UNIVERSITÉ CHOUAIB DOUKKALI Ecole Supérieure de Technologie Sidi Bennour

Cours: Physique pour l'Informatique

« Logique séquentielle »

Logique séquentielle

Définition :

Circuits séquentiels

- Un circuit séquentiel est un circuit dont les sorties dépendent non seulement de l'état des entrées mais aussi de l'état antérieur de certaines sorties (notion de mémorisation).
- C'est un circuit dont le temps intervient dans la définition des sorties.

Logique séquentielle

Horloge:

Composant passant régulièrement et indéfiniment d'un niveau haut (1) à un niveau Bas (0) par la génération simultanée des impulsions des signaux électriques.

Logique séquentielle

- Le circuit séquentiel asynchrone: Les sorties du montage peuvent changer à tout moment dès qu'une ou plusieurs entrées changent après un temps de propagation qui peut être différent pour chaque sortie.
- Le circuit séquentiel synchrone: Le changement sur les sorties se produit après le changement d'état (front montant ou descendant) d'un signal maître, l'horloge. Les entrées servent à préparer le changement d'état, mais ne provoquent pas de changement des sorties. Tout changement d'état interne du montage est synchronisé sur le front actif de l'horloge.

Logique séquentielle

Les Bascules

- Système bistable (deux états '0' et '1') permettant de mémoriser une information élémentaire, il représente une mémoire à 1 bit ayant 2 états:
- Q et Q, il utilise un mécanisme de verrou (latch)
- On peut vérifier que les états sont cohérents

$$(Q = 1) \Rightarrow (B = 1) \Rightarrow (\overline{Q} = 0) \Rightarrow (A = 0) \Rightarrow$$

 $(Q = 1)$ Et $(Q = 0) \Rightarrow (B = 0) \Rightarrow (\overline{Q} = 1) \Rightarrow$
 $(A = 1) \Rightarrow (Q = 0)$

Logique séquentielle

La Bascule RS

- C'est une bascule à deux entrées R (Reset : remise à zéro) et S (Set : mise à un) tels que : Si les deux entrées sont inactives ----- > Q₊ = Q
 - ✓ Si R est active seule Q₊ = 1
 - √ Si R est active seule Q₊ = 0
- Un cas à éviter si les deux entrées sont actives à la fois car dans ce cas on obtient:

$$\mathbf{Q}_{t+1} = \mathbf{Q}_{t+1} = \mathbf{0}$$

Logique séquentielle

La Bascule RS

R	S	Q+	Q+
0	0	Q	Q
0	1	1	0
1	0	0	1
1	1	X	X

Pas de changement « mémorisation »

S active: remise à 1

R active: remise à 0

Cas interdit

Chronogrammes de la bascule RS

Logique séquentielle

La Bascule RS

Table de transition (excitation)

Q	Q+	R	S
0	0	X	0
0	1	0	1
1	0	1	0
1	1	0	X

Logique séquentielle

La Bascule RSH

- C'est une bascule RS synchronisée par un signal d'horloge H (niveau haut en général) .
- Cette bascule soufre toujours d'un état interdit et elle a un état de mémorisation en plus.

La Bascule RSH en niveau haut (H = 1)

- Lorsque H= 0, la bascule est dans l'état mémoire.
- Lorsque H= 1, la bascule fonctionne comme une bascule RS.

Н	R	S	Q+	$\overline{Q +}$
0	X	X	Q	Q
1	0	0	Q	Q
1	0	1	1	0
1	1	0	0	1
1	1	1	x	x

Logique séquentielle

La Bascule RSH en niveau bas (H = 0)

- Lorsque H= 1, la bascule est dans l'état mémoire.
- Lorsque H= 0, la bascule fonctionne comme une bascule RS.

Н	R	s	Q+	\overline{Q} +
0	X	X	Q	Q Q
1	0	0	Q	Q
1	0	1	1	0
1	1	0	0	1
1	1	1	x	x

Logique séquentielle

La Bascule D (Data)

- Elle est conçue sur le même principe que la RSH. Obtenue à partir d'une bascule RSH en ne considérant que les deux combinaisons (R,S) = (0,1) et (1,0).
- Les entrées R et S sont remplacé par D et D, d'où elle ne traite pas les cas (0,0) et (1,1).
- En conséquence, elle élimine le deuxième cas de mémorisation et le cas interdit de la bascule RSH.
- Selon le mode de la synchronisation, Il existe deux types de la bascule D:
 - ✓ Bascule D active sur le niveau (Bascule D-latch)
 - ✓ Bascule D active sur le front (Bascule Normale)

Н	R	S	Q+	$\overline{\mathbf{Q}}$ +
1	X	X	Q	\overline{Q}
0	0	0	Q	Q
0	0	1	1	0
0	1	0	0	1
0	1	_1_	X	X

Pour H=0

La bascule D (Data)

Logique séquentielle

Type 1: Bascule D-latch fonctionne sur le niveau (haut H=1).

