PROJECT: MDS Business Analytics using Python, Power BI

Made by: Abhishek Goyal (Abhi)

Good Morning Everyone!! Hope you all are doing well.

Here is a project I made. I undertook a detailed Python, Power BI business analytics project focused on analyzing pharmaceutical data to derive insights that would support the Medicines Development and Supply (MDS) organization. The project's primary objectives were to assist in the:

- 1. Collation and analysis of data
- 2. Leverage data visualization
- 3. Create dynamic business dashboards to communicate key business insights effectively.

Note - Data used is not real data. I wanted the project to be realistic such that I can present real scenarious to you to draw common grounds. I have also attached the CSV format data file and Power BI dasboard file.

```
In [179]: """Importing necessary modules and combining data files received
from different departments into one file which will further """

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

files = [
    'Medicines_Cardiovascular_Data.csv',
    'Medicines_Diabetes_Data.csv',
    'Medicines_Infectious_Diseases_Data.csv',
    'Medicines_Neurology_Data.csv',
    'Medicines_Oncology_Data.csv'
]
combined_df = pd.concat((pd.read_csv(f) for f in files), ignore_index=
combined_df.to_csv('Medicines_Development&Supply__Data.csv', index=Fal
```

In [180]: data0 = pd.read_csv("Medicines_Development&Supply__Data.csv") data0

Out[180]:

	Drug_ID	Drug_Name	Phase	Therapeutic Area	Start_Date	End_Date	Regulatory Status	R
0	8	Ceftriaxone	Phase II	Cardiovascular	2015-07- 30	2016-02- 18	Approved	
1	10	Clindamycin	Approval	Cardiovascular	2015-09- 28	2016-04- 12	Pending	
2	11	Clopidogrel	Phase III	Cardiovascular	2015-10- 28	2016-05- 14	Rejected	
3	14	Dexamethasone	Phase I	Cardiovascular	2016-01- 26	2016-09- 05	Rejected	
4	15	Diazepam	Phase III	Cardiovascular	2016-02- 25	2016-03- 30	Approved	
5	17	Diaoxin	Phase III	Cardiovascular	2016-04-	2016-11-	Pendina	

In [181]: # Sorting data by Drug Id and then re - setting index data0_sorted = data0.sort_values(by='Drug_ID', ascending=True) data0_sorted = data0_sorted.reset_index(drop=True) data0_sorted.index = data0_sorted.index + 1 data0_sorted data = data0_sorted data.head()

Out[181]:

	Drug_ID	Drug_Name	Phase	Therapeutic Area	Start_Date	End_Date	Regulatory Status	Research Site
1	1	Abacavir	Phase III	Neurology	2015-01- 01	2015-09- 26	Rejected	China
2	2	Acetaminophen	Approval	Neurology	2015-01- 31	2015-05- 16	Approved	Germany
3	3	Albuterol	Phase II	Neurology	2015-03- 02	2015-04- 09	Pending	Germany
4	4	Amlodipine	Approval	Infectious Diseases	2015-04- 01	2015-07- 13	Approved	Brazil
5	5	Amoxicillin	Approval	Diabetes	2015-05- 01	2016-02- 07	Rejected	USA

In [182]: """ Converting 'Start_Date', 'End_Date', 'Patent Expiry Date', 'Development_Duration'] = (data['Start_Date'] - data['Start_Date'] - data['Start_Date'])

'"" Converting 'Start_Date', 'End_Date', 'Patent Expiry Date', 'Development_Duration'] = (find_Date', 'Patent Expiry Date', 'Pate

In [183]: """ This code aggregates the data by the Phase of a pharmaceutical stu
millions of USD (Cost_Million_USD) and the average number of patients
each phase. """

summary = data.groupby('Phase').agg({
 'Cost_Million_USD': 'mean',
 'Number of Patients Enrolled': 'mean'
}).reset_index()
summary

Out[183]:

