Danqing Wang

Fudan University 2005 Songhu Road. Shanghai, 200438, China 86-19301247628 (phone) danqingwang@fudan.edu.cn ORCID: 0000-0002-7369-1944 https://danqing-wang.github.io

EDUCATION

Fudan University 2024 –

Assistant Professor

Department of Optical Science and Engineering

Max Planck Institute for the Science of Light 2023 – 2024

Postdoctoral Fellow

Division: Vahid Sandoghdar

University of California, Berkeley, Berkeley, CA 2019 – 2023

Miller Research Fellow Faculty host: Junqiao Wu

Department of Materials Science and Engineering

Northwestern University, Evanston, IL 2019

Ph.D. in Applied Physics

Co-advisors: Teri W. Odom, George C. Schatz

Thesis: Manipulating Light-Matter Interactions with Plasmonic Nanoparticle Lattices

Nanjing University, Nanjing, China 2013

B.S. in Physics

FELLOWSHIPS & AWARDS

- 2023 Rising Stars of Light (3 awardees globally, before faculty track)
- 2022 Rising Stars in EECS, USA
- 2021 Forbes 30 Under 30 in Science, USA
- 2019 Miller Research Fellowship, University of California, Berkeley
- 2018 Material Research Society Graduate Student Award (GSA) Silver Award
- 2018 Excellent Poster Award, Gordon Research Conference on Lasers in Micro, Nano and Bio Systems
- 2018 Honorable Mention, International Precious Metals Institute (IPMI) Student Award
- 2017 Outstanding Research Award, International Institute for Nanotechnology (Northwestern University)
- 2013 Excellence Award in National Undergraduate Innovation Training Program, China

PUBLICATIONS

[h-index: 21, i10-index: 23, total citations > 2100. Google Scholar link.]

First and co-first author

- 1. **Wang, D.***; Lu, Z.; Warkander, S.; Gupta, N.; Wang, Q.; Ci, P.; Guo, R.; Li, J.; Javey, A.; Yao, J.; Wang, F.; Wu, J.* "Long-range Optical Coupling with Epsilon-near-zero Materials," *submitted* (*corresponding author)
- 2. **Wang, D.***; Yang, A. "Miniaturized optics from structured nanoscale cavities," *Progress in Quantum Electronics* 94, 100507 (2024) (*corresponding author) DOI: 10.1016/j.pquantelec.2024.100507
- 3. Wang, D.; Hu, J.; Schatz, G.C.; Odom, T.W. "Superlattice Surface Lattice Resonances in Plasmonic Nanoparticle Arrays with Patterned Dielectrics," *Journal of Physical Chemistry Letters* 14, 38, 8525–8530 (2023) DOI: 10.1021/acs.jpclett.3c02158
- 4. Wang, D.*; Dong, K.; Li, J.; Grigoropoulos, C.; Yao, J.; Hong, J.; Wu, J.* "Low-loss, Geometry-invariant Optical Waveguides with Near-zero-index Materials," *Nanophotonics* 11, 21, 4747–4753 (2022) DOI: 10.1515/nanoph-2022-0445 (*corresponding author)
- Wang, D.; Bourgeois, M.R.; Guan, J.; Fumani, A.K.; Schatz, G.C.; Odom, T.W. "Lasing from Finite Plasmonic Nanoparticle Lattices," *ACS Photonics* 7, 630-636 (2020) DOI: 10.1021/acsphotonics.0c00231
- Fernandez-Bravo, A.⁺; Wang, D.⁺; Barnard, E.S.; Teitelboim, A.; Tajon, C.; Guan, J.; Schatz, G.C.; Cohen, B.E.; Chan, E.; Schuck, P.J.; Odom, T.W. "Ultralow-threshold, Continuous-wave Upconverting Lasing from Subwavelength Plasmons," *Nature Materials* 18, 1172–1176 (2019) [Highlighted by News and Views, *Nature Materials*] DOI: 10.1038/s41563-019-0482-5 (*equal contribution)
- 7. Wang, D.; Guan, J.; Hu, J.; Bourgeois, M.R.; Odom, T.W. "Manipulating Light-matter Interactions in Plasmonic Nanoparticle Lattices," *Accounts of Chemical Research* 52, 2997-3007 (2019) DOI: 10.1021/acs.accounts.9b00345
- 8. Wang, D.; Bourgeois, M.R.; Lee, W.; Li, R.; Trivedi, D.; Knudson, M.P.; Wang, W.; Schatz, G.C.; Odom, T.W. "Stretchable Nanolasing from Hybrid Quadrupole Plasmons," *Nano Letters* 18, 4549–4555 (2018) DOI: 10.1021/acs.nanolett.8b01774
- Wang, D.; Yang, A.; Wang. W.; Hua, Y.; Schaller, R.D.; Schatz, G.C.; Odom, T.W. "Band-edge Engineering for Controlled Multi-modal Nanolasing in Plasmonic Superlattices," *Nature Nanotechnology* 12, 889 (2017) [Highlighted by News and Views, *Nature Nanotechnology*] DOI: 10.1038/nnano.2017.126
- 10. **Wang, D.**; Wang. W.; Knudson, M.P.; Schatz, G.C.; Odom, T.W. "Structural Engineering in Plasmon Nanolasers," *Chemical Reviews* 118, 2865–2881 (2017) DOI: 10.1021/acs.chemrev.7b00424

