

Winning Space Race with Data Science

<Name>Opeyemi David <Date>23/6/2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies

- Data Collection via API, Web Scrapping
- Data Wrangling
- Exploratory Data Analysis (EDA), with SQL and Visualization
- Interactive Visual Analytic with Dashboards, Folium, and Ploty
- Predictive Analysis

Summary of all results

- Data Collection via API, Web Scrapping
- Exploratory Data Analysis Results
- Interactive Maps and Dashboard
- Predictive Results

Introduction

Project background and context

To predict if the Falcon 9 first stage will land successfully. SpaceX advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage. Therefore if we can determine if the first stage will land, we can determine the cost of a launch. This information is needed by Space Y to compete with Space X for a rocket launch

- Problems you want to find answers
 - Data Collection via API, Web Scrapping
 - What is the outcome of the landing?
 - What are the determinants of failed and successful landing?
 - What are the conditions for success rate landing?
 - What will determine the best launch cost?

Methodology

Executive Summary

- Data collection methodology:
 - Space X Rest API
 - Web Scraping
- Perform data wrangling
 - Identified and calculated the missing values
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection

Describe how data sets were collected.

Data sets were collected via API, and, Webscrapping (Wikipedia)

Some columns such as rocket, payloads, and launchpad were used to obtain useful information such as launch site, booster name, payload mass, and so on https://api.spacexdata.com

Some of the information obtained from the Websrapping (Wikipedia) are launch site, payload mass, orbit, customer e.t.c

"https://en.wikipedia.org/w/index.php?title=List_of_Falcon_9_and_Falcon_Heavy_launches&oldid=1027686922"

Data Collection – SpaceX API

Data Collection - Scraping

Data Wrangling

· Finding the missing data

```
data_falcon9.isnull().sum()
FlightNumber
Date
BoosterVersion
PayloadMass
Orbit
LaunchSite
Outcome
Flights
GridFins
Reused
Less
LandingPad
Block
ReusedCount
Serial
Longitude
Latitude
dtype: int64
```

Dealing with missing data

EDA with Data Visualization

Scatter Plot

Flight Number vs Payload Mass

Flight Number vs Launch Site

Payload Mass vs Launch Site

Orbit vs Flight Number

Orbit vs Outcome

Orbit vs Payload Mass

Bar Chat

Orbit vs Flight Number

Orbit vs Payload Mass

Line Chart

Date vs Success Launch Set

EDA with SQL

- SQL queries were used to perform the following
- ✓ Display the names of the unique launch sites in the space mission
- ✓ Display 5 records where launch sites begin with the string 'CCA'
- ✓ Display the total payload mass carried by boosters launched by NASA (CRS)
- ✓ Display average payload mass carried by booster version F9 v1.1
- ✓ List the date when the first succesful landing outcome in ground pad was achieved
- ✓ List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- ✓ List the total number of successful and failure mission outcomes
- ✓ List the names of the booster_versions which have carried the maximum payload mass. Use a subquery
- ✓ List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015
- ✓ Rank the count of successful landing_outcomes between the date 04-06-2010 and 20-03-2017 in descending order

Build an Interactive Map with Folium

- The launch sites were marked with red markers
- Success and failed launches are also marked on the map
- Distance between launch sites and their proximity is calculated using the coordinate

The objects on the maps are added for easy reading

Build a Dashboard with Plotly Dash

- Dashboard has a dropdown such as pie chart, rangeslider and scatter plot components
- Dropdown allow users to choose launch site
- Pie chart shows the total success and failure for the launch site chosen with the dropdown components
- Rangeslider allows a user to select a payload mass in fixed range
- Scatter chart displays the relationship between two variables, Success and Payload Mass

Predictive Analysis (Classification)

Data Preparation

Load dataset

Data normalization

Splitting data into training and test sets

Model preparation

Selecting a machine learning algorithm

Set parameter for each algorithm to GrivsearchCV

Train the Gridsearch model with the training dataset

Model evaluation

Get the best hyperparameter for each type of model

Compute accuracy for each model with the test dataset

Plot confusion matrix

Model comparison

Comparison of models according to accuracy

The model with the best accuracy will be chosen

Results

Exploratory data analysis result

Interactive analytics

Predictive analysis results

Flight Number vs. Launch Site

The success rate is increasing for each site

Payload vs. Launch Site

Depending on the launch site, heavy payload may lead to successful landing or failure in landing

Success Rate vs. Orbit Type

It can be deduced that ES-L1, GEO, HEO, and SSO have the best success rate

Flight Number vs. Orbit Type

The success rate improves with the number of flights for the GS, LEO orbit, the success rate of HEO and SSO may be due to the knowledge learned during former launches

Payload vs. Orbit Type

The weight of the payload has an effect on the success rate of launches in some orbits. Heavy payload increases the success rate of GTO

Launch Success Yearly Trend

The success rate increases from year 2013 till 2020

All Launch Site Names

The query SELECT DISTINCT allows you to selection Launch_Site without duplicate

Launch Site Names Begin with 'CCA'

Displa	y 5 record	ds where launch s	ites begin wit	h the string 'C	CCA'				
%sql	select *	from SPACEXTBL	where Launc	h_Site like	'CCA%' limit 5				
* sqli Done.	te:///my	_data1.db							
Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome	Landing _Outcome
04- 06- 2010	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
08- 12- 2010	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
22- 05- 2012	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
08- 10- 2012	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
01-	15:10:00	F9 v1 0 B0007	CCAFS LC-	SpaceX	677	LEO	NASA	Success	No

