Tan et al. 2019: Factorized Inference in Deep Markov Models for Incomplete Multimodal Time Series

Minqi Pan

March 17, 2020

Factorized Inference in Deep Markov Models for Incomplete Multimodal Time Series

- AAAI 2020 "ML: Probabilistic Methods II", Feb 12nd, 2020
- Tan Zhi-Xuan, Harold Soh, Desmond C. Ong
- A*STAR, MIT, National University of Singapore

Outline

- Methods
 - Factorized Posterior Distributions
 - Multimodal Fusion via Product of Gaussians
 - Approximate Filtering with Missing Data
 - Backward-Forward Variational Inference
- 2 Experiments
 - Datasets
 - Inference Tasks
 - Weakly Supervised Learning

Outline

- Methods
 - Factorized Posterior Distributions
 - Multimodal Fusion via Product of Gaussians
 - Approximate Filtering with Missing Data
 - Backward-Forward Variational Inference
- 2 Experiments
 - Datasets
 - Inference Tasks
 - Weakly Supervised Learning

Multimodal Deep Markov Models (MDMMs)

- z_t : vector valued latent state
- ullet x_t^m : vector valued observation for modality m at time t
- Define an MDMM with M modalities by
 - Transition distributions are assumed to be a multivariate Guassian with means and covariances which are differentiable functions of the previous latent state

$$z_t \sim \mathcal{N}(\mu_{\theta}(z_{t-1}), \Sigma_{\theta}(z_{t-1}))$$

Emission distributions

$$x_t^m \sim \Pi(\kappa_\theta^m(z_t))$$

E.g. if the data is binary, $\Pi =$ independent Bernoulli parameterized by $\kappa_{\theta}^{m}(z_{t})$

Subsuming Linear Gaussian State Space Models

- $z_t \sim \mathcal{N}(\mu_{\theta}(z_{t-1}), \Sigma_{\theta}(z_{t-1}))$
- $x_t^m \sim \Pi(\kappa_\theta^m(z_t))$
- Kalman filters
 - $\mu_{\theta}(z_{t-1}) = G_t z_{t-1} + B_t u_t$ where G_t, B_t are a matrices
 - $\Sigma_{\theta}(z_{t-1}) = K_t$ where K_t is a matrix
 - $\kappa_{\theta}^{m}(z_{t}) = F_{t}z_{t}$ where F_{t} is a matrix
 - \bullet $\Pi = \mathcal{N}$
 - We can do inference analytically!
- Deep nonlinear models
 - $\mu_{\theta}(z_{t-1})$ is a neural network parameterized by θ
 - ullet $\Sigma_{ heta}(z_{t-1})$ is a neural network parameterized by heta
 - ullet $\kappa_{ heta}^m(z_t)$ is a neural network parameterized by heta

Jointly Learning heta (Generative) and ϕ (Inference)

- ullet heta of the generative model $p_{ heta}(z_{1:T}, x_{1:T})$
 - ASSUMPTION: we consider learning in a Bayesian network whose joint distribution (generatively) factorizes as

$$p_{\theta}(z_{1:T}, x_{1:T}) = p_{\theta}(x_{1:T}|z_{1:T})p_{\theta}(z_{1:T})$$

• Note that the marginal data likelihood is intractable:

$$p_{\theta}(x_{1:T}) = \int p_{\theta}(z_{1:T}) p_{\theta}(x_{1:T}|z_{1:T}) dz$$

- ullet ϕ of the variational posterior $q_{\phi}(z_{1:T}|x_{1:T})$
 - ullet $q_{\phi}(z_{1:T}|x_{1:T})$ approximates the true posterior $p_{ heta}(z_{1:T}|x_{1:T})$
 - $p_{\theta}(z_{1:T}|x_{1:T}) = \frac{p_{\theta}(x_{1:T}|z_{1:T})p_{\theta}(z_{1:T})}{p_{\theta}(x_{1:T})}$ is intractable

