Linears and Conics

Linear

1. If the two lines

$$L_1: x = 5, \frac{y}{3 - \alpha} = \frac{z}{-2}$$

$$L_1: x = 2, \frac{y}{-1} = \frac{z}{z - \alpha}$$
(1)

$$L_1: x = 2, \frac{y}{-1} = \frac{z}{z - \alpha}$$
 (2)

are perpendicular, then the value of α

- (a) $\frac{2}{3}$
- (b) 3
- (c) 4
- (d) $\frac{7}{3}$
- 2. Find the shortest distance between the following lines and hence write whether the lines are intersecting or not.

$$\frac{x-1}{2} = \frac{y+1}{3} = z \tag{3}$$

$$\frac{x+1}{5} = \frac{y-2}{1}, z = 2 \tag{4}$$

OR

Find the equation of the plane through the line of intersection of the planes $\vec{r} \cdot (\hat{i} + 3\hat{j}) + 6 = 0$ and $\vec{r} \cdot (3\hat{i} - \hat{j} - 4\hat{k}) = 0$, which is at a unit distance from the origin.

3.	If segment of the line intercepted between the co-ordinate-axes is bisected at the
	point $M(2,3)$, then the equation of this line is

$$2x + 3y = 13 (5)$$

$$x + y = 5 \tag{6}$$

$$2x + y = 7 \tag{7}$$

$$3x + 2y = 12 \tag{8}$$

- 4. The equation of a line through (2,-4) and parallel to x-axis is _____.
- 5. Find the equation of the median through vertex A of the triangle ABC, having vertices A(2,5), B(-4,9) and C(-2, -1).
- 6. Solve the system of linear equations, using matrix method:

$$7x + 2y = 11 (9)$$

$$4x - y = 2 \tag{10}$$

2 Conic

1. The point at which the normal to the curve $y = x + \frac{1}{x}$, x > 0 is perpendicular to the line 3x - 4y - 7 = 0 is:

a)
$$(2, \frac{5}{2})$$

c) $(-\frac{1}{2}, \frac{5}{2})$

b)(
$$\pm 2, \frac{5}{2}$$
)
d) $(\frac{1}{2}, \frac{5}{2})$

- 2. The points on the curve $\frac{x^2}{9} + \frac{y^2}{16} = 1$ at which the tangents are parallel to y-axis are:
 - (a) $a)(0, \pm 4)$

$$b)(\pm 4, 0)$$

(b) c) $(\pm 3, 0)$

- d) $(0, \pm 3)$
- 3. For which value of m is the line y = mx + 1 a tangent to the curve $y^2 = 4x$?
 - $a)\frac{1}{2}$

c)2

d)3