We claim:

A5/2

4

5

6

7

8

13

16

17

1

2

3

In a computing environment having a connection to a network, a computer program product embodied on a computer readable medium readable by a computer in said environment, for establishing a secure, low-overhead connection between a client application and a server application using existing message types, said computer program product comprising:

computer readable program code means for piggy-backing a request for a message encoding scheme proposal onto a first message sent from said client application to said server application, wherein said first message uses a first existing message type;

computer-readable program code means for piggy-backing a first portion of security information onto a second message sent from said server application to said client application, wherein said second message uses a second existing message type and wherein said first portion comprises a response to said request for a message encoding scheme;

computer-readable program code means for piggy-backing a second portion of security information onto a third message sent from said client application to said server application, wherein said third message uses said first existing message type, and

computer-readable program code means for piggy-backing a third portion of security information onto a fourth message sent from said server application to said client application, wherein said fourth message uses a third existing message type.

2. The computer program product according to Claim 1, wherein said first existing message type is a HyperText Transfer Protocol (HTTP) GET message, said second existing message type is an HTTP REDIRECT message, and said third existing message type is a response to said

4	нттр	GET	message
4	TIIYI	OLI	IIIODDWD.

- 1 3. The computer program product according to Claim 1, wherein said first existing message
- type is a HyperText Transfer Protocol (HTTP) POST message, said second existing message type
- is an HTTP REDIRECT message, and said third existing message type is a response to said
- 4 HTTP POST message.

_2

13

- The computer program product according to Claim 1, wherein said first existing message type is a type is a Wireless Session Rrotocol (WSP) GET message, said second existing message type is a WSP REDIRECT message, and said third existing message type is a response to said WSP GET message.

 5. The computer program product according to Claim 1, wherein said first existing message
 - The computer program product according to Claim 1, wherein said first existing message type is a Wireless Session Protocol (WSP) POST message, said second existing message type is a WSP REDIRECT message, and said third existing message type is a response to said WSP POST message.
 - 1 6. The computer program product according to Claim 1, wherein:
 - said first message requests a secure page from said server application, wherein said secure
 - 3 page request further comprises an identifier of said secure page;
 - said second message sends a redirection message from said server application to said client
 - application, wherein said redirection message comprises a redirected identifier of said secure

1	V .	
6	page;	
7		said third message sends a subsequent request for said secure page from said server
8	applica	tion in response to said redirection message, wherein said subsequent request further
9	compri	ses said redirected identifier of said secure page; and
10		said fourth message sends a response to said subsequent secure page request to said client
11	applica	tion, wherein said response further comprises a content portion encrypted using a session
12	key ge	nerated by said server application.
1	7.	The computer program product according to Claim 6, wherein:
[] []2		said first portion further comprises a security certificate of said server application;
<u>-3</u>		said second portion further comprises a set of information encrypted using a public key of
	said se	erver application; and
5		said third portion further comprises a nonce of said server application, encrypted using a
<u></u>	public	key of said client application.
100		
4) 4)	8.	The computer program product according to Claim 6, wherein:
2		said first portion further comprises an identification of said server application,
3		said second portion further comprises a set of information encrypted using a public key of
4	said s	server application; and
5		said third portion further comprises a nonce of said server application, encrypted using a
6	publi	c key of said client application.

The computer program product according to Claim 7 or Claim 8, wherein said request for 9. 1 a message encoding scheme further comprises a keyword indicating said request. 2 The computer program product according to Claim 9, wherein said set of information 1 10. comprises: zero or more parameters required for said secure page request; an identification of 2 said client application; a client nonce; and optionally including a timestamp. 3 The computer program product according to Claim 6, wherein said redirected identifier of 11. 1 said secure page may be dentical to said identifier of said secure page. 2 The computer program product according to Claim 1, wherein: 12. said first message requests a secure page from said server application, wherein said request further comprises an identifier of said secure page; said second message sends an authentication message from said server application to said client application; said third message sends a subsequent request for said secure page from said server application in response to said authentication message; and 7 said fourth message sends a response to said subsequent secure page request to said client 8 application, wherein said response further comprises a content portion encrypted using a session 9 key generated by said server application. 10 The computer program product according to Claim 12, wherein said authentication 1 13.

