# Class 08: Unsupervised Learning Analysis of Human Breast Cells

Helen Le (PID:16300695)

1. Exploratory Data Analysis

### Data input

The data is supplied on CSV format:

```
# Complete the following code to input the data and store as wisc.df
wisc.df <- read.csv("WisconsinCancer.csv", row.names=1)
head(wisc.df)</pre>
```

|          | diagnosis radiu | s_mean  | texture_mean   | perimeter_mean | area_mea   | n            |
|----------|-----------------|---------|----------------|----------------|------------|--------------|
| 842302   | M               | 17.99   | 10.38          | 122.80         | 1001.      | 0            |
| 842517   | M               | 20.57   | 17.77          | 132.90         | 1326.      | 0            |
| 84300903 | M               | 19.69   | 21.25          | 130.00         | 1203.      | 0            |
| 84348301 | M               | 11.42   | 20.38          | 77.58          | 386.       | 1            |
| 84358402 | M               | 20.29   | 14.34          | 135.10         | 1297.      | 0            |
| 843786   | M               | 12.45   | 15.70          | 82.57          | 477.       | 1            |
|          | smoothness_mean | compa   | ctness_mean co | ncavity_mean c | oncave.po: | ints_mean    |
| 842302   | 0.11840         |         | 0.27760        | 0.3001         |            | 0.14710      |
| 842517   | 0.08474         |         | 0.07864        | 0.0869         |            | 0.07017      |
| 84300903 | 0.10960         |         | 0.15990        | 0.1974         |            | 0.12790      |
| 84348301 | 0.14250         |         | 0.28390        | 0.2414         |            | 0.10520      |
| 84358402 | 0.10030         |         | 0.13280        | 0.1980         |            | 0.10430      |
| 843786   | 0.12780         |         | 0.17000        | 0.1578         |            | 0.08089      |
|          | symmetry_mean f | ractal_ | _dimension_mea | n radius_se te | xture_se ] | perimeter_se |
| 842302   | 0.2419          |         | 0.0787         | 1 1.0950       | 0.9053     | 8.589        |
| 842517   | 0.1812          |         | 0.0566         | 7 0.5435       | 0.7339     | 3.398        |
| 84300903 | 0.2069          |         | 0.0599         | 9 0.7456       | 0.7869     | 4.585        |
| 84348301 | 0.2597          |         | 0.0974         | 4 0.4956       | 1.1560     | 3.445        |

| 84358402         | 0.1809          |                  | 0.05883            |               |             | 5.438              |
|------------------|-----------------|------------------|--------------------|---------------|-------------|--------------------|
| 843786           | 0.2087          |                  | 0.07613            |               | 0.8902      | 2.217              |
| 040200           | area_se smoothn |                  | -                  | • –           | -           | _                  |
| 842302<br>842517 |                 | 006399<br>005225 | 0.04904<br>0.01308 |               |             | 0.01587<br>0.01340 |
| 84300903         |                 | 005225           | 0.01308            |               |             | 0.01340            |
| 84348301         |                 | 000130           | 0.04000            |               |             | 0.02038            |
| 84358402         |                 | 011490           | 0.02461            |               |             | 0.01885            |
| 843786           |                 | 007510           | 0.03345            |               |             | 0.01003            |
| 040700           | symmetry_se fra |                  |                    |               |             | 0.01137            |
| 842302           | 0.03003         | _                | .006193            | 25.38         | 17.33       |                    |
| 842517           | 0.01389         |                  | .003532            | 24.99         | 23.41       |                    |
| 84300903         | 0.02250         |                  | .004571            | 23.57         | 25.53       |                    |
| 84348301         | 0.05963         |                  | .009208            | 14.91         | 26.50       |                    |
| 84358402         | 0.01756         |                  | .005115            | 22.54         | 16.67       |                    |
| 843786           | 0.02165         |                  | .005082            | 15.47         | 23.75       |                    |
|                  | perimeter_worst |                  |                    | s_worst compa | ctness_wors | st                 |
| 842302           | 184.60          |                  |                    | 0.1622        | 0.665       |                    |
| 842517           | 158.80          | 1956.0           | )                  | 0.1238        | 0.186       | 6                  |
| 84300903         | 152.50          | 1709.0           | )                  | 0.1444        | 0.424       | <u> 1</u> 5        |
| 84348301         | 98.87           | 567.             | 7                  | 0.2098        | 0.866       | 3                  |
| 84358402         | 152.20          | 1575.0           | )                  | 0.1374        | 0.205       | 50                 |
| 843786           | 103.40          | 741.6            | 5                  | 0.1791        | 0.524       | <u> 1</u> 9        |
|                  | concavity_worst | concave.po       | oints_worst        | symmetry_wors | st          |                    |
| 842302           | 0.7119          |                  | 0.2654             | 0.460         | 01          |                    |
| 842517           | 0.2416          |                  | 0.1860             | 0.27          | 50          |                    |
| 84300903         | 0.4504          |                  | 0.2430             | 0.36          | 13          |                    |
| 84348301         | 0.6869          |                  | 0.2575             | 0.663         | 38          |                    |
| 84358402         | 0.4000          |                  | 0.1625             |               |             |                    |
| 843786           | 0.5355          |                  | 0.1741             | 0.398         | 35          |                    |
|                  | fractal_dimensi | _                |                    |               |             |                    |
| 842302           |                 | 0.11890          |                    |               |             |                    |
| 842517           |                 | 0.08902          |                    |               |             |                    |
| 84300903         |                 | 0.08758          |                    |               |             |                    |
| 84348301         |                 | 0.17300          |                    |               |             |                    |
| 84358402         |                 | 0.07678          |                    |               |             |                    |
| 843786           |                 | 0.12440          |                    |               |             |                    |

