Начальные распределения для задачи двух тел

Точные формулы для двухатомной системы

Рассмотрим вектор, соединяющий центры атомов. Обозначим \mathbf{r} его координаты в лабораторной системе координат, \mathbf{R} – в молекулярной системе координат. Производные \mathbf{r} и \mathbf{R} связаны при помощи матрицы эйлеровых углов $\mathbb S$ и угловой скорости $\mathbf{\Omega}$:

$$\dot{\mathbf{r}} = \mathbb{S}^{-1} \left(\dot{\mathbf{R}} + [\mathbf{\Omega} \times \mathbf{R}] \right). \tag{1}$$

Пусть атомы в молекулярной системе координат расположены на оси Z, в таком случае правая часть выражения (1) превращается в

$$\dot{\mathbf{r}} = \mathbb{S}^{-1} \left\{ \begin{bmatrix} 0 \\ 0 \\ \dot{R} \end{bmatrix} + \begin{bmatrix} \Omega_y R \\ -\Omega_x R \\ 0 \end{bmatrix} \right\}$$

$$\mathbb{S}\dot{\mathbf{r}} = \begin{bmatrix} \Omega_y R \\ -\Omega_x R \\ \dot{R} \end{bmatrix}. \tag{2}$$

Лагранжиан в молекулярной системе координат имеет следующий вид:

$$\mathcal{L} = \frac{1}{2}\mu \dot{R}^2 + \frac{1}{2}\mathbf{\Omega}^{\top} \begin{bmatrix} \mu R^2 & 0 & 0\\ 0 & \mu R^2 & 0\\ 0 & 0 & 0 \end{bmatrix} \mathbf{\Omega}$$

Используя теорему Донкина, находим связь гамильтоновых переменных ${\bf J}$ и ${\bf p}=[p_R]$ с лагранжевыми переменными ${\bf \Omega}$ и ${\bf q}=[R]$:

$$\mathbf{J} = \frac{\partial \mathcal{L}}{\partial \mathbf{\Omega}} = \mathbb{I} \, \mathbf{\Omega} \qquad J_x = \mu R^2 \, \Omega_x
\mathbf{p} = \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}} = \mathbf{a} \, \dot{\mathbf{q}} \qquad \Longrightarrow \qquad J_y = \mu R^2 \, \Omega_y
p_R = \mu \dot{R} \qquad (3)$$

Выкладка в приложении A показывает, что каждая компонента $\dot{\mathbf{r}}$ имеет нормальное распределение $\dot{\mathbf{r}} \sim \mathcal{N}\left(\mu = 0, \sigma^2 = \frac{kT}{\mu}\right)$.

"Экспериментально" проверено, что действие равномерно распределенной матрицы поворота S на $\dot{\mathbf{r}}$ не приводит к изменению распределения $\dot{\mathbf{r}}$. Это интуитивно понятно, но строгого доказательства пока нет. Используем этот "экспериментальный" факт для получения точных распределений для переменных J_x , J_y и p_R :

$$\begin{array}{ccc}
\Omega_{x}R \sim \mathcal{N}\left(0,\frac{kT}{\mu}\right) & J_{x} \sim \mu \Omega_{x}R^{2} \sim \mathcal{N}\left(0,kT\mu R^{2}\right) \\
\mathbb{S}\dot{\mathbf{r}} \sim \dot{\mathbf{r}} \sim \begin{bmatrix} \Omega_{y}R \\ -\Omega_{x}R \\ \dot{R} \end{bmatrix} & \Longrightarrow & \Omega_{y}R \sim \mathcal{N}\left(0,\frac{kT}{\mu}\right) & \Longrightarrow & J_{y} \sim \mu \Omega_{y}R^{2} \sim \mathcal{N}\left(0,kT\mu R^{2}\right) \\
\dot{R} \sim \mathcal{N}\left(0,\frac{kT}{\mu}\right) & & p_{R} \sim \mu \dot{R} \sim \mathcal{N}\left(0,kT\mu\right)
\end{array}$$

