COMP5310: Principles of Data Science

W7: Association Rule

Mining

Presented by

Maryam Khanian
School of Computer Science

Based on slides by previous lecturers of this unit of study

Last week: Hypothesis testing and evaluation

Objective

 Overview of experimental design and learn Python tools for hypothesis testing and classifier evaluation.

Lecture

- Significance
 - Pairwise t-tests.
 - Non-normal data.
- Evaluation
 - Classifier evaluation.
 - User evaluation.

Readings

- Data Science from Scratch: Ch 7.
- Model evaluation (sklearn doco).
 - http://scikit learn.org/stable/modules/model evaluati
 on.html#model-evaluation
- Hypothesis testing (scipy lectures).
 - http://www.scipylectures.org/packages/statistics/index.htm l#hypothesis- testing-comparing-twogroups

Exercises

- Scipy: statistical tests.
- Sklearn: evaluation metrics.

Machine Learning

What is machine learning?

- Creating and using models that are learned from data
 - Predicting whether an email is spam or not
 - Discovering hidden rules in complex datasets
 - Predicting whether a credit card transaction is fraudulent
 - Predicting tumour cells as benign or malignant

Machine Learning Problems

- Prediction
 - Classification and Regression
- Clustering, segmentation and association rules
 - Find patterns in the data
- Outlier/anomaly detection
 - Find unusual patterns
- Reinforcement learning
 - Learn from rewards (like babies)

Supervised vs. Unsupervised Learning

- Supervised learning (e.g. classification and regression)
 - Supervision: The training data are accompanied by labels indicating the class of the observations
- Unsupervised learning (e.g. clustering and association rules)
 - The class labels of training data is unknown
 - Given a set of measurements, observations, etc. with the aim of
 - Establishing the existence of classes or clusters in the data
 - Discovering hidden patterns or rules

Unsupervised Learning

- We'll focus on unsupervised machine learning techniques
 - Association rule mining
 - Clustering
 - Dimensionality reduction
 - Outlier detection
 - Etc.

Association Rule Mining

Association Analysis

TID	Items	
1	Bread, Milk	
2	Bread, Diaper, Beer, Eggs	
3	Milk, Diaper, Beer, Coke	
4	Bread, Milk, Diaper, Beer	
5	Bread, Milk, Diaper, Coke	

How can businesses improve sales by analysing customer purchase data?

Market-basket transactions

TID: Transaction Identifier **Items**: Transaction item set

Slides adapted from Tan et al. Introduction to data mining.

http://www-users.cs.umn.edu/~kumar/dmbook/
http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap6 basic association analysis.pdf

Association Rule Mining

TID	Items	
1	Bread, Milk	
2	Bread, Diaper, Beer, Eggs	
3	Milk, Diaper, Beer, Coke	
4	Bread, Milk, Diaper, Beer	
5	Bread, Milk, Diaper, Coke	

Market-basket transactions

TID: Transaction Identifier

Items: Transaction item set

 Predict occurrence of an item based on other items in the transaction, eg:

```
{Diaper} → {Beer}
{Milk,Bread} → {Eggs,Coke}
{Beer,Bread} → {Milk}
```

Note that arrows indicate
 co-occurrence, not causality

Definition: Itemset

TID	Items	
1	Bread, Milk	
2	Bread, Diaper, Beer, Eggs	
3	Milk, Diaper, Beer, Coke	
4	Bread, Milk, Diaper, Beer	
5	Bread, Milk, Diaper, Coke	

Market-basket transactions

TID: Transaction Identifier **Items:** Transaction item set

- An itemset is a collection of one or more items {Milk,Bread,Diaper}
- A k-itemset is an itemset containing k items

Definition: Frequent Itemset

TID	Items	
1	Bread, Milk	
2	Bread, Diaper, Beer, Eggs	
3	Milk, Diaper, Beer, Coke	
4	Bread, Milk, Diaper, Beer	
5	Bread, Milk, Diaper, Coke	

