Normalization

Company (CompanyID, Cname, Location)

Company C(CIDCnL) - Functional Dependencies (FDs) $\{CID \rightarrow Cn, CID \rightarrow L\}$

- (a) List all candidate keys for Company.
 - *CIDCnL* all attributes are always a superkey
 - CIDL can get attribute Cn through $CID \rightarrow Cn$
 - CIDCn can get attribute L through $CID \rightarrow L$
 - CID can get attribute Cn through CID \rightarrow Cn, and then get attribute L through CID \rightarrow L
 - Therefore the candidate key is: *CID*.
- (b) Is Company in 3NF?
 - $CID \rightarrow Cn$
 - (a) Is the right side a member of the left side? No.
 - (b) Is the left side a super key? Yes it is a candidate key.
 - (c) Is the right side a prime attribute? No.
 - $CID \rightarrow L$
 - (a) Is the right side a member of the left side? No.
 - (b) Is the left side a super key? Yes it is a candidate key.
 - (c) Is the right side a prime attribute? No.
- (c) Therefore Company relation is in 3NF

Department (<u>DepartmentID</u>, Dname, FK: CID)

Department D(DIDDnCID) - FDs $\{DID \rightarrow Dn, CID \rightarrow DID\}$

- (a) List all candidate keys for Department.
 - DIDDnCID all attributes are always a superkey
 - DIDCID can get attribute Dn through $DID \rightarrow Dn$
 - DnCID can get attribute DID through $CID \rightarrow DID$
 - Therefore the candidate keys are: *DIDCID* and *DnCID*.
- (b) Is Department in 3NF?
 - $DIDCID \rightarrow Dn$
 - (a) Is the right side a member of the left side? No.
 - (b) Is the left side a super key? No.
 - (c) Is the right side a prime attribute? Yes it is part of the candidate key *DnCID*.
 - $CID \rightarrow DID$
 - (a) Is the right side a member of the left side? No.

- (b) Is the left side a super key? No.
- (c) Is the right side a prime attribute? Yes it is part of the candidate keys *DIDCID*.
- (c) Therefore Department is in 3NF.

Employee (EmployeeID, Fname, Minit, Lname, FK: CID, FK: DID)

Employee E(EIDFnMLnCIDDID) - FDs $\{EID \rightarrow Fn, EID \rightarrow M, EID \rightarrow Ln, FnLn \rightarrow EID, CIDDID \rightarrow EID\}$

- (a) List all candidate keys for Employee.
 - EIDFnMLnCIDDID all attributes are always a superkey
 - EIDMLnCIDDID can get attribute Fn through $EID \rightarrow Fn$
 - EIDFnLnCIDDID can get attribute M through EID \rightarrow M
 - EIDFnMCIDDID can get attribute Ln through $EID \rightarrow Ln$
 - FnMLnCIDDID can get attribute EID through $FnLn \rightarrow EID$
 - FnMLnCIDDID can get attribute EID through $CIDDID \rightarrow EID$
 - EIDCIDDID can get attribute Fn through $EID \rightarrow Fn$, then can get attribute M through $EID \rightarrow M$, and then can get attribute Ln through $EID \rightarrow Ln$
 - Candidate keys for Employee are: *EIDCIDDID* and *FnMLnCIDDID*.
- (b) Is Employee in 3NF?
 - $EID \rightarrow Fn$
 - (a) Is the right side a member of the left side? No.
 - (b) Is the left side a super key? No.
 - (c) Is the right side a prime attribute? Yes it is part of the candidate key: *FnMLnCIDDID*.
 - $EID \rightarrow M$
 - (a) Is the right side a member of the left side? No.
 - (b) Is the left side a super key? No.
 - (c) Is the right side a prime attribute? Yes it is part of the candidate key: *FnMLnCIDDID*.
 - $EID \rightarrow Ln$
 - (a) Is the right side a member of the left side? No
 - (b) Is the left side a super key? No
 - (c) Is the right side a prime attribute? Yes it is part of the candidate key: *FnMLnCIDDID*
 - $FnLn \rightarrow EID$
 - (a) Is the right side a member of the left side? No.
 - (b) Is the left side a super key? No.

