Probability

Notes taken by Runqiu Ye Carnegie Mellon University

Fall 2025

2 Laws of large numbers

2.2 Weak laws of large numbers

Theorem (L^2 weak law). Let X_1, X_2, \ldots be uncorrelated random variables with $EX_i = \mu$ and $EX_i^2 \leq C < \infty$. If $S_n = X_1 + \cdots + X_n$ then as $n \to \infty$, $S_n/n \to \mu$ in L^2 and in probability.

Lemma. If $Y \ge 0$ and p > 0 then

$$E(Y^p) = \int_0^\infty py^{p-1} P(Y > y) \, dy.$$

2.3 Borel-Cantelli Lemmas

Definition. Let A_n be a sequence of subsets of Ω , define

$$\limsup A_n = \bigcap_{m=0}^\infty \bigcup_{n=m}^\infty A_n = \left\{\omega \in A_n \text{ infintely often}\right\},$$

$$\liminf A_n = \bigcup_{m=0}^\infty \bigcap_{n=m}^\infty A_n = \left\{\omega \text{ in all but finitely many } A_n\right\}.$$

Proposition. We have

$$\limsup_{n \to \infty} 1_{A_n} = 1_{\limsup A_n}, \quad \liminf_{n \to \infty} 1_{A_n} = 1_{\liminf A_n},$$

and

$$P(\limsup A_n) \ge \limsup P(A_n), \quad P(\liminf A_n) \le \liminf P(A_n).$$

Theorem (Borel-Cantelli Lemma). If $\sum_{n=1}^{\infty} P(A_n) < \infty$, then

$$P(A_n \text{ i.o.}) = 0.$$

Theorem. $X_n \to X$ in probability iff for every subsequence $X_{n(m)}$, there is a further subsequence $X_{n(m_k)}$ such that $X_{n(m_k)}$ converges almost surely to X.