MAE 544 - Nonlinear Control

Fall 2017

Homework # 1

• Assigned: September 29, 2017.

• Due: Thursday, October 5, 2017 by 3:00 pm in class.

- 1. Let v_1 , v_2 , v_3 and v_4 be three linearly independent vectors in the Euclidean space \mathbb{R}^n . Can you obtain a set of linearly independent vectors w_1 , w_2 , w_3 and w_4 such that the following hold true: $span(\{v_1, v_2, v_3, v_4\}) = span(\{w_1, w_2, w_3, w_4\})$; $w_1 = v_1$; and $w_i^T w_j = 1$ if and only if i = j and zero otherwise. Explain your answer.
- 2. Let $L(\mathbb{R}^n, \mathbb{R})$ be the set of real-valued Lipschitz continuous functions on \mathbb{R}^n . Prove that $L(\mathbb{R}^n, \mathbb{R})$ is a vector space with the following operations:
 - Vector Addition: (f+g)(x) = f(x) + g(x) for any $f, g \in L(\mathbb{R}^n, \mathbb{R})$.
 - Scalar Multiplication Addition: $(\alpha f)(x) = \alpha f(x)$ for any $\alpha \in \mathbb{R}$ and $f \in L(\mathbb{R}^n, \mathbb{R})$.
- 3. Consider the 2-Sphere $S^2 \subset \mathbb{R}^3$ defined as

$$S^2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1^2 + x_2^2 + x_3^2 = 1 \}.$$

- (a) Construct an atlas for S^2 .
- (b) Compute the associated transition maps. Are they smooth?
- 4. Let \mathcal{M} and \mathcal{N} be two smooth manifolds, and $\Phi: \mathcal{M} \to \mathcal{N}$. Then show that Φ is \mathcal{C}^{∞} (i.e. smooth) if and only if the composition $f \circ \Phi$ is \mathcal{C}^{∞} for every \mathcal{C}^{∞} function $f: \mathcal{N} \to \mathbb{R}$.