- 22 Lecture Social Benefit Analysis
- 23 Seminar Business Plan Reports

Literaturhinweise

• Audit Scotland. (2004). Management of the Holyrood Building Project. Edinburgh: Audit Scotland.

Massivbau 1

<u>Prüfungsnummer</u>	Buchstabe-Ziffer-Kombination	Studienverlauf BalCE
BaBau/BalCE (PO 2012) 2110, BalCE (PO 2015) 710, BaWI 230	MB1	Kernstudium

Lehr- und Lernformen

Vorlesung mit integrierten Hörsaalübungen

Voraussetzungen für die Teilnahme

obligatorisch: Teilnahme an Technischer Mechanik 1 und 2

wünschenswert: Bestandene PL in Technischer Mechanik 1 und 2

<u>Verwendbarkeit</u>

B.Ing. Bauingenieurwesen, Internationales Bauingenieurwesen, Wirtschaftsing. Bau, Pflichtmodul

Voraussetzungen für die Vergabe von ECTS-Leistungspunkten

Bestandene Prüfungsleistung: Klausur 120 Min.

ECTS-Leistungspun	<u>Arbeitsaufwand</u>	<u>Angebotsturnus</u>	Dauer des Moduls	<u>Sprache</u>
5	150h		3 SWS + 1 SWS	Deutsch
			Ubung	

<u>Studienleistung</u>

Prüfungsleistung

Klausur 120 min.

<u>Modulverantwortlicher</u>	<u>Dozenten</u>
Kliver	-

Qualifikationsziele (Kompetenzen)

Nach der Teilnahme an den Modulveranstaltungen

- kennen die Studierenden die spezifischen Eigenschaften des Verbundbaustoffes Stahlbeton und die daraus abgeleiteten Anwendungen.
- kennen die Studierenden die grundlegenden Bemessungsverfahren im Hinblick auf die Nachweise der Tragfähigkeit, der Gebrauchstauglichkeit und Dauerhaftigkeit und können sie auf praktische Beispiele anwenden.
- sind die Studierenden in der Lage Stahlbetonbauteile konstruktiv zu detailieren.

<u>Inhalt</u>

In der Vorlesung werden die folgenden Themen behandelt:

- Grundlagen zum Verbundwerkstoff Stahlbeton
- Konstruktionsprinzipien mit Einbeziehung der Dauerhaftigkeit
- Bemessungsverfahren zum Nachweis der Tragsicherheit von Stahlbetonbauteile (Biegebemessung, Querkraftbemessung)
- Systemannahme und Schnittkraftermittlung für die Bemessung im Stahlbetonbau
- Bewehrungsführung
- zeichnerische Darstellung von Stahlbetonkonstruktionen

Literaturhinweise

- König, G.; Tue, N.V.; Schenck, G.: Grundlagen des Stahlbetons
- Avak, R.: Stahlbeton in Beispielen Teil 1: Grundlagen der Stahlbeton-Bemessung Bemessung von Stabtragwerken nach EC2
- Avak, R.: Stahlbeton in Beispielen Teil 2: Stützen: Sondergebiete des Stahlbetonbaus
- Zilch, K.; Zehetmaier, G.: Bemessung im konstruktiven Betonbau
- Baar, S.; Ebeling, K.: Lohmeyer Stahlbeton
- Schneider: Bautabellen für Ingenieure
- Betonkalender (verschiedene Jahrgänge)

Massivbau 2

<u>Prüfungsnummer</u>	Buchstabe-Ziffer-Kombination	Studienverlauf BalCE
BaBau/BaICE (PO 2012) 2120, BaICE (PO 2015) 720	MB2	Kernstudium

Lehr- und Lernformen

Vorlesung mit integrierten Hörsaalübungen

Voraussetzungen für die Teilnahme

obligatorisch: Teilnahme an Technischer Mechanik 1 und 2

wünschenswert: Bestandene PL in Technischer Mechanik 1 und 2, Massivbau 1

Verwendbarkeit

B.Ing. Bauingenieurwesen, Internationales Bauingenieurwesen; Pflichtmodul

Voraussetzungen für die Vergabe von ECTS-Leistungspunkten

Bestandene Prüfungsleistung: Klausur 120 Min.

ECTS-Leistungspun	<u>Arbeitsaufwand</u>	<u>Angebotsturnus</u>	Dauer des Moduls	<u>Sprache</u>
5	150h	Jedes Semester	3 SWS + 1 SWS Übung	Deutsch

<u>Studienleistung</u>

<u>Prüfungsleistung</u>

Klausur 120 min.

<u>Modulverantwortlicher</u>	<u>Dozenten</u>
Kliver	-

Qualifikationsziele (Kompetenzen)

Nach der Teilnahme an den Modulveranstaltungen sind die Studierenden in der Lage

- die Bemessung und Konstruktion von Stahlbetonbauteilen an Praxisbeispielen (z.B. einachsig gespannte Platten, Unterzüge, Stützen und Gründungsbauteilen) durchführen.
- die Nachweise zur Gebrauchstauglichkeit (z.B. Durchbiegungsbegrenzung und Rissbreitenbeschränkung) anzuwenden
- die Konstruktionsverfahren und erweiterten Nachweise zur Ressourcenoptimierung sinnvoll anzuwenden.

<u>Inhalt</u>

In der Vorlesung werden die folgenden Themen behandelt:

- Ergänzende Nachweise im Grenzzustand der Tragfähigkeit von Stahlbetonbauteilen
- Optimierung der Bewehrung: Zug- und Querkraftkraftdeckungslinie

- Bemessung von druckbeanspruchten Bauteilen
- Bemessung von Gründungsbauteilen
- Nachweise im Grenzzustand der Gebrauchstauglichkeit: Durchbiegungsbegrenzung, Rissbreitennachweise
- Komplexe Nachweise zur Ressourceneinsparung
- zeichnerische Darstellung von Stahlbetonkonstruktionen

Literaturhinweise

- König, G.; Tue, N.V.; Schenck, G.: Grundlagen des Stahlbetons
- Avak, R.: Stahlbeton in Beispielen Teil 1: Grundlagen der Stahlbeton-Bemessung Bemessung von Stabtragwerken nach EC2
- Avak, R.: Stahlbeton in Beispielen Teil 2: Stützen: Sondergebiete des Stahlbetonbaus
- Zilch, K.; Zehetmaier, G.: Bemessung im konstruktiven Betonbau
- Baar, S.; Ebeling, K.: Lohmeyer Stahlbeton
- Schneider: Bautabellen für Ingenieure
- Betonkalender (verschiedene Jahrgänge)

Siedlungswasserwirtschaft 1

Buchstabe-Ziffer-Kombination	Studienverlauf BalCE
SiWaWi	Kernstudium

Lehr- und Lernformen

Vorlesung mit integrierter Hörsaalübung, Lehrgebiete: Wasserversorgung, Siedlungs-entwässerung, Abwasserbehandlung, Gewässerschutz

Voraussetzungen für die Teilnahme

obligatorisch: -

wünschenswert: Hydromechanik

Verwendbarkeit

Pflichtmodul in BaBau und BalCE; inhaltlicher Zusammenhang mit Modul "Hydromechanik", "Siedlungswasserwirtschaft 2" und "Umweltschutz"; Wichtiges Grundlagenwissen für die Bearbeitung der Module "Infrastrukturprojekt Wasser" und "Fachübergreifenden Projekt"

Voraussetzungen für die Vergabe von ECTS-Leistungspunkten

Bestandene Prüfungsleitung

ECTS-Leistungspun	<u>Arbeitsaufwand</u>	<u>Angebotsturnus</u>	Dauer des Moduls	<u>Sprache</u>
5	150h	Jedes Semester	3 SWS + 1 SWS Übung	Deutsch

<u>Studienleistung</u>

Prüfungsleistung

Klausur 120 min.

<u>Modulverantwortlicher</u>	<u>Dozenten</u>
Kaufmann Alves	-

Qualifikationsziele (Kompetenzen)

Die Studierenden können (durch Prüfung nachgewiesen):

- die Siedlungswasserwirtschaft in den gesamten Wasserkreislauf eingliedern und verstehen die dabei maßgeblichen Wechselwirkungen.
- die wichtigsten Elemente siedlungswasserwirtschaftlicher Systeme mit ihren Aufgaben erfassen und eine Bemessung durchführen. Dabei sollen die ökologischen und ökonomischen Belange ins Auge gefasst werden können.

Inhalt

In der Vorlesung und Übung werden die folgenden Themen behandelt:

Einführung in die Siedlungswasserwirtschaft und Vermittlung der Grundlagen unter Beachtung der interdisziplinären Gesichtspunkte des Faches.

Einführung in die Wasserversorgung

- Wasserbedarfsermittlung
- Erschließung von Ressourcen für die Wasserversorgung
- Grundlegendes zum Trinkwasserschutz
- einfacher Überblick über die Wasseraufbereitung
- Aufgaben der Wasserspeicherung und Speicherbemessung
- Systeme der Wasserverteilung
- Anforderungen an das Versorgungsnetz und einfache Bemessung

Einführung in die Siedlungsentwässerung

- Systeme der Siedlungsentwässerung
- Abflussgrößen
- Kanalnetzberechnung
- Ausführung der Ortskanalisation
- Regenrückhaltung
- Versickerung von Nierschlagswasser
- Grundlagen der Mischwasserbehandlung

Grundlagen der Abwasserbehandlung und des Gewässerschutzes

- Abwasserinhaltsstoffe
- Einführung in Abwasserreinigung und Gewässerschutz
- mechanische Abwasserreinigung
- Überblick über die biologische Abwasserbehandlung

Literaturhinweise

Literaturhinweise finden Sie im Skript zur Vorlesung

• Kaufmann Alves, I.: Skript Modul "Siedlungswasserwirtschaft 1"

Steel Construction

<u>Prüfungsnummer</u>	Buchstabe-Ziffer-Kombination	Studienverlauf BalCE
	SC	Kernstudium

Lehr- und Lernformen

Lectures and Exercises

Voraussetzungen für die Teilnahme

obligatorisch: -

wünschenswert: Technical Mechanics and Statics 1

Verwendbarkeit

The module contains fundamental topics of steel constructions. There is some overlap with the content of the interdisciplinary project.

