# ISE 5103 Intelligent Data Analytics

# Homework 8 - Clustering

## Daniel Carpenter

### December 2022

## Contents

| 1        | General Data Prep |                                                            |   |  |  |  |  |  |
|----------|-------------------|------------------------------------------------------------|---|--|--|--|--|--|
|          | 1.1               | Read Training Data                                         | 2 |  |  |  |  |  |
|          | 1.2               | Create numeric and factor base data frames                 | 2 |  |  |  |  |  |
| <b>2</b> | Dat               | ta Understanding                                           | 2 |  |  |  |  |  |
|          | 2.1               | Numeric Data Quality Report                                | 2 |  |  |  |  |  |
|          | 2.2               | Factor Data Quality Report                                 | 2 |  |  |  |  |  |
|          | 2.3               | Review Actual Groupings within Unadjusted, or Nominal Data |   |  |  |  |  |  |
|          | 2.4               | Clustering Analysis                                        |   |  |  |  |  |  |
|          |                   | 2.4.1 Discover Automically Suggested Number of Clusters    | 4 |  |  |  |  |  |
|          |                   | 2.4.2 K-Means Clustering                                   | 6 |  |  |  |  |  |
|          |                   | 2.4.3 Hierarchical Clustering                              | 7 |  |  |  |  |  |
|          |                   | 2.4.4 K-Medoid Clustering                                  | 8 |  |  |  |  |  |

#### 1 General Data Prep

For general data preparation, please see conceptual steps below. See .rmd file for detailed code.

#### 1.1 Read Training Data

Clean data to ensure each read variable has the correct data type (factor, numeric, Date, etc.)

#### 1.2 Create numeric and factor base data frames

Make data set of numeric variables called df.base.numeric

Make data set of factor variables called df.base.factor

### 2 Data Understanding

Create a data quality report of numeric and factor data Created function called dataQualityReport() to create factor and numeric QA report

#### 2.1 Numeric Data Quality Report

| Num_Numeric_Variables | Total_Observations |
|-----------------------|--------------------|
| 2                     | 578                |

| variable | n_missing | complete_rate | mean | sd   | p0 | p25 | p50 | p75 | p100 |
|----------|-----------|---------------|------|------|----|-----|-----|-----|------|
| weight   | 0         | 1             | 122  | 71.1 | 35 | 63  | 103 | 164 | 373  |
| Time     | 0         | 1             | 11   | 6.8  | 0  | 4   | 10  | 16  | 21   |

#### 2.2 Factor Data Quality Report

- Note that there are four distinct values within the factor field "Diet".
- Later we will attempt to replicate these 4 groupings through clustering.

| Num_Factor_Variables | Total_Observations |
|----------------------|--------------------|
| 2                    | 578                |

| variable | n_missing | complete_rate | n_unique | top_counts                     |
|----------|-----------|---------------|----------|--------------------------------|
| Chick    | 0         | 1             | 50       | 13: 12, 9: 12, 20: 12, 10: 12  |
| Diet     | 0         | 1             | 4        | 1: 220, 2: 120, 3: 120, 4: 118 |

## 2.3 Review Actual Groupings within Unadjusted, or Nominal Data

How Experimental Diets Affect Chick Weights (Nominal Data) Note Adjusted for time since chick birthed



#### 2.4 Clustering Analysis

#### 2.4.1 Discover Automically Suggested Number of Clusters







#### 2.4.2 K-Means Clustering

| ## |   |    |     |     |     |
|----|---|----|-----|-----|-----|
| ## |   | 1  | 2   | 3   | 4   |
| ## | 1 | 53 | 0   | 167 | 0   |
| ## | 2 | 84 | 0   | 0   | 36  |
| ## | 3 | 0  | 12  | 0   | 108 |
| ## | 4 | 0  | 118 | 0   | 0   |

## How Experimental Diets Affect Chick Weights (K–Means Clustered Data) Note Adjusted for time since chick birthed



#### 2.4.3 Hierarchical Clustering

| ## |   |     |    |     |    |
|----|---|-----|----|-----|----|
| ## |   | 1   | 2  | 3   | 4  |
| ## | 1 | 167 | 53 | 0   | 0  |
| ## | 2 | 0   | 84 | 36  | 0  |
| ## | 3 | 0   | 0  | 120 | 0  |
| ## | 4 | 0   | 0  | 32  | 86 |

How Experimental Diets Affect Chick Weights (Hierarchical Clustered Data – Warc Note Adjusted for time since chick birthed



### 2.4.4 K-Medoid Clustering

| ## |   |    |     |     |     |
|----|---|----|-----|-----|-----|
| ## |   | 1  | 2   | 3   | 4   |
| ## | 1 | 84 | 136 | 0   | 0   |
| ## | 2 | 60 | 0   | 60  | 0   |
| ## | 3 | 0  | 0   | 108 | 12  |
| ## | 4 | 0  | 0   | 0   | 118 |

## How Experimental Diets Affect Chick Weights (K-Medoid)

Note Adjusted for time since chick birthed

