Aufgabe 1:

Gegeben sei das Anfangswertproblem

$$u''(t) - 2u'(t) + u(t) = \cos(t) \cdot h(t - \pi)$$

mit u(0) = 0 und u'(0) = 0. Dabei ist h(t) die Heaviside-Funktion.

a) Zeigen Sie, dass die Lösung des Anfangswertproblems im Bildbereich der Laplace-Transformation die folgende Gestalt hat:

$$U(s) = -\frac{s e^{-s\pi}}{(1+s^2)(s-1)^2}$$

b) Bestimmen Sie die Lösung der Differentialgleichung u(t) im Urbildbereich.

Lösung 1:

a) Die Laplace-Transformierte des Anfangswertproblems ist

$$s^{2}U(s) - 2sU(s) + U(s) = \mathcal{L}\{\cos(t) \cdot h(t - \pi)\}.$$

Für die Transformation des letzten Terms wird der Verschiebungssatz angewendet:

$$\mathcal{L}\{\cos(t) \cdot h(t-\pi)\} = \mathcal{L}\{\cos(t-\pi+\pi) \cdot h(t-\pi)\} = \mathcal{L}\{\cos(t+\pi)\} e^{-s\pi}$$
$$= \mathcal{L}\{-\cos(t)\} e^{-s\pi} = \frac{-s}{1+s^2} e^{-s\pi}.$$

Damit ist die transformierte Differentialgleichung:

$$U(s)(s^2 - 2s + 1) = -\frac{s}{1 + s^2}e^{-s\pi}.$$

Die Lösung im Bildbereich ist

$$U(s) = -\frac{s}{(1+s^2)(s-1)^2} e^{-s\pi}.$$

b) Die Rücktransformation ergibt

$$u(t) = -\mathcal{L}^{-1} \left\{ \frac{s}{(s-1)^2(1+s^2)} e^{-s\pi} \right\}$$

Die Partialbruchzerlegung des Bruches ergibt

$$\begin{split} \frac{s}{(s-1)^2(1+s^2)} \\ &= \frac{E}{s-1} + \frac{F}{(s-1)^2} + \frac{G+Hs}{1+s^2} \\ &= \frac{(E+H)s^3 + (-E+F+G-2H)s^2 + (E-2G+H)s - E+F+G}{(s-1)^2(1+s^2)} \\ \Rightarrow & E+H=0, -E+F+G-2H=0, E-2G+H=1, -E+F+G=0 \\ \Rightarrow & H=0, E=0, G=-\frac{1}{2}, F=\frac{1}{2} \end{split}$$

Damit ist dann

1

$$u(t) = -\frac{1}{2}\mathcal{L}^{-1}\left\{ \left(\frac{1}{(s-1)^2} - \frac{1}{1+s^2} \right) e^{-\pi s} \right\}$$

$$= -\frac{1}{2} \left[te^t - \sin(t) \right]_{t \leftarrow t - \pi} h(t - \pi) \qquad \text{(Verschiebungssatz)}$$

$$= -\frac{1}{2} \left[(t - \pi)e^{t - \pi} - \sin(t - \pi) \right] h(t - \pi)$$

$$= -\frac{1}{2} \left[(t - \pi)e^{t - \pi} + \sin(t) \right] h(t - \pi)$$

$$= \begin{cases} 0 & \text{für } t \le \pi \\ -\frac{1}{2} \left[(t - \pi)e^{t - \pi} + \sin(t) \right] & \text{für } t > \pi. \end{cases}$$

Aufgabe 2: Anfangswertprobleme zu linearen Differentialgleichungen n-ter Ordnung

Gegeben seien die folgenden Anfangswertprobleme:

a)
$$y''(t) - 2y'(t) - 3y(t) = 4e^t$$
, $y(0) = 0$, $y'(0) = 6$

b)
$$y''(t) + 4y'(t) + 4y(t) = 4e^{-2t}, \quad y(0) = 1, \quad y'(0) = 0.$$

Bestimmen Sie die Lösungen jeweils mit Hilfe des Exponentialansatzes **und** zusätzlich mit Hilfe der Laplace-Transformation.

Lösung 2:

Zunächst die Lösung mittels Exponentialansatz:

a) Die Nullstellen des charakteristischen Polynoms $p(\lambda) = \lambda^2 - 2\lambda - 3$ sind $\lambda_1 = -1$ und $\lambda_2 = 3$. Eine Partikulärlösung der inhomogenen Gleichung berechnet man mit dem Ansatz $y_p(t) = ae^t$, es folgt $-4ae^t \stackrel{!}{=} 4e^t$ und damit a = -1. Die allgemeine Lösung ist

$$y_{allq}(t) = -e^t + c_1 e^{-t} + c_2 e^{3t} \text{ mit } c_1, c_2 \in \mathbb{R}.$$

Aus den Anfangsbedingungen $y(0)=-1+c_1+c_2\stackrel{!}{=}0$ und $y'(0)=-1-c_1+3c_2\stackrel{!}{=}6$ folgt das lineare Gleichungssystem

$$c_1 + c_2 = 1$$

 $-c_1 + 3c_2 = 7$

mit Lösung $c_2 = 2$ und $c_1 = -1$. Damit ist

$$y_{AWP}(t) = -e^t - e^{-t} + 2e^{3t}$$

b) Die Nullstelle von $p(\lambda) = \lambda^2 + 4\lambda + 4$ ist $\lambda = -2$, dies ist eine doppelte Nullstelle. Als Ansatz für die Partikulärlösung muss man $y_p(t) = at^2 \mathrm{e}^{-2t}$ nehmen, denn man hat Resonanz der Ordnung 2. Mit $y_p'(t) = a\mathrm{e}^{-2t} \left(2t - 2t^2\right)$ und $y_p''(t) = a\mathrm{e}^{-2t} \left(2 - 8t + 4t^2\right)$ folgt $2a\mathrm{e}^{-2t} \stackrel{!}{=} 4\mathrm{e}^{-2t}$ und damit a = 2. Dies liefert die allgemeine Lösung

$$y_{allg}(t) = (2t^2 + c_1t + c_2)e^{-2t}$$
 mit $c_1, c_2 \in \mathbb{R}$.

Die Anfangsbedingungen $y(0)=c_2\stackrel{!}{=}1$ und $y'(0)=c_1-2c_2\stackrel{!}{=}0$ liefern $c_2=1$ und $c_1=2$ und damit die Lösung

$$y_{AWP}(t) = (2t^2 + 2t + 1)e^{-2t}$$
.

