



#### **Internship Defense**

# Control of electron temperature profile in H-mode tokamak plasmas

By: Hamza MAMECHE Supervisor: E. WITRANT

Co-supervisor : C. PRIEUR



## **Outline of the presentation**

- Context and motivation
- Previous works and objectives
- Control-oriented model
- Stability of the open loop system
- Distributed control and stability of the closed loop system
- Control implementation and results
- Conclusion and future work





#### **Context and motivation**

Thermonuclear fusion

gipsa-lab

$${}_{1}^{2}D + {}_{1}^{3}T \longrightarrow {}_{2}^{4}He(3.5 MeV) + {}_{0}^{1}n(14.1 MeV)$$

Magnetic confinement and tokamaks

$$n_e \tau_E \ge \frac{2T}{\langle \sigma v \rangle E_\alpha}$$

Advanced scenarios and plasma profile control







## **Previous works and objectives**

- Data driven model (Moreau et al., 2008)
- Discretized model for control (Kim and Lister, 2012)

• The coupling (Mavkov et al., 2017)

→ Control of the electron temperature profile in H-mode plasmas

First-principle model (Felici, 2011)

Distributed control

(Bribiesca Argomedo et al., 2013)

The nonlinearity





## **Heat transport dynamics**

$$\frac{3}{2}\frac{\partial(n_e T_e)}{\partial t} = \frac{1}{a^2}\frac{1}{r}\frac{\partial}{\partial r}(xn_e\chi_e\frac{\partial T_e}{\partial r}) - P_{sinks} + P_{sources}$$

$$P_{sources} = P_{OH} + P_{aux}$$

$$P_{sinks} = P_{ei} + P_{e,rad}$$

$$\frac{\partial T_e}{\partial x}(0,t) = 0, \forall t \ge 0$$
$$T_e(1,t) = T_{e,edge}(t), \forall t \ge 0$$

$$T_e(x,0) = T_0(x), \forall x \in [0,1]$$

- ullet  $I_p$  is computed offline and defines the discharge phases.
- $T_i$  is not modeled.





## Heat diffusivity model

Bohm/gyro-Bohm empirical model (Erba et al., 1997)  $\chi_e = \chi_{Be} + \chi_{gBe}$ 

$$\chi_{Be} = \alpha_B \frac{T_e}{eB_{\phi_0}} L_{p_e}^{*-1} \langle L_{T_e}^* \rangle^{-1} q^2, \quad L_{p_e}^{*-1} = \frac{a|\nabla p_e|}{p_e}$$

$$\chi_{gBe} = \alpha_{gB} \frac{T_e}{eB_{\phi_0}} L_{T_e}^{*-1} \rho^*, \quad \rho^* = \frac{m_e^{1/2} T_e^{1/2}}{eB_{\phi_0}}, \quad L_{T_e}^{*-1} = \frac{a|\nabla T_e|}{T_e}$$

$$\langle L_{T_e}^* \rangle^{-1} = \frac{T_e(x = 0.8) - T_e(x = 1)}{T_e(x = 1)}, \quad p_e = n_e T_e$$

ightharpoonup q is the safety factor,  $B_{\phi_0}$  is toroidal magnetic field at the center and  $ho^*$  is the electron gyroradius.





## Heat diffusivity model (Edge model)

The pedestal in represented by introducing a suppression function to

the electron heat diffusivity (Pianroj and Onjun, 2012)

$$\chi_{e_s} = \chi_e \times f_s$$

$$f_s = \frac{1}{1 + C\left(\frac{\omega_{E \times B}}{\gamma_{ITG}}\right)^2} \times \frac{1}{max(1, (s - s_{thres})^2)}$$

Suppression of electron heat diffusivity due to :

- 1)  $\omega_{E\times B}$  flow shearing rate together with reduction of turbulence growth rate  $\gamma_{ITG}$ .
- 2) the magnetic shear s exceeds a threshold  $s_{thres}$ .





