Homework

Encrypt the first three letters of your first name in uppercase letter

ENCRYPTION TYPE: RSA

PUBLIC KEY: n = 187, e=3 (to encrypt)

PRIVATE KEY: p=11, q=17, d=107 (to decrypt)

*Background information: pxq=n (11x17=187)

p, q - chosen prime numbers, the bigger the better, more secure

e - chosen prime number

m - message to encrypt in corresponding ASCII code

c - ciphered text (me mod n)

ASCII Table:

Α	В	С	D	E	F	G	Н	1	J	K	L	М
65	66	67	68	69	70	71	72	73	74	75	76	77
N	0	Р	Q	R	s	Т	U	٧	w	x	Υ	Z
78	79	80	81	82	83	84	85	86	87	88	89	90

ENCRYPTION					
Instructions	Example: H	First Letter: [I]	Second Letter: [U]	Third Letter: [L]	
1. Find the corresponding ASCII code to your letter	72 73		85	76	
2. Calculate me	72 ³ = 373248	73^3=389017	85^3= 614125	76^3=438976	
3. Find c = me mod n	373248 mod 187 = 183	389017 mod 187 =57	614125 mod 187= 17	438976 mod 187 = 87	
4. Your ciphered letter (c value)	183	57	17	87	

DECRYPTION					
Instructions	estructions Example: 183		Ciphered letter: 166	Ciphered letter: 137	
1. Calculate m=c ^d mod n	$m = c^d \mod n = 183^{107} \mod 187 = 72$	77^107 mod 187	166^107 mod 187	137^107 mod 187	
2. Convert m to letter based on ASCII table	72 = H	66=B	89=Y	69=E	

Use https://www.wolframalpha.com/ to calculate modulo mathematics and huge exponents

Extension: Encrypt your full first name (add columns to the table above - right click on the table and choose "insert column right" option)

Use this code to check your work in the Homework above for Encryption ONLY:

```
import math

message = input("Enter the letter to be encrypted: ")
ascii_code = ord(message)

p = 11 #private key
q = 17 #private key
e = 3 #public key

n = p*q #public key

#Encryption, c = m^e mod n
def encrypt(msg):
    m_power_e = math.pow(msg,e) #calculates m to the power of e
    c = m_power_e % n #find modulo to get the ciphered text
    print("Encrypted Message is: ", c)
    return c

print("ASCII Code is: ", ascii_code)
c = encrypt(ascii_code)
```

https://github.com/hunter-teacher-cert/work-topics-leungbenson/blob/master/public key/RSA.md

ASYNC:

Find another type of encryption and give a brief summary of how it works. Post on Slack and comment on one other person's post.

Enigma Machine explained

https://www.youtube.com/watch?v=G2 Q9FoD-oQ

Used by Germans, hacked by Alan Turing and British codebreakers (movie: The Imitation Game)

- Input: letters
- Output: "jumbled up" letters
- implemented a complex *substitution cipher*, which encrypts a message by substituting one character for another.
- has an electromechanical rotor mechanism that scrambles the 26 letters of the alphabet.
- Resets every morning
- letter cannot be mapped to itself
- The combined number of combinations on the Enigma is 158,962,555,217,826,360,000
- The internals of the machine include a keyboard and a set of rotating disks called rotors.