PATENT SPECIFICATION

(11) 1311956

NO DRAWINGS

(21) Application No. 46063/70 (22) Filed 28 Sept. 1970

(31) Convention Application No. 863 351 (32) Filed 2 Oct. 1969

(31) Convention Application No. 71247 (32) Filed 11 Sept. 1970 in

(33) United States of America (US)

(44) Complete Specification published 28 March 1973

(51) International Classification A61K 21/00, 27/00

(52) Index at acceptance

A5B 216 21Y 230 23Y 281 28Y 30X 30Y 314 31Y 325 32Y 38Y 390 402 40Y

(72) Inventors FREDERICK MARVIN KAHAN and PATRICK JOSEPH CASSIDY

We, MERCK & CO. INC., a corporation duly organised and existing under the haws of the State of New Jersey, United States of America, of Rahway, New Jersey, United States of America, do hereby declare the invention for which we pray that a patent may be granted to us, and the method by which it is to be performed to be particularly described in and by the following state-10 ment:-

The elimination of bacterial infections by antibiotic therapy is often thwarted by practical difficulties for achieving sufficiently high levels of the antibiotic at the site of infec-15 tion. In cases where only marginally effective concentrations are used, antibiotic-resistant organisms frequently emerge from the original infecting population. This problem is important in the case of the new antibiotic phos-20 phonomycin [(-) (cir - 1,2 - epoxypropyl) phosphonic acid] since it is excreted rapidly and its action is antagonized by common constituents of plasma and urine such as glucose and phosphate, respectively. In addition, the antibiotic is occasionally found to be ineffective against pre-existent mutants which are relatively resistant to this antibiotic and occur within many bacterial populations. Accordingly, methods of overcoming these dif-30 ficulties in antibiotic therapy have been sought.

This present invention is based on the discovery that the activity of phosphonomycin antibiotics as herein defined in greatly poten-35 trated by certain inducers that act to improve certain transport pathways in bacteria.

In accordance with the present invention the antibacterial activity of a phosphonomycin antibiotic in a non-human animal is poten-40 tiated by bringing bacteria into contact with an inducer selected from phosphatides, sugar phosphates and salts thereof, and polyhydric

alcohols, whereby an existing phosphonomycin transport pathway in the bacteria is enhanced or a new such pathway is brought into being, and subsequently or simultaneously bringing the bacteria into contact with a phosphonomycin antibiotic.

This present invention also provides an antibiotic composition comprising a phosphono-mycin antibiotic as herein defined, an inducor of a phosphonomycin transport system in bacteria, selected from phosphatides, sugar phosphates and salts thereof, and polyhydric alcohols, and a pharmaceurically acceptable carrier, diluent or vehicle.

Thus, compounds enhancing the activity of the a-glycerophosphate transport system, or evoking de novo a hexose-phosphate system in baoteria can be used either prior to or concomitantly with a phosphonomycin antibiotic to potentiate its activity, thereby permitting therapy at tissue levels obtainable by reasonable dosage. For example, microorganisms that exhibit no evidence of sensitivity to a particular antibiotic either because of the absence of a transport pathway or the presence of only low levels of suitable transport pathways are rendered sensitive to the antibiotic by exposure to an inducer of the type defined above to provide a suitable pathway or an enhancement of the existing pathway. In those cases where less than the maximal rate of synthesis of the susceptible transport system occurs prior to the introduction of the inducer to the medium, the inducer is said to enhance the rate of their synthesis and thus enhance the activity per cell of the transport system. In those cases where the rate of synthesis of a particular class is virtually zero in the absence of inducers, the latter introduce a new transport pathway into being. The inducer is frequently a substrate for one of the group of proteins it enhances or evokes.

By virtue of the activity of the inducers used in accordance with this present invention, organisms stimulated by them accumulate higher levels of phosphonomycin and are thus 5 killed by relatively small doses of the antibiotic. Organisms that show no evidence of sensitivity toward phosphonomycin, either because the a-glycerophosphate system is present at only low levels or is absent altogether as 10 a result of mutation to phosphonomycin resistance, are rendered sensitive to this antibiotic by the evocation of the hexoca-phosphate transport pathway. Thus sensitivity is con-ferred on bacteria populations that are other-wise untrentable, either through prior acquisition of resistance to the antibiotic or through intrinsic insensitivity to the antibictic.

Another advantage that may result from the present invention is that if two or more independent transport systems are inducible in a microorganism, the incidence of entibiotic resistance is much lower, since the simultaneous loss by mutation of two pathways is

rare in microorganisms.

It should be emphasized that the inducers described herein are not antibictics or antimetabolites but that they stimulate the biosynthesis of natural nutrient transport mechanisms that mediate the entry into the cell of the phosphonomycin antibiotic. This phenomenon applies uniquely to the phosphonomycin anti-botics since it has been observed that bacterial strains thus induced show no increase in sensitivity to other antibiotics tested. An 35 important advantageous consequence of using the compounds serving as inducers is that the inducer need not be present when the transport systems mediate the entry of amibiotic into the bacterium. Thus, inducers that might compate with the phosphonomycin antibiotic for the transport proteins when simultaneously present with it and thus impair the transport pathway may be added well prior to the administration of the antibiotic and be given 45 opportunity to dissipate within the host. In addition, the present invention does not require that the blood levels and excretion rate of two or more components be matched with each other, which is normally the case when two antibiotics are coadministered to give a synergistic effect. Therefore, the difficulty encountered in the past of establishing potent levels of two different synergizing drugs does not arise in the present invention since the inducers used need only to induce the transport perhway and then disappear; the transport proteins produced remain and thereby provide a means of entry of antibiotic into the bacteria cell. Sngar phosphates that are preferred for use in the methods and compositions of the present invention include glucose - 6 phosphate, fructose - 6 - phosphate, marmose -6 - phosphate, glucose - 1 - phosphate, 2 - deoxy - glucose - 6 - phosphate, 2 - amino - 2 - deoxy - glucose - 6 - phosphate,

glucore - 1,6 - diphosphate, galactose phosphete and ribose - 5 - phosphate. Thus, when sysceptible bacteria are contacted with these sugar phosphotes either prior to or concomitantly with a phosphonomycin antibiotic, such phosphates or an active metabolite de rived therefrom potentiate the activity of the antibiotic, and it is then possible to use much smaller amounts of the entibictic than would otherwise be necessary to control the pathogen. This observed co-action in inducing a hexose - 6 - phosphate transport system to potentiate the effectiveness of the phosphonomycin antibiotic is indeed remarkable and entirely unexpected. For example, in tests in mice against E. coli it is found that using a combination of glucose - 6 - phosphate and the mubicitic, the dose of phosphonemycin antibiotic needed to protect one-half the mice is less than one-tenth that required of antibiotic alone.

