

FRM, CAIA, PRM

CAS Datenanalyse

Zeitreihenanalyse Kapitel 2: Trend- und Saisonbereinigung Prof. Dr. Raúl Gimeno

1

Inhaltsverzeichnis

- 2 Saisonkomponente und Saisonbereinigung
 - 2.1 Phasendurchschnittsverfahren
 - 2.2 Regressionsverfahren
 - 2.3 Holt-Winters Verfahren
 - 2.4 Hodrick-Prescott-Filter

2.1 Phasendurchschnittsverfahren

Zur Bestimmung der Saisonkomponente einer unterjährigen Zeitreihe (y_t) schaltet man die glatte Komponente (g_t) vorab aus.

Trendbereinigte Zeitreihenwerte beim additiven Modell:

$$d_t = y_t - g_t = s_t + u_t$$

→ nur noch die Saison- und Restkomponente

Voraussetzung: saisonale Ausschläge sind unabhängig vom Trend

→ Saisonausschläge mit konstanter Amplitude

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

3

Bestimmung der Saisonkomponente

Doppelindizierung: Jahr i, Phase (z.B. Monat, Quartal) j

Trendbereinigte Zeitreihe: $d_{ij} = y_{ij} - g_{ij} = s_j + u_{ij}$, $i = 1, 2, ..., k_j$; j = 1, 2, ..., p

k_i: Anzahl der Jahre für die Phase j

p: Anzahl der Phasen (bei Quartalsdaten: p=4, bei Monatsdaten: p=12)

gii: zentrierter gleitender Durchschnitt

Unnormierte Saisonkomponente für Phase j: $s_j^* = \frac{1}{k_j} \sum_{i} d_{ij}$

Die unnormierten Saisonkomponenten s_j^* summieren sich nicht zu null \rightarrow erschwert die Interpretation einer Phase als saisonal unter- oder überdurchschnittlich.

Normierungseigenschaft: $\sum_{j=1}^{p} s_j = 0$

Normierte Saisonkomponente: $s_j = s_j^* - \overline{d}$ $\overline{d} = \frac{1}{p} \sum_{j=1}^p s_j^*$

Saisonbereinigte Zeitreihe: $y_{ij}^* = y_{ij} - s_j$

Bestimmung der Saisonkomponente: Beispiel

Im Zeitreihendiagramm der Gehaltseinkommen je Beschäftigten ist ein klares Saisonmuster erkennbar. Der Index weist jahreszeitlich bedingt jeweils im Q1 eines Jahres einen Tiefstand und im Q4 ein Hoch aus.

Zeitreihenzzerlegung auf der Grundlage des additiven Modells.

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

5

6

Bestimmung der Saisonkomponente: Beispiel

		9		
Jahr (i)	Quartal (j)	y _t	$\overline{\mathcal{Y}}_{\mathcal{U}}^4$	d _{ii}
1986 (1)	Q1 (1)	113.6		,
1986 (1)	Q2 (2)	121.3		
1986 (1)	Q3 (3)	122	⁻ 124.26	-2.26
1986 (1)	Q4 (4)	138.8	125.15	13.65
1987 (2)	Q1 (1)	116.3	126.16	-9.86
1987 (2)	Q2 (2)	125.7	127.21	-1.51
1987 (2)	Q3 (3)	125.7	128.40	-2.70
1987 (2)	Q4 (4)	143.5	129.36	14.14
1988 (3)	Q1 (1)	121.1	130.14	-9.04
1988 (3)	Q2 (2)	128.6	131.03	-2.43
1988 (3)	Q3 (3)	129	131.76	-2.76
1988 (3)	Q4 (4)	147.3	132.10	15.20
1989 (4)	Q1 (1)	123.2	132.34	-9.14
1989 (4)	Q2 (2)	129.2	132.58	-3.38
1989 (4)	Q3 (3)	130.3	133.25	-2.95
1989 (4)	Q4 (4)	147.9	134.66	13.24
1990 (5)	Q1 (1)	128	136.21	-8.21 /
1990 (5)	Q2 (2)	135.7	137.90	-2.20
1990 (5)	Q3 (3)	136.2		
1990 (5)	Q4 (4)	155.5		

Zentrierte gleitende Durchschnitte 4-ter Ordnung

$$\overline{y}_{t}^{4} = \frac{1}{4} \left(\frac{1}{2} y_{t-2} + y_{t-1} + y_{t} + y_{t+1} + \frac{1}{2} y_{t+2} \right)$$

$$\overline{y}_{86,3} = \frac{1}{4} \left(\frac{113.6}{2} + 121.3 + 122 + 138.8 + \frac{116.3}{2} \right) = 124.26$$

$$d_{86.3} = y_{86.3} - \overline{y}_{86}^4 = 122 - 124.26 = -2.26$$

 $\overset{ wodered}{
ightarrow}$ Unnormierter Saisonfaktor s_1^* für Q1

$$s_1^* = (-9.86 - 9.04 - 9.14 - 8.21)/4 = -9.1$$

Saisonfaktor S₃ für Q3:

$$S_3^* = (-2.26 - 2.7 - 2.76 - 2.95)/4 = -2.67$$

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

Gretl Output

Menu: Variable/Filter/Einfacher gleitender Durchschnitt

Bestimmung der Saisonkomponente

Glatte Komponente → zentrierte gleitende Durchschnitte der Ordnung 4:

$$\overline{y}_{t}^{4} = \frac{1}{4} \left(\frac{1}{2} y_{t-2} + y_{t-1} + y_{t} + y_{t+1} + \frac{1}{2} y_{t+2} \right)$$

Aus den berechneten trendbereinigten Werte d_{ij} erhält man die unnormierten Saisonkomponente mit $k_i = 4$ (4 Jahre):

