

PCT

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類7 A61K 31/40, 31/422, 31/4439, 31/404, 31/4545, 31/4525, 31/4535, 31/454, 31/427, 31/433, 31/4245, 31/4155, 31/5377, 31/4709, 31/506, 31/4184, 31/4178, 31/423, 31/4192, 31/445, 31/429, 31/55, A61P 43/00, 29/00, 9/00, 37/00, 25/00, 11/00 // C07D 207/14, 207/33, 207/34, 405/06, 405/12, 405/14, 401/06, 401/12, 401/14, 409/06, 409/12, 409/14, 403/06, 403/12, 403/14, 413/14, 417/06, 211/34, 211/60, 211/62, 513/04, 223/02	A1	(11) 国際公開番号 WO00/69432 (43) 国際公開日 2000年11月23日(23.11.00)
(21) 国際出願番号 PCT/JP00/03203		(74) 代理人 前田純博(MAEDA, Sumihiro) 〒100-0011 東京都千代田区内幸町2丁目1番1号 帝人株式会社 知的財産センター内 Tokyo, (JP)
(22) 国際出願日 2000年5月18日(18.05.00)		
(30) 優先権データ 特願平11/175856 1999年5月18日(18.05.99) JP 特願平11/251464 1999年9月6日(06.09.99) JP		(81) 指定国 AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, 欧州特許(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許(BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), ARIPO特許(GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ヨーラシア特許(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM)
(71) 出願人(米国を除くすべての指定国について) 帝人株式会社(TEIJIN LIMITED)[JP/JP] 〒541-0054 大阪府大阪市中央区南本町1丁目6番7号 Osaka, (JP)		
(72) 発明者; および (75) 発明者/出願人(米国についてのみ) 塩田辰樹(SHIOTA, Tatsuki)[JP/JP] 宮城文敬(MIYAGI, Fuminori)[JP/JP] 上村孝(KAMIMURA, Takashi)[JP/JP] 太田知裕(OHTA, Tomohiro)[JP/JP] 高野泰宏(TAKANO, Yasuhiro)[JP/JP] 堀内秀樹(HORIUCHI, Hideki)[JP/JP] 〒191-0065 東京都日野市旭が丘4丁目3番2号 帝人株式会社 東京研究センター内 Tokyo, (JP)		添付公開書類 国際調査報告書

(54) Title: REMEDIES OR PREVENTIVES FOR DISEASES IN ASSOCIATION WITH CHEMOKINES

(54) 発明の名称 ケモカインの関与する疾患の治療薬もしくは予防薬

(57) Abstract

Remedies or preventives for diseases in association with chemokines such as MIP-1 α and/or MCP-1. Namely, remedies or preventives for diseases in association with chemokines (rheumatoid arthritis, nephritis, etc.) which contain as the active ingredient cyclic amine derivatives represented by general formula (I), pharmaceutically acceptable acid-adducts thereof, or pharmaceutically acceptable C₁₋₆ alkyl-adducts thereof.

(57)要約

本発明は、MIP-1 α および/またはMCP-1などのケモカインが関与する疾患の治療薬もしくは予防薬を提供する。すなわち、下記式(I)で表される環状アミン誘導体、その薬学的に許容される酸付加体、またはその薬学的に許容されるC₁-C₆アルキル付加体を有効成分として含有する、慢性関節リウマチ、腎炎などのケモカインが関与する疾患の治療薬もしくは予防薬。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)									
AE アラブ首長国連邦	DM ドミニカ	KZ カザフスタン	RU ロシア						
AG アンティグア・バーブーダ	DZ アルジェリア	LC セントルシア	SD スーダン						
AL アルバニア	EE エストニア	LI リヒテンシュタイン	SE スウェーデン						
AM アルメニア	ES スペイン	LK スリ・ランカ	SG シンガポール						
AT オーストリア	FI フィンランド	LR リベリア	SI スロヴェニア						
AU オーストラリア	FR フランス	LS レソト	SK スロ伐キア						
AZ アゼルバイジャン	GA ガボン	LT リトアニア	SL シエラ・レオネ						
BA ボスニア・ヘルツェゴビナ	GB 英国	LU ルクセンブルグ	SN セネガル						
BB バルバドス	GD グレナダ	LV ラトヴィア	SZ スウェーデン						
BE ベルギー	GE グルジア	MA モロッコ	TD チャード						
BF ブルギア・ファン	GH ガーナ	MC モナコ	TG トーゴー						
BG ブルガリア	GM ガンビア	MD モルドヴァ	TJ タ吉キスタン						
BI ベナン	GN ギニア	MG マダガスカル	TM トルクメニスタン						
BR ブラジル	GR ギリシャ	MK マケドニア旧ユーゴスラヴィア	TR トルコ						
BY ベラルーシ	GW ギニア・ビサオ	共和国	TT トリニダッド・トバゴ						
CA カナダ	HR クロアチア	ML マリ	TZ タンザニア						
CF 中央アフリカ	HU ハンガリー	MN モンゴル	UA ウクライナ						
CG コンゴ	ID インドネシア	MR モーリタニア	UG ウガンダ						
CH スイス	IE アイルランド	MW マラウイ	US 米国						
CI コートジボアール	IL イスラエル	MX メキシコ	UZ ウズベキスタン						
CM カメルーン	IN インド	MZ モザンビーク	VN ベトナム						
CN 中国	IS アイスランド	NE ニジェール	YU ユーロースラヴィア						
CR コスタ・リカ	IT イタリア	NL オランダ	ZA 南アフリカ共和国						
CU キューバ	JP 日本	NO ノルウェー	ZW ジンバブエ						
CY キプロス	KE ケニア	NZ ニュージーランド							
CZ チェコ	KG キルギスタン	PL ポーランド							
DE ドイツ	KP 北朝鮮	PT ポルトガル							
DK デンマーク	KR 韓国	RO ルーマニア							

明細書

ケモカインの関与する疾患の治療薬もしくは予防薬

5 技術分野

本発明は環状アミン誘導体に関する。さらに詳しくは、単球、リンパ球などの血液白血球成分の組織への浸潤が病気の進行、維持に主要な役割を演じている動脈硬化症、慢性関節リウマチ、乾癬、喘息、潰瘍性大腸炎、腎炎（腎症）、多発性硬化症、肺線維症、心筋症、肝炎、膵臓炎、サルコイドーシス、クローン病、子宮内膜症、うつ血性心不全、ウィルス性髄膜炎、脳梗塞、ニューロパシー、川崎病、敗血症、アレルギー性鼻炎、およびアレルギー性皮膚炎などの疾患に対する治療薬および／または予防薬として効果が期待できるケモカイン受容体拮抗剤に関する。

背景技術

15 ケモカインは、6 – 15 kDの分子量をもち、各種の細胞、例えば、マクロファージ、単球、好酸球、好中球、線維芽細胞、血管内皮細胞、平滑筋細胞、および肥満細胞によって炎症部位で產生される一群の炎症／免疫制御ポリペプチドの総称である。ケモカインは、4個の保存されたシステイン残基の位置の共通性、およびケモカインをコードする遺伝子の染色体位置における相違によって、CXCケモカイン（または α ケモカイン）とCCケモカイン（または β ケモカイン）の二つの大きなサブグループに分類される。CXCケモカインの最初の2個のシステインは、1個のアミノ酸で隔てられているが、CCケモカインの同じシステインは隣接する。例えば、IL-8（インターロイキン-8の略称）などはCXCケモカインである一方、CCケモカインとしてはMIP-1 α/β （macrophage inflammatory protein-1 α/β の略称）、MCP-1（monocyte chemoattractant protein-1の略称）、および、RANTES（regulated upon activation normal T-cell expressed and secretedの略称）があげられる。

30 さらに、いずれのケモカイン・サブグループにも属しないケモカインもある。そのようなものとしては、2個のシステインしか持たず、Cケモカインに分類されるリンフォタクチン（lymphotactin）や、最初の2個のシステインが3個のアミノ酸によって隔てられていることからCX3Cケモカインに分類され、ムチン構造の中

にケモカイン様ドメインを持つフラクタルカイン (fractalkine) があげられる。これらのケモカインは細胞遊走を促進し、インテグリンなどの細胞接着分子の発現増強作用、さらには細胞接着増強作用を有しているので、炎症組織などの病変部位に対する白血球などの接着・浸潤に密接な関連を持つ蛋白性因子と考えられている。

5 参考文献としては、例えば、Vaddi, K. ら著、The Chemokine Facts Book, Academic Press, 1997 ; Horuk, R. 編、Chemoattractant Ligand and Their Receptors, CRC Press, 1996 ; Ward, G. W. ら、Biochem. J., 1998, 333, 457 ; Luster, A. D. 、New Engl. J. Med., 1998, 338, 436 ; Baglioni, M. 、Nature, 1998, 392, 565 ; Rollins, B. J. 、Blood, 1997, 90, 909 ; Alam, R. 、J. Allergy Clin. Immunol., 1997, 99, 273 ; Hancock, W. W. 、Am. J. Pathol., 1996, 148, 681 ; Taub, D. D. 著、Cytokine & Growth Factor Rev., 1996, 7, 335 ; Strieter, R. M. ら、J. Immunol., 1996, 156, 3583 ; Furie, M. B. ら、Am. J. Pathol., 1995, 146, 1287 ; Schall, T. J. ら著、Current Opinion in Immunology, 1994, 6, 865 ; Edginton, S. M. 、Biotechnology, 1993, 11, 676などを参照されたい。

10 15 例えば、MIP-1 α は、細胞内カルシウムイオン濃度の一過性の上昇を惹起し、Tリンパ球やBリンパ球の細胞遊走（例えば、Taub, D. D. ら、Science, 1993, 260, 355 ; Shall, T. J. ら、J. Exp. Med., 1993, 177, 1821を参照）、好酸球の細胞遊走（例えば、Rot, A. ら、J. Exp. Med., 1992, 176, 1489参照）、NK細胞の細胞遊走（例えば、Magazachi, A. A. ら、J. Immunol., 1994, 153, 4969参照）、インテグリンの発現（例えば、Vaddi, K. ら、J. Immunol., 1994, 153, 4721参照）、および破骨細胞の分化（例えば、Kukita, T. ら、Lab. Invest., 1997, 76, 399参照）を誘導する。MIP-1 α はさらに、B細胞におけるIgEおよびIgG4産生を增加させ（例えば、Kimata, H. ら、J. Exp. Med., 1996, 183, 2397参照）、また、造血幹細胞の増殖を抑制する（例えば、Mayani, H. ら、Exp. Hematol., 1995, 23, 422 ; Keller, J. R. ら、Blood, 1994, 84, 2175 ; Eaves, C. J. ら、Proc. Natl. Acad. Sci. USA, 1993, 90, 12015 ; Bodine, D. M. ら、Blood, 1991, 78, 914 ; Broxmeyer, H. E. ら、Blood, 1990, 76, 1110など参照）。

20 25 30 MIP-1 α の生体内における作用、あるいは疾病の病因との関連性に関しては、ウサギにおいて発熱物質であること（例えば、Davatidis, G. ら、Science, 1989, 243, 1066参照）、マウスの足蹠にMIP-1 α を投与すると好中球、単核球浸潤などの炎症反応を惹起すること（例えば、Alam, R. ら、J. Immunol., 1994, 152, 1

298参照) が報告されている。

また、MIP-1 α に対する中和抗体は、肉芽腫（例えば、Lukacs, N.W.ら、J. Exp. Med., 1993, 177, 1551参照）、喘息（例えば、Lukacs, N.W.ら、Eur. J. Immunol., 1995, 25, 245；Lukacs, N.W.ら、J. Immunol., 1997, 158, 4398参照）、
5 多発性硬化症（例えば、Karpus, W.J.ら、J. Immunol., 1995, 155, 5003；Karpus, W.J.ら、J. Leukoc. Biol., 1997, 62, 681参照）、突発性肺線維症（例えば、Smith, R.E.ら、J. Immunol., 1994, 153, 4704；Smith, R.E.、Biol. Signals, 1996, 5, 223参照）、急性肺傷害（例えば、Shanley, T.P.ら、J. Immunol., 1995, 154, 4793；Standiford, T.J.ら、J. Immunol., 1995, 155, 1515参照）、および慢性関
10 節リウマチ（例えば、Kasama, T.ら、J. Clin. Invest., 1995, 95, 2868参照）などの動物モデルにおいて、抑制効果あるいは治療効果を持つことが報告されており、MIP-1 α 遺伝子欠損マウスにおいては、コクサッキーウィルス感染惹起心筋炎やヘルペス間質性角膜炎が抑制されることが報告されている（例えば、Cook, D.N. ら、Science, 1995, 269, 1583；Tumpey, T.M.ら、J. Virology, 1998, 72, 3705参考）。
15 照）。

さらに、慢性肺炎症疾患（例えば、Standiford, T.J.ら、J. Immunol., 1993, 151, 2852参照）、過敏性肺炎（例えば、Denis, M.、Am. J. Respir. Crit. Care Med., 1995, 151, 164参照）、慢性関節リウマチ（例えば、Koch, A.E.ら、J. Clin. Invest., 1994, 93, 921参照）、感染性髄膜炎（例えば、Lahrtz, F.ら、J. Neuroim
20 munol., 1998, 85, 33参照）、および筋の慢性炎症（例えば、Adams, E.M.ら、Proc. Assoc. Am. Physicians, 1997, 109, 275参照）などの患者においてMIP-1 α の有意な発現が認められている。これらの研究は、MIP-1 α が種々の白血球サブタイプの局所への集積、またそれに伴う炎症性疾患の発症、進展、および維持に深く関与していることを示している。

25 MCP-1（別称MCAF (macrophage chemotactic and activating factorの略称）またはJE）は、単球／マクロファージ、平滑筋細胞、線維芽細胞、および、血管内皮細胞によって生産されるCCケモカインであり、単球（モノサイト）（例えば、Valente, A.J.ら、Biochemistry, 1988, 27, 4162；Matsushima, K.ら、J. Exp. Med., 1989, 169, 1485；Yoshimura, T.ら、J. Immunol., 1989, 142, 1956
30 ; Rollins, B.J.ら、Proc. Natl. Acad. Sci., USA, 1988, 85, 3738；Rollins, B. J.ら、Blood, 1991, 78, 1112；Jiang, Y.ら、J. Immunol., 1992, 148, 2423；Vad

di, K. ら、J. Immunol., 1994, 153, 4721など参照)、メモリーTリンパ球(例えば、Carr, M. W. ら、Proc. Natl. Acad. Sci. USA, 1994, 91, 3652参照)、Tリンパ球(例えば、Loetscher, P. ら、FASEB J., 1994, 8, 1055参照)、およびナチュラルキラー細胞(NK細胞)(例えば、Loetscher, P. ら、J. Immunol., 1996, 156, 322; Allavena, P. ら、Eur. J. Immunol., 1994, 24, 3233参照)などに対し細胞遊走活性および細胞接着増強作用を有する。さらに、MCP-1は好塩基球からのヒスタミン放出因子としての作用を有している(Alam R ら、J. Clin. Invest., 1992, 89, 723; Bischoff, S. C. ら、J. Exp. Med., 1992, 175, 1271; Kuna, P. ら、J. Exp. Med., 1992, 175, 489参照)。

さらに、単球/マクロファージ、および/またはT細胞の蓄積が病変の発症、進展、維持に深く関与していると考えられる粥状動脈硬化症(例えば、Hayes, I. M. ら、Arterioscler. Thromb. Vasc. Biol., 1998, 18, 397; Takeya, M. ら、Hum. Pathol., 1993, 24, 534; Yla-Herttula, S. ら、Proc. Natl. Acad. Sci., USA, 1991, 88, 5252; Nelken, N. A.、J. Clin. Invest., 1991, 88, 1121参照)、慢性関節リウマチ(例えば、Koch, A. E. ら、J. Clin. Invest., 1992, 90, 772; Akahoshi, T. ら、Arthritis Rheum., 1993, 36, 762; Robinson, E. ら、Clin. Exp. Immunol., 1991, 91, 398参照)、腎炎(例えば、Noris, M. ら、Lab. Invest., 1995, 73, 804; Wada, T. ら、Kidney Int., 1996, 49, 761; Gesualdo, L. ら、Kidney Int., 1997, 51, 155参照)、腎症(例えば、Saitoh, A. ら、J. Clin. Lab. Anal., 1998, 12, 1; Yokoyama, H. ら、J. Leukoc. Biol., 1998, 63, 493参照)、肺線維症、肺サルコイドーシス(例えば、Sugiyama, Y. ら、Internal Medicine, 1997, 36, 856参照)、喘息(例えば、Karina, M. ら、J. Invest. Allergol. Clin. Immunol., 1997, 7, 254; Stephene, T. H.、Am. J. Respir. Crit. Care Med., 1997, 156, 1377; Sousa, A. R. ら、Am. J. Respir. Cell Mol. Biol., 1994, 10, 142参照)、多発性硬化症(例えば、McManus, C. ら、J. Neuroimmunol., 1998, 86, 20参照)、乾癬(例えば、Gillitzer, R. ら、J. Invest. Dermatol., 1993, 101, 127参照)、炎症性腸疾患(例えば、Grimm, M. C. ら、J. Leukoc. Biol., 1996, 59, 804; Reinecker, H. C. ら、Gastroenterology, 1995, 106, 40参照)、心筋症(例えば、Seino, Y. ら、Cytokin e, 1995, 7, 301参照)、子宮内膜症(例えば、Jolicoeur, C. ら、Am. J. Pathol., 1998, 152, 125参照)、腹腔内癒着(例えば、Zeyneloglu, H. B. ら、Human Reproduction, 1998, 13, 1194参照)、うつ血性心不全(例えば、Aurust, P. ら、Circula

tion, 1998, 97, 1136参照)、慢性肝疾患(例えば、Marra, F. ら、Am. J. Pathol., 1998, 152, 423参照)、ウイルス性髄膜炎(例えば、Lahrtz, F. ら、Eur. J. Immunol., 1997, 27, 2484参照)、川崎病(例えば、Wong, M. ら、J. Rheumatol., 1997, 24, 1179参照)、および敗血症(例えば、Salkowski, C.A. ら、Infect. Immun., 1998, 66, 3569参照)においてMCP-1の顕著な発現が報告されている。

また、抗MCP-1抗体による抑制効果または治療効果が、慢性関節リウマチ(例えば、Schimmer, R.C. ら、J. Immunol., 1998, 160, 1466; Schrier, D.J.、J. Leukoc. Biol., 1998, 63, 359; Ogata, H. ら、J. Pathol., 1997, 182, 106参照)、多発性硬化症(例えば、Karpus, W.J.、J. Leukoc. Biol., 1997, 62, 681参照)、腎炎(例えば、Lloyd, C.M. ら、J. Exp. Med., 1997, 185, 1371; Wada, T. ら、ASEB J., 1996, 10, 1418参照)、喘息(例えば、Gonzalo, J.-A. ら、J. Exp. Med., 1998, 188, 157; Lukacs, N.W.、J. Immunol., 1997, 158, 4398参照)、粥状動脈硬化症(例えば、Guzman, L.A. ら、Circulation, 1993, 88 (suppl.), I-371)、遅延型過敏症(例えば、Rand, M.L. ら、Am. J. Pathol., 1996, 148, 855参照)、肺高血圧症(例えば、Kimura, H. ら、Lab. Invest., 1998, 78, 571参照)、および腹腔内癒着(例えば、Zeyneloglu, H.B. ら、Am. J. Obstet. Gynecol., 1998, 179, 438参照)などの動物モデルにおいて報告されている。

さらには、MCP-1のペプチド性拮抗剤であるMCP-1(9-76)もマウスマodelにおいて関節炎を抑制することが報告されており(例えば、Gong, J.-H.、J. Exp. Med., 1997, 186, 131参照)、同様に、MCP-1遺伝子欠損マウスにおける研究でも、生体内においてMCP-1が、単球動員に必須であることが示されている(例えば、Lu, B. ら、J. Exp. Med., 1998, 187, 601; Gu, L. ら、Mol. Cell, 1998, 2, 275参照)。

これらのデータから、MIP-1 α やMCP-1などのケモカインは、単球、リンパ球などを病変部位に集積させ、それらの細胞を活性化することにより、単球、リンパ球などが病変の進展に深く関わっていると想定され得る疾患、例えば、粥状動脈硬化症、慢性関節リウマチ、乾癬、喘息、潰瘍性大腸炎、腎炎(腎症)、多発性硬化症、肺線維症、心筋炎、肝炎、膵臓炎、サルコイドーシス、クローン病、子宮内膜症、うつ血性心不全、ウイルス性髄膜炎、脳梗塞、ニューロパシー、川崎病、および敗血症などの発症、進展、維持に深く関与していることが強く示唆されている(例えば、Rovin, B.H. ら、Am. J. Kidney Dis., 1998, 31, 1065; Lloyd, C.

ら、*Curr. Opin. Nephrol. Hypertens.*, 1998, 7, 281; Conti, P. ら、*Allergy and Asthma Proc.*, 1998, 19, 121; Ransohoff, R.M. ら、*Trends Neuroscience*, 1998, 21, 154; MacDermott, R.P. ら、*Inflammatory Bowel Diseases*, 1998, 4, 54参照）。したがって、標的細胞に対するケモカインの作用を阻害する薬剤は、これらの
5 病疾の治療薬および／または予防薬として有用であることが期待できる。

一方、ケモカインに対する特異的受容体をコードする遺伝子のクローニングがす
すみ、種々の白血球上に存在するG蛋白共役型の7回膜貫通型受容体であることが
明らかになった。これまでに、少なくとも5個のCXCケモカイン受容体 (CXC
R 1 - CXCR 5) と8個のCCケモカイン受容体 (CCR 1 - CCR 8) が特定
10 されている。例えば、IL-8はCXCR 1とCXCR 2のリガンドであり、MIP-1 α はCCR 1とCCR 5のリガンドであり、MCP-1はCCR 2AとCC
R 2Bのリガンドである（例えば、Holmes, W.E. ら、*Science* 1991, 253, 1278-128
0; Murphy, P.M. ら、*Science*, 253, 1280-1283; Neote, K. ら、*Cell*, 1993, 72, 41
5-425; Charo, I.F. ら、*Proc. Natl. Acad. Sci. USA*, 1994, 91, 2752-2756; Yama
15 gami, S. ら、*Biochem. Biophys. Res. Commun.*, 1994, 202, 1156-1162; Combadiere
, C. ら、*The Journal of Biological Chemistry*, 1995, 270, 16491-16494; Power,
C.A. ら、*J. Biol. Chem.*, 1995, 270, 19495-19500; Samson, M. ら、*Biochemistry*
, 1996, 35, 3362-3367; Murphy, P.M. ら、*Annual Review of Immunology*, 1994, 1
2, 592-633参照）。

20 さらに、CCR 1遺伝子欠損マウスにおいて肺炎症と肉芽形成が抑制されること
(例えば、Gao, J.-L. ら、*J. Exp. Med.*, 1997, 185, 1959; Gerard, C. ら、*J. Clin. Invest.*, 1997, 100, 2022参照)、およびCCR 2遺伝子欠損マウスマにおいて
マクロファージの集積と動脈硬化病変の形成が減少すること(例えば、Boring, L.
ら、*Nature*, 1998, 394, 894; Kuziel, W.A. ら、*Proc. Natl. Acad. Sci., USA*, 19
25 97, 94, 12053; Kurihara, T. ら、*J. Exp. Med.*, 1997, 186, 1757; Boring, L. ら
、*J. Clin. Invest.*, 1997, 100, 2552参照)が報告されている。したがって、MIP
- 1 α および／またはMCP-1などのケモカインのこれら受容体に対する結合
を阻害する化合物、すなわちケモカイン受容体拮抗剤は、標的細胞に対するMIP
- 1 α および／またはMCP-1などのケモカインの作用を阻害する薬剤として有
30 用であることが期待できるが、そのような作用を有する薬剤は知られてない。

最近、種々のピペリジン、ピペラジンなどの環状アミン誘導体がケモカイン受

容体拮抗作用を有することが報告されている（例えば、WO 97 24325；Hesse Igesser, J. ら、J. Biol. Chem., 1998, 273, 15687; Howard, O. M. Z. ら、J. Med. Chem., 1998, 41, 2184; WO 97 44329; WO 98 02151; WO 98 04554; WO 98 25605; WO 98 25617; WO 98 25604; WO 98 31364; WO 98 56771; WO 99 09984; WO 99 04794; WO 99 17773; WO 99 37617; WO 99 37619; WO 97 37651; WO 99 38514; WO 2000 14086; WO 2000 14089; EP 90 3349; JP 9-249566; JP 9-25572; JP 11-71350など参照）。しかしながら、これらの化合物は本発明で用いられる化合物とは異なる。

発明の開示

MIP-1 α および／またはMCP-1などのケモカインの標的細胞上の受容体に対する結合を阻害する活性を有する低分子化合物を用いて、MIP-1 α および／またはMCP-1などのケモカインが標的細胞上の受容体に結合することが病因の一つであるような疾患の治療法を提供することが本発明の目的である。

本発明者らは、鋭意研究を重ねた結果、アリールアルキル基を有する環状アミン誘導体、その薬学的に許容し得るC₁-C₆アルキル付加体、または薬学的に許容され得る酸付加体が、MIP-1 α および／またはMCP-1などのケモカインの標的細胞に対する結合を阻害する活性を有することを発見し、さらにはこれらの化合物が、MIP-1 α および／またはMCP-1などのケモカインが関与すると考えられる疾患の治療薬もしくは予防薬となり得ることを知見して、本発明を完成するに至った。

すなわち、本発明は、下記式(I)

[式中、R¹はフェニル基、C₃-C₈シクロアルキル基、または、ヘテロ原子として酸素原子、硫黄原子、および／もしくは窒素原子を1-3個有する芳香族複素環基

を表す。かかるR¹におけるフェニル基または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および／もしくは窒素原子を1-3個有する芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記R¹におけるフェニル基、C₃-C₈シクロアルキル基、芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモイル基、C₁-C₆アルキル基、C₃-C₈シクロアルキル基、C₂-C₆アルケニル基、C₁-C₆アルコキシ基、C₁-C₆アルキルチオ基、C₃-C₅アルキレン基、C₂-C₄アルキレンオキシ基、C₁-C₃アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベンゾイルアミノ基、C₂-C₇アルカノイル基、C₂-C₇カルコキシカルボニル基、C₂-C₇アルカノイルオキシ基、C₂-C₇アルカノイルアミノ基、C₂-C₇N-アルキルカルバモイル基、C₄-C₉N-シクロアルキルカルバモイル基、C₁-C₆アルキルスルホニル基、C₃-C₈(アルコキシカルボニル)メチル基、N-フェニルカルバモイル基、ピペリジノカルボニル基、モルホリノカルボニル基、1-ピロリジニルカルボニル基、式：-NH(C=O)O-で表される2価基、式：-NH(C=S)O-で表される2価基、アミノ基、モノ(C₁-C₆アルキル)アミノ基、またはジ(C₁-C₆アルキル)アミノ基で置換していてもよく、これらのフェニル基、C₃-C₈シクロアルキル基、芳香族複素環基、または縮合環の置換基は、任意個のハロゲン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、C₁-C₆アルキル基、またはC₁-C₆アルコキシ基によってさらに置換されていてもよい。

R²は水素原子、C₁-C₆アルキル基、C₂-C₇アルコキシカルボニル基、ヒドロキシ基、またはフェニル基を表す。かかるR²におけるC₁-C₆アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、C₁-C₆アルキル基、もしくはC₁-C₆アルコキシ基によって置換されていてもよい。ただし、j=0のときは、R²はヒドロキシ基ではない。

jは0-2の整数を表す。

kは0-2の整数を表す。

mは2-4の整数を表す。

nは0または1を表す。

R³は水素原子または(それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、C₁-C₆アルキル基、またはC₁-C₆アルコキシ基によって置換されて

いてもよい1または2個のフェニル基)によって置換されていてもよいC₁—C₆アルキル基を表す。

R⁴およびR⁵は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、またはC₁—C₆アルキル基を表す。かかるR⁴およびR⁵におけるC₁—C₆アルキル基は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシリ基、カルバモイル基、メルカプト基、グアニジノ基、C₃—C₈シクロアルキル基、C₁—C₆アルコキシ基、C₁—C₆アルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基、C₁—C₆アルキル基、C₁—C₆アルコキシ基、もしくはベンジルオキシ基によって置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシ基、ベンジルオキシカルボニル基、C₂—C₇アルカノイル基、C₂—C₇アルコキシカルボニル基、C₂—C₇アルカノイルオキシ基、C₂—C₇アルカノイルアミノ基、C₂—C₇N—アルキルカルバモイル基、C₁—C₆アルキルスルホニル基、アミノ基、モノ(C₁—C₆アルキル)アミノ基、ジ(C₁—C₆アルキル)アミノ基、または(ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1—3個有する芳香族複素環基またはそのベンゼン環との縮合により形成される縮合環)により置換されていてもよく、あるいはR⁴およびR⁵は両者一緒になって3—6員環状炭化水素を形成してもよい。

pは0または1を表す。

qは0または1を表す。

Gは、—CO—、—SO₂—、—CO—O—、—NR⁷—CO—、—CO—NR⁷—、—NH—CO—NH—、—NH—CS—NH—、—NR⁷—SO₂—、—SO₂—NR⁷—、—NH—CO—O—、または—O—CO—NH—で表される基を表す。ここで、R⁷は水素原子またはC₁—C₆アルキル基を表すか、あるいはR⁷はR⁵と一緒にC₂—C₅アルキレン基を形成してもよい。

R⁶はフェニル基、C₃—C₈シクロアルキル基、C₃—C₆シクロアルケニル基、ベンジル基、または、ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1—3個有する芳香族複素環基を表す。かかるR⁶におけるフェニル基、ベンジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1—3個有する芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記R⁶におけるフェニル基、C₃—C₈シクロアルキル基、C₃—C₆シクロアルケニル基、ベンジル基、芳香族複素環基、ま

たは縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、ニトロ基、チオシアナト基、カルボキシリ基、カルバモイル基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_3-C_8 シクロアルキル基、 C_2-C_6 アルケニル基、 C_1-C_6 アルコキシ基、 C_3-C_8 シクロアルキルオキシ基、 C_1-C_6 アルキルチオ基、 C_1-C_3 アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ基、ベンジル基、ベンゾイル基、フェニルスルフィニル基、フェニルスルホニル基、3-フェニルウレイド基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルコキシカルボニル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 N-アルキルカルバモイル基、 C_1-C_6 アルキルスルホニル基、フェニルカルバモイル基、N, N-ジ(C_1-C_6 アルキル)スルファモイル基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、ジ(C_1-C_6 アルキル)アミノ基、ベンジルアミノ基、 C_2-C_7 (アルコキシカルボニル)アミノ基、 C_1-C_6 (アルキルスルホニル)アミノ基、またはビス(C_1-C_6 アルキルスルホニル)アミノ基により置換されていてもよく、これらのフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_8 シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、任意個のハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、モノ(C_1-C_6 アルキル)アミノ基、またはジ(C_1-C_6 アルキル)アミノ基によってさらに置換されていてもよい。]

で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体を有効成分とする、ケモカインもしくはケモカインレセプターが関与する疾患の治療薬もしくは予防薬である。

ここに上記式(I)で表される化合物は、MIP-1 α および/またはMCP-1などのケモカインの標的細胞に対する結合を阻害する活性、およびMIP-1 α および/またはMCP-1などのケモカインの標的細胞への生理的作用を阻害する活性を有する。

図面の簡単な説明

図1は、化合物番号1583を12週間経口投与した場合の関節炎に対する効果を示す図である。

図2は、化合物番号1583の滑膜の増殖に対する効果を示す図である。

図3は、化合物番号1583の関節軟骨の破壊に対する効果を示す図である。

図4は、化合物番号1583の軟骨下骨の骨破壊に対する効果を示す図である。

図5は、化合物番号1245を3週間経口投与した場合の後肢足蹠腫脹に対する効果を示す図である。

5 図6は、化合物番号1583の尿蛋白抑制効果を示す図である。

図7は、化合物番号1245の尿蛋白抑制効果を示す図である。

図8は、化合物番号1583の慢性再発性実験的アレルギー性脳脊髄炎動物モデルにおける効果を示す図である。

10 図9は、化合物番号1245の慢性再発性実験的アレルギー性脳脊髄炎動物モデルにおける効果を示す図である。

発明を実施するための最良の形態

上記式(I)において、R¹はフェニル基、C₃—C₈シクロアルキル基、またはヘテロ原子として酸素原子、硫黄原子、および／もしくは窒素原子を1—3個有する芳香族複素環基を表し、上記R¹におけるフェニル基または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および／もしくは窒素原子を1—3個有する芳香族複素環基と縮合して縮合環を形成していくてもよく、上記R¹におけるフェニル基、C₃—C₈シクロアルキル基、芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモイル基、C₁—C₆アルキル基、C₃—C₈シクロアルキル基、C₂—C₆アルケニル基、C₁—C₆アルコキシ基、C₁—C₆アルキルチオ基、C₃—C₅アルキレン基、C₂—C₄アルキレンオキシ基、C₁—C₃アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベンゾイルアミノ基、C₂—C₇アルカノイル基、C₂—C₇カルコキシカルボニル基、C₂—C₇アルカノイルオキシ基、C₂—C₇アルカノイルアミノ基、C₂—C₇N—アルキルカルバモイル基、C₄—C₉N—シクロアルキルカルバモイル基、C₁—C₆アルキルスルホニル基、C₃—C₈(アルコキシカルボニル)メチル基、N—フェニルカルバモイル基、ピペリジノカルボニル基、モルホリノカルボニル基、1—ピロリジニルカルボニル基、式：—NH(C=O)O—で表される2価基、式：—NH(C=S)O—で表される2価基、アミノ基、モノ(C₁—C₆アルキル)アミノ基、またはジ(C₁—C₆アルキル)アミノ基でさらに置換されていてよい。

R^1 における「 C_3-C_8 シクロアルキル基」とは、例えばシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシリル、シクロヘプチル、シクロオクチルなどの環状のアルキル基を意味し、その好適な具体例としては、シクロプロピル基、シクロペンチル基、およびシクロヘキシリル基などが挙げられる。

- 5 R^1 における「ヘテロ原子として酸素原子、硫黄原子、および／もしくは窒素原子を1-3個有する芳香族複素環基」とは、例えばチエニル、フリル、ピロリル、イミダゾリル、ピラゾリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、ピリジル、ピリミジニル、トリアジニル、トリアゾリル、オキサジアゾリル（フラザニル）、チアジアゾリル基などの芳香族複素環基を意味し、その好適
- 10 10 な具体例としては、チエニル、フリル、ピロリル、イソオキサゾリル、およびピリジル基などが挙げられる。

- 15 R^1 における「縮合環」とは、上記フェニル基または芳香族複素環基がベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および／もしくは窒素原子を1-3個有する芳香族複素環基と可能な任意の位置で縮合して形成される2環式芳香族複素環基を意味し、その好適な具体例としてはナフチル、インドリル、ベンゾフラン、ベンゾチエニル、キノリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾトリアゾリル、ベンゾオキサジアゾリル（ベンゾフラザニル）、およびベンゾチアジアゾリル基などが挙げられる。

- 20 なかでも R^1 は、フェニル基、イソオキサゾリル基、またはインドリル基である場合が特に好ましい。

- 25 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基としての「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子、ヨウ素原子などを意味し、その好適な具体例としてはフッ素原子、塩素原子、臭素原子が挙げられる。
- 30 25 R^1 の置換基としての「 C_1-C_6 アルキル基」とは、例えばメチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-ヘキシリル、n-ヘプチル、n-オクチル、イソプロピル、イソブチル、sec-ブチル、tert-ブチル、イソペンチル、ネオペンチル、tert-ペンチル、イソヘキシリル、2-メチルペンチル、1-エチルブチル基などの C_1-C_6 の直鎖または分枝状のアルキル基を意味し、その好適な具体例としては、メチル、エチル、プロピル、およびイソプロピル基などが挙げられる。

R¹の置換基としての「C₃—C₈シクロアルキル基」は、前記R¹における「C₃—C₈シクロアルキル基」の定義と同様であり、その好適な具体例も同じ基を挙げることができる。

R¹の置換基としての「C₂—C₆アルケニル基」とは、例えばビニル、アリル、1
5 —プロペニル、2—ブテニル、3—ブテニル、2—メチル—1—プロペニル、4—
ペンテニル、5—ヘキセニル、4—メチル—3—ペンテニル基などのC₂—C₆の直
鎖または分枝状のアルケニル基を意味し、その好適な具体例としてはビニル基およ
び2—メチル—1—プロペニル基などが挙げられる。

R¹の置換基としての「C₁—C₆アルコキシ基」とは、前記C₁—C₆アルキル基
10 とオキシ基とからなる基を意味し、その好適な具体例としてはメトキシ基、エトキ
シ基などが挙げられる。

R¹の置換基としての「C₁—C₆アルキルチオ基」とは、前記C₁—C₆アルキル
基とチオ基とからなる基を意味し、その好適な具体例としてはメチルチオ基、エチ
ルチオ基などが挙げられる。

15 R¹の置換基としての「C₃—C₅アルキレン基」とは、例えばトリメチレン、テトラ
メチレン、ペンタメチレン、1—メチルトリメチレン基などのC₃—C₅の2価の
アルキレン基を意味し、その好適な具体例としては、トリメチレン基、テトラメチ
レン基などが挙げられる。

20 R¹の置換基としての「C₂—C₄アルキレノキシ基」とは、例えばエチレンオキシ
(-CH₂CH₂O-)、トリメチレンオキシ(-CH₂CH₂CH₂O-)、テトラ
メチレンオキシ(-CH₂CH₂CH₂CH₂O-)、1, 1—ジメチルエチレンオキ
シ(-CH₂C(CH₃)₂O-)基などの、C₂—C₄の2価アルキレン基とオキシ
基とからなる基を意味し、その好適な具体例としてはエチレンオキシ基、トリメチ
レンオキシ基などが挙げられる。

25 R¹の置換基としての「C₁—C₃アルキレンジオキシ基」とは、例えばメチレンジ
オキシ(-OCH₂O-)、エチレンジオキシ(-OCH₂CH₂O-)、トリメチレ
ンジオキシ(-OCH₂CH₂CH₂O-)、プロピレンジオキシ(-OCH₂CH(CH₃)O-)
基などのC₁—C₃の2価アルキレン基と2個のオキシ基とからなる基
を意味し、その好適な具体例としてはメチレンジオキシ基、エチレンジオキシ基な
どが挙げられる。

30 R¹の置換基としての「C₂—C₇アルカノイル基」とは、例えばアセチル、プロパ

ノイル、ブタノイル、ペンタノイル、ヘキサノイル、ヘプタノイル、イソブチリル、3-メチルブタノイル、2-メチルブタノイル、ビバロイル、4-メチルペンタノイル、3, 3-ジメチルブタノイル、5-メチルヘキサノイル基などのC₂-C₇の直鎖または分枝状のアルカノイル基を意味し、その好適な具体例としてはアセチル基などが挙げられる。

R¹の置換基としての「C₂-C₇アルコキシカルボニル基」とは、前記C₁-C₆アルコキシ基とカルボニル基とからなる基を意味し、その好適な具体例としてはメトキシカルボニル基、エトキシカルボニル基などが挙げられる。

R¹の置換基としての「C₂-C₇アルカノイルオキシ基」とは、前記C₂-C₇アルカノイル基とオキシ基とからなる基を意味し、その好適な具体例としてはアセチルオキシ基などが挙げられる。

R¹の置換基としての「C₂-C₇アルカノイルアミノ基」とは、前記C₂-C₇アルカノイル基とアミノ基とから成る基を意味し、その好適な具体例としては、アセチルアミノ基などが挙げられる。

15 R¹の置換基としての「C₂-C₇アルキルカルバモイル基」とは、前記C₁-C₆アルキル基とカルバモイル基とからなる基を意味し、その好適な具体例としては、N-メチルカルバモイル基、N-エチルカルバモイル基などが挙げられる。

R¹の置換基としての「C₄-C₉ N-シクロアルキルカルバモイル基」とは、前記C₃-C₈シクロアルキル基とカルバモイル基とからなる基を意味し、その好適な20具体例としては、N-シクロペンチルカルバモイル基、N-シクロヘキシリカルバモイル基などが挙げられる。

R¹の置換基としての「C₁-C₆アルキルスルホニル基」とは、前記C₁-C₆アルキル基とスルホニル基とからなる基を意味し、その好適な具体例としては、メチルスルホニル基などが挙げられる。

25 R¹の置換基としての「C₃-C₈ (アルコキシカルボニル) メチル基」とは、前記C₂-C₇アルコキシカルボニル基とメチル基とからなる基を意味し、その好適な具体例としては、(メトキシカルボニル) メチル基、(エトキシカルボニル) メチル基などが挙げられる。

30 R¹の置換基としての「モノ (C₁-C₆アルキル) アミノ基」とは、前記C₁-C₆アルキル基によって置換されたアミノ基を意味し、その好適な具体例としては、メチルアミノ基、エチルアミノ基などが挙げられる。

R^1 の置換基としての「ジ(C_1-C_6 アルキル)アミノ基」とは、同一または異なった2つの前記 C_1-C_6 アルキル基によって置換されたアミノ基を意味し、その好適な具体例としては、ジメチルアミノ基、ジエチルアミノ基、N-エチル-N-メチルアミノ基などが挙げられる。

5 上記の中でも、 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基としては、ハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、 C_2-C_6 アルケニル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、 C_2-C_4 アルキレンオキシ基、メチレンジオキシ基、N-フェニルカルバモイル基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、およびジ(C_1-C_6 アルキル)アミノ基を特に好ましい具体例として挙げることができる。

10 さらに、 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基は、任意個のハロゲン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、 C_1-C_6 アルキル基、または C_1-C_6 アルコキシ基によってさらに置換されていてもよい。ここで、ハロゲン原子、 C_1-C_6 アルキル基、および $15 C_1-C_6$ アルコキシ基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ基を好適な具体例として挙げることができる。

15 上記式(I)において、 R^2 は水素原子、 C_1-C_6 アルキル基、 C_2-C_7 アルコキシカルボニル基、ヒドロキシ基、またはフェニル基を表し、 R^2 における C_1-C_6 アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、または C_1-C_6 アルコキシ基によって置換されていてもよい。ただし、 $j=0$ のときは、 R^2 はヒドロキシ基ではない。

20 R^2 における C_1-C_6 アルキル基および C_2-C_7 アルコキシカルボニル基は、 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基についてそれぞれ定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げができる。

25 R^2 における C_1-C_6 アルキル基またはフェニル基の置換基としてのハロゲン原子、 C_1-C_6 アルキル基、および C_1-C_6 アルコキシ基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基または縮合環の置換基について定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げができる。

なかでも R^2 は、水素原子を表す場合が特に好ましい。

上記式 (I)において、 j は 0 - 2 の整数を表す。 j は 0 である場合が特に好ましい。

上記式 (I)において、 k は 0 - 2 の整数を表し、 m は 2 - 4 の整数を表す。な
5 かでも k が 0 であり、 m が 3 である場合の 2 - 置換ピロリジン、 k が 1 であり、 m
が 2 である場合の 3 - 置換ピロリジン、 k が 1 であり、 m が 3 である場合の 3 - 置
換ピペリジン、 k が 2 であり、 m が 2 である場合の 4 - 置換ピペリジン、または k
が 1 であり、 m が 4 である場合の 3 - 置換ヘキサヒドロアゼピンが特に好ましい。

上記式 (I)において、 n は 0 または 1 を表す。

10 特に、 k が 1 で m が 2 であり、 n が 0 である場合の 3 - アミドピロリジン、およ
び、 k が 2 であり、 m が 2 であり、 n が 1 である場合の 4 - (アミドメチル) ピペ
リジンを特に好ましい例として挙げることができる。

15 上記式 (I)において、 R^3 は水素原子または（それぞれ同一または異なった任意
個のハロゲン原子、ヒドロキシ基、 $C_1 - C_6$ アルキル基、もしくは $C_1 - C_6$ アルコ
キシ基によって置換されていてもよい 1 または 2 個のフェニル基）によって置換さ
れていてもよい $C_1 - C_6$ アルキル基を表す。

20 R^3 における $C_1 - C_6$ アルキル基は、前記 R^1 におけるフェニル基、 $C_3 - C_8$ シク
ロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと
同様であり、その好適な具体例としては、メチル基、エチル基、およびプロピル基
が挙げあげられる。

25 R^3 における $C_1 - C_6$ アルキル基の置換基としてのフェニル基の置換基としてのハ
ロゲン原子、 $C_1 - C_6$ アルキル基、および $C_1 - C_6$ アルコキシ基は、それぞれ、前
記 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮
合環の置換基に関して定義されたものと同様であり、同じ例を好適な具体例として
挙げることができる。

なかでも、 R^3 は水素原子である場合が特に好ましい。

上記式 (I)において、 R^4 および R^5 は、同一または異なって、水素原子、ヒド
ロキシ基、フェニル基、または $C_1 - C_6$ アルキル基を表し、 R^4 および R^5 における
30 $C_1 - C_6$ アルキル基は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ
基、カルボキシル基、カルバモイル基、メルカプト基、グアニジノ基、 $C_3 - C_8$ シ
クロアルキル基、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、（任意個のハ

ロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、もしくはベンジルオキシ基によって置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシ基、ベンジルオキシカルボニル基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルコキシカルボニル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 N-アルキルカルバモイル基、 C_1-C_6 アルキルスルホニル基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、ジ(C_1-C_6 アルキル)アミノ基、または(ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基またはそのベンゼン環との縮合により形成される縮合環)により置換されていてもよく、あるいはR⁴およびR⁵は両者一緒になって3-6員環状炭化水素を形成してもよい。

R⁴およびR⁵における C_1-C_6 アルキル基は、前記R¹におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

R⁴およびR⁵における C_1-C_6 アルキル基の置換基としてのハロゲン原子、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルコキシカルボニル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 N-アルキルカルバモイル基、 C_1-C_6 アルキルスルホニル基、モノ(C_1-C_6 アルキル)アミノ基、および、ジ(C_1-C_6 アルキル)アミノ基は、前記R¹におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

R⁴およびR⁵における C_1-C_6 アルキル基の置換基としての C_3-C_8 シクロアルキル基、および、ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基は、前記R¹において定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

R⁴およびR⁵における C_1-C_6 アルキル基の置換基としてのフェニル基の置換基としてのハロゲン原子、 C_1-C_6 アルキル基、および C_1-C_6 アルコキシ基は、前記R¹においてフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

R⁴、R⁵およびその隣接炭素原子とからなる「3-6員環状炭化水素」の好適な

具体例としては、シクロプロパン、シクロブタン、シクロペンタン、およびシクロヘキサンなどが挙げられる。

なかでも、水素原子とC₁–C₆アルキル基を、R⁴とR⁵の特に好ましい例として挙げることができる。

5 上記式(I)において、pは0または1を表し、qは0または1を表す。pとqがともに0であることが特に好ましい。

上記式(I)において、Gは、–CO–、–SO₂–、–CO–O–、–NR⁷–CO–、–CO–NR⁷–、–NH–CO–NH–、–NH–CS–NH–、–NR⁷–SO₂–、–SO₂–NR⁷–、–NH–CO–O–、または–O–CO–NH–で表される基を表す。ここで、R⁷は水素原子またはC₁–C₆アルキル基を表すか、あるいはR⁷はR⁵と一緒にC₂–C₅アルキレン基を形成してもよい。

ここで、–CO–はカルボニル基を、–SO₂–はスルホニル基を、–CS–はチオカルボニル基をそれぞれ意味する。Gの特に好ましい例としては、例えば–NR⁷–CO–および–NH–CO–NH–で表される基などが挙げられる。

15 R⁷におけるC₁–C₆アルキル基は、前記R¹におけるフェニル基、C₃–C₈シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

R⁵とR⁷とからなる「C₂–C₅アルキレン基」とは、例えば、メチレン、エチレン、プロピレン、トリメチレン、テトラメチレン、1–メチルトリメチレン、ペンタメチレンなどのC₂–C₅の直鎖または分枝状アルキレン基を意味し、その好適な具体例としてはエチレン、トリメチレン、テトラメチレン基などが挙げられる。

なかでもR⁷としては、水素原子を特に好ましい例として挙げることができる。

上記式(I)において、R⁶はフェニル基、C₃–C₈シクロアルキル基、C₃–C₆シクロアルケニル基、ベンジル基、または、ヘテロ原子として酸素原子、硫黄原子、および／もしくは窒素原子を1–3個有する芳香族複素環基を表し、上記R⁶におけるフェニル基、ベンジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および／もしくは窒素原子を1–3個有する芳香族複素環基と縮合して縮合環を形成していくてもよく、さらに上記R⁶におけるフェニル基、C₃–C₈シクロアルキル基、C₃–C₆シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、ニトロ基、チオシアナト基、カルボキシル基、カルバモイル基

、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_3-C_8 シクロアルキル基、 C_2-C_6 アルケニル基、 C_1-C_6 アルコキシ基、 C_3-C_8 シクロアルキルオキシ基、 C_1-C_6 アルキルチオ基、 C_1-C_3 アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ基、ベンジル基、ベンゾイル基、フェニルスルフィニル基、
5 フェニルスルホニル基、3-フェニルウレイド基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルコキシカルボニル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 N-アルキルカルバモイル基、 C_1-C_6 アルキルスルホニル基、フェニルカルバモイル基、N, N-ジ(C_1-C_6 アルキル)スルファモイル基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、ジ(C_1-C_6 アルキル)アミノ基、ベンジルアミノ基、 C_2-C_7 (アルコキシカルボニル)アミノ基、 C_1-C_6 (アルキルスルホニル)アミノ基、またはビス(C_1-C_6 アルキルスルホニル)アミノ基により置換されていてもよい。

15 R^6 における C_3-C_8 シクロアルキル基、ヘテロ原子として酸素原子、硫黄原子、および／もしくは窒素原子を1-3個有する芳香族複素環基、および縮合環は、前記 R^1 に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

20 R^6 における「 C_3-C_8 シクロアルケニル基」とは、例えばシクロプロテニル、シクロペンテニル、シクロヘキセニル、シクロヘプテニル、シクロオクテニル基など環状アルケニル基を意味し、その好適な具体例としては1-シクロペンテニル基、1-シクロヘキセニル基などが挙げられる。

なかでも、 R^6 としてはフェニル基、フリル基、およびチエニル基を特に好ましい例として挙げることができる。

25 R^6 におけるフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_8 シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基としてのハロゲン原子、 C_1-C_6 アルキル基、 C_2-C_6 アルケニル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、 C_1-C_3 アルキレンジオキシ基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルコキシカルボニル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 N-アルキルカルバモイル基、 C_1-C_6 アルキルスルホニル基、モノ(C_1-C_6 アルキル)アミノ基、およびジ(C_1-C_6 アルキル)アミノ基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を

好適な具体例として挙げることができる。

R^6 の置換基としての C_3-C_8 シクロアルキル基は、前記 R^1 における C_3-C_8 シクロアルキル基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

5 R^6 の置換基としての「 C_3-C_8 シクロアルキルオキシ基」とは、前記 C_3-C_8 シクロアルキル基とオキシ基とからなる基を意味し、その好適な具体例としては、シクロプロピルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基などを挙げることができる。

10 R^6 の置換基としての「 N, N -ジ(C_1-C_6 アルキル)スルファモイル基」とは同一または異なった2つの前記 C_1-C_6 アルキル基によって置換されたスルファモイル基を意味し、その好適な具体例としては、例えば N, N -ジメチルスルファモイル基、 N, N -ジエチルスルファモイル基、 N -エチル- N -メチルスルファモイル基などが挙げられる。

15 R^6 の置換基としての「 C_2-C_7 (アルコキシカルボニル)アミノ基」とは、前記 C_2-C_7 アルコキシカルボニル基とアミノ基とからなる基を意味し、その好適な具体例としては、例えば(メトキシカルボニル)アミノ基、(エトキシカルボニル)アミノ基などを挙げることができる。

20 R^6 の置換基としての「 C_1-C_6 (アルキルスルホニル)アミノ基」とは、前記 C_1-C_6 アルキルスルホニル基とアミノ基とからなる基を意味し、その好適な具体例としては(メチルスルホニル)アミノ基などを挙げることができる。

25 R^6 の置換基としての「ビス(C_1-C_6 アルキルスルホニル)アミノ基」とは、同一または異なった2つの前記 C_1-C_6 アルキルスルホニル基によって置換されたアミノ基を意味し、その好適な具体例としては、ビス(メチルスルホニル)アミノ基などを挙げることができる。

30 なかでも、 R^6 におけるフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_8 シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基としては、ハロゲン原子、メルカプト基、ニトロ基、チオシアナト基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、フェニル基、フェニルスルホニル基、 C_2-C_7 アルカノイルアミノ基、アミノ基などを特に好ましい例として挙げることができる。

かかる R^6 におけるフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_8 シクロア

ルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、任意個のハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基、C₁—C₆アルキル基、C₁—C₆アルコキシ基、C₁—C₆アルキルチオ基、モノ(C₁—C₆アルキル)アミノ基、またはジ(C₁—C₆アルキル)アミノ基によってさらに置換
5 されていてもよい。

R⁶におけるフェニル基、C₃—C₈シクロアルキル基、C₃—C₈シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基の置換基としてのハロゲン原子、C₁—C₆アルキル基、C₁—C₆アルコキシ基、C₁—C₆アルキルチオ基、
10 モノ(C₁—C₆アルキル)アミノ基、およびジ(C₁—C₆アルキル)アミノ基は、前記R¹におけるフェニル基、C₃—C₈シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げができる。

上記式(I)で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容されるC₁—C₆アルキル付加体は、その治療有効量を製薬学的に許容
15 される担体および／または希釈剤とともに医薬組成物とすることによって、本発明のケモカインの標的細胞上の受容体への結合を阻害する医薬、あるいはケモカインの標的細胞上への結合を阻害する作用をもつ医薬、さらにはケモカインもしくはケモカインレセプターが関与すると考えられる疾患の治療薬もしくは予防薬とすることができます。すなわち上記式(I)で表される環状アミン誘導体、その薬学的に許容される酸付加塩体、またはその薬学的に許容されるC₁—C₆アルキル付加体は、経口的に、あるいは、静脈内、皮下、筋肉内、経皮、または直腸内など非経口的に投与することができる。

経口投与の剤形としては、例えば錠剤、丸剤、顆粒剤、散剤、液剤、懸濁剤、力
20 プセル剤などが挙げられる。

錠剤の形態にするには、例えば乳糖、デンプン、結晶セルロースなどの賦形剤；カルボキシメチルセルロース、メチルセルロース、ポリビニルピロリドンなどの結合剤；アルギン酸ナトリウム、炭酸水素ナトリウム、ラウリル硫酸ナトリウムなどの崩壊剤などを用いて通常の方法により成形することができる。

丸剤、散剤、顆粒剤も同様に前記の賦形剤などを用いて通常の方法によって成形
30 することができる。液剤、懸濁剤は、例えばトリカブリリン、トリアセチルなどのグリセリンエステル類、エタノールなどのアルコール類などを用いて通常の方法に

よって成形される。カプセル剤は、顆粒剤、散剤、あるいは液剤などをゼラチンなどのカプセルに充填することによって成形される。

皮下、筋肉内、静脈内投与の剤型としては、水性あるいは非水性溶液剤などの形態にある注射剤がある。水性溶液剤は、例えば生理食塩水などが用いられる。非水性溶液剤は、例えばプロピレングリコール、ポリエチレングリコール、オリーブ油、オレイン酸エチルなどが用いられ、これらに必要に応じて防腐剤、安定剤などが添加される。注射剤は、バクテリア保留フィルターを通す濾過、殺菌剤の配合の処置を適宜行うことによって無菌化される。

経皮投与の剤型としては、例えば軟膏剤、クリーム剤などが挙げられ、軟膏剤は、ヒマシ油、オリーブ油などの油脂類、またはワセリンなどを用いて、クリーム剤は、脂肪油、またはジエチレングリコールやソルビタンモノ脂肪酸エステルなどの乳化剤を用いて通常の方法によって成形される。

直腸内投与のためには、ゼラチンソフトカプセルなどの通常の座剤が用いられる。
。

15 本発明で用いられる環状アミン誘導体、その薬学的に許容される酸付加体、またはその薬学的に許容されるC₁—C₆アルキル付加体の投与量は、疾患の種類、投与経路、患者の年齢と性別、および、疾患の程度などによって異なるが、通常成人一人当たり1—500mg／日である。

上記式(I)の環状アミン誘導体の好適な具体例として、以下のTable 1—1. 206に示される各置換基を含有する化合物を挙げることができる。

Table 1. 1—1. 206において、「Table」は「表」を意味し、「Compd. No.」は「化合物番号」を意味し、「chirality」は「絶対配置」、すなわち環状アミンの環上の不斉炭素の絶対配置を意味する。「R」は、環状アミンの環上の不斉炭素原子がRの絶対配置をもつこと、「S」は、不斉炭素原子がSの絶対配置をもつこと、「—」はラセミ体であるか、あるいはその化合物が環状アミン上において不斉炭素原子をもたないことを意味する。

23

Table 1.1

Compd. No.	R^1 R^2	$(\text{CH}_2)_k$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p$ R^4 R^5 $(\text{CH}_2)_q$	$\text{G}-\text{R}^6$
1		CH_2-	1	2	0	-	H		$-\text{CH}_2-\text{N}^+\text{H-C(=O)-}$
2		CH_2-	1	2	0	-	H		$-\text{CH}_2-\text{N}^+\text{H-C(=O)-}$
3		CH_2-	1	2	0	-	H		$-\text{CH}_2-\text{N}^+\text{H-C(=O)-}$
4		CH_2-	1	2	0	-	H		$-\text{CH}_2-\text{N}^+\text{H-C(=O)-}$
5		CH_2-	1	2	0	S	H		$-\text{CH}_2-\text{N}^+\text{H-C(=O)-}$
6		CH_2-	1	2	0	S	H		$-\text{CH}_2-\text{N}^+\text{H-C(=O)-}$
7		CH_2-	1	2	0	S	H		$-\text{CH}_2-\text{N}^+\text{H-C(=O)-}$
8		CH_2-	1	2	0	S	H		$-\text{CH}_2-\text{N}^+\text{H-C(=O)-}$
9		CH_2-	1	2	0	S	H		$-\text{CH}_2-\text{N}^+\text{H-C(=O)-}$
10		CH_2-	1	2	0	S	H		$-\text{CH}_2-\text{N}^+\text{H-C(=O)-}$
11		CH_2-	1	2	0	S	H		$-\text{CH}_2-\text{N}^+\text{H-C(=O)-}$

Table 1.2

24

Compd. No.	R^1 R^2 - $(CH_2)_j-$	k	m	n	chirality	R^3	$-(CH_2)_p-$ $\begin{array}{c} R^4 \\ \\ -(CH_2)_q-G-R^6 \\ \\ R^5 \end{array}$
12	$Cl-C_6H_4-CH_2-$	1	2	0	S	H	$-CH_2-N^+H-C(=O)-C_6H_4-OCH_3$
13	$Cl-C_6H_4-CH_2-$	1	2	0	S	H	$-CH_2-N^+H-C(=O)-C_6H_4-CF_3$
14	$Cl-C_6H_4-CH_2-$	1	2	0	S	H	$-CH_2-N^+H-C(=O)-C_6H_4-CH_3$
15	$Cl-C_6H_4-CH_2-$	1	2	0	S	H	$-CH_2-N^+H-C(=O)-C_6H_4-Cl$
16	$Cl-C_6H_4-CH_2-$	1	2	0	S	H	$-CH_2-N^+H-C(=O)-C_6H_4-OCH_3$
17	$Cl-C_6H_4-CH_2-$	1	2	0	S	H	$-CH_2-N^+H-C(=O)-C_6H_4-Cl$
18	$Cl-C_6H_4-CH_2-$	1	2	0	S	H	$-CH_2-N^+H-C(=O)-C_6H_4-CN$
19	$Cl-C_6H_4-CH_2-$	1	2	0	S	H	$-CH_2-N^+H-C(=O)-C_6H_4-O-CO$
20	$Cl-C_6H_4-CH_2-$	1	2	0	S	H	$-CH_2-N^+H-C(=O)-C_6H_4-C(F)_2CF_3$
21	$Cl-C_6H_4-CH_2-$	1	2	0	S	H	$-CH_2-N^+H-C(=O)-C_6H_4-C(F)CF_3$
22	$Cl-C_6H_4-CH_2-$	1	2	0	S	H	$-CH_2-N^+H-C(=O)-C_6H_4-C(F)_2CF_3$

25

Table 1.3

Compd. No.	R^1 R^2	R^3	k	m	n	chirality	R^4 R^5	$-(\text{CH}_2)_p(\text{CH}_2)_q\text{G-R}^6$
23		H	1	2	0	S		
24		H	1	2	0	S		
25		H	1	2	0	S		
26		H	1	2	0	S		
27		H	1	2	0	S		
28		H	1	2	0	S		
29		H	1	2	0	R		
30		H	1	2	0	R		
31		H	1	2	0	R		
32		H	1	2	0	R		
33		H	1	2	0	R		

26

Table 1.4

Compd. No.	R^1 R^2 - $(CH_2)_l^-$	k	m	n	chirality	R^3	$-(CH_2)_p^{\text{R}^4}_{\text{R}^5}(CH_2)_q^-G-R^6$
34	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{O})\text{C}_6\text{H}_3(\text{OCH}_3)_2$
35	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{O})\text{C}_6\text{H}_3(\text{OCH}_3)_2$
36	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{O})\text{C}_6\text{H}_3(\text{OCH}_3)_2$
37	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{O})\text{C}_6\text{H}_3(\text{CF}_3)_2$
38	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{O})\text{C}_6\text{H}_3(\text{CH}_3)_2$
39	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{O})\text{C}_6\text{H}_3(\text{Cl})_2$
40	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{O})\text{C}_6\text{H}_3(\text{OCH}_3)_2$
41	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{O})\text{C}_6\text{H}_3(\text{Cl})_2$
42	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{O})\text{C}_6\text{H}_3(\text{CN})_2$
43	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{O})\text{C}_6\text{H}_3(\text{O})_2$
44	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{O})\text{C}_6\text{H}_3(\text{CF}_3)_2$

27

Table 1.5

Compd. No.	R^1 R^2	$(\text{CH}_2)_l$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \begin{array}{c} \text{R}^4 \\ \\ \text{C} \\ \\ \text{R}^5 \end{array} (\text{CH}_2)_q \text{G-R}^6$
45		$(\text{CH}_2)_2-$	1	2	0	R	H	
46		$(\text{CH}_2)_2-$	1	2	0	R	H	
47		$(\text{CH}_2)_2-$	1	2	0	R	H	
48		$(\text{CH}_2)_2-$	1	2	0	R	H	
49		$(\text{CH}_2)_2-$	1	2	0	R	H	
50		$(\text{CH}_2)_2-$	1	2	0	R	H	
51		$(\text{CH}_2)_2-$	1	2	0	R	H	
52		$(\text{CH}_2)_2-$	1	2	0	R	H	
53		$(\text{CH}_2)_2-$	1	2	0	R	H	
54		$(\text{CH}_2)_2-$	1	2	0	R	H	
55		$(\text{CH}_2)_2-$	1	2	0	R	H	

28

Table 1.6

Compd. No.	R^1 R^2 $\text{C}_6\text{H}_4-\text{CH}_2-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \begin{array}{c} \text{R}^4 \\ \\ \text{C}=\text{O} \\ \\ \text{H} \end{array} (\text{CH}_2)_q-\text{G}-\text{R}^6$
56	$\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CH}_2-$
57	$\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CH}_2-$
58	$\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{Cl}$
59	$\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{Br}$
60	$\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{C}_6\text{H}_4-$
61	$\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
62	$\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CH}_3$
63	$\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CH}_2\text{CH}_3$
64	$\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CN}$
65	$\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{C}_1\text{H}_4$
66	$\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{C}_6\text{H}_5$

29

Table 1.7

Compd. No.	R^1 R^2	$(\text{CH}_2)_j^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- \begin{array}{c} \text{R}^4 \\ \\ \text{C} \\ \\ \text{R}^5 \end{array} (\text{CH}_2)_q^- \text{G}-\text{R}^6$
67		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	
68		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	
69		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	
70		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	
71		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	
72		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	
73		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	
74		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	
75		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	
76		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	
77		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	

30

Table 1.8

Compd. No.	$\begin{array}{c} R^1 \\ \\ R^2 > - (CH_2)_l - \end{array}$	k	m	n	chirality	R^3	$-(CH_2)_p \begin{array}{c} R^4 \\ \\ R^5 \end{array} (CH_2)_q - G - R^6$
78		1	2	0	R	H	
79		1	2	0	R	H	
80		1	2	0	R	H	
81		1	2	0	R	H	
82		1	2	0	-	-CH₃	
83		1	2	0	R	H	
84		1	2	0	R	H	
85		1	2	0	-	H	
86		1	2	0	-	H	
87		1	2	0	S	H	
88		1	2	0	S	H	

31

Table 1.9

Compd. No.	R^1 R^2	$(\text{CH}_2)_j^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \overset{\text{R}^4}{\underset{\text{R}^5}{ }} (\text{CH}_2)_q^- \text{G-R}^6$
89		CH_2^-	1	2	0	S	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{Br}$
90		CH_2^-	1	2	0	S	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{F}$
91		CH_2^-	1	2	0	S	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{Cl}$
92		CH_2^-	1	2	0	S	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{OC}_2\text{H}_5$
93		CH_2^-	1	2	0	S	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{OC}_2\text{H}_5$
94		CH_2^-	1	2	0	S	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{OC}_2\text{H}_5$
95		CH_2^-	1	2	0	S	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
96		CH_2^-	1	2	0	S	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CH}_3$
97		CH_2^-	1	2	0	S	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{Cl}$
98		CH_2^-	1	2	0	S	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{OC}_2\text{H}_5$
99		CH_2^-	1	2	0	S	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{Cl}$

32

Table 1.10

Compd. No.	$\begin{array}{c} \text{R}^1 \\ \\ \text{R}^2-\text{C}-\text{CH}_2-\end{array}$	k	m	n	chirality	R ³	$-(\text{CH}_2)_p-\overset{\text{R}^4}{\underset{\text{R}^5}{\text{N}}}(\text{CH}_2)_q-\text{G}-\text{R}^6$
100	<chem>Cc1ccc(cc1)CC-</chem>	1	2	0	S	H	$-(\text{CH}_2)_2-\overset{\text{H}}{\underset{\text{H}}{\text{N}}}(\text{CH}_2)-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CN}$
101	<chem>Cc1ccc(cc1)CC-</chem>	1	2	0	S	H	$-(\text{CH}_2)_2-\overset{\text{H}}{\underset{\text{H}}{\text{N}}}(\text{CH}_2)-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{O}_2\text{C}$
102	<chem>Cc1ccc(cc1)CC-</chem>	1	2	0	S	H	$-(\text{CH}_2)_2-\overset{\text{H}}{\underset{\text{H}}{\text{N}}}(\text{CH}_2)-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
103	<chem>Cc1ccc(cc1)CC-</chem>	1	2	0	S	H	$-(\text{CH}_2)_2-\overset{\text{H}}{\underset{\text{H}}{\text{N}}}(\text{CH}_2)-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
104	<chem>Cc1ccc(cc1)CC-</chem>	1	2	0	S	H	$-(\text{CH}_2)_2-\overset{\text{H}}{\underset{\text{H}}{\text{N}}}(\text{CH}_2)-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{F}$
105	<chem>Cc1ccc(cc1)CC-</chem>	1	2	0	S	H	$-(\text{CH}_2)_2-\overset{\text{H}}{\underset{\text{H}}{\text{N}}}(\text{CH}_2)-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{F}$
106	<chem>Cc1ccc(cc1)CC-</chem>	1	2	0	S	H	$-(\text{CH}_2)_2-\overset{\text{H}}{\underset{\text{H}}{\text{N}}}(\text{CH}_2)-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{OCF}_3$
107	<chem>Cc1ccc(cc1)CC-</chem>	1	2	0	S	H	$-(\text{CH}_2)_2-\overset{\text{H}}{\underset{\text{H}}{\text{N}}}(\text{CH}_2)-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{F}$
108	<chem>Cc1ccc(cc1)CC-</chem>	1	2	0	S	H	$-(\text{CH}_2)_2-\overset{\text{H}}{\underset{\text{H}}{\text{N}}}(\text{CH}_2)-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{NO}_2$
109	<chem>Cc1ccc(cc1)CC-</chem>	1	2	0	S	H	$-(\text{CH}_2)_2-\overset{\text{H}}{\underset{\text{H}}{\text{N}}}(\text{CH}_2)-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{NO}_2$
110	<chem>Cc1ccc(cc1)CC-</chem>	1	2	0	S	H	$-(\text{CH}_2)_2-\overset{\text{H}}{\underset{\text{H}}{\text{N}}}(\text{CH}_2)-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{NC}_2$

3 3

Table 1.11

Compd. No.	R^1 R^2 - $\text{C}(\text{H}_2)_j-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p-\text{C}(\text{R}^4)(\text{R}^5)-(\text{CH}_2)_q-\text{G}-\text{R}^6$
111	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-(\text{CH}_2)_2-\text{N}^{\text{H}}-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
112	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-(\text{CH}_2)_2-\text{N}^{\text{H}}-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3\text{C}$
113	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-(\text{CH}_2)_2-\text{N}^{\text{H}}-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{Br}$
114	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-(\text{CH}_2)_2-\text{N}^{\text{H}}-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{F}$
115	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-(\text{CH}_2)_2-\text{N}^{\text{H}}-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{Cl}$
116	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-(\text{CH}_2)_2-\text{N}^{\text{H}}-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{OCH}_3$
117	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-(\text{CH}_2)_2-\text{N}^{\text{H}}-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{OCH}_3$
118	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-(\text{CH}_2)_2-\text{N}^{\text{H}}-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{OCH}_3$
119	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-(\text{CH}_2)_2-\text{N}^{\text{H}}-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
120	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-(\text{CH}_2)_2-\text{N}^{\text{H}}-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CH}_3$
121	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-(\text{CH}_2)_2-\text{N}^{\text{H}}-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{Cl}$

3 4

Table 1.12

Compd. No.	R^1 R^2	$(\text{CH}_2)_j-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p-$ $\text{C}(R^4)(R^5)-(\text{CH}_2)_q-$ $G-R^6$
122		CH_2-	1	2	0	R	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{OCH}_3$
123		CH_2-	1	2	0	R	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{Cl})_2$
124		CH_2-	1	2	0	R	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CN}$
125		CH_2-	1	2	0	R	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{O})_2$
126		CH_2-	1	2	0	R	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CF}_3)_2$
127		CH_2-	1	2	0	R	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CF}_3)_2$
128		CH_2-	1	2	0	R	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CF}_3)_2$
129		CH_2-	1	2	0	R	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CF}_3)_2$
130		CH_2-	1	2	0	R	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{OCF}_3)_2$
131		CH_2-	1	2	0	R	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CF}_3)_2$
132		CH_2-	1	2	0	R	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{O}_2\text{N})_2$

35

Table 1.13

Compd. No.	$\text{R}^1 \swarrow \text{---}(\text{CH}_2)_k\text{---}$ $\text{R}^2 \searrow$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \begin{array}{c} \text{R}^4 \\ \\ \text{---} \end{array} (\text{CH}_2)_q \text{---} \text{G} \text{---} \text{R}^6$
133		1	2	0	R	H	
134		1	2	0	R	H	
135		1	2	0	R	H	
136		1	2	0	R	H	
137		1	2	0	R	H	
138		1	2	0	R	H	
139		1	2	0	R	H	
140		1	2	0	R	H	
141		1	2	0	R	H	
142		1	2	0	R	H	
143		1	2	0	R	H	

36

Table 1.14

Compd. No.	R^1 R^2 $\text{---}(\text{CH}_2)_j\text{---}$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p\text{---}\begin{array}{c} \text{R}^4 \\ \\ \text{---}(\text{CH}_2)_q\text{---} \end{array}\text{G---R}^6$
144		1	2	0	R	H	$-(\text{CH}_2)_2\text{---}\begin{array}{c} \text{O} \\ \\ \text{N---C---} \end{array}\text{---}\text{C}_6\text{H}_4\text{---}\text{C}_6\text{H}_5$
145		1	2	0	R	H	$-(\text{CH}_2)_2\text{---}\begin{array}{c} \text{O} \\ \\ \text{N---C---} \end{array}\text{---}\text{C}_6\text{H}_4\text{---CF}_3$
146		1	2	0	R	H	$-(\text{CH}_2)_2\text{---}\begin{array}{c} \text{O} \\ \\ \text{N---C---} \end{array}\text{---}\text{C}_6\text{H}_4\text{---CH}_3$
147		1	2	0	R	H	$-(\text{CH}_2)_2\text{---}\begin{array}{c} \text{O} \\ \\ \text{N---C---} \end{array}\text{---}\text{C}_6\text{H}_4\text{---CH}_2\text{CH}_3$
148		1	2	0	R	H	$-(\text{CH}_2)_2\text{---}\begin{array}{c} \text{O} \\ \\ \text{N---C---} \end{array}\text{---}\text{C}_6\text{H}_4\text{---CN}$
149		1	2	0	R	H	$-(\text{CH}_2)_2\text{---}\begin{array}{c} \text{O} \\ \\ \text{N---C---} \end{array}\text{---}\text{C}_6\text{H}_4\text{---C}_6\text{H}_5$
150		1	2	0	R	H	$-(\text{CH}_2)_2\text{---}\begin{array}{c} \text{O} \\ \\ \text{N---C---} \end{array}\text{---}\text{C}_6\text{H}_4\text{---C}_6\text{H}_5$
151		1	2	0	R	H	$-(\text{CH}_2)_2\text{---}\begin{array}{c} \text{O} \\ \\ \text{N---C---} \end{array}\text{---}\text{C}_6\text{H}_4\text{---F}$
152		1	2	0	R	H	$-(\text{CH}_2)_2\text{---}\begin{array}{c} \text{O} \\ \\ \text{N---C---} \end{array}\text{---}\text{C}_6\text{H}_4\text{---F}$
153		1	2	0	R	H	$-(\text{CH}_2)_2\text{---}\begin{array}{c} \text{O} \\ \\ \text{N---C---} \end{array}\text{---}\text{C}_6\text{H}_4\text{---F}$
154		1	2	0	R	H	$-(\text{CH}_2)_2\text{---}\begin{array}{c} \text{O} \\ \\ \text{N---C---} \end{array}\text{---}\text{C}_6\text{H}_4\text{---F}$

37

Table 1.15

Compd. No.	$\begin{array}{c} R^1 \\ \diagup \\ R^2 \end{array} - (CH_2)_j -$	k	m	n	chirality	R^3	$-(CH_2)_p \begin{array}{c} R^4 \\ \\ R^5 \end{array} (CH_2)_q G - R^6$
155	<chem>Clc1ccc(CC)c1</chem>	1	2	0	R	H	$-(CH_2)_2-N^+H-C(=O)c1ccc(OCC)cc1$
156	<chem>Clc1ccc(CC)c1</chem>	1	2	0	R	H	$-(CH_2)_2-N^+H-C(=O)c1ccc(OC(F)(F)F)cc1$
157	<chem>Clc1ccc(CC)c1</chem>	1	2	0	R	H	$-(CH_2)_2-N^+H-C(=O)c1ccc(F(=O)C(F)(F)F)cc1$
158	<chem>Clc1ccc(CC)c1</chem>	1	2	0	R	H	$-(CH_2)_2-N^+H-C(=O)c1ccc(C(=O)OC)c1$
159	<chem>Clc1ccc(CC)c1</chem>	1	2	0	R	H	$-(CH_2)_2-N^+H-C(=O)c1ccc(F(F)C(F)(F)F)cc1$
160	<chem>Clc1ccc(CC)c1</chem>	1	2	0	R	H	$-(CH_2)_2-N^+H-C(=O)c1ccc(F(F)C(F)(F)F)cc1$
161	<chem>Clc1ccc(CC)c1</chem>	1	2	0	R	H	$-(CH_2)_2-N^+H-C(=O)c1ccc(F(F)F)cc1$
162	<chem>Clc1ccc(CC)c1</chem>	1	2	0	R	H	$-(CH_2)_2-N^+H-C(=O)c1ccc(F(F)F)cc1$
163	<chem>Clc1ccc(CC)c1</chem>	1	2	0	R	H	$-(CH_2)_2-N^+H-C(=O)c1ccc(C(F)(F)F)cc1$
164	<chem>Clc1ccc(CC)c1</chem>	1	2	0	R	H	$-(CH_2)_2-N^+H-C(=O)c1ccc(C(F)(F)F)cc1$
165	<chem>Clc1ccc(CC)c1</chem>	1	2	0	R	H	$-(CH_2)_2-N^+H-C(=O)c1ccc(C)c1$

Table 1.16

Compd. No.	R^1 $\text{---} \begin{array}{c} \text{---} \\ \\ \text{CH}_2 \end{array} \text{---} R^2$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \begin{array}{c} \text{---} \\ \\ \text{CH}_2 \end{array} \text{---} R^4$	$-(\text{CH}_2)_q \text{---} G \text{---} R^6$
166	$\text{Cl---} \begin{array}{c} \text{---} \\ \\ \text{---} \end{array} \text{---} \text{CH}_2^-$	1	2	0	R	H		
167	$\text{Cl---} \begin{array}{c} \text{---} \\ \\ \text{---} \end{array} \text{---} \text{CH}_2^-$	1	2	0	R	H		
168	$\text{Cl---} \begin{array}{c} \text{---} \\ \\ \text{---} \end{array} \text{---} \text{CH}_2^-$	1	2	0	R	H		
169	$\text{Cl---} \begin{array}{c} \text{---} \\ \\ \text{---} \end{array} \text{---} \text{CH}_2^-$	1	2	0	R	H		
170	$\text{Cl---} \begin{array}{c} \text{---} \\ \\ \text{---} \end{array} \text{---} \text{CH}_2^-$	1	2	0	R	H		
171	$\text{Cl---} \begin{array}{c} \text{---} \\ \\ \text{---} \end{array} \text{---} \text{CH}_2^-$	1	2	0	R	H		
172	$\text{Cl---} \begin{array}{c} \text{---} \\ \\ \text{---} \end{array} \text{---} \text{CH}_2^-$	1	2	0	R	H		
173	$\text{Cl---} \begin{array}{c} \text{---} \\ \\ \text{---} \end{array} \text{---} \text{CH}_2^-$	1	2	0	R	H		
174	$\text{Cl---} \begin{array}{c} \text{---} \\ \\ \text{---} \end{array} \text{---} \text{CH}_2^-$	1	2	0	R	H		
175	$\text{Cl---} \begin{array}{c} \text{---} \\ \\ \text{---} \end{array} \text{---} \text{CH}_2^-$	1	2	0	R	H		
176	$\text{Cl---} \begin{array}{c} \text{---} \\ \\ \text{---} \end{array} \text{---} \text{CH}_2^-$	1	2	0	R	H		

3 9

Table 1.17

Compd. No.	R^1 $\text{---} \text{C}(=\text{O}) \text{---} (\text{CH}_2)_j \text{---}$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \text{---} \overset{\text{R}^4}{\underset{\text{R}^5}{\text{C}}} \text{---} (\text{CH}_2)_q \text{---} G \text{---} R^6$
177	$\text{Cl---} \text{C}_6\text{H}_4 \text{---} \text{CH}_2 \text{---}$	1	2	0	R	H	
178	$\text{Cl---} \text{C}_6\text{H}_4 \text{---} \text{CH}_2 \text{---}$	1	2	0	R	H	
179	$\text{Cl---} \text{C}_6\text{H}_4 \text{---} \text{CH}_2 \text{---}$	1	2	0	R	H	
180	$\text{Cl---} \text{C}_6\text{H}_4 \text{---} \text{CH}_2 \text{---}$	1	2	0	R	H	
181	$\text{Cl---} \text{C}_6\text{H}_4 \text{---} \text{CH}_2 \text{---}$	1	2	0	R	H	
182	$\text{Cl---} \text{C}_6\text{H}_4 \text{---} \text{CH}_2 \text{---}$	1	2	0	R	H	
183	$\text{Cl---} \text{C}_6\text{H}_4 \text{---} \text{CH}_2 \text{---}$	1	2	0	R	H	
184	$\text{Cl---} \text{C}_6\text{H}_4 \text{---} \text{CH}_2 \text{---}$	1	2	0	R	H	
185	$\text{Cl---} \text{C}_6\text{H}_4 \text{---} \text{CH}_2 \text{---}$	1	2	0	R	H	
186	$\text{Cl---} \text{C}_6\text{H}_4 \text{---} \text{CH}_2 \text{---}$	1	2	0	R	H	
187	$\text{Cl---} \text{C}_6\text{H}_4 \text{---} \text{CH}_2 \text{---}$	1	2	0	R	H	

40

Table 1.18

Compd. No.	R^1 R^2	$(\text{CH}_2)_l$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p$	R^4	$-(\text{CH}_2)_q$	G-R ⁶
188		$(\text{CH}_2)_l$	1	2	0	R	H				
189		$(\text{CH}_2)_l$	1	2	0	R	H				
190		$(\text{CH}_2)_l$	1	2	0	R	H				
191		$(\text{CH}_2)_l$	1	2	0	R	H				
192		$(\text{CH}_2)_l$	1	2	0	R	H				
193		$(\text{CH}_2)_l$	1	2	0	R	H				
194		$(\text{CH}_2)_l$	1	2	0	R	H				
195		$(\text{CH}_2)_l$	1	2	0	R	H				
196		$(\text{CH}_2)_l$	1	2	0	R	H				
197		$(\text{CH}_2)_l$	1	2	0	R	H				
198		$(\text{CH}_2)_l$	1	2	0	R	H				

41

Table 1.19

Compd. No.	R^1 R^2	$(CH_2)_k$	k	m	n	chirality	R^3	$-(CH_2)_p$ R^4 R^5	$(CH_2)_q$	$G-R^6$
199	<chem>Clc1ccc(cc1)C-</chem>	$(CH_2)_1$	1	2	0	R	H			
200	<chem>Clc1ccc(cc1)C-</chem>	$(CH_2)_1$	1	2	0	R	H			
201	<chem>Clc1ccc(cc1)C-</chem>	$(CH_2)_1$	1	2	0	R	H			
202	<chem>Clc1ccc(cc1)C-</chem>	$(CH_2)_1$	1	2	0	R	H			
203	<chem>Clc1ccc(cc1)C-</chem>	$(CH_2)_1$	1	2	0	R	H			
204	<chem>Clc1ccc(cc1)C-</chem>	$(CH_2)_1$	1	2	0	R	H			
205	<chem>Clc1ccc(cc1)C-</chem>	$(CH_2)_1$	1	2	0	R	H			
206	<chem>Clc1ccc(cc1)C-</chem>	$(CH_2)_1$	1	2	0	R	H			
207	<chem>Clc1ccc(cc1)C-</chem>	$(CH_2)_1$	1	2	0	R	H			
208	<chem>Clc1ccc(cc1)C-</chem>	$(CH_2)_1$	1	2	0	R	H			
209	<chem>Clc1ccc(cc1)C-</chem>	$(CH_2)_1$	1	2	0	R	H			

42

Table 1.20

Compd. No.	R_1^1 R_2^1	$(CH_2)_i^-$	k	m	n	chirality	R^3	$-(CH_2)_p^- R_4^4$ R_5^5	$(CH_2)_q^- G-R^6$
210	<chem>Clc1ccccc1</chem>	$-CH_2-$	1	2	0	R	H		
211	<chem>Clc1ccccc1</chem>	$-CH_2-$	1	2	0	R	H		
212	<chem>Clc1ccccc1</chem>	$-CH_2-$	1	2	0	R	H		
213	<chem>Clc1ccccc1</chem>	$-CH_2-$	1	2	0	R	H		
214	<chem>Clc1ccccc1</chem>	$-CH_2-$	1	2	0	-	H		
215	<chem>Clc1ccccc1</chem>	$-CH_2-$	1	2	0	-	H		
216	<chem>Clc1ccccc1</chem>	$-CH_2-$	1	2	0	-	H		
217	<chem>Clc1ccccc1</chem>	$-CH_2-$	1	2	0	-	H		
218	<chem>Clc1ccccc1</chem>	$-CH_2-$	1	2	0	-	H		
219	<chem>Clc1ccccc1</chem>	$-CH_2-$	1	2	0	-	H		
220	<chem>Clc1ccccc1</chem>	$-CH_2-$	1	2	0	-	H		

4 3

Table 1.21

Compd. No.	R^1 $\text{C}_6\text{H}_{4-\text{CH}_2-}$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p-$ $\text{C}(\text{R}^4)-(\text{CH}_2)_q-\text{G}-\text{R}^6$
221	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	-	H	$-(\text{CH}_2)_2-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CH}_2-\text{Cl}$
222	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	-	H	$-(\text{CH}_2)_2-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CH}_2-\text{Cl}$
223	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	-	H	$-(\text{CH}_2)_2-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CH}_2-\text{C}(\text{CH}_2)_3\text{CH}_3$
224	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	-	H	$-\text{CH}_2-\text{S}(=\text{O})-\text{C}_6\text{H}_4-\text{CH}_2-\text{CH}_3$
225	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	-	H	$-(\text{CH}_2)_3-\text{C}(=\text{O})-\text{N}(\text{H})-\text{C}_6\text{H}_4-$
226	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	-	H	$-(\text{CH}_2)_3-\text{C}(=\text{O})-\text{N}(\text{H})-\text{C}_6\text{H}_4-\text{OCH}_3$
227	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	-	H	$-(\text{CH}_2)_3-\text{C}(=\text{O})-\text{N}(\text{H})-\text{C}_6\text{H}_4-\text{Cl}$
228	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	-	H	$-(\text{CH}_2)_3-\text{C}(=\text{O})-\text{N}(\text{H})-\text{C}_6\text{H}_4-\text{OCH}_3$
229	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	-	H	$-\text{CH}_2-\text{C}(\text{CH}_3)-\text{CH}_2-\text{C}(=\text{O})-\text{N}(\text{H})-\text{C}_6\text{H}_4-\text{CH}_3$
230	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	-	H	$-\text{CH}_2-\text{C}(\text{CH}_3)-\text{CH}_2-\text{C}(=\text{O})-\text{N}(\text{H})-\text{C}_6\text{H}_4-\text{F}$
231	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	-	H	$-(\text{CH}_2)_3-\text{C}(=\text{O})-\text{N}(\text{H})-\text{C}_6\text{H}_4-\text{C}(=\text{O})-\text{CH}_3$

44

Table 1.22

Compd. No.	R^1 R^2 - $(\text{CH}_2)_l-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p$ $\begin{array}{c} \text{R}^4 \\ \\ \text{---} \\ \\ \text{R}^5 \end{array}$ $(\text{CH}_2)_q-$ $\text{G}-\text{R}^6$
232		1	2	0	-	H	$-(\text{CH}_2)_3-\overset{\text{O}}{\underset{\text{H}}{\text{C}}}-\text{N}-\text{Cyclohexyl}$
233		1	2	0	-	H	$-(\text{CH}_2)_3-\overset{\text{O}}{\underset{\text{H}}{\text{C}}}-\text{N}-\text{CH}_2-\text{Biphenyl}$
234		1	2	0	-	H	$-(\text{CH}_2)_3-\overset{\text{O}}{\underset{\text{H}}{\text{C}}}-\text{N}-\text{CH}_3-\text{Pyridyl}$
235		1	2	0	-	H	$-\text{CH}_2-\overset{\text{CH}_3}{\underset{\text{CH}_3}{\text{CH}}}+\text{CH}_2-\overset{\text{O}}{\underset{\text{H}}{\text{C}}}-\text{N}-\text{CH}_2-\text{Biphenyl}-\text{Cl}$
236		1	2	0	-	H	$-\text{CH}_2-\overset{\text{H}}{\underset{\text{O}}{\text{S}}}=\text{N}-\text{Biphenyl}-\text{CH}_2-\text{N}(\text{CH}_3)_2$
237		1	2	0	-	H	$-\text{CH}_2-\overset{\text{H}}{\underset{\text{O}}{\text{C}}}-\text{O}-\text{CH}_2-\text{Biphenyl}$
238		1	2	0	-	H	$-\overset{\text{CH}_3}{\underset{\text{CH}_3}{\text{CH}}}+\text{O}-\overset{\text{O}}{\underset{\text{H}}{\text{C}}}-\text{N}-\text{Biphenyl}-\text{Cl}$
239		1	2	0	S	H	$-\text{CH}_2-\overset{\text{H}}{\underset{\text{O}}{\text{C}}}-\text{O}-\text{C}_6\text{H}_4-\text{CF}_3$
240		1	2	0	S	H	$-\text{CH}_2-\overset{\text{H}}{\underset{\text{O}}{\text{C}}}-\text{O}-\text{C}_6\text{H}_4-\text{CF}_3$
241		1	2	0	S	H	$-\text{CH}_2-\overset{\text{H}}{\underset{\text{O}}{\text{C}}}-\text{O}-\text{C}_6\text{H}_4-\text{CF}_3$
242		1	2	0	S	H	$-\text{CH}_2-\overset{\text{H}}{\underset{\text{O}}{\text{C}}}-\text{O}-\text{C}_6\text{H}_4-\text{CF}_3$

45

Table 1.23

Compd. No.	R^1 $\begin{array}{c} \diagup \\ R^2 \end{array} - (CH_2)_n -$	k	m	n	chirality	R^3	$-(CH_2)_p \begin{array}{c} \diagup \\ R^4 \\ \diagdown \end{array} (CH_2)_q G - R^6$
243		1	2	0	S	H	
244		1	2	0	S	H	
245		1	2	0	S	H	
246		1	2	0	S	H	
247		1	2	0	S	H	
248		1	2	0	S	H	
249		1	2	0	S	H	
250		1	2	0	S	H	
251		1	2	0	S	H	
252		1	2	0	S	H	
253		1	2	0	S	H	

46

Table 1.24

Compd. No.	R^1 R^2	R^3	R^4	R^5	R^6			
	$\text{--}(\text{CH}_2)_k\text{--}$	k	m	n	chirality	$\text{--}(\text{CH}_2)_p\text{--}$	G	$\text{--}(\text{CH}_2)_q\text{--}$
254		1	2	0	S	H		
255		1	2	0	S	H		
256		1	2	0	S	H		
257		1	2	0	S	H		
258		1	2	0	S	H		
259		1	2	0	S	H		
260		1	2	0	S	H		
261		1	2	0	S	H		
262		1	2	0	S	H		
263		1	2	0	S	H		
264		1	2	0	S	H		

47

Table 1.25

Compd. No.	$\begin{array}{c} R^1 \\ \\ R^2-(CH_2)_l-\end{array}$	k	m	n	chirality	R^3	$-(CH_2)_p\begin{array}{c} R^4 \\ \\ R^5\end{array}(CH_2)_q-G-R^6$
265		1	2	0	S	H	
266		1	2	0	S	H	
267		1	2	0	S	H	
268		1	2	0	S	H	
269		1	2	0	S	H	
270		1	2	0	S	H	
271		1	2	0	S	H	
272		1	2	0	S	H	
273		1	2	0	S	H	
274		1	2	0	S	H	
275		1	2	0	S	H	

48

Table 1.2.6

Compd. No.	$\begin{array}{c} R^1 \\ \\ R^2 \text{---} (CH_2)_j \text{---} \end{array}$	k	m	n	chirality	R^3	$\begin{array}{c} R^4 \\ \\ -(CH_2)_p \text{---} C(R_5) \text{---} (CH_2)_q \text{---} G \text{---} R^6 \\ \\ R^5 \end{array}$
276		1	2	0	S	H	
277		1	2	0	S	H	
278		1	2	0	S	H	
279		1	2	0	S	H	
280		1	2	0	S	H	
281		1	2	0	S	H	
282		1	2	0	S	H	
283		1	2	0	S	H	
284		1	2	0	S	H	
285		1	2	0	R	H	
286		1	2	0	R	H	

