Цель работы: предложить алгоритм вычисления управляющих напряжений, подаваемых на заданное биморфное зеркало, на основе данных о форме фронта падающей волны. На основе предложенного алгоритма написать программу и проанализировать возможности зеркала.

Введение: Одним из путей улучшения характеристик современных оптических систем и расширения их возможностей является применение зеркал с управляемой отражающей поверхностью. Как правило, адаптивные зеркала используются для компенсации искажений волнового фронта излучения. В ряде задач, например, при динамической фокусировке лазерного пучка, существенное улучшение параметров оптической системы достигается за счет компенсации в первую очередь крупномасштабных искажений волнового фронта - дефокусировки, астигматизма, сферической аберрации. В этом случае бывает удобно использовать биморфные адаптивные зеркала [1], в которых отражающая поверхность управляется за счет деформаций полупассивного биморфа, образованного пьезокерамической и зеркальной пластинами. Деформация такого зеркала происходит за счет поперечного пьезоэффекта, возникающего под действием приложенного к пьезоэлектрической пластине напряжения. Отклик зеркала является существенно нелокальным. Как правило, при возбуждении одного из приводов деформируется вся пластина. Для описания такого рода деформаций удобно разлагать их по какой-либо системе функций, например, по полиномам Цернике [2], широко используемым для описания аберраций в оптических системах. Искажения волнового фронта также удобно описывать с помощью этих полиномов, что существенно используется в данной работе.

Характеристики заданного зеркала. Используется деформируемое биморфное зеркало DM2-30-17, основные технические параметры которого представлены в таблице:

Апертура зеркала, мм	40
Оптически используемый диаметр, мм	30
Толщина зеркала, мм	3.5
Число пьезо-дисков, мм	2
Диаметр пьезо-дисков, мм	30
Толщина пьезо-дисков, мм	0.35
Малориал полномии	стоино

Материал подложки стекло LK-105

Число управляющих электродов 17 Диапазон управляющих напряжений, В ± 300 Габариты держателя (включая разъемы), мм $\emptyset 60$ х42

Коэффициенты разложения функций отклика DM2-30-17 по полиномам Фурье:

Channel	Voltage,	Zernike term value, μm												
#	V	Z4	Z_5	Z 6	Z 7	Z8	Z 9	Z10	Z11	Z12	Z13	Z14	Z15	Z16
1	100	0.716	0.008	-0.007	-0.023	-0.001	0.022	-0.008	0.006	-0.011	-0.003	0.018	-0.003	-0.004
2	200	0.212	0.151	0.011	-0.002	0.158	0.009	-0.002	0.028	-0.059	-0.005	0.007	-0.021	-0.011
3	200	0.204	-0.018	-0.159	0.132	0.115	0.013	0.011	-0.008	-0.002	0.056	-0.021	-0.012	-0.011
4	200	0.190	-0.169	-0.040	0.193	0.013	0.018	-0.019	-0.002	0.064	0.011	-0.030	0.005	-0.013
5	200	0.199	-0.025	0.142	0.147	-0.112	0.009	0.008	0.022	0.020	-0.050	-0.018	0.023	-0.011
6	200	0.216	0.141	0.050	0.036	-0.190	-0.001	0.012	-0.001	-0.040	-0.016	-0.001	0.040	-0.010
7	200	0.210	0.033	-0.126	-0.119	-0.154	-0.001	-0.022	0.012	-0.009	0.065	0.022	0.036	-0.011
8	200	0.197	-0.123	-0.034	-0.200	-0.037	0.003	0.026	0.022	0.066	0.018	0.046	0.003	-0.016
9	200	0.216	-0.016	0.127	-0.163	0.108	-0.007	0.001	-0.010	0.010	-0.056	0.029	-0.027	-0.014
10	200	0.065	0.235	-0.172	0.018	0.042	0.020	0.056	0.050	-0.053	0.043	0.011	0.026	0.002
11	200	0.062	-0.182	-0.219	0.062	-0.008	0.024	-0.023	-0.077	0.024	0.054	0.021	0.026	0.005
12	200	0.071	-0.199	0.146	0.056	-0.026	0.027	-0.044	0.078	0.049	-0.025	0.025	-0.002	-0.004
13	200	0.067	0.175	0.205	0.022	-0.045	0.023	0.092	-0.040	-0.046	-0.055	0.011	-0.029	0.001
14	200	0.058	0.219	-0.171	-0.011	-0.049	0.018	-0.078	-0.048	-0.057	0.036	-0.009	-0.023	0.004
15	200	0.061	-0.158	-0.214	-0.042	-0.053	0.023	0.028	0.089	0.041	0.047	-0.021	-0.008	-0.005
16	200	0.054	-0.204	0.173	-0.040	-0.005	0.023	0.051	-0.085	0.032	-0.033	-0.023	0.016	0.002
17	200	0.056	0.177	0.199	-0.021	0.053	0.020	-0.100	0.017	-0.054	-0.035	-0.010	0.027	0.004