	J.Q	u _{ij}
	86.Q3	-2.26
1. Quartal $S_1^* = \frac{1}{4} \sum_{i=1}^4 d_{i1} = \frac{1}{4} (-9.9 - 9.0 - 9.1 - 8.2) = -\frac{36.25}{4} = -9.06$	86.Q4	13.65
14 1	87.Q1	-9.86
1 Quartal $S_{*}^{*} = \frac{1}{2} \sum_{i} d_{i} = \frac{1}{2} (-9.9 - 9.0 - 9.1 - 8.2) = -\frac{30.23}{2} = -9.06$	87.Q2	-1.51
$4 \stackrel{\text{def}}{=} 4 \stackrel{\text{def}}{=} 4 \stackrel{\text{def}}{=} 4$	87.Q3	-2.70
	87.Q4	14.14
2. Quartal $s_2^* = \frac{1}{4} \sum_{i=1}^4 d_{i2} = \frac{1}{4} (-1.5 - 2.4 - 3.4 - 2.2) = -\frac{9.51}{4} = -2.38$	88.Q1	-9.04
2. Quartal $S_2 = \frac{1}{4} \sum_{i=1}^{4} d_{i2} = \frac{1}{4} (-1.5 - 2.4 - 3.4 - 2.2) = -\frac{1}{4} = -2.38$	88.Q2	-2.43
- 4 <u>- 4 </u>	88.Q3	-2.76
1 4 1 10.60	88.Q4	15.20
3 Quartal $s^* = \frac{1}{2} \nabla d = \frac{1}{2} (23 27 28 30) = \frac{10.08}{2} = 2.67$	89.Q1	-9.14
3. Quartal $s_3^* = \frac{1}{4} \sum_{i=1}^4 d_{i3} = \frac{1}{4} (-2.3 - 2.7 - 2.8 - 3.0) = -\frac{10.68}{4} = -2.67$	89.Q2	-3.38
т _{і=1} т т	89.Q3	-2.95
$1\frac{4}{}$ 1. 56.23	89.Q4	13.24
4. Quartal $S_4^* = \frac{1}{4} \sum_{i=1}^4 d_{i4} = \frac{1}{4} (13.6 + 14.1 + 15.2 + 13.2) = \frac{56.23}{4} = 14.06$	90.Q1 90.Q2	-8.21
4 = 4 = 4 = 4	90.Q2	-2.20
i–i		

J.O

Bestimmung der Saisonkomponente

Durchschnitt der unnormierten Saisonziffern für p = 4 (Quartalszahlen):

$$\overline{d} = \frac{1}{p} \sum_{i=1}^{p} s_{j}^{*} = \frac{1}{4} [(-9.06) + (-2.38) + (-2.67) + 14.06] = \frac{1}{4} (-0.05) = -0.013$$

Normierte Saisonkomponenten: $s_j = s_j^* - \overline{d}$

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

9

Bestimmung der Saisonkomponente

Das Saisonprofil s_j^* gibt die Grössenordnung des saisonalen Einflusses in der Zeitreihe der Gehälter je Beschäftigten grafisch wieder.

Saisonprofil der Gehälter je Beschäftigten

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

Bestimmung der Saisonkomponente: Beispiel

Saisonbereinigte Zeitreihe (y_t^*) der Löhne und Gehälter je Beschäftigten für den gesamten Beobachtungszeitraum

					_
Jahr (i)	Quartal (j)	y _t	Si	(\mathbf{y}_{t}^*)	
1986 (1)	Q1 (1)	113.6	-9.06	122.66	$= y_{86,1} - s_1$
1986 (1)	Q2 (2)	121.3	-2.38	123.68	7 00,1
1986 (1)	Q3 (3)	122	-2.67	124.67	
1986 (1)	Q4 (4)	138.8	14.06	124.74	
1987 (2)	Q1 (1)	116.3	-9.06	125.36	
1987 (2)	Q2 (2)	125.7	-2.38	128.08	_ v
1987 (2)	Q3 (3)	125.7	-2.67	128.37	$= y_{87,3} - s_3$
1987 (2)	Q4 (4)	143.5	14.06	129.44	
1988 (3)	Q1 (1)	121.1	-9.06	130.16	
1988 (3)	Q2 (2)	128.6	-2.38	130.98	
1988 (3)	Q3 (3)	129	-2.67	131.67	
1988 (3)	Q4 (4)	147.3	14.06	133.24	
1989 (4)	Q1 (1)	123.2	-9.06	132.26	
1989 (4)	Q2 (2)	129.2	-2.38	131.58	
1989 (4)	Q3 (3)	130.3	-2.67	132.97	
1989 (4)	Q4 (4)	147.9	14.06	133.84	
1990 (5)	Q1 (1)	128	-9.06	137.06	
1990 (5)	Q2 (2)	135.7	-2.38	138.08	
1990 (5)	Q3 (3)	136.2	-2.67	138.87	
1990 (5)	Q4 (4)	155.5	14.06	141.44	

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

11

Additives Modell: Saisonbereinigte Zeitreihe

Gehälter je Beschäftigten mit saisonbereinigter Zeitreihe

Multiplikatives Modell

Grundmodell: Saisonausschläge nehmen mit steigendem Trend im Mittel proportional zu.

→ Saisonausschläge mit proportional zunehmender Amplitude

Die Saisonkomponente kann wie im additiven Modell bestimmt werden, wenn man die originäre Zeitreihe (y_t) durch die logarithmierte Zeitreihe $(\log y_t)$ ersetzt.

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

13

14

Multiplikatives Modell

Bestimmung der Saisonkomponente und der saisonbereinigten Zeitreihe:

Trendbereinigte Werte:
$$d_{ij} = \frac{y_{ij}}{g_{ij}} = s_j \cdot u_{ij}, i = 1, 2, ..., k_j, j = 1, 2, ..., p \rightarrow \#$$
 Phasen

Unnormierte Saisonkomponente:
$$s_j^* = \frac{1}{k_j} \sum_{i} d_{ij}$$

ightarrow wie im additiven Modell unter Verzicht $\$ auf eine geometrische Mittelung