49

Table 1.2.7

Compd. No.	R^1 R^2	$(\text{CH}_2)_l^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- \begin{array}{c} \text{R}^4 \\ \\ -\text{C}- \\ \\ \text{R}^5 \end{array} (\text{CH}_2)_q^- \text{G}-\text{R}^6$
287			1	2	0	R	H	
288			1	2	0	R	H	
289			1	2	0	R	H	
290			1	2	0	R	H	
291			1	2	0	R	H	
292			1	2	0	R	H	
293			1	2	0	R	H	
294			1	2	0	R	H	
295			1	2	0	R	H	
296			1	2	0	R	H	
297			1	2	0	R	H	

50

Table 1.28

Compd. No.	R^1 R^2	$(\text{CH}_2)_k-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p-\overset{\text{R}^4}{\underset{\text{R}^5}{\text{C}}}(\text{CH}_2)_q-\text{G}-\text{R}^6$
298	$\text{H}_3\text{CO}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R		H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
299	$\text{H}_3\text{C}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R		H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
300	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R		H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
301	$\text{O}_2\text{N}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R		H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
302	$\text{O}_2\text{N}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R		H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
303	$\text{CF}_3-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R		H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
304	$\text{C}_6\text{H}_5-\text{CH}(\text{CH}_3)-\text{CO}_2\text{CH}_2\text{CH}_3$	1	2	0	R		H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
305	$\text{C}_6\text{H}_5-\text{CH}(\text{CH}_3)-\text{CH}_3$	1	2	0	R		H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
306	$\text{C}_6\text{H}_5-\text{CH}_2-\text{Cl}$	1	2	0	R		H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
307	$\text{F}_3\text{C}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R		H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
308	$\text{C}_6\text{H}_5-\text{CH}_2-\text{Br}$	1	2	0	R		H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$

51

Table 1.29

Compd. No.	R^1 R^2	$(\text{CH}_2)_l^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- \begin{array}{c} \text{R}^4 \\ \\ \text{R}_5 \end{array} (\text{CH}_2)_q^- \text{G}-\text{R}^6$
309			1	2	0	R	H	
310			1	2	0	R	H	
311			1	2	0	R	H	
312			1	2	0	R	H	
313			1	2	0	R	H	
314			1	2	0	R	H	
315			1	2	0	R	H	
316			1	2	0	R	H	
317			1	2	0	R	H	
318			1	2	0	R	H	
319			1	2	0	R	H	

52

Table 1.30

Compd. No.	$\begin{array}{c} R^1 \\ \\ R^2 \end{array} \begin{array}{l} \diagup \\ \diagdown \end{array} -\left(CH_2 \right)_j-$	k	m	n	chirality	R ³	$-\left(CH_2 \right)_p \begin{array}{c} R^4 \\ \\ R^5 \end{array} \begin{array}{l} \diagup \\ \diagdown \end{array} -\left(CH_2 \right)_q G-R^6$
320		1	2	0	R	H	
321		1	2	0	R	H	
322		1	2	0	R	H	
323		1	2	0	R	H	
324		1	.2	0	R	H	
325		1	2	0	R	H	
326		1	2	0	R	H	
327		1	2	0	R	H	
328		1	2	0	R	H	
329		1	2	0	R	H	
330		0	3	1	-	H	

5 3

Table 1.3.1

Compd. No.	R^1 R^2	$(CH_2)_j^-$	k	m	n	chirality	R^3	$-(CH_2)_p$ $\begin{array}{c} R^4 \\ \\ R^5 \end{array}$ $(CH_2)_q^-G-R^6$
331		$- (CH_2)_j^-$	0	3	1	-	H	
332		$- (CH_2)_j^-$	0	3	1	-	H	
333		$- (CH_2)_j^-$	0	3	1	-	H	
334		$- (CH_2)_j^-$	0	3	1	-	H	
335		$- (CH_2)_j^-$	0	3	1	-	H	
336		$- (CH_2)_j^-$	0	3	1	-	H	
337		$- (CH_2)_j^-$	0	3	1	-	H	
338		$- (CH_2)_j^-$	0	3	1	-	H	
339		$- (CH_2)_j^-$	0	3	1	R	H	
340		$- (CH_2)_j^-$	0	3	1	S	H	
341		$- (CH_2)_j^-$	0	3	1	-	H	

54

Table 1.32

Compd. No.	R^1 R^2	$(\text{CH}_2)_j$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p$ R^4 R^5 $(\text{CH}_2)_q$	G-R ⁶
342		CH_2-	0	3	1	-	H		
343		CH_2-	0	3	1	-	H		
344		CH_2-	0	3	1	-	H		
345		CH_2-	0	3	1	-	H		
346		CH_2-	0	3	1	-	H		
347		CH_2-	0	3	1	-	H		
348		CH_2-	0	3	1	-	H		
349		CH_2-	0	3	1	-	H		
350		CH_2-	0	3	1	-	H		
351		CH_2-	0	3	1	-	H		
352		CH_2-	0	3	1	-	H		

55

Table 1.33

Compd. No.	R^1 R^2	$(\text{CH}_2)_l$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p$	$\begin{array}{c} \text{R}^4 \\ \\ -\text{C}- \\ \\ \text{R}^5 \end{array}$	$(\text{CH}_2)_q$	G	R^6
353		$(\text{CH}_2)_1$	1	2	1	-	H					
354		$(\text{CH}_2)_1$	1	3	0	-	H					
355		$(\text{CH}_2)_1$	1	3	0	-	H					
356		$(\text{CH}_2)_1$	1	3	0	-	H					
357		$(\text{CH}_2)_1$	1	3	0	-	H					
358		$(\text{CH}_2)_1$	1	3	0	-	H					
359		$(\text{CH}_2)_1$	1	3	0	-	H					
360		$(\text{CH}_2)_1$	1	3	0	-	H					
361		$(\text{CH}_2)_1$	1	3	0	-	H					
362		$(\text{CH}_2)_1$	1	3	0	-	H					
363		$(\text{CH}_2)_1$	1	3	0	-	H					

5 6

Table 1.34

Compd. No.	R^1 R^2	$(\text{CH}_2)_k^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- \begin{array}{c} \text{R}^4 \\ \\ \text{C} \\ \\ \text{R}^5 \end{array} (\text{CH}_2)_q^- \text{G}-\text{R}^6$
364		$(\text{CH}_2)_3^-$	1	3	0	-	H	$-(\text{CH}_2)_2-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{OCH}_3)_2-$
365		$(\text{CH}_2)_3^-$	1	3	0	-	H	$-(\text{CH}_2)_2-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CH}_3)_2-$
366		$(\text{CH}_2)_3^-$	1	3	0	-	H	$-(\text{CH}_2)_2-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{F})(\text{OCH}_3)-$
367		$(\text{CH}_2)_3^-$	1	3	0	-	H	$-(\text{CH}_2)_2-\text{C}(=\text{O})-\text{C}_6\text{H}_4(\text{CH}_3)-$
368		$(\text{CH}_2)_3^-$	1	3	0	-	H	$-(\text{CH}_2)_2-\text{C}(=\text{O})-\text{C}_6\text{H}_5-$
369		$(\text{CH}_2)_3^-$	1	3	0	-	H	$-(\text{CH}_2)_2-\text{C}(=\text{O})-\text{C}_6\text{H}_4(\text{Cl})-$
370		$(\text{CH}_2)_3^-$	1	3	0	-	H	$-(\text{CH}_2)_2-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{O}(\text{CH}_2)_3\text{CH}_3$
371		$(\text{CH}_2)_3^-$	1	3	0	-	H	$-(\text{CH}_2)_2-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{S}(\text{O})_2\text{CH}_3$
372		$(\text{CH}_2)_3^-$	1	3	0	-	H	$-\text{CH}_2-\text{S}(\text{O})_2-\text{C}_6\text{H}_4(\text{CH}_3)-$
373		$(\text{CH}_2)_3^-$	1	3	0	-	H	$-(\text{CH}_2)_3-\text{C}(=\text{O})-\text{N}(\text{H})-\text{C}_6\text{H}_5-$
374		$(\text{CH}_2)_3^-$	1	3	0	-	H	$-(\text{CH}_2)_3-\text{C}(=\text{O})-\text{N}(\text{H})-\text{C}_6\text{H}_3(\text{OCH}_3)_2-$

57

Table 1.35

Compd. No.	$\begin{array}{c} R^1 \\ \\ R^2 > - (CH_2)_j - \end{array}$	k	m	n	chirality	R ³	$-(CH_2)_p \begin{array}{c} R^4 \\ \\ R^5 \end{array} (CH_2)_q G - R^6$
375	<chem>CC(c1ccc(Cl)cc1)C</chem>	1	3	0	-	H	$-(CH_2)_3 - C(=O)Nc1ccc(Cl)cc1$
376	<chem>CC(c1ccc(Cl)cc1)C</chem>	1	3	0	-	H	$-(CH_2)_3 - C(=O)Nc1ccc(O)cc1$
377	<chem>CC(c1ccc(Cl)cc1)C</chem>	1	3	0	-	H	$-CH_2 - \begin{array}{c} CH_3 \\ \\ C - CH_2 - C(=O)Nc1ccc(Cl)cc1 \end{array}$
378	<chem>CC(c1ccc(Cl)cc1)C</chem>	1	3	0	-	H	$-CH_2 - \begin{array}{c} CH_2 \\ \\ C \\ \text{cyclopentyl} \end{array} - C(=O)Nc1ccc(F)cc1$
379	<chem>CC(c1ccc(Cl)cc1)C</chem>	1	3	0	-	H	$-(CH_2)_3 - C(=O)Nc1ccc(C(=O)CH_3)cc1$
380	<chem>CC(c1ccc(Cl)cc1)C</chem>	1	3	0	-	H	$-(CH_2)_3 - C(=O)Nc1ccc(CH_2)cc1$
381	<chem>CC(c1ccc(Cl)cc1)C</chem>	1	3	0	-	H	$-CH_2 - N(H)S(=O)(=O)c1ccc(CH_3)cc1$
382	<chem>CC(c1ccc(Cl)cc1)C</chem>	1	3	0	-	H	$-CH_2 - N(H)C(=O)Oc1ccc(cc1)C$
383	<chem>CC(c1ccc(Cl)cc1)C</chem>	1	3	0	-	H	$-CH_2 - O - C(=O)Nc1ccc(Cl)cc1$
384	<chem>CC(c1ccc(Cl)cc1)C</chem>	2	2	0	-	H	$-CH_2 - N(H)C(=O)c1ccc(CH_3)cc1$
385	<chem>CC(c1ccc(Cl)cc1)C</chem>	2	2	0	-	H	$-CH_2 - N(H)C(=O)c1ccc([NO2])cc1$

58

Table 1.36

Compd. No.	R^1 R^2	$(\text{CH}_2)_j^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^-\text{C}(\text{R}^4)(\text{R}^5)\text{G}-\text{R}^6$
386			2	2	0	-	H	
387			2	2	0	-	H	
388			2	2	0	-	H	
389			2	2	0	-	H	
390			2	2	0	-	H	
391			2	2	0	-	H	
392			2	2	0	-	H	
393			2	2	0	-	H	
394			2	2	0	-	H	
395			2	2	0	-	H	
396			2	2	0	-	H	

5 9

Table 1.37

Compd. No.	R^1 R^2	(CH_2) $_k$	k	m	n	chirality	R^3	$-(\text{CH}_2)_{p-q}$ R^4 R^5	$-\text{G}-\text{R}^6$
397			2	2	0	-	H		
398			2	2	0	-	H		
399			2	2	0	-	H		
400			2	2	0	-	H		
401			2	2	0	-	H		
402			2	2	0	-	H		
403			2	2	0	-	H		
404			2	2	0	-	H		
405			2	2	0	-	H		
406			2	2	0	-	H		
407			2	2	0	-	H		

60

Table 1.38

Compd. No.	R^1 R^2	R^3	k	m	n	chirality	R^4	R^5	$-(\text{CH}_2)_p(\text{CH}_2)_q\text{G}-\text{R}^6$
408		H	2	2	0	-			
409		H	2	2	0	-			
410		H	2	2	0	-			
411		H	2	2	0	-			
412		H	2	2	0	-			
413		H	2	2	0	-			
414		H	2	2	0	-			
415		H	2	2	0	-			
416		H	2	2	0	-			
417		H	2	2	0	-			
418		H	2	2	0	-			

6 1

Table 1.39

Compd. No.	R_1 R_2	$(CH_2)_j$	k	m	n	chirality	R^3	$-(CH_2)_p$ $\overset{R^4}{\underset{R^5}{\underset{\parallel}{\underset{\diagdown}{\underset{\diagup}{\text{C}}}}}-(CH_2)_q G-R^6$
419		$-CH_2-$	2	2	0	-	H	
420		$-CH_2-$	2	2	0	-	H	
421		$-CH_2-$	2	2	0	-	H	
422		$-CH_2-$	2	2	0	-	H	
423		$-CH_2-$	2	2	0	-	H	
424		$-CH_2-$	2	2	0	-	H	
425		$-CH_2-$	2	2	0	-	H	
426		$-CH_2-$	2	2	0	-	H	
427		$-CH_2-$	2	2	0	-	H	
428		$-CH_2-$	2	2	0	-	H	
429		$-CH_2-$	2	2	0	-	H	

62

Table 1.40

Compd. No.	R^1 $\text{---}R^2\text{---}(CH_2)_k\text{---}$	k	m	n	chirality	R^3	$-(CH_2)_p\overset{(R)}{\underset{H}{\text{---}}}R^4\text{---}(CH_2)_q\text{---}G\text{---}R^6$
430		2	2	0	-	H	
431		2	2	0	-	H	
432		2	2	0	-	H	
433		2	2	0	-	H	
434		1	3	1	-	H	
435		1	3	1	-	H	
436		1	3	1	-	H	
437		1	3	1	-	H	
438		1	3	1	-	H	
439		1	3	1	-	H	
440		1	3	1	-	H	

6 3

Table 1.4.1

Compd. No.	R^1 R^2	$(\text{CH}_2)_l^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \begin{array}{c} \text{R}^4 \\ \\ \text{C} \\ \\ \text{R}^5 \end{array} (\text{CH}_2)_q^- \text{G}-\text{R}^6$
441		$\text{CH}_2-\text{C}_6\text{H}_4-$	1	3	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{Br}$
442		$\text{CH}_2-\text{C}_6\text{H}_4-$	1	3	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{Cl}$
443		$\text{CH}_2-\text{C}_6\text{H}_4-$	1	3	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{Br}$
444		$\text{CH}_2-\text{C}_6\text{H}_4-$	1	3	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{F})_2$
445		$\text{CH}_2-\text{C}_6\text{H}_4-$	1	3	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{Cl})_2$
446		$\text{CH}_2-\text{C}_6\text{H}_4-$	1	3	1	-	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-$
447		$\text{CH}_2-\text{C}_6\text{H}_4-$	1	3	1	-	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3\text{Ph}_2$
448		$\text{CH}_2-\text{C}_6\text{H}_4-$	1	3	1	-	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{NO}_2)_2$
449		$\text{CH}_2-\text{C}_6\text{H}_4-$	1	3	1	-	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CO}_2\text{CH}_3$
450		$\text{CH}_2-\text{C}_6\text{H}_4-$	1	3	1	-	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
451		$\text{CH}_2-\text{C}_6\text{H}_4-$	1	3	1	-	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CF}_3)_2$

64

Table 1.4.2

Compd. No.	R^1 R^2 - $\text{C}(\text{CH}_2)_j-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p-\overset{\text{R}^4}{\underset{\text{R}^5}{\text{C}}}(\text{CH}_2)_q-\text{G}-\text{R}^6$
452	$\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	1	3	1	-	H	$-(\text{CH}_2)_2-\overset{\text{OCF}_3}{\underset{\text{H}}{\text{N}}}(\text{C}_6\text{H}_4)-\text{C}(=\text{O})-$
453	$\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	1	3	1	-	H	$-(\text{CH}_2)_2-\overset{\text{Br}}{\underset{\text{H}}{\text{N}}}(\text{C}_6\text{H}_4)-\text{C}(=\text{O})-$
454	$\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	1	3	1	-	H	$-(\text{CH}_2)_2-\overset{\text{Cl}}{\underset{\text{H}}{\text{N}}}(\text{C}_6\text{H}_4)-\text{C}(=\text{O})-$
455	$\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	1	3	1	-	H	$-(\text{CH}_2)_2-\overset{\text{Br}}{\underset{\text{H}}{\text{N}}}(\text{C}_6\text{H}_4)-\text{C}(=\text{O})-$
456	$\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	1	3	1	-	H	$-(\text{CH}_2)_2-\overset{\text{F}}{\underset{\text{H}}{\text{N}}}(\text{C}_6\text{F}_4)-\text{C}(=\text{O})-$
457	$\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	1	3	1	-	H	$-(\text{CH}_2)_2-\overset{\text{Cl}}{\underset{\text{H}}{\text{N}}}(\text{C}_6\text{Cl}_2)-\text{C}(=\text{O})-$
458	$\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\overset{\text{O}}{\underset{\text{H}}{\text{N}}}(\text{C}_6\text{H}_5)-$
459	$\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\overset{\text{O}}{\underset{\text{H}}{\text{N}}}(\text{C}_6\text{H}_3\text{CH}_3)-$
460	$\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\overset{\text{O}}{\underset{\text{H}}{\text{N}}}(\text{C}_6\text{H}_3\text{CH}_3)-\text{CH}_3$
461	$\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\overset{\text{O}}{\underset{\text{H}}{\text{N}}}(\text{C}_6\text{H}_4\text{CF}_3)-$
462	$\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\overset{\text{O}}{\underset{\text{H}}{\text{N}}}(\text{C}_6\text{H}_4\text{CH}_3)-$

65

Table 1.43

Compd. No.	R^1 R^2	$(\text{CH}_2)_l^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- \begin{array}{c} \text{R}^4 \\ \\ -\text{C}- \\ \\ \text{R}^5 \end{array} (\text{CH}_2)_q^- \text{G}-\text{R}^6$
463		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CH}_2-$
464		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{OCH}_3)_2-\text{CH}_2-$
465		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3\text{N}-\text{CH}_2-$
466		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3\text{NO}_2-\text{CH}_2-$
467		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3\text{Br}-\text{CH}_2-$
468		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3\text{N}(\text{CH}_3)_2-\text{CH}_2-$
469		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3\text{OCH}_3-\text{CH}_2-$
470		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3\text{CN}-\text{CH}_2-$
471		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CO}_2\text{CH}_3-\text{CH}_2-$
472		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CH}_2-$
473		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{C}(=\text{O})-\text{CH}_3-\text{CH}_2-$

6 6

Table 1.44

Compd. No.	R^1 R^2	$(\text{CH}_2)_j^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- \begin{array}{c} \text{R}^4 \\ \\ \text{C} \\ \\ \text{R}^5 \end{array} (\text{CH}_2)_q^- \text{G-R}^6$
474		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}_6\text{H}_4-\text{CF}_3)-\text{C}(=\text{O})-$
475		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}_6\text{H}_4-\text{CH}(\text{CH}_3)_2)-\text{C}(=\text{O})-$
476		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}_6\text{H}_4-\text{NO}_2)-\text{C}(=\text{O})-$
477		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}_6\text{H}_4-\text{OCH}(\text{CH}_3)_2)-\text{C}(=\text{O})-$
478		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}_6\text{H}_4-\text{CH}_2-\text{C}_3\text{H}_5-\text{N}(\text{H}_3\text{C}))-\text{C}(=\text{O})-$
479		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}_6\text{H}_4-\text{CH}_2-\text{C}_3\text{H}_5-\text{O})-\text{C}(=\text{O})-$
480		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}_6\text{H}_4-\text{CH}_2-\text{C}_3\text{H}_5-\text{OBr})-\text{C}(=\text{O})-$
481		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}_6\text{H}_4-\text{CH}_2-\text{C}_3\text{H}_5-\text{S})-\text{C}(=\text{O})-$
482		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}_6\text{H}_4-\text{CH}_2-\text{C}_3\text{H}_5-\text{CH}_3)-\text{C}(=\text{O})-$
483		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}_6\text{H}_4-\text{CH}_2-\text{C}_3\text{H}_5-\text{CH}_3)-\text{C}(=\text{O})-$
484		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}_6\text{H}_4-\text{CH}_2-\text{C}_3\text{H}_5-\text{N})-\text{C}(=\text{O})-$

6 7

Table 1.45

Compd. No.	R^1 R^2	$(\text{CH}_2)_l$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \begin{array}{c} \text{R}^4 \\ \\ \text{R}^5 \end{array} (\text{CH}_2)_q \text{G-R}^6$
485		$(\text{CH}_2)_2$	2	2	1	-	H	$-\text{CH}_2-\text{N}^+ \text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CF}_3)_2$
486		$(\text{CH}_2)_2$	2	2	1	-	H	$-\text{CH}_2-\text{N}^+ \text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CN})_2$
487		$(\text{CH}_2)_2$	2	2	1	-	H	$-\text{CH}_2-\text{N}^+ \text{C}(=\text{O})-\text{C}_6\text{H}_3\text{Cl}_2$
488		$(\text{CH}_2)_2$	2	2	1	-	H	$-\text{CH}_2-\text{N}^+ \text{C}(=\text{O})-\text{C}_6\text{H}_4\text{NH}_2$
489		$(\text{CH}_2)_2$	2	2	1	-	H	$-\text{CH}_2-\text{N}^+ \text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CF}_3)_2$
490		$(\text{CH}_2)_2$	2	2	1	-	H	$-\text{CH}_2-\text{N}^+ \text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{OCH}_2\text{CH}_3)_2$
491		$(\text{CH}_2)_2$	2	2	1	-	H	$-\text{CH}_2-\text{N}^+ \text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CF}_3)_2$
492		$(\text{CH}_2)_2$	2	2	1	-	H	$-\text{CH}_2-\text{N}^+ \text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{OCF}_3)_2$
493		$(\text{CH}_2)_2$	2	2	1	-	H	$-\text{CH}_2-\text{N}^+ \text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{Cl})_2$
494		$(\text{CH}_2)_2$	2	2	1	-	H	$-\text{CH}_2-\text{N}^+ \text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CF}_3)_2$
495		$(\text{CH}_2)_2$	2	2	1	-	H	$-\text{CH}_2-\text{N}^+ \text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{F})_2$

Table 1.46

Compd. No.	R^1 R^2	$(\text{CH}_2)_j$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \begin{array}{c} \text{R}^4 \\ \\ \text{C} \\ \\ \text{R}^5 \end{array} (\text{CH}_2)_q \text{G-R}^6$
496		$(\text{CH}_2)_j$	2	2	1	-	H	
497		$(\text{CH}_2)_j$	2	2	1	-	H	
498		$(\text{CH}_2)_j$	2	2	1	-	H	
499		$(\text{CH}_2)_j$	2	2	1	-	H	
500		$(\text{CH}_2)_j$	2	2	1	-	H	
501		$(\text{CH}_2)_j$	2	2	1	-	H	
502		$(\text{CH}_2)_j$	2	2	1	-	H	
503		$(\text{CH}_2)_j$	2	2	1	-	H	
504		$(\text{CH}_2)_j$	2	2	1	-	H	
505		$(\text{CH}_2)_j$	2	2	1	-	H	
506		$(\text{CH}_2)_j$	2	2	1	-	H	

6 9

Table 1.47

Compd. No.	R^1 R^2	R^3	R^4 R^5	R^6			
	$\text{--}(\text{CH}_2)_k\text{--}$	k	m	n	chirality	$\text{--}(\text{CH}_2)_p\text{--}$	G
507	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
508	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
509	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
510	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
511	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
512	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
513	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
514	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
515	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
516	$\text{H}_2\text{N}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
517	$\text{H}_2\text{N}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	

70

Table 1.48

71

Table 1.49

Compd. No.	R^1 R^2 $\text{---}(\text{CH}_2)_j\text{---}$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p\text{---}\overset{\text{R}^4}{\underset{\text{R}^5}{\text{C}}}\text{---}(\text{CH}_2)_q\text{---}\text{G---}\text{R}^6$
529		2	2	1	-	H	
530		2	2	1	-	H	
531		2	2	1	-	H	
532		2	2	1	-	H	
533		2	2	1	-	H	
534		2	2	1	-	H	
535		2	2	1	-	H	
536		2	2	1	-	H	
537		2	2	1	-	H	
538		2	2	1	-	H	
539		2	2	1	-	H	

72

Table 1.50

Compd. No.	R^1 R^2 $\text{---}(\text{CH}_2)_i\text{---}$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p\overset{\text{R}^4}{\underset{\text{R}^5}{\text{I}}}\text{---}(\text{CH}_2)_q\text{---}\text{G---}\text{R}^6$
540		2	2	1	-	H	
541		2	2	1	-	H	
542		2	2	1	-	H	
543		2	2	1	-	H	
544		2	2	1	-	H	
545		2	2	1	-	H	
546		2	2	1	-	H	
547		2	2	1	-	H	
548		2	2	1	-	H	
549		2	2	1	-	H	
550		2	2	1	-	H	

73

Table 1.5.1

Compd. No.	R^1 R^2	$(\text{CH}_2)_l^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \begin{array}{c} \text{R}^4 \\ \\ \text{R}^5 \end{array} (\text{CH}_2)_q^- \text{G}-\text{R}^6$
551			2	2	1	-	H	
552			2	2	1	-	H	
553			2	2	1	-	H	
554			2	2	1	-	H	
555			2	2	1	-	H	
556			2	2	1	-	H	
557			2	2	1	-	H	
558			2	2	1	-	H	
559			2	2	1	-	H	
560			2	2	1	-	H	
561			2	2	1	-	H	

74

Table 1.52

Compd. No.	R^1 R^2 $\text{---}(\text{CH}_2)_l\text{---}$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p\text{---}\overset{\text{R}^4}{\underset{\text{R}^5}{\text{C}}}(\text{CH}_2)_q\text{---}G\text{---}R^6$
562	$\text{Cl---}\text{C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	
563	$\text{Cl---}\text{C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	
564	$\text{Cl---}\text{C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	
565	$\text{Cl---}\text{C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	
566	$\text{Cl---}\text{C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	
567	$\text{Cl---}\text{C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	
568	$\text{Cl---}\text{C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	
569	$\text{Cl---}\text{C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	
570	$\text{Cl---}\text{C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	
571	$\text{Cl---}\text{C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	
572	$\text{Cl---}\text{C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	

75

Table 1.53

Compd. No.	R^1 R^2	$(\text{CH}_2)_k$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \text{C}(=\text{O}) \text{R}^4$ R^5 $(\text{CH}_2)_q \text{G-R}^6$
573		$(\text{CH}_2)_2$	2	2	1	-	H	
574		$(\text{CH}_2)_2$	2	2	1	-	H	
575		$(\text{CH}_2)_2$	2	2	1	-	H	
576		$(\text{CH}_2)_2$	2	2	1	-	H	
577		$(\text{CH}_2)_2$	2	2	1	-	H	
578		$(\text{CH}_2)_2$	2	2	1	-	H	
579		$(\text{CH}_2)_2$	2	2	1	-	H	
580		$(\text{CH}_2)_2$	2	2	1	-	H	
581		$(\text{CH}_2)_2$	2	2	1	-	H	
582		$(\text{CH}_2)_2$	2	2	1	-	H	
583		$(\text{CH}_2)_2$	2	2	1	-	H	

76

Table 1.54

Compd. No.	R^1 R^2	$(CH_2)_j$	k	m	n	chirality	R^3	$-(CH_2)_p$ $\begin{array}{c} R^4 \\ \\ -CH-N-C- \\ \\ CH_3 \end{array}$ $(CH_2)_q$	G-R ⁶
584		-	2	2	1	-	H		
585		-	2	2	1	-	H		
586		-	2	2	1	-	H		
587		-	2	2	1	-	H		
588		-	2	2	1	-	H		
589		-	2	2	1	-	H		
590		-	2	2	1	-	H		
591		-	2	2	1	-	H		
592		-	2	2	1	-	H		
593		-	2	2	1	-	H		
594		-	2	2	1	-	H		

77

Table 1.55

Compd. No.	R^1 R^2	$(\text{CH}_2)_l$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p$ R^4 R^5 $-(\text{CH}_2)_q$ G-R^6
595		$(\text{CH}_2)_l$	2	2	1	-	H	
596		$(\text{CH}_2)_l$	2	2	1	-	H	
597		$(\text{CH}_2)_l$	2	2	1	-	H	
598		$(\text{CH}_2)_l$	2	2	1	-	H	
599		$(\text{CH}_2)_l$	2	2	1	-	H	
600		$(\text{CH}_2)_l$	2	2	1	-	H	
601		$(\text{CH}_2)_l$	2	2	1	-	H	
602		$(\text{CH}_2)_l$	2	2	1	-	H	
603		$(\text{CH}_2)_l$	2	2	1	-	H	
604		$(\text{CH}_2)_l$	2	2	1	-	H	
605		$(\text{CH}_2)_l$	2	2	1	-	H	

78

Table 1.56

Compd. No.	R^1 R^2	$(\text{CH}_2)_l^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- \begin{array}{c} \text{R}^4 \\ \\ -\text{C}- \\ \\ \text{H} \end{array} (\text{CH}_2)_q^- \text{G}-\text{R}^6$
606		$(\text{CH}_2)_l^-$	2	2	1	-	H	
607		$(\text{CH}_2)_l^-$	2	2	1	-	H	
608		$(\text{CH}_2)_l^-$	2	2	1	-	H	
609		$(\text{CH}_2)_l^-$	2	2	1	-	H	
610		$(\text{CH}_2)_l^-$	2	2	1	-	H	
611		$(\text{CH}_2)_l^-$	2	2	1	-	H	
612		$(\text{CH}_2)_l^-$	2	2	1	-	H	
613		$(\text{CH}_2)_l^-$	2	2	1	-	H	
614		$(\text{CH}_2)_l^-$	2	2	1	-	H	
615		$(\text{CH}_2)_l^-$	2	2	1	-	H	
616		$(\text{CH}_2)_l^-$	2	2	1	-	H	

Table 1.57

Compd. No.	R^1 R^2 - $(\text{CH}_2)_j$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p$ $\begin{array}{c} \text{R}^4 \\ \\ -\text{CH}-\text{N}-\text{C}- \\ \\ \text{H} \\ \\ \text{CH}(\text{CH}_3)_2 \end{array}$ $(\text{CH}_2)_q$ - $\text{G}-\text{R}^6$
617		2	2	1	-	H	
618		2	2	1	-	H	
619		2	2	1	-	H	
620		2	2	1	-	H	
621		2	2	1	-	H	
622		2	2	1	-	H	
623		2	2	1	-	H	
624		2	2	1	-	H	
625		2	2	1	-	H	
626		2	2	1	-	H	
627		2	2	1	-	H	

80

Table 1.5.8

Compd. No.	R^1 R^2 $\text{---}(\text{CH}_2)_m\text{---}$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p\text{---}\overset{\text{R}^4}{\underset{\text{R}^5}{\text{C}}}(\text{CH}_2)_q\text{---G---R}^6$
628		2	2	1	-	H	
629		2	2	1	-	H	
630		2	2	1	-	H	
631		2	2	1	-	H	
632		2	2	1	-	H	
633		2	2	1	-	H	
634		2	2	1	-	H	
635		2	2	1	-	H	
636		2	2	1	-	H	
637		2	2	1	-	H	
638		2	2	1	-	H	

81

Table 1.59

Compd. No.	R^1 R^2	$(\text{CH}_2)_j$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p$ R^4 R^5 $(\text{CH}_2)_q$ $\text{G}-\text{R}^6$
639		$(\text{CH}_2)_2$	2	2	1	-	H	
640		$(\text{CH}_2)_2$	2	2	1	-	H	
641		$(\text{CH}_2)_2$	2	2	1	-	H	
642		$(\text{CH}_2)_2$	2	2	1	-	H	
643		$(\text{CH}_2)_2$	2	2	1	-	H	
644		$(\text{CH}_2)_2$	2	2	1	-	H	
645		$(\text{CH}_2)_2$	2	2	1	-	H	
646		$(\text{CH}_2)_2$	2	2	1	-	H	
647		$(\text{CH}_2)_2$	2	2	1	-	H	
648		$(\text{CH}_2)_2$	2	2	1	-	H	
649		$(\text{CH}_2)_2$	2	2	1	-	H	

82

Table 1.60

Compd. No.	R^1 $\text{C}_6\text{H}_4-\text{CH}_2-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \begin{array}{c} R^4 \\ \\ -\text{C}- \\ \\ R^5 \end{array} (\text{CH}_2)_q \text{G}-\text{R}^6$
650	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
651	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
652	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
653	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
654	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
655	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
656	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
657	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
658	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
659	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
660	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	

83

Table 1.6.1

Compd. No.	R^1 R^2	$(\text{CH}_2)_l^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- \begin{array}{c} \text{R}^4 \\ \\ \text{C}=\text{O} \\ \\ \text{N}-\text{H} \\ \\ \text{CH}(\text{CH}_3)_2 \end{array} \text{OCH}_3 - (\text{CH}_2)_q^- \text{G}-\text{R}^6$
661		$(\text{CH}_2)_l^-$	2	2	1	-	H	
662		$(\text{CH}_2)_l^-$	2	2	1	-	H	
663		$(\text{CH}_2)_l^-$	2	2	1	-	H	
664		$(\text{CH}_2)_l^-$	2	2	1	-	H	
665		$(\text{CH}_2)_l^-$	2	2	1	-	H	
666		$(\text{CH}_2)_l^-$	2	2	1	-	H	
667		$(\text{CH}_2)_l^-$	2	2	1	-	H	
668		$(\text{CH}_2)_l^-$	2	2	1	-	H	
669		$(\text{CH}_2)_l^-$	2	2	1	-	H	
670		$(\text{CH}_2)_l^-$	2	2	1	-	H	
671		$(\text{CH}_2)_l^-$	2	2	1	-	H	

84

Table 1.62

Compd. No.	R^1 R^2 $\text{---}(\text{CH}_2)_j\text{---}$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p\overset{\text{R}^4}{\underset{\text{R}^5}{\text{C}}}(\text{CH}_2)_q\text{G---R}^6$
672		2	2	1	-	H	
673		2	2	1	-	H	
674		2	2	1	-	H	
675		2	2	1	-	H	
676		2	2	1	-	H	
677		2	2	1	-	H	
678		2	2	1	-	H	
679		2	2	1	-	H	
680		2	2	1	-	H	
681		2	2	1	-	H	
682		2	2	1	-	H	

85

Table 1.63

Compd. No.	R^1 R^2 - $\text{C}(\text{CH}_2)_n-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p-\overset{\text{R}^4}{\underset{\text{R}^5}{\text{C}}}-(\text{CH}_2)_q-\text{G}-\text{R}^6$
683	$\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
684	$\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
685	$\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
686	$\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
687	$\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
688	$\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
689	$\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
690	$\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
691	$\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
692	$\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
693	$\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	

86

Table 1.64

Compd. No.	R^1 R^2 - $(CH_2)_j-$	k	m	n	chirality	R^3	$-(CH_2)_p$ $\overset{R^4}{\underset{R^5}{ }}$ $(CH_2)_q$ -G-R ⁶
694	Cl- -CH ₂ -	2	2	1	-	H	
695	Cl- -CH ₂ -	2	2	1	-	H	
696	Cl- -CH ₂ -	2	2	1	-	H	
697	Cl- -CH ₂ -	2	2	1	-	H	
698	Cl- -CH ₂ -	2	2	1	-	H	
699	Cl- -CH ₂ -	2	2	1	-	H	
700	Cl- -CH ₂ -	2	2	1	-	H	
701	Cl- -CH ₂ -	2	2	1	-	H	
702	Cl- -CH ₂ -	2	2	1	-	H	
703	Cl- -CH ₂ -	2	2	1	-	H	
704	Cl- -CH ₂ -	2	2	1	-	H	

87

Table 1.65

Compd. No.	R^1 R^2	(CH_2) $_k$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p-\text{C}(=\text{O})-$ R^4 R^5	$-(\text{CH}_2)_q-\text{G}-\text{R}^6$
705	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>	CH_2-CH_2-	2	2	1	-	H	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>
706	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>	CH_2-CH_2-	2	2	1	-	H	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>
707	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>	CH_2-CH_2-	2	2	1	-	H	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>
708	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>	CH_2-CH_2-	2	2	1	-	H	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>
709	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>	CH_2-CH_2-	2	2	1	-	H	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>
710	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>	CH_2-CH_2-	2	2	1	-	H	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>
711	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>	CH_2-CH_2-	2	2	1	-	H	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>
712	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>	CH_2-CH_2-	2	2	1	-	H	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>
713	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>	CH_2-CH_2-	2	2	1	-	H	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>
714	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>	CH_2-CH_2-	2	2	1	-	H	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>
715	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>	CH_2-CH_2-	2	2	1	-	H	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N3CCCC3</chem>

88

Table 1.66

Compd. No.	R^1 $\begin{array}{c} R^2 \\ \\ -CH_2-(CH_2)_l-\end{array}$	k	m	n	chirality	R^3	$-(CH_2)_p\begin{array}{c} R^4 \\ \\ -C(CH_2)_q-G-R^6 \\ \\ R^5 \end{array}$
716	$Cl-C_6H_4-CH_2-$	2	2	1	-	H	
717	$Cl-C_6H_4-CH_2-$	2	2	1	-	H	
718	$Cl-C_6H_4-CH_2-$	2	2	1	-	H	
719	$Cl-C_6H_4-CH_2-$	2	2	1	-	H	
720	$Cl-C_6H_4-CH_2-$	2	2	1	-	H	
721	$Cl-C_6H_4-CH_2-$	2	2	1	-	H	
722	$Cl-C_6H_4-CH_2-$	2	2	1	-	H	
723	$Cl-C_6H_4-CH_2-$	2	2	1	-	H	
724	$Cl-C_6H_4-CH_2-$	2	2	1	-	H	
725	$Cl-C_6H_4-CH_2-$	2	2	1	-	H	
726	$Cl-C_6H_4-CH_2-$	2	2	1	-	H	

Table 1.6.7

Compd. No.	R^1 R^2 - $(CH_2)_l-$	k	m	n	chirality	R^3	$-(CH_2)_p$ $\begin{array}{c} R^4 \\ \\ -CH-N-C- \\ \\ R^5 \end{array}$ $(CH_2)_q-G-R^6$
727	Cl- -CH ₂ -	2	2	1	-	H	
728	Cl- -CH ₂ -	2	2	1	-	H	
729	Cl- -CH ₂ -	2	2	1	-	H	
730	Cl- -CH ₂ -	2	2	1	-	H	
731	Cl- -CH ₂ -	2	2	1	-	H	
732	Cl- -CH ₂ -	2	2	1	-	H	
733	Cl- -CH ₂ -	2	2	1	-	H	
734	Cl- -CH ₂ -	2	2	1	-	H	
735	Cl- -CH ₂ -	2	2	1	-	H	
736	Cl- -CH ₂ -	2	2	1	-	H	
737	Cl- -CH ₂ -	2	2	1	-	H	

90

Table 1.6.8

Compd. No.	R^1 R^2	$(\text{CH}_2)_j$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p$ R^4 R^5 $(\text{CH}_2)_q$	G-R ⁶
738		CH_2-	2	2	1	-	H		
739		CH_2-	2	2	1	-	H		
740		CH_2-	2	2	1	-	H		
741		CH_2-	2	2	1	-	H		
742		CH_2-	2	2	1	-	H		
743		CH_2-	2	2	1	-	H		
744		CH_2-	2	2	1	-	H		
745		CH_2-	2	2	1	-	H		
746		CH_2-	2	2	1	-	H		
747		CH_2-	2	2	1	-	H		
748		CH_2-	2	2	1	-	H		

91

Table 1.6.9

Compd. No.	R^1 R^2	R^3	R^4 R^5	R^6			
	$\text{--}(\text{CH}_2)_p\text{--}$	$\text{--}(\text{CH}_2)_q\text{--}$	G--				
749		2	2	1	-	H	
750		2	2	1	-	H	
751		2	2	1	-	H	
752		2	2	1	-	H	
753		2	2	1	-	H	
754		2	2	1	-	H	
755		2	2	1	-	H	
756		2	2	1	-	H	
757		2	2	1	-	H	
758		2	2	1	-	H	
759		2	2	1	-	H	

92

Table 1.70

Compd. No.	R^1 R^2 $\text{---}(\text{CH}_2)_j\text{---}$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p\text{---}\begin{array}{c} \text{R}^4 \\ \\ \text{C} \\ \\ \text{H} \\ \\ \text{CH}_2\text{OH} \end{array}\text{---}(\text{CH}_2)_q\text{---G---R}^6$
760		2	2	1	-	H	
761		2	2	1	-	H	
762		2	2	1	-	H	
763		2	2	1	-	H	
764		2	2	1	-	H	
765		2	2	1	-	H	
766		2	2	1	-	H	
767		2	2	1	-	H	
768		2	2	1	-	H	
769		2	2	1	-	H	
770		2	2	1	-	H	

9 3

Table 1.71

Compd. No.	R^1 $\text{C}_6\text{H}_4-\text{CH}_2-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p-\text{C}(=\text{O})-\text{CH}_2-\text{G}-\text{R}^6$
771	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$\begin{array}{c} \text{CH}_3 \\ \\ -\text{C}-\text{N}-\text{H} \\ \\ \text{CH}_3 \end{array} \text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
772	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$\begin{array}{c} \text{CH}_3 \\ \\ -\text{C}-\text{N}-\text{H} \\ \\ \text{CH}_3 \end{array} \text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
773	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$\begin{array}{c} \text{CH}_3 \\ \\ -\text{C}-\text{N}-\text{C} \\ \\ \text{CH}_3 \end{array} \text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{O}-\text{C}(\text{CH}_3)_3$
774	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$\begin{array}{c} \text{CH}_3 \\ \\ -\text{C}-\text{N}-\text{H} \\ \\ \text{CH}_3 \end{array} \text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{SCH}_3$
775	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$\begin{array}{c} \text{CH}_3 \\ \\ -\text{C}-\text{N}-\text{H} \\ \\ \text{CH}_3 \end{array} \text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{O}-\text{C}(\text{CH}_3)_3$
776	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$\begin{array}{c} \text{CH}_3 \\ \\ -\text{C}-\text{N}-\text{H} \\ \\ \text{CH}_3 \end{array} \text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{O}-\text{C}_6\text{H}_5$
777	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$\begin{array}{c} \text{CH}_3 \\ \\ -\text{C}-\text{N}-\text{H} \\ \\ \text{CH}_3 \end{array} \text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{O}-\text{CH}_3$
778	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$\begin{array}{c} \text{CH}_3 \\ \\ -\text{C}-\text{N}-\text{H} \\ \\ \text{CH}_3 \end{array} \text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{NO}_2$
779	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$\begin{array}{c} \text{CH}_3 \\ \\ -\text{C}-\text{N}-\text{H} \\ \\ \text{CH}_3 \end{array} \text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{Cl}$
780	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$\begin{array}{c} \text{CH}_3 \\ \\ -\text{C}-\text{N}-\text{H} \\ \\ \text{CH}_3 \end{array} \text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{NO}_2$
781	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$\begin{array}{c} \text{CH}_3 \\ \\ -\text{C}-\text{N}-\text{H} \\ \\ \text{CH}_3 \end{array} \text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{N}$

94

Table 1.72

Compd. No.	R^1 R^2	$(\text{CH}_2)_k^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- \begin{array}{c} \text{R}^4 \\ \\ \text{C}-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{G}-\text{R}^6 \\ \\ \text{CH}_3 \end{array}$
782		$(\text{CH}_2)_2^-$	2	2	1	-	H	
783		$(\text{CH}_2)_2^-$	2	2	1	-	H	
784		$(\text{CH}_2)_2^-$	2	2	1	-	H	
785		$(\text{CH}_2)_2^-$	2	2	1	-	H	
786		$(\text{CH}_2)_2^-$	2	2	1	-	H	
787		$(\text{CH}_2)_2^-$	2	2	1	-	H	
788		$(\text{CH}_2)_2^-$	2	2	1	-	H	
789		$(\text{CH}_2)_2^-$	2	2	1	-	H	
790		$(\text{CH}_2)_2^-$	2	2	1	-	H	
791		$(\text{CH}_2)_2^-$	2	2	1	-	H	
792		$(\text{CH}_2)_2^-$	2	2	1	-	H	

95

Table 1.73

Compd. No.	R^1 R^2	$(\text{CH}_2)_j^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^{\text{R}^4} \text{C}(=\text{O}) \text{N}(\text{H})(\text{C}_2\text{H}_4\text{CH}_2) \text{C}(=\text{O}) \text{N}(\text{H})(\text{C}_2\text{H}_4\text{CH}_2) \text{G}-\text{R}^6$
793	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	CH_2-	2	2	1	-	H	
794	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	CH_2-	2	2	1	-	H	
795	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	CH_2-	2	2	1	-	H	
796	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	CH_2-	2	2	1	-	H	
797	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	CH_2-	2	2	1	-	H	
798	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	CH_2-	2	2	1	-	H	
799	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	CH_2-	2	2	1	-	H	
800	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	CH_2-	2	2	1	-	H	
801	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	CH_2-	2	2	1	-	H	
802	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	CH_2-	2	2	1	-	H	
803	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	CH_2-	2	2	1	-	H	

9 6

Table 1.74

Compd. No.	R^1 R^2	$(CH_2)_l^-$	k	m	n	chirality	R^3	$-(CH_2)_p^-$ R^4 R^5 $(CH_2)_q^-$ G-R ⁶
804	Cl- C6H5-	CH2-	2	2	1	-	H	
805	Cl- C6H5-	CH2-	2	2	1	-	H	
806	Cl- C6H5-	CH2-	2	2	1	-	H	
807	Cl- C6H5-	CH2-	2	2	1	-	H	
808	Cl- C6H5-	CH2-	2	2	1	-	H	
809	Cl- C6H5-	CH2-	2	2	1	-	H	
810	Cl- C6H5-	CH2-	2	2	1	-	H	
811	Cl- C6H5-	CH2-	2	2	1	-	H	
812	Cl- C6H5-	CH2-	2	2	1	-	H	
813	Cl- C6H5-	CH2-	2	2	1	-	H	
814	Cl- C6H5-	CH2-	2	2	1	-	H	

97

Table 1.75

Compd. No.	R^1 R^2 - $\text{C}(\text{CH}_2)_j-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \begin{array}{c} R^4 \\ \\ -\text{C}-\text{C}-\text{CH}_2-\text{G}-\text{R}^6 \\ \\ \text{H} \\ \\ (\text{CH}_2)_q \text{C}-\text{NH}_2 \end{array}$
815	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}-\text{N}-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$ $\text{H} \quad $ $(\text{CH}_2)_2 \text{C}-\text{NH}_2 \quad \text{O}$
816	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}-\text{N}-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$ $\text{H} \quad $ $(\text{CH}_2)_2 \text{C}-\text{NH}_2 \quad \text{O}$
817	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}-\text{N}-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$ $\text{H} \quad $ $(\text{CH}_2)_2 \text{C}-\text{NH}_2 \quad \text{O}$
818	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}-\text{N}-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{Br}$ $\text{H} \quad $ $(\text{CH}_2)_2 \text{C}-\text{NH}_2 \quad \text{O}$
819	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}-\text{N}-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$ $\text{H} \quad $ $(\text{CH}_2)_2 \text{C}-\text{NH}_2 \quad \text{O}$
820	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}-\text{N}-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{NO}_2$ $\text{H} \quad $ $(\text{CH}_2)_2 \text{C}-\text{NH}_2 \quad \text{O}$
821	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}-\text{N}-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{NO}_2$ $\text{CH}_2\text{OCH}_3 \quad $
822	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}-\text{N}-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{SCH}_3$ $\text{CH}_2\text{OCH}_3 \quad $
823	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}-\text{N}-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{NHC}_6\text{H}_5$ $\text{CH}_2\text{OCH}_3 \quad $
824	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}-\text{N}-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{OC}(\text{CH}_3)_3$ $\text{CH}_2\text{OCH}_3 \quad $
825	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}-\text{N}-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{OC}_6\text{H}_5$ $\text{CH}_2\text{OCH}_3 \quad $

9 8

Table 1.76

Compd. No.	R^1 R^2 - $\text{C}(\text{CH}_2)_j-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \overset{\text{R}^4}{\underset{\text{R}^5}{\text{C}}} (\text{CH}_2)_q \text{G-R}^6$
826	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
827	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
828	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
829	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
830	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
831	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
832	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
833	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
834	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
835	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
836	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	

9 9

Table 1.77

Compd. No.	R^1 R^2	$(\text{CH}_2)_j^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \begin{array}{c} \text{R}^4 \\ \\ -\text{C}- \\ \\ \text{H} \end{array} (\text{CH}_2)_q \text{G-R}^6$
837		$(\text{CH}_2)_2^-$	2	2	1	-	H	
838		$(\text{CH}_2)_2^-$	2	2	1	-	H	
839		$(\text{CH}_2)_2^-$	2	2	1	-	H	
840		$(\text{CH}_2)_2^-$	2	2	1	-	H	
841		$(\text{CH}_2)_2^-$	2	2	1	-	H	
842		$(\text{CH}_2)_2^-$	2	2	1	-	H	
843		$(\text{CH}_2)_2^-$	2	2	1	-	H	
844		$(\text{CH}_2)_2^-$	2	2	1	-	H	
845		$(\text{CH}_2)_2^-$	2	2	1	-	H	
846		$(\text{CH}_2)_2^-$	2	2	1	-	H	
847		$(\text{CH}_2)_2^-$	2	2	1	-	H	

100

Table 1.78

Compd. No.	R^1 R^2	$(\text{CH}_2)_j$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p$ $\begin{array}{c} \text{R}^4 \\ \\ \text{---} \\ \\ \text{R}^5 \end{array}$ $(\text{CH}_2)_q$	G-R ⁶
848		$(\text{CH}_2)_j$	2	2	1	-	H		$-(\text{CH}_2)_2-\overset{\text{O}}{\underset{\text{H}_3\text{C}}{\text{C}}}(\text{phenyl})-\text{CH}_3$
849		$(\text{CH}_2)_j$	2	2	1	-	H		$-(\text{CH}_2)_2-\overset{\text{O}}{\underset{\text{H}_3\text{CO}}{\text{C}}}(\text{phenyl})-\text{OCH}_3$
850		$(\text{CH}_2)_j$	2	2	1	-	H		$-\text{CH}_2-\overset{\text{O}}{\underset{\text{O}}{\text{S}}}(\text{phenyl})-\text{CH}_3$
851		$(\text{CH}_2)_j$	2	2	1	-	H		$-\text{CH}_2-\overset{\text{H}}{\underset{\text{H}}{\text{N}}}(\text{C}-\text{N}(\text{H})\text{C}_6\text{H}_4)\text{CF}_3$
852		$(\text{CH}_2)_j$	2	2	1	-	H		$-\text{CH}_2-\overset{\text{H}}{\underset{\text{H}}{\text{N}}}(\text{C}-\text{N}(\text{H})\text{C}_6\text{H}_4)\text{CF}_3$
853		$(\text{CH}_2)_j$	2	2	1	-	H		$-\text{CH}_2-\overset{\text{H}}{\underset{\text{H}}{\text{N}}}(\text{C}-\text{N}(\text{H})\text{C}_6\text{H}_4)\text{CH}_3$
854		$(\text{CH}_2)_j$	2	2	1	-	H		$-\text{CH}_2-\overset{\text{H}}{\underset{\text{H}}{\text{N}}}(\text{C}-\text{N}(\text{H})\text{C}_6\text{H}_4)\text{CH}_3$
855		$(\text{CH}_2)_j$	2	2	1	-	H		$-\text{CH}_2-\overset{\text{H}}{\underset{\text{H}}{\text{N}}}(\text{C}-\text{N}(\text{H})\text{C}_6\text{H}_4)\text{CH}_3$
856		$(\text{CH}_2)_j$	2	2	1	-	H		$-\text{CH}_2-\overset{\text{H}}{\underset{\text{H}}{\text{N}}}(\text{C}-\text{N}(\text{H})\text{C}_6\text{H}_4)\text{C}(=\text{O})\text{CH}_3$
857		$(\text{CH}_2)_j$	2	2	1	-	H		$-\text{CH}_2-\overset{\text{H}}{\underset{\text{H}}{\text{N}}}(\text{C}-\text{N}(\text{H})\text{C}_6\text{H}_4)\text{OCH}_3$
858		$(\text{CH}_2)_j$	2	2	1	-	H		$-\text{CH}_2-\overset{\text{H}}{\underset{\text{H}}{\text{N}}}(\text{C}-\text{N}(\text{H})\text{C}_6\text{H}_4)\text{OCH}_3$

101

Table 1.79

Compd. No.	R_1^1 R_2^2	k	m	n	chirality	R^3	$-(CH_2)_p$	$\begin{array}{c} R^4 \\ \\ -(CH_2)_q-G-R^6 \\ \\ R^5 \end{array}$
859	<chem>Clc1ccc(CC)c1</chem>	2	2	1	-	H	$-\text{CH}_2-$	$\begin{array}{c} \text{O} \\ \\ \text{H}-\text{C}-\text{N}-\text{C}(=\text{O})-\text{N}-\text{C}_6\text{H}_4-\text{Cl} \\ \\ \text{H} \end{array}$
860	<chem>Clc1ccc(CC)c1</chem>	2	2	1	-	H	$-\text{CH}_2-$	$\begin{array}{c} \text{O} \\ \\ \text{H}-\text{C}-\text{N}-\text{C}(=\text{O})-\text{N}-\text{C}_6\text{H}_4-\text{C#N} \\ \\ \text{H} \end{array}$
861	<chem>Clc1ccc(CC)c1</chem>	2	2	1	-	H	$-\text{CH}_2-$	$\begin{array}{c} \text{S} \\ \equiv \\ \text{H}-\text{C}-\text{N}-\text{C}(=\text{S})-\text{N}-\text{C}_6\text{H}_4 \\ \\ \text{H} \end{array}$
862	<chem>Clc1ccc(CC)c1</chem>	2	2	1	-	H	$-\text{CH}_2-$	$\begin{array}{c} \text{S} \\ \equiv \\ \text{H}-\text{C}-\text{N}-\text{C}(=\text{S})-\text{N}-\text{C}_6\text{H}_4-\text{CH}_3 \\ \\ \text{H} \end{array}$
863	<chem>Clc1ccc(CC)c1</chem>	2	2	1	-	H	$-\text{CH}_2-$	$\begin{array}{c} \text{S} \\ \equiv \\ \text{H}-\text{C}-\text{N}-\text{C}(=\text{S})-\text{N}-\text{C}_6\text{H}_4-\text{OCH}_3 \\ \\ \text{H} \end{array}$
864	<chem>Clc1ccc(CC)c1</chem>	2	2	1	-	H	$-\text{CH}_2-$	$\begin{array}{c} \text{S} \\ \equiv \\ \text{H}-\text{C}-\text{N}-\text{C}(=\text{S})-\text{N}-\text{C}_6\text{H}_4-\text{OCH}_3 \\ \\ \text{H} \end{array}$
865	<chem>Clc1ccc(CC)c1</chem>	2	2	1	-	H	$-\text{CH}_2-$	$\begin{array}{c} \text{O} \\ \\ \text{H}-\text{S}-\text{C}_6\text{H}_4-\text{CH}_3 \\ \\ \text{O} \end{array}$
866	<chem>Clc1ccc(CC)c1</chem>	2	2	1	-	H	$-\text{CH}_2-$	$\begin{array}{c} \text{O} \\ \\ \text{H}-\text{S}(\text{CF}_3)-\text{C}_6\text{H}_4 \\ \\ \text{O} \end{array}$
867	<chem>Clc1ccc(CC)c1</chem>	2	2	1	-	H	$-\text{CH}_2-$	$\begin{array}{c} \text{O} \\ \\ \text{H}-\text{S}(\text{CF}_3)-\text{C}_6\text{H}_4-\text{CF}_3 \\ \\ \text{O} \end{array}$
868	<chem>Clc1ccc(CC)c1</chem>	2	2	1	-	H	$-\text{CH}_2-$	$\begin{array}{c} \text{O} \\ \\ \text{H}-\text{S}(\text{CH}_2\text{CH}_3)-\text{C}_6\text{H}_4 \\ \\ \text{O} \end{array}$
869	<chem>Clc1ccc(CC)c1</chem>	2	2	1	-	H	$-\text{CH}_2-$	$\begin{array}{c} \text{O} \\ \\ \text{H}-\text{S}(\text{CH(CH}_3)_2)-\text{C}_6\text{H}_4 \\ \\ \text{O} \end{array}$

102

Table 1.80

Compd. No.	R^1 R^2 $\text{C}_6\text{H}_4-\text{CH}_2-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p-\overset{\text{R}^4}{\underset{\text{R}^5}{\text{C}}}(\text{CH}_2)_q-\text{G}-\text{R}^6$
870	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})=\text{S}(=\text{O})_2-\text{C}_6\text{H}_4-\text{CH}_3$
871	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})=\text{S}(=\text{O})_2-\text{C}_6\text{H}_4-(\text{CH}_2)_3\text{CH}_3$
872	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})=\text{S}(=\text{O})_2-\text{C}_6\text{H}_4$
873	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{O}-\text{CH}_2-\text{C}_6\text{H}_4$
874	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{O}-\text{C}(=\text{O})-\text{N}(\text{H})-\text{C}_6\text{H}_4-\text{Cl}$
875	$\text{C}_6\text{H}_5-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})=\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
876	$\text{Br}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})=\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
877	$\text{NC}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})=\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
878	$\text{O}_2\text{N}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})=\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
879	$\text{O}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})=\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
880	$\text{O}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})=\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$

103

Table 1.81

Compd. No.	R^1 R^2	$(\text{CH}_2)_j$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p$ R^5	R^4	$(\text{CH}_2)_q$ $\text{G}-\text{R}^6$
881		$(\text{CH}_2)_2-$	2	2	1	-	H			
882		$(\text{CH}_2)_2-$	2	2	1	-	H			
883		$(\text{CH}_2)_2-$	2	2	1	-	H			
884		$(\text{CH}_2)_2-$	2	2	1	-	H			
885		$(\text{CH}_2)_2-$	2	2	1	-	H			
886		$(\text{CH}_2)_2-$	2	2	1	-	H			
887		$(\text{CH}_2)_2-$	2	2	1	-	H			
888		$(\text{CH}_2)_2-$	2	2	1	-	H			
889		$(\text{CH}_2)_2-$	2	2	1	-	H			
890		$(\text{CH}_2)_2-$	2	2	1	-	H			
891		$(\text{CH}_2)_2-$	2	2	1	-	H			

104

Table 1.8.2

Compd. No.	R^1 R^2	R^3	R^4 R^5	R^6	
	$\text{--}(\text{CH}_2)_k\text{--}$	m	n	chirality	
892		2	2	1	-
893		2	2	1	-
894		2	2	1	-
895		2	2	1	-
896		2	2	1	-
897		2	2	1	-
898		2	2	1	-
899		2	2	1	-
900		2	2	1	-
901		2	2	1	-
902		2	2	1	-

105

Table 1.83

Compd. No.	R^1 R^2	$(\text{CH}_2)_l^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- \begin{array}{c} \text{R}^4 \\ \\ \text{C} \\ \\ \text{H} \end{array} (\text{CH}_2)_q^- \text{G}-\text{R}^6$
903		OCH_3	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}(=\text{O})\text{CF}_3)\text{C}_6\text{H}_4-$
904		HO	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}(=\text{O})\text{CF}_3)\text{C}_6\text{H}_4-$
905		$\text{O}_2\text{N}-\text{S}-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}(=\text{O})\text{CF}_3)\text{C}_6\text{H}_4-$
906		$\text{C}_6\text{H}_5-(\text{CH}_2)_3-$	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}(=\text{O})\text{CF}_3)\text{C}_6\text{H}_4-$
907		$\text{C}_6\text{H}_5-\text{CH}(\text{CH}_2)_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}(=\text{O})\text{CF}_3)\text{C}_6\text{H}_4-$
908		$\text{C}_6\text{H}_5-\text{N}^{\text{H}}(\text{C}(=\text{O})\text{CF}_3)-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}(=\text{O})\text{CF}_3)\text{C}_6\text{H}_4-$
909		$\text{C}_6\text{H}_5-\text{N}^{\text{H}}(\text{C}(=\text{O})\text{CF}_3)-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}(=\text{O})\text{CF}_3)\text{C}_6\text{H}_4-$
910		$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}(=\text{O})\text{CF}_3)\text{C}_6\text{H}_4-$
911		$\text{Cl}-\text{C}_6\text{H}_3(\text{CH}_2)-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}(=\text{O})\text{CF}_3)\text{C}_6\text{H}_4-$
912		$\text{Br}_2-\text{C}_6\text{H}_3(\text{CH}_2)-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}(=\text{O})\text{CF}_3)\text{C}_6\text{H}_4-$
913		$\text{H}_3\text{CO}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}(=\text{O})\text{CF}_3)\text{C}_6\text{H}_4-$

106

Table 1.84

Compd. No.	R^1 $\begin{array}{c} R^2 \\ \\ -CH_2-(CH_2)_j-\end{array}$	k	m	n	chirality	R^3	$-(CH_2)_p\begin{array}{c} R^4 \\ \\ -C(CH_2)_q-G-R^6 \\ \\ R^5 \end{array}$
914		2	2	1	-	H	
915		2	2	1	-	H	
916		2	2	1	-	H	
917		2	2	1	-	H	
918		2	2	1	-	H	
919		2	2	1	-	H	
920		2	2	1	-	H	
921		2	2	1	-	H	
922		2	2	1	-	H	
923		2	2	1	-	H	
924		2	2	1	-	H	

107

Table 1.85

Compd. No.	R^1 R^2	$(\text{CH}_2)_k^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- \begin{array}{c} \text{R}^4 \\ \\ \text{R}^5 \end{array} (\text{CH}_2)_q^- \text{G}-\text{R}^6$
925	$\text{H}_2\text{N}-\text{C}(=\text{O})-$ 	CH_2-	2	2	1	-	H	$-\text{CH}_2-\text{N}(=\text{H})-\text{C}(=\text{O})-$
926		CH_2-	2	2	1	-	H	$-\text{CH}_2-\text{N}(=\text{H})-\text{C}(=\text{O})-$
927	$\text{F}_3\text{CO}-$ 	CH_2-	2	2	1	-	H	$-\text{CH}_2-\text{N}(=\text{H})-\text{C}(=\text{O})-$
928	$\text{F}_3\text{CO}-$ 	CH_2-	2	2	1	-	H	$-\text{CH}_2-\text{N}(=\text{H})-\text{C}(=\text{O})-$
929	$\text{H}_3\text{CS}-$ 	CH_2-	2	2	1	-	H	$-\text{CH}_2-\text{N}(=\text{H})-\text{C}(=\text{O})-$
930		CH_2-	2	2	1	-	H	$-\text{CH}_2-\text{N}(=\text{H})-\text{C}(=\text{O})-$
931		CH_2-	2	2	1	-	H	$-\text{CH}_2-\text{N}(=\text{H})-\text{C}(=\text{O})-$
932		CH_2-	2	2	1	-	H	$-\text{CH}_2-\text{N}(=\text{H})-\text{C}(=\text{O})-$
933		CH_2-	2	2	1	-	H	$-\text{CH}_2-\text{N}(=\text{H})-\text{C}(=\text{O})-$
934		CH_2-	2	2	1	-	H	$-\text{CH}_2-\text{N}(=\text{H})-\text{C}(=\text{O})-$
935		CH_2-	2	2	1	-	H	$-\text{CH}_2-\text{N}(=\text{H})-\text{C}(=\text{O})-$

108

Table 1.86

Compd. No.	R^1 R^2 $\text{---}(\text{CH}_2)_j\text{---}$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p\overset{\text{R}^4}{\underset{\text{R}^5}{\text{---}}}(\text{CH}_2)_q\text{---G---R}^6$
936		2	2	1	-	H	
937	$(\text{H}_3\text{C})_2\text{N---C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	
938		2	2	1	-	H	
939		2	2	1	-	H	
940		2	2	1	-	H	
941		2	2	1	-	H	
942		2	2	1	-	H	
943		1	4	0	-	H	
944		1	4	0	-	H	
945		1	4	0	-	H	
946		1	4	0	-	H	

109

Table 1.8.7

Compd. No.	R^1 R^2 $\text{---}(\text{CH}_2)_j\text{---}$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p\overset{\text{R}^4}{\underset{\text{R}^5}{\text{---}}}\text{---}(\text{CH}_2)_q\text{---}G\text{---}\text{R}^6$
947	$\text{Cl---C}_6\text{H}_4\text{---CH}_2\text{---}$	1	4	0	-	H	$-(\text{CH}_2)_2\text{---N}(\text{H})\text{---C}(=\text{O})\text{---C}_6\text{H}_4\text{---OCH}_3$
948	$\text{Cl---C}_6\text{H}_4\text{---CH}_2\text{---}$	1	4	0	-	H	$-(\text{CH}_2)_3\text{---C}(=\text{O})\text{---N}(\text{H})\text{---C}_6\text{H}_4\text{---Cl}$
949	$\text{Cl---C}_6\text{H}_4\text{---CH}_2\text{---}$	1	4	0	-	H	$-(\text{CH}_2)_3\text{---C}(=\text{O})\text{---N}(\text{H})\text{---CH}_2\text{---C}_6\text{H}_5$
950	$\text{Cl---C}_6\text{H}_4\text{---CH}_2\text{---}$	0	4	1	-	H	$-\text{CH}_2\text{---N}(\text{H})\text{---C}(=\text{O})\text{---C}_6\text{H}_5$
951	$\text{Cl---C}_6\text{H}_4\text{---CH}_2\text{---}$	1	2	0	R	H	$-\text{CH}_2\text{---N}(\text{H})\text{---C}(=\text{O})\text{---C}_6\text{H}_4\text{---O---C}(=\text{O})\text{---CH}_3$
952	$\text{Cl---C}_6\text{H}_4\text{---CH}_2\text{---}$	1	2	0	R	H	$-\text{CH}_2\text{---N}(\text{H})\text{---C}(=\text{O})\text{---C}_6\text{H}_4\text{---N}(\text{CH}_3)_2$
953	$\text{Cl---C}_6\text{H}_4\text{---CH}_2\text{---}$	1	2	0	R	H	$-(\text{CH}_2)_2\text{---N}(\text{H})\text{---C}(=\text{O})\text{---C}_6\text{H}_4\text{---N}(\text{CH}_3)_2$
954	$\text{Cl---C}_6\text{H}_4\text{---CH}_2\text{---}$	1	2	0	R	H	$-\text{CH}_2\text{---N}(\text{H})\text{---C}(=\text{O})\text{---C}_6\text{H}_4\text{---NH---CH}_3$
955	$\text{Cl---C}_6\text{H}_4\text{---CH}_2\text{---}$	1	2	0	R	H	$-(\text{CH}_2)_2\text{---N}(\text{H})\text{---C}(=\text{O})\text{---C}_6\text{H}_4\text{---NH---CH}_3$
956	$\text{Cl---C}_6\text{H}_4\text{---CH}_2\text{---}$	1	2	0	R	H	$-(\text{CH}_2)_2\text{---N}(\text{H})\text{---C}(=\text{O})\text{---C}_6\text{H}_4\text{---OH}$
957	$\text{Cl---C}_6\text{H}_4\text{---CH}_2\text{---}$	1	2	0	R	H	$-\text{CH}_2\text{---N}(\text{H})\text{---C}(=\text{O})\text{---C}_6\text{H}_4\text{---OH}$

110

Table 1.88

Compd. No.	$\begin{array}{c} R^1 \\ \\ R^2 \text{---} (CH_2)_j \text{---} \end{array}$	k	m	n	chirality	R^3	$-(CH_2)_p \begin{array}{c} R^4 \\ \\ R^5 \end{array} (CH_2)_q \text{---} G \text{---} R^6$
958	<chem>Clc1ccc(CC)c(C)c1</chem>	1	2	0	R	H	$-(CH_2)_2 \text{---} \begin{array}{c} \text{O} \\ \\ \text{N} \text{---} \text{C} \text{---} \text{C}_6\text{H}_4 \text{---} \text{C}(\text{O}) \text{---} \text{OH} \end{array}$
959	<chem>Clc1ccc(CC)c(C)c1</chem>	1	2	0	R	H	$-\text{CH}_2 \text{---} \begin{array}{c} \text{O} \\ \\ \text{N} \text{---} \text{C} \text{---} \text{C}_6\text{H}_4 \text{---} \text{N} \text{---} \text{C}(\text{O}) \text{---} \text{CH}_3 \end{array}$
960	<chem>Clc1ccc(CC)c(C)c1</chem>	1	2	0	R	H	$-(CH_2)_2 \text{---} \begin{array}{c} \text{O} \\ \\ \text{N} \text{---} \text{C} \text{---} \text{C}_6\text{H}_4 \text{---} \text{N} \text{---} \text{C}(\text{O}) \text{---} \text{CH}_3 \end{array}$
961	<chem>Clc1ccc(CC)c(C)c1</chem>	1	2	0	R	H	$-\text{CH}_2 \text{---} \begin{array}{c} \text{O} \\ \\ \text{N} \text{---} \text{C} \text{---} \text{C}_6\text{H}_4 \text{---} \text{N} \text{---} \text{CH}_3 \end{array}$
962	<chem>Clc1ccc(CC)c(C)c1</chem>	1	2	0	R	H	$-(CH_2)_2 \text{---} \begin{array}{c} \text{O} \\ \\ \text{N} \text{---} \text{C} \text{---} \text{C}_6\text{H}_4 \text{---} \text{N} \text{---} \text{CH}_3 \end{array}$
963	<chem>Clc1ccc(CC)c(C)c1</chem>	1	2	0	R	H	$-(CH_2)_2 \text{---} \begin{array}{c} \text{O} \\ \\ \text{N} \text{---} \text{C} \text{---} \text{C}_6\text{H}_4 \text{---} \text{OH} \end{array}$
964	<chem>Clc1ccc(CC)c(C)c1</chem>	1	2	0	R	H	$-\text{CH}_2 \text{---} \begin{array}{c} \text{O} \\ \\ \text{N} \text{---} \text{C} \text{---} \text{C}_6\text{H}_4 \text{---} \text{CO}_2\text{CH}_3 \end{array}$
965	<chem>Clc1ccc(CC)c(C)c1</chem>	1	2	0	R	H	$-(CH_2)_2 \text{---} \begin{array}{c} \text{O} \\ \\ \text{N} \text{---} \text{C} \text{---} \text{C}_6\text{H}_4 \text{---} \text{CO}_2\text{CH}_3 \end{array}$
966	<chem>Clc1ccc(CC)c(C)c1</chem>	1	2	0	R	H	$-\text{CH}_2 \text{---} \begin{array}{c} \text{O} \\ \\ \text{N} \text{---} \text{C} \text{---} \text{C}_6\text{H}_4 \text{---} \text{C}(\text{O}) \text{---} \text{CH}_3 \end{array}$
967	<chem>Clc1ccc(CC)c(C)c1</chem>	1	2	0	R	H	$-(CH_2)_2 \text{---} \begin{array}{c} \text{O} \\ \\ \text{N} \text{---} \text{C} \text{---} \text{C}_6\text{H}_4 \text{---} \text{C}(\text{O}) \text{---} \text{CH}_3 \end{array}$
968	<chem>Clc1ccc(CC)c(C)c1</chem>	1	2	0	R	H	$-\text{CH}_2 \text{---} \begin{array}{c} \text{O} \\ \\ \text{N} \text{---} \text{C} \text{---} \text{C}_6\text{H}_4 \text{---} \text{C}_6\text{H}_3\text{---} \text{NH} \end{array}$

111

Table 1.89

Compd. No.	R^1 R^2 $\text{---}(\text{CH}_2)_k\text{---}$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p\overset{\text{R}^4}{\underset{\text{R}^5}{\text{---}}}(\text{CH}_2)_q\text{---G---R}^6$
969		1	2	0	R	H	
970		1	2	0	R	H	
971		1	2	0	R	H	
972		1	2	0	R	H	
973		1	2	0	R	H	
974		1	2	0	R	H	
975		1	2	0	R	H	
976		1	2	0	R	H	
977		1	2	0	R	H	
978		1	2	0	R	H	
979		1	2	0	R	H	

Table 1.90

Compd. No.	R^1 $\text{C}_6\text{H}_4-\text{CH}_2-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p-\text{C}(R^4)(R^5)-(\text{CH}_2)_q-\text{G}-\text{R}^6$
980	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{NH}-\text{C}(=\text{O})-\text{CH}_3$
981	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{NH}-\text{C}(=\text{O})-\text{CH}_3$
982	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{NH}-\text{(H}_3\text{C})_2\text{N}$
983	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{NH}-\text{(H}_3\text{C})_2\text{N}$
984	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CH}_2\text{OH}$
985	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-(\text{CH}_2)_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CH}_2\text{OH}$
986	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}(\text{Ph})-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
987	$\text{C}_6\text{H}_5-\text{CH}(\text{Ph})-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
988	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	4	0	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
989	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	4	0	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{O}-\text{CH}_2-\text{C}_6\text{H}_5$
990	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	4	0	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_5$

1 1 3

Table 1.9.1

Compd. No.	$\begin{array}{c} R^1 \\ \\ R^2-CH_2- \end{array}$	k	m	n	chirality	R ³	$-(CH_2)_p \begin{array}{c} R^4 \\ \\ R^5 \end{array} (CH_2)_q G - R^6$
991	<chem>Clc1ccc(cc1)CCl</chem>	1	4	0	-	H	<chem>-(CH2)2C(=O)c1ccccc1</chem>
992	<chem>Clc1ccc(cc1)CCl</chem>	1	4	0	-	H	<chem>-(CH2)2C(=O)c1ccc(Oc2ccccc2)cc1</chem>
993	<chem>Clc1ccc(cc1)CCl</chem>	1	4	0	-	H	<chem>-(CH2)2C(=O)c1ccc(C)c(c1)C</chem>
994	<chem>Clc1ccc(cc1)CCl</chem>	1	4	0	-	H	<chem>-(CH2)3C(=O)c1ccccc1</chem>
995	<chem>Clc1ccc(cc1)CCl</chem>	1	4	0	-	H	<chem>-(CH2)3C(=O)c1ccc(Oc2ccccc2)cc1</chem>
996	<chem>Clc1ccc(cc1)CCl</chem>	1	4	0	-	H	<chem>-(CH2)3C(=O)Nc1ccccc1</chem>
997	<chem>Clc1ccc(cc1)CCl</chem>	2	2	1	-	H	<chem>-\begin{array}{c} CH-N-C(=O)c1ccccc1 \\ \\ CH_2CH(CH_3)_2 \end{array}</chem>
998	<chem>Clc1ccc(cc1)CCl</chem>	2	2	1	-	H	<chem>-\begin{array}{c} CH-N-C(=O)c1ccccc1 \\ \\ CH_2CH(CH_3)_2 \end{array}OC(F)3</chem>
999	<chem>Clc1ccc(cc1)CCl</chem>	2	2	1	-	H	<chem>-\begin{array}{c} CH-N-C(=O)c1ccccc1 \\ \\ CH_2CH(CH_3)_2 \end{array}CH_3</chem>
1000	<chem>Clc1ccc(cc1)CCl</chem>	2	2	1	-	H	<chem>-\begin{array}{c} CH-N-C(=O)c1ccc(Oc2ccccc2)cc1 \\ \\ CH_2CH(CH_3)_2 \end{array}</chem>
1001	<chem>Clc1ccc(cc1)CCl</chem>	2	2	1	-	H	<chem>-\begin{array}{c} CH-N-C(=O)c1ccc(OCH_2CH_3)cc1 \\ \\ CH_2CH(CH_3)_2 \end{array}</chem>

114

Table 1.92

Compd. No.	R^1 R^2	$(\text{CH}_2)_j^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- (\text{CH}_2)_q^- \text{G-R}^6$
1002	<chem>Clc1ccccc1</chem>	CH_2^-	2	2	1	-	H	
1003	<chem>Clc1ccccc1</chem>	CH_2^-	2	2	1	-	H	
1004	<chem>Clc1ccccc1</chem>	CH_2^-	2	2	1	-	H	
1005	<chem>Clc1ccccc1</chem>	CH_2^-	2	2	1	-	H	
1006	<chem>Clc1ccccc1</chem>	CH_2^-	2	2	1	-	H	
1007	<chem>Clc1ccccc1</chem>	CH_2^-	2	2	1	-	H	
1008	<chem>Clc1ccccc1</chem>	CH_2^-	2	2	1	-	H	
1009	<chem>Clc1ccccc1</chem>	CH_2^-	2	2	1	-	H	
1010	<chem>Clc1ccccc1</chem>	CH_2^-	2	2	1	-	H	
1011	<chem>Clc1ccccc1</chem>	CH_2^-	2	2	1	-	H	
1012	<chem>Clc1ccccc1</chem>	CH_2^-	2	2	1	-	H	

115

Table 1.93

Compd. No.	R^1 R^2 - (CH_2) $_l$ -	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \overset{\text{R}^4}{\underset{\text{R}^5}{\text{C}}} (\text{CH}_2)_q \text{G-R}^6$
1013	$\text{CH}_2-\text{C}_6\text{H}_4-\text{Cl}$	2	2	1	-	H	
1014	$\text{CH}_2-\text{C}_6\text{H}_4-\text{Cl}$	2	2	1	-	H	
1015	$\text{CH}_2-\text{C}_6\text{H}_4-\text{Cl}$	2	2	1	-	H	
1016	$\text{CH}_2-\text{C}_6\text{H}_4-\text{Cl}$	2	2	0	-	H	
1017	$\text{CH}_2-\text{C}_6\text{H}_4-\text{Cl}$	2	2	0	-	H	
1018	$\text{CH}_2-\text{C}_6\text{H}_4-\text{Cl}$	2	2	1	-	H	
1019	$\text{CH}_2-\text{C}_6\text{H}_4-\text{Cl}$	2	2	1	-	H	
1020	$\text{CH}_2-\text{C}_6\text{H}_4-\text{Cl}$	2	2	1	-	H	
1021	$\text{CH}_2-\text{C}_6\text{H}_4-\text{Cl}$	2	2	1	-	H	
1022	$\text{CH}_2-\text{C}_6\text{H}_4-\text{Cl}$	2	2	1	-	H	
1023	$\text{CH}_2-\text{C}_6\text{H}_4-\text{Cl}$	2	2	1	-	H	

116

Table 1.94

Compd. No.	R^1 R^2	$(\text{CH}_2)_j$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \begin{array}{c} \text{R}^4 \\ \\ \text{C} \\ \\ \text{CH}-\text{N} \\ \\ \text{CH}_3 \end{array} (\text{CH}_2)_q \text{G}-\text{R}^6$
1024		CH_2-	2	2	1	-	H	
1025		CH_2-	2	2	1	-	H	
1026		CH_2-	2	2	1	-	H	
1027		CH_2-	2	2	1	-	H	
1028		CH_2-	2	2	1	-	H	
1029		CH_2-	2	2	1	-	H	
1030		CH_2-	2	2	1	-	H	
1031		CH_2-	2	2	1	-	H	
1032		CH_2-	2	2	1	-	H	
1033		CH_2-	2	2	1	-	H	
1034		CH_2-	2	2	1	-	H	

117

Table 1.95

Compd. No.	R^1 R^2 $\text{C}_6\text{H}_4-\text{CH}_2-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p-\overset{\text{R}^4}{\underset{\text{R}^5}{\text{C}}}(\text{CH}_2)_q-\text{G}-\text{R}^6$
1035	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$(R)-\overset{\text{O}}{\text{C}}(\text{CH}_2\text{CH}_3)-\text{C}_6\text{H}_4-\text{CH}_2-\text{OCH}_2\text{CH}_3$
1036	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$(R)-\overset{\text{O}}{\text{C}}(\text{CH}_2\text{CH}_3)-\text{C}_6\text{H}_4-\text{CH}_2-\text{OCH}_2\text{CH}_3$
1037	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$(R)-\overset{\text{O}}{\text{C}}(\text{CH}_2\text{CH}_3)-\text{C}_6\text{H}_4-\text{OCH}_3$
1038	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$(R)-\overset{\text{O}}{\text{C}}(\text{CH}_2\text{CF}_3)-\text{C}_6\text{H}_4-\text{OCH}_2\text{CF}_3$
1039	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$(R)-\overset{\text{O}}{\text{C}}(\text{CH}_2\text{CH}_3)-\text{C}_6\text{H}_4-\text{OCH}_2\text{CH}_3$
1040	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$(R)-\overset{\text{O}}{\text{C}}(\text{CH}_2\text{CF}_3)-\text{C}_6\text{H}_4-\text{OCH}_3$
1041	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$(R)-\overset{\text{O}}{\text{C}}(\text{CH}_2\text{CH}_3)-\text{C}_6\text{H}_4-\text{Br}$
1042	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\overset{\text{O}}{\text{C}}(\text{H}_2\text{N})-\text{C}_6\text{H}_4-\text{H}_2\text{N}$
1043	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\overset{\text{O}}{\text{C}}(\text{H}_2\text{N})-\text{C}_6\text{H}_4-\text{Cl}$
1044	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\overset{\text{O}}{\text{C}}(\text{CH}_3)-\text{C}_6\text{H}_4-\text{H}_2\text{N}$
1045	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\overset{\text{O}}{\text{C}}(\text{H}_2\text{N})-\text{C}_6\text{H}_4-\text{OCH}_3$

118

Table 1.96

Compd. No.	R^1 R^2 - $(CH_2)_l-$	k	m	n	chirality	R^3	$-(CH_2)_p$ $\begin{array}{c} R^4 \\ \\ -C- \\ \\ R^5 \end{array}$ $-(CH_2)_q-G-R^6$
1046	Cl- -CH ₂ -	2	2	1	-	H	$-\text{CH}_2-\text{N}-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{Cl})_2-\text{NH}_2$
1047	Cl- -CH ₂ -	2	2	1	-	H	$-\text{CH}_2-\text{N}-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CH}_3)_2-\text{NH}_2$
1048	Cl- -CH ₂ -	2	2	1	-	H	$-\text{CH}_2-\text{N}-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{OCH}_3)_2-\text{NH}_2$
1049	Cl- -CH ₂ -	2	2	1	-	H	$-\text{CH}_2-\text{N}-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{NH}_2)_2\text{Br}$
1050	Cl- -CH ₂ -	2	2	1	-	H	$(S)-\text{CH}(\text{CH}_3)_2-\text{N}-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{OCH}_3)_2$
1051	Cl- -CH ₂ -	2	2	1	-	H	$(S)-\text{CH}(\text{CH}_3)_2-\text{N}-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CH}_2\text{CH}_3)_2$
1052	Cl- -CH ₂ -	2	2	1	-	H	$(S)-\text{CH}(\text{CH}_3)_2-\text{N}-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{OCH}_3)_2$
1053	Cl- -CH ₂ -	2	2	1	-	H	$(S)-\text{CH}(\text{CH}_3)_2-\text{N}-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{OCH}_2\text{CH}_3)_2$
1054	Cl- -CH ₂ -	2	2	1	-	H	$(S)-\text{CH}(\text{CH}_3)_2-\text{N}-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{OCH}_2\text{CH}_3)_2$
1055	Cl- -CH ₂ -	2	2	1	-	H	$(S)-\text{CH}(\text{CH}_3)_2-\text{N}-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{OCH}_3)_2$
1056	Cl- -CH ₂ -	2	2	1	-	H	$(S)-\text{CH}(\text{CH}_3)_2-\text{N}-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{OCH}_2\text{CF}_3)_2$

119

Table 1.97

Compd. No.	R^1 $\text{R}^2 > (\text{CH}_2)_j^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^{\text{R}^4}(\text{CH}_2)_q^{\text{R}^5}\text{G}-\text{R}^6$
1057	<chem>Clc1ccc(cc1)CC[2+]</chem>	2	2	1	-	H	
1058	<chem>Clc1ccc(cc1)CC[2+]</chem>	2	2	1	-	H	
1059	<chem>Clc1ccc(cc1)CC[2+]</chem>	2	2	1	-	H	
1060	<chem>Clc1ccc(cc1)CC[2+]</chem>	2	2	1	-	H	
1061	<chem>Clc1ccc(cc1)CC[2+]</chem>	2	2	1	-	H	
1062	<chem>Clc1ccc(cc1)CC[2+]</chem>	2	2	1	-	H	
1063	<chem>Clc1ccc(cc1)CC[2+]</chem>	2	2	1	-	H	
1064	<chem>Clc1ccc(cc1)CC[2+]</chem>	2	2	1	-	H	
1065	<chem>Clc1ccc(cc1)CC[2+]</chem>	2	2	1	-	H	
1066	<chem>Clc1ccc(cc1)CC[2+]</chem>	2	2	1	-	H	
1067	<chem>Clc1ccc(cc1)CC[2+]</chem>	2	2	1	-	H	

120

Table 1.98

Compd. No.	R^1 R^2	$(CH_2)_l^-$	k	m	n	chirality	R^3	$-(CH_2)_p^{\text{R}^4}-\text{C}(H)-\text{CH}_2-\text{G}-\text{R}^6$
1068		$(CH_2)_l^-$	2	2	1	-	H	
1069		$(CH_2)_l^-$	2	2	1	-	H	
1070		$(CH_2)_l^-$	2	2	1	-	H	
1071		$(CH_2)_l^-$	2	2	1	-	H	
1072		$(CH_2)_l^-$	2	2	1	-	H	
1073		$(CH_2)_l^-$	2	2	1	-	H	
1074		$(CH_2)_l^-$	2	2	1	-	H	
1075		$(CH_2)_l^-$	2	2	1	-	H	
1076		$(CH_2)_l^-$	2	2	1	-	H	
1077		$(CH_2)_l^-$	2	2	1	-	H	
1078		$(CH_2)_l^-$	2	2	1	-	H	

1 2 1

Table 1.99

Compd. No.	R^1 $\text{R}^2 \text{---} (\text{CH}_2)_j \text{---}$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \text{---} \begin{array}{c} R^4 \\ \\ -\text{C---} \\ \\ \text{H} \end{array} \text{---} (\text{CH}_2)_q \text{---} G \text{---} R^6$
1079	$\text{Cl---C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	
1080	$\text{Cl---C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	
1081	$\text{Cl---C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	
1082	$\text{Cl---C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	
1083	$\text{Cl---C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	
1084	$\text{Cl---C}_6\text{H}_4\text{---CH}_2\text{---}$	1	2	0	R	H	
1085	$\text{Cl---C}_6\text{H}_4\text{---CH}_2\text{---}$	1	2	0	R	H	
1086	$\text{Cl---C}_6\text{H}_4\text{---CH}_2\text{---}$	1	2	0	R	H	
1087	$\text{Cl---C}_6\text{H}_4\text{---CH}_2\text{---}$	1	2	0	R	H	
1088	$\text{Cl---C}_6\text{H}_4\text{---CH}_2\text{---}$	1	2	0	R	H	
1089	$\text{Cl---C}_6\text{H}_4\text{---CH}_2\text{---}$	1	2	0	R	H	