- 11. Tran, T.T. *; Wang, D.*; Xu, Z-Q.*; Yang, A.; Toth, M.; Odom, T.W.; Aharonovich, I. "Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays," *Nano Letters* 17, 2634-2639 (2017) DOI: 10.1021/acs.nanolett.7b00444 (*equal contribution)
- 12. **Wang, D.**; Yang, A.; Hryn, A.J.; Schatz, G.C.; Odom, T.W. "Superlattice Plasmons in Hierarchical Au Nanoparticle Arrays," *ACS Photonics* 2, 1789 (2015) DOI: 10.1021/acsphotonics.5b00546

Co-author

- 13. Lin, Y.; Fan, L.; Jiang, M.; Wang, D.; He J.; Fu, Y.; Wang, J.; Zhang, X. "Ultrafast Dynamics of Strong Near-Field Coupled Localized and Delocalized Surface Plasmons," *Advanced Optical Materials*, 2400109 (2024) DOI: 10.1002/adom.202400109
- 14. Dong, K.; Zhang, T.; Li, J.; Wang, Q.; Yang, F.; Rho, Y.; **Wang, D.**; Grigoropoulos, C.P.; Wu, J.; Yao J. "Flat bands in magic-angle bilayer photonic crystals at small twists," *Phys. Rev. Lett.* 126, 223601 (2021) DOI:10.1103/PhysRevLett.126.223601
- 15. Guan, J.; Sagar, L.K.; Li, R.; **Wang, D.**; Bappi, G; Wang, W.; Watkins, N.; Bourgeois, M.R.; Levina, L.; Fan, F.; Hoogland, S.; Voznyy, O.; Martins, J.; Schaller, R.D.; Schatz, G.C.; Sargent, E.H.; Odom, T.W. "Quantum dot-plasmon lasing with controlled polarization patterns," **ACS** *Nano* 14, 3426–3433 (2020) DOI: 10.1021/acsnano.9b09466
- Guan, J.; Sagar, L.K.; Li, R.; Wang, D.; Bappi, G; Watkins, N.; Bourgeois, M.R.; Levina, L.; Fan, F.; Hoogland, S.; Voznyy, O.; Martins, J.; Schaller, R.D.; Schatz, G.C.; Sargent, E.H.; Odom, T.W. "Engineering Directionality in Quantum Dot Shell Lasing Using Plasmonic Lattices," Nano Letters 20, 1468-1474 (2020) DOI: 10.1021/acs.nanolett.9b05342
- 17. Lin, Y.; Wang, D.; Hu, J.; Liu, J.; Wang, W.; Schaller, R.D.; Odom, T.W. "Engineering Symmetry-breaking Nanocrescent Arrays for Nanolasing," *Adv. Funct. Mater.* 1904157 (2019) DOI: 10.1002/adfm.201904157
- Hu, J.; Wang, D.; Bhowmik, D.; Liu, T.; Deng, S.; Knudson, M.P.; Ao, X.; Odom, T.W. "Lattice-Resonance Metalenses for Fully Reconfigurable Imaging," ACS Nano 13, 4613-4620 (2019) DOI: 10.1021/acsnano.9b00651
- 19. Ao, X.; Wang, D.; Odom, T.W. "Enhanced Fields in Mirror-backed Low-Index Dielectric Structures," *ACS Photonics* 6, 2612-2617 (2019) DOI: 10.1021/acsphotonics.9b00931
- 20. Li, R.; Wang, D.; Guan, J.; Wang, W.; Ao, X.; Schatz, G.C.; Schaller, R.C.; Odom, T.W. "Plasmon nanolasing with aluminum nanoparticle arrays," *J. Opt. Soc. Am. B* 36, 104-111 (2019) DOI: 10.1364/josab.36.00e104
- 21. Liu, J.; Wang, W.; Wang, D.; Hu, J.; Ding, W.; Schaller, R.D.; Schatz, G.C.; Odom, T.W. "Spatially Defined Molecular Emitters Coupled to Plasmonic Nanoparticles," *Proc. Natl. Acad. Sci.* 116, 5925-5930 (2019) DOI.org/10.1073/pnas.1818902116

