Package 'HMMcopula'

October 2, 2024

Title Markov Regime Switching Copula Models Estimation and

Maintainer Bruno N Remillard
 bruno.remillard@hec.ca>

Type Package

Version 1.1.0

Goodness-of-Fit

Description Estimation procedures and goodness-of-fit test for several Markov regime switching models and mixtures of bivariate copula models. The goodness-of-fit test is based on a Cramervon Mises statistic and uses Rosenblatt's transform and parametric bootstrap to estimate the pvalue. The proposed methodologies are described in Nasri, Remillard and Thioub (2020) <doi:10.1002 cjs.11534="">.</doi:10.1002>
License GPL (>= 2)
Encoding UTF-8
Depends mytnorm, foreach, doParallel, copula
RoxygenNote 7.3.2
NeedsCompilation no
Author Bouchra R. Nasri [aut], Bruno N Remillard [aut, cre, cph], Mamadou Yamar Thioub [aut], Romanic Pieugueu [aut] Repository CRAN Date/Publication 2024-10-02 16:40:09 UTC
Contents
CopulaFamiliesCDF
EstHMMCop
EstKendallTau
EstMixtureCop
GofHMMCop
GofMixtureCop
KendallTau
1

2 CopulaFamiliesCDF

Conu	laFamiliesCDF CopulaFamiliesCDF	
Index		15
	Tau2Rho	14
	SnB	
	SimMixtureCop	
	SimMarkovChain	12
	SimHMMCop	12
	RosenblattStudent	11
	RosenblattGumbel	11
	RosenblattGaussian	10
	RosenblattFrank	10
	RosenblattClayton	9
	ParamTau	9
	ParamCop	8

Description

COPULACDF Cumulative probability function for a copula with linear correlation parameters RHO

Usage

```
CopulaFamiliesCDF(family, u, ...)
```

Arguments

family	copula familly= "gaussian", "t", "clayton", "frank", "gumbel"
u	is an N-by-P matrix of values in $[0,1]$, representing N points in the P-dimensional unit hypercube
	additionnal parameter like RHO a P-by-P correlation matrix.

Value

Y = COPULACDF('Gaussian',U,RHO) returns the cumulative probability of the Gaussian copula with linear correlation parameters RHO, evaluated at the points in U. U is an N-by-P matrix of values in [0,1], representing N points in the P-dimensional unit hypercube. RHO is a P-by-P correlation matrix. If U is an N-by-2 matrix, RHO may also be a scalar correlation coefficient.

Y = COPULACDF('t',U,RHO,NU) returns the cumulative probability of the t copula with linear correlation parameters RHO and degrees of freedom parameter NU, evaluated at the points in U. U is an N-by-P matrix of values in [0,1]. RHO is a P-by-P correlation matrix. If U is an N-by-2 matrix, RHO may also be a scalar correlation coefficient.

Y = COPULACDF(FAMILY,U,ALPHA) returns the cumulative probability of the bivariate Archimedean copula determined by FAMILY, with scalar parameter ALPHA, evaluated at the points in U. FAMILY is 'Clayton', 'Frank', ort 'Gumbel'. U is an N-by-2 matrix of values in [0,1].

dilog 3

Examples

```
u = seq(0,1,0.1);
U1=matrix(rep(u,length(u)),nrow=length(u),byrow = TRUE); U2=t(U1)
F = CopulaFamiliesCDF('clayton',cbind(c(U1), c(U2)),1)
```

dilog

Dilogarithm function

Description

Computation of the dilogarithm function by nemerical integration.

Usage

```
dilog(x)
```

Arguments

X

a real number

Value

out

dilogarithm

EstHMMCop

Estimation of bivariate Markov regime switching bivariate copula model

Description

Estimation of parameters from a bivariate Markov regime switching bivariate copula model

Usage

```
EstHMMCop(y, reg, family, max_iter, eps)
```

Arguments

У	$(\mbox{nx2})$ data matrix (observations or residuals) that will be transformed to pseudo-observations
reg	number of regimes
family	'gaussian', 't', 'clayton', 'frank', 'gumbel'
max_iter	maximum number of iterations of the EM algorithm
eps	precision (stopping criteria); suggestion 0.0001.