122

Table 1.100

Compd. No.	R^1 R^2	R^3	k	m	n	chirality	R^4 R^5	$-(\text{CH}_2)_p(\text{CH}_2)_q\text{G}-\text{R}^6$
1090		H	1	2	0	R		
1091		H	1	2	0	R		
1092		H	1	2	0	R		
1093		H	1	2	0	R		
1094		H	1	2	0	R		<img alt="Chemical structure of R6: -CH2CH2-N(H)-C(=O)-C1-C6H4-NH-C2-C6H4-C3-C6H4-NH-C4-C6H4-C5-C6H4-C6-C6H4-C7-C6H4-C8-C6H4-C9-C6H4-C10-C6H4-C11-C6H4-C12-C6H4-C13-C6H4-C14-C6H4-C15-C6H4-C16-C6H4-C17-C6H4-C18-C6H4-C19-C6H4-C20-C6H4-C21-C6H4-C22-C6H4-C23-C6H4-C24-C6H4-C25-C6H4-C26-C6H4-C27-C6H4-C28-C6H4-C29-C6H4-C30-C6H4-C31-C6H4-C32-C6H4-C33-C6H4-C34-C6H4-C35-C6H4-C36-C6H4-C37-C6H4-C38-C6H4-C39-C6H4-C40-C6H4-C41-C6H4-C42-C6H4-C43-C6H4-C44-C6H4-C45-C6H4-C46-C6H4-C47-C6H4-C48-C6H4-C49-C6H4-C50-C6H4-C51-C6H4-C52-C6H4-C53-C6H4-C54-C6H4-C55-C6H4-C56-C6H4-C57-C6H4-C58-C6H4-C59-C6H4-C60-C6H4-C61-C6H4-C62-C6H4-C63-C6H4-C64-C6H4-C65-C6H4-C66-C6H4-C67-C6H4-C68-C6H4-C69-C6H4-C70-C6H4-C71-C6H4-C72-C6H4-C73-C6H4-C74-C6H4-C75-C6H4-C76-C6H4-C77-C6H4-C78-C6H4-C79-C6H4-C80-C6H4-C81-C6H4-C82-C6H4-C83-C6H4-C84-C6H4-C85-C6H4-C86-C6H4-C87-C6H4-C88-C6H4-C89-C6H4-C90-C6H4-C91-C6H4-C92-C6H4-C93-C6H4-C94-C6H4-C95-C6H4-C96-C6H4-C97-C6H4-C98-C6H4-C99-C6H4-C100-C6H4-C101-C6H4-C102-C6H4-C103-C6H4-C104-C6H4-C105-C6H4-C106-C6H4-C107-C6H4-C108-C6H4-C109-C6H4-C110-C6H4-C111-C6H4-C112-C6H4-C113-C6H4-C114-C6H4-C115-C6H4-C116-C6H4-C117-C6H4-C118-C6H4-C119-C6H4-C120-C6H4-C121-C6H4-C122-C6H4-C123-C6H4-C124-C6H4-C125-C6H4-C126-C6H4-C127-C6H4-C128-C6H4-C129-C6H4-C130-C6H4-C131-C6H4-C132-C6H4-C133-C6H4-C134-C6H4-C135-C6H4-C136-C6H4-C137-C6H4-C138-C6H4-C139-C6H4-C140-C6H4-C141-C6H4-C142-C6H4-C143-C6H4-C144-C6H4-C145-C6H4-C146-C6H4-C147-C6H4-C148-C6H4-C149-C6H4-C150-C6H4-C151-C6H4-C152-C6H4-C153-C6H4-C154-C6H4-C155-C6H4-C156-C6H4-C157-C6H4-C158-C6H4-C159-C6H4-C160-C6H4-C161-C6H4-C162-C6H4-C163-C6H4-C164-C6H4-C165-C6H4-C166-C6H4-C167-C6H4-C168-C6H4-C169-C6H4-C170-C6H4-C171-C6H4-C172-C6H4-C173-C6H4-C174-C6H4-C175-C6H4-C176-C6H4-C177-C6H4-C178-C6H4-C179-C6H4-C180-C6H4-C181-C6H4-C182-C6H4-C183-C6H4-C184-C6H4-C185-C6H4-C186-C6H4-C187-C6H4-C188-C6H4-C189-C6H4-C190-C6H4-C191-C6H4-C192-C6H4-C193-C6H4-C194-C6H4-C195-C6H4-C196-C6H4-C197-C6H4-C198-C6H4-C199-C6H4-C200-C6H4-C201-C6H4-C202-C6H4-C203-C6H4-C204-C6H4-C205-C6H4-C206-C6H4-C207-C6H4-C208-C6H4-C209-C6H4-C210-C6H4-C211-C6H4-C212-C6H4-C213-C6H4-C214-C6H4-C215-C6H4-C216-C6H4-C217-C6H4-C218-C6H4-C219-C6H4-C220-C6H4-C221-C6H4-C222-C6H4-C223-C6H4-C224-C6H4-C225-C6H4-C226-C6H4-C227-C6H4-C228-C6H4-C229-C6H4-C230-C6H4-C231-C6H4-C232-C6H4-C233-C6H4-C234-C6H4-C235-C6H4-C236-C6H4-C237-C6H4-C238-C6H4-C239-C6H4-C240-C6H4-C241-C6H4-C242-C6H4-C243-C6H4-C244-C6H4-C245-C6H4-C246-C6H4-C247-C6H4-C248-C6H4-C249-C6H4-C250-C6H4-C251-C6H4-C252-C6H4-C253-C6H4-C254-C6H4-C255-C6H4-C256-C6H4-C257-C6H4-C258-C6H4-C259-C6H4-C260-C6H4-C261-C6H4-C262-C6H4-C263-C6H4-C264-C6H4-C265-C6H4-C266-C6H4-C267-C6H4-C268-C6H4-C269-C6H4-C270-C6H4-C271-C6H4-C272-C6H4-C273-C6H4-C274-C6H4-C275-C6H4-C276-C6H4-C277-C6H4-C278-C6H4-C279-C6H4-C280-C6H4-C281-C6H4-C282-C6H4-C283-C6H4-C284-C6H4-C285-C6H4-C286-C6H4-C287-C6H4-C288-C6H4-C289-C6H4-C290-C6H4-C291-C6H4-C292-C6H4-C293-C6H4-C294-C6H4-C295-C6H4-C296-C6H4-C297-C6H4-C298-C6H4-C299-C6H4-C300-C6H4-C301-C6H4-C302-C6H4-C303-C6H4-C304-C6H4-C305-C6H4-C306-C6H4-C307-C6H4-C308-C6H4-C309-C6H4-C310-C6H4-C311-C6H4-C312-C6H4-C313-C6H4-C314-C6H4-C315-C6H4-C316-C6H4-C317-C6H4-C318-C6H4-C319-C6H4-C320-C6H4-C321-C6H4-C322-C6H4-C323-C6H4-C324-C6H4-C325-C6H4-C326-C6H4-C327-C6H4-C328-C6H4-C329-C6H4-C330-C6H4-C331-C6H4-C332-C6H4-C333-C6H4-C334-C6H4-C335-C6H4-C336-C6H4-C337-C6H4-C338-C6H4-C339-C6H4-C340-C6H4-C341-C6H4-C342-C6H4-C343-C6H4-C344-C6H4-C345-C6H4-C346-C6H4-C347-C6H4-C348-C6H4-C349-C6H4-C350-C6H4-C351-C6H4-C352-C6H4-C353-C6H4-C354-C6H4-C355-C6H4-C356-C6H4-C357-C6H4-C358-C6H4-C359-C6H4-C360-C6H4-C361-C6H4-C362-C6H4-C363-C6H4-C364-C6H4-C365-C6H4-C366-C6H4-C367-C6H4-C368-C6H4-C369-C6H4-C370-C6H4-C371-C6H4-C372-C6H4-C373-C6H4-C374-C6H4-C375-C6H4-C376-C6H4-C377-C6H4-C378-C6H4-C379-C6H4-C380-C6H4-C381-C6H4-C382-C6H4-C383-C6H4-C384-C6H4-C385-C6H4-C386-C6H4-C387-C6H4-C388-C6H4-C389-C6H4-C390-C6H4-C391-C6H4-C392-C6H4-C393-C6H4-C394-C6H4-C395-C6H4-C396-C6H4-C397-C6H4-C398-C6H4-C399-C6H4-C400-C6H4-C401-C6H4-C402-C6H4-C403-C6H4-C404-C6H4-C405-C6H4-C406-C6H4-C407-C6H4-C408-C6H4-C409-C6H4-C410-C6H4-C411-C6H4-C412-C6H4-C413-C6H4-C414-C6H4-C415-C6H4-C416-C6H4-C417-C6H4-C418-C6H4-C419-C6H4-C420-C6H4-C421-C6H4-C422-C6H4-C423-C6H4-C424-C6H4-C425-C6H4-C426-C6H4-C427-C6H4-C428-C6H4-C429-C6H4-C430-C6H4-C431-C6H4-C432-C6H4-C433-C6H4-C434-C6H4-C435-C6H4-C436-C6H4-C437-C6H4-C438-C6H4-C439-C6H4-C440-C6H4-C441-C6H4-C442-C6H4-C443-C6H4-C444-C6H4-C445-C6H4-C446-C6H4-C447-C6H4-C448-C6H4-C449-C6H4-C450-C6H4-C451-C6H4-C452-C6H4-C453-C6H4-C454-C6H4-C455-C6H4-C456-C6H4-C457-C6H4-C458-C6H4-C459-C6H4-C460-C6H4-C461-C6H4-C462-C6H4-C463-C6H4-C464-C6H4-C465-C6H4-C466-C6H4-C467-C6H4-C468-C6H4-C469-C6H4-C470-C6H4-C471-C6H4-C472-C6H4-C473-C6H4-C474-C6H4-C475-C6H4-C476-C6H4-C477-C6H4-C478-C6H4-C479-C6H4-C480-C6H4-C481-C6H4-C482-C6H4-C483-C6H4-C484-C6H4-C485-C6H4-C486-C6H4-C487-C6H4-C488-C6H4-C489-C6H4-C490-C6H4-C491-C6H4-C492-C6H4-C493-C6H4-C494-C6H4-C495-C6H4-C496-C6H4-C497-C6H4-C498-C6H4-C499-C6H4-C500-C6H4-C501-C6H4-C502-C6H4-C503-C6H4-C504-C6H4-C505-C6H4-C506-C6H4-C507-C6H4-C508-C6H4-C509-C6H4-C510-C6H4-C511-C6H4-C512-C6H4-C513-C6H4-C514-C6H4-C515-C6H4-C516-C6H4-C517-C6H4-C518-C6H4-C519-C6H4-C520-C6H4-C521-C6H4-C522-C6H4-C523-C6H4-C524-C6H4-C525-C6H4-C526-C6H4-C527-C6H4-C528-C6H4-C529-C6H4-C530-C6H4-C531-C6H4-C532-C6H4-C533-C6H4-C534-C6H4-C535-C6H4-C536-C6H4-C537-C6H4-C538-C6H4-C539-C6H4-C540-C6H4-C541-C6H4-C542-C6H4-C543-C6H4-C544-C6H4-C545-C6H4-C546-C6H4-C547-C6H4-C548-C6H4-C549-C6H4-C550-C6H4-C551-C6H4-C552-C6H4-C553-C6H4-C554-C6H4-C555-C6H4-C556-C6H4-C557-C6H4-C558-C6H4-C559-C6H4-C560-C6H4-C561-C6H4-C562-C6H4-C563-C6H4-C564-C6H4-C565-C6H4-C566-C6H4-C567-C6H4-C568-C6H4-C569-C6H4-C570-C6H4-C571-C6H4-C572-C6H4-C573-C6H4-C574-C6H4-C575-C6H4-C576-C6H4-C577-C6H4-C578-C6H4-C579-C6H4-C580-C6H4-C581-C6H4-C582-C6H4-C583-C6H4-C584-C6H4-C585-C6H4-C586-C6H4-C587-C6H4-C588-C6H4-C589-C6H4-C590-C6H4-C591-C6H4-C592-C6H4-C593-C6H4-C594-C6H4-C595-C6H4-C596-C6H4-C597-C6H4-C598-C6H4-C599-C6H4-C600-C6H4-C601-C6H4-C602-C6H4-C603-C6H4-C604-C6H4-C605-C6H4-C606-C6H4-C607-C6H4-C608-C6H4-C609-C6H4-C610-C6H4-C611-C6H4-C612-C6H4-C613-C6H4-C614-C6H4-C615-C6H4-C616-C6H4-C617-C6H4-C618-C6H4-C619-C6H4-C620-C6H4-C621-C6H4-C622-C6H4-C623-C6H4-C624-C6H4-C625-C6H4-C626-C6H4-C627-C6H4-C628-C6H4-C629-C6H4-C630-C6H4-C631-C6H4-C632-C6H4-C633-C6H4-C634-C6H4-C635-C6H4-C636-C6H4-C637-C6H4-C638-C6H4-C639-C6H4-C640-C6H4-C641-C6H4-C642-C6H4-C643-C6H4-C644-C6H4-C645-C6H4-C646-C6H4-C647-C6H4-C648-C6H4-C649-C6H4-C650-C6H4-C651-C6H4-C652-C6H4-C653-C6H4-C654-C6H4-C655-C6H4-C656-C6H4-C657-C6H4-C658-C6H4-C659-C6H4-C660-C6H4-C661-C6H4-C662-C6H4-C663-C6H4-C664-C6H4-C665-C6H4-C666-C6H4-C667-C6H4-C668-C6H4-C669-C6H4-C670-C6H4-C671-C6H4-C672-C6H4-C673-C6H4-C674-C6H4-C675-C6H4-C676-C6H4-C677-C6H4-C678-C6H4-C679-C6H4-C680-C6H4-C681-C6H4-C682-C6H4-C683-C6H4-C684-C6H4-C685-C6H4-C686-C6H4-C687-C6H4-C688-C6H4-C689-C6H4-C690-C6H4-C691-C6H4-C692-C6H4-C693-C6H4-C694-C6H4-C695-C6H4-C696-C6H4-C697-C6H4-C698-C6H4-C699-C6H4-C700-C6H4-C701-C6H4-C702-C6H4-C703-C6H4-C704-C6H4-C705-C6H4-C706-C6H4-C707-C6H4-C708-C6H4-C709-C6H4-C710-C6H4-C711-C6H4-C712-C6H4-C713-C6H4-C714-C6H4-C715-C6H4-C716-C6H4-C717-C6H4-C718-C6H4-C719-C6H4-C720-C6H4-C721-C6H4-C722-C6H4-C723-C6H4-C724-C6H4-C725-C6H4-C726-C6H4-C727-C6H4-C728-C6H4-C729-C6H4-C730-C6H4-C731-C6H4-C732-C6H4-C733-C6H4-C734-C6H4-C735-C6H4-C736-C6H4-C737-C6H4-C738-C6H4-C739-C6H4-C740-C6H4-C741-C6H4-C742-C6H4-C743-C6H4-C744-C6H4-C745-C6H4-C746-C6H4-C747-C6H4-C748-C6H4-C749-C6H4-C750-C6H4-C751-C6H4-C752-C6H4-C753-C6H4-C754-C6H4-C755-C6H4-C756-C6H4-C757-C6H4-C758-C6H4-C759-C6H4-C760-C6H4-C761-C6H4-C762-C6H4-C763-C6H4-C764-C6H4-C765-C6H4-C766-C6H4-C767-C6H4-C768-C6H4-C769-C6H4-C770-C6H4-C771-C6H4-C772-C6H4-C773-C6H4-C774-C6H4-C775-C6H4-C776-C6H4-C777-C6H4-C778-C6H4-C779-C6H4-C780-C6H4-C781-C6H4-C782-C6H4-C783-C6H4-C784-C6H4-C785-C6H4-C786-C6H4-C787-C6H4-C788-C6H4-C789-C6H4-C790-C6H4-C791-C6H4-C792-C6H4-C793-C6H4-C794-C6H4-C795-C6H4-C796-C6H4-C797-C6H4-C798-C6H4-C799-C6H4-C800-C6H4-C801-C6H4-C802-C6H4-C803-C6H4-C804-C6H4-C805-C6H4-C806-C6H4-C807-C6H4-C808-C6H4-C809-C6H4-C810-C6H4-C811-C6H4-C812-C6H4-C813-C6H4-C814-C6H4-C815-C6H4-C816-C6H4-C817-C6H4-C818-C6H4-C819-C6H4-C820-C6H4-C821-C6H4-C822-C6H4-C823-C6H4-C824-C6H4-C825-C6H4-C826-C6H4-C827-C6H4-C828-C6H4-C829-C6H4-C830-C6H4-C831-C6H4-C832-C6H4-C833-C6H4-C834-C6H4-C835-C6H4-C836-C6H4-C837-C6H4-C838-C6H4-C839-C6H4-C840-C6H4-C841-C6H4-C842-C6H4-C843-C6H4-C844-C6H4-C845-C6H4-C846-C6H4-C847-C6H4-C848-C6H4-C849-C6H4-C850-C6H4-C851-C6H4-C852-C6H4-C853-C6H4-C854-C6H4-C855-C6H4-C856-C6H4-C857-C6H4-C858-C6H4-C859-C6H4-C860-C6H4-C861-C6H4-C862-C6H4-C863-C6H4-C864-C6H4-C865-C6H4-C866-C6H4-C867-C6H4-C868-C6H4-C869-C6H4-C870-C6H4-C871-C6H4-C872-C6H4-C873-C6H4-C874-C6H4-C875-C6H4-C876-C6H4-C877-C6H4-C878-C6H4-C879-C6H4-C880-C6H4-C881-C6H4-C882-C6H4-C883-C6H4-C884-C6H4-C885-C6H4-C886-C6H4-C887-C6H4-C888-C6H4-C889-C6H4-C890-C6H4-C891-C6H4-C892-C6H4-C893-C6H4-C894-C6H4-C895-C6H4-C896-C6H4-C897-C6H4-C898-C6H4-C899-C6H4-C900-C6H4-C901-C6H4-C902-C6H4-C903-C6H4-C904-C6H4-C905-C6H4-C906-C6H4-C907-C6H4-C908-C6H4-C909-C6H4-C910-C6H4-C911-C6H4-C912-C6H4-C913-C6H4-C914-C6H4-C915-C6H4-C916-C6H4-C917-C6H4-C918-C6H4-C919-C6H4-C920-C6H4-C921-C6H4-C922-C6H4-C923-C6H4-C924-C6H4-C925-C6H4-C926-C6H4-C927-C6H4-C928-C6H4-C929-C6H4-C930-C6H4-C931-C6H4-C932-C6H4-C933-C6H4-C934-C6H4-C935-C6H4-C936-C6H4-C937-C6H4-C938-C6H4-C939-C6H4-C940-C6H4-C941-C6H4-C942-C6H4-C943-C6H4-C944-C6H4-C945-C6H4-C946-C6H4-C947-C6H4-C948-C6H4-C949-C6H4-C950-C6H4-C951-C6H4-C952-C6H4-C953-C6H4-C954-C6H4-C955-C6H4-C956-C6H4-C957-C6H4-C958-C6H4-C959-C6H4-C960-C6H4-C961-C6H4-C962-C6H4-C963-C6H4-C964-C6H4-C965-C6H4-C966-C6H4-C967-C6H4-C968-C6H4-C969-C6H4-C970-C6H4-C971-C6H4-C972-C6H4-C973-C6H4-C974-C6H4-C975-C6H4-C976-C6H4-C977-C6H4-C978-C6H4-C979-C6H4-C980-C6H4-C981-C6H4-C982-C6H4-C983-C6H4-C984-C6H4-C985-C6H4-C986-C6H4-C987-C6H4-C988-C6H4-C989-C6H4-C990-C6H4-C991-C6H4-C992-C6H4-C993-C6H4-C994-C6H4-C995-C6H4-C996-C6H4-C997-C6H4-C998-C6H4-C999-C6H4-C1000-C6H4-C1001-C6H4-C1002-C6H4-C1003-C6H4-C1004-C6H4-C1005-C6H4-C1006-C6H4-C1007-C6H4-C1008-C6H4-C1009-C6H4-C1010-C6H4-C1011-C6H4-C1012-C6H4-C1013-C6H4-C1014-C6H4-C1015-C6H4-C1016-C6H4-C1017-C6H4-C1018-C6H4-C1019-C6H4-C1020-C6H4-C1021-C6H4-C1022-C6H4-C1023-C6H4-C1024-C6H4-C1025-C6H4-C1026-C6H4-C1027-C6H4-C1028-C6H4-C1029-C6H4-C1030-C6H4-C1031-C6H4-C1032-C6H4-C1033-C6H4-C1034-C6H4-C1035-C6H4-C1036-C6H4-C1037-C6H4-C1038-C6H4-C1039-C6H4-C1040-C6H4-C1041-C6H4-C1042-C6H4-C1043-C6H4-C1044-C6H4-C1045-C6H4-C1046-C6H4-C1047-C6H4-C1048-C6H4-C1049-C6H4-C1050-C6H4-C1051-C6H4-C1052-C6H4-C1053-C6H4-C1054-C6H4-C1055-C6H4-C1056-C6H4-C1057-C6H4-C1058-C6H4-C1059-C6H4-C1060-C6H4-C1061-C6H4-C1062-C6H4-C1063-C6H4-C1064-C6H4-C1065-C6H4-C1066-C6H4-C1067-C6H4-C1068-C6H4-C1069-C6H4-C1070-C6H4-C1071-C6H4-C1072-C6H4-C1073-C6H4-C1074-C6H4-C1075-C6H4-C1076-C6H4-C1077-C6H4-C1078-C6H4-C1079-C6H4-C1080-C6H4-C1081-C6H4-C1082-C6H4-C1083-C6H4-C1084-C6H4-C1085-C6H4-C1086-C6H4-C1087-C6H4-C1088-C6H4-C1089-C6H4-C1090-C6H4-C1091-C6H4-C1092-C6H4-C1093-C6H4-C1094-C6H4-C1095-C6H4-C1096-C6H4-C1097-C6H4-C1098-C6H4-C1099-C6H4-C1100-C6H4</td>

1 2 3

Table 1.101

Compd. No.	R^1 R^2 $\text{---}(\text{CH}_2)_k\text{---}$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p\overset{\text{R}^4}{\underset{\text{R}^5}{\text{---}}}(\text{CH}_2)_q\text{---G---R}^6$
1101		1	2	0	R	H	
1102		1	2	0	R	H	
1103		1	2	0	R	H	
1104		1	2	0	R	H	
1105		1	2	0	R	H	
1106		1	2	0	R	H	
1107		1	2	0	R	H	
1108		1	2	0	R	H	
1109		1	2	0	R	H	
1110		1	2	0	R	H	
1111		1	2	0	R	H	

1 2 4

Table 1.102

Compd. No.		k	m	n	chirality	R³	
1112		1	2	0	R	H	
1113		2	2	1	-	H	
1114		2	2	1	-	H	
1115		2	2	1	-	H	
1116		2	2	1	-	H	
1117		2	2	1	-	H	
1118		1	2	0	R	H	
1119		1	2	0	R	H	
1120		1	2	0	R	H	
1121		1	2	0	R	H	
1122		1	2	0	R	H	

1 2 5

Table 1.103

Compd. No.	R^1 R^2	$(\text{CH}_2)_j^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- \begin{array}{c} \text{R}^4 \\ \\ \text{C} \\ \\ \text{R}^5 \end{array} (\text{CH}_2)_q^- \text{G-R}^6$
1123			1	2	0	R	H	
1124			1	2	0	R	H	
1125			2	2	1	-	H	
1126			2	2	1	-	H	
1127			2	2	1	-	H	
1128			2	2	1	-	H	
1129			2	2	1	-	H	
1130			2	2	1	-	H	
1131			2	2	1	-	H	
1132			2	2	1	-	H	
1133			1	2	0	R	H	

126

Table 1.104

Compd. No.	R^1 R^2	$(\text{CH}_2)_j^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- \begin{array}{c} \text{R}^4 \\ \\ \text{R}^5 \end{array} (\text{CH}_2)_q^- \text{G}-\text{R}^6$
1134			1	2	0	R	H	
1135			1	2	0	R	H	
1136			1	2	0	R	H	
1137			1	2	0	R	H	
1138			1	2	0	R	H	
1139			1	2	0	R	H	
1140			1	2	0	R	H	
1141			1	2	0	R	H	
1142			1	2	0	R	H	
1143			1	2	0	R	H	
1144			1	2	0	R	H	

127

Table 1.105

Compd. No.	R^1 R^2	$(\text{CH}_2)_k^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- \begin{array}{c} \text{R}^4 \\ \\ \text{---} \\ \\ \text{R}^5 \end{array} (\text{CH}_2)_q^- \text{G}-\text{R}^6$
1145		$\text{H}_3\text{CO}-\text{C}_6\text{H}_3(\text{NO}_2)-\text{CH}_2^-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CF}_3)_2-$
1146		$\text{C}_6\text{H}_4-\text{CH}_2-\text{O}-\text{C}_6\text{H}_4-\text{CH}_2^-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CF}_3)_2-$
1147		$\text{H}_3\text{C}-\text{C}(=\text{O})-\text{N}(\text{H})-\text{C}_6\text{H}_3-\text{CH}_2^-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CF}_3)_2-$
1148		$\text{C}_6\text{H}_5-\text{CH}_2-\text{C}_6\text{H}_5$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CF}_3)_2-$
1149		$\text{CH}_3-\text{C}_3\text{H}_2-\text{O}-\text{C}_3\text{H}_2-\text{CH}_3$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{OCH}_2\text{CH}_3)_2-$
1150		$\text{CH}_3-\text{C}_3\text{H}_2-\text{O}-\text{C}_3\text{H}_2-\text{CH}_3$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CH}_2\text{CH}_3)_2-$
1151		$\text{CH}_3-\text{C}_3\text{H}_2-\text{O}-\text{C}_3\text{H}_2-\text{CH}_3$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{CH}_2-\text{C}_6\text{H}_3(\text{CF}_3)_2-$
1152		$\text{CH}_3-\text{C}_3\text{H}_2-\text{O}-\text{C}_3\text{H}_2-\text{CH}_3$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{F})_2-$
1153		$\text{CH}_3-\text{C}_3\text{H}_2-\text{O}-\text{C}_3\text{H}_2-\text{CH}_3$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{Cl})_2-$
1154		$\text{CH}_3-\text{C}_3\text{H}_2-\text{O}-\text{C}_3\text{H}_2-\text{CH}_3$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CH}_3)_2-$
1155		$\text{CH}_3-\text{C}_3\text{H}_2-\text{O}-\text{C}_3\text{H}_2-\text{CH}_3$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CH}_3)-\text{C}_2\text{H}_3(\text{CF}_3)_2-$

128

Table 1,106

Compd. No.	R_1 $\text{C}_2\text{H}_4\text{CH}_2-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p(\text{CH}_2)_q-\text{G}-\text{R}^6$
1156		1	2	0	R	H	
1157		1	2	0	R	H	
1158		1	2	0	R	H	
1159		1	2	0	R	H	
1160		1	2	0	R	H	
1161		1	2	0	R	H	
1162		1	2	0	R	H	
1163		1	2	0	R	H	
1164		1	2	0	R	H	
1165		1	2	0	R	H	
1166		1	2	0	R	H	

129

Table 1.107

Compd. No.	R^1 $\begin{array}{c} R^2 \\ \\ -CH_2- \end{array}$	$(CH_2)_l^-$	k	m	n	chirality	R^3	$-(CH_2)_p^{\overline{R^4}}(CH_2)_q^-G-R^6$
1167	<chem>CC1=CC=C(C=C1)C</chem>	$-CH_2-$	2	2	1	-	H	
1168	<chem>C1=CN=C(Cl)S1</chem>	$-CH_2-$	1	2	0	R	H	
1169	<chem>CC1=NC(S)=N=C1</chem>	$-CH_2-$	1	2	0	R	H	
1170	<chem>C1=NC2=C(C=C1)N=C2</chem>	$-CH_2-$	1	2	0	R	H	
1171	<chem>CC1=CC=C(C=C1)C</chem>	$-CH_2-$	1	2	0	R	H	
1172	<chem>CC1=CC=C(C=C1)C</chem>	$-CH_2-$	1	2	0	R	H	
1173	<chem>CC1=CC=C(C=C1)C</chem>	$-CH_2-$	1	2	0	R	H	
1174	<chem>CC1=CC=C(C=C1)C</chem>	$-CH_2-$	1	2	0	R	H	
1175	<chem>CC1=CC=C(C=C1)C</chem>	$-CH_2-$	1	2	0	R	H	
1176	<chem>CC1=CC=C(C=C1)C</chem>	$-CH_2-$	1	2	0	R	H	
1177	<chem>CC1=CC=C(C=C1)C</chem>	$-CH_2-$	1	2	0	R	H	

130

Table 1.108

Compd. No.	R^1 R^2	R^3	R^4	R^5	R^6		
	$\text{--}(\text{CH}_2)_j\text{--}$	k	m	n	chirality	$\text{--}(\text{CH}_2)_p\text{--}\overset{\text{R}^4}{\underset{\text{R}^5}{\text{C}}}(\text{CH}_2)_q\text{--}\text{G--}\text{R}^6$	
1178	<chem>CC(C)c1ccc(cc1)Cc2ccccc2</chem>	1	2	0	R	H	<chem>-CH2-NHC(=O)c1ccc(F)cc2[nH]c(N)cc12</chem>
1179	<chem>CC(C)c1ccc(cc1)Cc2ccccc2</chem>	1	2	0	R	H	<chem>-CH2-NHC(=O)c1ccc([N+](=O)[O-])cc2[nH]c(N)cc12</chem>
1180	<chem>CC(C)c1ccc(cc1)Cc2ccccc2</chem>	1	2	0	R	H	<chem>-CH2-NHC(=O)c1cc2[nH]c3ccccc32[nH]1</chem>
1181	<chem>CN1C=C2C(C)=C(OCC2)C1</chem>	1	2	0	R	H	<chem>-CH2-NHC(=O)c1ccc(Br)cc2[nH]c(C)c12</chem>
1182	<chem>CN1C=C2C(C)=C(OCC2)C1</chem>	1	2	0	R	H	<chem>-CH2-NHC(=O)c1cc2[nH]c3cc(O)cc32[nH]1</chem>
1183	<chem>CN1C=C2C(C)=C(OCC2)C1</chem>	1	2	0	R	H	<chem>-CH2-NHC(=O)c1cc2[nH]c3cc(O)cc32[nH]1</chem>
1184	<chem>CN1C=C2C(C)=C(OCC2)C1</chem>	1	2	0	R	H	<chem>-CH2-NHC(=O)c1ccc(F)cc2[nH]c(N)cc12</chem>
1185	<chem>CN1C=C2C(C)=C(OCC2)C1</chem>	1	2	0	R	H	<chem>-CH2-NHC(=O)c1ccc([N+](=O)[O-])cc2[nH]c(N)cc12</chem>
1186	<chem>CN1C=C2C(C)=C(OCC2)C1</chem>	1	2	0	R	H	<chem>-CH2-NHC(=O)c1cc2[nH]c3ccccc32[nH]1</chem>
1187	<chem>CC(C)c1ccc(cc1)Cc2ccccc2</chem>	2	2	1	-	H	<chem>-CH2-NHC(=O)c1ccc(Br)cc2[nH]c(C)c12</chem>
1188	<chem>CC(C)c1ccc(cc1)Cc2ccccc2</chem>	2	2	1	-	H	<chem>-CH2-NHC(=O)c1cc2[nH]c3cc(O)cc32[nH]1</chem>

131

Table 1.109

Compd. No.	R^1 $\text{R}^2\text{---}(\text{CH}_2)_k\text{---}$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p\overset{\text{R}^4}{\underset{\text{R}^5}{\text{C}}}(\text{CH}_2)_q\text{---}\text{G---}\text{R}^6$
1189		2	2	1	-	H	
1190		2	2	1	-	H	
1191		1	2	0	R	H	
1192		1	2	0	R	H	
1193		1	2	0	R	H	
1194		1	2	0	R	H	
1195		1	2	0	R	H	
1196		1	2	0	R	H	
1197		1	2	0	R	H	
1198		1	2	0	R	H	
1199		1	2	0	R	H	

132

Table 1.110

Compd. No.	R^1 R^2	$(\text{CH}_2)_j^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- \begin{array}{c} \text{R}^4 \\ \\ \text{C}-\text{R}^5 \end{array} (\text{CH}_2)_q^- \text{G}-\text{R}^6$
1200		CH_2^-	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{Cl})_2$
1201		CH_2^-	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{F})_2$
1202		CH_2^-	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CF}_3)_2$
1203	$\text{H}_3\text{C}-\text{C}_6\text{H}_4-\text{CH}_2^-$	CH_2^-	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4\text{OCF}_3$
1204	$\text{H}_3\text{C}-\text{C}_6\text{H}_4-\text{CH}_2^-$	CH_2^-	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CF}_3)_2$
1205	$\text{H}_3\text{C}-\text{C}_6\text{H}_4-\text{CH}_2^-$	CH_2^-	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4\text{Br}$
1206	$\text{H}_3\text{C}-\text{C}_6\text{H}_4-\text{CH}_2^-$	CH_2^-	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4\text{NO}_2$
1207	$\text{H}_3\text{C}-\text{C}_6\text{H}_4-\text{CH}_2^-$	CH_2^-	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CF}_3)_2$
1208	$\text{H}_3\text{C}-\text{C}_6\text{H}_4-\text{CH}_2^-$	CH_2^-	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{Cl})_2$
1209	$\text{H}_3\text{C}-\text{C}_6\text{H}_4-\text{CH}_2^-$	CH_2^-	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CH}_3)_2$
1210	$\text{H}_3\text{C}-\text{C}_6\text{H}_4-\text{CH}_2^-$	CH_2^-	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{Cl})_2$

133

Table 1.111

Compd. No.	R_1^1 R_2^2	$(CH_2)_l^-$	k	m	n	chirality	R^3	$-(CH_2)_p^R_5^R_4^R_6^G-R^6$
1211	<chem>H3C-c1ccc(cc1)CH2-</chem>	$(CH_2)_2^-$	1	2	0	R	H	
1212	<chem>H3C-c1ccc(cc1)CH2-</chem>	$(CH_2)_2^-$	1	2	0	R	H	
1213	<chem>C(c1ccc(cc1)CH2-</chem>	$(CH_2)_2^-$	2	2	1	-	H	
1214	<chem>C(c1ccc(cc1)CH2-</chem>	$(CH_2)_2^-$	2	2	1	-	H	
1215	<chem>C(c1ccc(cc1)CH2-</chem>	$(CH_2)_2^-$	2	2	1	-	H	
1216	<chem>C(c1ccc(cc1)CH2-</chem>	$(CH_2)_2^-$	2	2	1	-	H	
1217	<chem>C(c1ccc(cc1)CH2-</chem>	$(CH_2)_2^-$	1	2	0	R	H	
1218	<chem>C(c1ccc(cc1)CH2-</chem>	$(CH_2)_2^-$	1	2	0	R	H	
1219	<chem>C(c1ccc(cc1)CH2-</chem>	$(CH_2)_2^-$	1	2	0	R	H	
1220	<chem>C(c1ccc(cc1)CH2-</chem>	$(CH_2)_2^-$	1	2	0	R	H	
1221	<chem>C(c1ccc(cc1)CH2-</chem>	$(CH_2)_2^-$	1	2	0	R	H	

1 3 4

Table 1.112

Compd. No.	$\begin{array}{c} R^1 \\ \\ R^2-\text{C}-(\text{CH}_2)_l-\end{array}$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \begin{array}{c} R^4 \\ \\ R^5-\text{C}-(\text{CH}_2)_q-\end{array} G-R^6$
1222		1	2	0	R	H	
1223		1	2	0	R	H	
1224		1	2	0	R	H	
1225		1	2	0	R	H	
1226		1	2	0	R	H	
1227		1	2	0	R	H	
1228		1	2	0	R	H	
1229		1	2	0	R	H	
1230		1	2	0	R	H	
1231		1	2	0	R	H	
1232		1	2	0	R	H	

135

Table 1.113

Compd. No.	R_1 R_2	$(CH_2)_j$	k	m	n	chirality	R^3	$-(CH_2)_p$	$\begin{array}{c} R^4 \\ \\ -(CH_2)_q G - R^6 \\ \\ R_5 \end{array}$
1233			1	2	0	R	H		
1234			1	2	0	R	H		
1235			1	2	0	R	H		
1236			1	2	0	R	H		
1237			1	2	0	R	H		
1238			1	2	0	R	H		
1239			1	2	0	R	H		
1240			1	2	0	R	H		
1241			2	2	1	-	H		
1242			2	2	1	-	H		
1243			2	2	1	-	H		

136

Table 1.114

Compd. No.	R^1 R^2 - $(\text{CH}_2)_j-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p-\overset{\text{R}^4}{\underset{\text{R}^5}{\text{C}}}-(\text{CH}_2)_q-\text{G}-\text{R}^6$
1244		2	2	1	-	H	
1245		2	2	1	-	H	
1246		2	2	1	-	H	
1247		2	2	1	-	H	
1248		2	2	1	-	H	
1249		1	2	0	R	H	
1250		1	2	0	R	H	
1251		1	2	0	R	H	
1252		1	2	0	R	H	
1253		1	2	0	R	H	
1254		1	2	0	R	H	

137

Table 1.115

Compd. No.	$\begin{array}{c} R^1 \\ \\ R^2-\text{CH}_2-\text{CH}_2^- \end{array}$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \begin{array}{c} R^4 \\ \\ R^5 \end{array} (\text{CH}_2)_q \text{G}-R^6$
1255	<chem>CC1=CC=C(C=C1)CC2=CC=C(C=C2)C(=O)N(c3ccc(Br)cc3)N</chem>	1	2	0	R	H	<chem>-CH2-NH-C(=O)c1ccc(Br)cc1N</chem>
1256	<chem>CC1=CC=C(C=C1)CC2=CC=C(C=C2)C(=O)N(c3ccc(Br)cc3)N</chem>	1	2	0	R	H	<chem>-CH2-NH-C(=O)c1ccc(Br)cc1N</chem>
1257	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N(c3ccc(Br)cc3)N</chem>	1	2	0	R	H	<chem>-CH2-NH-C(=O)c1ccc(Br)cc1N</chem>
1258	<chem>CC1=CC=C(C=C1)CC2=CC=C(C=C2)C(=O)N(c3ccc(Cl)cc3)N</chem>	1	2	0	R	H	<chem>-CH2-NH-C(=O)c1ccc(Cl)cc1N</chem>
1259	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N(c3ccc(Cl)cc3)N</chem>	1	2	0	R	H	<chem>-CH2-NH-C(=O)c1ccc(Cl)cc1N</chem>
1260	<chem>CC1=CC=C(C=C1)CC2=CC=C(C=C2)C(=O)N(c3ccc(OCC)cc3)N</chem>	1	2	0	R	H	<chem>-CH2-NH-C(=O)c1ccc(OCC)cc1N</chem>
1261	<chem>CC1=CC=C(C=C1)CC2=CC=C(C=C2)C(=O)N(c3ccc(C(=O)C(C)C)cc3)N</chem>	1	2	0	R	H	<chem>-CH2-NH-C(=O)c1ccc(C(=O)C(C)C)cc1N</chem>
1262	<chem>CC1=CC=C(C=C1)CC2=CC=C(C=C2)C(=O)N(c3ccc(C(=O)C(C)C)cc3)N</chem>	1	2	0	R	H	<chem>-CH2-NH-C(=O)c1ccc(C(=O)C(C)C)cc1N</chem>
1263	<chem>CC1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)N(c3ccc(C(=O)C(C)C)cc3)N</chem>	1	2	0	R	H	<chem>-CH2-NH-C(=O)c1ccc(C(=O)C(C)C)cc1N</chem>
1264	<chem>CC1=CC=C(C=C1)CC2=CC=C(C=C2)C(=O)N(c3ccc(Oc4ccccc4)cc3)N</chem>	1	2	0	R	H	<chem>-CH2-NH-C(=O)c1ccc(Oc2ccccc2)cc1N</chem>
1265	<chem>CC1=CC=C(C=C1)CC2=CC=C(C=C2)C(=O)N(c3ccc(Oc4ccccc4)cc3)N</chem>	1	2	0	R	H	<chem>-CH2-NH-C(=O)c1ccc(Oc2ccccc2)cc1N</chem>

138

Table 1.116

Compd. No.	R^1 R^2	$(CH_2)_j^-$	k	m	n	chirality	R^3	$-(CH_2)_p$ $\overset{R^4}{\underset{R^5}{ }} (CH_2)_q^- G - R^6$
1266		$(CH_2)_2^-$	1	2	0	R	H	
1267		$(CH_2)_2^-$	1	2	0	R	H	
1268		$(CH_2)_2^-$	1	2	0	R	H	
1269		$(CH_2)_2^-$	1	2	0	R	H	
1270		$(CH_2)_2^-$	1	2	0	R	H	
1271		$(CH_2)_2^-$	1	2	0	R	H	
1272		$(CH_2)_2^-$	1	2	0	R	H	
1273		$(CH_2)_2^-$	1	2	0	R	H	
1274		$(CH_2)_2^-$	1	2	0	R	H	
1275		$(CH_2)_2^-$	1	2	0	R	H	
1276		$(CH_2)_2^-$	1	2	0	R	H	

139

Table 1.117

Compd. No.	R^1 R^2 - $(CH_2)_l-$	k	m	n	chirality	R^3	$-(CH_2)_p$ $\begin{array}{c} R^4 \\ \\ -C- \\ \\ R^5 \end{array}$ $(CH_2)_q-G-R^6$
1277		1	2	0	R	H	
1278		1	2	0	R	H	
1279		1	2	0	R	H	
1280		1	2	0	R	H	
1281		1	2	0	R	H	
1282		2	2	1	-	H	
1283		2	2	1	-	H	
1284		2	2	1	-	H	
1285		2	2	1	-	H	
1286		1	2	0	R	H	
1287		1	2	0	R	H	

140

Table 1.118

Compd. No.	R^1 R^2 $\text{---}(\text{CH}_2)_j\text{---}$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p\text{---}\begin{array}{c} \text{R}^4 \\ \\ \text{C} \\ \\ \text{R}^5 \end{array}\text{---}(\text{CH}_2)_q\text{---}\text{G---R}^6$
1288		1	2	0	R	H	
1289		1	2	0	R	H	
1290		1	2	0	R	H	
1291		1	2	0	R	H	
1292		1	2	0	R	H	
1293		1	2	0	R	H	
1294		1	2	0	R	H	
1295		1	2	0	R	H	
1296		1	2	0	R	H	
1297		1	2	0	R	H	
1298		1	2	0	R	H	

1 4 1

Table 1.119

Compd. No.	R^1 R^2	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \begin{array}{c} \text{R}^4 \\ \\ \text{R}^5 \end{array} (\text{CH}_2)_q \text{G-R}^6$
1299		1	2	0	R	H	
1300		1	2	0	R	H	
1301		1	2	0	R	H	
1302		1	2	0	R	H	
1303		1	2	0	R	H	
1304		1	2	0	R	H	
1305		1	2	0	R	H	
1306		1	2	0	R	H	
1307		1	2	0	R	H	
1308		1	2	0	R	H	
1309		1	2	0	R	H	

1 4 2

Table 1.120

Compd. No.	$\begin{array}{c} R^1 \\ \\ R^2-(CH_2)_l-\end{array}$	k	m	n	chirality	R^3	$-(CH_2)_p\begin{array}{c} R^4 \\ \\ R^5\end{array}(CH_2)_qG-R^6$
1310		1	2	0	R	H	
1311		1	2	0	R	H	
1312		1	2	0	R	H	
1313		1	2	0	R	H	
1314		1	2	0	R	H	
1315		1	2	0	R	H	
1316		1	2	0	R	H	
1317		1	2	0	R	H	
1318		1	2	0	R	H	
1319		1	2	0	R	H	
1320		1	2	0	R	H	

143

Table 1.121

Compd. No.	$\begin{array}{c} R^1 \\ \\ R^2 \text{---} (CH_2)_j \text{---} \end{array}$	k	m	n	chirality	R ³	$-(CH_2)_p \begin{array}{c} R^4 \\ \\ R^5 \end{array} (CH_2)_q \text{---} G \text{---} R^6$
1321		1	2	0	R	H	
1322		1	2	0	R	H	
1323		1	2	0	R	H	
1324		1	2	0	R	H	
1325		1	2	0	R	H	
1326		1	2	0	R	H	
1327		1	2	0	R	H	
1328		1	2	0	R	H	
1329		1	2	0	R	H	
1330		1	2	0	R	H	
1331		1	2	0	R	H	

144

Table 1.122

Compd. No.	R^1 R^2 - $(\text{CH}_2)_l-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p-\overset{\text{R}^4}{\underset{\text{R}^5}{\text{C}}}-(\text{CH}_2)_q-\text{G}-\text{R}^6$
1332	$\text{H}_3\text{C}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{C}(=\text{O})-\text{C}_6\text{H}_4-$
1333	$\text{H}_3\text{C}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{OH}-$
1334	$\text{H}_3\text{C}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CH}_3-\text{NH}_2-$
1335	$\text{CH}_3-\text{C}_5\text{H}_3-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{Cl}-\text{Br}-$
1336	$\text{CH}_3-\text{C}_5\text{H}_3-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CH}_3-\text{Cl}-$
1337	$\text{CH}_3-\text{C}_5\text{H}_3-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{Cl}-\text{I}-$
1338	$\text{CH}_3-\text{C}_5\text{H}_3-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CH}_3-\text{OH}-$
1339	$\text{CH}_3-\text{C}_5\text{H}_3-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{C}(=\text{O})-\text{C}_6\text{H}_4-$
1340	$\text{CH}_3-\text{C}_5\text{H}_3-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{OH}-\text{I}-$
1341	$\text{CH}_3-\text{C}_5\text{H}_3-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CH}_3-\text{NH}_2-$
1342	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}(\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{Cl}-\text{Br}-$

145

Table 1.123

Compd. No.	R^1 R^2	(CH_2) $_j$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p-\overset{\text{R}^4}{\underset{\text{R}^5}{\text{C}}}(\text{CH}_2)_q-\text{G}-\text{R}^6$
1343		- CH_2- 	2	2	1	-	H	
1344		- CH_2- 	2	2	1	-	H	
1345		- CH_2- 	2	2	1	-	H	
1346		- CH_2- 	2	2	1	-	H	
1347		- CH_2- 	1	2	0	R	H	
1348		- CH_2- 	1	2	0	R	H	
1349		- CH_2- 	1	2	0	R	H	
1350		- CH_2- 	2	2	1	-	H	
1351		- CH_2- 	1	2	0	R	H	
1352		- CH_2- 	1	2	0	R	H	
1353		- CH_2- 	1	2	0	R	H	

146

Table 1.124

Compd. No.	R^1 R^2 - (CH_2) $_j$ -	k	m	n	chirality	R^3	$-(CH_2)_p-C(R^4)(R^5)-(CH_2)_q-G-R^6$
1354	Cl- C6H5- CH2-	2	2	1	-	H	
1355	Cl- C6H5- CH2-	1	2	0	R	H	
1356	H3C- C6H5- CH2-	1	2	0	R	H	
1357		1	2	0	R	H	
1358	Cl- C6H5- CH2-	2	2	1	-	H	
1359		1	2	0	R	H	
1360		1	2	0	R	H	
1361	H3C- C6H5- CH2-	1	2	0	R	H	
1362		1	2	0	R	H	
1363		1	2	0	R	H	
1364	H3C- C6H5- CH2-	1	2	0	R	H	

147

Table 1.125

Compd. No.	$\begin{array}{c} R^1 \\ \diagup \\ R^2 \end{array} - (CH_2)_l -$	k	m	n	chirality	R^3	$-(CH_2)_p \begin{array}{c} R^4 \\ \\ R^5 \end{array} (CH_2)_q - G - R^6$
1365		1	2	0	R	H	
1366		1	2	0	R	H	
1367		1	2	0	R	H	
1368		1	2	0	R	H	
1369		1	2	0	R	H	
1370		1	2	0	R	H	
1371		1	2	0	R	H	
1372		1	2	0	R	H	
1373		1	2	0	R	H	
1374		1	2	0	R	H	
1375		1	2	0	R	H	

148

Table 1.126

Compd. No.	R^1 R^2	$(\text{CH}_2)_k^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- \begin{array}{c} \text{R}^4 \\ \\ -\text{C}- \\ \\ \text{R}^5 \end{array} (\text{CH}_2)_q^- \text{G}-\text{R}^6$
1376		CH_2-	1	2	0	R	H	
1377		CH_2-	1	2	0	R	H	
1378		CH_2-	1	2	0	R	H	
1379		CH_2-	1	2	0	R	H	
1380		CH_2-	1	2	0	R	H	
1381		CH_2-	1	2	0	R	H	
1382		CH_2-	1	2	0	R	H	
1383		CH_2-	2	2	1	-	H	
1384		CH_2-	2	2	1	-	H	
1385		CH_2-	2	2	1	-	H	
1386		CH_2-	2	2	1	-	H	

149

Table 1.127

Compd. No.	R_1 R_2 - $(CH_2)_l$	k	m	n	chirality	R^3	$-(CH_2)_p$ $\begin{array}{c} R^4 \\ \\ -C-R_5 \end{array}$ $(CH_2)_q-G-R^6$
1387		1	2	0	R	H	
1388		1	2	0	R	H	
1389		1	2	0	R	H	
1390		1	2	0	R	H	
1391		1	2	0	R	H	
1392		1	2	0	R	H	
1393		1	2	0	R	H	
1394		1	2	0	R	H	
1395		1	2	0	R	H	
1396		1	2	0	R	H	
1397		1	2	0	R	H	

150

Table 1.128

Compd. No.	R_1^1 R_2^2	$(\text{CH}_2)_j^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- \begin{array}{c} \text{R}^4 \\ \\ -\text{C}- \\ \\ \text{R}^5 \end{array} (\text{CH}_2)_q^- \text{G} - \text{R}^6$
1398		$(\text{CH}_2)_1^-$	1	2	0	R	H	
1399		$(\text{CH}_2)_1^-$	1	2	0	R	H	
1400		$(\text{CH}_2)_1^-$	1	2	0	R	H	
1401		$(\text{CH}_2)_1^-$	1	2	0	R	H	
1402		$(\text{CH}_2)_1^-$	1	2	0	R	H	
1403		$(\text{CH}_2)_1^-$	1	2	0	R	H	
1404		$(\text{CH}_2)_1^-$	1	2	0	R	H	
1405		$(\text{CH}_2)_1^-$	1	2	0	R	H	
1406		$(\text{CH}_2)_1^-$	1	2	0	R	H	
1407		$(\text{CH}_2)_1^-$	1	2	0	R	H	
1408		$(\text{CH}_2)_1^-$	1	2	0	R	H	

151

Table 1.129

Compd. No.	$\begin{array}{c} R^1 \\ \\ R^2 > (CH_2)_l - \end{array}$	k	m	n	chirality	R ³	$-(CH_2)_p \begin{array}{c} R^4 \\ \\ R^5 \end{array} (CH_2)_q G - R^6$
1409	<chem>CC(c1ccc(cc1)C)C</chem>	1	2	0	R	H	<chem>-CH2-N(C(=O)c1ccccc1)C2CCCC2C(=O)CH3</chem>
1410	<chem>CC1=C(C=C1)C(C)C</chem>	1	2	0	R	H	<chem>-CH2-N(C(=O)c1ccccc1)C2CCCC2C(=O)CH3</chem>
1411	<chem>CCc1ccc(cc1)C</chem>	1	2	0	R	H	<chem>-CH2-N(C(=O)c1ccc(Cl)cc1)C2CCCC2C(=O)CH3</chem>
1412	<chem>CC(c1ccc(cc1)C)C</chem>	1	2	0	R	H	<chem>-CH2-N(C(=O)c1ccc(Cl)cc1)C2CCCC2C(=O)CH3</chem>
1413	<chem>CC1=C(C=C1)C(C)C</chem>	1	2	0	R	H	<chem>-CH2-N(C(=O)c1ccc(Cl)cc1)C2CCCC2C(=O)CH3</chem>
1414	<chem>CCc1ccc(cc1)C</chem>	2	2	1	-	H	<chem>-CH2-N(C(=O)c1ccc(Cl)cc1)C2CCCC2C(=O)CH3</chem>
1415	<chem>CCc1ccc(cc1)C</chem>	1	2	0	R	H	<chem>-CH2-N(C(=O)c1ccc(N)cc1)C2CCCC2C(=O)SCN</chem>
1416	<chem>CC(c1ccc(cc1)C)C</chem>	1	2	0	R	H	<chem>-CH2-N(C(=O)c1ccc(N)cc1)C2CCCC2C(=O)SCN</chem>
1417	<chem>CC1=C(C=C1)C(C)C</chem>	1	2	0	R	H	<chem>-CH2-N(C(=O)c1ccc(N)cc1)C2CCCC2C(=O)SCN</chem>
1418	<chem>CCc1ccc(cc1)C</chem>	2	2	1	-	H	<chem>-CH2-N(C(=O)c1ccc(N)cc1)C2CCCC2C(=O)SCN</chem>
1419	<chem>CCc1ccc(cc1)C</chem>	1	2	0	R	H	<chem>-CH2-N(C(=O)c1ccc(S)cc1)C2CCCC2C(=O)CH3</chem>

152

Table 1.130

Compd. No.	$\begin{array}{c} R^1 \\ \\ R^2 \text{---} (CH_2)_j \text{---} \end{array}$	k	m	n	chirality	R ³	$-(CH_2)_p \begin{array}{c} R^4 \\ \\ R^5 \end{array} (CH_2)_q \text{---} G \text{---} R^6$
1420	<chem>CC(c1ccc(cc1)C)C</chem>	1	2	0	R	H	<chem>-CH2-N(H)C(=O)c1ccc(cc1)N</chem>
1421	<chem>C=C1C(C)=C(OCC2=CC=C(C=C2)C)C1</chem>	1	2	0	R	H	<chem>-CH2-N(H)C(=O)c1ccc(cc1)N</chem>
1422	<chem>CC(c1ccc(cc1)C)C</chem>	2	2	1	-	H	<chem>-CH2-N(H)C(=O)c1ccc(cc1)N</chem>
1423	<chem>CC(c1ccc(cc1)C)C</chem>	1	2	0	R	H	<chem>-CH2-N(H)C(=O)C(c1ccccc1)C=O</chem>
1424	<chem>CC(c1ccc(cc1)C)C</chem>	1	2	0	R	H	<chem>-CH2-N(H)C(=O)C(c1ccccc1)C=O</chem>
1425	<chem>C=C1C(C)=C(OCC2=CC=C(C=C2)C)C1</chem>	1	2	0	R	H	<chem>-CH2-N(H)C(=O)C(c1ccccc1)C=O</chem>
1426	<chem>CC(c1ccc(cc1)C)C</chem>	2	2	1	-	H	<chem>-CH2-N(H)C(=O)C(c1ccccc1)C=O</chem>
1427	<chem>CC(c1ccc(cc1)C)C</chem>	2	2	1	-	H	<chem>-CH2-N(H)C(=O)c1ccc(cc1)N3CCN(C)C3Br</chem>
1428	<chem>CC(c1ccc(cc1)C)C</chem>	2	2	1	-	H	<chem>-CH2-N(H)C(=O)c1ccc(cc1)N3CCN(C)C3Br</chem>
1429	<chem>CCOC(c1ccc(cc1)C)C</chem>	2	2	1	-	H	<chem>-CH2-N(H)C(=O)c1ccc(cc1)N2CC(Cl)C2</chem>
1430	<chem>CC1=CC=C2C=C1OC2</chem>	2	2	1	-	H	<chem>-CH2-N(H)C(=O)c1ccc(cc1)N2CC(Cl)C2</chem>

153

Table 1.131

Compd. No.	R^1 $\text{R}^2\text{C}(\text{CH}_2)_l$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p\text{C}(\text{R}^4)(\text{CH}_2)_q\text{G-R}^6$
1431	$\text{H}_3\text{CCH}_2\text{O}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1432		2	2	1	-	H	
1433	$\text{H}_3\text{CCH}_2\text{O}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1434	$\text{H}_3\text{CCH}_2\text{O}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1435	$\text{H}_3\text{CCH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1436	$(\text{H}_3\text{C})_2\text{CH}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1437	$\text{H}_3\text{C}(\text{CH}_2)_2\text{O}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1438	$\text{H}_3\text{CCH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1439	$(\text{H}_3\text{C})_2\text{CH}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1440	$\text{H}_3\text{C}(\text{CH}_2)_2\text{O}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1441	$\text{H}_3\text{CS}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	

154

Table 1.132

Compd. No.	R^1 R^2	$(\text{CH}_2)_l^-$	k	m	n	chirality	R^3	R^4 R^5	$-(\text{CH}_2)_p^- (\text{CH}_2)_q^- \text{G}-\text{R}^6$
1442	H_3CCH_2-		2	2	1	-	H		
1443	$(\text{H}_3\text{C})_2\text{CH}-$		2	2	1	-	H		
1444	$\text{H}_3\text{C}(\text{CH}_2)_2\text{O}-$		2	2	1	-	H		
1445	H_3CCH_2-		2	2	1	-	H		
1446	$(\text{H}_3\text{C})_2\text{CH}-$		2	2	1	-	H		
1447	$\text{H}_3\text{C}(\text{CH}_2)_2\text{O}-$		2	2	1	-	H		
1448	$\text{H}_3\text{CS}-$		2	2	1	-	H		
1449	H_3CCH_2-		2	2	1	-	H		
1450	$(\text{H}_3\text{C})_2\text{CH}-$		2	2	1	-	H		
1451	$(\text{H}_3\text{CCH}_2)_2\text{N}-$		2	2	1	-	H		
1452	$\text{H}_3\text{CO}-$		2	2	1	-	H		

155

Table 1.133

Compd. No.	$\begin{array}{c} R^1 \\ \\ R^2-(CH_2)_j- \end{array}$	k	m	n	chirality	R ³	$-(CH_2)_p-\begin{array}{c} R^4 \\ \\ R^5 \end{array}- (CH_2)_q-G-R^6$
1453	$H_3C(CH_2)_2O-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
1454	$H_3C\text{CH}_2\text{O}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
1455	$\begin{array}{c} H_3CO \\ \\ HO-\text{C}_6\text{H}_4-\text{CH}_2- \end{array}$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
1456	$\begin{array}{c} O \\ \\ \text{C}_6\text{H}_4-\text{CH}_2- \end{array}$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$
1457	$(\text{CH}_3)_2\text{N}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{Cl}-\text{NH}_2$
1458	$\begin{array}{c} H_3CO \\ \\ HO-\text{C}_6\text{H}_4-\text{CH}_2- \end{array}$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{Cl}-\text{NH}_2$
1459	$(\text{H}_3\text{C})_2\text{N}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{Br}-\text{NH}_2$
1460	$\begin{array}{c} H_3CO \\ \\ HO-\text{C}_6\text{H}_4-\text{CH}_2- \end{array}$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{Br}-\text{NH}_2$
1461	$\begin{array}{c} H_3CO \\ \\ HO-\text{C}_6\text{H}_4-\text{CH}_2- \end{array}$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{Cl}-\text{NH}-\text{CH}_2-\text{C}_6\text{H}_4-\text{OH}-\text{OC}_6\text{H}_4-\text{OH}$
1462	$\begin{array}{c} H_3CO \\ \\ HO-\text{C}_6\text{H}_4-\text{CH}_2- \end{array}$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{Br}-\text{NH}-\text{CH}_2-\text{C}_6\text{H}_4-\text{OH}-\text{OC}_6\text{H}_4-\text{OH}$
1463	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	1	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{CF}_3$

156

Table 1.134

Compd. No.	R^1 R^2	$(\text{CH}_2)_l^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- \begin{array}{c} \text{R}^4 \\ \\ \text{R}^5 \end{array} (\text{CH}_2)_q^- \text{G}-\text{R}^6$
1464		CH_2^-	2	1	1	-	H	
1465		CH_2^-	2	1	1	-	H	
1466		CH_2^-	2	1	1	-	H	
1467		CH_2^-	2	1	1	-	H	
1468		CH_2^-	2	1	1	-	H	
1469		CH_2^-	2	1	1	-	H	
1470		CH_2^-	2	1	1	-	H	
1471		CH_2^-	2	1	1	-	H	
1472		CH_2^-	1	2	0	R	H	
1473		CH_2^-	1	2	0	R	H	
1474		CH_2^-	1	2	0	R	H	

157

Table 1.135

Compd. No.	$\begin{array}{c} R^1 \\ \\ R^2-(CH_2)_j \end{array}$	k	m	n	chirality	R^3	$-(CH_2)_p \begin{array}{c} R^4 \\ \\ R^5 \end{array} (CH_2)_q G-R^6$
1475		1	2	0	R	H	
1476		1	2	0	R	H	
1477		1	2	0	R	H	
1478		1	2	0	R	H	
1479		1	2	0	R	H	
1480		1	2	0	R	H	
1481		1	2	0	R	H	
1482		1	2	0	R	H	
1483		1	2	0	R	H	
1484		1	2	0	R	H	
1485		1	2	0	R	H	

158

Table 1.136

Compd. No.	R^1 R^2 - $(CH_2)_j-$	k	m	n	chirality	R^3	$-(CH_2)_p$ $\overset{R^4}{ }$ $\overset{R^5}{ }$ $(CH_2)_q-G-R^6$
1486	$H_3C-\text{phenyl}-CH_2-$	1	2	0	R	H	$-\text{CH}_2-\overset{\text{O}}{\underset{\text{H}}{\text{N}}}(\text{C}_6\text{H}_4-\text{OCH}_3)-\text{H}_2\text{N}-$
1487	$H_3C-\text{phenyl}-CH_2-$	1	2	0	R	H	$-\text{CH}_2-\overset{\text{O}}{\underset{\text{H}}{\text{N}}}(\text{C}_6\text{H}_3(\text{Cl})_2-\text{H}_2\text{N}-\text{Cl})-$
1488	$H_3C-\text{phenyl}-CH_2-$	1	2	0	R	H	$-\text{CH}_2-\overset{\text{O}}{\underset{\text{H}}{\text{N}}}(\text{C}(\text{CH}_3)-\text{C}_3\text{H}_5)-$
1489	$H_3C-\text{phenyl}-CH_2-$	1	2	0	R	H	$-\text{CH}_2-\overset{\text{O}}{\underset{\text{H}}{\text{N}}}(\text{C}_4\text{H}_4)-$
1490	$H_3C-\text{phenyl}-CH_2-$	1	2	0	R	H	$-\text{CH}_2-\overset{\text{O}}{\underset{\text{H}}{\text{N}}}(\text{C}_6\text{H}_4-\text{CH}_3)-$
1491	$H_3C-\text{phenyl}-CH_2-$	1	2	0	R	H	$-\text{CH}_2-\overset{\text{NH}_2}{\underset{\text{H}}{\text{N}}}(\text{C}_3\text{H}_5)-$
1492	$H_3C-\text{phenyl}-CH_2-$	1	2	0	R	H	$-\text{CH}_2-\overset{\text{O}}{\underset{\text{H}}{\text{N}}}(\text{C}_6\text{H}_4-\text{NO}_2)-$
1493	$-\text{CH}_2-\text{O}-\text{C}_3\text{H}_5-\text{CH}_3$	1	2	0	R	H	$-\text{CH}_2-\overset{\text{O}}{\underset{\text{H}}{\text{N}}}(\text{C}_3\text{H}_5-\text{O}-\text{C}_6\text{H}_4-\text{Cl})-$
1494	$-\text{CH}_2-\text{O}-\text{C}_3\text{H}_5-\text{CH}_3$	1	2	0	R	H	$-\text{CH}_2-\overset{\text{O}}{\underset{\text{H}}{\text{N}}}(\text{C}_3\text{H}_5-\text{O}-\text{C}_6\text{H}_4-\text{C}_3\text{H}_5)-$
1495	$-\text{CH}_2-\text{O}-\text{C}_3\text{H}_5-\text{CH}_3$	1	2	0	R	H	$-\text{CH}_2-\overset{\text{O}}{\underset{\text{H}}{\text{N}}}(\text{C}_6\text{H}_4-\text{CH}_3-\text{CH}_3)-$
1496	$-\text{CH}_2-\text{O}-\text{C}_3\text{H}_5-\text{CH}_3$	1	2	0	R	H	$-\text{CH}_2-\overset{\text{O}}{\underset{\text{H}}{\text{N}}}(\text{C}_6\text{H}_4-\text{CH}_3-\text{O}-\text{C}_3\text{H}_5)-$

159

Table 1.137

Compd. No.	R^1 R^2-CH_2-	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \begin{array}{c} R^4 \\ \\ -\text{C}- \\ \\ \text{H} \end{array} \text{R}^5 (\text{CH}_2)_q \text{G-R}^6$
1497		1	2	0	R	H	
1498		1	2	0	R	H	
1499		1	2	0	R	H	
1500		1	2	0	R	H	
1501		1	2	0	R	H	
1502		1	2	0	R	H	
1503		1	2	0	R	H	
1504		1	2	0	R	H	
1505		1	2	0	R	H	
1506		2	1	1	-	H	
1507		2	1	1	-	H	

160

Table 1.138

Compd. No.	R^1 R^2	$(\text{CH}_2)_j^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- \begin{matrix} \text{R}^4 \\ \\ \text{C} \\ \\ \text{H} \end{matrix} (\text{CH}_2)_q^- \text{G}-\text{R}^6$
1508		CH_2-	2	1	1	-	H	
1509		CH_2-	2	1	1	-	H	
1510		CH_2-	2	1	1	-	H	
1511		CH_2-	2	1	1	-	H	
1512		CH_2-	2	1	1	-	H	
1513		CH_2-	2	1	1	-	H	
1514	$(\text{H}_3\text{CCH}_2)_2\text{N}-\text{C}_6\text{H}_4-\text{CH}_2-$	CH_2-	2	2	1	-	H	
1515		CH_2-	2	2	1	-	H	
1516	$(\text{H}_3\text{CCH}_2)_2\text{N}-\text{C}_6\text{H}_4-\text{CH}_2-$	CH_2-	2	2	1	-	H	
1517		CH_2-	2	2	1	-	H	
1518		CH_2-	2	2	1	-	H	

161

Table 1.139

Compd. No.	R^1 $\text{R}^2 \text{---} (\text{CH}_2)_k \text{---}$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \begin{array}{c} \text{R}^4 \\ \\ \text{---} \text{C}(\text{H}) \text{---} \\ \\ \text{O} \end{array} (\text{CH}_2)_q \text{---} \text{G} \text{---} \text{R}^6$
1519		2	2	1	-	H	
1520		1	2	0	R	H	
1521		1	2	0	R	H	
1522		1	2	0	R	H	
1523		1	2	0	R	H	
1524		1	2	0	R	H	
1525		1	2	0	R	H	
1526		1	2	0	R	H	
1527		1	2	0	R	H	
1528		1	2	0	R	H	
1529		1	2	0	R	H	

1 6 2

Table 1.140

Compd. No.	R^1 R^2	$(\text{CH}_2)_i^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- \begin{array}{c} \text{R}^4 \\ \\ \text{R}^5 \end{array} (\text{CH}_2)_q^- \text{G}-\text{R}^6$
1530			1	2	0	R	H	
1531			1	2	0	R	H	
1532			1	2	0	R	H	
1533			1	2	0	R	H	
1534			1	2	0	R	H	
1535			1	2	0	R	H	
1536			1	2	0	R	H	
1537			1	2	0	R	H	
1538			1	2	0	R	H	
1539			1	2	0	R	H	
1540			1	2	0	R	H	

163

Table 1.141

Compd. No.	R^1 R^2	$(\text{CH}_2)_k$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \text{C}(\text{R}^4)(\text{CH}_2)_q \text{G-R}^6$
1541	<chem>H3CO-c1ccc(cc1)Cc2ccccc2</chem>	CH_2-	1	2	0	R	H	<chem>-CH2-N(C(=O)c1ccc(F)cc1)C(F)F</chem>
1542	<chem>O=C1OC(O)=CC=C1Cc2ccccc2</chem>	CH_2-	1	2	0	R	H	<chem>-CH2-N(C(=O)c1ccc(F)cc1)C(F)F</chem>
1543	<chem>H3COc1ccc(cc1)Cc2ccccc2</chem>	CH_2-	1	2	0	R	H	<chem>-CH2-N(C(=O)c1ccc(F)cc1)C(F)F</chem>
1544	<chem>H3COc1ccc(cc1)Cc2ccc(O)cc2</chem>	CH_2-	1	2	0	R	H	<chem>-CH2-N(C(=O)c1ccc(F)cc1)C(F)F</chem>
1545	<chem>Clc1ccsc1Cc2ccccc2</chem>	CH_2-	1	2	0	R	H	<chem>-CH2-N(C(=O)c1ccc(F)cc1)C(F)F</chem>
1546	<chem>H3COc1c(F)c(F)c(Cc2ccccc2)c1</chem>	CH_2-	1	2	0	R	H	<chem>-CH2-N(C(=O)c1ccc(F)cc1)C(F)F</chem>
1547	<chem>H3COc1ccc(cc1)BrCc2cc(Br)cc2</chem>	CH_2-	1	2	0	R	H	<chem>-CH2-N(C(=O)c1ccc(F)cc1)C(F)F</chem>
1548	<chem>H3Cc1ccc(cc1)Cc2ccccc2</chem>	CH_2-	1	2	0	R	H	<chem>-CH2-N(C(=O)[C@H]1[C@H](C[C@H]1C)C)C(F)F</chem>
1549	<chem>H3Cc1ccc(cc1)Cc2ccccc2</chem>	CH_2-	1	2	0	R	H	<chem>-CH2-N(C(=O)C1(C)CC=C(C(C)C)C1)C(F)F</chem>
1550	<chem>H3Cc1ccc(cc1)Cc2ccccc2</chem>	CH_2-	1	2	0	R	H	<chem>-CH2-N(C(=O)c1ccc(cc1)N2C(=O)c3ccc(O)cc3)C(F)F</chem>
1551	<chem>H3Cc1ccc(cc1)Cc2ccccc2</chem>	CH_2-	1	2	0	R	H	<chem>-CH2-N(C(=O)c1ccc(cc1)S(=O)(=O)N2CCCC2O)C(F)F</chem>

164

Table 1.142

Compd. No.	$\begin{array}{c} R^1 \\ \\ R_2-CH_2-(CH_2)_j- \end{array}$	k	m	n	chirality	R^3	$-(CH_2)_p\begin{array}{c} R^4 \\ \\ R_5-C(CH_2)_q-G-R^6 \end{array}$
1552	<chem>Cc1ccc(cc1)CC-</chem>	1	2	0	R	H	<chem>-CH2-NHC(=O)c1ccccc1</chem>
1553	<chem>Cc1ccc(cc1)CC-</chem>	1	2	0	R	H	<chem>-CH2-NHC(=O)c1c(Cl)oc2c1C=C(C=C2)C3=CC=C(C=C3)C</chem>
1554	<chem>Cc1ccc(cc1)CC-</chem>	1	2	0	R	H	<chem>-CH2-NHC(=O)c1ccccc1[C@H]2C[C@H]3[C@H]2[C@H]3C</chem>
1555	<chem>Cc1ccc(cc1)CC-</chem>	1	2	0	R	H	<chem>-CH2-NHC(=O)c1c(C)nc(C)c(C)c1</chem>
1556	<chem>Cc1ccc(cc1)CC-</chem>	1	2	0	R	H	<chem>-CH2-NHC(=O)c1c(C)oc2c1C=C(C=C2)C3=CC=C(C=C3)C</chem>
1557	<chem>Cc1ccc(cc1)CC-</chem>	1	2	0	R	H	<chem>-CH2-NHC(=O)c1c(C)sc2c1C=C(C=C2)C3=CC=C(C=C3)C</chem>
1558	<chem>Cc1ccc(cc1)CC-</chem>	1	2	0	R	H	<chem>-CH2-NHC(=O)c1c(C)nc2c1C=NC3=C2C=C(C=C3)C</chem>
1559	<chem>Cc1ccc(cc1)CC-</chem>	1	2	0	R	H	<chem>-CH2-NHC(=O)c1c(C)nc2c1C=CC(C(C)=O)N=C2</chem>
1560	<chem>Cc1ccc(cc1)CC-</chem>	1	2	0	R	H	<chem>-CH2-NHC(=O)c1ccc2c(c1)NOc3ccccc32</chem>
1561	<chem>Cc1ccc(cc1)CC-</chem>	1	2	0	R	H	<chem>-CH2-NHC(=O)c1c(C)cc(C(C)(C)C)c(C(C)(C)C)c1</chem>
1562	<chem>Cc1ccc(cc1)CC-</chem>	1	2	0	R	H	<chem>-CH2-NHC(=O)c1ccc2c(c1)[N+](=O)[O-]C=O</chem>

165

Table 1.143

Compd. No.	R^1 R^2 - $(\text{CH}_2)_j-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p-\overset{\text{R}^4}{\underset{\text{R}^5}{\text{C}}}-(\text{CH}_2)_q-\text{G}-\text{R}^6$
1563	$\text{H}_3\text{C}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	
1564	$\text{H}_3\text{C}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	
1565		1	2	0	R	H	
1566		1	2	0	R	H	
1567		1	2	0	R	H	
1568		1	2	0	R	H	
1569		1	2	0	R	H	
1570	$\text{H}_3\text{CS}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1571	$\text{H}_3\text{CS}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1572		2	2	1	-	H	
1573		2	2	1	-	H	

166

Table 1.144

Compd. No.	R^1 R^2	$(\text{CH}_2)_l^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- \overset{\text{R}^4}{\underset{\text{R}^5}{\text{I}}} (\text{CH}_2)_q^- \text{G}-\text{R}^6$
1574		$(\text{CH}_2)_l^-$	2	2	1	-	H	
1575		$(\text{CH}_2)_l^-$	2	2	1	-	H	
1576		$(\text{CH}_2)_l^-$	2	2	1	-	H	
1577		$(\text{CH}_2)_l^-$	2	2	1	-	H	
1578		$(\text{CH}_2)_l^-$	2	2	1	-	H	
1579		$(\text{CH}_2)_l^-$	2	2	1	-	H	
1580		$(\text{CH}_2)_l^-$	2	2	1	-	H	
1581		$(\text{CH}_2)_l^-$	2	2	1	-	H	
1582		$(\text{CH}_2)_l^-$	2	2	1	-	H	
1583		$(\text{CH}_2)_l^-$	1	2	0	R	H	
1584		$(\text{CH}_2)_l^-$	1	2	0	R	H	

167

Table 1.145

Compd. No.	R^1 R^2	$(\text{CH}_2)_j^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- \begin{array}{c} \text{R}^4 \\ \\ -\text{C}- \\ \\ \text{R}^5 \end{array} (\text{CH}_2)_q^- \text{G}-\text{R}^6$
1585		CH_2^-	1	2	0	R	H	
1586		CH_2^-	1	2	0	R	H	
1587		CH_2^-	1	2	0	R	H	
1588		CH_2^-	1	2	0	R	H	
1589		CH_2^-	1	2	0	R	H	
1590		CH_2^-	1	2	0	R	H	
1591		CH_2^-	1	2	0	R	H	
1592		CH_2^-	1	2	0	R	H	
1593		CH_2^-	1	2	0	R	H	
1594		CH_2^-	1	2	0	R	H	
1595		CH_2^-	1	2	0	R	H	

168

Table 1.146

Compd. No.	R_1 R_2	$(CH_2)_l^-$	k	m	n	chirality	R^3	$-(CH_2)_p^{\frac{R^4}{R_5}}(CH_2)_q^-G-R^6$
1596			1	2	0	R	H	
1597			1	2	0	R	H	
1598			1	2	0	R	H	
1599			1	2	0	R	H	
1600			2	2	1	-	H	
1601			2	2	1	-	H	
1602			2	2	1	-	H	
1603			2	2	1	-	H	
1604			2	2	1	-	H	
1605			2	2	1	-	H	
1606			1	2	0	R	H	

169

Table 1.147

Compd. No.	R^1 R^2	$(\text{CH}_2)_j^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- \begin{array}{c} \text{R}^4 \\ \\ \text{R}^5 \end{array} (\text{CH}_2)_q^- \text{G}-\text{R}^6$
1607		CH_2^-	1	2	0	R	H	
1608		CH_2^-	1	2	0	R	H	
1609		CH_2^-	2	2	1	-	H	
1610		CH_2^-	2	2	1	-	H	
1611		CH_2^-	2	2	1	-	H	
1612		CH_2^-	2	2	1	-	H	
1613		CH_2^-	2	2	1	-	H	
1614		CH_2^-	1	2	0	R	H	
1615		CH_2^-	2	2	1	-	H	
1616		CH_2^-	2	2	1	-	H	
1617		CH_2^-	2	2	1	-	H	

170

Table 1.148

Compd. No.	R^1 $\text{R}^2\text{---}(CH_2)_j\text{---}$	k	m	n	chirality	R^3	$-(CH_2)_p\overset{\text{R}^4}{\underset{\text{R}^5}{\text{I}}}(CH_2)_q\text{---G---R}^6$
1618		1	2	0	R	H	
1619		1	2	0	R	H	
1620		1	2	0	R	H	
1621		1	2	0	R	H	
1622		1	2	0	R	H	
1623		1	2	0	R	H	
1624		1	2	0	R	H	
1625		1	2	0	R	H	
1626		1	2	0	R	H	
1627		1	2	0	R	H	
1628		1	2	0	R	H	

171

Table 1.149

Compd. No.	$\begin{array}{c} R^1 \\ \\ R^2 \text{---} (CH_2)_j \text{---} \end{array}$	k	m	n	chirality	R ³	$-(CH_2)_p \text{---} \begin{array}{c} R^4 \\ \\ R^5 \end{array} \text{---} (CH_2)_q \text{---} G \text{---} R^6$
1629	<chem>H3CS-c1ccc(cc1)CH2-</chem>	1	2	0	R	H	<chem>-CH2-N(H)C(=O)c1ccc(cc1)C(F)(F)F</chem>
1630	<chem>H3C-c1ccoc1CH2-</chem>	1	2	0	R	H	<chem>-CH2-N(H)C(=O)c1ccc(cc1)C(F)(F)F</chem>
1631	<chem>H2NCH2-c1ccc(cc1)CH2-</chem>	1	2	0	R	H	<chem>-CH2-N(H)C(=O)c1ccc(cc1)C(F)(F)F</chem>
1632	<chem>CF3-c1cc(Cl)cc(C)c1</chem>	1	2	0	R	H	<chem>-CH2-N(H)C(=O)c1ccc(cc1)C(F)(F)F</chem>
1633	<chem>H3CS-c1cc(C#N)cc(C)c1</chem>	1	2	0	R	H	<chem>-CH2-N(H)C(=O)c1ccc(cc1)C(F)(F)F</chem>
1634	<chem>(H3C)2CH-c1ccc(cc1)CH2-</chem>	1	2	0	R	H	<chem>-CH2-N(H)C(=O)c1ccc(cc1)C(F)(F)F</chem>
1635	<chem>H3C-c1ccc(cc1)CH2-</chem>	1	2	0	R	H	<chem>-CH2-N(H)C(=O)c1ccccc1C(C)(C)C</chem>
1636	<chem>H3C-c1ccc(cc1)CH2-</chem>	1	2	0	R	H	<chem>-CH2-N(H)C(=O)C(C)(C)C</chem>
1637	<chem>CC1=C(O)C=C(C)C1</chem>	1	2	0	R	H	<chem>-CH2-N(H)C(=O)c1ccc(cc1)CC(C)C</chem>
1638	<chem>CC1=C(O)C=C(C)C1</chem>	1	2	0	R	H	<chem>-CH2-N(H)C(=O)c1ccc(cc1)OC(C)C</chem>
1639	<chem>CC1=C(O)C=C(C)C1</chem>	1	2	0	R	H	<chem>-CH2-N(H)C(=O)c1ccc(cc1)NHC(=O)OC</chem>

172

Table 1.150

Compd. No.	R^1 R^2	$(CH_2)_j$	k	m	n	chirality	R^3	$-(CH_2)_p$	$\begin{array}{c} R^4 \\ \\ -(CH_2)_q \end{array}$	G-R ⁶
1640		- $(CH_2)_j$	1	2	0	R	H	$-(CH_2)_p$	$\begin{array}{c} R^4 \\ \\ -(CH_2)_q \end{array}$	
1641		- $(CH_2)_j$	1	2	0	R	H	$-(CH_2)_p$	$\begin{array}{c} R^4 \\ \\ -(CH_2)_q \end{array}$	
1642		- $(CH_2)_j$	1	2	0	R	H	$-(CH_2)_p$	$\begin{array}{c} R^4 \\ \\ -(CH_2)_q \end{array}$	
1643		- $(CH_2)_j$	1	2	0	R	H	$-(CH_2)_p$	$\begin{array}{c} R^4 \\ \\ -(CH_2)_q \end{array}$	
1644		- $(CH_2)_j$	1	2	0	R	H	$-(CH_2)_p$	$\begin{array}{c} R^4 \\ \\ -(CH_2)_q \end{array}$	
1645		- $(CH_2)_j$	1	2	0	R	H	$-(CH_2)_p$	$\begin{array}{c} R^4 \\ \\ -(CH_2)_q \end{array}$	
1646		- $(CH_2)_j$	1	2	0	R	H	$-(CH_2)_p$	$\begin{array}{c} R^4 \\ \\ -(CH_2)_q \end{array}$	
1647	$H_3C(CH_2)_3-C_6H_4-CH_2-$	-	2	2	1	-	H	$-(CH_2)_p$	$\begin{array}{c} R^4 \\ \\ -(CH_2)_q \end{array}$	
1648	$H_3C(CH_2)_3-C_6H_4-CH_2-$	-	1	2	0	R	H	$-(CH_2)_p$	$\begin{array}{c} R^4 \\ \\ -(CH_2)_q \end{array}$	
1649	$H_3C(CH_2)_2-C_6H_4-CH_2-$	-	2	2	1	-	H	$-(CH_2)_p$	$\begin{array}{c} R^4 \\ \\ -(CH_2)_q \end{array}$	
1650	$H_3C(CH_2)_2-C_6H_4-CH_2-$	-	1	2	0	R	H	$-(CH_2)_p$	$\begin{array}{c} R^4 \\ \\ -(CH_2)_q \end{array}$	

173

Table 1.151

Compd. No.	R^1 $\begin{array}{c} R^2 \\ \\ \text{C}-\text{CH}_2-\text{CH}_2-\end{array}$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \begin{array}{c} R^4 \\ \\ \text{C}-\text{CH}_2-\text{CH}_2-\end{array} G-R^6$
1651	$\text{H}_3\text{C}(\text{CH}_2)_3-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1652	$\text{H}_3\text{C}(\text{CH}_2)_3-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1653	$\text{H}_3\text{C}(\text{CH}_2)_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1654	$\text{H}_3\text{C}(\text{CH}_2)_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1655	$\text{H}_3\text{C}(\text{CH}_2)_3-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1656	$\text{H}_3\text{C}(\text{CH}_2)_3-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1657	$\text{H}_3\text{C}(\text{CH}_2)_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1658	$\text{H}_3\text{C}(\text{CH}_2)_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1659	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1660	$\text{Br}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	
1661	$\text{Br}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	

174

Table 1.152

Compd. No.	R^1 R^2	$(\text{CH}_2)_l^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- \begin{array}{c} \text{R}^4 \\ \\ -\text{C}- \\ \\ \text{H} \end{array} (\text{CH}_2)_q^- \text{G}-\text{R}^6$
1662	$\text{Br}-\text{C}_6\text{H}_4-\text{CH}_2-$	$\text{Br}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	
1663	$\text{Br}-\text{C}_6\text{H}_4-\text{CH}_2-$	$\text{Br}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	
1664	$\text{H}_3\text{CS}-\text{C}_6\text{H}_4-\text{CH}_2-$	$\text{H}_3\text{CS}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1665	$\text{H}_3\text{CS}-\text{C}_6\text{H}_4-\text{CH}_2-$	$\text{H}_3\text{CS}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1666	$\text{H}_3\text{CS}-\text{C}_6\text{H}_4-\text{CH}_2-$	$\text{H}_3\text{CS}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1667	$\text{H}_3\text{CCH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	$\text{H}_3\text{CCH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1668	$\text{H}_3\text{CCH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	$\text{H}_3\text{CCH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1669	$\text{H}_3\text{CCH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	$\text{H}_3\text{CCH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1670	$\text{H}_3\text{CCH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	$\text{H}_3\text{CCH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1671	$\text{H}_3\text{CCH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	$\text{H}_3\text{CCH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	
1672	$\text{H}_3\text{CCH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	$\text{H}_3\text{CCH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	

175

Table 1.153

Compd. No.	R^1 $\text{R}^2\text{---}(CH_2)_j\text{---}$	k	m	n	chirality	R^3	$-(CH_2)_p\overset{\text{R}^4}{\underset{\text{R}^5}{\text{C}}}(CH_2)_q\text{---G---R}^6$
1673	$\text{H}_3\text{CCH}_2\text{---}\text{C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	$-\text{CH}_2\text{---N}(\text{H})\text{---C}(=\text{O})\text{---}\text{C}_6\text{H}_3(\text{Cl}, \text{Br})\text{---}$
1674	$\text{F---C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	$-\text{CH}_2\text{---N}(\text{H})\text{---C}(=\text{O})\text{---}\text{C}_6\text{H}_3(\text{Br}, \text{O})\text{---}$
1675	$\text{F---C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	$-\text{CH}_2\text{---N}(\text{H})\text{---C}(=\text{O})\text{---}\text{C}_6\text{H}_3(\text{F}, \text{H}_2\text{N})\text{---}$
1676	$\text{F---C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	$-\text{CH}_2\text{---N}(\text{H})\text{---C}(=\text{O})\text{---}\text{C}_6\text{H}_3(\text{H}_2\text{N}, \text{F})\text{---}$
1677	$\text{F---C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	$-\text{CH}_2\text{---N}(\text{H})\text{---C}(=\text{O})\text{---}\text{C}_6\text{H}_3(\text{H}_2\text{N}, \text{Br})\text{---}$
1678	$\text{F---C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	$-\text{CH}_2\text{---N}(\text{H})\text{---C}(=\text{O})\text{---}\text{C}_6\text{H}_3(\text{H}_2\text{N}, \text{I})\text{---}$
1679	$\text{F---C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	$-\text{CH}_2\text{---N}(\text{H})\text{---C}(=\text{O})\text{---}\text{C}_6\text{H}_3(\text{H}_2\text{N}, \text{Cl})\text{---}$
1680	$\text{F---C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	$-\text{CH}_2\text{---N}(\text{H})\text{---C}(=\text{O})\text{---}\text{C}_6\text{H}_3(\text{H}_2\text{N}, \text{OCF}_3)\text{---}$
1681	$\text{F---C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	$-\text{CH}_2\text{---N}(\text{H})\text{---C}(=\text{O})\text{---}\text{C}_6\text{H}_3(\text{H}_2\text{N}, \text{CF}_3)\text{---}$
1682	$\text{F---C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	$-\text{CH}_2\text{---N}(\text{H})\text{---C}(=\text{O})\text{---}\text{C}_6\text{H}_3(\text{Cl}, \text{Br})\text{---}$
1683	$\text{C}_6\text{H}_5\text{---N}(\text{H})\text{---C}(=\text{O})\text{---C}_6\text{H}_4\text{---CH}_2\text{---}$	2	2	1	-	H	$-\text{CH}_2\text{---N}(\text{H})\text{---C}(=\text{O})\text{---}\text{C}_6\text{H}_3(\text{Br}, \text{O})\text{---Br}$

176

Table 1.154

Compd. No.	R^1 R^2	$(\text{CH}_2)_j$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \begin{array}{c} \text{R}^4 \\ \\ \text{C} \\ \\ \text{R}^5 \end{array} (\text{CH}_2)_q \text{G-R}^6$
1684		$(\text{CH}_2)_2-$	2	2	1	-	H	
1685		$(\text{CH}_2)_2-$	2	2	1	-	H	
1686		$(\text{CH}_2)_2-$	2	2	1	-	H	
1687		$(\text{CH}_2)_2-$	2	2	1	-	H	
1688		$(\text{CH}_2)_2-$	2	2	1	-	H	
1689		$(\text{CH}_2)_2-$	2	2	1	-	H	
1690		$(\text{CH}_2)_2-$	2	2	1	-	H	
1691		$(\text{CH}_2)_2-$	2	2	1	-	H	
1692		$(\text{CH}_2)_2-$	1	2	0	R	H	
1693		$(\text{CH}_2)_2-$	1	2	0	R	H	
1694		$(\text{CH}_2)_2-$	1	2	0	R	H	

177

Table 1.155

Compd. No.	$\begin{array}{c} R^1 \\ \diagup \\ R^2 \end{array} - (CH_2)_j -$	k	m	n	chirality	R ^a	$-(CH_2)_p \begin{array}{c} R^4 \\ \\ R^5 \end{array} (CH_2)_q G - R^6$
1695		1	2	0	R	H	
1696		1	2	0	R	H	
1697		1	2	0	R	H	
1698		1	2	0	R	H	
1699		1	2	0	R	H	
1700		1	2	0	R	H	
1701		1	2	0	R	H	
1702		1	2	0	R	H	
1703		1	2	0	R	H	
1704		1	2	0	R	H	
1705		1	2	0	R	H	

178

Table 1.156

Compd. No.	R^1 R^2 - $(\text{CH}_2)_j-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p-\text{C}(\text{R}^4)(\text{R}^5)-(\text{CH}_2)_q-\text{G}-\text{R}^6$
1706		1	2	0	R	H	
1707		1	2	0	R	H	
1708		1	2	0	R	H	
1709		1	2	0	R	H	
1710		1	2	0	R	H	
1711		1	2	0	R	H	
1712		1	2	0	R	H	
1713		1	2	0	R	H	
1714		1	2	0	R	H	
1715		1	2	0	R	H	
1716		1	2	0	R	H	

179

Table 1.157

Compd. No.	R^1 R^2	$(\text{CH}_2)_j$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \begin{array}{c} \\ R^4 \\ \\ -(\text{CH}_2)_q \end{array} G-R^6$
1717		OCH_3	1	2	0	R	H	
1718		CH_3	1	2	0	R	H	
1719		CH_2^-	1	2	0	R	H	
1720		OCH_3	1	2	0	R	H	
1721		H_3CCH_2	1	2	0	R	H	
1722		CH_2^-	1	2	0	R	H	
1723		CH_2^-	1	2	0	R	H	
1724		CH_3	1	2	0	R	H	
1725		CH_3	1	2	0	R	H	
1726		H_3CCH_2	1	2	0	R	H	
1727		CH_2^-	1	2	0	R	H	

180

Table 1.158

Compd. No.	R^1 R^2	$(\text{CH}_2)_j^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- \begin{matrix} \text{R}^4 \\ \\ \text{R}^5 \end{matrix} (\text{CH}_2)_q^- \text{G-R}^6$
1728			1	2	0	R	H	
1729			1	2	0	R	H	
1730			1	2	0	R	H	
1731			1	2	0	R	H	
1732			1	2	0	R	H	
1733			1	2	0	R	H	
1734			1	2	0	R	H	
1735			1	2	0	R	H	
1736			1	2	0	R	H	
1737			1	2	0	R	H	
1738			1	2	0	R	H	

181

Table 1.159

Compd. No.	R^1 R^2 - $\text{C}(\text{CH}_2)_l-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p-\overset{\text{R}^4}{\underset{\text{R}^5}{\text{C}}}(\text{CH}_2)_q-\text{G}-\text{R}^6$
1739	(H ₆ C) ₂ CH-	1	2	0	R	H	
1740		1	2	0	R	H	
1741	H ₃ CS-	1	2	0	R	H	
1742	H ₃ CCH ₂ -	1	2	0	R	H	
1743		1	2	0	R	H	
1744	H ₃ C-	1	2	0	R	H	
1745	H ₃ C-	1	2	0	R	H	
1746	(H ₆ C) ₂ CH-	1	2	0	R	H	
1747		1	2	0	R	H	
1748	H ₃ CCH ₂ -	1	2	0	R	H	
1749	H ₃ C-	1	2	0	R	H	

182

Table 1.160

Compd. No.	R^1 $\begin{array}{c} \diagup \\ R^2 \end{array} \diagdown - (CH_2)_j^-$	k	m	n	chirality	R^3	$-(CH_2)_p \begin{array}{c} \diagup \\ R^4 \\ \diagdown \end{array} (CH_2)_q^- G - R^6$
1750		1	2	0	R	H	
1751		1	2	0	R	H	
1752		1	2	0	R	H	
1753		1	2	0	R	H	
1754		1	2	0	R	H	
1755		1	2	0	R	H	
1756		1	2	0	R	H	
1757		1	2	0	R	H	
1758		1	2	0	R	H	
1759		1	2	0	R	H	
1760		1	2	0	R	H	

183

Table 1.161

Compd. No.	$\begin{array}{c} R^1 \\ \\ R^2-\text{C}-(\text{CH}_2)_l-\end{array}$	k	m	n	chirality	R ³	$-(\text{CH}_2)_p-\overset{\substack{R^4 \\ \\ R^5}}{\text{C}}(\text{CH}_2)_q-\text{G}-\text{R}^6$
1761	<chem>Cc1ccc(cc1)CC-</chem>	1	2	0	R	H	
1762		1	2	0	R	H	
1763	<chem>Cc1ccccc1CC-</chem>	2	2	0	-	H	
1764	<chem>Cc1ccccc1CC-</chem>	2	2	0	-	H	
1765	<chem>Cc1ccccc1CC-</chem>	2	2	0	-	H	
1766	<chem>Cc1ccccc1CC-</chem>	2	2	0	-	H	
1767	<chem>Cc1ccc(cc1)CC-</chem>	1	3	1	-	H	
1768	<chem>Cc1ccc(cc1)CC-</chem>	1	3	1	-	H	
1769		1	2	0	R	H	
1770		1	2	0	R	H	
1771		1	2	0	R	H	

184

Table 1.162

Compd. No.	R^1 R^2	$(CH_2)_j$	k	m	n	chirality	R^3	$-(CH_2)_p$	$\begin{array}{c} R^4 \\ \\ -(CH_2)_p \text{---} C(R^5) \text{---} (CH_2)_q \text{---} G \text{---} R^6 \end{array}$
1772		$(CH_2)_2$	1	2	0	R	H		
1773		$(CH_2)_2$	1	2	0	R	H		
1774		$(CH_2)_2$	1	2	0	R	H		
1775		$(CH_2)_2$	1	2	0	R	H		
1776		$(CH_2)_2$	1	2	0	R	H		
1777		$(CH_2)_2$	2	2	1	-	H		
1778		$(CH_2)_2$	2	2	1	-	H		
1779		$(CH_2)_2$	2	2	1	-	H		
1780		$(CH_2)_2$	2	2	1	-	H		
1781		$(CH_2)_2$	2	2	1	-	H		
1782		$(CH_2)_2$	2	2	1	-	H		

Table 1.163

Compd. No.	R^1 R^2 - $(\text{CH}_2)_i$ -	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \overset{\text{R}^4}{\underset{\text{R}^5}{\text{C}}} (\text{CH}_2)_q \text{G-R}^6$
1783	<chem>NCc1ccc(cc1)CH2-</chem>	2	2	1	-	H	<chem>-CH2-N(H)C(=O)c1ccc(cc1)C(F)(F)F</chem>
1784	<chem>c1ccccc1CH2-</chem>	2	2	1	-	H	<chem>-CH2-N(H)C(=O)c1ccc(cc1)C(F)(F)F</chem>
1785	<chem>CH3(CH2)2c1ccc(cc1)CH2-</chem>	2	2	1	-	H	<chem>-CH2-N(H)C(=O)c1ccc(cc1)C(F)(F)F</chem>
1786	<chem>c1ccc2c(c1)OCOC2CH2-</chem>	2	2	1	-	H	<chem>-CH2-N(H)C(=O)c1ccc(cc1)C(F)(F)F</chem>
1787	<chem>CH3(CH2)2c1ccc(cc1)CH2-</chem>	1	2	0	R	H	<chem>-CH2-N(H)C(=O)c1ccc(cc1)C(F)(F)F</chem>
1788	<chem>CH3c1ccc(cc1)CH2-</chem>	2	2	1	-	H	<chem>-CH2-N(H)C(=O)c1ccc(cc1)C(F)(F)F</chem>
1789	<chem>COc1ccc(cc1)CH2-</chem>	2	2	1	-	H	<chem>-CH2-N(H)C(=O)c1ccc(cc1)C(F)(F)F</chem>
1790	<chem>Clc1ccc(cc1)CH2-</chem>	1	2	0	S	H	<chem>-CH2-N(H)C(=O)c1ccc(cc1)C(F)(F)F</chem>
1791	<chem>Ac-c1ccc(cc1)CH2-</chem>	1	2	0	S	H	<chem>-CH2-N(H)C(=O)c1ccc(cc1)OC(F)(F)F</chem>
1792	<chem>CH3c1ccc(cc1)CH2-</chem>	2	2	1	-	H	<chem>-CH2-N(H)C(=O)c1ccc(cc1)F</chem>
1793	<chem>Clc1ccc(cc1)CH2-</chem>	2	2	1	-	H	<chem>-CH2-N(H)C(=O)c1ccc(cc1)F</chem>

