Лабораторная работа №2.2.3

«Измерение теплопроводности воздуха при атмосферном давлении»

Сирый Р. А.

01 апреля 2023 г.

Цель работы

Измерить коэффициент теплопроводности воздуха при атмосферном давлении в зависимости от температуры.

Оборудование

- Цилиндрическая колба с натянутой по оси нитью
- Термостат
- Вольтметр и амперметр (цифровые мультиметры)
- Эталонное сопротивление
- Источник постоянного напряжения
- Магазин сопротивлений

Ход работы

I. Теоретическое введение

Рассмотрим стационарную теплопроводность в цилиндрической геометрии (см. **рис.** 1). Пусть тонкая нить радиусом r_1 и длиной L помещена на оси цилиндра радиусом r_0 . Температура стенок цилиндра T_0 поддерживается постоянной. Пусть в нити выделяется некоторая тепловая мощность Q [Вт]. Если цилиндр длинный ($L\gg r_0$), можно пренебречь теплоотводом через его торцы. Тогда все параметры газа можно считать зависящими только от расстояния до оси системы r, а поток тепла \vec{q} направленным строго радиально. Закон Фурье для нашей системы имеет вид

$$q = -\kappa \frac{\mathrm{d}T}{\mathrm{d}r}.\tag{1}$$

В стационарном состоянии полный поток тепла через любую цилиндрическую поверхность радиуса r площадью $S=2\pi r L$ должен быть одинаков и равен Q=qS:

$$Q = -2\pi r L \cdot \kappa \frac{\mathrm{d}T}{\mathrm{d}r} = \text{const.} \tag{2}$$

Если перепад температуры $\Delta T = T_1 - T_0$ между нитью и стенками цилиндра мал ($\Delta T \ll T_0$), то в (4) можно пренебречь изменением теплопроводности от температуры в пределах системы, положив $\kappa \approx \kappa(T_0)$. Тогда разделяя переменные в (2) и интегрируя от радиуса нити до радиуса колбы, получим

$$Q = \frac{2\pi L}{\ln r_0/r_1} \kappa \Delta T. \tag{3}$$

II. Описание установки и методики измерений

Схема установки приведена на **рис. 2**. На оси полой цилиндрической трубки с внутренним диаметром $2r_0\approx 2$ см размещена металлическая нить диаметром $2r_1\approx 0.05$ мм и длиной $L\approx 40$ см (материал нити и точные геометрические размеры указаны в техническом описании установки). Полость трубки заполнена воздухом (полость через небольшое отверстие сообщается с атмосферой). Стенки трубки помещены в кожух, через которых пропускается вода из термостата, так

Рис. 1: Геометрия

задачи

что их температура t_0 поддерживается постоянной. Для предотвращения конвекции трубка расположена вертикально. Металлическая нить служит как источником тепла, так и датчиком температуры (термометром сопротивления). По пропускаемому через нить постоянному току I и напряжению U на ней вычисляется мощность нагрева по закону Джоуля—Ленца:

$$Q = UI, (4)$$

и сопротивление нити по закону Ома:

$$R = \frac{U}{I}. (5)$$

Рис. 2: Схема установки

Сопротивление нити является однозначной функцией её температуры R(t). Эта зависимость может быть измерена с помощью термостата по экстраполяции мощности нагрева к нулю $Q \to 0$, когда температура нити и стенок совпадают $t_1 \approx t_0$. Альтернативно, если материал нити известен, зависимость его удельного сопротивления от температуры может найдена по справочным данным. Для большинства металлов изменение сопротивления из-за нагрева невелико: при изменении температуры на $\Delta t = 1~^{\circ}C$ относительное изменение сопротивления нити $\frac{\Delta R}{R}$ может составлять приблизительно от 0.2% до 0.6% (в зависимости от её материала). Следовательно, измерение R важно провести с высокой точностью. Желательно, чтобы методика измерений и чувствительность приборов обеспечивали измерение тока и напряжения с относительной погрешностью, не превышающей 0.1% (т.е. необходительной погрешностью, не превышающей 0.1% (т.е. необходительное превышам 0.1% (т.е. необходительное превышам 0.1% (т.е. необходительное превышам

мо уверенно измерять 4–5 значащих цифр, что вполне реально при использовании современных цифровых мультиметров).

