Modèles Multi-Facteurs

P. Hénaff

Version: 05 févr. 2022

Droite de Marché des Capitaux

Figure 1: Droite de Marché des Capitaux

MEDAF: Droite de Marché des Titres

Figure 2: Droite de Marché des Titres

APT(0)

Valorisation par Arbitrage

- Rendement fonction linéaire d'un nombre limité de facteurs
- ▶ Il y a assez de titres sur le marché pour créer des portefeuilles où le risque spécifique a été diversifié
- Absence d'arbitrage

Raisonnement par Arbitrage

APT (1)

Figure 3: Portefeuille diversifié

Figure 4: Action Simple

APT (2)

Figure 5: Opportunité d'arbitrage

APT (3)

$$E(R_i)-R_f = \beta_i^1(\bar{R}_1-R_f)+\beta_2^1(\bar{R}_2-R_f)+\ldots$$

Modèle Fama-French

$$R_{i,t} = \alpha_i + \beta_{i,M} R_{M,t} + \beta_{i,SMB} SMB_t + \beta_{i,HML} HML_t + e_{i,t}$$

R_i Excédent de rendement, titre i

R_M Excédent de rendement, marché

SMB "Small Minus Big": Facteur Capitalisation

HML "High Minus Low": Facteur Valorisation

Modèle Fama-French

Figure 6: Facteurs Fama-French

Stabilité des Betas Fama-French (1)

Portefeuille:

- ► SPY (S&P500) 25%
- ► EFA (Actions ex-US) 25%
- ► IJS (Small Cap Value) 20%
- ► EEM (EM) weighted 20%
- ► AGG (Obligations) 10%

Stabilité des Betas Fama-French (2)

Influence du modèle Fama-French

Autres Facteurs: Momentum

$$R_{i,t} = \alpha_i + \beta_{i,M} R_{M,t} + \beta_{i,SMB} SMB_t + \beta_{i,HML} HML_t + \beta_{i,UMD} R_{UMD,t} + \ldots + e_{i,t}$$

UMD: Up Minus Down

Momentum et Liquidité (1)

CARNET D'ORDRES 🐧

ORDRES	QTÉ	ACHAT	VENTE	QTÉ	ORDRES
3	1 217	10.720	10.760	223	2
4	2 006	10.710	10.770	1 079	2
5	1 621	10.700	10.780	3 482	5
3	4 046	10.690	10.790	1237	4
3	1 172	10.680	10.800	1 611	4
2	1328	10.670	10.810	4 933	2
6	14 129	10.660	10.830	10 410	5
3	2 135	10.650	10.840	90	•
2	445	10.640	10.850	2 787	5
2	1844	10.630	10.870	125	•

DERNIÈRES TRANSACTIONS 💍

HEURES	COURS	QUANTITÉ
13:26:17	10.760	1 218
13:24:24	10.750	257
13:20:53	10.740	163
13:20:53	10.740	538
13:19:55	10.740	93
Consulter les d	lernières trar	nsactions de

DERNIÈRES ACTUALITÉS

la journée

18 févr. Malsons du Monde : Telelos CP se renforce au capital • CERCLE FINANCE

Eigura O. Maisans du Manda

Momentum et Liquidité (2)

ORDRES	QTÉ	ACHAT	VENTE	QTÉ	ORDRES
3	821	40.0450	40.0550	100	1
4	836	40.0400	40.0600	917	3
4	1205	40.0350	40.0650	954	3
7	2 064	40.0300	40.0700	2 032	5
4	1577	40.0250	40.0750	1944	5
6	1975	40.0200	40.0800	877	4
4	1 504	40.0150	40.0850	1 589	4
6	1646	40.0100	40.0900	1038	4
3	1 048	40.0050	40.0950	4 376	3
4	1329	40.0000	40.1000	397	2
45	14 005	TOTAL	TOTAL	14 224	34

HEURES	COURS	QUANTITÉ
13:35:28	40.1850	30
13:35:28	40.1850	250
13:35:28	40.1850	130
13:35:28	40.1850	450
13:35:28	40.1850	200
Consulter les la journée	dernières trar	nsactions de

DERNIÈRES ACTUALITÉS

ven. Grande Bretagne: Total
candidat à la reprise
d'éollennes en
mer • REUTERS

C:---- 10. T-+-1

Facteurs et Fouille de Données (Harvey et al.)

$$R_i(t) - R_f(t) = lpha_i + eta_i (R_M(t) - R_f(t)) + \gamma_i F(t) + \epsilon_i(t)$$
 $rac{\hat{\gamma_i}}{\sigma(\gamma_i)} \sim ext{t-stat}$

Erreur Type I: Accepter un facteur alors qu'il n'est pas significatif.

