CS 511, Fall 2024, Lecture Slides 22 First-Order Definability

Assaf Kfoury

October 7, 2024

Throughout these lecture slides, we assume we have a fixed, but otherwise arbitrary, vocabulary/signature $\Sigma = (\mathscr{P}, \mathscr{F})$:

$$\mathscr{P}\stackrel{\mathrm{def}}{=}\{P_1,P_2,\ldots\}$$
 and $\mathscr{F}\stackrel{\mathrm{def}}{=}\{f_1,f_2,\ldots\}$

Even if the equality symbol \approx is not mentioned in Σ , we assume it is available.

▶ All first-order wff's are written over the signature Σ , and therefore interpreted in Σ -structures/models.

Suppose $\mathcal{M} \stackrel{\mathrm{def}}{=} (M,\ldots)$ is a Σ -structure with universe M, $\ell:\{\mathrm{all\ variables}\} \to M$ a valuation / environment / look-up table , and φ a first-order WFF such that $\mathcal{M}, \ell \models \varphi$.

- Suppose $\mathcal{M}\stackrel{\mathrm{def}}{=}(M,\ldots)$ is a Σ -structure with universe M, $\ell:\{\mathrm{all\ variables}\}\to M$ a valuation / environment / look-up table , and φ a first-order WFF such that $\mathcal{M},\ell\models\varphi$.
- If φ is **closed**, we may write $\mathcal{M} \models \varphi$ instead, because ℓ plays no role in the satisfiability/unsatisfiability of φ .

 Put differently, $\mathcal{M} \models \varphi$ means $\mathcal{M}, \ell \models \varphi$ for every ℓ in this case.

- Suppose $\mathcal{M}\stackrel{\mathrm{def}}{=}(M,\ldots)$ is a Σ -structure with universe M, $\ell:\{\mathrm{all\ variables}\}\to M$ a valuation / environment / look-up table , and φ a first-order WFF such that $\mathcal{M},\ell\models\varphi$.
- If φ is **closed**, we may write $\mathcal{M} \models \varphi$ instead, because ℓ plays no role in the satisfiability/unsatisfiability of φ .

 Put differently, $\mathcal{M} \models \varphi$ means $\mathcal{M}, \ell \models \varphi$ for every ℓ in this case.
- If φ is **not closed**, *e.g.*, variables x_1, x_2 , and x_3 occur free in φ , with $\ell(x_1) = a_1, \ell(x_2) = a_2$, and $\ell(x_3) = a_3$, with $a_1, a_2, a_3 \in M$.
 - We may write $\mathcal{M}, a_1, a_2, a_3 \models \varphi(x_1, x_2, x_3)$ instead of $\mathcal{M}, \ell \models \varphi$.

- Suppose $\mathcal{M}\stackrel{\mathrm{def}}{=}(M,\ldots)$ is a Σ -structure with universe M, $\ell:\{\mathrm{all\ variables}\}\to M$ a valuation / environment / look-up table , and φ a first-order WFF such that $\mathcal{M},\ell\models\varphi$.
- If φ is **closed**, we may write $\mathcal{M} \models \varphi$ instead, because ℓ plays no role in the satisfiability/unsatisfiability of φ .

 Put differently, $\mathcal{M} \models \varphi$ means $\mathcal{M}, \ell \models \varphi$ for every ℓ in this case.
- If φ is **not closed**, *e.g.*, variables x_1, x_2 , and x_3 occur free in φ , with $\ell(x_1) = a_1, \ell(x_2) = a_2$, and $\ell(x_3) = a_3$, with $a_1, a_2, a_3 \in M$.
 - We may write $\mathcal{M}, a_1, a_2, a_3 \models \varphi(x_1, x_2, x_3)$ instead of $\mathcal{M}, \ell \models \varphi$.
 - Or we may write $\mathcal{M} \models \varphi[a_1, a_2, a_3]$ instead of $\mathcal{M}, \ell \models \varphi$.

Let $\mathcal{M} = (M; \approx^{\mathcal{M}}, P_1^{\mathcal{M}}, P_2^{\mathcal{M}}, \dots, f_1^{\mathcal{M}}, f_2^{\mathcal{M}}, \dots)$ be a Σ-structure.

- Let $\mathcal{M} = (M; \approx^{\mathcal{M}}, P_1^{\mathcal{M}}, P_2^{\mathcal{M}}, \dots, f_1^{\mathcal{M}}, f_2^{\mathcal{M}}, \dots)$ be a Σ-structure.
- Let $R \subseteq \underbrace{M \times \cdots \times M}_{l}$ be a k-ary **relation** on M for some $k \geqslant 1$.

- ▶ Let $\mathcal{M} = (M; \approx^{\mathcal{M}}, P_1^{\mathcal{M}}, P_2^{\mathcal{M}}, \dots, f_1^{\mathcal{M}}, f_2^{\mathcal{M}}, \dots)$ be a Σ -structure.
- Let $R \subseteq \underbrace{M \times \cdots \times M}_{k}$ be a k-ary **relation** on M for some $k \geqslant 1$.
- ▶ R is first-order definable in \mathcal{M} if there is a first-order WFF $\varphi(x_1, \ldots, x_k)$ with k free variables such that:

$$R = \left\{ (a_1, \ldots, a_k) \in M \times \cdots \times M \mid \mathcal{M}, a_1, \ldots, a_k \models \varphi(x_1, \ldots, x_k) \right\}$$

equivalently, using notational conventions earlier in these lecture slides:

$$R = \left\{ (a_1, \dots, a_k) \in M \times \dots \times M \mid \mathcal{M} \models \varphi[a_1, \dots, a_k] \right\}$$

▶ Let $f: \underbrace{M \times \cdots \times M}_{k} \to M$ be a k-ary function on M.

- ▶ Let $f : \underbrace{M \times \cdots \times M}_{k} \to M$ be a k-ary function on M.
- ▶ f is first-order definable in \mathcal{M} if the graph of f as a (k+1)-ary relation is first-order definable in \mathcal{M} .

- ▶ Let $f : \underbrace{M \times \cdots \times M}_{k} \to M$ be a k-ary function on M.
- ▶ f is first-order definable in \mathcal{M} if the graph of f as a (k+1)-ary relation is first-order definable in \mathcal{M} .
- ► Important special case:

First-order definability of a subset $X \subseteq M$. View X as a unary relation.

- ▶ Let $f: \underbrace{M \times \cdots \times M}_{k} \to M$ be a k-ary function on M.
- ▶ f is first-order definable in \mathcal{M} if the graph of f as a (k+1)-ary relation is first-order definable in \mathcal{M} .
- ► Important special case:

First-order definability of a subset $X \subseteq M$. View X as a unary relation.

► Important special case:

First-order definability of a single element $a \in M$:

a is first-order definable in \mathcal{M} iff

there is a first-order WFF $\varphi(x)$ s.t. $\mathcal{M}, a \models \varphi(x)$

and $\mathcal{M}, b \not\models \varphi(x)$ for every $b \neq a$.

