

INTERPOLATION POLYNOMIALE

Correction-Exercice 1

Analyse Numérique - 3^{ème} année

Enoncé

On considére les points (-2,4); (0,0); (1,0) et (2,4). Parmi les polynômes suivants, lequel est le polynôme d'interpolation P aux quatre points et justifier votre réponse.

(1)
$$P_1(X) = X^4 + \frac{2}{3}X^3 + 3X^2 + \frac{8}{3}X$$

(2)
$$P_2(X) = \frac{4}{3}X^2 - \frac{4}{3}$$

(3)
$$P_3(X) = \frac{1}{3}X^3 + X^2 - \frac{4}{3}X$$

(4)
$$P_4(X) = \frac{1}{6}X^4 + X^3 + \frac{2}{3}X^2 + X$$

Corrigé

Rappel

Soient (n+1) points d'abscisses distinctes $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$. L'interpolation polynomiale de ces points consiste à déterminer un polynôme $P \in \mathbb{R}_n[X]$ tel que $P(x_i) = y_i$ pour tout $i \in \{0, \dots, n\}$.

On ne demande pas ici de calculer le polynôme mais de l'identifier, on va donc utiliser

la caractérisation du polynôme d'interpolation de Lagrange associé aux points.
$$P \text{ polynôme d'interpolation de Lagrange associé à } x_i \Leftrightarrow \deg(P) \leq 3 \text{ et} \begin{cases} P(-2) = 4; \\ P(0) = 0; \\ P(1) = 0; \\ P(2) = 4. \end{cases}$$

Il n'y a qu'à trouver le polynôme qui satisfait toutes les propriètés.

Existence et unicité du polynôme :

- Le polynôme P_1 est de degré 4 donc éliminé
- Le polynôme P_2 a un terme constant non nul il ne s'annule pas en 0 donc éliminé
- Le polynôme P_3 on vérifie qu'il convient et P_4 ne vérifie pas P(1) = 0