The row.names argument in the read.csv() function serves to make the ID numbers the row names so they're not included in the table. (think Duke incident)

Remove the diagnosis (column 1) from the data set & create a separate vector for the diagnosis for later use.

```
# Use -1 to remove the first column
wisc.data <- wisc.df[,-1]
# Create a diagnosis vector
diagnosis <- as.factor(wisc.df[,1])
head(wisc.data)</pre>
```

|          | radius_mean te            | xture_mean  | perimete | er_mean  | area_mean  | smoothn  | ess_mean  |
|----------|---------------------------|-------------|----------|----------|------------|----------|-----------|
| 842302   | 17.99                     | 10.38       | _        | 122.80   | 1001.0     |          | 0.11840   |
| 842517   | 20.57                     | 17.77       |          | 132.90   | 1326.0     |          | 0.08474   |
| 84300903 | 19.69                     | 21.25       |          | 130.00   | 1203.0     |          | 0.10960   |
| 84348301 | 11.42                     | 20.38       |          | 77.58    | 386.1      |          | 0.14250   |
| 84358402 | 20.29                     | 14.34       |          | 135.10   | 1297.0     |          | 0.10030   |
| 843786   | 12.45                     | 15.70       |          | 82.57    | 477.1      |          | 0.12780   |
|          | compactness_me            | an concavit | y_mean o | concave. | points_me  | an symme | etry_mean |
| 842302   | 0.277                     | 60          | 0.3001   |          | 0.147      | 10       | 0.2419    |
| 842517   | 0.078                     | 64          | 0.0869   |          | 0.070      | 17       | 0.1812    |
| 84300903 | 0.159                     | 90          | 0.1974   |          | 0.127      | 90       | 0.2069    |
| 84348301 | 0.283                     | 90          | 0.2414   |          | 0.105      | 20       | 0.2597    |
| 84358402 | 0.132                     | 80          | 0.1980   |          | 0.104      | 30       | 0.1809    |
| 843786   | 0.170                     | 00          | 0.1578   |          | 0.080      | 89       | 0.2087    |
|          | <pre>fractal_dimens</pre> | ion_mean ra | dius_se  | texture  | e_se perim | eter_se  | area_se   |
| 842302   |                           | 0.07871     | 1.0950   | 0.9      | 9053       | 8.589    | 153.40    |
| 842517   |                           | 0.05667     | 0.5435   | 0.7      | 7339       | 3.398    | 74.08     |
| 84300903 |                           | 0.05999     | 0.7456   | 0.7      | 7869       | 4.585    | 94.03     |
| 84348301 |                           | 0.09744     | 0.4956   | 1.1      | 1560       | 3.445    | 27.23     |
| 84358402 |                           | 0.05883     | 0.7572   | 0.7      | 7813       | 5.438    | 94.44     |
| 843786   |                           | 0.07613     | 0.3345   | 0.8      | 3902       | 2.217    | 27.19     |
|          | smoothness_se             | compactness | _se cond | cavity_s | se concave | .points_ | se        |
| 842302   | 0.006399                  | 0.04        | 904      | 0.0537   | 73         | 0.015    | 87        |
| 842517   | 0.005225                  | 0.01        | 308      | 0.0186   | 30         | 0.013    | 340       |
| 84300903 | 0.006150                  | 0.04        | .006     | 0.0383   | 32         | 0.020    | )58       |
| 84348301 | 0.009110                  | 0.07        |          | 0.0566   | 31         | 0.018    | 367       |
| 84358402 | 0.011490                  | 0.02        |          | 0.0568   |            | 0.018    | 885       |
| 843786   | 0.007510                  | 0.03        |          | 0.0367   |            | 0.011    |           |
|          | symmetry_se fr            | _           | _        | radius_  | =          | _        |           |
| 842302   | 0.03003                   |             | .006193  |          | 25.38      | 17.      |           |
| 842517   | 0.01389                   |             | .003532  |          | 24.99      | 23.      |           |
| 84300903 | 0.02250                   |             | .004571  |          | 23.57      | 25.      |           |
| 84348301 | 0.05963                   |             | .009208  |          | 14.91      | 26.      |           |
| 84358402 | 0.01756                   |             | .005115  |          | 22.54      | 16.      |           |
| 843786   | 0.02165                   | 0           | .005082  |          | 15.47      | 23.      | 75        |