- 22. Knudson, M.P.; Li, R.; **Wang, D.**; Wang, W.; Schaller, R.D.; Odom, T.W. "Polarization-Dependent Lasing Behavior from Low-Symmetry Nanocavity Arrays," *ACS Nano* 13, 7435-7441 (2019) DOI: 10.1021/acsnano.9b01142
- 23. Cherqui, C.; Bourgeois, M.R.; **Wang, D.**; Schatz, G.C. "Plasmonic Surface Lattice Resonances: Theory and Computation," *Accounts of Chemical Research* 52, 2548-2558 (2019) DOI: 10.1021/acs.accounts.9b00312
- 24. Li, R.; Bourgeois, M.R.; Cherqui, C.; Guan, J.; **Wang, D.**; Hu, J.; Schaller, R.D.; Schatz, G.C.; Odom, T.W. "Hierarchical Hybridization in Plasmonic Honeycomb Lattices," *Nano Letters* 19, 6435-6441 (2019) DOI: 10.1021/acs.nanolett.9b02661
- 25. Hooper, D. C.; Kuppe, C.; **Wang, D.**; Wang, W.; Guan, J.; Odom, T.W.; Valev, V.K. "Second harmonic spectroscopy of surface lattice resonances," *Nano Letters* 19, 165-172 (2018) DOI: 10.1021/acs.nanolett.8b03574
- 26. **Wang, D.**; Wang, W.; Odom, T.W. *et al.* "Roadmap on Plasmonics: Nanoarray Lasing Spasers," *Journal of Optics* 20, 043001 (2018) DOI: 10.1088/2040-8986/aaa114
- 27. Trivedi, D.; Wang, D.; Odom, T.W.; Schatz, G.C. "Model for Describing Plasmonic Nanolasers Using Maxwell-Liouville Equations with Finite-difference Time-domain Calculations," *Phys. Rev. A.* 96, 053825 (2017) DOI: 10.1103/PhysRevA.96.053825
- 28. Yang, A.; Wang, D.; Wang, W.; Odom, T. W. "Coherent Light Sources at the Nanoscale," *Annu. Rev. Phys. Chem.* 68, 83-99 (2017) DOI: 10.1146/annurev-physchem-052516-050730
- 29. Wang, S.; **Wang, D.**; Hu, X.; Li, T.; Zhu, S. "Compact Surface Plasmon Amplifier in Nonlinear Hybrid Waveguide," *Chinese Physics B* 25, 7 (2016)

<u>Patent</u>

1. Hong, J.; Wu, J.; Wang, D. "Method and Apparatus of Hybrid Integrated Photonics Devices" (US Patent no. 20240184039, June 6, 2024)

RESEARCH EXPERIENCE

University of California, Berkeley, Berkeley, CA

- Postdoctoral research hosted by Junqiao Wu Highlight activities include:
 - Achieved long-range optical interactions between epsilon-near-zero thin film materials and their analogy to superconducting proximity effect in electronic systems
 - Demonstrated that near-zero-index materials can serve as a cladding layer for low-loss and geometry-invariant optical waveguides for miniaturized photonics

These works are funded by the Miller research fellowship.

