V - Applications linéaires

I - Applications linéaires

I.1 - Définitions

Définition 1 - Application linéaire

Soit $f: \mathbb{R}^n \to \mathbb{R}^p$. L'application f est une application linéaire si pour tout $x, y \in \mathbb{R}^n$ et $\alpha, \beta \in \mathbb{R}$,

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y).$$

L'ensemble des applications linéaires de \mathbb{R}^n dans \mathbb{R}^p est noté $\mathscr{L}(\mathbb{R}^n, \mathbb{R}^p)$.

- Les applications linéaires sont des *morphismes* entre espaces vectoriels.
- Les applications linéaires bijectives sont des *isomor-phismes*.
- Si n = p, on note $\mathscr{L}(\mathbb{R}^n) = \mathscr{L}(\mathbb{R}^n, \mathbb{R}^n)$. Ses éléments sont des *endomorphismes*.
- \bullet Les endomorphismes bijectifs sont des automorphismes.

Exemple 1 - Applications linéaires

- $f: \mathbb{R}^3 \to \mathbb{R}^3$, $(x, y, z) \mapsto (3x + 2y, x + 2z, x + y + z)$ est un endomorphisme de \mathbb{R}^3 .
- $f: \mathbb{R}^2 \to \mathbb{R}^3, (x,y) \mapsto (3x + 2y, x + 2y, x + y).$
- $f: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto 3x + 2y$.
- Id: $\mathbb{R}^n \to \mathbb{R}^n$, $x \mapsto x$ est un automorphisme.

Proposition 1

Si $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$, alors $f(0_{\mathbb{R}^n}) = 0_{\mathbb{R}^p}$.

Proposition 2 - Opérations sur les applications linéaires

- Soit $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$ et $\alpha \in \mathbb{R}$. Alors, $\alpha \cdot f : x \mapsto \alpha \cdot f(x)$ est une application linéaire de \mathbb{R}^n dans \mathbb{R}^p .
- Soit $f, g \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$. Alors, $f + g : x \mapsto f(x) + g(x)$ est une application linéaire de \mathbb{R}^n dans \mathbb{R}^p .
- Soit $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$ et $g \in \mathcal{L}(\mathbb{R}^q, \mathbb{R}^n)$. $f \circ g : x \mapsto f(g(x))$ est une application linéaire de \mathbb{R}^q dans \mathbb{R}^p .

Exemple 2 - Opérations sur les applications linéaires

• Si $f:(x,y,z)\mapsto (2x+y,x+y)$ et $g:(x,y,z)\mapsto (x+y+z,x-y-z)$, alors

$$f + g: (x, y, z) \mapsto (3x + 2y + z, 2x - z).$$

• Si $f:(x,y)\mapsto x+2y$ et $g:(x,y,z)\mapsto (x+z,y+z)$, alors

$$f \circ g : (x, y, z) \mapsto x + 2y + 3z$$
.

I.2 - Noyau & Image

Définition 2 - Noyau, Image

Soit $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$.

 \bullet Le noyau de f, noté $\mathrm{Ker}(f)$, est l'ensemble

$$Ker(f) = \{ x \in \mathbb{R}^n ; f(x) = 0_{\mathbb{R}^p} \}.$$

• L'image de f, notée Im(f), est l'ensemble

$$Im(f) = \{ f(x), x \in \mathbb{R}^n \}.$$

Exemple 3 - Calculs de noyau et d'image

Soit $f:(x, y, z) \mapsto (2x + y, 4x + 2y)$.

• $(x, y, z) \in \text{Ker } f$ si et seulement si f(x, y, z) = (0, 0)

$$\Leftrightarrow \begin{cases} 2x + y = 0 \\ 4x + 2y = 0 \end{cases} \Leftrightarrow \begin{cases} 2x + y = 0 \\ 0 = 0 \end{cases} \xrightarrow{L_2 \leftarrow L_2 - 2L_1}$$

$$\Leftrightarrow \exists (\lambda, \mu) \in \mathbb{R}^2 \text{ tel que } \begin{cases} x = -\frac{\lambda}{2} \\ y = \lambda \\ z = \mu \end{cases}$$

Ainsi,

$$\operatorname{Ker} f = \{(-\lambda/2, \lambda, \mu), \lambda, \mu \in \mathbb{R}\}\$$
$$= \operatorname{Vect} \{(-1/2, 1, 0), (0, 0, 1)\}.$$

• D'après la définition,

$$\operatorname{Im} f = \{(2x + y, 4x + 2y), x, y \in \mathbb{R}\}\$$
$$= \operatorname{Vect} \{(2, 4), (1, 2)\} = \operatorname{Vect} \{(1, 2)\}.$$

Proposition 3

Soit $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$.

- Ker f est un sous-espace vectoriel de \mathbb{R}^n .
- Im f est un sous-espace vectoriel de \mathbb{R}^p .

Théorème 1 - Caractérisation des applications linéaires injectives

Soit $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$. Les propositions suivantes sont équivalentes.

- (i). f est injective.
- (ii) $\operatorname{Ker}(f) = \{0_{\mathbb{R}^n}\}.$

Exemple 4 - Une preuve d'injectivité

Soit $f \in \mathcal{L}(\mathbb{R}^n)$. On suppose qu'il existe $p \in \mathbb{N}$ tel que $f^p = \mathrm{Id}$. Alors, f est injective.

