MA4546: Introduction to Stochastic Process

Xiang Zhou

Department of Mathematics

Chapter 3 Poisson Process

Everything about PP is shown in this figure.

Outline of this chapter *

- Exponential random variable(review)
- Poisson random variable(review)
- Poisson process
- Compound Poisson process

^{*}Section 3.4 and 3.5 in textbook are not covered in class. All other materials in textbook for this chapter are required

Exponential random variable: $Exp(\lambda)$

A r.v. $X \ge 0$ with parameter $\lambda > 0$ with the following pdf $p(x) = ?, x \ge 0$.

The cdf is

$$F(x)=\Pr(X\leq x)=?,x\geq 0.$$

The expectation and variance is

$$E(X) = ?, var(X) = ?$$

Exponential random variable: $Exp(\lambda)$

Definition: A r.v. $X \ge 0$ with parameter $\lambda > 0$ with the following pdf

$$p(x) = \lambda e^{-\lambda x}, x \ge 0.$$

The cdf is

$$F(x) = \Pr(X \le x) = 1 - e^{-\lambda x}, x \ge 0.$$

The expectation and variance is

$$E(X) = \frac{1}{\lambda}, \quad var(X) = \frac{1}{\lambda^2}$$

Exponential random variable: $Exp(\lambda)$

Definition: A r.v. $X \ge 0$ with parameter $\lambda > 0$ with the following pdf

$$p(x) = \lambda e^{-\lambda x}, x \ge 0.$$

The cdf is

$$F(x) = \Pr(X \le x) = 1 - e^{-\lambda x}, x \ge 0.$$

The expectation and variance is

$$E(X) = \frac{1}{\lambda}, \quad var(X) = \frac{1}{\lambda^2}$$

Example 3.1 (page 60): the life time of machine is $Exp(\lambda)$

Characteristic function and moment-generating function

For a scalar random variable X, the **characteristic function** is defined as the expected value of $\mathrm{E}[e^{\mathbf{i}tX}]$, where $\mathbf{i}=\sqrt{-1}$ is the imaginary unit, and $t\in\mathbb{R}$ is the argument of the characteristic function. If $X\sim Exp(\lambda)$, then

$$\varphi(t) := \mathbb{E}[e^{\mathbf{i}tX}] = (1 - \mathbf{i}t\lambda^{-1})^{-1}, \quad t \in \mathbb{R}.$$

Characteristic function and moment-generating function

For a scalar random variable X, the **characteristic function** is defined as the expected value of $\mathrm{E}[e^{\mathbf{i}tX}]$, where $\mathbf{i}=\sqrt{-1}$ is the imaginary unit, and $t\in\mathbb{R}$ is the argument of the characteristic function. If $X\sim Exp(\lambda)$, then

$$\varphi(t) := \mathbb{E}[e^{\mathbf{i}tX}] = (1 - \mathbf{i}t\lambda^{-1})^{-1}, \quad t \in \mathbb{R}.$$

The **moment-generating function** of $X \sim Exp(\lambda)$

$$M(\theta) := \mathbb{E}[e^{\theta X}] = (1 - \theta \lambda^{-1})^{-1}, \quad -\infty < \theta < \lambda.$$

Memoryless Property (Thm 3.1)

Theorem

Let X be a continuous random variable taking values in $[0,+\infty)$. It has the memoryless property, i.e.,

$$Pr(X > t + s | X > s) = Pr(X > t), \quad \forall s, t > 0,$$

if and only if it is an $Exp(\lambda)$ for some $\lambda > 0$.

Proof: page 61 (required).

Poisson random variable $\sim Poi(\lambda)$

A r.v. $X \in S = 0, 1, 2, 3, \cdots$ with parameter $\lambda > 0$ with the following pdf *

$$p(x) = ?, x \ge 0.$$

The cdf is

$$F(x) = \Pr(X \le x) = ?, x \ge 0.$$

The expectation and variance is

$$E(X) = ?$$
, $var(X) = ?$

^{*}it is called "pmf" (probability mass function) in textbook for discrete random variable ಷಾಗಿಸಿ

Poisson random variable $\sim Poi(\lambda)$

Definition: A r.v. $X \in S = \{0, 1, 2, 3, \dots\}$ with parameter $\lambda > 0$ with the pdf

$$p_k = \Pr(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}.$$

The expectation and variance is

$$E(X) = \lambda$$
, $var(X) = \lambda$

Poisson random variable $\sim Poi(\lambda)$

Definition: A r.v. $X \in S = \{0, 1, 2, 3, \dots\}$ with parameter $\lambda > 0$ with the pdf

$$p_k = \Pr(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}.$$

The expectation and variance is

$$E(X) = \lambda$$
, $var(X) = \lambda$

Example 3.4 (page 69): Poisson distribution as the small probability limit of binomial distribution.

Moment-generating function

The moment-generating function of $X \sim Poi(\lambda)$ is

$$M(\theta) = \mathbb{E}[e^{\theta X}] = \exp(\lambda(e^{\theta} - 1)), \quad \theta \in \mathbb{R}$$

Proof.

$$M(\theta) = \sum_{k=0}^{\infty} e^{\theta k} e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(e^{\theta} \lambda)^k}{k!}$$
$$= e^{-\lambda} \exp(e^{\theta} \lambda)$$
$$= \exp(e^{\theta} \lambda - \lambda).$$

The characteristic function is

$$\varphi(t) := \mathbb{E}[e^{\mathbf{i}tX}] = \exp\left(\lambda(e^{\mathbf{i}t} - 1)\right)$$

