PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBL	ISHED	UN	DER THE PATENT COOPERATI	ON TREATY (PCT)
(51) International Patent Classification ⁵ : C23C 22/60, 22/78	A2	(11)) International Publication Number:) International Publication Date:	WO 91/11542 8 August 1991 (08.08.91)
(21) International Application Number: PCT/U (22) International Filing Date: 25 January 1991		531 91)	(74) Agent: WISDOM, Norvell, E., Law Department, 140 German mouth Meeting, PA 19462 (US	Jr.; Henkel Corporation atown Pike, Suite 150, Ply-
(30) Priority data: 2/19581 30 January 1990 (30.01.)O)	тР	(81) Designated States: AT (European pagent), BR CA CH (Fr	n patent), AU, BE (Euro-

(71) Applicant (for all designated States except US): HENKEL CORPORATION [US/US]; 300 Brookside Avenue, Am-bler, PA 19002 (US).

- (72) Inventors; and (72) Inventors; and
 (75) Inventors/Applicants (for US only): ISHII, Hitoshi [JP/JP]; Corpo Atou 203, 1514-12, Tamura, Hiratsuka-shi, Kanagawa-ken (JP). MORI, Kazuhiko [JP/JP]; Nihon Parkerizing Hiratsuka, Dormitoring, 2566, Shinomiya, Hiratsuka-shi, Kanagawa-ken 254 (JP). MIYAWAKI, Toshi [JP/JP]; 12-12-1-313, Sumiredaira, Hiratsuka-shi, Kanagawa-ken 254 (JP). SHIMA, Shizno [JP/JP]; 2488-9, Shinomiya, Hiratsuka-shi, Kanagawa-ken (JP).
- (81) Designated States: AT (European patent), AU, BE (European patent), BR, CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), LU (European patent), NL (European patent), SE (European patent), US.

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: SURFACE REATMENT METHOD AND COMPOSITION FOR ZINC COATED STEEL SHEET

(57) Abstract

A nickel and/or cobalt deposition process which can be run at a nearly neutral pH and which rapidly deposits nickel and/ or cobalt in quantities large enough to improve the paint adhesion and post coating corrosion resistance and which has a good solution stability, is achieved by treating zinc coated sheet steel with an aqueous solution that has a pH between 5 and 10 inclusive and comprises (A) a total of at least 0.01 g/L of metal ions selected from the group consisting of NI²⁺ and Co²⁺ ions and (B) a sufficient amount to fully complex the metal ions recited in part (A) of complexing agents selected from the group consisting of ammonia and organic compounds having at least one amino group in the neutral region. The substitution precipitation reaction of nickel and cobalt is substantially accelerated by the presence, as a third component in addition to the metal ion and complexing agent, of at least one ionic species or compound selected from the nitrite ion, nitrate ion, thiocyanate ion, thiosulfate ion, thiourea, phosphite ion, hypophosphite ion, and perchlorate ion.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madamas
AU	Australia	FI	Finland		Madagascar
BB	Barbados	FR	France	ML	Mali
BE	Belgium	GA		MN	Mongolia
BF	Burkina Faso		Gabon	MR	Mauritania
BG	Bulgaria	CB	United Kingdom	MW	Malawi
B.J		CN	Guinea	NL.	Netherlands
	Benia	GR	Greece	NO	Norway
BR	Braxil	HU	Hungary	PL	Poland
CA	Canada	rr	lialy	RO	
CF	Central African Republic	JP	Japan		Romania
CG	Солдо	KP	Democratic People's Republic	SD	Sudan
CH	Switzerland	•••	of Korea	SB	Sweden
CI	Côte d'Ivoire	~-		SN	Senegal
CM	Cameroon	KR	Republic of Korea	SU	Soviet Union
C2		LI	Liechtenstein	TD	Chad
DE	Czechoslovakia	LK	Sri Lanks	TG	Togo
DK	Germany	LU	Luxembourg	บร	United States of An
	Danward				

WO 91/11542 PCT/US91/00531

5

10

15

20

25

30

35

SURFACE TREATMENT METHOD AND COMPOSITION FOR ZINC COATED STEEL SHEET TECHNICAL FIELD

The present invention relates to treating the surface of zinc coated steel, particularly sheet steel, e.g., electrogalvanized, electrolytic zinc-alloy plated, hot-dip galvanized, galvannealed, and/or zinc/aluminum alloy-plated steel, in order to deposit thereon nickel, cobalt, and/or compounds thereof, with the object of providing a surface which is an excellent underlayer for such subsequent coating operations as painting, laminating, ceramic coating, and the like. In concrete terms, the present invention is especially suited for the production of surface treated steel sheets (for example, painted steel sheet, laminated steel sheet, and surface treated car body panels) by coating or laminating either immediately after execution of treatment according to the present invention or after an intermediate chromating treatment or phosphating treatment. BACKGROUND ART

It has long been known that the paint adhesion and post-coating corrosion resistance can be improved through chemical treatments in which a heavy metal and/or compound thereof is deposited on the surface of zinc coated steel sheet. Examples from the art in this regard are (1) Japanese Patent Publication Number 52-22618 [22,618/77] and (2) Japanese Patent Publication Number 43-12974 [12,974/68]. Both of these concern the deposition of a heavy metal, such as nickel, cobalt, iron, or the like, onto galvanized steel sheet. Heavy metal or oxide thereof is deposited onto zinc coated steel sheet by treatment in the acidic range at pH 2 according to the invention of reference (1) and by treatment in the alkaline range at a pH of at least 11 according to the invention of reference (2). A disadvantage accruing to each of these prior art references is the occurrence of excessive etching of the zinc (an amphoteric metal) by the H+ ion or OH ion. This results in a degradation in the performance of the end product, for example, a decline in

10

15

20

25

30

35

corrosion resistance.

Thus, methods are already known for improving the adhesion of coatings (e.g., paints, laminates, ceramic coatings, etc.) to the substrate through the substitution precipitation of cobalt or nickel onto zinc coated steel sheet, but in each case the prior treatment solution, being acidic or alkaline, etches the zinc substrate too much, with a resulting decline in performance, for example, in corrosion resistance. On the other hand, while excessive etching does not occur in the neutral pH region, the corresponding rate of metal substitution precipitation is so slow as to be useless for practical applications.

DESCRIPTION OF THE INVENTION

Problem to Be Solved by the Invention

The principal goal of the invention is the development of a nickel and/or cobalt deposition process which could be run at a nearly neutral pH but which would nevertheless be rapid, which deposits nickel and/or cobalt in quantities large enough to improve the paint adhesion and post coating corrosion resistance, and which has a good solution stability.

