Lojik Tasarım

Ders 1

Kaynak:

M.M. Mano, M.D. Ciletti, "Digital Design with An Introduction to Verilog HDL"

Takip Edilecek Ders Kitapları

M.M. Mano, "Sayısal Tasarım"

M.M. Mano, M.D. Ciletti, "Digital Design with An Introduction to Verilog HDL"

Sayısal Sistemler

- Günümüzde Dijital Sistemler günlük yaşamda büyük öneme sahiptir
- Bu nedenle, içinde bulunduğumuz teknolojik dönemi dijital çağ olarak adlandırıyoruz.
- Dijital sistemler;
 - İletişim, ticari işlemler, trafik kontrolü, uzay aracı rehberliği, tıbbi tedavi, hava durumu izleme, İnternet ve diğer birçok ticari, endüstriyel ve bilimsel işletmeler.
 - Dijital telefonlarımız, dijital televizyonlarımız, dijital çok yönlü disklerimiz, dijital kameralarımız, el cihazları ve tabii ki dijital bilgisayarlar.
- Genellikle bu cihazların kullanıcıya basit görünen grafiksel kullanıcı arayüzleri (GUI'ler) vardır. Ancak aslında, bir dizi karmaşık dahili talimatın hassas bir şekilde yürütülmesi şeklinde çalışırlar
- Hepsi olmasa da bu aygıtların çoğunun içinde gömülü özel amaçlı bir dijital bilgisayar bulunur.

Sayısal Bir Bilgisayarın Blok Diyagramı

Sayısal Sistemler

- Sayısal bilgisayarın en çarpıcı özelliği genelliğidir.
- Verilen veriler üzerinde çalışan, program adı verilen bir dizi talimatı işletebilir
- Kullanıcı, programı veya verileri özel ihtiyaca göre belirleyebilir ve değiştirebilir.
- Bu esneklik nedeniyle, genel amaçlı dijital bilgisayarlar, geniş bir uygulama yelpazesini kapsayan çeşitli bilgi işleme görevlerini gerçekleştirebilir.
- Dijital sistemlerin bir özelliği, ayrı bilgi unsurlarını temsil etme ve manipüle etme yetenekleridir.
- Sonlu sayıda elemanla sınırlandırılmış herhangi bir küme, ayrık bilgiler içerir.
- Ayrık kümelere örnek olarak 10 ondalık basamak, alfabenin 26 harfi, 52 oyun kartı ve bir satranç tahtasının 64 karesi verilebilir.

Sayısal Bilgisayarlar

- İlk sayısal bilgisayarlar numerik hesaplamalar için kullanılmıştır. Bu durumda ayrık elemanlar rakamlardı.
- Ayrık bilgi öğeleri, dijital bir sistemde sinyal adı verilen fiziksel niceliklerle temsil edilir.
 Gerilimler ve akımlar gibi elektrik sinyalleri en yaygın olanlarıdır.
- Günümüzde, bu sinyalleri uygulayan devrelerde transistör adı verilen elektronik devre elemanları kullanılır.
- Günümüz elektronik dijital sistemlerinin çoğunda sinyaller sadece iki ayrı değer kullanır ve bu nedenle ikili oldukları söylenir.
- Bit adı verilen ikili bir rakamın iki değeri vardır: 0 ve 1.
- Çeşitli teknikler aracılığıyla, bir sistemi dijital bir formatta geliştirmek için kullanılan sayıları değil, ayrı sembolleri temsil etmek için bit grupları yapılabilir.
- Bu nedenle, dijital bir sistem, dahili olarak ikili biçimde temsil edilen ayrık bilgi öğelerini manipüle eden bir sistemdir.
- Günümüz teknolojisinde ikili sistemler çok pratiktir.
- İlerleyen derslerde göreceğimiz gibi elektronik bileşenlerle uygulanabilmektedirler.

Sayı Sistemleri

- 7.392 gibi bir ondalık sayı,
 - 7 binlik artı 3 yüzlük artı 9 onluk artı 2 birlik birime eşit bir miktarı temsil eder.
 - Binler, yüzler vb. sayılardaki katsayıların (sembollerin) konumuyla ifade edilen 10'un kuvvetleridir.
 - Aşağıdaki şekilde ifade edilebilir

$$7 \times 10^3 + 3 \times 10^2 + 9 \times 10^1 + 2 \times 10^0$$

Genel Gösterim

r tabanındaki bir ifade genel olarak aşağıdaki şekilde temsil edilebilir

$$a_5a_4a_3a_2a_1a_0$$
. $a_{-1}a_{-2}a_{-3}$

$$a_n \cdot r^n + a_{n-1} \cdot r^{n-1} + \cdots + a_2 \cdot r^2 + a_1 \cdot r + a_0 + a_{-1} \cdot r^{-1} + a_{-2} \cdot r^{-2} + \cdots + a_{-m} \cdot r^{-m}$$

