

IFSP – SÃO JOÃO DA BOA VISTA CIÊNCIA DA COMPUTAÇÃO

Sistemas Operacionais

SEMANA 8

Prof.: Ederson Borges

Tópicos

- Escalonador
 - Definições
 - Algoritmos
 - Comparação
 - Atividades

Escalonador

Definições

- O Escalonador determina como gerenciar a fila de tarefas de estados "pronta" e "executando"
- Lembrando que cada processador só pode ter uma tarefa alocada a ele por vez
- O algoritmo utilizado pelo escalonador irá definir o comportamento do SO

- Definições
 - Tipos de Tarefas
 - Tarefas de tempo real
 - Tarefas interativas
 - Tarefas em lote

- Definições
 - Tarefas em tempo real
 - Exigência de previsibilidade do tempo
 - Tempo de resposta importa mais que velocidade
 - Controle de sistemas críticos

- Definições
 - Tarefas interativas
 - Recebem eventos externos
 - Do usuário
 - Da rede
 - Respostas devem ser rápidas
 - Não necessita da previsibilidade dos sistemas de tempo real
 - MAIOR PARTE DAS TAREFAS DE SISTEMAS DESKTOP!

- Definições
 - Tarefas em lote (batch)
 - Não existe requisito temporal explícito
 - Executam sem intervenção de usuário
 - Procedimento de backup
 - Antivírus
 - Cálculo
 - Grandes massas de dados
 - Renderização de animações

- Definições
 - Além disso, as tarefas podem ser classificadas como:
 - Tarefas orientadas a processamento
 - Tarefas orientadas a entrada/saída

- Definições
 - Tarefas orientadas a processamento
 - Usam de forma intensa o processador
 - Passam maior parte do tempo como "pronta" ou "executando"
 - Arquivos de vídeo
 - Cálculo numérico
 - Etc

- Definições
 - Tarefas orientadas a entrada/saída
 - Dependem mais de dispositivos de entrada/saída
 - Ficam boa parte no estado "suspenso"
 - Editores de texto
 - Compiladores
 - Servidores de rede

- Definições
 - Existem tarefas que alternam seu comportamento
 - Conversores de áudio
 - 1. Aguarda entrada do usuário
 - 2. Processa operação solicitada pelo usuário

- Definições
 - Antes de passarmos para os algoritmos
 - Objetivos
 - Métricas
 - Objetivos
 - Depende muito dos aplicativos a que se quer executar
 - Jogos exigem *quantum* baixo
 - As tarefas devem receber rapidamente o processador
 - » Cliques
 - » Cálculos
 - » Mudanças de cenário...

- Definições
 - Critérios utilizados para avaliação de escalonadores
 - Tempo de execução (ou de vida)
 - Tempo de espera
 - Tempo de resposta
 - Justiça
 - Eficiência

- Definições
 - Tempo de execução
 - Tempo total da execução da tarefa
 - Tempo decorrido entre criação e encerramento
 - Utilizado em sistemas em lote
 - Não há interação com usuário do sistema

- Definições
 - Tempo de espera
 - Tempo perdido na fila de "pronta"
 - Não inclui o tempo em "suspensa"

- Definições
 - Tempo de resposta
 - Tempo entre a chegada de evento e o resultado do processamento
 - Um editor de texto
 - » Tempo entre apertar uma tecla e aparecer o caractere na tela
 - Sistemas interativos e Tempo real
 - Tempo de tratamento de interrupções
 - Tempo entre sair de suspensa e voltar ao processador
 - Quantum

- Definições
 - Justiça
 - Distribuição do processador entre fila de tarefas
 - Prioridades e comportamento iguais devem ter execuções similares

Escalonador

Definições

- Eficiência
 - A eficiência foi definida em aulas anteriores

$$\varepsilon = \frac{t_q}{t_q + t_{tc}}$$

- t_α média do *quantum*
- t_{tc} média de trocas de contexto
- Grau de utilização do processador
- Trocas de contexto e quantidade de tarefas orientadas a entrada/saída

- Definições
 - Tipos de escalonamento
 - Preemptivo
 - Cooperativo

- Definições
 - Preemptivo
 - Mais utilizado nos sistema operacionais modernos
 - A tarefa perde o processador após finalizar seu quantum
 - Também pode perder por:
 - » Chamada de sistema
 - » Aguardando entrada/saída
 - O escalonador reavalia as tarefas a cada interrupção, exceção ou chamada de sistema

- Definições
 - Cooperativos
 - Mais utilizados em sistemas de lote
 - Tarefa é executada até o fim ou necessidade de entrada/saída
 - Tarefas "cooperam" entre si, gerenciando o uso do processador

- Algoritmos de Escalonamento de Tarefas
 - Existem diversos algoritmos na literatura
 - Iremos estudar aqueles mais conhecidos
 - Para os exemplos aqui apresentados utilizaremos um sistema monoprocessado e 5 tarefas orientadas a processamento

Tarefa	t_1	t_2	t_3	t_4	t_5
Ingresso	0	0	1	3	5
Duração	5	2	4	1	2
Prioridade	2	3	1	4	5

Tabela 6.1: Tarefas na fila de prontas.