На рис. 3 приведена электрическая схема установки. Для измерения напряжения и тока используется два мультиметра, работающие в режимах вольтметра и амперметра соответственно. Подключение к нити $R_{\rm H}$ осуществляется по четырёхпроводной схеме. По двум проводам (токовая пара I_+ и I_-) через сопротивление пропускается измерительный ток, а два других (потенциальная пара U_+ и U_-) используются для параллельного подключения вольтметра. Сопротивление $R_{\rm 9}$ используется в качестве балластного для предотвращения перегорания нити. Заметим, что при такой схеме внутреннее сопротивление приборов и сопротивление подводящих проводов практически не влияет на измерения: сопротивление амперметра не влияет на результат вовсе, а сопротивление вольтметра составляет обычно 1–100 МОм, что при $R_{\rm H}\approx 10$ Ом вносит относительную ошибку не более 10^{-5} . Ток в цепи в обеих схемах регулируется с помощью магазина сопротивлений $R_{\rm M}$, включённого последовательно с источником напряжения.

В исследуемом интервале температур (20—80 °C) зависимость сопротивления от температуры можно с хорошей точностью аппроксимировать линейной функцией:

$$R(t) = R_{273} \cdot (1 + \alpha t),$$
 (6)

где t — температура в [°C], R_{273} — сопротивление нити при температуре 0 °C и

$$\alpha = \frac{1}{R_{273}} \frac{\mathrm{d}R}{\mathrm{d}T} \tag{7}$$

— температурный коэффициент сопротивления материала. Измерение зависимости (6) по данным для $Q \to 0$ позволит затем определять температуру нити t по значению её сопротивления R при произвольной мощности нагрева.

III. Обработка результатов

Параметры установки приведены в **таб. 1**. Коэффициент установки определим следующим образом:

$$\xi = \frac{\ln r_0/r_1}{2\pi L} \approx (1.97 \pm 0.26) \text{ m}^{-1},$$

$$\varepsilon_{\xi} = \sqrt{\left(\frac{\sigma_L}{L}\right)^2 + \frac{\frac{\sigma_{2r_0}^2}{(2r_0)^2} + \frac{\sigma_{2r_1}^2}{(2r_1)^2}}{\left(\ln r_0/r_1\right)^2}} \approx 1.4\%.$$

L, mm	$2r_0$, MM	$2r_1$, MKM	ξ , M^{-1}
400 ± 2	7.0 ± 0.1	50 ± 3	1.97 ± 0.26

Таблица 1: Параметры установки

Nº	$T, \circ C$	I, мА	U, MB	$R_{\scriptscriptstyle \mathrm{M}}, \ \mathrm{Om}$	Q, мк B т	$R_{\scriptscriptstyle \mathrm{H}},~\mathrm{Om}$
1		41.12 ± 0.02	834.0 ± 2.0	60.3 ± 0.01	34294.0 ± 84.0	20.282 ± 0.05
2		56.29 ± 0.02	1151.0 ± 2.0	36.8 ± 0.01	64790.0 ± 110.0	20.448 ± 0.036
3		67.2 ± 0.02	1384.0 ± 2.0	26.4 ± 0.01	93000.0 ± 140.0	20.595 ± 0.03
4		70.06 ± 0.02	1578.0 ± 2.0	20.1 ± 0.01	110550.0 ± 140.0	22.524 ± 0.029
5	23.5 ± 0.1	83.29 ± 0.02	1739.0 ± 2.0	15.9 ± 0.01	144840.0 ± 170.0	20.879 ± 0.025
6	25.5 ± 0.1	89.54 ± 0.02	1880.0 ± 2.0	12.8 ± 0.01	168340.0 ± 180.0	20.996 ± 0.023
7		95.22 ± 0.02	2011.0 ± 2.0	10.3 ± 0.01	191490.0 ± 190.0	21.12 ± 0.021
8		99.99 ± 0.02	2123.0 ± 2.0	8.4 ± 0.01	212280.0 ± 200.0	21.232 ± 0.02
9		104.37 ± 0.02	2227.0 ± 2.0	6.8 ± 0.01	232430.0 ± 210.0	21.338 ± 0.02
10		108.51 ± 0.02	2327.0 ± 2.0	5.4 ± 0.01	252500.0 ± 220.0	21.445 ± 0.019