The Like clause filters the Launch_Sites that have the substring CCA, while Limit 5 reduced the outcome to 5

Total Payload Mass

The sum clause in the query sum and gives the total payload_mass, and the where clause specifies the customer NASA(CRS)

Average Payload Mass by F9 v1.1

```
%sql select Booster_Version,avg(PAYLOAD_MASS__KG_) from SPACEXTBL where Booster_Version='F9 v1.1'

* sqlite://my_data1.db
Done.

Booster_Version avg(PAYLOAD_MASS__KG_)

F9 v1.1 2928.4
```

The avg clause calculated the average Payload_mass, and the where clause specified the Booster_version in the query

First Successful Ground Landing Date

```
%sql select min(Date) from SPACEXTBL where `Landing_Outcome` = 'Success (ground pad)'

* sqlite://my_data1.db
Done.

min(Date)

01/08/2018
```

The min function in the query was used to specify the date, and the where clause specified the landing_outcome needed

Successful Drone Ship Landing with Payload between 4000 and 6000

```
%sql select Booster_Version from SPACEXTBL where Landing_Outcome='Success (drone ship)' and PAYLOAD_MASS__KG_ between
* sqlite:///my_data1.db
Done.

Booster_Version
F9 FT B1022
F9 FT B1026
F9 FT B1021.2
F9 FT B1031.2
```

Clause and was used to pick the columns success(drone ship) and payload_mass_kg together and clause between to filter between 4000 and 6000

Total Number of Successful and Failure Mission Outcomes

```
%sql select count(Mission_Outcome) as Success_Mission_Outcome from SPACEXTBL where Mission_Outcome='Success'
  sqlite:///my data1.db
Done.
 Success Mission Outcome
                      98
  %sql select count(Mission Outcome) as Failure Mission Outcome from SPACEXTBL where Mission Outcome='Failure (in flig
  sqlite:///my data1.db
Done.
 Failure Mission Outcome
```

Clause count in the query was used to count the frequency of the values that we are looking for

Boosters Carried Maximum Payload

%sql SELECT BO	OSTER_VERSION,PAYLOAD
* sqlite:///my_d one.	ata1.db
Booster_Version	PAYLOAD_MASSKG_
F9 B5 B1048.4	15600
F9 B5 B1049.4	15600
F9 B5 B1051.3	15600
F9 B5 B1056.4	15600
F9 B5 B1048.5	15600
F9 B5 B1051.4	15600
F9 B5 B1049.5	15600
F9 B5 B1060.2	15600
F9 B5 B1058.3	15600
F9 B5 B1051.6	15600
F9 B5 B1060.3	15600
F9 B5 B1049.7	15600

Subquery was used to get the required output

2015 Launch Records

substr(Date, 4, 2) was used in the query to get the months and year

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

%sql SELECT [La	and:	ing _Outcome], co
* sqlite:///my_d	lata	1.db
	me	count_outcomes
Succe	ess	20
No atten	npt	10
Success (drone sh	nip)	8
Success (ground pa	ad)	6
Failure (drone sh	nip)	4
Failu	ure	3
Controlled (oce	an)	3
Failure (parachu	ite)	2
No atten	npt	1

Clause count was used to get the frequency of the values, group by used to group them together, and order by clause is used to streamline the desired output

<Folium Map Screenshot 1>

Marking launch sites on the map

The maps display the launch sites

<Folium Map Screenshot 2>

Success/Failed launches

The color labeled shows the launch outcome

<Folium Map Screenshot 3>

• Distance between Launch sites and its proximity

The launch sites and the proximities are displayed on the map

< Dashboard Screenshot 1>

• Piechart of success launch for all sites

< Dashboard Screenshot 2>

Piechart with the highest launch success ratio

The blue shade shows the highest success launch ratio

< Dashboard Screenshot 3>

Payload vs Launch outcome plot

• It can be observed that the size of the payloads affects the success rate of launch sites differently

Classification Accuracy

Confusion Matrix

The confusion matrix shows the prediction of success and failed landing via the labeling.

Conclusions

- Point 1 Success landing
- Point 2 Success landing
- Point 3 Failed
- Point 4

•

Appendix

```
CourseraDataScience_Capstone_Project / Complete the Data Collection API Lab.ipynb
                     Code Blame 1 lines (1 loc) · 486 KB
          Preview
2
                       To make the requested JSON results more consistent, we will use the following static response object for this proj
                        static_json_url='https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-
                       We should see that the request was successfull with the 200 status response code
             In [10]:
                        response.status_code
             Out[10]: 200
                       Now we decode the response content as a Json using .json() and turn it into a Pandas dataframe using .jso
             In [11]:
                        # Use json_normalize meethod to convert the json result into a dataframe
                        data = pd.json_normalize(response.json())
                        print(data.head())
                             static fine date utc. static fine date univ ... not ...indow \
```

```
In [22]:
##sql select Date from SPACEXTBL where Landing _Outcome = 'Success (ground pad)' limit 1
#sql select min(Date) from SPACEXTBL where `Landing_Outcome` = 'Success (ground pad)'
```