- Algoritmos de Escalonamento de Tarefas
 - First-Come, First Served (FCFS)
 - Atendimento de tarefas em sequência
 - Algoritmo simples

Figura 6.1: Escalonamento FCFS.

Escalonador

- Algoritmos de Escalonamento de Tarefas
 - First-Come, First Served (FCFS)
 - Tempo médio de execução

$$T_t = \frac{t_t(t_1) + \dots + t_t(t_5)}{5}$$

$$= \frac{(5-0) + (7-0) + (11-1) + (12-3) + (14-5)}{5}$$

$$= 8.0s$$

• Tempo médio de espera

$$T_{w} = \frac{t_{w}(t_{1}) + \dots + t_{w}(t_{5})}{5}$$

$$= \frac{(0-0) + (5-0) + (7-1) + (11-3) + (12-5)}{5}$$

$$= 5.2s$$

- Algoritmos de Escalonamento de Tarefas
 - Round-Robin (RR)
 - Preempção por tempo adicionado ao FCFS
 - Escalonamento por revezamento
 - Temos o Quantum => $t_q = 2s$

Figura 6.2: Escalonamento Round-Robin.

- Algoritmos de Escalonamento de Tarefas
 - Round-Robin (RR)
 - Sequência é alterada
 - t1->t2->t3->t1->t4->t5->t3->t1

Escalonador

- Algoritmos de Escalonamento de Tarefas
 - Round-Robin (RR)
 - Tempo médio de execução

$$T_t = \frac{t_t(t_1) + \dots + t_t(t_5)}{5} = \frac{14 + 4 + 12 + 6 + 6}{5} = 8,4s$$

Tempo médio de espera

$$T_w = \frac{t_w(t_1) + \dots + t_w(t_5)}{5} = \frac{9 + 2 + 8 + 5 + 4}{5} = 5.6s$$

- Algoritmos de Escalonamento de Tarefas
 - Round-Robin (RR)
 - Para tarefas em lote tem menor eficiência
 - Tempos de resposta melhores
 - Distribuição do processador
 - Tarefas interativas é melhor
 - Número de trocas de contexto também aumenta

- Algoritmos de Escalonamento de Tarefas
 - Shortest Job First (SJF)
 - Primeiro a tarefa com menor tempo de processamento
 - Disponível na fila de tarefas prontas
 - Cooperativo

Figura 6.4: Escalonamento SJF.

Escalonador

- Algoritmos de Escalonamento de Tarefas
 - Shortest Job First (SJF)
 - Tempo médio de execução

$$T_t = \frac{\dot{t_t}(t_1) + \dots + \dot{t_t}(t_5)}{5} = \frac{14 + 2 + 5 + 4 + 4}{5} = 5.8s$$

Tempo médio de espera

$$T_w = \frac{t_w(t_1) + \dots + t_w(t_5)}{5} = \frac{9 + 2 + 8 + 5 + 4}{5} = 3.0s$$

- Algoritmos de Escalonamento de Tarefas
 - Shortest Job First (SJF)
 - Problemas
 - Como estimar o tempo de execução?
 - » Normalmente inviável
 - » Editores de texto não possuem tempo de execução pré-definido
 - E quando muitas tarefas curtas chegam a fila?
 - » As tarefas mais longas ficam "aguardando" por tempo indeterminado
 - Inanição

- Algoritmos de Escalonamento de Tarefas
 - Shortest Remaining Time First (SRTF)
 - O algoritmo verifica o tempo restante de execução da tarefa
 - Mesmo tarefas que estão no estado "executando" podem perder o processador para novas tarefas entrantes

- Algoritmos de Escalonamento de Tarefas
 - Shortest Remaining Time First (SRTF)

Figura 6.5: Escalonamento SRTF.

Escalonador

- Algoritmos de Escalonamento de Tarefas
 - Shortest Remaining Time First (SRTF)
 - Tempo médio de execução

$$T_t = \frac{\dot{t_t}(t_1) + \dots + \dot{t_t}(t_5)}{5} = \frac{14 + 2 + 6 + 1 + 4}{5} = 5.4s$$

Tempo médio de espera

$$T_w = \frac{t_w(t_1) + \dots + t_w(t_5)}{5} = \frac{9 + 0 + 2 + 0 + 2}{5} = 2,6s$$

- Menores tempos médios
 - Ainda pode ocorrer a inanição de tarefas longas

- Algoritmos de Escalonamento de Tarefas
 - Escalonamento por prioridades fixas
 - PRIOc e PRIOp
 - Associa-se uma prioridade a cada tarefa
 - Número inteiro representando sua importância
 - Definem ordem de execução
 - Pode ser cooperativo (PRIOc) ou preemptivo (PRIOp)

- Algoritmos de Escalonamento de Tarefas
 - Escalonamento por prioridades fixas
 - Maior número, maior prioridade

Figura 6.6: Escalonamento por prioridade cooperativo (PRIOc).