4 EstKendallTau

Value

theta	(1 x reg) estimated parameter of the copula according to CRAN copula package (except for Frank copula, where theta = log(theta_R_Package)) for each regime (except for degrees of freedom)
dof	estimated degree of freedom, only for the Student copula
Q	(reg x reg) estimated transition matrix
eta	(n x reg) conditional probabilities of being in regime k at time t given observations up to time t
tau	estimated Kendall tau for each regime
U	(n x 2) matrix of Rosenblatt transforms
cvm	Cramer-von-Mises statistic for goodness-of-fit
W	regime probabilities for the conditional distribution given the past Kendall's tau

Author(s)

Mamadou Yamar Thioub and Bruno Remillard, April 12, 2018

References

```
<doi::10.1002/cjs.11534>
```

Examples

```
Q <- matrix(c(0.8, 0.3, 0.2, 0.7),2,2) ; kendallTau <- c(0.3 ,0.7) ; data <- SimHMMCop(Q, 'clayton', kendallTau, 10)$SimData; estimations <- EstHMMCop(data,2,'clayton',10000,0.0001)
```

EstKendallTau

Sample Kendall's tau Estimation

Description

This function estimates the sample Kendall's tau of a bivariate data matrix

Usage

```
EstKendallTau(X)
```

Arguments

X (n x 2) matrix

Value

KendallTau estimated sample Kendall's tau of the data

EstMixtureCop 5

EstMixtureCop	Estimation of bivariate mixture bivariate copula model	

Description

Estimation of parameters from a mixture of bivariate copula models

Usage

```
EstMixtureCop(y, reg, family, max_iter, eps)
```

Arguments

у	(nx2) data matrix (observations or residuals) that will be transformed to pseudo-observations
reg	number of regimes
family	'gaussian', 't', 'clayton', 'frank', 'gumbel'
max_iter	maximum number of iterations of the EM algorithm
eps	precision (stopping criteria); suggestion 0.0001.

Value

theta	(1 x reg) estimated parameter of the copula according to CRAN copula package (except for Frank copula, where theta = $log(theta_R_Package)$) for each component (except for degrees of freedom)
dof	estimated degree of freedom, only for the Student copula
Q	(1 x reg) estimated weights vector
eta	(n x reg) conditional probabilities of being in regime k at time t given observations up to time t
tau	estimated Kendall tau for each regime
U	(n x 2) matrix of Rosenblatt transforms
cvm	Cramer-von-Mises statistic for goodness-of-fit

Author(s)

Mamadou Yamar Thioub and Bruno Remillard, April 12, 2018

References

```
<doi::10.1002/cjs.11534>
```

GofHMMCop

GofHMMCop	Goodness-of-fit of Markov regime switching bivariate copula model

Description

Goodness-of-fit test of a Markov regime switching bivariate copula model

Usage

```
GofHMMCop(R, reg, family, max_iter, eps, n_sample, n_cores)
```

Arguments

R	(n x 2) data matrix that will be transformed to pseudo-observations
reg	number of regimes
family	'gaussian', 't', 'clayton', 'frank', 'gumbel'
max_iter	maxmimum number of iterations of the EM algorithm
eps	precision (stopping criteria); suggestion 0.0001
n_sample	number of bootstrap; suggestion 1000

n_cores number of cores to use in the parallel computing

Value

pvalue	pvalue (significant when the result is greater than 5)
theta	(1 x reg) estimated parameter of the copula according to CRAN copula package (except for Frank copula, where theta = $\log(\text{theta_R_Package})$) for each regime (except for degrees of freedom)
dof	estimated degree of freedom, only for the Student copula
Q	(reg x reg) estimated transition matrix
eta	(n x reg) conditional probabilities of being in regime \boldsymbol{k} at time t given observations up to time t
tau	estimated Kendall tau for each regime
U	(n x 2) matrix of Rosenblatt transforms
cvm	Cramer-von-Mises statistic for goodness-of-fit
W	regime probabilities for the conditional distribution given the past Kendall's tau

