MEDIUM FISIK JARINGAN

Sumber : Bab 4
Data & Computer Communications, 7th Edition
William Stallings

TUJUAN

Tujuan yang ingin dicapai dari pembahasan modul ini adalah:

- 1) Faktor-faktor yang mempengaruhi perancangan jaringan
- 2) Mahasiswa mampu memahami jenis-jenis medium fisik yang digunakan pada komunikasi data
- 3) Mahasiswa mampu memahami sifat/karakteristik dari masing-masing media transmisi

Spektrum Electromagnetic

- Faktor Perancangan jaringan
 - 1. Bandwith → menentukan laju data yang dicapai
 - 2. Keterbatasan transmisi → menentukan coverage(cakupan), contohnya : noise, redaman, derau
 - Interferensi → gangguan dari sinyal yang pita frekuensinya sama dapat menyebabkan distorsi, bahkan menghancurkan sinyal kirim.
 - 4. Jumlah penerima → guided media yang digunakan sebagai shared link dapat menyebabkan peningkatan redaman dan distorsi.

Spektrum Electromagnetic

❖ Guide Media

- 1. Twisted pair (10 Hz 100 MHz)
- 2. Kabel koaksial (1 kHz 1 GHz)
- 3. Serat optik (100 1000 THz)

Unguide Media

- 1. Radio
- 2. Gelombang Mikro

TWISTED PAIR

❖ Karakteristik:

- 1. Paling murah dan paling banyak digunakan
- 2. Panjang pilinan 5-15 cm, ketebalan 0,4 0,9 mm
- 3. Laju data 64 kbps untuk PBX digital, 4 Mbps untuk aplikasi jarak jauh, 10 Mbps untuk LAN (jarak 1 km), 100 Mbps-1 Gbps untuk jumlah terminal terbatas (jarak puluhan meter)
- 4. Jarak amplifier 5-6 km untuk sinyal analog, jarak repeater 2-3 km untuk transmisi digital
- 5. Redaman sangat sensitif terhadap kenaikan frekuensi

TWISTED PAIR

* Twisted Pair, terdiri dari 2 jenis :

- 1. Unshielded → merupakan kawat telepon biasa, tipe 100-ohm banyak dijumpai di gedung perkantoran
- 2. Shielded → memiliki kinerja lebih baik pada laju data yang tinggi, twisted pair dilindungi oleh logam untuk mengurangi interferensi

EIA-568-A memperkenalkan 3 kategori kabel UTP

- 1. Kategori 3: karakteristik transmisi hingga 16 MHz, twist length 7,5-10 cm
- 2. Kategori 4: karateristik hingga 20 MHz
- 3. Kategori 5: karakteristik hingga 100 MHz, twist length 0,6-0,85 cm
- Kabel kategori 3 (voice-grade) dan kategori 5 (data-grade) banyak digunakan untuk aplikasi LAN

COAXIAL CABLE

* Karakteristik:

- 1. Terdiri dari 2 konduktor dengan konstruksi yang berbeda dengan twisted pair
- 2. Konduktor dalam ditahan oleh beberapa cincin insulasi atau bahan dielektrik padat, konduktor luar ditutup dengan jaket
- 3. Diameter 1-2,5 cm, kapasitas 10.000 kanal suara
- 4. Spektrum dapat mencapai 500 MHz
- 5. Laju data ratusan Mbps untuk jarak 1 km
- 6. Jarak antar repeater 1 km
- 7. Aplikasi: distribusi TV, SLJJ, LAN
- 8. Lebih tahan terhadap interferensi dan crosstalk dibanding twisted pair, jarak jangkauan lebih jauh

SERAT OPTIK

* Karakteristik:

- 1. Medium yang tipis dan fleksibel, mampu merambatkan sinar optik
- 2. Diameter inti 2-125 μm
- Karakteristik yang membedakan serat optik dari twisted pair atau kabel koaksial:
 - √ Kapasitas lebih besar
 - ✓ Ukuran lebih kecil dan lebih ringan
 - ✓ Redaman lebih rendah
 - √ Isolasi elektromagnetik
 - ✓ Jarak antar repeater lebih jauh
- 4. Laju data ratusan Gbps untuk jarak puluhan km
- 5. Long haul 1500 km dengan kapasitas 20.000-60.000 kanal suara
- 6. Metropolitan trunking (12 km) dengan 100.000 kanal suara
- 7. Sentral rural memiliki panjang sirkit 40-160 km dan < 5000 kanal suara
- 8. LAN dikembangkan dengan kapasitas 100 Mbps hingga 10 Gbps

SERAT OPTIK

❖ Penggunaan Frekuensi

- 1. Serat optik berfungsi sebagai bumbung gelombang untuk frekuensi dalam range sekitar 10¹⁴ hingga 10¹⁵ Hz, meliputi infra merah dan spektrum cahaya tampak.
- 2. Jendela transmisi
 - ✓ Lebar pita pada masing-masing window adalah 33 THz, 12 THz, 4 THz, dan 7 THz.
 - ✓ Berada dalam porsi frekuensi infra merah, di bawah porsi cahaya tampak (400-700 nm).
- 3. Sistem WDM dapat mengirimkan 100 berkas dalam sebuah serat, tiap berkas beroperasi pada 10 Gbps

SERAT OPTIK

- ❖ Beberapa hal yang dapat menurunkan kualitas Optik :
 - 1. Scattering
 - 2. Bending
 - 3. Splicing

❖ Transmisi Wireless :

- 1. Pengiriman dan penerimaan sinyal dilakukan dengan antena
- 2. Frekuensi
 - √ Gelombang mikro: 2 40 GHz
 - ✓ Radio broadcast: 30 MHz 1 GHz
 - ✓ Infra merah: $3.10^{11} 2.10^{14}$ Hz
- 3. Gelombang mikro terestrial
 - ✓ Antena microwave yang umum adalah piringan parabola
 - ✓ Diameter parabola 3 m
 - ✓ Jarak maksimum $d = 7,14\sqrt{Kh}$

