Имплантаты офтальмологические

ИНТРАОКУЛЯРНЫЕ ЛИНЗЫ

Часть 1

Термины и определения

Издание официальное

Предисловие

1 РАЗРАБОТАН Государственным унитарным предприятием «Центр нормативно-информационных систем» ГП «ТКС-оптика ГОИ» совместно с испытательной лабораторией биологической безопасности медицинских изделий Федерального учреждения науки НИИ Трансплантации и искусственных органов

ВНЕСЕН Техническим комитетом ТК 296 »Оптика и оптические приборы»

- 2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 17 мая 2002 г. № 191-ст
- 3 Настоящий стандарт содержит полный аутентичный текст международного стандарта ИСО 11979-1—99 «Имплантаты офтальмологические. Интраокулярные линзы. Часть 1. Термины и определения» с дополнительными требованиями, отражающими потребности экономики страны, выделенными в тексте стандарта курсивом
 - 4 ВВЕДЕН ВПЕРВЫЕ

Содержание

Область применения	1
Нормативные ссылки	1
ермины и определения	1
равитный указатель терминов	6
иложение А Библиография	7

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Имплантаты офтальмологические

ИНТРАОКУЛЯРНЫЕ ЛИНЗЫ

Часть 1

Термины и определения

Ophthalmic implants. Intraocular lenses. Part 1. Terms and definitions

Дата введения 2003-01-01

1 Область применения

Настоящий стандарт распространяется на интраокулярные линзы (далее — ИОЛ), предназначенные для оптической коррекции зрения путем хирургической имплантации внутрь глаза.

Стандарт устанавливает термины и определения, соблюдение которых должно обеспечиваться при разработке, производстве, поставке и сертификации ИОЛ.

Стандарт не распространяется на роговичные имплантаты и трансплантаты.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ Р ИСО 10993.1—99 Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 1. Оценка и исследования

ГОСТ Р ИСО 10993.5—99 Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 5. Исследования на цитотоксичность: методы in vitro

ГОСТ Р ИСО 10993.6—99 Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 6. Исследование местного действия после имплантации

ГОСТ Р ИСО 10993.10—99 Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 10. Исследование раздражающего и сенсибилизирующего действия

ГОСТ Р ИСО 10993-13—99 Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 13. Идентификация и количественное определение продуктов градации полимерных материалов

3 Термины и определения

Общие термины

- 1 переднекамерная ИОЛ: ИОЛ, у которой оптический элемент и часть периферийного неоптического элемента находятся в передней камере.
- 2 **заднекамерная ИОЛ для афакии:** Заднекамерная ИОЛ, предназначенная для крепления в задней камере глаза при отсутствии естественного хрусталика.
- 3 **заднекамерная ИОЛ для факичного глаза:** Заднекамерная ИОЛ для крепления в задней камере глаза между радужкой и хрусталиком.
- 4 жесткая ИОЛ: ИОЛ с оптической частью, не предназначенной для складывания при имплантации.
- 5 **мягкая ИОЛ:** ИОЛ с оптической частью, предусматривающей возможность складывания при имплантации.

- 6 гидрогелевая ИОЛ: влагосодержащая ИОЛ, изготовленная из гидрогеля.
- 7 **комбинированная ИОЛ:** ИОЛ, отдельные элементы которой соответствуют определениям, приведенным в пунктах 4—6.
 - 8 положительная ИОЛ: Модель ИОЛ, предназначенная для коррекции афакии или гиперметропии.
 - 9 отрицательная ИОЛ: Модель ИОЛ, предназначенная для коррекции миопии.
 - 10 монофокальная ИОЛ: Модель ИОЛ, имеющая одно значение оптической силы.
 - 11 мультифокальная ИОЛ: Модель ИОЛ, имеющая более одного значения оптической силы.
 - 12 сборная ИОЛ: ИОЛ, изготовленная методом сборки из отдельных элементов.
 - 13 монолитная ИОЛ: ИОЛ, изготовленная из единого куска материала.
 - 14 торическая ИОЛ: ИОЛ, имеющая оптическую поверхность с торической образующей.
 - 15 элементы ИОЛ: Части ИОЛ, выполняющие различные функции.
 - 16 оптический элемент: Часть ИОЛ, формирующая изображение; в общем случае центральная.
- 17 **тело:** Центральная часть ИОЛ, включающая оптический элемент, непосредственно граничащая с опорной частью ИОЛ.
- 18 **гаптика:** Опорная, не оптическая часть ИОЛ, в общем случае периферическая, выполняющая функцию крепления ИОЛ в определенном месте глаза.
- 19 **гаптический элемент:** Составная часть гаптики, изготавливаемая в различных вариантах: разомкнутая (дуга), замкнутая (петля) и т. п.
- 20 **общий диаметр**: Диаметр окружности, проходящей через максимально удаленные друг от друга точки гаптики.
- 21 фактор оптического профиля: Показатель, описывающий кривизну преломляющих поверхностей оптического элемента (плоско-выпуклая, двояковыпуклая и т. п.).
- 22 **биологическая совместимость**: Способность имплантата не вызывать ответной реакции организма, которая может повлечь воспалительные реакции.
- 23 **оптическая часть:** Диаметр окружности с центром на оптической оси ИОЛ, обводящей только части ИОЛ, принадлежащие к оптической конструкции (рисунок 1).