Voraussetzungen für die Vergabe von ECTS-Leistungspunkten

Passed exam.

ECTS-Leistungspun	<u>Arbeitsaufwand</u>	<u>Angebotsturnus</u>	Dauer des Moduls	<u>Sprache</u>
5	150h	Winter- und Sommersemester	4 SWS	English

<u>Studienleistung</u>

<u>Prüfungsleistung</u>

Written examination 120 min.

<u>Modulverantwortlicher</u>	<u>Dozenten</u>
Merle	-

Qualifikationsziele (Kompetenzen)

The students have the ability to develop, evaluate, select and calculate regular steel structures. As a result they can use the eurocode

methods and have the required background and knowledge base in steel construction. Furthermore they have the ability to identify and

justify the advantages and disadvantages of different design solutions.

Inhalt

During the course the following content will be taught:

- Steel construction in history
- Material properties of steel: material constants, fabrication and constitutive law
- Elastic and plastic material behavior
- Basics of the second order theory and the theory of stability of elastic and rigid beams for different support conditions

- Basics of the torsional buckling of beams
- Code calculation of beams by using first and second order theory beyond the ultimate and serviceability limit states
- Basics auf bolts and weldings
- Capacity of flexible bolted and welded connections
- Construction concepts of steelwork connections
- Steel construction bracings and its structural design

Literaturhinweise

Lecture notes, Heiko Merle, updated version

Verkehrswesen 2

<u>Prüfungsnummer</u>	Buchstabe-Ziffer-Kombination	Studienverlauf BalCE
BaBau/BalCE (PO 2012) 620, BalCE (PO 2015) 320	VKW2	Kernstudium

Lehr- und Lernformen

Vorlesung und Übung

Voraussetzungen für die Teilnahme

obligatorisch: -

wünschenswert: Eine erfolgreiche Teilnahme an Physik und die parallele (oder vorherige) Teilnahme an Geotechnik 1 sind wünschenswert

Verwendbarkeit

In Straßenentwurf und Straßenbautechnik werden die Grundlagen für das Modul Verkehrswesen 4 gelegt.

Voraussetzungen für die Vergabe von ECTS-Leistungspunkten

Klausur bestanden

ECTS-Leistungspun	<u>Arbeitsaufwand</u>	<u>Angebotsturnus</u>	Dauer des Moduls	<u>Sprache</u>
5	150h	Jedes Semester	4 SWS	Deutsch

<u>Studienleistung</u>

<u>Prüfungsleistung</u>

Klausur: 120 min (beide Lehrgebiete gemeinsam)

<u>Modulverantwortlicher</u>	<u>Dozenten</u>
Hess	N.N.

Qualifikationsziele (Kompetenzen)

Die Studierenden können (durch Prüfung nachgewiesen):

Lehrgebiete Straßenentwurf/Straßenbautechnik

• Die Studierenden sollen in der Lage sein, Entwurfs- und Gestaltungskonzepte für städtische Straßenräume (Strecken und Knotenpunkte) zu entwickeln. Sie sollen weiter den konstruktiven Aufbau von Verkehrsflächen festlegen können.

Lehrgebiet Bahnanlagen

• Die Studierenden sollen grundlegende Kenntnisse über die Systemkomponenten der Schienenbahnen und deren Funktionen besitzen. Im Besonderen sollen sie die baulichen Merkmale des Bahnkörpers und der Fahrbahn beherrschen und in der Lage sein, Fahrwegplanungen und –konstruktionen hinsichtlich ihrer Funktionstüchtigkeit und Gebrauchstauglichkeit zu beurteilen.

<u>Inhalt</u>

In der Vorlesung werden die folgenden Themen behandelt:

Lehrgebiet Straßenentwurf/Straßenbau

- Entwurf und Gestaltung städtischer Straßenräume
- Entwurfsgrundlagen Strecken, Knotenpunkte und Plätze
- Einführung in die Straßenbautechnik
- Aufbau einer Fahrbahn
- Baustoffe im Straßenbau
- Tragschichten, Deckschichten
- Standadisierung des Oberbaus von Verkehrsflächen (RStO)

Lehrgebiet Bahnanlagen

- Entwicklung, Rechtsgrundlagen, Organisation der Eisenbahnen
- Eisenbahn-Kreuzungen (Straße/Schiene)
- Grundlagen des Rad/Schiene-Systems
- Schienen und Gleisbelastung
- Oberbaukonstruktion und Instandhaltung
- Gleisbögen, Linienführung und Weichen
- Querschnittsgestaltung
- Erdbauwerke und Ingenieurbauwerke für Eisenbahnen
- Sonstiges im Überblick (Energieversorgung, Signale, Leit- und Sicherungstechnik, Fahrdynamik, Bahnbetrieb, Bahnhofsanlagen)

Literaturhinweise

- Richtlinien für die Anlage von Stadtstraßen (RASt), FGSV Nr. 200, FGSV-Verlag, Köln
- Richtlinien für die Standardisierung des Oberbaus von Verkehrsflächen (RStO), FGSV Nr. 499, FGSV-Verlag, Köln

Wasser- und Abfallwirtschaft

<u>Prüfungsnummer</u>	Buchstabe-Ziffer-Kombination	Studienverlauf BalCE
BaBau / BaICE (PO 2012) 2210, BaICE (PO 2015) 810, BaWI 310	WaAbWi	Kernstudium

Lehr- und Lernformen

Vorlesung mit integrierten Hörsaalübungen

Lehrgebiet: Abfallwirtschaft

Lehrgebiet: Wasserbau/Wasserwirtschaft

Voraussetzungen für die Teilnahme

obligatorisch: -

wünschenswert: Erfolgreiche Teilnahme an Hydromechanik

Verwendbarkeit

Pflichtmodul in BaBau und BalCE; inhaltlicher Zusammenhang mit Modul "Hydromechanik", "Wasserbau und Wasserwirtschaft", "Umweltschutz", Grundlagenwissen für die Bearbeitung des Moduls "Infrastrukturprojekt Wasser"

Voraussetzungen für die Vergabe von ECTS-Leistungspunkten

Bestandene Prüfungsleistung

ECTS-Leistungspun	<u>Arbeitsaufwand</u>	<u>Angebotsturnus</u>	Dauer des Moduls	Sprache
5	150h	Jedes Semester	3 SWS + 1 SWS Übung	Deutsch
Studioploistupa				

<u>Studienleistung</u>

Prüfungsleistung

<u>Fruiungsielstung</u> Klausur 120 min.

<u>Modulverantwortlicher</u>	<u>Dozenten</u>	
Kaufmann Alves	Mai	

Qualifikationsziele (Kompetenzen)

Die Studierenden erlangen(durch Prüfung nachgewiesen):

Abfallwirtschaft

- ein Grundverständnis für den Umgang mit Abfall im Sinne der Kreislaufwirtschaft und Kenntnisse in den vielfältigen Aspekten und Problemstellungen der Abfallwirtschaft
- Die Studierenden werden mit den grundlegenden Vorgehensweisen, Bearbeitungsschritten und Technikanwendungen im Rahmen der Vermeidung, Verwertung, Behandlung und Beseitigung von Abfällen sowie kontaminierten Böden vertraut gemacht.
- Sie erwerben Kompetenzen zur Einordnung der rechtlichen Grundlagen und Randbedingungen der Abfallentsorgung
- Die Studierenden werden befähigt, verfahrenstechnische Grundoperationen systematisch auf feste Stoffe wie Abfälle und Böden anzuwenden, methodische Vorgehensweisen zu bewerten und Technologien der Abfallwirtschaft zu verstehen.

Wasserbau und Wasserwirtschaft

- Einführung in die Grundlagen der Hydrologie, Abflussbestimmung und Wasserbewirtschaftung, in die Flusskunde, den Flussbau und die Gewässerrenaturierung.
- Die Studierenden lernen die grundlegenden Verknüpfungen zwischen der Hydromechanik, Ingenieurhydrologie, Wasserwirtschaft und des Wasserbaus kennen und werden befähigt, die wesentlichen Zusammenhänge bei der Planung wasserbaulicher Anlagen und Projekte (insbesondere im Zusammenhang mit Maßnahmen beim Gewässerausbau) abschätzen zu können.

Vorlesungsbegleitende Übungen

- Die in den Vorlesungen der einzelnen Lehrgebiete erworbenen Kenntnisse und Fähigkeiten sind auf praxisnahe Fragestellungen selbständig anzuwenden sowie die zutreffenden Lösungen zu erarbeiten.
- Durch die gemeinsame Erarbeitung von Lösungsansätzen der Hörsaalübungen werden Teamfähigkeit, Kommunikation und soziale Kompetenzen gefördert.

Inhalt

In der Vorlesung werden die folgenden Themen behandelt:

Abfallwirtschaft

- Abfallwirtschaftliche Zielsetzungen und gesetzliche Rahmenbedingungen
- · Abfallarten, -mengen und -zusammensetzung
- · Abfallwirtschaftliche Kennzahlen
- Abfallsammlung, -umschlag und -transport
- Behandlungs- und Verwertungsverfahren
- Bauabfälle
- · Abfallvermeidung und -verwertung
- Abfallablagerung und Deponietechnik
- Altlasten

Wasserbau und Wasserwirtschaft

- · Grundlagen von Wasserbau und Wasserwirtschaft
- · Hydrologische Grundlagen
- Abflussmessung und -auswertung
- Wasserbewirtschaftung
- Schleppspannung und Feststofftransport
- Flusskunde
- Regelungsgrundsätze
- Querschnittsicherung
- Bauwerke an Gewässern

Literaturhinweise

Literaturhinweise finden Sie im Skript zur Vorlesungen.

