

FM650-CN 硬件指南

V1.1

免责声明

客户须参照文档中提供的信息来设计和开发其产品。因未能遵守有关操作、规范或规则而造成的损害,本

公司不承担任何责任。由于产品版本升级或其他原因,本公司保留随时修改本文档中任何信息的权利,无

需提前通知且不承担任何责任。除非另有约定,本文档中的所有陈述、信息和建议不构成任何明示或暗示

的担保。

版权声明

版权所有 ©2023 深圳市广和通无线股份有限公司。本公司保留一切权利。

除非本公司特别授权,文档的接收方须对所接收的文档和信息保密,不得将其用于除本项目的实施与开展以外的任何其他目的。非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。对于任何违反保密义务、未经授权使用或以其他非法形式恶意使用所述文档

和信息的违法侵权行为,本公司有权追究法律责任。

商标声明

FIDOCON 为深圳市广和通无线股份有限公司的注册商标,由所有人拥有。

本文档中出现的其他商标、产品名称、服务名称以及公司名称,由其各自的所有人拥有。

联系方式

网站: https://www.fibocom.com

地址:深圳市南山区西丽街道西丽社区打石一路深圳国际创新谷六栋 A 座 10-14 层

电话: 0755-26733555

安全须知

在没有适当设备认证的情况下,不要在不建议使用无线电的区域操作无线通信产品。这些区域包括可能产生无线电干扰的环境,如易燃易爆环境、医疗设备、飞机或可能受到任何形式无线电干扰的任何其他设备。

任何车辆的驾驶员或操作员在控制车辆时不得操作无线通信产品。这样做会降低驾驶员或驾驶员对车辆的控制和操作,带来安全风险。

无线通信设备并不保障在任何情况下都能有效连接,例如在 USIM 卡无效或设备欠费时。在紧急情况下,请在开机状态下使用紧急呼叫功能,同时确保设备位于信号强度足够的区域。

目录

E	录	1
记	用型号	4
偱	。 『订记录	5
1	前言	6
	1.1 说明	6
	1.2 引用标准	6
2	产品概述	8
	2.1 产品简介	8
	2.2 关键特性	9
	2.3 硬件框图	12
	2.4 开发套件说明	13
3	管脚定义	14
	3.1 管脚分布	14
	3.2 管脚描述	15
4	应用接口	20
	4.1 电源接口	
	4.1.1 电源管脚定义	20
	4.1.2 电源供电	20
	4.1.3 电压跌落	21
	4.2 开关机接口	22
	4.2.1 开关机管脚定义	22
	4.2.2 FCPO#开关机电路	22
	4.3 复位接口	23
	4.3.1 复位管脚定义	24
	4.3.2 复位电路	24
	4.4 PCle 接口	25
	4.4.1 PCIe 管脚定义	25
	4.4.2 PCle 应用电路	26
	4.5 USB 接口	27
	4.5.1 USB 管脚定义	28

4.5.2 USB2.0 接口电路	28
4.5.3 USB3.0 应用电路	29
4.6 USIM 接口	30
4.6.1 USIM 管脚定义	30
4.6.2 USIM 接口电路	30
4.6.3 USIM 卡热插拔	32
4.7 UART 接口	32
4.7.1 UART 管脚定义	32
4.7.2 UART 接口电路	33
4.8 网络状态指示接口	34
4.8.1 网络状态指示管脚定义	34
4.8.2 LED1#信号	34
4.8.3 WOWWAN#信号	35
4.9 中断控制接口	35
4.9.1 中断控制接口定义	35
4.9.2 W_DISABLE	36
4.9.3 BODYSAR	36
4.10 天线调谐接口	37
4.11 5G 授时	37
4.12 配置接口	38
5 天线接口	39
5.1 天线接口定义	39
5.2 工作频率	40
5.3 天线设计电路	42
5.3.1 蜂窝网络天线	42
5.4 天线性能要求	42
5.5 RF Layout 参考设计	42
5.6 RF 连接器	44
6 电气特性	45
6.1 逻辑电平	45
6.2 功耗	45
6.3 最大发射功率	47
6.4 接收灵敏度	48
6.5 静电防护	49

6.6 可靠性测试	50
6.7 热设计指导	51
7 结构规格	52
7.1 产品外观	52
7.2 结构尺寸	53
7.3 M.2 接口类型	54
7.4 M.2 连接器	54
8 存储、包装	55
8.1 存储	55
8.2 包装规格	55
附录 A 参考文档	58
附录 B 缩略语	59

适用型号

序号	适用型号	说明
1.	FM650-CN-03	V510, 4 ANT, 4Gb LPDDR4X+2Gb NAND Flash, WCDMA: B1/2/5/8, LTE-FDD: B1/2/3/5/7/8, LTE-TDD: B34/38/39/40/41, NR-FDD: n1/28, NR-TDD: n41/78/79
2.	FM650-CN-23	V510, 4 ANT, 4Gb LPDDR4X+2Gb NAND Flash, WCDMA: B1/5/8, LTE-FDD: B1/3/5/8, LTE-TDD: B34/38/39/40/41, NR-FDD: n1/5/8/28, NR-TDD: n41/77/78/79
3.	FM650-CN-60	V516, 4 ANT, 4Gb LPDDR4X+2Gb NAND Flash, WCDMA: B1/2/5/8, LTE-FDD: B1/2/3/5/7/8, LTE-TDD: B34/38/39/40/41, NR-FDD: n1/28, NR-TDD: n41/78/79
4.	FM650-CN-63	V516, 4 ANT, 4Gb LPDDR4X+2Gb NAND Flash, WCDMA: B1/5/8, LTE-FDD: B1/3/5/8, LTE TDD: B34/38/39/40/41, NR-FDD: n1/5/8/28, NR-TDD: n41/77/78/79

修订记录

V1.1(2023-7-12) 初始版本

硬件指南架构按照产品区域维度进行了优化调整

同平台手册合成一本

修改手册名称

功耗修订

V1.0(2020-11-13) 初始版本

1前言

1.1 说明

本文档详细定义了模块的空中接口和硬件接口。

通过阅读本文档,可以快速了解模块的接口规范、电气特性、机械尺寸以及其他特殊要求信息,再结合 FIBOCOM 用户指导手册,客户可以快速进行无线部分电路设计以及调试。

1.2 引用标准

本产品在设计时参考以下标准:

- 3GPP TS 34.121-1 V10.8.0: User Equipment (UE) conformance specification; Radio transmission and reception (FDD); Part 1: Conformance specification
- 3GPP TS 36.521-1 V15.0.0: User Equipment (UE) conformance specification; Radio transmission and reception; Part 1: Conformance testing
- 3GPP TS 38.300 V15.5.0: 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; NR and NG-RAN Overall Description; Stage 2
- 3GPP TS 38.521-1 V15.2.0: User Equipment (UE) conformance specification; Radio transmission and reception; Part 1: Range 1 Standalone
- 3GPP TS 38.521-3 V15.2.0: User Equipment (UE) conformance specification; Radio transmission and reception; Part 3: Range 1 and Range 2 Interworking operation with other radios
- 3GPP TS 36.124V10.3.0: Electro Magnetic Compatibility (EMC) requirements for mobile terminals and ancillary equipment
- 3GPP TS 21.111 V10.0.0: USIM and IC card requirements
- 3GPP TS 51.011 V4.15.0: Specification of the Subscriber Identity Module -Mobile Equipment (SIM-ME) interface
- 3GPP TS 31.102 V10.11.0: Characteristics of the Universal Subscriber Identity Module (USIM) application
- 3GPP TS 31.11 V10.16.0: Universal Subscriber Identity Module (USIM) Application Toolkit (USAT)

- 3GPP TS 27.007 V10.0.8: AT command set for User Equipment (UE)
- 3GPPTS27.005 V10.0.1: Use of Data Terminal Equipment -Data Circuit terminating Equipment (DTE DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)
- PCI_Express_M.2_Specification_Rev1.1_TS_12092016_NCB
- Universal Serial Bus Specification 2.0
- Universal Serial Bus Specification 3.0

