1. 作业说明

LeNet

基于Pytorch实现LeNet-5,并完成CIFAR10识别。

可以尝试使用一些图像预处理技术(去噪,归一化,分割等),再使用神经网络进行特征提取。同时可以对训练过程进行可视化处理,分析训练趋势。

2. 文件结构说明

主要代码在LeNet.py中

results则是本地训练过程中的一些图,其他的测试结果是在服务器上跑的

3. 数据集

CIFAR10数据集: 包含 60000 张 32 X 32 的 RGB 彩色图片,总共 10 个分类。其中,包括 50000 张用于训练集,10000 张用于测试集;

classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

数据集分为五个训练批次和一个测试批次,每个批次有10000个图像。测试批次包含来自每个类的恰好1000个随机选择的图像。

4. 理论说明

LeNet-5模型

LeNet-5模型

LeNet-5模型结构为**输入-卷积层-池化层-卷积层-池化层-全连接层-全连接层-输出**,为串联模式,如上 图所示

5. 具体实现

5.1. 前置工作

安装pytorch cpu版本

conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cpuonly - c pytorch

下载数据集

5.2. 具体步骤分析

1. 数据预处理

• 归一化: 先使用np的函数计算了mean和std,再使用transform对数据集进行处理 train_set的shape是(50000, 32, 32, 3),分别是sample个数,图像的高,图像的宽,通道数 处理之后将其载入DataLoader中,每次迭代都会返回一个batch_size的数据

```
# 先下载数据集进行计算std和mean
1
  train_set = torchvision.datasets.CIFAR10(root='./dataset', train=True,
   download=True)
   mean = train_set.data.mean(axis=(0, 1, 2)) / 255
   std = train\_set.data.std(axis=(0, 1, 2)) / 255
4
   print("mean:", mean)
5
   print("std:", std)
6
7
  transform = transforms.Compose(
8
9
       [transforms.ToTensor(),
```

```
10
   transforms.Normalize(mean, std)])
11
   # train_loader是一个可迭代对象,每次迭代都会返回一个batch_size的数据
12
13
   # num_workers表示用几个子进程来加载数据
   train_set = torchvision.datasets.CIFAR10(root='./dataset', train=True,
    download=True, transform=transform)
15
   train_loader = torch.utils.data.DataLoader(train_set,
    batch_size=batch_size, shuffle=True, num_workers=2)
16
   # 下载并加载测试集
17
   test_set = torchvision.datasets.CIFAR10(root='./dataset', train=False,
    download=True, transform=transform)
   test_loader = torch.utils.data.DataLoader(test_set,
19
    batch_size=batch_size, shuffle=False, num_workers=2)
```

