

Data Preparation

- Data preprocessing was done in Task 1.
- Normalization was done MinMaxScalar was used.
- LS Boost and Random Forest performance compared.
- You can find the necessary analyzes and steps in the ML exercise part 1 report.
- Necessary additions were made for Part 2, using what was made in Part 1.

```
Model R<sup>2</sup> (Train) R<sup>2</sup> (Test) AME RMSE 0 Random Forest 0.999636 0.997592 15.078571 20.121620 1 LSBoost 0.999569 0.998180 12.703682 17.494185
```

Training set size: (38, 3) Test set size: (7, 3)


```
feature_importances = rf_model.feature_importances_

feature_importances = feature_importances.cumsum()

cumulative_importances = feature_importances.cumsum()

features = ['X1', 'X2', 'X3']

plt.figure(figsize=(8, 6))

plt.plot(features, cumulative_importances, marker='o', linestyle='-', color='b')

plt.ylabel("Cumulative Feature Importance")

plt.ylabel("Cumulative Importance")

plt.grid()

plt.grid()

plt.axhline(y=0.95, color='r', linestyle='--', label="95% Threshold")

plt.legend()

plt.show()
```


Statistical Sensitivity Analysis - ANOVA

- Conducted an Analysis of Variance (ANOVA) using the Ordinary Least Squares (OLS) method to evaluate the influence of each input feature (X1, X2, X3) on the target output (Y1).
- **Key Findings**: X3 was identified as the most significant feature with the highest F-statistic and lowest P-value.
- X2 showed moderate importance, while X1 had negligible influence.

∓ +	ANOVA res	sults:				
		df	sum_sq	mean_sq	F	PR(>F)
	X1	1.0	1.369000e+02	University of the Control of the Con	0.036261	8.499172e-01
	X2	1.0	5.216670e+04	5.216670e+04	13.817517	6.028574e-04
	X3	1.0	7.211158e+06	7.211158e+06	1910.036406	5.115929e-36
	Residual	41.0	1.547915e+05	3.775403e+03	NaN	NaN

Machine Learning Based Sensitivity Analysis-Shapley Values

 Shapley Values: Used shap. Tree Explainer to calculate Shapley values, providing a machine learning-based perspective on feature importance.

Steps:

- Calculated Shapley values for the test dataset.
- Generated summary plots and bar graphs to visualize global feature importance.
- Highlighted interactions between features (e.g., X3 and X2).

Interaction Analysis:

 Explored feature interactions using Shapley dependency plots, which revealed a strong relationship between X3 and X2.

Comparative Insights Between ANOVA and Shapley Values

- Comparison Between ANOVA and Shapley Values: Both methods confirmed X3 as the most influential feature, followed by X2.
- Shapley analysis provided additional interpretability, capturing feature interactions that ANOVA could not.
- **Conclusion**:X3 is the dominant feature influencing the model's behavior, supported by both statistical and machine learning-based analyses.
- Shapley values provided more granular insights, particularly regarding feature interactions, making it a valuable tool for sensitivity analysis.

₹			of ANOVA and Shapley Results:					
			ANOVA P-Value Shaple			Shapley	/ Mean	Importance
	0	X1	8.499	9172e-	01			3.209077
	1	X2	6.028	3574e-	04			29.489981
	2	Х3	5.11	5929e-	-36			371.504010

END OF THE REPORT