

Exercise 1

$$-\Delta u=1$$
 в V , $\frac{\partial u}{\partial n}=0$ на Γ

Derive the ${\cal P}_1$ finite-element system for this domain/problem

.

•3

FD Equation System

$$-\Delta u = f \ in \ \Omega$$
$$u = \varphi \ on \ \Gamma$$

We receive a large equation system

$$A u_h = f_h$$

Its size

$$N = (n_x - 1) \big(n_y - 1 \big)$$

$$n_x = n_y = 5$$
$$N = 16$$

$$A = \begin{pmatrix} C & -I \\ -I & C & \ddots \\ & \ddots & \ddots \end{pmatrix}$$

Overall properties

$$A u_h = g$$

1. Gauss elimination / LU factorization

Computational complexity $Q = O(N^3)$.

2. Block tridiagonal solver

$$D u_{i-1} + Cu_i + Du_{i+1} = f_i$$

 $u_i = M_i u_{i+1} + t_i$

Complexity $Q = O(N^{2.5})$.

$$\begin{pmatrix} C & D & & \\ D & C & \ddots & \\ & \ddots & \ddots & \end{pmatrix} \begin{pmatrix} \vdots \\ u_i \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ f_i \\ \vdots \end{pmatrix}$$

These methods ignore sparsity of the blocks.

Thus iterative solver would be a better fit for this problem.

Single multiplication complexity O(N).

Our goal is thus to design a solver with complexity of

 $O(N^2)$, $O(N \log(N))$, or even O(N).

• 5

Iterative solvers

$$Au = f$$

 $\varepsilon > 0$ tolerance

 u^0 Initial guess $u^1 \cdots u^s \cdots$

$$Au^s - f$$
 residual $u^s - u$ error

Convergence speed ho

$$||u^{s} - u|| \le \rho ||u^{s-1} - u||$$

$$\le \rho^{s} ||u^{0} - u|| \le \varepsilon ||u^{0} - u||$$

Iteration count to reduce the error in $1/\varepsilon$ times

$$s = \left[\frac{\ln \varepsilon}{\ln \rho} \right]$$

• Fast solver = ρ close to 0

Slow solver = ρ close to 1

Richardson Iteration

$$Au = f$$

A > 0

Richardson, 1910

$$u_{k+1} = u_k + \tau (f - Au_k) \qquad \qquad \tau > 0$$

$$\tau_{opt} = \frac{2}{\lambda_{min} + \lambda_{max}} \qquad \qquad \rho_{opt} \approx 1 - 2 \frac{\lambda_{min}}{\lambda_{max}}$$

$$\rho_{opt} \approx 1 - 2 \frac{\lambda_{min}}{\lambda_{max}}$$

Steepest Descent

$$u_{k+1} = u_k + \tau_k (f - Au_k)$$

$$\phi(u) = \frac{1}{2}(Au, u) - (f, u)$$
 $\tau_k \text{ s.th. } \phi(u_{k+1}) \to \min$

$$\tau_k = \frac{(r_k, r_k)}{(r_k, Ar_k)} \qquad \rho \approx 1 - 2 \frac{\lambda_{min}}{\lambda_{max}}$$

Equivalent to $r_{k+1} \perp r_k$

Conjugate Gradient Method (CG)

$$Au = f$$

$$Au = f$$
 $A = A^{T} > 0$

$$\phi(u) = \frac{1}{2}(Au, u) - (f, u)$$

 u_k minimizes $\phi(u)$ over $K_m = span(f, Af, \cdots) + u_0$

Krylov subspace

Conjugate Gradient Method (CG)

- * Combines SD with Gram-Schmidt orthonormalization
- * Avoids repeating directions

$$r_k = Au_k - f$$

$$u_{k+1} = u_k - \beta_k p_k$$

$$p_k = r_k - \alpha_k p_{k-1}$$

$$\alpha_k = \frac{(r_{k-1}, Ap_{k-1})}{(p_{k-1}, Ap_{k-1})}$$

$$\beta_k = \frac{(r_{k-1}, r_{k-1})}{(p_{k-1}, Ap_{k-1})}$$

$$\rho \approx 1 - 2\sqrt{\frac{\lambda_{min}}{\lambda_{max}}}$$
 Hestenes & Stiefel, 1952

