# NASA/TM-20220005643/Revision 1



# Experimental Investigation of Distributed Sand-Grain Roughness Effects on Transition Onset and Turbulent Heating Augmentation at Mach 6

Brian R. Hollis Langley Research Center, Hampton, Virginia

Kevin E. Hollingsworth Jacobs Technology, Inc., Hampton, Virginia

### NASA STI Program Report Series

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA scientific and technical information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NTRS Registered and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA Programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM.
   Scientific and technical findings that are preliminary or of specialized interest,
   e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION.
   Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION.
   English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include organizing and publishing research results, distributing specialized research announcements and feeds, providing information desk and personal search support, and enabling data exchange services.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov
- Help desk contact information:

https://www.sti.nasa.gov/sti-contact-form/ and select the "General" help request type.

# NASA/TM-20220005643/Revision 1



# Experimental Investigation of Distributed Sand-Grain Roughness Effects on Transition Onset and Turbulent Heating Augmentation at Mach 6

Brian R. Hollis Langley Research Center, Hampton, Virginia

Kevin E. Hollingsworth Jacobs Technology, Inc., Hampton, Virginia

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23681-2199

| The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an official endorsement, either expressed or implied, of such products or manufacturers by the |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| constitute an official endorsement, either expressed or implied, of such products or manufacturers by the                                                                                                       |
| constitute an official endorsement, either expressed or implied, of such products or manufacturers by the                                                                                                       |
| constitute an official endorsement, either expressed or implied, of such products or manufacturers by the                                                                                                       |
| constitute an official endorsement, either expressed or implied, of such products or manufacturers by the                                                                                                       |
| constitute an official endorsement, either expressed or implied, of such products or manufacturers by the                                                                                                       |
| constitute an official endorsement, either expressed or implied, of such products or manufacturers by the                                                                                                       |
| constitute an official endorsement, either expressed or implied, of such products or manufacturers by the                                                                                                       |
| constitute an official endorsement, either expressed or implied, of such products or manufacturers by the                                                                                                       |
| constitute an official endorsement, either expressed or implied, of such products or manufacturers by the                                                                                                       |
| constitute an official endorsement, either expressed or implied, of such products or manufacturers by the                                                                                                       |
| constitute an official endorsement, either expressed or implied, of such products or manufacturers by the                                                                                                       |
| constitute an official endorsement, either expressed or implied, of such products or manufacturers by the                                                                                                       |
| constitute an official endorsement, either expressed or implied, of such products or manufacturers by the                                                                                                       |
| constitute an official endorsement, either expressed or implied, of such products or manufacturers by the                                                                                                       |
| constitute an official endorsement, either expressed or implied, of such products or manufacturers by the                                                                                                       |
| constitute an official endorsement, either expressed or implied, of such products or manufacturers by the                                                                                                       |
| constitute an official endorsement, either expressed or implied, of such products or manufacturers by the                                                                                                       |
| constitute an official endorsement, either expressed or implied, of such products or manufacturers by the                                                                                                       |
| constitute an official endorsement, either expressed or implied, of such products or manufacturers by the                                                                                                       |
| constitute an official endorsement, either expressed or implied, of such products or manufacturers by the                                                                                                       |
| National Aeronautics and Space Administration.                                                                                                                                                                  |
| Autonal Meronautico and Space Manningaration.                                                                                                                                                                   |
|                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                 |

NASA STI Program / Mail Stop 148 NASA Langley Research Center Hampton, VA 23681-2199 Fax: 757-864-6500

Available from:

# **Table of Contents**

| Table of Contents                                        | i   |
|----------------------------------------------------------|-----|
| List of Tables                                           |     |
| Abstract                                                 | 1   |
| Nomenclature                                             | 2   |
| Symbols                                                  | 2   |
| Subscripts and Superscripts                              | 3   |
| Acronyms                                                 | 3   |
| Introduction                                             | 3   |
| Background                                               | 3   |
| Experimental Tools and Methods                           | 4   |
| Wind Tunnel Models                                       | 4   |
| Model Geometries                                         | 4   |
| Model Fabrication                                        | 4   |
| Roughness Height Characterization                        | 5   |
| Surface roughness scan data acquisition and processing   | 5   |
| Statistical Analysis of Roughness Data                   |     |
| Wind Tunnel Test Facility                                | 8   |
| Facility Description                                     | 8   |
| Facility Operating Conditions                            | 9   |
| Experimental Data                                        | 9   |
| Data Acquisition and Reduction                           | 9   |
| Data Mapping and Presentation                            | 9   |
| Phosphor Thermography Data Quality                       |     |
| Heat Transfer Data Uncertainty                           |     |
| Calibration Correction for Heat Transfer Data            |     |
| Computational Tools and Methods                          | 12  |
| Experimental Data Analysis                               | 13  |
| Transition Onset Location Definition                     |     |
| Reynolds Number Effects on Heating and Transition        |     |
| Roughness Height Effects on Heating and Transition       |     |
| General Reynolds Number and Roughness Height Trends      |     |
| Roughness Heating Augmentation                           |     |
| Transition Onset Data and Correlation                    |     |
| Summary                                                  |     |
| Acknowledgements                                         |     |
| References                                               |     |
| Appendix A. Sphere-Cone Geometry Global Heating Images   |     |
| Appendix B. Spherical-Cap Geometry Global Heating Images | 138 |

# **List of Tables**

| Table 1. Model geometry parameters.20Table 2. ASTM mesh parameters.20Table 3. Roughness data from sample plate scans.20Table 4. Model roughness information.20Table 5. Nominal 20-Inch Mach 6 Air Tunnel Conditions.21Table 6. 20-Inch Mach 6 Air Tunnel Test 7036 run matrix.22Table 7. 20-Inch Mach 6 Air Tunnel Test 7057 run matrix.23Table 8. Test 7036 sphere-cone 10-mesh transition locations.24Table 9. Test 7036 sphere-cone 20-mesh transition locations.25Table 10. Test 7036 sphere-cone 40-mesh transition locations.26Table 11. Test 7036 sphere-cone 80-mesh transition locations.27Table 12. Test 7036 sphere-cone 140-mesh transition locations.28Table 13. Test 7036 sphere-cone 230-mesh transition locations.29Table 14. Test 7036 sphere-cone smooth-OML transition locations.30Table 15. Test 7057 spherical-cap 10-mesh transition locations.31Table 16. Test 7057 spherical-cap 40-mesh transition locations.32Table 17. Test 7057 spherical-cap 40-mesh transition locations.33Table 18. Test 7057 spherical-cap 80-mesh transition locations.34Table 19. Test 7057 spherical-cap 80-mesh transition locations.35Table 20. Test 7057 spherical-cap 230-mesh transition locations.36Table 21. Test 7057 spherical-cap 230-mesh transition locations.36Table 21. Test 7057 spherical-cap smooth-OML transition locations.36Table 21. Test 7057 spherical-cap smooth-OML transition locations.37 | Table 1. Model geometry parameters                                | 20 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----|
| Table 3. Roughness data from sample plate scans.20Table 4. Model roughness information.20Table 5. Nominal 20-Inch Mach 6 Air Tunnel Conditions.21Table 6. 20-Inch Mach 6 Air Tunnel Test 7036 run matrix.22Table 7. 20-Inch Mach 6 Air Tunnel Test 7057 run matrix.23Table 8. Test 7036 sphere-cone 10-mesh transition locations.24Table 9. Test 7036 sphere-cone 20-mesh transition locations.25Table 10. Test 7036 sphere-cone 40-mesh transition locations.26Table 11. Test 7036 sphere-cone 80-mesh transition locations.27Table 12. Test 7036 sphere-cone 140-mesh transition locations.28Table 13. Test 7036 sphere-cone 230-mesh transition locations.28Table 14. Test 7036 sphere-cone smooth-OML transition locations.29Table 15. Test 7057 spherical-cap 10-mesh transition locations.30Table 15. Test 7057 spherical-cap 20-mesh transition locations.31Table 16. Test 7057 spherical-cap 40-mesh transition locations.32Table 17. Test 7057 spherical-cap 40-mesh transition locations.33Table 18. Test 7057 spherical-cap 80-mesh transition locations.34Table 19. Test 7057 spherical-cap 140-mesh transition locations.35Table 20. Test 7057 spherical-cap 230-mesh transition locations.35Table 20. Test 7057 spherical-cap 230-mesh transition locations.36                                                                                                                                            | Table 2. ASTM mesh parameters.                                    | 20 |
| Table 5. Nominal 20-Inch Mach 6 Air Tunnel Conditions.       21         Table 6. 20-Inch Mach 6 Air Tunnel Test 7036 run matrix.       22         Table 7. 20-Inch Mach 6 Air Tunnel Test 7057 run matrix.       23         Table 8. Test 7036 sphere-cone 10-mesh transition locations.       24         Table 9. Test 7036 sphere-cone 20-mesh transition locations.       25         Table 10. Test 7036 sphere-cone 40-mesh transition locations.       26         Table 11. Test 7036 sphere-cone 80-mesh transition locations.       27         Table 12. Test 7036 sphere-cone 140-mesh transition locations.       28         Table 13. Test 7036 sphere-cone 230-mesh transition locations.       29         Table 14. Test 7036 sphere-cone smooth-OML transition locations.       30         Table 15. Test 7057 spherical-cap 10-mesh transition locations.       31         Table 16. Test 7057 spherical-cap 20-mesh transition locations.       32         Table 17. Test 7057 spherical-cap 40-mesh transition locations.       33         Table 18. Test 7057 spherical-cap 80-mesh transition locations.       34         Table 19. Test 7057 spherical-cap 140-mesh transition locations.       35         Table 20. Test 7057 spherical-cap 230-mesh transition locations.       36                                                                                                                 | Table 3. Roughness data from sample plate scans                   | 20 |
| Table 6. 20-Inch Mach 6 Air Tunnel Test 7036 run matrix       22         Table 7. 20-Inch Mach 6 Air Tunnel Test 7057 run matrix       23         Table 8. Test 7036 sphere-cone 10-mesh transition locations       24         Table 9. Test 7036 sphere-cone 20-mesh transition locations       25         Table 10. Test 7036 sphere-cone 40-mesh transition locations       26         Table 11. Test 7036 sphere-cone 80-mesh transition locations       27         Table 12. Test 7036 sphere-cone 140-mesh transition locations       28         Table 13. Test 7036 sphere-cone 230-mesh transition locations       29         Table 14. Test 7036 sphere-cone smooth-OML transition locations       30         Table 15. Test 7057 spherical-cap 10-mesh transition locations       31         Table 16. Test 7057 spherical-cap 20-mesh transition locations       32         Table 17. Test 7057 spherical-cap 40-mesh transition locations       33         Table 18. Test 7057 spherical-cap 80-mesh transition locations       34         Table 19. Test 7057 spherical-cap 140-mesh transition locations       35         Table 20. Test 7057 spherical-cap 230-mesh transition locations       36                                                                                                                                                                                                        | Table 4. Model roughness information.                             | 20 |
| Table 7. 20-Inch Mach 6 Air Tunnel Test 7057 run matrix.       23         Table 8. Test 7036 sphere-cone 10-mesh transition locations.       24         Table 9. Test 7036 sphere-cone 20-mesh transition locations.       25         Table 10. Test 7036 sphere-cone 40-mesh transition locations.       26         Table 11. Test 7036 sphere-cone 80-mesh transition locations.       27         Table 12. Test 7036 sphere-cone 140-mesh transition locations.       28         Table 13. Test 7036 sphere-cone 230-mesh transition locations.       29         Table 14. Test 7036 sphere-cone smooth-OML transition locations.       30         Table 15. Test 7057 spherical-cap 10-mesh transition locations.       31         Table 16. Test 7057 spherical-cap 20-mesh transition locations.       32         Table 17. Test 7057 spherical-cap 40-mesh transition locations.       33         Table 18. Test 7057 spherical-cap 80-mesh transition locations.       34         Table 19. Test 7057 spherical-cap 140-mesh transition locations.       35         Table 20. Test 7057 spherical-cap 230-mesh transition locations.       36          Table 20. Test 7057 spherical-cap 230-mesh transition locations.       36                                                                                                                                                                                | Table 5. Nominal 20-Inch Mach 6 Air Tunnel Conditions             | 21 |
| Table 8. Test 7036 sphere-cone 10-mesh transition locations.24Table 9. Test 7036 sphere-cone 20-mesh transition locations.25Table 10. Test 7036 sphere-cone 40-mesh transition locations.26Table 11. Test 7036 sphere-cone 80-mesh transition locations.27Table 12. Test 7036 sphere-cone 140-mesh transition locations.28Table 13. Test 7036 sphere-cone 230-mesh transition locations.29Table 14. Test 7036 sphere-cone smooth-OML transition locations.30Table 15. Test 7057 spherical-cap 10-mesh transition locations.31Table 16. Test 7057 spherical-cap 20-mesh transition locations.32Table 17. Test 7057 spherical-cap 40-mesh transition locations.33Table 18. Test 7057 spherical-cap 80-mesh transition locations.34Table 19. Test 7057 spherical-cap 140-mesh transition locations.35Table 20. Test 7057 spherical-cap 230-mesh transition locations.35Table 20. Test 7057 spherical-cap 230-mesh transition locations.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Table 6. 20-Inch Mach 6 Air Tunnel Test 7036 run matrix           | 22 |
| Table 9. Test 7036 sphere-cone 20-mesh transition locations25Table 10. Test 7036 sphere-cone 40-mesh transition locations26Table 11. Test 7036 sphere-cone 80-mesh transition locations27Table 12. Test 7036 sphere-cone 140-mesh transition locations28Table 13. Test 7036 sphere-cone 230-mesh transition locations29Table 14. Test 7036 sphere-cone smooth-OML transition locations30Table 15. Test 7057 spherical-cap 10-mesh transition locations31Table 16. Test 7057 spherical-cap 20-mesh transition locations32Table 17. Test 7057 spherical-cap 40-mesh transition locations33Table 18. Test 7057 spherical-cap 80-mesh transition locations34Table 19. Test 7057 spherical-cap 140-mesh transition locations35Table 20. Test 7057 spherical-cap 230-mesh transition locations35Table 20. Test 7057 spherical-cap 230-mesh transition locations36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |    |
| Table 10. Test 7036 sphere-cone 40-mesh transition locations.26Table 11. Test 7036 sphere-cone 80-mesh transition locations.27Table 12. Test 7036 sphere-cone 140-mesh transition locations.28Table 13. Test 7036 sphere-cone 230-mesh transition locations.29Table 14. Test 7036 sphere-cone smooth-OML transition locations.30Table 15. Test 7057 spherical-cap 10-mesh transition locations.31Table 16. Test 7057 spherical-cap 20-mesh transition locations.32Table 17. Test 7057 spherical-cap 40-mesh transition locations.33Table 18. Test 7057 spherical-cap 80-mesh transition locations.34Table 19. Test 7057 spherical-cap 140-mesh transition locations.35Table 20. Test 7057 spherical-cap 230-mesh transition locations.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Table 8. Test 7036 sphere-cone 10-mesh transition locations       | 24 |
| Table 11. Test 7036 sphere-cone 80-mesh transition locations.27Table 12. Test 7036 sphere-cone 140-mesh transition locations.28Table 13. Test 7036 sphere-cone 230-mesh transition locations.29Table 14. Test 7036 sphere-cone smooth-OML transition locations.30Table 15. Test 7057 spherical-cap 10-mesh transition locations.31Table 16. Test 7057 spherical-cap 20-mesh transition locations.32Table 17. Test 7057 spherical-cap 40-mesh transition locations.33Table 18. Test 7057 spherical-cap 80-mesh transition locations.34Table 19. Test 7057 spherical-cap 140-mesh transition locations.35Table 20. Test 7057 spherical-cap 230-mesh transition locations.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Table 9. Test 7036 sphere-cone 20-mesh transition locations       | 25 |
| Table 12. Test 7036 sphere-cone 140-mesh transition locations.28Table 13. Test 7036 sphere-cone 230-mesh transition locations.29Table 14. Test 7036 sphere-cone smooth-OML transition locations.30Table 15. Test 7057 spherical-cap 10-mesh transition locations.31Table 16. Test 7057 spherical-cap 20-mesh transition locations.32Table 17. Test 7057 spherical-cap 40-mesh transition locations.33Table 18. Test 7057 spherical-cap 80-mesh transition locations.34Table 19. Test 7057 spherical-cap 140-mesh transition locations.35Table 20. Test 7057 spherical-cap 230-mesh transition locations.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                   |    |
| Table 13. Test 7036 sphere-cone 230-mesh transition locations.29Table 14. Test 7036 sphere-cone smooth-OML transition locations.30Table 15. Test 7057 spherical-cap 10-mesh transition locations.31Table 16. Test 7057 spherical-cap 20-mesh transition locations.32Table 17. Test 7057 spherical-cap 40-mesh transition locations.33Table 18. Test 7057 spherical-cap 80-mesh transition locations.34Table 19. Test 7057 spherical-cap 140-mesh transition locations.35Table 20. Test 7057 spherical-cap 230-mesh transition locations.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Table 11. Test 7036 sphere-cone 80-mesh transition locations      | 27 |
| Table 14. Test 7036 sphere-cone smooth-OML transition locations.30Table 15. Test 7057 spherical-cap 10-mesh transition locations.31Table 16. Test 7057 spherical-cap 20-mesh transition locations.32Table 17. Test 7057 spherical-cap 40-mesh transition locations.33Table 18. Test 7057 spherical-cap 80-mesh transition locations.34Table 19. Test 7057 spherical-cap 140-mesh transition locations.35Table 20. Test 7057 spherical-cap 230-mesh transition locations.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Table 12. Test 7036 sphere-cone 140-mesh transition locations     | 28 |
| Table 15. Test 7057 spherical-cap 10-mesh transition locations.31Table 16. Test 7057 spherical-cap 20-mesh transition locations.32Table 17. Test 7057 spherical-cap 40-mesh transition locations.33Table 18. Test 7057 spherical-cap 80-mesh transition locations.34Table 19. Test 7057 spherical-cap 140-mesh transition locations.35Table 20. Test 7057 spherical-cap 230-mesh transition locations.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Table 13. Test 7036 sphere-cone 230-mesh transition locations     | 29 |
| Table 16. Test 7057 spherical-cap 20-mesh transition locations.32Table 17. Test 7057 spherical-cap 40-mesh transition locations.33Table 18. Test 7057 spherical-cap 80-mesh transition locations.34Table 19. Test 7057 spherical-cap 140-mesh transition locations.35Table 20. Test 7057 spherical-cap 230-mesh transition locations.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Table 14. Test 7036 sphere-cone smooth-OML transition locations   | 30 |
| Table 17. Test 7057 spherical-cap 40-mesh transition locations.33Table 18. Test 7057 spherical-cap 80-mesh transition locations.34Table 19. Test 7057 spherical-cap 140-mesh transition locations.35Table 20. Test 7057 spherical-cap 230-mesh transition locations.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Table 15. Test 7057 spherical-cap 10-mesh transition locations    | 31 |
| Table 17. Test 7057 spherical-cap 40-mesh transition locations.33Table 18. Test 7057 spherical-cap 80-mesh transition locations.34Table 19. Test 7057 spherical-cap 140-mesh transition locations.35Table 20. Test 7057 spherical-cap 230-mesh transition locations.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Table 16. Test 7057 spherical-cap 20-mesh transition locations    | 32 |
| Table 19. Test 7057 spherical-cap 140-mesh transition locations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                   |    |
| Table 20. Test 7057 spherical-cap 230-mesh transition locations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Table 18. Test 7057 spherical-cap 80-mesh transition locations    | 34 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Table 19. Test 7057 spherical-cap 140-mesh transition locations.  | 35 |
| Table 21. Test 7057 spherical-cap smooth-OML transition locations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Table 20. Test 7057 spherical-cap 230-mesh transition locations.  | 36 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Table 21. Test 7057 spherical-cap smooth-OML transition locations | 37 |

# **List of Figures**

| Figure 1. Discrete surface roughness types                                                        |    |
|---------------------------------------------------------------------------------------------------|----|
| Figure 3. Sphere-cone geometry.                                                                   |    |
| Figure 4. Spherical-cap geometry.                                                                 |    |
| Figure 5. Sphere-cone model photographs                                                           |    |
| Figure 6. Spherical-cap model photographs                                                         |    |
|                                                                                                   |    |
| Figure 7. Illustration of ideal and actual surface roughness.                                     |    |
| Figure 8. 10-Mesh sample plate scan data.                                                         |    |
| Figure 9. 20-Mesh sample plate scan data.                                                         |    |
| Figure 10. 40-Mesh sample plate scan data.                                                        |    |
| Figure 11. 80-Mesh sample plate scan data.                                                        |    |
| Figure 12. 140-Mesh sample plate scan data.                                                       |    |
| Figure 13. 230-Mesh sample plate scan data.                                                       |    |
| Figure 14. Profile alignment with roughness elements                                              |    |
| Figure 15. Roughness height probability of exceedance distributions.                              |    |
| Figure 16. Normalized exceedance distributions.                                                   |    |
| Figure 17. Comparison of effective and nominal roughness heights                                  |    |
| Figure 18. Relationship between effective roughness heights and measured RMS heights              |    |
| Figure 19. Schematic of Langley Research Center 20-Inch Mach 6 Air Tunnel.                        |    |
| Figure 20. Langley Research Center 20-Inch Mach 6 Air Tunnel test section                         |    |
| Figure 21. Sample phosphor thermography 2-D image data.                                           |    |
| Figure 22. Sample 3-D mapping of phosphor thermography data                                       |    |
| Figure 23. Streamlines for data extraction on sphere-cone geometry.                               |    |
| Figure 24. Streamlines for data extraction on spherical-cap geometry.                             |    |
| Figure 25. Illustration of camera field-of-view for hemisphere model in 20-Inch Mach 6 Air Tunnel |    |
| Figure 26. CFD predictions for hemisphere heating at wind tunnel conditions.                      |    |
| Figure 27. Measured stagnation point heating for pretest calibrations for Test 7036.              |    |
| Figure 28. Measured stagnation point heating for pretest calibrations for Test 7057.              |    |
| Figure 29. Centerline profiles of roughness effects on $k/\delta$ , sphere-cone geometry          |    |
| Figure 30. Centerline profiles of roughness effects on k/δ, spherical-cap geometry                | 58 |
| Figure 31. Centerline profiles of roughness effects on Rek+, sphere-cone geometry.                | 59 |
| Figure 32. Centerline profiles of roughness effects on Rek+, spherical-cap geometry               | 60 |
| Figure 33. Tangent-slope-intercept method for determination of effect transition onset location   | 61 |
| Figure 34. Comparison of irregular transition wedges vs. mean transition front.                   | 61 |
| Figure 35. Reynolds Number effects, sphere-cone geometry, smooth model images                     | 62 |
| Figure 36. Reynolds number effects, sphere-cone geometry, smooth model plots.                     | 63 |
| Figure 37. Reynolds Number effects, sphere-cone geometry, 230-mesh model images                   | 64 |
| Figure 38. Reynolds Number effects, sphere-cone geometry, 230-mesh model plots.                   | 65 |
| Figure 39. Reynolds Number effects, sphere-cone geometry, 140-mesh model images                   | 66 |
| Figure 40. Reynolds Number effects, sphere-cone geometry, 140-mesh model plots.                   | 67 |
| Figure 41. Reynolds Number effects, sphere-cone geometry, 80-mesh model images                    |    |
| Figure 42. Reynolds Number effects, sphere-cone geometry, 80-mesh model plots.                    | 69 |
| Figure 43. Reynolds Number effects, sphere-cone geometry, 40-mesh model images                    |    |
| Figure 44. Reynolds Number effects, sphere-cone geometry, 40-mesh model plots.                    |    |
| Figure 45. Reynolds Number effects, sphere-cone geometry, 20-mesh model images                    |    |
| Figure 46. Reynolds Number effects, sphere-cone geometry, 20-mesh model plots.                    |    |
| Figure 47. Reynolds Number effects, sphere-cone geometry, 10-mesh model images                    |    |
| Figure 48. Reynolds Number effects, sphere-cone geometry, 10-mesh model plots.                    |    |
| Figure 49. Reynolds Number effects, spherical-cap geometry, smooth model images                   |    |
| Figure 50. Reynolds number effects, spherical-cap geometry, smooth model plots.                   |    |
| Figure 51. Reynolds Number effects, spherical-cap geometry, 230-mesh model images                 |    |
| Figure 52. Reynolds Number effects, spherical-cap geometry, 230-mesh model plots.                 |    |
| Figure 53. Reynolds Number effects, spherical-cap geometry, 140-mesh model images                 |    |

| Figure 54. Reynolds Number effects, spherical-cap geometry, 140-mesh model plots.                             |     |
|---------------------------------------------------------------------------------------------------------------|-----|
| Figure 55. Reynolds Number effects, spherical-cap geometry, 80-mesh model images                              | 82  |
| Figure 56. Reynolds Number effects, spherical-cap geometry, 80-mesh model plots.                              | 83  |
| Figure 57. Reynolds Number effects, spherical-cap geometry, 40-mesh model images                              | 84  |
| Figure 58. Reynolds Number effects, spherical-cap geometry, 40-mesh model plots.                              | 85  |
| Figure 59. Reynolds Number effects, spherical-cap geometry, 20-mesh model images                              |     |
| Figure 60. Reynolds Number effects, spherical-cap geometry, 20-mesh model plots.                              |     |
| Figure 61. Reynolds Number effects, spherical-cap geometry, 10-mesh model images                              |     |
| Figure 62. Reynolds Number effects, spherical-cap geometry, 10-mesh model plots.                              | 89  |
| Figure 63. Roughness height effects, sphere-cone geometry, $Re_{\infty} = 2.1 \times 10^6$ /ft images         | 90  |
| Figure 64. Roughness height effects, sphere-cone geometry, $Re_{\infty} = 2.1 \times 10^6/ft$ plots           |     |
| Figure 65. Roughness height effects, sphere-cone geometry, $Re_{\infty} = 3.0 \times 10^6/ft$ images          |     |
| Figure 66. Roughness height effects, sphere-cone geometry, $Re_{\infty} = 3.0 \times 10^6 / ft$ plots         |     |
| Figure 67. Roughness height effects, sphere-cone geometry, $Re_{\infty} = 5.0 \times 10^6 / ft$ images        |     |
| Figure 68. Roughness height effects, sphere-cone geometry, $Re_{\infty} = 5.0 \times 10^6/ft$ plots           | 95  |
| Figure 69. Roughness height effects, sphere-cone geometry, $Re_{\infty} = 6.5 \times 10^6$ /ft images         | 96  |
| Figure 70. Roughness height effects, sphere-cone geometry, $Re_{\infty} = 6.5 \times 10^6 / \text{ft plots.}$ |     |
| Figure 71. Roughness height effects, sphere-cone geometry, $Re_{\infty} = 7.2 \times 10^6$ /ft images         | 98  |
| Figure 72. Roughness height effects, sphere-cone geometry, $Re_{\infty} = 7.2 \times 10^6 / \text{ft plots.}$ | 99  |
| Figure 73. Roughness height effects, sphere-cone geometry, $Re_{\infty} = 8.1 \times 10^6/ft$ images          | 100 |
| Figure 74. Roughness height effects, sphere-cone geometry, $Re_{\infty} = 8.1 \times 10^6/ft$ plots           | 101 |
| Figure 75. Roughness height effects, spherical-cap geometry, $Re_{\infty} = 2.1 \times 10^6$ /ft images       | 102 |
| Figure 76. Roughness height effects, spherical-cap geometry, $Re_{\infty} = 2.1 \times 10^6$ /ft plots        | 103 |
| Figure 77. Roughness height effects, spherical-cap geometry, $Re_{\infty} = 3.0 \times 10^6$ /ft images       |     |
| Figure 78. Roughness height effects, spherical-cap geometry, $Re_{\infty} = 3.0 \times 10^6$ /ft plots        | 105 |
| Figure 79. Roughness height effects, spherical-cap geometry, $Re_{\infty} = 5.0 \times 10^6$ /ft images       | 106 |
| Figure 80. Roughness height effects, spherical-cap geometry, $Re_{\infty} = 5.0 \times 10^6$ /ft plots        | 107 |
| Figure 81. Roughness height effects, spherical-cap geometry, $Re_{\infty} = 6.5 \times 10^6$ /ft images       |     |
| Figure 82. Roughness height effects, spherical-cap geometry, $Re_{\infty} = 6.5 \times 10^6$ /ft plots        |     |
| Figure 83. Roughness height effects, spherical-cap geometry, $Re_{\infty} = 7.2 \times 10^6/ft$ images        |     |
| Figure 84. Roughness height effects, spherical-cap geometry, $Re_{\infty} = 7.2 \times 10^6$ /ft plots        |     |
| Figure 85. Roughness height effects, spherical-cap geometry, $Re_{\infty} = 8.1 \times 10^6/ft$ images        |     |
| Figure 86. Roughness height effects, spherical-cap geometry, $Re_{\infty} = 8.1 \times 10^6$ /ft plots        |     |
| Figure 87. Roughness transition correlation applied to prior datasets.                                        |     |
| Figure 88. Roughness transition correlation applied to current datasets.                                      |     |
| Figure 89. Post-flight recovery picture of Orion EFT-1 heatshield                                             |     |
| Figure 90. Test 7036, Run 50, $Re_{\infty} = 2.1 \times 10^6 / \text{ft}$ , sphere-cone, smooth OML           |     |
| Figure 91. Test 7036, Run 51, $Re_{\infty} = 3.0 \times 10^6 / \text{ft}$ , sphere-cone, smooth OML           |     |
| Figure 92. Test 7036, Run 52, $Re_{\infty} = 5.0 \times 10^6 / \text{ft}$ , sphere-cone, smooth OML           |     |
| Figure 93. Test 7036, Run 53, $Re_{\infty} = 6.5 \times 10^6 / \text{ft}$ , sphere-cone, smooth OML           |     |
| Figure 94. Test 7036, Run 54, $Re_{\infty} = 7.2 \times 10^6 / \text{ft}$ , sphere-cone, smooth OML.          |     |
| Figure 95. Test 7036, Run 55, $Re_{\infty} = 8.1 \times 10^6$ /ft, sphere-cone, smooth OML                    |     |
| Figure 96. Test 7036, Run 74, $Re_{\infty} = 2.1 \times 10^6 / \text{ft}$ , sphere-cone, 230-mesh             |     |
| Figure 97. Test 7036, Run 75, $Re_{\infty} = 3.0 \times 10^6$ /ft, sphere-cone, 230-mesh                      |     |
| Figure 98. Test 7036, Run 76, $Re_{\infty} = 5.0 \times 10^6$ /ft, sphere-cone, 230-mesh                      |     |
| Figure 99. Test 7036, Run 77, $Re_{\infty} = 6.5 \times 10^6$ /ft, sphere-cone, 230-mesh                      |     |
| Figure 100. Test 7036, Run 78, $Re_{\infty} = 7.2 \times 10^6 / \text{ft}$ , sphere-cone, 230-mesh            |     |
| Figure 101. Test 7036, Run 79, $Re_{\infty} = 8.1 \times 10^6 / \text{ft}$ , sphere-cone, 230-mesh            |     |
| Figure 102. Test 7036, Run 80, $Re_{\infty} = 2.1 \times 10^6 / \text{ft}$ , sphere-cone, 140-mesh            |     |
| Figure 103. Test 7036, Run 81, $Re_{\infty} = 3.0 \times 10^6 / \text{ft}$ , sphere-cone, 140-mesh            |     |
| Figure 104. Test 7036, Run 82, $Re_{\infty} = 5.0 \times 10^6 / \text{ft}$ , sphere-cone, 140-mesh.           |     |
| Figure 105. Test 7036, Run 83, $Re_{\infty} = 6.5 \times 10^6 / \text{ft}$ , sphere-cone, 140-mesh            |     |
| Figure 106. Test 7036, Run 84, $Re_{\infty} = 7.2 \times 10^6 / \text{ft}$ , sphere-cone, 140-mesh            |     |
| Figure 107. Test 7036, Run 85, $Re_{\infty} = 8.1 \times 10^6 / \text{ft}$ , sphere-cone, 140-mesh.           |     |
| Figure 108. Test 7036, Run 87, $Re_{\infty} = 2.1 \times 10^6 / \text{ft}$ , sphere-cone, 80-mesh             | 126 |
| Figure 109. Test 7036, Run 88, $Re_{\infty} = 3.0 \times 10^6$ /ft, sphere-cone, 80-mesh                      | 126 |

| Figure 110. Test 7036, Run 89, $Re_{\infty} = 5.0 \times 10^6 / ft$ , sphere-cone, 80-mesh             | 127 |
|--------------------------------------------------------------------------------------------------------|-----|
| Figure 111. Test 7036, Run 90, $Re_{\infty} = 6.5 \times 10^6 / \text{ft}$ , sphere-cone, 80-mesh      |     |
| Figure 112. Test 7036, Run 91, $Re_{\infty} = 7.2 \times 10^6 / ft$ , sphere-cone, 80-mesh             | 128 |
| Figure 113. Test 7036, Run 92, $Re_{\infty} = 8.1 \times 10^6$ /ft, sphere-cone, 80-mesh               | 128 |
| Figure 114. Test 7036, Run 93, $Re_{\infty} = 2.1 \times 10^6$ /ft, sphere-cone, 40-mesh               | 129 |
| Figure 115. Test 7036, Run 94, $Re_{\infty} = 3.0 \times 10^6$ /ft, sphere-cone, 40-mesh               | 129 |
| Figure 116. Test 7036, Run 95, $Re_{\infty} = 5.0 \times 10^6 / ft$ , sphere-cone, 40-mesh             | 130 |
| Figure 117. Test 7036, Run 96, $Re_{\infty} = 6.5 \times 10^6 / ft$ , sphere-cone, 40-mesh             | 130 |
| Figure 118. Test 7036, Run 97, $Re_{\infty} = 7.2 \times 10^6 / ft$ , sphere-cone, 40-mesh             |     |
| Figure 119. Test 7036, Run 98, $Re_{\infty} = 8.1 \times 10^6 / ft$ , sphere-cone, 40-mesh             | 131 |
| Figure 120. Test 7036, Run 99, $Re_{\infty} = 2.1 \times 10^6 / ft$ , sphere-cone, 20-mesh             |     |
| Figure 121. Test 7036, Run 100, $Re_{\infty} = 3.0 \times 10^6 / \text{ft}$ , sphere-cone, 20-mesh.    |     |
| Figure 122. Test 7036, Run 101, $Re_{\infty} = 5.0 \times 10^6 / \text{ft}$ , sphere-cone, 20-mesh.    |     |
| Figure 123. Test 7036, Run 102, $Re_{\infty} = 6.5 \times 10^6 / \text{ft}$ , sphere-cone, 20-mesh.    |     |
| Figure 124. Test 7036, Run 103, $Re_{\infty} = 7.2 \times 10^6 / \text{ft}$ , sphere-cone, 20-mesh.    |     |
| Figure 125. Test 7036, Run 104, $Re_{\infty} = 8.1 \times 10^6 / \text{ft}$ , sphere-cone, 20-mesh.    |     |
| Figure 126. Test 7036, Run 107, $Re_{\infty} = 2.1 \times 10^{6} / \text{ft}$ , sphere-cone, 10-mesh   |     |
| Figure 127. Test 7036, Run 106, $Re_{\infty} = 3.0 \times 10^{6}$ /ft, sphere-cone, 10-mesh            |     |
| Figure 128. Test 7036, Run 105, $Re_{\infty} = 5.0 \times 10^6$ /ft, sphere-cone, 10-mesh              |     |
| Figure 129. Test 7036, Run 108, $Re_{\infty} = 6.5 \times 10^{6}$ /ft, sphere-cone, 10-mesh            |     |
| Figure 130. Test 7036, Run 109, $Re_{\infty} = 7.2 \times 10^6 / \text{ft}$ , sphere-cone, 10-mesh     |     |
| Figure 131. Test 7036, Run 110, $Re_{\infty} = 8.1 \times 10^6$ /ft, sphere-cone, 10-mesh              |     |
| Figure 132. Test 7057, Run 7, $Re_{\infty} = 2.1 \times 10^6$ /ft, spherical-cap, smooth OML.          |     |
| Figure 133. Test 7057, Run 8, $Re_{\infty} = 3.0 \times 10^6$ /ft, spherical-cap, smooth OML.          |     |
| Figure 134. Test 7057, Run 9, $Re_{\infty} = 5.0 \times 10^6$ /ft, spherical-cap, smooth OML           |     |
| Figure 135. Test 7057, Run 10, $Re_{\infty} = 6.5 \times 10^6$ /ft, spherical-cap, smooth OML.         |     |
| Figure 136. Test 7057, Run 11, $Re_{\infty} = 7.2 \times 10^6$ /ft, spherical-cap, smooth OML.         |     |
| Figure 137. Test 7057, Run 12, $Re_{\infty} = 8.1 \times 10^6$ /ft, spherical-cap, smooth OML.         |     |
| Figure 138. Test 7057, Run 13, $Re_{\infty} = 2.1 \times 10^6$ /ft, spherical-cap, 230-mesh.           |     |
| Figure 139. Test 7057, Run 14, $Re_{\infty} = 3.0 \times 10^6$ /ft, spherical-cap, 230-mesh.           |     |
| Figure 140. Test 7057, Run 15, $Re_{\infty} = 5.0 \times 10^6 / \text{ft}$ , spherical-cap, 230-mesh.  |     |
| Figure 141. Test 7057, Run 16, $Re_{\infty} = 6.5 \times 10^6 / \text{ft}$ , spherical-cap, 230-mesh.  |     |
| Figure 142. Test 7057, Run 17, $Re_{\infty} = 7.2 \times 10^6 / \text{ft}$ , spherical-cap, 230-mesh.  |     |
| Figure 143. Test 7057, Run 18, $Re_{\infty} = 8.1 \times 10^6$ /ft, spherical-cap, 230-mesh.           |     |
| Figure 144. Test 7057, Run 19, $Re_{\infty} = 2.1 \times 10^6$ /ft, spherical-cap, 140-mesh.           |     |
| Figure 145. Test 7057, Run 20, Re <sub>∞</sub> = $3.0 \times 10^6$ /ft, spherical-cap, 140-mesh.       |     |
| Figure 146. Test 7057, Run 21, $Re_{\infty} = 5.0 \times 10^6$ /ft, spherical-cap, 140-mesh            |     |
| Figure 148. Test 7057, Run 23, $Re_{\infty} = 0.5 \times 10^{-7} H$ , spherical-cap, 140-mesh.         |     |
| Figure 149. Test 7057, Run 24, Re $_{\infty} = 7.2 \times 10^{-7} \text{ft}$ , spherical-cap, 140-mesh |     |
| Figure 150. Test 7057, Run 25, Re $_{\infty}$ = $0.1 \times 10^6$ /ft, spherical-cap, 80-mesh.         |     |
| Figure 151. Test 7057, Run 26, Re $_{\infty} = 2.1 \times 10^{-7} \text{ft}$ , spherical-cap, 80-mesh. |     |
| Figure 151. Test 7057, Run 28, Re $_{\infty} = 5.0 \times 10^6$ /ft, spherical-cap, 80-mesh.           |     |
| Figure 153. Test 7057, Run 29, $Re_{\infty} = 5.6 \times 10^6$ /ft, spherical-cap, 80-mesh.            |     |
| Figure 154. Test 7057, Run 30, Re $_{\infty} = 7.2 \times 10^6$ /ft, spherical-cap, 80-mesh            |     |
| Figure 155. Test 7057, Run 31, Re $_{\infty} = 8.1 \times 10^6$ /ft, spherical-cap, 80-mesh.           |     |
| Figure 156. Test 7057, Run 32, Re $_{\infty} = 2.1 \times 10^6$ /ft, spherical-cap, 40-mesh.           |     |
| Figure 157. Test 7057, Run 33, $Re_{\infty} = 3.0 \times 10^6 / ft$ , spherical-cap, 40-mesh.          |     |
| Figure 158. Test 7057, Run 34, Re $_{\infty} = 5.0 \times 10^6$ /ft, spherical-cap, 40-mesh.           |     |
| Figure 159. Test 7057, Run 35, Re $_{\infty} = 6.5 \times 10^6$ /ft, spherical-cap, 40-mesh            |     |
| Figure 160. Test 7057, Run 36, Re $_{\infty}$ = 7.2×10 <sup>6</sup> /ft, spherical-cap, 40-mesh.       |     |
| Figure 161. Test 7057, Run 37, $Re_{\infty} = 8.1 \times 10^6$ /ft, spherical-cap, 40-mesh             |     |
| Figure 162. Test 7057, Run 55, Re $\infty$ = 2.1×10 <sup>6</sup> /ft, spherical-cap, 20-mesh           |     |
| Figure 163. Test 7057, Run 56, Re $_{\infty}$ = 3.0×10 <sup>6</sup> /ft, spherical-cap, 20-mesh        |     |
| Figure 164. Test 7057, Run 57, Re $_{\infty} = 5.0 \times 10^6$ /ft, spherical-cap, 20-mesh            |     |
| Figure 165. Test 7057, Run 58, Re $_{\infty} = 6.5 \times 10^6$ /ft, spherical-cap, 20-mesh            |     |
|                                                                                                        | -   |
| V                                                                                                      |     |

| Figure | 166. Tes | st 7057, Run 59, $Re_{\infty} = 7.2 \times 10^6$ /ft, spherical-cap, 20-mesh | 156 |
|--------|----------|------------------------------------------------------------------------------|-----|
| Figure | 167. Tes | st 7057, Run 60, $Re_{\infty} = 8.1 \times 10^6$ /ft, spherical-cap, 20-mesh | 156 |
| Figure | 168. Tes | st 7057, Run 42, $Re_{\infty} = 2.1 \times 10^6$ /ft, spherical-cap, 10-mesh | 157 |
| Figure | 169. Tes | st 7057, Run 43, $Re_{\infty} = 3.0 \times 10^6$ /ft, spherical-cap, 10-mesh | 157 |
| Figure | 170. Tes | st 7057, Run 44, $Re_{\infty} = 5.0 \times 10^6$ /ft, spherical-cap, 10-mesh | 158 |
| Figure | 171. Tes | st 7057, Run 45, $Re_{\infty} = 6.5 \times 10^6$ /ft, spherical-cap, 10-mesh | 158 |
| Figure | 172. Tes | st 7057, Run 46, $Re_{\infty} = 7.2 \times 10^6$ /ft, spherical-cap, 10-mesh | 159 |
| Figure | 173. Tes | st 7057, Run 47, $Re_{\infty} = 8.1 \times 10^6$ /ft, spherical-cap, 10-mesh | 159 |
|        |          |                                                                              |     |

#### **Abstract**

An experimental investigation of distributed sand-grain surface roughness effects on boundary-layer transition and turbulent heating has been performed at hypersonic test conditions. Two representative entry vehicle geometries, a sphere-cone aeroshell and a spherical-cap aeroshell, were considered. Cast ceramic models of each geometry were fabricated with distributed sand-grain roughness patterns of different heights that simulated an ablated thermal protection system. Wind tunnel testing was performed at Mach 6 over a range of Reynolds numbers sufficient to produce laminar, transitional, and turbulent flow. Aeroheating and boundary-layer transition onset data were obtained using global phosphor thermography. The experimental heating data are presented herein, as are comparisons to laminar and turbulent smoothwall heat transfer distributions from computational flow field simulations. The boundary-layer transition data were found to correlate with a functional representation developed in prior roughness studies, although the data scatter was greater owing to the height variability of distributed sand-grain roughness.