Summary of the Invention

It was discovered that one or more compounds selected from among ammonia and amine compounds which carry at least one amino group, or preferably at least two amino groups, constitute an excellent complexing agent for the substitution precipitation of nickel and/or cobalt from a treatment solution in the neutral region. Said complexing agents have a good stability with metal ion in the neutral region and support the rapid deposition of quantities sufficient to improve the paint adhesion and post coating corrosion Examples of amine compounds which carry at resistance. least one amino group are: ethylenediamine, triethylenediamine, N-methylenediamine, N-n-propylethylenediamine, N,Ndipropylethylenediamine, 1,2-diaminopropane, meso-2,3-diaminobutane, rac-2,3-diaminobutane, cis-2,3-diaminocyclohexane, trans-1,2-diaminocyclohexane, trans-1,2-diamino-

10

15

20

25

30

35

cycloheptane, diethylenetriamine, triethylenetetramine, and various amino acids.

The substitution precipitation reaction of nickel and cobalt is substantially accelerated by the presence, as a third component in addition to the metal ion and complexing agent, of at least one ionic species or compound selected from the nitrite ion, nitrate ion, thiocyanate ion, thiosulfate ion, thiourea, phosphite ion, hypophosphite ion, and perchlorate ion.

The corrosion resistance of zinc coated steel sheet is improved by the execution of a surface treatment, such as a chromating treatment, phosphating treatment, or blackening treatment, on zinc coated steel sheet after its treatment using a treatment solution as described above; and this provides a surface specifically optimized as an undercoating for painting, laminate coating, and ceramic coating.

Details of Preferred Embodiments of the Invention

The total concentration of both Ni²⁺ and Co²⁺ ions in the treatment liquid of the present invention (abbreviated below as the "present treatment liquid") should preferably be 0.01 to 30 grams per liter ("g/L") and more preferably is 0.02 to 15 g/L. Values below 0.01 g/L are usually impractical because the deposition rate is too slow, while values in excess of 30 g/L are economically disadvantageous because the deposition rate becomes saturated. While the Ni²⁺ and Co²⁺ can be supplied in the form of the metal, they are advantageously furnished in the form of their salts, e. g., the sulfate, chloride, oxide, hydroxide, carbonate, nitrate, etc.

A component indispensable to the substitution precipitation of nickel and/or cobalt from the treatment liquid in the neutral region is a complexing agent which exhibits good stability with metal ion in the neutral region and which supports the rapid deposition of quantities sufficient to improve the paint adhesion and post-coating corresion resistance. Such a complexing agent takes the form of

10

15

20

25

30

35

one or more compounds selected from ammonia and amine compounds which have at least one amino group, preferably at least two amino groups, as specifically exemplified by ethylenediamine, triethylenediamine, N-methylenediamine, N-npropylethylenediamine, N,N-dipropylethylenediamine, 1,2-diaminopropane, meso-2,3-diaminobutane, rac-2,3-diaminobutane, cis-2,3-diaminocyclohexane, trans-1,2-diaminocyclohexane, trans-1,2-diaminocycloheptane, diethylenetriamine, triethylenetetramine, and various amino acids. These must be added in quantities sufficient to complex the nickel and cobalt. Thus, for example, when Ni²⁺ and ammonia are present in the aqueous solution, the nickel/ammonium complex takes the form of ${\rm (Ni(NH_3)_6)}^{2+}$, and at least six times as much ammonia must be added on a molar basis as Ni²⁺. One should note that, within the context of the present invention, these complexing agents do not exercise a particularly adverse effect even when present in quantities in excess of that theoretically necessary to complex the Ni2+ and co²⁺. Their upper limit will be established by the economics and solubilities.

The present treatment liquid advantageously contains a metal deposition-accelerating component in an amount of 0.001 to 50 g/L, more preferably 0.05 to 20 g/L, of material selected from nitrite ions, nitrate ions, thiocyanate ions, thiosulfate ions, thiourea, phosphite ions, hypophosphite ions, and perchlorate ions. The accelerating effect is normally inadequate at less than 0.001 g/L, while values in excess of 50 g/L are uneconomical because the effect becomes saturated. In concrete terms, thiourea will be added as such, while the other selections may be added as their alkali metal or ammonium salts. The presence of these compounds achieves the advantage of increasing the catalytic oxidation activity of the complex itself. This activity is believed to accelerate zinc elution from the surface of the metal being treated, which supports the rapid deposition onto this metal surface of nickel or cobalt from the complexes having nickel or cobalt as the central metal ele-

10

15

20

25

30

35

ment.

The treatment bath according to the present invention may be maintained at any temperature within the range from room temperature to its boiling point, and it should be contacted with the zinc coated steel sheet for the time necessary to develop the desired quantity of metal deposition. The application method here may comprise, for example, immersion, spraying, flow coating, roll coating, and brush coating.

With regard to the quantity of metal deposition on the zinc-basis-plated steel sheet, that is, the suitable range for the quantity of (Ni + Co) deposition, this will depend on the ultimate objective, but the general range is approximately 0.1 to 1,000 milligrams per square meter of surface treated ($^{m}mg/m^{2}n$).

After this treatment, water rinsing followed by drying will provide an undercoat suitable for adhesion or painting. The appropriate quantity of metal deposition in such cases is 2 to 150 mg/m^2 . An improvement in the adhesive strength with the substrate is not usually obtained at values below 2 mg/m^2 , while values in excess of 150 mg/m^2 are economically disadvantageous because the effect becomes saturated.

A surface strongly adapted as an undercoat for painting or lamination is obtained by execution of treatment with the treatment liquid of the present invention, followed by a water wash and then a chromate treatment. In this case, the preferable quantity of metal deposition is the same as for treatment with only the bath according to the present invention, i. e., 2 to 150 mg/m².

The development of black rust is a problem when a chromate treatment is used as a temporary or one-time rust preventive for zinc coated steel sheet rather than as an underlayer for coatings; however, the development of black rust can be prevented by treatment with liquid according to the present invention prior to the chromate treatment. In such a case, the preferred quantity of metal deposition is

10

15

20

2,5

30

35

0.1 to 5 mg/m². Values less than 0.1 mg/m² will not usually prevent the development of black rust, while exceeding 5 mg/m² diminishes the ability of the chromate to prevent white rust.

A surface advantageously adapted as an undercoating for such coating operations as painting and lamination may also be prepared by treatment with treatment liquid according to the present invention followed by a water wash and then a phosphating treatment. The preferred metal add-on in this case is the same as in chromate treatment at 2 to 150 mg/m^2 .

Treatment with treatment liquid according to the present invention prior to a baked chromate type blackening treatment (as described in Japanese Patent Application Number 63-310542 {310,542/88}) can substantially improve the corrosion resistance and substrate adhesion of the baked chromate type blackening treatment film. In this case, the preferable deposition or add-on is 2 to 1,000 mg/m². Values below 2 mg/m² do not usually result in an improvement in adhesion or corrosion resistance, while values in excess of 1,000 mg/m² are economically disadvantageous because the further improvement in adhesion and corrosion resistance becomes minuscule.