* Most commonly used algorithm for problems with SPD matrices

Complexity of different solvers

Gauss elimination	$O(N^3)$
Block tridiagonal solver	$O(N^{2.5})$
Jacobi and Seidel	$O(N^2 \log \frac{1}{\varepsilon})$
Richardson and steepest descent	$O(N^2 \log \frac{1}{\varepsilon})$
Conjugate gradient	$O(N^{\frac{3}{2}}\log\frac{1}{\varepsilon})$
???	
Optimal estimate	O(N)

Part 2 Introduction to Preconditioning

Preconditioned Iterative Solvers

For solving A u = g we already discussed

$$u^{k+1} = u^k + \tau (g - Au^k).$$

What if we substitute scalar τ with a matrix B?

$$u^{k+1} = u^k + B^{-1}(g - Au^k)$$

Two pathalogical cases

- $B^{-1} = \tau I$, nothing really changes
- B=A, convergence in 1 iteration, but complexity is of the original problem.

B is a preconditioner. The goal is to design B, **close** to A, yet easier to invert.

Jacobi Preconditioner

Take

$$u^{k+1} = u^k + B^{-1}(g - Au^k)$$

$$B = diag(A)$$
.

How good will such a solver for the model problem?

For that we have to analyze $S = I - B^{-1}A$

Note
$$B_{ii} = \frac{4}{h^2}$$
.

Studying the eigenvalue problem

$$(I - B^{-1}A)v = \lambda v$$

Leads to

$$\lambda_{km} = 1 - \frac{h^2}{4} \frac{4}{h^2} \left[\sin\left(\frac{\pi kh}{2}\right)^2 + \sin\left(\frac{\pi mh}{2}\right)^2 \right].$$

Thus

$$\rho = 1 - 2\sin\left(\frac{\pi h}{2}\right)^2 \approx 1 - \frac{\pi^2 h^2}{2},$$

Arithmetical complexity $Q = cN^2 \ln \frac{1}{\varepsilon}$

• 13

Part 3
FFT solver as a direct method

•

14

Motivation

$$-\Delta u = f$$
 в \mathbb{R}^2 $u = 0$ при $|x| + |y| \to \infty$

Apply double Fourier transform

$$U(k_x, k_y) = \iint_{-\infty}^{\infty} e^{-2\pi i (k_x x + k_y y)} u(x, y) dx dy$$

$$F(k_x, k_y) = \iint_{-\infty}^{\infty} e^{-2\pi i (k_x x + k_y y)} f(x, y) dx dy$$

$$(2\pi)^2 (k_x^2 + k_y^2) U(k_x, k_y) = F(k_x, k_y)$$

Apply inverse double Fourier transform $U(k_x, k_y)$

$$u(x,y) = \iint_{-\infty}^{\infty} e^{2\pi i (k_x x + k_y y)} U(k_x, k_y) dx dy$$

15

Discrete Fourier Transform

$$v_k = \sum_{n=0}^{N-1} e^{-\frac{2\pi i \, k \, n}{N}} p_n \qquad k = 0..n-1$$

This summation has a complexity $O(N^2)$

Cooley Tukey, 1965 r. Fast Fourier Tranform $O(N \log(N))$

Separation-by-variable Solver

$$-\Delta u = f$$
 в $(0,1)^2$, $u = 0$ на Γ

Spectral decomposition

$$A = W D W^{-1}$$

Solution could be written

$$u = W D^{-1} W^{-1} g.$$

This would be practical if we could multiply by W and W^{-1} efficiently.

Unfortunately, W is dense thus single multiplication takes $O(N^2)$.

