3. [12] Given the system in Figure 0503(a) and the Fourier transform of $x_r(t)$ in Figure 0503(b), sketch the Fourier transform of two different signals x(t) that could have generated $x_r(t)$.

4. [16] Consider the system in Figure 0504.

If $X_1(\omega)=0$ for $|\omega|>2W$ and $X_2(\omega)=0$ for $|\omega|>W$. For the following inputs x(t), find the ranges for the cutoff frequency W_c in terms of T and W and find the maximum values of T and A, such that

(a) $x(t) = x_1(t - \pi/2) + x_2(t)$

(b) $x(t) = x_1(t)x_2(t)$ (c) $x(t) = dx_2(t)/dt$

(d) $x(t) = x_2(t)\cos(2Wt)$

 $x_r(t) = x(t)$.
(D) Time shift doesn't affect bandwidth.

$$X(w) = 0$$
 for $|w| > 2W$. Hence $T_{max} = \frac{\pi}{2W}$, $A = T$.

(b)
$$\chi(w) = 0$$
 for $|w| > 3W$. Hence, $\overline{I}_{max} = \frac{7L}{3W}$, $A = T$, $3W < W_c < \frac{2L}{T} - 3W$

(C)
$$\chi(w) = 0$$
 for $|w| > W$. Hence, $T_{max} = \frac{\pi}{W}$, $A = T$, $W < W_c < \frac{2\pi}{T} - W$

Hence,
$$T_{\text{max}} = \frac{\pi}{3W}$$
. $A = T$, $3W < We < \frac{2\pi}{T} - 3W$

5. [20] A signal x(t) with spectrum $X(\omega) = \left(1 - \left|\frac{\omega}{2\pi}\right|\right) \operatorname{rect}\left(\frac{\omega}{4\pi}\right)$ is filtered by a system with frequency response $H(\omega) = \operatorname{rect}\left(\frac{\omega}{2\pi}\right)$. The resulting signal is then multiplied by $\cos(8\pi t)$. Finally, that signal is passed through an integrator system, yielding a signal y(t). Find and sketch $Y(\omega)$.

After filtering.
$$X_1(w) = X_1(w) + X_1(w) = (|-|\frac{w}{2\pi}|) \operatorname{rect}(\frac{w}{4\pi}) \operatorname{rect}(\frac{w}{2\pi}) = (|-|\frac{w}{2\pi}|) \operatorname{rect}(\frac{w}{2\pi})$$

After modulation,
$$X_2(w) = \frac{1}{2} (X_1(w+8\pi) + X_1(w-8\pi))$$

Passing through an intergrator.

- (a) [6] The input signal y(t) consists of the superposition of many amplitude-modulated signals that have been multiplexed using frequency-division multiplexing, so that each signal occupies a different frequency channel. Let us consider one such channel that contains the amplitude-modulated signal y₁(t) = x₁(t) cos ω_ct, with spectrum Y₁(ω) within [ω_c ω_M, ω_c + ω_M] as depicted below. We want to demultiplex and demodulate y₁(t) to recover the modulating signal x₁(t), using the system in the figure. The coarse tunable filter has the spectrum H₁(ω). Determine the spectrum Z(ω) of the input signal to the fixed selective filter H₂(jω). Sketch and label Z(ω) for ω > 0.
- (b) [6] The fixed frequency-seletive filter is a bandpass type centered around the fixed frequency ω_f . We would like the output of the filter with spectrum $H_2(\omega)$ to be $r(t) = x_1(t)\cos\omega_f t$. In terms of ω_c and ω_M , what constraint must ω_T satisfy to guarantee that an undistorted spectrum of $x_1(t)$ is center around $\omega = \omega_f$?
 - (c) [6] What must G, α , and β be in the figure so that $r(t) = x_1(t) \cos \omega_f t$.

$$G = \frac{2}{K}$$
, $\alpha = W_4 - W_M$, $\beta = W_4 + W_M$

(6)