Sažeto uzorkovanje

Diplomski rad

Marco Hrlić

Prirodoslovno matematički fakultet Sveučilište u Zagrebu

Rujan 2019.

Uvod

- ► **Osnovni zadatak**: Efikasno prikupljanje i rekonstrukcija korisnih informacija iz mjerenja.
- ► Uzorkovanje: Proces prikupljanja informacija.
- ► Radio valovi u kontekstu telekomunikacijskih tehnologija.

- ightharpoonup Prvi toranj šalje informaciju $\mathbf{x} \in \mathbb{R}^N$.
- ► Radio signal koji prenosi x putuje kanalom.
- ▶ Drugi toranj uzima uzorke, tj. vrši (uglavnom) periodička mjerenje nad elektromagnetnim poljem, te formira mjerenje $\mathbf{y} \in \mathbb{R}^m$.

Uzorkovanje druge antene možemo opisati na linearan način, tj.

$$y = Ax$$

za neku $\mathbf{A} \in \mathbb{R}^{m \times N}$ (matrica mjerenja).

- Za rekonstrukciju informacije x moramo rješiti linearni sustav.
- ▶ Prirodan uvjet: $m \ge N$.
- ▶ Dovoljan uvjet:

Teorem (Nyquist-Shannon)

Ako funkcija x(t) ne sadrži frekvencije veće od B Hertza, onda je za rekonstrukciju (sinc interpolacijom) dovoljno je uzimati uzorke svakih 1/(2B) sekundi.

Empirijski znamo da su mnogi signali u primjeni makar približno rijetki.

Definicija

Nosač vektora $\mathbf{x} \in \mathbb{C}^N$ je skup indeksa njegovih ne-nul elemenata, tj.

$$\mathsf{supp}(\mathbf{x}) := \{ j \in [N] : x_j \neq 0 \}.$$

lacktriangle Za vektor $\mathbf{x} \in \mathbb{C}^N$ kažemo da je s-rijedak ako vrijedi

$$\|\mathbf{x}\|_0 := \mathsf{card}(\mathsf{supp}(\mathbf{x})) \le s.$$

► Kompresibilni/sažeti vektori ← približno rijetki.

$$\begin{split} \sigma_s(\mathbf{x})_p &:= \inf \big\{ \|\mathbf{x} - \mathbf{z}\|_p, \ \mathbf{z} \in \mathbb{C}^N \ \text{je s-rijedak} \big\}. \\ \|\mathbf{x}\|_{p,\infty} &:= \inf \Big\{ M \geq 0 : \mathsf{card}(\{j \in [N] : |x_j| \geq t\}) \\ &\leq \frac{M^P}{t^p}, \ \forall t > 0 \Big\}. \end{split}$$

$$\sigma_s(\mathbf{x})_q \le \frac{d_{p,q}}{s^{1/p-1/q}} \|\mathbf{x}\|_{p,\infty}$$

lackbox Uz dodatnu pretpostavku o rijetkosti vektora ${f x}$, uspješna rekonstrukcija je moguća za m << N, te postoje efikasni algoritmi za rješenje.

Minimalni broj mjerenja

Za danu rijetkost s, matricu $\mathbf{A} \in \mathbb{C}^{m \times N}$ i s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ ekvivalentno je:

- 1. Vektor \mathbf{x} je jedinstveno s-rijetko rješenje sustava $\mathbf{A}\mathbf{z} = \mathbf{y}$ gdje je $\mathbf{y} = \mathbf{A}\mathbf{x}$, tj. $\{\mathbf{z} \in \mathbb{C}^N : \mathbf{A}\mathbf{z} = \mathbf{A}\mathbf{x}, \|\mathbf{z}\|_0 \le s\} = \{\mathbf{x}\}.$
- 2. Vektor \mathbf{x} je jedinstveno rješenje problema minimizacije

$$\min_{\mathbf{z} \in \mathbb{C}^N} \|\mathbf{z}\|_0 \quad \text{uz uvjet } \mathbf{A}\mathbf{z} = \mathbf{y}. \tag{P_0}$$

Teorem

Neka je $\mathbf{A} \in \mathbb{C}^{m \times N}$. Ekvivalentno je:

- 1. Postoji samo jedan s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ koji zadovoljava $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{z}$, tj. ako je $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{z}$ i ako su \mathbf{x} , \mathbf{z} oba s-rijetki tada je $\mathbf{x} = \mathbf{z}$.
- 2. Jezgra od \mathbf{A} ne sadrži niti jedan 2s-rijedak vektor osim nul-vektora, tj. $\ker \mathbf{A} \cap \{\mathbf{z} \in \mathbb{C}^N : \|\mathbf{z}\|_0 \leq 2s\} = \{\mathbf{0}\}.$
- 3. Za svaki $S \subseteq [N]$ takav da je $\operatorname{card}(S) \leq 2s$, podmatrica \mathbf{A}_S je injektivna kao preslikavanje s \mathbb{C}^S u \mathbb{C}^m .
- 4. Svaki skup od 2s stupaca matrice ${\bf A}$ je linearno nezavisan skup.

Pretpostavimo da je rekonstrukcija moguća

 \implies vrijedi (1) iz prethodnog teorema \implies vrijedi (4), tj.

$$r(\mathbf{A}) \geq 2s$$
.

Dakle, imamo

$$m \geq 2s$$
.

Teorem

Za svaki $N \geq 2s$, postoji matrica mjerenja $\mathbf{A} \in \mathbb{C}^{2s \times N}$ takva da se svaki s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ može rekonstruirati iz vektora mjerenja $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{C}^m$ kao rješenje problema minimizacije (P_0) .

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ t_1 & t_2 & \cdots & t_N \\ \vdots & \vdots & \cdots & \vdots \\ t_1^{2s-1} & t_2^{2s-1} & \cdots & t_N^{2s-1} \end{bmatrix}, \ \mathsf{za} \ t_N > \cdots > t_2 > t_1 > 0.$$

NP-složenost ℓ_0 -minimizacije

Općenitiji problem:

$$\min_{\mathbf{z} \in \mathbb{C}^N} \|\mathbf{z}\|_0 \quad \text{uz uvjet } \|\mathbf{A}\mathbf{z} - \mathbf{y}\|_2 \le \eta \qquad \quad (P_{0,\eta})$$

► Klase problema odlučivanja:

- 1. \$\mathfrak{P}\$: Svi problemi odlučivanja za koje postoji algoritam polinomijalnog vremena koji daje rješenje.
- 2. MP: Svi problemi odlučivanja za koje postoji algoritam polinomijalnog vremena koji provjerava točnost rješenja.
- 3. MP-teški: Svi problemi (ne nužno problemi odlučivanja) za koje se algoritam za rješenje može u polinomijalnom vremenu transformirati u algoritam rješenja za bilo koji MP problem.
- 4. MP-potpuni: Svi problemi koji su istovremeno MP i MP-teški.

Egzaktni pokrivač tročlanim skupovima

Za danu kolekciju $\{\mathcal{C}_i;\ i\in[N]\}$ tročlanih podskupova od [m], postoji li egzaktni pokrivač skupa [m], tj. postoji li $J\subseteq[N]$ takav da je $\cup_{j\in J}\mathcal{C}_j=[m]$, gdje je $\mathcal{C}_j\cap\mathcal{C}_k=\emptyset$ za sve međusobno različite $j,k\in J$?

► Poznato je da je taj problem MP-potpun.

Teorem

Za svaki $\eta \geq 0$, $\mathbf{A} \in \mathbb{C}^{m \times N}$ i $\mathbf{y} \in \mathbb{C}^m$, problem minimizacije $(P_{0,\eta})$ je \mathfrak{NP} -potpun.

Osnovni algoritmi sažetog uzorkovanja

Gruba podijela na:

- ► Optimizacijske metode
- ► Greedy metode
- ► Granične metode

Optimizacijske metode

Općeniti problem optimizacije je oblika

$$\min_{\mathbf{x} \in \mathbb{R}^N} F_0(\mathbf{x})$$
 uz uvjet $F_i(\mathbf{x}) \leq b_i, \ i \in [n]$

gdje $F_0: \mathbb{R}^N \to \mathbb{R}$ zovemo funkcija cilja, a funkcije $F_1, \dots, F_n: \mathbb{R}^N \to \mathbb{R}$ zovu se funkcije ograničenja.