Market-basket transactions

TID: Transaction Identifier **Items:** Transaction item set

- Support count (σ) is the itemset frequency
 σ({Milk,Diaper,Beer}) = 2
- Support (s) is the normalised itemset frequency

$$s = \frac{\sigma(\{\text{Milk,Diaper,Beer}\})}{|T|} = \frac{2}{5}$$

A frequent itemset has
 s ≥ min_support

Definition: Association Rule

TID	Items	
1	Bread, Milk	
2	Bread, Diaper, Beer, Eggs	
3	Milk, Diaper, Beer, Coke	
4	Bread, Milk, Diaper, Beer	
5	Bread, Milk, Diaper, Coke	

Market-basket transactions

TID: Transaction Identifier **Items**: Transaction item set

- An association rule is an implication of the form X→Y
 where X and Y are itemsets
 {Milk, Diaper}→{Beer}
- Confidence (c) measures how often Y occurs in transactions with X $c = \frac{\sigma(\{\text{Milk}, \text{Diaper}, \text{Beer}\})}{\sigma(\{\text{Milk}, \text{Diaper}\})} = \frac{2}{3}$

An association rule has
 c ≥ min_conf

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ min_sup threshold
 - confidence ≥ min_conf threshold

Finding Frequent Itemsets

TID	Items	
1	Bread, Milk	
2	Bread, Diaper, Beer, Eggs	
3	Milk, Diaper, Beer, Coke	
4	Bread, Milk, Diaper, Beer	
5	Bread, Milk, Diaper, Coke	

Market-basket transactions

TID: Transaction Identifier

Items: Transaction item set

Let min_support = 50%

Freq. 1-itemsets:

– Bread:4(80%); Milk:4(80%); Diaper:4(80%); Beer:3(60%);

- Freq. 2-itemsets:

- {Bread, Milk}:3(60%)
{Bread, Diaper}:3(60%)
{Milk, Diaper}:3(60%)
{Milk, Diaper}:3(60%)
{Diaper, Beer}:3(60%)

Finding Association Rules

TID	Items	
1	Bread, Milk	
2	Bread, <mark>Diaper</mark> , Beer, Eggs	
3	Milk, <mark>Diape</mark> r, Beer, Coke	
4	Bread, Milk, Di <mark>ape</mark> r, Beer	
5	Bread, Milk, <mark>Diape</mark> r, Coke	

Market-basket transactions

TID: Transaction Identifier

Items: Transaction item set

- Let min_support = 50%, min_conf =
 50%
- Freq. Itemsets:
 - Bread:4; Milk:4; Diaper:4; Beer:3;
 {Bread, Milk}:3;
 {Bread, Diaper}:3;
 {Milk, Diaper}:3;
 {Diaper, Beer}:3;
- Association rules:
 - → Beer → Diaper (100%)
 - Diaper → Beer (75%)

Association Rule Mining with Apriori Principle

Two-step approach

1. Frequent itemset generation

Generate all itemsets with s ≥ min_support

2. Rule generation

- Generate high-confidence rules from each frequent itemset
- Each rule is a binary partitioning of a frequent itemset

Easy! But brute force enumeration is computationally prohibitive.

There are 2^d candidate itemsets!

Reducing the number of candidates

Apriori Principle

If an itemset is frequent, then all of its subsets must also be frequent

- Conversely

If an itemset is infrequent, then its supersets are also infrequent

- The support of an itemset never exceeds the support of its subsets
 - s({Bread}) ≥ s({Bread, Beer})
 - s({Milk}) ≥ s({Bread, Milk})
- This is known as the anti-monotone property of support

Pruning the 2^d candidate itemsets

Apriori algorithm for generating frequent itemsets

While the list of (k-1)-itemsets is non-empty: Generate candidate k-itemsets Identify and keep frequent k-itemsets