Exercise: Significativité de α

- $ightharpoonup \alpha$ mensuel = 0,20%
- $\beta = 1,2$
- $ightharpoonup \sigma$ résiduel mensuel = 2%
- $ightharpoonup \sigma$ marché mensuel = 6%
- 36 mois de données.

Est-ce que le gérant apporte une valeur ajoutée, ou bien est-il chanceux?

Exercice: Valider le résultat précédent par simulation

- ► Tirer un échantillon de R(t) et $R_M(t)$ sous H_0
- lacktriangle Estimer lpha par regression, en utilisant apply
- ► Calculer la distribution empirique du ratio

$$rac{\hat{lpha_i}}{\sigma(\hat{lpha_i})} \sim \mathsf{t ext{-}stat}$$

Black-Litterman (1)

- Par défaut: Accepter les espérances de rendement implicites dans le portefeuille de marché, et investir dans ce portefeuille.
- Exprimer des "vues" sur l'espérance de rendement de portefeuilles quelconques
- Utiliser ces "vues" pour modifier les espérances de rendement et la structure de covariance des actifs.

Black-Litterman (2)

View: IBM et Dell surperforme MS.

```
## 1 : 0.5*IBM+-1*MS+0.5*DELL=0.06 + eps. Confidence: 100
```

Black-Litterman (3)

```
## Prior means:
    TRM
          MS DELL
                        .TPM
                             BAC
## Posterior means:
##
             TRM
                                        DELL.
   0.0011338343 -0.0104660433 0.0107975334 -0.0031698631 -0.0017878388
             BAC
##
## -0.0008618328
## Posterior covariance:
                TBM
                             MS
                                       DELL.
##
                                                                             BAC
## TBM 0.011787595 0.010442937 0.010517196 0.007334887 0.008897717 0.002982477
## MS
        0.010442937 0.019344067 0.015147649 0.009681186 0.011153548 0.004785561
## DELL 0.010517196 0.015147649 0.033290488 0.008060615 0.011172018 0.005510119
        0.007334887 0.009681186 0.008060615 0.008736200 0.009086340 0.004586600
## C
## JPM 0.008897717 0.011153548 0.011172018 0.009086340 0.022705524 0.006498246
## BAC 0.002982477 0.004785561 0.005510119 0.004586600 0.006498246 0.007690513
```

Black-Litterman (4)

View: Le rendement moyen du secteur financier sera de 15%

```
finViews <- matrix(ncol = 4, nrow = 1, dimnames = list(NULL, c("C","JPM","BAC","MS")))
finViews[,1:4] <- rep(1/4,4)
views <- addBLViews(finViews, 0.15, 90, views)
views
```

```
## 1 : 0.5*IBM+-1*MS+0.5*DELL=0.06 + eps. Confidence: 100 ## 2 : 0.25*MS+0.25*C+0.25*JPM+0.25*BAC=0.15 + eps. Confidence: 90
```

Black-Litterman (5)

```
marketPosterior <- BLPosterior(as.matrix(monthlyReturns), views,
                               tau = 1/2,
                               marketIndex = as.matrix(sp500Returns),
                               riskFree = as.matrix(US13wTB))
marketPosterior
## Prior means:
           TBM
                        MS
                                  DELL.
                                                           .JPM
                                                                        BAC
## 0 020883598 0 059548398 0 017010062 0 014492325 0 027365230 0 002829908
## Posterior means:
##
          TBM
                      MS
                               DELL.
                                                       JPM.
                                                                  BAC
## 0 06344562 0 07195806 0 07777653 0 04030821 0 06884519 0 02592776
## Posterior covariance:
                                       DELL.
                                                                 JPM
##
                TBM
                                                                             BAC
## TBM 0 021334221 0 010575532 0 012465444 0 008518356 0 010605748 0 005281807
## MS
       0.010575532 0.031231768 0.017034827 0.012704758 0.014532900 0.008023646
## DELL 0.012465444 0.017034827 0.047250599 0.007386821 0.009352949 0.005086150
## C
       0.008518356 0.012704758 0.007386821 0.016267422 0.010968240 0.006365457
## JPM 0.010605748 0.014532900 0.009352949 0.010968240 0.028181136 0.011716834
## BAC 0.005281807 0.008023646 0.005086150 0.006365457 0.011716834 0.011199343
```

Black-Litterman (6)