Exercise

(optional) Suppose that $(Y_j)_{1\leq j\leq J}$ are independent Poisson r.v.s with $Y_j\sim Poi(\lambda_j)$ and $\left\{a_j\right\}$ are J real numbers. Let $X:=\sum_{j=1}^J a_j Y_j$ be the weighted average of y_j . Show that for any $\theta\in\mathbb{R}$, the Laplace transform of X (i.e., the moment-generating function) is given by

$$\log E(e^{\theta X}) = \sum_{j=1}^{J} (e^{\theta a_j} - 1) \lambda_j$$

Exercise

(optional) Suppose that $(Y_j)_{1\leq j\leq J}$ are independent Poisson r.v.s with $Y_j\sim Poi(\lambda_j)$ and $\left\{a_j\right\}$ are J real numbers. Let $X:=\sum_{j=1}^J a_jY_j$ be the weighted average of y_j . Show that for any $\theta\in\mathbb{R}$, the Laplace transform of X (i.e., the moment-generating function) is given by

$$\log E(e^{\theta X}) = \sum_{j=1}^{J} (e^{\theta a_j} - 1) \lambda_j$$

Proof:

$$\begin{split} \mathbf{E}\left(e^{\theta X}\right) &= \mathbf{E}\left(e^{\theta \sum_{j=1}^{J} y_{j} a_{j}}\right) = \mathbf{E}\left(\Pi_{j=1}^{J} e^{\theta y_{j} a_{j}}\right) = \Pi_{j=1}^{J} \mathbf{E}\left(e^{\theta y_{j} a_{j}}\right) \\ \log\left(\mathbf{E}\left(e^{\theta X}\right)\right) &= \sum_{j=1}^{J} \log\left(\mathbf{E}\left(e^{\theta y_{j} a_{j}}\right)\right) = \sum_{j=1}^{J} \log\left(\sum_{k=0}^{\infty} e^{-\lambda_{j}} \frac{\lambda_{j}^{k}}{k!} \cdot e^{\theta k a_{j}}\right) \\ &= \sum_{j=1}^{J} \log\left(e^{-\lambda_{j}} \exp\left(\lambda_{j} e^{\theta a_{j}}\right)\right) = \sum_{j=1}^{J} \left(-\lambda_{j} + \lambda_{j} e^{\theta a_{j}}\right) \end{split}$$

Poisson Process

 The transitions from state to state are triggered by a stream of events that occur at the sequence of times

$$0 = S_0 < S_1 < S_2 < \dots < S_k < \dots$$

examples: arrivals to a queuing system; failures in a manufacturing system; biological stimuli in a neural system,

 The transitions from state to state are triggered by a stream of events that occur at the sequence of times

$$0 = S_0 < S_1 < S_2 < \dots < S_k < \dots$$

examples: arrivals to a queuing system; failures in a manufacturing system; biological stimuli in a neural system,

The successive inter-event time

$$T_k := S_k - S_{k-1}$$

is a random variable in $[0, +\infty)$

 The transitions from state to state are triggered by a stream of events that occur at the sequence of times

$$0 = S_0 < S_1 < S_2 < \dots < S_k < \dots$$

examples: arrivals to a queuing system; failures in a manufacturing system; biological stimuli in a neural system,

The successive inter-event time

$$T_k := S_k - S_{k-1}$$

is a random variable in $[0, +\infty)$

• The simplest model : Poisson process N(t) (definition)

 The transitions from state to state are triggered by a stream of events that occur at the sequence of times

$$0 = S_0 < S_1 < S_2 < \dots < S_k < \dots$$

examples: arrivals to a queuing system; failures in a manufacturing system; biological stimuli in a neural system,

The successive inter-event time

$$T_k := S_k - S_{k-1}$$

is a random variable in $[0, +\infty)$

- The simplest model : Poisson process N(t) (definition)
 - Assume the inter-event time $\{T_k\}$ is iid $Exp(\lambda)$.

 The transitions from state to state are triggered by a stream of events that occur at the sequence of times

$$0 = S_0 < S_1 < S_2 < \dots < S_k < \dots$$

examples: arrivals to a queuing system; failures in a manufacturing system; biological stimuli in a neural system,

The successive inter-event time

$$T_k := S_k - S_{k-1}$$

is a random variable in $[0, +\infty)$

- The simplest model : Poisson process N(t) (**definition**)
 - Assume the inter-event time $\{T_k\}$ is iid $Exp(\lambda)$.
 - ▶ The state space is \mathbb{Z} . The change of state is just to add "+1" to the old value: that is

$$N(S_k) := N(S_k -)^* + 1.$$

 The transitions from state to state are triggered by a stream of events that occur at the sequence of times

$$0 = S_0 < S_1 < S_2 < \dots < S_k < \dots$$

examples: arrivals to a queuing system; failures in a manufacturing system; biological stimuli in a neural system,

• The successive inter-event time

$$T_k := S_k - S_{k-1}$$

is a random variable in $[0, +\infty)$

- The simplest model : Poisson process N(t) (definition)
 - Assume the inter-event time $\{T_k\}$ is iid $Exp(\lambda)$.
 - The state space is Z. The change of state is just to add "+1" to the old value: that is

$$N(S_k) := N(S_k -)^* + 1.$$

▶ N(t) is thus the number of events arrived up to time t, i.e., within (0, t]. by assuming $N_0 = 0$.

Equivalently, the Poisson process $\{N(t): t \in \mathbb{R}_+\}$ is defined as

$$N(t) = \begin{cases} 0 & \text{if } 0 \le t < S_1 \\ 1 & \text{if } S_1 \le t < S_2 \\ 2 & \text{if } S_2 \le t < S_3 \\ \vdots \\ k & \text{if } S_k \le t < S_{k+1} \\ \vdots \end{cases}$$

So, we have that

$$N(t) = \sum_{k=0}^{\infty} k \cdot 1_{[S_k, S_{k+1})}(t) = \sum_{k=1}^{\infty} 1_{[S_k, +\infty)}(t)$$

and $\{N(t) \ge k\} \iff \{S_k \le t\}.$

A model of pure birth process

Think of Poisson process as a special *counting process*: count "the number of customers to a queuing system up to time t", or a *pure birth process* (no death): the species gives a descendant with a rate λ .

 T_n is the time span between arrivals of two successive customers.

CityU

A model of pure birth process

Think of Poisson process as a special *counting process*: count "the number of customers to a queuing system up to time t", or a *pure birth process* (no death): the species gives a descendant with a rate λ .

 T_n is the time span between arrivals of two successive customers.

- iid assumption of T_n is reasonable *.
- Why T_n is $Exp(\lambda)$? A "microscopic" model (short time asymptotics):

CityU

A model of pure birth process

Think of Poisson process as a special *counting process*: count "the number of customers to a queuing system up to time t", or a *pure birth process* (no death): the species gives a descendant with a rate λ .

 T_n is the time span between arrivals of two successive customers.