	Phase	Cost_Million_USD	Number of Patients Enrolled
0	Approval	103.542738	6382.000000
1	Phase I	108.740599	4216.200000
2	Phase II	81.820645	5428.700000
3	Phase III	120.471740	5224.307692
4	Pre-clinical	89.147004	5552.142857

In [137]: # This code identifies drugs with pending regulatory approval and mark

high_potential_drugs = data[(data['Regulatory Status'] == 'Pending') &
high_potential_drugs[['Drug_Name', 'Phase', 'Market Potential \$M']]

Out[137]:

	Drug_Name	Phase	Market Potential \$M
7	Azithromycin	Phase II	552.37
17	Digoxin	Phase III	958.54
21	Fentanyl	Phase I	935.49
24	Ibuprofen	Pre-clinical	967.26
31	Loratadine	Phase II	601.12
50	Zolpidem	Phase III	560.21

```
In [86]: plt.figure(figsize=(12, 8))
    sns.barplot(x='Market Potential $M', y='Drug_Name', data=high_potentia
    plt.title('Market Potential of High Potential Drugs by Phase')
    plt.xlabel('Market Potential ($M)')
    plt.ylabel('Drug Name')
    plt.legend(title='Phase')
    plt.show()
```


Out[139]:

	Therapeutic Area	Success_Rate
0	Cardiovascular	0.454545
1	Diabetes	0.500000
2	Infectious Diseases	0.111111
3	Neurology	0.153846
4	Oncology	0.272727

```
In [88]: plt.figure(figsize=(10, 6))
    sns.barplot(x='Success_Rate', y='Therapeutic Area', data=success_rate_
    plt.title('Success Rate by Therapeutic Area for High Rated Drugs')
    plt.xlabel('Success Rate')
    plt.ylabel('Therapeutic Area')
    plt.show()
```



```
In [141]: # Calculating the development duration in days
          data['Development_Duration_Days'] = (data['End_Date'] - data['Start_Da
          # Calculate average development time and cost by phase
          phase_time_cost = data.groupby('Phase').agg({
              'Development_Duration_Days': 'mean', # Average development durati
              'Cost Million USD': 'mean' # Average cost
          }).reset index()
          # Check the DataFrame to ensure calculations are correct
          print(phase time cost)
          # Create the visualization
          fig, ax1 = plt.subplots(figsize=(10, 6))
          # Plotting cost
          color = 'tab:red'
          ax1.set xlabel('Phase')
          ax1.set_ylabel('Average Cost (Million USD)', color=color)
          ax1.bar(phase_time_cost['Phase'], phase_time_cost['Cost_Million_USD'],
          ax1.tick_params(axis='y', labelcolor=color)
```

```
# Create a twin Axes sharing the x-axis for development duration
ax2 = ax1.twinx()
color = 'tab:blue'
ax2.set_ylabel('Average Development Duration (Days)', color=color)
ax2.plot(phase_time_cost['Phase'], phase_time_cost['Development_Duratiax2.tick_params(axis='y', labelcolor=color)

plt.title('Average Development Duration and Cost by Phase')
plt.show()
```

	Phase	<pre>Development_Duration_Days</pre>	Cost_Million_USD
0	Approval	186.800000	103.542738
1	Phase I	210.800000	108.740599
2	Phase II	158.400000	81.820645
3	Phase III	185.000000	120.471740
4	Pre-clinical	220.857143	89.147004

In [142]: # This code summarizes the frequency of different supply chain issues
 supply_chain_vulnerabilities = data['Supply_Chain_Issues'].value_count
 supply_chain_vulnerabilities

Out[142]:

	index	Count
0	None	21
1	Major	19
2	Minor	10

```
In [91]: plt.figure(figsize=(10, 6))
    sns.barplot(x='index', y='Count', data=supply_chain_vulnerabilities, p
    plt.title('Count of Supply Chain Issues')
    plt.xlabel('Issue Type')
    plt.ylabel('Frequency')
```

plt.show()