Nun die Lösung mit Hilfe der Laplace-Transformation:

a) Die Laplace-Transformation der Differentialgleichung ergibt

$$\mathcal{L}\{4e^t\} = \mathcal{L}\{y''(t) - 2y'(t) - 3y(t)\}$$

$$\Rightarrow \frac{4}{s-1} = s^2 Y(s) - y'(0) - sy(0) - 2(sY(s) - y(0)) - 3Y(s)$$

$$= s^2 Y(s) - 6 - 2sY(s) - 3Y(s)$$

Die Lösung im Bildbereich ist dann

$$Y(s) = \frac{1}{s^2 - 2s - 3} \cdot \left(\frac{4}{s - 1} + 6\right)$$
$$= \frac{6s - 2}{(s - 1)(s - 3)(s + 1)}$$

Diese lässt sich mittels Partialbruchzerlegung darstellen als

$$Y(s) = \frac{-1}{s-1} + \frac{2}{s-3} + \frac{-1}{s+1}$$

und die Rücktransformation ergibt die Lösung des Anfangswertproblems:

$$y(t) = -\mathcal{L}^{-1} \left\{ \frac{1}{s-1} \right\} + 2\mathcal{L}^{-1} \left\{ \frac{1}{s-3} \right\} - \mathcal{L}^{-1} \left\{ \frac{1}{s+1} \right\}$$
$$= -e^t + 2e^{3t} - e^{-t}$$

b) Die Laplace-Transformation der Differentialgleichung ergibt

$$\mathcal{L}\{4e^{-2t}\} = \mathcal{L}\{y''(t) + 4y'(t) + 4y(t)\}$$

$$\Rightarrow \frac{4}{s+2} = s^2Y(s) - y'(0) - sy(0) + 4(sY(s) - y(0)) + 4Y(s)$$

$$= s^2Y(s) - s + 4sY(s) - 4 + 4Y(s)$$

Die Lösung im Bildbereich ist dann

$$Y(s) = \frac{1}{s^2 + 4s + 4} \cdot \left(\frac{4}{s+2} + s + 4\right)$$
$$= \frac{s^2 + 6s + 12}{(s+2)^3}$$

Diese lässt sich mittels Partialbruchzerlegung darstellen als

$$Y(s) = \frac{1}{s+2} + \frac{2}{(s+2)^2} + \frac{4}{(s+2)^3}$$

und die Rücktransformation ergibt die Lösung des Anfangswertproblems:

$$y(t) = e^{-2t} + 2te^{-2t} + 4\frac{t^2e^{-2t}}{2} = e^{-2t}(1 + 2t + 2t^2)$$

Aufgabe 3: Anfangswertprobleme zu linearen Differentialgleichungen n-ter Ordnung

Gegeben seien die folgenden Anfangswertprobleme:

a)
$$y''(t) - 2y'(t) - 3y(t) = 4e^t$$
, $y(0) = 0$, $y'(0) = 6$

b)
$$y''(t) + 4y'(t) + 4y(t) = 4e^{-2t}, \quad y(0) = 1, \quad y'(0) = 0.$$

Bestimmen Sie die Lösungen jeweils mit Hilfe des Exponentialansatzes **und** zusätzlich mit Hilfe der Laplace-Transformation.

Lösung 3:

Zunächst die Lösung mittels Exponentialansatz:

a) Die Nullstellen des charakteristischen Polynoms $p(\lambda) = \lambda^2 - 2\lambda - 3$ sind $\lambda_1 = -1$ und $\lambda_2 = 3$. Eine Partikulärlösung der inhomogenen Gleichung berechnet man mit dem Ansatz $y_p(t) = ae^t$, es folgt $-4ae^t \stackrel{!}{=} 4e^t$ und damit a = -1. Die allgemeine Lösung ist

$$y_{allq}(t) = -e^t + c_1 e^{-t} + c_2 e^{3t} \text{ mit } c_1, c_2 \in \mathbb{R}.$$

Aus den Anfangsbedingungen $y(0)=-1+c_1+c_2\stackrel{!}{=}0$ und $y'(0)=-1-c_1+3c_2\stackrel{!}{=}6$ folgt das lineare Gleichungssystem

$$c_1 + c_2 = 1$$

 $-c_1 + 3c_2 = 7$

mit Lösung $c_2 = 2$ und $c_1 = -1$. Damit ist

$$y_{AWP}(t) = -e^t - e^{-t} + 2e^{3t}$$
.

b) Die Nullstelle von $p(\lambda) = \lambda^2 + 4\lambda + 4$ ist $\lambda = -2$, dies ist eine doppelte Nullstelle. Als Ansatz für die Partikulärlösung muss man $y_p(t) = at^2 \mathrm{e}^{-2t}$ nehmen, denn man hat Resonanz der Ordnung 2. Mit $y_p'(t) = a\mathrm{e}^{-2t} \left(2t - 2t^2\right)$ und $y_p''(t) = a\mathrm{e}^{-2t} \left(2 - 8t + 4t^2\right)$ folgt $2a\mathrm{e}^{-2t} \stackrel{!}{=} 4\mathrm{e}^{-2t}$ und damit a = 2. Dies liefert die allgemeine Lösung

$$y_{allg}(t) = (2t^2 + c_1t + c_2)e^{-2t}$$
 mit $c_1, c_2 \in \mathbb{R}$.

Die Anfangsbedingungen $y(0) = c_2 \stackrel{!}{=} 1$ und $y'(0) = c_1 - 2c_2 \stackrel{!}{=} 0$ liefern $c_2 = 1$ und $c_1 = 2$ und damit die Lösung

$$y_{AWP}(t) = (2t^2 + 2t + 1)e^{-2t}$$
.

