Задание 1

Постройте детерминированный конечный автомат, допускающий следующий

Вариант А

$$\{0^i 1^j | i > 3, j \neq 2\}$$

Вариант В

$$\{0^i 1^j | i \mod 3 = 0, j \neq 2\}$$

Вариант С

$$\{0^i 1^j | (ij) \bmod 5 = 1\}$$

Вариант D

$$\{(0|1)^*(00|11)(0|1)^*\}$$

Вариант Е

$$\{0^*(10|01)1^*\}$$

Вариант F

$$\{00(0|1)*11\}$$

Задание 2

Постройте недетерминированный конечный автомат с ε -переходами, допускан дующий язык. Используйте ε -переходы для того, чтобы сделать автомат максим глядным.

Запишите регулярное выражение для описанного языка.

Вариант G

Множество слов, состоящих из нуля или нескольких символов '1', после которы один или больше символов '2', и вслед за ними два или больше символов '3'.

Вариант Н

Множество слов, состоящих, из повторяющихся один или несколько раз фрагмє либо повторяющихся один или несколько раз фрагментов "010". Примеры слов "0101010", "010010".

Вариант I

Множество слов над алфавитом $\{0,1\}$, содержащих хотя бы на одной из послед позиций символ '1'. Примеры слов из языка: "1", "0000001000", "0010101".

Вариант Ј

Множество слов над алфавитом $\{0,1,2\}$, содержащих три подряд одинаковых

Задание 3

Постройте детерминированный конечный автомат, распознающий тот же яз приведенный недетерминированный.

Вариант К

Алфавит: $\{0,1\}$, множество состояний: $\{A,B,C,D\}$, начальное — A, допуска переходы:

Вариант L

Алфавит: $\{0,1\}$, множество состояний: $\{A,B,C\}$, начальное — A, допускающ реходы:

	0	1
A	A, B	С
В	В, А	С
\mathbf{C}	В, С	A,B

Вариант М

Алфавит: $\{0,1\}$, множество состояний: $\{A,B,C,D,E\}$, начальное — A, допуск переходы:

	0	1
A	A, B	Α
В	С	С
\mathbf{C}	D	С
D	${ m E}$	E
\mathbf{E}		

Задание 4

Используя лемму о разрастании, докажите нерегулярность следующих языкс

Вариант N

 $\{\alpha\overline{\alpha} \mid \alpha \in \{0,1\}^*\}$, где $\overline{\alpha}$ означает слово α , где все нули заменены на единицы :

Вариант О

$$\{\alpha 1^n \mid \alpha \in \{0,1\}^*, |\alpha| = n\}$$

Вариант Р

$$\{\alpha\beta\,|\,\alpha,\beta\in\{0,1\}^*,\beta$$
 — непустой суффикс $\alpha\}$

Вариант Q

$$\{\alpha\beta \mid \alpha,\beta \in \{0,1\}^*, |\alpha| = |\beta|, \alpha \neq \beta\}$$

Вариант R

$$\{0^n 1^m 2^{n-m} \mid n \ge m \ge 0\}$$

Вариант S

$$\{0^n1^m \mid n^2 + m^2$$
 — не квадрат целого числа $\}$

Задание 5

Вариант Т

Пусть L — произвольный язык над односимвольным алфавитом. Докажиз является регулярным. Заметьте, что L не обязан быть регулярным!

Вариант U

Докажите, что для любого регулярного языка L множество всех слов из разбить на конечное число классов, такое что если α и β принадлежат одному для любых слов u и v из Σ^* слова $u\alpha v$ и $u\beta v$ либо оба принадлежат языку L, л

принадлежат.