- (c) Is the right side a prime attribute? Yes it is part of the candidate key: *EIDCIDDID*.
- $CIDDID \rightarrow EID$
 - (a) Is the right side a member of the left side? No.
 - (b) Is the left side a super key? No.
 - (c) Is the right side a prime attribute? Yes it is part of the candidate key: *EIDCIDDID*.
- (c) Therefore Employee is in 3NF.

Performance (PerformanceID, SpeedTests, FK: EID)

Performance Pe(PIDStEID) - FDs $\{PID \rightarrow St, EID \rightarrow PID\}$

- (a) List all the candidate keys for Performance.
 - *PIDStEID* all attributes are always a super key
 - *PIDEID* can get attribute *St* through $PID \rightarrow St$
 - StEID can get attribute PID through $EID \rightarrow PID$
 - The candidate keys for Performance are: *PIDEID*, *StEID*.
- (b) Is Performance in 3NF?
 - $PID \rightarrow St$
 - (a) Is the right side a member of the left side? No.
 - (b) Is the left side a super key? No.
 - (c) Is the right side a prime attribute? Yes it is part of the candidate key: *StEID*.
 - $EID \rightarrow PID$
 - (a) Is the right side a member of the left side? No.
 - (b) Is the left side a super key? No.
 - (c) Is the right side a prime attribute? Yes it is part of the candidate key: *PIDEID*
- (c) Therefore Performance is in 3NF.

Payout (PaystubID, Paystub, Ptotal, Dtotal, FK: EID)

Payout Pa(PaEIDPsPtDtEID) - FDs $\{PaEID \rightarrow Pt, PaEID \rightarrow Dt, PtDt \rightarrow Ps\}$

- (a) List all the candidate keys for Payout.
 - PaEIDPsPtDtEID- all attributes are always a super key
 - PaEIDPsDtEID can get attribute Pt through $PaEID \rightarrow Pt$
 - PaEIDPsPtEID can get attribute Dt through $PaEID \rightarrow Dt$
 - PaEIDPtDtEID- can get attribute Ps through $PtDt \rightarrow Ps$

- PaEIDPsEID- can get attribute Pt through $PaEID \rightarrow Pt$, and then get attribute Dt through $PaEID \rightarrow Dt$
- The candidate keys for Payout are: PaEIDPtDtEID, PaEIDPsEID.
- (b) Is Payout in 3NF?
 - $PaEID \rightarrow Pt$
 - (a) Is the right side a member of the left side? No.
 - (b) Is the left side a super key? No.
 - (c) Is the right side a prime attribute? Yes it is part of the candidate key: *PaEIDPtDtEID*.
 - $PaEID \rightarrow Dt$
 - (a) Is the right side a member of the left side? No.
 - (b) Is the left side a super key? Yes it is a candidate key.
 - (c) Is the right side a prime attribute? Yes it is part of the candidate key: *PaEIDPtDtEID*.
 - $PtDt \rightarrow Ps$
 - (a) Is the right side a member of the left side? No.
 - (b) Is the left side a super key? No.
 - (c) Is the right side a prime attribute? Yes it is part of the candidate key: *PaEIDPsEID*.
- (c) Therefore Payout is in 3NF.

Salary (SalaryID, baseSalary, Bonus, FK: EID, FK: PID)

Salary S(SIDBsBoEIDPID) - FDs $\{SID \rightarrow Bs, SID \rightarrow Bo, EIDPID \rightarrow SID\}$

- (a) List all candidate keys for Salary.
 - SIDBsBoEIDPID all attributes are always a super key
 - SIDBoEIDPID can get attribute Bs through $SID \rightarrow Bs$
 - SIDBsEIDPID- can get attribute Bo through $SID \rightarrow Bo$
 - BsBoEIDPID can get attribute SID through $EIDPID \rightarrow SID$
 - SIDEIDPID can get attribute Bs through $SID \rightarrow Bs$, and then get attribute Bo through $SID \rightarrow Bo$
 - The candidate key for Salary is *BsBoEIDPID*, *SIDEIDPID*.
- (b) Is Salary in 3NF?
 - $SID \rightarrow Bs$
 - (a) Is the right side a member of the left side? No
 - (b) Is the left side a super key? No.
 - (c) Is the right side a prime attribute? Yes it is part of the candidate key: *BsBoEIDPID*.

