多路巡检仪通讯协议 MODBUS RTU 通讯协议

- 1、数据传输格式: 1位起始位、8位数据位、1位停止位、无奇偶校验位。
- 2、 仪表数据格式: 2字节寄存器值=寄存器数高8位二进制数+寄存器低8位二进制数
- 3、仪表通讯帧格式:

读寄存器命令格式:

1	2	3	4	5	6	7~8
DE	3	起始寄存器高位	起始寄存器低位	寄存器数高位	寄存器数低位	CRC

注 1: 寄存器的起始地址从 40000 开始 应答:

1	2	3	4~5	6~7	•••	M*2+2~M*2+3	M*2+4~M*2+5
DI	E 3	字节计数 M*2	寄存器数据1	寄存器数据 2	•••	寄存器数据 M	CRC

DE: 设备地址 (1~200) 单字节

CRC: 校验字节 采用 CRC-16 循环冗余错误校验

注 2: 寄存器数据为双字节,高位在前。

注 3: 组态软件定点数计算方式不一致,有的用补码,有的用反码,故我们在一级参数中增加 "SWP" 参数,用于补码、反码的切换。(0---补码; 1---反码)

举例说明:

MODBUS_RTU 通讯协议(十六进制格式)

发送: 01,03,00,00,00,10,44,06

 $00,\,0\mathrm{E},\,8\mathrm{A},\,00,\,00,\,8\mathrm{A},\,0\mathrm{E},\,77,\,00,\,00,\,60,\,9\mathrm{C}$

(以上举例仅作参考,以实际通讯数据内容为准。)

仪表动态数据格式(MODBUS RTU 协议)

-	汉农幼恋数始陷入(MODBUS_KIU 까以)						
编号	参数名称	地址	数据格式		备	注	
1	仪表类型代码	0000	无符号双字节数				
2	仪表状态标志	0001	双字节数				
3	第1路实时测量值	0002	一台共产士粉				
4	第1路实时测量值小数点	0003	三字节定点数				
5	第2路实时测量值	0004	三字节定点数				
6	第2路实时测量值小数点	0005	二十 1 足总数				
7	第3路实时测量值	0006	三字节定点数				
8	第3路实时测量值小数点	0007	二十 1 足总数				
9	第4路实时测量值	0008	三字节定点数				
10	第4路实时测量值小数点	0009	二十 1 足总数				
11	第5路实时测量值	000A	三字节定点数				
12	第5路实时测量值小数点	000B	二丁 17 足总数				
13	第6路实时测量值	000C	三字节定点数				
14	第6路实时测量值小数点	000D	二十 11 足总数				
15	第7路实时测量值	000E	三字节定点数				
16	第7路实时测量值小数点	000F	一丁 11 化总数				
17	第8路实时测量值	0010	三字节定点数				
18	第8路实时测量值小数点	0011	—丁 P 足总数				

编号	参数名称	地址	数据格式	备注
19	第9路实时测量值	0012	三字节定点数	
20	第9路实时测量值小数点	0013	二丁 17 足点效	
21	第10路实时测量值	0014	三字节定点数	
22	第10路实时测量值小数点	0015	二十 1	
23	第 11 路实时测量值	0016	三字节定点数	
24	第 11 路实时测量值小数点	0017	二十月足总数	
25	第12路实时测量值	0018	三字节定点数	
26	第12路实时测量值小数点	0019	二十 1	
27	第13路实时测量值	001A	三字节定点数	
28	第13路实时测量值小数点	001B	二丁甲定总数	
29	第 14 路实时测量值	001C	三字节定点数	
30	第 14 路实时测量值小数点	001D	二丁甲定总数	
31	第 15 路实时测量值	001E	三字节定点数	
32	第 15 路实时测量值小数点	001F	二十月左示数	
33	第 16 路实时测量值	0020	三字节定点数	
34	第 16 路实时测量值小数点	0021	二十十七二数	
35	冷端补偿温度(0.1 度)	0022	双字节数	
36	统一报警输出	0023	双字节数	
37	分别报警第一报警	0024	双字节数	
38	分别报警第二报警	0025	双字节数	
35	16 路采样上限溢出标志	0026	双字节数	上、下限均溢出为故障标志
36	16 路采样下限溢出标志	0027	双字节数	

★分别报警方式用 2 字节 BCD 码表示

第一字节表示第1路至第8路报警,用0、1表示报警状态。格式如下

第二字节表示第9至第16路报警状态,用0、1表示报警状态。格式如下

报警格式为第二字节+第一字节。用双字节二进制数表示为

$X_{16}X_{15}X_{14}X_{13}X_{12}X_{11}X_{10}X_9\,X_8X_7X_6X_5X_4X_3X_2X_1$

例: 仪表仅8通道报警,表示为0000000010000000,用十六进制表示为3080