Konveksna relaksacija problema (P_0) :

$$\min \|\mathbf{z}\|_1 \quad \text{uz uvjet } \mathbf{A}\mathbf{z} = \mathbf{y}. \tag{P_1}$$

ℓ_1 -minimizacija (*Basis Pursuit*)

Ulaz: Matrica mjerenja **A**, vektor mjerenja **y**. *Problem:*

$$\mathbf{x}^{\sharp} = \arg\min \|\mathbf{z}\|_1$$
 uz uvjet $\mathbf{A}\mathbf{z} = \mathbf{y}$ $(\ell_1 - min)$

Izlaz: vektor \mathbf{x}^{\sharp}

Teorem

Neka je $\mathbf{A} \in \mathbb{R}^{m \times N}$ matrica mjerenja sa stupcima $\mathbf{a}_1, \dots, \mathbf{a}_N$. Ako je \mathbf{x}^\sharp minimizator od

$$\min_{\mathbf{z} \in \mathbb{R}^N} \|\mathbf{z}\|_1 \quad \textit{uz uvjet } \mathbf{A}\mathbf{z} = \mathbf{y},$$

tada je skup $\{\mathbf{a}_j,\ j \in \mathsf{supp}(\mathbf{x}^\sharp)\}$ linearno nezavisan i vrijedi

$$\|\mathbf{x}^{\sharp}\|_{0} = \operatorname{card}(\operatorname{supp}(\mathbf{x}^{\sharp})) \leq m.$$

Greedy metode

OMP (Orthogonal matching pursuit)

Ulaz: Matrica mjerenja A, vektor mjerenja y.

Inicijalizacija: $S^0 = \emptyset$, $\mathbf{x}^0 = \mathbf{0}$

Iteracija: Zaustavi kada $n = \bar{n}$:

$$S^{n+1} = S^n \cup \{j_{n+1}\}, \quad j_{n+1} := \underset{j \in [N]}{\arg\max} \{|(\mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n))_j|\},$$

$$\mathbf{x}^{n+1} = \arg\min_{\mathbf{z} \in \mathbb{C}^N} \{ \|\mathbf{y} - \mathbf{A}\mathbf{z}\|_2, \ \operatorname{supp}(\mathbf{z}) \subseteq S^{n+1} \}.$$

Izlaz: \bar{n} -rijedak vektor $\mathbf{x}^{\sharp} = \mathbf{x}^{\bar{n}}$.

Indeks j_{n+1} bira se tako da se reducira ℓ_2 -norma reziduala $\mathbf{y} - \mathbf{A}\mathbf{x}^n$ što je više moguće. Sljedeća lema opravdava zašto je smisleno j odabrati takav da maksimizira vrijednost $|(\mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n))_j|$.

Lema

Neka je $\mathbf{A}\in\mathbb{C}^{m\times N}$ s ℓ_2 -normaliziranim stupcima. Ako su $S\subseteq[N]$, $\mathbf{v}\in\mathbb{C}^N$ s nosačem na $S,\ j\in[N]$, te ako vrijedi

$$\mathbf{w} := \underset{\mathbf{z} \in \mathbb{C}^N}{\min} \{ \|\mathbf{y} - \mathbf{A}\mathbf{z}\|_2, \ \mathsf{supp}(\mathbf{z}) \subseteq S \cup \{j\} \},$$

tada

$$\|\mathbf{y} - \mathbf{A}\mathbf{w}\|_2^2 \le \|\mathbf{y} - \mathbf{A}\mathbf{v}\|_2^2 - |(\mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{v}))_j|^2.$$

Nužni i dovoljni uvjeti za rekonstrukciju:

Propozicija

Neka je $\mathbf{A} \in \mathbb{C}^{m \times N}$. Svaki ne-nul vektor $\mathbf{x} \in \mathbb{C}^N$ s nosačem na skupu S, kardinaliteta s može se rekonstruirati iz $\mathbf{y} = \mathbf{A}\mathbf{x}$ u najviše s iteracija OMP algoritma ako i samo ako je matrica \mathbf{A}_S injektivna i

$$\max_{j \in S} |(\mathbf{A}^* \mathbf{r})_j| > \max_{l \in \bar{S}} |(\mathbf{A}^* \mathbf{r})_l| \tag{1}$$

 $za \ sve \ ne-nul \ \mathbf{r} \in \{\mathbf{Az}, \ \mathsf{supp}(\mathbf{z}) \subseteq S\}.$