#### **Nomenclature**

#### **Symbols**

D ASTM mesh particle diameter tunnel total (reservoir) enthalpy  $H_0$ adiabatic wall enthalpy  $H_{AW}$ roughness height enthalpy  $H_{\rm k}$ wall enthalpy  $H_{\rm W}$  $H_{300K}$ wall enthalpy at 300 K measured heat-transfer film coefficient h  $h_{\mathrm{FR}}$ Fay-Riddell theory heat-transfer film coefficient measured roughness height h hexcomb cell height  $h_{\rm hex}$ nominal ASTM mesh particle roughness height  $h_{\text{nom}}$ measured mean roughness height  $h_{\rm mean}$ measured peak-to-valley roughness height for xx% exceedance height  $h_{\text{PV}xx}$  $h_{\rm RMS}$ measured root-mean-square roughness height actual roughness height k actual peak-to-valley roughness height for xx% exceedance height  $k_{PVxx}$ boundary-layer edge Mach number  $M_{\rm e}$ free stream Mach number  $M_{\infty}$ effective roughness height transfer parameter p heat transfer rate approximate radius of edge Mach stagnation cutoff region  $r_{\rm stag}$ model radius R  $R_N$ model nose radius model corner radius  $R_C$  $Re_{k+}$ roughness height Reynolds number boundary-layer momentum thickness Reynolds number  $Re_{\theta}$  $Re_{\infty}$ free stream unit Reynolds number surface running length to edge Mach cutoff S  $s_0$ surface running length from stagnation point boundary-layer edge temperature  $T_{\rm e}$ average wall temperature  $T_{\rm w.AVG}$ free stream temperature  $T_{\infty}$ boundary-layer velocity  $U_{\rm e}$  $U_{\tau}$ smooth-wall friction velocity  $U_{\infty}$ free stream velocity Cartesian coordinates x, y, ztransition correlation disturbance parameter  $X_{TR}$  $Y_{TR}$ transition correlation flow field parameter local surface height measurement  $z_{\rm i}$ model spherical nose included angle  $\beta_N$ 

modified Pohlhausen parameter

streamline angular coordinate identifier heating calibration corrector factor

boundary layer thickness

 $\beta_{POHL}$ 

 $\phi_{corr}$ 

 $\lambda_{POHL}$  Pohlhausen parameter

*v<sub>e</sub>* boundary-layer edge kinematic viscosity

 $\mu_w$  wall viscosity

ρ<sub>e</sub> boundary-layer edge density

 $\rho_{\infty}$  free stream density

 $\begin{array}{ll} \theta & & boundary\mbox{-layer momentum thickness} \\ \sigma_h & & roughness \mbox{ height standard deviation} \end{array}$ 

#### **Subscripts and Superscripts**

 $\infty$  wind tunnel free stream condition

wind tunnel stagnation or reservoir condition

e boundary layer edge conditionk roughness height condition

PV peak-to-valley surface roughness distance

RMS root mean square
TR transition location
w model wall condition

#### Acronyms

ASTM American Society for Testing and Materials

CFD Computational Fluid Dynamics

IHEAT Imaging for Hypersonic Experimental Aerothermodynamic Testing

LAL Langley Aerothermodynamic Laboratories

LAURA Langley Aerothermodynamic Upwind Relaxation Algorithm

OML Outer Mold Line

TPS Thermal Protection System

#### Introduction

This report serves to document an experimental dataset of distributed sand-grain surface roughness effects on boundary-layer transition and heating augmentation. The data were obtained through hypersonic wind tunnel testing of two representative entry vehicle aeroshell geometries with roughness patterns that simulated those produced by the ablation of a monolithic thermal protection system (TPS). This report represents a reference document that can be used as the basis for future detailed analysis of the heat-transfer distributions and boundary-layer transition onset locations measured in the test program. This study is a direct follow-on to a previous study (Refs. [1–2]) of ablated TPS with hexcomb pattern roughness effects on the same aeroshell geometries in which the transition criterion applied to the current data was developed. Another related study (Refs. [3–4]) on the effects of distributed sand-grain surface roughness – on hemispherical nose tips, rather than aeroshell geometries – provided the basis for the distributed sand-grain roughness height analysis presented herein.

# Background

"Roughness" is a generic term in aerospace literature that encompasses many types of surface features that deviate from that of a smooth outer mold line (OML) surface. Roughness can be divided into two general types, discrete and distributed. Discrete roughness (Figure 1) includes surface features such as: a) protruding compression pads or recessed cavities at mechanical attachment points; b) steps or gaps between

heat shield tiles or blocks resulting from differential ablation of the TPS and the filler material between them; and c) physical damage to a TPS. Distributed roughness (Figure 2) includes features such as: a) regular patterns resulting from ablation of hexcomb-structure TPS; b) deflections of a flexible TPS over its support structure when subjected to aerodynamic loading; c) random "sand-grain" features resulting from ablation of a monolithic TPS; or d) the texture of overlapping fibers on a woven TPS.

Data on the effects of surface roughness are valuable because the roughness of an entry vehicle's TPS can promote earlier boundary-layer transition and produce higher turbulent heating (and shear) levels than would be expected based on an idealized, smooth-surface analysis. However, due to the complexities of roughness effects, a vehicle's TPS is typically designed using analytical, computational, and/or experimental techniques based on the assumption of a smooth surface. The effects of roughness on the aerothermodynamic environment are then included through approximate engineering correlations and methods.

The purpose of this test program was to obtain data on the effects of distributed sand-grain type roughness. Examples of ablating TPS that produce such patterns include the PICA material used on the Mars Science Laboratory and Mars 2020 missions' entry vehicle heat shields and on the Stardust comet sample return mission. The data obtained in this test program are intended for use in the development and/or validation of engineering correlations for the effects of distributed sand-grain roughness on boundary-layer transition and turbulent heat transfer for such vehicles. These data can also serve as the basis for development and/or validation of higher-fidelity, numerical flow-field simulation models for roughness effects.

## **Experimental Tools and Methods**

#### **Wind Tunnel Models**

#### **Model Geometries**

Roughness effects data were obtained on two representative entry vehicle geometries: a sphere-cone geometry (Figure 3) and a spherical-cap geometry (Figure 4). The sphere-cone geometry is representative of the Mars Viking – Mars Pathfinder – Mars Exploration Rover – Mars Phoenix – Mars Science Laboratory – Mars 2020 family of entry vehicles used in NASA's robotic Mars exploration missions. The spherical-cap geometry is representative of the Mercury – Gemini – Apollo – Orion family of entry vehicles employed in NASA's crewed space program. Geometry parameters for both model configurations are listed in Table 1. Multiple wind tunnel models of each configuration were fabricated with a range of distributed sand-grain roughness patterns, as detailed below.

#### **Model Fabrication**

Models with a wide range of distributed surface roughness heights were fabricated for this study. The fabrication process for a rough-surface model follows that for smooth models, as documented in Ref. [5], with additional steps to add roughness to the surface. The first step in fabrication of a smooth-surface model is the production of a rapid-prototype pattern of the geometry using a 3D wax printing machine. Investment casting is then used to make a mold from the pattern. A thin-shell silica ceramic model is then slip cast from the mold, dried and sintered. The shell is then backfilled with a hydraulically setting magnesia ceramic for strength and support and mounted on a stainless-steel support sting. Finally, the model is coated with a mixture of phosphors that luminesce under ultraviolet lighting and fiducial marks are placed at specified locations on the surface for image registration.

To fabricate a model with surface roughness, an adhesive coating is applied to the smooth wax pattern and then the pattern is placed into a container filled with precision-manufactured, spherical glass particles. The particles adhere to the wax pattern to form a distributed, sand-grain type roughness over the entire surface. The pattern may then be hand-worked if necessary to remove any obvious surface irregularities (i.e., clumps of glass spheres). A ceramic model with surface roughness can then be fabricated from the roughned pattern following the remaining steps detailed above for smooth-surface models.

The distributed sand-grain surface roughness was created using precision-manufactured, spherical glass particles ranging in size from 2.5 mil to 68.9 mil<sup>1</sup>. The spherical glass particle diameters are specified according to an ASTM standard (Ref. [6]) that defines the mesh sieve opening size through which the particle can pass, hence the 'ASTM-XXX' mesh nomenclature for the models. A nominal roughness height for each ASTM mesh size is defined based on the assumption that for a uniform array of roughness elements (the spherical particles) in contact with each other, the roughness height is equal to the vertical distance from the top of an element to the point of contact with the adjacent element – that is the roughness height is equal to the glass particle radius. This height measurement is referred to as the nominal "peak-to-valley" roughness. The characterization of the actual "as-built" roughness height, which differs from the specified nominal value, will be presented below in the "Roughness Height Characterization" section. A listing of the nominal ASTM roughness sizes used in this study is given in Table 2.

Photographs of sample cast ceramic sphere-cone and spherical-cap roughness models with inset closeup images of the roughness at the nose are provided in Figure 5 and Figure 6, respectively. Although the image contrast and resolution are generally not sufficient to display the smaller roughness heights, all the roughness element heights did produce measurable effects on boundary-layer transition and surface heating.

#### **Roughness Height Characterization**

#### Surface roughness scan data acquisition and processing

The surface roughness data presented previously in Table 2 represent ideal values based on the sizes of the particles used in the fabrication of each model. However, the characterization of the actual "as-built" roughness was more complex and was based on a statistical analysis of the surface height distributions. The differences between the ideal and as-built roughness geometries are illustrated in Figure 7. In the ideal geometry, the roughness is defined by perfectly formed hemispherical elements in a single, flat, layer. However, the process of binding the glass particles to the surface, forming the mold, and then casting and coating the ceramic model introduces random imperfections in the surface.

To determine the as-built roughness characterization parameters, laser scans were made of 4-in. x 4-in. square flat sample plates for each of the ASTM roughness sizes to obtain a data cloud of *x-y-z* points. Margins of 0.5 in. on the sides of the plates were specified to avoid any edge effects and so the actual scan area was a 3 in. by 3 in. square. These flat plates were used in place of the actual model geometries owing to the difficulty of performing a scan over a curved surface. The stated, ideal scan resolution of the system was  $\sim \pm 2.00$  mil ( $\sim \pm 0.05$  mm), however, the actual achieved resolution was approximately  $\pm 4.00$  mil ( $\sim \pm 0.1$  mm). The data cloud was then triangulated to form a continuous surface representation and the height (*z*) coordinate was shifted to put the average height of all points at zero.

Profile line-cuts were extracted from the global data sets at various stations to determine the height distribution of scan data points. The global surface scan data and representative profile line-cuts are shown

<sup>&</sup>lt;sup>1</sup> The "mil" unit (0.001 inch) will be used frequently in the discussion of roughness heights rather than inches or SI units in deference to historical literature on surface roughness.

for each ASTM mesh size sample in Figure 8 – Figure 13. In the line plots, the dashed blue lines represent the nominal diameter and height of a roughness element, and the symbols represent the scan data point locations. As can be seen from these figures, several data points were obtained on each roughness element, for the larger roughness sizes, while for the smaller roughness sizes, the data point spacing was on the order of the roughness element diameter (e.g., 4.17 mil diameter for 140-Mesh and 2.48 mil diameter for the 240-Mesh). Therefore, while data and analyses for these smaller mesh sizes will be presented herein, these data are not considered to be quantitatively reliable.

#### Statistical Analysis of Roughness Data

The scan data were processed to determine several parameters, including the root-mean-square surface height distribution ( $h_{RMS}$ ), local peak-to-valley roughness element heights ( $h_{PV}$ ), and the actual effective peak-to-valley roughness height ( $k_{PV}$ ).

The root mean square height distribution  $h_{RMS}$  is simply a function of the distribution of all height measurement points on the *entire* sample surface as per Eq. (1), where n is the number of points and  $z_i$  is the point height above a reference plane. This RMS value does not provide a direct characterization of the heights of the roughness elements, since sample points do not necessarily coincide with the maximum or minimum of an individual roughness element. Nevertheless, the RMS height is a relatively straightforward quantity to define and measure and is frequently reported in roughness studies. A functional relationship between RMS and peak-to-valley heights will be demonstrated subsequently.

$$h_{RMS} = \sqrt{\frac{1}{n} \sum_{i} (z_i)} \tag{1}$$

Previous studies of distributed roughness effects (e.g., Refs. [7–8]) have identified the peak-to-valley roughness height  $h_{PV}$  as a key parameter in the correlation of roughness data effects. This conclusion was confirmed in the more recent tests conducted in both wind tunnels (Refs. [3–4]) and ballistics ranges (Ref. [9]). The peak-to-valley roughness height represents the difference between the minimum and maximum surface heights of adjacent roughness elements, which for the idealized surface illustrated in Figure 7 would simply be the radius of the spherical roughness element.

To determine the  $h_{PV}$  of the actual roughness sample plates, peaks and valleys of adjacent roughness elements were determined manually from examination of the profile line-cut data. The selection of which points along the profiles of Figure 8 – Figure 13 actually represented the peaks and valleys of a roughness element, as opposed to minor variations over an element, was highly subjective and was additionally hindered by the resolution of the scans for the smallest ASTM mesh sample plates. Furthermore, while a fixed ASTM bead size was employed to create each roughness pattern, the application of roughness elements to the wax patterns, fabrication of molds, and final casting of the ceramic models introduced random deviations from the nominal peak-to-valley roughness height. A final complication is the difference between the peak-to-valley heights measured along an arbitrary profile line – which may not pass through the maximum and minimum of an element – as illustrated in Figure 14 – and the true peaks and valleys of individual elements.

These issues were dealt with using a statistical "exceedance" value to represent the random distribution of heights and a semiempirical correction factor to account for the differences between the peak-to-valley heights measured along an arbitrary profile and the actual peak-to-valley heights.

For each profile, the exceedance, which is defined as the percentage of data points in a set greater than a specified value, was computed from the database of peak-to-valley measurements. The exceedance height distributions obtained from scans of each sample plate are plotted in Figure 15. Also shown in this figure are Gaussian curve fits to these data of the form given by Eq. (2), where  $h_{\text{mean}}$  is the mean of the measured peak-to-valley heights and  $\sigma_h$  is the standard deviation.

%exceedance fit = 
$$100 \times exp \left\{ -0.5 \left[ \frac{(h_{PV} - h_{mean}/2)}{\sigma_h} \right]^2 \right\}$$
 (2)

The exceedance height distributions are replotted in terms of the normalized roughness height ( $h_{PV}/h_{mean}$ ) in Figure 16. As seen in these two figures, the exceedance distributions approximate the Gaussian distribution that would be expected from a large sample set with random deviations.

A relationship between the actual peak-to-valley height of a roughness element and that measured along a profile line (which does not necessarily pass through the center of the element) was developed by Dirling (Ref. 10) in an analysis for simple geometric elements including hemispheres, cones, and rectangles. Dirling's function for converting between a statistical mean of the measured height,  $h_{\text{mean}}$ , and the actual height, k, using a transfer function, p is given by Eq. (3). For the current analysis, where the roughness elements are represented as a tightly packed array of nominally hemispherical elements, the  $\pi/4$  value of the transfer function is employed. Presumably, transfer functions could also be determined for more complex roughness shapes such as rods, fences, weaves, or honeycombs, but data would be required to validate such functions.

$$h_{mean} = k \times p$$
: where  $p = \begin{cases} \pi/4 & \text{hemispherical element} \\ 0.5 & \text{conical element} \\ 1 & \text{rectangular element} \end{cases}$  (3)

For the purposes of this study, it was assumed that this relationship for the mean value also held for any arbitrary exceedance percentile value, allowing for estimation of the true peak-to-valley exceedance height values from the heights measured along the profile lines. Values of the 30<sup>th</sup> and 50<sup>th</sup> percentiles have typically been reported in roughness literature, and herein values for the 50<sup>th</sup>, 30<sup>th</sup>, 15<sup>th</sup> and 5<sup>th</sup> percentiles are given. These values were derived from the measured roughness height distributions of Figure 15 - Figure 16 and are listed in Table 3.

The relationship between the estimates for the actual, as-built, heights to the nominal heights for the  $50^{th}$ ,  $30^{th}$ ,  $15^{th}$  and  $5^{th}$  percentile exceedances is shown in Figure 17. For the larger ASTM Mesh sizes (10, 20 and 40-mesh), the ratios of  $k_{PV}/h_{nom}$  are approximately the same for each exceedance percentile, varying from  $\sim$ 0.5 for the  $50^{th}$  percentile to  $\sim$ 1.0 for the  $5^{th}$  percentile. However, the ratio of actual to nominal height begins to increase rapidly with decreasing mesh size for the smaller ASTM mesh sizes (80, 140, and 230-Mesh). For the smallest, ASTM 230-Mesh, the ratios of actual to nominal height varies from  $\sim$ 1.6 for the  $50^{th}$  percentile to 2.7 for the  $5^{th}$  percentile.

Given that the fabrication process results in a roughness height distribution with a Gaussian shape, the estimates for the as-built to nominal ratios for the larger ASTM mesh sizes seems to be reasonable. However, absent any other information, the estimated peak-to-valley heights for the smaller ASTM mesh sizes would appear to be much larger than the nominal values. As noted earlier though, the nominal

roughness sizes for these models were on the order of the ideal image resolution of the scanning system used to obtain the data. Thus, while the results may indicate that the smaller mesh size model roughness heights were larger than intended, the fidelity of the scan data set was insufficient to definitively quantify the smaller mesh size heights. Instead, a rough estimate for the as-built heights for the smaller ASTM samples was made by fitting a curve through the higher ASTM sample ratios and extrapolating the results to the lower ASTM vales to provide a corrected estimate for the peak-to-valley heights. Table 4 provides a summary of these original and corrected values of the 50% exceedance heights, as well as the nominal and RMS values for each ASTM mesh size.

For purposes of comparison with prior studies in which only RMS values are cited, it is useful to provide a relationship between the RMS and peak-to-valley exceedance values. It has been shown (e.g., Refs. [7–8]) that an approximate linear relationship holds between RMS and peak-to-valley exceedance parameters that allows for conversion between the two types of measurements. A plot of the current RMS roughness vs. actual peak-to-valley roughness data from each sample plate is presented in Figure 18 along with a linear correlation for each exceedance value. Depending on the exceedance value, the ratio of  $k_{\rm PV}/h_{\rm RMS}$  was found to vary from approximately 2.8 to 4.8.

These results can be compared to those from Jackson in Ref. 8, where it was stated that the "significant" peak-to-valley roughness was equal to 3.6 times the RMS value. Unfortunately, the term "significant" was not explicitly defined, although in Ref. [7], Batt later concluded that the "significant" value was equal to the 30<sup>th</sup> percentile exceedance height. Reexamination of the limited roughness profile data available from Ref. [8] suggests that Batt's conclusion was tenuous, and that Jackson's "significant" values could just as easily be equated to the 50<sup>th</sup> percentile roughness height. However, it is possible that Batt had access to more of the original data set than has been published and drew conclusions based on those data. Regardless of the definition of "significant" for the Ref. [8] data set, the cited value of 3.6 for the ratio falls within the range of exceedance values for the current data set, which indicates that the approximate relationship between RMS and peak-to-valley exceedance values is valid.

#### **Wind Tunnel Test Facility**

#### Facility Description

Hypersonic wind tunnel testing of the roughness models was performed in the NASA Langley Aerothermodynamics Laboratory (LAL) 20-Inch Mach 6 Air Tunnel. This wind tunnel is described in brief below and more detailed information on the LAL facilities can be found in Refs. [11–12].

The 20-Inch Mach 6 Air Tunnel (Figure 19 – Figure 20) is a blow-down facility in which heated, dried, and filtered air is used as the test gas. The tunnel has a two-dimensional contoured nozzle that opens into a 20.5 in. × 20.0 in. test section. The tunnel is equipped with a bottom-mounted injection system with a -5-deg to +55-deg pitch range and ±5-deg yaw range that can transfer a model from a sheltered model box to the tunnel centerline in less than 0.5 sec. Run times of up to 15 minutes are possible in this facility, although for the current aeroheating study, run times of only a few seconds were required. The nominal reservoir conditions of this facility produce perfect-gas free stream flows with Mach numbers between 5.8 and 6.1 and unit Reynolds numbers of  $0.5 \times 10^6$ /ft to  $8.3 \times 10^6$ /ft. With its wide Reynolds number operating range capable of producing laminar, transitional, or turbulent flow on most geometries, this tunnel is primarily used for heat-transfer and boundary-layer transition studies.

#### Facility Operating Conditions

Data were obtained in Tests 7036 and 7057 in the 20-Inch Mach 6 Air Tunnel at six unit-Reynolds numbers from  $Re_{\infty} = 2.1 \times 10^6$ /ft to  $8.1 \times 10^6$ /ft with nominal free stream conditions as per Table 5. All spherecone data were obtained at  $\alpha = 16$  deg and all spherical-cap data were obtained at  $\alpha = 28$  deg. Full run matrices for the two tests are given in Table 6 and Table 7, respectively. Entries in these tables are sorted first by roughness height, then by free stream unit Reynolds number. These angles of attack and free stream conditions were selected for continuity with the hexcomb roughness dataset presented in Refs. [1–2].

Free stream velocity  $(U_{\infty})$ , density  $(\rho_{\infty})$ , temperature  $(T_{\infty})$ , unit Reynolds number  $(Re_{\infty})$ , and Mach number  $(M_{\infty})$  are provided in these tables. Additionally, an average model surface temperature  $(T_{\rm w})$ , enthalpy difference  $(\Delta H_{\rm tot})$ , and reference heat transfer film-coefficient value  $(h_{\rm FR})$  are provided. The temperature is the average over the model surface when the thermographic phosphor image was obtained and is provided because boundary-layer transition is known to be sensitive to wall temperature. The enthalpy term is defined as the difference  $H_0 - H_{300K}$  between the free stream total enthalpy and the wall enthalpy at cold wall (300 K) conditions. The film coefficient is the value from the Fay-Riddell theory (Ref. [13]) at cold wall conditions, where the radius is the nose radius of the model geometry.

#### **Experimental Data**

#### **Data Acquisition and Reduction**

Aeroheating data were obtained using the two-color, relative-intensity, global phosphor thermography method (Ref. [14]) and reduced using the IHEAT (Imaging for Hypersonic Experimental Aerothermodynamic Testing) code (Refs. [15–16]). In this method, a model is illuminated by ultraviolet light sources that induce temperature-dependent fluorescence of the phosphor coating. Fluorescent intensity images of a model are taken in the tunnel before and during a run using a three-color, charge-coupled device camera and the images are processed to determine heat-transfer distributions. The intensity data are then converted to temperatures using pretest calibrations of the data acquisition system.

Heat-transfer film coefficients are determined by assuming a step function in the film coefficient from the prerun temperature to the run temperature, which corresponds to a parabolic temperature-time history. The heating data are typically reported in terms of the ratio  $h/h_{\rm FR}$  where the heat-transfer film coefficient, h, is defined in terms of enthalpy as:

$$h = q/\Delta H_{TOT} = q/(H_{AW} - H_w) = q/(H_0 - H_w)$$
 (4)

In the calculation of the heat-transfer film coefficient, it is assumed that for a blunt-body, the adiabatic wall enthalpy  $H_{AW}$  is equal to the free stream total enthalpy of the tunnel,  $H_0$ , and the wall enthalpy  $H_W$  is the determined from the surface temperature at each image pixel. This heat transfer coefficient definition provides a theoretically near-constant value over the course of a run since the decrease in time of the heat transfer rate in the numerator as the model surface becomes hotter is balanced by the decrease of the enthalpy-difference term in the denominator.

#### **Data Mapping and Presentation**

The two-dimensional (2-D) image data output from IHEAT (Figure 21) for each run were transformed

to account for optical perspective effects and mapped to a three-dimensional (3-D) CAD surface of the wind tunnel model (Figure 22). To accomplish this mapping, perspective, translational, and rotational transformations were first performed on the 3-D CAD surface until its 2-D projection matched that of the 2-D image data. The image data were then assigned transformed (x, y, z) coordinates based on interpolation between the image and projected surface geometry. Finally, the transformation was inverted to obtain an orthographic, 3-D heating distribution map of the experimental data.

An additional data manipulation was performed to extract the streamline-based heating distributions from the mapped wind tunnel data set. These streamline-based data sets are used in boundary-layer transition analyses and for comparisons of Reynolds number and roughness effects. For each run, streamlines were defined based on the boundary-layer edge velocity vectors from the computed flow fields (to be discussed in the next section). Thirty-six streamline termini were established at locations spaced in 10-deg increments around the circumference of the geometry and the streamlines were then traced backward from each terminus toward the flow field stagnation point. Each streamline is identified by the angular location,  $\phi$ , of its terminus. The resulting streamlines are shown in Figure 23 for the sphere-cone geometry and in Figure 24 for the spherical-cap geometry. The geometric (x, y, z) coordinates along each streamline were then interpolated onto the 3-D mapped image and  $h/h_{FR}$  heating data were extracted along each streamline in terms of  $s_0/R$ , which is the normalized streamline distance from the stagnation point. Additionally, the predicted flow field quantities (boundary-layer height, momentum-thickness Reynold number, etc.) were also extracted along these streamlines and combined with the wind tunnel data set to enable transition onset analyses.

One additional complication needs to be noted with respect to extraction of data along streamlines. The extraction algorithm tended to fail near the stagnation point where the velocity vectors approached zero; essentially, the physical location became indeterminate, resulting in unreliable path-lengths through the stagnation region. This problem was resolved by stopping the reverse tracing of the streamlines from the outer edge of the model toward that stagnation point at the location where the edge Mach number,  $M_e$ , dropped below 0.025. The "true" streamline length value,  $s_0$  was determined from an estimate of the physical length from the  $M_e$  cutoff to the stagnation region as a function of the streamline terminus angular location  $\phi$  and the approximate radius of the stagnation region,  $r_{\text{stag}}$ :

$$s_0 = s + \Delta s \tag{5}$$

$$\Delta s = cos(2\phi) \times r_{stag}/3 + r_{stag}$$
, where  $r_{stag} \cong 0.003$  m (6)

In the body of this report, plotted data will be shown in terms of s/R, as that is the quantity in which the data were extracted along streamlines. The estimated actual distance,  $s_0/R$ , can be determined using Eqs. (5) and (6).

The mapped data from all runs are collected in the Appendices and presented therein as large, high-resolution images. These images are ordered by model geometry, roughness height, and Reynolds numbers. Smaller images will be shown in the body of the report along with streamline-based heating distributions.

#### Phosphor Thermography Data Quality

An important factor that influences the quality of phosphor thermography data quality is the local surface

inclination at a given point on the model with respect to both the camera and the UV lights. Phosphor thermography provides the best results when the surface to be imaged is normal to the camera, which reduces perspective distortion and image smearing, and when the surface is well illuminated, which induces the best temperature response of the phosphor coating. Because of the three-dimensional nature of a wind tunnel model, the entire surface of a model cannot be optimally imaged, or in some cases cannot even be viewed. For blunt bodies such as those in this test, the windward centerline region of the model – the 'bottom' of the model with respect to the view orientation - is the area where the data quality is most affected. This situation is illustrated for a simple hemispherical model in Figure 25. Because of this limitation, windward region data are only regarded as qualitative, not quantitative. Although image data from this region will be shown, quantitative plotted data and transition location data will not be provided for the streamlines originating from the  $\phi = 160$ -deg through 200-deg termini.

#### Heat Transfer Data Uncertainty

The experimental uncertainty for convective heat transfer measurements on a *smooth, blunt body* geometry model in the 20-Inch Mach 6 Air Tunnel is quantified as a function of net uncertainties resulting from: the data acquisition method ( $\pm 10\%$ ); flow quality and test-condition repeatability ( $\pm 5\%$ ); and the accuracy of the 3D mapping process ( $\pm 10\%$ ), which results in an overall root-sum-squared value of  $\pm 15\%$ . Experience with this technique indicates that these values are usually conservative and agreement between laminar, smooth-wall measured and predicted heating levels is generally well within this range.

However, it is assumed that the distributed sand-grain roughness introduces additional uncertainties to the heat-transfer measurements. These roughness elements produce very detailed heating patterns due both to their three-dimensional shape and their influence on transition locations. In many cases, these patterns were smaller than the resolution of the camera system; thus, a measurement of heating over a roughness element is in effect, a spatial average, rather than a point measurement. Quantification of such errors on a macro-scale is not possible because of the localized and position/height dependency of each roughness element, but they are probably on the order of  $\pm 10$ –20%. Taken together with the smooth-wall uncertainty, the uncertainty in distributed sand-grain roughness heating is estimated to be in the  $\pm 18$ –25% range

#### Calibration Correction for Heat Transfer Data

A central premise in the analysis of wind tunnel heating data is that for a given Mach number, the normalized heat transfer film coefficient,  $h/h_{\rm FR}$ , at any point on a geometry remains constant with varying Reynolds number at perfect gas conditions for attached flow over a blunt body. This behavior is demonstrated through CFD simulations for a 2-inch diameter hemisphere over the current range of test conditions. As shown in Figure 26, laminar simulations using the LAURA code (see section below on Computational Tools and Methods) predict a constant value of  $h/h_{\rm FR} = 1.06$  at the hemisphere stagnation point for all test condition Reynolds numbers. The fact that the ratio is not exactly 1 is due to the differences between a modern CFD prediction for the film coefficient at perfect-gas wind tunnel conditions and the semiempirical Fay-Riddell correlation for the film coefficient based on approximate boundary-layer solutions for reacting-gas flight conditions. That the two predictions are so close is a testament to the utility of the original Fay-Riddell method that was developed in the 1950s.

While the CFD predictions do indeed demonstrate a constant value of  $h/h_{\rm FR}$  for the wind tunnel conditions, the same behavior was not observed during the test program; in fact, a dependency on free stream Reynolds number was noted in the experimental data. This dependency is illustrated by stagnation point heating data from pretest checkout and calibration runs on a phosphor-coated, 2 inch radius hemisphere shown in Figure 27 for Test 7036 and in Figure 28 for Test 7057. Instead of a constant value

for  $h/h_{FR}$ , the measured values at lower Reynolds numbers were observed to be at or below the predicted value from the computations, while at higher Reynolds numbers the measured values were greater than the predictions. Second-order polynomial fits to the measured heating values that reflect these variations are also shown in the figures.

There are several potential sources of uncertainty which could be producing this dependency including: variations in the bulk materials used to cast the ceramic wind tunnel models; the consistency of the thermographic phosphor mixture used to coat the models; the fidelity of the phosphor intensity/temperature calibrations; degradation of the UV lighting or imaging camera; and/or the flow quality of the wind tunnel. Unfortunately, it was beyond the scope of this study to resolve whether any, or all, of these factors influenced the experimental data.

Because the differences in predicted and measured stagnation point film-coefficient ratios fell within the estimated uncertainty of  $\pm 18$ –25% range cited in the previous section, these results were considered "acceptable" from an experimental perspective. However, since the differences can be represented by a bias function that depends on Reynolds number, as opposed to a random dispersion, an additional data processing step was conducted to correct the heating data based on the hemisphere calibration run data. The original data were modified using the polynomial curve fits as per Eqs. (7) and (9) and all data and results presented herein reflect this calibration correction.

$$(h/h_{FR})_{exp,corr} = (h/h_{FR})_{exp} \times (h_{CFD}/h_{FR})_{hemi-stag} \times \emptyset_{corr}$$
(7)

where:

$$(\mathbf{h}_{CFD}/\mathbf{h}_{FR})_{hemi-stag} = 1.06 \tag{8}$$

$$\emptyset_{corr} = 1/(A + Bx + Cx^2)$$
, and  $x = Re_{\infty}/1,000,000$   
Test 7036:  $A = 0.8279$   $B = 0.09120$   $C = -7.583 \times 10^{-3}$   
Test 7057:  $A = 0.9971$   $B = 0.03163$   $C = -2.034 \times 10^{-3}$ 

### **Computational Tools and Methods**

Flow field solutions were generated using the LAURA (Langley Aerothermodynamic Upwind Relaxation Algorithm) code. LAURA (Refs. [17–18]) is a three-dimensional, structured-grid, finite-volume solver that includes perfect-gas and nonequilibrium chemistry options, a variety of turbulence models, and ablation and radiative transport capabilities. LAURA solutions were used for comparisons of predicted heating levels with the measured data and to define the streamlines along which to extract the mapped experimental data, as described above.

Solutions were computed on multiblock grids of each geometry with a smooth (no roughness elements) outer mold line. Grid adaption was performed to align the grid outer boundary with the bow shock and to cluster cells near the surface to produce wall cell Reynolds numbers on the order of 1 to 10. Free stream conditions were set to the nominal wind tunnel conditions for each operating point as given in Table 5. For these wind tunnel conditions, the perfect-gas air option was used. Both laminar and turbulent solutions were

generated. Turbulent cases were computed using the Cebeci-Smith algebraic model with fully turbulent flow over the entire geometry. Because the computations were performed on a smooth geometry, they are not quantitively applicable to the actual wind tunnel tests performed on rough-surface models with heating augmentation but are still provided for qualitative comparisons.

For the wall temperature boundary condition, a change in the normal practice for wind tunnel simulations of setting this value to a "cold-wall" ambient temperature (because of the small variation in heat-transfer coefficient with temperature) was employed. Literature on roughness effects indicates a dependence of transition onset location on the ratio of boundary-layer edge temperature to wall temperature  $T_c/T_w$ . To approximately account for this effect (which was expected to be small, but non-negligible, for these test conditions), the computations were performed using a uniform "hot-wall" wall temperature set to the average of the measured surface temperature on the model. These values varied between  $\sim 325$  K to 410 K, depending on roughness height and Reynolds number.

The flow field solutions also provided boundary-layer parameters that can be used in the correlation of transition and heating augmentation data. Centerline profiles of selected boundary-layer parameters are presented to provide insight into the range of the test data and potential relevance to flight missions.

The ratio of the physical roughness height to that of the boundary-layer,  $k/\delta$ , has a first-order influence on transition onset. Centerline distributions of  $k/\delta$  are presented in Figure 29 for the sphere-cone geometry and in Figure 30 for the spherical-cap geometry for the range of roughness heights and free stream Reynolds number conditions. In these figures, k is the corrected 50% exceedance values from Table 4 and  $\delta$  is the physical height of the boundary layer. Values of  $k/\delta$  varied over two orders of magnitude depending on roughness height and Reynolds numbers. The smallest  $k/\delta$  values are well within the boundary layer, while the highest exceed the boundary layer height.

The turbulent roughness height Reynolds number,  $Re_{k+}$  as per Eq. (10), can be used as a correlation parameter for turbulent roughness heating augmentation. Centerline distributions of  $Re_{k+}$  are presented in Figure 31 and Figure 32 for the sphere-cone geometry and spherical-cap geometries, respectively, for the range of roughness heights and free stream Reynolds number conditions. Values of  $Re_{k+}$  also vary over two orders of magnitude, indicative of laminar flow at the lowest levels and roughness-augmented turbulent flow at the highest levels.

$$Re_{k+} = \rho_w U_\tau k_{PV50} / \mu_w$$
, where  $U_\tau = \sqrt{\tau_w / \rho_w}$  (10)

# **Experimental Data Analysis**

#### **Transition Onset Location Definition**

From a flow physics standpoint, transition onset is defined as the point where smooth, laminar flow in the boundary layer begins to break down into small eddies. This location can, in theory, be determined through flow field imaging and/or diagnostic techniques (e.g., high-frequency pressure measurements, laser velocimetry) to determine when fluctuations in a quantity of interest, such as the mean velocity, exceeded a specified criterion. However, in this study, the only measurements are of the surface temperature and (through data reduction) the surface heating. For such measurements, the differences in temperature or heating levels between laminar flow and transitional flow can be too subtle at some conditions to permit

precise definition of the onset location. This measurement is more difficult when the local roughness height is small, in which case, the change from laminar to transitional/turbulent flow is gradual, but easier when the local roughness height is large, and the transition length is very short.

In lieu of a precise measurement of the transition location, transition onset is defined herein through a common approach in which an "effective" or "apparent" onset point is determined through the "tangent-slope-intercept" method. As shown in Figure 33, using sample data for a hemisphere from Ref. 4, the effective transition onset location is identified as the point where a line drawn tangent to the slope of the heat-transfer distribution curve through the transition region intercepts the nominal, laminar level. While this method does not necessarily identify the precise location at which fluctuations in the boundary-layer flow begin, it is consistent with common practice for determining the roughness-induced transition location via surface-based measurement techniques. This method also permits a more consistent means of identifying a relevant transition parameter, since identification of the small rise in heating levels at the actual transition onset location would be highly susceptible to error through surface measurement techniques alone. If the data herein are compared to other datasets, then it will be necessary to ensure that the same definition of transition onset is applied to ensure consistency.

While this effective transition onset location is easy to define in principle, in practice, there can still be considerable uncertainty in determining the effects of roughness on transition location because of the difficulty in precisely defining the relevant roughness height. Consider again the distributed roughness hemisphere example, where now the heating data are shown in image form (Figure 34) rather than a plotted distribution. In the ideal case, where the surface roughness was invariant over the entire model surface, the transition onset location would be at a constant streamline length around the circumference of the model since the flow field is axisymmetric. However, as shown in Figure 34, there are clearly circumferential variations in the transition onset location. These variations occur because the local roughness height at any given location can vary from the nominal value for many reasons, including: the fidelity of the model fabrication process; the uniformity in application of the phosphor coating; and damage to the coating due to handling of the model or particle impacts during testing.

For an axisymmetric flow such as that over the example hemisphere, it was possible to reduce the uncertainty in the transition onset location by averaging multiple onset locations around the body to determine a mean value. This approach was followed in Ref. [4]. However, for the three-dimensional flow fields produced by the geometries considered herein, that was not possible. Thus, transition correlations drawn from this dataset can be expected to have greater scatter than those that were derived from Ref. [4].

#### **Reynolds Number Effects on Heating and Transition**

The effects of Reynolds number on the heating levels and boundary-layer transition onset locations are illustrated for each distributed sand-grain roughness pattern in Figure 35 – Figure 48 for the sphere-cone geometry and in Figure 49 –Figure 62 for the spherical-cap geometry. Two figures are provided for each case: in the first figure, global heating images are shown for each Reynolds number, ordered left-to-right, top-to-bottom in terms of increasing Reynolds number; in the second figure, line plots of  $h/h_{\rm FR}$  vs. s/R are shown, ordered left-to-right, top-to-bottom in terms of streamline angular coordinate. For brevity and clarity, all the streamlines are not plotted in these figures. Instead, streamlines are shown at 30-deg increments from 0 deg to 150 deg. As noted earlier, the data for streamlines between 160 deg and 200-deg are considered qualitative, not quantitative, and were thus omitted. Data for streamlines from 210 deg to 360 deg are nominally symmetric with the data from 0 deg to 150 deg, although in practice, model surface irregularities can cause asymmetric behavior. Such local asymmetries can be observed in the images that

accompany the line plots.

In these line-plots, the CFD predictions for smooth-wall, laminar and turbulent heating levels are also shown. Because the laminar heat-transfer film coefficient ratio,  $h/h_{\rm FR}$ , remains nearly constant with Reynolds number, only the lowest Reynolds number laminar prediction is shown for each case. However, since this invariance does not hold for turbulent flow, turbulent predictions are shown for each Reynolds number. As noted previously, simulations for these cases were treated as fully turbulent flow over the entire geometry. These turbulent predictions are shown for qualitative comparisons only, since the actual transition occurred at different locations for each test condition / model geometry and since the turbulent heating levels were augmented above smooth-wall levels by the surface roughness.

#### **Roughness Height Effects on Heating and Transition**

The same data are shown in the next group of figures, but they are reordered to show the effects of the distributed sand-grain surface roughness height on transition and heating at each Reynolds number. The sphere-cone data are shown in Figure 63 – Figure 74 and the spherical-cap data are shown in Figure 75 – Figure 86. Two figures are provided for each case: in the first figure, global heating images are shown for each Reynolds number, ordered left-to-right, top-to-bottom in terms of increasing roughness height; in the second figure, line plots of  $h/h_{\rm FR}$  vs. s/R are shown, ordered left-to-right, top-to-bottom in terms of streamline angular coordinate. As with the Reynold number effects figure set, both laminar and turbulent CFD heating predictions are shown in each line plot. It is assumed that facility noise effects on transition are minimal in these data because the surface OML roughness features (step or gaps) promote a "bypass transition" mode (Ref. [19]) that is separate from the small disturbance growth modes of conventional stability theory analyses.

#### **General Reynolds Number and Roughness Height Trends**

In these line plots for Reynolds number and roughness height effects, the laminar CFD predictions allow for baseline assessment of the computational accuracy through comparisons with the low Reynolds number, small roughness height cases for which transition did not occur. In general, good agreement between data and predictions was observed for all laminar cases. However, the turbulent predictions are shown only for illustrative purposes since the fully-turbulent, smooth-wall computations do not account for roughness effects on the transition location or heating augmentation above smooth-surface levels.

Reynolds-number and roughness-height effects on transition and heating follow expected trends. As Reynolds number is increased, the transition onset location moves upstream toward the stagnation point of the model. The transition onset location also moves upstream as roughness height is increased and the measured rough-wall turbulent heating levels grow increasingly higher than the predicted smooth-wall turbulent heating levels.

#### **Roughness Heating Augmentation**

In this report, analysis of the heating augmentation due to the roughness patterns is limited to the expected observation that heating levels increase with roughness height. This limitation is due to the complexities of the problem and the goal of quickly releasing this data set as a basis for further analysis. For any given roughness height / Reynolds number / body-point location, the heating augmentation with respect to smooth-wall laminar or turbulent predictions can be determined through reference to the data and figures presented herein. However, the development of engineering correlations or numerical models for simulation of these data depend on not just modeling the effects of roughness on heating, but also modeling

the effects of roughness on transition onset; that is, it is not possible to accurately predict heating levels without being able to first predict the transition onset location. Implementation of a transition model into a CFD code and generation of transitional flow field solutions will be deferred to future in-depth analyses.

#### **Transition Onset Data and Correlation**

As per discussion above, transition locations (or lack thereof) were determined along each of 36 different streamlines for every run using the tangent-slope-intercept method. Discounting the windward streamline data from the  $\phi = 160$ -deg through 200-deg rays with poor viewing angles and lighting, 2604 data points (2 model geometries × 6 free stream Reynolds numbers × 7 roughness heights × 31 rays) on the state of the boundary layer were obtained. Tabulations of these transition onset data for each streamline are given in Table 8 – Table 14 for the sphere-cone geometry and in Table 15 – Table 21 for the spherical-cap geometry. Tabular entries are only provided for the 1720 streamlines along which transition was noted. For reference, the boundary-layer momentum thickness,  $Re_{\theta}$ , value at transition is also listed. This quantity, along with the roughness height, is a first-order factor in the correlation of roughness transition data.

