NTIN090 — Základy složitosti a vyčíslitelnosti 4. cvičení

Petr Kučera

1. prosince 2022

1 Věty použitelné v příkladech

Připomeňme si nejprve základní třídy složitosti definované k funkci $f: \mathbb{N} \to \mathbb{N}$.

TIME(f(n)) jazyky přijímané deterministickými Turingovými stroji v čase O(f(n)).

SPACE(f(n)) jazyky přijímané deterministickými Turingovými stroji v prostoru O(f(n)).

NTIME(f(n)) jazyky přijímané nedeterministickými Turingovými stroji v čase O(f(n)).

NSPACE(f(n)) jazyky přijímané nedeterministickými Turingovými stroji v prostoru O(f(n)).

Dále si shrneme tvrzení z přednášky, jež se mohou hodit při řešení příkladů z tohoto cvičení. **Věta (Vztahy mezi třídami):** Pro každou funkci $f : \mathbb{N} \to \mathbb{N}$ platí

- (i) $TIME(f(n)) \subseteq SPACE(f(n))$
- (ii) $TIME(f(n)) \subseteq NTIME(f(n))$
- (iii) $SPACE(f(n)) \subseteq NSPACE(f(n))$
- (iv) $NTIME(f(n)) \subseteq SPACE(f(n))$

Věta (Vztah prostoru a času): Pro každou funkci $f(n) \ge \log_2 n$ a každý jazyk L platí, že

$$L \in \text{NSPACE}(f(n)) \implies (\exists c_L \in \mathbb{N}) \left[L \in \text{TIME}(2^{c_L f(n)}) \right].$$

Důsledek 3 *Je-li* f(n) funkce, pro kterou platí $f(n) \ge \log_2 n$ a je-li g(n) funkce, pro kterou platí f(n) = o(g(n)), pak

$$NSPACE(f(n)) \subseteq TIME(2^{g(n)}).$$

Věta (**Savičova věta**): Pro každou funkci $f(n) \ge \log_2 n$ platí

$$NSPACE(f(n)) \subseteq SPACE(f^2(n)).$$

Věta (**Deterministická prostorová hierarchie**): Jsou-li $f_1, f_2 : \mathbb{N} \to \mathbb{N}$ funkce, pro které platí, že $f_1(n) = o(f_2(n))$ a f_2 je prostorově konstruovatelná¹, potom

$$SPACE(f_1(n)) \subseteq SPACE(f_2(n)).$$

Věta (**Deterministická časová hierarchie**): Jsou-li $f_1, f_2 : \mathbb{N} \to \mathbb{N}$ funkce, pro které platí, že $f_1(n) = o(f_2(n)/\log f_2(n))$ a f_2 je časově konstruovatelná², potom

$$TIME(f_1(n)) \subseteq TIME(f_2(n)).$$

¹Všechny funkce, které v následujících příkladech uvažujeme, jsou prostorově konstruovatelné a tento předpoklad tak není třeba ověřovat.

²Všechny funkce, které v následujících příkladech uvažujeme, jsou časově konstruovatelné a tento předpoklad tak není třeba ověřovat.

ZSV, 4. cvičení 1. prosince 2022

2 Příklady

1. Pro následující dvojice tříd rozhodněte, zda mezi nimi platí nějaká inkluze, pokud ano, tak zda je ostrá nebo ne. Vyznačte také dvojice, u nichž není možno (z našich znalostí) ukázat, zda mezi nimi je nějaký vztah. Přesněji, mezi danou dvojici tříd doplňte symbol ⊆, ⊊, =, ⊇, ⊋ nebo "?". Své odpovědi zdůvodněte.

