

eMMC 8GB MKEMB008GT1E-C

Datasheet

Version 01.00

Ken Lee

2021/4/12

Contents

1.	Forew	ord	6
2.	Revisi	ion History	7
3.	Staten	nent of Scope	8
4.	Gener	al Description	9
	4.1.	Product list	9
	4.2.	Feature	10
5.	eMM	C Function Block Diagram	11
6.	Pin D	escription	12
	6.1.	eMMC 153 Ball Pin Assignment	12
	6.2.	eMMC Pin Description	13
7.	Electr	ical Characteristics	14
	7.1.	General operating conditions	14
	7.2.	Device Power Diagram	14
	7.3.	Power supply voltage	15
	7.4.	Bus Signal Line Loading	15
	7.5.	Bus Signal Level	16
	7.6.	Bus Timing for eMMC in backward-compatible device and high speed mode	17
	7.7.	Bus Timing for eMMC in DDR Mode	19
	7.8.	Bus Timing for eMMC in HS200 Mode	20
	7.9.	Bus Timing for eMMC in HS400 Mode	21
8.	eMM	C Register Description	24

	8.1.	Operation Conditions Register (OCR) Register	24
	8.2.	SD Card Identification Register (CID)	25
	8.3.	Driver Stage Register (DSR)	25
	8.4.	Relative Card Address Register (RCA)	25
	8.5.	Card Specific Data Register (CSD)	25
	8.6.	Extended CSD register	27
9.	Produc	ction Specifications	38
	9.1.	Performance	38
	9.2.	Power Consumption	38
	9.3.	Endurance Test	39
10.	Packag	ge Dimension	40
11.	MKEN	MB008GT1E-C Partition Configuration	41

List of Figures

FIGURE 5-1 EMMC FUNCTION BLOCK DIAGRAM	. 11
FIGURE 6-1 EMMC 153 BALL PIN ASSIGNMENT (TOP VIEW)	. 12
FIGURE 7-1 DEVICE POWER DIAGRAM	. 14
FIGURE 7-2 BUS SIGNAL LEVEL	. 16
FIGURE 7-3 TIMING DIAGRAM DATA INPUT/OUTPUT REFERENCED TO CLOCK (EMMC	IN
BACKWARD-COMPATIBLE DEVICE AND HIGH SPEED)	. 17
FIGURE 7-4 TIMING DIAGRAM DATA INPUT/OUTPUT REFERENCED TO CLOCK (DDR MODE)	. 19
FIGURE 7-5 TIMING DIAGRAM DATA INPUT REFERENCED TO CLOCK (HS200 MODE)	. 20
FIGURE 7-6 TIMING DIAGRAM DATA OUTPUT REFERENCED TO CLOCK (HS200 MODE)	. 20
FIGURE 7-7 TIMING DIAGRAM DATA INPUT REFERENCED TO CLOCK (HS400 MODE)	. 21
FIGURE 7-8 TIMING DIAGRAM DATA OUTPUT REFERENCED TO CLOCK (HS400 MODE)	. 22
FIGURE 10-1 PACKAGE OUTLINE DIMENSION DRAWING	40

List of Table

TABLE 4-1 EMMC PRODUCT LIST	9
TABLE 6-1 EMMC PIN DESCRIPTION	13
TABLE 7-1 GENERAL OPERATING CONDITIONS	14
TABLE 7-2 POWER SUPPLY VOLTAGE	15
TABLE 7-3 BUS SIGNAL LINE LOADING	15
TABLE 7-4 BUS SIGNAL LINE LOADING FOR HS400	15
TABLE 7-5 BUS SIGNAL LEVEL	16
TABLE 7-6 BACKWARD-COMPATIBLE DEVICE MODE TIMING FOR EMMC	17
TABLE 7-7 HIGH SPEED MODE TIMING FOR EMMC	18
TABLE 7-8 DDR MODE TIMING FOR EMMC	20
TABLE 7-9 HS200 MODE TIMING FOR EMMC	
TABLE 7-10 HS400 MODE TIMING FOR EMMC	
TABLE 8-1 EMMC REGISTER TABLE	
TABLE 8-2 OCR TABLE	24
TABLE 8-3 CID TABLE	25
TABLE 8-4 CSD TABLE	
TABLE 8-5 EXTEND CSD TABLE	37
TABLE 9-1MKEMB008GT1E-C PERFORMANCE	38
TABLE 9-2MKEMB008GT1E-C OPERATING CURRENT	38
TABLE 9-3MKEMB008GT1E-C STANDBY/SLEEP CURRENT	38

1. Foreword

This document has been produced by MK Founder Technology Co., Ltd., should the company modifies the contents of this specification, it will be re-released with an identifying change of release date and an increase in revision number as follows:

Revision mn.xy, where:

- mn the first two digit are incremented for major changes of substance, e.g., functional changes.
- xy the second two digits are incremented when minor changes have been incorporated into the specification, i.e., enhancements, corrections, updates, etc.

2. Revision History

Revision	Date	Modified By	Description		
01.00	00 2021/04/12 Ken Lee		Preliminary version Datasheet		

3. Statement of Scope

This MKEMB008GT1E-C document is described the eMMC's methods and abstractions of reliability. The contents include the concept and measurement methodologies.

4. General Description

Datasheet is the eMMC of MK Founder Technology Co. Ltd. which is an embedded non-volatile memory system package into BGA. It has high performance, low power consumption features and supports eMMC4.5, eMMC5.01 and eMMC5.1 specifications.