En effet, si $x \in \text{Ker } f$, alors

$$f(x) = 0_{\mathbb{R}^n}$$

$$f^{p-1}(f(x)) = f^{p-1}(0_{\mathbb{R}^n})$$

$$f^p(x) = 0_{\mathbb{R}^n}$$

$$x = 0_{\mathbb{R}^n}$$

Ainsi, Ker $f = \{0_{\mathbb{R}^n}\}$. L'application f est donc injective.

Théorème 2 - Théorème du rang (admis)

Soit $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$. Alors,

$$\dim(\operatorname{Ker} f) + \operatorname{Rg} f = \dim(\mathbb{R}^n).$$

Proposition 4

Soit $f \in \mathcal{L}(\mathbb{R}^n)$. Les propositions suivantes sont équivalentes :

- \bullet f est bijective.
- f est injective.
- f est surjective.

Exemple 5 - Un exemple d'isomorphisme

Soit $f \in \mathcal{L}(\mathbb{R}^n)$. On suppose qu'il existe $p \in \mathbb{N}$ tel que $f^p = \mathrm{Id}$. D'après l'exemple précédent, f est injective. Ainsi, comme f est un endomorphisme, f est bijective.

II - Matrices

II.1 - Définitions

Définition 3 - Matrices

Soit n, p deux entiers naturels non nuls.

- Une matrice de taille (n, p) est un tableau de nombres réels constitué de n lignes et de p colonnes.
- Le coefficient d'indice (i, j) d'une matrice est le coefficient situé à la i^e ligne et j^e colonne.
- L'ensemble des matrices de réels à n lignes et p colonnes est noté $\mathcal{M}_{n,p}(\mathbb{R})$.
- Soit $A \in \mathcal{M}_{n,p}(\mathbb{R})$. On note généralement

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,p} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,p} \\ \vdots & \vdots & & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,p} \end{pmatrix} = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$

Exemple 6 - Matrices

- $\bullet \begin{pmatrix} 1 & 3 & 2 \\ 0 & -1 & 1 \end{pmatrix} \in \mathcal{M}_{2,3}(\mathbb{R}).$
- $\bullet \ \begin{pmatrix} 3 & -1 \\ 1 & \frac{1}{2} \end{pmatrix} \in \mathscr{M}_{2,2}(\mathbb{R}).$

Définition 4 - Matrices lignes / colonnes

Soit $A \in \mathscr{M}_{n,p}(\mathbb{R})$.

- Si n = 1, alors A est une matrice ligne.
- Si p = 1, alors A est une matrice colonne.

Définition 5 - Égalité entre matrices

Deux matrices $A=(a_{i,j})_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant p}}$ et $B=(b_{i,j})_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant p}}$ sont égales si elles ont même taille et si, pour tout $i\in\{1,\ldots,n\}$ et $j\in\{1,\ldots,p\},\ a_{i,j}=b_{i,j}.$

II.2 - Opérations

Définition 6 - Somme, Multiplication par un réel

Soit
$$A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$$
, $B = (b_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}} \in \mathcal{M}_{n,p}(\mathbb{R})$ et $\alpha \in \mathbb{R}$.

- L'addition de matrices de mêmes tailles est obtenue en additionnant les éléments de mêmes indices. Ainsi, la matrice A + B est la matrice de taille (n, p) et de coefficients $(c_{i,j})_{1 \le i \le n}$ définis par $c_{i,j} = a_{i,j} + b_{i,j}$.
- La multiplication d'une matrice par un réel est obtenue en multipliant chacun des coefficients de la matrice par ce réel. Ainsi, la matrice αA est la matrice de taille (n,p) et de coefficients $(d_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$ définis par $d_{i,j} = \alpha a_{i,j}$.

Exemple 7 - Opérations sur les matrices

Soit
$$A = \begin{pmatrix} 1 & 0 & \frac{3}{2} \\ 0 & 2 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 3 & 1 & -\frac{1}{2} \\ \frac{2}{3} & 1 & -2 \end{pmatrix}$. Alors,

$$A + B = \begin{pmatrix} 4 & 1 & 1 \\ \frac{2}{3} & 3 & -1 \end{pmatrix}, 3A = \begin{pmatrix} 3 & 0 & \frac{9}{2} \\ 0 & 6 & 3 \end{pmatrix}.$$

Définition 7 - Matrice nulle

La matrice de taille (n, p) dont tous les coefficients sont nuls est la matrice nulle. Elle est notée $0_{n,p}$.

Proposition 5 - Propiétés de l'addition et de la multiplication par un réel

Soit $A, B, C \in \mathcal{M}_{n,p}(\mathbb{R})$ et $\alpha, \beta \in \mathbb{R}$.

- $Commutativit\acute{e}$. A + B = B + A.
- Associativité. A + (B + C) = (A + B) + C.
- $\alpha(A+B) = \alpha A + \beta B$.
- $(\alpha + \beta)A = \alpha A + \beta A$.
- $A + (-1)A = 0_{n,p}$.

L'ensemble $\mathcal{M}_{n,p}(\mathbb{R})$ muni de l'addition et de la mutliplictaion par un réel est un espace vectoriel.