References

<doi::10.1002/cjs.11534>

GofMixtureCop 7

GofMixtureCop Goodness-of-fit of mixture bivariate copula model	
---	--

Description

Goodness-of-fit test of a mixture bivariate copula model

Usage

```
GofMixtureCop(R, reg, family, max_iter, eps, n_sample, n_cores)
```

Arguments

R	(nx2) data matrix (observations or residuals) that will be transformed to pseudo-observations
reg	number of regimes
family	'gaussian', 't', 'clayton', 'frank', 'gumbel'
max_iter	maxmimum number of iterations of the EM algorithm
eps	precision (stopping criteria); suggestion 0.0001
n_sample	number of bootstrap; suggestion 1000
n_cores	number of cores to use in the parallel computing

Value

pvalue	pvalue (significant when the result is greater than 5)
theta	(1 x reg) estimated parameter of the copula according to CRAN copula package (except for Frank copula, where theta = $\log(\text{theta_R_Package})$) for each component (except for degrees of freedom)
dof	estimated degree of freedom, only for the Student copula
Q	(1 x reg) estimated weights vector
eta	(n x reg) conditional probabilities of being in regime \boldsymbol{k} at time t given observations up to time t
tau	estimated Kendall tau for each regime
U	(n x 2) matrix of Rosenblatt transforms
cvm	Cramer-von-Mises statistic for goodness-of-fit

Author(s)

By Bruno Remillard, Nov 28, 2010

References

```
<doi::10.1002/cjs.11534>
```

8 ParamCop

K۵	nda	11-	Гэн

Kendall's tau of a copula

Description

Computation of Kendall's tau of a copula family with an unconstrainted parameter alpha.

Usage

```
KendallTau(family, alpha)
```

Arguments

```
family "gaussian", "t", "clayton", "frank", "gumbel" alpha unconstrainted parameters of the copula family
```

Value

tau estimated Kendall's tau

ParamCop	Theta	estimation

Description

Parameters of a copula according to CRAN copula package (except for Frank copula, where theta = log(theta_R_Package)), corresponding to the unconstrainted parameters alpha.

Usage

```
ParamCop(family, alpha)
```

Arguments

```
family "gaussian", "t", "clayton", "frank", "gumbel" alpha unconstrainted parameters of the copula family
```

Value

theta matlab parameters

ParamTau 9

ParamTau Alpha estimation

Description

Unconstrainted parameter for a given Kendall's tau.

Usage

```
ParamTau(family, tau)
```

Arguments

family 'gaussian', 't', 'clayton', 'frank', 'gumbel'

tau Kendall's tau of the copula family

Value

alpha estimated unconstrainted parameter

RosenblattClayton Rosenblatt transform for Clayton copula

Description

Computation of the Rosenblatt transform fot Clayton's copula

Usage

```
RosenblattClayton(u, theta)
```

Arguments

u (n x d) matrix of pseudos-observations (normalized ranks)

theta parameter of the Clayton copula

Value

R Rosenblatt transform

10 RosenblattGaussian

RosenblattFrank

Rosenblatt transform for Frank copula

Description

Computation of the Rosenblatt transform for Frank's copula

Usage

```
RosenblattFrank(U, theta)
```

Arguments

U (n x d) matrix of pseudos-observations (normalized ranks)

theta parameter of the Frank copula

Value

R Rosenblatt transform

RosenblattGaussian Rosenblatt transform for Gaussian copula

Description

Computation of the Rosenblatt transform for the Gaussian copula

Usage

```
RosenblattGaussian(u, rho)
```

Arguments

u (n x d) matrix of pseudos-observations (normalized ranks)

rho (d x d) correlation matrix, or the correlation coefficient (if, d = 2)

