数理逻辑基础 作业 2

练习 6. 2. 证明命题 2-2°, 3°, 4°.

 $2\text{-}2^{\circ} \vdash (p \land q) \rightarrow q$

 $2-3^{\circ} \vdash (p \land q) \rightarrow (q \land p)$

 $2-4^{\circ} \vdash p \rightarrow (p \land p)$

解: 2-2° 要证 $\vdash (p \land q) \rightarrow q$, 即要证 $\vdash \neg (p \rightarrow \neg q) \rightarrow p$. 下面是所要的一个证明:

$$(1) \neg q \to (p \to \neg q) \tag{L1}$$

$$(2) (\neg q \to (p \to \neg q)) \to (\neg (p \to \neg q) \to \neg \neg q)$$
 换位律

(3)
$$\neg (p \rightarrow \neg q) \rightarrow \neg \neg q$$
 (1), (2), MP

$$(4)$$
 $\neg \neg q \rightarrow q$ 双重否定律

(5)
$$\neg (p \rightarrow \neg q) \rightarrow q$$
 (3), (4), HS

2-3° 要证 $\vdash (p \land q) \rightarrow (q \land p)$, 运用演绎定律, 即要证 $\{p \land q\} \vdash \neg (q \rightarrow \neg p)$, 用归谬律, 把 $q \rightarrow \neg p$ 作为新假定. 以下公式从 $\{p \land q, q \rightarrow \neg p\}$ 都是可证的

(1) $p \wedge q$ 假定

(2)
$$(p \land q) \rightarrow p$$
 命题 2-1°

(3)
$$(p \land q) \rightarrow q$$
 命题 2-2°

(4)
$$p$$
 (1), (2), MP

(5)
$$q$$
 (1), (3), MP

(6)
$$q \to \neg p$$
 新假定

由 (4), (7) 用归谬律即得 $\{p \land q\} \vdash \neg (q \rightarrow \neg p)$, 用演绎定律即有 $\vdash (p \land q) \rightarrow (q \land p)$.

2-4° 要证 $\vdash p \to (p \land p)$, 用演绎定律即要证 $\{p\} \vdash \neg (p \to \neg p)$, 用归谬律, 把 $p \to \neg p$ 作为新假定, 立即可得

- $(1) \ \{p, p \to \neg p\} \vdash p$
- (2) $\{p, p \rightarrow \neg p\} \vdash \neg p$

由 (1), (2) 用归谬律便得 $\{p\} \vdash \neg (p \rightarrow p)$, 用演绎定律即有 $\vdash p \rightarrow (p \land p)$.

数理逻辑基础 作业 2 傅申 PB20000051

练习 6. 4. 证明命题 4-1°

$$\vdash \neg (p \land q) \leftrightarrow (\neg p \lor \neg q)$$

解: 即要证 $\vdash \neg \neg (p \rightarrow \neg q) \leftrightarrow (\neg \neg p \rightarrow \neg q)$.

这里先证明 $\vdash \neg \neg (p \to \neg q) \to (\neg \neg p \to \neg q)$,用演绎定律即要证 $\{\neg \neg (p \to \neg q)\} \vdash (\neg \neg p \to \neg q)$,有

$$(1)$$
 $\neg\neg(p \to \neg q)$ 假定

$$(2)$$
 $\neg\neg(p \to \neg q) \to (p \to \neg q)$ 双重否定律

(3)
$$p \rightarrow \neg q$$

$$(4)$$
 $\neg \neg p \rightarrow p$ 双重否定律

(5)
$$\neg \neg p \rightarrow \neg q$$

再证明 $\vdash (\neg \neg p \to q) \to \neg \neg (p \to \neg q)$, 用演绎定律即要证 $\{\neg \neg p \to \neg q\} \vdash \neg \neg (p \to \neg q)$, 有

$$(1)$$
 $\neg \neg p \rightarrow \neg q$ 假定

$$(2)$$
 $p \rightarrow \neg \neg p$ 第二双重否定律

(3)
$$p \rightarrow \neg q$$

$$(4)$$
 $(p \to \neg q) \to \neg \neg (p \to \neg q)$ 第二双重否定律

(5)
$$\neg \neg (p \rightarrow \neg q)$$

运用上面证明的两个定理, 给出 $\vdash \neg \neg (p \to \neg q) \leftrightarrow (\neg \neg p \to \neg q)$ 的证明如下

$$(1)$$
 $\neg\neg(p \to \neg q) \to (\neg\neg p \to \neg q)$ 已证明

$$(2) (\neg \neg (p \to \neg q) \to (\neg \neg p \to \neg q)) \to (((\neg \neg p \to \neg q) \to \neg \neg (p \to \neg q)) \to (\neg \neg (p \to \neg q) \leftrightarrow (\neg \neg p \to \neg q)))$$
 命题 3-5°

$$(3) ((\neg \neg p \to \neg q) \to \neg \neg (p \to \neg q)) \to (\neg \neg (p \to \neg q) \leftrightarrow (\neg \neg p \to \neg q))$$

$$(1), (2), MP$$

$$(4) (\neg \neg p \to q) \to \neg \neg (p \to \neg q)$$
 已证明

$$(5) \neg \neg (p \to \neg q) \leftrightarrow (\neg \neg p \to \neg q) \tag{3}, (4), MP$$

即证明了 $\vdash \neg (p \land q) \leftrightarrow (\neg p \lor \neg q)$.