Рис. 1: Распределения переменных p_R , J_x , J_y для двух атомов с массами m_{Ar} и m_{CO_2} при T=300K, 500.000 точек.

```
#include <iostream>
  #include <random>
2
3
   using namespace std;
4
5
6
   // boltzamnn constant
7
   const double BOLTZCONST = 1.38064e-23;
   // dalton to kg
8
   const double DALTON = 1.660539e-27;
9
10
   // atomic length unit to m
11
   const double ALU = 5.29177e - 11;
12
13
   // reduced mass of ar and co2 = m(ar) * m(co2) / (m(ar) + m(co2)) in kg
   const double MU = 20.952 * DALTON;
14
15
16
   // planck constant
   const double HBAR = 1.0545718e - 34;
17
18
   const double temperature = 300;
19
20
21
   // distance between atoms
   const double RDIST = 20.0;
22
23
24
   // a Mersenne Twister pseudo-random generator of 32-bit numbers with a state size
       of 19937 bits
   static thread local mt19937 generator;
25
```

```
26
   double nextGaussian (const double &mean, const double &sigma)
27
28
29
       normal distribution < double > d( mean, sigma );
30
       return d( generator );
31
32
   int main( int argc, char* argv[] )
33
34
     int n = atoi(argv[1]);
35
36
     for ( int i = 0; i < n; i ++)
37
38
       double jx = nextGaussian(0, RDIST * ALU * sqrt(BOLTZCONST * temperature * MU)
39
           ) / HBAR;
       double jy = nextGaussian( 0, RDIST * ALU * sqrt(BOLTZCONST * temperature * MU )
40
           ) / HBAR;
       double pR = nextGaussian( 0, sqrt(BOLTZCONST * temperature * MU)) / HBAR * ALU;
41
42
       cout << jx << "___" << jy << "___" << pR << endl;
43
44
45
     return 0;
46
47
```

Пример программы на C++ для генерации значений $J_x,\ J_y$ и p_R по точным распределениям.

Равномерно распределенная матрица поворота

MCMC-sampling

Предположим мы генерируем последовательность случайных величин, $\{X_0, X_1, X_2, \dots\}$, такую что в каждый момент $t \geq 0$ следующее состояние X_{t+1} выбирается исходя из распределения $P(X_{t+1}|X_t)$, которое зависит от текущего состояния X_t , но не от предыдущего набора состояний $\{X_0, X_1, X_2...X_{t-1}\}$. То есть, состояние X_{t+1} определяется исключительно предыдущим X_t . Такая последовательность состояний называется *цепью Маркова*.

Рассмотрим алгоритм Метрополиса-Гастингса, позволяющий получать последовательность точек — элементов Марковской цепи — распределенную согласно заданной плотности вероятности $\pi(\cdot)$.

Первым шагом алгоритма является выбор случайной точки (эта величина выбирается определенным образом на основе распределения; я же выбирал ее совершенно случайным образом, но так, чтобы она не оказалась в какой-то физически маловероятной области). Следующий за ним главный цикл алгоритма состоит из трех частей: (1) Получать следующую точку ("кандидата") x^{cand} исходя из вспомогательного распределения $q(x^{(i)}|x^{(i-1)})$; (2) Рассчитать вероятность перехода в новую точку $\alpha(x^{cand}|x^{(i-1)})$, основываясь на распределении $\alpha(x^{(i)}|x^{(i-1)})$ и функции распределения $\alpha(x^{(i)}|x^{(i-1)})$. Принять новую точку с вероятностью $\alpha(x^{(i)}|x^{(i-1)})$

Обратим внимание на то, что точка, полученная исходя из вспомогательного распределения $q(\cdot)$, принимается не всегда, а лишь с вероятностью $\alpha(\cdot)$. Рассматривают вспомогательные распределения двух классов — симметричные и асимметричные. Симметричным называется

