Математический Анализ - 2 - Коллоквиум 1

Серёжа Рахманов | telegram, website Денис Болонин | telegram Максим Николаев | telegram

Версия от 18.12.2020 10:45

Спасибо ребятам из 195-ой (и не только) группы за материалы из репозитория Matan2-tex. Спасибо Маевскому Евгению Валерьевичу и Колесниченко Елене Юрьевне за проведенные консультации.

Содержание

DOI	просы	U
1.1	Дайте определения: числовой ряд, частичная сумма ряда, сумма ряда, сходящийся ряд, расходящийся	
	ряд. Рассмотрим ряд с общим членом a_n . Докажите, что если ряд сходится, то $a_n \to 0$	6
1.2	Сформулируйте критерий Коши сходимости числовой последовательности. Сформулируйте и докажите	
	критерий Коши сходимости числового ряда.	6
1.3	Сформулируйте и докажите признак сравнения положительных числовых рядов, основанный на нера-	
	венстве $a_n \leqslant b_n$	6
1.4	Сформулируйте и докажите признак сравнения положительных числовых рядов, основанный на нера-	
	BEHCTBE $\frac{a_{n+1}}{1} \leqslant \frac{b_{n+1}}{1}$	6
1.5	венстве $\frac{a_{n+1}}{a_n} \leqslant \frac{b_{n+1}}{b_n}$	
	$\lim \frac{a_n}{b_n}$	7
1.6	Пусть последовательности $\{a_n\}, \{A_n\}$ таковы, что $a_n - (A_n - A_{n-1}) = c_n$ и ряд $\sum c_n$ сходится. Докажите,	
	что существует C такое, что $a_1 + a_2 + \dots + a_n = A_n + C + o(1)$	7
1.7	Сформулируйте и докажите признак Лобачевского-Коши	7
1.8	Сформулируйте теорему Штольца о пределе последовательности. Покажите на примере, как с помощью	
	теоремы Штольца можно уточнить асимптотическую оценку для частичной суммы ряда. $\frac{p_n}{q_n}, p_n, q_n \to 0.$	7
1.9	Пусть $\sum a_n, \sum a'_n$ — сходящиеся положительные ряды. Говорят, что ряд $\sum a'_n$ сходится быстрее	
	ряда $\sum a_n$, если $a'_n = o(a_n)$. Докажите, что в этом случае также $r'_n = o(r_n)$, где r_n , r'_n - остатки	
	соответствующих рядов.	8
1.10	Пусть $\sum a_n, \sum a'_n$ - расходящиеся положительные ряды. Говорят, что ряд $\sum a'_n$ расходится медленнее	
	ряда $\sum a_n$, если $a'_n=o(a_n)$. Докажите, что в этом случае также $S'_n=o(S_n)$, где S_n,S'_n - частичные	
	суммы соответствующих рядов	8
1.11	. Пусть положительный ряд $\sum a_n$ сходится и r_n — его остаток. Докажите, что ряд $\sum (\sqrt{r_n} - \sqrt{r_{n+1}})$	
	также сходится, причём медленнее, чем ряд $\sum a_{n+1}$	8
1.12	Пусть положительный ряд $\sum a_n$ расходится и S_n его частичная сумма. Докажите, что ряд $\sum (\sqrt{S_{n+1}} -$	
	$\sqrt{S_n}$) также расходится, причём медленнее, чем ряд $\sum a_{n+1}$	9
1.13	Сформулируйте признак Даламбера для положительного ряда	9
1.14	Сформулируйте радикальный признак Коши для положительного ряда.	9
1.15	Докажите, что всякий раз, когда признак Даламбера даёт ответ на вопрос о сходимости ряда, то	
	радикальный признак Коши даёт (тот же) ответ на этот вопрос	9

1.16	Докажите, что если для положительного ряда $\sum a_n$ существует $\lim \frac{a_{n+1}}{a_n} = q$, то существует и $\lim \sqrt[n]{a_n} = q$	
	q	10
1.17	Приведите пример положительного ряда, вопрос о поведении которого не может быть решен с помощью	
	признака Даламбера, но может быть решен с помощью радикального призанка Коши (с обоснованием).	10
1.18	Приведите пример ряда, который сходится медленнее любого ряда геометрической прогрессии, но быст-	
	рее любого обобщённого гармонического ряда (с обоснованием)	11
1.19		
	Гаусса	11
1.20	Приведите пример положительного ряда, вопрос о поведении которого не может быть решен с помощью	
	признака Гаусса (с обоснованием).	12
1.21	Выведите двустороннюю оценку для частичной суммы ряда через определённый интеграл. Сформули-	
	руйте и докажите интегральный признак Коши-Маклорена	12
1.22		
	сходимость ряда	12
1.23	Дайте определения: знакопеременный ряд, знакочередующийся ряд, абсолютно сходящийся ряд, условно	
	сходящийся ряд, положительная часть ряда, отрицательная часть ряда	13
1.24	Докажите, что ряд сходится абсолютно ровно в том случае, когда сходятся его положительная и отри-	
	цательная части	13
1.25		
	(имеют бесконечные суммы).	13
1.26	Сформулируйте мажорантный признак Вейерштрасса. Приведите пример применения признака	14
1.27	Что такое группировка членов ряда? Докажите, что любой ряд, полученный из сходящегося ряда	
	группировкой его членов, сходится и имеет ту же сумму	14
1.28	Как с помощью группировки преобразовать знакопеременный ряд в знакочередующийся? Что можно	
	утверждать о сходимости полученного знакочередующегося ряда?	14
1.29		
	ющемуся.	14
1.30	• •	
	остатка. Приведите пример применения этой оценки.	15
1.31	Сформулируйте признак Лейбница для знакочередующегося ряда. Приведите пример применения при-	
	знака Лейбница	15
1.32	Покажите на примере, что к знакопеременным рядам неприменим предельный признак сравнения	15
	Покажите, что для любых числовых последовательностей $\{a_n\}$, $\{B_n\}$ справедлива формула суммиро-	
	вания по частям: $\sum_{n=m+1}^{N} a_n(B_n - B_{n-1}) = (a_N B_N - a_m B_m) - \sum_{n=m+1}^{N} (a_n - a_{n-1}) B_{n-1}$	15
1.34	n=m+1 Сформулируйте признак Дирихле. Приведите пример его применения	15
1.35	Сформулируйте признак Абеля. Выведите утверждение признака Абеля из признака Дирихле	15
1.36	Что такое перестановка членов ряда? Приведите пример.	16
1.37	Сформулируйте свойство абсолютно сходящегося ряда, связанное с перестановкой членов	16
1.38	Сформулируйте свойство условно сходящегося ряда, связанное с перестановкой членов (теорема Римана).	16
1.39	Приведите пример условно сходящегося ряда и перестановки, меняющей его сумму (с обоснованием)	16
1.40	Как определяется произведение рядов? Что можно утверждать о произведении абсолютно сходящихся	
	рядов?	17
1.41	Что такое произведение рядов в форме Коши? Приведите пример вычисления такого произведения	17
1.42	Дайте определения: бесконечное произведение, частичное произведение, сходящееся бесконечное про-	
	изведение, расходящееся бесконечное произведение.	17
1.43	Сформулируйте и докажите необходимое условие сходимости бесконечного произведения	17

1.44	Пусть последовательности $\{a_n\}, \{A_n\}, A_n \neq 0$ таковы, что $a_n = \frac{A_n}{A_{n-1}} \cdot c_n$ и бесконечное произведение	
	$\prod c_n$ сходится. Докажите, что существует число $C \neq 0$, что $\prod a_n = A_N \cdot (C + \mathrm{o}(1))$	17
1.45	n=1 Как определяется соответствующий бесконечному произведению ряд? Сформулируйте и докажите	
	утверждение об их взаимосвязи.	18
1.46	В каком случае бесконечное произведение называется сходящимся абсолютно? Сформулируйте и дока-	
	жите критерий абсолютной сходимости бесконечного произведения.	18
1.47	Напишите произведение Валлиса и его значение. Вычисление каких интегралов приводит к этой формуле?	18
1.48	Дайте определение дзета-функции (ζ -функция) Римана. Сформулируйте тождество Эйлера для ζ -	4.0
1 40	функции.	18
1.49	Дайте определения: функциональная последовательность, точка сходимости функциональной последо-	
	вательности, область (множество) сходимости функциональной последовательности, поточечная сходи-	1.0
1.50	мость функциональной последовательности на данном множестве.	18
1.50	Что такое равномерная норма? Покажите (исходя из определения нормы), что равномерная норма	
	является нормой в соответствующем линейном пространстве (всех числовых функций, определённых на	
	заданном множестве)	19
1.51	Сформулируйте определения равномерной сходимости функциональной последовательности: в терми-	
	нах нормы и на языке $\varepsilon-\delta$	19
1.52	Докажите, что из равномерной сходимости следует поточечная сходимость на данном множестве	19
1.53	Приведите пример функциональной последовательности, сходящейся поточечно, но не сходящейся рав-	
	номерно (с обоснованием)	19
1.54	Приведите пример функциональной последовательности $\{f_n(x)\}$ (с нетривиальной зависимостью от n	
	и x), равномерно сходящейся на некотором множестве (с обоснованием)	19
1.55	Докажите, что если две функциональные последовательности сходятся равномерно к предельным функ-	
	циям, то их сумма также сходится равномерно к сумме этих предельных функций.	19
1.56	Докажите, что если две функциональные последовательности сходятся равномерно к ограниченным	
	предельным функциям, то их произведение также сходится равномерно к произведению этих предельных	
	функций.	20
1.57	Пусть функциональная последовательность $\{f_n\}$ сходится равномерно на множестве D к предельной	
	функции f , отделённой от нуля (т.е. $\inf_{x\in D} f(x) >0$), то функциональная последовательность $\{f_n\}$ схо-	
	дится равномерно на D к f	20
1.58	Докажите, что равномерная сходимость последовательности на множестве $D=D_1\cup D_2$ равносильно	
	равномерной сходимости этой последовательности на D_1 и D_2 одновременно	20
1.59	Пусть $\varphi:G o D$ — биекция. Докажите, что равномерная сходимость функциональной последователь-	
	ности $\{f_n\}$ на множестве D равносильна равномерной сходимости функциональной последовательности	
	$\{f_n \circ \varphi\}$ на множестве G	20
1.60	Сформулируйте критерий Коши равномерной сходимости функциональной последовательности	21
1.61	Докажите, что предел равномерно сходящейся последовательности непрерывных функций является	
	непрерывной функцией.	21
1.62	Сформулируйте теорему Дини о монотонной сходимости. Приведите пример её применения для дока-	
	зательства равномерной сходимости функциональной последовательности (с обоснованием)	21
1.63	Приведите контрпример, показывающий, что в формулировке теоремы Дини о монотонной сходимости	
	нельзя отказаться от условия непрерывности предельной функции (с обоснованием)	21
1.64	Покажите на примере как доказать неравномерность сходимости функциональной последовательности	
	с помощью локализации особенности (с обоснованием)	22
1.65		~ -
	тельности.	22
1.66	Сформулируйте теорему о почленном дифференцировании функциональной последовательности	22

