Тема 4.1 МЕХАНІЧНІ КОЛИВАННЯ ТА ХВИЛІ

Тема 4.1.1 Звукові хвилі, їх характеристики та використання. Інфрата ультразвуки, їх застосування

ПЛАН

- 1. Звукові хвилі
- 2. Швидкість звуку
- 3. Види звукових хвиль
- 4. Характеристики звукових коливань
- 5. Ефект Доплера

Ми живемо у світі звуків. Звуки - це те, що чує вухо. Навколо можна чути голоси людей, спів птахів, звуки музичних інструментів, шум лісу, грім під час грози. Гуркочуть машини, механізми, транспорт тощо.

Розділ фізики, в якому вивчаються звукові явища, називають акустикою.

Джерелом звуку є тіло, що коливається. Це підтверджено експериментально. Якщо, наприклад, завдати удару по камертону і піднести до нього малу кульку, то звук можна буде чути доти, доки кулька буде відскакувати від камертона, що свідчить про його коливання.

Звукові хвилі — це механічні хвилі, що поширюються в пружному середовищі, окремі з яких може сприймати людина за допомогою органів слуху.

Тіло, що коливається, в навколишньому середовищі створює механічні хвилі, які можуть поширюватися тільки завдяки пружним властивостям середовища, тобто ε пружними.

Коли такі хвилі досягають вуха людини, вони спричиняють виникнення вимушених коливань барабанної перетинки і людина чує звук. Отже, механічні хвилі, що викликають у людини відчуття звуку, називаються звуковими. Оскільки при цьому звукові хвилі поширюються в повітрі, то ці хвилі поздовжні.

У поздовжніх хвилях коливання частинок приводять до того, що в газі виникають ділянки згущень і розріджень, які змінюють одна одну. Відстань між двома послідовними згущеннями або розрідженнями - це довжина хвилі 1. Отже, повітря - провідник звуку. Це довів 1660 року Р. Бойль на досліді. Відкачавши повітря з-під ковпака демонстраційного повітряного насоса, ми не почуємо звучання електричного дзвінка, розміщеного під ним.

У твердих тілах звук поширюється у вигляді поздовжніх і поперечних хвиль. У рідинах і газах, оскільки в них деформація зсуву неможлива, звукові хвилі поширюються тільки у вигляді поздовжніх хвиль.

Відчуття звуку виникає тільки за певних частот коливань у хвилі. Для того, щоб людина чула звук, потрібне джерело звуку. Джерелами звуку можуть бути будь-які тіла, що коливаються з частотою, яка потрапляє у чутний діапазон. У більшості випадків - це тверді тіла (струни, мембрани, деки, дифузори, п'єзопластинки тощо). Існують й інші джерела: повітряні стовпи у духових інструментах, завихрення повітря під час турбулентного обтікання куль, мін, снарядів, надзвукових літаків, досить рідко - коливання рідин.

Між джерелом і вухом має знаходитись пружне середовище. Дослід показує, що для органу слуху людини звуковими є тільки такі хвилі, в яких коливання відбуваються з частотами від 16 до 20000 Гц. Розмахувати руками 16 і більше разів за секунду ніхто не може, хоч хвиля під час такого розмахування виникає.

Звук ще повинен мати потужність, достатню для його сприйняття. Звуки поділяють на музикальні тони і шуми. Музикальним тоном називають звук довільної частоти, який створюється коливним тілом. Шум є складним звуком, що утворюється в результаті тривалих неперіодичних коливань різних джерел звуку (шум моря, дерев у лісі, натовпу тощо).

Швидкість звуку в різних середовищах різна:

У повітрі – 330 м/с; (0^{0}C) 343м/с - (20^{0}C)

У водi – 1400 м/c;

В сталі – 5400 м/с (повздовжні); 3220м/с (поперечні).

В міді – 4560 м/с (повздовжні); 2250м/с (поперечні).

В алюмінію – 6320м/с (повздовжні); 3100м/с (поперечні).

Швидкість можна визначити за формулою: $\upsilon = \frac{l}{t}$

l - довжина, t - час

Луна – це явище відбивання звуку від перешкод.

Види звукових хвиль: акустичні, інфразвукові, ультразвукові.

Акустичні коливання — це звукові хвилі з частотою коливань 16-20000Гц. **Акустика** — це наука про звук.

Інфразвук — це звукові хвилі з частотою коливань менше $16 \Gamma_{_{ij}}$. Приклади: землетруси, удари грому виверження вулканів, вібрації масивних верстатів, іншого обладнання, биття серця, коливання кишечника, легенів.

Ультразвук — це звукові хвилі з частотою коливань більше 20 000 Γ_{ij} . У природних умовах інфразвуки можуть зумовити помахування крил птахів, коливання гілок дерев чи поверхні моря під впливом вітру. Існують інфразвуки техногенного походження. Ці низькочастотні хвилі слабко поглинаються і тому здатні поширюватися на великі відстані. Птахи і більшість тварин чутливі до цих звукових хвиль. Припускають, що завдяки цьому від інфразвуків, що передують землетрусам, тварини стривожуються, а люди й гадки не мають про небезпеку.

