

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2015-II

[Cod: CM131 Curso: Cálculo Diferencial]

[Tema: Lógica]

[Prof. R. Acuña, G. Marca, K. Venegas, J. Sotelo]

Práctica Dirigida N^o 1

- 1. Considere $A = \{1, 2, 3, 4\}$. Hallar por extensión los siguientes conjuntos
 - a) $A_1 = \{x \in A : \exists y \in A \text{ tal que } x^2 + y \ge 8\}.$
 - b) $A_2 = \{x \in A : \forall y \in A \text{ tal que } x^2 + y \ge 8\}$
 - c) $A_3 = \{x \in A : \exists ! y \in A \text{ tal que}, x^2 + y \ge 8\}.$
- 2. Negar la proposición siguiente: existe $x \in \mathbb{R}$ tal que $x \ge 3 \to x < 7$.
- 3. Utilizando tablas de verdad verificar si es contingencia, tautología o contradicción?
 - a) $(p \wedge q) \rightarrow r$
 - b) $\sim (p \land q) \lor r$
 - c) $q \leftrightarrow (\sim p \land q)$
 - d) $p \rightarrow \sim (q \wedge r)$
 - $e) ((p \rightarrow q) \rightarrow r) \leftrightarrow ((p \land q) \rightarrow r)$
- 4. Sean p y q dos proposiciones. Se define el conectivo siguiente $p*q=\sim p\lor\sim q$. Expresar sólo en términos del conectivo *, cada una de las siguientes proposiciones
- (a) $\sim p$.
- b) p / q. (p*q) + (p*q)
- (pxp) x(2+4)
 - (d) $p \rightarrow q$. $p \neq (q \neq q)$

5. Simplifique la expresión siguiente:

$$\sim [\sim (p \land q) \rightarrow \sim q] \lor p$$

- 6. Negar las proposiciones siguientes
 - a) $\forall x, \forall y, \exists z, (x+y) = z$
 - b) $\forall x, \forall y / (xy \leq 2)$
 - c) $\forall x, \forall y, \forall z, x + z < y$
 - d) $\exists x, \exists y/xy < 2$
- Construir la tabla de verdad para la siguiente proposición

$$[p \land (p \lor q)] \leftrightarrow p$$

8. Si definimos $p \triangle q = \sim (p \leftrightarrow q)$. Pruebe que

$$p \bigtriangleup (q \bigtriangleup r) \equiv (p \bigtriangleup q) \bigtriangleup r.$$

- 9. Usando las reglas de inferencia
 - a) Demostrar mediante el método directo que se cumple con $s \rightarrow \sim h$, utilizando las siguientes premisas:

$$\begin{array}{cccc}
\sim p & \bigvee & q \\
h & \rightarrow & \sim t \\
(q \lor r) & \rightarrow & (p \rightarrow t) \\
\xrightarrow{S} & & p
\end{array}$$

b) Demostrar mediante el método idirecto que se cumple con $\sim N$, utilizando las premisas siguientes:

c) Demostrar

$$\begin{array}{cccc}
\sim A & \rightarrow & B \\
C & \rightarrow & B \\
C & \lor & \sim A \\
\sim B & \lor & D
\end{array}$$

$$\therefore D$$

10. Demostrar

$$\begin{array}{ccc} p & \wedge & q \\ \hline p & \rightarrow & r \\ \hline \vdots & & \wedge & q \end{array}$$

11. Demostrar

$$\begin{array}{cccc} p & \vee & q \\ \hline p & \rightarrow & r \\ \hline \vdots & r & \vee & q \end{array}$$

- 12. Demostrar: $(A-C) \cap [A-(B\cap C)] = A-C$.
- 13. Sean A y B dos conjuntos. Demostrar que si $A \subset B$, entonces $B^c \subset A^c$.
- 14. Demostrar: Sea n un natural tal que si 5n+3 es par, entonces n es impar.
- 15. Demuestre que para cada conjunto A se cumple con $\emptyset \subset A$.
- 16. ¿Es cierto o falso que $\sim (p \land q) \leftrightarrow [p \lor \sim q]$ es equivalente a $\sim p \lor \sim q$?.
- 17. Sean A y B dos conjuntos. Demostrar que si $A^c \cap B = A \cap B$, entonces $B = \emptyset$.
- 18. Pruebe que $\sim (p \leftrightarrow q) \leftrightarrow (\sim p \leftrightarrow \sim q)$ es una contradicción.

- 19. Demostrar en forma indirecta y por contradicción la siguiente afirmación: Si n^2 es par, entonces n es par.
- 20. Se definen las proposiciones

Además la proposición $\sim [(q \heartsuit p) \rightarrow (q \clubsuit r)]$ es una tautología. Determine los valores de verdad para p, q y r.

