## STAT 432: Basics of Statistical Learning

#### **Neural Networks**

Shiwei Lan, Ph.D. <shiwei@illinois.edu>

http://shiwei.stat.illinois.edu/stat432.html

April 6, 2019

University of Illinois at Urbana-Champaign

- Motivation
- · Feedforward neural network
- · Connections with other models
- · Deep Neural Networks





Samples of cats and dogs images from Kaggle: Link

- Neural Networks were first developed as models for the human brain, where we have many units (neurons) that simultaneously process signals to give a joint decision.
- The neurons fire when the total signal passed to that unit exceeds a certain threshold.
- The collective signal from all neurons tells you whether its a dog or a cat.



## Formulate the problem

- Given a training set  $\{x_i, y_i\}_{i=1}^n$ ,
  - For regression:  $y_i \in \mathbb{R}^K$  is a K dimensional continuous outcome
  - For classification:  $y_i \in \{1, 2, \dots, K\}$
- The goal is still to model the relationship

$$E(Y|X) = f(X)$$

 Instead of modeling the probabilities directly using X, we build <u>M</u> hidden neurons as a hidden layer between X and Y:

$$Z = (1, Z_1, Z_2, \dots, Z_M)$$
  
=  $(1, \sigma(X^{\mathsf{T}}\boldsymbol{\alpha}_1), \sigma(X^{\mathsf{T}}\boldsymbol{\alpha}_2), \dots, \sigma(X^{\mathsf{T}}\boldsymbol{\alpha}_M))$ 

## Formulate the problem

- $\sigma(\cdot)$  is an activation function. Some examples?
- We model Y using the hidden layer variables Z through some link function  $g(\cdot)$

$$X \stackrel{\sigma(\cdot)}{\Longrightarrow} Z \stackrel{g(\cdot)}{\Longrightarrow} Y$$

• In classification problems (K class), we can use logit link  $g_k$  to model the probability of Y = k, for k = 1, ... K:

$$g_k(Z) = \frac{\exp(Z^\mathsf{T} \beta_k)}{\sum_{l=1}^K \exp(Z^\mathsf{T} \beta_k)}$$

• In regression problems (could be multidimensional), we can simply use a linear function to model the *k*th entry of *Y*:

$$g_k(Z) = Z^\mathsf{T} \boldsymbol{\beta}_k$$

## Formulate the problem

• The multidimensional function  $\mathbf{f}(x)$  can be represented as a convoluted way of mapping  $x \in \mathbb{R}^p$  to  $y \in \mathbb{R}^K$ 

$$\mathbf{f}(x) = \mathbf{g} \circ \boldsymbol{\sigma}(x)$$

- The notations g and  $\sigma$  here are multidimensional.
- The parameters involved are:  $\alpha_1, \ldots, \alpha_M$ , and  $\beta_1, \ldots, \beta_K$ .

## **Examples of activation functions**

- The activation function  $\sigma(\cdot)$  takes a linear combination of the input variables, and output a scaler through nonlinear transformation. Examples:
  - sigmoid:

$$\sigma(v) = \frac{1}{1 + e^{-v}} = \frac{e^v}{e^v + 1}$$

hyperbolic tangent (tanh):

$$\sigma(v) = \frac{e^v - e^{-v}}{e^v + e^{-v}}$$

· rectified linear unit (ReLU):

$$\sigma(v) = \max(0, v)$$
, soft approx.  $\ln(1 + e^v)$ 

And many others: exponential linear unit, arctangent, etc.

#### **Activation Functions**



#### **Activation Functions**

- Originally, a step function I(v>0) was considered as the activation function (to mimic the biological interpretation). Hence for each neuron, signal is triggered only when  $x^{\rm T}\alpha$  is above a certain threshold
- It was later recognized that the step function is not smooth enough for optimization, hence was replaced by a smoother threshold function, the sigmoid function
- "Feedforward" as signals can only pass to the next layer. There is no "cycle" in the model

## Why Neural Networks work

# Universal Approximation Theorem (Cybenko, 1989; Hornik 1991)

Any continuous function f(x) on the space  $[0,1]^p$  can be approximated (for any  $\epsilon>0$ ) by a finite set of neurons with a bounded monotone-increasing activation function  $\sigma(\cdot)$ :

$$\left| f(x) - \sum_{k} w_k \sigma(\beta_k^{\mathsf{T}} x + b_k) \right| < \epsilon$$

for some  $w_k$ ,  $\beta_k$ , and  $b_k$ . Hence, the functions defined by the neurons is dense.