- Kaufmann Alves, I.: Skript Vorlesung "Abfallwirtschaft"
- Mai, S.: Skript Vorlesung "Wasserwirtschaft"

Äquivalenter Prüfungsplan für das Auslandsstudium

Semester 5	WL	sws	LP	GW	Prüfungsleistung
Applied Infrastructure Engineering	180	4	6	6	Exam/Project paper
Applied Substructure Engineering	180	4	6	6	Exam/Project paper
Applied Superstructure Engineering	180	4	6	6	Exam/Project paper
Applied Facilities Management ¹⁾	180	4	6	6	Exam/Project paper
International Project Management ¹⁾	180	4	6	6	Exam/Project paper
Sustainability ¹⁾	180	4	6	6	Exam/Project paper
Summe	900	20	30	30	5 PL

Die Modulbezeichnungen **Substructure**, **Superstructure**, **Infrastructure**, sowie **Facilities Management**, **Project Management**, **Sustainability** tragen den verschiedenen Modulbezeichnungen an den Partnerhochschulen Rechnung. Aus den mit ¹⁾ gekennzeichneten Fächern müssen zwei ausgewählt werden.

Semester 6	WL	sws	LP	GW	Prüfungsleistung
Bachelor Thesis	360		12	12	Bachelor-Arbeit (12 Wochen) Kolloquium (20 min)
Integrated Design Project	540		18	18	Projektarbeit
Summe	900		30	30	2 PL

Module Descriptors for Units Taught in English Level 2 Bachelor

Faculty of Technology

International Civil Engineering

Page 1 Version 7.1

Content

Title	Credit (ECTS)	Level	Page
Construction Project Management	6	2	3
Engineers in Society	6	2	5
Foundations and Earth Structures	6	2	7
Hydrology	6	2	9
Study Skills	1	2	11

Page 2 Version 7.1

TECHNIK HOCHSCHULE MAINZ UNIVERSITY OF APPLIED SCIENCES

API	PLIED SCIENCES	s: Sept 2017	Sept 2017			
Module Name	Construction Project Management			Course	Compulsory	Optional
Level	2		Civil	Engineering	0	
Cycle	В			achelor		
Abbreviation	СРМ			Construction Management		
Subject Thread	International Civil Enginee	ering	-	Structures		
				Planning and the Environment		
Semester	Semester 4		M	laster		
			-	Construction Management		
Frequency	On demand		-	Structures		
, , , , , , , , , , , , , , , , , , , ,			Intern	national Civil Engineering		
Duration	1 Semester			achelor		
Duration	1 Semester		Facili	ties Management		
				achelor		
Language	guage English		M	laster		
ECTS / Weighting	6/ 6	6/ 6 Civil Engineering with Business Studie Bachelor				6
Student Workload	60 h at University = 120 h Independent S 180 h Total		S Lectu	res		
Module Co-ordinator	Prof. Dr. A. K. Petersen B	Sc, Ph	D, CEn	g, MICE		
Other lecturers	Visiting Lecturers					
Learning and Teaching Strategy				eminars and on-line learning ractical underpinning for the		
Pre-requisites	To have passed ALL Leve	el 1 Mc	dules.			
Recommended Requirements	-					
Progress Control	-					
		Yes	No	Description		
Progress Tests	Pre-exam Test		Х			_
	Mid-term Test		Х			-
Examinations	100% coursework (Written Examination	n Repo	rt 70%,	Colloquium 30%) or 2.5hr		

Page 3 Version 7.0

	On successful completion of this unit, students should be able, at Level 2 threshold level, to: 1. Describe the construction techniques employed by specialist subcontractors such as demolition, earthworks, piling, etc.
Learning Outcomes	Distinguish between types of structures, their method of construction and the appropriateness of different materials.
	Assess the Time, Cost, Quality, Health & Safety and Environmental consequences of site activities.
	Lecture - Construction Project Management Introduction.
	2 Lecture – Demolition.
	3 Lecture - Temporary Works Construction.
	4 Lecture - Scope Plan, Budget Costing and Life cycle Durations.
	5 Lecture - Earthworks (Excavation Support).
	6 Lecture - Bills of Quantities and Scope Management (WBS).
	7 Lecture - Groundwater Control.
	8 Lecture - Shallow Foundations and Road Pavements.
	9 Lecture - Deep (Piled) Foundations.
	10 Lecture - Take of Quantities, Gantt Resources Charts and PMBok HRM
Syllabus Content	11 Lecture - Reinforced Concrete Construction.
Syllabus Content	12 Lecture - Project Decision Analysis, Method Statements and Risk Identificat
	13 Lecture - Structural Frame Construction.
	14 Lecture - Composite Frame Construction.
	15 Lecture - Road Pavement + Sustainable Urban Drainage Construction
	16 Lecture - Time Management CPA and Project Management Software
	17 Lecture - Cladding and the Building Envelope
	18 Lecture - Risk Management.
	19 Lecture - Cost Management.
	20 Lecture - Quality Management and Sustainable Material Specification.
	21 Lecture - Repair and Maintenance.
	22 Seminar- Construction Management Revision and Coursework Overview
Recommended	ICE, (201x). CESSM3 Price Database, Edited by Franklin and Andrews, Institution of Civil Engineers, London: Thomas Telford.
Reading	PMBoK, (2008). A Guide to the Project Management Body of Knowledge: PMBoK Guide. 4rd Edition. Pennsylvania: Project Management Institute Inc.
Notes	Industry Standard software will be used for analysis and detailing.

Page 4 Version 7.1

HOO UNI	CHNIK CHSCHULE MAINZ EVERSITY OF PLIED SCIENCES	v	ersion:	Sept 2017			
Module Name	Engineers in Society		Course				
Cycle	B		Civil En	gineering			
Abbreviation	EIS	-		nelor			
Abbieviation	LIO		C	construction Management			
Subject Thread	Project Management	-		tructures			
			P	lanning and the Environment			
Semester	Semester 5	-	Mast	-			
			C	Construction Management			
Frequency	On demand	-	S	tructures			
Duration	1 Semester			ional Civil Engineering			
			Facilities Management				
Language	e English		Bachelor				
Language	Liigiisii		Master				
FOTO / Mainhtin a	0.10		Civil En	gineering with Business S	tudies		
ECTS / Weighting	6/6		Bachelor				
	60 h at University =	4 SWS	S Lectu	res			
Student Workload	120 h Independent S	study					
Stadont Workload	·	rtudy	y				
	150 h Total						
Module Co-ordinator	Prof. Dr. A. K. Petersen B	Sc, Ph	D, CEn	g, MICE			
Other lecturers	Visiting Lecturers						
Learning and Teaching Strategy	Formal lectures, tutorials, resources will provide the Outcomes.				_	rning	
Pre-requisites	To have passed ALL Leve	el 1 an	d 2 Mo	dules.			
Recommended Requirements	-						
Progress Control	-						
		Yes	No	Description			
Progress Tests	Pre-exam Test		Х			_	
	Mid-term Test		Х				
Examinations	100% coursework (Wriiter Examination	Repo	ort 70%,	Colloquium 30%) or 2hr			

Page 5 Version 7.0

Learning Outcomes	On successful completion of this unit, students should be able, at Level 2 threshold level, to: 1. Assess the contractural, economic and social impacts of International Projects during their life cycle. 2. Investigate reasons for failure of some International Projects and demonstrate modern alternative methods of procurement. 3. Write a Business Plan.
Syllabus Content	1 Lecture - International Project Management Introduction. 2 Lecture - History of Management. 3 Lecture - Modern Management. 4 Lecture - Culture. 5 Lecture - Oral Presentations. 6 Lecture - Society. 7 Lecture - Basis of the Law and Land Law. 8 Lecture - Traditional Contracts. 9 Lecture - Classification of Contracts. 10 Lecture - FIDIC. 11 Lecture - Latham Report. 12 Lecture - Egan Report. 13 Lecture - Modern Contracts and Procurement Management. 14 Lecture - PMBoK Procurement Management. 15 Lecture - Handover. 16 Lecture - World Politics 21st Century. 17 Lecture - Macro Economics. 18 Lecture - Micro Economics. 19 Lecture - Accountancy 20 Lecture - Depreciation and Property Valuation 21 Lecture - Whole Life Cycle Costs 22 Lecture - Social Benefit Analysis.
Recommended Reading	Audit Scotland. (2004). Management of the Holyrood Building Project. Edinburgh: Audit Scotland.
Notes	Industry Standard software will be used for analysis and detailing.

Page 6 Version 7.1

TECHNIK HOCHSCHULE MAINZ UNIVERSITY OF APPLIED SCIENCES Status: Sept 2017 Foundations and Earth compulsory **Module Name Structures** Course Level 2 Cycle В **Civil Engineering Bachelor FES** Abbreviation Construction Management Subject Thread International Civil Engineering Structures Planning and the Environment Semester Semester 4 Master **Construction Management** On demand Structures Frequency **International Civil Engineering** Bachelor 1 Semester Duration **Facilities Management** Bachelor English Language Master **Civil Engineering with Business Studies** ECTS / Weighting 6/6 at University = 4 SWS Lectures 60 h Student Workload 120 h Independent Study 180 h Total Module Co-ordinator Prof. Dr. A. K. Petersen BSc, PhD, CEng, MICE Other lecturers Visiting Lecturers Formal lectures, tutorials, student led seminars and on-line learning Learning and Teaching resources will provide theoretical and practical underpinning for the Strategy Learning Outcomes. Pre-requisites To have passed ALL Level 1 Modules. Recommended Requirements **Progress Control** Conceptional Design Presentation. Yes No Description **Progress Tests** Pre-exam Test Χ Χ Mid-term Test **Examinations** 100% coursework or 2.5 hr Examination

