Exploration de la Recherche avec Tabous

Métaheuristiques

Pierre BOURGEY, Paul BOUTET, Florian GIURGIU

9 mai 2025

Télécom Saint-Etienne

Plan

Introduction

Principe Fondamental

Extensions

Avantages - Inconvénients

 ${\sf Applications}$

Introduction

Contexte Historique

- 1. Développement des métaheuristiques dans les années 1980
- 2. Introduction de la recherche taboue par Fred Glover en 1986
- 3. Applications dans divers domaines : optimisation, planification, etc.

Analogie Biologique

Inspiration

Inspirée du comportement de recherche humain.

Mécanisme

Un "tabou" similaire aux processus cognitifs.

Stratégie

Évitement des mouvements déjà explorées.

Cette approche s'inspire de la manière dont les humains explorent et évitent les erreurs.

Principe Fondamental

Définitions

- 1. Voisinage : Ensemble de solutions accessibles par un mouvement.
- Mouvement : Opération qui modifie une solution pour en obtenir une nouvelle. On peut utiliser un vecteur de déplacement, une permutation etc...
- 3. **Tabou** : Mouvements interdits pour éviter les cycles locaux.
- 4. Temps en mémoire courte / taille mémoire : Durée pendant laquelle un mouvement est considéré tabou (souvent fixé proche de 10 itérations ou généré aléatoirement pour chaque élément ajouté en mémoire afin d'éviter les cycles).

Principe Fondamental

Exploration

Exploration systématique de l'espace de recherche.

Mémoire

Mécanisme de "mémoire courte" pour éviter les répétitions.

Évasion

Capacité de sortir des minima locaux.

Extensions

Critère d'aspiration

Définition: Le critère d'aspiration permet de contourner les mouvements tabous si une solution est suffisamment prometteuse. Cela évite de rester bloqué dans des minima locaux.

Exemple:

- 1. Considérons des permutations où les mouvements sont des inversions de deux éléments.
- 2. Départ : [1,2,3,4,5] (coût : 3).
- 3. Permutation : [2,1,3,4,5] (coût : 3), interdit $1 \leftrightarrow 2$.
- 4. Permutation : [2,1,4,3,5] (coût : 3), interdit $3 \leftrightarrow 4$.
- 5. Permutation : [2,1,4,5,3] (coût : 3), interdit $3 \leftrightarrow 5$.
- Une meilleure solution [1,2,4,5,3] (coût : 2) existe, mais le mouvement 1 ↔ 2 est interdit.
- 7. On effectue ce mouvement interdit car il améliore le coût global.

Mémoire à long terme

Définition: La mémoire à long terme permet de garder une trace des mouvements qui ont été bénéfiques ou nuisibles dans le passé. Cela aide à éviter les mouvements qui ont conduit à mauvaises solutions.

Exemple:

- 1. Considérons un problème d'ordonnancement où certaines tâches sont plus difficiles que d'autres.
- 2. Un mouvement qui a conduit à une solution de mauvaise qualité dans le passé sera évité dans le futur.

Avantages:

- 1. Amélioration de la qualité des solutions trouvées.
- 2. Réduction du temps de calcul en évitant les mouvements nuisibles.

Pénalisation des mouvements récurrents

Définition: La pénalisation des mouvements récurrents consiste à attribuer un coût plus élevé aux mouvements qui ont été effectués plusieurs fois dans le passé. Cela aide à éviter les cycles et à encourager l'exploration de nouvelles solutions.

Exemple

- 1. Considérons un problème de voyageur de commerce où certaines villes sont visitées plusieurs fois.
- 2. Un mouvement qui revient à une ville déjà visitée sera pénalisé.

Avantages:

- 1. Encouragement de l'exploration de nouvelles solutions.
- 2. Évitement des cycles et des solutions sous-optimales.

Extension des voisinages

Définition: L'extension des voisinages consiste à élargir l'ensemble des solutions candidates en considérant des mouvements plus complexes. Cela permet d'explorer de nouvelles régions de l'espace de recherche.

Exemple

- 1. Considérons un problème d'optimisation où les mouvements sont des permutations de plusieurs éléments.
- 2. Un mouvement qui échange plusieurs éléments sera considéré comme un voisinage.

Avantages:

- 1. Exploration de nouvelles solutions potentiellement meilleures.
- 2. Évitement des minima locaux en diversifiant les mouvements.

Hybridation avec d'autres méthodes

Définition : L'hybridation consiste à combiner la recherche taboue avec d'autres méthodes d'optimisation pour améliorer les performances. Cela permet de tirer parti des forces de chaque méthode.

Pour plus d'informations, voir la référence [1].

Avantages - Inconvénients

Avantages

- 1. Rapidité d'exécution.
- 2. Résultats de qualité acceptable.
- 3. Paramétrage simple (peu de paramètres : taille mémoire, itérations max).

Rapidité

Figure 1: \bar{T} versus Q for various problem instances for SA (squares) and TS (triangles). For plots which achieve the lowest known cost for an instance (Q=0), we extend the line connecting the plot points to the left edge of the panel.

Mesures de performance :

 $Q = \frac{C - C_{best}}{C_{best}}$

 $C_{best} = meilleur coût connu$ C = coût de la solutioncourante

 $\bar{T} = \text{temps moyen pour}$ atteindre une qualité Q.

Inconvénients

- 1. Complexité de définition des mouvements et voisinages.
- 2. Sensibilité aux paramètres (ex : taille de la mémoire, durée de la recherche).