графическое представление функций отклика см. в Приложении.

Основной алгоритм: Предложенный алгоритм предполагает использование зеркала в системах фазового сопряжения [3, Глава 1.\$4]. Будем полагать, что зеркало имеет R каналов управления. Тогда вносимое зеркалом искажение имеет вид

$$D = \sum_{j=1}^{R} a^j S_j,$$

где a^j - управляющие напряжения, $S_j = S_j(r,\theta)$ - соответствующие функции отклика. В свою очередь,

$$S_j = \sum_{i=1}^{\infty} b_j^i Z_i,$$

где b_j^i - табличные значения коэффициентов разложения функций отклика по полиномам Цернике (не указанные в таблице коэффициенты считаются равными нулю) $Z_i=Z_i(r,\theta)$ - полиномы Цернике, определяемые следующим образом:

$$Z_i(r,\theta) = \left\{ \begin{array}{ll} \sqrt{n+1} R_n^m(r) \sqrt{2} \cos m\theta, & (i \text{ четно} & m \neq 0) \\ \sqrt{n+1} R_n^m(r) \sqrt{2} \sin m\theta, & (i \text{ нечетно} & m \neq 0) \\ \sqrt{n+1} R_n^0(r), & m = 0 \end{array} \right.$$

$$R_n^m(r) = \sum_{s=0}^{(n-m)/2} \frac{(-1)^s (n-s)! r^{n-2s}}{s![(n+m)/2-s]![(n-m)/2-s]!}, m < n, n-|m|$$
 - четное

Условие ортогональности в круге выглядит следующим образом:

$$\langle Z_i Z_j \rangle \equiv \frac{1}{\pi} \int_{(0 \le r \le 1)} Z_i(\overrightarrow{r}) Z_j(\overrightarrow{r}) d^2 \overrightarrow{r} = \delta_{ij}$$

и проверяется непосредственной подстановкой. Требуется найти $A = (a^j)$. Введем функционал

$$\mathcal{F} \equiv \sum_{(r,\theta)} (D+F)^2,$$

где $F = F(r, \theta)$ - фронт падающей волны и суммирование производится по конечному набору точек (r, θ) единичного круга. Задача сводится к нахождению A, для которого $\mathcal{F} = min$, т.е.

$$\mathcal{F} = \sum_{(r,\theta)} (\sum_{j=1}^{R} a^{j} S_{j} + F)^{2} = min$$

Необходимое условие на экстремум: $\frac{\partial \mathcal{F}}{\partial a^k} = 0$, $k = \overline{1,R}$. Учитывая, что $\frac{\partial}{\partial a^k} \sum_{j=1}^R a^j S_j = \sum_{j=1}^R \delta_k^j S_j = S_k$, имеем:

$$\sum_{(r,\theta)} [2(\sum_{j=1}^{R} a^{j} S_{j} + F) S_{k}] = 0,$$

$$-\sum_{(r,\theta)} S_k \sum_{j=1}^R a^j S_j = \sum_{(r,\theta)} F S_k,$$

меняя порядок суммирования имеем окончательно

$$-\sum_{j=1}^{R} a^{j} \sum_{(r,\theta)} S_{k} S_{j} = \sum_{(r,\theta)} F S_{k}$$

Проверка на достаточность: $\frac{\partial^2 \mathcal{F}}{\partial a^{k^2}} = \sum_{(r,\theta)} 2S_k^2 \geqslant 0$. Равенство нулю достигается только если все