The coaction of the inducers described herein and the phosphonomycin antibiotic provide a valuable means for controlling and eliminating bacteria which are otherwise resistant to the action of a phosphenomycin antibiotic. Thus in accordance with the present invention a combination of the induced and the antibiotic in a suitable vehicle can be prepared by well known procedures, and used topically for the treatment of infections. Alternatively and in accordance with another embodiment of the present invention, the inducer and the antibiotic can be administered parenterally or orally to an infected non-human animal how either separately or in combination in a suitable pharmaceutical carrier, or one can be administered parenterally and the second can

be given orally. The pharmaceutical forms of the antibictic 100 and/or the inducing compounds, which constitute another aspect of the present invention, can be prepared in accordance with well known procedures using suitable pharmaccutical solid or liquid diluents. The compositions 105 can be in the form of tablets, powders, granules, capsules, suspensions, solutions, clixirs, syrups or other desage forms particularly suitable for oral administration. It can also be in the form of sterilized solutions or suspensions for parenteral administration. In such products the sterile vehicle can be a sterile solution or suspension. The compositions containing the antibiotic can be admixed with solid diluents and/or tableting adjuvants 115 such as corn starch, tale, stearie acid, magnesium stearate and gums. The usual encapsulating or tableting materials useful in preparing pharmaceutical products can be used so long as they are not incompatible with the antibiotic or the inducing compounds. These dosage forms can contain from 25 to 500 mg of the active substances and can be administered in doses given 1 to 6 times per day depending upon the patient's age and 130

condition, the infection and the mode of administration

The term "phosphonomycin antibiotic" as used herein includes phosphonomycin and its derivatives of the formula:

and the corresponding analogues of the formula:

where A represents hydrogen of C1-4 alkyl, and each of Y and Z, which are the same or different represents OH, OR, -NR, R,

-NROR, $-NRNR_1R_2$, $-NR-N=CR_1R_2$

-N=C=X, or -N₁, where R is hydrogen or a univalent substituted or unsubstituted hydrocarbon group and each of R₁ and R₂ represents hydrogen, acyi, or a univalent substituted or unsubstituted hydrocarbon group, the substituents in the substituted hydrocarbon groups in the definitions of R, R, and R, being amino, nitro, halo or oxygen-containing substituents. Also included in formulae I and II are the inorganic and organic salts of those compounds in which Y and/or Z is -OH, and the cyclic derivatives in which Y and Z are connected via a residue of a polyfunctional hydrocarbon compound such as a straight or branched-chain alkylene, aralkylene, arylene polyamine, or aminoalcohol, such as ethylenediamine, monorthanolamine, phenylenedi-35 amine, naphthalenediamine or o-aminophenol, and those cyclic derivatives in which -NR,1R, represents the residue of a cyclic primary or secondary amine, for example, morpholine, piperidine or pyrrolidine.

Where R, R₁ or R₂ in formulae I and II

represent a univalent substituted or unsub-

stituted hydrocarbon radical, it can be aliphatic, cycloaliphatic, araliphatic or aromatic and can, if desired, be further substituted. When aliphatic, it can be substituted or un-substituted alkyl, alkenyl or alkynyl. R, R, and Re can also be aralkyl or substituted aralkyl such as benzyl, phenethyl, phenylpropyl, p halobenzyl or o-, m- or p-alkoxybenzyl, nitrobenzyl, aminophenethyl, pyridylethyl, nitrofurylmethyl or thienylpropyl, and aryl or substituted aryl, such as phenyl, naphthyl or substituted phenyl.

Thus, in accordance with the foregoing, the amide group or groups can be derived from compounds that are themselves anti-bacterial. Examples of such compounds that might be mentioned aminopenicillanic acid, 7 - aminocephalosporanic acid, sulfa compounds such as sulfanilamide, sulfadiazine, sulfamerizine, sulfamethazine, sulfadimetine, sulfapyridine, sulfathiazole, sulfisoxazole, thiodiazole, sulfacetamide, sulfaguanidine, sulfaquinoxaline, and p-aminophenylsulfonamide, and p-aminobenzenesulfonic acid, and antibiotic agents such as empicillin, streptomycin, dihydrostreptomycin, cycloserine, cephaloglycin and cephalixin.

The compounds of formulae I and II where at least one of Y and Z is -OH will form organic and inorganic sales, which constitute a preferred aspect of the invention because they are more stable than the free acid. Examples of such sales are inorganic metallic salts such as as the sodium, aluminium, ponessium, ammonium, calcium, magnesium, silver and iron sales. Organic sales that may be mentioned as representative include the salts with primary, secondary or tertiary amines such as monoalkylamines, dialkylamines, trialkylamines and nitrogen-containing beterocyclic amines. Representative examples are salts with amines such as a-phenethylamine, diethylamine, brucine, quinine, protamine, arginine, procaine, ethanolamine, morphine, benzylamine, ethylenediamine, N,N' - dibenzylethylenediamine, diethanoiamine, piperazine, dimethylaminoethanol, 2 amino - 2 - methyl - 1 - propanol, theophyl-line, esters of amino acids, and N-methylglucamine. If desired, the basic residue of the salt may be a biologically active amine such as crythromycin, oleandomycin or novobiocin.

The monoamide-monoester derivatives and particularly those compounds having a labile ester substituent are especially valuable deriva-tives. By the term "labile ester" is meant a group which is readily hydrolyzed biologically, for example by enzymes in the body fluids of animals including man, to produce the free acid or a salt thereof which is more active as an antibiotic agent. The amide or substituted amide groups present in the amide-ester derivatives are also readily hydrolysed biologically in the body fluids and hence the

amide-labile ester derivatives are useful in antibiotic therapy.

Suzable labile exter groups include ethers of the formula —CH₂OR, a phemocyloxymethyl group, acyloxy methyl groups of the formula —CH₂OA where A is an acyl group comprising an organic radical derived from an organic acid by the removal of the hydroxy group, amide and substituted amide derivatives of such acyloxymethyl substituents, acylaminomethyl groups of the formula -CH2NHA where A is the same as defined above, thiomethyl ethers of the formula -CH2SR, an ethynyloxy group of the—CH2OC=CH, substituted of the formula ethynyloxy groups of the formula -CH-OC=CR, a vinyloxymethyl group of the -CH₂OCH=CH₂, substituted methyl groups of the formulae —CH2OCH=CHR or —CH2OCH=CRR, or a nitro oxy group of the formula -CH2ONO2. R in each of the foregoing formulae is a univalent substituted or unsubstituted hydrocarbon group.

Specific examples of such labile error groups

Specific examples of such labile error groups that might be mentioned are methoxymethyl, tetrahydropyranyloxymethyl, phenacyloxymethyl, acetoxymethyl, butyryloxymethyl, isobutyryloxymethyl, pinabyloxymethyl, benzoyloxymethyl, 2 - methylbenzoyloxymethyl, 2,6 - dimethylbenzoyloxymethyl, 2 - methyl - 6 - chlorobenzoyloxymethyl, 3 - trifluoromethylbenzoyloxymethyl, 2 - methylbenzoyloxymethyl, 2 - methylbenzoyloxymethyl, 2 - thienyl-

carbonybxymethyl, 2 - furylcarbonyloxymethyl, 3 - pyridylcarbonyloxymethyl, pyr-2 - methylcycloazinylcarbonyloxymethyl, 1 - adamantylpentylcarbonyloxymethyl, phenylsulfonylmethyl, cerbonyloxymethyl, phosphonooxymethyl, diethylphosphoacxymethyl, carbethoxyoxymethyl, carbamoyloxymethyl, N - methylcarbamoyloxymethyl, N,N dimethylcarbamoyloxymethyl, amoyloxymethyl, acetaminamethyl, benzoylaminomethyl, methylhiomethyl, phenylthiomethyl, vinyloxymethyl, 1 - methylvinyloxymethyl, and nitrooxymethyl.

