Aprendizado de Máquina: Comparação de Classificadores

Prof. Arnaldo Candido Junior UTFPR – Medianeira

Intervalo de Confiança

- Conjunto de teste é uma pequena fatio do mundo real
- Quão confiável são medidas como acurácia, medida-f, precisão, etc, extraídas desse conjunto?
- A medida a ser avaliada é considerada uma variável aleatória
 - Retorna diferentes valores quando avaliada com diferentes instâncias do dataset

Intervalo de Confiança (2)

- Ideia geral: calcular intervalo de confiança
- Caso particular: medições formam uma distribuição normal (ou gaussiana)
 - Média 0
 - Desvio padrão 1

Intervalo de Confiança (3)

- Convenções:
 - x: variável aleatória sendo medida
 - c: a confiança que desejamos do intervalo (quanto maior, maior o intervalo)
 - z: representa os limites do intervalo
 - $p(-z \le x \le +z) = c$

Intervalo de Confiança (4)

- Exemplo: desejamos uma confiança de 90%
 - $p(-1.65 \le x \le 1.65) = 0.9$
- De onde vêm os valores de z?
 - Previamente calculados em tabelas estatística, conforme a distribuição dos dados
 - Convenção usada nos livros: p(x ≥ z) = (1-c)/2

Intervalo de Confiança (5)

 No exemplo, confiança de 90% resulta que (1-c)/2 = 0.05, logo z=1.65

Table 5.1 Confidence Limits for the Normal Distribution				
$Pr[X \ge z]$	z			
0.1%	3.09			
0.5%	2.58			
1%	2.33			
5%	1.65			
10%	1.28			
20%	0.84			
40%	0.25			

Confiança da Acurácia

- Técnica apresentada pode ser adaptada para as medidas de avaliação de classificadores estudadas
- Exemplo para acurácia: classificador ou acerta ou erra cada instância do dataset
 - Processo parecido com lançar uma moeda
 - Classificador bom é como uma moeda viciada: acerta mais do que erra
 - Nome técnico: ensaio de Bernoulli

Confiança da Acurácia (2)

- Distribuição de Bernoulli (ou binomial): se a taxa de acerto do classificador sobre n instâncias de teste é p, então:
 - Média esperada: p
 - Variância esperada: p(1-p)/n
 - Desvio padrão: √(p(1-p)/n)

Confiança da Acurácia (3)

- Dataset suficientemente grande
 - A distribuição de Bernouli da acurácia aproxima razoavelmente bem uma distribuição normal
 - Porém, não tem media 0 e desvio 1 (conforme slide anterior)
 - Precisamos adaptar o cálculo do intervalo de confiança apresentado anteriormente

Confiança da Acurácia (4)

Opção 1: subtrair a média e dividir pelo desvio padrão

$$p\left(-z < \frac{acc - p}{\sqrt{p\frac{(1-p)}{n}}} < z\right) = c$$

- Onde acc é a acurácia real e p é a calculada no conjunto de teste
- Desvantagem: mais difícil de interpretar

Confiança da Acurácia (5)

 Opção 2 (mais confiável): adaptar o cálculo para retornar os limites do intervalo de confiança

$$l = \frac{p + \frac{z^{2}}{2n} \pm z\sqrt{\frac{p}{n} - \frac{p^{2}}{n} + \frac{z^{2}}{4n^{2}}}}{1 + \frac{z^{2}}{n}}$$

Confiança da Acurácia (6)

 Opção 3: quando n ≥ 30 e np(1-p) ≥ 5, o cálculo pode ser aproximado por:

$$l = p \pm z \sqrt{\frac{p(1-p)}{n}}$$

 Exercício: calcular os intervalos para os algoritmos estudados no semestre na base Iris com confiança de 90%

Comparação de Modelos (2)

- Podemos estar interessados em comparar dois modelos ou dois algoritmos. Exemplos:
 - Modelo: rede neural treinada com topologia definida e pesos e biases fixados
 - Algoritmo: processo de treinamento para induzir uma dada rede neural

Comparação de Modelos (2)

- Comparando modelos
 - M₁: rede neural induzida pelo Backpropagation para resolver o Iris com hiperparâmetros fixos (ex.: 4 neurônios ocultos, semente 0, etc)
 - M₂: uma árvore de decisão induzida J48 para resolver o Iris
 - É possível dizer que M₁ é melhor/pior que M₂?

Comparação de Modelos (3)

- Opção 1: comparar diretamente intervalos de confiança. Análise mais trabalhosa
- Opção 2 (preferida): calcular d = p₁ p₂
 - Se p₁ e p₂ aproximam distribuições normais, d também aproxima
 - Obs1: modelos não precisam ser treinados/testados sobre as mesmas instâncias
 - Obs2: estamos usando a análise bicaudal (diz se é melhor ou pior)

Comparação de Modelos (4)

Variância esperada:

$$\sigma_d^2 = \sigma_{p_1}^2 + \sigma_{p_2}^2 = \frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}$$

Desvio esperado

$$\sigma_d = \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$

Comparação de Modelos (5)

O intervalo de confiança de d é dado por:

$$l = d \pm z \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$

z é o valor tabelado para (1-c)/2

- Intervalo contém 0: não é possível afirmar qual é melhor/pior e nem mesmo se são equivalentes
- Intervalo positivo: M₁ é melhor com confiança c
- Intervalo negativo: M₁ é pior com confiança c

Comparação de Modelos (5)

Exemplo:

- Modelo M₁: acurácia = 85%; testada em 30 exemplos
- Modelo M₂: acurácia = 75%; testada em 5000 exemplos
- É possível dizer que M₁ é melhor que M₂ com 90% de confiança?