2 产品概述

2.1 产品简介

FM650-CN 系列是一款高度集成的 5G 无线通信模块,采用标准 M.2 Key-B 接口,支持 WCDMA/LTE-FDD/LTE-TDD/5G-NR 网络制式。模块能提供稳定且高速的数据传输服务,适用于全球大部分移动运营商 网络,可用于 CPE、VR/AR、网关、电视盒子、智能监控等应用领域。

表 1. 频段介绍

型号 	天线数量	网络制式	频段配置
		WCDMA	B1/2/5/8
		LTE-FDD	B1/2/3/5/7/8
FM650 6M 00	4 - 7 / 15	LTE-TDD	B34/38/39/40/41
FM650-CN-03	4 天线	NR-FDD	n1/28
		NR-TDD	n41/78/79
		4x4 MIMO	n1/41/78/79
		WCDMA	B1/5/8
		LTE-FDD	B1/3/5/8
		LTE-TDD	B34/38/39/40/41
FM650-CN-23	4 天线	NR-FDD	n1/5/8/28
		NR-TDD	n41/77/78/79
		4x4 MIMO	n1/41/77/78/79
	4 天线	WCDMA	B1/2/5/8
		LTE-FDD	B1/2/3/5/7/8
		LTE-TDD	B34/38/39/40/41
FM650-CN-60		NR-FDD	n1/28
		NR-TDD	n41/78/79
		4x4 MIMO	n1/41/78/79
		WCDMA	B1/5/8
FM650-CN-63	4 天线	LTE-FDD	B1/3/5/8
		LTE-TDD	B34/38/39/40/41
		NR-FDD	n1/5/8/28

NR-TDD n41/77/78/79 4x4 MIMO n1/41/77/78/79

有关 CA 及 EN-DC 的详细配置信息,请参考《Fibocom_FM650-CN_Series_CA_ENDC_Lis t》文档。

2.2 关键特性

表 2. 关键特性

类别	功能描述	项目
电源	直流: 3.3~4.6V,典型值: 3.8V	FM650-CN 系列
处理器	UNISOC V510	FM650-CN-03/23
处生品	UNISOC V516	FM650-CN-60/63
上位机操作系统	Linux/Android/Windows	FM650-CN 系列
网络协议	支持 IPV4/IPV6	FM650-CN 系列
短消息(SMS)	支持	FM650-CN 系列
存储配置	4Gb LPDDR4X+2Gb NAND Flash	FM650-CN 系列
	双 SIM 卡单待,支持 3V/1.8V	FM650-CN 系列
	eSIM (Reserved)	FM650-CN 系列
	PCIe2.0×1,	FM650-CN 系列
	Super Speed USB、High speed USB	FM650-CN 系列
功能接口	LED	FM650-CN 系列
	W_Disable#	FM650-CN 系列
	Antenna Tuner (Reserved)	FM650-CN 系列
	I2S (Reserved)	FM650-CN 系列
	B_Code (Reserved)	FM650-CN-03/23

	B_Code (Support)	FM650-CN-60/63
	Body SAR (Reserved)	FM650-CN 系列
	Class 3 (23.5dBm±1.5dB) for WCDMA bands	
	Class 3 (23dBm±1.5dB) for LTE bands	FM650-CN-03/60
	Class 3 (23dBm±1.5dB) for NR Sub6 bands	11030-C10-03/00
功率等级	Class 2 (26dBm±1.5dB) for NR Sub6 bands (N41/78/79)	
初十分纵	Class 3 (23.5dBm±1.5dB) for WCDMA bands	
	Class 3 (23dBm±1.5dB) for LTE bands	FM650-CN-23/63
	Class 3 (23dBm±1.5dB) for NR Sub6 bands	1 W030-C14-23/03
	Class 2 (26dBm±1.5dB) for NR Sub6 bands (N41/77/78/79)	
	支持 3GPP R9	
	支持 DC-HSDPA、HSPA+、HSUPA 和 WCDMA	
UMTS 特性	支持 QPSK、16-QAM、64-QAM 调制	FM650-CN 系列
	HSUPA:最大上行速率 11Mbps	TIMOSO-CIN 3137
	DC-HSDPA:最大下行速率 42Mbps	
	WCDMA:最大下行速率 384kbps,最大上行速率 384kbps	
	支持 3GPP R14	
	UL 支持 QPSK、16QAM、64QAM 调制方式	
LTE 特性	DL 支持 QPSK、16QAM、64QAM、256QAM 调制方式	FM650-CN 系列
	上行最高支持 2CC,下行最高支持 3CC	11030 CIV 3179
	下行最大支持 2×2 MIMO	
	最大峰值速率 UL:150Mbps,DL:487Mbps	
	支持 3GPP R15	FM650-CN-03/23
	支持 3GPP R16	FM650-CN-60/63
5G NR 特性	UL 和 DL 均支持 QPSK、16QAM、64QAM、256QAM 调制方式	
20 M/ J/J	支持 5MHz~100MHz 射频带宽	EMCEO CNI Z FIL
	SCS 载波间隔支持 15KHz 和 30KHz	FM650-CN 系列
	上行最大支持 2×2MIMO	

	下行最大支持 4×4 MIMO	
	SA:最大上行速率 766Mbps,最大下行速率 2Gbps	
	NSA:最大上行速率 458Mbps,最大下行速率 2.2Gbps	
	SA_2T4R: n41/78/79	TM6E0 CN 02/60
	NSA_1T2R: n41/78/79	FM650-CN-03/60
SRS 特性	SA_2T4R: n41/77/78/79	FMCF0 CN 22/62
	NSA_1T2R: n41/77/78/79	FM650-CN-23/63
	尺寸: 30mm×52mm×2.3mm	
物理特性	封装: M.2	FM650-CN 系列
	重量:约8.3g	
	工作温度: -30℃~+75℃, 模块可正常工作, 满足 3GPP 标准要求	
温度特性	扩展温度: -40℃~+85℃, 模块可正常工作, 部分性能指标可能 会超出 3GPP 标准	FM650-CN 系列
	存储温度: -40°C~+85°C,模块在不上电的情况下,正常储存的温度范围	
软件升级	通过 USB/PCIe/FOTA	FM650-CN 系列
环保标准	RoHS,无卤	FM650-CN 系列

2.3 硬件框图

图 1. 硬件框图

上图是模块的硬件框图,主要介绍了基带和射频部分的关键器件及功能。

- M.2 Interface: 模块接口。
- UMP510: PMU 电源管理芯片。
- V510/V516(其中 FM650-CN-03/23 为 V510 套片,FM650-CN-60/63 为 V516 套片): CPU 模块的主要部件,主要负责处理指令、执行操作、控制时间、处理数据等功能。
- NAND:闪存,结合了 EPROM 的高密度和 EEPROM 结构的变通性的优点,断电后仍能保持数据。
- UMT710: 射频收发 IC, 支持 5G NR。

- UMT710L: 射频收发 IC,支持 4G LTE 和 LTE-A,用于 FDD-LTE、TDD-LTE、3G WCDMA、HSDPA、H SUPA、GSM/EDGE 作为 TD-SCDMA 操作。
- TRX Blocks: 射频发射和接收链路的统称。
- APT: 全称平均功率跟踪器,作用是优化射频功耗,延长电池的工作时间。

