Определение.

Множество точек M называется системой целочисленно удалённых точек (СЦТ), если

$$\forall (M_1 \in M, M_2 \in M)[|M_1 M_2| \in \mathbb{Z}],$$

и при этом M не содержится целиком ни в какой прямой.

Замечание.

Мы рассматриваем случай точек на плоскости, т. е. в \mathbb{R}^2 . Замечание.

Прямую, разбитую точками на целочисленные отрезки, мы, как видно из определения, не рассматриваем. Аналогично не представляют для нас интереса множества, состоящие из одной или двух точек.

Определение.

Количичество точек в СЦТ S называется её мощностью P(S). Лемма 1 (доказана в теме «Применение фокального свойства

гиперболы» [1])

Если в СЦТ S три точки M_1 , M_2 и M_3 не лежат на одной прямой и $a=|M_1M_2|\in\mathbb{N},\ b=|M_1M_3|\in\mathbb{N},\ c=|M_2M_3|\in\mathbb{N},\$ то $P(S)\leq 4\cdot \min\{ab,ac,bc\}.$

Следствие.

Любая СЦТ конечна.

Лемма 2.

Если в СЦТ S найдётся $\beta=2m^2+1$ точек, никакие три из которых не лежат на одной прямой, и S лежит в пределах квадрата со стороной n, то $n>\frac{\beta-1}{4}$ (иначе говоря, $\beta<4n+1$).

Доказательство

СЦТ лежит в пределах квадрата со стороной n. Разобьём этот квадрат на m^2 меньших равных между собой квадратов со стороной $\frac{n}{m}$. Тогда по принципу Дирихле найдётся хотя бы один квадрат со стороной $\frac{n}{m}$, внутри которого (возможно, включая границы) найдутся три точки, принадлежащие рассматриваемой СЦТ. Обозначим их через M_1 , M_2 и M_3 . Ни одно из расстояний $|M_1M_2|$, $|M_1M_3|$ и $|M_2M_3|$, очевидно, не превышает диагонали квадрата со стороной $\frac{n}{m}$, т. е. $\frac{n}{m}\sqrt{2}$. Тогда по лемме 1 количество точек в СЦТ $\beta \leq \frac{8n^2}{m^2}$. Имеем:

$$2m^2 + 1 \le \frac{8n^2}{m^2}$$
$$2m^2 < 2m^2 + 1 \le \frac{8n^2}{m^2}$$

$$2m^{2} < \frac{8n^{2}}{m^{2}}$$

$$m^{2} < \frac{4n^{2}}{m^{2}}$$

$$m^{4} < 4n^{2}$$

 $T. \ \kappa. \ n$ положительно, извлекаем корень:

$$m^{2} < 2n$$

$$2m^{2} + 1 < 4n + 1$$

$$\beta < 4n + 1$$

$$n > \frac{\beta - 1}{4}$$

Лемма доказана.

Утверждение 1 (вспомогательное)

$$\forall (\beta \in \mathbb{N}) \left[2\sqrt{\beta - 1} \le \beta \right]$$

Доказательство

Т. к. $\beta > 0$, возводим обе части неравенства в квадрат:

$$4(\beta - 1) \le \beta^2$$
$$(\beta - 2)^2 > 0$$

Утверждение доказано.

Определение.

Назовём СЦТ S бестриадной, если никакие три точки из S не лежат на одной прямой.

Определение.

Большим диаметром D(S) СЦТ S называется диаметр наименьшего круга, целиком покрывающего СЦТ S.

Определение.

Малым диаметром d(S) СЦТ S называется максимум из попарных расстояний между её точками.

Заметим, что оба диаметра, во-первых, определены корректно, во-вторых, конечны, в третьих, связаны соотношением $d(S) \leq D(s) \leq 2d(s)$ (последнее неравенство вытекает из того, что, выбрав точку A из произвольной пары максимально удалённых точек, можно построить круг радиуса d(S) с центром в точке A, который, очевидно, покроет всю СЦТ).

