First-order Logic

Petros Papapanagiotou

Informatics 2D: Reasoning and Agents

Lecture 11

Pros and cons of propositional logic

Declarative

Allows partial/disjunctive/negated information

(unlike most data structures and databases!)

Compositional

The meaning of $B_{1,1} \wedge P_{1,2}$ is derived from that of $B_{1,1}$ and of $P_{1,2}$

Meaning is context-independent

 (unlike natural language, where meaning depends on context)

Very limited expressive power

- (unlike natural language)
- for example, we cannot say "pits cause breezes in adjacent squares", except by writing one sentence for each square

First-order logic (FOL)

Propositional logic assumes the world contains atomic facts.

• Non-structured propositional symbols, usually finitely many.

FOL assumes the world contains:

Objects

• people, houses, numbers, colours, football games, wars, ...

Relations

• red, round, prime, brother of, bigger than, part of, comes between, ...

Functions

• father of, best friend, one more than, plus, ...

Syntax of FOL: Basic elements

Constants • KingJohn, 2, UoE,... **Predicates** • Brother, >,... **Functions** • Sqrt, LeftLegOf,... **Variables** • x, y, a, b,... Connectives $\overline{\ }$ $\overline{\ }$ Equality Quantifiers • ∀,∃

Syntax of FOL: Basic elements

Arity! Constants • KingJohn/0, 2 /0, UoE /0, ... **Predicates** • Brother/2, >/2, ... **Functions** • Sqrt/1, LeftLegOf/1, +/2, ... **Variables** • x, y, a, b, ... Connectives $\bullet \neg, \Rightarrow, \land, \lor, \Leftrightarrow$ Equality Quantifiers • ∀,∃

Atomic formulae

functions

predicate

```
Atomic formula = predicate (term_1,...,term_n)

or term_1 = term_2

Term = function (term_1,...,term_n)

or constant or variable

Examples:

• Brother(KingJohn,RichardTheLionheart)

• >(Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))
```

INF2D: REASONING AND AGENTS

constants

Complex formulae

Complex formulae are made from atomic formulae using connectives

$$\neg P$$

$$P \vee Q$$

$$\neg P \quad P \land Q \qquad P \Rightarrow Q$$

$$P \Leftrightarrow Q$$

Examples:

 $Sibling(KingJohn,Richard) \Rightarrow Sibling(Richard,KingJohn)$

$$>(1,2) \lor \le (1,2)$$

$$>(1,2) \land \neg >(1,2)$$

Semantics of first-order logic

Formulae are mapped to an **interpretation**.

• An interpretation is called a model of a set of formulae when all the formulae are **true** in the interpretation.

An *interpretation* contains objects (domain elements) and relations between them. Mapping specifies referents for :

```
constant symbols \mapsto objects predicate symbols \mapsto relation function symbols \mapsto functions
```

An atomic formula $predicate(term_1,...,term_n)$ is **true** iff the objects referred to by $term_1,...,term_n$ are in the relation referred to by predicate.

Interpretations for FOL: Example

Brother(KingJohn, RichardTheLionheart)

>(Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

Universal quantification

∀<variables>. <formula>

- But will often write $\forall x,y.P$ for $\forall x. \forall y.P$
- Example: Everyone at UoE is smart: $\forall x$. At(x, UoE) \Rightarrow Smart(x)

 $\forall x. P$ is true in an interpretation m iff P is true with x being **each** possible object in the interpretation.

Roughly speaking, equivalent to the conjunction of instantiations of P At(KingJohn, UoE) \Rightarrow Smart(KingJohn)

- \land At(Richard, UoE) \Rightarrow Smart(Richard)
- \land At(UoE, UoE) \Rightarrow Smart(UoE)

^ ...

Existential quantification

∃<variables>. <formula>

- But will often write $\exists x,y.P$ for $\exists x.\exists y.P$
- Example: Someone at UoE is smart: $\exists x. At(x, UoE) \land Smart(x)$

 $\exists x. P$ is true in an interpretation m iff P is true with x being **some** possible object in the interpretation.

Roughly speaking, equivalent to the disjunction of instantiations of *P* At(KingJohn, UoE) \(\simes \text{Smart}(KingJohn) \)

- ∨ At(Richard, UoE) ∧ Smart(Richard)
- ∨ At(UoE, UoE) ∧ Smart(UoE)

V ...

