Collaborative Filtering

- **►** Introduction
- Search or Content based Method
- ➤ User-Based Collaborative Filtering
- ➤ Item-to-Item Collaborative Filtering
- ➤ Using Google's PageRank
- ➤ Memory-Based Algorithms (Breese et al, UAI98)

Collaborative Filtering

	Star Wars	Hoop Dreams	Contact	Titanic
Joe	5	2	- 5	4
Joe John	2	5		3
Al	2	2	4	2
Nathan	5	1	5	?

Recommender systems: Systems that evaluate quality based on the preferences of others with a similar point of view

Collaborative Filtering: The problem of collaborative filtering is to predict how well a user will like an item that he has not rated given a set of historical preference judgments for a community of users.

- Predict the opinion the user will have on the different items
- Recommend the 'best' items based on the user's previous likings and the opinions of likeminded users whose ratings are similar

Collaborative Filtering in our life

Collaborative Filtering in our life

Search or Content based Method

- Given the user's purchased and rated items, constructs a search query to find other popular items
- For example, same author, artist, director, or similar keywords/subjects
- Impractical to base a query on all the items

User-Based Collaborative Filtering

Some issues with User based collaborative filtering

- Complexity grows linearly with the number of customers and items
- The sparsity of recommendations on the data set
 - Even active customers may have purchased well under 1% of the products

Item-to-Item Collaborative Filtering

- Rather than matching the user to similar customers, build a similar-items table by finding that customers tend to purchase together
- Amazon.com used this method
- Scales independently of the catalog size or the total number of customers
- Acceptable performance by creating the expensive similar-item table offline

Item-to-Item CF Algorithm

```
For each item in product catalog, I_1
For each customer C who purchased I_1
For each item I_2 purchased by customer C
Record that a customer purchased I_1
and I_2
For each item I_2
Compute the similarity between I_1 and I_2
```

• O(N^2M) as worst case, O(NM) in practical

Item-to-Item CF Algorithm Similarity Calculation

Computed by looking into co-rated items only.

These co-rated pairs are obtained from different users.

Item-to-Item CF Algorithm Similarity Calculation

• For similarity between two items i and j,

$$sim(i,j) = \frac{\sum_{u \in U} (R_{u,i} - \bar{R_u})(R_{u,j} - \bar{R_u})}{\sqrt{\sum_{u \in U} (R_{u,i} - \bar{R_u})^2} \sqrt{\sum_{u \in U} (R_{u,j} - \bar{R_u})^2}}.$$

Item-to-Item CF Algorithm Prediction Computation

Recommend items with high-ranking based on similarity

Item-to-Item CF Algorithm Prediction Computation

• Weighted Sum to capture how the active user rates the similar items

$$P_{u,i} = \frac{\sum_{\text{all similar items, N}} (s_{i,N} * R_{u,N})}{\sum_{\text{all similar items, N}} (|s_{i,N}|)}$$

 Regression to avoid misleading in the sense that two similarities may be distant yet may have very high similarities

$$\bar{R}_{N}^{i} = \alpha \bar{R}_{i} + \beta + \epsilon$$

Google's PageRank

Inlinks are "good" (recommendations)

Inlinks from a "good" site are better than inlinks from a "bad" site

but inlinks from sites with many outlinks are not as "good"...

"Good" and "bad" are relative.

Google's PageRank

Imagine a "pagehopper" that always either

- follows a random link, or
- jumps to random page

Google's PageRank

(Brin & Page, http://www-db.stanford.edu/~backrub/google.html)

Imagine a "pagehopper" that always either

- follows a random link, or
- jumps to random page

PageRank ranks pages by the amount of time the pagehopper spends on a page:

• or, if there were many pagehoppers, PageRank is the expected "crowd size"

- $v_{i,j}$ = vote of user i on item j
- I_i = items for which user i has voted
- Mean vote for i is

$$\overline{v}_i = \frac{1}{|I_i|} \sum_{j \in I_i} v_{i,j}$$

• Predicted vote for "active user" a is weighted sum

$$p_{a,j} = \overline{v}_a + \kappa \sum_{i=1}^n \underline{w}(a,i)(v_{i,j} - \overline{v}_i)$$
 normalizer weights of n similar users

• K-nearest neighbor

$$w(a,i) = \begin{cases} 1 & \text{if } i \in \text{neighbors}(a) \\ 0 & \text{else} \end{cases}$$

• Pearson correlation coefficient (Resnick '94, Grouplens):

$$w(a,i) = \frac{\sum_{j} (v_{a,j} - \overline{v}_a)(v_{i,j} - \overline{v}_i)}{\sqrt{\sum_{j} (v_{a,j} - \overline{v}_a)^2 \sum_{j} (v_{i,j} - \overline{v}_i)^2}}$$