A correlation for the effects of roughness on boundary-layer transition was developed originally in Ref. [3] based on a survey of transition data on hemispherical geometries with distributed sand-grain roughness as per Eq. (11) through Eq. (13).

$$Y_{TR} = 165 \times (X_{TR})^{-0.5} \tag{11}$$

where

$$Y_{TR} = (Re_{\theta})_{TR} \tag{12}$$

$$X_{TR} = \left[ \left( \frac{kT_e}{\theta T_w} \right) \left( \frac{H_e}{H_k} \right)^{-1} (M_e)^{-0.5} \right]_{TP}$$
(13)

$$k = \begin{cases} k_{PV50} & \text{sand-grain roughness} \\ h_{hex} & \text{hexcomb pattern depth} \end{cases}$$
 (14)

This original correlation was subsequently modified in Ref. [1] to account for the effects of varying pressure gradient in the non-axisymmetric flows over the current sphere-cone and spherical-cap geometries with patterned hexcomb roughness as per Eqs. (15) through (20). In this correlation, the pressure gradient effects are included through a modified Pohlhausen parameter,  $\beta_{POHL}$ , which is derived from the original Pohlhausen parameter,  $\lambda_{POHL}$ .

$$Y_{TR} = 171.4 \times (X_{TR})^{-0.6299} \tag{15}$$

where

$$Y_{TR} = (Re_{\theta})_{TR} \tag{16}$$

$$X_{TR} = \left[ \left( \frac{kT_e}{\theta T_w} \right)^{0.45} \left( \frac{H_e}{H_k} \right)^{-1.8} (M_e)^{-0.6} (\beta_{POHL})^{-0.5} \right]_{TR}$$
 (17)

$$log(1/\beta_{POHL}) = \overline{\lambda}_{POHL} \tag{18}$$

$$\overline{\lambda}_{POHL} = min[10, max(-10, \lambda_{POHL})]$$
(19)

$$\lambda_{POHL} = \frac{dU_e}{ds} \frac{\delta^2}{v_e} \tag{20}$$

In the Pohlhausen parameter, the pressure gradient is related to the velocity through the Bernoulli equation, which is approximately valid for the low Mach number boundary-layer conditions of a blunt body. The boundary-layer height,  $\delta$ , and dynamic viscosity,  $v_e$ , terms provide a consistent nondimensionalization of the velocity gradient over a wide range of conditions. However, to be used in the power-law form of this correlation, the pressure gradient term must have a positive value, and must also be limited to prevent computational overflow or underflow at the aeroshell shoulder or stagnation point. Thus, the original Pohlhausen parameter is modified by *min* and *max* limiters and redefined through the *log* function to ensure a positive value.

The utility of this correlation is demonstrated through the plots in Figure 87 for the sphere-cone and spherical-cap hexcomb roughness datasets of Refs. [1–2] and the hemisphere sand-grain roughness dataset of Refs. [3–4]. The majority of transition data points from these two different types of distributed roughness tested in multiple wind tunnels and ballistics ranges fell within a  $\pm 20\%$  uncertainty bounds of the correlation.

The current test program permits evaluation of this correlation against distributed sand-grain roughness data from three-dimensional geometries that produce varying pressure gradients. Comparisons of these new data with the correlation are given in Figure 88. While this new distributed sand-grain roughness data set follows the same trend line as the correlation, it exhibits considerably more scatter than earlier data sets, with the majority of points bounded by a higher range of  $\pm 50\%$ .

However, there is a key characteristic of the current data set that differs from prior data sets, which is the variability of roughness height over the surface of a wind tunnel model. As discussed earlier, the roughness elements in the current data set were found to exhibit an approximately Gaussian height distribution due to the method in which the roughness elements were created. The height values used in this analysis represent the 50% exceedance value, which means that half of the roughness elements have a larger height than the specified value and half have a smaller height. In contrast, the roughness heights for the prior hexcomb studies varied less because they were specified the hexcomb sizes were defined uniformly in the CAD design of the models and were fabricated as such. And for the hemispherical sand-grain roughness data sets, the transition data were based on analyses of multiple streamlines around the circumference of each model – all which experienced the same pressure gradient due to the axisymmetric nature of the flow— which had the effect on normalizing the data for the effects of varying roughness height.

Given these differences in the definition and reporting of the roughness heights between these studies, it is thus not surprising that the current data exhibit much more scatter than the earlier data. The current distributed sand-grain roughness data set is in fact, probably a more "flight-realistic" representation of roughness transition characteristics. The TPS of an actual flight vehicle is likely to exhibit more variability in roughness due to manufacturing defects, damage during handling and flight preparation, and random variations in material response. A real-world example of nonuniform transition response is illustrated in Figure 89 by a post-flight photograph (from Ref. [20]) of the Orion EFT-1 flight test mission heat shield. While the green-outlined areas that identify damage during recovery of the heatshield can be disregarded, the red-outlined areas represent isolated transition wedges caused by nonuniformities in the surface of the heatshield.

Since the new transition data follow the same trend as the earlier data, albeit with much more scatter, no modifications will be made to the transition of Eqs. (15) through (20). However, these wind tunnel data – and the flight data from EFT-1 – illustrate the need to consider large margins on the transition predictions to account for potential variations in roughness heights from an expected nominal value.

## Summary

The effects of distributed sand-grain surface roughness patterns simulating that of a heat shield with an ablated TPS on hypersonic boundary-layer transition and turbulent heating have been investigated through wind tunnel testing of two representative entry vehicle geometries. Heating and transition onset data were obtained at Mach 6 over a range of roughness heights and free stream Reynolds numbers sufficient to produce laminar, transitional, and turbulent flow. Boundary-layer transition onset locations were tabulated, and heating distributions were provided in both line plot and image forms. Measured heating levels were found to increase with both Reynolds number and roughness height. The transition onset location trend was found to agree with a correlation developed from prior studies, although with greater scatter due to the variability of the sand-grain roughness heights over the surfaces of the wind tunnel models.

## Acknowledgements

This work was supported by the NASA Entry Systems Modeling Project within the Game Changing Development Program of the Space Technology Mission Directorate.

#### References

- 1. Hollis, B. R., "Hexcomb-Pattern Roughness Effects on Blunt-Body Transition and Heating," *Journal of Spacecraft and Rockets*, Vol. 58, No. 6, November-December 2021, pp. 1612-1635.
- 2. Hollis, B. R., "Experimental Investigation of Hexcomb-Pattern Roughness Effects on Transition Onset and Turbulent Heating Augmentation at Mach 6," NASA/TM-2019-220424, November 2019.
- 3. Hollis, B. R., "Correlation of Recent and Historical Hemispherical Nose Tip Distributed Roughness Transition Data," *Journal of Spacecraft and Rockets*, Vol. 56, No. 5, May-June 2019, pp. 664-686.
- 4. Hollis, B. R., "Experimental Investigation of Roughness Effects on Transition Onset and Turbulent Heating Augmentation at Mach 6 and Mach 10," NASA/TM-2017-219613, May 2017.
- 5. Buck, G. M., "Rapid Model Fabrication and Testing for Aerospace Vehicles," AIAA Paper 2000-0826, 38th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 10-13, 2000.
- 6. ASTM E11-01, Standard Specification for Wire Cloth and Sieves for Testing Purposes, ASTM International, West Conshohocken, PA, 2001.

- 7. Batt, R. G. and Legner, H. H., "A Review of Roughness-Induced Nosetip Transition," *AIAA Journal*, Vol. 21, No. 1, January 1983, pp. 7-22.
- 8. Jackson, M. D., "Passive Nosetip Technology (PANT) Program. Volume 15: Roughness Induced Transition on Blunt Axisymmetric Bodies Data Report," Space and Missile Systems Organization TR-74-86-Vol-XV, April 1974.
- 9. Wilder, M. C. and Prabhu, D. K., "Rough-Wall Turbulent Heat Transfer Experiments in Hypersonic Free Flight", AIAA Paper 2019-3009, AIAA Aviation 2019 Forum, Dallas, TX, June 17-21, 2019.
- 10. Dirling, R. B., "On the Relationship Between Material Variability and Surface Roughness," AIAA Paper 1977-0402, 18<sup>th</sup> Structural Dynamics and Materials Conference, San Diego, CA, March 21-23, 1977.
- 11. Berger, K., Rufer, S., Hollingsworth, K. and Wright, S., "NASA Langley Aerothermodynamic Laboratory: Hypersonic Testing Capabilities," AIAA Paper 2015-1337, 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, January 5-9, 2015.
- 12. Hollis, B. R., Berger, K. T., Berry, S. A., Brauckmann, G. J., et al, "Entry, Descent, and Landing Aerothermodynamics: NASA Langley Experimental Capabilities and Contributions," AIAA Paper 2014-1154, AIAA 52nd Aerospace Science Meeting, National Harbor, MD, January 13-17, 2014.
- 13. Fay, J. A., and Riddell, F. R., "Theory of Stagnation Point Heat Transfer in Dissociated Air," *Journal of Aeronautical Sciences*, Vol. 25, No. 2., February 1958, pp. 73-85.
- 14. Buck, G. M., "Surface Temperature/Heat Transfer Measurement Using a Quantitative Phosphor Thermography System," AIAA Paper 91-0064, 29th Aerospace Sciences Meeting, Reno, NV, January 7-10, 1991.
- Merski, N. R., "Global Aeroheating Wind-Tunnel Measurements Using Improved Two-Color Phosphor Thermography Methods," *Journal of Spacecraft and Rockets*, Vol. 36, No. 2, March-April 1999, pp. 160-170.
- 16. Mason, M. L and Rufer, S. J., "Features of the Upgraded Imaging for Hypersonic Experimental Aeroheating Testing (IHEAT) Software," AIAA Paper 2016-4322, AIAA Aviation Forum, Washington, DC, June 13-17, 2016.
- 17. Gnoffo, P. A., "An Upwind-Biased, Point-Implicit Algorithm for Viscous, Compressible Perfect-Gas Flows," NASA TP-2953, February 1990.
- 18. Mazaheri, A., Gnoffo, P. A., Johnston, C. O., and Kleb, B., "LAURA User's Manual: 5.5-65135," NASA TM-2013-217800, February 2013.
- 19. Morkovin, M. V., "Critical Evaluation of Transition from Laminar to Turbulent Shear Layers with Emphasis on Hypersonically Travelling Blunt Bodies", Air Force Flight Dynamics Laboratory, AFFDL-TR-68-1949, March 1969.
- Vander Kam, J. and Amar, A. "Orion Aerosciences and Thermal Protection System Overview," NASA Engineering and Safety Center, EDL Summer Series lecture, July 2021

Table 1. Model geometry parameters.

| Model         | rac   | odel<br>lius,<br><i>R</i> | rac   | ose<br>lius,<br>R <sub>N</sub> | rac    | rner<br>lius,<br>R <sub>C</sub> | Nose included angle, β |     | Rc/R  |
|---------------|-------|---------------------------|-------|--------------------------------|--------|---------------------------------|------------------------|-----|-------|
| geometry      | in.   | m                         | in.   | m                              | in.    | m                               | deg.                   |     |       |
| Sphere-cone   | 3.000 | 0.0762                    | 1.500 | 0.0371                         | 0.1500 | 0.00381                         | 20.00                  | 0.5 | 0.050 |
| Spherical-cap | 3.000 | 0.0762                    | 7.200 | 0.1829                         | 0.3000 | 0.00762                         | 23.04                  | 2.4 | 0.100 |

Table 2. ASTM mesh parameters.

| Table 2. ASTIVI mesh parameters. |       |                            |                   |        |  |  |  |  |  |  |
|----------------------------------|-------|----------------------------|-------------------|--------|--|--|--|--|--|--|
| ASTM Mesh                        | _     | rical glass<br>diameter, D | Nominal<br>height |        |  |  |  |  |  |  |
| Designation                      | (mil) | (mm)                       | (mil)             | (mm)   |  |  |  |  |  |  |
| ASTM-10                          | 68.90 | 1.7501                     | 34.45             | 0.8750 |  |  |  |  |  |  |
| ASTM-20                          | 33.58 | 0.8529                     | 16.79             | 0.4265 |  |  |  |  |  |  |
| ASTM-40                          | 16.73 | 0.1798                     | 8.37              | 0.0899 |  |  |  |  |  |  |
| ASTM-80                          | 7.09  | 0.1062                     | 3.54              | 0.0531 |  |  |  |  |  |  |
| ASTM-140                         | 4.17  | 0.0630                     | 2.09              | 0.0315 |  |  |  |  |  |  |
| ASTM-230                         | 2.48  | 1.7501                     | 1.24              | 0.8750 |  |  |  |  |  |  |

Table 3. Roughness data from sample plate scans.

|          | 140                              | le 5. Roughire.                                     | s data iroin s                                 | ampie piace se                                 | 44115.                                                     |                                               |
|----------|----------------------------------|-----------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------------------|-----------------------------------------------|
| Model ID | Nominal element eight hnom (mil) | Measured<br>RMS height<br>h <sub>RMS</sub><br>(mil) | 50 % exceedance height k <sub>PV50</sub> (mil) | 30 % exceedance height k <sub>PV30</sub> (mil) | 15 %<br>exceedance<br>height<br>k <sub>PV15</sub><br>(mil) | 5 % exceedance height k <sub>PV05</sub> (mil) |
| 10-Mesh  | 34.45                            | 7.873                                               | 21.48                                          | 25.78                                          | 30.15                                                      | 36.03                                         |
| 20-Mesh  | 16.79                            | 2.380                                               | 8.49                                           | 10.19                                          | 14.18                                                      | 16.93                                         |
| 40-Mesh  | 8.37                             | 1.430                                               | 3.83                                           | 5.13                                           | 6.23                                                       | 6.86                                          |
| 80-Mesh  | 3.54                             | 1.181                                               | 3.40                                           | 4.38                                           | 5.09                                                       | 6.47                                          |
| 140-Mesh | 2.09                             | 1.102                                               | 2.73                                           | 3.38                                           | 3.96                                                       | 4.65                                          |
| 230-Mesh | 1.24                             | 0.683                                               | 1.94                                           | 2.30                                           | 2.71                                                       | 3.32                                          |

**Table 4. Model roughness information.** 

|              |            | ninal<br>ight    |                           | sured<br>height              | Original<br>50% exceedance |                        | Corrected 50% exceedance   |                        |
|--------------|------------|------------------|---------------------------|------------------------------|----------------------------|------------------------|----------------------------|------------------------|
| ASTM<br>Mesh | h<br>(mil) | <i>h</i><br>(mm) | h <sub>RMS</sub><br>(mil) | <i>h</i> <sub>RMS</sub> (mm) | k <sub>PV50</sub><br>(mil) | k <sub>PV50</sub> (mm) | k <sub>PV50</sub><br>(mil) | k <sub>PV50</sub> (mm) |
| 10           | 34.45      | 0.8750           | 7.873                     | 0.2000                       | 21.48                      | 0.5456                 | N/A                        | N/A                    |
| 20           | 16.79      | 0.4265           | 2.380                     | 0.0605                       | 8.49                       | 0.2156                 | N/A                        | N/A                    |
| 40           | 8.37       | 0.2126           | 1.430                     | 0.0363                       | 3.83                       | 0.0973                 | N/A                        | N/A                    |
| 80           | 3.54       | 0.0899           | 1.181                     | 0.0300                       | $3.40^{\#}$                | $0.0864^{\#}$          | 2.63                       | 0.0668                 |
| 140          | 2.09       | 0.0531           | 1.102                     | 0.0280                       | 3.21#                      | $0.0815^{\#}$          | 2.15                       | 0.0546                 |
| 230          | 1.24       | 0.0315           | 0.683                     | 0.0173                       | 1.94#                      | $0.0493^{\#}$          | 1.29                       | 0.0328                 |
| Smooth       | N/A        | N/A              | 0.500                     | 0.0127                       | 1.46#                      | 0.0371#                | 0.98                       | 0.0249                 |

<sup>#</sup> Values corrected due to lack of scan precision

Table 5. Nominal 20-Inch Mach 6 Air Tunnel Conditions.

| $Re_{\infty}$ | $Re_{\infty}$ | $M_{\infty}$ | <b>T</b> ∞ | $ ho_\infty$ | $U_{\infty}$ | ΔН        |             | ter<br>(m²-s) |
|---------------|---------------|--------------|------------|--------------|--------------|-----------|-------------|---------------|
| (1/ft)        | (1/m)         |              | (K)        | $(kg/m^3)$   | (m/s)        | (J/kg)    | sphere-cone | spherical-cap |
| 2.051E+06     | 6.725E+06     | 5.968        | 62.94      | 3.203E-02    | 948.4        | 2.121E+05 | 1.144E-01   | 2.536E-01     |
| 2.992E+06     | 9.816E+06     | 5.998        | 63.26      | 4.666E-02    | 955.1        | 2.187E+05 | 1.401E-01   | 3.072E-01     |
| 4.966E+06     | 1.629E+07     | 6.030        | 63.72      | 7.741E-02    | 962.9        | 2.266E+05 | 1.824E-01   | 3.992E-01     |
| 6.489E+06     | 2.129E+07     | 6.042        | 63.48      | 1.008E-01    | 962.1        | 2.256E+05 | 2.078E-01   | 4.555E-01     |
| 7.199E+06     | 2.362E+07     | 6.047        | 63.48      | 1.118E-01    | 962.7        | 2.261E+05 | 2.189E-01   | 4.800E-01     |
| 8.136E+06     | 2.669E+07     | 6.034        | 59.21      | 1.224E-01    | 924.9        | 1.860E+05 | 2.180E-01   | 4.781E-01     |

Table 6. 20-Inch Mach 6 Air Tunnel Test 7036 run matrix.

| Table 6. 20-Inch Mach 6 Air Tunnel Test 7036 run matrix. |             |                                                                                               |       |          |      |      |                      |          |                      |              |     |  |
|----------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------|-------|----------|------|------|----------------------|----------|----------------------|--------------|-----|--|
|                                                          |             | ASTM $\alpha$ $Re_{\infty}$ $M_{\infty}$ $T_{\infty}$ $\rho_{\infty}$ $U_{\infty}$ $\Delta H$ |       |          |      |      |                      | $h_{FR}$ | $T_{\mathrm{w,avg}}$ |              |     |  |
| Run                                                      | Geometry    | Mesh                                                                                          | (deg) | (1/ft)   |      | (K)  | (kg/m <sup>3</sup> ) | (m/s)    | (J/kg)               | $(kg/m^2-s)$ | (K) |  |
| 50                                                       | sphere-cone | smooth                                                                                        | 16    | 2.02E+06 | 5.96 | 62.9 | 3.161E-02            | 948.0    | 2.116E+05            | 2.505E-01    | 331 |  |
| 51                                                       | sphere-cone | smooth                                                                                        | 16    | 2.96E+06 | 6.00 | 63.4 | 4.629E-02            | 956.1    | 2.198E+05            | 3.062E-01    | 342 |  |
| 52                                                       | sphere-cone | smooth                                                                                        | 16    | 4.96E+06 | 6.03 | 63.7 | 7.733E-02            | 962.4    | 2.262E+05            | 3.990E-01    | 359 |  |
| 53                                                       | sphere-cone | smooth                                                                                        | 16    | 6.47E+06 | 6.04 | 63.6 | 1.007E-01            | 962.7    | 2.262E+05            | 4.554E-01    | 371 |  |
| 54                                                       | sphere-cone | smooth                                                                                        | 16    | 7.23E+06 | 6.05 | 63.4 | 1.122E-01            | 961.5    | 2.248E+05            | 4.799E-01    | 378 |  |
| 55                                                       | sphere-cone | smooth                                                                                        | 16    | 8.13E+06 | 6.03 | 59.2 | 1.224E-01            | 924.8    | 1.859E+05            | 4.778E-01    | 368 |  |
| 74                                                       | sphere-cone | 230                                                                                           | 16    | 2.02E+06 | 5.97 | 63.2 | 3.164E-02            | 949.8    | 2.136E+05            | 2.512E-01    | 333 |  |
| 75                                                       | sphere-cone | 230                                                                                           | 16    | 2.98E+06 | 6.00 | 63.4 | 4.660E-02            | 956.1    | 2.198E+05            | 3.073E-01    | 344 |  |
| 76                                                       | sphere-cone | 230                                                                                           | 16    | 4.99E+06 | 6.03 | 63.6 | 7.772E-02            | 961.2    | 2.249E+05            | 3.994E-01    | 368 |  |
| 77                                                       | sphere-cone | 230                                                                                           | 16    | 6.45E+06 | 6.04 | 63.7 | 1.005E-01            | 963.8    | 2.274E+05            | 4.556E-01    | 387 |  |
| 78                                                       | sphere-cone | 230                                                                                           | 16    | 7.19E+06 | 6.05 | 63.5 | 1.118E-01            | 963.0    | 2.265E+05            | 4.800E-01    | 395 |  |
| 79                                                       | sphere-cone | 230                                                                                           | 16    | 8.21E+06 | 6.03 | 59.0 | 1.232E-01            | 922.4    | 1.834E+05            | 4.779E-01    | 380 |  |
| 80                                                       | sphere-cone | 140                                                                                           | 16    | 2.01E+06 | 5.97 | 63.4 | 3.159E-02            | 951.8    | 2.157E+05            | 2.516E-01    | 332 |  |
| 81                                                       | sphere-cone | 140                                                                                           | 16    | 2.97E+06 | 6.00 | 63.3 | 4.636E-02            | 955.1    | 2.187E+05            | 3.061E-01    | 342 |  |
| 82                                                       | sphere-cone | 140                                                                                           | 16    | 4.99E+06 | 6.03 | 63.6 | 7.771E-02            | 961.6    | 2.253E+05            | 3.995E-01    | 364 |  |
| 83                                                       | sphere-cone | 140                                                                                           | 16    | 6.48E+06 | 6.04 |      | 1.007E-01            | 962.7    | 2.262E+05            | 4.555E-01    | 387 |  |
| 84                                                       | sphere-cone | 140                                                                                           | 16    | 7.16E+06 | 6.05 | 63.7 | 1.115E-01            | 964.5    | 2.282E+05            | 4.803E-01    | 394 |  |
| 85                                                       | sphere-cone | 140                                                                                           | 16    | 8.15E+06 | 6.03 | 59.2 | 1.227E-01            | 924.8    | 1.859E+05            | 4.784E-01    | 381 |  |
| 87                                                       | sphere-cone | 80                                                                                            | 16    | 2.01E+06 | 5.97 | 63.4 | 3.151E-02            | 951.8    | 2.157E+05            | 2.513E-01    | 331 |  |
| 88                                                       | sphere-cone | 80                                                                                            | 16    | 2.97E+06 | 6.00 | 63.7 | 4.648E-02            | 958.4    | 2.223E+05            | 3.078E-01    | 343 |  |
| 89                                                       | sphere-cone | 80                                                                                            | 16    | 4.98E+06 | 6.03 | 63.7 | 7.770E-02            | 962.5    | 2.262E+05            | 3.999E-01    | 374 |  |
| 90                                                       | sphere-cone | 80                                                                                            | 16    | 6.51E+06 | 6.04 | 63.5 | 1.012E-01            | 962.0    | 2.255E+05            | 4.561E-01    | 394 |  |
| 91                                                       | sphere-cone | 80                                                                                            | 16    | 7.15E+06 | 6.05 | 63.8 | 1.113E-01            | 964.9    | 2.286E+05            | 4.802E-01    | 400 |  |
| 92                                                       | sphere-cone | 80                                                                                            | 16    | 8.14E+06 | 6.03 | 59.3 | 1.225E-01            | 925.1    | 1.862E+05            | 4.782E-01    | 386 |  |
| 93                                                       | sphere-cone | 40                                                                                            | 16    | 2.01E+06 | 5.97 | 63.2 | 3.148E-02            | 950.4    | 2.143E+05            | 2.507E-01    | 332 |  |
| 94                                                       | sphere-cone | 40                                                                                            | 16    | 2.97E+06 | 6.00 | 63.7 | 4.649E-02            | 958.5    | 2.224E+05            | 3.079E-01    | 350 |  |
| 95                                                       | sphere-cone | 40                                                                                            | 16    | 4.95E+06 | 6.03 | 63.9 | 7.733E-02            |          | 2.282E+05            | 3.999E-01    | 389 |  |
| 96                                                       | sphere-cone | 40                                                                                            | 16    | 6.48E+06 | 6.04 | 63.5 | 1.008E-01            | 962.1    | 2.256E+05            | 4.553E-01    | 406 |  |
| 97                                                       | sphere-cone | 40                                                                                            | 16    | 7.23E+06 | 6.05 | 63.4 | 1.122E-01            | 961.8    | 2.252E+05            | 4.801E-01    | 412 |  |
| 98                                                       | sphere-cone | 40                                                                                            | 16    | 8.20E+06 | 6.03 |      | 1.231E-01            | 923.3    | 1.844E+05            | 4.784E-01    | 394 |  |
| 99                                                       | sphere-cone | 20                                                                                            | 16    | 2.01E+06 | 5.97 |      | 3.157E-02            |          | 2.153E+05            | 2.514E-01    | 350 |  |
| 100                                                      | sphere-cone | 20                                                                                            | 16    | 2.98E+06 | 6.00 |      |                      |          | 2.203E+05            | 3.072E-01    | 375 |  |
| 101                                                      | sphere-cone | 20                                                                                            | 16    | 4.92E+06 | 6.03 |      |                      |          | 2.272E+05            |              | 405 |  |
| 102                                                      | sphere-cone | 20                                                                                            | 16    | 6.47E+06 | 6.04 |      | 1.005E-01            |          |                      | 4.546E-01    | 415 |  |
| 103                                                      | sphere-cone | 20                                                                                            | 16    | 7.24E+06 | 6.05 |      | 1.123E-01            | 960.7    | 2.241E+05            | 4.798E-01    | 414 |  |
| 104                                                      | sphere-cone | 20                                                                                            | 16    | 8.17E+06 | 6.03 |      | 1.227E-01            | 922.5    | 1.835E+05            | 4.770E-01    | 404 |  |
| 107                                                      | sphere-cone | 10                                                                                            | 16    | 2.01E+06 | 5.97 |      | 3.153E-02            |          | 2.150E+05            | 2.512E-01    | 374 |  |
| 106                                                      | sphere-cone | 10                                                                                            | 16    | 2.97E+06 | 6.00 |      |                      |          | 2.225E+05            | 3.078E-01    | 393 |  |
| 105                                                      | sphere-cone | 10                                                                                            | 16    | 4.98E+06 | 6.03 | 63.9 | 7.776E-02            | 964.2    | 2.280E+05            | 4.010E-01    | 409 |  |
| 108                                                      | sphere-cone | 10                                                                                            | 16    | 6.45E+06 | 6.04 | 63.7 | 1.004E-01            | 964.1    | 2.277E+05            | 4.555E-01    | 393 |  |
| 109                                                      | sphere-cone | 10                                                                                            | 16    | 7.21E+06 | 6.05 |      | 1.119E-01            |          | 2.250E+05            | 4.795E-01    | 375 |  |
| 110                                                      | sphere-cone | 10                                                                                            | 16    | 8.20E+06 | 6.03 |      | 1.232E-01            | 922.9    | 1.840E+05            | 4.782E-01    | 407 |  |
| 110                                                      | sphere-cone | 10                                                                                            | 10    | 3.20E+00 | 0.03 | 57.0 | 1.232L-01            | 122.1    | 1.0701 103           | 7.702L-01    | 707 |  |

Table 7. 20-Inch Mach 6 Air Tunnel Test 7057 run matrix.

|     | A CTM D. M. T II AII I. |              |       |                      |              |              |               |              |              |                                 |                    |
|-----|-------------------------|--------------|-------|----------------------|--------------|--------------|---------------|--------------|--------------|---------------------------------|--------------------|
| Dun | Coomotor                | ASTM<br>Mosh | (dog) | $Re_{\infty}$ (1/ft) | $M_{\infty}$ | $T_{\infty}$ | ρ∞<br>(kg/m³) | $U_{\infty}$ | ∆H<br>(I/kg) | $h_{FR}$ (kg/m <sup>2</sup> -s) | $T_{\text{w,avg}}$ |
| Run | Geometry                | Mesh         | (deg) |                      | 5.07         | (K)          | <u> </u>      | (m/s)        | (J/kg)       | <u> </u>                        | (K)                |
| 7   | spherical-cap           | smooth       | 28    | 2.04E+06             | 5.97         | 62.6         | 3.178E-02     | 946.0        | 2.094E+05    | 9.900E-02                       | 332                |
| 8   | spherical-cap           | smooth       | 28    | 3.01E+06             | 6.00         | 63.0         | 4.676E-02     | 953.4        | 2.168E+05    | 1.212E-01                       | 342                |
| 9   | spherical-cap           | smooth       | 28    | 5.03E+06             | 6.03         | 63.4         | 7.821E-02     | 960.8        | 2.243E+05    | 1.583E-01                       | 357                |
| 10  | spherical-cap           | smooth       | 28    | 6.52E+06             | 6.04         | 63.3         | 1.011E-01     | 960.6        | 2.239E+05    | 1.799E-01                       | 366                |
| 11  | spherical-cap           | smooth       | 28    | 7.28E+06             | 6.05         | 63.0         | 1.126E-01     | 959.1        | 2.223E+05    | 2.188E-01                       | 364                |
| 12  | spherical-cap           | smooth       | 28    | 8.02E+06             | 6.04         | 59.5         | 1.208E-01     | 928.0        | 1.892E+05    | 2.176E-01                       | 356                |
| 13  | spherical-cap           | 230          | 28    | 2.02E+06             | 5.97         | 62.8         | 3.152E-02     | 947.8        | 2.113E+05    | 1.141E-01                       | 329                |
| 14  | spherical-cap           | 230          | 28    | 2.99E+06             | 6.00         | 63.1         | 4.665E-02     | 954.6        | 2.181E+05    | 1.400E-01                       | 338                |
| 15  | spherical-cap           | 230          | 28    | 4.94E+06             | 6.03         | 63.9         | 7.702E-02     | 964.5        | 2.283E+05    | 1.822E-01                       | 357                |
| 16  | spherical-cap           | 230          | 28    | 6.47E+06             | 6.04         | 63.5         | 1.006E-01     | 962.6        | 2.261E+05    | 2.077E-01                       | 374                |
| 17  | spherical-cap           | 230          | 28    | 7.20E+06             | 6.05         | 63.4         | 1.118E-01     | 961.9        | 2.253E+05    | 2.187E-01                       | 386                |
| 18  | spherical-cap           | 230          | 28    | 8.20E+06             | 6.03         | 59.0         | 1.230E-01     | 923.0        | 1.839E+05    | 2.181E-01                       | 375                |
| 19  | spherical-cap           | 140          | 28    | 2.04E+06             | 5.97         | 62.7         | 3.180E-02     | 946.8        | 2.102E+05    | 1.145E-01                       | 329                |
| 20  | spherical-cap           | 140          | 28    | 3.01E+06             | 6.00         | 62.9         | 4.687E-02     | 952.8        | 2.161E+05    | 1.401E-01                       | 340                |
| 21  | spherical-cap           | 140          | 28    | 4.95E+06             | 6.03         | 63.8         | 7.711E-02     | 963.6        | 2.273E+05    | 1.821E-01                       | 384                |
| 22  | spherical-cap           | 140          | 28    | 6.56E+06             | 6.04         | 63.1         | 1.016E-01     | 959.6        | 2.228E+05    | 2.080E-01                       | 400                |
| 23  | spherical-cap           | 140          | 28    | 7.15E+06             | 6.05         | 63.6         | 1.111E-01     | 964.1        | 2.276E+05    | 2.187E-01                       | 405                |
| 24  | spherical-cap           | 140          | 28    | 8.16E+06             | 6.03         | 59.0         | 1.225E-01     | 923.3        | 1.842E+05    | 2.178E-01                       | 390                |
| 25  | spherical-cap           | 80           | 28    | 2.04E+06             | 5.97         | 62.7         | 3.188E-02     | 947.3        | 2.107E+05    | 1.147E-01                       | 330                |
| 26  | spherical-cap           | 80           | 28    | 3.00E+06             | 6.00         | 63.1         | 4.676E-02     | 954.5        | 2.180E+05    | 1.402E-01                       | 359                |
| 28  | spherical-cap           | 80           | 28    | 4.97E+06             | 6.03         | 63.6         | 7.742E-02     | 961.8        | 2.254E+05    | 1.821E-01                       | 398                |
| 29  | spherical-cap           | 80           | 28    | 6.48E+06             | 6.04         | 63.4         | 1.006E-01     | 961.7        | 2.251E+05    | 2.075E-01                       | 409                |
| 30  | spherical-cap           | 80           | 28    | 7.19E+06             | 6.05         | 63.5         | 1.116E-01     | 963.1        | 2.266E+05    | 2.189E-01                       | 422                |
| 31  | spherical-cap           | 80           | 28    | 8.06E+06             | 6.04         | 59.3         | 1.214E-01     | 926.2        | 1.874E+05    | 2.176E-01                       | 398                |
| 32  | spherical-cap           | 40           | 28    | 2.05E+06             | 5.97         | 62.7         | 3.198E-02     | 947.3        | 2.108E+05    | 1.149E-01                       | 338                |
| 33  | spherical-cap           | 40           | 28    | 2.99E+06             | 6.00         | 63.2         | 4.665E-02     | 955.3        | 2.188E+05    | 1.402E-01                       | 366                |
| 34  | spherical-cap           | 40           | 28    | 4.97E+06             | 6.03         | 63.8         | 7.745E-02     | 963.7        | 2.274E+05    | 1.825E-01                       | 402                |
| 35  | spherical-cap           | 40           | 28    | 6.45E+06             | 6.04         | 63.6         | 1.003E-01     | 963.2        | 2.268E+05    | 2.076E-01                       | 415                |
| 36  | spherical-cap           | 40           | 28    | 7.19E+06             | 6.05         | 63.5         | 1.116E-01     | 962.9        | 2.264E+05    | 2.189E-01                       | 418                |
| 37  | spherical-cap           | 40           | 28    | 8.08E+06             | 6.04         | 59.4         | 1.217E-01     | 926.8        | 1.880E+05    | 2.180E-01                       | 400                |
| 55  | spherical-cap           | 20           | 28    | 2.04E+06             | 5.97         | 62.7         | 3.178E-02     | 947.3        | 2.107E+05    | 1.145E-01                       | 342                |
| 56  | spherical-cap           | 20           | 28    | 3.07E+06             | 6.00         |              | 4.755E-02     | 948.7        | 2.107E+05    | 1.403E-01                       | 361                |
| 57  | spherical-cap           | 20           | 28    | 4.98E+06             | 6.03         | 63.8         | 7.766E-02     | 963.4        | 2.271E+05    | 1.827E-01                       | 393                |
| 58  | spherical-cap           | 20           | 28    | 6.45E+06             | 6.04         |              | 1.003E-01     | 963.9        |              | 2.077E-01                       | 407                |
| 59  | spherical-cap           | 20           |       | 7.22E+06             |              |              | 1.120E-01     |              |              |                                 |                    |
|     |                         |              | 28    |                      | 6.05         |              |               | 962.6        |              | 2.192E-01                       | 414                |
| 60  | spherical-cap           | 20           | 28    | 8.10E+06             | 6.04         |              | 1.219E-01     | 925.5        | 1.865E+05    | 2.178E-01                       | 394                |
| 42  | spherical-cap           | 10           | 28    | 2.01E+06             | 5.97         |              | 3.141E-02     | 948.1        | 2.117E+05    | 1.140E-01                       | 359                |
| 43  | spherical-cap           | 10           | 28    | 3.00E+06             | 6.00         | 63.1         | 4.672E-02     | 954.6        |              | 1.401E-01                       | 382                |
| 44  | spherical-cap           | 10           | 28    | 4.94E+06             | 6.03         | 63.9         |               | 964.6        |              | 1.823E-01                       | 408                |
| 45  | spherical-cap           | 10           | 28    | 6.46E+06             | 6.04         |              | 1.004E-01     |              | 2.270E+05    | 2.077E-01                       | 416                |
| 46  | spherical-cap           | 10           | 28    | 7.19E+06             | 6.05         |              | 1.116E-01     | 962.8        |              | 2.188E-01                       | 411                |
| 47  | spherical-cap           | 10           | 28    | 8.16E+06             | 6.03         | 59.1         | 1.226E-01     | 923.9        | 1.849E+05    | 2.180E-01                       | 396                |

Table 8. Test 7036 sphere-cone 10-mesh transition locations.

| Model   | Run | Ray | s <sub>0</sub> /R | $Re_{\theta}$ | Model   | Run | Ray | s <sub>0</sub> /R | $Re_{\theta}$ | Model   | Run | Ray | s <sub>0</sub> /R | Reθ  |
|---------|-----|-----|-------------------|---------------|---------|-----|-----|-------------------|---------------|---------|-----|-----|-------------------|------|
| 10-Mesh | 105 | _   | 0.135             | 16.1          | 10-Mesh | 107 |     | 0.194             | 30.9          | 10-Mesh | 109 | 20  | 0.180             | 39.7 |
| 10-Mesh | 105 |     | 0.165             |               | 10-Mesh | 107 |     | 0.273             | 48.1          | 10-Mesh | 109 |     | 0.167             |      |
| 10-Mesh | 105 |     | 0.213             |               | 10-Mesh | 107 |     | 0.268             |               | 10-Mesh | 109 |     | 0.200             | 53.5 |
| 10-Mesh | 105 | 30  | 0.216             |               | 10-Mesh | 107 |     | 0.321             |               | 10-Mesh | 109 | 50  | 0.183             |      |
| 10-Mesh | 105 | 40  | 0.218             |               | 10-Mesh | 107 |     | 0.249             |               | 10-Mesh | 109 |     | 0.045             |      |
| 10-Mesh | 105 |     | 0.202             |               | 10-Mesh | 107 | 60  | 0.142             |               | 10-Mesh | 109 |     | 0.106             |      |
| 10-Mesh | 105 |     | 0.058             |               | 10-Mesh | 107 |     | 0.154             | 37.9          | 10-Mesh | 109 |     | 0.106             |      |
| 10-Mesh | 105 | 70  | 0.124             | 20.9          | 10-Mesh | 107 | 80  | 0.170             | 40.1          | 10-Mesh | 109 | 90  | 0.132             | 40.5 |
| 10-Mesh | 105 | 80  | 0.126             | 20.9          | 10-Mesh | 107 | 90  | 0.192             | 42.6          | 10-Mesh | 109 | 100 | 0.083             | 27.9 |
| 10-Mesh | 105 | 90  | 0.154             |               | 10-Mesh | 107 | 100 | 0.123             | 29.7          | 10-Mesh | 109 | 110 | 0.142             | 40.0 |
| 10-Mesh |     |     | 0.095             |               | 10-Mesh | 107 | 110 | 0.229             | 46.9          | 10-Mesh |     |     | 0.155             |      |
| 10-Mesh |     |     | 0.173             |               | 10-Mesh |     |     | 0.193             |               | 10-Mesh | 109 | 130 | 0.129             | 35.0 |
| 10-Mesh | 105 | 120 | 0.166             | 23.2          | 10-Mesh | 107 | 130 | 0.286             | 53.2          | 10-Mesh | 109 | 140 | 0.081             | 23.4 |
| 10-Mesh | 105 | 130 | 0.172             | 23.7          | 10-Mesh | 107 | 140 | 0.252             | 45.9          | 10-Mesh |     |     | 0.122             |      |
| 10-Mesh | 105 | 140 | 0.125             | 17.8          | 10-Mesh | 107 | 150 | 0.175             | 33.0          | 10-Mesh | 109 | 220 | 0.123             | 33.2 |
| 10-Mesh | 105 | 150 | 0.154             | 19.8          | 10-Mesh | 107 | 220 | 0.196             | 37.4          | 10-Mesh | 109 | 230 | 0.140             | 37.4 |
| 10-Mesh | 105 | 220 | 0.159             | 21.2          | 10-Mesh | 107 | 230 | 0.172             | 35.6          | 10-Mesh | 109 | 240 | 0.193             | 49.7 |
| 10-Mesh | 105 | 230 | 0.147             | 21.1          | 10-Mesh | 107 | 240 | 0.253             | 49.2          | 10-Mesh | 109 | 250 | 0.188             | 50.8 |
| 10-Mesh | 105 | 240 | 0.233             | 30.4          | 10-Mesh | 107 | 250 | 0.277             | 54.6          | 10-Mesh | 109 | 260 | 0.142             | 42.1 |
| 10-Mesh | 105 | 250 | 0.224             | 30.4          | 10-Mesh | 107 | 260 | 0.339             | 66.8          | 10-Mesh | 109 | 270 | 0.112             | 36.2 |
| 10-Mesh | 105 | 260 | 0.169             | 24.7          | 10-Mesh | 107 | 270 | 0.242             | 52.5          | 10-Mesh | 109 | 280 | 0.144             | 44.7 |
| 10-Mesh | 105 | 270 | 0.190             | 28.0          | 10-Mesh | 107 | 280 | 0.303             | 66.2          | 10-Mesh | 109 | 290 | 0.144             | 43.5 |
| 10-Mesh | 105 | 280 | 0.172             | 26.8          | 10-Mesh | 107 | 290 | 0.344             | 75.4          | 10-Mesh | 109 | 300 | 0.172             | 51.2 |
| 10-Mesh | 105 | 290 | 0.159             | 25.4          | 10-Mesh | 107 | 300 | 0.384             | 85.0          | 10-Mesh | 109 | 310 | 0.143             | 41.1 |
| 10-Mesh | 105 | 300 | 0.192             | 29.9          | 10-Mesh | 107 | 310 | 0.288             | 63.4          | 10-Mesh | 109 | 320 | 0.146             | 39.4 |
| 10-Mesh | 105 | 310 | 0.172             | 25.5          | 10-Mesh | 107 | 320 | 0.240             | 50.7          | 10-Mesh | 109 | 330 | 0.091             | 23.9 |
| 10-Mesh | 105 | 320 | 0.167             | 23.9          | 10-Mesh | 107 | 330 | 0.182             | 34.3          | 10-Mesh | 109 | 340 | 0.137             | 31.2 |
| 10-Mesh | 105 | 330 | 0.141             | 18.7          | 10-Mesh | 107 | 340 | 0.238             | 40.4          | 10-Mesh | 109 | 350 | 0.144             | 30.8 |
| 10-Mesh | 105 | 340 | 0.192             | 22.7          | 10-Mesh | 107 | 350 | 0.183             | 29.7          | 10-Mesh | 110 | 0   | 0.104             | 22.1 |
| 10-Mesh | 105 | 350 | 0.149             | 17.4          | 10-Mesh | 108 | 0   | 0.127             | 26.7          | 10-Mesh | 110 | 10  | 0.111             | 23.5 |
| 10-Mesh | 106 | 0   | 0.156             | 20.7          | 10-Mesh | 108 | 10  | 0.149             | 30.2          | 10-Mesh | 110 | 20  | 0.172             | 36.4 |
| 10-Mesh | 106 | 10  | 0.187             |               | 10-Mesh | 108 | 20  | 0.195             | 40.2          | 10-Mesh | 110 | 30  | 0.152             | 34.4 |
| 10-Mesh | 106 | 20  | 0.252             | 34.9          | 10-Mesh | 108 | 30  | 0.192             | 43.4          | 10-Mesh | 110 | 40  | 0.179             | 45.3 |
| 10-Mesh | 106 | 30  | 0.224             |               | 10-Mesh | 108 | 40  | 0.209             |               | 10-Mesh | 110 | 60  | 0.039             | 16.3 |
| 10-Mesh | 106 | 40  | 0.289             | 48.5          | 10-Mesh | 108 | 50  | 0.189             |               | 10-Mesh | 110 | 70  | 0.092             | 30.3 |
| 10-Mesh | 106 | 50  | 0.220             | 38.5          | 10-Mesh | 108 | 60  | 0.051             | 20.0          | 10-Mesh | 110 | 80  | 0.100             | 32.9 |
| 10-Mesh | 106 | 60  | 0.116             |               | 10-Mesh | 108 |     | 0.115             |               | 10-Mesh | 110 | 90  | 0.102             | 32.2 |
| 10-Mesh | 106 |     | 0.130             |               | 10-Mesh | 108 |     | 0.119             |               | 10-Mesh |     |     | 0.075             |      |
| 10-Mesh | 106 |     | 0.147             | 28.2          | 10-Mesh | 108 | 90  | 0.140             | 38.9          | 10-Mesh |     |     | 0.140             |      |
| 10-Mesh | 106 |     | 0.180             |               | 10-Mesh |     |     | 0.092             |               | 10-Mesh |     |     | 0.121             |      |
| 10-Mesh |     |     | 0.107             |               | 10-Mesh |     |     | 0.158             |               | 10-Mesh |     |     | 0.119             |      |
| 10-Mesh |     |     | 0.218             |               | 10-Mesh |     |     | 0.162             |               | 10-Mesh |     |     | 0.035             |      |
| 10-Mesh |     |     | 0.181             |               | 10-Mesh |     |     | 0.146             |               | 10-Mesh |     |     | 0.109             |      |
| 10-Mesh |     |     | 0.189             |               | 10-Mesh |     |     | 0.108             |               | 10-Mesh |     |     | 0.091             |      |
| 10-Mesh |     |     | 0.237             |               | 10-Mesh |     |     | 0.133             |               | 10-Mesh |     |     | 0.132             |      |
| 10-Mesh |     |     | 0.157             |               | 10-Mesh |     |     | 0.153             |               | 10-Mesh |     |     | 0.183             |      |
| 10-Mesh |     |     | 0.183             |               | 10-Mesh |     |     | 0.144             |               | 10-Mesh |     |     | 0.161             |      |
| 10-Mesh |     |     | 0.159             |               | 10-Mesh |     |     | 0.213             |               | 10-Mesh |     |     | 0.125             |      |
| 10-Mesh |     |     | 0.246             |               | 10-Mesh |     |     | 0.211             |               | 10-Mesh |     |     | 0.099             |      |
| 10-Mesh |     |     | 0.258             |               | 10-Mesh |     |     | 0.157             |               | 10-Mesh |     |     | 0.132             |      |
| 10-Mesh |     |     | 0.268             |               | 10-Mesh |     |     | 0.129             |               | 10-Mesh |     |     | 0.131             |      |
| 10-Mesh |     |     | 0.213             |               | 10-Mesh |     |     | 0.155             |               | 10-Mesh |     |     | 0.175             |      |
| 10-Mesh |     |     | 0.234             |               | 10-Mesh |     |     | 0.151             |               | 10-Mesh |     |     | 0.141             |      |
| 10-Mesh |     |     | 0.232             |               | 10-Mesh |     |     | 0.186             |               | 10-Mesh |     |     | 0.135             |      |
| 10-Mesh |     |     | 0.212             |               | 10-Mesh |     |     | 0.167             |               | 10-Mesh |     |     | 0.084             |      |
| 10-Mesh |     |     | 0.197             |               | 10-Mesh |     |     | 0.157             |               | 10-Mesh |     |     | 0.131             |      |
| 10-Mesh |     |     | 0.230             |               | 10-Mesh |     |     | 0.104             |               | 10-Mesh | 110 | 350 | 0.136             | 27.8 |
| 10-Mesh |     |     | 0.158             |               | 10-Mesh |     |     | 0.179             |               |         |     |     |                   |      |
| 10-Mesh |     |     | 0.222             |               | 10-Mesh |     |     | 0.143             |               |         |     |     |                   |      |
| 10-Mesh |     |     | 0.178             |               | 10-Mesh | 109 |     | 0.113             |               |         |     |     |                   |      |
| 10-Mesh | 107 | U   | 0.161             | 26.6          | 10-Mesh | 109 | Τ0  | 0.130             | 28.5          |         |     |     |                   |      |