4.1. Product list

Canacities	Part Number	Flash Type	User	Package	Package
Capacitics	1 art rumber	riash Type	Density	Size (mm)	Type
8GB	MKEMB008GT1E-C	64Gb MLCx1	90 %	11.5x13x1.0	153FBGA

Table 4-1 eMMC product list

4.2. Feature

- Fully compatible with eMMC standard specification v4.5/v5.01/5.1
 - Support command class 0, 2, 4, 5, 6, 7, 8, 9, 10 and 11
 - Boot, RPMB, Reset Pin, Write Protection, DDR timing, HS200, Multi Partitioning, Security Erase/Security Trim, Trim, High Priority Interrupt, Background Operation, Enhance Reliable Write, Discard Command, Security Features, Partition types, Context ID, Data Tag, Package Commands, Real Time Clock, Dynamic Device Capacity, Power Off Notification and Cache
 - Extended Security Protocols, HS400, Field Firmware Update, Product State Awareness, Security Removal Type Device Heal Report, Command Queuing, Enhance Strobe, Cache Flushing Report, BKOPS Control, Cache Barrier, RPMB Throughput Improve, Security Write Protect
- Bus mode
 - Data bus width: 1 bit, 4 bits and 8 bits
 - Bus Speed Mode: Backward compatibility for legacy MMC card mode, High Speed SDR, DDR, HS200 and HS400
 - eMMC clock frequency: 0 ~ 200MHz
- eMMC voltage range
 - \blacksquare VCCQ (I/O): 1.70V~1.95V and 2.7V~3.6V
 - VCC (NAND) : 2.7V~3.6V
- Error correction engine
 - Proprietary ECC engine with hard-decision and soft-decision decode
- Temperature
 - Operation : -25°C~85°C
 - Storage : -40°C~85°C
- Low power consumption
- Manufacturing utility ready

5. eMMC Function Block Diagram

Figure 5-1 eMMC Function Block Diagram

6. Pin Description

6.1. eMMC 153 Ball Pin Assignment

Figure 6-1 eMMC 153 ball pin assignment (Top view)

6.2. eMMC Pin Description

Pin Name	Direction	Description	Pin Number
CLK	I	eMMC clock input	M6
CMD	I/O	eMMC command line	M5
DAT0			A3
DAT1			A4
DAT2			A5
DAT3	I/O	eMMC data line	B2
DAT4	1/0	eMMC data fine	В3
DAT5			B4
DAT6			B5
DAT7			В6
RST_n	I	eMMC reset input	K5
DS	О	eMMC data strobe output	Н5
VDDi	Power out	Power supply for core	C2
VCCQ	Power in	Power supply for controller and IO pad	C6, M4, N4, P3, P5
VSSQ	Ground	Ground for controller and IO pad	C4, N2, N5, P4, P6
VCC	Power in	Power supply for NAND flash device	E6, F5, J10, K9
VSS	Ground	Ground for NAND flash device	A6, E7, G5, H10, J5, K8

Table 6-1 eMMC Pin Description

7. Electrical Characteristics

The eMMC is used to provide an interface between on-chip bus and external (off-chip) memory devices.

7.1. General operating conditions

Parameter	Symbol	Min.	Max.	Unit	Remark
Peak voltage on all lines	-	-0.5	V _{CCQ} +0.5	V	
All Inputs					
Input leakage current (before initialization)	-	-100	100	μΑ	
Input leakage current (after initialization)	-	-2	2	μΑ	
All Outputs	•		1		•
Output leakage current (before initialization)	-	-100	100	μΑ	
Output leakage current (after initialization)	-	-2	2	μΑ	

Table 7-1 General Operating Conditions

7.2. Device Power Diagram

Figure 7-1 Device Power Diagram

7.3. Power supply voltage

Parameter	Symbol	Min.	Max.	Unit	Remark
Supply voltage (NAND)	V_{CC}	2.7	3.6	V	
Cumply voltage (I/O)	37	2.7	3.6	V	
Supply voltage (I/O)	V_{CCQ}	1.7	1.95	V	

Table 7-2 Power Supply Voltage

7.4. Bus Signal Line Loading

Parameter	Symbol	Min.	Max.	Unit	Remark
Pull up resistance for CMD	R _{CMD}	4.7	100 ⁽¹⁾	ΚΩ	
Pull up resistance for DAT0-DAT7	R_{DAT}	10	100 ⁽¹⁾	ΚΩ	
Internal pull up resistance for DAT1-DAT7	Rint	10	150	ΚΩ	
Bus signal line capacitance	C_{L}	-	30	pF	
Signal device capacitance	C_{Device}	-	6	pF	
Maximum signal line inductance	-	-	16	nН	

Table 7-3 Bus Signal Line Loading

(1) Recommended maximum value is 50 K Ω for 1.8V interface supply voltages. A 3V part, may use the whole range up to 100 K Ω .

Parameter	Symbol	Min.	Max.	Unit	Remark
Pull up resistance for CMD	R _{CMD}	4.7	100 ⁽¹⁾	ΚΩ	
Pull up resistance for DAT0-DAT7	R_{DAT}	10	100 ⁽¹⁾	ΚΩ	
Pull down resistance for Data Strobe	R_{DS}	10	100 ⁽¹⁾	ΚΩ	
Internal pull up resistance for DAT1-DAT7	Rint	10	150	ΚΩ	
Signal device capacitance	C_{Device}	-	6	pF	

Table 7-4 Bus Signal Line Loading for HS400

(1) Recommended maximum value is 50 K Ω for 1.8V interface supply voltages.