The following examples illustrate embodiments of the invention. 'Difco' and 'Dower' are trademarks.

Example 1

Effect of Combining Glycerol or DL-aGlycerophosphate with Phosphonomycin on
its Inhibition of Several Strains of Bacteria

Overnight cultures of the indicated strains in Nutrient Breth (Difco) were diluted one hundred fold, and 0.05 ml. portion was swabbed over the surface of a Zmm-deep layer of the indicated solid growth media in 50cm² petri dishes. Sensitivity discs, consisting of a 7mm-diameter filter-paper circle containing either 5 or 30 µg of phosphonomycin with an additional amount of glycerol or disodium DL-a-glycerophosphate were placed on the surface of the seeded agar. Zones of inhibition ert 37°C. The results are shown in the following table:

35

40

45

50

55

60

				Z	one Size : Diameter		
Strain	Medium	μg P	P	A	В	С	D
B. coli MB 2489	Nutrient Agar	5	111	45	40	10	0
B. coli MB 2498	Nutrient Agar	30	13	13	12	13	0
H. coli MB 2489 A2	Nutrient Agar	5	8	47	43	10	0
В. сой МВ 2017	Nutrient Agar	5	12	29	26	16	0
Pseudo. aeruginosa T 9	Nutrient Agar	5	15	40	18	15	0
Pseudo. aeruginosa T 19	Nutrient Agar	30	18	31	29	16	0
Pr. mirabīlis T 10	Mueller Hinton Agar	5	21	25	23	23	23
D. pneumoniae I 37	Nutrient Agar + 10% Horse serum	30	10	15	_	16	
D. pneumoniae I 37	Brain Heart Infusion + 10% Horse serum	30	12	14	_	15	
D. pneumoniae I 2483	Brain Heart Infusion + 10%	30	10	13	_	14	-
Strep, pyogenes 3009	Horse serum Brain Heart Infusion + 10% Horse serum	30	15	19	-	18	0
Strep. pyogenes 1685	Brain Heart Infusion + 10% Horse serum	30	14	17	-	13	0
Sal. schott- muelleri 1814	Brain Heart Infusion	30	11	19	_	12	-
Sal. typhi- murium MB 1995	Brain Heart Infusion	30	15	19		15	-
Sal. typhosa. 2866	Brain Heart Infusion	30	19	22		19	_

Key to identity and amount of potentiator added to disc in combination with phosphonomycin;

P - Phosphonomycin (disodium salt) (amount indicated in the column to the left).

A - Glycerol, 10 mg.

B — Glycerol, 1 mg.

C — DL-α-glycerophosphate, disodium, 10 μg.

D - DL-α-glycerophosphate, disodium, 100 μg.

Glycerol is seen to affect a broad spectrum of strains, failing only in the case of E. coli 2498 (a mutant derivative of MB 2489) which is known to lack a-glycerophosphate transport activity, and Proteus mirabilis (T 10). The latter strain, in common with all sensitive Proteus species examined, has a very active a-glycerophosphate transport system, which is in all probability not subject to enhancement by inducers.

Few significant examples of enhanced sensitivity are observed at the low level of added disodium DL-a-glycerophosphate, even though it is a known inducer of the transport system

15 at least in MB 2489. Rather, antagonism is
demonstrable at the high level (100 µg)
added to the disc. This phenomenon probably represents the expected competition between phosphonomycin and a-glycerophosphate for

their common transport system. In contrast, glycerol, while an inducer, is not a substrate, and therefore does not preoccupy the transport system whose activity it has stimulated.

Example 2 The Effect of Glucose-6-Phosphate on the Sensitivity of Escherichia coli and Staphylococcus aureus to Phosphonomycin in Liquid

Media of Various Composition
Overnight broth cultures were diluted 1: 10,000 (10' cells/ml) in the indicated media and combined with an equal volume of media containing various levels of disodium phosphonomycin. The minimal inhibitory concentration (M.I.C.) was that final concentration of phosphonomycin below which turbidity was observed following a 24-hour incubation at

Medium	M.I.C. μg/ml Staphylococcus aureus MB 2949	Phosphonomycin Escherichia coli MB 2017
Mueller Hinton Broth (Difco)	50	3.12
Mueller Hinton Broth plus disodium glucose-6-phosphate, 25 µg/ml	3.12	0.78
Nutrient Broth (Difco)	25	12.5
Nutrient Broth (Difco) plus disodium glucose-6-phosph	1.5 ate	0.39
Nutrient Broth (Difco) plus 5% v/v Defibrinated Sheep Blood (Gibco)	3.12	0.39

With both media, glucose-6-phosphate is 40 observed to potentiate by a factor of 4 to 40 the sensitivity of Gram-positive and Gram-negative pathogens. In Nutrient Broth, the effect observed with glucose-6-phosphate mimics that observed with sheep blood. Example 3

The Influence of Glucose-6-Phosphate on the Fraction of Bacterial populations that Survive a Given Level of Phosphonomycin

Various dilutions of overnight broth cultures of the indicated bacterial strains were swabbed

over the surface of petri dishes centaining Mueller Hinton medium, 1.5%, Agar (Difco), and supplemented with the indicated levels of disodium phosphonomycin, with or withour 25 ug/ml of disodium glucose-6-phosphase. From the number of colonies present at a particular dilution of input organisms, the number of input cells surviving a given level of phosphonomycin with and without glucose-6-phosphate are calculated and shown in the 60 following table:

		Number of	surviving colony
		forme	ers per ml
		Mueller	Mueller Hinton
•	µg/ml	Hinton	Agar plus 25 µg/ml
.]	hosphono-	Agar	glucose-6-
Strain	mycin	alone	phosphate
Escherichia coli	0	3 × 10°	3 × 10°
MB 2017	10	3 × 10 ⁵	5 × 10 ^a
	30	3 × 10 ⁵	50
	100	3 × 10 ⁵	<10
		5 / 20	~~~
Staphylococcus aureus	0	3 × 10°	3×10^{9}
MB 2949	10	3×10^{5}	3 × 10 ⁵
	30	3×10^{5}	<100
	100	3×10^{5}	<10
		•	424
Aerobacter aerogenes	0	7×10^8	5 × 10 ⁸
MB 3287	10	3 × 107	1×10^{5}
	30	5 × 10 ⁵	5 × 104
	100	3×10^5	5 × 10 ²
Staphylococcus aureus	0	2×10^8	2×10^{8}
MB 3036	10	2 × 10 ⁵	1×10^{3}
	30	2×10^4	1×10^3
	100	<10	<10
		•	•
Shigella sp.	0 .	2×10^8	2×10^8
MB 3298	10	3×10^7	1×10^5
	30	3×10^7	1×10^{3}
	100	1×10^4	6 × 103

In all cases, a smaller proportion of the input bacterial population survives to form Effect of Glucose-6-Phosphate on the Size of 15 colonies on the plate containing glucose-6- the Zone of Inhibition Surrounding Sensitivity phosphates than on the plate that lacks this potentiation. In most cases, the substantial residual population (of the order of 1 in 10° to 1 in 10°) that survive high levels of phosphonomycin are eradicated or much reduced when glucose-6-phosphate is also present. Thus a sensitization of the bulk population and an elimination of residers are evident when this inducer is present.