| 842302       184.60       2019.0       0.1622       0.6656         842517       158.80       1956.0       0.1238       0.1866         84300903       152.50       1709.0       0.1444       0.4245         84348301       98.87       567.7       0.2098       0.8663         84358402       152.20       1575.0       0.1374       0.2050         843786       103.40       741.6       0.1791       0.5249         concavity_worst concave.points_worst symmetry_worst |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 84300903       152.50       1709.0       0.1444       0.4245         84348301       98.87       567.7       0.2098       0.8663         84358402       152.20       1575.0       0.1374       0.2050         843786       103.40       741.6       0.1791       0.5249         concavity_worst concave.points_worst symmetry_worst                                                                                                                                       |
| 84348301 98.87 567.7 0.2098 0.8663<br>84358402 152.20 1575.0 0.1374 0.2050<br>843786 103.40 741.6 0.1791 0.5249<br>concavity_worst concave.points_worst symmetry_worst                                                                                                                                                                                                                                                                                                   |
| 84358402 152.20 1575.0 0.1374 0.2050<br>843786 103.40 741.6 0.1791 0.5249<br>concavity_worst concave.points_worst symmetry_worst                                                                                                                                                                                                                                                                                                                                         |
| 843786 103.40 741.6 0.1791 0.5249 concavity_worst concave.points_worst symmetry_worst                                                                                                                                                                                                                                                                                                                                                                                    |
| concavity_worst concave.points_worst symmetry_worst                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 842302 0.7119 0.2654 0.4601                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 842517 0.2416 0.1860 0.2750                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 84300903 0.4504 0.2430 0.3613                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 84348301 0.6869 0.2575 0.6638                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 84358402 0.4000 0.1625 0.2364                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 843786 0.5355 0.1741 0.3985                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| fractal_dimension_worst                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 842302 0.11890                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 842517 0.08902                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 84300903 0.08758                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 84348301 0.17300                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 84358402 0.07678                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 843786 0.12440                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

head(diagnosis)

[1] M M M M M M M Levels: B M

#### Q1. How many observations are in this dataset?

nrow(wisc.df)

[1] 569

There are 569 patients in this data set.

#### Q2. How many of the observations have a malignant diagnosis?

table(diagnosis)

```
diagnosis
  В
      Μ
357 212
212 of the observations have a malignant diagnosis.
**Q3. How many variables/features in the data are suffixed with _mean?**
  # Use `colnames()` to access the column names in the data frame
  colnames(wisc.df)
 [1] "diagnosis"
                                 "radius mean"
 [3] "texture_mean"
                                 "perimeter mean"
 [5] "area_mean"
                                 "smoothness_mean"
 [7] "compactness_mean"
                                 "concavity_mean"
 [9] "concave.points_mean"
                                 "symmetry_mean"
[11] "fractal_dimension_mean"
                                 "radius_se"
[13] "texture_se"
                                 "perimeter_se"
[15] "area_se"
                                 "smoothness_se"
                                 "concavity_se"
[17] "compactness_se"
[19] "concave.points_se"
                                 "symmetry_se"
[21] "fractal_dimension_se"
                                 "radius_worst"
[23] "texture_worst"
                                 "perimeter_worst"
[25] "area_worst"
                                 "smoothness_worst"
[27] "compactness_worst"
                                 "concavity worst"
[29] "concave.points_worst"
                                 "symmetry_worst"
[31] "fractal_dimension_worst"
  # Figure out which columns contain the suffix & assign it to a vector
  suffix <- grep(pattern="_mean", x=colnames(wisc.df))</pre>
  # Find the length of the vector for the total number
  length((suffix))
[1] 10
10 of the variables are suffixed with "_mean".
```

5

2. Principal Component Analysis

We need to scale our input data before PCA as some of the columns are measured in terms of very different units with different means and different variances. The upshot here i we set scale=TRUE argument to prcomp().

The scale argument scales the variables by their standard deviations, which is important for variables on different scales, making their overall scales more comparable for PCA.

```
wisc.pr <- prcomp(wisc.data, scale=TRUE)
summary(wisc.pr)</pre>
```

#### Importance of components:

```
PC1
                                 PC2
                                          PC3
                                                  PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion
                       0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                          PC10
                                                 PC11
                                                         PC12
                                                                 PC13
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion
                       0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                                                   PC18
                                                           PC19
                                                                   PC20
                          PC15
                                  PC16
                                          PC17
                                                                          PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion
                       0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                          PC24
                                                  PC25
                                                          PC26
                                                                  PC27
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
                       0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
Cumulative Proportion
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion
                       1.00000 1.00000
```

- Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)? 0.4427 of the original variance is captured by PC1.
- Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data? The first 3 PCs are required to describe at least 70% of the original variance of the data.
- Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data? The first 7 PCs are required to describe at least 90% of the original variance of the data.



Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why? The variables listed in this plot is all over the place, making it difficult to understand.