Définition 8 - Produit de matrices de tailles compatibles

Soit $A = (a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} \in \mathscr{M}_{n,p}(\mathbb{R}), \ B = (b_{i,j})_{\substack{1 \leq i \leq p \\ 1 \leq j \leq q}} \in \mathscr{M}_{q,p}(\mathbb{R}).$ La matrice $C = A \times B$ est la matrice de taille (n,q) dont le coefficient d'indice (i,j) est donné par

$$c_{i,j} = \sum_{k=1}^{p} a_{i,k} b_{k,j}.$$

Exemple 8 - Représentation du produit matriciel

Pour effectuer un produit matriciel on représente souvent les matrices sur deux étages :

Exemple 9 - Calculs de produits

$$\bullet \ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & -1 \end{pmatrix} \times \begin{pmatrix} 1 & 2 & 4 \\ 0 & -1 & 0 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 3 & 10 \\ 0 & 1 & 2 \end{pmatrix}.$$

$$\bullet \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & -1 \end{pmatrix} \times \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ -2 \end{pmatrix}.$$

$$\bullet \begin{pmatrix} 2 & 5 & 1 \\ 3 & -2 & 1 \end{pmatrix} \times \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x + 5y + z \\ 3x - 2y + z \end{pmatrix}.$$

Exemple 10 - Systèmes linéaires

On considère trois suites $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ et $(z_n)_{n\in\mathbb{N}}$ définies par $x_0=1, y_0=1, z_0=1$ et

$$\forall n \in \mathbb{N}, \begin{cases} x_{n+1} &= 3x_n + y_n - z_n \\ y_{n+1} &= -2x_n + 2z_n \\ z_{n+1} &= z_n \end{cases}.$$

Pour tout $n \in \mathbb{N}$, on note $U_n = \begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix}$.

D'une part,
$$U_0 = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
.

D'autre part,

$$U_{n+1} = \begin{pmatrix} x_{n+1} \\ y_{n+1} \\ z_{n+1} \end{pmatrix} = \begin{pmatrix} 3x_n + y_n - z_n \\ -2x_n + 2z_n \\ z_n \end{pmatrix} = \underbrace{\begin{pmatrix} 3 & 1 & -1 \\ -2 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix}}_{A} \times \begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix}.$$

On montre ensuite par récurrence que, pour tout n entier naturel, $U_n = A^n U_0$.

Proposition 6 - Propriétés du produit matriciel

Soit A, B, C trois matrices dont les tailles sont compatibles et $\alpha \in \mathbb{R}$.

- Associativité. (AB)C = A(BC).
- $\alpha(AB) = (\alpha A)B = A(\alpha B)$.
- Distributivité. (A+B)C = AC + BC et A(B+C) = AB + AC.

Définition 9 - Transposée

Soit $M \in \mathcal{M}_{n,p}(\mathbb{R})$. La transposée de la matrice M, notée M^T , est la matrice de $M^T = (\widetilde{m}_{i,j})_{1 \leq i \leq p, 1 \leq j \leq n} \in \mathcal{M}_{p,n}(\mathbb{R})$ définie par :

$$\widetilde{m}_{i,j} = m_{j,i}$$
.

Exemple 11 - Une transposition

Si
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
, alors $A^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$.

Proposition 7 - Transposée et opérations

Soit A, B, C trois matrices de tailles compatibles et $\alpha \in \mathbb{R}$. Alors,

- $(\alpha A + B)^T = \alpha A^T + B^T$. $(AB)^T = B^T A^T$.

II.3 - Matrices carrées

Définition 10 - Matrices carrées

Une matrice carrée M d'ordre p est une matrice dont le nombre de lignes et le nombre de colonnes est égal à p. L'ensemble des matrices carrées d'ordre p est noté $\mathcal{M}_p(\mathbb{R})$.

Définition 11 - Triangulaires, Diagonales, Identité, Symétriques

- Une matrice est triangulaire supérieure si les coefficients en dessous de sa diagonale sont nuls.
- Une matrice est triangulaire inférieure si les coefficients au dessus de sa diagonale sont nuls.
- Une matrice est diagonale si les coefficients en dehors de sa diagonale sont nuls.
- La matrice identité est la matrice diagonale dont tous les coefficients diagonaux valent 1. La matrice identité d'ordre p est notée I_p .
- La matrice nulle est la matrice dont tous les éléments valent 0. La matrice nulle d'ordre p est notée 0_p .
- La matrice M est symétrique si $M^T = M$.

II.4 - Opérations sur les matrices carrées

Proposition 8

Si A est une matrice carrée d'ordre p, alors

- $\bullet \ AI_p = I_p A = A.$
- $A0_p = 0_p A = 0_p$.

Définition 12 - Puissance d'une matrice

Soit A une matrice carrée d'ordre p et n un entier naturel. Alors,

•
$$A^0 = I_p$$
.

$$\bullet \ A^n = \underbrace{A \times A \times \cdots \times A}_{n \text{ fois}}.$$

Exemple 12

Nous avons vu précédemment que le calcul de puissances peut être utile pour étudier les suites récurrentes linéaires.

Proposition 9 - Puissance d'une matrice diagonale

Soit D une matrice diagonale d'ordre p et n un entier naturel. La matrice D^n est une matrice diagonale dont les coefficients diagonaux sont ceux de D élevés à la puissance n.

Exemple 13 - Matrices diagonales

$$\bullet \ I_p^n = I_p.$$

$$\bullet \ 0_p^n = 0_p.$$

$$\bullet \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix}^n = \begin{pmatrix} 2^n & 0 & 0 \\ 0 & (-1)^n & 0 \\ 0 & 0 & 3^n \end{pmatrix}.$$

Définition 13 - Matrices qui commutent

Soit A et B deux matrices d'ordre p. Les matrices A et B commutent si AB = BA.