186

Table 1.164

Compd. No.	R_1 R_2	$(CH_2)_j^-$	k	m	n	chirality	R^3	$-(CH_2)_p R_4$ R_5 $(CH_2)_q G-R^6$
1794	<chem>H3C-c1ccc(cc1)CH2-</chem>	$(CH_2)_2^-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{F}_3\text{NH}_2$
1795	<chem>O=C1CC=CC=C1</chem>	$(CH_2)_2^-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{F}_3\text{NH}_2$
1796	<chem>Brc1ccc(cc1)CH2-</chem>	$(CH_2)_2^-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{F}_3\text{NH}_2$
1797	<chem>Oc1ccc(cc1)CH2-</chem>	$(CH_2)_2^-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{F}_3\text{NH}_2$
1798	<chem>Oc1ccc(cc1)CH2-</chem>	$(CH_2)_2^-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{F}_3\text{NH}_2$
1799	<chem>H2C=CH-c1ccc(cc1)CH2-</chem>	$(CH_2)_2^-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{F}_3\text{NH}_2$
1800	<chem>N#Cc1ccc(cc1)CH2-</chem>	$(CH_2)_2^-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{F}_3\text{NH}_2$
1801	<chem>c1ccccc1CH2-</chem>	$(CH_2)_2^-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{F}_3\text{NH}_2$
1802	<chem>OCC(O)C(C)C(O)c1ccc(cc1)CH2-</chem>	$(CH_2)_1^-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{F}_3\text{CF}_3$
1803	<chem>CC(C)c1ccc(cc1)CH2-</chem>	$(CH_2)_1^-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{F}_3\text{CF}_3$
1804	<chem>CC(C)C(c1ccc(cc1)CH2)C</chem>	$(CH_2)_2^-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{F}_3\text{NH}_2$

187

Table 1.165

Compd. No.	R^1 $\begin{array}{c} R^1 \\ \\ -CH_2- \end{array}$	k	m	n	chirality	R^3	$\begin{array}{c} R^4 \\ \\ -(CH_2)_p-C(R^5)-CH_2-q-G-R^6 \\ \\ R^5 \end{array}$
1805		1	2	0	R	H	
1806		1	2	0	R	H	
1807		1	2	0	R	H	
1808		1	2	0	R	H	
1809		1	2	0	R	H	
1810		1	2	0	R	H	
1811		1	2	0	R	H	
1812		1	2	0	R	H	
1813		1	2	0	R	H	
1814		1	2	0	R	H	
1815		1	2	0	R	H	

1 8 8

Table 1.166

Compd. No.	R^1 R^2	$(\text{CH}_2)_j^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- \begin{array}{c} \text{R}^4 \\ \\ \text{C}-\text{R}^5 \\ \\ \text{C}-\text{G}-\text{R}^6 \end{array}$
1816	$(\text{CH}_3)_2\text{C}-\text{C}_6\text{H}_4-\text{CH}_2-$	$\text{C}_6\text{H}_4-\text{CH}_2^-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{SCF}_3$
1817	$(\text{CH}_3)_3\text{C}-\text{C}_6\text{H}_4-\text{CH}_2^-$	$\text{C}_6\text{H}_4-\text{CH}_2^-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{SCF}_3$
1818	$\text{Br}-\text{C}_6\text{H}_4-\text{CH}_2^-$	$\text{C}_6\text{H}_4-\text{CH}_2^-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{OCCHF}_2$
1819	$\text{H}_3\text{CO}-\text{C}_6\text{H}_4-\text{CH}_2^-$	$\text{C}_6\text{H}_4-\text{CH}_2^-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{OCCHF}_2$
1820	$\text{H}_3\text{CO}-\text{HO}-\text{C}_6\text{H}_4-\text{CH}_2^-$	$\text{C}_6\text{H}_4-\text{CH}_2^-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{OCCHF}_2$
1821	$\text{H}_3\text{CO}-\text{HO}-\text{C}_6\text{H}_4-\text{CH}_2^-$	$\text{C}_6\text{H}_4-\text{CH}_2^-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{OCCHF}_2$
1822	$\text{HO}-\text{C}_6\text{H}_4-\text{CH}_2^-$	$\text{C}_6\text{H}_4-\text{CH}_2^-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{OCCHF}_2$
1823	$\text{O}-\text{C}_6\text{H}_4-\text{CH}_2^-$	$\text{C}_6\text{H}_4-\text{CH}_2^-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{OCCHF}_2$
1824	$\text{C}_6\text{H}_4-\text{CH}_2^-$	$\text{C}_6\text{H}_4-\text{CH}_2^-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{OCCHF}_2$
1825	$\text{H}_3\text{CS}-\text{C}_6\text{H}_4-\text{CH}_2^-$	$\text{C}_6\text{H}_4-\text{CH}_2^-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{OCCHF}_2$
1826	$\text{H}_3\text{CCH}_2-\text{C}_6\text{H}_4-\text{CH}_2^-$	$\text{C}_6\text{H}_4-\text{CH}_2^-$	1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_4-\text{OCCHF}_2$

189

Table 1.167

Compd. No.	$\begin{array}{c} R^1 \\ \\ R^2 \text{---} (\text{CH}_2)_l \text{---} \end{array}$	k	m	n	chirality	R ³	$-(\text{CH}_2)_p \begin{array}{c} R^4 \\ \\ R^5 \end{array} (\text{CH}_2)_q \text{---} G \text{---} R^6$
1827		1	2	0	R	H	
1828		1	2	0	R	H	
1829		1	2	0	R	H	
1830		1	2	0	R	H	
1831		1	2	0	R	H	
1832		1	2	0	R	H	
1833		1	2	0	R	H	
1834		1	2	0	R	H	
1835		1	2	0	R	H	
1836		1	2	0	R	H	
1837		1	2	0	R	H	

190

Table 1.168

Compd. No.	R_1^1 R_2^1	$(CH_2)_j^-$	k	m	n	chirality	R^3	$-(CH_2)_p^{\text{R}^4}$ R^5	$-(CH_2)_q^- G - R^6$
1838	H_3CS-		1	2	0	R	H		
1839	H_3CCH_2-		1	2	0	R	H		
1840			1	2	0	R	H		
1841			1	2	0	R	H		
1842			1	2	0	R	H		
1843			1	2	0	R	H		
1844			1	2	0	R	H		
1845			1	2	0	R	H		
1846			1	2	0	R	H		
1847			1	2	0	R	H		
1848			1	2	0	R	H		

Table 1.169

191

Compd. No.	R^1 R^2 - $(CH_2)_j-$	k	m	n	chirality	R^3	$-(CH_2)_p-$ $\begin{array}{c} R^4 \\ \\ -C-R^5 \end{array}$ $(CH_2)_q-G-R^6$
1849		1	2	0	R	H	
1850	H_3CCH_2-	1	2	0	R	H	
1851	H_3C-	1	2	0	R	H	
1852		1	2	0	R	H	
1853	H_3CO-	1	2	0	R	H	
1854		1	2	0	R	H	
1855	H_3CCH_2-	1	2	0	R	H	
1856	H_3C-	1	2	0	R	H	
1857		1	2	0	R	H	
1858		1	2	0	R	H	
1859	H_3CO-	1	2	0	R	H	

Table 1.170

192

Compd. No.	R^1 $\text{---} R^2 \text{---} (\text{CH}_2)_j \text{---}$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \text{---} \begin{array}{c} R^4 \\ \\ R^5 \end{array} \text{---} (\text{CH}_2)_q \text{---} G \text{---} R^6$
1860		1	2	0	R	H	
1861		1	2	0	R	H	
1862		1	2	0	R	H	
1863		1	2	0	R	H	
1864		1	2	0	R	H	
1865		1	2	0	R	H	
1866		1	2	0	R	H	
1867		1	2	0	R	H	
1868		1	2	0	R	H	
1869		1	2	0	R	H	
1870		1	2	0	R	H	

193

Table 1.171

Compd. No.	R^1 R^2	$(\text{CH}_2)_j^-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p^- \begin{array}{c} \text{R}^4 \\ \\ -\text{C}- \\ \\ \text{H} \end{array} (\text{CH}_2)_q^- \text{G}-\text{R}^6$
1871		$\text{HO}-\text{C}_6\text{H}_3(\text{OCH}_3)-\text{CH}_2^-$	1	2	0	R	H	
1872		$\text{HO}-\text{C}_6\text{H}_3(\text{OCH}_3)-\text{CH}_2^-$	1	2	0	R	H	
1873		$\text{HO}-\text{C}_6\text{H}_4-\text{CH}_2^-$	1	2	0	R	H	
1874		$\text{O}-\text{C}_6\text{H}_3(\text{O})-\text{CH}_2^-$	1	2	0	R	H	
1875		$\text{C}_6\text{H}_4-\text{CH}_2^-$	1	2	0	R	H	
1876		$\text{H}_3\text{CS}-\text{C}_6\text{H}_3(\text{OCH}_3)-\text{CH}_2^-$	1	2	0	R	H	
1877		$\text{H}_3\text{CCH}_2-\text{C}_6\text{H}_3(\text{OCH}_3)-\text{CH}_2^-$	1	2	0	R	H	
1878		$\text{O}-\text{C}_6\text{H}_3(\text{O})-\text{CH}_2^-$	1	2	0	R	H	
1879		$\text{H}_3\text{C}-\text{C}_6\text{H}_2(\text{CH}_3)_2-\text{CH}_2^-$	1	2	0	R	H	
1880		$(\text{CH}_3)_2\text{C}-\text{C}_6\text{H}_2(\text{CH}_3)_2-\text{CH}_2^-$	1	2	0	R	H	
1881		$(\text{CH}_3)_3\text{C}-\text{C}_6\text{H}_2(\text{CH}_3)_2-\text{CH}_2^-$	1	2	0	R	H	

194

Table 1.172

Compd. No.	R^1 R^2	$(CH_2)_l^-$	k	m	n	chirality	R^3	$-(CH_2)_p^R^4$ R^5	$(CH_2)_q^-G-R^6$
1882		$Br-C_6H_4-CH_2^-$	1	2	0	R	H		$-CH_2-N(H)-C(=O)-C_6H_4-N_2NO_2$
1883		$H_3CO-C_6H_4-CH_2^-$	1	2	0	R	H		$-CH_2-N(H)-C(=O)-C_6H_4-N_2NO_2$
1884		$H_3CO-C_6H_3(OH)-CH_2^-$	1	2	0	R	H		$-CH_2-N(H)-C(=O)-C_6H_4-N_2NO_2$
1885		$H_3CO-C_6H_4(OH)-CH_2^-$	1	2	0	R	H		$-CH_2-N(H)-C(=O)-C_6H_4-N_2NO_2$
1886		$HO-C_6H_4-CH_2^-$	1	2	0	R	H		$-CH_2-N(H)-C(=O)-C_6H_4-N_2NO_2$
1887		$O-C_6H_4-CH_2^-$	1	2	0	R	H		$-CH_2-N(H)-C(=O)-C_6H_4-N_2NO_2$
1888		$C_6H_4-CH_2^-$	1	2	0	R	H		$-CH_2-N(H)-C(=O)-C_6H_4-N_2NO_2$
1889		$H_3CS-C_6H_4-CH_2^-$	1	2	0	R	H		$-CH_2-N(H)-C(=O)-C_6H_4-N_2NO_2$
1890		$H_3CCH_2-C_6H_4-CH_2^-$	1	2	0	R	H		$-CH_2-N(H)-C(=O)-C_6H_4-N_2NO_2$
1891		$O-C_6H_4-CH_2^-$	1	2	0	R	H		$-CH_2-N(H)-C(=O)-C_6H_4-N_2NO_2$
1892		$H_3C-C_6H_3(CH_3)-CH_2^-$	1	2	0	R	H		$-CH_2-N(H)-C(=O)-C_6H_4-N_2NO_2$

195

Table 1.173

Compd. No.	$\begin{array}{c} R^1 \\ \\ R^2-\text{C}(\text{CH}_2)_j-\end{array}$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p-\overset{\overset{R^4}{ }}{\underset{R^5}{\text{C}}}(\text{CH}_2)_q-\text{G}-\text{R}^6$
1893		1	2	0	R	H	
1894		1	2	0	R	H	
1895		1	2	0	R	H	
1896		1	2	0	R	H	
1897		1	2	0	R	H	
1898		1	2	0	R	H	
1899		1	2	0	R	H	
1900		1	2	0	R	H	
1901		1	2	0	R	H	
1902		1	2	0	R	H	
1903		2	2	1	-	H	

Table 1.174

196

Compd. No.	R^1 R^2-CH_2-	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \begin{array}{c} R^4 \\ \\ -\text{C}- \\ \\ \text{H} \end{array} (\text{CH}_2)_q \text{G}-\text{R}^6$
1904	$\text{H}_3\text{C}(\text{CH}_2)_2-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{OCF}_3)_2-\text{NH}_2$
1905	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}^{\text{H}}-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{OCF}_3)_2-\text{NH}_2$
1906	$\text{O}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}^{\text{H}}-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{OCF}_3)_2-\text{NH}_2$
1907	$\text{HO}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}^{\text{H}}-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{OCF}_3)_2-\text{NH}_2$
1908	$\text{H}_3\text{CO}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}^{\text{H}}-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{OCF}_3)_2-\text{NH}_2$
1909	$\text{H}_2\text{C}=\text{CH}-\text{C}_6\text{H}_4-\text{CH}_2-$	1	2	0	R	H	$-\text{CH}_2-\text{N}^{\text{H}}-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{OCF}_3)_2-\text{NH}_2$
1910	$\text{Br}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{OCF}_3)_2-\text{NH}_2$
1911	$\text{Cl}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{OCF}_3)_2-\text{NH}_2$
1912	$\text{HO}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{OCF}_3)_2-\text{NH}_2$
1913	$\text{H}_3\text{C}-\text{C}_6\text{H}_4-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{OCF}_3)_2-\text{NH}_2$
1914	$\text{H}_3\text{C}-\text{C}_6\text{H}_3-\text{CH}_2-$	2	2	1	-	H	$-\text{CH}_2-\text{N}^{\text{H}}-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{OCF}_3)_2-\text{NH}_2$

Table 1.175

197

Compd. No.	R^1 $\begin{array}{c} R^1 \\ \\ -CH_2- \end{array}$	R^2 $\begin{array}{c} H_3CCCH_2O \\ \\ HO-C_6H_3-CH_2- \end{array}$	k	m	n	chirality	R^3	$-(CH_2)_p \begin{array}{c} R^4 \\ \\ R^5 \end{array} (CH_2)_q G-R^6$
1915			1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3-\text{OCF}_3$
1916			1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3-\text{OCF}_3$
1917			2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3-\text{OCF}_3$
1918			2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3-\text{OCF}_3$
1919			2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3-\text{CF}_3$
1920			2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3-\text{F}$
1921			1	2	0	R	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3-\text{OCF}_3$
1922			2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3-\text{OCF}_3$
1923			2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3-\text{SCF}_3$
1924			2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3-\text{SCF}_3$
1925			2	2	1	-	H	$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3-\text{SCF}_3$

198

Table 1.176

Compd. No.	R^1 R^2 - $(CH_2)_j-$	k	m	n	chirality	R^3	$-(CH_2)_p-$ $\begin{array}{c} R^4 \\ \\ -(CH_2)_q-G-R^6 \end{array}$
1926		2	2	1	-	H	
1927		2	2	1	-	H	
1928		2	2	1	-	H	
1929		2	2	1	-	H	
1930		2	2	1	-	H	
1931		2	2	1	-	H	
1932		2	2	1	-	H	
1933		2	2	1	-	H	
1934		2	2	1	-	H	
1935		2	2	1	-	H	
1936		2	2	1	-	H	

199

Table 1.177

Compd. No.	$\begin{array}{c} R^1 \\ \\ R^2 \text{---} (CH_2)_j \text{---} \end{array}$	k	m	n	chirality	R ³	$-(CH_2)_p \begin{array}{c} R^4 \\ \\ R^5 \end{array} (CH_2)_q \text{---} G \text{---} R^6$
1937	$(CH_3)_2\text{CH---}\text{C}_6\text{H}_4\text{---}CH_2\text{---}$	2	2	1	-	H	$-\text{CH}_2\text{---} \begin{array}{c} \text{O} \\ \\ \text{H} \end{array} \text{C} \text{---} \text{C}_6\text{H}_4\text{---} \text{SCF}_3$
1938	$\text{Br---}\text{C}_6\text{H}_4\text{---}CH_2\text{---}$	2	2	1	-	H	$-\text{CH}_2\text{---} \begin{array}{c} \text{O} \\ \\ \text{H} \end{array} \text{C} \text{---} \text{C}_6\text{H}_4\text{---} \text{CH}_3$
1939	$\text{H}_3\text{CO---}\text{C}_6\text{H}_4\text{---}CH_2\text{---}$	2	2	1	-	H	$-\text{CH}_2\text{---} \begin{array}{c} \text{O} \\ \\ \text{H} \end{array} \text{C} \text{---} \text{C}_6\text{H}_4\text{---} \text{CH}_3$
1940	$\text{F---}\text{C}_6\text{H}_4\text{---}CH_2\text{---}$	2	2	1	-	H	$-\text{CH}_2\text{---} \begin{array}{c} \text{O} \\ \\ \text{H} \end{array} \text{C} \text{---} \text{C}_6\text{H}_4\text{---} \text{CH}_3$
1941	$\text{F---}\text{C}_6\text{H}_4\text{---} \begin{array}{c} \text{F} \\ \\ \text{CH}_2\text{---} \end{array}$	2	2	1	-	H	$-\text{CH}_2\text{---} \begin{array}{c} \text{O} \\ \\ \text{H} \end{array} \text{C} \text{---} \text{C}_6\text{H}_4\text{---} \text{CH}_3$
1942	$\text{HO---}\text{C}_6\text{H}_4\text{---}CH_2\text{---}$	2	2	1	-	H	$-\text{CH}_2\text{---} \begin{array}{c} \text{O} \\ \\ \text{H} \end{array} \text{C} \text{---} \text{C}_6\text{H}_4\text{---} \text{CH}_3$
1943	$\text{O---}\text{C}_6\text{H}_4\text{---}CH_2\text{---}$	2	2	1	-	H	$-\text{CH}_2\text{---} \begin{array}{c} \text{O} \\ \\ \text{H} \end{array} \text{C} \text{---} \text{C}_6\text{H}_4\text{---} \text{CH}_3$
1944	$\text{C}_6\text{H}_4\text{---} \begin{array}{c} \text{CH}_2 \\ \\ \text{C}_6\text{H}_4 \end{array}$	2	2	1	-	H	$-\text{CH}_2\text{---} \begin{array}{c} \text{O} \\ \\ \text{H} \end{array} \text{C} \text{---} \text{C}_6\text{H}_4\text{---} \text{CH}_3$
1945	$\text{H}_3\text{CS---}\text{C}_6\text{H}_4\text{---}CH_2\text{---}$	2	2	1	-	H	$-\text{CH}_2\text{---} \begin{array}{c} \text{O} \\ \\ \text{H} \end{array} \text{C} \text{---} \text{C}_6\text{H}_4\text{---} \text{CH}_3$
1946	$\text{H}_3\text{CCH}_2\text{---}\text{C}_6\text{H}_4\text{---}CH_2\text{---}$	2	2	1	-	H	$-\text{CH}_2\text{---} \begin{array}{c} \text{O} \\ \\ \text{H} \end{array} \text{C} \text{---} \text{C}_6\text{H}_4\text{---} \text{CH}_3$
1947	$\text{O---}\text{C}_6\text{H}_4\text{---}CH_2\text{---}$	2	2	1	-	H	$-\text{CH}_2\text{---} \begin{array}{c} \text{O} \\ \\ \text{H} \end{array} \text{C} \text{---} \text{C}_6\text{H}_4\text{---} \text{CH}_3$

Table 1.178

200

Compd. No.	R^1 $R^2-(CH_2)_l-$	k	m	n	chirality	R^3	$-(CH_2)_p \begin{array}{c} R^4 \\ \\ -C(=O)- \\ \\ R^5 \end{array} (CH_2)_q-G-R^6$
1948		2	2	1	-	H	
1949		2	2	1	-	H	
1950		2	2	1	-	H	
1951		2	2	1	-	H	
1952		2	2	1	-	H	
1953		2	2	1	-	H	
1954		2	2	1	-	H	
1955		2	2	1	-	H	
1956		2	2	1	-	H	
1957		2	2	1	-	H	
1958		2	2	1	-	H	

201

Table 1.179

Compd. No.	$\begin{array}{c} R^1 \\ \\ R^2 \text{---} (CH_2)_l \text{---} \end{array}$	k	m	n	chirality	R ³	$-(CH_2)_p \begin{array}{c} R^4 \\ \\ R^5 \end{array} (CH_2)_q \text{---} G \text{---} R^6$
1959	<chem>H3CS-c1ccc(cc1)CH2-</chem>	2	2	1	-	H	<chem>-CH2-NH-C(=O)c1ccc(F)cc(Br)</chem>
1960	<chem>H3CCH2-c1ccc(cc1)CH2-</chem>	2	2	1	-	H	<chem>-CH2-NH-C(=O)c1ccc(F)cc(Br)</chem>
1961	<chem>c1ccc(cc1)CH2-</chem>	2	2	1	-	H	<chem>-CH2-NH-C(=O)c1ccc(F)cc(Br)</chem>
1962	<chem>H3C-c1ccc(cc1)CH2-</chem>	2	2	1	-	H	<chem>-CH2-NH-C(=O)c1ccc(F)cc(Br)</chem>
1963	<chem>H3C-c1ccc(cc1)CH2-c2ccccc2</chem>	2	2	1	-	H	<chem>-CH2-NH-C(=O)c1ccc(F)cc(Br)</chem>
1964	<chem>O2N-c1ccc(cc1)CH2-</chem>	2	2	1	-	H	<chem>-CH2-NH-C(=O)c1ccc(F)cc(Br)</chem>
1965	<chem>H3C-c1ccc(cc1)CH2-</chem>	2	2	1	-	H	<chem>-CH2-NH-C(=O)c1ccc(F)cc(Br)</chem>
1966	<chem>(CH3)2CH-c1ccc(cc1)CH2-</chem>	2	2	1	-	H	<chem>-CH2-NH-C(=O)c1ccc(F)cc(Br)</chem>
1967	<chem>Br-c1ccc(cc1)CH2-</chem>	2	2	1	-	H	<chem>-CH2-NH-C(=O)c1ccc(F)cc(NH2)</chem>
1968	<chem>H3CO-c1ccc(cc1)CH2-</chem>	2	2	1	-	H	<chem>-CH2-NH-C(=O)c1ccc(F)cc(NH2)</chem>
1969	<chem>HO-c1ccc(cc1)CH2-</chem>	2	2	1	-	H	<chem>-CH2-NH-C(=O)c1ccc(F)cc(NH2)</chem>

202

Table 1.180

Compd. No.	R^1 R^2 - $(CH_2)_j-$	k	m	n	chirality	R^3	$-(CH_2)_p$ $\begin{array}{c} R^4 \\ \\ -(CH_2)_q-G-R^6 \end{array}$
1970		2	2	1	-	H	
1971		2	2	1	-	H	
1972		2	2	1	-	H	
1973		2	2	1	-	H	
1974		2	2	1	-	H	
1975		2	2	1	-	H	
1976		2	2	1	-	H	
1977		2	2	1	-	H	
1978		2	2	1	-	H	
1979		2	2	1	-	H	
1980		2	2	1	-	H	

203

Table 1.181

Compd. No.	R^1 R^2	k	m	n	chirality	R^3	$-(CH_2)_p$ R^4 R^5 $(CH_2)_q$ G-R ⁶
1981	O ₂ N-	2	2	1	-	H	-CH ₂ -N(H)-C(=O)-
1982	N≡-	2	2	1	-	H	-CH ₂ -N(H)-C(=O)-
1983	(CH ₃) ₂ C-	2	2	1	-	H	-CH ₂ -N(H)-C(=O)-
1984	Br-	2	2	1	-	H	-CH ₂ -N(H)-C(=O)-
1985	H ₃ CO-	2	2	1	-	H	-CH ₂ -N(H)-C(=O)-
1986	HO-	2	2	1	-	H	-CH ₂ -N(H)-C(=O)-
1987		2	2	1	-	H	-CH ₂ -N(H)-C(=O)-
1988		2	2	1	-	H	-CH ₂ -N(H)-C(=O)-
1989	H ₃ CS-	2	2	1	-	H	-CH ₂ -N(H)-C(=O)-
1990	H ₃ CCH ₂ -	2	2	1	-	H	-CH ₂ -N(H)-C(=O)-
1991		2	2	1	-	H	-CH ₂ -N(H)-C(=O)-

204

Table 1.182

Compd. No.	R^1 R^2 - $(CH_2)_j-$	k	m	n	chirality	R^3	$-(CH_2)_p$ - $\begin{array}{c} R^4 \\ \\ -C(H)-C(H)- \\ \\ R^5 \end{array}$ - $(CH_2)_q$ -G-R ⁶
1992	H_3C -	2	2	1	-	H	$-\text{CH}_2-\text{N}(H)-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{I})(\text{H}_2\text{N})-\text{CH}_2-$
1993	$O_2\text{N}-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(H)-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{I})(\text{H}_2\text{N})-\text{CH}_2-$
1994	H_3C -	2	2	1	-	H	$-\text{CH}_2-\text{N}(H)-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{I})(\text{H}_2\text{N})-\text{CH}_2-$
1995	$\text{NC}-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(H)-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{I})(\text{H}_2\text{N})-\text{CH}_2-$
1996	$(\text{CH}_3)_2\text{CH}-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(H)-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{I})(\text{H}_2\text{N})-\text{CH}_2-$
1997	H_3C -	2	2	1	-	H	$-\text{CH}_2-\text{N}(H)-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{I})(\text{H}_2\text{N})-\text{CH}_2-$
1998	$\text{Br}-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(H)-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{Cl})-\text{CH}_2-$
1999	$H_3\text{CO}-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(H)-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{Cl})-\text{CH}_2-$
2000	$\text{F}-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(H)-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{Cl})-\text{CH}_2-$
2001	$\text{HO}-$	2	2	1	-	H	$-\text{CH}_2-\text{N}(H)-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{Cl})-\text{CH}_2-$
2002		2	2	1	-	H	$-\text{CH}_2-\text{N}(H)-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{Cl})-\text{CH}_2-$

205

Table 1.183

Compd. No.	R^1 R^2 - $(CH_2)_j-$	k	m	n	chirality	R^3	$-(CH_2)_p$ $\begin{array}{c} R^4 \\ \\ R^5 \end{array}$ $(CH_2)_q-G-R^6$
2003		2	2	1	-	H	
2004	H_3CS-	2	2	1	-	H	
2005	H_3CCH_2-	2	2	1	-	H	
2006	H_3C-	2	2	1	-	H	
2007	O_2N-	2	2	1	-	H	
2008	H_3C-	2	2	1	-	H	
2009	$N≡C-$	2	2	1	-	H	
2010	$(CH_3)_2CH-$	2	2	1	-	H	
2011	H_3C-	2	2	1	-	H	
2012	$Br-$	2	2	1	-	H	
2013	H_3CO-	2	2	1	-	H	

2 0 6

Table 1.184

Compd. No.	R^1 R^2 - $(CH_2)_j-$	k	m	n	chirality	R^3	$-(CH_2)_p R^4$ R^5 - $(CH_2)_q G-R^6$
2014	<chem>Oc1ccc(CC)c1</chem>	2	2	1	-	H	<chem>-CH2-N(H)C(=O)c1cc(Cl)cc(Br)cc1</chem>
2015	<chem>Oc1ccc(CC)c1</chem>	2	2	1	-	H	<chem>-CH2-N(H)C(=O)c1cc(Cl)cc(Br)cc1</chem>
2016	<chem>c1ccc(CC)c1</chem>	2	2	1	-	H	<chem>-CH2-N(H)C(=O)c1cc(Cl)cc(Br)cc1</chem>
2017	<chem>CS(=O)c1ccc(CC)c1</chem>	2	2	1	-	H	<chem>-CH2-N(H)C(=O)c1cc(Cl)cc(Br)cc1</chem>
2018	<chem>CC(=O)c1ccc(CC)c1</chem>	2	2	1	-	H	<chem>-CH2-N(H)C(=O)c1cc(Cl)cc(Br)cc1</chem>
2019	<chem>Oc1ccc(CC)c1</chem>	2	2	1	-	H	<chem>-CH2-N(H)C(=O)c1cc(Cl)cc(Br)cc1</chem>
2020	<chem>Cc1ccc(CC)c1</chem>	2	2	1	-	H	<chem>-CH2-N(H)C(=O)c1cc(Cl)cc(Br)cc1</chem>
2021	<chem>N#Cc1ccc(CC)c1</chem>	2	2	1	-	H	<chem>-CH2-N(H)C(=O)c1cc(Cl)cc(Br)cc1</chem>
2022	<chem>Cc1ccc(CC)c1</chem>	2	2	1	-	H	<chem>-CH2-N(H)C(=O)c1cc(Cl)cc(Br)cc1</chem>
2023	<chem>N#Cc1ccc(CC)c1</chem>	2	2	1	-	H	<chem>-CH2-N(H)C(=O)c1cc(Cl)cc(Br)cc1</chem>
2024	<chem>CC(=O)c1ccc(CC)c1</chem>	2	2	1	-	H	<chem>-CH2-N(H)C(=O)c1cc(Cl)cc(Br)cc1</chem>

207

Table 1.185

Compd. No.	R^1 $\begin{array}{c} R^2 \\ \diagdown \\ \diagup \\ -\text{CH}_2-\text{C}- \end{array}$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \begin{array}{c} R^4 \\ \\ \text{C}-\text{G}-\text{R}^6 \\ \\ \text{H} \\ \diagup \\ \diagdown \\ \text{R}^5 \end{array}$
2025		2	2	1	-	H	
2026		2	2	1	-	H	
2027		2	2	1	-	H	
2028		2	2	1	-	H	
2029		2	2	1	-	H	
2030		2	2	1	-	H	
2031		2	2	1	-	H	
2032		2	2	1	-	H	
2033		2	2	1	-	H	
2034		2	2	1	-	H	
2035		2	2	1	-	H	

Table 1.186

208

Compd. No.	R^1 R^2 - $(CH_2)_j-$	k	m	n	chirality	R^3	$-(CH_2)_p$ $\begin{array}{c} R^4 \\ \\ -(CH_2)_q G-R^6 \\ \\ R^5 \end{array}$
2036		2	2	1	-	H	
2037		2	2	1	-	H	
2038		2	2	1	-	H	
2039		2	2	1	-	H	
2040		1	2	0	R	H	
2041		1	2	0	R	H	
2042		1	2	0	R	H	
2043		1	2	0	R	H	
2044		1	2	0	R	H	
2045		1	2	0	R	H	
2046		1	2	0	R	H	

Table 1.187

Compd. No.	R^1 R^2	k	m	n	chirality	R^3	$-(CH_2)_p(CH_2)_qG-R^6$
2047		1	2	0	R	H	
2048		1	2	0	R	H	
2049		1	2	0	R	H	
2050		1	2	0	R	H	
2051		1	2	0	R	H	
2052		2	2	1	-	H	
2053		2	2	1	-	H	
2054		2	2	1	-	H	
2055		2	2	1	-	H	
2056		2	2	1	-	H	
2057		2	2	1	-	H	

210

Table 1.188

Compd. No.	R_1^1 R_2^1	$(CH_2)_j^-$	k	m	n	chirality	R^3	$-(CH_2)_p^R_5^R_4^R_5^R_6^G-R^6$
2058		2	2	1	-		H	
2059		2	2	1	-		H	
2060		2	2	1	-		H	
2061		2	2	1	-		H	
2062		2	2	1	-		H	
2063		2	2	1	-		H	
2064		2	2	1	-		H	
2065		2	2	1	-		H	
2066		2	2	1	-		H	
2067		2	2	1	-		H	
2068		2	2	1	-		H	

2 1 1

Table 1.189

Compd. No.	R^1 R^2	(CH ₂) _j	k	m	n	chirality	R^3	$-(CH_2)_p$	$\begin{array}{c} R^4 \\ \\ -C(=O)-C_6H_3(F, F)-N(H)-C_6H_3(F, F)- \\ \\ H \end{array}$	$(CH_2)_q$	G-R ⁶
2069		2	2	1	-	-	H	$-(CH_2)_p$		$(CH_2)_q$	G-R ⁶
2070		2	2	1	-	-	H	$-(CH_2)_p$		$(CH_2)_q$	G-R ⁶
2071		2	2	1	-	-	H	$-(CH_2)_p$		$(CH_2)_q$	G-R ⁶
2072	$(H_3C)_2CHO-$	2	2	1	-	-	H	$-(CH_2)_p$		$(CH_2)_q$	G-R ⁶
2073		2	2	1	-	-	H	$-(CH_2)_p$		$(CH_2)_q$	G-R ⁶
2074		2	2	1	-	-	H	$-(CH_2)_p$		$(CH_2)_q$	G-R ⁶
2075		2	2	1	-	-	H	$-(CH_2)_p$		$(CH_2)_q$	G-R ⁶
2076		2	2	1	-	-	H	$-(CH_2)_p$		$(CH_2)_q$	G-R ⁶
2077		2	2	1	-	-	H	$-(CH_2)_p$		$(CH_2)_q$	G-R ⁶
2078		2	2	1	-	-	H	$-(CH_2)_p$		$(CH_2)_q$	G-R ⁶
2079		2	2	1	-	-	H	$-(CH_2)_p$		$(CH_2)_q$	G-R ⁶

212

Table 1.190

Compd. No.	R^1 R^2	$(\text{CH}_2)_k$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \text{C}(\text{R}^4)(\text{CH}_2)_q \text{G-R}^6$
2080				2	2	1	-	
2081				2	2	1	-	
2082				2	2	1	-	
2083				1	2	0	R	
2084				1	2	0	R	
2085				1	2	0	R	
2086				1	2	0	R	
2087				1	2	0	R	
2088				1	2	0	R	
2089				1	2	0	R	
2090				1	2	0	R	

213

Table 1.191

Compd. No.	R^1 R^2	(CH_2) _i	k	m	n	chirality	R^3	$-(CH_2)_p$ $\begin{array}{c} R^4 \\ \\ -C- \\ \\ R^5 \end{array}$ $(CH_2)_q-G-R^6$
2091	<chem>Clc1ccc(cc1)CCl</chem>	-	2	2	1	-	H	
2092	<chem>Clc1ccc(cc1)CCl</chem>	-	2	2	1	-	H	
2093	<chem>Clc1ccc(cc1)CCl</chem>	-	2	2	1	-	H	
2094	<chem>Clc1ccc(cc1)CCl</chem>	-	2	2	1	-	H	
2095	<chem>Clc1ccc(cc1)CCl</chem>	-	2	2	1	-	H	
2096	<chem>Clc1ccc(cc1)CCl</chem>	-	2	2	1	-	H	
2097	<chem>Clc1ccc(cc1)CCl</chem>	-	2	2	1	-	H	
2098	<chem>Clc1ccc(cc1)CCl</chem>	-	2	2	1	-	H	
2099	<chem>Clc1ccc(cc1)CCl</chem>	-	2	2	1	-	H	
2100	<chem>Clc1ccc(cc1)CCl</chem>	-	2	2	1	-	H	
2101	<chem>Clc1ccc(cc1)CCl</chem>	-	2	2	1	-	H	

214

Table 1.192

Compd. No.	R^1 R^2	$(\text{CH}_2)_j$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \begin{array}{c} R^4 \\ \\ -\text{C}- \\ \\ \text{H} \end{array} (\text{CH}_2)_q \text{G-R}^6$
2102		CH_2-	2	2	1	-	H	(R)
2103		CH_2-	2	2	1	-	H	(S) R
2104		CH_2-	2	2	1	-	H	(S) R
2105		CH_2-	2	2	1	-	H	
2106		CH_2-	2	2	1	-	H	
2107		CH_2-	2	2	1	-	H	
2108		CH_2-	2	2	1	-	H	
2109		CH_2-	2	2	1	-	H	
2110		CH_2-	2	2	1	-	H	
2111		CH_2-	2	2	1	-	H	
2112		CH_2-	2	2	1	-	H	

215

Table 1.193

Compd. No.	R^1 R^2	k	m	n	chirality	R^3	$-(CH_2)_p \begin{array}{c} R^4 \\ \\ R^5 \end{array} (CH_2)_q - G - R^6$
2113		2	2	1	-	H	
2114		2	2	1	-	H	
2115		2	2	1	-	H	
2116		2	2	1	-	H	
2117		2	2	1	-	H	
2118		1	2	0	R	H	
2119		1	2	0	R	H	
2120		1	2	0	R	H	
2121		1	2	0	R	H	
2122		1	2	0	R	H	
2123		1	2	0	R	H	

216

Table 1.194

Compd. No.	R^1 R^2	$(\text{CH}_2)_j$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p$ $\begin{array}{c} R^4 \\ \\ -\text{C}- \\ \\ \text{R}^5 \end{array}$ $(\text{CH}_2)_q$	$G-\text{R}^6$
2124		$\text{O}_2\text{N}-\text{C}_6\text{H}_3(\text{Cl})-\text{CH}_2-$	1	2	0	R	H		$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CF}_3)-\text{NH}_2$
2125		$\text{O}_2\text{N}-\text{C}_6\text{H}_3(\text{OCH}_3)-\text{CH}_2-$	1	2	0	R	H		$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{OCH}_3)-\text{NH}_2$
2126		$\text{O}_2\text{N}-\text{C}_6\text{H}_3(\text{CH}_3)-\text{CH}_2-$	1	2	0	R	H		$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CH}_3)-\text{NH}_2$
2127		$\text{O}_2\text{N}-\text{C}_6\text{H}_3(\text{CH}_2-\text{CH}_2-\text{NH}_2)-\text{CH}_2-$	1	2	0	R	H		$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CH}_2-\text{CH}_2-\text{NH}_2)-\text{NH}_2$
2128		$\text{O}_2\text{N}-\text{C}_6\text{H}_3(\text{OCH}_3)-\text{CH}_2-\text{CH}_2-\text{NH}_2$	1	2	0	R	H		$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{OCH}_3)-\text{CH}_2-\text{CH}_2-\text{NH}_2$
2129		$\text{O}_2\text{N}-\text{C}_6\text{H}_3(\text{CH}_3)-\text{CH}_2-\text{CH}_2-\text{NH}_2$	1	2	0	R	H		$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CH}_3)-\text{CH}_2-\text{CH}_2-\text{NH}_2$
2130		$\text{O}_2\text{N}-\text{C}_6\text{H}_3(\text{CH}_2-\text{CH}_2-\text{NH}_2)-\text{CH}_2-$	2	2	1	-	H		$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CF}_3)-\text{NH}_2$
2131		$\text{O}_2\text{N}-\text{C}_6\text{H}_3(\text{CH}_3-\text{CH}_2-\text{CH}_3)-\text{CH}_2-$	2	2	1	-	H		$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CF}_3)-\text{NH}_2$
2132		$\text{O}_2\text{N}-\text{C}_6\text{H}_3(\text{CH}_3)-\text{CH}_2-\text{CH}_2-\text{NH}_2$	1	2	0	R	H		$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CH}_3)-\text{NH}_2$
2133		$\text{O}_2\text{N}-\text{C}_6\text{H}_3(\text{CH}_3)_2-\text{CH}_2-$	1	2	0	R	H		$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CH}_3)_2-\text{NH}_2$
2134		$\text{O}_2\text{N}-\text{C}_6\text{H}_3(\text{CH}_2-\text{CH}_2-\text{N}(\text{CH}_3)_2)-\text{CH}_2-$	1	2	0	R	H		$-\text{CH}_2-\text{N}(\text{H})-\text{C}(=\text{O})-\text{C}_6\text{H}_3(\text{CH}_2-\text{CH}_2-\text{N}(\text{CH}_3)_2)-\text{NH}_2$

217

Table 1.195

Compd. No.	$\begin{array}{c} R^1 \\ \diagdown \\ R^2 \end{array} - (CH_2)_l^-$	k	m	n	chirality	R ³	$-(CH_2)_p^+ \begin{array}{c} R^4 \\ \\ R^5 \end{array} (CH_2)_q^- G - R^6$
2135		1	2	0	R	H	
2136		1	2	0	R	H	
2137		1	2	0	R	H	
2138		1	2	0	R	H	
2139		1	2	0	R	H	
2140		2	2	1	-	H	
2141		2	2	1	-	H	
2142		2	2	1	-	H	
2143		2	2	1	-	H	
2144		2	2	1	-	H	
2145		2	2	1	-	H	

218

Table 1.196

Compd. No.	R^1 R^2	$(CH_2)_j^-$	k	m	n	chirality	R^3	$-(CH_2)_p^R^4$ R^5	$(CH_2)_q^-G-R^6$
2146		$(CH_2)_j^-$	2	2	1	-	H		$-\text{CH}_2\text{N}(\text{H})\text{C}(=\text{O})\text{C}_6\text{H}_3\text{CF}_3$
2147		$(CH_2)_j^-$	2	2	1	-	H		$-\text{CH}_2\text{N}(\text{H})\text{C}(=\text{O})\text{C}_6\text{H}_3\text{F}_2$
2148		$(CH_2)_j^-$	2	2	1	-	H		$-\text{CH}_2\text{N}(\text{H})\text{C}(=\text{O})\text{C}_6\text{H}_3\text{F}_2$
2149		$(CH_2)_j^-$	1	2	0	R	H		$-\text{CH}_2\text{N}(\text{H})\text{C}(=\text{O})\text{C}_6\text{H}_3\text{CF}_3$
2150		$(CH_2)_j^-$	1	2	0	R	H		$-\text{CH}_2\text{N}(\text{H})\text{C}(=\text{O})\text{C}_6\text{H}_3\text{CF}_3$
2151		$(CH_2)_j^-$	1	2	0	R	H		$-\text{CH}_2\text{N}(\text{H})\text{C}(=\text{O})\text{C}_6\text{H}_3\text{CF}_3$
2152		$(CH_2)_j^-$	1	2	0	R	H		$-\text{CH}_2\text{N}(\text{H})\text{C}(=\text{O})\text{C}_6\text{H}_3\text{CF}_3$
2153		$(CH_2)_j^-$	1	2	0	R	H		$-\text{CH}_2\text{N}(\text{H})\text{C}(=\text{O})\text{C}_6\text{H}_3\text{CF}_3$
2154		$(CH_2)_j^-$	2	2	1	-	H		$-\text{CH}_2\text{N}(\text{H})\text{C}(=\text{O})\text{C}_6\text{H}_3\text{CF}_3$
2155		$(CH_2)_j^-$	2	2	1	-	H		$-\text{CH}_2\text{N}(\text{H})\text{C}(=\text{O})\text{C}_6\text{H}_3\text{CF}_3$
2156		$(CH_2)_j^-$	2	2	1	-	H		$-\text{CH}_2\text{N}(\text{H})\text{C}(=\text{O})\text{C}_6\text{H}_3\text{CF}_3$

219

Table 1.197

Compd. No.	R^1 R^2	$(CH_2)_j^-$	k	m	n	chirality	R^3	$-(CH_2)_p^{\text{R}^4}-\text{C}(H)-\text{CH}_2-q-\text{G}-R^6$
2157		CH_3 $\text{HO}-\text{C}_6\text{H}_3(\text{CH}_3)-\text{CH}_2-$	1	2	0	R	H	
2158		$\text{H}_3\text{C}-\text{NH}$ $\text{HO}-\text{C}_6\text{H}_3(\text{CH}_3)-\text{CH}_2-$	1	2	0	R	H	
2159		$\text{H}_3\text{C}-\text{NH}$ $\text{H}_3\text{CO}-\text{C}_6\text{H}_3(\text{CH}_3)-\text{CH}_2-$	2	2	1	-	H	
2160		$\text{H}_3\text{C}-\text{NH}$ $\text{HO}-\text{C}_6\text{H}_3(\text{CH}_3)-\text{CH}_2-$	2	2	1	-	H	
2161		$\text{H}_3\text{C}-\text{NH}$ $\text{Cl}-\text{C}_6\text{H}_3(\text{CH}_3)-\text{CH}_2-$	2	2	1	-	H	
2162		$\text{H}_3\text{C}-\text{NH}$ $\text{H}_3\text{CO}-\text{C}_6\text{H}_3(\text{CH}_3)-\text{CH}_2-$	2	2	1	-	H	
2163		$\text{H}_3\text{C}-\text{NH}$ $\text{HO}-\text{C}_6\text{H}_3(\text{CH}_3)-\text{CH}_2-$	2	2	1	-	H	
2164		CH_3 	1	2	0	R	H	
2165			1	2	0	R	H	
2166			1	2	0	R	H	
2167			1	2	0	R	H	

220

Table 1.198

Compd. No.	R^1 R^2	$(CH_2)_j^-$	k	m	n	chirality	R^3	$-(CH_2)_p^{\text{R}^4}$ R^5 $(CH_2)_q^- G - R^6$
2168		$(CH_2)_j^-$	1	2	0	R	H	
2169		$(CH_2)_j^-$	1	2	0	R	H	
2170		$(CH_2)_j^-$	1	2	0	R	H	
2171		$(CH_2)_j^-$	1	2	0	R	H	
2172		$(CH_2)_j^-$	1	2	0	R	H	
2173		$(CH_2)_j^-$	1	2	0	R	H	
2174		$(CH_2)_j^-$	1	2	0	R	H	
2175		$(CH_2)_j^-$	1	2	0	R	H	
2176		$(CH_2)_j^-$	1	2	0	R	H	
2177		$(CH_2)_j^-$	1	2	0	R	H	
2178		$(CH_2)_j^-$	1	2	0	R	H	

221

Table 1.199

Compd. No.	R^1 R^2 - $(CH_2)_j-$	k	m	n	chirality	R^3	$-(CH_2)_p-$ $\begin{array}{c} R^4 \\ \\ -(CH_2)_q-G-R^6 \end{array}$
2179		1	2	0	R	H	
2180		1	2	0	R	H	
2181		1	2	0	R	H	
2182		1	2	0	R	H	
2183		1	2	0	R	H	
2184		2	2	1	-	H	
2185		2	2	1	-	H	
2186		2	2	1	-	H	
2187		1	2	0	R	H	
2188		2	2	1	-	H	
2189		1	2	0	R	H	

222

Table 1.200

Compd. No.	$\begin{array}{c} R^1 \\ \\ R^2-\text{C}-(\text{CH}_2)_l-\end{array}$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p-\overset{\underset{R^5}{ }}{\text{C}}(\text{CH}_2)_q-\text{G}-\text{R}^6$
2190		2	2	1	-	H	
2191		2	2	1	-	H	
2192		2	2	1	-	H	
2193		2	2	1	-	H	
2194		2	2	1	-	H	
2195		2	2	1	-	H	
2196		1	2	0	R	H	
2197		1	2	0	R	H	
2198		1	2	0	R	H	
2199		2	2	1	-	H	
2200		2	2	1	-	H	

223

Table 1.201

Compd. No.	R^1 R^2 - $\text{---}(\text{CH}_2)_j\text{---}$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p\overset{\text{R}^4}{\underset{\text{R}^5}{\text{---}}}\text{---}(\text{CH}_2)_q\text{---}G\text{---}R^6$
2201		2	2	1	-	H	
2202		1	2	0	R	H	
2203		2	2	1	-	H	
2204		2	2	1	-	H	
2205		2	2	1	-	H	
2206		2	2	1	-	H	
2207		2	2	1	-	H	
2208		2	2	1	-	H	
2209		2	2	1	-	H	
2210		1	2	0	R	H	
2211		2	2	1	-	H	

224

Table 1.202

Compd. No.	R^1 R^2 - $(CH_2)_j^-$	k	m	n	chirality	R^3	$-(CH_2)_p R^4$ R^5 - $(CH_2)_q G-R^6$
2212		2	2	1	-	H	
2213		2	2	1	-	H	
2214		2	2	1	-	H	
2215		1	2	0	R	H	
2216		1	2	0	R	H	
2217		1	2	0	R	H	
2218		1	2	0	R	H	
2219		1	2	0	R	H	
2220		1	2	0	R	H	
2221		1	2	0	R	H	
2222		1	2	0	R	H	

Table 1.203

Compd. No.	R^1 R^2	$(\text{CH}_2)_j$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p \overset{\text{R}^4}{\underset{\text{R}^5}{\text{C}}} (\text{CH}_2)_q \text{G-R}^6$
2223		$(\text{CH}_2)_2$	1	2	0	R	H	
2224		$(\text{CH}_2)_2$	1	2	0	R	H	
2225		$(\text{CH}_2)_2$	1	2	0	R	H	
2226		$(\text{CH}_2)_2$	1	2	0	R	H	
2227		$(\text{CH}_2)_2$	1	2	0	R	H	
2228		$(\text{CH}_2)_2$	1	2	0	R	H	
2229		$(\text{CH}_2)_2$	1	2	0	R	H	
2230		$(\text{CH}_2)_2$	1	2	0	R	H	
2231		$(\text{CH}_2)_2$	1	2	0	R	H	
2232		$(\text{CH}_2)_2$	1	2	0	R	H	
2233		$(\text{CH}_2)_2$	1	2	0	R	H	

Table 1.204

Compd. No.	R^1 R^2 - $\text{C}(\text{H}_2)_j-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p-\overset{\text{R}^4}{\underset{\text{R}^5}{\text{C}}}(\text{CH}_2)_q-\text{G}-\text{R}^6$
2234		1	2	0	R	H	
2235		1	2	0	R	H	
2236		1	2	0	R	H	
2237		1	2	0	R	H	
2238		1	2	0	R	H	
2239		1	2	0	R	H	
2240		1	2	0	R	H	
2241		1	2	0	R	H	
2242		1	2	0	R	H	
2243		1	2	0	R	H	
2244		1	2	0	R	H	

227

Table 1.205

Compd. No.	R^1 R^2 - $\text{C}(\text{CH}_2)_j-$	k	m	n	chirality	R^3	$-(\text{CH}_2)_p-\overset{\substack{R^4 \\ }}{\underset{R^5}{\text{C}}}(\text{CH}_2)_q-\text{G}-\text{R}^6$
2245		1	2	0	R	H	
2246		1	2	0	R	H	
2247		1	2	0	R	H	
2248		1	2	0	R	H	
2249		1	2	0	R	H	
2250		1	2	0	R	H	
2251		1	2	0	R	H	
2252		2	2	1	-	H	
2253		2	2	1	-	H	
2254		2	2	1	-	H	
2255		2	2	1	-	H	

228

Table 1.206

Compd. No.	$\begin{array}{c} R^1 \\ \\ R^2-(CH_2)_n- \end{array}$	k	m	n	chirality	R^3	$-(CH_2)_p\begin{array}{c} R^4 \\ \\ R^5 \end{array}(CH_2)_q-G-R^6$
2256		2	2	1	-	H	
2257		2	2	1	-	H	

本発明においては、環状アミン化合物の酸付加体も用いられる。かかる酸として、例えば塩酸、臭化水素酸、硫酸、リン酸、炭酸などの鉱酸；マレイン酸、クエン酸、リンゴ酸、酒石酸、フマル酸、メタンスルホン酸、トリフルオロ酢酸、蟻酸などの有機酸が挙げられる。

5 さらに、本発明においては、例えばヨウ化1-(4-クロロベンジル)-1-メチル-4-[$(N-(3-\text{トリフルオロメチルベンゾイル})\text{グリシル}$]アミノメチル]ピペリジニウムのような、環状アミン化合物のC₁-C₆アルキル付加体も用いられる。ここで、アルキル基としては、例えばメチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、イソブチル、イソブチル、イソブチル、sec-ブチル、tert-ブチル、イソペンチル、ネオペンチル、tert-ペンチル、2-メチルペンチル、1-エチルブチルが好適な具体例として挙げられるが、特に好ましい例としては、メチル基、エチル基などが挙げられる。また、アンモニウム陽イオンの対陰イオンの好適な具体例としては、フッ化物、塩化物、臭化物、またはヨウ化物などのハロゲン化物陰イオンを挙げること

10 15 ができる。

本発明においては、上記式(I)で表される化合物のラセミ体、および可能なすべての光学活性体も用いることができる。

上記式(I)で表される化合物は、WO 99 25 686記載の下記に示すいずれかの一般的な製造法を用いることにより合成することができる。

20 (製造法1)

下記式(II)

25

[式中、R¹、R²、R³、j、k、m、およびnは、上記式(I)におけるそれぞれの定義と同じである。]

で表される化合物1当量と、下記式(III)

30

5 [式中、R⁴、R⁵、R⁶、G、p、およびqは、上記式(I)におけるそれぞれの定義と同じである。]

で表されるカルボン酸、またはその反応性誘導体の0.1-1.0当量を、無溶媒下または溶媒存在下に反応させることによる製造方法。

10 上記式(III)で表されるカルボン酸の「反応性誘導体」とは、例えば酸ハロゲン化物、酸無水物、混合酸無水物などの合成有機化学分野において通常使用される反応性の高いカルボン酸誘導体を意味する。

かかる反応は、適当量のモレキュラーシーブなどの脱水剤；ジシクロヘキシルカルボジイミド(DCC)、N-エチル-N'-(3-ジメチルアミノプロピル)カルボジイミド(EDCIまたはWSC)、カルボニルジイミダゾール(CDI)、
 15 N-ヒドロキシサクシンイミド(HOSu)、N-ヒドロキシベンゾトリアゾール(HOBt)、ベンゾトリアゾール-1-イルオキシトリス(ピロリジノール)ホスホニウム=ヘキサブロホスフェート(PyBOP)、2-(1H-ベンゾトリアゾール-1-1イル)-1,1,3,3-テトラメチルウロニウム=ヘキサフルオロホスフェート(HBTU)、2-(1H-ベンゾトリアゾール-1-イル)
 20 -1,1,3,3-テトラメチルウロニウム=テトラフルオロボレート(TBTU)、2-(5-ノルボルネン-2,3-ジカルボキシイミド)-1,1,3,3-テトラメチルウロニウム=テトラフルオロボレート(TNTU)、O-(N-サクシニミジル)-1,1,3,3-テトラメチルウロニウム=テトラフルオロボレート(TSTU)、プロモトリス(ピロリジノ)ホスホニウム=ヘキサフルオロホス
 25 フェート(PyBroP)などの縮合剤；炭酸カリウム、炭酸カルシウム、炭酸水素ナトリウムなどの無機塩基、トリエチルアミン、ジイソプロピルエチルアミン、ピリジンなどのアミン類、(ペリジノメチル)ポリスチレン、(モルホリノメチル)ポリスチレン、(ジメチルアミノメチル)ポリスチレン、ポリ(4-ビニルピリジン)などの高分子支持塩基などの塩基を適宜用いることにより、より円滑に進行させることができる。

(製造法2)

下記式 (IV)

5

[式中、R¹、R²、およびjは、上記式(I)におけるそれぞれの定義と同じであり、Xはハロゲン原子、アルキルスルホニルオキシ基、またはアリールスルホニルオキシ基を表す。]

10 で表されるアルキル化試薬 1当量と、下記式(V)

15

[式中、R³、R⁴、R⁵、R⁶、G、k、m、n、p、およびqは、上記式(I)におけるそれぞれの定義と同じである。]

で表される化合物0.1-1.0当量を、無溶媒下または溶媒存在下に反応させることによる製造方法。

20 かかる反応は、上記製造法1と同様の塩基を適宜用いることにより、より円滑に進行させることができる。さらに、本製造方法においてヨウ化カリウム、ヨウ化ナトリウムなどのヨウ化物を共存させることにより、反応を促進できる場合がある。

25 上記式(IV)において、Xはハロゲン原子、アルキルスルホニルオキシ基、アリールスルホニルオキシ基を表す。かかるハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子が好ましく挙げられる。アルキルスルホニルオキシ基の好適な具体例としては、メチルスルホニルオキシ基、トリフルオロメチルスルホニルオキシ基などが挙げられる。アリールスルホニルオキシ基の好適な具体例としては、トシリオキシ基を挙げることができる。

(製造法 3)

下記式 (VI)

5 [式中、 R^1 および R^2 は、上記式(I)におけるそれぞれの定義と同じであり、 j は1または2を表す。]

または、下記式 (VII)

[式中、 R^1 は上記式(I)における R^1 の定義と同じであり、 j は0を表す場合に相当する。]

で表されるアルデヒド 1 当量と、上記式 (V) で表される化合物 0.1 - 1.0 当量を、無溶媒下または溶媒存在下に反応させることによる製造方法。

かかる反応は、一般に還元的アミノ化反応と呼ばれ、還元条件としては、パラジウム、白金、ニッケル、ロジウムなど金属を含む触媒を用いる接触水素添加反応

15 水素化リチウムアルミニウム、水素化ホウ素ナトリウム、シアノ水素化ホウ素ナトリウム、トリアセトキシ水素化ホウ素ナトリウムなどの複合水素化物およびボランを用いる水素化反応、または電解還元反応などを用いることができる。

(製造法4)

下記式 (VIII)

20

25 [式中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^7 、 j 、 k 、 m 、 n 、 p 、および q は、上記式（I）におけるそれぞれの定義と同じである。]

で表される化合物 1 当量と、下記式 (IX)

[式中、R⁶は上記式(I)におけるR⁶の定義と同じであり、Aはカルボニル基またはスルホニル基を表す。]

で表されるカルボン酸またはスルホン酸、またはそれらの反応性誘導体。

0当量を、無溶媒下、または溶媒存在下に反応させることによる製造方法。

上記式(IX)で表されるカルボン酸またはスルホン酸の反応性誘導体とは、例えば酸ハロゲン化物、酸無水物、混合酸無水物などの合成有機化学分野で一般に使用される反応性の高いカルボン酸またはスルホン酸誘導体を意味する。かかる反応は

5 、上記製造法1と同様の脱水剤、縮合剤、または塩基を適宜用いることにより、より円滑に進行させることができる。

(製造法5)

上記式(VIII)で表される化合物1当量と、下記式(X)

10 [式中、R⁶は上記式(I)におけるR⁶の定義と同じであり、Zは酸素原子または硫黄原子を表す。]

で表されるイソシアネートまたはイソチオシアネート0.1-1.0当量を、無溶媒下または溶媒存在下に反応させることによる製造方法。

(製造法6)

15 下記式(XI)

20

[式中、R¹、R²、R³、R⁴、R⁵、j、k、m、n、p、およびqは、上記式(I)におけるそれぞれの定義と同じであり、Aはカルボニル基またはスルホニル基を表す。]

で表される化合物1当量と、下記式(XII)

25 R⁶-NH₂ (XII)

[式中、R⁶は上記式(I)におけるR⁶の定義と同じである。]

で表されるアミン0.1-1.0当量を、無溶媒下または溶媒存在下に反応させることによる製造方法。

30 かかる反応は、上記製造法1と同様の脱水剤、縮合剤、または塩基を適宜用いることにより、より円滑に進行させることができる。

上記製造法1-6において、各反応に供する基質が、一般に有機合成化学における

る各反応条件において反応するか、あるいは反応に悪影響を及ぼすことが考えられる置換剤を有する場合には、その官能基を既知の適当な保護基で保護して反応に供した後、従来既知の方法を用いて脱保護することにより、目的の化合物を得ることができる。

5 さらに、本発明で用いる化合物は、例えばアルキル化反応、アシル化反応、還元反応などの、一般に有機合成化学において使用される既知の反応を用いて、上記製造法6により製造される化合物の（単数または複数の）置換基をさらに変換することによっても得ることができる。

上記各製造法において、反応溶媒としては、ジクロロメタン、クロロホルムなど
10 のハログン化炭化水素、ベンゼン、トルエンなどの芳香族炭化水素、ジエチルエーテル、テトラヒドロフランなどのエーテル類、酢酸エチルなどのエ斯特爾類、ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリルなどの非プロトン性極性溶媒、メタノール、エタノール、イソプロピルアルコールなどのアルコール類などが、反応に応じて適宜用いられる。

15 いずれの製造方法においても、反応温度は-78°Cから+150°C、好ましくは0°Cから100°Cの範囲である。反応完了後、通常の単離、精製操作、すなわち濃縮、濾過、抽出、固相抽出、再結晶、クロマトグラフィーなどを行うことにより、目的とする上記式(1)で表される環状アミン化合物を単離することができる。
20 また、それらは通常の方法により薬学的に許容される酸付加体またはC₁-C₆アルキル付加体に変換することができる。

実施例

本発明を以下、具体的に実施例に基づいて説明する。しかしながら、本発明はこれらの実施例に記載された化合物に限定されるものではない。以下の実施例において各化合物に付された化合物番号(C o m p d. N o.)は、Table 1. 1-1, 206において好適な具体例として挙げた化合物に付された化合物番号(C o m p d. N o.)と対応している。

[参考例1] 3-アミノ-1-(4-クロロベンジル)ピロリジン・二塩酸塩の合成
30 4-クロロベンジルクロリド(4.15g, 25.8mmol)と*i*Pr₂NH(6.67g, 51.6mmol)を、3-[*(tert*-ブトキシカルボニル)

アミノ} ピロリジン (4. 81 g、25. 8 mmol) のDMF溶液 (50 mL) に加えた。反応混合物を70°Cで15時間攪拌し、溶媒を減圧下に除去した。再結晶 (アセトニトリル、50 mL) により目的とする3-[*(tert*-ブトキシカルボニル)アミノ]-1-(4-クロロベンジル)ピロリジン (6. 43 g、80%) を黄白色固体として得た。¹H NMR (CDCl₃、300 MHz) δ 1.37 (s, 9 H), 1.5-1.7 (br, 1 H), 2.1-2.4 (m, 2 H), 2.5-2.7 (m, 2 H), 2.83 (br, 1 H), 3.57 (s, 2 H), 4.1-4.3 (br, 1 H), 4.9-5.1 (br, 1 H), 7.15-7.35 (br, 4 H); 純度はRPLC/MSで求めた (98%)。ESI/MS m/e 311.0 (M⁺+H、C₁₆H₂₄C₁N₂O₂)

10 3-[*(tert*-ブトキシカルボニル)アミノ]-1-(4-クロロベンジル)ピロリジン (6. 38 g、20. 5 mmol) のメタノール (80 mL) 溶液に 1 M HCl-Et₂O (100 mL) を加え、25°Cで15時間攪拌した。溶媒を減圧下に除去し、固体を得、再結晶 (メタノール/アセトニトリル=1:2、130 mL) で精製することにより、3-アミノ-1-(4-クロロベンジル)ピロリジン・二塩酸塩 (4. 939 g、85%) を白色粉末として得た。¹H NMR (d₆-DMSO、300 MHz) δ 3.15 (br, 1 H), 3.3-3.75 (br-m, 4 H), 3.9 (br, 1 H), 4.05 (br, 1 H), 4.44 (br, 1 H), 4.54 (br, 1 H), 7.5-7.7 (m, 4 H), 8.45 (br, 1 H), 8.60 (br, 1 H); 純度はRPLC/MSで求めた (>99%)。ESI/MS m/e 211.0 (M⁺+H、C₁₁H₁₆C₁N₂)

15 光学活性 (R)-3-アミノ-1-(4-クロロベンジル)ピロリジン・二塩酸塩と (S)-3-アミノ-1-(4-クロロベンジル)ピロリジン・二塩酸塩を、それぞれ対応する原料を用いて上記の方法により合成した。生成物は、上記ラセミ体と同じ¹H NMRを示した。

[実施例1] 3-(N-ベンゾイルグリシン)アミノ-1-(4-クロロベンジル)ピロリジン (化合物番号1) の合成

20 N-ベンゾイルグリシン (9. 3 mg、0. 055 mmol)、3-エチル-1-[3-(ジメチルアミノ)プロピル]カルボジイミド・塩酸塩 (EDCI) (1. 0. 5 mg) および1-ヒドロキシベンゾトリアゾール・水和物 (HOBT) (7. 4 mg) を、3-アミノ-1-(4-クロロベンジル)ピロリジン・二塩酸塩 (30 1.4. 2 mg、0. 050 mmol) とトリエチルアミン (1.5. 2 mg) のクロロホルム (2. 5 mL) 溶液に加えた。この反応混合物を25°Cで16時間攪拌し

、2M NaOH水溶液(2mL×2)と食塩水で洗浄した。PTFE膜フィルターによる濾過後、溶媒を減圧下に除去し、3-(N-ベンゾイルグリシル)アミノ-1-(4-クロロベンジル)ピロジン(化合物番号1)を黄白色油状体として得た(17.7mg、95%)。純度はRPLC/MSで求めた(95%)。ESI/MS m/e 372.0 ($M^+ + H$ 、 $C_{20}H_{22}ClN_3O_2$)

5 [実施例2-32]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例1の方法に従って合成した。ESI/MSデータ、収量、および収率を表2にまとめた。

10

表 2

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
2	2	C ₂₁ H ₂₄ ClN ₃ O ₂	386	16.4	85
3	3	C ₁₉ H ₂₁ ClN ₄ O ₂	373	18.7	100
4	4	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440	57.2	69
5	82	C ₂₂ H ₂₃ Cl ₁ F ₃ N ₃ O ₂	454	5.6	11
6	85	C ₂₁ H ₂₄ ClN ₃ O ₂	386	22.6	59
7	86	C ₂₁ H ₂₃ ClN ₄ O ₄	431	21.2	98
8	214	C ₂₂ H ₂₅ ClN ₂ O ₂	385	23.9	62
9	215	C ₂₃ H ₂₇ ClN ₂ O ₃	415	17.4	84
10	216	C ₂₀ H ₂₃ ClN ₂ O ₂ S	391	21.6	定量的
11	217	C ₂₃ H ₂₇ ClN ₂ O ₄	431	15.3	66
12	218	C ₂₃ H ₂₇ ClN ₂ O ₂	399	12.8	64
13	219	C ₂₂ H ₂₄ ClFN ₂ O ₃	419	18.1	86
14	220	C ₂₂ H ₂₅ ClN ₂ O ₂	385	16.4	85
15	221	C ₂₁ H ₂₃ ClN ₂ O ₂	371	14.9	80
16	222	C ₂₁ H ₂₂ Cl ₂ N ₂ O ₂	405	13.3	65
17	223	C ₂₅ H ₃₁ ClN ₂ O ₃	443	18.4*	63
18	224	C ₂₀ H ₂₃ ClN ₂ O ₃ S	407	11.2	28
19	225	C ₂₂ H ₂₆ ClN ₃ O ₂	400	22.7	定量的
20	226	C ₂₃ H ₂₈ ClN ₃ O ₃	430	21.0	98
21	227	C ₂₂ H ₂₅ Cl ₂ N ₃ O ₂	434	21.9	100
22	228	C ₂₃ H ₂₈ ClN ₃ O ₃	430	20.8	97
23	229	C ₂₅ H ₃₂ ClN ₃ O ₂	462	25.4	定量的
24	230	C ₂₆ H ₃₁ ClFN ₃ O ₂	472	26.0	定量的

25	231	C24 H28 Cl N3 O3	442	30.3*	定量的
26	232	C22 H32 Cl N3 O2	406	3.9	19
27	233	C23 H28 Cl N3 O2	414	8.5	41
28	234	C22 H27 Cl N4 O2	415	7.3	35
29	235	C24 H29 Cl2 N3 O2	462	9.0	39
30	236	C25 H29 Cl N4 O3 S	501	17.4	69
31	237	C21 H24 Cl N3 O3	402	14.2	71
32	238	C21 H23 Cl2 N3 O3	436	23.4	定量的

* トリフルオロ酢酸塩の収率。

[参考例2] (R) - 3 - [(N-tert-ブトキシカルボニル) グリシル]

アミノ-1-(4-クロロベンジル) ピロリジンの合成

5 (R) - 3 - アミノ-1 - (4 - クロロベンジル) ピロリジン・二塩酸塩 (4. 54 g、16. 0 mmol)、2M NaOH溶液 (80 mL)、および酢酸エチル (80 mL) の混合物を攪拌し、有機層を分離し、水層を酢酸エチル (80 mL × 2) で抽出した。有機層を合わせて無水硫酸ナトリウムで乾燥、濾過、濃縮することにより、遊離の (R) - 3 - アミノ-1 - (4 - クロロベンジル) ピロリジン (3. 35 g、99%) を得た。

10 (R) - 3 - アミノ-1 - (4 - クロロベンジル) ピロリジン (3. 35 g、1. 6 mmol) のジクロロメタン (80 mL) 溶液に、トリエチルアミン (2. 5 mL、17. 6 mmol)、N-tert-ブトキシカルボニルグリシン (2. 79 g、16. 0 mmol)、EDCI (3. 07 g、16. 0 mmol)、およびHOBt (12. 16 g、16 mmol) を加えた。反応混合物を 25°C で 16 時間攪拌した後、2M NaOH溶液 (80 mL) を加えた。有機層を分離し、水層をジクロロメタンで抽出した (100 mL × 3)。有機層を合わせて水 (100 mL × 2) と食塩水 (100 mL) で洗浄し、無水硫酸ナトリウムで乾燥、濾過、濃縮した。カラムクロマトグラフィー (SiO₂、酢酸エチル) により、目的とする (R) - 3 - [N- (tert-ブトキシカルボニル) グリシル] アミノ-1 - (4 - クロロベンジル) ピロリジン (5. 40 g、92%) を得た。

[参考例3] (R) - 1 - (4 - クロロベンジル) - 3 - (グリシルアミノ) ピロリジンの合成

(R) - 3 - [N- (tert-ブトキシカルボニル) グリシル] アミノ-1 -

(4-クロロベンジル) ピロリジン (5. 39 g、14. 7 mmol) のメタノール (60 mL) 溶液に、4M HCl ジオキサン (38 mL) 溶液を加えた。この溶液を室温で2時間攪拌した。反応混合物を濃縮し、2M NaOH 溶液 (80 mL) を加えた。混合液をジクロロメタン (80 mL × 3) で抽出し、抽出液を合わせて無水硫酸ナトリウムで乾燥、濃縮した。カラムクロマトグラフィー (SiO₂、酢酸エチル/エタノール/トリエチルアミン = 90 : 5 : 5) により、(R)-3-(グリシルアミノ)-1-(4-クロロベンジル) ピロリジン (3. 374 g、86%)を得た。¹H NMR (CDCl₃, 270 MHz) δ 1.77 (dd, J = 1.3 および 6.9 Hz, 1 H), 2.20-3.39 (m, 2 H), 2.53 (dd, J = 3.3 および 9.6 Hz, 1 H), 2.62 (dd, J = 6.6 および 9.6 Hz, 1 H), 2.78-2.87 (m, 1 H), 3.31 (s, 2 H), 3.57 (s, 2 H), 4.38-4.53 (br, 1 H), 7.18-7.32 (m, 4 H), 7.39 (br, s, 1 H)

その他の3-アシルアミノ-1-(4-クロロベンジル) ピロリジン類も、それぞれ対応する原料および反応剤を用いて参考例2および3の方法に従って合成された。

(S)-1-(4-クロロベンジル)-3-(グリシルアミノ)ピロリジン：3.45 g、79% (2工程)。

(R)-3-(β-アラニルアミノ)-1-(4-クロロベンジル)ピロリジン：3.79 g、85% (2工程)。

(S)-3-(β-アラニルアミノ)-1-(4-クロロベンジル)ピロリジン：3.72 g、86% (2工程)。

(R)-3-[(S)-アラニルアミノ]-1-(4-クロロベンジル)ピロリジン：368 mg、65% (2工程)。

(R)-3-[(R)-アラニルアミノ]-1-(4-クロロベンジル)ピロリジン：425 mg、75% (2工程)。

(R)-3-[(2S)-2-アミノ-3-チエニルプロパノイル]アミノ-1-(4-クロロベンジル)ピロリジン：566 mg、78% (2工程)。

(R)-3-[(2R)-2-アミノ-3-チエニルプロパノイル]アミノ-1-(4-クロロベンジル)ピロリジン：5.85 mg、81% (2工程)。

(R)-3-(2-アミノ-2-メチルプロパノイル)アミノ-1-(4-クロロベンジル)ピロリジン：404 mg、66% (2工程)。

(R)-3-[(2S)-2-アミノ-4-(メチルスルホニル)ブタノイル]

アミノー1-(4-クロロベンジル)ピロリジン: 535mg、72% (2工程)

。

さらに、(R)-3-(グリシルアミノ)-1-(4-メチルベンジル)ピロリジン、(R)-1-(4-プロモベンジル)-3-(グリシルアミノ)ピロリジン、(R)-1-(2,4-ジメチルベンジル)-3-(グリシルアミノ)ピロリジン、および(R)-1-(3,5-ジメチルイソオキサゾール-4-イルメチル)-3-(グリシルアミノ)ピロリジンも、それぞれ対応する原料および反応剤を用いて参考例1、2、および3の方法に従って合成された。

(R)-3-(グリシルアミノ)-1-(4-メチルベンジル)ピロリジン: 4
10 . 65g、収率62% (3-[*t*er*t*-ブトキシカルボニル]アミノ]ピロリジンからの収率)。

(R)-1-(4-プロモベンジル)-3-(グリシルアミノ)ピロリジン: 2
. 55g、収率68% ((R)-3-アミノ-1-(4-プロモベンジル)ピロリジンからの収率); ^1H NMR (CDCl_3 、270MHz) δ 1.37-1.78 (m,
15 3H), 2.23-2.39 (m, 2H), 2.50-2.67 (m, 2H), 2.80-2.89 (m, 1H), 3.32 (s,
2H), 3.58 (s, 2H), 4.39-4.55 (m, 1H), 7.21 (d, J = 6.5 Hz, 2H), 7.45 (d,
 J = 6.5 Hz, 2H)

(R)-1-(2,4-ジメチルベンジル)-3-(グリシルアミノ)ピロリジン: 1.56g、収率58% (3-[*t*er*t*-ブトキシカルボニル]アミノ]
20 ピロリジンからの収率); ^1H NMR (CDCl_3 、270MHz) δ 1.55-1.78 (m, 3H), 2.30 (s, 3H), 2.23-2.31 (m, 2H), 2.33 (s, 3H), 2.51-2.63 (m,
, 2H), 2.78-2.87 (m, 1H), 3.30 (s, 2H), 3.55 (s, 2H), 4.38-4.60 (m, 1H)
, 6.95 (d, J = 7.6 Hz, 1H), 6.97 (s, 1H), 7.13 (d, J = 7.6 Hz, 1H), 7.43
(br-s, 1H)

25 (R)-1-(3,5-ジメチルイソオキサゾール-4-イルメチル)-3-(グリシルアミノ)ピロリジン: 3.14g、収率45% (3-[*t*er*t*-ブトキシカルボニル]アミノ]ピロリジンからの収率)。

[実施例33] (S)-3-[N-[3,5-ビス(トリフルオロメチル)ベンゾイル]グリシル]アミノ-1-(4-クロロベンジル)ピロリジン(化合物番号
30 5)の合成

3,5-ビス(トリフルオロメチル)ベンゾイルクロリド (0.060mmol)

) のクロロホルム溶液 (0. 4 mL) を、 (S) - 1 - (4-クロロベンジル) - 3 - (グリシルアミノ) ピロリジン (0. 050 mmol) とトリエチルアミン (0. 070 mmol) のクロロホルム (1. 0 mL) 溶液に加えた。この反応混合物を室温で 2. 5 時間攪拌した後、 (アミノメチル) ポリスチレン樹脂 (1. 04 mmol/g、 50 mg、 50 mmol) を加え、混合物を室温で 12 時間攪拌した。反応混合物を濾過し、樹脂をジクロロメタン (0. 5 mL) で洗浄した。濾液と洗液とを合わせ、ジクロロメタン (4 mL) を加え、溶液を 2M NaOH 水溶液 (0. 5 mL) にて洗浄して濃縮することにより、 (S) - 3 - [N - [3, 5 - ビス (トリフルオロメチル) ベンゾイル] グリシル] アミノ - 1 - (4-クロロベンジル) ピロリジン (化合物番号 5) を得た (14. 4 mg、 57%)。純度は RPLC/MS で求めた (97%)。ESI/MS m/e 508. 0 ($M^+ + H$)、 $C_{22}H_{20}ClF_6N_3O_2$

[実施例 34 - 239]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 15 33 の方法に従って合成した。ESI/MS データ、収量、および収率を表 3 にまとめた。

表 3

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
34	5	$C_{22}H_{20}ClF_6N_3O_2$	508.0	14.4	57
35	6	$C_{21}H_{21}ClF_6N_3O_2$	440.0	17.0	77
36	7	$C_{20}H_{21}BrClN_3O_2$	450.0	17.7	79
37	8	$C_{20}H_{21}ClFN_3O_2$	390.0	12.7	65
38	9	$C_{20}H_{20}Cl_3N_3O_2$	440.0	39.0	定量的
39	10	$C_{21}H_{24}ClN_3O_3$	402.5	23.5	定量的
40	11	$C_{22}H_{26}ClN_3O_4$	432.5	22.4	定量的
41	12	$C_{22}H_{26}ClN_3O_4$	432.5	15.9	74
42	13	$C_{21}H_{21}ClF_6N_3O_2$	440.0	13.1	60
43	14	$C_{21}H_{24}ClN_3O_2$	386.0	16.4	85
44	15	$C_{20}H_{21}Cl_2N_3O_2$	406.0	15.7	77
45	16	$C_{21}H_{24}ClN_3O_2$	402.0	28.2	定量的
46	17	$C_{20}H_{20}Cl_3N_3O_2$	442.0	35.6	定量的
47	18	$C_{21}H_{21}ClN_4O_2$	397.5	22.8	定量的

48	19	C ₂₁ H ₂₂ ClN ₃ O ₄	416.0	16.3	78
49	20	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	24.9	定量的
50	21	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	17.9	78
51	22	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	9.4	41
52	23	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	15.4	67
53	24	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₃	456.0	20.7	91
54	25	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	18.5	81
55	26	C ₂₀ H ₂₁ ClN ₄ O ₄	417.0	21.9	定量的
56	27	C ₂₀ H ₂₁ ClN ₄ O ₄	417.0	16.8	81
57	28	C ₂₀ H ₂₁ ClN ₄ O ₄	417.0	6.8	33
58	29	C ₂₂ H ₂₀ ClF ₆ N ₃ O ₂	508.0	20.8	82
59	30	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440.0	15.2	69
60	31	C ₂₀ H ₂₁ BrClN ₃ O ₂	450.0	15.6	69
61	32	C ₂₀ H ₂₁ ClFN ₃ O ₂	390.0	11.8	61
62	33	C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂	440.0	15.8	72
63	34	C ₂₁ H ₂₄ ClN ₃ O ₃	402.5	33.8	定量的
64	35	C ₂₂ H ₂₆ ClN ₃ O ₄	432.5	56.1	定量的
65	36	C ₂₂ H ₂₆ ClN ₃ O ₄	432.5	37.6	定量的
66	37	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440.0	12.6	57
67	38	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	12.3	64
68	39	C ₂₀ H ₂₁ Cl ₂ N ₃ O ₂	406.0	15.9	78
69	40	C ₂₁ H ₂₄ ClN ₃ O ₂	402.0	11.6	58
70	41	C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂	442.0	17.8	81
71	42	C ₂₁ H ₂₁ ClN ₄ O ₂	397.5	22.4	定量的
72	43	C ₂₁ H ₂₂ ClN ₃ O ₄	416.0	30.1	定量的
73	44	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	13.4	59
74	45	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	13.2	58
75	46	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	14.4	63
76	47	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₃	456.0	16.4	72
77	48	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458	16.5	72
78	49	C ₂₀ H ₂₁ ClN ₄ O ₄	417.0	12.5	60
79	50	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	26.3	定量的
80	51	C ₂₀ H ₂₁ BrClN ₃ O ₂	450.0	8.6	38
81	52	C ₂₀ H ₂₁ ClFN ₃ O ₂	390.5	4.1	21
82	53	C ₂₀ H ₂₁ Cl ₂ N ₃ O ₂	406.0	5.4	27
83	54	C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂	440.0	8.8	40
84	55	C ₂₀ H ₂₀ BrCl ₄ N ₃ O ₂	440.0	7.7	35
85	56	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	4.8	25
86	57	C ₂₂ H ₂₆ ClN ₃ O ₄	429.5	4.9	23

87	58	C ₂₀ H ₂₁ Cl ₂ N ₃ O ₂	406.0	4.1	20
88	59	C ₂₀ H ₂₁ BrClN ₃ O ₂	452.0	3.5	16
89	60	C ₂₆ H ₂₆ ClN ₃ O ₂	448.5	7.3	33
90	61	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440.0	7.1	32
91	62	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	10.4	54
92	63	C ₂₂ H ₂₆ ClN ₃ O ₂	400.5	6.0	30
93	64	C ₂₁ H ₂₁ ClN ₄ O ₂	397.0	7.0	35
94	65	C ₂₄ H ₂₄ ClN ₃ O ₂	422.0	7.7	36
95	66	C ₂₄ H ₂₄ ClN ₃ O ₄	422.0	6.3	30
96	67	C ₂₀ H ₂₀ ClF ₂ N ₃ O ₂	408.0	4.7	23
97	68	C ₂₀ H ₂₀ ClF ₂ N ₃ O ₂	408.0	7.8	38
98	69	C ₂₀ H ₂₀ ClF ₂ N ₃ O ₂	408.0	7.3	36
99	70	C ₂₀ H ₂₀ ClF ₂ N ₃ O ₂	408.0	9.1	45
100	71	C ₂₂ H ₂₆ ClN ₃ O ₄	429.0	5.6	26
101	72	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	456.0	6.2	27
102	73	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	456.5	16.8	74
103	74	C ₂₂ H ₂₄ ClN ₃ O ₄	430.0	16.4	76
104	75	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	16.1	70
105	76	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	17.0	74
106	77	C ₂₀ H ₁₉ ClF ₃ N ₃ O ₂	426.0	16.2	76
107	78	C ₂₀ H ₁₉ ClF ₃ N ₃ O ₂	426.0	18.0	85
108	79	C ₂₂ H ₂₀ ClF ₆ N ₃ O ₂	508.0	18.8	74
109	80	C ₂₂ H ₂₀ ClF ₆ N ₃ O ₂	508.0	16.4	65
110	81	C ₂₂ H ₂₆ ClN ₃ O ₂	400.0	13.9	70
111	83	C ₂₀ H ₂₁ ClN ₄ O ₄	417.0	16.0	77
112	84	C ₂₀ H ₂₁ ClN ₄ O ₄	417.0	21.6	定量的
113	87	C ₂₃ H ₂₂ ClF ₆ N ₃ O ₂	522.0	17.5	67
114	88	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	454.0	13.9	61
115	89	C ₂₁ H ₂₃ BrClN ₃ O ₂	466.0	15.4	66
116	90	C ₂₁ H ₂₃ ClFN ₃ O ₂	404.0	10.7	53
117	91	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	456.0	13.7	60
118	92	C ₂₂ H ₂₆ ClN ₃ O ₃	416.0	38.4	定量的
119	93	C ₂₃ H ₂₈ ClN ₃ O ₄	446.0	25.2	定量的
120	94	C ₂₃ H ₂₈ ClN ₃ O ₄	446.0	16.5	74
121	95	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	454.0	16.3	72
122	96	C ₂₂ H ₂₆ ClN ₃ O ₂	400.5	16.7	84
123	97	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	11.2	53
124	98	C ₂₂ H ₂₆ ClN ₃ O ₂	416.5	11.8	57
125	99	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	14.8	65

126	100	C ₂₂ H ₂₃ ClN ₄ O ₂	411.0	9.5	46
127	101	C ₂₂ H ₂₄ ClN ₃ O ₄	430.5	13.2	61
128	102	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	13.1	56
129	103	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	36.5	定量的
130	104	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	22.8	97
131	105	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	20.1	85
132	106	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₃	470.0	27.4	定量的
133	107	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	18.5	78
134	108	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	11.9	55
135	109	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	23.9	定量的
136	110	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	24.4	定量的
137	111	C ₂₃ H ₂₂ ClF ₆ N ₃ O ₂	522.0	9.5	36
138	112	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	454.0	3.9	17
139	113	C ₂₁ H ₂₃ BrClN ₃ O ₂	466.0	7.5	32
140	114	C ₂₁ H ₂₃ ClFN ₃ O ₂	404.0	6.1	30
141	115	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	456.0	6.6	29
142	116	C ₂₂ H ₂₆ ClN ₃ O ₃	416.0	4.8	23
143	117	C ₂₃ H ₂₈ ClN ₃ O ₄	446.0	6.4	29
144	118	C ₂₃ H ₂₈ ClN ₃ O ₄	446.0	24.6	定量的
145	119	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	454.0	5.2	23
146	120	C ₂₂ H ₂₆ ClN ₃ O ₂	400.5	4.4	22
147	121	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	7.8	37
148	122	C ₂₂ H ₂₆ ClN ₃ O ₂	416.5	14.1	68
149	123	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	5.4	24
150	124	C ₂₂ H ₂₃ ClN ₄ O ₂	411.0	34.0	定量的
151	125	C ₂₂ H ₂₄ ClN ₃ O ₄	430.5	32.0	定量的
152	126	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	4.6	19
153	127	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	10.4	44
154	128	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	7.3	31
155	129	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	13.5	57
156	130	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₃	470.0	15.1	64
157	131	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	8.6	36
158	132	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	4.4	20
159	133	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	32.0	定量的
160	134	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	6.9	32
161	135	C ₂₁ H ₂₃ BrClN ₃ O ₂	466.0	7.8	34
162	136	C ₂₁ H ₂₃ ClFN ₃ O ₂	404.0	13.7	68
163	137	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.5	14.6	69
164	138	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	17.7	78

2 4 4

165	139	C ₂₁ H ₂₂ BrCl ₄ N ₃ O ₂	454.0	17.2	76
166	140	C ₂₂ H ₂₆ Cl ₁ N ₃ O ₂	400.0	15.0	75
167	141	C ₂₃ H ₂₈ ClN ₃ O ₄	443.5	13.9	62
168	142	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	13.7	65
169	143	C ₂₁ H ₂₃ BrClN ₃ O ₂	464.0	16.1	69
170	144	C ₂₁ H ₂₆ ClN ₃ O ₂	462.0	17.6	76
171	145	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	454.0	16.0	71
172	146	C ₂₂ H ₂₆ ClN ₃ O ₂	400.0	14.9	75
173	147	C ₂₃ H ₂₈ ClN ₃ O ₂	414.0	16.2	78
174	148	C ₂₂ H ₂₃ ClN ₄ O ₂	411.0	14.9	73
175	149	C ₂₅ H ₂₆ ClN ₃ O ₂	436.0	17.1	78
176	150	C ₂₅ H ₂₆ ClN ₃ O ₂	436.0	13.1	60
177	151	C ₂₁ H ₂₂ ClF ₂ N ₃ O ₂	422.0	14.8	70
178	152	C ₂₁ H ₂₂ ClF ₂ N ₃ O ₂	422.0	15.3	73
179	153	C ₂₁ H ₂₂ ClF ₂ N ₃ O ₂	422.0	15.3	73
180	154	C ₂₁ H ₂₂ ClF ₂ N ₃ O ₂	422.0	16.4	78
181	155	C ₂₃ H ₂₈ ClN ₃ O ₄	443.0	16.9	76
182	156	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	470.5	12.6	54
183	157	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	470.0	20.0	85
184	158	C ₂₃ H ₂₆ ClN ₃ O ₄	444.0	17.4	78
185	159	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	18.4	78
186	160	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	19.6	83
187	161	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440.0	17.0	77
188	162	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440.0	17.1	78
189	163	C ₂₃ H ₂₂ ClF ₆ N ₃ O ₂	522.0	20.8	80
190	164	C ₂₃ H ₂₂ ClF ₆ N ₃ O ₂	522.0	2.7	10
191	165	C ₂₃ H ₂₈ ClN ₃ O ₂	414.0	16.4	79
192	166	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	454.0	8.6	38
193	167	C ₂₁ H ₂₃ BrClN ₃ O ₂	464.0	11.6	50
194	168	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	11.5	55
195	169	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	10.0	44
196	170	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	10.4	44
197	171	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	8.9	42
198	172	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	10.3	53
199	173	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	14.6	68
200	174	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	454.0	10.4	46
201	175	C ₂₁ H ₂₃ BrClN ₃ O ₂	464.0	13.4	58
202	176	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	12.7	60
203	177	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	13.2	58

2 4 5

204	178	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	12.9	55
205	179	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	13.3	63
206	180	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	24.2	定量的
207	181	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	1.0	1
208	182	C ₂₃ H ₂₅ ClF ₃ N ₃ O ₂	468.0	15.1	65
209	183	C ₂₂ H ₂₅ BrClN ₃ O ₂	478.0	18.0	75
210	184	C ₂₂ H ₂₅ Cl ₂ N ₃ O ₂	434.0	16.3	75
211	185	C ₂₂ H ₂₄ Cl ₃ N ₃ O ₂	468.0	18.6	79
212	186	C ₂₃ H ₂₄ ClF ₄ N ₃ O ₂	486.0	16.5	68
213	187	C ₂₂ H ₂₅ Cl ₂ N ₃ O ₂	434.0	14.4	66
214	188	C ₂₂ H ₂₆ ClN ₃ O ₂	400.0	14.0	70
215	189	C ₂₂ H ₂₅ ClN ₄ O ₄	445.0	16.8	76
216	190	C ₂₆ H ₂₅ ClF ₃ N ₃ O ₂ S	536.0	17.7	66
217	191	C ₂₅ H ₂₅ BrClN ₃ O ₂ S	546.0	20.4	75
218	192	C ₂₅ H ₂₅ Cl ₂ N ₃ O ₂ S	502.0	16.9	67
219	193	C ₂₅ H ₂₄ Cl ₃ N ₃ O ₂ S	536.0	18.3	68
220	194	C ₂₆ H ₂₄ ClF ₄ N ₃ O ₂ S	554.0	19.4	70
221	195	C ₂₅ H ₂₅ Cl ₂ N ₃ O ₂ S	502.0	19.1	76
222	196	C ₂₅ H ₂₆ ClN ₃ O ₂ S	468.0	16.0	68
223	197	C ₂₅ H ₂₅ ClN ₄ O ₄ S	513.0	18.4	72
224	198	C ₂₆ H ₂₅ ClF ₃ N ₃ O ₂ S	536.0	13.9	52
225	199	C ₂₅ H ₂₅ BrClN ₃ O ₂ S	546.0	12.9	47
226	200	C ₂₅ H ₂₅ Cl ₂ N ₃ O ₂ S	502.0	15.6	62
227	201	C ₂₅ H ₂₄ Cl ₃ N ₃ O ₂ S	536.0	17.3	64
228	202	C ₂₆ H ₂₄ ClF ₄ N ₃ O ₂ S	554.0	15.4	56
229	203	C ₂₅ H ₂₅ Cl ₂ N ₃ O ₂ S	502.0	13.5	54
230	204	C ₂₅ H ₂₆ ClN ₃ O ₂ S	468.0	13.7	59
231	205	C ₂₅ H ₂₅ ClN ₄ O ₄ S	513.0	13.9	54
232	206	C ₂₄ H ₂₇ ClF ₃ N ₃ O ₄ S	546.0	10.0	37
233	207	C ₂₃ H ₂₇ BrClN ₃ O ₄ S	558.0	17.1	61
234	208	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₄ S	512.0	17.0	66
235	209	C ₂₃ H ₂₆ Cl ₃ N ₃ O ₄ S	546.0	7.3	27
236	210	C ₂₄ H ₂₆ ClF ₄ N ₃ O ₄ S	564.0	19.2	68
237	211	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₄ S	512.0	7.9	31
238	212	C ₂₃ H ₂₈ ClN ₃ O ₄ S	478.0	13.7	57
239	213	C ₂₃ H ₂₇ ClN ₄ O ₄ S	523.0	5.5	21

[実施例 240] (R) - 3 - [N - [3 - フルオロ - 5 - (トリフルオロメチル) ベンゾイル] グリシル] アミノ - 1 - (3, 5 - ジメチルイソキサゾール - 4 - イルメチル) ピロリジン (化合物番号 1191) の合成