Example 4

In all cases, a smaller proportion of the Effect of Glucose-6-Phosphate on the Size of 15 the Zone of Inhibition Surrounding Sensitivity

Discs Containing this Sugar Phosphate in Combination with Phosphonomycin

Overnight cultures of the indicated strains grown in Nutrient Broth (Difco) were diluted one hundred fold, and a 0.05-ml portion was swabbed over the surface of a petri dish containing 10 ml of Mueller Hinton Agar (Difco). Sensitivity discs, consisting of a 7 mm diameter filter-paper disc containing either 5 or 30 µg of disodium phosphonomycin with or without an additional 5 µg of disodium glucose-6-phosphate, were placed on the surface of the seeded agar. Zones of inhibition were measured after 18 hours of incubation at were measured after 18 hours of incubation at 30

	Diameter of Zone of Inhibition mm						
. Bacterial strain	Phospho without	- 30 μg nomycin glucose- sphate	5 μg — 30 μg Phosphonomycin plus glucose-6- phosphate .				
Escherichia coli MB 2017	11	16	20	24			
Staphylococcus aureus MB 2949	0	11	13	20			
Aerobacter aerogenes MB 3287	0	0	16	26			
Staphylococcus aureus MB 3036	0	30	27	40			
Shigella sp. MB 3298	0	10	24	37			

The sensitization of cells by glucose-6-phosphate noted in the prior example is here made evident by substantial increases in the zone of inhibition surrounding discs that contain a mixture of phosphonomycin and glucose-6-phosphate. It is further noteworthy that in all cases where zone enhancement is observed in the presence of glucose-6-phosphate, the inhibited area is found to be relatively free of the myriad of drug resistant colonies that surround a disc of phosphonomycin by itself. These observations are consistent with the induction by glucose-6-phosphate of an alternate pathway for the entry of phosphonomycin into cells that have lost their normally expressed a-glycerophosphate transport pathway.

Example 5
Example of a Method for Screening Phosphate Esters as Inducers of Latent Transport Systems of Phosphonomycin in Escherichia coli The Strain of Ficherichia coli MR 2498 is

The strain of Escherichia coli MB 2498 is a subculture of mutant 6 described in Table

1 of the Journal of Molecular Biology, 31, 371 (1968). It lacks the ability to grow on or accumulate La-glycerophosphate, and is resistant to levels of phosphonomycin up to 70 µg/ml in Nucrient Broth. (The parent wild type strain is completely inhibited by 10 µg/ml of disodium phosphonomycin.) MB 2498 is also lacking in alkaline phosphatase activity, and therefore degrades exogenous phosphate esters to a minimum extent.

In a search for inducers of adiducenal transport systems for phosphonomycin, 0.05 ml of a 10° cell/ml suspension was smeared over the surface of a 50 cm² petri plate containing 10 ml Nutrient Broth, 1.5%, Agar (Difco), and 25 µg/ml of disodium phosphonomycin. Paper discs measuring 7 mm in diameter and capable of absorbing 0.25 ml of solvent were treated with solutions of various phosphate esters and applied to the agar surface. Zones of inhibition were measured after 18 hours incubation at 37°C.

Compound tested	μg present in disc	Zone of inhibition mm diameter
None	-	0
Glucose-6-phosphate disodium	1.0 0.5 0.1	31 27 18
Fructose-6-phosphate disodium	10.0	42
Mannose-6-phosphate disodium	6.0	31
2-deoxy-glucose-6-phosphate disodium	1.0	27
2-amino-2-deoxy-glucose-6-phosphate disodium	25.0	34
Ribose-5-phosphate disodium, monohydrate	25	35
Phosphatidyl ethanolamine	30	29
Glucose-1',6'-diphosphate, tetrapotassium pentahydrate	25 .	34
Glucose-1-phosphate disodium	25	31
5-phosphoryl ribose-1-pyrophosphate, dimagnesium dihydrate	25	25
Riboflavin-5-phosphate disodium	25.	14

Among the compounds in the above test showing no activity at a level of 25 µg per disc were: inositohyphosphate, adenosine - 5' - phosphate, galactose - 1 - phosphate, 2'-deoxy ribose - 1' - phosphate, a - D - ribose - 1 - phosphate, B - D - ribose - 1 - phosphate, a - D - ribose - 1 - phosphate, a - D - xylopyranose - 1 - phosphate, gluconic-6 - phosphate, mannose - 1 - phosphate, erythrose - 4 - phosphate, pyridoxine - phosphate, thiamine monophosphate, D - galactose - 6 - phosphate, D - fructose - 1 - phosphate, fructose - 1 - 6 - diphosphate, phosphate, fructose - 1 - 6 - diphosphate, phosphoserine, phosphatidyl chlodine and N,N - dimethyl - L - phosphatidyl ethanolamine, as well as an extensive list of non-phosphorylated totroses, pentoses, and hexoses. Thus the potentiation phenomenon shows a degree of specificity, which in the case of the hexose phosphates seems to include primarily those compounds that are generated by the hexose known to induce the glucose - 6 - phosphates known to induce the glucose - 6 - phosphates

transport system (Compounds 1, 2, 3, 4, and 9).

None of the potentiating compounds at the levels tested produced zones of inhibition with MB 2498 seeded plates consisting of Nutrient Broth/Agar lacking MK 955.

Example 6

Effect of Combining Various Phosphate Esters on the Inhibition of Several Strains of Bacteria Overnight cultures of the indicated strains in Nutrient Broth (Difco) were diluted one hundred fold, and a 0.05-ml portion was swabbed over the sufface of a 2 mm deep layer of the indicated solid growth media. Sensitivity discs, consisting of a 7-mm-diameter filter-paper circular disc containing either 5 or 30 µg of disodium phosphonomycin with an additional amount of the indicated phosphate esters, were placed on the surface of the seeded agar. Zones of inhibition were measured after 18 hours of incubation at 37°C.

25

30

35

40

	_		(see	key	Zone below	for ph	n diame osphate		added)	
Strain	P µg	P	A	В	·C	D	Е	F	G"	- н	I
MB 2489	5	11	25	25	20	30	22	21	18	15	22
MB 2489 A2	5	8	10	10	10	10	21	10	11	10	10
MB 2498	30	13	33	33	26	24	. 21	31	26	21	30
MB 24980	30	11	12	10	10	12	14	10	11	11	12
MB 2017	5	12	23	22	20	17	16	21	19	17	19
T 14	5	0	13	15	0	0	0	12	0	0	0
Т 27	30	0	20	20	0	0	01	18	13	0	14
T 9	5	15	16	15	15	15	12	15	16	16	16
Т 10	5	21	23	23	23	23	22	22	22	23	23
T 19	30	18	17	17	17	15	18	15	17	17	15

Key to the identity and amount of phosphate esters added to disc together with phosphonomycin.