●17

Separation-by-variable Solver

We know entries of W

$$W_{ij} = C \sin(\pi i_x j_x h) \sin(\pi i_y j_y h),$$

 i_{x} and i_{y} are indices of node i

$$i = (i_v - 1)(n - 1) + i_x$$

Multiplication v = Wp is equivalent to

$$v_i = \sum_{j=1}^{N} W_{ij} p_j = C \sum_{j_y=1}^{n-1} \sin(\pi i_y j_y h) \sum_{j_x=1}^{n-1} \sin(\pi i_x j_x h) p_{(j_y-1)(n-1)+j_x}$$

This is discrete double sine transform!

Both forward and inverse could be performed in $O(N \log N)$ using FFT

Separation-by-variable Solver

Thus solution

$$u = W D^{-1} W^{-1} g$$

computed as

- 1) $v = W^{-1}g$ (inverse 2D DST);
- 2) $p = D^{-1}v$ (diagonal matrix scaling)
- 3) u = Wp (forward 2D DST).

The overall complexity is $O(N \log N)$,

For comparison, with the CG we had $O\left(N^{\frac{3}{2}}\log\frac{1}{\varepsilon}\right)$

- · This is a direct method
- We looked at uniform grids, constant coefficients.
- Let as check few generalizations

•19

Kronecker Product Representation

$$-\Delta u = f$$
 в $(0,1)^2$, Au
 $u = 0$ на Γ

A u = g

APPENDIX B: KRONECKER PRODUCT AND ITS PROPERTIES

Given an $m \times n$ matrix $\mathbf{A} = \{a_{ij}\}$ and some matrix \mathbf{B} , their Kronecker product matrix $\mathbf{A} \otimes \mathbf{B}$ is a block matrix defined as

$$\mathbf{A} \otimes \mathbf{B} = \begin{pmatrix} a_{11}B & \cdots & a_{1n}B \\ & \cdots & \\ a_{m1}B & \cdots & a_{mn}B \end{pmatrix}. \tag{B1}$$

We used the following properties of this product within this note:

$$(\mathbf{A} \otimes \mathbf{B})^T = \mathbf{A}^T \otimes \mathbf{B}^T, \tag{B2}$$

$$(\mathbf{A} \otimes \mathbf{B})^{-1} = \mathbf{A}^{-1} \otimes \mathbf{B}^{-1}, \tag{B3}$$

$$(\mathbf{A} \otimes \mathbf{B}) \ (\mathbf{C} \otimes \mathbf{D}) = (\mathbf{AC}) \ \otimes (\mathbf{BD}).$$
 (B4)

The identity (B3) holds under the assumption that A and B are invertible, while (B4) holds under the assumption that the respective matrix products are well defined.

Yavich & Zhdanov, 2020

$$A = I_y \otimes L_{xx} + L_{yy} \otimes I_x$$

Eigenvector matrix $W = W_v \otimes W_x$

 L_{xx} L_{yy} tridiaganol

$$WA W^T Wu = Wg$$

$$T \tilde{u} = \tilde{g}$$

T diagonal!

Non-uniform Grids

The system and eigenvector matrices still admit this representations

$$A = I_y \otimes L_{xx} + L_{yy} \otimes I_x$$
$$W = W_y \otimes W_x$$

Althoght W_{x} and W_{y} are not sines any more

Yet we can perform spectral decomposition of \mathbf{L}_{xx} and \mathbf{L}_{yy} and find W_x and W_y

• 21

1D coefficients

$$-\frac{\partial}{\partial x} \left(a(x) \frac{\partial u}{\partial x} \right) - \frac{\partial}{\partial y} \left(b(y) \frac{\partial u}{\partial y} \right) = g \text{ в } V = (0,1)^2$$
$$u = 0 \text{ на } \Gamma$$

The system and eigenvector matrices still admit this representations

$$A = I_y \otimes L_{xx} + L_{yy} \otimes I_x$$
$$W = W_y \otimes W_x$$

with W_x and W_y easy to compute

Part 4 FFT solver as a preconditioner

• 23

Preconditioned Richardson Method

residual

A u = g

 u^0 initial guess

B some preconditioner

arepsilon tolerance

$$u^{k+1} = u^k + \tau B^{-1}(g - Au^k)$$
 $||g - Au^k|| < \varepsilon$?

