# Report for Worksheet 1: Integrators

# Markus Baur and David Beyer

November 8, 2019

# **Contents**

| 1 | Can  | nonball                                                |
|---|------|--------------------------------------------------------|
|   | 1.1  |                                                        |
|   | 1.2  | Influence of friction and wind                         |
| 2 | Sola | ar system                                              |
|   | 2.1  |                                                        |
|   | 2.2  | Integrators                                            |
|   |      | 2.2.1 Velocity Verlet algorithm                        |
|   |      | 2.2.2 Verlet algorithm                                 |
|   |      | 2.2.3 Implementation of the symplectic Euler algorithm |
|   |      | 2.2.4 Implementation of the Velocity Verlet algorithm  |
|   | 2.3  | Long-term stability                                    |

# 1 Cannonball

# 1.1 Simulating a cannonball

The function for the (constant) gravitational force can be implemented in the following way in Python, it returns the force as a vector:

```
def force(mass, gravity):
    return np.array([0.0, -mass * gravity])
```

The Euler scheme is implemented in this fashion:

```
def step_euler(x, v, dt, mass, gravity, f):
    x += v * dt
    v += f / mass * dt
    return x, v
```

It is crucial to first update the positions  $\mathbf{x}$  and then update the velocites  $\mathbf{v}$ . To simulate the cannonball until it hits the ground, a while-loop is used.

A plot of the simulated trajectory y(x) is shown in Figure 1. As we would expect from the analytical solution

$$y(x) = x - \frac{gx^2}{2v_0^2},\tag{1}$$

the trajectory looks like a parabola.

#### 1.2 Influence of friction and wind

To account for friction, the function which calculates the force is modified in the following way:



Figure 1: Simulated trajectory y(x) for the system without friction. The used integrator is the Euler scheme.

```
def force(mass, gravity, v, gamma, v_0):
    ret = np.array([0.0, -mass * gravity])
    ret -= gamma * (v - v_0)
    return ret
```

Because the force is now not constant anymore along the trajectory (it varies with the velocity  $\mathbf{v}$ ), the function for the Euler step has to be modified as well:

```
def step(x, v, dt, mass, gravity, gamma, v_0):
    f = force(mass, gravity, v, gamma, v_0)
    x += v * dt
    v += f / mass * dt
    return x, v
```

In contrast to the previous task, the force is now evaluated every time the Euler step is called.



Figure 2: Simulated trajectories y(x) for a friction coefficient  $\gamma = 0.1$  and different values of the wind speed  $v_w$ . The used integrator is the Euler scheme.

Figure 2 shows simulated trajectories for the system without friction as well as for a system with friction coefficient  $\gamma=0.1$  and wind speeds of  $v_w=0,-50.0$ . Comparing the trajectory of the cannonball without friction to the ones with friction, we can easily see that the friction leads to both a decreased maximum height  $y_{\rm max}$  and a decreased range  $x_{\rm max}$ . This is caused by the disspation of energy through the non-conservative friction force. We can also identify that the negative wind speed  $v_w=-50.0$  leads to an even larger decrease of the range  $x_{\rm max}$ , this is also expected, because the friction force is proportional to the relative velocity of the air and the cannonball. Because the wind blows in the x-direction only, the maximum height  $y_{\rm max}$  is the same for both cases.

In Figure 3 we see multiple trajectories for  $\gamma=0.1$  and different wind speeds. As the wind speed becomes more negative, the range of the cannonball becomes smaller because the friction increases. For  $v_w\approx 200$  it hits the ground at its starting point.

# 2 Solar system

#### 2.1 Simulating the solar system with the Euler scheme

The gravitational force between two particles is calculated using this function:

```
def force(r_ij, m_i, m_j, g):
    return - g * m_i * m_j * r_ij / np.linalg.norm(r_ij) ** 3
```

To calculate all the forces on all the particles, the following function is used.

```
def forces(x, masses, g):
    ret = np.zeros(x.shape)

for i in range(len(x)):
    for j in range(i + 1, len(x)):
```



Figure 3: Simulated trajectories y(x) for different values of the friction coefficient  $\gamma$  and the wind speed  $v_w$ . For  $v_w = -200$ , the cannonball hits the ground closely to the starting point. The used integrator is the Euler scheme.

```
f = force(x[j] - x[i], masses[i], masses[j], g)
    ret[i] -= f
    ret[j] += f

return ret
```

The function returns an array which contains all forces.

