ELSEVIER

Contents lists available at ScienceDirect

Scientific African

journal homepage: www.elsevier.com/locate/sciaf

A new biased regression estimator: Theory, simulation and application *

Issam Dawoud^a, Adewale F. Lukman^{b,*}, Abdul-Rahaman Haadi^c

- ^a Department of Mathematics, Al-Agsa University, Gaza, Palestine
- ^b Department of Epidemiology and Biostatistics, University of Medical Sciences, Nigeria
- ^c Department of Statistical Sciences, Tamale Technical University, Ghana

ARTICLE INFO

Article history: Received 11 August 2021 Revised 21 November 2021 Accepted 25 January 2022

Editor DR B Gyampoh

Keywords: Two-parameter estimator Liu estimator Multicollinearity Ridge regression estimator

ABSTRACT

The linear regression model explores the relationship between a response variable and one or more independent variables. The ordinary least squared estimator is usually adopted to estimate the parameters of the model when the independent variables are uncorrelated. However, the estimator performance dropped when the independent variables are correlated- a situation known as multicollinearity. This paper developed a new biased regression estimator based on a one-parameter and two-parameter estimators as an alternative to the ordinary least squares estimator when the independent variables are linearly dependent. Theoretical comparison, simulation and real-life data were carried out. The results revealed that the new estimator dominates other estimators considered in this study.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of African Institute of

Mathematical Sciences / Next Einstein Initiative.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Introduction

The linear regression model is defined as:

$$y = X\beta + \varepsilon, \ \varepsilon \sim N(0, \ \sigma^2 I_n) \tag{1}$$

where y is an $n \times 1$ vector of the dependent variable, X is a known $n \times p$ matrix of explanatory variables, β is an $p \times 1$ vector of unknown regression parameters. The ordinary least squares estimator (OLS) of β in (1) is defined by

$$\hat{\beta} = S^{-1}X'y \tag{2}$$

where S = X'X.

In many applications, multiple linear regression models are used for building models of real-life datasets. However, some problems came out, and the most frequent one is called the multicollinearity problem. Variuos regression estimators were proposed by different researchers to tackle this problem [1–14].

The paper aims to develop a new estimator to handle multicollinearity in the linear regression model. Hence, compare its performance with some existing estimators [3,6,8,14].

E-mail address: adewale.folaranmi@lmu.edu.ng (A.F. Lukman).

Editor: DR B Gyampoh

^{*} Corresponding author.

Some existing biased estimators

The canonical form of Eq. (1) is

$$y = Z\alpha + \varepsilon \tag{3}$$

where Z = XD and $\alpha = D'\beta$. Here, D is an orthogonal matrix such that $Z'Z = D'X'XD = \Gamma = diag(\gamma_1, \gamma_2, ..., \gamma_p)$. The OLS estimator of α is then

$$\hat{\alpha} = \Gamma^{-1} Z' y, \tag{4}$$

$$MSEM(\hat{\alpha}) = \sigma^2 \Gamma^{-1}. \tag{5}$$

The ORR estimator of α is

$$\hat{\alpha}_{\nu} = W \Gamma \hat{\alpha},$$
 (6)

where $W = [\Gamma + kI_p]^{-1}$ and k is the biasing parameter.

The mean squared error matrix (MSEM) of the estimator of α would be

$$MSEM(\hat{\alpha}_k) = \sigma^2 W \Gamma W + (W \Gamma - I_p) \alpha \alpha' (W \Gamma - I_p)'$$
(7)

The biasing parameter k can be estimated as follows [15]:

$$\hat{k}_{HM} = \frac{p\,\hat{\sigma}^2}{\sum\limits_{i=1}^p \hat{\alpha}_i^2} \tag{8}$$

The Liu estimator of α is

$$\hat{\alpha}_d = F \hat{\alpha},$$
 (9)

where $F = [\Gamma + I_p]^{-1} [\Gamma + dI_p]$ and the biasing parameter d is estimated as follows:

$$\hat{d}_{opt} = 1 - \hat{\sigma}^2 \left[\frac{\sum_{i=1}^{p} (1/(\gamma_i(\gamma_i + 1)))}{\sum_{i=1}^{p} (\hat{\alpha}_i^2/(\gamma_i + 1)^2)} \right], \tag{10}$$

$$MSEM(\hat{\alpha}_d) = \sigma^2 F \Gamma^{-1} F' + (1 - d)^2 (\Gamma + I_p)^{-1} \alpha \alpha' (\Gamma + I_p)^{-1}. \tag{11}$$

Alternatively, d can be estimated as follows especially when its value in Eq. (10) is negative.

$$\hat{d}_{alt} = \min \left[\frac{\hat{\alpha}_i^2}{\left(\hat{\sigma}^2 / \gamma_i \right) + \hat{\alpha}_i^2} \right]_{i=1}^p \tag{12}$$

The TP estimator of α [8] is

$$\hat{\alpha}_{TP} = R \, \hat{\alpha},\tag{13}$$

where $R = (\Gamma + kI_p)^{-1}(\Gamma + kdI_p)$. k and d of the TP estimator are defined by

$$\hat{k}_{\min}(TP) = \min \left[\frac{\hat{\sigma}^2}{\hat{\alpha}_i^2 - d\left(\left(\hat{\sigma}^2/\gamma_i\right) + \hat{\alpha}_i^2\right)} \right]$$
(14)

$$\hat{d}_{\min}(TP) = \min \left[\frac{\gamma_i \left(\hat{k}_{\min} \hat{\alpha}_i^2 - \hat{\sigma}^2 \right)}{\hat{k}_{\min} \left(\hat{\sigma}^2 + \hat{\alpha}_i^2 \gamma_i \right)} \right]$$
(15)

$$MSEM(\hat{\alpha}_{TP}) = \sigma^2 R \Gamma^{-1} R' + [R - I_p] \alpha \alpha' [R - I_p]'$$
(16)

If \hat{d}_{opt} is negative, we can use \hat{d}_{alt} that was derived by [8].

The KL estimator of α [14] is

$$\hat{\alpha}_{KL} = W M \hat{\alpha}, \tag{17}$$

where $M = (\Gamma - k I_p)$.

$$\hat{k}_{\min}(KL) = \min \left[\frac{\hat{\sigma}^2}{2\hat{\alpha}_i^2 + (\hat{\sigma}^2/\lambda_i)} \right]$$
 (18)

$$MSEM(\hat{\alpha}_{KL}) = \sigma^2 W M \Gamma^{-1} M' W' + [WM - I_p] \alpha \alpha' [WM - I_p]'$$
(19)

The proposed nbr estimator

Following a method similar to that proposed by Liu [6], Yang and Chang [10], and Kaciranlar et al. [16], the proposed new biased regression (NBR) estimator for α is obtained by replacing $\hat{\alpha}_{KL}$ with $\hat{\alpha}$ in the TP estimator and becomes as follows

$$\hat{\alpha}_{NRR} = RWM\,\hat{\alpha} \tag{20}$$

Properties of the proposed nbr estimator

$$E(\hat{\alpha}_{NBR}) = RW M E(\hat{\alpha}) = RW M \alpha. \tag{21}$$

The proposed NBR estimator is a biased estimator of α . The amount of bias and covariance are given respectively,

$$B(\hat{\alpha}_{NBR}) = [RWM - I_p]\alpha. \tag{22}$$

$$D(\hat{\alpha}_{NBR}) = \sigma^2 RWM \Gamma^{-1} M'W'R'$$
(23)

and the MSEM is defined by

$$MSEM(\hat{\alpha}_{NBR}) = \sigma^2 RWM \Gamma^{-1}M'W'R' + [RWM - I_p] \alpha \alpha' [RWM - I_p]'$$
(24)

The following lemmas are useful to compare the estimators theoretically.

