$12a_{0744} \ (K12a_{0744})$

Ideals for irreducible components of X_{par}

$$I_1^u = \langle u^{30} + u^{29} + \dots + u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 30 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{30} + u^{29} + \dots + u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} + 2u \\ u^{5} + 3u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{10} - 7u^{8} - 16u^{6} - 13u^{4} - u^{2} + 1 \\ u^{10} + 6u^{8} + 11u^{6} + 8u^{4} + 3u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{11} - 8u^{9} - 22u^{7} - 24u^{5} - 9u^{3} - 2u \\ -u^{13} - 9u^{11} - 29u^{9} - 40u^{7} - 22u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{25} - 18u^{23} + \dots + 6u^{3} + u \\ u^{25} + 17u^{23} + \dots + 5u^{5} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =

$$-4u^{28} - 4u^{27} - 88u^{26} - 84u^{25} - 852u^{24} - 772u^{23} - 4776u^{22} - 4080u^{21} - 17160u^{20} - 13704u^{19} - 41328u^{18} - 30524u^{17} - 67796u^{16} - 45664u^{15} - 75468u^{14} - 45464u^{13} - 55764u^{12} - 29136u^{11} - 26120u^{10} - 11080u^{9} - 7012u^{8} - 1872u^{7} - 744u^{6} + 176u^{5} + 72u^{4} + 96u^{3} + 16u^{2} + 4u - 2$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{30} + 15u^{29} + \dots + u + 1$
c_2, c_7	$u^{30} + u^{29} + \dots + u + 1$
c_3	$u^{30} - u^{29} + \dots - u + 13$
$c_4, c_5, c_6 \\ c_9, c_{10}, c_{11} \\ c_{12}$	$u^{30} + u^{29} + \dots + u + 1$
<i>c</i> ₈	$u^{30} + 3u^{29} + \dots + 39u + 21$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{30} + y^{29} + \dots + 15y + 1$
c_2, c_7	$y^{30} - 15y^{29} + \dots - y + 1$
<i>c</i> ₃	$y^{30} + 9y^{29} + \dots - 261y + 169$
$c_4, c_5, c_6 \\ c_9, c_{10}, c_{11} \\ c_{12}$	$y^{30} + 45y^{29} + \dots - y + 1$
c ₈	$y^{30} + 13y^{29} + \dots + 2175y + 441$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.170414 + 0.834214I	-5.24114 + 0.43257I	-4.60975 + 0.66672I
u = -0.170414 - 0.834214I	-5.24114 - 0.43257I	-4.60975 - 0.66672I
u = -0.294203 + 0.768569I	-3.91612 - 7.01709I	-1.64398 + 8.27896I
u = -0.294203 - 0.768569I	-3.91612 + 7.01709I	-1.64398 - 8.27896I
u = 0.242623 + 0.722037I	-1.51083 + 2.43874I	1.60861 - 4.80918I
u = 0.242623 - 0.722037I	-1.51083 - 2.43874I	1.60861 + 4.80918I
u = 0.038851 + 1.290960I	-6.26416 + 2.28369I	1.00616 - 3.59603I
u = 0.038851 - 1.290960I	-6.26416 - 2.28369I	1.00616 + 3.59603I
u = 0.106749 + 1.375700I	-8.52804 + 3.68968I	0 2.69220I
u = 0.106749 - 1.375700I	-8.52804 - 3.68968I	0. + 2.69220I
u = -0.132490 + 1.392830I	-11.13310 - 8.56839I	-3.01367 + 6.28743I
u = -0.132490 - 1.392830I	-11.13310 + 8.56839I	-3.01367 - 6.28743I
u = -0.07468 + 1.41582I	-12.80400 - 0.46762I	-5.38297 + 0.I
u = -0.07468 - 1.41582I	-12.80400 + 0.46762I	-5.38297 + 0.I
u = 0.212525 + 0.515943I	-0.30214 + 1.56902I	3.13445 - 6.62609I
u = 0.212525 - 0.515943I	-0.30214 - 1.56902I	3.13445 + 6.62609I
u = -0.343660 + 0.336994I	-1.59918 + 2.04479I	1.77407 + 0.99321I
u = -0.343660 - 0.336994I	-1.59918 - 2.04479I	1.77407 - 0.99321I
u = -0.431998 + 0.168856I	-1.04292 - 4.61082I	4.50728 + 7.35119I
u = -0.431998 - 0.168856I	-1.04292 + 4.61082I	4.50728 - 7.35119I
u = 0.364754 + 0.087964I	0.963752 + 0.420717I	10.43938 - 2.37744I
u = 0.364754 - 0.087964I	0.963752 - 0.420717I	10.43938 + 2.37744I
u = 0.00718 + 1.81845I	-17.8624 + 2.4789I	0
u = 0.00718 - 1.81845I	-17.8624 - 2.4789I	0
u = 0.02668 + 1.83606I	18.9070 + 4.3501I	0
u = 0.02668 - 1.83606I	18.9070 - 4.3501I	0
u = -0.03325 + 1.83999I	16.2143 - 9.3978I	0
u = -0.03325 - 1.83999I	16.2143 + 9.3978I	0
u = -0.01867 + 1.84515I	14.3797 - 0.9432I	0
u = -0.01867 - 1.84515I	14.3797 + 0.9432I	0

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{30} + 15u^{29} + \dots + u + 1$
c_2, c_7	$u^{30} + u^{29} + \dots + u + 1$
c_3	$u^{30} - u^{29} + \dots - u + 13$
$c_4, c_5, c_6 \\ c_9, c_{10}, c_{11} \\ c_{12}$	$u^{30} + u^{29} + \dots + u + 1$
c ₈	$u^{30} + 3u^{29} + \dots + 39u + 21$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{30} + y^{29} + \dots + 15y + 1$
c_2, c_7	$y^{30} - 15y^{29} + \dots - y + 1$
c_3	$y^{30} + 9y^{29} + \dots - 261y + 169$
$c_4, c_5, c_6 \\ c_9, c_{10}, c_{11} \\ c_{12}$	$y^{30} + 45y^{29} + \dots - y + 1$
c ₈	$y^{30} + 13y^{29} + \dots + 2175y + 441$