1.67	Сформулируйте теорему о почленном интегрировании функциональной последовательности	22
1.68	Как определяются множества абсолютной и условной сходимости функционального ряда? Как они	
	связаны с множеством сходимости?	22
1.69	Дайте определение равномерной сходимости функционального ряда.	23
1.70	Сформулируйте и докажите необходимое условие равномерной сходимости функционального ряда	23
1.71	Сформулируйте критерий Коши равномерной сходимости функционального ряда.	23
1.72	Сформулируйте следствие критерия Коши – достаточное условие того, что функциональный ряд не	
	является сходящимся равномерно.	23
1.73	Приведите пример функционального ряда, сходящегося на некотором множестве поточечно, но не рав-	
	номерно (с обоснованием)	23
1.74	Сформулируйте мажорантный признак Вейерштрасса абсолютной и равномерной сходимости функци-	
	онального ряда.	23
1.75	Как применяются признаки Даламбера и Коши (радикальный) для исследования сходимости функци-	
	онального ряда?	23
1.76	Сформулируйте неравенство для остатка знакочередуегося функционального ряда (и условия его при-	
	менимости).	23
1.77	Сформулируйте признак Лейбница равномерной сходимости знакочередующегося функционального ряда.	23
1.78	Сформулируйте признак Дирихле равномерной сходимости функционального ряда	24
1.79	Сформулируйте признак Абеля равномерной сходимости функционального ряда	24
1.80	Сформулируйте теорему о почленном переходе к пределу в функциональном ряде	24
1.81	Сформулируйте теорему о почленном дифференцировании функционального ряда	24
1.82	Сформулируйте теорему о почленном интегрировании функционального ряда	24
1.83		
	утверждать о характере сходимости ряда на интервале сходимости?	24
1.84		24
1.85	Сформулируйте и докажите теорему Абеля о сходимости степенного ряда	25
1.86	Докажите, что если степенной ряд $\sum c_n \cdot (x-x_n)^n$ расходится в точке x_1 , то он расходится во всех	
	точках x , для которых $ x-x_0 > x_1-x_0 $	25
1.87	Выведите формулу Коши-Адамара для радиуса сходимости степенного ряда.	25
	Приведите примеры степенных рядов, радиус сходимости R которых: $R \in (0, +\infty), R = 0, R = \infty$ (с	
	обоснованием)	25
1.89		
	сходимости степенного ряда на $[0;R]$	25
1.00	$oldsymbol{lpha}$	
1.90	Пусть R – радиус сходимости степенного ряда. В каком случае можно утверждать, что $\sum_{n=0}^{\infty} c_n R^n =$	
	$\lim_{x \to R-0} \sum_{n=0}^{\infty} c_n x^n$? Обоснуйте ответ	26
	n=0	20
1.91	Пусть R – радиус сходимости степенного ряда. В каком случае можно утверждать, что степенной ряд	
	сходится неравномерно на $[0;R)$? Обоснуйте ответ	26
1.92	Что можно утверждать о радиусе сходимости степенного ряда, полученного почленным дифференци-	
	рованием исходного ряда?	26
1.93	Что можно утверждать о радиусе сходимости степенного ряда, полученного почленным интегрировании	
	исходного ряда?	26
1.94	Сформулируйте и докажите теорему о почленном дифференцировании степенного ряда	26
1.95	Сформулируйте и докажите теорему о почленном интегрировании степенного ряда	26
1.96		
	мах Лагранжа и Коши	27
1.97	Сформулируйте и докажите утверждение о единственности разложения функции в степенной ряд	27

1.98 Что такое функция, аналитическая в данной точке? Каково соотношение между понятиями бесконечно	
дифференцируемости и аналитичности?	27
1.99 Приведите пример бесконечно дифференцируемой функции, не являющейся аналитической	27
1.100 Запишите разложения в степенной ряд с центром в нуле для функций $e^x, \sin x, \cos x$. Каково множество	
сходимости ряда? На каком множестве сумма ряда представляет собой исходную функцию?	27
1.101 Запишите разложение в степенной ряд с центром в нуле для функции $(1+x)^p$. Каково множество	
сходимости ряда? На каком множестве сумма ряда представляет собой исходную функцию?	27
1.102 Получите разложение для $\ln(1+x)$ интегрирование раложения для $\frac{1}{1+x}$. Каково множество сходимости	
ряда? На каком множестве сумма ряда представляет собой исходную функцию? Обоснуйте ответ	28

1 Вопросы

1. Дайте определения: числовой ряд, частичная сумма ряда, сумма ряда, сходящийся ряд, расходящийся ряд. Рассмотрим ряд с общим членом a_n . Докажите, что если ряд сходится, то $a_n \to 0$.

Определение. Пусть a_n – последовательность, т.е. $\mathbb{N} \to \mathbb{R}$. Формальная бесконечная сумма: $a_1 + a_2 + a_3 + \cdots = \sum_{n=1}^{\infty} a_n$ называется рядом. $S_N = \sum_{n=1}^{N} a_n$ – частичная сумма, сумма ряда: $S = \lim_{N \to \infty} S_N$

Возможны 3 случая:

- 1. $\exists S \in \mathbb{R}$
- 2. $\exists S = \infty$
- $3. \not\exists S$

В первом случае говорят, что ряд сходится, иначе – что ряд расходится.

Замечание. Если ряд сходится, то $a_n \to 0$

Доказательство. $a_n=S_n-S_{n-1}\to 0,$ т.к. $S_n\to S$ и $S_{n-1}\to S$

2. Сформулируйте критерий Коши сходимости числовой последовательности. Сформулируйте и докажите критерий Коши сходимости числового ряда.

Определение. S_n называется фундаментальной, если $\forall \varepsilon>0 \ \exists N: \forall n>m>N, |S_n-S_m|<\varepsilon$

Теорема. S_n – сходится $\iff S_n$ – фундаментальная

Доказательство. Сходимость числового ряда – это сходимость последовательности $\{S_n\}$, его частичных сумм, а для сходимости последовательности $\{S_n\}$ необходимо и достаточно, чтобы она была фундаментальной.

3. Сформулируйте и докажите признак сравнения положительных числовых рядов, основанный на неравенстве $a_n \leqslant b_n$.

 $0 \leqslant a_n \leqslant b_n$ при всех $n \geqslant n_0$

Ряд
$$\sum b_n$$
 сходится \implies ряд $\sum a_n$ сходится

Ряд
$$\sum a_n$$
 расходится \implies ряд $\sum b_n$ расходится

Доказательство. На основании того, что отбрасывание конечного числа элементов ряда не отражается на его поведении, мы можем считать, что $0 \leqslant a_n \leqslant b_n$ при всех $n=1,2,3,\ldots$ Обозначив частные суммы через A и B соответственно, имеем $A_n \leqslant B_n$. Пусть ряд $\sum b_n$ сходится, тогда B_n ограничена, $B_n \leqslant S, S = const, \forall n$. В таком случае A_n также меньше либо равна некоторому S, что даёт нам ограниченность $\sum a_n$.

4. Сформулируйте и докажите признак сравнения положительных числовых рядов, основанный на неравенстве $\frac{a_{n+1}}{a_n} \leqslant \frac{b_{n+1}}{b_n}$.

Ряд
$$\sum b_n$$
 сходится \implies ряд $\sum a_n$ сходится

Ряд
$$\sum a_n$$
 расходится \implies ряд $\sum b_n$ расходится

Доказательство.

$$a_{n_0+1} \leqslant \frac{a_{n_0}}{b_{n_0}} \cdot b_{n_0+1}$$

$$a_{n_0+2} \leqslant \frac{a_{n_0+1}}{b_{n_0+1}} \cdot b_{n_0+2} \leqslant \frac{a_{n_0}}{b_{n_0}} \cdot b_{n_0+2}$$

:

$$a_{n_0+k} \leqslant \frac{a_{n_0}}{b_{n_0}} \cdot b_{n_0+k} \implies \sum_{n=n_0}^N a_n \leqslant \frac{a_{n_0}}{b_{n_0}} \cdot \sum_{n=n_0}^N b_n$$

5. Сформулируйте и докажите признак сравнения положительных числовых рядов, основанный на пределе $\lim \frac{a_n}{b_n}$.

$$\lim_{n\to\infty}\frac{a_n}{b_n}\in(0;+\infty)\implies \text{сходимость }\sum a_n\iff \text{сходимость }\sum b_n$$

Доказательство.

$$c = \lim_{n \to \infty} \frac{a_n}{b_n} > 0$$

$$\forall \varepsilon \ \exists n_0: \ c-\varepsilon \leqslant rac{a_n}{b_n} \leqslant c+\varepsilon, \ \mathrm{пр} \ n \geqslant n_0$$

Возьмём
$$c-\varepsilon>0 \implies (c-\varepsilon)\cdot b_n\leqslant a_n\leqslant (c+\varepsilon)\cdot b_n$$

Сходимость следует из правой части неравенства, а расходимость из левой.

6. Пусть последовательности $\{a_n\}$, $\{A_n\}$ таковы, что $a_n-(A_n-A_{n-1})=c_n$ и ряд $\sum c_n$ сходится. Докажите, что существует C такое, что $a_1+a_2+\cdots+a_n=A_n+C+o(1)$.

Доказательство.

$$\sum_{n=1}^{N} c_n = \sum_{n=1}^{N} a_n - \sum_{n=1}^{N} (A_n - A_{n-1}) = \sum_{n=1}^{N} a_n - A_N + A_0 \implies a_1 + a_2 + \dots + a_n = A_n + \left(-A_0 + \sum_{n=1}^{N} c_n \right).$$

Получим требуемое, если возьмём
$$C = \lim_{N \to \infty} -A_0 + \sum_{n=1}^N c_n$$
.

7. Сформулируйте и докажите признак Лобачевского-Коши.

Предложение. Пусть $a_n > 0$ и $a_n \downarrow$

Тогда ряды
$$\sum a_n$$
 и $\sum 2^n \cdot a_{2^n}$ ведут себя одинаково

Доказательство.
$$a_1 + (a_2) + (a_3 + a_4) + (a_5 + \cdots + a_8) + \dots$$

$$a_2 \leqslant a_1$$

$$a_2 \geqslant a_2$$

$$a_3 + a_4 \leq 2a_2$$

$$a_3 + a_4 \geqslant 2a_4$$

$$a_5 + \dots + a_8 \leqslant 4a_4$$

$$a_5 + \cdots + a_8 \geqslant 4a_8$$

. . .

$$a_1 + \frac{1}{2} \sum_{n=1}^{m} 2^n a_{2^n} \leqslant \sum_{n=1}^{2^m} a_n \leqslant a_1 + \sum_{n=0}^{m-1} 2^n a_{2^n}$$

8. Сформулируйте теорему Штольца о пределе последовательности. Покажите на примере, как с помощью теоремы Штольца можно уточнить асимптотическую оценку для частичной суммы ряда. $\frac{p_n}{q_n},\ p_n,\ q_n \to 0.$

Теорема. (Штольца.) Если
$$p_n,q_n \to 0,q_n \downarrow$$
 и $\exists \lim \frac{p_{n+1}-p_n}{q_{n+1}-q_n},$ то $\lim \frac{p_n}{q_n}=\lim \frac{p_{n+1}-p_n}{q_{n+1}-q_n}$

Пример. Дан ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$. Пусть S — сумма соответствующего ряда. Необходимо доказать, что

$$S_N = S - \frac{1}{N} + o\left(\frac{1}{N}\right).$$

Обозначим $x_n = S - S_n \to 0$ и $y_n = \frac{1}{n} \to 0$. Рассмотрим предел отношения разностей:

$$\lim_{n \to \infty} = \frac{S - S_n - (S - S_{n-1})}{\frac{1}{n} - \frac{1}{n-1}} = \frac{1}{n^2} \cdot n \cdot (n-1) \to 1.$$

По теореме Штольца $\lim_{n\to\infty}\frac{x_n}{y_n}=1.$ То есть

$$\frac{x_n}{y_n} = 1 + \mathrm{o}(1) \implies x_n = y_n + \mathrm{o}(y_n).$$

Отсюда и получаем то, что было в условии:

$$S_n = S - \frac{1}{n} + o\left(\frac{1}{n}\right).$$

9. Пусть $\sum a_n$, $\sum a'_n$ — сходящиеся положительные ряды. Говорят, что ряд $\sum a'_n$ сходится быстрее ряда $\sum a_n$, если $a'_n = o(a_n)$. Докажите, что в этом случае также $r'_n = o(r_n)$, где r_n , r'_n - остатки соответствующих рядов.

Рассмотрим остатки каждого из рядов;

- $r_n = S S_N$, где S_N частичная сумма ряда $\sum a_n$ и $S_N \to S$.
- Для $\sum a'_n$ аналогично $r'_n = S' S'_N$, где S'_N частичная сумма ряда $\sum a'_n$ и $S'_N o S'$.