	ouriete.	Laur
$TIME(2^{n^2})$	$SPACE(n \log n)$	(1)
$TIME(2^{n\log n})$	$TIME(2^{n^2})$	(2)
$NSPACE(\log^2 n)$	$TIME(2^{n\log n})$	(3)
NTIME(n)	$NSPACE(\log^2 n)$	(4)
$SPACE(n \log n)$	NTIME(n)	(5)
$TIME(2^{n\log n})$	$SPACE(n \log n)$	(6)
$NSPACE(\log^2 n)$	$TIME(2^{n^2})$	(7)
NTIME(n)	$TIME(2^{n\log n})$	(8)
$SPACE(n \log n)$	$NSPACE(\log^2 n)$	(9)
$TIME(2^{n^2})$	NTIME(n)	(10)

2. Pro následující dvojice tříd rozhodněte, zda mezi nimi platí nějaká inkluze, pokud ano, tak zda je ostrá nebo ne. Vyznačte také dvojice, u nichž není možno (z našich znalostí) ukázat, zda mezi nimi je nějaký vztah. Přesněji, mezi danou dvojici tříd doplňte symbol ⊆, ⊊, =, ⊇, ⊋ nebo "?". Své odpovědi zdůvodněte.

(1)	SPACE(n)	$TIME(2^n)$
(2)	$TIME(2^n)$	$TIME(2^{n\log n})$
(3)	$TIME(2^{n\log n})$	$NSPACE((\log n)^3)$
(4)	$NSPACE((\log n)^3)$	$NTIME(2^n)$
(5)	$NTIME(2^n)$	SPACE(n)
(6)	SPACE(n)	$TIME(2^{n \log n})$
(7)	$TIME(2^n)$	$NSPACE((\log n)^3)$
(8)	$TIME(2^{n\log n})$	$NTIME(2^n)$
(9)	$NSPACE((\log n)^3)$	SPACE(n)
(10)	$NTIME(2^n)$	$TIME(2^n)$

- 3. Ukažte, že třída P je uzavřena na sjednocení, průnik a doplněk.
- 4. Ukažte, že třída NP je uzavřena na sjednocení a průnik.
- 5. Ukažte, že třída NP je uzavřena na operaci Kleeneho hvězdičky. Tj. je-li $A \in \text{NP}$

$$A^* = \{ w = w_1 w_2 \dots w_k \mid k \in \mathbb{N} \land (\forall i = 1, \dots, k) [w_i \in A] \}$$

je v NP.

6. Ukažte, že třída P je uzavřena na operaci Kleeneho hvězdičky. Tj. je-li $A \in P$

$$A^* = \{ w = w_1 w_2 \dots w_k \mid k \in \mathbb{N} \land (\forall i = 1, \dots, k) [w_i \in A] \}$$

ZSV, 4. cvičení 1. prosince 2022

je v P.

3 Domácí úkoly

7. (30 bodů) Pro následující dvojice tříd rozhodněte, zda mezi nimi platí nějaká inkluze, pokud ano, tak zda je ostrá nebo ne. Vyznačte také dvojice, u nichž není možno (z našich znalostí) ukázat, zda mezi nimi je nějaký vztah. Přesněji, mezi danou dvojici tříd doplňte symbol ⊆, ⊊, =, ⊇, ⊋ nebo "?". Své odpovědi zdůvodněte.

(1)	SPACE(n)	$\mathrm{TIME}(2^{\log^3 n})$
(2)	$TIME(2^{\log^3 n})$	$NSPACE(\log^2 n)$
(3)	$NSPACE(\log^2 n)$	$NTIME(2^{\log^3 n})$
(4)	$NTIME(2^{\log^3 n})$	$NTIME(2^{n\log n})$
(5)	$NTIME(2^{n\log n})$	SPACE(n)
(6)	SPACE(n)	$NSPACE(\log^2 n)$
(7)	$TIME(2^{\log^3 n})$	$NTIME(2^{\log^3 n})$
(8)	$NSPACE(\log^2 n)$	$NTIME(2^{n\log n})$
(9)	$NTIME(2^{\log^3 n})$	SPACE(n)
(10)	$NTIME(2^{n\log n})$	$\mathrm{TIME}(2^{\log^3 n})$