Lemma 1. Let G be an $n \times n$ positive definite matrix, that is G > 0 and α be some vector; then, $G - \alpha \alpha' > 0$ if and only if $\alpha' G^{-1} \alpha < 1$ [17].

Lemma 2. Let $\alpha_i = H_i y$, i = 1, 2 be two linear estimators of α . Suppose that $D = Cov(\hat{\alpha}_1) - Cov(\hat{\alpha}_2) > 0$, where $Cov(\hat{\alpha}_i) i = 1, 2$ be the covariance matrix of $\hat{\alpha}_i$ and $b_i = Bias(\hat{\alpha}_i) = (H_i X - I)\alpha$, i = 1, 2. Consequently,

$$\Delta(\hat{\alpha}_1 - \hat{\alpha}_2) = MSEM(\hat{\alpha}_1) - MSEM(\hat{\alpha}_2) = \sigma^2 D + b_1 b_1' - b_2 b_2' > 0$$

$$\tag{25}$$

if and only if $b_2' [\sigma^2 D + b_1' b_1]^{-1} b_2 < 1$ where $MSEM(\hat{\alpha}_i) = Cov(\hat{\alpha}_i) + b_i b_i'$ [18].

The article was organized as follows: We compare the proposed NBR estimator with the existing estimators and derive the biasing parameters in Section 2. A simulation study and a real-life example were conducted in Sections 3 and 4, respectively. Finally, concluding remarks are given in section 5.

Comparison among the estimators

In this section, we compared the performances of the estimator theoretically.

 $\hat{\alpha}$ and $\hat{\alpha}_{NBR}$

The difference between MSEM $(\hat{\alpha})$ and MSEM $(\hat{\alpha}_{NBR})$ is given by

$$MSEM\left(\hat{\alpha}\right) - MSEM\left(\hat{\alpha}_{NBR}\right) = \sigma^{2}\left(\Gamma^{-1} - RWM\Gamma^{-1}M'W'R'\right) - [RWM - I_{p}]\alpha\alpha'[RWM - I_{p}]'$$
(26)

Theorem 3.1. The estimator $\hat{\alpha}_{NBR}$ is superior to estimator $\hat{\alpha}$ using the MSEM criterion, that is, MSEM $(\hat{\alpha})$ – MSEM $(\hat{\alpha}_{NBR})$ > 0 if and only if

$$\alpha'[RWM - I_p]' \left[\sigma^2 \left(\Gamma^{-1} - RWM \Gamma^{-1}M'W'R'\right)\right] \left[RWM - I_p\right] \alpha < 1 \tag{27}$$

Proof:

$$Difference = \sigma^{2} \left(\Gamma^{-1} - RWM \Gamma^{-1}M'W'R' \right)$$

$$= \sigma^{2} \operatorname{diag} \left\{ \frac{1}{\gamma_{i}} - \frac{(\gamma_{i} + kd)^{2}(\gamma_{i} - k)^{2}}{\gamma_{i} (\gamma_{i} + k)^{4}} \right\}_{i=1}^{p}$$
(28)

where $\Gamma^{-1} - RWM \Gamma^{-1}M'W'R'$ will be positive definite (pd) if and only if $(\gamma_i + k)^4 - (\gamma_i + kd)^2(\gamma_i - k)^2 > 0$.

 $\hat{\alpha}_k$ and $\hat{\alpha}_{NBR}$

The difference between MSEM $(\hat{\alpha}_k)$ and MSEM $(\hat{\alpha}_{NBR})$ is given by

$$MSEM (\hat{\alpha}_k) - MSEM (\hat{\alpha}_{NBR}) = \sigma^2 (W \Gamma W' - RWM \Gamma^{-1}M'W'R') + [W \Gamma - I_p] \alpha \alpha' [W \Gamma - I_p]' - [RWM - I_p] \alpha \alpha' [RWM - I_p]'$$
(29)

Theorem 3.2. The estimator $\hat{\alpha}_{NBR}$ is superior to estimator $\hat{\alpha}_k$ using the MSEM criterion, that is, MSEM $(\hat{\alpha}_k)$ – MSEM $(\hat{\alpha}_{NBR})$ > 0 if and only if

$$\alpha'[RWM - I_p]' \left[V_1 + [W \Gamma - I_p] \alpha \alpha' [W \Gamma - I_p]' \right] [RWM - I_p] \alpha < 1$$
(30)

where $V_1 = \sigma^2 (W \Gamma W' - RWM \Gamma^{-1}M'W'R')$

Proof:

$$V_{1} = \sigma^{2} \left(W \Gamma W' - RWM \Gamma^{-1}M'W'R' \right)$$

$$= \sigma^{2} \operatorname{diag} \left\{ \frac{\gamma_{i}}{(\gamma_{i}+k)^{2}} - \frac{(\gamma_{i}+kd)^{2}(\gamma_{i}-k)^{2}}{\gamma_{i}(\gamma_{i}+k)^{4}} \right\}_{i=1}^{p}$$
(31)

where $W \Gamma W' - RWM \Gamma^{-1}M'W'R'$ will be pd if and only if $\gamma_i^2(\gamma_i + k)^2 - (\gamma_i + kd)^2(\gamma_i - k)^2 > 0$.