Знаем, что r_n и r'_n стремятся к 0. Но так как ряд положительные, то r_n и r'_n еще и монотонно стремятся к 0. Значит, мы можем воспользоваться теоремой Штольца:

$$\lim \frac{r'_n}{r_n} = \lim \frac{r'_n - r'_{n-1}}{r_n - r_{n-1}} = \lim \frac{a'_n}{a_n} = 0.$$

Первый переход получается из теоремы Штольца. Последнее равенство дано по условию. Получается, что $\lim \frac{r'_n}{r_n} = 0$, что и требовалось доказать.

10. Пусть $\sum a_n$, $\sum a'_n$ - расходящиеся положительные ряды. Говорят, что ряд $\sum a'_n$ расходится медленнее ряда $\sum a_n$, если $a'_n = o(a_n)$. Докажите, что в этом случае также $S'_n = o(S_n)$, где S_n , S'_n - частичные суммы соответствующих рядов.

Здесь можно использовать ту же идею, что и в предыдущем пункте. Но придется использовать видоизмененную формулировку теоремы Штольца с википедии. Мы сможем применить её, так как последовательности из частичных сумм положительный и строго возрастает.

Рассмотрим предел отношения частичных сумм:

$$\lim \frac{S'_n}{S_n} = \lim \frac{S'_n - S'_{n-1}}{S_n - S_{n-1}} = \lim \frac{a'_n}{a_n} = 0.$$

Получается, что $\lim \frac{S'_n}{S_n}=0,$ что и требовалось доказать.

11. Пусть положительный ряд $\sum a_n$ сходится и r_n — его остаток. Докажите, что ряд $\sum (\sqrt{r_n} - \sqrt{r_{n+1}})$ также сходится, причём медленнее, чем ряд $\sum a_{n+1}$.

Вспомним, что $r_n = S - S_n$.

Докажем сходимость:

$$\begin{split} \sum_{n=1}^{N} (\sqrt{r_n} - \sqrt{r_{n+1}}) &= \sqrt{r_1} - \sqrt{r_2} + \sqrt{r_2} - \sqrt{r_3} + \dots + \sqrt{r_N} - \sqrt{r_{N+1}} \\ &= \sqrt{r_1} - \sqrt{r_{N+1}} \\ &= \sqrt{S} - \sqrt{r_{N+1}} \\ &\to \sqrt{S} \text{ (так как } r_{N+1} \to 0) \end{split}$$

Докажем, что ряд сходится медленнее:

$$\frac{\sqrt{r_n} - \sqrt{r_{n+1}}}{a_{n+1}} = \frac{\sqrt{r_n} - \sqrt{r_{n+1}}}{r_n - r_{n+1}} = \frac{1}{\sqrt{r_n} + \sqrt{r_{n+1}}} \to \infty,$$

так как $\sqrt{r_n} \to 0$ и $\sqrt{r_{n+1}} \to 0$.

12. Пусть положительный ряд $\sum a_n$ расходится и S_n его частичная сумма. Докажите, что ряд $\sum (\sqrt{S_{n+1}} - \sqrt{S_n})$ также расходится, причём медленнее, чем ряд $\sum a_{n+1}$.

Докажем расходимость:

$$\sum_{n=0}^{N} (\sqrt{S_{n+1}} - \sqrt{S_n}) = \sqrt{S_1} - \sqrt{S_0} + \sqrt{S_2} - \sqrt{S_1} + \dots + \sqrt{S_{N+1}} - \sqrt{S_N}$$

$$= \sqrt{S_{N+1}} - \sqrt{S_0}$$

$$= \sqrt{S_{N+1}} \to \sqrt{S}.$$

Перейдем ко второй части вопроса:

$$\frac{\sqrt{S_{n+1}} - \sqrt{S_n}}{a_{n+1}} = \frac{\sqrt{S_{n+1}} - \sqrt{S_n}}{S_{n+1} - S_n}$$
$$= \frac{1}{\sqrt{S_{n+1}} + \sqrt{S_n}},$$

где $\sqrt{S_{n+1}}+\sqrt{S_n}\to\infty$. Это значит, что $\frac{1}{\sqrt{S_{n+1}}+\sqrt{S_n}}$ стремится к 0. Тогда ряд $\sum (\sqrt{S_{n+1}}-\sqrt{S_n})$ расходится, причём медленнее, чем ряд $\sum a_{n+1}$.

13. Сформулируйте признак Даламбера для положительного ряда

Теорема. Признак Даламбера. Пусть $a_n > 0$.

$$\overline{\lim} \frac{a_{n+1}}{a_n} < 1 \implies$$
 ряд $\sum a_n$ сходится.

$$\underline{\lim} \frac{a_{n+1}}{a_n} > 1 \implies \text{ряд } \sum a_n \text{ расходится.}$$

14. Сформулируйте радикальный признак Коши для положительного ряда.

Теорема. Радикальный признак Коши. Пусть $a_n \geqslant 0$.

$$\overline{\lim} \sqrt[n]{a_n} < 1 \implies$$
 ряд $\sum a_n$ сходится.

$$\underline{\lim} \sqrt[n]{a_n} > 1 \implies$$
 ряд $\sum a_n$ расходится.

15. Докажите, что всякий раз, когда признак Даламбера даёт ответ на вопрос о сходимости ряда, то радикальный признак Коши даёт (тот же) ответ на этот вопрос.

Пусть $a_n > 0$. Тогда заметим, что

$$\underline{\lim} \frac{a_{n+1}}{a_n} \leqslant \underline{\lim} \sqrt[n]{a_n} \leqslant \overline{\lim} \sqrt[n]{a_n} \leqslant \overline{\lim} \frac{a_{n+1}}{a_n}.$$

Докажем правую часто неравенства, левая доказывается аналогично.

 \mathcal{A} оказательство. Пусть $q = \overline{\lim} \sqrt[n]{a_n}$ и $p = \overline{\lim} \frac{a_{n+1}}{a_n}$. Тогда необходимо доказать, что $q \leqslant p$.

Докажем от противного. Предположим, что p < q.

Так как мы берем верхний предел, то для любого $\varepsilon > 0$ существует $\{n_k\}$, что $\sqrt[n_k]{a_{n_k}} \geqslant q - \varepsilon \iff a_{n_k} \geqslant (q - \varepsilon)^{n_k}$.

Из определения p следует, что для любого $\varepsilon > 0$ существует n_0 , что $\frac{a_{n+1}}{a_n} \leqslant p + \varepsilon$ для любых $n \geqslant n_0$, что равносильно $a_{n_0+m} \leqslant a_{n_0} \cdot (p+\varepsilon)^m$.

Теперь взяв a_{n_k} можем получить следующее:

$$(q-\varepsilon)^{n_k} \leqslant a_{n_k} \leqslant a_{n_0} \cdot (p+\varepsilon)^{n_k-n_0} = a_{n_0} \cdot \frac{(p+\varepsilon)^{n_k}}{(p+\varepsilon)^{n_0}}.$$

Отсюда получаем, что $\frac{a_{n_0}}{(p+\varepsilon)^{n_0}}\geqslant \left(\frac{q-\varepsilon}{p+\varepsilon}\right)^{n_k}$ при всех $k=1,2,\ldots$ Но при малом ε мы имеем

$$\frac{q-\varepsilon}{p+\varepsilon} > 1.$$

Тогда мы пришли к противоречию, так как в $\frac{a_{n_0}}{(p+\varepsilon)^{n_0}} \geqslant \left(\frac{q-\varepsilon}{p+\varepsilon}\right)^{n_k}$ слева записано конечное число, а справа будет бесконечность.

Если
$$\overline{\lim} \frac{a_{n+1}}{a_n} < 1 \implies \overline{\lim} \sqrt[n]{a_n} < 1$$

Если
$$\underline{\lim} \frac{a_{n+1}}{a_n} > 1 \implies \underline{\lim} \sqrt[n]{a_n} > 1$$

Если
$$\exists \lim \frac{a_{n+1}}{a_n}$$
, то $\overline{\lim} \frac{a_{n+1}}{a_n} = \underline{\lim} \frac{a_{n+1}}{a_n} \implies \exists \lim \sqrt[n]{a_n} = \lim \frac{a_{n+1}}{a_n}$

16. Докажите, что если для положительного ряда $\sum a_n$ существует $\lim \frac{a_{n+1}}{a_n} = q$, то существует и $\lim \sqrt[n]{a_n} = q$.

Заметим, что

$$\lim \frac{a_{n+1}}{a_n} = q \iff \overline{\lim} \frac{a_{n+1}}{a_n} = \underline{\lim} \frac{a_{n+1}}{a_n}.$$

Вспомним неравенство из предыдущего пункта:

$$\underline{\lim} \frac{a_{n+1}}{a_n} \leqslant \underline{\lim} \sqrt[n]{a_n} \leqslant \overline{\lim} \sqrt[n]{a_n} \leqslant \overline{\lim} \frac{a_{n+1}}{a_n}.$$

Подставим известные значения:

$$q \leqslant \underline{\lim} \sqrt[n]{a_n} \leqslant \overline{\lim} \sqrt[n]{a_n} \leqslant q.$$

То есть мы зажали предел с двух сторон с помощью q. Тогда

$$\lim \sqrt[n]{a_n} = q.$$

17. Приведите пример положительного ряда, вопрос о поведении которого не может быть решен с помощью признака Даламбера, но может быть решен с помощью радикального призанка Коши (с обоснованием).

Выберем какие-то числа a и b такие, что $0 < a < 1, \, b > 1$ и $a \cdot b \neq 1.$

Рассмотрим следующий ряд:

$$\sum_{n=0}^{\infty} a^{[n/2]} \cdot b^{[(n-1)/2]} = 1 + a + ab + a^2b + a^2b^2 + a^3b^2 + \dots$$

Заметим, что мы не можем применять признак Даламбера:

 \bullet Пусть n чётное. Тогда

$$\overline{\lim} \frac{a_{n+1}}{a_m} = b > 1.$$

 \bullet Пусть n нечётное. Тогда

$$\underline{\lim} \frac{a_{n+1}}{a_n} = a < 1.$$

Но в то же время ряд сходится по радикальному признаку Коши. Заметим следующее:

 \bullet Пусть n чётное. Тогда

$$\sqrt[n]{a_n} = \sqrt{a} \cdot b^{(n-2)/2n}.$$

 \bullet Пусть n нечётное. Тогда

$$\sqrt[n]{a_n} = a^{(n-1)/2n} \cdot b^{(n-1)/2n}$$

Отсюда получаем, что

$$\lim \sqrt[n]{a_n} = \sqrt{ab}.$$

18. Приведите пример ряда, который сходится медленнее любого ряда геометрической прогрессии, но быстрее любого обобщённого гармонического ряда (с обоснованием).

Докажем, что ряд $\sum_{n=1}^{\infty} e^{-\sqrt{n}}$ подходит.

- $\sum q^n$ ряд геометрической прогрессии, $0 < q < 1; \, q^n = e^{n*\ln q},$ где $\ln q < 0.$
- $\sum \frac{1}{n^p}$ обобщённый гармонический ряд. $\frac{1}{n^p} = e^{-p \ln n}, \ p > 1.$

Заметим, что при любых p, q и при любом $n \geqslant n_0$ выполняется

$$p \ln n < \sqrt{n} < n \ln \frac{1}{q}.$$

Перейдем к доказательствам.

• Докажем, что выбранный ряд сходится медленнее геометрической прогрессии:

$$\frac{e^{-\sqrt{n}}}{q^n} = e^{-\sqrt{n} + n \ln \frac{1}{q}} \to +\infty,$$

так как $-\sqrt{n} + n \ln \frac{1}{a} \to +\infty$.

• Докажем, что выбранный ряд сходится быстрее гармонического ряда:

$$\frac{e^{-\sqrt{n}}}{1/n^p} = e^{-\sqrt{n} + p \ln n} \to 0,$$

так как $-\sqrt{n} + p \ln n \to -\infty$.

19. Сформулируйте признак Гаусса для положительного ряда. Приведите пример применения признака Гаусса.

