Bathymétrie de la zone modélisée

Étude du Front polaire aux alentours de Kerguelen à l'aide du modèle CROCO

LEMASSON Pierrick

M1 Sciences de la mer

Parcours Océanographie Physique et Biogéochimique

UE : OPB 205 'Modélisation 3D Océanique'

Le Plateau de Kerguelen

Fig.1: Schéma de circulation du CCA à travers le plateau. [Park et al., 2014]

→ Océan Austral

- 70°E
- Obstacle quasi méridional
- HNLC

→ Une région importante :

- Apport de fer
- Intensification de production primaire

Introduction Matériels & méthodes Résultats Conclusion

Le Front Polaire

- Limite Nord de température ≤2°C en subsurface
- Association avec une bande de courant du CCA

Fig.2: Image satellite composite de chlorophylle α (en mg/m3)
Champs de vitesse en surface moyens
[Park et al., 2014]

Le modèle CROCO

Fig.3: Principe d'un modèle numérique océanique

Le modèle CROCO

Fig.3: Principe d'un modèle numérique océanique

- Data set globaux
- WOA2009
- Topo
- COADS5

Le modèle CROCO

Fig.3: Principe d'un modèle numérique océanique

Coastal and Regional Ocean COmmunity model

→ Équations primitives :

$$\begin{cases} \frac{\partial u}{\partial t} + \vec{V} \cdot \vec{\nabla} u = fv - \frac{1}{\rho_0} \frac{\partial P}{\partial x} + A_h \cdot \nabla_h^2 u + A_z \cdot \frac{\partial^2 u}{\partial z^2} \\ \frac{\partial v}{\partial t} + \vec{V} \cdot \vec{\nabla} v = -fu - \frac{1}{\rho_0} \frac{\partial P}{\partial y} + A_h \cdot \nabla_h^2 v + A_z \cdot \frac{\partial^2 v}{\partial z^2} \\ \frac{\partial P}{\partial z} + \rho g = 0 \end{cases}$$
$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$
$$\begin{cases} \frac{\partial T}{\partial t} + \vec{V} \cdot \vec{\nabla} T = K_h \nabla_h^2 T + K_v \frac{\partial^2 T}{\partial z^2} \\ \frac{\partial S}{\partial t} + \vec{V} \cdot \vec{\nabla} S = K_h \nabla_h^2 S + K_v \frac{\partial^2 S}{\partial z^2} \end{cases}$$
$$\rho = \rho(T, S, P)$$

Matériels & méthodes

Introduction

Conclusion

Résultats

Coastal and Regional Ocean COmmunity model

Fig.4: Grille Arakawa-C

Discrétisation vertical

Fig.5: Modèle de 'terrain following' ou de coordonnées sigma

Matériels & méthodes

Résultats

Conclusion

'Time-splitting'

$$\Delta t \le \frac{1}{\sqrt{gH}} \sqrt{\left(\frac{1}{\Delta x^2} + \frac{1}{\Delta y^2}\right)^2}$$

Fig.5: Contrainte sur le pas de temps en mode externe

→ Mode 'externe':

- DTE
- → Mode 'interne':
 - DT
 - NTDFAST

Configurations spatiales

Lat min	Lat max	Long min	Long max	LLm	MMm	Niveaux	Résolution
-56°N	-40°N	55°E	90°E	139	96	32	1/4 °

Configurations temporelles

Lat min	Lat max	Long min	Long max	LLm	MMm	Niveaux	Résolution	
-56°N	-40°N	55°E	90°E	139	96	32	1/4 °	

Durée	NTIMES	NDTFAST	DTE	DTI	AVG
10 ans	1800	60	24sec	1440sec	3 jours

Diagnostics

Résultats

Matériels & méthodes

Introduction

Fig.6: Variations interannuelles et saisonnières des sorties du modèle (Front Polaire, Champs de vitesses de surface moyens)

Conclusion

Fig.7: Position du front polaire et température de subsurface (200m) [Park et al., 2014]

18

- → Peu de variations des années 'types' simulées
- → Représentation fidèle du CCA
- → Dérive Sud-Est du front polaire

- → Peu de variations des années types
- → Représentation fidèle du CCA
- → Dérive Sud-Est du front polaire
- → Hypothèses:
 - Conditions initiales
 - Subdivision du front polaire [M.Fieux, 2010]

- → Peu de variations des années types
- → Représentation fidèle du CCA
- → Dérive Sud-Est du front polaire

→ Hypothèses :

- Conditions initiales
- Subdivision du front polaire [M.Fieux, 2010]

<u> En plus :</u>

- Fermeture de la turbulence
- Couplage biogéochimie
- Nouvelles conditions initiales

Bibliographie & Ressources

- [B.Queguiner, 2011] B.Queguiner (2011). Keops 2 cruise, marion dufresne.
- [Large et al., 1994] Large et al. (1994). Oceanic vertical mixing :review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32.
- [M.Fieux, 2010] M.Fieux (2010). L'océan planétaire. La Presse de L'ENSTA.
- [Park et al., 2014] Park et al. (2014). Polar front around the kerguelen islands: An up-to-date determination and associated circulation of surface/subsurface waters. Geophysical Research, 119(10):6575–6592.

≪ CROCO and CROCO-TOOLS are provided by http://www.croco-ocean.org ≫