

From Statistics to Data Mining

Master 1
COlour in Science and Industry (COSI)
Cyber-Physical Social System (CPS2)
Saint-Étienne, France

Fabrice MUHLENBACH

https://perso.univ-st-etienne.fr/muhlfabr/

e-mail: fabrice.muhlenbach@univ-st-etienne.fr

- Introduction
- Definition
- family of methods used in statistical modeling
- regression analysis = statistical processes for estimating the relationships between a dependent variable (often called the "outcome variable") and one or more independent variables (often called "predictors," "covariates," or "features")
- example: linear regression → finding the line (or a more complex linear combination) that most closely fits a data set
- > Interests:
- prediction and forecasting (→ machine learning)
- infer causal relationships between the independent and dependent variables

From Statistics to Data Mining

- Linear Regression
- > Definition and notation
- a linear regression model (or "linear model") is a regression model which seeks to establish a linear relationship between a variable, called "explained", "dependent" or "outcome" and noted Y, and a (→ simple linear regression simple) or several (→ multiple linear regression) variables, called "features", "independent" or "predictors" denoted X = {X1, X2, ···, Xp}

> Objective

 establish a link between a dependent variable Y and one (or more) independent variable(s) X in order to then be able to make predictions on Y when X is (are) measured

From Statistics to Data Mining

- Linear Regression: Introduction
- \circ **example**: study of the relationship between altitude (X) and temperature (Y) within a region of a sufficiently small size so that the factors of macroscopic variations in temperature can
- these fictitious data could correspond to the situation of an alpine valley of north-south direction for which one proceeded to the reading of temperatures at noon in eight stations located at different altitudes and located on each side of the valley

i	Xi	Yi
1	2000	0
2	1500	3
3	1000	6
4	500	10
5	1000	8
6	1500	5
7	2000	2
8	2500	-2

From Statistics to Data Mining

be neglected

- Linear Regression: Introduction
- example: study of the relationship between altitude
 (X) and temperature (Y)
- → temperature model (in red line) as a function of altitude:
- the model (red line) of the estimated temperature follows the direction of the scatterplot of the observed temperature (blue dots)

From Statistics to Data Mining

Linear Regression

Notations

- m: # of training examples
- o $x \in \mathbb{R}^n$: input feature vector of n variables
- y: output variable / target
- \circ (x, y): training example
- o (x_i, y_i) : i^{th} training example
- h: hypothesis that maps input x to ouput y
- o h(x) is of the linear form: $h(x) = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n$ we denote $h(x) = h_{\theta}(x) = \sum_{i=1}^n \theta_i x_i = \theta^T x$ where $\theta = (\theta_1, \dots, \theta_n)$ are called parameters of the linear regression (for conciseness, $h_{\theta}(x) = \sum_{i=0}^n \theta_i x_i = \theta^T x$ with the first θ_0 and $x_0 = 1$)

From Statistics to Data Mining

Linear Regression

> Goal

- o how do we choose the parameters θ so that our hypothesis h will make accurate predictions about all the values of y?
- \circ in our example, how to we choose the parameters θ in order to have a function giving the temperature from the altitude?

Objective function

$$\min_{\theta = 1} \frac{1}{2} \sum_{i=1}^{n} (h_{\theta}(x_i) - y_i)^2$$

- o let us define $J_{\theta} = \frac{1}{2} \sum_{i=1}^{n} (h_{\theta}(x_i) y_i)^2$
- o therefore, the objective function becomes: $\min_{\theta} I_{\theta}$

- Learning algorithms for minimizing J_{θ}
- \triangleright How to minimize J_{θ} ?
- \circ finding the parameters $\theta \Leftrightarrow \text{minimizing } J_{\theta}$
- o several solutions exist for minimizing J_{θ} :
- batch gradient descent
- ☐ stochastic gradient descent
- closed-form solution

- Learning algorithms for minimizing J_{θ}
- > Basic idea of the gradient descent
- o start with some value of θ (e.g., $\vec{\theta} = 0$ that denotes a vector of all zeros or some randomly chosen vector)
- o update θ 's values so that to reduce J_{θ} (computing partial derivatives)
- o repeat the process till convergence to the minimum of J_{θ} w.r.t. θ

- Gradient descent algorithm
- the gradient algorithm is also known as the "steepest descent algorithm" → the gradient is the slope of the linearized function at the current point and is therefore, locally, its

steepest slope

- in its simplest version, the algorithm can only find or approach a stationary point of an optimization problem without constraint
- such points are global minima,
 if the function is convex

From Statistics to Data Mining

- Gradient descent algorithm
- > Update rule:
- o **gradient descent** is based on the observation that if the function $J(\theta)$ is differentiable in a neighborhood of a point x, then $J(\theta)$ decreases fastest if one goes from x in the direction of the negative gradient of $J(\theta)$
- o for every step, gradient descent updates each parameter i as follows: $\theta_i \leftarrow \theta_i \alpha \frac{\partial}{\partial \theta_i} J(\theta)$ where:
- $\Box \frac{\partial}{\partial \theta_i} J(\theta)$ gives us the direction of the **deepest descent**
- \square α is the **learning rate** which controls how large a step you take in the direction of the steepest descent

- Batch gradient descent algorithm
- \circ with m training examples, we get:
 - initialization of $\vec{ heta}$

repeat until convergence of $J(\theta)$:

$$\forall i \in [0; n]$$

$$\theta_i \leftarrow \theta_i - \alpha \frac{1}{m} \sum_{j=1}^m (h_\theta(x_j) - y_i)(x_i)$$

