

Лекция 1

Знакомство с анализом данных и машинным обучением

Мир меняется

Big Data: 4V

Машинное обучение (machine learning = ML)

систематическое обучение алгоритмов и систем, в результате которого их знания или качество работы возрастают по мере накопления опыта

Al & Data Science

Искусственный интеллект

наука и технология создания интеллектуальных машин

Наука о данных

раздел информатики, изучающий проблемы анализа, обработки и представления данных в цифровой форме

Al & Data Science

X – множество объектов

У- множество ответов

 $y: X \to Y$ – неизвестная зависимость

Дано:

 $\{x_1,...,\ x_\ell\}\subset X$ – обучающая выборка

 $y_i = y(x_i), \ i = 1,..., \ \ell$ - известные ответы

Найти:

a : X → Y – решающую функцию (алгоритм), приближающую *у*

X – множество объектов

У' – множество ответов

$$X = \begin{pmatrix} x_1^{(1)} & x_2^{(1)} & \dots & x_k^{(1)} \\ x_1^{(2)} & \ddots & & \vdots \\ \vdots & & & & \\ x_1^{(n)} & \dots & & x_k^{(n)} \end{pmatrix} \qquad Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \qquad Y' = \begin{pmatrix} y_1' \\ y_2' \\ \vdots \\ y_n' \end{pmatrix},$$

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

$$\mathsf{Y'} = \begin{pmatrix} \mathsf{y_1'} \\ \mathsf{y_2'} \\ \vdots \\ \mathsf{y_n'} \end{pmatrix},$$

Найти:

а : X → *Y* – решающую функцию (алгоритм), приближающую *у*

 $f_j: X \rightarrow D_j \; j=1,..., \, n$ – признаки объектов

Типы признаков:

- $D_j = \{0, 1\}$ бинарный признак f_j ;
- $|D_j|$ < ∞ номинальный признак f_j ;
- $|D_j|$ < ∞, D_j упорядочено порядковый признак f_j ;
- $D_{i} = R$ количественный признак f_{i} .

Вектор $(f_1(x),...,f_n(x))$ – признаковое описание объекта X Матрица «объекты-признаки»

$$F = ||f_j(x_i)||_{\ell \times n} = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_l) & \dots & f_n(x_l) \end{pmatrix}$$

Задачи классификации

- $Y = \{-1, +1\}$ классификация на два класса
- $Y = \{1, ..., M\}$ классификация на M непересекающихся классов
- $Y = \{0, 1\}^M$ классификация на M классов, которые могут пересекаться

Задачи восстановления регрессии

• Y = R или $Y = R^m$

Задачи ранжирования

У - конечное упорядоченное множество

– лишь одна из задач, которые хорошо решает FML.

Модель - параметрическое семейство функций

$$A = \{a(x) = g(x, \theta) \} \theta \in \Theta\},$$

где $g: X \times \Theta \rightarrow Y$ - фиксированная функция

 Θ - множество допустимых параметров heta

Пример: линейная модель с вектором параметров $\theta = (\theta_1, ..., \theta_n)$ $\Theta = R^n$

$$g(x, \theta) = \sum_{j=1}^{n} \theta_{j} f_{j}(x)$$
 - регрессия и ранжирование $Y = R$

$$g(x, \theta) = sign\sum_{j=1}^{n} \theta_{j} f_{j}(x)$$
 - классификация $Y = \{-1, +1\}$

 $\mathcal{L}(a, x)$ - функция потерь, величина ошибки алгоритма $a \in A$ на объекте $x \in X$

Ф-ия потерь для задачи классификации

• $\mathcal{L}(a, x) = [a(x) \neq y(x)]$ - индикатор ошибки

Ф-ия потерь для задачи регрессии

- $\mathcal{L}(a, x) = |a(x) y(x)|$ абсолютное значение ошибки
- $\mathcal{L}(a, x) = (a(x) y(x))^2$ квадратичная ошибка

Эмпирический риск - функционал качества алгоритма на \mathbf{x}^ℓ

$$Q(a,X^{\ell}) = 1/\ell \sum_{i=1}^{\ell} \mathcal{L}(a, x_i)$$

Минимизация эмпирического риска

$$\mu(X^{\ell}) = \text{arg min}_{a \in A} Q(a, X^{\ell})$$

Пример: метод наименьших квадратов (Y = R, \mathcal{L} - квадратична)

$$\mu(X^{\ell}) = \arg\min_{\theta} \sum_{i=1}^{\ell} (g(x_i, \theta) - y_i)^2$$

1.2. Примеры применения

1.2. Примеры применения

- Задачи медицинской диагностики
- Задачи кредитного скоринга
- Задачи предсказания оттока клиентов
- Зачади рубрикации текстовых документов
- Задачи прогнозирования отказа оборудования

