General Topology, Exercises 3

2019 Spring Semester

Youngwan Kim

May 21, 2019

Problem 1. *Is* \mathbb{Z} *compact? Are* \mathbb{Q} *and* $\mathbb{R} \setminus \mathbb{Q}$ *compact?*

Proof. As all of them are subsets of \mathbb{R} we could apply Heine-Borel to check if such spaces are compact or not.

- 1. \mathbb{Z} is not compact.
 - \mathbb{Z} is not bounded.
- 2. \mathbb{Q} is not compact.

As we know that $\overline{\mathbb{Q}} = \mathbb{R}$, it is not closed. Thus it is not compact.

3. $\mathbb{R} \setminus \mathbb{Q}$ is not compact.

Again as $\overline{\mathbb{R} \setminus \mathbb{Q}} = \mathbb{R}$, it is not compact.

Problem 2. Show that a finite metric space is compact.

Proof. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in a finite metric space $X = \{a_1, \ldots, a_N\}$. Then for at least one element a_i of X, the sequence would take it as a value finitely many times. If not, it implies that for every finite element of X it only appears finite times in the sequence, which contradicts the assumption that the sequence is infinite. Thus for any sequences in a finite metric space, we can find a converging subsequence, thus X is compact.

Problem 3. Is $S^1 \subset \mathbb{R}^2$ compact?

Proof. Yes S^1 is compact. As it is a subspace of \mathbb{R}^2 we can apply Heine-Borel. S^1 is bounded as we can see that for any $x,y\in S^1$, there exists some $\epsilon>0$ such that $d(x,y)\leq 2$. Also consider a continuous function $F(x,y)=x^2+y^2-1$. As $\{0\}$ is a closed set in \mathbb{R}^2 , $F^{-1}(0)$ should also be a closed set too. Here $F^{-1}(0)=(x,y)\in \mathbb{R}^2: a^2+y^2=1=S^1$, thus we can also see that S^1 is closed too. Thus S^1 is compact.

Problem 4. Is $B^2 \subset \mathbb{R}^2$ compact? Also is $int(B^2)$ compact?

Proof. Again we can apply Heine-Borel.

1. B^2 is compact.

First B^2 is closed as $\overline{B^2} = B^2$. B^2 is also bounded as for any $x, y \in B^2$, there exists $\epsilon > 0$ such that $d(x, y) < 2 + \epsilon$.

2. $int(B^2)$ is not compact.

 $int(B^2) = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ is bounded as for any $x,y \in int(B^2)$, d(x,y) < 2 but it is not closed as $int(B^2) = \phi \neq B^2$.

Problem 5. Let $A = \{(x, y) \in \mathbb{R}^2 : x \ge 0\}$. Is A compact?

Proof. A is closed but not bounded, thus A is not compact. \Box

Problem 6. Let $A = \{(x, y) \in \mathbb{R}^2 : x \neq 0 \text{ and } y = 1/x\}$. Is A compact?

Proof. A is not compact. \Box

Problem 7. Show that TFAE. Recall that a metric space X is bounded if there exists b > 0 such that d(x, y) < b for all $x, y \in X$.

- 1) X is bounded.
- 2) There exists b > 0 such that $d(x, y) \le b$ for all $x, y \in X$.
- 3) There exists $p \in X$ and r > 0 such that $X \subset B(p, r)$.
- 4) There exists $p \in X$ and r > 0 such that $d(p, x) \le r$ for all $x \in X$.

Proof.

$$\begin{array}{ccc} 1. & 1) & \Longrightarrow & 2) \\ & & \\ d(x,y) < b & \Longrightarrow & d(x,y) \leq b \end{array}$$

 $2. 2) \implies 3$

For such b of assumption, we can see that $X \in B(p, b + \epsilon)$.

3. 3)
$$\implies$$
 4)
$$d(p,x) < r \implies d(p,x) \le r$$

$$4. \ 4) \implies 1)$$

$$d(x,y) \le d(x,p) + d(p,y) \le 2r$$
 then $\exists \epsilon > 0$ such that $d(x,y) < 2r + \epsilon$.

Problem 8. Show that if A and B are bounded subsets of X then $A \cup B$ and $A \cap B$ are also bounded.

Proof. Let $r_A, r_B > 0$ such that each for any $x, y \in A$, $d(x, y) < r_A$ and for any $x, y \in B$, $d(x, y) < r_B$.

1. $A \cap B$

As $A \cap B \subset A$ and $A \cap B \subset B$ and A, B are bounded $A \cap B$ is also bounded.

