Automated Reasoning

- A Comprehensive Collection -

Ji, Yong-Hyeon

A document presented for the Automated Reasoning

Department of Information Security, Cryptology, and Mathematics College of Science and Technology Kookmin University

Contents

1	The Boolean Satisfiability Problem																									4
---	------------------------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

CONTENTS 3

Introduction

Welcome to the seminar on Automated Reasoning. This document is a compilation of various seminar materials designed to provide a comprehensive overview of the field. Here, we explore the fundamental concepts, methodologies, and applications of automated reasoning in computer science and logic.

This is an example of referencing Section

Chapter 1

The Boolean Satisfiability Problem

Propositional Variable

Definition 1.1. A **propositional variable** is an input variable (that can either be true or false) of a truth function. Propositional variables are the *basic building-blocks* of propositional formulas, used in propositional logic and higher-order logics.

Example 1.1. For a statement variable, a lowercase letter is usually used, for example: p, q, r, . . . , and so on or lowercase Greek letters, for example: ϕ , ψ , χ , . . . and so on.

Remark 1.1. The citing of a propositional variable can be interpreted as an assertion that the proposition represented by that symbol is true. That is:

"p" means "p is true".

Propositional Function (Formula)

Definition 1.2. A **propositional variable** is an input variable (that can either be true or false) of a truth function. Propositional variables are the *basic building-blocks* of propositional formulas, used in propositional logic and higher-order logics.

The boolean satisfiability problem (SAT) is the following: given a formula F on propositional variables, does there exists an assignment \mathcal{A} on theses variables, such that $\mathcal{A}(F) = 1$.

Given a formula F over a set of propositional variables $\{x_1, x_2, \ldots, x_n\}$,

$$\exists \mathcal{A}: \{x_1, x_2, \dots, x_n\} \rightarrow \{0, 1\}: \mathcal{A}(F) = 1.$$