Если существует $\delta>0$ и p такие, что $\frac{a_{n+1}}{a_n}=1-\frac{p}{n}+\mathrm{O}\left(\frac{1}{n^{1+\delta}}\right)$ то справедливо следующее:

- $p > 1 \implies$ ряд $\sum a_n$ сходится.
- $p \leqslant 1 \implies$ ряд $\sum a_n$ расходится.

Пример. Исследуем на сходимость следующий ряд:

$$\sum_{n=1}^{\infty} \left(\frac{(2n-1)!!}{(2n)!!} \right)^2.$$

Выполним некоторые преобразования:

$$\frac{a_n}{a_{n+1}} = \left(\frac{(2n-1)!!}{(2n!!)} \cdot \frac{(2n+2)!!}{(2n+1)!!}\right)^2 = \left(\frac{2n+2}{2n+1}\right)^2 = \left(\frac{1+\frac{1}{n}}{1+\frac{1}{2n}}\right)^2$$

$$\sim \left[\frac{1}{1+x} \sim 1 - x\right] \sim \left(1 + \frac{1}{n}\right)^2 \cdot \left(1 - \frac{1}{2n}\right)^2$$

$$\sim \left(1 + \frac{2}{n}\right) \cdot \left(1 - \frac{1}{n}\right) = 1 + \frac{1}{n} + \frac{2}{n^2}$$

Получили $p=1, \gamma=1.$ Тогда ряд расходится.

20. Приведите пример положительного ряда, вопрос о поведении которого не может быть решен с помощью признака Гаусса (с обоснованием).

Анализируем положительный ряд $\sum_{n=1}^{\infty} \frac{1}{n \ln^p n}$ с общим членом $a_n = \frac{1}{n \ln^p n}$.

Рассмотрим отношение:

$$\begin{split} \frac{a_{n+1}}{a_n} &= \frac{n \ln^p n}{(n+1) \ln^p (n+1)} \\ &= \frac{n}{n+1} \cdot \frac{\ln^p n}{\ln^p (n+1)} \\ &= \frac{1}{1+1/n} \cdot \frac{\ln^p n}{(\ln n + \ln(1/n))^p} \\ &= \left[\text{ По формуле Тейлора для } (1+x)^{-1} \text{ и } \ln(1+x) \sim x \right] \\ &= \left(1 - \frac{1}{n} + \frac{1}{n^2} + o\left(\frac{1}{n^2}\right)\right) \cdot \left(1 + \frac{1/n + o(1/n)}{\ln n}\right)^{-p} \\ &= \left[\text{ Перешли к менее строгому приближению и снова разложили } (1+x)^{-p} \right] \\ &= \left(1 - \frac{1}{n} + o\left(\frac{1}{n \ln n}\right)\right) \cdot \left(1 - \frac{p}{n \ln n} + o\left(\frac{1}{n \ln n}\right)\right) \\ &= 1 - \frac{1}{n} - \frac{p}{n \ln n} + o\left(\frac{1}{n \ln n}\right). \end{split}$$

Для использования признака Гаусса должны получить приближение

$$1 - \frac{q}{n} + \mathcal{O}\left(\frac{1}{n^{1+\delta}}\right),\,$$

где $\delta > 0$.

Но при этом имеем

$$-\frac{1}{n} - \frac{p}{n \ln n} + o\left(\frac{1}{n \ln n}\right) \neq O\left(\frac{1}{n^{1+\delta}}\right),\,$$

потому что $\frac{1}{\ln n} > \frac{1}{n^{\delta}}$ для любых $\delta > 0$ при n, стремящемся к ∞ .

21. Выведите двустороннюю оценку для частичной суммы ряда через определённый интеграл. Сформулируйте и докажите интегральный признак Коши-Маклорена

Рассмотрим
$$f(x)\downarrow$$
 при $x\geqslant n_0-1$ и ряд $\sum_{n=n_0}^\infty a_n$, где $a_n=f(n)$:

$$f(n+t) \le a_n \le f(n-1+t), t \in [0;1].$$

Отсюда следует, что

$$\int_{0}^{1} dt: \int_{x}^{n+1} f(x)dx \leqslant a_n \leqslant \int_{x-1}^{n} f(x)dx.$$

Просуммируем полученное:

$$\int_{n_0}^{N+1} f(x)dx \le \sum_{n=n_0}^{N} a_n \le \int_{n_0-1}^{N} f(x)dx$$

Тогда $\sum a_n$ ведёт себя так же, как и несобственный интеграл $\int_{-\infty}^{\infty} f(x)dx$.

22. Что такое улучшение сходимости положительного ряда? Покажите на примере как можно улучшить сходимость ряда.

Пусть у нас есть некоторый ряд $\sum a_n$ и он сходится медленно. В таких случаях для расчёта суммы ряда с необходимой точностью потребуется взять больше членов, что неудобно. Мы можем преобразовать наш ряд для улучшения сходимости, т.е. получить некоторый ряд $\sum a'_n$, который будет сходиться быстрее, чем исходный $\sum a_n$.

Пример. Пусть у нас есть ряд $S = \sum_{n=1}^{\infty} \frac{1}{n^2 + 2} \approx \sum_{n=1}^{\infty} \frac{1}{n^2}$. Воспользуемся методом Куммера. Для улучшения сходимости будем брать ряды вида $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1, \sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} = \frac{1}{4}, \dots$

В данном случае нам подойдёт первый ряд в этом списке, поскольку $\frac{1}{n^2} \sim \frac{1}{n(n+1)}$.

$$\begin{split} \sum_{n=1}^{\infty} \left(\frac{1}{n^2 + 2} - \frac{1}{n(n+1)} \right) &= S - 1 \implies S = 1 + \sum_{n=1}^{\infty} \left(\frac{1}{n^2 + 2} - \frac{1}{n(n+1)} \right) \\ \frac{1}{n^2 + 2} - \frac{1}{n(n+1)} &= \frac{1}{n^2} \cdot \left(\frac{1}{1 + \frac{2}{n^2}} - \frac{1}{1 + \frac{1}{n}} \right) = \frac{1}{n^2} \cdot \left(1 - \frac{2}{n^2} + o\left(\frac{1}{n^2}\right) - \left(1 - \frac{1}{n} + \frac{1}{n^2} + o\left(\frac{1}{n^2}\right)\right) \right) = \frac{1}{n^3} + o\left(\frac{1}{n^3}\right). \end{split}$$
 Получили ряд $\sum_{n=1}^{\infty} \frac{1}{n^3}$, который сходится быстрее, $1 + \sum_{n=1}^{\infty} \frac{1}{n^3} \approx \sum_{n=1}^{\infty} \frac{1}{n^2 + 2}.$

23. Дайте определения: знакопеременный ряд, знакочередующийся ряд, абсолютно сходящийся ряд, условно сходящийся ряд, положительная часть ряда, отрицательная часть ряда.

Определение. Пусть существует ряд $\sum a_n$. такой, что для любого a_i может быть, как больше 0, так и меньше 0. В таком случае ряд $\sum a_n$ называется знакопеременным.

Определение. Пусть существует ряд $\sum a_n$. такой, что для любого $a_i \cdot a_{i+1} < 0$. В таком случае ряд $\sum a_n$ называется знакочередующимся.

Определение. Ряд $\sum_{n=1}^{\infty} a_n$ называется абсолютно сходящимся, если ряд $\sum_{n=1}^{\infty} |a_n|$ также сходится.

Если ряд $\sum_{n=1}^{\infty} a_n$ сходится абсолютно, то он является сходящимся (в обычном смысле). Обратное утверждение неверно.

Определение. Ряд $\sum_{n=1}^{\infty} a_n$ называется условно сходящимся, если сам он сходится, а ряд, составленный из модулей его членов, расходится.

Определение. Введем два ряда: $a_n^+ = \begin{cases} a_n, a_n > 0 \\ 0 \end{cases}$ и $a_n^- = \begin{cases} |a_n|, a_n < 0 \\ 0 \end{cases}$. Тогда ряды $\sum a_n^+$ и $\sum a_n^-$ соответственно называются положительной и отрицательной частью ряда $\sum a_n$.

24. Докажите, что ряд сходится абсолютно ровно в том случае, когда сходятся его положительная и отрицательная части.

Доказательство. Рассмотрим ряд $\sum a_n$, дополнительный ряд $\sum |a_n|$, а также положительную и отрицательную части $\sum a_n^+$ и $\sum a_n^-$.

- 1) Пусть ряд $\sum a_n$ сходится абсолютно. В таком случае ряд $\sum |a_n|$ сходится, а так как члены рядов $\sum a_n^+$ и $\sum a_n^-$ все содержатся в ряде $\sum |a_n|$, то для всех их частичных сумм справедливо следующее: $0 \leqslant P_k \leqslant A_n'$ и $0 \leqslant Q_m \leqslant A_n'$, где P_k и Q_m частичные суммы положительной и отрицательной части соответственно, а A_n' частичная сумма дополнительного ряда и $A_n' = P_k + Q_m$, n = m + k. Это значит, что оба ряда $\sum a_n^+$ и $\sum a_n^-$ сходятся.
- 2) Исходя из того, что $S_n = P_k Q_m, n = m + k$ и положительных и отрицательных элементов в $\sum a_n$ бесконечное множество, мы получаем, что при $n \to \infty$ одновременно $m \to \infty$ и $k \to \infty$. Переходя к пределу получаем, что исходный ряд сходится абсолютно и его сумма будет равна P Q.

25. Докажите, что если ряд сходится условно, то его положительная и отрицательная части расходятся (имеют бесконечные суммы).

Доказательство. Рассмотрим ряд $\sum a_n$, дополнительный ряд $\sum |a_n|$, а также положительную и отрицательную части $\sum a_n^+$ и $\sum a_n^-$.

Поскольку ряд $\sum a_n$ сходится условно, то $\sum |a_n|$ расходится. Рассмотри частичные суммы $\sum |a_n|$, $\sum a_n^+$ и $\sum a_n^- - A_n', P_k, Q_m$ соответственно. Для любого $n=m+k, A_n'=P_k+Q_m$. При $n\to\infty, m\to\infty$ и $k\to\infty$.

Так как ряд $\sum |a_n|$ расходится, то сумма $A'_n \to \infty$. Поскольку число положительных и отрицательных элементов бесконечна, то получаем $P_k \to \infty$ и $Q_m \to \infty$, а значит ряды $\sum a_n^+$ и $\sum a_n^-$ расходятся.

26. Сформулируйте мажорантный признак Вейерштрасса. Приведите пример применения признака.

Теорема. Если $|a_n|\leqslant b_n$ при $n>n_0$ и положительный ряд $\sum b_n$ сходится, то $\sum a_n$ сходится, причём абсолютно.

Пример.
$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^p}, p > 0$$

$$|sin(nx)| \leqslant 1 \implies \left| \frac{sin(nx)}{n^P} \right| \leqslant \frac{1}{n^p}$$

$$\sum \frac{1}{n^p}$$
 сходится $(p>1) \implies \sum_{p=1}^{\infty} \frac{\sin(nx)}{n^p}$ сходится абсолютно.

27. Что такое группировка членов ряда? Докажите, что любой ряд, полученный из сходящегося ряда группировкой его членов, сходится и имеет ту же сумму.

Говорят, что ряд $\sum b_k$ получен из $\sum a_n$ группировкой членов, если $\exists n_1 < n_2 < \ldots$:

$$b_1 = a_1 + a_2 + \dots + a_{n_1}$$

$$b_2 = a_{n_1+1} + a_{n_1+2} + \dots + a_{n_2}$$

. . .

Замечание. Если $\sum a_n$ сходится, то ряд $\sum b_k$ сходится к той же сумме.

Доказательство.
$$\sum_{k=1}^m b_k = \sum_{n=1}^{n_m} a_n$$

Обратное утверждение неверно: (1-1) + (1-1) + ...

28. Как с помощью группировки преобразовать знакопеременный ряд в знакочередующийся? Что можно утверждать о сходимости полученного знакочередующегося ряда?