3 - フルオロ - 5 - (トリフルオロメチル) ベンゾイルクロリド (0. 058 m
 5 mol) のジクロロメタン溶液 (1 mL) を、(R) - 1 - (3, 5 - ジメチルイソオキサゾール - 4 - イルメチル) - 3 - (グリシルアミノ) ピロリジン (0. 050 mmol) およびピペリジノメチルポリスチレン (58 mg) のクロロホルム (0. 2 mL) とジクロロメタン (0. 75 mL) の溶液に加えた。反応混合物を室温で 2 時間攪拌した後、メタノール (1. 0 mL) を加え、室温で 10 時間攪拌
 10 した。反応混合物を、VarianTM SCX カラムに負荷し、メタノール (16 mL) にて洗浄した。生成物を 2M NH₃ のメタノール (6 mL) 溶液で溶出し、濃縮することにより、(R) - 3 - [N - [3 - フルオロ - 5 - (トリフルオロメチル) ベンゾイル] グリシル] アミノ - 1 - (3, 5 - ジメチルイソオキサゾール - 4 - イルメチル) ピロリジン (化合物番号 1191) (19. 5 mg, 88%) を
 15 得た。純度は、RPLC/MS で求めた (100%)。ESI/MS m/e 443. 2 (M⁺+H, C₂₀H₂₂F₄N₄O₃)

[実施例 241 - 265]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用い、実施例 240 の方法に従って合成した。ESI/MS データ、収量、および収率を表 4 にまとめた。

表 4

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
241	1192	C ₂₀ H ₂₂ F ₄ N ₄ O ₃	443.2	19.2	87
242	1193	C ₂₀ H ₂₃ F ₃ N ₄ O ₄	441.0	17.5	79
243	1194	C ₂₁ H ₂₂ F ₆ N ₄ O ₃	493.0	20.4	83
244	1195	C ₁₉ H ₂₃ BrN ₄ O ₃	435.1	16.8	77
245	1196	C ₁₉ H ₂₃ N ₅ O ₅	402.2	16.2	81
246	1197	C ₂₀ H ₂₂ F ₄ N ₄ O ₃	443.2	17.6	80
247	1198	C ₁₉ H ₂₃ ClN ₄ O ₃	391.0	16.5	84
248	1199	C ₂₀ H ₂₆ N ₄ O ₃	371.0	16.1	87
249	1200	C ₁₉ H ₂₂ Cl ₂ N ₄ O ₃	425.0	18.0	85

250	1201	C19 H22 F2 N4 O3	393.0	16.6	85
251	1202	C20 H22 F4 N4 O3	443.2	16.8	76
252	1203	C22 H24 F3 N3 O3	436.2	17.1	79
253	1204	C23 H23 F6 N3 O2	488.2	18.1	74
254	1205	C21 H24 Br N3 O2	430.0	17.5	81
255	1206	C21 H24 N4 O4	397.0	16.2	82
256	1207	C22 H23 F4 N3 O2	438.2	17.5	80
257	1208	C21 H24 Cl N3 O2	386.0	15.8	82
258	1209	C22 H27 N3 O2	366.0	15.7	86
259	1210	C21 H23 Cl2 N3 O2	420.0	17.8	85
260	1211	C21 H23 F2 N3 O2	388.0	16.3	84
261	1212	C22 H23 F4 N3 O2	438.2	17.4	80
262	1213	C24 H24 Cl F6 N3 O2	536.2	24.0	90
263	1214	C23 H24 Cl F4 N3 O3	486.2	22.2	91
264	1215	C22 H24 Cl3 N3 O2	467.9	20.9	89
265	1216	C22 H24 Cl F2 N3 O2	436.0	19.3	89

[実施例 266] (R) -1-(4-クロロベンジル)-3-[N-(4-ジメチルアミノベンゾイル)グリシル]アミノ]ピロリジン(化合物番号952)の合成

5 (R) -1-(4-クロロベンジル)-3-(グリシルアミノ)ピロリジン(1.3.8mg、0.052mmol)のクロロホルム(2mL)溶液に、トリエチルアミン(0.021mL、0.15mmol)、4-(ジメチルアミノ)安息香酸(1.0mg、0.061mmol)、EDCI(1.0.2mg、0.053mmol)およびHOBt(7.5mg、0.055mmol)を加えた。この反応混合物を室温で15時間攪拌した。溶液を2M NaOH水溶液(2mL×2)と食塩水(2mL)にて洗浄し、ジクロロメタン(3mL)を用いてPTFE膜でfiltrationして乾燥した。濃縮により(R)-1-(4-クロロベンジル)-3-[N-(4-ジメチルアミノベンゾイル)グリシル]アミノ]ピロリジン(化合物番号952)を得た(24.9mg)。純度は、RPLC/MSで求めた(91%)。ESI/MS m/e 415.0 ($M^+ + H$, $C_{22}H_{27}ClN_4O_2$)

[実施例 267-347]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例266の方法に従って合成した。必要であれば、固相抽出(Variant™ SCX

カラム) またはクロマトグラフィー (HPLC-C₁₈) により精製し、目的物を得た。ESI/MSデータ、収量、および収率を表5にまとめた。

表 5

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
267	951	C ₂₂ H ₂₄ C ₁ N ₃ O ₄	430.0	26.3	定量的
268	953	C ₂₃ H ₂₉ C ₁ N ₄ O ₂	429.0	28.8	定量的
269	954	C ₂₁ H ₂₅ C ₁ N ₄ O ₂	401.0	27.9	定量的
270	955	C ₂₂ H ₂₇ C ₁ N ₄ O ₂	415.0	26.8	定量的
271	956	C ₂₁ H ₂₄ C ₁ N ₃ O ₃	402.0	10.3	51
272	957	C ₂₀ H ₂₂ C ₁ N ₃ O ₃	388.0	1.4	7
273	958	C ₂₁ H ₂₄ C ₁ N ₃ O ₃	402.5	1.2	6
274	959	C ₂₂ H ₂₅ C ₁ N ₄ O ₃	429.5	4.7	22
275	960	C ₂₃ H ₂₇ C ₁ N ₄ O ₃	443.0	10.9	49
276	961	C ₂₁ H ₂₅ C ₁ N ₄ O ₂	401.0	28.4	定量的
277	962	C ₂₂ H ₂₇ C ₁ N ₄ O ₂	415.0	24.9	定量的
278	963	C ₂₁ H ₂₄ C ₁ N ₃ O ₃	402.0	4.4	22
279	964	C ₂₂ H ₂₄ C ₁ N ₃ O ₄	430.0	29.5	定量的
280	965	C ₂₃ H ₂₆ C ₁ N ₃ O ₄	444.0	27.2	定量的
281	966	C ₂₂ H ₂₄ C ₁ N ₃ O ₃	414.0	27.0	定量的
282	967	C ₂₃ H ₂₆ C ₁ N ₃ O ₃	428.0	27.0	定量的
283	968	C ₂₂ H ₂₃ C ₁ N ₄ O ₂	411.0	21.4	定量的
284	969	C ₂₃ H ₂₅ C ₁ N ₄ O ₂	425.0	27.6	定量的
285	970	C ₂₂ H ₂₇ C ₁ N ₄ O ₂	415.0	28.6	定量的
286	971	C ₂₃ H ₂₉ C ₁ N ₄ O ₂	429.0	27.9	定量的
287	972	C ₂₀ H ₂₃ C ₁ N ₄ O ₂	387.0	26.2	定量的
288	973	C ₂₁ H ₂₅ C ₁ N ₄ O ₂	401.0	26.8	定量的
289	974	C ₂₀ H ₂₃ C ₁ N ₄ O ₂	387.0	26.6	定量的
290	975	C ₂₁ H ₂₅ C ₁ N ₄ O ₂	401.0	28.2	定量的
291	976	C ₂₂ H ₂₃ C ₁ N ₄ O ₂	411.0	29.2	定量的
292	977	C ₂₃ H ₂₅ C ₁ N ₄ O ₂	425.0	29.5	定量的
293	978	C ₂₀ H ₂₁ C ₁ N ₆ O ₂	413.0	2.2	11
294	979	C ₂₁ H ₂₃ C ₁ N ₆ O ₂	427.0	10.2	48
295	980	C ₂₂ H ₂₅ C ₁ N ₄ O ₃	429.0	28.8	定量的
296	981	C ₂₃ H ₂₇ C ₁ N ₄ O ₃	443.0	11.9	54
297	982	C ₂₂ H ₂₇ C ₁ N ₄ O ₂	415.0	27.4	定量的
298	983	C ₂₃ H ₂₉ C ₁ N ₄ O ₂	429.5	28.1	定量的

299	984	C21 H24 Cl N3 O3	402.0	27.7	定量的
300	985	C22 H26 Cl N3 O3	416.0	28.6	定量的
301	1149	C21 H28 N4 O4	401	15.5*	38
302	1150	C21 H28 N4 O3	385	10.9*	28
303	1151	C21 H25 F3 N4 O3	439	17.3*	39
304	1152	C21 H24 F N5 O3	415	12.7*	30
305	1153	C21 H24 Cl N5 O3	430	17.5*	41
306	1154	C22 H27 N5 O3	410	20.6*	50
307	1155	C19 H23 F3 N4 O4	429	13.8*	32
308	1156	C21 H30 N4 O4	403	17.7*	43
309	1157	C18 H24 N4 O3 S2	409	12.6*	30
310	1158	C19 H23 Cl2 N5 O3	440	16.9*	38
311	1159	C22 H31 N5 O6	462	38.6*	85
312	1160	C20 H26 Br N5 O3	464	20.4	45
313	1289	C20 H27 N5 O4	403	5.8*	14
314	1290	C21 H29 N5 O3	400	6.9*	17
315	1291	C24 H28 N4 O2	405	22.4	68
316	1292	C22 H27 Br N4 O2	461	23.8	15
317	1293	C22 H23 F4 N3 O2	438	20.9	59
318	1294	C22 H23 F4 N3 O2	438	20.8	59
319	1295	C23 H31 N3 O3	398	17.5	54
320	1296	C20 H25 N3 O2 S2	404	18.8	58
321	1297	C21 H24 F3 N3 O3	424	18.1	53
322	1388	C21 H32 N6 O3	417	7.4*	24
323	1389	C19 H22 N6 O4	399	15.2	48
324	1401	C23 H25 Cl N4 O2	425	8.3*	16
325	1402	C24 H32 N4 O5	457	8.3*	15
326	1403	C20 H24 N4 O2	353	14.8	52
327	1404	C20 H24 N4 O2	353	17.0	60
328	1405	C21 H26 N4 O2 S	399	17.3	54
329	1407	C22 H28 N4 O2 S	413	19.1	57
330	1410	C19 H24 N4 O3	357	9.7*	59
331	1769	C22 H26 Cl F3 N4 O5	519	11.6*	20
332	1770	C26 H28 Cl2 N6 O4	559	13.1*	21
333	1771	C26 H37 N5 O4	484	12.7*	23
334	1772	C28 H39 N5 O4	510	5.5*	9
335	1773	C28 H37 N5 O4	509	6.2*	11
336	1774	C28 H34 N6 O6	551	13.6*	22
337	2039	C19 H24 N4 O2	341	5.2*	14

338	2040	C22 H27 N3 O4	398	2.0*	5
339	2041	C23 H29 N3 O3	396	6.2*	15
340	2042	C25 H37 N3 O2	413	2.6*	6
341	2043	C24 H31 N3 O2	394	6.8*	17
342	2044	C25 H28 N4 O4	449	8.7*	16
343	2045	C26 H29 Cl N6 O4	525	11.4*	19
344	2046	C27 H32 N6 O4	505	7.7*	13
345	2047	C28 H32 N4 O4	489	10.0*	18
346	2048	C28 H37 N5 O5	524	3.7*	6
347	2049	C28 H37 N5 O4	509	5.3*	9

*トリフルオロ酢酸塩の収率。

[実施例 348] (R) - 1 - (4-クロロベンジル) - 3 - [[N - (2-アミノ - 5-クロロベンゾイル) グリシル] アミノ] ピロリジン (化合物番号 108)

5 4) の合成

(R) - 1 - (4-クロロベンジル) - 3 - (グリシルアミノ) ピロリジン (0.050 mmol) のクロロホルム (2 mL) 溶液に、2-アミノ - 5-クロロ安息香酸 (0.060 mL) とジイソプロピルカルボジイミド (0.060 mmol) を加えた。この反応混合物を室温で 15 時間攪拌した。この混合液を、Varian

10 an™ SCX カラムに負荷し、メタノール (15 mL) で洗浄した。生成物を、2 M NH₃ のメタノール (5 mL) 溶液を用いて溶出し、濃縮することにより、(R) - 1 - (4-クロロベンジル) - 3 - [N - [2-アミノ - 5-クロロベンゾイル] グリシル] アミノ] ピロリジン (化合物番号 1084) を得た (12.7 mg、60%)。純度は、RPLC/MS で求めた (87%)。ESI/MS m/e

15 421.0 (M⁺ + H, C₂₀H₂₂C₁₂N₄O₂)

[実施例 349 - 361]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 348 の方法に従って合成した。原料のアミンが残存している場合には、イソシアナトメチル化ポリスチレン (50 mg) のクロロホルム (1 mL) 溶液を加えて室温で反応させ、濾過、濃縮することによって目的物を得た。ESI/MS データ、收量、および收率を表 6 にまとめた。

表 6

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
349	1085	C ₂₀ H ₂₂ ClN ₅ O ₄	432.0	4.1	19
350	1086	C ₂₀ H ₂₃ ClN ₄ O ₂	387.0	7.9	41
351	1087	C ₂₂ H ₂₃ ClN ₄ O ₂	411.0	15.0	73
352	1088	C ₁₈ H ₂₀ ClN ₃ O ₃	362.0	12.9	71
353	1089	C ₂₂ H ₂₂ ClFN ₄ O ₂	429.0	16.0	75
354	1090	C ₂₂ H ₂₆ ClN ₃ O ₃	416.0	15.8	76
355	1091	C ₂₁ H ₂₄ Cl ₂ N ₄ O ₂	435.0	10.9	50
356	1092	C ₂₁ H ₂₄ ClN ₅ O ₄	446.0	7.9	35
357	1093	C ₂₁ H ₂₅ ClN ₄ O ₂	401.0	9.5	47
358	1094	C ₂₃ H ₂₅ ClN ₄ O ₂	425.0	15.8	74
359	1095	C ₁₉ H ₂₂ ClN ₃ O ₃	376.0	13.5	72
360	1096	C ₂₃ H ₂₄ ClFN ₄ O ₂	443.0	11.8	53
361	1097	C ₂₃ H ₂₆ ClN ₃ O ₃	430.0	15.1	70

[実施例 362] (R) -1- (4-クロロベンジル) -3- [[N- (3-ブロモ-4-メチルベンゾイル) グリシル] アミノ] ピロリジン (化合物番号 1098) の合成

(R) -1- (4-クロロベンジル) -3- (グリシルアミノ) ピロリジン (0. 050 mmol) のクロロホルム (1. 35 mL) と t e r t -ブタノール (0. 15 mL) の溶液に、3-ブロモ-4-メチル安息香酸 (0. 060 mL) 、ジイソプロピルカルボジイミド (0. 060 mmol) およびHOBt (0. 060 mmol) を加えた。この反応混合物を室温で 15 時間攪拌した。この混合液を、Varian™ SCXカラムに負荷し、メタノール／クロロホルム = 1 : 1 (12 mL) とメタノール (12 mL) で洗浄した。生成物を、2M NH₃のメタノール (5 mL) 溶液を用いて溶出し、濃縮することにより、(R) -1- (4-クロロベンジル) -3- [[N- (3-ブロモ-4-メチルベンゾイル) グリシル] アミノ] ピロリジン (化合物番号 1098) (11. 6 mg、50%) を得た。純度は、RPLC/MSで求めた (94%)。ESI/MS m/e 466. 0 (M⁺ + H, C₂₁H₂₃BrC₁N₃O₂)

[実施例 363-572]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例362の方法に従って合成した。必要であれば、分取TLCにより精製し、目的物を得た。ESI/MSデータ、収量、および収率を表7にまとめた。

下記の3化合物は、それぞれ、化合物番号1415、1416、および1417
5 の副生成物として得られた。

化合物番号1419 : 7. 9 mg、収率38%、ESI/MS m/e 419
. 0 ($C_{20}H_{23}ClN_4O_2S$)

化合物番号1420 : 7. 1 mg、収率36%、ESI/MS m/e 399
. 2 ($C_{23}H_{26}N_4O_2S$)

10 化合物番号1421 : 7. 4 mg、収率37%、ESI/MS m/e 404
. 2 ($C_{19}H_{25}N_5O_3S$)

表 7

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
363	1099	$C_{20}H_{20}BrClFN_3O_2$	470.0	3.1	13
364	1100	$C_{20}H_{20}Cl_2FN_3O_2$	424.0	3.1	15
365	1101	$C_{21}H_{23}ClIN_3O_2$	512.0	12.5	49
366	1102	$C_{21}H_{23}ClN_4O_4$	431.2	7.7	36
367	1103	$C_{22}H_{26}BrN_3O_2$	446.0	13.8	62
368	1104	$C_{21}H_{23}BrFN_3O_2$	450.0	16.5	74
369	1105	$C_{21}H_{23}ClEN_3O_2$	404.2	14.7	73
370	1106	$C_{22}H_{26}IN_3O_2$	492.0	18.5	75
371	1107	$C_{22}H_{26}N_4O_4$	411.2	15.2	74
372	1108	$C_{20}H_{25}BrN_4O_3$	449.0	12.8	57
373	1109	$C_{19}H_{22}BrFN_4O_3$	455.0	16.2	71
374	1110	$C_{19}H_{22}ClFN_4O_3$	409.2	14.4	70
375	1111	$C_{20}H_{25}IN_4O_3$	497.0	17.9	72
376	1112	$C_{20}H_{25}N_5O_5$	416.2	14.9	72
377	1113	$C_{23}H_{27}BrClN_3O_2$	494.0	16.1	65
378	1114	$C_{22}H_{24}BrClFN_3O_2$	498.0	20.2	81
379	1115	$C_{22}H_{24}Cl_2FN_3O_2$	452.2	18.6	82
380	1116	$C_{23}H_{27}ClIN_3O_2$	539.1	21.9	81
381	1117	$C_{23}H_{27}ClN_4O_4$	459.2	18.7	81
382	1171	$C_{21}H_{23}BrClN_3O_2$	466.0	4.9	21
383	1172	$C_{22}H_{23}ClN_4O_3$	427.2	16.1	75

384	1173	<chem>C23H25ClN4O3</chem>	441.2	22.8	定量的
385	1174	<chem>C20H22ClFN4O2</chem>	405.2	21.4	定量的
386	1175	<chem>C22H26BrN3O2</chem>	446.0	15.8	71
387	1176	<chem>C23H26N4O3</chem>	407.2	17.6	87
388	1177	<chem>C24H28N4O3</chem>	421.2	20.2	96
389	1178	<chem>C21H25FN4O2</chem>	385.0	16.2	84
390	1179	<chem>C21H25N5O4</chem>	412.2	2.3	11
391	1180	<chem>C23H26N4O2</chem>	391.0	21.6	定量的
392	1181	<chem>C20H25BrN4O3</chem>	451.0	20.1	89
393	1182	<chem>C21H25N5O4</chem>	412.2	13.3	65
394	1183	<chem>C22H27N5O4</chem>	426.2	20.9	98
395	1184	<chem>C19H24FN5O3</chem>	390.0	20.0	定量的
396	1185	<chem>C19H24N6O5</chem>	417.2	18.2	87
397	1186	<chem>C21H25N5O3</chem>	396.2	17.6	89
398	1187	<chem>C23H27BrClN3O2</chem>	494.0	22.1	90
399	1188	<chem>C24H27ClN4O3</chem>	455.2	17.2	76
400	1189	<chem>C25H29ClN4O3</chem>	469.2	21.1	90
401	1190	<chem>C22H26ClFN4O2</chem>	433.2	20.4	94
402	1217	<chem>C21H20Cl2F3N3O2</chem>	474.0	38.5	81
403	1218	<chem>C21H23ClFN3O2</chem>	404.2	35.6	88
404	1219	<chem>C21H23Cl2N3O2</chem>	420.0	3.7	9
405	1220	<chem>C20H22ClIN4O2</chem>	513.0	53.0	定量的
406	1221	<chem>C20H21ClF2N4O2</chem>	423.0	38.7	92
407	1222	<chem>C19H23ClN4O2</chem>	375.2	33.6	90
408	1223	<chem>C26H26ClN3O2S</chem>	496.0	43.7	88
409	1224	<chem>C20H21ClN4O5</chem>	433.0	40.6	94
410	1225	<chem>C22H23ClF3N3O2</chem>	454.2	18.4	41
411	1226	<chem>C22H26FN3O2</chem>	384.0	17.1	45
412	1227	<chem>C22H26ClN3O2</chem>	400.2	17.5	44
413	1228	<chem>C21H25IN4O2</chem>	493.0	23.3	47
414	1229	<chem>C21H24F2N4O2</chem>	403.2	18.4	46
415	1230	<chem>C20H26N4O2</chem>	355.2	15.7	44
416	1231	<chem>C27H29N3O2S</chem>	476.0	20.9	88
417	1232	<chem>C21H24N4O5</chem>	413.0	19.9	96
418	1233	<chem>C20H22ClF3N4O3</chem>	459.0	19.4	85
419	1234	<chem>C20H25FN4O3</chem>	389.0	17.8	92
420	1235	<chem>C20H25ClN4O3</chem>	405.2	18.7	92
421	1236	<chem>C19H24IN5O3</chem>	498.0	23.9	96
422	1237	<chem>C19H23F2N5O3</chem>	408.2	19.0	93

423	1238	C ₁₈ H ₂₅ N ₅ O ₃	360.0	16.3	91
424	1239	C ₂₅ H ₂₈ N ₄ O ₃ S	481.2	21.4	89
425	1240	C ₁₉ H ₂₃ N ₅ O ₆	418.0	19.9	95
426	1241	C ₂₃ H ₂₄ Cl ₂ F ₃ N ₃ O ₂	502.0	22.5	90
427	1242	C ₂₃ H ₂₇ ClFN ₃ O ₂	432.2	21.2	98
428	1243	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂	448.0	21.6	96
429	1244	C ₂₂ H ₂₆ ClIN ₄ O ₂	541.0	26.4	98
430	1245	C ₂₂ H ₂₅ ClF ₂ N ₄ O ₂	451.0	21.3	94
431	1246	C ₂₁ H ₂₇ ClN ₄ O ₂	403.2	19.4	96
432	1247	C ₂₈ H ₃₀ ClN ₃ O ₂ S	524.0	24.7	94
433	1248	C ₂₂ H ₂₅ ClN ₄ O ₅	461.0	20.7	90
434	1249	C ₂₀ H ₂₀ Cl ₂ N ₄ O ₄	451.0	7.4	33
435	1250	C ₂₁ H ₂₃ ClN ₄ O ₄	431.2	15.5	72
436	1251	C ₁₉ H ₂₂ ClN ₅ O ₅	436.0	22.9	定量的
437	1252	C ₂₃ H ₂₈ ClN ₃ O ₂	414.2	17.9	86
438	1253	C ₂₄ H ₃₁ N ₃ O ₂	394.2	15.8	80
439	1254	C ₂₂ H ₃₀ N ₄ O ₃	399.2	17.3	87
440	1255	C ₂₀ H ₂₂ BrClN ₄ O ₂	467.0	21.3	91
441	1256	C ₂₁ H ₂₅ BrN ₄ O ₂	445.0	20.7	93
442	1257	C ₁₉ H ₂₄ BrN ₅ O ₃	450.0	21.8	97
443	1258	C ₂₁ H ₂₅ ClN ₄ O ₂	401.2	18.1	90
444	1259	C ₁₉ H ₂₄ ClN ₅ O ₃	406.0	20.1	99
445	1260	C ₂₃ H ₂₉ N ₃ O ₃	396.2	16.8	85
446	1261	C ₂₃ H ₃₀ ClN ₃ O ₃	432.2	19.8	92
447	1262	C ₂₄ H ₃₃ N ₃ O ₃	412.2	17.4	85
448	1263	C ₂₂ H ₃₂ N ₄ O ₄	417.2	18.7	90
449	1264	C ₂₅ H ₂₆ ClN ₃ O ₃	452.2	29.1	定量的
450	1265	C ₂₆ H ₂₉ N ₃ O ₃	432.2	18.1	84
451	1266	C ₂₄ H ₂₈ N ₄ O ₄	437.2	19.3	88
452	1267	C ₂₃ H ₂₂ ClF ₃ N ₄ O ₃	495.2	20.6	83
453	1268	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₃	436.0	17.5	80
454	1269	C ₂₀ H ₂₁ BrClN ₃ O ₃	468.0	19.2	82
455	1270	C ₂₀ H ₂₁ Cl ₂ N ₃ O ₃	422.2	17.3	82
456	1271	C ₂₀ H ₂₀ ClFN ₄ O ₄	435.0	17.1	79
457	1272	C ₂₄ H ₂₅ F ₃ N ₄ O ₃	475.2	21.7	91
458	1273	C ₂₂ H ₂₆ ClN ₃ O ₃	416.2	17.8	86
459	1274	C ₂₁ H ₂₄ BrN ₃ O ₃	448.0	19.5	87
460	1275	C ₂₁ H ₂₄ ClN ₃ O ₃	402.2	16.7	83
461	1276	C ₂₁ H ₂₃ FN ₄ O ₄	415.2	18.1	87

462	1277	C ₂₂ H ₂₄ F ₃ N ₅ O ₄	480.2	20.3	85
463	1278	C ₂₀ H ₂₅ ClN ₄ O ₄	421.2	18.6	88
464	1279	C ₁₉ H ₂₃ BrN ₄ O ₄	451.0	21.3	94
465	1280	C ₁₉ H ₂₃ ClN ₄ O ₄	407.2	19.1	94
466	1281	C ₁₉ H ₂₂ FN ₅ O ₅	420.2	19.1	91
467	1282	C ₂₅ H ₂₆ ClF ₃ N ₄ O ₃	523.2	25.0	96
468	1283	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₃	464.2	12.2	53
469	1284	C ₂₂ H ₂₅ BrClN ₃ O ₃	496.0	24.1	97
470	1285	C ₂₂ H ₂₅ Cl ₂ N ₃ O ₃	450.2	21.8	97
471	1321	C ₂₀ H ₂₀ BrCl ₂ N ₃ O ₂	486.0	5.1	21
472	1322	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	10.5	50
473	1323	C ₂₀ H ₂₀ Cl ₂ IN ₃ O ₂	532.0	7.1	27
474	1324	C ₂₁ H ₂₄ ClN ₃ O ₃	402.2	22.2	定量的
475	1325	C ₂₇ H ₂₆ ClN ₃ O ₃	476.0	22.2	93
476	1326	C ₂₀ H ₂₁ ClIN ₃ O ₃	514.0	26.9	定量的
477	1327	C ₂₁ H ₂₅ ClN ₄ O ₂	401.2	24.2	定量的
478	1328	C ₂₁ H ₂₃ BrClN ₃ O ₂	466.0	23.1	99
479	1329	C ₂₂ H ₂₆ ClN ₃ O ₂	400.2	16.4	82
480	1330	C ₂₁ H ₂₃ ClIN ₃ O ₂	512.2	20.8	81
481	1331	C ₂₁ H ₂₄ N ₃ O ₃	382.2	19.6	定量的
482	1332	C ₂₈ H ₂₉ N ₃ O ₃	456.2	21.1	93
483	1333	C ₂₁ H ₂₄ IN ₃ O ₃	494.0	25.3	定量的
484	1334	C ₂₂ H ₂₈ N ₄ O ₂	381.2	19.0	定量的
485	1335	C ₁₉ H ₂₂ BrClN ₄ O ₃	471.0	25.8	定量的
486	1336	C ₂₀ H ₂₅ ClN ₄ O ₃	405.2	18.5	91
487	1337	C ₁₉ H ₂₂ ClIN ₄ O ₃	517.0	23.1	89
488	1338	C ₂₀ H ₂₆ N ₄ O ₄	387.2	20.6	定量的
489	1339	C ₂₆ H ₂₈ N ₄ O ₄	461.2	23.7	定量的
490	1340	C ₁₉ H ₂₃ IN ₄ O ₄	499.0	28.2	定量的
491	1341	C ₂₀ H ₂₆ N ₄ O ₄	386.0	20.5	定量的
492	1342	C ₂₂ H ₂₄ BrCl ₂ N ₃ O ₂	514.0	27.2	定量的
493	1343	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂	448.0	21.4	95
494	1344	C ₂₂ H ₂₄ Cl ₂ IN ₃ O ₂	560.0	27.0	96
495	1345	C ₂₃ H ₂₈ ClN ₃ O ₃	430.2	23.8	定量的
496	1346	C ₂₂ H ₂₅ ClIN ₃ O ₃	542.0	29.4	定量的
497	1347	C ₁₉ H ₂₂ ClN ₃ O ₂ S	392.0	16.9	43
498	1348	C ₂₀ H ₂₅ N ₃ O ₂ S	372.2	6.9	19
499	1349	C ₁₆ H ₂₄ N ₄ O ₃ S	377.2	8.1	43
500	1350	C ₂₁ H ₂₆ ClN ₃ O ₂ S	420.0	13.0	62

501	1351	C ₂₂ H ₂₄ BrClN ₄ O ₃	509.2	5.0	10
502	1352	C ₂₃ H ₂₇ BrN ₄ O ₃	489.2	3.6	15
503	1353	C ₂₁ H ₂₆ BrN ₅ O ₄	494.0	2.8	11
504	1354	C ₂₄ H ₂₈ BrClN ₄ O ₃	537.2	5.2	19
505	1355	C ₂₁ H ₂₂ ClN ₅ O ₂	412.0	25.5	定量的
506	1356	C ₂₂ H ₂₅ N ₅ O ₂	392.0	16.5	84
507	1357	C ₂₀ H ₂₄ N ₆ O ₃	397.2	19.9	定量的
508	1358	C ₂₃ H ₂₆ ClN ₅ O ₂	440.2	21.8	99
509	1368	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	18.4	78
510	1369	C ₂₄ H ₂₄ ClF ₆ IN ₃ O ₄	568.0	24.1	85
511	1370	C ₁₈ H ₁₉ BrClN ₃ O ₂ S	458.0	19.4	85
512	1371	C ₂₆ H ₂₆ ClN ₃ O ₄ S	512.2	22.1	86
513	1372	C ₂₆ H ₂₆ ClN ₃ O ₂	448.0	19.1	85
514	1373	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	454.2	16.2	71
515	1374	C ₂₅ H ₂₇ F ₆ IN ₃ O ₄	548.2	22.1	81
516	1375	C ₁₉ H ₂₂ BrN ₃ O ₂ S	436.0	17.1	78
517	1376	C ₂₇ H ₂₉ N ₃ O ₄ S	492.0	19.4	79
518	1377	C ₂₇ H ₂₉ N ₃ O ₂	428.2	18.1	85
519	1378	C ₂₀ H ₂₂ ClF ₃ N ₄ O ₃	459.0	17.3	75
520	1379	C ₂₃ H ₂₆ F ₆ IN ₄ O ₅	553.2	21.0	76
521	1380	C ₁₇ H ₂₁ BrN ₄ O ₃ S	443.0	16.4	74
522	1381	C ₂₅ H ₂₈ N ₄ O ₅ S	497.0	18.4	74
523	1382	C ₂₅ H ₂₈ N ₄ O ₃	433.2	17.3	80
524	1383	C ₂₃ H ₂₄ Cl ₂ F ₃ N ₃ O ₂	502.0	20.0	80
525	1384	C ₂₀ H ₂₃ BrClN ₃ O ₂ S	486.0	21.0	87
526	1385	C ₂₈ H ₃₀ ClN ₃ O ₄ S	540.2	23.8	88
527	1386	C ₂₈ H ₃₀ ClN ₃ O ₂	476.0	20.0	84
528	1411	C ₂₂ H ₂₄ Cl ₂ N ₄ O ₃	463.0	0.4	2
529	1412	C ₂₃ H ₂₇ ClN ₄ O ₂	443.0	1.3	6
530	1413	C ₂₁ H ₂₆ ClN ₅ O ₄	448.0	1.1	5
531	1414	C ₂₄ H ₂₈ Cl ₂ N ₄ O ₃	491.0	0.8	3
532	1415	C ₂₁ H ₂₂ ClN ₅ O ₂ S	444.0	6.8	31
533	1416	C ₂₂ H ₂₅ N ₅ O ₂ S	424.0	4.8	23
534	1417	C ₂₀ H ₂₄ N ₆ O ₃ S	429.2	4.5	21
535	1418	C ₂₃ H ₂₆ ClN ₅ O ₂ S	472.0	10.4	44
536	1423	C ₂₇ H ₂₆ ClN ₃ O ₃	476.0	23.9	定量的
537	1424	C ₂₇ H ₂₉ N ₃ O ₄ S	456.2	28.0	定量的
538	1425	C ₂₆ H ₂₈ N ₄ O ₄	461.2	22.3	97
539	1426	C ₂₉ H ₃₀ ClN ₃ O ₃	504.2	26.8	定量的

540	1583	C21 H22 Cl F3 N4 O2	455.0	14.6	64
541	1584	C21 H22 Cl F3 N4 O3	471.0	17.4	74
542	1585	C19 H20 Br Cl N4 O2	453.0	15.6	69
543	1586	C19 H20 Cl2 N4 O2	407.2	2.3	11
544	1587	C26 H26 Cl N3 O3	464.0	15.4	66
545	1588	C20 H23 Cl N4 O2	387.0	14.8	77
546	1589	C22 H25 F3 N4 O2	435.2	11.1	51
547	1590	C20 H25 F3 N4 O3	451.2	16.3	72
548	1591	C20 H23 Br N4 O2	433.0	15.4	71
549	1592	C20 H23 Cl N4 O2	387.0	15.6	81
550	1593	C27 H29 N3 O3	444.2	14.8	67
551	1594	C20 H24 F3 N5 O3	440.2	16.2	74
552	1595	C20 H24 F3 N5 O4	456.2	15.4	68
553	1596	C18 H22 Br N5 O3	436.0	15.6	72
554	1597	C18 H22 Cl N5 O3	391.8	14.4	73
555	1598	C25 H28 N4 O4	449.2	15.9	71
556	1599	C19 H25 N5 O3	372.2	15.8	85
557	1606	C21 H21 Cl F3 N3 O2 S	472.0	17.0	72
558	1607	C21 H21 Cl F3 N3 O2 S	452.2	15.3	68
559	1608	C20 H23 F3 N4 O3 S	457.2	15.9	70
560	1660	C21 H22 Br F3 N4 O2	501.0	19.0	76
561	1661	C21 H22 Br F3 N4 O3	517.0	16.2	63
562	1662	C20 H21 Br F2 N4 O2	469.0	15.1	65
563	1663	C20 H22 Br Cl N4 O2	467.0	14.5	62
564	1692	C20 H23 Br2 N3 O3	514	7.3	28
565	1693	C22 H26 F2 N4 O2	417	16.2	78
566	1694	C22 H27 F N4 O2	399	21.8	定量的
567	1695	C22 H27 Br N4 O2	459	24.5	定量的
568	1696	C22 H27 I N4 O2	507	27.4	定量的
569	1697	C22 H27 Cl N4 O2	415	22.1	定量的
570	1698	C23 H27 F3 N4 O3	465	24.3	定量的
571	1699	C23 H27 F3 N4 O2	449	25.3	定量的
572	1700	C22 H25 Br Cl N3 O2	480	17.8	74

例えば、化合物番号1583は、下記のNMRを示した。¹H NMR (400 MHz, CD₃OD) δ 1.64-1.72 (m, 1 H), 2.20-2.30 (m, 1 H), 2.41-2.51 (m, 2 H), 2.71-2.78 (m, 2 H), 3.59 (dd, J = 15.4, 12.9 Hz, 2 H), 3.94 (s, 2 H), 4.35-4.41 (m, 1 H), 6.82 (d, J = 8.6 Hz, 1 H), 7.29 (s, 4 H), 7.40 (dd, J = 8

.6, 1.7 Hz, 1 H), 7.85 (d, J = 0.96 Hz, 1 H)

[参考例4] (S) - 3 - [N - [3 - (トリフルオロメチル) ベンゾイル] グリシル] アミノピロリジンの合成

(S) - 1 - (4 - クロロベンジル) - 3 - [N - [3 - (トリフルオロメチル) ベンゾイル] グリシル] アミノピロリジン (2.93 g, 6.66 mmol) と Pd (OH)₂ の、5%蟻酸/メタノール (70 mL) 懸濁液を 60°C で 3 時間攪拌した。パラジウム触媒をセライト濾過により除去し、濾液を濃縮した。この残査に 2M NaOH 溶液 (100 mL) を加え、酢酸エチル (100 mL × 3) で抽出した。抽出物を合わせて食塩水で洗浄し、無水硫酸ナトリウム上で乾燥、濾過、濃縮した。カラムクロマトグラフィー (SiO₂、酢酸エチル/メタノール/トリエチルアミン = 85 : 10 : 5 - 60 : 30 : 5) で精製することにより、(S) - 3 - [N - [3 - (トリフルオロメチル) ベンゾイル] グリシル] アミノピロリジン (1.70 g, 81%) を油状物として得た。¹H NMR (CDCl₃, 270 MHz) δ 1.76 (d, J = 7.3 Hz, 1 H), 2.07-2.25 (m, 1 H), 2.81-2.98 (m, 2 H), 3.02-3.11 (m, 2 H), 4.12 (s, 2 H), 4.41 (br, 1 H), 6.90 (br, 1 H), 7.45 (br, 1 H), 7.58 (dd, J = 7.3 および 7.3 Hz, 1 H), 7.77 (d, J = 7.3 Hz, 1 H), 8.02 (d, J = 7.3 Hz, 1 H), 8.11 (s, 1 H); ESI/MS m/e 316.0 (M⁺ + H, C₁₄H₁₆F₃N₃O₂)

さらに、(R) - 3 - [N - [3 - (トリフルオロメチル) ベンゾイル] グリシル] アミノピロリジンを対応する原料および反応剤を用いて前記の方法に従って合成した。1.49 g, 68%；生成物は、(S) - 異性体のものと同じ¹H NMR と ESI/MS を示した。

さらに、(R) - 3 - [N - [2 - アミノ - 5 - (トリフルオロメチル) ベンゾイル] グリシル] アミノピロリジンを対応する原料および反応剤を用いて前記の方法に従って合成した。316 mg, 93%；ESI/MS m/e 331.2 (M⁺ + H, C₁₄H₁₇F₃N₄O₂)

さらに、(R) - 3 - [N - [2 - (tert-ブトキシカルボニルアミノ) - 5 - (トリフルオロメトキシ) ベンゾイル] グリシル] アミノピロリジンを対応する原料および反応剤を用いて前記の方法に従って合成した。定量的収率；¹H NMR (CDCl₃, 400 MHz) δ 1.51 (s, 9 H), 1.60-1.70 (m, 2 H), 2.10-2.25 (m, 1 H), 2.80-2.88 (m, 1 H), 2.89-2.98 (m, 1 H), 3.04-3.18 (m, 2 H), 4.

05 (d, $J = 4.9$ Hz, 2 H), 4.43 (br, 1 H), 6.15 (br, 1 H), 7.03 (br, 1 H), 7.32 (d, $J = 9.3$ Hz, 1 H), 7.38 (s, 1 H), 8.42 (d, $J = 9.3$ Hz, 1 H)

[実施例 573] (R) - 3 - [[N - (2 - (tert-ブトキシカルボニルアミノ) - 5 - トリフルオロメチルベンゾイル) グリシル] アミノ] - 1 - (4 -

5 クロロ

ベンジル) ピロリジンの合成

(R) - 1 - (4 - クロロベンジル) - 3 - (グリシルアミノ) ピロリジン (5.0 g, 18.7 mmol) のジクロロメタン (100 mL) 溶液に、トリエチルアミン (2.9 mL, 20.5 mmol)、2 - (tert-ブトキシカルボニルアミノ) - 5 - (トリフルオロメチル) 安息香酸 (6.27 g, 20.5 mmol)、EDCI (3.9 g, 20.5 mmol) およびHOBt (2.8 g, 20.5 mmol) を加えた。この反応混合物を室温で一晩攪拌した。この反応混合物に 2M NaOH 水溶液 (80 mL) を加え、ジクロロメタンで抽出した。この抽出物を無水 Na_2SO_4 で乾燥、濾過、濃縮した。カラムクロマトグラフィー (SiO_2 、ヘキサン/酢酸エチル = 1 : 1 - 1 : 4) で精製することにより、(R) - 3 - [[N - (2 - (tert-ブトキシカルボニルアミノ) - 5 - トリフルオロメチルベンゾイル) グリシル] アミノ] - 1 - (4 - クロロベンジル) ピロリジン (9.41 g, 91%) を白色アモルファス状固体として得た。ESI/MS m/e 555.2 ($M^+ + H, \text{C}_{26}\text{H}_{30}\text{ClF}_3\text{N}_4\text{O}_4$)

20 [参考例 5] (R) - 3 - [[N - (2 - (tert-ブトキシカルボニルアミノ) - 5 - トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジンの合成

(R) - 3 - [[N - (2 - (tert-ブトキシカルボニルアミノ) - 5 - トリフルオロメチルベンゾイル) グリシル] アミノ] - 1 - (4 - クロロベンジル) ピロリジン (6.3 g, 11.4 mmol)、 $\text{Pd}(\text{OH})_2$ (1.68 g)、蟻酸 (3.7 mL) およびメタノール (80 mL) の混合物を 50°C で一晩攪拌した。この混合物を室温まで冷却した後、パラジウム触媒をセライト濾過により除去し、濾液を濃縮した。カラムクロマトグラフィー (SiO_2 、酢酸エチル/メタノール = 5 : 1 - 4 : 1) で精製することにより (R) - 3 - [[N - (2 - (tert-ブトキシカルボニルアミノ) - 5 - トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン (4.42 g, 90%) を白色固体として得た。 $^1\text{H NMR}$ (CDCl_3 , 400 MHz) δ 1.48 (s, 9 H), 2.0-2.4 (m, 2 H), 3.42-3.71 (m, 5

H), 4.00-4.22 (m, 2 H), 4.56 (br, 1 H), 7.48 (d, J = 9.0 Hz, 1 H), 7.93 (s, 1 H), 8.17 (br, 1 H), 8.33 (d, J = 9.0 Hz, 1 H), 8.45 (br, 1 H)

[実施例 574] (S) - 1-ベンジル-3-[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノピロリジン(化合物番号 239)の合成

5 (S) - 3-[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノピロリジン (0.06 mmol) のアセトニトリル (1, 1 mL) 溶液と (ピペリジノメチル) ポリスチレン (2.6-2.8 mmol/g, 30 mg) を、臭化ベンジル (0.050 mmol) のアセトニトリル (0.4 mL) 溶液に加えた。この反応混合物を 45°C で 5 時間攪拌した。混合液を室温まで冷却した後、樹脂を濾過にて除去し、濾液を濃縮した。残査をアセトニトリル (1, 0 mL) に溶解し、フェニルイソシアネート (0.008 mL, 0.05 mmol) を加えた。混合液を室温にて 1 時間攪拌し、Varian™ SCX カラムに負荷し、メタノール (1.5 mL) にて洗浄した。生成物を、2M NH₃ のメタノール (6 mL) 溶液を用いて溶出し、濃縮することにより (S) - 1-ベンジル-3-[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノピロリジン(化合物番号 239)を得た (9.0 mg, 44%)。純度を RPLC/MS にて求めた (99%)。ESI/MS m/e 406.0 (M⁺+H, C₂₁H₂₂F₃N₃O₂)

[実施例 575] (R) - 1-(4-ブチルベンジル)-3-[N-(3-トリフルオロメチルベンゾイル)グリシル]アミノ]ピロリジン(化合物番号 1648)の合成

20 (R) - 3-[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノピロリジン (0.050 mmol)、4-ブチルベンズアルデヒド (0.18 mol)、NaBH₃CN (0.23 mmol) およびメタノール (1.85 mL) の混合物に酢酸 (0.060 mL) を加えた。この反応混合物を 60°C で 12 時間攪拌した。室温まで冷却し、Varian™ SCX カラムに負荷し、メタノール (1.5 mL) にて洗浄した。生成物を、2M NH₃ のメタノール (5 mL) 溶液を用いて溶出し、濃縮することにより、(R) - 1-(4-ブチルベンジル)-3-[N-(3-トリフルオロメチルベンゾイル)グリシル]アミノ]ピロリジン(化合物番号 1648)を得た (20.6 mg, 89%)。純度を RPLC/MS にて求めた (91%)。ESI/MS m/e 462.2 (M⁺+H, C₂₅H₃₀F₃N₃O₂)

[実施例 576-738]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 574 または 575 の方法に従って合成した。必要であれば、分取 TLC またはクロマトグラフィー (HPLC-C₁₈) を用いて精製することにより目的物を得た。E 5 S I / MS データ、収量、および収率を表 8 にまとめた。

表 8

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
576	240	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	10.2	48
577	241	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440.0	12.1	55
578	242	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	13.9	59
579	243	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	13.8	58
580	244	C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	13.1	62
581	245	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	11.9	56
582	246	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440.0	8.5	39
583	247	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	10.5	44
584	248	C ₂₂ H ₂₄ CF ₃ N ₃ O ₃	436.0	11.0	51
585	249	C ₂₂ H ₂₁ ClF ₆ N ₃ O ₂	474.0	12.8	54
586	250	C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	11.0	52
587	251	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	13.5	64
588	252	C ₂₂ H ₂₄ F ₃ N ₃ O ₃	436.0	11.8	54
589	253	C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	11.1	53
590	254	C ₂₁ H ₂₀ ClF ₃ N ₄ O ₄	485.0	2.4	10
591	255	C ₂₁ H ₂₁ F ₃ N ₄ O ₄	451.0	12.2	54
592	256	C ₂₁ H ₂₁ F ₃ N ₄ O ₄	451.0	11.4	51
593	257	C ₂₂ H ₂₁ F ₆ N ₃ O ₂	474.0	11.1	47
594	258	C ₂₄ H ₂₆ F ₃ N ₃ O ₄	478.0	15.3	64
595	259	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	420.0	6.4	31
596	260	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	12.1	51
597	261	C ₂₂ H ₂₁ ClF ₆ N ₃ O ₂	474.0	13.6	57
598	262	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	15.2	63
599	263	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	14.5	60
600	264	C ₂₇ H ₂₆ F ₃ N ₃ O ₃	498.0	9.3	37
601	265	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	11.6	48
602	266	C ₂₂ H ₂₂ F ₃ N ₃ O ₄	450.0	8.9	40
603	267	C ₂₂ H ₂₄ F ₃ N ₃ O ₃	436.0	10.3	47

262

604	268	C ₂₃ H ₂₅ F ₃ N ₄ O ₃	463.0	6.3	27
605	269	C ₂₂ H ₂₄ F ₃ N ₃ O ₄ S	484.0	8.0	33
606	270	C ₂₃ H ₂₄ F ₃ N ₃ O ₄	464.0	8.9	38
607	271	C ₂₁ H ₂₀ F ₅ N ₃ O ₂	442.0	6.1	28
608	272	C ₂₁ H ₂₂ F ₃ N ₃ O ₃	422.0	13.6	59
609	273	C ₂₂ H ₂₁ F ₃ N ₄ O ₂	431.0	12.6	59
610	274	C ₂₂ H ₂₁ F ₃ N ₄ O ₂	431.0	7.7	36
611	275	C ₂₂ H ₂₁ F ₃ N ₄ O ₂	431.0	12.7	59
612	276	C ₂₁ H ₂₀ F ₅ N ₃ O ₂	442.0	11.7	53
613	277	C ₂₇ H ₂₆ F ₃ N ₃ O ₂	482.0	9.5	39
614	278	C ₂₃ H ₂₄ F ₃ N ₃ O ₄	464.0	13.0	56
615	279	C ₂₂ H ₂₁ F ₆ N ₃ O ₃	490.0	10.4	42
616	280	C ₂₂ H ₂₁ F ₆ N ₃ O ₃	490.0	12.0	49
617	281	C ₂₂ H ₂₂ F ₃ N ₃ O ₄	450.0	4.9	22
618	282	C ₂₅ H ₃₀ F ₃ N ₃ O ₂	462.0	12.0	52
619	283	C ₂₀ H ₂₃ F ₃ N ₄ O ₃	425.0	8.1	38
620	284	C ₂₇ H ₂₅ ClF ₃ N ₃ O ₂	516.0	4.8	19
621	285	C ₂₁ H ₂₂ F ₃ N ₃ O ₂	406.0	4.8	24
622	286	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	4.5	21
623	287	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440.0	5.8	26
624	288	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	8.1	34
625	289	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	8.0	34
626	290	C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	6.0	29
627	291	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	6.2	29
628	292	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440.0	4.5	20
629	293	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	5.1	22
630	294	C ₂₂ H ₂₄ CF ₃ N ₃ O ₃	436.0	4.2	19
631	295	C ₂₂ H ₂₁ ClF ₆ N ₃ O ₂	474.0	6.0	25
632	296	C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	4.3	21
633	297	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	8.2	39
634	298	C ₂₂ H ₂₄ F ₃ N ₃ O ₃	436.0	12.2	56
635	299	C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	8.1	39
636	300	C ₂₁ H ₂₀ ClF ₃ N ₄ O ₄	485.0	13.7	57
637	301	C ₂₁ H ₂₁ F ₃ N ₄ O ₄	451.0	15.1	67
638	302	C ₂₁ H ₂₁ F ₃ N ₄ O ₄	451.0	16.6	74
639	303	C ₂₂ H ₂₁ F ₆ N ₃ O ₂	474.0	12.6	53
640	304	C ₂₄ H ₂₆ F ₃ N ₃ O ₄	478.0	14.5	61
641	305	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	420.0	8.4	37
642	306	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	13.5	57

643	307	C ₂₂ H ₂₁ ClF ₆ N ₃ O ₂	474.0	3.7	16
644	308	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	7.2	30
645	309	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	6.7	28
646	310	C ₂₇ H ₂₆ F ₃ N ₃ O ₃	498.0	4.2	17
647	311	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	6.3	26
648	312	C ₂₂ H ₂₂ F ₃ N ₃ O ₄	450.0	2.4	11
649	313	C ₂₂ H ₂₄ F ₃ N ₃ O ₃	436.0	1.9	9
650	314	C ₂₃ H ₂₅ F ₃ N ₄ O ₃	463.0	5.0	22
651	315	C ₂₂ H ₂₄ F ₃ N ₃ O ₄ S	484.0	2.5	10
652	316	C ₂₃ H ₂₄ F ₃ N ₃ O ₄	464.0	3.3	14
653	317	C ₂₁ H ₂₀ F ₅ N ₃ O ₂	442.0	4.5	20
654	318	C ₂₁ H ₂₂ F ₃ N ₃ O ₃	422.0	7.9	34
655	319	C ₂₂ H ₂₁ F ₃ N ₄ O ₂	431.0	6.5	30
656	320	C ₂₂ H ₂₁ F ₃ N ₄ O ₂	431.0	14.2	66
657	321	C ₂₂ H ₂₁ F ₃ N ₄ O ₂	431.0	14.9	69
658	322	C ₂₁ H ₂₀ F ₅ N ₃ O ₂	442.0	13.6	62
659	323	C ₂₇ H ₂₆ F ₃ N ₃ O ₂	482.0	3.9	16
660	324	C ₂₃ H ₂₄ F ₃ N ₃ O ₄	464.0	15.2	66
661	325	C ₂₂ H ₂₁ F ₆ N ₃ O ₃	490.0	16.1	66
662	326	C ₂₂ H ₂₁ F ₆ N ₃ O ₃	490.0	13.6	56
663	327	C ₂₂ H ₂₂ F ₃ N ₃ O ₄	450.0	5.4	24
664	328	C ₂₅ H ₃₀ F ₃ N ₃ O ₂	462.0	10.9	47
665	329	C ₂₀ H ₂₃ F ₃ N ₄ O ₃	425.0	12.0	57
666	986	C ₂₇ H ₂₅ ClF ₃ N ₃ O ₂	516.0	1.5	6
667	1118	C ₂₈ H ₂₇ F ₃ N ₄ O ₃	525	21.5	62
668	1119	C ₂₂ H ₂₄ F ₃ N ₃ O ₂ S	452	16.9	57
669	1120	C ₂₃ H ₂₆ F ₃ N ₃ O ₄	466	20.5	67
670	1121	C ₂₂ H ₂₃ F ₃ N ₄ O ₄	465	16.8	55
671	1122	C ₂₈ H ₃₆ F ₃ N ₃ O ₂	504	21.0	63
672	1123	C ₂₅ H ₂₃ BrF ₃ N ₃ O ₂	534	26.6	75
673	1124	C ₁₉ H ₁₉ F ₃ N ₄ O ₅	441	21.3	73
674	1133	C ₂₃ H ₂₆ F ₃ N ₃ O ₄	467	33.6	84
675	1134	C ₂₄ H ₂₈ F ₃ N ₃ O ₅	496	34.8	82
676	1135	C ₂₂ H ₂₁ F ₃ N ₄ O ₆	495	32.6	77
677	1136	C ₂₃ H ₂₄ F ₃ N ₃ O ₅	480	36.6	89
678	1137	C ₂₂ H ₂₁ BrF ₃ N ₃ O ₄	529	30.8	69
679	1138	C ₂₄ H ₂₆ F ₃ N ₃ O ₂	446	32.7	86
680	1139	C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420	18.6	51
681	1140	C ₂₁ H ₂₀ F ₃ N ₅ O ₆	496	20.5	49

682	1141	C25 H24 F3 N3 O2	456	22.5	58
683	1142	C25 H24 F3 N3 O2	456	21.6	55
684	1143	C35 H34 F3 N3 O4	618	27.3	53
685	1144	C23 H26 F3 N3 O4	466	25.5	64
686	1145	C23 H25 F3 N4 O6	511	38.0	88
687	1146	C28 H28 F3 N3 O3	512	38.3	89
688	1147	C23 H25 F3 N4 O3	463	27.1	62
689	1148	C27 H26 F3 N3 O2	482	22.4	57
690	1161	C22 H24 F3 N3 O4	452	13.5	58
691	1162	C24 H28 F3 N3 O3	464	16.7	70
692	1163	C22 H23 F4 N3 O3	454	15.8	68
693	1164	C23 H26 F3 N3 O3	450	15.7	68
694	1165	C23 H24 F3 N3 O4	464	16.3	68
695	1166	C22 H23 Br F3 N3 O3	513	15.0	57
696	1168	C17 H17 Cl F3 N5 O2 S	448	6.9*	23
697	1169	C20 H22 F3 N5 O3 S	470	1.7*	6
698	1170	C22 H22 F3 N5 O2	446	2.3*	8
699	1286	C26 H33 F3 N4 O3	507	25.3*	51
700	1287	C21 H20 F3 N5 O6	496	4.0*	8
701	1288	C22 H24 F3 N3 O4	452	3.6*	13
702	1298	C23 H25 Br F3 N3 O4	544	28.4	定量的
703	1299	C24 H28 F3 N3 O5	496	1.4	6
704	1300	C23 H26 F3 N3 O4	466	7.3	33
705	1301	C24 H28 F3 N3 O5	496	12.6	53
706	1302	C24 H28 F3 N3 O3	464	24.5	定量的
707	1303	C23 H25 Br F3 N3 O4	544	22.2	86
708	1304	C29 H30 F3 N3 O4	542	28.6	定量的
709	1305	C26 H26 F3 N3 O3	486	35.4	定量的
710	1306	C24 H28 F3 N3 O4	480	8.1	35
711	1307	C23 H26 F3 N3 O5	482	27.9	定量的
712	1308	C23 H24 F3 N3 O3	448	5.9	28
713	1309	C23 H25 F3 I N3 O4	592	24.0	85
714	1310	C22 H24 F3 N3 O4	452	3.4	16
715	1311	C22 H22 F3 N3 O4	450	3.4	16
716	1312	C21 H21 F3 I N3 O2	532	18.1	72
717	1313	C21 H21 Br F3 N3 O2	484	17.4	76
718	1314	C19 H19 F3 N4 O4 S	457	16.8	77
719	1315	C20 H22 F3 N3 O3	410	13.6	70
720	1316	C22 H20 Cl F6 N3 O2	508	18.6	77

721	1317	C21 H20 Cl F3 N4 O4	485	17.0	74
722	1318	C21 H20 Cl F4 N3 O2	458	17.0	78
723	1319	C21 H20 Cl F4 N3 O2	458	17.6	81
724	1320	C21 H20 Br F4 N3 O2	502	18.5	77
725	1390	C26 H32 F3 N3 O2	476	16.1	51
726	1391	C23 H26 F3 N3 O2	434	20.0	76
727	1392	C22 H23 Cl F3 N3 O2	454	20.0	67
728	1393	C23 H26 F3 N3 O2	434	20.1	70
729	1394	C22 H23 F3 N4 O4	465	18.4	60
730	1395	C23 H24 F3 N3 O2	432	21.4	75
731	1396	C26 H26 F3 N3 O2	470	20.4	66
732	1397	C21 H20 Br2 F3 N3 O2	562	14.5	54
733	1398	C22 H22 Cl2 F3 N3 O2	488	10.8	47
734	1399	C22 H22 Cl2 F3 N3 O2	488	9.4	40
735	1400	C22 H23 Cl F3 N3 O2	454	19.1	88
736	1614	C22 H21 F6 N3 S	506.0	24.2	96
737	2050	C20 H22 F3 N3 O2 S	426	6.0	30
738	2051	C21 H23 F3 N4 O2	421	6.5	32

* トリフルオロ酢酸塩の収率。

[実施例 739 - 748]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 5
5 75 の方法に従って合成した。必要であれば、分取 T L C で精製することにより目的物を得た。 E S I / M S データ、収量、および収率を表 9 にまとめた。

表 9

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
739	1650	C24 H28 F3 N3 O2	448.0	20.4	91
740	1706	C23 H25 F3 N4 O3	463.2	3.7	11
741	1707	C22 H25 F3 N4 O2 S	467.0	10.3	29
742	1708	C23 H27 F3 N4 O2	449.2	11.4	34
743	1709	C24 H29 F3 N4 O2	463.2	15.2	44
744	1775	C22 H25 F3 N4 O4	467.2	9.2	26.3
745	1776	C22 H25 F3 N4 O4	467.2	8.9	25.4
746	1787	C24 H29 F3 N4 O2	463.2	5.6	16.1
747	1802	C23 H27 F3 N4 O4	481.2	11.7	32.5

748	1803	C22 H25 F3 N4 O3	451.2	9.6	28.4
-----	------	------------------	-------	-----	------

[実施例 749] (R) - 3 - [[N- (2-アミノ-5-トリフルオロメトキシベンゾイル) グリシル] アミノ] - 1 - (3-ヒドロキシ-4-メトキシベンジル) ピロリジン (化合物番号 1896) の合成

5 (R) - 3 - [N- [2 - (tert-ブトキシカルボニルアミノ) - 5 - (トリフルオロメトキシ) ベンゾイル] グリシル] アミノピロリジン (0. 050 mmol)、3-ヒドロキシ-4-メトキシベンズアルデヒド (0. 060 mmol)、NaBH₃CN (0. 15 mmol) およびメタノール (1. 3 mL) の混合物に、酢酸 (0. 050 mL) を加えた。この反応混合物を 60°C で 8 時間攪拌した。

10 室温にまで冷却後、VarianTM SCX カラムに負荷し、メタノール (10 mL) にて洗浄した。生成物を 2M NH₃ のメタノール (5 mL) 溶液を用いて溶出し、濃縮した。得られた残さに 4M HCl の 1, 4-ジオキサン溶液を加え、この溶液を室温にて一晩攪拌した。濃縮後、分取 TLC で精製することにより、(R) - 3 - [[N- (2-アミノ-5-トリフルオロメトキシベンゾイル) グリシル] アミノ] - 1 - (3-ヒドロキシ-4-メトキシベンジル) ピロリジン (化合物番号 1896) を得た (9. 1 mg、38%)。純度を RPLC/MS にて求めた (93%)。ESI/MS m/e 483 (M⁺⁺H, C₂₂H₂₅F₃N₄O₅)

15 [実施例 750-757]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 20 749 の方法に従って合成した。ESI/MS データ、収量、および収率を表 10 にまとめた。

表 10

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
750	1897	C ₂₂ H ₂₅ F ₃ N ₄ O ₃ S	483	22.7	94.1
751	1898	C ₂₃ H ₂₇ F ₃ N ₄ O ₃	465	12.2	52.5
752	1899	C ₂₄ H ₂₉ F ₃ N ₄ O ₃	479	14.4	60.2
753	1900	C ₂₂ H ₂₅ F ₃ N ₄ O ₅	483	2.6	10.8
754	1901	C ₂₄ H ₂₉ F ₃ N ₄ O ₃	479	14.5	60.6
755	1902	C ₂₃ H ₂₅ F ₃ N ₄ O ₄	479	12.0	50.2
756	1915	C ₂₃ H ₂₇ F ₃ N ₄ O ₅	467.2	2.5	6.7

757	1916	C22 H25 F3 N4 O4	467.2	3.1	8.9
-----	------	------------------	-------	-----	-----

[実施例 758] (R) - 3 - [[N- (2-アミノ-5-トリフルオロメチル) ベンゾイル] グリシル] アミノ] - 1 - (4-ビニルベンジル) ピロリジン (化合物番号 1701) の合成

5 (R) - 3 - [[N- (2-アミノ-5- (トリフルオロメチル) ベンゾイル) グリシル] アミノ] ピロリジン (0. 050 mmol)、4-ビニルベンジルクロリド (9. 9 mg、0. 065 mL)、ピペリジノメチルポリスチレン (60 mg)、アセトニトリル (1. 0 mL)、およびクロロホルム (0. 30 mL) の混合物を 50°C で 12 時間攪拌した。この反応混合物を室温まで冷却し、Varian^T
10 ^M SCX カラムに負荷し、メタノール (15 mL) にて洗浄した。生成物を、2 M NH₃ のメタノール (5 mL) 溶液を用いて溶出し、濃縮することにより、(R)
- 3 - [[N- (2-アミノ-5- (トリフルオロメチル) ベンゾイル) グリシル]
] アミノ] - 1 - (4-ビニルベンジル) ピロリジン (化合物番号 1701) を得た (19. 6 mg、88%)。純度を RPLC/MS にて求めた (92%)。ESI
15 I/MS m/e 547.2 (M⁺+H、C₂₃H₂₅C1F₃N₄O₂)

[実施例 759-762]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 758 の方法に従って合成した。必要であれば、分取 TLC で精製することにより目的物を得た。ESI/MS データ、収量、および収率を表 11 にまとめた。

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
759	1702	C ₂₂ H ₂₅ F ₃ N ₄ O ₃	451.2	5.3	24
760	1703	C ₂₂ H ₂₃ F ₃ N ₄ O ₄	465.2	5.0	22
761	1704	C ₂₁ H ₂₃ F ₃ N ₄ O ₃	437.2	20.9	96
762	1705	C ₂₁ H ₂₁ C ₁₂ F ₃ N ₄ O ₂	489.2	9.3	38

[実施例 763] (R) - 3 - [[N- (2-アミノ-5- (トリフルオロメトキシ) ベンゾイル) グリシル] アミノ] - 1 - (2, 4-ジクロロベンジル) ピロリジン (化合物番号 1905) の合成

(R) - 3 - [[N- (2-アミノ-5-(トリフルオロメトキシ)ベンゾイル)グリシル]アミノ]ピロリジン(0.050 mmol)、2,4-ジクロロベンジルクロリド(0.066 mL)、ペペリジノメチルポリスチレン(60 mg)、アセトニトリル(0.8 mL)、およびクロロホルム(0.5 mL)の混合物を6
5 5°Cで12時間攪拌した。この反応混合物を室温まで冷却し、Varian™ SC Xカラムに負荷し、50%クロロホルム/メタノール(10 mL)とメタノール(10 mL)にて洗浄した。生成物を、2M NH₃のメタノール(5 mL)溶液を用いて溶出し、濃縮した。得られた残さに4M HClの1,4ジオキサン(2 mL)
10)溶液を加え、室温で一晩攪拌した。濃縮後、分取TLCにて精製することにより
10 、(R) - 3 - [[N- (2-アミノ-5-(トリフルオロメトキシ)ベンゾイル)グリシル]アミノ] - 1 - (2,4-ジクロロベンジル)ピロリジン(化合物番号1905)を得た(17.6 mg、70%)。純度をRPLC/MSにて求めた
(93%)。ESI/MS m/e 505 (M⁺+H, C₂₁H₂₁C₁₂F₃N₄O₃)

15 [実施例764-770]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例7
6 3の方法に従って合成した。ESI/MSデータ、収量、および収率を表12に
まとめた。

表 12

20

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
764	1906	C ₂₂ H ₂₃ F ₃ N ₄ O ₅	481	9.4	39.1
765	1907	C ₂₁ H ₂₃ F ₃ N ₄ O ₄	453	7.5	33.2
766	1908	C ₂₂ H ₂₅ F ₃ N ₄ O ₄	467	7.7	33.0
767	2180	C ₂₂ H ₂₄ C ₁ F ₃ N ₄ O ₂	469	1.3	26
768	2181	C ₂₃ H ₂₅ F ₃ N ₆ O ₃	491	4.3	52
769	2182	C ₁₉ H ₂₂ F ₃ N ₅ O ₂ S	442	7.0	51
770	1909	C ₂₃ H ₂₅ F ₃ N ₄ O ₃	463	8.7	37.6

[実施例771] (R) - 3 - [[N- (2-アミノ-5-トリフルオロメトキシベンゾイル)グリシル]アミノ] - 1 - (2-アミノ-4-クロロベンジル)ピロリジン(化合物番号1921)の合成

(R) -3-[[N-(2-アミノ-5-トリフルオロメトキシベンゾイル) グリシル] アミノ] ピロリジン (0. 050 mmol)、4-クロロ-2-ニトロベンジルクロリド (0. 050 mmol)、ピペリジノメチルポリスチレン (60 mg)、アセトニトリル (1. 0 mL)、および、クロロホルム (0. 7 mL) の混合物を 50°C で一晩攪拌した。この反応混合物を冷却し、Varian™ SCX カラムに負荷し、50%クロロホルム/メタノール (10 mL) とメタノール (10 mL) にて洗浄した。生成物を、2M NH₃ のメタノール (5 mL) 溶液を用いて溶出し、濃縮した。得られた残さにエタノール (3 mL) と 10%パラジウム炭素を加え、この溶液を水素雰囲気下、室温で 1.5 時間攪拌した。濾過、濃縮後、分取 TLC で精製することにより、(R)-3-[[N-(2-アミノ-5-トリフルオロメトキシベンゾイル) グリシル] アミノ]-1-(2-アミノ-4-クロロベンジル) ピロリジン (化合物番号 1921) を得た (2.2 mg, 6%)。純度を RPLC/MS にて求めた (81%)。ESI/MS m/e 486.2 (M⁺ + H, C₂₁H₂₃C₁F₃N₅O₃)

15 [実施例 772] (R)-3-[[N-(2-アミノ-5-ドリフルオロメチルベンゾイル) グリシル] アミノ]-1-(4-ブロモ-2-フルオロベンジル) ピロリジン (化合物番号 2120) の合成

(R)-3-[[N-(2-(tert-ブトキカルボニルアミノ)-5-トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン (0. 050 mmol)、4-ブロモ-2-フルオロベンズアルデヒド (0. 015 mmol)、メタノール (1. 5 mL)、および、酢酸 (0. 016 mL) の混合物に、NaBH₃CN (0. 25 mmol) のメタノール (0. 50 mL) 溶液を加えた。この反応混合物を 50°C で一晩攪拌した。室温まで冷却後、Varian™ SCX カラムに負荷し、メタノール (5 mL × 2) にて洗浄した。生成物を、2M NH₃ のメタノール (5 mL) 溶液を用いて溶出し、濃縮した。残査をメタノール (0. 25 mL) に溶解し、4M HCl のジオキサン溶液を加えた。この溶液を室温にて 5 時間攪拌し、濃縮した。残査をメタノールに溶解し、Varian™ SCX カラムに負荷し、メタノール (5 mL × 2) にて洗浄した。生成物を 2M NH₃ のメタノール (5 mL) 溶液を用いて溶出し、濃縮した。得られた残さを酢酸エチル (0. 5 mL) に溶解し、Varian™ SCX カラムに負荷し、酢酸エチル/メタノール = 5 : 1 (6 mL) を用いて溶出し、濃縮することにより、(R)-3-[[N-(2-

—アミノ—5—トリフルオロメチルベンゾイル) グリシル] アミノ] —1— (4—プロモ—2—フルオロベンジル) ピロリジン (化合物番号 2120) を得た (16.0 mg、31%)。純度を RPLC/MS にて求めた (99%)。ESI/MS m/e 517.0 ($M^+ + H$ 、 $C_{21}H_{21}BrF_4N_4O_2$)

5 [実施例 773—793]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 772 の方法に従って合成した。ESI/MS データ、収量、および収率を表 13 にまとめた。

表 13

10

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
773	2083	$C_{22}H_{24}BrF_3N_4O_4$	545.2	2.9	11
774	2084	$C_{23}H_{27}F_3N_4O_5$	497.2	5.1	21
775	2085	$C_{22}H_{25}F_3N_4O_4$	467.2	3.1	13
776	2086	$C_{21}H_{22}ClF_3N_4O_3$	471.0	4.6	20
777	2087	$C_{23}H_{28}F_3N_5O_2$	464.2	5.6	24
778	2088	$C_{25}H_{32}F_3N_5O_2$	492.2	5.9	24
779	2089	$C_{21}H_{21}F_5N_4O_2$	457.2	4.5	20
780	2090	$C_{27}H_{27}F_3N_4O_3$	513.2	8.0	31
781	2118	$C_{21}H_{23}F_3N_4O_4$	453.1	2.7	12
782	2119	$C_{21}H_{23}F_3N_4O_4$	453.1	4.3	19
783	2121	$C_{22}H_{25}F_3N_4O_4$	467.0	1.2	2
784	2122	$C_{21}H_{21}ClF_4N_4O_2$	472.9	13.1	28
785	2123	$C_{22}H_{22}F_3N_5O_6$	510.1	13.1	51
786	2124	$C_{21}H_{21}ClF_3N_5O_4$	500.1	15.6	62
787	2125	$C_{22}H_{24}F_3N_5O_5$	496.0	16.0	65
788	2126	$C_{22}H_{24}F_3N_5O_4$	480.1	15.6	65
789	2137	$C_{22}H_{24}ClF_3N_4O_2$	469.2	2.6	11
790	2138	$C_{26}H_{29}F_3N_6O_2$	515.3	25.1	98
791	2139	$C_{20}H_{24}ClF_3N_6O_2$	473.2	25.0	98
792	2149	$C_{21}H_{22}F_3N_5O_5$	482.3	4.9	34
793	2157	$C_{22}H_{25}F_3N_4O_3$	451.2	15.5	70

[実施例 794] (R) - 3 - [[N- (2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノ] -1- (2, 4-ジメトキシピリミジン-5-イ
ルメチル) ピロリジン (化合物番号 2175) の合成

(R) - 3 - [[N- (2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン (1.7. 2 mg、0.04 mmol) をTHF (1 mL) に溶解し、2, 4-ジメトキシ-5-ピリミジンカルボキサルデヒド (6.7 mg、0.04 mmol) を加え、続いてトリアセトキシ水素化ホウ素ナトリウム (12.7 mg、0.06 mmol) と冰酢酸 (2.4 mg、0.04 mmol) を加えた。この混合物を50°Cで24時間攪拌した後、濃縮した。残査をジクロロメタン (1 mL) に溶解し、1M NaOH水溶液 (1 mL) で洗浄した。有機層を回収し、濃縮後、25%トリフルオロ酢酸のジクロロメタン (1 mL) 溶液を加えて室温で1時間攪拌した後、濃縮した。残査をHPLCにて精製することにより

10 (R) - 3 - [[N- (2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノ] - 1 - (2, 4-ジメトキシピリミジン-5-イルメチル) ピロリジン (化合物番号 2175) を得た (18.6 mg、78%)。純度をRPLC/MSにて求めた (98%)。ESI/MS m/e 483 ($M^+ + H$, C₂₁H₂₅F₃N₆O₄)

15 [実施例 795-803]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例794の方法に従って合成した。ESI/MSデータ、収量、および収率を表14にまとめた。

表 14

20

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
795	2165	C ₁₈ H ₂₁ F ₃ N ₆ O ₂	411	2.0	27
796	2166	C ₁₈ H ₂₀ F ₃ N ₅ O ₂ S	428	9.9	66
797	2167	C ₂₄ H ₂₅ F ₃ N ₆ O ₂	487	15.1	73
798	2169	C ₂₄ H ₂₉ F ₃ N ₄ O ₂	463	1.2	24
799	2170	C ₂₆ H ₂₅ C ₁ F ₃ N ₅ O ₂	520	6.0	40
800	2171	C ₁₉ H ₂₃ F ₃ N ₆ O ₂	425	16.8	88
801	2174	C ₂₃ H ₂₄ BrF ₃ N ₄ O ₂ S ₂	591	5.3	53
802	2178	C ₂₅ H ₂₈ F ₃ N ₅ O ₄	518	5.4	62
803	2179	C ₂₅ H ₂₈ F ₃ N ₅ O ₃	502	6.3	60

[実施例 804] (R) - 1 - (2-アミノ-4, 5-メチレンジオキシベンジル) - 3 - [[N- (2-アミノ-5-トリフルオロメチルベンゾイル) グリシル]

] アミノ] ピロリジン (化合物番号 2127) の合成

(R) - 3 - [[N- (2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノ] - 1 - (4, 5-メチレンジオキシ-2-ニトロベンジル) ピロリジン (30, 5 mg)、10% Pd カーボン (6 mg)、およびメタノール (3 mL) の混合物を水素雰囲気下、室温で 10 時間攪拌した。パラジウム触媒をセライトで濾過し、濾液を濃縮した。固相抽出 (Bond ElutTM SI、20% メタノール/酢酸エチル) で精製することにより、(R) - 1 - (2-アミノ-4, 5-メチレンジオキシベンジル) - 3 - [[N-2-アミノ-5-トリフルオロメチルベンゾイル] グリシル] アミノ] ピロリジン (化合物番号 2127) を得た (21, 9 mg, 76%)。純度を RPLC/MS にて求めた (95%)。ESI/MS m/e 480.1 ($M^+ + H$, C₂₂H₂₄F₃N₅O₄)

[実施例 805-806]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 804 の方法に従って合成した。ESI/MS データ、収量、および収率を表 15 にまとめた。

表 15

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
805	2128	C ₂₂ H ₂₆ F ₃ N ₅ O ₃	466.0	8.6	30
806	2129	C ₂₂ H ₂₆ F ₃ N ₅ O ₂	450.1	13.1	37

[実施例 807] (R) - 1 - (3-アミノ-4-クロロベンジル) - 3 - [[N- (2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン (化合物番号 2132) の合成

(R) - 3 - [[N- (2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノ] - 1 - (4-クロロ-3-ニトロベンジル) ピロリジン (32, 6 mg)、10% パラジウム炭素 (8 mg)、酢酸エチル (2, 7 mL)、およびメタノール (0, 3 mL) の混合物を水素雰囲気下、室温にて 15 時間攪拌した。パラジウム触媒を濾過により除去し、濾液を濃縮した。固相抽出 (Bond ElutTM SI、20% メタノール/酢酸エチル) で精製することにより、(R) - 1 - (3-アミノ-4-クロロベンジル) - 3 - [[N- (2-アミノ-5-トリフ

ルオロメチルベンゾイル) グリシル] アミノ] ピロリジン (化合物番号 2132)

を得た (10. 5 mg、34%)。純度を RPLC/MS にて求めた (84%)。

ESI/MS m/e 470. 2 ($M^+ + H$ 、 $C_{21}H_{23}F_3N_5O_2$)

[実施例 808] (R)-1-(2-アミノ-4, 5-メチレンジオキシベンジ

5 ル)-3-[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチレベンゾイル) グリシル] アミノ] ピロリジンの合成

(R)-3-[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン (0. 150 mmol)

10 1)、4, 5-メチレンジオキシ-2-ニトロベンズアルデヒド (0. 45 mmol) 1)、メタノール (4. 5 mL)、および酢酸 (0. 048 mL) の混合物に、NaBH₃CN (0. 75 mmol) のメタノール (1. 50 mL) 溶液を加えた。この反応混合物を 50°C で一晩攪拌した。室温まで冷却し、Varian™ SCX カラムに負荷し、メタノールにて洗浄した。生成物を 2M NH₃ のメタノール溶液を用いて溶出し、濃縮することにより (R)-3-[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル) グリシル] アミノ]

] -1-(4, 5-メチレンジオキシ-2-ニトロベンジル) ピロリジンを得た。

得られた (R)-3-[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル) グリシル] アミノ] -1-(4, 5-メチ

レンジオキシ-2-ニトロベンジル) ピロリジン (0. 150 mmol)、10%

20 Pd カーボン (22 mg)、およびメタノール (4. 5 mL) の混合物を水素雰囲気下、室温で一晩攪拌した。パラジウム触媒を濾過により除去し、濾液を濃縮することにより (R)-1-(2-アミノ-4, 5-メチレンジオキシベンジル) -3-

- [N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジンを得た (87. 1 mg、定量的)

25 。特記すべき副生成物は TLC において検出されなかった。

さらに、(R)-1-(3-アミノ-4-メトキシベンジル) -3-[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジンと、(R)-1-(3-アミノ-4-メチルベ

ンジル) -3-[N-(2-(tert-ブトキシカルボニルアミノ)-5-ト

30 リフルオロメチルベンゾイル) グリシル] アミノ] ピロリジンを、それぞれ対応する原料および反応剤を用いて実施例 808 の方法に従って合成した。

(R) - 1 - (3-アミノ-4-メトキシベンジル) - 3 - [[N- (2- (tert-ブロキシカルボニルアミノ) - 5-トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン：101mg、定量的；特記すべき副生成物はTLCにおいて検出されなかった。

5 (R) - 1 - (3-アミノ-4-メチルベンジル) - 3 - [[N- (2- (tert-ブロキシカルボニルアミノ) - 5-トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン：97.2mg、定量的；特記すべき副生成物はTLCにおいて検出されなかった。

[実施例809] (R) - 1 - (3-アミノ-4-クロロベンジル) - 3 - [[N- (2- (tert-ブロキシカルボニルアミノ) - 5-トリフルオロメチレベンゾイル) グリシル] アミノ] ピロリジンの合成

10 (R) - 3 - [[N- (2- (tert-ブロキシカルボニルアミノ) - 5-トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン (0.150mmol)、4-クロロ-3-ニトロベンズアルデヒド (0.45mmol)、メタノール (4.5mL)、および、酢酸 (0.048mL) の混合物に、NaBH₃CN (0.75mmol) のメタノール (1.50mL) 溶液を加えた。この反応混合物を50°Cで一晩攪拌した。室温まで冷却し、Varian™ SCXカラムに負荷し、メタノールにて洗浄した。生成物を2M NH₃のメタノール溶液を用いて溶出し、濃縮することにより (R) - 3 - [[N- (2- (tert-ブロキシカルボニルアミノ) - 5-トリフルオロメチレベンゾイル) グリシル] アミノ] - 1 - (4-クロロ-3-ニトロベンジル) ピロリジンを得た。

15 得られた (R) - 3 - [[N- (2- (tert-ブロキシカルボニルアミノ) - 5-トリフルオロメチルベンゾイル) グリシル] アミノ] - 1 - (4-クロロ-3-ニトロベンジル) ピロリジン、10%Pdカーボン (22mg)、酢酸エチル (2.7mL)、およびメタノール (0.3mL) の混合液を水素雰囲気下、室温で15時間攪拌した。パラジウム触媒を濾過により除去し、濾液を濃縮することにより (R) - 1 - (3-アミノ-4-クロロベンジル) - 3 - [[N- (2- (tert-ブロキシカルボニルアミノ) - 5-トリフルオロメチレベンゾイル) グリシル] アミノ] ピロリジンを得た (89.7mg、定量的)。特記すべき副産物はTLCにおいて検出されなかった。

20 [実施例810] (R) - 1 - (3-アミノ-4-ヒドロキシベンジル) - 3 -

[[N - (2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノ]
ピロリジン (化合物番号 2187) の合成

実施例 808 の方法に従って合成した (R) - 1 - (3-アミノ-4-ヒドロキシベンジル) - 3 - [[N - (2 - (tert-ブトキシカルボニルアミノ) - 5 - トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン (20 mg) の、4M HCl ジオキサン (2.0 mL) 溶液を室温で一晩攪拌した。この溶液を濃縮した後、残査をメタノールに溶解し、VarianTM SCX カラムに負荷し、メタノールにて洗浄後、2M NH₃ のメタノール溶液を用いて溶出した。濃縮後、分取 TLC (SiO₂、酢酸エチル/メタノール = 4 : 1) で精製することにより、(R) - 1 - (3-アミノ-4-ヒドロキシベンジル) - 3 - [[N - (2 - (アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン (化合物番号 2187) を得た (9.6 mg, 59%)。純度を RPLC/MS にて求めた (86%)。ESI/MS m/e 452.3 (M⁺+H, C₂₁H₂₄F₃N₅O₃)

15 [実施例 811] (R) - 3 - [[N - (2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノ] - 1 - [4-クロロ-3-(ジメチルアミノ)ベンジル] ピロリジン (化合物番号 2133) の合成

(R) - 1 - (3-アミノ-4-クロロベンジル) - 3 - [[N - (2 - (tert-ブトキシカルボニルアミノ) - 5 - トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン (44.9 mg)、メタノール (0.95 mL)、酢酸 (0.05 mL)、および 37% HCHO 水溶液 (0.15 mL) の混合物に NaBH₃CN (38 mg) を加えた。この反応混合物を 50°C で一晩攪拌した。室温まで冷却し、濃縮後、残査に 2M NaOH 水溶液と酢酸エチルを加え、有機層を分離し、水層を酢酸エチルで抽出した。有機層を合わせて、乾燥、濃縮した。残査を VarianTM SCX カラムに負荷し、メタノールにて洗浄した。生成物を 2M NH₃ のメタノール溶液を用いて溶出し、濃縮した。残査を 50% 濃塩酸/ジオキサンに溶解し、室温で 1 時間攪拌した。この反応液を 5M NaOH 水溶液で pH 10 に調節し、酢酸エチルで抽出した (2 回)。抽出物を合わせて Na₂SO₄ で乾燥、濾過、濃縮した。分取 TLC (SiO₂, 20% メタノール/酢酸エチル) で精製することにより、(R) - 3 - [[N - (2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノ] - 1 - [4-クロロ-3-(ジメチルアミノ)ベン

ジル] ピロリジン（化合物番号 2133）（10.9 mg、28%）を得た。純度を RPLC/MS にて求めた（95%）。ESI/MS m/e 498.3 ($M^+ + H$ 、 $C_{23}H_{27}ClF_3N_5O_2$)

[実施例 812-814]

5 本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 811 の方法に従って合成した。ESI/MS データ、収量、および収率を表 16 にまとめた。

表 16

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
812	2134	$C_{24}H_{28}F_3N_5O_4$	508.4	19.0	50
813	2135	$C_{24}H_{30}F_3N_5O_3$	494.4	21.8	50
814	2136	$C_{24}H_{30}F_3N_5O_2$	478.4	29.2	69

10

[実施例 815] (R)-3-[[N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノ]-1-(3-メチルアミノ-4-ヒドロキシベンジル] ピロリジン（化合物番号 2158）の合成

(R)-1-(3-アミノ-4-ヒドロキシベンジル)-3-[[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン (27.3 mg、0.049 mmol)、37% HCl 溶液 (4.0 mg、0.049 mmol)、酢酸 (0.10 mL)、およびメタノール (1.3 mL) の混合物に NaBH₃CN (9.2 mg) を加えた。この反応混合物を 60°C で一晩攪拌した。室温まで冷却し、Varian™ SCX カラムに負荷し、メタノールにて洗浄した (5 mL × 2)。生成物を 2M NH₃ のメタノール溶液 (8 mL) を用いて溶出し、濃縮した。

得られた残さをメタノール (1 mL) に溶解し、4M HCl のジオキサン溶液 (1.0 mL) を加えた。室温で 3 時間攪拌後、濃縮した。残査をメタノール (1 mL) に溶解し、Varian™ SCX カラムに負荷し、メタノールにて洗浄し (5 mL × 2)、2M NH₃ のメタノール溶液 (8 mL) を用いて溶出した。濃縮後、分取 TLC (SiO₂) で精製することにより、(R)-3-[[N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノ]-1-(3-メチル

アミノ-4-ヒドロキシベンジル) ピロリジン(化合物番号2158) (4. 3mg、19%)を得た。純度をRPLC/MSにて求めた(71%)。ESI/MS m/e 480. 3 ($M^+ + H$ 、 $C_{22}H_{26}F_3N_5O_3$)

[実施例816] (R)-1-(3-アセチルアミノ-4-メトキシベンジル)

5 -3-[N-(2-アミノ-5-トリフルオロメチルベンゾイル)グリシル]アミノ】ピロリジン(化合物番号2152)の合成

(R)-1-(3-アミノ-4-ヒドロキシベンジル)-3-[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル)グリシル]アミノ】ピロリジン(50. 5mg)のピリジン(1mL)溶液に、無水10 酢酸(1mL)を加えた。この反応混合物を室温で一晩攪拌し、メタノールを加えた。濃縮後、1M NaOH溶液を加え、酢酸エチルで抽出し、有機層を濃縮した。分取TLC(SiO_2)で精製することにより、(R)-1-(3-アセチルアミノ-4-メトキシベンジル)-3-[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル)グリシル]アミノ】ピロリジンを得た。

得られた(R)-1-(3-アセチルアミノ-4-メトキシベンジル)-3-[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル)グリシル]アミノ】ピロリジンを50%6M塩酸のジオキサン溶液に溶解し、室温で2時間攪拌した。5M NaOH溶液でpH10とし、酢酸エチル20 で抽出した。有機層を濃縮し、分取TLC(SiO_2)で精製することにより、(R)-1-(3-アセチルアミノ-4-メトキシベンジル)-3-[N-(2-アミノ-5-トリフルオロメチルベンゾイル)グリシル]アミノ】ピロリジン(化合物番号2152) (3. 7mg、8%)を得た。純度をRPLC/MSにて求めた(100%)。ESI/MS m/e 508. 3 ($M^+ + H$ 、 $C_{24}H_{28}F_3N_5O_4$)

25 [実施例817-819]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例816の方法に従って合成した。ESI/MSデータ、収量、および収率を表17にまとめた。

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
817	2150	C ₂₃ H ₂₅ C ₁ F ₃ N ₅ O ₃	512.3	3.8	9
818	2151	C ₂₄ H ₂₆ F ₃ N ₅ O ₅	522.2	3.1	8
819	2153	C ₂₄ H ₂₈ F ₃ N ₅ O ₃	492.3	4.3	10

[実施例 820] (R) - 3 - [[N - (2 - アミノ - 5 - トリフルオロメチルベンゾイル) グリシル] アミノ] - 1 - (ベンズ [d] オキサゾール - 5 - イル)

5 ピロリジン (化合物番号 2189) の合成

実施例 808 の方法に従って合成した (R) - 1 - (3 - アミノ - 4 - ヒドロキシベンジル) - 3 - [[N - (2 - (tert - ブトキシカルボニルアミノ) - 5 - トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン (20 mg) の THF (2 mL) 溶液に、オルト蟻酸トリエチル (0. 20 mL, 3. 3 当量) と
10 ピリジニウム p - トルエンスルホネート (1. 2 mg, 0. 4 当量) を加えた。この反応混合物を還流下、一晩攪拌した。室温まで冷却後、濃縮した。残査を酢酸エチルに溶解し、Bond Elut™ Si カラムに負荷し、酢酸エチル / メタノール = 4 : 1 を用いて溶出し、濃縮した。

得られた残さを酢酸エチル (1. 5 mL) に溶解し、4 M HCl のジオキサン溶液を加えた。この溶液を室温で一晩攪拌し、5 M NaOH 水溶液で pH 1.0 に調節し、酢酸エチルで抽出した。抽出液を濃縮し、分取 TLC (SiO₂、酢酸エチル / メタノール = 4 : 1) で精製することにより、(R) - 3 - [[N - (2 - アミノ - 5 - トリフルオロメチルベンゾイル) グリシル] アミノ] - 1 - (ベンズ [d] オキサゾール - 5 - イル) ピロリジン (化合物番号 2189) (0. 5 mg, 2%)を得た。純度を RPLC / MS にて求めた (97%)。ESI / MS m/e 462.3 (M⁺ + H, C₂₂H₂₂F₃N₅O₃)

[実施例 821] (R) - 3 - [[N - (2 - アミノ - 5 - トリフルオロメチルベンゾイル) グリシル] アミノ] - 1 - [ベンズ [c] チアジアゾール - 5 - イル] ピロリジン (化合物番号 2183) の合成

25 5 - (ヒドロキシメチル) ベンゾ [c] チアジアゾール (8. 3 mg, 0. 05 mmol)、(ピペリジノメチル) ポリスチレン (86 mg)、およびクロロホルム (1 mL) の混合物にメタンスルホニルクロリド (0. 0042 mL) を加え

、室温で1.5時間攪拌した。アセトニトリル(1mL)と(R)-3-[*[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンジル]グリシル]アミノ]ピロリジン(0.060mmol)を加え、50°Cで3時間攪拌した。室温まで冷却後、フェニルイソシアネート(30mg)を加え、室温5で1時間攪拌し、Varian™ SCXカラムに負荷し、メタノール(5mL)とクロロホルム(5mL)にて洗浄した。生成物を2M NH₃のメタノール溶液(3mL)を用いて溶出し、濃縮した。*

得られた物質をジクロロメタン(1mL)に溶解し、1Mクロロトリメチルシリランと1Mフェノールのジクロロメタン溶液(1mL)を加えた。この溶液を室温で5時間攪拌し、Varian™ SCXカラムに負荷し、メタノールとジクロロメタンにて洗浄した。生成物を2M NH₃のメタノール溶液を用いて溶出し、濃縮した。

分取TLC(SiO₂、酢酸エチル/メタノール=3:1)で精製することにより、(R)-3-[*[N-(2-アミノ-5-トリフルオロメチルベンゾイル]グリシル]アミノ]-1-[ベンゾ[c]チアジアゾール-5'-イル]ピロリジン(化合物番号2183)(11.5mg、48%)を得た。純度をRPLC/MSにて求めた(86%)。ESI/MS m/e 479.2(M⁺+H, C₂₁H₂₁F₃N₆O₂S)*

[参考例6] 4-[*[N-(1-(9-フルオレニルメトキシカルボニル)ピロリジン-3-イル]カルバモイルメチル]アミノメチル]-3-メトキシフェニルオキシメチル-ポリスチレンの合成*

(R)-1-(9-フルオレニルメトキシカルボニル)-3-グリシルアミノピロリジン・塩酸塩(4.38g、10mmol)のDMF(65mL)溶液に、酢酸(0.3mL)、トリアセトキシ水素化ホウ素ナトリウム(1.92g)、および4-ホルミル-3-(メトキシフェニルオキシメチル)-ポリスチレン(1mmol/g、200g)を加えた。この混合物を2時間振とうした後、濾過した。樹脂をメタノール、DMF、ジクロロメタン、およびメタノールで洗浄し、乾燥することにより目的物を得た(2.73g)。

[実施例822-912] 3-アミノピロリジンの固相合成法
30 相当するカルボン酸(1.6mmol)、HBTU(1.6mmol)、およびDMF(6mL)の混合物にジイソプロピルエチルアミン(3.6mL)を加え、

