Well ordering

Lesson 10

"If you can't prove what you want to prove, demonstrate something else and pretend that they are the same."

Darrell Huff

How to Lie with Statistics

Definition

Let A be a subset of reals. We say that A is bounded above provided

$$(\exists M \in \mathsf{R}) (\forall x \in A) (x \leq M).$$

We say that the number M is an upper bound for the set A. The set A is bounded below provided

$$(\exists M \in \mathsf{R}) (\forall x \in A) (M \leq x).$$

We say that the number M is a lower bound for the set A. If A is bounded below and bounded above, we say A is bounded.

•

Bounded details

- Notice that we do not require that a upper bound for a set A to be a member of A.
- Same for a lower bound.
- If M is an upper bound for a set A, any number that is greater than M is also an upper bound for A.
- Since we require that an upper bound be a real number, we disallow infinity from being an upper bound. If we did, every set would be bounded.

3

Bounded examples

Example

- The empty set is bounded above by 0.
- ② Actually every real number is an upper bound for the empty set.
- Second Every real number is a lower bound for the empty set.
- \bullet The interval [0,1] is bounded above by 1.
- \bigcirc The interval [0,1] is bounded above by 107.
- **1** The interval $[0, \infty)$ is bounded below by 0.
- ① The interval $[0, \infty)$ is not bounded above.

4

Being least

Definition

Let A be a subset of R. The set A has a least member provided

$$(\exists a^* \in A) (\forall a \in A) (a^* \leq a).$$

We say that a^* is a least member. The set A has a greatest member provided

$$(\exists a^{\star} \in A) (\forall a \in A) (a \leq a^{\star}).$$

We require that a least member of a set A be a member of the set.

5

Well ordering principle

Axiom

Let $A \subset Z$ be (i) nonempty and (ii) bounded below. Then A has a least member.

- This is an axiom—we'll take it on faith.
- ② Again, a least member of a set A must be a member of A.
- Thus the empty set does not have a least member.
- The qualification that the set be nonempty for it to have a least member is crucial.

Theorem

Let $A \subset Z$ be (i) nonempty and (ii) bounded above. Then A has a greatest member.

Well ordering principle for the reals?

Question Are the real numbers well ordered? That is, does every nonempty subset of R that is bounded below have a least member?

Answer No. The interval (0,1) is nonempty and bounded below, but it doesn't have a least member. Although zero is less than every member of (0,1), since zero isn't a member of (0,1), it is not a least member.

Uniqueness of the least

Theorem

If a subset of the reals has a least member, it is unique.

Proof

Let $A \subset \mathbb{R}$. Suppose x and x' are least members of A. Since x is a least member of A we have $x \in A$. But x' is a least member, so $x' \leq x$. Interchanging the roles of x and x', we have $x' \leq x$; therefore x = x'.

- Equality is hard, inequality is easier.
- We proved equality by proving two inequalities.

Existence of the floor

Let $x \in R$. Define the set M by

$$M = \{k \in R \mid k \ge x\}$$

g