Знакопеременный ряд при помощи группировки сводится к знакочередующемуся:

$$a_1 \leqslant 0, \ldots, a_{n_1} \leqslant 0; b_1 = \sum_{i=1}^{n_1} a_i \leqslant 0$$

$$a_{n_1+1} \geqslant 0, \ldots, a_{n_2} \geqslant 0; b_2 = \sum_{i=n_1+1}^{n_2} a_i \geqslant 0$$

При такой группировке сходимость исходного ряда \iff сходимость $\sum b_n$

29. Приведите пример преобразования знакопеременного (но не знакочередующегося) ряда к знакочередующемуся.

Пример.
$$\sum_{n=1}^{\infty} \frac{(-1)^{[\ln n]}}{n}$$

$$\sum_{k=0}^\infty b_k,$$
где $b_k = (-1)^k \cdot \sum_{e^k \leqslant n < e^{k+1}} \frac{1}{n}$

$$|b_k| = \sum_{n=\lceil e^{k} \rceil+1}^{\lceil e^{k+1} \rceil} \frac{1}{n} \leqslant \frac{1}{\lceil e^k \rceil + 1} \cdot (\lceil e^{k+1} \rceil - \lceil e^k \rceil) \approx \frac{e^{k+1} - e^k}{e^k} \to e - 1 > 0$$

- 30. Для знакочередующегося ряда с убывающем по модулю общим членом сформулируйте оценку п-го остатка. Приведите пример применения этой оценки.
- 31. Сформулируйте признак Лейбница для знакочередующегося ряда. Приведите пример применения признака Лейбница.

Теорема. Признак Лейбница. Если ряд имеет вид $\sum_{n=1}^{\infty} (-1)^n \cdot u_n$ и u_n монотонно убывает к 0, то ряд сходится.

Пример.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}, p > 0$$

$$\frac{1}{n^p} \downarrow 0 \implies$$
 ряд сходится (при $\forall p > 0$)

32. Покажите на примере, что к знакопеременным рядам неприменим предельный признак сравнения.

Рассмотрим 2 ряда: $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n} - (-1)^n}$ и $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$. Второй ряд сходится по признаку Лейбница.

$$\frac{(-1)^n}{\sqrt{n} - (-1)^n} \approx \frac{(-1)^n}{\sqrt{n}}$$

$$\frac{(-1)^n}{\sqrt{n}-(-1)^n}-\frac{(-1)^n}{\sqrt{n}}=\frac{1}{\sqrt{n}(\sqrt{n}-(-1)^n)}pprox rac{1}{n}$$
 – расходится

$$\sum_{n=1}^{N} \frac{(-1)^n}{\sqrt{n} - (-1)^n} = \sum_{n=1}^{N} \frac{(-1)^n}{\sqrt{n}} + \sum_{n=1}^{N} \frac{1}{\sqrt{n}(\sqrt{n} - (-1)^n)} - \text{расходится как сумма сходящегося и расходящегося ряда.}$$

33. Покажите, что для любых числовых последовательностей $\{a_n\}$, $\{B_n\}$ справедлива формула суммирования по частям: $\sum_{n=m+1}^N a_n(B_n-B_{n-1}) = (a_NB_N-a_mB_m) - \sum_{n=m+1}^N (a_n-a_{n-1})B_{n-1}.$

рования по частям:
$$\sum_{n=m+1}^{N} a_n (B_n - B_{n-1}) = (a_N B_N - a_m B_m) - \sum_{n=m+1}^{N} (a_n - a_{n-1}) B_{n-1}.$$

Суммируем равенство по индексу n:

$$\sum_{n=m+1}^{N} a_n (B_n - B_{n-1}) = \sum_{n=m+1}^{N} (a_n B_n - a_{n-1} B_{n-1}) - \sum_{n=m+1}^{N} (a_n - a_{n-1}) B_{n-1}.$$

Замечаем, что

$$\sum_{n=m+1}^{N} (a_n B_n - a_{n-1} B_{n-1}) = a_N B_N - a_m B_m.$$

В итоге получаем

$$\sum_{n=m+1}^{N} a_n (B_n - B_{n-1}) = (a_N B_N - a_m B_m) - \sum_{n=m+1}^{N} (a_n - a_{n-1}) B_{n-1}.$$

34. Сформулируйте признак Дирихле. Приведите пример его применения.

$$\sum_{n=1}^{\infty} a_n \cdot b_n$$

Теорема. Признак Дирихле. Если $a_n \downarrow 0$, а частичные суммы $\left| \sum_{i=1}^{N} b_n \right| \leqslant C$ ограничены, то $\sum_{i=1}^{\infty} a_n \cdot b_n$ сходится.

Пример.
$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^p}, p > 0$$

$$a_n = \frac{1}{n^p} \downarrow 0, \ b_n = \sin nx$$

$$b_1 + b_2 + b_3 + \dots + b_N = \sin x + \sin 2x + \dots + \sin Nx = \frac{\cos \frac{x}{2} - \cos ((N+1/2)x)}{2\sin \frac{x}{2}}; \left| \sum_{n=1}^{N} b_n \right| \leqslant \frac{2}{2\sin \frac{x}{2}} = \frac{1}{\sin \frac{x}{2}}$$

Ряд сходится по признаку Дирихле

35. Сформулируйте признак Абеля. Выведите утверждение признака Абеля из признака Дирихле.

15

Теорема. Признак Абеля. Если a_n монотонна и ограничена, а ряд $\sum_{n=1}^{\infty} b_n$ сходится, то $\sum_{n=1}^{\infty} a_n \cdot b_n$ сходится.

Заметим, что частичные суммы B_N ограничены. Так как последовательность $\{a_n\}$ монотонна и ограничена, у неё есть предел:

$$\lim a_n = a.$$

Тогда $\lim(a_n - a) = 0$. Заметим, что следующий ряд сходится по признаку Дирихле:

$$\sum_{n=1}^{\infty} (a_n - a) \cdot b_n.$$

Но тогда исходный ряд тоже сходится:

$$\sum_{n=1}^{\infty} a_n \cdot b_n = \sum_{n=1}^{\infty} (a_n - a) \cdot b_n + a \cdot \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} (a_n - a) \cdot b_n + C,$$

где C — некоторое конечное число.

36. Что такое перестановка членов ряда? Приведите пример.

Пусть $f: \mathbb{N} \to \mathbb{N}$ – биекция

Говорят, что ряд $\sum b_n$ получен из $\sum a_n$ перестановкой членов, если $b_n=a_{f(n)}$

37. Сформулируйте свойство абсолютно сходящегося ряда, связанное с перестановкой членов.

Теорема. Если ряд $\sum a_n$ сходится абсолютно, то любой ряд, полученный из него перестановкой членов, сходится абсолютно к той же сумме.

38. Сформулируйте свойство условно сходящегося ряда, связанное с перестановкой членов (теорема Римана).

Теорема. (Римана) Если ряд $\sum a_n$ сходится условно, то для $\forall S \in [-\infty; +\infty]$ то существует перестановка f такая, что $\sum a_{f(n)} = S$

39. Приведите пример условно сходящегося ряда и перестановки, меняющей его сумму (с обоснованием).

Рассмотрим следующий ряд:

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} = -1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \dots = -\ln 2$$

Посмотрим, как выглядят положительная и отрицательная части:

$$S_{2n}^{+} = \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2n} = \frac{1}{2} \cdot (\ln n + \gamma) + o(1);$$

$$S_{2n}^{-} = 1 + \frac{1}{3} + \dots + \frac{1}{2n-1} = \ln 2 + \frac{1}{2} \cdot (\ln n + \gamma) + o(1).$$

Возьмём сначала p положительных слагаемых, затем q отрицательных и так далее. Тогда после m таких действий получим следующее:

$$S_{2mp}^{+} = \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2mp} = \frac{1}{2} \cdot (\ln(mp) + \gamma) + o(1);$$

$$S_{2mq}^{-} = 1 + \frac{1}{3} + \dots + \frac{1}{2mq - 1} = \ln 2 + \frac{1}{2} \cdot (\ln(mq) + \gamma) + o(1).$$

Теперь заметим, что мы получили, что после перестановки наш ряд сходится к другому числу:

$$S_{2mp}^+ - S_{2mq}^- = -\ln 2 + \frac{1}{2} \cdot \ln \left(\frac{p}{q}\right) + o(1).$$

40. Как определяется произведение рядов? Что можно утверждать о произведении абсолютно сходящихся рядов?

Если следующая сумма имеет предел при $K, M \to \infty$, не зависящий от порядка суммирования, то говорят, что определено произведение рядов.

$$\left(\sum_{k=1}^K a_k\right) \cdot \left(\sum_{m=1}^M b_m\right) = \sum_{1 \leqslant k \leqslant K, 1 \leqslant m \leqslant M} a_k \cdot b_m = \sum_{n=1}^\infty c_n, \quad c_n = \sum_{k=1}^n a_k \cdot b_{n-k}$$

Теорема. (Коши) Если $\sum a_k, \sum b_m$ сходятся абсолютно, то их произведение сходится абсолютно.

41. Что такое произведение рядов в форме Коши? Приведите пример вычисления такого произведения.

Произведение рядов по Коши:

$$c_2 = a_1 \cdot b_1$$

$$c_3 = a_2 \cdot b_1 + a_1 \cdot b_2$$

$$c_4 = a_3 \cdot b_1 + a_2 \cdot b_2 + a_1 \cdot b_3$$

. . .

$$\left(\sum_{k=1}^{\infty} a_k\right) \cdot \left(\sum_{m=1}^{\infty} b_m\right) = \sum_{n=2}^{\infty} c_n$$

42. Дайте определения: бесконечное произведение, частичное произведение, сходящееся бесконечное произведение.

$$\prod_{n=1}^{N} a_n = a_1 \cdot a_2 \cdot \dots \cdot a_N$$
 – частичное произведение.

Бесконечным произведением называют формальную запись $\prod_{n=1}^{\infty} a_n$

Значением бесконечного произведения является предел частичного произведения:

$$\prod_{n=1}^{\infty} a_n = \lim_{N \to \infty} \prod_{n=1}^{N} a_n$$

Если предел существует и он конечен – то бесконечное произведение сходится, иначе расходится.

43. Сформулируйте и докажите необходимое условие сходимости бесконечного произведения.

Если
$$P_N = \prod_{n=1}^N a_n$$
 сходится, то $a_n = \frac{P_n}{P_{n-1}} \to 1$.

Доказательство. Так как бесконечное произведение сходится, имеем

$$P_N \to \prod_{n=1}^{\infty} a_n; \qquad P_{N-1} \to \prod_{n=1}^{\infty} a_n.$$

Тогда заметим следующий факт:

$$a_N = \frac{P_N}{P_{N-1}} \to 1.$$

44. Пусть последовательности $\{a_n\},\,\{A_n\},\,A_n\neq 0$ таковы, что $a_n=\frac{A_n}{A_{n-1}}\cdot c_n$ и бесконечное произведение

$$\prod c_n$$
 сходится. Докажите, что существует число $C \neq 0$, что $\prod_{n=1}^N a_n = A_N \cdot (C + \mathrm{o}(1))$.

Из условия знаем, что $\prod c_n$ сходится к числу $P \neq 0$.

Рассмотрим, чему равно частичное произведение:

$$\prod_{n=1}^{N} \frac{A_n}{A_{n-1}} \cdot c_n = \frac{A_1}{A_0} \cdot c_1 \cdot \frac{A_2}{A_1} \cdot c_2 \cdot \frac{A_3}{A_2} \cdot c_3 \cdot \dots \cdot \frac{A_N}{A_{N-1}} \cdot c_N = \frac{A_N}{A_0} \cdot P_N = A_N \cdot (C + o(1)),$$

где
$$C = \frac{P}{A_0}$$
,

45. Как определяется соответствующий бесконечному произведению ряд? Сформулируйте и докажите утверждение об их взаимосвязи.

$$\prod_{n=1}^{N} a_n = e^{\ln \prod_{n=1}^{N} a_n} = e^{\sum_{n=1}^{N} \ln a_n}$$

$$\prod_{n=1}^{\infty} a_n = P \iff \sum_{n=1}^{\infty} \ln a_n = \ln P \ (P \neq 0, a_n \to 1)$$

46. В каком случае бесконечное произведение называется сходящимся абсолютно? Сформулируйте и докажите критерий абсолютной сходимости бесконечного произведения.

$$\prod_{n=1}^{\infty} a_n$$
 называется абсолютно сходящимся, если абсолютно сходится соответствующий ему ряд $\sum_{n=1}^{\infty} \ln a_n$.

