Машинное обучение, ФКН ВШЭ Семинар №6

1 Предсказание вероятностей

Разберемся, каким требованиям должен удовлетворять классификатор, чтобы его выход можно было расценивать как оценку вероятности класса.

Пусть в каждой точке $x \in \mathbb{X}$ пространства объектов задана вероятность $p(y = +1 \mid x)$ того, что данный объект относится к классу +1, и пусть алгоритм b(x) возвращает числа из отрезка [0,1]. Потребуем, чтобы эти предсказания пытались в каждой точке x приблизить вероятность положительного класса $p(y = +1 \mid x)$.

Разумеется, выполнение этого требования зависит от функции потерь — минимум ее матожидания в каждой точке x должен достигаться на данной вероятности:

$$\arg\min_{b\in\mathbb{R}} \mathbb{E}\left[L(y,b)|x\right] = p(y=+1|x).$$

Задача 1.1. Покажите, что квадратичная функция потерь $L(y,b) = ([y=+1]-b)^2$ позволяет предсказывать корректные вероятности.

Решение. Заметим, что поскольку алгоритм возвращает числа от 0 до 1, то его ответ должен быть близок к единице, если объект относится к положительному классу, и к нулю — если объект относится к отрицательному классу.

Запишем матожидание функции потерь в точке x:

$$\mathbb{E}\left[L(y,b)|x\right] = p(y=+1|x)(b-1)^2 + (1-p(y=+1|x))(b-0)^2.$$

Продифференцируем по b:

$$\frac{\partial}{\partial b} \mathbb{E}\left[L(y,b)|x\right] = 2p(y = +1|x)(b-1) + 2(1 - p(y = +1|x))b = 2b - 2p(y = +1|x) = 0.$$

Легко видеть, что оптимальный ответ алгоритма действительно равен вероятности:

$$b = p(y = +1|x).$$

Задача 1.2. Покажите, что абсолютная функция потерь $L(y,b) = |[y=+1]-b|, b \in [0;1]$, не позволяет предсказывать корректные вероятности.

Решение. Запишем матожидание функции потерь в точке *x*:

$$\mathbb{E}\left[L(y,b)|x\right] = p(y=+1|x)|1-b| + (1-p(y=+1|x))|b| = p(y=+1|x)(1-b) + (1-p(y=+1|x))b.$$

Продифференцируем по b:

$$\frac{\partial}{\partial b} \mathbb{E}\left[L(y,b)|x\right] = 1 - 2p(y = +1|x) = 0.$$

Рассмотрим 2 случая:

- 1. $p(y = +1|x) = \frac{1}{2}$. Тогда $\mathbb{E}[L(y,b)|x] = \frac{1}{2} \quad \forall b \in [0;1]$, а потому классификатор не позволяет предсказывать корректную вероятность в точке x.
- 2. $p(y=+1|x) \neq \frac{1}{2}$. В этом случае интервал (0; 1) не содержит критических точек, а потому минимум матожидания достигается на одном из концов отрезка [0; 1]:

$$\begin{split} \min_{b \in [0;1]} \mathbb{E}\left[L(y,b)|x\right] &= \min\left(\mathbb{E}\left[L(y,0)|x\right], \mathbb{E}\left[L(y,1)|x\right]\right) = \\ &\min\left(p(y=+1|x), 1 - p(y=+1|x)\right). \end{split}$$

Отсюда $\arg\min_{b\in[0;1]}\mathbb{E}\left[L(y,b)|x\right]\in\{0,1\}$, а потому классификатор также не позволяет предсказывать корректную вероятность в точке x.

2 Калибровка вероятностей

Часто при обучении моделей для бинарной классификации хочется получать не только предсказанную метку класса, но и вероятность положительного класса. Предсказанная вероятность может служить как мера уверенности нашего алгоритма. Однако некоторые алгоритмы не выдают корректные вероятности классов. В таком случае калибруют вероятности модели.

Для начала определимся с тем, что хотим получить от предсказанных вероятностей. В задаче бинарной классификации откалиброванным алгоритмом называют такой алгоритм, для которого доля положительных примеров (на основе реальных меток классов) для предсказаний в окрестности произвольной вероятности p совпадает с этим значением p. Например, если взять объекты, для которых предсказанные вероятности близки к 0.7, то окажется, что среди них 70% принадлежат положительному классу. Нет критерия, которое бы установило откалиброванность алгоритма, однако можно построить калибровочную кривую. На этой кривой абсцисса точки соответствуют значению p (предсказаний алгоритма), а ордината соответствует доле положительных примеров, для которых алгоритм предсказал вероятность, близкую к p. В идеальном случае эта кривая совпадает с прямой y = x. Примеры такой кривой на рис. (1).

Изучим два стандартных метода для калибровки вероятностей алгоритма: калибровка Платта и изотоническая регрессия.

