Intro

Conte

Physic

Stochasti

Numeric

_

Jet evolution in a dense QCD medium

Linnéa Gräns Samuelsson

Internship at CEA Saclay Supervisors: Edmond Iancu and Gregory Soyez

June 28, 2017

Conte

Numerio

Outr

the medium: a quark gluon plasma created in a heavy ion collision

 the jet: a collimated spray of particles generated via successive branchings of a parton with high energy produced in the collision

Structure of presentation:

- Context
- Physics
- Stochastics
- Numerics

Physics

Stochastic

Numeric

Outro

Heavy ion collisions, quark gluon plasma and jets, what we observe:

Di-jet asymmetry. Missing energy found among soft hadrons propagating at large angles \Rightarrow different from in vacuum jet evolution.

Context

Physics

C. I .

Numeric

Outro

Heavy ion collisions, quark gluon plasma and jets, the stereotypical picture:

Implicit assumption: small energy fluctuations.

Context

1 Hysics

Stochasti

Numeric

We need a model that answers:

- How can the lost energy end up at such large angles?
- How large are the energy fluctuations?

Intro

Conte

Physics

Stochastic

Numerio

Start describing model, give expression for formation time and describe consequences of it, angles, multiple branching

A typical event:

Linnéa Gräns Samuelsson

Intro

Conte

Physics

Stochastic

Numeric

Outro

- A number of $\mathcal{O}(1)$ of primary gluons emitted from leading particle.
- They then branch democratically.
- Grey gluon lines = large number of non democratic, soft emissions.

Stochastics

Linnéa Gräns Samuelsson

Intro

Conte

Physic

Stochastics

Numeric

0...

In medium evolution as a Markovian process. Describe D, D2, splitting kernels

Intro

Conte

Physi

Stochastics

Numerio

Outro

Energy fraction left in gluon cascade: $\int_0^1 \mathrm{d}x\, D(x,\tau) = e^{-\pi\tau^2}$ \Rightarrow decreasing in time. Fate of lost energy, formally: condensate at x=0. Physically: thermalization.

Note: (fix point...) Democratic branching compared to wave turbulence:

Stochastic

Numerics

Outro

Numerics

Numerical considerations, IR cutoff, pileup.

- ϵ : IR cutoff for x in splitting kernel
- x_{min} : lowest x considered

Numerics

Outro

Result: full kernel \Rightarrow less efficient branching

$$\sqrt{x}D(x)$$

Simple splitting kernel, numerical versus analytic:

- Good agreement overall
- Bias at small x (pileup)

Corrections from the full splitting kernel:

- Leading peak still present at $\tau=0.5$
- Less energy lost at $\tau=1$

Numerics

Result: full kernel \Rightarrow less efficient branching

Intro

Conte

Physic

Stochastic

Numerics

Energy loss: $1 - \int_0^1 dx \, D(x, \tau) = 1 - e^{-\pi \tau^2}$

Intr

Conte

Physi

Stochastic

Numerio

Outro

Summary:

- ullet Democratic branchings \Rightarrow energy found at large angles
- Prediction: large fluctuations in energy loss
- Possible to make Monte Carlo simulation
- Full kernel ⇒ less efficient branching

Possible extensions:

Things

THE END

Questions?