Доказательство. Пусть $a_n = 1 + \alpha_n$, где $\{\alpha_n\}$ — бесконечно малая последовательность, то есть $\alpha_n \to 0$.

Рассмотрим критерий:

$$\prod_{n=1}^{\infty} a_n$$
 сходится абсолютно тогда и только тогда, когда абсолютно сходится ряд $\sum_{n=1}^{\infty} (a_n - 1)$.

Заметим следующее:

$$\ln a_n = \ln(\alpha_n + 1) = \alpha_n + o(\alpha_n).$$

Отсюда получаем, что $|\ln a_n| = |\alpha_n| \cdot (1 + \mathrm{o}(1))$, то есть $|\ln a_n| \simeq |\alpha_n|$.

47. Напишите произведение Валлиса и его значение. Вычисление каких интегралов приводит к этой формуле?

$$\Pi p u m e p.$$
 (Произведение Валлиса) $\prod_{n=1}^{\infty} \frac{4n^2}{4n^2-1} = \frac{\pi}{2}$ – получается из анализа интегралов $\int\limits_0^{\frac{\pi}{2}} \sin^n x dx$

Прим. ред.: есть отличное видео с интуитивно понятным доказательством.

48. Дайте определение дзета-функции (ζ -функция) Римана. Сформулируйте тождество Эйлера для ζ -функции.

$$\Pi$$
ример. (Дзета-функция Римана) $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, s > 1$

Тождество Эйлера:

$$\zeta(s) = \frac{1}{\prod_{n=1}^{\infty} (1 - \frac{1}{p_n^s})}$$
, где $p_1 = 2, p_2 = 3, p_3 = 5, \dots$

49. Дайте определения: функциональная последовательность, точка сходимости функциональной последовательности, область (множество) сходимости функциональной последовательности, поточечная сходимость функциональной последовательности на данном множестве.

Определение. Функциональным рядом (последовательностью) называется такой ряд (последовательность), что его элементами являются не числа, а функции $f_n(x)$.

Определение. Пусть $\forall n, n \in \mathbb{N}, f_n : D \to \mathbb{R}, D \subseteq \mathbb{R}$

Говорят, что $a \in D$ - точка сходимости $\{f_n(x)\}$, если последовательность $\{f_n(a)\}$ сходится.

Определение. Множество всех точек сходимости называется множеством сходимости.

Определение. Говорят, что последовательность сходится на D поточечно, если D – множество сходимости.

50. Что такое равномерная норма? Покажите (исходя из определения нормы), что равномерная норма является нормой в соответствующем линейном пространстве (всех числовых функций, определённых на заданном множестве).

Определение. Рассмотрим множество всех функций $f:D\to \mathbb{R}.$ $||f||=\sup_{x\in D}|f(x)|$ - равномерная норма в пространстве D.

51. Сформулируйте определения равномерной сходимости функциональной последовательности: в терминах нормы и на языке $\varepsilon - \delta$.

Определение. 1) $f_n \stackrel{D}{\rightrightarrows} f \iff ||f_n - f|| \to 0.$

2)
$$\sum f_n(x) \rightrightarrows S(x) \iff \forall \varepsilon > 0, \exists N(\varepsilon) : \forall n \geqslant N(\varepsilon), |S_n(x) - S(x)| < \varepsilon.$$

52. Докажите, что из равномерной сходимости следует поточечная сходимость на данном множестве.

Доказательство. Рассмотрим определения поточечной сходимости и равномерной сходимости:

 $\forall x \in E, \forall \varepsilon > 0 \exists N = N(\varepsilon,x): \forall n \geqslant N, |f_n(x) - f(x)| < \varepsilon$ - поточечная сходимость.

 $\forall \varepsilon > 0 \exists N = N(\varepsilon,x): \forall n \geqslant N, \forall x \in E, |f_n(x) - f(x)| < \varepsilon$ - равномерная сходимость.

Заметим, что свойство равномерной сходимости не слабее, чем поточечной, а значит, из равномерной сходимости следует поточечная.

53. Приведите пример функциональной последовательности, сходящейся поточечно, но не сходящейся равномерно (с обоснованием).

Рассмотрим последовательность функций вида $f_n(x) = arctg(nx)$. Поточечная сходимость в данном случае обусловлена тем, что при $n \to \infty$ $arctg(nx) \to 0$, если x = 0 и $|arctg(nx)| \to \frac{\pi}{2}$, если |x| > 0. Но при этом, так как при $n \to \infty$ на точке $x_0 = 0$ происходит разрыв, то функциональная последовательность $f_n(x) = arctg(nx)$ не сходится равномерно.

54. Приведите пример функциональной последовательности $\{f_n(x)\}$ (с нетривиальной зависимостью от n и x), равномерно сходящейся на некотором множестве (с обоснованием)

Нетривиальная зависимость означает, что общий член зависит как от n, так и от x.

Пример. Пусть
$$D = [0; +\infty)$$
 и $f_n(x) = \frac{1}{n+x}$.

Докажем, что $f_n(x) \stackrel{D}{\rightrightarrows} 0$:

$$||f_n - 0|| = ||f_n|| = \sup_{x \in D} |f_n(x)| = \frac{1}{n} \to 0.$$

55. Докажите, что если две функциональные последовательности сходятся равномерно к предельным функциям, то их сумма также сходится равномерно к сумме этих предельных функций.

Теорема. Пусть
$$f_n \stackrel{D}{\Rightarrow} f$$
 и $g_n \stackrel{D}{\Rightarrow} g$, тогда $(f_n + g_n) \stackrel{D}{\Rightarrow} (f + g)$.

Доказательство. По определению равномерной сходимости:

$$\forall \varepsilon > 0 \ \exists N_1(\varepsilon) : |f_n(x) - f(x)| < \frac{\varepsilon}{2} \quad \forall n \ge N_1(\varepsilon) \ \forall x \in D;$$
$$\forall \varepsilon > 0 \ \exists N_2(\varepsilon) : |g_n(x) - g(x)| < \frac{\varepsilon}{2} \quad \forall n \ge N_2(\varepsilon) \ \forall x \in D.$$

Тогда для любого x из D и для любого $n \geqslant \max\{N_1, N_2\}$:

$$|(f_n(x) + g_n(x)) - (f(x) + g(x))| = |(f_n(x) - f(x)) + (g_n(x) - g(x))| \le |f_n(x) - f(x)| + |g_n(x) - g(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Но тогда

$$\forall \varepsilon > 0 \ \exists N = \max\{N_1, N_2\} : |(f_n(x) + g_n(x)) - (f(x) + g(x))| < \varepsilon \quad n \ge N \ \forall x \in D,$$

то есть сумма $(f_n + g_n)$ равномерно сходится к (f + g) на D.

56. Докажите, что если две функциональные последовательности сходятся равномерно к ограниченным предельным функциям, то их произведение также сходится равномерно к произведению этих предельных функций.

Доказательство. Пусть наши последовательности — $\{f_n\}$, $\{g_n\}$;, а их предельные функции — f,g соотв.

Знаем:
$$\forall \ \varepsilon_1, \varepsilon_2 \ \exists \ N_1(\varepsilon_1), \ N_2(\varepsilon_2) : |f_n(x) - f(x)| < \varepsilon_1; \ |g_m(x) - g(x)| < \varepsilon_2 \ \text{при} \ n \geqslant N_1(\varepsilon_1), \ m \geqslant N_2(\varepsilon_2).$$

Пусть |f(x)| ограничен ограничен какой-нибудь константой C_1 .

Так как |g(x)| ограничен, то $|g_n(x)|$ ограничен какой-нибудь константой C_2 . Следовательно,

$$\begin{split} |f_n(x) \cdot g_n(x) - f(x) \cdot g(x)| &= \\ &= |f_n(x) \cdot g_n(x) - f(x) \cdot g_n(x) + f(x) \cdot g_n(x) - f(x) \cdot g(x)| \leqslant \\ &\leqslant |f_n(x) \cdot g_n(x) - f(x) \cdot g_n(x)| + |f(x) \cdot g(x) - f(x) \cdot g_n(x)| = \\ &= |g_n(x)| \cdot |f_n(x) - f(x)| + |f(x)| \cdot |g(x) - g_n(x)| \leqslant C_2 \cdot \varepsilon_1 + C_1 \cdot \varepsilon_2 \text{ (начиная с } n = \max(N_1(\varepsilon_1), N_2(\varepsilon_2)). \end{split}$$

Теперь возьмем произвольный $\varepsilon>0,$ и положим $\varepsilon_1=\frac{\varepsilon}{3\cdot C_2};$ $\varepsilon_2=\frac{\varepsilon}{3\cdot C_1}.$

Начиная с $n = \max\{N_1(\varepsilon_1), N_2(\varepsilon_2)\}$ верно, что $|f_n(x) \cdot g_n(x) - f(x) \cdot g(x)| \le \varepsilon/3 + \varepsilon/3 < \varepsilon$.

57. Пусть функциональная последовательность $\{f_n\}$ сходится равномерно на множестве D к предельной функции f, отделённой от нуля (т.е. $\inf_{x\in D}|f(x)|>0$), то функциональная последовательность $\{f_n\}$ сходится равномерно на D к f.

Доказательство.

$$\left\|\frac{1}{f_n}-\frac{1}{f}\right\|=\left\|\frac{f_n-f}{f_n\cdot f}\right\|=\sup_{x\in D}\left|\frac{f_n-f}{f_n\cdot f}\right|\leqslant \sup_{x\in D}\frac{\varepsilon}{|f_n\cdot f|} \ \text{при } n\geqslant N(\varepsilon), \text{ т.к. } \|f_n-f\|\leqslant \varepsilon \text{ при } n\geqslant N(\varepsilon).$$

$$\inf |f(x)| = m > 0 \implies |f(x)| \ge m \ \forall x \in D.$$

$$|f_n| + |f_n - f| \geqslant |f_n - (f_n - f)| = |f| \iff |f_n| \geqslant |f| - |f_n - f|$$
. Поэтому если $\varepsilon < m/2$, то

$$\begin{split} |f_n|\geqslant |f|-|f_n-f|>m-\varepsilon>m-m/2=m/2 &\text{ при } n\geqslant N(\varepsilon), \text{ ведь } |f|\geqslant m, \ |f_n-f|<\varepsilon< m/2. \\ |f_n|>m/2 &\Longrightarrow \frac{1}{|f_n|}<\frac{2}{m}; \ |f|\geqslant m \implies \frac{1}{|f|}\leqslant \frac{1}{m}. \text{ Поэтому:} \\ \left\|\frac{1}{f_n}-\frac{1}{f}\right\|\leqslant \sup_{x\in D}\frac{\varepsilon}{|f_n\cdot f|}<\frac{\varepsilon}{m/2\cdot m}=\varepsilon\cdot \frac{2}{m^2} \ (\forall\, n\geqslant N(\varepsilon)) \end{split}$$

Так как $\frac{2}{m^2}$ - фиксированное число, а ε у нас — сколь угодно малое, то это означает, что $\left\|\frac{1}{f_n} - \frac{1}{f}\right\| \to 0$, что является по определению равномерной сходимостью f_n к f.

- 58. Докажите, что равномерная сходимость последовательности на множестве $D = D_1 \cup D_2$ равносильно равномерной сходимости этой последовательности на D_1 и D_2 одновременно.
- 59. Пусть $\varphi: G \to D$ биекция. Докажите, что равномерная сходимость функциональной последовательности $\{f_n\}$ на множестве D равносильна равномерной сходимости функциональной последовательности $\{f_n \circ \varphi\}$ на множестве G.

- 60. Сформулируйте критерий Коши равномерной сходимости функциональной последовательности.
- 61. Докажите, что предел равномерно сходящейся последовательности непрерывных функций является непрерывной функцией.

