Chapter 1 Introduction

Interpretable Macbine Learning 이란?

- refers to methods and models that make the behavior and predictions of machine learning systems understandable to humans
- · Below is Black Box Model, not interpretable

- Interpretability is
 - the degree to which a human can understand the cause of a decision
 - the degree to which a human can consistently predict the model's result

Interpretablilty 참고 자료

Demo on MNIST (https://lrpserver.hhi.fraunhofer.de/handwriting-classification)

Demo on NLP (https://lrpserver.hhi.fraunhofer.de/text-classification)

google distill (https://distill.pub/2018/building-blocks/)

http://interpretable-ml.org/cvpr2018tutorial/ (http://interpretable-ml.org/cvpr2018tutorial/)

Chapter 2 Interpretability

Interpretable Macbine Learning 이 왜 중요한가?

knowing the 'why' can help you learn more about the problem, ex) why model fail

need for interpretability arise from an incompleteness in problem formalization

Unexpected events make human curious, and needs an explanation of that

- ex) AI 기반 대출 거부. AI 기반 면접 탈락 => 설명 요구
- ex) 뜻밖의 추천 => 설명 요구

very-high risk 에서는 safty measure가 필요

• ex) 최근 비행기 사고는 자동 항법 조정 장치의 오류 때문. 설명 여구

Bias finding

• ex) 특정 소수 민족 집단에 대한 많은 대출 거부 => 설명 필요

socal acceptance

• 사람은 AI를 의인화하려고 할 것이고, 이 때 사람과의 interaction처럼 설명 필요

model debugging and auditting

• An interpretation for an erroneous prediction helps to understand the cause of the error.

기타 관련 사항

- Fairness = bias
- Privacy
- Robustness
- Causality

Interpretable Macbine Learning 이 중요하지 않은 경우는?

- · When the model has no significant impact
- · when the problem is well studied

IML 관련 용어집

Intrinsic or post-hoc

- · intrinsic interpretability
 - interpretability is achieved by restricting the complexity of the machine learning model
 - ex) Linear Model, Decision Tree
- · Post-hoc interpretability
 - application of interpretation methods after model training
 - ex) permutation feature importance

Result of interpretation method

Feature summary statistic

• single number per feature, ex) feature importance

Feature summary visualization

- ex) heatmap of feature importance
- ex) partial dependency plot
- · ex) feature dector visualization of CNN

Datapoint

- ex) To explain the prediction of a data instance, the method finds a similar data point bychanging some of the features for which the predicted outcome changes in a relevant way
- · ex) the identification of prototypes of predicted classes.

intrinsically interpretable model

- approximate black-box model with an interpretable model
- ex) LIME: DNN 기반 모델을 Linear한 interpretable model로 설명

Model-specific or model-agnostic

- Model-specific interpretation tools are limited to specific model classes.
 - ex) interpretation of weight is limited to simple linear model
 - ex) GRAD-CAM : limited to convolutional layer
- Model-agnostic can be used to any ML model, and post-hoc

Local or global

Scope of Interpretability

Algorithm Transparency

- · How does the algorithm create model?
- ex) CNN in image may learn edge detectors...
- ex) DNN are less transparent...

Global, Holistic(총체적) Model Interpretability

- · You comprehend the entire model at once
- · holistic view of features
- · very difficult in practice

Global Model Interpretability on a Modular Level

- How do parts of the model affect predictions?
- ex) BatchNorm이 미치는 영향 파악

Local Interpretability for a Single Prediction (이 책의 주요 관심사)

Why did the model make a certain prediction for an instance?

