Anneaux et arithmétique

Examen terminal – Session 1 Corrigé

Exercice 1

Soit A, B deux anneaux unitaires et soit $f: A \to B$ un morphisme d'anneaux unitaires. Soit $I \subset A$ un idéal bilatère contenu dans $\ker f$. On note π la projection canonique de A dans A/I. Alors il existe un morphisme d'anneaux unitaires $\tilde{f}: A/I \to B$ tel que $f = \tilde{f} \circ \pi$. De plus, si f est surjectif, \tilde{f} l'est aussi, et si $I = \ker f$, alors \tilde{f} est injectif.

Exercice 2

1. **VRAI**

C'est le cas pour tout anneau n'ayant pas d'éléments nilpotents non triviaux, par exemple un anneau intègre comme \mathbf{Z} . Pour un exemple d'anneau ayant un nombre fini non nul d'éléments nilpotents, on peut citer $\mathbf{Z}/4\mathbf{Z}$ dont le seul élément nilpotent non trivial est $\bar{2}$.

2. **FAUX**

Dans un anneau local, il y a un unique idéal maximal, qui est l'ensemble des éléments non inversibles. Par exemple, l'anneau des séries formelles $\mathbf{R}[[X]]$ possède comme unique idéal maximal (X).

3. **VRAI**

D'après le théorème de Lagrange, on a pour tout $x \in k^{\times}$, $x^{q-1} = 1$. En multipliant par x, on obtient l'identité $x^q = x$, qui reste vraie lorsque x = 0.

4. **VRAI**

On considère la composée de l'évaluation en 0 $\mathbf{Z}[X,Y] \to \mathbf{Z}[X]$ et de la projection canonique $\mathbf{Z}[X] \to (\mathbf{Z}/2\mathbf{Z})[X]$. L'image \bar{P} de P par cette projection est $X^4 + X + 1$, qui est irréductible dans $(\mathbf{Z}/2\mathbf{Z})[X]$. En effet, s'il était réductible, il aurait un diviseur irréductible Q de degré 1 ou 2, et Q diviserait $X^4 + X$ qui est premier avec \bar{P} . Cela montre que P est irréductible, car si P s'écrivait P = AB avec A, B non constants, alors $\bar{P} = \bar{A}\bar{B}$. Comme deg $\bar{P} = \deg P$, les polynômes \bar{A} et \bar{B} seraient non constants et \bar{P} serait réductible, ce qui n'est pas.

5. **VRAI**

Soit $x, y \in A$, on a alors $x + y = (x + y)^2 = x^2 + xy + yx + y^2 = x + y + xy + yx$, d'où xy + yx = 0. Par ailleurs, on a 1 + xy = 1 + 2xy + xy, d'où 2xy = 0. Ainsi, xy - yx = 0, donc A est commutatif.

- 1. La fonction constante égale à 1 est de classe \mathcal{C}^{∞} , et la différence et le produit de deux fonctions \mathcal{C}^{∞} le sont également, donc A est un sous-anneau unitaire de $\mathcal{F}(\mathbf{R},\mathbf{R})$.
- 2. Considérons l'application $\varepsilon: \begin{vmatrix} A \to \mathbf{R} \\ f \mapsto f(0) \end{vmatrix}$. Cette application d'évaluation est clairement un morphisme d'anneaux surjectif (la fonction constante égale à c, qui est dans A, a pour image par ce morphisme le nombre réel c). Par définition de \mathfrak{M} , on a $\mathfrak{M} = \ker \varepsilon$, ce qui montre que \mathfrak{M} est un idéal de A. De plus, ε induit un isomorphisme $A/\mathfrak{M} \to \mathbf{R}$. En particulier, A/\mathfrak{M} est un corps, et donc l'idéal \mathfrak{M} est maximal.
- 3. Considérons l'application $\varepsilon_{\infty}: \begin{vmatrix} A \to \mathbf{R}[[X]] \\ f \mapsto \sum_{n\geq 0} f^{(n)}(0)X^n \end{vmatrix}$. Montrons d'abord qu'il s'agit d'un morphisme d'anneaux. Il est déjà clair que c'est un morphisme de groupes, et que $\varepsilon_{\infty}(1)=1$. Il nous reste à vérifier que ε_{∞} respecte le produit. Cela découle de la règle de Leibniz et de la formule de multiplication des séries formelles. Par définition, $\mathfrak{P}=\ker\varepsilon_{\infty}$, donc \mathfrak{P} est un idéal de A. De plus A/\mathfrak{P} s'identifie via ε_{∞} à un sous-anneau de $\mathbf{R}[[X]]$, qui est intègre, donc A/\mathfrak{P} est intègre, et \mathfrak{P} est premier. On peut en fait montrer que ε_{∞} est surjectif : ce résultat est connu sous le nom de théorème de Borel.