2.4 开发套件说明

FIbocom 为模块配置了完整的开发板套件,方便用户快速了解模块性能。开发板使用指南请参考《FIBOCOM EVK-M.2 User Guide》。

3 管脚定义

3.1 管脚分布

74	VCC	CONFIG_2 (NC)	75
74 72	VCC	NC	73
70	VCC	GND	71
68	SUSCLK	CONFIG_1	69
66	USIM1_DETECT(1.8V)	RESET#(1.8V)	67
		NC	65
64	UART_TXD(1.8V)	ANTCTL2(1.8V) RESERVED	63
62 60	UART_RXD(1.8V) WLAN_TX_N79_LNA_EN(1.8V) RESERVED	ANTCTL1(1.8V) RESERVED	61
58		LAA_TX_EN(1.8V) RESERVED	59
56	RFFE0_DATA(1.8V)	GND	57
54	RFFE0_SCLK(1.8V)	REFCLKP	55
52	PEWAKE# (3.3/1.8V) CLKREQ# (3.3/1.8V)	REFCLKN	53
50	PERST# (3.3/1.8V)	GND	51
48		PERp0	49
46	UIM2_PWR	PERn0	47
46	UIM2_RESET UIM2 CLK	GND	45
	_	РЕТр0	43
42	UIM2_DATA	PETn0	41
40	SIM2_DETECT(1.8V)	GND	39
38	WAKEUP_IN	USB_SS-Rx+	37
36 34	UIM1_PWR	USB_SS-Rx-	35
32	UIM1_DATA UIM1_CLK	GND	33
30	UIM1_RESET	USB_SS-Tx+	31
28	I2S_WA (1.8V) RESERVED	USB_SS-Tx-	29
26	W_DISABLE2 (3.3/1.8V) RESERVED	GND	27
24	I2S_TX (1.8V) RESERVED	DPR (3.3/1.8V) RESERVED	25
22	I2S_RX (1.8V) RESERVED	- WOWWAN# (1.8V)	23
20	I2S SCK (1.8V) RESERVED	CONFIG_0	21
20	Notch	Notch	
	Notch	- Notch	
	Notch	- Notch	
	Notch	- Notch	
10	LED#(OD)	GND	11
8	W_DISABLE1# (3.3/1.8V)	USB D-	9
6	FULL_CARD_POWER_OFF# (3.3/1.8V)	USB D+	7
4	VCC	GND	5
2	VCC	GND	3
	VCC -	CONFIG_3	1

图 2. 管脚分布图

3.2 管脚描述

表 3. I/O 类型参数定义

类型	描述	类型	描述
PI	电源输入	AIO	模拟输入输出
РО	电源输出	OD	漏极开路
DI	数字输入	PU	上拉高电平
DO	数字输出	PD	下拉低电平
DIO	数字输入输出	Т	第三态,即高阻态,由外围电路决定
AI	模拟输入	G	接地
AO	模拟输出		

表 4. 管脚定义

管脚	管脚名	I/O	Reset Value	管脚描述	DC 特性
1	CONFIG_3	DO	NC	NC,FM650 模块配置为 WWAN-PCIe,USB_SS接口类型M.2模块	
2	VCC	ΡΙ		电源输入	3.3~4.6V
3	GND			地	
4	VCC	ΡΙ		电源输入	3.3~4.6V
5	GND			地	
6	FULL_CARD_POWE R_OFF#	DI	PD	模块开关机控制,高电平开机,低电平 关机;内部 100K 电阻下拉	3.3V/1.8V
7	USB D+	DIO		USB 2.0 数据+	0.3~3V
8	W_DISABLE1#	DI	PU	关闭 WWAN 模块的无线,即飞行模式,低电平有效	3.3/1.8V
9	USB D-	DIO		USB2.0 数据-	0.3~3V
10	LED#	DO	Т	系统状态指示,开漏极输出	

<u> </u>	生 叶	T./	Danat 17/21	4- +++마리 소소	DC #+.k4
管脚	管脚名	I/O	Reset Value	管脚描述	DC 特性
11	GND			地	
12	Notch			切口凹槽	
13	Notch			切口凹槽	
14	Notch			切口凹槽	
15	Notch			切口凹槽	
16	Notch			切口凹槽	
17	Notch			切口凹槽	
18	Notch			切口凹槽	
19	Notch			切口凹槽	
20	I2S_SCK*	DO	PD	I2S 串行时钟(预留)	1.8V
21	CONFIG_0		NC	NC,FM650 模块配置为 WWAN- PCIe,USB_SS 接口类型 M.2 模块	
22	I2S_RX*	DI	PD	I2S 串行数据接收(预留)	1.8V
23	WOWWAN#	DO	PD	唤醒主机	1.8V
24	I2S_TX*	DO	PD	I2S 串行数据发送(预留)	1.8V
25	DPR*	DI	PU	动态功率控制,用于 SAR 中断检测, 低电平有效(预留)	3.3/1.8V
26	W_DISABLE2#*	DIO	PU	中断信号,低电平有效(预留)	3.3/1.8V
27	GND			地	
28	I2S_WA*	DO	PD	I2S 字节选择,左右声道(预留)	1.8V
29	USB_SS_TX-	DO		超速 USB 数据发送负极	
30	UIM1_RESET	DO	L	SIM 卡 1 复位	3V/1.8V
31	USB_SS_TX+	DO		超速 USB 数据发送正极	
32	UIM1_CLK	DO	L	SIM 卡 1 时钟	3V/1.8V
33	GND			地	
34	UIM1_DATA	DIO	L	SIM 卡 1 数据	3V/1.8V

管脚	管脚名	I/O	Reset Value	管脚描述	DC 特性
35	USB_SS_RX-	DI		超速 USB 数据接收负极	
36	UIM1_PWR	РО		SIM 卡 1 电源,3V/1.8V	3V/1.8V
37	USB_SS_RX+	DI		超速 USB 数据接收正极	
38	WAKEUP_IN	DI		外设唤醒模块控制信号	1.8V
39	GND			地	
40	SIM2_DETECT	DI		SIM 卡 2 检测;默认高电平检测	1.8V
41	PETn0	DO		PCIe 数据发送负极	
42	UIM2_DATA	DIO	L	SIM 卡 2 数据	3V/1.8V
43	РЕТр0	DO		PCIe 数据发送正极	
44	UIM2_CLK	DO	L	SIM 卡 2 时钟	3V/1.8V
45	GND			地	
46	UIM2_RESET	DO	L	SIM 卡 2 复位	3V/1.8V
47	PERn0	DI		PCIe 数据接收负极	
48	UIM2_PWR	РО		SIM 卡 2 电源	3V/1.8V
49	PERp0	DI		PCIe 数据接收正极	
50	PERST#	DI	PD	模块 PCIe 接口复位; 低电平有效,需 预留外部上拉电阻	3.3/1.8V
51	GND			地	
52	CLKREQ#	DIO	Т	PCIe 时钟请求信号,低电平有效,需 预留外部上拉电阻	3.3/1.8V
53	REFCLKN	DIO		PCIe 参考时钟 差分负	
54	PEWAKE#	DO	Т	PCIe 唤醒信号,低电平有效,开漏极输出,需预留外部上拉电阻。	3.3/1.8V
55	REFCLKP	DIO		PCIe 参考时钟 差分正	
56	RFFE_SCLK	DO	PD	RFFE-MIPI 串行时钟信号	1.8V
57	GND			地	

管脚		I/O	Reset Value		DC 特性
58	RFFE_SDATA	DIO	PD	RFFE-MIPI 串行数据信号	1.8V
59	LAA_TX_EN*	DO	PD	n79 发射功率超出 10dBm 时输出高电平,关闭 5GHz WLAN LNAs(预留)	1.8V
60	WLAN_TX_EN*	DI		外部 5GHz WLAN 发射功率超过一定门限时输出高电平给模块关闭 n79 LNAs(预留)	1.8V
61	ANTCTL1*	DO	PD	调谐天线控制位 1(预留), FM650-CN-60 可作为 5G B_CODE 授时功能使用	1.8V
62	UART_RXD	DI	PD	UART 数据接收。可复用为 I2C_SDA	1.8V
63	ANTCTL2*	DO	PD	调谐天线控制位 2(预留)	1.8V
64	UART_TXD	DO	PD	UART 数据发送。可复用为 I2C_SCL	1.8V
65	B_CODE	DO	PD	仅 FM650-CN-63 可作为 B_CODE 功能引脚,其他型号此管脚为 NC。	1.8V
66	UIM1_DETECT	DI	PU	SIM 卡 1 检测;默认高电平有卡	1.8V
67	RESET#	DI	PU	模块复位;低电平有效	1.8V
68	SUSCLK	DO		时钟输出 26MHz / 32.768kHz	
69	CONFIG_1	DO	GND	GND,FM650 模块配置为 WWAN-PCIe,USB_SS 接口类型 M.2 模块	
70	VCC	PI		电源输入	3.3~4.6V
71	GND			地	电源
72	VCC	PI		电源输入	3.3~4.6V
73	NC				
74	VCC	PI		电源输入	3.3~4.6V
75	CONFIG_2	DO	NC	NC,FM650 模块配置为 WWAN-PCIe,USB_SS接口类型M.2模块	