CoSaMP (Compressive sensing matching pursuit)

Ulaz: Matrica mjerenja $\bf A$, vektor mjerenja $\bf y$, rijetkost s *Inicijalizacija:* s-rijedak vektor $\bf x^0$ (npr. $\bf x^0=\bf 0$). *Iteracija:* Zaustavi kada $n=\bar n$:

$$U^{n+1} = \operatorname{supp}(\mathbf{x}^n) \cup L_{2s}(\mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n))$$

$$\mathbf{u}^{n+1} = \underset{\mathbf{z} \in \mathbb{C}^N}{\operatorname{arg min}} \{ \|\mathbf{y} - \mathbf{A}\mathbf{z}\|_2, \operatorname{supp}(\mathbf{z}) \subseteq U^{n+1} \}$$

$$\mathbf{x}^{n+1} = H_s(\mathbf{u}^{n+1})$$

Izlaz: \bar{n} -rijedak vektor $\mathbf{x}^{\sharp} = \mathbf{x}^{\bar{n}}$.

 $L_s(\mathbf{z}):=$ skup indeksa s najvećih komponenti vekora $\mathbf{z}\in\mathbb{C}^N$ $H_s(\mathbf{z}):=\mathbf{z}_{L_s(\mathbf{z})}.$

Granične metode

BT (Basic thresholding)

Ulaz: Matrica mjerenja \mathbf{A} , vektor mjerenja \mathbf{y} , rijetkost s *Problem:*

$$S^{\sharp} = L_s(\mathbf{A}^* \mathbf{y}), \tag{BT_1}$$

$$\mathbf{x}^{\sharp} = \underset{\mathbf{z} \in \mathbb{C}^{N}}{\min} \{ \|\mathbf{y} - \mathbf{A}\mathbf{z}\|_{2}, \ \mathsf{supp}(\mathbf{z}) \subseteq S^{\sharp} \}.$$
 (BT₂)

Izlaz: s-rijedak vektor \mathbf{x}^{\sharp} .

Propozicija

BT algoritam rekonstruira vektor $\mathbf{x} \in \mathbb{C}^N$ s nosačem na S, iz $\mathbf{y} = \mathbf{A}\mathbf{x}$ ako i samo ako

$$\min_{j \in S} |(\mathbf{A}^* \mathbf{y})_j| > \max_{l \in \bar{S}} |(\mathbf{A}^* \mathbf{y})_l|.$$

IHT (Iterative hard thresholding)

Ulaz: Matrica mjerenja \mathbf{A} , vektor mjerenja \mathbf{y} , rijetkost s *Inicijalizacija:* s-rijedak vektor \mathbf{x}^0 (npr. $\mathbf{x}^0 = \mathbf{0}$). *Iteracija:* Zaustavi kada $n = \bar{n}$:

$$x^{n+1} = H_s(\mathbf{x}^n + \mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n).$$
 (IHT)

Izlaz: s-rijedak vektor $\mathbf{x}^{\sharp} = \mathbf{x}^{\bar{n}}$.

Algoritam rješava kvadratni sustav $A^*Az = A^*y$ umjesto Az = y.

HTP

Ulaz: Matrica mjerenja $\bf A$, vektor mjerenja $\bf y$, rijetkost s *Inicijalizacija:* s-rijedak vektor $\bf x^0$ (npr. $\bf x^0=\bf 0$). *Iteracija:* Zaustavi kada $n=\bar n$:

$$S^{n+1} = L_s(\mathbf{x}^n + \mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n), \qquad (HTP_1)$$

$$\mathbf{x}^{n+1} = \underset{\mathbf{z} \in \mathbb{C}^N}{\min} \{ \|\mathbf{y} - \mathbf{A}\mathbf{z}\|_2, \text{ supp}(\mathbf{z}) \subseteq S^{n+1} \}. \quad (HTP_2)$$

Izlaz: s-rijedak vektor $\mathbf{x}^{\sharp} = \mathbf{x}^{\bar{n}}$.