Exemple 14 - Commutativité 🕼

•
$$I_2$$
 et $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ commutent.

•
$$A = \begin{pmatrix} 1 & 9 & 3 \\ -1 & 1 & 2 \\ 1 & 2 & -1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 2 & 0 & 1 \\ -3 & 4 & 2 \\ 9 & 8 & -1 \end{pmatrix}$ ne commutent pas.

Théorème 3 - Formule du binôme de Newton

Soit A et B deux matrices d'ordre p qui commutent. Alors, pour tout n entier naturel,

$$(A+B)^{n} = \sum_{k=0}^{n} \binom{n}{k} A^{k} B^{n-k} = \sum_{k=0}^{n} \binom{n}{k} A^{n-k} B^{k}.$$

Exemple 15 - Application de la formule du binôme 🗱

Soit
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 et $N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

32

- D'une part, $A = I_2 + N$.
- D'autre part, $I_2N = NI_2 = N$. Ainsi, I_2 et N commutent.
- On remarque ensuite que $N^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

D'après la formule du binôme de Newton,

$$A^{n} = \sum_{k=0}^{n} \binom{n}{k} I_{2}^{n-k} N^{k} = \sum_{k=0}^{n} \binom{n}{k} N^{k}, \text{ car } I_{2}^{n-k} = I_{2}$$
$$= \binom{n}{0} N^{0} + \binom{n}{1} N^{1} + 0_{2} + \dots + 0_{2}$$
$$= I_{2} + nN = \binom{1}{0} \binom{n}{1}.$$

II.5 - Matrices inversibles

Définition 14 - Matrice inversible

Une matrice A d'ordre p est inversible s'il existe une matrice B telle que $AB = I_p$. La matrice B est l'inverse de A et notée A^{-1} .

Exemple 16 - Matrices inversibles et non inversibles

- On pose $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$. Comme $AB = I_2$, alors A est inversible et $A^{-1} = B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$.
- Comme $I_p \times I_p = I_p$, alors I_p est inversible et son inverse est I_p .
- Comme $0_p \times A = 0_p \neq I_p$ pour toute matrice carrée A, alors la matrice nulle n'est pas inversible.
- Soit $M = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Un simple calcul montre que $M^2 2M + I_3 = 0_3$. Ainsi,

$$M^{2} - 2M = -I_{3}$$

 $M(M - 2I_{3}) = -I_{3}$
 $M(2I_{3} - M) = I_{3}$.

Ainsi, M est inversible et $M^{-1} = 2I_3 - M$.

Proposition 10 - Inversibilité et produit

Soit A et B deux matrices carrées d'ordre p.

- Si A est inversible, alors A^{-1} est inversible et $(A^{-1})^{-1} = A$.
- Si A et B sont inversibles, alors AB est inversible et $(AB)^{-1} = B^{-1}A^{-1}$.

II.6 - Critères d'inversibilité

Proposition 11 - Inversibilité des matrices diagonales

Soit D une matrice diagonale. La matrice D est inversible si et seulement si tous ses coefficients diagonaux sont non nuls. Alors, D^{-1} est la matrice diagonale dont les coefficients diagonaux sont les inverses de ceux de D.

Exemple 17 - Matrices diagonales

- Soit $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$. La matrice D est diagonale et ses coefficients diagonaux sont 1, 2 et 3. Comme ils sont tous non nuls, la matrice D est inversible et $D^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix}.$
- Soit $D = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. La matrice D est diagonale et ses coefficients diagonaux sont 1 et 0. La matrice D n'est pas inversible.

Proposition 12 - Inversibilité des matrices triangulaires

Soit T une matrice triangulaire. La matrice T est inversible si et seulement si tous ses coefficients diagonaux sont non nuls.

Proposition 13 - Inversibilité des matrices d'ordre 2

Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ une matrice d'ordre 2. La matrice A est inversible si et seulement si $ad - bc \neq 0$. Alors,

$$A^{-1} = \frac{1}{ad - cb} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Lycée Ozenne 33

Exemple 18 - Matrices d'ordre 2, 🐾

Soit $A = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}$. Comme $2 \times 4 - 3 \times 1 = 5$ est non nul, alors A est inversible et

$$A^{-1} = \frac{1}{5} \begin{pmatrix} 4 & -1 \\ -3 & 2 \end{pmatrix}.$$

Proposition 14

Soit A une matrice inversible d'ordre p et B, C deux matrices carrées d'ordre p.

- Si AB = AC, alors B = C.
- Si BA = CA, alors B = C.

Exemple 19 - Preuve de non inversibilité 🛩

- Soit $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$ et $C = \begin{pmatrix} 1 & 1 \\ 3 & 2 \end{pmatrix}$.

 On remarque que AB = AC. Supposons par l'absurde que A soit inversible. Alors, B = C. Cependant, $B \neq C$. Ainsi, A n'est pas inversible.
- Soit $N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. On remarque que $N \times N = 0_2$. Supposons par l'absurde que N soit inversible. Comme $N \times N = N \times 0_2$, alors $N = 0_2$. On obtient ainsi une contradiction et N n'est pas inversible.

II.7 - Inversion par résolution de systèmes

Théorème 4 - Inverse & Système linéaire

Soit A une matrice carrée d'ordre p. La matrice A est inversible si et seulement s'il existe une matrice B telle que pour toutes X, Y matrices colonnes, le système X = AY s'écrit Y = BX. Alors, $A^{-1} = B$.