2. $A \cup B$ For arbitrary $x, y \in A \cup B$, where $a \in A$ and $b \in B$ is fixed,

$$d(x,y) \le d(x,a) + d(a,b) + d(b,y) \le r_1 + d(a,b) + r_2$$

Problem 9. Let X be a metric space with the discrete metric. Show that X is compact iff X is finite.

Proof. Suppose X is infinite. Then $\{\{x\}\}_{x\in X}$ is an open cover of X since discrete metric is given. But this open cover couldn't have a finite subcover as if we suppose $\{\{x_1\},\ldots,\{x_n\}\}$ as a finite subcover of $\{\{x\}\}_{x\in X}$ we can easily check that such finite subcover doesn't actually covers X. Thus our initial assumption of X being infinite is wrong.

Problem 10. Prove or disprove: If A_1 and A_2 are compact subspaces of a metric space X, then $A_1 \cup A_2$ is also compact.

Proof. Consider a open cover $\{U_{\alpha}\}_{{\alpha}\in A}$ that covers $A_1\cup A_2$. As A_1 and A_2 are each a subset of $A_1\cup A_2$, $\{U_{\alpha}\}_{{\alpha}\in A}$ is also a cover of $A_1\cup A_2$. Also as both are compact, there exists a finite subcover of $\{U_{\alpha}\}_{{\alpha}\in A}$, which implies that $\exists \alpha_1,\alpha_2,\ldots\alpha_N\in A$ such that $A_1=\bigcup_{i=1}^N U_{\alpha_i}$ and $\exists \beta_1,\ldots,\beta_M\in A$ such that $A_2=\bigcup_{j=1}^M U_{\beta_j}$. Then we can say that there

exists a finite subcover of $\{U_{\alpha_i}\}\cup\{U_{\beta_j}\}$ of $\{U_{\alpha}\}_{\alpha\in A}$, such that $A_1\cup A_2=\bigcup\limits_{i=1}^N U_{\alpha_i}\cup\bigcup\limits_{j=1}^M U_{\beta_j}$. Thus $A_1\cup A_2$ is also compact.

Problem 11. Prove or disprove: If A_1 and A_2 are compact subspaces of a metric space X, then $A_1 \cap A_2$ is also compact.

Proof. Let $\{U_{\alpha}\}_{\alpha\in A}$ be a open cover of $A_1\cap A_2$. Consider $X\setminus A_2$ as a subset of X. As A_2 is a compact subset of X, it is complete, which implies it is closed in X thus the complement $X\setminus A_2$ is open in X. Then we can now consider another open cover $\{U_{\alpha}\}_{\alpha\in A}\cup\{X\setminus A_2\}$ which covers A_1 . Since A_1 is compact there exists a finite subcover $\{U_{\alpha_i}\}_{i=1}^N\cup\{X\setminus A_2\}$ for $\exists \alpha_1,\ldots,\alpha_N\in A$ such that $A_1\subset\bigcup_{i=1}^N U_{\alpha_i}\cup(X\setminus A_2)$. As $A_1\cap A_2\subset A_1$, we can also conclude that:

$$A_1 \cap A_2 \subset \bigcup_{i=1}^N U_{\alpha_i} \cup (X \setminus A_2)$$

But notice that $(A_1 \cap A_2) \cap (X \setminus A_2) = \phi$, which implies that :

$$A_1 \cap A_2 \subset \bigcup_{i=1}^N U_{\alpha_i}$$

which directly shows us that there exists a finite subcover $\{U_{\alpha_i}\}_{i=1}^N$ for $A_1 \cap A_2$.

Problem 12. Let $\mathcal{B} = \{(a, \infty) : a \in \mathbb{R}\}$. Is \mathcal{B} a base of open sets in \mathbb{R} with the usual metric?

Proof. No. Consider $0 \in \mathbb{R}$ and a neighborhood of it, $(-\epsilon, \epsilon)$. Then $\nexists V \in \mathcal{B}$ such that $0 \in V \subset (-\epsilon, \epsilon)$, thus \mathcal{B} fails to be a basis of \mathbb{R} .

Problem 13. Let X be a metric space with the discrete metric. Find all possible bases of open sets in X.

Proof. First we claim that for such circumstances \mathcal{B} is a basis iff for $\forall x \in X : \{x\} \in \mathcal{B}$. The only if statement is pretty obvious as the discrete metric is given, any subset of X is an open set in X. Now for the other direction let us assume that for some $x_0 \in X$, $\{x_0\} \notin \mathcal{B}$. Then for $\{x_0\}$ which is an open set in X, $\nexists V \in \mathcal{B}$ such that $x_0 \in V \subset \{x_0\}$, which implies that such \mathcal{B} fails to be a basis. Thus as our assumption faced a contradiction, it is shown that $\forall x \in X : \{x\} \in \mathcal{B}$ for \mathcal{B} in order to be a base.