Mathematics. *Lecture 1 Limits and Continuity * legex = Lin x $\frac{1}{x} \lim_{\alpha \to \alpha} \frac{\chi^{n} - \hat{\alpha}}{\chi - \alpha} = n \hat{\alpha}^{-1}$ * line = x * e = 2 * him 2-a = n a-m * Sin' (Sina) = 2 * lim (1+1) = e χ $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$ n - 10 $\star \lim_{x \to \infty} (1 + \frac{1}{2}) = e$ * lind=5 = 2= ? $\frac{1}{2} + \lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\sin x}{x} \times \lim_{x \to 0} \frac{1}{x} \times \lim_{x \to 0}$

Examples

$$\frac{1-\lim_{\chi \to 2} \frac{\chi_{+3}}{\chi_{+2}} = \frac{5}{H}}{\chi_{+2}}$$

$$\frac{2 \lim_{x \to 3} \frac{\chi^2 + 1}{\sqrt{2} + 3} = \frac{9 + 1}{\sqrt{9}} = \frac{10}{3}$$

3 Lim
$$\frac{\chi_{+}7_{+}\chi^{2}}{\chi_{+}} = \lim_{\lambda \to \infty} \frac{1}{1 - 5|\chi_{+}^{2}|_{\chi_{+}}^{2}} = 0 = 0$$

<< >>7

H him $23^3 + 52 - 1 = 2$ $2 + 5/2 - 1/3^3 = 2 = 2$ $2 + 5/2 - 1/3^3 = 2 = 2$ $2 + 5/2 - 1/3^3 = 2 = 2$ 5 Lim $3x^3+5 = \lim_{n \to \infty} 3+5/x^3 = \frac{8}{5} = \infty$ 6 $\lim_{x \to 0} \frac{1-\cos x}{2} = \lim_{x \to 0} \frac{2\sin^2(x)}{2} = \lim_{x \to 0} \frac{\sin^2(x) \sin^2(x)}{2}$ $= \lim_{x \to 0} \frac{\sin^2(x) \sin^2(x)}{2} = \lim_{x \to 0} \frac{\sin^2(x) \sin^2(x)}{2}$ $= \lim_{x \to 0} \frac{\sin^2(x) \cos^2(x)}{2} = \lim_{x \to 0} \frac{\sin^2(x) \sin^2(x)}{2} = \lim_{x \to 0} \frac{\sin^2(x) \cos^2(x)}{2} = \lim_$ 7 $\lim_{x\to 2} \frac{x^2-32}{x^2} = \lim_{x\to 2} \frac{x^2-2}{x^2} = 5x^{\frac{5}{2}-1} = 80$ 8 him $(1+\frac{1}{2}) = \lim_{x \to \infty} (1+\frac{1}{2}) \times \lim_{x \to \infty} (1+\frac{1}{2}) = ex1 = e$ 9 $\lim_{x \to \infty} (1+\frac{2}{x})^{2}$, x=2y, $\lim_{x \to \infty} (1+\frac{1}{y})^{2} = \lim_{x \to \infty} (1+\frac{1}{y})^{2} = e^{2}$ The function for is Continuous at a if far = lim far = lim far

1. far = \frac{1}{2} $\lim_{x \to a} \frac{1}{x} = +\infty$, $\lim_{x \to a} \frac{1}{x} = -\infty$. Not Continious. $2 - f(x) = \sqrt{x}$ $2-f(\alpha)=\sqrt{\alpha}$ $\lim_{x\to 0^+} \sqrt{1} = 0$, $\lim_{x\to 0^+} \sqrt{1} = \infty$

<< 2>>7

 $3 - f(\alpha) = \begin{cases} 5\alpha + 3 \\ 3 \end{cases}$ 270 2<0 f(0) = 5x0+3=3 $\lim_{x\to 0} f(x) = 5x0+3=3$, $\lim_{x\to 0} f(x) = 3$: f(x) is Continous.

«3»