Northwestern University, Evanston, IL

- Graduate research co-advised by Teri W. Odom and George C. Schatz Highlight activities include:
 - Achieved controlled multi-modal lasing from metal nanoparticle superlattices that enable access to multiple band-edge states in the photonic band structure
 - Realized a mechanically tunable nanolaser based on metal nanoparticles on a flexible polymer matrix, as inspired by color changes of chameleons in nature
 - Collaboratively demonstrated deterministic coupling of quantum emitters in hBN to plasmonic nanocavities for enhanced single-photon emission
 - Collaboratively achieved continuous-wave nanoscale lasing at visible frequencies under near-infrared pumping with *record-low* power thresholds
 - Established a robust computational approach in finite-difference time-domain methods to investigate time- and spatial- dependent lasing buildup in small photonic cavities

These works resulted in 8 first-author publications in Nature Nanotechnology, Nature Materials, Nano Letters, ACS Photonics etc.

CONFERENCES & PRESENTATIONS

1. International Workshop on Quantum Materials for 2D Photonics & Optoelectronics

Singapore 2023

Invited talk: "Emerging Optics from Structured Nanoscale Cavities"

2. MRS Fall Meeting

Boston, MA 2022

Talk: "Low-loss, geometry-invariant optical waveguides with zero-index materials"

3. San Francisco State University Physics Colloquium

San Francisco, CA 2022

Invited talk: "Emerging Optics from Structured Nanomaterials"

4. UC Berkeley Quantum Materials Seminar

Berkeley, CA 2019

Invited talk: "Extraordinary Optics from Structured Nanoparticles"

5. UC Berkeley Nano Seminar Series

Berkeley, CA 2019

Invited talk: "Extraordinary Optics from Structured Nanoparticles"

6. ACS Fall Meeting

San Diego, CA 2019

Invited talk: "Extraordinary Optics from Structured Nanoparticles"

7. Vannevar Bush Faculty Fellows Annual Meeting

Washington, D.C. 2019

Poster: "Functional and Hierarchical Nanoscale Metamaterials"

8. MRS Fall Meeting

Boston, MA 2018

Talk: "Stretchable Nanolasing from Hybrid Quadrupole Plasmons"

9. Gordon Conference

Waterville Valley, NH 2018

Poster: "Structural Engineering in Plasmon Nanolasers"

10. Nanjing University Tiandi Symposium

Nanjing, China 2017

Invited talk: "Structural Engineering in Plasmon Nanolasers"

11. MRS Fall Meeting

Boston, MA 2017

Talk: "Band-edge Engineering for Controlled Multi-modal Nanolasing in Plasmonic Superlattices"

12. Northwestern SPIE-MRSEC Student Seminar Series

Evanston, IL 2017

Invited talk: "Structural Engineering in Plasmon Nanolasers"

13. OSA Incubator on Science & Applications of Nanolasers

Washington, DC 2016

Invited talk: "Lasing from Plasmonic Nanocavity Arrays"

14. Gordon Conference

Newry, ME 2016

Poster: "Band-edge Engineering in Hierarchical Plasmonic Nanolasers"

15. APS March Meeting

San Antonio, TX 2015

Poster: "Superlattice Plasmons in Finite Nanoparticle Arrays"

