1 Vectors in \mathbb{R}^n

1.6 Projection, Components, and Perpendicular

Definition

Let \overrightarrow{v} , $\overrightarrow{w} \in \mathbb{R}^n$ with $\overrightarrow{w} \neq 0$. The **projection of** \overrightarrow{v} **onto** \overrightarrow{w} is defined by

$$\operatorname{proj}_{\overrightarrow{w}} = (\overrightarrow{v}) - \frac{(\overrightarrow{w} \cdot \overrightarrow{v})}{||\overrightarrow{w}||^2} = \frac{(\overrightarrow{v} \cdot \overrightarrow{w})}{\overrightarrow{w} \cdot \overrightarrow{w}} \overrightarrow{w}$$

Example

Suppose: $\overrightarrow{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $\overrightarrow{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ What is $\operatorname{proj}_{e_1} \overrightarrow{v}$?

Solution:

$$proj_{\overrightarrow{e^1}} \overrightarrow{v} = \frac{\begin{bmatrix} 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix}}{||\begin{bmatrix} 1 \\ 0 \end{bmatrix}||^2}$$
$$= \frac{2}{1} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

Example

Suppose: $\overrightarrow{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $\overrightarrow{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ What is $\operatorname{proj}_{-e_1} \overrightarrow{v}$?

Solution:

$$prof_{-\overrightarrow{e_1}\overrightarrow{v}} = \frac{\begin{bmatrix} 2\\3 \end{bmatrix} \cdot \begin{bmatrix} -1\\0 \end{bmatrix}}{||\begin{bmatrix} -1\\0 \end{bmatrix}||^2}$$
$$= \frac{-2}{1} \begin{bmatrix} -1\\0 \end{bmatrix}$$
$$= \begin{bmatrix} 2\\0 \end{bmatrix}$$

1

Definition

Let $\overrightarrow{v}, \overrightarrow{w} \in \mathbb{R}^n$ with $\overrightarrow{w} \neq 0$. The **projection of** \overrightarrow{v} **onto** \overrightarrow{w} is defined by

$$\operatorname{perp}_{\overrightarrow{w}} = \overrightarrow{v} - \operatorname{proj}_{\overrightarrow{w}}(\overrightarrow{v})$$

Properties:

- 1. $proj_{\overrightarrow{w}(\overrightarrow{v})}$ is perpendicular to $perp_{\overrightarrow{w}(\overrightarrow{v})}$
- 2. $proj_{\overrightarrow{w}}(c\overrightarrow{v}) = c \cdot proj_{\overrightarrow{w}}(\overrightarrow{v})$
- 3. $proj_{\overrightarrow{w}}(\overrightarrow{v} + \overrightarrow{u}) = proj_{\overrightarrow{w}}(\overrightarrow{v}) + proj_{\overrightarrow{w}}(\overrightarrow{v})$
- 4. $proj_{\overrightarrow{w}}(proj_{\overrightarrow{w}}(\overrightarrow{v})) = proj_{\overrightarrow{w}}(\overrightarrow{v})$

Proof of 4:

Proof.

$$prof_{\overrightarrow{w}}(proj_{\overrightarrow{w}}(\overrightarrow{v})) = proj_{\overrightarrow{w}}(\frac{\overrightarrow{v} \cdot \overrightarrow{w}}{||\overrightarrow{w}||^2 \overrightarrow{w}})$$

$$= \frac{\overrightarrow{v} \cdot \overrightarrow{w}}{||\overrightarrow{w}||^2} \cdot \frac{\overrightarrow{w} \cdot \overrightarrow{w}}{||\overrightarrow{w}||^2} \overrightarrow{w}$$

$$= \frac{\overrightarrow{v} \cdot \overrightarrow{w}}{||\overrightarrow{w}||^2} \overrightarrow{w}$$

$$= proj_{\overrightarrow{w}}(\overrightarrow{v})$$

Standard Inner Project in \mathbb{C}^n

Instead of dot product, we define the Standard inner product.

