Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа: <i>ПИиКТ 1.1</i>	К работе допущен	К работе допущен		
Студенты: Решетников Сергей 467233 Шкиптан Александр	Работа выполнена	_		
Преподаватель: ?	Отчет принят			

Рабочий протокол и отчет по лабораторной работе №1

«Распределение случайной величины»

1. Цель работы

Исследование распределения случайной величины на примере измерения средней скорости сборки docker-контейнера для первой лабораторной по дисциплине вебпрограммирование.

2. Задачи, решаемые при выполнении работы.

3. Объект исследования.

Случайная величина — средняя скорость сборки приложения.

4. Метод экспериментального исследования.

Многократное повторение опыта и замер его результатов.

5. Рабочие формулы и исходные данные.

• Среднее арифметическое всех результатов измерений:

$$\langle t \rangle_N = \frac{1}{N} \sum_{i=1}^N b_i$$

• Выборочная дисперсия:

$$D(b) = \frac{1}{N-1} \sum_{i=1}^{N} (b_i - \langle b \rangle_N)^2$$

• Выборочное среднеквадратичное отклонение:

$$\sigma_{N} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (b_{i} - \langle b \rangle_{N})^{2}}$$

Максимальное значение плотности распределения:

$$\rho_{max} = \frac{1}{\sigma \sqrt{2 \pi}}$$

• Среднеквадратичное отклонение среднего значения:

$$\sigma_{\langle b \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (b_i - \langle b \rangle_N)^2}$$

6. Измерительные приборы.

7. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 1 - Результаты прямых измерений

Nº	t_i, c	$t_i - \langle t \rangle_N$, c	$(t_i - \langle t \rangle_N)^2$, c^2
1	2.41	-0.48	0.23
2	2.56	-0.33	0.11
3	2.90	-0.01	0.00
4	3.07	0.18	0.03
5	2.68	-0.21	0.04
6	2.71	-0.18	0.03
7	2.94	0.05	0.00
8	2.97	0.08	0.01
9	2.88	-0.01	0.00
10	2.93	0.04	0.00
11	2.77	-0.12	0.01
12	2.89	0.00	0.00
13	2.92	0.03	0.00
14	2.82	-0.07	0.00
15	2.93	0.04	0.00
16	2.71	-0.18	0.03
17	2.86	-0.03	0.00
18	2.81	-0.08	0.01
19	2.91	0.02	0.00
20	2.92	0.03	0.00
21	2.97	0.08	0.01
22	2.80	-0.09	0.01
23	2.87	-0.02	0.00
24	2.88	-0.01	0.00
25	2.93	0.04	0.00
26	2.85	-0.04	0.00
27	2.96	0.07	0.00
28	2.80	-0.09	0.01
29	2.94	0.05	0.00

	,		
30	2.98	0.09	0.01
31	2.85	-0.04	0.00
32	2.92	0.03	0.00
33	2.79	-0.10	0.01
34	2.82	-0.07	0.00
35	2.96	0.07	0.00
36	3.03	0.14	0.02
37	2.81	-0.08	0.01
38	2.92	0.03	0.00
39	2.82	-0.07	0.00
40	3.07	0.18	0.03
41	3.07	0.18	0.03
42	3.07	0.18	0.03
43	3.07	0.18	0.03
44	2.97	0.08	0.01
45	2.76	-0.13	0.02
46	2.88	-0.01	0.00
47	3.45	0.56	0.31
48	3.27	0.38	0.14
49	2.89	0.00	0.00
50	2.92	0.03	0.00
	$\langle t \rangle_N = \frac{1}{N} \sum_{i=1}^N t_i \approx 2.89 c$	$\sum_{i=1}^{N} (t_i - \langle t \rangle) \approx 0.15 c$	$\sigma_N \approx 0.38 c$ $\rho_{max} \approx 2.53 c^{-1}$

8. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

1.1 Найдём в первом столбце максимальное $t_{\it max}$ и минимальное $t_{\it min}$ значения результатов измерений:

$$t_{max} = 3.45 c$$

 $t_{min} = 2.41 c$

1.2 Разобьём промежуток $\left[t_{\min},t_{\max}\right]$ на m равных интервалов Δt . Так как $m \approx \sqrt{50} \approx 7$, то: $\Delta t = \frac{t_{\max} - t_{\min}}{m} = \frac{3.45 - 2.41}{7} = 0,13\,c$

$$\Delta t = \frac{t_{max} - t_{min}}{m} = \frac{3.45 - 2.41}{7} = 0,13c$$

Найдём начало и конец каждого интервала и запишем полученные значения в первый столбец Таблица 2.

