Tutorial problems on Regular Expressions

From Sipser's book -

1.20 For each of the following languages, give two strings that are members and two strings that are *not* members—a total of four strings for each part. Assume the alphabet $\Sigma = \{a,b\}$ in all parts.

a. a*b*

e. $\Sigma^* a \Sigma^* b \Sigma^* a \Sigma^*$

b. a(ba)*b

f. aba \cup bab

 $c. \ a^* \cup b^*$

g. $(\varepsilon \cup a)b$

d. (aaa)*

h. $(a \cup ba \cup bb)\Sigma^*$

1.21 Use the procedure described in Lemma 1.60 to convert the following finite automata to regular expressions.

a b b

(a)

(b)

 $1.28\,$ Convert the following regular expressions to NFAs \cdot

In all parts, $\Sigma = \{a, b\}$.

- a. $a(abb)^* \cup b$
- b. $a^+ \cup (ab)^+$
- c. $(a \cup b^{+})a^{+}b^{+}$

From Ullman's book -

3.4.8 Exercises for Section 3.4

Exercise 3.4.1: Verify the following identities involving regular expressions.

- * a) R + S = S + R.
 - b) (R+S) + T = R + (S+T).
 - c) (RS)T = R(ST).
 - d) R(S+T) = RS + RT.
 - e) (R+S)T = RT + ST.
- * f) $(R^*)^* = R^*$.
 - g) $(\epsilon + R)^* = R^*$.
 - h) $(R^*S^*)^* = (R+S)^*$.
- ! Exercise 3.4.2: Prove or disprove each of the following statements about regular expressions.
 - * a) $(R+S)^* = R^* + S^*$.
 - b) $(RS + R)^*R = R(SR + R)^*$.
 - * c) $(RS + R)^*RS = (RR^*S)^*$.
 - d) $(R+S)^*S = (R^*S)^*$.
 - e) $S(RS + S)^*R = RR^*S(RR^*S)^*$.