Teacher: Samuel Drapeau Teaching Assistant: Zhang Youyuan

"STOCHASTIC PROCESSES" – HOMEWORK SHEET 3

Exercise 3.1. (10 points)

Let (Ω, \mathcal{F}, P) be a probability space. Given two random variables X and Y in L^2 , the covariance of X and Y is given as

$$Cov(X, Y) = E[(X - E[X])(Y - E[Y])]$$

and the variance of X as

$$Var(X) = Cov(X, X) = E\left[(X - E[X])^2 \right].$$

Let (X_n) be a sequence of pairwise uncorrelated random variables in L^2 such that $\sup Var(X_n) < \infty$. Defining

$$S_n = \frac{1}{n} \sum_{k \le n} (X_k - E[X_k]),$$

show that $S_n \to 0$ in probability.¹

Exercise 3.2. (10 Points)

We consider a very simple financial market with two stocks S^1 and S^2 which values tomorrow depends on three states, that is $\Omega := \{\omega_1, \omega_2, \omega_3\}$. The values are given as follows

$$S^{1}(\omega) := \begin{cases} 90 & \text{if } \omega = \omega_{1} \text{ or } \omega = \omega_{2} \\ 110 & \text{if } \omega = \omega_{3} \end{cases} \quad \text{and} \quad S^{1}(\omega) := \begin{cases} 90 & \text{if } \omega = \omega_{1} \\ 100 & \text{if } \omega = \omega_{2} \\ 110 & \text{if } \omega = \omega_{3} \end{cases}$$

We set $\mathcal{F}=2^{\Omega}$ and consider that each state comes with the same probability, that is, we consider the uniform probability measure P on \mathcal{F} given by $P[\{\omega_1\}]=P[\{\omega_2\}]=P[\{\omega_3\}]=1/3$.

Suppose that you are an insider that have the knowledge about the outcome of X tomorrow. Compute the conditional expected value of Y with respect to this information, that is $E[Y|X]^2$

Exercise 3.3. (18 points)

Let (Ω, \mathcal{F}, P) be a probability space and $\mathcal{G} \subseteq \mathcal{F}$ be a sub- σ -algebra. Show that

- (i) $E[|E[X|\mathcal{G}]|] < E[|X|]$ for every $X \in L^1(\mathcal{F})$.
- (ii) the mapping $X \mapsto E[X|\mathcal{G}]$ from $L^1(\mathcal{F})$ to $L^1(\mathcal{G})$ is linear and Lipschitz continuous;
- (iii) $E[X|\mathcal{G}] > 0$ *P-almost surely whenever* 0 < X *P-almost surely and* $X \in L^1(\mathcal{F})$;
- (iv) $E[X_n|\mathcal{G}] \nearrow E[X|\mathcal{G}]$ P-almost surely for every sequence (X_n) of elements in $L^1(\mathcal{F})$ such that $0 < X_n \nearrow X \in L^1(\mathcal{F})$;
- (v) $E[\liminf X_n | \mathcal{G}] \leq \liminf E[X_n | \mathcal{G}]$ for every sequence (X_n) of elements in $L^1(\mathcal{F})$ such that $X_n \geq Y \in L^1(\mathcal{F})$;

¹What about Markov inequality?...

²Under this terminology, we understand conditional expectation of Y with respect to the σ -algebra generated by X, that is $\sigma(X)$.

- (vi) $E[X_n|\mathcal{G}] \to E[X|\mathcal{G}]$ P-almost surely and in $L^1(\mathcal{F})$ for every sequence (X_n) of elements in $L^1(\mathcal{F})$ such that $|X_n| \le Y \in L^1(\mathcal{F})$ for every n;
- (vii) $E[YX|\mathcal{G}] = YE[X|\mathcal{G}]$ whenever Y is \mathcal{G} -measurable and XY is integrable;
- (viii) $E[XE[Y|\mathcal{G}]] = E[E[X|\mathcal{G}]Y] = E[E[X|\mathcal{G}]E[Y|\mathcal{G}]]$ whenever X and Y are in L^2 ;
- (ix) $E[E[X|\mathcal{G}_2]|\mathcal{G}_1] = E[X|\mathcal{G}_1]$ whenever the σ -algebras are such that $\mathcal{G}_1 \subseteq \mathcal{G}_2 \subseteq \mathcal{F}$.

Exercise 3.4. (Bonus 10 points)

Let (Ω, \mathcal{F}, P) be a probability space where $\Omega = [0, 1]$, \mathcal{F} is the Borel- σ -algebra of [0, 1] and P is the Lebesgue measure on [0, 1]. On the vector space L^0 , we consider the topology generated by the distance³

$$d(X,Y) = E\left[\frac{|X-Y|}{1+|X-Y|}\right].$$

Let $C \subseteq L^0$ be a convex set with non empty interior⁴. Show that $C = L^{0.5}$ Deduce that the only continuous linear function $I: L^0 \to \mathbb{R}$ with this topology is the constant 0, that is, I(X) = 0 for every $X \in L^{0.6}$

Due date: Upload before Monday 2015.10.19 14:00.

³Which according to the last homework sheet corresponds to the topology of convergence in probability.

⁴That is, there exists a open ball $B_{\varepsilon}(Y) = \{X : d(X,Y) < \varepsilon\}$ with $Y \in C$ and $\varepsilon > 0$ such that $B_{\varepsilon}(Y) \subseteq C$.

⁵Show that without loss of generality you can assume that $B_{\varepsilon}(0) \subseteq C$ for some $\varepsilon > 0$ and approximate any $X \in L^0$ by smart convex combinations – with more than two elements – of elements in $B_{\varepsilon}(0)$.

⁶If I is linear and continuous, it follows that $I^{-1}(]-\varepsilon,\varepsilon[)$ is convex and open.