7.5. Bus Signal Level

Figure 7-2 Bus Signal Level

Parameter	Symbol	Min.	Max.	Unit	Remark
Output HIGH voltage	V_{OH}	0.75*V _{CCQ}	-	V	$V_{CCQ} = 3.3V$
Output LOW voltage	V_{OL}	-	0.125*V _{CCQ}	V	$V_{CCQ} = 3.3V$
Input HIGH voltage	V_{IH}	0.625*V _{CCQ}	$V_{CCQ} + 0.3$	V	$V_{CCQ} = 3.3V$
Input LOW voltage	V_{IL}	V _{SS} - 0.3	0.25*V _{CCQ}	V	$V_{CCQ} = 3.3V$
utput HIGH voltage	V_{OH}	V _{CCQ} - 0.45	-	V	$V_{CCQ} = 1.8V$
Output LOW voltage	V_{OL}	-	0.45	V	$V_{CCQ} = 1.8V$
Input HIGH voltage	V_{IH}	0.65*V _{CCQ}	$V_{CCQ} + 0.3$	V	$V_{CCQ} = 1.8V$
Input LOW voltage	$V_{\rm IL}$	V _{SS} - 0.3	0.35*V _{CCQ}	V	$V_{CCQ} = 1.8V$

Table 7-5 Bus Signal Level

7.6. Bus Timing for eMMC in backward-compatible device and high speed mode

Figure 7-3 Timing diagram data input/output referenced to clock (eMMC in backward-compatible device and high speed)

Parameter	Symbol	Min.	Max.	Unit	Remark			
Input MMC_CLK								
Clock frequency data transfer mode	f_{PP}	0	26	MHz	$C_L \leq 30 pF$			
Clock frequency identification mode	f_{OD}	0	400	KHz				
Clock low time / Clock high time	$t_{\rm WL}/t_{\rm WH}$	10	-	ns	$C_L \leq 30 pF$			
Clock rise time / Clock fall time	t _{TLH} /t _{THL}	-	10	ns	$C_L \leq 30 pF$			
Input MMC_CMD, MMC_DAT (refe	erenced to M	MC_CI	LK)					
Input set-up time	$t_{ m ISU}$	3	-	ns	$C_L \leq 30 pF$			
Input hold time	t _{IH}	3	-	ns	$C_L \le 30 pF$			
Output MMC_CMD, MMC_DAT (referenced to MMC_CLK)								
Output set-up time	tosu	11.7		ns	$C_L \leq 30 pF$			
Output hold time	tон	8.3	-	ns	$C_L \leq 30 pF$			

Table 7-6 backward-compatible device mode timing for eMMC

- (1) Clock timing is measured at 50% of V_{CCQ} .
- (2) Clock rise and fall times are measured by min (V_{IH}) and max (V_{IL}) .

Parameter	Symbol	Min.	Max.	Unit	Remark				
Input MMC_CLK									
Clock frequency data transfer mode	f_{PP}	0	52	MHz	$C_L \leq 30 pF$				
Clock frequency identification mode	f_{OD}	0	400	KHz					
Clock low time / Clock high time	$t_{\rm WL}/t_{\rm WH}$	6.5	-	ns	$C_L \! \leq \! 30 pF$				
Clock rise time / Clock fall time	t_{TLH}/t_{THL}	-	3	ns	$C_L \leq 30 pF$				
Input MMC_CMD, MMC_DAT (refe	erenced to M	MC_C	L K)						
Input set-up time	t _{ISU}	3	-	ns	$C_L \! \leq \! 30 pF$				
Input hold time	$t_{ m IH}$	3	-	ns	$C_L \leq 30 pF$				
Output MMC_CMD, MMC_DAT (re	ferenced to	MMC_0	CLK)						
Output delay time during data transfer	t_{ODLY}	-	13.7	ns	$C_L \leq 30 pF$				
Output hold time	t _{OH}	2.5	-	ns	$C_L \leq 30 pF$				
Signal rise time	t _{RISE}	-	3	ns	$C_L \leq 30 pF$				
Signal fall time	t _{FALL}	_	3	ns	$C_L \leq 30 pF$				

Table 7-7 High speed mode timing for eMMC

- (1) Clock timing is measured at 50% of V_{CCQ} .
- (2) Clock rise and fall times are measured by min (V_{IH}) and max (V_{IL}).
- (3) Inputs CMD, DAT rise and fall times are measured by min (V_{IH}) and max (V_{IL}) , and outputs CMD, DAT rise and fall times are measured by min (V_{OH}) and max (V_{OL}) .

7.7. Bus Timing for eMMC in DDR Mode

Figure 7-4 Timing diagram data input/output referenced to clock (DDR mode)

Parameter	Symbol	Min.	Max.	Unit	Remark			
Input MMC_CLK								
Clock duty cycle	1	45	55	%				
Clock rise time / Clock fall time	t_{TLH}/t_{THL}	-	3	ns	$C_L \le 30 pF$			
Input MMC_CMD (referenced to MN	MC_CLK)							
Input set-up time	tısuddr	3	-	ns	$C_L \le 20 pF$			
Input hold time	$t_{ m IHddr}$	3	-	ns	$C_L \leq 20 pF$			
Output MMC_CMD (referenced to M	IMC_CLK)							
Output delay time during data transfer	t_{ODLY}	ı	13.7	ns	$C_L \le 20pF$			
Output hold time	t _{OH}	2.5	-	ns	$C_L \le 20 pF$			
Signal rise time	t _{RISE}	-	3	ns	$C_L \le 20 pF$			
Signal fall time	$t_{ m FALL}$	-	3	ns	$C_L \le 20 pF$			
Input MMC_DAT (referenced to MM	IC_CLK)							
Input set-up time	$t_{ m ISUddr}$	2.5	-	ns	$C_L \le 20 pF$			
Input hold time	t_{IHddr}	2.5	-	ns	$C_L \le 20 pF$			
Output MMC_DAT (referenced to M	MC_CLK)							
Output delay time during data transfer	t_{ODLYddr}	1.5	7	ns	$C_L \! \leq \! 20pF$			

Parameter	Symbol	Min.	Max.	Unit	Remark
Signal rise time	t _{RISE}	-	2	ns	$C_L \! \leq \! 20 pF$
Signal fall time	t_{FALL}	-	2	ns	$C_L \leq 20 pF$

Table 7-8 DDR mode timing for eMMC

- (1) Clock timing is measured at 50% of V_{CCQ}.
- (2) Inputs DAT rise and fall times are measured by min (V_{IH}) and max (V_{IL}) , and outputs DAT rise and fall times are measured by min (V_{OH}) and max (V_{OL}) .