head(wisc.pr\$x)

|          | PC1        | PC2          | PC3          | PC4         | PC5          | PC6              |  |
|----------|------------|--------------|--------------|-------------|--------------|------------------|--|
| 842302   | -9.184755  | -1.946870    | -1.1221788   | 3.6305364   | 1.1940595    | 1.41018364       |  |
| 842517   | -2.385703  | 3.764859     | -0.5288274   | 1.1172808   | -0.6212284   | 0.02863116       |  |
| 84300903 | -5.728855  | 1.074229     | -0.5512625   | 0.9112808   | 0.1769302    | 0.54097615       |  |
| 84348301 | -7.116691  | -10.266556   | -3.2299475   | 0.1524129   | 2.9582754    | 3.05073750       |  |
| 84358402 | -3.931842  | 1.946359     | 1.3885450    | 2.9380542   | -0.5462667   | -1.22541641      |  |
| 843786   | -2.378155  | -3.946456    | -2.9322967   | 0.9402096   | 1.0551135    | -0.45064213      |  |
|          | PC         | C7 ]         | PC8          | PC9         | PC10         | PC11 PC12        |  |
| 842302   | 2.1574715  | 52 0.39805   | 698 -0.15698 | 3023 -0.876 | 66305 -0.262 | 27243 -0.8582593 |  |
| 842517   | 0.0133463  | 35 -0.240776 | 660 -0.71127 | 7897 1.106  | 30218 -0.812 | 24048 0.1577838  |  |
| 84300903 | -0.6675790 | 08 -0.097288 | 313 0.02404  | 1449 0.453  | 38760 0.605  | 0.1242777        |  |
| 84348301 | 1.4286536  | 33 -1.05863  | 376 -1.40420 | 0412 -1.115 | 59933 1.150  | 05012 1.0104267  |  |
| 84358402 | -0.9353895 | 50 -0.63581  | 661 -0.26357 | 7355 0.377  | 73724 -0.650 | 7870 -0.1104183  |  |
| 843786   | 0.4900139  | 96 0.165298  | 343 -0.13335 | 5576 -0.529 | 99649 -0.109 | 96698 0.0813699  |  |

```
PC13
                            PC14
                                         PC15
                                                     PC16
                                                                 PC17
842302
         0.10329677 -0.690196797 0.601264078 0.74446075 -0.26523740
842517
        -0.94269981 -0.652900844 -0.008966977 -0.64823831 -0.01719707
84300903 -0.41026561 0.016665095 -0.482994760 0.32482472 0.19075064
84348301 -0.93245070 -0.486988399 0.168699395 0.05132509 0.48220960
84358402 0.38760691 -0.538706543 -0.310046684 -0.15247165 0.13302526
843786
        -0.02625135 0.003133944 -0.178447576 -0.01270566 0.19671335
               PC18
                          PC19
                                      PC20
                                                   PC21
                                                               PC22
842302
        -0.54907956 0.1336499 0.34526111 0.096430045 -0.06878939
842517
         0.31801756 -0.2473470 -0.11403274 -0.077259494 0.09449530
84300903 -0.08789759 -0.3922812 -0.20435242 0.310793246 0.06025601
84348301 -0.03584323 -0.0267241 -0.46432511 0.433811661 0.20308706
84358402 -0.01869779 0.4610302 0.06543782 -0.116442469 0.01763433
843786
        -0.29727706 -0.1297265 -0.07117453 -0.002400178 0.10108043
               PC23
                            PC24
                                         PC25
                                                      PC26
842302
        0.08444429 0.175102213 0.150887294 -0.201326305 -0.25236294
842517
        -0.21752666 -0.011280193 0.170360355 -0.041092627 0.18111081
84300903 -0.07422581 -0.102671419 -0.171007656 0.004731249 0.04952586
84348301 -0.12399554 -0.153294780 -0.077427574 -0.274982822 0.18330078
84358402 0.13933105 0.005327110 -0.003059371 0.039219780 0.03213957
843786
         0.03344819 - 0.002837749 - 0.122282765 - 0.030272333 - 0.08438081
                 PC28
                              PC29
                                            PC30
842302
        -0.0338846387 0.045607590 0.0471277407
842517
         0.0325955021 -0.005682424 0.0018662342
84300903 0.0469844833 0.003143131 -0.0007498749
84348301 0.0424469831 -0.069233868 0.0199198881
84358402 -0.0347556386 0.005033481 -0.0211951203
         0.0007296587 -0.019703996 -0.0034564331
843786
```

plot(wisc.pr\$x[,1], wisc.pr\$x[,2], col=diagnosis, pch=16)



Q8. Generate a similar plot for principal components  ${\bf 1}$  and  ${\bf 3}$ . What do you notice about these plots?



In this plot between PC1 and PC3, it's harder to determine a hard cut-off to separate the two subgroups.

Let's view this using ggplot:

```
# Create a data.frame for ggplot
df <- as.data.frame(wisc.pr$x)
df$diagnosis <- diagnosis

# Load the ggplot2 package
library(ggplot2)

# Make a scatter plot colored by diagnosis
ggplot(df) +
   aes(PC1, PC2, col=diagnosis) +
   geom_point()</pre>
```



#### Variance Explained

```
# Calculate variance of each component
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

#### [1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357





This is another way to visualize the amount of variance between the difference principal components.