Доказательство. Пусть функция s(x) — предел некоторой последовательности непрерывных функций $s_n(x)$. Тогда непрерывность функции s(x), которую нам нужно доказать, по определению будет заключаться в том, что в любой точке x_0 для любого $\varepsilon > 0$ можно найти такое δ , что из $|h| < \delta$ следует, что $|s(x_0 + h) - s(x_0)| < \varepsilon$. Для любых x_0, h, n имеем

$$|s(x_0+h)-s(x_0)| = |s(x_0+h)-s_n(x_0+h)+s_n(x_0+h)-s_n(x_0)+s_n(x_0)-s(x_0)|$$

$$\leq |s(x_0+h)-s_n(x_0+h)|+|s_n(x_0+h)-s_n(x_0)|+|s_n(x_0)-s(x_0)|.$$

По определению равномерной сходимости мы можем взять такое n, что для любого x_0 будет выполняться неравенство $|s(x_0)-s_n(x_0)|<\frac{\varepsilon}{3}$. Значит справедливы неравенства:

$$|s(x_0+h) - s_n(x_0+h)| < \frac{\varepsilon}{3};$$
$$|s(x_0) - s_n(x_0)| < \frac{\varepsilon}{3}.$$

Итак, пусть мы зафиксировали некоторое n, тогда, поскольку функция $s_n(x)$ монотонна по условию, найдётся такое δ , что для любого $|h| < \delta$ выполняется неравенство $|s_n(x_0 + h) - s_n(x_0)| < \frac{\varepsilon}{3}$. Таким образом

$$|s(x_0 + h) - s(x_0)| \le |s(x_0 + h) - s_n(x_0 + h)| + |s_n(x_0 + h) - s_n(x_0)| + |s_n(x_0) - s(x_0)| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

62. Сформулируйте теорему Дини о монотонной сходимости. Приведите пример её применения для доказательства равномерной сходимости функциональной последовательности (с обоснованием).

Теорема. Пусть $f_n:[a,b]\to\mathbb{R}, f_n(x)$ монотонна по n при каждом $x\in[a,b], f_n\to f$ на [a,b] и f непрерывна. Тогда $f_n\overset{D}{\Rightarrow} f$

Пример. См. №16-19 листка №4

63. Приведите контрпример, показывающий, что в формулировке теоремы Дини о монотонной сходимости нельзя отказаться от условия непрерывности предельной функции (с обоснованием)

Рассмотрим функциональную последовательность $f_n(x) = \frac{1}{1+nx}$ на множестве D = [0;1]. Поймём, что некоторые условия для теормы Дини выполняются:

- D компакт (ограниченное замкнутое множество).
- f_n монотонно убывает на D.
- f_n непрерывна на D.

Докажем, что не выполняется условие на непрерывность предельной функции.

Заметим, что

$$f_n(x) \to^{n \to \infty} f(x) = \begin{cases} 1, & x = 0; \\ 0, & x \neq 0. \end{cases}$$

To есть f_n сходится неравномерно на D.

64. Покажите на примере как доказать неравномерность сходимости функциональной последовательности с помощью локализации особенности (с обоснованием).

Надо рассмотреть $f_n = \frac{1}{x^n}$ на множестве $D = (1; +\infty)$.

Заметим, что $f_n \stackrel{D}{\to} f = 0$, но при этом имеем

$$f_n \to \begin{cases} 1, & x = 1; \\ 0, & x > 1. \end{cases}$$

Получили, что, если добавить точку, непрерывная функция стремится к разрывной. То есть локализовали особенность, а значит функциональная последовательность f_n сходится неравномерно.

65. Сформулируйте и докажите теорему о почленном переходе к пределу в функциональной последовательности.

Теорема. Если функциональная последовательность $f_n(x)$ сходится равномерно на множестве x к предельной функции f(x) и все элементы этой последовательности имеют предел в точке x_0 , то и предельная функция имеет предел в точке x_0 , причём $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} (\lim_{n\to\infty} f_n(x)) = \lim_{n\to\infty} (\lim_{x\to x_0} f_n(x))$, т.е. символ $\lim_{n\to\infty}$ предела последовательности и символ $\lim_{x\to x_0}$ предела функции можно переставлять местами (или, как говорят, к пределу при $x\to x_0$ можно переходить почленно).

66. Сформулируйте теорему о почленном дифференцировании функциональной последовательности.

Теорема. Пусть $a, b \in [-\infty; +\infty]$ и D = (a; b) или D = [a; b].

Пусть f_n дифференцируема на множестве $D, f_n' \stackrel{D}{\Rightarrow} g$ и существует точка $c \in D$, что $\{f_n(c)\}$ сходится.

Тогда существует такая предельная функция f, что $f_n \stackrel{D}{\to} f$. что f дифференцируема и f' = g. И если D ограничено, то $f_n \stackrel{D}{\to} f$.

Другими словами,

$$\left(\lim_{n\to\infty} f_n(x)\right)' = \lim_{n\to\infty} f'_n(x).$$

67. Сформулируйте теорему о почленном интегрировании функциональной последовательности.

Теорема. Пусть $a, b \in [-\infty; +\infty]$ и D = (a; b) или D = [a; b].

Пусть f_n непрерывна на D и $f_n \stackrel{D}{\rightrightarrows} f$. Заметим, что из последнего условия следует непрерывность f на D.

Тогда

$$\int_{a}^{x} f_{n}(t)dt \stackrel{D}{\Rightarrow} \int_{a}^{x} f(t)dt.$$

Или другими словами:

$$\int_{a}^{x} \lim_{n \to \infty} f_n(t)dt = \lim_{n \to \infty} \int_{a}^{x} f_n(t)dt.$$

68. Как определяются множества абсолютной и условной сходимости функционального ряда? Как они связаны с множеством сходимости?

Определение. Множество абсолютной сходимости – множество всех тех значений x, при которых ряд сходится абсолютно.

Определение. Множество условной сходимости — множество всех тех значений x, при которых ряд сходится условно.

Объединение множеств абсолютной сходимости и условной сходимости образует множество сходимости.

69. Дайте определение равномерной сходимости функционального ряда.

Определение. Функциональный ряд называется равномерно сходящимся, если его частичная суммы $S_N(x)$ равномерно сходится.

70. Сформулируйте и докажите необходимое условие равномерной сходимости функционального ряда.

Теорема. Если
$$\sum_{n=1}^{\infty} a_n(x)$$
 равномерно сходится к сумме $S(x)$, то $a_n \stackrel{D}{\rightrightarrows} 0$

Доказательство.
$$S_n(x) = a_1(x) + \dots + a_n(x), \ a_n(x) = S_n(x) - S_{n-1}(x)$$

$$S_n \stackrel{D}{\rightrightarrows} S \implies a_n \stackrel{D}{\rightrightarrows} (S - S) = 0$$

71. Сформулируйте критерий Коши равномерной сходимости функционального ряда.

Теорема. Функциональный ряд $\sum_{n=1}^{\infty} a_n(x)$ сходится равномерно на $D \iff \forall \varepsilon > 0 \ \exists N(\varepsilon), \ \forall n \geqslant N, \ \forall m$:

$$||a_n + a_{n+1} + \dots + a_{n+m}|| < \varepsilon$$

T.e.
$$|a_n(x) + a_{n+1}(x) + \cdots + a_{n+m}(x)| < \varepsilon \ \forall x \in D.$$

72. Сформулируйте следствие критерия Коши – достаточное условие того, что функциональный ряд не является сходящимся равномерно.

Следствие. (Отрицание критерия Коши) Если $\exists \{x_n\} \subset D, \exists \{m_n\} \in \mathbb{N}, \exists \varepsilon_0$:

$$|a_n(x_n) + a_{n+1}(x_n) + \dots + a_{m_n}(x_n)| > \varepsilon_0$$

- 73. Приведите пример функционального ряда, сходящегося на некотором множестве поточечно, но не равномерно (с обоснованием).
- 74. Сформулируйте мажорантный признак Вейерштрасса абсолютной и равномерной сходимости функционального ряда.

Теорема. (Признак Вейерштрасса) Если $|a_n(x)| \leq b_n$ при $\forall n \geq n_0, \forall x \in D$, а ряд $\sum b_n$ сходится, то $\sum a_n(x)$ сходится на D абсолютно и равномерно.

75. Как применяются признаки Даламбера и Коши (радикальный) для исследования сходимости функционального ряда?

Теорема. (Признак Даламбера) Если $\exists q < 1 \colon |a_{n+1}(x)| \leqslant q \cdot |a_n(x)|$ при $\forall n \geqslant n_0, \ \forall x \in D$, причём $a_{n_0}(x)$ ограничена на D, то $\sum a_n(x)$ сходится на D абсолютно и равномерно.

Пример.
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
, $D = [-r; r]$, $r > 0$

$$\left| \frac{x^{n+1}}{(n+1)!} \right| \leqslant q \cdot \left| \frac{x^n}{n!} \right|$$

$$\left| \frac{x}{n+1} \right| \leqslant q$$
. Пусть $n_0 : \frac{r}{n_0+1} < 1$, берём $q = \frac{r}{n_0+1}$. Значит, ряд абсолютно и равномерно сходится.

- 76. Сформулируйте неравенство для остатка знакочередуегося функционального ряда (и условия его применимости).
- 77. Сформулируйте признак Лейбница равномерной сходимости знакочередующегося функционального ряда.

23

Теорема. (Признак Лейбница) Если $u_n(x)\downarrow_{(n)}$ и $u_n\stackrel{D}{\Longrightarrow} 0$, то ряд сходится равномерно.

78. Сформулируйте признак Дирихле равномерной сходимости функционального ряда.

Теорема. (Признак Дирихле) Если $a_n(x)\downarrow_{(n)}$ и $a_n\stackrel{D}{\rightrightarrows} 0$, а $||b_1+\cdots+b_n||\leqslant C\ \forall n$, то ряд равномерно сходится на D.

79. Сформулируйте признак Абеля равномерной сходимости функционального ряда.

Теорема. (Признак Абеля) Если $a_n(x)$ монотонна по n (при $\forall x \in D$), и $||a_n|| \leq C$ при всех n, а ряд $\sum_{n=1}^{\infty} b_n(x)$ сходится равномерно, то ряд $\sum_{n=1}^{\infty} a_n(x) \cdot b_n(x)$ сходится равномерно.

80. Сформулируйте теорему о почленном переходе к пределу в функциональном ряде.

Теорема. $-\infty \leqslant a < b \leqslant +\infty, D = (a; b), D = [a; b]$

Пусть функциональный ряд $\sum_{n=1}^{\infty} c_n(x)$ сходится равномерно на $D, x_0 \in D, \exists \lim_{x \to x_0} c_n(x) = y_n$ и $\exists \sum_{n=1}^{\infty} y_n = y$.

Тогда $\lim_{x\to x_0}\sum_{n=1}^\infty c_n(x)=\sum_{n=1}^\infty\lim_{x\to x_0}c_n(x)=\sum_{n=1}^\infty y_n=y$

81. Сформулируйте теорему о почленном дифференцировании функционального ряда.

Теорема. $-\infty \leqslant a < b \leqslant +\infty, D = (a; b), D = [a; b]$

Пусть $c_n(x)$ дифференцируемы на D и $\sum_{n=1}^{\infty} c'_n(x)$ сходится равномерно на D.

Тогда ряд $\sum_{n=1}^{\infty} c_n(x)$ сходится на D (а если D огр, то сходится равномерно), а его сумма будет дифференцируемой

функцией на D и $\left(\sum_{n=1}^{\infty}c_n(x)\right)'=\sum_{n=1}^{\infty}c_n'(x)$

82. Сформулируйте теорему о почленном интегрировании функционального ряда.

Теорема. $-\infty < a < b < +\infty, D = (a; b), D = [a; b]$

 $\int\limits_{a}^{x}\left(\sum_{n=1}^{\infty}c_{n}(t)\right)dt=\sum_{n=1}^{\infty}\int\limits_{a}^{x}c_{n}(t)dt$ – сходится равномерно на D.

83. Что такое степенной ряд? Как определяются радиус и интервал сходимости степенного ряда? Что можно утверждать о характере сходимости ряда на интервале сходимости?