• Cosine distance (from IR)

$$w(a,i) = \sum_{j} \frac{v_{a,j}}{\sqrt{\sum_{k \in I_a} v_{a,k}^2}} \frac{v_{i,j}}{\sqrt{\sum_{k \in I_i} v_{i,k}^2}}$$

• Cosine with "inverse user frequency" $f_i = log(n/n_j)$, where n is number of users, n_i is number of users voting for item j

$$w(a,i) = \frac{\sum_{j} f_{j} \sum_{j} f_{j} v_{a,j} v_{i,j} - (\sum_{j} f_{j} v_{a,j})(\sum_{j} f_{j} v_{i,j}))}{\sqrt{UV}}$$

where

$$U = \sum_{j} f_{j} \left(\sum_{j} f_{j} v_{a,j}^{2} - \left(\sum_{j} f_{j} v_{a,j} \right)^{2} \right)$$

$$V = \sum_{i} f_{j} \left(\sum_{i} f_{j} v_{i,j}^{2} - \left(\sum_{i} f_{j} v_{i,j} \right)^{2} \right)$$

• Evaluation:

- split users into train/test sets
- for each user a in the test set:
 - split a's votes into observed (I) and to-predict (P)
 - measure average absolute **deviation** between predicted and actual votes in *P*
 - predict votes in P, and form a ranked list
 - assume (a) utility of k-th item in list is $max(v_{a,j}-d,0)$, where d is a "default vote" (b) probability of reaching rank k drops exponentially in k. Score a list by its expected utility R_a
- average R_a over all test users

	EachMovie, Rank Scoring				
Algorithm	Given2	Given5	Given 10	AllBut1	
CR+	41.60	42.33	41.46	23.16	
VSIM	42.45	42.12	40.15	22.07	
BC	38.06	36.68	34.98	21.38	
BN	28.64	30.50	33.16	23.49	
POP	30.80	28.90	28.01	13.94	
RD	0.75	0.75	0.78	0.78	

Why are these numbers worse?

	EachMovie, Absolute Deviation				
Algorithm	Given2	Given5	Given10	AllBut1	
CR	1.257	1.139	1.069	0.994	
BC	1.127	1.144	1.138	1.103	
BN	1.143	1.154	1.139	1.066	
VSIM	2.113	2.177	2.235	2.136	
RD	0.022	0.023	0.025	0.043	

Visualizing Cosine Distance

similarity of doc
$$a$$
 to doc $b = sim(a,b) = \sum_{\text{word } i} \frac{v(a,j)}{\sqrt{\sum_{j'} v^2(a,j')}} \cdot \frac{v(b,j)}{\sqrt{\sum_{j'} v^2(b,j')}}$
Let $\vec{A} = <..., v(a,j),...>$

$$= A' \cdot B'$$

$$\text{word } 1$$

$$\text{word } 2$$

$$\text{doc } a$$

$$\text{doc } a$$

$$\text{word } j$$

$$\text{word } j$$

Visualizing Cosine Distance

distance from user
$$a$$
 to user $i = w(a, i) = \sum_{j} \frac{v_{a,j}}{\sqrt{\sum_{k \in I_a} v_{a,k}^2}} \frac{v_{i,j}}{\sqrt{\sum_{k \in I_i} v_{i,k}^2}}$

Visualizing Cosine Distance

Approximating Matrix Multiplication for Pattern Recognition Tasks, Cohen & Lewis, SODA 97—explores connection between cosine distance/inner product and random walks

References

- E-Commerce Recommendation Applications: http://citeseer.ist.psu.edu/cache/papers/cs/14532/http:zSzzSzwww.cs.umn.eduzSzResearc hzSzGroupLenszSzECRA.pdf/schafer01ecommerce.pdf
- Amazon.com Recommendations: Item-to-Item Collaborative Filtering http://www.win.tue.nl/~laroyo/2L340/resources/Amazon-Recommendations.pdf
- Item-based Collaborative Filtering Recommendation Algorithms http://www.grouplens.org/papers/pdf/www10_sarwar.pdf
- John S. Breese, David Heckerman, Carl Myers Kadie: Empirical Analysis of Predictive Algorithms for Collaborative Filtering. UAI 1998: 43-52
- Chumki Basu, Haym Hirsh, William W. Cohen: Recommendation as Classification: Using Social and Content-Based Information in Recommendation. AAAI/IAAI 1998: 714-720
- Alexandrin Popescul, Lyle H. Ungar, David M. Pennock, Steve Lawrence: Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments. UAI 2001: 437-444