Table 9. Test 7036 sphere-cone 20-mesh transition locations Model Run Ray s<sub>0</sub>/R Re<sub>0</sub>

| Table 9. Test 7036 sphere-cone 20-mesh transition locations |     |     |         |               |          |       |     |         |               |         |     |     |         |               |
|-------------------------------------------------------------|-----|-----|---------|---------------|----------|-------|-----|---------|---------------|---------|-----|-----|---------|---------------|
| Model                                                       | Run | Ray | $s_0/R$ | $Re_{\theta}$ | Model    | Run   | Ray | $s_0/R$ | $Re_{\theta}$ | Model   | Run | Ray | $s_0/R$ | $Re_{\theta}$ |
| 20-Mesh                                                     | 99  | 0   | 0.324   |               | 20-Mesh  | 101   | _   | 0.318   | -             | 20-Mesh | 103 | _   | 0.181   | 45.5          |
| 20-Mesh                                                     | 99  | 10  | 0.323   |               | 20-Mesh  | 101   |     | 0.243   |               | 20-Mesh | 103 |     | 0.242   |               |
|                                                             | 99  | 20  |         |               | 20-Mesh  |       |     | 0.243   |               | 20-Mesh |     |     | 0.117   |               |
| 20-Mesh                                                     |     |     | 0.547   |               |          | 101   |     |         |               |         | 103 |     |         |               |
| 20-Mesh                                                     | 99  | 30  | 0.637   |               | 20-Mesh  | 101   |     | 0.276   |               | 20-Mesh | 103 |     | 0.119   |               |
| 20-Mesh                                                     | 99  | 40  | 0.460   |               | 20-Mesh  | 101   |     | 0.166   |               | 20-Mesh | 103 |     | 0.134   |               |
| 20-Mesh                                                     | 99  | 50  | 0.346   | 51.3          | 20-Mesh  | 101   | 70  | 0.174   | 41.2          | 20-Mesh | 103 | 90  | 0.175   | 47.7          |
| 20-Mesh                                                     | 99  | 60  | 0.279   | 42.9          | 20-Mesh  | 101   | 80  | 0.149   | 36.5          | 20-Mesh | 103 | 100 | 0.188   | 49.0          |
| 20-Mesh                                                     | 99  | 70  | 0.275   | 41.7          | 20-Mesh  | 101   | 90  | 0.198   | 44.7          | 20-Mesh | 103 | 110 | 0.161   | 42.1          |
| 20-Mesh                                                     | 99  | 80  | 0.181   | 28.6          | 20-Mesh  | 101   | 100 | 0.222   | 47.3          | 20-Mesh | 103 | 120 | 0.166   | 42.0          |
| 20-Mesh                                                     | 99  | 90  | 0.214   |               | 20-Mesh  |       |     | 0.177   |               | 20-Mesh |     |     | 0.145   |               |
| 20-Mesh                                                     | 99  |     | 0.240   |               | 20-Mesh  |       |     | 0.174   |               | 20-Mesh |     |     | 0.154   |               |
| 20-Mesh                                                     | 99  |     | 0.395   |               | 20-Mesh  |       |     | 0.170   |               | 20-Mesh |     |     | 0.194   |               |
|                                                             |     |     |         |               |          |       |     |         |               |         |     |     |         |               |
| 20-Mesh                                                     | 99  |     | 0.380   |               | 20-Mesh  |       |     | 0.173   |               | 20-Mesh |     |     | 0.126   |               |
| 20-Mesh                                                     | 99  |     | 0.403   |               | 20-Mesh  |       |     | 0.212   |               | 20-Mesh |     |     | 0.102   |               |
| 20-Mesh                                                     | 99  | 140 | 0.550   | 57.1          | 20-Mesh  |       |     | 0.179   |               | 20-Mesh | 103 | 240 | 0.132   | 35.7          |
| 20-Mesh                                                     | 99  | 150 | 0.268   | 31.5          | 20-Mesh  | 101   | 230 | 0.124   | 27.7          | 20-Mesh | 103 | 250 | 0.125   | 35.1          |
| 20-Mesh                                                     | 99  | 220 | 0.473   | 50.8          | 20-Mesh  | 101   | 240 | 0.146   | 32.6          | 20-Mesh | 103 | 260 | 0.130   | 36.7          |
| 20-Mesh                                                     | 99  | 230 | 0.167   | 22.9          | 20-Mesh  | 101   | 250 | 0.136   | 31.3          | 20-Mesh | 103 | 270 | 0.143   | 41.3          |
| 20-Mesh                                                     | 99  | 240 | 0.307   | 39.0          | 20-Mesh  | 101   | 260 | 0.147   | 33.9          | 20-Mesh | 103 | 280 | 0.150   | 43.5          |
| 20-Mesh                                                     | 99  |     | 0.234   |               | 20-Mesh  |       |     | 0.151   |               | 20-Mesh |     |     | 0.229   |               |
| 20-Mesh                                                     | 99  |     | 0.713   |               | 20-Mesh  |       |     | 0.184   |               | 20-Mesh |     |     | 0.134   |               |
|                                                             | 99  |     | 0.713   |               |          |       |     | 0.259   |               |         |     |     | 0.134   |               |
| 20-Mesh                                                     |     |     |         |               | 20-Mesh  |       |     |         |               | 20-Mesh |     |     |         |               |
| 20-Mesh                                                     | 99  |     | 0.915   |               | 20-Mesh  |       |     | 0.177   |               | 20-Mesh |     |     | 0.221   |               |
| 20-Mesh                                                     | 99  |     | 0.925   |               | 20-Mesh  |       |     | 0.244   |               | 20-Mesh |     |     | 0.329   |               |
| 20-Mesh                                                     | 99  | 300 | 0.673   | 89.9          | 20-Mesh  | 101   | 320 | 0.374   | 80.9          | 20-Mesh | 103 | 340 | 0.214   | 44.0          |
| 20-Mesh                                                     | 99  | 310 | 0.677   | 93.1          | 20-Mesh  | 101   | 330 | 0.388   | 81.1          | 20-Mesh | 103 | 350 | 0.278   | 57.0          |
| 20-Mesh                                                     | 99  | 320 | 0.557   | 82.8          | 20-Mesh  | 101   | 340 | 0.278   | 50.2          | 20-Mesh | 104 | 0   | 0.266   | 55.1          |
| 20-Mesh                                                     | 99  | 330 | 0.460   | 67.8          | 20-Mesh  | 101   | 350 | 0.295   | 52.1          | 20-Mesh | 104 | 10  | 0.257   | 53.9          |
| 20-Mesh                                                     | 99  |     | 0.469   |               | 20-Mesh  | 102   |     | 0.287   |               | 20-Mesh | 104 |     | 0.173   |               |
| 20-Mesh                                                     | 99  |     | 0.564   |               | 20-Mesh  | 102   |     | 0.286   |               | 20-Mesh | 104 |     | 0.144   |               |
| 20-Mesh                                                     | 100 | 0   | 0.315   |               | 20-Mesh  | 102   |     | 0.245   |               | 20-Mesh | 104 |     | 0.165   |               |
|                                                             |     |     |         |               |          |       |     |         |               |         |     |     |         |               |
| 20-Mesh                                                     | 100 |     | 0.311   |               | 20-Mesh  | 102   |     | 0.188   |               | 20-Mesh | 104 |     | 0.238   |               |
| 20-Mesh                                                     |     | 20  | 0.380   |               | 20-Mesh  | 102   |     | 0.212   |               | 20-Mesh | 104 |     | 0.106   |               |
| 20-Mesh                                                     | 100 |     | 0.540   |               | 20-Mesh  | 102   |     | 0.253   |               | 20-Mesh | 104 |     | 0.094   |               |
| 20-Mesh                                                     | 100 | 40  | 0.435   | 76.0          | 20-Mesh  | 102   | 60  | 0.129   | 36.1          | 20-Mesh | 104 | 80  | 0.126   | 39.2          |
| 20-Mesh                                                     | 100 | 50  | 0.320   | 56.5          | 20-Mesh  | 102   | 70  | 0.126   | 36.0          | 20-Mesh | 104 | 90  | 0.169   | 48.2          |
| 20-Mesh                                                     | 100 | 60  | 0.255   | 47.3          | 20-Mesh  | 102   | 80  | 0.139   | 38.8          | 20-Mesh | 104 | 100 | 0.182   | 49.9          |
| 20-Mesh                                                     | 100 | 70  | 0.245   | 44.5          | 20-Mesh  | 102   | 90  | 0.190   | 48.1          | 20-Mesh | 104 | 110 | 0.153   | 42.5          |
| 20-Mesh                                                     | 100 | 80  | 0.161   |               | 20-Mesh  |       | 100 | 0.197   |               | 20-Mesh |     |     | 0.168   |               |
| 20-Mesh                                                     | 100 |     | 0.203   |               | 20-Mesh  |       |     | 0.166   |               | 20-Mesh |     |     | 0.138   |               |
| 20-Mesh                                                     |     |     | 0.230   |               | 20-Mesh  |       |     | 0.170   |               | 20-Mesh |     |     | 0.149   |               |
| 20-Mesh                                                     | 100 |     | 0.383   |               |          |       | 130 |         | 36.5          |         |     |     | 0.192   |               |
|                                                             |     |     |         |               | 20-Mesh  |       |     |         |               | 20-Mesh |     |     |         |               |
| 20-Mesh                                                     |     |     | 0.354   |               | 20-Mesh  |       |     | 0.161   |               | 20-Mesh |     |     | 0.111   |               |
| 20-Mesh                                                     |     |     | 0.341   |               | 20-Mesh  |       |     | 0.198   |               |         |     |     | 0.094   |               |
| 20-Mesh                                                     |     |     | 0.217   |               | 20-Mesh  |       |     | 0.134   |               | 20-Mesh |     |     |         |               |
| 20-Mesh                                                     | 100 | 150 | 0.226   | 31.5          | 20-Mesh  | 102   | 230 | 0.114   | 28.2          | 20-Mesh | 104 | 250 | 0.115   | 33.9          |
| 20-Mesh                                                     | 100 | 220 | 0.460   | 58.9          | 20-Mesh  | 102   | 240 | 0.137   | 33.8          | 20-Mesh | 104 | 260 | 0.127   | 37.0          |
| 20-Mesh                                                     | 100 | 230 | 0.157   | 25.8          | 20-Mesh  | 102   | 250 | 0.132   | 35.0          | 20-Mesh | 104 | 270 | 0.144   | 42.8          |
| 20-Mesh                                                     | 100 | 240 | 0.153   | 26.4          | 20-Mesh  | 102   | 260 | 0.141   | 37.8          | 20-Mesh | 104 | 280 | 0.144   | 43.2          |
| 20-Mesh                                                     |     |     | 0.178   |               | 20-Mesh  |       |     | 0.146   |               | 20-Mesh |     |     | 0.217   |               |
| 20-Mesh                                                     |     |     | 0.680   |               | 20-Mesh  |       |     | 0.158   |               | 20-Mesh |     |     | 0.121   |               |
| 20-Mesh                                                     |     |     | 0.378   |               | 20-Mesh  |       |     | 0.242   |               | 20-Mesh |     |     | 0.200   |               |
|                                                             |     |     |         |               |          |       |     |         |               |         |     |     |         |               |
| 20-Mesh                                                     |     |     | 0.412   |               | 20-Mesh  |       |     | 0.165   |               | 20-Mesh |     |     | 0.210   |               |
| 20-Mesh                                                     |     |     | 0.687   |               | 20-Mesh  |       |     | 0.221   |               | 20-Mesh |     |     |         |               |
| 20-Mesh                                                     |     |     | 0.592   |               | 20-Mesh  |       |     | 0.227   |               | 20-Mesh |     |     | 0.216   |               |
| 20-Mesh                                                     | 100 | 310 | 0.643   | 106.3         | 20-Mesh  | 102   | 330 | 0.379   | 89.5          | 20-Mesh | 104 | 350 | 0.242   | 50.2          |
| 20-Mesh                                                     | 100 | 320 | 0.506   | 89.8          | 20-Mesh  | 102   | 340 | 0.216   | 41.2          |         |     |     |         |               |
| 20-Mesh                                                     | 100 | 330 | 0.420   | 73.1          | 20-Mesh  | 102   | 350 | 0.282   | 53.4          |         |     |     |         |               |
| 20-Mesh                                                     |     |     | 0.431   |               | 20-Mesh  | 103   |     | 0.275   |               |         |     |     |         |               |
| 20-Mesh                                                     |     |     | 0.452   |               | 20-Mesh  | 103   |     | 0.261   |               |         |     |     |         |               |
| 20-Mesh                                                     | 101 |     | 0.303   |               | 20-Mesh  | 103   |     | 0.193   |               |         |     |     |         |               |
| 20-Mesh                                                     | 101 |     | 0.296   |               | 20-Mesh  | 103   |     | 0.172   |               |         |     |     |         |               |
| 20-Mesii                                                    | TOT | TO  | 0.230   | 30.2          | 20-Mesii | T 0 2 | 50  | 0.1/2   | 39.3          |         |     |     |         |               |

Table 10. Test 7036 sphere-cone 40-mesh transition locations.

```
Run Ray so/R Rea
                            Model
                                    Run Ray so/R Rea
                                                        Model
Model
                                                                Run Ray so/R Rea
               1.165 154.2 40-Mesh 96 100 0.363 81.1
40-Mesh 93
           0
                                                        40-Mesh 98
                                                                    120 0.295 70.2
                           40-Mesh 96 110 0.317 70.3
40-Mesh 93
            240 0.673 71.6
                                                        40-Mesh 98
                                                                    130 0.328 72.7
40-Mesh 93
            350 1.079 149.6 40-Mesh 96 120 0.336 70.6
                                                        40-Mesh 98
                                                                    140 0.277 62.0
               1.098 181.8 40-Mesh 96 130 0.348 71.0
                                                        40-Mesh 98
40-Mesh 94
                                                                    150 0.322 66.2
           20 0.577 108.6 40-Mesh 96 140 0.314 62.7
40-Mesh 94
                                                        40-Mesh 98
                                                                    220 0.381 79.4
                                                                    230 0.411 87.7
40-Mesh 94
            30 0.668 118.3 40-Mesh 96 150 0.354 65.2
                                                        40-Mesh 98
40-Mesh 94
            40
               0.607 106.8 40-Mesh 96 220 0.465 84.4
                                                        40-Mesh 98
                                                                    240 0.441 95.9
40-Mesh 94
            50
               1.086 149.0 40-Mesh
                                    96
                                        230 0.492 90.8
                                                        40-Mesh
                                                                98
                                                                    250 0.409 92.4
40-Mesh 94
            60
               0.996 138.0 40-Mesh
                                    96
                                        240 0.502 96.5
                                                        40-Mesh
                                                                98
                                                                    260 0.380 91.7
                                       250 0.535 105.5 40-Mesh
40-Mesh 94
               0.886 124.4 40-Mesh
                                    96
                                                                98
                                                                    270 0.394 100.1
            70
40-Mesh 94
            90 0.942 114.1 40-Mesh 96
                                       260 0.401 88.2
                                                        40-Mesh 98
                                                                    280 0.421 108.4
           100 0.772 100.5 40-Mesh 96
                                       270 0.421 95.6
                                                        40-Mesh 98
                                                                    290 0.369 98.6
40-Mesh 94
40-Mesh 94
           240 0.667 84.5 40-Mesh 96 280 0.452 103.7 40-Mesh 98
                                                                    300 0.303 85.7
40-Mesh 94
                           40-Mesh 96 290 0.405 98.4
                                                        40-Mesh 98
           250 0.649 86.0
                                                                    310 0.364 101.9
40-Mesh 94
           260 0.777 100.8 40-Mesh 96 300 0.351 89.8
                                                        40-Mesh 98
                                                                    320 0.302 81.8
40-Mesh 94
            290 1.020 131.2 40-Mesh
                                    96
                                        310 0.449 112.6 40-Mesh
                                                                98
                                                                    330 0.431 115.8
40-Mesh 94
            300 0.936 134.4 40-Mesh
                                    96
                                        320 0.399 101.4 40-Mesh
                                                                98
                                                                    340 0.430 111.1
40-Mesh 94
            310 0.904 137.2 40-Mesh 96
                                       330 0.447 112.4
                                                        40-Mesh 98
                                                                    350 0.511 141.4
40-Mesh 94
            320 0.986 151.0 40-Mesh 96 340 0.477 122.2
40-Mesh 94
           330 1.115 162.9 40-Mesh 96
                                       350 0.555 160.9
40-Mesh 94
           340 0.884 153.4 40-Mesh 97 0 0.491 121.5
           350 1.034 175.3 40-Mesh 97 10 0.462 112.5
40-Mesh 94
                                        20 0.328 73.7
40-Mesh 95
           0
               0.518 114.2 40-Mesh 97
40-Mesh 95
           10
               0.650 168.6 40-Mesh 97
                                        30 0.320 78.6
               0.460 102.4 40-Mesh
                                           0.254 65.6
40-Mesh 95
            20
                                    97
                                        40
40-Mesh 95
            30
               0.364 76.1
                           40-Mesh
                                    97
                                        50
                                           0.310 82.0
40-Mesh 95
               0.281 60.3
                                        60 0.259 72.5
                           40-Mesh 97
            40
               0.354 79.7
                           40-Mesh 97
                                        70 0.247 68.5
40-Mesh 95
            50
40-Mesh 95
            60
               0.335 76.5
                           40-Mesh 97
                                       80 0.234 63.3
40-Mesh 95
           70 0.400 87.0
                           40-Mesh 97 90 0.337 83.6
40-Mesh 95
           80 0.455 93.9
                           40-Mesh 97
                                       100 0.329 79.0
40-Mesh 95
           90 0.588 110.8 40-Mesh 97
                                        110 0.299 70.1
40-Mesh 95
            100 0.553 100.1 40-Mesh
                                    97
                                        120 0.330 73.9
40-Mesh 95
            110 0.574 99.1
                            40-Mesh
                                    97
                                        130 0.334 71.3
40-Mesh 95
                           40-Mesh 97 140 0.295 61.6
            120 0.440 78.7
40-Mesh 95
                           40-Mesh 97 150 0.332 66.0
           130 0.506 84.5
40-Mesh 95
           140 0.486 78.4
                           40-Mesh 97 220 0.427 82.5
40-Mesh 95
           150 0.422 67.5
                           40-Mesh 97 230 0.453 90.3
                           40-Mesh 97 240 0.488 100.2
40-Mesh 95
           220 0.504 81.4
           230 0.553 90.1
40-Mesh 95
                           40-Mesh 97 250 0.481 103.6
                                       260 0.392 91.9
40-Mesh 95
            240 0.596 97.1
                           40-Mesh 97
40-Mesh 95
            250 0.600 101.5 40-Mesh
                                    97
                                        270 0.405 97.0
40-Mesh 95
            260 0.485 90.5
                           40-Mesh 97
                                        280 0.444 108.7
40-Mesh 95
            270 0.472 93.9
                           40-Mesh 97
                                       290 0.379 99.1
40-Mesh 95
           280 0.561 111.4 40-Mesh 97
                                       300 0.337 91.5
40-Mesh 95
           290 0.617 121.4 40-Mesh 97
                                       310 0.410 109.4
40-Mesh 95
           300 0.580 123.4 40-Mesh 97 320 0.316 84.2
40-Mesh 95
           310 0.591 127.2 40-Mesh 97
                                       330 0.422 110.5
40-Mesh 95
           320 0.592 129.9 40-Mesh
                                    97
                                        340 0.467 124.6
                                        350 0.532 155.9
40-Mesh 95
            330 0.718 157.6 40-Mesh
                                    97
40-Mesh 95
            340 0.518 121.3 40-Mesh
                                    98
                                        0
                                            0.485 122.9
40-Mesh 95
            350 0.624 163.4 40-Mesh
                                    98
                                        10 0.452 112.7
                0.503 120.0 40-Mesh
                                    98
                                        20 0.327 75.9
40-Mesh 96
            0
40-Mesh 96
           10 0.472 110.6 40-Mesh
                                    98
                                       30 0.305 75.6
40-Mesh 96
           20 0.335 72.4
                           40-Mesh 98 40 0.232 61.8
40-Mesh 96
           30
               0.331 77.7
                            40-Mesh 98 50 0.292 82.4
               0.265 64.6
                           40-Mesh 98 60 0.219 63.1
40-Mesh 96
           40
40-Mesh 96
            50
               0.315 79.0
                            40-Mesh 98
                                        70 0.228 65.7
                0.276 73.3
                            40-Mesh
                                    98
                                           0.213 61.2
40-Mesh 96
            60
                                        80
40-Mesh 96
            70
               0.253 65.9
                            40-Mesh
                                    98
                                        90 0.290 78.8
40-Mesh 96
                           40-Mesh 98
                                        100 0.255 67.5
            80
               0.245 62.3
40-Mesh 96
           90
               0.364 83.9
                            40-Mesh 98
                                        110 0.278 69.3
```

Table 11. Test 7036 sphere-cone 80-mesh transition locations.

|          |     |     | Tab               | le 11. To     | est 7036 spł | iere-c | one 8 | 80-mesh | transiti      |
|----------|-----|-----|-------------------|---------------|--------------|--------|-------|---------|---------------|
| Model    | Run | Ray | s <sub>0</sub> /R | $Re_{\theta}$ | Model        | Run    | Ray   | $s_0/R$ | $Re_{\theta}$ |
| 80-Mesh  | 88  | 0   | 0.868             | 168.1         | 80-Mesh      | 91     | 140   | 0.583   | 105.9         |
| 80-Mesh  | 88  | 10  | 0.665             | 137.9         | 80-Mesh      | 91     | 150   | 0.446   | 85.7          |
| 80-Mesh  | 89  | 0   | 0.522             | 116.8         | 80-Mesh      | 91     | 220   | 0.550   | 101.5         |
| 80-Mesh  | 89  | 10  | 0.512             | 116.1         | 80-Mesh      | 91     | 230   | 0.369   | 78.1          |
| 80-Mesh  | 89  | 20  | 0.746             | 174.2         | 80-Mesh      | 91     | 240   | 0.592   | 115.2         |
| 80-Mesh  | 89  | 30  | 0.524             | 118.4         | 80-Mesh      | 91     | 250   | 0.584   | 120.2         |
| 80-Mesh  | 89  | 40  | 0.596             | 132.2         | 80-Mesh      | 91     | 260   | 0.579   | 124.2         |
| 80-Mesh  | 89  | 50  | 0.873             | 170.5         | 80-Mesh      | 91     | 270   | 0.555   | 124.2         |
| 80-Mesh  | 89  | 60  | 0.762             | 152.6         | 80-Mesh      | 91     | 280   | 0.648   | 145.7         |
|          |     |     |                   |               |              | 91     | 290   |         |               |
| 80-Mesh  | 89  | 70  | 0.811             | 148.5         | 80-Mesh      |        |       | 0.569   | 139.1         |
| 80-Mesh  | 89  | 80  | 0.899             | 150.6         | 80-Mesh      | 91     | 300   | 0.512   | 132.3         |
| 80-Mesh  | 89  | 90  | 0.956             | 144.7         | 80-Mesh      | 91     | 310   | 0.480   | 126.9         |
| 80-Mesh  | 89  | 230 | 0.642             | 99.2          | 80-Mesh      | 91     | 320   | 0.427   | 114.7         |
| 80-Mesh  | 89  | 260 | 0.740             | 122.6         | 80-Mesh      | 91     | 330   | 0.444   | 117.1         |
| 80-Mesh  | 89  | 300 | 0.869             | 164.8         | 80-Mesh      | 91     | 340   | 0.446   | 114.0         |
| 80-Mesh  | 89  | 310 | 0.768             | 157.1         | 80-Mesh      | 91     | 350   | 0.499   | 127.4         |
| 80-Mesh  | 89  | 320 | 0.565             | 126.8         | 80-Mesh      | 92     | 0     | 0.362   | 84.3          |
| 80-Mesh  | 89  | 330 | 0.551             | 125.9         | 80-Mesh      | 92     | 10    | 0.421   | 105.0         |
| 80-Mesh  | 89  | 340 | 0.450             | 100.5         | 80-Mesh      | 92     | 20    | 0.413   | 107.5         |
| 80-Mesh  | 89  | 350 | 0.514             | 117.6         | 80-Mesh      | 92     | 30    | 0.434   | 119.1         |
| 80-Mesh  | 90  | 0   | 0.430             | 93.0          | 80-Mesh      | 92     | 40    | 0.502   | 139.0         |
| 80-Mesh  | 90  | 10  | 0.494             | 118.4         | 80-Mesh      | 92     | 50    | 0.480   | 131.4         |
| 80-Mesh  | 90  | 20  | 0.428             | 101.2         | 80-Mesh      | 92     | 60    | 0.396   | 108.6         |
| 80-Mesh  | 90  | 30  | 0.460             | 115.5         | 80-Mesh      | 92     | 70    | 0.525   | 132.1         |
| 80-Mesh  | 90  | 40  | 0.523             | 133.1         | 80-Mesh      | 92     | 80    | 0.525   | 129.6         |
|          |     |     |                   | 133.1         | 80-Mesh      | 92     |       | 0.500   |               |
| 80-Mesh  | 90  | 50  | 0.545             |               |              |        | 90    |         | 121.8         |
| 80-Mesh  | 90  | 60  | 0.486             | 120.7         | 80-Mesh      | 92     | 100   | 0.509   | 117.6         |
| 80-Mesh  | 90  | 70  | 0.535             | 124.7         | 80-Mesh      | 92     | 110   | 0.515   | 113.1         |
| 80-Mesh  | 90  | 80  | 0.533             | 119.9         | 80-Mesh      | 92     | 120   | 0.550   | 112.9         |
| 80-Mesh  | 90  | 90  | 0.561             | 120.0         | 80-Mesh      | 92     | 130   | 0.474   | 98.1          |
| 80-Mesh  | 90  | 100 | 0.557             | 114.7         | 80-Mesh      | 92     | 140   | 0.520   | 101.1         |
| 80-Mesh  | 90  | 110 | 0.580             | 113.0         | 80-Mesh      | 92     | 150   | 0.410   | 81.6          |
| 80-Mesh  | 90  | 120 | 0.609             | 112.0         | 80-Mesh      | 92     | 220   | 0.512   | 100.6         |
| 80-Mesh  | 90  | 130 | 0.513             | 95.8          | 80-Mesh      | 92     | 230   | 0.332   | 74.2          |
| 80-Mesh  | 90  | 150 | 0.472             | 83.7          | 80-Mesh      | 92     | 240   | 0.572   | 116.5         |
| 80-Mesh  | 90  | 230 | 0.518             | 96.1          | 80-Mesh      | 92     | 250   | 0.574   | 121.7         |
| 80-Mesh  | 90  | 240 | 0.640             | 114.8         | 80-Mesh      | 92     | 260   | 0.565   | 127.4         |
| 80-Mesh  | 90  | 250 | 0.602             | 116.0         | 80-Mesh      | 92     | 270   | 0.539   | 128.9         |
| 80-Mesh  | 90  | 260 | 0.587             | 119.3         | 80-Mesh      | 92     | 280   | 0.613   | 144.7         |
| 80-Mesh  | 90  | 270 | 0.670             | 136.0         | 80-Mesh      | 92     | 290   | 0.556   | 138.1         |
| 80-Mesh  | 90  | 280 | 0.705             | 145.1         | 80-Mesh      | 92     | 300   | 0.437   | 118.9         |
| 80-Mesh  | 90  | 290 | 0.600             | 136.5         | 80-Mesh      | 92     | 310   | 0.465   | 128.3         |
| 80-Mesh  | 90  | 300 | 0.588             | 141.2         | 80-Mesh      | 92     | 320   | 0.419   | 118.1         |
| 80-Mesh  | 90  |     |                   | 128.4         | 80-Mesh      |        |       | 0.423   |               |
|          |     |     | 0.515             |               |              | 92     |       |         |               |
| 80-Mesh  | 90  |     | 0.438             | 111.6         | 80-Mesh      | 92     |       | 0.415   | 107.1         |
| 80-Mesh  | 90  | 330 | 0.482             | 121.5         | 80-Mesh      | 92     | 350   | 0.499   | 134.3         |
| 80-Mesh  | 90  | 340 | 0.441             | 105.8         |              |        |       |         |               |
| 80-Mesh  | 90  | 350 | 0.505             | 123.9         |              |        |       |         |               |
| 80-Mesh  | 91  | 0   | 0.381             | 84.0          |              |        |       |         |               |
| 80-Mesh  | 91  | 10  | 0.440             | 105.2         |              |        |       |         |               |
| 80-Mesh  | 91  | 20  | 0.419             | 102.7         |              |        |       |         |               |
| 80-Mesh  | 91  | 30  | 0.452             | 119.7         |              |        |       |         |               |
| 80-Mesh  | 91  | 40  | 0.512             | 137.9         |              |        |       |         |               |
| 80-Mesh  | 91  | 50  | 0.509             | 133.0         |              |        |       |         |               |
| 80-Mesh  | 91  | 60  | 0.415             | 110.1         |              |        |       |         |               |
| 80-Mesh  | 91  | 70  | 0.526             | 130.4         |              |        |       |         |               |
| 80-Mesh  | 91  | 80  | 0.533             | 127.1         |              |        |       |         |               |
| 80-Mesh  | 91  | 90  | 0.522             | 120.7         |              |        |       |         |               |
| 80-Mesh  | 91  | 100 | 0.547             | 119.0         |              |        |       |         |               |
| 80-Mesh  | 91  | 110 | 0.552             | 115.7         |              |        |       |         |               |
| 80-Mesh  | 91  | 120 | 0.572             | 113.7         |              |        |       |         |               |
| 80-Mesh  | 91  | 130 |                   | 96.4          |              |        |       |         |               |
| oo-mesii | 91  | 100 | 0.430             | 20.4          |              |        |       |         |               |

Table 12. Test 7036 sphere-cone 140-mesh transition locations.

| Model                | Run | Rav                               | s <sub>0</sub> /R |                | Model    |    |     | s <sub>0</sub> /R | Reθ   |
|----------------------|-----|-----------------------------------|-------------------|----------------|----------|----|-----|-------------------|-------|
| 140-Mesh             |     | 0                                 |                   | 157.7          | 140-Mesh |    | 50  | 0.503             | -     |
| 140-Mesh             |     | 10                                |                   | 217.5          | 140-Mesh |    | 60  |                   | 145.2 |
| 140-Mesh             |     | 20                                |                   | 217.2          | 140-Mesh |    | 70  | 0.434             |       |
| 140-Mesh             |     | 30                                |                   | 205.3          | 140-Mesh |    | 80  | 0.619             |       |
| 140-Mesh             |     | 40                                | 1.113             |                | 140-Mesh |    | 90  |                   | 136.9 |
| 140-Mesh             |     | 310                               | 1.062             |                | 140-Mesh |    |     | 0.379             |       |
| 140-Mesh             |     | 320                               |                   | 202.0          | 140-Mesh |    |     | 0.599             | 125.8 |
| 140-Mesh             |     | 330                               | 0.602             |                | 140-Mesh |    |     |                   | 131.3 |
| 140-Mesh             | 82  | 340                               | 0.521             | 123.2          | 140-Mesh | 85 | 240 | 0.614             | 123.0 |
| 140-Mesh             | 82  | 350                               | 0.841             | 203.1          | 140-Mesh | 85 | 250 | 0.651             | 132.5 |
| 140-Mesh             | 83  | 0                                 | 0.546             | 149.7          | 140-Mesh | 85 | 260 | 0.662             | 141.7 |
| 140-Mesh             | 83  | 10                                | 0.522             | 139.2          | 140-Mesh | 85 | 270 | 0.510             | 124.5 |
| 140-Mesh             | 83  | 20                                | 0.605             | 163.9          | 140-Mesh | 85 | 280 | 0.685             | 157.1 |
| 140-Mesh             | 83  | 30                                | 0.610             | 157.2          | 140-Mesh | 85 | 290 | 0.620             | 151.6 |
| 140-Mesh             | 83  | 40                                | 0.699             | 172.7          | 140-Mesh | 85 | 300 | 0.570             | 149.9 |
| 140-Mesh             |     | 50                                |                   | 151.3          | 140-Mesh |    |     | 0.531             | 146.1 |
| 140-Mesh             |     | 60                                |                   | 157.9          | 140-Mesh |    |     |                   | 172.1 |
| 140-Mesh             |     | 70                                |                   | 128.6          | 140-Mesh |    |     | 1.411             | 134.5 |
| 140-Mesh             |     | 80                                |                   | 140.0          | 140-Mesh |    |     | 0.480             | 135.5 |
| 140-Mesh             |     | 90                                | 0.703             |                | 140-Mesh | 85 | 350 | 0.504             | 138.5 |
| 140-Mesh             |     | 100                               | 0.680             |                |          |    |     |                   |       |
| 140-Mesh             |     |                                   | 0.696             |                |          |    |     |                   |       |
| 140-Mesh             |     | 250                               | 0.695             |                |          |    |     |                   |       |
| 140-Mesh<br>140-Mesh |     | 260                               | 0.721<br>0.531    | 137.8          |          |    |     |                   |       |
| 140-Mesh             |     | 280                               | 0.752             |                |          |    |     |                   |       |
| 140-Mesh             |     | 290                               |                   |                |          |    |     |                   |       |
| 140-Mesh             |     |                                   | 0.649             |                |          |    |     |                   |       |
| 140-Mesh             |     |                                   | 0.599             |                |          |    |     |                   |       |
| 140-Mesh             |     | 320                               | 0.674             |                |          |    |     |                   |       |
| 140-Mesh             |     |                                   | 0.473             |                |          |    |     |                   |       |
| 140-Mesh             |     | 340                               | 0.501             |                |          |    |     |                   |       |
| 140-Mesh             |     | 350                               | 0.522             |                |          |    |     |                   |       |
| 140-Mesh             |     | 0                                 | 0.498             |                |          |    |     |                   |       |
| 140-Mesh             | 84  | 10                                | 0.496             | 129.4          |          |    |     |                   |       |
| 140-Mesh             | 84  | 20                                | 0.589             | 168.2          |          |    |     |                   |       |
| 140-Mesh             | 84  | 30                                | 0.542             | 147.7          |          |    |     |                   |       |
| 140-Mesh             | 84  | 40                                | 0.525             | 143.2          |          |    |     |                   |       |
| 140-Mesh             | 84  | 50                                | 0.545             |                |          |    |     |                   |       |
| 140-Mesh             | 84  | 60                                | 0.583             |                |          |    |     |                   |       |
| 140-Mesh             |     | 70                                | 0.502             |                |          |    |     |                   |       |
| 140-Mesh             |     | 80                                | 0.649             |                |          |    |     |                   |       |
| 140-Mesh             |     | 90                                | 0.607             |                |          |    |     |                   |       |
| 140-Mesh             |     | 100                               |                   | 91.4<br>133.7  |          |    |     |                   |       |
| 140-Mesh             |     |                                   |                   |                |          |    |     |                   |       |
| 140-Mesh<br>140-Mesh |     | <ul><li>240</li><li>250</li></ul> | 0.632             | 121.4<br>130.9 |          |    |     |                   |       |
| 140-Mesh             |     | 260                               | 0.670             | 130.9          |          |    |     |                   |       |
| 140-Mesh             |     | 270                               | 0.519             | 121.0          |          |    |     |                   |       |
| 140-Mesh             |     | 280                               | 0.702             | 153.9          |          |    |     |                   |       |
| 140-Mesh             |     | 290                               | 0.641             | 152.7          |          |    |     |                   |       |
| 140-Mesh             |     | 300                               | 0.574             | 145.5          |          |    |     |                   |       |
| 140-Mesh             |     | 310                               | 0.579             | 148.6          |          |    |     |                   |       |
| 140-Mesh             |     | 320                               | 0.647             | 172.1          |          |    |     |                   |       |
| 140-Mesh             |     | 330                               | 0.446             | 119.4          |          |    |     |                   |       |
| 140-Mesh             | 84  | 340                               | 0.484             | 133.6          |          |    |     |                   |       |
| 140-Mesh             | 84  | 350                               | 0.510             | 138.7          |          |    |     |                   |       |
| 140-Mesh             |     | 0                                 | 0.473             | 120.0          |          |    |     |                   |       |
| 140-Mesh             |     | 10                                | 0.482             | 126.7          |          |    |     |                   |       |
| 140-Mesh             |     | 20                                | 0.573             | 167.8          |          |    |     |                   |       |
| 140-Mesh             |     | 30                                | 0.528             | 147.7          |          |    |     |                   |       |
| 140-Mesh             | 83  | 40                                | 0.480             | 134.5          |          |    |     |                   |       |

Table 13. Test 7036 sphere-cone 230-mesh transition locations.

```
Run Ray so/R Rea
                             Model
                                     Run Ray so/R Rea
Model
            310 1.226 124.7
230-Mesh 74
                             230-Mesh 78 290 0.577 140.3
230-Mesh 75
            60 0.556 94.1
                             230-Mesh 78
                                         300 0.603 151.4
230-Mesh 75
            80 0.774 110.1 230-Mesh 78 310 0.646 163.8
           300 1.072 141.5 230-Mesh 78
                                        320 0.709 184.2
230-Mesh 75
230-Mesh 75 310 1.199 150.4 230-Mesh 78 330 0.790 205.1
           320 1.213 159.5 230-Mesh 78 340 0.604 174.3
230-Mesh 75
230-Mesh 76
            10 0.940 214.1 230-Mesh 78
                                         350 0.713 218.6
230-Mesh 76
            20
                1.003 208.8 230-Mesh 79
                                         0
                                             0.774 247.9
230-Mesh 76
            30
                0.766 167.4 230-Mesh 79
                                         10 0.733 229.7
                                         20 0.627 185.5
                0.568 127.8 230-Mesh 79
230-Mesh 76
            40
230-Mesh 76
            50
                0.965 180.1 230-Mesh 79
                                         30 0.539 152.1
                0.481 107.2 230-Mesh 79
                                         40 0.465 130.7
230-Mesh 76
            60
230-Mesh 76
            70 0.691 134.7 230-Mesh 79
                                         50 0.409 114.6
           80 0.652 125.9 230-Mesh 79 60 0.468 127.6
230-Mesh 76
            140 0.564 89.7
                            230-Mesh 79
                                         70 0.498 128.4
230-Mesh 76
230-Mesh 76
            280 1.026 155.9 230-Mesh 79
                                         80 0.449 115.2
230-Mesh 76
            290 1.022 166.7
                             230-Mesh 79
                                         90 0.440 112.0
            300 1.006 177.0 230-Mesh 79
                                         100 0.497 116.4
230-Mesh 76
            310 1.087 189.6 230-Mesh 79
                                        110 0.475 107.4
230-Mesh 76
230-Mesh 76 320 1.136 201.1 230-Mesh 79 120 0.586 118.5
230-Mesh 76 330 1.044 202.4 230-Mesh 79 140 0.526 102.5
230-Mesh 76 340 1.023 210.5 230-Mesh 79 260 0.809 157.6
230-Mesh 76 350 1.032 222.3 230-Mesh 79 270 0.714 157.0
230-Mesh 77
            0
                0.879 241.3 230-Mesh 79
                                         280 0.843 177.4
230-Mesh 77
                0.799 221.2 230-Mesh 79
                                         290 0.569 141.9
            10
230-Mesh 77
            20
                0.782 201.3 230-Mesh 79
                                         300 0.585 154.4
230-Mesh 77
                0.638 162.6 230-Mesh 79
                                         310 0.586 156.7
            30
230-Mesh 77
                0.545 140.0 230-Mesh 79
                                         320 0.666 180.4
            40
230-Mesh 77
            50
                0.526 130.6 230-Mesh 79
                                         330 0.727 197.6
230-Mesh 77
           60 0.477 119.5 230-Mesh 79
                                         340 0.585 173.6
            70 0.646 145.8 230-Mesh 79 350 0.650 210.9
230-Mesh 77
230-Mesh 77
            80 0.541 122.1
            90 0.498 111.1
230-Mesh 77
230-Mesh 77
            100 0.556 116.3
            110 0.613 117.7
230-Mesh 77
            140 0.550 96.9
230-Mesh 77
230-Mesh 77
           270 0.744 146.3
230-Mesh 77 280 0.936 170.3
230-Mesh 77 290 0.657 146.7
230-Mesh 77
            300 0.634 150.9
230-Mesh 77
            310 0.717 167.8
230-Mesh 77
            320 0.864 200.6
230-Mesh 77
            330 0.904 211.4
230-Mesh 77
            340 0.627 168.0
230-Mesh 77
            350 0.758 213.7
230-Mesh 78
            0
                0.823 246.7
230-Mesh 78
            10
                0.753 224.2
            20
               0.680 190.5
230-Mesh 78
            30
                0.631 168.8
230-Mesh 78
                0.515 138.8
230-Mesh 78
            40
230-Mesh 78
            50
                0.464 123.5
                0.470 123.8
230-Mesh 78
            60
            70 0.571 139.8
230-Mesh 78
230-Mesh 78
            80 0.520 124.4
230-Mesh 78
           90 0.468 110.9
230-Mesh 78
           100 0.520 115.8
           110 0.519 111.2
230-Mesh 78
230-Mesh 78
            120 0.604 117.3
            140 0.529 99.0
230-Mesh 78
230-Mesh 78
            260 0.851 155.4
230-Mesh 78
            270 0.728 152.7
230-Mesh 78 280 0.919 177.7
```

Table 14. Test 7036 sphere-cone smooth-OML transition locations.

| Model  | Run | Ray | $s_0/R$ | $Re_{\theta}$ |
|--------|-----|-----|---------|---------------|
| Smooth | 53  | 0   | 0.883   | 246.0         |
| Smooth | 53  | 10  | 0.971   | 246.6         |
| Smooth | 53  | 20  | 0.853   | 216.9         |
| Smooth | 53  | 30  | 1.070   | 234.8         |
| Smooth | 53  | 40  | 0.733   | 182.1         |
| Smooth | 53  | 50  | 0.792   | 183.2         |
| Smooth | 53  | 60  | 0.773   | 174.1         |
| Smooth | 53  | 70  | 0.778   | 167.6         |
| Smooth | 53  | 80  | 0.961   | 174.8         |
| Smooth | 53  | 280 | 0.987   | 175.0         |
| Smooth | 53  | 290 | 0.876   | 179.3         |
| Smooth | 53  | 300 | 0.767   | 174.0         |
| Smooth | 53  | 310 | 0.846   | 190.8         |
| Smooth | 53  | 320 | 0.896   | 208.7         |
| Smooth | 53  | 330 | 0.988   | 226.8         |
| Smooth | 53  | 340 | 0.830   | 213.7         |
| Smooth | 53  | 350 | 0.030   | 247.1         |
| Smooth | 54  | 0   | 0.831   | 251.8         |
| Smooth | 54  | 10  | 0.849   | 244.1         |
|        | 54  |     | 0.849   |               |
| Smooth | -   | 20  | 0.819   | 222.3         |
| Smooth | 54  | 30  |         | 213.9         |
| Smooth | 54  | 40  | 0.689   | 184.4         |
| Smooth | 54  | 50  | 0.717   | 178.7         |
| Smooth | 54  | 60  | 0.695   | 170.4         |
| Smooth | 54  | 70  | 0.724   | 168.0         |
| Smooth | 54  | 80  | 0.792   | 169.4         |
| Smooth | 54  | 90  | 0.855   | 169.2         |
| Smooth | 54  | 270 | 0.914   | 173.0         |
| Smooth | 54  | 280 | 0.788   | 168.1         |
| Smooth | 54  | 290 | 0.719   | 167.8         |
| Smooth | 54  | 300 | 0.684   | 167.8         |
| Smooth | 54  | 310 | 0.675   | 172.5         |
| Smooth | 54  | 320 | 0.758   | 197.3         |
| Smooth | 54  | 330 | 0.823   | 213.5         |
| Smooth | 54  | 340 | 0.638   | 183.5         |
| Smooth | 54  | 350 | 0.870   | 247.4         |
| Smooth | 55  | 0   | 0.824   | 258.0         |
| Smooth | 55  | 10  | 0.842   | 250.3         |
| Smooth | 55  | 20  | 0.809   | 228.0         |
| Smooth | 55  | 30  | 0.777   | 209.9         |
| Smooth | 55  | 40  | 0.645   | 177.4         |
| Smooth | 55  | 50  | 0.650   | 173.2         |
| Smooth | 55  | 60  | 0.588   | 156.1         |
| Smooth | 55  | 70  | 0.714   | 169.3         |
| Smooth | 55  | 80  | 0.740   | 166.5         |
| Smooth | 55  | 90  | 0.807   | 170.9         |
| Smooth | 55  | 270 | 0.837   | 172.5         |
| Smooth | 55  | 280 | 0.728   | 165.0         |
| Smooth | 55  | 290 | 0.696   | 165.4         |
| Smooth | 55  | 300 | 0.671   | 172.4         |
| Smooth | 55  | 310 | 0.619   | 167.2         |
| Smooth | 55  | 320 | 0.690   | 188.0         |
| Smooth | 55  | 330 | 0.788   | 211.6         |
| Smooth | 55  | 340 | 0.828   | 232.0         |
| Smooth | 55  | 350 | 0.822   | 247.4         |
|        |     |     |         |               |

Table 15. Test 7057 spherical-cap 10-mesh transition locations.

