

IE1204 Digital Design

L9: State Machines

Masoumeh (Azin) Ebrahimi
KTH/ICT
mebr@kth.se

IE1204 Digital Design

This lecture

• BV pp. 485-507

Sequential System

A sequential system has a built-in memory - the output depends therefore BOTH on the current and previous value(s) of the input signal

Lecture 8 - Lecture 13

Moore-type machine

 In a Moore-type machine, output signals depend only on the current state

State register D-flip-flops

State register D flip-flops slows down the race between signals until the value is stable. (Compare with the tollbooth).

State register D-flip-flops

State register D flip-flops slows down the race between signals until the value is stable. (Compare with the tollbooth).

State register D-flip-flops

State register D flip-flops slows down the race between signals until the value is stable. (Compare with the tollbooth).

Quickie Question

Which of the following timing diagram is valid for a edge-triggered D flip-flop?

Alt: A

Alt: B

Alt: C

Quickie Question ...

Which of the following timing diagram is valid for a edge-triggered D flip-flop?

Alt: A

Alt: B

Alt: C

D is copied to output at the edge, when Clock goes from 0 to 1

Quickie Question ...

Which of the following timing diagram is valid for a

D Latch?

Alt: A

Alt: B

Alt: C

Quickie Question ... Latch

Which of the following timing diagram is valid for a

D Latch?

Alt: A

Alt: C

Out

D is connected to output when Enable is 1, and is locked when Enable is 0

Design task: Bit sequence detector

Specification

- Circuit has an input w and an output z
- If the input w is 1 in two consecutive clock pulses (or more), the output z should be set to 1 otherwise 0
- Use a Moore machine with D flip-flops to implement the design

State Diagram

- There are many ways to draw a state diagram
- Here we follow the notation of the textbook (Brown/Vranesic)

State Diagram of the bit sequence detector

State Table

State Diagram

State Table

Present	Next	Output	
state	w = 0	w = 1	Z
А	Α	В	0
В	Α	С	0
С	Α	С	1

Three states - two bits are needed!

Schematic of the implementation of the bit sequence detector

Design decisions: Choice of flipflops and state assignment

- The designer must determine which flipflop to use
 - D, T, or JK flip-flop
- The designer must choose the assignment for each state

State Assignment for the bit sequence detector

- In this example, we use
 - D flip-flops
 - State assignments A = 00, B = 01, C = 10
 - The assignment 11 is not present. We make it "don't care".

State Assignment bit sequence detector

State Table

Present	Next	Output	
state	w = 0	w = 1	Z
Α	Α	В	0
В	Α	C	0
C	Α	С	1

$$A = 00$$

 $B = 01$
 $C = 10$

State-assigned Table

	Present	Next			
	state	w = 0 $w = 1$		Output	
	^y 2 ^y 1	Y_2Y_1 Y_2Y_1		Z	
4	00	00	01	0	
3	01	00	10	0	
\mathcal{C}	10	00	10	1	
	11	dd	dd	d	

$$Y_2Y_1 = f(y_2y_1w)$$
 $z = f(y_2y_1)$

Next-state expressions

- We must now derive next-state expressions
 - Inputs to both flip-flops, Y₁ and Y₂
- To get minimized logic functions, we use Karnaugh diagrams

$$Y_2Y_1 = f(y_2y_1w)$$
 $Y_2 = f(y_2y_1w)$ $Y_1 = f(y_2y_1w)$ $z = f(y_2y_1)$

From State-assigned Table to Karnaughmap

$$Y_2Y_1 = f(y_2y_1w)$$
 $Y_2 = f(y_2y_1w)$ $Y_1 = f(y_2y_1w)$

Present	Next		
state	w = 0 $w = 1$		Output
y_2y_1	Y_2Y_1	Z	
00	00	01	0
01	00	10	0
10	00	10	1
11	d <mark>d</mark>	dd	d

$$Y_1 = w \overline{y}_1 \overline{y}_2$$

Present	Next		
state	w = 0 $w = 1$		Output
y_2y_1	Y_2Y_1	Y_2Y_1	Z
00	00	01	0
01	00	10	0
10	00	10	1
11	dd	<u>d</u> d	d

$$Y_2 = wy_1 + wy_2 =$$

= $w(y_1 + y_2)$

Output expression

Now we derive the expression for output

Present	Next			
state	w = 0 $w = 1$		Output	
y_2y_1	Y_2Y_1 Y_2Y_1		Z	
00	00	01	0	
01	00	10	0	
10	00	10	1	
11	dd	dd	d	

$$z = y_2$$

Implementation

$$Y_2 = wy_1 + wy_2 =$$

= $w(y_1 + y_2)$

$$Y_1 = w \overline{y}_1 \overline{y}_2$$

$$z = y_2$$

Timing diagram

State transitions occur only on the positive clock edge!

