Attacking the Vigenere Cipher with Pattern Theory

Daniel Yao

Johns Hopkins University

25 April 2025

Example

plaintext	z	е	b	r	а
key	b	a	b	а	b
ciphertext	а	е	С	r	b

Table

												1	
а	a	b	С	d	е	f	g	h	i	j	k	l m	m
b	b	С	d	е	f	g	h	i	j	k		m	n
												у	
a	n	0	р	q	r	S	t	u	٧	W	Χ	У	Z
b	0	р	q	r	S	t	u	٧	W	Х	у	Z	а

Vigenere Cipher [5]

A Vigenere cipher with key $k = (k_1, ..., k_K)$ is a map $f : A^N \to A^N$ where for i = 1, ..., N,

$$f_i(x_i) = (x_i + k_i \mod K) \mod |A|.$$

► To decipher, we need the inverse function

$$f_i^{-1}(y_i) = (y_i - k_{i \mod K}) \mod |A|.$$

Example

plaintext	z	е	b	r	а
key	b	a	b	а	b
ciphertext	а	е	С	r	b

Decipher with key length K = 3

iubwbu ujeagppehaqfademkegbiubwbu ujeagppehaqfakndteewljvy

Decipher with key length K = 3

- iubwbu ujeagppehaqfademkegbiubwbu ujeagppehaqfakndteewljvy
- iubwbu ujeagppehaqfademkegbiubwbu ujeagppehaqfakndteewljvy

Decipher with key length K = 3

- iubwbu ujeagppehaqfademkegbiubwbu ujeagppehaqfakndteewljvy
- iubwbu ujeagppehaqfademkegbiubwbu ujeagppehaqfakndteewljvy
- it was the epoch of belief it was the epoch of incredulity

Decipher with key length K = 3

- iubwbu ujeagppehaqfademkegbiubwbu ujeagppehaqfakndteewljvy
- iubwbu ujeagppehaqfademkegbiubwbu ujeagppehaqfakndteewljvy
- it was the epoch of belief it was the epoch of incredulity

Solution

► abc

Language Model [4]

 English is a stationary ergodic stochastic process with state space (alphabet)

$$A = \{a, \ldots, z, _\}.$$

The character 2-gram model is that English is a Markov chain X_1, X_2, \ldots with state space A and transition matrix

$$Q^{(2)}(x_1,x_0)=P(X_1=x_1\mid X_0=x_0).$$

Example

▶ If n = 2, then $(X_0, X_1, X_2) = (t, h, e)$ has probability

$$P(t,h,e) = P(t)P(h \mid t)P(e \mid h)$$

= 0.07498(0.2828)(0.4321).

Methods

Maximum Likelihood Estimation

- ▶ Given an encoded text $(y_0, ..., y_N)$ and key length K, we want to find the decoded text $f^{-1}(y_0, ..., y_N)$.
- The posterior probability that f is the true cipher is

$$P(f \mid y) = \frac{P(y \mid f)P(f)}{P(y)} \propto L(f).$$

► The likelihood function is

$$L(f) = P(f_0^{-1}(y_0), \dots, f_N^{-1}(y_N))$$

= $Q^{(1)}(f_0^{-1}(y_0)) \prod_{i=1}^{N} Q^{(2)}(f_{i-1}^{-1}(y_{i-1}), f_i^{-1}(y_i)).$

► The *objective* is to find the best cipher

$$f^* = \arg\max L(f)$$
.

Methods

Gibbs Sampling [4]

- ▶ The number of ciphers is $|A|^K$, so the posterior is intractable.
- Turns out, we can use a Gibbs sampling, a *Markov chain Monte Carlo* method that samples from the likelihood distribution L(f).
- We want to construct a Markov chain on the set of ciphers that has the (limiting) stationary distribution $p_{\beta}(f)$ where

$$arg \max p_{\beta}(f) = arg \max L(f).$$

lacktriangle The inverse temperature eta controls the amount of exploration.

Methods

Experiment [1] [2] [3]

- ► Corpus: *Crime and Punishment* by Fyodor Dostoevsky
- ► Text: "It was the best of times, it was the worst of times..." (N = 592) from A Tale of Two Cities by Charles Dickens
- Key lengths: $K = 592, 296, 197, 148, 118, \dots, 1$.
- Hyperparameters: $M=10^5$, $\beta=0.5$.

Results

K = 592

rn cte om _ghycufot ad _ali _hothtsicute _dse _u _llno t

K = 296

er wassap_o_erhtast_irge in eeduthedo_nat g_hagrki

K = 197

it wat the besee_fi_widen wan_withe dr_st pe ta_ar

K = 148

it was the best of te_rs it was ehe worsttof t_yes

K = 118

it was the best of times it was the p_rst of times

Results

K	N/K	Count	Accuracy	Run Time (s)
592	N/1	49	0.0828	598
296	N/2	130	0.2196	360
197	<i>N</i> /3	232	0.3919	303
148	N/4	480	0.8108	258
118	N/5	547	0.9240	190
98	N /6	586	0.9899	119
84	N/7	592	1.0000	76
:	:		:	:
10	N/59	592	1.0000	1
:	:	:	:	:
1	N /592	592	1.0000	0

Results

Conclusion

Conclusion

- Accuracy increases with number of key repeats.
- With N/K = 4 key repeats, Gibbs sampling yields human-readable text.

Next Steps

- Try longer/shorter texts.
- Try stronger language model with longer *n*-grams.
- Try more complex ciphers (e.g., running key cipher).

References

- [1] Bird, S., Loper, E., and Klein, E. (2009). *Natural Language Processing with Python*.
- [2] Dickens, C. (1859). A Tale of Two Cities. Project Gutenberg.
- [3] Dostoevsky, F. (1866). *Crime and Punishment*. Project Gutenberg.
- [4] Menon, G. (2020). Pattern Theory: Old and New. Lecture notes, Brown University.
- [5] Vigenère, B. d. (1586). Traicté des Chiffres, ou Secretes Manières d'Écrire [Treatise on ciphers, or secret ways of writing]. Abel l'Angelier.

Appendix

Gibbs Sampling [4]

- ▶ Gibbs sampling as a Markov chain Monte Carlo method to sample from the posterior distribution of σ .
- ightharpoonup The Gibbs distribution with inverse temperature eta has the pmf

$$p_{\beta}(x) = \frac{\exp(-\beta E(x))}{Z_{\beta}}$$

where E is the energy function and Z_{β} is the partition function (normalization constant).

▶ Let $E(\sigma) = -\log L(\sigma)$. We want to find

$$rg \max_{\sigma} L(\sigma) = rg \max_{\sigma} \exp(-\beta E(\sigma))$$

$$= rg \max_{\sigma} p_{\beta}(\sigma).$$

Appendix

Gibbs Sampling [4]

```
procedure MCMC(E, newPerm, \beta, N)
     \sigma \leftarrow id \ \sigma^* \leftarrow \sigma
     for i = 1 to N do
          \tau \leftarrow \text{newPerm}(\sigma)
          if E(\tau) < E(\sigma) or unif(0,1) < \exp(-\beta \Delta E) then
               \sigma \leftarrow \tau
          end if
          if (thenE(\sigma) < E(\sigma^*))
               \sigma^* \leftarrow \sigma
          end if
     end for
     return \sigma^*
end procedure
```