American University of Armenia, CSE CS 111 - Discrete Mathematics (B) Homework Assignment 6 FALL 2019

Due Date: Friday October 25 in class by 9:35*
*Late or Electronic submissions will **NOT** be accepted

- 1. Prove each of the following statements.
 - (a) Let a, b and n be positive integers such that $a \equiv b \pmod{n}$. Give an inductive proof that $a^k \equiv b^k \mod n$ for all $k \geq 0$.
 - (b) If $a, b \in \mathbb{Z}$ and $c \in \mathbb{Z}^+$, then $a \equiv b \pmod{n}$ if and only if $ca \equiv cb \pmod{cn}$.
 - (c) Let $a, b \in \mathbb{Z}$ and $d, n \in \mathbb{Z}^+$. If $a \equiv b \pmod{n}$ and d|n then $a \equiv b \pmod{d}$.
 - (d) Let $a, b \in \mathbb{Z}$. If gcd(a, n) = 1 for positive integer n, then $ax \equiv b \pmod{n}$ has a solution x = c for $c \in \mathbb{Z}$.
- 2. Let R be the following relation defined on the set $\{a, b, c, d\}$:

$$R = \{(a, a), (a, c), (a, d), (b, a), (b, b), (b, c), (b, d), (c, b), (c, c), (d, b), (d, d)\}$$

Determine whether R is:

- (a) reflexive
- (b) irreflexive
- (c) symmetric
- (d) asymmetric
- (e) antisymmetric
- (f) transitive

Explain your answer in one line of correct mathematical form.

- 3. The relation R on the set A is **assymetric**, if for every $a, b \in A$ if $(a, b) \in R$ implies $(b, a) \notin R$. List all the assymetric relatiosn on the set $\{1, 2\}$.
- 4. Consider the relation R defined on the set of integers:

aRb if and only if 5|(a+4b).

- (a) Prove that R is an equivalence relation.
- (b) What are the equivalence classes of R?

- 5. Suppose that R and S are reflexive relations on a set A. Prove or disprove each of the following statements.
 - (a) $R \cup S$ is reflexive.
 - (b) $R \cap S$ is reflexive.
 - (c) $S \circ R$ is reflexive.
 - (d) R S is irreflexive.
 - (e) \overline{R} is irreflexive.
 - (f) $R \triangle S$ is irreflexive.
- 6. Let R be a relation from set A to B
 - (a) Let $R_1 = \{(a,b)|a < b\}$ on the set of integers. Find R_1^{-1} .
 - (b) Let $R_2 = \{(a,b)|a \text{ divides } b\}$ on the set of positive integers. Find R_2^{-1} .
 - (c) Show that a relation R on a set A is symmetric if and only if $R = R^{-1}$.
 - (d) Show that a relation R on a set A is antisymmetric if and only if $R \cap R^{-1} \subseteq \{(a,a) | a \in A\}$.
- 7. Let S be a relation $(\mathbb{R}-\{0\})\times(\mathbb{R}-\{0\})$ defined as $S=\Big\{\big((a,b),(c,d)\big):b/a=d/c\Big\}.$
 - (a) Prove S is an equivalence relation.
 - (b) Give the equivealence classes of S.
 - (c) Give a geometric interpretation of the equivalence classes, assuming an element of $(\mathbb{R} \{0\}) \times (\mathbb{R} \{0\})$ is a point on the plane.