/R Ree Model Run Ray so/R Ree Model R

| Table 15. Test 7057 spherical-cap 10-mesh transition locations. |     |     |         |               |         |     |     |         |               |         |     |     |         |               |
|-----------------------------------------------------------------|-----|-----|---------|---------------|---------|-----|-----|---------|---------------|---------|-----|-----|---------|---------------|
| Model                                                           | Run | Ray | $s_0/R$ | $Re_{\theta}$ | Model   | Run | Ray | $s_0/R$ | $Re_{\theta}$ | Model   | Run | Ray | $s_0/R$ | $Re_{\theta}$ |
| 10-Mesh                                                         | 42  | 0   | 0.160   | 27.0          | 10-Mesh | 44  | 20  | 0.042   | 14.0          | 10-Mesh | 46  | 40  | 0.047   | 18.6          |
| 10-Mesh                                                         | 42  | 10  | 0.100   | 18.6          | 10-Mesh | 44  | 30  | 0.036   | 13.3          | 10-Mesh | 46  | 50  | 0.060   | 21.1          |
| 10-Mesh                                                         | 42  | 20  | 0.110   |               | 10-Mesh | 44  | 40  | 0.064   |               | 10-Mesh | 46  | 60  | 0.075   |               |
| 10-Mesh                                                         | 42  | 30  | 0.103   |               | 10-Mesh | 44  | 50  | 0.074   |               | 10-Mesh | 46  | 70  | 0.025   |               |
|                                                                 |     |     |         |               |         |     |     |         |               |         |     |     |         |               |
| 10-Mesh                                                         | 42  | 40  | 0.093   |               | 10-Mesh | 44  | 60  | 0.090   |               | 10-Mesh | 46  | 80  | 0.027   |               |
| 10-Mesh                                                         | 42  | 50  | 0.137   |               | 10-Mesh | 44  | 70  | 0.055   |               | 10-Mesh | 46  | 90  | 0.042   |               |
| 10-Mesh                                                         | 42  | 60  | 0.106   | 17.1          | 10-Mesh | 44  | 80  | 0.049   | 14.0          | 10-Mesh | 46  | 100 | 0.052   | 16.9          |
| 10-Mesh                                                         | 42  | 70  | 0.114   | 17.1          | 10-Mesh | 44  | 90  | 0.077   | 17.8          | 10-Mesh | 46  | 110 | 0.048   | 15.3          |
| 10-Mesh                                                         | 42  | 80  | 0.089   | 14.2          | 10-Mesh | 44  | 100 | 0.069   | 16.5          | 10-Mesh | 46  | 120 | 0.044   | 14.7          |
| 10-Mesh                                                         | 42  | 90  | 0.162   | 21.8          | 10-Mesh | 44  | 110 | 0.079   | 18.6          | 10-Mesh | 46  | 130 | 0.087   | 23.2          |
| 10-Mesh                                                         | 42  | 100 | 0.119   | 16.5          | 10-Mesh | 44  | 120 | 0.069   | 16.2          | 10-Mesh | 46  | 140 | 0.100   | 24.6          |
| 10-Mesh                                                         | 42  |     | 0.165   |               | 10-Mesh | 44  | 130 | 0.147   | 27.6          | 10-Mesh | 46  | 150 | 0.091   | 23.1          |
| 10-Mesh                                                         | 42  |     | 0.212   |               | 10-Mesh | 44  |     | 0.149   |               | 10-Mesh | 46  |     | 0.087   |               |
| 10-Mesh                                                         | 42  |     | 0.336   |               | 10-Mesh | 44  |     | 0.133   |               | 10-Mesh | 46  |     | 0.070   |               |
| 10-Mesh                                                         | 42  |     | 0.297   |               | 10-Mesh | 44  |     | 0.104   |               | 10-Mesh | 46  |     | 0.032   |               |
|                                                                 | 42  |     | 0.350   |               |         | 44  |     | 0.087   |               |         | 46  |     | 0.032   |               |
| 10-Mesh                                                         |     |     |         |               | 10-Mesh |     |     |         |               | 10-Mesh |     |     |         |               |
| 10-Mesh                                                         | 42  |     | 0.177   |               | 10-Mesh | 44  |     | 0.057   |               | 10-Mesh | 46  |     | 0.039   |               |
| 10-Mesh                                                         | 42  |     | 0.143   |               | 10-Mesh | 44  |     | 0.063   |               | 10-Mesh | 46  |     | 0.032   |               |
| 10-Mesh                                                         | 42  |     | 0.158   |               | 10-Mesh | 44  |     | 0.069   |               | 10-Mesh | 46  |     | 0.030   |               |
| 10-Mesh                                                         | 42  | 250 | 0.173   | 22.0          | 10-Mesh | 44  | 270 | 0.071   | 16.9          | 10-Mesh | 46  | 290 | 0.055   | 17.4          |
| 10-Mesh                                                         | 42  | 260 | 0.161   | 21.7          | 10-Mesh | 44  | 280 | 0.042   | 13.2          | 10-Mesh | 46  | 300 | 0.056   | 18.8          |
| 10-Mesh                                                         | 42  | 270 | 0.215   | 28.0          | 10-Mesh | 44  | 290 | 0.059   | 15.6          | 10-Mesh | 46  | 310 | 0.041   | 17.6          |
| 10-Mesh                                                         | 42  | 280 | 0.214   | 28.7          | 10-Mesh | 44  | 300 | 0.097   | 23.2          | 10-Mesh | 46  | 320 | 0.034   | 16.0          |
| 10-Mesh                                                         | 42  |     | 0.131   |               | 10-Mesh | 44  | 310 | 0.074   | 20.4          | 10-Mesh | 46  |     | 0.025   |               |
| 10-Mesh                                                         | 42  |     | 0.156   |               | 10-Mesh | 44  |     | 0.052   |               | 10-Mesh | 46  |     | 0.026   |               |
| 10-Mesh                                                         | 42  |     | 0.189   |               | 10-Mesh | 44  |     | 0.046   |               | 10-Mesh | 46  |     | 0.017   |               |
| 10-Mesh                                                         | 42  |     | 0.166   |               | 10-Mesh | 44  |     | 0.040   |               | 10-Mesh | 47  | 0   | 0.017   |               |
|                                                                 |     |     |         |               |         |     |     |         |               |         |     |     |         |               |
| 10-Mesh                                                         | 42  |     | 0.151   |               | 10-Mesh | 44  | 350 |         |               | 10-Mesh | 47  | 10  | 0.011   |               |
| 10-Mesh                                                         | 42  |     | 0.142   |               | 10-Mesh | 45  | 0   | 0.027   |               | 10-Mesh | 47  | 20  | 0.024   |               |
| 10-Mesh                                                         | 42  |     | 0.124   |               | 10-Mesh | 45  | 10  | 0.015   |               | 10-Mesh | 47  | 30  | 0.021   |               |
| 10-Mesh                                                         | 43  | 0   | 0.056   | 14.4          | 10-Mesh | 45  | 20  | 0.035   | 14.5          | 10-Mesh | 47  | 40  | 0.029   | 15.7          |
| 10-Mesh                                                         | 43  | 10  | 0.076   | 17.4          | 10-Mesh | 45  | 30  | 0.027   | 12.4          | 10-Mesh | 47  | 50  | 0.054   | 20.6          |
| 10-Mesh                                                         | 43  | 20  | 0.052   | 13.5          | 10-Mesh | 45  | 40  | 0.055   | 19.4          | 10-Mesh | 47  | 60  | 0.070   | 24.0          |
| 10-Mesh                                                         | 43  | 30  | 0.093   | 18.6          | 10-Mesh | 45  | 50  | 0.067   | 22.2          | 10-Mesh | 47  | 70  | 0.015   | 10.8          |
| 10-Mesh                                                         | 43  | 40  | 0.089   | 17.0          | 10-Mesh | 45  | 60  | 0.093   | 26.9          | 10-Mesh | 47  | 80  | 0.019   | 10.8          |
| 10-Mesh                                                         | 43  | 50  | 0.123   |               | 10-Mesh | 45  | 70  | 0.043   |               | 10-Mesh | 47  | 90  | 0.033   |               |
| 10-Mesh                                                         | 43  | 60  | 0.080   |               | 10-Mesh | 45  | 80  | 0.039   |               | 10-Mesh | 47  |     | 0.040   |               |
| 10-Mesh                                                         | 43  | 70  | 0.079   |               | 10-Mesh | 45  | 90  | 0.055   |               | 10-Mesh | 47  |     | 0.041   |               |
| 10-Mesh                                                         | 43  | 80  | 0.082   |               | 10-Mesh | 45  | 100 | 0.061   |               | 10-Mesh | 47  |     | 0.038   |               |
|                                                                 | 43  | 90  | 0.125   |               |         | 45  |     | 0.060   |               |         | 47  |     |         |               |
| 10-Mesh                                                         |     |     |         |               | 10-Mesh |     |     |         |               | 10-Mesh |     |     | 0.081   |               |
| 10-Mesh                                                         | 43  |     | 0.101   |               | 10-Mesh | 45  | 120 |         |               | 10-Mesh | 47  |     | 0.086   |               |
| 10-Mesh                                                         | 43  | 110 | 0.155   |               | 10-Mesh | 45  | 130 | 0.097   |               | 10-Mesh | 47  |     | 0.079   |               |
| 10-Mesh                                                         | 43  |     | 0.202   |               | 10-Mesh | 45  |     | 0.119   |               | 10-Mesh | 47  |     | 0.080   |               |
| 10-Mesh                                                         | 43  |     | 0.200   |               | 10-Mesh | 45  |     | 0.100   |               | 10-Mesh | 47  |     | 0.058   |               |
| 10-Mesh                                                         | 43  |     | 0.218   |               | 10-Mesh | 45  |     | 0.087   |               | 10-Mesh | 47  |     | 0.029   |               |
| 10-Mesh                                                         | 43  | 150 | 0.299   | 39.5          | 10-Mesh | 45  | 230 | 0.079   | 20.8          | 10-Mesh | 47  | 250 | 0.030   | 13.1          |
| 10-Mesh                                                         | 43  | 220 | 0.128   | 20.9          | 10-Mesh | 45  | 240 | 0.041   | 13.7          | 10-Mesh | 47  | 260 | 0.029   | 12.7          |
| 10-Mesh                                                         | 43  | 230 | 0.128   | 20.8          | 10-Mesh | 45  | 250 | 0.038   | 13.8          | 10-Mesh | 47  | 270 | 0.025   | 11.5          |
| 10-Mesh                                                         | 43  | 240 | 0.087   | 15.9          | 10-Mesh | 45  | 260 | 0.049   | 14.9          | 10-Mesh | 47  | 280 | 0.031   | 13.7          |
| 10-Mesh                                                         | 43  |     | 0.090   |               | 10-Mesh | 45  |     | 0.043   |               | 10-Mesh | 47  |     | 0.048   |               |
| 10-Mesh                                                         | 43  |     | 0.110   |               | 10-Mesh | 45  |     | 0.034   |               | 10-Mesh | 47  |     | 0.048   |               |
| 10-Mesh                                                         | 43  |     | 0.097   |               | 10-Mesh | 45  |     | 0.055   |               | 10-Mesh | 47  |     | 0.033   |               |
| 10-Mesh                                                         | 43  |     | 0.098   |               | 10-Mesh | 45  |     | 0.061   |               | 10-Mesh | 47  |     | 0.032   |               |
| 10-Mesh                                                         | 43  |     | 0.100   |               | 10-Mesh | 45  |     | 0.043   |               | 10-Mesh | 47  |     | 0.032   |               |
|                                                                 |     |     |         |               |         |     |     |         |               |         |     |     |         |               |
| 10-Mesh                                                         | 43  |     | 0.134   |               | 10-Mesh | 45  |     | 0.042   |               | 10-Mesh | 47  |     | 0.013   |               |
| 10-Mesh                                                         | 43  |     | 0.154   |               | 10-Mesh | 45  |     | 0.027   |               | 10-Mesh | 47  | 350 | 0.014   | 10.9          |
| 10-Mesh                                                         | 43  |     | 0.123   |               | 10-Mesh | 45  |     | 0.031   |               |         |     |     |         |               |
| 10-Mesh                                                         | 43  |     | 0.117   |               | 10-Mesh | 45  |     | 0.021   |               |         |     |     |         |               |
| 10-Mesh                                                         | 43  |     | 0.138   |               | 10-Mesh | 46  | 0   | 0.023   |               |         |     |     |         |               |
| 10-Mesh                                                         | 43  | 350 | 0.105   |               | 10-Mesh | 46  | 10  | 0.013   | 9.6           |         |     |     |         |               |
| 10-Mesh                                                         | 44  | 0   | 0.026   | 13.4          | 10-Mesh | 46  | 20  | 0.027   | 13.5          |         |     |     |         |               |
| 10-Mesh                                                         | 44  | 10  | 0.023   | 10.9          | 10-Mesh | 46  | 30  | 0.018   | 10.9          |         |     |     |         |               |
|                                                                 |     |     |         |               |         |     |     |         |               |         |     |     |         |               |

Table 16. Test 7057 spherical-cap 20-mesh transition locations. /R Re $_{\theta}$  Model Run Ray  $_{s_0}/_R$  Re $_{\theta}$  Model R

|           |     |     |         | ie 10. 1e:    | st /us/ spii |     | -   |         | ı transıt     | ion iocatioi | 15. |     |         |               |
|-----------|-----|-----|---------|---------------|--------------|-----|-----|---------|---------------|--------------|-----|-----|---------|---------------|
| Model     | Run | Ray | $s_0/R$ | $Re_{\theta}$ | Model        | Run | Ray | $s_0/R$ | $Re_{\theta}$ | Model        | Run | Ray | $s_0/R$ | $Re_{\theta}$ |
| 20-Mesh   | 55  | 0   | 0.439   | 60.7          | 20-Mesh      | 57  | 70  | 0.093   | 22.8          | 20-Mesh      | 59  | 90  | 0.172   | 41.2          |
| 20-Mesh   | 55  | 10  | 0.731   | 91.5          | 20-Mesh      | 57  | 80  | 0.182   | 36.9          | 20-Mesh      | 59  | 100 | 0.215   | 48.5          |
| 20-Mesh   | 55  | 20  | 1.193   | 132.5         | 20-Mesh      | 57  | 90  | 0.194   | 38.4          | 20-Mesh      | 59  |     | 0.235   |               |
| 20-Mesh   | 55  | 30  | 0.519   |               | 20-Mesh      | 57  |     | 0.239   |               | 20-Mesh      | 59  |     | 0.264   |               |
| 20-Mesh   | 55  | 40  | 0.271   |               | 20-Mesh      | 57  |     | 0.262   |               | 20-Mesh      | 59  |     | 0.273   |               |
|           |     |     |         |               |              |     |     |         |               |              |     |     |         |               |
| 20-Mesh   | 55  | 50  | 0.463   |               | 20-Mesh      | 57  |     | 0.309   |               | 20-Mesh      | 59  |     | 0.266   |               |
| 20-Mesh   | 55  | 60  | 0.329   |               | 20-Mesh      | 57  |     | 0.295   |               | 20-Mesh      | 59  |     | 0.263   |               |
| 20-Mesh   | 55  | 70  | 0.310   |               | 20-Mesh      | 57  |     | 0.283   |               | 20-Mesh      | 59  |     | 0.149   |               |
| 20-Mesh   | 55  | 80  | 0.496   | 60.4          | 20-Mesh      | 57  | 150 | 0.450   | 68.6          | 20-Mesh      | 59  |     | 0.176   |               |
| 20-Mesh   | 55  | 90  | 0.637   | 73.2          | 20-Mesh      | 57  | 220 | 0.190   | 34.5          | 20-Mesh      | 59  | 240 | 0.161   | 37.1          |
| 20-Mesh   | 55  | 110 | 0.456   | 52.7          | 20-Mesh      | 57  | 230 | 0.195   | 35.2          | 20-Mesh      | 59  | 250 | 0.160   | 37.8          |
| 20-Mesh   | 55  | 130 | 0.498   | 53.3          | 20-Mesh      | 57  | 240 | 0.182   | 35.2          | 20-Mesh      | 59  | 260 | 0.159   | 38.7          |
| 20-Mesh   | 55  |     | 0.528   |               | 20-Mesh      | 57  |     | 0.178   |               | 20-Mesh      | 59  |     | 0.169   |               |
| 20-Mesh   | 55  |     | 0.502   |               | 20-Mesh      | 57  |     | 0.173   |               | 20-Mesh      | 59  |     | 0.176   |               |
|           | 55  |     | 0.705   |               |              | 57  |     | 0.173   |               |              | 59  |     | 0.170   |               |
| 20-Mesh   |     |     |         |               | 20-Mesh      |     |     |         |               | 20-Mesh      |     |     |         |               |
| 20-Mesh   | 55  |     | 0.672   |               | 20-Mesh      | 57  |     | 0.250   |               | 20-Mesh      | 59  |     | 0.182   |               |
| 20-Mesh   | 55  |     | 0.687   |               | 20-Mesh      | 57  |     | 0.320   |               | 20-Mesh      | 59  |     | 0.188   |               |
| 20-Mesh   | 55  | 270 | 0.909   | 95.6          | 20-Mesh      | 57  |     | 0.239   |               | 20-Mesh      | 59  |     | 0.246   |               |
| 20-Mesh   | 55  | 280 | 1.121   | 112.8         | 20-Mesh      | 57  | 310 | 0.413   | 81.9          | 20-Mesh      | 59  | 330 | 0.187   | 51.1          |
| 20-Mesh   | 55  | 290 | 0.664   | 78.3          | 20-Mesh      | 57  | 320 | 0.305   | 64.1          | 20-Mesh      | 59  | 340 | 0.140   | 41.1          |
| 20-Mesh   | 55  | 300 | 0.631   | 76.4          | 20-Mesh      | 57  | 330 | 0.235   | 52.2          | 20-Mesh      | 59  | 350 | 0.228   | 63.6          |
| 20-Mesh   | 55  |     | 0.433   |               | 20-Mesh      | 57  |     | 0.171   |               | 20-Mesh      | 60  | 0   | 0.203   |               |
| 20-Mesh   | 55  |     | 0.353   |               | 20-Mesh      | 57  |     | 0.256   |               | 20-Mesh      | 60  | 10  | 0.173   |               |
|           |     |     | 0.364   |               |              |     |     |         |               |              |     |     | 0.257   |               |
| 20-Mesh   | 55  |     |         |               | 20-Mesh      | 58  | 0   | 0.214   |               | 20-Mesh      | 60  | 20  |         |               |
| 20-Mesh   | 55  |     | 0.395   |               | 20-Mesh      | 58  | 10  | 0.187   |               | 20-Mesh      | 60  | 30  | 0.246   |               |
| 20-Mesh   | 55  |     | 0.763   |               | 20-Mesh      | 58  | 20  | 0.263   |               | 20-Mesh      | 60  | 40  | 0.071   |               |
| 20-Mesh   | 56  | 0   | 0.355   | 60.0          | 20-Mesh      | 58  | 30  | 0.263   | 63.8          | 20-Mesh      | 60  | 50  | 0.053   | 19.7          |
| 20-Mesh   | 56  | 10  | 0.276   | 48.5          | 20-Mesh      | 58  | 40  | 0.085   | 25.1          | 20-Mesh      | 60  | 60  | 0.067   | 23.5          |
| 20-Mesh   | 56  | 20  | 0.286   | 49.9          | 20-Mesh      | 58  | 50  | 0.079   | 24.7          | 20-Mesh      | 60  | 70  | 0.044   | 16.7          |
| 20-Mesh   | 56  | 30  | 0.351   | 58.1          | 20-Mesh      | 58  | 60  | 0.079   | 23.9          | 20-Mesh      | 60  | 80  | 0.121   | 33.0          |
| 20-Mesh   | 56  | 40  | 0.222   |               | 20-Mesh      | 58  | 70  | 0.084   | 23.6          | 20-Mesh      | 60  | 90  | 0.156   |               |
| 20-Mesh   | 56  | 50  | 0.367   |               | 20-Mesh      | 58  | 80  | 0.161   |               | 20-Mesh      | 60  |     | 0.206   |               |
| 20-Mesh   | 56  | 60  | 0.229   |               | 20-Mesh      | 58  | 90  | 0.182   |               | 20-Mesh      | 60  |     | 0.224   |               |
|           |     |     |         |               |              |     |     |         |               |              |     |     |         |               |
| 20-Mesh   | 56  | 70  | 0.178   |               | 20-Mesh      | 58  |     | 0.229   |               | 20-Mesh      | 60  |     | 0.246   |               |
| 20-Mesh   | 56  | 80  | 0.218   |               | 20-Mesh      | 58  |     | 0.240   |               | 20-Mesh      | 60  |     | 0.266   |               |
| 20-Mesh   | 56  | 90  | 0.589   |               | 20-Mesh      | 58  |     | 0.277   |               | 20-Mesh      | 60  |     | 0.256   |               |
| 20-Mesh   | 56  | 100 | 0.630   | 83.8          | 20-Mesh      | 58  |     | 0.286   |               | 20-Mesh      | 60  |     | 0.254   |               |
| 20-Mesh   | 56  | 110 | 0.412   | 57.2          | 20-Mesh      | 58  | 140 | 0.273   | 52.4          | 20-Mesh      | 60  | 220 | 0.139   | 33.0          |
| 20-Mesh   | 56  | 120 | 0.350   | 48.5          | 20-Mesh      | 58  | 150 | 0.273   | 52.1          | 20-Mesh      | 60  | 230 | 0.165   | 38.1          |
| 20-Mesh   | 56  | 130 | 0.326   | 45.1          | 20-Mesh      | 58  | 220 | 0.162   | 34.5          | 20-Mesh      | 60  | 240 | 0.151   | 37.0          |
| 20-Mesh   | 56  | 140 | 0.526   | 63.3          | 20-Mesh      | 58  | 230 | 0.188   | 39.2          | 20-Mesh      | 60  | 250 | 0.154   | 38.5          |
| 20-Mesh   | 56  |     | 0.487   |               | 20-Mesh      | 58  |     | 0.170   |               | 20-Mesh      | 60  |     | 0.153   |               |
| 20-Mesh   | 56  |     | 0.480   |               | 20-Mesh      | 58  |     | 0.172   |               | 20-Mesh      | 60  |     | 0.159   |               |
| 20-Mesh   |     |     | 0.621   |               | 20-Mesh      |     |     |         | 37.1          | 20-Mesh      |     |     | 0.169   |               |
|           |     |     |         |               |              |     |     |         |               |              |     |     |         |               |
| 20-Mesh   |     |     | 0.635   |               | 20-Mesh      |     |     | 0.169   |               | 20-Mesh      |     |     | 0.187   |               |
| 20-Mesh   | 56  |     | 0.621   |               | 20-Mesh      |     |     | 0.181   |               |              | 60  |     | 0.176   |               |
| 20-Mesh   | 56  |     | 0.656   |               | 20-Mesh      | 58  | 290 | 0.198   | 47.9          | 20-Mesh      | 60  |     | 0.181   |               |
| 20-Mesh   | 56  | 280 | 0.276   | 42.2          | 20-Mesh      | 58  | 300 | 0.198   | 48.8          | 20-Mesh      | 60  | 320 | 0.237   | 62.9          |
| 20-Mesh   | 56  | 290 | 0.324   | 50.5          | 20-Mesh      | 58  | 310 | 0.201   | 50.2          | 20-Mesh      | 60  | 330 | 1.782   | 181.0         |
| 20-Mesh   | 56  | 300 | 0.364   | 56.6          | 20-Mesh      | 58  | 320 | 0.258   | 62.7          | 20-Mesh      | 60  | 340 | 0.134   | 40.4          |
|           | 56  |     | 0.416   |               |              | 58  |     | 0.194   |               | 20-Mesh      |     |     | 0.222   |               |
| 20-Mesh   | 56  |     | 0.339   |               | 20-Mesh      | 58  |     | 0.149   |               |              |     |     |         |               |
|           | 56  |     | 0.320   |               | 20-Mesh      |     |     | 0.240   |               |              |     |     |         |               |
|           |     |     |         |               |              |     |     |         |               |              |     |     |         |               |
|           | 56  |     | 0.318   |               | 20-Mesh      | 59  | 0   | 0.205   |               |              |     |     |         |               |
| 20-Mesh   | 56  |     | 0.286   |               | 20-Mesh      | 59  | 10  | 0.184   |               |              |     |     |         |               |
| 20-Mesh   |     | 0   | 0.236   |               | 20-Mesh      |     | 20  | 0.261   |               |              |     |     |         |               |
| 20-Mesh   | 57  | 10  | 0.188   | 46.1          | 20-Mesh      | 59  | 30  | 0.252   | 64.9          |              |     |     |         |               |
| 20-Mesh   | 57  | 20  | 0.279   | 62.3          | 20-Mesh      | 59  | 40  | 0.080   | 25.1          |              |     |     |         |               |
| 20-Mesh   | 57  | 30  | 0.292   | 62.2          | 20-Mesh      | 59  | 50  | 0.062   | 20.6          |              |     |     |         |               |
| 20-Mesh   | 57  | 40  | 0.171   | 38.8          | 20-Mesh      | 59  | 60  | 0.077   | 24.8          |              |     |     |         |               |
| 20-Mesh   | 57  | 50  | 0.107   |               | 20-Mesh      | 59  | 70  | 0.049   |               |              |     |     |         |               |
| 20-Mesh   |     | 60  | 0.080   |               | 20-Mesh      |     | 80  | 0.131   |               |              |     |     |         |               |
| 20 110011 | 0 / |     | 3.300   |               |              |     |     | ,,,,,,  | 50.0          |              |     |     |         |               |

| Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Table 17. Test 7057 spherical-cap 40-mesh transition locations. |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----|-----|---------|---------------|---------|-----|-----|-------|------|-----------|-----|-----|---------|---------------|
| 40-Mesh 32 20 10.55 4 93.4 40-Mesh 34 300 0.228 46.9 40-Mesh 36 320 0.156 43.5 40-Mesh 32 30 1.141 126.3 40-Mesh 34 310 0.215 46.4 40-Mesh 36 330 0.033 14.1 41 126.3 40-Mesh 34 310 0.215 46.4 40-Mesh 36 330 0.033 14.1 41 40-Mesh 34 32 50 1.016 114.1 40-Mesh 34 30 0.153 36.6 40-Mesh 36 330 0.103 58.4 40-Mesh 32 50 1.016 114.1 40-Mesh 34 30 0.153 36.6 40-Mesh 36 330 0.135 38.6 40-Mesh 36 32 0.135 38.7 40-Mesh 32 260 1.089 98.2 40-Mesh 34 30 0.153 36.6 40-Mesh 36 330 0.133 36.9 40-Mesh 32 260 1.089 98.2 40-Mesh 35 50 0.139 40.6 40-Mesh 37 10 0.092 30.8 40-Mesh 32 280 0.809 10.6 40-Mesh 35 50 0.139 40.6 40-Mesh 37 20 0.164 48.1 40-Mesh 32 300 0.995 109.7 40-Mesh 35 50 0.179 45.8 40-Mesh 37 30 0.117 37.2 40-Mesh 32 300 0.995 109.7 40-Mesh 35 50 0.179 45.8 40-Mesh 37 50 0.122 34.4 40-Mesh 32 300 0.995 109.7 40-Mesh 35 50 0.120 33.1 40-Mesh 37 60 0.123 34.1 40-Mesh 32 300 0.995 109.1 40-Mesh 35 50 0.123 34.0 40-Mesh 37 60 0.123 34.1 40-Mesh 32 300 0.905 105.1 40-Mesh 35 50 0.145 37.0 40-Mesh 37 60 0.123 34.1 40-Mesh 33 0 0.569 88.1 40-Mesh 35 50 0.145 37.0 40-Mesh 37 60 0.123 34.1 40-Mesh 33 0 0.569 88.1 40-Mesh 35 50 0.156 36.7 40-Mesh 37 70 0.138 35.4 40-Mesh 38 10 0.571 84.9 40-Mesh 35 60 0.168 39.5 40-Mesh 37 00 0.157 38.8 40-Mesh 33 0 0.569 88.1 40-Mesh 35 50 0.168 39.5 40-Mesh 37 100 0.157 38.8 40-Mesh 33 0 0.569 88.1 40-Mesh 35 50 0.618 39.5 40-Mesh 37 100 0.157 38.8 40-Mesh 37 30 0.059 88.4 40-Mesh 35 100 0.208 44.2 40-Mesh 37 100 0.157 38.8 40-Mesh 37 30 0.059 88.4 40-Mesh 35 100 0.208 44.2 40-Mesh 37 100 0.157 38.8 40-Mesh 37 30 0.059 88.4 40-Mesh 35 100 0.208 44.2 40-Mesh 37 100 0.157 38.8 40-Mesh 37 30 0.059 88.4 40-Mesh 35 100 0.208 44.2 40-Mesh 37 100 0.157 38.8 40-Mesh 37 30 0.059 88.4 40-Mesh 37 00 0.184 38.4 40-Mesh 37 00 0.187 38.4 40-Mesh 37 00 0.187 38.8 40-Mesh 37 00 0.187 38.                                       | Model                                                           | Run | Ray | $s_0/R$ | $Re_{\theta}$ | Model   | Run |     |       |      | Model     | Run | Ray | $s_0/R$ | $Re_{\theta}$ |
| 40-Mesh 32 20 1.055 121.6 40-Mesh 34 300 0.228 46.9 40-Mesh 36 320 0.154 31.4 40-Mesh 32 30 1.141 126.3 40-Mesh 34 320 0.189 43.0 40-Mesh 36 30 0.033 14.1 40-Mesh 32 50 1.016 114.1 40-Mesh 34 320 0.189 43.0 40-Mesh 36 30 0.153 36.4 40-Mesh 32 50 1.016 114.1 40-Mesh 34 300 0.153 36.6 40-Mesh 32 260 1.018 90.2 40-Mesh 35 0.0 10.133 36.6 40-Mesh 37 00 0.113 36.7 40-Mesh 32 260 1.018 90.2 40-Mesh 35 0.0 1.013 36.6 40-Mesh 37 00 0.113 37.0 40-Mesh 32 270 0.883 94.0 40-Mesh 35 0.0 1.013 40.6 40-Mesh 37 00 0.113 37.0 40-Mesh 32 280 0.672 77.5 40-Mesh 35 00 0.103 34.2 40-Mesh 37 00 0.113 37.2 40-Mesh 32 280 0.672 77.5 40-Mesh 35 00 0.120 33.1 40-Mesh 37 00 0.113 37.2 40-Mesh 32 300 0.995 109.7 40-Mesh 35 00 0.120 33.1 40-Mesh 37 00 0.122 34.4 40-Mesh 32 300 0.995 109.7 40-Mesh 35 00 0.120 33.1 40-Mesh 37 00 0.122 34.4 40-Mesh 32 300 0.995 109.7 40-Mesh 35 00 0.133 36.6 40-Mesh 37 00 0.122 34.4 40-Mesh 32 300 0.842 100.2 40-Mesh 35 00 0.136 36.6 40-Mesh 37 00 0.122 34.4 40-Mesh 32 300 0.842 100.2 40-Mesh 35 00 0.163 36.6 40-Mesh 37 00 0.123 34.4 40-Mesh 32 300 0.842 100.2 40-Mesh 35 00 0.168 39.5 40-Mesh 37 00 0.123 34.4 40-Mesh 32 300 0.842 100.2 40-Mesh 35 00 0.168 39.5 40-Mesh 37 00 0.133 34.0 40-Mesh 30 0.055 98.1 40-Mesh 35 00 0.168 39.5 40-Mesh 37 100 0.173 38.2 40-Mesh 33 00 0.559 88.1 40-Mesh 35 100 0.210 45.4 40-Mesh 37 100 0.171 39.2 40-Mesh 33 00 0.559 88.1 40-Mesh 35 100 0.210 45.4 40-Mesh 37 100 0.171 39.2 40-Mesh 33 00 0.591 88 40-Mesh 35 100 0.210 45.4 40-Mesh 37 100 0.171 39.2 40-Mesh 33 00 0.359 18.8 40-Mesh 35 100 0.220 45.4 40-Mesh 37 100 0.171 39.2 40-Mesh 33 00 0.359 18.8 40-Mesh 35 100 0.220 45.4 40-Mesh 37 100 0.171 39.2 40-Mesh 33 00 0.359 18.8 40-Mesh 35 200 0.221 45.4 40-Mesh 37 100 0.205 47.8 40-Mesh 37 100 0.205 47.8 40-Mesh 37 100 0.205 47.3 40-Mesh 37 100 0.205 47.8 40-Mesh 37 100 0.205                                       | 40-Mesh                                                         | 32  | 0   | 0.999   | 116.4         | 40-Mesh | 34  | 280 | 0.267 | 51.9 | 40-Mesh   | 36  | 300 | 0.200   | 49.3          |
| 40-Mesh 32   30   1.141   126.3   40-Mesh 34   310   0.215   46.4   40-Mesh 36   30   0.033   46.4   40-Mesh 32   40   1.154   136.6   40-Mesh 32   50   1.016   114.1   40-Mesh 34   330   0.154   36.6   40-Mesh 36   30   0.135   36.4   40-Mesh 32   260   1.018   91.2   40-Mesh 34   300   0.154   36.6   40-Mesh 36   20   0.153   35.9   40-Mesh 32   270   0.883   94.0   40-Mesh 35   270   0.883   94.0   40-Mesh 35   20   0.152   36.4   40-Mesh 32   280   0.6072   77.5   40-Mesh 35   20   0.179   34.1   40-Mesh 32   280   0.609   91.6   40-Mesh 35   20   0.179   34.1   40-Mesh 32   280   0.609   91.6   40-Mesh 35   30   0.120   33.1   40-Mesh 37   20   0.179   32.3   40-Mesh 32   300   0.995   109.7   40-Mesh 35   50   0.120   33.1   40-Mesh 37   20   0.125   34.1   40-Mesh 32   300   0.995   109.7   40-Mesh 35   50   0.162   38.9   40-Mesh 37   70   0.128   34.1   40-Mesh 32   300   0.995   109.7   40-Mesh 35   50   0.162   38.9   40-Mesh 37   70   0.128   34.1   40-Mesh 32   300   0.995   109.7   40-Mesh 35   50   0.162   38.9   40-Mesh 37   70   0.128   34.1   40-Mesh 32   300   0.995   109.7   40-Mesh 35   50   0.162   38.9   40-Mesh 37   70   0.128   34.1   40-Mesh 32   300   0.995   109.7   40-Mesh 35   50   0.162   38.9   40-Mesh 37   70   0.128   34.1   40-Mesh 32   300   0.995   109.7   40-Mesh 35   50   0.162   38.9   40-Mesh 37   70   0.128   34.1   40-Mesh 32   300   0.995   109.7   40-Mesh 35   50   0.162   38.9   40-Mesh 37   70   0.183   36.0   40-Mesh 37   30   0.127   37.8   40-Mesh 37   30   0.157   38.8   40                                         | 40-Mesh                                                         | 32  | 10  | 0.754   | 93.4          | 40-Mesh | 34  | 290 | 0.257 | 50.8 | 40-Mesh   | 36  | 310 | 0.181   | 48.1          |
| 40-Mesh 32 40 1,264 134.5 40-Mesh 34 320 0,189 43.0 40-Mesh 36 30 0,125 38.7 40-Mesh 32 50 1,016 114.1 40-Mesh 33 0,015 38.6 40-Mesh 32 260 1,018 98.2 40-Mesh 35 00 1,015 38.6 40-Mesh 32 260 1,018 98.2 40-Mesh 35 00 1,013 40.0 40-Mesh 37 00 0,013 30.8 40-Mesh 32 260 0,088 99.4 40-Mesh 35 00 1,019 40.6 40-Mesh 32 280 0,627 47.5 40-Mesh 35 00 1,019 40.6 40-Mesh 32 280 0,627 47.5 40-Mesh 35 00 1,019 40.6 40-Mesh 32 280 0,627 47.5 40-Mesh 35 00 0,129 40.4 40-Mesh 32 300 0,995 109.7 40-Mesh 35 00 0,129 33.1 40-Mesh 37 40 0,117 37.1 40-Mesh 32 300 0,995 109.7 40-Mesh 35 00 0,129 33.1 40-Mesh 37 40 0,122 34.4 40-Mesh 32 300 0,995 109.7 40-Mesh 35 60 0,143 39.0 40-Mesh 37 60 0,125 34.4 40-Mesh 32 300 0,995 109.7 40-Mesh 35 60 0,143 39.0 40-Mesh 37 60 0,125 34.4 40-Mesh 32 300 0,995 109.7 40-Mesh 35 60 0,145 37.0 40-Mesh 37 60 0,125 34.4 40-Mesh 32 300 0,995 109.7 40-Mesh 35 60 0,145 37.0 40-Mesh 37 60 0,125 34.4 40-Mesh 32 300 0,995 88.1 40-Mesh 35 60 0,145 37.0 40-Mesh 37 60 0,138 35.6 40-Mesh 37 70 0,150 36.7 40-Mesh 33 00 0,597 88.7 40-Mesh 35 100 0,210 45.4 40-Mesh 33 00 0,597 88.7 40-Mesh 35 100 0,210 45.4 40-Mesh 33 00 0,597 88.7 40-Mesh 35 100 0,210 45.4 40-Mesh 33 00 0,597 88.7 40-Mesh 35 100 0,210 45.4 40-Mesh 33 00 0,597 88.7 40-Mesh 35 100 0,221 45.4 40-Mesh 33 00 0,319 52.7 40-Mesh 35 100 0,221 45.4 40-Mesh 33 00 0,319 52.7 40-Mesh 35 100 0,221 45.4 40-Mesh 37 100 0,217 37.3 40-Mesh 33 00 0,597 88.8 40-Mesh 35 100 0,221 45.4 40-Mesh 37 100 0,171 39.2 40-Mesh 33 00 0,597 88.8 40-Mesh 35 100 0,221 45.4 40-Mesh 37 100 0,203 40-Mesh 37 1                                       | 40-Mesh                                                         | 32  | 20  | 1.055   | 121.6         | 40-Mesh | 34  | 300 | 0.228 | 46.9 | 40-Mesh   | 36  | 320 | 0.156   | 43.5          |
| 40-Mesh 32 50 1.016 114.1 40-Mesh 34 330 0.154 36.6 40-Mesh 36 0.153 35.9 40-Mesh 32 260 1.018 98.2 40-Mesh 34 350 0.152 38.9 40-Mesh 37 00 0.133 35.9 40-Mesh 32 270 0.883 94.0 40-Mesh 35 0 0.152 38.9 40-Mesh 37 00 0.161 48.1 40-Mesh 32 280 0.672 77.5 40-Mesh 35 10 0.108 34.2 40-Mesh 37 20 0.161 48.1 40-Mesh 32 280 0.69 91.6 40-Mesh 35 10 0.108 34.2 40-Mesh 37 20 0.161 48.1 40-Mesh 32 280 0.995 105.7 40-Mesh 35 00 0.120 33.1 40-Mesh 37 20 0.151 34.1 40-Mesh 32 300 0.995 105.1 40-Mesh 35 00 0.120 33.1 40-Mesh 37 20 0.123 34.1 40-Mesh 32 300 0.995 105.1 40-Mesh 35 60 0.126 36.6 40-Mesh 32 300 0.842 100.2 40-Mesh 35 60 0.162 38.9 40-Mesh 37 80 0.133 34.0 40-Mesh 37 80 0.133 34.0 40-Mesh 32 350 0.842 100.2 40-Mesh 35 60 0.162 36.6 40-Mesh 32 350 0.842 100.2 40-Mesh 35 80 0.168 35.5 40-Mesh 37 80 0.133 34.0 40-Mesh 37 80 0.133 34.0 40-Mesh 32 350 0.741 92.1 40-Mesh 35 80 0.168 35.5 40-Mesh 37 100 0.137 38.2 40-Mesh 32 350 0.797 123.6 40-Mesh 35 80 0.168 35.5 40-Mesh 37 100 0.137 38.2 40-Mesh 33 0 0.559 88.1 40-Mesh 35 100 0.210 45.4 40-Mesh 37 100 0.157 38.4 40-Mesh 33 30 0.571 88.7 40-Mesh 35 100 0.210 45.4 40-Mesh 37 100 0.171 39.2 40-Mesh 33 20 0.451 73.4 40-Mesh 35 100 0.230 44.2 40-Mesh 37 100 0.217 45.4 40-Mesh 33 30 0.591 85.8 40-Mesh 35 100 0.220 45.1 40-Mesh 33 00 0.591 85.8 40-Mesh 35 100 0.220 45.1 40-Mesh 37 100 0.172 37.3 40-Mesh 33 60 0.591 85.8 40-Mesh 35 100 0.225 49.9 40-Mesh 33 100 0.591 85.8 40-Mesh 35 100 0.225 49.7 40-Mesh 33 100 0.591 85.8 40-Mesh 35 100 0.225 49.7 40-Mesh 37 100 0.655 91.4 40-Mesh 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.679 14.8 40-Mesh 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.679 14.8 40-Mesh 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.668 37 100 0.66                                       | 40-Mesh                                                         | 32  | 30  | 1.141   | 126.3         | 40-Mesh | 34  | 310 | 0.215 | 46.4 | 40-Mesh   | 36  | 330 | 0.033   | 14.1          |
| 40-Mesh 32 50 1.016 114.1 40-Mesh 34 330 0.154 36.6 40-Mesh 36 0.153 35.9 40-Mesh 32 260 1.038 91.54 40-Mesh 34 0.153 36.6 40-Mesh 37 0.0 0.133 35.9 40-Mesh 32 260 0.838 94.0 40-Mesh 35 0.0 0.152 38.9 40-Mesh 37 0.0 0.161 48.1 40-Mesh 32 280 0.869 91.6 40-Mesh 35 10 0.108 34.2 40-Mesh 32 280 0.869 91.6 40-Mesh 35 10 0.108 34.2 40-Mesh 32 300 0.995 109.7 40-Mesh 35 0.0 0.120 33.1 40-Mesh 32 300 0.995 109.7 40-Mesh 35 0.0 0.120 33.1 40-Mesh 37 20 0.104 34.1 40-Mesh 32 300 0.995 109.7 40-Mesh 35 0.0 0.161 6.6 40-Mesh 32 300 0.995 109.7 40-Mesh 35 0.0 0.162 38.9 40-Mesh 37 0.0 0.152 34.1 40-Mesh 32 300 0.995 109.7 40-Mesh 35 0.0 0.163 36.6 40-Mesh 37 0.0 0.153 34.0 40-Mesh 32 300 0.891 0.991 109.1 40-Mesh 35 0.0 0.162 38.9 40-Mesh 37 0.0 0.153 34.0 40-Mesh 32 300 0.891 0.991 109.1 40-Mesh 35 0.0 0.163 36.6 40-Mesh 37 0.0 0.153 34.0 40-Mesh 33 0.0 0.509 88.1 40-Mesh 35 80 0.181 40.4 40-Mesh 37 100 0.157 38.8 40-Mesh 33 0.0 0.509 88.1 40-Mesh 35 100 0.210 45.4 40-Mesh 37 100 0.157 38.8 40-Mesh 33 0.0 0.509 88.1 40-Mesh 35 100 0.210 45.4 40-Mesh 37 100 0.157 38.8 40-Mesh 33 0.0 0.519 18.8 40-Mesh 35 100 0.210 45.4 40-Mesh 37 100 0.171 39.2 40-Mesh 33 0.0 0.509 18.8 40-Mesh 35 100 0.220 45.1 40-Mesh 33 0.0 0.509 18.8 40-Mesh 35 100 0.220 45.1 40-Mesh 33 0.0 0.509 18.8 40-Mesh 35 100 0.220 45.1 40-Mesh 33 0.0 0.509 18.8 40-Mesh 35 100 0.225 49.9 40-Mesh 33 100 0.559 18.8 40-Mesh 35 100 0.225 49.9 40-Mesh 37 100 0.171 45.1 40-Mesh 33 100 0.509 10.1 40-Mesh 35 100 0.225 49.1 40-Mesh 37 100 0.509 10.1 40-Mesh 30 100 0.209 40-Mesh 30 100 0.209 500 0.209 40-                                       |                                                                 | 32  | 40  |         |               | 40-Mesh |     |     |       |      | 40-Mesh   | 36  |     |         |               |
| 40-Mesh 32 60 1.059 115.4 40-Mesh 34 340 0.153 36.6 40-Mesh 37 0 0 0.103 30.8 40-Mesh 32 260 1.018 98.2 40-Mesh 35 0.162 38.9 40-Mesh 37 10 0.203 30.8 40-Mesh 32 270 0.883 94.0 40-Mesh 35 0 0 1.139 40.6 40-Mesh 37 20 0.161 487.2 40-Mesh 32 280 0.672 77.5 40-Mesh 35 0 0 1.103 34.2 40-Mesh 37 30 0.117 37.1 40-Mesh 32 290 0.806 91.6 40-Mesh 35 0 0 1.103 34.2 40-Mesh 37 30 0.117 37.1 40-Mesh 32 300 0.995 109.7 40-Mesh 35 0 0 1.123 34.3 40-Mesh 32 310 1.132 123.8 40-Mesh 35 0 0 1.163 36.6 40-Mesh 37 30 0 1.123 34.4 40-Mesh 32 310 0.995 109.7 40-Mesh 35 60 0.163 36.6 40-Mesh 37 60 0.122 34.4 40-Mesh 32 300 0.842 100.2 40-Mesh 35 60 0.164 37.0 40-Mesh 37 60 0.123 34.4 40-Mesh 32 300 0.842 100.2 40-Mesh 35 60 0.168 39.5 40-Mesh 37 10 0.123 34.4 40-Mesh 30 0.595 88.1 40-Mesh 35 60 0.168 39.5 40-Mesh 37 10 0.157 34.6 40-Mesh 30 0.595 88.1 40-Mesh 35 100 0.210 45.4 40-Mesh 33 0 0.596 88.1 40-Mesh 35 100 0.210 45.4 40-Mesh 33 0 0.591 88.7 40-Mesh 35 100 0.210 45.4 40-Mesh 33 0 0.591 88.7 40-Mesh 35 100 0.210 45.4 40-Mesh 33 0 0.591 88.8 40-Mesh 35 100 0.210 45.4 40-Mesh 33 0 0.591 88.8 40-Mesh 35 100 0.210 45.4 40-Mesh 37 100 0.171 39.2 40-Mesh 33 00 0.399 52.7 40-Mesh 35 100 0.221 45.4 40-Mesh 37 100 0.254 49.9 40-Mesh 33 00 0.399 52.7 40-Mesh 35 100 0.221 45.4 40-Mesh 33 00 0.591 88.8 40-Mesh 35 100 0.221 45.4 40-Mesh 33 00 0.399 52.7 40-Mesh 35 100 0.221 45.4 40-Mesh 33 00 0.591 88.8 40-Mesh 35 100 0.261 45.4 40-Mesh 37 100 0.257 45.4 40-Mesh 33 00 0.630 91.8 8.4 40-Mesh 35 100 0.261 45.4 40-Mesh 37 100 0.257 45.4 40-Mesh 33 30 0.630 91.8 8.4 40-Mesh 35 100 0.261 45.4 40-Mesh 37 100 0.257 45.4 40-Mesh 37 100 0.2                                       |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh   32   200   0.118   98.2   40-Mesh   34   350   0.162   38.9   40.6   40-Mesh   37   30   0.161   48.1     40-Mesh   32   290   0.806   91.6   40-Mesh   35   10   0.108   34.2     40-Mesh   32   290   0.806   91.6   40-Mesh   35   20   0.179   35.1     40-Mesh   32   290   0.806   91.6   40-Mesh   35   20   0.179   35.1     40-Mesh   32   230   0.995   109.7   40-Mesh   35   30   0.120   33.1     40-Mesh   32   310   1.132   123.8   40-Mesh   35   30   0.120   33.1     40-Mesh   32   330   0.842   100.2   40-Mesh   35   50   0.136   36.6   40-Mesh   37   70   0.125   34.1     40-Mesh   32   330   0.842   100.2   40-Mesh   35   50   0.136   36.6   40-Mesh   37   70   0.138   35.6     40-Mesh   32   330   0.842   100.2   40-Mesh   35   50   0.156   36.7   40-Mesh   37   70   0.138   35.6     40-Mesh   32   350   1.079   123.6   40-Mesh   35   80   0.160   39.5   40-Mesh   37   80   0.137   36.6     40-Mesh   33   0   0.569   88.1   40-Mesh   35   80   0.160   39.5   40-Mesh   37   100   0.157   38.8     40-Mesh   33   0   0.569   88.1   40-Mesh   35   80   0.160   39.5   40-Mesh   37   100   0.157   38.8     40-Mesh   33   0   0.569   88.1   40-Mesh   35   100   0.210   45.4   40-Mesh   37   100   0.157   38.8     40-Mesh   33   0   0.569   88.1   40-Mesh   35   100   0.210   45.4   40-Mesh   37   100   0.157   38.8     40-Mesh   33   0   0.569   88.1   40-Mesh   35   100   0.260   45.1   40-Mesh   37   100   0.172   37.3     40-Mesh   33   0   0.569   88.1   40-Mesh   35   120   0.281   55.6   40-Mesh   37   100   0.172   37.3     40-Mesh   33   0   0.569   88.1   40-Mesh   35   120   0.281   55.6   40-Mesh   37   100   0.172   37.3     40-Mesh   33   0   0.569   88.1   40-Mesh   35   120   0.281   55.6   40-Mesh   37   100   0.172   37.3     40-Mesh   33   0   0.569   88.1   40-Mesh   35   120   0.281   55.6   40-Mesh   37   100   0.172   37.3     40-Mesh   33   0   0.569   88.1   40-Mesh   35   120   0.281   55.6   40-Mesh   37   100   0.172   37.1     40-Mesh   34   0.00   0.995   10.5   40-Mesh                                            |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh   32   270   0.883   94.0   40-Mesh   35   0   0.193   40.6   40-Mesh   37   20   0.161   48.1   40-Mesh   32   280   0.672   77.5   40-Mesh   35   20   0.179   45.8   40-Mesh   32   300   0.995   10.97   40-Mesh   35   30   0.123   31.4   40-Mesh   32   300   0.995   10.97   40-Mesh   35   30   0.123   31.4   40-Mesh   32   300   0.995   10.97   40-Mesh   35   30   0.123   31.4   40-Mesh   32   300   0.995   10.97   40-Mesh   35   40   0.143   39.0   40-Mesh   37   60   0.125   34.1   40-Mesh   32   330   0.842   100.2   40-Mesh   35   60   0.145   37.0   40-Mesh   37   70   0.138   35.6   40-Mesh   32   300   0.797   12.5   40-Mesh   35   60   0.163   36.6   40-Mesh   37   70   0.138   35.6   40-Mesh   32   350   1.079   12.5   40-Mesh   35   70   0.150   36.7   40-Mesh   37   70   0.157   38.8   40-Mesh   33   30   0.559   81.1   40-Mesh   35   80   0.168   39.5   40-Mesh   37   70   0.157   38.8   40-Mesh   33   30   0.559   81.1   40-Mesh   35   80   0.181   40.4   40-Mesh   37   10   0.173   39.2   40-Mesh   33   30   0.319   52.7   40-Mesh   35   110   0.208   41.2   40-Mesh   37   10   0.173   37.3   40-Mesh   33   30   0.319   52.7   40-Mesh   35   110   0.208   41.2   40-Mesh   37   10   0.207   45.1   40-Mesh   33   30   0.319   52.7   40-Mesh   35   130   0.268   51.2   40-Mesh   37   10   0.207   45.1   40-Mesh   33   50   0.659   81.8   40-Mesh   35   130   0.268   51.2   40-Mesh   37   10   0.207   45.1   40-Mesh   33   50   0.659   81.8   40-Mesh   35   130   0.288   40.9   40-Mesh   37   10   0.207   45.1   40-Mesh   33   50   0.655   91.4   40-Mesh   35   130   0.218   40-Mesh   37   10   0.207   45.1   40-Mesh   33   50   0.655   91.4   40-Mesh   35   130   0.288   40.9   40-Mesh   37   10   0.207   45.1   40-Mesh   33   50   0.655   91.4   40-Mesh   35   130   0.288   40.9   40-Mesh   37   10   0.207   45.1   40-Mesh   33   50   0.655   91.4   40-Mesh   35   200   0.219   42.7   40-Mesh   37   20   0.207   45.1   40-Mesh   33   50   0.655   91.4   40-Mesh   35   200   0.297   45.1                                          |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh   32   290   0.90   0.106   91.6   40-Mesh   35   20   0.179   45.8   40-Mesh   37   40   0.109   32.3   40-Mesh   35   30   0.123   31.4   40-Mesh   37   30   0.123   34.4   40-Mesh   32   320   0.905   105.1   40-Mesh   35   50   0.136   36.6   40-Mesh   37   60   0.125   34.1   40-Mesh   32   320   0.905   105.1   40-Mesh   35   50   0.136   36.6   40-Mesh   37   80   0.131   34.0   40-Mesh   33   80   0.569   81.1   40-Mesh   35   80   0.168   39.5   40-Mesh   37   80   0.131   34.0   40-Mesh   33   30   0.559   81.1   40-Mesh   35   90   0.181   40.4   40-Mesh   37   100   0.157   38.8   40-Mesh   33   30   0.559   81.1   40-Mesh   35   90   0.181   40.4   40-Mesh   37   100   0.157   38.8   40-Mesh   33   30   0.559   81.1   40-Mesh   35   110   0.208   41.2   40-Mesh   37   100   0.227   49.7   40-Mesh   33   30   0.359   81.1   40-Mesh   35   110   0.208   41.2   40-Mesh   37   100   0.207   45.1   40-Mesh   35   100   0.208   41.2   40-Mesh   37   100   0.207   45.1   40-Mesh   35   100   0.208   41.2   40-Mesh   37   100   0.207   45.1   40-Mesh   37   30   0.201   42.7   40-Mesh   38   30   0.301   30   40-Mesh   35   200   0.219   42.7   40-Mesh   37   200   0.201   42.7   40-Mesh   37   30   0.201   42.7   40-Mesh   37   30   0.201   42.7   40-Mesh   37   30   0.201   42.7   40-Mesh   38   30   0.301   30   30   30   30   30   30   30                                                                                                                                                                                                                                                             |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh   32   300   0.995   109-7   40-Mesh   35   30   0.120   31.1   40-Mesh   37   50   0.122   34.1   40-Mesh   32   310   1.32   123.8   40-Mesh   35   50   0.136   36.6   40-Mesh   37   70   0.138   35.6   40-Mesh   32   330   0.842   100.2   40-Mesh   35   60   0.150   36.7   40-Mesh   32   330   0.842   100.2   40-Mesh   35   60   0.150   36.7   40-Mesh   32   330   0.842   100.2   40-Mesh   35   70   0.150   36.7   40-Mesh   33   0.0   0.550   88.1   40-Mesh   35   80   0.168   39.5   40-Mesh   33   0.0   0.517   38.7   40-Mesh   35   80   0.183   34.0   40-Mesh   33   0.0   0.517   38.7   40-Mesh   35   90   0.181   40-Mesh   37   100   0.173   38.8   40-Mesh   33   20   0.515   73.4   40-Mesh   35   100   0.210   45.4   40-Mesh   33   30   0.319   52.7   40-Mesh   35   110   0.208   44.2   40-Mesh   33   30   0.319   52.7   40-Mesh   35   110   0.208   44.2   40-Mesh   33   40   0.498   76.7   40-Mesh   35   130   0.266   51.2   40-Mesh   33   60   0.591   85.8   40-Mesh   35   130   0.266   51.2   40-Mesh   33   60   0.591   85.8   40-Mesh   35   130   0.266   51.2   40-Mesh   33   60   0.591   85.8   40-Mesh   35   120   0.281   55.6   40-Mesh   33   80   0.679   101.9   40-Mesh   35   120   0.282   46.3   40-Mesh   33   80   0.679   101.9   40-Mesh   35   120   0.225   46.3   40-Mesh   33   80   0.679   101.9   40-Mesh   35   120   0.222   46.6   40-Mesh   33   80   0.679   101.9   40-Mesh   35   20   0.223   46.6   40-Mesh   33   80   0.679   101.9   40-Mesh   35   20   0.223   46.6   40-Mesh   33   80   0.679   101.9   40-Mesh   35   20   0.225   46.1   40-Mesh   33   80   0.679   101.9   40-Mesh   35   20   0.225   46.1   40-Mesh   33   80   0.679   101.9   40-Mesh   35   20   0.225   46.1   40-Mesh   33   80   0.679   101.9   40-Mesh   35   20   0.225   46.1   40-Mesh   33   80   0.679   101.9   40-Mesh   35   20   0.225   46.1   40-Mesh   34   80   0.255   80   40-Mesh   35   20   0.225   46.1   40-Mesh   35   20   0.671   80-Mesh   36   20   0.225   80-Mesh   37   20   0.207   40-Mesh   3                                         |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh   32   320   0.095   105.1   40-Mesh   35   50   0.143   37.0   40-Mesh   37   70   0.128   34.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| A0-Mesh   32   320   0.905   105.1   40-Mesh   35   50   0.136   36.6   40-Mesh   37   70   0.138   35.6   40-Mesh   32   330   342   100.2   40-Mesh   35   60   0.150   36.7   40-Mesh   37   80   0.131   34.0   40-Mesh   32   340   0.741   92.1   40-Mesh   35   70   0.150   36.7   40-Mesh   37   70   0.157   38.8   36.6   40-Mesh   37   30   0.157   38.8   36.0   36.5   36.7   40-Mesh   37   30   0.157   38.8   36.0   36.5   36.5   36.7   36.6   40-Mesh   37   36.0   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.6   36.7   36.7   36.6   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.7   36.                                         |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh         32         340         0.842         100-0.2         40-Mesh         35         60         0.145         37.0         40-Mesh         37         80         0.131         34.0           40-Mesh         32         340         0.741         92.1         40-Mesh         35         70         0.150         36.7         40-Mesh         37         40-Mesh         37         90         0.157         38.8           40-Mesh         33         10         0.559         88.1         40-Mesh         35         90         0.181         40-Mesh         37         100         0.157         38.8           40-Mesh         33         10         0.571         88.7         40-Mesh         35         100         0.218         45.1         40-Mesh         37         100         0.227         49.7           40-Mesh         33         50         0.630         91.8         40-Mesh         35         150         0.219         42.7         40-Mesh         37         200         40.717         37.3           40-Mesh         33         70         0.555         91.4         40-Mesh         35         220         0.223         46.6         40-Mesh <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh 32 340 0.741 92.1 40-Mesh 35 70 0.150 36.7 40-Mesh 37 90 0.147 36.8 40-Mesh 32 250 1.079 123.6 40-Mesh 35 80 0.168 39.5 40-Mesh 37 100 0.157 38.8 40-Mesh 33 10 0.569 88.1 40-Mesh 35 80 0.181 40.4 40-Mesh 37 110 0.171 39.2 40-Mesh 33 10 0.569 88.1 40-Mesh 35 100 0.210 45.4 40-Mesh 37 120 0.227 49.7 40-Mesh 33 30 0.481 73.4 40-Mesh 35 110 0.208 44.2 40-Mesh 37 120 0.221 45.3 40-Mesh 33 30 0.489 76.7 40-Mesh 35 130 0.268 51.2 40-Mesh 37 120 0.202 45.1 40-Mesh 33 30 0.591 85.8 40-Mesh 35 130 0.268 51.2 40-Mesh 37 120 0.202 45.1 40-Mesh 33 60 0.591 85.8 40-Mesh 35 150 0.219 42.7 40-Mesh 37 120 0.201 42.7 40-Mesh 33 60 0.591 85.8 40-Mesh 35 150 0.219 42.7 40-Mesh 37 20 0.201 42.7 40-Mesh 33 80 0.769 101.9 40-Mesh 35 120 0.232 46.3 40-Mesh 37 20 0.201 42.7 40-Mesh 33 80 0.769 101.9 40-Mesh 35 200 0.232 46.3 40-Mesh 37 20 0.201 42.7 40-Mesh 33 80 0.769 101.9 40-Mesh 35 200 0.232 46.6 40-Mesh 37 20 0.201 42.7 40-Mesh 33 80 0.769 101.9 40-Mesh 35 200 0.232 46.3 40-Mesh 37 20 0.201 42.7 40-Mesh 33 80 0.769 101.9 40-Mesh 35 200 0.232 46.3 40-Mesh 37 20 0.201 45.0 40-Mesh 33 80 0.759 10.5 40-Mesh 35 200 0.278 53.2 40-Mesh 37 20 0.201 45.0 40-Mesh 33 100 0.925 110.5 40-Mesh 35 200 0.278 53.2 40-Mesh 37 20 0.1019 45.8 40-Mesh 33 200 0.510 69.0 40-Mesh 35 200 0.225 85.3 40-Mesh 37 200 0.1019 45.8 40-Mesh 33 260 0.510 69.0 40-Mesh 35 200 0.225 85.3 40-Mesh 37 200 0.1019 45.8 40-Mesh 33 260 0.510 69.0 40-Mesh 35 200 0.202 47.9 40-Mesh 37 300 0.103 49.5 40-Mesh 33 260 0.501 69.0 40-Mesh 35 200 0.201 47.9 40-Mesh 37 300 0.103 49.5 40-Mesh 33 200 0.562 76.9 40-Mesh 35 300 0.114 35.0 40-Mesh 37 300 0.103 49.5 40-Mesh 33 300 0.552 83.6 40-Mesh 35 300 0.104 45.2 40-Mesh 37 300 0.103 49.5 40-Mesh 37 30 0.013 49.5 40-Mesh 37 30 0.013 49.5 40-Mesh 37 30 0.103 49.5 40-Mesh 37 40 0.115 31.5 40-Mesh 36 0.0 1.121 31.6 40-Mesh 37 40 0.115 31.5 40-Mesh 36 0.0 1.121 31.6 40-Mesh 37 40 0.115 31.5 40-Mesh 36 0.0 1.121 31.6 40-Mesh 37 40 0.115 31.5 40-Mesh 36 0.0 1.                                       |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh   32   350   1.079   123.6   40-Mesh   35   80   0.168   39.5   40-Mesh   37   100   0.157   38.8     40-Mesh   33   0   0.571   88.7   40-Mesh   35   100   0.210   45.4     40-Mesh   33   0   0.451   73.4   40-Mesh   35   100   0.208   44.2     40-Mesh   33   30   0.319   52.7   40-Mesh   35   120   0.208   44.2     40-Mesh   33   30   0.319   52.7   40-Mesh   35   120   0.281   55.6     40-Mesh   33   50   0.630   91.8   40-Mesh   35   120   0.268   51.2     40-Mesh   33   50   0.630   91.8   40-Mesh   35   140   0.256   49.9     40-Mesh   33   50   0.630   91.8   40-Mesh   35   140   0.256   49.9     40-Mesh   33   60   0.591   85.8   40-Mesh   35   140   0.256   49.9     40-Mesh   33   70   0.655   91.4   40-Mesh   35   200   0.235   46.3     40-Mesh   33   80   0.769   101.9   40-Mesh   35   200   0.235   46.3     40-Mesh   33   80   0.769   101.9   40-Mesh   35   200   0.223   46.5     40-Mesh   33   100   0.737   91.3   40-Mesh   35   200   0.227   55.2     40-Mesh   33   100   0.737   91.3   40-Mesh   35   200   0.227   55.2     40-Mesh   33   250   0.510   69.0   40-Mesh   35   200   0.225   46.1     40-Mesh   33   280   0.405   59.0   40-Mesh   35   200   0.225   46.1     40-Mesh   33   280   0.405   59.0   40-Mesh   35   200   0.224   45.1     40-Mesh   33   280   0.506   76.9   40-Mesh   35   200   0.225   47.9     40-Mesh   33   280   0.405   59.0   40-Mesh   35   200   0.224   45.1     40-Mesh   33   280   0.405   59.0   40-Mesh   35   200   0.224   45.1     40-Mesh   33   280   0.405   59.0   40-Mesh   35   200   0.224   45.1     40-Mesh   33   280   0.405   59.0   40-Mesh   35   200   0.224   45.1     40-Mesh   33   280   0.405   59.0   40-Mesh   35   200   0.224   45.1     40-Mesh   33   300   0.671   84.3   40-Mesh   35   300   0.167   45.5     40-Mesh   33   300   0.671   84.3   40-Mesh   35   300   0.167   45.5     40-Mesh   34   200   0.508   84.4   40-Mesh   36   200   0.167   45.5     40-Mesh   34   200   0.184   45.0   40-Mesh   36   200   0.167   45.5     40-Mesh   34   200                                            |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh   33   00   0.599   88.1   40-Mesh   35   100   0.210   45.4   40-Mesh   37   110   0.171   39.2   40-Mesh   33   20   0.451   73.4   40-Mesh   35   100   0.210   45.4   40-Mesh   37   120   0.227   49.7   40-Mesh   33   30   0.319   52.7   40-Mesh   35   120   0.281   55.6   40-Mesh   37   130   0.212   46.3   40-Mesh   33   40   0.498   76.7   40-Mesh   35   130   0.268   51.5   40-Mesh   37   100   0.203   45.1   40-Mesh   37   40-Mesh   37   40-Mesh   37   40-Mesh   37   40-Mesh   37   40-Mesh   38   40   6.591   85.8   40-Mesh   35   130   0.256   49.9   40-Mesh   37   200   0.201   42.7   40-Mesh   33   60   0.591   85.8   40-Mesh   35   130   0.259   46.3   40-Mesh   37   230   0.190   41.8   40-Mesh   33   80   0.655   91.4   40-Mesh   35   200   0.232   46.3   40-Mesh   37   230   0.190   41.8   40-Mesh   33   80   0.769   101.9   40-Mesh   35   200   0.232   46.3   40-Mesh   37   230   0.190   41.8   40-Mesh   33   80   0.769   101.9   40-Mesh   35   230   0.232   46.3   40-Mesh   37   250   0.202   46.1   40-Mesh   37   200   0.202   46.1   40-Mesh   33   80   0.511   510.5   40-Mesh   35   200   0.232   46.3   40-Mesh   37   250   0.202   46.1   40-Mesh   37   200   0.190   41.8   40-Mesh   33   100   0.737   91.3   40-Mesh   35   260   0.258   53.8   40-Mesh   37   250   0.202   46.1   40-Mesh   37   200   0.190   45.2   40-Mesh   33   260   0.510   69.0   40-Mesh   35   260   0.258   53.8   40-Mesh   37   200   0.191   45.8   40-Mesh   33   260   0.510   69.0   40-Mesh   35   260   0.222   49.7   40-Mesh   37   300   0.193   49.5   40-Mesh   33   260   0.550   83.8   40-Mesh   35   260   0.222   49.7   40-Mesh   37   300   0.193   49.5   40-Mesh   36   200   200   47.9   40-Mesh   37   300   0.193   49.5   40-Mesh   38   200   0.588   40-Mesh   38   200   0.588   40-Mesh   38   200   0.194   40-Mesh   39   200   200   40-Mesh   30   200   200   40-Mesh   30   200   40-Mesh   30   200   200   40-Mesh   30   200   200   40-Mesh   30   200   200   40-Mesh   30   200   200   40-Mesh   30   2                                         |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh   33   20   0.451   73.4   40-Mesh   35   110   0.208   44.2   40-Mesh   37   130   0.212   46.3   40-Mesh   33   40   0.498   76.7   40-Mesh   35   120   0.281   55.6   40-Mesh   37   140   0.205   45.1   40-Mesh   33   40   0.498   76.7   40-Mesh   35   130   0.268   51.2   40-Mesh   37   150   0.172   37.3   40-Mesh   33   50   0.630   91.8   40-Mesh   35   140   0.256   49.9   40-Mesh   37   220   0.201   42.7   40-Mesh   33   20   0.655   91.4   40-Mesh   35   150   0.219   42.7   40-Mesh   37   230   0.201   42.7   40-Mesh   37   240   0.207   46.1   40-Mesh   33   80   0.769   101.9   40-Mesh   35   220   0.235   46.6   40-Mesh   37   250   0.208   46.9   40-Mesh   33   200   0.811   103.8   40-Mesh   35   250   0.279   56.4   40-Mesh   37   260   0.197   45.0   40-Mesh   33   100   0.925   110.5   40-Mesh   35   250   0.279   56.4   40-Mesh   37   270   0.190   45.2   40-Mesh   33   100   0.925   10.5   40-Mesh   35   260   0.258   53.8   40-Mesh   37   270   0.190   45.2   40-Mesh   33   200   0.671   84.3   40-Mesh   35   260   0.258   53.8   40-Mesh   37   280   0.191   45.8   40-Mesh   36   260   0.258   53.8   40-Mesh   37   280   0.191   45.8   40-Mesh   36   260   0.258   53.8   40-Mesh   37   280   0.191   45.8   40-Mesh   36   260   260   47.9   40-Mesh   37   280   0.193   45.5   40-Mesh   37   280   0.193   45.5   40-Mesh   37   280   0.193   45.5   40-Mesh   37   300   0.193   45.5   40-Mesh   38   280   0.671   86.2   40-Mesh   35   300   0.214   50.4   40-Mesh   37   300   0.193   45.5   40-Mesh   38   280   0.671   86.2   40-Mesh   35   300   0.184   46.2   40-Mesh   37   300   0.193   45.5   40-Mesh   38   280   0.671   86.2   40-Mesh   35   300   0.184   46.2   40-Mesh   37   300   0.193   45.5   40-Mesh   38   300   0.580   83.4   40-Mesh   35   300   0.184   46.2   40-Mesh   37   300   0.193   45.5   40-Mesh   38   300   0.580   83.4   40-Mesh   36   30   0.194   31.8   40-Mesh   37   300   30.125   31.6   40-Mesh   36   30   30.140   37.9   40-Mesh   37   300   30.125   31.                                         |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh   33   30   0.319   52.7   40-Mesh   35   120   0.281   55.6   40-Mesh   37   140   0.205   45.1     40-Mesh   33   50   0.630   91.8   40-Mesh   35   140   0.256   49.9     40-Mesh   33   50   0.591   85.8   40-Mesh   35   150   0.219   42.7     40-Mesh   33   60   0.591   85.8   40-Mesh   35   150   0.219   42.7     40-Mesh   33   80   0.765   91.19   40-Mesh   35   200   0.235   46.3     40-Mesh   33   80   0.769   101.9   40-Mesh   35   200   0.235   46.3     40-Mesh   33   80   0.769   101.9   40-Mesh   35   200   0.235   46.3     40-Mesh   33   100   0.925   110.5   40-Mesh   35   200   0.279   56.4     40-Mesh   33   100   0.925   110.5   40-Mesh   35   260   0.258   53.8     40-Mesh   33   250   0.510   69.0   40-Mesh   35   260   0.258   53.8     40-Mesh   33   250   0.510   69.0   40-Mesh   35   260   0.258   53.8     40-Mesh   33   270   0.562   76.9   40-Mesh   35   280   0.222   49.7     40-Mesh   33   280   0.510   69.0   40-Mesh   35   280   0.229   47.9     40-Mesh   33   280   0.510   69.0   40-Mesh   35   280   0.229   47.9     40-Mesh   33   280   0.598   83.4   40-Mesh   35   280   0.229   47.9     40-Mesh   33   280   0.580   83.4   40-Mesh   35   300   0.214   50.4     40-Mesh   33   280   0.580   83.4   40-Mesh   35   300   0.214   50.4     40-Mesh   33   300   0.590   83.4   40-Mesh   35   300   0.214   50.4     40-Mesh   33   300   0.590   83.4   40-Mesh   35   300   0.214   50.4     40-Mesh   33   300   0.590   83.4   40-Mesh   35   300   0.214   50.4     40-Mesh   33   300   0.590   83.4   40-Mesh   35   300   0.214   50.4     40-Mesh   34   300   0.314   32.2     40-Mesh   34   300   0.314   32.2     40-Mesh   34   300   0.184   45.0     40-Mesh   34   300   0.184   45.0     40-Mesh   34   300   0.185   41.8     40-Mesh   34   300   0.185   41.8     40-Mesh   34   300   0.227   56.6                                              |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh   33   40   0.498   76.7   40-Mesh   35   130   0.268   51.2   40-Mesh   37   150   0.172   37.3   40-Mesh   33   60   0.591   85.8   40-Mesh   35   150   0.219   42.7   40-Mesh   37   220   0.201   42.7   40-Mesh   33   70   0.655   91.4   40-Mesh   35   200   0.235   46.3   40-Mesh   37   230   0.190   41.8   40-Mesh   33   30   0.665   91.4   40-Mesh   35   200   0.235   46.3   40-Mesh   37   250   0.208   46.9   40-Mesh   33   30   0.676   101.9   40-Mesh   35   200   0.235   46.6   40-Mesh   37   250   0.208   46.9   40-Mesh   33   100   0.925   110.5   40-Mesh   35   200   0.275   56.4   40-Mesh   37   260   0.197   45.0   40-Mesh   33   110   0.737   91.3   40-Mesh   35   200   0.225   58.8   40-Mesh   37   280   0.191   45.8   40-Mesh   33   200   0.671   84.3   40-Mesh   35   200   0.225   48.1   40-Mesh   37   280   0.191   45.8   40-Mesh   33   200   0.671   84.3   40-Mesh   35   200   0.225   48.1   40-Mesh   37   200   0.179   45.0   40-Mesh   33   200   0.510   69.0   40-Mesh   35   200   0.225   48.1   40-Mesh   37   200   0.193   49.5   40-Mesh   33   200   0.562   66.9   40-Mesh   35   200   0.225   48.1   40-Mesh   37   300   0.193   49.5   40-Mesh   33   200   0.562   66.9   40-Mesh   35   200   0.225   48.1   40-Mesh   37   300   0.193   49.5   40-Mesh   33   200   0.562   66.9   40-Mesh   35   200   0.205   47.9   40-Mesh   37   300   0.193   49.5   40-Mesh   36   200   0.205   40-Mesh   37   300   0.152   41.6   40-Mesh   37   300   0.152   41.6   40-Mesh   37   300   0.152   37.2   40-Mesh   33   300   0.580   83.4   40-Mesh   35   300   0.160   45.9   40-Mesh   37   300   0.122   38.8   40-Mesh   34   300   0.342   68.7   40-Mesh   35   300   0.160   45.9   40-Mesh   36   300   0.160   45.9   40-Mesh   37   300   0.122   38.8   40-Mesh   37   300   0.122   38.8   40-Mesh   37   300   0.123   30.1   30.1   30.1   30.1   30.1   30.1   30.1   30.1   30.1   30.1   30.1   30.1   30.1   30.1   30.1   30.1   30.1   30.1   30.1   30.1   30.1   30.1   30.1   30.1   30.1   30.1   30.1                                            |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh   33   50   0.630   91.8   40-Mesh   35   140   0.256   49.9   40-Mesh   37   220   0.201   42.7   40-Mesh   33   70   0.655   91.4   40-Mesh   35   220   0.235   46.3   40-Mesh   37   240   0.207   46.1   40-Mesh   33   30   0.769   101.9   40-Mesh   35   220   0.232   46.6   40-Mesh   37   250   0.208   46.9   40-Mesh   33   30   0.811   103.8   40-Mesh   35   230   0.232   46.6   40-Mesh   37   250   0.208   46.9   40-Mesh   33   30   0.811   103.8   40-Mesh   35   240   0.272   52.2   40-Mesh   37   250   0.190   45.2   40-Mesh   33   250   0.671   84.3   40-Mesh   35   260   0.279   56.4   40-Mesh   37   280   0.190   45.2   40-Mesh   33   260   0.510   69.0   40-Mesh   35   260   0.258   53.8   40-Mesh   37   280   0.191   45.8   40-Mesh   33   260   0.562   76.9   40-Mesh   35   280   0.222   49.7   40-Mesh   37   300   0.193   49.5   40-Mesh   33   200   0.562   76.9   40-Mesh   35   280   0.204   40-Mesh   37   300   0.193   49.5   40-Mesh   33   300   0.562   76.9   40-Mesh   35   300   0.214   50.4   40-Mesh   37   300   0.193   49.5   40-Mesh   33   300   0.580   83.4   40-Mesh   35   300   0.214   50.4   40-Mesh   37   300   0.114   37.9   40-Mesh   33   300   0.671   84.3   40-Mesh   35   300   0.140   37.9   40-Mesh   33   300   0.548   83.0   40-Mesh   35   300   0.140   37.9   40-Mesh   33   300   0.548   83.0   40-Mesh   35   300   0.152   41.6   40-Mesh   34   40   40-Mesh   36   40-Mesh   36   40-Mesh   37   300   0.112   36.8   40-Mesh   38   300   3.37   30.4   30.8   40-Mesh   36   300   3.134   30.4   30.117   36.8   40-Mesh   36   300   30.124   37.6   40-Mesh   37   300   30.122   38.8   40-Mesh   36   300   30.124   37.6   40-Mesh   37   300   30.122   38.8   40-Mesh   36   300   30.124   37.6   40-Mesh   37   300   30.122   38.8   40-Mesh   36   300   30.124   37.6   40-Mesh   37   300   30.122   38.8   40-Mesh   36   300   30.124   37.6   40-Mesh   37   300   30.122   38.8   40-Mesh   36   300   30.124   37.6   40-Mesh   37   30.0   30.122   38.8   40-Mesh   36   300   30.                                         |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh 33 60 0.591 85.8 40-Mesh 35 100 0.219 42.7 40-Mesh 37 230 0.190 41.8 40-Mesh 33 80 0.769 101.9 40-Mesh 35 220 0.235 46.3 40-Mesh 37 250 0.207 46.1 40-Mesh 33 80 0.769 101.9 40-Mesh 35 230 0.232 46.6 40-Mesh 37 250 0.208 46.9 40-Mesh 33 100 0.925 110.5 40-Mesh 35 200 0.275 53.2 40-Mesh 37 260 0.197 45.0 40-Mesh 33 100 0.925 110.5 40-Mesh 35 200 0.258 53.8 40-Mesh 37 260 0.197 45.0 40-Mesh 33 250 0.671 84.3 40-Mesh 35 270 0.225 48.1 40-Mesh 37 290 0.190 45.8 40-Mesh 33 250 0.510 69.0 40-Mesh 35 200 0.225 48.1 40-Mesh 37 290 0.191 45.8 40-Mesh 33 270 0.552 76.9 40-Mesh 35 200 0.225 48.1 40-Mesh 37 200 0.193 49.5 40-Mesh 33 270 0.552 76.9 40-Mesh 35 200 0.294 47.9 40-Mesh 37 300 0.193 49.5 40-Mesh 33 200 0.550 83.4 40-Mesh 35 300 0.214 50.4 40-Mesh 37 300 0.193 49.5 40-Mesh 33 200 0.550 83.4 40-Mesh 35 300 0.214 50.4 40-Mesh 37 300 0.193 49.5 40-Mesh 33 300 0.580 83.4 40-Mesh 35 300 0.214 50.4 40-Mesh 37 300 0.112 37.2 40-Mesh 33 300 0.580 83.4 40-Mesh 35 300 0.114 38.0 40-Mesh 33 300 0.560 83.4 40-Mesh 35 300 0.114 38.0 40-Mesh 33 300 0.671 96.2 40-Mesh 35 300 0.140 40-Mesh 37 300 0.112 38.8 40-Mesh 34 30 0.352 88.7 40-Mesh 36 30 0.125 31.2 40-Mesh 37 300 0.150 41.6 40-Mesh 37 300 0.150 41.6 40-Mesh 34 40 0.0115 31.5 40-Mesh 36 00 0.128 35.8 40-Mesh 34 40 0.0115 31.5 40-Mesh 36 00 0.128 35.8 40-Mesh 34 40 0.0115 31.5 40-Mesh 36 00 0.128 35.8 40-Mesh 34 40 0.0115 31.5 40-Mesh 36 20 0.138 36.0 40-Mesh 34 40 0.0115 31.5 40-Mesh 36 00 0.128 35.8 40-Mesh 34 40 0.0115 31.5 40-Mesh 36 00 0.128 35.8 40-Mesh 34 40 0.0115 31.5 40-Mesh 36 00 0.128 35.8 40-Mesh 36 40-Mesh 36 00 0.128 35.8 40-Mesh 34 40 0.0115 31.5 40-Mesh 36 00 0.128 35.8 40-Mesh 34 40 0.0115 31.5 40-Mesh 36 00 0.128 35.8 40-Mesh 34 40 0.0115 31.5 40-Mesh 36 100 0.138 36.0 40-Mesh 37 40-Mesh 34 40 0.0115 31.5 40-Mesh 36 100 0.138 36.0 40-Mesh 37 40-Mesh 37 40-Mesh 38 40 0.0115 31.5 40-Mesh 36 100 0.138 36.0 40-Mesh 37 40-Mesh 38 40 0.0115 31.5 40-Mesh 36 100 0.138 36.0 40-Mesh 37 40-Mesh 38 40 0.0115 31.5 40-Mesh 36 100 0.138 36.0 40-Mesh 37 40-Mesh 3                                       | 40-Mesh                                                         |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh   33   70   0.655   91.4   40-Mesh   35   220   0.235   46.3   40-Mesh   37   240   0.207   46.1     40-Mesh   33   30   0.769   101.9   40-Mesh   35   240   0.272   53.2     40-Mesh   33   100   0.925   110.5   40-Mesh   35   240   0.272   53.2     40-Mesh   33   100   0.925   110.5   40-Mesh   35   250   0.279   56.4     40-Mesh   33   100   0.925   110.5   40-Mesh   35   250   0.279   56.4     40-Mesh   33   100   0.737   91.3   40-Mesh   35   260   0.258   53.8     40-Mesh   33   250   0.671   84.3   40-Mesh   35   270   0.225   48.1     40-Mesh   33   260   0.510   69.0   40-Mesh   35   280   0.222   49.7     40-Mesh   33   280   0.405   59.0   40-Mesh   35   280   0.222   49.7     40-Mesh   33   280   0.405   59.0   40-Mesh   35   300   0.214   50.4     40-Mesh   33   280   0.592   83.6   40-Mesh   35   300   0.214   50.4     40-Mesh   33   300   0.592   83.4   40-Mesh   35   300   0.214   50.4     40-Mesh   33   300   0.592   83.4   40-Mesh   35   300   0.184   46.2     40-Mesh   33   300   0.592   83.4   40-Mesh   35   300   0.140   37.9     40-Mesh   33   300   0.592   83.4   40-Mesh   35   300   0.167   43.5     40-Mesh   33   300   0.592   83.4   40-Mesh   35   300   0.140   37.9     40-Mesh   33   300   0.592   83.4   40-Mesh   35   300   0.167   43.5     40-Mesh   33   300   0.592   83.4   40-Mesh   35   300   0.140   37.9     40-Mesh   34   30   0.548   83.0   40-Mesh   36   30   0.121   38.8     40-Mesh   34   30   0.134   32.2   40-Mesh   36   30   0.123   39.5     40-Mesh   34   30   0.134   32.2   40-Mesh   36   30   0.121   34.6     40-Mesh   34   40   0.237   51.6   40-Mesh   36   30   0.121   34.6     40-Mesh   34   40   0.227   51.5   40-Mesh   36   30   0.121   34.6     40-Mesh   34   40   0.221   43.5   40-Mesh   36   30   0.122   36.2     40-Mesh   34   40   0.221   43.5   40-Mesh   36   30   0.122   36.2     40-Mesh   34   40   0.221   43.5   40-Mesh   36   30   0.122   36.2     40-Mesh   34   40   0.222   43.5   40-Mesh   36   30   0.123   36.2     40-Mesh   34   40   0.222                                          | 40-Mesh                                                         | 33  | 50  | 0.630   | 91.8          |         |     |     |       |      | 40-Mesh   | 37  |     |         |               |
| 40-Mesh   33   80   0.769   101.9   40-Mesh   35   230   0.232   46.6   40-Mesh   37   260   0.208   46.9     40-Mesh   33   100   0.925   110.5   40-Mesh   35   250   0.279   56.4     40-Mesh   33   110   0.737   91.3   40-Mesh   35   250   0.279   56.4     40-Mesh   33   120   0.737   91.3   40-Mesh   35   260   0.258   53.8     40-Mesh   33   250   0.671   84.3   40-Mesh   35   280   0.225   48.1     40-Mesh   33   260   0.510   69.0   40-Mesh   35   280   0.222   49.7     40-Mesh   33   270   0.562   76.9   40-Mesh   35   280   0.222   49.7     40-Mesh   33   270   0.562   76.9   40-Mesh   35   280   0.222   49.7     40-Mesh   33   280   0.405   59.0   40-Mesh   35   280   0.222   49.7     40-Mesh   33   290   0.592   83.6   40-Mesh   35   300   0.214   50.4     40-Mesh   33   300   0.588   83.4   40-Mesh   35   300   0.167   43.5     40-Mesh   33   300   0.588   83.4   40-Mesh   35   300   0.167   43.5     40-Mesh   33   300   0.588   83.4   40-Mesh   35   300   0.167   43.5     40-Mesh   33   300   0.579   60.4   40-Mesh   35   300   0.167   43.5     40-Mesh   33   300   0.432   68.7   40-Mesh   36   30   0.123   39.5     40-Mesh   33   300   0.432   68.7   40-Mesh   36   30   0.124   39.5     40-Mesh   33   300   0.432   68.7   40-Mesh   36   30   0.124   34.6     40-Mesh   34   30   0.184   45.0   40-Mesh   36   30   0.122   34.6     40-Mesh   34   30   0.184   45.0   40-Mesh   36   30   0.121   34.6     40-Mesh   34   30   0.184   45.0   40-Mesh   36   30   0.121   34.6     40-Mesh   34   30   0.184   45.5   40-Mesh   36   30   0.121   34.6     40-Mesh   34   30   0.184   45.5   40-Mesh   36   30   0.121   34.6     40-Mesh   34   30   0.274   47.5   40-Mesh   36   30   0.121   34.6     40-Mesh   34   30   0.279   56.6   40-Mesh   36   30   0.121   34.6     40-Mesh   34   30   0.279   56.6   40-Mesh   36   30   0.121   34.6     40-Mesh   34   30   0.279   56.6   40-Mesh   36   30   0.121   34.6     40-Mesh   34   30   0.279   56.6   40-Mesh   36   30   0.125   36.2     40-Mesh   34   30   0.279   56.6                                         | 40-Mesh                                                         | 33  | 60  |         |               | 40-Mesh |     |     |       |      | 40-Mesh   |     |     |         |               |
| 40-Mesh         33         90         0.811         10.3.8         40-Mesh         35         240         0.272         53.2         40-Mesh         37         260         0.197         45.0           40-Mesh         33         110         0.925         110.5         40-Mesh         35         260         0.258         53.8         40-Mesh         37         270         0.190         45.2           40-Mesh         33         250         0.511         84.3         40-Mesh         35         270         0.225         48.1         40-Mesh         37         290         0.179         45.1           40-Mesh         33         260         0.562         76.9         40-Mesh         35         290         0.209         47.9         40-Mesh         37         300         0.193         49.5           40-Mesh         33         280         0.405         59.0         40-Mesh         35         300         0.214         50.4         40-Mesh         37         320         0.110         39.2           40-Mesh         33         30         0.548         83.4         40-Mesh         35         300         0.140         39.9         40-Mesh         36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40-Mesh                                                         | 33  | 70  | 0.655   | 91.4          | 40-Mesh | 35  | 220 | 0.235 | 46.3 | 40-Mesh   | 37  | 240 | 0.207   | 46.1          |
| 40-Mesh         33         100         0.925         110.5         40-Mesh         35         250         0.279         56.4         40-Mesh         37         270         0.190         45.2           40-Mesh         33         110         0.737         91.3         40-Mesh         35         260         0.258         53.8         40-Mesh         37         280         0.191         45.8           40-Mesh         33         260         0.510         69.0         40-Mesh         35         280         0.222         49.7         40-Mesh         37         290         0.193         49.5           40-Mesh         33         280         0.405         59.0         40-Mesh         35         290         0.209         47.9         40-Mesh         37         300         0.171         45.1           40-Mesh         33         290         0.592         83.6         40-Mesh         35         300         0.214         50.4         40-Mesh         37         320         0.140         37.2         40-Mesh         37         320         0.140         37.2         40-Mesh         37         320         0.121         31.2         40-Mesh         37         320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40-Mesh                                                         | 33  | 80  | 0.769   | 101.9         | 40-Mesh | 35  | 230 | 0.232 | 46.6 | 40-Mesh   | 37  | 250 | 0.208   | 46.9          |
| 40-Mesh         33         110         0.737         91.3         40-Mesh         35         260         0.258         53.8         40-Mesh         37         280         0.191         45.8           40-Mesh         33         250         0.510         69.0         40-Mesh         35         280         0.222         49.7         40-Mesh         37         300         0.193         45.1           40-Mesh         33         270         0.562         76.9         40-Mesh         35         290         0.209         47.9         40-Mesh         37         300         0.193         45.1           40-Mesh         33         280         0.452         83.6         40-Mesh         35         300         0.214         50.4         40-Mesh         37         320         0.171         45.1           40-Mesh         33         300         0.592         83.6         40-Mesh         35         300         0.184         46.2         40-Mesh         36         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40-Mesh                                                         | 33  | 90  | 0.811   | 103.8         | 40-Mesh | 35  | 240 | 0.272 | 53.2 | 40-Mesh   | 37  | 260 | 0.197   | 45.0          |
| 40-Mesh         33         250         0.671         84.3         40-Mesh         35         270         0.225         48.1         40-Mesh         37         290         0.179         45.1           40-Mesh         33         260         0.510         69.0         40-Mesh         35         290         0.220         49.7         40-Mesh         37         300         0.173         49.1           40-Mesh         33         280         0.405         59.0         40-Mesh         35         200         0.214         50.4         40-Mesh         37         300         0.114         39.2           40-Mesh         33         290         0.592         83.6         40-Mesh         35         320         0.164         46.2         40-Mesh         37         330         0.125         37.2           40-Mesh         33         300         0.584         83.0         40-Mesh         35         320         0.164         43.5         40-Mesh         36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40-Mesh                                                         | 33  | 100 | 0.925   | 110.5         | 40-Mesh | 35  | 250 | 0.279 | 56.4 | 40-Mesh   | 37  | 270 | 0.190   | 45.2          |
| 40-Mesh         33         260         0.510         69.0         40-Mesh         35         290         0.220         49.7         40-Mesh         37         300         0.193         49.5           40-Mesh         33         270         0.562         76.9         40-Mesh         35         300         0.214         50.4         40-Mesh         37         300         0.1171         45.1           40-Mesh         33         280         0.405         59.0         40-Mesh         35         300         0.184         46.2         40-Mesh         37         320         0.125         37.2           40-Mesh         33         300         0.580         83.4         40-Mesh         35         320         0.167         43.5         40-Mesh         37         340         0.117         36.8           40-Mesh         33         310         0.548         83.0         40-Mesh         35         340         0.141         38.0         40-Mesh         36         40-Mesh         36         40-Mesh         36         40-Mesh         36         40-Mesh         36         40-Mesh         36         40-Mesh         37         350         0.122         38.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40-Mesh                                                         | 33  | 110 | 0.737   | 91.3          | 40-Mesh | 35  | 260 | 0.258 | 53.8 | 40-Mesh   | 37  | 280 | 0.191   | 45.8          |
| 40-Mesh         33         260         0.510         69.0         40-Mesh         35         290         0.220         49.7         40-Mesh         37         300         0.193         49.5           40-Mesh         33         270         0.562         76.9         40-Mesh         35         300         0.214         50.4         40-Mesh         37         300         0.1171         45.1           40-Mesh         33         280         0.405         59.0         40-Mesh         35         300         0.184         46.2         40-Mesh         37         320         0.125         37.2           40-Mesh         33         300         0.580         83.4         40-Mesh         35         320         0.167         43.5         40-Mesh         37         340         0.117         36.8           40-Mesh         33         310         0.548         83.0         40-Mesh         35         340         0.141         38.0         40-Mesh         36         40-Mesh         36         40-Mesh         36         40-Mesh         36         40-Mesh         36         40-Mesh         36         40-Mesh         37         350         0.122         38.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40-Mesh                                                         | 33  | 250 | 0.671   | 84.3          | 40-Mesh | 35  | 270 | 0.225 | 48.1 | 40-Mesh   | 37  | 290 | 0.179   | 45.1          |
| 40-Mesh         33         280         0.405         59.0         40-Mesh         35         300         0.214         50.4         40-Mesh         37         320         0.140         39.2           40-Mesh         33         290         0.592         83.6         40-Mesh         35         310         0.184         46.2         40-Mesh         37         330         0.125         37.2           40-Mesh         33         300         0.571         96.2         40-Mesh         35         330         0.140         37.9         40-Mesh         37         350         0.122         38.8           40-Mesh         33         320         0.548         83.0         40-Mesh         35         350         0.141         38.0         40-Mesh         36         40-Mesh         35         300         0.152         41.6         40-Mesh         36         0         0.152         41.6         40-Mesh         36         0         0.128         39.5         40-Mesh         36         0         0.128         39.5         40-Mesh         36         0         0.128         39.5         40-Mesh         40-Mesh         36         0         0.1213         33.9         40-Mesh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40-Mesh                                                         | 33  | 260 | 0.510   | 69.0          | 40-Mesh | 35  | 280 | 0.222 | 49.7 | 40-Mesh   | 37  | 300 | 0.193   | 49.5          |
| 40-Mesh         33         280         0.405         59.0         40-Mesh         35         300         0.214         50.4         40-Mesh         37         320         0.140         39.2           40-Mesh         33         290         0.592         83.6         40-Mesh         35         310         0.184         46.2         40-Mesh         37         330         0.125         37.2           40-Mesh         33         300         0.571         96.2         40-Mesh         35         330         0.140         37.9         40-Mesh         37         350         0.122         38.8           40-Mesh         33         320         0.548         83.0         40-Mesh         35         350         0.141         38.0         40-Mesh         36         40-Mesh         35         300         0.152         41.6         40-Mesh         36         0         0.152         41.6         40-Mesh         36         0         0.128         39.5         40-Mesh         36         0         0.128         39.5         40-Mesh         36         0         0.128         39.5         40-Mesh         40-Mesh         36         0         0.1213         33.9         40-Mesh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 | 33  |     |         |               |         |     |     |       |      |           | 37  |     |         |               |
| 40-Mesh         33         290         0.592         83.6         40-Mesh         35         310         0.184         46.2         40-Mesh         37         330         0.125         37.2           40-Mesh         33         300         0.580         83.4         40-Mesh         35         320         0.167         43.5         40-Mesh         37         340         0.117         36.8           40-Mesh         33         310         0.548         83.0         40-Mesh         35         340         0.141         38.0         40-Mesh         36         40-Mesh         36         40-Mesh         36         0.122         38.8           40-Mesh         33         340         0.432         68.7         40-Mesh         36         0         0.122         31.6         40-Mesh         36         0         0.128         39.5         40-Mesh         36         0         0.128         39.5         40-Mesh         40-Mesh         36         0         0.121         34.6         40-Mesh         40-Mesh         36         0         0.121         34.6         40-Mesh         40-Mesh         36         0         0.121         34.6         40-Mesh         36         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 |     |     |         |               |         |     |     |       |      |           | 37  |     |         |               |
| 40-Mesh         33         300         0.580         83.4         40-Mesh         35         320         0.167         43.5         40-Mesh         37         340         0.117         36.8           40-Mesh         33         310         0.671         96.2         40-Mesh         35         340         0.141         38.0           40-Mesh         33         320         0.548         83.0         40-Mesh         35         340         0.1141         38.0           40-Mesh         33         330         0.432         68.7         40-Mesh         36         0         0.128         39.5           40-Mesh         33         340         0.409         66.6         40-Mesh         36         10         0.098         33.7           40-Mesh         34         0         0.184         45.0         40-Mesh         36         20         0.164         45.9           40-Mesh         34         10         0.115         31.5         40-Mesh         36         40         0.119         33.9           40-Mesh         34         0         0.124         35.5         40-Mesh         36         60         0.128         35.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh         33         310         0.671         96.2         40-Mesh         35         330         0.140         37.9         40-Mesh         37         350         0.122         38.8           40-Mesh         33         320         0.548         83.0         40-Mesh         35         350         0.121         38.8           40-Mesh         33         340         0.409         66.6         40-Mesh         36         0         0.123         39.5           40-Mesh         33         350         0.357         60.4         40-Mesh         36         10         0.098         33.7           40-Mesh         34         0         0.184         45.0         40-Mesh         36         20         0.166         45.9           40-Mesh         34         10         0.115         31.5         40-Mesh         36         20         0.166         45.9           40-Mesh         34         20         0.185         41.8         40-Mesh         36         40         0.119         33.9           40-Mesh         34         40         0.237         51.6         40-Mesh         36         60         0.128         35.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh 33 320 0.548 83.0 40-Mesh 35 340 0.141 38.0 40-Mesh 33 330 0.432 68.7 40-Mesh 35 350 0.152 41.6 40-Mesh 33 340 0.409 66.6 40-Mesh 36 0 0.128 39.5 40-Mesh 33 350 0.357 60.4 40-Mesh 36 10 0.098 33.7 40-Mesh 34 10 0.115 31.5 40-Mesh 36 20 0.166 45.9 40-Mesh 34 20 0.185 41.8 40-Mesh 36 30 0.121 34.6 40-Mesh 34 30 0.134 32.2 40-Mesh 36 50 0.137 38.3 40-Mesh 34 40 0.237 51.6 40-Mesh 36 50 0.137 38.3 40-Mesh 34 50 0.154 35.5 40-Mesh 36 60 0.128 35.8 40-Mesh 34 60 0.279 56.6 40-Mesh 36 60 0.128 35.8 40-Mesh 34 70 0.212 43.5 40-Mesh 36 80 0.145 36.7 40-Mesh 34 80 0.202 40.5 40-Mesh 36 80 0.152 36.2 40-Mesh 34 90 0.205 39.8 40-Mesh 36 100 0.160 38.0 40-Mesh 34 100 0.279 51.3 40-Mesh 36 100 0.160 38.0 40-Mesh 34 110 0.314 54.8 40-Mesh 36 120 0.272 56.3 40-Mesh 34 110 0.314 54.8 40-Mesh 36 120 0.272 56.3 40-Mesh 34 110 0.314 54.8 40-Mesh 36 120 0.272 56.3 40-Mesh 34 110 0.314 54.8 40-Mesh 36 120 0.272 56.3 40-Mesh 34 110 0.314 54.8 40-Mesh 36 120 0.272 56.3 40-Mesh 34 110 0.314 54.8 40-Mesh 36 120 0.272 56.3 40-Mesh 34 110 0.314 54.8 40-Mesh 36 120 0.272 56.3 40-Mesh 34 110 0.314 54.8 40-Mesh 36 120 0.272 56.3 40-Mesh 34 110 0.314 54.8 40-Mesh 36 120 0.272 56.3 40-Mesh 34 110 0.314 54.8 40-Mesh 36 120 0.272 56.3 40-Mesh 34 110 0.314 54.8 40-Mesh 36 120 0.272 56.3 40-Mesh 34 110 0.364 59.7 40-Mesh 36 120 0.200 41.4 40-Mesh 34 120 0.298 49.4 40-Mesh 36 120 0.200 41.4 40-Mesh 34 150 0.265 45.1 40-Mesh 36 230 0.220 45.1 40-Mesh 34 220 0.245 41.5 40-Mesh 36 230 0.220 45.4 40-Mesh 34 220 0.245 41.5 40-Mesh 36 230 0.220 45.4 40-Mesh 34 220 0.245 41.5 40-Mesh 36 240 0.240 50.2 40-Mesh 34 250 0.352 61.3 40-Mesh 36 270 0.210 48.5 40-Mesh 34 250 0.352 61.3 40-Mesh 36 270 0.210 48.5 40-Mesh 34 250 0.352 61.3 40-Mesh 36 270 0.210 48.5 40-Mesh 34 260 0.347 62.0 40-Mesh 36 280 0.205 47.8                                                                                                                                                                                                                                                                                              |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh         33         330         0.432         68.7         40-Mesh         35         350         0.152         41.6           40-Mesh         33         340         0.409         66.6         40-Mesh         36         0         0.128         39.5           40-Mesh         34         0         0.184         45.0         40-Mesh         36         10         0.098         33.7           40-Mesh         34         10         0.115         31.5         40-Mesh         36         20         0.166         45.9           40-Mesh         34         20         0.185         41.8         40-Mesh         36         40         0.119         33.9           40-Mesh         34         30         0.134         32.2         40-Mesh         36         50         0.137         38.3           40-Mesh         34         40         0.237         51.6         40-Mesh         36         60         0.128         35.8           40-Mesh         34         60         0.279         56.6         40-Mesh         36         70         0.138         36.7           40-Mesh         34         60         0.279         51.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                 |     |     |         |               |         |     |     |       |      | 10 110011 | 0,  | 000 | 0.122   | 30.0          |
| 40-Mesh 33 340 0.409 66.6 40-Mesh 36 0 0.128 39.5<br>40-Mesh 33 350 0.357 60.4 40-Mesh 36 10 0.098 33.7<br>40-Mesh 34 0 0.184 45.0 40-Mesh 36 20 0.166 45.9<br>40-Mesh 34 10 0.115 31.5 40-Mesh 36 40 0.119 33.9<br>40-Mesh 34 20 0.185 41.8 40-Mesh 36 40 0.119 33.9<br>40-Mesh 34 40 0.237 51.6 40-Mesh 36 60 0.128 35.8<br>40-Mesh 34 50 0.154 35.5 40-Mesh 36 70 0.138 36.0<br>40-Mesh 34 60 0.279 56.6 40-Mesh 36 80 0.145 36.7<br>40-Mesh 34 60 0.202 40.5 40-Mesh 36 90 0.152 36.2<br>40-Mesh 34 80 0.202 40.5 40-Mesh 36 100 0.160 38.0<br>40-Mesh 34 100 0.279 51.3 40-Mesh 36 100 0.187 42.2<br>40-Mesh 34 100 0.279 51.3 40-Mesh 36 120 0.272 56.3<br>40-Mesh 34 100 0.314 54.8 40-Mesh 36 130 0.226 48.0<br>40-Mesh 34 120 0.307 53.0 40-Mesh 36 130 0.226 48.0<br>40-Mesh 34 130 0.364 59.7 40-Mesh 36 150 0.200 41.4<br>40-Mesh 34 150 0.265 45.1 40-Mesh 36 220 0.220 45.1<br>40-Mesh 34 150 0.265 45.1 40-Mesh 36 220 0.220 45.1<br>40-Mesh 34 220 0.245 41.5 40-Mesh 36 220 0.220 45.1<br>40-Mesh 34 220 0.245 41.5 40-Mesh 36 220 0.220 45.1<br>40-Mesh 34 220 0.245 41.5 40-Mesh 36 240 0.240 50.2<br>40-Mesh 34 220 0.245 41.5 40-Mesh 36 250 0.239 51.4<br>40-Mesh 34 220 0.281 49.3 40-Mesh 36 260 0.235 52.4<br>40-Mesh 34 250 0.352 61.3 40-Mesh 36 260 0.235 52.4<br>40-Mesh 34 250 0.352 61.3 40-Mesh 36 270 0.210 48.5<br>40-Mesh 34 250 0.352 61.3 40-Mesh 36 270 0.210 48.5<br>40-Mesh 34 250 0.352 61.3 40-Mesh 36 270 0.210 48.5<br>40-Mesh 34 260 0.347 62.0 40-Mesh 36 270 0.210 48.5<br>40-Mesh 34 260 0.347 62.0 40-Mesh 36 270 0.210 48.5<br>40-Mesh 34 260 0.347 62.0 40-Mesh 36 270 0.210 48.5<br>40-Mesh 34 260 0.347 62.0 40-Mesh 36 270 0.210 48.5<br>40-Mesh 34 260 0.347 62.0 40-Mesh 36 270 0.210 48.5<br>40-Mesh 34 260 0.347 62.0 40-Mesh 36 270 0.210 48.5<br>40-Mesh 34 260 0.347 62.0 40-Mesh 36 270 0.210 48.5<br>40-Mesh 34 260 0.347 62.0 40-Mesh 36 270 0.210 48.5<br>40-Mesh 34 260 0.347 62.0 40-Mesh 36 270 0.210 48.5<br>40-Mesh 34 260 0.347 62.0 40-Mesh 36 270 0.210 48.5<br>40-Mesh 34 260 0.347 62.0 40-Mesh 36 270 0.210 48.5<br>40-Mesh 34 260 0.347 62.0 40-Mesh 36 270 0.210 48.5<br>40-Mesh 34 26 |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh         33         350         0.357         60.4         40-Mesh         36         10         0.098         33.7           40-Mesh         34         0         0.184         45.0         40-Mesh         36         20         0.166         45.9           40-Mesh         34         10         0.115         31.5         40-Mesh         36         40         0.121         34.6           40-Mesh         34         20         0.185         41.8         40-Mesh         36         40         0.119         33.9           40-Mesh         34         30         0.134         32.2         40-Mesh         36         50         0.137         38.3           40-Mesh         34         40         0.237         51.6         40-Mesh         36         60         0.128         35.8           40-Mesh         34         60         0.279         56.6         40-Mesh         36         70         0.138         36.0           40-Mesh         34         80         0.202         40.5         40-Mesh         36         100         0.160         38.0           40-Mesh         34         80         0.2025         39.8 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh         34         0         0.184         45.0         40-Mesh         36         20         0.166         45.9           40-Mesh         34         10         0.115         31.5         40-Mesh         36         30         0.121         34.6           40-Mesh         34         20         0.185         41.8         40-Mesh         36         40         0.119         33.9           40-Mesh         34         30         0.134         32.2         40-Mesh         36         50         0.137         38.3           40-Mesh         34         0         0.237         51.6         40-Mesh         36         60         0.128         35.8           40-Mesh         34         60         0.279         56.6         40-Mesh         36         70         0.138         36.0           40-Mesh         34         70         0.212         43.5         40-Mesh         36         100         0.160         38.0           40-Mesh         34         90         0.205         39.8         40-Mesh         36         100         0.187         42.2           40-Mesh         34         100         0.314         54.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh       34       10       0.115       31.5       40-Mesh       36       30       0.121       34.6         40-Mesh       34       20       0.185       41.8       40-Mesh       36       40       0.119       33.9         40-Mesh       34       30       0.134       32.2       40-Mesh       36       50       0.137       38.3         40-Mesh       34       40       0.237       51.6       40-Mesh       36       60       0.128       35.8         40-Mesh       34       50       0.154       35.5       40-Mesh       36       70       0.138       36.0         40-Mesh       34       60       0.279       56.6       40-Mesh       36       90       0.152       36.7         40-Mesh       34       70       0.212       43.5       40-Mesh       36       90       0.152       36.2         40-Mesh       34       90       0.205       39.8       40-Mesh       36       100       0.160       38.0         40-Mesh       34       100       0.279       51.3       40-Mesh       36       110       0.187       42.2         40-Mesh       34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh       34       20       0.185       41.8       40-Mesh       36       40       0.119       33.9         40-Mesh       34       30       0.134       32.2       40-Mesh       36       50       0.137       38.3         40-Mesh       34       40       0.237       51.6       40-Mesh       36       60       0.128       35.8         40-Mesh       34       50       0.154       35.5       40-Mesh       36       70       0.138       36.0         40-Mesh       34       60       0.279       56.6       40-Mesh       36       80       0.145       36.7         40-Mesh       34       70       0.212       43.5       40-Mesh       36       90       0.152       36.2         40-Mesh       34       80       0.202       40.5       40-Mesh       36       100       0.160       38.0         40-Mesh       34       100       0.279       51.3       40-Mesh       36       110       0.187       42.2         40-Mesh       34       110       0.314       54.8       40-Mesh       36       120       0.272       56.3         40-Mesh       34 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh       34       30       0.134       32.2       40-Mesh       36       50       0.137       38.3         40-Mesh       34       40       0.237       51.6       40-Mesh       36       60       0.128       35.8         40-Mesh       34       50       0.154       35.5       40-Mesh       36       70       0.138       36.0         40-Mesh       34       60       0.279       56.6       40-Mesh       36       80       0.145       36.7         40-Mesh       34       70       0.212       43.5       40-Mesh       36       90       0.152       36.2         40-Mesh       34       80       0.202       40.5       40-Mesh       36       100       0.160       38.0         40-Mesh       34       100       0.275       51.3       40-Mesh       36       110       0.187       42.2         40-Mesh       34       100       0.275       51.3       40-Mesh       36       120       0.272       56.3         40-Mesh       34       110       0.314       54.8       40-Mesh       36       130       0.226       48.0         40-Mesh       34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh       34       40       0.237       51.6       40-Mesh       36       60       0.128       35.8         40-Mesh       34       50       0.154       35.5       40-Mesh       36       70       0.138       36.0         40-Mesh       34       60       0.279       56.6       40-Mesh       36       80       0.145       36.7         40-Mesh       34       70       0.212       43.5       40-Mesh       36       90       0.152       36.2         40-Mesh       34       80       0.202       40.5       40-Mesh       36       100       0.160       38.0         40-Mesh       34       90       0.205       39.8       40-Mesh       36       110       0.187       42.2         40-Mesh       34       100       0.279       51.3       40-Mesh       36       120       0.272       56.3         40-Mesh       34       110       0.314       54.8       40-Mesh       36       130       0.226       48.0         40-Mesh       34       120       0.307       53.0       40-Mesh       36       150       0.200       41.4         40-Mesh       34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh       34       50       0.154       35.5       40-Mesh       36       70       0.138       36.0         40-Mesh       34       60       0.279       56.6       40-Mesh       36       80       0.145       36.7         40-Mesh       34       70       0.212       43.5       40-Mesh       36       90       0.152       36.2         40-Mesh       34       80       0.202       40.5       40-Mesh       36       100       0.160       38.0         40-Mesh       34       90       0.205       39.8       40-Mesh       36       110       0.187       42.2         40-Mesh       34       100       0.279       51.3       40-Mesh       36       120       0.272       56.3         40-Mesh       34       110       0.314       54.8       40-Mesh       36       130       0.226       48.0         40-Mesh       34       120       0.307       53.0       40-Mesh       36       140       0.214       44.7         40-Mesh       34       130       0.364       59.7       40-Mesh       36       20       0.220       45.1         40-Mesh       34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh       34       60       0.279       56.6       40-Mesh       36       80       0.145       36.7         40-Mesh       34       70       0.212       43.5       40-Mesh       36       90       0.152       36.2         40-Mesh       34       80       0.202       40.5       40-Mesh       36       100       0.160       38.0         40-Mesh       34       90       0.205       39.8       40-Mesh       36       110       0.187       42.2         40-Mesh       34       100       0.279       51.3       40-Mesh       36       120       0.272       56.3         40-Mesh       34       110       0.314       54.8       40-Mesh       36       130       0.226       48.0         40-Mesh       34       120       0.307       53.0       40-Mesh       36       140       0.214       44.7         40-Mesh       34       130       0.364       59.7       40-Mesh       36       150       0.200       41.4         40-Mesh       34       150       0.265       45.1       40-Mesh       36       20       0.220       45.1         40-Mesh       34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh       34       70       0.212       43.5       40-Mesh       36       90       0.152       36.2         40-Mesh       34       80       0.202       40.5       40-Mesh       36       100       0.160       38.0         40-Mesh       34       90       0.205       39.8       40-Mesh       36       110       0.187       42.2         40-Mesh       34       100       0.279       51.3       40-Mesh       36       120       0.272       56.3         40-Mesh       34       110       0.314       54.8       40-Mesh       36       130       0.226       48.0         40-Mesh       34       120       0.307       53.0       40-Mesh       36       140       0.214       44.7         40-Mesh       34       130       0.364       59.7       40-Mesh       36       150       0.200       41.4         40-Mesh       34       140       0.298       49.4       40-Mesh       36       20       0.220       45.1         40-Mesh       34       150       0.265       45.1       40-Mesh       36       20       0.220       45.4         40-Mesh       34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh       34       80       0.202       40.5       40-Mesh       36       100       0.160       38.0         40-Mesh       34       90       0.205       39.8       40-Mesh       36       110       0.187       42.2         40-Mesh       34       100       0.279       51.3       40-Mesh       36       120       0.272       56.3         40-Mesh       34       110       0.314       54.8       40-Mesh       36       130       0.226       48.0         40-Mesh       34       120       0.307       53.0       40-Mesh       36       140       0.214       44.7         40-Mesh       34       130       0.364       59.7       40-Mesh       36       150       0.200       41.4         40-Mesh       34       140       0.298       49.4       40-Mesh       36       20       0.220       45.1         40-Mesh       34       150       0.265       45.1       40-Mesh       36       230       0.220       45.4         40-Mesh       34       230       0.274       47.2       40-Mesh       36       250       0.239       51.4         40-Mesh       34 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh       34       90       0.205       39.8       40-Mesh       36       110       0.187       42.2         40-Mesh       34       100       0.279       51.3       40-Mesh       36       120       0.272       56.3         40-Mesh       34       110       0.314       54.8       40-Mesh       36       130       0.226       48.0         40-Mesh       34       120       0.307       53.0       40-Mesh       36       140       0.214       44.7         40-Mesh       34       130       0.364       59.7       40-Mesh       36       150       0.200       41.4         40-Mesh       34       140       0.298       49.4       40-Mesh       36       220       0.220       45.1         40-Mesh       34       150       0.265       45.1       40-Mesh       36       230       0.220       45.4         40-Mesh       34       20       0.245       41.5       40-Mesh       36       240       0.240       50.2         40-Mesh       34       230       0.274       47.2       40-Mesh       36       250       0.239       51.4         40-Mesh       34 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh       34       100       0.279       51.3       40-Mesh       36       120       0.272       56.3         40-Mesh       34       110       0.314       54.8       40-Mesh       36       130       0.226       48.0         40-Mesh       34       120       0.307       53.0       40-Mesh       36       140       0.214       44.7         40-Mesh       34       130       0.364       59.7       40-Mesh       36       150       0.200       41.4         40-Mesh       34       140       0.298       49.4       40-Mesh       36       220       0.220       45.1         40-Mesh       34       150       0.265       45.1       40-Mesh       36       230       0.220       45.4         40-Mesh       34       220       0.245       41.5       40-Mesh       36       240       0.240       50.2         40-Mesh       34       230       0.274       47.2       40-Mesh       36       250       0.239       51.4         40-Mesh       34       250       0.352       61.3       40-Mesh       36       260       0.235       52.4         40-Mesh       34<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh       34       110       0.314       54.8       40-Mesh       36       130       0.226       48.0         40-Mesh       34       120       0.307       53.0       40-Mesh       36       140       0.214       44.7         40-Mesh       34       130       0.364       59.7       40-Mesh       36       150       0.200       41.4         40-Mesh       34       140       0.298       49.4       40-Mesh       36       220       0.220       45.1         40-Mesh       34       150       0.265       45.1       40-Mesh       36       230       0.220       45.4         40-Mesh       34       220       0.245       41.5       40-Mesh       36       240       0.240       50.2         40-Mesh       34       230       0.274       47.2       40-Mesh       36       250       0.239       51.4         40-Mesh       34       240       0.281       49.3       40-Mesh       36       260       0.235       52.4         40-Mesh       34       250       0.352       61.3       40-Mesh       36       270       0.210       48.5         40-Mesh       34<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh       34       120       0.307       53.0       40-Mesh       36       140       0.214       44.7         40-Mesh       34       130       0.364       59.7       40-Mesh       36       150       0.200       41.4         40-Mesh       34       140       0.298       49.4       40-Mesh       36       220       0.220       45.1         40-Mesh       34       150       0.265       45.1       40-Mesh       36       230       0.220       45.4         40-Mesh       34       220       0.245       41.5       40-Mesh       36       240       0.240       50.2         40-Mesh       34       230       0.274       47.2       40-Mesh       36       250       0.239       51.4         40-Mesh       34       240       0.281       49.3       40-Mesh       36       260       0.235       52.4         40-Mesh       34       250       0.352       61.3       40-Mesh       36       270       0.210       48.5         40-Mesh       34       260       0.347       62.0       40-Mesh       36       280       0.205       47.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh       34       130       0.364       59.7       40-Mesh       36       150       0.200       41.4         40-Mesh       34       140       0.298       49.4       40-Mesh       36       220       0.220       45.1         40-Mesh       34       150       0.265       45.1       40-Mesh       36       230       0.220       45.4         40-Mesh       34       220       0.245       41.5       40-Mesh       36       240       0.240       50.2         40-Mesh       34       230       0.274       47.2       40-Mesh       36       250       0.239       51.4         40-Mesh       34       240       0.281       49.3       40-Mesh       36       260       0.235       52.4         40-Mesh       34       250       0.352       61.3       40-Mesh       36       270       0.210       48.5         40-Mesh       34       260       0.347       62.0       40-Mesh       36       280       0.205       47.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh       34       140       0.298       49.4       40-Mesh       36       220       0.220       45.1         40-Mesh       34       150       0.265       45.1       40-Mesh       36       230       0.220       45.4         40-Mesh       34       220       0.245       41.5       40-Mesh       36       240       0.240       50.2         40-Mesh       34       230       0.274       47.2       40-Mesh       36       250       0.239       51.4         40-Mesh       34       240       0.281       49.3       40-Mesh       36       260       0.235       52.4         40-Mesh       34       250       0.352       61.3       40-Mesh       36       270       0.210       48.5         40-Mesh       34       260       0.347       62.0       40-Mesh       36       280       0.205       47.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40-Mesh                                                         |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh       34       150       0.265       45.1       40-Mesh       36       230       0.220       45.4         40-Mesh       34       220       0.245       41.5       40-Mesh       36       240       0.240       50.2         40-Mesh       34       230       0.274       47.2       40-Mesh       36       250       0.239       51.4         40-Mesh       34       240       0.281       49.3       40-Mesh       36       260       0.235       52.4         40-Mesh       34       250       0.352       61.3       40-Mesh       36       270       0.210       48.5         40-Mesh       34       260       0.347       62.0       40-Mesh       36       280       0.205       47.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |     |     |         |               |         |     |     |       |      |           |     |     |         |               |
| 40-Mesh       34       220       0.245       41.5       40-Mesh       36       240       0.240       50.2         40-Mesh       34       230       0.274       47.2       40-Mesh       36       250       0.239       51.4         40-Mesh       34       240       0.281       49.3       40-Mesh       36       260       0.235       52.4         40-Mesh       34       250       0.352       61.3       40-Mesh       36       270       0.210       48.5         40-Mesh       34       260       0.347       62.0       40-Mesh       36       280       0.205       47.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40-Mesh                                                         | 34  |     |         |               | 40-Mesh | 36  |     |       |      |           |     |     |         |               |
| 40-Mesh       34       230       0.274       47.2       40-Mesh       36       250       0.239       51.4         40-Mesh       34       240       0.281       49.3       40-Mesh       36       260       0.235       52.4         40-Mesh       34       250       0.352       61.3       40-Mesh       36       270       0.210       48.5         40-Mesh       34       260       0.347       62.0       40-Mesh       36       280       0.205       47.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40-Mesh                                                         | 34  |     |         |               | 40-Mesh | 36  |     |       |      |           |     |     |         |               |
| 40-Mesh       34       240       0.281       49.3       40-Mesh       36       260       0.235       52.4         40-Mesh       34       250       0.352       61.3       40-Mesh       36       270       0.210       48.5         40-Mesh       34       260       0.347       62.0       40-Mesh       36       280       0.205       47.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40-Mesh                                                         | 34  |     |         |               | 40-Mesh | 36  |     |       |      |           |     |     |         |               |
| 40-Mesh 34 250 0.352 61.3 40-Mesh 36 270 0.210 48.5<br>40-Mesh 34 260 0.347 62.0 40-Mesh 36 280 0.205 47.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40-Mesh                                                         | 34  |     |         |               | 40-Mesh | 36  |     |       |      |           |     |     |         |               |
| 40-Mesh 34 260 0.347 62.0 40-Mesh 36 280 0.205 47.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40-Mesh                                                         | 34  |     |         |               | 40-Mesh | 36  |     |       |      |           |     |     |         |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40-Mesh                                                         | 34  | 250 | 0.352   | 61.3          | 40-Mesh | 36  | 270 | 0.210 | 48.5 |           |     |     |         |               |
| 40-Mesh 34 270 0.283 52.6 40-Mesh 36 290 0.194 47.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40-Mesh                                                         | 34  | 260 | 0.347   | 62.0          | 40-Mesh | 36  | 280 | 0.205 | 47.8 |           |     |     |         |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40-Mesh                                                         | 34  | 270 | 0.283   | 52.6          | 40-Mesh | 36  | 290 | 0.194 | 47.1 |           |     |     |         |               |