- iid assumption of T_n is reasonable *.
- Why T_n is $Exp(\lambda)$? A "microscopic" model (short time asymptotics):

Let h be a small time step. Assume during (t,t+h], there is a probability " λh " that one new customer will arrive, and " $1-\lambda h$ " probability that no new customer will arrive and this arrival event is **independent** of the past information up to time t. Then during time (0,t) the probability of no arrival of new customer is

$$\Pr(T_1 > t) \approx (1 - \lambda h)^{\lfloor t/h \rfloor} \to e^{-\lambda t}$$
, as $h \to 0$

where [t/h] is the integer part of t/h. This implies that T_1 is $Exp(\lambda)$.

This model is called a **pure birth process**. We have shown here the pure birth process leads to an exponential distributed inter-arrival time T_i .

^{*}the process satisfying this condition is in general called *renewal process*.

**The process satisfying this condition is in general called *renewal process*.

Poisson process: N(t)

 λ is called **rate** or **intensity** = the prob. of exactly one arrival per unit time.

$$\lambda = \lim_{\delta t \to 0} \frac{1}{\delta t} \Pr(\text{ one arrival in } (t, t + \delta t])$$

Denote the corresponding Poisson process N(t) as $PP(\lambda)$.

Why has the name "Poisson" process?

Theorem (Thm 3.6, 3.7 (p71))

Let $\{N(t)\}\$ be a $PP(\lambda)$.

- It is a Markov process: that is
- $\Pr(N(t+s) = k | N(s) = j, N(u), 0 \le u \le s) = \Pr(N(t+s) = k | N(s) = j)$
- For a given t, $N(t) \sim Poi(\lambda t)$. That is

$$Pr(N(t) = k) = e^{-\lambda t} \frac{\lambda^k t^k}{k!}$$

sketch of proof in textbook

Proof.

First, note that $\{N(t) \ge k\} = \{S_k \le t\}$ because

- If $N(t) \ge k$, then there exists $n \ge k$ such that $S_n \le t$. Noting by definition that $S_n \ge S_k$ for all $n \ge k$. So, we have $S_k \le t$.
- If $S_k \le t$, then $k \in \{n \ge 0 : S_n \le t\}$ and $k \le N(t)$ by definition.

Second, $\Pr(N(t) \ge k) = \Pr(S_k \le t) = \Pr(\sum_{i=0}^k T_i \le t)$. The sum of k iid r.v.s

 $\{T_i\} \sim Exp(\lambda)$ follows the Erlang distribution with CDF

$$F(x) = 1 - \sum_{r=0}^{k-1} e^{-\lambda x} (\lambda x)^r / r!$$
 (Eqn. (3.9), p62, textbook).

Then the conclusion follows after some calculations for

$$Pr(N(t) = k) = Pr(N(t) \ge k) - Pr(N(t) \ge k + 1)$$

this proof can be generalized to inhomogeneous Poisson process where λ is a function of time

We start from the pure birth process and prove the theorem (only part (ii)) by computing the moment-generating function of N(t):

$$\mathscr{G}(t,\theta) := \mathrm{E}[e^{\theta N(t)}]$$

Note that $Poi(t\lambda)$'s momentum generating function is $M_t(\theta) = \exp(t\lambda(e^{\theta} - 1))$. So we just need to show $\mathcal{G}(t,\theta) = M_t(\theta)$, equivalently $\log \mathcal{G} = t\lambda(e^{\theta} - 1)$.

CityU

this proof can be generalized to inhomogeneous Poisson process where λ is a function of time

We start from the pure birth process and prove the theorem (only part (ii)) by computing the moment-generating function of N(t):

$$\mathscr{G}(t,\theta) := \mathrm{E}[e^{\theta N(t)}]$$

Note that $Poi(t\lambda)$'s momentum generating function is $M_t(\theta) = \exp\left(t\lambda(e^{\theta}-1)\right)$. So we just need to show $\mathscr{G}(t,\theta) = M_t(\theta)$, equivalently $\log \mathscr{G} = t\lambda(e^{\theta}-1)$. Introduce the number of arrivals during time interval (s,t] for $0 \le s < t$:

$$N(s, t) := N(t) - N(s)$$

Then
$$\dot{\mathcal{G}}(t,\theta) = \lim_{h \to 0} \frac{\mathcal{G}(t+h,\theta) - \mathcal{G}(t,\theta)}{h} = \lim_{h \to 0} h^{-1} \mathbb{E}\left[e^{\theta(N(0,t)+N(t,t+h))} - e^{\theta N(0,t)}\right]$$

this proof can be generalized to inhomogeneous Poisson process where λ is a function of time

We start from the pure birth process and prove the theorem (only part (ii)) by computing the moment-generating function of N(t):

$$\mathscr{G}(t,\theta) := \mathbb{E}[e^{\theta N(t)}]$$

Note that $Poi(t\lambda)$'s momentum generating function is $M_t(\theta) = \exp\left(t\lambda(e^{\theta}-1)\right)$. So we just need to show $\mathscr{G}(t,\theta) = M_t(\theta)$, equivalently $\log \mathscr{G} = t\lambda(e^{\theta}-1)$. Introduce the number of arrivals during time interval (s,t] for $0 \le s < t$:

$$N(s,t) := N(t) - N(s)$$

Then
$$\dot{\mathcal{G}}(t,\theta) = \lim_{h \to 0} \frac{\mathcal{G}(t+h,\theta) - \mathcal{G}(t,\theta)}{h} = \lim_{h \to 0} h^{-1} \operatorname{E}\left[e^{\theta(N(0,t)+N(t,t+h))} - e^{\theta N(0,t)}\right]$$

Note that by the independence between (0, t] and (t, t + h], we have

$$\begin{split} & \mathbf{E}\left[e^{\theta(N(0,t)+N(t,t+h))} - e^{\theta N(0,t)}\right] = \mathbf{E}\left[e^{\theta N(0,t)}\left(e^{\theta N(t,t+h)} - 1\right)\right] \\ & = \mathbf{E}\left[e^{\theta N(0,t)}\right]\mathbf{E}\left[e^{\theta N(t,t+h)} - 1\right] = \mathcal{G}(t,\theta)\left[(e^{\theta} - 1)h\lambda + (1-1)\times(1-\lambda h) + O(h^2)\right] \end{split}$$

this proof can be generalized to inhomogeneous Poisson process where λ is a function of time