Page 7 Version 7.0

Learning Outcomes	On successful completion of this unit, students should be able, at Level 2 threshold level, to: 1. Appraise and evaluate soil reports and design shallow or deep foundations and excavations supported by retaining walls. 2. Identify failure mechanisms of soil slopes and compute slope stability analysis for granular and cohesive slopes with regard to short and long term slope behavior.
Syllabus Content	1 Lecture - Introduction to Foundations and Earth Structures. 2 Lecture - Limit State Design Philosophy. 3 Lecture - Introduction to Eurocodes. 4 Lecture - In Situ Soil Classification and Testing. 5 Lecture - Earthworks (Excavation Support). 6 Lecture - Retaining Wall Design 7 Lecture - Groundwater Control. 8 Lecture - Shallow Foundations and Road Pavements. 9 Lecture - Embedded Retaining Wall Design 10 Lecture - Deep (Piled) Foundations. 11 Seminar - Shallow Foundations and Road Pavements 12 Seminar - Deep (Piled) Foundations. 13 Seminar - Retaining Walls 14 Seminar - Embedded Walls 15 Laboratory - Geotechnics 16 Exkursion 17 Lecture - Slope Stability. 18 Software - Slope Stability Limit State Geo. 19 Lecture - Design of Underground RC Tanks 20 Seminar - Substructure Reports
Recommended Reading	 Bond, A.J., Harrison, T., Narayanan R.S., Brooker O., Moss R.M., Webster, R., Harris, A.J. (2006). How to Design Concrete Structures Using Eurocode 2. London: The Concrete Centre. Ciria. (2007). The SUDS Manual. London: Ciria. ICE, (201x). CESSM3 Price Database, Edited by Franklin and Andrews, Institution of Civil Engineers, London: Thomas Telford. Craig R.F. (1997), Soil Mechanics, London, Spon Press. Eurocode 7: (2007), Geotechnical Design, Ground Investigation and Testing, CEN. Smith, G.N. & Smith, I.G.N, (1998) Elements of Soil Mechanics, New Jersey, Blackwell Scientific.
Notes	Industry Standard software will be used for analysis and detailing.

Page 8 Version 7.1

TECHNIK HOCHSCHULE MAINZ UNIVERSITY OF APPLIED SCIENCES

APF	PLIED SCIENCES Status: Sept 2017					
Module Name	Hydrology 2		Course			
Cycle	B	Civ	il Engineering	Compulsory	<u> </u>	
Abbreviation	HYD	0.11	Bachelor			
		_	Construction Management			
Subject Thread	International Civil Engineering		Structures			
		-	Planning and the Environment			
Semester	Semester 4		Master			
		-	Construction Management			
Frequency	On demand		Structures			
	International Civil Engineering					
Duration	1 Semester		Bachelor			
		Fac	Facilities Management			
Language	English		Bachelor			
	g		Master			
ECTS / Weighting	6 / 6 Civil Engineering with Business				S	
LOTO / Weighting			Bachelor			
	60 h at University = 4 S	VS Lec	tures			
Student Workload	120 h Independent Study					
	180 h Total					
Module Co-ordinator	Prof. Dr. A. K. Petersen BSc,	DhD C	Eng MICE			
Wodule Co-ordinator	FIGI. DI. A. R. Fetersen BSC,	TID, CI	Eng, MICE			
Other lecturers	Visiting Lecturers					
Learning and Teaching Strategy	Formal lectures, tutorials, studing resources will provide theoretic Learning Outcomes.					
Pre-requisites	To have passed ALL Level 1 Modules.					
Recommended Requirements						
Progress Control	Conceptional Design Presenta	tion.				
	Ye	s No	Description			
Progress Tests	Pre-exam Test	Х			_	
	Mid-term Test	Х				
Examinations	100% coursework or 2.5 hr Ex	aminati	on			

Page 9 Version 7.0

On successful completion of this unit, students should be able, at Level 2 threshold level, to: 1. Plot a Catchment Hydrograph and design Sustainable Urban Drainage for a Project. 2. Design: the horizontal and vertical alignment and the associated pavement, and drainage for a Project. 3. Assess the Environmental Impact of a Project and differentiate between the removal processes that operate at different stages of water treatment. 4. Apply Theoretical, Scaled Physical and Computational Hydrology Models to analyse Hydrology problems. 1. Lecture - Introduction to Hydrology 2. Lecture - Architecture and Urbanisation. 3. Lecture - Road Networks 4. Lecture - Road Safety 5. Lecture - Foad Safety 5. Lecture - SUBs Design Criteria 8. Lecture - SUBs Design Criteria 9. Lecture - SUBs Intended Physical And Prographs. 11. Lecture - SUBs Intended Physical Physical And Prographs. 12. Lecture - SUBs Intended Physical		1
1 Lecture - Introduction to Hydrology 2 Lecture - Architecture and Urbanisation. 3 Lecture - Road Networks 4 Lecture - Road Safety 5 Lecture - Infiltration and Hdrographs. 6 Lecture - SUDs Selection 7 Lecture - SUDs Design Criteria 8 Lecture - Groundwater Control. 9 Lecture - SUDs Source Control 10 Lecture - SUDs Hydrographs 11 Software - SUDs Hydrographs 12 Lecture - Infiltration Trenches, Soakaways and Basins. 13 Lecture - Road Alignment (Vertical) 15 Lecture - Road Alignment (Vertical) 16 Laboratory - Hydrology 17 Lecture - Ponds and Wetlands, Water Treatment Removal Mechanisms 18 Lecture - Outlets and Sludge. 19 Lecture - What Hazards Management 20 Lecture - Urban Risk Management 21 Lecture - Environmental Impact Assessment 22 Lecture - Environmental Impact Assessment Methods Chadwick, A J, Morfett, J C, Borthwick, M. (2004). Hydraulics in Civil and Environmental Engineering (4th ed) London: E & FN Spon. Ciria. (2007). The SUDS Manual. London: Ciria Danish Road Directorate. (2002). Beautiful Roads - A Handbook of Road Architecture. Copenhagen: Danish Road Directorate. Recommended Reading Recommended Reading FGSV. (2012). Directives for the Design of Urban Roads RASt06. Cologne: FGSV Verlag GmbH. ICE, (201x). CESSM3 Price Database, Edited by Franklin and Andrews, Institution of Civil Engineers, London: Thomas Telford. Littlefield, D. (2007). Metric Handbook Planning and Design Data, 3rd Edition. London: Routledge.	Learning Outcomes	 threshold level, to: Plot a Catchment Hydrograph and design Sustainable Urban Drainage for a Project. Design: the horizontal and vertical alignment and the associated pavement, and drainage for a Project. Assess the Environmental Impact of a Project and differentiate between the removal processes that operate at different stages of water treatment. Apply Theoretical, Scaled Physical and Computational Hydrology
2 Lecture – Architecture and Urbanisation. 3 Lecture - Road Networks 4 Lecture - Road Safety 5 Lecture – Infiltration and Hdrographs. 6 Lecture - SUDs Selection 7 Lecture - SUDs Design Criteria 8 Lecture - Groundwater Control. 9 Lecture - SUDs Source Control 10 Lecture - SUDs Hydrographs 11 Software - SUDs Hydrographs 12 Lecture - Infiltration Trenches, Soakaways and Basins. 13 Lecture - Road Alignment (Vertical) 15 Lecture - Road Alignment (Vertical) 16 Laboratory - Hydrology 17 Lecture - Ponds and Wetlands, Water Treatment Removal Mechanisms 18 Lecture - Outlets and Sludge. 19 Lecture - Viban Risk Management 20 Lecture - Urban Risk Management 21 Lecture - Environmental Impact Assessment 22 Lecture - Environmental Impact Assessment Methods Chadwick, A J, Morfett, J C, Borthwick, M. (2004). Hydraulics in Civil and Environmental Engineering (4th ed) London: E & FN Spon. Ciria. (2007). The SUDS Manual. London: Ciria Danish Road Directorate. (2002). Beautiful Roads - A Handbook of Road Architecture. Copenhagen: Danish Road Directorate. (2012). Biractives for the Design of Urban Roads RASt06. Cologne: FGSV Verlag GmbH. ICE, (201x). CESSM3 Price Database, Edited by Franklin and Andrews, Institution of Civil Engineers, London: Thomas Telford. Littlefield, D. (2007). Metric Handbook Planning and Design Data, 3rd Edition. London: Routledge.		Models to analyse Hydrology problems.
Chadwick, A J, Morfett, J C, Borthwick, M. (2004). Hydraulics in Civil and Environmental Engineering (4th ed) London: E & FN Spon. Ciria. (2007). The SUDS Manual. London: Ciria Danish Road Directorate. (2002). Beautiful Roads - A Handbook of Road Architecture. Copenhagen: Danish Road Directorate. Recommended Reading FGSV. (2012). Directives for the Design of Urban Roads RASt06. Cologne: FGSV Verlag GmbH. ICE, (201x). CESSM3 Price Database, Edited by Franklin and Andrews, Institution of Civil Engineers, London: Thomas Telford. Littlefield, D. (2007). Metric Handbook Planning and Design Data, 3rd Edition. London: Routledge.	Syllabus Content	2 Lecture – Architecture and Urbanisation. 3 Lecture - Road Networks 4 Lecture - Road Safety 5 Lecture – Infiltration and Hdrographs. 6 Lecture - SUDs Selection 7 Lecture - SUDs Design Criteria 8 Lecture - Groundwater Control. 9 Lecture - SUDs Source Control 10 Lecture - SUDs Inlets and Pre Treatment 11 Software - SUDs Hydrographs 12 Lecture - Infiltration Trenches, Soakaways and Basins. 13 Lecture - Conveyance Swales and Pipe Systems. 14 Lecture - Road Alignment (Vertical) 15 Lecture - Road Alignment (Horizontal) 16 Laboratory - Hydrology 17 Lecture - Ponds and Wetlands, Water Treatment Removal Mechanisms 18 Lecture - Outlets and Sludge. 19 Lecture - Natural Hazards Management 20 Lecture - Environmental Impact Assessment
Notes Industry Standard software will be used for analysis and detailing.	Recommended Reading	Chadwick, A J, Morfett, J C, Borthwick, M. (2004). <i>Hydraulics in Civil and Environmental Engineering (4th ed)</i> London: E & FN Spon. Ciria. (2007). <i>The SUDS Manual.</i> London: Ciria Danish Road Directorate. (2002). <i>Beautiful Roads - A Handbook of Road Architecture</i> . Copenhagen: Danish Road Directorate. FGSV. (2012). <i>Directives for the Design of Urban Roads RASt06</i> . Cologne: FGSV Verlag GmbH. ICE, (201x). <i>CESSM3 Price Database, Edited by Franklin and Andrews,</i> Institution of Civil Engineers, London: Thomas Telford. Littlefield, D. (2007). <i>Metric Handbook Planning and Design Data, 3rd</i>
	Notes	Industry Standard software will be used for analysis and detailing.