PRESS RELEASES

- 1. "A Rising Star of Light at the Max Planck", News from the Institute, Max Planck Institute for the Science of Light (Dec. 2023)
- 2. "Structuring Nanomaterials for Optics", *Miller Fellow Focus, Miller Institute Newsletter* (Winter 2021)
- 3. "Forbes 30 Under 30 2021 List", Forbes (December 2020)
- 4. "Upconverting Nanolasers from Subwavelength Plasmons: Stability and Ultralow Powers", energy.gov (March 2020)
- 5. "Tiny laser packs a punch", Berkeley Lab's Molecular Foundry News (Nov. 2019)
- 6. "Tiny, biocompatible laser could function inside living tissues", *National Science Foundation Research News* (Oct. 2019)
- 7. "Biocompatible nanolaser small enough to treat brain diseases", *springwise.com* (Oct. 2019)
- 8. "Lasing under ultralow pumping", Nature Materials News and Views (Oct. 2019)
- 9. "Tiny, Biocompatible Laser Could Function Inside Living Tissues", *Columbia Engineering News* (Oct. 2020)
- 10. "Tiny, biocompatible laser could function inside living tissues", phys.org (Sep. 2020)
- 11. "Tiny, biocompatible nanolaser could function inside living tissues", *Northwestern Now* (Sep. 2019)
- 12. "Nanolaser functions inside living human tissue", Laboratory News (Sep. 2019)
- 13. "Tiny, biocompatible laser could function inside living tissues", Nanotechnology Now (Sep.

2019)

- 14. "The chameleon and the crystal maze", *Laboratory News, UK* (Sep. 2018) [Highlighted as the featured article and the cover story]
- 15. "Mimicking the Master of Camouflage", *Chicago Biomedical Consortium Success Story* (July 2018)
- 16. "Nanolaser Changes Color when Stretched", Chemical & Engineering News (July 2018)
- 17. "Chameleon-inspired Nanolaser Changes Colors", *National Science Foundation's webhomepage* (June 2018)
- 18. "Chameleons Inspire Mechanochromic Nanolaser", *Physics World* (June 2018)
- 19. "Chameleon-inspired Nanolaser Changes Colors", ScienceDaily (June 2018)
- 20. "Chameleon-inspired Nanolaser Changes Colors", Northwestern Now (June 2018)
- 21. "Northwestern's New Chameleon-Inspired Laser Changes Colors", WTTW (June 2018)
- 22. "Nanolasing: Multimode Superlattice Arrays", *Nature Nanotechnology News and Views* (Sep. 2017)
- 23. "New Laser Design Offers More Inexpensive Multi-color Output", *Northwestern Now* (July 2017)
- 24. "Controlling Multi-modal Nanolasing with Plasmonic Superlattices", *Nanowerk News* (July 2017)

TEACHING EXPERIENCE

Guest Lecturer, University of California, Berkeley

Fall 2019

Course: Optical Materials and Devices

Responsibilities: Invited to present one lecture on my research work to graduate students. Developed and delivered a 90-minute lecture with interactive sections.

Graduate Teaching Assistant, Northwestern University

Spring 2018

Course: Introductory Physics of Materials

Responsibilities: Hosted the office hours, refined assignments questions, and graded for an undergraduate-level course with 22 students.

SERVICE & OUTREACH

Co-chair, Gordon Research Seminar

June 2023

Subsection: Lasers in Micro, Nano and Bio Systems, West Dover, VT

Miller Institute Ambassador

2022

University of California, Berkeley

Invited panelist, WISE National Conference, Canada

Jan. 2022

University of Toronto

"Meet with a Miller Fellow" outreach program at El Cerrito High School

2020-21

University of California, Berkeley

Morning mentor, Tutoring program at Nichols Middle School

Winter 2018

Northwestern University

Professional Development Co-chair, McCormick Graduate Leadership Council

2014-16

Northwestern University

Member

Materials Research Society, American Physical Society, American Chemical Society

Ad Hoc Reviewer

Physical Review Letters, ACS Photonics, Optica, Photonics Research, Optics and Laser Technology, Optics Letters etc.

REFERENCE CONTACTS

Professor Jungiao Wu

Chair, Department of Materials Science and Engineering, University of California, Berkeley

Email: wuj@berkeley.edu Phone: 01-510-642-4391

Professor Teri W. Odom

Chair, Department of Chemistry, Northwestern University; Editor-in-Chief, Nano Letters

Email: todom@northwestern.edu

Phone: 01-847-491-7674

Professor George C. Schatz

Department of Chemistry, Department of Biological Engineering, Northwestern University

Email: g-schatz@northwestern.edu

Phone: 01-847-491-5657

Professor Vahid Sandoghdar

Managing director, Max Planck Institute for the Science of Light

Email: vahid.sandoghdar@mpl.mpg.de

Phone: 49-9131-7133300