Normierungsfaktor (NF):
$$\overline{d} = p / \sum_{j=2}^{p} s_{j}^{*}$$

Normierte Saisonkomponente: $s_1 = s_1^* \cdot \overline{d}$

Saisonbereinigte Zeitreihe: $y_{ij}^* = y_{ij} / s_j$

Q1	s_1^*	$s_1 = s_1^* \cdot \overline{d}$	$y_{i1}^* = y_{i1} / s_1$
Q2	s_2^*	$\mathbf{s}_2 = \mathbf{s}_2^* \cdot \overline{\mathbf{d}}$	$y_{i2}^* = y_{i2} / s_2$
Q3	s ₃ *	$s_3 = s_3^* \cdot \overline{d}$	$y_{i3}^* = y_{i3}/s_3$
Q4	s ₄ *	$s_4 = s_4^* \cdot \overline{d}$	$y_{i4}^* = y_{i4}/s_4$
		4	

$$\sum_{i=1}^{4} s_i^* \neq 4 \qquad \sum_{i=1}^{4} s_i = 4$$

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

Bestimmung der Saisonkomponente: Beispiel

Jahr (i)	Quartal (j)	y_t	$\overline{\mathcal{Y}}_{\mathcal{U}}^{4}$	d_{ii}
1986 (1)	Q1 (1)	113.6		,
1986 (1)	Q2 (2)	121.3		
1986 (1)	Q3 (3)	122	-124.26	0.98
1986 (1)	Q4 (4)	138.8	125.15	1.11
1987 (2)	Q1 (1)	116.3	126.16	0.92
1987 (2)	Q2 (2)	125.7	127.21	0.92
1987 (2)	Q3 (3)	125.7	128.40	0.98
1987 (2)	Q4 (4)	143.5	129.36	1.11
1988 (3)	Q1 (1)	121.1	130.14	0.93
1988 (3)	Q2 (2)	128.6	131.03	0.98
1988 (3)	Q3 (3)	129	131.76	0.98
1988 (3)	Q4 (4)	147.3	132.10	1.12
1989 (4)	Q1 (1)	123.2	132.34	0.93
1989 (4)	Q2 (2)	129.2	132.58	0.97
1989 (4)	Q3 (3)	130.3	133.25	0.98
1989 (4)	Q4 (4)	147.9	134.66	1.10
1990 (5)	Q1 (1)	128	136.21	0.94
1990 (5)	Q2 (2)	135.7	137.90	0.98
1990 (5)	Q3 (3)	136.2		
1990 (5)	Q4 (4)	155.5_	<u> </u>	

Zentrierte gleitende Durchschnitte 4-ter Ordnung

$$\overline{y}_{t}^{4} = \frac{1}{4} \left(\frac{1}{2} y_{t-2} + y_{t-1} + y_{t} + y_{t+1} + \frac{1}{2} y_{t+2} \right)$$

$$\overline{y}_{86,3} = \frac{1}{4} \left(\frac{113.6}{2} + 121.3 + 122 + 138.8 + \frac{116.3}{2} \right) = 124.26$$

$$d_{86.3} = y_{86.3} / \bar{y}_{86}^4 = 122/124.26 = 0.98$$

ightarrows Unnormierter Saisonfaktor s_1^*

$$s_1^* = (0.92 + 0.93 + 0.93 + 0.94)/4 = 0.93$$

Saisonfaktor s_3^* für Q3:

$$s_3^* = 0.98 + 0.98 \cdot 0.98 + 0.98 = 0.98$$

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

15

Bestimmung der Saisonkomponente

Glatte Komponente = zentrierte gleitende Durchschnitte der Ordnung 4:

$$\overline{y}_{t}^{4} = \frac{1}{4} \left(\frac{1}{2} y_{t-2} + y_{t-1} + y_{t} + y_{t+1} + \frac{1}{2} y_{t+2} \right)$$

Aus den berechneten trendbereinigten Werte d_{ij} erhält man die unnormierten Saisonkomponente mit $k_j = 4$ (4 Jahre):

1. Quartal
$$s_1^* = \frac{1}{4} \sum_{i=2}^{4} d_{i1} = \frac{1}{4} (0.92 + 0.93 + 0.93 + 0.94) = \frac{3.723}{4} = 0.9308$$

2. Quartal
$$s_2^* = \frac{1}{4} \sum_{i=3}^4 d_{i2} = \frac{1}{4} (0.99 + 0.98 + 0.97 + 0.98) = \frac{3.9282}{4} = 0.982$$

3. Quartal
$$s_3^* = \frac{1}{4} \sum_{i=1}^4 d_{i3} = \frac{1}{4} (0.98 + 0.98 + 0.98 + 0.98) = \frac{3.9177}{4} = 0.979$$

4. Quartal
$$s_4^* = \frac{1}{4} \sum_{i=1}^4 d_{i4} = \frac{1}{4} (1.11 + 1.11 + 1.12 + 1.10) = \frac{4.4317}{4} = 1.1079$$

Bestimmung der Saisonkomponente

Durchschnitt der unnormierten Saisonziffern:

$$\overline{d} = \frac{1}{p} \sum_{j=1}^{p} s_{j}^{*} = \frac{1}{4} [0.931 + 0.982 + 0.979 + 1.108] = \frac{1}{4} (4.0002) = 1$$

Normierte Saisonkomponenten: $s_j = s_j^* \cdot \overline{d}$

$$\begin{aligned} s_1 &= s_1^* \cdot \overline{d} &= 0.928 \times 1 &= 0.928 \\ s_2 &= s_2^* \cdot \overline{d} &= 0.982 \times 1 &= 0.982 \\ s_3 &= s_3^* \cdot \overline{d} &= 0.9794 \times 1 &= 0.9794 \\ s_4 &= s_4^* \cdot \overline{d} &= 1.108 \times 1 &= 1.108 \end{aligned}$$

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

17

Bestimmung der Saisonkomponente: Beispiel

Saisonbereinigte Zeitreihe (y_t^*) der Löhne und Gehälter je Beschäftigten für den gesamten Beobachtungszeitraum

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

2.2 Regressionsverfahren

Saison-Dummies für den saisonalen Einfluss.

