

18.085 Computational Science and Engineering I Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Your name is: SOLUTIONS

Grading

1. 2. 3.

Thank you for taking 18.085! I hope to see you in 18.086!!

- 1) (40 pts.) This question is about 2π -periodic functions.
 - (a) Suppose $f(x) = \sum c_k e^{ikx}$ and $g(x) = \sum d_l e^{ilx}$. Substitute for f and g and integrate to find the coefficients q_n in this convolution:

$$h(x) = \int_0^{2\pi} f(t) g(x - t) dt = \int_0^{2\pi} f(x - t) g(t) dt = \sum_{n=0}^{\infty} q_n e^{inx}.$$

(b) Compute the coefficients c_k for the function

$$f(x) = \begin{cases} 1 & \text{for } 0 \le x \le 1\\ 0 & \text{for } 1 \le x \le 2\pi \end{cases}$$

What is the *decay rate* of these c_k ? What is $\sum |c_k|^2$?

- (c) Keep that f(x) in parts (c)-(d). If g(x) also has a jump, will the convolution h(x) have a jump? Compare the decay rates of the d's and q's to find the behavior of h(x): delta function, jump, corner, or what?
- (d) Find the derivative dh/dx at x = 0 in terms of two values of g(x). (You could take the x derivative in the convolution integral.)

Solution 1.

(a) This is really proving the convolution rule (periodic case).

$$h(x) = \int_0^{2\pi} \left(\sum c_k e^{ikt} \right) \left(\sum d_l e^{il(x-t)} \right) dt$$

$$= \int_0^{2\pi} \sum c_k d_k e^{ikx} dt \quad \text{(since all integrals of } e^{ikt} e^{-ilt} \text{ are zero if } k \neq l \text{)}$$

$$= 2\pi \sum c_k d_k e^{ikx} .$$

So $q_n = \boxed{2\pi c_n d_n}$ = multiplication in k-space. Note $c_n d_n$ (not $c_k d_l$).

(b)
$$c_k = \int_0^1 e^{-ikx} dx = \frac{e^{-ikx}}{-ik} \Big]_0^1 = \frac{1 - e^{-ik}}{ik}$$
 The decay rate is $1/k$.
By the energy identity $\sum |c_k|^2 = \frac{1}{2\pi} \int_0^{2\pi} |f(x)|^2 dx = \frac{1}{2\pi}$.

- (c) If f(x) and g(x) have jumps, their convolution h = f * g has a *corner*. To see this in transform space from decay rates: c_k and d_k decay like 1/k, so $c_k d_k$ decays like $1/k^2$.
- (d) The derivative of the convolution integral (second form) gives

$$\frac{dh}{dx} = \int_0^{2\pi} \frac{df}{dx} (x - t) g(t) dt = \int_0^{2\pi} \left[\delta(x - t) - \delta(x - t - 1) \right] g(t) dt$$

At
$$x = 0$$
 this is $\int_0^{2\pi} \delta(-t) g(t) dt - \int_0^{2\pi} \delta(-t - 1) g(t) dt$

The spikes are at t = 0 and t = -1: = [g(0) - g(-1)].

Or you could take the derivative of the form $h(x) = \int_0^{2\pi} f(t) g(x-t) dt$ to get

$$\int_0^{2\pi} f(t) g'(x-t) dt = \int_0^1 g'(x-t) dt = -g(x-t) \Big|_{t=0}^1 = -g(x-1) + g(x)$$

At
$$x = 0$$
 this is
$$\boxed{-g(-1) + g(0)}$$

The general rule is h'(x) = f'(x) * g(x) = f(x) * g'(x). But NOT h'(x) = f'(x) * g'(x). In k-space we have $q_k = 2\pi c_k d_k$ so for the derivative $ikq_k = 2\pi (ikc_k)d_k = 2\pi c_k (ikd_k)$. But NOT $ikq_k = 2\pi (ikc_k)(ikd_k)$.