We start from the pure birth process and prove the theorem (only part (ii)) by computing the moment-generating function of N(t):

$$\mathscr{G}(t,\theta) := \mathrm{E}[e^{\theta N(t)}]$$

Note that $Poi(t\lambda)$'s momentum generating function is $M_t(\theta) = \exp\left(t\lambda(e^{\theta}-1)\right)$. So we just need to show $\mathscr{G}(t,\theta) = M_t(\theta)$, equivalently $\log \mathscr{G} = t\lambda(e^{\theta}-1)$. Introduce the number of arrivals during time interval (s,t] for $0 \le s < t$:

$$N(s,t) := N(t) - N(s)$$

Then
$$\dot{\mathcal{G}}(t,\theta) = \lim_{h \to 0} \frac{\mathcal{G}(t+h,\theta) - \mathcal{G}(t,\theta)}{h} = \lim_{h \to 0} h^{-1} \operatorname{E}\left[e^{\theta(N(0,t)+N(t,t+h))} - e^{\theta N(0,t)}\right]$$

Note that by the independence between (0, t] and (t, t + h], we have

$$\begin{split} & \mathbf{E}\left[e^{\theta(N(0,t)+N(t,t+h))} - e^{\theta N(0,t)}\right] = \mathbf{E}\left[e^{\theta N(0,t)}\left(e^{\theta N(t,t+h)} - 1\right)\right] \\ & = \mathbf{E}\left[e^{\theta N(0,t)}\right]\mathbf{E}\left[e^{\theta N(t,t+h)} - 1\right] = \mathcal{G}(t,\theta)\left[(e^{\theta} - 1)h\lambda + (1-1)\times(1-\lambda h) + O(h^2)\right] \end{split}$$

So, we have ODE $\dot{\mathcal{G}}(t,\theta) = \mathcal{G}(t,\theta)(e^{\theta}-1)\lambda$, i.e., $\frac{d}{dt}\log\mathcal{G} = \lambda(e^{\theta}-1)$. Since $\mathcal{G}(0,\theta) = 1$, the conclusion is obtained.

Properties of Poisson process

Let $\{N(t)\}\$ be a $PP(\lambda)$.

1 It is a Markov process.

^{*}This property is abbreviated as "LLRC" and also popularly called Càdlàg in French language meaning "continue à droite, limite à gauche".

Properties of Poisson process

Let $\{N(t)\}$ be a $PP(\lambda)$.

- 1 It is a Markov process.
- ② With probability 1, the sample path N(t) is right-continuous with left limits *

^{*}This property is abbreviated as "LLRC" and also popularly called Càdlàg in French language meaning "continue à droite, limite à gauche".

Properties of Poisson process

Let $\{N(t)\}\$ be a $PP(\lambda)$.

- It is a Markov process.
- 2 With probability 1, the sample path N(t) is right-continuous with left limits *
- **3** $N(t) = \max\{n \ge 0 : S_n \le t\}, t \ge 0.$

^{*}This property is abbreviated as "LLRC" and also popularly called Càdlàg in French language meaning "continue à droite, limite à gauche".

- It is a Markov process.
- **2** With probability 1, the sample path N(t) is right-continuous with left limits *
- **3** $N(t) = \max\{n \ge 0 : S_n \le t\}, t \ge 0.$
- $\{N(t) \ge k\} = \{S_k \le t\}, t \in \mathbb{R}_+, k = 1, 2, \dots \}.$

^{*}This property is abbreviated as "LLRC" and also popularly called Càdlàg in French language meaning "continue à droite, limite à gauche".

- It is a Markov process.
- **2** With probability 1, the sample path N(t) is right-continuous with left limits *
- **3** $N(t) = \max\{n \ge 0 : S_n \le t\}, t \ge 0.$
- $\{N(t) \ge k\} = \{S_k \le t\}, t \in \mathbb{R}_+, k = 1, 2, \dots \}.$
- **6** Reconstruction of the jump time : $S_n = \inf\{t \in \mathbb{R}_+ : N_t = n\}, n \ge 1$.

^{*}This property is abbreviated as "LLRC" and also popularly called Càdlàg in French language meaning "continue à droite, limite à gauche".

- It is a Markov process.
- ② With probability 1, the sample path N(t) is right-continuous with left limits *
- **3** $N(t) = \max\{n \ge 0 : S_n \le t\}, t \ge 0.$
- **4** $\{N(t) \ge k\} = \{S_k \le t\}, t \in \mathbb{R}_+, k = 1, 2, \dots$).
- **6** Reconstruction of the jump time : $S_n = \inf\{t \in \mathbb{R}_+ : N_t = n\}, n \ge 1$.
- **1** 0 N(t+s)-N(t) means the number of arrival events during time period (t, t+s].

^{*}This property is abbreviated as "LLRC" and also popularly called Càdlàg in French language meaning "continue à droite, limite à gauche".

- It is a Markov process.
- ② With probability 1, the sample path N(t) is right-continuous with left limits *
- **3** $N(t) = \max\{n \ge 0 : S_n \le t\}, t \ge 0.$
- $\{N(t) \ge k\} = \{S_k \le t\}, t \in \mathbb{R}_+, k = 1, 2, \dots \}.$
- **⑤** Reconstruction of the jump time : $S_n = \inf\{t \in \mathbb{R}_+ : N_t = n\}, n \ge 1.$
- **1** N(t+s)-N(t) means the number of arrival events during time period (t, t+s].
- **⊘** Independence of increments: for all $0 \le t_0 < t_1 < \dots < t_n$ and $n \ge 1$, the increments $N_{t_1} N_{t_0}, \dots, N_{t_n} N_{t_{n-1}}$ over the disjoint time intervals $(t_0, t_1], (t_1, t_2], \dots, (t_{n-2}, t_{n-1}], (t_{n-1}, t_n]$ are mutually independent random variables. In particular, $N_t = N_t N_0$ is independent of $N_{t+s} N_t$ for $\forall s, t > 0$.

^{*}This property is abbreviated as "LLRC" and also popularly called Càdlàg in French language meaning "continue à droite, limite à gauche".

