Prime Numbers

A Prime Number can be divided evenly only by 1 or itself and it must be a whole number greater than 1. Some examples:

2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67
71	73	79	83	89	97	101	103	107	109	113	127	131	137	139	149	151	157	163
167	173	179	181	191	193	197	199	211	223	227	229	233	239	241	251	257	263	269
271	277	281	283	293	307	311	313	317	331	337	347	349	353	359	367	373	379	383
389	397	401	409	419	421	431	433	439	443	449	457	461	463	467	479	487	491	499
503	509	521	523	541	547	557	563	569	571	577	587	593	599	601	607	613	617	619
631	641	643	647	653	659	661	673	677	683	691	701	709	719	727	733	739	743	751
757	761	769	773	787	797	809	811	821	823	827	829	839	853	857	859	863	877	881
883 Sour	887 ce: <u>htt</u>	907 ps://w	911 ww.ma	919 athsisfu	929 un.com	937 n/prime	941 e_num	947 bers.h	953 <u>tml</u>	967	971	977	983	991	997			

Online Prime Checker: https://www.calculatorsoup.com/calculators/math/gcf.php

Greatest Common Divisor (GCD)

The greatest common divisor, sometimes also called the highest common divisor of two positive integers **a** and **b** is the largest divisor common to **a** and **b**. It is also known as the Greatest Common Factor (GCF), or Highest Common Factor (HCF). Greatest Common Divisor (GCD) for 12 18 is 6 expressed as GCD(12,18)=6

More examples: GCD(12,60)=12, and GCD(12,90)=6, GCD(3,5)=1.

Source: http://mathworld.wolfram.com/GreatestCommonDivisor.html

Online Calculator: https://www.calculatorsoup.com/calculators/math/gcf.php

Co-Prime or Relatively Prime

- ❖ In mathematics, two <u>integers</u> (a and b) are **coprime** (or **relatively prime**) if they share no common factors. In other words, there is no number, other than 1, that divides both a and b evenly. This is equivalent to their greatest common divisor being 1 i.e. gcd(a,b)=1
- An example: 6 and 35 are coprime, because the factors of 6, 2 and 3, do not divide 35 evenly. 6 and 27 are not coprime, because 3 divides both 6 and 27.

Source: https://simple.wikipedia.org/wiki/Coprime

Online co-prime checkers:

https://www.dcode.fr/coprimes

http://www.numere-prime.ro/coprime-numbers-relatively-prime.php

Modular Arithmetic - MOD

Modular arithmetic involves division of integers with an associated remainder. Given two integers, m and n, $m \mod n$ is defined as the remainder when m is divided by n. This is commonly written as

```
m \mod n = r
```

Where r is the remainder of m/n. The term r is sometimes referred to as the residue. Examples

```
4 \mod 3 = 1; 21 \mod 5 = 1; 20 \mod 4 = 0
```

Some useful property.

```
(x.y) \mod n = (x \mod n. y \mod n) \mod n

<u>Example:</u> 400 \mod 15 = (20.20) \mod 15

= (20 \mod 15 \times 20 \mod 15) \mod 15

= (5 \times 5) \mod 15

= 25 \mod 15

= 10
```

You can use (i.e. split the numbers) this when the numbers are large.

Calculating Large MOD

We can split the numbers when the numbers are large. So, the property we learned earlier is useful. But for very large numbers we have to use software program (e.g. java/c/c++ code) or online calculators. Here are some examples:

 $8596^{283} \mod 16999 = 16809$

PowerMod Calculator

Computes (base) (exponent) mod (modulus) in log(exponent) time.

Base: 8596	Exponent: 283	Modulus: 16999			
Compute	$b^e \text{ MOD } m =$	16809			

The program is written in JavaScript, and runs on the client computer. Most implementations seem to handle numbers of up to 16 digits correctly.

 $16809^{7267} \mod 16999 = 8596$

PowerMod Calculator

Computes (base) (exponent) mod (modulus) in log(exponent) time.

Base: 16809	Exponent: 7267	Modulus: 16999			
Compute	$b^e \text{ MOD } m =$	8596			

The program is written in JavaScript, and runs on the client computer. Most implementations seem to handle numbers of up to 16 digits correctly.

Online Calculator: https://www.mtholyoke.edu/courses/quenell/s2003/ma139/js/powermod.html

Calculating Inverse MOD

Say, $d * 7 = 1 \mod 20$. How do you calculate d?

Here, *d* is the multiplicative inverse of 7 modulo 20. This can be solved using Extended Euclid Algorithm.

Note: It's out of the scope to learn this algorithm during the lecture. We will use intuitive argument for small numbers, and online calculator for large numbers (next slide). Tutors will provide links to online resources.

intuitive argument

For simplicity, $d * 7 = 1 \mod 20$ can be interpreted as follows: (d * 7) / 20 = "something" with the remainder of 1. We can easily conclude that 21 / 20 gives "something" with the remainder of 1. So, d * 7 = 21, and d = 3

Calculating Large Inverse MOD

We can use software program (e.g. java/c/c++ code) or online calculators when we large numbers. Here are some examples:

 $d * 43 = 1 \mod 14336$ What is the value of d?

Modular Multiplicative Inverse

Integer Modulo 14336

CALCULATE

Modular Multiplicative Inverse

1667

Using Extended Euclid Algorithm d = 1667

Online Calculator: https://planetcalc.com/3311/

Least Common Multiple (LCM)

The Least Common Multiple (LCM) is also referred to as the Lowest Common Multiple (LCM) and Least Common Denominator (LCD). For 2 integers a and b, denoted LCM(a,b), it is the smallest integer that is evenly divisible by both a and b. For example, LCM(2,3) = 6 and LCM(6,10) = 30. LCM(5,15) = 15

Online Calculator: https://www.calculatorsoup.com/calculators/math/lcm.php