Cette table de vérité peut être interprété comme suit:

si **H=0** alors **Q+ = Q** (mémorisation)

si **H =1** alors **Q+ = D**, donc on peut représenter sa table de vérité de la manière suivante:

111	D	Q +	\overline{Q} +
0	X	Q	Q
1	0	0	1
1	1	1	0

Н	Q+	Q+
0	Q	Q
1	D	D

Chronogramme Bascule D-latch:

Bascule D-latch : Table de transition (excitation)

Q	Q+	D
0	0	0
0	1	1
1	0	0
1	1	1

Logique séquentielle

Exercice: Réaliser une bascule D à l'aide d'un multiplexeur 2 vers 1

En niveau haut

En niveau bas

Logique séquentielle

Bascule D normale

 La sortie Q est calculée en front, donc l'information D doit être stable juste avant l'arrivée du front de l'horloge.

Logique séquentielle

Chronogramme des différentes Bascules D

Logique séquentielle

La Bascule JK

- C'est une Bascule synchrone (généralement en front d'horloge), offrant les fonctions: mémorisation, mise à 0, mise à 1, et assurant en plus la fonction basculement (inversement des sorties)
- La bascule JK est la bascule la plus complète, offrant tous les modes de fonctionnement que l'on peut demander à une bascule.

Logique séquentielle

La Bascule JK

Table de vérité d'une Bascule JK en front montant

н	J	K	\mathbf{Q}_{+}	$\overline{\mathbf{Q}_{+}}$	Observation
0/1	x	x	Q	$\overline{\mathbf{Q}}$	Mémorisation
1	0	0	Q	$\overline{\mathbf{Q}}$	Mémorisation
1	0	1	0	1	Mise à 0
1	1	0	1	0	Mise à 1
1	1	1	Q	Q	Basculement

Logique séquentielle

Réalisation d'une Bascule JK a l'aide d'une bascule D

Test1: avec
$$j=0$$
 et $k=0$ --- > $D=Q$

Test2: avec
$$j=0$$
 et $k=1$ --- > $D = Q = 0$

Test3: avec
$$j=1$$
 et $k=0$ --- > $D = Q = 1$

Test4: avec j=1 et k= 1
--- > D =
$$\overline{Q}$$

Chronogramme d'une bascule JK en front montant (trouver Q et /Q)

Logique séquentielle

La Bascule JK

Pour représenter Q+ en fonction de J et K, on doit établir sa table vérité détaillée comme suit:

	Entrées		
J	K	Q	Q ₊
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

$$Q_+ = J\bar{Q} + \bar{K}Q$$

Table de transition (excitation) pour Bascule JK

Q	Q+	J	K
0	0		
0	1		
1	0		
1	1		

Table de transition (excitation) pour Bascule JK

Q	Q+	J	К		
0	0	0	x	0 0	0 1
0	1	1	х	1 1	1 0
1	0	x	1	1 0	1 1
1	1	х	0	0	0

Logique séquentielle

La Bascule T (toggle)

C'est une bascule qui fonctionne généralement en front de l'horloge avec entrée T, elle a seulement deux fonctions:

Mémorisation (Q+ = Q) si T=0

Et

■ Basculement (Q+ = /Q) si T = 1.

Table de vérité

Н	T	Q_+	$\overline{Q_+}$	observation
0/1	X	Q	\overline{Q}	Etat mémoire
1	0	Q	\overline{Q}	Mémorisation
1	1	\overline{Q}	Q	Basculement

Réalisation d'un Bascule T à l'aide d'une Bascule JK

Logique séquentielle

Réalisation d'un Bascule T à l'aide d'une Bascule D

$$T \text{ sor } Q = (/T . Q) + (T./Q)$$

Chronogramme d'une bascule T en front montant

Table de transition (excitation)

Q	Q+	T
0	0	0
0	1	1
1	0	1
1	1	0

Exercice: réalisez une bascule T à l'aide d'un Mux 2 ---- > 1 en front montant