Iterativni izračun Nashevega ravnovesja v matričnih igrah

Eva Babnik

Mentor: prof. dr. Sergio Cabello Justo

Fakulteta za matematiko in fiziko

2. junij 2022

Cilji naloge in uporabljeno programsko okolje

- Implementacija dveh iterativnih metod, ki vrneta vrednost igre in optimalno strategijo v matričnih igrah z ničelno vsoto za dva igralca.
- Analiza konvergence implementiranih metod.
- Preprosta aplikacija, ki iterativno izračuna rešitev igre.
- Python, programski jezik R.

Problem

- Matrika izplačil $(a_{i,j}), i = 1, \dots, m, j = 1, \dots, n.$
- 1.igralec izbere eno izmed m vrstic z verjetnostjo x_i , 2. igralec pa enega izmed n stolpcev z verjetnostjo y_i .
- Veljati mora:

$$x_i \ge 0, \tag{1}$$

$$\sum x_i = 1, \tag{2}$$

$$y_i \geq 0, \tag{3}$$

$$\sum y_i = 1. \tag{4}$$

Vrednost igre je definirana kot

$$v = \min_{j} \sum_{i} a_{ij} x_i = \max_{i} \sum_{j} a_{ij} y_j,$$

pri čemer (x, y), ki rešita zgornjo enakost predstavljata rešitev igre.

Definirajmo:

$$A_i = [a_{1i}, \cdots, a_{mi}, \underbrace{0, \cdots, 0}_{n-\text{komponent}}, -1],$$

$$A_{0i} = [\underbrace{1, \cdots, 1}_{m-\text{komponent}}, \underbrace{0, \cdots, 0}_{n-\text{komponent}}, 0]$$

$$za i = 1, \cdots, n$$

in

$$A_i = [\underbrace{0, \cdots, 0}_{m-\text{komponent}}, -a_{i-n,1}, \cdots, -a_{i-n,n}, 1],$$

$$A_{0i} = [\underbrace{0, \cdots, 0}_{m-\text{komponent}}, \underbrace{1, \cdots, 1}_{n-\text{komponent}}, 0]$$

$$za \ i = n+1, \cdots, m+n.$$

Definirajmo še rešitev igre $z^* = [x^*, y^*, v^*]$, ki mora poleg prej naštetih pogojev, ustrezati še:

$$A_i \cdot z^* \ge 0 \text{ za } i = 1, \cdots, m + n. \tag{5}$$

- ullet Izberemo poljuben začetni vektor $z^{(1)}$, ki zadošča 1, 2, 3, 4 in 5 .
- Predpostavimo, da smo prišli na k-ti korak in dobili vektor $z^{(k)}$, ki ustreza 1, 2, 3 in 4. Če velja tudi 5, je $z^{(k)}$ rešitev igre in smo zaključili. Sicer pa:
 - Najdemo tak j_k , da velja $A_{i_k} \cdot z^{(k)} \leq A_i \cdot z^{(k)} \ \forall \ i = 1, \dots, m+n$.

•
$$\bar{z}^{(k+1)} = z^{(k)} + \alpha B_{ik} + \beta B_{0ik}$$
, kjer je

$$\alpha = -z^{(k)} \cdot B_{j_k} [1 - \cos^2 \theta_{j_k}]^{-1},$$

$$\beta = b_{0j_k} - [z^{(k)} + \alpha B_{j_k}] \cdot B_{0j_k},$$

$$b_{0j_k} = \frac{1}{(A_{0j_k} \cdot A_{0j_k})^{1/2}},$$

$$B_{j_k} = \frac{A_{j_k}}{(A_{j_k} \cdot A_{j_k})^{1/2}},$$

$$B_{0j_k} = \frac{A_{0j_k}}{(A_{0j_k} \cdot A_{0j_k})^{1/2}}$$

in

$$\cos \theta_{j_k} = \frac{A_{0j_k} \cdot A_{j_k}}{(A_{0j_k} \cdot A_{0j_k})^{1/2} (A_{j_k} - A_{j_k})^{1/2}}.$$

- Predpostavimo, da velja $j_k < (n+1)$.
- Če $A_i \cdot z^* \ge 0 \ \forall i = 1 : (m+n)$:
- Sicer:
 - Vse negativne x-komponente vektorja \bar{z}^{k+1} nastavimo na 0.
 - Izračunamo vsote $\bar{x}_i^{(k+1)} + \frac{\sum_{i=1}^r \bar{x}_i^{(k+1)}}{m-r}$ za $i=r+1,\cdots,m$, kjer so $\bar{x}_1^{(k+1)},\cdots,\bar{x}_r^{(k+1)},$ r< m negativne komponente vektorja $\bar{z}^{(k+1)}$.
 - Za vsak tak i, za katerega je vsota negativna: $x_i^{(k+1)} = 0$.
 - Če nobena vsota ni negativna, lahko tvorimo preostanek vektorja $z^{(k+1)}$.
 - Če so nekatere vsote za $i=r+1,\cdots,r+s$ negativne, ponovno izračunamo vsote $\bar{x}_i^{(k+1)}+\frac{\sum_{j=1}^{r+s}\bar{x}_i^{(k+1)}}{m-(r+s)}$ za $i=r+s,\cdots,m$ in postopek ponavljamo, dokler nobena od vsot ni nenegativna.