- 2) (30 pts.) (a) We want to compute the cyclic convolution of f = (1, 0, 1, 0) and g = (1, 0, -1, 0) in two ways. First compute $f *_C g$ directly—either the formula at the end of p. 294 or from $1 + w^2$ and $1 w^2$.
 - (b) Now compute the discrete transforms c (from f) and d (from g). Then use the convolution rule to find $f *_C g$.
 - (c) I notice that the usual dot product $\overline{f}^T g$ is zero. Maybe also $\overline{c}^T d$ is zero. Question for any c and d:

$$\text{If} \quad \overline{c}^{\mathrm{T}}d = 0 \quad \text{deduce that} \quad \overline{f}^{\mathrm{T}}g = 0.$$

Solution 2.

(a) Directly $(1,0,1,0) *_C (1,0,-1,0) = \boxed{(0,0,0,0)}$. From $1+w^2$ times $1-w^2$ we get $1-w^4=0$ because $w^4=0$. From the circulant matrix we again get

$$f *_{C} g = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

- (b) Columns 0 and 2 of F^{-1} are $\frac{1}{4}(1,1,1,1)$ and $\frac{1}{4}(1,-1,1,-1)$. Then $c=F^{-1}f=\frac{1}{4}(2,0,2,0)$ and $d=F^{-1}g=\frac{1}{4}(0,2,0,2)$. So every $c_kd_k=0$. Transforming back gives $f*_C g=$ zero vector.
- (c) Suppose $\overline{c}^{\mathrm{T}}d=0$. Then $\overline{f}^{\mathrm{T}}g=(\overline{F}\overline{c})^{\mathrm{T}}(Fd)=\overline{c}^{\mathrm{T}}\overline{F}^{\mathrm{T}}Fd=n\overline{c}^{\mathrm{T}}d=0$. QED.

Note: This is different from $f *_C g = 0$! That would not follow from $\bar{c}^T d = 0$, you need every $c_k d_k = 0$.

3) (30 pts.) This question uses the Fourier integral to study

$$-\frac{d^2u}{dx^2} + u(x) = \begin{cases} 1 & \text{for } -1 \le x \le 1\\ 0 & \text{for } |x| > 1 \end{cases}$$

- (a) Take Fourier transforms of both sides to find a formula for $\widehat{u}(k)$.
- (b) What is the decay rate of this \widehat{u} ? At what points x is the solution u(x) not totally smooth? Describe u(x) at those points: delta, jump in u(x), jump in du/dx, jump in d^2u/dx^2 , or what?
- (c) We know that the Green's function for this equation (when the right side is $\delta(x)$) is

$$G(x) = \frac{1}{2}e^{-|x|} = \begin{cases} \frac{1}{2}e^{-x} & \text{for } x \ge 0\\ \frac{1}{2}e^{x} & \text{for } x \le 0 \end{cases}$$

Find the solution u(x) at the particular point x = 2.

Solution 3.

(a)
$$(k^2 + 1) \widehat{u}(k) = \int_{-1}^{1} e^{-ikx} dx = \frac{e^{-ikx}}{-ik} \Big]_{-1}^{1} = \frac{e^{ik} - e^{-ik}}{ik} = \frac{2\sin k}{k}.$$

Then $\widehat{u}(k) = \frac{2\sin k}{(k^2 + 1)k}.$

- (b) Decay rate is $1/k^3$. So u(x) has a jump in d^2u/dx^2 at the points x = -1 and x = 1. You can see that from the differential equation: since u(x) is continuous, the jumps in f(x) on the right side must come from jumps in u''(x) on the left side.
- (c) The solution u = G * f at the point x = 2 is the integral of responses at x = 2 to right sides f = 1 over $-1 \le x \le 1$. The distance t to x = 2 ranges from 3 to 1. Green's response function $\frac{1}{2}e^{-x}$ ranges from $\frac{1}{2}e^{-3}$ to $\frac{1}{2}e^{-1}$:

$$u(2) = \frac{1}{2} \int_{1}^{3} e^{-t} dt = \boxed{\frac{e^{-1} - e^{-3}}{2}}.$$

This comes directly from G * f at x = 2. The word "responses" is used to help explain why this becomes an integral of G(x) from x = 1 to x = 3.