

=====

Sequence Listing could not be accepted due to errors.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2008; month=1; day=18; hr=11; min=46; sec=51; ms=886;]

=====

Reviewer Comments:

(end of Sequence 12)

agttctatg

3609

1

Please remove the above "1," which appears at the end of the submitted file.

Application No: 10530712 Version No: 2.0

Input Set:

Output Set:

Started: 2008-01-03 16:40:54.413
Finished: 2008-01-03 16:40:55.750
Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 337 ms
Total Warnings: 11
Total Errors: 2
No. of SeqIDs Defined: 12
Actual SeqID Count: 12

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (1)
W 213	Artificial or Unknown found in <213> in SEQ ID (2)
W 213	Artificial or Unknown found in <213> in SEQ ID (3)
W 213	Artificial or Unknown found in <213> in SEQ ID (4)
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
W 213	Artificial or Unknown found in <213> in SEQ ID (6)
W 213	Artificial or Unknown found in <213> in SEQ ID (7)
W 213	Artificial or Unknown found in <213> in SEQ ID (8)
W 213	Artificial or Unknown found in <213> in SEQ ID (9)
W 213	Artificial or Unknown found in <213> in SEQ ID (10)
W 213	Artificial or Unknown found in <213> in SEQ ID (11)
E 355	Empty lines found between the amino acid numbering and the
E 321	No. of Bases conflict, this line has no nucleotides SEQID (12)

SEQUENCE LISTING

<110> ELIOT, MARC
KLONJKOWSKI, BERNARD

<120> RECOMBINANT ADENOVIRAL VECTORS AND APPLICATIONS THEREOF

<130> 270423US0XPCT

<140> 10530712
<141> 2005-11-08

<150> PCT/FR03/02964
<151> 2003-10-08

<150> FR 02/12472
<151> 2002-10-08

<160> 12

<170> PatentIn version 3.3

<210> 1
<211> 32
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 1

ttggcgccatcatcaatatatatacaggac

32

<210> 2
<211> 27
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 2

gctctagacc tgcccaaaca tttaacc

27

<210> 3
<211> 28
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 3

gctctagagg gtgattatta acaacgtc

28

<210> 4
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA

<400> 4
ccgacgtcga ccataaactt tgacattagc cg 32

<210> 5
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA

<400> 5
gctctagagc gaagatctcc aacagcaata cactcttg 38

<210> 6
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA

<400> 6
gataaggatc acgcggcctt aaattctcag 30

<210> 7
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA

<400> 7
gataaggatc aacagaaaaca ctctgttctc tg 32

<210> 8
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA

<400> 8
agctttgtt aaacggcgcg ccgggattt ggtcatgaac 40

<210> 9
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA

<400> 9
ccggcgcgcc gtttaaacaa agctatccgc tcatgaa 37

<210> 10
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA

<400> 10
cgccccactc ttgagtgcgc agcgaga 27

<210> 11
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA

<400> 11
ggcgcgccga gagacaacgc tggacacgg 29

<210> 12
<211> 3609
<212> DNA
<213> Canine adenovirus type 2

<220>
<221> misc_signal
<222> (62)..(99)
<223> Four repeated GGTCA motifs; left ITR sequences

<220>
<221> misc_signal
<222> (197)..(200)
<223> 5' TTTA/G-3' type AII encapsidation signal