- 1 It is a Markov process.
- ② With probability 1, the sample path N(t) is right-continuous with left limits *
- **3** $N(t) = \max\{n \ge 0 : S_n \le t\}, t \ge 0.$
- $\{N(t) \ge k\} = \{S_k \le t\}, t \in \mathbb{R}_+, k = 1, 2, \dots \}.$
- **3** Reconstruction of the jump time : $S_n = \inf\{t \in \mathbb{R}_+ : N_t = n\}, n \ge 1$.
- **6** N(t+s)-N(t) means the number of arrival events during time period (t, t+s].
- **⊘** Independence of increments: for all $0 \le t_0 < t_1 < \dots < t_n$ and $n \ge 1$, the increments $N_{t_1} N_{t_0}, \dots, N_{t_n} N_{t_{n-1}}$ over the disjoint time intervals $(t_0, t_1], (t_1, t_2], \dots, (t_{n-2}, t_{n-1}], (t_{n-1}, t_n]$ are mutually independent random variables. In particular, $N_t = N_t N_0$ is independent of $N_{t+s} N_t$ for $\forall s, t > 0$.
- **3 Stationarity of increments**: $N_{t+h} N_{s+h}$ has the same distribution as $N_t N_s$ for all h > 0 and $0 \le s \le t$. This is

$$Pr(N_{t+h} - N_{s+h} = k) = Pr(N_t - N_s = k)$$

^{*}This property is abbreviated as "LLRC" and also popularly called Càdlàg in French language meaning "continue à droite, limite à gauche".

Review of the increment for DTMC random walk (assignment 1)

For the above independent and stationary increments, the Random Walk $\{X_n\} = \sum_{i=0}^n Z_i$ also has these two properties:

- $X_{n+k} X_n$ is independent from $X_{n+k+m} X_{n+k+l}$ for m > l > 0.
- $X_{n+k} X_n$ and $X_{n+m+k} X_{n+m}$ have the same distribution as $\sum_{i=1}^k Z_i$

Review of the increment for DTMC random walk (assignment 1)

For the above independent and stationary increments, the Random Walk $\{X_n\} = \sum_{i=0}^n Z_i$ also has these two properties:

- $X_{n+k} X_n$ is independent from $X_{n+k+m} X_{n+k+l}$ for m > l > 0.
- $X_{n+k}-X_n$ and $X_{n+m+k}-X_{n+m}$ have the same distribution as $\sum_{i=1}^k Z_i$

Recall the assignment of calculating the auto-covariance function

$$cov(X_{m+n}, X_m) = E\left[\left((X_m - m\mu) + \sum_{i=m+1}^{m+n} (Z_i - \mu)\right)(X_m - m\mu)\right]$$

$$= var(X_m) + \sum_{i=m+1}^{m+n} E\left[(Z_i - \mu)(X_m - m\mu)\right]$$

$$= var(X_m) + \sum_{i=m+1}^{m+n} E(Z_i - \mu) \cdot E(X_m - m\mu)$$

$$= var(X_m)$$

$$= 4mpq$$

Here we used the independent increment property! We shall see this application again for Poisson process.

corollary

- 1 $E(N(t)) = \lambda t$, $var(N(t)) = \lambda t$, $E(N(t))^2 = \lambda t + \lambda^2 t^2$.
- 2 stationary increment

$$N(t+s) - N(s) \sim N(t) - N(0) \sim Poi(\lambda t)$$

(3) covariance function

$$cov(N(t+s), N(s)) = \mathbb{E}\left[\left(N(t+s) - (t+s)\lambda\right) \cdot \left(N(s) - s\lambda\right)\right] = \lambda s$$
$$cov(N(t), N(s)) = \lambda(s \wedge t)$$

 $N(t) \sim PP(\lambda)$. S_n is the *n*th jump time. Let $t_i = i$ for i = 1, 2, 3, 4.

- **①** What is the expected number of arrival customers at time t_4 ?
- ② What is the probably that there are no arrivals from t_1 to t_3 ?
- **3** What is the probably that there are two arrivals from t_1 to t_3 , and for these two events, one arrives before t_2 and the other arrives after t_2 ?
- **4** What is the probably that there are two arrivals from t_1 to t_4 among which one arrives before t_3 and the other arrives after t_2 ?
- **5** $Pr(N(t_3) = 5|N(t_1) = 1) = ?$
- **6** $E(N(t_2)N(t_1)) = ?$
- \bullet E[$N(t_2)|S_1 > t_1$] =?

- ② $Pr(N(t_3) N(t_1) = 0) = Pr(N(t_3 t_1) = 0) = e^{-\lambda(t_3 t_1)} = e^{-2\lambda}$.

2
$$\Pr(N(t_3) - N(t_1) = 0) = \Pr(N(t_3 - t_1) = 0) = e^{-\lambda(t_3 - t_1)} = e^{-2\lambda}$$
.

$$\begin{aligned} &\Pr(N(t_2) - N(t_1) = 1, N(t_3) - N(t_2) = 1) \\ &= &\Pr(N(t_2) - N(t_1) = 1) \Pr(N(t_3) - N(t_2) = 1) \\ &= &e^{-\lambda(t_2 - t_1)} \lambda(t_2 - t_1) e^{-\lambda(t_3 - t_2)} \lambda(t_3 - t_2) = \lambda^2 e^{-2\lambda} \end{aligned}$$

2
$$\Pr(N(t_3) - N(t_1) = 0) = \Pr(N(t_3 - t_1) = 0) = e^{-\lambda(t_3 - t_1)} = e^{-2\lambda}$$
.

$$\begin{aligned} &\Pr(N(t_2) - N(t_1) = 1, N(t_3) - N(t_2) = 1) \\ &= &\Pr(N(t_2) - N(t_1) = 1) \Pr(N(t_3) - N(t_2) = 1) \\ &= &e^{-\lambda(t_2 - t_1)} \lambda(t_2 - t_1) e^{-\lambda(t_3 - t_2)} \lambda(t_3 - t_2) = \lambda^2 e^{-2\lambda} \end{aligned}$$

• We need discuss all possible cases in the following table. The answer is the sum of the last columns : $3\lambda^2 e^{-2\lambda} + \lambda^2 e^{-\lambda}/2$

