$\Phi([\alpha, \beta]) := S_{\text{сектор}(\alpha, \beta)} \quad g(\varphi) := r^2(\varphi)/2$

 $\forall \Delta \in Segm \ |\Delta| \inf_{\Delta} g \leq \Phi(\Delta) \leq |\Delta| \sup_{\Delta} g$ очевидно выполняется, т.к. $|\Delta| \inf_{\Delta} g -$ площадь синего сектора, а $|\Delta| \sup_{\Delta} g -$ площадь зеленого:

По теореме о вычислении аддитивной функции отрезка по плотности:

$$\Phi([\alpha, \beta]) = \int_{\alpha}^{\beta} g(\varphi) d\varphi = \frac{1}{2} \int_{\alpha}^{\beta} r^{2}(\varphi) d\varphi$$

Пример. $\triangleleft x(t), y(t)$ — кривая в \mathbb{R}^2

 $x := \sin t, y := \cos t$

$$S=rac{1}{2}\int\limits_0^{rac{\pi}{2}}-\sin^2t-\cos^2tdt=-rac{\pi}{4}$$
 — проблема, отрицательная площадь

1 Выпуклость функций

 $\forall z \in [x,y] \;\; \exists \alpha \in [0,1]: z=\alpha x+(1-\alpha)y$ α — доля отрезка zy от xy, т.е. $\alpha=\frac{|zy|}{|xy|}$

Определение. $f:\langle a,b \rangle \to \mathbb{R}$ — выпуклая

$$\forall x, y \in \langle a, b \rangle \quad \forall \alpha \in [0, 1] \quad f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

Примечание. f — выпуклая \Leftrightarrow всякая хорда графика f расположена "выше" графика (нестрого выше) \Leftrightarrow $\mathrm{H}\Gamma(f,\langle a,b\rangle)\{(x,y):x\in\langle a,b\rangle\ y\geq f(x)\}$

Выпуклый = выпуклый вниз; вогнутый = выпуклый вверх

Определение. $f:\langle a,b\rangle \to \mathbb{R}$ — строго выпуклая

$$\forall x, y \in \langle a, b \rangle \quad \forall \alpha \in (0, 1) \quad f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y)$$

Определение. $A \subset \mathbb{R}^m$ — выпуклое множество в \mathbb{R}^m , если

$$\forall x, y \in A, \alpha \in [0, 1] \quad \alpha x + (1 - \alpha)y \in A$$

Это определение с вики

Определение. Надграфик функции $f:\langle a,b\rangle\to\mathbb{R}$ это множество $\{(x,y)\mid x\in\langle a,b\rangle,y\geq f(x)\}$

Лемма 1. о трех хордах

 $f:\langle a,b\rangle \to \mathbb{R}$. Тогда эквивалентны следующие утверждения:

1.
$$f - \epsilon \sin(a, b)$$

2.
$$\forall x_1, x_2, x_3 \in \langle a, b \rangle$$
 $x_1 < x_2 < x_3$ $\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_1)}{x_3 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}$

Доказательство. Левое $\Leftrightarrow f(x_2)(x_3-x_1) \leq f(x_3)(x_2-x_1) + f(x_1)(x_3-x_1-(x_2-x_1))$

$$f\left(x_3\frac{x_2-x_1}{x_3-x_1}+x_1\frac{x_3-x_2}{x_3-x_1}\right)=f(x_2)\leq f(x_3)\frac{x_2-x_1}{x_3-x_1}+f(x_1)\frac{x_3-x_2}{x_3-x_1}$$

Примечание. Если f — строго выпуклая, то в лемме оба неравенства строгие.

Теорема 1. об одностронней дифференциируемости выпуклой функции. f — вып. $\langle a,b \rangle$. Тогда $\forall x \in (a,b) \ \exists f'_+(x), f'_-(x)$ и $\forall x_1,x_2 \in (a,b), x_1 < x_2$

$$f'_{-}(x_1) \le f'_{+}(x_1) \le \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le f'_{-}(x_2)$$

Доказательство. $f'_+(x_1) = \lim_{x \to x_1 + 0} \frac{f(x) - f(x_1)}{x - x_1}$ — монотонно убывающая функция от x