The Apriori Algorithm—An Example

Create initial 1-itemsets

Add each item to the initial list of candidate itemsets

Sort and return as list of sets

Identify itemsets that meet the support threshold

```
for each candidate
def scanD(dataset, candidates, min support):
    "Returns all candidates that meet a minimum support level"
    sscnt = {}
    for tid in dataset:
        for can in candidates:
           if can.issubset(tid):
               sscnt.setdefault(can,
               sscnt[can] +=
   num items = float(len(dataset))
   retlist = []
    support data = {}
    for key in sscnt:
       support = sscnt[key] / num items
       if support >= min support:
           retlist.append(key)
                                                             Check whether candidates
           support data[key] = support
   return retlist, support data
                                                                            meet threshold
```

Calculate support counts

Generate the next list of candidates

```
(k-1)-itemsets
                                                                         Iterate through all
                                                                          pairs of itemsets
def aprioriGen (freg sets, k):
   "Generate the joint transactions from candidate sets"
   retList = []
   lenLk = len(freq sets)
     i in range(lenLk):
                                                                     Check whether pairs
       for j in range(i + 1, lenLk
               list(freq sets[i])[:k
                                                                    differ by a single item
           L2 = list(freq sets[j])[:k -
           Ll.sort()
           L2.sort()
             _retList.append(freq sets[i]
                                           freq_sets[j])
   return retList
                                                                            A|B returns the
                                                                          union of A and B
```

Generate all Frequent Itemsets

```
frequent 1-itemsets
def apriori(dataset, min support=0.5):
   "Generate a list of candidate item sets"
   C1 = createCl(dataset)
       list(map(set, dataset))
   L1, support data = scanD(D, C1, min support)
       [L1]
   while len(L[k-2]) > 0:
                                      While the list of (k-1)-itemsets is non-empty:
       Ck = aprioriGen(L[k - 2], k)
       Lk, supK = scanD(D, Ck, min support)
                                                      Generate candidate k-itemsets
       support data.update(supK)
                                                      Identify frequent k-itemsets
       L.append(Lk)
       k += 1
                                                      Keep frequent k-itemsets
   return L, support data
```

Initialise L with

Rule Generation

- Given a frequent itemset L, find all non-empty subsets $x \subset L$ such that $x \to L x$ satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules are:

```
A \rightarrowBCD, B \rightarrowACD, C \rightarrowABD, D \rightarrowABC,

AB \rightarrowCD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrowAD, BD \rightarrowAC, CD \rightarrowAB,

ABC \rightarrowD, ABD \rightarrowC, ACD \rightarrowB, BCD \rightarrowA,
```

- If |L| = k, then there are $2^k - 2$ candidate association rules

Efficient Rule generation

- How to efficiently generate rules from frequent an itemset?
- Similar to support, the confidence of rules generated from the same itemset has an anti-monotone property
- Example: $X = \{A,B,C,D\}$:
 - $c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$
- Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Rule Generation for Apriori Algorithm

Association Rule

- From the example before, we had a frequent itemset: {B, C, E}

- From this frequent itemset {B, C, E}, we can have the following association rules

Identify rules that meet the confidence threshold

```
Frequent itemset
                           Possible consequences
                                                                Rule accumulator
 (rule components)
                                 (RHS of rule)
def calc_confidence((regSet, H) support_data, rules, min_confidence=0.7):
    "Evaluate the rule generated"
   pruned H = []
   for conseq in H:
       conf = support data[freqSet] /
                                     support data[freqSet
                                                                        Calculate
       if conf >= min confidence:
                                                                      confidence
           #print(freqSet - conseq, '--->', conseq,
           rules.append((fregSet - conseq, conseq, conf))
           pruned H.append(conseq)
    return pruned H
                                                      Add rule to accumulator
                       Return consequences
                                                     if conf≥min confidence
```

The University of Sydney Page 32

that pass the

confidence threshold

Recursively Evaluate Rules

```
Need at least 1
                                 Generate candidate
                                                             Update rules and return
  item for LHS
                                                            consequences that pass
                             consequence itemsets
                                                                confidence threshold
def rules from conseq(freqSet, H, support data, rules, min confidence=0.7):
   "Generate a set of candidate rules"
       len(H[0]
  pruned H = calc confidence(fregSet, H,
                                        support data, rules, min confidence
   if len(freqSet) > (m + 1):
      Hmp = aprioriGen(pruned H, m + 1
       if len(Hmp) >= 1:
         rules from conseq(fregSet,
                                   Hmp,
                                        support data, rules, min confidence
```