```
## ggplot based graph
# install.packages("factoextra")
library(factoextra)
```

Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa

```
fviz_eig(wisc.pr, addlabels = TRUE)
```



Opened a lot of package but this is another way to visualize the variance.

# Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points\_mean?

#### wisc.pr\$rotation[,1]

| perimeter_mean    | texture_mean             | radius_mean                       |
|-------------------|--------------------------|-----------------------------------|
| -0.22753729       | -0.10372458              | -0.21890244                       |
| compactness_mean  | ${\tt smoothness\_mean}$ | area_mean                         |
| -0.23928535       | -0.14258969              | -0.22099499                       |
| symmetry_mean     | concave.points_mean      | concavity_mean                    |
| -0.13816696       | -0.26085376              | -0.25840048                       |
| texture_se        | radius_se                | <pre>fractal_dimension_mean</pre> |
| -0.01742803       | -0.20597878              | -0.06436335                       |
| smoothness_se     | area_se                  | perimeter_se                      |
| -0.01453145       | -0.20286964              | -0.21132592                       |
| concave.points_se | concavity_se             | compactness_se                    |
| -0.18341740       | -0.15358979              | -0.17039345                       |
| radius_worst      | fractal_dimension_se     | symmetry_se                       |
| -0.22799663       | -0.10256832              | -0.04249842                       |
| area_worst        | perimeter_worst          | texture_worst                     |
|                   |                          |                                   |

```
      -0.10446933
      -0.23663968
      -0.22487053

      smoothness_worst
      compactness_worst
      concavity_worst

      -0.12795256
      -0.21009588
      -0.22876753

      concave.points_worst
      symmetry_worst fractal_dimension_worst

      -0.25088597
      -0.12290456
      -0.13178394
```

wisc.pr\$rotation["concave.points\_mean",1]

#### [1] -0.2608538

The component of the loading vector for the feature concave.points\_mean is -0.2608538.

# Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

```
summary(wisc.pr)
```

#### Importance of components:

|                        | PC1      | PC2      | PC3      | PC4       | PC5       | PC6      | PC7      |
|------------------------|----------|----------|----------|-----------|-----------|----------|----------|
| Standard deviation     | 3.6444   | 2.3857   | 1.67867  | 1.40735   | 1.28403   | 1.09880  | 0.82172  |
| Proportion of Variance | 0.4427 ( | 0.1897 ( | 0.09393  | 0.06602   | 0.05496   | 0.04025  | 0.02251  |
| Cumulative Proportion  | 0.4427 ( | 0.6324 ( | 0.72636  | 0.79239   | 0.84734   | 0.88759  | 0.91010  |
|                        | PC8      | PC9      | PC10     | PC11      | PC12      | PC13     | PC14     |
| Standard deviation     | 0.69037  | 0.6457   | 0.59219  | 0.5421    | 0.51104   | 0.49128  | 0.39624  |
| Proportion of Variance | 0.01589  | 0.0139   | 0.01169  | 0.0098    | 0.00871   | 0.00805  | 0.00523  |
| Cumulative Proportion  | 0.92598  | 0.9399   | 0.95157  | 0.9614    | 0.97007   | 0.97812  | 0.98335  |
|                        | PC15     | PC16     | 6 PC1    | .7 PC1    | .8 PC1    | 9 PC2    | 0 PC21   |
| Standard deviation     | 0.30681  | 0.2826   | 0 0.2437 | 2 0.2293  | 39 0.2224 | 4 0.1765 | 2 0.1731 |
| Proportion of Variance | 0.00314  | 0.0026   | 6 0.0019 | 8 0.0017  | 75 0.0016 | 5 0.0010 | 4 0.0010 |
| Cumulative Proportion  | 0.98649  | 0.9891   | 5 0.9911 | .3 0.9928 | 88 0.9945 | 3 0.9955 | 7 0.9966 |
|                        | PC22     | PC2      | 3 PC24   | PC25      | PC26      | PC27     | PC28     |
| Standard deviation     | 0.16565  | 0.1560   | 2 0.1344 | 0.12442   | 0.09043   | 0.08307  | 0.03987  |
| Proportion of Variance | 0.00091  | 0.0008   | 1 0.0006 | 0.00052   | 0.00027   | 0.00023  | 0.00005  |
| Cumulative Proportion  | 0.99749  | 0.99830  | 0.9989   | 0.99942   | 0.99969   | 0.99992  | 0.99997  |
|                        | PC29     | PC30     | 0        |           |           |          |          |
| Standard deviation     | 0.02736  | 0.0115   | 3        |           |           |          |          |
| Proportion of Variance | 0.00002  | 0.0000   | 0        |           |           |          |          |
| Cumulative Proportion  | 1.00000  | 1.00000  | 0        |           |           |          |          |

5 is the minimum number of PCs required to explain 80% of the variance of the data.

#### 3. Hierarchical Clustering

```
# Scale the wisc.data data using the "scale()" function
data.scaled <- scale(wisc.data)

# Calculate the distance between the pairs in the newly scaled dataset
data.dist <- dist(data.scaled)

# Creat & plot a hierarchical clustering model using complete linkage
wisc.hclust <- hclust(data.dist)
plot(wisc.hclust)</pre>
```

# **Cluster Dendrogram**



data.dist hclust (\*, "complete")

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

```
plot(wisc.hclust)
abline(h=19, col="red", lty=2)
```

### **Cluster Dendrogram**



data.dist hclust (\*, "complete")

The height at which the clustering model has 4 clusters is h=19.

#### Selecting number of clusters

```
wisc.hclust.clusters <- cutree(wisc.hclust, k=4)

# Compare cluster membership to the actual diagnoses
table(wisc.hclust.clusters, diagnosis)</pre>
```

```
diagnosis
wisc.hclust.clusters B M
1 12 165
2 2 5
3 343 40
4 0 2
```

Here, we see that cluster 1 mainly consists of malignant cells while cluster 3 consists of benign cells.

Q12. Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10? Yes, depending on the data, different number of

clusters may be suitable for matching the cluster vs. diagnoses. In this case, having a higher amount of clusters may be beneficial as it could produce results that are closer to the true spread of diagnoses in the patients. The incorporation of more clusters may help in making the clusters more homogeneous and better separate the subgroups.

Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning. For the same data.dist dataset, the ward.D2 method gives my favorite results since it accounts for the within cluster variance, and produces clusters of roughly equal sizes.

#### 5. Combining Methods

This approach will take not original data but our PCA results and work with them.