 $\hat{\alpha}_d$ and $\hat{\alpha}_{NBR}$

The difference between MSEM $(\hat{\alpha}_d)$ and MSEM $(\hat{\alpha}_{NBR})$ is given by

$$MSEM \left(\hat{\alpha}_{d}\right) - MSEM \left(\hat{\alpha}_{S}\right) = \sigma^{2} \left(F \Gamma^{-1} F' - RWM \Gamma^{-1} M' W' R'\right) + (1 - d)^{2} (\Gamma + I_{p})^{-1} \alpha \alpha' (\Gamma + I_{p})^{-1} - (RWM - I_{p}) \alpha \alpha' [RWM - I_{p}]'$$

$$(32)$$

Theorem 3.3. The estimator $\hat{\alpha}_{NBR}$ is superior to estimator $\hat{\alpha}_d$ using the MSEM criterion, that is, MSEM $(\hat{\alpha}_d)$ – MSEM $(\hat{\alpha}_{NBR})$ > 0 if and only if

$$\alpha'[RWM - I_p]' \left[V_2 + (1 - d)^2 (\Gamma + I_p)^{-1} \alpha \alpha' (\Gamma + I_p)^{-1} \right] [RWM - I_p] \alpha < 1$$
(33)

where $V_2 = \sigma^2 (F \Gamma^{-1} F' - RWM \Gamma^{-1} M' W' R')$ Proof:

$$V_{2} = \sigma^{2} \left(F \Gamma^{-1} F' - RWM \Gamma^{-1} M' W' R' \right)$$

$$= \sigma^{2} \operatorname{diag} \left\{ \frac{(\gamma_{i} + d)^{2}}{\gamma_{i} (\gamma_{i} + 1)^{2}} - \frac{(\gamma_{i} + k d)^{2} (\gamma_{i} - k)^{2}}{\gamma_{i} (\gamma_{i} + k)^{4}} \right\}_{i=1}^{p}$$
(34)

where $F \Gamma^{-1}F' - RWM \Gamma^{-1}M'W'R'$ will be pd if and only if $(\gamma_i + k)^4 (\gamma_i + d)^2 - (\gamma_i + kd)^2 (\gamma_i - k)^2 (\gamma_i + 1)^2 > 0$. $\hat{\alpha}_{TP}$ and $\hat{\alpha}_{NRR}$

The difference between MSEM $(\hat{\alpha}_{TP})$ and MSEM $(\hat{\alpha}_{NBR})$ is given by

$$MSEM \left(\hat{\alpha}_{TP}\right) - MSEM \left(\hat{\alpha}_{NBR}\right) = \sigma^{2} \left(R \Gamma^{-1} R' - RWM \Gamma^{-1} M' W' R'\right) + \left[R - I_{p}\right] \alpha \alpha' \left[R - I_{p}\right]' - \left[RWM - I_{p}\right] \alpha \alpha' \left[RWM - I_{p}\right]'$$

$$(35)$$

Theorem 3.4. The estimator $\hat{\alpha}_{NBR}$ is superior to estimator $\hat{\alpha}_{TP}$ using the MSEM criterion, that is, MSEM $(\hat{\alpha}_{TP})$ – MSEM $(\hat{\alpha}_{NBR})$ > 0 if and only if

$$\alpha'[RWM - I_p]' \left[V_3 + [R - I_p] \alpha \alpha' [R - I_p]' \right] [RWM - I_p] \alpha < 1$$

$$(36)$$

where $V_3 = \sigma^2 (R \Gamma^{-1} R - RWM \Gamma^{-1} M' W' R')$

$$V_{3} = \sigma^{2} \left(R \Gamma^{-1} R - RWM \Gamma^{-1} M' W' R' \right)$$

$$= \sigma^{2} \operatorname{diag} \left\{ \frac{(y_{i} + kd)^{2}}{y_{i}(y_{i} + k)^{2}} - \frac{(y_{i} + kd)^{2}(y_{i} - k)^{2}}{y_{i}(y_{i} + k)^{4}} \right\}_{i=1}^{p}$$
(37)

where $R\Gamma^{-1}R - RWM\Gamma^{-1}M'W'R'$ will be pd if and only if $(\gamma_i + k)^2 - (\gamma_i - k)^2 > 0$.

 $\hat{\alpha}_{KI}$ and $\hat{\alpha}_{NRR}$

The difference between MSEM ($\hat{\alpha}_{KL}$) and MSEM ($\hat{\alpha}_{NBR}$) is given by

$$MSEM \left(\hat{\alpha}_{KL}\right) - MSEM \left(\hat{\alpha}_{NBR}\right) = \sigma^{2} \left(WM \Gamma^{-1} M' W' - RWM \Gamma^{-1} M' W' R'\right) + \left[WM - I_{p}\right] \alpha \alpha' \left[WM - I_{p}\right]' - \left[RWM - I_{p}\right] \alpha \alpha' \left[RWM - I_{p}\right]'$$

$$(38)$$

Theorem 3.5. The estimator $\hat{\alpha}_{NBR}$ is superior to estimator $\hat{\alpha}_{KL}$ using the MSEM criterion, that is, MSEM $(\hat{\alpha}_{KL})$ – MSEM $(\hat{\alpha}_{NBR})$ > 0 if and only if

$$\alpha'[RWM - I_p]' \left[V_4 + [WM - I_p] \alpha \alpha' [WM - I_p]' \right] [RWM - I_p] \alpha < 1$$

$$(39)$$

where $V_4 = \sigma^2 (WM \Gamma^{-1}M'W' - RWM \Gamma^{-1}M'W'R')$ Proof:

$$V_{4} = \sigma^{2} \left(WM \Gamma^{-1}M'W' - RWM \Gamma^{-1}M'W'R' \right)$$

$$= \sigma^{2} diag \left\{ \frac{(\gamma_{i} - k)^{2}}{\gamma_{i} (\gamma_{i} + k)^{2}} - \frac{(\gamma_{i} + kd)^{2} (\gamma_{i} - k)^{2}}{\gamma_{i} (\gamma_{i} + k)^{4}} \right\}_{i=1}^{p}$$
(40)

where $WM \Gamma^{-1}M'W' - RWM \Gamma^{-1}M'W'R'$ is pd since $(\gamma_i + k)^2 - (\gamma_i + kd)^2 > 0$.

Choice of the biasing parameters

Researchers have introduced different estimators of k and d for various regression models see [15,19-23]. Firstly, let d be kept constant, then k can be obtained as follows:

 $MSEM(\hat{\alpha}_{NBR}) = E\left((\hat{\alpha}_{NBR} - \alpha)(\hat{\alpha}_{NBR} - \alpha)\right),$

 $m(k, d) = tr(MSEM(\hat{\alpha}_{NRR})),$

$$m(k, d) = \sigma^2 \sum_{i=1}^{p} \frac{(\gamma_i + kd)^2 (\gamma_i - k)^2}{\gamma_i (\gamma_i + k)^4} + \sum_{i=1}^{p} \frac{(k^2 (1+d) + \gamma_i k (3-d))^2 \alpha_i^2}{(\gamma_i + k)^4}$$
(41)

Differentiating m(k, d) with respect to k and setting $(\partial m(k, d)/\partial k) = 0$, we get

$$k = \frac{-(\gamma_i^2 \alpha_i^2 (3 - d) + \sigma^2 \gamma_i (1 - d))}{2(\sigma^2 d + \gamma_i \alpha_i^2 (1 + d))}$$
(42)

$$\pm \frac{\gamma_{i}\sqrt{\gamma_{i}^{2}(\alpha_{i}^{2})^{2}(d-3)^{2}+2\gamma_{i}\sigma^{2}\alpha_{i}^{2}(5-2d+d^{2})+(\sigma^{2})^{2}(1+d)^{2}}}{2(\sigma^{2}d+\gamma_{i}\alpha_{i}^{2}(1+d))}$$
(42)

