Kaggle

5th place solution

kaggle

- 1. Background
- 2. Summary
- 3. Feature selection & engineering
- 4. Training methods
- 5. Important findings
- 6. Simple model

- 1. Background
- 2. Summary
- Feature selection & engineering
- 4. Training methods
- Important findings
- Simple model

Background

- Tatsuya Sano(Graduate student of University of Tsukuba/ Major: Computer Science, Data Mining)
- Minoru Tomioka(Graduate student of University of Tsukuba/ Major: Computer Science, Numerical Analysis)
- Yuta Kobayashi(Graduate student of University of Tsukuba/ Major: Computer Science, Optimization)

- 1. Background
- 2. Summary
- Feature selection & engineering
- 4. Training methods
- Important findings
- 6. Simple mode

Summary

- We only use LightGBM as regressor
- The three most important features were building_id, building_meter_5,building_meter_95(described later)
 One of our biggest insights was that special target encoding(5% and 95% percentile of target value of each building_id/meter) gave me a big performance improvement
- Used Python (Pandas and LightGBM)
- After ensemble, our score would be 1.236 private /
 1.047 public

Summary

- 1. Background
- Summary
- 3. Feature selection & engineering
- 4. Training methods
- Important findings
- Simple model

Target encoding (5 and 95 percentile)

Target encoding (proportion)

example(building_id =1446)

Day of week	Median of Target
0 (Sunday)	0.742
1 (Monday)	2.382
6 (Saturday)	1.194

Day of week	Proportion*
0 (Sunday)	0.054
1 (Monday)	0.173
6 (Saturday)	0.087

*Proportion(i) = $\frac{\text{Median of Target}(i)}{\sum_{j=0}^{6} \text{Median of Target}(j)}$

Features Selection / Engineering

Variable Importance Plot(Gain)

Features Selection / Engineering

Variable Importance Plot(Split)

- 1. Background
- Summary
- Feature selection & engineering
- 4. Training methods
- Important findings
- Simple model

Training Methods

- We used LightGBM
- We determine num_boost_round for each building id/meater (see next slide)
- We used leaked data for deciding ensemble weight(We also used other competitor's submission files to ensemble)
 - •We chose ensemble weight that minimize RMSLE between submission data and leaked data

Determine num_boost_round -Step1

Determine num_boost_round -Step2

- 1. Background
- Summary
- Feature selection & engineering
- 4. Training methods
- 5. Important findings
- Simple model

Important and Interesting Findings

- What set we apart from others in the competition
 - determining num_boost_round of each building/meter
 - data cleaning
 - special target encoding(5% and 95% percentile of target value of each building_id/meter)
 - •special target encoding(proportion of target value per week, per hour, per day)
 - ensemble using leaked data
 - ensemble by meter

- 1. Background
- Summary
- Feature selection & engineering
- 4. Training methods
- Important findings
- 6. Simple model

Simple Model

- [Outline a subset of features that would get 90-95% of your final performance]
 - We show feature importance in the next slide
- [If you used an ensemble, was there a single classifier that did most of the work? Which one?]
 - We didn't ensemble for simplified model
- [What would the simplified model score be?]
 - 1.272 private / 1.068 public

Simple Model

Simplified feature importance(gain)

Simple Model

Simplified feature importance(split)

kaggle