The effect of the present invention will be concretely explained below with reference to illustrative and comparison examples.

Examples

I. Examples 1 through 10 concern the preparation of an undercoating for painting by treatment of galvanized steel sheet with treatment liquid according to the invention, followed by washing with water and drying.

Table 1 reports the materials used in Examples 1 through 10, the composition of the treatment liquids, the treatment conditions, and the quantities of metal deposition. Immersion was used as the treatment method in all cases. The galvanized steel sheet serving as the treatment substrate was an electrogalvanized (EG) steel sheet with a

10

sheet thickness of 0.45 mm, sheet width of 200 mm, length of 300 mm, and plating of 20 g/m². A bakable aminoalkyd paint (DELICONTM 700 from Dai Nippon Toryo) was applied to a thickness of 30 micrometers using a bar coater. The application of paint was followed by baking for 30 minutes at 120 degrees Centigrade.

With regard to the post-coating evaluation, salt spray testing was carried out in order to evaluate the corrosion resistance, and the primary physical properties (cross-cut adhesion test, Erichsen test) and secondary physical properties (cross-cut adhesion test, Erichsen test) were measured as described in more detail below in order to evaluate film adhesion. The results obtained are reported in Table 2.

- 15 1. The line interval in the cross-cut adhesion test for primary physical properties was 1 millimeter ("mm"), and the number of remaining squares (out of a total of 100 squares) after tape lift off was reported according to the following five level scale.
- 20 Number of Remaining 100 90 99 50 89 10 49 0 9 Squares:

 Score: 5 4 3 2 1
- 2. The Erichsen test for the primary physical properties used a 5 mm extrusion, and the residual film area after tape lift-off was reported after conversion using the same five level scale as for part I.1.
- 3. The cross-cut adhesion test for secondary physical properties was conducted as follows: the painted sheet was immersed in boiling water for 30 minutes, then allowed to stand in a room for 24 hours, and then subjected to cross-cut adhesion testing as in part I.1 above.
- 4. The Erichsen test for secondary physical properties
 was conducted as follows: the painted sheet was immersed in boiling water for 30 minutes, then allowed to stand in a room for 24 hours, and then subjected to Erichsen testing as in part I.2 above.

The salt-spray test was conducted as follows: 5. painted sheet was scribed with a cross-form cut using a cutter and then tested for 120 hours in accordance with JIS Z-2371. The development of white rust was measured on the plane surface of the painted sheet while the average lift-off width was measured for tape lift-off in the cut region. These values were reported after conversion according to the following five level scales:

10

15

5

For the Plane Surface

Percentage of Area with White Rust Development

<1 1-<11 11-<26 26-<51 51-100

Score

2

1

For the Cut Region

20

35

Width in mm of Area <0.5 0.5 - < 3Peeled Away 3 - <7 7 - <13 Around the Cut Score 5 3

II. Examples C1 to C10 concern the preparation of an un-25 dercoating for painting through treatment of galvanized steel sheet with a treatment liquid according to the present invention, rinsing with water, and a subsequent chromate treatment. Comparison Examples C1 to C5 are for com-30 parison in this regard.

The galvanized steel sheet serving as the treatment substrate was hot-dip galvanized steel sheet (GI) with a sheet thickness of 0.35 mm, a sheet width of 200 mm, a length of 300 mm, and coating of 90 g/m^2 of zinc. respective treatments were implemented according to the conditions described in Table 3, were followed by a water rinse and drying, and afforded the metal add-ons also reported in Table 3. Spraying was employed as the treatment method in all cases, and the spray pressure was 0.5 kilo-

15

20

25

30

35

grams (force) per square centimeter ("kgf/cm2"). A coating type chromate treatment liquid having a pH of 2.8 and containing 25 g/L of Cr^{6+} , 12 g/L of Cr^{3+} , 60 g/L of fumed silica, and 40 g/L of solids from an acrylic resin emulsion was then applied to each sheet by using a roll coater followed by drying. (This is a conventional undercoating treatment for galvanized sheet to be painted.) weights obtained were 40 to 60 mg/m² as Cr add-on. sheets obtained were then coated with paint for colored galvanized sheet: First a primer (FG64 from Dainippon Ink & Chemicals) was applied to give a dry film thickness of 5micrometers, baked in a hot-air drying oven with a maximum attained metal plate temperature (MPT) of 210 degrees Cen-Finally, top coated sheet was prepared by the application of a 13 micrometer thick PE Blue top coat (from Dainippon Ink & Chemicals), using a bar coater, and baking in a hot-air drying oven at MPT = 210 degrees Centigrade.

Additionally, sheet which had been treated up to and including the chromate treatment as described above was coated, using a bar coater, with a conventional back coat (VB-4, from Dai Nippon Toryo Company, Limited) to a thickness of 7 micrometers, and this was baked in a hot-air drying oven at MPT = 210 degrees Centigrade to afford back coated sheet.

The top coated sheets were subjected to a bending test and salt spray testing, and the back coated sheets were subjected to salt spray testing.

The severity of the bending test varies according to the number of sheets inserted during bending, and is reported as OT, 2T, etc., in correspondence to the number of inserted sheets. Also, the test temperature exercises an effect, and a lower temperature corresponds to greater severity. After bending in the bending test and tape lift-off, the lifted off or peeled area was reported according to the following five level scale:

10

15

20

25

30

35

In the salt spray tests, the status of the plane surface and cut region was evaluated by the same methods and reported according to the same scales as in part I.5 above, after 2,000 hours of salt spray for the top coat and after 500 hours for the back coat. These results are reported in Table 4.

III. Examples D1 to D10 concern the preparation of an undercoating for painting in which galvanized steel sheet was treated with treatment liquid according to the present invention, rinsed with water, and then subjected to a chromate treatment. Comparison Examples D1 to D5 provide comparisons in this regard.

The galvanized steel sheet serving as the treatment substrate was galvannealed steel sheet (GA) with a sheet thickness of 0.35 mm, sheet width of 200 mm, length of 300 mm, and coating of 60 g/m^2 of zinc. The respective treatments were implemented according to the conditions described in Table 5, followed by a water rinse and drying, to afford the metal add-ons also reported in Table 5. Spraying was employed as the treatment method in all cases, and the spray pressure was 0.5 kgf/cm2. A coating type chromate treatment liquid having a pH of 2.8 and containing 25 g/L of Cr⁶⁺, 12 g/L of Cr³⁺, 60 g/L of fumed silica, and 40 g/L of nonvolatiles from an acrylic resin emulsion, was then applied to each sheet by a roll coater, followed by drying. (This is a conventional undercoating treatment for galvanized sheet to be painted.) The film weights obtained were 40 to 60 mg/m² as Cr add-on. The sheets obtained were then coated with a conventional paint combination for colored galvanized sheet: First, a primer (FG64 from Dainippon Ink & Chemicals), was applied to give a dry film thickness of 5 micrometers and baked in a hot air drying oven with MPT = 210 degrees Centigrade. Finally, top coated

10

15

20

25

30

35

sheet was prepared by the application of an oil free polyester paint as top coat (13 micrometers), using a bar coater and then baking in a hot air drying oven at MPT = 210 degrees Centigrade.