Since k > 0, so

$$k = \frac{-(\gamma_i^2 \alpha_i^2 (3-d) + \sigma^2 \gamma_i (1-d))}{2(\sigma^2 d + \gamma_i \alpha_i^2 (1+d))}$$
(43)

$$+\frac{\gamma_{i}\sqrt{\gamma_{i}^{2}(\alpha_{i}^{2})^{2}(d-3)^{2}+2\gamma_{i}\sigma^{2}\alpha_{i}^{2}(5-2d+d^{2})+(\sigma^{2})^{2}(1+d)^{2}}}{2(\sigma^{2}d+\gamma_{i}\alpha_{i}^{2}(1+d))}.$$
(43)

Since, the optimal estimated value of k in (43) is given by

$$\hat{k} = \frac{-(\gamma_i^2 \hat{\alpha}_i^2 (3-d) + \hat{\sigma}^2 \gamma_i (1-d))}{2(\hat{\sigma}^2 d + \gamma_i \hat{\alpha}_i^2 (1+d))}$$
(44)

$$+\frac{\gamma_{i}\sqrt{\gamma_{i}^{2}(\hat{\alpha}_{i}^{2})^{2}(d-3)^{2}+2\gamma_{i}\hat{\sigma}^{2}\hat{\alpha}_{i}^{2}(5-2d+d^{2})+(\hat{\sigma}^{2})^{2}(1+d)^{2}}}{2(\hat{\sigma}^{2}d+\gamma_{i}\hat{\alpha}_{i}^{2}(1+d))}.$$
(44)

and,

$$\hat{k}_{\min}(NBR) = \min \begin{cases} \hat{k} = \frac{-(\gamma_i^2 \hat{\alpha}_i^2 (3-d) + \hat{\sigma}^2 \gamma_i (1-d))}{2 \left(\hat{\sigma}^2 d + \gamma_i \hat{\alpha}_i^2 (1+d)\right)} \\ + \frac{\gamma_i \sqrt{\gamma_i^2 \left(\hat{\alpha}_i^2\right)^2 (d-3)^2 + 2 \gamma_i \hat{\sigma}^2 \hat{\alpha}_i^2 \left(5 - 2d + d^2\right) + \left(\hat{\sigma}^2\right)^2 (1+d)^2}}{2 \left(\hat{\sigma}^2 d + \gamma_i \hat{\alpha}_i^2 (1+d)\right)} \end{cases}_{i=1}^{p}.$$

$$(45)$$

Then, the optimal value of d can be found by differentiating m(k, d) with respect to d for a fixed k and setting $(\partial m(k, d)/\partial d) = 0$, we obtain

$$d = \frac{\gamma_i^2 \left(\sigma^2 - 3\alpha_i^2 k\right) - \gamma_i k \left(\sigma^2 + \alpha_i^2 k\right)}{k \left(k - \gamma_i\right) \left(\sigma^2 + \gamma_i \alpha_i^2\right)} \tag{46}$$

and the optimal d with estimated parameters is

$$\hat{d} = \frac{\gamma_i^2 \left(\hat{\sigma}^2 - 3\,\hat{\alpha}_i^2 \hat{k}\right) - \gamma_i \hat{k} \left(\hat{\sigma}^2 + \hat{\alpha}_i^2 \hat{k}\right)}{\hat{k} \left(\hat{k} - \gamma_i\right) \left(\hat{\sigma}^2 + \gamma_i \,\hat{\alpha}_i^2\right)} \tag{47}$$

Also,

$$\hat{d}_{\min}(NBR) = \min \left\{ \frac{\gamma_i^2 \left(\hat{\sigma}^2 - 3 \, \hat{\alpha}_i^2 \hat{k}_{\min}(NBR) \right) - \gamma_i \hat{k}_{\min}(()) \left(\hat{\sigma}^2 + \hat{\alpha}_i^2 \hat{k}_{\min}(NBR) \right)}{\hat{k}_{\min}(NBR) \left(\hat{k}_{\min}(NBR) - \gamma_i \right) \left(\hat{\sigma}^2 + \gamma_i \, \hat{\alpha}_i^2 \right)} \right\}_{i=1}^{p}$$

$$(48)$$

The parameters k and d in $\hat{\alpha}_{NBR}$ are obtained iteratively as follows:

Step 1: Calculate an initial estimate of d using $\hat{d} = \min(\frac{\hat{\sigma}^2}{\hat{\sigma}^2})$.

Step2: Calculate $\hat{k}_{\min}(NBR)$ from (45) using \hat{d} in step 1.

Step 3: Calculate $\hat{d}_{\min}(NBR)$ in (48) by using $\hat{k}_{\min}(NBR)$ in step 2.

Step 4: If $\hat{d}_{min}(NBR)$ is not between 0 and 1, use $\hat{d}_{min}(NBR) = \hat{d}$.

Table 1 Estimated MSE when p = 3 and n=50.