<220>

```
<221> misc_signal
<222> (206)..(209)
<223> 5'TTTA/G-3' type AIII encapsidation signal

<220>
<221> misc_signal
<222> (207)..(219)
<223> 5'TTGN8CG-3' type AI encapsidation signal

<220>
<221> misc_signal
<222> (228)..(212)
<223> 5'TTTA/G-3' type AIV encapsidation signal

<220>
<221> misc_signal
<222> (239)..(242)
<223> 5'-TTTA/G-3' type AV encapsidation signal

<220>
<221> misc_signal
<222> (250)..(253)
<223> 5'-TTTA/G-3' type AVI encapsidation signal

<220>
<221> misc_signal
<222> (258)..(261)
<223> 5'-TTTA/G-3' type AVII encapsidation signal

<220>
<221> misc_signal
<222> (272)..(275)
<223> 5'-TTTA/G-3' type AVIII encapsidation signal

<220>
<221> misc_signal
<222> (306)..(309)
<223> 5'-TTTA/G-3' type AIX encapsidation signal

<220>
<221> misc_signal
<222> (341)..(344)
<223> 5'-TTTA/G-3' type AX encapsidation signal

<220>
<221> misc_signal
<222> (377)..(380)
<223> 5'-TTTA/G-3' type AXI encapsidation signal

<220>
<221> misc_signal
<222> (388)..(391)
<223> 5'-TTTA/G-3' type AXII encapsidation signal

<220>
<221> TATA_signal
```

<222> (409)..(415)

<223> TATA box of the ElA promoter

<220>

<221> misc_feature

<222> (439)..(439)

<223> ElA transcription initiation site

<400> 12

catcatcaat	aatatacagg	acaaagaggt	gtggctaaa	tttgggtgtt	gcaaggggcg	60
gggtcatggg	acggtcaggt	tcaggtcacg	ccctggtcag	ggtgttcca	cgggaatgtc	120
cagtgacgtc	aaaggcgtgg	tttacgaca	gggcgagttc	cgcggacttt	tggccggcgc	180
ccccgggtttt	tgggcgttta	ttgatttgc	ggttagcgg	gtggtgcttt	taccactgtt	240
tgcggaagat	ttagttgttt	atggagctgg	tttggtgcc	agttcctcca	cggctaattgt	300
caaagtttat	gtcaatataa	cagaaacact	ctgttctctg	tttacagcac	cccacccgg	360
ggtttttcgc	cacgcctttg	ggttaatttt	atttccctat	acgcggcctt	aaattctcag	420
tgcagacgaa	agaggactac	tcttgagtgc	gcagcgagaa	gagtttctc	ttcgctgtgt	480
ctcatatatatt	ttctgaaaaaa	tgaatataac	tattgtgccg	gcgcgcgcga	atctccatga	540
ttatgtttta	gagctactgg	aagagtggca	gccggactgc	cttgactgtg	agtattctca	600
tggcagcccc	tcgcgccta	ctctgcacga	tcttttgat	gtttagctgg	agacttctca	660
cagccctttt	gtgggcctgt	gtgattcctg	tgccggaggct	gacactgatt	cgagtgcgag	720
cactgaggct	gattctgggt	ttagtccttt	atccactccg	ccggtttcac	ctattccacc	780
gcatcccacc	tctcctgcta	gcatttctga	cgacatgtt	ctgtgcttag	aggaaatgcc	840
cacctttgat	gacgaggacg	aggttcgaag	cgccggcacc	accttgagc	ggtggaaaaa	900
cactttgac	ccccatgtgg	gtcctatttt	tggctgtttg	cgctgtgctt	tttatcaaga	960
gcaggatgat	aatgcacttt	gtgggccttg	ctatctaaag	gcccttgccg	aaggtaagtt	1020
ttaatttaaa	tgtttggca	ggttaaatgt	ttgggcaggt	taaatgtttt	aggtgtgtat	1080
tgatttttaa	ttttgctttt	tagtgcctt	tgctatgcct	gtacgttcag	aacccgcctc	1140
ggctggagct	gaggaggaag	atgatgaagt	tatTTTGTG	tctGCCAAAC	ctggggcag	1200
aaagaggtca	gcagctactc	cctgtgagcc	agatgggtc	accaaacgcc	cttcgtgcc	1260
agagcctgag	caaacagaac	cttggatti	gtcttgaag	ccacgcccga	actaatctcc	1320
ttgagcaca	agcaataaag	taatcttgtt	taacaagttt	gcctacattt	gtggtttac	1380
ggggcggggc	gaggagtata	taatGCCAAA	agccagtgc	tgcttcatta	agcttttaga	1440