Evidence Lower Bound (ELBO)

$$\begin{split} L(x;\theta,\phi) = & \mathbb{E}_{q_{\phi}(z_{1:T}|x_{1:T})}[\log p_{\theta}(x_{1:T}|z_{1:T})] \\ & - \mathbb{E}_{q_{\phi}(z_{1:T}|x_{1:T})}[\mathsf{KL}(q_{\phi}(z_{1:T}|x_{1:T}) \| p_{\theta}(z_{1:T}))] \end{split}$$

- Jensen's inequality: L is a lower bound of the log marginal likelihood $L(x;\theta,\phi)\leqslant p_{\theta}(x_{1:T})$
- ML Learning \Rightarrow Let's maximize L (via gradient ascent with stochastic backpropagation, sampling from q_{ϕ})
- The expectation wrt $q_{\phi}(z_{1:T}|x_{1:T})$ implicitly depends on the network parameters ϕ . When using a Gaussian variational approximation $q_{\phi}(z_{1:T}|x_{1:T}) \sim \mathcal{N}(\mu_{\phi}(x_{1:T}), \Sigma_{\phi}(x_{1:T})), \; \mu_{\phi}, \Sigma_{\phi}$ are parameteric functions of the observation

MDMMs can do 3 Kinds of Inferences

• Filtering: given PAST, infer

$$p(z_t|x_{1:t})$$
 for some z_t

Smoothing: given PAST and FUTURE, infer

$$p(z_t|x_{1:T})$$
 for some z_t

Sequencing: given PAST and FUTURE, infer

$$p(z_{1:T}|x_{1:T})$$

Factorization over Time

$$p(z_{1:T}|x_{1:T}) = p(z_1|x_{1:T})p(z_2|z_1, x_{1:T})p(z_3|z_2, x_{1:T}) \dots$$

$$= p(z_1|x_{1:T})p(z_2|z_1, x_{2:T})p(z_3|z_2, x_{3:T}) \dots$$

$$= p(z_1|x_{1:T}) \prod_{t=2}^{T} p(z_t|z_{t-1}, x_{t:T})$$

- Each latent state z_t depends only on
 - ullet the previous latent state z_{t-1}
 - all current and future observations $x_{t:T}$

"Conditional Smoothing Posterior"

$$p(z_t|z_{t-1},x_{t:T})$$

- it is the posterior that corresponds to the conditional prior $p(z_t|z_{t-1})$, hence we call it conditional "posterior"
- it combines information from both PAST and FUTURE, hence we call it "smoothing"

Factorizing the Conditional Smoothing Posterior (1)

 $ullet x_{t:T}^{1:M} \perp \!\!\! \perp z_{t-1} | z_t$ (by d-seperation)

$$\Rightarrow p(z_{t}|z_{t-1}, x_{t:T}^{1:M}) = \frac{p(z_{t-1}, z_{t}, x_{t:T}^{1:M})}{p(z_{t-1}, x_{t:T}^{1:M})}$$

$$= \frac{p(x_{t:T}^{1:M}|z_{t-1}, z_{t})p(z_{t-1}, z_{t})}{p(z_{t-1}, x_{t:T}^{1:M})}$$

$$= \frac{p(z_{t-1})p(z_{t}|z_{t-1})p(x_{t:T}^{1:M}|z_{t})}{p(x_{t:T}^{1:M}|z_{t-1})p(z_{t-1})}$$

Factorizing the Conditional Smoothing Posterior (2)

• $x_t \perp \!\!\! \perp x_{t+1:T}|z_t$ (by Local Markov Property)

$$\Rightarrow p(z_{t}|z_{t-1}, x_{t:T}^{1:M}) = \frac{p(z_{t-1})p(z_{t}|z_{t-1})p(x_{t:T}^{1:M}|z_{t})}{p(x_{t:T}^{1:M}|z_{t-1})p(z_{t-1})}$$

$$= \frac{p(z_{t-1})p(z_{t}|z_{t-1})p(x_{t}^{1:M}|z_{t})p(x_{t+1:T}^{1:M}|z_{t})}{p(x_{t:T}^{1:M}|z_{t-1})p(z_{t-1})}$$

$$= \frac{p(z_{t}|z_{t-1})p(x_{t}^{1:M}|z_{t})p(x_{t+1:T}^{1:M}|z_{t})}{p(x_{t:T}^{1:M}|z_{t-1})}$$

$$= p(x_{t+1:T}^{1:M}|z_{t})p(x_{t}^{1:M}|z_{t})\frac{p(z_{t}|z_{t-1})}{p(x_{t+T}^{1:M}|z_{t-1})}$$