Additionally, sheet which had been treated up to and including the chromate treatment as described above was coated, using a bar coater, with an alkyd paint back coat (7 micrometers), and this was baked in a hot air drying oven at MPT = 210 degrees Centigrade to afford back coated sheets.

The top coat paint was subjected to a bending test and salt spray testing, and the back coated sheet was subjected to salt spray testing.

The severity of the bending test varies according to the number of sheets inserted during bending, and is reported as OT, 2T, etc., in correspondence to the number of inserted sheets. Also, the test temperature exercises an effect, and a lower temperature corresponds to greater severity. The test results were obtained in the same manner and reported according to the same scales as in part II, except that the salt spray was continued for 1,000 hours for the top coated samples and for 360 hours for the back coated samples. These results are reported in Table 6.

IV. Examples E1 to E10 also concern the preparation of an undercoating for painting in which galvanized steel sheet was treated with treatment liquid according to the present invention, rinsed with water, and then subjected to a chromate treatment. Comparison Examples E1 to E5 provide comparisons in this regard.

The galvanized steel sheet serving as the treatment substrate for these examples was galvaluminum steel sheet (GL), i. e., steel sheet coated with an alloy of about 45 % Zn and 55 % Al, with a sheet thickness of 0.35 mm, sheet width of 200 mm, length of 300 mm, and coating of 90 g/m 2 . The pretreatments according to the invention or for comparison were implemented according to the conditions described

15

20

25

30

35

in Table 7, followed by a water rinse and drying, to afford the metal add-ons also reported in Table 7. Spraying was employed as the treatment method in all examples of this group, and the spray pressure was 0.5 kgf/cm². The samples thus pretreated were given a chromating treatment followed by either a top coating treatment or a back coating treatment by the same methods, then tested by the same tests, and test results were reported on the same scales, as in part II above, except that the salt spray times were 1000 hours for top coated samples and 500 hours for back coated samples. The results are reported in Table 8.

V. Examples P1 to P10 concern the preparation of an undercoating for painting in which zinc coated steel sheet was treated with treatment liquid according to the present invention, rinsed with water, and then subjected to a phosphating treatment. Comparison Examples P1 to P5 provide comparisons in this regard.

The zinc coated steel sheets serving as the substrates for these examples had a sheet thickness of 0.7 mm, sheet width of 200 mm, length of 300 mm, and an electroplated coating of 20 g/m² of an alloy of about 88 % Zn and 12 % Ni. Treatments according to the invention or for comparison were implemented according to the conditions described in Table 9, followed by a water rinse, to afford the cobalt add-ons also reported in Table 9. (Only cobalt add-on values were determined for these samples, because the presence of nickel in substantial amounts in the zinc alloy coating made the determination of the nickel add-on value technically difficult.) Immersion was employed as the treatment method for all of these examples. This was followed first by a surface-conditioning treatment in the form of a 20 second spray with 1 g/L PREPALENE ZNTM (commercially available from Nihon Parkerizing Company, Limited, Tokyo); then immediately, without a water rinse, by an immersion treatment for 2 minutes at 40 degrees Centigrade in a phosphating treatment bath (containing PALBOND L3004TM from Nihon

15

25

30

35

Parkerizing Company, Limited), followed by electrocoating to a thickness of 20 microns with ELECRON 9410TM from Kansai Paint Company, Limited); then finally by a water rinse. The sheet was then processed with a standard paint system for car body panels: intermediate coating of AMILAC SEAL-ERTM (from Kansai Paint), 30 micrometers; final coating of AMILAC WHITE M3TM, 40 micrometers. Secondary adhesion water-resistance testing was then conducted under the following conditions, and these results are reported in Table 10.

Secondary adhesion water-resistance test

The tricoated sheet was immersed in deionized water at 40 degrees Centigrade for 240 hours and then scribed with 100 cross-cut squares with a one mm interval using an acrylic cutter so as to reach the base metal of the painted sheet. After lift off with cellotape, the number of squares retaining paint was reported according to the following five level scale:

20	Paint Retaining Squares:	100	90 - 99	50 - 89	10 - 49	0 - 9
	Score:	5	4	3	2	1

VI. Examples K1 to K10 concern the treatment of galvanized steel sheet with treatment liquid according to the present invention, followed by a water rinse and then a bakable chromate type blackening treatment. Comparison Examples K1 to K5 provide comparison in this regard.

The galvanized steel sheet serving as the treatment substrate was electrogalvanized steel sheet (EG) with a sheet thickness of 0.45 mm, sheet width of 200 mm, length of 300 mm, and plating of 20 g/m². Treatments according to the invention or for comparison were implemented according to the conditions described in Table 11, followed by a water rinse and drying, to afford the metal add-ons also reported in Table 11. Immersion was employed as the treatment method for all examples in this group. A bakable chromate type blackening treatment bath having a pH of 2.2

15

20

and containing 80 g/L of Cr6+, 40 g/L of Cr³⁺, and 40 g/L of nonvolatiles from an acrylic resin emulsion was then applied to each sheet by grooved roll coating to give a dry film thickness of 3 micrometers, followed by drying in a hot air drying oven at MPT of 200 degrees Centigrade to afford baked and blackened galvanized steel sheet.

These blackened galvanized steel sheets were subjected to bending tests in order to evaluate the adhesion between the blackening film and substrate, while salt spray testing was conducted in order to evaluate the corrosion resistance. The bending tests were carried out with 2T. In the salt spray tests, the area of white rust development on the plane surface was evaluated after 96 hours and was reported according to the same five level scale as in part I.5. The bending test result were reported according to the following scale:

These results are reported in Table 12.