- P Phosphonomycin disodium salt (amount indicated for the column to the left).
- A giucose-6-phosphate 5 μg.
- B 2'-deoxy-glucose-6-phosphate 5 μg.
- C ribose-5-phosphate 25 μg.
- D phosphatidyl ethanolamine 25 µg.
- E riboflavin-5-phosphate 50 μg.
- F fructose-6-phosphate 5 μg.
- G mannose-6-phosphate 5 μg.
- H 2-amino-2-deoxy-glucose-6-phosphate 25 μg.
- I glucose-1-phosphate 25 μg.

Strain MB 2489 is an Escherichia coli that grows well on a-glycerophosphate and D-glucose-6-phosphate. It exhibits on Nutrient Broth Agar moderate sensitivity to phosphonomycin that is much enhanced by the whole series of hexose-phosphate esters (A, B, F, G, I) that have been found capable of inducing glucose-6-phosphate transport pathway. Strain MB 2489 A2 was isolated from the

Strain MB 2489 A2 was isolated from the periphery of the enhanced zone of inhibition surrounding a disc bearing phosphonycin (5 μg) and glucose-6-phosphate (25μg). It was found to grow well on α-glycerophosphate,
 but to show no stimulation of growth by glucose-6-phosphate. Although this strain is as sensitive to phosphonomycin alone as is the

parent MB2489 (as expected, since its aglycerophosphate transport system is active),
it fails to be stimulated on Nutrient Broth
Agar by any of the hexose phosphate inducers of the glecose-6-phosphate transport
system. In addition, the failure of ribose-5phosphate and phosphatidyl ethanolamine to
synergise suggests that these esters also induce
the glucose-6-phosphate transport system.
However, the activity still exhibited by riboflavin-5-phosphate implies the presence of yet
a third inducible pathway that mediates enhanced phosphonomycin transport.

Strain MB 2498 is a mutant of MB 2489

Strain MB 2498 is a mutant of MB 2489 that lacks the α-glycerophosphate pathway (i.e. it fails to grow on α-glycerophosphate but

20

25

retains the glucose-6-phosphate inducible system). Although it is much less sensitive on Nutrient Broth Agar to phosphonomycin as such than MB 2489, it retains the ability to

be stimulated by the phosphate ester inducers. Strain MB 24980 was isolated as a resistant colony from a plate containing 25 μ g/ ml of phosphonomycin and 25 µg/ml of glucose-6-phosphate. In keeping with the above 10 results, its sensitivity on Nutrient Broth Agar to phosphonomycin is enhanced solely by riboflavin-5-phosphate.

Strain MB 2017 is an Escherichia coli pathogenic for mice. It exhibits broad sensitization on Nutrient Broth Agar by the entire

class of phosphate ester inducers.

Strain T 14 is a Klebniella species isolated from the urine of a patient just about to receive phosphonomycin therapy; T 27 is a Klebsiella species isolated from the urine of a patient who had been on phosphonomycin oral therapy for seven days. Both of the strains are resistant on Nutrient Broth Agar to phosphonomycin by itself, but show moderate sensitivity in the presence of a variety of inducers of the glucose-6-phosphate pathway.

Strains T 9 and T 19 are strains of Pseudo-

monas aeruginosa isolated from the urine of infected humans. They show no significant response on Nutrient Broth Agar to the above phosphate esters.

Strain T 10 is a Proteus mirabilis strain

isolated from the urine of an infected human, and shows no significant response on Mueller Hinton Agar to any of the above phosphate

Example 7

The Effect seen in Various Growth Media of Glucose-6-Phosphate on the Size of the Zone of Inhibition Surrounding Sensitivity Discs Containing this Sugar Phosphate in Combination with Phosphonomycin

An overnight culture of *Escherichia coli*, MB 2489, grown in Nutrient Broth was diluted one hundred fold, and an aliquot of 0.05 ml was swabbed over the surface of a 2 mm deep agar medium consisting of either Nutrient Broth, 1.5% Agar (Difco), Brain Heart Infusion, 1.5% Agar (Difco), Mueller Hinton Agar (Difco), Trypticase-Soy Agar (BBL), or a "human urine-agar." The latter medium was prepared by centrifuging adult male urine collected immediately after sleep, membrane filtering the supernatant to achieve sterility and combining the filtrate with one tenth volume of autoclaved 15% Noble Agar (Difco) in water to produce a solid medium. Sensitivity discs, consisting of a 7mm diameter filter paper disc containing either 5 or 30 µg of disodium phosphonomycin with and without disodium glucose-6-phosphate, were placed on the surface of the seeded agar. Zones of inhibition were measured after 18 hours of incubation at 37°C.

Diameter of Zone of Inhibition - mm

	5 μg	30 μg	5 μg	30 μg
Medium used	Phospho	onomycin	glucose-6	omycin plus phosphate µg)
Nutrient Broth	12	24 .	28	33
Mueller Hinton Broth	0	14	20	26
Brain Heart Infusion .	· 0- ·-	12	. 16	20
- Trypticase-Soy Broth		15	18	 24 .
Human urine	9	19	14	26

The activity of phosphonomycin alone is clearly antagonized relative to Nutrient Broth in the other media employed. This antagonism can be attributed to a major extent to high 70 levels of sodium chloride in Mueller Hinton, glucose and phosphate in Brain Heart Infusion and Trypticase-Soy and phosphate ion in human urine. These interfering phenomena are substantially overcome by the inclusion 75 of glucose-6-phosphate in the sensitivity disc. Example 8

Effect of Glucose-6-Phosphate on the Sensitivity of Escherichia Coli Strains to Several Phosphonomycin Analogues

Overnight cultures of Escherichia coli, strains MB 2489 (possessing both the aglycerophosphate transport and the glucose-6phosphate transport systems) and MB 2493 (possessing only the glucose-6-phosphate pathway, and therefore relatively resistant to

phosphonomycin alone) were diluted one hundred fold and a 0.05-ml portion was swabbed over the surface of a 2 mm of Nutrient Broth, 1.5% agar (Difco). Sensitivity discs consisting of a 7-mm-diameter paper disc containing disodium phosphonomycin or one of the in-

dicated analogues in the stated quantities together with an additional 5 ag of disedium glucose-6-phosphate where indicated, were placed on the surface of the seeded agm. Zones of inhibition were measured after 18 hours of incubation at 37°C.

10

		MB	2489	MB 2498	
Active substance	Amount µg	G-6-P	+ G 6P	G_6_P	+ G 6P
Phosphonomycin	5	14	28	0	30
• •	2.5	12	25	0	24
	1.0	0	20	Ō	24
	0.3	0	18	0	15
1-methyl-1,2 epoxyethyl	500	20	38	9	42
phosphonic acid, mono	50	0	32	0	36
dicyclohexyl amine salts	5	Ó	13	Ō	16
1,2 epoxyethyl phosphonic	500	16	35	8	38
acid, dicycloheryl	50	0	26	Ö	29
ammonium salt	5	Ō	10	Ö	12

Glucose-6-phosphate is observed to so potentiate the sensitivity of phosphonomycinsensitive and resistant strains that they now respond to weak analogues of phosphonomycin to the same degree as to phosphonomycin by itself.