$k \rho = 0.9$	d	σ	OLS	ORR	Liu	TP	KL	NBR
0.3	0.2	1	0.21360	0.20050	0.18210	0.20310	0.18790	0.17880
		5	5.33940	5.01350	4.55070	5.07780	4.69820	4.46930
		10	21.3576	20.0540	18.2030	20.3113	18.7931	17.8775
	0.5	1	0.21360	0.20050	0.19360	0.20700	0.18790	0.18220
		5	5.33940	5.01350	4.83880	5.17510	4.69820	4.55450
		10	21.3576	20.0540	19.3552	20.7005	18.7931	18.2180
	0.8	1	0.21360	0.20050	0.20540	0.21090	0.18790	0.18560
		5	5.33940	5.01350	5.13610	5.27340	4.69820	4.64050
		10	21.3576	20.0540	20.5443	21.0935	18.7931	18.5620
0.6	0.2	1	0.21360	0.18870	0.18210	0.19360	0.16550	0.15030
		5	5.33940	4.71760	4.55070	4.83880	4.13610	3.75280
		10	21.3576	18.8707	18.2030	19.3552	16.5443	15.0111
	0.5	1	0.21360	0.18870	0.19360	0.20090	0.16550	0.15590
		5	5.33940	4.71760	4.83880	5.02350	4.13610	3.89420
		10	21.3576	18.8707	19.3552	20.0941	16.5443	15.5769
	0.8	1	0.21360	0.18870	0.20540	0.20850	0.16550	0.16160
		5	5.33940	4.71760	5.13610	5.21180	4.13610	4.03840
		10	21.3576	18.8707	20.5443	20.8474	16.5443	16.1536
0.9	0.2	1	0.21360	0.17800	0.18210	0.18480	0.14590	0.12690
		5	5.33940	4.44830	4.55070	4.61970	3.64220	3.16040
		10	21.3576	17.7933	18.2030	18.4790	14.5685	12.6409
	0.5	1	0.21360	0.17800	0.19360	0.19530	0.14590	0.13380
		5	5.33940	4.44830	4.83880	4.88320	3.64220	3.33680
		10	21.3576	17.7933	19.3552	19.5330	14.5685	13.3467
	0.8	1	0.21360	0.17800	0.20540	0.20620	0.14590	0.14100
		5	5.33940	4.44830	5.13610	5.15440	3.64220	3.51830
		10	21.3576	17.7933	20.5443	20.6176	14.5685	14.0730
$\rho = 0.99$								
0.3	0.2	1	1.94520	1.12580	0.68130	1.27170	0.53080	0.34950
		5	48.6289	28.1455	17.0310	31.7937	13.2686	8.73730
		10	194.515	112.582	68.1241	127.174	53.0746	34.9493
	0.5	1	1.94520	1.12580	1.07860	1.50750	0.53080	0.41300
		5	48.6289	28.1455	26.9655	37.6864	13.2686	10.3236
		10	194.515	112.582	107.862	150.745	53.0746	41.2947
	0.8	1	1.94520	1.12580	1.56790	1.76330	0.53080	0.48180
		5	48.6289	28.1455	39.1977	44.0837	13.2686	12.0455
		10	194.515	112.582	156.790	176.334	53.0746	48.1820
0.6	0.2	1	1.94520	0.73490	0.68130	0.93040	0.10720	0.05580
		1 5	48.6289	18.3723	17.0310	23.2587	2.67820	1.39030
		10	194.515	73.4894	68.1241	93.0347	10.7129	5.56120
	0.5	1	1.94520	0.73490	1.07860	1.26720	0.10720	0.07290
		5	48.6289	18.3723	26.9655	31.6803	2.67820	1.81820
		10	194.515	73.4894	107.862	126.721	10.7129	7.27290
	0.8	1	1.94520	0.73490	1.56790	1.65650	0.10720	0.09260
		5	48.6289	18.3723	39.1977	41.4126	2.67820	2.31220
		10	194.515	73.4894	156.790	165.650	10.7129	9.24890
0.9	0.2	1	1.94520	0.51840	0.68130	0.73020	0.01090	0.00960
	-	5	48.6289	12.9585	17.0310	18.2542	0.26780	0.23050
		10	194.515	51.8341	68.1241	73.0170	1.07090	0.92150
	0.5	1	1.94520	0.51840	1.07860	1.11690	0.01090	0.01000
	0.5	5	48.6289	12.9585	26.9655	27.9212	0.26780	0.24260
		10	194.515	51.8341	107.862	111.685	1.07090	0.96990
			137.313	J 1.0JT 1	107.002		1.07030	0.50530
	0.8	1		0.51840	1 56790	1 58630	0.01090	0.01050
	0.8	1 5	1.94520 48.6289	0.51840 12.9585	1.56790 39.1977	1.58630 39.6565	0.01090 0.26780	0.01050 0.25690

Simulation study

A simulation has been carried out in this section to study the performance of the estimators.

Simulation technique

Following [24], the explanatory variables are generated using the equation:

$$x_{ji} = (1 - \rho^2)^{1/2} z_{ji} + \rho z_{j, p+1}, \qquad j = 1, 2, ..., n, \quad i = 1, 2, ..., p$$
 (49)

Table 2 Estimated MSE when p = 3 and n = 100.

$k \\ \rho = 0.9$	d	σ	OLS	ORR	Liu	TP	KL	NBR
0.3	0.2	1	0.10640	0.10320	0.09820	0.10380	0.10000	0.09750
		5	2.66110	2.57930	2.45380	2.59560	2.49890	2.43760
		10	10.6443	10.3172	9.81490	10.3822	9.99560	9.75030
	0.5	1	0.10640	0.10320	0.10120	0.10480	0.10000	0.09840
		5	2.66110	2.57930	2.53050	2.62000	2.49890	2.46050
		10	10.6443	10.3172	10.1218	10.4801	9.99560	9.84190
	0.8	1	0.10640	0.10320	0.10430	0.10580	0.10000	0.09940
		5	2.66110	2.57930	2.60840	2.64460	2.49890	2.48350
		10	10.6443	10.3172	10.4336	10.5784	9.99560	9.93400
0.6	0.2	1	0.10640	0.10010	0.09820	0.10130	0.09390	0.08940
		5	2.66110	2.50150	2.45380	2.53300	2.34710	2.23490
		10	10.6443	10.0058	9.81490	10.1318	9.38820	8.93930
	0.5	1	0.10640	0.10010	0.10120	0.10320	0.09390	0.09110
		5	2.66110	2.50150	2.53050	2.58060	2.34710	2.27660
		10	10.6443	10.0058	10.1218	10.3224	9.38820	9.10620
	0.8	1	0.10640	0.10010	0.10430	0.10520	0.09390	0.09280
		5	2.66110	2.50150	2.60840	2.62870	2.34710	2.31880
		10	10.6443	10.0058	10.4336	10.5149	9.38820	9.27480
0.9	0.2	1	0.10640	0.09710	0.09820	0.09890	0.08820	0.08210
		5	2.66110	2.42730	2.45380	2.47310	2.20480	2.05070
		10	10.6443	9.70900	9.81490	9.89240	8.81900	8.20240
	0.5	1	0.10640	0.09710	0.10120	0.10170	0.08820	0.08440
		5	2.66110	2.42730	2.53050	2.54280	2.20480	2.10780
		10	10.6443	9.70900	10.1218	10.1710	8.81900	8.43090
	0.8	1	0.10640	0.09710	0.10430	0.10450	0.08820	0.08670
	0.0	5	2.66110	2.42730	2.60840	2.61340	2.20480	2.16570
		10	10.6443	9.70900	10.4336	10.4536	8.81900	8.66260
$\rho = 0.99$								
0.3	0.2	1	0.99130	0.74460	0.52880	0.79110	0.53410	0.42800
		5	24.7820	18.6158	13.2208	19.7767	13.3531	10.6993
		10	99.1280	74.4631	52.8829	79.1070	53.4122	42.7969
	0.5	1	0.99130	0.74460	0.68500	0.86340	0.53410	0.46640
		5	24.7820	18.6158	17.1256	21.5860	13.3531	11.6590
		10	99.1280	74.4631	68.5024	86.3438	53.4122	46.6360
	0.8	1	0.99130	0.74460	0.86190	0.93910	0.53410	0.50650
		5	24.7820	18.6158	21.5472	23.4765	13.3531	12.6613
		10	99.1280	74.4631	86.1888	93.9059	53.4122	50.6451
0.6	0.2	1	0.99130	0.58110	0.52880	0.65420	0.28240	0.18940
		5	24.7820	14.5269	13.2208	16.3549	7.05980	4.73520
		10	99.1280	58.1077	52.8829	65.4197	28.2392	18.9406
	0.5	1	0.99130	0.58110	0.68500	0.77220	0.28240	0.22210
		5	24.7820	14.5269	17.1256	19.3060	7.05980	5.55100
		10	99.1280	58.1077	68.5024	77.2239	28.2392	22.2037
	0.8	1	0.99130	0.58110	0.86190	0.90030	0.28240	0.25740
	0.0	5	24.7820	14.5269	21.5472	22.5080	7.05980	6.43390
		10	99.1280	58.1077	86.1888	90.0318	28.2392	25.7354
0.9	0.2	1	0.99130	0.46680	0.52880	0.55570	0.14190	0.08290
0	J.2	5	24.7820	11.6687	13.2208	13.8921	3.54620	2.06970
		10	99.1280	46.6749	52.8829	55.5685	14.1846	8.27830
	0.5	1	0.99130	0.46680	0.68500	0.70410	0.14190	0.10310
	0.5	5	24.7820	11.6687	17.1256	17.6015	3.54620	2.57500
		10	99.1280	46.6749	68.5024	70.4061	14.1846	10.2998
	0.8	10	0.99130	0.46680	0.86190	0.87040	0.14190	0.12560
	0.0	5	24.7820	11.6687	21.5472	21.7601	3.54620	3.13840
		5 10						
		10	99.1280	46.6749	86.1888	87.0404	14.1846	12.5533

