nal storage variables
clauses Occurrence maps
In processing techniques

Mar Nathan and and The Alan Alan Alan Alan Alan Alan Alan Alan
Variable ordering, Devision Previstics, Branching heuristics
onsatisfied clauses
or variables occurrences in remaining onsatisfied clauses different variants were studied in 905
2. Dunamia bearista
+ focus on variables which were useful recently in
deriving learned clauses.
t focus on variables which were useful recently in deriving learned clouses. The can be interpreted as reinforcement learning
→ VSIDS: Variable State Independent Decaying Sum → different variants were studied
- different variants were studied
3. Look-ahead
/-> spent more time in selecting good variables.

DLIS (Dynamic Largest Individual Sum)
Grasp Coin : #8 unresolved (unsatisfied) clause
Coin : # 8) unresolved (unsatisfied) clause
queries des each det a' be the literal for which Carp is Maximal desision. Let be the literal for which Com is maximal
else choose b R set to 0.

Jeroslow-hlang Method
in shooter clauses.
-2 for every literal lion
$J(\ell) = \sum_{\ell \in \mathcal{C}, \ell \in \mathcal{F}} 2^{- \mathcal{C} }$
lec, CeF

MOM (Maximom Occorrence of elauseo of Minimum size)
decide a number W, such that if ICI 2 W then clause C is considered to be the small.
clause c is considered to be the small.
> let f*(x) be the # & small clauses containting x. Choose x that maximizes.
Choose & that maximizer.
$(f^*(x) + f^*(7x)) x 2^k + f^*(x) \times f^*(7x)$
-> k is choose hevristically-
hive preference to satisfying small clauses. Among those, give preference to Balanced vaoiables. $ \frac{1}{2} f^*(x) = 3 + f^*(7x) = 3 \text{ is preferred over} $ $ f^*(x) = 1 + f^*(7x) = 5. $
A Among those, give preference to Balanced vaoiables.
> 1*(x)=3 4 1*(7x)=3 is preferred OVCL
J*(x) = 1 & j*(7x) =5.

Variable State Independent Decaying Som (VSIDS)
→ Each literal (l) has a counter S(l), initialized to zero.
Tan blemented
Implemented in Chaff> for every new clause $C = [li, l_2, ln]$, $S(li)$ is incremated.
-> The crassigned variables of polonity with highest counter is choosen
is choosen
Ties are broken randomly
+ Periodically Lonce in 256 conflict.) call counter are halved.
Periodically Conce in 256 conflict.) call counter are halved. Can change

Mevristic Related data ocurrences of ain literal score Formula F. a 4 count literal 70 5 appearances in b 3 formula F. 7 b 3 C 2 7 C 3 d 2 7 d 4	1/210 (exmala) a 9			
a 4 (ount literal 70 5 appearances in b 3 formula F. 7b 3 C 2 7C 3 d 2 7d 4	VSIDS example :-	1euristic	Related da	ta inital value;
a 4 Count literal 70 5 appearances in b 3 formula F. 7b 2 C 2 7C 3 d 2 7d 4		literal	Score	Formula F.
b 3 Jornula F. 7b 3 C 2 7c 3 d 2 7d 4		a	4	
b 3 Jornula F. 7b 3 C 2 7c 3 d 2 7d 4		70	5	Oppearances in
7b 3 C 2 7C 3 C 2 7C 3 C 2 7d 4		Ь	3	
7C 3 d 2 -7d 4		7 P	3	V
7C 3 d 2 -7d 4		C	2.	
7d 4		76		
7d 4		d	2	
е 2,		70		
		e	2	
7e 6		70		
;		- A	^	
,		•	-	

VSIDS example :-	2.12. 0		inital value;
1100	ristic Rc	lated dat	ta ocurrences of ain
lî-	l-eral	Score	Formula F.
	OL -	4	Count literal
	70	J	Oppearances in
	Ь	3	formula F.
	, Р	3	8
	C	2	B
	26	3	
	d	2	
_	ıd	4	X conflict.
	е	2	C 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
c	7e	6	Cahvavcvabvk) Conflict clauses
+		^	Covigi 1C/ Ciassi
	V		

VCIDS excusiola 0-			
VSIDS example :-			inital value;
	Meuristic	Related da	ta ocurrences of ain
	literal	Score	Formula F.
	a	4+1	Count literal
# oconflict = 1	70	J	Oppearances in
	Ь	3	formula F.
	7 b	3+1	8
	C	2+1	8
	76	3	
	d	2	
	70	4	x conflict.
	е	2	$C = b \approx a \approx a \approx b \approx b \approx 1$
	70	6	Cahvavcvabvk) Conflict clauses
		: +1	Congress of the second
		,	