## Heat diffusivity model (Edge model)

The pedestal in represented by introducing a suppression function to

the electron heat diffusivity (Pianroj and Onjun, 2012)

$$\chi_{e_s} = \chi_e \times f_s$$

$$f_s = \frac{1}{1 + C\left(\frac{\omega_{E \times B}}{\gamma_{ITG}}\right)^2} \times \frac{1}{max(1, (s - s_{thres})^2)}$$







## **Model inputs**

Electron Cyclotron Heating and Current Drive antennas (ECH/ECCD) approximated by weighted Gaussian distributions

$$P_{aux,i}(x,t) = P_i(t) \exp\left\{\frac{-4(x - x_{dep,i})^2}{w_{dep,i}^2}\right\} / \int_0^a \exp\left\{\frac{-4(x - x_{dep,i})^2}{w_{dep,i}^2}\right\}$$

$$P_{aux}(x,t) = \sum_i P_{aux,i}(x,t)$$







## Integral inequalities of polynomial integrands

The aim is to verify

$$\int_0^1 f(x, D^{\alpha}u(x)) \ dx \ge 0$$

where **u** verify the boundary condition:

$$Q\begin{pmatrix} D^{\alpha-1}u(1) \\ D^{\alpha-1}u(0) \end{pmatrix} = 0$$

and the integrand is polynomial on its second argument, so we can write **f** in quadratic-like form and we add terms due to the uniqueness of the integral expression:

$$\int_{0}^{1} \left[ \left( \xi^{\left\lceil \frac{k}{2} \right\rceil} (D^{\alpha} u(x)) \right)^{T} F(x) \, \xi^{\left\lceil \frac{k}{2} \right\rceil} (D^{\alpha} u(x)) + \frac{d}{dx} \left( \left( \xi^{\left\lceil \frac{k}{2} \right\rceil} (D^{\alpha - 1} u(x)) \right)^{T} H(x) \, \xi^{\left\lceil \frac{k}{2} \right\rceil} (D^{\alpha - 1} u(x)) \right) \right] dx \\
+ \left[ \left( \xi^{\left\lceil \frac{k}{2} \right\rceil} (D^{\alpha - 1} u(x)) \right)^{T} H(x) \, \xi^{\left\lceil \frac{k}{2} \right\rceil} (D^{\alpha - 1} u(x)) \right]_{1}^{0} \ge 0$$







## Integral inequalities of polynomial integrands

After manipulation, 
$$\int_0^1 \left(\xi^{\left\lceil \frac{k}{2}\right\rceil}(D^\alpha u(x))\right)^T \left(F(x) + \bar{H}(x)\right) \, \xi^{\left\lceil \frac{k}{2}\right\rceil}(D^\alpha u(x)) \, dx$$

we get:

$$+ \underbrace{\begin{bmatrix} \xi^{\left\lceil \frac{k}{2} \right\rceil} (D^{\alpha-1}u(0)) \\ \xi^{\left\lceil \frac{k}{2} \right\rceil} (D^{\alpha-1}u(1)) \end{bmatrix}^{T} \begin{bmatrix} H(0) & 0 \\ 0 & -H(1) \end{bmatrix} \begin{bmatrix} \xi^{\left\lceil \frac{k}{2} \right\rceil} (D^{\alpha-1}u(0)) \\ \xi^{\left\lceil \frac{k}{2} \right\rceil} (D^{\alpha-1}u(1)) \end{bmatrix}} \ge 0 \qquad n = \dim(u)$$

$$\begin{bmatrix} H(0) & 0 \\ 0 & -H(1) \end{bmatrix} \begin{bmatrix} \xi^{\lceil k/2 \rceil} (D^{\alpha-1}u(1)) \end{bmatrix} \ge$$

Need to prove  $F(x) + \overline{H}(x) \ge 0$ ,  $\forall x \in [0,1]$  (F and H are polynomial on x)

