# Project A20 FYS-MENA4111

Erlend Tiberg North & Alexandra Jahr Kolstad

21. november 2020 Week 44-

# Abstract

### Innhold

| 1            | Introduction                   | 3          |
|--------------|--------------------------------|------------|
| 2            | Method2.1 Energy convergence   | <b>3</b> 3 |
| 3            | Results 3.1 Energy convergence | 3<br>4     |
| 4            | Discussion                     | 4          |
| 5            | Conclusion                     | 4          |
| 6            | References                     | 4          |
| A            | Convergence energy             | 4          |
| В            | Convergence k-points           | 5          |
| $\mathbf{C}$ | Quinizarin-bilder              | 6          |
| D            | Y-bilder                       | <b>12</b>  |
| $\mathbf{E}$ | Yb-bilder                      | 17         |
| $\mathbf{F}$ | Appendix 2                     | 22         |

#### Ting å gjøre:

• lage en mappe på saga for begge

### $\mathbf{done}$

• skaffe POSCAR, jobfile og INCAR (de andre følger fra disse)

#### done

• sjekke at den konvergerer (decent ENCUT og KPOINTS)

#### done

The data shows that we should use  $450 \mathrm{eV}$  for ENCUT as that is the 1st job with a difference less than  $3 \mathrm{meV}$ .

For k-density we see that even the lowest value, 1.0, is within 3 meV (1.0 gives around 1.75 meV), so this can be used. However, the data shows that 3.0 is below 1 meV, with 4.0 being identical in energy to 5.0. This can possibly be discussed in group, but 1.0 should technically be enough for k-density.

• relaxe POSCAR og static etter relax POSCAR

#### done

• total og relativ energi (fra static etter relax)

#### done

• DOS (båndgap) og LDOS (båndstruktur)

#### done

- romlig elektronstruktur; 3D-plot av ladningstetthet (VESTA)
- bytte ut hydrogen i alkoholgruppen med lantanoidatomer (Yb, Nd, Tm og Y)
- relaxe POSCAR og static etter relax POSCAR
- total og relativ energi (fra static etter relax)
- DOS (båndgap) og LDOS (båndstruktur)
- romlig elektronstruktur; 3D-plot av ladningstetthet (VESTA)

#### Ting å ha i LATEX:

- abstrakt
- kort introduksjon av materialet
- kort om metode, valg av paramtere (CUTOFF, etc)
- presentasjon av de viktigste resultatene
- diskusjon av hvordan resultatene kan tolkes, f.eks. sammenligne til eksperimenter eller tidligere beregninger i litteraturen
- konklusjon/oppsummering
- kilder
- $\bullet$  appendix ?

OBS: husk å lagre bilder for rapporten og presentasjonen mens man gjør beregningene

#### 1 Introduction

#### 2 Method

### 2.1 Energy convergence

ENCUT: 300 to 900

#### 2.2 K-points convergence

K-point density: 1.0 to 6.0

#### 3 Results

### 3.1 Energy convergence

Started to convergence around 450 eV for ENCUT.

## 3.2 K-points convergence

# 4 Discussion

# 5 Conclusion

### 6 References

[1] Ben G. Streetman & Sanjay Kumar Banerjee, 2016, Solid State Electronic Devices seventh edition, Pearson Education

# A Convergence energy



Figur 1: Plot of energy convergence for Quinizarin, with ENCUT ranging from 300 eV to 900 eV.



Figur 2: Plot of the difference in energy convergence for Quinizarin, given by ENCUT.

# B Convergence k-points



Figur 3: Plot of energy convergence for Quinizarin, with k-point density ranging from 1 to 6.



Figur 4: Plot of the difference in energy convergence for Quinizarin, given by k-point density.

# C Quinizarin-bilder



Figur 5: Structure of Quinizarin for static VASP calculation.



Figur 6: Charge density of Quinizarin for static VASP calculation.



