ÍNDICE ÍNDICE

Análisis Funcional

FINAL AXEL SIROTA

Índice

1.	Problemas																					2
	Ejercicio 1.																	 				2
	Ejercicio 2.																	 				2
	Ejercicio 3.																	 				2
	Ejercicio 4.																	 				2
	Ejercicio 5.																	 				3
	Ejercicio 6.																	 				3
	Ejercicio 7.																	 				3
	Ejercicio 8.																	 				3
	Ejercicio 9.																	 				3
	Ejercicio 10.																	 				3
	Ejercicio 11.																	 				3
	Ejercicio 12.																	 				3
	Ejercicio 13.																	 				4
	Ejercicio 14.																	 				4
	Ejercicio 15.																	 				5
	Ejercicio 16.																	 				6
	Ejercicio 17.																	 				6
	Ejercicio 18.																	 				6
	Ejercicio 19.																	 				6
	Ejercicio 20.	•													•			 	•	•		6
2.	Soluciones																					7
	Solución 20.																	 				7

1. Problemas

Espacios tangentes

Ejercicio 1.

Sea M una variedad diferencial de dimensión d y $p \in M$ un punto. Probar que las siguientes descripciones del espacio tangente a M en p son equivalentes:

1. Derivaciones en p, es decir, funcionales lineales en el espacio de funciones diferenciables que cumplen la regla de Leibniz

$$T_pM = \{D : \mathscr{C}^{\infty}(M, \mathbb{R}) \to \mathbb{R} \text{ lineal } : D(fg) = D(f)g(p) + f(p)D(g)\}.$$

- 2. El espacio dual de $\mathfrak{m}_p/\mathfrak{m}_p^2$ donde $\mathfrak{m}_p = \{ f \in \mathscr{C}^{\infty}(M,\mathbb{R}) : f(p) = 0 \}.$
- 3. El espacio dual de $\overline{\mathfrak{m}}_p/\overline{\mathfrak{m}}_p^2$ donde $\overline{\mathfrak{m}}_p$ es el ideal de gérmenes de funciones en p que se anulan en p.
- 4. Familias $((U, \phi), v)$ con (U, ϕ) una carta alrededor de p y $v \in \mathbb{R}^d$, bajo la relación

$$((U, \phi), v) \sim ((V, \psi), w)$$
 si $w = D(\psi \phi^{-1})(\phi(p))v$.

Con cada descripción del espacio tangente, definir la diferencial $d_p f: T_p M \to T_{f(p)} N$ de una función diferenciable $f: M \to N$.

Ejercicio 2.

Sea $U\subseteq\mathbb{R}^n$ un abierto y $\phi:U\to\mathbb{R}$ una función diferenciable. El gráfico

$$\Gamma_{\phi} = \{(x, \phi(x)) : x \in U\}$$

es una variedad diferenciable con la carta global (Γ_{ϕ}, π) con $\pi : \Gamma_{\phi} \to \mathbb{R}^n$ definida por $\pi((x, \phi(x))) = x$. Si $f : \Gamma_{\phi} \to \mathbb{R}$ es la función dada por $f((x, \phi(x))) = \phi(x)$, calcular

$$\left. \frac{\partial}{\partial \pi^i} \right|_p (f)$$

en función de las derivadas parciales de ϕ .

Ejercicio 3.

Sea M una variedad diferencial, $p \in M$ un punto y fijemos una carta (U, ϕ) de M alrededor de p. Diremos que dos curvas $\gamma_1, \gamma_2 : \mathbb{R} \to M$ con $\gamma_1(0) = \gamma_2(0) = p$ son equivalentes si las derivadas $\frac{\mathrm{d}}{\mathrm{d}t}(\phi \circ \gamma_1)\Big|_{t=0} = \frac{\mathrm{d}}{\mathrm{d}t}(\phi \circ \gamma_2)\Big|_{t=0}$ coinciden. Lo denotaremos $\gamma_1 \sim \gamma_2$. Probar que:

- 1. \sim es una relación de equivalencia.
- 2. \sim no depende de la carta (U, ϕ) elegida.
- 3. El conjunto de clases de equivalencia puede ser dotado de estructura de espacio vectorial de forma natural y resulta isomorfo al espacio tangente en p. Definir la diferencial de una función en un punto en términos de esta nueva construcción.

Ejercicio 4.

Sea $U \subseteq \mathbb{R}^n$ un abierto y $f: U \to \mathbb{R}$ una función diferenciable tal que 0 es un valor regular (es decir, si f(p) = 0 entonces $\nabla f(p) \neq 0$). Si $M = f^{-1}(0)$, probar que T_pM puede identificarse con el espacio ortogonal a $\nabla f(p)$.

Ejercicio 5.

