Formal Language & Automata Theory

Prof. Sankhadeep Chatterjee

Topics

- Finite Automata
 - Deterministic Finite Automata (DFA)
 - Non-Deterministic Finite Automata (NFA)
- Extended Transition Functions
- Regular Languages
- Conversion of NFA to DFA
- Proof of Equivalence of DFA and NFA
- ϵ -Transition NFA
- ϵ -Closure
- ϵ -Transition Removal
- DFA Minimization

Finite Automata

- ➤ Revisiting Finite Automata for a "Switch"
- ➤ What are the different components?
 - ➤ States (e.g. 'off', 'on')
 - ➤ Actions (e.g. 'Push')
 - **≻**Effects
 - >When in state 'off', taking action 'Push' changes the state to 'on'
 - ➤ Start state

Finite Automata

- **≻**States
- **≻**Actions
- **≻**Effects
- ➤ Start state
- ➤ Final / Accepting State

Finite Automata

- Deterministic Finite Automata consists of the following:
 - \triangleright A finite set of states, often denoted Q
 - \triangleright A finite set of input symbols, often denoted Σ
 - \triangleright A transition function, denoted by δ
 - \triangleright A start state, one of the states in Q
 - \triangleright A set of final or accepting states F ($F \subseteq Q$)
- Deterministic Finite Automata is represented as follows:

$$A = (Q, \Sigma, \delta, q_0, F)$$

Transition Function:

 $\delta(q_0, a) = q_1$ indicates that DFA enters state q_1 from state q_0 after processing input symbol a

Acceptance of Strings:

For any sequence of input symbols $a_1a_2 \dots a_i \dots a_n$ if $\delta(q_{i-1},a_i)=q_i$ and $q_n \in F$ then the string is said to be "ACCEPTED" by the DFA else it is called "REJECTED"

$$\square A = (Q, \Sigma, \delta, q_0, F)$$

$$> Q = \{q_0, q_1, q_2\}$$

Can we represent it in a better way?

$$\Sigma = \{0,1\}$$

$$\triangleright \delta(q_0, 0) = q_1, \delta(q_0, 1) = q_0, \delta(q_1, 1) = q_1, \delta(q_1, 0) = q_2$$

 \triangleright Start state = q_0

$$F = \{q_2\}$$

DFA representations:

❖Transition Diagram

 $A = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$

❖ Transition Table

Construction of Transition Diagram:

- \triangleright For each state in Q there is a node
- For each state p in Q and each symbol a in Σ if $\delta(p,a)=q$
 - There will be an arc from p to q with label a
- >There is an arrow into the start state
- Final / Accepting states are marked with double circle

$$\square A = (Q, \Sigma, \delta, q_0, F)$$

$$> Q = \{q_0, q_1, q_2\}$$

$$\Sigma = \{0,1\}$$

$$\triangleright \delta(q_0, 0) = q_1, \delta(q_0, 1) = q_0, \delta(q_1, 1) = q_1, \delta(q_1, 0) = q_2$$

- \triangleright Start state = q_0
- $F = \{q_2\}$

Transition Table:

The entry for the row corresponding to state q and the column correspond input a is the state $\delta(q,a)$

State	0	1	$\frac{1}{2}$
$\rightarrow q_0$	q_1	q_0	
q_1	q_2	q_1	q0
* q2	Ø	Ø	

Extended transition Function:

$$\hat{\delta}(q, w) = p$$

- p is the state that the automaton reaches when starting in state q and processing the sequence of inputs w
- Consider w = xa where a is the last symbol and x is a string then

$$\hat{\delta}(q, w) = \hat{\delta}(q, xa) = \delta(\hat{\delta}(q, x), a)$$

Extended Transition Function

$$\hat{\delta}(q_0, 010)$$

= $\delta(\hat{\delta}(q_0, 01), 0)$

= $\delta(\delta(q_0, 01), 0)$

= $\delta(\delta(\delta(q_0, 0), 1), 0)$

= $\delta(\delta(q_1, 1), 0)$

= $\delta(q_1, 0)$

= q_2

Regular Language

• Given a DFA $A = (Q, \Sigma, \delta, q_0, F)$ the language of A is defined as:

$$L(A) = \{ w | \hat{\delta}(q_0, w) \text{ is in } F \}$$

Language of the following DFA?