2分間振とうした。4-[[N-(1-(9-フルオレニルメトキシカルボニル)ピロリジン-3-イル)カルバモイルメチル]アミノメチル]-3-メトキシフェニルオキシメチル-ポリスチレン(400mg、0.4mmol)を加え、1時間振とう後、濾過した。樹脂をDMFとジクロロメタンで洗浄し、乾燥した。

5 得られた樹脂、ピペリジン(3.2mL)、およびDMF(12.8mL)の混合物を10分間振とう後、濾過した。樹脂をDMFとジクロロメタンで洗浄し乾燥した。

この乾燥した樹脂(0.05mL)にNaBH(OAc)₃(0.25mmol)、酢酸(0.025mL)とDMF(1mL)の混合物を加えた。相当するアル¹⁰デヒド(2.5mmol)を加え、2時間振とう後、濾過し、メタノール、10%ジイソプロピルエチルアミンのDMF溶液、DMF、ジクロロメタン、およびメタノールにて洗浄した。樹脂、水(0.050mL)、およびトリフルオロ酢酸(0.95mL)の混合液を1時間振とう後、濾過した。樹脂をジクロロメタンとメタノールにて洗浄した。濾液と洗液を合わせ、濃縮した。得られた粗製生物をVar¹⁵ian™ SCXカラムに負荷し、メタノール(15mL)にて洗浄した。生成物を2M NH₃のメタノール(5mL)溶液を用いて溶出し、濃縮した。

必要であれば、分取TLCまたはHPLCにより精製することにより、目的物を得た。ESI/MSデータ、収量、および収率を表18にまとめた。

表 18

20

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
822	1805	C21 H21 Br F3 N3 O2 S	516	13.3	76
823	1806	C22 H24 F3 N3 O3 S	468	12.8	81
824	1807	C22 H24 F3 N3 O4 S	484	13.7	83
825	1808	C22 H24 F3 N3 O4 S	484	14.9	91
826	1809	C21 H22 F3 N3 O3 S	454	12.9	84
827	1810	C22 H22 F3 N3 O4 S	482	12.9	79
828	1811	C24 H26 F3 N3 O2 S	478	12.9	79
829	1812	C22 H24 F3 N3 O2 S2	484	5.3	32
830	1813	C23 H26 F3 N3 O2 S	466	12.8	81
831	1814	C23 H24 F3 N3 O3 S	480	9.7	59
832	1815	C23 H26 F3 N3 O2 S	466	12.7	80
833	1816	C24 H28 F3 N3 O2 S	480	14.4	88

2 8 1

834	1817	C25 H30 F3 N3 O2 S	494	14.1	84
835	1818	C21 H22 Br F2 N3 O3	482	13.4	82
836	1819	C22 H25 F2 N3 O4	434	11.7	79
837	1820	C22 H25 F2 N3 O5	450	11.8	77
838	1821	C22 H25 F2 N3 O5	450	13.3	87
839	1822	C21 H23 F2 N3 O4	420	11.9	83
840	1823	C22 H23 F2 N3 O5	448	11.9	78
841	1824	C24 H27 F2 N3 O3	444	9.1	60
842	1825	C22 H25 F2 N3 O3 S	450	11.3	74
843	1826	C23 H27 F2 N3 O3	432	10.8	74
844	1827	C23 H25 F2 N3 O4	446	12.7	84
845	1828	C23 H27 F2 N3 O3	432	11.7	80
846	1829	C24 H29 F2 N3 O3	446	14.3	94
847	1830	C24 H29 F2 N3 O3	446	10.0	66
848	1831	C22 H28 Br N3 O3	462	4.8	31
849	1832	C23 H31 N3 O4	414	10.4	74
850	1833	C23 H31 N3 O5	430	12.1	83
851	1834	C23 H31 N3 O5	430	12.0	82
852	1835	C22 H29 N3 O4	400	7.9	58
853	1836	C23 H29 N3 O5	428	11.1	76
854	1837	C25 H33 N3 O3	424	13.3	92
855	1838	C23 H31 N3 O3 S	430	8.7	60
856	1839	C24 H33 N3 O3	412	11.3	81
857	1840	C24 H31 N3 O4	426	12.9	89
858	1841	C24 H33 N3 O3	413	12.8	91
859	1842	C25 H35 N3 O3	426	8.7	60
860	1843	C25 H35 N3 O3	426	12.2	84
861	1844	C26 H37 N3 O3	440	11.3	76
862	1845	C31 H37 Br N4 O2	577	6.4	30
863	1846	C23 H28 F3 N3 O2 S	480	12.8	81
864	1847	C25 H31 F2 N3 O3	460	12.2	78
865	1848	C27 H29 N3 O4	460	6.1	39
866	1849	C29 H31 N3 O2	454	15.1	98
867	1850	C28 H31 N3 O2	442	12.7	85
868	1851	C28 H31 N3 O2	442	14.3	95
869	1852	C28 H29 N3 O3	456	3.4	22
870	1853	C27 H29 N3 O6 S	524	15.4	87
871	1854	C29 H31 N3 O4 S	518	15.8	90
872	1855	C28 H31 N3 O4 S	506	17.0	99

873	1856	C28 H31 N3 O4 S	506	3.0	17
874	1857	C28 H29 N3 O5 S	520	10.0	57
875	1858	C20 H22 Br2 N4 O2	511	9.3*	37
876	1859	C21 H25 Br N4 O3	461	6.7*	29
877	1860	C21 H25 Br N4 O4	477	9.5*	40
878	1861	C21 H25 Br N4 O4	477	10.0*	42
879	1862	C20 H23 Br N4 O3	447	7.8*	34
880	1863	C21 H23 Br N4 O4	475	3.4*	14
881	1864	C21 H25 Br N4 O2 S	477	3.9*	16
882	1865	C22 H25 Br N4 O3	473	6.4*	27
883	1866	C23 H29 Br N4 O2	472	7.0*	29
884	1867	C23 H29 Br N4 O2	473	7.6*	32
885	1868	C24 H31 Br N4 O2	487	9.1*	37
886	1869	C20 H22 Br I N4 O2	557	8.9*	33
887	1870	C21 H25 I N4 O3	509	9.2*	37
888	1871	C21 H25 I N4 O4	525	6.3*	25
889	1872	C21 H25 I N4 O4	525	5.9*	23
890	1873	C20 H23 I N4 O3	495	7.7*	31
891	1874	C21 H23 I N4 O4	523	8.2*	32
892	1875	C23 H27 I N4 O2	519	6.7*	26
893	1876	C21 H25 I N4 O2	525	4.3*	17
894	1877	C22 H27 I N4 O2	507	7.9*	32
895	1878	C22 H25 I N4 O3	521	8.4*	33
896	1879	C23 H29 I N4 O2	521	8.2*	32
897	1880	C23 H29 I N4 O2	521	8.1*	32
898	1881	C24 H31 I N4 O2	535	8.6*	33
899	1882	C20 H22 Br N5 O4	476	5.3*	22
900	1883	C21 H25 N5 O5	428	5.7*	26
901	1884	C21 H25 N5 O6	444	8.2*	36
902	1885	C21 H25 N5 O6	444	5.0*	22
903	1886	C20 H23 N5 O5	414	8.7*	40
904	1887	C21 H23 N5 O6	442	7.8*	34
905	1888	C23 H27 N5 O4	438	5.6*	25
906	1889	C21 H25 N5 O4 S	444	13.2*	58
907	1890	C22 H27 N5 O4	426	11.3*	51
908	1891	C22 H25 N5 O5	440	7.4*	33
909	1892	C22 H27 N5 O4	426	5.5*	25
910	1893	C23 H29 N5 O4	440	5.7*	25
911	1894	C23 H29 N5 O4	440	9.4*	41

912	1895	C24 H31 N5 O4	455	8.5*	37
-----	------	---------------	-----	------	----

*トリフルオロ酢酸塩の収率。

[参考例7] 2-カルバモイル-1-(4-クロロベンジル)ピロリジンの合成

d 1-プロリンアミド・塩酸塩 (2. 5 g、21. 8 mmol) のアセトニトリル (35 mL) 溶液に、トリエチルアミン (7. 45 mL) と4-クロロベンジルクロリド (3. 88 g、24. 1 mmol) を加えた。この反応混合物を70°Cで4時間、続いて25°Cで16時間攪拌した。得られた混合物をジクロロメタン (20 mL) で希釈し、水で洗浄した (30 mL × 3)。有機層を乾燥し ($MgSO_4$) 、濃縮した。クロマトグラフィー (SiO_2 、メタノール-ジクロロメタン) により10 2-カルバモイル-1-(4-クロロベンジル)ピロリジンを得た (5. 21 g、81%)。

[参考例8] 2-(アミノメチル)-1-(4-クロロベンジル)ピロリジンの合成

2-カルバモイル-1-(4-クロロベンジル)ピロリジンを1M $BH_3\text{-THF}$ (9. 4 mL) に溶解し、70°Cに加熱した。16時間と25時間後の2回、さらに1M $BH_3\text{-THF}$ (0. 5当量) を加えた。40時間後1M 塩酸を加え、3時間還流させ、3M 塩酸 (6 mL) を加え、反応物をさらに3時間加熱攪拌した。25°Cまで冷却し、6M NaOH水溶液にてアルカリ性とし、ジクロロメタン ($4 \times 15 mL$) にて抽出した。クロマトグラフィー (SiO_2 、 $PrOH/H_2O/NH_4OH = 8 : 1 : 1$) で精製することにより、2-(アミノメチル)-1-(4-クロロベンジル)ピロリジン (1. 21 g、86%)を得た。

さらに、光学的活性な (S)-2-(アミノメチル)-1-(4-クロロベンジル)ピロリジンと (R)-2-(アミノメチル)-1-(4-クロロベンジル)ピロリジンを、それぞれ相当する原料および反応剤を用いて上記の方法に従って合成25 した。

(S)-2-(アミノメチル)-1-(4-クロロベンジル)ピロリジン: 1H NMR ($CDCl_3$ 、400 MHz) δ 1.40-1.80 (m, 5 H), 1.80-1.95 (m, 1 H), 2.12-2.21 (m, 1 H), 2.48-2.65 (m, 1 H), 2.66-2.78 (m, 2 H), 2.85-2.95 (m, 1 H), 3.26 (d, $J = 13.2$ Hz, 1 H), 3.93 (d, $J = 13.2$, 1 H), 7.20-7.40 (m, 4 H)

(R) - 2 - (アミノメチル) - 1 - (4 - クロロベンジル) ピロリジンは、(S) - 异性体と同じ¹H NMRを示した。

[実施例 913] 2 - [(N - ベンゾイルロイシル) アミノメチル] - 1 - (4 - クロロベンジル) ピロリジン (化合物番号 344) の合成

5 2 - (アミノメチル) - 1 - (4 - クロロベンジル) ピロリジン (22.5 mg
、0.10 mmol) と d1 - ベンゾイルロイシン (0.12 mL) のクロロホルム (1 mL) 溶液に、EDCI (23 mg) 、HOBT (16.2 mg) 、および
トリエチルアミン (15.2 μL) を加え、25°Cで16時間攪拌した。この反応
混合物を、ジクロロメタン (0.5 mL) で希釈し、2M NaOH水溶液 (0.
10 7.5 mL × 2) で洗浄し、PTFE膜で濾過することによって乾燥し、濃縮することにより、2 - [(N - ベンゾイルロイシル) アミノメチル] - 1 - (4 - クロロ
ベンジル) ピロリジン (化合物番号 344) を得た (74 mg、定量的)。純度を
HPLC/MSにて求めた (85%)。ESI/MS m/e 442 (M⁺+H,
C₂₃H₃₂C₁N₃O₂)

15 [実施例 914 - 933]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 9
13 の方法に従って合成した。必要であれば、クロマトグラフィー (HPLC - C₁₈
、アセトニトリル/H₂O/TFA) で精製し、目的物を TFA 塩として得た。ESI/MS データ、収量、および収率を表 19 にまとめた。また、化合物番号 33
20 9 と 340 はそれぞれ下記の¹H NMRを示した。

表 19

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
914	330	C ₂₁ H ₂₄ C ₁ N ₃ O ₂	386	75*	定量的
915	331	C ₂₂ H ₂₆ C ₁ N ₃ O ₂	400	44*	70
916	332	C ₂₄ H ₃₀ C ₁ N ₃ O ₅	476	57	定量的
917	333	C ₂₀ H ₂₃ C ₁ N ₄ O ₂	387	40	定量的
918	334	C ₂₂ H ₂₆ C ₁ N ₃ O ₂	400	68	定量的
919	335	C ₂₁ H ₂₃ C ₁ N ₄ O ₄	431	73	定量的
920	336	C ₂₂ H ₂₃ C ₁ F ₃ N ₃ O ₂	454	75	定量的
921	337	C ₂₂ H ₂₆ C ₁ N ₃ O ₂	400	68	定量的
922	338	C ₂₂ H ₂₆ C ₁ N ₃ O ₂	400	70	定量的

923	341	C22 H26 Cl N3 O2	400	80*	定量的
924	342	C22 H26 Cl N3 O2	400	68	定量的
925	343	C24 H30 Cl N3 O2	428	63	定量的
926	345	C23 H27 Cl N2 O2	399	68*	定量的
927	346	C23 H26 Cl F N2 O3	433	51	定量的
928	347	C24 H29 Cl N2 O2	413	47	定量的
929	348	C23 H27 Cl N2 O2	399	26	定量的
930	349	C21 H25 Cl N2 O3 S	421	42	定量的
931	350	C26 H33 Cl N2 O3	457	12.4	54
932	351	C22 H26 Cl N3 O3	416	34	81
933	352	C22 H25 Cl2 N3 O3	450	51	定量的

* トリフルオロ酢酸塩の収率。

[実施例 934] 化合物番号 339 : 82% ; ¹H NMR (CDCl₃) δ 1.52-1.75 (m, 4 H), 1.84-1.95 (m, 1 H), 2.10-2.20 (m, 1 H), 2.67-2.78 (m, 1 H), 2.80-2.90 (m, 1 H), 3.10-3.20 (m, 1 H), 3.25 (d, J = 13.1 Hz, 1 H), 3.50-3.60 (m, 1 H), 3.89 (d, J = 13.1 Hz, 1 H); 4.28-4.20 (m, 2 H), 7.00-7.05 (m, 1 H), 7.12-7.29 (m, 4 H), 7.51 (t, J = 7.8 Hz, 1 H), 7.74 (d, J = 7.8 Hz, 1 H), 7.99 (d, J = 7.8 Hz, 1 H), 8.10-8.27 (m, 2 H)

[実施例 935] 化合物番号 340 : 68% ; ¹H NMR (CDCl₃) δ 1.55-1.73 (m, 4 H), 1.86-1.97 (m, 1 H), 2.12-2.21 (m, 1 H), 2.67-2.76 (m, 1 H), 2.86-2.93 (m, 1 H), 3.14-3.21 (m, 1 H), 3.27 (d, J = 13.1 Hz, 1 H), 3.52-3.59 (m, 1 H), 3.89 (d, J = 13.1 Hz, 1 H), 4.09-4.21 (m, 2 H), 7.00-7.07 (m, 1 H), 7.12-7.30 (m, 4 H), 7.50 (t, J = 7.8 Hz, 1 H), 7.73 (d, J = 7.8 Hz, 1 H), 8.01 (d, J = 7.8 Hz, 1 H), 8.10-8.25 (m, 2 H)

15 [参考例 9] 3-(アミノメチル)-1-(4-クロロベンジル)ピロリジンの合成

4-カルボキシ-1-(4-クロロベンジル)ピロリジン-2-オン (5.05 g, 20 mmol)、EDCI (2.85 g, 22 mmol)、HOBT (2.97 g, 22 mmol)、およびジクロロメタン (100 mL) の混合物に 0.5 M アンモニアのジオキサン溶液 (60 mL, 30 mmol) を加えた。この反応混合物を室温で 15 時間攪拌し、2M HCl (3回) と 2M NaOH 水溶液 (100 mL × 4) で洗浄した。有機層を無水硫酸マグネシウムで乾燥、濾過、濃縮す

ることにより、4-カルバモイル-1-(4-クロロベンジル)ピロリジン-2-オン(1.49g)を無色の固体として得た。

4-カルバモイル-1-(4-クロロベンジル)ピロリジン-2-オン(1.49g)のTHF(15mL)溶液に1.0M BH₃のTHF溶液(25mL)を加えた。この反応混合物を室温で15時間攪拌した。室温まで冷却後、溶媒を減圧下に除去した。水(30mL)と濃塩酸(10mL)を加え、混合物を100℃で2時間、室温で1時間攪拌した。2M NaOH水溶液(100mL)を加え、酢酸エチル(50mL×3)で抽出した。有機層を合わせて、K₂CO₃で乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO₂、15%メタノール-5%トリエチルアミン/ジクロロメタン)で精製することにより、3-(アミノメチル)-1-(4-クロロベンジル)ピロリジン(860mg、19%)を無色油状物として得た。

[参考例10] 1-(4-クロロベンジル)-3-[グリシルアミノ]メチル
]ピロリジンの合成

3-(アミノメチル)-1-(4-クロロベンジル)ピロリジン(860mg、3.8mmol)、トリエチルアミン(5.7mmol)、N-tert-ブトキシカルボニルグリシン(704mg)、EDCI(594mg)、HOBT(673mg)、およびジクロロメタン(20mL)の混合物を室温で15時間攪拌した。ジクロロメタン(50mL)を加え、溶液を2M NaOH水溶液(50mL×2)で洗浄し、無水硫酸ナトリウムで乾燥、濾過、濃縮することにより、3-[N-(tert-ブトキシカルボニル)グリシル]アミノメチル]-1-(4-クロロベンジル)ピロリジン(1.31g、90%)を得た。

3-[N-(tert-ブトキシカルボニル)グリシル]アミノメチル]-1-(4-クロロベンジル)ピロリジン(804mg、2.11mmol)のメタノール(10mL)溶液に4M HClのジオキサン溶液(5mL)を加えた。室温で3.5時間攪拌した後、濃縮し、1M NaOH水溶液(20mL)を加えた。ジクロロメタン(20mL×3)で抽出し、抽出物を合わせて、硫酸ナトリウムで乾燥、濃縮することにより、1-(4-クロロベンジル)-3-[グリシルアミノ]メチル]ピロリジン(599mg、100%)を得た。純度をRPLC/MSにて求めた(100%)。ESI/MS m/e 282.2 (M⁺+H、C₁₄H₂₀O₂N₃O)

[実施例 936] 3-[[N-[3-トリフルオロメチルベンゾイル] グリシル
]アミノメチル] -1-(4-クロロベンジル) ピロリジン (化合物番号 1463
) の合成

3-(トリフルオロメチル) ベンゾイルクロリド (0. 058 mmol) のジク
5 ロロメタン (0. 2 mL) 溶液を、1-(4-クロロベンジル) -3-[(グリシ
ルアミノ) メチル] ピロリジン (0. 050 mmol) のクロロホルム (0. 2 m
L) 溶液とピペリジノメチルポリスチレン (60 mg) のジクロロメタン (1 mL
) 溶液の混合物に加えた。この反応混合物を室温で 2. 5 時間攪拌した後、メタノ
10 ール (0. 30 mL) を加え、この反応混合物を Varian™ SCX カラムに負
荷し、メタノール (15 mL) で洗浄した。生成物を、2M NH₃ のメタノール (5 mL)
15 溶液を用いて溶出し、濃縮することにより、(3-[[N-[3-トリフルオロメチルベンゾイル] グリシル] アミノメチル] -1-(4-クロロベンジル) ピロリジン (化合物番号 1463) を得た (22. 4 mg、99%)。純度を RPLC/MS にて求めた (97%)。ESI/MS m/e 454. 2 (M⁺+H
、C₂₂H₂₃C1F₃N₃O₂)

[実施例 937-944]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 9
36 の方法に従って合成した。ESI/MS データ、収量、および収率を表 20 に
まとめた。

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
937	1464	C ₂₂ H ₂₃ C ₁ F ₃ N ₃ O ₃	470.0	21.0	89
938	1465	C ₂₃ H ₂₂ C ₁ F ₆ N ₃ O ₂	522.0	24.5	94
939	1466	C ₂₁ H ₂₃ BrC ₁ N ₃ O ₂	466.0	20.8	90
940	1467	C ₂₁ H ₂₃ C ₁₂ N ₃ O ₂	420.0	19.6	93
941	1468	C ₂₁ H ₂₃ C ₁ N ₄ O ₄	431.2	19.5	91
942	1469	C ₂₂ H ₂₂ C ₁ F ₄ N ₃ O ₂	472.0	21.8	92
943	1470	C ₂₁ H ₂₂ C ₁₃ N ₃ O ₂	456.0	22.1	97
944	1471	C ₂₁ H ₂₂ C ₁ F ₂ N ₃ O ₂	422.0	20.9	99

[実施例 945] 3-[[N-(2-アミノ-4, 5-ジフルオロベンゾイル)

グリシル] アミノメチル] -1- (4-クロロベンジル) ピロリジン (化合物番号
1506) の合成

1 - (4-クロロベンジル) -3- [(グリシルアミノ) メチル] ピロリジン (0. 050 mmol) のクロロホルム (1. 35 mL) と t e r t -ブタノール (0. 05 mL) の溶液に、2-アミノ-4, 5-ジフルオロ安息香酸 (0. 060 mmol)、ジイソプロピルカルボジイミド (0. 060 mmol) およびHOBt (0. 060 mmol) を加えた。この反応混合物を室温で19時間攪拌した後、VarianTM SCXカラムに負荷し、メタノール/クロロホルム=1:1 (10 mL) とメタノール (10 mL) で洗浄した。生成物を、2M NH₃のメタノール (5 mL) 溶液を用いて溶出し、濃縮することにより、3- [[N- [2-アミノ-4, 5-ジフルオロベンゾイル] グリシル] アミノメチル] -1- (4-クロロベンジル) ピロリジン (化合物番号 1506) を得た (22.0 mg、定量的)。純度を RPLC/MS にて求めた (92%)。ESI/MS m/e 437 (M⁺+H、C₂₁H₂₃ClF₂N₄O₂)

15 [実施例 946-952]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 945 の方法に従って合成した。ESI/MS データ、収量、および収率を表 21 にまとめた。

表 21

20

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
946	1506	C ₂₁ H ₂₄ BrClN ₄ O ₂	481	20.6	86
947	1507	C ₂₁ H ₂₄ FClN ₄ O ₂	419	21.7	定量的
948	1509	C ₂₇ H ₂₈ ClN ₃ O ₂	462	26.5	定量的
949	1510	C ₂₁ H ₂₄ ClIN ₄ O ₂	527	22.0	84
950	1511	C ₁₉ H ₂₁ BrClN ₃ O ₂ S	472	23.7	定量的
951	1512	C ₂₁ H ₂₄ Cl ₂ N ₄ O ₂	435	22.3	定量的
952	1513	C ₂₇ H ₂₈ ClN ₃ O ₄ S	526	24.6	94

[参考例 11] 1 - (4-クロロベンジル) ニペコチン酸の合成

4-クロロベンジルクロリド (6. 42 g、39. 9 mmol) と iPr₂NEt (7. 74 g、40. 0 mmol) を、ニペコチン酸エチル (6. 29 g、40.

0 mmol) のアセトニトリル (15 mL) 溶液に加えた。この反応混合物を 70 °Cで 1.5 時間攪拌した後、溶媒を減圧下に除去した。残査に飽和 Na HCO₃水溶液 (50 mL) を加え、酢酸エチル (100 mL) で抽出した。有機層を飽和 Na HCO₃水溶液で洗浄し、Na₂SO₄で乾燥した。溶媒を減圧下に除去することにより、1-(4-クロロベンジル)ニペコチン酸エチルを赤黄色の油状物として得た (11.0 g, 97.8%)。このものは精製することなく使用した。純度を RPLC/MS にて求めた (97%)。ESI/MS m/e 382.2 (M⁺+H, C₁₅H₂₁C₁NO₂)

LiOH (1.66 g) のH₂O (25 mL) 溶液を、1-(4-クロロベンジル)ニペコチン酸エチルの THF (60 mL) 溶液に加えた。この反応混合物を室温で 1.5 時間攪拌した。溶媒を減圧下に除去しアモルファス状固体を得た。カラムクロマトグラフィー (SiO₂, 50%メタノール-クロロメタン) にて精製し、1-(4-クロロベンジル)ニペコチン酸 (9.75 g, 98.2%) を黄白色アモルファス状固体として得た。純度を RPLC/MS にて求めた (>95%)。ESI/MS m/e 254.0 (M⁺+H, C₁₃H₁₇C₁NO₂)

[参考例 12] 1-(4-クロロベンジル)-3-[tert-ブトキシカルボニルアミノ]ピペリジンの合成

1-(4-クロロベンジル)ニペコチン酸 (7.06 g, 27.8 mmol) のBuOH (500 mL) 溶液に、トリエチルアミン (3.38 g) と活性化した 3 モレキュラーシーブ (30 g) を加えた。ジフェニルホスホリルアジド (8.58 g) を加え、この反応混合物を還流下、18 時間攪拌した。冷却し、溶媒を減圧下に除去した後、残査を酢酸エチル (500 mL) に溶解し、有機層を飽和 Na HCO₃水溶液 (100 mL × 2) と食塩水 (50 mL) で洗浄、乾燥 (Na₂SO₄)、減圧下に濃縮した。クロマトグラフィー (SiO₂, 25%酢酸エチル-ヘキサン) により精製し、1-(4-クロロベンジル)-3-[tert-ブトキシカルボニルアミノ]ピペリジン (2.95 g, 32.6%) を白色結晶質固体として得た。¹H NMR (CDCl₃, 300 MHz) δ 1.4-1.75 (br, 4 H), 2.2-2.7 (br, 4 H), 3.5 (br, 2 H), 3.8 (br, 4 H), 7.3 (br, 4 H); 純度を RPLC/MS にて求めた (>99%)。ESI/MS m/e 269.2 (M⁺+H-56, C₁₇H₂₆C₁N₂O₂)

[参考例 13] 3-アミノ-1-(4-クロロベンジル)ピペリジンの合成

1 - (4-クロロベンジル) - 3 - [(tert-ブトキシカルボニル) アミノ] ピペリジン (2. 55 g、7. 85 mmol) のメタノール (25 mL) 溶液に、1M HCl-Et₂O (50 mL) を加えた。この反応混合物を25°Cで15時間攪拌した。溶媒を減圧下に除去し、3-アミノ-1-(4-クロロベンジル) ピペリジン・二塩酸塩をアモルファス状固体として得た (2. 49 g、定量的)。純度をRPLC/MSにて求めた (> 95%)。ESI/MS m/e 225. 2 (M⁺+H、C₁₂H₁₈C₁N₂)

[実施例953] 1 - (4-クロロベンジル) - 3 - [N - (3-メチルベンゾイル) グリシン] アミノ] ピペリジン (化合物番号355) の合成

10 N - (3-メチルベンゾイル) グリシン (10. 6 mg、0. 055 mmol)、EDCI (10. 5 mg) および1-ヒドロキシベンゾトリアゾール水和物 (7. 4 g) を、1 - (4-クロロベンジル) - 3 - アミノピペリジン・二塩酸塩 (14. 9 mg、0. 050 mmol) とトリエチルアミン (15. 2 mg) のクロロホルム (2. 5 mL) 溶液に加えた。この反応混合物を25°Cで16時間攪拌し、2 N NaOH水溶液 (2 mL × 2) と食塩水 (1 mL) で洗浄した。PTFE膜による濾過後、溶媒を減圧下に除去し、1 - (4-クロロベンジル) - 3 - [N - (3-メチルベンゾイル) グリシン] アミノ] ピペリジン (化合物番号355) を得た (17. 4 mg、87%)。純度をRPLC/MSにて求めた (97%)。ESI/MS m/e 400. 0 (M⁺+H、C₂₂H₂₆C₁N₃O₂)

20 [実施例954-982]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例953の方法に従って合成した。ESI/MSデータ、収量、および収率を表22にまとめた。また、化合物番号358は下記の¹H NMRを示した。

表 22

25

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
954	354	C ₂₁ H ₂₄ C ₁ N ₃ O ₂	386	16.1	83
955	356	C ₂₀ H ₂₃ C ₁ N ₄ O ₂	387	19.4	100
956	357	C ₂₂ H ₂₆ C ₁ N ₃ O ₂	400	16.8	84
957	359	C ₂₂ H ₂₆ C ₁ N ₃ O ₂	400	8.9	17
958	360	C ₂₂ H ₂₅ C ₁ N ₄ O ₄	445	25.6	定量的

959	361	C23 H27 Cl N2 O2	399	15.5	29
960	362	C24 H29 Cl N2 O3	429	12.4	58
961	363	C21 H25 Cl N2 O2 S	405	22.2	定量的
962	364	C24 H29 Cl N2 O4	445	20.7	93
963	365	C24 H29 Cl N2 O2	413	15.6	75
964	366	C23 H26 Cl F N2 O3	433	21.6	100
965	367	C23 H27 Cl N2 O2	399	11.9	60
966	368	C22 H25 Cl N2 O2	385	16.0	83
967	369	C22 H24 Cl2 N2 O2	419	13.9	60
968	370	C26 H33 Cl N2 O3	457	15.9	54
969	371	C25 H31 Cl N2 O3	443	19.6	84
970	372	C21 H25 Cl N2 O3 S	421	23.0	定量的
971	373	C23 H28 Cl N3 O2	414	19.1	92
972	374	C24 H30 Cl N3 O3	444	18.6	84
973	375	C23 H27 Cl2 N3 O2	448	18.0	80
974	376	C24 H30 Cl N3 O3	444	19.6	88
975	377	C25 H31 Cl2 N3 O2	476	20.7	87
976	378	C27 H33 Cl F N3 O2	486	23.9	98
977	379	C25 H30 Cl N3 O3	456	33.3	定量的
978	380	C24 H30 Cl N3 O2	428	9.8	46
979	381	C21 H26 Cl N3 O3 S	436	10.3	47
980	382	C22 H26 Cl N3 O3	416	24.4	定量的
981	383	C22 H25 Cl2 N3 O3	450	27.5	定量的

[実施例982] 化合物番号358 : 88% ; ^1H NMR (CDCl₃) δ 1.5
 3-1.75 (m, 4 H), 2.12-2.20 (m, 1 H), 2.37-2.50 (m, 2 H), 2.53-2.61 (m, 1 H)
 , 3.38-3.50 (m, 2 H), 2.53-2.61 (m, 1 H), 3.38-3.50 (m, 2 H), 4.06-4.20 (m,
 5 3 H), 7.10-7.13 (m, 1 H), 7.18-7.30 (m, 4 H), 7.59 (t, J = 7.8 Hz, 1 H), 7
 .79 (d, J = 7.8 Hz, 1 H), 8.01 (d, J = 7.8 Hz, 1 H), 8.11 (s, 1 H)

[参考例14] 1-ベンジル-4-[N-(tert-ブトキシカルボニル)グリシン]アミノ]ピペリジンの合成

4-アミノ-1-ベンジルピペリジン (3.80 g、20 mmol) のジクロロ
 10 メタン (40 mL) 溶液に、N-(tert-ブトキシカルボニル)グリシン (3
 .48 g、20 mmol)、EDCI (4.02 g、21 mmol)、およびHO
 BT (2.83 g、21 mmol) を加えた。この反応混合物を室温で12時間攪

拌した後、2M NaOH溶液を加えた。有機層を分離し、水層をジクロロメタンで抽出した(20mL×2)。有機層を合わせて水(20mL)および食塩水(20mL)で洗浄し、無水硫酸ナトリウムで乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO₂、酢酸エチル/メタノール/トリエチルアミン=85:12:3)で精製することにより、1-ベンジル-4-[N-(tert-ブトキシカルボニル)グリシル]アミノピペリジンを得た(6.59g、95%)。

[参考例15] 1-ベンジル-4-(グリシルアミノ)ピペリジンの合成

1-ベンジル-4-[N-(tert-ブトキシカルボニル)グリシル]アミノピペリジン(6.59g)のメタノール(80mL)溶液に、4M HClのジオキサン溶液を加えた。この溶液を室温で2時間攪拌した。濃縮後、2M NaOH水溶液(20mL)を加え、ジクロロメタン(40mL)で抽出し、抽出物を合わせて無水硫酸ナトリウムで乾燥、濃縮した。カラムクロマトグラフィー(SiO₂、酢酸エチル/メタノール/トリエチルアミン=85:12:3)で精製することにより1-ベンジル-4-(グリシルアミノ)ピペリジン(3.91g、83%)を得た:¹H NMR(CDCl₃, 400MHz) δ 1.47-1.59(m, 2H), 1.59(br, 2H), 1.76-1.96(m, 2H), 2.10-2.19(m, 2H), 2.75-2.87(m, 2H), 3.29(s, 2H), 3.50(s, 2H), 3.65-3.89(m, 1H), 7.15-7.23(m, 1H), 7.23-7.33(m, 5H)

その他の4-アシルアミノ-1-ベンジルピペリジンを、それぞれ対応する原料および反応剤を用いて参考例14と15の方法に従って合成した。

4-(β-アラニルアミノ)-1-ベンジルピペリジン: 2.46g、51% (2工程)。

1-ベンジル-4-((S)-ロイシルアミノ)ピペリジン: 1.78g、74% (2工程)。

1-ベンジル-4-((R)-ロイシルアミノ)ピペリジン: 1.48g、61% (2工程)。

[実施例983] 4-(N-ベンゾイルグリシル)アミノ-1-ベンジルピペリジン(化合物番号386)の合成

塩化ベンゾイル(0.060mmol)のクロロホルム(0.4mL)溶液を、1-ベンジル-4-(グリシルアミノ)ピペリジン(0.050mmol)とトリエチルアミン(0.070mmol)のクロロホルム(1.0mL)溶液に加えた

。この反応混合物を室温で12時間振とうした後、(アミノメチル)ポリスチレン樹脂(1.04mmol/g、50mg、50mmol)を加え、室温で12時間振とうした。反応混合物を濾過し、樹脂をジクロロメタン(0.5mL)で洗浄した。濾液と洗液を合わせて、ジクロロメタン(4mL)を加え、溶液を2M NaOH水溶液(0.5mL)で洗浄し、4-(N-ベンゾイルグリシル)アミノ-1-ベンジルピペリジン(化合物番号386)を得た(11.3mg、64%)。純度をRPLC/MSにて求めた(94%)。ESI/MS m/e 352.0(M⁺+H、C₂₁H₂₅N₃O₂)

[実施例984-1034]

10 本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例983の方法に従って合成した。ESI/MSデータ、収量、および収率を表23にまとめた。

表 23

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
984	384	C ₂₂ H ₂₆ ClN ₃ O ₂	400	60.0	定量的
985	385	C ₂₁ H ₂₃ ClN ₄ O ₄	431	58.7	91
986	387	C ₂₅ H ₂₇ N ₃ O ₂	402.5	15.5	77
987	388	C ₂₁ H ₂₄ N ₄ O ₄	397.0	16.2	82
988	389	C ₂₃ H ₂₇ N ₃ O ₄	410.0	16.2	79
989	390	C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	17.4	83
990	391	C ₂₂ H ₂₃ F ₄ N ₃ O ₂	438.0	18.4	84
991	392	C ₂₂ H ₂₄ F ₃ N ₃ O ₃	436.0	17.1	79
992	393	C ₂₁ H ₂₄ BrN ₃ O ₂	430.0	18.0	84
993	394	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	16.4	85
994	395	C ₂₁ H ₂₄ BrN ₃ O ₂	430.0	17.2	80
995	396	C ₂₁ H ₂₃ F ₂ N ₃ O ₂	388.0	15.1	78
996	397-	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	11.7	56
997	398	C ₂₂ H ₂₇ N ₃ O ₂	366.0	13.1	72
998	399	C ₂₆ H ₂₉ N ₃ O ₂	416.0	15.8	76
999	400	C ₂₂ H ₂₆ N ₄ O ₄	411.0	17.4	85
1000	401	C ₂₄ H ₂₉ N ₃ O ₄	424.0	16.9	80
1001	402	C ₂₃ H ₂₆ F ₃ N ₃ O ₂	434.0	17.7	82
1002	403	C ₂₃ H ₂₅ F ₄ N ₃ O ₂	452.0	18.6	82

1003	404	C23 H26 F3 N3 O3	450.0	17.8	79
1004	405	C22 H26 Br N3 O2	444.0	17.9	81
1005	406	C22 H26 Cl N3 O2	400.0	15.5	78
1006	407	C22 H26 Br N3 O2	444.0	17.8	80
1007	408	C22 H25 F2 N3 O2	402.0	15.6	78
1008	409	C22 H25 Cl2 N3 O2	434.0	17.6	81
1009	410	C25 H33 N3 O2	408.0	16.2	79
1010	411	C29 H35 N3 O2	458.5	18.8	82
1011	412	C25 H32 N4 O4	453.0	19.4	86
1012	413	C27 H35 N3 O4	466.0	19.8	85
1013	414	C26 H32 F3 N3 O2	476.0	20.2	85
1014	415	C26 H31 F4 N3 O2	494.0	20.5	83
1015	416	C26 H32 F3 N3 O3	492.0	19.5	79
1016	417	C25 H32 Br N3 O2	486.0	19.1	79
1017	418	C25 H32 Cl N3 O2	442.0	17.7	80
1018	419	C25 H32 Br N3 O2	486.0	20.3	83
1019	420	C25 H31 F2 N3 O2	444.0	18.6	84
1020	421	C25 H31 Cl2 N3 O2	476.0	19.4	81
1021	422	C25 H33 N3 O2	408.0	14.4	71
1022	423	C29 H35 N3 O2	458.0	16.4	72
1023	424	C25 H32 N4 O4	453.0	18.1	80
1024	425	C27 H35 N3 O4	466.0	16.4	70
1025	426	C26 H32 F3 N3 O2	476.0	17.3	73
1026	427	C26 H31 F4 N3 O2	494.0	18.8	76
1027	428	C26 H32 F3 N3 O3	492.0	18.4	75
1028	429	C25 H32 Br N3 O2	486.0	17.9	74
1029	430	C25 H32 Cl N3 O2	442.0	15.7	71
1030	431	C25 H32 Br N3 O2	486.0	17.7	73
1031	432	C25 H31 F2 N3 O2	444.0	16.6	75
1032	433	C25 H31 Cl2 N3 O2	476.0	18.7	78
1033	1016	C22 H23 Cl F3 N3 O2	454	32.5*	53
1034	1017	C21 H24 Cl N3 O2	386	55.2*	定量的

* トリフルオロ酢酸塩の収率。

[参考例 16] 3-カルバモイル-1-(4-クロロベンジル)ピペリジンの合成

5 ニペコタミド (6. 40 g, 50 mmol) のアセトニトリル (150 mL) と

エタノール (20 mL) 溶液に、トリエチルアミン (7. 0 mL, 50 mmol) と 4-クロロベンジルクロリド (8. 05 g, 50 mmol) を加えた。この反応混合物を 50°C で 16 時間攪拌した。室温に冷却後、飽和 NaHCO₃ 水溶液 (50 mL) と水 (150 mL) を加え、酢酸エチル (150 mL × 3) で抽出し、抽出液を食塩水で洗浄した。Na₂SO₄ で乾燥し、濃縮して淡赤の固体を得た。この粗製固体をエーテル (100 mL) で洗浄し、3-カルバモイル-1-(4-クロロベンジル) ピペリジンを得た (6. 98 g, 54%)

5 [参考例 17] 3-(アミノメチル)-1-(4-クロロベンジル) ピペリジンの合成

10 3-カルバモイル-1-(4-クロロベンジル) ピペリジン (3. 80 g, 15 mmol) を THF (30 mL) に溶解し、1M BH₃-THF (9. 4 mL) を加え、70°C で 15 時間攪拌した。0°C に冷却後、2M 塩酸 (50 mL) を加え、室温でさらに 3 時間攪拌し、4M NaOH 水溶液にてアルカリ性とし、酢酸エチル (100 mL × 3) で抽出した。抽出液を合わせて食塩水で洗浄し、無水 Na₂S
15 O₄ で乾燥、濾過、濃縮した。カラムクロマトグラフィー (SiO₂、酢酸エチル/エタノール/トリエチルアミン = 80 : 15 : 5) で精製することにより 3-(アミノメチル)-1-(4-クロロベンジル) ピペリジン (2. 05 g, 55%) を得た: ¹H NMR (CDCl₃, 400 MHz) δ 1.00–1.09 (m, 1 H), 1.50–1.87 (m, 7 H), 1.97–2.06 (m, 1 H), 2.65–2.77 (m, 2 H), 3.16–3.26 (m, 2 H), 3.20 32 (s, 2 H), 3.40 (d, J = 13.3 Hz, 1 H), 3.49 (d, J = 13.3 Hz, 1 H), 7.22–7.33 (m, 5 H)

20 [実施例 1035] 3-[(N-ベンゾイルグリシル) アミノ] メチル-1-(4-クロロベンジル) ピペリジン (化合物番号 434) の合成

25 塩化ベンゾイル (0. 060 mmol) のクロロホルム (0. 4 mL) 溶液を、3-[(グリシルアミノ) メチル]-1-(4-クロロベンジル) ピペリジン (0. 050 mmol) とトリエチルアミン (0. 070 mmol) のクロロホルム (1. 0 mL) 溶液に加えた。この反応混合物を室温で 2. 5 時間振とうした後、(アミノメチル) ポリスチレン樹脂 (1. 04 mmol/g, 50 mg, 50 mmol) を加え、室温で 12 時間振とうした。濾過し、樹脂をジクロロメタン (0. 5 mL) で洗浄した。濾液と洗液を合わせ、ジクロロメタン (4 mL) を加えて、2 M NaOH 水溶液 (0. 5 mL) で洗浄、濃縮することにより、3-[(N-ベ

ンゾイルグリシル) アミノ] メチル-1-(4-クロロベンジル) ピペリジン(化合物番号434)を得た(14.7mg、74%)。純度をRPLC/MSにて求めた(91%)。ESI/MS m/e 400 ($M^+ + H$ 、 $C_{22}H_{26}ClN_3O_2$)

5 [実施例1036-1058]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例1035の方法に従って合成した。ESI/MSデータ、収量、および収率を表24にまとめた。

表 24

10

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1036	435	$C_{26}H_{28}ClN_3O_2$	450	16.0	71
1037	436	$C_{22}H_{25}ClN_4O_4$	445	18.9	85
1038	437	$C_{24}H_{28}ClN_3O_4$	458	18.2	79
1039	438	$C_{23}H_{25}ClF_3N_3O_2$	468	19.0	81
1040	439	$C_{23}H_{24}ClF_4N_3O_2$	486	20.2	83
1041	440	$C_{23}H_{25}ClF_3N_3O_3$	484	18.9	78
1042	441	$C_{22}H_{25}BrClN_3O_2$	478	19.2	80
1043	442	$C_{22}H_{25}Cl_2N_3O_2$	434	17.3	80
1044	443	$C_{22}H_{25}BrClN_3O_2$	478	18.8	79
1045	444	$C_{22}H_{24}ClF_2N_3O_2$	436	16.7	77
1046	445	$C_{22}H_{24}Cl_3N_3O_2$	468	17.9	76
1047	446	$C_{23}H_{28}ClN_3O_2$	414	14.6	71
1048	447	$C_{27}H_{30}ClN_3O_2$	464	17.0	73
1049	448	$C_{23}H_{27}ClN_4O_4$	459	19.5	85
1050	449	$C_{25}H_{30}ClN_3O_4$	472	17.1	72
1051	450	$C_{24}H_{27}ClF_3N_3O_2$	482	19.4	81
1052	451	$C_{24}H_{26}ClF_4N_3O_2$	500	18.2	73
1053	452	$C_{24}H_{27}ClF_3N_3O_3$	498	18.8	76
1054	453	$C_{23}H_{27}BrClN_3O_2$	492	19.4	79
1055	454	$C_{23}H_{27}Cl_2N_3O_2$	448	16.5	74
1056	455	$C_{23}H_{27}BrClN_3O_2$	492	19.3	78
1057	456	$C_{23}H_{26}ClF_2N_3O_2$	450	17.1	76
1058	457	$C_{23}H_{26}Cl_3N_3O_2$	482	16.9	70

[参考例 18] 4-(アミノメチル)-1-(4-クロロベンジル)ピペリジンの合成

4-(アミノメチル)ピペリジン(7.00 g、61.3 mmol)のアセトニトリル(100 mL)溶液に、 K_2CO_3 (3.02 g)と4-クロロベンジルクロリド(3.52 g、21.8 mmol)を順に加えた。この反応混合物を60°Cで16時間攪拌した後、25°Cに冷却し、濃縮した。残査をジクロロメタン(75 mL)と水(50 mL)の間に分画し、水(50 mL × 2)と食塩水(50 mL × 1)で洗浄した。有機層を乾燥($MgSO_4$)、濃縮後、クロマトグラフィー(SiO₂、4% H_2O-^1PrOH)により精製し、4-(アミノメチル)-1-(4-クロロベンジル)ピペリジン(3.58 g、69%)を得た。

[実施例 1059] 4-[$(N$ -ベンゾイルグリシル)アミノ]メチル-1-(4-クロロベンジル)ピペリジン(化合物番号 458)の合成

4-(アミノメチル)-1-(4-クロロベンジル)ピペリジン(50 mg、0.21 mmol)のジクロロメタン(1 mL)溶液に、馬尿酸(38 mg、0.21 mmol)、EDCI(48 mg、0.24 mmol)、HOBT(31 mg、0.23 mmol)、およびトリエチルアミン(38 μ L、0.27 mmol)を加えた。この反応混合物を25°Cで16時間振とうした後、1 mLのジクロロメタンで希釈し、2M NaOH水溶液(0.75 mL × 2)で洗浄し、乾燥($MgSO_4$)し、濃縮した。クロマトグラフィー(SiO₂、6-8%メタノール/ジクロロメタン)で精製することにより4-[$(N$ -ベンゾイルグリシル)アミノ]メチル-1-(4-クロロベンジル)ピペリジン(化合物番号 458)を得た。これをTFAにて処理し、TFA塩を得た(105 mg、97%)。純度をRPLC/MSにて求めた(85%)。ESI/MS m/e 400 (M^++H , $C_{22}H_{26}ClN_3O_2$)

25 [実施例 1060-1086]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 1059 の方法に従って合成した。ESI/MS データ、収量、および収率を表 25 にまとめた。

表 25

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1060	459	C23 H28 Cl N3 O2	414	86*	78
1061	460	C23 H28 Cl N3 O2	414	55	定量的
1062	461	C23 H25 Cl F3 N3 O2	468	65	定量的
1063	462	C23 H28 Cl N3 O2	414	61	定量的
1064	463	C23 H28 Cl N3 O2	414	54	定量的
1065	464	C25 H32 Cl N3 O5	490	56	定量的
1066	465	C21 H25 Cl N4 O2	401	38	96
1067	466	C22 H25 Cl N4 O4	445	15	34
1068	557	C23 H28 Cl N3 O2	414	58*	66
1069	558	C23 H28 Cl N3 O2	414	55	定量的
1070	618	C25 H32 Cl N3 O2	442	58	定量的
1071	686	C26 H34 Cl N3 O2	456	62	定量的
1072	749	C34 H37 Cl N4 O2	569	7.2*	18
1073	750	C24 H30 Cl N3 O3	444	4.7*	14
1074	840	C24 H29 Cl N2 O2	413	52*	58
1075	841	C23 H27 Cl N2 O2	399	52	定量的
1076	842	C23 H26 Cl2 N2 O2	433	55	定量的
1077	843	C25 H31 Cl N2 O2	427	58	定量的
1078	844	C24 H29 Cl N2 O2	413	56	定量的
1079	845	C24 H29 Cl N2 O4 S	477	62	定量的
1080	846	C29 H31 Cl N2 O3	491	43	88
1081	847	C24 H28 Cl F N2 O3	447	54	定量的
1082	848	C25 H31 Cl N2 O2	427	47	定量的
1083	849	C25 H31 Cl N2 O4	459	55	定量的
1084	850	C22 H27 Cl N2 O3 S	435	46	定量的
1085	873	C20 H28 Cl N3 O2	378	44.8	定量的
1086	874	C23 H27 Cl2 N3 O3	464	51	定量的

[参考例 19] 1-(4-クロロベンジル)-4-[N-(3,3-ジフェニルプロピル)アミノメチル]ピペリジンの合成

4-(アミノメチル)-1-(4-クロロベンジル)ピペリジン (120 mg)
 5 を、NaI (2.6当量) の存在下、アセトニトリル中、70°Cで16時間、3,3-ジフェニルプロピルメタンスルホネート (1.0当量) と反応させた。常法処理の後、カラムクロマトグラフィー (SiO₂) で精製することにより、1-(4-クロロベンジル)-4-[N-(3,3-ジフェニルプロピル)アミノメチル]ピ

ペリジン (118 mg、54%) を得た。純度は、RPLC/MSで求めた (98%)。

[参考例 20] 1-(4-クロロベンジル)-4-[N-(2,2-ジフェニルエチル)アミノメチル]ピペリジンの合成

5 4-(アミノメチル)-1-(4-クロロベンジル)ピペリジン (120 mg) をメタノール中、2,2-ジフェニルアセトアルデヒド (0.66 当量) とポリマー一担持水素ホウ素を用いて 25°C で 16 時間還元的アミノ化反応を行い、次いで常法処理とカラムクロマトグラフィー (SiO₂) により、1-(4-クロロベンジル)-4-[N-(2,2-ジフェニルエチル)アミノメチル]ピペリジン (70 mg、49%) を得た。純度は、RPLC/MS で求めた (98%)。

[実施例 1087] 4-[N-(N-ベンゾイルグリシル)-N-(2,2-ジフェニルエチル)アミノメチル]-1-(4-クロロベンジル)ピペリジン(化合物番号 524)の合成

15 1-(4-クロロベンジル)-4-[N-(2,2-ジフェニルエチル)アミノメチル]ピペリジン (0.084 mmol) のジクロロメタン溶液に、馬尿酸 (1.1 当量)、HBTU (1.1 当量)、HOBT (1.1 当量) を加えた。この反応混合物を 40°C で 24 時間攪拌した。常法処理と分取 TLC (SiO₂) により、4-[N-(N-ベンゾイルグリシル)-N-(2,2-ジフェニルエチル)アミノメチル]-1-(4-クロロベンジル)ピペリジン (化合物番号 524) を得た (8.5 mg、17%)。純度を RPLC/MS にて求めた (98%)。ESI/MS m/e 580 (M⁺+H, C₃₆H₃₈C₁N₃O₂)

[実施例 1088-1090]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 1087 の方法に従って合成した。ESI/MS データ、収量、および収率を表 26 にまとめた。

表 26

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1088	521	C ₃₈ H ₃₉ C ₁ F ₃ N ₃ O ₂	662	5.5	10
1089	522	C ₃₇ H ₃₇ C ₁ F ₃ N ₃ O ₂	648	8.6	16
1090	523	C ₃₇ H ₄₀ C ₁ N ₃ O ₂	594	4.8	10

[参考例 21] 1-(4-クロロベンジル)-4-[(バリルアミノ)メチル]ピペリジンの合成

4-(アミノメチル)-1-(4-クロロベンジル)ピペリジン(1.0 g、4.2 mmol)のジクロロメタン(21 mL)溶液に、トリエチルアミン(0.7
 5 6 mL、5.44 mmol)、d1-N-(tert-ブトキシカルボニル)バリ
 ン(1.09 g、5.03 mmol)、EDCI(883 mg、4.61 mmol)
)、およびHOBt(623 mg、4.61 mmol)を加えた。この反応混合物
 を25°Cで16時間攪拌した後、ジクロロメタン(20 mL)で希釈し、2 M
 10 NaOH溶液(20 mL×2)と食塩水(20 mL×1)で洗浄し、乾燥(MgSO₄)
 し、濃縮した。クロマトグラフィー(SiO₂、3%メタノール/ジクロロメタン)
)で精製することにより、1-(4-クロロベンジル)-4-[[(N-Boc-
 バリル)アミノ]メチル]ピペリジン(1.1 g、60%)を淡琥珀色油状物とし
 て得た。ESI/MS m/e 438 (M⁺+H)

1-(4-クロロベンジル)-4-[[(N-Boc-バリル)アミノ]メチル]
 15]ピペリジン(1.1 g、2.51 mmol)を3 M HCl-メタノール溶液(25 mL)
 に溶解し、25°Cで1時間攪拌した。この反応混合物を濃縮し、得られた
 塩をBuOH/H₂O=3:1(25 mL)に溶解した。陰イオン(OH⁻)交換
 樹脂を、溶液がやや塩基性となるまで加えた。濾過、濃縮することにより、1-(
 4-クロロベンジル)-4-[(バリルアミノ)メチル]ピペリジン(819 mg
 20 、97%)を得た。この化合物はこれ以上の精製を必要としなかった。ESI/MS
 m/e 338.1 (M⁺+H、C₁₈H₂₈C₁N₃O)

さらに、その他の4-[(アシリルアミノ)メチル]-1-(4-クロロベンジル)
)ピペリジンを、それぞれ対応する原料および反応剤を用いて参考例21の方法に
 従って合成した。

25 1-(4-クロロベンジル)-4-[(グリシリルアミノ)メチル]ピペリジン:
 0.830 g、67%(2工程)、ESI/MS 269 (M⁺+H)
 1-(4-クロロベンジル)-4-[(セシリルアミノ)メチル]ピペリジン: 0
 .286 g、20%(2工程)、ESI/MS 326 (M⁺+H)
 4-[(アラニルアミノ)メチル]-1-(4-クロロベンジル)ピペリジン:
 30 1.20 g、65%(2工程)、ESI/MS 310 (M⁺+H)
 1-(4-クロロベンジル)-4-[(プロリルアミノ)メチル]ピペリジン:

1. 48 g、86% (2工程)、ESI/MS 336 ($M^+ + H$)
 1-(4-クロロベンジル)-4-[((グルタミニルアミノ)メチル)ピペリジン: 0.830 g、27% (2工程)、ESI/MS 367 ($M^+ + H$)
 1-(4-クロロベンジル)-4-[((2-メチルアラニル)アミノ)メチル]ピペリジン: 2.24 g、62% (2工程)、ESI/MS 324 ($M^+ + H$)
 1-(4-クロロベンジル)-4-[((O-メチルセリル)アミノ)メチル]ピペリジン: 0.686 g、38% (2工程)、ESI/MS 340 ($M^+ + H$)
 1-(4-クロロベンジル)-4-[((1-アミノシクロプロピルカルボニル)アミノ)メチル]ピペリジン: 2.03 g、82% (2工程)、ESI/MS 322 ($M^+ + H$)
 1-(4-クロロベンジル)-4-[((ロイシルアミノ)メチル]ピペリジン: 1.30 g、58% (2工程)、ESI/MS 352 ($M^+ + H$)
 1-(4-クロロベンジル)-4-[((O-ベンジルセリル)アミノ)メチル]ピペリジン: 1.34 g、56% (2工程)、ESI/MS 416 ($M^+ + H$)
 15 [参考例22] 1-(tert-ブトキシカルボニル)グリシルアミノメチル]ピペリジンの合成
 4-(アミノメチル)-1-(tert-ブトキシカルボニル)ピペリジン (5.72 g) のジクロロメタン (150 mL) 溶液に、トリエチルアミン (3.51 g)、N-(9-フルオレニルメチルオキシカルボニル)グリシン (7.93 g、26.7 mmol)、EDCI (3.80 g)、HOBT (4.33 g) を加えた。この反応混合物を室温で18時間攪拌した後、水 (100 mL × 3) と食塩水 (100 mL × 2) で洗浄し、無水硫酸ナトリウムで乾燥し、濃縮した。0°Cでアセトニトリル/メタノール (150 mL / 1 mL) で再結晶し、1-(tert-ブトキシカルボニル)-4-[N-(9-フルオレニルメチルオキシカルボニル)グリシル]アミノメチル]ピペリジン (5.75 g、44%) を黄白色の結晶として得た。
 [参考例23] 4-[N-(9-フルオレニルメチルオキシカルボニル)グリシル]アミノメチル]ピペリジンの合成
 1-(tert-ブトキシカルボニル)-4-[N-(9-フルオレニルメチルオキシカルボニル)グリシル]アミノメチル]ピペリジンピペリジン (3.17 g、6.42 mmol) を、4M HCl のジオキサン溶液に加えた。この溶液を

室温で5時間攪拌後、濃縮し、4-[[N-(9-フルオレニルメチルオキシカルボニル)グリシル]アミノメチル]ピペリジン(3.85g)を黄白色の固体として得た。この生成物はこれ以上の精製をせずに用いた。

5 [参考例24] 4-[[N-(9-フルオレニルメチルオキシカルボニル)グリシル]アミノメチル]-1-(4-メチルチオベンジル)ピペリジンの合成

4-[[N-(9-フルオレニルメチルオキシカルボニル)グリシル]アミノメチル]ピペリジン(1.00g、2.33mmol)の1%酢酸/DMF(15mL)溶液に、4-メチルチオベンズアルデヒド(1.24g)とNaBH(OAc)₃(2.56g)を加えた。この反応混合物を60℃で1時間攪拌し、室温に冷却し、濃縮した。NaHCO₃飽和水溶液(50mL)を加え、酢酸エチル(50mL×2)で抽出した。抽出物を合わせて、無水硫酸ナトリウムで乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO₂、50%-10%メタノール-ジクロロメタン)により4-[[N-(9-フルオレニルメチルオキシカルボニル)グリシル]アミノメチル]-1-(4-メチルチオベンジル)ピペリジン(602mg)を得た。

15 [参考例25] 1-(4-エチルベンジル)-4-[[N-(9-フルオレニルメチルオキシカルボニル)グリシル]アミノメチル]ピペリジンの合成

4-[[N-(9-フルオレニルメチルオキシカルボニル)グリシル]アミノメチル]ピペリジン(1.00g、2.33mmol)の2.5%酢酸/メタノール(80mL)溶液に、4-エチルベンズアルデヒド(1.09g、8.16mmol)とNaBH₃CN(6.59g、10.5mmol)を加えた。この反応混合物を60℃で13時間攪拌した。室温に冷却後、1M NaOH水溶液(50mL)とジクロロメタン(50mL×3)で抽出した。有機層を分離し、水層をジクロロメタン(50mL×3)で抽出した。有機層を合わせて食塩水で洗浄し、無水硫酸ナトリウムで乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO₂、メタノール/酢酸エチル=2:8)により1-(4-エチルベンジル)-4-[[N-(9-フルオレニルメチルオキシカルボニル)グリシル]アミノメチル]ピペリジン(740mg、62%)を得た。

30 [参考例26] 4-[(グリシルアミノ)メチル]-1-(4-メチルチオベンジル)ピペリジンの合成

4-[[N-(9-フルオレニルメチルオキシカルボニル)グリシル]アミノメチル]

チル] - 1 - (4-メチルチオベンジル) ピペリジン (590 mg) とピペリジン (1 mL) のDMF (4 mL) 溶液を60°Cで2時間攪拌した。濃縮後、カラムクロマトグラフィー (SiO₂、トリエチルアミン/メタノール/ジクロロメタン = 1 : 1 : 9) で精製することにより 4 - [(グリシルアミノ) メチル] - 1 - (4 - 5 メチルチオベンジル) ピペリジン (365 mg) を白色の固体として得た。¹H NMR (CDCl₃, 270 MHz) δ 1.25(dd, J = 12 Hz, 4.1 Hz, 2H), 1.34(dd, J = 12 Hz, 4.1 Hz, 2H), 1.51(br-s, 2H), 1.66(d, J = 12 Hz, 2H), 1.77(d, J = 7.3 Hz, 1H), 1.94(t, J = 9.5 Hz, 2H), 2.48(s, 3H), 2.80(d, J = 12 Hz, 2H), 3.18(t, J = 6.2 Hz, 2H), 3.35(s, 2H), 3.45(s, 2H), 7.18-7.29(m, 4H), 7.3 10 10 5(br-s, 1H)

さらに、1 - (4-エチルベンジル) - 4 - [(グリシルアミノ) メチル] ピペリジンを、対応する原料および反応剤を用いて参考例26の方法に従って合成した : 333 mg、79%。

[参考例27] 4 - [(グリシルアミノ) メチル] - 1 - (4 - フルオロベンジル) ピペリジンの合成

4 - [[N - (9-フルオレニルメチルオキシカルボニル) グリシル] アミノメチル] ピペリジン (1. 50 g, 3. 49 mmol) 、4-フルオロベンジルブロミド (0. 478 mL, 3. 84 mmol) 、およびトリエチルアミン (1. 47 mL, 10. 5 mmol) のアセトニトリル (200 mL) 溶液を室温で13時間攪拌した。カラムクロマトグラフィー (SiO₂, 10%メタノール/ジクロロメタン) により 4 - [[N - (9-フルオレニルメチルオキシカルボニル) グリシル] アミノメチル] ピペリジンとピペリジンを得た。さらに、4 - [[N - (9-フルオレニルメチルオキシカルボニル) グリシル] アミノメチル] ピペリジンとピペリジン (5 mL) のDMF (5 mL) 溶液を室温で17時間攪拌した。濃縮後、カラムクロマトグラフィー (SiO₂、トリエチルアミン/メタノール/ジクロロメタン = 0. 5 : 2 : 8) により精製し、4 - [(グリシルアミノ) メチル] - 1 - (4 - フルオロベンジル) ピペリジン (453 mg, 46%) を得た。

[参考例28] 4 - [(グリシルアミノ) メチル] - 1 - (4 - N - フェニルカルバモイル) ベンジル] ピペリジンの合成

30 4 - [[N - (9-フルオレニルメチルオキシカルボニル) グリシル] アミノメチル] ピペリジン (1. 27 g, 2. 96 mmol) 、トリエチルアミン (1. 2

5 mL、8. 88 mmol)、KI (50 mg、0. 30 mmol)、およびアセトニトリル (200 mL) の混合物に、4-(N-フェニルカルバモイル)ベンジルクロリド (800 mg、3. 26 mmol) のアセトニトリル (100 mL) 溶液を滴下した。この混合物を室温で19時間攪拌し、さらに60°Cで5時間攪拌した。濃縮後、カラムクロマトグラフィー (SiO₂、5%メタノール/ジクロロメタントリエチルアミン/メタノール/ジクロロメタン=2:2:96) により精製し、4-[(グリシルアミノ)メチル] -1-[4-(N-フェニルカルバモイル)ベンジル]ピペリジン (340 mg、30%)を得た。

[実施例1091] 1-(4-クロロベンジル)-4-[N-(3-シアノベンゾイル)バリル]アミノメチルピペリジン (化合物番号619) の合成

1-(4-クロロベンジル)-4-[(バリルアミノ)メチル]ピペリジン (20 mg、0. 059 mmol) のジクロロメタン (0. 60 mL) 溶液に、トリエチルアミン (0. 011 mL、0. 077 mmol)、m-シアノ安息香酸 (28 mg、0. 071 mmol)、EDCI (13 mg、0. 065 mmol)、およびHOBT (9 mg、0. 065 mmol) を加えた。この反応混合物を25°Cで16時間攪拌した。得られた溶液をジクロロメタン (0. 75 mL) で希釈し、2M NaOH水溶液 (0. 75 mL × 2) で洗浄し、PTFE膜で濾過することによって乾燥した。濃縮により1-(4-クロロベンジル)-4-[N-(3-シアノベンゾイル)バリル]アミノメチル]ピペリジン (化合物番号619) (24. 2 mg、88%)を得た。これはそれ以上の精製を要しなかった。純度をRPLC/MSにて求めた (85%)。ESI/MS m/e 467 ($M^+ + H$ 、C₂₆H₃₁C₁N₄O₂)

[実施例1092-1543]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例1091の方法に従って合成した。ESI/MSデータ、収量、および収率を表27にまとめた。

表 27

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1092	467	C ₂₂ H ₂₅ BrClN ₃ O ₂	478	11	46
1093	468	C ₂₄ H ₃₁ ClN ₄ O ₂	443	9	41

1094	469	C23 H28 Cl N3 O3	430	7*	27
1095	470	C23 H25 Cl N4 O2	425	21	定量的
1096	471	C24 H28 Cl N3 O4	458	7	29
1097	472	C29 H31 N3 O3	504	5*	21
1098	473	C24 H28 Cl N3 O3	442	16	71
1099	474	C23 H25 Cl F3 N3 O2	468	14	60
1100	475	C25 H32 Cl N3 O2	442	5	22
1101	476	C22 H25 Cl N4 O4	445	4	17
1102	477	C25 H32 Cl N3 O3	458	10*	36
1103	478	C21 H27 Cl N4 O2	403	9	47
1104	479	C20 H24 Cl N3 O3	390	17	87
1105	480	C20 H23 Br Cl N3 O3	470	23	定量的
1106	481	C20 H24 Cl N3 O2 S	406	7	33
1107	482	C21 H26 Cl N3 O2 S	420	9	45
1108	483	C21 H26 Cl N3 O2 S	420	8	40
1109	484	C24 H27 Cl N4 O2	439	9*	34
1110	485	C24 H24 Cl F6 N3 O2	536	13	49
1111	486	C23 H25 Cl N4 O2	425	16	74
1112	487	C22 H25 Cl2 N3 O2	434	5	24
1113	488	C22 H27 Cl N4 O2	415	7	32
1114	489	C24 H24 Cl F6 N3 O2	536	21	78
1115	490	C24 H30 Cl N3 O3	444	8	35
1116	491	C23 H24 Cl F4 N3 O2	486	19	79
1117	492	C23 H25 Cl F3 N3 O3	484	18	76
1118	493	C23 H24 Cl2 F3 N3 O2	502	23	92
1119	494	C23 H24 Cl F4 N3 O2	486	19	79
1120	495	C23 H24 Cl F4 N3 O2	486	20	83
1121	496	C23 H24 Cl F4 N3 O2	486	12	48
1122	497	C25 H32 Cl N3 O3	458	4	16
1123	498	C23 H26 Cl F3 N4 O2	483	13	52
1124	499	C24 H31 Cl N4 O2	443	8	36
1125	500	C23 H28 Cl N3 O3	430	10	48
1126	501	C22 H24 Br Cl N4 O4	523	10	39
1127	502	C22 H24 Cl F N4 O4	463	4	17
1128	503	C22 H24 Cl2 N4 O4	479	12	52
1129	504	C24 H30 Cl N3 O4	460	11	43
1130	505	C22 H24 Br Cl N4 O4	523	2	8
1131	506	C20 H23 Cl N4 O5	435	2	10
1132	507	C21 H26 Cl N3 O3	404	9	44

1133	508	C24 H26 Cl N3 O2 S	456	1	5
1134	509	C20 H23 Br Cl N3 O2 S	484	12	48
1135	510	C22 H28 Cl N3 O3	418	9	44
1136	511	C24 H32 Cl N3 O3	446	9	40
1137	512	C25 H29 Cl N4 O2	453	10	45
1138	513	C24 H28 Cl N3 O3	442	9	41
1139	514	C26 H34 Cl N3 O2	456	11	49
1140	515	C23 H28 Cl N3 O3	430	5	24
1141	525	C23 H28 Cl N3 O4 S	478	20	85
1142	526	C20 H24 Cl N3 O3	390	6	31
1143	527	C20 H24 Cl N3 O2 S	406	8	39
1144	528	C25 H30 Cl F3 N4 O4	543	28.2	95
1145	529	C20 H23 Cl N4 O4 S	451	9	39
1146	530	C31 H33 Cl N4 O2	529	5	17
1147	531	C21 H26 Cl N3 O3 S	436	8	37
1148	532	C22 H28 Cl N3 O3	418	8	40
1149	533	C21 H26 Cl N3 O3	404	6	32
1150	534	C21 H25 Cl N4 O5	449	5	20
1151	535	C22 H26 Cl N3 O3 S	448	8	37
1152	536	C23 H31 Cl N4 O2	431	6	28
1153	537	C25 H34 Cl N3 O3	460	8	34
1154	538	C27 H30 Cl N3 O3	480	9	36
1155	539	C22 H25 Cl F3 N3 O3	472	18	75
1156	540	C25 H29 Cl N4 O2	453	8	36
1157	541	C22 H26 Cl N5 O4	460	2.4	10
1158	542	C24 H30 Cl N3 O2	428	4.6*	51
1159	543	C24 H30 Cl N3 O2	428	20.6*	71
1160	544	C22 H25 Cl F N3 O2	418	15.8*	56
1161	545	C22 H24 Cl3 N3 O2	468	7.3*	23
1162	546	C22 H24 Cl3 N3 O2	468	17.4*	55
1163	547	C22 H24 Cl3 N3 O2	468	14.1*	44
1164	548	C22 H24 Cl3 N3 O2	468	6.8*	22
1165	549	C22 H24 Cl2 N4 O4	479	5.7*	18
1166	550	C22 H24 Cl2 N4 O4	479	18.9*	58
1167	551	C24 H30 Cl N3 O2	428	14.2*	49
1168	552	C24 H27 Cl F3 N3 O2	482	30.6*	94
1169	553	C25 H26 Cl F6 N3 O2	550	38.0*	定量的
1170	554	C24 H26 Cl F N4 O2	457	0.9*	3
1171	555	C24 H26 Cl2 N4 O2	473	11.1*	35

1172	556	C25 H29 Cl N4 O2	453	12.5*	41
1173	559	C25 H26 Cl F6 N3 O2	550	15	72
1174	560	C24 H27 Cl N4 O2	439	12	68
1175	561	C23 H27 Br Cl N3 O2	494	14	73
1176	562	C23 H27 Cl2 N3 O2	448	13	75
1177	563	C25 H26 Cl F6 N3 O2	550	14	66
1178	564	C25 H32 Cl N3 O3	458	5	28
1179	565	C24 H26 Cl F4 N3 O2	500	12	61
1180	566	C24 H27 Cl F3 N3 O3	498	12	62
1181	567	C24 H26 Cl2 F3 N3 O2	516	12	61
1182	568	C24 H26 Cl F4 N3 O2	500	15	77
1183	569	C24 H26 Cl F4 N3 O2	500	11	59
1184	570	C24 H26 Cl F4 N3 O2	500	16	84
1185	571	C26 H34 Cl N3 O3	472	14	77
1186	572	C24 H28 Cl F3 N4 O2	497	11	55
1187	573	C21 H25 Br Cl N3 O2 S	500	12	64
1188	574	C21 H25 Br Cl N3 O2 S	500	15	75
1189	575	C25 H34 Cl N3 O3	460	16	87
1190	576	C22 H28 Cl N3 O2 S2	466	13	71
1191	577	C22 H28 Cl N3 O3	418	12	72
1192	578	C25 H28 Cl N3 O2 S	470	15	81
1193	579	C25 H29 Cl N4 O2	453	17	94
1194	580	C22 H28 Cl N3 O2 S	434	15	91
1195	581	C21 H26 Cl N3 O2 S	420	13	80
1196	582	C22 H28 Cl N3 O2 S	434	10	59
1197	583	C26 H31 Cl N4 O2	467	6	31
1198	584	C30 H32 Cl N3 O3	518	18	92
1199	585	C24 H27 Cl N4 O2	439	14	85
1200	586	C23 H27 Cl2 N3 O2	448	17	97
1201	587	C24 H27 Cl F3 N3 O2	482	17	91
1202	588	C23 H29 Cl N4 O2	429	5	29
1203	589	C27 H36 Cl N3 O2	470	4	24
1204	590	C26 H34 Cl N3 O2	456	6	36
1205	591	C25 H33 Cl N4 O2	457	7	38
1206	592	C24 H30 Cl N3 O3	444	4	20
1207	593	C24 H30 Cl N3 O3	444	2	14
1208	594	C23 H28 Cl N3 O3	430	4	25
1209	595	C25 H30 Cl N3 O4	472	7	38
1210	596	C25 H30 Cl N3 O3	456	7	40

1211	597	C25 H30 C1 N3 O3	456	15	85
1212	598	C21 H26 C1 N3 O3	404	15	94
1213	599	C22 H29 C1 N4 O2	417	5	30
1214	600	C21 H25 Br C1 N3 O3	484	6	34
1215	601	C24 H30 C1 N3 O3	444	5	28
1216	602	C25 H33 C1 N4 O2	457	5	28
1217	603	C23 H29 C1 N4 O2	429	4	22
1218	604	C21 H27 C1 N4 O2	403	9	58
1219	605	C21 H26 C1 N3 O3	404	17	87
1220	606	C21 H26 C1 N3 O2 S	420	15	74
1221	607	C22 H28 C1 N3 O3 S	450	31	定量的
1222	608	C23 H30 C1 N3 O3	432	17	80
1223	609	C22 H28 C1 N3 O3	418	18	89
1224	610	C23 H28 C1 N3 O3 S	462	20	86
1225	611	C26 H36 C1 N3 O3	474	21	90
1226	612	C28 H32 C1 N3 O3	494	20	84
1227	613	C23 H27 C1 F3 N3 O3	486	19	81
1228	614	C24 H33 C1 N4 O2	445	23	定量的
1229	615	C25 H29 C1 N4 O2	453	4	20
1230	616	C32 H35 C1 N4 O2	543	11	40
1231	617	C25 H27 C1 F3 N3 O2	482	6.7	37
1232	620	C25 H31 Br C1 N3 O2	520	15	49
1233	621	C25 H31 C12 N3 O2	476	18	64
1234	622	C27 H37 C1 N4 O2	485	14	50
1235	623	C26 H34 C1 N3 O3	472	19	69
1236	624	C25 H31 C1 N4 O4	487	21	73
1237	625	C25 H33 C1 N4 O2	457	19	69
1238	626	C27 H30 C1 F6 N3 O2	578	8	25
1239	627	C27 H36 C1 N3 O3	486	16	55
1240	628	C27 H34 C1 N3 O4	500	24	80
1241	629	C26 H30 C1 F4 N3 O2	528	18	56
1242	630	C26 H31 C1 F3 N3 O3	526	21	68
1243	631	C26 H30 C12 F3 N3 O2	544	15	48
1244	632	C26 H30 C1 F4 N3 O2	528	13	41
1245	633	C26 H30 C1 F4 N3 O2	528	20	63
1246	634	C26 H30 C1 F4 N3 O2	528	19	62
1247	635	C28 H38 C1 N3 O3	500	11	36
1248	636	C26 H34 C1 N3 O2	456	21	89
1249	637	C26 H31 C1 F3 N3 O2	510	20	95

1250	638	C26 H31 C1 N4 O2	467	15	54
1251	639	C27 H37 C1 N4 O2	485	19	66
1252	640	C26 H34 C1 N3 O3	472	16	56
1253	641	C27 H34 C1 N3 O4	500	18	59
1254	642	C32 H36 C1 N3 O3	546	24	73
1255	643	C26 H31 C1 F3 N3 O2	510	16	54
1256	644	C29 H40 C1 N3 O2	498	18	61
1257	645	C25 H33 C1 N4 O2	457	22	78
1258	646	C26 H34 C1 N3 O3	472	13	47
1259	647	C27 H34 C1 N3 O3	500	13	46
1260	648	C28 H38 C1 N3 O2	484	17	60
1261	649	C28 H38 C1 N3 O3	500	12.5	42
1262	650	C32 H36 C1 N3 O3	546	1*	2
1263	651	C28 H35 C1 N4 O2	495	4*	12
1264	652	C25 H31 C1 N4 O4	487	5*	14
1265	653	C30 H42 C1 N3 O3	528	1*	3
1266	654	C27 H34 C1 N3 O3	484	7*	21
1267	655	C26 H32 C1 F3 N4 O2	525	6*	16
1268	656	C23 H30 C1 N3 O3	432	6*	18
1269	657	C23 H30 C1 N3 O2 S	448	4*	13
1270	658	C27 H33 C1 N4 O2	48	1*	4
1271	659	C23 H29 C1 N4 O4 S	493	4*	10
1272	660	C34 H39 C1 N4 O2	571	3*	7
1273	661	C24 H32 C1 N3 O3 S	478	3*	7
1274	662	C25 H34 C1 N3 O3	460	2*	6
1275	663	C24 H32 C1 N3 O3	446	2*	5
1276	664	C24 H31 C1 N4 O5	491	2*	5
1277	665	C25 H32 C1 N3 O3 S	490	1*	3
1278	666	C26 H37 C1 N4 O2	473	3*	7
1279	667	C30 H36 C1 N3 O3	522	3*	7
1280	668	C25 H31 C1 F3 N3 O3	514	2*	6
1281	669	C24 H33 C1 N4 O2	445	15*	45
1282	670	C23 H29 Br C1 N3 O3	510	3*	7
1283	671	C23 H29 C1 N4 O5	477	2*	5
1284	672	C23 H31 C1 N4 O2	431	2*	7
1285	673	C23 H30 C1 N3 O2 S	448	2*	6
1286	674	C24 H32 C1 N3 O2 S	462	3*	9
1287	675	C24 H32 C1 N3 O2 S	462	1*	4
1288	676	C27 H33 C1 N4 O2	482	2*	6

1289	677	C28 H35 Cl N4 O2	495	2*	6
1290	678	C24 H32 Cl N3 O3	446	3*	9
1291	679	C27 H32 Cl N3 O2 S	498	1*	3
1292	680	C23 H29 Br Cl N3 O2 S	526	2*	6
1293	681	C25 H34 Cl N3 O3	460	2*	5
1294	682	C27 H38 Cl N3 O3	488	2*	4
1295	683	C24 H32 Cl N3 O2 S2	494	1*	4
1296	684	C26 H36 Cl N3 O4 S2	554	2*	5
1297	685	C24 H32 Cl N3 O4 S2	526	3*	7
1298	687	C25 H30 Cl N3 O2	440	24	定量的
1299	688	C27 H28 Cl F6 N3 O2	576	28	98
1300	689	C26 H29 Cl N4 O2	465	23	99
1301	690	C25 H29 Br Cl N3 O2	518	26	99
1302	691	C27 H35 Cl N4 O2	483	24	97
1303	692	C26 H32 Cl N3 O3	470	24	定量的
1304	693	C27 H28 Cl F6 N3 O2	576	16	55
1305	694	C27 H34 Cl N3 O3	484	25	定量的
1306	695	C27 H32 Cl N3 O4	498	12	47
1307	696	C26 H29 Cl F3 N3 O3	524	25	95
1308	697	C26 H29 Cl N4 O2	465	15	64
1309	698	C27 H35 Cl N4 O2	483	24	定量的
1310	699	C26 H32 Cl N3 O3	470	26	定量的
1311	700	C27 H32 Cl N3 O4	498	15	62
1312	701	C27 H32 Cl N3 O3	482	11	44
1313	702	C26 H29 Cl F3 N3 O2	508	23	94
1314	703	C28 H36 Cl N3 O2	482	26	定量的
1315	704	C25 H29 Cl N4 O4	485	11	43
1316	705	C24 H30 Cl N3 O2 S	460	25	定量的
1317	706	C24 H30 Cl N3 O2 S	460	25	定量的
1318	707	C26 H29 Cl F3 N3 O2	508	15	55
1319	708	C23 H27 Br Cl N3 O2 S	526	25	92
1320	709	C24 H30 Cl N3 O2 S2	492	26	定量的
1321	710	C23 H27 Br Cl N3 O2 S	526	25	94
1322	711	C25 H32 Cl N3 O3	458	26	定量的
1323	712	C27 H30 Cl N3 O2 S	496	26	定量的
1324	713	C24 H30 Cl N3 O3	444	26	定量的
1325	714	C28 H33 Cl N4 O2	493	12	50
1326	715	C23 H28 Cl N3 O2 S	446	24	定量的
1327	716	C27 H31 Cl N4 O2	479	32	定量的

3 1 1

1328	717	C23 H27 Cl N4 O5	475	23	95
1329	718	C23 H29 Cl N4 O2	429	24	定量的
1330	719	C23 H28 Cl N3 O3	430	24	定量的
1331	720	C23 H27 Br Cl N3 O3	510	24	95
1332	721	C24 H31 Cl N4 O2	443	22	98
1333	722	C26 H32 Cl N3 O3	470	9	37
1334	723	C25 H31 Cl N4 O2	455	10	44
1335	724	C29 H38 Cl N3 O2	496	28	定量的
1336	725	C32 H34 Cl N3 O3	544	26	95
1337	726	C27 H33 Cl N4 O3	497	3	11
1338	727	C25 H29 Cl2 N3 O2	474	25	定量的
1339	728	C25 H31 Cl N4 O2	455	21	92
1340	729	C25 H29 Cl N4 O4	485	26	定量的
1341	730	C25 H29 Cl2 N3 O2	474	21	90
1342	731	C27 H32 Cl N3 O3	482	10	41
1343	732	C26 H28 Cl F4 N3 O2	526	27	定量的
1344	733	C28 H36 Cl N3 O3	498	22	89
1345	734	C26 H28 Cl F4 N3 O2	526	25	94
1346	735	C26 H28 Cl F4 N3 O2	526	23	87
1347	736	C26 H30 Cl F3 N4 O2	523	24	78
1348	737	C26 H28 Cl F4 N3 O2	526	21	66
1349	738	C25 H32 Cl N3 O3	458	23	84
1350	739	C27 H31 Cl N4 O2	479	19	66
1351	740	C24 H31 Cl N4 O5	489	23	77
1352	741	C23 H27 Cl N4 O4 S	491	26	88
1353	742	C24 H30 Cl N3 O3 S	476	23	82
1354	743	C23 H28 Cl N3 O3	430	21	81
1355	744	C26 H32 Cl N3 O2	454	25	91
1356	745	C27 H36 Cl N3 O3	486	23	80
1357	746	C26 H35 Cl N4 O2	471	27	96
1358	747	C25 H29 Cl F3 N3 O3	512	23	74
1359	748	C23 H28 Cl N3 O2 S	446	22	82
1360	751	C24 H30 Cl N3 O3	444	3	11
1361	752	C25 H26 Cl F6 N3 O3	566	7	20
1362	753	C24 H27 Cl N4 O3	455	6	22
1363	754	C23 H27 Cl2 N3 O3	464	8	29
1364	755	C24 H30 Cl N3 O4	460	6	22
1365	756	C23 H27 Cl N4 O5	475	5	18
1366	757	C25 H32 Cl N3 O4	474	5	18

1367	758	C25 H30 C1 N3 O5	488	5	18
1368	759	C24 H27 C1 F3 N3 O4	514	6	20
1369	760	C24 H26 C1 F4 N3 O3	516	6	18
1370	761	C24 H26 C1 F4 N3 O3	516	3	10
1371	762	C24 H27 C1 F3 N3 O3	498	2	95
1372	763	C23 H28 C1 N3 O3	430	4	95
1373	764	C24 H30 C1 N3 O2	428	9	42
1374	765	C25 H32 C1 N3 O2	442	10	47
1375	766	C25 H29 C1 F3 N3 O2	496	10	42
1376	767	C25 H32 C1 N3 O4 S	506	8	32
1377	768	C24 H29 Br C1 N3 O2	506	9	35
1378	769	C25 H29 C1 F3 N3 O3	512	6	22
1379	770	C25 H28 C1 F4 N3 O2	514	3	10
1380	771	C25 H28 C1 F4 N3 O2	514	10	37
1381	772	C25 H29 C1 F3 N3 O2	496	8	33
1382	773	C26 H36 C1 N3 O3	474	10	41
1383	774	C23 H30 C1 N3 O2 S2	480	12	50
1384	775	C27 H38 C1 N3 O3	488	14	57
1385	776	C29 H34 C1 N3 O3	508	12	49
1386	777	C24 H29 C1 F3 N3 O3	500	22	87
1387	778	C24 H28 C12 N4 O4	507	6	22
1388	779	C24 H29 C12 N3 O2	462	10	46
1389	780	C24 H29 C1 N4 O4	473	15	65
1390	781	C26 H31 C1 N4 O2	467	7*	20
1391	782	C25 H32 C1 N3 O3	458	8*	23
1392	783	C26 H34 C1 N3 O3	472	7*	19
1393	784	C26 H31 C1 F3 N3 O2	510	7*	17
1394	785	C26 H34 C1 N3 O4	488	6*	17
1395	786	C24 H28 C1 N3 O2	426	22	9
1396	787	C25 H30 C1 N3 O2	440	21	94
1397	788	C25 H27 C1 F3 N3 O2	494	4*	14
1398	789	C25 H30 C1 N3 O4 S	504	9	35
1399	790	C24 H27 C12 N3 O2	460	5*	16
1400	791	C24 H27 C1 N4 O4	471	3*	10
1401	792	C25 H27 C1 F3 N3 O3	510	5*	16
1402	793	C25 H26 C1 F4 N3 O2	511	5*	16
1403	794	C25 H26 C1 F4 N3 O2	512	5*	16
1404	795	C25 H27 C1 F3 N3 O2	494	6*	21
1405	796	C23 H28 C1 N3 O2 S2	478	4*	14

1406	797	C27 H36 Cl N3 O3	486	7*	29
1407	798	C29 H32 Cl N3 O3	506	3	13
1408	799	C24 H27 Cl F3 N3 O3	498	3*	11
1409	800	C24 H26 Cl2 N4 O4	505	5*	15
1410	801	C26 H29 Cl N4 O2	465	12	41
1411	802	C25 H30 Cl N3 O3	456	5*	15
1412	803	C26 H32 Cl N3 O3	470	6*	16
1413	804	C26 H29 Cl F3 N3 O2	508	8*	20
1414	805	C26 H32 Cl N3 O4	486	6*	15
1415	806	C24 H27 Br Cl N3 O2	506	5*	14
1416	807	C27 H32 Cl N5 O3	510	29.7	定量的
1417	808	C26 H33 Cl N4 O3	485	29.9	定量的
1418	809	C25 H30 Cl2 N4 O3	505	30.2	定量的
1419	810	C30 H35 Cl N4 O4	551	31.0	定量的
1420	811	C25 H29 Cl2 N5 O5	550	30.4	定量的
1421	812	C24 H31 Cl N4 O3 S2	523	25.0	88
1422	813	C26 H30 Cl F3 N4 O3	539	20.5	70
1423	814	C26 H30 Cl F3 N4 O4	555	22.7	75
1424	815	C26 H29 Cl F4 N4 O3	557	25.8	85
1425	816	C26 H30 Cl F3 N4 O3	539	25.3	86
1426	817	C26 H29 Cl F4 N4 O3	557	26.8	88
1427	818	C25 H30 Br Cl N4 O3	551	27.1	90
1428	819	C27 H29 Cl F6 N4 O3	607	13.9	42
1429	820	C25 H30 Cl N5 O5	516	14.1	51
1430	821	C24 H28 Cl2 N4 O5	523	40	86
1431	822	C23 H30 Cl N3 O3 S2	496	41	93
1432	823	C26 H31 Cl N4 O3	483	43	定量的
1433	824	C27 H38 Cl N3 O4	503	37	83
1434	825	C29 H34 Cl N3 O4	524	28	61
1435	826	C24 H29 Cl F3 N3 O4	516	40	87
1436	827	C26 H31 Cl N4 O3	483	31	72
1437	828	C25 H29 Cl F3 N3 O4	528	40	86
1438	829	C25 H28 Cl F4 N3 O3	530	45	97
1439	830	C25 H28 Cl F4 N3 O3	530	35	74
1440	831	C24 H29 Br Cl N3 O3	523	45	98
1441	832	C24 H29 Cl2 N3 O3	478	38	91
1442	833	C24 H29 Cl N4 O5	488	38	87
1443	834	C25 H29 Cl F3 N3 O3	512	42	93
1444	835	C24 H30 Cl N3 O3	444	43	定量的

1445	836	C25 H32 C1 N3 O3	458	37	91
1446	837	C25 H29 C1 F3 N3 O3	512	41	91
1447	838	C26 H34 C1 N3 O4	488	34	78
1448	839	C27 H36 C1 N3 O6	534	37	71
1449	942	C27 H30 C1 F6 N3 O2	578	17	48
1450	997	C26 H34 C1 N3 O2	456	7.6*	23
1451	998	C27 H33 C1 F3 N3 O2	524	6	15
1452	999	C27 H36 C1 N3 O2	470	8	24
1453	1000	C27 H36 C1 N3 O3	486	9	24
1454	1001	C28 H38 C1 N3 O3	500	4	10
1455	1002	C27 H33 C1 F3 N3 O3	540	9	23
1456	1003	C28 H38 C1 N3 O2	484	7	21
1457	1004	C28 H38 C1 N3 O4	516	11	30
1458	1005	C29 H40 C1 N3 O5	547	9	23
1459	1006	C30 H42 C1 N3 O4	544	8	21
1460	1007	C32 H46 C1 N3 O5	589	7	17
1461	1008	C25 H31 C1 N4 O3	471	25	79
1462	1009	C26 H33 C1 N4 O4	501	35	97
1463	1010	C27 H35 C1 N4 O4	515	35	9
1464	1011	C27 H35 C1 N4 O3	499	32	54
1465	1012	C27 H35 C1 N4 O5	531	27	77
1466	1013	C28 H37 C1 N4 O6	561	14	37
1467	1014	C29 H39 C1 N4 O5	559	24	66
1468	1015	C31 H43 C1 N4 O6	603	25	65
1469	1018	C26 H34 C1 N3 O4	488	13.0*	39
1470	1019	C28 H38 C1 N3 O5	532	13.4*	37
1471	1020	C25 H32 C1 N3 O4	474	12.7*	40
1472	1021	C26 H28 C1 F6 N3 O4	596	13.8*	34
1473	1022	C25 H32 C1 N3 O4	474	14.2*	37
1474	1023	C25 H32 C1 N3 O2	442	11.5*	32
1475	1024	C26 H34 C1 N3 O5	504	12.0*	30
1476	1025	C27 H36 C1 N3 O4	502	14.7*	37
1477	1026	C29 H40 C1 N3 O5	546	13.5*	32
1478	1027	C26 H34 C1 N3 O4	488	11.9*	31
1479	1028	C27 H30 C1 F6 N3 O4	610	14.6*	31
1480	1029	C25 H32 C1 N3 O3	458	14.0*	38
1481	1030	C24 H27 C1 F3 N3 O3	498	14.0*	35
1482	1031	C24 H30 C1 N3 O3	444	10.4*	29
1483	1032	C25 H32 C1 N3 O4	474	14.9*	39

1484	1033	C25 H32 Cl N3 O2	442	13.3*	37
1485	1034	C26 H34 Cl N3 O5	504	13.7*	34
1486	1035	C27 H36 Cl N3 O4	502	16.7*	42
1487	1036	C29 H40 Cl N3 O5	547	15.5*	36
1488	1037	C26 H34 Cl N3 O4	488	14.1*	36
1489	1038	C27 H30 Cl F6 N3 O4	610	17.5*	37
1490	1039	C25 H32 Cl N3 O3	458	15.1*	41
1491	1040	C24 H27 Cl F3 N3 O3	498	15.4*	39
1492	1041	C24 H30 Cl N3 O3	444	12.7*	35
1493	1042	C22 H26 Br Cl N4 O2	495	10.4*	25
1494	1043	C22 H26 Cl2 N4 O2	449	11.1*	29
1495	1044	C23 H29 Cl N4 O2	429	5.2*	14
1496	1045	C23 H29 Cl N4 O3	445	12.4*	33
1497	1046	C22 H25 Cl3 N4 O2	483	10.0*	25
1498	1047	C24 H31 Cl N4 O2	443	12.1*	32
1499	1048	C25 H33 Cl N4 O5	505	16.1*	39
1500	1049	C23 H28 Br Cl N4 O2	507	12.0*	29
1501	1050	C28 H38 Cl N3 O4	516	39.2*	定量的
1502	1051	C28 H38 Cl N3 O2	484	34.0*	定量的
1503	1052	C29 H40 Cl N3 O5	546	14.5*	39
1504	1053	C30 H42 Cl N3 O4	544	11.8*	32
1505	1054	C32 H46 Cl N3 O5	588	12.2*	31
1506	1055	C29 H40 Cl N3 O4	530	44.5*	定量的
1507	1056	C30 H36 Cl F6 N3 O4	652	46.0*	定量的
1508	1057	C28 H38 Cl N3 O3	500	11.2*	32
1509	1058	C27 H36 Cl N3 O3	486	35.5*	定量的
1510	1059	C27 H33 Cl F3 N3 O3	540	41.4*	定量的
1511	1060	C29 H40 Cl N3 O4	530	13.6*	37
1512	1061	C30 H36 Cl F6 N3 O4	652	44.2*	定量的
1513	1062	C28 H38 Cl N3 O3	500	39.9*	定量的
1514	1063	C27 H36 Cl N3 O3	486	12.0*	35
1515	1064	C27 H33 Cl F3 N3 O3	540	37.8*	定量的
1516	1065	C28 H38 Cl N3 O4	516	12.3*	34
1517	1066	C28 H38 Cl N3 O2	484	30.7*	90
1518	1067	C29 H40 Cl N3 O5	546	13.8*	37
1519	1068	C30 H42 Cl N3 O4	544	13.1*	35
1520	1069	C32 H46 Cl N3 O5	589	14.1*	35
1521	1070	C29 H34 Cl N3 O3 S2	572	38.3	93
1522	1071	C32 H35 Cl N4 O3	559	39.6	98

1523	1072	C33 H42 Cl N3 O4	580	40.9	98
1524	1073	C35 H38 Cl N3 O4	600	40.5	94
1525	1074	C30 H33 Cl F3 N3 O4	592	38.7	91
1526	1075	C31 H33 Cl F3 N3 O4	604	38	87
1527	1076	C30 H33 Cl N4 O5	565	38.5	94
1528	1077	C31 H33 Cl F3 N3 O3	588	35.8	84
1529	1078	C30 H34 Cl N3 O3	520	34.7	93
1530	1079	C31 H36 Cl N3 O3	534	38.4	定量的
1531	1080	C32 H38 Cl N3 O4	564	39.3	97
1532	1081	C33 H40 Cl N3 O6	610	45.5	定量的
1533	1082	C28 H36 Cl N3 O3	498	4.1*	10
1534	1083	C28 H36 Cl N3 O3	498	6.4*	16
1535	1125	C30 H32 Cl2 N4 O5	599	3.4*	8
1536	1126	C30 H32 Br Cl N4 O5	644	3.4*	7
1537	1127	C32 H35 Cl N4 O3	559	1.6*	4
1538	1128	C31 H32 Cl F4 N3 O3	606	4.3*	10
1539	1129	C31 H32 Cl F4 N3 O3	606	5.9*	14
1540	1130	C30 H33 Br Cl N3 O3	599	5.7*	13
1541	1131	C30 H33 Cl2 N3 O3	554	6.4*	16
1542	1132	C31 H33 Cl F3 N3 O3	588	6.3*	15
1543	1167	C27 H34 Cl N3 O3	484	1.8*	4

*トリフルオロ酢酸塩の収率。

[実施例 1544] 1-(4-クロロベンジル)-4-[N-(3, 5-ビス(トリフルオロメチル)ベンゾイル)グリシル]アミノメチルピペリジン(化合物番号 1213)の合成

3, 5-ビス(トリフルオロメチル)ベンゾイルクロリド(0. 058 mmol)のジクロロメタン(1 mL)溶液を、1-(4-クロロベンジル)-4-[グリシルアミノ]メチルピペリジン(0. 050 mmol)、クロロホルム(0. 2 mL)、ピペリジノメチルポリスチレン(58 mg)、ジクロロメタン(0. 7 10 5 mL)の混合物に加えた。この反応混合物を室温で2時間攪拌した後、メタノール(1. 0 mL)を加え、室温で30分攪拌した。反応混合物をVarian™ S CXカラムに負荷し、メタノール(1.6 mL)で洗浄した。生成物を、2M NH₃のメタノール(6 mL)溶液を用いて溶出し、濃縮することにより、1-(4-クロロベンジル)-4-[N-(3, 5-ビス(トリフルオロメチル)ベンゾイル)

) グリシル] アミノメチル] ピペリジン (化合物番号 1213) (24.0 mg, 90%) を得た。純度を RPLC/MS にて求めた (100%)。ESI/MS m/e 536.2 ($M^+ + H$, $C_{24}H_{24}ClF_6N_3O_2$)

[実施例 1545-1547]

5 本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 1544 の方法に従って合成した。ESI/MS データ、収量、および収率を表 28 にまとめた。

表 28

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1545	1214	$C_{23}H_{24}ClF_4N_3O_3$	486.2	22.2	91
1546	1215	$C_{22}H_{24}Cl_3N_3O_2$	467.9	20.9	89
1547	1216	$C_{22}H_{24}ClF_2N_3O_2$	436.0	19.3	89

10

[実施例 1548] 4-[[N-(3-ブロモ-4-メチルベンゾイル) グリシル] アミノメチル] -1-(4-クロロベンジル] ピペリジン (化合物番号 1113) の合成

15 1-(4-クロロベンジル) -4-[(グリシルアミノ) メチル] ピペリジン (0.050 mmol) のクロロホルム (1.35 mL) および tert-ブタノール (0.15 mL) の溶液に、3-ブロモ-4-メチル安息香酸 (0.060 mmol)、ジイソプロピルカルボジイミド (0.060 mmol)、および HOBt (0.060 mmol) を加えた。この反応混合物を室温で 15 時間攪拌した。混合物を Variant™ SCX カラムに負荷し、メタノール/クロロホルム = 1 : 1 (12 mL) およびメタノール (12 mL) で洗浄した。生成物を、2M NH_3 のメタノール (5 mL) 溶液を用いて溶出し、濃縮することにより、4-[[N-(3-ブロモ-4-メチルベンゾイル) グリシル] アミノメチル] -1-(4-クロロベンジル] ピペリジン (化合物番号 1113) を得た (16.1 mg, 65%)。純度を RPLC/MS にて求めた (95%)。ESI/MS m/e 494.