Example 9 Effect of Phosphonomycin and Glucose-6-Phosphate and Combinations thereof in Treatment of Infected Mice Female C.D.1 mice of average weight,

25 22.5 g., were infected intraperitoneally with

16-hour broth cultures appropriately diluted in brain heart infusion. For *E. coli* the challenge contained 2.5 x 10° cells or 7 LD₃₀ doses; for *Slugella*, 2.3 x 10° cells or 3 LD₅₀ doses. At the time of infection the disodium salt of phosphonomycin and sodium glucose-6-phosphate was administered separately in 0.25 ml, subcutaneously at a separate site, one on each side of the dorsal surface. The results of these tests are shown in the following 35 table:

ED₅₀ subcutaneously

	50 1 -							
	G-6-P	phosph	odium onomycin SP)	DSP ÷	1.0 mg 6—P	DSP	0.1 mg 6—P	
Test Organism	ha	µg	0/	μg	0/	μg	%	
Escherichia coli 2017	>4000	155	100	12	8	91	58	
Shigella (118—57) 3303	>4000	1000	100	82	8	1500	150	

Example 10 Effect of Phosphonomycin and Glucose-6-40 Phosphate, and Combinations thereof in the Treatment of Infected Mice

In further mouse tests carried out as described in Example I except that the antibiotic

was combined with the sodium glucose-6-phosphase and given in one injection, the following results were obtained in mice infected with Aerobacter aerogenes and Staphylococcus aureus:

Disodium phosphonom	ycin (DSP)	8.c. ED 50 in µg
---------------------	------------	------------------

	DSP	μg	G6P	added to	DSP	G-6-P
Test Organism	Alone	4000	1000	500	100	ED ₅₀ used alone (µg)
Aerobacter aerogenes 3148	10,000+	287	3,000	7,700	10,000	>4,000
Staphylococcus cureus Smith 2949	96	22	50			>4,000

Example 11 Effect of Fructose-6-Phosphate in Potentiating

Phosphonomycin in Mice The efficacy of fructuse-6-phosphate in potentiating the control by phosphonomycin of experimental bacterial infections in mice was compared with that of glucose-6-phosphate in

tests following the protocol of Example 10. Again the antibiotic was combined with the sugar phosphate in a single subcutaneous injection administered at the time of intraperitoneal inoculation with Escherichia coli, MB 2017.

ED_{εω} μg Potentiator Dose (µg) Phosphonomycin None 2000 Glucose-6-phosphate disodium 1000 17 600 300 31 69 100 470 Fructose-6-phosphate disodium 1000 17 600 300 57 202 100 534

Fructose-6-phosphate is seen to exercise a degree of potentiation toward phosphonomycin that is comparable with that observed previously in the parallel experiment with glucose 6-phosphate. This equivalency was expected both from the similar enhancement of inhibition observed in vitro, in Example 5, when either of these sugar phosphates were combined with phosphonomycin, and from the certainty of their interconversion by the ample phosphoglucoseisomerase activity present in plasma.

Example 12 Therapeutic Efficacy of Phosphonomycin Administered Orally to Infected Mice Receiving Glucose-6-Phosphate by Either the Oral 30 or Subcutaneous Route

The protocol of Example 9 was followed for the case of Escherichia coli 2017 except that immediately upon infection the disodium salt of phosphonomycin was administered orally, while disodium glucose-6-phosphate, where indicated, was administered either orally or by the subcutameous route. In no case was protection observed when glucose-6-phosphate was administered alone at the 4000 µg level, orally or subcutaneously, in the absence of phosphonomycin.

Glucose-6-phosphate	Route	Dose of phosphonomycin (µg) administered orally that protects 50% of animals (ED ₅₀)
0		2000
1000	orally	2000
100	subcutaneous	37

Glucose-6-phosphate is an effective potentiator of therapy for phosphonomycin administered orally (25 fold sens tization) when sugar phosphate is administered subcutaneously. No sensitization is observed when the sugar phosphate is administered orally at that level.

Example 13

Therapeutic Efficacy of Phosphonomycin Administered Parenterally to Infected Mice 10 Receiving Glucos-6-Phosphate Salts Orally

The pretocol of Example 9 was followed for the case of Escherichia coli 2017 except that immediately after infection the disodium salt of phosphonomycin was administered subcutaneously, while glucose - 6 - phosphate in the indicated form was administered orally by

gavage in 0.25 ml. of water. In no case was protection observed with the glucose - 6 - phosphate salts administered alone, nor did the oral administration solely of 2.5 mg. of noctylammonium chloride (without glucose - 6-phosphate) decrease the ED₂₀ of phosphonomycin coadministered parenterally. The n-octyl - ammonium salts of glucose - 6 - phosphate were prepared by converting its disodium salt to the free acid by passage through a column containing a 20-fold excess of Dowex-50 (H+ form), followed by neutralisation of portions of the cluate with either 0.7, 1.5, or 2.0 molar equivalents of the free n-octylamine base, and 1.3, 0.5, or 0 molar equivalents of NaOH respectively, to give a final pH of 7.5 in each case.

Glucose-6-phosphate salt

Dose of phosphonomycin that protects 50% of animals (ED₅₀)

(mg)		(µg)
	TEST I	
none		500
disodium	100	27
salt	50	63
	25	125
	12.5	302
10	6.25	531
sodium 0.5	10	66
÷ n-octyl- ammonium 1.5	1	302 .
none	TEST II	827
di-n-octyl- ammonium	5	125
sodium 0.5 n-octyl- ammonium 1.5	5 	168
sodium 1.3 n-octyl-	5	714

Glucose - 6 - phosphate administered orally potentiates therapy by phosphonomycin, and is rendered more efficient in this effect in proportion to the fraction of inorganic counterion 5 replaced by lipophilic amine.

Example 14 Potentiation by Coadministered Galactose-6-phosphate of Phosphonomycin Therapy in Mice Infected with Staphylococci

An examination of the efficacy of galactose-6 - phosphate in potentiating the control by phosphonomycin of experimental Staphylococcal infections in mice was justified by the finding, made in an application to this strain of

the methodology described in Example 6, that 25 μ g of this sugar phosphate when added to a sensitivity disc bearing 5 µg of phosphonomy op me Nu bel sug jea

- comments and comments a key or bitospitotion	
cin produced a 21 mm zone of inhibition as	
posed to a 17 mm zone for the unsupple-	
ented disc, when the discs were placed on a	20
strient Agar plate seeded with Staphylococ-	
s aureus Smith 2949. In the therapy trial	
low, the antibiotic was combined with the	
gar phosphate in a single subcutaneous in-	
tion administered at the time of intra-	25
ritoneal injection with 10° cells per mouse	
LD:0's), with cells grown for 16 hours in	
ain-heart infusion.	

Dose (µg)	ED ₅₀ (µg Phosphonomycin)
	212
4000	91
4000	25
	(µg) — 4000

The effectiveness of galactose - 6 - phosphate as a potentiator is explained by the demonstrated existence in Staphylococcus of an inducible galactose - 6 - phosphate transport system. Galactose - 6 - phosphate is a meta-bolite of lactose hydrolysis unique to certain Gram-positive organisms, not however generated or willzed by E. coli. This accounts for the failure of galactose - 6 - phosphate to potentiate phosphonomycin action on E. coli (Example 5).