Escalonador

- Algoritmos de Escalonamento de Tarefas
 - Escalonamento por prioridades fixas
 - PRIOc
 - Tempo médio de execução

$$T_t = \frac{t_t(t_1) + \dots + t_t(t_5)}{5} = \frac{7 + 2 + 13 + 7 + 4}{5} = 6.6s$$

Tempo médio de espera

$$T_w = \frac{t_w(t_1) + \dots + t_w(t_5)}{5} = \frac{2 + 0 + 9 + 6 + 2}{5} = 3.8s$$

- Algoritmos de Escalonamento de Tarefas
 - Escalonamento por prioridades fixas
 - Maior número, maior prioridade

Figura 6.7: Escalonamento por prioridade preemptivo (PRIOp).

Escalonador

- Algoritmos de Escalonamento de Tarefas
 - Escalonamento por prioridades fixas
 - PRIOp
 - Tempo médio de execução

$$T_t = \frac{t_t(t_1) + \dots + t_t(t_5)}{5} = \frac{10 + 2 + 13 + 1 + 2}{5} = 5,6s$$

Tempo médio de espera

$$T_w = \frac{t_w(t_1) + \dots + t_w(t_5)}{5} = \frac{5 + 0 + 9 + 0 + 0}{5} = 2,8s$$

- Algoritmos de Escalonamento de Tarefas
 - Escalonamento por prioridades dinâmicas
 - Os algoritmos anteriores sofrem do problema de inanição
 - Para evitar esse problema
 - Incluído o envelhecimento
 - Uma tarefa aumenta sua prioridade proporcionalmente ao tempo que está aguardando o processador
 - Prioridade dinâmica

Escalonador

- Algoritmos de Escalonamento de Tarefas
 - Escalonamento por prioridades dinâmicas

Definições:

```
N : número de tarefas no sistema
```

```
t_i: tarefa i, 1 \le i \le N
```

 pe_i : prioridade estática da tarefa t_i

 pd_i : prioridade dinâmica da tarefa t_i

Quando uma tarefa nova t_{nova} ingressa no sistema:

```
pe_{nova} \leftarrow prioridade fixa

pd_{nova} \leftarrow pe_{nova}
```

Para escolher t_{prox} , a próxima tarefa a executar:

escolher
$$t_{prox} \mid pd_{prox} = max_{i=1}^{N}(pd_i)$$

 $\forall t_i \neq t_{prox} : pd_i \leftarrow pd_i + \alpha$
 $pd_{prox} \leftarrow pe_{prox}$

- Algoritmos de Escalonamento de Tarefas
 - Escalonamento por prioridades dinâmicas
 - No algoritmo anterior vemos:
 - $-\alpha$ -> fator de envelhecimento
 - A próxima tarefa selecionada pelo escalonador
 - » > pd (prioridade dinâmica)
 - Tarefas que entram no processador
 - » Diminuem seu pd
 - Voltam ao valor original pe

- Algoritmos de Escalonamento de Tarefas
 - Escalonamento por prioridades dinâmicas

Figura 6.8: Escalonamento por prioridade preemptivo dinâmico (PRIOd).

Escalonador

- Algoritmos de Escalonamento de Tarefas
 - Escalonamento por prioridades dinâmicas
 - Tempo médio de execução

$$T_t = \frac{t_t(t_1) + \dots + t_t(t_5)}{5} = \frac{11 + 2 + 13 + 1 + 2}{5} = 5.8s$$

Tempo médio de espera

$$T_w = \frac{t_w(t_1) + \dots + t_w(t_5)}{5} = \frac{6 + 0 + 9 + 0 + 0}{5} = 3.0s$$

- Definição de prioridades
 - Fatores externos
 - Fatores internos

- Definição de prioridades
 - Fatores externos
 - Informações do usuário
 - Classe de usuário (ADM, Diretor, ...)
 - Importância da tarefa

- Definição de prioridades
 - Fatores internos
 - Idade da tarefa
 - Duração estimada
 - Interatividade
 - Uso de memória (ou outros recursos)
 - Envelhecimento

Escalonador

Comparação dos algoritmos

Algoritmo de escalonamento	FCFS	RR	SJF	SRTF	PRIOc	PRIOp	PRIOd
Tempo médio de execução T_t	8,0	8,4	5,8	5,4	6,6	5,6	5,8
Tempo médio de espera T_w	5,2	5,6	3,0	2,6	3,8	2,8	3,0
Número de trocas de contexto	4	7	4	5	4	6	6
Tempo total de processamento	14	14	14	14	14	14	14

Tabela 6.2: Comparação entre os algoritmos apresentados.

Escalonador

Atividades

- Explique o que é escalonamento round-robin, dando um exemplo (diferente da apresentação).
- Explique o que é, para que serve e como funciona a técnica de envelhecimento (aging).
- 3. Nosso sistema de tempo compartilhado tem valor de quantum t_q e duração da troca de contexto t_{tc} . As tarefas de entrada/saída usam em média p% de seu quantum de tempo cada vez que recebem o processador. Defina a eficiência do sistema como uma função dos parâmetros t_{d} , t_{tc} e p.