Desarrollo Seguro iOS

Bootcamp de desarrollo Mobile

CryptoKit

Introducción

- A partir de iOS 13
- Validación FIPS 140-2
- Capa de abstracción

Using Base64 as "encryption":

Cryptokit vs CommonCrypto

Cryptokit

- iOS 13
- Alto nivel
- Swift

CommonCrypto

- Legacy
- Operaciones granulares
- Swift, C y Objective-C

Cryptokit

Funciones hash

Unidireccionales

- Deterministas
- Eficientes y rápidas
- Sin colisiones

Familia SHA

Función Hash	Tipos	Grado de Seguridad	Vulnerabilidades
SHA-0 y SHA-1	SHA-160	Bajo	Vulnerable a ataques de colisión
SHA-2	SHA-224 SHA-256 SHA-384 SHA-512	Medio	Vulnerables a ataques de extensión de cadena
SHA-3	SHA3-224 SHA3-256 SHA3-384 SHA3-512	Alto	Sin vulnerabilidades significativas

Base64

Mensaje	"mi"																	
ASCII	m >	109				i → 105												
Binario (1 byte)	0 1 1 0 1 1 0 1									1	1	0	1	()	0	1	
Conteo	-	64	32	-	8	4	-	1	-	64	32	-	8	-	•	-	1	
Índices	0110)11 –		dex Binary 0 000000 1 000001 2 000010	A B	16 0100 17 0100 18 0100	01 R	32 33 34	Binary 100000 100001 100010	Char g h	48 49	Binary 110000 110001 110010	Char W X					
Índices con 6 bits	0110)11 –	00	3 000011 4 000100 5 000101 6 000110	F G	19 0100 20 0101 21 0101 22 0101	00 U 01 V 10 W	35 36 37 38	100011 100100 100101 100110	j k 1	52 53 54	110011 110100 110101 110110	z 0 1 2					
Base64	0101 1001)11 (2 10 (2 00 (3		7 000111 8 001000 9 001001 10 001010 11 001011 12 001100 13 001101 14 001110) I J K L M N O	23 0101 24 0110 25 0110 26 0110 27 0110 28 0111 29 0111 30 0111 31 0111	01 Z 10 a 11 b 00 c 01 d	39 40 41 42 43 44 45 46	100111 101000 101001 101010 101011 101100 101101	n o p q r s	56 57 58 59 60 61 62	110111 111000 111001 111010 111011 111100 111101 111110	3 4 5 6 7 8 9 +					

Conversión a hexadecimal

Mensaje		"mi"																					
ASCII	m >	109				i → 105																	
Binario (1 byte)	0 1 1 0 1					1	0	0 1		1	1	0	1	0	0	1							
Conteo	-	64	32	-	8	4	-	1	-	64	32	-	8	-	-	1							
Índices	Denary/Decimal Binary Hexadeci												umber System 0 1										
Índices con 4 bits	0110	0110 –1101 – 0110 – 1001												0010 0011 0100 0101 0110		2 3 4 5 6							
Hexadecimal	1101 0110	0110 (6) → 6 1101 (13) → D 0110 (6) → 6 1001 (9) → 9										7 0111 8 1000 9 1001 10 1010 11 1011 12 1100 13 1101 14 1110			7 8 9 A B C D								

Encriptación simétrica y asimétrica

Simétrica

- Única clave
- Más rápida

Asimétrica

- Dos claves
- Computacionalmente costosa

Encriptación AES-GCM

Desencriptación AES-GCM

Paquete de datos

keep coding