$(t_1, t_2]$	$(t_2, t_3]$	$(t_3, t_4]$	prob
1	1	0	$\lambda^2 e^{-2\lambda}$
0	2	0	$\lambda^2 e^{-\lambda}/2$
0	1	1	$\lambda^2 e^{-2\lambda}$
1	0	1	$\lambda^2 e^{-2\lambda}$

2
$$\Pr(N(t_3) - N(t_1) = 0) = \Pr(N(t_3 - t_1) = 0) = e^{-\lambda(t_3 - t_1)} = e^{-2\lambda}$$
.

$$\begin{aligned} &\Pr(N(t_2) - N(t_1) = 1, N(t_3) - N(t_2) = 1) \\ &= &\Pr(N(t_2) - N(t_1) = 1) \Pr(N(t_3) - N(t_2) = 1) \\ &= &e^{-\lambda(t_2 - t_1)} \lambda(t_2 - t_1) e^{-\lambda(t_3 - t_2)} \lambda(t_3 - t_2) = \lambda^2 e^{-2\lambda} \end{aligned}$$

• We need discuss all possible cases in the following table. The answer is the sum of the last columns : $3\lambda^2 e^{-2\lambda} + \lambda^2 e^{-\lambda}/2$

$(t_1, t_2]$	$(t_2, t_3]$	$(t_3, t_4]$	prob
1	1	0	$\lambda^2 e^{-2\lambda}$
0	2	0	$\lambda^2 e^{-\lambda}/2$
0	1	1	$\lambda^2 e^{-2\lambda}$
1	0	1	$\lambda^2 e^{-2\lambda}$

$$Pr(N(t_3) = 5|N(t_1) = 1) = Pr(N(t_3) - N(t_1) = 4|N(t_1) = 1) = Pr(N(t_3 - t_1) = 4) = \frac{\lambda^4(t_3 - t_1)^4}{4!}e^{-\lambda(t_3 - t_1)} = \frac{2\lambda^4}{3}e^{-2\lambda}$$

- 2 $\Pr(N(t_3) N(t_1) = 0) = \Pr(N(t_3 t_1) = 0) = e^{-\lambda(t_3 t_1)} = e^{-2\lambda}$.

$$\begin{aligned} &\Pr(N(t_2) - N(t_1) = 1, N(t_3) - N(t_2) = 1) \\ &= &\Pr(N(t_2) - N(t_1) = 1) \Pr(N(t_3) - N(t_2) = 1) \\ &= &e^{-\lambda(t_2 - t_1)} \lambda(t_2 - t_1) e^{-\lambda(t_3 - t_2)} \lambda(t_3 - t_2) = \lambda^2 e^{-2\lambda} \end{aligned}$$

• We need discuss all possible cases in the following table. The answer is the sum of the last columns : $3\lambda^2 e^{-2\lambda} + \lambda^2 e^{-\lambda}/2$

$(t_1, t_2]$	$(t_2, t_3]$	$(t_3, t_4]$	prob
1	1	0	$\lambda^2 e^{-2\lambda}$
0	2	0	$\lambda^2 e^{-\lambda}/2$
0	1	1	$\lambda^2 e^{-2\lambda}$
1	0	1	$\lambda^2 e^{-2\lambda}$

- $Pr(N(t_3) = 5|N(t_1) = 1) = Pr(N(t_3) N(t_1) = 4|N(t_1) = 1) = Pr(N(t_3 t_1) = 4) = \frac{\lambda^4 (t_3 t_1)^4}{4!} e^{-\lambda (t_3 t_1)} = \frac{2\lambda^4}{2} e^{-2\lambda}$

- 2 $\Pr(N(t_3) N(t_1) = 0) = \Pr(N(t_3 t_1) = 0) = e^{-\lambda(t_3 t_1)} = e^{-2\lambda}$.
- 6

$$\begin{aligned} &\Pr(N(t_2) - N(t_1) = 1, N(t_3) - N(t_2) = 1) \\ &= &\Pr(N(t_2) - N(t_1) = 1) \Pr(N(t_3) - N(t_2) = 1) \\ &= &e^{-\lambda(t_2 - t_1)} \lambda(t_2 - t_1) e^{-\lambda(t_3 - t_2)} \lambda(t_3 - t_2) = \lambda^2 e^{-2\lambda} \end{aligned}$$

4 We need discuss all possible cases in the following table. The answer is the sum of the last columns : $3\lambda^2 e^{-2\lambda} + \lambda^2 e^{-\lambda}/2$

$[t_1, t_2]$	$(t_2, t_3]$	$(t_3, t_4]$	prob
1	1	0	$\lambda^2 e^{-2\lambda}$
0	2	0	$\lambda^2 e^{-\lambda}/2$
0	1	1	$\lambda^2 e^{-2\lambda}$
1	0	1	$\lambda^2 e^{-2\lambda}$

- $Pr(N(t_3) = 5|N(t_1) = 1) = Pr(N(t_3) N(t_1) = 4|N(t_1) = 1) = Pr(N(t_3 t_1) = 4) = \frac{\lambda^4(t_3 t_1)^4}{4!} e^{-\lambda(t_3 t_1)} = \frac{2\lambda^4}{2} e^{-2\lambda}$
- **6** $E(N(t_2)N(t_1)) = E[(N(t_2) N(t_1))N(t_1)] + E(N(t_1)^2) = E(N(t_2) N(t_1))E(N(t_1)) + E(N(t_1)^2) = 2\lambda^2 + \lambda$
- $\mathbb{E}[N(t_2)|S_1 > t_1] = \mathbb{E}[N(t_2)|N(t_1) < 1] = \mathbb{E}[N(t_2)|N(t_1) = 0] = \mathbb{E}[N(t_2 t_1)] = \lambda_{\text{contraction}}$

Conditional distribution of jump times *

Theorem

Fix T and condition the PP N(t) to have K jumps in this interval [0,T]. Then, regardless of the Poisson rate λ , the jump times $\{S_k: k=1,\cdots,K\}$ are distributed as K i.i.d. uniform [0,T] r.v.s. (actually as their order statistics since you need to rearrange these uniform r.v.s in increasing order.) That is

$$(S_1, S_2, \dots, S_K) \sim (X_{(1)}, \dots, (X_{(K)})$$

where $X_{(1)} \le \cdots \le X_{(K)}$ is the order statistics of $\{X_k : k = 1, \cdots, K\}$ and X_k are i.i.d. uniform r.v.s in [0, T].

