SYLLABUS CÁLCULO NUMÉRICO

Unidad académica responsable: Departamento de Ingeniería Ma-

temática

Carrera a la que se imparte: Ingeniería Civil (varias especiali-

dades)

Módulo: No aplica.

I. Identificación

Nombre: Cálculo Numérico				
Código: 521230	Créditos: 4			
Prerequisitos: 503201; 521218; 521227				
Modalidad: Presencial	Calidad: Obligatoria	Duración: Semestral		
Trabajo Académico:				
Horas teóricas: 3	Horas prácticas: 0	Horas de laboratorio: 2		
Docentes responsables:	Manuel Solano P. (coordinador)			
	Jorge Aguayo A.			
	Mauricio Vega H. (coordinador laboratorio)			
Duración:	15 semanas			

II. DESCRIPCIÓN

Asignatura teórico-práctica que contiene los fundamentos de los algoritmos numéricos para resolver problemas de la Matemática Aplicada por medio del computador.

Esta asignatura contribuye a la formación de las siguientes competencias del perfil de egreso:

Conocimientos sobre el área de estudios y la profesión.

III. RESULTADOS DE APRENDIZAJE ESPERADOS

Al completar en forma exitosa esta asignatura, los estudiantes serán capaces de:

- 1. Deducir algoritmos que se detallan en los contenidos.
- 2. Estimar cotas de errores de los resultados obtenidos.
- 3. Usar técnicas para demostrar propiedades sencillas relacionadas con los algoritmos.
- 4. Resolver modelos matemáticos sencillos por medio de algunos métodos computacionales.

IV. Contenidos

Los contenidos son los mismos pero el orden es distinto al de otros semestres.

- 1. Errores:
 - Errores absolutos.
 - Errores relativos.
 - Pérdida de cifras significativas.

2. Ecuaciones no lineales:

- Métodos de convergencia garantizada: Bisección. Convergencia lineal.
- Métodos de convergencia veloz: Newton-Raphson. Condiciones de convergencia. Criterio de detención.
- Método de la secante.
- Sistemas de ecuaciones no lineales: Método de Newton.

3. Interpolación:

- Interpolación polinomial, fórmula de Lagrange.
- Interpolación por polinomios *splines*. Estimación del error.

4. Aproximación:

- Cuadrados mínimos.
- Las ecuaciones normales y factorización QR.
- 5. Integración Numérica:
 - Reglas del trapecio y de Simpson.
 - El método de Romberg.
 - Fórmulas de tipo Gauss.
 - Estimación de errores. Integración multidimensional.

6. Ecuaciones diferenciales ordinarias:

- Problemas de valores iniciales: Existencia y unicidad de solución. Sistemas de ecuaciones diferenciales.
- Ecuaciones de orden superior.
- Método de Euler. Error local de truncamiento. Error global.
- Métodos de paso simple: Métodos de tipo Runge-Kutta: Euler-Cauchy, Euler mejorado, Estimación a posteriori del error. Control del paso de integración. Métodos Runge-Kutta-Fehlberg.
- Métodos de paso múltiple: Métodos explícitos: Adams-Bashforth. Métodos implícitos: Adams-Moulton. Métodos predictor-corrector.
- Ecuaciones stiff: Estabilidad de las ecuaciones y de los métodos numéricos.
- Problemas de valores de contorno: Existencia y unicidad de solución. Método de shooting. Método de diferencias finitas. Método de elementos finitos.

7. Sistemas de Ecuaciones Lineales:

- Algoritmos: eliminación de Gauss, factorización LU, Choleski, pivoteo.
- Condicionamiento de matrices.
- Normas de vectores y matrices. Cotas de errores.
- Métodos Iterativos: El método iterativo general.
- Algoritmos de Jacobi y de Gauss-Seidel.
- Métodos de descenso.

V. Metodología

El curso se desarrolla con tres horas de clases teóricas. Además de las clases teóricas el curso contempla un laboratorio computacional semanal, de dos horas, y al cual **la asistencia es obligatoria**. Los alumnos se deberán inscribir en los laboratorios a partir del medio día del 9 de agosto y hasta las 19:00 horas del día 10 de agosto mediante Internet, en la dirección electrónica:

http://www.ing-mat.udec.cl/numerico

La elección de laboratorios será estrictamente por orden de inscripción. Esta inscripción de laboratorio es independiente de la inscripción formal de la asignatura.

VI. EVALUACIÓN

- a. La evaluación en la asignatura se hará por medio de dos (2) certámenes y dos (2) tests de laboratorio.
- b. Los dos (2) certámenes consistirán en pruebas escritas. Cada una de estas evaluaciones tendrá una ponderación en la nota final de un 40 %. Los laboratorios serán evaluados por dos (2) tests de 45 minutos frente al computador; cada uno con una ponderación en la nota final de un 10 %.
- c. Al final del semestre habrá una (1) evaluación de recuperación global y que remplazará una evaluación parcial de manera que la nota final resultante sea la que favorezca más al alumno (modalidad b del artículo 17.º del Reglamento Interno de Docencia de Pregrado de la Facultad de Ciencias Físicas y Matemáticas).
- d. En las evaluaciones, así como en los tests, se prohíbe estrictamente el uso de calculadoras y teléfonos celulares.
- e. La no asistencia a un certamen significará obtener nota final NCR. No obstante, quien justifique su inasistencia a un certamen (ver letra g siguiente) se deberá presentar a una evaluación escrita para regularizar su situación, a la cual se le citará oportunamente.
- f. La no asistencia a un test significará obtener la calificación NCR. Quien justifique su inasistencia por los canales oficiales (ver letra g siguiente), se podrá presentar a un test de recuperación. No existe un test de recuperación para mejorar nota.
- g. Quien deba justificar una inasistencia a una evaluación **deberá hacerlo dentro de los plazos** y de acuer a los procedimientos dispuestos en el Artículo 18.º del Reglamento Interno de Docencia de Pregrado de la Facultad de Ciencias Físicas y Matemáticas.
- h. La asistencia de un alumno a cualquiera de las evaluaciones consideradas en la asignatura no permite justificaciones posteriores, sean éstas de salud o de otra índole.

