

ML & QUANT RESEARCHER

baykal@alum.mit.edu | baykalc.github.io | linkedin.com/in/cenkbaykal | Google Scholar

EDUCATION

Massachusetts Institute of Technology

Ph.D. IN COMPUTER SCIENCE (GPA: 5.00/5.00)

• Minor: Probability in High Dimension (Mathematics)

• Thesis: Sampling-based Algorithms for Fast and Deployable Al

· Advisor: Daniela Rus

Massachusetts Institute of Technology

S.M. IN COMPUTER SCIENCE (GPA: 4.91/5.00)

• Thesis: Algorithms for Persistent Autonomy and Surveillance

• Advisor: Daniela Rus

University of North Carolina at Chapel Hill

B.S. Computer Science with Highest Honors, B.A. Mathematics (GPA: 3.91/4.00)

· Graduated with Highest Distinction

• Thesis: Design Optimization Algorithms for Concentric Tube Robots

· Advisor: Ron Alterovitz

EXPERIENCE

Post-poc

Two Sigma New York City, NY

Quantitative Researcher

July 2024–Present

- Designed systematic alpha strategies that leverage alternative data sources and advanced machine learning techniques
- Built and maintained research tooling to accelerate signal and forecast evaluation

Google Research Cambridge, MA

RESEARCH SCIENTIST January 2022–June 2024

- $\bullet \ \ \, \text{Developed conditional computation algorithms for transformers that enabled up to 30\% speedups on Large Language Models (LLMs)}$
- \bullet Designed data-efficient knowledge distillation strategies that led to improved transformer architectures with only 50% of teacher labeling cost
- Mentored scholars in Google CSRMP, supporting project design and research execution for students from historically marginalized groups
- Received the 2023 Google Research Tech Impact Award for leading "high-impact projects made sustainable by achieving tech excellence and great team dynamics"
- · Received a Google Spot Bonus for "critical contributions to the efficiency of compact Gemini models"

Massachusetts Institute of Technology

Cambridge, MA

September 2021-January 2022

Cambridge, MA

Cambridge, MA

Chapel Hill, NC

2011-2015

2015-2017

2017-2021

• Worked on algorithms for privacy-aware and efficient Machine Learning

J.P. Morgan Al Research

New York City, NY

Al Research Intern

May 2021–September 2021

· Developed sampling-based algorithms with regret guarantees for large-scale graph neural network training

Massachusetts Institute of Technology

Cambridge, MA

TEACHING ASSISTANT FOR ADVANCED ALGORITHMS (6.854J / 18.415J)

Fall 2019

- Conducted office hours to help students on problem sets and concepts covered in lectures; designed and graded assignments
- TA rating according to the official MIT subject evaluation report: 7.0/7.0

Redmond, WA; Cary, NC; Chapel Hill, NC

2012-2015

EARLIER INDUSTRY & TEACHING EXPERIENCE

- Shipped SQL Server compression optimizations and analytics tooling deployed across academic and enterprise users
- Conducted research in robotics, path planning, and enabling technologies

HONORS & AWARDS

2024	Google Spot Bonus, For critical contributions to the efficiency of compact Gemini models	Google
2023	Google Research Tech Impact Award, For contributions to ML efficiency techniques	Google
2023	NeurIPS Spotlight Paper, Alternating Updates for Efficient Transformers	NeurIPS
2021	Winner, MIT The Engine's Interval Program (one of two winning teams)	MIT
2020-2021	Expert Reviewer, ICLR (2020, 2021); ICML (2021)	Program
		Committees
2020	Top 10% Reviewer, NeurIPS	Program
		Committee
2017	RSS Best Paper Award, Robotics: Science and Systems Conference	RSS
2011–2015	Early Academic Honors, UNC distinctions including Carolina Research Scholar, CRA Outstanding	University of North
	Undergraduate Finalist, Phi Beta Kappa, SAS Charles H. Dunham Scholarship, Dunlevie Honors	Carolina at Chapel
	Award, Summer Undergraduate Research Fellowship, Honors Carolina, Dean's List	Hill

SELECTED PUBLICATIONS

TRANSFORMERS & DISTILLATION

Alternating Updates for Efficient Transformers CENK BAYKAL, DYLAN CUTLER, NISHANTH DIKKALA, NIKHIL GHOSH, RINA PANIGRAHY, XIN WANG	NeurIPS (Spotlight) 2023
SLaM: Student-Label Mixing for Distillation with Unlabeled Examples Vasilis Kontonis, Fotis Iliopoulos, Khoa Trinh, Cenk Baykal, Gaurav Menghani, Erik Vee	NeurIPS 2023
Robust Active Distillation Cenk Baykal, Khoa Trinh, Fotis Iliopoulos, Gaurav Menghani, Erik Vee	ICLR 2023
A Theoretical View on Sparsely Activated Networks Cenk Baykal, Nishanth Dikkala, Rina Panigrahy, Cyrus Rashtchian, Xin Wang COMPRESSION & ROBOTICS	NeurlPS 2022
SiPPing Neural Networks: Sensitivity-informed Provable Pruning of Neural Networks CENK BAYKAL*, LUCAS LIEBENWEIN*, IGOR GILITSCHENSKI, DAN FELDMAN, DANIELA RUS	SIAM SIMODS 2022
Lost in Pruning: The Effects of Pruning Neural Networks beyond Test Accuracy Lucas Liebenwein, Cenk Baykal, Brandon Carter, David Gifford, Daniela Rus	MLSys 2021
Provable Filter Pruning for Efficient Neural Networks CENK BAYKAL*, LUCAS LIEBENWEIN*, HARRY LANG, DAN FELDMAN, DANIELA RUS	ICLR 2020
Data-Dependent Coresets for Compressing Neural Networks with Applications to Generalization Bounds CENK BAYKAL*, LUCAS LIEBENWEIN*, IGOR GILITSCHENSKI, DAN FELDMAN, DANIELA RUS	ICLR 2019
Sampling-Based Approximation Algorithms for Reachability Analysis with Provable Guarantees CENK BAYKAL*, LUCAS LIEBENWEIN*, IGOR GILITSCHENSKI, SERTAC KARAMAN, DANIELA RUS	Robotics: Science and Systems 2018
Asymptotically Optimal Design of Piecewise Cylindrical Robots using Motion Planning Cenk Baykal, Ron Alterovitz	Robotics: Science and Systems (Best Paper Award) 2017
	2011