工科数学分析

贺丹 (东南大学)

本章主要内容:

• Rⁿ中点集的初步知识

- Rⁿ中点集的初步知识
- 多元函数的极限与连续

- \mathbf{R}^n 中点集的初步知识
- 多元函数的极限与连续
- 多元数量值函数的偏导数与全微分

- \mathbf{R}^n 中点集的初步知识
- 多元函数的极限与连续
- 多元数量值函数的偏导数与全微分
- 多元函数的Taylor公式与极值

- \mathbf{R}^n 中点集的初步知识
- 多元函数的极限与连续
- 多元数量值函数的偏导数与全微分
- 多元函数的Taylor公式与极值
- 多元向量值函数的导数与微分

- \mathbf{R}^n 中点集的初步知识
- 多元函数的极限与连续
- 多元数量值函数的偏导数与全微分
- 多元函数的Taylor公式与极值
- 多元向量值函数的导数与微分
- 多元函数微分学的几何应用

第一节 n维Euclid空间 R^n 中点集的初步知识

第一节 n维Euclid空间 R^n 中点集的初步知识

本节主要内容:

• n维Euclid空间 \mathbf{R}^n

- n维Euclid空间**R**ⁿ
- Rⁿ中点列的极限

- n维Euclid空间 \mathbf{R}^n
- \mathbf{R}^n 中点列的极限
- \bullet \mathbf{R}^n 中的开集和闭集

- n维Euclid空间 \mathbf{R}^n
- \bullet \mathbf{R}^n 中的开集和闭集
- Rⁿ中的紧集与区域

 \mathbf{R}^n 为n个实数集 \mathbf{R} 的Descartes乘积, 即

 \mathbf{R}^n 为n个实数集 \mathbf{R} 的Descartes乘积, 即

$$\mathbf{R}^n = \underbrace{\mathbf{R} \times \mathbf{R} \times \cdots \mathbf{R}}_{n}$$

\mathbf{R}^n 为n个实数集 \mathbf{R} 的Descartes乘积, 即

$$\mathbf{R}^{n} = \underbrace{\mathbf{R} \times \mathbf{R} \times \cdots \mathbf{R}}_{n}$$
$$= \{ \mathbf{x} = (x_{1}, x_{2}, \cdots, x_{n}) | x_{i} \in \mathbf{R}, i = 1, 2, \cdots, n \}$$

 \mathbf{R}^n 为n个实数集 \mathbf{R} 的Descartes乘积, 即

$$\mathbf{R}^{n} = \underbrace{\mathbf{R} \times \mathbf{R} \times \cdots \mathbf{R}}_{n}$$
$$= \{ \mathbf{x} = (x_{1}, x_{2}, \cdots, x_{n}) | x_{i} \in \mathbf{R}, i = 1, 2, \cdots, n \}$$

n维实向量,

 \mathbf{R}^n 为n个实数集 \mathbf{R} 的Descartes乘积, 即

$$\mathbf{R}^{n} = \underbrace{\mathbf{R} \times \mathbf{R} \times \cdots \mathbf{R}}_{n}$$
$$= \{ \mathbf{x} = (x_{1}, x_{2}, \cdots, x_{n}) | x_{i} \in \mathbf{R}, i = 1, 2, \cdots, n \}$$

n维实向量,也记作 $x = \{x_1, x_2, \dots, x_n\}.$

 \mathbf{R}^n 为n个实数集 \mathbf{R} 的Descartes乘积, 即

$$\mathbf{R}^{n} = \underbrace{\mathbf{R} \times \mathbf{R} \times \cdots \mathbf{R}}_{n}$$
$$= \{ \mathbf{x} = (x_{1}, x_{2}, \cdots, x_{n}) | x_{i} \in \mathbf{R}, i = 1, 2, \cdots, n \}$$

n维实向量,也记作 $x = \{x_1, x_2, \dots, x_n\}.$

 \mathbf{R}^n 为n个实数集 \mathbf{R} 的Descartes乘积, 即

$$\mathbf{R}^{n} = \underbrace{\mathbf{R} \times \mathbf{R} \times \cdots \mathbf{R}}_{n}$$
$$= \{ \mathbf{x} = (x_{1}, x_{2}, \cdots, x_{n}) | x_{i} \in \mathbf{R}, i = 1, 2, \cdots, n \}$$

n维实向量,也记作 $x = \{x_1, x_2, \dots, x_n\}.$

给定:
$$\mathbf{x} = (x_1, x_2, \cdots, x_n) \in \mathbf{R}^n$$
, $\mathbf{y} = (y_1, y_2, \cdots, y_n) \in \mathbf{R}^n$, 以及 $\alpha \in \mathbf{R}$, 定义

 \mathbf{R}^n 为n个实数集 \mathbf{R} 的Descartes乘积, 即

$$\mathbf{R}^{n} = \underbrace{\mathbf{R} \times \mathbf{R} \times \cdots \mathbf{R}}_{n}$$
$$= \{ \mathbf{x} = (x_{1}, x_{2}, \cdots, x_{n}) | x_{i} \in \mathbf{R}, i = 1, 2, \cdots, n \}$$

n维实向量,也记作 $x = \{x_1, x_2, \dots, x_n\}.$

给定:
$$\mathbf{x} = (x_1, x_2, \cdots, x_n) \in \mathbf{R}^n$$
, $\mathbf{y} = (y_1, y_2, \cdots, y_n) \in \mathbf{R}^n$, 以及 $\alpha \in \mathbf{R}$, 定义 $\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, \cdots, x_n + y_n)$,

 \mathbf{R}^n 为n个实数集 \mathbf{R} 的Descartes乘积, 即

$$\mathbf{R}^{n} = \underbrace{\mathbf{R} \times \mathbf{R} \times \cdots \mathbf{R}}_{n}$$
$$= \{ \mathbf{x} = (x_{1}, x_{2}, \cdots, x_{n}) | x_{i} \in \mathbf{R}, i = 1, 2, \cdots, n \}$$

n维实向量,也记作 $x = \{x_1, x_2, \dots, x_n\}.$

给定:
$$\mathbf{x} = (x_1, x_2, \cdots, x_n) \in \mathbf{R}^n$$
, $\mathbf{y} = (y_1, y_2, \cdots, y_n) \in \mathbf{R}^n$, 以及 $\alpha \in \mathbf{R}$, 定义 $\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, \cdots, x_n + y_n)$, $\alpha \mathbf{x} = (\alpha x_1, \alpha x_2, \cdots, \alpha x_n)$,

 \mathbf{R}^n 为n个实数集 \mathbf{R} 的Descartes乘积, 即

$$\mathbf{R}^{n} = \underbrace{\mathbf{R} \times \mathbf{R} \times \cdots \mathbf{R}}_{n}$$
$$= \{ \mathbf{x} = (x_{1}, x_{2}, \cdots, x_{n}) | x_{i} \in \mathbf{R}, i = 1, 2, \cdots, n \}$$

n维实向量,也记作 $x = \{x_1, x_2, \cdots, x_n\}.$

给定:
$$\mathbf{x} = (x_1, x_2, \cdots, x_n) \in \mathbf{R}^n$$
, $\mathbf{y} = (y_1, y_2, \cdots, y_n) \in \mathbf{R}^n$, 以及 $\alpha \in \mathbf{R}$, 定义 $\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, \cdots, x_n + y_n)$, $\alpha \mathbf{x} = (\alpha x_1, \alpha x_2, \cdots, \alpha x_n)$, 于是 $\mathbf{x} + \mathbf{y} \in \mathbf{R}^n$, $\alpha \mathbf{x} \in \mathbf{R}^n$

 \mathbf{R}^n 中的向量也称为点, x 的第i个分量 x_i 称为点x的第i个坐标.

 \mathbf{R}^n 中的向量也称为点, \mathbf{x} 的第i个分量 x_i 称为点 \mathbf{x} 的第i个坐标. 特殊地,

 \mathbf{R}^n 中的向量也称为点, \mathbf{x} 的第i个分量 \mathbf{x}_i 称为点 \mathbf{x} 的第i个坐标.

特殊地, $\mathbf{R}^2=\{(x,y)|x\in\mathbf{R},y\in\mathbf{R}\}$ ——二维实向量空间

 \mathbf{R}^n 中的向量也称为点, \mathbf{x} 的第i个分量 \mathbf{x}_i 称为点 \mathbf{x} 的第i个坐标.