Example 15 Effect of Mannose-6-phosphate in Potentiating Phosphonomycin in Mice

The efficacy of mannose - 6 - phosphate in potentiating the control by phosphonomycin of experimental infections in mice was compared with that of glucose - 6 - phosphate, in tests following the protocol of Example 10. Again the antibiotic was titrated in combination with a series of fixed levels of sugar phosphates in a single subcutaneous injection administered at the time of intraperitoneal inoculation with Escherichia coli MB 2017.

	(µg Phosphonomycin)
	1420
1000	18
1000	19
500	23
250	92
125	490
	1000 500 250

Mannose - 6 - phosphate exercises a degree of potentiation toward phosphonomycin equivalent to that of comparable levels of glucose - 6 - phosphate, even though its effect in vitro is only one-tenth that of glucose - 6 - phosphate. This discrepancy can be attributed to the conversion of mannose - 6 - phosphate to glucose - 6 - phosphate in vivo by sequential action of mannose - phosphate is somerase and phosphoglucose isomerase, enzymes whose activities are demonstrable in plasma and in the walls of blood vessels.

Example 16
Potentiation by Glucose - 1 - phosphate and Ribose - 5 - phosphate of Phosphonomycin Therapy in Mice

The efficacy of glucose - 1 - phosphate and ribose - 5 - phosphate in potentiating the control by phosphonomycin of experimental bacterial infections in mice was compared with that of glucose - 6 - phosphate in tests following the protocol of Example 10. Again the antibiotic was titrated for its curative efficacy in combination with the indicated fixed levels of sugar phosphate in a single injection administered at the time of intraperitoneal inoculation with *E. coli* MB 2017.

Potentiator	Dose (µg)	ED ₅₀ (µg Phosphonomycin)
none	_	940
disodium glucose-6- phosphate	1000	5
dipotassium glucose-l- phosphate	1000	9
disodium ribose-5- phosphate*	1000	158

^{*} This sample was demonstrated by a specific assay with glucose-6-phosphate dehydrogenase to be contaminated by no more than one part per thousand of glucose-6 phosphate.

The potentiating ability of 1000 ag of ribose - 5 - phosphate, while significant, is equivalent only to that produced by approximately 100 ag of glucose - 6 - phosphate (see Example 11). This degree of relative potency was anticipated from the ratio of the weights of ribose - 5 - phosphate to glucose - 6 - phosphate which produce equivalently enhanced zones of inhibition in tito (Example 5). The equivalent potencies of glucose - 1 - phosphate and glucose - 6 - phosphate in vivo, despite differences in vitro, is most likely attributable to rapid conversion of the 1 - phosphate to the 6-phosphate by the action of phosphoglucomutase, known to be present in plasma.

Example 17

45 Potentiation by Coadministered Lactose of Phosphonomycin Therapy in Mice Infected with Streptococci

On applying the methodology described in

Example 6 to the Streptococci, it was found that 250 vg of lactose added to a sensitivity disc bearing 30 vg of phosphonomycin produced a 27 mm diameter zone of inhibition, as compared with a 12 mm zone with an unsupplemented disc, when the discs were placed on a Nutrient Agar plate seeded with Streptococcus faecalis R. In the therapy trials below, 14 colony - forming units (7 LD₂₀'s) of the pathogenic Streptococcus pyogenes (1934) grown in brain-heart broth supplemented with 10%, horse serum, were inoculated intraperitoneally. Simultaneously, 0.5 ml of either a lactose solution or a saline control were injected subcutaneously followed in Trial I by a single 0.5 ml dose of phosphonomycin orally (by gavage), and in Trial II by 4 successive 0.5 ml oral doses of antibiotic at 0, 2, 4, and 6 hours post infection.

50

55

60

Potentiator	Dose (mg)	ED ₅₀ (total phosphonomycin administered — µg)
	TRIAL I	
none	-	3,950
lactose	4	1,530
	. TRIAL II	•
none		2,100
lactose	4	800

Neutral saccharides are thus capable of potentiating phosphonomycin action in vivo as in vitro. Certain Streptococci, in common with Staphylococci, also show inducible metabolism of lactose to galactose - 6 - phosphate.

The following experiments, though not part of the invention give further background invention give further background information to concerning transport systems in bacteria.

Experiment 1

Efficacy of Phosphonomycin in Protecting
Mice Infected by Mutant Bacterial Isolates
Displaying High Levels of the L - a - Glyterophosphate Transport System In the
Absence of Inducer

Mutants were isolated from E. coli 2017 using a mutagenesis and mutant detection screen described in Biochimica et Biophysica Acta, Volume 60, p. 422—424, 1962, and these mutants showed high levels of a glycerophosphate and glycerol metabolism without the need for prior growth in the presence of these inducers, such as is shown by the

natural strains. The diameter of the zones of inhibition around sensitivity discs bearing 5 µg of phosphonomycin, placed on Nutrient Agar plates seeded with mutants C₁, C₂, and the parent strain, were 20, 24, and 12 mm respectively. Since we have shown (Example I), that the addition of glycerol to such discs on the parent strain increases the zone size to 26-29 mm, we conclude that the mutant strains possess levels of the phosphonomycin transport system (i.e., the L - α - Glycerophosphate transport system) comparable to those of induced wild type strains. Therefore, the response of these mutants to phosphonomycin therapy should be predictive of the response of induced wild type strains in other situations.

Mutants C₁ and C₂ and the parent strain were grown under identical conditions (described in Example 9) and were inoculated introperitoneally into mice at the indicated challenge levels. Mice were injected subcutaneously with phosphonomycin immediately following infec-

Bacterial Strain	No. of Cells Inoculated (virulence)	ED ₅₀ (µg phosphonomycin)
B. coli 2017 (parent strain)	4.2 × 10 ⁶ (10 LD ₅₀ 's)	943
Mutant C ₁	4.7×10^{6} (30 LD ₅₀ 's)	12
Mutant C ₂	1.2 × 10° (9 LD ₅₀ 's)	

Thus, even though these mutants possess full virulence, they are controlled by remarkably low levels of phosphonomycin, implying that the uninduced wild-type strain displays in vivo far less than its full inducible capacity for responding to phosphonomycin.

Experiment 2

Effect of Coadministered Glucose - 6 - Phosphate on the Susceptibility to Phosphonomycin, In Vitro and In Vivo of a Becterial Variant That Had Acquired Resistance to Phosphonomycin During Therapy in Man.

The strains of Escherichia coli used below represent, in the case of M 13, an isolate from

the urine of an infected female just prior to 10 her treatment with phosphonomycin, and in the case of M 21, an isolate of the drug-resistant organisms present in the urine of this individual after therapy for 7 days with the antibiotic. The *in ritro* susceptibility tests were performed in the manner described in Example 6. The *in vivo* mouse protection trial was carried out as described in Example 9 following intraperituneal challenge with the indicated number of organisms.