1.2. Примеры применения

Финансы и управление рисками	Продажи и маркетинг	Работа с клиентами	Операционная деятельность
\$\$\$ Прогнозирование доходов	Прогнозирование продаж	Сегментированиепотребителей	Распределение агентов
Оптимизация портфеля	Прогнозирование спроса	Персонализирован- ные предложения	Управление складом
\$\$\$ Моделирование инвестиций	У Оценка Ж лидов	Рекомендательные системы	умные здания
Распознавание мошенничества	Оптимизация 4P		Упреждающий ремонт
Управление рисками			Оптимизация логистики

1.3.1. Этапы анализа данных

CRISP-DM

Cross-Industry Standard Process for Data Mining межотраслевой стандартный процесс для исследования данных CRISP-DM

- о Понимание бизнес-целей (*Business Understanding*)
- Начальное изучение данных (Data Understanding)
- ∘ Подготовка данных (*Data Preparation*)
- о Моделирование (*Modeling*)
- о Оценка (*Evaluation*)
- о Внедрение (Deployment)

1.3.1. Этапы анализа данных

1.3.2. Препроцессинг

- 1. Создание векторного пространства признаков, где будут жить примеры обучающей выборки.
- 2. Нормализация данных. Вот самый классический пример нормализации данных: $X = (X \mu)/\sigma$
- 3. Изменение размерности векторного пространства.

П	p	И	M	е	p	:
---	---	---	---	---	---	---

	color_ серый	color_ синий	color_ зеленый
серый	1	0	0
синий	0	1	0
зеленый	0	0	1

EleWise **IDOOEKTED**

1.3.2. Препроцессинг

- количество
 - объем выборки
 - о внутренние + внешние
- качество
 - фальсификация данных
 - о пропущенные значения

1.3.2. Препроцессинг

Качество данных: проблема

1.3.2. Препроцессинг

Качество данных: проблема

Поле	Значение	Ошибка
Имя	Сергей	Первая буква - латинская
Фамилия	Петрович	Значение из другого поля
Город	Мсква	Опечатка
Доходы	100 руб.	Подозрительная сумма
Телефон	000-00-01	Несуществующий номер

1.3.2. Препроцессинг

Качество данных: проблема

1.3.3. Оценка качества (регрессия)

$$MAPE = \frac{1}{N} \sum_{t=1}^{N} \frac{|Z(t) - \hat{Z}(t)|}{Z(t)} \cdot 100\%$$

$$MAE = \frac{1}{N} \sum_{t=1}^{N} |Z(t) - \hat{Z}(t)|$$

$$MSE = \frac{1}{N} \sum_{t=1}^{N} \left(Z(t) - \hat{Z}(t) \right)^{2}$$

$$RMSE = \sqrt{MSE}$$

$$ME = \frac{1}{N} \sum_{t=1}^{N} \left(Z(t) - \hat{Z}(t) \right)$$

$$SD = \sqrt{\frac{1}{N} \cdot \sum_{t=1}^{N} (\hat{Z}(t) - ME)^2}$$

1.3.3. Оценка качества (классификация)

Матрица сопряженности (Confusion matrix)

	Фактически		
Модель	+	-	
+	TP	FP	
-	FN	TN	

1.3.3. Оценка качества (классификация)

Матрица сопряженности (Confusion matrix)

True Positives — верно классифицированные положительные объекты (истинно положительные случаи);

True Negatives — верно классифицированные отрицательные объекты (истинно отрицательные случаи);

False Negatives — положительные объекты, классифицированные как отрицательные (ошибка I рода, ложно отрицательные случаи);

False Positives — отрицательные объекты, классифицированные как положительные (ошибка II рода, ложно положительные случаи).

1.3.3. Оценка качества (классификация)

Accuracy

• **Точность (Ассиагсу)** — число верно классифицированных объектов по модели:

$$Ac = \frac{TP + TN}{n}$$

1.3.3. Оценка качества (классификация)

Sensitivity & Specificity

• **Чувствительность (Sensitivity)** — доля истинно положительных объектов:

$$Se = TPR = \frac{TP}{TP + FN} \cdot 100\%$$

• Специфичность (Specificity) — доля истинно отрицательных объектов, которые были правильно идентифицированы моделью:

$$Sp = \frac{TN}{TN + FP} \cdot 100\%$$

1.3.3. Оценка качества (классификация)

Precision & Recall

• **Точность (Precision)** — доля положительных объектов среди тех, кого назвали положительными:

$$Precision = \frac{TP}{TP + FP} \cdot 100\%$$

• Полнота (Recall) — доля истинно положительных объектов:

$$Recall = \frac{TP}{TP + FN} \cdot 100\%$$

EleWise

1.3.3. Оценка качества (классификация)