特殊地, $\mathbf{R}^2 = \{(x,y)|x \in \mathbf{R}, y \in \mathbf{R}\}$ ——二维实向量空间

 $\mathbf{R}^3 = \{(x,y,z)|x\in\mathbf{R},y\in\mathbf{R},z\in\mathbf{R}\}$ ——三维实向量空间

 \mathbf{R}^n 中的向量也称为点, \mathbf{x} 的第i个分量 x_i 称为点 \mathbf{x} 的第i个坐标.

特殊地, $\mathbf{R}^2 = \{(x,y)|x \in \mathbf{R}, y \in \mathbf{R}\}$ ——二维实向量空间

$$\mathbf{R}^3 = \{(x,y,z)|x\in\mathbf{R},y\in\mathbf{R},z\in\mathbf{R}\}$$
 ——三维实向量空间

 \mathbf{R}^n 中的向量也称为点, \mathbf{x} 的第i个分量 x_i 称为点 \mathbf{x} 的第i个坐标.

特殊地, $\mathbf{R}^2 = \{(x,y)|x \in \mathbf{R}, y \in \mathbf{R}\}$ ——二维实向量空间

$$\mathbf{R}^3 = \{(x,y,z)|x\in\mathbf{R},y\in\mathbf{R},z\in\mathbf{R}\}$$
 ——三维实向量空间

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$

 \mathbf{R}^n 中的向量也称为点, \mathbf{x} 的第i个分量 x_i 称为点 \mathbf{x} 的第i个坐标.

特殊地, $\mathbf{R}^2=\{(x,y)|x\in\mathbf{R},y\in\mathbf{R}\}$ ——二维实向量空间

$$\mathbf{R}^3 = \{(x,y,z)|x\in\mathbf{R},y\in\mathbf{R},z\in\mathbf{R}\}$$
一一三维实向量空间

• an 4 x = an 4 x =

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \sum_{i=1}^{n} x_i y_i$$

则 \mathbf{R}^n 按照上述内积构成一个n维Euclid空间.

距离的定义

距离的定义

• \mathbf{R}^n 中向量x的长度(或范数)定义为

• \mathbf{R}^n 中向量x的长度(或范数)定义为

$$\| \boldsymbol{x} \| = \sqrt{\langle \boldsymbol{x}, \boldsymbol{x} \rangle} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

• Rⁿ中向量x的长度(或范数)定义为

$$\| x \| = \sqrt{\langle x, x \rangle} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

• \mathbf{R}^n 中向量x的长度(或范数)定义为

$$\| x \| = \sqrt{\langle x, x \rangle} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

$$\rho(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}|| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

• \mathbf{R}^n 中向量x的长度(或范数)定义为

$$\| x \| = \sqrt{\langle x, x \rangle} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

• \mathbf{R}^n 中任意两点x与y之间的距离 定义为:

$$\rho(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}|| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

• 可以证明距离 $\rho(x,y)$ 满足下列性质:

• \mathbf{R}^n 中向量x的长度(或范数)定义为

$$\| x \| = \sqrt{\langle x, x \rangle} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

$$\rho(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}|| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

- 可以证明距离 $\rho(x,y)$ 满足下列性质:
 - 非负性 $\rho(\mathbf{x}, \mathbf{y}) \geqslant 0, \, \rho(\mathbf{x}, \mathbf{y}) = 0 \Leftrightarrow \mathbf{x} = \mathbf{y};$

• \mathbf{R}^n 中向量x的长度(或范数)定义为

$$\| x \| = \sqrt{\langle x, x \rangle} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

$$\rho(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}|| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

- 可以证明距离 $\rho(x,y)$ 满足下列性质:
 - 非负性 $\rho(\mathbf{x}, \mathbf{y}) \geqslant 0, \, \rho(\mathbf{x}, \mathbf{y}) = 0 \Leftrightarrow \mathbf{x} = \mathbf{y};$
 - 对称性 $\rho(\mathbf{x}, \mathbf{y}) = \rho(\mathbf{y}, \mathbf{x});$

• \mathbf{R}^n 中向量x的长度(或范数)定义为

$$\| x \| = \sqrt{\langle x, x \rangle} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

$$\rho(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}|| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

- 可以证明距离 $\rho(x,y)$ 满足下列性质:
 - 非负性 $\rho(\mathbf{x}, \mathbf{y}) \geqslant 0, \, \rho(\mathbf{x}, \mathbf{y}) = 0 \Leftrightarrow \mathbf{x} = \mathbf{y};$
 - 对称性 $\rho(\mathbf{x}, \mathbf{y}) = \rho(\mathbf{y}, \mathbf{x});$
 - 三角不等式 $\rho(x, y) \leq \rho(x, z) + \rho(y, z)$.

定义1.1 点列的极限

定义1.1 点列的极限

设 $\{x_k\}$ 是 \mathbf{R}^n 中的一个点列,其中 $x_k = (x_{k,1}, x_{k,2}, \cdots, x_{k,n}),$

定义1.1 点列的极限

设 $\{x_k\}$ 是 \mathbf{R}^n 中的一个点列, 其中 $x_k = (x_{k,1}, x_{k,2}, \cdots, x_{k,n}),$

又设 $\mathbf{a} = (a_1, a_2, \cdots, a_n)$ 是 \mathbf{R}^n 中的一固定点,若当 $k \to \infty$ 时,

定义1.1 点列的极限

设{ x_k }是 \mathbf{R}^n 中的一个点列, 其中 $x_k = (x_{k,1}, x_{k,2}, \dots, x_{k,n}),$

又设 $\mathbf{a} = (a_1, a_2, \cdots, a_n)$ 是 \mathbf{R}^n 中的一固定点,若当 $k \to \infty$ 时,

 $\rho(\boldsymbol{x}_k, \boldsymbol{a}) \to 0, \; \boldsymbol{\square}$

定义1.1 点列的极限

设{ x_k }是 \mathbf{R}^n 中的一个点列, 其中 $x_k = (x_{k,1}, x_{k,2}, \cdots, x_{k,n})$,

又设 $\mathbf{a} = (a_1, a_2, \dots, a_n)$ 是 \mathbf{R}^n 中的一固定点,若当 $k \to \infty$ 时,

 $\rho(\mathbf{x}_k, \mathbf{a}) \to 0, \; \mathbb{P}$

 $\forall \varepsilon > 0, \exists N \in \mathbf{N}_+,$ 使得 $\forall k > N,$ 恒有 $\parallel \mathbf{x}_k - \mathbf{a} \parallel < \varepsilon,$

定义1.1 点列的极限

设{ x_k }是 \mathbf{R}^n 中的一个点列, 其中 $x_k = (x_{k,1}, x_{k,2}, \dots, x_{k,n}),$

又设 $\mathbf{a} = (a_1, a_2, \dots, a_n)$ 是 \mathbf{R}^n 中的一固定点,若当 $k \to \infty$ 时,

 $\rho(\mathbf{x}_k, \mathbf{a}) \to 0, \; \mathbb{I}$

 $\forall \varepsilon > 0, \exists N \in \mathbf{N}_+,$ 使得 $\forall k > N,$ 恒有 $\parallel \mathbf{x}_k - \mathbf{a} \parallel < \varepsilon,$

则称点列 $\{x_k\}$ 的极限存在, 且称a为它的极限, 记为

定义1.1 点列的极限

设{ x_k }是 \mathbf{R}^n 中的一个点列, 其中 $x_k = (x_{k,1}, x_{k,2}, \dots, x_{k,n}),$

又设 $\mathbf{a} = (a_1, a_2, \dots, a_n)$ 是 \mathbf{R}^n 中的一固定点,若当 $k \to \infty$ 时,

 $\rho(\mathbf{x}_k, \mathbf{a}) \to 0, \; \mathbb{I}$

 $\forall \varepsilon > 0, \exists N \in \mathbf{N}_+, \mathbf{使} \forall k > N, \mathbf{恒} \mathbf{f} \parallel \mathbf{x}_k - \mathbf{a} \parallel < \varepsilon,$

则称点列 $\{x_k\}$ 的极限存在,且称a为它的极限,记为

$$\lim_{k\to\infty} x_k = a \quad \text{if } x_k \to a \ (k\to\infty).$$

定义1.1 点列的极限

设{ x_k }是 \mathbf{R}^n 中的一个点列, 其中 $x_k = (x_{k,1}, x_{k,2}, \cdots, x_{k,n}),$

又设 $\mathbf{a} = (a_1, a_2, \dots, a_n)$ 是 \mathbf{R}^n 中的一固定点,若当 $k \to \infty$ 时,

 $\rho(\mathbf{x}_k, \mathbf{a}) \to 0, \; \mathbb{I} \mathbb{I}$

 $\forall \varepsilon > 0, \exists N \in \mathbf{N}_+, \mathbf{使} \forall k > N, \mathbf{恒} \mathbf{f} \parallel \mathbf{x}_k - \mathbf{a} \parallel < \varepsilon,$

则称点列 $\{x_k\}$ 的极限存在, 且称a为它的极限, 记为

$$\lim_{k\to\infty} x_k = a$$
 或 $x_k \to a \ (k\to\infty)$.

