1 Problem Statement

Find the synthesis equation C_k of the following fourier serie: The sampling property of $\delta(t)$ is:

$$\int_{-\infty}^{\infty} f(t)\delta(t-a)dt = f(a)$$
 (1)

Figure 1: Representation of $\delta_{T_0}(t)$

2 Solution

 $f(t) = \sum_{-\infty}^{\infty} A\delta(t - mT_0)$ $f(t) = A\delta(t)$ by replacing this into (1) we get the following equation

$$f(a) = \int_{-\infty}^{\infty} A\delta(t)\delta(t-a)dt$$
 (2)

 $f(a) = \int_{-\infty}^{\infty} A\delta(t)\delta(t-a)$

$$C_k = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} f(t)e^{-jw_0 t}$$
 (3)

with $e^{-jw_0t} = 1$ we can conclude that $C_k = \frac{1}{T_0}f(a)$ replace f(a) into this equatio yeild

$$C_k = \frac{1}{T_0} \int_{-\infty}^{\infty} A\delta(t)\delta(t-a)dt$$
 (4)

The integral is zero ouside the interval of $-T_0$ and T_0 , thus

$$C_k = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} A\delta(t)\delta(t - a)dt$$
 (5)

The area under any impulse signal is always zero. therefore we have

$$C_k = \frac{A}{T_0} \tag{6}$$