Factorizing the Conditional Smoothing Posterior (3)

- ullet Dropping $rac{1}{p(x_{t:T}^{1:M}|z_{t-1})}$
- Assuming $p(x_t^{1:M}|z_t) = \prod_{m=1}^M p(x_t^m|z_t)$

$$\Rightarrow p(z_{t}|z_{t-1}, x_{t:T}^{1:M}) = p(x_{t+1:T}^{1:M}|z_{t}) p(x_{t}^{1:M}|z_{t}) \frac{p(z_{t}|z_{t-1})}{p(x_{t:T}^{1:M}|z_{t-1})}$$

$$\propto p(x_{t+1:T}^{1:M}|z_{t}) p(x_{t}^{1:M}|z_{t}) p(z_{t}|z_{t-1})$$

$$= p(x_{t+1:T}^{1:M}|z_{t}) \left[\prod_{m=1}^{M} p(x_{t}^{m}|z_{t}) \right] p(z_{t}|z_{t-1})$$

Factorizing the Conditional Smoothing Posterior (4)

• Dropping $p(x_{t+1}^{1:M}) \prod_{m=1}^{M} p(x_{t}^{m}) = p(x_{t}^{1:M})$ $\Rightarrow p(z_t|z_{t-1}, x_{t,T}^{1:M})$ $\propto p(x_{t+1:T}^{1:M}|z_t) \left[\prod_{m=1}^{M} p(x_t^m|z_t) \right] p(z_t|z_{t-1})$ $= \frac{p(z_t|x_{t+1:T}^{1:M})p(x_{t+1:T}^{1:M})}{p(z_t)} \left[\prod_{t=1}^{M} \frac{p(z_t|x_t^m)p(x_t^m)}{p(z_t)} \right] p(z_t|z_{t-1})$ $\propto p(z_t|x_{t+1:T}^{1:M}) \left| \prod_{t=1}^{M} \frac{p(z_t|x_t^m)}{p(z_t)} \right| \frac{p(z_t|z_{t-1})}{p(z_t)}$

Future \times Present \times Past (1)

Backward Filtering

$$p(z_t|x_{t:T}) \propto p(z_t|x_{t+1:T}) \left[\prod_m \frac{p(z_t|x_t^m)}{p(z_t)} \right]$$

Forward Smoothing

$$p(z_t|x_{1:T}) \propto p(z_t|x_{t+1:T}) \left[\prod_m \frac{p(z_t|x_t^m)}{p(z_t)} \right] \frac{p(z_t|x_{1:t-1})}{p(z_t)}$$

Conditional Smoothing Posterior

$$p(z_t|z_{t-1}, x_{t:T}) \propto p(z_t|x_{t+1:T}) \left[\prod_{m} \frac{p(z_t|x_t^m)}{p(z_t)}\right] \frac{p(z_t|z_{t-1})}{p(z_t)}$$

Future \times Present \times Past (2)

Each distribution is decomposed into

1 Its dependence on future observations

$$p(z_t|x_{t+1:T})$$

 $oldsymbol{0}$ Its dependence on each modality m in the present

$$p(z_t|x_t^m)$$

Its dependence on the past

$$p(z_t|z_{t-1}) \text{ or } p(z_t|x_{1:t-1})$$

Insights of the Factorizations

- Any missing modalities $\bar{m} \in [1,M]$ at time t can simply be left out of the product over modalities, leaving us with distributions that correctly condition on only the modalities $[1,M]\backslash\{\bar{m}\}$ that are present
- We can compute all three distributions if we can approximate the dependence on the future