20 25 0 ($C_{23}H_{27}BrClN_3O_2$)

[実施例 1549-1619]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 1

548の方法に従って合成した。必要であれば、分取TLCにより精製して目的物を得た。ESI/MSデータ、収量、および収率を表29にまとめた。

化合物番号1422は化合物番号1418の副生成物として得られた：5.6mg、収率25%；ESI/MS m/e 447.2 ($C_{22}H_{27}ClN_4O_2S$)

表 29

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1549	1114	$C_{22}H_{24}BrClFN_3O_2$	498.0	20.2	81
1550	1115	$C_{22}H_{24}Cl_2FN_3O_2$	452.2	18.6	82
1551	1116	$C_{23}H_{27}ClIN_3O_2$	539.1	21.9	81
1552	1117	$C_{23}H_{27}ClN_4O_4$	459.2	18.7	81
1553	1187	$C_{23}H_{27}BrClN_3O_2$	494.0	22.1	90
1554	1188	$C_{24}H_{27}ClN_4O_3$	455.2	17.2	76
1555	1189	$C_{25}H_{29}ClN_4O_3$	469.2	21.1	90
1556	1190	$C_{22}H_{26}ClFN_4O_2$	433.2	20.4	94
1557	1241	$C_{23}H_{24}Cl_2F_3N_3O_2$	502.0	22.5	90
1558	1242	$C_{23}H_{27}ClFN_3O_2$	432.2	21.2	98
1559	1243	$C_{23}H_{27}Cl_2N_3O_2$	448.0	21.6	96
1560	1244	$C_{22}H_{26}ClIN_4O_2$	541.0	26.4	98
1561	1245	$C_{22}H_{25}ClF_2N_4O_2$	451.0	21.3	94
1562	1246	$C_{21}H_{27}ClN_4O_2$	403.2	19.4	96
1563	1247	$C_{26}H_{30}ClN_3O_2S$	524.0	24.7	94
1564	1248	$C_{22}H_{25}ClN_4O_5$	461.0	20.7	90
1565	1282	$C_{25}H_{26}ClF_3N_4O_3$	523.2	25.0	96
1566	1283	$C_{23}H_{27}Cl_2N_3O_3$	464.2	12.2	53
1567	1284	$C_{22}H_{25}BrClN_3O_3$	496.0	24.1	97
1568	1285	$C_{22}H_{25}Cl_2N_3O_3$	450.2	21.8	97
1569	1342	$C_{22}H_{24}BrCl_2N_3O_2$	514.0	27.2	定量的
1570	1343	$C_{23}H_{27}Cl_2N_3O_2$	448.0	21.4	95
1571	1344	$C_{22}H_{24}Cl_2IN_3O_2$	560.0	27.0	96
1572	1345	$C_{23}H_{26}ClN_3O_2$	430.2	23.8	定量的
1573	1346	$C_{22}H_{25}ClIN_3O_3$	542.0	29.4	定量的
1574	1350	$C_{21}H_{26}ClN_3O_2S$	420.0	13.0	62
1575	1354	$C_{24}H_{28}BrClN_4O_3$	537.2	5.2	19
1576	1358	$C_{23}H_{26}ClN_5O_2$	440.2	21.8	99
1577	1383	$C_{23}H_{24}Cl_2F_3N_3O_2$	502.0	20.0	80
1578	1384	$C_{20}H_{23}BrClN_3O_2S$	486.0	21.0	87

1579	1385	C ₂₈ H ₃₀ ClN ₃ O ₄ S	540.2	23.8	88
1580	1386	C ₂₈ H ₃₀ ClN ₃ O ₂	476.0	20.0	84
1581	1414	C ₂₄ H ₂₈ Cl ₂ N ₄ O ₃	491.0	0.8	3
1582	1418	C ₂₃ H ₂₆ ClN ₅ O ₂ S	472.0	10.4	44
1583	1436	C ₂₉ H ₃₀ ClN ₃ O ₃	504.2	26.8	定量的
1584	1600	C ₂₃ H ₂₆ ClF ₃ N ₄ O ₂	483.2	16.5	68
1585	1601	C ₂₃ H ₂₆ ClF ₃ N ₄ O ₃	499.0	20.0	80
1586	1602	C ₂₁ H ₂₄ BrClN ₄ O ₂	481.0	18.1	75
1587	1603	C ₂₁ H ₂₄ C ₁₂ N ₄ O ₂	435.0	5.5	25
1588	1604	C ₂₇ H ₃₀ ClN ₃ O ₃	492.0	18.6	76
1589	1605	C ₂₁ H ₂₇ ClN ₄ O ₂	415.2	18.1	87
1590	1609	C ₂₃ H ₂₅ N ₃ O ₂ S	500.0	18.3	73
1591	1659	C ₂₂ H ₂₆ C ₁₂ N ₄ O ₂	449.0	366.0	83
1592	1664	C ₂₄ H ₂₉ F ₃ N ₄ O ₂ S	495.2	13.7	55
1593	1665	C ₂₄ H ₂₉ F ₃ N ₄ O ₃ S	511.2	14.9	58
1594	1666	C ₂₃ H ₂₈ F ₂ N ₄ O ₂ S	463.2	12.9	56
1595	1667	C ₂₂ H ₂₇ Br ₂ N ₃ O ₃	542	26.1	96
1596	1668	C ₂₄ H ₃₀ F ₂ N ₄ O ₂	445	22.9	定量的
1597	1669	C ₂₄ H ₃₁ FN ₄ O ₂	427	24.0	定量的
1598	1670	C ₂₄ H ₃₁ IN ₄ O ₂	535	28.1	定量的
1599	1671	C ₂₅ H ₃₁ F ₃ N ₄ O ₃	493	26.8	定量的
1600	1672	C ₂₅ H ₃₁ F ₃ N ₄ O ₂	478	24.7	定量的
1601	1673	C ₂₄ H ₂₉ BrClN ₃ O ₂	508	24.9	98
1602	1674	C ₂₀ H ₂₂ Br ₂ FN ₃ O ₃	532	25.6	96
1603	1675	C ₂₂ H ₂₅ F ₃ N ₄ O ₂	435	21.5	99
1604	1676	C ₂₂ H ₂₆ F ₂ N ₄ O ₂	417	21.4	定量的
1605	1677	C ₂₂ H ₂₆ BrFN ₄ O ₂	479	23.4	98
1606	1678	C ₂₂ H ₂₆ FI N ₄ O ₂	525	27.4	定量的
1607	1679	C ₂₂ H ₂₆ ClFN ₄ O ₂	433	22.4	定量的
1608	1680	C ₂₃ H ₂₆ F ₄ N ₄ O ₃	483	25.5	定量的
1609	1681	C ₂₃ H ₂₆ F ₄ N ₄ O ₂	467	23.2	99
1610	1682	C ₂₃ H ₂₆ BrClFN ₃ O	498	24.2	98
1611	1683	C ₂₇ H ₂₈ Br ₂ N ₄ O ₄	633	31.8	定量的
1612	1684	C ₂₉ H ₃₁ F ₂ N ₅ O ₃	536	28.3	定量的
1613	1685	C ₂₉ H ₃₂ FN ₅ O ₃	518	31.1	定量的
1614	1686	C ₂₉ H ₃₂ BrN ₅ O ₃	578	29.6	定量的
1615	1687	C ₂₉ H ₃₂ I N ₅ O ₃	626	32.4	定量的
1616	1688	C ₂₉ H ₃₂ ClN ₅ O ₃	534	28.2	定量的
1617	1689	C ₃₀ H ₃₂ F ₃ N ₅ O ₄	584	31.7	定量的

1618	1690	C30 H32 F3 N5 O3	568	30.6	定量的
1619	1691	C29 H30 Br Cl N4 O3	599	31.4	定量的

例えば、化合物番号 1245 と 1600 は下記のNMRスペクトラムを示した。

化合物番号 1245 : ^1H NMR (270 MHz, CDCl₃) δ 1.20-1.97(m, 7H), 2.80-2.86(m, 2H), 3.19(t, J = 6.5 Hz, 2H), 3.43(s, 2H), 4.02(d, J = 5.3 Hz, 2H), 5.52(br s, 2H), 6.44(d, J = 11.9, 6.6 Hz, 1H), 7.02(br s, 1H), 7.21-7.32(m, 5H)

化合物番号 1600 : ^1H NMR (270 MHz, CDCl₃) δ 1.25-1.97(m, 9H), 2.82-2.87(m, 2H), 3.21(t, J = 6.5 Hz, 2H), 3.44(s, 2H), 4.06(d, J = 5.1 Hz, 2H), 5.98(br s, 1H), 6.71(d, J = 8.3 Hz, 1H), 6.87(br s, 1H), 7.26(s, 4H), 7.43(dd, J = 5.9 Hz, 1H), 7.64(s, 1H)

[実施例 1620] 1-(4-クロロベンジル)-4-[N-(4-イソプロピルフェニルスルホニル)グリシル]アミノメチル]ピペリジン(化合物番号 869)の合成 .

1 - (4-クロロベンジル) - 4 - [(グリシルアミノ) メチル] ピペリジン (14.8 mg、0.05 mmol) のクロロホルム (2 mL) 溶液に、(ピペリジノメチル) ポリスチレン樹脂 (28 mg、2.8 mmol/g) と 4-イソプロピルベンゼンスルホニルクロリド (1.5 当量) を加え、25°Cで16時間攪拌した。濾過後、濃縮することにより、1 - (4-クロロベンジル) - 4 - [[N - (4-イソプロピルフェニルスルホニル) グリシル] アミノメチル] ピペリジン(化合物番号 869) (22.1 mg、92%)を得た。純度を RPLC/MS にて求めた (86%)。ESI/MS m/e 478 (M⁺+H, C₂₄H₃₂N₃O₃S)

[実施例 1621-1627]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 1620 の方法に従って合成した。ESI/MS データ、収量、および収率を表 30 にまとめた。

表 30

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1621	865	C ₂₂ H ₂₈ ClN ₃ O ₃ S	450	16.2	72

1622	866	C22 H25 Cl F3 N3 O3 S	504	8.8	35
1623	867	C23 H24 Cl F6 N3 O3 S	572	8.0	28
1624	868	C23 H30 Cl N3 O3 S	464	9.6	41
1625	870	C22 H28 Cl N3 O3 S	450	8.8	39
1626	871	C25 H34 Cl N3 O3 S	492	11.1	45
1627	872	C21 H26 Cl N3 O3 S	436	9.6	44

[実施例 1628] 1-(4-クロロベンジル)-4-[2-(3-(4-ト
リフルオロメチルフェニル)ウレイド)アセチルアミノ]メチル]ピペリジン(化
合物番号 852)の合成

5 1-(4-クロロベンジル)-4-[グリシルアミノ]メチル]ピペリジン(1
14.8 mg、0.05 mmol)のクロロホルム(2 mL)溶液に、(ピペリジ
ノメチル)ポリスチレン樹脂(28 mg、2.8 mmol/g)、3-(トリフル
オロメチル)フェニルイソシアネート(1.3当量)を加え、25°Cで16時間攪
拌した。(アミノメチル)ポリスチレン樹脂を加え、25°Cで16時間攪拌し、残
10 余のイソシアネートを捕捉した。濾過および濃縮により、1-(4-クロロベンジ
ル)-4-[2-(3-(4-トリフルオロメチルフェニル)ウレイド)アセチ
ルアミノ]メチル]ピペリジン(化合物番号 852)(19 mg、78%)を得た
。純度を RPLC/MS にて求めた(92%)。ESI/MS m/e 483 (M⁺+H、C₂₃H₂₆ClF₃N₄O₂)

15 [実施例 1629-1641]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 1
628 の方法に従って合成した。ESI/MS データ、収量、および収率を表 31
にまとめた。

表 31

20

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1629	851	C23 H26 Cl F3 N4 O2	483	13.2	55
1630	853	C22 H27 Cl N4 O2	416	8.5*	32
1631	854	C23 H29 Cl N4 O2	429	11.4*	42
1632	855	C23 H29 Cl N4 O2	429	10.1*	37
1633	856	C24 H29 Cl N4 O3	457	10.3*	36
1634	857	C23 H29 Cl N4 O3	445	10.9*	39

1635	858	C23 H29 Cl N4 O3	445	8.6*	31
1636	859	C22 H26 Cl2 N4 O2	449	11.0*	39
1637	860	C23 H26 Cl N5 O2	440	9.2*	33
1638	861	C22 H27 Cl N4 O S	431	13.3	62
1639	862	C23 H29 Cl N4 O S	445	15.3	69
1640	863	C23 H29 Cl N4 O2 S	461	14.7	64
1641	864	C23 H29 Cl N4 O2 S	461	13.1	57

* トリフルオロ酢酸塩の収率。

[実施例 1642] 1-(4-クロロベンジル)-4-[N-(3-エトキシベンゾイル)-D-フェニルアラニル]アミノメチル]ピペリジン(化合物番号 2091)の合成

1 - (4-クロロベンジル) - 4 - (アミノメチル) ピペリジン (100 mg) のクロロホルム (3 mL) 溶液に、トリエチルアミン (0.090 mL)、N-(tert-ブトキシカルボニル) - D - (フェニルアラニン) (122 mg)、EDCI (89 mg)、およびHOBt (62 mg) を加え、室温で 17 時間攪拌した。この反応混合物を 1M NaOH 水溶液 (2 mL × 2) と食塩水 (2 mL) で洗浄し、有機層を乾燥、濃縮することにより、1 - (4-クロロベンジル) - 4 - [N-(tert-ブトキシカルボニル) - D-フェニルアラニル]アミノメチル]ピペリジンを得た。

得られた 1 - (4-クロロベンジル) - 4 - [N-(tert-ブトキシカルボニル) - D-フェニルアラニル]アミノメチル]ピペリジンをメタノール (5 mL) に溶解し、4M HCl のジオキサン溶液を加えた。この溶液を室温で 19 時間攪拌し濃縮した。

得られた残さと 3-エトキシ安息香酸 (80 mg、0.48 mmol) のクロロホルム溶液 (1 mL) にトリエチルアミン (0.090 mL)、EDCI (90 mg)、およびHOBt (68 mg) を加え、室温で 17 時間攪拌した。この反応混合物を 1M NaOH 水溶液 (1.5 mL × 2) と食塩水 (1.5 mL) で洗浄し、有機層を乾燥、濃縮した。カラムクロマトグラフィー (SiO₂、ジクロロメタン / メタノール = 95 : 5) により精製し、1 - (4-クロロベンジル) - 4 - [N-(3-エトキシベンゾイル) - D-フェニルアラニル]アミノメチル]ピペリジン (化合物番号 2091) (183.5 mg、82%)を得た。純度を RPLC

/MSにて求めた(99%)。ESI/MS m/e 534.0 ($M^+ + H$ 、 $C_{31}H_{36}ClN_3O_3$)

[実施例 1643-1657]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 1
5 642 の方法に従って合成した。ESI/MSデータ、収量、および収率を表32
にまとめた。

表 32

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1643	2092	$C_{33}H_{37}ClN_4O_3$	572.8	152.9	64
1644	2093	$C_{27}H_{36}ClN_3O_3S$	518.0	177.4	82
1645	2094	$C_{29}H_{34}ClN_3O_3S$	539.9	164.4	73
1646	2095	$C_{28}H_{38}ClN_3O_3$	500.0	139.1	66
1647	2096	$C_{31}H_{42}ClN_3O_3$	540.0	161.7	71
1648	2097	$C_{27}H_{36}ClN_3O_3$	485.8	157.8	78
1649	2098	$C_{31}H_{35}Cl_2N_3O_3$	567.9	172.2	72
1650	2099	$C_{30}H_{34}ClN_3O_3$	519.8	144.7	66
1651	2100	$C_{32}H_{38}ClN_3O_4$	564.0	181.5	77
1652	2101	$C_{38}H_{42}ClN_3O_4$	639.9	192.3	72
1653	2103	$C_{33}H_{40}ClN_3O_4$	577.8	159.9	66
1654	2104	$C_{28}H_{36}ClN_3O_5$	530.1	99.7	45
1655	2115	$C_{27}H_{36}ClN_3O_3$	486.2	122.9	60
1656	2116	$C_{28}H_{38}ClN_3O_3$	500.1	118.3	57
1657	2117	$C_{28}H_{34}ClN_5O_3$	524.1	98.3	45

10 [参考例 29] 1-(tert-ブトキシカルボニル)-4-[N-(3-(トリフルオロメチル)ベンゾイル)グリシン]アミノメチル]ピペリジンの合成
N-(3-(トリフルオロメチル)ベンゾイル)グリシン(4.22g、17.0mmol)、EDCI(4.25g、22.1mmol)、1-ヒドロキシベンゾトリアゾール水化物(2.99g、22.1mmol)、およびトリエチルアミン(1.72g)を、1-(tert-ブトキシカルボニル)-4-(アミノメチル)ピペリジン(4.03g)の乾燥ジクロロメタン(200mL)溶液に加えた。この反応混合物を25℃で20時間攪拌した後、H₂O(100mL)を加え、ジ

クロロメタン (50 mL × 2) で抽出した。抽出物を合わせて、H₂O (50 mL × 2) と食塩水 (50 mL) で洗浄し、乾燥 (Mg SO₄)、濃縮することにより、黄色油状物を得た。これをカラムクロマトグラフィー (SiO₂、70% 酢酸エチル-ヘキサン) にて精製し、1-(tert-ブトキシカルボニル)-4-[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチルピペリジンを白色の固体として得た (6, 3.9 g, 85%) : ¹H NMR (CDCl₃, 300 MHz) δ 1.4 (s, 9H), 1.0-1.8 (m, 5H), 2.6-2.8 (m, 2H), 3.15-3.3 (m, 2H), 4.0-4.3 (m, 4H), 6.6-6.7 (m, 1H), 7.64 (s, 1H), 7.60 (dd, 1H, J = 7.2, 7.2 Hz), 7.79 (d, 1H, J = 7.2 Hz), 8.0 (d, 1H, J = 7.2 Hz), 8.11 (s, 1H); 純度はRPLC/MSにて求めた (97%)。ESI/MS m/e 444.3 (M⁺+H, C₂₁H₂₈N₃O₄)

[参考例30] 4-[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチルピペリジンの合成

1-(tert-ブトキシカルボニル)-4-[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチルピペリジン (2, 2.9 g, 5.16 mmol) のメタノール (40 mL) 溶液に、1M HCl-Et₂O (55 mL) を加え、25°Cで15時間攪拌した後、溶媒を減圧下に除去した。2M NaOH 水溶液 (100 mL) を加え、酢酸エチル (100 mL × 3) で抽出した。抽出液を合わせ、食塩水 (50 mL) で洗浄し、乾燥 (K₂CO₃) 濃縮することにより、白色の固体を得た。これをカラムクロマトグラフィー (SiO₂、メタノール/ジクロロメタン/トリエチルアミン = 7 : 6 : 1) により精製し、4-[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチルピペリジンを白色固体として得た (1, 2.7 g, 72%)。純度はRPLC/MSにて求めた (98%)。ESI/MS m/e 344.1 (M⁺+H, C₁₆H₂₀N₃O₂)

[実施例1658] 1-[3-(トリフルオロメトキシ)ベンジル]-4-[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチルピペリジン(化合物番号927)の合成

4-[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチルピペリジン (19.9 mg, 0.058 mmol) のアセトニトリル (1.0 mL) 溶液と (ピペリジノメチル)ポリスチレン (55 mg, 2.7 mmol 塩基/g レジン) を、3-(トリフルオロメトキシ)ベンジルプロミド (12.3 mg,

、0.048mmol) のアセトニトリル (1.0mL) 溶液に加え60°Cで2.5時間攪拌した。フェニルイソシアネート (6.9mg、0.048mmol) を冷却した反応混合物に加え、25°Cで1時間攪拌した後、反応混合物をVarian™ SCXカラムに負荷し、メタノール (20mL) で洗浄した。生成物を2M NH₃のメタノール溶液で溶出し、濃縮することにより、1-[3-(トリフルオロメトキシ)ベンジル]-4-[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン (化合物番号927) を黄白色油状物として得た (22.8mg、91%)。純度はRPLC/MSにて求めた (99%)。ESI/MS m/e 518.1 (M⁺+H, C₂₄H₂₅F₆N₃O₃)

10 [実施例1659-1710]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例1658に従って合成した。ESI/MSデータ、収量、および収率を表33にまとめた。

表 33

15

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1659	875	C ₂₃ H ₂₆ F ₃ N ₃ O ₂	434	6.3	40
1660	876	C ₂₃ H ₂₅ BrF ₃ N ₃ O ₂	512	4.3	23
1661	877	C ₂₄ H ₂₅ F ₃ N ₄ O ₂	459	11.3	68
1662	878	C ₂₃ H ₂₅ F ₃ N ₄ O ₄	479	8.3	48
1663	884	C ₂₅ H ₂₉ F ₃ N ₄ O ₃	491	10.8	61
1664	885	C ₂₄ H ₂₈ F ₃ N ₃ O ₄ S	512	9.0	49
1665	886	C ₂₃ H ₂₅ F ₄ N ₃ O ₂	452	12.7	78
1666	887	C ₂₄ H ₂₅ F ₆ N ₃ O ₂	502	13.9	77
1667	888	C ₂₃ H ₂₆ F ₃ N ₃ O ₃	450	11.5	71
1668	889	C ₂₉ H ₃₀ F ₃ N ₃ O ₂	510	12.4	68
1669	890	C ₂₇ H ₂₈ F ₃ N ₃ O ₂	484	12.0	69
1670	891	C ₂₃ H ₂₄ C ₁₂ F ₃ N ₃ O ₂	502	11.4	63
1671	892	C ₂₄ H ₂₈ F ₃ N ₃ O ₃	464	11.7	70
1672	893	C ₂₄ H ₂₆ F ₃ N ₅ O ₅	522	13.9	74
1673	894	C ₂₆ H ₃₂ F ₃ N ₃ O ₃	492	11.3	64
1674	895	C ₂₄ H ₂₈ F ₃ N ₃ O ₂	448	4.8	30
1675	896	C ₂₄ H ₂₅ F ₃ N ₄ O ₂	459	17.5	定量的
1676	897	C ₂₄ H ₂₆ F ₃ N ₃ O ₄	478	9.2	57

1677	898	C24 H26 F3 N3 O4	478	8.9	55
1678	899	C24 H28 F3 N3 O3	464	13.7	82
1679	900	C25 H28 F3 N3 O4	492	18.6	定量的
1680	901	C29 H30 F3 N3 O2	510	13.7	75
1681	902	C23 H24 F3 N5 O6	524	12.6	67
1682	903	C25 H30 F3 N3 O4	494	14.0	79
1683	906	C25 H30 F3 N3 O2	462	11.2	67
1684	907	C31 H34 F3 N3 O2	538	19.6	75
1685	908	C30 H31 F3 N4 O3	553	30.4	76
1686	909	C30 H31 F3 N4 O3	553	12.6	63
1687	910	C23 H24 Cl2 F3 N3 O2	502	11.0	61
1688	911	C23 H25 Cl F3 N3 O2	468	20.2	89
1689	912	C23 H24 Br2 F3 N3 O2	590	20.2	95
1690	913	C24 H28 F3 N3 O3	464	12.6	76
1691	914	C30 H32 F3 N3 O3	540	13.9	72
1692	915	C24 H28 F3 N3 O3	464	8.3	25
1693	916	C22 H25 F3 N4 O2	435	2.5	8
1694	917	C22 H25 F3 N4 O2	435	2.7	9
1695	918	C26 H30 F3 N3 O4	506	3.9	22
1696	919	C24 H28 F3 N3 O2	448	15.9	99
1697	920	C24 H25 F6 N3 O3	518	20.3	81
1698	921	C27 H28 F3 N3 O2	484	15.5	89
1699	922	C20 H26 F3 N3 O2	398	7.3	51
1700	923	C29 H29 Cl F3 N3 O2	544	12.5	48
1701	928	C24 H25 F6 N3 O3	518	21.4	86
1702	929	C24 H28 F3 N3 O2 S	480	23.7	定量的
1703	930	C24 H28 F3 N3 O2	448	21.3	99
1704	931	C24 H25 F3 N4 O2	459	21.4	97
1705	932	C23 H24 Cl F3 N4 O4	513	15.6	63
1706	933	C24 H28 F3 N3 O2	448	16.6	77
1707	934	C22 H25 F3 N4 O2	435	18.0	43
1708	935	C23 H25 F3 N4 O4	479	15.1	65
1709	936	C23 H25 F3 N4 O4	479	15.4	67
1710	1615	C24 H25 F6 N3 O2 S	534.2	26.3	99

[実施例 1711] 1-[4-(ジメチルアミノ)ベンジル]-4-[[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン (化合物番号 937) の合成

4-[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン(20.0mg、0.058mmol)のメタノール(1.0mL)溶液とNaBH₃CN(16.5mg)を、4-(ジメチルアミノ)ベンズアルデヒド(30.4mg、0.204mmol)の5%酢酸溶液(1.0mL)に加え
 5、60°Cで19時間攪拌した。溶媒を留去して固体を得た。アセトニトリル(2.0mL)とフェニルイソシアネート(6.9mg、0.048mmol)を加え、
 25°Cで1時間攪拌した。反応混合物をVarian™ SCXカラムに負荷し、メタノール(20mL)で洗浄した。生成物を2M NH₃-メタノール(6mL)を用いて溶出し、溶出液を濃縮することにより、1-[4-(ジメチルアミノ)ベンジル]-4-[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン(化合物番号937)を黄白色油状物として得た(13.5mg、49%)。純度はRPLC/MSにて求めた(87%)。ESI/MS m/e 477.3(M⁺+H, C₂₅H₃₁F₃N₄O₂)

[実施例1712-1729]

15 本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例1711に従って合成した。必要であれば、分取TLC(SiO₂)で精製し、目的物を得た。ESI/MSデータ、収量、および収率を表34にまとめた。

表 34

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1712	879	C ₂₄ H ₂₆ F ₃ N ₃ O ₄	478	13.0	62
1713	880	C ₂₄ H ₂₆ F ₃ N ₃ O ₄	478	16.3	78
1714	881	C ₂₃ H ₂₅ BrF ₃ N ₃ O ₂	512	11.4	51
1715	882	C ₂₉ H ₃₀ F ₃ N ₃ O ₃	526	13.4	58
1716	883	C ₂₃ H ₂₅ ClF ₃ N ₃ O ₂	468	7.9	39
1717	904	C ₂₃ H ₂₆ F ₃ N ₃ O ₃	450	3.3	17
1718	905	C ₂₁ H ₂₃ F ₃ N ₄ O ₄ S	485	27.7	98
1719	938	C ₂₃ H ₂₄ ClF ₄ N ₃ O ₂	486	8.6	30
1720	939	C ₂₃ H ₂₄ ClF ₃ N ₄ O ₄	513	11.0	37
1721	940	C ₂₃ H ₂₆ F ₃ N ₃ O ₃	450	5.5	21
1722	941	C ₂₄ H ₂₄ ClF ₆ N ₃ O ₂	536	11.2	36
1723	987	C ₃₀ H ₃₂ F ₃ N ₃ O ₂	524	17.5	76
1724	1449	C ₂₅ H ₃₀ F ₃ N ₃ O ₂	462	21.6	80

1725	1450	C26 H32 F3 N3 O2	476	23.5	85
1726	1452	C27 H35 F3 N4 O2	505	5.1	17
1727	1453	C26 H32 F3 N3 O3	492	22.0	77
1728	1454	C25 H30 F3 N3 O3	478	21.4	77
1729	1456	C25 H28 F3 N3 O4	492	23.8	83

[実施例 1730] 1-[3-ヒドロキシ-4-メトキシベンジル]-4-[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン(化合物番号1452)の合成

5 4-[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン(20.0mg、0.058mmol)と3-ヒドロキシ-4-メトキシベンズアルデヒド(33mg)の5%酢酸/メタノール(1.0mL)溶液を、NaBH₃CN(16.5mg)の5%酢酸/メタノール(1.0mL)溶液に加え、60°Cで15時間攪拌した。反応混合物をVarian™ SCXカラムに負荷し、メタノール(15mL)で洗浄した。生成物を2M NH₃-メタノール(5mL)を用いて溶出し、濃縮することにより、1-[3-ヒドロキシ-4-メトキシベンジル]-4-[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン(化合物番号1452)を得た(25.8mg、92%)。純度はRPLC/MSにて求めた(91%)。ESI/MS m/e 480

10 16 (M++H, C₂₄H₂₈F₃N₃O₄)

15 [実施例 1731-1733]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1730の方法に従って合成した。必要であれば分取TLCによって目的物を得た。ESI/MSデータ、収量、および収率を表35にまとめた。

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1731	1455	C ₂₄ H ₂₈ F ₃ N ₃ O ₄	480	24.0	86
1732	1647	C ₂₇ H ₃₄ F ₃ N ₃ O ₂	490.2	23.6	96
1733	1649	C ₂₆ H ₃₂ F ₃ N ₃ O ₂	476.2	23.1	97

[実施例 1734] 1-(4-ベンジルベンジル)-4-[N-(3-(トリ

フルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番号
926) の合成

メタンスルホニルクロリド (4. 2 mg、0. 037 mmol) のクロロホルム (1. 0 mL) 溶液および (ピペリジノメチル) ポリスチレン (54 mg、2. 7 mmol 塩基/g 樹脂) を、4-(ベンジル) ベンジルアルコール (8. 7 mg、0. 044 mmol) のクロロホルム (1. 0 mL) 溶液に加え、25°Cで15時間攪拌した。4-[[N-(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (15. 1 mg、0. 044 mmol) と KI (2 mg) をこの反応混合物に加え、混合液をさらに65°Cで5時間攪拌した。フェニルイソシアネート (5. 2 mg) を冷却した反応混合物に加え、25°Cで1時間攪拌後、反応混合物を Varian™ SCXカラムに負荷し、メタノール (20 mL) で洗浄した。生成物を 2M NH₃ のメタノール (5 mL) 溶液を用いて溶出、濃縮することにより、1-(4-ベンジルベンジル) -4-[[N-(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番号 926) を黄白色油状物として得た (5. 6 mg、29%)。純度は RPLC/MS にて求めた (94%)。ESI/MS m/e 524. 1 ($M^+ + H$, C₃₀H₃₂F₃N₃O₂)

[参考例 31] 4-[[(N-(ベンジルオキシカルボニル) グリシル) アミノ] メチル] -1-(tert-ブトキシカルボニル) ピペリジンの合成

4-(アミノメチル) -1-(tert-ブトキシカルボニル) ピペリジン (3. 54 g、16. 5 mmol) のクロロホルム (80 mL) 溶液に、トリエチルアミン (2. 8 mL、20 mmol)、N-(ベンジルオキシカルボニル) グリシン (3. 77 g、18 mmol)、EDCI (3. 45 g、18 mmol)、および HOBT (2. 43 g、18 mmol) を加え、室温で15時間攪拌した後、2M NaOH 水溶液 (100 mL) を加えた。有機層を分離し、水層をジクロロメタンで抽出した (100 mL × 3)。有機層を合わせて、無水硫酸ナトリウムで乾燥、濾過、濃縮した。カラムクロマトグラフィー (SiO₂、酢酸エチル) により精製し、4-[[(N-(ベンジルオキシカルボニル) グリシル) アミノ] メチル] -1-(tert-ブトキシカルボニル) ピペリジンをアモルファス状固体として得た (6. 27 g、94%)。

[参考例 32] 4-[(グリシルアミノ) メチル] -1-(tert-ブトキシ

カルボニル) ピペリジンの合成

4-[[(N-(ベンジルオキシカルボニル)グリシル)アミノ]メチル]-1-(tert-ブトキシカルボニル)ピペリジン(6.26g、15.4mmol)のメタノール(100mL)溶液を、5%パラジウム炭素(620mg)の存在
5 下に、室温で7時間水素化させた。触媒をセライト濾過により除去後、濾液を濃縮し、4-[グリシルアミノ]メチル]-1-(tert-ブトキシカルボニル)ピペリジンを固体として得た(3.84g、92%)。

[参考例33] 4-[[(N-(2-アミノ-5-クロロベンゾイル)グリシル)アミノ]メチル]-1-(tert-ブトキシカルボニル)ピペリジンの合成

10 4-[グリシルアミノ]メチル]-1-(tert-ブトキシカルボニル)ピペリジン(1.33g、4.90mmol)のクロロホルム(25mL)溶液に、トリエチルアミン(0.75mL、5.4mmol)、2-アミノ-5-クロロ安息香酸(840mg、4.9mmol)、EDCI(940mg、4.9mmol)、およびHOBt(660mg、4.9mmol)を加え、室温で3時間攪拌し
15 た後、2M NaOH水溶液(20mL)を加えた。有機層を分離し、水層をジクロロメタンで抽出した(20mL×3)。有機層を合わせて、無水硫酸ナトリウムで乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO₂、酢酸エチル)により精製し、4-[[(N-(2-アミノ-5-クロロベンゾイル)グリシル)アミノ]メチル]-1-(tert-ブトキシカルボニル)ピペリジンを固体として得
20 た(1.63g、78%)。

[参考例34] 4-[[(N-(2-アミノ-5-クロロベンゾイル)グリシル)アミノ]メチル]ピペリジンの合成

4-[[(N-(2-アミノ-5-クロロベンゾイル)グリシル)アミノ]メチル]-1-(tert-ブトキシカルボニル)ピペリジン(1.63g、3.84mmol)のメタノール(20mL)溶液に、4M HClのジオキサン(9.5mL)溶液を加え、室温で6時間攪拌した。反応混合物を濃縮し、2M NaOH水溶液(20mL)を加え、ジクロロメタン(20mL×3)で抽出した。有機層を合わせて、無水硫酸ナトリウムで乾燥、濾過、濃縮することにより、4-[[(N-(2-アミノ-5-クロロベンゾイル)グリシル)アミノ]メチル]ピペリジンを得た(1.19g、95%)：¹H NMR(CDCl₃、270MHz) δ 1.10-1.76(m, 4H), 2.55(td, J = 2.4と12.2 Hz, 2H), 3.00-3.10(m, 2H), 3.17(t,

$J = 6.2$ Hz, 2H), 3.48(s, 2H), 4.03(d, $J = 4.9$ Hz, 2H), 5.50(br. s, 2H), 6.11–6.23(m, 1H), 6.60(d, $J = 8.8$ Hz, 1H), 6.85–7.02(m, 1H), 7.15(dd, $J = 2.7$ と 8.8 Hz, 1H), 7.38(d, $J = 2.4$ Hz, 1H); ESI/MS m/e 325.2 ($M^+ + H$, $C_{15}H_{23}ClN_4O_2$)

5 さらに、4-[[(N-(2-アミノ-5-プロモベンゾイル)グリシル)アミノ]メチル]ピペリジンも、対応する原料および反応剤を用いて参考例33および34に従って合成した。951mg、64% (2工程); ESI/MS m/e 369.2 ($M^+ + H$, $C_{15}H_{21}BrN_4O_2$)

10 [実施例1735] 4-[[(N-(2-(tert-ブトキシカルボニル)アミノ)メチル)-1-(4-クロロベンジル)ピペリジンの合成]

15 1-(4-クロロベンジル)-4-[グリシルアミノ]メチル]ピペリジン・二塩酸塩(738mg、2mmol)のジクロロメタン(20mL)溶液に、トリエチルアミン(1. 1mL、8mmol)、2-(tert-ブトキシカルボニル)アミノ)-4, 5-ジフルオロ安息香酸(607mg、2. 2mmol)、EDCI(422mg、2. 2mmol)、およびHOBT(337mg、2. 2mmol)を加え、室温で14時間攪拌した後、0. 6M NaOH水溶液(50mL)を加え、ジクロロメタンで抽出した(3回)。有機層を合わせ、無水硫酸ナトリウムで乾燥、濾過、濃縮し、4-[[(N-(2-(tert-ブトキシカルボニル)アミノ)-4, 5-ジフルオロベンゾイル)グリシル)アミノ]メチル]-1-(4-クロロベンジル)ピペリジンを得た(1. 01g、92%)。ESI/MS m/e 551.3 ($M^+ + H$, $C_{27}H_{33}ClF_2N_4O_4$)

20 さらに、4-[[(N-(2-(tert-ブトキシカルボニル)アミノ)-5-トリフルオロメチルベンゾイル)グリシル)アミノ]メチル]-1-(4-クロロベンジル)ピペリジンも対応する原料および反応剤を用い、上記の方法に従って合成した。3. 03g、82%; ESI/MS m/e 583.2 ($M^+ + H$, $C_{28}H_{34}ClF_3N_4O_4$)

[参考例35] 4-[[(N-(2-アミノ-5-トリフルオロメチルベンゾイル)グリシル)アミノ]メチル]ピペリジンの合成

25 30 1-(4-クロロベンジル)-4-[[(N-(2-アミノ-5-トリフルオロメチルベンゾイル)グリシル)アミノ]メチル]ピペリジン(447mg、0. 9

3 mmol) と $\text{Pd}(\text{OH})_2$ (60 mg、0.23 mmol) の 5% 塵酸/メタノール (10 mL) 溶液を 50°C で 14 時間攪拌した。パラジウム触媒をセライト濾過して除去し、濾液を濃縮した。残査に 1M NaOH 水溶液 (15 mL) を加え、酢酸エチルで抽出した (30 mL × 3)。有機層を合わせて、無水硫酸ナトリウム上乾燥、濾過、濃縮した。カラムクロマトグラフィー (SiO_2 、酢酸エチル/メタノール/トリエチルアミン = 70 : 25 : 5) により精製し、4-[[(N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル) アミノ] メチル] ピペリジンを得た (284 mg、86%)。ESI/MS m/e 359.0 ($\text{M}^+ + \text{H}$, $\text{C}_{16}\text{H}_{21}\text{F}_3\text{N}_4\text{O}_2$)

10 さらに、4-[[(N-(2-アミノ-4,5-ジフルオロベンゾイル) グリシル) アミノ] メチル] ピペリジン、4-[[(N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメトキシベンゾイル) グリシル] アミノメチル] ピペリジン、および 4-[[(N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメトキシベンゾイル) グリシル) アミノ] メチル] ピペリジンもそれぞれ対応する原料および反応剤を用いて上記の方法に従って合成した。

15 4-[[(N-(2-アミノ-4,5-ジフルオロベンゾイル) グリシル) アミノ] メチル] ピペリジン: 564 mg、89%; ESI/MS m/e 327.2 ($\text{M}^+ + \text{H}$, $\text{C}_{15}\text{H}_{20}\text{F}_2\text{N}_4\text{O}_2$)

20 4-[[(N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメトキシベンゾイル) グリシル] アミノメチル] ピペリジン: 定量的; ^1H -NMR (CDCl_3 、400 MHz) δ 1.10-1.25 (m, 2H), 1.45-1.73 (m, 3H), 1.51 (s, 9H), 2.53-2.64 (m, 2H), 3.04-3.13 (m, 2H), 3.22 (t, J = 6.3 Hz, 2H), 4.09 (d, J = 4.6 Hz, 2H), 5.91 (br. s, 1H), 7.08 (br. s., 1H), 7.32 (d, J = 9.0 Hz, 1H), 7.38 (s, 1H), 8.43 (d, J = 9.0 Hz, 1H)

25 4-[[(N-(2-(tert-ブトキシカルボニルアミノ)-4,5-ジフルオロベンゾイル) グリシル) アミノ] メチル] ピペリジン: 310 mg、40%; ESI/MS m/e 427.3 ($\text{M}^+ + \text{H}$, $\text{C}_{20}\text{H}_{28}\text{F}_2\text{N}_4\text{O}_4$)

30 4-[[(N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル) グリシル) アミノ] メチル] ピペリジン: 1.35 g, 57%; ESI/MS m/e 459.3 ($\text{M}^+ + \text{H}$, $\text{C}_{21}\text{H}_{29}\text{F}_3\text{N}_4\text{O}_4$)
[実施例 1736] 4-[[(N-(2-アミノ-5-クロロベンゾイル) グリシ

ル] アミノメチル] - 1 - (4-エトキシベンジル) ピペリジン (化合物番号 1429)、および 1 - (4-エトキシベンジル) - 4 - [[N - (2 - (4-エトキシベンジル) アミノ - 5 - クロロベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番号 1433) の合成

5 シアノ水素化ホウ素ナトリウム (140 mmol) のメタノール (0.4 mL) 溶液を 4 - [[N - (2 - アミノ - 5 - クロロベンゾイル) グリシル] アミノメチル] ピペリジン (0.10 mmol)、4-エトキシベンズアルデヒド (0.10 mmol)、酢酸 (0.050 mL)、およびメタノール (1.6 mL) の混合物に加え、60°Cで14時間攪拌した。反応混合物を Varian™ SCXカラムに負荷し、メタノール (20 mL) で洗浄した。生成物を 2M NH₃ のメタノール溶液で溶出し、濃縮した。分取TLC (SiO₂、酢酸エチル / メタノール) により 4 - [[N - (2 - アミノ - 5 - クロロベンゾイル) グリシル] アミノメチル] - 1 - (4-エトキシベンジル) ピペリジン (化合物番号 1429)、および 1 - (4-エトキシベンジル) - 4 - [[N - (2 - (4-エトキシベンジル) アミノ - 5 - クロロベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番号 1433) を得た。

化合物番号 1429 : 4.5 mg、20%；純度は RPLC/MS にて求めた (95%)。ESI/MS m/e 459.2 (M⁺+H, C₂₄H₃₁C₁N₄O₃)

化合物番号 1433 : 8.4 mg、28%；純度は RPLC/MS にて求めた (98%)。ESI/MS m/e 593.2 (M⁺+H, C₃₃H₄₁C₁N₄O₄)

[実施例 1737 - 1779]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 1736 の方法に従って合成した。ESI/MS データ、収量、および収率を表 36 にまとめた。

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1737	1430	C ₂₄ H ₂₉ C ₁ N ₄ O ₄	473.0	3.1	13
1738	1431	C ₂₄ H ₃₁ BrN ₄ O ₃	505.2	5.8	23
1739	1432	C ₂₄ H ₂₉ BrN ₄ O ₄	517.0	4.1	16
1740	1434	C ₃₃ H ₄₁ BrN ₄ O ₆	637.2	9.7	30

1741	1435	C24 H31 Cl N4 O2	443.2	9.7	44
1742	1436	C25 H33 Cl N4 O2	457.2	12.5	55
1743	1437	C25 H33 Cl N4 O3	473.2	9.4	40
1744	1438	C24 H31 Br N4 O2	489.2	5.9	24
1745	1439	C25 H33 Br N4 O2	503.2	15.2	61
1746	1440	C25 H33 Br N4 O3	519.2	11.0	43
1747	1441	C23 H29 Br N4 O2 S	507.2	9.3	37
1748	1442	C33 H41 Cl N4 O2	561.4	6.8	24
1749	1443	C35 H45 Cl N4 O2	589.4	9.8	33
1750	1444	C35 H45 Cl N4 O4	621.4	9.4	30
1751	1445	C33 H41 Br N4 O2	605.2	6.5	21
1752	1446	C35 H45 Br N4 O2	635.2	10.7	34
1753	1447	C35 H45 Br N4 O4	665.4	12.4	37
1754	1448	C31 H37 Br N4 O2 S2	643.2	7.6	24
1755	1457	C24 H32 Cl N5 O2	458.2	4.5	20
1756	1458	C23 H29 Cl N4 O4	461.2	6.0	26
1757	1459	C24 H32 Br N5 O2	504.0	6.8	27
1758	1460	C23 H29 Br N4 O4	505.0	8.0	32
1759	1461	C31 H37 Cl N4 O6	597.2	5.9	20
1760	1462	C31 H37 Br N4 O6	643.2	6.0	19
1761	1514	C26 H36 Cl N5 O2	486.2	5.5	23
1762	1515	C23 H29 Cl N4 O4	463.0	5.8	25
1763	1516	C26 H36 Br N5 O2	530.2	4.2	16
1764	1517	C23 H29 Br N4 O4	505.0	6.5	26
1765	1518	C31 H37 Cl N4 O6	597.2	4.3	14
1766	1519	C31 H37 Br N4 O6	641.2	5.3	17
1767	1570	C23 H29 Cl N4 O2 S	461.0	2.7	12
1768	1571	C31 H37 Cl N4 O2 S2	597.2	4.9	16
1769	1651	C37 H49 Br N4 O2	663.2	5.5	17
1770	1652	C26 H35 Br N4 O2	515.2	6.0	23
1771	1653	C35 H45 Br N4 O2	633.2	5.0	16
1772	1654	C25 H33 Br N4 O2	501.0	6.2	25
1773	1655	C37 H49 Cl N4 O2	617.4	5.6	18
1774	1656	C26 H35 Cl N4 O2	471.2	5.9	25
1775	1657	C35 H45 Cl N4 O2	589.2	4.6	16
1776	1658	C25 H33 Cl N4 O2	457.2	5.3	23
1777	1785	C26 H33 F3 N4 O2	491.2	4.7	12.8
1778	1786	C25 H29 F3 N4 O3	491.2	3.7	10.1
1779	1804	C25 H32 F2 N4 O2	459.2	3.3	9.6

[実施例 1780] 4-[N-(2-アミノ-5-トリフルオロメトキシベンゾイル)グリシル]アミノメチル]-1-(4-イソプロピルベンジル)ピペリジン(化合物番号 1903)の合成

5 4-[N-(2-(tert-ブトキカルボニル)アミノ)-5-(トリフルオロメトキシ)ベンゾイルグリシル]アミノメチル]ピペリジン(0.050 mmol)、4-イソプロピルベンズアルデヒド(0.060 mmol)、NaH₃CN(0.15 mmol)、およびメタノール(1.3 mL)の混合物に、酢酸(1.0 mL)を加え、60°Cで8時間攪拌した。室温に冷却後Varian™ SCXカラムに負荷し、メタノール(1.0 mL)で洗浄した。生成物を2M NH₃のメタノール(5 mL)溶液で溶出し、濃縮した。残さに、4M HClのジオキサン溶液(2 mL)を加え、溶液を室温で一晩攪拌した。濃縮後、分取TLCにより精製し、4-[N-(2-アミノ-5-トリフルオロメトキシベンゾイル)グリシル]アミノメチル]-1-(4-イソプロピルベンジル)ピペリジン(化合物番号 1903)を得た(6.6 mg、26%)。純度はRPLC/MSにて求めた(93%)。
ESI/MS m/e 507 (M⁺+H; C₂₆H₃₃F₃N₄O₃)

[実施例 1781-1783]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1780の方法に従って合成した。ESI/MSデータ、収量、および収率を表37にまとめた。

表 37

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1781	1904	C ₂₆ H ₃₃ F ₃ N ₄ O ₃	507	9.6	37.9
1782	1917	C ₂₅ H ₃₁ F ₃ N ₄ O ₅	525.2	1.2	3.1
1783	1918	C ₂₄ H ₂₉ F ₃ N ₄ O ₄	495.2	2.8	7.5

[実施例 1784] 4-[N-(2-アミノ-4,5-ジフルオロベンゾイル)グリシル]アミノメチル]-1-(5-ブロモ-2-エトキシベンジル)ピペリジン(化合物番号 2052)の合成

4-[N-(2-(tert-ブトキカルボニル)アミノ)-4,5-(ジフ

ルオロベンゾイル) グリシル] アミノメチル] ピペリジン (0. 050 mmol) 、5-ブロモ-2-エトキシベンズアルデヒド (0. 15 mmol) 、メタノール (1. 2 mL) 、および酢酸 (0. 030 mL) の混合物に、NaBH₃CN (0. 25 mmol) を加え、50°Cで13時間攪拌した。室温に冷却し、Varian™
 5 SCXカラムに負荷し、メタノール (5 mL × 3) で洗浄した。生成物を2M NH₃のメタノール (5 mL) 溶液で溶出し、濃縮した。残さに、ジクロロメタン (1 mL) およびトリフルオロ酢酸 (0. 50 mL) を加え、室温で10分攪拌した。反応混合物を濃縮し、残査をメタノールに溶解し、Varian™ SCXカラムに負荷し、メタノール (5 mL) で洗浄した。生成物を2M NH₃のメタノール (10
 10 5 mL) 溶液で溶出し、濃縮した。分取TLC (SiO₂、酢酸エチル/メタノール = 10 : 1) により精製し、4-[[N-(2-アミノ-4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(5-ブロモ-2-エトキシベンジル) ピペリジン (化合物番号 2052) を得た (10. 2 mg, 38%)。純度はRPLC/MSにて求めた (96%)。ESI/MS m/e 539. 2 (M⁺+H, C
 15 ₂₄H₂₉BrF₂N₄O₃)

[実施例 1785-1792]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1784の方法に従って合成した。ESI/MSデータ、収量、および収率を表38にまとめた。

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1785	2053	C ₃₀ H ₃₄ F ₂ N ₄ O ₄	553.4	12.7	46
1786	2054	C ₂₇ H ₃₀ F ₂ N ₄ O ₃	497.2	13.7	55
1787	2055	C ₂₃ H ₂₈ F ₂ N ₄ O ₄	463.2	10.1	44
1788	2056	C ₂₂ H ₂₄ BrF ₃ N ₄ O ₂	515.2	7.7	30
1789	2057	C ₂₃ H ₂₇ BrF ₂ N ₄ O ₃	527.0	8.6	33
1790	2058	C ₂₄ H ₃₀ F ₂ N ₄ O ₄	477.2	6.4	27
1791	2059	C ₂₈ H ₃₀ F ₂ N ₄ O ₃	509.4	6.7	26
1792	2060	C ₂₅ H ₃₂ F ₂ N ₄ O ₅	507.2	7.2	28

[実施例 1793] 4-[[N-(2-アミノ-4, 5-ジフルオロベンゾイル

) グリシル] アミノメチル] -1- (3, 4-ジエトキシベンジル) ピペリジン (化合物番号 2065) の合成

4 - [[N - (2 - (tert-ブトキシカルボニルアミノ) -4, 5 - (ジフルオロベンゾイル) グリシル] アミノメチル] ピペリジン (0. 050 mmol)

5 、 3, 4-ジエトキシベンズアルデヒド (0. 15 mmol) 、メタノール (1. 2 mL) 、および酢酸 (0. 050 mL) の混合物に NaBH₃CN (0. 25 mmol) を加え、50°Cで一晩攪拌した。室温に冷却し、Varian™ SCXカラムに負荷し、メタノール (5 mL × 2) で洗浄した。生成物を 2M NH₃ のメタノール (5 mL) 溶液で溶出し、濃縮した。残さにジクロロメタン (2 mL) とフェニルイソシアネート (0. 10 mL) を加え、室温で 1 時間攪拌し、Varian™ SCXカラムに負荷してメタノール (5 mL) で洗浄した。生成物を 2M NH₃ のメタノール (5 mL) 溶液を用いて溶出し、濃縮した。残査をメタノール (0. 25 mL) に溶解し、4M HCl のジオキサン (0. 125 mL) 溶液を加え、室温で一晩攪拌し濃縮した。残査をメタノールに溶解し、Varian™ SCXカラムに負荷し、メタノール (5 mL × 2) で洗浄した。生成物を 2M NH₃ のメタノール (5 mL) 溶液を用いて溶出し、濃縮することにより、4 - [[N - (2 - アミノ - 4, 5 - デジフルオロベンゾイル) グリシル] アミノメチル] -1- (3, 4-ジエトキシベンジル) ピペリジン (化合物番号 2065) を得た (21. 2 mg, 84%)。純度は RPLC/MS にて求めた (97%)。ESI/MS m/e 505. 2 (M++H, C₂₆H₃₄F₂N₄O₄)

[実施例 1794-1808]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 1793 の方法に従って合成した。ESI/MS データ、収量、および収率を表 39 にまとめた。

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1794	2061	C ₂₃ H ₂₇ F ₃ N ₄ O ₂	449.2	12.6	56
1795	2062	C ₂₃ H ₂₇ F ₃ N ₄ O ₃	465.2	19.7	85
1796	2063	C ₂₅ H ₃₂ F ₂ N ₄ O ₄	491.2	19.8	81
1797	2064	C ₂₂ H ₂₄ BrF ₃ N ₄ O ₂	515.2	17.5	68
1798	2066	C ₂₉ H ₃₂ F ₂ N ₄ O ₃	523.2	18.0	69

1799	2067	C26 H34 F2 N4 O2	473.2	21.9	93
1800	2068	C22 H24 Cl F3 N4 O2	469.2	11.2	48
1801	2069	C24 H30 F2 N4 O3	461.4	20.2	88
1802	2070	C23 H27 Br F2 N4 O3	527.2	17.7	67
1803	2071	C24 H30 F2 N4 O4	477.2	10.9	46
1804	2072	C25 H32 F2 N4 O3	475.2	19.3	81
1805	2073	C29 H32 F2 N4 O3	523.2	22.8	87
1806	2074	C29 H32 F2 N4 O4	539.2	22.5	84
1807	2075	C23 H27 F3 N4 O3	465.2	14.9	64
1808	2076	C22 H24 F4 N4 O2	453.2	21.9	97

[実施例 1809] 4-[[N-(2-アミノ-4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(2-ヒドロキシ-3-メチルベンジル) ピペリジン (化合物番号 2106) の合成

5 4-[[N-(2-(tert-ブトキシカルボニルアミノ)-4, 5-(ジフルオロベンゾイル) グリシル] アミノメチル] ピペリジン (0. 050 mmol) 、2-ヒドロキシ-3-メチルベンズアルデヒド (0. 25 mmol) 、メタノール (1. 0 mL) 、および酢酸 (0. 040 mL) の混合物に NaBH₃CN (0. 40 mmol) を加え、50°Cで一晩攪拌した。室温に冷却し Varian™ SC Xカラムに負荷し、メタノール (5 mL × 2) で洗浄した。生成物を 2M NH₃ のメタノール (5 mL) 溶液で溶出し、濃縮した。残さを酢酸エチル/メタノール=5:1 (1 mL) に溶解し Varian™ SC Xカラムに負荷し、酢酸エチル/メタノール=5:1 (5 mL) を用いて溶出し、濃縮した。残査をメタノール (2 mL) に溶解し、4M HCl のジオキサン (0. 50 mL) 溶液を加え、室温で一晩攪拌し、濃縮した。残査をメタノールに溶解し、Varian™ SC Xカラムに負荷し、メタノール (5 mL × 2) で洗浄した。生成物を 2M NH₃ のメタノール (5 mL) 溶液を用いて溶出し、濃縮した。分取 TLCにより 4-[[N-(2-アミノ-4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(2-ヒドロキシ-3-メチルベンジル) ピペリジン (化合物番号 2106) を得た。純度は RPLC/MS にて求めた (97%)。ESI/MS m/e 447.0 (M++H, C₂₃H₂₈F₂N₄O₃)

[実施例 1810-1823]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 1

809の方法に従って合成した。ESI/MSデータ、収量、および収率を表40にまとめた。

表 40

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1810	2077	C22 H25 Cl F2 N4 O3	467.2	3.7	16
1811	2078	C24 H30 F2 N4 O4	477.2	1.9	8
1812	2079	C30 H34 F2 N4 O4	553.4	4.8	17
1813	2080	C22 H25 Cl F2 N4 O3	467.2	13.5	58
1814	2081	C22 H25 Cl F2 N4 O3	467.2	13.8	59
1815	2082	C23 H28 F2 N4 O4	463.2	9.6	42
1816	2105	C23 H28 F2 N4 O4	463.2	ND	ND
1817	2106	C23 H28 F2 N4 O3	447.0	ND	ND
1818	2107	C20 H23 Br F2 N4 O2 S	503.1	ND	ND
1819	2108	C25 H28 F2 N4 O2 S	487.2	ND	ND
1820	2109	C20 H23 Br F2 N4 O3	487.0	ND	ND
1821	2110	C22 H28 F2 N4 O3	435.1	ND	ND
1822	2111	C22 H24 Cl F3 N4 O2	469.0	ND	ND
1823	2112	C24 H29 Br F2 N4 O4	557.0	ND	ND

5 ND: 未決定

[実施例 1824] 4-[[N-(2-アミノ-4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(3-アミノ-4-メチルベンジル) ピペリジン (化合物番号 2114) の合成

10 4-[[N-(2-(tert-ブトキカルボニルアミノ)-4, 5-(ジフルオロベンゾイル) グリシル] アミノメチル] ピペリジン (0. 050 mmol) 、4-メチル-3-ニトロベンズアルデヒド (0. 25 mmol) 、メタノール (1. 2 mL) 、および酢酸 (0. 050 mL) の混合物に NaBH₃CN (0. 50 mmol) を加え、50°Cで一晩攪拌した。室温に冷却し Varian™ SCXカラムに負荷し、メタノール (5 mL × 2) で洗浄した。生成物を 2M NH₃ のメタノール (5 mL) 溶液で溶出し、濃縮した。残さを酢酸エチル/メタノール = 2 : 1 (2 mL) に溶解し、Varian™ Si カラムに負荷し、酢酸エチル/メタノール = 2 : 1 (6 mL) を用いて溶出し、濃縮した。残査をメタノール (1 mL) に溶解し、4M HCl のジオキサン (0. 50 mL) 溶液を加え、室温で一晩攪

15

押し、濃縮した。残査をメタノールに溶解し、VarianTM SCXカラムに負荷し、メタノール(5mL×2)で洗浄後、2M NH₃のメタノール(5mL)溶液を用いて溶出した。濃縮により4-[N-(2-アミノ-4,5-ジフルオロベンゾイル)グリシル]アミノメチル]-1-(4-メチル-3-ニトロベンジル)
5 ピペリジンを得た。

得られた4-[N-(2-アミノ-4,5-ジフルオロベンゾイル)グリシル]アミノメチル]-1-(4-メチル-3-ニトロベンジル)ピペリジン、5%パラジウムカーボン(15mg)、およびメタノール(2mL)の混合物を水素雰囲気下、室温で4時間攪拌した。パラジウム触媒をセライト濾過により除去し、濾液を
10 濃縮した。分取TLC(SiO₂、酢酸エチル/メタノール=3:1)により4-[N-(2-アミノ-4,5-ジフルオロベンゾイル)グリシル]アミノメチル]-1-(3-アミノ-4-メチルベンジル)ピペリジン(化合物番号2114)を得た(2.9mg、13%)。純度はRPLC/MSにて求めた(100%)。ESI/MS m/e 446.1 (M⁺+H, C₂₃H₂₉F₂N₅O₂)

15 [実施例1825] 4-[N-(2-アミノ-4,5-ジフルオロベンゾイル)
グリシル]アミノメチル]-1-(3-アミノ-4-メトキシベンジル)ピペリジン(化合物番号2113)の合成

表記の化合物4-[N-(2-アミノ-4,5-ジフルオロベンゾイル)グリシル]アミノメチル]-1-(3-アミノ-4-メトキシベンジル)ピペリジン(化合物番号2113)を、対応する原料および反応剤を用い、実施例1824の方法に従って合成した。4.6mg、20%収率; ESI/MS m/e 462.2 (M⁺+H, C₂₃H₂₉F₂N₅O₃)

20 [実施例1826] 1-(3-アミノ-4-ヒドロキシベンジル)-4-[N-(2-(tert-ブトキシカルボニルアミノ)-4,5-ジフルオロベンゾイル)グリシル]アミノメチル]ピペリジンの合成

25 4-[N-(2-(tert-ブトキシカルボニルアミノ)-4,5-ジフルオロベンゾイル)グリシル]アミノメチル]ピペリジン(0.35mmol)、4-ヒドロキシ-3-ニトロベンズアルデヒド(1.22mmol)、メタノール(3.8mL)、および酢酸(0.175mL)の混合物にNaBH₃CN(1.58mmol)のメタノール(3.2mL)溶液を加え、50°Cで一晩攪拌した。室温まで冷却し、VarianTM SCXカラムに負荷し、メタノール(5mL×2)で

洗浄した。生成物を 2M NH₃のメタノール (5mL) 溶液で溶出し、濃縮した。残さを酢酸エチル/メタノール = 5 : 1 に溶解し、Varian™ Siカラムに負荷し、酢酸エチル/メタノール = 5 : 1 (10mL) を用いて溶出し、濃縮することにより、4-[[N-(2-(tert-ブトキシカルボニルアミノ)-4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(4-ヒドロキシ-3-ニトロベンジル) ピペリジンを得た (175mg, 87%)。

得られた4-[[N-(2-(tert-ブトキシカルボニルアミノ)-4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(4-ヒドロキシ-3-ニトロベンジル) ピペリジン、10%パラジウムカーボン (45mg)、およびメタノール (5mL) の混合物を水素雰囲気下、室温で4時間攪拌した。パラジウム触媒を濾過により除去し、濾液を濃縮して1-(3-アミノ-4-ヒドロキシベンジル) -4-[[N-(2-(tert-ブトキシカルボニルアミノ)-4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] ピペリジンを得た (100mg, 60%)。

[実施例 1827] 4-[[N-(2-アミノ-4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(3-アミノ-4-ヒドロキシベンジル) ピペリジン (化合物番号 2141) の合成

1-(3-アミノ-4-ヒドロキシベンジル) -4-[[N-(2-(tert-ブトキシカルボニルアミノ)-4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] ピペリジン (20.0mg, 0.035mmol) のメタノール (1mL) 溶液に、4M HCl のジオキサン (0.50mL) 溶液を加え、室温で一晩攪拌した。濃縮した後、残査をメタノールに溶解し、Varian™ SCXカラムに負荷し、メタノール (5mL × 2) で洗浄し、2M NH₃のメタノール (5mL) 溶液で溶出した。濃縮により4-[[N-(2-アミノ-4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(3-アミノ-4-ヒドロキシベンジル) ピペリジン (化合物番号 2141) を得た (17.6mg、定量的)。純度は RPLC/MS にて求めた (85%)。ESI/MS m/e 448.3 (M⁺ + H, C₂₂H₂₇F₂N₅O₃)

[実施例 1828-1831]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 1826 と 1827 の方法に従って合成した。必要であれば、分取 TLC で精製し、

目的物を得た。ESI/MSデータおよび最終工程の収量、収率を表41にまとめた。

表 41

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1828	2140	C23 H27 F2 N5 O4	476.3	6.7	28.4
1829	2144	C24 H30 F3 N5 O3	494.2	18.7	82.0
1830	2145	C23 H28 F3 N5 O3	480.3	19.8	63.7
1831	2146	C24 H28 F3 N5 O4	508.3	13.5	81.7

5

[実施例1832] 1-(3-アミノ-4-クロロベンジル)-4-[N-(2-(tert-ブトキシカルボニルアミノ)-4,5-ジフルオロベンゾイル)グリシル]アミノメチル]ピペリジンの合成

4-[N-(2-(tert-ブトキシカルボニルアミノ)-4,5-ジフルオロベンゾイル)グリシル]アミノメチル]ピペリジン(0.14 mmol)、4-クロロ-3-ニトロベンズアルデヒド(0.50 mmol)、メタノール(1.5 mL)、および酢酸(0.070 mL)の混合物に、NaBH₃CN(0.63 mol)のメタノール(1.3 mL)溶液を加え、50°Cで一晩攪拌した。室温に冷却し、Varian™ SCXカラムに負荷し、メタノールで洗浄した。生成物を2M NH₃のメタノール溶液で溶出し、濃縮した。残さを酢酸エチル/メタノール=5:1に溶解し、Varian™ Siカラムに負荷し、酢酸エチル/メタノール=5:1(6 mL)を用いて溶出し、濃縮することにより、4-[N-(2-(tert-ブトキシカルボニルアミノ)-4,5-ジフルオロベンゾイル)グリシル]アミノメチル]-1-(4-クロロ-3-ニトロベンジル)ピペリジンを得た(4.4 mg、53%)。ESI/MS m/e 596.3 (M⁺+H)
4-[N-(2-(tert-ブトキシカルボニルアミノ)-4,5-ジフルオロベンゾイル)グリシル]アミノメチル]-1-(4-クロロ-3-ニトロベンジル)ピペリジン(1.21 mg、0.20 mmol)、10%パラジウムカーボン(8.5 mg)、酢酸エチル(1.0 mL)、およびメタノール(1 mL)の混合物を水素雰囲気下、室温で19時間攪拌した。パラジウム触媒を濾過により除去し、濾液を濃縮することにより、1-(3-アミノ-4-クロロベンジル)-4-[N-

.....

-(2-(tert-ブトキシカルボニルアミノ)-4、5-ジフルオロベンゾイル)グリシル]アミノメチル]ピペリジンを得た(78mg、68%)。

[実施例1833] 1-(3-アミノ-4-クロロベンジル)-4-[N-(2-アミノ-4,5-ジフルオロベンゾイル)グリシル]アミノメチル]ピペリジン

5 (化合物番号2142)の合成

表記の化合物1-(3-アミノ-4-クロロベンジル)-4-[N-(2-アミノ-4,5-ジフルオロベンゾイル)グリシル]アミノメチル]ピペリジン(化合物番号2142)を対応する原料および反応剤を用いて実施例1827の方法に従って合成した。13.7mg、98%；純度はRPLC/MSにて求めた(83%)。ESI/MS m/e 466.2 ($M^+ + H, C_{22}H_{26}ClF_2N_5O_2$)

[実施例1834] 1-(3-アセチルアミノ-4-ヒドロキシベンジル)-4-[N-(2-(アミノ-4,5-ジフルオロベンゾイル)グリシル]アミノメチル]ピペリジン(化合物番号2148)の合成

1-(3-アミノ-4-ヒドロキシベンジル)-4-[N-(2-(tert-ブトキシカルボニルアミノ)-4,5-ジフルオロベンゾイル)グリシル]アミノメチル]ピペリジン(27mg、0.049mmol)、(ピペリジノメチル)ポリスチレン(2.7mmol/g、60mg、0.15mmol)、およびジクロロメタン(2mL)の混合物に、無水酢酸(0.12mmol)のジクロロメタン(0.12mL)溶液を加え、室温で3時間攪拌した。混合物をVarianTM SCXカラムに負荷し、メタノールで洗浄した。生成物を2M NH₃のメタノール溶液で溶出し、濃縮した。残さを酢酸エチル/メタノール=5:1に溶解し、VarianTM Siカラムに負荷し、酢酸エチル/メタノール=5:1(6mL)を用いて溶出、濃縮することにより1-(3-アセチルアミノ-4-ヒドロキシベンジル)-4-[N-(2-(tert-ブトキシカルボニルアミノ)-4,5-ジフルオロベンゾイル)グリシル]アミノメチル]ピペリジンを得た(30mg、定量的)。ESI/MS m/e 590.4 ($M^+ + H, C_{29}H_{37}N_5O_6$)

上記で得た1-(3-アセチルアミノ-4-ヒドロキシベンジル)-4-[N-(2-(tert-ブトキシカルボニルアミノ)-4,5-ジフルオロベンゾイル)グリシル]アミノメチル]ピペリジンのメタノール(1mL)溶液に、4M

30 HClのジオキサン溶液(0.50mL)を加え、溶液を室温で一晩攪拌した。濃縮した後、残査をメタノールに溶解し、VarianTM SCXカラムに負荷し、メ

タノール（5 mL × 2）で洗浄し、2M NH₃のメタノール（5 mL）溶液で溶出した。濃縮後、分取TLC（SiO₂、酢酸エチル/メタノール=3:2）により精製し、1-[3-アセチルアミノ-4-ヒドロキシベンジル]-4-[N-(2-アミノ-4、5-ジフルオロベンゾイル)グリシル]アミノメチル]ピペリジン（化合物番号2148）を得た（2.3 mg、9.2%）。純度はRPLC/MSにて求めた（98%）。ESI/MS m/e 490.3 (M⁺+H, C₂₄H₂₉F₂N₅O₄)

[実施例1835-1839]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1826と1834の方法に従って合成した。ESI/MSデータおよび最終工程の収量および収率を表42にまとめた。

表 42

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1835	2143	C ₂₅ H ₂₉ F ₂ N ₅ O ₅	518.3	4.8	45
1836	2147	C ₂₅ H ₃₁ F ₂ N ₅ O ₄	504.3	3.0	23
1837	2154	C ₂₆ H ₃₂ F ₃ N ₅ O ₄	536.4	4.1	66
1838	2155	C ₂₅ H ₃₀ F ₃ N ₅ O ₄	522.3	5.5	71
1839	2156	C ₂₆ H ₃₀ F ₃ N ₅ O ₅	550.3	7.0	78

15 [実施例1840] 4-[N-(2-アミノ-4, 5-ジフルオロベンゾイル)グリシル]アミノメチル]-1-[3-メチルアミノ-4-ヒドロキシベンジル]ピペリジン（化合物番号2160）の合成

4-[N-(2-tert-ブトキカルボニルアミノ)-4, 5-ジフルオロベンゾイル]グリシル]アミノメチル]-1-(3-アミノ-4-ヒドロキシ)ピペリジン（20.4 mg、0.037 mmol）、37%HCHO溶液（3.0 mg、0.037 mmol）、酢酸（0.1 mL）、およびメタノール（1.3 mL）の混合物に、NaBH₃CN（7.0 mg）のメタノール（0.2 mL）溶液を加え、60°Cで一晩攪拌した。室温に冷却し、VarianTM SCXカラムに負荷し、メタノール（5 mL × 2）で洗浄した。生成物を2M NH₃のメタノール（8 mL）溶液で溶出し、濃縮することにより4-[N-(2-tert-ブトキカルボニルアミノ)-4, 5-ジフルオロベンゾイル]グリシル]アミノメチル

] - 1 - (3-メチルアミノ-4-ヒドロキシベンジル) ピペリジンを得た。

上記で得た 4 - [[N - (2 - t e r t - プトキシカルボニルアミノ) - 4, 5
-ジフルオロベンゾイル] グリシル] アミノメチル] - 1 - (3-メチルアミノ-
4-ヒドロキシベンジル) ピペリジンのメタノール (1. 0 mL) 溶液に、4 M
5 HCl のジオキサン (1. 0 mL) 溶液を加え、室温で3時間攪拌した。濃縮後、
残査をメタノール (1 mL) に溶解し、VarianTM SCXカラムに負荷し、メ
タノール (5 mL × 2) で洗浄し、2M NH₃ のメタノール (8 mL) 溶液で溶出
した。濃縮後、分取TLC (SiO₂) により精製し、4 - [[N - (2-アミノ-
4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] - 1 - (3-メチルア
ミノ-4-ヒドロキシベンジル) ピペリジン (化合物番号 2160) を得た (3.
10 4 g, 20%)。純度はRPLC/MSにて求めた (96%)。ESI/MS m
/e 462.4 (M⁺+H, C₂₃H₂₉F₂N₅O₃)

[実施例 1841-1844]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 1
15 826 と 1840 の方法に従って合成した。ESI/MSデータおよび最終工程の
収量および収率を表43にまとめた。

表 43

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1841	2159	C ₂₄ H ₃₁ F ₂ N ₅ O ₃	476.3	7.6	48
1842	2161	C ₂₃ H ₂₈ C ₁ F ₂ N ₅ O ₂	480.3	7.3	45
1843	2162	C ₂₅ H ₃₂ F ₃ N ₅ O ₃	508.4	6.0	24
1844	2163	C ₂₄ H ₃₀ F ₃ N ₅ O ₃	494.3	4.3	15

20 [実施例 1845] 4 - [[N - (2-アミノ-4, 5-ジフルオロベンゾイル)
グリシル] アミノメチル] - 1 - (ベンゾ [c] フラザン-5-イル) ピペリジ
ン (化合物番号 2130) の合成

4 - [[N - (2 - (tert - プトキシカルボニルアミノ) - 4, 5-ジフル
オロベンゾイル) グリシル] アミノメチル] ピペリジン (0. 050 mmol)、
25 5 - (プロモメチル) ベンゾ [c] フラザン (0. 75 mL)、(ピペリジノメチ
ル) ポリスチレン (2. 6 - 2. 8 mmol/g, 60 mg, 0. 15 mmol)

、メタノール（0. 2 mL）、アセトニトリル（1. 0 mL）、およびクロロホルム（0. 50 mL）の混合物を50°Cで一晩攪拌した。室温まで冷却し、Varian™ SCXカラムに負荷し、メタノール（5 mL × 2）で洗浄した。生成物を2M NH₃のメタノール（5 mL）溶液で溶出し、濃縮した。残さにクロロホルム（1. 5 mL）とフェニルイソシアネート（0. 075 mL）を加え、室温で1時間攪拌し、Varian™ SCXカラムに負荷し、メタノール（5 mL × 2）で洗浄した。生成物を2M NH₃のメタノール（5 mL）溶液で溶出し、濃縮した。残査をメタノール（1 mL）に溶解し、4M HClのジオキサン（0. 50 mL）溶液を加え、室温で一晩攪拌し、濃縮した。残査をメタノールに溶解し、Varian™ SCXカラムに負荷し、メタノール（5 mL × 2）で洗浄し、2M NH₃のメタノール（5 mL）溶液で溶出した。濃縮後、分取TLC（SiO₂、酢酸エチル/メタノール=5:1）により精製し、4-[N-(2-アミノ-4, 5-ジフルオロベンゾイル)グリシル]アミノメチル]-1-(ベンゾ[c]フラザン-5-イル)ピペリジン（化合物番号2130）を得た（3. 6 mg、16%）。純度はRPLC/MSにて求めた（87%）。ESI/MS m/e 459.3 (M⁺+H, C₂₂H₂₄F₂N₆O₃)

[実施例1846] 4-[N-(2-アミノ-4, 5-ジフルオロベンゾイル)グリシル]アミノメチル]-1-(3, 5-ジメチルイソキサゾール-4-イル)ピペリジン（化合物番号2131）の合成

表記の化合物4-[N-(2-アミノ-4, 5-ジフルオロベンゾイル)グリシル]アミノメチル]-1-(3, 5-ジメチルイソキサゾール-4-イル)ピペリジン（化合物番号2131）を、対応する原料および反応剤を用いて実施例1845の方法に従って合成した。3. 8 mg、18%収率；ESI/MS m/e 436.2 (M⁺+H, C₂₁H₂₇F₂N₅O₃)

[実施例1847] 4-[N-(2-アミノ-5-クロロベンゾイル)グリシル]アミノメチル]-1-[4-(トリフルオロメチルチオ)ベンジル]ピペリジン（化合物番号1616）の合成

4-[N-(2-アミノ-5-クロロベンゾイル)グリシル]アミノメチル]ピペリジン（16. 2 mg、0. 050 mmol）、4-(トリフルオロメチルチオ)ベンジルクロリド（20. 3 mg、0. 075 mmol）、アセトニトリル（1. 0 mL）、およびクロロホルム（0. 50 mL）の混合物を60°Cで15時間

攪拌した。冷却後、VarianTM SCXカラムに負荷し、メタノール(15mL)で洗浄した。生成物を2M NH₃のメタノール(5mL)溶液で溶出し、濃縮することにより4-[N-(2-アミノ-5-クロロベンゾイル)グリシル]アミノメチル]-1-[4-(トリフルオロメチルチオ)ベンジル]ピペリジン(化合物番号1616)を得た(21.9mg、85%)。純度はRPLC/MSにて求めた(96%)。ESI/MS m/e 545.2 (M⁺+H, C₂₃H₂₆C1F₃N₄O₂S)

[実施例1848-1868]

本発明で用いる化合物をそれぞれ対応する原料および反応剤を用いて実施例1847の方法に従って合成した。必要であれば、分取TLCによって精製し、目的物を得た。ESI/MSデータおよび最終工程の収量および収率を表44にまとめた。

表 44

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1848	1617	C ₂₃ H ₂₆ BrF ₃ N ₄ O ₂ S	559.0	21.0	75
1849	1777	C ₂₃ H ₂₅ C1 ₂ F ₃ N ₄ O ₂	517.0	16.3	63.0
1850	1778	C ₂₄ H ₂₉ F ₃ N ₄ O ₂	463.2	9.5	41.1
1851	1779	C ₂₄ H ₂₇ F ₃ N ₄ O ₄	493.2	12.7	51.6
1852	1780	C ₂₃ H ₂₆ BrF ₃ N ₄ O ₂	527.0	16.4	62.2
1853	1781	C ₂₃ H ₂₇ F ₃ N ₄ O ₃	465.2	10.0	28.7
1854	1782	C ₂₅ H ₂₉ F ₃ N ₄ O ₂	475.2	12.2	34.3
1855	1783	C ₂₄ H ₂₆ F ₃ N ₅ O ₂	474.2	17.2	48.4
1856	1784	C ₂₃ H ₂₇ F ₃ N ₄ O ₂	449.2	11.3	33.6
1857	1788	C ₂₅ H ₃₁ F ₃ N ₄ O ₂	477.2	10.0	42.0
1858	1789	C ₂₄ H ₂₉ F ₃ N ₄ O ₃	479.2	10.0	27.9
1859	1792	C ₂₄ H ₃₀ F ₂ N ₄ O ₂	445.2	5.9	26.5
1860	1793	C ₂₂ H ₂₄ C1 ₂ F ₂ N ₄ O ₂	485.2	9.2	37.9
1861	1794	C ₂₃ H ₂₈ F ₂ N ₄ O ₂	431.2	5.7	26.5
1862	1795	C ₂₃ H ₂₆ F ₂ N ₄ O ₄	461.2	6.0	26.1
1863	1796	C ₂₂ H ₂₅ BrF ₂ N ₄ O ₂	497.0	10.5	42.4
1864	1797	C ₂₂ H ₂₆ F ₂ N ₄ O ₃	433.2	3.5	16.2
1865	1798	C ₂₃ H ₂₈ F ₂ N ₄ O ₃	447.2	5.6	25.1
1866	1799	C ₂₄ H ₂₈ F ₂ N ₄ O ₂	443.2	5.5	24.9

1867	1800	C23 H25 F2 N5 O2	442.2	9.4	42.6
1868	1801	C22 H26 F2 N4 O2	417.2	6.5	31.2

[実施例 1869] 4-[N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノメチル] -1-(4-ブロモベンジル) ピペリジン (化合物番号 1910) の合成

5 4-[N-(2-tert-ブトキシカルボニルアミノ)-5-トリフルオロメトキシベンゾイル] グリシル] アミノメチル] ピペリジン (0. 050 mmol)、4-ブロモベンジルプロミド (0. 060 mmol)、ピペリジノメチルポリスチレン (60 mg)、アセトニトリル (0. 8 mL)、およびクロロホルム (0. 5 mL) の混合物を 60°C で 12 時間攪拌した。冷却後、Varian™ SCX
 10 カラムに負荷し、50%クロロホルム/メタノール (10 mL) およびメタノール (10 mL) で洗浄した。生成物を 2M NH₃ のメタノール (5 mL) 溶液で溶出し、濃縮した。残さに 4M HCl の 1, 4-ジオキサン (2 mL) 溶液を加え、室温で一晩攪拌した。濃縮後、分取 TLC により精製し、4-[N-(2-アミノ-5-トリフルオロメトキシベンゾイル) グリシル] アミノメチル] -1-(4-ブロモベンジル) ピペリジン (化合物番号 1910) を得た (6. 5 mg, 24%)。純度は RPLC/MS にて求めた (96%)。ESI/MS m/e 545 (M⁺+H, C₂₃H₂₆BrF₃N₄O₃)。

15 [実施例 1870-1873]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 1869 の方法に従って合成した。ESI/MS データおよび最終工程の収量および收率を表 45 にまとめた。

表 45

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	收率 (%)
1870	1911	C23 H25 Cl2 F3 N4 O3	533	10.6	39.7
1871	1912	C23 H27 F3 N4 O4	481	12.5	52.0
1872	1913	C25 H31 F3 N4 O3	493	7.5	30.5
1873	1914	C24 H29 F3 N4 O3	479	11.0	46.0

25 [実施例 1874] 4-[N-(2-アミノ-5-トリフルオロメチルベンゾイル]

イル) グリシル] アミノメチル] -1- (ベンズ [d] イミダゾール-5-イル)ピペリジン (化合物番号 2186) の合成

4-[[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル] グリシル] アミノメチル] ピペリジン (0.060 mmol 5)、1-(tert-ブトキシカルボニル)-6-(プロモメチル) ベンズ [d] イミダゾール (15.6 mg, 0.050 mmol)、(ピペリジノメチル) ポリスチレン (86 mg, 0.15 mmol)、およびアセトニトリル (2 mL) の混合物を 50°C で 3 時間攪拌した。室温に冷却後、フェニルイソシアネート (30 mg) を加え、室温で 1 時間攪拌し、Varian™ SCX カラムに負荷し、メタノール (5 mL) とクロロホルム (5 mL) で洗浄した。生成物を 2M NH₃ のメタノール (5 mL) 溶液で溶出し、濃縮した。

得られた物質をメタノール (1 mL) に溶解し、4M HCl のジオキサン (1 mL) 溶液を加え、室温で一晩攪拌した。Varian™ SCX カラムに負荷し、メタノール (5 mL) およびジクロロメタンで洗浄した。生成物を 2M NH₃ のメタノール溶液で溶出し、濃縮した。分取 TLC (SiO₂、酢酸エチル/メタノール = 3 : 1) により 4-[[N-(2-アミノ-5-トリフルオロメチルベンゾイル] グリシル] アミノメチル] -1- (ベンズ [d] イミダゾール-5-イル) ピペリジン (化合物番号 2186) を得た (1.9 mg, 7.8%)。純度は RPLC / MS にて求めた (100%)。ESI/MS m/e 489.4 (M⁺+H, C₂₄H₂₇F₃N₆O₂)

[実施例 1875] 4-[[N-(2-アミノ-4,5-ジフルオロベンゾイル] グリシル] アミノメチル] -1- (ベンズ [c] チアジアゾール-5-イル) ピペリジン (化合物番号 2184) の合成

5-(ヒドロキシメチル) ベンゾ [c] チアジアゾール (8.3 mg, 0.050 mmol)、(ピペリジノメチル) ポリスチレン (86 mg)、およびクロロホルム (1 mL) の混合物に、メタンスルホニルクロリド (0.0042 mL) を加え、この混合物を室温で 1.5 時間攪拌した。アセトニトリル (1 mL) と 4-[(N-(2-(tert-ブトキシカルボニルアミノ)-4,5-ジフルオロベンゾイル) グリシル] アミノメチル] ピペリジンを加え、この反応混合物を 50°C で 3 時間攪拌した。室温に冷却後、フェニルイソシアネート (30 mg) を加え、室温で 1 時間攪拌し、Varian™ SCX カラムに負荷し、メタノール (5 mL)

) およびクロロホルム (5 mL) で洗浄した。生成物を 2M NH₃ のメタノール (3 mL) 溶液で溶出し、濃縮した。得られた残さをジクロロメタン (1 mL) に溶解し、1M クロロトリメチリシランおよび 1M フェノールのジクロロメタン (1 mL) 溶液を加えた。室温で 5 時間攪拌後、Varian™ SCX カラムに負荷し、
 5 メタノールおよびジクロロメタンで洗浄した。生成物を 2M NH₃ のメタノール溶液で溶出した。分取 TLC (SiO₂、酢酸エチル/メタノール = 3 : 1) により精製し、4-[N-(2-アミノ-4,5-ジフルオロベンゾイル)グリシル]アミノメチル]-1-(ベンゾ[c]チアジアゾール-5-イル)ピペリジン (化合物番号 2184) を得た (1, 3 mg, 5, 5%)。純度は RPLC/MS にて求めた (100%)。ESI/MS m/e 475.2 (M⁺+H, C₂₂H₂₄F₂N₆O₂S)

[実施例 1876] 4-[N-(2-アミノ-5-トリフルオロメチルベンゾイル)グリシル]アミノメチル]-1-(ベンゾ[c]チアジアゾール-5-イル)ピペリジン (化合物番号 2185) の合成

15 4-[N-(2-アミノ-5-トリフルオロメチルベンゾイル)グリシル]アミノメチル]-1-(ベンゾ[c]チアジアゾール-5-イル)ピペリジン (化合物番号 2185) を、対応する原料および反応剤を用いて実施例 1875 の方法に従って合成した。7. 2 mg, 28% 収率; ESI/MS m/e 507.4 (M⁺+H, C₂₃H₂₅F₃N₆O₂S)

20 [実施例 1877] 4-[N-(2-アミノ-5-トリフルオロメチルベンゾイル)グリシル]アミノメチル]-1-(2-アミノ-4-クロロベンジル)ピペリジン (化合物番号 1919) の合成

25 4-[N-(2-アミノ-5-トリフルオロメチルベンゾイル)グリシル]アミノメチル]ピペリジン (0. 050 mmol)、4-クロロ-2-ニトロベンジルクロリド (0. 050 mmol)、ピペリジノメチルポリスチレン (60 mg)、アセトニトリル (1. 0 mL)、およびクロロホルム (0. 7 mL) の混合物を 50 °C で一晩攪拌した。冷却後、Varian™ SCX カラムに負荷し、クロロホルム/メタノール (10 mL) およびメタノール (10 mL) で洗浄した。生成物を 2M NH₃ のメタノール (5 mL) 溶液で溶出し、濃縮した。得られた残さにエタノール (3 mL) と 10% パラジウムカーボン (1.5 mg) を加え、混合物を水素雰囲気下、室温で 1, 5 時間攪拌した。濾過、濃縮後、分取 TLC により精製し
 30

、4-[[N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノメチル] -1-(2-アミノ-4-クロロベンジル) ピペリジン(化合物番号 1919)を得た(5.1mg、14%)。純度はRPLC/MSにて求めた(90%)。¹H NMR(400MHz、CDCl₃) δ 1.09-1.32(m, 4H), 1.45-1.59(m, 1H), 1.66(d, J = 12.5 Hz, 2H), 1.88(t, J = 11.5 Hz, 2H), 2.82(d, J = 11.5 Hz, 2H), 3.17(t, J = 6.5 Hz, 2H), 3.42(s, 2H), 4.05(d, J = 3.5 Hz, 2H), 4.85(br s, 1H), 5.92(br s, 2H), 6.25-6.36(m, 1H), 6.55-6.66(m, 1H), 6.70(d, J = 8.5 Hz, 1H), 6.85(d, J = 8.5 Hz, 1H), 7.26(s, 1H), 7.42(d, J = 8.5 Hz, 1H), 7.68(s, 1H); ESI/MS m/e 498.2 (M⁺+H、C₂₃H₂₇C1F₃N₅O₂)

[実施例 1878-1879]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 1877 の方法に従って合成した。ESI/MS データおよび最終工程の収量および収率を表 46 にまとめた。

15

表 46

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1878	1920	C ₂₂ H ₂₆ C1F ₂ N ₅ O ₂	466.2	3.5	10.0
1879	1922	C ₂₃ H ₂₇ C1F ₃ N ₅ O ₃	514.2	1.2	3.1

[実施例 1880] 4-[[N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノメチル] -1-(ベンズ[d]オキサゾール-5-イル)