Таблица 2: Измерения при $T=23.5~^{\circ}C$

No॒	T, ° C	I, mA	U, MB	$R_{\scriptscriptstyle \mathrm{M}},~\mathrm{O}_{\scriptscriptstyle \mathrm{M}}$	Q, мк B т	$R_{\scriptscriptstyle \mathrm{H}}, \ \mathrm{Om}$
1		40.72 ± 0.02	859.0 ± 2.0	60.3 ± 0.01	34978.0 ± 83.0	21.095 ± 0.05
2		55.57 ± 0.02	1181.0 ± 2.0	36.8 ± 0.01	65630.0 ± 110.0	21.252 ± 0.037
3		66.19 ± 0.02	1416.0 ± 2.0	26.4 ± 0.01	93730.0 ± 140.0	21.393 ± 0.031
4		74.76 ± 0.02	1611.0 ± 2.0	20.1 ± 0.01	120440.0 ± 150.0	21.549 ± 0.027
5	35.0 ± 0.1	81.77 ± 0.02	1772.0 ± 2.0	15.9 ± 0.01	144900.0 ± 170.0	21.671 ± 0.025
6	00.0 ± 0.1	87.79 ± 0.02	1912.0 ± 2.0	12.8 ± 0.01	167850.0 ± 180.0	21.779 ± 0.023
7		93.25 ± 0.02	2042.0 ± 2.0	10.3 ± 0.01	190420.0 ± 190.0	21.898 ± 0.022
8		97.85 ± 0.02	2154.0 ± 2.0	8.4 ± 0.01	210770.0 ± 200.0	22.013 ± 0.021
9		102.08 ± 0.02	2256.0 ± 2.0	6.8 ± 0.01	230290.0 ± 210.0	22.1 ± 0.02
10		106.03 ± 0.02	2354.0 ± 2.0	5.4 ± 0.01	249590.0 ± 220.0	22.201 ± 0.019

Таблица 3: Измерения при $T=35~^{\circ}C$

$N_{\overline{0}}$	T, ° C	I, мА	U, mB	$R_{\scriptscriptstyle \mathrm{M}}, \ \mathrm{Om}$	Q, мк B т	$R_{\scriptscriptstyle \mathrm{H}},~\mathrm{Om}$
1		40.39 ± 0.02	881.0 ± 2.0	60.3 ± 0.01	35584.0 ± 83.0	21.812 ± 0.051
2		54.96 ± 0.02	1207.0 ± 2.0	36.8 ± 0.01	66340.0 ± 110.0	21.961 ± 0.037
3		65.34 ± 0.02	1444.0 ± 2.0	26.4 ± 0.01	94350.0 ± 130.0	22.1 ± 0.031
4		73.69 ± 0.02	1638.0 ± 2.0	20.1 ± 0.01	120700.0 ± 150.0	22.228 ± 0.028
5	45.0 ± 0.1	80.49 ± 0.02	1799.0 ± 2.0	15.9 ± 0.01	144800.0 ± 160.0	22.351 ± 0.025
6	40.0 ± 0.1	86.33 ± 0.02	1939.0 ± 2.0	12.8 ± 0.01	167390.0 ± 180.0	22.46 ± 0.024
7		91.64 ± 0.02	2069.0 ± 2.0	10.3 ± 0.01	189600.0 ± 190.0	22.577 ± 0.022
8		96.07 ± 0.02	2179.0 ± 2.0	8.4 ± 0.01	209340.0 ± 200.0	22.681 ± 0.021
9		100.15 ± 0.02	2281.0 ± 2.0	6.8 ± 0.01	228440.0 ± 210.0	22.776 ± 0.02
10		103.98 ± 0.02	2378.0 ± 2.0	5.4 ± 0.01	247260.0 ± 210.0	22.87 ± 0.02

Таблица 4: Измерения при $T=45~^{\circ}C$

Nº	T, ° C	I, м A	U, mB	$R_{\scriptscriptstyle \mathrm{M}}, \ \mathrm{Om}$	Q, мк B т	$R_{\scriptscriptstyle \mathrm{H}},~\mathrm{Om}$
1		40.07 ± 0.02	902.0 ± 2.0	60.3 ± 0.01	36143.0 ± 82.0	22.511 ± 0.051
2		54.38 ± 0.02	1232.0 ± 2.0	36.8 ± 0.01	67000.0 ± 110.0	22.655 ± 0.038
3		64.51 ± 0.02	1470.0 ± 2.0	26.4 ± 0.01	94830.0 ± 130.0	22.787 ± 0.032
4		72.64 ± 0.02	1666.0 ± 2.0	20.1 ± 0.01	121020.0 ± 150.0	22.935 ± 0.028
5	55.0 ± 0.1	79.26 ± 0.02	1826.0 ± 2.0	15.9 ± 0.01	144730.0 ± 160.0	23.038 ± 0.026
6	00.0 ± 0.1	84.93 ± 0.02	1966.0 ± 2.0	12.8 ± 0.01	166970.0 ± 170.0	23.148 ± 0.024
7		90.08 ± 0.02	2095.0 ± 2.0	10.3 ± 0.01	188720.0 ± 180.0	23.257 ± 0.023
8		94.37 ± 0.02	2203.0 ± 2.0	8.4 ± 0.01	207900.0 ± 190.0	23.344 ± 0.022
9		98.31 ± 0.02	2304.0 ± 2.0	6.8 ± 0.01	226510.0 ± 200.0	23.436 ± 0.021
10		101.99 ± 0.02	2399.0 ± 2.0	5.4 ± 0.01	244670.0 ± 210.0	23.522 ± 0.02