$$q(z_t|x_{t+1:T}) \simeq p(z_t|x_{t+1:T}),$$

learn approximate posteriors

$$q(z_t|x_t^m) \simeq p(z_t|x_t^m)$$

for each modality m, and know the model dynamics

$$p(z_t), p(z_t|z_{t-1})$$

Outline

- Methods
 - Factorized Posterior Distributions
 - Multimodal Fusion via Product of Gaussians
 - Approximate Filtering with Missing Data
 - Backward-Forward Variational Inference
- 2 Experiments
 - Datasets
 - Inference Tasks
 - Weakly Supervised Learning

Gaussian Assumption

- It is not tractable to compute the product of generic probability distributions
- So assume that each term in the factorization is Gaussian
- If each distribution is Gaussian, then their products or quotients are also Guassian, and their products or quotients can be computed in closed form

Uncertainty Awareness

- The output distribution of Product-of-Gaussians is dominated by the input Gaussian term with lower variance (higher precision), thereby fusing information in a way that gives more weight to higher-certainty inputs
- Automatically balances the information provided by each modality m, depending on:
 - whether $p(z_t|x_t^m)$ is high or low certainty
 - the information provided from the past and future through $p(z_t|z_{t-1})$ and $p(z_t|x_{t+1:T})$
- Thereby performing multimodal temporal fusion in a manner that is uncertainty-aware

Outline

- Methods
 - Factorized Posterior Distributions
 - Multimodal Fusion via Product of Gaussians
 - Approximate Filtering with Missing Data
 - Backward-Forward Variational Inference
- 2 Experiments
 - Datasets
 - Inference Tasks
 - Weakly Supervised Learning

Missing Observations in the Future

- $p(z_t|x_{t+1:T})$ does not admit further factorization, hence does not readily handle missing data among those future observations
- $z_t \perp \!\!\! \perp x_{t+1:T}|z_{t+1}$ (by d-seperation)

$$\Rightarrow p(z_t|x_{t+1:T}) = \int_{z_{t+1}} p(z_t, z_{t+1}|x_{t+1:T}) dz_{t+1}$$

$$= \int_{z_{t+1}} p(z_t|z_{t+1}, x_{t+1:T}) p(z_{t+1}|x_{t+1:T}) dz_{t+1}$$

$$= \int_{z_{t+1}} p(z_t|z_{t+1}) p(z_{t+1}|x_{t+1:T}) dz_{t+1}$$

$$= \mathbb{E}_{p(z_{t+1}|x_{t+1:T})} [p(z_t|z_{t+1})]$$

Approximating $p(z_t|x_{t+1:T}) = \mathbb{E}_{p(z_{t+1}|x_{t+1:T})}[p(z_t|z_{t+1})]$

- Tractable approximation via Huber et al. 2011
- Assume $p(z_t|x_{t+1:T}) \sim \mathcal{N}(\boldsymbol{\mu},\,\boldsymbol{\Sigma})$ with diagonal $\boldsymbol{\Sigma}$
- Assume $p(z_t|z_{t+1}) \sim \mathcal{N}(\pmb{\mu},\, \pmb{\Sigma})$ with diagonal $\pmb{\Sigma}$
- Draw $(\mu_1, \Sigma_2), \ldots, (\mu_K, \Sigma_K)$ of $p(z_t|z_{t+1})$ under $p(z_{t+1}|x_{t+1:T})$, then
 - Approximate $\hat{\mu}$ of $p(z_t|x_{t+1:T})$ via moment-matching as

$$\frac{1}{K} \sum_{k=1}^{K} \mu_k$$

ullet Approximate $\hat{\Sigma}$ of $p(z_t|x_{t+1:T})$ via moment-matching as

$$\frac{1}{K} \sum_{k=1}^{K} (\Sigma_k + \mu_k^2) - \hat{\mu}^2$$

Insights of $p(z_t|x_{t+1:T}) = \mathbb{E}_{p(z_{t+1}|x_{t+1:T})}[p(z_t|z_{t+1})]$ (1)

