Survey Report 2

Ordinals
June 20, 2022 6:01 PM CEST

Q20 - True or false: ω + 1 = ω + 2

#	Field	Choice Count
1	True	10.61% 7
2	False	89.39% 59

Q24 - True or false: 412 + ω = ω

#	Field	Choice Count
1	True	77.27% 51
2	False	22.73% 15

Showing rows 1 - 3 of 3

Q25 - True or false: For an ordinal number $\alpha < \omega$ (i.e., a finite ordinal), 5 * α = α * 5

66

9.09% 6

Showing rows 1 - 3 of 3

False

Q27 - True or false: 5 * ω = ω * 5

#	Field	Choice Count
1	True	15.15% 10
2	False	84.85% 56

Showing rows 1 - 3 of 3

Q31 - True or false: 4 * ω = (1 + 1 + 1 + 1) * ω = 1 * ω + 1 * ω + 1 * ω + 1 * ω = ω + ω +

$\omega + \omega$

#	Field	Choice Count	
1	True	34.85% 23	
2	False	65.15% 43	

Showing rows 1 - 3 of 3 $\,$

Q49 - True or false: Every ordinal number has a predecessor

#	Field	Choice Count
17	True	36.36% 24
18	False	63.64% 42

Showing rows 1 - 3 of 3

Q51 - If you answered 'No' in the previous question, please provide an example of such

ordinal

If you answered 'No' in the previous question, please provide an example of
If V{0,1,2,} Then 0 have no predecessor
I'm a bit unsure of this one as you defined ordinals to be natural numbers. Hence 0 would not be an ordinal as it is not a natural number. Meaning that the ordinal 1 would not have a predecessor. However, all sets were defined to have a 0th place just like in computer science. If 0 is in fact an ordinal, which to my understanding it shouldn't, it's just a place name within a set, then it can be said that it is an ordinal without a predecessor as -1 is definitely not possible.
?
0
0
o if without negatives
-
0
1
0
0
1
0
0
0
0
0
ω
0
0

If you answered 'No' in the previous question, please provide an example of... Omega the first one - $\overline{\mathbf{0}}$ (matching to the empty set. or in some definitions, $\mathbf{1}$) W 0 0 ω 0 0 Omega. There exists no ordinal number k such that k+1 = omegaω 0 0 0, assuming zero is an ordinal and negative integers are not 0 0 hasnt have a predecessor 1 omega 0 W Omega Omega 0

Q32 - Please type your answer in the box below: Express the number 5 in terms of

successors of 0 [Hint: 8 = S(S(6))]

Please type your answer in the box below: Express the number 5 in terms of
6
(S(S(S(S(S(0)))))
5=S(S(S(S(S(0))
(S(S(S(S(S(0)))))
(S(s(s(s(s(0)))))
7
8=s
(S(S(S(S(S(0)))))
?
(S(S(S(S(S(0)))))
S(S(-2))
(S(S(S(S(S(0)))))
(S(S(S(S(S(0)))))
(S(s(s(s(s(0)))))
(S(s(s(s(s(0)))))
[5=S(S(S(S(S(O)))))]
S(S(S(S(S(0)))))

Please type your answer in the box below: Express the number 5 in terms of... S(S(S(S(S(0))))) s(s(s(s(0))))) 5=S(S(S(S(S(0))))) 5=S(S(S(S(0))))5 = S(S(S(S(S(0))))))s(s(s(s(0))))) 5 = S(S(S(S(S(0)))))S(S(S(S(S(0)))))S(S(S(S(S(0)))))S(S(S(S(S(0)))))5 = S(S(S(S(S(0)))))s(s(s(s(0))))) S(S(S(S(S(0)))))S(S(S(S(S(0)))))S(S(S(S(S(0)))))S(S(S(S(S(0)))))S(S(S(S(S(0)))))S(S(S(S(S(0))))S(S(S(S(S(0))))) 5= S(S(S(S(S(0))))) 0 5 = S(S(S(S(S(0)))))S(S(S(S(S(0)))))

5 = S(S(S(S(S(0)))))

S(S(S(S(S(0))))) S(S(S(S(S(0)))))5=S(S(S(S(S(0))))) 01234 S(S(S(S(S(0))))) $\mathsf{S}(\mathsf{S}(\mathsf{S}(\mathsf{S}(1))))$ S(S(S(S(S(S(0))))))5=S(S(S(S(S(0))))) S(S(S(S(S(0)))))5=S(S(S(S(S(0)))))) 5 = S(S(S(S(S(0)))))S(S(S(S(S(0)))))S(s(s(s(s(0)))))S(S(S(S(S(0)))))S(S(S(S(S(0))))S(S(S(S(S(0)))))S(S(S(S(S(0)))))S(s(s(s(0))))) S(S(S(S(S(0))))) S(S(S(S(S(0)))))s(s(3)

Please type your answer in the box below: Express the number 5 in terms of...

Q29 - Multiple choice: For an arbitrary ordinal number α , which of the following is a

representation of $\alpha * 4$?

Q28 - Multiple choice: Which of the following is a representation of ω * 3 in set notation

(Hint: recall that $\omega = \{0, 1, 2, 3, ...\}$)?

#	Field	Choice Count	
1	{0,1,2,3,}	12.12%	8
2	$\{0,1,2,3,,\omega+\omega+\omega\}$	22.73%	15
3	$\{0,1,2,3,,\omega+1,\omega+2,\omega+3,,\omega+\omega+1,\omega+\omega+2,\omega+\omega+3,\}$	59.09%	39
4	$\{\omega, \ \omega+1, \ \omega+2, \ \omega+\omega+\omega\}$	6.06%	4

Showing rows 1 - 5 of 5 $\,$

Q30 - Multiple choice: For an arbitrary ordinal number α and a natural number $n \in \mathbb{N}$,

which of the following best represents the ordinal number $\alpha * n$?

Q52 - Multiple choice: For any pair of ordinal numbers α , β , which of the following could never be an element in the set representation of the ordinal number β * α ?

Showing rows 1 - 5 of 5

Q53 - Multiple choice: Which of the following is an element in the set representation of

the ordinal number $\omega * 4$?

#	Field	Choic Coun	
1	ω * 4	16.67%	11
2	ω * 95739	3.03%	2
3	ω*3	69.70%	46
4	ω*ω	10.61%	7

66

Showing rows 1 - 5 of 5

End of Report