Svojstvo nul-prostora (ℓ_1 -minimizacija)

Definicija

Za matricu $\mathbf{A} \in \mathbb{K}^{m \times N}$ kažemo da zadovoljava svojstvo nul-prostora za skup $S \subseteq [N]$ ako vrijedi

$$\|\mathbf{v}_S\|_1 < \|\mathbf{v}_{\bar{S}}\|_1$$
 za svaki $\mathbf{v} \in \ker \mathbf{A} \setminus \{\mathbf{0}\}.$ (2)

Nadalje, kažemo da $\bf A$ zadovoljava svojstvo nul-prostora reda s ako zadovoljava gornju nejednakost za svaki $S\subseteq [N]$ takav da je ${\sf card}(S)\le s.$

Nužni i dovoljni uvjeti za rekonstrukciju ℓ_1 -minimizacijom:

Teorem

Za matricu $\mathbf{A} \in \mathbb{K}^{m \times N}$, svaki s-rijedak vektor $\mathbf{x} \in \mathbb{K}^N$ je jedinstveno rješenje problema (P_1) uz $\mathbf{y} = \mathbf{A}\mathbf{x}$ ako i samo ako \mathbf{A} zadovoljava svojstvo nul-prostora reda s.

Greška mjerenja i defekti rijetkosti:

$$\min_{\mathbf{z} \in \mathbb{C}^N} \|\mathbf{z}\|_1 \quad \text{uz uvjet } \|\mathbf{A}\mathbf{z} - \mathbf{y}\| \le \eta \tag{$\mathsf{P}_{1,\eta}$}$$

Definicija

Za matricu $\mathbf{A} \in \mathbb{C}^{m \times N}$ kažemo da zadovoljava robusno svojstvo nul-prostora s konstantama $0 < \rho < 1$ i $\tau > 0$ za skup $S \subseteq [N]$ ako

$$\|\mathbf{v}_S\|_1 \le \rho \|\mathbf{v}_{\bar{S}}\|_1 + \tau \|\mathbf{A}\mathbf{v}\|$$
 za sve $\mathbf{v} \in \mathbb{C}^N$.

Nadalje, kažemo da ${\bf A}$ zadovoljava robusno svojstvo nul-prostora s konstantama $0<\rho<1$ i $\tau>0$ reda s ako zadovoljava gornje svojstvo za svaki $S\subseteq[N]$ takav da ${\rm card}(S)\le s.$

Teorem

Neka matrica $\mathbf{A} \in \mathbb{C}^{m \times N}$ zadovoljava robusno svojstvo nul-prostora reda s sa konstantama $0 < \rho < 1$ i $\tau > 0$. Tada za svaki vektor $\mathbf{x} \in \mathbb{C}^N$, rješenje problema $(\mathsf{P}_{1,\eta})$ za $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{e}$ i $\|\mathbf{e}\| < \eta$ aproksimira vektor \mathbf{x} s greškom

$$\|\mathbf{x} - \mathbf{x}^{\sharp}\|_{1} \le \frac{2(1+\rho)}{(1-\rho)}\sigma_{s}(\mathbf{x})_{1} + \frac{4\tau}{1-\rho}\eta$$

Koherencija

Uspješnost rekonstrukcije ovisi o određenim kvalitetama matrice A.

Definicija

Neka je $\mathbf{A} \in \mathbb{C}^{m \times N}$ matrica s ℓ_2 -normaliziranim stupcima $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_N$, tj. $\|\mathbf{a}_i\|_2 = 1$ za sve $i \in [N]$. Koherenciju $\mu = \mu(\mathbf{A})$ matrice \mathbf{A} definiramo kao

$$\mu := \max_{1 \le i \ne j \le N} |\langle \mathbf{a}_i, \mathbf{a}_j \rangle|.$$

Za $s \in [N-1]$, funkcija ℓ_1 -koherencije μ_1 matrice ${\bf A}$ je definirana kao

$$\mu_1(s) := \max_{i \in [N]} \max \big\{ \sum_{j \in S} |\langle \mathbf{a}_i, \mathbf{a}_j \rangle|, \ S \subseteq [N], \ \mathsf{card}(S) = s, \ i \not \in S \big\}.$$

Dovoljni uvjeti na koherencije za uspješnu rekonstrukciju:

- ▶ ℓ_1 -minimizacija: $\mu_1(s) + \mu_1(s-1) < 1$.
- ▶ OMP algoritam: $\mu_1(s) + \mu_1(s-1) < 1$.
- ▶ BT algoritam: $\mu_1(s) + \mu_1(s-1) < \frac{\min_{i \in S} |x_i|}{\max_{i \in S} |x_i|}$.
- ▶ IHT algoritam: $\mu_1(s) + \mu_1(s-1) < \frac{\min_{i \in S} |x_i|}{\max_{i \in S} |x_i|}$.
- ► HTP algoritam: $2\mu_1(s) + \mu_1(s-1) < 1$

Vrijedi ocjena: $m \ge Cs^2$.

