Session 55: Modular Arithmetic

- Modular addition and multiplication
- Properties of modular arithmetic

mod m Function of Products and Sums

Corollary: Let m be a positive integer and let a and b be integers. Then $(a + b) \pmod{m} = ((a \mod m) + (b \mod m)) \mod m$ and $a \cdot b \mod m = ((a \mod m) \cdot (b \mod m)) \mod m$.

Arithmetic Modulo m

Definitions: Let \mathbf{Z}_m be the set of nonnegative integers less than m:

$$\mathbf{Z}_m = \{0, 1,, m-1\}$$

The addition modulo m operation $+_m$ is defined as

$$a +_m b = (a + b) \bmod m.$$

The **multiplication modulo m** operation \cdot_m is defined as

$$a \cdot_m b = (a \cdot b) \mod m$$
.

Using these operations is said to be doing arithmetic modulo m.

Example

Computing $7 +_{11} 9$ and $7 \cdot_{11} 9$.

Arithmetic Modulo m

The operations $+_m$ and \cdot_m satisfy many of the properties as ordinary addition and multiplication.

- Closure: If a and b belong to \mathbf{Z}_m , then $a +_m b$ and $a \cdot_m b$ belong to \mathbf{Z}_m .
- Commutativity: If a and b belong to \mathbf{Z}_m , then $a +_m b = b +_m a$ and $a \cdot_m b = b \cdot_m a$.
- Associativity: If a, b, and c belong to \mathbf{Z}_m , then $(a +_m b) +_m c = a +_m (b +_m c)$ and $(a \cdot_m b) \cdot_m c = a \cdot_m (b \cdot_m c)$.
- **Distributivity**: If a, b, and c belong to \mathbf{Z}_m , then $a \cdot_m (b +_m c) = (a \cdot_m b) +_m (a \cdot_m c)$ and $(a +_m b) \cdot_m c = (a \cdot_m c) +_m (b \cdot_m c)$.

Arithmetic Modulo m

The operations $+_m$ and \cdot_m satisfy many of the properties as ordinary addition and multiplication.

- **Identity elements**: The elements 0 and 1 are identity elements for addition and multiplication modulo *m*, respectively.
 - If a belongs to \mathbf{Z}_m , then $a +_m 0 = a$ and $a \cdot_m 1 = a$.
- Additive inverses: If $a \ne 0$ belongs to \mathbf{Z}_m , then m-a is the additive inverse of a modulo m and 0 is its own additive inverse:
 - $a +_m (m a) = 0$ and $0 +_m 0 = 0$

Commutative Ring

Multiplicative inverses have not been included since they do not always exist.

Example: There is no multiplicative inverse of 2 modulo 6.

In the terminology of abstract algebra:

 \mathbf{Z}_m with $\mathbf{+}_m$ is a **commutative group**

 \mathbf{Z}_m with $\mathbf{+}_m$ and $\mathbf{\cdot}_m$ is a **commutative ring**.

Summary

- Modular addition and multiplication
- Commutative Ring