Статистические параметры

Среднее значение \bar{x} и среднеквадратичное отклонение s

$$ar{x} = rac{1}{N} \sum_{i=1}^{N} x_i, \qquad s = \left[rac{1}{N} \sum_{i=1}^{N} (x_i - ar{x})^2
ight]^{rac{1}{2}}$$

к-й центральный момент относительно среднего значения

$$\mu_k = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^k, \qquad \mu_0 = 1, \quad \mu_1 = 0.$$

- ullet дисперсия (variance): $s^2=\mu_2$, характеризует ширину распределения
- ullet коэффициент асимметрии (skewness): $\gamma_1=\mu_3/s^3$
- ullet эксцесс (kurtosis): $\gamma_2=\mu_4/s^4-3$, характеризует остроту пика

Тестируемые распределения

1 Равномерное распределения на интервале [0,1]: $\bar{x} = 1/2$ $s = \sqrt{1/12}$ $\gamma_1 = 0$ $\gamma_2 = -1.2$

② Нормальное распределение (распределение Гаусса) вида: $(1/\sqrt{2\pi\sigma^2}) \cdot exp(-(x-x_0)^2/2\sigma^2)$. Для этого распределения: $\bar{x} = x_0$ $s = \sigma$ $\gamma_1 = 0$ $\gamma_2 = 0$

В файле Landau.txt сохранено 100 000 чисел разыгранных по распределению Ландау. На рисунке показана гистограмма этого распределения.

Задание, первая часть

- Генератор равномерно распределенных на [0,1] псевдослучайных чисел. Используйте функции стандартной библиотеки C: rand() и srand(seed)
- Генератор псевдослучайных чисел для распределения Гаусса с параметрами $x_0=0, \sigma=1.$ Используйте один из методов описанных в википедии
- Функцию, заполняющую массив заданной размерности случайными числами этих распределений. Предусмотрите, что бы размер массива можно было задавать из командной строки: смотрите справочный материал по аргументам функции main().
- Функции (функцию) вычисляющие $\bar{x}, s, \gamma_1, \gamma_2$ для заданного массива. Сравните полученные значения с ожидаемыми.

Задание: вторая часть

- Напишите функцию зачитывающую файл Landau.txt в массив.
 Предусмотрите проверки правильности открытия файла и чтения.
- ullet Вычислите $ar{x}, s, \gamma_1, \gamma_2$ для этих данных.