

by Abraão Nascimento

Summary:

- 1. Data exploration
- 2. Data ingestion
- 3. Output 1: Total equipment failures that happened
- 4. Output 2: Which equipment code had most failures
- 5. Output 3: Average amount of failures across equipment group, ordered by the number of failures in ascending order
- 6. Contact

```
In [4]: root_data = f'{root}\\data\\'
```

1. Data exploration

In [5]: equipment_sensors = pd.read_csv(f'{root_data}equipment_sensors.csv', sep=';') # If you are using Linux, replace \\ to /, pl ease.

1.1 Data equipment_sensors.csv

It was possible to check that columns are in integer format, with no null values and no duplicate records.

1.2 Data equipment.json

It was possible to check that columns are integer and string format, and there are no null values and no duplicates in the equipment_id field.

1.2 Data equipment_failure_sensors.log

Fields are not well structured, because of that they will be normalized and structured into 4 columns: datetime, type, message, sensor id.

1.2.1 Merging and renaming fields

```
In [12]: logs.head()
     Out[12]:
                                      0
                                                1
                                                            2
                                                                           3
                                                                                            4
                                                                                                       5
               0 [2019-12-10 10:46:09] ERROR
                                                    sensor[5]:
                                                               (temperature 365.26, vibration -6305.32)
                                                                                                  -58.41)
               1 [2019-12-10 10:46:09] ERROR sensor[43]:
                                                                (temperature 458.47, vibration
               2 [2019-12-10 10:46:09] ERROR sensor[44]:
                                                                (temperature
                                                                               57.16. vibration
                                                                                                 -999.66)
                                                                              106.69, vibration -4659.02)
               3 [2019-12-10 10:46:09] ERROR sensor[67]:
                                                                (temperature
               4 [2019-12-02 06:53:29] ERROR
                                                    sensor[5]:
                                                                (temperature
                                                                               26.42, vibration -3438.67)
              logs['message'] = "
      In [13]:
      In [14]:
               logs.loc[:]
     Out[14]:
                                                                 2
                                                                               3
                                           0
                                                     1
                                                                                                 4
                                                                                                            5 message
                    0 [2019-12-10 10:46:09] ERROR
                                                         sensor[5]:
                                                                    (temperature 365.26, vibration -6305.32)
                       [2019-12-10 10:46:09] ERROR sensor[43]:
                                                                    (temperature
                                                                                  458.47, vibration
                                                                                                       -58.41)
                    2 [2019-12-10 10:46:09] ERROR
                                                        sensor[44]:
                                                                    (temperature
                                                                                    57.16, vibration
                                                                                                     -999.66)
                    3 [2019-12-10 10:46:09]
                                             ERROR
                                                        sensor[67]:
                                                                    (temperature
                                                                                  106.69, vibration
                                                                                                    -4659.02)
                       [2019-12-02 06:53:29]
                                             ERROR
                                                         sensor[5]:
                                                                    (temperature
                                                                                    26.42, vibration
                                                                                                    -3438.67)
               36974 [2019-12-09 09:26:38] ERROR sensor[27]:
                                                                    (temperature
                                                                                  472.36, vibration
                                                                                                     9660.13)
               36975 [2019-12-09 09:26:38] ERROR sensor[51]:
                                                                    (temperature
                                                                                  134.64, vibration
                                                                                                     -736.71)
               36976 [2019-12-09 09:26:38] ERROR sensor[56]:
                                                                    (temperature
                                                                                  388.94, vibration
                                                                                                     1237.49)
               36977 [2019-12-09 09:26:38] ERROR sensor[81]:
                                                                    (temperature
                                                                                    82.97, vibration
                                                                                                     -1871.2)
               36978 [2019-12-09 09:26:38] ERROR sensor[89]: (temperature 204.79, vibration -6460.27)
               36979 rows × 7 columns
      ln [15]: logs['message'] = logs[2] + '' + logs[3] + '' + logs[4] + '' + logs[5]
               logs.rename(columns = {0:"datetime", 1:"type"}, inplace = True)
               logs = logs[["datetime","type","message"]]
1.2.2 Creating a new field for sensor_id
      In [16]:
               messages = logs.message.tolist()
               messages[0:3]
     Out[16]: ['sensor[5]: (temperature 365.26, vibration -6305.32)',
               'sensor[43]: (temperature 458.47, vibration -58.41)',
               'sensor[44]: (temperature 57.16, vibration -999.66)']
      In [17]: sensor_ids = [re.search('\[(\d+)\]', record).group(0) for record in messages] # Regex and list comprehension are used to fi
               nd sensor IDs
               sensor_ids[0:10]
```

