Definitions

Bailey Wickham MATH 412

October 28, 2020

1 Chapter 1

1.1 Maximum

Let $A \subset \mathbb{R}, m \in \mathbb{R}$. We say that the **maximum** of A is m if

- 1. for all $x \in A, m \ge x$
- 2. $m \in A$

1.2 Upper bound

Let A be a nonempty subset of \mathbb{R} , let $u \in \mathbb{R}$. u is an **upper bound** if for all $x \in A$ $x \leq u$

1.3 Supremum

Let A be a nenempty subset of \mathbb{R} , Let $l \in \mathbb{R}$. l is the **supremum** of A if for all $a \in A, a \leq l$ and for all $m \in \mathbb{R}$ if all $a \in A, a \leq m$ then $l \leq m$. l is the least upper bound.

1.4 Minium

Let $A \subset \mathbb{R}, m \in \mathbb{R}$. We say that the **minimum** of A is m if

- 1. for all $x \in A, m \le x$
- 2. $m \in A$

1.5 Infimum

Let A be a nenempty subset of \mathbb{R} , Let $l \in \mathbb{R}$. l is the **infimum** of A if for all $a \in A, a \geq l$ and for all $m \in \mathbb{R}$ if all $a \in A, a \geq m$ then $l \geq m$. l is the least upper bound.

1.6 Bounded Above

A subset $A \subset \mathbb{R}$ is **bounded above** if there exists a supremum for A.

1.7 Bounded Below

A subset $A \subset \mathbb{R}$ is **bounded below** if there exists a infimum for A.

1.8 Bounded

A set is **bounded** if it is bounded below and bounded above

1.9 Bijection

A function f is a bijection if it is one to one and onto.

1.10 Card

Sets A, B have the same Card if there exists a bijection between them.

1.11 Finite

Let A be a set, A is finite if there exists an $n \in \mathbb{N}$ s.t.A has card n

1.12 Countable

A set is countable if there is a bijection between \mathbb{N} and A.

1.13 Sequence

A sequences is a function whose domain is \mathbb{N}

1.14 Convergence

A sequence (a_n) converges to a real number a if for every positive number ϵ there exists an $N \in \mathbb{N}$ such that for all $n \geq N$, then $|a_n - a| < \epsilon$

1.15 ϵ Neighborhood

 $V_{\epsilon}(a) = x \in \mathbb{R} : |x - a| < \epsilon$

1.16 Topological Convergence

A sequence (a_n) converges to a if there exists an $n \in \mathbb{N}$ such that all terms after n are in an $\epsilon neighborhood$

1.17 Bounded

A sequence is bounded iff the set of all elements of the sequence is bounded.

1.18 Increasing

A sequence is increasing if for all $n \in \mathbb{N}$, $a_n \leq a_{n+1}$

1.19 Eventually

A sequence (a_n) is eventually in a set A if there exists an N s.t. $a_n \in A$ for all $n \geq N$

1.20 Frequently

A sequence (a_n) is eventually in a set A if for every N there exists an $n \geq N$ s.t. $a_n \in A$.