 $S_k=0$, что в нашем случае не имеет смысла. Следовательно $\frac{\partial^2 \mathcal{F}}{\partial a^{k^2}}>0$ и найденные из необходимого условия значения отвечают локальному минимуму. Пусть теперь

$$b_{kj} \equiv \sum_{(r,\theta)} S_k S_j$$
 и $c_k \equiv -\sum_{(r,\theta)} F S_k$,

тогда

$$b_{kj}a^j = c_k \tag{1}$$

или в матричном виде: B*A=C. Таким образом, получена связь (1) между управляющими напряжениями и формой падающего фронта. Можно было бы выразить искомый набор значений как $A=B^{-1}*C$, однако на практике это мало эффективно, так как, при большом числе каналов управления, требуется значительное время на обращение матрицы B. Вернемся к выражению B*A=C и

будем рассматривать его как матричную запись системы линейных алгебраических уравнений относительно переменных a^j . Представим матрицу B в виде произведения нижнетреугольной матрицы L с единичной главной диагональю и верхнетреугольной матрицы U:

$$B = L * U$$

Тем самым мы сведем задачу к решению двух систем с треугольными матрицами.

Алгоритм построения LU-разложения. Пусть требуется найти нижнюю треугольную матрицу $L = (l_{ij})$ и верхнюю треугольную матрицу $U = (u_{ij})$ с единицами на главной диагонали такую, что B = L * U, т.е.

$$\sum_{i=1}^{R} l_{ij} u_{jk} = b_{ik}, \ i, k = 1, \dots, R.$$
 (2)

Поскольку $l_{ij}=0$ при $i< j,\ u_{jk}=0$ при $j< k,\ u_{jj}=1,\ {\rm тo}\ (2)$ есть система из R^2 уравнений относительно R(R+1)/2 неизвестных $l_{ij}, i\geq j$ и R(R-1)/2 неизвестных $u_{jk}, j< k,$ всего $R(R+1)/2+R(R-1)/2=R^2$ неизвестных. Получим формулы для решения системы (2), которые и составляют алгоритм нахождения LU-разложения.

В силу $l_{ij} = 0$ при $i < j, \ u_{jk} = 0$ при j < k сумма (2) имеет вид

$$\sum_{j=1}^{\min\{i,k\}} l_{ij} u_{jk} = b_{ik}, \ i, k = 1, \dots, R,$$

или

$$\begin{bmatrix} \sum_{j=1}^{k} l_{ij} u_{jk} = b_{ik}, & k \leq i, & i, k = 1, \dots, R, \\ \sum_{j=1}^{i} l_{ij} u_{jk} = b_{ik}, & k > i, & i, k = 1, \dots, R. \end{bmatrix}$$

Выделим в первой из этих сумм отдельно случай k=1, а во второй - случай i=1 и учтем, что $u_{kk}=1$ для всех $k=1,\ldots,R$,

$$\begin{bmatrix}
l_{i1} = b_{il}, & i = 1, \dots, R, \\
\sum_{j=1}^{k-1} l_{ij} u_{jk} + l_{ik} = b_{ik}, & 1 < k \le i, & i, k = 2, \dots, R. \\
l_{11} u_{1k} = b_{1k}, & i = 2, \dots, R, \\
\sum_{j=1}^{i-1} l_{ij} u_{jk} + l_{ii} u_{ik} = b_{ik}, & k > i > 1, & i, k = 2, \dots, R.
\end{bmatrix}$$

Перегруппируем эти формулы:

$$\begin{bmatrix}
l_{i1} = b_{il}, & i = 1, \dots, R, \\
u_{1k} = b_{1k}/l_{11} & k = 2, \dots, R.
\end{bmatrix}$$

$$\begin{bmatrix}
l_{ik} = b_{ik} - \sum_{j=1}^{k-1} l_{ij}u_{jk}, & 1 < k \le i, & i, k = 2, \dots, R.
\end{bmatrix}$$

$$u_{ik} = (a_{ik} - \sum_{j=1}^{i-1} l_{ij}u_{jk})/l_{ii}, & k > i > 1, & i, k = 2, \dots, R.$$
(3)

