CODE No.: 16BT2BS01 SVEC-16

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

I B.Tech II Semester (SVEC-16) Regular/Supplementary Examinations May - 2019 TRANSFORMATION TECHNIQUES AND PARTIAL DIFFERENTIAL EQUATIONS

[Civil Engineering, Electrical and Electronics Engineering, Mechanical Engineering, Electronics and Communication Engineering, Computer Science and Engineering, Electronics and Instrumentation Engineering, Information Technology and Computer Science and Systems Engineering]

Time: 3 hours Max. Marks: 70

Answer One Question from each Unit. All questions carry equal marks.

UNIT-I

1 Construct the periodic function for the graph in the interval $(0, 2\pi)$, and then express it as a Fourier series.

Develop Fourier series expansion for the function $f(x) = \begin{cases} \pi & x, & 0 < x < 1 \\ \pi & (2 - x), & 1 < x < 2 \end{cases}$

and hence evaluate $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} - - - -$.

UNIT-II

Using Fourier cosine transform of e^{-ax} , find the Fourier sine transform of xe^{-ax} . 14 Marks

Solve the integral equation $\int_{0}^{\infty} f(x) \cos px \, dx = \begin{cases} 1 - p; & 0 \le p \le 1 \\ 0; & p > 1 \end{cases}$ 14 Marks

evaluate $\int_{0}^{\infty} \frac{\sin^2 t}{t^2} dt$.

UNIT-III

Solve, by using Laplace transforms method, $y''+4y=e^{-t}$, y(0)=2, y'(0)=1. 14 Marks **(OR)**

Find the general solution to $y'' + 9y = \cos 2t$ by Laplace transform method. 14 Marks

UNIT-IV

7 i) Evaluate $Z(\sin h \, n\theta)$ 14 Marks

ii) Determine Z-transform of unit step sequence. (OR)

Find the response of the system $y_{n+2} - 5y_{n+1} + 6y_n = u_n$, $y_0 = 0$, $y_1 = 1$ and $u_n = 1$ 14 Marks for $n = 0, 1, 2 \dots$ by z-transform.

Solve the differential equation $\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$ for which $\frac{\partial z}{\partial y} = -2 \sin y$, when

x=0 and z=0, when y is an odd multiple of $\pi/2$.

A homogeneous rod of conducting material of length 100cm as its ends kept at 14 Marks zero temperature and the temperature initially is

$$u(x,0) = \begin{cases} x & 0 \le x \le 50 \\ 100 - x & 50 \le x \le 100 \end{cases}$$

Find the temperature u(x, t) at any time t.

& & &