**Positivstellensatz**: Find  $N(x) \in \Sigma^{n_F \times n_F}[x]$ , such that:

$$F(x) + \bar{H}(x) - N(x)w(x) \in \Sigma^{n_F \times n_F}[x]$$

$$k = deg(f(.,z))$$

$$n = \dim(u)$$

$$F: [0,1] \to \mathbb{S}^{\sigma(n\alpha, \lceil \frac{k}{2} \rceil)}$$

$$H: [0,1] \to \mathbb{S}^{\sigma(n(\alpha-1), \lceil \frac{k}{2} \rceil)}$$

$$n_F = \sigma(n\alpha, \lceil \frac{k}{2} \rceil)$$
  
 $w(x) := x(x-1)$ 

$$w(x) := x(x-1)$$





## Stability analysis

Lyapunov candidate function:

$$V(T_e) = \frac{1}{2} ||T_e||_{2,P(x)}^2 = \frac{1}{2} \int_0^1 x^2 P(x) T_e^2 dx, \qquad P(x) > 0 \quad \forall x \in [0, 1]$$

and the system dynamics:

$$\frac{\partial T_e}{\partial t} = \frac{A}{x} \frac{\partial}{\partial x} \left( x \left( B(x) \frac{\partial T_e}{\partial x} + C(x) \underline{\sqrt{T_e}} \frac{\partial T_e}{\partial x} \right) \frac{\partial T_e}{\partial x} \right), \quad \forall x \in [0, 1]$$





## Stability analysis

Lyapunov candidate function:

$$V(T_e) = \frac{1}{2}||T_e||_{2,P(x)}^2 = \frac{1}{2}\int_0^1 x^2 P(x)T_e^2 dx, \qquad P(x) > 0 \quad \forall x \in [0,1]$$

and the system dynamics:

$$\frac{\partial \mathcal{T}_e}{\partial t} = \frac{A}{x} \frac{\partial}{\partial x} \left( x \left( B(x) \frac{\partial \mathcal{T}_e}{\partial x} + C(x) \underline{\mathcal{T}_e} \frac{\partial \mathcal{T}_e}{\partial x} \right) \frac{\partial \mathcal{T}_e}{\partial x} \right), \quad \forall x \in [0, 1]$$

For asymptotic stability we must verify:

$$\dot{V}(T_e) = \dot{V}(T_e) + \int_0^1 x^2 P(x) T_e \left(\frac{\partial T_e}{\partial x} - \frac{\partial T_e}{\partial x}\right) dx < 0$$





## Stability analysis

In quadratic-like form:

$$\dot{V}(\mathcal{T}_e) = \int_0^1 \begin{bmatrix} \mathcal{T}_e \\ \frac{\partial \mathcal{T}_e}{\partial x} \\ \mathcal{T}_e \frac{\partial \mathcal{T}_e}{\partial x} \\ (\frac{\partial \mathcal{T}_e}{\partial x})^2 \end{bmatrix}^1 \begin{bmatrix} 0 & 0 & 0 & \frac{\alpha_4}{4} \\ 0 & 0 & \frac{\alpha_4}{4} & \frac{\alpha_1}{2} \\ 0 & \frac{\alpha_4}{4} & \alpha_3 & \frac{\alpha_2}{2} \\ \frac{\alpha_4}{4} & \frac{\alpha_1}{2} & \frac{\alpha_2}{2} & 0 \end{bmatrix} \begin{bmatrix} \mathcal{T}_e \\ \frac{\partial \mathcal{T}_e}{\partial x} \\ \mathcal{T}_e \frac{\partial \mathcal{T}_e}{\partial x} \\ (\frac{\partial \mathcal{T}_e}{\partial x})^2 \end{bmatrix} dx$$

Using **SOSTOOLS**, we compute **P(x)** 

to make  $\dot{V}(\mathcal{T}_e) < 0$ 



## Distributed control and stability of the closed loop system





#### Distributed control

We apply a **PI** control action to the error mode:

$$\begin{cases} \frac{\partial \mathcal{T}_e}{\partial t} = \mathcal{D}(t, x, \mathcal{T}_e) + u \\ \mathcal{E}(t, x) = \mathcal{T}_e - r(x) \end{cases} \longrightarrow \frac{\partial \mathcal{E}}{\partial t} = \mathcal{D}(t, x, \mathcal{E} + r) + u \longrightarrow \frac{\partial \mathcal{E}}{\partial t} = \mathcal{D}(t, x, \mathcal{E}) + \mathcal{R}_{est}(t, x, \mathcal{E}, r) + u$$