这时也称点列 $\{x_k\}$ 收敛于a.

设点列 $\{x_k\} \in \mathbf{R}^n$, 点 $a \in \mathbf{R}^n$, 则 $\lim_{k \to \infty} x_k = a$ 的充分必要条件是

设点列 $\{x_k\}\in\mathbf{R}^n,$ 点 $a\in\mathbf{R}^n,$ 则 $\lim_{k\to\infty}x_k=a$ 的充分必要条件是 $\forall i=1,2,\cdots,n,$ 都有 $\lim_{k\to\infty}x_{k,i}=a_i.$

设点列
$$\{x_k\}\in\mathbf{R}^n,$$
 点 $a\in\mathbf{R}^n,$ 则 $\lim_{k\to\infty}x_k=a$ 的充分必要条件是 $\forall i=1,2,\cdots,n,$ 都有 $\lim_{k\to\infty}x_{k,i}=a_i.$

定理1.2

设点列 $\{m{x}_k\}\in\mathbf{R}^n,\;$ 点 $m{a}\in\mathbf{R}^n,\;$ 则 $\lim_{k o\infty}m{x}_k=m{a}$ 的充分必要条件是 $orall i=1,2,\cdots,n,\;$ 都有 $\lim_{k o\infty}m{x}_{k,i}=a_i.$

定理1.2

设 $\{x_k\}$ 是 \mathbf{R}^n 中的收敛点列,则

设点列 $\{x_k\}\in\mathbf{R}^n,$ 点 $a\in\mathbf{R}^n,$ 则 $\lim_{k\to\infty}x_k=a$ 的充分必要条件是 $\forall i=1,2,\cdots,n,$ 都有 $\lim_{k\to\infty}x_{k,i}=a_i.$

定理1.2

设 $\{x_k\}$ 是 \mathbf{R}^n 中的收敛点列,则

 $(1) \{x_k\}$ 的极限是唯一的;

设点列 $\{m{x}_k\}\in\mathbf{R}^n,\;$ 点 $m{a}\in\mathbf{R}^n,\;$ 则 $\lim_{k o\infty}m{x}_k=m{a}$ 的充分必要条件是 $orall i=1,2,\cdots,n,\;$ 都有 $\lim_{k o\infty}m{x}_{k,i}=a_i.$

定理1.2

设 $\{x_k\}$ 是 \mathbf{R}^n 中的收敛点列,则

- (1) $\{x_k\}$ 的极限是唯一的;
- $(2) \{x_k\}$ 是有界点列,即

设点列 $\{x_k\}\in\mathbf{R}^n,$ 点 $a\in\mathbf{R}^n,$ 则 $\lim_{k\to\infty}x_k=a$ 的充分必要条件是 $\forall i=1,2,\cdots,n,$ 都有 $\lim_{k\to\infty}x_{k,i}=a_i.$

定理1.2

设 $\{x_k\}$ 是 \mathbf{R}^n 中的收敛点列,则

- (1) $\{x_k\}$ 的极限是唯一的;
- $(2) \{x_k\}$ 是有界点列, 即

$$\exists M (\in \mathbf{R}) > 0$$
, 使得 $\forall k \in \mathbf{N}_+$, 恒有 $\parallel \mathbf{x}_k \parallel \leqslant M$;

设点列 $\{m{x}_k\}\in\mathbf{R}^n,\;$ 点 $m{a}\in\mathbf{R}^n,\;$ 则 $\lim_{k o\infty}m{x}_k=m{a}$ 的充分必要条件是 $orall i=1,2,\cdots,n,\;$ 都有 $\lim_{k o\infty}m{x}_{k,i}=a_i.$

定理1.2

设 $\{x_k\}$ 是 \mathbf{R}^n 中的收敛点列,则

- (1) $\{x_k\}$ 的极限是唯一的;
- $(2) \{x_k\}$ 是有界点列, 即

$$\exists M (\in \mathbf{R}) > 0$$
, 使得 $\forall k \in \mathbf{N}_+$, 恒有 $\parallel \mathbf{x}_k \parallel \leqslant M$;

(3) 若 $x_k \rightarrow a, y_k \rightarrow b$ 且 $\alpha \in \mathbf{R}$, 则

设点列 $\{m{x}_k\}\in\mathbf{R}^n,$ 点 $m{a}\in\mathbf{R}^n,$ 则 $\lim_{k o\infty}m{x}_k=m{a}$ 的充分必要条件是 $orall i=1,2,\cdots,n,$ 都有 $\lim_{k o\infty}x_{k,i}=a_i.$

定理1.2

设 $\{x_k\}$ 是 \mathbf{R}^n 中的收敛点列,则

- (1) $\{x_k\}$ 的极限是唯一的;
- (2) $\{x_k\}$ 是有界点列,即

$$\exists M (\in \mathbf{R}) > 0$$
, 使得 $\forall k \in \mathbf{N}_+$, 恒有 $\parallel \mathbf{x}_k \parallel \leqslant M$;

(3) 若 $x_k \to a, y_k \to b$ 且 $\alpha \in \mathbb{R}$, 则 $x_k \pm y_k \to a \pm b, \, \alpha x_k \to \alpha a, \, < x_k, y_k > \to < a, b >;$

设点列 $\{x_k\}\in\mathbf{R}^n,$ 点 $a\in\mathbf{R}^n,$ 则 $\lim_{k\to\infty}x_k=a$ 的充分必要条件是 $\forall i=1,2,\cdots,n,$ 都有 $\lim_{k\to\infty}x_{k,i}=a_i.$

定理1.2

设 $\{x_k\}$ 是 \mathbf{R}^n 中的收敛点列,则

- (1) $\{x_k\}$ 的极限是唯一的;
- (2) $\{x_k\}$ 是有界点列,即

$$\exists M (\in \mathbf{R}) > 0$$
, 使得 $\forall k \in \mathbf{N}_+$, 恒有 $\parallel \mathbf{x}_k \parallel \leqslant M$;

- (3) 若 $x_k \to a$, $y_k \to b$ 且 $\alpha \in \mathbf{R}$, 则 $x_k \pm y_k \to a \pm b$, $\alpha x_k \to \alpha a$, $\langle x_k, y_k \rangle \to \langle a, b \rangle$;
- (4) 若 $\{x_k\}$ 收敛于a,则它的任一子(点)列也收敛于a.

由于 \mathbb{R}^n 中的向量不能比较大小,也不能相除,因此数列极限 中与单调性、保序性确界以及商有关的概念和命题不能直接 推广到 \mathbf{R}^n 的点列中.

由于 \mathbf{R}^n 中的向量不能比较大小,也不能相除,因此数列极限中与单调性、保序性确界以及商有关的概念和命题不能直接推广到 \mathbf{R}^n 的点列中.

下面的定理与Cauchy收敛原理在 \mathbf{R}^n 中仍然成立.

由于 \mathbf{R}^n 中的向量不能比较大小,也不能相除,因此数列极限中与单调性、保序性确界以及商有关的概念和命题不能直接推广到 \mathbf{R}^n 的点列中.

下面的定理与Cauchy收敛原理在 \mathbb{R}^n 中仍然成立.

定理1.3 Bolzano-Weierstrass定理

 \mathbf{R}^n 中的有界点列必有收敛子列.

由于 \mathbf{R}^n 中的向量不能比较大小,也不能相除,因此数列极限中与单调性、保序性确界以及商有关的概念和命题不能直接推广到 \mathbf{R}^n 的点列中.

下面的定理与Cauchy收敛原理在 \mathbb{R}^n 中仍然成立.

定理1.3 Bolzano-Weierstrass定理

 \mathbf{R}^n 中的有界点列必有收敛子列.

