CS 228 : Logic in Computer Science

Krishna. S

Given a regular language L, and a DFA such that L = L(A),

Run of a word : at every position of the word, we are in some unique state

Given a regular language L, and a DFA such that L = L(A),

Run of a word : at every position of the word, we are in some unique state

```
Position x: 0 1 2 3

a a b a

q_0 q_1 q_0 q_2 q_2
```

Given a regular language L, and a DFA such that L = L(A),

Run of a word : at every position of the word, we are in some unique state

Position
$$x$$
: 0 1 2 3
 a a b a
 q_0 q_1 q_0 q_2 q_2

For a state q ∈ Q, let X_q=the set of positions of the word where the state is q in the run

Given a regular language L, and a DFA such that L = L(A),

Run of a word : at every position of the word, we are in some unique state

Position
$$x$$
: 0 1 2 3
 a a b a
 q_0 q_1 q_0 q_2 q_2

- ► For a state $q \in Q$, let X_q =the set of positions of the word where the state is q in the run

Given a regular language L, and a DFA such that L = L(A),

Run of a word : at every position of the word, we are in some unique state

Position
$$x$$
: 0 1 2 3
 a a b a
 q_0 q_1 q_0 q_2 q_2

- For a state q ∈ Q, let X_q=the set of positions of the word where the state is q in the run
- $X_{q_0} = \{0,2\}, X_{q_1} = \{1\}, X_{q_2} = \{3\}$
- ▶ The initial position of any word must belong to X_{q_0} : $0 \in X_{q_0}$

- If a word wa is accepted, then
 - ▶ The last position x of the word satisfies $Q_a(x)$
 - For some state q, we have $X_q(x)$ and there is a transition $\delta(q,a)=q_f\in F$

- If a word wa is accepted, then
 - ▶ The last position x of the word satisfies $Q_a(x)$
 - For some state q, we have $X_q(x)$ and there is a transition $\delta(q, a) = q_t \in F$

Position
$$x$$
: 0 1 2 3
 a a b a
 q_0 q_1 q_0 q_2 q_2

- If a word wa is accepted, then
 - The last position x of the word satisfies Q_a(x)
 - For some state q, we have $X_q(x)$ and there is a transition $\delta(q,a)=q_f\in F$

Position
$$x$$
: 0 1 2 3
 a a b a
 q_0 q_1 q_0 q_2 q_2

- ▶ $Q_a(3)$ and $3 \in X_{q_2}$. $\delta(q_2, a) = q_2 \notin F$
- If x, y are consecutive positions in the word, and if $X_q(x) \wedge Q_a(x)$, then it must be that $X_t(y)$ such that $\delta(q, a) = t$

3/1;

- If a word wa is accepted, then
 - ▶ The last position x of the word satisfies $Q_a(x)$
 - For some state q, we have $X_q(x)$ and there is a transition $\delta(q,a)=q_f\in F$

Position
$$x$$
: 0 1 2 3
 a a b a
 q_0 q_1 q_0 q_2 q_2

- ▶ $Q_a(3)$ and $3 \in X_{q_2}$. $\delta(q_2, a) = q_2 \notin F$
- ▶ If x, y are consecutive positions in the word, and if $X_q(x) \wedge Q_a(x)$, then it must be that $X_t(y)$ such that $\delta(q, a) = t$
- $ilde{\ } X_{q_0}(0), X_{q_1}(1) \text{ and } Q_a(0). \ \delta(q_0, a) = q_1.$
- $imes X_{q_1}(1), X_{q_0}(2) \text{ and } Q_a(1). \ \delta(q_1, a) = q_0.$

Given a DFA $A = (Q, \Sigma, \delta, q_0, F)$, a word w is accepted iff it satisfies

$$\exists X_0 \exists X_1 \dots X_n \{ [\forall x (X_0(x) \vee \dots \vee X_n(x)) \wedge \forall x \bigwedge_{i \neq i} \neg (X_i(x) \wedge X_j(x))] \wedge$$

Given a DFA $A = (Q, \Sigma, \delta, q_0, F)$, a word w is accepted iff it satisfies

$$\exists X_0 \exists X_1 \dots X_n \{ [\forall x (X_0(x) \vee \dots \vee X_n(x)) \land \forall x \bigwedge_{i \neq j} \neg (X_i(x) \land X_j(x))] \land$$

$$[\exists x (first(x) \land X_0(x))] \land$$

Given a DFA $A = (Q, \Sigma, \delta, q_0, F)$, a word w is accepted iff it satisfies

$$\exists X_0 \exists X_1 \dots X_n \{ [\forall x (X_0(x) \vee \dots \vee X_n(x)) \land \forall x \bigwedge_{i \neq j} \neg (X_i(x) \land X_j(x))] \land$$

$$[\exists x (\textit{first}(x) \land X_0(x))] \land$$

$$\forall x \forall y [S(x,y) \rightarrow \bigvee_{\delta(i,a)=i} [X_i(x) \land Q_a(x) \land X_j(y)]] \land$$