Algorithm 1 Scheme of Metropolis-Hastings algorithm from [1]

```
1: Initialize x^{(0)} \sim q(x)
 2: for iteration i = 1, 2, \dots do
          Propose: x^{cand} \sim q(x^{(i)}|x^{(i-1)})
          Acceptance probability:
 4:
             \alpha\left(x^{cand}|x^{(i-1)}\right) = \min\left\{1, \frac{q\left(x^{(i-1)}|x^{cand}\right)\pi\left(x^{(cand)}\right)}{q\left(x^{cand}|x^{(i-1)}\right)\pi\left(x^{(i-1)}\right)}\right\}
 5:
          u \sim \text{Uniform}(\mathbf{u}; 0, 1)
 6:
          if u < \alpha then
 7:
              Accept the proposal: x^{(i)} \leftarrow x^{cand}
 8:
 9:
          else
              Reject the proposal: X^{(i)} \leftarrow x^{(i-1)}
10:
11:
12: end for
```

распределение, удовлетворяющее следующему соотношению

$$q(x^{(i)}|x^{(i-1)}) = q(x^{(i-1)}|x^{(i)})$$

К часто используемым симметричным распределениям относятся гауссово и равномерное распределения. В качестве примера рассмотрим вспомогательное распределение Гауссса:

$$x^{cand} = x^{(i-1)} + Normal(0, \sigma)$$

Понятно, что $Normal(x^{cand}-x^{(i-1)};0,\sigma)=Normal(x^{(i-1)}-x^{cand};0,\sigma)$, то есть Гауссово распределение в действительности задает симметричное вспомогательное распределение. Среднеквадратичное отклонение σ является параметром модели. Значение этого параметра будет определять динамику Марковской цепи в рассматриваемом пространстве.

В случае симметричных вспомогательных распределений выражение для вероятности выбора новой точки $\alpha(\cdot)$ существенно упрощается:

$$\alpha\left(x^{cand}|x^{(i-1)}\right) = \min\left\{1, \frac{\pi\left(x^{cand}\right)}{\pi\left(x^{(i-1)}\right)}\right\}$$

Заметим, что если плотность вероятности (точнее говоря, величина, пропорциональная плотности вероятности) в новой точке $\pi\left(x^{cand}\right)$ больше, чем плотность вероятности в текущей $\pi\left(x^{(i-1)}\right)$, то их отношение будет больше 1, а значит вероятность перехода в новую точку будет равна 1: $\alpha\left(x^{cand}|x^{(i-1)}\right)=1$. Другими словами, если новая точка выбрана таким образом, что плотность вероятности в ней больше, чем в текущей, то в нее осуществляется переход. Устройство алгоритма таково, что Марковская цепь "склонна" посещать те точки пространства, в которых моделируемая плотность вероятности выше. Однако, если новая точка была выбрана таким образом, что плотность вероятности в ней меньше, чем в текущей, то тогда вероятность перейти в нее будет определяться отношением плотностей вероятности:

$$\alpha \left(x^{cand} | x^{(i-1)} \right) = \frac{\pi \left(x^{cand} \right)}{\pi \left(x^{(i-1)} \right)}$$

То есть, если вероятность в новой точке будет мала по сравнению с текущей, то и переход в нее будет маловероятен.

Вид вероятности перехода в новую точку из текущей определяется условием детального баланса [2]. Последнее гарантирует, что полученная Марковская цепь в действительности будет удовлетворять заданной плотности вероятности.

Литература

- 1. Yildirim I. Bayesian Inference: Metropolis-Hastings Sampling. MIT Online Library
- 2. Gilks, W.R., Richardson, S., & Spiegelhalter, D.J. (1996). *Markov Chain Monte Carlo in Practice*. London: Chapman and Hall.