Exemple 20 - Inverse par résolution de AX = Y, $\mathbf{\hat{c}}_{\mathbf{s}}^{\mathbf{s}}$

Soit $A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$. On pose $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $Y = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$. En utilisant la méthode du pivot de Gauss.

$$AX = Y$$

$$\begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} x+y+z &= a \\ -x+y+z &= b \\ x+z &= c \end{cases} \Leftrightarrow \begin{cases} x+y+z &= a \\ 2y+2z &= a+b \\ y &= a-c \end{cases} \qquad {}_{L_2\leftarrow L_2+L_1}$$

$$\Leftrightarrow \begin{cases} x+z+y &= a \\ 2z+2y &= a+b \\ y &= a-c \end{cases} \Leftrightarrow \begin{cases} x &= \frac{1}{2}a - \frac{1}{2}b \\ z &= -\frac{1}{2}a + \frac{1}{2}b + c \\ y &= a-c \end{cases}$$

En posant
$$B=\begin{pmatrix}1/2&-1/2&0\\1&0&-1\\-1/2&1/2&1\end{pmatrix}$$
, alors $Y=BX$. D'où,

$$A^{-1} = \begin{pmatrix} 1/2 & -1/2 & 0\\ 1 & 0 & -1\\ -1/2 & 1/2 & 1 \end{pmatrix}.$$

Exemple 21 - Inverse par pivot sur I_n ,

On place les matrices A et I_n côte à côte. On transforme la matrice A en la matrice I_n à l'aide d'opérations élémentaires sur les

lignes. On effectue les mêmes opérations sur I_n .

$$\begin{vmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ -1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 2 & 2 & 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 & 1 & 0 \\ 0 & 2 & 2 & 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 & 1 & 0 \\ 0 & 2 & 2 & 1 & 1 & 0 & 0 \\ 0 & 2 & 2 & 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & -1 & 1 & 2 & 0 & 0 \\ 0 & 2 & 2 & 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & -1 & 1 & 2 & 0 & 0 \\ 0 & 2 & 0 & 2 & 0 & -2 & 0 & 0 \\ 0 & 0 & 2 & -1 & 1 & 2 & 0 & 0 \\ 0 & 2 & 0 & 2 & 0 & -2 & 0 & 0 \\ 0 & 0 & 2 & -1 & 1 & 2 & 0 & 0 \\ 1 & 0 & 0 & 2 & -1 & 1 & 2 & 0 \\ 0 & 0 & 2 & -1 & 1 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0 & \frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{2} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{2} & 1 & 0 & 0 \end{bmatrix}$$

On obtient ainsi

$$A^{-1} = \begin{pmatrix} 1/2 & -1/2 & 0\\ 1 & 0 & -1\\ -1/2 & 1/2 & 1 \end{pmatrix}.$$

III - Matrice d'une application linéaire

Dans toute la suite, F désigne un sous-espace vectoriel de dimension p de \mathbb{R}^n .

III.1 - Vecteurs, Applications linéaires, Matrices

Définition 15 - Matrice d'une famille de vecteurs dans une base

Soit m un entier naturel non nul, $\mathscr{B}=(e_1,\ldots,e_p)$ une base de F et v_1,\ldots,v_m des vecteurs de F. Pour tout $i\in \llbracket 1,m \rrbracket$, on note $v_i=\sum\limits_{j=1}^p x_{ji}e_j$. La matrice des vecteurs (v_1,\ldots,v_m) dans la base \mathscr{B} est

$$\operatorname{Mat}_{\mathscr{B}}(v_1,\ldots,v_m) = \begin{pmatrix} x_{11} & \cdots & x_{1m} \\ \vdots & \ddots & \vdots \\ x_{p1} & \cdots & x_{pm} \end{pmatrix} \in \mathscr{M}_{p,m}(\mathbb{K}).$$

Exemple 22 - Matrice de vecteurs

Posons $e_1 = (1,1)$ et $e_2 = (1,2)$. La famille $\mathscr{B} = (e_1, e_2)$ est une base de \mathbb{R}^2 .

Soit $(x,y) \in \mathbb{R}^2$ et $a,b \in \mathbb{R}$ tels que $(x,y) = ae_1 + be_2$. Alors,

$$\begin{cases} a+b &= x \\ a+2b &= y \end{cases} \Leftrightarrow \begin{cases} a+b &= x \\ b &= y-x \end{cases} \Leftrightarrow \begin{cases} a &= 2x-y \\ b &= y-x \end{cases}$$

Soit $v_1 = (0,1)$, $v_2 = (1,0)$ et $v_3 = (4,5)$. Alors,

$$v_1 = -(1,1) + (1,2)$$

$$v_2 = 2(1,1) - (1,2)$$

$$v_3 = 3(1,1) + (1,2)$$

Ainsi,

$$\operatorname{Mat}_{\mathscr{B}}(v_1, v_2, v_3) = \begin{pmatrix} -1 & 2 & 3 \\ 1 & -1 & 1 \end{pmatrix}.$$

Définition 16 - Matrice d'une application linéaire dans deux bases

Soit $\mathscr{B} = (e_1, \ldots, e_n)$ une base de \mathbb{R}^n , $\mathscr{B}' = (f_1, \ldots, f_p)$ une base de \mathbb{R}^p et $f \in \mathscr{L}(\mathbb{R}^n, \mathbb{R}^p)$. La matrice de l'application linéaire f dans les bases \mathscr{B} et \mathscr{B}' est la matrice $\mathrm{Mat}_{\mathscr{B},\mathscr{B}'}(f) = \mathrm{Mat}_{\mathscr{B}'}(f(e_1), \ldots, f(e_n))$.