7.8. Bus Timing for eMMC in HS200 Mode

Figure 7-5 Timing diagram data input referenced to clock (HS200 mode)

Figure 7-6 Timing diagram data output referenced to clock (HS200 mode)

Parameter	Symbol	Min.	Max.	Unit	Remark
Input MMC_CLK					
Clock cycle time	t _{PERIOD}	5	-	ns	

Parameter	Symbol	Min.	Max.	Unit	Remark
Clock rise time / Clock fall time	t _{TLH} /t _{THL}	-	1	ns	C _{Device} = 6 pF
Clock duty cycle	-	30	70	%	
Input MMC_CMD, MMC_DAT (ref	erenced to	MMC_CLK)			
Input set-up time	t _{ISU}	1.4	-	ns	$C_{Device} \leq 6pF$
Input hold time	t _{IH}	0.8	-	ns	$C_{Device} \le 6pF$
Output MMC_CMD, MMC_DAT (re	eferenced to	o MMC_CLK)			
Output delay time during data transfer	t _{PH}	0	2	UI	
Delay variation due to temperature change after tuning	$\Delta_{ ext{TPH}}$	-350 (ΔT=-20°C)	+1550 (ΔT=90°C)	ps	
Output valid data window	tvw	0.575	-	UI	

Table 7-9 HS200 mode timing for eMMC

(1) Unit Interval (UI) is one bit nominal time. For example, UI = 5ns at 200MHz.

7.9. Bus Timing for eMMC in HS400 Mode

Figure 7-7 Timing diagram data input referenced to clock (HS400 mode)

Figure 7-8 Timing diagram data output referenced to clock (HS400 mode)

Parameter	Symbol	Min.	Max.	Unit	Remark					
Input MMC_CLK	Input MMC_CLK									
Clock cycle time	tperiod	5	-	ns						
Slew rate	SR	1.125	-	V/ns						
Duty cycle distortion	tckdcd	0	0.3	ns						
Minimum pulse width	t _{CKMPW}	2.2	-	ns						
Input MMC_DAT (referenced to I	MMC_CLK)									
Input set-up time	$t_{ m ISUddr}$	0.4	-	ns	$C_{Device} \leq 6pF$					
Input hold time	t _{IHddr}	0.4	-	ns	$C_{Device} \le 6pF$					
Slew rate	SR	1.125	-	V/ns						
Output MMC_STRB										
Clock cycle time	t_{PERIOD}	5	-	ns						
Slew rate	SR	1.125	-	V/ns						
Duty cycle distortion	t _{CKDCD}	0	0.2	ns						
Minimum pulse width	t _{CKMPW}	2	_	ns						
Read pre-amble	t _{RPRE}	0.4	-	tperiod						
Read post-amble	t _{RPST}	0.4	-	tperiod						
Output MMC_DAT/ MMC_CMD (referenced to MMC_STRB)										
Output skew	t_{RQ}/t_{RQ_CMD}	-	0.4	ns						
Output hold skew	t _{RQH} /t _{RQH_CMD}	-	0.4	ns						

Parameter	Symbol	Min.	Max.	Unit	Remark
Slew rate	SR	1.125	-	V/ns	

Table 7-10 HS400 mode timing for eMMC

8. eMMC Register Description

The design parameters are parameters that control the implementation of RTL design by Verilog parameter or VHDL generic. The purpose of parameters is to make the hardware design reusable on different conditions.

Software designers should refer to the particular implementation to do the programming. This section introduces the registers in eMMC and the values that are used in Datasheet. The following table is the register list of current specification. The detail functionality is not described here; please reference to latest eMMC specifications.

Register Name	eMMC 4.5	eMMC 5.01	eMMC 5.1
Operation Condition Register (OCR)	V	V	V
Card Identification Register (CID)	V	V	V
Driver Stage Register (DSR)	V	V	V
Relative Card Address Register (RCA)	V	V	V
Card Specific Data Register (CSD)	V	V	V
Extended Card Specific Data Register (EXT_CSD)	V	V	V

Table 8-1 eMMC Register table

8.1. Operation Conditions Register (OCR) Register

The 32-bit operation conditions register (OCR) stores the voltage profile of the Device and the access mode indication. In addition, this register includes a status information bit. This status bit is set if the Device power up procedure has been finished.

OCR bit	VCCQ voltage window	eMMC
[31]	Card power up statu	ıs bit (busy) ⁽¹⁾
[30:29]	Access Mode	00b (byte mode) 10b (sector mode)
[28:24]	Reserved	0 0000Ь
[23:15]	2.7V - 3.6V	1 1111 1111 b
[14:8]	2.0V - 2.6V	000 0000Ь
[7]	1.7V~1.95V	1b
[6:0]	Reserved	000 0000Ь

Table 8-2 OCR Table

(1) This bit is set to LOW if the Device has not finished the power up routine.

8.2. SD Card Identification Register (CID)

The Device IDentification (CID) register is 128 bits wide. It contains the Device identification information used during the Device identification phase. Every type of eMMC Device shall have a unique identification number. The structure of the CID register is defined in the following table.