```
d <- dist(wisc.pr$x[,1:3])
wisc.pr.hclust <- hclust(d, method="ward.D2")
plot(wisc.pr.hclust)</pre>
```

## **Cluster Dendrogram**



d hclust (\*, "ward.D2")

Generate 2 cluster groups from this helust object.

```
grps <- cutree(wisc.pr.hclust, k=2)
grps</pre>
```

| 842302       | 842517       | 84300903 | 84348301 | 84358402 | 843786  | 844359       | 84458202 |
|--------------|--------------|----------|----------|----------|---------|--------------|----------|
| 1            | 1            | 1        | 1        | 1        | 1       | 1            | 1        |
| 844981       | 84501001     | 845636   | 84610002 | 846226   | 846381  | 84667401     | 84799002 |
| 1            | 1            | 2        | 1        | 1        | 2       | 1            | 1        |
| 848406       | 84862001     | 849014   | 8510426  | 8510653  | 8510824 | 8511133      | 851509   |
| 2            | 1            | 1        | 2        | 2        | 2       | 1            | 1        |
| 852552       | 852631       | 852763   | 852781   | 852973   | 853201  | 853401       | 853612   |
| 1            | 1            | 1        | 1        | 1        | 2       | 1            | 1        |
| 85382601     | 854002       | 854039   | 854253   | 854268   | 854941  | 855133       | 855138   |
| 1            | 1            | 1        | 1        | 1        | 2       | 2            | 1        |
| 855167       | 855563       | 855625   | 856106   | 85638502 | 857010  | 85713702     | 85715    |
| 2            | 1            | 1        | 1        | 2        | 1       | 2            | 1        |
| 857155       | 857156       | 857343   | 857373   | 857374   | 857392  | 857438       | 85759902 |
| 2            | 2            | 2        | 2        |          |         |              |          |
| 857637       | 857793       | 857810   | 858477   | 858970   | 858981  | 858986       | 859196   |
| 1            | 1            | 2        | 2        | 2        | 2       |              |          |
| 85922302     | 859283       | 859464   | 859465   | 859471   | 859487  | 859575       |          |
| 1            | 1            | 2        |          | 1        |         |              |          |
| 859717       | 859983       | 8610175  | 8610404  | 8610629  | 8610637 | 8610862      |          |
| 1            | 2            | 2        |          |          | 1       |              |          |
| 861103       | 8611161      |          |          | 8612080  |         | 86135501     |          |
| 2            | 1            | 1        |          | 2        | 1       |              |          |
| 861597       |              | 861648   |          |          |         |              |          |
| 2            | 1            | 2        | 2        | 2        | 2       |              |          |
| 86211        | 862261       |          | 862548   |          |         |              |          |
| 2            | 2            | 2        |          | 2        | 2       |              |          |
| 862989       | 863030       |          | 863270   |          | _       | <del>-</del> | 86408    |
| 2            | 1            | 2        | 2        | 1        | 2       |              |          |
| 86409        | 864292       | _        | 864685   |          | _       | _            | _        |
| 1            | 2            | 2        | 2        | 2        | 1       |              |          |
| 865137       | <del>-</del> | 865423   |          |          |         |              |          |
| 2            | 1            | 1        |          | 2        | 2       |              |          |
| 866458       | 866674       |          | 8670     |          |         |              | 868202   |
| 1            | 1            | 2        |          | 1        | 2       |              | 2        |
|              |              | 868826   |          |          |         |              |          |
| 2            | 2            |          |          |          |         |              |          |
|              |              | 869691   |          |          |         |              |          |
| 2            | 2            |          | 2        |          |         |              | 1        |
|              |              | 8711002  |          |          |         |              |          |
|              | 2            | 2        |          |          |         |              |          |
| 1<br>8711561 |              | 871201   |          |          |         |              |          |
| 0/11501      |              | 0/1201   |          |          |         |              |          |
|              |              | 87139402 |          |          |         |              |          |
| 8/12/06      | 8/12853      | 8/139402 | 8/163    | 8/164    | 8/1641  | 8/1642       | 8/2113   |

| 1        | 2        | 2         | 2        | 1        | 2         | 2        | 2        |
|----------|----------|-----------|----------|----------|-----------|----------|----------|
| 872608   | 87281702 | 873357    | 873586   | 873592   | 873593    | 873701   | 873843   |
| 1        | 1        | 2         | 2        | 1        | 1         | 1        | 2        |
| 873885   | 874158   | 874217    | 874373   | 874662   | 874839    | 874858   | 875093   |
| 2        | 2        | 2         | 2        | 2        | 2         | 1        | 2        |
| 875099   | 875263   | 87556202  | 875878   | 875938   | 877159    | 877486   | 877500   |
| 2        | 1        | 1         | 2        | 1        | 1         | 1        | 1        |
| 877501   | 877989   | 878796    | 87880    | 87930    | 879523    | 879804   | 879830   |
| 2        | 1        | 1         | 1        | 2        | 2         | 2        | 2        |
| 8810158  | 8810436  | 881046502 | 8810528  | 8810703  | 881094802 | 8810955  | 8810987  |
| 1        | 2        | 1         | 2        | 1        | 1         | 1        | 1        |
| 8811523  | 8811779  | 8811842   | 88119002 | 8812816  | 8812818   | 8812844  | 8812877  |
| 2        | 2        | 1         | 1        | 2        | 2         | 2        | 1        |
| 8813129  | 88143502 | 88147101  | 88147102 | 88147202 | 881861    | 881972   | 88199202 |
| 2        | 2        | 2         | 2        | 2        | 1         | 1        | 2        |
| 88203002 | 88206102 | 882488    | 88249602 | 88299702 | 883263    | 883270   | 88330202 |
| 2        | 1        | 2         | 2        | 1        | 1         | 2        | 1        |
| 88350402 | 883539   | 883852    | 88411702 | 884180   | 884437    | 884448   | 884626   |
| 2        | 2        | 1         | 2        | 1        | 2         | 2        | 1        |
| 88466802 | 884689   | 884948    | 88518501 | 885429   | 8860702   | 886226   | 886452   |
| 2        | 2        | 1         | 2        | 1        | 1         | 1        | 1        |
| 88649001 | 886776   | 887181    | 88725602 | 887549   | 888264    | 888570   | 889403   |
| 1        | 1        | 1         | 1        | 1        | 2         | 1        | 2        |
| 889719   | 88995002 | 8910251   | 8910499  | 8910506  | 8910720   | 8910721  | 8910748  |
| 1        | 1        | 2         | 2        | 2        | 2         | 2        | 2        |
| 8910988  | 8910996  | 8911163   | 8911164  | 8911230  | 8911670   | 8911800  | 8911834  |
| 1        | 2        | 2         | 2        | 2        | 2         | 2        | 2        |