where z_{ji} are independent standard normal pseudo-random numbers and here $\rho = 0.90$ and $\rho = 0.99$ are the correlation between any two explanatory variables. The n observations for the response variable y are determined by the following equation:

$$y_j = \beta_1 x_{j1} + \beta_2 x_{j2} + \dots + \beta_p x_{jp} + e_j, \quad j = 1, 2, \dots, n$$
 (50)

where e_i are i.i.d $N(0, \sigma^2)$ and p taken to be 3 and 7. The values of β are chosen such that $\beta' \beta = 1$ [25]. We choose k between 0 and 1 as Wichern and Churchill [26] suggested for getting better results of the ORR estimator, so k = 0.3, 0.6, 0.9 and d = 0.2, 0.5, 0.8. Sample size n is 50 and 100; $\sigma^2 = 1$, 25, and 100. Also, we calculate the mean square error (MSE) of the

Table 3 Estimated MSE when p = 7 and n = 50.

$k \rho = 0.9$	d	σ	OLS	ORR	Liu	TP	KL	NBR
0.3	0.2	1	0.74360	0.66930	0.57860	0.68370	0.60010	0.55480
		5	18.5888	16.7321	14.4654	17.0934	15.0020	13.8693
		10	74.3551	66.9286	57.8616	68.3734	60.0079	55.4772
	0.5	1	0.74360	0.66930	0.63740	0.70580	0.60010	0.57150
		5	18.5888	16.7321	15.9352	17.6447	15.0020	14.2872
		10	74.3551	66.9286	63.7407	70.5786	60.0079	57.1488
	0.8	1	0.74360	0.66930	0.69990	0.72830	0.60010	0.58850
		5	18.5888	16.7321	17.4967	18.2073	15.0020	14.7133
		10	74.3551	66.9286	69.9869	72.8293	60.0079	58.8533
0.6	0.2	1	0.74360	0.60810	0.57860	0.63380	0.49020	0.42610
		5	18.5888	15.2030	14.4654	15.8452	12.2549	10.6513
		10	74.3551	60.8122	57.8616	63.3807	49.0196	42.6050
	0.5	1	0.74360	0.60810	0.63740	0.67360	0.49020	0.44940
		5	18.5888	15.2030	15.9352	16.8412	12.2549	11.2353
		10	74.3551	60.8122	63.7407	67.3648	49.0196	44.9412
	0.8	1	0.74360	0.60810	0.69990	0.71510	0.49020	0.47360
	0.0	5	18.5888	15.2030	17.4967	17.8766	12.2549	11.8402
		10	74.3551	60.8122	69.9869	71.5065	49.0196	47.3606
0.9	0.2	1	0.74360	0.55680	0.57860	0.59140	0.40450	0.33480
0.5	0.2	5	18.5888	13.9199	14.4654	14.7847	10.1129	8.36910
		10	74.3551	55.6796	57.8616	59.1389	40.4513	33.4762
	0.5	1	0.74360	0.55680	0.63740	0.64590	0.40450	0.35990
	0.5	5	18.5888	13.9199	15.9352	16.1466	10.1129	8.99780
		10	74.3551	55.6796	63.7407	64.5864	40.4513	35.9911
	0.8	10	0.74360	0.55680	0.69990	0.70340	0.40450	0.38630
	0.8	5	18.5888	13.9199	17.4967	17.5861	10.1129	9.65680
		10	74.3551	55.6796	69.9869		40.4513	38.6269
$\rho = 0.99$		10	74.5551	33.0730	03.3603	70.3442	40.4313	36.0209
$\rho = 0.33$	0.2	1	7.03880	3.34170	2.04020	3.94800	1.30900	0.90260
0.5	0.2	5	175.971	83.5429	51.0056	98.6998	32.7241	22.5645
		10	703.884	334.171		394.799	130.896	90.2578
	0.5	10			204.022			
	0.5	5	7.03880 175.971	3.34170 83.5429	3.52670 88.1681	4.98220 124.555	1.30900 32.7241	1.04530 26.1322
		5 10						
	0.0		703.884	334.171	352.672	498.223	130.896	104.528
	0.8	1	7.03880	3.34170	5.47880	6.16630	1.30900	1.19960
		5	175.971	83.5429	136.970	154.156	32.7241	29.9905
		10	703.884	334.171	547.880	616.626	130.896	119.961
0.6	0.2	1	7.03880	2.08350	2.04020	2.79960	0.56550	0.25880
		5	175.971	52.0876	51.0056	69.9897	14.1365	6.4696
		10	703.884	208.350	204.022	279.958	56.5458	25.8782
	0.5	1	7.03880	2.08350	3.52670	4.13150	0.56550	0.35640
		5	175.971	52.0876	88.1681	103.287	14.1365	8.90910
		10	703.884	208.350	352.672	413.151	56.5458	35.6365
	0.8	1	7.03880	2.08350	5.47880	5.77280	0.56550	0.47490
		5	175.971	52.0876	136.970	144.319	14.1365	11.8713
		10	703.884	208.350	547.880	577.279	56.5458	47.4852
0.9	0.2	1	7.03880	1.45220	2.04020	2.18600	0.65980	0.15470
		5	175.971	36.3057	51.0056	54.6503	16.4952	3.86560
		10	703.884	145.222	204.022	218.601	65.9807	15.4624
	0.5	1	7.03880	1.45220	3.52670	3.64630	0.65980	0.29900
		5	175.971	36.3057	88.1681	91.1565	16.4952	7.47330
		10	703.884	145.222	352.672	364.625	65.9807	29.8929
	0.8	1	7.03880	1.45220	5.47880	5.53800	0.65980	0.49740
		5	175.971	36.3057	136.970	138.449	16.4952	12.4350
		10	703.884	145.222	547.880	553.798	65.9807	49.7401

estimators for each replicate by using the equation below:

$$MSE(\alpha^*) = \frac{1}{1000} \sum_{j=1}^{1000} (\alpha_{ij}^* - \alpha_i)' (\alpha_{ij}^* - \alpha_i)$$
 (51)

where α_{ij}^* is the estimator and α_i is the parameter (see Tables 1-4 for the result).