去噪:可以采用图像去噪算法,如高斯滤波器、中值滤波器等,以减少图像中的噪声对模型的干扰。

但该数据集是已经较为干净的数据集,所以不需要进行去噪处理。

2. 建立模型LeNet模型

参照上文的模型结构图进行建立

```
1 # Step2 定义一个卷积神经网络
2
   class MyNet(nn.Module):
3
      def __init__(self):
         super().__init__()
4
5
         in\_channels = 3
         # 卷积层1
6
7
         # 参数分别是输入通道数,输出通道数,卷积核大小
         # in_channels指明了输入的通道数,这里是3,因为输入的是RGB图像
8
9
         # out_channels指明了输出的通道数,我们将从中提取18个特征
         self.conv1 = nn.Conv2d(in_channels, in_channels * 6, 5)
10
11
         # 池化层1
12
         # 参数分别是池化核大小,步长
13
         # 这表示使用最大池化操作,池化核的大小是2x2,步长也是2。这意味着在每次池化操作
14
   中,特征图被划分为2x2的区域,
         # 然后在每个区域内选择最大值作为输出。步长为2表示池化操作会每隔2个像素进行一次操
15
   作,不会重叠。
         # 池化层用于下采样,通过减小特征图的大小,保留最显著的特征,从而减少计算复杂性。
16
         self.pool1 = nn.MaxPool2d(2, 2)
17
18
19
         # 卷积层2
         # 这里的输入通道数是18, 因为上一层的输出是18个特征图
20
         # 输出通道数是18, 从中提取48个特征
21
         self.conv2 = nn.Conv2d(in_channels * 6, in_channels * 16, 5)
22
23
24
         # 池化层2
         # 其实这里的池化层和上面的池化层1是一样的
25
26
         # 经过该层后,每张图片对应 16 * 5 * 5 * 3个特征
27
         self.pool2 = nn.MaxPool2d(2, 2)
28
29
         # 全连接层1
         # 这里的输入是16*5*5*3
30
```

```
self.fc1 = nn.Linear(16 * 5 * 5 * in_channels, 120 * in_channels)
31
32
           # 全连接层2
33
34
           # 这里的输入是120,输出是84
35
           self.fc2 = nn.Linear(120 * in_channels, 84 * in_channels)
36
           # 全连接层3
37
38
           # 这里的输入是84,输出是10
39
           self.fc3 = nn.Linear(84 * in_channels, 10)
40
41
       def forward(self, x):
42
           x = self.pool1(F.relu(self.conv1(x)))
           x = self.pool2(F.relu(self.conv2(x)))
43
44
45
           # x是一个4维的tensor,第一维是batch_size,第二维是通道数,第三维和第四维是图像
   的高和宽
46
           # 经过flatten操作后,x变成了2维的tensor,第一维是batch_size,第二维是通道数*
    图像的高*图像的宽
47
           # 因为下一层是全连接层(线性层),所以需要将图像展开成一维的
48
           x = \text{torch.flatten}(x, 1) # flatten all dimensions except batch
49
50
           x = F.relu(self.fc1(x))
51
           x = F.relu(self.fc2(x))
52
           x = self.fc3(x)
53
           return x
```

3. 定义损失器和优化函数

```
1# Step3 定义损失函数和优化器2# 交叉熵损失函数3criterion = nn.CrossEntropyLoss()4# 优化器,使用随机梯度下降算法,学习率为0.001,动量为0.95# optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9)6optimizer = optim.Adam(net.parameters(), lr=LR)
```

4. 训练及可视化

迭代训练数据集

在每个epoch中,使用 enumerate(train_loader, 0) 来获取训练数据集的迭代器,其中 train_loader 是已经加载好的训练数据集。然后使用一个循环来遍历每个batch的数据。

前向传播和反向传播

在每个batch中,首先将输入数据 inputs 输入到LeNet-5模型中进行前向传播,得到输出 outputs 。然后,计算模型的损失函数 loss ,例如交叉熵损失函数。接下来使用反向传播方法计算梯度,并通过调用 optimizer.step()来更新模型的参数。

计算训练损失

在每个epoch的训练过程中,累加每个batch的损失值 loss.item() 到 running_loss 中,以便后续计算平均训练损失。这个损失值可以用来观察训练过程中的损失下降情况。