15 Table 1

Table 1.							
		metal to	n added	complexing age	complexing agent		
number	substrate	type	concen- tration g/L	type	concen- tration g/L		
Example 1	EG	NI	2.0	ethylenediamine	15		
Example 2	EG	Ni	2.0	ammonia	15		
Example 3	EG	IN	2.0	eihylenediamine	15		
Example 4	EG	Со	0.04	ammonia	5		
		Ni	1.0	diethylenetriamine	10		
Example 5	EG	Со	1.0	gluiamic acid	5		
		Ni	2.0	alisators	5		
Example 6	EG	Co	0.5	glycine			
		1N	0.5	triethyleneietramine	3		
Exam 7	EG	Co	0.5	ammonia	5		
				triethylenetetramine	4		
Example 8	EG	Co	2.0	aspartic acid	0.5		
				alanine	1		
Example 9	EG	Ni	3.0	ammonia	5		
		Ni	1.0	N-methylethylenediamine	5		
Example 10	EG	Со	1.0	1.2-diaminopropane	5		
Comparison Example 1	EG	Со	1.0	EDTA 2Na	5		
Comparison Example 2	EG	Ni	1.0	sodium citrate	10		
Comparison	EG	CoCO3: 1	6 g/L, HCI (35%; 30 g/L, HF (55%); 3 g/L			
Example 3		ettric acid	1: E /L, po	dassium antimonyl tartrate: 0.82	2 g/L		
Comparison	EG			m hexahydroxyheptanoate: 0.19			
Example 4		ferric nitrate: 0.0037%, cobalt nitrate: 0.0024%					
Comparison Example 5	EG		no treatment				

Table 1. (Continued)							
	ad	ditive	_				
number	type	concen- tration	pН	T	treatment time	metal deposition (NI + Co)	
		8/L	 	°€	sec	mg/m²	
Example 1	 		7.5	40	15	12	
Example 2			7.5	40	15	40	
Example 3	NaSCN	0.07	7.5	40	15	26	
Example 4	NaNO2	1.0	9.5	40	60	18	
_	NaClO ₄	0.5			1	°	
Example 5	NaH ₂ PO ₂	0.8	7.0	40	30	30	
Example 6	NaNO ₃	1.0					
Example 6	NaNO2	0.5	10.0	40	60	32	
Example 7			5.5	40	30	14	
Example 8	NaH ₂ PO ₂	1.0					
mampic 9	SC(NH2)2	1.0	6.0	40	15	26	
Example 9	NO2	2.0				,	
	S2O32-	0.5	8.5	40	5	24	
Example 10	NO ₃ -	2.0	7.0	40	30	38	
Comparison Example 1			9.5	40	60	2	
Comparison Example 2	_	_	8.5	40	2	3	
Comparison Example 3			2.0	60	5	52	
Comparison Example 4			13.5	71	60	48	
Comparison Example 5		•	·			0	

17 Table 2.

	primary phys	primary physical properties		secondary physical properties		
Number	cross-cut adhesion	Erichsen	cross-cut adhesion	Erichsen		
Example 1	5	5	5	5		
Example 2	5	5	5	5		
Example 3	5	5	5	5		
Example 4	5	5	5	5		
Example 5	5	5	5	5		
Example 6	5	5	5	5		
Example 7	5	5	5	5		
Example 8	5	5	5	5		
Example 9	5	5	5	5		
Example 10	55	5	55	5		
Comparison Example 1	3	2	2	1		
Comparison Example 2	3	2	2	11		
Comparison Example 3	5	5	5	4		
Comparison Example 4	5	5	. 5	4		
Comparison Example 5	1]	1	1	1		

Table 2. (Continued)

	salt spray.	120 hours
Number	plane surface region	cust region
Example 1	5	3
Example 2	5	4
Example 3	5	4
Example 4	5	4
Example 5	5	4
Example 6	5	4
Example 7	5	4
Example 8	5	4
Example 9	5	4
Example 10	5	4 .
Comparison Example 1	2	1
Comparison Example 2	2	1
Comparison Example 3	1	1
Comparison Example 4	1	1
Comparison Example 5	1	1 ·

Table 3.

			Ta	ble 3.	
		metal i	ent		
number	substrate	type	concen- tration g/L	type	concen- tration g/L
Example C1	GI	Nı	2.0	ethylenediamine	15
Example C2	GI	NI	2.0	ammonia	5
Example C3	GI	Ni	2.0	ethylenediamine	15
Example C4	G1	Со	0.04	ammonia	5
5		Ni	1.0	dietbylenetriamine	10
Example C5	G1	Co	1.0	glutamic acid	5
Example C6	Gī	Ni	2.0	dh.uan	
	Gi	Со	0.5	glycine	5
Example C7	GI	Nı	0.5	triethylenetetramine	3
Example C7	61	Со	0.5	ammonia	5
Example C8	GI	Со	2.0	tricthylenetetramine	4
	J.		2.0	aspartic acid	0.5
Example C9	GI	Nı	3.0	alanine	. 1
	- 01			ammonia	5
Example C10	GI	N1	1.0	N-methylethylenediamine	5
	<u> </u>	Co	1.0	1,2-diaminopropane	5
Comparison Example C1	GI	Со	1.0	EDTA 2Na	5
Comparison Example C2	GI	Ni	1.0	sodium citrate	10
Comparison	G1	CoCO3: 16	g/L, HCI (3	5%): 30 g/L, HF (55%): 3 g/L	
Example C3		citric acid:	5 g/L, pot	assium antimonyl tartrate: 0.82	2 g/L
Comparison Example C4	GI	NaOH: 0.7	'6%, sodiur	n hexahydroxyheptanoate: 0.1%	<u> </u>
		ferric nitra	te: 0.0037	%, cobalt nitrate: 0.0024%	
Comparison Example C5	GI	no treatme	ent		

Table 3. (Continued)						
	ad	diuve	-			
number	type	concen- tration	pН	T °C	treatment time	metal deposition (Ni + Co)
Example C1	_	_	7.5	60	sec 8	mg/m²
Example C2		_	7.5	60	8	12
Example C3	NaSCN	0.07	7.5	60	8	
Example C4	NaNO ₂	1.0	9.5	60	60	28
_	NaClO ₄	0.5			 	20
Example C5	NaH ₂ PO ₂	0.8	7.0	60	8	28
	NaNO ₃	1.0		1		
Example C6	NaNO2	0.5	10.0	60	8	6
Example C7	_	-	5.5	60	8	8
Pus-1 00	NaH ₂ PO ₂	1.0				
Example C8	SC(NH2)2	1.0	6.0	60	8	27
Fyar-1, 00	NO ₂ -	2.0				
Example C9	S ₂ O ₃ 2-	0.5	8.5	60	8	18
Example C10	NO3	2.0	7.0	60	8	15
Comparison Example C1		-	9.5	60	8	0.5
Comparison Example C2	_		8.5	60	8	0.9
Comparison Example C3			2.0	60	5	35
Comparison Example C4			13.5	71	60	45
Comparison Example C5						0