How fast the convergence will be / how many iterations will be needed?

 u^* exact solution

$$z^k = u^* - u^k$$
 error

$$z^{k+1} = z^k - \tau B^{-1} A z^k$$

$$= (I - \tau B^{-1}A)z^k$$

$$\left\|z^{k+1}\right\| \le \|S\| \left\|z^k\right\|$$

Convergence depends on the norm/largest eigenvalue of $S = I - \tau B^{-1} A \label{eq:second}$

$$S = I - \tau B^{-1}A$$

The smaller the faster convergence!

Spectrally-equivalent preconditioner

$$A u = g$$

a preconditioner
$$B$$
 e.g. in
$$u^{k+1} = u^k + \tau B^{-1} \big(g \, - A u^k \big)$$

spectrally-equivalent if

$$C_1 Bv \cdot v \le Av \cdot v \le C_2 Bv \cdot v \quad \forall v$$

with \mathcal{C}_1 and \mathcal{C}_2 independent of problem size

$$S = I - \tau B^{-1} A$$

 $\rho(S)$ independent of h!

With such a preconditioner iteration count depends only C_1 , C_2 и ε !

• 25

Anisotropic Diffusion Equation

$$-\frac{\partial}{\partial x}\left(a(x,y)\frac{\partial u}{\partial x}\right) - \frac{\partial}{\partial y}\left(b(x,y)\frac{\partial u}{\partial y}\right) = g \text{ в } V = (0,1)^2$$
$$u = 0 \text{ на } \Gamma$$

a(x,y),b(x,y) > 0

uniform grid

 $-\gamma \Delta u = f$ в Vu=0 на Γ

B u = f

 $\gamma>0$ - const

● 26

FFT as preconditioner

- Matrices A and B are of the same size
- Vector $B^{-1}v$ could be computed with FFT

$$u^{k+1} = u^k + \tau B^{-1}(g - Au^k)$$

Claim. Assume

$$c_1 \gamma \le a(x, y) \le c_2 \gamma$$
 B V
 $c_1 \gamma \le b(x, y) \le c_2 \gamma$

then B is spectrally-equivalent A with constants c_1 and c_2

i.e. solver convergence speed will depend on closeness of a(x,y) and b(x,y) to γ .

27

FFT as preconditioner

 \Box $Av \cdot v =$

$$\frac{1}{h^2} \left(\dots a_{i - \frac{1}{2}j} (v_{i-1j} - v_{ij}) \dots a_{i - \frac{1}{2}j} (v_{ij} - v_{i-1j}) \dots \right) \cdot \left(\dots v_{i-1j} v_{ij} \dots \right) =$$

$$= c_2 B v \cdot v$$

Similarly,

$$Av \cdot v \ge c_1 Bv \cdot v$$

We thus designed a solver with complexity $O\left(N \log N \log \frac{1}{\varepsilon}\right)_{28}$

Part 2 Multigrid Method

R. Fedorenko, 1961 A. Brand, 1973 W. Hackbusch, 1977

• 29

Motivation

Model problem

$$-\Delta u = g$$
 в V $u = 0$ на Γ

$$A_h u_h = g_h$$

Why the Jacobi solver is so slow?

