

Python Programming

Machine Learning Assignment

There is one data set of wine which classify the wines according to its contents into three classes.

Consider below Wine Dataset as

Class	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proanthocyanins	Color intensity	Hue	OD280/OD315 of diluted wines	Proline
1	14.23	1.71	2.43	15.6	127	2.8	3.06	0.28	2.29	5.64	1.04	3.92	1065
1	13.2	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.4	1050
1	13.16	2.36	2.67	18.6	101	2.8	3.24	0.3	2.81	5.68	1.03	3.17	1185
1	14.37	1.95	2.5	16.8	113	3.85	3.49	0.24	2.18	7.8	0.86	3.45	1480
1	13.24	2.59	2.87	21	118	2.8	2.69	0.39	1.82	4.32	1.04	2.93	735
1	14.2	1.76	2.45	15.2	112	3.27	3.39	0.34	1.97	6.75	1.05	2.85	1450
1	14.39	1.87	2.45	14.6	96	2.5	2.52	0.3	1.98	5.25	1.02	3.58	1290
1	14.06	2.15	2.61	17.6	121	2.6	2.51	0.31	1.25	5.05	1.06	3.58	1295
1	14.83	1.64	2.17	14	97	2.8	2.98	0.29	1.98	5.2	1.08	2.85	1045
1	13.86	1.35	2.27	16	98	2.98	3.15	0.22	1.85	7.22	1.01	3.55	1045
1	14.1	2.16	2.3	18	105	2.95	3.32	0.22	2.38	5.75	1.25	3.17	1510
1	14.12	1.48	2.32	16.8	95	2.2	2.43	0.26	1.57	5	1.17	2.82	1280
1	13.75	1.73	2.41	16	89	2.6	2.76	0.29	1.81	5.6	1.15	2.9	1320
1	14.75	1.73	2.39	11.4	91	3.1	3.69	0.43	2.81	5.4	1.25	2.73	1150
1	14.38	1.87	2.38	12	102	3.3	3.64	0.29	2.96	7.5	1.2	3	1547
1	13.63	1.81	2.7	17.2	112	2.85	2.91	0.3	1.46	7.3	1.28	2.88	1310
1	14.3	1.92	2.72	20	120	2.8	3.14	0.33	1.97	6.2	1.07	2.65	1280
1	13.83	1.57	2.62	20	115	2.95	3.4	0.4	1.72	6.6	1.13	2.57	1130
1	14.19	1.59	2.48	16.5	108	3.3	3.93	0.32	1.86	8.7	1.23	2.82	1680
1	13.64	3.1	2.56	15.2	116	2.7	3.03	0.17	1.66	5.1	0.96	3.36	845
1	14.06	1.63	2.28	16	126	3	3.17	0.24	2.1	5.65	1.09	3.71	780
1	12.93	3.8	2.65	18.6	102	2.41	2.41	0.25	1.98	4.5	1.03	3.52	770
1	13.71	1.86	2.36	16.6	101	2.61	2.88	0.27	1.69	3.8	1.11	4	1035
1	12.85	1.6	2.52	17.8	95	2.48	2.37	0.26	1.46	3.93	1.09	3.63	1015
1	13.5	1.81	2.61	20	96	2.53	2.61	0.28	1.66	3.52	1.12	3.82	845

These data are the results of a chemical analysis of wines grown in the same region in Italy but derived from three different cultivars. The analysis determined the quantities of 13 constituents found in each of the three types of wines.

Wine data set contains 13 features as

- 1) Alcohol
- 2) Malic acid
- 3) Ash
- 4) Alcalinity of ash
- 5) Magnesium
- 6) Total phenols
- 7) Flavanoids
- 8) Nonflavanoid phenols
- 9) Proanthocyanins
- 10)Color intensity
- 11)Hue
- 12)OD280/OD315 of diluted wines
- 13)Proline

According to the above features wine can be classified as

- Class 1
- Class 2
- Class 3

We have to design Machine Learning application which uses Classification technique.

Design machine learning application which follows below steps as

Step 1: Get Data

Step 2:

Clean, Prepare and Manipulate data

Step 3: Train Data

Step 4: Test Data

Step 5:

Calculate Accuracy