Mathematical Logic HW8

Abraham Murciano

January 12, 2020

1. (b)

$$\neg(\exists x (P(x) \land Q(x)) \rightarrow \forall x (P(x) \rightarrow Q(x)))$$

$$= \exists x (P(x) \land Q(x)) \land \neg \forall x (P(x) \rightarrow Q(x))$$

$$= \exists x (P(x) \land Q(x)) \land \exists x \neg (P(x) \rightarrow Q(x))$$

$$= \exists x (P(x) \land Q(x)) \land \exists x (P(x) \land \neg Q(x))$$

- 2. (b) We must prove $\exists x Q(x)$.
 - 1. $\forall x (P(x) \lor Q(x))$ premise
 - 2. $\forall x \neg P(x)$ premise
 - 3. $P(a) \vee Q(a)$ 1, universal elimination
 - 4. $\neg P(a)$ 2, universal elimination
 - 5. Q(a) 3, 4, disjunctive syllogism
 - 6. $\exists x Q(x)$ 5, existential introduction QED
 - (d) We must prove $\neg \forall x Q(x)$.
 - 1. $\neg \forall x (P(x) \land Q(x))$ premise
 - 2. $\forall x P(x)$ premise
 - 3. $\exists x \neg (P(x) \land Q(x))$ 1, change of quantifier
 - 4. $\neg (P(a) \land Q(a))$ 3, assumption
 - 5. $\neg P(a) \lor \neg Q(a)$ 4, negation of conjunction
 - 6. P(a) 2, universal elimination
 - 7. $\neg Q(a)$ 5, 6, disjunctive syllogism
 - 8. $\exists x \neg Q(x)$ 7, existential introduction
 - 9. $\neg \forall x Q(x)$ 8, change of quantifier
 - 10. $\neg \forall x Q(x)$ 3, 4-9, existential elimination QED
 - (f) We must prove $Q(y) \wedge \exists x (P(x) \wedge R(x))$.
 - 1. $\forall x(P(x) \to (Q(y) \land R(x)))$ premise
 - 2. $\exists x P(x)$ premise
 - 3. P(a) 2, assumption
 - 4. $P(a) \to (Q(y) \land R(a))$ 1, universal elimination
 - 5. $Q(y) \wedge R(a)$ 3, 4, modus ponens
 - 6. Q(y) 5, conjunction elimination
 - 7. R(a) 5, conjunction elimination
 - 8. $P(a) \wedge R(a)$ 3, 7, conjunction introduction
 - 9. $\exists x(P(x) \land R(x))$ 8, existential introduction
 - 10. $Q(y) \wedge \exists x (P(x) \wedge R(x))$ 6, 9 conjunction introduction
 - 11. $Q(y) \wedge \exists x (P(x) \wedge R(x))$ 2, 3-10, existential elimination QED

3. (b) $(\exists x P(x) \land \exists x Q(x)) \Rightarrow \exists x (P(X) \land Q(x))$ is not a valid implication.

A counterexample can be demonstrated as follows. Let the predicate P(x) be "x = 0", the predicate Q(x) be "x = 1", and the universe for x be \mathbb{Z} . There does exist an integer which is equal to zero, namely zero; so $\exists x P(x)$ is true in this interpretation. Similarly, there is an integer equal to one, so $\exists x Q(x)$ is true as well.

If the implication were valid, we would be able to say $\exists x (P(X) \land Q(x))$. Or in English, "there is an integer which is equal to both one and zero". However this consequent is false in our interpretation, since there is no such integer.

(d) $\forall x(P(x) \to Q(x)) \Rightarrow \forall xP(x) \to \forall xQ(x)$ is a valid implication. Below is the inference procedure.

1.	$\forall x (P(x) \to Q(x))$	premise
2.	$P(a) \to Q(a)$	1, universal elimination
3.	$\forall x P(x)$	assumption
4.	P(a)	3, universal elimination
5.	Q(a)	2, 4, modus ponens
6.	$\forall x Q(x)$	5, universal introduction
7.	$\forall x P(x) \to \forall x Q(x)$	3-6, deduction theorem QED

4. We are to determine whether the following implication is valid or not.

$$\forall x \exists y P(x,y) \models \exists y \forall x P(x,y)$$

The 'proof' provided in the question is not sound. In line 4 of the 'proof', the universal quantifier is introduced, violating one of the restrictions of the rule of inference 'Universal Introduction'. The restriction in question states that from $\varphi(\beta/\alpha)$ we can infer $\forall x\varphi$, only if " β is not mentioned in any hypothesis or undischarged assumptions". In the question, z takes the position of β , but z is mentioned in an undischarged hypothesis on line 3. (Although not clear in the provided proof, line 3 should be an assumption for the start of a new sub-proof.)

The above implication is not sound. A counterexample can be shown as follows. Let the binary predicate P(x,y) be defined as y=x, and the universe for x and y be \mathbb{Z} . In this interpretation, our premise $\forall x \exists y P(x,y)$ is true, because for every integer x, there is an integer y which is equal to it. However, the 'conclusion' $\exists y \forall x P(x,y)$ is false, since there is no such integer y such that all other integers are equal to it.