Таблица 5: Измерения при $T=55~^{\circ}C$

Nº	T, ° C	I, мА	U, mB	$R_{\scriptscriptstyle \mathrm{M}}, \ \mathrm{Om}$	Q, мк B т	$R_{\scriptscriptstyle \mathrm{H}}, \ \mathrm{Om}$
1		39.61 ± 0.02	933.0 ± 2.0	60.3 ± 0.01	36956.0 ± 81.0	23.555 ± 0.052
2		53.52 ± 0.02	1269.0 ± 2.0	36.8 ± 0.01	67920.0 ± 110.0	23.711 ± 0.038
3		63.32 ± 0.02	1509.0 ± 2.0	26.4 ± 0.01	95550.0 ± 130.0	23.831 ± 0.032
4		71.15 ± 0.02	1704.0 ± 2.0	20.1 ± 0.01	121240.0 ± 150.0	23.949 ± 0.029
5	70.0 ± 0.1	77.49 ± 0.02	1865.0 ± 2.0	15.9 ± 0.01	144520.0 ± 160.0	24.068 ± 0.027
6	10.0 ± 0.1	82.91 ± 0.02	2004.0 ± 2.0	12.8 ± 0.01	166150.0 ± 170.0	24.171 ± 0.025
7		87.84 ± 0.02	2131.0 ± 2.0	10.3 ± 0.01	187190.0 ± 180.0	24.26 ± 0.023
8		91.9 ± 0.02	2238.0 ± 2.0	8.4 ± 0.01	205670.0 ± 190.0	24.353 ± 0.022
9		95.65 ± 0.02	2338.0 ± 2.0	6.8 ± 0.01	223630.0 ± 200.0	24.443 ± 0.022
10		99.19 ± 0.02	2432.0 ± 2.0	5.4 ± 0.01	241230.0 ± 200.0	24.519 ± 0.021

Таблица 6: Измерения при $T=70~^{\circ}C$

Рис. 4: Нагрузочные кривые

Рис. 5: $R_0(t)$

Рис. 6: $\kappa(t)$

Рис. 7: $\kappa(t)$

Результаты измерений приведены в **таб. 2**–**6**, графики нагрузочных кривых на **рис. 4**, график сопротивления от температуры на **рис. 5**, график $\kappa(t)$ на **рис. 6** и, наконец, график для определения степенной зависимости $\kappa \propto T^{\beta}$ на **рис. 7**. Итоговые значения величин:

$$\begin{split} R_{273} &= (18.446 \pm 0.007) \text{ Om}, & \varepsilon_{R_{273}} \approx 0.04\%, \\ \frac{\mathrm{d}R_0}{\mathrm{d}t} &= (0.07060 \pm 0.00014) \text{ Om} \cdot {}^{\circ}C^{-1}, & \varepsilon_{\frac{\mathrm{d}R_0}{\mathrm{d}t}} \approx 0.2\%, \\ \alpha &= (3.828 \pm 0.008) \cdot 10^{-3} \, {}^{\circ}C^{-1}, & \varepsilon_{\alpha} \approx 0.2\%, \\ \beta &= 0.845 \pm 0.025, & \varepsilon_{\beta} \approx 3\%. \end{split}$$

Значения коэффициента теплопроводности:

N⁰	1	2	3	4	5
κ , $MBT \cdot (K \cdot M)^{-1}$	26.08 ± 0.35	26.87 ± 0.37	27.69 ± 0.38	28.49 ± 0.39	29.43 ± 0.4

Вывод

Коэффициенты теплопроводности и температурный коэффициент сопротивления нити совпадают с табличными. Степень β в зависимости $\kappa \propto T^{\beta}$ не соответствует теоретически выведенному $\beta_0 = 1/2$, что говорит о неприменимости модели твердых шариков.