Statistical models for the BIRDIE pipeline JRS Biodiversity Series

Francisco Cervantes Peralta and Res Altwegg

7/07/2021

Overview

example of a two-column slide

http://www.seec.uct.ac.za/

@SEEC_UCT

Occupancy: the proportion of sites occupied by a species

Figure 1: Some figure legend...

Occupancy: the proportion of sites occupied by a species

- Occupancy: $\Psi = \frac{occupied}{total}$ $logit(\Psi) = f(covariates)$

The species is not detected in all occupied cells

Detection probability p < 1

'Naive approach':

$$\Psi \times p = \frac{occupied}{total}$$

▶
$$logit(\Psi \times p) = f(covariates)$$

The species is not detected in all occupied cells

Repeated sampling

Assumptions:

- Closure (no colonisation or exctinction)
- ► No false detections

The species is not detected in all occupied cells

Survey histories:

- $1=\mathsf{detected}$
- $0 = not \ detected$
 - **►** (1,1) 000
 - **▶** (1,3) 111
 - **▶** (2,2) 001
 - **(**1,6) 000

The species is not detected in all occupied cells}

Survey histories:

- 1 = detected
- $0 = not \ detected$
 - **►** (1,1) 000
 - **(**1,3) 111
 - **(**2,2) 001
 - **(1,6)** 000

How many occupied cells have no detections?

A model for the detections

- Ψ = probability of a cell to be occupied
- ightharpoonup p probability of detecting the species given that the cell is occupied
- ightharpoonup K = number of visits to each site
- \triangleright y_i = number of detections at site i

$$Pr(Y = y_i) = \Psi \binom{K}{y_i} p^{y_i} (1 - p)^{K - y_i}, y_i > 0$$

= $\Psi (1 - p)^K + (1 - \Psi), y_i = 0$

Literature

one paper

another paper