

Home Ch

Chemistry

Essential Pre-Uni Chemistry F1.7

Essential Pre-Uni Chemistry F1.7

Specific heat capacity of water $=4.18\,\mathrm{J\,g^{-1}\,K^{-1}}$.

 $25.0\,\mathrm{cm^3}$ of sulfuric acid at $1.00\,\mathrm{mol\,dm^{-3}}$ and $19.10\,^\circ\mathrm{C}$ is placed in an insulated polystyrene cup. When $25.0\,\mathrm{cm^3}$ of sodium hydroxide at $2.00\,\mathrm{mol\,dm^{-3}}$ and $19.10\,^\circ\mathrm{C}$ is added, the temperature rises to $32.45\,^\circ\mathrm{C}$.

Assuming that no heat is lost, that the specific heat capacity of water may be used, and that the solutions have a density of $1.00\,\mathrm{g\,cm^{-3}}$ at $19.10\,^\circ\mathrm{C}$, find the enthalpy change of the reaction per mole of water produced by neutralisation.

Chemistry

Essential Pre-Uni Chemistry F1.6

Essential Pre-Uni Chemistry F1.6

Specific heat capacity of water $=4.18\,J\,g^{-1}\,K^{-1}$.

Calculate the enthalpy of combustion of propyne, C_3H_4 , given that complete combustion of $65\,\mathrm{mg}$ of propyne raises the temperature of $800\,\mathrm{g}$ of water from $20.15\,^\circ\mathrm{C}$ to $21.09\,^\circ\mathrm{C}$.

Chemistry

Essential Pre-Uni Chemistry F1.4

Essential Pre-Uni Chemistry F1.4

Specific heat capacity of water $=4.18\,\mathrm{J\,g^{-1}\,K^{-1}}$.

The enthalpy change of combustion of decane, $C_{10}H_{22}$, is $-6778\,\mathrm{kJ\,mol^{-1}}$. Calculate the mass required to raise the temperature of $450\,\mathrm{g}$ of water by $80\,^{\circ}\mathrm{C}$ when burnt completely, with no heat losses from the water. Give your answer to 2 significant figures.

Essential Pre-Uni Chemistry F1.5

Essential Pre-Uni Chemistry F1.5

Specific heat capacity of water $=4.18\,\mathrm{J\,g^{-1}\,K^{-1}}$.

Complete combustion of $0.020\,\mathrm{mol}$ of ethane, with a standard enthalpy of combustion of $-1410.8\,\mathrm{kJ\,mol^{-1}}$ raises the temperature of the water in an insulated calorimeter from $17.4\,^{\circ}\mathrm{C}$ to $22.4\,^{\circ}\mathrm{C}$. Calculate the mass of the water in the calorimeter.

<u>Home</u> Chemistry

Essential Pre-Uni Chemistry F1.1

Essential Pre-Uni Chemistry F1.1

Specific heat capacity of water $=4.18\mathrm{J}\mathrm{g}^{-1}\mathrm{K}^{-1}.$		
Part A (a)		
Calculate the heat capacity of an object with mass $1.80\mathrm{kg}$ and specific heat capacity $0.32\mathrm{Jg^{-1}K^{-1}}$.		
Part B (b)		
Calculate the heat capacity of a calorimeter if its temperature is raised $2.5\mathrm{K}$ by $35\mathrm{kJ}$ of heat.		
Part C (c) $ \hbox{Calculate the expected increase in temperature when $2.4kJ$ of heat is transferred to a calorimeter of heat capacity $720JK^{-1}$.}$		
Part D (d) $ \hbox{Calculate the heat required to raise the temperature of a calorimeter of heat capacity $1.6{\rm kJK^{-1}}$ by $3.8{^\circ}{\rm C}$. } $		
Part E (e)		
Calculate the specific heat capacity of a calorimeter if it has a mass of $375\mathrm{g}$ and its temperature is raised $4.2\mathrm{K}$ by $2160\mathrm{J}$ of heat.		

Part	F (f)		
	Calculate the heat required to raise the temperature of $3.14\mathrm{kg}$ of water by $12.2\mathrm{K}$.		
Part	G (g)		
	Calculate the mass of water whose temperature is raised through $16.0\mathrm{K}$ by $6.7\mathrm{kJ}$ of heat.		
Part H (h)			
	A calorimeter consists of $140\mathrm{g}$ of aluminium and $300\mathrm{g}$ of water. $6100\mathrm{J}$ of heat raises its temperature by $4.42\mathrm{K}$. Calculate to three significant figures:		
	its heat capacity;		
	the specific heat capacity of aluminium.		

Essential Pre-Uni Chemistry F1.3

Essential Pre-Uni Chemistry F1.3

Specific heat capacity of water $=4.18\,J\,g^{-1}\,K^{-1}.$

The enthalpy change of combustion of naphthalene is $-5156\,\mathrm{kJ\,mol^{-1}}$. Its molar mass is $128.2\,\mathrm{g\,mol^{-1}}$. Calculate the temperature change expected when $1.00\,\mathrm{mmol}$ is burnt in excess oxygen in a calorimeter containing $4.0\,\mathrm{kg}$ of water.

Essential Pre-Uni Chemistry F1.4

Essential Pre-Uni Chemistry F1.4

A Level - Practice (P1)

Specific heat capacity of water $=4.18\,\mathrm{J\,g^{-1}\,K^{-1}}$.

