Quantum state discrimination

I. CLASSICAL INFORMATION OVER QUANTUM CHANNELS

 $\Phi \in \mathsf{Chan}(\mathcal{X}, \mathcal{Y}) \text{ and } \Psi \in \mathsf{Chan}(\mathcal{Z}).$ The channel Φ emulates Ψ if

$$\exists \Xi_E \in \mathsf{Chan}(\mathcal{Z}, \mathcal{X}) \ \Xi_D \in \mathsf{Chan}(\mathcal{Y}, \mathcal{Z}) \ \Psi = \Xi_D \Phi \Xi_E \tag{1}$$

The channel Ξ_E is called an encoding channel and Ξ_D is called a decoding channel.

Definition 1 $\Psi_0, \Psi_1 \in \mathsf{Chan}(\mathcal{Z})$. Ψ_0 is ϵ -approximation to Ψ_1 if

$$\|\Psi_0 - \Psi_1\| < \epsilon \tag{2}$$

Definition 2 $\Phi \in \mathsf{Chan}(\mathcal{X}, \mathcal{Y})$. $\mathcal{Z} = \mathbb{C}^{\{0,1\}}$. $\Delta \in \mathsf{Chan}(\mathcal{Z})$ is the completely dephasing channel.

A value $\alpha > 0$ is achievable if $\forall \epsilon > 0$, for all but finitely many $n \in \mathbb{N}$, the channel $\Phi^{\otimes n}$ emulates an ϵ -approximation to the channel $\Delta^{\lfloor \alpha n \rfloor}$.

The classical capacity of Φ , denoted $C(\Phi)$, is the supremum value of all achievable rates for classical information transmission through Φ .

Remark 1 When considering an emulation of the m-fold tensor product $\Delta^{\otimes m}$ of this ideal classical channel by the channel $\Phi^{\otimes n}$, no generality is lost in restricting one's attention to classical-to-quantum encoding channels Ξ_E and quantum-to-classical decoding channels Ξ_D .

$$\Xi_E = \Xi_E \Delta^{\otimes m} \qquad \Xi_D = \Delta^{\otimes m} \Xi_D \tag{3}$$

Theorem 1 $\Phi \in \mathsf{Chan}(\mathcal{X}, \mathcal{Y})$

$$\mathsf{C}(\Phi^{\otimes k}) = k \; \mathsf{C}(\Phi) \tag{4}$$

Definition 3 Entanglement-assisted classical capacity

$$Z \mapsto (\Xi_D(\Phi\Xi_E \otimes \mathbb{1}_{\mathsf{Lin}(\mathcal{W})}))(Z \otimes \xi) \tag{5}$$

A value $\alpha > 0$ is achievable if $\forall \epsilon > 0$, for all but finitely many $n \in \mathbb{N}$, the channel $\Phi^{\otimes n}$ emulates an ϵ -approximation to the channel $\Delta^{\lfloor \alpha n \rfloor}$.

The entanglement-assisted classical capacity of Φ , denoted $C_E(\Phi)$, is the supremum value of all achievable rates for classical information transmission through Φ .

Theorem 2 $\Phi \in \mathsf{Chan}(\mathcal{X}, \mathcal{Y})$

$$\mathsf{C}_E(\Phi^{\otimes k}) = k\mathsf{C}_E(\Phi) \tag{6}$$

Definition 4 $\Phi \in \mathsf{Chan}(\mathcal{X}, \mathcal{Y})$. The Holevo capacity of Φ is defined as

$$\chi(\Phi) = \sup_{\eta} \chi(\Phi(\eta)) \tag{7}$$

Theorem 3 It is enough to maximize Holevo information using pure states. And what's more, the size of the alphabet of the ensemble can be restricted to $\dim(\mathcal{X})^2$.