Probar que $f: M \to N$ es un difeomorfismo en un entorno de $p \in M$ si y sólo si $d_p f: T_p M \to T_{f(p)} N$ es un isomorfismo.

Ejercicio 6.

Sea $f: M \to N$ una función diferenciable. Probar que si f es constante en un entorno U de p entonces $d_p f = 0$. Recíprocamente, si $d_p f = 0$ para todo p en un abierto conexo U, entonces $f|_U$ es constante.

Ejercicio 7.

Sean M, N variedades y p, q puntos en ellas respectivamente. Tomemos las inclusiones $\iota_M : M \to M \times N$ dada por $\iota_M(x) = (x, q)$ y $\iota_N : N \to M \times N$ dada por $\iota_N(y) = (p, y)$. Probar que

$$T_{(p,q)}(M \times N) = \mathrm{d}_p \iota_M(T_p M) \oplus \mathrm{d}_q \iota_N(T_q N).$$

Ejemplos

Ejercicio 8.

Se considera el toro $T = S^1 \times S^1$ y la función $f(e^{it}, e^{iu}) = \sin(3t)\cos(5u)$, mirando $S^1 \subset \mathbb{C}$. Elegir alguna carta alrededor de p = (1, 1) en T y calcular las derivadas de f con respecto a las coordenadas dadas por la carta en p.

Ejercicio 9.

Sea $S^2 \subset \mathbb{R}^3$ la esfera y $f: S^2 \to \mathbb{R}$ dada por $f(x) = \operatorname{dist}(x, N)^2$ donde N = (0, 0, 1). Consideremos ademas, las cartas (U, ϕ_N) y (V, ϕ_S) dadas por las proyecciones estereográficas y $p = (\frac{1}{2}, \frac{1}{2}, \frac{\sqrt{2}}{2})$. Se definen los vectores tangentes

$$v_1 = 8 \left. \frac{\partial}{\partial \phi_N^1} \right|_p + 5\sqrt{2} \left. \frac{\partial}{\partial \phi_N^2} \right|_p, \qquad v_2 = (-15\sqrt{2} + 20) \left. \frac{\partial}{\partial \phi_S^1} \right|_p + (-24 + 16\sqrt{2}) \left. \frac{\partial}{\partial \phi_S^2} \right|_p.$$

- 1. Probar que f es diferenciable.
- 2. Calcular $v_1(f) \vee v_2(f)$.
- 3. Probar que en realidad $v_1 = v_2$.

Ejercicio 10.

Consideremos det: $GL_n(\mathbb{R}) \to \mathbb{R}$. Dado que $GL_n(\mathbb{R}) \subseteq M_n(\mathbb{R})$ es un abierto, identificamos $T_IGL_n(\mathbb{R}) \simeq T_IM_n(\mathbb{R}) \simeq M_n(\mathbb{R})$ y llamamos e_{ij} a las coordenadas así dadas. Calcular $\frac{\partial \det}{\partial e_{ij}}$ y $\frac{\partial \det}{\partial e_{ij}}\Big|_{I}$.

Ejercicio 11.

Calcular la diferencial de $f: S^1 \times (-1,1) \to S^2$,

$$f(z,t) = (z_1\sqrt{1-t^2}, z_2\sqrt{1-t^2}, t)$$
, donde $z = z_1 + iz_2$,

en los puntos de la forma $(1,t) \in S^1 \times (-1,1)$.

Ejercicio 12.

Hallar la diferencial de las siguientes funciones en el punto indicado.

- 1. $f: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $F(x,y) = (xy + y^2, e^{x-y})$ en (7,3).
- 2. $g:S^1\to S^1$ dada por $g(z)=z^n,$ con $n\in\mathbb{N},$ en cualquier punto.
- 3. El producto de matrices $\mu: \mathrm{M}_n(\mathbb{R}) \times \mathrm{M}_n(\mathbb{R}) \to \mathrm{M}_n(\mathbb{R})$ en cualquier punto.
- 4. La inversa de matrices $i: \mathrm{GL}_n(\mathbb{R}) \to \mathrm{GL}_n(\mathbb{R})$ en la identidad.
- 5. Las restricciones de μ e i a $SL_n(\mathbb{R})$ en la identidad.
- 6. $f: \mathbb{P}^2(\mathbb{R}) \to \mathbb{P}^2(\mathbb{R})$ dada por f(a:b:c) = (b:a:c) en cualquier punto.

Ejercicio 13.

Consideremos la función $f: \mathbb{R}^3 \to \mathbb{R}^2$ dada por f(x, y, z) = (xy, z).

- 1. Hallar los puntos críticos de f.
- 2. Hallar los puntos críticos de $f|_{S^2}$.
- 3. Hallar el conjunto C de valores críticos de $f|_{S^2}$.
- 4. Probar que C tiene medida 0.