21 Table 4.

	top coat						
Number	ben (25	bending (25°C)		ding	salt-spray testing [2,000 hours]		
·	OT	2T	OΤ	2T	plane surface	cut region	
Example C1	5	5	3	5	5	3	
Example C2	5	5	3	5	5	4	
Example C3	5	5	3	5	5	4	
Example C4	5	5	3	5	5	4	
Example C5	5	5	4	5	5	4	
Example C6	5	5	3	5	- 5	4	
Example C7	5	5	3	5	5	4	
Example C8	5	5	3	5	5	4	
Example C9	5	5	4	5	5	4	
Example C10	5	5	3	5	5	4	
Comparison Example C1	2	5	1	1	4	3	
Comparison Example C2	3	5	1	1	4	3	
Comparison Example C3	5	5	3	5	3	2	
Compartson Example C4	5	5	3	5	3	2	
Comparison Example C5	1	2	1	1	1	11	

Table 4. (Continued)

	back coat			
Number	salt-spra (500 h	y lesting nours)		
	plane surface	cut region		
Example C1	4	3		
Example C2	. 5	4		
Example C3	5	4		
Example C4	5	4		
Example C5	5	4		
Example C6	5	4		
Example C7	5	4		
Example C8	5	4		
Example C9	5	4		
Example C10	5	4		
Comparison Example C1	4	3		
Comparison Example C2	4	3		
Comparison Example C3	3	2		
Comparison Example C4	3	2		
Comparison Example C5	1	1		

The	hie	ĸ
Ld	いいて	Ο.

	T	metal i	on added	complexing agent		
number	substrate	type	concen- tration g/L	type	concen- iration g/L	
Example D1	GA	NI	2.0	ethylenediamine	15	
Example D2	GA	Ni	2.0	ammonia	5	
Example D3	GA	NI	2.0	ethylenediamine	15	
Example D4	GA	Co	0.04	ammonta	5	
Puemale DE		Ni	1.0	diethylenetriamine	10	
Example D5	GA	Со	1.0	glutamic acid	5	
Pour marala DC		Nį	2.0	al al a		
Example D6	G A	Co	0.5	glycine	5	
5		Ni	0.5	triethylenetetramine	3	
Example D7	GA	Со	0.5	ammonia	5	
7	GA		0.0	triethylenetetramine	4	
Example D8		Co	2.0	aspartic acid	0.5	
F		N.,	20	alanine	1	
Example D9	G.A	Ni	3.0	ammonia	5	
Diamete D10		IN	1.0	N-methylethylenediamine	5	
Example D10	GA	Со	1.0	1.2-diaminopropane	5	
Comparison Example D1	GA	Co	1.0	EDTA 2Na	5	
Comparison Example D2	GA	-Ni	0.3	sodium citrate	10	
Comparison Example D3	GA	CoCO3: 16 g/L, HCl (35%): 30 g/L, HF (55%): 3 g/L				
		citric acid:	5 g/L, pot	assium antimonyi tartrate: 0.82	2 g/L	
Comparison Example D4	GA	NaOH: 0.76%, sodium bexahydroxyheptanoate: 0.1%				
Comparison Example D5	GA	ferric nitrate: 0.0037%, cobait nitrate: 0.0024% no treatment				

	Table 5. (Continued)						
	ad	ditive	-				
number	type	concen- tration g/L	pH	T °C	treatment time sec	metal deposition (Ni + Co) mg/m ²	
Example D1	_	_	7.5	60	8	9	
Example D2		_	7.5	60	8	18	
Example D3	NaSCN	0.07	7.5	60	8	25	
Example D4	NaNO ₂	1.0	9.5	60	60	14	
Phone 1 per	NaClO ₄	0.5					
Example D5	NaH ₂ PO ₂	0.8	7.0	60	8	32	
Dun-1- D0	NaNO3	1.0					
Example D6	NaNO2	0.5	10.0	60	8	35	
Example D7			5.\$	60	8	10	
Example D8	NaH2PO2	1.0					
	SC(NH ₂) ₂	1.0	6.0	60	8	38	
Example D9	NO2°	2.0					
	S ₂ O ₃ ² ·	0.5	8.5	60	8	48	
Example D10	NO3-	2.0	7.0	60	8	25	
Comparison Example D1	·	_	9.5	60	8	0.8	
Comparison Example D2		_	8.5	60	8	0.5	
Comparison Example D3			2.0	60	5	32	
Comparison Example D4			13.5	71	60	30	
Comparison Example D5						0	

25

Table 6.

	top coat						
Number		nding 5°C)	ber (5	nding (°C)	salt-spr (1,000	ay testing) hours)	
	ОТ	2T	от	2Т	plane surface	cut region	
Example D1	5	5	4	5	5	5	
Example D2	5	5	4	5	5	5	
Example D3	5	5	4	5	5	5	
Example L	5	5	4	5	5	5	
Example D5	5	5	4	5	5	5	
Example D6	5	5	4	5	5	5	
Example D7	5	5	4	5	5	5	
Example D8	5	5	4	5	5	5	
Example D9	5	5	4	5	5	5	
Example D10	5	5_	3	5	5	5	
Comparison Example Di	3	5	2	3	5	4	
Comparison Example D2	4	5	2	3	5	4	
Comparison Example D3	5	5	4	5	5	4	
Comparison Example D4	5	5	4	5	5	4	
Comparison Example D5	2	4	1	2	5	4	

Table 6. (Continued)

back coat Number salt-spray testing (360 hours) plane surface cul region Example D1 5 " Example D2 5 5 Example D3 5 Example D4 5 5 Example D5 5 5 Example D6 5 5 Example D7 5 5 Example D8 5 5 Example D9 5 5 Example D10 5 5 Comparison Example D1 4 Comparison Example D2 4 Comparison Example D3 4 Comparison Example D4 4 4 Comparison Example D5 3

SUBSTITUTE SHEET

27 Table 7.

~			19	ble 7.			
		metal ic	on added	complexing agent			
number	mber substrate type		concen- tration g/L	type	concen- tration g/L		
Example E1	GL	NI	2.0	ethylenedlamine	15		
Example E2	GL	NI	2.0	ammonia	5		
Example E3	GL	NI	2.0	ethylenediamine	15		
Example E4	GL	Со	0.04	аптопіа	5		
Fuerrale Pf		Ni	1.0	diethylenetriamine	10		
Example E5	GL	Co	1.0	glutamic acid	5		
Example E6	GL	Ni	2.0	dhales.	_		
	02	Co	0.5	glycine	5 .		
Example E7	GL	וא	0.5	triethylenetetramine	3		
Example E7	GL	Co	0.5	ammonia	5		
Example E8	GL	Co	2.0	triethylenetetramine	4		
				aspartic acid	0.5		
Example E9	GL	Ni	3.0	alanine	1		
				ammonia	5		
Example E10	GL	Ni	1.0	N-methylethylenediamine	5		
-		Co	1.0	1,2-diaminopropane	5		
Comparison Example E1	GL	Co	1.0	EDTA 2Na	. 5		
Comparison Example E2	GL	N1	1.0	sodium citrate	10		
Comparison Example E3	GL	CoCO3: 16 g/l, HCl (35%): 30 g/l, HF (55%): 3 g/l					
		citric acid:	5 g/L, pot	assium antimonyi tartrate: 0.82:	2 g/L .		
Comparison Example E4	GL	NaOH: 0.76%, sodium hexahydroxyheptanoate: 0.1%					
		ferric nitrat	le: 0.0037	%, cobalt nitrate: 0.0024%			
Comparison Example E5	GL	no treatme	nt				

