Carnegie Mellon University

Reducing Recidivism with Targeted Mental Health Outreach in Johnson County

MCRT2: Waseem Khan, Colton Lapp, Madi Zhaksylyk

MLPP Final Presentation

Problem: cycle of incarcerations

 Incarceration has a debilitating effect on an individual's well-being and can be hard to recover from without assistance.

Problem: cycle of incarcerations

- Incarceration has a debilitating effect on an individual's well-being and can be hard to recover from without assistance
- Untreated mental health conditions are a significant contributing factor to high recidivism rates in Johnson County often resulting in a cycle of incarcerations.

Goal: Assist JCMHC in helping people break the cycle

- The Johnson County Mental Health Center (JCMHC) struggles to identify the right residents at the right time
- The goal is to break this vicious cycle of re-incarcerations stemming from mental health issues.

Strategy: Identify at-risk individuals to target outreach

- Machine Learning: Identify 100 individuals at highest risk of reincarceration based on history of booking(s) and mental health record(s)
- **Field Evaluation:** Measure effectiveness of intervention for different groups

Strategy:

- Use ML to predict **risk**

Strategy:

- Use ML to predict risk, then use a field evaluation to measure effectiveness

Data Overview:

Data Limitations:

- Conflicting and inaccurately measured data
- Potential of data measured by biased/untrained individuals
- Incomplete data coverage of key features such as mental health surveys
- Data coverage: based on interaction with Johnson County public entities
 - might miss high-risk people whose mental health status was not documented
 - o might exclude high-risk people who moved to Johnson County from outside

Machine Learning Formulation

Row/Label definition

Row: A JOCO resident at a particular point in time (matching our cohort definition)

Label: An indicator denoting whether or not that person returned to jail for 2+ weeks in the next 6 months

Cohort:

- Mental health needs
- & Incarcerated 1+ times in last 5 years

Turning Historical Data into Features

Validating our model

Ensure past patterns generalize to the future

How we evaluated our ML models:

- Precision @ 100: out of 100 individuals we identify as having the highest risk of going to jail for 2+ weeks again the next 6 months, how many actually end up in jail?
- Why Precision @ 100?: Since JCMHC resources are limited to only target 100 individuals every month, we want to ensure that these interventions find as many high-risk people as possible

Determine AdaBoost is best due to highest average precision@100 over time

What if JCMHC has more resources?

Increasing interventions finds more at risk people, at a lower precision rate

How hard is it to identify all at risk people?

Analyzing the recall of our model

- If 600 out of 10,000
 people are truly at risk,
 you will need to
 intervene on:
 - **1%** (100) ... to find **7%** (42)
 - **10%** (1000) ... to find **50%** (300)
 - **97%** (9700) ... to find **100%** (600)

Comparison of best model to baseline

 Baseline model: a simple/interpretable approach based on some common heuristics for comparison

Our baseline models:

- For individuals with mental health needs rank them based on:
 - The amount of bookings
 - The recency of bookings

Number of Interventions:	100 interventions	1000 interventions		
Machine Learning Model Finds:	43 found (43% precision)	250 found (25% precision)		
Best Baseline Model Finds:	25 found (25% precision)	150 found (15% precision)		

Understanding the model

Most important features in our model:

- Jail-related features: time since last booking, average jail time, number of previous bookings
- **Mental health-related features:** time since last indication of mental health issue (through LSIR questionnaire)
- **Demographic features:** age at last booking, current age, sex: male

Who is the model identifying?

Compared to non-selected individuals, our ML model finds people who:

- Have been booked more recently
- Have been to jail 2x as many times
- Stay in jail 47% longer on average (25 days vs 17 days)
- Are 8 years younger on average
- Had an incarceration later on in their life
- Are 33% more likely to be Male

Is our model biased against certain groups?

- Goal: ensure our predictions of who goes to jail is accurate for all groups
 - Otherwise, JCMHC might perpetuate inequalities by not finding and helping certain groups
- Model could be biased for many reasons:
 - For example, data quality could differ by group
- Question: How to check if our model is "fair"?

Our predictions should be balanced across groups, but in what way?

Should we balance who we select across by:

- Population Rates?
- At Risk Rates?
- Model performance metrics?

Johnson County Population: 613,000							
White Residents: ~ 85%*		Black Residents: ~ 5-9%*					
White Residents Potentially At Risk: 8,617	White resident s not at risk	Black Residents Potentially at Risk: 2,002	Black reside nts not at risk				

We focus on "Recall Parity" and confirm our model is fair

Recall Parity = Helping groups equally proportional to their need

We look at:

- Black vs White
- Female vs Male
- Low-Income vs
 Not Low-Income

Johnson County Population: 613,000								
White Residents: ~ 85%*		Black Residents: ~ 5-9 %*						
White Residents Potentially re		White resident s not as risk	Black Residents Potentially at Risk: 2,002		Black reside nts not as risk			
White Residents Need Help: 436 (76%)	White residents who don't need help		Black Residents Need Help: 134 (23%)	,	Black residents who don't need help			
We find: 32 $\frac{32}{436}=7\%$			We find: 11 $\frac{11}{134} = 8\%$					

Disparity =
$$\frac{8.2\%}{7.3\%} \approx 1.12$$
 (negligible)

For our scenario, there is no tradeoff between model efficiency and equity

- Similar low bias across all groups for most accurate models
- Any residual disparities could be addressed by adjusting selection strategy from high risk list
 - Negligible impact on accuracy

Caveats:

- Need to test our model in the real world to ensure precision@100 is truly 43%
 - Insurance against poor model construction

- Need to determine effectiveness of intervention for different groups with field trial
 - O Does the intervention work? For who?

 Data limitations: only predicts on people in the Johnson County services data system

Policy recommendations:

- Observe one cohort of people in real world and confirm model is predictive
- Run field evaluation(s) to determine efficacy by groups such as gender, race, income status.
- If not effective:
 - Design new intervention
- If unequally effective
 - build additional model to predict effectiveness
 - Make hard policy choices about tradeoffs between efficiency and equity
- If equally effective
 - Deploy model as is

Future work

- Test and refine model assumptions (with stakeholders)
 - Is 6 months the correct prediction window for returning to jail?
 - Is 2 weeks of jail an appropriate cutoff?
 - How to define "Mental Health" conditions
 - What counts as being "High Risk?"
- Build more features and understand source data
- Add additional data from other services + other counties + census
- Apply similar predictive model to other Johnson County use cases

In Conclusion:

- We built an ML model that finds 2x as many at risk people compared to a simple heuristic model, and it performs consistently well over time
- The model makes predictions using nuanced data about individuals incarceration history, mental health history and demographic data
- The model performs well for all groups
- The recommended next steps are to:
 - Validate the model's predictive power
 - Run a field evaluation to assess the effectiveness of the intervention

Thank you!

Appendix