A. Regressionsmodell mit Interzept

Anzahl der Saison-Dummies = p-1

Grund: Spalten von p Saison-Dummies in der Beobachtungsmatrix (\mathbf{X}) summieren zu 1 \rightarrow exakte Multikollinearität \rightarrow Regressionsmodell ist nicht mehr schätzbar

Basis: Quartalsdaten $\rightarrow p = 4$

Schätzung: linearer Trend + Saisonkomponente

Regression: $y_t = b_0 + b_1T + b_2D_2 + b_3D_3 + b_4D_4 + u_t$

D_i = Saison-Dummy für das j-te Quartal:

$$D_{j} = \begin{cases} 1, \text{ falls Quartal } j \\ 0, \text{ sonst} \end{cases} j=2,3,4$$

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

19

20

Regressionsverfahren

Referenzquartal = 1. Quartal \rightarrow Koeffizienten $\&partial{B}_2$, $\&partial{B}_3$ und $\&partial{B}_4$ geben die Saisoneinflüsse der Quartale 2, 3 und 4 relativ zum 1. Quartal an. Regressionsmodell in Matrizenform: $\mathbf{y} = \mathbf{X}\mathbf{\hat{B}} + \mathbf{u}$

y: Tx1-Vektor der Zeitreihenwerte (bei kompletten Jahren: T=p·k)

X: Tx5-Beobachtungsmatrix ("X") bei Quartalsdaten

ß: 5x1-Vektor der Regressionskoeffizienten, **ß** = $(\beta_0 \ \beta_1 \ \beta_2 \ \beta_3 \ \beta_4)^T$

u: Tx1-Vektor der Störvariablen

Struktur der Beobachtungsmatrix X:

x₀: Scheinvariable

x₁: Trendvariable

 $\mathbf{X} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 \\ 1 & 3 & 0 & 1 & 0 \\ 1 & 4 & 0 & 0 & 1 \\ 1 & 5 & 0 & 0 & 0 \\ 1 & 6 & 1 & 0 & 0 \\ 1 & 7 & 0 & 1 & 0 \\ 1 & 8 & 0 & 0 & 1 \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ x_0 & x_1 & D_2 & D_3 & D_4 \end{bmatrix}$

OLS-Schätzer $\mathbf{b} = (\mathbf{X'X})^{-1}\mathbf{X'y}$ enthält den Trendkoeffizienten β_1 sowie die gesuchten Regressionsschätzer für den Saisoneinfluss der Phasen (hier: Quartale) 2, 3, 4 relativ zur 1. Phase.

Regressionsverfahren

Bestimmung der **Saisonkomponente** (normierte Saisonziffern) S_1 , S_2 , S_3 , S_4 für alle vier Quartale:

$$S_{j} = \begin{cases} -\overline{d} \text{ für } j = 1 \text{ (Referenzphase)} \\ b_{j} - \overline{d} \text{ für } j = 2, 3, 4 \end{cases} \qquad \overline{d} = \sum_{j=2}^{4} b_{j} / 4 \qquad \text{(1. Phase: Referenzphase)}$$

Beispiel: Löhne und Gehälter je Beschäftigten

(Quartalsdaten für 5 Jahre: $T = k \cdot p = 5.4 = 20$)

Regression: Lohnindex =
$$112.63 + 0.8675T + 6.79D_2 + 6.47D_3 + 23.56D_4$$

t-Werte (158.0) (17.6) (8.6) (8.13) (29.36)

Arithm. Mittel der Saisonkoeffizienten (einschl. 0 für Referenzphase):

$$\overline{d} = (0 + 6.8 + 6.5 + 23.6)/4 = 36.805/4 = 9.2$$

Normierte Saisonkomponente:

$$S_1 = 0 - 9.2 = -9.2$$
 $S_2 = 6.79 - 9.2 = -2.41$

$$S_3 = 6.47 - 9.2 = -2.73$$
 $S_4 = 23.56 - 9.2 = 14.35$

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

21

Gretl

Regressionsmodell ohne Interzept

B. Regressionsmodell ohne Interzept

Mit p Saison-Dummies können die Saisonkoeffizienten aller p Phasen eines Jahres ohne Bezug zu einer Referenzphase geschätzt werden.

Regressionsmodell mit Quartalsdaten (p=4):

$$y_t = \beta_1 D_1 + \beta_2 D_2 + \beta_3 D_3 + \beta_4 D_4 + \beta_5 T + u_t$$

Saison-Dummies D_i:

$$D_{j} = \begin{cases} 1, \text{ falls Quartal } j \\ 0, \text{ sonst} \end{cases}$$
 $j=1,2,3,4$

Die Beobachtungsmatrix ("Designmatrix")

X hat hier die Struktur:

 x_1 : Trendvariable T

$$\mathbf{X} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 4 \\ 1 & 0 & 0 & 0 & 5 \\ 0 & 1 & 0 & 0 & 6 \\ 0 & 0 & 1 & 0 & 7 \\ 0 & 0 & 0 & 1 & 8 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ D_1 & D_2 & D_3 & D_4 & x_1 \end{bmatrix}$$

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

23

24

Regressionsmodell ohne Interzept

Bestimmung der (normierten) Saisonkomponente $S_1, S_2, ..., S_p$ als Durchschnitts-wert der geschätzten Saisonkoeffizienten:

$$\overline{\mathbf{d}} = \left(\sum_{j=1}^{p} \mathbf{b}_{j}\right) / p$$

Normierte Saisonkomponenten: $S_j = b_j - \overline{d}$ j=1,2,3,4

Beispiel: Gehälter je Beschäftigten

(Quartalsdaten für 5 Jahre: $T = k \cdot p = 5.4 = 20$)

Lohnindex = $112.6 \cdot D_1 + 119.43D_2 + 119.1D_3 + 136.19D_4 + 0.8675T$

Arithmetisches Mittel der Saisonkoeffizienten:

$$\overline{d} = (112.6 + 119.43 + 119.1 + 136.19)/4 = 487.3/4 = 121.83$$

Normierte Saisonkomponenten: $\sum_{j=1}^{4} s_j = 0$

$$S_1 = 112.6 - 121.83 = -9.23$$
 $S_2 = 119.43 - 121.83 = -2.41$

$$S_3 = 119.1 - 121.83 = -2.74$$
 $S_4 = 136.19 - 121.83 = 14.37$

Modelle für die Saisonkomponente

Modell für Daten mit Saisonschwankungen; $y_t = T_t + S_t + e_t$

St: periodische Funktion

Für Monatsdaten: $S_{t+12} = S_t$ Für Quartalsdaten: $S_{t+4} = S_t$ allgemein: $S_{t+a} = S_t$

Als Modell für die Saisonschwankungen werden oft trigonometrische Funktionen verwendet:

$$S_t = \beta_1 cos(\omega_1 t) + \gamma_1 sin(\omega_1 t)$$
 $t = 1, 2, ...$ wobei $\omega_1 = 2\pi/a$

Gewünschte Eigenschaft: $S_{t+a} = S_t$ für alle t

Beispiele für Monatsdaten

Das Modell für S_t hängt von zwei Parametern ab:

