

Linear RGB-D SLAM for Planar Environments

Pyojin Kim¹, Brian Coltin², H. Jin Kim¹

¹Seoul National University ²NASA Ames Research Center

Motivation

Visual SLAM is a high-dimensional non-convex & non-linear optimization problem.

SLAM can be simplified as a linear least-squares
 problem if the camera orientations are known.

Contributions

- Orthogonal Plane Detection in Structured Environments
- A New, Linear Kalman Filter SLAM Formulation
- Evaluation and Application to Augmented Reality (AR)

Orthogonal Plane Detection

Plane Model in RANSAC

$$n_x u + n_y v + n_z = w$$
 $(u = \frac{X}{Z}, v = \frac{Y}{Z}, w = \frac{1}{Z})$

X, Y, Z: 3D coordinates of points

u, v: normalized image coordinates

w: measured disparity map

Refitting Plane to Manhattan World

$$s^* = \arg\min_{s} \|s(r_x u + r_y v + r_z) - w\|$$

s: scale factor (reciprocal of the offset)

 r_x, r_y, r_z : unit vector of the nearest Manhattan axis

Linear SLAM Formulation in KF

State Vector

Process Model

$$\mathbf{X}_{k} = \begin{bmatrix} \mathbf{p}_{k}^{\top} & \mathbf{m}_{1,k} & \cdots & \mathbf{m}_{n,k} \end{bmatrix}^{\top} \in \mathbb{R}^{3+n} \qquad \mathbf{X}_{k} = \mathbf{F} \mathbf{X}_{k-1} + \triangle \mathbf{p}_{k,k-1} + \mathbf{w}_{k-1}$$
where $\mathbf{p}_{k} = \begin{bmatrix} x_{k} & y_{k} & z_{k} \end{bmatrix}^{\top} \in \mathbb{R}^{3}$ where $\mathbf{F} = \mathbf{I}, \mathbf{w}_{k-1} \sim N\left(0, \mathbf{Q}_{k-1}\right)$

$$\mathbf{m}_{i,k} = \begin{bmatrix} o_{i,k} & (alignment) \end{bmatrix} \in \mathbb{R}^{1}$$

- 3-DoF rotational motion is compensated by LPVO.
- Measurement Model

$$\mathbf{y}_{k} = \begin{bmatrix} \mathbf{m}_{1,k} - x_{k} \\ \mathbf{m}_{2,k} - y_{k} \\ \mathbf{m}_{3,k} - z_{k} \\ \vdots \end{bmatrix} = \mathbf{H}_{k} \mathbf{X}_{k} + \mathbf{v}_{k} \quad \text{where} \quad \begin{aligned} \mathbf{H}_{k} = \begin{bmatrix} -1 & 0 & 0 & 1 & 0 & 0 & \cdots \\ 0 & -1 & 0 & 0 & 1 & 0 & \cdots \\ 0 & 0 & -1 & 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{v}_{k} \sim N\left(0, \mathbf{R}_{k}\right) \end{aligned}$$

- Observation is an offset from the orthogonal plane.
- Computational Complexity Analysis

Table. Advantages of L-SLAM over Existing EKF-SLAM Methods

_		L-SLAM (Ours)	[9]	[8]	[24]	[22]
_	State Size		7 + 7n	·	15 + 3n	•
	Linearity	Linear	Nonlinear	Nonlinear	Nonlinear	Nonlinear

Evaluations

Video Clips

ICL-NUIM Dataset

Table. Comparison of the Absolute Trajectory Error (unit: m)

Sequence	lr-kt0n	lr-kt1n	lr-kt2n	lr-kt3n	of-kt0n	of-kt1n	of-kt2n	of-kt3n
ORB-SLAM2	0.010	0.185	0.028	0.014	0.049	0.079	0.025	0.065
DVO-SLAM	0.108	0.059	0.375	0.433	0.244	0.178	0.099	0.079
CPA-SLAM	0.007	0.006	0.089	0.009	_	_	_	_
KDP-SLAM	0.009	0.019	0.029	0.153	_	_	_	_
LPVO	0.015	0.039	0.034	0.102	0.061	0.052	0.039	0.030
L-SLAM (Ours)	0.012	0.027	0.053	0.143	0.020	0.015	0.026	0.011

- L-SLAM is comparable to recent SLAM approaches.
- Author-collected RGB-D Dataset

Augmented Reality (AR) Application

■ They show a **consistent** view of the 3D models.