Given a DFA $A = (Q, \Sigma, \delta, q_0, F)$, a word w is accepted iff it satisfies

$$\exists X_0 \exists X_1 \dots X_n \{ [\forall x (X_0(x) \vee \dots \vee X_n(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x))] \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \} \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \} \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigvee_{i \neq$$

$$[\exists x (\textit{first}(x) \land X_0(x))] \land$$

$$\forall x \forall y [S(x,y) \rightarrow \bigvee_{\delta(i,a)=j} [X_i(x) \land Q_a(x) \land X_j(y)]] \land$$

$$\exists x[last(x) \land \bigvee_{\delta(i,a)=i \in F} [X_i(x) \land Q_a(x)]]\}$$

• $w \in L(A)$ iff $w \models \varphi$

$$\exists X_0 \exists X_1 \exists X_2 \{ [\forall x (X_0(x) \lor X_1(x) \lor X_2(x)) \land \forall x [\neg (X_0(x) \land X_1(x)) \land \neg (X_0(x) \land X_2(x)) \land \neg (X_1(x) \land X_2(x))] \land$$

5/1:

$$\exists X_0 \exists X_1 \exists X_2 \{ [\forall x (X_0(x) \lor X_1(x) \lor X_2(x)) \land \forall x [\neg (X_0(x) \land X_1(x)) \land \neg (X_0(x) \land X_2(x)) \land \neg (X_1(x) \land X_2(x))] \land [\exists x (\textit{first}(x) \land X_0(x))] \land \\ \forall x \forall y [S(x,y) \rightarrow [(X_0(x) \land Q_a(x) \land X_1(y)) \lor (X_0(x) \land Q_b(x) \land X_2(y)) \lor (X_1(x) \land Q_a(x) \land X_0(y)) \lor \\ (X_1(x) \land Q_b(x) \land X_2(y)) \lor (X_2(x) \land Q_a(x) \land X_2(y)) \lor (X_2(x) \land Q_b(x) \land X_2(y))]]$$

$$\exists X_0 \exists X_1 \exists X_2 \{ [\forall x (X_0(x) \lor X_1(x) \lor X_2(x)) \land \forall x [\neg (X_0(x) \land X_1(x)) \land \neg (X_0(x) \land X_2(x)) \land \neg (X_1(x) \land X_2(x))] \land [\exists x (\textit{first}(x) \land X_0(x))] \land \\ \forall x \forall y [S(x,y) \rightarrow [(X_0(x) \land Q_a(x) \land X_1(y)) \lor (X_0(x) \land Q_b(x) \land X_2(y)) \lor (X_1(x) \land Q_a(x) \land X_0(y)) \lor \\ (X_1(x) \land Q_b(x) \land X_2(y)) \lor (X_2(x) \land Q_a(x) \land X_2(y)) \lor (X_2(x) \land Q_b(x) \land X_2(y))]]$$

 $\land \exists x [last(x) \land (X_1(x) \land Q_a(x))] \}$

5/1:

MSO to Regular Languages

- ▶ Every MSO sentence φ over words can be converted into a DFA A_{φ} such that $L(\varphi) = L(A_{\varphi})$.
- Start with atomic formulae, construct DFA for each of them.
- ▶ We already know how to handle $Q_a(x), x < y, S(x, y), x = y$
- Only X(x) remains

Simple Formulae to DFA

Simple Formulae to DFA

Formulae to DFA

▶ Given $\varphi(x_1, \ldots, x_n, X_1, \ldots, X_m)$, an MSO formula over Σ , consider the extended alphabet

$$\Sigma' = \Sigma \times \{0, 1\}^{m+n}$$

- ► Assign values to x_i, X_j at every position as seen in the cases of atomic formulae
- ► Keep in mind that every x_i can be assigned 1 at a unique position

Handling Quantifiers

 $\exists X \exists Y \forall x [X(x) \rightarrow Y(x)]$ On the board

Points to Remember

- ► Given $\varphi(x_1, \ldots, x_n, X_1, \ldots, X_m)$, construct automaton for atomic MSO formulae over the extended alphabet $\Sigma \times \{0, 1\}^{m+n}$
- ► Intersect with the regular language where every x_i is assigned 1 exactly at one position
- ▶ Given a sentence $Q_{x_1} \dots Q_{x_n} Q_{X_1} \dots Q_{X_m} \varphi$, first construct the automaton for the formula $\varphi(x_1, \dots, x_n, X_1, \dots, X_m)$
- ▶ Replace ∀ in terms of ∃

Points to Remember

- ▶ Given the automaton for $\varphi(x_1, \ldots, x_n, X_1, \ldots, X_n)$, the automaton for $\exists X_i \varphi(x_1, \ldots, x_n, X_1, \ldots, X_n)$ is obtained by projecting out the row of X_i
- ► This may result in an NFA
- ▶ Determinize it and complement it to get a DFA for $\neg \exists x_i \varphi(x_1, \dots, x_n, X_1, \dots, X_n)$
- ▶ Intersect with the regular language where each of $x_1, ..., x_{i-1}, x_{i+1}, ..., x_n$ are assigned 1 exactly at one position

The Automaton-Logic Connection

Büchi-Elgot-Trakhtenbrot Theorem (1960-1962)

Given any MSO sentence φ , one can construct a DFA A_{φ} such that $L(\varphi) = L(A_{\varphi})$. If a language L is regular, one can construct an MSO sentence φ such that $L = L(\varphi)$.