1 논리 게이트의 개념과 종류

□ TTL과 CMOS 논리 레벨 정의영역

그림 3-1 TTL과 CMOS 논리 레벨 정의 영역

01 논리 게이트

□ NOT 게이트

- 한 개의 입력과 한 개의 출력을 갖는 게이트로 논리 부정을 나타낸다.
- NOT 게이트를 인버터(inverter)라고도 한다.

논리표 진리표 Truth Table	입력 <i>A</i>	출력 <i>F</i>	논리기호
	0	1	A— F
	1	0	
논리식 부울대수식	F =	$=\overline{A}=A'$	

그림 3-2 NOT 게이트의 진리표와 논리 기호

□ 버퍼 게이트

• 버퍼(buffer)는 입력 신호를 그대로 출력하여 단순 전송을 표현하는 게이트다. 입력이 0이면 0을 출력하고, 입력이 1이면 1을 출력한다.

입력 <i>A</i>	출력 <i>F</i>	
0	0	$A \longrightarrow F$
1	1	
F =	= A	-

❖ 3상태 버퍼(tri-state buffer)

그림 3-3 버퍼의 진리표와 논리 기호

• 출력이 3개 레벨(High, Low, 하이임피던스) 중의 하나를 갖는 논리소자

출력	
F	
0	
1	4
하이 임피던스	21
하이 임피던스	
	F 0 1 하이 임피던스

(a) 제어 단자가 Low일 때 동작

그림 3-4 3상태 버퍼의 진리표와 논리 기호

(b) 제어 단자가 High일 때 동작

01 논리 게이트

□ AND 게이트

• 입력이 모두 1인 경우에만 출력이 1이고, 입력 중 0이 하나라도 있으면 출력은 0이 되는 논리곱이다.

입	력	출력	
A	В	F	
0	0	0	A
0	1	0	B— F
1	0	0	
1	1	1	

(a) 2입력인 경우: F = AB

그림 3-5 AND 게이트의 진리표와 논리 기호

(b) 3입력인 경우: F = ABC

■ OR 게이트

• 입력이 모두 0인 경우에만 출력이 0이고, 입력 중 1이 하나라도 있으면 출력은 1이 되는 논리합이다.

(a) 2입력인 경우: F = A + B

그림 3-6 OR 게이트의 진리표와 논리 기호

(b) 3입력인 경우: F = A + B + C

01 논리 게이트

☐ XOR 게이트 (eXclusive OR gate)

- 입력에 1이 홀수 개이면 출력이 1이고, 짝수 개이면 출력이 0이다.
- 2입력 XOR 게이트는 두 입력 중 하나가 1이면 출력이 1이고, 두 입력 모두 0이거나 1인 경우에만 출력이 0이 되는 것이다.

XOR → 입력 1이 **홀수개** → 출력 1

입 ⁵ A		출력 <i>F</i>	
0	0	0	$A \longrightarrow \bigcap$
0	1	1	$B \longrightarrow F$
1	0	1	
1	1	0	

(a) 2입력인 경우: $F = \overline{AB} + A\overline{B} = A \oplus B$

그림 3-9 XOR 게이트의 진리표와 논리 기호

(b) 3입력인 경우: $F = A \oplus B \oplus C$

□ XNOR 게이트 (eXclusive NOR gate)

- 입력에 1이 짝수 개이면 출력이 1이고, 홀수 개이면 출력이 0이다.
- XOR 게이트에 NOT 게이트를 연결한 것과 출력이 같으므로 XOR 게이트와 반대다.
- 2입력 XNOR 게이트는 두 입력이 다르면 출력이 0이고, 두 입력이 같으면 출력이 1이라고 생각하면 쉽다.

XNOR → 입력 1이 **짝수개** → 출력 1

입 A		출력 <i>F</i>	
0	0	1	$A \longrightarrow \bigcap$
0	1	0	$B \longrightarrow 0$
1	0	0	
1	1	1	

(a) 2입력인 경우: $F = \overline{A \oplus B} = A \odot B$

그림 3-10 XNOR 게이트의 진리표와 논리 기호

	입력		출력	
A	B	C	F	
0	0	0	1	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	0	$A \longrightarrow \bigcap$
1	0	1	1	$B \longrightarrow F$
1	1	0	1	$C \longrightarrow L$
1	1	1	0	

(b) 3입력인 경우: $F = \overline{A \oplus B \oplus C} = A \odot B \odot C$

01 논리 게이트

■ NAND 게이트

- 입력이 모두 1인 경우에만 출력이 0이고, <mark>입력에 0이 하나라도 있는 경우는 모두 출력이 1이다</mark>.
- AND 게이트와 반대로 동작하여 NOT-AND의 의미로 NAND 게이트라고 한다.