Timing diagram

State transitions occur only on the positive clock edge!

In other terms

Present state

y

Next state

y

Exercises and Hemert-book:

$$y_2^+ y_1^+ = f(y_2 y_1 w)$$
 $y_2^+ = f(y_2 y_1 w)$ $y_1^+ = f(y_2 y_1 w)$

With another lineup

$$y_{2}^{+}y_{1}^{+} = f(y_{2}y_{1}w) \quad y_{2}^{+} = f(y_{2}y_{1}w) \quad y_{1}^{+} = f(y_{2}y_{1}w)$$

$$y_{2}^{+}y_{1}^{+} = f(y_{2}y_{1}w) \quad y_{2}^{+} = f(y_{2}y_{1}w) \quad y_{1}^{+} = f(y_{2}y_{1}w)$$

$$y_{2}^{+}y_{1}^{+} = f(y_{2}y_{1}w) \quad y_{2}^{+} = f(y_{2}y_{1}w) \quad y_{1}^{+} = f(y_{2}y_{1}w)$$

$$y_{2}^{+}y_{1}^{+} = f(y_{2}y_{1}w) \quad y_{1}^{+} = f(y_{2}y_{1}w) \quad y_{1}^{+} = f(y_{2}y_{1}w)$$

$$y_{2}^{+}y_{1}^{+} = f(y_{2}y_{1}w) \quad y_{1}^{+} = f(y_{2}y_{1}w) \quad y_{1}^{+} = f(y_{2}y_{1}w)$$

$$y_{2}^{+}y_{1}^{+} = f(y_{2}y_{1}w) \quad y_{1}^{+} = f(y_{2}y_{1}w) \quad y_{1}^{+} = f(y_{2}y_{1}w)$$

$$y_{2}^{+}y_{1}^{+} = f(y_{2}y_{1}w) \quad y_{1}^{+} = f(y_{2}y_{1}w) \quad y_{1}^{+} = f(y_{2}y_{1}w)$$

$$y_{2}^{+}y_{1}^{+} = f(y_{2}y_{1}w) \quad y_{1}^{+} = f(y_{2}y_{1}w) \quad y_{1}^{+} = f(y_{2}y_{1}w)$$

$$y_{2}^{+}y_{1}^{+} = f(y_{2}y_{1}w) \quad y_{1}^{+} = f(y_{2}y_{1}w) \quad y_{1}^{+} = f(y_{2}y_{1}w)$$

$$y_{2}^{+}y_{1}^{+} = f(y_{2}y_{1}w) \quad y_{1}^{+} = f(y_{2}y_{1}w) \quad y_{1}^{+} = f(y_{2}y_{1}w)$$

$$y_{2}^{+}y_{1}^{+} = f(y_{2}y_{1}w) \quad y_{2}^{+} = f(y_{2}y_{1}w)$$

$$y_{2}^{+}y_{1}^{+} = f(y_{2}y_{1}w) \quad y_{1}^{+} = f(y_{2}y_{1}w)$$

$$y_{2}^{+}y_{1}^{+} = f(y_{2}y_{1}w) \quad y_{2}^{+}y_{1}^{+} = f(y_{2}y_{1}w)$$

$$y_{2}^{+}y_{1}^{+} = f(y_{2}y_{1}w) \quad y_{2}^{+}y_{1}^{+} = f(y_{2}y_{1$$

You could directly write down the codet state table as a "Karnaugh map".

method

Mealy-type machine

 In a Mealy machine, output signals depend on both the current state <u>and</u> inputs

Bit sequences detector Mealy machine

- The state diagram for the Mealy machine requires only two states
- The output depends on both the state and the input

A = previous value was 0

B = previous value was 1

State table

State Diagram

State Table

Present	Next state		Output z	
state	w = 0	<i>w</i> = 1	w = 0	<i>w</i> = 1
А	А	В	0	0
В	Α	В	0	1

Two states - just one flip-flop is needed!