Nun die Lösung mit Hilfe der Laplace-Transformation:

a) Die Laplace-Transformation der Differentialgleichung ergibt

$$\mathcal{L}\{4e^t\} = \mathcal{L}\{y''(t) - 2y'(t) - 3y(t)\}$$

$$\Rightarrow \frac{4}{s-1} = s^2 Y(s) - y'(0) - sy(0) - 2(sY(s) - y(0)) - 3Y(s)$$

$$= s^2 Y(s) - 6 - 2sY(s) - 3Y(s)$$

Die Lösung im Bildbereich ist dann

$$Y(s) = \frac{1}{s^2 - 2s - 3} \cdot \left(\frac{4}{s - 1} + 6\right)$$
$$= \frac{6s - 2}{(s - 1)(s - 3)(s + 1)}$$

Diese lässt sich mittels Partialbruchzerlegung darstellen als

$$Y(s) = \frac{-1}{s-1} + \frac{2}{s-3} + \frac{-1}{s+1}$$

und die Rücktransformation ergibt die Lösung des Anfangswertproblems:

$$y(t) = -\mathcal{L}^{-1} \left\{ \frac{1}{s-1} \right\} + 2\mathcal{L}^{-1} \left\{ \frac{1}{s-3} \right\} - \mathcal{L}^{-1} \left\{ \frac{1}{s+1} \right\}$$
$$= -e^t + 2e^{3t} - e^{-t}$$

b) Die Laplace-Transformation der Differentialgleichung ergibt

$$\mathcal{L}\{4e^{-2t}\} = \mathcal{L}\{y''(t) + 4y'(t) + 4y(t)\}$$

$$\Rightarrow \frac{4}{s+2} = s^2Y(s) - y'(0) - sy(0) + 4(sY(s) - y(0)) + 4Y(s)$$

$$= s^2Y(s) - s + 4sY(s) - 4 + 4Y(s)$$

Die Lösung im Bildbereich ist dann

$$Y(s) = \frac{1}{s^2 + 4s + 4} \cdot \left(\frac{4}{s+2} + s + 4\right)$$
$$= \frac{s^2 + 6s + 12}{(s+2)^3}$$

Diese lässt sich mittels Partialbruchzerlegung darstellen als

$$Y(s) = \frac{1}{s+2} + \frac{2}{(s+2)^2} + \frac{4}{(s+2)^3}$$

und die Rücktransformation ergibt die Lösung des Anfangswertproblems:

$$y(t) = e^{-2t} + 2te^{-2t} + 4\frac{t^2e^{-2t}}{2} = e^{-2t}(1 + 2t + 2t^2)$$

Aufgabe 4: Balkenbiegung

Ein homogener Balken (E, J konstant) der Länge L=3 möge an beiden Enden gelenkig gelagert sein. Bei 2/3 der Länge greife eine punktförmige Last F an. Berechnen Sie die Lage des tiefsten Punktes des Balkens, wobei sein Eigengewicht vernachlässigt werden darf.

Das Materialgesetz des Balkens wird als

$$EJ \cdot w''''(x) = -F \cdot \delta(x - l)$$
 (mit $l = \frac{2}{3}L$)

angenommen.

Hinweise: EJ bezeichnet die Biegesteifigkeit des Balkens. Zur Vereinfachung können Sie annehmen EJ = 1.

Ebenson können Sie F=1 setzen. Gehen Sie in den folgenden Schritten vor:

- a) Ermitteln Sie die Lösung $w_H(x)$ der homogenen Differentialgleichung.
- b) Bestimmen Sie eine spezielle Lösung $w_P(x)$ (bzw. $W_P(s)$) der inhomogenen Differentialgleichung, indem Sie die Laplace-Transformation nutzen, wobei Sie von homogenen Anfangswerten ausgehen können.
- c) Bestimmen Sie die Integrationskonstanten der allgemeinen Lösung der inhomogenen Gleichung $w(x) = w_H(x) + w_P(x)$ aus den Randbedingungen

$$w(0) = w(L) = 0$$
 und $w''(0) = w''(L) = 0$.

d) Berechnen Sie den Extremwert der so erhaltenen Funktion.

Lösung 4:

Wir vereinfachen die Differentialgleichung zu

$$w^{(4)}(x) = -6\alpha\delta(x-l)$$

mit der neuen Konstanten $\alpha = \frac{F}{6EJ}$.

a) Die homogene Gleichung $w_H^{(4)}(x) = 0$ kann durch einfache Integration gelöst werden:

$$w_H(x) = A + Bx + Cx^2 + Dx^3.$$

b) Für $w_P(0) = w_P'(0) = w_P''(0) = w_P'''(0) = 0$ lautet die Laplace-Transformation der inhomogenen linearen Differentialgleichung $w_P^{(4)}(x) = -6\alpha \cdot \delta(x-l)$:

$$s^4 W_P(s) = -6\alpha \cdot e^{-l s} \Rightarrow W_P(s) = -6\alpha \cdot \frac{e^{-l s}}{s^4}$$
.

Die Rücktransformation ergibt

$$w_P(x) = -6\alpha \cdot \frac{(x-l)^3}{6} \cdot h(x-l) = -\alpha(x-l)^3 \cdot h(x-l)$$
.

Dabei ist $h(x) = \begin{cases} 0 & \text{für } x < 0 \\ 1 & \text{für } x \ge 0 \end{cases}$ die Heaviside-Funktion.

c) Damit lautet die allgemeine Lösung:

$$w(x) = w_H(x) + w_P(x) = A + Bx + Cx^2 + Dx^3 - \alpha(x-l)^3 \cdot h(x-l).$$

Die Randbedingungen ergeben:

$$w(0) = 0$$
 : $A = 0$

$$w''(0) = 0$$
 : $2C = 0$

$$w(L) = 0$$
 : $B \cdot L + D \cdot L^3 - \alpha (L - l)^3 = 0$

$$w''(L) = 0$$
 : $6 \cdot D \cdot L - 6 \alpha (L - l) = 0$

In den letzen beiden Zeilen wurde A=C=0 berücksichtigt. Aus der letzten erhält man

$$D = \frac{\alpha(L-l)}{L} = \frac{\alpha}{3}$$

und damit aus der dritten:

$$B = \frac{\alpha(L-l)^3 - DL^3}{L} = \frac{\alpha \frac{L^3}{27} - \frac{\alpha}{3}L^3}{L} = \frac{-8\alpha L^2}{27}.$$

Insgesamt haben wir so als Lösung der Randwertaufgabe:

$$w(x) = -\frac{8\alpha}{27}L^2x + \frac{\alpha}{3}x^3 - \alpha(x-l)^3 \cdot h(x-l)$$

= $-\frac{8}{3}\alpha x + \frac{\alpha}{3}x^3 - \alpha(x-2)^3 \cdot h(x-2)$.

d) Das Minimum dieser Funktion liegt entweder in einem stationären Punkt (w'(x) = 0) oder an den Rändern des Definitionsbereichs (x = 0, x = 3) oder an der Sprungstelle der Funktionsdefinition (x = 2). Dort ist die Funktion zwar zweimal differenzierbar, aber auf die Berechnung der Ableitung wird hier verzichtet. Die stationären Punkte in den Teilintervallen [0, 2] und [2, 3] ergeben sich zu:

i) 0 < x < 2:

$$0 = w'(x) = -\frac{8}{3}\alpha + \alpha x^2 \qquad \Rightarrow \qquad x = \sqrt{\frac{8}{3}}$$

Die negative Wurzel entfällt wegen der Bedingung 0 < x.