(a) 2입력인 경우: $F = \overline{AB}$

그림 3-7 NAND 게이트의 진리표와 논리 기호

(b) 3입력인 경우: $F = \overline{ABC}$

■ NOR 게이트

- 입력이 모두 0인 경우에만 출력이 1이고, <mark>입력에 1이 하나라도 있는 경우는 모두 출력이 0이다</mark>.
- OR 게이트와 반대로 동작하여 NOT-OR의 의미로 NOR 게이트라고 한다.

(b) 3입력인 경우: $F = \overline{A + B + C}$

(a) 2입력인 경우: $F = \overline{A + B}$

그림 3-8 NOR 게이트의 진리표와 논리 기호

NAND vs. NOR

TOSHIBA

NAND vs. NOR - Cell Structure

2 유니버설 게이트

• NAND와 NOR 게이트만으로도 모든 회로를 만들 수 있으므로 이 둘을 특별히 유니버설 게이트 (universal gate) 또는 범용 게이트라고 한다.

모든 논리를 NAND 또는 NOR로 만들수 있음

□ NOT 게이트 구성

- A = 0이면 입력 2개에 모두 0이 입력되므로 출력 F = 1이 된다.
- A = 1이면 입력 2개에 모두 1이 입력되므로 출력 F = 0이 된다.

(a) NAND 게이트 이용

그림 3-11 NOT 게이트 구성

(b) NOR 게이트 이용

	력 <i>B</i>	출력 <i>F</i>		
0	0	1	$A \longrightarrow$	
0	1	0	$B \longrightarrow F$	
1	0	0		
1	1	0		
(a) 2입력인 경우: $F = \overline{A + B}$				
그림 3-8 NOR 게이트의 진리표와 논리 기호				

컴퓨터 논리체계에서 드모르간 정리

■ 드모르간 정리의 일반식

3항 드모르간 정리	$\overline{A+B+C} = \overline{A} \cdot \overline{B} \cdot \overline{C}$ $\overline{A \cdot B \cdot C} = \overline{A} + \overline{B} + \overline{C}$
4항 드모르간 정리	$\overline{A+B+C+D} = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$ $\overline{A \cdot B \cdot C \cdot D} = \overline{A} + \overline{B} + \overline{C} + \overline{D}$
일반식	$\overline{A_1 + A_2 + A_3 + \dots + A_n} = \overline{A_1} \overline{A_2} \overline{A_3} \cdots \overline{A_n}$ $\overline{A_1 A_2 A_3 \cdots A_n} = \overline{A_1} + \overline{A_2} + \overline{A_3} + \dots + \overline{A_n}$

□ AND 게이트 구성

• AND 게이트의 논리식 F=AB= 이중 부정하고 드모르간의 정리를 적용해 $F=AB=\overline{AB}=\overline{A+B}$ 로 변형하여 논리 회로를 구성한다.

(a) 2입력인 경우: F = AB

(0) 11011 / 1101= 0

□ OR 게이트 구성

• OR 게이트의 논리식 F=A+B= 이중 부정하고 드모르간의 정리를 적용해 $F=A+B=\overline{A+B}=\overline{A+B}=\overline{A+B}$ 로 변형하여 논리 회로를 구성한다.

그림 3-13 OR 게이트 구성

(b) NOR 게이트 이용 ←

01 논리 게이트

□ XOR 게이트 구성

• 2입력 XOR 게이트의 논리식은 $F = \overline{A}B + A\overline{B}$ 로, 두 입력이 모두 0이거나 1이면 출력이 0이 된다. 이 논리식을 불 대수 법칙으로 다음과 같이 정리하여 논리 회로를 구성한다.

$$F = \overline{\overline{F}} = \overline{\overline{\overline{AB} + AB}} = \overline{(A + \overline{B})(\overline{A} + B)} = \overline{A\overline{A} + AB + \overline{A}\overline{B} + B\overline{B}}$$

$$F = \overline{AB + \overline{AB}} = (A + B)\overline{AB} = A \cdot \overline{AB} + B \cdot \overline{AB}$$

$$= \overline{\overline{A \cdot \overline{AB} + B \cdot \overline{AB}}} = \overline{\overline{A \cdot \overline{AB} \cdot B \cdot \overline{AB}}}$$

(a) AND-OR-NOT 게이트 이용: $\overline{A}B+A\overline{B}$

A B

AA' = 0, BB' = 0

증명) A=1인경우, A'=0이고,

AND하면 무조건 0이 됨

(b) NAND 게이트 이용 ←

그림 3-14 XOR 게이트 구성

AND-OR-NOT 3종류 게이트 사용 vs. NAND 1종류 게이트 사용

3 와이어드 로직

- 집적 회로(IC)에서는 대부분 NAND나 NOR 게이트 형태로 구성한다.
- 둘 이상의 NAND 또는 NOR 게이트의 출력을 연결해 특정 논리 함수를 수행하는 형태를 **와이어드 로직**(wired logic)이라고 한다.

(a) TTL의 wired -AND 구성 그림 3-15 와이어드 로직 예

(b) ECL의 wired-OR 구성