Table 4 Estimated MSE when p = 7 and n = 100.

$k \rho = 0.9$	d	σ	OLS	ORR	Liu	TP	KL	NBR
0.3	0.2	1	0.32640	0.31510	0.29800	0.31740	0.30410	0.29570
		5	8.16010	7.87800	7.45040	7.93390	7.60130	7.39200
		10	32.6402	31.5118	29.8016	31.7358	30.4052	29.5682
	0.5	1	0.32640	0.31510	0.30850	0.32070	0.30410	0.29880
		5	8.16010	7.87800	7.71240	8.01830	7.60130	7.47010
		10	32.6402	31.5118	30.8496	32.0733	30.4052	29.8806
	0.8	1	0.32640	0.31510	0.31920	0.32410	0.30410	0.30190
		5	8.16010	7.87800	7.97930	8.10320	7.60130	7.54870
		10	32.6402	31.5118	31.9174	32.4128	30.4052	30.1947
0.6	0.2	1	0.32640	0.30450	0.29800	0.30880	0.28340	0.26830
0.0	0.2	5	8.16010	7.61150	7.45040	7.71950	7.08380	6.70630
		10	32.6402	30.4460	29.8016	30.8782	28.3352	26.8253
	0.5	1	0.32640	0.30450	0.30850	0.31530	0.28340	0.27390
	0.5	5	8.16010	7.61150	7.71240	7.88320	7.08380	6.84650
		10	32.6402	30.4460	30.8496	31.5327	28.3352	27.3862
	0.8	1	0.32640	0.30450	0.31920	0.32190	0.28340	0.27950
	0.8	5						
			8.16010	7.61150	7.97930	8.04870	7.08380	6.98840
	0.0	10	32.6402	30.4460	31.9174	32.1947	28.3352	27.9535
0.9	0.2	1	0.32640	0.29440	0.29800	0.30060	0.26420	0.24370
		5	8.16010	7.35950	7.45040	7.51600	6.60400	6.09260
		10	32.6402	29.4379	29.8016	30.0639	26.4160	24.3704
	0.5	1	0.32640	0.29440	0.30850	0.31020	0.26420	0.25130
		5	8.16010	7.35950	7.71240	7.75410	6.60400	6.28170
		10	32.6402	29.4379	30.8496	31.0165	26.4160	25.1269
	0.8	1	0.32640	0.29440	0.31920	0.31990	0.26420	0.25900
		5	8.16010	7.35950	7.97930	7.99630	6.60400	6.47400
		10	32.6402	29.4379	31.9174	31.9853	26.4160	25.8961
$\rho = 0.99$								
0.3	0.2	1	3.09830	2.27350	1.59690	2.42750	1.58610	1.25950
		5	77.4569	56.8373	39.9236	60.6865	39.6517	31.4875
		10	309.827	227.349	159.694	242.746	158.607	125.949
	0.5	1	3.09830	2.27350	2.09910	2.66870	1.58610	1.37720
	0.0	5	77.4569	56.8373	52.4782	66.7179	39.6517	34.4306
		10	309.827	227.349	209.912	266.871	158.607	137.722
	0.8	1	3.09830	2.27350	2.67430	2.92230	1.58610	1.50060
	0.0	5	77.4569	56.8373	66.8572	73.0582	39.6517	37.5159
		10	309.827	227.349	267.428	292.233	158.607	150.063
0.0	0.2							
0.6	0.2	1 5	3.09830	1.75160	1.59690	1.98830	0.81250	0.54570
			77.4569	43.7901	39.9236	49.7084	20.3119	13.6427
	0.5	10	309.827	175.160	159.694	198.833	81.2475	54.5709
	0.5	1	3.09830	1.75160	2.09910	2.37400	0.81250	0.63920
		5	77.4569	43.7901	52.4782	59.3499	20.3119	15.9796
		10	309.827	175.160	209.912	237.399	81.2475	63.9186
	0.8	1	3.09830	1.75160	2.67430	2.79630	0.81250	0.74050
		5	77.4569	43.7901	66.8572	69.9084	20.3119	18.5134
		10	309.827	175.160	267.428	279.633	81.2475	74.0535
0.9	0.2	1	3.09830	1.39650	1.59690	1.68000	0.40470	0.24030
		5	77.4569	34.9119	39.9236	42.0010	10.1164	6.00620
		10	309.827	139.647	159.694	168.003	40.4657	24.0250
	0.5	1	3.09830	1.39650	2.09910	2.15860	0.40470	0.29670
	-	5	77.4569	34.9119	52.4782	53.9657	10.1164	7.4177
		10	309.827	139.647	209.912	215.862	40.4657	29.6710
	0.8	1	3.09830	1.39650	2.67430	2.70110	0.40470	0.35940
	0.0	5	77.4569	34.9119	66.8572	67.5279	10.1164	8.98500
		10	309.827	139.647	267.428	270.111	40.4657	35.940

Simulation results discussions

Tables 1-4 show that when σ , ρ and p are increasing, the estimated MSE values are also increasing. The MSE decreases as the sample size n increase. The OLS estimator performs worst among all the estimators as expected due to multicollinearity. Also, we observe that the proposed NBR estimator dominates other estimators in this study in most cases. Thus, the findings agree with the theoretical results. For each row, the smallest MSE value is bolded.

Table 5The results of regression coefficients and the corresponding MSE values.

Coef.	â	$\hat{lpha}(\hat{k}_{min})$	$\hat{lpha}(\hat{d}_{alt})$	$\hat{lpha}_{TP} \ (\hat{k}_{\min}, \hat{d}_{\min})$	$\hat{lpha}_{\mathit{KL}}(\hat{k}_{\min})$	$\hat{lpha}_{NBR} \ (\hat{k}_{\min}, \hat{d}_{\min})$
α_0	62.4053	8.58715	27.6657	27.6200	27.6270	27.5987
α_1	1.55110	2.10461	1.90080	1.9089	1.90884	1.9091
α_2	0.51016	1.06484	0.86996	0.8687	0.86859	0.8689
α_3	0.10190	0.66808	0.46192	0.4679	0.46782	0.4681
α_4	-0.14406	0.39959	0.20801	0.2073	0.20724	0.2075
MSE	4912.0902	2989.8202	2170.9669	2170.9600	2170.9604	2160.9596
(k, d)		0.007676	0.442224	(0.0015419, 0.001536)	0.000471	(0.000339, 0.001530)

Application

The Portland cement data which was originally adopted by Woods et al. [27] is analyzed here to explain the theoretical results. Many authors have adopted this data in their studies [12,14,16]. The regression model for this data is defined as

$$y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon_i, \qquad j = 1, 2, ..., 13$$
 (52)

The model was diagnosed using the following diagnostic tools: variance inflation factor, eigenvalues and the condition number. The variance inflation factors (VIFs) of this data are calculated as $VIF_1 = 38.50$, $VIF_2 = 254.42$, $VIF_3 = 46.87$, $VIF_4 = 282.51$. Also, eigenvalues of S are given as $\lambda_1 = 44676.206$, $\lambda_2 = 5965.422$, $\lambda_4 = 105.419$, and the condition number (CN) of S is computed to be 424. The result of all the diagnostic tools indicate the presence multicollinearity in the model. The estimated coefficients and the MSE values of the estimators are given in Table 5. It is obvious from Table 5 that the proposed NBR estimator dominates other considered estimators.

Conclusion

In this paper, we proposed a new biased regression estimator called NBR as an alternative to OLS to deal with multicollinearity in the linear regression model. We obtained the biasing parameters of the proposed and compared this new method of estimation with some existing estimators (OLS, ORR, Liu, TP and KL) theoretically. The simulation study and the theoretical findings revealed the superiority of the proposed method. Also, real-life data are used and analyzed to support the theoretical finding and simulation result. Furthermore, the performance of the estimators depends on the biasing parameter. Thus, we will examine the generalized cross-validation (GCV) method of selecting the biasing parameter in our future study (see [28–31]).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding

No financial assistance was received for this study.

References

- [1] Stein, C., "Inadmissibility of the usual estimator for mean of multivariate normal distribution", In Proceedings of the Third Berkley Symposium on Mathematical and Statistics Probability, J. Neyman, Ed., Springer, Berlin, Germany, 1: 197–206, (1956).
- [2] W.F. Massy, "Principal components regression in exploratory statistical research", J. Am. Statist. Assoc. 60 (309) (1965) 234–256.
- [3] A.E. Hoerl, R.W. Kennard, "Ridge regression: biased estimation for nonorthogonal problems", Technometrics 12 (1) (1970) 55-67.
- [4] L.S. Mayer, T.A. Willke, "On biased estimation in linear models", Technometrics 15 (3) (1973) 497-508.
- [5] B.F. Swindel, "Good ridge estimators based on prior information", Commun. Stat.-Theory and Methods 5 (11) (1976) 1065–1075.
- [6] K. Liu, "A new class of biased estimate in linear regression", Commun. Stat.-Theory and Methods 22 (1993) 393-402.
- [7] F. Akdeniz, S. Kaçıranlar, "On the almost unbiased generalized liu estimator and unbiased estimation of the bias and mse", Commun. Stat.-Theory and Methods 24 (7) (1995) 1789–1797.
- [8] M.R. Ozkale, S. Kaçiranlar, "The restricted and unrestricted two-parameter estimators", Commun. Stat.-Theory and Methods 36 (15) (2007) 2707–2725.
- [9] S. Sakallıoglu, S. Kaçıranlar, "A new biased estimator based on ridge estimation", Stat. Papers 49 (4) (2008) 669-689.
- [10] H. Yang, X. Chang, "A new two-parameter estimator in linear regression", Commun. Stat.-Theory and Methods 39 (6) (2010) 923-934.
- [11] M. Roozbeh, Optimal QR-based estimation in partially linear regression models with correlated errors using GCV criterion, Comput. Stat. Data Anal. 117 (2018) 45–61.
- [12] A.F. Lukman, K. Ayinde, S. Binuomote, O.A. Clement, "Modified ridge-type estimator to combat multicollinearity: application to chemical data", J. Chemom. 33 (5) (2019) e3125.
- [13] Lukman, A.F., Ayinde, K., Sek, S.K., Adewuyi, E., "A modified new two-parameter estimator in a linear regression model", Model. Simul. Eng., 2019: 1–10, (2019). https://doi.org/10.1155/2019/6342702
- [14] Kibria, B.M.G., Lukman, A.F., "A New Ridge-Type Estimator for the Linear Regression Model: Simulations and Applications", Scientifica, 2020: 1–16, (2020). https://doi.org/10.1155/2020/9758378

- [15] A.E. Hoerl, R.W. Kannard, K.F. Baldwin, Ridge regression: some simulations", Commun. Stat. 4 (2) (1975) 105-123.
- [16] S. Kaciranlar, S. Sakallioglu, F. Akdeniz, G.P.H. Styan, H.I. Werner, "A new biased estimator in linear regression and a detailed analysis of the widelyanalysed dataset on portland cement", Sankhya 61 (1999) 443-459.
- [17] R.W. Farebrother, "Further results on the mean square error of ridge regression", J. R. Stat. Soc.: Series B (Methodological) 38 (3) (1976) 248-250.
- [18] G. Trenkler, H. Toutenburg, "Mean squared error matrix comparisons between biased estimators-an overview of recent results", Statistical Papers 31
- [19] B.M.G. Kibria, "Performance of some new ridge regression estimators", Commun. Stat.-Simul. Comput. 32 (1) (2003) 419-435.
- [20] G. Khalaf, G. Shukur, "Choosing ridge parameter for regression problems", Commun. Stat. Theory Methods 34 (5) (2005) 1177-1182.
- [21] B.M.G. Kibria, S. Banik, "Some ridge regression estimators and their performances", J. Mod. Appl. Stat. Methods 15 (1) (2016) 206-238.
- [22] A.F. Lukman, K. Ayinde, "Review and classifications of the ridge parameter estimation techniques, Hacettepe J. Math. Stat. 46 (5) (2017) 953-967.
- [23] K. Mansson, B.M.G. Kibria, G. Shukur, "Performance of some weighted Liu estimators for logit regression model: an application to Swedish accident data, Commun. Stat. Theory Methods 44 (2) (2015) 363–375.
- [24] D.G. Gibbons, "A simulation study of some ridge estimators", J. Am. Statist. Assoc. 76 (373) (1981) 131-139.
- [25] Newhouse, J.P. Oman, S.D., "An evaluation of ridge estimators", A report prepared for United States air force project RAND, (1971).
- [26] D.W. Wichern, G.A. Churchill, "A comparison of ridge estimators", Technometrics 20 (3) (1978) 301-311.
- [27] H. Woods, H.H. Steinour, H.R. Starke, "Effect of composition of Portland cement on heat evolved during hardening", Ind. Eng. Chem. 24 (11) (1932) 1207-1214
- [28] M. Roozbeh, M. Arashi, N.A. Hamzah, "Generalized cross validation for simultaneous optimization of tuning parameters in ridge regression", Iran. J. Sci. Technol., Trans. A: Science 44 (2020) 473-485.
- [29] M. Amini, M. Roozbeh, "Optimal partial ridge estimation in restricted semiparametric regression models", J. Multivar. Anal. 136 (2015) 26–40.
 [30] Arashi, M., Roozbeh, M., Hamzah, N.A. and Gasparini, M. "Ridge regression and its applications in genetic studies", PLoS One, 16 (4), e0245376, (2021).
- [31] Roozbeh, M., Hesamian, G. and Akbari, M.G. "Ridge estimation in semi-parametric regression models under the stochastic restriction and correlated elliptically contoured errors", J. Comput. Appl. Math., 378, 112940, (2020).