Exercice 4

1. Il est clair que $\ker \varphi \supset (Z-XY,Y^2-X^3)$. Soit $P \in \ker \varphi$. Effectuons la division euclidienne de P par le polynôme unitaire en la variable Z, Z-XY. On a P=A(Z-XY)+B, avec B de degré ≤ 0 en Z. Le polynôme B ne dépend donc que des variables X et Y. On effectue la division euclidienne de B par le polynôme unitaire en Y, Y^2-X^3 . On a alors

$$P = A(Z - XY) + C(Y^{2} - X^{3}) + R,$$

avec $R \in k[X,Y]$, de degré au plus 1 en Y. Ecrivons R(X,Y) = U(X)Y + V(X), avec $U,V \in k[X]$. En appliquant φ , on trouve que $U(t^2)t^3 + V(t^2) = 0$. Notons u et v les valuations respectives de U et V, on a donc 2u + 3 = 2v. Si U et V sont non nuls, cela est impossible car alors u et v sont entiers. On a donc U = V = 0, et $P \in (Z - XY, Y^2 - X^3)$.

2. Soit $f \in \operatorname{Hom}_k(A, k)$. On note x, y, z les classes respectives de X, Y, Z dans A: le morphisme f est entièrement déterminé par ses valeurs en x, y, z. Si f(x) = 0, alors $f(x)^3 = f(x^3) = f(y^2) = f(y)^2 = 0$, donc f(y) = 0, et f(z) = f(x)f(y) = 0. On a alors f = 0. Si $f(x) \neq 0$, posons t = f(y)/f(x). On a alors $(f(x), f(y), f(z)) = (t^3, t^2, t^5)$. Cela nous définit donc une application $\operatorname{Hom}_k(A, k) \to \mathcal{C}$ (bien définie

également lorsque f(x)=0). Cette application est injective du fait que f est déterminé par ses valeurs en x,y,z, et surjective car pour tout $t\in k$, il existe un unique morphisme de k-algèbres $k[X,Y,Z]\to k$ envoyant (X,Y,Z) sur (t^2,t^3,t^5) : c'est la composée de φ et de l'évaluation en t. Ce morphisme passe au quotient car $A=k[X,Y,Z]/\ker \varphi$, et l'élément de $\mathrm{Hom}_k(A,k)$ correspondant a bien pour image (t^2,t^3,t^5) par l'application $\mathrm{Hom}_k(A,k)\to \mathcal{C}$. Ainsi, $\mathrm{Hom}_k(A,k)$ est en bijection avec \mathcal{C} .

- 3. Le morphisme φ induit un morphisme injectif $A \to k[T]$. Comme k[T] est intègre, A aussi. Ce morphisme se prolonge en un morphisme injectif (noté $\tilde{\varphi}$) Frac $A \to k(T)$. De plus $T = \varphi(Y)/\varphi(X)$, donc $\tilde{\varphi}$ est surjectif, et FracA est isomorphe à k(T).
- 4. Dans A, on a $x^3 = y^2$. Les éléments x et y sont irréductibles dans A et non associés, donc x^3 admet deux factorisations non équivalentes dans A:A n'est pas factoriel.