Определение. Степенной ряд – $\sum_{n=0}^{\infty} c_n \cdot (x-x_0)^n$

Определение. Пусть:

 $R_{cv} = \sup\{|x - x_0| : \text{ряд сходится}\}$

 $R_{dv}=\inf\{|x-x_0|:$ ряд расходится $\}$ или $+\infty$, если ряд сходится всюду

 $\exists R = R_{cv} = Rdv$ – радиус сходимости.

Теорема. На интервале сходимости степенной ряд сходится абсолютно.

84. Что можно утверждать про равномерную сходимость степенного ряда?

Теорема. Если R > 0, то степенной ряд сходится равномерно при $|x - x_0| \le r$, где r < R (доказательство через признак Вейерштрасса).

24

85. Сформулируйте и докажите теорему Абеля о сходимости степенного ряда.

Теорема. (Абеля)

1. Если степенной ряд сходится в точке $x_1 \neq x_0$, то он сходится при всех $x: |x-x_0| < |x_1-x_0|$

2. Если степенной ряд расходится в точке $x_2 \neq x_0$, то он расходится при всех $x: |x-x_0| > |x_2-x_0|$

Доказательство. 1.
$$\left|\sum_{n=m}^{N}c_{n}(x-x_{0})^{n}\right| = \left|\sum_{n=m}^{N}c_{n}\cdot(x_{1}-x_{0})^{n}\cdot\left(\frac{x-x_{0}}{x_{1}-x_{0}}\right)^{n}\right| \leqslant \sum_{n=m}^{N}\left|c_{n}\cdot(x_{1}-x_{0})^{n}\right| \cdot \left|\left(\frac{x-x_{0}}{x_{1}-x_{0}}\right)^{n}\right| \leqslant \varepsilon \cdot q^{m}\cdot\frac{1}{1-q}\to 0$$

86. Докажите, что если степенной ряд $\sum c_n \cdot (x-x_n)^n$ расходится в точке x_1 , то он расходится во всех точках x, для которых $|x-x_0|>|x_1-x_0|$.

Доказательство. Докажем, что если $\sum c_n(x-x_0)^n$ сходится в точке x_1 , то он сходится во всех точках x, для которых $|x-x_0|<|x_1-x_0|$ \circledast . Из этого будет следовать сформулированное выше утверждение (методом от противного).

Итак, доказываем \circledast . (Будем рассматривать нетривиальный случай $x_1 \neq x_0$, иначе очевидно).

$$\left| \sum_{n=m}^{N} c_n (x - x_0)^n \right| = \left| \sum_{n=m}^{N} c_n \cdot (x_1 - x_0)^n \cdot \left(\frac{x - x_0}{x_1 - x_0} \right)^n \right| \leqslant \sum_{n=m}^{N} \left| c_n \cdot (x_1 - x_0)^n \right| \cdot \left| \frac{x - x_0}{x_1 - x_0} \right|^n = \bigstar.$$

Заметим, что $|c_n\cdot (x_1-x_0)^n|<\varepsilon$ при $m\geqslant n_0(\varepsilon)$ (следствие из необходимого условия сходимости).

Далее, (при наших условиях) $\sum \left| \frac{x-x_0}{x_1-x_0} \right|^n$ образуют геом. прогрессию, где $q = \left| \frac{x-x_0}{x_1-x_0} \right| < 1$.

Так что
$$\bigstar \leqslant \varepsilon \cdot (q^m + \dots + q^n) \leqslant \varepsilon \cdot q^m \cdot \frac{1}{1 - q} \to 0.$$

Почему к нулю? При $m \to \infty$ выражение $q^m \cdot \frac{1}{1-q}$ остается ограниченным одной и той же константой, а ε - это произвольная сколь угодно малая величина.

Итог: ряд сходится по критерию Коши.

87. Выведите формулу Коши-Адамара для радиуса сходимости степенного ряда.

$$\sum_{n=0}^{\infty} c_n \cdot (x - x_0)^n$$

Применим радикальный признак Коши:

$$\sqrt[n]{|a_n(x)|} = \sqrt[n]{|c_n|} \cdot |x - x_0|$$

$$\overline{\lim} \sqrt[n]{|a_n(x)|} = |x - x_0| \cdot \overline{\lim} \sqrt[n]{|c_n|}$$

Если $|x-x_0|\cdot \overline{\lim} \sqrt[n]{|c_n|} < 1$, то ряд сходится

Если $|x-x_0|\cdot\overline{\lim}\sqrt[n]{|c_n|}>1$, то ряд расходится

Введём $R = \frac{1}{\overline{\lim} \sqrt[n]{|c_n|}}$ — формулу Коши-Адамара. Получаем, что при $|x - x_0| < R$ ряд сходится, при $|x - x_0| > R$ ряд расходится, и мы получили явную формулу радиуса сходимости.

88. Приведите примеры степенных рядов, радиус сходимости R которых: $R \in (0, +\infty), R = 0, R = \infty$ (с обоснованием).

89. Пусть R — радиус сходимости степенного ряда. Сформулируйте и докажите теорему о равномерной сходимости степенного ряда на [0; R].

Теорема. Пусть $\sum c_n R^n$ сходится. Тогда степенной ряд $\sum c_n (x-x_0)^n$ сходится равномерно на $[x_0,x_0+R]$

Доказательство. В начале доказательства хочу заметить, что доказываю не совсем то, что в вопросе просят, однако это вроде ошибка Маевского, а не моя. Для того, чтобы всё было, как вопросе, возьмите $x_0 = 0$.

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n = \sum_{n=0}^{\infty} (c_n R^n) \cdot \left(\frac{x - x_0}{R}\right)^n$$

$$\sum_{n=0}^{\infty} (c_n R^n)$$
 – сходится равномерно (от x не зависит)

$$\sum_{n=0}^{\infty} \left(\frac{x - x_0}{R} \right)^n \downarrow_{(n)} \ \forall x \in [x_0, x_0 + R]$$

$$\Rightarrow \sum_{n=0}^{\infty} c_n (x-x_0)^n$$
 – сходится равномерно на $[x_0,x_0+R]$ по признаку Абеля

90. Пусть R – радиус сходимости степенного ряда. В каком случае можно утверждать, что $\sum_{n=0}^{\infty} c_n R^n =$

$$\lim_{x\to R-0}\sum_{n=0}^{\infty}c_nx^n$$
? Обоснуйте ответ.

Теорема. Пусть $\sum c_n R^n$ сходится. Тогда степенной ряд $\sum c_n (x-x_0)^n$ сходится равномерно.

Доказательство.
$$\sum_{n=0}^{\infty}c_n(x-x_0)^n=\sum_{n=0}^{\infty}(c_n\cdot R^n)\cdot\left(\frac{x-x_0}{R}\right)^n$$

$$\sum_{n=0}^{\infty} c_n \cdot R^n \text{ сходится } \Longrightarrow \text{ сходится равномерно (не зависит от } x)$$

$$\left(\frac{x-x_0}{R}\right)^n \downarrow_n$$
 при $\forall x \in [x_0,x_0+R]$

Значит, ряд
$$\sum_{n=0}^{\infty} c_n (x-x_0)^n$$
 сходится равномерно по признаку Абеля.

Так как ряд сходится равномерно, то
$$\sum_{n=0}^{\infty} c_n R^n = \lim_{x\to x_0+R-0} \sum_{n=0}^{\infty} c_n (x-x_0)^n$$

Пусть теперь $\sum c_n R^n$ расходится. Тогда ряд $\sum c_n (x-x_0)^n$ не может сходиться равномерно на $[x_0,x_0+R)$

- 91. Пусть R радиус сходимости степенного ряда. В каком случае можно утверждать, что степенной ряд сходится неравномерно на [0;R)? Обоснуйте ответ.
- 92. Что можно утверждать о радиусе сходимости степенного ряда, полученного почленным дифференцированием исходного ряда?

Радиус сходимости при дифференцировании степенного ряда не изменяется.

93. Что можно утверждать о радиусе сходимости степенного ряда, полученного почленным интегрировании исходного ряда?

Радиус сходимости при интегрировании степенного ряда не изменяется.

94. Сформулируйте и докажите теорему о почленном дифференцировании степенного ряда.

Теорема.
$$\left(\sum_{n=0}^{\infty} c_n \cdot (x-x_0)^n\right)' = \sum_{n=0}^{\infty} c_n \cdot n \cdot (x-x_0)^{n-1} = \sum_{n=0}^{\infty} c_{n+1}(n+1)(x-x_0)^n$$

95. Сформулируйте и докажите теорему о почленном интегрировании степенного ряда.

Теорема.
$$\int_{x_0}^x \left(\sum_{n=0}^\infty c_n (t-x_0)^n \right) dt = \sum_{n=0}^\infty \frac{c_n}{n+1} (x-x_0)^{n+1}$$

96. Запишите формулу Тейлора для бесконечно дифференцируемой функции с остаточным членом в формах Лагранжа и Коши.

Если функция f(x) бесконечно дифференцируема в точке x_0 , то функции f(x) можно сопоставить её ряд Тейлора:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

При этом
$$f(x) = \sum_{n=0}^{N} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + r_N(x)$$

$$r_N(x)=rac{f^{(N+1)}(x_0+ heta)(x-x_0)}{(N+1)!}(x-x_0)^{N+1},\, heta\in(0;1)$$
 – формула Лагранжа

$$r_N(x)=rac{f^{(N+1)}(x_0+ heta)(x-x_0)}{N!}(1- heta)^N(x-x_0)^{N+1},\, heta\in(0;1)$$
 – формула Коши

97. Сформулируйте и докажите утверждение о единственности разложения функции в степенной ряд.

Теорема. Если $f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n$, $|x - x_0| < \delta$, то этот степенной ряд – её ряд Тейлора.

Доказательство.
$$f^{(k)}(x) = \sum_{n=k}^{\infty} c_n \cdot n(n-1) \cdot \dots \cdot (n-k+1) \cdot (x-x_0)^{n-k}$$

$$f^{(k)}(x_0)=c_k\cdot k!\implies c_k=rac{f^{(k)}(x_0)}{k!}$$
. Значит, степенной ряд – ряд Тейлора.

98. Что такое функция, аналитическая в данной точке? Каково соотношение между понятиями бесконечно дифференцируемости и аналитичности?

 Φ ункция называется аналитической в т. x_0 , если она представима в окрестности этой точки в виде степенного ряда. Не всякая бесконечно дифференцируемая функция будет аналитической.

99. Приведите пример бесконечно дифференцируемой функции, не являющейся аналитической.

Пример.
$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, x \neq 0 \\ 0, x = 0 \end{cases}$$

$$f(0)=f'(0)=f''(0)=\cdots=0$$
, ряд Тейлора при $x_0=0$ равен 0

100. Запишите разложения в степенной ряд с центром в нуле для функций e^x , $\sin x$, $\cos x$. Каково множество сходимости ряда? На каком множестве сумма ряда представляет собой исходную функцию?

1.
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
, $R = \infty$

лео докажем равенство. Оценим остаток по формуле Лагранжа.
$$r_N(x) = \underbrace{e^{\Theta x}}_{\text{const}} \cdot \underbrace{\frac{x^{N+1}}{(N+1)!}}_{\text{-0 при } \forall x}, \, \Theta \in (0; \, 1) \, \, \text{Множество сходимости} - \, \mathbb{R}, \, \text{на множестве } \mathbb{R} \, \, \text{сумма ряда представляет}$$

собой исходную функцию.

2. Для $\cos x$ аналогично:

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n}}{(2n)!}, x \in \mathbb{R}, R = \infty$$

3. Для $\sin x$ аналогично:

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n+1}}{(2n+1)!} x \in \mathbb{R}, R = \infty$$

101. Запишите разложение в степенной ряд с центром в нуле для функции $(1+x)^p$. Каково множество сходимости ряда? На каком множестве сумма ряда представляет собой исходную функцию?

$$(1+x)^p = \sum_{n=0}^{\infty} \frac{(p)_n}{n!} x^n$$
, где $(p)_n = p(p-1) \dots (p-n+1)$, $R=1$