ii) 2 < x < 3:

$$0 = w'(x) = -\frac{8}{3}\alpha + \alpha x^2 - 3\alpha(x - 2)^2$$

$$\Rightarrow 0 = (1 - 3)x^2 + 12x - 12 - \frac{8}{3}$$

$$\Rightarrow 0 = x^2 - 6x + \frac{22}{3} = (x - 3)^2 - 9 + \frac{22}{3}$$

$$\Rightarrow x = 3 \pm \sqrt{\frac{5}{3}}$$

Beide Lösungen liegen außerhalb des betrachteten Definitions
intervalls (2 < x < 3)

Kandidaten für das Minimum sind also $x_1=0,\,x_2=\sqrt{8/3},\,x_3=2,\,x_4=3$ mit

$$w(0) = 0, w(x_2) = -\frac{2}{3}x_2^3\alpha < w(2) = -\frac{8}{3}\alpha, w(3) = 0.$$

Damit liegt das Minimum bei $x_2 = \sqrt{\frac{8}{3}}$.

Aufgabe 5: δ -Distribution

Bestimmen Sie die folgenden Integrale:

i)
$$\int_{-\infty}^{\infty} \frac{\cos(x)}{1+x^2} \cdot \delta(x-\pi) \, dx. \qquad \text{ii)} \qquad \int_{-\pi/2}^{\pi/2} \cos(x) \cdot \delta(x-\pi) \, dx.$$

Lösung 5:

i)
$$\int_{-\infty}^{\infty} \frac{\cos(x)}{1+x^2} \cdot \delta(x-\pi) \, dx = \frac{\cos(\pi)}{1+\pi^2} = \frac{-1}{1+\pi^2} .$$

i)
$$\int_{-\infty}^{\infty} \frac{\cos(x)}{1+x^2} \cdot \delta(x-\pi) \, dx = \frac{\cos(\pi)}{1+\pi^2} = \frac{-1}{1+\pi^2} .$$
ii)
$$\int_{-\pi/2}^{\pi/2} \cos(x) \cdot \delta(x-\pi) \, dx = 0 \quad da \quad \pi \notin [-\pi/2, \pi/2] .$$

Aufgabe 6: AWP und δ -Distribution

Ein mechanisches Pendel werde durch das folgende Anfangswertproblem beschrieben

$$u''(t) + 2u'(t) + 5u(t) = f(t)$$
, $u(0) = 2$, $u'(0) = -2$.

u''(t) steht nach dem zweiten Newtonschen Gesetz für die Beschleunigung einer Masse. Der Term 5u(t) modelliert ein repulsives Potential (Federkraft) und der Term 2u'(t) die Dämpfung des Systems. Das Pendel befindet sich zum Zeitpunkt t=0 am Ort u(0)=2 und hat die Geschwindigkeit u'(0)=-2.

- a) Bestimmen Sie mit Hilfe der Laplace–Transformation die Lösung des AWPs für f(t) = 0, t > 0. (Es wirken keine äußeren Kräfte.)
- b) Bestimmen Sie den Zeitpunkt t_0 des ersten Nulldurchgangs, d.h. $u(t_0) = 0$, der Lösung aus Teil a).
- c) Zum Zeitpunkt t_0 aus Teil b) wird ein δ -Impuls $f(t) = \alpha \cdot \delta(t t_0)$ so auf das System ausgeübt, dass das System anschließend in Ruhe ist. Dies modelliert ein starres Hindernis, auf welches das Pendel (nicht elastisch) aufprallt, so dass die Bewegung sofort endet. Wie groß muss die Impulsstärke α sein?

Lösung 6:

Zu a) Die Laplace-Transformation des AWPs ergibt mit $\mathcal{L}(u(t)) = \mathcal{U}(s)$:

$$s^2 \mathcal{U} - 2s + 2 + 2 \cdot [s\mathcal{U} - 2] + 5\mathcal{U} = 0 \Rightarrow \mathcal{U}(s) = \frac{2(s+1)}{(s+1)^2 + 2^2}$$
.

Die Rücktransformation ergibt die Lösung des AWPs

$$u_{\text{AWP}}(t) = 2 e^{-t} \cdot \cos(2t)$$

Zu b) Aus $2t_0 = \pi/2$ erhält man $t_0 = \pi/4$.

Zu c) Das inhomogene lineare AWP lautet

$$u''(t) + 2u'(t) + 5u(t) = \alpha \cdot \delta(t - \pi/4)$$
.

Die Laplace-Transformation ergibt

$$s^2 \mathcal{U} - 2s + 2 + 2 \cdot [s\mathcal{U} - 2] + 5\mathcal{U} = \alpha e^{-s \cdot \pi/4}$$

und nach U(s) aufgelöst:

$$\mathcal{U}(s) = \frac{2(s+1)}{(s+1)^2 + 2^2} + e^{-s \cdot \pi/4} \cdot \frac{\alpha}{(s+1)^2 + 2^2} .$$

Die Rücktransformation ergibt

$$u_{\text{AWP}}(t) = 2 e^{-t} \cdot \cos(2t) + \frac{\alpha}{2} \cdot e^{-(t-\pi/4)} \cdot \sin\left(2(t-\frac{\pi}{4})\right) \cdot h(t-\frac{\pi}{4})$$

$$= e^{-t} \cdot \left\{2 \cos(2t) + \frac{\alpha}{2} \cdot e^{\pi/4} \cdot \left[\sin(2t) \cos(\frac{\pi}{2}) - \cos(2t) \sin(\frac{\pi}{2})\right] \cdot h(t-\frac{\pi}{4})\right\}$$

$$= e^{-t} \cos(2t) \cdot \left\{2 - \frac{\alpha}{2} e^{\pi/4} \cdot h(t-\frac{\pi}{4})\right\}$$

Damit die Lösung für $t \ge t_0$ verschwindet, muß $2 = \frac{\alpha}{2} e^{\pi/4}$ sein, der δ -Implus also die Stärke

$$\alpha = 4 \, \mathrm{e}^{-\pi/4}$$

haben.