1 — общий диаметр; 2 — позиционное отверстие; 3 — оптическая часть; 4 — тело; 5 — высота свода; 6 — саггиталь

24 **in situ:** В равновесии с внутриглазной жидкостью при температуре плюс 35 °C.

Примечания

- 1 Показатель преломления внутриглазной жидкости принят равным 1,336 для длины волны 546,07 нм.
- 2 При испытаниях в качестве заменителя внутриглазной жидкости допускается использовать физиологический раствор.
- 3 Испытания допускается проводить в других условиях, если результаты испытаний соответствуют требованиям для условий in situ.
 - 25 петля: Периферическое расширение тела, служащее для закрепления линзы внутри глаза.

 Π р и м е ч а н и е — Петля является частью гаптики или может ее образовывать.

26 мультикомпонентная ИОЛ: ИОЛ, состоящая из отдельных компонентов — тела и петель.

Примечание — ИОЛ, состоящую из тела и двух петель, называют ИОЛ из трех частей.

27 однокомпонентная ИОЛ: ИОЛ, у которой гаптика и тело являются одним целым.

Термины, описывающие оптические свойства ИОЛ и методы их испытаний

28 **задняя вершинная рефракция:** Обратное значение приведенного параксиального фокусного расстояния in situ для света с длиной волны 546,07 нм.

 Π р и м е ч а н и е — Единица измерения задней вершинной рефракции — обратные метры (м⁻¹). Наименование данной единицы измерения «диоптрия», условное обозначение — дптр.

- 29 параксиальное фокусное расстояние: Расстояние между задней главной плоскостью и задней параксиальной фокальной точкой.
- 30 **приведенное фокусное расстояние:** Фокусное расстояние, деленное на показатель преломления окружающей среды.

Термины, описывающие механические свойства ИОЛ и методы их испытаний

- 31 **оптическая децентрация:** Горизонтальное смещение оптической части из-за сжатия гаптической (их) части (ей), составляющее расстояние между геометрическим центром чистой оптики и центром цилиндра заданного диаметра, в который заключена ИОЛ.
- 32 **оптический наклон:** Угол между оптической осью интраокулярной линзы в несжатом состоянии и в сжатом состоянии, когда ИОЛ заключена в цилиндр заданного диаметра.
- 33 **сагитталь:** Максимальное расстояние между плоскостями, перпендикулярными к оптической оси, которые проходят через крайние передние или крайние задние точки оптической части или гаптики ИОЛ (см. рисунок 1).
- 34 **высота свода:** Расстояние между плоскостью, перпендикулярной к оптической оси, проходящей через вершину ближайшей к радужке глаза оптической поверхности, и плоскостью, перпендикулярной к оптической оси, проходящей через ближайшую к радужке глаза точку несжатой гаптической части интраокулярной линзы (см. рисунок 1).

Примечания

- 1 Ближайшую к радужке глаза сторону ИОЛ определяют по ее расположению в имплантированном состоянии.
- 2 Высоту свода считают положительной, если расстояние определяется в направлении к сетчатке глаза, и отрицательной в обратном случае.

Термины, относящиеся к маркировке и упаковке

- 35 **дополнительная упаковка:** Контейнер, используемый в дополнение к основной упаковке для поддержания стерильности ИОЛ.
- 36 **индивидуальное изделие:** Медицинское изделие, изготовленное в соответствии с рецептом, выписанным должным образом подготовленным медицинским специалистом, специфические характеристики конструкции которого предназначены для использования этого изделия конкретным пациентом.

 Π р и м е ч а н и е — Медицинские изделия массового производства, которые подвергаются дополнительной обработке для соответствия требованиям медицинского специалиста, не являются индивидуальными изделиями.

37 **изделие для клинических испытаний:** Изделие, предназначенное для использования должным образом подготовленным медицинским специалистом при проведении клинических испытаний.

