Hacking a 100-ohm Differential Pair

Shrinithi Venkatesan Sonal Tamrakar

03/21/2024

Agenda

- Transmission Line Parameters
- Differential Pair Setup (DUT)
- Parameters
- Measured Data
- Hacking the circuit
- Observations
- Key Takeaways

Background

$$Pitch = S + 2*(W/2)$$

DUT – 100-ohm Differential pair

Consistency Check

Known Parameters:

Solder Mask: 0.0254 mm (1 mil)

Copper Thickness: 0.03048 mm (1.2 mils) (Measured w and w/o trace)

Dielectric Height (H) = 1.615mm - 2(0.03556mm) - 2(0.0254mm) =

1.491mm (58.7 mils)

What is the expected data?

Parameters

Parameters	Sec I (Uncoupled)	Sec 2	Sec 3	Sec 4	Sec 5 (Uncoupled)
ΔW (Etch)	Variable - Unknown				
Pitch	625 mils	126 mils	53 mils	161 mils	625 mils
Spacing (S_{mfg})	X	$S_{des} + 2 * \Delta W$	$S_{des} + 2 * \Delta W$	$S_{des} + 2 * \Delta W$	X
Trace Width (W_{mfg})	$W_{des} - 2 * \Delta W$				
Dk_{mfg}	4.5	4.5	4.5	4.5	45
Copper Thickness	1.2 mils				
Dielectric Height	58.7 mils	58.7 mills	58.7 mils	58.7 mils	58.7 mills
Trace Length	1000 mils	2130 mils	2000 mils	2155 mils	625 mils

What are the variable parameters and how far can we alter these parameters?

Parameter	Variability factor
Dielectric Constant (Dk)	+/- 0.4
Dielectric height (H)	+/- 2 mils
Etch (del W)	+/- 1 mil

Measured Data

CIRCUIT

Sec 4

Sec 5

TDR PLOT

Sec 1

Sec 2

Sec 3

What does this

data represent?

Simulated Data

TDR PLOT

Parameters	Simulated
Dielectric Constant (Dk)	4.5
Dielectric height (H)	58.7 mils
Etch (del W)	0 mil

CIRCUIT

How do we hack?

8

TDR plots Meas vs Sim Data

Parameters	Measured	Simulated
Dielectric Constant (Dk)	4.5	4.82
Dielectric height (H)	58.7 mills	58.9 mills
Etch (del W)	0 mil	-0.9 mils (Over etched)

Key Takeaways

• Understanding the behavior of interconnects and parameters of PCB stack-up.

• Board designs with specific parameters may not always be consistent with what the fabrication vendor produced.

• Hacking the simulation data to fit the measured data allowed a bigger transparency of the parameter values.

Questions?

