PONTIFICIA UNIVERSIDAD CATÓLICA MADRE Y MAESTRA FACULTAD DE CIENCIAS E INGENIERÍA ESCUELA DE INGENIERÍA EN COMPUTACIÓN Y TELECOMUNICACIONES

PROGRAMACIÓN PARALELA Y CONCURRENTE Practica #1

Paralelización de Algoritmos y Análisis de Rendimiento

Objetivo:

- Aplicar la Ley de Amdahl en contextos prácticos.
- Desarrollar programas paralelos usando diferentes modelos de paralelización.
- Evaluar el rendimiento de programas paralelizados y su eficiencia.
- Analizar la escalabilidad de sistemas paralelos.

Instrucciones:

Completa las siguientes actividades teóricas y prácticas. Puedes trabajar en equipo máximo de 2, pero asegúrate de entender cada paso y ser capaz de explicarlo.

Actividades

Parte 1: Ley de Amdahl

Sea un programa con un tiempo de ejecución secuencial de 120 unidades de tiempo, y se sabe que el 85% de su código es paralelizable.

- Calcula el tiempo de ejecución paralelo Tp(n), el speedup S(n) y la eficiencia E(n) cuando se ejecuta n=1,3,6,9,12 procesadores.
- 2. Completa la siguiente tabla:

Procesadores n	Tp(n)	S(n)	E(n)
1	100	1.2	1.2
2	57.41	2.09	1.045
4	36.25	3.31	0.8275
8	25.64	4.68	0.585
16	20.33	5.90	0.36875

Parte 2: Programación

Implementación de Algoritmos Paralelos:

Usando Java 21 o superior realiza las siguientes tareas.

Algoritmo a paralelizar: Suma de un arreglo de 1,000,000 números enteros random comprendido entre 1 y 10,000.

- 1. Genera un archivo con 1,000,000 de registros comprendido entre 1 y 10,000, el cual deberá usar como base para los demás cálculos.
- 2. Escribe un programa secuencial que sume los elementos de un arreglo de un millón de enteros.
- 3. Modifica tu programa para que use múltiples hilos o procesos para realizar la suma en paralelo. Divide el arreglo en partes iguales para cada hilo/proceso.
- 4. Mide y compara el tiempo de ejecución del programa secuencial y del programa paralelo con 2, 4 y 8 hilos/procesos.
- 5. Completa la siguiente tabla con los tiempos medidos:

Número de Hilos/Procesos	Tiempo de	Tiempo de		
	Ejecución	Ejecución	Speedup	Eficiencia
	Secuencial (s)	Paralelo (s)		
1 (Secuencial)	5.579 ms	2.942 ms	1.90	1.90
2	5.627 ms	6.675 ms	0.84	0.42
4	6.568 ms	9.267 ms	0.71	0.18
8	5.850 ms	14.713 ms	0.40	0.05

Nota: Si desea puede utilizar Virtual Threads

Entregables:

- Código fuente del programa en Java utilizando. El código debe subirse a un repositorio público en GitHub.
- Documentación en formato README que incluya una breve descripción del programa, instrucciones para compilar y ejecutar el programa, ejemplos de entrada y salida, y análisis del rendimiento en función del número de procesos utilizados. La documentación también debe subirse al repositorio en GitHub.
- El enlace al repositorio público en GitHub debe ser proporcionado en la plataforma de entrega de la tarea. Asegúrate de que el repositorio sea público para poder acceder al proyecto.