

PARUL INSTITUTE OF ENGINEERING & TECHNOLOGY FACULTY OF ENGINEERING & TECHNOLOGY PARUL UNIVERSITY

Database Management System

Unit 3: Data Model

Computer Science & Engineering

Outline

- Data Models
- Hierarchical Model
- Network Model
- Relational Model
- Object Oriented Model.
- E-R Diagram
- Introduction to E-R Diagram
- Entities, Attributes & its types,

- Relationships,
- Mapping Cardinalities
- Participation Constraints
- Weak Entity Sets,
- Specialization
- Generalization
- Aggregation.

What is Data Models?

Data models describe how a database's logical structure is represented.

Data models specify how data is linked to one another, as well as how stored within the system.

The most popular example of a database model is the relational model, which uses a table-based format.

Type of Database Models

Hierarchical Model

Network Model

Entity-relationship Model

Relational Model

Object-oriented database Model

Hierarchical Model

 The hierarchical model organizes data into a tree-like structure, where each record has a single parent or root.

- The hierarchy starts from the Root data, and expands like a tree, adding child nodes to the parent nodes.
- In hierarchical model, data is organized into tree-like structure with one-to-many relationship between two different types of data, for example, one department can have many professors and many students.

Hierarchical Model

DIGITAL LEARNING CONTENT

Hierarchical Model

✓ Files are related in a parent-child manner, with each parent capable of relating to more than one child, but each child only being related to one parent.

Network Model

This is an extension of the hierarchical model, allowing many-to-many relationships in a tree-like structure that allows multiple parents.

Network Model

ABC College has two Child. i.e. Department A and College library.

✓ It represents one to many relationship.

Even though there is no relation between Department A and College library, a student can be a member of both Department A and College library. This represents **many to one relationship.**

✓ Here, student has two parents which tell us, this is the Network data model.

Network Model

Network Database Model

Relational Model

In this model, data is organized in two-dimensional tables and the relationship is maintained by storing a common field.

Object-oriented database Model

- Object Oriented Data Model represents the real world problems easily.
- In Object Oriented Data Model, data and their relationships are contained in a single structure.
- Here, we can store pictures, audio, video, and other types of data, which was previously impossible to store with the relational approach.

Object-oriented database Model

- •Here Transport, Bus, Ship, and Plane are objects.
- •Bus has Road Transport as the attribute.
- •Ship has Water Transport as the attribute.
- •Plane has Air Transport as the attribute.
- •The Transport object` is the base object and the Bus, Ship, and Plane objects derive from it.

Object-oriented database Model

Here, Student and Department are two different objects.

Each one of them has its attributes and methods.

They are linked by a common attribute Dept_no which establishes a relationship between objects.

attributes.

Entity-relationship Model

- In this database model, relationships are created by dividing
 object of interest into entity and its characteristics into
 - Attribute

 Relationship

 Attribute

 Entity A

 R

 Entity B

 Attribute

 Attribute

Entity-relationship Model

DIGITAL LEARNING CONTENT

Entity-relationship Model

It showcases the relationships developed between objects or entities in a system.

Components of an entity-relationship

- 1. Entities
- 2. Attributes
- 3. Relationships

Entity-relationship Model

•Entities - typically displayed in a rectangle.

Entities can be represented by objects, persons, concepts, or events that contain data.

•Attributes - displayed in a circle or an oval.

The attributes refer to the characteristics of an entity.

•Relationships - relationships among entities are represented in diamond.

It illustrate; how two or more entities interact with each other.

E-R Diagram

What is E-R diagram?

- E-R diagram: (Entity-Relationship diagram)
- It is graphical (pictorial) representation of database.
- It uses different types of symbols to represent different objects of database.

DIGITAL LEARNING CONTENT

Entity

An entity is a person, a place or an object.

 An entity is represented by a rectangle which contains the name of an entity.

Entities of a college database are:

- Student
- · Professor/Faculty
- Course
- Department
- Result
- Class
- Subject

Entity Name

Symbol

Student

Entity Set

- It is a set (group) of entities of same type.
- Examples:
 - All persons having an account in a bank
 - · All the students studying in a college
 - · All the professors working in a college
 - Set of all accounts in a bank

Attributes

- Attribute is details or characteristics about an entity.
- An attribute is represented by an oval containing name of an attribute.
- Attributes of Student are:
 - ✓ Student Name
 - ✓ Branch
 - ✓ Semester
 - ✓ Address
 - ✓ Mobile No
 - ✓ Age

Relationship

Relationship

- Relationship is an association (connection) between several entities.
- It should be placed between two entities and a line connecting it to an entity.

 A relationship is represented by a diamond containing relationship's name.

Student Issue Book

E-R Diagram Example:

E-R Diagram of a Library System

- Each and every entity must have one primary key attribute.
- Relationship between 2 entities is called binary relationship.

E-R Diagram Example:

E-R diagram of Hospital

Limitation of E-R Diagram

In E-R model, we cannot express relationship between two relations.

DIGITAL LEARNING CONTENT

Symbol of E-R Diagram

Figures	Symbols	Represents
Rectangle		Entities in ER Model
Ellipse		Attributes in ER Model
Diamond	\Diamond	Relationships among Entities
Line		Attributes to Entities and Entity Sets with Other Relationship Types
Double Ellipse		Multi-Valued Attributes
Double Rectangle		Weak Entity

Components of E-R Diagram

Types of Entity:

Strong Entity

Strong Entity is an entity that has its own existence

and is independent.