| 8912049  | 8912055  | 89122     | 8912280  | 8912284  | 8912521   | 8912909  | 8913     |
| 1        | 2        | 1         | 1        | 2        | 2         | 2        | 2        |
| 8913049  | 89143601 | 89143602  | 8915     | 891670   | 891703    | 891716   | 891923   |
| 1        | 2        | 1         | 2        | 2        | 2         | 2        | 2        |
| 891936   | 892189   | 892214    | 892399   | 892438   | 892604    | 89263202 | 892657   |
| 2        | 2        | 2         | 2        | 1        | 2         | 1        | 2        |
| 89296    | 893061   | 89344     | 89346    | 893526   | 893548    | 893783   | 89382601 |
| 2        | 2        | 2         | 2        | 2        | 2         | 2        | 2        |
| 89382602 | 893988   | 894047    | 894089   | 894090   | 894326    | 894329   | 894335   |
| 2        | 2        |           |          |          | 1         |          |          |
| 894604   | 894618   | 894855    | 895100   | 89511501 | 89511502  | 89524    | 895299   |
| 2        | 1        | 2         | 1        | 2        | 2         | 2        | 2        |
| 8953902  | 895633   | 896839    | 896864   | 897132   | 897137    | 897374   | 89742801 |
| 1        | 1        |           |          |          | 2         |          | 1        |
| 897604   | 897630   | 897880    | 89812    | 89813    | 898143    | 89827    | 898431   |
| 2        | 1        | 2         | 1        | 1        | 2         | 2        | 1        |

| 00001000  | 000077    | 000070   | 00000   | 000000   | 0004.47   | 000107   | 000007    |
|-----------|-----------|----------|---------|----------|-----------|----------|-----------|
|           | 898677    |          |         |          |           |          | 899667    |
| 2         | _         | 2        |         | 2        |           | _        | 1         |
| 899987    |           | 901011   |         |          |           |          | 901034301 |
| 1         | _         | 2        | 2       |          |           | 2        |           |
| 901034302 |           | 9010598  |         |          |           | 9011494  |           |
| 2         | 2         | 2        | 2       |          |           | _        | 2         |
| 9011971   | 9012000   | 9012315  | 9012568 | 9012795  | 901288    | 9013005  | 901303    |
| 1         | 1         | 1        | 2       |          |           | 2        | 2         |
| 901315    | 9013579   | 9013594  | 9013838 | 901549   | 901836    | 90250    | 90251     |
| 1         | 2         | 2        |         | 2        |           | 2        | 2         |
| 902727    | 90291     | 902975   | 902976  | 903011   | 90312     | 90317302 | 903483    |
| 2         | 2         | 2        | 2       | 2        | 1         | 2        | 2         |
| 903507    | 903516    | 903554   | 903811  | 90401601 | 90401602  | 904302   | 904357    |
| 1         | 1         | 2        | 2       | 2        | 2         | 2        | 2         |
| 90439701  | 904647    | 904689   | 9047    | 904969   | 904971    | 905189   | 905190    |
| 1         | 2         | 2        | 2       | 2        | 2         | 2        | 2         |
| 90524101  | 905501    | 905502   | 905520  | 905539   | 905557    | 905680   | 905686    |
| 1         | 2         | 2        | 2       | 2        | 2         | 2        | 2         |
| 905978    | 90602302  | 906024   | 906290  | 906539   | 906564    | 906616   | 906878    |
| 2         | 1         | 2        | 2       | 2        | 1         | 2        | 2         |
| 907145    | 907367    | 907409   |         |          | 90769602  | 907914   | 907915    |
| 2         | 2         | 2        | 2       | 2        |           | 1        |           |
| 908194    | 908445    | 908469   | 908489  |          | 909220    | 909231   | 909410    |
| 1         | 1         | 2        | 1       |          |           | 2        |           |
| 909411    | 909445    |          |         |          | 9110720   |          |           |
| 2         |           | 2        |         |          | 2         | 1        |           |
| 911150    | 911157302 | 9111596  |         |          | 911201    | 911202   | 9112085   |
| 2         | 1         | 2        | 1       |          |           | 2        |           |
| 9112366   | 9112367   | 9112594  | 9112712 |          | 911296202 | 9113156  | 911320501 |
| 2         |           | 2        | 2       |          |           |          |           |
| 911320502 | _         | _        | _       | _        | 911366    | _        | _         |
| 2         |           | 2        | 2       |          |           | 2        |           |
| 911384    | 9113846   | 911391   |         | 911654   | 911673    | _        |           |
| 2         |           | 2        | 2       |          |           | 2        |           |
|           |           |          |         |          | 913063    |          |           |
| 2         |           |          | 2       |          |           |          |           |
|           | 913535    |          |         |          |           |          | 914333    |
| 2         |           |          |         |          | 2         |          |           |
|           |           |          |         |          | 91504     |          |           |
| 1         |           |          |         |          |           | 2        |           |
|           |           |          |         |          | 915460    | _        |           |
| 915166    |           |          |         | 915452   |           |          | 913004    |
|           |           |          |         |          | 916838    |          |           |
| 915691    | 915940    | 91594602 | 916221  | 910/99   | 910838    | 91/062   | 911080    |

| 1        | 2        | 2      | 2        | 1        | 1        | 2        | 2        |
|----------|----------|--------|----------|----------|----------|----------|----------|
| 917092   | 91762702 | 91789  | 917896   | 917897   | 91805    | 91813701 | 91813702 |
| 2        | 1        | 2      | 2        | 2        | 2        | 2        | 2        |
| 918192   | 918465   | 91858  | 91903901 | 91903902 | 91930402 | 919537   | 919555   |
| 2        | 2        | 2      | 2        | 2        | 1        | 2        | 1        |
| 91979701 | 919812   | 921092 | 921362   | 921385   | 921386   | 921644   | 922296   |
| 1        | 2        | 2      | 2        | 2        | 1        | 2        | 2        |
| 922297   | 922576   | 922577 | 922840   | 923169   | 923465   | 923748   | 923780   |
| 2        | 2        | 2      | 2        | 2        | 2        | 2        | 2        |
| 924084   | 924342   | 924632 | 924934   | 924964   | 925236   | 925277   | 925291   |
| 2        | 2        | 2      | 2        | 2        | 2        | 2        | 2        |
| 925292   | 925311   | 925622 | 926125   | 926424   | 926682   | 926954   | 927241   |
| 2        | 2        | 1      | 1        | 1        | 1        | 2        | 1        |
| 92751    |          |        |          |          |          |          |          |
| 2        |          |        |          |          |          |          |          |

plot(wisc.pr\$x[,1], wisc.pr\$x[,2], col=grps)



We see some overlap between the red and black data points. This is due to the 2D visualization of 3D data—there's another dimension we're overlooking.