- $SID \rightarrow Bo$
 - (a) Is the right side a member of the left side? No
 - (b) Is the left side a super key? No.
 - (c) Is the right side a prime attribute? Yes it is part of the candidate key: *BsBoEIDPID*.
- $EIDPID \rightarrow SID$
 - (a) Is the right side a member of the left side? No
 - (b) Is the left side a super key? No.
 - (c) Is the right side a prime attribute? Yes it is part of the candidate key: *SIDEIDPID*
- (c) Therefore Salary is in 3NF.

Leave (leaveID, leavePay, fromDate, toDate, FK: EID, FK: PID)

Leave L(LIDLpFdTdEIDPID) - FDs $\{LID \rightarrow Lp, LID \rightarrow Fd, LID \rightarrow Td, EIDPID \rightarrow LID\}$

- (a) List all candidate keys for Leave.
 - LIDLpFdTdEIDPID all attributes are always a super key
 - LIDFdTdEIDPID can get attribute Lp through $LID \rightarrow Lp$
 - LIDLpTdEIDPID can get attribute Fd through $LID \rightarrow Fd$
 - LIDLpFdEIDPID can get attribute Td through $LID \rightarrow Td$
 - LpFdTdEIDPID can get attribute LID through $EIDPID \rightarrow LID$
 - LIDEIDPID can get attribute Lp through $LID \rightarrow Lp$, then get attribute Fd through $LID \rightarrow Fd$, and then get attribute Td through $LID \rightarrow Td$
 - The candidate keys in Leave are: *LpFdTdEIDPID*, *LIDEIDPID*.
- (b) Is Leave in 3NF?
 - $LID \rightarrow Lp$
 - (a) Is the right side a member of the left side? No.
 - (b) Is the left side a super key? No.
 - (c) Is the right side a prime attribute? Yes it is part of the candidate key: *LpFdTdEIDPID*.
 - $LID \rightarrow Fd$
 - (a) Is the right side a member of the left side? No.
 - (b) Is the left side a super key? No.
 - (c) Is the right side a prime attribute? Yes it is part of the candidate key: *LpFdTdEIDPID*.
 - $LID \rightarrow Td$
 - (a) Is the right side a member of the left side? No.
 - (b) Is the left side a super key? No.

- (c) Is the right side a prime attribute? Yes it is part of the candidate key: *LpFdTdEIDPID*.
- $EIDPID \rightarrow LID$
 - (a) Is the right side a member of the left side? No.
 - (b) Is the left side a super key? No.
 - (c) Is the right side a prime attribute? Yes it is part of the candidate key: *LIDEIDPID*.
- (c) Therefore Leave is in 3NF

Tax (<u>TaxID</u>, StateTax, FederalTax, FK: CID, FK: CID, FK: PID)

Tax T(TIDSxFxCIDEIDPID) - FDs $\{TID \rightarrow Sx, TID \rightarrow Fx, CID \rightarrow Sx, EIDPID \rightarrow TID\}$ (Found online that state tax changes can have an affect on federal tax)

- (a) List all the candidate keys for Tax.
 - *TIDSxFxCIDEIDPID* all attributes are always a super key
 - TIDFxCIDEIDPID can get attribute Sx through $TID \rightarrow Sx$
 - TIDSxCIDEIDPID can get attribute Fx through $TID \rightarrow Fx$
 - TIDFxCIDEIDPID can get attribute Sx through $CID \rightarrow Sx$
 - SxFxCIDEIDPID can get attribute TID through $EIDPID \rightarrow TID$
 - TIDCIDEIDPID can get attribute Sx through $TID \rightarrow Sx$, and then get attribute Fx through $TID \rightarrow Fx$
 - The candidate keys for Tax are: *SxFxCIDEIDPID*, *TIDFxCIDEIDPID*, *TIDCIDEIDPID*.
- (b) Is Tax 3NF?
 - $TID \rightarrow Sx$
 - (a) Is the right side a member of the left side? No.
 - (b) Is the left side a super key? No.
 - (c) Is the right side a prime attribute? Yes it is part of the candidate key: *SxFxCIDEIDPID*.
 - $TID \rightarrow Fx$
 - (a) Is the right side a member of the left side? No.
 - (b) Is the left side a super key? No.
 - (c) Is the right side a prime attribute? Yes it is part of the candidate key: *SxFxCIDEIDPID*, *TIDFxCIDEIDPID*.
 - $CID \rightarrow Sx$
 - (a) Is the right side a member of the left side? No.
 - (b) Is the left side a super key? No.
 - (c) Is the right side a prime attribute? Yes it is part of the candidate key: *SxFxCIDEIDPID*.