Інфразвуки ще не знайшли широкого застосування. Однак їх властивості необхідно вивчати, щоб запобігти негативному впливу на здоров'я людини. Під час тривалих дій потужних інфразвуків у людини з'являються симптоми, подібні до симптомів "морської хвороби". Водночас існують новітні методи лікування хвороб дозованими імпульсами інфразвуків.

Ультразвуки у природі трапляються рідко. Кажани використовують ультразвук для орієнтування у темряві. Складний і потужний ультразвуковий локатор мають дельфіни.

Ультразвукова хвиля порівняно із звуковою має більшу інтенсивність за рахунок більшої частоти коливань в ній. Це використовують в різних

галузях. Завдяки спрямованості ультразвукових хвиль і їх відбиванню від перешкод можна знайти відстань до предмета.

Звуколокатори (їх називають також ехолокаторами) дають змогу виявити і визначити місцезнаходження різних пошкоджень у виробах (порожнечі, тріщини, сторонні включення). У медицині ультразвук використовують для діагностики і лікування деяких захворювань. Ультразвукові хвилі великої інтенсивності використовують для виготовлення порошків та емульсій з незмішуваних речовин тощо. Однак існують і екологічні проблеми акустики. Звуки великої гучності, зокрема шуми, наносять шкоду навколишньому середовищу. Передозування інтенсивності інфра- і ультразвукових хвиль під лікування деяких хвороб також є небезпечним. "Забруднення" навколишнього середовища акустичними коливаннями шкідливо впливає на здоров'я людини. 3 метою охорони навколишнього середовища забороняється подавати з автомобілів звукові сигнали в населених пунктах, будувати летовища у великих містах. З метою охорони здоров'я житлові масиви відділяються від автомагістралей зеленими зонами. На підприємствах з акустичним навантаженням створюють кімнати психічного розвантаження.

Характеристики звукових коливань.

Музикальний тон — це звук, який створюється тілом, що гармонічно коливається.

Шум – це сукупність звуків, що займають суцільний спектр певного інтервалу частот.

Висота звуку визначається його частотою (чим більша частота коливань, тим вищий звук).

Гучність звуку визначається амплітудою коливань (чим більша амплітуда коливань, тим гучніший звук).

Тембр звуку – це своєрідне забарвлення складного музикального звуку, що залежить від кількості і висоти обертонів та їх відносних амплітуд.

У складному музикальному звуку, крім основного тону, ϵ звуки вищих тонів – обертонів.

Акустичний резонанс — це різке зростання амплітуди вимушених коливань тіла у випадку, коли частота власних коливань збігається з частотою звукової хвилі.

Ефект Допплера – це явище зміни частоти коливань при русі джерела звуку і спостерігача.

При віддалені джерела звуку від спостерігача з швидкістю υ частота коливань зменшується.

$$v' = \frac{v}{1 + \frac{v}{U}}$$

 ν - частота коливань для нерухомого джерела звуку і спостерігача

U - швидкість звуку

 υ - швидкість джерела звуку

При наближені джерела звуку до спостерігача з швидкістю υ частота коливань збільшується.

$$v' = \frac{v}{1 - \frac{v}{U}}$$

Якщо спостерігач наближається до джерела звуку, то частота коливань збільшується.

$$v' = v \left(1 + \frac{v}{U} \right)$$

 υ - швидкість спостерігача

Якщо спостерігач віддаляється від джерела звуку, то частота коливань зменшується.

$$v' = v \left(1 - \frac{v}{U} \right)$$

Перевір себе

Вибери правильну відповідь

- 1. Які з частот не ϵ звуковими?
- А) 10 Гц; Б) 22 Гц; В) 15000 Гц; Г) 30000 Гц
- 2. Від чого залежить швидкість звуку?

- А) від температури середовища; Б) від роду середовища; В) відвідстані до спостерігача.
- 3. Які з параметрів є звуковими характеристиками?
- А) сила звуку; Б) частота звуку; В) швидкість звуку: Г) опір звуку.
- 4. Як називаються механічні хвилі з частотою більшою за 20 кГц?
- А) ультразвук; Б) звукові; В) інфразвук; Г) затухаючі.

Розв'яжи задачу:

Стрілець почув, як куля вдарилась у мішень через 3 с після пострілу. На якій відстані від нього мішень, якщо швидкість кулі $720 \ \frac{\kappa M}{\epsilon \, o \partial}$.

Сила звуку та звуковий тиск

С, дБ	I, BT/M ²	∆ р, Па	Приклади звуків
0	10 -12	0,00002	Поріг чутності
10	10 -11	0,000065	Шепіт на відстані 1 м
20	10 ⁻¹⁰	0,0002	Звуки в тихому лісі
30	10 ⁻⁹	0,00065	Звуки в тихій кімнаті
40	10 ⁻⁸	0,002	Не гучна музика
50	10 ⁻⁷	0,0065	Шум в закладі
60	10 ⁻⁶	0,02	Розмова на відстані 1 м
70	10 -5	0,0645	Двигун вантажного автомобіля
80	10 -4	0,2	Гучна вулиця
90	10 ⁻³	0,645	Автомобільний гудок
100	10 ⁻²	2	Сирена
110	10 ⁻¹	6,45	Пневматичний молоток
120	1	20	Сильні вдари грому, реактивний двигун
130	10	64,5	Болевий поріг