-53-

message comprises a redirected identifier of said secure page, and wherein said subsequent

2

2

Transfer Protocol (HTTP) GET message, said second existing message type is an HTTP www-

Authenticate message, and said third existing message type is a response to said HTTP GET 3 message. 4 The system according to Claim 14, wherein said first existing message type is a HyperText 1 16. Transfer Protocol (HTTP) POST message, said second existing message type is an HTTP www-2 Authenticate message, and said third existing message type is a response to said HTTP POST 3 message. 4 The system according to Claim 14, wherein said first existing message type is a Wireless 17. 1 Session Protocol (WSP) GET message, said second existing message type is a WSP www-**造 ≟**3 Authenticate message, and said third existing message type is a response to said WSP GET M **1**4 message. The system according to Claim 14, wherein said first existing message type is a Wireless **5**1 18. Session Protocol (WSP) POST message, said second existing message type is a WSP www-**1**2 Authenticate message, and said third existing message type is a response to said WSP POST **1**3 4 message. The system according to Claim 14, wherein: 19. 1 said first message requests a secure page from said server application, wherein said 2 request further comprises an identifier of said secure page; 3 said second message sends an authentication message from said server application to said 4

5	cheff application,
6	said third message sends a subsequent request for said secure page from said server
7	application in response to said authentication message; and
8	said fourth message sends a response to said subsequent secure page request to said clien
9	application, wherein said response further comprises a content portion encrypted using a session
10	key generated by said server application.
1	20. The system according to Claim 19, wherein said authentication message comprises a
2	redirected identifier of said secure page, and wherein said subsequent request further comprises
	said redirected identifier of said secure page.
1 2	21. The system according to Claim 19 or Claim 20, wherein: said first portion further comprises a security certificate of said server application;
⊒ ⊒3	said second portion further comprises a set of information encrypted using a public key o said server application; and
1 4 1 5	said third portion further comprises a nonce of said server application, encrypted using a
6	public key of said client application.
1	22. The system according to Claim 19 or Claim 20, wherein:
2	said first portion further comprises an identification of said server application;
3	said second portion further comprises a set of information encrypted using a public key o
4	said server application; and

5		said third portion further comprises a nonce of said server application, encrypted using a
6	public	key of said client application.
1	23.	The system according to Claim 20, wherein said request for a message encoding scheme
2	furthe	r comprises a keyword indicating said request.
1	24.	The system according to Claim 23, wherein said set of information comprises: zero or
2	more j	parameters required for said secure page request; an identification of said client application;
3	a clien	t nonce; and optionally including a timestamp.
<u>-1</u>	25.	The system according to Claim 22, wherein said request for a message encoding scheme
12	furthe	r comprises a keyword indicating said request and wherein said set of information
	compr	ises: zero or more parameters required for said secure page request; an identification of
11120	said cl	ient application; a client nonce; and optionally including a timestamp.
4	26.	The system according to Claim 20, wherein said redirected identifier of said secure page
2	may b	e identical to said identifier of said secure page.
1	27.	The system according to Claim 14, wherein:
2		said first message requests a secure page from said server application, wherein said
3	reques	st further comprises an identifier of said secure page;
4		said second message sends a redirection message from said server application to said client

-57-

5	application, wherein said redirection message comprises a redirected identifier of said secure
6	page;
7	said third message sends a subsequent request for said secure page from said server
8	application in response to said redirection message, wherein said subsequent request further
9	comprises said redirected identifier of said secure page; and
10	said fourth message sends a response to said subsequent secure page request to said client
11	application, wherein said response further comprises a content portion encrypted using a session
12	key generated by said server application.
	28. A method for establishing a secure, low-overhead connection between a client application
2	and a server application using existing message types in a computing environment having a
13	connection to a network, said method comprising the steps of:
	piggy-backing a request for a message encoding scheme proposal onto a first message sent
<u>-</u>	from said client application to said server application, wherein said first message uses a first
6	existing message type;
7	piggy-backing a first portion of security information onto a second message sent from said
8	server application to said client application, wherein said second message uses a second existing
9	message type and wherein said first portion comprises a response to said request for a message
10	encoding scheme;
11	piggy-backing a second portion of security information onto a third message sent from
12	said client application to said server application, wherein said third message uses said first existing
13	message type; and
	\