CID bit	width	Name	Field
[127:120]	8	Manufacture ID	MID
[119:114]	6	Reserved	-
[113:112]	2	Device/BGA	CBX
[111:104]	8	OEM/Application ID	OID
[103:56]	48	Product Name	PNM
[55:48]	8	Product Revision	PRV
[47:16]	32	Product Serial Number	PSN
[15:8]	8	Manufacturing Date	MDT
[7:1]	7	CRC7 check sum	CRC
[0]	1	Not used, always '1'	-

Table 8-3 CID Table

8.3. Driver Stage Register (DSR)

The 16-bit driver stage register (DSR) is optionally used to improve the bus performance for extended operating conditions. The CSD register carries the information about the DSR register usage. The default value of the DSR register is 0x404.

8.4. Relative Card Address Register (RCA)

The writable 16-bit relative Device address (RCA) register carries the Device address assigned by the host during the Device identification. This address is used for the addressed host-Device communication after the Device identification procedure. The default value of the RCA register is 0x0001. The value 0x0000 is reserved to set all Devices into the Stand-by State with CMD7.

8.5. Card Specific Data Register (CSD)

The Device-Specific Data (CSD) register provides information on how to access the Device contents. The CSD defines the data format, error correction type, maximum data access time, data transfer speed, whether the DSR register can be used etc. The programmable part of the register (entries marked by W or E below) can be changed by CMD27.

CSD bit	Width	Name	Field	Type	Value	Note
[127:126]	2	CSD structure	CSD_STRUCTURE	R	3h	
[125:122]	4	System specification version	SPEC_VERS	R	4h	
[121:120]	2	Reserved	-	-	-	-
[119:112]	8	Data read access-time 1	TAAC	R	FFh	1 ms
[111:104]	8	Data read access-time 2	NSAC	R	FFh	
[103:96]	8	Max. data transfer rate	TRAN_SPEED	R	32h	25 MHz
[95:84]	12	Device command classes	CCC	R	1F5h	
[83:80]	4	Max. read data block length	READ_BL_LEN	R	9h	512 bytes
[79]	1	Partial block read allowed	READ_BL_PARTI AL	R	0b	Not Support
[78]	1	Write block misalignment	WRITE_BLK_MIS ALIGN	R	0b	Not Support
[77]	1	Read block misalignment	READ_BLK_MISA LIGN	R	0b	Not Support
[76]	1	DSR implemented	DSR_IMP	R	0b	Not support
[75:74]	2	Reserved	-	-	-	-
[73:62]	12	Device size	C_SIZE	R	FFFh	>2GB
[61:59]	3	Max. read current @ VDD min	VDD_R_CURR_MI N	R	3h	
[58:56]	3	Max. read current @ VDD max	VDD_R_CURR_M AX	R	7h	
[55:53]	3	Max. write current @ VDD min	VDD_W_CURR_M IN	R	3h	
[52:50]	3	Max. write current @ VDD max	VDD_W_CURR_M AX	R	7h	
[49:47]	3	Device size multiplier	C_SIZE_MULT	R	7h	
[46:42]	5	Erase group size	ERASE_GRP_SIZE	R	1Fh	
[41:37]	5	Erase group size multiplier	ERASE_GRP_MUL T	R	1Ch	
[36:32]	5	Write protect group size	WP_GRP_SIZE	R	Oh	
[31]	1	Write protect group enable	WP_GRP_ENABLE	R	1b	

CSD bit	Width	Name	Field	Type	Value	Note
[30:29]	2	Manufacturer default ECC	DEFAULT_ECC	R	0h	
[28:26]	3	Write speed factor	R2W_FACTOR	R	2h	4X
[25:22]	4	Max. write data block length	WRITE_BL_LEN	R	9h	512 bytes
[21]	1	Partial block write allowed	WRITE_BL_PARTI AL	R	0b	Not Support
[20:17]	4	Reserved	-	-	-	-
[16]	1	Content protection application	CONTENT_PROT_ APP	R	0b	
[15]	1	File format group	FILE_FORMAT_G RP	R/W	0b	HD like FAT
[14]	1	Copy flag (OTP)	COPY	R/W	0b	Not copied
[13]	1	Permanent write protection	PERM_WRITE_PR OTECT	R/W	0b	Not protected
[12]	1	Temporary write protection	TMP_WRITE_PRO TECT	R/W/ E	0b	Not protected
[11:10]	2	File format	FILE_FORMAT	R/W	0h	HD like FAT
[9:8]	2	ECC code	ECC	R/W/ E	0h	None
[7:1]	7	CRC	CRC	R/W/ E	-	-
[0]	1	Not used, always '1'	-		1b	-

Table 8-4 CSD Table

8.6. Extended CSD register

The Extended CSD register defines the Device properties and selected modes. It is 512 bytes long. The most significant 320 bytes are the Properties segment, that defines the Device capabilities and cannot be modified by the host. The lower 192 bytes are the Modes segment, that defines the configuration the Device is working in. These modes can be changed by the host by means of the SWITCH command.