测试模型准确率

在每个epoch结束后,使用测试数据集对模型进行评估。通过将测试数据传入已经训练好的LeNet-5模型中,可以获得模型的输出 outputs 。然后,使用 torch.max() 函数找到输出中的最大值,并返回对应的索引,即预测的类别。将预测的类别与真实标签 labels 进行比较,并计算正确预测的数量。

```
1
   # Step4 训练网络
2
   for epoch in range(epochs):
3
       loop = tqdm.tqdm(
           enumerate(train_loader, 0),
4
5
           total=len(train_loader),
6
           desc=f'Epoch [{epoch + 1}/{epochs}]',
7
           ncols=100,
8
       )
9
10
       running_loss = 0.0
       # 获取训练数据
11
       for i, data in loop:
12
           inputs, labels = data
13
           # 梯度清零
14
15
           optimizer.zero_grad()
           # 前向传播
16
           outputs = net(inputs)
17
           loss = criterion(outputs, labels)
18
           # 反向传播, 计算梯度, 更新参数
19
20
           loss.backward()
21
           optimizer.step()
22
           running_loss += loss.item()
23
24
       loop.set_postfix(loss=running_loss / len(train_loader))
25
26
       # 每1个epoch记录一次准确率
       correct = 0
27
28
       total = 0
       # 因为加载的模型是训练好的, 所以不需要计算梯度
29
30
       with torch.no_grad():
           for data in test_loader:
31
               images, labels = data
32
33
               outputs = net(images)
               # torch.max()返回两个tensor,第一个tensor是最大值,第二个tensor是最大值
34
   的索引
35
               # 这里我们只需要索引
36
               _, predicted = torch.max(outputs.data, 1)
               # labels.size(0)是一个batch中label的个数,也就是4
37
               total += labels.size(0)
38
39
               # (predicted == labels)返回一个tensor, tensor中的元素是True或者False
40
               # tensor.sum()将True转化为1,False转化为0,然后求和
41
               correct += (predicted == labels).sum().item()
42
43
       accuracy = 100 * correct / total # 不需要使用 //, 以保留小数
       formatted_accuracy = f'{accuracy:.2f}' # 将准确率格式化为带两位小数的字符串
44
       print(f'Accuracy at epoch {epoch + 1}: {formatted_accuracy} %')
45
       accuracy_values.append(formatted_accuracy) # 保存带两位小数的准确率
46
47
       epoch_numbers.append(epoch + 1)
```

6. 结果

batch_size	优化 器	LR	₹ <u>₹</u>	最好 epoch	准确率
128	SGD	0.005	Accuracy vs. Epoch 70 - 65 - 65 - 50 - 45 - 0 20 40 60 80 80	87	72.05
64	SGD	0.005	Accuracy vs. Epoch 70 65 55 50 20 40 60 80	60, 66, 75	73.08
32	SGD	0.005	72.5 70.0 67.5 60.0 60.0 57.5 55.0 0 20 40 60 80	5	71.81
128	SGD	0.001	Accuracy vs. Epoch 70 60 60 60 30 20 40 60 80 Epoch	46	70.98
64	SGD	0.001	Accuracy vs. Epoch 70 65 60 60 65 40 35 40 20 40 60 80 Epoch	41	71.97

batch_size	优化 器	LR		最好 epoch	准确率
32	SGD	0.001	Accuracy vs. Epoch 70 65 60 45 40 0 20 40 60 80 Epoch	89	72.63
128	Adam	0.001	Accuracy vs. Epoch 70 68 66 60 58 0 20 40 60 80 Epoch	5	71.1
64	Adam	0.001	Accuracy vs. Epoch 70 68 68 60 60 0 20 40 60 80 Epoch	6	71.08
32	Adam	0.001	Accuracy vs. Epoch 70 68 66 60 60 38 50 20 40 60 Epoch	5	70.05

分析

从准确率变化曲线来看,明显SGD优化器的效果要好于Adam

• SGD (随机梯度下降) 优化器:

SGD是一种基本的优化算法,在每个batch中根据当前样本计算梯度并更新模型参数。SGD的特点是简单直接,每次迭代只使用一个样本进行梯度计算和参数更新,因此计算开销较小。然而,这种随机性也可能导致优化过程中出现一些波动,尤其是在训练数据集较小或噪声较多的情况下。但是,通过适当的学习率调整和较多的迭代次数,SGD可以在合理的时间内收敛到较好的解。

• Adam优化器:

Adam是一种自适应学习率的优化算法,结合了动量法和自适应学习率机制。它可以根据梯度的一阶矩估计(均值)和二阶矩估计(方差)自适应地调整学习率,从而更好地适应不同参数的变化情况。Adam在很多情况下表现良好,并且具有较快的收敛速度。然而,对于某些数据集和模型结

构,Adam可能会在训练过程中过早收敛或陷入局部最优解,尤其是在学习率设置不当时。这可能导致准确率变化曲线的性能较差。

7. 参考链接

官方demo:

<u>Training a Classifier — PyTorch Tutorials 2.1.0+cu121 documentation</u>

查找PyTorch API:

https://pytorch.org/docs/stable/index.html