VII. BIBLIOGRAFÍA Y MATERIAL DE APOYO

Textos básicos u obligatorios.

- 1. Kendall E. Atkinson, An introduction to numerical analysis, Wiley, New York, 1978.
- 2. S. Grossman, Análisis numérico y visualización gráfica con MATLAB, Prentice—Hall Hispanoamericana, México, 1997.

Textos complementarios.

- 1. H. Alder & E. Figueroa, *Introducción al Análisis Numérico*, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, 1995.
- 2. K. Atkinson, Elementary Numerical Analysis, John Wiley and Sons, 1993.
- 3. R. L. Burden & J. D. Faires, Análisis Numérico, Thomson, 1998.
- 4. S. C. Chapra & R. P. Canale, *Métodos Numéricos para Ingenieros*, McGraw-Hill, 1999.

- 5. G. HÄMMERLIN & K.-H. HOFFMANN, *Numerical Mathematics*, Springer-Verlag, 1991.
- 6. D. R. Kincaid & W. Cheney, Análisis Numérico: las Matemáticas del Cálculo Científico, Addison—Wesley Iberoamericana, 1994.
- 7. A. Quarteroni & F. Saleri, Scientific Computing with MATLAB, Springer-Verlag, 2003.
- 8. H. R. Shwartz, Numerical Analysis. A Comprehensive Introduction, John Wiley and Sons, 1989.
- 9. J. Stoer & R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, 1993.
- 10. L.N. Trefethen & D. Bau, Numerical linear algebra, SIAM, 1997.

VIII. PLANIFICACIÓN

Planificación de clases.

De nuevo notamos que el orden de los contenidos es distinto al de otros semestres.

Fecha	Contenido
Lun 31 Jul	Presentación; Errores
Mié 02 Ago	Errores (cont.)
${\rm Lun}~07~{\rm Ago}$	Ecuaciones no lineales
Mié 09 Ago	Ecuaciones no lineales (cont.)
Lun 14 Ago	No hay actividades académicas
Mié 16 Ago	Interpolación
Lun 21 Ago	Interpolación (cont.)
Mié 23 Ago	Mínimos cuadrados
Lun 28 Ago	Mínimos cuadrados (cont.)
Mié 30 Ago	Integración-I
Lun 04 Sep	Integración-I (cont.)
Mié 06 Sep	Integración-II
Lun 11 Sep	Integración-II (cont.)
Mié 13 Sep	Integración-II (cont.)
Lun 18 Sep	Feriado
$Mié\ 20\ Sep$	EDO-I
Lun 25 Sep	EDO-I (cont)
$\mathrm{Mi\acute{e}}\ 27\ \mathrm{Sep}$	EDO-II
Lun 02 Oct	EDO-II (cont.)
$\mathrm{Mi\acute{e}}\ 04\ \mathrm{Oct}$	EDO-III
Lun 09 Oct	Feriado
Mié 11 Oct	Evaluación 1
Mié 11 Oct	EDO-III (cont.)
$\mathrm{Lun}\ 16\ \mathrm{Oct}$	EDO-III (cont.)
Mié 18 Oct	Sistemas de Ecuaciones Lineales I
Lun~23~Oct	Sistemas de Ecuaciones Lineales II
$Mi\acute{e}$ 25 Oct	Sistemas de Ecuaciones Lineales III
Lun 30 Oct	Sistemas de Ecuaciones Lineales III (cont.)
Mié 01 Nov	Feriado

Fecha	Contenido	
Lun 06 Nov	Sistemas de Ecuaciones Lineales IV	
Mié 08 Nov	Sistemas de Ecuaciones Lineales V	
Lun 13 Nov	Sistemas de Ecuaciones Lineales VI	
Mié 15 Nov	Sistemas de Ecuaciones Lineales VI (cont.)	
Vie 24 Nov	Evaluación 2	
$\mathrm{Jue}\ 07\ \mathrm{Dic}$	Evaluación de recuperación	

Planificación de laboratorios.

Semana	Fecha Lab.	Actividad de Laboratorio
1	2-3 / Agosto	Semana sin actividades
2	9-10 / Agosto	Inscripción de laboratorios vía internet
3	16-17 / Agosto	Lab. 01: Introducción a Matlab I
4	23 - 24 / Agosto	Lab. 02: Introducción a Matlab II
5	30 - 31 / Agosto	Lab. 03: Ecuaciones No Lineales
6	6-7 / Septiembre	Lab. 04: Interpolación
7	13 – 14 / Septiembre	Lab. 05: Mínimos Cuadrados
8	20 – 21 / Septiembre	Lab. 06: Integración
9	27 – 28 / Septiembre	Laboratorio Complementario
10	4-5 / Octubre	Test 1
11	11 - 12 / Octubre	Lab. 07: E.D.O. (Problemas de Valores Iniciales)
12	18 - 19 / Octubre	Lab. 08: E.D.O. (Problemas de Valores de Contorno)
13	25-26 / Octubre	Lab. 09: Sistemas de Ecuaciones Lineales
14	1-2 / Noviembre	Semana sin actividades
15	8 – 9 / Noviembre	Laboratorio Complementario
16	15 – 16 / Noviembre	Test 2
17	22-23 / Noviembre	Muestra Test 1 y 2