Aufgabe 7: Integralgleichungen mit Laplace-Transformation

Bestimmen Sie die Lösung y(t) (mit $t \ge 0$) der Integralgleichung

$$y(t) = t^2 + \int_{0}^{t} y(\tau) \sin(t - \tau) d\tau.$$

Lösung 7:

Die Laplace–Transformation der Integralgleichung ergibt mit $\mathcal{L}(y(t)) = Y(s)$ sowie

$$\int_{0}^{t} y(\tau) \sin(t - \tau) d\tau = \mathcal{L}(y(t) * \sin(t)) = \mathcal{L}(y(t)) \cdot \mathcal{L}(\sin(t))$$

die Gleichung im Frequenzraum:

$$Y(s) = \frac{2}{s^3} + Y(s) \cdot \frac{1}{s^2 + 1}$$

$$\Rightarrow \left(1 - \frac{1}{s^2 + 1}\right) Y(s) = \frac{2}{s^3} \Rightarrow Y(s) = \frac{2(s^2 + 1)}{s^3 \cdot s^2} = \frac{2}{s^3} + \frac{2}{s^5}$$

$$\Rightarrow \underline{y(t) = t^2 + \frac{t^4}{12}}.$$

Aufgabe 8: Lineare Differentialgleichung

Gegeben sei das Anfangswertproblem für u(t)

$$u'' + 4u' + 3u = 12 \cdot (1 - h(t - 2)), \quad u(0) = u'(0) = 0$$

wobei h(t) die Heaviside-Funktion ist.

- a) Bestimmen Sie die Lösung mit Hilfe der Laplace-Transformation.
- b) Geben Sie die Lösung in den Bereichen $0 \le t < 2$ und $2 \le t$ ohne Verwendung der Heaviside-Funktion an und fassen Sie die Terme sinnvoll zusammen.

Lösung 8:

a) Die Laplace-Transformation des AWPs ergibt

$$s^{2}U(s) + 4sU(s) + 3U(s) = \frac{12}{s} \cdot (1 - e^{-2s})$$
.

Die Laplace-Transformierte der Lösung ergibt sich damit zu

$$U(s) = \frac{12}{s \cdot (s+3) \cdot (s+1)} \cdot \left(1 - e^{-2s}\right) = \left(\frac{4}{s} + \frac{2}{s+3} + \frac{-6}{s+1}\right) \cdot \left(1 - e^{-2s}\right).$$

Die Rücktransformation ergibt die gesuchte Lösung

$$u(t) = 4 + 2e^{-3t} - 6e^{-t} - h(t-2) \cdot \left(4 + 2e^{-3(t-2)} - 6e^{-(t-2)}\right).$$

 $\mathbf{b})$

$$u(t) = \begin{cases} 4 + 2e^{-3t} - 6e^{-t} & \text{für } 0 \le t < 2\\ (2 - 2e^{6}) \cdot e^{-3t} + (-6 + 6e^{2}) \cdot e^{-t} & \text{für } 2 \le t \end{cases}.$$

Aufgabe 9: Laplace-Transformierte

Berechnen Sie die Laplace-Transformierte von $f(t) = \sqrt{t}$:

$$F(s) := \int_{0}^{\infty} e^{-st} \cdot \sqrt{t} dt.$$

Hinweise:

- Substituieren Sie $u = \sqrt{t}$.
- Spalten Sie u^2 in $u \cdot u$ auf und integrieren Sie partiell.
- Das Quadrat des verbleibenden Integrals können Sie lösen, indem Sie Polarkoordinaten einführen.

Lösung 9:

Mit der Substitution $u = \sqrt{t} \implies dt = 2u du$ erhält man

$$F(s) = \int_{0}^{\infty} e^{-s u^{2}} \cdot u \cdot 2 u \, du = -\frac{1}{s} \cdot \int_{0}^{\infty} u \cdot (-2su) e^{-s u^{2}} \, du.$$

Die partielle Integration ergibt

$$F(s) = -\frac{1}{s} \left(u e^{-s u^2} \Big|_0^{\infty} - \int_0^{\infty} e^{-s u^2} du \right)$$
$$= -\frac{1}{s} \left(0 - 0 - \int_0^{\infty} e^{-s u^2} du \right)$$
$$= \frac{1}{s} \cdot \int_0^{\infty} e^{-s u^2} du .$$

Mit Quadrieren erhält man

$$(F(s))^2 = \frac{1}{s} \int_0^\infty e^{-sx^2} dx \cdot \frac{1}{s} \int_0^\infty e^{-sy^2} dy = \frac{1}{s^2} \int_0^\infty \int_0^\infty e^{-s(x^2+y^2)} dx dy$$

und durch Übergang zu Polarkoordinaten

$$(F(s))^2 = \frac{1}{s^2} \int_0^\infty \int_0^{\pi/2} e^{-s r^2} r d\phi dr = \frac{1}{s^2} \cdot \frac{\pi}{2} \cdot \left[\frac{-1}{2s} e^{-s r^2} \right]_0^\infty = \frac{\pi}{4s^3} .$$

Damit ist

$$F(s) = \mathcal{L}\left(\sqrt{t}\right) = \sqrt{\frac{\pi}{4 s^3}}$$

Aufgabe 10: Laplace-Transformierte

Bestimmen Sie unter Verwendung von $\mathcal{L}\{\sin(t)\}=\frac{1}{s^2+1}$ und geeigneten Rechenregeln folgende Ausdrücke

$$\mathbf{a)} \ \mathcal{L}\left\{\frac{\sin(t)}{t}\right\} \ , \quad \mathbf{b)} \ \mathcal{L}\left\{\int\limits_{0}^{t} \frac{\sin(\tau)}{\tau} \ \mathrm{d}\tau\right\} \ , \quad \mathbf{c)} \ \int\limits_{0}^{\infty} \frac{\sin(t)}{t} \ \mathrm{d}t \ , \quad \mathbf{d)} \ \mathcal{L}\left\{\mathrm{e}^{-t} \frac{\sin(t)}{t}\right\} \ .$$

e) Bestimmen Sie mit Hilfe des Faltungssatzes der Laplace-Transformation die Urbildfunktion f(t) zur Bildfunktion

$$F(s) := \frac{s}{(s+1)(s^2+1)} \ .$$

Lösung 10:

a) Mit der Transformationsformel $\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(\sigma) d\sigma$ erhält man

$$\mathcal{L}\left\{\frac{\sin(t)}{t}\right\} = \int_{s}^{\infty} \frac{1}{\sigma^2 + 1} d\sigma = \left[\arctan(\sigma)\right]_{s}^{\infty} = \frac{\pi}{2} - \arctan(s) .$$

b) Mit der Transformationsformel $\mathcal{L}\left\{\int\limits_0^t f(\tau)\mathrm{d}\tau\right\} = \frac{F(s)}{s}$ erhält man

$$\mathcal{L}\left\{\int_{0}^{t} \frac{\sin(\tau)}{\tau} d\tau\right\} = \frac{1}{s} \cdot \left(\frac{\pi}{2} - \arctan(s)\right)$$

c)