Appendices

Приложение А. Распределения в лабораторной системе координат

Воспользуемся следующими двумя выводами из теории вероятностей:

1. Пусть случайная величина ξ распределена с плотностью $f_{\xi}(x)$. Тогда случайная величина $\eta = a\xi + b$ распределена с плотностью

$$f_{\eta}(x) = \frac{1}{|a|} f_{\xi} \left(\frac{x-b}{a} \right)$$

2. Если две <u>независимые</u> случайные величины X и Y распределены с плотностями $X \sim f_1(x)$ и $Y \sim f_2(x)$ соответственно, то случайна величина Z = X + Y распределена с плотностью

$$g(z) = \int_{-\infty}^{+\infty} f_1(x) f_2(z - x) dx$$

Т.к. вектор $\mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2$ равен разнице радиус-векторов двух атомов \mathbf{r}_1 и \mathbf{r}_2 в лабораторной системе координат соответственно, то $\dot{\mathbf{r}} = \dot{\mathbf{r}}_1 - \dot{\mathbf{r}}_2$. Используя п.1 и п.2 получим распределение для компонент \mathbf{r} :

$$\begin{cases}
\dot{\mathbf{r}}_{1x} \sim f_1(x) = \sqrt{\frac{m_1}{2\pi kT}} \exp\left(-\frac{m_1 x^2}{2kT}\right) \\
-\dot{\mathbf{r}}_{2x} \sim f_2(x) = \sqrt{\frac{m_2}{2\pi kT}} \exp\left(-\frac{m_2 x^2}{2kT}\right)
\end{cases}$$

$$\dot{\mathbf{r}}_x \sim \int_{-\infty}^{+\infty} f_1(x) f_2(z-x) dx = \frac{\sqrt{m_1 m_2}}{2\pi kT} \int_{-\infty}^{+\infty} \exp\left(-\frac{m_1 x^2}{2kT}\right) \exp\left(-\frac{m_2 (z-x)^2}{2kT}\right) dx \tag{4}$$

Отдельно рассмотрим получившийся интеграл:

$$\int_{-\infty}^{+\infty} \exp\left(-\frac{m_1 x^2}{2kT} - \frac{m_2 (z - x)^2}{2kT}\right) dx = \int_{-\infty}^{+\infty} \exp\left(\frac{-(m_1 + m_2) x^2 - m_2 z^2 + 2m_2 zx}{2kT}\right) dx =$$

$$= \int_{-\infty}^{+\infty} \exp\left(-\frac{\left(\sqrt{m_1 + m_2} x - \frac{m_2}{\sqrt{m_1 + m_2}} z\right)^2}{2kT}\right) \exp\left(-\frac{m_2 z^2 - \frac{m_2^2}{m_1 + m_2} z^2}{2kT}\right) dx =$$

$$= \left[y = \frac{\sqrt{m_1 + m_2} x - \frac{m_2}{\sqrt{m_1 + m_2}} z}{\sqrt{2kT}}\right] = \sqrt{\frac{2kT}{m_1 + m_2}} \exp\left(-\frac{m_1 m_2}{2(m_1 + m_2) kT} z^2\right) \int_{-\infty}^{+\infty} \exp\left(-y^2\right) dy =$$

$$= \sqrt{\frac{2\pi kT}{m_1 + m_2}} \exp\left(-\frac{m_1 m_2}{2(m_1 + m_2) kT} z^2\right)$$

$$= \sqrt{\frac{2\pi kT}{m_1 + m_2}} \exp\left(-\frac{m_1 m_2}{2(m_1 + m_2) kT} z^2\right)$$

$$(5)$$

Подставляя значение интеграла (5) в выражение для плотности распределения $\dot{\mathbf{r}}_x$ (4), получаем

$$\dot{\mathbf{r}}_x \sim \frac{1}{\sqrt{2\pi kT}} \sqrt{\frac{m_1 m_2}{m_1 + m_2}} \exp\left(-\frac{m_1 m_2}{2(m_1 + m_2)kT}z^2\right) = \sqrt{\frac{\mu}{2\pi kT}} \exp\left(-\frac{\mu z^2}{2kT}\right),$$

где через μ была обозначена приведенная масса двухатомной системы $\mu = \frac{m_1 m_2}{m_1 + m_2}$.