Natjecateljsko programiranje

Fakultet elektrotehnike i računarstva 2013/2014 Završni ispit

Stranica 1 od 3 Bodovi: 100

Vremensko ograničenje: 1s

Memorijsko ograničenje: 32 MB

Neboderi

Autor: Marin Tomić

U Mirkovoj ulici nalazi se **N** nebodera u nizu. Nisu to bilo kakvi neboderi, to su **posebni** neboderi. Jedna od stvari koja ih čini posebnima su liftovi koji voze **samo prema gore**, dok prema dolje treba ići stepenicama. Na primjer, s trećeg kata liftom možemo doći samo na četvrti, peti, šesti, itd.

Druga stvar koja čini ovaj niz nebodera posebnima je **M** mostova koji povezuju susjedne nebodere na nekim katovima. Zbog sigurnosti, ti mostovi su **jednosmjerni**. Dvije susjedne zgrade **nikada** neće biti povezane na **istom katu** u oba smjera.

Mirko živi na prvom katu u S-tom neboderu i voli ponekad otići na vrh nekog od nebodera i uživati u pogledu. On je prava ljenčina i ne voli se služiti stepenicama osim ako ne mora. Zato ga zanima odgovor na sljedeće pitanje: na koliko načina mogu doći iz svog stana do vrha svakog nebodera koristeći se samo liftovima i mostovima?

Slika 1: Jedan od mogućih izgleda niza nebodera.

Natjecateljsko programiranje

Fakultet elektrotehnike i računarstva 2013/2014 Završni ispit

Stranica 2 od 3 Bodovi: 100

Vremensko ograničenje: 1s

Memorijsko ograničenje: 32 MB

Ulaz

U prvom retku nalaze se 3 prirodna broja N, M, S $(1 \le N \le 5 \cdot 10^5, 0 \le M \le 10^6, 1 \le S \le N)$.

U idućem retku nalazi se **N** prirodnih brojeva, **i**-ti broj predstavlja broj katova **i**-tog nebodera. Svi brojevi će biti iz intervala $[1, 10^9]$.

U idućih **M** redaka nalaze se po tri prirodna broja \mathbf{v} , \mathbf{z} i \mathbf{s} , opisi mostova između zgrada. Ako je $\mathbf{s} = 0$, postoji most koji povezuje nebodere $\mathbf{z} - 1$ i \mathbf{z} na \mathbf{v} -tom katu, ali je kretanje dozvoljeno samo od \mathbf{z} -tog prema ($\mathbf{z} - 1$)-om neboderu. Ako je $\mathbf{s} = 1$, postoji most koji povezuje nebodere \mathbf{z} i $\mathbf{z} + 1$ na \mathbf{v} -tom katu, ali je kretanje dozvoljeno samo od \mathbf{z} -tog prema ($\mathbf{z} + 1$)-om neboderu.

Izlaz

Ispišite **N** cijelih brojeva. U i-ti redak ispišite broj načina na koji Mirko može doći do vrha i-tog nebodera. Traženi brojevi mogu biti veliki pa ih **ispišite modulo 1 000 000 007**.

Bodovanje

U test podacima ukupno vrijednim 50% bodova, broj ${\bf N}$ i sve visine nebodera bit će manje ili jednake 1000.

Crtač primjera

Sa sustava možete preuzeti Python skriptu koja crta test primjer i sprema sliku u PNG datoteku. Pokreće se iz terminala na sljedeći način:

python nacrtaj.py test primjer ime slike

Na primjer, ako želite u datoteku slika.png spremiti crtež primjera koji se nalazi u datoteci primjer.txt napisat ćete:

python nacrtaj.py primjer.txt slika

Napomena: Crtač crta primjere koji se sastoje od najviše 20 zgrada čija visina ne prelazi 20.

Natjecateljsko programiranje

Fakultet elektrotehnike i računarstva 2013/2014 Završni ispit

Stranica 3 od 3 Bodovi: 100

Vremensko ograničenje: 1s

Memorijsko ograničenje: 32 MB

Test primjeri

Standardni ulaz	Standardni izlaz
4 8 3	7
6 4 6 3	6
2 2 0	4
3 1 1	2
4 2 0	
2 2 1	
1 3 0	
4 3 0	
2 3 1	
3 4 0	
2 7 1	13
7 7	21
1 1 1	
3 1 1	
5 1 1	
7 1 1	
2 2 0	
4 2 0	
6 2 0	
6 7 5	0
7 5 4 3 2 1	1
1 1 1	1
1 2 1	1
1 3 1	1
1 4 1	0
2 5 0	
3 4 0	
4 3 0	

Pojašnjenje trećeg primjera

Ovaj primjer odgovara slici iz teksta. Do prve i zadnje zgrade Mirko ne može doći jer nisu niti jednim mostom povezane s ostalim zgradama.