The feedback control input and the closed loop system:

$$u_{des} = -\mathcal{R}_{est}(t, x, \mathcal{E}, r) - \alpha_P \mathcal{E} - \int_{t_0}^t \alpha_I \mathcal{E} dt \longrightarrow \begin{cases} \frac{\partial \mathcal{E}}{\partial t} &= \mathcal{D}(t, x, \mathcal{E}) - \alpha_P \mathcal{E} + I \\ \frac{\partial I}{\partial t} &= -\alpha_I \mathcal{E} \end{cases}$$





## stability of the closed loop system

Lyapunov candidate function and its time derivative in quadratic-like form:

$$V(\mathcal{T}_e, I) = \frac{1}{2} \int_0^1 x^2 P_T(x) \mathcal{T}_e^2 dx + \frac{1}{2} \int_0^1 x^2 P_I(x) I^2 dx,$$
$$P_T(x) > 0 \text{ and } P_I(x) > 0 \quad \forall x \in [0, 1]$$

and the weighting functions;







## Control implementation and results



## **Control implementation**

Use RAPTOR with TCV settings:

→ H-mode heat diffusivity model







## **Control implementation**

Use RAPTOR with TCV settings:

qipsa-lab

- H-mode heat diffusivity model
- Power inputs: **ECH** source at **xdep=0** and wdep=0.35, and ECCD source at xdep=0.4 and wdep=0.35.
- The actual system inputs  $u_{ac} = [P_1, P_2]^T$ solution to the optimization problem



$$u_{ac}^* = arg \min_{u_{ac}} \int_0^1 \left( u_{des} - P_{aux}(u_{ac}) \right)^2 dx \text{ subject to}: \qquad 0 \le P_1 \le 1 \text{MW}$$
$$0 \le P_2 \le 1 \text{MW}$$



#### Results

The reference profile with  $P_1=0.1~\mathrm{MW}$  and  $P_2=0.1~\mathrm{MW}$ 

and the PI parameters are :  $\, \alpha_I = 4 \times 10^3 \,$  and  $\, \alpha_P = 2 \times 10^5 \,$ 







## **Results**

Change the reference profile at t = 0.2 s + add disturbance at t = 0.4 s, a third ECCD source at xdep = 0.2, wdep = 0.35 and P3 = 0.1 MW.





### **Results**

Add time delays of **3 ms** to the control loop







#### **Conclusions**

- Use a control-oriented model for the electron temperature profile in H-mode.
- Analyze the stability of the nonlinear PDE describing the dynamics.
- Apply a PI control action and analyze the stability of the closed loop system
- Evaluate the control strategy on RAPTOR considering the input constraints.





#### **Future work**

- Considering the coupling between the plasma profiles as well as the two timescales dynamics.
- Investigating transport models that describe internal transport barrier (ITB) scenarios.

 The use of more elaborate control strategies, boundary control, and the consideration of experimental validation on tokamaks.

#### References

Argomedo, F. B., Witrant, E., Prieur, C., Brémond, S., Nouailletas, R., & Artaud, J. F. "Lyapunov-based distributed control of the safety-factor profile in a tokamak plasma". Nuclear Fusion, 53(3) (2013): 033005.

Erba, M., et al. "Development of a non-local model for tokamak heat transport in L-mode, H-mode and transient regimes." Plasma Physics and Controlled Fusion 39.2 (1997): 261.

Felici, F. "Real-time control of tokamak plasmas: from control of physics to physics-based control." (2011).

Kim, S. H., and J. B. Lister. "A potentially robust plasma profile control approach for ITER using real-time estimation of linearized profile response models." Nuclear Fusion 52.7 (2012): 074002.

Mavkov, B., Witrant, E., & Prieur, C. "Distributed control of coupled inhomogeneous diffusion in tokamak plasmas (full version)." (2017).

Moreau, D., et al. "A two-time-scale dynamic-model approach for magnetic and kinetic profile control in advanced tokamak scenarios on JET." Nuclear Fusion 48.10 (2008): 106001.

Pianroj, Y., & Onjun, T. "Simulations of H-mode plasmas in tokamak using a complete core-edge modeling in the BALDUR code." Plasma Science and Technology 14.9 (2012): 778.