Soutenances d'Algorithmes du Monde Réel

Ludovic Brochard, Fabien Kuntz, Benoît Védrenne

Professeurs : Cyril Gavoille, Anca Muscholl, Marc Zeitoun, Alexander Zvonkin

Module AMR

Master S&T Informatique

Université Bordeaux I

22 janvier 2009 - 11h40

- Réductions
 - Instance positive
 - Instance négative
 - Bonus : les "cas faciles"
- Couverture par sommets
 - Présentation de l'algorithme
 - Exemple d'exécution
- Algorithmes d'approximations
 - Bref rappel des algorithmes
 - Comparaison
- Instances critiques
- Bilan

- Réductions
 - Instance positive
 - Instance négative
 - Bonus : les "cas faciles"
- Couverture par sommets
 - Présentation de l'algorithme
 - Exemple d'exécution
- Algorithmes d'approximations
 - Bref rappel des algorithmes
 - Comparaison
- Instances critiques
- Bilar

4-Col

Données

FIG. : Graphe poisson

Question

Le graphe est-il 4-coloriable

Données

FIG. : Graphe poisson

Question

Le graphe est-il 4-coloriable ?

Solution

FIG. : Graphe poisson 4-colorié

Question/Réponse

Le graphe est-il 4-coloriable ? Oui ! ©

3-Col

Données

FIG. : Graphe poisson

Question

Le graphe est-il 3-coloriable ?

Données

FIG. : Graphe poisson

Question

Le graphe est-il 3-coloriable ?

Données

FIG. : Graphe poisson

Question/Réponse

Le graphe est-il 3-coloriable ? Non ! ©

Clique - nombre minimum d'arêtes

Données

Fig. : Graphe souris

Question

Le graphe comporte-t-il une clique de taille 5 ?

Clique - nombre minimum d'arêtes

Données

FIG. : Graphe souris

Question

Le graphe comporte-t-il une clique de taille 5 ?

Bonus : les "cas faciles"

Clique - nombre minimum d'arêtes

Données

 ${\operatorname{Fig.}}$: Graphe souris

Question

Le graphe comporte-t-il une clique de taille 5 ?

Bonus : les "cas faciles"

Clique - nombre minimum d'arêtes

Données

FIG. : Graphe souris

Question/Réponse

Le graphe comporte-t-il une clique de taille 5 ? (Nombre d'arêtes du graphe = 9) et (Minimum d'arêtes dans une clique de taille 5=10) \Rightarrow Non

- Réductions
 - Instance positive
 - Instance négative
 - Bonus : les "cas faciles"
- Couverture par sommets
 - Présentation de l'algorithme
 - Exemple d'exécution
- Algorithmes d'approximations
 - Bref rappel des algorithmes
 - Comparaison
- Instances critiques
- Bilar

Algorithme

ldée

- Méthode : Parcours en profondeur
- Aller : Marquer les pères d'au moins une feuille
- Retour : Marquer les sommets pères de sommets non marqués

Complexité

La complexité est celle du parcours en profondeur : O(|V| + |E|).

- Réductions
 - Instance positive
 - Instance négative
 - Bonus : les "cas faciles"
- Couverture par sommets
 - Présentation de l'algorithme
 - Exemple d'exécution
- 3 Algorithmes d'approximations
 - Bref rappel des algorithmes
 - Comparaison
- Instances critiques
- Bilar

Rappel

Algorithme du projet (sommets non feuilles)

- Calcul d'un arbre couvrant par parcours en profondeur
- Couverture = ensemble des sommets non feuilles (par parcours en profondeur)

Algorithme du cours (couplage maximal)

 $\bullet \ \ \mathsf{Couverture} = \mathsf{ensemble} \ \mathsf{des} \ \mathsf{sommets} \ \mathsf{d'un} \ \mathsf{couplage} \ \mathsf{maximal}$

Complexités

- Algorithme du projet : linéaire car consiste en deux parcours en profondeur l'un après l'autre.
- Avec une structure de graphe adapté : linéaire.

Comparaison des algorithmes d'approximation (1/3)

Comparaison des algorithmes d'approximation (2/3)

Comparaison des solutions sur le graphe Pise

$$C_{projet} = \{0, 1, 2, 4, 6, 8, 10, 12\}$$

Comparaison des algorithmes d'approximation (3/3)

Tableau de comparaison

	jeuPise.gin		testTree100.gin		testTree1000.gin	
	algoP	algoC	algoP	algoC	algoP	algoC
Temps d'execution(en μ s)	58.5808	1.12014	400.344	5.82175	3911.25	56.8837
Taille de la couverture	8	14	38	58	365	576
Taille couverture optimale	7		31		325	

FIG. : Tableau comparatif des exécutions des algorithmes sur plusieurs exemples.

- Réductions
 - Instance positive
 - Instance négative
 - Bonus : les "cas faciles"
- Couverture par sommets
 - Présentation de l'algorithme
 - Exemple d'exécution
- Algorithmes d'approximations
 - Bref rappel des algorithmes
 - Comparaison
- Instances critiques
- Bilar

Graphe critique pour les algorithmes d'approximation

Solution pour le graphe serpent

Graphe critique pour les algorithmes d'approximation

- Réductions
 - Instance positive
 - Instance négative
 - Bonus : les "cas faciles"
- Couverture par sommets
 - Présentation de l'algorithme
 - Exemple d'exécution
- Algorithmes d'approximations
 - Bref rappel des algorithmes
 - Comparaison
- Instances critiques
- Bilan

Bilan

Améliorations

- Partie Réduction :
 - Utiliser des structures de graphes différentes selon les réductions.
 - Trouver plus de "cas faciles"
- Partie Approximation
 - Utiliser une structure de graphe plus adaptée à la suppression des arêtes pour le couplage maximum.
 - Améliorer le parser qui est la cause d'exécutions lentes.

Conclusion

- Nous avons remarqué l'intêret d'utiliser des algorithmes d'approximation lorsque le calcul d'une solution exacte est trop coûteux
- Un des rares projets où la théorie est au service de la pratique

Bilan

Améliorations

- Partie Réduction :
 - Utiliser des structures de graphes différentes selon les réductions.
 - Trouver plus de "cas faciles"
- Partie Approximation :
 - Utiliser une structure de graphe plus adaptée à la suppression des arêtes pour le couplage maximum.
 - Améliorer le parser qui est la cause d'exécutions lentes.

Conclusion

- Nous avons remarqué l'intêret d'utiliser des algorithmes d'approximation lorsque le calcul d'une solution exacte est trop coûteux
- Un des rares projets où la théorie est au service de la pratique

Bilan

Améliorations

- Partie Réduction :
 - Utiliser des structures de graphes différentes selon les réductions.
 - Trouver plus de "cas faciles"
- Partie Approximation :
 - Utiliser une structure de graphe plus adaptée à la suppression des arêtes pour le couplage maximum.
 - Améliorer le parser qui est la cause d'exécutions lentes.

Conclusion

- Nous avons remarqué l'intêret d'utiliser des algorithmes d'approximation lorsque le calcul d'une solution exacte est trop coûteux
- Un des rares projets où la théorie est au service de la pratique