β₁ bestimmt die Amplitude des Saisonschwankungen (Höhe der Wellen)

γ₁: bestimmt die Phase (die Lage des Höhenpunktes der Welle)

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

25

26

Verschiedene Modelle

Trend + Saisonkomponente 1

70

60

50

40

30

20

10

0 5 10 15 20 25 30 35 40 45 50 55 60

Saisonkomponente 1 und 2

15
10
5
0
-5
-10
-15
0 5 10 15 20 25 30 35 40 45 50 55 60 $S_t = 5\cos(\omega_1 t) + 10\sin(\omega_1 t)$ a = 12 und a = 4

Modelle für die Saisonkomponente

Beispiel für eine Zeitreihe von Monatsdaten, die linear wächst und wellförmige Schwankungen aufweist:

$$T_t = 20 + 0.7t$$
 und $S_t = 5\cos(\omega_1 t) + 10\sin(\omega_1 t)$ wobei $a = 12$ und $a = 4$

Modell mit 4 Saisonparametern:

$$\begin{split} S_t &= \beta_1 cos(\omega_1 t) + \gamma_1 sin(\omega_1 t) + \beta_2 cos(\omega_2 t) + \gamma_2 sin(\omega_2 t) \\ S_t &= \underbrace{5 cos(\omega_1 t) + 10 sin(\omega_1 t)}_{\text{1. Komponente}} + \underbrace{4 cos(\omega_2 t) + 6 sin(\omega_2 t)}_{\text{2. Komponente}} \quad \text{wobei } \omega_2 = 4\pi/a \end{split}$$

Trigonometrische Funktion sind in der Lage, komplizierte Saisonschwankungen zu modellieren.

Im Allgemeinen: $S_t = \sum_{j=1}^{q} (\beta_j \cos(\omega_j t) + \gamma_j \sin(\omega_j t))$ wobei $\omega_j = 2\pi j/a$ und $q \le a/2$

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

27

Verschiedene Modelle

Saisonkomponente 1.Teil und 2.Teil

15
10
5
0
-5
-10
-15
0 5 10 15 20 25 30 35 40 45 50 55 60

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

2.3 Holt-Winter Verfahren

Die Methode von Holt-Winters ist zur Prognose von Zeitreihen mit linearem Trend und Saison geeignet.

Es treten hier 3 Glättungsparameter auf:

 α , γ und δ mit $0 < \alpha$, γ , $\delta < 1$

Positiver Trend über 4 Jahre
Saisonkomponente bleibt konstant
→ additives Holt-Winters Modell

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

29

30

Holt-Winters Modell mit additiver Saison

Im additiven Modell ist die Saison vom Niveau der Zeitreihe unabhängig.

Zeitreihenmodell: $y_t = (\beta_0 + \beta_1 t) + S_t + u_t$

Niveau: $L_t = \alpha(Y_t - S_{t-p}) + (1-\alpha)(L_{t-1} + b_{t-1})$

Trend: $b_t = \gamma(L_t - L_{t-1}) + (1 - \gamma)b_{t-1}$ (Wachstumsrate)

Saison: $S_t = \delta(Y_t - L_t) + (1 - \delta)S_{t-D}$

p: Anzahl von Saisons (Phasen) innerhalb eines Jahres (p = 12 für Monatsdaten, p = 4 für Quartalsdaten).

h-Schritte-Prognose zum Zeitpunkt t: $\hat{y}_{t+h}(t) = L_t + hb_t + S_{t+h-p}$

Neu ist die **Saisongleichung** \rightarrow exponentielle Glättung der $(Y_t - L_t)$ Komponente (Beobachtung minus geglättetem Niveau)

Niveau L ergibt sich aus einer exponentiellen Glättung der saisonbereinigten Werte:

$$\mathsf{L}_\mathsf{t} = \alpha(\mathsf{Y}_\mathsf{t} - \mathsf{S}_\mathsf{t-p}) + (1 - \alpha) \, \hat{y}_{t}(\mathsf{t} - 1)$$

Holt-Winters Modell mit additiver Saison: Beispiel

Anfangswerte: L_0 , b_0 , und S_{-3} , S_{-2} . S_{-1} .

OLS Schätzung für die Hälfte der Zeitreihen (16 Daten)

Wenigstens 4 Jahre!

Schritt 1: Anfangswerte mittels Regression Regressionsgleichung: $\hat{y}_t = 20.85 + 0.9809t$

Interzept: $L_0 = 20.85$ und

Steigung: $b_0 = 0.9809$

1	Koeffizient	Stdfe	hler
const	20,8500 0,980882	7,4917 0,7747	
Mittel d. abh Summe d. quad R-Quadrat F(1, 14) Log-Likelihoo Schwarz-Krite rho	. Res.	29,18750 2857,313 0,102726 1,602813 -64,18340 133,9120 -0,075002	Stdal Stdf Korr: P-We: Akai: Hann: Durb:

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

31

Holt-Winters Modell mit additiver Saison: Beispiel

Schritt 2: Bestimmung der Saisonkomponente

Schätzungen der Trendkomponente (N = 16 = 4x4Q):

$$\hat{y}_1 = 20.85 + 0.9809(1) = 21.8309$$

$$\hat{y}_2 = 20.85 + 0.9809(2) = 22.8118$$

$$\hat{y}_{16} = 20.85 + 0.9809(16) = 36.5444$$

Trendbereinigte Zeitreihe: $S_t = y_t - \hat{y}_t$

$$S_1 = y_1 - \hat{y}_1 = 10 - 21.8309 = -11.8309$$

$$S_2 = y_2 - \hat{y}_2 = 31 - 22.8118 = 8.1882$$

. . .

$$S_{16} = y_{16} - \hat{y}_{16} = 25 - 36.5444 = -11.5444$$

Berechnung der durchschnittlichen Saisonkomponente

$$\overline{S}_1 = \frac{1}{4} (S_1 + S_5 + S_9 + S_{13}) = (-11.8309 - 14.7545 - 15.6781 - 14.601)/4 = -14.2163$$

$$\overline{S}_4 = \frac{1}{4} (S_4 + S_8 + S_{12} + S_{16}) = (-8.773 - 11.69 - 11.62 - 11.54)/4 = -10.908$$