$$L = \{a, aa, ab\}$$

Non-Deterministic Finite Automata (NFA)

- ❖Non-Deterministic Finite Automata consists of the following:
 - \triangleright A finite set of states, often denoted Q
 - \triangleright A finite set of input symbols, often denoted Σ
 - \triangleright A transition function, denoted by δ (**Returns a subset of** Q)
 - \triangleright A start state, one of the states in Q
 - \triangleright A set of final or accepting states F ($F \subseteq Q$)

Non-Deterministic Finite Automata (NFA)

$$\square A = (Q, \Sigma, \delta, q_0, F)$$

$$> Q = \{q_0, q_1, q_2\}$$

$$\Sigma = \{0,1\}$$

$$\triangleright \delta(q_0, 0) = \{q_0, q_1\}, \delta(q_0, 1) = q_0, \delta(q_1, 1) = q_2$$

$$\triangleright$$
Start state = q_0

$$F = \{q_2\}$$

Transition Table

How to process string 00101?

Extended Transition Function of NFA

- Consider w = xa where a is the last symbol and x is a rest of w.
- Assume $\hat{\delta}(q, x) = \{p_1, p_2, ... p_k\}$

If

$$\bigcup_{i=1}^{k} \delta(p_i, a) = \{r_1, r_2, \dots r_m\}$$

then

$$\hat{\delta}(q, w) = \{r_1, r_2, \dots r_m\}$$

$$> \hat{\delta}(q_0,00)$$

$$= \delta(\hat{\delta}(q_0, 0), 0) = \delta(\{q_0, q_1\}, 0)$$

$$= \bigcup_{i=0}^{1} \delta(q_i, 0) = \delta(q_0, 0) \cup \delta(q_1, 0)$$

$$= \{q_0, q_1\} \cup \emptyset \ = \{q_0, q_1\}$$

- Consider DFA $D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$
- Consider NFA $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$
- Conversion:
 - Σ remains same
 - $Q_D \subseteq P(Q_N)$ (Note: $P(Q_N)$ is power set of Q_N)
 - For each set $S \subseteq Q_N$ and for each a in Σ

$$\delta_D(S,a) = \bigcup_{p \text{ in } S} \delta_N(p,a)$$

- Start state of D is a set that contains only the start state of N
- $F_D \subseteq P(Q_N)$ and for each $S \in F_D$, $S \cap F_N \neq \emptyset$

Subset Construction:

Can we improve NFA to DFA conversion?

	0	1
$\rightarrow \{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$\{q_0,q_1\}$	$\left\{q_0,q_1\right\}$	$\{q_0,q_2\}$
$*\{q_0,q_2\}$	$\{q_0, q_1\}$	$\{q_0\}$

If DFA $D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$ is constructed from NFA $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$ using subset construction then L(D) = L(N)

Proof Outline:

• Show the following by induction on |w|

$$\hat{\delta}_D(\{q_0\}, w) = \hat{\delta}_N(q_0, w)$$

Basis

```
Consider |w| = 0, then w = \epsilon
Both \hat{\delta}_D(\{q_0\}, \epsilon) and \hat{\delta}_N(q_0, \epsilon) are \{q_0\}
Hence, \hat{\delta}_D(\{q_0\}, w) = \hat{\delta}_N(q_0, w)
```

Induction

Assume that the $\hat{\delta}_D(\{q_0\}, w) = \hat{\delta}_N(q_0, w)$ holds for |w| = nConsider, |w| = n + 1 and w = xa where a is the final symbol of wHence, |x| = n thus by induction hypothesis $\hat{\delta}_D(\{q_0\}, x) = \hat{\delta}_N(q_0, x)$

Consider that $\hat{\delta}_D(\{q_0\},x)=\hat{\delta}_N(q_0,x)=\{p_1,p_2,...p_k\}$ Further we get;

$$\hat{\delta}_N(q_0, w) = \hat{\delta}_N(q_0, xa) = \delta_N(\hat{\delta}_N(q_0, x), a) = \bigcup_{i=1}^K \delta_N(p_i, a)$$