- 1. Reset Value:管脚初始化过程中的状态。
- 2. "*"表示预留功能,未开发;如需使用需与 FIBOCOM FAE 联系。

4应用接口

3.3V~4.6V

4.1 电源接口

4.1.1 电源管脚定义

管脚名 I/O Reset Value 管脚描述 DC 特性
VBAT_RF PI -- 射频电源输入 3.3V~4.6V

基带电源输入

表 5. 电源管脚定义

4.1.2 电源供电

VBAT_BB

PΙ

管脚号

70, 72, 74

2, 4

图 3. 电源参考电路

滤波电容要求靠近电源管脚放置,容值越小越靠近对应电源管脚。滤波电容与模块放置于同一面,切勿穿层,否则会有 TIS 干扰风险,走线尽可能短和宽。

推荐电容	
ESD	要求增加 ESD 器件来防护 ESD 和 EOS,推荐使用:ESDH5V0FD1
220uFx2	稳压电容,选用低 ESR(0.7Ω)电容,容值不小于 220uFx2,推荐型号 TAJC227K010RNJ,此电容不可省略,否则会导致系统概率性重启
1uF, 100nF	滤除时钟以及数字信号产生的干扰
220pF, 150pF, 39pF, 33pF	滤除 700~900MHz 低频段干扰
18pF, 10pF, 8.2pF	滤除 1700~270MHz 中/高频段干扰
6.8pF, 3.3pF	滤除 3.5~5GHz 频段干扰

表 6. 滤波电容介绍

推荐的滤波电容客户可根据实际情况来调整,非固定值。

4.1.3 电压跌落

客户应选用持续输出能力大于 4A 的 DC 芯片,模块输入电压推荐 3.8V,纹波小于 150mV,增加稳压电容,保证模块工作过程中 Vbat 电压不会持续低于 3.3V 超过 2ms,否则会触发模块关机机制。电源供电要求如下图所示:

图 4. 电源供电要求

由于 5G 模块工作时的峰值电流较大(约 4A),Vbat 电压波动会随稳压电容的增大逐渐减小,但不可能消除。因此模块的供电系统务必与其他主控芯片供电分开,避免电压波动影响到主控芯片的电源稳定性,导致系统关机,必要时请咨询 FIBOCOM FAE。CPE 产品整机供电建议选用供电功率 24W 以上的适配器供电。

4.2 开关机接口

4.2.1 开关机管脚定义

 管脚号
 管脚名
 I/O
 Reset Value
 管脚描述
 DC 特性

 6
 FULL_CARD_P OWER OFF#
 DI
 PU
 模块开关机控制,内部自带 100K 电阻 下拉,低电平关机,高电平开机。
 3.3V

表 7. 开关机管脚定义

4.2.2 FCPO#开关机电路

图 5. FCPO#开关机电路

拉高该管脚模块开机,所以要求客户侧的 GPIO 默认状态为低电平。关机状态下,拉高 FCPO#管脚,模块上电后进入开机流程。开机状态下,拉低 FCPO#管脚,模块进入关机流程。开关机时序如下图:

图 6. FCPO#开机时序

图 7. FCPO#关机时序

- 1. 开机持续 40s,需等模块完全开机后再执行操作,否则部分操作可能失效。
- 2. 关机流程持续 6s,发起关机后需间隔 6s 再发起下次开机,否则会导致下次开机失败。

4.3 复位接口

模块定义了两种复位方式:硬件复位和软件复位,用户可根据自身需求灵活选用。

表 8. 复位方式

复位方式	复位方法
硬件复位	拉低 RESET_N 管脚最少 30m 推荐 50ms,释放后,模块进入复位流程

软件复位 发送 AT 命令 AT+CFUN=15,模块进入复位流程

以下重点介绍硬件复位的电路设计和复位时序。

4.3.1 复位管脚定义

表 9. 复位管脚定义

管脚号	管脚名	I/O	Reset Value	功能	DC 特性
67	RESET_N	DI	PU	模块复位信号,低电平有效。	3.3V/1.8V

4.3.2 复位电路

RESET_N 管脚常用来连接客户 AP 侧的 GPIO 控制脚,模块上电 RESET_N 管脚默认状态为高电平,无需外部上拉。RESET_N 是一个敏感信号,若未使用,请保持悬空。建议在模块附近增加一个滤波电容防抖动,在 PCB 走线时,远离干扰,并用 GND 保护。RESET_N 信号线尽量远离 PCB 边缘和避免走表层,防止 ESD 导致模块异常复位。复位电路如下图:

图 8. 复位电路

拉低 RESET_N 管脚 50ms 释放后,模块进入复位流程,两次复位操作之间间隔最少 20 秒,复位时序如下图:

图 9.复位时序

4.4 PCIe 接口

模块支持 1 路 PCIe 2.0 接口,向下兼容 1.0 接口。模块在初始化时,PCIe 接口配合驱动程序,可以在Linux 操作系统中枚举出 4 个端口,分别是 AT 指令端口(mhi_DUN)、抓取 LOG 端口(mhi_DIAG)、传输QMUX 消息端口(mhi_QMIO)、上报 GNSS NEMA 数据端口(mhi_GNSS)。

4.4.1 PCIe 管脚定义

表 10. PCIe 接口定义

管脚	管脚名	I/O	Reset Value	管脚描述	类型
41	PETn0	DO		PCIe 数据发送负极	
43	РЕТр0	DO		PCIe 数据发送正极	
47	PERn0	DI		PCIe 数据接收负极	
49	PERp0	DI		PCIe 数据接收正极	
53	REFCLKN	DIO		PCIe 参考时钟差分负	
55	REFCLKP	DIO		PCIe 参考时钟差分正	
50	PERST#	DIO	Т	模块 PCIe 接口复位。低电平有效,需预留外部上拉电阻	1.8V/3V
52	CLKREQ#	DIO	Т	PCIe 时钟请求信号,低电平有效,开漏极输出,需预留外部上拉电阻	î 1.8V/3V

管脚	管脚名	I/O	Reset Value	管脚描述	类型
54	PEWAKE#	DIO	Т	PCIe 唤醒信号,低电平有效,开漏极输出, 需预留外部上拉电阻	1.8V/3V

4.4.2 PCIe 应用电路

图 10. PCIe 应用电路

PCIe 2.0 包含三组差分对:发送对TXP/N,接收对RXP/N,时钟对CLKP/N。

PCIe 最高传输速率达到 5GT/s, 在 PCB Layout 必须严格遵守以下规则:

- 差分信号对内要求走线平行,等长,长度差小于 0.15mm。
- 差分信号对走线长度尽量短,长度控制:针对 AP 端为 15 inch (380 mm)以内。
- 差分信号对走线阻抗控制建议 100Ω±10%。
- 避免参考地平面的不连续,譬如分割和空隙。
- 差分信号走线换层时,地信号的过孔应放得靠近信号过孔,对每对信号的一般要求是至少放 1 至 3 个地信号过孔,并且永远不要让走线跨过平面的分割。
- 尽量避免走线的弯曲,避免在系统中引入共模噪声,这将影响差分对的信号完整性和 EMI。如下图所示,所有走线的弯曲角度应该大于等于 135°,差分对走线的间距保持 20mil 以上,弯曲带来的走线最短应该大于 1.5 倍走线的宽度。当一段蛇形线用来和另外一段走线来进行长度匹配,每段长弯折的长度必

须至少有 3 倍线宽(≥ 3W)。蛇形线弯折部分和差分线的另一条线的最大距离必须小于正常差分线距的 2 倍(S1 < 2S)。

图 11. PCIe 走线要求

差分对中两条数据线的长度差距需在 0.15mm 以内,每一部分都要求长度匹配。在对差分线进行长度匹配时,匹配设计的位置应该靠近长度不匹配所在的位置,如图所示。但对传输对和接收对的长度匹配没有做具体要求,即只要求差分线内部而不是不同的差分对之间要求长度匹配。长度匹配应靠近信号管脚,可通过小角度弯曲走线设计实现长度匹配。

