Data representation and C types

CS210 - Fall 2023 Vasiliki Kalavri vkalavri@bu.edu

Everything is bits

- By encoding/interpreting sets of bits in various ways
 - Computers determine what to do (instructions)
 - ... and represent and manipulate numbers, sets, strings, etc...
- Why bits? Electronic Implementation
 - Easy to store with bistable elements
 - Reliably transmitted on noisy and inaccurate wires

Bit interpretation

A bit pattern can represent multiple objects depending on the interpretation we assign to it

That's fundamentally how computer systems work!

 we assign meaning to bit patterns to encode elements of a finite set

Integer representations: unsigned

How can we use bits to encode non-negative integers?

Vector
$$\vec{x}$$
 of length ω bits

 $\vec{x} = \begin{bmatrix} b_{\omega-1}, b_{\omega-2}, \dots, b_1, b_0 \end{bmatrix}$, $b_0 \end{bmatrix}$, $b_0 \end{bmatrix}$

most similar ω -1

B2U (\vec{x}) = $\sum_{i=0}^{\infty} x_i \cdot 2^i$

Birty to ansigned length w i=0

 $3^2 \cdot 0$
 $0 \cdot 0 \cdot 1 = 0 \cdot 8 + 1 \cdot 4 + 0 \cdot 2 + 1 \cdot 1$

Range of unsigned representation

How many values can we represent with \mathbf{w} bits? $\frac{\mathbf{w}}{2}$

16 values

$$\frac{U_{MAXW}}{1111....1} = 2^{\omega - 1}$$

Integer representations: signed

How can we represent both <u>negative</u> and non-negative integers?

0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

With
$$w=4$$
 bits, we can represent $16(2^4)$ different patterns.

2's complement

We assign a negative weight to the MSB.

2's complement definition

B2Tw(
$$\vec{x}$$
)= \vec{x})= \vec{x} \vec{x} \vec{y} \vec{z} \vec{z}

Range
$$T_{\text{min}\,w} = -2 \qquad \text{(positive sum is 0), ie 100...0}$$

$$T_{\text{max}\,w} = 2^{w-1} \quad \text{(negative weight is df), ie 011...1}$$

2's complement example

```
short int x = 15213;
                          Not just
 short int y = -15213;
      7 15213: 00111011 01101101
        -15213: 11000100 10010011
* To compute negation
     1) Flip all bits
     2) Add 1
es. 7: 0111
 (~7+1): 1001 -> B2T (1001)=-7
```

				•	
	Weight	15213		-152	213
	ዞ ኑዖ ¹	1	1	1	1
	2	0	0	1	2
1	4	1	4	0	0
	8	1	8	0	0
	16	0	0	1	16
	32	1	32	0	0
	64	1	64	0	0
	128	0	0	1	128
	256	1	256	0	0
	512	1	512	0	0
	1024	0	0	1	1024
	2048	1	2048	0	0
	4096	1	4096	0	0
	8192	1	8192	0	0
	16384	0	0	1	16384
	-32768	0	0	1	-32768
	7 Sum		15213		-15213

Important numbers

unsigned	bits	44	tes sytes	16 bytes
/	8 24	16	32	64
UMax _w	0xFF	0xFFFF	0xFFFFFFF	0×FFFFFFFFFFFFFF
	255	65,535	4,294,967,295	18,446,744,073,709,551,615
\mathbf{Tmin}_{w}	0x80	0x8000	00000008x0	0x800000000000000
	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808
$\mathbf{T}\mathbf{Max}_{\mathtt{w}}$	0 4 0x7F	0x7FFF	0x7FFFFFFF	0×7FFFFFFFFFFFFF
	127	32,767	2,147,483,647	9,223,372,036,854,775,807
-1	0xFF	0xFFFF	0xFFFFFFFF	0xffffffffffffff
o just C	0	0x00	0x0000	0x000000000000000
	1 2	3 45	6 10	

Summary of integer representations

Χ	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	-6
1011	11	- 5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

1) Equivalence 2) Oniqueness.

Equivalence

- Same encodings for nonnegative values
- Uniqueness
 - Every bit pattern represents a unique integer value
 - Each representable integer has a unique bit encoding

Mapping between

Mapping between signed and unsigned

Maintain Same Bit Pattern

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Relation between Signed & Unsigned

Large negative weight

becomes

Large positive weight

Conversion Visualized

- 2's Comp. → Unsigned
 - Ordering Inversion
 - Negative → Big Positive

UMax

2's Complement

Types

Basic C Types

```
) Alout
int
Char
Badean
```

```
• C's basic (built-in) types:
Integer types, including long integers, short integers, and unsigned integers
Floating types (float, double, and long double)
Char Char
Bool (C99)
```

Integer Types

- C supports two fundamentally different kinds of numeric types: integer types and floating types.
- Values of an *integer type* are whole numbers.
- Values of a floating type can have a fractional part as well.
- The integer types, in turn, are divided into two categories: signed and unsigned.

