A PRACTICAL INTRODUCTION TO APPLYING MACHINE LEARNING TO MALWARE DETECTION

GROUP SSL:

GASTON CARVALLO

LOYD RAFOLS

AGENDA

RESEARCH TOPIC

Our Topic was

 Malware detection using machine learning

Our Solution was

 Hybrid model using both network and host features

PROJECT JUSTIFICATION

PROJECT OBJECTIVE

Focus on learning

Create our own data

Output to a log

PROPOSED WORKFLOW

APPROACH TO TECHNICAL IMPLEMENTATION

TESTBED

DATASET

- Metasploit reverse shell payloads targeting windows
- Benign files
- Automated process

MACHINE LEARNING

- Extract features through CAPA
- Preprocess data in python
- Scikit-learn library
- Implement live classifier

PROJECT MANAGEMENT INFORMATION

Phases, Deliverables, Scheduling, Budgeting, Feasibility

PROJECT MANAGEMENT INFORMATION

Phases, Deliverables, Scheduling, Budgeting, Feasibility

PROJECT PHASES

- Four different objective milestones broken down into phases
 - Dataset creation
 - Setting up and configuring machine learning model
 - Creating education material/configuring learning environment
 - Writing final deliverable report
- Each phase has separate individual tasks to complete

PROJECT DELIVERABLES

- Linux (Ubuntu) OVA file containing learning environment for malicious executable detection using machine learning
- Sample datasets (as part of above)
- Scripts used to implement machine learning infrastructure/sample data generation
- Presentations/lectures for major machine learning workflow steps
- Practical labs for major machine learning workflow steps
- Final companion report

PROJECT SCHEDULE

- 2 semesters of work (REA705 + REA820), I2 weeks each = 24 weeks of work
- Semester I (REA705)
 - Dataset creation (Week I Week 6)
 - Feature selection (Week 6 Week 9)
 - Machine learning model setup and configuration (Week 10 Week 12)
- Semester 2 (REA820)
 - Creating educational content (Week I Week 3)
 - Drafting final report (Week 4 Week 8)
 - Compose final report (Week 9 Week 12)
- Buffers and total float accounted for

PROJECT BUDGET

- Free!
- All software used are generally at least free (most are FOSS)
 - scikit-learn
 - Metasploit Framework
 - Zeek
 - Capa
- Main learning environment is Linux-based, so no need to purchase a license for using most Linux-based OS'

PROJECT FEASIBILITY

- Technical feasibility
 - Technical experience and knowledge to implement project objectives and complete deliverables
- Legal feasibility
 - Software licenses
- Schedule feasibility
 - Project management is key dependencies not necessarily finish-to-start
 - Parallelization

SUMMARY

- Our project is about "A Practical Introduction to Applying Machine Learning to Malware Detection"
- Proposed workflow, approaches
- Testbed, experimentation
- Project information
 - Phases
 - Deliverables
 - Scheduling
 - Budget
 - Feasibility

THANK YOU

- Group SSL
 - Gaston Carvallo
 - Loyd Rafols
- Topic: A Practical Introduction to Applying Machine Learning to Malware Detection
- Website: https://rea.000109.xyz/
- Website post and slides download: https://rea.000109.xyz/ProposalPresentation/
- Course: REA605 Winter 2021, Mark Shtern

