Лабораторная работа 6 Оценка интегралов методом Монте-Карло

Цель работы

- 1. Исследование метода статистических испытаний для оценки интегралов
- 2. Оценка точности получаемых оценок

Порядок выполнения работы

- 1. Оценка интеграла.
 - 1.1. Составить программу для вычисления интеграла для заданного варианта (в MATLAB или VBA в зависимости от варианта). Выполнить вычисления m раз и получить оценку для интеграла для заданного числа N повторных испытаний.
 - 1.2. Найти точное значение интеграла аналитическим методом в MATLAB.
- 2. Оценка точности найденного значения интеграла.
 - 2.1. Найти математическое ожидание, выборочную дисперсию и среднеквадратическое отклонение оценки интеграла.
 - 2.2. Построить интервальную оценку для интеграла для доверительной вероятности $P_{\text{дов}}$.
- 3. *Построить график подынтегральной функции на заданном интервале* (в MATLAB или Excel в зависимости от варианта).

Содержание отчета

- 1. Задание
- 2. Текст программы
- 3. Результаты расчетов
- 4. График функции

Варианты:

Вариант	Интеграл	N	m	$P_{\scriptscriptstyle m ДOB}$	Программа и график
1	$I = \int_{0}^{\pi} x \cos x dx$	100	8	0,90	MATLAB
2	$I = \int_{0}^{\pi} (x - \cos^2 x) dx$	200	4	0,95	VBA/Excel
3	$I = \int_{-\pi}^{\pi} x \sin x dx$	300	3	0,99	MATLAB
4	$I = \int_{-\pi}^{\pi} (x^2 + \cos^2 x) dx$	150	6	0,90	VBA/Excel
5	$I = \int_{-\pi/2}^{+\pi/2} \frac{dx}{4 + x^2}$	250	5	0,95	MATLAB
6	$I = \int_{0}^{\pi} e^{-x} \cos x dx$	350	8	0,99	VBA/Excel

7	$I = \int_{0}^{1} e^{-x} x^3 dx$	400	5	0,90	MATLAB
8	$I = \int_{0}^{1} e^{-x} \sin(\pi x) dx$	50	20	0,95	VBA/Excel
9	$I = \int_{0}^{1} (e^{-x} - e^{-2x})x^{2} dx$	120	10	0,99	MATLAB
10	$I = \int_{0}^{1} (e^{-x} + e^{x})x^{2} dx$	180	6	0,90	VBA/Excel
11	$I = \int_{0}^{1} \frac{xdx}{\sqrt{1 - x^2}}$ $I = \int_{0}^{1} \frac{xdx}{\sqrt{1 + x^2}}$	240	5	0,95	MATLAB
12	$I = \int_{0}^{1} \frac{xdx}{\sqrt{1+x^2}}$	280	4	0,99	VBA/Excel
13	$I = \int_{0}^{\pi} \sin x (\cos x - \cot x) dx$	360	3	0,90	MATLAB
14	$I = \int_{-1}^{+1} e^x (x - x^2) dx$	420	6	0,95	VBA/Excel
15	$I = \int_{0}^{1} \frac{xdx}{1+x^2}$	300	10	0,99	MATLAB
16	$I = \int_{0}^{\pi} x \sin x dx$	140	20	0,90	VBA/Excel
17	$I = \int_{0}^{\pi} (\sqrt{x} - \cos x) dx$	160	20	0,95	MATLAB
18	$I = \int_{-\pi}^{\pi} x^2 \sin x dx$	180	24	0,99	VBA/Excel
19	$I = \int_{-\pi}^{\pi} (x^2 + x\cos^2 x) dx$	200	16	0,90	MATLAB
20	$I = \int_{-\pi/2}^{+\pi/2} \frac{x dx}{4 + x^4}$	220	20	0,95	VBA/Excel

21	$I = \int_{-\pi}^{+\pi} e^x \sin x dx$	24	16	0,99	MATLAB
22	$I = \int_{0}^{1} e^{-x} \sqrt{x} dx$	26	18	0,90	VBA/Excel
23	$I = \int_{-1}^{1} e^x \cos(\pi x) dx$	28	15	0,95	MATLAB
24	$I = \int_{0}^{1} (e^{x}x - e^{-x})x dx$	30	18	0,99	VBA/Excel
25	$I = \int_{0}^{1} (e^{x} + e^{2x})x^{2} dx$	32	10	0,90	MATLAB
26	$I = \int_{4}^{5} \frac{\sin x}{1 + x^4} dx$	180	6	0,95	VBA/Excel
27	$I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{\sqrt{5 + 2\sin x}}$	300	10	0,99	MATLAB