CIFAR-10 Image Classification with Transfer Learning (TensorFlow)

1. Data Preprocessing

Dataset: CIFAR-10

- 60,000 32×32 color images in 10 classes
- 50,000 for training, 10,000 for testing

Preprocessing Steps

- Resized images to **160x160** to match MobileNetV2 input
- Normalized pixel values to range [0, 1]
- One-hot encoded labels
- Efficient data loading using tf.data.Dataset with:
 - Shuffling
 - Batching
 - Prefetching

Visualization

Sample images and labels were visualized using matplotlib to verify correct loading and distribution across classes.

2. Model Architecture

a) Custom CNN (from scratch)

We first implemented a custom CNN for CIFAR-10:

- Conv2D (32 filters, 3x3) + ReLU + MaxPooling
- Conv2D (64 filters, 3x3) + ReLU + MaxPooling
- Conv2D (128 filters, 3x3) + ReLU + MaxPooling
- Flatten + Dense(256, ReLU) + Dropout(0.5)
- Output: Dense(10, softmax)

This model served as a baseline before applying transfer learning.

b) Transfer Learning with MobileNetV2

• Base model: MobileNetV2(weights='imagenet', include top=False)

- · Added custom head:
 - Global Average Pooling
 - Dense(128, activation='relu')
 - Dropout(0.3)
 - Dense(10, activation='softmax')

Total layers: 158 (154 from base + 4 custom)

3. Model Training

Phase 1: Initial Training

- Frozen base model
- Optimizer: Adam (lr=0.001)
- Loss: Categorical crossentropy
- Batch Size: 32
- Early stopping on validation loss

Phase 2: Fine-Tuning

- Unfroze last 50 layers of the base model
- Recompiled with lower learning rate: 1e-5
- Trained for 10 epochs with early stopping

4. Model Evaluation

Metrics

- Final Accuracy: 90.24%
- Final Loss: 0.33
- Precision, Recall, F1-Score calculated with sklearn
- Confusion matrix visualized with seaborn

Model performed well across all classes. Most errors occurred in similar categories (e.g., automobile vs truck).

5. Transfer Learning

Model Choice: MobileNetV2

- Chosen for lightweight architecture and strong performance
- Better suited for CIFAR-10 compared to heavier models like VGG16
- Also tested fine-tuning: unfreezing last 50 layers for improved adaptation

Result:

• Accuracy increased from ~85% (frozen) to 90%+ after fine-tuning

6. Code Quality

Standards Used:

- **Ruff** for linting and formatting (configured via pyproject.toml)
- Modular, readable code with:
 - Model setup
 - Training logic
 - Inference functions
 - Deployment scripts

Code is PEP8-compliant, clean, and well-documented.

7. Report

Contents:

- Project objective and dataset description
- Step-by-step architecture explanation
- Preprocessing and training strategy
- Evaluation metrics with charts
- Transfer learning justification
- Deployment approach and insights

Report is written in Markdown and easily convertible to PDF or HTML.

8. Model Deployment

a) Gradio App (Primary)

- Interactive UI with image upload + prediction
- Shows top 3 predicted classes with confidence scores
- Local and Hugging Face Spaces ready
- Launch with: python gradio app.py

b) Flask API (Optional)

- POST /predict endpoint for image classification
- Accepts single image, returns class probabilities in JSON
- Deployable via Render.com using Procfile

Final Performance Summary

Model Accur	racy Notes		Cu	istom Cl	NN
~75% 3-layer	CNN from scratch	MobileNetV2 ((frozen)	~85%	Base
model frozen	MobileNetV2 (fine-ti	uned) 90.2%	Last 50	layers u	ınfrozen

Insights & Learnings

- Transfer learning significantly reduces training time and improves results on small datasets
- Fine-tuning only part of the base model helps avoid overfitting
- Gradio is an efficient way to deploy and demo models without heavy backend work
- Code quality tools like Ruff elevate your project to production-ready status

Future Improvements

- Add data augmentation (flips, crops, etc.)
- Compare results from VGG16 or EfficientNet
- Improve Gradio UI layout and style
- Add batch prediction functionality
- Containerize with Docker for easier deployment

Tools Used

Category Tools	
Visualization Matplotlib, Seaborn Linting/Format Ruff Deployment	
Gradio, Flask, Render, Hugging Face Project Tools Git, VS Code, Google	<u>,</u>
Colab	