В общем виде формулы имеют следующий вид:

$$t_{\text{\tiny HAU}_i} = t_{\text{\tiny KOH}_{i-1}}$$
$$t_{\text{\tiny KOH}_i} = t_{\text{\tiny KOH}_i} + \Delta d$$

Для примера рассчитаем первый интервал:

$$t_{\text{\tiny HAM}} = 2.41 \, c$$

 $t_{\text{\tiny KOH}} = t_{\text{\tiny HAM}} + \Delta t = 9,1 + 4,7 = 13,8 \, c$

1.3 Вычислим ΔN – количество результатов измерений, попавших в каждый из интервалов, и занесём эти значение во второй столбец Таблица 2.

Например в первый интервал попадает только одно значение результатов измерений.

1.4 Для каждого из интервалов вычислим опытное значение плотности вероятности и заполним третий столбец Таблица 2.

В общем виде формула принимает вид:

$$\rho_i = \frac{\Delta N_i}{N \, \Delta t}$$

Для примера рассчитаем плотность вероятности для первого интервала:

$$\rho_1 = \frac{\Delta N_1}{N \Delta t} = \frac{1}{50.0.13} = 0.15 c^{-1}$$

2. Вычислим выборочное значение среднего арифметического всех измерений:

$$\langle t \rangle_N = \frac{1}{50} \sum_{i=1}^{50} t_i \approx 2.89 c$$

Теперь используя $\langle t \rangle_{\scriptscriptstyle N}$ выборочное среднеквадратичное отклонение:

$$\sigma_N = \sqrt{\frac{1}{50 - 1} \sum_{i=1}^{50} (t_i - 2.89)^2} \approx 0.38 c$$

Запишем σ_N и $\langle t \rangle_N$ в подвал Таблица 1.

3. Используя значение $\sigma_{\scriptscriptstyle N}$ вычислим максимальное значение плотности распределения:

$$\rho_{max} = \frac{1}{\sigma_N \sqrt{2\pi}} = \frac{1}{0.38 \sqrt{2\pi}} \approx 2.53 c^{-1}$$

И запишем её в подвал Таблица 1.

4. Наконец для каждого интервала вычислим значение ho(t) нормального распределения функции Гаусса и заполним четвёртый столбец Таблица 2. Для первого интервала получим

$$\rho(t) = \frac{1}{\sigma \cdot \sqrt{2\pi}} \exp(\frac{-(t - \langle t \rangle)^2}{2\sigma^2}) = \rho_{max} \exp(\frac{-(t - \langle t \rangle)^2}{2\sigma^2}) = 2.53 \cdot \exp(\frac{-(2.89 - 2.48)^2}{2 \cdot 8.93^2}) = 0.08 c^{-1}$$

5. Вычислим границы стандартных интервалов

Для первого интервала получим:

От:
$$\langle t \rangle_{N} - \sigma = 2.89 - 0.38 = 2.51 c$$

До:
$$\langle t \rangle_N$$
+ σ =2,89+0,38=3.27 c

Таблица 2 - Данные для построения гистограммы

Границы интервалов, с	ΔN	$\frac{\Delta N}{N \Delta t}$, c^{-1}	t,c	ρ , c^{-1}	
2.41	1	0.15	2.48	0.08	
2.54	1	0.13	2.40	0.08	
2.54	2	0.31	2.61	0.05	
2.67	2	0.51	2.61	0.05	
2.67	15	2.31	2.74	1.58	
2.80	15	2.51	2.74	1.56	
2.80	26	4.00	2.87	2.51	
2.93		4.00	2.07	2,31	
2.93	3	0.46	3.00	2.01	
3.06	3	0.40	3.00	2.01	
3.06	2	0.31	3.13	0.82	
3.19	2	0.51	3.13	0.62	
3.19	1	0.15	3.26	0.17	
3.32	l l	0.13	3.20	0.17	

Таблица 3 - Стандартные доверительные интервалы

	Интер	овал, с	ΔN	$\frac{\Delta N}{N}$	P
	ОТ	до	ΔN		
$\langle t \rangle N \pm \sigma_N$	2.51	3.27			
$\langle t \rangle N \pm 2\sigma_N$					
$\langle t \rangle N \pm 3\sigma_N$					

9. Расчет погрешностей измерений (для прямых и косвенных измерений).

10. Графики (перечень графиков, которые составляют Приложение 2).

Рисунок 1 - График плотности вероятности

- 11. Окончательные результаты.
- 12. Выводы и анализ результатов работы.
- 14. Дополнительные задания.
- 15. Выполнение дополнительных заданий.
- 16. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).