Exercice 5

- 1. (a) Un inverse (au sens classique) est un inverse ponctuel, et 0 admet toujours 0 comme inverse ponctuel. Ainsi, dans un corps, tout élément admet un inverse ponctuel.
 - (b) Si B est un corps, $B \setminus (\{0\} \cup B^{\times}) = \emptyset$, donc tout élément de $B \setminus (\{0\} \cup B^{\times}) = \emptyset$ n'a pas d'inverse ponctuel.
- 2. (a) Soit a inversible. Alors a^{-1} est clairement inverse ponctuel de a. De plus, si a' est un inverse ponctuel de a, on a $a^{-1}a^2a'=1$ donc aa'=1, et donc $a'=a^{-1}$.
 - (b) Soit a' un inverse ponctuel de a, $(aa')^2 = a^2(a')^2 = aa'$. Donc aa' est idempotent. On suppose que $a \in A \setminus (\{0\} \cup A^\times)$, alors a(aa'-1)=0, alors si A était intègre, on aurait a=0 ou aa'=1, or ces deux possibilités sont exclues. Donc A n'est pas intègre.
 - (c) On a $(1-aa'+a')(1-aa'+a) = 1-aa'+a-aa'+(aa')^2-a^2a'+a'-a(a')^2+aa' = 1$, donc 1-aa'+a est inversible dans A.
 - (d) On a $(ab)^2a'b' = a^2a'b^2b' = ab$, et $ab(a'b')^2 = a'b'$, donc a'b' est inverse ponctuel de ab dans A.
- 3. Soit $a \in A$, et notons a', a'' des inverses ponctuels de a dans A. On a $a' = (a')^2 a = (a')^2 (a^2 a'') = aa'a''$. On a donc également a'' = aa'a'', d'où a' = a'', et l'unicité de l'inverse ponctuel de a.
- 4. Supposons que tout élément de l'anneau A possède un inverse ponctuel. Soit \mathfrak{P} un idéal premier de A, et soit $a \in \mathfrak{P}$ et a' un inverse ponctuel de a dans A. Alors $aa' \in \mathfrak{P}$, donc $1 aa' \in A \setminus \mathfrak{P}$ (sinon on aurait $1 \in \mathfrak{P}$), donc $1 aa' \in A_{\mathfrak{P}}^{\times}$. Par ailleurs, a(1 aa') = 0, donc a = 0 dans $A_{\mathfrak{P}}$. Soit $x \in A_{\mathfrak{P}}$ non nul, on écrit $x = \frac{a}{s}$ avec $s \notin \mathfrak{P}$. On a $a \notin \mathfrak{P}$ sinon x = 0. Ainsi, $y = \frac{s}{a} \in A_{\mathfrak{P}}$ est un inverse de x. Donc $A_{\mathfrak{P}}$ est un corps.

- 5. Montrons que les assertions suivantes sont équivalentes :
 - $(a) \Rightarrow (b)$: Soit a' un inverse ponctuel de a, alors $a^2a' = a \in a^2A$.
 - $(b)\Rightarrow(c): \mathrm{Soit}\ \varphi:A\to A/(a)\times A_a$ envoyant $x\in A$ sur $(\bar x,\frac x1)$. Commençons par examiner le noyau de $\varphi: \mathrm{soit}\ x\in \ker\varphi$, alors $x\in (a)$ et $x\sim 0$ dans A_a . Cette deuxième condition signifie encore qu'il existe $s\in \mathbf N$ tel que $a^nx=0$. Supposons maintenant que (b) soit vérifiée, et soit $a'\in A$ tel que $a=a^2a'$. Soit $x\in \ker\varphi$ et soit $n\in \mathbf N$ minimal tel que $a^nx=0$, et supposons $n\geq 1$. Comme $x\in (a)$, écrivons x=az. Alors $a^{n+1}z=0$, donc $a^{n-1}a^2z=0$, d'où $a^{n-1}az=0$ (en multipliant par a'). Cela contredit la minimalité de n, donc n=0. Ainsi, x=0 et φ est injectif. Enfin, $\varphi(1-aa')=(1,0)$ car a(1-aa')=0, donc $\varphi(aa')=(0,1)$, et donc φ est surjectif.
 - $(c)\Rightarrow(a):$ Soit $z\in A$ un antécédent de (0,1) par le morphisme φ . On écrit z=aa'. On a alors aa'=1 dans A_a , c'est-à-dire qu'il existe $n\in {\bf N}$ tel que $a^n(1-aa')=0$. Supposons n minimal et $n\geq 2$, alors $\varphi(a^{n-1}(1-aa'))=(0,0)$. Par injectivité, $a^{n-1}(1-aa')=0$, ce qui contredit la minimalité de n. Ainsi, $n\in\{0,1\}$. Si n=0, alors a est inversible d'inverse a', et en particulier admet comme pseudo-inverse a'. Sinon, n=1 et $a^2a'=a$. Soit alors b un antécédent de (0,a'/1) par φ , on a encore $a^2b=a$ et $\varphi(b^2a)=(0,a'/1)=\varphi(b)$, donc $b^2a=b$. Ainsi, b est un pseudo-inverse de a.