Error of initial guess

Error after 5 iterations

Error after 10 iterations

U. Trottenberg (2001)

Motivation

Why Jacobi solver smooths our the error?

$$S = E - D^{-1}A$$

$$D = diag(A)$$

$$\lambda_k = 1 - \sin\left(\frac{\pi kh}{2}\right)^2 \qquad u_{k,j}^h = \sin(\pi j kh)$$

- We can form two groups of frequencies: • Low frequencies k < n/2 , $\frac{1}{2} < \lambda < 1$
- High frequencies $\frac{n}{2} \le k$, $\lambda \le 1/2$

•31

Motivation

- High-frequency error components smoothed out well on fine grids
- Low-frequency error components represented well on coarse grids

Coarser problems are easer to solve

Coarse grid correction

 $A_h u_h = g_h$

 u_h^* exact sol-n

$$egin{array}{ll} r_h &= g_h - A_h u_h & ext{Note:} \ e_h &= u_h^* - u_h & e_h &= \end{array}$$

 u_h current guess

$$e_h = u_h^* - u_h$$

 $e_h = A_h^{-1} r_h$

If we were able to compute the sum

$$u_h := u_h + e_h = u_h^*$$

then the problem would be solved

$$A_h e_h = r_h \longrightarrow \begin{matrix} \bullet & r_H = R \ r_h \\ \bullet & A_H d_H = r_H \\ \bullet & d_h = P \ d_H \\ \bullet & u_h := u_h + d_h \end{matrix}$$

h

H = 2h

We need to define

- restriction operator R
- coarse grid operator A_H
- prolongation operator P

Prolongation Operator

$$v_{h \ 2i} = v_{2h \ i}$$

$$v_{h \ 2i+1} = \frac{1}{2} (v_{2h \ i} + v_{2h \ i+1})$$

$$v_{h} = P \ v_{2h}$$

$$P = \frac{1}{2} \begin{bmatrix} 1 \\ 2 \\ 1 \ 1 \\ \vdots \\ \vdots \\ 1 \end{bmatrix}$$

Stencil $P = \frac{1}{2}[1 \ 2 \ 1]$

$$P = \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

• 35

Restriction Operator

$$(u_H, Rv_h)_H = (Pu_H, v_h)_h$$

 $R = \frac{1}{4}[1 \ 2 \ 1]$

$$h$$
 $H = 2h$

$$v_{2h\ i} = \frac{1}{4}(v_{h\ 2i-1} + 2v_{h\ 2i} + v_{h\ 2i+1})$$

$$v_{2h} = R \ v_h$$

$$R = \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 & & & & & & & & \\ & & 1 & 2 & 1 & & & & & \\ & & & & 1 & 2 & 1 & & & & \\ & & & & & 1 & 2 & 1 & & & & \\ & & & & & \ddots & \ddots & \ddots & \ddots & & \end{bmatrix}$$

$$R = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

$$P = 2 R^T$$
 in 1D
 $P = 4 R^T$ in 2D

 $t = 4 R^T$ in 2D

Coarse Grid Operator

- Direct method A_H approximation of the differential operator on grid H
- Galerkin projection method

$$A_H = R A_h P$$

Yet the product should be computed implicitly, e.g.

$$A_H v = (R (A_h (P v)))$$

Two-grid Algorithm

$$A_h u_h = g_h$$

 n_{post} h

Н

Algorithm u_h^0 , A_h , g_h

 $u_h := \mathsf{Jacobi_Iter} \big(n_{pre}, u_h^0, A_h, g_h \big)$

 $\operatorname{er} (n_{pre}, u_h^0, A_h, g_h)$ presmoothing

 $r_h = g_h - A_h u_h$

 $r_H = R r_h$ Restriction of the residual

Solve $A_H d_H = r_H$ Coarse grid problem

 $d_h = P d_H$ Prolongation

 $u_h \coloneqq u_h + d_h$

 $u_h := \text{Jacobi_Iter}(n_{post}, u_h, A_h, g_h)$ postsmoothing

 $\|g_h - A_h u_h\| < \varepsilon$?