Si n = p et $\mathscr{B} = \mathscr{B}'$, on note $\mathrm{Mat}_{\mathscr{B}}(f) = \mathrm{Mat}_{\mathscr{B},\mathscr{B}}(f)$.

Exemple 23 - Matrice d'applications linéaires

- Soit $\mathscr{B} = (e_1, \dots, e_n)$ une base de \mathbb{R}^n . Alors, pour tout $i \in [1, n]$, $\mathrm{Id}(e_i) = e_i$. Ainsi, $\mathrm{Mat}_{\mathscr{B}}(\mathrm{Id}) = I_n$.
- Soit $\mathscr{B} = (e_1, \ldots, e_n)$ une base de \mathbb{R}^n et \mathscr{B}' une base de \mathbb{R}^p . En notant f l'application nulle de \mathbb{R}^n dans \mathbb{R}^p , alors pour tout $i \in [1, n]$, $f(e_i) = 0_{\mathbb{R}^p}$. Ainsi, $\mathrm{Mat}_{\mathscr{B}, \mathscr{B}'}(f) = 0_{p,n}$.
- On pose $e_1 = (1,1,1)$, $e_2 = (1,2,1)$, $e_3 = (0,0,1)$, $f_1 = (1,1)$, $f_2 = (2,1)$. On montre aisément que $\mathscr{B} = (e_1,e_2,e_3)$ est une base de \mathbb{R}^3 et $\mathscr{B}' = (f_1,f_2)$ est une base de \mathbb{R}^2 . Soit $f:(x,y,z)\mapsto (2x+y,y-3z)$. De plus, en utilisant l'exemple précédent,

$$f(e_1) = (3, -2) = 8(1, 1) - 5(1, 2)$$

$$f(e_2) = (4, -2) = 10(1, 1) - 6(1, 2)$$

$$f(e_3) = (0, -3) = 3(1, 1) - 3(1, 2)$$

Ainsi,
$$\operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f) = \begin{pmatrix} 8 & 10 & 3 \\ -5 & -6 & -3 \end{pmatrix}$$
.

• On note $\mathscr{C} = (\varepsilon_1, \varepsilon_2)$ la base canonique de \mathbb{R}^2 et $\mathscr{B} = (f_1, f_2)$ la base de \mathbb{R}^2 définie à l'exemple précédent. Alors,

$$Id(\varepsilon_1) = (1,0) = 2(1,1) - (1,2)$$
$$Id(\varepsilon_2) = (0,1) = -(1,1) + (1,2)$$

Ainsi,
$$Mat_{\mathscr{C},\mathscr{B}}(Id) = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$
.

III.2 - Opérations usuelles

Proposition 15 - Évaluation

Soit \mathscr{B} une base de \mathbb{R}^n , \mathscr{B}' une base de \mathbb{R}^p , $f \in \mathscr{L}(\mathbb{R}^n, \mathbb{R}^p)$ et $u \in \mathbb{R}^n$. Alors,

$$\operatorname{Mat}_{\mathscr{B}'}(f(u)) = \operatorname{Mat}_{\mathscr{B}\mathscr{B}'}(f) \cdot \operatorname{Mat}_{\mathscr{B}}(u).$$

Théorème 5 - Addition et multiplication par un réel

Soit $f, g \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$, \mathscr{B} une base de \mathbb{R}^n , \mathscr{B}' une base de \mathbb{R}^p et $a \in \mathbb{R}$. Alors,

$$\operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(af+g) = a\operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f) + \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(g).$$

Proposition 16 - Composition & Produit matriciel

Soit \mathscr{B}_1 (resp. \mathscr{B}_2 , \mathscr{B}_3) une base de \mathbb{R}^n (resp. \mathbb{R}^p , \mathbb{R}^q), $f \in \mathscr{L}(\mathbb{R}^n, \mathbb{R}^p)$ et $g \in \mathscr{L}(\mathbb{R}^p, \mathbb{R}^q)$.

$$\operatorname{Mat}_{\mathscr{B}_1,\mathscr{B}_3}(g \circ f) = \operatorname{Mat}_{\mathscr{B}_2,\mathscr{B}_3}(g) \times \operatorname{Mat}_{\mathscr{B}_1,\mathscr{B}_2}(f).$$

Théorème 6 - Inverse & Matrices

Soit \mathscr{B}_1 et \mathscr{B}_2 deux bases de \mathbb{R}^n et $f \in \mathscr{L}(\mathbb{R}^n)$. L'application f est un isomorphisme si et seulement si $\mathrm{Mat}_{\mathscr{B}_1,\mathscr{B}_2}(f)$ est inversible. Alors $\left[\mathrm{Mat}_{\mathscr{B}_1,\mathscr{B}_2}(f)\right]^{-1} = \mathrm{Mat}_{\mathscr{B}_2,\mathscr{B}_1}(f^{-1})$.

Définition 17 - Morphisme canoniquement associé

Soit $A \in \mathcal{M}_{n,p}(\mathbb{R})$. Notons \mathcal{C}_n (resp. \mathcal{C}_p) la base canonique de \mathbb{R}^n (resp. \mathbb{R}^p). Le morphisme canoniquement associé à A est l'application $f \in \mathcal{L}(\mathbb{R}^p, \mathbb{R}^n)$ tel que $\mathrm{Mat}_{\mathcal{C}_p, \mathcal{C}_p}(f) = A$.