• The backward filtering distribution

$$p(z_t|x_{t:T}) \propto p(z_t|x_{t+1:T}) \left[\prod_m \frac{p(z_t|x_t^m)}{p(z_t)} \right]$$

becomes

$$p(z_t|x_{t:T}) \propto \mathbb{E}_{p(z_{t+1}|x_{t+1:T})}[p(z_t|z_{t+1})] \left[\prod_{m=1}^{M} \frac{p(z_t|x_t^m)}{p(z_t)} \right]$$

- By sampling under the filtering distribution for time t+1, $p(z_{t+1}|x_{t+1:T})$, we can compute the filtering distribution for time t, $p(z_t|x_{t:T})$
- We can recursively compute $p(z_t|x_{t:T})$ backwards in time, starting from t=T:

$$p(z_T|x_{T:T}) \to p(z_{T-1}|x_{T:T}) \to p(z_{T-1}|x_{T-1:T}) \to \cdots \to p(z_1|x_{1:T})$$

Insights of $p(z_t|x_{t+1:T}) = \mathbb{E}_{p(z_{t+1}|x_{t+1:T})}[p(z_t|z_{t+1})]$ (2)

Once we can perform

$$p(z_t|x_{t:T}) \propto \mathbb{E}_{p(z_{t+1}|x_{t+1:T})}[p(z_t|z_{t+1})] \left[\prod_{m=1}^{M} \frac{p(z_t|x_t^m)}{p(z_t)} \right]$$

filtering backwards in time, we can use this to approximate $p(z_t|x_{t+1:T})$ in the smoothing distribution

$$p(z_t|x_{1:T}) \propto p(z_t|x_{t+1:T}) \left[\prod_m \frac{p(z_t|x_t^m)}{p(z_t)} \right] \frac{p(z_t|x_{1:t-1})}{p(z_t)}$$

and the conditional smoothing posterior

$$p(z_t|z_{t-1}, x_{t:T}) \propto p(z_t|x_{t+1:T}) \left[\prod_{m} \frac{p(z_t|x_t^m)}{p(z_t)} \right] \frac{p(z_t|z_{t-1})}{p(z_t)}$$

Insights of $p(z_t|x_{t+1:T}) = \mathbb{E}_{p(z_{t+1}|x_{t+1:T})}[p(z_t|z_{t+1})]$ (3)

- This approach removes the explicit dependence on all future observations $x_{t+1:T}$, allowing us to handle missing data
- Suppose the data points

$$X_{\sharp} = \{x_{t_i}^{m_i}\}$$

are missing, rather than directly compute the dependence on an incomplete set of future observations

$$p(z_t|x_{t+1:T}\backslash X_{\nexists})$$

we can instead sample z_{t+1} under the filtering distribution conditioned on incomplete observations

$$p(z_{t+1}|x_{t+1:T}\backslash X_{\sharp})$$

and then compute $p(z_t|z_{t+1})$ given the sampled z_{t+1} , thereby approximating $p(z_t|x_{t+1:T}\backslash X_{\!\!\!/})$

Outline

- Methods
 - Factorized Posterior Distributions
 - Multimodal Fusion via Product of Gaussians
 - Approximate Filtering with Missing Data
 - Backward-Forward Variational Inference
- 2 Experiments
 - Datasets
 - Inference Tasks
 - Weakly Supervised Learning

Factorized Variational Approximations (1)

• Define the variational posterior approximation q:

$$q(z_t|x_t^m) \equiv \tilde{q}(z_t|x_t^m)p(z_t)$$

- $\tilde{q}(z_t|x_t^m)$ is parameterized by a time-invariant neural network for each modality m
- We learn the Gaussian quotients $\tilde{q}(z_t|x_t^m)$ directly, so as to avoid the constraint required for ensuring a quotient of Gaussians is well-defined:

$$\tilde{q}(z_t|x_t^m) = \frac{q(z_t|x_t^m)}{p(z_t)}$$

• We also parameterize the transition dynamics $p(z_t|z_{t-1})$ and $p(z_t|z_{t+1})$ using neural networks for the quotient distributions