Value

R Rosenblatt transform

RosenblattGumbel 11

RosenblattGumbel Rosenblatt transform for Gumbel copula

Description

Computation of the Rosenblatt transform for Gumbel's copula

Usage

```
RosenblattGumbel(U, theta)
```

Arguments

U (n x d) matrix of pseudos-observations (normalized ranks)

theta parameter of the Gumbel copula

Value

R Rosenblatt transform

RosenblattStudent Rosenblatt transform for Student copula

Description

Computation of the Rosenblatt transform for the Student copula

Usage

```
RosenblattStudent(u, rho, nu)
```

Arguments

u (n x d) matrix of pseudos-observations (normalized ranks)

rho (d x d) correlation matrix

nu degrees of freedom

Value

R Rosenblatt transform

12 SimMarkovChain

Si	mL	IMN	ı٢	Λn
$^{\circ}$	ШГ	11*11	'IL	υp

Simulation of bivariate Markov regime switching copula model

Description

Simulaion of values from a bivariate Markov regime switching copula model

Usage

```
SimHMMCop(Q, family, KendallTau, n, DoF)
```

Arguments

Q Transition probality matrix (d x d);

family 'gaussian', 't', 'clayton', 'frank', 'gumbel'

KendallTau Kendall's rank correlation
n number of simulated vectors

DoF degree of freedom only for the Student copula

Value

SimData Simulated Data

MC Markov chain regimes alpha parameters alpha

Examples

```
Q <- matrix(c(0.8, 0.3, 0.2, 0.7), 2, 2); kendallTau <- c(0.3, 0.7); simulations <- SimHMMCop(Q, 'gumbel', kendallTau, 300)
```

SimMarkovChain

Markov chain simulation

Description

Simulation of n consecutive values of a Markov chain with transition matrix Q, starting from a state eta0 or the uniform distribution on the set 1,..., r.

Usage

```
SimMarkovChain(Q, n, eta0)
```

SimMixtureCop 13

Arguments

n

Q Transition probability matrix (d x d)

number of simulated vectors

eta0 variable eta

Value

x Simulated Markov chain sequence

SimMixtureCop

Simulation of bivariate mixture copula model

Description

Simulation of observations from a bivariate mixture copula model

Usage

```
SimMixtureCop(Q, family, KendallTau, n, DoF)
```

Arguments

Q Weights vector (1 x component);

family 'gaussian', 't', 'clayton', 'frank', 'gumbel'

KendallTau Kendall's rank correlation
n number of simulated vectors

DoF vector of degree of freedom only for the Student copula

Value

SimData Simulated Data

MC Markov chain regimes

alpha parameters alpha

Examples

```
Q <- matrix(c(0.8, 0.2),1,2) ; kendallTau <- c(0.3 ,0.7) ; simulations <- SimMixtureCop(Q, 'gaussian', kendallTau, 300)
```

14 Tau2Rho

SnB	Cramer-von Mises statistic SnB for GOF based on the Rosenblatt transform
	iransjorm

Description

Computation of the Cramer-von Mises statistic SnB for GOF based on the Rosenblatt transform

Usage

SnB(E)

Arguments

E (n x d) matrix of pseudos-observations (normalized ranks)

Value

Sn Cramer-von Mises statistic

Tau2Rho	Spearman's rho
---------	----------------

Description

Value of Spearman's rho corresponding to a constrainted (matlab) parameter theta for a copula family.

Usage

```
Tau2Rho(family, theta)
```

Arguments

family 'gaussian', 't', 'clayton', 'frank', 'gumbel'

theta parameter of the copula according to CRAN copula package (except for Frank

copula, where theta = $log(theta_R_Package))$

Value

rho estimated Spearman's rho

Index

```
{\tt CopulaFamiliesCDF}, {\tt 2}
dilog, 3
EstHMMCop, 3
EstKendallTau, 4
EstMixtureCop, 5
GofHMMCop, 6
GofMixtureCop, 7
KendallTau, 8
ParamCop, 8
ParamTau, 9
{\tt RosenblattClayton}, {\color{red} 9}
RosenblattFrank, 10
RosenblattGaussian, 10
RosenblattGumbel, 11
{\tt RosenblattStudent}, 11
SimHMMCop, 12
SimMarkovChain, 12
SimMixtureCop, 13
SnB, 14
Tau2Rho, 14
```