Extend CSD bit	Width	Name	Field	Type	Value	Note	
Properties Segment							
[511:506]	6	Reserved	-	-	-	-	
[505]	1	Extend Security Command Error	EXT_SECURITAY	R	0h		

Extend CSD bit	Width	Name	Field	Type	Value	Note
[504]	1	Supported Command Sets	S_CMD_SET	R	1h	
[503]	1	HPI features	HPI_FEATURES	R	1h	
[502]	1	Background operations support	BKOPS_SUPPORT	R	1h	
[501]	1	Max packed read commands	MAX_PACKED_R EADS	R	3Fh	
[500]	1	Max packed write commands	MAX_PACKED_W RITES	R	3Fh	
[499]	1	Data Tag Support	DATA_TAG_SUPP ORT	R	1h	
[498]	1	Tag Unit Size	TAG_UNIT_SIZE	R	3h	
[497]	1	Tag Resources Size	TAG_RES_SIZE	R	0h	
[496]	1	Context management capabilities	CONTEXT_CAPA BILITIES	R	5h	
[495]	1	Large Unit size	LARGE_UNIT_SIZ E_M1	R	Bh	
[494]	1	Extended partitions attribute support	EXT_SUPPORT	R	3h	
[493]	1	Supported modes	SUPPORTED_MO DES	R	1h	
[492]	1	FFU features	FFU_FEATURES	R	0h	
[491]	1	Operation codes timeout	OPERATION_COD E_TIMEOUT	R	0h	
[490:487]	4	FFU Argument	FFU_ARG	R	41536 F6Ch	
[486]	1	Barrier support	BARRIER_SUPPO RT	R	0h	
[485:309]	177	Reserved	-	-	-	-
[308]	1	CMD Queuing Support	CMDQ_SUPPORT	R	0h	_

Extend CSD bit	Width	Name	Field	Type	Value	Note
[307]	1	CMD Queuing Depth	CMDQ_DEPTH	R	0h	
[306]	1	Reserved	-	-	-	-
[305:302]	4	Number of FW sectors correctly programmed	NUMBER_OF_FW _SECTORS_CORR ECTLY_PROGRA MMED	R	Oh	
[301:270]	32	Vendor proprietary health report	VENDOR_PROPRI ETARY_HEALTH_ REPORT	R	Oh	
[269]	1	Device life time estimation type B	DEVICE_LIFE_TI ME_EST_TYP_B	R	Oh	
[268]	1	Device life time estimation type A	DEVICE_LIFE_TI ME_EST_TYP_A	R	Oh	
[267]	1	Pre EOL information	PRE_EOL_INFO	R	1h	
[266]	1	Optimal read size	OPTIMAL_READ_ SIZE	R	8h	
[265]	1	Optimal write size	OPTIMAL_WRITE _SIZE	R	8h	
[264]	1	Optimal trim unit size	OPTIMAL_TRIM_ UNIT_SIZE	R	4h	
[263:262]	2	Device version	DEVICE_VERSIO N	R	406h	
[261:254]	8	Firmware version	FIRMWARE_VER SION	R	1h	
[253]	1	Power class for 200MHz, DDR at VCC= 3.6V	PWR_CL_DDR_20 0_360	R	Oh	
[252:249]	4	Cache size	CACHE_SIZE	R	100h	32KB
[248]	1	Generic CMD6 timeout	GENERIC_CMD6_ TIME	R	Ah	
[247]	1	Power off notification(long) timeout	POWER_OFF_LON G_TIME	R	64h	

Extend CSD bit	Width	Name	Field	Туре	Value	Note
[246]	1	Background operations status	BKOPS_STATUS	R	0h	
[245:242]	4	Number of correctly programmed sectors	CORRECTLY_PRG _SECTORS_NUM	R	Oh	
[241]	1	Number of correctly programmed sectors	INI_TIMEOUT_AP	R	1Eh	
[240]	1	Cache Flushing Policy	CACHE_FLUSH_P OLICY	R	1h	
[239]	1	Power class for 52MHz, DDR at VCC = 3.6V	PWR_CL_DDR_52 _360	R	Oh	
[238]	1	Power class for 52MHz, DDR at VCC = 1.95V	PWR_CL_DDR_52 _195	R	Oh	
[237]	1	Power class for 200MHz at VCCQ =1.95V, VCC = 3.6V	PWR_CL_200_195	R	Oh	
[236]	1	Power class for 200MHz, at VCCQ =1.3V, VCC = 3.6V	PWR_CL_200_130	R	Oh	
[235]	1	Minimum Write Performance for 8bit at 52MHz in DDR mode	MIN_PERF_DDR_ W_8_52	R	Oh	
[234]	1	Minimum Read Performance for 8bit at 52MHz in DDR mode	MIN_PERF_DDR_ R_8_52	R	Oh	

Extend CSD bit	Width	Name	Field	Туре	Value	Note
[233]	1	Reserved	-	-	-	-
[232]	1	TRIM Multiplier	TRIM_MULT	R	2h	
[231]	1	Secure Feature support	SEC_FEATURE_S UPPORT	R	55h	
[230]	1	Secure Erase Multiplier	SEC_ERASE_MUL T	R	F0h	
[229]	1	Secure TRIM Multiplier	SEC_TRIM_MULT	R	F0h	
[228]	1	Boot information	BOOT_INFO	R	7h	
[227]	1	Reserved	-	-	-	-
[226]	1	Boot partition size	BOOT_SIZE_MUL T	R	20h	
[225]	1	Access size	ACC_SIZE	R	7h	
[224]	1	High-capacity erase unit size	HC_ERASE_GRP_ SIZE	R	1h	
[223]	1	High-capacity erase timeout	ERASE_TIMEOUT _MULT	R	Ah	
[222]	1	Reliable write sector count	REL_WR_SEC_C	R	1h	
[221]	1	High-capacity write protect group size	HC_WP_GRP_SIZ E	R	10h	
[220]	1	Sleep current (VCC)	S_C_VCC	R	7h	
[219]	1	Sleep current (VCCQ)	S_C_VCCQ	R	7h	
[218]	1	Production state awareness timeout	PRODUCTION_ST ATE_AWARENES S_TIMOUT	R	Dh	
[217]	1	Sleep/awake timeout	S_A_TIMEOUT	R	15h	
[216]	1	Sleep Notification Timeout	SLEEP_NOTIFICA TION_TIME	R	7h	
[215:212]	4	Sector Count	SEC_COUNT	R	-	Depend on eMMC size

