Collection of Problems that I think are Cool

Benjamin Chu

May 12, 2019

1 Statistics

Problem 1.1

Consider a multiple regression where n > p and $rank(\mathbf{X}) = p$. Let

$$\hat{\sigma}^2 = \frac{1}{n-p} \sum_{i=1}^n e_i^2$$

where $\mathbf{e} = (e_1, ..., e_n)^t = \mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}$ are the regression residuals and $\hat{\boldsymbol{\beta}}$ is the best linear unbiased estimator of $\boldsymbol{\beta}$. Show that $\hat{\boldsymbol{\sigma}}^2$ is an unibased estimator of $\boldsymbol{\sigma}^2$.

Proof. We have

$$\hat{\sigma}^2 = \frac{1}{n-p} \sum_{i=1}^n e_i^2 = \frac{1}{n-p} (\mathbf{y} - \hat{\mathbf{y}})^T (\mathbf{y} - \hat{\mathbf{y}}).$$

Also, $\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y} = \mathbf{H}\mathbf{y}$. Repeatedly applying cyclic permuation and linearity of trace operator, we have

$$\begin{split} & \operatorname{E}\left((\mathbf{y} - \mathbf{H}\mathbf{y})^T(\mathbf{y} - \mathbf{H}\mathbf{y})\right) = \operatorname{E}(\mathbf{y}^T(\mathbf{I} - \mathbf{H})(\mathbf{I} - \mathbf{H})\mathbf{y}) = \operatorname{E}(\mathbf{y}^T(\mathbf{I} - \mathbf{H})\mathbf{y}) \\ & = \operatorname{tr}\left(\operatorname{E}(\mathbf{y}^T(\mathbf{I} - \mathbf{H})\mathbf{y})\right) = \operatorname{E}\left(\operatorname{tr}((\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon})^T(\mathbf{I} - \mathbf{H})(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}))\right) \\ & = \operatorname{E}\left(\operatorname{tr}((\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon})^T(\mathbf{X} + \boldsymbol{\varepsilon} - \mathbf{H}\mathbf{X}\boldsymbol{\beta} - \mathbf{H}\boldsymbol{\varepsilon}))\right) = \operatorname{E}\left(\operatorname{tr}((\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon})^T(\mathbf{I} - \mathbf{H})\boldsymbol{\varepsilon})\right) \\ & = \operatorname{E}\left(\operatorname{tr}(\boldsymbol{\varepsilon}^T(\mathbf{I} - \mathbf{H})\boldsymbol{\varepsilon})\right) = \operatorname{tr}\left((\mathbf{I} - \mathbf{H})\operatorname{E}(\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^T)\right) = \operatorname{tr}\left((\mathbf{I} - \mathbf{H})\operatorname{Var}(\boldsymbol{\varepsilon})\right) \\ & = \sigma^2\operatorname{tr}(\mathbf{I} - \mathbf{H}) = \sigma^2\left(\operatorname{tr}(\mathbf{I}_{n \times n}) - \operatorname{tr}(\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T)\right) = \sigma^2(n - p). \end{split}$$

Problem 1.2

Let $\mathbf{X} \in \mathbb{R}^{n \times p}$, $\lambda_i \in \mathbb{R}$, and $\mathbf{x}_i^T \in \mathbb{R}^p$ be a row of \mathbf{X} . Show that

$$egin{aligned} \sum_{i=1}^n \lambda_i \mathbf{x}_i \mathbf{x}_i^T &= \mathbf{X}^T egin{bmatrix} \lambda_1 & & \mathbf{0} \ & \ddots & \ \mathbf{0} & & \lambda_n \end{bmatrix} \mathbf{X} \end{aligned}$$

Problem 1.3

Suppose $f \in C^2$. Show that there exists $y \in (x_0, x)$ such that:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(y)(x - x_0)^2.$$

This exact formula for 2nd order Taylor's expansion motivates the quadratic upper bound principle, which is used ubiquitously in MM algorithms.

Proof. Applying fundamental theorem of calculus twice, we have

$$f(x) = f(x_0) + \int_{x_0}^{x} f'(x_1) dx_1$$

$$= f(x_0) + \int_{x_0}^{x} \left(f'(x_0) + \int_{x_0}^{x_1} f''(x_2) dx_2 \right) dx_1$$

$$= f(x_0) + f'(x_0)(x - x_0) + \int_{x_0}^{x} \int_{x_0}^{x_1} f''(x_2) dx_2 dx_1.$$

By mean value theorem, there exists $y \in (x_0, x_1)$ such that $\int_{x_0}^{x_1} f''(x_2) dx_2 = f''(y)(x_1 - x_0)$. Thus

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \int_{x_0}^x f''(y)(x_1 - x_0) dx_1$$

= $f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(y)(x - x_0).$