Recurse with new consequence candidates

Mine all Association Rules

For each k-itemset def generateRules(L, support_data, min_confidence=0.7): """Create the association rules L: list of frequent itemsets support data: support data for those itemsets Initial min confidence: minimum confidence threshold . . . consequence rules = [] candidates for i in range(1, len(L)): for fregSet in L[i]: #1 = [frozenset([item]) for item in fregSet] gules from conseq(freqSet, H1, support data, rules, min confidence return rules

Recursively evaluate rules

For each k

Association Rule Mining with FP-Growth

Performance Bottlenecks of Apriori

- Bottlenecks of Apriori:
 - Candidate generation:
 - Generate huge candidate sets

- Multiple scans of database

Overview of FP-Growth:

- Compress a large database into a compact, Frequent-Pattern tree (FP-tree) structure
 - Highly compacted, but complete for frequent pattern mining
 - Avoid costly repeated database scans
- Develop an efficient, FP-tree-based frequent pattern mining method (FP-growth)
 - A divide-and-conquer methodology: decompose mining tasks into smaller ones
 - Avoid candidate generation

Construct FP-tree

Two Steps:

- Scan the transaction DB for the first time, find frequent items (single item patterns) and order them into a list L in frequency descending order.
- For each transaction, order its frequent items according to the order in L; Scan DB the second time, construct FP-tree by putting each frequency ordered transaction onto it.

FP-tree Example: step 1

Step 1: Scan DB for the first time to generate L

 $Min_{sup} = 2$

TID	Items bought	
1	A, C, D	
2	B, C, E	
3	A, B, C, E	
4	B, E	

Item	Frequency
Α	2
В	3
С	3
D	1
Е	3

FP-tree Example: step 2

Step 2: scan the DB for the second time, order frequent items in each transaction

TID	Items bought	Ordered frequent items
1	A, C, D	C, A
2	B, C, E	C, B, E
3	A, B, C, E	C, B, E, A
4	B, E	B, E

Mining Frequent Patterns Using FP-tree

Starting the processing from the end of list L:

Step 1:

Construct conditional pattern base for each item in L

Step 2:

Construct **conditional FP-tree** from each conditional pattern base

Step 1: Construct Conditional Pattern Base

- Traverse the FP-tree by following the link of each frequent item
- Accumulate all of transformed prefix paths of that item to form a conditional pattern base

Page 43

Step 2: Construct Conditional FP-tree

- For each pattern base
 - Accumulate the count for each item in the base
 - Construct the conditional FP-tree for the frequent items of the pattern base

```
A-cond. pattern base: A-conditional FP-tree Frequent patterns ending with A:

EBC:1, C:1 \rightarrow {(C:2)} | A CA:2
```

Step 2: Construct Conditional FP-tree

```
E-cond. pattern base: E-conditional FP-tree Frequent patterns ending with E: BC:2, B:1 \rightarrow { (B:3, C:2, BC:2) } | E BE:3, CE:2, BCE:2
```

```
B-cond. pattern base: B-conditional FP-tree Frequent patterns ending with B:

C:2 \rightarrow {(C:2)} | B CB:2
```

```
All Frequent Itemsets: { A:2, E:3, B:3, C:3, BC:2, EC:2, AC:2, EB:3, BCE:2 }
```

Review

W7 review: Association Rule Mining

Objective

Learn techniques for unsupervised learning, with tools in Python.

Lecture

Association rule mining

Readings

- Intro to Data Mining, Ch. 5
 https://www-users.cse.umn.edu/~kumar001/dmbook/ch5 association analysis.pdf
- Data Science from Scratch, Ch. 11

Exercises

- Associations from scratch
- Associations using mlxtend
- Associations using pyfpgrowth