Page 10 Version 7.1

TECHNIK HOCHSCHULE MAINZ UNIVERSITY OF APPLIED SCIENCES Status: Sept 2017 Compulsory **Module Name** Study Skills Course 2 Level Cycle В **Civil Engineering** Bachelor Abbreviation **SKILLS Construction Management** Subject Thread International Civil Engineering Structures Planning and the Environment Semester Semester 4 Master **Construction Management** Frequency On demand Structures **International Civil Engineering** Bachelor Duration 1 Semester **Facilities Management Bachelor** Language **English** Master **Civil Engineering with Business Studies** 1/1 ECTS / Weighting **Bachelor** 10 h at University = 4 SWS Lectures Student Workload 20 h Independent Study 30 h Total Module Co-ordinator Prof. Dr. A. K. Petersen BSc, PhD, CEng, MICE Other lecturers Visiting Lecturers Formal lectures, tutorials, student led seminars and on-line learning Learning and Teaching resources will provide theoretical and practical underpinning for the Strategy Learning Outcomes. Pre-requisites To have passed ALL Level 1 Modules. Recommended Requirements **Progress Control** Yes No Description

Page 11 Version 7.0

Χ

Χ

Pre-exam Test

Mid-term Test

Progress Tests

2.44	Examinations	100% coursework
------	--------------	-----------------

Learning Outcomes	On successful completion of this unit, students should be able, at Level 2 threshold level, to: 1. Write an Academic Paper. 2. Use the Harvard APA referencing style.
Syllabus Content	 Lecture - History of Academia. Lecture - Teaching and Learning. Lecture - History of English. Lecture - Effective Report writing. Lecture - Literature Search and Critique.
Recommended Reading	Davies, J.W. (2001), Communication Skills, New Jersey: Prentice-Hall.
Notes	Industry Standard software will be used for analysis and detailing.

Page 12 Version 7.1

Module Descriptors for Units Taught in English Level 3 Bachelor

Faculty of Technology
International Civil Engineering and
International Built Environment

Page 1 Version 7.2

Content

Title	Credit (ECTS)	Level	Page
Study Skills	3	3	3
Applied Facilities Management	6	3	5
Applied Substructure Engineering	6	3	7
Applied Infrastructure Engineering/Management	6	3	9
Applied Superstructure Engineering	6	3	11
Bachelor Thesis	14	3	13
Construction Project Management	6	3	15
Integrated Design Project	16	3	17
International Project Management	6	3	19
Project Management	6	3	21
Research Methods	6	3	23
Professional Skills	3	3	25

Page 2 Version 7.2

HOO UNI	HNIK CHSCHULE MAINZ VERSITY OF LIED SCIENCES	Version: Sept 2020		
Module Name	Study Skills	Course	Compulsory	Optional
Level	3		ပိ	
Cycle	В	Civil Engineering		1
Abbreviation	SKILLS	Bachelor		
	International Civil Engineering	Construction Management		
Subject Thread	and Built Environment	Structures		
		Planning and the Environment		
Semester	Semester 5	Master		
		Construction Management		
Frequency	On demand	Structures		
		International Civil Engineering		
Duration	1 Semester	Bachelor		
		Facilities Management		
Language	English	Bachelor		
		Master		
ECTS / Weighting	1/1	Civil Engineering with Business S	tudies	3
LOTO / Weighting		Bachelor		
	20 h at University = 8 SW	S Lectures		

			raciii	ties wanagement		
Language	English		В	achelor		
			N	laster		
ECTS / Weighting	1/1		Civil Engineering with Business Studies			
20107 Wolghang			В	achelor		
	20 h at University	= 8 SWS	S Lectu	res		
Student Workload	40 h Independent	Study				
	60 h Total					
Module Co-ordinator	Prof. Dr. A. K. Petersen	BSc, Ph	D, CEr	ng, MICE		
Other lecturers	Visiting Lecturers					
Learning and Teaching Strategy				eminars and on-line learning ractical underpinning for the		
Pre-requisites	To have passed ALL Le	evel 1 an	d 2 Mo	dules.		
Recommended Requirements	-					
Progress Control	-					
		Yes	No	Description		
Progress Tests	Pre-exam Test		Х			_
	Mid-term Test		X			
Examinations	100% coursework					

Page 3 Version 7.2

Learning Outcomes	On successful completion of this unit, students should be able, at Level 3 threshold level, to: 1. Write an Academic Paper. 2. Use the Harvard APA referencing style.
Syllabus Content	 Lecture - History of Academia. Lecture - Teaching and Learning. Lecture - History of English. Lecture - Effective Report writing. Lecture - Literature Search and Critique.
Recommended Reading	Davies, J.W. (2001), Communication Skills, New Jersey: Prentice-Hall.
Notes	Industry Standard software will be used for analysis and detailing.

Page 4 Version 7.2

HOO UNI	HNIK CHSCHULE MAINZ VERSITY OF LIED SCIENCES		Versio	on: Sept 2020		
Module Name	Applied Facilities Management			Course	Compulsory	Optional
Level	3				ŭ	
Cycle	В			Engineering achelor		
Abbreviation	AFM			Construction Management		
Subject Thread	International Built Environ	ment		Structures		
				Planning and the Environment		
Semester	Semester 5		М	aster		
				Construction Management		
Frequency	On demand			Structures		
Duration	1 Semester			national Civil Engineering		
Duration	i Semester		Facili	ties Management		<u> </u>
Language	English		Facilities Management Bachelor			
			Master			
EOTO //W : 1 (:	0.40		Civil I	Engineering with Business S	tudies	 S
ECTS / Weighting	6/6		Bachelor			
	60 h at University =	4 SWS	S Lectu	res		
Student Workload	120 h Independent Study					
	, ,					
	180 h Total					
Module Co-ordinator	Prof. Dr. A. K. Petersen B	Sc, Ph	D, CEn	g, MICE		
Other lecturers	Visiting Lecturers					
Learning and Teaching Strategy				eminars and on-line learning ractical underpinning for the		
Pre-requisites	To have passed ALL Leve	el 1 and	d 2 Mod	dules.		
Recommended Requirements						
Progress Control	Conceptional Design Pres	entatio	n.			
		Yes	No	Description		
Progress Tests	Pre-exam Test		Х			_
	Mid-term Test		Х	_		_
Examinations	100% coursework or 2.5 hr Examination					

Page 5 Version 7.2

	On successful completion of this unit, students should be able, at Level 3 threshold level, to:					
Learning Outcomes	Determine the Facilities of a Project to be managed.					
	 Write an Operation Plan. Cost, schedule and resource an Operation Plan. 					
	Lecture - Applied Facilities Management Introduction.					
	2 Lecture - Contracts and the Stakeholders in FM					
	3 Lecture – Carbon Accounting.					
	4 Lecture – Zero Carbon.					
	5 Lecture – Building Services Space and Weight					
	6 Lecture - Bills of Quantities and Scope Management (WBS).					
	7 Lecture – Renewable Energy					
	8 Lecture – Mechanical and Electrical Building Services.					
Syllabus Content	9 Lecture – Cooling, Heating and Ventilation Loads.					
	10 Lecture – Building Services Design (Elec)					
	11 Lecture – Building Services Design (Water)					
	12 Lecture - Internal and External Design Criteria					
	13 Lecture - Sustainability Certificates as a Value Driver.					
	14 Lecture – Energy and Carbon					
	15 Lecture - FM Costs.					
	16 Lecture – Repair and Maintenance.					
	17 Lecture – Repair and Maintenance Planning.					
	18 Lecture - Sustainability/Feasibility/Carbon Reporting.					
	Hawkins, G. (2011). Rules of Thumb Guidelines for building services (5th-edition). Bracknell: BSRIA.					
Recommended Reading	ICE, (201x). CESSM3 Price Database, Edited by Franklin and Andrews, Institution of Civil Engineers, London: Thomas Telford.					
	Littlefield, D. (2007). <i>Metric Handbook Planning and Design Data, 3rd Edition</i> . London: Routledge.					
Notes	Industry Standard software will be used for analysis and detailing.					