Fibrados vectoriales

Sea V un espacio vectorial real. Recordemos que un **fibrado vectorial** de fibra V sobre una variedad diferencial M consiste de una variedad diferencial E junto con una función diferenciable $\pi: E \to M$ tal que

- Para cada $p \in M$ la fibra $\pi^{-1}(p)$ tiene estructura de espacio vectorial.
- Para todo $p \in M$ existen un entorno U y un difeomorfismo $\phi_U : \pi^{-1}(U) \to U \times V$ de forma que el siguiente diagrama conmuta

$$\pi^{-1}(U) \xrightarrow{\phi_U} U \times V$$

$$\pi \qquad pr_1$$

$$M.$$

■ Para todo p, ϕ y U como en el ítem anterior, la restricción $\phi_U : \pi^{-1}(p) \to \{p\} \times V$ es un isomorfismo de espacios vectoriales.

El espacio E se llama el espacio total, M el espacio base, π la proyección y U es un abierto trivializante. Dados dos abiertos trivializantes U, V la función $\phi_V \circ \phi_U^{-1}$ es llamada la función de transición. Decimos que un fibrado es trivial si se puede tomar a M como un abierto trivializante. Una sección de $\pi: E \to M$ es una función diferenciable $s: M \to E$ tal que $\pi \circ s = id$.

Ejercicio 14.

Sea M una variedad diferencial de dimensión d. Consideremos

$$TM = \{(p, v) : p \in M, v \in T_nM\},\$$

la unión disjunta de los espacios tangentes.

1. Si (U,ϕ) es una carta, definimos $\widetilde{U}=\{(p,v):p\in U,v\in T_pM\}$ y una función $\widetilde{\phi}:\widetilde{U}\to\mathbb{R}^d\times\mathbb{R}^d,$

$$\widetilde{\phi}(p,v) = \left(\phi(p), v^1, \cdots, v^d\right)$$

donde $v = v^1 \frac{\partial}{\partial \phi^1} \Big|_p + \dots + v^d \frac{\partial}{\partial \phi^d} \Big|_p$. Probar que

$$\mathscr{A} = \left\{ (\widetilde{U}, \widetilde{\phi}) : (U, \phi) \text{ carta de } M \right\}$$

induce una estructura de variedad diferenciable sobre TM. ¿Cuál es su dimensión?

- 2. Probar que la proyección canónica $\pi:TM\to M$ es una función diferenciable de rango constante.
- 3. Sea $f: M \to N$. Probar que $\mathrm{d} f: TM \to TN$ definida por $\mathrm{d} f(p,v) = (f(p),\mathrm{d}_p f(v))$ es una función diferenciable.
- 4. Probar que $\pi:TM\to M$ es un fibrado vectorial que llamaremos fibrado tangente. Encontrar un cubrimiento por abiertos trivializantes y calcular las funciones de transición.

Ejercicio 15.

Probar que los siguientes son fibrados vectoriales, hallar su fibra y las funciones de transición.

1. El fibrado tautológico de $\mathbb{P}^n(\mathbb{R})$. El espacio total se define como

$$\gamma_n = \{([v], p) \in \mathbb{P}^n(\mathbb{R}) \times \mathbb{R}^{n+1} : p \in v\}$$

y $\pi: \gamma_n \to \mathbb{P}^n(\mathbb{R})$ es la proyección en la primera coordenada.

2. El fibrado de Moebius sobre S^1 . El espacio total se define como $E = [0,1] \times \mathbb{R} / \sim$ donde

$$(a,b) \sim (c,d) \text{ si } b = -d \text{ y } \begin{cases} a = 0, c = 1, \\ a = 1, c = 0 \end{cases}$$

y la proyección está dada por $\pi: E \to S^1, \, \pi(\overline{(x,y)}) = e^{2\pi i x}.$

Ejercicio 16.

Sea M una variedad diferencial y $\pi: E \to M$ un fibrado vectorial y sea n la dimensión de las fibras.

- 1. Probar que $\pi: E \to M$ es el fibrado trivial si y sólo si existen secciones s_1, \ldots, s_n tales que $(s_1(p), \ldots, s_n(p))$ es una base de $\pi^{-1}(p)$ para cada $p \in M$.
- Probar que el fibrado tautológico nunca es trivial.
 Sugerencia: probar que toda sección del fibrado tautológico debe anularse.

Ejercicio 17.

Diremos que una variedad es paralelizable si su fibrado tangente es trivial. Probar que S^1, S^3 y $T^n = S^1 \times \cdots \times S^1$ son paralelizables. Probar que S^2 no es paralelizable.

Álgebra de campos

Ejercicio 18.

