Timer unit: 1e-06 s

76

1

2.0

2.0

0.0

return length_array

Total time: 7.66835 s

File: <ipython-input-5-faf2ad6c3ad2>

Function: main at line 26

Line #	Hits	Time	Per Hit	% Time	Line Contents
26					<pre>def main(n, alpha, T):</pre>
27 28					n: there are n points in the unit square
29					alpha: alpha is the portion of points you redistribute at every time step
30					T: number of iterations
31					return:
32					length array: list of caluclated values L(0), L(1), \dots, L(T-1)
33					plot the diagram L(t) for $t=0$, 1,, $T-1$
34					
35	1	769.0	769.0	0.0	<pre>x = np.random.uniform(size=n)</pre>
36	1	62.0	62.0	0.0	y = np.random.uniform(size=n)
37	1	282.0	282.0	0.0	positions = list(zip(x,y))
38	1	2.0	2.0	0.0	length array = []
39	1	678.0	678.0	0.0	position_status = dict((key, value) for (key, value) in zip(positions, [False]*(len(positions
40	1	17.0	17.0	0.0	starting point = random.choice(positions)
41	1	58.0	58.0	0.0	positions.remove(starting point)
42	1	2.0	2.0	0.0	position status[starting point] = True
43					
44					
45	6	10.0	1.7	0.0	for t in range(0,T):
46					#perturbation of points
47	5	6.0	1.2	0.0	if t > 0:
48	4	136.0	34.0	0.0	<pre>positions = list(position_status.keys())</pre>
49	4	8.0	2.0	0.0	perturb_no = n*alpha
50	4	310650.0	77662.5	4.1	<pre>new_pos, old_pos = returnPerturbations(perturb_no, positions)</pre>
51	4	74406.0	18601.5	1.0	positions = [rp for rp in positions if rp not in old_pos]
52	4	22.0	5.5	0.0	positions.extend(new_pos)
53	4	76328.0	19082.0	1.0	<pre>position_status = {key: position_status[key] for key in list(position_status.keys())</pre>
54					
55	5005	6132.0	1.2	0.1	for p in range(0,n):
56	5000	7644.0	1.5	0.1	if len(positions) > 1:
57	4998	5496.0	1.1	0.1	<pre>path_length = 0</pre>
58	4998	5985.0	1.2	0.1	if p == 0:
59	5	6.0	1.2	0.0	<pre>previous_point = starting_point</pre>
60					
61					#find shortest path through all points
62	4998	6877684.0	1376.1	89.7	<pre>current_point,increment = minEucDistance(previous_point,positions)</pre>
63	4998	8920.0	1.8	0.1	<pre>path_length += increment</pre>
64	4998	103802.0	20.8	1.4	positions.remove(current_point)
65	4998	8429.0	1.7	0.1	position_status[current_point] = True
66	4998	5637.0	1.1	0.1	<pre>previous_point = current_point</pre>
67	-	0.0	1 0	0 0	
68	5	9.0	1.8	0.0	<pre>length_array.append(path_length)</pre>
69 70	1	20240 0	20240 0	0 3	mlt wlabal/'Itamatian (t)')
70 71	1	20248.0		0.3	<pre>plt.xlabel('Iteration (t)')</pre>
71 72	1	40.0 283.0	40.0	0.0	plt.ylabel('L(t)') plt.title('Mypoig Distance Calgulation')
72 73	1	7342.0	283.0 7342.0	0.0	plt.title('Mypoic Distance Calculation')
73 74	1 1	147253.0		0.1 1.9	<pre>plt.bar([i for i in range(0,T)],length_array) plt.show()</pre>
74 75	1	14/233.0	14/200.0	1.9	Prc. snow()
75	1	2 0	2 0	0 0	and the same of the same of