- $EIDPID \rightarrow TID$
 - (a) Is the right side a member of the left side? No.
 - (b) Is the left side a super key? No.
 - (c) Is the right side a prime attribute? Yes it is part of the candidate key: *TIDCIDEIDPID*, *TIDFxCIDEIDPID*.
- (c) Therefore Tax is in 3NF.

Attendance (AttendanceID, Absences, Tardies, FK: EID, FK: PID)

Attendance A(AIDAbTaEIDPID) - FDs $\{AID \rightarrow Ab, AID \rightarrow Ta, EIDPID \rightarrow AID\}$

- (a) List all the candidate keys for Attendance.
 - AIDAbTaEIDPID- all attributes will always be a super key
 - AIDTaEIDPID can get attribute Ab through AID \rightarrow Ab
 - AIDAbEIDPID can get attribute Ta through $AID \rightarrow Ta$
 - AIDEIDPID can get attribute Ab through AID \rightarrow Ab, and then get attribute Ta through AID \rightarrow Ta
 - AbTaEIDPID can get attribute AIDthrough $EIDPID \rightarrow EIDPID$
 - The candidate keys for Attendance are: AIDEIDPID, AbTaEIDPID.
- (b) Is Attendance in 3NF?
 - $AID \rightarrow Ab$
 - (a) Is the right side a member of the left side? No.
 - (b) Is the left side a super key? No.
 - (c) Is the right side a prime attribute? Yes it is part of the candidate key: *AbTaEIDPID*.
 - $AID \rightarrow Ta$
 - (a) Is the right side a member of the left side? No.
 - (b) Is the left side a super key? No.
 - (c) Is the right side a prime attribute? Yes it is part of the candidate key: *AbTaEIDPID*.
 - $EIDPID \rightarrow AID$
 - (a) Is the right side a member of the left side? No.
 - (b) Is the left side a super key? No.
 - (c) Is the right side a prime attribute? Yes it is part of the candidate key: *AIDEIDPID*.
- (c) Therefore Attendance is in 3NF.

Benefits (BenefitsID, Retirement, Insurance, FK: EID, FK: PID)

Benefits B(BIDRIEIDPID) - FDs $\{BID \rightarrow R, BID \rightarrow I, EIDPID \rightarrow BID\}$

- (a) List all the candidate keys for Benefits.
 - BIDRIEIDPID all attributes will always be a super key
 - BIDIEIDPID can get attribute R through $BID \rightarrow R$
 - BIDREIDPID can get attribute I through $BID \rightarrow I$
 - RIEIDPID can get attribute BID through EIDPID \rightarrow BID
 - BIDEIDPID can get attribute R through $BID \rightarrow R$, and then get attribute I through $BID \rightarrow I$
 - The candidate key for Benefits is: RIEIDPID, BIDEIDPID.
- (b) Is Benefits in 3NF?
 - $BID \rightarrow R$
 - (a) Is the right side a member of the left side? No.
 - (b) Is the left side a super key? No.
 - (c) Is the right side a prime attribute? Yes it is a part of the candidate key: *RIEIDPID*.
 - $BID \rightarrow I$
 - (a) Is the right side a member of the left side? No.
 - (b) Is the left side a super key? No.
 - (c) Is the right side a prime attribute? Yes it is a part of the candidate key: *RIEIDPID*.
 - $EIDPID \rightarrow BID$
 - (a) Is the right side a member of the left side? No.
 - (b) Is the left side a super key? No.
 - (c) Is the right side a prime attribute? Yes it is a part of the candidate key: *BIDEIDPID*.
- (c) Therefore Benefits is in 3NF.