Portefeuille Tangent:

Black-Litterman (7)

Figure 11: Prior Rdt/Risque

Figure 12: Posterior Rdt/Risque

Risk Budgeting

$$\sigma(w) = w^T \Sigma w$$

Contribution au risque de l'actif i:

$$\mathsf{RC}_i = \frac{w_i \left(\Sigma w \right)_i}{\sqrt{w^T \Sigma w}}$$

Risk Parity & Budgeting

Parity:

$$\mathsf{RC}_i = \frac{1}{N}\sigma(w)$$

Bugeting:

$$RC_i = b_i \sigma(w)$$

Cas Paticulier: Σ diagonal

$$\Omega = \sqrt{\mathsf{diag}(\Sigma)}$$
 $w = rac{\Omega^{-1}}{1^T \Omega^{-1}}$

Risk Parity & Budgeting: Exemple.

Risk Budgeting

stocks

Risk Budgeting

stocks

Attribution de Performance (1)

- ▶ t=0: Achat d'une action à 50E
- ▶ t=1: Dividende reçu: 2E, achat d'une action à 53E
- ▶ t=2: Dividende reçu: 4E, valeur de marché d'une action: 54E

Rendement annuel?

Quels Indicateurs de Risque?

Figure 13: Indicateurs de Risque

Quels Indicateurs de Risque?

- ► Sharpe: $(r_P r_f)/\sigma_P$
- ► Treynor: $(r_P r_f)/\beta_P$
- $\blacktriangleright \text{ IR: } \alpha_P/\sigma(e_P)$

Diagramme Rendement / Risque

Attribution de Performance: Timing

Performance et indicateurs mensuels au 31/01/2020

	1 an	3 ans	5 ans		1 an	3 ans	
erf Annualisée ②				Ratios			
onds	11,46 %	5,20 %	3,18 %	Ratio de Sharpe ②	3,46	1,43	
Catégorie	5,26 %	0,79 %	0,53 %	Ecart de Suivi 🔞	2,63 %	2,85 %	
Différence	6,20 %	4,41 %	2,65 %	Ratio d'Information (IR)	2,41	1,57	
ndice*	5,26 %	0,79 %	0,53 %	Up Capture Ratio 2	1,33	1,21	
Différence	6,20 %	4,41 %	2,65 %	Down Capture Ratio ②	0,60	0,67	
Risque				Ratio Omega 🥹	2,91	1,62	
/olatilité 🕝	3,43 %	3,90 %	4,53 %	Réactivité			
/olatilité Cat	2,57 %	2,97 %	3,54 %	Beta 2	0,87	0,92	
/olatilité Indice	2,57 %	2,97 %	3,54 %	R ² ②	42,07	46,99	
Perte Maximum 👩	-1,51 %	-5,89 %	-8,60 %	Beta haussier ②	0,76	0,85	
Délai de recouvrement 🥹	101 j	608 j	981 j	Beta baissier ②	0,57	1,00	
OSR 2	1,74 %	2,63 %	3,12 %				
Sortino 🔞	6,84	2,12	1,12	Asymétrie			
/AR 95 ②	-0,63 %	-0,85 %	-0,94 %	Skewness 2	-0,30	-0,71	
VΔR 00 6	-0.85.06	-1 /19 06	-1 99 %	Kurtosis 🕝	-0,58	0,88	

Timing = Call sur le marché

Attribution de Performance: Allocation et Selection

i: indice de la classe d'actif.

Benchmark

$$r_B = \sum_i w_{Bi} r_{Bi}$$

Portefeuille

$$r_P = \sum_i w_{Pi} r_{Pi}$$

Attribution de Performance: Allocation et Selection

Contribution de la classe i =

$$w_{Pi}r_{Pi} - w_{Bi}r_{Bi} =$$
 $(w_{Pi} - w_{Bi})r_{Bi}$ allocation $+w_{Pi}(r_{Pi} - r_{Bi})$ selection

Exercice

Utiliser le package "riskParityPortfolio" et le dataset "monthly returns".

A partir de l'exemple: "A pratical example using FAANG price data", comparer par un backtest les performances et la composition d'un portefeuille tangent et d'un portefeuille "risk parity".

Ajouter des contraintes au portefeuille tangent:

- ▶ Poids <= 20%
- ► Secteur Technologie <= 30%

https://cran.r-project.org/web/packages/riskParityPortfolio/vignettes/RiskParityPortfolio.html

Bibliographie

Grinhold, R.C. and Kahn, R. Active Portfolio Management, Mc Graw-Hill, 2000