Rule of thumb

Common mistakes

 $\forall x$. King(x) \Rightarrow Person(x)

 $\forall x$. King(x) \land Person(x)

Common mistakes

 $\exists x. \operatorname{Crown}(x) \Rightarrow \operatorname{OnHead}(x, John)$

 $\exists x$. Crown(x) \land OnHead(x, John)

Properties of quantifiers

```
\forall x. \forall y. is the same as \forall y. \forall x.
```

 $\exists x.\exists y.$ is the same as $\exists y.\exists x.$

 $\exists x. \forall y. \text{ is } \mathbf{not} \text{ the same as } \forall y. \exists x.$

- $\exists x. \forall y. \text{Loves}(x, y)$: "There is a person who loves everyone in the world
- $\forall y. \exists x. \text{ Loves}(x, y) : \text{"Everyone in the world is loved by at least one person"}$

Quantifier duality: each can be expressed using the other:

```
 ⋄ ∀x. Likes(x, IceCream)  ≡  ¬∃x. ¬Likes(x, IceCream)
```

• $\exists x$. Likes(x, Broccoli) $\equiv \neg \forall x$. \neg Likes(x, Broccoli)

Equality

 $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the **same object**.

Example. Definition of *Sibling* in terms of *Parent*:

$$\forall x, y. \ Sibling(x, y) \Leftrightarrow (\neg(x = y) \land \exists m, f. \neg (m = f) \land$$

 $Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y)$

Example: The kinship domain

Brothers are siblings.

• $\forall x, y. Brother(x, y) \Rightarrow Sibling(x, y)$

One's mother is one's female parent.

• $\forall m, c. Mother(c) = m \Leftrightarrow (Female(m) \land Parent(m, c))$

"Sibling" is symmetric.

• $\forall x, y. Sibling(x, y) \Leftrightarrow Sibling(y, x)$

"Parent" and "Child" are inverse relations.

• $\forall x, y. Parent(x, y) \Leftrightarrow Child(y, x)$

Example: The Set domain

$$\forall s. \text{Set}(s) \Leftrightarrow (s = \{\}) \lor (\exists x, s_2. \text{Set}(s_2) \land s = \{x | s_2\})$$

$$\neg \exists x, s. \{x | s\} = \{\}$$

$$\forall x, s. \ x \in s \Leftrightarrow s = \{x | s\}$$

$$\forall x, s. x \in s \Leftrightarrow [\exists y, s_2, (s = \{y | s_2\} \land (x = y \lor x \in s_2))]$$

$$\forall s_1, s_2, s_1 \subseteq s_2 \Leftrightarrow (\forall x. x \in s_1 \Rightarrow x \in s_2)$$

$$\forall s_1, s_2, (s_1 = s_2) \Leftrightarrow (s_1 \subseteq s_2 \land s_2 \subseteq s_1)$$

$$\forall x, s_1, s_2, x \in (s_1 \cap s_2) \Leftrightarrow (x \in s_1 \land x \in s_2)$$

$$\forall x, s_1, s_2, x \in (s_1 \cup s_2) \Leftrightarrow (x \in s_1 \lor x \in s_2)$$

Interacting with FOL KBs

Suppose a wumpus-world agent using a FOL KB perceives a smell and a breeze (but no glitter) at t=5:

```
Tell(KB, Percept( [Smell, Breeze, None], 5))
Ask(KB, \existsa. BestAction(a, 5))
```

• i.e., does the KB entail some best action at t=5?

• Answer: Yes, $\{a/Shoot\}$ \leftarrow substitution (binding list)

Substitution

Given a sentence S and a substitution σ ,

 \circ So denotes the result of "plugging" of into S; e.g.,

S = Smarter(x, y)

 $\sigma = \{x/Obama, y/Palin\}$

 $S\sigma = Smarter(Obama, Palin)$

Ask(KB, S) returns some/all σ such that KB \models S σ

Knowledge base for the wumpus world

 \forall *t,s,b*. Percept([s, b, Glitter], t) \Rightarrow Glitter(t)

 $\forall t. Glitter(t) \Rightarrow BestAction(Grab, t)$

Deducing hidden properties

```
\forall x, y, a, b. Adjacent([x, y], [a, b]) \Leftrightarrow [a, b] \in \{ [x+1, y], [x-1, y], [x, y+1], [x, y-1] \}
\forall s, t. At(Agent, s, t) \land Breeze(t) \Rightarrow Breezy(s)
```

Squares are breezy near a pit:

- ∘ Diagnostic rule: infer cause from effect $\forall s. \text{ Breezy}(s) \Rightarrow \exists r. \text{ Adjacent}(r, s) \land \text{Pit}(r)$
- Causal rule: infer effect from cause $\forall r$. Pit $(r) \Rightarrow (\forall s$. Adjacent $(r, s) \Rightarrow Breezy(s)$)

Why?

Universal ontology language.

- Onto-logy: from the Greek $\acute{o}v$ (= being, that which is) + $\lambda \acute{o}\gamma o\varsigma$ (= discourse, speaking)
- e.g. databases, semantic web, knowledge graphs

At the core of:

- programming language semantics and type theory.
- formal verification and advanced (> propositional) automated reasoning.
- theorem proving, including in mathematics, physics, cryptography, and beyond.
- · logic programming and its derivations, expert systems, rule-based systems.

Renewed interest in the context of explainable AI (XAI) and the "third-wave of AI".

Phil Wadler "What does logic have to do with Java?" 2009