A small modification of the Euler step is necessary because the particles have different masses:

```
def step_euler(x, v, dt, mass, g):
    x += v * dt
    f = forces(x, mass, g)
    # calculate acceleration per coordinate dimension
    f[:, 0] /= mass
    f[:, 1] /= mass
    v += f * dt
    return x, v
```

In simulations with many particles, the computationally most expensive step is the evaluation of the forces  $\mathbf{F}_{ij}$ . For a system of n particles, the complexity of this task scales like  $\mathcal{O}\left(n^2\right)$  because the pairwise forces  $\mathbf{F}_{ij}$  have to be evaluated for every of the n(n-1) possible combination of i, j (or at least half of them using Newton's third law).



Figure 4:

# 2.2 Integrators

# 2.2.1 Velocity Verlet algorithm

The Velocity Verlet algorithm can be derived in the following way: For the positions  $\mathbf{x}$ , we perform a Taylor expansion up to the second order in  $\Delta t$ :

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \dot{\mathbf{x}}(t) \cdot \Delta t + \frac{\ddot{\mathbf{x}}(t)}{2} \cdot \Delta t^2 + \mathcal{O}(\Delta t^3)$$

$$= \mathbf{x}(t) + \mathbf{v}(t) \cdot \Delta t + \frac{\mathbf{a}(t)}{2} \cdot \Delta t^2 + \mathcal{O}(\Delta t^3)$$
(2)

For the velocites  $\mathbf{v}$ , we also perform a Taylor expansion up to the second order:

$$\mathbf{v}(t + \Delta t) = \mathbf{v}(t) + \dot{\mathbf{v}}(t) \cdot \Delta t + \frac{\ddot{\mathbf{v}}(t)}{2} \cdot \Delta t^2 + \mathcal{O}(\Delta t^3)$$

$$= \mathbf{v}(t) + \mathbf{a}(t) \cdot \Delta t + \frac{\ddot{\mathbf{v}}(t)}{2} \cdot \Delta t^2 + \mathcal{O}(\Delta t^3)$$
(3)

To get an expression for  $\ddot{\mathbf{v}}(t)$ , we perform a Taylor expansion of  $\dot{\mathbf{v}}(t+\Delta t)$ :

$$\dot{\mathbf{v}}(t + \Delta t) = \dot{\mathbf{v}}(t) + \ddot{\mathbf{v}}(t) \cdot \Delta t + \mathcal{O}(\Delta t^2) \tag{4}$$

We can solve this expression for  $\ddot{\mathbf{v}}(t)$ :

$$\ddot{\mathbf{v}}(t) = \frac{\dot{\mathbf{v}}(t + \Delta t) - \dot{\mathbf{v}}(t)}{\Delta t} + \mathcal{O}(\Delta t) = \frac{\mathbf{a}(t + \Delta t) - \mathbf{a}(t)}{\Delta t} + \mathcal{O}(\Delta t)$$
(5)

Plugging  $\ddot{\mathbf{v}}(t)$  into Equation 3, we get

$$\mathbf{v}(t + \Delta t) = \mathbf{v}(t) + \mathbf{a}(t) \cdot \Delta t + \frac{\mathbf{a}(t + \Delta t) + \mathbf{a}(t)}{2} \cdot \Delta t^2 + \mathcal{O}(\Delta t^3)$$
 (6)

Equation 2 and Equation 6 define the Velocity Verlet algorithm.

#### 2.2.2 Verlet algorithm

The Verlet algorithm which was presented in the lecture can also be derived from the Velocity Verlet algorithm. Using Equation 2, we can write  $\mathbf{x}(t)$  as

$$\dots$$
 (7)

As we can see in ..., the Verlet algorithm needs the positions  $\mathbf{x}(t)$  and  $\mathbf{x}(t-\Delta t)$  to calculate the position  $\mathbf{x}(t+\Delta t)$ . However, the initial conditions only include the position at exactly one point in time  $t_0$ , this means that the initial conditions are not sufficient to solve the problem with the Verlet algorithm. To get the value of  $\mathbf{x}(t_0-\Delta t)$  we have to use another integrator like the Euler scheme, this results in a bigger error.

# 2.2.3 Implementation of the symplectic Euler algorithm

#### 2.2.4 Implementation of the Velocity Verlet algorithm

# 2.3 Long-term stability