Signed and Unsigned Integers

Sign

- By default, integer variables are signed in C.
- To tell the compiler that a variable has no sign bit, declare it to be unsigned.
- Unsigned numbers are primarily useful for systems programming and lowlevel, machine-dependent applications.

C: Basic Types and Sizes

long 2 9 2 8.

C basic data types — standardizes sizes in bytes

C Declaration	32-bit	<u>64</u> -bit
char		
short int	2	2
int	4	4
b long int	4	8
long long int	8	8
float	4	4 4
double	8	8

C Declaration	32-bit	64-bit
unsigned char		
unsigned short int	2	2
unsigned int	4	4
unsigned long int	4	8
unsigned long long int	8	8

Signed vs. Unsigned in C

- Constants
 - By default are considered to be signed integers
 - Unsigned if have "U" as suffix

```
OU, 4294967259U
```

- Casting
 - Explicit casting between signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls

```
tx = ux;

uy = ty;
```

Casting Surprises

Sign tunsigned - unsigned forkund

- Expression Evaluation
 - If there is a mix of unsigned and signed in single expression, signed values are implicitly cast to unsigned
 - Including comparison operations <, >, ==, <=, >=

Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w

- Expression containing signed and unsigned int
 - int is cast to unsigned!!

Sign extension

- Task:
 - Given w-bit signed integer x
 - Convert it to w+k-bit integer with same value

- Rule:
 - Make *k* copies of sign bit:
 - $X' = X_{w-1}, ..., X_{w-1}, X_{w-1}, X_{w-2}, ..., X_0$

X'

112011 = -32+ 16+8+2+1= 3

Sign extension example

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	1111111 1111111 11000100 10010011

- Converting from smaller to larger integer data type
- C <u>automatically</u> performs sign extension <u>Smaller</u> -> larger type Automatically

Truncating numbers

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behavior

Floating Types

- C provides three *floating types*, corresponding to different floating-point formats:
 - float Single-precision floating-point
 - double Double-precision floating-point
 - long double <u>Extended-precision floating-point</u>

Floating Types

- float is suitable when the amount of precision isn't critical.
- double provides enough precision for most programs.
- long double is rarely used.
- The C standard doesn't state how much precision the float, double, and long double types provide, since that depends on how numbers are stored.
- Most modern computers follow the specifications in IEEE Standard 754 (also known as IEC 60559).

Character Types

- The only remaining basic type is char, the character type.
- The values of type char can vary from one computer to another, because different machines may have different underlying character sets.

Character sets

A variable of type char can be assigned any single character:

 Notice that character constants are enclosed in single quotes, not double quotes.

Operations on characters

- Working with characters in C is simple, because of one fact: C treats characters as small integers (as one lefte int)
- In ASCII, character codes range from 0000000 to 11111111, which we can think of as the integers from 0 to 127.
- The character 'a' has the value 97, 'A' has the value 65, '0' has the value 48, and ' ' has the value 32.
- Character constants actually have int type rather than char type.

Operations on characters

- When a character appears in a computation, C uses its integer value.
- Consider the following examples, which assume the ASCII character set:

Operations on characters

- Characters can be compared, just as numbers can.
- An if statement that converts a lower-case letter to upper case:

```
if ('a' <= ch && ch <= 'z')
ch = ch - 'a' + 'A';
```

- Comparisons such as 'a' <= ch are done using the integer values of the characters involved.
- These values depend on the character set in use, so programs that use <, <=,
 >, and >= to compare characters may not be portable.

Attendance

Implications of data representation

Remember our simple calculator?

```
// adds two integers and returns the result
int add(int i, int j) {
  return i + j;
}
```

Integer Arithmetic

```
Signed
                                         W: 4616 23 - 8x1
-8~7 23-1=9
  int x = foo();
  int y = bar();
       positive positive
                                                        5+6=11 overflow
• If x > 0 and y > 0, does x + y > 0
always hold? -\frac{\cos 4 \cos x}{-8} Think about the Does the expression x < y yield the same
                                          Think about the extreme cases
                               overflar
X-YCO
   result as x - y < 0?
               2-4--15
```

Unsigned addition

Operands: w bits

True Sum: w+1 bits incuse of overflow

Discard Carry: w bits

 $UAdd_w(u, v)$

- Standard Addition Function
 - Ignores carry output
- Implements Modular Arithmetic

$$s = \mathsf{UAdd}_w(u, v) = u + v \mod 2^w$$

Visualizing unsigned addition

$$x +_{w}^{u} y = \begin{cases} x + y, & x + y < 2^{w} \\ x + y - 2^{w}, & 2^{w} \le x + y < 2^{w+1} \end{cases}$$

True Sum

Overflow

How can we check for overflow?