Table 18. Test 7057 spherical-cap 80-mesh transition locations.

| Table 18. Test 7057 spherical-cap 80-mesh transition locations. |          |     |         |               |                    |          |     |         |               |         |     |     |         |               |
|-----------------------------------------------------------------|----------|-----|---------|---------------|--------------------|----------|-----|---------|---------------|---------|-----|-----|---------|---------------|
| Model                                                           | Run      | Ray | $s_0/R$ | $Re_{\theta}$ | Model              | Run      | Ray | $s_0/R$ | $Re_{\theta}$ | Model   | Run | Ray | $s_0/R$ | $Re_{\theta}$ |
| 80-Mesh                                                         | 26       | 0   | 0.388   | 64.7          | 80-Mesh            | 29       | 70  | 0.244   | 56.6          | 80-Mesh | 31  | 90  | 0.219   | 51.8          |
| 80-Mesh                                                         | 26       | 10  | 0.607   | 92.4          | 80-Mesh            | 29       | 80  | 0.202   | 46.2          | 80-Mesh | 31  | 100 | 0.231   | 54.1          |
| 80-Mesh                                                         | 26       | 20  | 0.682   | 101.6         | 80-Mesh            | 29       | 90  | 0.306   | 64.8          | 80-Mesh | 31  | 110 | 0.230   | 52.8          |
| 80-Mesh                                                         | 26       | 30  | 0.786   | 112.6         | 80-Mesh            | 29       | 100 | 0.318   | 65.4          | 80-Mesh | 31  | 120 | 0.206   | 47.2          |
| 80-Mesh                                                         | 26       | 40  | 0.763   | 109.7         | 80-Mesh            | 29       | 110 | 0.312   | 61.9          | 80-Mesh | 31  | 130 | 0.220   | 47.7          |
| 80-Mesh                                                         | 26       | 50  | 0.478   | 74.0          | 80-Mesh            | 29       | 120 | 0.231   | 48.0          | 80-Mesh | 31  | 140 | 0.198   | 42.8          |
| 80-Mesh                                                         | 26       | 60  | 0.758   | 105.3         | 80-Mesh            | 29       | 130 | 0.266   | 51.6          | 80-Mesh | 31  | 150 | 0.226   | 46.9          |
| 80-Mesh                                                         | 26       | 70  |         | 112.1         | 80-Mesh            | 29       |     | 0.280   |               | 80-Mesh | 31  |     | 0.305   |               |
| 80-Mesh                                                         | 26       | 80  | 0.671   |               | 80-Mesh            | 29       | 150 | 0.295   | 55.6          | 80-Mesh | 31  |     | 0.244   |               |
| 80-Mesh                                                         | 26       | 90  |         | 102.9         | 80-Mesh            | 29       | 220 | 0.326   | 60.9          | 80-Mesh | 31  | 240 | 0.236   | 51.7          |
| 80-Mesh                                                         | 26       |     | 0.766   |               | 80-Mesh            | 29       |     | 0.277   |               | 80-Mesh | 31  |     | 0.231   |               |
| 80-Mesh                                                         | 26       |     | 0.669   |               | 80-Mesh            | 29       |     | 0.239   |               | 80-Mesh | 31  |     | 0.198   |               |
| 80-Mesh                                                         | 26       |     | 0.642   |               | 80-Mesh            |          |     | 0.248   |               | 80-Mesh | 31  |     | 0.189   |               |
| 80-Mesh                                                         | 26       |     | 0.655   |               | 80-Mesh            | 29       |     | 0.241   |               | 80-Mesh | 31  |     | 0.234   |               |
| 80-Mesh                                                         | 26       |     | 0.625   |               | 80-Mesh            | 29       |     | 0.219   |               | 80-Mesh | 31  |     | 0.241   |               |
| 80-Mesh                                                         | 26       |     | 0.392   |               | 80-Mesh            |          |     | 0.263   |               | 80-Mesh | 31  |     | 0.204   |               |
| 80-Mesh                                                         | 26       |     | 0.735   |               |                    | 29       |     | 0.272   |               |         | 31  |     | 0.177   |               |
| 80-Mesh                                                         | 26       |     | 0.684   |               | 80-Mesh            | 29       |     | 0.238   |               | 80-Mesh | 31  |     | 0.181   |               |
| 80-Mesh                                                         | 26       |     | 0.921   |               | 80-Mesh            | 29       |     | 0.243   |               | 80-Mesh | 31  |     | 0.168   |               |
| 80-Mesh                                                         | 26       |     | 0.754   |               | 80-Mesh            | 29       |     | 0.207   |               | 80-Mesh | 31  |     | 0.241   |               |
| 80-Mesh                                                         | 26       |     | 0.832   |               | 80-Mesh            | 29       |     | 0.247   |               | 80-Mesh | 31  | 350 | 0.215   | 60.0          |
| 80-Mesh                                                         | 26       |     | 0.634   |               | 80-Mesh            |          |     | 0.267   |               |         |     |     |         |               |
| 80-Mesh                                                         | 26       |     | 0.753   |               |                    | 29       |     | 0.233   |               |         |     |     |         |               |
| 80-Mesh                                                         | 26       |     | 0.721   |               | 80-Mesh            | 30       | 0   | 0.165   |               |         |     |     |         |               |
| 80-Mesh                                                         | 26       |     | 0.728   |               | 80-Mesh            | 30       | 10  | 0.131   |               |         |     |     |         |               |
| 80-Mesh                                                         | 28       | 0   | 0.226   |               | 80-Mesh            | 30       | 20  | 0.123   |               |         |     |     |         |               |
| 80-Mesh                                                         | 28       | 10  | 0.174   |               | 80-Mesh            | 30       | 30  | 0.127   |               |         |     |     |         |               |
| 80-Mesh                                                         | 28       | 20  | 0.170   |               | 80-Mesh            | 30       | 40  | 0.113   |               |         |     |     |         |               |
| 80-Mesh                                                         | 28       | 30  | 0.341   |               | 80-Mesh            | 30       | 50  | 0.139   |               |         |     |     |         |               |
| 80-Mesh                                                         | 28       | 40  | 0.366   |               | 80-Mesh            | 30       | 60  | 0.149   |               |         |     |     |         |               |
| 80-Mesh                                                         | 28       | 50  | 0.378   |               | 80-Mesh            | 30       | 70  | 0.164   |               |         |     |     |         |               |
| 80-Mesh                                                         | 28       | 60  | 0.396   |               | 80-Mesh            | 30       | 80  | 0.194   |               |         |     |     |         |               |
| 80-Mesh                                                         | 28       | 70  | 0.364   |               | 80-Mesh            | 30       | 90  | 0.233   |               |         |     |     |         |               |
| 80-Mesh                                                         | 28       | 80  | 0.348   |               | 80-Mesh            | 30       |     | 0.280   |               |         |     |     |         |               |
| 80-Mesh                                                         | 28       | 90  | 0.361   |               | 80-Mesh            | 30       |     | 0.254   |               |         |     |     |         |               |
| 80-Mesh                                                         | 28<br>28 |     | 0.380   |               | 80-Mesh            | 30<br>30 |     | 0.223   |               |         |     |     |         |               |
| 80-Mesh<br>80-Mesh                                              | 28       |     | 0.423   |               | 80-Mesh<br>80-Mesh | 30       |     | 0.240   |               |         |     |     |         |               |
| 80-Mesh                                                         | 28       |     | 0.401   |               | 80-Mesh            | 30       |     | 0.237   |               |         |     |     |         |               |
| 80-Mesh                                                         | 28       |     | 0.401   |               | 80-Mesh            | 30       |     | 0.237   |               |         |     |     |         |               |
| 80-Mesh                                                         | 28       |     | 0.372   |               | 80-Mesh            | 30       |     | 0.256   |               |         |     |     |         |               |
| 80-Mesh                                                         | 28       |     | 0.351   |               | 80-Mesh            | 30       |     | 0.240   |               |         |     |     |         |               |
|                                                                 | 28       |     | 0.336   |               | 80-Mesh            | 30       |     | 0.233   |               |         |     |     |         |               |
| 80-Mesh                                                         | 28       |     | 0.257   |               | 80-Mesh            | 30       |     | 0.209   |               |         |     |     |         |               |
| 80-Mesh                                                         | 28       |     | 0.254   |               | 80-Mesh            | 30       |     | 0.203   |               |         |     |     |         |               |
| 80-Mesh                                                         | 28       |     | 0.270   |               | 80-Mesh            | 30       |     | 0.249   |               |         |     |     |         |               |
| 80-Mesh                                                         | 28       |     | 0.264   |               | 80-Mesh            | 30       |     | 0.247   |               |         |     |     |         |               |
| 80-Mesh                                                         | 28       |     | 0.308   |               | 80-Mesh            | 30       |     | 0.210   |               |         |     |     |         |               |
| 80-Mesh                                                         | 28       |     | 0.313   |               | 80-Mesh            | 30       |     | 0.190   |               |         |     |     |         |               |
| 80-Mesh                                                         | 28       |     | 0.370   |               | 80-Mesh            | 30       |     | 0.196   |               |         |     |     |         |               |
| 80-Mesh                                                         | 28       |     | 0.448   |               | 80-Mesh            | 30       |     | 0.171   |               |         |     |     |         |               |
| 80-Mesh                                                         | 28       |     | 0.386   |               | 80-Mesh            | 30       |     | 0.256   |               |         |     |     |         |               |
| 80-Mesh                                                         | 28       |     | 0.312   |               | 80-Mesh            | 30       |     | 0.220   |               |         |     |     |         |               |
| 80-Mesh                                                         | 28       |     | 0.289   |               | 80-Mesh            | 31       | 0   | 0.129   |               |         |     |     |         |               |
| 80-Mesh                                                         | 28       |     | 0.371   |               | 80-Mesh            | 31       | 10  | 0.109   |               |         |     |     |         |               |
| 80-Mesh                                                         | 29       | 0   | 0.196   |               | 80-Mesh            | 31       | 20  | 0.114   |               |         |     |     |         |               |
| 80-Mesh                                                         | 29       | 10  | 0.142   |               | 80-Mesh            | 31       | 30  | 0.096   |               |         |     |     |         |               |
| 80-Mesh                                                         | 29       | 20  | 0.150   | 41.0          | 80-Mesh            | 31       | 40  | 0.098   | 31.9          |         |     |     |         |               |
| 80-Mesh                                                         | 29       | 30  | 0.168   | 44.0          | 80-Mesh            | 31       | 50  | 0.121   | 36.4          |         |     |     |         |               |
| 80-Mesh                                                         | 29       | 40  | 0.176   | 46.3          | 80-Mesh            | 31       | 60  | 0.118   | 34.6          |         |     |     |         |               |
| 80-Mesh                                                         | 29       | 50  | 0.234   |               | 80-Mesh            | 31       | 70  | 0.148   |               |         |     |     |         |               |
| 80-Mesh                                                         | 29       | 60  | 0.327   | 74.1          | 80-Mesh            | 31       | 80  | 0.188   | 47.5          |         |     |     |         |               |