1. Lösungsweg

Mit Hilfe des Anfangs- und Endwertsatzes ergibt sich

$$\int_{0}^{\infty} \frac{\sin(t)}{t} dt = \lim_{t \to \infty} \int_{0}^{t} \frac{\sin \tau}{\tau} d\tau = \lim_{s \to 0} \left(s \cdot \mathcal{L} \left\{ \int_{0}^{t} \frac{\sin(\tau)}{\tau} d\tau \right\} \right)$$
$$= \lim_{s \to 0} \left(\frac{\pi}{2} - \arctan(s) \right) = \frac{\pi}{2} .$$

2. Lösungsweg

Nach Definition der Laplace-Transformierten gilt

$$\mathcal{L}\left\{\frac{\sin(t)}{t}\right\} = \int_{0}^{\infty} e^{-st} \cdot \frac{\sin(t)}{t} dt = U(s)$$

Aus der Teilaufgabe a) folgt $U(s) = \frac{\pi}{2} - \arctan(s)$. Somit erhält man

$$\int_{0}^{\infty} \frac{\sin(t)}{t} dt = \int_{0}^{\infty} e^{-0 \cdot t} \cdot \frac{\sin(t)}{t} dt = U(0) = \frac{\pi}{2}$$

d) Mit der Transformationsformel $\mathcal{L}\left\{ \mathrm{e}^{-at}\,f(t)\right\} = F(s+a)$ erhält man

$$\mathcal{L}\left\{e^{-t}\frac{\sin(t)}{t}\right\} = \frac{\pi}{2} - \arctan(s+1) .$$

e) Es gilt

$$F(s) = F_1(s) \cdot F_2(s)$$
 mit $F_1(s) = \frac{1}{s+1}$, $F_2(s) = \frac{s}{s^2+1}$.

Mit den Rücktransformierten

$$f_1(t) = e^{-t}$$
 und $f_2(t) = \cos(t)$

folgt

$$f(t) = f_1(t) * f_2(t) = \int_0^t e^{-(t-\tau)} \cos(\tau) d\tau = e^{-t} \int_0^t e^{\tau} \cos(\tau) d\tau.$$

Mit

$$I = \int_0^t e^{\tau} \cos \tau d\tau = e^{\tau} \sin \tau \Big|_0^t - \int_0^t e^{\tau} \sin \tau d\tau$$
$$= e^t \sin t + e^{\tau} \cos \tau \Big|_0^t - \int_0^t e^{\tau} \cos \tau d\tau$$
$$= e^t \sin t + e^t \cos t - 1 - I$$

folgt

$$2I = e^t \sin t + e^t \cos t - 1$$

und

$$I = \frac{1}{2} e^t \sin t + \frac{1}{2} e^t \cos t - \frac{1}{2}$$

Alternativ kann man im Komplexen rechnen:

$$I = \int_0^t e^{\tau} \cos \tau d\tau = \int_0^t \operatorname{Re}(e^{\tau} \cdot e^{i\tau}) d\tau$$

$$= \operatorname{Re}\left(\int_0^t (e^{(1+i)\tau} d\tau) = \left[\operatorname{Re}\left(\frac{e^{(1+i)\tau}}{1+i}\right)\right]_0^t = \left[e^{\tau} \operatorname{Re}\left(\frac{(\cos \tau + i \sin \tau)(1-i)}{2}\right)\right]_0^t$$

$$= \left[e^{\tau} \cdot \frac{(\cos \tau + \sin \tau)}{2}\right]_0^t = e^t \cdot \frac{(\cos t + \sin t)}{2} - \frac{1}{2}$$

Somit ergibt sich

$$f(t) = e^{-t} \cdot I = \frac{1}{2}(\sin t + \cos t) - \frac{1}{2}e^{-t}$$
.

Aufgabe 11: Laplace-Transformierte

Berechnen Sie die Laplace-Transformierte der folgenden Funktionen:

$$\mathbf{a}) \quad f_1(t) = \left\{ \begin{array}{ll} A & \text{für } 0 \le t \le t_0 \\ A \mathrm{e}^{-2(t-t_0)} & \text{sonst} \end{array} \right. \text{ mit festem } A \in \mathbb{R}.$$

$$\mathbf{b}) \quad f_2(t) = \begin{cases} 0 & \text{für } 0 \le t < a \\ A & \text{für } a \le t < b \text{ mit festen } 0 < a < b \text{ und } A \in \mathbb{R}. \\ 0 & \text{sonst} \end{cases}$$

$$\mathbf{c}) \quad f_3(t) = \begin{cases} t & \text{für } 0 \le t \le 3\\ 3 & \text{für } t > 3 \end{cases}$$

$$\mathbf{d}) \quad f_4(t) = \left\{ \begin{array}{ll} \sin t & \text{für } t \le \pi \\ 0 & \text{für } t > \pi \end{array} \right..$$

Lösung 11:

 \mathbf{a}

$$\mathcal{L}\{f_1(t)\} = \int_0^\infty e^{-st} f_1(t) dt = \int_0^{t_0} e^{-st} A dt + \int_{t_0}^\infty A e^{-2(t-t_0)-st} dt$$

$$= \frac{A}{-s} \cdot e^{-st} \Big|_0^{t_0} + \frac{A}{-s-2} \cdot e^{(-s-2)t+2t_0} \Big|_{t_0}^\infty$$

$$= \frac{A(1 - e^{-st_0})}{s} + \frac{Ae^{-st_0}}{2+s} = \frac{A}{s} - \frac{2Ae^{-st_0}}{s^2 + 2s}$$

b)
$$\mathcal{L}{f_2(t)} = \int_a^b Ae^{-st} dt = \frac{A(e^{-as} - e^{-bs})}{s}$$