. *						
	additive		_			
number	type	concen- tration	рH	т °С	treatment tim sec	metal deposition (Ni + Co) mg/m ²
Example E1			7.5	65	8	9
Example E2		_	7.5	65	.8	21
Example E3	NaSCN	0.07	7.5	65	8	27
Example E4	NaNO ₂	1.0	9.5	65	60	17
Example E5	NaClO ₄	0.5	7.0	65	8	20
	NaH ₂ PO ₂	0.8				20
Example E6	NaNO3	1.0	10.0	65	. 8	4
	NaNO ₂	0.5				·
Example E7	-	<u> </u>	5.5	65	8	5
Example E8	NaH ₂ PO ₂	1.0	6.0	65	8	20
	SC(NH2)2	1.0	0.0			20
Example E9	NaNO2	2.0	8.5	65	8	13
	Na ₂ S ₂ O ₃	0.5				13
Example E10	NaNO ₃	2.0	7.0	65	8	15
Comparison Example E1		_	9.5	65	8	0.3
Comparison Example E2		-	8.5	65	8	0.9
Comparison Example E3	·		2.0	60	5	18
Comparison Example E4			13.5	71	60	38 .
Comparison Example E5				, -		0

29 Table 8.

	top coat							
Number	bending (25°C)			nding S°C)	salt-spr (1,000	ay testing O hours)		
	OT	2Т	ОТ	2T	plane surface	cut region		
Example E1	4	5	3	5	5	3		
Example E2	5_	5	3	5	5	3		
Example E3	5	5	3	5	5	3		
Example E4	5	5	3	5	5	3		
Example E5	5	5	4	5	5	3		
Example E6	5	-5	3	5	5	3		
Example E7	5	5	3	5	5	3		
Example E8	5	5	_3	5	5	3		
Example E9	5	5	4	5	5	3		
Example E10	5	5	3	5	5	3		
Comparison Example E1	. 2	5	1	1	4	2		
Comparison Example E2	3	5	1	1	3	2		
Comparison Example E3	5	5	3	5	3	2		
Comparison Example E4	5	5	3	5	. 3	2		
Comparison Example E5	1	3	1	1	3	2		

Table 8. (Continued)

	back coat			
Number Example E1 Example E2 Example E3 Example E4 Example E5	salt-spra (500)	y testing nours)		
	plane surface	cul region		
Example E1	4	3		
Example E2	5	4		
Example E3	5	4		
Example E4	5	4		
Example E5	5	4		
Example E6	5	4		
Example E7	5	4		
Example E8	5	4		
Example E9	5	4		
Example E10	5	44		
Comparison Example E1	4	3		
Comparison Example E2	4	3		
Comparison Example E3	3	2		
Comparison Example E4	3	2		
Comparison Example E5	33	2		

Ta	sid	9

		metal ion added complexing agent					
number	substrate	type	concen- tration g/L	type	concen- tration g/L		
Example Pl	Zn-Ni	NI	2.0	ethylenediamine	15		
Example P2	Zn-Ni	NI	2.0	ammonia	5		
Example P3	Zn-Ni	Ni	2.0	ethylenediamine	15 .		
Example P4	Zn-Ni	Co	0.04	ammonia	5		
		Nı	1.0	diethylenetriamine	10		
Example P5	Zn-Ni	Со	1.0	glutamic acid	5		
Everale DC	Zn-Ni	NI	2.0	glycine	5		
Example F6	ZH-N1	Co	0.5	8.70	<u> </u>		
	G- VI	Ni	0.5	triethylenetetramine	3		
Example P7	Zn-Ni	Со	0.5	ammonia	5		
	Zn-Ni	0.	2.0	tricthylenetetramine	4		
Example P8		Co	2.0	aspartic acid	0.5		
				alanine	1		
Example P9	Zn-Ni	Ni	3.0	ammonia	5		
		N1	1.0	N-methylethylenediamine	5		
Example P10	Zn-Ni	Со	1.0	1,2-diaminopropane	5		
Comparison Example P1	Zn-Ni	, Co	1.0	EDTA 2Na	5		
Comparison Example P2	Zn-Ni	Ni	1.0	sodium citrate	10		
Comparison	Zn-Ni	Coccos: 16 g/l, HCl (35%): 30 g/l, HF (55%): 3 g/l					
Example P3		citric acid	1: 5g/L po	classium antimonyi tartrale: 0.83	22 g/L		
Comparison	Zn-Ni	NaOH: 0.76%, sodium hexahydroxyheptanoate: 0.1%					
Example P4		1	ferric nitrate: 0.0037%, cobalt nitrate: 0.0024%				
Comparison Example P5	Zn-Ni		no treatment				

·	Table 9. (Continued)							
	ad	ditive	_					
number	type	concen- tration g/L	- рН	T ℃	treatment time sec	Co deposition mg/m²		
Example P1			7.5	50	15	uig/m-		
Example P2			7.5	50	15	 		
Example P3	NaSCN	0.07	7.5	50	15	 		
Example P4	NaNO2	1.0	9.5	50	60	111		
Promot no	NaClO ₄	0.5						
Example P5	NaH ₂ PO ₂	0.8	7.0	50	30	12		
Evenue no	NaNO ₃	1.0						
Example P6	NaNO2	0.5	10.0	50	60	6		
Example P7		-	5.5	50	30	7		
Dun-1	H ₂ PO ₂ ·	1.0				'		
Example P8	SC(NH ₂) ₂	1.0	6.0	50	15	13		
Everations	NO2-	2.0						
Example P9	S2O32-	0.5	8.5	50	5	-		
Example P10	NO3°	2.0	7.0	50	30	22		
Comparison Example P1	<u> </u>	-	9.5	50	60	1		
Comparison Example P2	-		8.5	50	2	_		
Comparison Example P3			2.0	60	5	45		
Comparison Example P4			13.5	71	€	55		
Comparison Example P5						0		

33 Table 10.

Number		substrate	secondary adhesion water resistance
Example	P1	Zn-Ni	5
	P2	Zn-Ni	5
	РЗ	Zn-Ni	5
	P4	Zn-Ni	5
	P5	Zn-Ni	5
	P6	Zn-Ni	5
·	P7	Zn-Ni	5
	P8	Zn-Ni	5
	P9	Zn-Ni	5
	P10	Zn-Ni	. 5
Comparison Example	P1	Zn-Ni	2
	P2	Zn-Ni	2
	Р3	Zn-Ni	3
	P4	Zn-Ni	3
	P5	Zn-Ni	. 1

