Пусть окружности $\omega_A(O_1, r_1)$ и $\omega_B(O_2, r_2)$ касаются окружности $\omega(O, R)$ в точках A и B, соответственно. Если ω_A и ω_B касаются ω одинаковым (различным) образом, то через $d(\omega_A, \omega_B)$ обозначим расстояние между двумя точками касания общей внешней (внутренней) касательной этих двух окружностей.

- 1. Окружности ω_A и ω_B касаются внутренним образом окружности ω . Докажите, что $d(\omega_A, \omega_B) = \frac{AB}{R} \sqrt{(R-r_1)(R-r_2)}$.
- 2. Окружности ω_A и ω_B касаются внешним образом окружности ω . Докажите, что $d(\omega_A, \omega_B) = \frac{AB}{R} \sqrt{(R+r_1)(R+r_2)}$.
- 3. Окружность ω_A касается ω внутренним образом, а окружность ω_B касается ω внешним образом. Докажите, что $d(\omega_A, \omega_B) = \frac{AB}{R} \sqrt{(R-r_1)(R+r_2)}$.
- 4. (**Теорема Кэзи**) Если окружности ω_A , ω_B , ω_C и ω_D касаются окружности ω , соответственно, в вершинах A, B, C и D выпуклого четырёхугольника ABCD, то справедливо равенство

$$d(\omega_A, \omega_B) \cdot d(\omega_C, \omega_D) + d(\omega_B, \omega_C) \cdot d(\omega_D, \omega_A) = d(\omega_A, \omega_C) \cdot d(\omega_B, \omega_D).$$

5. (Обобщения теоремы Помпею)

- (а) Окружность ω касается описанной окружности равностороннего треугольника ABC. Докажите, что длинна касательной к ω , проведённой из некоторой вершины $\triangle ABC$, равна сумме длин касательных к ω , проведённых из двух других вершин этого треугольника.
- (b) Три равные окружности касаются попарно между собой и внутренним образом некоторой окружности ω . Из произвольной точки $M \in \omega$ проведены к трём окружностям касательные. Докажите, что сумма двух отрезков касательных равна третьему отрезку.
- 6. Окружности ω_1 и ω_2 внешним образом касаются в точке I, и обе внутренним образом касаются окружности ω . Общая внешняя касательная окружностей ω_1 и ω_2 пересекает ω в точках B и C, а общая внутренняя касательная окружностей ω_1 и ω_2 пересекает ω в точке A и D (точки A и I лежат в одной полуплоскости относительно прямой BC). Докажите, что I центр вписанной окружности треугольника ABC.

Домашнее задание

- 7. В окружность вписан $\triangle ABC$. В сегменты с основаниями CA, CB и AB, лежащие вне $\triangle ABC$, вписаны окружности ω_1 , ω_2 и ω_3 , касающиеся оснований в их серединах. Докажите, что $d(\omega_1, \omega_2) = d(\omega_2, \omega_3) = d(\omega_3, \omega_1)$.
- 8. Пусть Γ окружность, описанная вокруг $\triangle ABC$, а Ω окружность, касающаяся Γ , а также отрезков AB и AC в точках P и Q соответственно. Докажите, что середина PQ инцентр треугольника ABC.