Factorized Variational Approximations (2)

• Denote \mathbb{E}_{\leftarrow} as a shorthand for the expectation under the approximate backward filtering distribution $q(z_{t+1}|x_{t+1:T})$:

$$p(z_t|x_{t+1:T}) = \mathbb{E}_{p(z_{t+1}|x_{t+1:T})}[p(z_t|z_{t+1})] = \mathbb{E}_{\leftarrow}[p(z_t|z_{t+1})]$$

• Denote \mathbb{E}_{\to} as the expectation under the forward smoothing distribution $q(z_{t-1}|x_{1:T})$:

$$p(z_t|x_{1:t-1}) = \mathbb{E}_{q(z_{t-1}|x_{1:T})}[p(z_t|z_{t-1})] = \mathbb{E}_{\to}[p(z_t|z_{t-1})]$$

Factorized Variational Approximations (3)

Backward Filtering (Variational Backward Algorithm)

$$q(z_t|x_{t:T}) \propto \mathbb{E}_{\leftarrow}[p(z_t|z_{t+1})] \prod_m \tilde{q}(z_t|x_t^m)$$

Forward Smoothing (Variational Backward-Forward Algorithm)

$$q(z_t|x_{1:T}) \propto \mathbb{E}_{\leftarrow}[p(z_t|z_{t+1})] \prod_{m} \tilde{q}(z_t|x_t^m) \frac{\mathbb{E}_{\rightarrow}[p(z_t|z_{t-1})]}{p(z_t)}$$

Onditional Smoothing Posterior

$$q(z_t|z_{t-1}, x_{t:T}) \propto \mathbb{E}_{\leftarrow}[p(z_t|z_{t+1})] \prod_{m} \tilde{q}(z_t|x_t^m) \frac{p(z_t|z_{t-1})}{p(z_t)}$$

Variational Backward Algorithm

```
function BackwardFilter(x_{1:T}, K)
     Initialize q(z_t|x_{T+1:T}) \leftarrow p(z_T)
     for t = T to 1 do
          Let \mathcal{M} \subset [1, M] be the observed modailities at t
         q(z_t|x_{t:T}) \leftarrow q(z_t|x_{t+1:T}) \prod_{\mathcal{M}} \tilde{q}(z_t|x_t^m)
         Sample K particles z_t^k \sim q(z_t|x_{t:T}) for k \in [1, K]
          Compute p(z_{t-1}|z_t^k) for each particle z_t^k
         q(z_{t-1}|x_{t:T}) \leftarrow \frac{1}{K} \sum_{k=1}^{K} p(z_{t-1}|z_t^k)
     end for
     return \{q(z_t|x_{t:T}), q(z_t|x_{t+1:T}) \text{ for } t \in [1,T]\}
end function
```

Variational Backward Algorithm (Remarks)

- By reversing time:
 - The algorithm gives us a variational forward algorithm that computes the forward filtering distribution

$$q(z_t|x_{1:t})$$

- By setting the number of particles K = 1:
 - The algorithm effectively computes the conditional filtering posterior

$$q(z_t|z_{t+1},x_t)$$

and conditional prior

$$p(z_t|z_{t+1})$$

for a randomly sampled latent sequence $z_{1:T}$

Variational Backward-Forward Algorithm

```
function FORWARDSMOOTH(x_{1:T}, K_b, K_f)
     Initialize \tilde{p}(z_t|x_{1:0}) \leftarrow 1
    Collect q(z_t|x_{t+1:T}) from BackwardFilter(x_{1:T}, K_b)
     for t=1 to T do
          Let \mathcal{M} \subset [1, M] be the observed modalities at t
         q(z_t|x_{1:T}) \leftarrow q(z_t|x_{t+1:T}) \prod_{\mathcal{M}} [\tilde{q}(z_t|x_t^m)] \frac{q(z_t|x_{1:t-1})}{n(z_t)}
         Sample K_f particles z_t \sim q(z_t|x_{1:T}) for k \in [1, K_f]
          Compute p(z_{t+1}|z_t^k) for each particle z_t^k
         q(z_{t+1}|x_{1:t}) \leftarrow \frac{1}{K_t} \sum_{k=1}^{K_f} p(z_{t+1}|z_t^k)
     end for
     return \{q(z_t|x_{1:T}), q(z_t|x_{1:t-1}) \text{ for } t \in [1,T]\}
end function
```