Table 19. Test 7057 spherical-cap 140-mesh transition locations. Model Run Ray  $s_0/R$  Re $_\theta$  Model Run Ray  $s_0/R$  Re $_\theta$ 

| Model                | Run |            | $s_0/R$        | $Re_{\theta}$  | Model                | Run | Ray                               | $s_0/R$        | $Re_{\theta}$ |
|----------------------|-----|------------|----------------|----------------|----------------------|-----|-----------------------------------|----------------|---------------|
| 140-Mesh             | 20  | 20         | 0.897          | 129.6          | 140-Mesh             | 23  | 40                                | 0.255          | 65.4          |
| 140-Mesh             |     | 30         | 1.123          | 150.3          | 140-Mesh             | 23  | 50                                | 0.367          | 87.7          |
| 140-Mesh             |     | 40         | 1.199          | 156.4          | 140-Mesh             | 23  | 60                                | 0.451          | 103.1         |
| 140-Mesh             |     | 80         | 1.054          | 131.9          | 140-Mesh             |     | 70                                | 0.445          | 99.3          |
| 140-Mesh             |     | 0          | 0.556          | 109.4          | 140-Mesh             |     | 80                                | 0.461          | 99.6          |
| 140-Mesh             |     | 10         | 0.489          | 99.6           | 140-Mesh             |     | 90                                | 0.434          | 93.1          |
| 140-Mesh             |     | 20         | 0.473          | 97.5           | 140-Mesh             |     | 100                               | 0.441          | 91.4          |
| 140-Mesh             |     | 30         | 0.525          | 102.4          | 140-Mesh             |     | 110                               | 0.471          | 94.5          |
| 140-Mesh             |     | 40         | 0.511          | 100.0          | 140-Mesh             |     | 120                               | 0.383          | 77.0          |
| 140-Mesh             |     | 50         | 0.497          | 95.8           | 140-Mesh             |     | 130                               | 0.282          | 58.7          |
| 140-Mesh             |     | 60         | 0.605          | 111.0          | 140-Mesh             |     | 140                               |                | 52.4          |
| 140-Mesh             |     | 70         | 0.728          | 126.9          | 140-Mesh             |     | 150                               | 0.279          | 55.8          |
| 140-Mesh             |     | 80         | 0.793          | 132.5          | 140-Mesh             |     |                                   | 0.379          | 73.1          |
| 140-Mesh             |     | 90         | 0.686          | 115.2          | 140-Mesh             |     | 230                               | 0.412          | 79.8          |
| 140-Mesh             |     | 100        | 0.728          | 117.9          | 140-Mesh             |     | 240                               | 0.412          | 83.3          |
| 140-Mesh             |     | 110        | 0.830          | 125.3          | 140-Mesh             |     | 250                               | 0.395          | 82.1          |
| 140-Mesh             |     | 120        | 0.726          | 109.6          | 140-Mesh             |     | 260                               | 0.319          | 69.6<br>81.8  |
| 140-Mesh             |     | 140<br>240 | 0.283          | 49.1<br>101.3  | 140-Mesh<br>140-Mesh |     | <ul><li>270</li><li>280</li></ul> | 0.376<br>0.457 | 99.2          |
| 140-Mesh<br>140-Mesh |     | 250        | 0.649          | 101.3          | 140-Mesh             |     | 290                               | 0.437          | 106.4         |
| 140-Mesh             |     | 260        | 0.730          | 129.1          | 140-Mesh             |     | 300                               | 0.434          | 97.4          |
| 140-Mesh             |     | 270        | 0.860          | 136.4          | 140-Mesh             |     | 310                               | 0.426          | 109.5         |
| 140-Mesh             |     | 280        | 0.854          | 140.3          | 140-Mesh             |     | 320                               | 0.447          | 105.4         |
| 140-Mesh             |     | 290        | 0.898          | 149.0          | 140-Mesh             |     | 340                               | 0.383          | 95.0          |
| 140-Mesh             |     | 300        | 0.805          | 139.1          | 140-Mesh             |     | 350                               | 0.398          | 98.7          |
| 140-Mesh             |     | 310        | 0.775          | 138.1          | 140-Mesh             |     | 0                                 | 0.284          | 77.3          |
| 140-Mesh             |     | 320        | 0.704          | 129.8          | 140-Mesh             |     | 10                                | 0.294          | 80.8          |
| 140-Mesh             |     | 340        | 0.571          | 111.7          | 140-Mesh             |     | 20                                | 0.244          | 68.9          |
| 140-Mesh             |     | 350        | 0.542          | 108.3          | 140-Mesh             |     | 30                                | 0.234          | 63.9          |
| 140-Mesh             |     | 0          | 0.320          | 78.8           | 140-Mesh             |     | 40                                | 0.242          | 64.5          |
| 140-Mesh             |     | 10         | 0.306          | 76.4           | 140-Mesh             |     | 50                                | 0.350          | 86.6          |
| 140-Mesh             |     | 20         | 0.274          | 68.4           | 140-Mesh             |     | 60                                | 0.434          | 102.5         |
| 140-Mesh             |     | 30         |                | 67.1           | 140-Mesh             |     | 70                                | 0.427          | 98.8          |
| 140-Mesh             |     | 40         | 0.352          | 82.9           | 140-Mesh             |     | 80                                | 0.445          | 99.3          |
| 140-Mesh             | 22  | 50         | 0.447          | 99.8           | 140-Mesh             | 24  | 90                                | 0.406          | 89.7          |
| 140-Mesh             | 22  | 60         | 0.458          | 98.5           | 140-Mesh             | 24  | 100                               | 0.425          | 90.8          |
| 140-Mesh             | 22  | 70         | 0.470          | 98.6           | 140-Mesh             |     | 110                               | 0.441          | 92.0          |
| 140-Mesh             | 22  | 80         | 0.485          | 98.9           | 140-Mesh             | 24  | 120                               | 0.349          | 73.8          |
| 140-Mesh             | 22  | 90         | 0.499          | 98.7           | 140-Mesh             | 24  | 130                               | 0.276          | 59.5          |
| 140-Mesh             |     | 100        | 0.475          | 93.1           | 140-Mesh             |     | 140                               | 0.246          | 51.9          |
| 140-Mesh             |     | 110        | 0.520          | 98.4           | 140-Mesh             | 24  | 150                               | 0.269          |               |
| 140-Mesh             | 22  | 120        |                | 91.8           | 140-Mesh             | 24  | 220                               | 0.371          | 73.5          |
| 140-Mesh             | 22  | 130        |                | 55.7           | 140-Mesh             | 24  | 230                               | 0.400          | 81.1          |
| 140-Mesh             | 22  | 140        | 0.277          | 53.7           | 140-Mesh             | 24  | 240                               | 0.402          |               |
| 140-Mesh             |     |            |                | 54.0           | 140-Mesh             |     |                                   | 0.379          | 80.2          |
| 140-Mesh             |     | 220        |                | 68.9           | 140-Mesh             |     |                                   | 0.310          | 68.8          |
| 140-Mesh             |     | 230        |                | 79.6           | 140-Mesh             |     |                                   | 0.369          | 83.0          |
| 140-Mesh             |     |            | 0.474          | 88.6           | 140-Mesh             |     | 280                               | 0.446          | 99.2          |
| 140-Mesh             |     | 250        | 0.504          | 95.4           | 140-Mesh             |     | 290                               | 0.465          | 105.6         |
| 140-Mesh             |     | 260        |                | 90.3           | 140-Mesh             |     | 300                               | 0.422          | 99.0          |
| 140-Mesh             |     |            | 0.399          | 81.2           | 140-Mesh             |     | 310                               | 0.472          | 112.1         |
| 140-Mesh             |     |            | 0.570          | 113.3          | 140-Mesh             |     | 320                               | 0.437          | 106.1         |
| 140-Mesh             |     | 290        |                | 109.9          | 140-Mesh             |     | 340                               | 0.367          | 93.6          |
| 140-Mesh<br>140-Mesh |     | 300        | 0.516<br>0.503 | 107.9          | 140-Mesh             | 24  | 350                               | 0.351          | 92.4          |
| 140-Mesh             |     | 310        |                | 108.1<br>108.6 |                      |     |                                   |                |               |
| 140-Mesh             |     | 320        | 0.488<br>0.466 | 108.6          |                      |     |                                   |                |               |
| 140-Mesh             |     | 340<br>350 | 0.419          | 97.1           |                      |     |                                   |                |               |
| 140-Mesh             |     | 0          | 0.419          | 80.2           |                      |     |                                   |                |               |
| 140-Mesh             |     | 10         | 0.304          | 79.1           |                      |     |                                   |                |               |
| 140-Mesh             |     | 20         | 0.261          | 70.3           |                      |     |                                   |                |               |
| 140-Mesh             |     | 30         | 0.254          | 66.3           |                      |     |                                   |                |               |
|                      | -   | -          |                | -              |                      |     |                                   |                |               |

Table 20. Test 7057 spherical-cap 230-mesh transition locations.

| Model Run                  | Patr |       | Reθ   | Model    | -    | s <sub>0</sub> /R |  |
|----------------------------|------|-------|-------|----------|------|-------------------|--|
| 230-Mesh 14                |      |       | 153.8 |          |      | 0.733             |  |
| 230-Mesh 15                | 0    |       | 185.5 | 230-Mesh |      | 0.736             |  |
| 230-Mesh 15                | 10   |       | 176.4 |          |      | 0.786             |  |
| 230-Mesh 15                | 20   |       | 225.9 | 230-Mesh |      | 0.708             |  |
| 230-Mesh 15                | 50   |       | 188.6 | 230-Mesh |      | 0.700             |  |
| 230-Mesh 15                |      | 0.822 |       | 230-Mesh |      | 0.717             |  |
| 230-Mesh 15                | 340  | 0.958 |       | 230-Mesh |      | 0.755             |  |
| 230-Mesh 16                | 0    |       | 188.6 | 230-Mesh |      | 0.781             |  |
| 230-Mesh 16                | 10   |       | 186.5 | 230-Mesh |      | 0.731             |  |
| 230-Mesh 16                | 20   |       | 187.5 |          |      | 0.706             |  |
| 230-Mesh 16                | 30   |       | 176.4 |          |      | 0.935             |  |
| 230-Mesh 16                | 40   |       | 177.1 | 230-Mesh |      | 0.613             |  |
| 230-Mesh 16                | 50   |       | 174.3 |          |      | 0.847             |  |
| 230-Mesh 16                | 60   |       | 198.7 |          | <br> |                   |  |
| 230-Mesh 16                | 70   | 1.018 |       |          |      |                   |  |
| 230-Mesh 16                | 80   | 0.987 |       |          |      |                   |  |
| 230-Mesh 16                | 90   |       | 183.6 |          |      |                   |  |
| 230-Mesh 16                |      | 0.874 |       |          |      |                   |  |
| 230-Mesh 16                | 260  | 0.735 | 136.1 |          |      |                   |  |
| 230-Mesh 16                | 270  | 0.931 | 167.7 |          |      |                   |  |
| 230-Mesh 16                | 290  | 1.133 | 202.6 |          |      |                   |  |
| 230-Mesh 16                | 300  | 1.138 | 206.6 |          |      |                   |  |
| 230-Mesh 16                | 310  | 1.044 | 198.9 |          |      |                   |  |
| 230-Mesh 16                | 320  | 0.757 | 156.9 |          |      |                   |  |
| 230-Mesh 16                | 330  | 0.989 | 196.4 |          |      |                   |  |
| 230-Mesh 16                | 340  | 0.836 | 174.2 |          |      |                   |  |
| 230-Mesh 16                | 350  | 0.913 | 186.5 |          |      |                   |  |
| 230-Mesh 17                | 0    | 0.777 | 172.3 |          |      |                   |  |
| 230-Mesh 17                | 10   | 0.746 | 166.4 |          |      |                   |  |
| 230-Mesh 17                | 20   | 0.650 | 148.6 |          |      |                   |  |
| 230-Mesh 17                | 30   | 0.675 |       |          |      |                   |  |
| 230-Mesh 17                | 40   | 0.754 |       |          |      |                   |  |
| 230-Mesh 17                | 50   | 0.800 |       |          |      |                   |  |
| 230-Mesh 17                | 60   | 0.817 |       |          |      |                   |  |
| 230-Mesh 17                | 70   | 0.750 |       |          |      |                   |  |
| 230-Mesh 17                | 80   |       | 148.0 |          |      |                   |  |
| 230-Mesh 17                | 90   | 0.934 |       |          |      |                   |  |
| 230-Mesh 17                |      | 0.849 |       |          |      |                   |  |
| 230-Mesh 17                |      | 0.747 |       |          |      |                   |  |
| 230-Mesh 17                |      | 0.746 |       |          |      |                   |  |
| 230-Mesh 17                |      | 0.802 | 146.9 |          |      |                   |  |
| 230-Mesh 17                |      | 0.719 | 140.4 |          |      |                   |  |
| 230-Mesh 17<br>230-Mesh 17 |      | 0.721 |       |          |      |                   |  |
| 230-Mesh 17                |      |       | 165.0 |          |      |                   |  |
| 230-Mesh 17                | 300  | 0.798 | 167.8 |          |      |                   |  |
| 230-Mesh 17                | 310  | 0.733 | 159.8 |          |      |                   |  |
| 230-Mesh 17                | 320  | 0.718 | 159.4 |          |      |                   |  |
| 230-Mesh 17                | 330  | 0.960 | 200.9 |          |      |                   |  |
| 230-Mesh 17                | 340  | 0.644 | 147.6 |          |      |                   |  |
| 230-Mesh 17                | 350  | 0.860 | 185.5 |          |      |                   |  |
| 230-Mesh 18                | 0    | 0.768 | 174.1 |          |      |                   |  |
| 230-Mesh 18                | 10   | 0.729 | 168.9 |          |      |                   |  |
| 230-Mesh 18                | 20   | 0.621 | 148.6 |          |      |                   |  |
| 230-Mesh 18                | 30   | 0.652 | 151.5 |          |      |                   |  |
| 230-Mesh 18                | 40   | 0.749 | 167.6 |          |      |                   |  |
| 230-Mesh 18                | 50   | 0.787 | 171.8 |          |      |                   |  |
| 230-Mesh 18                | 60   | 0.799 | 170.7 |          |      |                   |  |
| 230-Mesh 18                | 70   | 0.740 | 158.9 |          |      |                   |  |
| 230-Mesh 18                | 80   | 0.709 | 150.2 |          |      |                   |  |
| 230-Mesh 18                | 90   | 0.932 | 180.0 |          |      |                   |  |
| 230-Mesh 18                | 100  | 0.844 | 162.0 |          |      |                   |  |
|                            |      |       |       |          |      |                   |  |

Table 21. Test 7057 spherical-cap smooth-OML transition locations.

| Model  | Run | Ray | $s_0/R$ | $Re_{\theta}$ |
|--------|-----|-----|---------|---------------|
| Smooth | 10  | 310 | 1.393   | 245.5         |
| Smooth | 10  | 320 | 1.371   | 245.4         |
| Smooth | 10  | 330 | 1.390   | 247.7         |
| Smooth | 10  | 340 | 1.336   | 249.4         |
| Smooth | 11  | 0   | 1.311   | 262.9         |
| Smooth | 11  | 10  | 1.344   | 266.2         |
| Smooth | 11  | 20  | 0.902   | 197.0         |
| Smooth | 11  | 30  | 1.040   | 217.9         |
| Smooth | 11  | 40  | 1.170   | 235.2         |
| Smooth | 11  | 50  | 1.152   | 231.5         |
| Smooth | 11  | 60  | 1.158   | 225.5         |
| Smooth | 11  | 70  | 1.106   | 214.0         |
| Smooth | 11  | 300 | 1.124   | 221.1         |
| Smooth | 11  | 310 | 1.080   | 220.2         |
| Smooth | 11  | 320 | 1.025   | 213.4         |
| Smooth | 11  | 330 | 1.044   | 218.7         |
| Smooth | 11  | 340 | 1.115   | 231.9         |
| Smooth | 11  | 350 | 1.261   | 253.5         |
| Smooth | 12  | 0   | 1.296   | 266.1         |
| Smooth | 12  | 10  | 1.330   | 270.6         |
| Smooth | 12  | 20  | 0.818   | 187.9         |
| Smooth | 12  | 30  | 1.154   | 239.9         |
| Smooth | 12  | 40  | 1.318   | 260.9         |
| Smooth | 12  | 50  | 1.373   | 265.6         |
| Smooth | 12  | 300 | 1.177   | 234.7         |
| Smooth | 12  | 310 | 1.246   | 251.4         |
| Smooth | 12  | 320 | 1.052   | 223.2         |
| Smooth | 12  | 330 | 1.099   | 232.4         |
| Smooth | 12  | 340 | 1.103   | 236.5         |
| Smooth | 12  | 350 | 1.250   | 258.1         |







Figure 3. Sphere-cone geometry.



Figure 4. Spherical-cap geometry.



Figure 5. Sphere-cone model photographs



Figure 6. Spherical-cap model photographs



## Actual roughened surface



Figure 7. Illustration of ideal and actual surface roughness.



Figure 8. 10-Mesh sample plate scan data.



Figure 9. 20-Mesh sample plate scan data.



Figure 10. 40-Mesh sample plate scan data.



Figure 11. 80-Mesh sample plate scan data.



Figure 12. 140-Mesh sample plate scan data.



Figure 13. 230-Mesh sample plate scan data.



Figure 14. Profile alignment with roughness elements.



Figure 15. Roughness height probability of exceedance distributions.



Figure 16. Normalized exceedance distributions.



Figure 17. Comparison of effective and nominal roughness heights.



Figure 18. Relationship between effective roughness heights and measured RMS heights.



Figure 19. Schematic of Langley Research Center 20-Inch Mach 6 Air Tunnel.



Figure 20. Langley Research Center 20-Inch Mach 6 Air Tunnel test section.



Figure 21. Sample phosphor thermography 2-D image data.



Figure 22. Sample 3-D mapping of phosphor thermography data.



Figure 23. Streamlines for data extraction on sphere-cone geometry.



Figure 24. Streamlines for data extraction on spherical-cap geometry.



Figure 25. Illustration of camera field-of-view for hemisphere model in 20-Inch Mach 6 Air Tunnel.



Figure 26. CFD predictions for hemisphere heating at wind tunnel conditions.



Figure 27. Measured stagnation point heating for pretest calibrations for Test 7036.



Figure 28. Measured stagnation point heating for pretest calibrations for Test 7057.



Figure 29. Centerline profiles of roughness effects on  $k/\delta$ , sphere-cone geometry.



Figure 30. Centerline profiles of roughness effects on k/δ, spherical-cap geometry.



Figure 31. Centerline profiles of roughness effects on Re<sub>k+</sub>, sphere-cone geometry.



Figure 32. Centerline profiles of roughness effects on Rek+, spherical-cap geometry.



Figure 33. Tangent-slope-intercept method for determination of effect transition onset location.



Figure 34. Comparison of irregular transition wedges vs. mean transition front.



e) Test 7036, Run 54,  $Re_\infty = 7.2 \times 10^6/ft$  f) Test 7036, Run 55,  $Re_\infty = 8.1 \times 10^6/ft$  Figure 35. Reynolds Number effects, sphere-cone geometry, smooth model images.





e) Test 7036, Run 78,  $Re_\infty = 7.2 \times 10^6/ft$  f) Test 7036, Run 79,  $Re_\infty = 8.1 \times 10^6/ft$  Figure 37. Reynolds Number effects, sphere-cone geometry, 230-mesh model images.





e) Test 7036, Run 84,  $Re_\infty = 7.2 \times 10^6/ft$  f) Test 7036, Run 85,  $Re_\infty = 8.1 \times 10^6/ft$  Figure 39. Reynolds Number effects, sphere-cone geometry, 140-mesh model images.





e) 1est 7036, Run 91, Re $_{\infty}$  = 7.2×10 $^{\circ}$ /ft 1) 1est 7036, Run 92, Re $_{\infty}$  = 8.1×10 $^{\circ}$ /ft Figure 41. Reynolds Number effects, sphere-cone geometry, 80-mesh model images.





e) Test 7036, Run 97,  $Re_{\infty}=7.2\times10^6/ft$  f) Test 7036, Run 98,  $Re_{\infty}=8.1\times10^6/ft$  Figure 43. Reynolds Number effects, sphere-cone geometry, 40-mesh model images.





e) Test 7036, Run 103,  $Re_\infty = 7.2 \times 10^6/ft$  f) Test 7036, Run 104,  $Re_\infty = 8.1 \times 10^6/ft$  Figure 45. Reynolds Number effects, sphere-cone geometry, 20-mesh model images.





e) Test 7036, Run 109,  $Re_{\infty}=7.2\times10^6/ft$  f) Test 7036, Run 110,  $Re_{\infty}=8.1\times10^6/ft$  Figure 47. Reynolds Number effects, sphere-cone geometry, 10-mesh model images.





e) Test 7057, Run 11,  $Re_\infty = 7.2 \times 10^6/ft$  f) Test 7057, Run 12,  $Re_\infty = 8.1 \times 10^6/ft$  Figure 49. Reynolds Number effects, spherical-cap geometry, smooth model images.





e) Test 7057, Run 17,  $Re_\infty = 7.2 \times 10^6/ft$  f) Test 7057, Run 18,  $Re_\infty = 8.1 \times 10^6/ft$  Figure 51. Reynolds Number effects, spherical-cap geometry, 230-mesh model images.





e) Test 7057, Run 23,  $Re_\infty=7.2\times10^6/ft$  f) Test 7057, Run 24,  $Re_\infty=8.1\times10^6/ft$  Figure 53. Reynolds Number effects, spherical-cap geometry, 140-mesh model images.





e) Test 7057, Run 30,  $Re_\infty = 7.2 \times 10^6/ft$  f) Test 7057, Run 31,  $Re_\infty = 8.1 \times 10^6/ft$  Figure 55. Reynolds Number effects, spherical-cap geometry, 80-mesh model images.





e) Test 7057, Run 36,  $Re_\infty = 7.2 \times 10^6/ft$  f) Test 7057, Run 37,  $Re_\infty = 8.1 \times 10^6/ft$  Figure 57. Reynolds Number effects, spherical-cap geometry, 40-mesh model images.





e) Test 7057, Run 59,  $Re_\infty$  = 7.2×10<sup>6</sup>/ft f) Test 7057, Run 60,  $Re_\infty$  = 8.1×10<sup>6</sup>/ft Figure 59. Reynolds Number effects, spherical-cap geometry, 20-mesh model images.





e) Test 7057, Run 46,  $Re_{\infty} = 7.2 \times 10^6/\text{ft}$  f) Test 7057, Run 47,  $Re_{\infty} = 8.1 \times 10^6/\text{ft}$  Figure 61. Reynolds Number effects, spherical-cap geometry, 10-mesh model images.





g) Test 7036, Run 107, 10-mesh model Figure 63. Roughness height effects, sphere-cone geometry,  $Re_{\infty}=2.1\times10^6/ft$  images.





g) Test 7036, Run 106, 10-mesh model Figure 65. Roughness height effects, sphere-cone geometry,  $Re_{\infty}=3.0\times10^6/ft$  images.





g) Test 7036, Run 105, 10-mesh model Figure 67. Roughness height effects, sphere-cone geometry,  $Re_{\infty} = 5.0 \times 10^6/ft$  images.





g) Test 7036, Run 108, 10-mesh model Figure 69. Roughness height effects, sphere-cone geometry,  $Re_{\infty}=6.5\times10^6/ft$  images.





g) Test 7036, Run 109, 10-mesh model Figure 71. Roughness height effects, sphere-cone geometry,  $Re_{\infty} = 7.2 \times 10^6/ft$  images.





e) Test 7036, Run 110, 10-mesh model Figure 73. Roughness height effects, sphere-cone geometry,  $Re_{\infty}=8.1\times10^6/ft$  images.





g) Test 7057, Run 42, 10-mesh model Figure 75. Roughness height effects, spherical-cap geometry,  $Re_\infty=2.1\times10^6/ft$  images.





g) Test 7057, Run 42, 10-mesh model Figure 77. Roughness height effects, spherical-cap geometry,  $Re_\infty=3.0\times10^6/ft$  images.





g) Test 7057, Run 44, 10-mesh model Figure 79. Roughness height effects, spherical-cap geometry,  $Re_\infty = 5.0 \times 10^6/ft$  images.





g) Test 7057, Run 45, 10-mesh model Figure 81. Roughness height effects, spherical-cap geometry,  $Re_\infty=6.5\times10^6/ft$  images.





g) Test 7057, Run 46, 10-mesh model Figure 83. Roughness height effects, spherical-cap geometry,  $Re_\infty=7.2\times10^6/ft$  images.





g) Test 7057, Run 47, 10-mesh model Figure 85. Roughness height effects, spherical-cap geometry,  $Re_\infty=8.1\times10^6/ft$  images.









c) Applied to spherical-cap geometry with pattern-hexcomb roughness Figure 87. Roughness transition correlation applied to prior datasets.



b) Applied to spherical-cap geometry with sand-grain roughness Figure 88. Roughness transition correlation applied to current datasets.

 $\boldsymbol{X}_{TR} \!\!=\!\! [(\boldsymbol{k}/\!\theta)(\boldsymbol{T}_{e}/\boldsymbol{T}_{w})^{(0.45)}(\boldsymbol{H}_{e}/\boldsymbol{H}_{k})^{(\text{-}1.8)}(\boldsymbol{M}_{e})^{(\text{-}0.6)}(\boldsymbol{\beta}_{POHL})^{(\text{-}0.5)}]$ 



Figure 89. Post-flight recovery picture of Orion EFT-1 heatshield

## Appendix A. Sphere-Cone Geometry Global Heating Images

Global heating images for the sphere-cone geometry from Test 7036 in the LAL 20-Inch Mach 6 Air Tunnel are presented in this Appendix in Figure 90 through Figure 131.

At higher Reynolds numbers and/or larger roughness heights, white patches on the images indicate areas where the measured surface temperatures exceed the calibrated range of the phosphor thermography and thus no valid data were obtained.

Boundary-layer edge streamlines determined from laminar, smooth-surface LAURA simulations have been superimposed on the images to illustrate the nature of the flow field.



Figure 90. Test 7036, Run 50, Re $_{\infty} = 2.1 \times 10^6$ /ft, sphere-cone, smooth OML.



Figure 91. Test 7036, Run 51, Re<sub> $\infty$ </sub> = 3.0×10<sup>6</sup>/ft, sphere-cone, smooth OML.



Figure 92. Test 7036, Run 52,  $Re_{\infty} = 5.0 \times 10^6$ /ft, sphere-cone, smooth OML.



Figure 93. Test 7036, Run 53, Re<sub> $\infty$ </sub> = 6.5×10<sup>6</sup>/ft, sphere-cone, smooth OML.



Figure 94. Test 7036, Run 54,  $Re_{\infty} = 7.2 \times 10^6$ /ft, sphere-cone, smooth OML.



Figure 95. Test 7036, Run 55, Re<sub> $\infty$ </sub> = 8.1×10<sup>6</sup>/ft, sphere-cone, smooth OML.



Figure 96. Test 7036, Run 74,  $Re_{\infty} = 2.1 \times 10^6$ /ft, sphere-cone, 230-mesh.



Figure 97. Test 7036, Run 75,  $Re_{\infty} = 3.0 \times 10^6 / \text{ft}$ , sphere-cone, 230-mesh.



Figure 98. Test 7036, Run 76, Re<sub> $\infty$ </sub> = 5.0×10<sup>6</sup>/ft, sphere-cone, 230-mesh.



Figure 99. Test 7036, Run 77, Re<sub> $\infty$ </sub> = 6.5×10<sup>6</sup>/ft, sphere-cone, 230-mesh.



Figure 100. Test 7036, Run 78,  $Re_{\infty} = 7.2 \times 10^6$ /ft, sphere-cone, 230-mesh.





Figure 102. Test 7036, Run 80, Re<sub> $\infty$ </sub> = 2.1×10<sup>6</sup>/ft, sphere-cone, 140-mesh.



Figure 103. Test 7036, Run 81,  $Re_{\infty} = 3.0 \times 10^6 / \text{ft}$ , sphere-cone, 140-mesh.



Figure 104. Test 7036, Run 82,  $Re_{\infty} = 5.0 \times 10^6$ /ft, sphere-cone, 140-mesh.



Figure 105. Test 7036, Run 83,  $Re_{\infty} = 6.5 \times 10^6 / \text{ft}$ , sphere-cone, 140-mesh.



Figure 106. Test 7036, Run 84,  $Re_{\infty} = 7.2 \times 10^6 / \text{ft}$ , sphere-cone, 140-mesh.



Figure 107. Test 7036, Run 85, Re<sub> $\infty$ </sub> = 8.1×10<sup>6</sup>/ft, sphere-cone, 140-mesh.



Figure 108. Test 7036, Run 87,  $Re_{\infty} = 2.1 \times 10^6/ft$ , sphere-cone, 80-mesh.



Figure 109. Test 7036, Run 88,  $Re_{\infty} = 3.0 \times 10^6 / ft$ , sphere-cone, 80-mesh.



Figure 110. Test 7036, Run 89,  $Re_{\infty} = 5.0 \times 10^6/ft$ , sphere-cone, 80-mesh.



Figure 111. Test 7036, Run 90,  $Re_{\infty} = 6.5 \times 10^6 / ft$ , sphere-cone, 80-mesh.



Figure 112. Test 7036, Run 91,  $Re_{\infty} = 7.2 \times 10^6/ft$ , sphere-cone, 80-mesh.



Figure 113. Test 7036, Run 92,  $Re_{\infty} = 8.1 \times 10^6$ /ft, sphere-cone, 80-mesh.



Figure 114. Test 7036, Run 93,  $Re_{\infty} = 2.1 \times 10^6$ /ft, sphere-cone, 40-mesh.



Figure 115. Test 7036, Run 94,  $Re_{\infty} = 3.0 \times 10^6$ /ft, sphere-cone, 40-mesh.



Figure 116. Test 7036, Run 95,  $Re_{\infty} = 5.0 \times 10^6 / \text{ft}$ , sphere-cone, 40-mesh.



Figure 117. Test 7036, Run 96,  $Re_{\infty} = 6.5 \times 10^6$ /ft, sphere-cone, 40-mesh.



Figure 118. Test 7036, Run 97,  $Re_{\infty} = 7.2 \times 10^6$ /ft, sphere-cone, 40-mesh.



Figure 119. Test 7036, Run 98,  $Re_{\infty} = 8.1 \times 10^6$ /ft, sphere-cone, 40-mesh.



Figure 120. Test 7036, Run 99,  $Re_{\infty} = 2.1 \times 10^6$ /ft, sphere-cone, 20-mesh.



Figure 121. Test 7036, Run 100,  $Re_{\infty} = 3.0 \times 10^6 / ft$ , sphere-cone, 20-mesh.



Figure 122. Test 7036, Run 101,  $Re_{\infty} = 5.0 \times 10^6/ft$ , sphere-cone, 20-mesh.



Figure 123. Test 7036, Run 102,  $Re_{\infty} = 6.5 \times 10^6 / \text{ft}$ , sphere-cone, 20-mesh.



Figure 124. Test 7036, Run 103,  $Re_{\infty} = 7.2 \times 10^6 / \text{ft}$ , sphere-cone, 20-mesh.



Figure 125. Test 7036, Run 104,  $Re_{\infty} = 8.1 \times 10^6 / \text{ft}$ , sphere-cone, 20-mesh.



**Figure 126.** Test 7036, Run 107,  $Re_{\infty} = 2.1 \times 10^6 / \text{ft}$ , sphere-cone, 10-mesh.



Figure 127. Test 7036, Run 106,  $Re_{\infty} = 3.0 \times 10^6 / ft$ , sphere-cone, 10-mesh.



Figure 128. Test 7036, Run 105,  $Re_{\infty} = 5.0 \times 10^6 / ft$ , sphere-cone, 10-mesh.



Figure 129. Test 7036, Run 108,  $Re_{\infty} = 6.5 \times 10^6 / \text{ft}$ , sphere-cone, 10-mesh.



Figure 130. Test 7036, Run 109,  $Re_{\infty} = 7.2 \times 10^6 / \text{ft}$ , sphere-cone, 10-mesh.



**Figure 131. Test 7036, Run 110, Re** $_{\infty} = 8.1 \times 10^{6}$ /ft, sphere-cone, 10-mesh.

## Appendix B. Spherical-Cap Geometry Global Heating Images

Global heating images for the sphere-cone geometry from Test 7057 in the LAL 20-Inch Mach 6 Air Tunnel are presented in this Appendix in Figure 132 through Figure 173.

At higher Reynolds numbers and/or larger roughness heights, white patches on the images indicate areas where the measured surface temperatures exceed the calibrated range of the phosphor thermography and thus no valid data were obtained.

Boundary-layer edge streamlines determined from laminar, smooth-surface LAURA simulations have been superimposed on the images to illustrate the nature of the flow field.



Figure 132. Test 7057, Run 7, Re<sub> $\infty$ </sub> = 2.1×10<sup>6</sup>/ft, spherical-cap, smooth OML.



Figure 133. Test 7057, Run 8, Re<sub> $\infty$ </sub> = 3.0×10<sup>6</sup>/ft, spherical-cap, smooth OML.



Figure 134. Test 7057, Run 9,  $Re_{\infty} = 5.0 \times 10^6$ /ft, spherical-cap, smooth OML.



Figure 135. Test 7057, Run 10,  $Re_{\infty} = 6.5 \times 10^6$ /ft, spherical-cap, smooth OML.



Figure 136. Test 7057, Run 11,  $Re_{\infty} = 7.2 \times 10^6$ /ft, spherical-cap, smooth OML.



Figure 137. Test 7057, Run 12,  $Re_{\infty} = 8.1 \times 10^6$ /ft, spherical-cap, smooth OML.



Figure 138. Test 7057, Run 13,  $Re_\infty = 2.1 \times 10^6/\text{ft}$ , spherical-cap, 230-mesh.



Figure 139. Test 7057, Run 14,  $Re_\infty = 3.0 \times 10^6$ /ft, spherical-cap, 230-mesh.



Figure 140. Test 7057, Run 15,  $Re_\infty = 5.0 \times 10^6$ /ft, spherical-cap, 230-mesh.



Figure 141. Test 7057, Run 16,  $Re_\infty = 6.5 \times 10^6$ /ft, spherical-cap, 230-mesh.



Figure 142. Test 7057, Run 17,  $Re_{\infty} = 7.2 \times 10^6$ /ft, spherical-cap, 230-mesh.



Figure 143. Test 7057, Run 18,  $Re_{\infty} = 8.1 \times 10^6$ /ft, spherical-cap, 230-mesh.



Figure 144. Test 7057, Run 19,  $Re_{\infty} = 2.1 \times 10^6$ /ft, spherical-cap, 140-mesh.



Figure 145. Test 7057, Run 20,  $Re_\infty = 3.0 \times 10^6$ /ft, spherical-cap, 140-mesh.



Figure 146. Test 7057, Run 21,  $Re_\infty = 5.0 \times 10^6$ /ft, spherical-cap, 140-mesh.



Figure 147. Test 7057, Run 22,  $Re_\infty = 6.5 \times 10^6/ft$ , spherical-cap, 140-mesh.



Figure 148. Test 7057, Run 23,  $Re_\infty = 7.2 \times 10^6/\text{ft}$ , spherical-cap, 140-mesh.



Figure 149. Test 7057, Run 24, Re $\infty$  = 8.1×10<sup>6</sup>/ft, spherical-cap, 140-mesh.



Figure 150. Test 7057, Run 25,  $Re_{\infty} = 2.1 \times 10^6$ /ft, spherical-cap, 80-mesh.



Figure 151. Test 7057, Run 26, Re<sub> $\infty$ </sub> = 3.0×10<sup>6</sup>/ft, spherical-cap, 80-mesh.



Figure 152. Test 7057, Run 28,  $Re_{\infty} = 5.0 \times 10^6$ /ft, spherical-cap, 80-mesh.



Figure 153. Test 7057, Run 29,  $Re_{\infty} = 6.5 \times 10^6$ /ft, spherical-cap, 80-mesh.



Figure 154. Test 7057, Run 30,  $Re_{\infty} = 7.2 \times 10^6$ /ft, spherical-cap, 80-mesh.



Figure 155. Test 7057, Run 31,  $Re_{\infty} = 8.1 \times 10^6$ /ft, spherical-cap, 80-mesh.



Figure 156. Test 7057, Run 32,  $Re_{\infty} = 2.1 \times 10^6$ /ft, spherical-cap, 40-mesh.



Figure 157. Test 7057, Run 33, Re<sub> $\infty$ </sub> = 3.0×10<sup>6</sup>/ft, spherical-cap, 40-mesh.



Figure 158. Test 7057, Run 34,  $Re_{\infty} = 5.0 \times 10^6$ /ft, spherical-cap, 40-mesh.



Figure 159. Test 7057, Run 35, Re<sub> $\infty$ </sub> = 6.5×10<sup>6</sup>/ft, spherical-cap, 40-mesh.



Figure 160. Test 7057, Run 36, Re<sub> $\infty$ </sub> = 7.2×10<sup>6</sup>/ft, spherical-cap, 40-mesh.



Figure 161. Test 7057, Run 37, Re<sub> $\infty$ </sub> = 8.1×10<sup>6</sup>/ft, spherical-cap, 40-mesh.



Figure 162. Test 7057, Run 55,  $Re_{\infty} = 2.1 \times 10^6$ /ft, spherical-cap, 20-mesh.



Figure 163. Test 7057, Run 56, Re<sub> $\infty$ </sub> = 3.0×10<sup>6</sup>/ft, spherical-cap, 20-mesh.



Figure 164. Test 7057, Run 57,  $Re_{\infty} = 5.0 \times 10^6$ /ft, spherical-cap, 20-mesh.



Figure 165. Test 7057, Run 58,  $Re_{\infty} = 6.5 \times 10^6 / \text{ft}$ , spherical-cap, 20-mesh.







Figure 167. Test 7057, Run 60,  $Re_\infty = 8.1 \times 10^6$ /ft, spherical-cap, 20-mesh.



Figure 168. Test 7057, Run 42,  $Re_{\infty} = 2.1 \times 10^6$ /ft, spherical-cap, 10-mesh.



Figure 169. Test 7057, Run 43, Re<sub> $\infty$ </sub> = 3.0×10<sup>6</sup>/ft, spherical-cap, 10-mesh.



Figure 170. Test 7057, Run 44,  $Re_{\infty} = 5.0 \times 10^6$ /ft, spherical-cap, 10-mesh.



Figure 171. Test 7057, Run 45,  $Re_{\infty} = 6.5 \times 10^6$ /ft, spherical-cap, 10-mesh.



Figure 172. Test 7057, Run 46, Re<sub> $\infty$ </sub> = 7.2×10<sup>6</sup>/ft, spherical-cap, 10-mesh.



Figure 173. Test 7057, Run 47,  $Re_{\infty} = 8.1 \times 10^6$ /ft, spherical-cap, 10-mesh.