Svojstvo restriktivne izometričnosti

Definicija

s-ta konstanta restriktivne izometričnosti $\delta_s = \delta_s(\mathbf{A})$ matrice $\mathbf{A} \in \mathbb{C}^{m \times N}$ je najmanji $\delta \geq 0$ takva da

$$(1 - \delta) \|\mathbf{x}\|_2^2 \le \|\mathbf{A}\mathbf{x}\|_2^2 \le (1 + \delta) \|\mathbf{x}\|_2^2$$

za sve s-rijetke vektore $\mathbf{x} \in \mathbb{C}^N$. Ili ekvivalentno

$$\delta_s = \max_{S \subseteq [N], \mathsf{card}(S) \le s} \|\mathbf{A}_S^* \mathbf{A}_S - \mathbf{I}\|_2.$$

Neformalno, kažemo da matrica ${\bf A}$ zadovoljava svojstvo restriktivne izometričnosti ako je δ_s dovoljno mali za s dovoljno velik.

Moguće je usporediti konstantu restriktivne izometričnosti s koherencijom $\mu.$

Propozicija

Neka je ${\bf A}$ s ℓ_2 -normaliziranim stupcima ${\bf a}_1,\dots {\bf a}_N$. Tada za svaki $j\in [N]$ vrijedi

$$\delta_1 = 0, \quad \delta_2 = \mu \quad \delta_s \le \mu_1(s-1) \le (s-1)\mu, \quad s \ge 2.$$

Teorem

Neka je $\mathbf{A} \in \mathbb{C}^{m \times N}$ i $2 \leq s \leq N$. Tada je

$$m \ge c \frac{s}{\delta_s^2},\tag{3}$$

za $N \geq Cm$ i $\delta_s \leq \delta_*$, gdje konstante c,C i δ_* ovise samo o sebi međusobno. Na primjer, možemo uzeti c=1/162,~C=30 i $\delta_*=2/3.$

Dovoljni uvjeti na konstantu restriktivne izometričnosti za uspješnu rekonstrukciju:

- ℓ_1 -minimizacija: $\delta_{2s} < \frac{4}{\sqrt{41}}$.
- ▶ OMP algoritam: $\delta_{13s} < \frac{1}{6}$.
- ► CoSaMP algoritam: $\delta_{8s} < 0.4782$.
- ▶ IHT algoritam: $\delta_{3s} < \frac{1}{\sqrt{3}}$.
- ▶ HTP algoritam: $\delta_{3s} < \frac{1}{\sqrt{3}}$.

Konstrukcija matrica male konstante restriktivne izometričnosti:

- ▶ Deterministička konstrukcija \leftarrow otvoren problem. Gotovo sve aproksimacije za δ_s koriste ocjene za koherenciju.
- ▶ Stohastička konstrukcija (prirodan nastavak teorije): Određene klase slučajnih matrica zadovoljavaju svojstvo restriktivne izometričnosti s velikom vjerojatnošću i vrijedi ocjena $m \geq C\delta^{-2}s\ln(eN/S)$.

Sažetak

- Proces uzorkovanja u primjeni.
- ▶ Rekonstrukcija informacije (vektora $\mathbf{x} \in \mathbb{C}^N$) iz mjerenja $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{C}^m$.
- ▶ Ukoliko je vektor $\mathbf x$ kompresibilan, nije nužno uzeti $m \geq N$ uzoraka.
- \blacktriangleright Općenito rekonstrukcija je moguća za $m \geq 2s$, ako je x s-rijedak.
- Prirodna strategija rekonstrukcije ℓ_0 -minimizacijom (NP-težak problem).
- Efikasni algoritmi za rekonstrukciju, čija analiza ovisi o mjerama kvalitete matrice A. (Koherencija i svojstvo restriktivne izometričnosti)
- ► Stohastička teorija.