38 изготовитель: Физическое или юридическое лицо, которое несет ответственность за конструирование, производство, упаковку и идентификацию медицинского изделия перед поставкой на рынок под торговой маркой, независимо от того, проводятся ли данные операции им лично либо от его имени другим лицом.

 Π р и м е ч а н и е — Обязательства, которые берет на себя изготовитель, также относятся к физическому или юридическому лицу, которое производит сборку, упаковку, обработку, полную переработку и/или идентификацию изделия с целью поставки на рынок под его торговой маркой.

- 39 основная упаковка: Контейнер, который физически и напрямую защищает линзу и поддерживает ее стерильность.
- 40 самоклеящаяся этикетка: Этикетка, вкладываемая в упаковочный контейнер для использования в больничных записях.
- 41 упаковочный контейнер: Упаковка, предназначенная для защиты ИОЛ в процессе хранения и/или продажи.

Термины, относящиеся к биологической совместимости

- 42 **испытание деградации материала:** Испытание, которое определяет потенциал деградации материала.
- 43 **испытание воздействием излучения Nd-YAG лазера:** Испытание, по результатам которого определяют физические и химические эффекты, возникающие вследствие воздействия излучения Nd-YAG лазера на исследуемый материал.
- 44 **испытание неокулярной имплантацией:** Испытание, по результатам которого определяют локальную токсичность и раздражение, возникающие при воздействии на неокулярные ткани тестовым материалом и/или экстрактом из него, с использованием соответствующего места имплантации на животном.
- 45 **испытание окулярной имплантацией:** Испытание, по результатам которого определяют эффект локальной токсичности для окулярной ткани на микроскопическом и макроскопическом уровнях от исследуемого материала, который хирургически имплантирован в передний отрезок глаза животного
- 46 **испытуемый материал:** Стерильная ИОЛ, предназначенная для имплантации человеку, или идентичный материал, изготовленный и обработанный в соответствии с утвержденной процедурой, эквивалентной используемой для производства ИОЛ.

 Π р и м е ч а н и е — Π ри использовании ИОЛ в качестве испытуемого материала предпочтительно использовать линзы с оптической силой от 18 до 22 дптр.

47 **испытание фотостабильности:** Испытание, по результатам которого определяют потенциал вырождения материала при облучении светом.

Термины, относящиеся к хранению и транспортированию

- 48 дата окончания срока годности: Дата, после которой ИОЛ не допускается использовать.
- 49 **целостность упаковки:** Способность контейнера сохранять ИОЛ от загрязнения в процессе транспортирования и/или хранения.
 - 50 срок годности: Период, в течение которого ИОЛ считают годной для имплантации.
- 51 **стабильность:** Способность ИОЛ сохранять свойства и характеристики в пределах, указанных изготовителем, в течение срока годности.

Термины, относящиеся к клиническим испытаниям

- 52 предпочтительный субъект: Субъект, у которого отсутствует преоперативная патология.
- 53 совокупные неблагоприятные результаты: Общее число неблагоприятных результатов, которые произошли в любое время до заданного момента после операции.
- 54 модель ИОЛ: ИОЛ с совокупностью характеристик, определяемых методом изготовления и конструктивными особенностями ИОЛ.

Примечания

- 1 Примерами конструктивных особенностей ИОЛ являются: диаметр тела, оптический диаметр, фактор оптического профиля; примерами особенностей петель являются конфигурация, размер, угол.
- 2 Любое существенное изменение в применяемых для изготовления ИОЛ материалах (включая их состав и процесс синтеза) рассматривается как изменение модели ИОЛ.
- 55 базовая модель ИОЛ: Модель ИОЛ, которая признана годной на основании клинических испытаний не менее 100 субъектов и которая соответствует требованиям настоящего стандарта,

ГОСТ Р ИСО 10993.1, ГОСТ Р ИСО 10993.5, ГОСТ Р ИСО 10993.6, ГОСТ Р ИСО 10993.10, ГОСТ Р ИСО 10993.10, [1] - [7].

- 56 **модификация уровня А базовой модели ИОЛ:** Модификация базовой модели, которая признана незначительной и не может привести к ухудшению безопасности или потере эффективности по сравнению с базовой моделью ИОЛ.
- 57 **модификация уровня В базовой модели ИОЛ:** Модификация базовой модели, отличающаяся от модификации уровня A, указанной в пункте 56.

Примечание — Модификация уровня В может представлять угрозу для безопасности или эффективности ИОЛ, что приводит к существенному отличию модифицированной модели от базовой модели.