图 12. PCIe 差分对长度匹配设计

4.5 USB 接口

模块支持 USB2.0 和 USB_3.0(5Gbit/s),由于下载和调试只能使用 USB2.0 接口,因此 USB2.0 接口信号必须引出。

4.5.1 USB 管脚定义

管脚	管脚名	I/O	管脚描述	类型
7	USB D+	AIO	USB 2.0 数据+	0.3-3V
9	USB D-	AIO	USB 2.0 数据-	0.3-3V
29	USB_SS_TX-	AO	超速 USB 数据发送负极	
31	USB_SS _TX+	AO	超速 USB 数据发送正极	
35	USB_SS _RX-	ΑI	超速 USB 数据接收负极	
37	USB_SS _RX+	AI	超速 USB 数据接收正极	

表 11. USB 管脚定义

4.5.2 USB2.0 接口电路

参考电路如图 13 所示:

图 13. USB2.0 参考设计

模块的 USB2.0 支持 USB High-Speed(480Mbits/s)和 USB Full-Speed(12Mbits/s)两种速率,其差分信号线上的 TVS 管等效电容要求低于 1pF,推荐使用 EGA10402V05A2 型号 TVS 管,如果 USB 没有 ESD 风险,TVS 管可省略。

以下是 USB2.0 的设计规则:

- USB_D-和 USB_D+信号线控制差分阻抗 90Ω±10Ω。
- USB D-和 USB D+信号线要求长度差小于 2mm, 且平行, 避免直角走线。
- USB_D-和 USB_D+信号线推荐走内层,走线上下左右包地保护。

4.5.3 USB3.0 应用电路

图 14. USB3.0 接口参考设计

模块的 USB 3.0 最高理论传输速率可达 5Gbps,其差分信号线上的 TVS 管等效电容要求低于 0.2pF,推荐使用 EGA10402V05A2 型号 TVS 管,如果 USB 没有 ESD 风险,TVS 管可省略。

以下是 USB3.0 的设计规则:

- USB_SS_TX_P/USB_SS_TX_M 和 USB_SS_RX_P/USB_SS_RX_M 为两组差分信号线,尽量减少过孔以保证阻抗连续,需要控制差分阻抗 90Ω±7Ω。
- USB_SS_TX/USB_SS_RX 的 P 和 M 差分对内走线要求平行,等长,长度差小于 0.15mm,避免直角走线。
- USB_SS_TX 和 USB_SS_RX 差分对间走线要求平行,等长,长度差小于 10mm,避免直角走线。
- 两组差分信号线布线推荐走内层,走线上下左右包地保护。

4.6 USIM 接口

模块内置 USIM1 和 USIM2 卡接口,支持双卡单待功能。模块默认识别 USIM1,可通过 AT 指令切换至 USIM2。

4.6.1 USIM 管脚定义

表 12. USIM 管脚定义

管脚号	管脚名	I/O	Reset Value	管脚描述	DC 特性
36	UIM1_VDD	РО		电源	1.8V/3.0V
30	UIM1_RESET	DO	L	复位	1.8V/3.0V
32	UIM1_CLK	DO	L	时钟	1.8V/3.0V
34	UIM1_DATA	DIO	L	数据	1.8V/3.0V
66	SIM1_DET	DI	PU	热拔插检测	1.8V
48	UIM2_VDD	РО		电源	1.8V/3.0V
46	UIM2_RESET	DO	L	复位	1.8V/3.0V
44	UIM2_CLK	DO	L	时钟	1.8V/3.0V
42	UIM2_DATA	DIO	L	数据	1.8V/3.0V
40	SIM2_DET	DI	PU	热拔插检测	1.8V

4.6.2 USIM 接口电路

以下是两种 SIM 卡的参考设计,其中 TVS 管推荐选用 ESDBL5V0A1 型号,电路图如下:

图 15.8Pin SIM 卡参考电路

图 16.6Pin SIM 卡参考电路

为了确保 USIM 卡能够稳定的工作,在设计中需要严格遵守以下规则:

- SIM 卡 RST、CLK、DATA 信号线上的等效电容应小于 33pf。
- SIM 卡座布局尽量靠近模块,远离 RF 天线、DCDC 电源、时钟信号线等强干扰源。
- SIM 卡信号线尽可能的避开射频线、电源线、时钟线、高速数据线。
- USIM 卡信号线的滤波电容和 ESD 器件靠近 USIM 卡座放置。
- 弹片下方的 PCB 表层净空,避免弹片刮破绿油而导致短路。

- 模块到 USIM 卡座的走线长度建议保持在 100mm, 过长的走线会降低信号质量。
- USIM_CLK 和 USIM_DATA 信号包地隔离,若无法满足,至少满足 3W 原则。
- SIM 卡信号线的相邻层不要走信号线,若无法避免,尽量垂直相交,可降低风险。

尽量保证 PCB 的 GND 的连通性和完整性,SIM GND 的以最短路径连接到主地。

4.6.3 USIM 卡热插拔

模块通过 USIM_DET 管脚来实现 USIM 卡热插拔功能,默认高电平表示 SIM 卡插入,低电平表示 SIM 卡拔出。如果用户不需要热插拔功能时,请拉高 USIM_DET。另外也可以通过 AT 命令关闭和开启 USIM 卡热插拔功能。

 AT 命令
 功能说明
 备注

 AT+MSMPD=1 [,0]
 开启 USIM 卡热插拔检测功能
 USIM1 默认设置开启热插拔 USIM2 默认设置关闭热插拔

 AT+MSMPD=0 [,0]
 关闭 USIM 卡热插拔检测功能
 重启后生效

表 13. USIM 卡热插拔功能

4.7 UART 接口

模块支持 1 路 UART 接口。为 UART1 数传接口,接口功能描述如下:

UART1 数传接口支持 4800bps、9600bps、19200bps、38400bps、57600bps、115200bps(默认)、230400bps、460800bps 和 921600bps 波特率。主要要用来传输数据和发送 AT 命令。

4.7.1 UART 管脚定义

表 14. UART 管脚定义

管脚	管脚名	I/O	Reset Value	管脚描述	类型
62	UART_RXD	DI	PD	UART 数据接收。可复用为 I2C_SDA	1.8V
64	UART_TXD	DO	PD	UART 数据发送。可复用为 I2C_SCL	1.8V

4.7.2 UART 接口电路

模块的数据传输速率非常高,建议选用 USB3.0 数据接口进行数据传输,UART 仅作为外设驱动接口。模块的 UART 接口电平为 1.8V,若客户主机系统电平为 3.3V 或者其他,则需要增加电平转换电路。

下图为电平转换芯片参考电路:

图 17. 电平转换芯片电路

下图为三极管电平转换电路,此电路仅适用于波特率不超过 460Kbps 的应用:

图 18. 三极管电平转换电路

4.8 网络状态指示接口

4.8.1 网络状态指示管脚定义

表 15. 状态指示

管脚	管脚名	I/O	Reset Value	管脚描述	类型
10	LED1#	DO	Т	系统状态 LED,开漏极输出。	
23	WOWWAN#	DO	PD	模块唤醒 Host(AP)信号	1.8V

4.8.2 LED1#信号

LED1#信号用于指示模块的工作状态,通过脉宽调制方式控制电流,但低电平不一定是 0V,具体以灯亮为准。工作状态说明如下表:

表 16. LED1#信号

模块工作模式	LED1#信号
RF 功能打开	低电平(LED 灯亮)
RF 功能关闭	高电平(LED 灯灭)

LED 驱动电路如图所示:

图 19. LED 驱动电路

LED1#信号电流可分别设置为 2/5/10/15/20/25mA,AT 命令请参考《FIBOCOM_FM650_Series_AT_Comm ands_User_Manual》查询。

4.8.3 WOWWAN#信号

当电话或短信数据请求到来时,WOWWAN#信号用于唤醒主机(AP)。WOWWAN#信号的定义如下:

表 17. WOWWAN#信号

工作模式	WOWWAN# 信号
电话或短信请求	拉低 1s,然后拉高(脉冲信号,可通过 AT 命令配置)。
Idle/Sleep	高电平

WOWWAN#的时序如图所示:

图 20. WOWWAN# 时序

i 数据业务唤醒功能暂不支持。

4.9 中断控制接口

4.9.1 中断控制接口定义

FM650 模块提供 3 个中断信号,管脚定义如下表所示:

表 18. 中断控制

管脚 管脚名 I/O Reset Value 管脚描述 类型

8	W_DISABLE1#	Ι	PU	关闭 WWAN 模块的无线,即飞行模式,低电平有效。	3.3/1.8V
25	DPR*	Ι	PU	动态功率控制,用于 SAR 中断检测,低电平 有效(预留)。	3.3/1.8V
26	W_DISABLE2#*	Ι	PU	中断信号,低电平有效(预留)。	3.3/1.8V

4.9.2 W_DISABLE

模块提供硬件打开/关闭 WWAN RF 功能信号,需要 AT+GTFMODE=1 开启此引脚的功能。

该功能同样可由 AT 命令来控制。关闭 RF 功能时模块进入 Flight 模式。W_DISABLE1#信号功能定义如下表:

表 19. W_DISABLE1#信号

W_DISABLE1#信号	功能
High/Floating	WWAN 功能打开,模块退出 Flight 模式。
Low	WWAN 功能关闭,模块进入 Flight 模式。

模块预留硬件打开/关闭 GNSS 功能信号,如下表:

表 20. W_DISABLE2#信号

W_DISABLE2#信号	功能
开机过程中保持高电平/悬空	GNSS 定位功能打开
开机过程中拉低	GNSS 定位功能关闭

W_DISABLE1#功能定义可能随客户特殊定制需求而不同,详细请参考软件说明。

4.9.3 BODYSAR

FM650 模块通过 DPR 管脚的检测支持 BODYSAR 功能。DPR 默认高电平,AP 通过 SAR Sensor(距离传

感器)检测到人体靠近时将 DPR 拉低,此时模块降低发射功率至预设的门限值,从而降低射频对人体的辐射。预设的门限值可通过相关 AT 命令或者 DPR Tool 工具设置。DPR 功能定义如下表:

表 21. DPR 功能定义

DPR 信号	功能
High/Floating	模块保持默认发射功率
Low	降低模块最大发射功率门限值-预留

BODYSAR 功能暂不支持

4.10 天线调谐接口

模块支持两组不同控制模式的天线调谐接口,其中一组为 MIPI 控制接口,另外一组为 2bit GPO 控制接口。通过天线调谐接口配合外部天线调谐开关,可灵活适配天线不同的频段,提高天线工作效率及节省天线空间。

表 22. 天线调谐接口

管脚	管脚名	I/O	Reset Value	管脚描述	类型
56	RFFE_SCLK*	Ο	PD	MIPI 接口时钟信号,仅供天线调谐开关使用。 (预留)	1.8V
58	RFFE_SDATA*	I/O	PD	MIPI 接口数据信号,仅供天线调谐开关使用。 (预留)	1.8V
61	ANTCTL1*	0	PD	天线匹配调整控制,第 1 位。(预留)	1.8V
63	ANTCTL2*	0	PD	天线匹配调整控制,第2位。(预留)	1.8V

4.11 5G 授时

FM650-CN-63 可以将 65 管脚作为 5G 授时功能来使用,FM650-CN-60 项目将 61 管脚用做 5G 授时功能,所以建议客户在使用中做兼容设计,参考如下:

图 21.5G 授时电路兼容设计参考

表 23. FM650-CN-60&63 兼容设计参考

管脚.	FM650-CN-60	FM650-CN-63
61	5G 授时功能	调谐天线控制位 1
65	NC	5G 授时功能

4.12 配置接口

M.2 模块采用 75 pin 金手指作为外部接口,其中 67 pin 为信号接口,8 pin 为缺口。依据 M.2 接口定义,模块采用 Type 3052-S3-B 接口(30x52mm,Top 面元件层厚度最大为 1.5mm,PCB 厚度 0.8mm,Key ID 为 B)。

M.2 的接口类型定义如下表:

表 24. M.2 接口类型定义

管脚	管脚名	I/O	Reset Value	管脚描述	M.2 接口类型	
1	CONFIG_3	0		NC	– WWAN–PCIe Gen3, USB3.0	
21	CONFIG_0	Ο		NC		
69	CONFIG_1	Ο	L	内部连接到 GND		
75	CONFIG_2	Ο		NC		

详情请参考《PCI Express M.2 Specification Rev1.1》。

5天线接口

5.1 天线接口定义

FM650-CN 系列项目的天线接口配置逻辑不同,在实验室测试时,请根据被测频段选择正确的天线进行连接,如需其他帮助,请联系 Fibocom 的 FAE。

表 25. FM650-CN-03/60 天线接口定义表

管脚名	功能	TX	RX	频率范围	
	Main TX/PRX	WCDMA: B1/2/5/8	WCDMA: B1/2/5/8		
		LTE-FDD: B1/2/3/5/7/8	LTE-FDD: B1/2/3/5/7/8		
М	IVIAIII IA/FRA	LTE-TDD: B34/38/39/40/41	LTE-TDD: B34/38/39/40/41	703M~5GHz	
IVI		NR-FDD: n1/28	NR-FDD: n1/28		
	Secondary TRX1*	NR-TDD: n41/78/79	NR-TDD: n41/78/79		
M1	MIMO1 RX		NR-FDD: n1	2110M~5GHz	
IVI I			NR-TDD: 41/78/79		
NAO	MIMO2 RX		NR-FDD: n1	- 2110M~5GHz	
M2	Main TRX0	NR: n41/78/79	NR: n41/78/79		
			WCDMA: B1/2/5/8		
	DRX		LTE-FDD: B1/2/3/5/7/8	703M~5GHz	
D	DIX		LTE-TDD: 34/38/39/40/41		
			NR-FDD: n1/28		
	MIMO2 RX		NR-TDD: n41/78/79		

表 26. FM650-CN-23/63 天线接口定义表

管脚名	功能	TX	RX	频率范围	
		WCDMA: B1/5/8	WCDMA: B1/5/8		
	Main TX /PRX	LTE-FDD:B1/3/5/8	LTE-FDD:B1/3/5/8		
М	Maiii IX71 IX	LTE-TDD: 34/38/39/40/41	LTE-TDD: 34/38/39/40/41	703M~5GHz	
VI		NR-FDD: n1/5/8/28	NR-FDD: n1/5/8/28	703W 30HZ	
	Secondary TRX1*	NR-TDD: n41/77/78/79	NR-TDD: n41/77/78/79		
M1	MIMO1 RX		NR-FDD: n1	2110M~5GHz	
VI I			NR-TDD: 41/77/78/79		
M2	MIMO2 RX		NR-FDD: n1	2110M. ECU7	
VI∠	Main TRX0	NR-TDD: n41/77/78/79	NR-TDD: n41/77/78/79	2110M~5GHz	
	DDV		WCDMA: B1/5/8		
		DDV		LTE-FDD: B1/3/5/8	
D	DIV	DRX	LTE-FDD: 34/38/39/40/41	703M~5GHz	
			NR-FDD: n1/5/8/28		
	MIMO2 RX		NR-TDD: n41/77/78/79		

"Secondary TRX1":当用户测试 UL MIMO 功能时,TRX0 应为主路发射,TRX1 只作为辅路 发射。

5.2 工作频率

表 27.蜂窝频率参考表

工作频段	模式	发射(MHz)	接收(MHz)
B1/n1	WCDMA/LTE-FDD/NR-FDD	1920~1980	2110~2170

工作频段	模式	发射(MHz)	接收(MHz)
B2	WCDMA/LTE-FDD	1850~1910	1930~1990
B3	LTE-FDD	1710~1785	1805~1880
B5/n5	WCDMA/LTE-FDD/NR-FDD	824~849	869~894
B7	LTE-FDD	2500~2570	2620~2690
B8/n8	WCDMA/LTE-FDD/NR-FDD	880~915	925~960
n28	NR-FDD	703~748	758~803
B34	LTE-TDD	2010~2025	2010~2025
B38	LTE-TDD	2570~2620	2570~2620
B39	LTE-TDD	1880~1920	1880~1920
B40	LTE-TDD	2300~2400	2300~2400
B41/n41	LTE-TDD/NR-TDD	2496~2690	2496~2690
n77	NR-TDD	3300~4200	3300~4200
n78	NR-TDD	3300~3800	3300~3800
n79	NR-TDD	4400~5000	4400~5000