Фиксируем $x_0 < x_1$. По лемме о трех хордах $\frac{f(x_0) - f(x_1)}{x_0 - x_1} \le \frac{f(x) - f(x_1)}{x - x_1}$

Следствие. f — вып. на $\langle a,b\rangle \Rightarrow f$ непр. на (a,b)

$$\lim_{x \to x_0 + 0} f(x) = f(x_0)$$

Теорема 2. выпуклость в терминах касательных

f — вып. на $\langle a,b \rangle$. Тогда график f расположен не ниже любой касательной T.e. $\forall x, x_0 \quad f(x) \ge f(x_0) + f'(x_0)(x - x_0)$

Доказательство. "⇒"

Если $x>x_0$ $f'(x_0)\leq \frac{f(x)-f(x_0)}{x-x_0}$, это неравенство 2. из предыдущей теоремы $x < x_0$ аналогично

" \Leftarrow " фиксируем x_0 . Берем $x_1 < x_0 < x_2$

$$\Leftarrow$$
 фиксируем x_0 . Берем $x_1 < x_0 < x_2$ $f(x_1) \ge f(x_0) + f'(x_0)(x_1 - x_0); f(x_2) \ge f(x_0) + f'(x_0)(x_2 - x_0),$ т.е. $\frac{f(x_1) - f(x_0)}{x_1 - x_0} \le f'(x_0) \le \frac{f(x_2) - f(x_0)}{x_2 - x_0}.$ Это верно по лемме.

Определение. $A\subset \mathbb{R}^2$ — вып. $l\subset \mathbb{R}^2$ — прямая l — опорная прямая к A, если:

- 1. A содержится в одной полуплоскости относительно l
- 2. $l \cap A \neq \emptyset$

Теорема 3. дифференциальный критерий выпуклости

1. $f:\langle a,b\rangle\to\mathbb{R}$, дифф. в (a,b)

Тогда f — вып. $\Rightarrow f'$ возр. на (a,b)

Если f — строго выпуклая $\Rightarrow f'$ строго возрастает

2. $f:\langle a,b\rangle \to \mathbb{R}$, дважды дифф. на (a,b)

$$f$$
 — вып. $\Leftrightarrow f'' \ge 0$ на (a,b)

(a) "
$$\Rightarrow$$
" $f'_+(x_1) \le f'_-(x_2)$ $(x_1 < x_2)$ " \Leftarrow " ? f вып. $\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c_1) < f'(c_2) = \frac{f(x_3) - f(x_2)}{x_3 - x_2}$

Теперь утверждение 2. очевидно.

Примечание. $f: \langle a, b \rangle \to \mathbb{R}$ — вып.

Тогда f — дифф. на (a,b) за исключением, может быть, счетного множества точек.

Доказательство. $\forall x \ \exists f'_+(x), f'_-(x)$

 f'_+ возрастает

 $f_-'(x) = f_+'(x) \Rightarrow f$ дифф. в x

 $f'_{-}(x) < f'_{+}(x) \Rightarrow f$ не дифф. в x

Тогда x — точка скачка для f'_+, f'_- , их НБСЧ, т.к. f^+ и f^- возрастают.

Пример. Изопериметрическое неравенство

 $G \subset \mathbb{R}^2$ — выпуклое замкнутое множество (ограниченное)

 $diamG = \sup{\{\rho(x, y), x, y \in G\}}$

 $diamG \le 1$

Тогда $\sigma(G) \leq \frac{\pi}{4}$

Доказательство. Пойдём от некоторой точки на границе G под углом φ внутрь фигуры по прямой. В какой-то момент мы встретим другую граничную точку. Назовем этот процесс $r(\varphi)$ (возвращает длину пути). Очевидно, что $r^2(\varphi)+r^2(\varphi-\frac{\pi}{2})\leq (diam G)^2\leq 1$

$$\sigma(G) = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} r^2(\varphi) d\varphi = \frac{1}{2} \left(\int_{-\frac{\pi}{2}}^{0} r^2(\varphi) d\varphi + \int_{0}^{\frac{\pi}{2}} r^2(\varphi) d\varphi \right) =$$

$$= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \left(r^2(\varphi) + r^2 \left(\varphi - \frac{\pi}{2} \right) \right) d\varphi \le \frac{1}{2} \int_{0}^{\frac{\pi}{2}} 1 d\varphi = \frac{\pi}{4}$$