 $\mathbf{c})$

$$\mathcal{L}\{f_3(t)\} = \int_0^3 t e^{-st} dt + \int_3^\infty 3e^{-st} dt = t \frac{e^{-st}}{-s} \Big|_0^3 - \int_0^3 \frac{e^{-st}}{-s} dt + \frac{3e^{-st}}{-s} \Big|_3^\infty$$
$$= -\frac{3e^{-3s}}{s} - \frac{e^{-st}}{s^2} \Big|_0^3 + \frac{3e^{-3s}}{s} = \frac{-e^{-3s} + 1}{s^2}$$

d) 1.Lösungsweg:(komplexe Zahlen)

$$\mathcal{L}\{f_4(t)\} = \int_0^{\pi} e^{-st} \sin t dt = \int_0^{\pi} \text{Im}(e^{-st+it}) dt$$

$$= \text{Im}\left(\frac{e^{-st+it}}{-s+i}\right) \Big|_0^{\pi} = \text{Im}\left(\frac{(-s-i)e^{-st+it}}{s^2+1}\right) \Big|_0^{\pi}$$

$$= \frac{e^{-st}}{s^2+1} \cdot \text{Im}((-s-i)(\cos t + i\sin t)) \Big|_0^{\pi} = \frac{e^{-st}}{s^2+1} \cdot (-\cos t - s\sin t)) \Big|_0^{\pi}$$

$$\Rightarrow = \frac{e^{-s\pi} + 1}{1+s^2}$$

2.Lösungsweg: (zweifache partielle Integration)

$$\mathcal{L}\{f_4(t)\} = \int_0^{\pi} e^{-st} \sin t dt = -\cos t e^{-st} \Big|_0^{\pi} - \int_0^{\pi} s \cos t e^{-st} dt$$

$$= e^{-s\pi} + 1 - s \sin t e^{-st} \Big|_0^{\pi} - \int_0^{\pi} s^2 \sin t e^{-st} dt$$

$$= e^{-s\pi} + 1 - s^2 \cdot \mathcal{L}\{f_4(t)\}$$

$$\mathcal{L}\{f_4(t)\} = \frac{e^{-s\pi} + 1}{1 + s^2}$$

Aufgabe 12: Laplace-Transformierte

a) Berechnen Sie die Laplace-Transformierte

$$\mathcal{L}{f(t)} = F(s) = \int_{t=0}^{\infty} e^{-st} \cdot f(t) dt$$

der folgenden Funktionen:

$$\mathbf{i)} \quad f(t) = 1,$$

vi)
$$f(t) = e^{-at} \cdot t$$
.

$$\mathbf{ii}$$
) $f(t) = t$,

vii) $\mathcal{L}\{g'(t)\}$, für eine allgemeine (gegebene) Funktion g(t),

iii)
$$f(t) = t^2$$
,
iv) $f(t) = t^3$,

viii) $\mathcal{L}\{g''(t)\}$, für eine allgemeine (gegebene) Funktion g(t).

$$\mathbf{v}) \quad f(t) = e^{-at},$$

Hinweis: Für die letzten beiden Aufgaben kann die Laplacetransformierte $G(s) = \mathcal{L}\{q(t)\}$ der Funktion q(t) als bekannt vorausgesetzt werden.

b) Berechnen Sie die Laplace-Transformierte von $f(t) = \sqrt{t}$.

Hinweise:

- Substituieren Sie $u = \sqrt{t}$.
- Spalten Sie u^2 in $u \cdot u$ auf und integrieren Sie partiell.
- Das Quadrat des verbleibenden Integrals können Sie lösen, indem Sie Polarkoordinaten einführen.

Lösung 12:

a) Diese Laplace-Transformationen müssen durch Anwendung der Definition und Bestimmung der Integrale berechnet werden. Es wird in der Regel partiell integriert.

$$\mathbf{i})$$

$$\mathcal{L}\{1\} = \int_{t=0}^{\infty} e^{-st} 1 dt = \left[\frac{e^{-st}}{-s} \right]_{t=0}^{\infty}$$
$$= \frac{1}{s}$$

$$\mathcal{L}\{t\} = \int_{t=0}^{\infty} e^{-st} t dt = \left[t \frac{e^{-st}}{-s} \right]_{t=0}^{\infty} + \frac{1}{s} \int_{t=0}^{\infty} e^{-st} dt$$
$$= 0 - \left. \frac{e^{-st}}{-s^2} \right|_{t=0}^{\infty} = \frac{1}{s^2}$$

$$\mathcal{L}\{t^2\} = \int_{t=0}^{\infty} t^2 e^{-st} dt = \left[t^2 \frac{e^{-st}}{-s} \right]_{t=0}^{\infty} + \frac{1}{s} \int_{t=0}^{\infty} 2t e^{-st} dt$$

$$= 0 + \left[\frac{2t e^{-st}}{-s^2} \right]_{t=0}^{\infty} + \frac{2}{s^2} \int_{t=0}^{\infty} e^{-st} dt$$

$$= 0 + \left. \frac{2e^{-st}}{-s^3} \right|_{t=0}^{\infty} = \frac{2}{s^3}$$

$$\mathcal{L}\{t^3\} = \int_{t=0}^{\infty} t^3 e^{-st} dt = \left[t^3 \frac{e^{-st}}{-s} \right]_{t=0}^{\infty} + \frac{1}{s} \int_{t=0}^{\infty} 3t^2 e^{-st} dt$$

$$= 0 + \left[\frac{3t^2 e^{-st}}{-s^2} \right]_{t=0}^{\infty} + \frac{3}{s^2} \int_{t=0}^{\infty} 2t e^{-st} dt$$

$$= 0 + \left. \frac{6t e^{-st}}{-s^3} \right|_{t=0}^{\infty} + \int_{t=0}^{\infty} \frac{6e^{-st}}{s^3} dt$$

$$= 0 + \left. \frac{6e^{-st}}{s^4} \right|_{t=0}^{\infty} = \frac{6}{s^4}$$

$$\mathbf{v})$$

$$\mathcal{L}\lbrace e^{-at}\rbrace = \int_{t=0}^{\infty} e^{-st} e^{-at} dt = \left[\frac{e^{-(s+a)t}}{-(s+a)} \right]_{t=0}^{\infty}$$
$$= \frac{1}{s+a}$$

vi)

$$\mathcal{L}\{te^{-at}\} = \int_{t=0}^{\infty} te^{-at}e^{-st}dt = \left[\frac{te^{-(s+a)t}}{-(s+a)}\right]_{t=0}^{\infty} + \frac{1}{s+a}\int_{t=0}^{\infty} e^{-(s+a)t}dt$$
$$=0 + \frac{e^{-(s+a)t}}{-(s+a)^2}\Big|_{t=0}^{\infty} = \frac{1}{(s+a)^2}$$

vii)

$$\mathcal{L}\lbrace g'(t)\rbrace = \int_{t=0}^{\infty} e^{-st} g'(t) dt$$
$$\left[e^{-st} g(t)\right]_{t=0}^{\infty} - \int_{t=0}^{\infty} (-se^{-st} g(t)) dt$$
$$= 0 - g(0) + s\mathcal{L}\lbrace g(t)\rbrace = sG(s) - g(0)$$

viii)

$$\mathcal{L}\{g''(t)\} = \int_{t=0}^{\infty} e^{-st} g''(t) dt$$

$$= \left[e^{-st} g'(t) \right]_{t=0}^{\infty} - \int_{t=0}^{\infty} (-se^{-st} g'(t)) dt$$

$$= 0 - g'(0) + s\mathcal{L}\{g'(t)\}$$

$$= s(sG(s) - g(0)) - g'(0) = s^2 G(s) - g'(0) - sg(0)$$

b) Mit der Substitution $u = \sqrt{t} \Rightarrow dt = 2u du$ erhält man

$$F(s) = \int_{0}^{\infty} e^{-s u^{2}} \cdot u \cdot 2 u \, du = -\frac{1}{s} \cdot \int_{0}^{\infty} u \cdot (-2su) e^{-s u^{2}} \, du.$$

