STAT 103 Statistical Thinking

Exam 3 Review
Professor Mengshi Zhou

Chapter 14: Scatterplot

- How to read the scatter plot
- If there is a clear direction, is it positive (the scatterplot slopes upward from left to right) or negative (the plot slopes downward)?
- Is the Form straight (linear) or curved (non-linear)?
- Strength: How closely do the points follow the form (shape)
 - ☐ Strong, Moderate, Weak
- Outlier: any point(s) that don't fit the form or are far away from the rest of the points

Chapter 14: correlation r

- A positive correlation indicates a positive linear association. The strength
 of the positive linear association increases as the correlation becomes
 closer to +1.
- A negative correlation indicates a negative linear association. The strength of the negative linear association increases as the correlation becomes closer to -1.
- A correlation of either +1 or -1 indicates a perfect linear relationship. This
 is hard to find with real data.
- Strong r>=0.8 or r=<-0.8; Moderate: 0.5<=r<0.8 or -0.8<r=<-0.5; Weak 0<r<0.5 or -0.5<r<0

Chapter 15: Regression Line

Understanding the line

- Equation of a line: y = a + bx
- b is the slope
 - How much y changes on average when x increases by one unit
 - When b is positive there is a positive linear association,
 - when b is negative there is a negative linear association
- a is the y-intercept
 - The value of y when x is zero

Regression Line Issues

- □Only for linear relationships
- □Outliers/influential points
- $\Box r^2$
- □ Extrapolation

Extrapolation

Extrapolation: Make predictions outside the range of data

Coefficient of Determination, r²

- r² (or R-squared) is a measurement of how well the regression line fits the data
 - r^2 = r * r (square of correlation) (e.g. r = 0.5, r^2 = 0.5*0.5 = 0.25)

r (correlation)	$r^2 = r * r$		
Has value between -1 and 1	Has value between 0 and 1		
Measures the linear relationships between two numerical variables with respect to directions and strength	r-squared also tells us the percentage of variation in Y that is accounted for by its regression or X		

Correlation and Causation

 In an observational study, A strong correlation between two variables is not always evidence that changes in one variable cause changes in the other.

CHAPTER 17

Probability and Random:

- Some things in the world, both natural and of human design, are random. That is, their outcomes have a clear pattern in very many repetitions even though the outcome of any one trial is unpredictable.
- Probability describes the long-term regularity of random phenomena. The probability of an outcome is the proportion of very many repetitions on which that outcome occurs.
- Probability = $\frac{\#of\ favorable\ outcomes}{\#All\ possible\ outcomes}$
- A probability is a number between 0 (the outcome never occurs) and 1 (always occurs).

Law of Averages

Law of Averages (law of large numbers):

- 1. Mean or proportions are likely to be more stable when there are more trials;
- 2. while sums or counts are likely to be more variable.
- This does not happen by compensation for a bad run of luck since independent trials have no memory.

CHAPTER 18

Probability model

- ☐ A **probability model** describes a random phenomenon by telling what outcomes are possible and how to assign probabilities to them.
- □ We sometimes call an outcome or a collection of outcomes an event. (question 1)

Status	No High School	H.S. or equivalent	Associate	Bachelor	Post- Bachelor
Probability	0.12	0.45	0.21	0.18	0.04

Probability Model Rules

- 1. A probability must Between 0 and 1
- 2. The sum of probabilities of all possible outcomes must have probability 1.
- 3. The probability that an event does not occur is 1 minus the probability that the event does occur.
- 4. If events have no common outcomes, the P(event) is the sum of the Probability of each outcome in the event :
 - P(event A OR event B) = P(event A) + P(event B)

Sampling Distribution

- Repeated Random Samples
- •In the long run, this distribution of statistics is well described by the normal curve.
- •The mean of the normal curve is the value parameter
- •The total probability is 1 because the total area under the curve is 1.
- •We can use 68-95-99.7 rules!

68-95-99.7 Rule

Updated-68-95-99.7 rule

- Because the normal distribution is "symmetric", we can find more information
- Examples:
 - 34% of all observations fall between mean to mean + 1 standard deviation
 - 2.35%+0.15% = 2.50% of all observations are larger than mean + 2
 standard deviation
 - How many observations are smaller than mean 2 standard deviation?
 2.35%+0.15% = 2.50%

How many observations are larger than mean + 1 standard deviation?

$$13.5\% + 2.25\% + 0.15\% = 16\%$$

