1. Prove, from first principles, that the derivative of x^3 is $3x^2$	(4)
	(-)

2.	Given that	$y = 2x^2$	
	use differentiation from first principles to sh	now that	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x$	
			(3)

3. $y = \sin x$	
where x is measured in radians.	
Use differentiation from first principles to show that	
$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos x$	
You may	
• use without proof the formula for $sin(A \pm B)$	
• assume that as $h \to 0$, $\frac{\sin h}{h} \to 1$ and $\frac{\cos h - 1}{h} \to 0$	(5)

of $\cos \theta$ is $-\sin \theta$				
You may assume the formula for $\sin(A \pm B)$ and that as $h \to 0$, $\frac{\sin h}{h} \to 1$ and $\frac{\cos h - 1}{h}$				
· · · · · · · · · · · · · · · · · · ·	(5)			