Holt-Winters Modell: Startwerte

Para	ameter
α	= 0.2
γ	= 0.1
δ	= 0.1
р	= 4

	Niveau Wachstum Saison-					
Zeit	Y _t	L _t	b _t	Komponente		
-3	Q1			-14.2162		
-2	Q2			6.5529		
-1	Q3	Regression		18.5721		
0	Q4	20.85	0.9809	-10.9088		
1	10	22.3079	1.0286	-14.0254		
2	31	23.5586	1.0508	6.6418		
3	43	24.5731	1.0472	18.5575		

$$S_{t} = \delta(Y_{t} - L_{t}) + (1-\delta)S_{t-p}$$

$$S_{1} = 0.1(Y_{1}-L_{1}) + 0.9S_{-3} =$$

$$= 0.1(10 -22.3079) + 0.9(-14.21)$$

$$= -14.025$$

$$L_{t} = \alpha (Y_{t} - S_{t-p}) + (1-\alpha)(L_{t-1} + b_{t-1})$$

$$\mathbf{b}_{\mathsf{t}} = \gamma(\underbrace{\mathsf{L}_{\mathsf{t}} - \mathsf{L}_{\mathsf{t-1}}}) + (1 - \gamma)\mathbf{b}_{\mathsf{t-1}}$$

Saisonbereinigte Beob.

 L_0 = Interzept der Regression

$$L_1 = 0.2(Y_1-S_{-3}) + 0.8(L_0 + b_0) =$$
= 0.2(10 +14.21) + 0.8(20.85 + 0.98)
= 22.307

Niveauänderung

b₀ = Steigung aus Regression

$$b_1 = 0.1(L_1-L_0) + 0.9b_0 =$$

= 0.1(22.3079 -20.85) + 0.9(0.98)
= 1.028

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

33

Holt-Winters Verfahren: Optimale Glättungsparameter

α	γ	δ	SSE MSE		σ
0.56	0	0	18.7974 1.4460		1.2025
				Saison	Prognose
				Komponen	$\hat{y}_t(t-1)$
Zeit	Y_{t}	Niveau	Wachstum	te	
-3				-14.2162	
-2				6.5529	
-1				18.5721	
0		20.85	0.9809	-10.9088	
1	10	23.1682	0.9809	-14.2162	7.6147
2	31	24.3161	0.9809	6.5529	30.7020
3	43	24.8098	0.9809	18.5721	43.8691
4	16	26.4175	0.9809	-10.9088	14.8818
5	11	26.1750	0.9809	-14.2162	13.1823
6	33	26.7585	0.9809	6.5529	33.7088
7	45	27.0041	0.9809	18.5721	46.3114
8	17	27.9423	0.9809	-10.9088	17.0762
9	14	28.5268	0.9809	-14.2162	14.7070
10	36	29.4737	0.9809	6.5529	36.0606
11	50	31.0003	0.9809	18.5721	49.0266
12	21	31.9406	0.9809	-10.9088	21.0723
13	19	33.0867	0.9809	-14.2162	18.7053
14	41	34.2803	0.9809	6.5529	40.6205
15	55	35.9153	0.9809	18.5721	53.8333
16	25	36.3426	0.9809	-10.9088	25.9874

Schritt 3: Finde die optimalen Werte für α , γ und δ \rightarrow Min RSS!

$$\alpha = 0.506$$

$$\gamma = 0$$

$$\delta = 0$$

Holt-Winters Modell: h-Schritte-Prognose

Schritt 3: Berechnung der Prognose mit $(\alpha, \gamma, \delta) = (0.2, 0.1, 0.1)$

$$\hat{y}_{t+h}(t) = L_t + hb_t + S_{t+h-p}$$

t = 0, h = 1:

$$\hat{y}_{0,1} = \hat{y}_0 = L_0 + b_0 + S_{1-4} = 20.85 + 0.9809 -14.2162 = 7.6147$$

h-Schritte-Prognose

In Periode 16 (letzte Beobachtung), die Einschritt-Prognose für Periode 17:

$$\hat{y}_{17}(16) = L_{16} + b_{16} + S_{17-4} = 36.1813 + 0.9544 - 14.216 = 22.86$$

In Periode 16, die Zwei-Schritt-Prognose für Periode 18:

$$\hat{y}_{18}(16) = L_{16} + 2b_{16} + S_{18-4} = 36.1813 + 2(0.9544) + 6.524 = 44.61$$

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

35

Holt-Winters Verfahren: h-Schritte-Prognose

In Periode 16, die Drei-Schritte-Prognose

$$\hat{y}_{16,3} = \hat{y}_{19}(16) = L_{16} + \frac{3}{5}b_{16} + S_{19-4} = 36.1813 + \frac{3}{5}(0.9544) + 18.5721 = 57.62$$

Wenn $y_{17} = 33$ beobachtet wird,

- Glättungsparameter α , γ , δ aktualisieren, indem RSS minimiert wird oder
- nächste Trend- L₁₇ und Niveauschätzung b₁₇ berechnen

$$L_{17} = \alpha(y_{17} - S_{t-p}) + (1-\alpha)(L_{16} + b_{16})$$

= 0.2(33+14.269) + 0.8(36.1813 + 0.9544) = 39.1624

$$b_{17} = \gamma (L_{17} - L_{16}) + (1 - \gamma)b_{16}$$

= 0.1(39.1624 - 36.1813) + 0.9(0.9544) = 1.157

Holt-Winters Modell mit multiplikativer Saison

Im multiplikativen Modell ist der Saisoneffekt **proportional** zum Niveau der Reihe. Der Trend selbst ist linear.

Zeitreihenmodell: $y_t = (\beta_0 + \beta_1 t)S_t \times u_t$

Niveau: $L_t = \alpha(Y_t/S_{t-p}) + (1 - \alpha)(L_{t-1} + b_{t-1})$

Trend: $b_t = \gamma (L_t - L_{t-1}) + (1 - \gamma) b_{t-1}$ Saison: $S_t = \delta (Y_t/L_t) + (1 - \delta) S_{t-n}$

p: Anzahl von Saisons innerhalb eines Jahres (p = 12 für Monatsdaten, p = 4 für Quartalsdaten).

h-Schritte Prognose zum Zeitpunkt t: $\hat{y}_{t+h}(t) = (L_T + hb_t)S_{t+h-p}$

Die Saisongleichung beschreibt eine exponentielle Glättung des Quotienten (Y_t/L_t) .