In [143]: """ This code calculates the projected market impact of drugs by multi
with a success rate factor (0.1 for 'Low', 0.5 for 'Medium', and 0.9 f

data['Projected_Market_Impact'] = data['Market Potential \$M'] * data['
market_impact = data[['Drug_Name', 'Projected_Market_Impact']].sort_va market_impact

Out[143]:

	Drug_Name	Projected_Market_Impact
24	Ibuprofen	870.534
40	Penicillin	800.676
46	Tramadol	745.587
42	Prednisone	654.579
14	Dexamethasone	612.837
5	Amoxicillin	601.218
8	Ceftriaxone	557.289
31	Loratadine	541.008
50	Zolpidem	504.189
37	Oxycodone	495.525
23	Hydrochlorothiazide	484.995

```
In [93]: plt.figure(figsize=(12, 8))
    sns.barplot(x='Projected_Market_Impact', y='Drug_Name', data=market_im
    plt.title('Top 10 Drugs by Projected Market Impact')
    plt.xlabel('Projected Market Impact ($M)')
    plt.ylabel('Drug Name')
    plt.show()
```


In [144]: """This code groups the data by both 'Regulatory Status' and 'Therapeu
for each combination"""

regulatory_analysis = data.groupby(['Regulatory Status', 'Therapeutic
regulatory_analysis

Out[144]:

i nerapeutic Area	Cardiovascular	Diabetes	intectious Diseases	Neurology	Oncology
Regulatory Status					
Approved	2	1	2	4	6
Pending	3	0	1	3	3
Rejected	6	5	6	6	2

```
In [95]: regulatory_analysis.plot(kind='bar', stacked=True, figsize=(14, 8), co
plt.title('Regulatory Status by Therapeutic Area')
plt.xlabel('Therapeutic Area')
plt.ylabel('Count')
plt.xticks(rotation=45)
plt.legend(title='Regulatory Status')
plt.tight_layout()
plt.show()
```


Out [145]: Clinical Trial Results Market Potential \$M

		mean	count
0	Effective	562.362143	14
1	More Data Needed	672.426667	21
2	Not Effective	642.996667	15

Out [97]: Clinical Trial Results Average Market Potential Number of Drugs

0	Effective	562.362143	14
1	More Data Needed	672.426667	21
2	Not Effective	642.996667	15

```
In [98]: fig, ax1 = plt.subplots(figsize=(10, 6))

color = 'tab:blue'
ax1.set_xlabel('Clinical Trial Results')
ax1.set_ylabel('Number of Drugs', color=color)
ax1.bar(clinical_outcome_impact['Clinical Trial Results'], clinical_ou
ax1.tick_params(axis='y', labelcolor=color)

ax2 = ax1.twinx()
color = 'tab:red'
ax2.set_ylabel('Average Market Potential ($M)', color=color)
ax2.plot(clinical_outcome_impact['Clinical Trial Results'], clinical_c
ax2.tick_params(axis='y', labelcolor=color)

plt.title('Clinical Trial Results Impact on Market Potential and Drug
plt.show()
```


In [146]: """ The code calculates the correlation between the development durati providing a correlation matrix. This matrix helps to understand the re is in development and its likelihood of success, quantitatively reflect these factors"""

> data['Success Rate Num'] = data['Success Rate'].map({'Low': 1, 'Medium') correlation_info = data[['Development_Duration', 'Success_Rate_Num']].

print("Correlation between Development Duration and Success Rate:") print(correlation_info)

Correlation between Development Duration and Success Rate:

Development Duration Success Rate Num

Development Duration 1.000000 0.148487 Success_Rate_Num 0.148487 1.000000

In [147]: """ This code identifies development partners involved in highly succe drugs with a 'High' success rate and grouping by 'Development Partner'

> active_partners = data[data['Success_Rate'] == 'High'].groupby('Develo active_partners.sort_values('High_Success_Count', ascending=False, inp active partners

Out[147]:

	Development Partner	High_Success_Count
2	Partner C	6
0	Partner A	4
1	Partner B	4

```
In [101]: plt.figure(figsize=(12, 8))
    sns.barplot(x='High_Success_Count', y='Development Partner', data=acti
    plt.title('High Success Counts by Development Partner')
    plt.xlabel('High Success Count')
    plt.ylabel('Development Partner')
    plt.show()
```



```
In [170]: """This code aggregates the number of drugs and average success rates
for clarity in the resulting DataFrame."""
            geographic_analysis = data.groupby('Research Site').agg({
                 'Drug_ID': 'count',
                 'Success_Rate_Num': 'mean'
            }).rename(columns={'Drug_ID': 'Number_of_Drugs', 'Success_Rate_Num':
            geographic_analysis
```

Out[170]:

Research Site		
Brazil	5	1.800
China	13	2.000
Germany	8	1.500
India	8	2.000
USA	16	1.875

```
In [103]: fig, ax1 = plt.subplots(figsize=(12, 8))

color = 'tab:blue'
ax1.set_xlabel('Research Site')
ax1.set_ylabel('Number of Drugs', color=color)
ax1.bar(geographic_analysis.index, geographic_analysis['Number_of_Drugax1.tick_params(axis='y', labelcolor=color)
ax1.set_xticklabels(geographic_analysis.index, rotation=45, ha="right"

ax2 = ax1.twinx()
color = 'tab:red'
ax2.set_ylabel('Average Success Rate', color=color)
ax2.plot(geographic_analysis.index, geographic_analysis['Average_Succeax2.tick_params(axis='y', labelcolor=color)

plt.title('Research Activity and Success Rate by Site')
plt.show()
```

/var/folders/5q/mcr29lr105l0g_1p7s7y9ssr0000gn/T/ipykernel_7030/22269 07611.py:8: UserWarning: set_ticklabels() should only be used with a fixed number of ticks, i.e. after set_ticks() or using a FixedLocato r.

ax1.set xticklabels(geographic analysis.index. rotation=45. ha="rig

ax1.set_xticklabels(geographic_analysis.index, rotation=45, ha="rig
ht")


```
In [171]: """ This code calculates and formats the average, maximum, and minimum
          different supply chain issues"""
          import numpy as np
          supply_chain_costs = data.groupby('Supply_Chain_Issues').agg({
              'Cost_Million_USD': ['mean', 'max', 'min']
          }).reset_index()
          supply_chain_costs.columns = [' '.join(col).strip() for col in supply_
          supply_chain_costs.rename(columns={
              'Supply_Chain_Issues ': 'Supply_Chain_Issues',
              'Cost_Million_USD mean': 'Average_Cost',
              'Cost_Million_USD max': 'Max_Cost',
              'Cost_Million_USD min': 'Min_Cost'
          }, inplace=True)
          print(supply chain costs.columns)
          fig, ax = plt.subplots(figsize=(10, 6))
          index = np.arange(len(supply_chain_costs))
          bar_width = 0.25
          rects1 = ax.bar(index, supply chain costs['Average Cost'], bar width,
          rects2 = ax.bar(index + bar width, supply chain costs['Max Cost'], bar
          rects3 = ax.bar(index + 2 * bar_width, supply_chain_costs['Min_Cost'],
          ax.set_xlabel('Supply Chain Issues')
          ax.set_ylabel('Cost in Million USD')
          ax.set_title('Cost Analysis by Supply Chain Issues')
          ax.set_xticks(index + bar_width / 2)
          ax.set xticklabels(supply chain costs['Supply Chain Issues'])
          ax.legend()
          plt.xticks(rotation=45)
          plt.tight_layout()
          plt.show()
```

Index(['Supply_Chain_Issues', 'Average_Cost', 'Max_Cost', 'Min_Cos
t'], dtype='object')

In [172]: """ This code calculates the average development duration for drugs, g
providing insights into efficiency across different stages and areas c efficiency_analysis = data.groupby(['Phase', 'Therapeutic Area']).agg('Development_Duration': 'mean' }).reset_index() efficiency_analysis

Out[172]:

	Phase	Therapeutic Area	Development_Duration
0	Approval	Cardiovascular	169.333333
1	Approval	Diabetes	282.000000
2	Approval	Infectious Diseases	166.666667
3	Approval	Neurology	105.000000
4	Approval	Oncology	236.500000
5	Phase I	Cardiovascular	193.000000
6	Phase I	Diabetes	92.500000
7	Phase I	Infectious Diseases	341.000000
8	Phase I	Neurology	181.000000
9	Phase I	Oncology	278.000000
10	Phase II	Cardiovascular	151.000000
11	Phase II	Infectious Diseases	120.000000
12	Phase II	Neurology	139.000000
13	Phase II	Oncology	202.000000
14	Phase III	Cardiovascular	142.333333
15	Phase III	Diabetes	216.500000
16	Phase III	Infectious Diseases	189.000000
17	Phase III	Neurology	212.250000
18	Phase III	Oncology	159.000000
19	Pre-clinical	Cardiovascular	161.000000
20	Pre-clinical	Diabetes	220.000000
21	Pre-clinical	Infectious Diseases	194.500000
22	Pre-clinical	Neurology	299.500000
23	Pre-clinical	Oncology	177.000000

```
In [174]: data['Year'] = data['Start_Date'].dt.year
```

In [175]: longitudinal_study = data.groupby(['Year', 'Therapeutic Area']).size()
longitudinal_study

Out[175]:

Therapeutic Area	Cardiovascular	Diabetes	Infectious Diseases	Neurology	Oncology
Year					
2015	3	1	2	6	1
2016	5	0	3	3	1
2017	1	0	3	3	5
2018	2	5	1	1	3
2019	0	0	0	0	1

Out[176]:

Average_Launch_Delay

Drug_Name **Acetaminophen** 105.0 103.0 **Amlodipine Atorvastatin** 259.0 170.0 Cetirizine Clopidogrel 199.0 Dapagliflozin 151.0 223.0 Dexamethasone **Diphenhydramine** 165.0 **Esomeprazole** 174.0 356.0 **Fentanyl**

In [111]: ## METRICS

In [169]: """ This code maps qualitative success rates to numeric values and cal rate for each therapeutic area.""" success_mapping = {'Low': 1, 'Medium': 2, 'High': 3} data['Success Rate Numeric'] = data['Success Rate'].map(success mapping) average success by area = data.groupby('Therapeutic Area')['Success Ra average_success_by_area Out[169]: Therapeutic Area Cardiovascular 2.090909 Diabetes 2.166667 Infectious Diseases 1.777778 Neurology 1.615385 Oncology | 1.818182 Name: Success_Rate_Numeric, dtype: float64 """ This code computes the percentage of approved drugs within each th In [168]: data['Is_Approved'] = (data['Regulatory Status'] == 'Approved').astype approval rates = data.groupby('Therapeutic Area')['Is Approved'].mean(approval_rates Out[168]: Therapeutic Area Cardiovascular 18.181818 Diabetes 16,666667 Infectious Diseases 22.22222 Neurology 30.769231

Oncology | 54.545455 Name: Is Approved, dtype: float64

In [161]: | average_cost_by_phase = data.groupby('Phase')['Cost_Million_USD'].mean average_cost_by_phase

Out[161]: Phase

Approval 103.542738 Phase I 108.740599 Phase II 81.820645 Phase III 120.471740 89.147004 Pre-clinical

Name: Cost_Million_USD, dtype: float64

In [167]: """ This code calculates projected revenue by adjusting market potenti sums these values by therapeutic area """

> data['Projected Revenue'] = data['Market Potential \$M'] * data['Succes projected_revenue_by_area = data.groupby('Therapeutic Area')['Projected projected revenue by area

Out[167]: Therapeutic Area

Cardiovascular 4873.266667 Diabetes 3270.993333 Infectious Diseases 3542.973333 Neurology 3193.770000 Oncology | 4175.476667

Name: Projected_Revenue, dtype: float64

In [163]:

""" This code analyzes supply chain issues by counting occurrences and these metrics into a single DataFrame."""