Рис. 1. Калибровочные кривые нескольких алгоритмов

§2.1 Калибровка Платта

Пусть наш алгоритм выдаёт значения f(x) (могут не быть вероятностями). Тогда итоговая вероятность:

$$P(y = 1|x) = \frac{1}{1 + \exp(af(x) + b)},$$

где a, b — скалярные параметры. Эти параметры настраиваются методом максимума правдоподобия (минимизируя логистическую функцию потерь) на отложенной выборке или с помощью кросс валидации. Также Платт предложил настраивать параметры на обучающей выборке базовой модели, а для избежания переобучения изменить метки объектов на следующие значения:

$$t_{+} = \frac{N_{+} + 1}{N_{-} + 2}$$

для положительных примеров и

$$t_{-} = \frac{1}{N + 2}$$

для отрицательных.

Калибровку Платта можно представить как применения логистической регрессии поверх предсказаний другого алгоритма с отключенной регуляризацией.

§2.2 Изотоническая регрессия

В этом методе также строится отображение из предсказаний модели в откалиброванные вероятности. Для этого используем изотоническую функцию (неубывающая кусочно-постоянная функция), в которой x — выходы нашего алгоритма, а y — целевая переменная. Иллюстрация изотонической регрессии на рис. (2).

Мы хотим найти такую функцию m(t): P(y=1|x)=m(f(x)). Она настраивается под квадратичную ошибку:

$$m = \underset{z}{\operatorname{arg\,min}} \sum_{i} (y_i - z(f(x_i))^2,$$

с помощью специального алгоритма (Pool-Adjacent-Violators Algorithm), изучать который в этом курса не будем.

Рис. 2. Изотоническая регрессия

В результате калибровки получаем надстройку над нашей моделью, которая применяется поверх предсказаний базовой модели. В случае мультиклассовой классификации каждый класс калибруется отдельно против остальных (one-versus-all), вероятности при предсказании нормируются.

3 Квантильная регрессия

В некоторых задачах цены занижения и завышения прогнозов могут отличаться друг от друга. Например, при прогнозировании спроса на товары интернет-магазина гораздо опаснее заниженные предсказания, поскольку они могут привести к потере клиентов. Завышенные же прогнозы приводят лишь к издержкам на хранение товара на складе. Функционал в этом случае можно записать как

$$Q(a, X^{\ell}) = \sum_{i=1}^{\ell} \rho_{\tau}(y_i - a(x_i)),$$

где

$$\rho_{\tau}(z) = (\tau - 1)[z < 0]z + \tau[z \geqslant 0]z = (\tau - \frac{1}{2})z + \frac{1}{2}|z|,$$

а параметр τ лежит на отрезке [0,1] и определяет соотношение важности занижения и завышения прогноза. Чем больше здесь τ , тем выше штраф за занижение прогноза.

Обсудим вероятностный смысл данного функционала. Будем считать, что в каждой точке $x \in \mathbb{X}$ пространства объектов задано вероятностное распределение $p(y \mid x)$ на возможных ответах для данного объекта. Такое распределение может возникать, например, в задаче предсказания кликов по рекламным баннерам: один и тот же пользователь может много раз заходить на один и тот же сайт и видеть данный баннер; при этом некоторые посещения закончатся кликом, а некоторые — нет.

Известно, что при оптимизации квадратичного функционала алгоритм a(x) будет приближать условное матожидание ответа в каждой точке пространства объектов: $a(x) \approx \mathbb{E}[y \mid x]$; если же оптимизировать среднее абсолютное отклонение, то итоговый алгоритм будет приближать медиану распределения: $a(x) \approx \text{median}[p(y \mid x)]$. Рассмотрим теперь некоторый объект x и условное распределение $p(y \mid x)$. Найдем число q, которое будет оптимальным с точки зрения нашего функционала:

$$Q = \int_{\mathbb{Y}} \rho_{\tau}(y - q) p(y \mid x) dy.$$

Продифференцируем его (при этом необходимо воспользоваться правилами дифференцирования интегралов, зависящих от параметра):

$$\frac{\partial Q}{\partial q} = (1 - \tau) \int_{-\infty}^{q} p(y \mid x) dy - \tau \int_{q}^{\infty} p(y \mid x) dy = 0.$$

Получаем, что

$$\frac{\tau}{1-\tau} = \frac{\int_{-\infty}^{q} p(y \mid x) dy}{\int_{q}^{\infty} p(y \mid x) dy}.$$

Данное уравнение будет верно, если q будет равно τ -квантили распределения $p(y \mid x)$. Таким образом, использование функции потерь $\rho_{\tau}(z)$ приводит к тому, что алгоритм a(x) будет приближать τ -квантиль распределения ответов в каждой точке пространства объектов.