Claims

	Camp
[001]	A mammalian cell comprising
	a. a responsive transcription factor RTF, which modulates transcription of OP
	operator-containing promoters in response to compounds being gaseous or liquid
	at the cultivation temperature of said mammalian cell;
	b. a promoter or promoter fragments operatively linked to OP operator sites
	specific for binding of said RTF.
[002]	The mammalian cell of claim 1 further comprising a nucleic acid encoding a
	desired protein functionally linked to said promoter or promoter fragments op-
	eratively linked to OP operator sites specific for binding an RTF.
[003]	The mammalian cell of claim 1 or 2, wherein binding of the RTF to OP-
	containing promoters is changed in response to compounds being gaseous at the
	cultivation temperature of said mammalian cell.
[004]	The mammalian cell of claim 1 or 2, wherein binding of the RTF to OP.
	containing promoters is changed in response to compounds being liquid at the
	cultivation temperature of said mammalian cell.
[005]	The mammalian cell of claim 1, wherein the RTF comprises amino acid
	sequences related to or derived from naturally occurring proteins.
[006]	The mammalian cell of claim 1 or 2, wherein the RTF comprises amino acid
	sequences related to or derived from non-mammalian proteins.
[007]	The mammalian cell of claim 1 or 2, wherein the RTF is the Aspergillus nidulans
	AlcR protein.
[800]	The mammalian cell of claim 1 or 2, wherein the RTF is the <i>Pseudomonas putida</i> AlkS protein.
[009]	A non-human mammal comprising at least one mammalian cell as claimed in
	claim 1 or 2.
[010]	A method for adjusting the expression level of a desired protein in a mammalian
	cell as claimed in claim 2, comprising culturing said mammalian cell and
	modulating gene expression by administration of a compound for which tran-
	scription of the OP operator-containing promoter and the responsive transcription
	factor RTF are responsive.
[011]	The method of claim 10, wherein the protein is selected from the group
	consisting of SEAP, a fluorescent protein, human growth hormone, alpha-
	interferon, beta-interferon, gamma-interferon, insulin, erythropoietin, tissue
	plasminogen activator, DNAse, a monoclonal antibody, Factor VIII. Factor VII
	HAS, IL-2, glucagons, EGF, GCSF, GMCSF, thrombopoietin, gp160, HbSAg, a
	protein encoded by a tumor suppressor gene, and a protein encoded by a gene in-
	- 7 · · 6 · · · ·

	terfering with absorption, distribution, metabolism and excretion of compounds contained in tobacco smoke.
[012]	
[OLD]	The method of claim 10, wherein the compound for modulating gene expression
	is selected from the group consisting of ketones, aldehydes, haloalkanes,
[013]	alcohols, esters, amines, and ethers.
[OT2]	The method of claim 10, wherein the compound for modulating gene expression
	is selected from the group consisting of ethanol, methylamine, ethylamine, n-
	propylamine, n-butylamine, n-pentylamine, n-hexylamine, benzylamine,
	2-butanone, ethanol, n-propanol, n-butanol, 2-propanol, 2-butanol,
	2-methylbutyraldehyde, acetaldehyde, propanal, acetone, 2-butanone,
	2-pentanone, 3-pentanone, cyclohexanone, glycoaldehyde, glyoxal, glyoxylate,
	ethylene glycol, ethanolamine, ethyl acetate, ethyl ether, and dicyclo-
	propylketone, and compounds that are metabolized in situ to said members of the
	group.
[014]	The method of claim 10, wherein the compound for modulating gene expression
	is selected from the group consisting of ethanol, methylamine, ethylamine, n-
	propylamine, n-butylamine, n-pentylamine, n-hexylamine, benzylamine,
	2-butanone, ethanol, n-propanol, n-butanol, 2-propanol, 2-butanol,
	2-methylbutyraldehyde, acetaldehyde, propanal, acetone, 2-butanone,
	2-pentanone, 3-pentanone, cyclohexanone, glycoaldehyde, glyoxal, glyoxylate,
	ethylene glycol, ethanolamine, ethyl acetate, ethyl ether, and dicyclo-
	propylketone.
[015]	The method of claim 10, wherein the RTF comprises amino acid sequences
	related to or derived from non-mammalian proteins.
[016]	The method of claim 10 wherein the RTF is the Aspergillus nidulans AlcR
	protein and the compound for modulating gene expression is acetaldehyde.
[017]	A method for adjusting the expression level of a gene in a mammalian cell as
	claimed in claim 1, comprising
	a. functionally linking said gene to an OP-containing promoter,
	b. transferring said OP-containing promoter functionally linked to said gene into
	said mammalian cell, and
	c. inducing expression of said gene by activating said OP-containing promoter by
	administration of a compound for which the OP operator-specific responsive
	transcription foctor DTE is recovered.