 $\overline{{}^aX_{(i)}}$ is the *i*-th smallest value among $(X_k: k=1,\cdots,K)$.

Conditional distribution of jump times *

Theorem

Fix T and condition the PP N(t) to have K jumps in this interval [0,T]. Then, regardless of the Poisson rate λ , the jump times $\{S_k: k=1,\cdots,K\}$ are distributed as K i.i.d. uniform [0,T] r.v.s. (actually as their order statistics since you need to rearrange these uniform r.v.s in increasing order.) That is

$$(S_1, S_2, \cdots, S_K) \sim (X_{(1)}, \cdots, (X_{(K)})$$

where $X_{(1)} \le \cdots \le X_{(K)}$ is the order statistics of $\{X_k : k = 1, \cdots, K\}$ and X_k are i.i.d. uniform r.v.s in [0, T].

$${}^{a}X_{(i)}$$
 is the *i*-th smallest value among $(X_k: k=1,\cdots,K)$.

Note that the joint pdf of the uniform order statistics is

$$f(s_1,s_2,\cdots,s_K)\equiv\frac{K!}{T^K}.$$

For K = 1, the proof is an exercise.

^{*}Theorem 2.3.1 p.67 in Stochastic Processes by Ross, S.M. Wiley, 2nd Edition,1996.

Proof.

We shall compute the conditional density function of S_1, S_2, \cdots, S_K given that N(T) = K. Let $0 < t_1 < t_2 \cdots < t_K \le T$ and let h_i be small enough so that $(t_i - h_i/2, t_i + h_i/2]$ has no overlap for any $i = 1, \cdots, K$. Now

$$\begin{split} &\Pr(S_i \in (t_i - h_i/2, t_i + h_i/2], i = 1, 2, \cdots, K \mid N(t) = K) \\ &= \frac{1}{\Pr(N(t) = K)} \times \Pr(\text{exactly one event in } (t_i - h_i/2, t_i + h_i/2],, i = 1, 2, \cdots, K \\ &\quad \text{and no events elsewhere }) \\ &= \frac{\prod_{i=1}^K (\lambda h_i e^{-\lambda h_i}) \times e^{-\lambda (T - \sum_i h_i)}}{e^{-\lambda T} (\lambda T)^K / K!} \\ &= \frac{K!}{T^K} \prod_{i=1}^K h_i \end{split}$$

By letting $h_i \rightarrow 0$, we obtain that the conditional *density* is

$$f(t_1, \dots, t_K) = \frac{K!}{T^K}, \quad 0 < t_1 < \dots < t_K < T.$$

Compound Poisson process(cPP)

At each arrival time S_n , the jump size is also random.

A sample path of compound PP.

Compound Poisson process(cPP)

Definition

At each jump time, the jump size is from iid r.v. Z_n following the distribution v. And $\{Z_n\}$ is also independent of the PP. Define

$$C(t) = C(0) + \sum_{n=1}^{N(t)} Z_n = C(0) + \sum_{k=1}^{\infty} Z_k 1_{\{S_k \le t\}}$$

 $\left(\sum_{n=1}^{0}:=0\right)$. We assume C(0)=0. $Z_n\equiv 1$ gives the standard Poisson process.

$$C(t) = \begin{cases} 0 & \text{if } 0 \le t < S_1 \\ Z_1 & \text{if } S_1 \le t < S_2 \\ Z_1 + Z_2 & \text{if } S_2 \le t < S_3 \\ \vdots & & \\ \sum_{n=1}^k Z_n & \text{if } S_k \le t < S_{k+1} \\ \vdots & & \\ \end{cases}$$

Characteristic function of compound Poisson process

 Z_1, Z_2, \cdots, Z_n , are iid r.v. on $\mathbb R$ with distribution v(z)dz. Denote the characteristic function of Z_1 as

$$g(\alpha) := E e^{\mathbf{i}\alpha Z_1} = \int_{\mathbb{R}} e^{\mathbf{i}z\alpha} v(z) dz, \quad \mathbf{i} := \sqrt{-1}.$$

Then we can compute the characteristic function of the increment $C_t - C_s$ for any $0 \le s < t$ as follows.

Theorem

$$\mathbb{E}\left[\exp(i\alpha(C_t - C_s))\right] = \exp\left(\lambda(t - s) \int_{\mathbb{R}} (e^{iz\alpha} - 1)\nu(z)dz\right) = e^{\lambda(t - s)(g(\alpha) - 1)}, \forall \alpha \in \mathbb{R}$$

Proof.

(step 1): definition; (step 2): law of total prob. and indpt. of N and Z; (step 3): iid of Z_k and indpt. increment of N.

indpt. increment of
$$N$$
. $\mathrm{E}\left[\exp(i\alpha(C_t-C_s))\right] = \mathrm{E}\left[\exp\left(i\alpha\sum_{k=N_t+1}^{N_t}Z_k\right)\right]$: law. of total. prob.

$$= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} E\left[\exp\left(i\alpha \sum_{k=m+1}^{m+n} Z_{k}\right)\right] \Pr(N_{s} = m, N_{t} - N_{s} = n)$$

$$= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} E\left[\exp\left(i\alpha \sum_{k=1}^{n} Z_{k}\right)\right] \Pr(N_{s} = m) \Pr(N_{t} - N_{s} = n)$$

$$= \sum_{n=0}^{\infty} E\left[\exp\left(i\alpha \sum_{k=1}^{n} Z_{k}\right)\right] \Pr(N_{t} - N_{s} = n) \left(\sum_{m=0}^{\infty} \Pr(N_{s} = m)\right)$$

$$= \sum_{n=0}^{\infty} \left(E\left[\exp\left(i\alpha Z_{1}\right)\right]\right)^{n} \times e^{-\lambda(t-s)} \frac{\lambda^{n}(t-s)^{n}}{n!} \times 1$$

$$= \exp\left(\lambda(t-s) E\left[\exp\left(i\alpha Z_{1}\right)\right]\right) e^{-\lambda(t-s)}$$

$$= \exp\left(\lambda(t-s) \left(E\left[\exp\left(i\alpha Z_{1}\right)\right] - 1\right)\right)$$

$$= \exp\left(\lambda(t-s) \int_{\mathbb{R}} (e^{iz\alpha} - 1) \nu(z) dz\right)$$

Examples

• If $Z(\omega) \equiv 1$, then C_t is just the standard Poisson process, $PP(\lambda)$. Now $v(z) = \delta(z-1)$ and $EZ_1 = EZ_1^2 = 1$, $g(\alpha) = e^{\mathbf{i}\alpha}$. We calculate the characteristic function by the above formula and obtain that

$$E\left[\exp(i\alpha(C_t-C_s)\right] = \exp\left(\lambda(t-s)(e^{i\alpha}-1)\right).$$

Actually, if a continuous-time stochastic process has the same characteristic function as this, then it has the same distribution as the Poisson process $PP(\lambda)$.