5.3 天线设计电路

5.3.1 蜂窝网络天线

图 22. 蜂窝网络天线参考电路

5.4 天线性能要求

输入阻抗: 50 Ω

输入功率: >28dBm

电压驻波比: <2:1

天线增益: <3.6dBi

天线之间的隔离度: >25dB

天线线缆插损: LB(<1GHz)<0.3dB / MB(1~2.7GHz)<0.8dB / HB(>2.7GHz)<1.2Db

5.5 RF Layout 参考设计

在实际应用中,RF 微带线走线越短越好。阻抗通常与走线的宽度 W 和厚度,参考层的高度 H,走线与左右两边地的间距 S,材料的介电常数密切相关。RF 微带线阻抗控制模型分为平面参考模型和共面阻抗模型,

一般能用平面参考模型满足要求,就不要用共面阻抗模型。

图 23.2 层板的平面参考模型

图 24.2 层板的共面阻抗模型

图 25.4 层板的共面阻抗模型

设计规则如下:

- RF 走线阻抗控制为 50Ω,参考地务必保持完整。
- 射频走线尽量走弧形轨迹,走线两边用过孔保护。过孔与走线间距应大于 2 倍线宽的距离。

• 射频连接器下方要净空,射频走线远离干扰源,避免与干扰源交叉和平行。

5.6 RF 连接器

表 28. RF 连接器性能要求

频率范围	DC to 6GHz
特性阻抗	50Ω
温度范围	-40°C to +85°C

为了方便用户连接天线,模块自带 RF 连接器,型号为 ECT 公司 818004607,尺寸为 1.7X1.7X0.6mm,连接器尺寸如下图所示:

图 26. RF 连接器尺寸

6 电气特性

6.1 逻辑电平

表 29. 逻辑电平表

描述	电平	下限	典型	上限
1.8V 逻辑电平	高电平	1.3V	1.8V	1.98V
1.6V 返辑电十	低电平	0V	0V	0.3V
3.0V 逻辑电平	高电平	2.1V	3.0V	3.3V
3.0V 烃類电干	低电平	0V	0V	0.9V
FULL_CARD_ POWER_OFF#	高电平	1.8V	3.3V	4.6V
逻辑电平	低电平	0V	0V	0.3V

6.2 功耗

功耗测量与模块的工作状态密切相关,测试条件如下:

环境温度 25 摄氏度、供电电压 3.8V,模块 USB 默认为 Device 模式、PCIE 默认为 EP 模式,Sleep 和 IDLE 状态测试时需要关闭 USB 和 PCIE 功能,才能测试到最小功耗。

表 30. 功耗(mA)

模式	条件	FM650-CN-03/60	FM650-CN-23/63
OFF State	Power off	0.08	0.08
	WCDMA DRX=6	7	7
	LTE-FDD Paging cycle=64	7	7
Sleep State	LTE-TDD Paging cycle=64	7	7
	NR FDD Long DRX=10ms Paging cycle=128	10	10
	NR TDD Long DRX=10ms Paging cycle=128	10	10

模式	条件	FM650-CN-03/60	FM650-CN-23/63
	RF OFF: AT+CFUN=0 AT+CSCLK=1	4.2	4.2
	WCDMA DRX=6	38	38
	LTE-FDD Paging cycle=64	38	38
IDI E Ctata	LTE-TDD Paging cycle=64	38	38
IDLE State	NR FDD Long DRX=10ms Paging cycle=128	44	44
	NR TDD Long DRX=10ms Paging cycle=128	44	44
	RF OFF: AT+CFUN=0	36	36
	B1 23.5dBm	760	760
MCDNAA	B2 23.5dBm	700	
WCDMA	B5 23.5dBm	640	650
	B8 23.5dBm	700	660
	B1 23dBm	760	760
	B2 23.5dBm	740	
LTE-FDD	B3 23dBm	760	760
10M 12RB	B5 23dBm	590	660
	B7 23dBm	800	
	B8 23dBm	700	700
	B34 23dBm	350	420
1 TE TO 0	B38 23dBm	400	420
LTE-TDD 10M 12RB	B39 23dBm	380	360
IUIVI IZKD	B40 23dBm	410	420
	B41 23dBm	550	460
NR-FDD	n1 23dBm	1000	1000
10M Inner	n5 23dBm		1000
FRB	n8 23dBm		1000

模式	条件	FM650-CN-03/60	FM650-CN-23/63
	n28 23dBm	1050	900
	n41 26dBm	650	750
NR-TDD	n77 26dBm		730
100M Inner FRB	n78 26dBm	750	730
	n79 26dBm	750	730
NR-TDD	n41 24.5dBm	750	750
UL MIMO	N77 24.5dBm		780
100M Inner	n78 24.5dBm	1000	780
FRB	n79 24.5dBm	960	740

NR 测试仪表为安利 MT8000A。

6.3 最大发射功率

最大发射功率是指模块在 25℃ 的环境温度下,天线管脚处的功率,用户在做设计时请充分考虑射频通路上的插损,以免插损过大影响 TRP 指标。FM650 模块最大发射功率如下:

表 31. 最大发射功率(dBm)

模式	频段	3GPP 标准	FM650-CN 系列
WCDMA	B1/2/5/8	24+1.7/-3.7	23.5±1.5
LTE-FDD 10M 12RB	B1/2/3/5/7/8	23±2.7	23±1.5
LTE-TDD 10M 12RB	B34/38/39/40/41	23±2.7	23±1.5
NR-FDD PC3 10M Inner FRB	n1/5/8/28	23±2.7	23±1.5
NR-TDD PC2 100M Inner FRB	n41	26+2.7/-3.7	26±1.5
NR-100 PC2 100M ITHELFRD	n77/78/79	26+3/-4	26±1.5

6.4 接收灵敏度

接收灵敏度是指模块在 25℃ 的环境温度下,天线管脚处的灵敏度,用户在做设计时请充分考虑射频通路上的插损,以免插损过大影响 TIS 指标。

表 32. 双天线接收灵敏度(dBm)

,						
模式	频段	3GPP 标准	FM650-CN-03/60	FM650-CN-23/63		
	Band 1	-106.7	-113	-112		
WCDMA	Band 2	-104.7	-113			
WCDIVIA	Band 5	-104.7	-113	-112		
	Band 8	-103.7	-113.5	-112		
	Band 1	-96.3	-101.5	-101		
	Band 2	-96.3	-101.5			
LTE-FDD (10MHz)	Band 3	-93.3	-100	-100		
LIL-IDD (TOWINZ)	Band 5	-94.3	-101.5	-101		
	Band 7	-94.3	-100.5			
	Band 8	-93.3	-101.5	-101		
	Band 34	-96.3	-101	-100		
	Band 38	-96.3	-101	-101		
LTE-TDD (10MHz)	Band 39	-96.3	-100	-100		
	Band 40	-96.3	-100.5	-100		
	Band 41	-94.3	-100	-100		
NR-FDD (10M SCS15Khz)	N1	-96.1	-100	-99		
NR-FDD (10M SCS15Khz)	N5	-94.1		-99		
NR-FDD (10M SCS15Khz)	N8	-93.1		-99		
NR-FDD (10M SCS15Khz)	N28	-94.8	-99	-99		
NR-TDD (100M SCS30Khz)	N41	-84	-87	-88		

模式	频段	3GPP 标准	FM650-CN-03/60	FM650-CN-23/63
NR-TDD (100M SCS30Khz)	N77	-84.1		-89
NR-TDD (100M SCS30Khz)	N78	-84.6	-89	-89
NR-TDD (100M SCS30Khz)	N79	-84.6	-89	-88

若客户只使用单根天线,不使用分集天线,每个频段的灵敏度再减 3dB。

模块仅部分频段支持 4x4MIMO, 在 25 摄氏度室温环境下, 四天线接收器灵敏度如下表所示:

表 33. 四天线接收灵敏度(dBm)

模式	频段	3GPP 标准	FM650-CN-03/60	FM650-CN-23/63
NR-FDD (10M SCS15Khz)	N1	-98.8	-102	-102
NR-TDD (100M SCS30Khz)	N41	-86.4	-91	-91
NR-TDD (100M SCS30Khz)	N77	-86.3		-92
NR-TDD (100M SCS30Khz)	N78	-86.8	-93	-92
NR-TDD (100M SCS30Khz)	N79	-86.8	-92	-92

