Análisis de Lenguajes de Programación

Lautaro Capezio, Luciano Duarte e Ignacio Basualdo

Septiembre 2025

Ejercicio 1: Extensión de Sintaxis

Para extender el lenguaje LIS, se modifican las sintaxis de expresiones enteras (intexp) para añadir el operador de incremento, y la sintaxis de comandos (comm) para añadir el comando de selección múltiple case.

Sintaxis Abstracta

Sintaxis Concreta

La sintaxis concreta define la representación textual. Aquí sí se añade una regla para poder escribir el comando case.

```
intexp ::= nat
    | var
    | var '++'
    | '-' intexp
    | intexp '+' intexp | intexp '-' intexp
    | intexp '*' intexp | intexp '/' intexp
    | '(' intexp ')'
comm ::=skip
   | var '=' intexp
    comm ';' comm
    | 'if' boolexp '{' comm '}'
    | 'if' boolexp '{' comm '}' 'else' '{' comm '}'
    | 'repeat' '{' comm '}' 'until' boolexp
    | 'case' '{' boolexp ':' '{' comm '}' commCase '}'
commCase ::= skip
    | boolexp ':' '{' comm '}' commCase
```

Ejercicio 4: Semántica Big-Step para ++

El operador v++ tiene un doble efecto: su valor resultante es el valor de v más uno y, como efecto secundario, el estado se actualiza con este nuevo valor.

Para modelar esto, se añade la siguiente regla de inferencia a la semántica operacional big-step.

$$\frac{x \in \text{dom } \sigma}{\langle x++,\sigma \rangle \downarrow_{\text{exp}} \langle \sigma x+1, [\sigma|x:\sigma x+1] \rangle} \ VarInc$$

Ejercicio 5: Determinismo de la Relación de Transición

Se debe demostrar que para cualquier configuración t, si existen dos transiciones posibles t' y t'' a partir de t, entonces estas deben ser idénticas. Formalmente:

$$\forall t, t', t''.(t \leadsto t' \land t \leadsto t'') \Rightarrow t' = t''$$

La prueba se realiza por inducción estructural sobre la forma del comando c en la configuración $t = \langle c, \sigma \rangle$. Se asume que la relación de evaluación de expresiones \downarrow_{exp} es determinista.

Regla ASS:

Caso Base: Sea $t = \langle v = e, \sigma \rangle$. La única regla aplicable es ASS. Si $t \rightsquigarrow t'$ y $t \rightsquigarrow t''$, entonces:

- $\langle e, \sigma \rangle \downarrow_{\exp} \langle n, \sigma' \rangle$ tal que $t' = \langle \text{skip}, \sigma' [v : n] \rangle$.
- $\langle e, \sigma \rangle \downarrow_{\text{exp}} \langle n_2, \sigma_2 \rangle$ tal que $t'' = \langle \text{skip}, \sigma_2[v:n_2] \rangle$.

Dado que \downarrow_{exp} es determinista, se tiene que $n = n_2$ y $\sigma' = \sigma_2$. Por lo tanto, t' = t''.

Regla SEQ_1 :

Caso Base: Sea $t = \langle \text{skip}; c_1, \sigma \rangle$. La única regla que puede aplicarse a esta forma es SEQ₁. La regla SEQ₂ no puede aplicarse, ya que requeriría una transición para $\langle \text{skip}, \sigma \rangle$, la cual no existe. Por lo tanto, cualquier transición desde t debe ser $\langle c_1, \sigma \rangle$. Se concluye que t' = t''.

Reglas IF_1/IF_2 :

Caso Base: Sea $t = \langle \text{if } b \text{ then } c_0 \text{ else } c_1, \sigma \rangle$. La transición depende de la evaluación de b. Si se usa la regla IF₁ para obtener t', es porque $\langle b, \sigma \rangle \Downarrow_{\exp} \langle \text{true}, \sigma' \rangle$, y $t' = \langle c_0, \sigma' \rangle$. Para obtener una transición distinta t'', se debería poder aplicar la regla IF₂, lo que requeriría que $\langle b, \sigma \rangle \Downarrow_{\exp} \langle \text{false}, \sigma' \rangle$. Esto contradice la deterministicidad de \Downarrow_{\exp} . Por lo tanto, solo una de las reglas es aplicable, y la transición es única. Debido a ésto t' = t''.

Regla REPEAT:

Caso Base: Sea $t = \langle \text{repeat } c \text{ until } b, \sigma \rangle$. La única regla aplicable es REPEAT, que transforma t de forma única en $\langle c \rangle$; if b then skip else repeat c until $b, \sigma \rangle$. Por lo tanto, t' = t''.

Caso Inductivo Sea $t = \langle c_0; c_1, \sigma \rangle$, con $c_0 \neq$ skip. Asumimos que existen dos transiciones $t \rightsquigarrow t'$ y $t \rightsquigarrow t''$.

Dado que $c_0 \neq \text{skip}$, la única regla que puede haberse aplicado para la primera transición $t \rightsquigarrow t'$ es SEQ₂. Por lo tanto, sabemos que:

- Existe una transición $\langle c_0, \sigma \rangle \leadsto \langle c'_0, \sigma' \rangle$.
- Y t' tiene la forma $t' = \langle c'_0; c_1, \sigma' \rangle$.

