Assignment: MATH 3490 Numerical Analysis

Deadline: Nov 28, 2021

Instructor: Dr. Puneet Rana

UNIT 8-9: AS1 Direct and Iterative Techniques (30 Points)

Note: All questions are of equal marks

Question 1: Which of the following statements are **TRUE**?

- (i) Suppose matrices A and B commute, that is, AB = BA, then A^t and B^t also commute.
- (ii) If A is strictly diagonally dominant in Ax=b, then $||T_i||_{\infty} < 1$.
- (iii) If λ be an eigenvalue of the $n \times n$ matrix A, then λ is also an eigenvalue of A^{-1} .
- (iv) If A is symmetric, then $||A||_2 = \rho(A)$.
- (v) $A = \begin{bmatrix} 1/2 & 0 \\ 16 & 1/6 \end{bmatrix}$ is convergent matrix.

Question 2: If $ax^2 + bx + c = 0$ is divided by x + 3, x - 5 and x - 1, the remainders are 21, 61 and 9 respectively. Use Gaussian elimination method to evaluate the value of a, b and c.

Question 3: Let $A = \begin{bmatrix} \alpha & 1 & 0 \\ \beta & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$, find the all the value of α and β for which

(a) A is singular

(b) A is strictly diagonal dominant

(c) A is symmetric

(d) A is positive definite*

Question 4: Find the permutation matrix P so that PA can be factored into the product LU, where L is lower triangular with ones on its diagonal and U is upper triangular for these matrices. Consider

the following matrix,
$$A = \begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & -1 \\ 1 & 2 & -1 & 3 \\ 1 & 1 & 2 & 0 \end{bmatrix}$$
.

Question 5: Find $||x||_{\infty}$ and $||x||_{2}$ for the following vectors:

(a)
$$\mathbf{x} = (3, -4, 0, 3/2)^T$$

(a)
$$\mathbf{x} = (3, -4, 0, 3/2)^T$$
 (b) $\mathbf{x} = (\sin k, \cos k, 2^k)^T$ for a fixed positive integer k .

Question 6: (a) Verify that the function $\|.\|_1$, defined on \mathbb{R}^n by $\|x\|_1 = \sum_{i=1}^n |x_i|$ is a norm on \mathbb{R}^n .

(b) Show by example that $\|.\|_*$, defined by $\|A\|_* = \max_{1 \le i, i \le n} |a_{ij}|$, does not define a matrix norm.

Question 7: Compute the eigenvalues, associated eigenvectors and spectral radius of the following matrix

$$\left[\begin{array}{ccc} -1 & 2 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & 7 \end{array}\right]$$

Question 8: The linear system

$$x_1 + 2x_2 - 2x_3 = 7,$$

 $x_1 + x_2 + x_3 = 2,$
 $2x_1 + 2x_2 + x_3 = 5$

has the solution $(1, 2, -1)^t$,

- (a) Find the value of $\rho(T_i)$ and $\rho(T_q)$.
- (b) Use the Jacobi method with x(0) = 0 to approximate the solution to the linear system to within 10^{-5} in the l_{∞} norm.

^{*}A matrix A is positive definite if it is symmetric and if $x^t Ax > 0$ for every *n*-dimensional vector $x \neq 0$.

Assignment: MATH 3490 Numerical Analysis

Question 9: The linear system of equation is defined as

$$10x_1 - x_2 = 9,$$

$$-x_1 + 10x_2 - 2x_3 = 7,$$

$$- 2x_2 + 10x_3 = 6.$$

- (a) Find the first two iterations of the SOR method with $\omega = 1.1$, using $x^{(0)} = 0$.
- (b) If the above matrix is tridiagonal and positive definite, then Repeat (a) using the optimal choice of ω .

Question 10: Compute the condition number of the following matrix relative to $||x||_{\infty}$.

$$\begin{bmatrix} 0.04 & 0.01 & -0.01 \\ 0.2 & 0.5 & -0.2 \\ 1 & 2 & 4 \end{bmatrix}$$
