Experimental Design: Exam II (2021)

Name: Student id#: Department:

- 1. (20 points) For each of the following statements, answer right true (T) or false (F):
 - (a) Rules for expected mean squares (EMS) work well in BIBD or Latin square design.
 - (b) When we check the treatment effects in BIBD, we can use types I and II SS.
 - (c) When the interaction of the two factors is significant in two-factor factorial design, the optimal level of the treatment combination is same to that of 'one-factor-a-time design'.
 - (d) 2^k factorial design is often used to at the early stage of experimentation to detect potential candidate factors for more detailed investigation.
 - (e) 2^k design with a block via confounding is an incomplete block design to sacrifice a specific treatment effect. Therefore, the specific treatment effect is partially confounded with the block.
 - (f) In PROC MIXED using option METHOD=TYPE1, the estimation of variance components uses the maximum likelihood method.
 - (g) Even though we use different kinds of constraints $(\sum_{i=1}^{a} \tau_i = 0 \text{ or } \tau_a = 0)$ in one-way ANOVA models, p-values of the test statistics for $H_0: \tau_1 = \cdots = \tau_a = 0$ are same.
 - (h) In a nested design, the levels of one factor, B, will not be identical across all levels of another factor, A. Factor A will contain different levels of factor B. In this case, the levels of A are said to be nested within the levels of B.
 - (i) In an one-way ANOVA model with random effects, when the similarity of the observations within group is very high, the intraclass correlation coefficient is small.
 - (j) In a split-plot designs, the experimental units are nested within the blocks, and a separate random assignment of units to treatments is made within each block.
- 2. (25 points) Consider the following SAS output from analysis of a balanced incomplete block design (BIBD). The statistical model is

$$y_{ij} = \mu + \tau_i + \beta_j + \epsilon_{ij}.$$

We assume that all factors are fixed. τ_i and β_j are respectively treatment and block effects.

- (a) Write out the remaining conditions for the above model.
- (b) What are the hypotheses of interest? Should the hypothesis be rejected? Why, or why not?
- (c) If the grand mean is 72.50, compute $\hat{\tau}_1, \dots, \hat{\tau}_4$ (treatment effect).

```
Source DF
           Sum of Squares
                            Mean Square
                                           F Value
                                                       Pr>F
Model
        6
                77.7500000
                              12.95833333
                                             19.94
                                                    0.0024
        5
                 3.2500000
                               0.65000000
Error
Total
                81.0000000
       11
Source DF
                                                    Pr>F
           Type III SS
                            Mean Square
                                         F Value
Block
       3
           66.08333333
                            22.02777778
                                            33.89
                                                    .0010
Trt
       3
           22.75000000
                             7.58333333
                                            11.67
                                                    .0107
Trt
       y LSMEAN Standard Error LSMEAN Number
    71.37500000
                      0.4868051
2
                                              2
    71.62500000
                      0.4868051
3
    72.00000000
                                              3
                      0.4868051
4
    75.00000000
                                              4
                      0.4868051
```

3. (27 points) A horticulturist was interested in the phosphorus content in the leaves of a particular variety of apple tree. Five leaves from each of three randomly selected trees were measured for phosphorus content. The data from this study are as follows:

Tree	Phosphorus Content				Sum	Mean	
1	.35	.40	.58	.50	.47	2.30	0.46
2	.65	.70	.90	.84	.79	3.88	0.78
3	.60	.80	.75	.73	.66	3.54	0.71
Total						9.72	0.65

Of central interest in this study was the tree-to-tree variability in phosphorous content. A partial ANOVA Table for these data is as follow:

Source of	Sum of	d.f.	Mean	F
Variation	Squares		Squares	
Treatment(Trees)	0.277			
Error				
Total	0.374			

- (a) Fill in the ANOVA Table.
- (b) State the hypothesis being tested by the F test in this table. Should the hypothesis be rejected? Why, or why not?
- (c) Obtain point estimates of the within-tree and between-tree components of variance from these data.
- (d) A 95% confidence interval for $\theta = \sigma_{\tau}^2/\sigma^2$ is (0.466, 133.57). Obtain a point estimate and a 95% confidence interval for the intraclass correlation coefficient.
- 4. (28 points) An experiment was conducted to compare 6 batches of auto body side panels in terms of deviations from nominal position (y). The engineer samples 2 "groups" of body panels from each batch (that is, the 2 "groups" for batch 1 differ from those from batch 2, etc..., implying "groups" are nested under batches). Each "group" has 3 individual body panels selected and measured (replicates) for y. Note that these are a random sample of batches (random effects), and the "groups" used are a sample from a larger population of "groups" (random effects).

Model:
$$y_{ijk} = \mu + \tau_i + \beta_{j(i)} + \epsilon_{ijk}$$
, for $i = 1, \dots, 6$; $j = 1, 2$; $k = 1, 2, 3$, $\tau_i \sim N(0, \sigma_{\alpha}^2)$, $\beta_{j(i)} \sim N(0, \sigma_{\beta}^2)$, $\epsilon_{ijk} \sim N(0, \sigma^2)$.

(a) The 6 batch mean y-values are given below. Compute the overall mean, and obtain the sum of squares for batches:

$$\bar{y}_{1.} = 4.00, \ \bar{y}_{2.} = 2.02, \ \bar{y}_{3.} = -4.57, \ \bar{y}_{4.} = -1.12, \ \bar{y}_{5.} = 4.05, \ \bar{y}_{6.} = -1.10.$$

(b) Complete the following partial ANOVA table:

Source	df	SS	MS	F	$F_{(0.05)}$
Batch					
Group(Batch)		62.5			
Error		438.57			
Total					

- (c) Using 'rules for expected mean squares', find expectations of mean squares.
- (d) Give unbiased estimates of each of the variance components:

$$\hat{\sigma}_{Batch}^2 = \hat{\sigma}_{Group(Batch)}^2 = \hat{\sigma}^2 =$$

(e) Present null hypotheses, F-tests, and critical values.