Definition

The standard inner product of $\overrightarrow{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}, \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} \in \mathbb{C}^n$ is

$$\langle \overrightarrow{v}, \overrightarrow{w} \rangle = v_1 \overrightarrow{w_1} + v_2 \overrightarrow{w_2} + \dots + v_n \overrightarrow{w_n}$$

Definition

The **length** of the vector $\overrightarrow{v} \in \mathbb{C}^n$ is $||\overrightarrow{v}|| = \sqrt{\overrightarrow{v} \cdot \overrightarrow{v}}$

Theorem 1.1: Property 1.5.3

1.
$$\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w} \in \mathbb{R}$$

2.
$$\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$$

3.
$$(\overrightarrow{u} + \overrightarrow{v}) \cdot \overrightarrow{w} = \overrightarrow{u} \overrightarrow{w} + \overrightarrow{v} \overrightarrow{w}$$

4.
$$(\overrightarrow{u} \cdot \overrightarrow{v}) \cdot \overrightarrow{w} = \overrightarrow{v} \cdot (\overrightarrow{u} \cdot \overrightarrow{w})$$

5.
$$\overrightarrow{v} \cdot \overrightarrow{v} \ge 0$$

Geometry in \mathbb{R}^2

Definition

The **length** of the vector $\overrightarrow{v} \in \mathbb{R}^n$ is $||\overrightarrow{v}|| = \sqrt{\overrightarrow{v} \cdot \overrightarrow{v}}$

Aside: In \mathbb{R}^1 :

$$||\overrightarrow{v}|| = ||[v_1]|| = \sqrt{v_1^2} = |v|$$

Theorem 1.2: Properties of Length

1.
$$||\overrightarrow{0}|| = 0$$

2.
$$||c \cdot \overrightarrow{v}|| = |c| \cdot ||\overrightarrow{v}||$$

3.
$$||\overrightarrow{v} + \overrightarrow{u}|| \neq ||\overrightarrow{v}|| + ||\overrightarrow{u}||$$

4.
$$||\overrightarrow{v} + \overrightarrow{u}|| \le ||\overrightarrow{v}|| + ||\overrightarrow{u}||$$

Importance of dot product: It gives angles between vectors in \mathbb{R}^2 !

Definition

 $\overrightarrow{v} \in \mathbb{R}^n$ is a **unit vector** if $||\overrightarrow{v} = 1||$

Definition

When $\overrightarrow{v} \in \mathbb{R}^n$ is a non-zero vector, we can produce a unit vector

$$\hat{v} = \frac{\overrightarrow{v}}{||\overrightarrow{v}||}$$

in the direction of \overrightarrow{v} by scaling \overrightarrow{v} . This process is called normalization.

Definition

Let \overrightarrow{v} and \overrightarrow{u} be non-zero vectors in \mathbb{R}^n . The angle θ , in radians $(0 \le \theta \pi)$, between \overrightarrow{u} and \overrightarrow{v} is such that

$$\overrightarrow{v} \cdot \overrightarrow{u} = ||\overrightarrow{u}|| \cdot ||\overrightarrow{v}|| \cos \theta, \text{ that is } \theta = \arccos(\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{||\overrightarrow{v}|| \cdot ||\overrightarrow{u}||})$$

Example

Problem: Given 2 vectors, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ find θ .

Solution:

$$\cos \theta = \frac{\begin{bmatrix} 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix}}{||\begin{bmatrix} 0 \\ 1 \end{bmatrix}|| \cdot ||\begin{bmatrix} 1 \\ 0 \end{bmatrix}||}$$
$$= \frac{0}{1} = 0$$
$$\theta = \frac{\pi}{2}$$

Definition

Let $\overrightarrow{u}, \overrightarrow{v} \in \mathbb{R}^n$. We say \overrightarrow{u} and \overrightarrow{v} are perpendicular (or orthogonal) if $\overrightarrow{u} \cdot \overrightarrow{v} = 0$

Example

Problem: Find a non-zero vector in \mathbb{R}^2 that is orthogonal to $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Solution: $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 6 \\ -3 \end{bmatrix}$

Example

Problem: Find a non-zero vector perpendicular to $\begin{bmatrix} a \\ b \end{bmatrix}$ Solution:

$$\begin{bmatrix} -b \\ a \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix}$$
$$= -ba + ab$$
$$= 0$$

Therefore, $\begin{bmatrix} -b \\ a \end{bmatrix}$ is a solution.