REGULATION BY PROTEIN SWITCHES

Dr. Zhiyi Wei SUSTC

Cell need many switches

- Molecular switches
 - Many cellular processes are not continuous, which require cycle between "on" and "off" states
 - To control
 - Cell growth
 - Cell division
 - Cellular response to extracellular signaling
 - Vesicular transport
 - Protein synthesis
 - Cytoskeleton dynamics
 - ...

The basis of protein switch

- Conformational changes driven by nucleotide binding and hydrolysis
 - Most protein switches are enzymes that catalyze the hydrolysis of a nucleoside triphosphate to the diphosphate
 - GTPase
 - GTP -> GDP
 - GTP bound state
 - GDP bound state
 - ATPase
 - ATP -> ADP
 - ATP bound state
 - ADP bound state
 - Two-component response regulator
 - Found only in microbes and plants
 - composed of a histidine protein kinase and a second "response regulator" protein

Nucleotide switch proteins share common structural and functional features

The minimal GTPase G domain (PDB 4Q21)

The ATPase domain of the mitotic spindle kinesin Eg5 (PDB 1II6)

P-loop: phosphate-binding loop, binding the α - and β -phosphates of the nucleotide **Switch I** & **Switch II**: together with Mg²⁺ ion to bind with the triphosphate forms and undergo conformational changes after hydrolysis

The universal switch mechanism of GTPase/ATPase

The "on" state

- Triphosphate-bound state
- "Spring-loaded"
 - the terminal γ-phosphate group of the bound nucleotide makes a number of interactions with the two switch regions

The "off" state

- Diphosphate-bound state
- Loss of the γ-phosphate group by hydrolysis provides the trigger for conformational change

Switching cycle

- The switching cycle of nucleotide hydrolysis and exchange in G proteins is modulated by the binding of other proteins
- GEF: guanine-nucleotide exchange factor
 - Activator, "off" -> "on"
 - Accelerating the GDP to GTP exchange on GTPase
- GAP: GTPase-activating protein
 - Inhibitor, "on" -> "off"
 - Accelerating the GTP hydrolysis

Small G proteins

- Without other factors, GTP usually binds weaker with GTPase than GDP
- GTPases not very efficient
- The lifetime of the signal transduced by Ras is determined by the lifetime of the GTP-bound state
- A GTPase can be regulated by different GEF and GAP

protein in complex with GPCR

Heterotrimeric G protein

(RGS proteins)

Motor protein switches

- Molecular motor are mostly ATPases
 - Cytoskeleton motors
 - Myosin/Kinesin/Dynein
 - ATP-dependent nucleotide switches that move along actin filaments and microtubules respectively
 - Rotary motors
 - ATP synthase/flagellum
- Common feature of molecular motors
 - Containing a core ATPase domain
 - Binds and hydrolyzes ATP
 - Switching between different conformations
 - ATP bound state
 - ADP bound state

Myosin

Dynein

Motor share similar switching mechanism with G protein

Yellow for the nucleoside diphosphate-bound conformation **Red** for the triphosphate-bound conformation

Two-component signaling systems

- Bacteria use a different class of molecular switches with eukaryotic cells
 - G proteins and motor ATPases are generally absent from prokaryotes
 - Two-component systems
- Component 1: histidine protein kinase (HK)
 - Typically a transmembrane protein
 - Composed of a periplasmic sensor domain
 - detects stimuli
 - and cytoplasmic histidine kinase domains
 - catalyze ATP-dependent autophosphorylation
- Component 2: cytoplasmic response regulator protein (RR)
 - Activated by the histidine kinase

Two-component signaling mechanism

- Stimuli detected by the sensor domain of the histidine kinase regulate the kinase's activities
- The kinase catalyzes ATPdependent autophosphorylation of a specific histidine residue
- The RR then catalyzes transfer of the phosphoryl group from this phosphorylated histidine to one of its own aspartate residues, located on the regulatory domain
- Phosphorylation of the regulatory domain of the RR activates an effector domain that produces the specific output response

BIO446 Protein Structure and Function

PDB101: http://pdb101.rcsb.org/motm/190

The regulatory domain of RR is the keys for switching

- The regulatory domains of RRs have three activities
 - Interacting with phosphorylated histidine kinase and catalyzing transfer of a phosphoryl group to one of their own aspartate residues
 - Acting as phosphatases that catalyze their own dephosphorylation
 - the counterpart to the GTPase activity of the G proteins
 - Regulating the activities of their associated effector domains (or effector proteins) in a phosphorylation-dependent manner
- The different lifetimes of different regulators allow twocomponent signal systems to regulate a wide variety of cellular processes

Conserved features of RR regulatory domains

The bacterial RR CheY

The phosphorylation-induced conformational change

- RRs shares a common mechanism in regulatory domain
 - The conserved active-site aspartate, in which phosphorylation is associated with an altered conformation of the regulatory domain
 - The structural changes propagate from the active site

Three RRs' structures from different bacteria Protein Phosphorylation in Human Health

Differences in effector domain indicate different strategies adopted by RRs for regulation to achieve function diversity