VSIDS example :	_		
1	Meuristic	Related data	
	literal	Score	
	O.	10 -> 5	
# onflict = 256	70	12 >6	
	Ь	18 > 9	
Reset the counter	7.5	6-3	<u>(e)</u>
7.50 07 1 2 0	6	12, 76	
	76	21 -> 5	
	d	6-33	· · · · · · · · · · · · · · · · · · ·
	70	2, →1	X conflict.
	е	16 -> 8	C 162121 201 - 621
	70	6 ->3	Cahvavcvabvk) Conflict clauses
	+ · · · · · · · · · · · · · · · · · · ·	1	Corguici Cinasa
		•	

klhy VSIDS was a breakthrough?
Fre-chaff static heuristics So over all clauses that are not satisfied & compute some function La) for each literal ~ a".
-> VSLDS -> extremely low overhead -> dynamic & local -> conflict driven -> focuseo the search to learn from the local content.

VSIDS (Exponential VSIDS '03) -> dynamically adjust increment: 8' = 8.1/g
S: is score 9 a literal
j: need to be choosen
typically 0.95
→ Rescalc when score for any variables becomes higher than 10100.
Minisat useo Evsids

Learned clause deletion
-> CDCL may learn a lot of clauses. -> Interms of storage so her needs to delete some clauses periodically. -> tow does it effect the soundness of completeness of a CDCL based SAT solver?

clause de let	
-z which	clause to delete?
	- delete long er clauses with higher prob. - never delete unit clause - never delete "active clause", clauses which are participating in unit propagation.
	o delete a clause? At restart The flammed clause = predefine threshold.

clause	deletim
	Ministry geduce (deletos) half of the clauses,
→	Keep the most active, then shortest, then youngest CFIFO) clauses.

Restarts: > SAT Solvers are likely to get stuck in a local Search space. > restart CDC2 with a different variable ordering. -> keep learned clauses across restarts > slowly increase the intervals of restarts Such that tooks becomes a complete solver. -> Usually depends on # of confort clauses or # of decision levels.

Phase Saving & Rapid Restarts
polosity of a variable.
phase saving" - pick the phase of last assignment Land forced, don't change.
Rapid restate :- theoretically shown that it avoids local minima
- practically works well with phase - saving.
,

Pre (in) Processing
-> Eliminate tautologies/ unit clauses/Pure literal elimination.
Subsumption/ Self-subsuming resolution.
-> Blacked clause elimination.
first use l'iteral equivalence.
kisset & Bounded variable addition / Elimination

Blocked clause Elim	ination (BCE)	
£	one clause CEF with l.	all clauses with 7e
foomula	avbve	7 V 7 av 6
		7 e v 7 b v d
Resolution with C Gauto	ological	s of cone.

BCE:

A clause CGF is a blocked clause in Fi if there is literal lGC such that for each C'GF with TlGC; the recolvent (CC) Sez V CC' \ S-123) obtained from resolving CfC on l is a tautology.

F = (avb) n (av 76 v 76) n (7avc)

f = (avb) N (av 7b v 7c) N (7avc)

1st clause \(a \rightarrow \text{Cife3} \rightarrow \text{bvc} \text{(Not tauto logy)} \)

2nd clause \(a \rightarrow \text{Cife2} \rightarrow \text{av7c} \text{(not tautology)} \)

2nd clause \(a \rightarrow \text{Cife3} \rightarrow \text{Crbvcv7c} \text{) tautology} \)

\[
\begin{align*}
& \text{cife3} \rightarrow \text{Cav7av7b} \rightarrow \text{tautology} \\
& \text{cife3} \rightarrow \text{Cav7av7b} \rightarrow \text{tautology} \\
& \text{cife3} \quad \quad \text{cav7av7b} \rightarrow \text{tautology} \\
& \text{cife3} \quad \quad \text{cav7av7b} \rightarrow \text{tautology} \\
& \text{cife3} \quad \quad \text{cav7av7b} \rightarrow \text{cife3} \quad \quad \text{cife3} \\
& \text{ci

F = (avb) n (av 7 b v 7 c) n (7 avc)
- only first clause is not blocked > second clause has two blocked literals Laf 76
> second clause has two blocked literals
Lafic
- third class has a hos blocked literals.
$f = (avb) \wedge (av = bv = c)$
Now, all clauses are blocked, hence all clauses
F = (avb) N (av 7b v 7C) Now, all clauses are blocked, hence all clauses Can be removed

SAT Solving is algorithm, science or cot

what work?

** Correct theoretical

Understanding is need to son

limited experiments to

meanswer preformance.