6.5 静电防护

FM650 系列模块为精密电子产品,如果未做好静电防护措施,可能会对模块造成永久的损坏。在研发调试、生产组装、测试等环节,均应采取 ESD 防护措施。在 25℃的环境温度和 45%的湿度下,ESD 防护等级如下表:

表 34. ESD 防护等级

位置	空气放电	接触放电
GND	±15KV	±8KV
天线接口		±8KV

其他接口	±2KV	±1KV

- 1. 数据基于 Fibocom 开发板测试。
- 2. ESD 性能与 PCB 设计强相关,应特别注意控制信号的保护。
- 3. 整机设计时,模块的 GND 和主 GND 保持充分的连通性,确保 ESD 以最短路径泄放。

6.6 可靠性测试

Fibocom 的可靠性测试是按工业级进行测试,各项目的测试结果如下:

表 35. 可靠性测试结果

试验项目	测试条件	结果
高温老化	85°C,168H/504H/1008H	PASS
高温高湿	85°C,85%RH,168H/504H/1008H	PASS
Corner 测试	高低温度,高低湿度,高低电压,六组组合,每个组合运行测试 24 小时	PASS
温度冲击	90/-45°C,200C	PASS
随机振动	频率范围:200~2000Hz,PSD = 0.04g2/Hz,X/Y/Z 各轴 1 小时	PASS
单体跌落	1m, 六面 2 轮	PASS
机械碰撞	峰值加速度: 180m/s2 脉冲持续时间: 6ms 碰撞次数: 1000 次	PASS
低温启动	-40°C; 30 minutes Off/ 5 minutes Idle;3 days	PASS
Condensation Test	3 days (3 cycles):First and second cycle with cold cycleThird cycle without cold cycle	PASS
温度循环	85°C /–40°C; 10°C/min; 10min; 240cycles	PASS

试验项目	测试条件	结果
正弦振动	振幅:3.0G peak to peak	
	频率: 5~500Hz	PASS
	扫频频率:0.5 Octave/min,linear	
	每轴: 2H	
盐雾测试	中性盐雾,48H	PASS

6.7 热设计指导

使用 M.2 封装模块进行整机热设计时,主要建议如下:

- 对于 M.2 封装模块,其屏蔽罩上方,优先考虑使用整机外壳进行散热,在模块正上方与壳体中间使用导热界面材料进行连接;
- ●外壳材料选型时,优先选择金属外壳,其中铝合金材料散热效果较好;
- 当外壳选用塑胶外壳时,可在内侧贴石墨片进行均温,以消除局部热点;
- 当外壳与模块距离较远时,可采用在模块上增加散热器的方式进行散热;
- 最后, M.2 封装模块底部露铜区域与客户主板 PCB 之间填充导热界面材料进行散热;

更多热设计指导,请参考《Fibocom 模块通用热设计指南》文档。

图 27. 散热结构堆叠

7 结构规格

7.1 产品外观

FM650-CN-03/60 模块产品外观如图所示:

图 28. 产品外观 1

FM650-CN-23/63 模块产品外观如图所示:

图 29. 产品外观 2

7.2 结构尺寸

图 30. FM650-CN-03/60 结构尺寸(单位: mm)

图 31. FM650-CN-23/63 结构尺寸(单位: mm)

7.3 M.2 接口类型

FM650-CN 系列的模块采用 75-pin 金手指作为外部接口,其中 67 pin 为信号接口,8pin 为缺口。关于模块的尺寸请参考管脚定义。依据 M.2 接口定义,FM650 模块采用 Type 3052-S3-B 接口(30x52mm,Top 面元件层厚度最大为 1.5mm,PCB 厚度 0.8mm,Key ID 为 B)。

7.4 M.2 连接器

符合 PCI Express Mini Card 标准的连接器均可与本模块配套使用,推荐选择 LOTES 公司 M.2 连接器,型号为 APCI0026-P001A,如下图所示,连接器封装请参考规格书设计。

图 32. M.2 连接器尺寸

8 存储、包装

8.1 存储

模块以真空密封袋的形式出货。模块的湿度敏感等级为 3 (MSL 3), 其存储需遵循如下条件:

- 1. 存储条件(推荐): 温度 23℃ ± 5℃, 相对湿度 RH 35%~70%;
- 2. 存储期限(密封真空包装): 在推荐存储条件下,保存期为12个月;

8.2 包装规格

模块采用托盘密封包装方式,每盘装 20pcs,每盒装 6 盘(最上层叠一个空托盘),一共 100pcs,每箱装 6 盒。结合硬质卡通箱的外包装模式,对模块的存储、运输及使用起到最大限度的保护作用。

FM650-CN-03/60 模块托盘尺寸为 330X175X6.5mm, 如图所示:

图 33.托盘尺寸 1 (单位: mm)

FM650-CN-23/63 模块托盘尺寸为 330X175X6.5mm, 如图所示:

包装流程图:

图 34. 包装流程

附录 A 参考文档

Fibocom 提供了以下相关文档,供用户参考,如有额外的需求,请致电我们的 FAE。

类别	文档名称
软件	FIBOCOM_FM650_Series_AT_Commands_User_Manual
硬件	Fibocom_FM650_CN_CA_ENDC_List
参考设计	FIBOCOM FM650 Series Package
	FIBOCOM FM650 3D Module Diagram
	FIBOCOM_FM650-CN_Reference_Design
开发套件	FIBOCOM EVB-M2 用户指南
User Guide	Fibocom_设计指南_RF Antenna
	Fibocom_模块通用热设计指南

附录 B 缩略语

缩略语	描述
AR	Augmented Reality,增强现实
bps	Bits Per Second,每秒位数
CA	Carrier Aggregation,载波聚合
CAT	Category,类别
CPE	Customer Premise Equipment,用户端设备
DRX	Discontinuous Reception,间断接收
DL	Downlink,下行链接
DLCA	Downlink Carrier Aggregation,下行载波聚合
ECC	Envelope Correlation Coefficient,包络相关系数
EN-DC	E-UTRA New Radio-Dual Connectivity,E-UTRA 新型双无线电连接
FDD	Frequency Division Duplexing,频分双工
НВ	High Band,高频
HSDPA	High Speed Down Link Packet Access,高速下行链路数据包接入
GNSS	Global Navigation Satellite System,全球导航卫星系统
GPS	Global Positioning System,全球定位系统
Imax	Maximum Load Current,最大负载电流
LB	Low Band,低频
LED	Light Emitting Diode,发光二极管
LSB	Least Significant Bit,最低有效位
LTE	Long Term Evolution,第四代通信系统
MB	Middle Band,中频
ME	Mobile Equipment,移动设备
MIMO	multiple-input and multiple-output,多进多出

缩略语	描述
MS	Mobile Station,移动台
MT	Mobile Terminated,移动终端
NR	New Radio,新无线电
NSA	Non-Standalone,非独立
PA	Power Amplifier,功率放大器
PCB	Printed Circuit Board,印刷电路板
PDU	Protocol Data Unit,协议数据单元
PSK	Phase Shift Keying,相移键控
QAM	Quadrature Amplitude Modulation,正交幅度调制
QPSK	Quadrature Phase Shift Keying,正交相移键控
QZSS	Quasi-Zenith Satellite System,准天顶卫星系统
RF	Radio Frequency,无线电频率
RHCP	Right Hand Circularly Polarized,右旋圆极化
RMS	Root Mean Square,均方根
RTC	Real Time Clock,实时时钟
Rx	Receive,接收
SA	Standalone,独立
SCell	Secondary Cell for CA,子载波
SMS	Short Message Service,短消息服务
TE	Terminal Equipment,终端设备
TX	Transmitting,发射
TT	Test Tolerance,测试公差
TDD	Time Division Duplexing,时分双工
UART	Universal Asynchronous Receiver & Transmitter,通用异步收发器
UL	Uplink,上行链路

缩略语	描述
UMTS	Universal Mobile Telecommunications System,通用移动电信系统
URC	Unsolicited Result Code,不请自来的结果代码
USIM	(Universal) Subscriber Identity Module,(通用)订户身份模块
VSWR	Voltage Standing Wave Ratio,电压驻波比
VR	Virtual Reality,虚拟现实
WCDMA	Wideband Code Division Multiple Access,宽带码分多址