Algorithm and Data Structure Analysis (ADSA)

Hashing (2)

Previous Lecture

- Introduction to hashing
 - Use hash function h(key(e)) to obtain index of element e in hash table t
- Hashing with chaining

Previous Lecture: Symbols

- *S* = associative array
- t = hash table
- N = number of potential keys = |S|
- m = number of possible hash function values
 = |t|
- n = number of elements

Previous Lecture: Average Case Analysis for Hashing with Chaining

Theorem: If n elements are stored in a hash table t with m entries using hashing with chaining and a random hash function is used, the expected execution time of remove or find is O(1+n/m).

Note: a random hash function maps *e* to all *m* table entries with the same probability.

Proof:

Execution time for remove and find is constant time plus the time scanning the list t[h(k)].

Let the random variable X be the length of the list t[h(k)], and let E[X] be the expected length of the list.

Thus the *expected* execution time = O(1 + E[X]).

Proof (continued):

Let S be the set of n elements contained in t.

For each e, let X_e be an indicator variable which indicates whether e hashes to the same value as k.

ie: **if** h(key(e)) = h(k) **then** $X_e = 1$ **else** $X_e = 0$.

$$X = \sum_{e \in S} X_e$$

(ie how many e's are in table entry h(key(e)))

Proof (continued):

$$E[X] = E\left[\sum_{e \in S} X_e\right]$$

$$=\sum_{e\in\mathcal{S}}E[X_e]$$

$$= \sum_{e \in S} prob(X_e = 1)$$

Proof (continued):

$$E[X] = \sum_{e \in S} prob(X_e = 1)$$
 (From last slide)

$$=\sum_{e\in S}1/m$$

(As function maps e to all m with equal probability)

$$= n/m$$

(Because n elements in

Proof (continued):

Expected execution time = O(1 + E[X]), E[X] = n/m

Thus the expected execution time for remove and find under hashing with chaining is O(1 + n/m), and constant if m = O(n)

Alternative Approach to Hashing

Hashing with chaining is an open hashing approach.

- Open hashing : handles collision by storing all elements with the same hashed key in one table entry.
- Closed hashing : handles collision by storing subsequent elements with the same hashed key in different table entries.

Hashing with Linear Probing

- Hashing with Linear Probing is an open hashing approach.
- All unused entries in t are set to \bot .
- When inserting on a collision, insert the element to the next free entry.

What if the last entry is used?

Hashing with Linear Probing

- Trivial fix: allow more entries
- Make table t size m + m' instead of m. Choose m' < m.

Insert(e)

- insert(e: Element)
 - 1. Get index i = h(key(e))
 - 2. If $t[i] == \bot$, store e at t[i]
 - 3. If t[i] is not empty, increase i by 1 and go to step 2.

Example Inserts

Insert(Classic) Boa Cobra

1 (letter b)
2 (letter c)
3 (letter d)
4 (letter e)

0 (letter a)

Find(k)

- find(*k*: Key)
 - 1. Get index i = h(k)
 - 2. If $t[i] == \bot$, return not found
 - 3. If element e at t[i] has key(e) == k, return found. Else increase i by 1 and go to step 2.

eg Find(ABBA) 0 (letter a) Boa Boa Boa Cobra Cobra L not found

Remove(k)

- Can't remove the element with key(e) == k and replace it with \bot .
 - If we replace element e1 at t[i] with \bot , how do we find an element e2 with the same h(k)?

 Instead, first remove the element with key(e) == k and then fix the invariant.

Remove(k)

- remove(k: Key)
 - 1. Get index i = h(k)
- 2. If $t[i] == \bot$, return search (k)
 - 3. If element e at t[i] has key(e) != k, increase i by 1 and go to step 2.
 - 4. Set $t[i] = \bot$
 - 5. Set index j = i+1
 - 6. If $t[j] == \bot$, return
 - If h(t[j]) > i, increase j by 1 and go to step 6
 - Else set t[i] = t[j] and $t[j] = \bot$
 - 9. set i = j and go to step 5.

Example: Remove(Cobra)

Algorithm and Data Structure Analysis

Example: Remove(Cobra)

Chaining vs. Linear Probing

Argumentation depends on the intended use and many technical parameters:

Chaining Linear probing

+ referential integrity + use of contiguous memory

waste of space - gets slower as table fills up

A fair comparison must be based on space consumption, not only on the runtime.