Page 6 Version 7.2

HOO	CHSCHULE MAINZ VERSITY OF					
APP	LIED SCIENCES		Version	on: Sept 2020		
Module Name	Applied Substructure Engineering			Course	Compulsory	Optional
Level	3					
Cycle	В		Civil Engineering			1
Abbreviation	SUB		В	achelor	—	
Subject Thread	International Civil Enginee	rina		Construction Management	<u> </u>	
Subject Thread	International Civil Engineer	nternational Civil Engineering		Structures	<u> </u>	
				Planning and the Environment		
Semester	Semester 5		M	laster		
				Construction Management		
Frequency	On demand			Structures		
			Interr	national Civil Engineering		•
Duration	1 Semester			achelor		
			Facili	ties Management	.1	1
Language	English		Bachelor			
Language	English		M	laster		
ECTS / Weighting	6/6		Civil Engineering with Business Studie			s
			В	achelor	<u> </u>	
	60 h at University =	4 SWS	S Lectu	res		
Student Workload	120 h Independent Study					
	180 h Total					
Module Co-ordinator	Prof. Dr. A. K. Petersen BS	Sc, Ph	D, CEr	ng, MICE		
Other lecturers	Visiting Lecturers					
Learning and Teaching Strategy				eminars and on-line learning ractical underpinning for the		
Pre-requisites	To have passed ALL Leve	el 1 and	d 2 Mo	dules.		
Recommended Requirements						
Progress Control	Conceptional Design Prese	entatic	n.			
		Yes	No	Description		
Progress Tests	Pre-exam Test		Х			_
	Mid-term Test		Х			_
Examinations	100% coursework or 2.5 h	r Exan	nination	1		

TECHNIK

Page 7 Version 7.2

Learning Outcomes	 On successful completion of this unit, students should be able, at Level 3 threshold level, to: Appraise and evaluate soil reports and design shallow or deep foundations and excavations supported by retaining walls. Identify failure mechanisms of soil slopes and compute slope stability analysis for granular or cohesive slopes with regard to short and long term slope behaviour. Apply Theoretical, Scaled Physical or Computational Hydraulic Models to analyse hydraulic engineering problems. Differentiate between the removal processes that operate at different stages of water treatment.
Syllabus Content	 Lecture - Introduction to Applied Substructure Engineering. Lecture - Limit State Design Philosophy and Introduction to Eurocodes. Lecture - In Situ Soil Classification and Testing. Lecture - Hydrology. Lecture - Earthworks (Excavation Support). Lecture - Earthworks. Lecture - Embedded Retaining Wall Design. Lecture - Groundwater Control. Lecture - Shallow Foundations. Lecture - Infiltration and Hydrographs. Seminar - Shallow Foundations and Road Pavements Lecture - Deep (Piled) Foundations. Lecture - Infiltration Trenches, Soakaways and Basins. Seminar - Deep (Piled) Foundations. Lecture - Conveyance Swales and Pipe Systems. Laboratory - Geotechnics Lecture - Ponds and Wetlands, Water Treatment Removal Mechanisms. Lecture - Outlets and Sludge. Lecture - Slope Stability. Software - Slope Stability Limit State Geo. Seminar - Substructure Reports
Recommended Reading	Bond, A.J., Harrison, T., Narayanan R.S., Brooker O., Moss R.M., Webster, R., Harris, A.J. (2006). <i>How to Design Concrete Structures Using Eurocode</i> 2. London: The Concrete Centre. Ciria. (2007). <i>The SUDS Manual</i> . London: Ciria. ICE, (201x). <i>CESSM3 Price Database, Edited by Franklin and Andrews,</i> Institution of Civil Engineers, London: Thomas Telford. Craig R.F. (1997), <i>Soil Mechanics</i> , London, Spon Press. Eurocode 7: (2007), <i>Geotechnical Design, Ground Investigation and Testing</i> , CEN. Smith, G.N. & Smith, I.G.N, (1998) <i>Elements of Soil Mechanics</i> , New Jersey, Blackwell Scientific.
Notes	Industry Standard software will be used for analysis and detailing.

Page 8 Version 7.2

	CHSCHULE MAINZ EVERSITY OF						
	PLIED SCIENCES		Versio	on: Sept 2020			
Module Name	Applied Infrastructure Engineering/Manageme	nt		Course	Compulsory	Optional	
Level	3					0	
Cycle	В		Civil Engineering				
Abbreviation	AIE		Bachelor				
Subject Thread	International Civil Engine	ering		Construction Management			
- Cabjeet IIII caa	& Built Environment			Structures			
Compator	Compoter F			Planning and the Environment			
Semester	Semester 5		Master				
				Construction Management			
Frequency	On demand			Structures			
				national Civil Engineering	1	ī	
Duration	1 Semester		В	achelor			
				ties Management			
Language	English			achelor			
			M	aster			
ECTS / Weighting	6 / 6			Engineering with Business S achelor	tudies	3	
	60 h at University =	4 SWS	S Lectu	res			
Student Workload	120 h Independent Study						
	180 h Total						
Module Co-ordinator	Prof. Dr. A. K. Petersen E	Sc, Ph	D, CEn	g, MICE			
Other lecturers	Visiting Lecturers						
Learning and Teaching Strategy				eminars and on-line learning ractical underpinning for the			
Pre-requisites	To have passed ALL Lev	el 1 an	d 2 Mo	dules.			
Recommended Requirements							
Progress Control	Conceptional Design Pres	sentatio	n.				
		Yes	No	Description			
Progress Tests	Pre-exam Test		Х			-	
	Mid-term Test		Х			_	
Examinations	100% coursework or 2.5 l	hr Exan	nination				

TECHNIK

Page 9 Version 7.2

Learning Outcomes	On successful completion of this unit, students should be able, at Level 3 threshold level, to: 1. Design: the horizontal and vertical alignment, the associated pavement, drainage and lighting for a Project and develop an appreciation of the maintenance requirements. 2. Design Sustainable Urban Drainage Source Control for a Project. 3. Assess the Environmental Impact of a Project.
Syllabus Content	1 Lecture - Introduction to Applied Infrastructure Engineering 2 Lecture — Architecture and Urbanisation. 3 Lecture - Road Networks 4 Lecture - Road Safety 5 Lecture - SUDs Selection 6 Lecture - SUDs Design Criteria 7 Lecture - SUDs Source Control 8 Lecture - SUDs Inlets and Pre Treatment 9 Lecture - Road Traffic Analysis. 10 Lecture - Road Alignment (Vertical) 11 Lecture - Road Alignment (Horizontal) 12 Lecture - Road Alignment (Horizontal) 13 Exkursion 14 Lecture - Road and SUDs Construction and Maintenance 15 Lecture - Natural Hazard Management 16 Lecture - Urban Risk Management 17 Lecture - Sustainable Transport Systems 18 Lecture - Sustainable Transport Infrastructure 19 Lecture - Environmental Impact Assessment Framework 20 Lecture - Environmental Impact Assessment Methods 21 Seminar — Infrastructure Reports
Recommended Reading	Ciria. (2007). The SUDS Manual. London: Ciria Danish Road Directorate. (2002). Beautiful Roads - A Handbook of Road Architecture. Copenhagen: Danish Road Directorate. FGSV. (2012). Directives for the Design of Urban Roads RASt06. Cologne: FGSV Verlag GmbH. ICE, (201x). CESSM3 Price Database, Edited by Franklin and Andrews, Institution of Civil Engineers, London: Thomas Telford. Littlefield, D. (2007). Metric Handbook Planning and Design Data, 3rd Edition. London: Routledge.
Notes	Industry Standard software will be used for analysis and detailing.

Page 10 Version 7.2

	CHSCHULE MAINZ EVERSITY OF						
APP	LIED SCIENCES		Versio	on: Sept 2020			
Module Name	Applied Superstructure Engineering			Course	Sompulsory	Optional	
Level	3		-		ပိ	0	
Cycle	В			Engineering 		Ι	
Abbreviation	SUPER		в	achelor			
Subject Thread	International Civil Enginee	ering		Construction Management Structures			
	3	<u> </u>					
Semester	Semester 5			Planning and the Environment			
Gemester	Jemester 5		- IVI	Sanatrustian Management			
	On domand			Construction Management			
Frequency	On demand			Structures			
D	10		International Civil Engineering Bachelor				
Duration	1 Semester		-			<u> </u>	
			Facilities Management Bachelor				
Language	English			aster			
			Civil I	Engineering with Business S	tudies		
ECTS / Weighting	6/6			achelor	ludio		
	60 h at University =	4 SWS	S Lectu	res			
Student Workload	·						
Olddon Worlload							
	180 h Total						
Module Co-ordinator	Prof. Dr. A. K. Petersen B	Sc, Ph	D, CEn	g, MICE			
Other lecturers	Visiting Lecturers						
Learning and Teaching Strategy				eminars and on-line learning ractical underpinning for the			
Pre-requisites	To have passed ALL Leve	el 1 an	d 2 Mo	dules.			
Recommended Requirements							
Progress Control	Conceptional Design Pres	sentatio	on.				
		Yes	No	Description			
Progress Tests	Pre-exam Test		Х			_	
	Mid-term Test		Х			_	
Examinations	100% coursework or 2.5 h	nr Exan	ninatior	1			

TECHNIK

Page 11 Version 7.2

Learning Outcomes	On successful completion of this unit, students should be able, at Level 3 threshold level, to: 1. Undertake the quantitative design and detailing of reinforced concrete frames (Winter Semester). 2. Undertake the quantitative design and detailing of steel framed buildings with composite floors (Summer Semester).
Syllabus Content	1 Lecture - Applied Superstructure Engineering Introduction. 2 Lecture - Limit State Design Philosophy and Introduction to Eurocodes. 3 Lecture - Structural Design Concepts 4 Seminar - Structural Concept Brainstorm 5 Lecture - Preliminary Structural Design Initial Sizing. 6 Seminar - BIM Modelling 7 Lecture - Frame Analysis. 8 Seminar - Rstab Modelling 9 Lecture - Final Design of Slabs ULS. 10 Seminar - Spreadsheets/Load Tables Slabs 11 Lecture - CAD Output. 12 Lecture - Reinforced Concrete Construction. 13 Lecture - Final Design of Frame - Beams. 14 Seminar - Spreadsheets/Buckling - Beams. 15 Seminar - Structural Detailing. 16 Lecture - Structural Frame Construction. 17 Lecture - Composite Frame Construction. 18 Lecture - Final Design of RC Frame - Columns and Stability 19 Seminar - Columns Spreadsheet/Stability 20 Lecture - Connections. 21 Seminar - Structural Detailing. 22 Seminar - Superstructure Report 23 Lecture - Design of Reinforced Concrete Water Retaining Tanks.
Recommende d Reading	Bond A J, T Harrison, R S Narayanan, O Brooker, R M Moss, R Webster, A J Harris, (2006). <i>How to Design Concrete Structures Using Eurocode</i> 2, London: The Concrete Centre. ICE, (201x). <i>CESSM3 Price Database, Edited by Franklin and Andrews,</i> Institution of Civil Engineers, London: Thomas Telford. Littlefield, D. (2007). <i>Metric Handbook Planning and Design Data, 3rd Edition.</i> London: Routledge. Owens, G.W., Knowles, P.R., (2016) <i>Steel Designers Manual.</i> UK: Wiley-Blackwell.
Notes	Industry Standard software will be used for analysis and detailing.