- Predpostavimo, da za $i=1,\cdots,t$ velja, da je $\bar{x}_i^{(k+1)} \leq 0$ ali pa, da je $\bar{x}_i^{(k+1)}$ tak, da je zanj katera od zgoraj definiranih vsot negativna.
- Tvorimo preostanek vektorja $z^{(k+1)}$:

$$x_1^{(k+1)} = \dots = x_t^{(k+1)} = 0,$$

$$x_i^{(k+1)} = \bar{x}^{(k+1)} + \frac{\sum_{i=1}^t \bar{x}_i^{(k+1)}}{m-t} \text{ za } i = t+1, \dots, m,$$

$$y_j^{(k+1)} = \bar{y}_j^{(k+1)} \text{ za } j = 1, \dots, n,$$

$$v^{(k+1)} = \bar{v}^{(k+1)}.$$

- 1. igralec igra poljubno čisto strategijo x_{i_1} .
- Definiramo vektor akumulativnih vsot $A^{(1)} = [a_1^{(1)}, \cdots, a_n^{(1)}]$ $(A^{(1)} = i_1$ -ta vrstica A).
- 2. igralec igra čisto strategijo y_{j_1} (za j_1 velja: $a_{j_1}^{(1)} = \min\{a_1^{(1)}, \cdots, a_n^{(1)}\}$).
- Definiramo vektor akumulativnih vsot $B^{(1)} = [b_1^{(1)}, \dots, b_m^{(1)}],$ $(B^{(1)} = j$ -ti stolpec matrike).
- 1. igralec igra čisto strategijo x_{i_2} (za i_2 velja: $b_{i_2}^{(1)} = \max\{b_1^{(1)}, \cdots, b_m^{(1)}\}$).
- 1. igralec vektorju $A^{(1)}$ prišteje i_2 to vrstico matrike, zatem pa 2. igralec igra na enak način kot prej.
- Postopek ponavljamo.

Zaporedji
$$\frac{\sum_{n=1}^k x_{i_n}}{k}$$
, $\frac{\sum_{n=1}^k y_{i_n}}{k}$ ali konvergirata k optimalni strategiji x^*, y^* . $v_1 = \max_{k=1,2,\cdots} \frac{\min_{i \in (1,\cdots,n)} a_i^{(k)}}{k}$, $v_2 = \min_{k=1,2,\cdots} \frac{\max_{i \in (1,\cdots,m)} b_i^{(k)}}{k}$.

Analiza konvergence, časovna zahtevnost in rezultati

- Časovna zahtevnost prvega algoritma: $\mathcal{O}(k(m^2 \vee n^2))$.
- Časovna zahtevnost drugega algoritma: $\mathcal{O}(k)$.
- Meritve opravljene s prenosnim računalnikom s procesorjem 2.40GHz Intel(R) Core(TM) i5-6300U CPU in 8GB spomina.
- Število ponovitev poskusov: 10.

Analiza konvergence in časovne zahtevnosti za prvo igro

$$\begin{bmatrix} 4 & 3 \\ 2 & 4 \\ 5 & 2 \end{bmatrix}$$

$$v^* = \frac{10}{3},$$

 $x^* = \left[\frac{2}{3}, \frac{1}{3}, 0\right], y^* = \left[\frac{1}{3}, \frac{2}{3}\right].$

Vrednost prve igre v odvisnosti od števila iteracij

Napaka algoritmov $||z^* - z^k||_{\infty}$ za prvo matrično igro

Napaka v odvisnosti od korakov iteracije

Analiza konvergence in časovne zahtevnosti za prvo igro

	1. metoda				2. metoda			
	čas	V	х	у	čas	V	х	у
k = 1	0.0020	3	0.33333 0.33333 0.33333	0	0.0009	1.5	0.5 0.5 0	0 0.5
k = 2	0.0020	3.49020	0.33333 0.33333 0.33333	0.5 0.5	0.0014	2	0.66667 0.33333 0	0.33333 0.33333
k = 10	0.0155	3.31150	0.34199 0.45804 0.19997	0.34425 0.65575	0.0020	3	0.45454 0.45454 0	0.27273 0.63636
k = 50	0.0156	3.33100	0.47646 0.40436 0.11918	0.33100 0.66900	0.0030	3.25490	0.64706 0.33333 0.01961	0.35294 0.62746
k = 100	0.0369	3.33147	0.51447 0.39017 0.09536	0.33146 0.66854	0.0049	3.28713	0.66337 0.32673 0.00990	0.33663 0.65347
k = 500	0.0953	3.33301	0.64108 0.34289 0.01603	0.33302 0.66670	0.0156	3.32335	0.66467 0.33333 0.00200	0.33134 0.66667
k = 1000	0.1207	3.33330	0.66391 0.33436 0.00173	0.33330 0.66670	0.0312	3.33290	0.66633 0.33257 0.00010	0.33367 0.66533
k = 15000	2.4360	3.33333	0.66667 0.33333 0	0.33333 0.66667	0.4397	3.33304	0.66656 0.33338 0.00007	0.33338 0.66656