Extend CSD bit	Width	Name	Field	Туре	Value	Note
[211]	1	Secure Write Protect Information	SECURE_WP_INF O	R	0h	
[210]	1	Minimum Write Performance for 8bit at 52 MHz	MIN_PERF_W_8_5	R	0h	
[209]	1	Minimum Read Performance for 8bit at 52 MHz	MIN_PERF_R_8_5 2	R	0h	
[208]	1	Minimum Write Performance for 8bit at 26 MHz, for 4bit at 52MHz	MIN_PERF_W_8_2 6_4_52	R	Oh	
[207]	1	Minimum Read Performance for 8bit at 26 MHz, for 4bit at 52MHz	MIN_PERF_R_8_2 6_4_52	R	Oh	
[206]	1	Minimum Write Performance for 4bit at 26 MHz	MIN_PERF_W_4_2	R	Oh	
[205]	1	Minimum Read Performance for 4bit at 26 MHz	MIN_PERF_R_4_2 6	R	Oh	
[204]	1	Reserved	-	-	-	-
[203]	1	Power class for 26 MHz at 3.6 V 1 R	PWR_CL_26_360	R	Oh	
[202]	1	Power class for 52 MHz at 3.6 V 1 R	PWR_CL_52_360	R	Oh	
[201]	1	Power class for 26 MHz at 1.95 V 1 R	PWR_CL_26_195	R	0h	

Extend CSD bit	Width	Name	Field	Туре	Value	Note
[200]	1	Power class for 52 MHz at 1.95 V 1 R	PWR_CL_52_195	R	Oh	
[199]	1	Partition switching timing	PARTITION_SWIT CH_TIME	R	6h	
[198]	1	Out-of-interrupt busy timing	OUT_OF_INTERR UPT_TIME	R	19h	
[197]	1	I/O Driver Strength	DRIVER_STRENG TH	R	1Fh	
[196]	1	Device type	DEVICE_TYPE	R	57h	
[195]	1	Reserved	-	-	-	-
[194]	1	CSD STRUCTURE	CSD_STRUCTURE	R	2h	
[193]	1	Reserved	-	ı	ı	-
[192]	1	Extended CSD revision	EXT_CSD_REV	R	7h	
		T	Modes Segment			
[191]	1	Command set	CMD_SET	R/W/ E_P	0h	
[190]	1	Reserved	-	ı	-	-
[189]	1	Command set revision	CMD_SET_REV	R	0h	
[188]	1	Reserved	-	-	-	-
[187]	1	Power class	POWER_CLASS	R/W/ E_P	0h	
[186]	1	Reserved	-	-	-	-
[185]	1	High-speed interface timing	HS_TIMING	R/W/ E_P	0h	
[184]	1	Strobe Support	STROBE_SUPPOR T	R	Oh	
[183]	1	Bus width mode	BUS_WIDTH	W/E_ P	0h	
[182]	1	Reserved	-	1	-	-
[181]	1	Erased memory content	ERASED_MEM_C ONT	R	Oh	
[180]	1	Reserved	-	-	-	-

Extend CSD bit	Width	Name	Field	Type	Value	Note
[179]	1	Partition configuration	PARTITION_CON FIG	R/W/ E & R/W/ E_P	Oh	
[178]	1	Boot config protection	BOOT_CONFIG_P ROT	R/W & R/W/ C_P	0h	
[177]	1	Boot bus Conditions	BOOT_BUS_CON DITIONS	R/W/ E	Oh	
[176]	1	Reserved	-	1	-	-
[175]	1	High-density erase group definition	ERASE_GROUP_D EF	R/W/ E_P	Oh	
[174]	1	Boot write protection status registers	BOOT_WP_STAT US	R	Oh	
[173]	1	Boot area write protection register	BOOT_WP	R/W & R/W/ C_P	0h	
[172]	1	Reserved	-	-	-	-
[171]	1	User area write protection register	USER_WP	R/W, R/W/ C_P & R/W/ E_P	Oh	
[170]	1	Reserved	-	-	-	-
[169]	1	FW configuration	FW_CONFIG	R/W	0h	
[168]	1	RPMB Size	RPMB_SIZE_MUL T	R	20h	
[167]	1	Write reliability setting register	WR_REL_SET	R/W	1Fh	
[166]	1	Write reliability parameter register	WR_REL_PARAM	R	4h	

Extend CSD bit	Width	Name	Field	Type	Value	Note
[165]	1	Start Sanitize operation	SANITIZE_START	W/E_ P	0h	
[164]	1	Manually start background operations	BKOPS_START	W/E_ P	Oh	
[163]	1	Enable background operations handshake	BKOPS_EN	R/W & R/W/ E	Oh	
[162]	1	H/W reset function	RST_n_FUNCTION	R/W	0h	
[161]	1	HPI management	HPI_MGMT	R/W/ E_P	0h	
[160]	1	Partitioning Support	PARTITIONING_S UPPORT	R	7h	
[159:157]	3	Max Enhanced Area Size	MAX_ENH_SIZE_ MULT	R	-	Depend on flash and FW setting
[156]	1	Partitions attribute	PARTITIONS_ATT RIBUTE	R/W	0h	
[155]	1	Partitioning Setting	PARTITION_SETT ING_COMPLETED	R/W	0h	
[154:143]	12	General Purpose Partition Size	GP_SIZE_MULT	R/W	0h	
[142:140]	3	Enhanced User Data Area Size	ENH_SIZE_MULT	R/W	0h	
[139:136]	4	Enhanced User Data Start Address	ENH_START_ADD R	R/W	Oh	
[135]	1	Reserved	-	-	_	-
[134]	1	Bad Block Management mode	SEC_BAD_BLK_M GMNT	R/W	Oh	
[133]	1	Production state awareness	PRODUCTION_ST ATE_AWARENES S	R/W/ E	Oh	