Page 12 Version 7.2

Page 13 Version 7.2

TECHNIK HOCHSCHULE MAINZ UNIVERSITY OF APPLIED SCIENCES Version: Sept 2020 Compulsory **Module Name** Optional **Bachelor Thesis** Course (Bachelorarbeit) Level 3 Cycle В **Civil Engineering Bachelor** Abbreviation **BT Construction Management** International Civil Engineering Subject Thread and Built Environment Structures Planning and the Environment Semester 6 Semester **Construction Management** On demand Structures Frequency **International Civil Engineering Bachelor** Duration 1 Semester **Facilities Management Bachelor English** Language Master **Civil Engineering with Business Studies** ECTS / Weighting 14 / 14 **Bachelor** 0 h at University Student Workload 360 h Independent Study 360 h Total Module Co-ordinator Prof. Dr. A. K. Petersen BSc, PhD, CEng, MICE Other lecturers Visiting Lecturers Formal lectures, tutorials, student led seminars and on-line learning Learning and Teaching resources will provide theoretical and practical underpinning for the Strategy Learning Outcomes. Pre-requisites To have passed ALL Level 1 and 2 Modules. Recommended Requirements **Progress Control** Description Yes No Χ **Progress Tests** Pre-exam Test

Page 14 Version 7.2

100% coursework (Written Report 70%, Colloquium 30%).

Mid-term Test

Examinations

Χ

Learning Outcomes	On successful completion of this unit, students should be able, at Level 3 threshold level, to: 1. Prepare and execute a scientific Investigation, 2. Orally present the substantial completion of a scientific investigation. 3. Produce a report on the findings of a scientific investigation.
Syllabus Content	This unit provides an opportunity for the students to undertake individual investigative work with an ultimate aim of solving a research problem. Typically the project will involve identification and analysis of the problem and the related parameters and issues. A critical analysis of relevant literature and past experience would lead to proposals for solving the problem. The investigative efforts related to all aspects of the project will then be presented in a final report. The investigative component of the project could be related to analytical parametric study and /or laboratory or field based activities.
Recommended Reading	Fellows, R. R. and Liu, A. (2003), Research Methods for Construction, New Jersey: Blackwell. Davies, J.W. (2001), Communication Skills, New Jersey: Prentice-Hall.
Notes	Industry Standard software will be used for analysis and detailing.

Page 15 Version 7.2

TECHNIK HOCHSCHULE MAINZ UNIVERSITY OF APPLIED SCIENCES

Version: Sept 2020 Sompulsory **Construction Project Module Name** Management Course Level 3 **Civil Engineering** В Cycle **Bachelor CPM** Abbreviation **Construction Management** International Civil Engineering Subject Thread Structures and Built Environment Planning and the Environment Master Semester 5 Semester **Construction Management** Structures Frequency On demand **International Civil Engineering** Bachelor Duration 1 Semester **Facilities Management Bachelor English** Language Master **Civil Engineering with Business Studies** ECTS / Weighting 6/6 Bachelor 60 h at University = 4 SWS Lectures Student Workload 120 h Independent Study 180 h Total Module Co-ordinator Prof. Dr. A. K. Petersen BSc, PhD, CEng, MICE Visiting Lecturers Other lecturers Formal lectures, tutorials, student led seminars and on-line learning Learning and Teaching resources will provide theoretical and practical underpinning for the Strategy Learning Outcomes. Pre-requisites To have passed **ALL** Level 1 and 2 Modules. Recommended Requirements **Progress Control** Yes No Description **Progress Tests** Pre-exam Test Χ Mid-term Test Χ **Examinations** 100% coursework or 2.5hr Examination

Page 16 Version 7.2

Learning Outcomes	 On successful completion of this unit, students should be able, at Level 3 threshold level, to: Describe the construction techniques employed by specialist subcontractors such as demolition, earthworks, piling, etc. Distinguish between types of structures, their method of construction and the appropriateness of different materials. Assess the Time, Cost, Quality, Health & Safety and Environmental consequences of construction site activities.
Syllabus Content	 Lecture - Construction Project Management Introduction. Lecture - Demolition. Lecture - Temporary Works Construction. Lecture - Scope Plan, Budget Costing and Life cycle Durations. Lecture - Earthworks (Excavation Support). Lecture - Bills of Quantities and Scope Management (WBS). Lecture - Groundwater Control. Lecture - Shallow Foundations and Road Pavements. Lecture - Deep (Piled) Foundations. Lecture - Take of Quantities, Gantt Resources Charts and PMBok HRM Lecture - Reinforced Concrete Construction. Lecture - Project Decision Analysis, Method Statements and Risk Identificati Lecture - Structural Frame Construction. Lecture - Composite Frame Construction. Lecture - Road Pavement + Sustainable Urban Drainage Construction Lecture - Time Management CPA and Project Management Software Lecture - Cladding and the Building Envelope Lecture - Risk Management. Lecture - Quality Management and Sustainable Material Specification. Lecture - Repair and Maintenance. Seminar- Construction Plan Reports
Recommended Reading	Hawkins, G. (2011). Rules of Thumb Guidelines for building services (5th-edition). Bracknell: BSRIA. ICE, (201x). CESSM3 Price Database, Edited by Franklin and Andrews, Institution of Civil Engineers, London: Thomas Telford. PMBoK, (2008). A Guide to the Project Management Body of Knowledge: PMBoK Guide. 4rd Edition. Pennsylvania: Project Management Institute Inc.
Notes	Industry Standard software will be used for analysis and detailing.

Page 17 Version 7.2

HO UN3	CHNIK CHSCHULE MAINZ EVERSITY OF PLIED SCIENCES	V	/ersion:	Sept 2020		
Module Name Level	Integrated Design Proje (Incl Natural Hazards Management) 3	ct		Course	Sompulsory	Optional
Cycle	В		Civil End	jineering		<u> </u>
Abbreviation	IDP	_	Bach			
	International Civil	_	Co	onstruction Management		
Subject Thread	Engineering and Built	_	St	ructures		
	Environment	_	Pla	anning and the Environment		
Semester	Semester 6	-	Maste	er		
			Co	onstruction Management		
Frequency	On demand	_	St	ructures		
			Internation	onal Civil Engineering	•	
Duration	1 Semester	_	Bach			
			- Facilities Management			
Language	English	_	Bachelor			
Languago	211911011		Maste	er		
ECTS / Weighting	16 / 16	<u>-</u>	Civil Eng Bach	ineering with Business S	tudies	<u> </u>
	0 h at University					
Student Workload		ıdv				
Stadoni Womasa	'					
	480 h Total					
Module Co-ordinator	Prof. Dr. A. K. Petersen B	Sc, Pl	hD, CEn	g, MICE		
Other lecturers	Visiting Lecturers					
Learning and Teaching Strategy	Formal lectures, tutorials, resources will provide the Learning Outcomes.					
Pre-requisites	To have passed ALL Lev	el 1 ar	nd 2 Mod	dules.		
Recommended Requirements	-					
Progress Control	-					
		Yes	No	Description		
Progress Tests	Pre-exam Test		Х			
	Mid-term Test		Х			_

Page 18 Version 7.2

Examinations	100% coursework.
Learning Outcomes	On successful completion of this unit, students should be able, at Level 3 threshold level, to: 1. Apply the design process in a civil engineering or building project. 2. Write a Natural Hazard Management Plan. 3. Write a Sustainability Plan.
Syllabus Content	The unit is based on an undergraduate competition brief for a reinforced concrete structure, a steel bridge structure or a steel building structure, with associated infrastructure, substructure, construction, facilities and project management requirements. If the Integrated Design Project is taken in the Winter Semester the Construction Material will be Reinforced Concrete if in the Summer Semester Structural Steel. The brief for both Semesters remains the same therefore a sustainability analysis can be performed comparing the two designs.
Recommended Reading	Bond, A.J., Harrison, T., Narayanan R.S., Brooker O., Moss R.M., Webster, R., Harris, A.J. (2006). How to Design Concrete Structures Using Eurocode 2. London: The Concrete Centre. ICE, (201x). CESSM3 Price Database, Edited by Franklin and Andrews, Institution of Civil Engineers, London: Thomas Telford. Ciria. (2007). The SUDS Manual. London: Ciria Hawkins, G. (2011). Rules of Thumb Guidelines for building services (5thedition). Bracknell: BSRIA. Owens, G.W., Knowles, P.R., (2016) Steel Designers Manual. UK: Wiley-Blackwell. Littlefield, D. (2007). Metric Handbook Planning and Design Data, 3rd Edition. London: Routledge.
Notes	Industry Standard software will be used for analysis and detailing.