• \mathbf{R}^n 中点列 $\{x_k\}$ 的收敛子列的极限称为 $\{x_k\}$ 的极限点.

• 设 $\{x_k\}$ 是 \mathbf{R}^n 中的点列, 若

• 设 $\{x_k\}$ 是 \mathbb{R}^n 中的点列, 若

 $\forall \varepsilon > 0, \exists N \in \mathbf{N}_+,$ 使得 $\forall k > N \mathbf{Q} p \in \mathbf{N}_+,$ 恒有 $\parallel \mathbf{x}_{k+p} - \mathbf{x}_k \parallel < \varepsilon,$

• 设 $\{x_k\}$ 是 \mathbb{R}^n 中的点列, 若

 $\forall \varepsilon > 0, \exists N \in \mathbf{N}_+,$ 使得 $\forall k > N$ 及 $p \in \mathbf{N}_+,$ 恒有 $\parallel \mathbf{x}_{k+p} - \mathbf{x}_k \parallel < \varepsilon,$ 则 $\{\mathbf{x}_k\}$ 是 \mathbf{R}^n 中的基本点列或Cauchy点列.

• 设 $\{x_k\}$ 是 \mathbf{R}^n 中的点列, 若

 $\forall \varepsilon > 0, \exists N \in \mathbf{N}_+,$ 使得 $\forall k > N \mathcal{D} p \in \mathbf{N}_+,$ 恒有 $\parallel \mathbf{x}_{k+p} - \mathbf{x}_k \parallel < \varepsilon,$ 则 $\{\mathbf{x}_k\}$ 是 \mathbf{R}^n 中的基本点列或Cauchy点列.

• 由定理1.1可知, $\{x_k\}$ 是Cauchy点列的充要条件是

• 设 $\{x_k\}$ 是 \mathbb{R}^n 中的点列, 若

 $\forall \varepsilon > 0, \exists N \in \mathbf{N}_+,$ 使得 $\forall k > N$ 及 $p \in \mathbf{N}_+,$ 恒有 $\parallel \mathbf{x}_{k+p} - \mathbf{x}_k \parallel < \varepsilon,$ 则 $\{\mathbf{x}_k\}$ 是 \mathbf{R}^n 中的基本点列或Cauchy点列.

• 由定理1.1可知, $\{x_k\}$ 是Cauchy点列的充要条件是 对 $\forall i=1,2,\cdots,n$ 有 $\{x_{k,i}\}$ 都是Cauchy列.

• 设 $\{x_k\}$ 是 \mathbb{R}^n 中的点列, 若

 $\forall \varepsilon > 0, \exists N \in \mathbf{N}_+,$ 使得 $\forall k > N \mathbf{D} p \in \mathbf{N}_+,$ 恒有 $\parallel \mathbf{x}_{k+p} - \mathbf{x}_k \parallel < \varepsilon,$ 则 $\{\mathbf{x}_k\}$ 是 \mathbf{R}^n 中的基本点列或Cauchy点列.

• 由定理1.1可知, $\{x_k\}$ 是Cauchy点列的充要条件是otagot

定理1.4 Cauchy收敛定理

 \mathbf{R}^n 中的点列 $\{x_k\}$ 收敛于 \mathbf{R}^n 中的点的充分必要条件为 $\{x_k\}$ 是 \mathbf{R}^n 中的Cauchy点列.

• 设 $\{x_k\}$ 是 \mathbf{R}^n 中的点列, 若

 $\forall \varepsilon > 0, \exists N \in \mathbf{N}_+,$ 使得 $\forall k > N \mathcal{D} p \in \mathbf{N}_+,$ 恒有 $\parallel \mathbf{x}_{k+p} - \mathbf{x}_k \parallel < \varepsilon,$ 则 $\{\mathbf{x}_k\}$ 是 \mathbf{R}^n 中的基本点列或Cauchy点列.

• 由定理1.1可知, $\{x_k\}$ 是Cauchy点列的充要条件是 $\forall i=1,2,\cdots,n$ 有 $\{x_{k,i}\}$ 都是Cauchy列.

定理1.4 Cauchy收敛定理

 \mathbf{R}^n 中的点列 $\{x_k\}$ 收敛于 \mathbf{R}^n 中的点的充分必要条件为 $\{x_k\}$ 是 \mathbf{R}^n 中的Cauchy点列.

• 这个定理刻画了空间 \mathbf{R}^n 的完备性,就是说, \mathbf{R}^n 中的Cauchy 点列必收敛于 \mathbf{R}^n 中的点. 现代数学中就是以此作为抽象空间完备性的定义的.

R^n 中的开集与闭集

定义1.2

定义1.2

设A是 \mathbf{R}^n 中的一个点集, $a \in \mathbf{R}^n$,

定义1.2

设A是 \mathbf{R}^n 中的一个点集, $a \in \mathbf{R}^n$,

• 若存在A中的点列 $\{x_k\}, x_k \neq a(k=1,2,\cdots),$ 使得 $x_k \rightarrow a(k \rightarrow \infty),$ 则称a是A的一个聚点.

定义1.2

设A是 \mathbf{R}^n 中的一个点集, $a \in \mathbf{R}^n$,

- 若存在A中的点列 $\{x_k\}, x_k \neq a(k=1,2,\cdots),$ 使得 $x_k \rightarrow a(k \rightarrow \infty),$ 则称a是A的一个聚点.
- A的所有聚点构成的集合称为A的导集, 记为A'.

定义1.2

设A是 \mathbf{R}^n 中的一个点集, $\mathbf{a} \in \mathbf{R}^n$,

- 若存在A中的点列 $\{x_k\}, x_k \neq a(k=1,2,\cdots),$ 使得 $x_k \rightarrow a(k \rightarrow \infty),$ 则称a是A的一个聚点.
- A的所有聚点构成的集合称为A的导集, 记为A'.
- 集合 $\bar{A} = A \cup A'$ 称为A的闭包.

定义1.2

设A是 \mathbf{R}^n 中的一个点集, $\mathbf{a} \in \mathbf{R}^n$,

- 若存在A中的点列 $\{x_k\}, x_k \neq a(k=1,2,\cdots),$ 使得 $x_k \rightarrow a(k \rightarrow \infty),$ 则称a是A的一个聚点.
- A的所有聚点构成的集合称为A的导集, 记为A'.
- 若 $a \in A$, 但 $a \notin A'$, 则称a为A的孤立点.

定义1.2

设A是 \mathbf{R}^n 中的一个点集, $a \in \mathbf{R}^n$,

- 若存在A中的点列 $\{x_k\}, x_k \neq a(k=1,2,\cdots),$ 使得 $x_k \rightarrow a(k \rightarrow \infty),$ 则称a是A的一个聚点.
- A的所有聚点构成的集合称为A的导集, 记为A'.
- 集合 $\bar{A} = A \cup A'$ 称为A的闭包.
- 若 $a \in A$, 但 $a \notin A'$, 则称a为A的孤立点.
- 若 $A' \subseteq A$, 则称A为闭集.

▶ 例如, 设 $A = \left\{ \left(\frac{1}{k}, \frac{1}{k} \right) \middle| k \in \mathbf{N}_+ \right\}$ 是一个平面点集, 则有

- ▶ 例如, 设 $A = \left\{ \left(\frac{1}{k}, \frac{1}{k}\right) \middle| k \in \mathbb{N}_+ \right\}$ 是一个平面点集, 则有
 - 点(0,0)是A的唯一聚点,且它不属于A;

- ▶ 例如, 设 $A = \left\{ \left(\frac{1}{k}, \frac{1}{k} \right) \middle| k \in \mathbb{N}_+ \right\}$ 是一个平面点集, 则有
 - 点(0,0)是A的唯一聚点,且它不属于A;
 - A的导集为 $A' = \{(0,0)\};$

- ▶ 例如, 设 $A = \left\{ \left(\frac{1}{k}, \frac{1}{k} \right) \middle| k \in \mathbf{N}_+ \right\}$ 是一个平面点集, 则有
 - 点(0,0)是A的唯一聚点, 且它不属于A;
 - A的导集为 $A' = \{(0,0)\}; A$ 的闭包为 $\bar{A} = A \cup \{(0,0)\};$

- ▶ 例如, 设 $A = \left\{ \left(\frac{1}{k}, \frac{1}{k} \right) \middle| k \in \mathbf{N}_+ \right\}$ 是一个平面点集, 则有
 - 点(0,0)是A的唯一聚点,且它不属于A;
 - A的导集为 $A' = \{(0,0)\}; A$ 的闭包为 $\bar{A} = A \cup \{(0,0)\};$
 - A 中所有点都是A 的孤立点, A不是闭集,

- ▶ 例如, 设 $A = \left\{ \left(\frac{1}{k}, \frac{1}{k} \right) \middle| k \in \mathbf{N}_+ \right\}$ 是一个平面点集, 则有
 - 点(0,0)是A的唯一聚点,且它不属于A;
 - A的导集为 $A' = \{(0,0)\}; A$ 的闭包为 $\bar{A} = A \cup \{(0,0)\};$
 - A 中所有点都是A 的孤立点, A不是闭集,
 但Ā = A∪ {(0,0)}是闭集.