Partielle Integration ergibt

$$F(s) = -\frac{1}{s} \left(u e^{-s u^2} \Big|_0^{\infty} - \int_0^{\infty} e^{-s u^2} du \right)$$
$$= -\frac{1}{s} \left(0 - 0 - \int_0^{\infty} e^{-s u^2} du \right)$$
$$= \frac{1}{s} \cdot \int_0^{\infty} e^{-s u^2} du .$$

Durch Quadrieren der Gleichung erhält man

$$(F(s))^2 = \frac{1}{s} \int_0^\infty e^{-sx^2} dx \cdot \frac{1}{s} \int_0^\infty e^{-sy^2} dy = \frac{1}{s^2} \int_0^\infty \int_0^\infty e^{-s(x^2+y^2)} dx dy$$

und durch Übergang zu Polarkoordinaten

$$(F(s))^2 = \frac{1}{s^2} \int_0^\infty \int_0^{\pi/2} e^{-s r^2} r d\phi dr = \frac{1}{s^2} \cdot \frac{\pi}{2} \cdot \left[\frac{-1}{2s} e^{-s r^2} \right]_0^\infty = \frac{\pi}{4s^3} .$$

Damit ist

$$F(s) = \mathcal{L}\left(\sqrt{t}\right) = \sqrt{\frac{\pi}{4 s^3}}.$$

Aufgabe 13: Laplace-Transformierte

Bestimmen Sie unter Verwendung von $\mathcal{L}\{\sin(t)\}=\frac{1}{s^2+1}$ und geeigneten Rechenregeln folgende Ausdrücke

$$\mathbf{a}) \ \mathcal{L}\left\{\frac{\sin(t)}{t}\right\} \ , \quad \mathbf{b}) \ \mathcal{L}\left\{\int\limits_{0}^{t} \frac{\sin(\tau)}{\tau} \ \mathrm{d}\tau\right\} \ , \quad \mathbf{c}) \ \int\limits_{0}^{\infty} \frac{\sin(t)}{t} \ \mathrm{d}t \ , \quad \mathbf{d}) \ \mathcal{L}\left\{\mathrm{e}^{-t} \, \frac{\sin(t)}{t}\right\} \ .$$

Lösung 13:

a) Mit der Transformationsformel $\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(\sigma) d\sigma$ erhält man

$$\mathcal{L}\left\{\frac{\sin(t)}{t}\right\} = \int_{s}^{\infty} \frac{1}{\sigma^2 + 1} d\sigma = \left[\arctan(\sigma)\right]_{s}^{\infty} = \frac{\pi}{2} - \arctan(s) .$$

b) Mit der Transformationsformel $\mathcal{L}\left\{\int\limits_0^t f(\tau)\mathrm{d}\tau\right\} = \frac{F(s)}{s}$ erhält man

$$\mathcal{L}\left\{\int_{0}^{t} \frac{\sin(\tau)}{\tau} d\tau\right\} = \frac{1}{s} \cdot \left(\frac{\pi}{2} - \arctan(s)\right)$$

c)

1. Lösungsweg

Mit Hilfe des Anfangs- und Endwertsatzes ergibt sich

$$\int_{0}^{\infty} \frac{\sin(t)}{t} dt = \lim_{t \to \infty} \int_{0}^{t} \frac{\sin \tau}{\tau} d\tau = \lim_{s \to 0} \left(s \cdot \mathcal{L} \left\{ \int_{0}^{t} \frac{\sin(\tau)}{\tau} d\tau \right\} \right)$$
$$= \lim_{s \to 0} \left(\frac{\pi}{2} - \arctan(s) \right) = \frac{\pi}{2} .$$

2. Lösungsweg

Nach Definition der Laplace-Transformierten gilt

$$\mathcal{L}\left\{\frac{\sin(t)}{t}\right\} = \int_{0}^{\infty} e^{-st} \cdot \frac{\sin(t)}{t} dt = U(s)$$

Aus der Teilaufgabe **a)** folgt $U(s) = \frac{\pi}{2} - \arctan(s)$.

Somit erhält man

$$\int_{0}^{\infty} \frac{\sin(t)}{t} dt = \int_{0}^{\infty} e^{-0 \cdot t} \cdot \frac{\sin(t)}{t} dt = U(0) = \frac{\pi}{2}$$

d) Mit der Transformationsformel $\mathcal{L}\left\{e^{-at} f(t)\right\} = F(s+a)$ erhält man

$$\mathcal{L}\left\{e^{-t}\frac{\sin(t)}{t}\right\} = \frac{\pi}{2} - \arctan(s+1) .$$

Aufgabe 14: Heaviside-Funktion

Gesucht ist die Laplace-Transformierte von

$$f(t) := h(t-2) \cdot t^2 ,$$

wobei h die Heaviside-Funktion ist.

- a) Mit Hilfe der Integraldarstellung der Definition.
- b) Mit Hilfe des Verschiebungssatzes und der Tabelle der Laplace-Transformierten.

Lösung 14:

 $\mathbf{a})$

$$F(s) = \int_{2}^{\infty} e^{-st} t^2 dt = \left[-\left(\frac{t^2}{s} + \frac{2t}{s^2} + \frac{2}{s^3}\right) \cdot e^{-st} \right]_{2}^{\infty} = \left(\frac{4}{s} + \frac{4}{s^2} + \frac{2}{s^3}\right) \cdot e^{-2s}.$$

b) Für den Verschiebungssatz

$$\mathcal{L}(f(t-a) \cdot h(t-a)) = F(s) \cdot e^{-as}, \quad a > 0,$$

muss die Funktion erst umgeschrieben werden:

$$t^2 = (t-2)^2 + 4(t-2) + 4$$
.

Damit erhält man die Laplace-Transformierte

$$\mathcal{L}\Big(\big((t-2)^2 + 4(t-2) + 4\big) \cdot h(t-2)\Big) = \left(\frac{2}{s^3} + \frac{4}{s^2} + \frac{4}{s}\right) \cdot e^{-2s}$$