- 21. Considere $A \subset B$. Demostrar: Si $B = \emptyset$, entonces $A = \emptyset$.
- 22. Demostrar que si c es impar, entonces $x^2 + x = c$ no tiene solución entera en x.
- 23. Demostrar en forma indirecta, si 3n + 2 es impar, entonces n es impar.
- 24. Si $A = \{1, 2, 3, ..., 10\}, B = \{x \in A \ ; x < 3 \leftrightarrow x \ge 6\}$. Determine el valor de verdad de las siguientes proposiciones:
 - a) $\forall x \in A, \exists y \in B \text{ tal que } x + y \leq 7.$
 - b) $\forall x \in A, \exists y \in B \text{ de modo que } x + y \in B.$
 - c) $\exists x \in A, \forall y \in B \text{ tal que } x + y \in A. \quad \forall$
- 25. Sean A y B dos conjuntos. Demostrar $A \subset B$ si y solo si $P(A) \subset P(B)$, donde P(A) es el conjunto potencia del conjunto A.
- 26. Sean A,B dos conjuntos. Demostrar que

$$P(A) \cup P(B) \subset P(A \cup B)$$

- 27. Sean A, B dos conjuntos. ¿Es cierto que $P(A) \cap P(B) = P(A \cap B)$?
- 28. ¿Es cierto que para todo $n \in \mathbb{Z}^+$, $n^2 n + 41$ es un entero primo?
- 29. Sean p y q dos proposiciones lógicas. Sabiendo que
 - a) $\sim p \wedge q$ es contradicción.
 - b) $p \wedge q \equiv p$.

Pruebe que $p \equiv q$.

30. Para una proposición cualquiera p se defi- $\int_{-\infty}^{\infty} 1_{r} \text{ si p es verdadera.}$

ne:
$$V(p) = \begin{cases} 1, & \text{si p es verdadera.} \\ 0, & \text{si p es falsa.} \end{cases}$$

- a) Pruebe que
 - $V(\sim p) = 1 V(p).$
 - $V(p \lor q) = V(p) + V(q) V(p)V(q).$
- b) Encuentre la formula de $V(p \rightarrow q)$.
- 31. Dados $A, B \subset E$. Pruebe que

$$A\subset B\Leftrightarrow A\cap B^c=\emptyset$$

- 32. Sean A, B subconjuntos de U. Demostrar que
 - a) $A \subset B \Leftrightarrow A \cup B = B$.
 - b) $A \subset B \Leftrightarrow A \cap B = A$.
 - c) $A \cap B = A \ y \ A \cup B = A \Leftrightarrow A = B$.
- 33. Probar que $A \cap (B-C) = (A \cap B) (A \cap C)$.
- 34. Sea $A = \{1, 2, ..., 20\}, B = \{x \in A : x < 5 \leftrightarrow x \ge 7\}$. Indagar el valor de verdad de las siguientes proposiciones:
 - a) $\forall X \subset A \to B \cap X = \emptyset$.
 - b) $\exists X \subset A \land Y \subset B$ tal que $X \cap Y = \emptyset$.
 - c) $\exists D \subset A \text{ tal que } B \cup D = A.$
 - d) $\exists X \in A, \forall y \in B, x < y$.
 - e) $\forall x \in A, \exists y \in A \text{ tal que } x y \in B.$
- 35. Demuestra poniendo un contraejemplo que las siguientes afirmaciones no son verdaderas:
 - a) Todo entero mayor que 17 es el cuadrado de un número entero.
 - b) Todo entero mayor que 6 es múltiplo de 2 y de 3.

- c) $100n + 1 > n^2$ para todo entero n.
- 36. Demuestra por reducción al absurdo las siguientes afirmaciones:
 - a) $\sqrt{2}$ no es racional.
 - b) Si un x es un número racional, entonces $\pi + x$ no es racional.
- 37. Sabiendo que $n \in \mathbb{Z}$. Demostrar que si n^2 es múltiplo de 5, entonces n es múltiplo de 5.
- 38. Analice el valor de verdad de las proposiciones siguientes:
 - a) $\exists x \in \mathbb{R}$ tal que $\forall y \in \mathbb{R}, x^2 + y^2 = (x+y)^2$.
 - b) $\exists x \in \mathbb{R}$ de modo que 2x 4 = 4x 2.
- 39. Dados los conjuntos A y B. Sea X un conjunto con las siguientes características
 - a) $A \subset X, B \subset X$.
 - b) si $A \subset Y, B \subset Y$, entonces $X \subset Y$.

Probar que $X = A \cup B$.

- 40. Sean $A, B \subset E$. Pruebe que $A \cap B = \emptyset \Leftrightarrow A \subset B^c$, donde B^c es el complemento del conjunto B respecto a E.
- 41. Demostrar que $A \cup B = E \Leftrightarrow A^c \subset B$, siendo $A, B \subset E$.
- 42. Sean $A, X \subset E$ conjuntos tales que $A \cap X = \emptyset$ y $A \cup X = E$. Pruebe que $X = A^c$.
- 43. Sean A y B dos conjuntos. Demostrar que $A \cup B \neq \emptyset$, entonces $A \neq \emptyset$ o $B \neq \emptyset$.
- 44. Sabiendo que $n \in \mathbb{Z}$. Probar que si n^2 es múltiplo de 3, entonces n es múltiplo de 3.
- 45. Probar que para todo $n \in \mathbb{N}$ se cumple n^3-n siempre es múltiplo de tres.

Uni, 31 de Agosto de 2015