```
table(diagnosis)
```

```
diagnosis
B M
357 212
```

To compare with the plot of diagnoses:

```
plot(wisc.pr$x[,1:2], col=diagnosis)
```



table(diagnosis, grps)

There's 24 false positives (benign in group 1) & 33 false negatives (malignant in group 2). To make the plots match in color, the factors can be reordered:

```
g <- as.factor(grps)
levels(g)

[1] "1" "2"

g <- relevel(g,2)
levels(g)

[1] "2" "1"

# Plot using our re-ordered factor
plot(wisc.pr$x[,1:2], col=g)</pre>
```



Cut hierarchical clustering model— wisc.pr.hclust.two— into 2 clusters:

```
## Use the distance along the first 7 PCs for clustering i.e. wisc.pr$x[, 1:7]
wisc.pr.hclust.two <- hclust(dist(wisc.pr$x[,1:7]), method="ward.D2")
wisc.pr.hclust.clusters <- cutree(wisc.pr.hclust.two, k=2)</pre>
```

```
# Compare to actual diagnoses
table(wisc.pr.hclust.clusters, diagnosis)

diagnosis
wisc.pr.hclust.clusters B M
1 28 188
```

2 329 24

Q15. How well does the newly created model with four clusters separate out the two diagnoses? The newly created model does similarly with the four clusters in separating out the two diagnoses. There are more true positives and less false positives. Unfortunately, there are less true negatives and more false negatives.