WIRELESS

❖ Transmisi Wireless :

Frequency		Analog data		Digital data		
band	Name	Modulation	Bandwidth	Modulation	Data rate	Principal applications
30-300 kHz	LF (low frequency)	Generally	not practical	ASK, FSK, MSK	0.1 to 100 bps	Navigation
300-3000 kHz	MF (medium frequency)	AM	To 4 kHz	ASK, FSK, MSK	10 to 1000 bps	Commercial AM radio
3-30 MHz	HF (high frequency)	AM, SSB	To 4 kHz	ASK, FSK, MSK	10 to 3000 bps	Shortwave radio
30-300 MHz	VHF (very high frequency)	AM, SSB; FM	5 kHz to 5 MHz	FSK, PSK	To 100 kbps	VHF television, FM radio
300–3000 MHz	UHF (ultra high frequency)	FM, SSB	To 20 MHz	PSK	To 10 Mbps	UHF television, Terrestrial microwave
3-30 GHz	SHF (super high frequency)	FM	To 500 MHz	PSK	To 100 Mbps	Terrestrial microwave, Satellite microwave
30–300 GHz	EHF (extremely high frequency)	FM	To 1 GHz	PSK	To 750 Mbps	Experimental short point- to-point

❖ ANTENA

→ Didefinisikan sebagai konduktor listrik atau sistem konduktor yang digunakan untuk meradiasikan energi elektromagnetik atau untuk mengumpulkan energi

 Hubungan antara penguatan antena dan luas efe

WIRELESS

❖ TERESTRIAL:

- 1. Rugi-rugi transmisi microwave \Rightarrow L=10log $\left(\frac{4\pi d}{\lambda}\right)^2$ dB
- 2. Frekuensi operasi 2-40 GHz
- 3. Jarak repeater atau amplifier 10-100 km
- 4. Efek curah hujan sangat besar pada frekuensi >10 GHz
- 5. Band 4-6 GHz untuk telekomunikasi jarak jauh
- 6. Band 12 GHz untuk komponen TV kabel,
- 7. Band 22 GHz untuk point to point antar gedung

Band (GHz)	Bandwidth (MHz)	Data Rate (Mbps)	
2	7	12	
6	30	90	
11	40	135	
18	220	274	

❖ Perambatan Wireless

Band	Frequency Range	Free-Space Wavelength Range	Propagation Characteristics	Typical Use	
ELF (extremely low frequency)	30 to 300 Hz	10,000 to 1000 km	GW	Power line frequencies; used by some home control systems.	
VF (voice frequency)	300 to 3000 Hz	1000 to 100 km	GW	Used by the telephone system for analog subscriber lines.	
VLF (very low frequency)	3 to 30 kHz	100 to 10 km	GW; low attenuation day and night; high atmospheric noise level	Long-range navigation, submarine communication	
LF (low frequency)	30 to 300 kHz	10 to 1 km	GW; slightly less reliable than VLF; absorption in daytime	Long-range navigation, marine communication radio beacons	
MF (medium frequency)	300 to 3000 kHz	1,000 to 100 m	GW and night SW; attenuation low at night, high in day; atmospheric noise	Maritime radio; direction finding; AM broadcasting.	
HF (high frequency)	3 to 30 MHz	100 to 10 m	SW; quality varies with time of day, season, and frequency.	Amateur radio; international broadcasting, military communication; long-distance aircraft and ship communication	
VHF (very high frequency)	30 to 300 MHz	10 to 1 m	LOS; scattering because of temperature inversion; cosmic noise	VHF television; FM broadcast and two-way radio, AM aircraft communication; aircraft navigational aids	
UHF (ultra high frequency)	300 to 3000 MHz	100 to 10 cm	LOS; cosmic noise	UHF television; cellular telephone; radar; microwave links; personal communications systems	
SHF (super high frequency)	3 to 30 GHz	10 to 1 cm	LOS; rainfall attenuation above 10 GHz; atmospheric attenuation due to oxygen and water vapor	Satellite communication; radar; terrestrial microwave links; wireless local loop	
EHF (extremely high frequency)	30 to 300 GHz	10 to 1 mm	LOS; atmospheric attenuation due to oxygen and water vapor	Experimental; wireless local loop	
Infrared	300 GHz to 400 THz	1 mm to 770 nm	LOS	Infrared LANs; consumer electronic application	
Visible light	400 THz to 900 THz	770 nm to 330 nm	LOS	Optical communication	

WIRELESS

❖ Mode Perambatan Wireless

- Sinyal yang diradiasikan dari antena berjalan melalui salah satu dari rute: gelombang tanah, gelombang langit, atau saluran bebas pandang (LOS)
- Efek gelombang tanah ditemukan pada frekuensi kurang dari 2 MHz
- Gelombang langit dapat berjalan melalui sejumlah hop, memantul antara ionosfir dan permukaan bumi
- Di atas 30 MHz, komunikasi harus secara line of sight
- Dalam ruang hampa, gelombang elektromagnetik (cahaya atau radio) memiliki kecepatan 3x108 m/s

❖ Perambatan Bebas Pandang

- 1. Untuk komunikasi satelit, sinyal di atas 30 MHz tidak dipantulkan oleh ionosfir, oleh karena itu sinyal dapat dikirimkan antara stasiun bumi dan satelit
- 2. Kondisi tanpa penghalang
 - ✓ LOS optik dapat dinyatakan sebagai d = 3,57√h
 - ✓ LOS radio efektif d = $3,57\sqrt{(Kh)}$