Tabela: Primerjava rezultatov za 1 igro → (≥) (≥) (≥) (≥)

Analiza konvergence in časovne zahtevnosti za drugo igro

$$\begin{bmatrix} 0 & -1 & -2 & 0 & 0 & 2 & 1 \\ 1 & 0 & 0 & 4 & 0 & 0 & -1 \\ 2 & 0 & 0 & -1 & 1 & 0 & -1 \\ 0 & -4 & 1 & 0 & 0 & -1 & 1 \\ 0 & 0 & -1 & 0 & 0 & -3 & 1 \\ -2 & 0 & 0 & 1 & 3 & 0 & -1 \\ -1 & 1 & 1 & -1 & -1 & 1 & 0 \end{bmatrix}$$

$$v^* = 0,$$

 $x^* = [1/9, 1/9, 15/90, 5/90, 15/90, 5/90, 1/3],$
 $y^* = [1/9, 1/9, 15/90, 5/90, 15/90, 5/90, 1/3].$

Vrednost druge igre v odvisnosti od števila iteracij

Napaka algoritmov $||z^* - z^k||_{\infty}$ za prvo matrično igro

Napaka v odvisnosti od korakov iteracije

Analiza konvergence in časovne zahtevnosti za drugo igro

	1. metoda				2. metoda			
	čas	v	×	v	čas v x y			
$\overline{}$		-	0.01282	0.14286		_	0	0.5
k = 1			0.01262	0.14286		-1	0	0.5
		1.84615	0.16667	0.14286	0.00165		0.5	0
	0.00365		0.10007	0.14286			0.5	0
			0.16667	0.14286			0	0
			0.16667	0.14286			0	0
1			0.32051	0.14286			0.5	0
			0.21520	0.14286	_	_	0.5	0 33333
k = 2	0.00489	0.73931	0.21320	0.14286	0.00270	-0.66667	0.33333	0.55555
			l n	0.14286			0.33333	0
			0.20238	0.14286			0.33333	0.33333
			0.36904	0.14286			0	0
1			0	0.14286			0	l o
1			0.21337	0.14286			0.33333	0
-			0.06687	0.14286			0.18182	_
1			0.22339	0.14286	0.00575	-0.18182	0.27273	0.09091
l			0.24321	0.14286			0.09091	0.27273
k = 10	0.00319	0.53636	0	0.14286			0.09091	0.09091
	0.00319		0.21376	0.14286			0.27273	0.09091
1			0	0.14286			0	0
l			0.25274	0.14286			0.09091	0.36364
k = 50			0.11101	0.10855	0.00418		0.11765	0.11765
			0.10108	0.14050			0.09804	0.13725
	0.01561	0.02724	0.16020	0.14894			0.27451	0.17647
			0.06888	0.05297		-0.03922	0.07843	0.05882
			0.16563	0.16978			0.07843	0.07843
			0.04690	0.11520			0.03922	0.07843
l			0.34627	0.26410			0.31373	0.33333
	0.03798	0.00560	0.11286	0.11161	0.00557	-0.01980	0.10891	0.12871
1			0.11280	0.13054			0.09901	0.11881
l			0.16732	0.14982			0.15842	0.18812
k = 100			0.05262	0.05716			0.03960	0.04951
1			0.16899	0.16783			0.17822	0.15842
			0.05386	0.07269			0.08911	0.03960
			0.33153	0.31035			0.32673	0.30693
k = 500	0.18201	0.00092	0.111015	0.11136	0.03899	-0.00399	0.09980	0.12575
			0.111365	0.11839			0.14371	0.15369
			0.166570	0.16141			0.16567	0.13573
			0.055421	0.05547			0.05589	0.04591
			0.166630	0.16639			0.16567	0.14970
			0.055414	0.05588			0.05190	0.06387
			0.333585	0.33111			0.31737	0.32335
	0.30498	0.00021	0.111174	0.11109	0.04474	-0.00199	0.11289	0.11588
k = 1000			0.111040	0.11311			0.11089	0.11189
			0.166691	0.16518			0.17183	0.17083
			0.055660	0.05562			0.04695	0.04595
			0.166655	0.16665			0.16484	0.17383
			0.055518	0.05559			0.05594	0.04895
			0.333259	0.33277			0.33666	0.33167
k = 15000	4.83584	3.1e-17	0.11111	0.11111	0.58264	-0.00013	0.11312	0.10752
			0.11111	0.11111			0.11112	0.11179
			0.16667	0.16667			0.16732	0.16739
			0.05556	0.05556			0.05466	0.05786
			0.16667	0.16667			0.16299	0.16545
			0.05556	0.05556			0.05520	0.05446