



# MECHANICS OF EXTREME THIN COMPOSITE LAYERS FOR AEROSPACE APPLICATIONS

BACKGROUND

Luca Di Stasio

Science et Ingénierie des Matériaux et Métallurgie (SI2M), Institut Jean Lamour, Nancy, France
Department of Engineering Sciences and Mathematics, Division of Materials Science, Luleà University of
Technology, Luleà. Sweden









#### **Outline**

- Appendices
- **Neferences**







### THANK YOU!







### **APPENDICES**













## **REFERENCES**

MECHANICS OF EXTREME THIN COMPOSITE LAYERS FOR AEROSPACE APPLICATIONS







#### References

- Loading rate effects on delamination:
  - Loading\_rate\_effects\_on\_CFRP.bib

- Body-fitted grids for FSI modeling with LBM:
  - Fluid\_structure\_interaction\_on\_deformable\_surfaces.bib