15

IN VITRO SUSCEPTIBILITY TESTS

Zones of inhibition (mm) surrounding discs bearing 30 µg of phosphonomycin alone, or in combination with 5 µg of glucose-6phosphate

	Phosphonomycin alone	plus glucose -6- phosphate
E. coli M 13	19	28
E. coli M 21	(less than 7 mm)	20

CURATIVE EFFICACY OF PHOSPHONOMYCIN IN INFECTED MICE

(Ed₅₀'s in mg)

	Phosphonomycin above	Phosphonomycin co- administered with 1 mg glucose-6- phosphate, disodium
B. ωli M 13		
3.7×10^7 cells	0.25	0.035
= 8 LD ₅₀ 's		•
E. coli M 21		
1.2 × 107 cells	17.5*	2.5
= 10 LD ₅₀ 's	<u>-</u>	

^{*} At the highest drug level administered to this group, 20 mg per mouse, only 3 of the 5 infected animals were protected. In the other three groups complete protection was observed at no higher than twice the median level quoted.

Since the resistant strain retained the ability to respond to phosphonomycin upon co-addition of glucose - 6 - phosphate, it may be inferred that the hexose - 6 - phosphate transport pathway is not significantly induced by endogeneous substances in the natural urinary

infections of man. When transport is evoked by the intentional coadministration of inducers, resistance to phosphonomycin should be prevented or overcome, and the therapeutic elimination of such strains should be made possible.

Experiment 3 Effect of Coadministered Glucose - 6 - Phos-Effect of Coadministered Glucose - 6 - Phosphate on the Susceptibility to Phosphonomycin, In Vitro and In Vivo, of a Widd-Type, Inducible Bacterial Strain and A Non-Inducible Mutant Derived Therefrom.

A mutant designated 2017 A showing no additional response in vitro to phosphonomycin upon addition of glucose - 6 - phosphate

10 was isolated from its parent, the naturally

occurring pathogen Escherichia coli 2017 by the procedure described in Example 6 for the isolation of Strain MB 2489 A2 from its parent MB 2489. Mutant 2017 A showed a normal ability to metabolise glucose - 6 - phosphate. Its in vitro susceptibility to phosphonomycin, in vivo, relative to the parent strain, was determined twice in mouse protection trials destinated the control of the cont cribed below, by the protocol established in Example 9.

IN VITRO SUSCEPTIBILITY TESTS

Zones of inhibition (mm) surrounding discs bearing 30 µg of phosphonomycin alone, or in combination with 5 µg of glucose-6-phosphate, dosodium.

Phosphonomycin co-

	Phosphonomycin alone	plus glucose -6- phosphate
B. coli 2017	18	27
E. coli 2017 A	17.5	18

CURATIVE EFFICACY OF PHOSPHONOMYCIN IN INFECTED MICE

(ED₅₀'s in mg)

	Phosphonomycin alone	administered with 1 mg glucose-6- phosphate, disodium
TRIAL I		
E. coli 2017		
1×10^6 cells	0,230	0.015
= 9 LD ₅₀ 's		
B, coli 2017 A		
1×10^{6} cells	0.166	0.284
= 7 LD ₅₀ 's		
TRIAL II		
B. coli 2017		
5×10^8 cells	0.821	0.021
= 13 LD ₆₀ 's		
B. coli 2017 A		
9×10^6 cells	1.420	1.130
= 33 LD ₆₀ 's		

The indifference of mutant 2017 A to the combination of glucose - 6 - phosphate with phosphonomycin in vitro, is reflected perfectly in vivo by the failure of co-administered glucose - 6 - phosphate to enhance the efficacy of phosphonomycin in treatment of mice infected by this mutant. Thus the normal potentiation by glucose - 6 - phosphate of phosphonomycin's curative effect must be attributed to its direct action on inducible infecting strains of bacteria and not by any host response that might be conjectured (such as enhanced drug absorption or immune response) which would have affected the mutant as favorably as the parent strain. The similar efficacy of phosphonomycin alone, against infections due to inducible and non-inducible organisms, implies that endogeneous inducers are either absent from or at too low a level (in those areas of the body invaded by microorganisms) to evoke the biosynthesis of the hexose - 6 phosphate transport system. Thus the manifest potential benefits resulting from induction of this system, require explicit administration 25 of exogeneous inducer by the therapist.

WHAT WE CLAIM IS:—

1. A method of potentiating the antibacterial activity of a phosphonomycin antibotic in a non-human animal, that comprises bringing bacteria into contact with an inducer selected from phosphatides, sugar phosphates and salts thereof, and polyhydric alcohols, whereby an existing phosphonomycin transport pathway in the bacteria is enhanced or a new pathway is brought into being, and subsequently or simultaneously bringing the bacteria into contact with a phosphonomycin antibiotic.

A method as claimed in claim 1 in which
 the inducer is glucose - 6 - phosphate.

3. A method as claimed in claim 1 in which the inducer is mannose - 6 - phosphate.

4. A method as claimed in claim 1 in which the inducer is glucose - 1 - phosphate.
5. A method as claimed in claim 1 in which

5. A method as claimed in claim 1 in which the inducer is ribose - 5 - phosphate.
 6. A method as claimed in claim 1 in which

6. A method as claimed in claim 1 in which the inducer is galactose - 6 - phosphate.
7. A method as claimed in claim 1 in which

50 the inducer is lactose.

8. A method as claimed in claim 1 in which the inducer is glycerol, DL - α - glycerophosphate, glucose - 6 - phosphate disodium or dipotassium, fructose - 6 - phosphate disodium, 2 - deoxy-glucose - 6 - phosphate disodium, 2 - amino-2 - deoxy - glucose - 6 - phosphate disodium, ribose - 5 - phosphate disodium, phosphatidyl ethanolamine, glucose - 1',6' - diphosphate tetrapotassium pentahydrate, glucose - 1 - phosphate disodium, 5 - phosphoryl - ribose - 1-pyrophosphate dimagnesium dihydrate, riboflavin - 5 - phosphate disodium, galactose - 6-phosphate disodium or a glucose - 6 - phosphate m - octylammonium salt.

9. A method as claimed in any one of claims
 1—8 in which the phosphonomycin antibiotic is a salt of phosphonomycin.

10. A method as claimed in any one of claims 1—9 in which the inducer and the antibiotic are administered parenterally in a single composition.

11. A method as claimed in any one of claims 1—9 in which the inducer is administered parenterally and the phosphonomycin 75 cribicity ordhy.

antibiotic orally.

12. An antibiotic composition comprising a phosphonomycin antibiotic as herein defined an inducer of a phosphonomycin transport system in bacteria, selected from phosphatides, sugar phosphates and salts thereof, and polyhydric alcohols, and a pharmaceutically acceptable carrier, diluent or vehicle.

13. A composition as claimed in claim 12, in the form of tablets, powders, granules, capsules, suspensions, solutions, clixirs, syrups or sterilized solutions or suspensions for parenteral administration.

14. A composition as claimed in claim 12, in topically administrable form.

15. A method as claimed in claim 1, substantially as hereinbefore described in any one of Examples 1—17.

For the Applicants D YOUNG & CO Chartered Patent Agents 9 and 10 Staple Inn London WC1V 7RD

Printed for Her Majesty's Stationery Office by the Courier Press, Leamington Sp2, 1973.

Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.