- ▶ 例如, 设 $A = \left\{ \left(\frac{1}{k}, \frac{1}{k} \right) \middle| k \in \mathbf{N}_+ \right\}$ 是一个平面点集, 则有
 - 点(0,0)是A的唯一聚点,且它不属于A;
 - A的导集为 $A' = \{(0,0)\}; A$ 的闭包为 $\bar{A} = A \cup \{(0,0)\};$
 - A 中所有点都是A 的孤立点, A不是闭集,
 但Ā = A ∪ {(0,0)}是闭集.
- ▶ 闭集对极限的运算是封闭的,即若A 是闭集, $\{x_k\}$ 是A中的任一点列,且 $x_k \to a(k \to \infty)$,则 $a \in A$,反之亦真.

- ▶ 例如, 设 $A = \left\{ \left(\frac{1}{k}, \frac{1}{k} \right) \middle| k \in \mathbb{N}_+ \right\}$ 是一个平面点集, 则有
 - 点(0,0)是A的唯一聚点,且它不属于A;
 - A的导集为 $A' = \{(0,0)\}; A$ 的闭包为 $\bar{A} = A \cup \{(0,0)\};$
 - A 中所有点都是A 的孤立点, A不是闭集,
 但Ā = A ∪ {(0,0)}是闭集.
- ▶ 闭集对极限的运算是封闭的,即若A 是闭集, $\{x_k\}$ 是A中的任一点列,且 $x_k \to a(k \to \infty)$,则 $a \in A$,反之亦真.
- ▶ 若A' = ∅, 则A 必为闭集, 从而单点集和有限点集都是闭集.

设 $a \in \mathbb{R}^n$, $\delta > 0$, 称点集

设 $a \in \mathbb{R}^n$, $\delta > 0$, 称点集

$$U(\boldsymbol{a}, \delta) = \{ \boldsymbol{x} \in \mathbf{R}^n | \parallel \boldsymbol{x} - \boldsymbol{a} \parallel < \delta \}$$

为以a为中心、 δ 为半径的开球或点a的 δ <mark>邻域</mark>,

设 $a \in \mathbf{R}^n$, $\delta > 0$, 称点集

$$U(\boldsymbol{a}, \delta) = \{ \boldsymbol{x} \in \mathbf{R}^n | \parallel \boldsymbol{x} - \boldsymbol{a} \parallel < \delta \}$$

为以a为中心、 δ 为半径的开球或点a的 δ <mark>邻域</mark>,

点a的去心 δ 邻域为: $\mathring{U}(a,\delta) = U(a,\delta) \setminus \{a\}.$

设 $a \in \mathbb{R}^n$, $\delta > 0$, 称点集

$$U(\boldsymbol{a}, \delta) = \{ \boldsymbol{x} \in \mathbf{R}^n | \parallel \boldsymbol{x} - \boldsymbol{a} \parallel < \delta \}$$

为以a为中心、 δ 为半径的开球或点a的 δ 邻域,

点a的去心 δ 邻域为: $\mathring{U}(a,\delta) = U(a,\delta) \setminus \{a\}.$

若不需要强调邻域半径 δ , 它们分别简记为U(a) 和 $\mathring{U}(a)$.

设 $a \in \mathbf{R}^n$, $\delta > 0$, 称点集

$$U(\boldsymbol{a}, \delta) = \{ \boldsymbol{x} \in \mathbf{R}^n | \parallel \boldsymbol{x} - \boldsymbol{a} \parallel < \delta \}$$

为以a为中心、 δ 为半径的开球或点a的 δ <mark>邻域</mark>,

点**a**的去心 δ 邻域为: $\mathring{U}(\mathbf{a}, \delta) = U(\mathbf{a}, \delta) \setminus \{\mathbf{a}\}.$

若不需要强调邻域半径 δ , 它们分别简记为 $U(\mathbf{a})$ 和 $\mathring{U}(\mathbf{a})$.

ightharpoonup 有了邻域的概念, \mathbf{R}^n 中点列极限的概念可以用邻域来刻画.

设 $a \in \mathbb{R}^n$, $\delta > 0$, 称点集

$$U(\boldsymbol{a}, \delta) = \{ \boldsymbol{x} \in \mathbf{R}^n | \parallel \boldsymbol{x} - \boldsymbol{a} \parallel < \delta \}$$

为以a为中心、 δ 为半径的开球或点a的 δ <mark>邻域</mark>,

点a的去心 δ 邻域为: $\mathring{U}(a,\delta) = U(a,\delta) \setminus \{a\}.$

若不需要强调邻域半径 δ , 它们分别简记为 $U(\mathbf{a})$ 和 $\mathring{U}(\mathbf{a})$.

▶ 有了邻域的概念, \mathbf{R}^n 中点列极限的概念可以用邻域来刻画. 设 $\{x_k\}$ 是 \mathbf{R}^n 中的一个点列, 若

设 $a \in \mathbf{R}^n$, $\delta > 0$, 称点集

$$U(\boldsymbol{a}, \delta) = \{ \boldsymbol{x} \in \mathbf{R}^n | \parallel \boldsymbol{x} - \boldsymbol{a} \parallel < \delta \}$$

为以a为中心、 δ 为半径的开球或点a的 δ <mark>邻域</mark>,

点a的去心 δ 邻域为: $\mathring{U}(a,\delta) = U(a,\delta) \setminus \{a\}$.

若不需要强调邻域半径 δ , 它们分别简记为 $U(\mathbf{a})$ 和 $\mathring{U}(\mathbf{a})$.

▶ 有了邻域的概念, \mathbf{R}^n 中点列极限的概念可以用邻域来刻画. $\mathbf{\mathcal{G}}\{x_k\}$ 是 \mathbf{R}^n 中的一个点列, 若

 $\forall \varepsilon > 0, \exists N \in \mathbf{N}_+, \mathbf{\'e} \exists \forall k > N, \mathbf{\'e} \mathbf{\'e} \mathbf{x}_k \in U(\mathbf{a}, \varepsilon),$

设 $a \in \mathbf{R}^n$, $\delta > 0$, 称点集

$$U(\boldsymbol{a}, \delta) = \{ \boldsymbol{x} \in \mathbf{R}^n | \parallel \boldsymbol{x} - \boldsymbol{a} \parallel < \delta \}$$

为以a为中心、 δ 为半径的开球或点a的 δ <mark>邻域</mark>,

点a的去心 δ 邻域为: $\mathring{U}(a,\delta) = U(a,\delta) \setminus \{a\}$.

若不需要强调邻域半径 δ , 它们分别简记为 $U(\mathbf{a})$ 和 $\mathring{U}(\mathbf{a})$.

▶ 有了邻域的概念, \mathbf{R}^n 中点列极限的概念可以用邻域来刻画. 设 $\{x_k\}$ 是 \mathbf{R}^n 中的一个点列, 若

$$\forall \varepsilon > 0, \exists N \in \mathbf{N}_+,$$
使得 $\forall k > N,$ 恒有 $\mathbf{x}_k \in U(\mathbf{a}, \varepsilon),$

则称点列 $\{x_k\}$ 收敛于a, a 是 $\{x_k\}$ 的极限.

设A是 \mathbf{R}^n 中的一个点集, $\mathbf{a} \in \mathbf{R}^n$, 则 $\mathbf{a} \in A'$ 的充要条件为

设A是 \mathbf{R}^n 中的一个点集, $\mathbf{a} \in \mathbf{R}^n$,则 $\mathbf{a} \in A'$ 的充要条件为 $\forall \varepsilon > 0, \ \mathring{U}(\mathbf{a}, \varepsilon) \cap A \neq \emptyset$,

设A是 \mathbf{R}^n 中的一个点集, $\mathbf{a} \in \mathbf{R}^n$,则 $\mathbf{a} \in A'$ 的充要条件为 $\forall \varepsilon > 0, \ \mathring{U}(\mathbf{a}, \varepsilon) \cap A \neq \emptyset$,

即a为A的聚点当且仅当a 的任何去心 ϵ 邻域中都含有A 中的点.