Local Interpretability for a Group of prediction

• ex) 특정 subset of data에 대한 높은 오분류 원인 분석시 필요할 듯

Evaluation of Interpretability

- Application level evaluation (real task)
 - Make it product, and be evaluated by End User (Domain Expert)
 - ex) 의료 쪽 이상 탐지 시스템의 설명을 전문가인 의사가 듣고 평가
- Human level evaluation (simple task)
 - 쉬운 설명을 비전문가가 평가
- Function level evaluation (proxy task)
 - 사실상 자동화된 평가
 - ex) Shorter Decision Tree => better explanation

Properties of Explanations

Robnik-Sikonja and Bohanec, 2018

Properties of Explanation Methods

Expressive Power

- 설명은 일종의 언어이다.
- IF-Then rule, decision tree, weighted sum, NLP 등등으로 (이해 가능할 만한) 표현력이 있어야 한다.

Translucency (투명성)

- · how much the explanation method relies on looking into ML model
- ex) linear model은 완전 투명하다.
- ex) Black box model은 입력 대비 출력 변화 양상 기반 설명이므로, 완전 불투명하다.

Portability (이식성)

- · range of ML model with which explanation method can be used
- 불투명한 설명 방법은 오히려 높은 이식성을 가진다.
- ex) GradCAM은 CNN에서는 잘 되는데 RNN에는 적용 불가라서 이식성이 빵이다.

Algorithm Complexity

- 설명 방법의 계산 복잡도.
- inference는 빠르게 되는데, 설명 생성이 너무 느리면 곤란

Properties of Indivisual Explanations

Fidelity

How well does the explanation approximate the prediction of the black box model

• ex) 기존 빚이 많고 무직이이라서 대출을 승인했습니다. => zero fidelity

Consistency

- 같은 데이터셋, 같은 테스크라면 모델이 달라도 같은 prediction에 대해서 비슷한 설명을 해야 일관된 설명이다.
- 반면 모델이 너무 상이하면(ex. SVM, Linear Model), 서로 다른 feature를 쓰므로 설명도 다를 것이 당연하다. => Rashomon Effect
- 그러나 비슷한 모델(ex. vgg16, vgg8)이라면 설명은 유사해야..

Stability

• How similar ar the explanations for similar instances?

Comprehensibility

- How wee do human understand explanations?
- 코끼리 다리 만지기 식으로 정확히 정의하기는 쉽지는 않지만... 가장 중요한..

Certainty

- · reflection of model uncertainty
- 모델의 판단 자체가 불확실하다면, 어떤 식으로 이것이 설명에도 반영되어야 한다.

Degree of Importance

• 설명의 각 부분부분에도 경중이 있으므로.. 이것이 잘 분간되게.. 강약중간약 설명..

Novelty

- 설명 대상 데이터 instance가 novelty하다면..
- model 결과도 uncertain하고,.. 설명도 사실성 무용지물..

Human-friendly Explanations

Miller 2017

Contrastive Explanation (Lipton 1990)

- · conterfactual explanation
- How would the prediction have been if input X had been different?
- ex) 이러저러해서 대출 거절했어요 => 대출을 받으신 다른 분 사례에 견주어 봐서, 이런저런 점이 보강되면 대출 승인 될 수 있어요
- ex) 임상실험에서 실험군, 대조군
- 머신러닝에서는 reference instance을 정하고, 이에 견주어 설명해야 한다.

Explanation are selected

- 긴 설명(모든 원인을 다 나열하는 것은)은 거부감이 든다.
- 핵심 원인 몇몇을 찍어서 설명

Explanation are social

- 설명은 사람에게 하는 소통이다.
- 머신러닝에서는 설명의 대상(explainee)이 누구인지에 따라 설명이 달라져야 한다.
 - ex) 자율 주행차의 사고 유발 설명 => 차 소유자, 교통 당국, 법정

Explanation focus on the abnormal

- 사람은 독특한 원인 기반 설명을 선호한다.
- ex) 저 집은 커서 비싸 => 평범한 설명
- ex) 저 집은 마이클 조단이 살던 대라서 비싸 => 독특한 원인 기반 설명

Explanation are truthful

- 실제 현실에 부합해야 한다.
- selective한 설명을 하다보면 단순화를 시도하다보니 truthful한 설명이 되지 않을수도 있다.

Consisten with prior belief of explainee

• 사람의 직관과 선입견에 너무 벗어나는 설명이면 곤란

In []: