Introduction to Markov Chains

What is a Markov **Chain**?

 $egin{bmatrix} X_1 \ X_2 \ \end{bmatrix} \qquad egin{bmatrix} X_2 \ \end{bmatrix} \qquad egin{bmatrix} X_3 \ \end{bmatrix} \qquad egin{bmatrix} X_n \ \end{bmatrix}$

Random Variables

Could model as i.i.d. (independent and identically distributed)

Realistic? What if index is time?

What is a Markov **Chain**?

Let's add a dash of dependence (but not too much!)

The Markov Property

$$P(X_{n+1} = j | X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0) = P(X_{n+1} = j | X_n = i)$$

The Markov Property

Everything Before

Next Now Previous First Next Now
$$P(X_{n+1}=j|X_n=i,X_{n-1}=i_{n-1},\ldots,X_0=i_0)=P(X_{n+1}=j|X_n=i)$$

Memoryless!

State Space

$$X_i \in \{Rainy, Sunny\}$$

http://setosa.io/ev/markov-chains/

State Spaces

$$X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow X_n$$

$$X_i \in \{Rainy, Sunny\}$$

$$X_i \in \{1, 2, 3, 4, 5, 6\}$$

$$X_i \in \{A, C, G, T\}$$

$$X_i \in \{AAAA, AAC, AAG, \dots, TTG, TTT\}$$

State Spaces (Discrete)

$$X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow X_n$$

$$X_i \in \{Rainy, Sunny\}$$

$$X_i \in \{1, 2, 3, 4, 5, 6\}$$

$$X_i \in \{A, C, G, T\}$$

$$X_i \in \{AAAA, AAC, AAG, \dots, TTG, TTT\}$$

State Spaces (Continuous)

What sorts of continuous state spaces might we have in phylogenetics?

$$egin{array}{ccc} R & S \ R & \left(0.7 & 0.3 \ S & \left(0.3 & 0.7
ight) \end{array}$$

To

From
$$R S$$

$$R (0.7 0.3)$$

$$S (0.3 0.7)$$

$$P(X_{n+1} = R | X_n = R) = 0.7$$

 $P(X_{n+1} = S | X_n = R) = 0.3$

To

$$R = S$$
 $R = \{0.7, 0.3\}$
 $S = \{0.3, 0.7\}$

$$P(X_{n+1} = R | X_n = R) = 0.7$$

 $P(X_{n+1} = S | X_n = R) = 0.3$
 $P(X_{n+1} = R | X_n = S) = 0.3$
 $P(X_{n+1} = S | X_n = S) = 0.7$

$$Q = \begin{pmatrix} 0.7 & 0.3 \\ 0.3 & 0.7 \end{pmatrix}$$

$$q_{ij} = P(X_{n+1} = j | X_n = i)$$

 $q_{11} = q_{RR} = 0.7$

Q and **q** give us a sense for what will happen in the next step. But what about 2,3,4,...,100 steps in the future?

$$q_{ij}^{(100)} = ?$$

$$Q = \begin{pmatrix} 0.7 & 0.3 \\ 0.3 & 0.7 \end{pmatrix}$$

$$q_{ij} = P(X_{n+1} = j | X_n = i)$$

 $q_{11} = q_{RR} = 0.7$

Q and **q** give us a sense for what will happen in the next step. But what about 2,3,4,...,100 steps in the future?

$$q_{ij}^{(100)} \neq (q_{ij})^{100}$$

$$P(X_{n+2} = R | X_n = R)$$

$$P(X_{n+2} = R | X_n = R)$$

$$P(X_{n+2} = R | X_n = R)$$

$$(q_{RR})^2 = \boxed{R} \longrightarrow \boxed{R}$$

$$R \longrightarrow R$$

$$P(X_{n+3} = R | X_n = R)$$

$$P(X_{n+3} = R | X_n = R)$$

$$R \longrightarrow ? \longrightarrow R$$

$$R \longrightarrow R \longrightarrow R$$

 $q_{RR}^{(3)} =$

 $q_{ij}^{(n)}$ is the (i,j) entry of Q^n

$$q_{ij}^{(2)} = \sum_{k} q_{ik} q_{kj}$$

 $q_{ij}^{(n)}$ is the (i,j) entry of Q^n

$$q_{ij}^{(2)} = \sum_{k} q_{ik} q_{kj}$$

$$R \longrightarrow R$$

$$R \longrightarrow R$$

Stationary Distribution

A row vector $\mathbf{s}=(s_1,\ldots,s_M)$ such that $s_i\geq 0$ is a **stationary distribution** for a Markov chain with transition matrix Q if $\sum_i s_i q_{ij}=s_j$ for all j. Equivalently, $\mathbf{s}Q=\mathbf{s}$.

Stationary Distribution

A row vector $\mathbf{s}=(s_1,\ldots,s_M)$ such that $s_i\geq 0$ is a **stationary distribution** for a Markov chain with transition matrix Q if $\sum_i s_i q_{ij}=s_j$ for all j. Equivalently, $\mathbf{s}Q=\mathbf{s}$.

What does this mean??

Stationary Distribution

A row vector $\mathbf{s}=(s_1,\ldots,s_M)$ such that $s_i\geq 0$ is a **stationary distribution** for a Markov chain with transition matrix Q if $\sum_i s_i q_{ij} = s_j$ for all j. Equivalently, $\mathbf{s}Q=\mathbf{s}$.

Simply put, if the states have certain probabilities of appearing in one iteration, they will have those same probabilities in the next iteration. The **probabilities do not change!**

Reversibility

$$s_i q_{ij} = s_j q_{ji}$$

Detailed Balance Equation

The probability of a series of states in the chain is the same forward, as it is in reverse? Why might this be important for phylogenetics?

The Pulley Principle

The Pulley Principle

The Pulley Principle

If the chain is reversible, the likelihood will be the same no matter where we put our "root". This is known as the pulley principle (Felsenstein 1981).