34

			Tal	ble 11.			
	metal :	on added	complexing agent				
number	substrate	type	concen- trail n	type	concen- tration g/L		
Example K1	EG	Ni	2.0	ethylenediamine	15		
Example K2	EG	NI	2.0	ammonia	5		
Example K3	EG	Ni	2.0	ethylenediamine	15		
Example K4	EG	Со	0.04	ammonia	5		
Example K5	EG	Ni	1.0	diethylenetriamine	10		
	ļ	Co	1.0	glutamic acid	5		
Example K6	EG	NI	2.0	glycine	5		
***************************************	 	Co	0.5				
Example K7	EG	Nı	0.5	triethylenetetramine	3		
		Со	0.5	ammonia	5		
Example K8	EG	Co	2.0	triethylenetetramine	4		
				aspartic acid	0.5		
Example K9	EG	Ni	3.0	alanine	1		
				ammonia	5		
Example K10	EG	N1	1.0	N-methylethylenediamine	5		
		Co	1.0	1,2-diaminopropane	5		
Comparison Example K1	EG	Со	1.0	EDTA 2Na	5		
Comparison Example K2	EG	Ni	1.0	sodium citrate	10		
Comparison Example K3	EG	Cocco3: 16 g/l, HCl (3596): 30 g/l, HF (5596): 3 g/l					
		citric acid: 5 g/L, potassium antimonyl tartrate: 0.822 g/L					
Comparison Example K4	EG	NaOH: 0.76%, sodhum hexahydroxyheptanoate: 0.1%					
ferric nitrate: 0.0037%, cobalt nitrate: 0.0024%							
Comparison Example K5	1	no treatment					

35

Table 11. (Continued)						
	add					
number	type	concen- irali n g/L	рН	T ℃	treatment time scc	metal deposition (Ni + Co) mg/m²
Example K1	_	_	7.5	50	30	60
Example K2			7.5	50	30	90
Example K3	NaSCN	0.07	7.5	50	30	95
E ample K4	NaNO ₂	1.0	9.5	50	60	44
Example K5	NaClO4	0.5	7.0	50	30	51
Europala VC	NaH ₂ PO ₂ NaNO ₃	1.0	10.0	50	60	40
Example K6	NaNO2	0.5	10.0			
Example K7			5.5	50	60	43
Example K8	NaH ₂ PO ₂ SC(NH ₂) ₂	1.0 1.0	6.0	50	60	132
Example K9	NaNO ₂ Na ₂ S ₂ O ₃	2.0	8.5	50	30	135
Example K10	NaNO ₃	2.0	7.0	50	60	104
Comparison Example K1	_		9.5	50	60	2
Comparison Example K2	-	-	8.5	50	2	3
Comparison Example K3			2.0	60	5	45
Comparison Example K4			13.5	71	60	55
Comparison Example K5						0

36 Table 12.

Number		bending test 2T	salt spray 96 hours	
Example	кі	5	4	
	К2	5	4	
	кз	5	4	
	K4	5	4	
	K5	5	5	
	K6	5	5	
	K7	5	5	
	K8	5 .	4	
	кэ	5	4	
	К10	5	4	
comparison Example	кз	1	1	
	К2	1	1	
	кз	5	1	
	K4	5	1	
	X5	1	1	

15

25

CLAIMS

- A process for treating a cleaned surface of zinc coat-1. ed steel sheet with an aqueous surface treating solution comprising nickel or cobalt ions or both and a complexing agent for such ions, optionally subsequently treating the resulting surface with a chromating, phosphating, or baked chromate type blackening treatment, and optionally finally coating the treated surface with an organic protective coating, characterized in that said surface treating solution has a pH between 5 and 10 inclusive and comprises (A) a total of at least 0.01 g/L of metal ions selected from the group consisting of Ni²⁺ and Co²⁺ ions and (B) a sufficient amount to fully complex the metal ions recited in part (A) of complexing agents selected from the group consisting of ammonia and organic compounds having at least one amino group.
- 2. A process according to claim 1, characterized in that the concentration of component (A) in the surface treating solution is between 0.01 and 30 g/L.
- 3. A process according to claim 2, characterized in that the concentration of component (A) is between 0.02 and 15 g/L.
 - 4. A process according to claim 3, wherein an organic protective coating is included in the process, characterized in that the amount of the total of cobalt and nickel deposited on the treated surface by treatment with said aqueous surface treating solution comprising nickel or cobalt ions or both and a complexing agent for such ions is between 2 and 150 mg/m².
- 5. A process according to claim 3, wherein a chromating treatment but not a subsequent organic protective coating is included in the process, characterized in that the amount of the total of cobalt and nickel deposited on the treated surface by treatment with said aqueous surface treating solution comprising nickel or cobalt ions or both

10

15

25

and a complexing agent for such ions is between 0.1 and 5 $\mbox{mg/m}^2$.

- 6. A process according to claim 3, wherein a baked chromate type blackening treatment but not a subsequent organic protective coating is included in the process, characterized in that the amount of the total of cobalt and nickel deposited on the treated surface by treatment with said aqueous surface treating solution comprising nickel or cobalt ions or both and a complexing agent for such ions is between 2 and 1000 mg/m^2 .
- 7. A process according to one of claims 1, 2, or 3, characterized in that the surface treating solution additionally comprises a component (C) selected from the group consisting of nitrite ions, nitrate ions, hypophosphite ions, thiocyanate ions, thiosulfate ions, thiourea, phosphite ions, and perchlorate ions.
- 8. A process according to claim 7, wherein the concentration of component (C) is between 0.001 and 50 g/L.
- 9. A process according to claim 8, wherein the concentra-20 tion of component (C) is between 0.005 and 20 g/L.
 - 10. A process according to claim 9, wherein an organic protective coating is included in the process, characterized in that the amount of the total of cobalt and nickel deposited on the treated surface by treatment with said aqueous surface treating solution comprising nickel or cobalt ions or both and a complexing agent for such ions is between 2 and 150 mg/m².
- 11. A process according to claim 9, wherein a chromating treatment but not a subsequent organic protective coating is included in the process, characterized in that the amount of the total of cobalt and nickel deposited on the treated surface by treatment with said aqueous surface treating solution comprising nickel or cobalt ions or both and a complexing agent for such ions is between 0.1 and 5 mg/m².

12. A process according to claim 9, wherein a baked chromate type blackening treatment but not a subsequent organic protective coating is included in the process, characterized in that the amount of the total of cobalt and nickel deposited on the treated surface by treatment with said aqueous surface treating solution comprising nickel or cobalt ions or both and a complexing agent for such ions is between 2 and 1000 mg/m².