Variational Backward-Forward Algorithm (Remarks)

- By setting the number of particles $K_f = 1$:
 - The algorithm effectively computes the conditional smoothing posterior

$$q(z_t|z_{t-1},x_{t:T})$$

and conditional prior

$$p(z_t|z_{t-1})$$

for a randomly sampled latent sequence $z_{1:T}$

Knowing $p(z_t)$ of Each t

- ullet Variational Backward-Forward Algorithm requires knowing $p(z_t)$ for each t
- Sampling $p(z_t)$ in the forward pass
- We avoid the instability of sampling T successive latents with no observations by instead assuming $p(z_t)$ is constant with time, i.e. the MDMM is stationary when nothing is observed
- During training, we add

$$\mathsf{KL}\left(p(z_t) \| \mathbb{E}_{z_{t-1}} p(z_t | z_{t-1})\right) + \mathsf{KL}\left(p(z_t) \| \mathbb{E}_{z_{t+1}} p(z_t | z_{t+1})\right)$$

to the loss to ensure that the transition dynamics obey this assumption

ELBO for Backward Filtering

• The filtering ELBO:

$$\begin{split} L_{\mathsf{filter}} &= \sum_{t=1}^{T} [\mathbb{E}_{q(z_{t}|x_{t:T})} \log p(x_{t}|z_{t}) - \\ & \mathbb{E}_{q(z_{t+1}|x_{t+1:T})} \mathsf{KL}(q(z_{t}|z_{t+1},x_{t}) \| p(z_{t}|z_{t+1}))] \end{split}$$

It corresponds to a "backward filtering" variational posterior

$$q(z_{1:T}|x_{1:T}) = \prod_{t} q(z_t|z_{z+1}, x_t)$$

where each z_t is only inferred using the current observation x_t and the future latent state z_{t+1}

ELBO for Forward Smoothing

• The smoothing ELBO:

$$\begin{split} L_{\mathsf{smooth}} &= \sum_{t=1}^{T} [\mathbb{E}_{q(z_{t}|x_{1:T})} \log p(x_{t}|z_{t}) - \\ & \mathbb{E}_{q(z_{t-1}|x_{1:T})} \mathsf{KL}(z_{t}|z_{t-1}, x_{t:T}) \| p(z_{t}|z_{t-1}))] \end{split}$$

It corresponds to the correct factorization of the posterior

$$p(z_{1:T}|x_{1:T}) = p(z_1|x_{1:T}) \prod_{t=2}^{T} p(z_t|z_{t-1}, x_{t:T})$$

where each term combines information from both past and future

Backward-Forward Variational Inference (BFVI)

- Since $L_{\rm smooth}$ corresponds to the correct factorization, it should theoretically be enough to minimize $L_{\rm smooth}$ to learn good MDMM parameters θ,ϕ
- \bullet However, in order to compute $L_{\rm smooth},$ we must perform a backward pass which requires sampling under the backward filtering
- \bullet Hence, to accurately approximatee $L_{\rm smooth},$ the backward filtering distribution has to be reasonably accurate as well
- \bullet This motivates learning the parameters θ,ϕ by jointly maximizing the filtering and smoothing ELBOs as a weighted sum
- We call this paradigm BFVI due to its use of variational posteriors for both backward filtering and forward smoothing

Outline

- Methods
 - Factorized Posterior Distributions
 - Multimodal Fusion via Product of Gaussians
 - Approximate Filtering with Missing Data
 - Backward-Forward Variational Inference
- 2 Experiments
 - Datasets
 - Inference Tasks
 - Weakly Supervised Learning

