Bang for Your Buck

Parameter-Efficient Fine Tuning on a Budget

Robert Mueller Taylor Hamilton

Agenda

- 1 Introduction
- **2** Experimental Details
- 3 Results & Discussion
- **4** Future Work

Background

Decoder-only LLMs are

- Fine-tunable: they can be adapted to a huge variety of NLU tasks
- Getting big: 100s of billions of parameters

Parameter-Efficient Fine Tuning can significantly reduce tuning time, but it can be time- and cost-prohibitive to experiment with different PEFT methods and hyperparameters

Question

What can PEFT accomplish with \$1?

Our task

Explore the ability of different PEFT methods, with different hyperparameters, to fine tune an LLM for an NLU classification task on a \$1 budget

Our hypothesis

PEFT will demonstrate a modest effect – just a bit better than a baseline of guessing the most common class

One Dollar of Tuning

Specs

- 8 vcpu, 30GB RAM (n1-standard-8)
- NVidia v100 GPU
- 250GB Balanced Persistent Disk

Assumptions

- Google Cloud
- On-demand Pricing
- us-central1 region

~ 20 minutes

Fine Tuning Task: SuperGLUE boolq

Structure

Passage yes/no Question Answer (Label)

Example

Passage: "I like all vegetables."

Question: "Do I like carrots"

Label: "Yes"

Stats

12697 records 74-13-13 train-val-test 61% 'Yes'

Convert to Prompt

Using information in the passage, answer the following question: <question>? ### Passage: <passage> ### Answer:

Baselines

Base Model

Open Pre-Trained Transformers (OPT) From Facebook **Num Parameters**

125 million 350 million 2.7 billion

Un-tuned Accuracy

.06%

All-yes Accuracy

61%

\$1 Fine-Tuned Accuracy

0%

PEFT Methods

Lora: Low Rank Adaptation of Large Language Models

inject trainable rank-decomposition matrices into the transformer architecture

Prompt Tuning

Prepend trainable prompts

P-Tuning

Augment word-based prompts with trainable prompts

mage credits

<u>LoRA paper</u>

D Tunin

P-Tuning paper

Raw Results

	Models		Accuracy	Balanced Accuracy	Training Steps	Tuning Cost
	Baselines	opt-125m	0.06%	0.05%	-	-
		all-yes-base	61.28%	50.00%	-	-
		full-fine-tune	0.00%	0.00%	2300	\$0.97
	OPT 125M Models	lora_2_4_125m	52.29%	42.69%	800	\$0.93
		lora_4_8_125m	56.33%	48.17%	800	\$0.93
		lora_8_16_125m	60.61%	49.57%	800	\$0.92
		prompt_2_125m	0.73%	0.60%	900	\$0.98
		prompt_48_125m	42.20%	38.68%	850	\$0.95
		prompt_96_125m	25.02%	22.07%	850	\$0.96
		prompt_192_125m	59.57%	49.16%	850	\$1.05
		p-tune_48_64_125m	0.12%	0.13%	850	\$0.93
		p-tune_2_128_125m	0.37%	0.30%	800	\$0.87
		p-tune_10_128_125m	0.61%	0.56%	800	\$0.86
	OPT 350M Models	lora_4_8_350m	29.66%	24.70%	800	\$0.91
		lora_8_16_350m	53.76%	45.17%	800	\$0.91
		lora_16_32_350m	44.95%	39.53%	800	\$0.91

Why Doesn't LoRA do better on the 350m model?

Our take:

- It's not undertraining ⇒
- It's trying harder to actually learn something It's trying harder to actually learn something

Models	Accuracy	Balanced Accuracy	'Yes' Predictions	'No' Predictions	Other Predictions
lora_4_8_125m	56.33%	48.17%	93%	4%	3%
lora_4_8_350m	29.66%	24.70%	35%	17%	48%

So how good is \$1 of PEFT? (on boolq on opt-125m)

Not good. Honestly, pretty bad.

Where can we go from here?

Observation	Opportunity	
We weren't undertraining	Newer, bigger models	
Some highly questionable results (like full fine tuning's 0% accuracy)	Average multiple training runs	
It's hard even to overcome the hurdle of determining the classes	Smarter initial weights	

Thank you

