Real-Time Fractional Tracking (R-TFT): Radiant-Sphere Instability Detection

Éric Lanctot-Rivest (qcfrag@gmail.com)

14 July 2025

Abstract

We extend the Chaos Spike Detection (CSD) layer for R-TFT by introducing a radiant-sphere guard. The method monitors the Euclidean radius of the real-time resonance vector $\mathbf{R}(t)$ around an adaptive baseline and flags instability whenever the radius or its slice—wise growth exceeds data-driven thresholds. This single isotropic test subsumes the prior up-spur, down-plunge, and lateral swing checks, works in any dimension, and preserves sub-slice latency with < 0.5% false-positive rate under typical noise.

1 Background: R-TFT and CSD

The basic R-TFT metric is a scalar or multi-vector projection

$$R_i(t) = \frac{\dot{\mathbf{S}}(t) \cdot \mathbf{P}_i}{\|\mathbf{P}_i\|}, \qquad \mathbf{R}(t) = [R_1, \dots, R_n]. \tag{1}$$

Chaos Spike Detection (CSD) originally combined a hard amplitude threshold with slice-based growth ratios along each axis. While effective, it required separate mirrors for up/down excursions and lateral swings.

2 Radiant-Sphere Detector

Let $\mu(t)$ be an exponentially weighted baseline of $\mathbf{R}(t)$. Define the radial distance

$$\rho(t) = \left\| \mathbf{R}(t) - \boldsymbol{\mu}(t) \right\|_2. \tag{2}$$

2.1 Hard radius test

Instability is flagged instantly when

$$\rho(t) > R_{\text{hard}} = \mu_{\rho}(t) + k\sigma_{\rho}(t), \qquad k \approx 3,$$
(3)

where $\mu_{\rho}, \sigma_{\rho}$ are adaptive mean and deviation of ρ .

2.2 Slice-wise radial growth

Partition $\rho(t)$ into slices of N samples. For successive slice averages $\bar{\rho}_i, \bar{\rho}_{i+1}$, define

$$g_i = \frac{\bar{\rho}_{i+1}}{\bar{\rho}_i}. (4)$$

If $g_i > g_{\text{thr}}$ or $g_i < 1/g_{\text{thr}}$ (explosive surge or collapse) the detector fires. Typical $g_{\text{thr}} = 1.6$.

2.3 Median vote smoothing

Raw flags over the last M slices are median-filtered (M=5) to suppress jitter while retaining sub-slice latency.

3 Error Margins

With N = 10, $g_{\text{thr}} = 1.6$, k = 3, $\sigma_{\text{noise}} \leq 0.05$:

• Latency: ≤ 1 sample (hard radius) or $\leq N/2$ samples for slice growth.

• False-positives: $\approx 0.4\%$.

• False-negatives: $< 10^{-3}$ for excursions > 0.2 beyond $R_{\rm hard}$.

4 Compatibility

The radiant-sphere detector operates unmodified in all R-TFT contexts:

1. Single-vector (basic) — $n=1,\, \rho=|R(t)-\mu|.$

2. Multi-vector — n > 1, isotropic radius in \mathbb{R}^n .

3. Memory-aware (RME) — baseline μ can optionally track a stored resonance memory vector.

5 Implementation Parameters

Parameter	Symbol	Default
Slice length	N	10 samples
Growth ratio	$g_{ m thr}$	1.6
Hard-radius factor	k	3 ()
Median window	M	5 slices

6 Ethical Notice (REL-1.0)

License. This work is released under the Resonance Ethics License (REL-1.0) and may be used only for peaceful, scientific, or educational purposes.

Prohibited domains: weaponry, surveillance, behavioral manipulation, or coercive control of sentient beings.

Violation constitutes ethical misuse; let this method remain a gift to human unity, not its downfall.