supply_chain_impact = data.groupby('Supply_Chain_Issues').size() success rate impact = data.groupby('Supply_Chain_Issues')['Success_Rat supply_chain_analysis = pd.concat([supply_chain_impact, success_rate_i supply chain analysis

Out[163]:

Issue_Count Average_Success_Rate

Supply Chain Issues

Major	19	1.789474
Minor	10	1.700000
None	21	2.000000

In [164]:

""" This code calculates the percentage of drugs approved in each phas

data['Phase_Success'] = data['Regulatory Status'].apply(lambda x: 1 if phase transition success rate = data.groupby('Phase')['Phase Success'] phase transition success rate

Out[164]: Phase

Approval 40.000000 Phase I 10.000000 Phase II 30.000000 Phase III 23.076923 Pre-clinical 57.142857

Name: Phase_Success, dtype: float64

In [165]: """ This code maps risk levels to drugs based on their regulatory stat these risks across therapeutic areas""" risk_levels = {'Pending': 'Medium', 'Approved': 'Low', 'Rejected': 'Hi data['Risk Level'] = data['Regulatory Status'].map(risk levels) risk_profile = data.groupby('Therapeutic Area')['Risk_Level'].value_cd risk profile

Out[165]:

RISK_Level	High	LOW	wealun
Therapeutic Area			

			
Cardiovascular	6	2	3
Diabetes	5	1	0
Infectious Diseases	6	2	1
Neurology	6	4	3
Oncology	2	6	3

In [166]:

""" This code filters for drugs that have been approved, calculates th and then computes the average time to market for approved drugs groupe approved_drugs = data[data['Regulatory Status'] == 'Approved'].copy() approved_drugs.loc[:, 'Time_To_Market'] = (approved_drugs['End_Date'] average_time_to_market = approved_drugs.groupby('Therapeutic Area')['] average_time_to_market

Out[166]: Therapeutic Area Cardiovascular 118.500000 Diabetes 220.000000 Infectious Diseases 127.000000 Neurology 219.500000 Oncology | 213.333333 Name: Time To Market, dtype: float64

In [149]: """ This code calculates the ROI for each drug and averages it for app data['ROI'] = ((data['Market Potential \$M'] - data['Cost_Million_USD'] average_roi_approved = data[data['Regulatory Status'] == 'Approved'].g average_roi_approved

Out[149]: Therapeutic Area

 Cardiovascular
 1963.801475

 Diabetes
 510.232290

 Infectious Diseases
 215.993560

 Neurology
 484.692368

 Oncology
 353.151922

Name: ROI, dtype: float64

```
In [122]: average_roi_approved_df = average_roi_approved.reset_index()

plt.figure(figsize=(10, 6))
    sns.barplot(x='Therapeutic Area', y='ROI', data=average_roi_approved_c
    plt.title('Average ROI by Therapeutic Area for Approved Drugs')
    plt.xlabel('Therapeutic Area')
    plt.ylabel('Average ROI (%)')
    plt.xticks(rotation=45)
    plt.show()
```


In [148]: """ This code maps clinical trial results to numeric efficacy scores, for each phase of drug development""" trial_results_mapping = {'Not Effective': 0, 'More Data Needed': 1, 'E data['Trial_Efficacy'] = data['Clinical Trial Results'].map(trial_result) clinical_trial_efficacy = data.groupby('Phase')['Trial_Efficacy'].mean clinical_trial_efficacy

Out[148]: Phase

Approval 1.000000
Phase I 1.000000
Phase II 1.100000
Phase III 0.615385
Pre-clinical 1.428571

Name: Trial_Efficacy, dtype: float64

```
In [124]: clinical_trial_efficacy_df = clinical_trial_efficacy.reset_index()

plt.figure(figsize=(10, 6))
    sns.barplot(x='Phase', y='Trial_Efficacy', data=clinical_trial_efficacy
    plt.title('Average Clinical Trial Efficacy by Phase')
    plt.xlabel('Phase')
    plt.ylabel('Average Efficacy')
    plt.xticks(rotation=45)
    plt.show()
```