-58-

RSW9-99-084

piggy-backing a third portion of security information onto a fourth message sent from said 14 15 server application to said client application, wherein said fourth message uses a third existing 16 message type. 1 29. The method according to Claim 28, wherein said first existing message type is a 2 HyperText Transfer Protocol (HTTP) GET message, said second existing message type is an 3 HTTP www-Authenticate message, and said third existing message type is a response to said 4 HTTP GET message. 30. The method according to Claim 28, wherein said first existing message type is a HyperText Transfer Protocol (HTTP) ROST message, said second existing message type is an HTTP www-Authenticate message, and said third existing message type is a response to said HTTP POST message. 31. The method according to Claim 28, wherein said first existing message type is a Wireless <u>...</u> Session Protocol (WSP) GET message, said second existing message type is a WSP www-3 Authenticate message, and said third existing message type is a response to said WSP GET 4 message. 1 32. The method according to Claim 28, wherein said first existing message type is a Wireless 2 Session Protocol (WSP) POST message, said second existing message type is a WSP www-3 Authenticate message, and said third existing message type is a\response to said WSP POST

-59-

1	33. The method according to Claim 28, wherein:
2	said first message requests a secure page from said server application, wherein said
3	request further comprises an identifier of said secure page;
4	said second message sends an authentication message from said server application to said
5	client application;
6	said third message sends a subsequent request for said secure page from said server
7	application in response to said authentication message; and
<u></u>	said fourth message sends a response to said subsequent secure page request to said clien
.±9	application, wherein said response further comprises a content portion encrypted using a session
	key generated by said server application.
.≟ []] .≟	34. The method according to Claim 33, wherein said authentication message comprises a
12013	redirected identifier of said secure page, and wherein said subsequent request further comprises
13	said redirected identifier of said secure page.
1	35. The method according to Claim 33 or Claim 34, wherein:
2	said first portion further comprises a security certificate of said server application;
3	said second portion further comprises a set of information encrypted using a public key of
4	said server application; and
5	said third portion further comprises a nonce of said server application, encrypted using a

-61-

1

40.

	\
1	41. The method according to Claim 28, wherein:
2	said first message requests a secure page from
3	request further comprises an identifier of said secure
4	said second message sends a redirection mess
5	application, wherein said redirection message compr
6	page;
7	said third message sends a subsequent reques
[] []8	application in response to said redirection message,
= 9	comprises said redirected identifier of said secure pa
10	said fourth message sends a response to said
11	application, wherein said response further comprises
D D D D	key generated by said server application.
	42. A method for establishing a secure, low-over
2	and a server application using existing message type
3	connection to a network, said method comprising th
4	piggy-backing a request for said server application
5	onto a first message sent from said client application
6	message uses a first existing message type; and

may be identical to said identifier of said secure page.

2

1	41. The method according to Claim 28, wherein:
2	said first message requests a secure page from said server application, wherein said
3	request further comprises an identifier of said secure page;
4	said second message sends a redirection message from said server application to said client
5	application, wherein said redirection message comprises a redirected identifier of said secure
6	page;
7	said third message sends a subsequent request for said secure page from said server
78 10 11	application in response to said redirection message, wherein said subsequent request further
= ±9 ∏	comprises said redirected identifier of said secure page; and
o	said fourth message sends a response to said subsequent secure page request to said client
	application, wherein said response further comprises a content portion encrypted using a session
<u>±</u> 12	key generated by said server application.
	42. A method for establishing a secure, low-overhead connection between a client application
2	and a server application using existing message types in a computing environment having a
3	connection to a network, said method comprising the steps of:
4	piggy-backing a request for said server application to select a message encoding scheme
5	onto a first message sent from said client application to said server application, wherein said first
6	message uses a first existing message type; and
7	piggy-backing a first portion of security information onto a second message sent from said