The enthalpy change of combustion of decane, $C_{10}H_{22}$, is $-6778\,\mathrm{kJ\,mol^{-1}}$. Calculate the mass required to raise the temperature of $450\,\mathrm{g}$ of water by $80\,^\circ\mathrm{C}$ when burnt completely, with no heat losses from the water. Give your answer to 2 significant figures.

Chemistry

Essential Pre-Uni Chemistry F1.1

Essential Pre-Uni Chemistry F1.1

A Level - Challenge (C1)

Specific heat capacity of water $=4.18\mathrm{Jg^{-1}K^{-1}}$.		
Part A (a)		
Calculate the heat capacity of an object with mass $1.80\mathrm{kg}$ and specific heat capacity $0.32\mathrm{Jg^{-1}K^{-1}}$.		
Part B (b) $ \hbox{Calculate the heat capacity of a calorimeter if its temperature is raised $2.5\mathrm{K}$ by $35\mathrm{kJ}$ of heat. } $		
Part C (c) $ \hbox{Calculate the expected increase in temperature when $2.4{\rm kJ}$ of heat is transferred to a calorimeter of heat capacity $720{\rm JK^{-1}}$.} $		
Part D (d) $ \hbox{Calculate the heat required to raise the temperature of a calorimeter of heat capacity $1.6kJK^{-1}$ by $3.8^{\circ}C$. }$		
Part E (e) $ \hbox{Calculate the specific heat capacity of a calorimeter if it has a mass of $375{\rm g}$ and its temperature is raised } 4.2{\rm K}$ by $2160{\rm J}$ of heat. } $		

Part	F (f)		
	Calculate the heat required to raise the temperature of $3.14\mathrm{kg}$ of water by $12.2\mathrm{K}$.		
Part	G (g)		
	Calculate the mass of water whose temperature is raised through $16.0\mathrm{K}$ by $6.7\mathrm{kJ}$ of heat.		
Part H (h)			
	A calorimeter consists of $140\mathrm{g}$ of aluminium and $300\mathrm{g}$ of water. $6100\mathrm{J}$ of heat raises its temperature by $4.42\mathrm{K}$. Calculate to three significant figures:		
	its heat capacity;		
	the specific heat capacity of aluminium.		

Essential Pre-Uni Chemistry F1.3

Essential Pre-Uni Chemistry F1.3

A Level - Practice (P1)

Specific heat capacity of water $=4.18\,\mathrm{J\,g^{-1}\,K^{-1}}$.

The enthalpy change of combustion of naphthalene is $-5156\,\mathrm{kJ\,mol^{-1}}$. Its molar mass is $128.2\,\mathrm{g\,mol^{-1}}$. Calculate the temperature change expected when $1.00\,\mathrm{mmol}$ is burnt in excess oxygen in a calorimeter containing $4.0\,\mathrm{kg}$ of water.

Chemistry

Essential Pre-Uni Chemistry F1.10

Essential Pre-Uni Chemistry F1.10

The enthalpies of combustion of three fuels are shown below:

Fuel	$\Delta H_{ m c}$ / ${ m kJ}$ ${ m mol}^{-1}$
$\mathrm{CH_4}$	-890.3
$\mathrm{C_{3}H_{8}}$	-2219.2
$\mathrm{C_4H_{10}}$	-2876.5

Part A (a)

Which gives out most heat per gram?

Part B (b)

Which gives out most heat per mole?

Part C (c)

Which gives out most heat per cubic foot?

Chemistry

Essential Pre-Uni Chemistry F1.8

Essential Pre-Uni Chemistry F1.8

Specific heat capacity of water $=4.18\,\mathrm{J\,g^{-1}\,K^{-1}}$

 $30.0\,\mathrm{cm^3}$ of ethanoic acid at $1.60\,\mathrm{mol\,dm^{-3}}$ and $18.65\,^\circ\mathrm{C}$ is placed in an insulated polystyrene cup. When $40.0\,\mathrm{cm^3}$ of sodium hydroxide at $1.00\,\mathrm{mol\,dm^{-3}}$ and $18.65\,^\circ\mathrm{C}$ is added, the temperature rises to $25.80\,^\circ\mathrm{C}$.

Assuming that no heat is lost, that the specific heat capacity of water may be used, and that the solutions have a density of $1.00\,\mathrm{g\,cm^{-3}}$ at $18.65\,^{\circ}\mathrm{C}$, find the enthalpy change of the reaction per mole of water produced by neutralisation.

Essential Pre-Uni Chemistry F1.9

Essential Pre-Uni Chemistry F1.9

Specific heat capacity of water $=4.18\,\mathrm{J\,g^{-1}\,K^{-1}}$.

When $5.0\,\mathrm{g}$ of ammonium nitrate dissolves in $100\,\mathrm{g}$ of water, the temperature of the water drops from $18\,^\circ\mathrm{C}$ to $14\,^\circ\mathrm{C}$. Calculate the enthalpy of solution of ammonium nitrate in $kJ\,\mathrm{mol}^{-1}$ using the following scheme.

Part A Empirical formula Write fown the formula of ammonium nitrate. Part B Formula mass Calculate the formula mass of ammonium nitrate. Give your answer to 3 significant figures. Part C Number of moles Calculate the number of moles of ammonium nitrate in 5.0 g.

Calculate the heat lost from the $100\,\mathrm{g}$ of water. Give your answer to 2 significant figures.

Part E Molar heat loss of ammonium nitrate

Calculate the heat lost per mole of ammonium nitrate.

Give the enthalpy of solution of ammonium nitrate.

All materials on this site are licensed under the $\underline{\textbf{Creative Commons license}},$ unless stated otherwise.

Part F Enthalpy of ammonium nitrate