PCAD Programmazione Concorrente Algoritmi Distribuiti

Arnaud Sangnier

arnaud.sangnier@unige.it

Verifica di sistemi 3

Logica Temporale Lineare (LTL)

- La logica LTL permette di descrivere delle proprietà sulle tracce di un sistema
- Una formula di LTL permette quindi di descrivere un sotto-insieme di (2^{PA})^ω
- In particolare:
 - Una formula di LTL permette di parlare di uno stato particolare. Per esempio, se abbiamo PA={a,b,c} allora la formula ((a and not b) or c) descrive tutti gli stati in cui l'etichetta c è presente oppure l'etichetta a è presente ma non l'etichetta b
 - Esempio di stati verificando ((a and not b) or c)
 - Una formula LTL permette anche di spostarsi lungo ad una traccia

Sintassi di LTL

- In LTL abbiamo due operatore temporale:
 - 1) X φ vuol dire 'Next φ' per dire che si guardiamo lo stato seguente nella traccia allora soddisfa
 - **2)** φ U Ψ vuole dire 'φ Until Ψ', la formula φ rimane vera fino che raggiungiamo uno stato dove Ψ è vera (e un tale stato è effetivamente raggiunto)
- Sintassi di LTL:

 Una formula di LTL rappresenta delle sequenze infinite in (2^{PA})^ω e dando una tale sequenza si sposta 'sopra'

Esempio

Forhula 9 a Xa

aub

XX aub

Forma delle sequenze sicon esciute aub

Semantica di LTL

- Consideriamo una sequenza infinita $\sigma = \sigma_0 \sigma_1 \sigma_2 ...$ in $(2^{PA})^{\omega}$.
- Per tutti i, scriviamo σ[i..] per la sequenza infinita σ_iσ_{i+1}σ_{i+2} ...
- Sia φ una formula di LTL, definiamo σ⊨φ in un modo induttivo:
 - σ⊨true è sempre vero
 - σ⊨a sse a ∈ σ₀
 - σ⊨φ and Ψ sse σ⊨φ e σ⊨Ψ
 - σ⊨not φ sse σ ⊭φ
 - σ⊨Xφ sse σ[1..]⊨φ
 - σ⊨φ U Ψ sse esiste j ≥ 0 tale che σ[j..]⊨ Ψ e per tutti i tale che 0 ≤ i < j, abbiamo σ[i..]⊨ φ
- Scriviamo Seq(φ)={σ in (2^{PA})^ω | σ⊨φ }
- Quindi Seq(φ) ⊆ (2^{PA})^ω quindi Seq(φ) è una proprietà temporale lineare

Scorciatoie

- Scorciatoie classiche:
 - φ or Ψ ::= not (not φ and not Ψ)
 - $\phi \Rightarrow \Psi ::= (\text{not } \phi) \text{ or } \Psi$
- Scorciatoie temporale:
 - F φ ::= true U φ (un giorno abbiamo φ)
 - G φ ::= not(F (not φ)) (abbiamo sempre φ)
- Formule classiche:
 - GF φ: la formula φ è vera infinitamente spesso
 - FG φ: un giorno φ diventa sempre vera

PCAD - 13 6

Esempio

- Sistema con due processi che vogliono entrare in sezione critica e PA={crit1,crit2}
 - I due processi non sono mai allo stesso tempo in sezione critica:
 - G((not crit1) or (not crit2))
 - Ogni processo accede infinitamente spesso alla sua sezione critica:
 - GF(crit1) and GF(crit2)
 - Attenzione: è diverso da GF(crit1 and crit2)
- Sistema con un semaforo stradale e PA={V,G,R}:
 - Quando è verde, il semaforo non può diventare rosso direttamente nel passo successivo:
 - $G(V \Rightarrow (not (X V)))$
 - Quando è verde, il semaforo diventa giallo dopo un po' (e prima rimane verde), poi diventa rosso (e nel fra tempo è rimasto giallo)
 - G(V ⇒ (V U(G and X(G U R))))

Semantica delle scorciatoie

- σ⊨F φ sse esiste j ≥ 0 tale che σ[j..]⊨ φ
- σ⊨G φ sse per tutti j ≥ 0 σ[j..]⊨ φ
- σ⊨GF φ sse per tutti j ≥ 0 , esiste k ≥ j tale che σ[k..]⊨ φ
- σ⊨FG φ sse esiste j ≥ 0 tale che per tutti k ≥ j σ[k..]⊨ φ

Model-checking di LTL

- Sia KS=(S,→, s_{in}, PA, L) una struttura di Kripke e una formula di LTL φ
- Si dice che KS soddisfa φ, scritto KS ⊨ φ sse Trace(KS) ⊆ Seq(φ)
- I.e. $KS \models \varphi$ sse per tutte le tracce σ di KS abbiamo $\sigma \models \varphi$
- Come LTL è chiuso per negazione abbiamo KS ⊨ φ sse Trace(KS) ∩ Seq(not φ)= ∅,
- Attenzione: non abbiamo che se KS ⊭ φ allora KS ⊨ not φ

Esempio

. KS
$$\not\models X$$
 (a and b)
. KS $\not\models G$ a
. KS $\not\models G$ ((not b) $\Longrightarrow G$ (a and (not b))
KS $\not\not\models b$ U (a and (not b))

Model-checking in pratica

- Sia KS=(S,→, s_{in}, PA, L) una struttura di Kripke e una formula di LTL φ
- Sappiamo che se φ è una formula di LTL allora Seq(φ) è una proprietà temporale lineare regolare (la prova non è ovvia)
- Esiste quindi un automa di Büchi A_{ϕ} tale chee $L_{\omega}(A_{\phi}) = Seq(\phi)$
- Lo stesso vale per not φ i.e. esiste un automa di Büchi $A_{\text{not }\varphi}$ tale che $L_{\omega}(A_{\text{not }\varphi}) = (2^{\text{PA}})^{\omega} \backslash \text{Seq}(\varphi) = \text{Seq}(\text{not }\varphi)$
- Per verificare se KS⊨ φ, basta verificare se Trace(KS) ∩Lω(A_{not φ})=Ø usando il prodotto KS ⊗ A_{not φ}
 - Se Trace(KS) ∩L_ω(A_{not φ})=Ø allora KS⊨ φ
 - Se Trace(KS) ∩L_ω(A_{not φ})≠Ø allora KS⊭ φ