Theorem 7.8

Luqing Ye 杭州吃饭大学理学院,学 号:1002011005 Email:h5411167@gmail.com 2013. 11. 24

Theorem. Let $\{y_m(x)\}$ be a sequence converging uniformly to y(x) in $[\alpha, \beta]$, and let f(x, y) be a continuous function in the domain D such that for all m and x in $[\alpha, \beta]$ the points $(x, y_m(x))$ are in D. Then

$$\lim_{m\to\infty}\int_{\alpha}^{\beta}f(t,y_m(t))dt = \int_{\alpha}^{\beta}\lim_{m\to\infty}f(t,y_m(t))dt = \int_{\alpha}^{\beta}f(t,y(t))dt. \quad (1)$$

Proof. Note that for all m, $f(t, y_m(t))$ is a function from \mathbf{R} to \mathbf{R} , and f(t, y(t)) is also a function from \mathbf{R} to \mathbf{R} .

Because f(x,y) is continuous in the domain D, and $(y_m(t))_{m=1}^{\infty}$ converges uniformly to y(t), so we have $(f(x,y_m(x)))_{m=1}^{\infty}$ converges uniformly to f(t,y(t)).

So according to Theorem14.6.1 in Terence Tao's *Analysis*, (1) holds. \Box