Deň otvorených dverí

Matematika mnohorozmerných dát

Lukáš Lafférs

UMBmath
O umbmath
KM FPV UMB

Tri príklady viacrozmerných dát

- Tváre
- Jedlo
- Sedemboj

Redukcia dimenzie je užitočná.

Rôznym spôsobom.

Tváre

• 12000 pixelov

Jedlo

4 druhov živín

Sedemboj

7 športov

Príklad 1: tváre

Príklad 1: tváre

Matica = tabuľka čísel

85x35

Operácie s maticami

Matice môžu byť: veľké, malé, úzke, široké

Rovnako veľké matice môžeme napr. sčítať alebo odčítať.

Medzi maticami vieme merať vzdialenosti

$$\left| \left| \begin{array}{c} \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{array} \right| = 0,01$$

$$\left| \left| \begin{array}{c} \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{array} \right| = 2,3$$

bázické tváre

Rekonštrukcia pomocou 36 hlavných komponentov

Sample of original faces before running PCA:

Zdroj: https://github.com/gbuesing/pca/tree/master/examples

'Bázické tváre'

bázické tváre

...matematika

Príklad 2: jedlo

Príklad 2: jedlo

Obr.: Zdroj: https://www.quora.com/What-is-an-intuitive-explanation-for-PCA

Obr.: Zdroj: https://www.quora.com/What-is-an-intuitive-explanation-for-PCA

Guinea Hen

Obr.: Zdroj: wiki

Príklad 3: sedemboj

Príklad 3: sedemboj

> heptathlon

	hurdles	highjump	shot	run200m	longjump	javelin	run800m
Joyner-Kersee (USA)	3.73	1.86	15.80	4.05	7.27	45.66	34.92
John (GDR)	3.57	1.80	16.23	2.96	6.71	42.56	37.31
Behmer (GDR)	3.22	1.83	14.20	3.51	6.68	44.54	39.23
Sablovskaite (URS)	2.81	1.80	15.23	2.69	6.25	42.78	31.19
Choubenkova (URS)	2.91	1.74	14.76	2.68	6.32	47.46	35.53
Schulz (GDR)	2.67	1.83	13.50	1.96	6.33	42.82	37.64
Fleming (AUS)	3.04	1.80	12.88	3.02	6.37	40.28	30.89
Greiner (USA)	2.87	1.80	14.13	2.13	6.47	38.00	29.78
Lajbnerova (CZE)	2.79	1.83	14.28	1.75	6.11	42.20	27.38
Bouraga (URS)	3.17	1.77	12.62	3.02	6.28	39.06	28.69
Wijnsma (HOL)	2.67	1.86	13.01	1.58	6.34	37.86	31.94
Dimitrova (BUL)	3.18	1.80	12.88	3.02	6.37	40.28	30.89
Scheider (SWI)	2.57	1.86	11.58	1.74	6.05	47.50	28.50
Braun (FRG)	2.71	1.83	13.16	1.83	6.12	44.58	20.61
Ruotsalainen (FIN)	2.63	1.80	12.32	2.00	6.08	45.44	26.37
Yuping (CHN)	2.49	1.86	14.21	1.61	6.40	38.60	16.76
Hagger (GB)	2.95	1.80	12.75	1.14	6.34	35.76	24.95
Brown (USA)	2.35	1.83	12 69	1.78	6.13	44 34	17 00

Chceli by sme tento 7 rozmerný priestor zredukovať do 1 rozmerného.

Ako veľmi bude toto číslo podobné skutočnému skóre?

- Naša metóda zredukovala 7D do 1D
- Nikdy nevidela dáta o nameranom skóre (!!!)
- Napriek tomu sme dostali skoro totožné výsledky
- Interpretácia?

Zhrnutie

Tváre

- $\bullet \ 12000D \rightarrow 36D$
- úspora pamäte

Jedlo

- $\bullet \ 4D \rightarrow 2D$
- vizualizácia

Sedemboj

- $\bullet \ 7D \to 1D$
- porozumenie