MTS Dataset I: Noisy Spirals

- $R \in 2^{\mathcal{U}_{[-1,1)}}$
- $\mathbf{x}(t): \{0, 1, 2 \dots 99\} \to \mathbb{R}^2$:

$$\mathbf{x}(t) \equiv \begin{bmatrix} \sqrt{R} \cdot r(t) \cos \theta(t) + 0.1 \cdot \mathcal{N} \\ \frac{1}{\sqrt{R}} \cdot r(t) \sin \theta(t) + 0.1 \cdot \mathcal{N} \end{bmatrix}$$

• $r(0) \dots r(99), \theta(0) \dots \theta(99)$:

$$r(0) \equiv 0.25 + \mathcal{U}_{[0,0.5)} \dots r(99) \equiv 2.25 + \mathcal{U}_{[0,0.5)}$$

 $\theta(0) \equiv \mathcal{U}_{[0,\pi)} \dots \theta(99) \equiv \mathcal{U}_{[4\pi,5\pi)}$

or

$$\theta(0) \equiv \mathcal{U}_{[0,-\pi)} \dots \theta(99) \equiv \mathcal{U}_{[-4\pi,-5\pi)}$$

- 5 latent dimensions
- 2 perceptron layers for encoding $q(z_t|x_t^m)$ and decoding $p(x_t^m|z_t)$

MTS Dataset II: Weizmann Human Actions

- 90 videos of 9 people each performing 10 actions
- We converted it to a trimodal time series dataset by treating silhouette masks and an additional modality, and treating actions as per-frame labels
- We selected one person's videos as the test set, and the other 80 videos as the training set, allowing us to test action label prediction on an unseen person
- 256 latent dimensions
- Convolutional / Deconvolutional neural networks for encoding and decoding

Outline

- Methods
 - Factorized Posterior Distributions
 - Multimodal Fusion via Product of Gaussians
 - Approximate Filtering with Missing Data
 - Backward-Forward Variational Inference
- 2 Experiments
 - Datasets
 - Inference Tasks
 - Weakly Supervised Learning

Temporal Inference Tasks

- Reconstruction: reconstruction given complete observations
- Orop Half: reconstruction after half of the inputs are randomly deleted
- Forward Extrapolation: predicting the last 25% of a sequence when the reset is given
- Backward Extrapolation: inferring the first 25% of a sequence when the reset is given

Weizmann Human Actions

- Multimodal training
- Unimodal testing: we provided only video frames as input
 - NO silhouette masks
 - NO action labels

Cross-Modal Inference Tasks

- Conditional Generation for Spirals: given x coordinates and initial 25% of y coordinates, generate reset of spirals
- 2 Conditional Generation for Weizmann: given the video frames, generate the silhouette masks
- Section 1 Label Prediction for Weizmann: infer action labels given only video frames

BFVI vs RNN-based Methods

- F-Mask and F-Skip
 - Use forward RNNs, one per modality
 - Use zero-masking and update skipping respectively
- B-Mask and B-Skip
 - Use backward RNNs
 - With masking and skipping respectively
- BFVI achieves high performance on all tasks, whereas RNN-based methods only perform well on a few; in particular, all methods besides BFVI do poorly on the conditional generation task
- RNN lack a principled approach to multimodal fusion, and hence fail to learn a latent space which captures the mutual information between action labels and images
- BFVI learns to both predict one modality from another, and to propagate informatiokn across time

Outline

- Methods
 - Factorized Posterior Distributions
 - Multimodal Fusion via Product of Gaussians
 - Approximate Filtering with Missing Data
 - Backward-Forward Variational Inference
- 2 Experiments
 - Datasets
 - Inference Tasks
 - Weakly Supervised Learning

Two Forms of Weakly Supervised Learning

- Learning with data missing uniformly at random
 - Noisy sensors
 - Asynchronous sensors
- Learning with missing modalities
 - Semi-supervised learning
 - The dataset is partially unlabelled by annotators
 - A fraction of the sequences in the dataset only has a single modality present
 - Sensor break-down