Lambda Calculus

For the following forms apply β -reduction and α -substitution to reduce to lowest form. Indicate at each step the rule you are applying.

- 1. $(\lambda x.x)(\lambda x.x)$
 - $(\lambda x.x)(\lambda x.x) \rightarrow (\lambda x.x)(\lambda y.y)$ [α -substitution]
 - $(\lambda x.x)(\lambda y.y) \rightarrow (\lambda y.y)$ [\beta-reduction] [Identity]
- 2. $(\lambda x.x x) (\lambda x. \lambda y.x x)$
 - $(\lambda x. x x) (\lambda x. \lambda y. x x) \rightarrow (\lambda x. x x) (\lambda t. \lambda y. t) [\alpha-substitution]$
 - $(\lambda x. x x) (\lambda t. \lambda y. t t) \rightarrow (\lambda t. \lambda y. t t) (\lambda t. \lambda y. t t) [\beta$ -reduction]
 - $(\lambda t. \lambda y.t t) (\lambda t. \lambda y.t t) \rightarrow \lambda y.(\lambda t. \lambda y.t t) (\lambda t. \lambda y.t t)$
 - No final form available reduction never ends
- 3. $((\lambda x.(x y))(\lambda z.z))$
 - $((\lambda x.(x y))(\lambda z.z)) \rightarrow (\lambda z.z y)$ [β -reduction]
 - $(\lambda z.z) y) \rightarrow y$
- 4. $(\lambda z.z) (\lambda y.y y) (\lambda x.x a)$
 - $(\lambda z.z) (\lambda y.y y) (\lambda x.x a) \rightarrow (\lambda y.y y) (\lambda x.x a) [\beta$ -reduction]
 - $(\lambda y.y y) (\lambda x.x a) \rightarrow (\lambda x.x a) (\lambda x.x a) [\beta$ -reduction]
 - $(\lambda x.x \ a) \ (\lambda x.x \ a) \ \rightarrow \ (\lambda x.x \ a) \ a \ [\beta$ -reduction]
 - $(\lambda x.x \ a) \ a \rightarrow a \ a \ [\beta-reduction]$
- 5. $(\lambda z.z)(\lambda z.zz)(\lambda z.zy)$
 - $(\lambda z.z)(\lambda z.zz)(\lambda z.zy) \rightarrow (\lambda z.z)(\lambda t.tt)(\lambda z.zy)$ [α -substitution]
 - $(\lambda z.z) (\lambda t.t) (\lambda z.z y) \rightarrow (\lambda z.z) (\lambda t.t) (\lambda s.s y) [\alpha-substitution]$
 - $(\lambda z.z) (\lambda t.t t) (\lambda s.s y) \rightarrow (\lambda t.t t) (\lambda s.s y) [\beta$ -reduction]
 - $(\lambda t.t t) (\lambda s.s y) \rightarrow (\lambda s.s y) (\lambda s.s y) [\beta$ -reduction]
 - $(\lambda s.s y) (\lambda s.s y) \rightarrow (\lambda s.s y) y [\beta-reduction]$
 - $(\lambda s.s y) y \rightarrow y y [\beta-reduction]$
- 6. $(\lambda x.\lambda y.x y y) (\lambda a.a) b$

- $(\lambda x.\lambda y.x y y) (\lambda a.a) b \rightarrow (\lambda x.(\lambda y.x y y)) (\lambda a.a) b$
- $(\lambda x.(\lambda y.x y y)) (\lambda a.a) b \rightarrow (\lambda y.(\lambda a.a) y y) b [\beta-reduction]$
- $(\lambda y.(\lambda a.a) y y) b \rightarrow (\lambda y.y y) b [\beta-reduction]$
- $(\lambda y.y y) b \rightarrow b b [\beta-reduction]$

7. $(\lambda x.x x) (\lambda y.y x) z$

- $(\lambda x.x x) (\lambda y.y x) z \rightarrow (\lambda t.t t) (\lambda y.y x) z [\alpha-substitution]$
- $(\lambda t.t)(\lambda y.y x) z \rightarrow (\lambda y.y x)(\lambda y.y x) z [\beta$ -reduction]
- $(\lambda y.y x)(\lambda y.y x) z \rightarrow ((\lambda y.y x) x) z [\beta$ -reduction]
- $((\lambda y.y x) x) z \rightarrow x x z [\beta$ -reduction]

8. $(\lambda x. (\lambda y. (x y)) y) z$

- $(\lambda x. (\lambda y. (x y)) y) z \rightarrow (\lambda x. (\lambda t. (x t)) y) z [\alpha-substitution]$
- $(\lambda x. (\lambda t. (x t)) y) z \rightarrow (\lambda x. (x y)) z [\beta$ -reduction]
- $(\lambda x. (x y)) z \rightarrow z y [\beta$ -reduction]

9. $((\lambda x.x x) (\lambda y.y)) (\lambda y.y)$

- $((\lambda x.x \ x) \ (\lambda y.y)) \ (\lambda y.y) \rightarrow ((\lambda x.x \ x) \ (\lambda y.y)) \ (\lambda t.t) \ [\alpha-substitution]$
- $((\lambda x.x \ x) \ (\lambda y.y)) \ (\lambda t.t) \rightarrow ((\lambda y.y)(\lambda y.y)) \ (\lambda t.t) \ [\beta\text{-reduction}]$
- $((\lambda y.y)(\lambda y.y))(\lambda t.t) \rightarrow (\lambda y.y)(\lambda t.t) [\beta$ -reduction]
- $(\lambda y.y)(\lambda t.t) \rightarrow (\lambda t.t) [\beta-reduction] [Identity]$

10. ((($(\lambda x. \lambda y.(x y))(\lambda y.y)$) w)

- $(((((\lambda x. \lambda y.(x y))(\lambda y.y)) w) \rightarrow (((((\lambda x. \lambda y.(x y))(\lambda t.t)) w) [\alpha-substitution])$
- $\bullet \quad ((((\lambda x.\ \lambda y.(x\ y))(\lambda t.t))\ w)\ \boldsymbol{\rightarrow}\ (((\lambda y.(\ \lambda t.t)\ y)\ w)\ [\beta\text{-reduction}]$
- $(((\lambda y.(\lambda t.t) y) w) \rightarrow (\lambda t.t) w [\beta-reduction]$
- $(\lambda t.t)$ w \rightarrow w $[\beta$ -reduction] [Identity]