38

Two-grid Algorithm

Iteration matrix

$$S = (I - D^{-1}A_h)^{n_{post}} (I - PA_H^{-1}RA_h) (I - D^{-1}A_h)^{n_{pre}}$$

Theorem

 $\rho(\mathcal{S}) < \frac{1}{2}$ is independent of h , but depends on n_{post}, n_{post}

$$n_{post} + n_{pre} > 0$$

We designed a spectrally-equivalent preconditioner, although we have solve $A_H e_H = r_H \dots$

• 39

Multigrid algorithm

$$A_h u_h = g_h$$

$$\textbf{Algorithm} \ u_h \ = \text{V-cycle}(u_h^0, \ A_h, \ g_h)$$

$$u_h := \text{Jacobi_Iter}(n_{pre}, u_h^0, A_h, g_h)$$

$$r_h = g_h - A_h u_h$$

$$r_H = R r_h$$

if
$$H \neq H_0$$
 e_H =V-cycle(0, A_H , r_H)

Recursion

else solve
$$A_H e_H = r_H$$

We are on the coarsest grid

$$e_h = P e_H$$

$$u_h \coloneqq u_h + e_h$$

$$u_h := \text{Jacobi_Iter}(n_{post}, u_h, A_h, g_h)$$

Return u_h

40

Computational Complexity

Assume the coarsest problem has size of O(1)

Then complexity of a single iteration is

1D:
$$N + \frac{1}{2}N + \frac{1}{4}N + \dots = O(N)$$

2D: $N + \frac{1}{4}N + \frac{1}{16}N + \dots = O(N)$

i.e. multigrid had linear computational complexity

What will be the convergence speed?

•41

Multigrid Iteration Matrix

Assume we L grids from k=L (fine) to k=1 (coarsest)

 A_k system matrix

 $R_{\nu \rightarrow \nu - 1}$

 \mathcal{S}_k iteration matrix

 $P_{\nu-1\rightarrow l}$

$$S_{1} = 0$$

$$S_{k} = \left(I - D_{k}^{-1} A_{k}\right)^{n_{post}} \left(I - P_{k-1 \to k} \left(I - S_{k-1}\right) A_{k-1}^{-1} R_{k \to k-1} A_{k}\right) \left(I - D_{k}^{-1} A_{k}\right)^{n_{pre}}$$

Full iteration matrix $S = S_L$

 $\rho(S)$ = 0.05 .. 0.5 for model problems

Spectrally-equivalent preconditioner

Solver with optimal complexity

 $O(N\log\frac{1}{\varepsilon})$

W-cycles

Algorithm $u_h = \text{W-cycle}(u_h^0, A_h, g_h)$

$$u_h := \text{Jacobi_Iter}(n_{pre}, u_h^0, A_h, g_h)$$

$$r_h = g_h - A_h u_h$$

$$r_H = R r_h$$

if
$$H \neq H_0$$
 e_H =W-cycle(0, A_H , r_H)
 e_H =W-cycle(e_H , A_H , r_H)

Two recursion calls

else solve
$$A_H e_H = r_H$$

We are on the coarsest grid

$$e_h = P e_H$$

$$u_h\coloneqq u_h+e_h$$

$$u_h := \mathsf{Jacobi_Iter}(n_{post}, u_h, A_h, g_h)$$

turn 11

Return u_h

• More robust than V-cycle

• Also there is also FMG.

• 43

Complexity of different solvers

Gauss elimination	$O(N^3)$
Jacobi and Seidel	$O(N^2 \log \frac{1}{\varepsilon})$
Richardson and steepest descent	$O(N^2 \log \frac{1}{\varepsilon})$
Conjugate gradient	$O(N^{\frac{3}{2}}\log\frac{1}{\varepsilon})$
FFT-based	$O(N \log N)$
Multigrid V-cycle	$O(N\log\frac{1}{\varepsilon})$
Optimal estimate	O(N)

•

Resumé on Multigrid

- Solver with optimal complexity
- Has many generalization (nonlinear equations etc)

The concept we discusses is only robust for

- Square grids
- Heterogeneous equations but isotropic coefficients

These cases require special treatment

• Stretched grids / high aspect ratio

Anisotropic coefficients

.