- o note that we use "batch" because at each gradient descent, we are going to look at the entire training set and performing a sum over the m examples
- \circ the convergence criterion is reached when the quantity $J(\theta)$ is lower than a determined threshold (a maximum value)
- o convergence needs several runs (epochs) of the learning set

- Batch gradient descent algorithm
- > Limits of the general gradient descent algorithm
- \circ the gradient descent algorithm used by default (batch) works by updating from all of the m examples
- very often, the elementary functions constituting the sum take a simple form which allows the efficient calculation of the sum function and its gradient
- problem 1: in other cases, evaluating the entire gradient can become very expensive, when the calculation of the gradients of each piece is not easy
- problem 2: if the learning set is very large (big data) and no simple formula is available for the gradients, the calculations are very expensive too

From Statistics to Data Mining

- Stochastic gradient descent algorithm
- > Remark
- If m is huge –say millions of examples– then if you are running batch gradient descent, you have to perform at each step a sum over one million of examples
- > Stochastic (or incremental) gradient descent:

initialization de $\vec{\theta}$

repeat until convergence of $J(\theta)$:

for j in 1 to m:

$$\forall i \in [0; n]$$

$$\theta_i \leftarrow \theta_i - \alpha \frac{1}{m} (h_\theta(x_j) - y_i)(x_i)$$

- Stochastic gradient descent algorithm
- > Explanation
- the repetition is carried out until an approximate minimum (quite precisely) is obtained we randomly mix the samples of the learning set to then update
- advantage: the process is much faster for large datasets than the batch gradient algorithm
- disadvantage: the learning process does not converge to a global minimum exactly but it tends to oscillate around regions close to the global minimum

- Stochastic gradient descent algorithm
- \triangleright Learning rate $\alpha \rightarrow$ large versus small learning rate:
- o for some specific examples, $J(\theta)$ may increase
- this may occur in such following situations where is large

 \circ to prevent the parameters θ 's from oscillating around the global minimum we can take a smaller learning rate

From Statistics to Data Mining

- Closed-form Solution
- > Closed-form solution
- o there is another way to perform the minimization of $J(\theta)$ that allows you to solve for the parameters θ 's in closed-form, without needing to run an iterative algorithm
- > Definition
- o a mathematical problem is said to have a **closed-form solution** if, and only if, at least one solution of that problem can be **expressed analytically** in terms of a finite number of certain "well-known" functions (e.g., *n*th root, exponent, logarithm, trigonometric functions, and inverse hyperbolic functions)

From Statistics to Data Mining

Closed-form Solution

> Example 1

o the quadratic equation $ax^2 + bx + c = 0$ is closed-form since its solutions can be expressed in terms of elementary functions:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

> Example 2

o if A is a 2 × 2 matrix, then the solutions (that is the eigenvalues of A) of the characteristic equation $det(A - \lambda I) = 0$ are:

$$\lambda = \frac{\operatorname{Tr}(A) \pm \sqrt{\operatorname{Tr}(A)^2 - 4 \operatorname{det}(A)}}{2}$$

- Closed-form Solution
- > Explanation of example 2

- o we can rewrite the batch gradient descent algorithm as follows: $\theta \leftarrow \theta \alpha \nabla_{\theta} I$
- o where both θ and $\nabla_{\theta} J$ are (n+1)-dimensional feature vectors
- o by properties on the Trace function, it is possible to reduce $\nabla_{\theta} J(\theta) = \vec{0}$ by solving the following equation: $X^{T}X\theta X^{T}y = 0$, hence $X^{T}X\theta = X^{T}y$ (normal equation)
- \circ we get $\theta = (X^TX)^{-1}X^Ty$ (closed form solution)

From Statistics to Data Mining

- Closed-form Solution
- ightharpoonup Special case: $x \in \mathbb{R}^n$ with n = 1
- o when the training set is composed of pairs (x, y) s.t. $x \in \mathbb{R}$, the closed-form solution becomes:

$$\theta_1 = \frac{\text{cov}(X, Y)}{V(X)}$$

$$\theta_0 = \bar{Y} - \theta_1 \bar{X}$$

 \circ therefore, the predicted output for a given new x' is

$$h(x') = \theta^{\mathrm{T}} x' = \frac{\mathrm{cov}(X, Y)}{V(X)} x' + \overline{Y} - \theta_1 \overline{X}$$

- Closed-form Solution
- > What if $(X^TX)^{-1}$ is non-invertible?
- redundant features (linearly dependent)
 - → solution: perform a PCA
- too many features
- → solution: delete some features before (feature selection algorithm), or during the process (e.g., use regularization)

- Conclusion
- > Comparison: gradient descent vs. normal equation
- gradient algorithm:
- \odot need to choose a parameter α (the learning step)
- need a lot of iterations
- \odot works well even when n is large $(n \sim 10^6)$
- allows an online acquisition of training data
- normal equation:
- \odot no need to choose α
- © no need to iterate
- \odot no need to compute $(X^TX)^{-1}$
- \odot slow if n is large

From Statistics to Data Mining

- Improved versions of regression analysis methods
- locally weighted regression (LOESS: LOcally weighted Scatterplot Smoother) → strongly related nonparametric regression method that combines several multiple regression models within a meta-model that relies on the k-NN
- o learning of nonlinear models \rightarrow polynomial regression: search by (multiple linear) regression to link the variables by a polynomial of degree n:

$$y = w_0 + w_1 x + w_2 x^2 + \dots + w_n x^n$$

- o linear regression with regularization
 - → prevent over-fitting
 - → LASSO method (*Least Absolute Shrinkage and Selection Operator*): contraction of the coefficients of the regression