• If (Z_i) is a sequence of Bernoulli trials with parameter p: $\Pr(Z_1=1)=p$ and $\Pr(Z_1=0)=q$. Show that the compound Poisson process is actually a Poisson process with rate $p\lambda$.

Examples

• If $Z(\omega) \equiv 1$, then C_t is just the standard Poisson process, $PP(\lambda)$. Now $v(z) = \delta(z-1)$ and $EZ_1 = EZ_1^2 = 1$, $g(\alpha) = e^{\mathbf{i}\alpha}$. We calculate the characteristic function by the above formula and obtain that

$$\mathrm{E}\left[\exp(i\alpha(C_t-C_s)\right] = \exp\left(\lambda(t-s)(e^{i\alpha}-1)\right).$$

Actually, if a continuous-time stochastic process has the same characteristic function as this, then it has the same distribution as the Poisson process $PP(\lambda)$.

• If (Z_i) is a sequence of Bernoulli trials with parameter p: $\Pr(Z_1=1)=p$ and $\Pr(Z_1=0)=q$. Show that the compound Poisson process is actually a Poisson process with rate $p\lambda$.

We calculate $g(\alpha) = e^{i\alpha}p + (1-p)$. Then

$$\mathbb{E}\left[\exp(i\alpha(C_t-C_s)\right] = \exp\left(\lambda(t-s)(e^{\mathbf{i}\alpha}p-p)\right) = \exp\left(p\lambda(t-s)(e^{\mathbf{i}\alpha}-1)\right)$$

This means that (C_t) is a $PP(p\lambda)$.

Applications

We can derive the mean and variance of C(t) from the characteristic function. (Thm 3.11 in textbook uses alternative proof by considering the iid random sum of r.v.s) Set s=0 and $C_0=0$ and note that $g'(0)=\mathbf{i} E Z_1$ and $g''(0)=-E(Z_1)^2$

$$E[C_t] = -\mathbf{i}\frac{d}{d\alpha} E[e^{\mathbf{i}\alpha C_t}]|_{\alpha=0} = -\mathbf{i}\lambda t g'(0) = \lambda t \int_{\mathbb{R}} z v(z) dz = \lambda t \cdot E Z_1$$

So, after subtracted by the compensator $\lambda(E Z_1)t$, the new process $C_t - (\lambda \cdot E Z_1)t$ is called "compensated" compound Poisson process, because is has zero mean (actually it is a martingale).

$$E[C_t^2] = -\frac{d^2}{d\alpha^2} E[e^{i\alpha C_t}]|_{\alpha=0} = -\lambda t(g''(0) + \lambda t(g'(0))^2) = \lambda t(EZ_1^2 + \lambda t(EZ_1)^2)$$

- The variance is thus $var[C_t] = \lambda t \cdot E Z_1^2$.
- (C_t) has stationary increment because the characteristic function for the increment $C_t C_s$ only depends on the difference t s.
- \bullet (C_t) has independent increment because (verify by yourself)

$$\mathbf{E}\left[\Pi_{k=1}^n e^{i\alpha_k(C_{t_k}-C_{t_{k-1}})}\right] = \Pi_{k=1}^n \mathbf{E}\left[e^{i\alpha_k(C_{t_k}-C_{t_{k-1}})}\right]$$

The covariance function

$$cov(C_{t+s}, C_s)$$

$$= E[(C_{t+s} - E C_{t+s})(C_s - E C_s)]$$

$$= E[C_{t+s}C_s] - (E C_{t+s} \cdot E C_s)$$

$$= E[(C_{t+s} - C_s)C_s] + E(C_s)^2 - (E C_{t+s} \cdot E C_s)$$

$$= E[(C_{t+s} - C_s)] \cdot E[C_s] + E(C_s)^2 - E C_{t+s} \cdot E C_s$$

$$= -(E C_s)^2 + E(C_s)^2$$

$$= var(C_s)$$

$$= (\lambda \cdot E Z_1^2) s$$

$$\therefore cov(C_t, C_s) = (\lambda \cdot E Z_1^2)(s \wedge t).$$

- ullet Markov property : (C_t) is a continuous-time Markov process.
- Restaurant Arrival Process (Example 3.9)

Homework

- Prove Thm3.3, Thm 3.5 in textbook (do not read the proof in textbook first. try independently)
- Exercise 3.9, 3.10, 3.17, 3.19, 3.20, 3.25 (CONCEPTUAL PROBLEMS, page 79)
- Exercise 3.2, 3.3, 3.29, 3.30 (COMPUTATIONAL PROBLEMS, page 80)
- Let N be a Poisson process with parameter λ . Let U_t denote the time of the first jump *after* time t. (In particular, $U_0 = S_1$.) Calculate the probability density function of U_t .

- Let N(t) be the number of arrival customers and assume $\{N(t)\}$ is a Poisson processwith rate λ . S_n is the nth jump time. Let $t_i = i$ for i = 1, 2, 3, 4.
 - **1** What is the expected number of arrival customers at time t_4 ?
 - ② What is the probably that there are no arrivals from t_1 to t_3 ?
 - **③** What is the probably that there are two arrivals from t_1 to t_3 and one arrives before t_2 and the other arrives after t_2 ?
 - **4** $Pr(N(t_3) = 5|N(t_1) = 1) = ?$
 - **5** $E(N(t_2)N(t_1)) = ?$
 - **6** $E[N(t_1)N(t_4)(N(t_3)-N(t_2))] = ?$
 - $E[N(t_2)|S_1 > t_1]$
 - **8** $E[N(t_2)|S_2 > t_1]$