Out[17]: ['[5]', '[43]', '[44]', '[67]', '[5]', '[43]', '[44]', '[67]', '[11]', '[15]']

```
In [18]: sensor_ids = [re.search('\d+',ID).group(0) for ID in sensor_ids]
         sensor ids[0:10]
Out[18]: ['5', '43', '44', '67', '5', '43', '44', '67', '11', '15']
 In [19]: | logs['sensor_id'] = sensor_ids
         logs.head()
Out[19]:
                          datetime
                                        type
                                                                                    message sensor id
          0 [2019-12-10 10:46:09] ERROR sensor[5]: (temperature 365.26, vibration -630...
                                                                                                         5
          1 [2019-12-10 10:46:09] ERROR sensor[43]: (temperature 458.47, vibration -58...
                                                                                                        43
          2 [2019-12-10 10:46:09] ERROR sensor[44]: (temperature 57.16, vibration -999...
                                                                                                        44
          3 [2019-12-10 10:46:09] ERROR sensor[67]: (temperature 106.69, vibration -46...
                                                                                                        67
          4 [2019-12-02 06:53:29] ERROR sensor[5]: (temperature 26.42, vibration -3438...
                                                                                                         5
```

1.2.3 Filtering Data by January, 2020

```
In [20]: logs_01_2020 = logs[logs['datetime'].str.contains('2020-01')==True]
```

2 - Data ingestion (In Memory)

Note: The production code ('source code' folder) reads the data on-demand by using a chunk size of 100.000 records each to improve the efficiency of the code when it is dealing with gigabytes-size data.

2.1 Creating a in memory database

```
In [21]: in_memory_db = create_engine('sqlite://', echo=False)
```

2.2 Loading the data to the database created

```
In [22]: logs.to_sql('logs', con=in_memory_db) equipment.to_sql('equipment', con=in_memory_db) equipment_sensors.to_sql('equipment_sensors', con=in_memory_db)
```

3 - Output 1: Total equipment failures that happened

```
In [23]: sql = ""

SELECT COUNT(*)
FROM (SELECT DISTINCT equipment_id
FROM logs
LEFT JOIN equipment_sensors
ON logs.sensor_id = equipment_sensors.sensor_id
WHERE logs.type = 'ERROR')
""
```

```
In [24]: output = {'Total equipment failures': [in_memory_db.execute(sql).fetchall()[0][0]]} output = pd.DataFrame(data=output) output

Out[24]:

Total equipment failures

0 13
```

4 - Output 2: Which equipment code had most failures

```
In [25]: | sql2 = ""
         SELECT code, COUNT(code) AS total FROM (SELECT equipment_id
                FROM logs
                LEFT JOIN equipment_sensors
                ON logs.sensor_id = equipment_sensors.sensor_id
                WHERE logs.type = 'ERROR') AS query1
         LEFT JOIN equipment
         ON query1.equipment_id = equipment.equipment_id
         GROUP BY code
         ORDER BY total DESC
         data = in_memory_db.execute(sql2).fetchall()
 In [26]: | output2 = {'Equipment code with most failures': [data[0][0]], 'Total of failures': [data[0][1]]}
                                                                                                                            output2 = pd.DataFrame(data=output2)
         output2
Out[26]:
             Equipment code with most failures  Total of failures
          0
                                                              3753
                                      E1AD07D4
```

5 - Output 3: Average amount of failures across equipment group, ordered by the number of failures in ascending order

```
In [27]: | sql3 = ""
        SELECT group_name, CAST(ROUND(AVG(total)) AS INTEGER)
        FROM (SELECT code, COUNT(code) AS total
            FROM (SELECT equipment_id
            FROM logs
            LEFT JOIN equipment_sensors
            ON logs.sensor_id = equipment_sensors.sensor_id
            WHERE logs.type = 'ERROR') AS query1
          LEFT JOIN equipment
          ON query1.equipment_id = equipment.equipment_id
          GROUP BY code) AS query2
        LEFT JOIN equipment
        ON query2.code = equipment.code
        GROUP BY group_name
        ORDER BY total ASC
        data = in_memory_db.execute(sql3).fetchall()
```

In [28]: output3 = {'Group_name': [line[0] for line in data], 'Average': [line[1] for line in data]} output3 = pd.DataFrame(data=output3) output3

Out[28]:

	Group_name	Average
0	FGHQWR2Q	2704
1	VAPQY59S	2592
2	PA92NCXZ	2727
3	NQWPA8D3	2881
4	9N127Z5P	3034
5	Z9K1SAP4	3699

Average has been formatted to integer, but it also can be decimal if needed

6. Contact

Hi. You can find more information about me by searching on my LinkedIn profile https://www.linkedin.com/in/abra%C3%A3o-nascimento-39915162/).

This and other projects can be found on my Github page: https://github.com/abraaonascimento (https://github.com/abraaonascimento).

Out[30]: About

In [30]: | Image(filename=f'{root}/images/about.jpg')

+7 years working with Software Development, APIs and Service Integration, Databases, Analysis, Mining and Data Processing. During the last 3 years, I have been learning and working with Infrastructure (Microsoft Azure), Machine Learning (text classification algorithms) and as a Technical Leader in global projects, performing activities such as project planning, creating goals and tasks, training and hackathons, code review and helping in hiring technical people.

Thank you!