CI Indices and Surds $(3\sqrt{7})^2 = 63$ 6/ (8+15)(2-15) 16-8/5+2/5-5 11-65 $32\sqrt{2} = 2^5 \times 2^{1/2} = 2^{1/2}$ a = 1/2 $3a/125^{13}=5$ $6/125^{-2/3} = 5^{-2} = 25^{-1} =$ 4 (57+2)(57-2) 7-257+257-4 5/ a) 2 b) $(16x^{12})^{3/4} = (2x^{3})^{3} = 8x^{9}$ (5-53)(2-53) $(2+\sqrt{3})(2-\sqrt{3})$ 10-5/3-2/3+3 4-253+253-3 13-75 8 4/3 = 16

8a/
$$\sqrt{108} = \sqrt{36}\sqrt{3} = 6\sqrt{3}$$

of $(2-\sqrt{3})(2-\sqrt{3})$
 $4-2\sqrt{3}-2\sqrt{3}+3$
 $7-4\sqrt{3}$

9a/ $\sqrt{445} = \sqrt{9}\sqrt{5} = 3\sqrt{5}$

b/ $2(3+\sqrt{5})(3+\sqrt{5})$
 $(3-\sqrt{5})(3+\sqrt{5})$
 $2(9+3\sqrt{5}+3\sqrt{5})$
 $2(9+3\sqrt{5}+3\sqrt{5}+5)$
 $9-5$
 $2(14+6\sqrt{5})$
 24
 $7+3\sqrt{5}$
 $10a/2$

b/ $8^{-2/3} = 2^{-7} = /4$
 $11a/(4+\sqrt{3})(4-\sqrt{3})$
 $16-3$
 13
 13
 13
 13
 13
 13
 14
 15
 16
 15
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 1