20 ピペリジン(化合物番号 2188)の合成

実施例 1826 の方法に従って合成した 1-(3-アミノ-4-ヒドロキシベンジル) -4-[[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル) グリシル] アミノメチル] ピペリジン(34.8mg、0.060mmol)のTHF(2mL)溶液に、オルト蟻酸トリエチル(0.25033mL、3.3当量)およびピリジニウム p-トルエンスルホネート(2mg、0.4当量)を加え、還流下、一晩攪拌した。室温まで冷却後、混合物を濃縮した。残査を酢酸エチルに溶解し、Bond ElutTM Siカラムに負荷し、酢酸エチル/メタノール=4:1で溶出し、濃縮した。

得られた残さを酢酸エチル（1. 5 mL）に溶解し、4M HClのジオキサン溶液（0. 5 mL）を加えた。室温で一晩攪拌した後、5M NaOH水溶液でpH 1.0に調節し、酢酸エチルで抽出した。抽出液を濃縮し、分取TLC（SiO₂、酢酸エチル/メタノール=4:1）で精製して4-[N-(2-アミノ-5-トリアフルオロメチルベンゾイル)グリシル]アミノメチル]-1-(ベンズ[d]オキサゾール-5-イル)ピペリジン（化合物番号2188）を得た（1. 6 mg、5%）。純度はRPLC/MSにて求めた（94%）。ESI/MS m/e 490.3 (M⁺+H, C₂₄H₂₆F₃N₅O₃)

[実施例1881] 4-[N-(2-アミノ-4,5-ジフルオロベンゾイル)グリシル]アミノメチル]-1-(2-オキソ-2,3-ジヒドロ-1,3-ベンズオキサゾール-5-イル)ピペリジン（化合物番号2190）の合成

1-(3-アミノ-4-ヒドロキシ)-4-[N-(2-(tert-ブトキシカルボニルアミノ)-4,5-ジフルオロベンゾイル)グリシル]アミノメチル]ピペリジン（22 mg、0.040 mmol）、NaHCO₃（0.040 mmol）、水（0.7 mL）、およびメタノール（1.5 mL）の混合物に、クロロ蟻酸フェニル（0.040 mL）を加え、室温で3時間攪拌した。1M NaOH溶液（0.040 mL）を加え、さらに1.5時間攪拌した後、酢酸エチルで抽出し、抽出液を濃縮した。残査をメタノールに溶解し、VarianTM SCXカラムに負荷し、メタノール（5 mL×2）で洗浄した。生成物を2M NH₃のメタノール（5 mL）溶液で溶出し、濃縮した。得られた残さに、1M クロロトリメチルシリランと1M フェノールのジクロロメタン（2 mL）溶液を加えた。室温で2時間攪拌し、濃縮後、残査をメタノールに溶解し、VarianTM SCXカラムに負荷し、メタノール（5 mL×2）で洗浄した。生成物を2M NH₃のメタノール（5 mL）溶液で溶出し、濃縮した。分取TLC（SiO₂、酢酸エチル/メタノール=5:2）により精製し、4-[N-(2-アミノ-4,5-ジフルオロベンゾイル)グリシル]アミノメチル]-1-(2-オキソ-2,3-ジヒドロ-1,3-ベンズオキサゾール-5-イル)ピペリジン（化合物番号2190）を得た（4.1 mg、22%）。純度はRPLC/MSにて求めた（100%）；ESI/MS m/e 474.2 (M++H, C₂₃H₂₅F₂N₅O₄)

30 [実施例1882-1884]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例

1881の方法に従って合成した（化合物番号2192と2193の合成には、クロロ蟻酸フェニルの代わりにクロロチオ蟻酸フェニルを用いた）。ESI/MSデータおよび最終工程の収量および収率を表47にまとめた。

表 47

5

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1882	2191	C ₂₄ H ₂₆ F ₃ N ₅ O ₄	506.3	3.1	10
1883	2192	C ₂₃ H ₂₅ F ₂ N ₅ O ₃ S	490.2	6.9	35
1884	2193	C ₂₄ H ₂₆ F ₃ N ₅ O ₃ S	522.2	3.6	11

[参考例36] 4-[N-(1-(9-フルオレニルメトキシカルボニル)ピペリジン-4-イルメチル)カルバモイルメチル]アミノメチル]-3-メトキシフェニルオキシメチル-ポリスチレン

10 1-(9-フルオレニルメトキシカルボニル)-4-(グリシルアミノメチル)ピペリジン：塩酸塩(1.0 mmol)のDMF(6.5 mL)溶液に、酢酸(0.3 mL)、トリアセトキシ水素化ホウ素ナトリウム(1.92 g)、および4-ホルミル-3-(メトキシフェニルオキシメチル)-ポリスチレン(1 mmol/g、200 g)を加え、2時間振とうし、濾過した。樹脂をメタノール、DMF、ジクロロメタン、および、メタノールで洗浄し、乾燥して目的の物質を得た。

15 [実施例1885-2000] 4-アミノメチルピペリジン類の固相合成

相当するカルボン酸(1.6 mmol)、HBTU(1.6 mmol)、およびDMF(6 mL)の混合物にジイソプロピルエチルアミン(3.6 mmol)を加え、2分間振とうした。4-[N-(1-(9-フルオレニルメトキシカルボニル)ピペリジン-4-イルメチル)カルバモイルメチル]アミノメチル]-3-メトキシフェニロキシメチル-ポリスチレン(0.4 mmol)を加え、1時間振とうし、濾過した。樹脂をDMFとジクロロメタンで洗浄し、乾燥した。

得られた樹脂(0.05 mmol)に、NaBH(OAc)₃(0.25 mmol)、酢酸(0.025 mmol)、およびDMFの混合物を加え、さらに相当するアルデヒド(2.5 mmol)を加えて2時間振とう後、濾過し、メタノール、10%ジイソプロピルエチルアミンのDMF溶液、DMF、ジクロロメタン、およびメタノールにて洗浄した。この樹脂と水(0.050 mL)、およびトリフルオロ

酢酸（0.95 mL）の混合物を1時間振とうし、濾過し、樹脂をジクロロメタンとメタノールで洗浄した。濾液と洗液をまとめて、濃縮した。残さを VariantTM SCXカラムに負荷し、メタノール（15 mL）にて洗浄した。生成物を2M NH₃のメタノール（5 mL）溶液にて溶出し、濃縮した。必要であれば、分取 TLC 5 CまたはHPLCにより精製し、目的物を得た。ESI/MSデータ、収量、および収率を表48にまとめた。

表 48

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1885	1923	C ₂₃ H ₂₅ BrF ₃ N ₃ O ₂ S	544	15.7	87
1886	1924	C ₂₄ H ₂₈ F ₃ N ₃ O ₃ S	496	14.6	89
1887	1925	C ₂₃ H ₂₅ F ₄ N ₃ O ₂ S	484	11.7	73
1888	1926	C ₂₃ H ₂₄ F ₅ N ₃ O ₂ S	502	13.9	84
1889	1927	C ₂₃ H ₂₆ F ₃ N ₃ O ₃ S	482	10.7	67
1890	1928	C ₂₄ H ₂₆ F ₃ N ₃ O ₄ S	510	14.3	85
1891	1929	C ₂₆ H ₃₀ F ₃ N ₃ O ₂ S	506	14.7	88
1892	1930	C ₂₄ H ₂₈ F ₃ N ₃ O ₂ S ₂	512	14.4	85
1893	1931	C ₂₅ H ₃₀ F ₃ N ₃ O ₂ S	494	14.3	88
1894	1932	C ₂₅ H ₂₈ F ₃ N ₃ O ₃ S	509	7.1*	35
1895	1933	C ₂₅ H ₃₀ F ₃ N ₃ O ₂ S	494	14.3	88
1896	1934	C ₂₆ H ₃₂ F ₃ N ₃ O ₂ S	509	14.4	86
1897	1935	C ₂₃ H ₂₅ F ₃ N ₄ O ₄ S	511	14.9	88
1898	1936	C ₂₄ H ₂₈ F ₃ N ₃ O ₂ S	480	13.3	84
1899	1937	C ₂₆ H ₃₂ F ₃ N ₃ O ₂ S	509	11.1	66
1900	1938	C ₂₃ H ₂₇ Br ₂ N ₃ O ₂	538	5.3*	25
1901	1939	C ₂₄ H ₃₀ BrN ₃ O ₃	488	5.0*	25
1902	1940	C ₂₃ H ₂₇ BrF ₃ N ₃ O ₂	476	4.9*	25
1903	1941	C ₂₃ H ₂₆ BrF ₂ N ₃ O ₂	494	6.1*	30
1904	1942	C ₂₃ H ₂₈ BrN ₃ O ₃	474	1.7*	9
1905	1943	C ₂₄ H ₂₈ BrN ₃ O ₄	502	6.6*	32
1906	1944	C ₂₆ H ₃₂ BrN ₃ O ₂	498	7.0*	35
1907	1945	C ₂₄ H ₃₀ BrN ₃ O ₂ S	504	11.1	67
1908	1946	C ₂₅ H ₃₂ BrN ₃ O ₂	488	3.2*	16
1909	1947	C ₂₅ H ₃₀ BrN ₃ O ₃	500	5.7	35
1910	1948	C ₂₅ H ₃₂ BrN ₃ O ₂	486	4.9*	25
1911	1949	C ₂₆ H ₃₄ BrN ₃ O ₂	500	6.7*	33

355

1912	1950	C23 H27 Br N4 O4	503	5.0*	25
1913	1951	C24 H30 Br N3 O2	472	5.1*	26
1914	1952	C22 H24 Br2 F N3 O2	542	14.9	83
1915	1953	C23 H27 Br F N3 O3	492	13.9	86
1916	1954	C22 H24 Br F2 N3 O2	480	12.5	79
1917	1955	C22 H23 Br F3 N3 O2	498	13.2	80
1918	1956	C22 H25 Br F N3 O3	478	7.0	44
1919	1957	C23 H25 Br F N3 O4	506	4.0*	20
1920	1958	C25 H29 Br F N3 O2	502	14.6	88
1921	1959	C23 H27 Br F N3 O2 S	508	13.1	78
1922	1960	C24 H29 Br F N3 O2	490	13.8	85
1923	1961	C24 H27 Br F N3 O3	504	2.7*	13
1924	1962	C24 H29 Br F N3 O2	490	12.7	78
1925	1963	C25 H31 Br F N3 O2	504	13.5	81
1926	1964	C22 H24 Br F N4 O4	507	14.8	88
1927	1965	C23 H27 Br F N3 O2	476	12.1	77
1928	1966	C25 H31 Br F N3 O2	504	13.4	80
1929	1967	C22 H26 Br F N4 O2	477	4.7*	20
1930	1968	C23 H29 F N4 O3	429	6.9*	32
1931	1969	C22 H27 F N4 O3	415	3.7*	17
1932	1970	C23 H27 F N4 O4	443	5.4*	24
1933	1971	C25 H31 F N4 O2	439	4.3*	20
1934	1972	C23 H29 F N4 O2 S	445	6.2*	28
1935	1973	C24 H31 F N4 O2	427	6.3*	29
1936	1974	C24 H31 F N4 O2	427	4.9*	23
1937	1975	C22 H26 F N5 O4	444	5.9*	27
1938	1976	C23 H29 F N4 O2	413	6.7*	32
1939	1977	C23 H26 F N5 O2	424	5.1*	24
1940	1978	C25 H33 F N4 O2	441	6.3*	29
1941	1979	C25 H30 F2 N4 O2	457	8.0*	35
1942	1980	C24 H28 F2 N4 O3	459	6.0*	26
1943	1981	C22 H25 F2 N5 O4	462	9.3*	41
1944	1982	C23 H25 F2 N5 O2	442	6.0*	27
1945	1983	C25 H32 F2 N4 O2	459	8.3*	37
1946	1984	C22 H26 Br I N4 O2	585	9.7*	36
1947	1985	C23 H29 I N4 O3	537	9.2*	36
1948	1986	C22 H27 I N4 O3	523	5.8*	23
1949	1987	C23 H27 I N4 O4	551	8.2*	32
1950	1988	C25 H31 I N4 O2	547	6.7*	26

1951	1989	C23 H29 I N4 O2 S	553	6.4*	25
1952	1990	C24 H31 I N4 O2	535	7.2*	29
1953	1991	C24 H29 I N4 O3	549	5.6*	22
1954	1992	C24 H31 I N4 O2	535	6.2*	25
1955	1993	C22 H26 I N5 O4	552	10.2*	40
1956	1994	C23 H29 I N4 O2	521	7.5*	30
1957	1995	C23 H26 I N5 O2	532	6.8*	27
1958	1996	C25 H33 I N4 O2	549	7.1*	28
1959	1997	C25 H33 I N4 O2	549	3.0*	12
1960	1998	C22 H25 Br Cl N3 O2	478	7.6*	39
1961	1999	C23 H28 Cl N3 O3	430	7.0*	39
1962	2000	C22 H25 Cl F N3 O2	418	14.1	102
1963	2001	C22 H26 Cl N3 O3	416	6.3*	36
1964	2002	C23 H26 Cl N3 O4	444	7.1*	39
1965	2003	C25 H30 Cl N3 O2	440	15.3	105
1966	2004	C23 H28 Cl N3 O2 S	446	8.4*	45
1967	2005	C24 H30 Cl N3 O2	428	7.4*	41
1968	2006	C24 H30 Cl N3 O2	428	13.8	98
1969	2007	C22 H25 Cl N4 O4	445	16.0	109
1970	2008	C23 H28 Cl N3 O2	414	14.1	103
1971	2009	C23 H25 Cl N4 O2	425	14.8	106
1972	2010	C25 H32 Cl N3 O2	442	14.5	99
1973	2011	C25 H32 Cl N3 O2	442	14.5	99
1974	2012	C22 H24 Br2 Cl N3 O2	558	12.8*	58
1975	2013	C23 H27 Br Cl N3 O3	508	8.6*	42
1976	2014	C22 H25 Br Cl N3 O3	494	6.0*	30
1977	2015	C23 H25 Br Cl N3 O4	522	8.4*	40
1978	2016	C25 H29 Br Cl N3 O2	518	17.6	103
1979	2017	C23 H27 Br Cl N3 O2 S	524	17.1	99
1980	2018	C24 H29 Br Cl N3 O2	506	14.7	88
1981	2019	C24 H27 Br Cl N3 O3	520	8.0*	38
1982	2020	C24 H29 Br Cl N3 O2	506	14.7	88
1983	2021	C22 H24 Br Cl N4 O4	523	12.0*	57
1984	2022	C23 H27 Br Cl N3 O2	492	8.5*	42
1985	2023	C23 H24 Br Cl N4 O2	503	6.3*	31
1986	2024	C25 H31 Br Cl N3 O2	520	9.6*	46
1987	2025	C25 H31 Br Cl N3 O2	520	15.0	87
1988	2026	C22 H23 Br Cl F2 N3 O2	514	15.8	93
1989	2027	C22 H26 Br2 N4 O2	537	10.7*	42

1990	2028	C23 H29 Br N4 O3	489	8.5*	36
1991	2029	C22 H27 Br N4 O3	475	7.5*	32
1992	2030	C23 H27 Br N4 O4	503	6.8*	28
1993	2031	C25 H31 Br N4 O2	499	6.2*	26
1994	2032	C24 H29 Br N4 O3	501	8.9*	37
1995	2033	C24 H31 Br N4 O2	487	9.1*	39
1996	2034	C22 H26 Br N5 O4	504	6.4*	26
1997	2035	C23 H29 Br N4 O2	473	6.5*	28
1998	2036	C23 H26 Br N5 O2	484	6.3*	27
1999	2037	C25 H33 Br N4 O2	501	5.4*	22
2000	2038	C22 H25 Br F2 N4 O2	495	5.4*	23

*トリフルオロ酢酸塩の収率。

[実施例 2001] 1-(3-カルバモイルベンジル)-4-[N-(3-ト
リフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン(化合物番

5 号924)の合成

EDCI (10. 7 mg)、1-ヒドロキシベンゾトリアゾール・水和物 (7. 5 mg)、トリエチルアミン (15. 4 mg)、0. 5M NH₃のジオキサン溶液 (0. 1 mL、0. 05 mmol)、およびDMF (0. 5 mL) を、1-(3-カルボキシベンゾイル)-4-[N-(3-トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン (19. 4 mg、0. 041 mmol) のクロロホルム溶液 (2. 5 mL) の溶液に加え、25°Cで20時間振とうし、2M NaOH水溶液 (2 × 2 mL) と食塩水 (1 mL) にて洗浄した。PTFE膜フィルターによる濾過後、溶媒を減圧下に除去し、1-(3-カルバモイルベンジル)-4-[N-(3-トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン (化合物番号924) を黄白色の固体として得た (17. 9 mg、92%)。純度はRPLC/MSにて求めた (89%)。ESI/MS m/e 447. 3 (M⁺+H、C₂₄H₂₇F₃N₄O₃)

[実施例 2002] 1-(4-カルバモイルベンジル)-4-[N-(3-ト
リフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン(化合物番

20 号925)の合成

化合物番号925は、対応する原料および反応剤を用いて実施例2001の方法に従って合成した。14. 2 mg、72%。純度はRPLC/MSにて求めた (8

6%）。ESI/MS m/e 447 ($M^+ + H$ 、 $C_{24}H_{27}F_3N_4O_3$)

[実施例 2003] 1-(4-アミノベンジル)-4-[N-(3-トリフルオロメチル)ベンゾイル]グリシルアミノメチル]ピペリジン(化合物番号 516)の合成

5 1-(4-ニトロベンジル)-4-[N-(3-トリフルオロメチル)ベンゾイル]グリシルアミノメチル]ピペリジン(22.4mg、0.047mmol)のエタノール(3mL)溶液を、25°Cにおいて、5%パラジウム炭素(10mg)の存在下に1時間、1気圧の水素雰囲気下で水素化した。触媒を濾過により除去し、エタノール(5mL)で洗浄した。濾液をまとめて、濃縮することにより、

10 1-(4-アミノベンジル)-4-[N-(3-トリフルオロメチル)ベンゾイル]グリシルアミノメチル]ピペリジン(化合物番号 516)を黄白色の固体として得た(20.1mg、96%)。純度はRPLC/MSにて求めた(99%)。ESI/MS m/e 449.1 ($M^+ + H$ 、 $C_{23}H_{27}F_3N_4O_2$)

[実施例 2004-2005]

15 化合物番号 517 と 518 を、それぞれ対応する原料および反応剤を用いて、実施例 2003 の方法に従って合成した。ESI/MS データおよび最終工程の収量および収率を表 49 にまとめた。

表 49

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
2004	517	$C_{23}H_{27}F_3N_4O_2$	449	26.5	78
2005	518	$C_{23}H_{27}F_3N_4O_2$	449	25.3	71

20

[実施例 2006] 1-[4-(ベンゾイルアミノ)ベンジル]-4-[N-(3-トリフルオロメチル)ベンゾイル]グリシルアミノメチル]ピペリジン(化合物番号 519)の合成

EDCI(4.7mg)、1-ヒドロキシベンゾトリアゾール・水和物(3.3mg)、トリエチルアミン(2.5mg)、および安息香酸(3.0mg)を、1-(4-アミノベンジル)-4-[N-(3-トリフルオロメチル)ベンゾイル]グリシルアミノメチル]ピペリジン(10.1mg、0.023mmol)のジクロロメタン溶液(2.5mL)に加え、25°Cで16時間振とうした。反応混

合物を2M NaOH水溶液(2mL×2)と食塩水(1mL)にて洗浄した後、PTFE膜フィルターにより濾過し、溶媒を減圧下に留去することにより、黄色油状体を得た。これを分取TLC(SiO₂、10%メタノール/ジクロロメタン)にて精製し、1-[4-(ベンゾイルアミノ)ベンジル]-4-[N-(3-トリフルオロメチル)ベンゾイル]グリシルアミノメチルピペリジン(化合物番号519)を無色の油状体として得た(4.6mg、36%)。純度はRPLC/MSにて求めた(99%)。ESI/MS m/e 553.2(M⁺+H、C₃₀H₃₁F₃N₄O₃)

[実施例2007] 1-[4-(ピペリジノカルボニル)ベンジル]-4-[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチルピペリジン(化合物番号1572)の合成

ピペリジン(0.048mg)、ジイソプロピルカルボジイミド(0.45mmol)のDMF溶液(0.15mL)、1-ヒドロキシベンゾトリアゾール水化物(0.45mmol)のDMF溶液を、1-(4-カルボキシベンジル)-4-[N-(3-トリフルオロメチル)ベンゾイル]グリシルアミノメチルピペリジン(0.040mmol)のDMF(1.0mL)溶液に加え、室温で17時間振とう後、VarianTM SCXカラムに負荷し、クロロホルム/メタノール=1:1(5mL)およびメタノール(5mL)にて洗浄した。生成物を2M NH₃のメタノール(5mL)溶液で溶出し、濃縮して1-[4-(ピペリジノカルボニル)ベンジル]-4-[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチルピペリジン(化合物番号1572)を得た(14.3mg、66%)。純度はRPLC/MSにて求めた(99%)。ESI/MS m/e 545(M⁺+H、C₂₉H₃₅F₃N₄O₃)

[実施例2008-2015]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例2007の方法に従って合成した。ESI/MSデータおよび最終工程の収量および収率を表50にまとめた。

表 50

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
-----	-------	-----	------------	---------	--------

2008	1573	C31 H33 F3 N4 O4	583	17.6	76
2009	1574	C31 H33 F3 N4 O3	567	18.8	83
2010	1575	C30 H30 Cl F3 N4 O3	587	3.2	14
2011	1576	C28 H33 F3 N4 O4	547	21.1	97
2012	1577	C26 H31 F3 N4 O4	521	5.1	24
2013	1578	C31 H33 F3 N4 O3	567	16.9	75
2014	1579	C31 H33 F3 N4 O3	567	6.0	26
2015	1580	C29 H35 F3 N4 O3	545	15.1	69

[実施例2016] 1-[4-(クロロホルミル)ベンジル]-4-[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジンの合成

5 1-(4-カルボキシベンジル)-4-[N-(3-トリフルオロメチル)ベンゾイル]グリシル]アミノメチル]ピペリジン(240mg)と塩化チオニル(1mL)の混合物を室温で12時間攪拌した後、余分の塩化チオニルを減圧下に除去することにより、1-[4-(クロロフルミル)ベンジル]-4-[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジンを得た。この酸塩化物は、それ以上精製することなく用いた。

[実施例2017] 1-[4-[N-(2-メトキシエチル)カルバモイル]ベンジル]-4-[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン(化合物番号1612)の合成

15 1-[4-(クロロホルミル)ベンジル]-4-[N-(3-トリフルオロメチル)ベンゾイル]グリシル]アミノメチル]ピペリジン(0.042mmol)、2-メトキシエチルアミン(3.8mg、0.050mmol)、ピペリジノメチルポリスチレン(46mg)、およびジクロロメタン(1.5mL)の混合物を室温で17時間攪拌した。水(0.020mL)を加え、混合物を30分攪拌した後、メタノール(1mL)を加え、混合物をVarian™ SCXカラムに負荷し、メタノール(10mL)にて洗浄した。生成物を、2M NH₃のメタノール溶液で溶出し、濃縮することにより、1-[4-[N-(2-メトキシエチル)カルバモイル]ベンジル]-4-[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン(化合物番号1612)を得た(26.7mg、100%)。純度はRPLC/MSにて求めた(92%)。ESI/MS m/

e 535.2 ($M^+ + H$ 、 $C_{27}H_{33}F_3N_4O_4$)

[実施例 2018-2020]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 2017 に従って合成した。必要であれば、分取 TLC によって精製し、目的物を得た。ESI/MS データ、収量、および収率を表 51 にまとめた。

表 51

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
2018	1610	$C_{31}H_{30}F_6N_4O_3$	621.2	4.4	14
2019	1611	$C_{30}H_{29}Cl_2F_3N_4O_3$	621.2	35.7	定量的
2020	1613	$C_{32}H_{35}F_3N_4O_3$	581.2	29.9	定量的

[実施例 2021] 4-[N-[5-ブロモ-2-(メチルアミノ)ベンゾイル]グリシル]アミノメチル-1-(4-クロロベンジル)ピペリジン(化合物番号 1427)の合成

4-[N-(2-アミノ-5-ブロモベンゾイル)グリシル]アミノメチル-1-(4-クロロベンジル)ピペリジン(化合物番号 1042) (50 mg、0.10 mmol) のオルト蟻酸トリエチル (6.5 mL) 溶液を 150°C で 17 時間攪拌した。濃縮により黄色固体を得た。この黄色固体のエタノール (3 mL) 溶液に、水素化ホウ素ナトリウム (7.6 mg、0.2 mmol) を加え、室温で 14 時間攪拌した。得られた白色沈殿をジクロロメタンに溶解し、溶液を 1M NaOH 水溶液 (2 mL) にて洗浄した。有機層を分離し、 K_2CO_3 で乾燥し、濾過、濃縮した。カラムクロマトグラフィー (SiO_2 、20%メタノール/クロロホルム) によって精製し、4-[N-[5-ブロモ-2-(メチルアミノ)ベンゾイル]グリシル]アミノメチル-1-(4-クロロベンジル)ピペリジン(化合物番号 1427)を得た (40 mg、80%)。純度は RPLC/MS にて求めた (100%)。ESI/MS m/e 505 ($M^+ + H$ 、 $C_{23}H_{28}BrClF_6N_4O_2$)

[実施例 2022] 4-[N-[5-ブロモ-2-(ジメチルアミノ)ベンゾイル]グリシル]アミノメチル-1-(4-クロロベンジル)ピペリジン(化合物番号 1428)の合成

シアノ水素化ホウ素ナトリウム (26 mg、0.42 mmol) と酢酸 (14 L)

) を、4-[N-(2-アミノ-5-ブロモベンゾイル)グリシル]アミノメチル-1-(4-クロロベンジル)ピペリジン(化合物番号1042)(6.7mg、0.14mmol)、37%ホルムアルデヒド水溶液(0.112mL、1.4mmol)、アセトニトリル(2mL)、およびメタノール(1.5mL)の混合物に5加え、50°Cで30時間攪拌した後、1M NaOH水溶液およびジクロロメタンを加えた。水層を分離し、有機層をK₂CO₃で乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO₂、20%メタノール/酢酸エチル)により精製し、4-[N-[5-ブロモ-2-(ジメチルアミノ)ベンゾイル]グリシル]アミノメチル-1-(4-クロロベンジル)ピペリジン(化合物番号1428)を得た(6.0mg、82%)。純度はRPLC/MSにて求めた(100%)。ESI/MS m/e 523 (M⁺+H, C₂₄H₃₀BrClF₆N₄O₂)

[実施例2023] 4-[N-[5-ブロモ-2-(メチルスルホニルアミノ)ベンゾイル]グリシル]アミノメチル-1-(4-クロロベンジル)ピペリジン(化合物番号1581)の合成

15 4-[N-[2-アミノ-5-ブロモベンゾイル]グリシル]アミノメチル-1-(4-クロロベンジル)ピペリジン(2.5mg、0.05mmol)、メタノスルホニルクロリド(0.0045mL)、トリエチルアミン(0.026mL)、およびジクロロメタン(2mL)の混合物を室温で17時間攪拌した。反応混合物をカラムクロマトグラフィー(SiO₂)で精製し、VarianTM SCXカラムに負荷し、メタノール(5mL)にて洗浄した。生成物を、0.1M HClのメタノール(5mL)溶液で溶出し、濃縮して4-[N-[5-ブロモ-2-(メチルスルホニルアミノ)ベンゾイル]グリシル]アミノメチル-1-(4-クロロベンジル)ピペリジン(化合物番号1581)を得た(5.4mg、19%)。ESI/MS m/e 573.0 (M⁺+H, C₂₃H₂₈BrClN₄O₄S)

20 25 [実施例2024] 4-[N-[5-ブロモ-2-(ビス(メチルスルホニル)アミノ)ベンゾイル]グリシル]アミノメチル-1-(4-クロロベンジル)ピペリジン(化合物番号1582)の合成

30 1-(4-クロロベンジル)-4-[N-[2-アミノ-5-ブロモベンゾイル]グリシル]アミノメチルピペリジン(5.7mg、0.10mmol)、メタノスルホニルクロリド(0.018mL、0.024mL)、トリエチルアミン(0.068mL)、およびジクロロメタン(2mL)の混合物を室温で8時間攪拌

した。1M NaOH水溶液(1mL)を加え、ジクロロメタン(2mL×3)にて抽出した。抽出液を合わせて、K₂CO₃で乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO₂)により精製し、4-[N-[5-プロモ-2-(ビス(メチルスルホニル)アミノ)ベンゾイル]グリシル]アミノメチル]-1-(4-クロロベンジル)ピペリジン(化合物番号1582)を得た(40mg、62%)。

ESI/MS m/e 651 (M⁺+H, C₂₄H₃₀BrC1N₄O₆S₂)

[実施例2025] ヨウ化1-(4-クロロベンジル)-1-メチル-4-[N-[3-トリフルオロメチル]ベンゾイル]グリシル]アミノメチル]ピペリジニウム(化合物番号461のヨウ化メチルアンモニウム塩)の合成

10 4-[N-[3-トリフルオロメチル]ベンゾイル]グリシル]アミノメチル]ピペリジン(30mg、0.087mmol)のアセトニトリル(1.0mL)溶液と(ピペリジノメチル)ポリスチレン(80mg、2.7mmol塩基/g樹脂)を、4-クロロベンジルクロリド(11.7mg、0.073mmol)のクロロホルム(1.0mL)溶液に加え、60°Cで2時間攪拌した。フェニルイソシアネート(10.4mg、0.087mmol)を、室温まで冷却した反応混合物に加え、25°Cで1時間攪拌した後、VarianTM SCXカラムに負荷し、メタノール(20mL)にて洗浄した。生成物を、2M NH₃のメタノール(6mL)溶液で溶出し、濃縮しすることにより、1-(4-クロロベンジル)-4-[N-[3-トリフルオロメチル]ベンゾイル]グリシル]アミノメチル]ピペリジンを無色の油状体として得た。

ヨウ化メチル(28mg、0.20mmol)を1-(4-クロロベンジル)-4-[N-[3-トリフルオロメチル]ベンゾイル]グリシル]アミノメチル]ピペリジンのアセトニトリル(2.0mL)溶液に加え、この反応混合物を70°Cで4時間攪拌した。溶媒を減圧下に除去し、ヨウ化1-(4-クロロベンジル)-1-メチル-4-[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジニウムを黄色油状体として得た(31.7mg、71%)。

純度はRPLC/MSにて求めた(99%)。ESI/MS m/e 482.1 (M⁺+H, C₂₄H₂₈C1F₃N₃O₂)

[実施例2026] 1-(4-クロロベンジル)-4-[N-メチル-N-[3-(トリフルオロメチル)ベンゾイル]グリシル]アミノメチル]ピペリジン(化合物番号520)の合成

ホルムアルデヒド水溶液 (108 mg、1. 33 mmol、37 wt%) を 1-(4-クロロベンジル)-4-(アミノメチル)ピペリジン (318 mg、1. 33 mmol) と NaBH₃CN (668 mg) の 10% 酢酸/メタノール (3 mL) 溶液に加え、25°Cで1時間攪拌した。反応混合物を Dowex™ 50Wx2 カラム (10 mL) に負荷し、メタノール (20 mL) にて洗浄した。生成物を、2 M NH₃ のメタノール (6 mL) 溶液で溶出し、濃縮して 1-(4-クロロベンジル)-4-[(メチルアミノ) メチル] ピペリジンを無色の油状体として得、これを精製せずに用いた。

EDCI (85 mg)、1-ヒドロキシベンゾトリアゾール・水和物 (60 mg) を、1-(4-クロロベンジル)-4-[(メチルアミノ) メチル] ピペリジン (111 mg、0. 44 mmol) のジクロロメタン (4 mL) 溶液に加え、25°Cで1時間攪拌後、2M NaOH (2 mL × 2) 水溶液で洗浄した。PTFE 膜フィルターで濾過後、溶媒を減圧下に除去して黄色油状体を得、これを分取TLC にて精製し、1-(4-クロロベンジル)-4-[N-メチル-N-[N-(3-トリフルオロメチル)ベンゾイル]アミノメチル] ピペリジン (化合物番号 520) を黄白色油状体として得た (14. 0 mg、3. 4%)。純度は RPLC/MS にて求めた (99%)。ESI/MS m/e 482. 1 (M⁺+H⁺)、C₂₄H₂₇C₁F₃N₃O₂)

[参考例 3.7] 3-アミノホモピペリジンの合成

DL-α-アミノ-ε-カプロラクタム (2 g、16 mmol) の THF (70 mL) 溶液に、1M BH₃-THF 溶液 (80 mL) を加え、3時間還流した。2 M 塩酸 (50 mL) を加え、反応をさらに1時間加熱、還流し、その後 25°C に冷却した。反応物を 4M NaOH 溶液を加えてアルカリ性とし (pH 10)、酢酸エチル (200 mL × 3) で抽出した。有機層を合わせ、飽和 NaHCO₃ 水で洗浄し、乾燥 (MgSO₄)、濃縮することにより、目的物を得た (990 mg、54%)。これをそれ以上精製することなく使用した。

[参考例 3.8] 3-アミノ-1-(4-クロロベンジル)ホモピペリジンの合成

3-アミノホモピペリジン (1. 71 g、15 mmol) のアセトニトリル (4. 5 mL) 溶液に、p-クロロベンジルクロリド (463 mg、2. 9 mmol) と K₂CO₃ (828 g、6 mmol) を加え、70°Cで9時間加熱攪拌した。25°C に冷却し、濃縮して黄色固体を得た。残査を H₂O (5 mL) と酢酸エチル (50 mL)

L) の間に分配し、酢酸エチル (50 mL × 2) で抽出した。有機層を合わせて食塩水 (20 mL) で洗浄し、乾燥 ($MgSO_4$)、濃縮した。得られた黄色油状物をクロマトグラフィー (SiO_2 、5-20%メタノール/ジクロロメタン勾配溶出) にて精製し、目的物を黄色油状体として得た (639 mg, 93%)。

5 [実施例 2027] 1-(4-クロロベンジル)-3-[4-ベンゾイルブチリル]アミノ]ホモピペリジン (化合物番号 994) の合成

3-アミノ-1-(4-クロロベンジル)ホモピペリジン (24 mg, 0.10 mmol) および4-ベンゾイルブチル酸 (1.2 当量) のクロロホルム (1 mL) の溶液に、EDCI (23 mg)、HOBT (16.2 mg)、およびトリエチルアミン (15.2 μ L) を加え、25°Cで16時間攪拌した。この反応混合物をジクロロメタン (0.5 mL) にて希釈し、PTFE膜にて濾過し、濃縮して1-(4-クロロベンジル)-3-[4-ベンゾイルブチリル]アミノ]ホモピペリジン (化合物番号 994)を得た (43 mg, 99%)。純度はRPLC/MSにて求めた (98%)。ESI/MS m/e 413 ($M^+ + H$, $C_{24}H_{29}ClN_2O_2$)

15 O_2)

[実施例 2028-2042]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 2027 に従って合成した。必要であれば、クロマトグラフィー (HPLC-C₁₈) によって精製し、目的物をTFA塩として得た。ESI/MSデータ、収量、および收率を表52にまとめた。

表 52

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
2028	943	$C_{23}H_{25}ClF_3N_3O_2$	468	6	28
2029	944	$C_{23}H_{28}ClN_3O_2$	414	5	29
2030	945	$C_{22}H_{25}ClN_4O_4$	445	6	30
2031	946	$C_{23}H_{27}ClN_4O_4$	459	5	24
2032	947	$C_{25}H_{31}ClN_2O_4$	459	4	20
2033	948	$C_{24}H_{29}Cl_2N_3O_2$	462	6	32
2034	949	$C_{25}H_{32}ClN_3O_2$	442	6	31
2035	988	$C_{23}H_{25}ClF_3N_3O_2$	468	45	92
2036	989	$C_{23}H_{28}ClN_3O_3$	430	44	97

2037	990	C22 H26 Cl N3 O2	400	41	99
2038	991	C23 H27 Cl N2 O2	399	41	97
2039	992	C25 H31 Cl N2 O4	459	47	98
2040	993	C25 H31 Cl N2 O2	427	44	98
2041	995	C25 H31 Cl N2 O3	443	44	95
2042	996	C24 H31 Cl N4 O2	443	5*	11

* トリフルオロ酢酸塩の収率。

[実施例 2043] T H P - 1 細胞へのM I P - 1 α 結合に対する被験化合物の阻害能の測定

5 ヒト前単球白血病細胞であるT H P - 1 細胞を、 1×10^7 個/ mL になるようにアッセイバッファー (R P M I - 1 6 4 0 (G i b c o - B R L社製) に 0. 1 % B S A、2 5 mM H E P E Sを加え pH 7. 4 に調整したもの) に懸濁し、細胞懸濁液とした。被験化合物をアッセイバッファーで希釈した溶液を、被験化合物溶液とした。ヨウ素標識されたヒトM I P - 1 α (D u P o n t N E N社製) 2 10 5. 0 n C i / mL になるようにアッセイバッファーで希釈した溶液を標識リガンド溶液とした。9 6 ウエルフィルタープレート (ミリポア社製) に、1 ウエルあたり被験化合物 2 5 μ L、標識リガンド溶液 2 5 μ L、細胞懸濁液 5 0 μ L の順番に分注し攪拌後 (反応溶液 1 0 0 μ L) 、1 8 °C で 1 時間インキュベートした。

反応終了後、反応液をフィルター濾過し、フィルターを冷P B S 2 0 0 μ L で 2 15 回洗浄した (冷P B S 2 0 0 μ L 加えた後、濾過) 。フィルターを風乾後、液体シンチレーターを 1 ウエルあたり 2 5 μ L ずつ加え、フィルター上の細胞が保持する放射能をトップカウント (パックカード社製) で測定した。

試験化合物の代わりに、非標識ヒトM I P - 1 α (P e p r o t e c h 社製) 1 20 0 0 n g を添加したときのカウントを非特異的吸着として差し引き、被験化合物を何も添加しないときのカウントを 1 0 0 % としてヒトM I P - 1 α のT H P - 1 細胞への結合に対する被験化合物の阻害能を算出した。

$$\text{阻害率 (\%)} = [1 - (A - B) / (C - B)] \times 100$$

(A : 試験化合物添加時のカウント、B : 非標識ヒトM I P - 1 α 1 0 0 n g 添加時のカウント、C : [125 I] 標識ヒトM I P - 1 α のみ添加したときのカウント)

25 本発明の有効成分である環状アミン誘導体の阻害能を測定したところ、例えば下記の化合物は、2 μ M または 1 0 μ M の濃度において、それぞれ 2 0 - 5 0 %、5 0

%—80%、および>80%の阻害能を示した。

10 μMの濃度において20%—50%の阻害能を示した化合物：

化合物番号29、37、41、45、46、47、50、82、85、107、1
20、134、214、217、218、220、222、225、226、22
5 7、228、229、230、231、233、234、236、237、238
、333、334、335、336、338、340、342、347、348、
349、350、352、357、359、361、366、372、374、3
75、376、380、382、383、385、470、471、472、47
3、474、483、484、488、489、491、497、499、500
10 、502、506、508、510、514、515、518、524、543、
553、554、555、556、563、571、575、576、578、5
79、580、583、586、587、588、590、591、592、59
5、596、598、603、610、611、612、614、624、625
、626、629、635、638、639、640、641、642、643、
15 644、646、647、648、649、652、653、658、659、6
60、665、666、669、671、675、677、679、681、68
2、684、691、695、696、700、702、704、706、711
、712、714、717、721、723、724、726、727、728、
729、731、737、739、740、741、742、744、746、7
20 65、767、772、773、774、775、776、780、781、78
5、786、787、788、790、791、792、793、795、796
、797、798、805、806、807、810、813、820、821、
822、824、825、827、829、830、833、834、837、8
38、844、853、855、873、877、878、880、882、88
25 7、888、891、894、901、903、904、905、911、929
、932、933、935、938、940、948、993、996、1006
、1018、1026、1028、1035、1048、1053、1054、1
055、1056、1068、1070、1071、1072、1073、107
5、1076、1081、1763、1764

30 10 μMの濃度において50%—80%の阻害能を示した化合物：

化合物番号1、2、3、4、7、13、22、23、24、25、27、31、3

2、38、48、83、119、121、123、131、215、216、22
1、235、337、351、354、358、362、363、365、367
、368、369、373、378、381、384、458、459、463、
465、466、467、468、478、479、480、482、485、4
5 86、487、492、493、494、495、496、498、501、50
3、504、507、511、512、513、520、523、527、529
、530、531、532、533、534、535、536、537、538、
539、540、541、542、545、546、547、548、549、5
50、551、552、558、559、560、561、562、565、56
10 7、568、569、570、572、573、574、577、581、582
、594、597、599、600、602、604、606、607、608、
609、613、615、616、618、619、620、621、628、6
30、631、632、633、634、636、637、645、651、65
4、655、657、661、662、664、673、674、676、678
15 、680、683、685、687、688、689、693、703、705、
707、708、709、710、713、716、718、719、720、7
25、730、732、733、734、735、736、749、750、75
1、752、753、754、756、758、760、762、763、764
、766、768、769、770、771、777、778、779、784、
20 794、799、800、802、804、808、809、811、812、8
15、816、819、828、831、832、835、836、839、84
0、845、846、847、848、850、851、854、857、858
、859、860、861、862、863、865、866、867、868、
872、874、876、886、899、910、942、998、1004、
25 1005、1007、1013、1015、1016、1017、1019、10
20、1021、1022、1024、1030、1037、1042、1043
、1044、1045、1046、1047、1049、1050、1052、1
059、1060、1061、1067、1069、1074、1078、107
9、1080、1766
30 10 μMの濃度において>80%の阻害能を示した化合物：
化合物番号461、464、469、481、490、505、509、521、

526、528、544、564、566、601、605、617、622、6
23、627、650、656、663、668、672、686、690、69
2、694、715、743、747、748、755、757、759、761
、782、783、803、814、817、818、826、849、856、
5 864、869、870、871、999、1000、1001、1002、10
03、1008、1009、1010、1011、1012、1023、1029
、1031、1032、1033、1034、1036、1038、1039、1
040、1041、1051、1057、1058、1062、1063、106
4、1065、1066、1082、1083

10 2 μMの濃度において20%–50%の阻害能を示した化合物：

化合物番号1042、1043、1244、1245、1416、1435、14
36、1438、1441、1480、1570、1583、1584、1589
、1590、1594、1595、1601、1660、1672、1687、1
724、1779、1780、1787、1795、1796、1798、179
15 9、1802、1893、1894、1898、1900、1915、1919、
1920、2092、2096、2098、2100

2 μMの濃度において50%–80%の阻害能を示した化合物：

化合物番号1190、1414、1600、2091、2094、2095

2 μMの濃度において>80%の阻害能を示した化合物：

20 化合物番号2093、2097、2099、2103、2104

[実施例2044] THP-1細胞へのMCP-1の結合に対する阻害能の測定

1. ヒトMCP-1遺伝子含有組換えバキュロウィルスの作製

公知のヒトMCP-1遺伝子配列（例えばYoshimura, T. et al. Febs Letters 1
989, 244, 487-493など参照）に基づき制限酵素認識部位を付加したDNA合成プライ
25 マーを2種類（5'-CACTCTAGACTCCAGCATGA-3' および5'-
TAGCTGCAGATTCTTGGGTTG-3'）を用いて、ヒト血管内皮細胞
(クラボー社より購入)由来cDNAをPCR法により增幅し、制限酵素（Pst
I およびXba I）切断後、トランスファーベクターpVL1393 (Invit
rogen社製)に組み込んだ。かかるベクターと感染性バキュロウィルスをSf
30 -9昆虫細胞にコトランスクレクトし、その上清からplaquer assay法によりヒ
トMCP-1遺伝子組換えバキュロウィルスを単離した。

2. [¹²⁵I] 標識バキュロウィルス発現ヒトMCP-1の取得

ISHII、K. らの方法 (Biochemical and Biophysical Research Communications 1995, 206, 955-961参照) に従い、Sf-9 昆虫細胞 5×10^6 個に、上記ヒトMCP-1 遺伝子組換えバキュロウィルス 5×10^7 PFU (plaques forming units) を感染させ、EX-CELL 401 培地にて 7 日間培養し、得られた培養上清をヘパリンセファロースカラム (ファルマシア社製) でアフィニティー精製した後、逆相HPLC (Vydac C18 カラム) に付し、精製ヒトMCP-1を得た。得られた精製ヒトMCP-1につき、アマシャム社に蛋白標識を依頼し、ボルトン・ハンター法により作製された [¹²⁵I] 標識バキュロウィルス発現ヒトMCP-1を得 (比活性: 2000 Ci/mmol)、以下の試験に用いた。

3-1. [¹²⁵I] 標識バキュロウィルス発現ヒトMCP-1のTHP-1細胞への結合に対する阻害能の測定 (方法 1)

ヒト前単球由来白血病細胞である THP-1 細胞を 1×10^7 個/mL になるよう アッセイバッファー (RPMI-1640 (Gibco-BRL社製) に 0.1% BSA、25 mM HEPES を加え、pH 7.4 に調整したもの) に懸濁し細胞懸濁液とした。被験化合物をアッセイバッファーで希釈した溶液を被験化合物溶液とした。上述の [¹²⁵I] 標識バキュロウィルス発現ヒトMCP-1を $1 \mu\text{Ci}/\text{mL}$ になるようにアッセイバッファーで希釈した溶液を標識リガンド溶液とした。96 ウエルフィルタープレート (ミリポア社製) に、1 ウエルあたり被験化合物溶液 $25 \mu\text{L}$ 、標識リガンド溶液 $25 \mu\text{L}$ 、細胞懸濁液 $50 \mu\text{L}$ の順番に分注し、攪拌後 (反応溶液 $100 \mu\text{L}$)、 18°C で 1 時間インキュベートした。

反応終了後、反応液をフィルター濾過し、フィルターを冷 PBS $200 \mu\text{L}$ で 2 回洗浄した (冷 PBS $200 \mu\text{L}$ を加えた後、濾過)。フィルターを風乾後、液体シンチレーターを 1 ウエルあたり $25 \mu\text{L}$ ずつ加え、フィルター上の細胞が保持する放射能をトップカウント (パックカード社製) で測定した。

被験化合物の代わりに上述のバキュロ発現ヒトMCP-1 (非標識) 100ng を添加した時のカウントを非特異的吸着として差し引き、被験化合物を何も添加しないときのカウントを 100% としてヒトMCP-1 の THP-1 細胞への結合に対する被験化合物の阻害能を算出した。

$$30 \quad \text{阻害率 (\%)} = \{1 - (A - B) / (C - B)\} \times 100$$

(A : 被験化合物添加時のカウント、B : 非標識ヒトMCP-1 100ng 添加

時のカウント、C : [^{125}I] 標識ヒトMCP-1のみ添加した時のカウント)

本発明の有効成分である環状アミン誘導体の阻害能を測定したところ、例えば下記の化合物は、 $1\ \mu\text{M}$ 、 $10\ \mu\text{M}$ 、または $100\ \mu\text{M}$ の濃度において、それぞれ $20\%-50\%$ 、 $50\%-80\%$ 、および $>80\%$ の阻害能を示した。

5 $100\ \mu\text{M}$ の濃度において $20\%-50\%$ の阻害能を示した化合物：

化合物番号3、6、11、15、16、19、28、44、88、92、94、104、111、112、124、125、133、219、220、224、228、236、338、343、346、347、348、349、362、363、367、368、371、373、381、618、847、849、850、

10 866、867、869、870、871、872、873

$100\ \mu\text{M}$ の濃度において $50\%-80\%$ の阻害能を示した化合物：

化合物番号1、8、10、12、18、21、26、30、33、35、39、84、89、90、91、96、97、98、99、100、101、103、106、108、109、110、116、122、126、216、218、221、225、226、231、330、332、333、334、337、341、342、350、352、354、356、359、360、361、364、366、374、375、379、382、462、463、464、557、686、840、841、842、843、844、845、846、848、862、863、864、865、868

20 $100\ \mu\text{M}$ の濃度において $>80\%$ の阻害能を示した化合物：

化合物番号2、4、5、7、13、14、17、20、22、23、24、25、27、29、31、32、34、36、38、40、41、42、43、45、46、47、48、49、50、83、85、86、95、102、105、107、113、114、115、119、120、121、123、127、128、

25 129、130、131、132、134、214、215、217、227、237、238、331、335、336、339、340、345、351、355、357、358、383、458、459、460、466、558、851、852、861、874

$10\ \mu\text{M}$ の濃度において $20\%-50\%$ の阻害能を示した化合物：

30 化合物番号12、18、30、34、40、42、43、51、52、53、54、55、56、57、59、60、64、66、75、76、77、78、79、

82、89、90、97、98、102、103、116、127、128、12
9、130、132、135、136、140、141、144、156、157
、159、160、161、162、163、166、167、168、169、
170、171、172、173、174、175、176、178、179、1
5 90、191、192、195、197、200、202、203、204、20
5、208、233、234、235、239、240、241、242、243
、245、247、249、250、255、263、264、269、274、
278、279、282、306、316、317、323、324、380、4
04、409、433、446、448、449、451、470、471、47
10 3、476、479、486、488、489、497、498、499、501
、504、507、508、509、510、512、514、516、519、
527、530、532、542、545、560、563、564、565、5
66、568、569、572、573、574、575、578、583、58
4、586、587、589、590、599、600、601、603、606
15 、612、613、620、621、622、624、625、627、629、
630、632、634、636、637、640、641、642、643、6
44、645、646、647、648、649、658、678、682、68
7、692、694、764、775、856、857、860、881、882
、883、884、890、892、899、900、903、905、907、
20 908、911、912、916、917、921、922、923、925、9
27、931、932、935、939、940、968、986、1039、1
041、1045、1047、1062、1063、1083

10 μMの濃度において50%–80%の阻害能を示した化合物：

化合物番号7、32、36、61、62、63、65、67、69、70、71、
25 72、73、74、81、91、105、114、121、123、134、13
7、138、139、146、147、148、149、151、154、165
、177、232、244、248、251、252、253、256、259、
261、266、267、276、286、292、293、295、301、3
05、307、310、314、315、320、322、328、434、43
30 5、436、437、439、440、443、447、450、452、453
、454、455、456、468、469、472、474、475、477、

478、480、481、482、483、485、490、493、494、5
00、505、511、517、520、529、534、540、543、54
4、548、555、556、561、562、570、576、579、611
、617、853、854、855、858、859、875、877、879、
5 880、885、886、887、888、891、894、895、904、9
06、909、910、913、914、918、928、930、933、93
7、938、945、970、1040、1044、1046

10 μ Mの濃度において>80%の阻害能を示した化合物：

化合物番号31、45、46、48、58、68、80、83、113、115、
10 142、143、145、150、152、265、268、272、275、2
83、285、287、288、290、291、294、296、297、30
2、308、309、313、321、325、326、358、438、441
、442、444、445、457、466、467、484、487、491、
492、495、496、503、518、537、538、547、554、8
15 76、878、919、929、943

1 μ Mの濃度において20%–50%の阻害能を示した化合物：

化合物番号1118、1121、1136、1143、1146、1158、11
59、1167、1170、1359、1361、1362、1363

1 μ Mの濃度において50%–80%の阻害能を示した化合物：

20 化合物番号1133、1134、1137、1141、1156、1161、11
62、1163、1164、1166

1 μ Mの濃度において>80%の阻害能を示した化合物：

化合物番号1147

3–2. [¹²⁵I] 標識バキュロウィルス発現ヒトMCP–1のTHP–1細胞への
25 結合に対する阻害能の測定（方法2）

ヒト前单球由来白血病細胞であるTHP–1細胞を 1×10^7 個/mLになるよう
にアッセイバッファー（5.0 mM HEPES、pH 7.4、1.0 mM CaC
l₂、5.0 mM MgCl₂、0.5% BSA）に懸濁し細胞懸濁液とした。被験
化合物をアッセイバッファーで希釈した溶液を被験化合物溶液とした。上述の [¹²⁵
30 I] 標識バキュロウィルス発現ヒトMCP–1を 1μ Ci/mLになるようにアッ
セイバッファーで希釈した溶液を標識リガンド溶液とした。96 ウエルフィルター

プレート（ミリポア社製）に、1 ウエルあたり被験化合物溶液 25 μL、標識リガンド溶液 25 μL、細胞懸濁液 50 μL の順番に分注し、攪拌後（反応溶液 100 μL）、18°Cで1時間インキュベートした。

反応終了後、反応液をフィルター濾過し、フィルターを冷 PBS 200 μL で
5 2回洗浄した（冷 PBS 200 μL を加えた後、濾過）。フィルターを風乾後、
液体シンチレーターを1 ウエルあたり 25 μL ずつ加え、フィルター上の細胞が保
持する放射能をトップカウント（パッカード社製）で測定した。被験化合物の代わ
りに上述のバキュロ発現ヒトMCP-1（非標識）100 ng を添加したときのカウン
10 トを 100% としてヒトMCP-1 の THP-1 細胞への結合に対する被験化合物
の阻害能を算出した。

$$\text{阻害率 (\%)} = \{ 1 - (A - B) / (C - B) \} \times 100$$

(A : 被験化合物添加時のカウント、B : 非標識ヒトMCP-1 100 ng 添加
時のカウント、C : [¹²⁵I] 標識ヒトMCP-1のみ添加した時のカウント)

15 本発明の有効成分である環状アミン誘導体の阻害能を測定したところ、例えば下
記の化合物は、0.2 μM、1 μM、または 10 μM の濃度において、それぞれ 20
- 50%、50%-80%、および >80% の阻害能を示した。

10 μM の濃度において 20%-50% の阻害能を示した化合物：

化合物番号 1560

20 10 μM の濃度において 50%-80% の阻害能を示した化合物：

化合物番号 1550

10 μM の濃度において >80% の阻害能を示した化合物：

化合物番号 541、1042、1043、1559

1 μM の濃度において 20%-50% の阻害能を示した化合物：

25 化合物番号 1098、1100、1101、1104、1105、1109、11
10、1116、1174、1175、1176、1178、1187、1188
、1189、1197、1198、1199、1200、1201、1202、1
209、1210、1211、1212、1222、1225、1229、123
0、1237、1238、1243、1250、1259、1261、1265、
30 1266、1272、1277、1282、1294、1299、1302、13
07、1315、1318、1319、1320、1329、1330、1335

、1336、1337、1343、1344、1353、1355、1356、1
357、1358、1368、1372、1385、1386、1392、140
0、1413、1422、1423、1425、1426、1429、1430、
1432、1437、1440、1445、1446、1447、1448、14
5 50、1452、1453、1455、1458、1459、1461、1463
、1464、1466、1468、1469、1470、1471、1474、1
479、1482、1485、1507、1508、1510、1511、151
2、1513、1514、1515、1516、1518、1519、1521、
1522、1524、1535、1538、1540、1542、1544、15
10 71、1573、1574、1575、1576、1577、1578、1579
、1580、1581、1582、1585、1587、1598、1602、1
603、1604、1609、1611、1612、1613、1614、161
5、1616、1617、1618、1622、1627、1630、1643、
1646、1662、1669、1716、1717、1723、1728、17
15 31、1733、1736、1739、1740、1747、1750、1755
、1757、1758、1759、1760、1761、1762、1769、1
770、1771、1772、1773、1774、1777、1783、178
4、1785、1791、1793、1904、1911、1917、2057、
2061、2063、2064、2065、2066、2067、2068、20
20 69、2071、2072、2073、2074、2075、2076、2080
、2081、2082、2110、2112、2123、2130、2131、2
139、2170、2180、2181、2182、2212、2216、221
7、2219、2220、2222、2224、2225、2228、2247、
2253、2254、2255、2256、2257

25 1 μMの濃度において50%～80%の阻害能を示した化合物：
化合物番号37、298、318、1084、1091、1103、1106、1
108、1111、1113、1114、1115、1138、1142、116
5、1179、1190、1192、1193、1195、1196、1204、
1205、1206、1207、1208、1245、1246、1255、12
30 57、1258、1262、1263、1293、1300、1342、1351
、1352、1354、1370、1371、1373、1375、1377、1

378、1380、1381、1383、1384、1391、1411、1412、1414、1417、1418、1419、1421、1424、1431、1436、1439、1449、1454、1456、1457、1460、1462、1472、1473、1487、1502、1504、1506、1517
5 、1525、1526、1527、1529、1530、1531、1532、1533、1534、1536、1537、1539、1541、1545、1593、1600、1601、1606、1608、1619、1620、1621、1623、1624、1625、1626、1628、1629、1645、1650、1654、1658、1663、1664、1665、1670、1671
10 、1672、1673、1675、1678、1679、1681、1684、1687、1688、1689、1690、1711、1712、1714、1718、1722、1725、1726、1727、1729、1730、1732、1734、1735、1737、1741、1742、1743、1744、1745、1746、1748、1751、1753、1754、1756、1779
15 、1781、1782、1786、1788、1789、1790、1792、1795、1797、1798、1800、1801、1804、1848、1862、1883、1885、1886、1887、1889、1893、1894、1903、1905、1910、1912、1913、1914、1918、1922、1976、1985、2027、2035、2062、2083、2084
20 、2088、2089、2090、2111、2124、2125、2126、2135、2167、2171、2175、2211、2221、2226、2231、2240

1 μMの濃度において>80%の阻害能を示した化合物：

化合物番号 299、311、312、329、1042、1043、1085、1119、1191、1203、1220、1228、1236、1244、1256、1288、1295、1308、1310、1376、1382、1393、1395、1415、1416、1420、1435、1438、1441、1480、1481、1570、1583、1584、1589、1590、1594、1595、1607、1634、1660、1661、1666、1668、1695、1696、1697、1698、1699、1701、1702、1703、1704、1705、1706、1707、1708、1709、1713、

1724、1749、1752、1775、1776、1778、1780、17
87、1794、1796、1799、1802、1803、1841、1869
、1870、1871、1872、1876、1877、1892、1896、1
897、1898、1899、1900、1901、1902、1906、190
5 7、1908、1909、1915、1916、1919、1920、1921、
2085、2086、2087、2113、2114、2118、2119、21
20、2121、2122、2127、2128、2129、2132、2133
、2136、2137、2138、2159、2161、2162、2169、2
172、2178、2179、2187、2189、2193、2210、221
10 3、2214、2215、2218、2227、2229、2230、2232、
2233、2235、2236、2237、2238、2241、2242、22
43、2244、2245、2246、2248、2249、2250、2251
、2252

0. 2 μMの濃度において20%–50%の阻害能を示した化合物：

15 化合物番号1680、1682、1686、1691、1694、1700、18
05、1810、1811、1812、1813、1815、1816、1817
、1818、1819、1820、1824、1825、1826、1827、1
828、1832、1833、1834、1835、1836、1839、184
0、1842、1843、1851、1852、1853、1854、1855、
20 1856、1858、1859、1860、1863、1864、1865、18
66、1868、1874、1878、1879、1880、1888、1890
、1891、1895、1926、1927、1928、1929、1930、1
934、1935、1937、1945、1946、1951、1952、195
3、1954、1959、1960、1961、1962、1966、1969、
25 1970、1971、1972、1973、1977、1978、1979、19
80、1981、1985、2014、2027、2028、2033、2035
、2039、2040、2041、2042、2044、2045、2046

0. 2 μMの濃度において50%–80%の阻害能を示した化合物：

化合物番号1677、1678、1679、1681、1687、1688、16
30 89、1690、1695、1697、1808、1809、1841、1848
、1861、1862、1869、1870、1871、1872、1873、1

876、1877、1883、1884、1885、1886、1887、1889、1893、1894、1976

0. 2 μ Mの濃度において>80%の阻害能を示した化合物：

化合物番号1696、1892

5 [実施例2045] MCP-1レセプター発現細胞へのMCP-1の結合に対する阻害能の測定（[125 I]標識ヒトMCP-1を用いた評価）

1. MCP-1レセプター発現細胞の取得

YAMAGAMI, S. らが取得したMCP-1レセプターcDNA断片 (Biochemical and Biophysical Research Communications 1994, 202, 1156-1162参照)

10 を発現プラスミドpCEP-4 (Invitrogen社製) のNotI部位に連結し、得たプラスミドをLipofectamine試薬 (Gibco-BRL社製) によりヒト腎上皮由来293-EBNA細胞にトランスフェクトし、選択薬剤 (ハイグロマイシン) 存在下で培養後、安定発現株を取得した。レセプターの発現は、 [125 I] 標識ヒトMCP-1の結合性で確認した。

15 2. [125 I] 標識バキュロウィルス発現ヒトMCP-1のMCP-1レセプター発現細胞への結合に対する阻害能の測定

培養シャーレ上のMCP-1レセプター発現細胞をセルスクレーパーではがして 6×10^6 個/mLになるように、アッセイバッファー (D-MEM (Gibco-BRL社製) に0. 1%BSA、25mM HEPESを加え、pH 7. 4に調製したもの) に懸濁し、細胞懸濁液とした。その後の操作は実施例2044と同様に実施した。

本発明の有効成分である環状アミン誘導体の阻害能を測定したところ、本実施例における代表的な化合物の阻害能は、実施例2044において示された阻害能とほぼ同等であった。

25 [実施例2046] 細胞遊走阻害活性の測定

本発明による化合物の細胞遊走阻害活性を調べる目的で、モノサイト遊走因子MCP-1によって引き起こされる細胞遊走の測定をヒト前单球由来白血病細胞THP-1を遊走細胞として用い、Fallらの方法 (J. Immunol. Methods. 1980, 33, 239-247) に準じて以下のように行った。すなわち96穴マイクロケモタキシスチャンバー (Neuroprobe; 登録商標) のチャンバー上室 (200μ L) にはTHP-1細胞を 2×10^6 /mL (RPMI-1640 (Flow Labor

atories社製) + 10% FCSで懸濁したもの)、下室(35 μL)には同液でヒト・リコンビナントMCP-1 (Protech社製)を最終濃度20 ng/mLになるように希釈したものを入れ、両室の間にポリカーボネートフィルター(PVP-free, Neuroprobe; 登録商標)を固定し、37°Cで
5 5%CO₂存在下に2時間インキュベートを行った。

フィルターを取り出し、Diff Quick液(国際試薬社製)にてフィルタ下面に遊走した細胞を固定染色し、次いでプレートリーダー(Molecular Device社製)にて、測定波長550 nmで測定し、3穴の平均値を求めることにより、遊走細胞数の指標とした。このとき、被験化合物を上室にTHP-10 細胞とともに各種濃度にして添加し、細胞遊走阻害活性(阻害度: IC₅₀(μM))を求めた。阻害度は{(上室に被験化合物無添加の場合のMCP-1による遊走細胞数)-(下室にMCP-1無添加の場合の遊走細胞数)}=100%}としてその50%の阻害を示した化合物の濃度をIC₅₀とした。

本発明の有効成分である環状アミン誘導体の阻害能を測定したところ、例えば、
15 下記の化合物のIC₅₀値は0.1 μM以下であった。

IC₅₀値が0.1 μM以下である化合物の例:

化合物番号4、37、298、299、311、312、318、329、461、886、909、1042、1043、1085、1119、1138、1142、1165、1179、1191、1203、1205、1220、1228、
20 1236、1244、1245、1256、1288、1293、1295、1308、1310、1352、1376、1382、1393、1395、1416、1420、1435、1436、1438、1441、1480、1531、1532、1570、1583、1584、1589、1590、1594、1595、1600、1601、1607、1660、1661、1664、1666、
25 1668、1698、1699、1701、1702、1703、1704、1706、1707、1708、1709、1713、1775、1776、1778、1779、1787、1794、1796、1799、1802、1803、1896、1898、1899、1900、1901、1902、1906、1907、1908、1909、1915、1916、1919、1920、1921、
30 2087、2114、2128、2129、2132、2137、2141、2144、2157、2158、2189、2213、2214、2235、2236

、2241、2242、2244、2249、2250、2251

実施例2043、2044、2045、および2046における結果は、本発明の化合物がMIP-1 α および/またはMCP-1などのケモカインのレセプター拮抗剤として、ケモカインの標的細胞への作用を阻害する活性を有することを明確5に示している。

[実施例2047] マウスコラーゲン関節炎に対する抑制効果の検討

マウスコラーゲン関節炎は、Katoらの方法 (Arthritis in mice induced by a single immunization with collagen. Ann. Rheum. Dis., 55, 535-539, 1996) に準じて作製した。

10 1. 方法

ウシ関節由来のタイプIIコラーゲン (コラーゲン技術研修会) を等量のフロイントの完全アジュvant (ICN Immunobiologicals) と混合し、均質なエマルジョンを作製した。エマルジョン作製には、超音波ホモジナイザー (タイテック株式会社) を使用した。エマルジョンをDBA/1マウス (日本チャ15ールス・リバー株式会社) の尾根部皮内にツベルクリン用ガラスシリングおよび27G注射針を用い0.15mg/0.1mL/body投与した。

被験化合物を乳鉢にて0.5%カルボキシメチルセルロースナトリウム (CMC、和光純薬工業株式会社) 水溶液に懸濁し、所定の投与液を調整し、エマルジョンを投与した翌日から経口投与した。

20 投与群は、0.5%CMCを投与した群 (以下コントロール群) 、被験化合物の30あるいは100mg/kgを投与した3群である。溶媒あるいは被験化合物は一日一回投与した。各群の動物数は16匹とした。

2. 関節炎の評価

エマルジョン投与後12週間後に、安部の方法 (関節炎モデルにおける免疫療法25。炎症 12, 417-422, 1992) によって関節腫脹の程度を四肢それぞれの指関節について採点した。各肢は、点数0から3の4段階で採点し、最高を12点とした。

3. 滑膜の増殖、関節軟骨の破壊、および軟骨下骨の骨破壊に対する作用

関節炎点数を観察した後、右後肢を採取した。パラフィン包埋後、膝関節部位の30薄切片を作製し、ヘマトキシリン・エオジン染色を施し、滑膜の増殖、関節軟骨の破壊、および軟骨下骨の骨破壊に対する作用を常法により評価した。点数は、各

々の測定項目について点数0から4の5段階で行った。

4. 評価結果

コントロール群に対するカテゴリー型のダネット試験を実施し、p値が0.05以下の場合を有意差があるとした。以下の図表は、平均値±標準偏差(SD)で表示した。化合物番号1583を12週間経口投与した場合の関節炎に対する結果を図1に示す。化合物番号1583を投与した群は、コントロール群に対し有意に関節炎スコアを抑制した。

化合物番号1583の滑膜の増殖、関節軟骨の破壊、および軟骨下骨の骨破壊に対する結果をそれぞれ図2-4に示す。化合物1583は、いずれの評価項目についても有意に抑制した。

[実施例2048] ラットコラーゲン関節炎に対する抑制効果の検討

ラットコラーゲン関節炎は、Trenthamらの方法 (Autoimmunity to type II collagen: an experimental model of arthritis. J. Exp. Med., 146, 857-68(1977))に基づき、これを以下のように改変して作製した。

1. 方法

ウシ関節由来のタイプIIコラーゲン(コラーゲン技術研修会)およびムラミルジペプチド(CHEMICON International社)を、最終濃度が、各々0.08%および0.02%となるようにフロイント不完全アジュバンド(CHEMICON International社)と混合して均質なエマルジョンを作製した。エマルジョンは、4°Cにて、コネクターで結合した2本のガラスシリジ内で、激しく攪拌して調製した。エマルジョンをLewis系雌性ラット(日本チャールス・リバー; 6週齢)の背部内皮に、ツベルクリン用のガラスシリジおよび26G注射針を用いて、1mLを10か所に分けて免疫した。1週後、上記と同様に調製したエマルジョンを、尾根部皮内に0.1mL追加免疫した(ブースト)。

被験化合物を乳鉢にて0.5%カルボキシメチルセルロースナトリウム(CMC、和光純薬工業株式会社)水溶液に懸濁し、所定の投与液を調製し、初回のエマルジョン投与日から3週間連日経口投与した。

投与群は、無処置の群(以下インタクト群)、0.5%CMCを投与した群(以下コントロール群)および化合物番号1245の300mg/kgを投与した3群である。溶媒あるいは被験化合物は1日1回投与した。各群の動物数は8匹とした

。

2. 関節炎の評価

後肢の足関節腫脹を、その体積変化を測定することで評価した。ブースト実施日および、その2、5、7、9、12、14日後の計7回にわたって、ラット左右後肢の足蹠容積を、ラット後肢足蹠浮腫容積測定装置（TK-105、UNICON）を用いて測定した。結果は、ブースト実施日の足蹠容積を100%とし、その後の増加率で示した。各群における、すべての左右後肢容積の平均をもって、その群の平均値とした。

3. 評価結果

化合物番号1245を3週間連日経口投与した場合の関節炎に対する結果を図5に示す。図中の値は平均値±S.E.で表示した。コントロール群に対してStudentのt検定あるいはWilcoxon検定を実施し、P値が0.05以下の場合を有意差があるとした。化合物番号1245を投与した群は、ブースト後5、7、9、12、14日後の各タイムポイントにおいて、コントロール群に対し有意（5、7、14日後：P<0.01、9、12日後：P<0.001）に関節腫脹を抑制した。

実施例2047および実施例2048における結果により、本発明の薬剤は、関節炎、慢性関節リウマチ、変形性関節症、外傷性の関節破壊、骨粗鬆症、腫瘍など、軟骨破壊あるいは骨破壊を伴う疾患に対して有効な治療もしくは予防効果を有することが示された。

[実施例2049] WKY-rat馬杉腎炎モデルにおける抑制作用の検討

1. 方法（実験1、2共通）

ラット腎臓皮質のトリプシン消化物をウサギに免疫して得た抗糸球体基底膜血清を4週齢雌のWKYラット（チャールスリバー株式会社）に2.5mL/kg体重の割合で静脈内投与して糸球体腎炎を惹起した。

当該抗血清を投与後、1、4、7、10、14日にラット用代謝ケージ（日本クレア）により各動物の尿を24時間採取し、尿量を尿重量を以て測定し、尿中に含有される蛋白質濃度を尿髓液中蛋白測定キット（トネインTP-II、大塚製薬）を用いて測定して1日あたりの尿中排泄蛋白量を求めた。

また、当該抗血清投与後15日目に実験に供した動物の血清を採取し、血中クレアチニンをクレアチニン測定キット（オートセラCRE、第一化学株式会社）を用

い、日立7070型オートアナライザーにて測定した。

被験化合物は100mg/kg体重を抗糸球体基底膜血清投与日より1日2回(実験1では午前10時前後および午後6時前後、実験2では午前10時前後および午後5時前後)、毎日経口投与した。対照群では投与液溶媒(0.5%カルボキシ5メチルセルロース水溶液)のみを経口投与した。投与容量は10mL/kg体重とした。動物のN数は10とした。

2. 結果と考察

抗糸球体基底膜血清投与後4日目にて各実験群にて尿蛋白が検出され始め、以後14日目まで経時的に尿蛋白量は増加して腎炎が惹起された。化合物番号1583を投与した群では当該抗血清投与後7日目に対照群に比較して26%の尿蛋白量の抑制傾向を認め、同10、14日目では各々51、54%の有意な($p < 0.01$ 、Mann-Whitney U test)尿蛋白量の抑制を認めた(図6)。抗糸球体基底膜血清投与後15日目の血中クレアチニンを測定したところ、化合物1583投与群は対照群に比較して20%の有意な($p < 0.01$ 、Mann-W15hitney U test)減少を認めた(表53)。

従って、化合物1583によりラットの糸球体障害および腎機能増悪が軽減され腎炎が抑制されたことがわかる。

表53 血清クレアチニン抑制効果

化合物投与15日目の血清クレアチニン値(mg/dl)	
Placebo	化合物1583
0.49±0.06	0.39±0.03**

2-2. 実験2

抗糸球体基底膜血清投与後4日目頃より各実験群にて尿蛋白が検出され始め、以後14日目まで経時的に尿蛋白量は増加して腎炎の惹起が確認された。化合物1245を投与した群では当該抗血清投与後4、7、10、14日目に対照群に比較して各々74、85、81、82%の有意な($p < 0.001$ 、Mann-Whitney U test)尿蛋白量の抑制を認めた(図7)。抗糸球体基底膜血清投与後15日目の血中クレアチニンを測定したところ、化合物A投与群は対照群に比較して10%の有意な($p < 0.05$ 、Student's t-test)減少

を認めた（表54）。

従って、化合物1245によりラットの糸球体障害および腎機能増悪が軽減され腎炎が抑制されたことがわかる。

表54 血清クレアチニン抑制効果

化合物1245投与15日目の血清クレアチニン値(mg/dl)

control	化合物1245
0.53±0.05	0.48±0.04 [‡]

10 以上の結果より、本発明の化合物が、糸球体腎炎、間質性腎炎、またはネフローゼ症候群などの腎炎もしくは腎症に対して有効な治療もしくは予防効果を有することが示された。

[実施例2050] マウス慢性再発性実験的アレルギー性脳脊髄炎モデルにおける抑制効果の検討

15 1. 方法

Okudaらの報告 (Okuda Y., et al. J. Neuroimmunol. 81, 201-210 (1998)) に記載の方法に準じ、慢性再発性実験的アレルギー性脳脊髄炎動物モデルを作製した。

8週齢雌のS J L / J × P L / J F 1マウス (Jackson Lab.) の
20 腹部に 500 μg の Rabbit myelin basic protein (Sigma) および 500 μg の Mycobacterium tuberculosis H37Ra (Difco) を含んだ不完全アジュバント (Difco) / 生理食塩水 = 1 : 1 (体積比) のエマルジョン 100 μL を皮下注射した。24 時間後、400 ng の Bordetella pertussis toxin (Sigma) を含む 100 μL の生理食塩水を腹腔内投与し、慢性再発性実験的アレルギー性脳脊髄炎の誘導を行った。標本数は 10 とした。

被験化合物を乳鉢にて 0.5% (重量/体積) カルボキシメチルセルロースナトリウム (和光純薬工業株式会社) 水溶液に懸濁し、所定の溶液を調製し、エマルジョンを投与した日から経口投与した。

30 慢性再発性実験的アレルギー性脳脊髄炎の臨床症状は田平らが記載した方法 (『免疫実験操作法』 p. 1178-1181、南江堂 (1995)) を用い、動物各

個体を1日1回観察することにより評価した。すなわち、スコア0=正常；スコア1=尾の緊張低下（l i m p t a i l）；スコア2=軽い歩行異常；スコア3=明らかな後肢脱力；スコア4=後肢対麻痺；スコア5=瀕死または死亡、とした。

2. 結果および考察

5 2-1. 実験1：化合物番号1583の効果

エマルジョン投与後41日までの結果を表55と図8に示す。

症状の推移は各観察日における各実験群の平均値で示した。また、表55における最大症状スコアでは、各動物が観察期間中に示した症状スコアの最大値を当該例の代表値として採用した。統計解析方法は、症状スコアについては対照群に対する10対応のない多群間のノンパラメトリック検定を使用した。その他の計量値については対照群に対する多重比較（Dunnnettの多重比較）を用いた。

対照群に比較して化合物番号1583投与群では100mg/kg体重投与群において発症1回目での発症日遅延傾向（有意差なし）、症状抑制（p<0.05）、発症期間短縮（p<0.05）が認められた。化合物1583の30mg/kg体重投与群では、これらの項目に対する明確な効果が見られないが、用量依存効果の傾向は見られた。尚、図8中、「化合物1」は本発明における化合物番号1ではなく、化合物番号1583の化合物を意味する。

表55

実験群	対照群	化合物番号1583 30 mg/kg 体重	化合物1583 100 mg/kg 体重
発症1回目			
発症日	12.6 ± 1.9	12.3 ± 1.9	13.6 ± 2.0
最大症状スコア	3.9 ± 0.6	3.5 ± 0.9	2.4 ± 1.3*
発症期間	8.8 ± 2.5	9.8 ± 3.3	5.7 ± 3.8*
発症2回目（再発）			
発症日	26.8 ± 7.5	26.3 ± 3.4	28.5 ± 4.7*
最大症状スコア	3.8 ± 0.8	3.7 ± 0.6	3.0 ± 0.9*
発症期間	計算せず	計算せず	計算せず

* : p < 0.05

2-2. 実験2：化合物番号1245の効果

エマルジョン投与後21日までの結果を表56と図9に示す。

症状の推移は各観察日における各実験群の平均値で示した。また、表56における最大症状スコアでは、各動物が観察期間中に示した症状スコアの最大値を当該例の代表値として採用した。統計解析方法は、症状スコアについては対照群に対する30

対応のない2群間のノンパラメトリック検定を使用した。その他の計量値については対照群に対する2群比較 (Student's t-test) を用いた。

対照群に比較して、化合物番号1245の300mg/kg体重投与群では発症日遅延 ($p < 0.05$)、症状抑制傾向（有意差なし）が認められた。

5

表56

実験群	対照群	化合物番号1245 300mg/kg体重
発症頻度 (発症動物数/免疫動物数)	34/39	17/19
発症日	11.2±2.0	13.2±2.4*
最大症状スコア	3.0±0.9	2.5±1.5
発症期間	5.5±1.7	5.4±2.4

* $p < 0.05$

以上の結果より、本発明の化合物が、多発性硬化症などの脱髓疾患に対して有効な治療もしくは予防効果を有することが示された。

10 また、実施例2043-2050において示された結果は、本発明の化合物が、ケモカインレセプター拮抗剤として、動脈硬化症、慢性関節リウマチ、乾癬、喘息、潰瘍性大腸炎、腎炎（腎症）、多発性硬化症、肺線維症、心筋症、肝炎、脾臓炎、サルコイドーシス、クローン病、子宮内膜症、うつ血性心不全、ウィルス性髓膜炎、脳梗塞、ニューロパシー、川崎病、敗血症、アレルギー性鼻炎、およびアレルギー性皮膚炎など、MIP-1 α および/またはMCP-1などのケモカインが関与すると考えられる諸疾患の治療薬もしくは予防薬となり得ることを示している。

15

[実施例2051] 錠剤の製造

化合物1583を30mg含有する錠剤を下記処方により製造した。

20 化合物1583	30mg
ラクトース	87mg
デンプン	30mg
ステアリン酸マグネシウム	3mg

[実施例2052] 注射剤の製造

1 mL中に化合物1583の塩酸塩を0.3mg含有する注射用溶液を下記の処方により製造した。

化合物1583（塩酸塩）	30mg
食塩	900mg
5 注射用蒸留水	100mL

産業上の利用可能性

本発明で用いる環状アミン化合物、その薬学的に許容される酸付加体、またはその薬学的に許容されるC₁—C₆アルキル付加体は、ケモカイン受容体拮抗剤として、MIP-1 α および/またはMCP-1などのケモカインの標的細胞に対する作用を抑制する作用を有するので、単球、リンパ球などの白血球の組織への浸潤が疾患の進行、維持に重要な役割を演じている動脈硬化症、慢性関節リウマチ、乾癬、喘息、潰瘍性大腸炎、腎炎（腎症）、多発性硬化症、肺線維症、心筋症、肝炎、脾臓炎、サルコイドーシス、クローン病、子宮内膜症、うつ血性心不全、ウィルス性脳膜炎、脳梗塞、ニューロパシー、川崎病、敗血症、アレルギー性鼻炎、およびアレルギー性皮膚炎などの疾患に対する治療薬および/または予防薬として有用である。

請求の範囲

1. 下記式(I)

[式中、R¹はフェニル基、C₃—C₈シクロアルキル基、またはヘテロ原子として酸素原子、硫黄原子、および／もしくは窒素原子を1—3個有する芳香族複素環基を表し、上記R¹におけるフェニル基または芳香族複素環基はベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および／もしくは窒素原子を1—3個有する芳香族複素環基と縮合して縮合環を形成してもよく、さらに上記R¹におけるフェニル基、C₃—C₈シクロアルキル基、芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモイル基、C₁—C₆アルキル基、C₃—C₈シクロアルキル基、C₂—C₆アルケニル基、C₁—C₆アルコキシ基、C₁—C₆アルキルチオ基、C₃—C₅アルキレン基、C₂—C₄アルキレンオキシ基、C₁—C₃アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベンゾイルアミノ基、C₂—C₇アルカノイル基、C₂—C₇カルコキシカルボニル基、C₂—C₇アルカノイルオキシ基、C₂—C₇アルカノイルアミノ基、C₂—C₇N—アルキルカルバモイル基、C₄—C₉N—シクロアルキルカルバモイル基、C₁—C₆アルキルスルホニル基、C₃—C₈(アルコキシカルボニル)メチル基、N—フェニルカルバモイル基、ピペリジノカルボニル基、モルホリノカルボニル基、1—ピロリジニルカルボニル基、式：—NH(C=O)O—で表される2価基、式：—NH(C=S)O—で表される2価基、アミノ基、モノ(C₁—C₆アルキル)アミノ基、またはジ(C₁—C₆アルキル)アミノ基で置換されていてもよく、これらのフェニル基、C₃—C₈シクロアルキル基、芳香族複素環基、または縮合環の置換基は、任意個のハロゲン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、C₁—C₆アルキル基、またはC₁—C₆アルコキシ基によってさらに置換されていてもよい。

R²は、水素原子、C₁—C₆アルキル基、C₂—C₇アルコキシカルボニル基、ヒ

ドロキシ基、またはフェニル基を表し、R²におけるC₁—C₆アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、C₁—C₆アルキル基、またはC₁—C₆アルコキシ基によって置換されていてもよい。ただし、j=0のときはR²はヒドロキシ基ではない。

5 jは0—2の整数を表す。

kは0—2の整数を表す。

mは2—4の整数を表す。

nは0または1を表す。

R³は、水素原子または（それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、C₁—C₆アルキル基、またはC₁—C₆アルコキシ基によって置換されていてもよい1または2個のフェニル基）によって置換されていてもよいC₁—C₆アルキル基を表す。

R⁴およびR⁵は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、またはC₁—C₆アルキル基を表し、R⁴およびR⁵におけるC₁—C₆アルキル基は、15 任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモイル基、メルカプト基、グアニジノ基、C₃—C₈シクロアルキル基、C₁—C₆アルコキシ基、C₁—C₆アルキルチオ基、（任意個のハロゲン原子、ヒドロキシ基、C₁—C₆アルキル基、C₁—C₆アルコキシ基、もしくはベンジルオキシ基によって置換されていてもよいフェニル基）、フェノキシ基、ベンジルオキシ基、ベンジルオキシカルボニル基、C₂—C₇アルカノイル基、C₂—C₇アルコキシカルボニル基、C₂—C₇アルカノイルオキシ基、C₂—C₇アルカノイルアミノ基、C₂—C₇N—アルキルカルバモイル基、C₁—C₆アルキルスルホニル基、アミノ基、モノ（C₁—C₆アルキル）アミノ基、ジ（C₁—C₆アルキル）アミノ基、または（ヘテロ原子として酸素原子、硫黄原子、および／もしくは窒素原子を1—3個有する芳香族複素環基またはそのベンゼン環との縮合により形成される縮合環）により置換されていてもよく、あるいはR⁴およびR⁵は両者一緒になって3—6員環状炭化水素を形成していてもよい。

pは0または1を表す。

qは0または1を表す。

30 Gは、—CO—、—SO₂—、—CO—O—、—NR⁷—CO—、—CO—NR⁷—、—NH—CO—NH—、—NH—CS—NH—、—NR⁷—SO₂—、—SO₂—N

R^7 -、 $-NH-CO-O-$ 、または $-O-CO-NH-$ で表される基を表す。ここで、 R^7 は水素原子または C_1-C_6 アルキル基を表すか、あるいは R^7 は R^5 と一緒に C_2-C_5 アルキレン基を形成してもよい。

R^6 は、フェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_6 シクロアルケニル基
 5 ベンジル基、または、ヘテロ原子として酸素原子、硫黄原子、および／もしくは窒素原子を1-3個有する芳香族複素環基を表し、上記 R^6 におけるフェニル基、ベンジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および／もしくは窒素原子を1-3個有する芳香族複素環基と縮合して縮合環を形成してもよく、さらに上記 R^6 におけるフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_6 シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、ニトロ基、チオシアナト基、カルボキシル基、カルバモイル基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_3-C_8 シクロアルキル基、 C_2-C_6 アルケニル基、 C_1-C_6 アルコキシ基、 C_3-C_8 シクロアルキルオキシ基、 C_1-C_6 アルキルチオ基、 C_1-C_3 アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ基、ベンジル基、ベンゾイル基、フェニルスルフィニル基、フェニルスルホニル基、3-フェニルウレイド基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルコキシカルボニル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 N-アルキルカルバモイル基、 C_1-C_6 アルキルスルホニル基、フェニルカルバモイル基、N、N-ジ(C_1-C_6 アルキル)スルファモイル基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、ジ(C_1-C_6 アルキル)アミノ基、ベンジルアミノ基、 C_2-C_7 (アルコキシカルボニル)アミノ基、 C_1-C_6 (アルキルスルホニル)アミノ基、またはビス(C_1-C_6 アルキルスルホニル)アミノ基により置換されていてもよく、これらのフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_8 シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、任意個のハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、モノ(C_1-C_6 アルキル)アミノ基、またはジ(C_1-C_6 アルキル)アミノ基によってさらに置換されていてもよい。]
 30 で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体を有効成分とする、ケモカインもしくはケモカインレ

セプターが関与する疾患の治療薬もしくは予防薬。

2. 疾患が軟骨破壊または骨破壊を伴う疾患である請求の範囲第1項記載の治療薬もしくは予防薬。

5

3. 軟骨破壊または骨破壊を伴う疾患が、関節炎、慢性関節リウマチ、変形性関節症、外傷、骨粗鬆症、または腫瘍である請求の範囲第2項記載の治療薬もしくは予防薬。

10 4. 疾患が慢性関節リウマチである請求の範囲第1項記載の治療薬もしくは予防薬。

5. 疾患が、腎炎もしくは腎症である請求の範囲第1項記載の治療薬もしくは予防薬。

15

6. 疾患が、糸球体腎炎、間質性腎炎、またはネフローゼ症候群である請求の範囲第5項記載の治療薬もしくは予防薬。

20

7. 疾患が、脱髓疾患である請求の範囲第1項記載の治療薬もしくは予防薬。

20

8. 疾患が、多発性硬化症である請求の範囲第7項記載の治療薬もしくは予防薬。

9. ケモカインがMIP-1 α もしくはMCP-1である請求の範囲第1項記載の治療薬もしくは予防薬。

25

10. ケモカインレセプターがCCR1もしくはCCR2である請求の範囲第1項記載の治療薬もしくは予防薬。

11. 上記式(I)で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容されるC₁-C₆アルキル付加体を有効成分とする医薬組成物。

30

図 1

免疫後 12 週目

2 / 8

図 2

図 3

3 / 8

図 4

4 / 8

(図5)

図 6

6 / 8

図 7

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/03203

A. CLASSIFICATION OF SUBJECT MATTER

Int.C1⁷ A61K31/40, 422, 4439, 404, 4545, 4525, 4535, 454, 427, 433, 4245, 4155, 5377, 4709, 506, 4184, 4178, 423, 4192, 445, 429, 55, A61P43/00, 29/00, 9/00, 37/00, 25/00, 11/00 // C07D207/14, 33, 34, 405/06, 12, 14, 401/06, 12, 14, 409/06, 12, 14, 403/06, 12, 14, 413/14, 417/06, 211/34, 60, 62, 513/04, 223/02
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.C1⁷ A61K31/40, 422, 4439, 404, 4545, 4525, 4535, 454, 427, 433, 4245, 4155, 5377, 4709, 506, 4184, 4178, 423, 4192, 445, 429, 55, A61P43/00, 29/00, 9/00, 37/00, 25/00, 11/00 // C07D207/14, 33, 34, 405/06, 12, 14, 401/06, 12, 14, 409/06, 12, 14, 403/06, 12, 14, 413/14, 417/06, 211/34, 60, 62, 513/04, 223/02

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
REGISTRY (STN), CA (STN), CAOLD (STN), CAPLUS (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X A	Khalid, M. et al., "N,N'-disubstituted L-isoglutamines as novel cancer chemotherapeutic agents", Drugs Exp. Clin. Res., Vol.13, Suppl.1, pp.57-60 (1987)	1-3, 9-11 4-8
X A	WO, 98/50534, A1 (SMITHKLINE BEECHAM CORPORATION), 12 November, 1998 (12.11.98) & EP, 991753, A1 & AU, 9872885, A & ZA, 9803843, A & NO, 9905433, A	1-3, 9-11 4-8
X A	EP, 217286, A1 (OKAMOTO, SHOSUKE), 08 April, 1987 (08.04.87), compounds No. 42 & JP, 63-022061, A & US, 4895842, A & CA, 1297633, A & AU, 6305186, A	11 1-10
PX	WO, 99/25686, A1 (TEIJIN LIMITED), 27 May, 1999 (27.05.99) & AU, 9913741, A	1-11
PX	WO, 00/31032, A1 (F.HOFFMANN-LA ROCHE AG), 02 June, 2000 (02.06.00), & DE, 19955794, A	1-11

Further documents are listed in the continuation of Box C. See patent family annex.

"A"	Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E"	earlier document but published on or after the international filing date	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O"	document referring to an oral disclosure, use, exhibition or other means	"&"	document member of the same patent family
"P"	document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search
09 August, 2000 (09.08.00)

Date of mailing of the international search report
22 August, 2000 (22.08.00)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/03203

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	& GB, 2343893, A & FR, 2786185, A	

国際調査報告

国際出願番号 PCT/JP00/03203

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl' A61K31/40, 422, 4439, 404, 4545, 4525, 4535, 454, 427, 433, 4245, 4155, 5377, 4709, 506, 4184, 4178, 423, 4192, 445, 429, 55, A61P43/00, 29/00, 9/00, 37/00, 25/00, 11/00 // C07D207/14, 33, 34, 405/06, 12, 14, 401/06, 12, 14, 409/06, 12, 14, 403/06, 12, 14, 413/14, 417/06, 211/34, 60, 62, 513/04, 223/02

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' A61K31/40, 422, 4439, 404, 4545, 4525, 4535, 454, 427, 433, 4245, 4155, 5377, 4709, 506, 4184, 4178, 423, 4192, 445, 429, 55, A61P43/00, 29/00, 9/00, 37/00, 25/00, 11/00 // C07D207/14, 33, 34, 405/06, 12, 14, 401/06, 12, 14, 409/06, 12, 14, 403/06, 12, 14, 413/14, 417/06, 211/34, 60, 62, 513/04, 223/02

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

REGISTRY(STN), CA(STN), CAOLD(STN), CAPLUS(STN)

C. 関連すると認められる文献

引用文献の カテゴリーエ	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X A	Khalid, M. et al., "N,N'-disubstituted L-isoglutamines as novel cancer chemotherapeutic agents", Drugs Exp. Clin. Res., Vol. 13, Suppl. 1, p. 57-60 (1987)	1-3, 9-11 4-8
X A	WO, 98/50534, A1 (SMITHKLINE BEECHAM CORPORATION) 12. 11月. 1998(12. 11. 98) &EP, 991753, A1 &AU, 9872885, A &ZA, 9803843, A &NO, 9905433, A	1-3, 9-11 4-8

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの
 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)
 「O」口頭による開示、使用、展示等に言及する文献
 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
 「&」同一パテントファミリー文献

国際調査を完了した日 09. 08. 00	国際調査報告の発送日 22.08.00
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 郵便番号 100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 榎本 佳予子 電話番号 03-3581-1101 内線 3492 4P 9638

国際調査報告

国際出願番号 PCT/JP00/03203

C (続き) 関連すると認められる文献		関連する 請求の範囲の番号
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	
X	EP, 217286, A1 (OKAMOTO, SHOSUKE) 8.4月. 1987 (08. 04. 87)	11
A	化合物N0. 42参照 &JP, 63-022061, A &US, 4895842, A &CA, 1297633, A &AU, 6305186, A	1-10
PX	WO, 99/25686, A1 (TEIJIN LIMITED) 27.5月. 1999 (27. 05. 99) &AU, 9913741, A	1-11
PX	WO, 00/31032, A1 (F. HOFFMANN-LA ROCHE AG) 2.6月. 2000 (02. 06. 00) &DE19955794, A &GB, 2343893, A &FR, 2786185, A	1-11

THIS PAGE BLANK (USPTO)

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)