设A是 \mathbf{R}^n 中的一个点集, $\mathbf{a} \in \mathbf{R}^n$,则 $\mathbf{a} \in A'$ 的充要条件为 $\forall \varepsilon > 0, \ \mathring{U}(\mathbf{a}, \varepsilon) \cap A \neq \emptyset$,

即a为A的聚点当且仅当a 的任何去心 ϵ 邻域中都含有A 中的点.

定义1.4

设A是 \mathbf{R}^n 中的一个点集, $\mathbf{a} \in \mathbf{R}^n$, 则 $\mathbf{a} \in A'$ 的充要条件为 $\forall \varepsilon > 0, \ \mathring{U}(\mathbf{a}, \varepsilon) \cap A \neq \emptyset$,

即a为A的聚点当且仅当a 的任何去心 ϵ 邻域中都含有A 中的点.

定义1.4

设A是 \mathbf{R}^n 中的一个点集, $a \in \mathbf{R}^n$,

设A是 \mathbf{R}^n 中的一个点集, $\mathbf{a} \in \mathbf{R}^n$,则 $\mathbf{a} \in A'$ 的充要条件为 $\forall \varepsilon > 0, \ \mathring{U}(\mathbf{a}, \varepsilon) \cap A \neq \emptyset$,

即a为A的聚点当且仅当a 的任何去心 ε 邻域中都含有A 中的点.

定义1.4

设A是 \mathbf{R}^n 中的一个点集, $\mathbf{a} \in \mathbf{R}^n$,

(1) 若存在 $\delta > 0$ 使得 $U(a, \delta) \subseteq A$, 则称a 是集合A 的内点,

设A是 \mathbf{R}^n 中的一个点集, $\mathbf{a} \in \mathbf{R}^n$,则 $\mathbf{a} \in A'$ 的充要条件为 $\forall \varepsilon > 0, \ \mathring{U}(\mathbf{a}, \varepsilon) \cap A \neq \emptyset,$

即a为A的聚点当且仅当a 的任何去心 ε 邻域中都含有A 中的点.

定义1.4

设A是 \mathbf{R}^n 中的一个点集, $\mathbf{a} \in \mathbf{R}^n$,

(1) 若存在 $\delta > 0$ 使得 $U(a, \delta) \subseteq A$, 则称a 是集合A 的内点, 由A的所有内点构成的集合称为A 的内部, 记为 A° 或int A.

设A是 \mathbf{R}^n 中的一个点集, $\mathbf{a} \in \mathbf{R}^n$,则 $\mathbf{a} \in A'$ 的充要条件为 $\forall \varepsilon > 0, \ \mathring{U}(\mathbf{a}, \varepsilon) \cap A \neq \emptyset,$

即a为A的聚点当且仅当a 的任何去心 ϵ 邻域中都含有A 中的点.

定义1.4

设A是 \mathbf{R}^n 中的一个点集, $a \in \mathbf{R}^n$,

- (1) 若存在 $\delta > 0$ 使得 $U(a, \delta) \subseteq A$, 则称a 是集合A 的内点, 由A的所有内点构成的集合称为A 的内部, 记为 A° 或int A.
- (2) 若存在 $\delta > 0$ 使得 $U(a, \delta) = \emptyset$, 则称a 是集合A 的外点,

定理1.5

设A是 \mathbf{R}^n 中的一个点集, $\mathbf{a} \in \mathbf{R}^n$,则 $\mathbf{a} \in A'$ 的充要条件为 $\forall \varepsilon > 0, \ \mathring{U}(\mathbf{a}, \varepsilon) \cap A \neq \emptyset,$

即a为A的聚点当且仅当a 的任何去心 ε 邻域中都含有A 中的点.

定义1.4

设A是 \mathbf{R}^n 中的一个点集, $\mathbf{a} \in \mathbf{R}^n$,

- (1) 若存在 $\delta > 0$ 使得 $U(a, \delta) \subseteq A$, 则称a 是集合A 的内点, 由A的所有内点构成的集合称为A 的内部, 记为 A° 或int A.
- (2) 若存在 $\delta > 0$ 使得 $U(a, \delta) = \emptyset$, 则称a 是集合A 的外点, 由A的所有外点构成的集合称为A 的外部, 记为extA.

(3) 若对 $\forall \delta > 0$, $U(a, \delta)$ 既含有A中的点, 又含有A 的余集中的点, 则称a 是集合A 的边界点, 由A的所有边界点构成的集合称为A 的边界, 记为 ∂A .

- (3) 若对 $\forall \delta > 0$, $U(a, \delta)$ 既含有A中的点, 又含有A 的余集中的点, 则称a 是集合A 的边界点, 由A的所有边界点构成的集合称为A 的边界, 记为 ∂A .
- ▶ 由定义可知, \mathbf{R}^n 中的任一点是且仅是A 的内点、外点与边界点中的一种, 即

- (3) 若对 $\forall \delta > 0$, $U(a, \delta)$ 既含有A中的点, 又含有A 的余集中的点, 则称a 是集合A 的边界点, 由A的所有边界点构成的集合称为A 的边界, 记为 ∂A .
- ▶ 由定义可知, \mathbf{R}^n 中的任一点是 且仅是A 的内点、外点与边界 点中的一种, 即

 $\mathbf{R}^n = A^\circ \cup \partial A \cup \operatorname{ext} A,$

- (3) 若对 $\forall \delta > 0$, $U(a, \delta)$ 既含有A中的点, 又含有A 的余集中的点, 则称a 是集合A 的边界点, 由A的所有边界点构成的集合称为A 的边界, 记为 ∂A .
- ▶ 由定义可知, Rⁿ 中的任一点是 且仅是A 的内点、外点与边界 点中的一种, 即

 $\mathbf{R}^n = A^\circ \cup \partial A \cup \operatorname{ext} A$,

且右端三个点集互不相交.

- (3) 若对 $\forall \delta > 0$, $U(a, \delta)$ 既含有A中的点,又含有A 的余集中的点,则称a 是集合A 的边界点,由A的所有边界点构成的集合称为A 的边界,记为 ∂A .
- ▶ 由定义可知, Rⁿ 中的任一点是 且仅是A 的内点、外点与边界 点中的一种, 即

 $\mathbf{R}^n = A^\circ \cup \partial A \cup \, \mathrm{ext} A,$ 且右端三个点集互不相交.

▶ 对于 \mathbb{R}^n 中的任一点集A, 必有 $\overline{A} = A \cup \partial A$. 特别地, 称开球

▶ 对于 \mathbf{R}^n 中的任一点集A, 必有 $\bar{A} = A \cup \partial A$. 特别地, 称开球 与其边界之并为闭球, 记为 $\overline{U}(a, \delta) = \{x \in \mathbf{R}^n | || x - a || \leq \delta \}.$

定义1.5

▶ 对于 \mathbf{R}^n 中的任一点集A, 必有 $\bar{A} = A \cup \partial A$. 特别地, 称开球 与其边界之并为闭球, 记为 $\overline{U}(a, \delta) = \{x \in \mathbf{R}^n | \|x - a\| \leq \delta\}.$

定义1.5

设 $A \subset \mathbf{R}^n$,若 $A \subset A^\circ$,即A中的点全是A 的内点,则称A为开集.

定义1.5

设 $A \subset \mathbf{R}^n$,若 $A \subset A^\circ$,即A中的点全是A 的内点,则称A为开集.

下面的定理描述了开集与闭集的关系:

定义1.5

设 $A \subseteq \mathbf{R}^n$,若 $A \subseteq A^\circ$,即A中的点全是A 的内点,则称A为开集.

下面的定理描述了开集与闭集的关系:

定理1.6

定义1.5

设 $A \subset \mathbf{R}^n$,若 $A \subset A^\circ$,即A中的点全是A 的内点,则称A为开集.

下面的定理描述了开集与闭集的关系:

定理1.6

 $A \subset \mathbf{R}^n$ 是开集的充分必要条件为 A^c 为闭集.

定义1.5

设 $A \subset \mathbf{R}^n$,若 $A \subset A^\circ$,即A中的点全是A 的内点,则称A为开集.