## **Multiple Layers**



- Try this a really cool website: http://playground.tensorflow.org/
- Implementation in R:
  - · packages: neuralnet, nnet
  - nnet fits a single layer of hidden neurons; neuralnet can fit multiple layers
  - The initial parameters  $\alpha$ 's and  $\beta$ 's are generated randomly and then optimized. The model fitting can be different depends on the initial value. To fix initial parameters: nnet: Wts; neuralnet: startweights
  - Number of neurons: nnet: size; neuralnet: hidden (if hidden is specified as a vector, then there will be multiple layers)

- The parameters (weights)  $\alpha$ 's and  $\beta$ 's need to be optimized.
- For a single hidden layer NN, we have

$$\{lpha_1,\dots,lpha_M\}: \quad ext{M(p+1) weights}$$
  $\{eta_1,\dots,eta_K\}: \quad ext{K(M+1) weights}$ 

- where p is the number of non-intercept X features; M is the number of hidden neurons in a single layer; and K is the number of categories for classification.
- K=1 if its a univariate regression problem.

- Neural Networks training is based on error minimization using a Gradient Descent algorithm, known as error back-propagation.
- For K classification, we minimize Deviance:

$$-\sum_{i=1}^{n} \sum_{k=1}^{K} \mathbf{1}\{y_i = k\} \log f_k(x_i)$$

For univariate regression, we minimize RSS (since g is linear):

$$\sum_{i=1}^{n} (y_i - f(x_i))^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 \sigma(x^{\mathsf{T}} \alpha_1) - \dots \sigma(x^{\mathsf{T}} \alpha_M))^2$$

The objective function can be written as

$$R(\boldsymbol{\theta}) = \sum_{i=1}^{n} R_i(\boldsymbol{\theta})$$

where  $R_i$  represents the deviance or residual sum of squares for the ith data point, and  $\theta$  represents an aggregated vector of all weights

- Initiate weights  $\theta^{(0)}$
- We then calculate the derivative wrt each of the weights evaluated at the current iteration value  $\theta^{(t)}$ :

$$\left. \sum_{i=1}^{n} \frac{\partial R_{i}}{\beta_{km}} \right|_{\theta = \theta^{(t)}} \qquad \sum_{i=1}^{n} \frac{\partial R_{i}}{\alpha_{mj}} \right|_{\theta = \theta^{(t)}}$$

 Stochastic GD: the summation can be taken over a random subset of the n samples

## GD vs. Stochastic GD

#### Gradient Descent vs. Stochastic Gradient Descent





• The derivatives for K = 1 regression case is essentially

$$\frac{\partial R_i}{\beta_m} = -2(y_i - f(x_i))z_{mi}$$

$$\frac{\partial R_i}{\alpha_{ml}} = -2(y_i - f(x_i))\beta_m \sigma'(\boldsymbol{\alpha}_m^T x_i)x_{il}$$

- Some redundant calculations can be saved in the above equations. The property is called back-propagation.
- We then do the update, at the *t*-th iteration

$$\beta_m^{(t+1)} = \beta_m^{(t)} - \gamma \sum_{i=1}^n \frac{\partial R_i}{\beta_m^{(t)}}$$
$$\alpha_{ml}^{(t+1)} = \alpha_{ml}^{(t)} - \gamma \sum_{i=1}^n \frac{\partial R_i}{\alpha_{ml}^{(t)}}$$

where  $\gamma$  is a step size for gradient descent.

- The derivatives can be calculated by Chain Rules
- The algorithm can be implemented by a forward-backward sweep over the network
- In the forward pass, compute the hidden variables and the output  $\widehat{f}(x_i)$  based on the current weights  $\theta^{(t)}$
- In the backward pass, compute the derivatives, and update  $\pmb{\theta}^{(t)} o \pmb{\theta}^{(t+1)}$

## Going Deeper...

- Deep Neural Networks are one type of deep learning models.
- Deep neural Networks are just ... Neural Networks with more than one hidden layer.
- But neural networks have been around for more than 70 years...
   why it gets popular just in recent years?
  - · computational issues
  - · a better way to generate/construct features
  - ...

## **Deep Neural Networks**



#### **Convolutional Neural Networks**

- One example is the Convolutional Neural Networks, which attempts to generate better features
- Instead of using all input features to create the linear combination, a "convolutional layer" builds neurons that each takes a subset (a local region) of the input features.
- This is motivated by the fact that biologically, the neurons only take signals from neighboring neurons.

#### **Convolutional Neural Networks**



#### **Convolutional Neural Networks**



See this hand digit writing recognition example, and this interesting application by Tesla.