8 server application to said client application, wherein said second message uses a second existing 9 message type, 1. 43. The method according to Claim 42, wherein said first existing message type is a 2 HyperText Transfer Protocol (HTTP) GET message and said second existing message type is a 3 response to said HTTP GET message. 1 44. The method according to Claim 42, wherein said first existing message type is a 2 HyperText Transfer Protocol (HTTP) POST message and said second existing message type is a response to said HTTP POST message. The method according to Claim 42, wherein said first existing message type is a Wireless 45. Session Protocol (WSP) GET message and said second existing message type is a response to 13110 said WSP GET message. ٠Đ١ 46. The method according to Claim 42, wherein said first existing message type is a Wireless 2 Session Protocol (WSP) POST message and said second existing message type is a response to 3 said WSP POST message. 1 47. The method according to Claim 42, wherein: said first message requests a secure page from said server application, wherein said 2 3 request further comprises an identifier of said secure page; and RSW9-99-084 -63-

4	said second message sends a response to said secure page request to said client
5	application, wherein said response further comprises a content portion encrypted using a session
6	key generated by said server application.
1	48. The method according to Claim 47, wherein:
2	said request to select a message encoding scheme further comprises an identifier of said
3	client application, a nonce of said client application, and optionally including a timestamp; and
4	said first portion further comprises a set of information encrypted using a public key of
5	said server application.
+ +1 -1	49. The method according to Claim 48, wherein said set of information further comprises:
12	a nonce of said server application, encrypted using a public key of said client application;
	and
<u>4</u>	a security certificate of said server application.
	50. The method according to Claim 48 or Claim 49, wherein first message further comprises
2	zero or more parameters required for said secure page request.
1	51. A system for establishing a secure, low-overhead connection between a client application
2	and a server application using existing message types in a computing environment having a
3	connection to a network, said system comprising:
4	means for piggy-backing a request for said server application to select a message encoding

5	scheme onto a first message sent from said client application to said server application, wherein
6	said first message uses a first existing message type; and
7	means for piggy-backing a first portion of security information onto a second message sent
8	from said server application to said client application, wherein said second message uses a second
9	existing message type.
1	52. The system according to Claim 51, wherein said first existing message type is a HyperText
2	Transfer Protocol (HTTP) GET message and said second existing message type is a response to
3	said HTTP GET message.
4	53. The system according to Claim 51, wherein said first existing message type is a Wireless
132	Session Protocol (WSP) GET message and said second existing message type is a response to
, 3 ≟ ☐	said WSP GET message.
	54. The system according to Claim 51, wherein:
2	said first message requests a secure page from said server application, wherein said
3	request further comprises an identifier of said secure page; and
4	said second message sends a response to said secure page request to said client
5	application, wherein said response further comprises a content portion encrypted using a session
6	key generated by said server application.
1	55. The system according to Claim 54, wherein:
	RSW9-99-084 -65-

2	said request to select a message encoding scheme further comprises an identifier of said
3	client application, a nonce of said client application, and optionally including a timestamp; and
4	said first portion further comprises a set of information encrypted using a public key of
5	said server application.
1	56. The system according to Claim 55, wherein said set of information further comprises:
2	a nonce of said server application, encrypted using a public key of said client application;
3	and
4	a security certificate of said server application.
: 4 1	57. The system according to Claim 55 or Claim 56, wherein first message further comprises
2	zero or more parameters required for said secure page request.
4 1	58. In a computing environment having a connection to a network, a computer program
	product embodied on a computer readable medium readable by a computer in said environment,
3	for establishing a secure, low-overhead connection between a client application and a server
4	application using existing message types, said computer program product comprising:
5	computer-readable program code means for piggy-backing a request for said server
6	application to select a message encoding scheme onto a first message sent from said client
7	application to said server application, wherein said first message uses a first existing message
8	type; and
9	computer-readable program code means for piggy-backing a first portion of security

-66-

said first portion further comprises a set of information encrypted using a public key of

-67-

4

- 5 said server application.
- 1 63. The computer program product according to Claim 62, wherein said set of information
- 2 further comprises:
- a nonce of said server application, encrypted using a public key of said client application;
- 4 and
- 5 a security certificate of said server application.

1 64. The computer program product according to Claim 62 or Claim 63, wherein first message further comprises zero or more parameters required for said secure page request.