Textless NLP

P. R. Sullivan

UBC NPL-DL, November 18th 2021

Sullivan, Peter Textless November 2021 1/32

Table of Contents

- Overview
- On Generative Spoken Language Modeling from Raw Audio
- Speech Resynthesis from Discrete Disentangled Self-Supervised Representations
- 4 Text-Free Prosody-Aware Generative Spoken Language Modeling

2/32

Motivation

Why a textless NLP system?

NLP neglects languages with no standard written form

Purely spoken systems are closer to natural human communication.

What have been main holdups until now?

Metrics

Models

Sullivan, Peter Textless November 2021 3/32

High Level

Textless NLP is

a three part system...

- speech-to-unit (S2u) [ENCODER]
- unit-based-language model (uLM)
- unit-to-spectrogram (u2S) [DECODER]

that performs four tasks...

- Acoustic Unit Discovery [ABX]
- Spoken Language Modeling [Spot-the-word]
- Speech Generation [AUC-of-VERT/PPX]
- Discrete Resynthesis [ASR-PER]

...enabled by new automatic [metrics for evaluation]

4/32

Table of Contents

- Overview
- 2 On Generative Spoken Language Modeling from Raw Audio
- Speech Resynthesis from Discrete Disentangled Self-Supervised Representations
- 4 Text-Free Prosody-Aware Generative Spoken Language Modeling

Sullivan, Peter Textless November 2021 5/32

On Generative Spoken Language Modeling from Raw Audio [4]

First Paper Main idea

- Overview of entire pipeline
- Introduce two new Metrics (ASR-PER and AUC on Perplexity / VERT)
- Report results with human comparison evaluation

Other two papers focus on LM and Resynthesis in more detail.

Sullivan, Peter Textless November 2021 6/32

Pipeline: S2u

S2u

Models: CPC, wav2vec 2.0, HuBERT all tested.

- Extract frame representation from layer (k) of Model
- k-means clustering discretizian
- "Psuedo-text-units"

and tasks

Metrics: ABX

Metric: ABX

"Is X closer to A or B" = ABX

Work on Triphone level ("Bit" vs "Bet")

Can be done within (same speaker) or across

speakers (must be normalized).

Standard Evaluation set with tools: LibriLite.

Me	S2u			
	Nb	ABX	ABX	
System	units	with.↓	acr.↓	
Toplines				
ASR+LM		-	-	
Baselines				
LogMel	50	23.95	35.86	
LogMel	100	24.33	37.86	
LogMel	200	25.71	39.65	
Unsupervisea	l			
CPC	50	5.50	7.20	
CPC	100	5.09	6.55	
CPC	200	5.18	6.83	
HuBERT-L6	50	7.37	8.61	
HuBERT-L6	100	6.00	7.41	
HuBERT-L6	200	5.99	7.31	
wav2vec-L14	- 50	22.30	24.56	
wav2vec-L14	100	18.16	20.44	
wav2vec-L14	200	16.59	18.69	

Metrics: ABX cont.

What does this look like?

```
#file onset offset #phone prev-phone next-phone speaker
6295-244435-0009 0.2925 0.4725 IH | NG 6295
6295-244435-0009 0.3725 0.5325 NG TH K 6295
6295-244435-0009 0.4325 0.5725 K NG AH 6295
6295-244435-0009 0.4725 0.6125 AH K N 6295
6295-244435-0009 0.5325 0.6925 N AH HH 6295
6295-244435-0009 0.5725 0.7525 HH N AF 6295
6295-244435-0009 0.6125 0.8125 AF HH D 6295
6295-244435-0009 0.6925 0.9125 D AF K 6295
6295-244435-0009 0.7525 1.0125 K D AO 6295
6295-244435-0009 0.8125 1.0725 AO K I 6295
6295-244435-0009 0.9125 1.1125 L AO D 6295
6295-244435-0009 1.0125 1.1925 D | F 6295
6295-244435-0009 1.0725 1.2525 F D ER 6295
6295-244435-0009 1.1125 1.3325 FR F V 6295
```

9/32

Pipeline: uLM

S2u

Models: Transformer LM Big

- Train on pseudo-text-units
- Standard causal LM

10/32

Metrics: Spot-the-Word

Task: Spoken Language Modelling

Metric: Spot-the-Word

Given two one-word wav files: "p(Real Word) > p(Fake Word)"

Standard Dataset: sWUGGY (ENGLISH)

Found to correlate well with ABX

Bottom: Bitrate. Yellow (HuBERT), Red (CPC), Purple (wav2vec), Blue (log-mel)

Pipeline: u2S

u2S

Models: adapted Tacotron-2

- Input psuedo-text-units
- Output log-mel spectrogram
- Trained on LJ Speech
- WaveGlow vocoder

12/32

Metrics: ASR-PER

Task: Speech Resynthesis

Metric: ASR-based Phoneme Error Rate

Idea: "Use a standard phone-ASR model as judge"

Note: domain effect between LJ speech and Librispeech (LS) performance.

