

Problem 1 Clockwise vertex of Strength P distance a from wall

(a) Find stream function 4 (x,y)

- mirror image vontex

$$Y_{v} = \frac{\Gamma}{2\pi} \ln r$$

$$\Psi_{V} = \frac{\Gamma}{2\pi} \ln r$$
, $\Psi_{V,M} = -\frac{\Gamma}{2\pi} \ln r$
, $\Psi_{M} = V_{\infty} \times V_$

$$\Psi = \frac{\Gamma}{2\pi} \left[\ln \sqrt{(x+\alpha)^2 + y^2} - \ln \sqrt{(x-\alpha)^2 + y^2} \right] + U_{\infty} \times$$

16) Find P(x,y)

$$\varphi_{v} = -\frac{\Gamma}{2\pi} \theta$$
, $\varphi_{v,m} = \frac{\Gamma}{2\pi} \theta$, $\varphi_{u} = -U_{\infty} y$

$$\varphi = \frac{\Gamma}{2\pi} \left[-\arctan\left(\frac{y}{x+u}\right) + \arctan\left(\frac{y}{x-u}\right) \right] - U_{\infty} y$$

(c) Find ux, uy @ (x,y) = (0,a)

$$U = \frac{\partial}{\partial y} \left[\frac{1}{2\pi} \left[\ln \sqrt{(x+\alpha)^2 + y^2} - \ln \sqrt{(x-\alpha)^2 + y^2} \right] + U_{\infty} \times \right]$$

(d) Find force per unit span on wall -acyca

$$|U_{\omega}| = U_{y}(0,y) = -\frac{\Gamma}{y_{\Pi}}\left[\frac{y_{\Omega}}{a^{2}+y^{2}}\right] - U_{\infty}$$

Bernoulli: Px + 20002 = Pw+ /2 D | Uu |2

$$\begin{aligned}
P_{\omega}(y) &= P_{\infty} + \frac{1}{2} P(U_{\infty}^{2} - |U_{\omega}|^{2}) \\
P_{\omega}(y) &= P_{\infty} + \frac{1}{2} P(U_{\infty}^{2} - \left[\frac{\Gamma^{2} \alpha^{2}}{\Pi^{2} (\alpha^{2} + y^{2})^{2}} + 2 \frac{U_{\infty} \Gamma}{\pi (\alpha^{2} + y^{2})} + 4 \frac{\omega^{2}}{\pi}\right]) \\
P_{\omega}(y) &= P_{\infty} + \frac{1}{2} P\left[\frac{2 U_{\infty} \Gamma}{\pi (\alpha^{2} + y^{2})} - \frac{\Gamma^{2} \alpha^{2}}{\pi^{2} (\alpha^{2} + y^{2})^{2}}\right]
\end{aligned}$$

$$\frac{\Gamma_{\text{orig}}}{\text{onit depth}} = \int_{-\alpha}^{\alpha} \int_{-\alpha}^{\alpha} \int_{-\alpha}^{\beta} \int_{-\alpha}^{\beta} \int_{-\alpha}^{\beta} \frac{\int_{-\alpha}^{\beta} \int_{-\alpha}^{\beta} \frac{\int_{-\alpha}^{\beta} \int_{-\alpha}^{\beta} \int_{-\alpha}^{\beta} \frac{\int_{-\alpha}^{\beta} \int_{-\alpha}^{\beta} \int_{-\alpha}^{\beta} \frac{\int_{-\alpha}^{\beta} \int_{-\alpha}^{\beta} \int_{-\alpha}^{\beta} \int_{-\alpha}^{\beta} \frac{\int_{-\alpha}^{\beta} \int_{-\alpha}^{\beta} \int_{-\alpha}^{\beta}$$

$$= 2\alpha P_{\infty} + \frac{gu_{\infty}\Gamma}{\Pi} \left(\frac{1}{\alpha} \right) \left(\frac{\pi}{4} \right) - \left(\frac{1}{\alpha} \right) \left(\frac{\pi}{4} \right) - \frac{\Gamma^{2}\alpha^{2}}{2\alpha^{2}\pi^{2}} \left[\left(\frac{\alpha}{2\alpha^{2}} + \frac{1}{\alpha} \left(\frac{\pi}{4} \right) \right) - \left(\frac{-\alpha}{2\alpha^{2}} + \frac{1}{\alpha} \left(\frac{\pi}{4} \right) \right) \right]$$

$$= 2\alpha P_{\infty} + \frac{gu_{\infty}\Gamma}{\Pi} \left(\frac{2\pi}{4\alpha} \right) - \frac{\Gamma^{2}\alpha^{2}}{2\pi^{2}} \left[\frac{2\alpha}{2\alpha^{2}} + \frac{2\pi}{4\alpha} \right]$$

$$= 2\alpha P_{\infty} + \frac{gu_{\infty}\Gamma}{2\alpha} - \frac{\Gamma^{2}\alpha}{\Pi^{2}} \left[\frac{1}{2} + \frac{\pi}{4} \right]$$

$$= 2\alpha P_{\infty} + \frac{gu_{\infty}\Gamma}{2\alpha} - \frac{\Gamma^{2}\alpha}{2\pi^{2}} - \frac{\Gamma^{2}\alpha}{4\pi}$$