Now, from subset construction we get; $_{k}$

$$\delta_D(\{p_1, p_2, ... p_k\}, a) = \bigcup_{i=1}^{N} \delta_N(p_i, a)$$

$$\hat{\delta}_D(q_0, w) = \hat{\delta}_D(\lbrace q_0 \rbrace, xa) = \delta_D(\hat{\delta}_D(\lbrace q_0 \rbrace, x), a)$$

$$= \delta_D(\{p_1, p_2, \dots p_k\}, a) = \bigcup_{i=1}^k \delta_N(p_i, a)$$

Both D and N accepts w iff $\hat{\delta}_D(\{q_0\}, w)$ and $\hat{\delta}_N(q_0, w)$ contains a state in F_N .

Hence, L(D) = L(N)

Operations on DFA

Complement of DFA:

If $D = (Q, \Sigma, \delta, q_0, F)$ then complement of D is denoted as follows:

$$\overline{D} = (Q, \Sigma, \delta, q_0, Q - F)$$

Non final states become final states and vice-versa.

Every thing else remains same.

Operations on DFA

Complement of DFA (Example):

Design a DFA that accepts the following language and find its complement:

 $L = \{w | w \text{ contains odd number of } \mathbf{b}\} \text{ over } \Sigma = \{a, b\}$

Original DFA accepting **odd** number of **b**

Complemented DFA accepting **even** number of **b**

NFA with ϵ Transition

- NFA where ϵ -transitions are allowed
- Only difference with NFA: $\delta: Q \times (\Sigma \cup \epsilon) \rightarrow P(Q)$
- Example: ϵ -NFA that accepts decimal numbers

NFA with ϵ Transition

Transition Diagram

Transition Table

ϵ -closure

Find ϵ -close of state q by following all transitions out of q with label ϵ ECLOSE(q):

$$E = \{q\}$$

- 1. For all p in $\delta(q, \epsilon) q$
 - i. $E \leftarrow E \cup ECLOSE(p)$
- 2. Return E

 $ECLOSE(1) = \{1,2,3,6,4\}$

Transition Function of ϵ -NFA

- Consider w = xa where a is the last symbol and x is a rest of w.
- Assume $\hat{\delta}(q, x) = \{p_1, p_2, ... p_k\}$

If

$$\bigcup_{i=1}^{k} \delta(p_i, a) = \{r_1, r_2, \dots r_m\}$$

then

$$\hat{\delta}(q, w) = ECLOSE\{r_1, r_2, \dots r_m\}$$

Eliminating ϵ -Transition

- Consider ϵ -NFA $E=(Q_E, \Sigma, \delta_E, q_0, F_E)$
- Consider DFA $D=(Q_D, \Sigma, \delta_D, q_D, F_D)$
- Conversion:
 - $Q_D = \{S | S \subseteq Q_E \text{ and } \epsilon closed\}$
 - Σ remains same
 - $\delta_D(S, a)$ is computed as follows:
 - Assume $S = \{p_1, p_2, ..., p_k\}$
 - $\bigcup_{i=1}^{k} \delta_E(p_i, a) = \{r_1, r_2, \dots r_m\}$
 - $\delta_D(S, a) = ECLOSE(\{r_1, r_2, ..., r_m\})$
 - $q_D = ECLOSE(q_0)$
 - $F_D = \{S | S \subseteq Q_D \text{ and } S \cap F_E \neq \emptyset \}$

Distinguishable States of DFA

• If p is an accepting state and q is nonaccepting, then the pair $\{p,q\}$ is distinguishable.

• Let p and q be states such that for some input symbol a, $r = \delta(p, a)$ and $s = \delta(q, a)$ are a pair of states known to be distinguishable. Then, $\{p, q\}$ is distinguishable.

Table Filling Algorithm

DFA Minimization

 After partitioning the states into equivalent blocks we get:

 $({A, E}, {B, H}, {C}, {D, F}, {G})$

DFA Minimization