Exemple 24 - Endomorphisme canoniquement associé

Soit $A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 4 & 0 \end{pmatrix}$ et f l'application linéaire canoniquement associée à A. Alors,

$$f(1,0,0) = 1 \cdot (1,0) + (-1) \cdot (0,1) = (1,-1)$$

$$f(0,1,0) = 2 \cdot (1,0) + 4 \cdot (0,1) = (2,4)$$

$$f(0,0,1) = 3 \cdot (1,0) + 0 \cdot (0,1) = (3,0)$$

Ainsi,

$$f(x,y,z) = xf(1,0,0) + yf(0,1,0) + zf(0,0,1)$$

= $(x + 2y + 3z, -x + 4y)$.

Corollaire 7 - Caractérisation des matrices inversibles

Soit $A, B \in \mathcal{M}_n(\mathbb{K})$. Si $AB = I_n$, alors $BA = I_n$.

Exemple 25 - Une autre preuve d'inversibilité

Soit
$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$
 et $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.
Si $AX = 0_{n,1}$, alors

$$\begin{cases} x + 2y + 3z &= 0 \\ -x + z &= 0 \\ 2y + z &= 0 \end{cases} \Leftrightarrow \begin{cases} x + 2y + 3z &= 0 \\ 2y + 4z &= 0 \\ 2y + z &= 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 2y + 3z = 0 \\ 2y + 4z = 0 \\ 3z = 0 \end{cases} \Leftrightarrow X = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Ainsi, en notant f l'endomorphisme canoniquement associé à A, alors pour tout $x \in \mathbb{R}^3$, $f(x) = 0_{\mathbb{R}^3}$. Donc Ker $f = \{0_{\mathbb{R}^3}\}$. L'endomorphisme f est injectif et donc bijectif. Ainsi, A est inversible.

Corollaire 8 - Caractérisation des bases

Soit \mathscr{B} une base de \mathbb{R}^n et (f_1, \ldots, f_n) une famille de vecteurs de \mathbb{R}^n . La famille (f_1, \ldots, f_n) est une base de \mathbb{R}^n si et seulement si $\mathrm{Mat}_{\mathscr{B}}(f_1, \ldots, f_n)$ est inversible.

Exemple 26 - Une base

Soit $\mathscr{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . On pose $v_1 = e_1 - 2e_2 + e_3, v_2 = -e_2 - e_3$ et $v_3 = e_3$ et $\mathscr{B}' = (v_1, v_2, v_3)$.

D'après la définition, $\operatorname{Mat}_{\mathscr{B}}(\mathscr{B}') = \begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$. La matrice

est triangulaire supérieure et ses éléments diagonaux sont non nuls. Ainsi, la matrice est inversible et \mathscr{B}' est une base de \mathbb{R}^3 .

III.3 - Formules de changement de base

Définition 18 - Matrice de passage

Soit \mathscr{B}_1 , \mathscr{B}_2 deux bases de \mathbb{R}^n . La matrice de passage de \mathscr{B}_1 à \mathscr{B}_2 est la matrice $P_{\mathscr{B}_1}^{\mathscr{B}_2} = \operatorname{Mat}_{\mathscr{B}_1}(\mathscr{B}_2) = \operatorname{Mat}_{\mathscr{B}_2,\mathscr{B}_1}(\operatorname{Id}_E)$.

Exemple 27 - Suite de l'exemple précédent

La matrice
$$P_{\mathscr{B}}^{\mathscr{B}'} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$$
.

Proposition 17 - Inversibilité

Soit $P_{\mathscr{B}_1}^{\mathscr{B}_2}$ une matrice de changement de base. Alors, $P_{\mathscr{B}_1}^{\mathscr{B}_2}$ est inversible et $\left(P_{\mathscr{B}_1}^{\mathscr{B}_2}\right)^{-1} = P_{\mathscr{B}_2}^{\mathscr{B}_1}$

Exemple 28 - Suite de l'exemple précédent

En utilisant une des techniques précédentes,

$$\begin{vmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ -2 & -1 & 0 & 0 & 1 & 0 \\ 1 & -1 & 1 & 0 & 0 & 1 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 2 & 1 & 0 & L_{2} \leftarrow L_{2} + 2L_{1} \\ 0 & -1 & 1 & -1 & 0 & 1 & L_{3} \leftarrow L_{3} - L_{1} \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 2 & 1 & 0 \\ 0 & -1 & 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & -3 & -1 & 1 & L_{3} \leftarrow L_{3} - L_{2} \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -2 & -1 & 0 \\ 0 & 0 & 1 & -3 & -1 & 1 & L_{2} \leftarrow L_{2} \end{vmatrix}$$

Ainsi,
$$P_{\mathscr{B}'}^{\mathscr{B}} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & 0 \\ -3 & -1 & 1 \end{pmatrix}$$
.

Proposition 18 - Changement de base d'un vecteur

Soit
$$u \in \mathbb{R}^n$$
 et $\mathscr{B}_1, \mathscr{B}_2$ deux bases de \mathbb{R}^n . Alors, $\operatorname{Mat}_{\mathscr{B}_2}(u) = \left(P_{\mathscr{B}_1}^{\mathscr{B}_2}\right)^{-1} \cdot \operatorname{Mat}_{\mathscr{B}_1}(u)$, i.e. $\operatorname{Mat}_{\mathscr{B}_1}(u) = P_{\mathscr{B}_1}^{\mathscr{B}_2} \cdot \operatorname{Mat}_{\mathscr{B}_2}(u)$.

