

Università degli Studi di Genova

Calculus 2

Lorenzo Vaccarecci

Indice

1	Fori	mula di Taylor	2
	1.1	Formula di Taylor con resto di Lagrange	2
		1.1.1 Esercizi	2
	1.2	Formula di Taylor con resto di Peano	4

Capitolo 1

Formula di Taylor

$$f: I \subseteq \mathbb{R} \to \mathbb{R}$$

derivabile infinite volte su I

Polinomio di Taylor di f centrato in x_0 di ordine n:

$$T_{x_0,n}^f(x) = f(x_0) + f'(x_0)(x - x_0) + f''(x_0)\frac{(x - x_0)^2}{2!} + \dots + f^{(n)}(x_0)\frac{(x - x_0)^n}{n!}$$

 $T^f_{x_0,n}(x)$ è un polinomio nella variabile x di grado $\leq n$. La formula di Taylor ha un duplice scopo:

- \bullet Permette di approssimare f con un polinomio
- Permette di approssimare il valore di f in un punto $b \in I$ con il valore di f in x che sta vicino a b e $f'(a), f''(a), \dots$

1.1 Formula di Taylor con resto di Lagrange

Dato $x_0 \in I, \forall x \in I$ si ha:

$$f(x) = T_{r_0,n}^f(x) + R_n f(x)$$

dove:

$$R_n f(x) = f^{(n+1)}(c)(x - x_0)^{n+1} \frac{1}{(n+1)!}$$

1.1.1 Esercizi

Esercizio 1

Calcolare un'approssimazione di \sqrt{e} usando la formula di Taylor di ordine 5 per $f(x) = e^x$ e stimare l'errore.

$$f(x) = e^x$$
 $\sqrt{e} = e^{\frac{1}{2}} = f\left(\frac{1}{2}\right)$

Usiamo la formula di Taylor per stimare $f\left(\frac{1}{2}\right)$ prendendo $x=\frac{1}{2}, n=5, x_0=0$

$$f\left(\frac{1}{2}\right) = T_{0,5}^{f}\left(\frac{1}{2}\right) + R_{5}f\left(\frac{1}{2}\right)$$

$$= f(0) + f'(0)\frac{1}{2} + f''(0)\left(\frac{1}{2}\right)^{2}\frac{1}{2} + f'''(0)\left(\frac{1}{2}\right)^{3}\frac{1}{3!} + f^{(4)}(0)\left(\frac{1}{2}\right)^{4}\frac{1}{4!} + f^{(5)}(0)\left(\frac{1}{2}\right)^{5}\frac{1}{5!} + R_{5}f\left(\frac{1}{2}\right)^{6}$$

$$= 1 + \frac{1}{2} + \left(\frac{1}{2}\right)^{3} + \left(\frac{1}{2}\right)^{3}\frac{1}{6} + \left(\frac{1}{2}\right)^{4}\frac{1}{24} + \left(\frac{1}{2}\right)^{5}\frac{1}{120} + e^{c}\left(\frac{1}{2}\right)^{6}\frac{1}{6!}$$

$$= \frac{6331}{3840} + e^{c}\left(\frac{1}{2}\right)^{6}\frac{1}{6!}$$

$$\approx 1.6486 + e^{c}\left(\frac{1}{2}\right)^{6}\frac{1}{6!}$$

Quindi $T_{0,5}^f\left(\frac{1}{2}\right) \approx 1.6486$ fornisce un'approssimazione di \sqrt{e} . Per stimare l'errore, calcoliamo il massimo di $|R_5f(x)|$ sapendo che $c \in \left(0, \frac{1}{2}\right)$:

$$\left| R_5 f\left(\frac{1}{2}\right) \right| = \left| e^c \left(\frac{1}{2}\right)^6 \frac{1}{6!} \right| \le e^{\frac{1}{2}} \left(\frac{1}{2}\right)^6 \frac{1}{6!}$$

Ma
$$e < 3 \rightarrow \left| R_5 f\left(\frac{1}{2}\right) \right| \le \sqrt{3} \left(\frac{1}{2}\right)^6 \frac{1}{6!} \xrightarrow{\sqrt{3} < 2} \left(\frac{1}{2}\right)^5 \frac{1}{6!} \approx 0.00000434$$