下面的定理描述了开集与闭集的关系:

定理1.6

 $A \subset \mathbf{R}^n$ 是开集的充分必要条件为 A^c 为闭集.

注:

定义1.5

设 $A \subset \mathbf{R}^n$,若 $A \subset A^\circ$,即A中的点全是A 的内点,则称A为开集.

下面的定理描述了开集与闭集的关系:

定理1.6

 $A \subset \mathbf{R}^n$ 是开集的充分必要条件为 A^c 为闭集.

注: 1. 内点一定是聚点:

定义1.5

设 $A \subseteq \mathbf{R}^n$,若 $A \subseteq A^\circ$,即A中的点全是A 的内点,则称A为开集.

下面的定理描述了开集与闭集的关系:

定理1.6

 $A \subseteq \mathbf{R}^n$ 是开集的充分必要条件为 A^c 为闭集.

- 注: 1. 内点一定是聚点;
 - 2. 边界点可能是聚点也可能不是聚点;

定义1.5

设 $A \subseteq \mathbf{R}^n$,若 $A \subseteq A^\circ$,即A中的点全是A 的内点,则称A为开集.

下面的定理描述了开集与闭集的关系:

定理1.6

 $A \subseteq \mathbf{R}^n$ 是开集的充分必要条件为 A^c 为闭集.

- 注: 1. 内点一定是聚点;
 - 2. 边界点可能是聚点也可能不是聚点;
 - 3. 聚点有可能属于集合,也可能不属于集合.

例如:

- 例如: (1) $\{(x,y)|0 < x^2 + y^2 \le 1\}$,
 - (0,0) 是边界点, 也是聚点, 但不属于集合.

(0,0) 是边界点, 也是聚点, 但不属于集合.

(2)
$$\{(x,y)|x^2+y^2=1\},$$

- 例如: (1) $\{(x,y)|0 < x^2 + y^2 \le 1\}$,
 - (0,0) 是边界点, 也是聚点, 但不属于集合.
 - (2) $\{(x,y)|x^2+y^2=1\}$, 边界上的点是聚点也属于集合.

- (0,0) 是边界点, 也是聚点, 但不属于集合.
- (2) $\{(x,y)|x^2+y^2=1\}$, 边界上的点是聚点也属于集合.

例如: (1) 点集 $\{(x,y)|1 < x^2 + y^2 < 4\}$

- (0,0) 是边界点, 也是聚点, 但不属于集合.
- (2) $\{(x,y)|x^2+y^2=1\}$, 边界上的点是聚点也属于集合.

例如: (1) 点集 $\{(x,y)|1 < x^2 + y^2 < 4\}$ 是开集;

- (0,0) 是边界点, 也是聚点, 但不属于集合.
- (2) $\{(x,y)|x^2+y^2=1\}$, 边界上的点是聚点也属于集合.
- 例如: (1) 点集 $\{(x,y)|1 < x^2 + y^2 < 4\}$ 是开集;
 - (2) 点集 $\{(x,y)|1 \leqslant x^2 + y^2 \leqslant 4\}$

- (0,0) 是边界点, 也是聚点, 但不属于集合.
- (2) $\{(x,y)|x^2+y^2=1\}$, 边界上的点是聚点也属于集合.
- 例如: (1) 点集 $\{(x,y)|1 < x^2 + y^2 < 4\}$ 是开集;
 - (2) 点集 $\{(x,y)|1 \leqslant x^2 + y^2 \leqslant 4\}$ 是闭集.

- (0,0) 是边界点, 也是聚点, 但不属于集合.
- (2) $\{(x,y)|x^2+y^2=1\}$, 边界上的点是聚点也属于集合.
- 例如: (1) 点集 $\{(x,y)|1 < x^2 + y^2 < 4\}$ 是开集;
 - (2) 点集 $\{(x,y)|1 \leqslant x^2 + y^2 \leqslant 4\}$ 是闭集.
 - (3) $E_3 = \{(x,y)|x+y>0\}$

- (0,0) 是边界点, 也是聚点, 但不属于集合.
- (2) $\{(x,y)|x^2+y^2=1\}$, 边界上的点是聚点也属于集合.
- 例如: (1) 点集 $\{(x,y)|1 < x^2 + y^2 < 4\}$ 是开集;
 - (2) 点集 $\{(x,y)|1 \leqslant x^2 + y^2 \leqslant 4\}$ 是闭集.
 - (3) $E_3 = \{(x,y)|x+y>0\}$ 是开集.

- 例如: (1) $\{(x,y)|0 < x^2 + y^2 \le 1\},$
 - (0,0) 是边界点, 也是聚点, 但不属于集合.
 - (2) $\{(x,y)|x^2+y^2=1\}$, 边界上的点是聚点也属于集合.
- 例如: (1) 点集 $\{(x,y)|1 < x^2 + y^2 < 4\}$ 是开集;
 - (2) 点集 $\{(x,y)|1 \leqslant x^2 + y^2 \leqslant 4\}$ 是闭集.
 - (3) $E_3 = \{(x,y)|x+y>0\}$ 是开集.
 - (4) Rⁿ中的开球 $U(a, \delta)$ 是开集, 闭球 $\overline{U}(a, \delta)$ 是闭集.

- 例如: (1) $\{(x,y)|0 < x^2 + y^2 \le 1\},$
 - (0,0) 是边界点, 也是聚点, 但不属于集合.
 - (2) $\{(x,y)|x^2+y^2=1\}$, 边界上的点是聚点也属于集合.
- 例如: (1) 点集 $\{(x,y)|1 < x^2 + y^2 < 4\}$ 是开集;
 - (2) 点集 $\{(x,y)|1 \leqslant x^2 + y^2 \leqslant 4\}$ 是闭集.
 - (3) $E_3 = \{(x,y)|x+y>0\}$ 是开集.
 - (4) \mathbf{R}^n 中的开球 $U(\mathbf{a}, \delta)$ 是开集, 闭球 $\overline{U}(\mathbf{a}, \delta)$ 是闭集.
 - (5) $(\boldsymbol{a}, \boldsymbol{b}) = \{ \boldsymbol{x} = \{x_1, \dots, x_n\} \in \mathbf{R}^n | a_i < x_i < b_i, i = 1, 2, \dots \}$

- 例如: (1) $\{(x,y)|0 < x^2 + y^2 \le 1\},$
 - (0,0) 是边界点, 也是聚点, 但不属于集合.
 - (2) $\{(x,y)|x^2+y^2=1\}$, 边界上的点是聚点也属于集合.
- 例如: (1) 点集 $\{(x,y)|1 < x^2 + y^2 < 4\}$ 是开集;
 - (2) 点集 $\{(x,y)|1 \le x^2 + y^2 \le 4\}$ 是闭集.
 - (3) $E_3 = \{(x,y)|x+y>0\}$ 是开集.
 - (4) \mathbf{R}^n 中的开球 $U(\mathbf{a}, \delta)$ 是开集, 闭球 $\overline{U}(\mathbf{a}, \delta)$ 是闭集.
 - (5) $(a, b) = \{x = \{x_1, \dots, x_n\} \in \mathbf{R}^n | a_i < x_i < b_i, i = 1, 2, \dots\}$ 是开集, 此集合称为开区间;

- 例如: (1) $\{(x,y)|0 < x^2 + y^2 \leqslant 1\}$,
 - (0,0) 是边界点, 也是聚点, 但不属于集合.
 - (2) $\{(x,y)|x^2+y^2=1\}$, 边界上的点是聚点也属于集合.
- 例如: (1) 点集 $\{(x,y)|1 < x^2 + y^2 < 4\}$ 是开集;
 - (2) 点集 $\{(x,y)|1 \leqslant x^2 + y^2 \leqslant 4\}$ 是闭集.
 - (3) $E_3 = \{(x,y)|x+y>0\}$ 是开集.
 - (4) \mathbf{R}^n 中的开球 $U(\mathbf{a}, \delta)$ 是开集, 闭球 $\overline{U}(\mathbf{a}, \delta)$ 是闭集.
 - (5) $(a, b) = \{x = \{x_1, \dots, x_n\} \in \mathbf{R}^n | a_i < x_i < b_i, i = 1, 2, \dots\}$ 是开集, 此集合称为开区间;

$$[a, b] = \{x = \{x_1, \dots, x_n\} \in \mathbf{R}^n | a_i \leqslant x_i \leqslant b_i, i = 1, 2, \dots\}$$

