Heat Shielding for Hypersonic Vehicles

Nick Reeder • Ben Kim

W&M • UVA

Overview

Long term goal:

Perform uncertainty quantification

Challenges

- This requires a lot of data, simulation time, and wind tunnel testing
- Simulations are computationally and financially expensive

Primary goal:

Develop an effective surrogate model to estimate, for instance, temperature of a tile under certain conditions

Video of Mach 10 Flight

Surrogate Modeling

—

Our Application

 Modeling temperature of a thermal protection system

Diagram from Dr. Hunt's paper

Simulate a simple What models are good? Expand this program to a real simulation dataset to work on We are here Attempt on a **Final Model** Data Data Model more complex Generation **Exploration Testing** Generation simulation What does this data look like? How can we Writing a program to model it? generate an 'effective' surrogate model

Specifics of the problem

What makes the model complex?

- Things act very strange at these speeds
- There are a TON of variables to consider, and lots of things that can go wrong

Why don't we just test it?

- Testing is very expensive and hard
- It's much easier to run a program than risk your many million dollar plane

Data Creation and Exploration

Random Data

 1000 data points where each parameter was randomly sampled from a +-10% range of baseline

Latin Hypercube Data

- Build a latin hypercube to generate specific data points
- This should lead to less data points that each provide more information

Heatmaps: Show linear shape

Three ML Models

Random Forests

- A 'forest' of decision trees that are each trained on bootstrapped data
- Each tree is unique and random
- Pros:
 - VERY hard to overfit
 - Does not suffer strongly from high dimensions
- Cons:
 - Slower*
 - 'Greybox'
 - Hard to select out dimensions

Gaussian Processes

- Used Radial Basis Functions
- Very flexible, can fit many functions
- Pros:
 - Creates automatic uncertainties for each point
 - Interpolation between points
 - Doesn't need a lot of training data
- Dimensionality concerns

Lasso

- Extensions of OLS that adds a penalty to minimize RSS
- Requires standardization
 - We used a Standard Scalar (z = [x - u] / s)
- Pros:
 - Coefficients can be 0
 - Very easy to plot and interpret
 - Does not need much data
- Cons:
 - Can be overfit easily
 - Suffers at higher dimensions

Lasso Performance

- Model Performance
 - MSE: 11.72 °C
 - o MA: 2.72 ℃
 - o r2: 0.95
- Monte Carlo Performance
 - o KS: 0.045 / 0.621
 - Wasserstein distance 0.670

Comparison: Mean Absolute Error

Comparison: Mean Squared Error

Heatmaps: Lasso

Heatmaps: GPR

Lasso UQ Performance

- Monte Carlo Performance
 - o KS: 0.045 / 0.621
 - Wasserstein Distance:0.671

With time exposure ('t_final') as the uncertain variable

__

GPR UQ Performance

- Monte Carlo Performance
 - P-value=0.001 (they are different)
 - Wasserstein Distance: 3.3
- Hypothesis:
 - GPR will perform better with variables that result in non-normally distributed temperatures.

With time exposure ('t_final') as the uncertain variable

__

GPR UQ Performance

- Monte Carlo Performance
 - P-value=0.96 (they are the same)
 - Wasserstein Distance: 1.07
- GPR is more accurate depending on the uncertain variable. This leads us to believe that UQ vary based on the variables and models used.

With exterior tile height ('h_tile') as the uncertain variable

What comes next

- 1. Compare and finalize model
- 2. Perform uncertainty analysis on mini-simulator
- 3. Expand process to more complex models