Problem 2

$$\varphi = \frac{A}{2}(x^2 - y^2) - \frac{4}{2\pi} \ln \sqrt{x^2 + y^2}$$

$$V = \frac{\partial \varphi}{\partial x} = Ax - \frac{q}{2\pi} \frac{x}{x^2 + y^2}$$

$$V = \frac{\partial \varphi}{\partial y} = -Ay - \frac{q}{2\pi} \frac{y}{x^2 + y^2}$$

towards sink: V=O, U negative, at (H,O) Afy=0, V=0 $U = A_{\times} - \frac{a}{2\pi} \frac{\times}{x^{2} + y^{2}} < O \longrightarrow \frac{a}{2\pi} \frac{\times}{x^{2} + y^{2}} > A_{\times}$ $\frac{4}{2\pi} \frac{14}{H^{2}} > AH \qquad \longrightarrow A < \frac{4}{2\pi} H^{2}$

Arablem 3 Lifting flow over cylinder
$$\Psi = (V_{\infty} r \sin \theta)(1 - R^2/r^2) + \frac{\Gamma}{2\pi} \ln \frac{r}{R}$$

$$\psi_2(r,\theta) = -V_{\infty} r \sin \theta \frac{R^2}{r^2}$$
, $\psi_2(x,y) = -V_{\infty} R^2 \cdot \frac{y}{x^2 + y^2}$

$$V_3(r,0) = \frac{\Gamma}{2\pi} \ln \frac{r}{\Omega}$$
, $V_3(x,y) = \frac{\Gamma}{2\pi} \ln \frac{\sqrt{x^2 + y^2}}{\Omega}$

3b) Find corresponding
$$\varphi_1$$
, φ_2 , φ_3 in $(r,6)$ \$ $(x,5)$. Construct $\varphi(x,y)$ 4 $\varphi(r,0)$

1)
$$V_{r} = \frac{1}{r} \frac{\partial \Phi}{\partial \theta} = \frac{1}{r} \left(V_{\infty} r \cos \theta \right) = V_{\infty} \cos \theta = \frac{1}{2} \frac{\varphi}{\partial r}$$

$$V_{\theta_{1}} = -\frac{\partial \Psi}{\partial r} = -\left(V_{\infty} \sin \theta\right) = -V_{\infty} \sin \theta = \frac{1}{r} \frac{\partial \Psi}{\partial \theta}$$

2)
$$Vv_2 = \frac{1}{r} \frac{\partial \Psi}{\partial \theta} = \frac{1}{r} \left(-V_{\infty} r \cos \theta \frac{R^2}{r^2} \right) = -V_{\infty} \cos \theta \frac{R^2}{r^2} = \frac{\partial \Psi}{\partial r}$$

$$V_{\Theta z} = -\frac{\sigma \Psi}{\sigma r} = -\left(7V_{\infty} \sin \theta \left(7\frac{R^{2}}{r^{2}}\right)\right) = -V_{\infty} \sin \theta \frac{R^{2}}{r^{2}} = \frac{1}{r} \frac{\sigma \Psi}{\sigma \theta}$$

$$-5 \, \varphi_2(r,0) = V_{\infty} \cos \theta \, \frac{R^2}{r} \, \varphi_2(x,y) = V_{\infty} \, R^2 \, \frac{x}{x^2 + y^2}$$

3)
$$Vr3 = \frac{1}{r} \frac{\partial \Psi}{\partial \theta} = 0 = \frac{\partial \Phi}{\partial r}$$

$$\sqrt{93} = -\frac{04}{00} = -\frac{1}{200} = -\frac{1}{00}$$

-)
$$\varphi_3(v,\theta) = -\frac{\Gamma}{2\pi}\theta$$
 , $\varphi_3(x,y) = -\frac{\Gamma}{2\pi} \operatorname{arctm}(\frac{y}{x})$

$$\Rightarrow \varphi(r,0) = V_{\infty} r \cos \theta + V_{\infty} \cos \theta \frac{R^2}{r} + \frac{\Gamma}{2\pi} \theta$$

$$\Rightarrow \varphi(x,y) = V_{\infty} x + V_{\infty} R^{2} \frac{x}{x^{2} + y^{2}} - \frac{\Gamma}{2\pi} \arctan\left(\frac{y}{x}\right)$$

3c) Modify 3b) to include freestream e x $\varphi_{fs}(x,y) = V_{\infty}(x\cos x + y\sin x)$ $\varphi_{fs}(r,0) = V_{\infty}r(\cos\theta\cos x + \sin\theta\sin x)$

$$\varphi(r,0) = V_{\infty} r \cos \theta + V_{\infty} \cos \theta \frac{R^2}{r} + -\frac{\Gamma}{2\pi} \theta + V_{\infty} r (\cos \theta \cos x + \sin \theta \sin x)$$

$$\varphi(x,y) = V_{\infty} x + V_{\infty} R^2 \frac{x}{x^2 + y^2} - \frac{\Gamma}{2\pi} \arctan\left(\frac{y}{x}\right) + V_{\infty}(x \cos x + y \sin x)$$

Problem 4 Matlab

Input: Vo, S, A, C

Lifting flow over cylinder

$$\Psi = (V_{\infty} r S M \theta) (1 - R^2/r^2) + \frac{\Gamma}{2\pi} \ln \frac{r}{R}$$

$$-2 \Psi(x_{1}y) = V_{\infty} \left(y\cos x + x \sin x\right) \left(1 + \frac{x^{2}}{x^{2}t}y^{2}\right) + \frac{\Gamma}{2\pi} \ln \left(\sqrt{x^{2}t}y^{2}\right)$$

$$U = \frac{\partial \Psi}{\partial x} \qquad V = -\frac{\partial \Psi}{\partial x}$$