MNOŽINY – ZÁKLADNÉ POJMY

- koncepcia množiny patrí medzi základné formálne prostriedky matematiky
- umožňuje formulovať prehľadným a jednotným spôsobom všetky oblasti matematiky prostredníctvom elementárnej štruktúry množiny a operáciami nad ňou
- Teória množín vznikla koncom 19. storočia zásluhou nemeckého matematika Georga Cantora. Zásluhu na jej rozšírení má anglický logik a filozof Bertrand Russell.
- my budeme prezentovať pôvodnú intuitívnu (neaxiomatickú) výstavbu teórie množín
- základným pojmom teórie množín je element (prvok), pod ktorým budeme rozumieť nejaký reálny alebo abstraktný objekt, pričom postulujeme, že objekty medzi sebou sú dobre odlíšiteľné.

- \rightarrow ozn.: \mathcal{A} , \mathcal{B} , \mathcal{C} , \mathcal{D} , \mathcal{M}
- → skutočnosť, že element a patrí do množiny $\mathcal M$ označíme výrazom $a \in \mathcal M$ → skutočnosť, že element a nepatrí do množiny $\mathcal M$ označíme výrazom $a \notin \mathcal M$ 2 $\in \mathbb N$
- → množina môže byť určená
 - o vymenovaním prvkov $\mathcal{A} \in \{a, b, c, d\}$
 - nezáleží na poradí prvkov množina {1,2,3} je rovnaká ako {2,1,3}
 - každý prvok je v množine uvedený iba raz $\{1,5,4,\frac{4}{7}\}$ nie je správne zapísaná
 - charakteristickou vlastnosťou $\mathcal{M} = \{x \in \mathcal{U}; P(x)\}$

Úloha: Zapíšte množiny (*) vymenovaním prvkov aj charakteristickou vlastnosťou.

- → množiny podľa počtu prvkov delíme na
 - konečné množiny, pr.: $0 = \{x, 2, 3\} \rightarrow |\alpha| = 3$ nekonečné množiny, pr.: $1 \rightarrow 1 \rightarrow 1$
- ightarrow ak množina $\mathcal M$ je konečná, potom jej **mohutnosť** (kardinalita), označená $|\mathcal M|$, je počet prvkov, ktoré obsahuje $|\mathcal{M}| = n$; $n \in \mathbb{N}$
- ightarrow ak množina $\mathcal M$ je nekonečná, potom jej **mohutnosť** (kardinalita), označená $|\mathcal M|$, je počet prvkov, ktoré obsahuje $|\mathcal{M}| = \infty$
- o ak $|\mathcal{M}|=0$, tak množinu nazývame **prázdna množina** a označujeme $\mathcal{M}=\emptyset$ alebo $\mathcal{M}=\{0\}$

Úloha: Zapíšte mohutnosť množín (*)

Úloha: Vyslovte negáciu výrokov

- a. Množina A obsahuje najviac tri prvky. a: a ob sahuje aspor 4 prvky
- b. Množina B obsahuje aspoň jeden prvok. b: B neobsahuje ani jeden prvok

 c: $+ \times : (\times \in \mathbb{Q} \Rightarrow \times \in \mathbb{G})$ c. Každý prvok množiny A je aj prvkom množiny B. c: $+ \times : (\times \in \mathbb{Q} \land \times \notin \mathbb{G})$
- d. Množina M má práve dva prvky. L' Mw má nagviac 1 alubo a spou 3 prvky
- → grafické znázornenie množín Vennove diagramy

Úloha: Urč z Vennovho diagramu množiny A, B, C a zapíš ich vymenovaním prvkov

Úlohy

- 1. Nasledujúce množiny vyjadrite vymenovaním prvkov
 - a. Množina všetkých dievčat vašej triedy, ktorých meno začína na samohlásku.

b. Množina všetkých prvočísel väčších ako 9 a menších ako 25.

c. Množinu všetkých celých čísel, ktoré sú deliteľné číslom 8 a sú väčšie ako 5 a menšie

2. Množiny, ktoré sú dané charakteristickou vlastnosťou, určte vymenovaním prvkov.

a.
$$\mathcal{A} = \{x \in \mathbb{Z}; x = -x\} = \{ \bigcirc \}$$

b.
$$\mathcal{B} = \{x \in \mathbb{Z}; 2x + 3 = 1\} = \{- \setminus \}$$

c.
$$C = \{x \in \mathbb{Z}; |x| > x\} = \{-1, 2, 3, \dots\} = \mathbb{Z}^{7}$$

d.
$$\mathcal{D} = \{x \in \mathbb{N}; 2x = 1\} = \{$$

3. Množiny, ktoré sú dané vymenovaním prvkov, určte charakteristickou vlastnosťou.

a.
$$\mathcal{A} = \{1,2,3,4,5\} \longrightarrow \mathbb{C}_{z} \left\{ \times \in \mathbb{N} \mid \times \leq 5 \right\}$$

b.
$$\mathcal{B} = \{-2, -1, 0, 1, 2\} \rightarrow \mathcal{B} = \{x \in \mathbb{Z} : |x| \leq 2\} = \{x \in \mathbb{Z} : -2 \leq x \leq 2\} = \{x \in \mathbb{Z$$

c.
$$C = \emptyset$$
 $C = \{x \in \mathbb{N}, x \in -6\}$

d.
$$\mathcal{D} = \{1,4,9,16,25,36\} \longrightarrow \mathbb{Q} = \{ \times \in \mathbb{N} \mid \times = \mathbb{Q} \mid \mathbb{Q} = \mathbb{Q} \}$$

(4.) Určte počet prvkov množín

- a. {1,5}
- b. $\{1,5,\{2,3\}\}$
- c. Ø
- d. $\{\emptyset\}$

Domáca úloha

- 1. Určte vymenovaním prvkov množiny
- a. $\mathcal{A} = \{x \in \mathbb{N}; x^2 < 20\}$
- b. $\mathcal{B} = \{ x \in \mathbb{Z}; |x| = 5 \}$
- c. $\mathcal{C} = \{x \in \mathbb{N}; x | 60\}$
- 2. Množiny, ktoré sú dané vymenovaním prvkov, určte charakteristickou vlastnosťou
 - a. $\mathcal{A} = \{5,10,15,20,25\}$
 - b. $\mathcal{B} = \{1,3,5,7,9,11,13,15\}$
 - c. Znázornite množiny \mathcal{A},\mathcal{B} pomocou Vennových diagramov pre dve množiny