Ahora, analizamos los dos casos posibles para la segunda transición $t \rightsquigarrow t''$:

Posibilidad 1: Se utilizó la regla SEQ_1 Si se hubiera utilizado la regla SEQ_1 , esto implicaría que el comando original c_0 ; c_1 tendría la forma skip; c_1 , lo que significa que c_0 = skip. Esto contradice nuestra suposición inicial. **Absurdo!**

Posibilidad 2: Se utilizó la regla SEQ₂ Si se utiliza la regla SEQ₂, entonces debe existir otra transición para el subcomando:

•
$$\langle c_0, \sigma \rangle \leadsto \langle c_0'', \sigma'' \rangle$$
.

• Y t'' tiene la forma $t'' = \langle c_0''; c_1, \sigma'' \rangle$.

Ahora tenemos dos transiciones que parten de la misma configuración $\langle c_0, \sigma \rangle$. Como c_0 es un subcomponente estructural, podemos aplicar la **Hipótesis Inductiva (HI)**.

Por HI, la transición de $\langle c_0, \sigma \rangle$ es determinista, lo que nos obliga a concluir que:

$$\langle c_0', \sigma' \rangle = \langle c_0'', \sigma'' \rangle$$

Dado que las partes componentes de t' y t'' son idénticas, se sigue directamente que $\mathbf{t}' = \mathbf{t}''$.

Ejercicio 6: Prueba de Equivalencia Semántica

a) Demostración para x = x + 1; y = x

Para probar la ejecución, se construye un árbol de derivación para cada paso de la secuencia de comandos.

Paso 1: Ejecución de x = x + 1 Primero, se deriva la ejecución del primer comando. Se define un estado intermedio $\sigma_1 = [\sigma | x : \sigma x + 1]$.

$$\frac{x \in \text{dom } \sigma}{\langle x, \sigma \rangle \Downarrow_{\text{exp}} \langle \sigma x, \sigma \rangle} \text{ VAR } \frac{1}{\langle 1, \sigma \rangle \Downarrow_{\text{exp}} \langle 1, \sigma \rangle} \text{ NVAL} }{\frac{\langle x + 1, \sigma \rangle \Downarrow_{\text{exp}} \langle \sigma x + 1, \sigma \rangle}{\langle x = x + 1, \sigma \rangle \leadsto \langle \text{skip}, \sigma_1 \rangle} \text{ ASS} }}{\langle x = x + 1; y = x, \sigma \rangle \leadsto \langle \text{skip}; y = x, \sigma_1 \rangle} \text{ SEQ}_2$$

Paso 2: Ejecución de skip; y = x Luego, se consume el skip con la regla SEQ_1 .

$$\frac{}{\langle \mathrm{skip}; y = x, \sigma_1 \rangle \leadsto \langle y = x, \sigma_1 \rangle} \ \mathrm{SEQ}_1$$

Paso 3: Ejecución de y = x Finalmente, se ejecuta el segundo comando en el estado intermedio σ_1 . Se define el estado final $\sigma' = [\sigma_1|y:\sigma_1x]$.

$$\frac{x \in \text{dom } \sigma_1}{\langle x, \sigma_1 \rangle \Downarrow_{\text{exp}} \langle \sigma_1 x, \sigma_1 \rangle} \text{VAR}$$
$$\langle y = x, \sigma_1 \rangle \leadsto \langle \text{skip}, \sigma' \rangle$$

La secuencia completa de transiciones queda de la siguiente forma:

$$\begin{split} \langle x = x+1; y = x, \sigma \rangle &\leadsto \langle \text{skip}; y = x, [\sigma | x : \sigma x + 1] \rangle \\ &\leadsto \langle y = x, [\sigma | x : \sigma x + 1] \rangle \\ &\leadsto \langle \text{skip}, [\sigma | x : \sigma x + 1, y : \sigma x + 1] \rangle \end{split}$$

Por lo tanto, se demuestra la ejecución completa usando la clausura transitiva de la relación:

$$\langle x = x + 1; y = x, \sigma \rangle \leadsto^* \langle \text{skip}, [\sigma | x : \sigma x + 1, y : \sigma x + 1] \rangle$$

b) Demostración para y = x++ y Conclusión

Se deriva la ejecución del segundo programa. Primero, se utiliza la regla de evaluación para la expresión x++.

$$\frac{x\in \text{dom }\sigma}{\langle x++,\sigma\rangle \downarrow_{\text{exp}} \langle \sigma x+1, [\sigma|x:\sigma x+1]\rangle} \text{ VARINC}$$

Por lo tanto, la derivación para el comando de asignación completo es:

$$\frac{x \in \text{dom } \sigma}{\langle x + +, \sigma \rangle \downarrow_{\text{exp}} \langle \sigma x + 1, [\sigma | x : \sigma x + 1] \rangle} \text{ VARINC}$$
$$\frac{\langle y = x + +, \sigma \rangle \leadsto \langle \text{skip}, [\sigma | y : \sigma x + 1, x : \sigma x + 1] \rangle}{\langle y = x + +, \sigma \rangle \leadsto \langle \text{skip}, [\sigma | y : \sigma x + 1, x : \sigma x + 1] \rangle} \text{ ASS}$$

Como se demostró en los apartados a) y b), ambos programas, partiendo de un mismo estado inicial σ , terminan en el mismo estado final.

- $\bullet \ \langle x=x+1; y=x,\sigma \rangle \leadsto^* \langle \mathrm{skip}, [\sigma|y:\sigma x+1, x:\sigma x+1] \rangle$
- $\bullet \ \langle y=x++,\sigma\rangle \leadsto^* \langle \mathrm{skip}, [\sigma|y:\sigma x+1, x:\sigma x+1]\rangle$

Se tiene entonces que ambos programas son $\mathbf{sem\'{a}nticamente}$ equivalentes.