State Assignment

State Table

Present	Next state		Output z	
state	w = 0	<i>w</i> = 1	w = 0	<i>w</i> = 1
А	А	В	0	0
В	Α	В	0	1

State-assigned Table

$$\mathbf{A} = 0$$

Present	Next state		Output	
state	w = 0	<i>w</i> = 1	w = 0	<i>w</i> = 1
У	Υ	Υ	Z	Z
0	0	1	0	0
1	0	1	0	(1)

$$Y = w$$
 $z = yw$

Implementation

Clk

Timing diagram

- The output may change during the clock period because it is a function of the input signal
- Compared to Moore machine, Mealy machine "reacts" earlier (bit sequence is detected in t₄ compared to the t₅ in Moore-machine)

Mealy machine with output register

- In the Mealy machine the output can change during the entire clock period
- We can add a register (flip-flop) at the end in order to synchronize the output with the clock edge

Timing diagram

 Mealy machine with output registers has the same timing diagram as Moore machine

Discussion Moore vs Mealy

- Moore machine output values depend only on the current state
- Mealy machine output values depend on the current state and the values of the input signals
- Mealy machine often needs fewer state
- Mealy machine outputs are not synchronized with the clock, which is why an output register is often added

Alternative state assignments

- The choice of state assignment may play a major role in implementation as it affects the logic for
 - next-state decoder
 - output decoder

State diagram bit sequences detector

Binary encoding

 Binary code follows the representation of a binary number, that is, the order is 00, 01, 10, 11

Present	Next state		
state	w = 0	w = 1	Output
^y 2 ^y 1	Y ₂ Y ₁	Y ₂ Y ₁	Z
00	00	01	0
01	00	10	0
10	00	10	1
11	dd	dd	d

 $\mathbf{A} = 00$

C = 10

 $\mathbf{B} = 01$

11

Implementation of bit sequence detector for binary code

Gray code

Next state

- In Gray code, one bit is changed at a time,
 i.e, 00, 01, 11, 10
- Gray code is good for counters

		state	w = 0	w = 1	Output
$\mathbf{A} = 00$		<i>y</i> 2 <i>y</i> 1	Y_2Y_1	Y_2Y_1	Z
$\mathbf{A} = 00$ $\mathbf{B} = 01$ $\mathbf{C} = 11$ 10	A B C	00 01 11 10			

State Table

State Diagram

State Table

Present	Next	Output	
state	w = 0	w = 1	Z
А			
В			
С			

Three states - two bits are needed!

State Table

State Diagram

State Table

Present	Next	Output	
state	w = 0	w = 1	Z
А	Α	В	0
В	Α	С	0
С	Α	С	1

Three states - two bits are needed!

Gray code

In Gray code, one bit is changed at a time,
 i.e, 00, 01, 11, 10

Gray code is good for counters

	Present	Next state		
	state	w = 0	w = 1	Output
	<i>y</i> 2 <i>y</i> 1	Y_2Y_1	Y_2Y_1	Z
	00			
3	01			
1	11			
	10			

 $\mathbf{A} = 00$

 $\mathbf{B} = 01$

B/z=0

w = 1

w = 0

C/z =

A/z=0

w = 0

Gray code

- In Gray code, one bit is changed at a time,
 i.e, 00, 01, 11, 10
- Gray code is good for counters

		Present	Next state		
		state	w = 0	w = 1	Output
$\mathbf{A} = 00$		<i>y</i> 2 <i>y</i> 1	$Y_2 Y_1$	Y_2Y_1	Z
$\mathbf{B} = 00$	A	00	00	01	0
$\mathbf{C} = 11$	В	01	00	11	0
	\mathbf{C}	11	00	11	1
10		10	dd	dd	d

$$Y_1 = w$$

$$Y_2 = wy_1$$

$$z = y_2$$

Implementation of bit sequence detector for Gray code

Implementation of bit sequence detector for Gray code

One-hot encoding

- One-hot encoding uses one flip-flop per state
- For each state, only one bit is 'hot' (1), all other bits are 0, i.e. 0001, 0010, 0100, 1000
- One-hot encoding typically minimizes the combinatorial logic, but increases the number of flip-flops

Which encoding is best?

- There is no code which is the best in every situation, but it all depends on the state diagram
- One can also use 'own codes' suitable for implementation, for example 00, 11, 10, 01

Summary

- There are two types of state machines
 - Moore machine
 - Mealy machine
- Different state assignments give us different circuit implementations
- Next lecture: BV pp. 528-566