Örnek

 $(11010.11)_2 = (26.75)_{10}$

$$1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2} = 26.75$$

$$(4021.2)_5 = 4 \times 5^3 + 0 \times 5^2 + 2 \times 5^1 + 1 \times 5^0 + 2 \times 5^{-1} = (511.4)_{10}$$

$$(127.4)_8 = 1 \times 8^2 + 2 \times 8^1 + 7 \times 8^0 + 4 \times 8^{-1} = (87.5)_{10}$$

$$(B65F)_{16} = 11 \times 16^3 + 6 \times 16^2 + 5 \times 16^1 + 15 \times 16^0 = (46,687)_{10}$$

Farklı Tabanlarda Sayıların Gösterimi

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

- Onluk tabandaki 41 sayısının ikilik tabandaki (binary) karşılığını bulunuz.
- \bullet $(41)_{10} = (?)_2$

	Integer Quotient		Remainder	Coefficient
41/2 =	20	+	$\frac{1}{2}$	$a_0 = 1$
20/2 =	10	+	0	$a_1 = 0$
10/2 =	5	+	0	$a_2 = 0$
5/2 =	2	+	$\frac{1}{2}$	$a_3 = 1$
2/2 =	1	+	0	$a_4 = 0$
1/2 =	0	+	$\frac{1}{2}$	$a_5 = 1$

Intege	er Remai	nder
41		
20	1	
10	0	
5	0	
2	1	
1	0	
0	1	101001 = answer

Therefore, the answer is $(41)_{10} = (a_5a_4a_3a_2a_1a_0)_2 = (101001)_2$.

- Onluk tabandaki 153 sayısının sekizlik tabandaki (octal) karşılığını bulunuz.
- \bullet (153)₁₀ = (?)₈

153	
19	1
2	3
0	$2 = (231)_8$

- Onluk tabandaki 0.6875 sayısının ikilik tabandaki (binary) karşılığını bulunuz.
- \bullet $(0.6875)_{10} = (?)_2$

	Integer		Fraction	Coefficient
$0.6875 \times 2 =$	1	+	0.3750	$a_{-1} = 1$
$0.3750 \times 2 =$	0	+	0.7500	$a_{-2} = 0$
$0.7500 \times 2 =$	1	+	0.5000	$a_{-3} = 1$
$0.5000 \times 2 =$	1	+	0.0000	$a_{-4} = 1$

 $(0.6875)_{10} = (0.1011)_2$

- Onluk tabandaki 0.513 sayısının sekizlik tabandaki (octal) karşılığını bulunuz.
- $(0.513)_{10} = (?)_8$

$$0.513 \times 8 = 4.104$$

$$0.104 \times 8 = 0.832$$

$$0.832 \times 8 = 6.656$$

$$0.656 \times 8 = 5.248$$

$$0.248 \times 8 = 1.984$$

$$0.984 \times 8 = 7.872$$

 $(0.513)_{10} = (0.406517....)_8$

- $(41.6875)_{10} = (101001.1011)_2$
- $(153.513)_{10} = (231.406517)_8$

Sekizli (Octal) ve Onaltılı (Hexadecimal) Sayılar

- İkili sayı sistemlerinde verilen sayıları sekizli ve onaltılı sayı sistemlerindeki sayılara çevirmek için gruplama yöntemini kullanabiliriz
- $2^3 = 8 (3 \text{ bit})$
- $2^4 = 16 (4 \text{ bit})$

$$(10 \quad 110 \quad 001 \quad 101 \quad 011 \quad \cdot \quad 111 \quad 100 \quad 000 \quad 110)_2 = (26153.7406)_8$$
 $2 \quad 6 \quad 1 \quad 5 \quad 3 \quad 7 \quad 4 \quad 0 \quad 6$

(10 1100 0110 1011 · 1111
$$0010)_2 = (2C6B.F2)_{16}$$

2 C 6 B F 2

Sekizli (Octal) ve Onaltılı (Hexadecimal) Sayılar

 Benzer işlem sekizli ve onaltılı sayı sistemlerinden ikili sayı sistemlerine dönüştürmede de kullanılabilir.

$$(673.124)_8 = (110 \quad 111 \quad 011 \quad \cdot \quad 001 \quad 010 \quad 100)_2$$
 $6 \quad 7 \quad 3 \quad 1 \quad 2 \quad 4$

$$(306.D)_{16} = (0011 \quad 0000 \quad 0110 \quad \cdot \quad 1101)_2$$

3 0 6 D