Oxidative Phosphorylation

$$+6H_2O \longrightarrow 6CO_2 + 2 FADH_2 IO NADH$$

Thermodynamics of Electron Transport

Example: Malate/oxaloacetate

NADH + H⁺
$$\rightarrow$$
 NAD⁺ + 2e- + 2H⁺
Oxaloacetate + 2e- + 2H⁺ \rightarrow Malate

Oxaloacetate + NADH + H⁺ → Malate + NAD⁺

$$\Delta G^{\circ} = -7 \text{ kcal/mol}$$

 $\Delta G = 0$

Thermodynamics of Electron Transport

Oxidation – Reduction

Oxaloacetate + 2e- + 2H⁺
$$\rightarrow$$
 Malate -0.166 V NAD⁺ + 2e- + 2H⁺ \rightarrow NADH + H⁺ -0.315 V

Eo

NADH + H⁺
$$\rightarrow$$
 NAD⁺ + 2e⁻ + 2H⁺ + 0.315 V
Oxaloacetate + 2e⁻ + 2H⁺ \rightarrow Malate - 0.166 V

 So: the progress of any redox reaction toward equilibrium, can be monitored either chemically or electrically.

$$A^{2+}_{ox} + B_{red} \longrightarrow A_{red} + B^{2+}_{ox}$$

If monitored Chemically:

$$\Delta G = 2.3RT \log \left(\frac{A_{red} B_{ox}^{2+}}{A_{ox}^{2+} B_{red}} \right)_{init} - 2.3RT \log \left(\frac{A_{red} B_{ox}^{2+}}{A_{ox}^{2+} B_{red}} \right)_{eq}$$

If monitored Electrically:

$$-E = \frac{2.3RT}{nF} \log \left(\frac{A_{red}B_{ox}^{2+}}{A_{ox}^{2+}B_{red}} \right)_{init} - \frac{2.3RT}{nF} \log \left(\frac{A_{red}B_{ox}^{2+}}{A_{ox}^{2+}B_{red}} \right)_{eq}$$

n = # of e- transferred

F = faraday constant (23 kcal/mol/V)

TABLE 16-4 Standard Reduction Potentials of Some Biochemically Important Half-reactions Half-Reaction $\frac{1}{2}O_2 + 2H^+ + 2e^- \Longrightarrow H_2O$ $SO_4^{2-} + 2H^+ + 2e^- \Longrightarrow SO_3^{2-} + H_2O$ $NO_3^{-} + 2H^+ + 2e^- \Longrightarrow NO_2^{-} + H_2O$ Cytochrome a_3 (Fe³⁺) + $e^- \Longrightarrow$ cytochrome a_3 (Fe²⁺) $O_2(g) + 2H^+ + 2e^- \Longrightarrow H_2O_2$ Cytochrome a (Fe³⁺) + $e^- \Longrightarrow$ cytochrome a (Fe²⁺)

Cytochrome b (Fe³⁺) + $e^- \rightleftharpoons$ cytochrome b (Fe²⁺) (mitochondrial)

Cytochrome c (Fe³⁺) + $e^- \rightleftharpoons$ cytochrome c (Fe²⁺)

 $FAD + 2H^{+} + 2e^{-} \Longrightarrow FADH_{2}$ (in flavoproteins)

 $FAD + 2H^+ + 2e^- \Longrightarrow FADH_2$ (free coenzyme)

Lipoic acid $+ 2H^+ + 2e^- \rightleftharpoons$ dihydrolipoic acid

Acetoacetate⁻ + 2H⁺ + 2e⁻ \Longrightarrow β -hydroxybutyrate⁻

Acetate⁻ + $3H^+$ + $2e^- \rightleftharpoons$ acetaldehyde + H_2O

Ubiquinone $+ 2H^+ + 2e^- \rightleftharpoons$ ubiquinol

Fumarate⁻ + $2H^+ + 2e^- \Longrightarrow succinate^-$

Oxaloacetate $^{-} + 2H^{+} + 2e^{-} \Longrightarrow malate^{-}$

Acetaldehyde + $2H^+ + 2e^- \rightleftharpoons$ ethanol

Pyruvate⁻ + $2H^+ + 2e^- \rightleftharpoons$ lactate⁻

 $S + 2H^+ + 2e^- \Longrightarrow H_2S$

 $H^+ + e^- \rightleftharpoons \frac{1}{2}H_2$

 $NAD^+ + H^+ + 2e^- \Longrightarrow NADH$

 $NADP^{+} + H^{+} + 2e^{-} \Longrightarrow NADPH$

Cystine $+ 2H^+ + 2e^- \rightleftharpoons 2$ cysteine

Cytochrome c_1 (Fe³⁺) + $e^- \rightleftharpoons$ cytochrome c_1 (Fe²⁺)

%°′(V)

0.815

0.48

0.42

0.385

0.295

0.29

0.235

0.22

0.077

0.045

0.031

-0.040

-0.166

-0.185

-0.197

-0.219

-0.23

-0.29

-0.315

-0.320

-0.340

-0.346

-0.421

-0.581

Oxidation of NADH by O₂ is Highly Exergonic

NADH
$$\rightarrow$$
 NAD+ + H+ + 2e-
 $\frac{1}{2}$ O₂ + 2e + 2H+ \rightarrow H₂O

E° = +0.32

E° = +0.82

$$\frac{1}{2}O_2 + NADH + H^+ \longrightarrow H_2O + NAD^+$$

 $E^{\circ} = +1.14 \text{ V}$

therefore:

$$\Delta G^{\circ}$$
 = -nFE°
= -2 x 23 kcal/mol/V x 1.14 V
= -53 kcal/mol