Extend CSD bit	Width	Name	Field	Туре	Value	Note
[132]	1	Package Case Temperature is controlled	TCASE_SUPPORT	W/E_ P	Oh	
[131]	1	Periodic Wake-up	PERIODIC_WAKE UP	R/W/ E	0h	
[130]	1	Program CID/CSD in DDR mode support	PROGRAM_CID_C SD_DDR_SUPPOR T	R	1h	
[129:128]	2	Reserved	-	-	-	-
[127:64]	64	Vendor Specific Fields	VENDOR_SPECIFI C_FIELD	R	0h	
[63]	1	Native sector size	NATIVE_SECTOR _SIZE	R	Oh	
[62]	1	Sector size emulation	USE_NATIVE_SE CTOR	R/W	0h	
[61]	1	Sector size	DATA_SECTOR_S IZE	R	Oh	
[60]	1	1st initialization after disabling sector size emulation	INI_TIMEOUT_EM U	R	Oh	
[59]	1	Class 6 commands control	CLASS_6_CTRL	R/W/ E_P	Oh	
[58]	1	Number of addressed group to be Released	DYNCAP_NEEDE D	R	0h	
[57:56]	2	Exception events control	EXCEPTION_EVE NTS_CTRL	R/W/ E_P	0h	
[55:54]	1	Exception events status	EXCEPTION_EVE NTS_STATUS	R	Oh	
[53:52]	2	Extended Partitions Attribute	EXT_PARTITIONS _ATTRIBUTE	R/W	Oh	

Extend CSD bit	Width	Name	Field	Type	Value	Note
[51:37]	15	Context configuration	CONTEXT_CONF	R/W/ E_P	0h	
[36]	1	Packed command status	PACKED_COMMA ND_STATUS	R	0h	
[35]	1	Packed command failure index	PACKED_FAILUR E_INDEX	R	0h	
[34]	1	Power Off Notification	POWER_OFF_NOT IFICATION	R/W/ E_P	0h	
[33]	1	Control to turn the Cache ON/OFF	CACHE_CTRL	R/W/ E_P	0h	
[32]	1	Flushing of the cache	FLUSH_CACHE	W/E_ P	0h	
[31]	1	Control to turn the Barrier ON/OFF	BARRIER_CTRL	R/W	Oh	
[30]	1	Mode config	MODE_CONFIG	R/W/ E_P	0h	
[29]	1	Mode operation codes	MODE_OPERATIO N_CODES	W/E_ P	0h	
[28:27]	2	Reserved	-	-	-	-
[26]	1	FFU status	FFU_STATUS	R	0h	
[25:22]	4	Pre loading data size	PRE_LOADING_D ATA_SIZE	R/W/ E_P	0h	
[21:18]	4	Max pre loading data size	MAX_PRE_LOADI NG_DATA_SIZE	R	6D0E 00h	
[17]	1	Product state awareness enablemen	PRODUCT_STATE _AWARENESS_E NABLEMENT	R/W/ E & R	Oh	
[16]	1	Secure Removal Type	SECURE_REMOV AL_TYPE	R/W & R	9h	
[15]	1	Command Queue Mode Enable	CMDQ_MODE_EN	R/W/ E_P	0h	
[14:0]	1	Reserved	-	-	-	-

Table 8-5 Extend CSD Table

9. Production Specifications

9.1. Performance

Part Number	Capacities	Flash Type	Interleave Operation	Frequency / Mode	Flash I/O	Perform (MF Write	
MKEMB008GT1E-C	8GB	64Gb MLCx1	N	200MHz / HS400	3.3 v	41	105

sTable 9-1MKEMB008GT1E-C performance

9.2. Power Consumption

Operating Current

Part Number	Capacities	Flash Type	Interleave Operation	Frequency / Mode	Flash I/O	Ma Opera Curren Write	ating
MKEMB008GT1E-C	8GB	64Gb MLCx1	N	200MHz / HS400	3.3 v	50	100

Table 9-2MKEMB008GT1E-C Operating Current

Standby/Sleep Current

Part Number	Capacities	Flash Type	Interleave Operation	Standby Current (µA)	Sleep Current (µA)
MKEMB008GT1E-C	8GB	64Gb MLCx1	N	150	100

Table 9-3MKEMB008GT1E-C standby/sleep current

9.3. Endurance Test

9.3.1. BIT Test.

Test tool version: BIT 7.1 Pro.

Card Reader: SanDisk ImageMate All-in-One.

Part Number	Capacities	Flash Type	Operation System	Test Time (hr.)	Sleep Current (µA)
MKEMB008GT1E-C	8GB	64Gb MLCx1	Win10 x64	168	Pass

Table 9-4MKEMB008GT1E-C Bit Test

9.3.2. Junior Test

Test tool version: Junior V2.22 DEC 6 2000. Card Reader: SanDisk ImageMate All-in-One.

Part Number	Capacities	Flash Type	Operation System	Test Time (hr.)	Sleep Current (µA)
MKEMB008GT1E-C	8GB	64Gb MLCx1	Win10 x64	168	Pass

Table 9-5MKEMB008GT1E-C Junior Test

9.4. Package Dimension

Figure 9-1 Package Outline Dimension Drawing

E1

9.5. MKEMB008GT1E-C Partition Configuration

Partition Table	Percentage
Boot1Partition	4MB/default
Boot2 Partition	4MB/default
RPMB Partition	4MB/default
User Partition	7363MB

TABLE 11-1 MKEMB008GT1E-C Partition Configuration Table