EXPERIMENT NO:-05

Komal Deolekar	Roll: No :- 14
Shreyash Dhekane	Roll: No :- 16
Tejas Gunjal	Roll: No :- 18

AIM: Simulation of Distance Measurement Using Laser Sensor in TinkerCad

Theory:

Tinkercad is an **online simulation tool** that allows users to design, simulate, and test electronic circuits. It provides a virtual environment where components like **Arduino**, **sensors**, **LCDs**, **LEDs**, **motors**, **and more** can be connected and programmed without needing physical hardware.

Tinkercad is widely used for:

- Learning and testing **Arduino projects**.
- Simulating sensor-based applications.
- Debugging circuits before implementing them in real life.

Since Tinkercad does not have a built-in laser distance sensor model like VL53L0X or LIDAR, we simulate it using an ultrasonic sensor (HC-SR04) as an alternative for distance measurement.

Distance measurement is essential in automation, robotics, and industrial applications. Laser distance sensors work based on the **Time of Flight (ToF) principle**, where a laser pulse is emitted, and the time taken for its return determines the distance.

Formula Used:

$$Distance = \frac{Speed \ of \ Light \times Time \ Taken}{2}$$

where:

Speed of light (c) = 3×10^8 m/s

Time Taken is the round-trip time of the laser beam.

Objectives of Simulation

- To simulate the working of a distance sensor using Tinkercad.
- To verify distance measurement through Arduino and serial monitor output.
- To debug and test code before real-world implementation.

Steps:-

• Step 1: Open Tinkercad and Create a New Circuit

- 1. Go to Tinkercad (https://www.tinkercad.com/).
- 2. Click on "Circuits" from the left panel.
- 3. Click "Create New Circuit".

• Step 2: Add Components

Search and drag the following components onto the workspace:

- 1. Arduino Uno
- 2. 16x2 LCD Display (without I2C)
- 3. HC-SR04 Ultrasonic Sensor
- 4. $10K\Omega$ Potentiometer (for LCD contrast)
- 5. Resistors (220 Ω or 1K Ω for LCD backlight)
- 6. Jumper Wires

• Step 3: Wire the Components

- Wiring the LCD to Arduino

LCD Pin	Connect To
GND	Arduino GND
VCC	Arduino 5V
V0 (Contrast)	Middle Pin of Potentiometer
RS	Arduino Pin 7
RW	Arduino GND
Е	Arduino Pin 8
D4	Arduino Pin 6
D5	Arduino Pin 5

D6	Arduino Pin 4
D7	Arduino Pin 3
A (Backlight +)	5V (via 220Ω resistor)
K (Backlight -)	GND

- Wiring the Ultrasonic Sensor

HC-SR04 Pin	Connect To
VCC	Arduino 5V
GND	Arduino GND
Trig	Arduino Pin 9
Echo	Arduino Pin 10

- Wiring the Potentiometer (For LCD Contrast)

Potentiometer Pin	Connect To
Left Pin	Arduino 5V
Middle Pin	LCD V0
Right Pin	Arduino GND

• Step 4: Write the Arduino Code

- 1. Click on "Code" and select "Text" mode.
- 2. Paste this code in the Arduino editor:

Code:-

```
#include <LiquidCrystal.h>

// Initialize LCD (RS, E, D4, D5, D6, D7)
LiquidCrystal lcd(7, 8, 6, 5, 4, 3);

// Ultrasonic sensor pins
const int trigPin = 9;
const int echoPin = 10;
```

```
void setup() {
  lcd.begin(16, 2); // Initialize LCD
  pinMode(trigPin, OUTPUT);
  pinMode(echoPin, INPUT);
  Serial.begin(9600); // Start serial monitor
void loop() {
  // Send a pulse
  digitalWrite(trigPin, LOW);
  delayMicroseconds(2);
  digitalWrite(trigPin, HIGH);
  delayMicroseconds(10);
  digitalWrite(trigPin, LOW);
  // Read the echo
  long duration = pulseIn(echoPin, HIGH);
  int distance = duration * 0.034/2; // Convert time to distance (cm)
  // Display on LCD
  lcd.clear();
  lcd.setCursor(0, 0);
  lcd.print("Distance:");
  lcd.setCursor(0, 1);
  lcd.print(distance);
  lcd.print(" cm");
  Serial.print("Distance: ");
  Serial.print(distance);
  Serial.println(" cm");
  delay(500);
```

• Step 5: Start the Simulation

- 1. Click the "Start Simulation" button.
- 2. Observe the LCD displaying the measured distance in centimeters.
- 3. If the LCD is blank, adjust the potentiometer to change the contrast.
- 4. Open Serial Monitor (Click on "Code" → "Monitor") to check values.

Conclusion:

The simulation successfully demonstrated distance measurement using an ultrasonic sensor in Tinkercad. The measured distance was accurately displayed on a 16x2 LCD screen, showing how ultrasonic sensors can be used for automation, robotics, and obstacle detection applications.

This experiment helped in understanding:

- How to interface an ultrasonic sensor with Arduino.
- How to display sensor data on an LCD.
- How to simulate and test circuits in Tinkercad before real-world implementatio