ctgagctaag gcggatgtt atggaccctc ttaagatttg tgaaaactac cttaactttt 1500
gagctataat taggggaagt actttgtcgc ctggatttt taggcgggtgg tgtttcctg 1560
ccttggctga tgtggggggc aatatagtg aacaggagga aggcagggtt tggcaaattt 1620
tacctgaaaa ccacgcttt tggggcttt tgcccgagggg ctttactgtt gcttctttt 1680
ctgaaattat tacagcagct cagctggaaa atagaggtag acagttggcc ttttagctt 1740
ttatatacatt ttgctacgc aactggcctt ctgactctgt agtgcctgaa gctgacagac 1800
ttgacctggt ctgtgcgcgc gcatggagca gaatgagata tggagccaga ccgcagggtt 1860
aatcaacgac ctccaagatt ccgtgctcga ggagcagggg tccgcggaaag aggaagagtg 1920
cgaagaagcg cttagcag gggacagcga cgaccatta ttcgggtaga tgacttgcag 1980
ctgcccggacc ccctgtatgt tatgcaagct ttgcaacggg accacacttt agaaatgcc 2040
agagggcagg tagattttag ctggatttag gctgaagaga ggcgggtagg tcccacagac 2100
gagtggtact ttgaggctgt gaagacttac aaagctaagc cgggagatga cttgcaaact 2160
ataatcaaaa actatgcca gatttccttta gaatgtgggg ccgtgtatga aattaattct 2220
aagatttaggg ttacgggggc ttgctacatt attggtaatt gtgcgtgtt taggcctaacc 2280
ctgcctgctg gagaagcaat gtttgggtt ttgaatgtt attttattcc ttctattgg 2340
tttatggaaa ggatagtggtt ttccaatgtt attttgatt gcaggaccac cgcaactgt 2400
gtgtgttgca ttagtggaaag aaacaccctt tttcacaatt gtgtttttc tggccctcac 2460
atgttatgtt tggaccttag ggcgggggcg gaggtgaggg gctgtcactt tgtggggcgc 2520
gtgtgtgcgt tgctgttgcgaa ggggtgtac agtattcgag tcaaaaatag cattttgaa 2580
aagtgtgctt ttgggggtgtt gaccgggtca aaggcttcta ttgcatttgcatgttaag 2640
gattgtacct gctctattat gctgggggtt cagggcacta ttgcccatacg tcagtttatt 2700
gtaactactt ctgctgaggc ccccatgaac ctgcaactgt gcacttgcga gggtaatgg 2760
agtcatgttag ttccattttggg gaatattcac tttgcttctc accgggaagc ttgcgtggcct 2820
acgttttatg caaacacctt ggttcgggtg cgcttgtata tggccggcgc cggggaggtt 2880
tttcacccca agcagtctac tttgtcaatg tgtgttaattt cagccccctcg ggggttgc 2940
cagagaattt attgtttgg tgtgtatgt gctacttgcg ccattatgca actggcggag 3000
gcaggcaatg ctgctgttgc aagactgtgt acttgcgggt tcagacacag cacccttcc 3060
ctgcggggcca cctatgttaac tgacaccagg attgaccggg agctgaactc tcaagacacg 3120

gctgagttct ttagcagtga tgaagataat ttttaggtga gtagatgggc gtggtttggg	3180
ggagtataaa aggggcgcgg tacgtggctg tgtatttaca gccatggacc ctcAACAGAA	3240
ggggcttgtg aacacgtgtt ttgtgactac gcgtattccg tcttgggcag gagcaagaca	3300
aatgtcacc gggtcagatt tagaaggaaa gcccgtgccc tcagatgtgc tggaaagtgg	3360
acgccccgctt gcagccccgc gcatcagaac tttgtatgag gagcagcagc tgaacatgct	3420
tgcggtaat gttctttgg atgagctgaa gatccaggtg gctgccatgc aaaactctgt	3480
gactgctatt cagcgagaag taaatgatct aaagcaacga atcgccccgag attaatgtaa	3540
aaataaaaatt tatttctttt ttgaatgata ataccgtgtc cagcggtgtc tgtctgtaat	3600
agttctatg	3609