- 例如: (1) $\{(x,y)|0 < x^2 + y^2 \leqslant 1\}$,
 - (0,0) 是边界点, 也是聚点, 但不属于集合.
 - (2) $\{(x,y)|x^2+y^2=1\}$, 边界上的点是聚点也属于集合.
- 例如: (1) 点集 $\{(x,y)|1 < x^2 + y^2 < 4\}$ 是开集;
 - (2) 点集 $\{(x,y)|1 \leqslant x^2 + y^2 \leqslant 4\}$ 是闭集.
 - (3) $E_3 = \{(x,y)|x+y>0\}$ 是开集.
 - (4) \mathbf{R}^n 中的开球 $U(\mathbf{a}, \delta)$ 是开集, 闭球 $\overline{U}(\mathbf{a}, \delta)$ 是闭集.
 - (5) $(a, b) = \{x = \{x_1, \dots, x_n\} \in \mathbf{R}^n | a_i < x_i < b_i, i = 1, 2, \dots\}$ 是开集, 此集合称为开区间;

$$[a, b] = \{x = \{x_1, \dots, x_n\} \in \mathbf{R}^n | a_i \leqslant x_i \leqslant b_i, i = 1, 2, \dots\}$$
是闭集,此集合称为闭区间。

下面的定理刻画了开集的特征:

下面的定理刻画了开集的特征:

```
定理1.7
```


定理1.7

在n维Euclid空间 \mathbf{R}^n 中, 开集有如下性质:

定理1.7

 \mathbf{E}_n 在n 维Euclid 空间 \mathbf{R}^n 中,开集有如下性质:

(1) 空集 \emptyset 与全空间 \mathbf{R}^n 是开集;

定理1.7

 \mathbf{E}_n 在n 维Euclid 空间 \mathbf{R}^n 中,开集有如下性质:

- (1) 空集 \emptyset 与全空间 \mathbf{R}^n 是开集;
- (2) 任意多个开集的并是开集;

定理1.7

 \mathbf{E}_n 在n 维Euclid 空间 \mathbf{R}^n 中,开集有如下性质:

- (1) 空集 \emptyset 与全空间 \mathbf{R}^n 是开集;
- (2) 任意多个开集的并是开集;
- (3) 有限多个开集的交是开集.

定理1.7

- (1) 空集 \emptyset 与全空间 \mathbf{R}^n 是开集;
- (2) 任意多个开集的并是开集;
- (3) 有限多个开集的交是开集.

根据对偶原理可以得到 \mathbb{R}^n 中闭集的三个对应的基本性质:

定理1.7

- (1) 空集 \emptyset 与全空间 \mathbf{R}^n 是开集;
- (2) 任意多个开集的并是开集;
- (3) 有限多个开集的交是开集.

根据对偶原理可以得到 \mathbf{R}^n 中闭集的三个对应的基本性质:

(1) 空集 \emptyset 与全空间 \mathbf{R}^n 是闭集;

定理1.7

- (1) 空集 \emptyset 与全空间 \mathbf{R}^n 是开集;
- (2) 任意多个开集的并是开集;
- (3) 有限多个开集的交是开集.

根据对偶原理可以得到 \mathbb{R}^n 中闭集的三个对应的基本性质:

- 空集∅ 与全空间Rⁿ 是闭集;
- (2) 任意多个闭集的交是闭集;

定理1.7

- (1) 空集 \emptyset 与全空间 \mathbf{R}^n 是开集;
- (2) 任意多个开集的并是开集;
- (3) 有限多个开集的交是开集.

根据对偶原理可以得到 \mathbb{R}^n 中闭集的三个对应的基本性质:

- (1) 空集 \emptyset 与全空间 \mathbf{R}^n 是闭集;
- (2) 任意多个闭集的交是闭集;
- (3) 有限多个闭集的并是闭集.

R^n 中的紧集与区域

设 $A \subset \mathbf{R}^n$ 是一个点集,

设 $A \subset \mathbf{R}^n$ 是一个点集,

• 有界集与无界集:

设 $A \subset \mathbf{R}^n$ 是一个点集,

• 有界集与无界集: 若存在一个常数M>0, 使得 $\forall x\in A$, 都有 $\|x\| \leq M$, 则称A 为有界集, 否则称为无界集.

设 $A \subset \mathbf{R}^n$ 是一个点集,

有界集与无界集: 若存在一个常数 M > 0, 使得∀x ∈ A, 都有|| x || ≤ M, 则称 A 为有界集, 否则称为无界集.
 有界集的几何意义是它能包含在Rⁿ中一个以原点0 为中心、M 为半径的闭球 Ū(0, M)中.

设 $A \subset \mathbf{R}^n$ 是一个点集,

- 有界集与无界集:若存在一个常数 M > 0,使得∀x ∈ A,都有||x||≤ M,则称A 为有界集,否则称为无界集.
 有界集的几何意义是它能包含在Rⁿ中一个以原点0 为中心、M 为半径的闭球Ū(0, M)中.
- 紧集:

设 $A \subset \mathbf{R}^n$ 是一个点集,

- 有界集与无界集: 若存在一个常数 M > 0, 使得∀x ∈ A, 都有|| x || ≤ M, 则称 A 为有界集, 否则称为无界集.
 有界集的几何意义是它能包含在Rⁿ中一个以原点0 为中心、M 为半径的闭球 Ū(0, M)中.
- 紧集: 若A 是有界闭集,则称A 为紧集.

设 $A \subset \mathbf{R}^n$ 是一个点集,

- 有界集与无界集: 若存在一个常数 M > 0, 使得∀x ∈ A, 都有|| x || ≤ M, 则称 A 为有界集, 否则称为无界集.
 有界集的几何意义是它能包含在Rⁿ中一个以原点0 为中心、M 为半径的闭球 Ū(0, M)中.
- 紧集: 若A 是有界闭集, 则称A 为紧集.

结论: 根据Bolzano-Weierstrass定理可知, 若A 是紧集, 则A 中任何点列都有收敛于A 中的子列.

● 连通集:

• 连通集: 如果A 内任何两点x 与y 都能用完全属于A 的有限个线段联结起来,则称A 是连通集.

- 连通集: 如果A 内任何两点x 与y 都能用完全属于A 的有限个线段联结起来,则称A 是连通集.
- 区域:

- 连通集: 如果A 内任何两点x 与y 都能用完全属于A 的有限个线段联结起来,则称A 是连通集.
- 区域:连通的开集称为区域.

- 连通集: 如果A 内任何两点x 与y 都能用完全属于A 的有限个线段联结起来,则称A 是连通集.
- 区域:连通的开集称为区域.
- 闭区域:

- 连通集: 如果A 内任何两点x 与y 都能用完全属于A 的有限个线段联结起来,则称A 是连通集.
- 区域:连通的开集称为区域.
- 闭区域:区域与它的边界的并称为闭区域.

- 连通集: 如果A 内任何两点x 与y 都能用完全属于A 的有限个线段联结起来,则称A 是连通集.
- 区域:连通的开集称为区域.
- 闭区域:区域与它的边界的并称为闭区域.
- 凸集:

- 连通集: 如果A 内任何两点x 与y 都能用完全属于A 的有限个线段联结起来,则称A 是连通集.
- 区域:连通的开集称为区域.
- 闭区域:区域与它的边界的并称为闭区域.
- 凸集: 若联结A 中的任意两点的线段都属于A,

- 连通集: 如果A 内任何两点x 与y 都能用完全属于A 的有限个线段联结起来,则称A 是连通集.
- 区域:连通的开集称为区域.
- 闭区域: 区域与它的边界的并称为闭区域.
- 凸集: 若联结A 中的任意两点的线段都属于A,
 即若x₁, x₂ ∈ A, 则∀t ∈ [0,1], 有tx₁ + (1 − t)x₂ ∈ A,
 则称A 是凸集.

- 连通集: 如果A 内任何两点x 与y 都能用完全属于A 的有限个线段联结起来,则称A 是连通集.
- 区域:连通的开集称为区域.
- 闭区域:区域与它的边界的并称为闭区域.
- 凸集: 若联结A 中的任意两点的线段都属于A,
 即若x₁, x₂ ∈ A, 则∀t ∈ [0,1], 有tx₁ + (1 − t)x₂ ∈ A,
 则称A 是凸集.

结论: 因为任何凸集都是连通的, 故任何凸开集都是区域.

