微分積分学 A 中間試験問題

2018年6月14日第1時限施行 担当 水野 将司

注意事項: ノート・辞書・参考書・教科書・コピー・電卓の使用を禁ず。 解答用紙のみを提出し、問題用紙は持ち帰ること.

問題 1 は全員が答えよ. 問題 2 以降について, 2 題以上を選択して答えよ. なお, 必要におうじて x > 0, $n \in \mathbb{N}$ に対して,

(*)
$$(1+x)^n \ge 1 + nx + \frac{n(n-1)}{2}x^2 + \frac{n(n-1)(n-2)}{6}x^3$$

を用いてよい.

問題 1.

次の各問いに答えよ. ただし、答えのみを書くこと.

- (1) 実数の部分集合 $A \subset \mathbb{R}$ について、次の問いに答えよ.
 - (a) A が上に有界であることの定義を述べよ.
 - (b) A の上界のなす集合を A_u と書くとき, $a \in \mathbb{R}$ が A の上限であること、つまり $a = \sup A$ であることの定義を A_u を用いて述べよ
- (2) 実数列 $\{a_n\}_{n=1}^{\infty} \subset \mathbb{R}$ について、次の問いに答えよ.
 - (a) $\{a_n\}_{n=1}^{\infty}$ が $a \in \mathbb{R}$ に収束すること、すなわち、 $a_n \to a$ $(n \to \infty)$ となることの ε -N 論法による定義を述べよ.
 - (b) $\{a_n\}_{n=1}^{\infty}$ が $-\infty$ に発散すること、すなわち、 $a_n \to -\infty$ $(n \to \infty)$ となることの ε -N 論法による定義を述べよ.
 - (c) $\{a_n\}_{n=1}^{\infty}$ が (広義) 単調増加であることの定義を述べよ.
 - (d) $\{a_n\}_{n=1}^\infty$ が Cauchy 列であることの ε -N 論法による定義を述べよ
- (3) 有理数と実数の違いに関係する次の定理の主張をそれぞれ述べよ.
 - (a) 実数の連続性¹
 - (b) Bolzano-Weierstrass の定理
 - (c) 実数の完備性
 - (d) Archimedes の原理
- (4) 有理数の稠密性とは何か? 主張を述べよ.
- (5) 自然対数の底の定義を述べよ.
- (6) 集合 $\left\{\sin\frac{n\pi}{3}:n\in\mathbb{N}\right\}$ の上限を求めよ.

¹教科書(白岩)に述べられている,実数の切断についての連続性は答えとして認めない. 講義ノートで述べた「実数の連続性」を述べよ.

- (7) 集合 $\left\{\sin\frac{n\pi}{3}:n\in\mathbb{N}\right\}$ の下限を求めよ.
- (8) 次の性質をみたす数列 $\{a_n\}_{n=1}^{\infty}$ の例をあげよ.
 - (a) 数列 $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ は発散するが $\{a_n-b_n\}_{n=1}^{\infty}$ は 0 に収束する.
 - (b) 数列 $\{a_n\}_{n=1}^{\infty}$ は収束し、すべての $n\in\mathbb{N}$ に対して $a_n>0$ となるが、 $\lim_{n\to\infty}a_n>0$ とならない.
- (9) 次の極限を求めよ. なお, 答えのみを書くこと.
 - (a) $\lim_{n \to \infty} \left(\sqrt{n^2 + 1} \sqrt{n^2 1} \right)$.
 - (b) $\lim_{n\to\infty} a^n$. ただし, a>0 は正の定数.
 - (c) $2-3+\frac{9}{2}-\cdots$ となる無限等比級数.
 - (d) $\lim_{n\to\infty} \frac{x(e^{nx}-e^{-nx})}{e^{nx}+e^{-nx}}$. ただし, $x\in\mathbb{R}$ は定数.

以下余白 計算用紙として使ってよい.

問題 2.

 $\inf(1,2) = 1$ を示したい. 次の問いに答えよ.

- (1) $\inf(1,2) = 1$ を示すためには、「1 が下界であること」と「1 が下界の中で最大であること」の二つを示す必要がある。それぞれについて、論理記号を用いて表せ、
- $(2) \inf(1,2) = 1$ を示せ.

問題 3.

自然数 n に対して $a_n = \frac{2n-5}{3n-2}$ とおく. $\lim_{n\to\infty} a_n = \frac{2}{3}$ を ε -N 論法を用いて示したい. 次の問いに答えよ.

- (1) $\lim_{n\to\infty} a_n = \frac{2}{3}$ の ε -N 論法を用いた定義を述べよ.
- (2) $\lim_{n\to\infty} a_n = \frac{2}{3}$ を ε -N 論法を用いて示せ.

問題 4.

数列 $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ は, それぞれ $a,b \in \mathbb{R}$ に収束するとする. このとき, 数列 $\{a_n + b_n\}_{n=1}^{\infty}$ が a + b に収束することを ε -N 論法を用いて示したい. 次の問いに答えよ.

- (1) 数列 $\{a_n + b_n\}_{n=1}^{\infty}$ が a + b に収束することの ε -N 論法を用いた 定義を述べよ.
- (2) 数列 $\{a_n+b_n\}_{n=1}^{\infty}$ が a+b に収束することを ε -N 論法を用いて示せ.

問題 1.1.

数列 $\{a_n\}_{n=1}^{\infty}$ は, $a \in \mathbb{R}$ に収束するとする. このとき, 定数 $c \in \mathbb{R}$ に対して 数列 $\{ca_n\}_{n=1}^{\infty}$ が ca に収束することを ε -N 論法を用いて示したい. 次の問いに答えよ.

- (1) 数列 $\{ca_n\}_{n=1}^{\infty}$ が ca に収束することの ε -N 論法を用いた定義を述べよ.
- (2) 数列 $\{ca_n\}_{n=1}^{\infty}$ が ca に収束することを ε -N 論法を用いて示せ(ヒント: c=0 かもしれないことに注意).

以下余白 計算用紙として使ってよい.