Scalable Gaussian Processes with Billions of Inducing Inputs via Tensor Train Decomposition

Pavel Izmailov^{1,4} Alexander Novikov^{2,3} Dmitry Kropotov⁴

¹ Cornell University ² National Research University Higher School of Economics

³ Institute of Numerical Mathematics RAS ⁴ Lomonosov Moscow State University

Motivation

Motivation

Structured Kernel Interpolation (SKI)

Wilson and Nickisch (2015)

• Set inducing points on a multi-dimensional grid

$$Z = Z^1 \times Z^2 \times \ldots \times Z^D.$$

• Assume the kernel decomposes as

$$k(x, x') = k^{1}(x^{1}, x'^{1}) \cdot k^{2}(x^{2}, x'^{2}) \cdot \ldots \cdot k^{D}(x^{D}, x'^{D}).$$

Then covariance matrix K_{mm} takes form

$$K_{mm} = K_{m_1m_1}^1 \otimes K_{m_2m_2}^2 \otimes \ldots \otimes K_{m_Dm_D}^D$$
.

• $|K_{mm}|$ and K_{mm}^{-1} can be computed efficiently.

• Inducing points can be considered as inteprolation points for the kernel.

$$k_i \approx K_{mm} w_i$$

where $w_i \in \mathbb{R}^m$ is the vector of interpolation coefficients.

• KISS-GP uses cubic convolutional interpolation for which

$$w_i = w_i^1 \otimes w_i^2 \otimes \ldots \otimes w_i^D$$
.

Tensor Train Format

Oseledets (2011)

Tensor \mathcal{A} is said to be represented in TT format if:

$$\mathcal{A}_{i_1...i_d} = \underbrace{G_1[i_1]}_{1 \times r} \underbrace{G_2[i_2]}_{r \times r} \dots \underbrace{G_d[i_d]}_{r \times 1}$$

An example of computing one element of a 4-dimensional tensor:

- TT-format uses $O\left(dnr^2\right)$ memory to approximate a tensor with n^d elements.
- Allows for efficient implementation of linear algebra operations.

Gaussian Process ELBO

Using KISS-GP approximation of $k_i \approx K_{mm} w_i$, we can rewrite the ELBO as

$$\log p(y) \ge \sum_{i=1}^{n} \left(\log \mathcal{N}(y_i | w_i^T \mu, \sigma^2) - \frac{1}{2\sigma^2} (\mathbf{var}_i + w_i^T K_{mm} w_i) - \frac{1}{2\sigma^2} \text{tr}(w_i^T \Sigma w_i) \right)$$
$$-\frac{1}{2} \left(\log \frac{|K_{mm}|}{|\Sigma|} - m + \text{tr}(K_{mm}^{-1} \Sigma) + \mu^T K_{mm}^{-1} \mu \right)$$

where

- $K_{mm} \in \mathbb{R}^{m \times m}$ is the covariance matrix computed at the inducing points
- $k_i \in \mathbb{R}^m$ is the vector of covariances between the *i*-th training object and the inducing points
- σ^2 is the noise variance
- $\mu \in \mathbb{R}^m$, $\Sigma \in \mathbb{R}^{m \times m}$ variational parameters
- $\tilde{K}_{ii} = \text{var} k_i^T K_{mm}^{-1} k_i$, where var is the prior variance of the process at any point

TT-GP

- ullet Set inducing points Z on a grid in the feature space
- Restrict Σ to be in a Kronecker product format

$$\Sigma = \Sigma^1 \otimes \Sigma^2 \otimes \ldots \otimes \Sigma^D.$$

• Restrict μ to be in TT format with TT-ranks r.

Properties

- The computational complexity is linear in the size of the data $\mathcal{O}(nDm^{1/D}r^2+Dm^{1/D}r^3+Dm^{3/D})$. TT-ranks are in general on the scale of $r\approx 10$.
- Here $m = m_0^D$.
- To fit the process we can use simple SGD
- The method can be applied for large n, moderately large D, and huge m

RBF Kernel Experiments

Hensman et al. (2013)

Dataset			SVI-GP / KLSP-GP			TT-GP			
Name	\overline{n}	\overline{D}	acc.	\overline{m}	t (s)	acc.	\overline{m}	d	t (s)
Powerplant	7654	4	0.94	200	10	0.95	35^4	-	5
Protein	36584	9	0.50	200	45	0.56	30^{9}	_	40
YearPred	463K	90	0.30	1000	597	0.32	10^{6}	6	105
Airline	6M	8	0.665*	_	_	0.694	20^{8}	-	5200
svmguide1	3089	4	0.967	200	4	0.969	20^{4}	_	1
EEG	11984	14	0.915	1000	18	0.908	12^{10}	10	10
covtype bin	465K	54	0.817	1000	320	0.852	10^{6}	6	172

Deep Kernel Experiments

Wilson et al. (2016)

Dataset	SV-DKL	DNN	TT-GP	
Name	acc.	acc. $t(s)$	acc. $d t (s)$	
Airline	0.781	0.780 1055	0.788 ± 0.002 2 137	5
CIFAR-10	_	0.915 166	0.908 ± 0.003 9 220)
MNIST	_	0.993 23	$0.9936 \pm 0.0004 \ 10 \ 64$	

References

- J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian processes for big data. In *Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence*, pages 282–290. AUAI Press, 2013.
- I. V. Oseledets. Tensor-train decomposition. *SIAM Journal on Scientific Computing*, 33(5):2295–2317, 2011.
- A. G. Wilson and H. Nickisch. Kernel interpolation for scalable structured gaussian processes (kiss-gp). In *International Conference on Machine Learning*, pages 1775–1784, 2015.
- A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing. Stochastic variational deep kernel learning. In *Advances in Neural Information Processing Systems*, pages 2586–2594, 2016.