Remarque. C'est la matrice de passage de l'ancienne base \mathcal{B}_1 à la nouvelle base \mathcal{B}_2 qui est facile à obtenir, mais c'est celle de \mathcal{B}_2 à \mathcal{B}_1 (donc son inverse) qui est utile pour calculer les nouvelles coordonnées du vecteur. On n'échappe donc pas au calcul de l'inverse!

Exemple 29 - Suite de l'exemple précédent

Soit $u = (1, 4, 3) \in \mathbb{R}^3$. Alors,

$$\operatorname{Mat}_{\mathscr{B}'}(u) = P_{\mathscr{B}'}^{\mathscr{B}} \operatorname{Mat}_{\mathscr{B}}(u)$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & 0 \\ -3 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ -6 \\ -4 \end{pmatrix}$$

Ainsi, $u = v_1 - 6v_2 - 4v_3$.

Théorème 9 - Formules de changement de base

Soit \mathcal{B}_1 , \mathcal{B}'_1 deux bases de \mathbb{R}^n , \mathcal{B}_2 , \mathcal{B}'_2 deux bases de \mathbb{R}^p et $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$. Alors,

$$\operatorname{Mat}_{\mathscr{B}'_{1},\mathscr{B}'_{2}}(f) = P^{\mathscr{B}_{2}}_{\mathscr{B}'_{2}} \cdot \operatorname{Mat}_{\mathscr{B}_{1},\mathscr{B}_{2}}(f) \cdot P^{\mathscr{B}'_{1}}_{\mathscr{B}_{1}}.$$

En particulier, lorsque n = p, $\mathcal{B}_1 = \mathcal{B}_2$, $\mathcal{B}'_1 = \mathcal{B}'_2$,

$$\operatorname{Mat}_{\mathscr{B}'_1}(f) = \left(P_{\mathscr{B}_1}^{\mathscr{B}'_1}\right)^{-1} \operatorname{Mat}_{\mathscr{B}_1}(f) P_{\mathscr{B}_1}^{\mathscr{B}'_1}.$$

Remarque. Certains, comme moyen mnémotechnique, pourront voir dans la dernière formule une sorte de relation de Chasles.

Exemple 30 - Suite de l'exemple précédent

On pose $A=\begin{pmatrix} -1 & -1 & 0 \\ 3 & 2 & -1 \\ -1 & 0 & 2 \end{pmatrix}$ et f l'endomorphisme canonique-

ment associé à A. Alors,

$$\operatorname{Mat}_{\mathscr{B}'}(f) = \left(P_{\mathscr{B}}^{\mathscr{B}'}\right)^{-1} \operatorname{Mat}_{\mathscr{B}}(f) P_{\mathscr{B}}^{\mathscr{B}'}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & 0 \\ -3 & -1 & 1 \end{pmatrix} \begin{pmatrix} -1 & -1 & 0 \\ 3 & 2 & -1 \\ -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

On remarque alors qu'on peut écrire $A = PCP^{-1}$, soit $A^n = PC^nP^{-1}$. De plus, la matrice C^n est aisée à calculer à l'aide de la formule du binôme de Newton.

III.4 - Rang des matrices

Définition 19 - Noyau, Image & Rang d'une matrice

Soit $M \in \mathscr{M}_{n,p}(\mathbb{K})$.

- (i). L'image de M est le sous-espace vectoriel de $\mathcal{M}_{n,1}(\mathbb{K})$ engendré par ses vecteurs colonnes.
- (ii). Le rang de M, noté Rg M, est le rang des vecteurs colonnes de M.
- (iii). Le noyau de M est le sous-espace de $\mathcal{M}_{p,1}(\mathbb{K})$ engendré par les vecteurs X tels que $MX = 0_{\mathcal{M}_{p,1}(\mathbb{K})}$.

Proposition 19 - Rang des matrices & Applications linéaires

Soit \mathscr{B}_1 (resp. \mathscr{B}_2) une base de \mathbb{R}^n (resp. \mathbb{R}^p) et $f \in \mathscr{L}(\mathbb{R}^n, \mathbb{R}^p)$. Alors, $\operatorname{Rg} f = \operatorname{Rg} \operatorname{Mat}_{\mathscr{B}_1, \mathscr{B}_2}(f)$.

Proposition 20 - Rang et Inversibilité

Soit $A \in \mathcal{M}_n(\mathbb{K})$. La matrice A est inversible si et seulement si $\operatorname{Rg} A = n$.

Exemple 31 - Calcul de rang

Soit $A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 4 & 2 \\ 2 & -3 & 0 \end{pmatrix}$. En utilisant l'algorithme du pivot de

Gauss,

$$Rg(A) = Rg \begin{pmatrix} 3 & 1 & 2 \\ 0 & 11 & 4 \\ 0 & 11 & 4 \end{pmatrix} \qquad {}^{L_2 \leftarrow 3L_2 - L_1}_{L_3 \leftarrow 2L_1 - 3L_3}$$
$$= Rg \begin{pmatrix} 3 & 1 & 2 \\ 0 & 11 & 4 \\ 0 & 0 & 0 \end{pmatrix} \qquad {}^{L_3 \leftarrow L_3 - L_2}$$

La famille ainsi obtenue est échelonnée donc Rg(A) = 2.