Consideremos el anillo $\mathbb{R}[\epsilon] = \mathbb{R}[x]/(x^2)$ Probar que T_pM se puede identificar con los morfismos de anillos

$$\mathscr{D}_p(M) \to \mathbb{R}[\epsilon]$$

donde $\mathcal{D}_p(M)$ es el anillo de gérmenes de funciones en p.

Ejercicio 19.

Consideremos el conjunto de \mathbb{R} -derivaciones de $\mathscr{C}^{\infty}(M,\mathbb{R})$,

$$\operatorname{Der}_{\mathbb{R}}(\mathscr{C}^{\infty}(M,\mathbb{R})) = \{ D \in \operatorname{End}_{\mathbb{R}}(\mathscr{C}^{\infty}(M,\mathbb{R})) : D(fg) = fD(g) + gD(f) \}.$$

Probar que $\operatorname{Der}_{\mathbb{R}}(\mathscr{C}^{\infty}(M,\mathbb{R})) \simeq \operatorname{Hom}_{\mathbb{R}-alg}(\mathscr{C}^{\infty}(M,\mathbb{R}),\mathscr{C}^{\infty}(M,\mathbb{R}) \otimes_{\mathbb{R}} \mathbb{R}[\epsilon]).$

Ejercicio 20.

Sea M una variedad y $U \subseteq M$ un abierto. El conjunto de campos tangentes sobre U se define como

$$\mathfrak{X}(U) = \{ X \in \mathscr{C}^{\infty}(U, TM) : \pi \circ X = id \}.$$

Probar que

- 1. Probar que $\mathfrak{X}(U)$ es un $\mathscr{C}^{\infty}(U,\mathbb{R})$ -módulo.
- 2. Probar que para todo punto $p \in M$ existe un entorno U de p tal que $\mathfrak{X}(U)$ es un $\mathscr{C}^{\infty}(U,\mathbb{R})$ -módulo libre. Â; Cuál es el rango de este módulo?
- 3. Probar que M es paralelizable si y sólo si $\mathfrak{X}(M)$ es un $\mathscr{C}^{\infty}(M,\mathbb{R})$ -módulo libre.

2. Soluciones

Solución a la pregunta 1

Primero unos lemas:

Lema 2.0.1 Sea $p \in M$ y $p \in U$ un entorno abierto, luego si $f|_U = cte$ entonces v(f) = 0 para toda $v \in T_pM$

Demostración En efecto, como $f|_U=c$ entonces $\frac{1}{c}v(f)=v(\frac{f}{c})=v(\frac{f}{c}c)=\frac{1}{c}v(f)+\frac{1}{c}v(f)$ con lo que v(f)=0.

Lema 2.0.2 Sea $p \in M$ y $p \in U$ un entorno abierto, luego si $f \in \mathfrak{m}_p^2$ entonces v(f) = 0

Demostración En efecto, existen $g, h \in \mathfrak{m}_p$ tal que f = gh por lo que $v(f) = v(gh) = \underbrace{g(p)}_{=0} v(h) + \underbrace{h(p)}_{=0} v(g) = \underbrace{h(gh)}_{=0} v(g) + \underbrace{h(gh)}_{=0} v(g) + \underbrace{h(gh)}_{=0} v(g) = \underbrace{h(gh)}_{=0} v(g) + \underbrace{h(gh)}_{=0} v(g) +$

0

Vayamos de a partes:

 $i \Longrightarrow ii$ Supongamos que $v \in (\mathcal{C}^{\infty}(M))^*$ tal que v cumple la regla de Leibniz y sea $[f] \in \mathfrak{m}_p/\mathfrak{m}_p^2$. Definamos $D_v : \mathfrak{m}_p/\mathfrak{m}_p^2 \to \mathbb{R}$ dado por $D_v[f] = v(f)$ y veamos que es lineal, cumple la regla del producto y que es independiente del representante.

Si
$$f = \underbrace{g}_{\in \mathfrak{m}_p} + \underbrace{h}_{\in \mathfrak{m}_p^2}$$
 notemos que:

$$D_v(f-g) = v(h) \underbrace{=}_{2,0,2} 0$$

Por lo tanto D_v no depende del representante, como es trivialmente lineal entonces la aplicación $D_v \in \left(\mathfrak{m}_p \left/\mathfrak{m}_p^2\right)^*\right.$

 $ii \implies iii$ En efecto por 2.0.1 la aplicación v es local y por ende podemos tomar todo en un entorno $U \ni p$ en vez de M.

 $iii \Longrightarrow iv$ Sea $v \in \left(\overline{\mathfrak{m}_p} \middle/ \overline{\mathfrak{m}_p}^2\right)^*$ y tomemos una carta (U, ϕ) de ese entorno de p, luego definimos $\chi(v) = [(\phi, u)]$ donde $u = (v(\phi^1), \dots, v(\phi^n))$.

 $iv \Longrightarrow i$