Programmable Logic Devices (PLD)

Dr. Fatma Elfouly

Problems by Using Basic Gates

- Many components on PCB:
 - As no. of components rise, nodes interconnection complexity grow exponentially
 - Growth in interconnection will cause increase in interference, PCB size, PCB design cost, and manufacturing time

PLD

- The purpose of a PLD device is to permit elaborate digital logic designs to be implemented by the user in a single device.
- Can be erased electrically and reprogrammed with a new design, making them very well suited for academic and prototyping
- Types of Programmable Logic Devices
- SPLDs (Simple Programmable Logic Devices)
 - PLA (Programmable Logic Array)
 - PAL (Programmable Array Logic)
 - GAL (Generic Array Logic)
- CPLD (Complex Programmable Logic Device)
- FPGA (Field-Programmable Gate Array)

PLD

- 3 categories of PLDs:
 - 1. SPLD (Simple Programmable Logic Device)
 - PLA (Programmable Logic Array)
 - PAL (Programmable Array Logic)
 - Registered PAL
 - 2. CPLD (Complex Programmable Logic Device)
 - 3. FPGA (Field Programmable Gate Array)

Architecture of PLDs

Generic Architecture of PLDs

Programmable Logic Array

(PLA)

The connections in the AND plane are programmable

The connections in the OR plane are programmable

PLA

The PLA Architecture

Gate Level Version of PLA

 $f_1 = x_1x_2 + x_1x_3' + x_1'x_2'x_3$ $f_2 = x_1x_2 + x_1'x_2'x_3 + x_1x_3$

Programmable Array Logic (PAL)

 The connections in the AND plane are programmable

The connections in the OR plane are <u>NOT</u> programmable

PAL

PAL

PAL

CPLD Structure

Integration of several PLD blocks with a programmable interconnect on a single chip

PLD - Macrocell

Can implement combinational or sequential logic

FPGA Architecture

FPGA - Generic Structure

FPGA building blocks:

- Programmable logic blocks Implement combinatorial and sequential logic
- Programmable interconnect Wires to connect inputs and outputs to logic blocks
- Special logic blocks at the periphery of device for external connections

Other FPGA Building Blocks

- Clock distribution
- Embedded memory blocks
- Special purpose blocks:
 - DSP blocks:
 - Hardware multipliers, adders and registers
 - Embedded microprocessors/microcontrollers
 - High-speed serial transceivers

FPGA - Basic Logic Element

- LUT to implement combinatorial logic
- Register for sequential circuits
- Additional logic (not shown):
 - Carry logic for arithmetic functions
 - > Expansion logic for functions requiring more than 4 inputs

18

Look-Up Tables (LUT)

- Look-up table with N-inputs can be used to implement any combinatorial function of N inputs
- LUT is programmed with the truth-table

Α	В	С	D	z
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0

LUT Implementation

Programmable Interconnect

- Interconnect hierarchy (not shown)
 - Fast local interconnect
 - Horizontal and vertical lines of various lengths

21

Switch Matrix Operation

Before Programming

After Programming

- 6 pass transistors per switch matrix interconnect point
- Pass transistors act as programmable switches
- Pass transistor gates are driven by configuration memory cells

تعدیل من خلال WPS Office

FPGA Vendors

- Altera
- Xilinx
 - Virtex-II/Virtex-4: Feature-packed highperformance SRAM-based FPGA
 - Spartan 3: low-cost feature reduced version
 - CoolRunner: CPLDs
- Actel
- Lattice
- QuickLogic

FPGA Design Flow

FPGA Design Flow

Design Entry/RTL Coding

Behavioral or Structural Description of Design

RTL Simulation

- Functional Simulation
- Verify Logic Model & Data Flow (No Timing Delays)

Synthesis

- Translate Design into Device Specific Primitives
- Optimization to Meet Required Area & Performance Constraints

Place & Route

- Map Primitives to Specific Locations inside Target Technology with Reference to Area &
- Performance Constraints
- Specify Routing Resources to Be Used

تعدیل من خلال WPS Office

FPGA Design Flow

Timing Analysis

- Verify Performance Specifications Were Met- Static Timing Analysis

Gate Level Simulation

- Timing Simulation - Verify Design Will Work in Target Technology

Program & Test

- Program & Test Device on Board