Figur 7: Structure of Quinizarin for relaxed VASP calculation.



Figur 8: Charge density of Quinizarin for relaxed VASP calculation.



Figur 9: Structure of Quinizarin for static VASP calculation after relaxed calculation.



Figur 10: Charge density of Quinizarin for static VASP calculation after relaxed calculation.



Figur 11: Structure of Quinizarin for DOS VASP calculation.



Figur 12: Charge density of Quinizarin for DOS VASP calculation.



Figur 13: Plot of total DOS for Quinizarin.



Figur 14: Plot of total DOS for Quinizarin, zoomed in for energies between 4.0 eV and 8.0 eV.



Figur 15: Plot of local DOS for atom number 25(H in alcohol-group) for Quinizarin.



Figur 16: Plot of local DOS for atom number 25(H in alcohol-group) for Quinizarin, zoomed in for energies between 4.0 eV and 8.0 eV.



Figur 17: Plot of local DOS for atom number 26(H in alcohol-group) for Quinizarin.



Figur 18: Plot of local DOS for atom number 26(H in alcohol-group) for Quinizarin, zoomed in for energies between 4.0 eV and 8.0 eV.

# D Y-bilder



Figur 19: Structure of Quinizarin with Yttrium for static VASP calculation.



Figur 20: Charge density of Quinizarin with Yttrium for static VASP calculation.



Figur 21: Structure of Quinizarin with Yttrium for relaxed VASP calculation.



Figur 22: Charge density of Quinizarin with Yttrium for relaxed VASP calculation.



Figur 23: Structure of Quinizarin with Yttrium for static VASP calculation after relaxed calculation.



Figur 24: Charge density of Quinizarin with Yttrium for static VASP calculation after relaxed calculation.



Figur 25: Plot of total DOS for Quinizarin with Yttrium.



Figur 26: Plot of total DOS for Yttrium, zoomed in for energies between 0.0 eV and 4.5 eV.



Figur 27: Plot of local DOS of atom number 25(Y in lower alcohol-group) for Quinizarin with Yttrium.



Figur 28: Plot of local DOS of atom number 25(Y in lower alcohol-group) for Quinizarin with Yttrium, zoomed in for energies between 0.0 eV and 4.5 eV.



Figur 29: Plot of local DOS of atom number 26(Y in upper alcohol-group) for Quinizarin with Yttrium.



Figur 30: Plot of local DOS of atom number 26(Y in upper alcohol-group) for Quinizarin with Yttrium, zoomed in for energies between 0.0 eV and 4.5 eV.

# E Yb-bilder



Figur 31: Structure of Quinizarin with Ytterbium for static VASP calculation.



Figur 32: Charge density of Quinizarin with Ytterbium for static VASP calculation.



Figur 33: Structure of Quinizarin with Ytterbium for relaxed VASP calculation.



Figur 34: Charge density of Quinizarin with Ytterbium for relaxed VASP calculation.



Figur 35: Structure of Quinizarin with Ytterbium for static VASP calculation after relaxed calculation.



Figur 36: Charge density of Quinizarin with Ytterbium for static VASP calculation after relaxed calculation.



Figur 37: Plot of total DOS for Ytterbium.



Figur 38: Plot of total DOS for Ytterbium, zoomed in for energies between 0.0 eV and 8.0 eV.



Figur 39: Plot of local DOS of atom number 25(Yb in lower alcohol-group) for Quinizarin with Ytterbium.



Figur 40: Plot of local DOS of atom number 25(Yb in lower alcohol-group) for Quinizarin with Ytterbium, zoomed in for energies between 0.0 eV and 8.0 eV.



Figur 41: Plot of local DOS of atom number 26(Yb in upper alcohol-group) for Quinizarin with Ytterbium.



Figur 42: Plot of local DOS of atom number 26(Yb in upper alcohol-group) for Quinizarin with Ytterbium, zoomed in for energies between 0.0 eV and 8.0 eV.

# F Appendix 2