Comparação de Modelos (6)

- M_1 : n_1 = 30 e p_1 = 0.85
- M_2 : n_2 = 5000 e p_2 = 0.75
- $d = p_1 p_2 = 0.1$

•
$$\sigma^2 = \frac{0.85(1-0.85)}{30} + \frac{0.75(1-0.75)}{5000} = 0.0042875$$

•
$$\sigma = \sqrt{0.0042875} = 0.065$$

Comparação de Modelos (7)

- $d_t = 0.1 \pm 1.65 \times 0.065 = 0.1 \pm 0.107$
- Como intervalo contém 0, diferença não é estatisticamente significante

Comparação de Modelos (8)

- Modelo M_1 : $p_1 = 70\%$; $n_1 = 100$
- Modelo M_2 : $p_1 = 85\%$; $n_2 = 200$
- c = 99%
- M2 é melhor do que M1?

Table 5.1 Confidence Limits for the Normal Distribution				
$Pr[X \ge z]$	z			
0.1%	3.09			
0.5%	2.58			
1%	2.33			
5%	1.65			
10%	1.28			
20%	0.84			
40%	0.25			

Comparação de Algoritmos

- Muitas vezes não desejamos saber qual modelo é melhor, mas sim qual algoritmo é capaz de induzir modelos melhores
- Estratégia
 - Induzir vários modelos usando método 1 (ex.: rede neural)
 - Induzir vários modelos usando método 2 (ex.: árvore de decisão)
 - Calcular média e desvio das acurácias e comparar resultados

Comparação de Algoritmos (2)

- Aplicação: útil para dizer qual algoritmo é melhor para resolver uma tarefa específica
 - Quebrar um grande dataset em pedaços menores
 - Ou usar datasets semelhantes (com atributos parecidos)

Comparação de Algoritmos (3)

- Outra aplicação: dizer qual algoritmo se sai melhor uma área de aplicação (ex.: diagnóstico de doenças)
 - Usar datasets diferentes dentro da a área de aplicação
- Problema: com menos de 30 datasets, dificilmente acurácias medidas vão formar uma distribuição normal
- Alternativa: usar a distribuição T-student (Teste T)

Comparação de Algoritmos (4)

- Distribuição T-student
 - Família de distribuições de probabilidade semelhante a distribuição normal
 - Distribuição da família depende do parâmetro graus de liberdade (k-1)
 - Número k de datasets usados ou
 - Número k de folds quando um dataset grande é quebrado em pedaços menores

Comparação de Algoritmos (5)

- Quanto maior o número de graus
 - Menor a dispersão
 - Mais semelhante se torna a uma distribuição normal

Comparação de Algoritmos (6)

 Valores de z de acordo com o c desejado (versão com duas caudas)

(I-α)							
0.80	0.90	0.95	0.98	0.99			
3.08	6.31	12.7	31.8	63.7			
1.89	2.92	4.30	6.96	9.92			
1.38	1.83	2.26	2.82	3.25			
1.31	1.70	2.04	2.46	2.76			
	3.08 1.89 1.38	0.800.903.086.311.892.921.381.83	0.80 0.90 0.95 3.08 6.31 12.7 1.89 2.92 4.30 1.38 1.83 2.26	0.80 0.90 0.95 0.98 3.08 6.31 12.7 31.8 1.89 2.92 4.30 6.96 1.38 1.83 2.26 2.82			

Comparação de Algoritmos (7)

- Exemplo: acurácias de teste estimadas para 2 algoritmos usando 30 datasets
 - d = 0.05
 - $\sigma = 0.002$
- As diferenças são significativas com 95% de confiança?

Comparação de Algoritmos (8)

- $d_t = 0.05 \pm 2.04 \times 0.002$
- Como intervalo não inclui valor 0, a diferença é estatisticamente significante com 95% de confiança

Comparação de Algoritmos (9)

- Diferença de acurácias extraída entre 2 algoritmos
 - Treinados em 10 datasets
 - d possui média 0.06 e desvio padrão 0.003
 - As diferenças são significativas com 99% de confiança?

(I-α)							
K - 1	0.80	0.90	0.95	0.98	0.99		
1	3.08	6.31	12.7	31.8	63.7		
2	1.89	2.92	4.30	6.96	9.92		
9	1.38	1.83	2.26	2.82	3.25		
29	1.31	1.70	2.04	2.46	2.76		

Comparação de Algoritmos (10)

- Diferença de acurácias extraída entre 2 algoritmos
 - Treinados em 10 datasets
 - d possui média 0.06 e desvio padrão 0.003
 - As diferenças são significativas com 99% de confiança?

Comparação de Algoritmos (11)

- Limitação do Teste-T original: não pode extrair todo o potencial da validação cruazada
 - Datasets precisam ser independentes, mas na validação cruzada, instâncias são reusadas para treino
- Teste-T corrigido: capaz usar a média e o desvio padrão de acurácias obtidas nos folds da validação cruzada
 - Como se fossem vários datasets independentes

Comparação de Vários Algoritmos

- O Teste-T serve para comparar algoritmos dois a dois, mas não consegue dizer quando um algoritmo é o melhor dentre vários
- Existem outros métodos capazes de comparar vários classificadores de uma só vez
 - Teste de hipóteses de Feelders e Verkooijen
 - Teste de hipóteses de Friedman
 - ANOVA

Créditos

- Parcialmente adaptado de:
 - Notas de aula do Prof. Dr. André C. P. L. F. de Carvalho - ICMC-USP