Applications

Problème d'Affectation Quadratique (QAP)

Problématique centrale

Affecter n objets à n emplacements en minimisant :

$$\sum_{i=1}^n \sum_{j=1}^n f_{ij} \cdot d_{p(i)p(j)}$$

où:

- 1. f_{ij} : Flux entre l'objet i et j (non symétrique)
- 2. d_{rs} : Distance entre l'emplacement r et s (symétrique)
- 3. p(i): Permutation donnant l'emplacement de l'objet i

Défi algorithmique

- 1. NP-difficile : Pas de solution exacte pour n > 20
- 2. Espace de solutions : n! permutations possibles
- 3. Coût de calcul : $\mathcal{O}(n^2)$ par évaluation

Problème d'Affectation Quadratique (QAP)

Applications réelles

- 1. Planification d'usine
- 2. Placement de composants électroniques
- 3. Optimisation de clavier

- Répartition de fichiers
- 2. Affectation de portes aéroportuaires
- 3. Agencement hospitalier

Exemple concret : Répartition de bâtiments

Configuration du problème

- 1. 5 bâtiments à placer sur 5 sites géographiques
- 2. Objectif : Minimiser les déplacements entre bâtiments
- 3. Deux matrices clés :

Matrice des distances D (symétrique)

$$D = \begin{bmatrix} 0 & 1 & 2 & 3 & 1 \\ 1 & 0 & 2 & 1 & 1 \\ 2 & 2 & 0 & 1 & 2 \\ 3 & 1 & 1 & 0 & 1 \\ 1 & 1 & 2 & 1 & 0 \end{bmatrix}$$

Distances en kilomètres

Matrice des flots F (non symétrique)

$$F = \begin{bmatrix} 0 & 8 & 1 & 2 & 3 \\ 5 & 0 & 2 & 1 & 2 \\ 1 & 2 & 0 & 1 & 2 \\ 2 & 1 & 1 & 0 & 6 \\ 3 & 2 & 2 & 7 & 0 \end{bmatrix}$$

Nombre de déplacements/jour

Itération 0 - Initialisation

Configuration initiale

- 1. Permutation initiale : P = (2, 4, 1, 5, 3)
- 2. Coût initial: 72
- 3. Matrice de mémoire T vide

Matrice d'interdiction initiale T

Mouvement	(1,2)	(1,3)	(1,4)	(1,5)	(2,3)	(2,4)	(2,5)	(3,4)	(3,5)	(4,5)
Δ	2	-12	-12	2	0	-10	-12	4	8	6

- 1. 3 mouvements optimaux : $\Delta = -12$
- 2. Choix aléatoire: (1,3)

Mise à jour de T

Nouvelle solution

$$P = (1, 4, 2, 5, 3)$$

Coût: 60

t = 9 tiré aléatoirement

Mouvement	(1,2)	(1,3)	(1,4)	(1,5)	(2,3)	(2,4)	(2,5)	(3,4)	(3,5)	(4,5)
Δ	14	X	10	0	10	8	12	12	6	-

- 1. Mouvement (1,3) interdit $(t_{13}=10)$
- 2. Meilleur mouvement : (1,4) ($\Delta=-8$)

Mise à jour de T

Nouvelle solution

$$P = (5, 4, 2, 1, 3)$$

Coût: 52

t = 6 tiré aléatoirement

Mouvement	(1,2)	(1,3)	(1,4)	(1,5)	(2,3)	(2,4)	(2,5)	(3,4)	(3,5)	(4,5)
Δ	10	24	10	0	22	20	8	8	14	-

- 1. Aucun $\Delta < 0$ (minimum local)
- 2. Choix du moins mauvais : (2,3) ($\Delta=+8$)

Mise à jour de T

Nouvelle solution

$$P = (5, 2, 4, 1, 3)$$

Coût: 52

t = 8 tiré aléatoirement

$$T = \begin{pmatrix} 8 & 0 & 10 & 0 & 0 \\ 10 & 0 & 11 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 11 & 0 & 0 & 0 \\ 0 & 0 & 0 & 8 & 0 \end{pmatrix}$$

Mouvemer	t (1,2)	(1,3)	(1,4)	(1,5)	(2,3)	(2,4)	(2,5)	(3,4)	(3,5)	(4,5)
Δ	24	10	10	8	8	22	20	14	-	-

1. Mouvement (2,4) choisi ($\Delta=+8$)

Mise à jour de T

Nouvelle solution

$$P = (5, 1, 4, 2, 3)$$

Coût: 60

t = 5 tiré aléatoirement

$$T = \begin{pmatrix} 8 & 0 & 10 & 9 & 0 \\ 10 & 9 & 11 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 11 & 0 & 0 & 0 \\ 0 & 0 & 0 & 8 & 0 \end{pmatrix}$$

Mouvement	(1,2)	(1,3)	(1,4)	(1,5)	(2,3)	(2,4)	(2,5)	(3,4)	(3,5)	(4,5)
Δ	12	-10	Χ	10	Χ	Χ	4	14	20	10

- 1. 1 mouvement optimal : (1,3) $(\Delta = -10)$
- 2. Mouvements (1,4), (2,3), (2,4) interdits

Mise à jour de T

Nouvelle solution

$$P = (4, 1, 5, 2, 3)$$

Coût:50

t = 6 tiré aléatoirement

1. Interdiction : (4,3) et (5,1) jusqu'à itération 11

Références

- Jebari H. Rahali El Azzouzi S. Samadi H. (2016). Hybridation des métaheuristiques pour la résolution de problème d'ordonnancement multi-objectif dans un atelier flow-shop.
- Gerald Paul, (2010). Comparative Performance of Tabu Search and Simulated Annealing Heuristics for the Quadratic Assignment Problem.