图论及其应用:第三次作业

请回答任意五题,将答案于七月二日前发送至2160853158@qq.com,邮件题目请注明姓名学号。

题一 最多可以将地球分成几个区域,使任何两个区域都相邻。

题二 证明有 10 个顶点的 5 正则图不是平面图。

题三 考察图 $G \triangleq (V, E)$, 记 $\chi(G)$ 为 G 的点色数, 证明:

- 如果 $\forall v \in V : \chi(G v) = \chi(G) 1$, *G* 连通;
- 如果 $\forall x, y \in V : \chi(G x y) = \chi(G) 2, G$ 是完全图。

题四 图 G 有 n 个顶点,记 \bar{G} 为 G 的<mark>补图</mark>,证明:

- $\chi(G)\chi(\bar{G}) \geq n$;
- $\chi(G) + \chi(\bar{G}) \leq n + 1$.

题五 3 正则图 G 的边色数为 4, 证明 G 不是 H \mathbb{Z} .

题六 给定一个点色数为 k 的简单图 G 以及 G 的一个 k 染色方案 π , 证明对 k 种颜色中任何一种颜色 c, π 中均存在 c 颜色的顶点,其邻居包含所有其他颜色。

题七 给定 n 个顶点,m 条边的图 G,证明 G 包含一个 $\frac{\mathbf{G} \cdot \mathbf{G}}{\mathbf{G} \cdot \mathbf{G}}$ H,其边的数目至少为 $\frac{2\lfloor n^2/4 \rfloor m}{n(n-1)}$ 。

题八 证明任何平面图最少有 4 个度数小于 6 的顶点。

题九 对 p=1/n 的随机图 $G_{n,p}$, 证明 $\forall \epsilon > 0$, 大概率不存在多于 $(1+\epsilon)n/2$ 个顶点的连通分支。