Внимательно:

- Accuarcy Точность
- Precision Точность

1.3.3. Оценка качества (классификация)

F-score

• F-мера (F-score) - среднее гармоническое precision и recall

F1=2·
$$\frac{\text{Precision} \cdot \text{Recall}}{\text{Precision+Recall}}$$

F1=(1+ β^2)· $\frac{\text{Precision} \cdot \text{Recall}}{\beta^2 \cdot \text{Precision+Recall}}$

1.3.3. Оценка качества (классификация)

Уровень отсечения (cut-off)

Y	Р	Υ
1	0.2	
1	0.4	
0	0.1	
0	0.3	
1	0.5	

1.3.3. Оценка качества (классификация)

Уровень отсечения 0.1

Υ	Р	Ϋ́
1	0.2	1
1	0.4	1
0	0.1	0
0	0.3	1
1	0.5	1

1.3.3. Оценка качества (классификация)

Уровень отсечения 0.2

Υ	Р	Y
1	0.2	0
1	0.4	1
0	0.1	0
0	0.3	1
1	0.5	1

1.3.3. Оценка качества (классификация)

Уровень отсечения 0.9

Υ	Р	Υ
1	0.2	0
1	0.4	0
0	0.1	0
0	0.3	0
1	0.5	0

1.3.3. Оценка качества (классификация)

- ROC = receiver operating characteristic, иногда говорят «кривая ошибок»
- качество = площадь под этой кривой – AUC
 (AUC = area under the curve)

1.3.3. Оценка качества (классификация)

id	оценка	класс
1	0.5	0
2	0.1	0
3	0.2	0
4	0.6	1
5	0.2	1
6	0.3	1
7	0.0	0

id	оценка	класс
4	0.6	1
1	0.5	0
6	0.3	1
3	0.2	0
5	0.2	1
2	0.1	0
7	0.0	0

id	> 0.25	класс
4	1	1
1	1	0
6	1	1
3	0	0
5	0	1
2	0	0
7	0	0

Табл. 1 Табл. 2 Табл. 3

1.3.3. Оценка качества (классификация)

EleWise

- Взять единичный квадрат на координатной плоскости, разбить его на м равных частей горизонтальными линиями и на n вертикальными, где m число 1 среди правильных меток теста (m=3), n число нулей (n=4). В результате квадрат разбивается сеткой на m×n блоков.
- Просматривать строки табл. 2 сверху вниз и прорисовывать на сетке линии, переходя их одного узла в другой.
- Старт из точки (0, 0). Если значение метки класса в просматриваемой строке 1, то делаем шаг вверх; если 0, то делаем шаг вправо.
- В итоге мы попадём в точку (1, 1), т.к. сделаем в сумме *т* шагов вверх и *п* шагов вправо.

1.3.3. Оценка качества (классификация)

ROC-кривая

Если у нескольких объектов значения оценок равны, то делаем шаг в точку, которая на а блоков выше и b блоков правее, где a − число единиц в группе объектов с одним значением метки, b − число нулей в ней. В частности, если все объекты имеют одинаковую метку, то мы сразу шагаем из точки (0, 0) в точку (1, 1).

1.3.3. Оценка качества (классификация)

- **AUC ROC** площадь под ROC-кривой используют для оценивания качества упорядочивания алгоритмом объектов двух классов. Значение лежит на отрезке [0, 1].
- AUC ROC равен доле пар объектов вида (объект класса 1, объект класса 0), которые алгоритм верно упорядочил, т.е. первый объект идёт в упорядоченном списке раньше.

1.3.3. Оценка качества (классификация)

1.3.3. Оценка качества (классификация)

	Интервал AUC	Качество модели
0.9-1.0		Отличное
0.8-0.9		Очень хорошее
0.7-0.8		Хорошее
0.6-0.7		Среднее
0.5-0.6		Неудовлетворительное

$$AUC = \int f(x)dx = \sum_{i} \left[\frac{X_{i+1} + X_{i}}{2} \right] \cdot (Y_{i+1} - Y_{i})$$

$$Gini = (AUC - 0.5) \cdot 2$$

1.3.4. Обзор алгоритмов

1.3.4. Обзор алгоритмов

1.3.4. Обзор алгоритмов

Китайская «система социального рейтинга»

К 2020 будет определять ценность людей:

- oSCS: будет определен рейтинг жителей
- осистема будет определять позицию гражданина, отслеживая его социальное поведение: как он тратит деньги, регулярно ли оплачивает счета, даже то, как он взаимодействует с другими людьми
- от рейтинга гражданина будет зависеть, сможет ли он получить работу или ипотеку, а также в какой школе смогут учиться его дети

BLACKMARROR