Процесс вычисления по этим формулам строится следующим образом: вначале по первой из формул (3) вычисляются неизвестные элементы первого столбца матрицы $L: l_{i1}, i=1,\ldots,R$, затем по второй из формул (3) вычисляются неизвестные элементы первой строки матрицы $U: u_{ik}, k=2,\ldots,R$ (напомним, элемент u_{11} известен, он равен 1). Далее в вычислениях участвуют только третья и четвертая из формул (3). По третьей формуле (3) вычисляются неизвестные элементы второго столбца матрицы $L: l_{i2}, i=2,\ldots,R$ (напомним, $l_{12}=0$, так как L-нижняя треугольная) $l_{i2}=b_{i2}-l_{i1}u_{12}, i=2,\ldots,R$. По четвертой формуле (3) вычисляются неизвестные

элементы второй строки матрицы $U: u_{2k}, k=3,\ldots,R$ (напомним, $u_{21}=0$, т.к. U-верхняя треугольная, $u_{22}=1$, так как U имеет единичную главную диагональ)

$$u_{2k} = (a_{2k} - l_{21}u_{1k})/l_{22}, \ k = 3, \dots, R.$$

Затем по третьей формуле (3) вычисляются неизвестные элементы третьего столбца матрицы $L: l_{i3}, i=3,\ldots,R$, а по четвертой формуле (3) вычисляются неизвестные элементы третьей строки матрицы $U: u_{3k}, k=4,\ldots,R$ и так далее. Оценка числа операций для такого алгоритма выполнена в $[4, \S 4]$.

Анализ возможностей DM2-30-17. Проведем оценку эффективности зеркала на основе написанной программы. Основную величину, по которой мы будем судить о качестве компенсации искажений, назовем "сглаживанием":

$$\Psi = \frac{S_{before}}{S_{after}} = \sqrt{\frac{\sum\limits_{(r,\theta)} (F - \overline{F})^2}{\sum\limits_{(r,\theta)} ((F + D) - \overline{(F + D)})^2}},$$

где S_{before} - среднеквадратичное отклонение формы фронта падающей волны от плоского (на уровне среднего \overline{F}) до компенсации, S_{after} - после компенсации, а суммирование ведется по одному набору точек. Если $\Psi\gg 1$, то использование адаптивного зеркала оправдано. Если $\Psi=1$, то компенсация несущественна и нет смысла использовать данное адаптивное зеркало, если $\Psi<1$, то следует увеличить число точек, по которым производится аппроксимация и вычисление Ψ , а затем повторить расчет.

Оценочный расчет Ψ с помощью программы дает следующие результаты ("чистые" искажения)

искажение	наклон	дефокус	астигматизм	кома	сферич. аберр.
$\sim 0.01\lambda$	1	107	102	58	53
$\sim 0.1\lambda$	1	107	102	58	53
$\sim 1\lambda$	1	2.2	1.3	3.4	1.5
$\sim 10\lambda$	1	1	1	1	1

Несколько изображений начального фронта и его аппроксимации, полученной с помощью программы, представлены в приложении (аппроксимация по 100 точкам).

Отсюда видно, что зеркало не предназначено для компенсации наклонов (как, собственно, большинство зеркал такого типа - для компенсации наклонов можно использовать более дешевые средства), видно также, что эффективность зеркала падает с увеличением степени полинома и с ростом величины искажений. Причем оптимальный вариант его использования - значения порядка длины волны и меньше. Что касается выбранного числа точек, по которым производится аппроксимация, то опыт показывает, что увеличение этого числа на порядок со 100 точек до 1000 может увеличивать Ψ в 2 раза, однако увеличивает на порядок время вычислений.

Вывод. Получен алгоритм (1)(3) для вычисления управляющих напряжений для данного зеркала, на основе алгоритма написана программа. С помощью программы исследованы возможности зеркала.

Список литературы

- [1] М.А.Воронцов, А.В.Корябин, В.И.Шмальгаузен "Управляемые оптические системы"М.: Наука 1988
- [2] М.Борн, Э.Вольф "Основы оптики"М.: Наука 1973
- [3] М.А.Воронцов, В.И.Шмальгаузен "Принципы адаптивной оптики"М.: Наука 1985
- [4] К.Ю.Богачев "Практикум на ЭВМ. Методы решения линейных систем и нахождения собственных значений"М.: Изд-во ЦПИ при механико-математическом ф-те МГУ им. М.В.Ломоносова. 1998