Лемма 3.

Пусть СЦТ S — бестриадна и S лежит внутри квадрата со стороной n, $P(S)=\gamma.$ Тогда $\gamma<4(1+\sqrt{2})n+2+\sqrt{2}.$

Доказательство.

Возьмём $m\in\mathbb{N}$ такое, что $2m^2+1\leq\gamma\leq 2(m+1)^2$ (это можно сделать единственным образом). Обозначим $2m^2+1=\beta$, откуда $m=\sqrt{\frac{\beta-1}{2}}$. Тогда по лемме 2 имеем $\beta<4n+1$. Оценим γ :

$$\gamma \le 2(m+1)^2 = 2m^2 + 4m + 2 \le \beta + 1 + 2 \cdot 2\sqrt{\frac{\beta - 1}{2}} = \beta + 1 + 2\sqrt{2}\sqrt{\beta - 1} \le$$

$$\le (1 + \sqrt{2})\beta + 1 < (4n+1)(1 + \sqrt{2}) + 1 = 4(1 + \sqrt{2})n + 2 + \sqrt{2}$$
(1)

Лемма доказана.

Следствие.

Если СЦТ S бестриадна, то P(S) < 10D(S) + 4. Заметим, что это очень грубое ограничение, указывающее, однако, на не более чем линейный характер зависимости максимальной возможной мощности бестриадной СЦТ от её диаметра.

В [1] Е.М. Семёнов даёт способ построения СЦТ с произвольной наперёд заданной мощности, не приводя, однако, зависимость диаметра СЦТ, получаемой при таком построении, от её мощности. Приведём здесь оригинальный способ построения СЦТ, конструктивно доказав следующую лемму:

Лемма 4.

Для любого натурального k найдётся СЦТ S такая, что $P(S)=2k+3,\ D(S)<2^{4k+1}.$

Доказательство.

Известно, что $(2mn)^2+(m^2-n^2)^2=(m^2+n^2)^2$. Заметим, что $2^{2k+1}=2\cdot 2^{2k-p}\cdot 2^p$, где p — целое число от 0 до k-1. Таким образом, мы получили представление числа 2^{2k+1} в виде $2mn\ k$ способами. Рассмотрим теперь множество точек $S=\{O=(0;0),B_\pm=(0;\pm 2^{2k+1}),A_{\pm p}(\pm 2^{2(2k-p)}-2^{2p};0)\}$. Покажем, что S - СЦТ. Понятно, что $|O-B_\pm|\in\mathbb{Z},\ |O-A_{\pm p}|\in\mathbb{Z}$. Убедимся, что $|B_\pm-A_{\pm p}|\in\mathbb{Z}$. Действительно, $|B_\pm-A_{\pm p}|=|(0;\pm 2^{2k+1})-(\pm 2^{2(2k-p)}-2^{2p};0)|=\sqrt{(2^{2k+1})^2+(2^{2(2k-p)}-2^{2p})^2}=\sqrt{2^{4k+2}+2^{4(2k-p)}-2\cdot 2^{4k}+2^4p}=\sqrt{2^{4(2k-p)}+2\cdot 2^{4k}+2^4p}=2^{2(2k-p)}+2^{2p}\in\mathbb{Z}$ Мощность СЦТ S равна в точности 2k+3. Построим круг с центром в O радиуса 2^{4k} . Заметим, что $|O-B_\pm|=2^{2k+1}<2^{4k},\ |O-A_{\pm p}|=2^{2(2k-p)}-2^{2p}<2^{4k}$. Значит, построенный круг диаметра 2^{4k+1} покрывает СЦТ S.

Лемма доказана.

References

[1] Аналитическая геометрия на плоскости / Е.М. Семенов, С.Н. Уксусов. – Воро-неж: Воронежский государственный университет, 2013. – 100с.