✓ It is represented by a single rectangle.

 Customer is a strong entity type as it has a unique ID for each customer.

* DIGITAL LEARNING CONTENT

Types of Entity:

Strong Entity

Types of Entity:

Weak Entity

- **❖ Weak Entity** is an entity that does not have its own existence and relies on a strong entity for its existence.
- ✓ It is represented by double rectangles.
- "Address" is a weak entity type with attributes such as House No., City, Location, and State.

Types of Entity:

Weak Entity

E-R diagram of weak entity

Example of Strong Entity & Weak Entity

The relationship between a strong and a weak entity type is known as an **identifying relationship** and is represented by **double diamond**.

Strong Entity & Weak Entity

Strong Entity	Weak Entity
Operates independently	Requires support from a strong entity
Possesses a primary key	Lacks a primary key
Represented by a single rectangle in E-R diagram	Represented by double rectangle in diagram
Relationship in-between is denoted by a single diamond	Relationship in-between is denoted by a double diamond

Types of Attribute

Simple Attribute	Composite Attribute	
Cannot be divided into subparts	Can be divided into subparts	
E.g. RollNo, CPI	E.g. Name (first name, middle name, last name) Address (street, road, city)	
Symbol Roll No	Symbol Name First name Last name Middle name	

Types of Attribute

Single-valued Attribute	Multi-valued Attribute	
Has single value	Have multiple value	
E.g. Rollno, CPI	E.g. Phoneno (person may have multiple phone nos) EmailID (person may have multiple emails)	
Symbol Roll No	Symbol Phone No	

Types of Attribute

Stored Attribute	Derived Attribute
It's value is stored manually in database	It's value is derived or calculated from other attributes.
E.g. Birthdate	E.g. Age (can be calculated using current date and birthdate)
Symbol Birthdate	Symbol

Entity with all types of Attributes:

Descriptive Attribute

Attributes of the relationship is called descriptive attribute.

Roles in E-R Diagram

Roles are mentioned when the relationship meaning needs

to clarify.

Example: The labels "manager" and "worker" are called roles; they specify how employee entities interact via the works-for relationship set.

Roles are indicated in E-R diagrams by labeling the lines that connect diamonds to rectangles.

Mapping Cardinality/Cardinality Ratio

It shows the number of instances of one entity that can be linked to the number of instances of another entity via a certain kind of relationship such as:

- 1. One to one
- 2. One to many
- 3. Many to one
- 4. Many to many

One to One Relationship

One-to-One relationship (1-1)

 An entity in A is associated with only one entity in B and an entity in B is associated with only one entity in A.

 Example: A customer is connected with only one loan using the relationship borrower and a loan is connected with only one customer using borrower.

One to Many Relationship

One-to-Many relationship (1 – N)

 An entity in A is associated with more than one entities in B and an entity in B is associated with only one entity in A.

 Example: A loan is connected with only one customer using borrower and a customer is connected with more than one loans using borrower.

Many to One Relationship

Many-to-One relationship (N-1)

 An entity in A is associated with only one entity in B and an entity in B is associated with more than one entities in A.

 Example: A loan is connected with more than one customer using borrower and a customer is connected with only one loan using borrower.

Many to Many Relationship

Many-to-Many relationship (N - N)

 An entity in A is associated with more than one entities in B and an entity in B is associated with more than one entities in A.

 Example: A customer is connected with more than one loan using borrower and a loan is connected with more than one customer using borrower.

It specifies the number of instances of an entity can participate in a relationship set.

Types of Participation Constraints

If every entity participates in at least one relationship, it is called **Total participation**.

It is represented using a double line between the entity set and relationship set.

The participation of entity set A in the relationship set is **total** because every entity of A participates in the relationship set.

and

The participation of entity set B in the relationship set is also **total** because every entity of B also participates in the relationship set.

If only some entities participate in relationships, it is called **Partial participation**.

It is represented by a single line between the entity set and relationship set.

The participation of entity set A in the relationship set is **partial** because only some entities of A participate in the relationship set.

while

The participation of entity set B in the relationship set is **total** because every entity of B participates in the relationship set.

Generalization, Specialization and Aggregation in ER Model

Using the ER model for bigger data creates a lot of complexity while designing a database model.

In order to minimize the complexity, some new concepts were added in the ER model.

These new concepts are:

- Generalization
- Specialization
- Aggregation

Generalization

Generalization is a process of generalizing an entity which contains generalized attributes or properties of generalized entities.

- ✓ The new entity that is created will contain the common features.
- ➤ Generalization is a Bottom up process.

Generalization

Specialization

In Specialization things are broken down into smaller things to simplify it further.

- > Specialization is opposite of Generalization.
- ✓ It is a top down approach.

Specialization

Generalization & Specialization

Generalization & Specialization

Generalization	Specialization
works in Bottom-Up approach	works in top-down approach
size of schema gets reduced	size of schema gets increased
It is normally applied to group of entities.	It can be applied to a single entity
It is a process of creating groupings from various entity sets	It is a process of creating subgrouping within an entity set

ggregation

Here, relationship with its corresponding entities is aggregated into a higher level entity.

Thank You!!!

DIGITAL LEARNING CONTENT

Parul® University

www.paruluniversity.ac.in

