1. q)
$$(\sin \pi \cos 2\pi)' = \sin \pi \cos \pi + \sin \pi \cos \pi =$$

 $= \cos^2 \pi + (-\sin^2 \pi) = \cos^2 \pi - \sin \pi =$
 $= \cos^2 \pi$

b)
$$(\ln (2x+1)^{3})' = \frac{1}{(2x+1)^{3}} \cdot ((2x+1)^{3})' = \frac{2(2x+1)^{2}}{(2x+1)^{3}} \cdot (2x+1)' = \frac{4}{2x+1}$$

c) $(\sqrt{2x+1})^{3} \cdot (2x+1)' = \frac{4}{2x+1}$

$$= \frac{2(2x+1)^{2}}{(2x+1)^{3}} \cdot (2x+1)' = \frac{4}{2x+1}$$

$$= \frac{4}{2x+1} \cdot (\ln(x^{3}))' \cdot (\ln(x^{3}))' = \frac{1}{2\sqrt{2x+1}} \cdot (\ln(x^{3}))'$$

2.
$$f(x) = \cos^{2}(x^{2} + 3x)$$
, $7_{0} = \sqrt{n}$.
 $f'(x) = -\sin(x^{2} + 3x) \cdot (x^{2} + 3x)' = ...$
 $= -\sin(x^{2} + 3x) \cdot (x + 3) = ...$
 $= -\sin(\pi + 3\sqrt{n}) \cdot (\pi + 3)$.

3.
$$f(\pi) = \frac{\chi^3 - \chi^2 - \chi - 1}{1 + 2\chi + 3\chi^2 - 4\chi^3}$$
, $\chi_0 = 0$.

. $f'(\chi) = \frac{(3\chi^2 - 2\chi - 1)(1 + 2\chi + 3\chi^2 - 4\chi^3) - (1 + 2\chi + 3\chi^2 - 4\chi^3)^2}{(1 + 2\chi + 3\chi^2 - 4\chi^3)^2}$

. $-(\chi^3 - \chi^2 - \chi - 1)(2 + 6\chi - 12\chi^2)$

. regionalbaseur $\chi_0 = 0$

. $f'(0) = \frac{(0 - 0 - 1)(1 + 0) - (0 - 1)(2 + 0)}{(1 + 0)^2} = 1$

4.
$$f(x) = \sqrt{3x} \cdot \ln x$$
, $x_0 = 1$
 $f(x) = (\sqrt{3x})' \ln x + \sqrt{3x} \cdot (\ln x)' = \frac{1}{2\sqrt{3x}} \cdot \ln x \cdot (3x)' + \frac{\sqrt{3x}}{x} = \frac{1}{2\sqrt{3x}} \cdot \ln x \cdot (3x)' + \frac{\sqrt{3}}{x} = \frac{1}{2\sqrt{3x}} \cdot \ln x \cdot (3x)' + \frac{\sqrt{3}}{x} = \frac{1}{2\sqrt{3x}} \cdot \ln x + 2\sqrt{3}' \cdot \ln x + 2\sqrt{3}'$