[018] The method of claim 17, wherein the gene codes for a protein selected from the group consisting of SEAP, a fluorescent protein, human growth hormone, alpha-interferon, beta-interferon, gamma-interferon, insulin, erythropoietin, tissue plasminogen activator, DNAse, a monoclonal antibody, Factor VIII, Factor VIII,

transcription factor RTF is responsive.

	HAS, IL-2, glucagons, EGF, GCSF, GMCSF, thrombopoietin, gp160, and HbSAg.
[019]	
[020]	The method of claim 17, wherein the gene is a tumor suppressor gene.
[020]	The method of claim 17, wherein the gene is a gene interfering with absorption,
	distribution, metabolism and excretion of compounds contained in tobacco smoke.
[021]	The method of claim 17, wherein the compound for which the OP operator-
	specific responsive transcription factor RTF is responsive is selected from the
	group consisting of ketones, aldehydes, haloalkanes, alcohols, esters, amines, and
	ethers.
[022]	The method of claim 17 wherein the compound for which the OP operator-
	specific responsive transcription factor RTF is responsive is selected from the
	group consisting of ethanol, methylamine, ethylamine, n-propylamine, n-
	butylamine, n-pentylamine, n-hexylamine, benzylamine, 2-butanone, ethanol, n-
	propanol, n-butanol, 2-propanol, 2-butanol, 2-methylbutyraldehyde, ac-
	etaldehyde, propanal, acetone, 2-butanone, 2-pentanone, 3-pentanone, cy-
	clohexanone, glycoaldehyde, glyoxal, glyoxylate, ethylene glycol, ethanolamine,
	ethyl acetate, ethyl ether, and dicyclopropylketone, and compounds that are me-
	tabolized in situ to said members of the group.
[023]	The method of claim 17 wherein the compound for which the OP operator-
	specific responsive transcription factor RTF is responsive is selected from the
	group consisting of ethanol, methylamine, ethylamine, n-propylamine, n-
	butylamine, n-pentylamine, n-hexylamine, benzylamine, 2-butanone, ethanol, n-
	propanol, n-butanol, 2-propanol, 2-butanol, 2-methylbutyraldehyde, ac-
	etaldehyde, propanal, acetone, 2-butanone, 2-pentanone, 3-pentanone, cy-
	clohexanone, glycoaldehyde, glyoxal, glyoxylate, ethylene glycol, ethanolamine,
	ethyl acetate, ethyl ether, and dicyclopropylketone.
[024]	The method of claim 17 wherein the OP-containing promoter is an AlcR-specific
	OP site, RTF is the Aspergillus nidulans AlcR protein, and the compound for
	which RTF is responsive is acetaldehyde.
[025]	An isolated nucleic acid useful for constructing a mammalian cell as claimed in
	claim 1, comprising an RTF-encoding nucleic acid functionally linked to a
	promoter useful for expression of the RTF in said mammalian cell.
[026]	The isolated nucleic acid of claim 25 comprising an OP sequence functionally
	linked to a promoter or a fragment thereof useful for RTF-dependent gene
	expression in said mammalian cell.
[027]	The isolated nucleic acid of claim 25 or 26 further comprising genetic elements
	useful for construction of six-1

useful for construction of viral vectors.