Esercizio 2

Calcolare un'approssimazione di $\ln\left(\frac{4}{3}\right)$ a meno di $2 \cdot 10^{-3}$

$$\ln(1+x) = f(x)$$
 è definita e derivabile infinite volte su $I = (-1, +\infty)$ $\ln\left(\frac{4}{3}\right) = f\left(\frac{1}{3}\right)$

Determinare $n \ge 1$ tale che $\left| f\left(\frac{1}{3}\right) - T_{x_0,n}^f\left(\frac{1}{3}\right) \right| < 2 \cdot 10^{-3}$, prendiamo $x_0 = 0$:

$$T_{0,n}^f(x) = f(0) + f'(0)x + f''(0)\frac{x^2}{2!} + \dots + f^{(n)}(0)\frac{x^n}{n!}$$

Sappiamo che:

$$f'(x) = \frac{1}{1+x}$$

$$f''(x) = -\frac{1}{(1+x)^2}$$

$$f'''(x) = \frac{2}{(1+x)^3}$$

$$f^{(4)}(x) = -\frac{6}{(1+x)^4}$$

$$f^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{(1+x)^n} \quad \forall n \ge 1 \Rightarrow f^{(n)}(0) = (-1)^{n-1} (n-1)!$$

Quindi:

$$T_{0,n}^{f}(x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \dots + (-1)^{n-1} \frac{x^{n}}{n}$$

$$f^{(n)}(0) \frac{x^{n}}{n!} = (-1)^{n+1} (n-1)! \frac{x^{n}}{n!} = (-1)^{n+1} (n-1)! \frac{x^{n}}{n(n-1)!} = (-1)^{n+1} \frac{x^{n}}{n}$$

$$\Rightarrow T_{0,n}^{f}(x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots + (-1)^{n-1} \frac{x^{n}}{n}$$

$$T_{0,n}^{f}\left(\frac{1}{3}\right) = \frac{1}{3} - \left(\frac{1}{3}\right)^{2} \frac{1}{2} + \left(\frac{1}{3}\right)^{3} \frac{1}{3} - \left(\frac{1}{3}\right)^{4} \frac{1}{4} + \dots + (-1)^{n-1} \left(\frac{1}{3}\right)^{n} \frac{1}{n}$$

Per trovare l'ordine n tale che soddisfi la richiesta, calcoliamo il massimo di $|R_n f(x)|$:

$$\left| R_n f\left(\frac{1}{3}\right) \right| = \left| f^{(n+1)}(c) \left(\frac{1}{3}\right)^{n+1} \frac{1}{(n+1)!} \right|
= \left| (-1)^{n+2} \frac{1}{(1+c)^{n+1}} \left(\frac{1}{3}\right)^{n+1} \frac{1}{n+1} \right|
= \frac{1}{(1+c)^{n+1}} \left(\frac{1}{3}\right)^{n+1} \frac{1}{n+1} \le \left(\frac{1}{3}\right)^{n+1} \frac{1}{n+1} \doteq \Delta_n$$

Calcoliamo $n \ge 1 | \Delta_n \le 2 \cdot 10^{-3} = \frac{1}{500}$

$$n = 1 \quad \Delta_1 = \left(\frac{1}{3}\right)^2 \frac{1}{2} = \frac{1}{18}$$

$$n = 2 \quad \Delta_2 = \frac{1}{81}$$

$$n = 3 \quad \Delta_3 = \frac{1}{324}$$

$$n = 4 \quad \Delta_4 = \frac{1}{1215} \le \frac{1}{500}$$

Quindi ora possiamo calcolare $T_{0,4}^f\left(\frac{1}{3}\right)$:

$$T_{0,4}^f \left(\frac{1}{3}\right) = \frac{1}{3} - \left(\frac{1}{3}\right)^2 \frac{1}{2} + \left(\frac{1}{3}\right)^3 \frac{1}{3} - \left(\frac{1}{3}\right)^4 \frac{1}{4}$$

1.2 Formula di Taylor con resto di Peano