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

37

Beispiel: Sportgetränke

Beobachtungen:

- ✓ Linearer Aufwärtstrend
- ✓ Saisonale Schwankungen nehmen über die Zeit zu

Quartal	1	2	3	4	5	6	7	8
1	72	77	81	87	94	102	106	115
2	116	123	131	140	147	162	170	177
3	136	146	158	167	177	191	200	218
4	96	101	109	120	128	134	142	149

Sportgetränke

Anfangswerte

Anfangswerte: L₀, b₀, und die Saisonkomponente S₋₃, S₋₂, S₋₁, S₀.

OLS Schätzung für die Hälfte der Zeitreihen (16 Daten)

Wenigstens 4 Jahre!

Schritt 1: Anfangswerte mittels Regression

Regressionsgleichung:

 $\hat{y}_t = 95.25 + 2.4706t$

Interzept: $L_0 = 95.25$ und

Steigung: $b_0 = 2.4706$

	Koeffizien	t Stdfe	ehler
const time	95,2500 2,47059	14,46 1,49	
Mittel d. ab Summe d. qua R-Quadrat F(1, 14) Log-Likeliho Schwarz-Krit rho	d. Res. od erium	116,2500 10651,71 0,163062 2,727649 -74,71011 154,9654 -0,031579	Stdabv Stdfer Korriç P-Wert Akaike Hannar Durbir

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

39

Holt-Winters Modell mit multiplikativer Saison: Beispiel

Schritt 2: Bestimmung der Saisonkomponente

Schätzungen der Trendkomponente:

$$\hat{y}_1 = 95.25 + 2.4706(1) = 97.7206$$

$$\hat{y}_2 = 95.25 + 2.4706$$
 (2) = 100.1912

$$\hat{y}_{16} = 95.25 + 2.4706 (16) = 134.7794$$

Trendbereinigte Zeitreihe: $S_t = y_t / \hat{y}_t$

$$S_1 = y_1 / \hat{y}_1 = 72/97.7206 = 0.7368$$

$$S_2 = y_2 / \hat{y}_2 = 116/100.1912 = 1.1578$$

. . . .

$$S_{16} = y_{16} / \hat{y}_{16} = 120/134.7794 = 0.8903$$

Berechnung der durchschnittlichen Saisonkomponenten:

$$\overline{S}_1 = (S_1 + S_5 + S_9 + ... + S_{29})/8 = (0.7368 + 0.7156 + 0.6894 + ... + 0.689)/8 = 0.695$$

 $\overline{S}_2 = (S_2 + S_6 + S_{10} + ... + S_{30})/8 = (1.1578 + 1.1174 + 1.0921 + ... + 1.045)/8 = 1.086$

$$\overline{S}_3 = (S_3 + S_7 + S_{11} + ... + S_{31})/8 = (1.13247 + 1.2906 + 1.2622 + ... + 1.2686)/8 = 1.272$$

• • •

Holt-Winters Modell mit multiplikativer Saison: Beispiel

$$\sum_{i=1}^{4} \overline{S}_{i} = 0.695 + 1.086 + 1.272 + 0.878 = 3.9327$$

Normierungsfaktor: NF = $p / \sum_{i=1}^{4} \overline{S}_{i} = 4 / 3.9327 = 1.01708$

Normierte Saisonkomponente: $S_i = \overline{S}_i \cdot NF$

Durchschnitt der Saisonkomponenten = 1.017

Saisonkomponente für Initialisierung:

$$S_{-3} = S_{1-4} = \overline{S}_1 \cdot NF = S_1 = 0.695(1.017) = 0.7078$$

$$S_{-2} = S_{2-4} = \overline{S}_2 \cdot NF = S_2 = 1.086(1.017) = 1.1050$$

$$S_{-1} = S_{3-4} = \overline{S}_3 \cdot NF = S_3 = 1.2937(1.017) = 1.2941$$

$$S_0 = S_{4-4} = \overline{S}_4 \cdot NF = S_4 = 0.878(1.017) = 0.8930$$

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

41

Holt-Winters Modell mit multiplikativer Saison: Beispiel

Schritt 3: Berechnung der 1-Schritt-Prognose

1-Schritt-Prognose:
$$\hat{y}_{t+h}(t) = (L_t + hb_t) S_{t+h-p}$$
 mit $h = 1$

$$t = 0$$
, $p = 4$: $\hat{y}_1(0) = (L_0 + b_0)S_{1-4} = (95.25 + 2.4706)0.7078 = 69.165$

Werte:
$$t = 1$$
, $h = 1$, $p = 4$, $\alpha = 0.2$, $\gamma = 0.1$ und $\delta = 0.1$

$$L_1 = \alpha(y_1/S_{-3}) + (1-\alpha)(L_0 + b_0)$$

$$= 0.2(72/0.7078) + 0.8(95.25 + 2.4706) = 98.521$$

$$b_1 = \gamma(L_1 - L_0) + (1 - \gamma)b_0 = 0.1(98.521 - 95.25) + 0.9(2.4706) = 2.5507$$

$$S_1 = \delta(y_1/L_1) + (1-\delta)S_{1-4} = 0.1(72/98.521) + 0.9(0.7078) = 0.701$$

Prognose:
$$\hat{y}_2(1) = (L_1 + b_1)S_{2-4} = (98.521 + 2.5507)(1.105) = 111.685$$

$$L_2 = \alpha(y_2/S_{-2}) + (1-\alpha)(L_1 + b_1) = 0.2(116/1.105) + 0.8(98.521 + 2.5507) = 101.853$$

$$b_2 = \gamma(L_2 - L_1) + (1 - \gamma)b_1 = 0.1(101.853 - 98.521) + 0.9(2.5507) = 2.6288$$

$$S_2 = \delta(y_2/L_2) + (1-\delta)S_{2-4} = 0.1(116/101.853) + 0.9(1.105) = 1.1084$$

Prognose:
$$\hat{y}_3(2) = (L_2 + b_2)S_{3-4} = (101.853 + 2.6288)(1.2937) = 135.213$$

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

Holt-Winters Modell: Optimale Glättungsparameter

α	γ	δ	SSE		MSE		
0.2	0.1	0.10000	177.3537		5.9118		
						Prognose (Quadrierte
			5	Saisonfak	t $\widehat{\mathcal{Y}}_{t,1}$		_2
Zeit	y _t	Niveau	Trend c	or	Forecast	fehler e _t	e _t ²
-3				0.7062			
-2				1.1114			
-1				1.2937			
0		95.25	2.4706	0.8886	69.0103	3	
1	72	98.5673	2.5553	0.7086	112.3876	2.9897	8.9384
2	116	101.7726	2.6203	1.1142	135.0531	3.6124	13.0492
3	136	104.5392	2.6349	1.2944	95.2335	0.9469	0.8966
4	96	107.3467	2.6522	0.8892	77.9481	0.7665	0.5876
5	77	109.7313	2.6254	0.7079	125.1923	3 -0.9481	0.8990
6	123	111.9632	2.5861	1.1127	148.2754	4 -2.1923	4.8062
7	146	114.1977	2.5509	1.2928	103.8078	3 -2.2754	5.1774
8	101	116.1170	2.4877	0.8872	83.9645	5 -2.8078	7.8838
9	81	117.7672	2.4040	0.7059	133.7113	3 -2.9645	8.7883
10	131	119.6839	2.3553	1.1109	157.7760	2.7113	7.3513
11	158	122.0738	2.3587	1.2930	110.3993	0.2240	0.0502
12	109	124.1171	2.3272	0.8863	89.2597	7 -1.3993	1.9581
13	87	125.8040	2.2632	0.7045	142.2648	3 -2.2597	5.1064
14	140	127.6594	2.2224	1.1094	167.9343	3 -2.2648	5.1295
15	167	129.7373	2.2079	1.2924	116.9458	-0.9343	0.8729
16	120	132.6344	2.2768	0.8882	95.0429	3.0542	9.3284

Finde die optimalen Werte für α , γ und δ \rightarrow Min SSE!

Ergebnis

 $\alpha = 0.394$

 $\gamma = 0.025$

 $\delta = 0$

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

43

Holt-Winters Modell: h-Schritte-Prognose

h-Schritte-Prognose: $\hat{y}_{t+h}(t) = (L_t + hb_t)S_{t+h-p}$

In Periode 32 (letzte Beobachtung), die 1-Schritt-Prognose für Periode 33 $\hat{y}_{33}(32) = (L_{32} + b_{32})S_{33-4} = (167.779 + 2.238)(0.7057) = 119.99$

In Periode 32, die Drei-Schritte-Prognose für Periode 35

$$\hat{y}_{35}(32) = (L_{32} + 3b_{32})S_{35-4} = (167.779 + 3(2.238))1.293 = 225.615$$

Wenn $y_{33} = 123$ beobachtet wird, Schätzer α γ und d aktualisieren oder L33 und b33 rekursiv schätzen:

$$L_{33} = \alpha(y_{33}/S_{33-4}) + (1-\alpha)(L_{32} + b_{32})$$

=0.2(123/0.7057) + 0.8(167.77 + 2.238) = 170.87

$$b_{33} = \gamma (L_{33} - L_{32}) + (1 - \gamma)b_{32}$$

= 0.1(170.87-167.77) + 0.9(2.2387) = 2.324

Holt und Holt-Winters Glättungsverfahren

- Diese Glättungsethoden sind einfach und benötigen höchstens drei Parameter.
- Sie lassen sich leicht automatisieren, sodass sie auf eine grosse Zahl von Zeitreihen (zB in grossen Lagerhaltungsproblemen) anwendbar werden.
- Die Zielfunktion (minimale Fehlerquadratsumme) kann bei Vorliegen von Ausreissern zB durch die Minimierung des MAE_p, mean absolute percentage error (MAPE), ersetzt werden.

MAPE =
$$\frac{100}{T} \sum_{t=1}^{T} \left| \frac{y_t - y_t (t-1)}{y_t} \right|$$

 Holt-Winters für exponentielles Wachstum und multiplikative Saisons in die Zeitreihe zuerst logarithmieren und dann Holt-Winters mit additiver Saison anwenden.

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

45

2.4 Hodrick-Prescott-Filter

HP-Filter: Verfahren der Makroökonomie um Konjunkturzyklen zu analysieren.

Ziel: Zeitreihe ausgleichen, so dass diese weniger abhängig von kurzfristigen Schwankungen ist.

HP-Filter separiert den Trend von der zyklischen Komponente.

Zeitreihenzerlegung: $y_t = \tau_t + c_t$ τ : Trend c: zyklische Komponente

Trendkomponente τ minimiert den folgenden Ausdruck:

$$\sum_{t=1}^{T} \left(y_t - \tau_t\right)^2 + \lambda \sum_{t=2}^{T-1} \left[\left(\tau_{t+1} - \tau_t\right) - \left(\tau_t - \tau_{t-1}\right) \right]^2.$$

Erster Term: Summe der quadrierten Abweichungen $(y_t-\tau_t)$ zwischen Trendkomponente und Wert der Zeitreihe y_t :

Zweiter Term: Vielfaches λ der Summe der quadrierten zweiten Differenzen der Trend-Komponente. Dieser Term *bestraft* die Variation in der Trend-Komponente \rightarrow Glattheit der Trendfunktion. Je höher λ , desto grösser die Bestrafung und glatter die Trendfunktion.

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno

Hodrick-Prescott-Filter

Quartalszahlen: $\lambda = 1600$ Monatszahlen: $\lambda = 14'400$

Der Hodrick-Prescott-Filter kann den Trend flexibler ausgleichen als ein einfacher linearer Filter.

Kritikpunkten:

- HP-Filter weist an den Rändern eine Verzerrung auf, da für die Randwerte Schätzwerte eingesetzt werden müssen, um Differenzen bilden zu können.
- Der Filter kann per Konstruktion längere Trendabweichungen nicht ausweisen \rightarrow durch die Wahl von λ auf eine bestimmte maximale Länge des Konjunkturzyklus festgelegt. Eine Rezession von mehr als drei Jahren würde bereits als Abwärtstrend gewertet.
- λ bleibt ein frei gewählter Parameter, der keine theoretische Fundierung aufweist.

Berner Fachhochschule | CAS Datenanalyse | Zeitreihenanalyse | Kapitel 2 | Prof. Dr. Raúl Gimeno