58 **не доведенный до конца:** Субъект с просроченным послеоперационным отчетом, с которым невозможно было связаться путем большого количества писем и телефонных звонков для определения окончательного клинического исхода.

 Π р и м е ч а н и е — Данное определение не относится к умершим субъектам.

59 постоянный неблагоприятный исход: Неблагоприятный исход, который представлен в заключении о клинических испытаниях.

Алфавитный указатель терминов

Высота свода	34
Гаптика	18
Дата окончания срока годности	48
Децентрация оптическая	31
Диаметр общий	20
Изготовитель	38
Изделие для клинических испытаний	37
Изделие индивидуальное	36
In situ	24
ИОЛ гидрогелевая ИОЛ жесткая	6
ИОЛ жесткия ИОЛ заднекамерная для афакии	4 2
ИОЛ заднекамерная для факичного глаза	3
ИОЛ комбинированная	7
ИОЛ монолитная	13
ИОЛ монофокальная	10
ИОЛ мультикомпонентная	26
ИОЛ мультифокальная	11
ИОЛ мягкая	5
ИОЛ однокомпонентная	27
ИОЛ отрицательная ИОЛ переднекамерная	9 1
ИОЛ положительная ———————————————————————————————————	8
ИОЛ сборная	12
ИОЛ торическая	14
Исход постоянный неблагоприятный	59
Испытание воздействием излучения Nd-YAG лазера	43
Испытание деградации материала	42
Испытание неокулярной имплантацией	44
Испытание окулярной имплантацией	45
Испытание фотостабильности	47
Контейнер упаковочный	41
Материал испытуемый	46
Модель ИОЛ	54
Модель ИОЛ базовая	55
Модификация уровня А базовой модели ИОЛ	56 57
Модификация уровня В базовой модели ИОЛ	37
Наклон оптический	32
Не доведенный до конца	58
Петля	25
Расстояние параксиальное фокусное	29
Расстояние приведенное фокусное	30
Результаты совокупные неблагоприятные	53
Рефракция задняя вершинная	28
Сагитталь	33
Сагит галь Совместимость биологическая	22
Срок годности	50
Стабильность	51
Субъект предпочтительный	52
Тело	17
Упаковка дополнительная	35
Упаковка основная	39
	= *

Фактор оптического профиля	21
Целостность упаковки	49
Часть оптическая	23
Элемент гаптический	19
Элемент оптический	16
Элементы ИОЛ	15
Этикетка самоклеящаяся	40

ПРИЛОЖЕНИЕ А (справочное)

Библиография

- [1] ИСО 11979-2—1999 Имплантаты офтальмологические. Интраокулярные линзы. Часть 2. Оптические свойства и методы испытаний
- [2] ИСО 11979-3—1999 Имплантаты офтальмологические. Интраокулярные линзы. Часть 3. Механические свойства и методы испытаний
- [3] ИСО 11979-4—1999 Имплантаты офтальмологические. Интраокулярные линзы. Часть 4. Информация на этикетках
- [4] ИСО 11979-5—2000 Имплантаты офтальмологические. Интраокулярные линзы. Часть 5. Биологическая совместимость
- [5] ИСО 11979-6—2000 Имплантаты офтальмологические. Интраокулярные линзы. Часть 6. Срок годности и стабильность при транспортировании
- [6] ИСО 11979-7—1999 Имплантаты офтальмологические. Интраокулярные линзы. Часть 7. Клинические испытания
- [7] ИСО 11979-8—2000 Имплантаты офтальмологические. Интраокулярные линзы. Часть 8. Общие требования

УДК 616-089.843-79:617.7:006.354

OKC 11.040.40

П46

ОКП 94 8100

Ключевые слова: офтальмологические имплантаты, интраокулярные линзы, технические требования, маркировка, упаковка, производство

Редактор *Т.А. Леонова*Технический редактор *Н.С. Гришанова*Корректор *В.С. Черная*Компьютерная верстка *И.А. Налейкиной*

Изд. лиц. № 02354 от 14.07.2000. Сдано в набор 29.05.2002. Подписано в печать 02.07.2002. Усл. печ. л. 1,40. Уч.-изд.л. 0,80. Тираж экз. С 6290. Зак. 556.

ИПК Издательство стандартов, 107076 Москва, Колодезный пер., 14. http://www.standards.ru e-mail: info@standards.ru Hабрано в Издательстве на ПЭВМ Филиал ИПК Издательство стандартов — тип. «Московский печатник», 103062 Москва, Лялин пер., 6. Плр № 080102