Grenzwert einer Funktion.

Definition. Es sei $f:D\to\mathbb{R}$ eine reelle Funktion. Dann heißt

$$\alpha = \lim_{x \nearrow x_0} f(x)$$
 bzw. $\beta = \lim_{x \searrow x_0} f(x)$

der linksseitige bzw. rechtsseitige Grenzwert von f an der Stelle x_0 , falls für **jede** streng monoton wachsende (bzw. fallende) Folge $\{x_n\}_{n\in\mathbb{N}_0}$ mit $x_n\in D$ und $\lim_{n\to\infty}x_n=x_0$ die Folge

$$\{f(x_n)\}_{n\in\mathbb{N}_0}$$

konvergent ist mit $\lim_{n\to\infty} f(x_n) = \alpha$ (bzw. $\lim_{n\to\infty} f(x_n) = \beta$).

Ist $\alpha = \beta$, d. h. stimmen der links- und der rechtsseitige Grenzwert von f an der Stelle $x = x_0$ überein, so heißt

$$\lim_{x \to x_0} f(x) := \lim_{x \nearrow x_0} f(x) = \lim_{x \searrow x_0} f(x)$$

der Grenzwert von f an der Stelle $x = x_0$.

Stetigkeit einer Funktion

Definition. Sei $f: D \to \mathbb{R}$ eine reelle Funktion.

- (1) Die Funktion f heißt an der Stelle $x_0 \in D$
 - (i) linkstetig, falls

(ii) rechtsstetig, falls

(iii) **stetig**, falls

$$\lim_{x \to x_0} f(x) = f(x_0).$$

D.h. die Funktion f ist bei $x=x_0$ stetig, falls sie bei $x=x_0$ links- und rechtsstetig ist.

- (2) Ist f an der Stelle $x_0 \in D$ stetig, so heißt x_0 Stetigkeitsstelle von f.
- (3) Ist f an der Stelle $x_0 \in D$ nicht stetig, so heißt f unstetig bei x_0 , und x_0 heißt Unstetigkeitsstelle von f.
- (4) Ist f für alle $x_0 \in D$ stetig, so heißt f eine **stetige Funktion**.