Page 19 Version 7.2

HOO UNI	CHNIK CHSCHULE MAINZ EVERSITY OF					
	LIED SCIENCES	_	ersion:	Sept 2020	2	
Module Name Level	International Project Management 3			Course	Compulsory	Optional
Cycle	В	-	Civil Fno	gineering		
Abbreviation	IPM	-	Bach			
	International Civil		С	onstruction Management		
Subject Thread	Engineering and Built Environment		S	tructures		
	Limioninent		Р	lanning and the Environment		
Semester	Semester 5		Mast	er		
			С	onstruction Management		
Frequency	On demand		S	tructures		
		<u> </u>	nternati	onal Civil Engineering		
Duration	1 Semester		Bach	nelor		
		<u>F</u>	acilitie	s Management		
Language	English		Bach	nelor		
			Mast	er		
ECTS / Weighting	6/6	<u></u>	Civil Engineering with Business Studies			
			Bachelor			
	60 h at University = 4 SWS Lectures					
Student Workload	120 h Independent Study					
	180 h Total					
Module Co-ordinator	Prof. Dr. A. K. Petersen BSc, PhD, CEng, MICE					
Other lecturers	Visiting Lecturers					
Learning and Teaching Strategy	Formal lectures, tutorials, student led seminars and on-line learning resources will provide theoretical and practical underpinning for the Learning Outcomes.					
Pre-requisites	To have passed ALL Level 1 and 2 Modules.					
Recommended Requirements	-					
Progress Control	-					
		Yes	No	Description		
Progress Tests	Pre-exam Test		Х			
	Mid-term Test		Х			
Examinations	100% coursework or 2.5 h	ır Exan	ninatior	1		

Page 20 Version 7.2

Learning Outcomes	On successful completion of this unit, students should be able, at Level 3 threshold level, to: 1. Assess the contractural, economic and social impacts of International Projects during their life cycle. 2. Investigate reasons for failure of some International Projects and suggest alternative modern methods of procurement. 3. Write a Business Plan.			
Syllabus Content	 Lecture - International Project Management Introduction. Lecture - History of Management. Lecture - Modern Management. Lecture - Culture. Lecture - Oral Presentations. Lecture - Society. Lecture - Basis of the Law and Land Law Lecture - Traditional Contracts. Lecture - Classification of Contracts. Lecture - FIDIC. Lecture - Egan Report. Lecture - Modern Contracts and Procurement Management. Lecture - PMBoK Procurement Management. Lecture - Handover. Lecture - World Politics 21st Century. Lecture - Macro Economics. Lecture - Accountancy Lecture - Depreciation and Property Valuation Lecture - Whole Life Cycle Costs Lecture - Social Benefit Analysis. Seminar - Business Plan Reports 			
Recommended Reading	Audit Scotland. (2004). Management of the Holyrood Building Project. Edinburgh: Audit Scotland.			
Notes	Industry Standard software will be used for analysis and detailing.			

Page 21 Version 7.2

UNI	VERSITY OF					
АРР	LIED SCIENCES		Versio	n: Sept 2020	1 \	1
Module Name	Project Management			Course	Compulsory	Optional
Level Cycle	3 B		Civil	Engineering	0	
Abbreviation	PM			achelor		
Abbreviation			-	Construction Management		
Subject Thread	International Civil Engineer and Built Environment	ing		Structures		
				Planning and the Environment		
Semester	Semester 5		M	aster		
				Construction Management		
Frequency	On demand			Structures		
			Intern	ational Civil Engineering		
Duration	1 Semester			achelor		
			Facilit	ties Management		
Language	English			achelor		
Language	English		М	aster		
ECTS / Weighting	6/6			Engineering with Business Stachelor	tudies	<u>s</u>
	60 h at University = 4 SWS Lectures					
Student Workload	120 h Independent Study					
	180 h Total					
Module Co-ordinator	Prof. Dr. A. K. Petersen BS	c, Phl	D, CEn	g, MICE		
Other lecturers	Visiting Lecturers					
Learning and Teaching Strategy	Formal lectures, tutorials, student led seminars and on-line learning resources will provide theoretical and practical underpinning for the Learning Outcomes.					
Pre-requisites	To have passed ALL Level 1 and 2 Modules.					
Recommended Requirements						
Progress Control	Conceptional Design Presentation.					
Progress Tests	Yes No Description Pre-exam Test X Mid-term Test X					
Examinations	100% coursework or 2.5 hr Examination					

TECHNIK

Page 22 Version 7.2

Learning Outcomes	On successful completion of this unit, students should be able, at Level 3 threshold level, to: 1. Apply the 5 Project Management Process Groups. Initiating, Planning, Executing, Controlling and Closing to a Project. 2. Apply the 9 Project Management Knowledge Areas . Integration, Scope, Time, Cost, Quality, Human Resource, Communications, Risk, and Procurement to a Project. 3. Write a Project Plan.		
Syllabus Content	1 Lecture - Project Management Introduction. 2 Lecture - Demolition 3 Software - PMBoK Communication Management 4 Lecture - Scope Plan, Budget Costing and Life cycle Durations. 5 Supervisor Meeting 6 Lecture - Bills of Quantities and Scope Management (WBS). 7 Supervisor Meeting 8 Lecture - Take of Quantities, Gantt and Resources Charts 9 Supervisor Meeting 10 Supervisor Meeting 11 Lecture - Method Statements and Risk Identification. 12 Supervisor Meeting 13 Lecture - Time Management CPA. 14 Supervisor Meeting 15 Lecture - Risk Management. 16 Supervisor Meeting 17 Lecture - Cost Management. 18 Lecture - Quality Management and Material Specification. 19 Supervisor Meeting 20 Lecture - PMBoK Procurement Management. 21 Software - Earned value Analysis. 22 Supervisor Meeting 23 Lecture - Sustainability/Feasibility Reporting.		
Recommended Reading	PMBoK, (2008). A Guide to the Project Management Body of Knowledge: PMBoK Guide. 4rd Edition. Pennsylvania: Project Management Institute Inc.		
Notes	Industry Standard software will be used for analysis and detailing.		

Page 23 Version 7.2

TECHNIK HOCHSCHULE MAINZ UNIVERSITY OF APPLIED SCIENCES

Version: Sept 2020 Sompulsory **Module Name Research Methods** Course 3 Level **Civil Engineering** В Cycle **Bachelor** Abbreviation RM **Construction Management** International Civil Engineering Subject Thread Structures and Built Environment Planning and the Environment Semester 5 Master Semester **Construction Management** Structures Frequency On demand **International Civil Engineering** Bachelor Duration 1 Semester **Facilities Management Bachelor English** Language Master **Civil Engineering with Business Studies** ECTS / Weighting 6/6 Bachelor 60 h at University = 4 SWS Lectures Student Workload 120 h Independent Study 180 h Total Module Co-ordinator Prof. Dr. A. K. Petersen BSc, PhD, CEng, MICE Visiting Lecturers Other lecturers Formal lectures, tutorials, student led seminars and on-line learning Learning and Teaching resources will provide theoretical and practical underpinning for the Strategy Learning Outcomes. Pre-requisites To have passed ALL Level 1 and 2 Modules. Recommended Requirements **Progress Control** Yes No Description Χ **Progress Tests** Pre-exam Test Mid-term Test Χ 100% coursework. **Examinations**

Page 24 Version 7.2

Learning Outcomes	On successful completion of this unit, students should be able, at Level 3 threshold level, to: 1. Write an Academic Paper. 2. Use the Harvard APA referencing style. 3. Poster Present a Research Proposal.
Syllabus Content	1 Lecture - History of Academia. 2 Lecture - Teaching and Learning. 3 Lecture - History of English. 4 Lecture - Effective Report writing. 5 Lecture - Research Methods Introduction and Principles of Research 6 Lecture - Project Supervision and Meetings. 7 Lecture - Literature Search and Critique. 8 Supervisor Meeting 9 Lecture - Research Methodology and Ethics. 10 Supervisor Meeting 11 Lecture - Research Design. 12 Supervisor Meeting 13 Lecture - Data Analysis. 14 Lecture - Research Proposals. 15 Supervisor Meeting 16 Lecture - Poster Presentations. 17 Lecture - Laboratory Resources. 18 Supervisor Meeting 19 Supervisor Meeting 20 Supervisor Meeting 21 Lecture - Discussion of Results. 22 Lecture - Oral Research Presentations. 23 Lecture - Writing the Final Thesis. 24 Supervisor Meeting
Recommended Reading	Fellows, R. R. and Liu, A. (2003), Research Methods for Construction, New Jersey: Blackwell. Davies, J.W. (2001), Communication Skills, New Jersey: Prentice-Hall.
Notes	Industry Standard software will be used for analysis and detailing.

Page 25 Version 7.2

Page 26 Version 7.2

	TECHNIK HOCHSCHULE MAINZ UNIVERSITY OF APPLIED SCIENCES
Modulo Nomo	

APPLIED SCIENCES		Version: Sept 2020				
Module Name	Professional Skills			Course	Compulsory	Optional
Cycle	В		Civil Engineering			
Abbreviation	PROSKILLS			achelor		
	International Civil Enginee	oring		Construction Management		
Subject Thread	and Built Environment	silig		Structures		
				Planning and the Environment		
Semester	Semester 5		М	aster		
				Construction Management		
Frequency	On demand			Structures		
				ational Civil Engineering	1	1
Duration	1 Semester		В	achelor		
			Facili	ties Management	1	ı
Language	English		В	achelor		
			M	aster		
ECTS / Weighting	1 / 1 Civil Engineering with Business Studies Bachelor			3		
	20 h at University =	8 SW	S Lectu	res	•	
Student Workload	40 h Independent Study					
	60 h Total					
	60 n Total					
Module Co-ordinator	Prof. Dr. A. K. Petersen B	Prof. Dr. A. K. Petersen BSc, PhD, CEng, MICE				
Other lecturers	Visiting Lecturers	Visiting Lecturers				
Learning and Teaching Strategy	Formal lectures, tutorials, student led seminars and on-line learning resources will provide theoretical and practical underpinning for the Learning Outcomes.					
Pre-requisites	To have passed ALL Level 1 and 2 Modules.					
Recommended Requirements	-					
Progress Control	-					
		Yes	No	Description		_
Progress Tests	Pre-exam Test		Х			
	Mid-term Test		X			
Examinations	100% coursework					

Page 27 Version 7.2

Learning Outcomes	On successful completion of this unit, students should be able, at Level 3 threshold level, to: 1. Apply Professional ethics to decisions.
Syllabus Content	History of the Construction Professions. International similarities and differences in Professional Practice. The breadth versus depth of Professions. Interdisciplinary and intercultural Professional Projects. Team Working, Collaborative Working and Leadership. Role of Industry Standard Software in Professional Practice.
Recommended Reading	Clark, J., Pratt, N. and Muirhead, O. (2018) <i>Bricks and Water</i> , London: Policy Connect. Edexcel (2011) <i>Structure of the Construction Industry</i> . London: Pearson.
Notes	Industry Standard software will be used for analysis and detailing.

Page 28 Version 7.2