UA

```
// adds two integers and returns the result
unsigned u_add(unsigned i, unsigned j) {
   // TODO: check overflow
   // ???
   return i + j;
}
```

Check for overflow

Two's complement addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

- TAdd and UAdd have identical bit-level behavior
 - Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

• Will give s == t

TAdd Overflow

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

positive overflow

$$x +_{w}^{t} y = \begin{cases} x + y - 2^{w}, & 2^{w-1} \le x + y \\ x + y, & -2^{w-1} \le x + y < 2^{w-1} \\ x + y + 2^{w}, & x + y < -2^{w-1} \end{cases}$$

True Sum

Visualizing 2's complement addition

- Values
 - 4-bit two's comp.
 - Range from -8 to +7
- Wraps around
 - If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
 - If sum $< -2^{w-1}$
 - Becomes positive
 - At most once

Checking for overflow (2's complement)

$$\mathbf{S} - \mathbf{I} + \mathbf{I}$$
 Let $TMin_w \leq x, y \leq TMax_w$ and $s = x +_w^t y$.

The computation of s:

- has positive overflow iff x>0 and y>0 but $\underline{s}\leq 0$ has negative overflow iff x<0 and y<0 but $\underline{s}\geq 0$

Multiplication

- Goal: Computing the product of w-bit numbers x, y
 - · Either signed or unsigned
- But, exact results can be bigger than w bits
 - Unsigned: up to 2w bits
 - Result range: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Two's complement min (negative): Up to 2w-1 bits
 - Result range: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Two's complement max (positive): Up to 2w bits, but only for $(TMin_w)^2$
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
- So, maintaining exact results...
 - · would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

Unsigned multiplication in C

- Standard multiplication function
 - Ignores high order w bits
- Implements modular arithmetic

$$UMult_w(u, v) = u \cdot v \mod 2^w$$

Signed multiplication in C

- Standard multiplication function
 - Ignores high order w bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same

3-bit multiplication examples

W=3

	Mode	X	У	x*y	Truncated result
(Unsigned	5 [101]	3 [011]	15 [60 1111]	7 [001 111]
	2's complement	- <u>3</u> [101]	<u>3</u> [011]	-9 [110111]	- <u>1</u> [110 111]
	Unsigned	4 [100]	7 [111]	28 [011100]	4 [011 100]
	2's complement	-4 [100]	-1 [111]	4 [000100]	-4 [000 100]
	Unsigned	3 [011]	3 [011]	9 [001001]	1 [001 001]
	2's complement	3 [011]	3 [011]	9 [001001]	1 [001 001]

Power-of-2 multiply with shift

Operands: w bits

True Product: w+k bits

Discard k bits: w bits

 $TMult_{w}(u, 2^{k})$

- · Operation shift with to the left
 - $u \ll k$ gives $u * 2^k$
 - Both signed and unsigned
- Examples

•
$$u << 3 == u * 8$$
 $2^5 - 2^3 = 32 - 8 = 24$

- (u << 5) (u << 3) == u * 24
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Unsigned power-of-2 divide with shift

Quotient of Unsigned by Power of 2

```
• u \gg k \text{ gives } [u / 2^k]
```

Uses logical shift

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

Integer arithmetic: Basic rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

750

Integer C puzzles

W= 4

Initialization

```
Signal int x = foo();
Signal int y = bar();
unsigned ux = x;
unsigned uy = y;
```

```
Not 1 \ge 120 1 \le 10 10 1 \le 10 
                              • A. (x > 0) || (x-1 < 0) when \chi < 1 then false
• B. (x&7) != 7 || (x<29 < 0)
• C. (x*x) >=0 Shift x^{20}
                                • D. x < 0 \mid | -x <= 0
                                • E. x > 0 \mid | -x > = 0
                                • F. x+y == ux+uy
                                 • G. x*\sim y + uy*ux == -x
```

0000111

A:
$$w=4$$

$$-8 \rightarrow 1000^{-8}-1=-9 \rightarrow 1011 \rightarrow 0111$$

$$(x-140) - 6ase$$

 $\frac{b \cdot b_{3}b_{3}o b_{2}q \cdots b_{2}b_{1}b_{0}}{0 \quad 0 \quad 0 \quad b_{2}b_{1}b_{0}}$ $\frac{2 \quad 0 \quad 0 \quad 0 \quad b_{2}b_{1}b_{0}}{0 \quad 0 \quad 0 \quad b_{2}b_{1}b_{0}}$ $\frac{2}{1}$