G			Б.1.	1.40	D 1 1	
Systems	End-to-end ASR-based metrics					
S2u	Nb	Bit-	PER↓	PER↓	CER↓	$CER\downarrow$
architect.	units	rate	(LJ)	(LS)	(LJ)	(LS)
Toplines						
original wav			-	-	-	-
orig text+TTS			7.78	7.92	8.87	5.14
ASR + TTS	27		9.45	8.18	9.48	5.30
Baselines						
LogMel	50	214.8	27.72	49.38	27.73	52.05
LogMel	100	292.7	25.83	45.58	24.88	48.71
LogMel	200	373.8	19.78	45.16	17.86	46.12
Unsupervised						
CPC	50	159.4	10.87	17.16	10.68	12.06
CPC	100	213.1	10.75	15.82	9.84	9.46
CPC	200	279.4	8.74	14.23	9.20	8.29
HuBERT-L6	50	125.7	11.45	16.68	11.02	11.85
HuBERT-L6	100	168.1	9.53	13.24	9.31	7.19
HuBERT-L6	200	211.3	8.87	11.06	8.88	5.35
wav2vec-L14	50	141.3	24.95	33.69	25.42	32.91
wav2vec-L14	100	182.1	14.58	22.07	13.72	17.22
wav2vec-L14	200	226.8	10.65	16.34	10.21	10.50

Metrics: AUC PPL/VERT

Task: Speech Generation

Metric: AUC on Perplexity and VERT (diVERsiTy)

Pre-trained ASR model to get transcripts

Perplexity: Quality. VERT: How diverse

VERT is geometric mean of self-BLEU and (new) auto-BLEU (ratio of repeated N-grams in an utterance)

Metrics: AUC PPL/VERT cont.

Results

Systems		Generation based metrics						
Encoder	Nb	uı	ncondition	<u>al</u>	prompt			
architect.	units	PPX↓	VERT↓	$AUC\downarrow$	PPX↓	VERT↓	$AUC\downarrow$	
Controls								
oracle text		154.5	19.43	-	154.5	19.43	-	
ASR + LM		178.4	21.31	0.18	162.8	20.49	0.04	
Baseline								
LogMel	50	1588.97	-	1083.76	-	-	-	
LogMel	100	1500.11	95.50	510.26	-	-	-	
LogMel	200	1539.00	-	584.16	-	-	-	
Unsupervised								
CPC	50	374.26	46.26	19.68	323.9	39.92	18.44	
CPC	100	349.56	41.797	15.74	294.7	42.93	14.06	
CPC	200	362.84	40.28	16.46	303.5	43.42	26.67	
HuBERT-L6	50	376.33	43.06	19.27	339.8	45.85	21.03	
HuBERT-L6	100	273.86	31.36	5.54	251.2	33.67	5.88	
HuBERT-L6	200	289.36	33.04	7.49	262.4	34.30	6.13	
wav2vec-L14	50	936.97	-	307.91	1106.3	-	330.8	
wav2vec-L14	100	948.96	79.51	208.38	775.1	-	205.7	
wav2vec-L14	200	538.56	61.06	61.48	585.8	-	91.07	
Sullivan Peter			Textless			Nove	mber 2021	

First Paper Wrap Up

- Complete pipeline Spoken Language Generation
- Test two new metrics (AUC PPL/VERT and ASR-PER), both of which correlate well to human judgement.
- Human preference for large number of k-means units.
- CPC and HuBERT both perform well as encoders
- GSLM with off the shelf parts

16/32

Table of Contents

- Overview
- On Generative Spoken Language Modeling from Raw Audio
- Speech Resynthesis from Discrete Disentangled Self-Supervised Representations
- 4 Text-Free Prosody-Aware Generative Spoken Language Modeling

Sullivan, Peter Textless November 2021 17/32

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations [6]

Second Paper Main idea

- Replaces u2S component with multistream model
- Three streams: pseudo-units, prosody, speaker embedding
- Eliminate log-Mel spectrogram
- Results in high efficiency codec

18/32

Modified Resynthesis

New u2S system

Multi-stream Cascade model:

- (From before) S2u model CPC/Hubert, (New) VQVAE
- (New) Pitch-to-Unit Model (VQVAE)
- (New) Speaker embedding
- (New) Vocoder directly integrated (HiFiGAN)

True "unit to speech" instead of "unit to spectrogram"

19/32

P2u

Pitch-to-unit

- train on F_0 information extracted from way
- shift pitch information T_{n-1}

¹Image credits: [5]

Sullivan, Peter

Speaker Embedding

Speaker Embedding

- Multi-layer LSTM classifier
- d-vector is just the final output
- LSTM uses crossentropy loss

²Image credits: [1]

- 4 ロ b 4 御 b 4 恵 b 4 恵 b - 夏 - 釣 Q (や

Sullivan, Peter Textless

Connected Vocoder

Modified HiFiGAN

- Original: GAN upscale log-Mel spectrogram to wav.
- Modified: units, pitch, embedding instead of spectrogram
- Added: Reconstruction and Feature Matching loss

³Image credits: [3]

Sullivan, Peter Textless

22/32

Results

Dataset	Method	Content		F0		Speaker	Overall Quality	
		PER↓	WER ↓	VDE↓	FFE ↓	EER↓	MOS ↑	
ı	GT	6.93	5.60	-	-	-	4.33±0.20	
IJ	CPC HuBERT VQ-VAE	9.66 9.52 12.77	8.51 6.96 8.85	13.48 13.09 7.19	15.19 15.00 8.54	- - -	3.31±0.33 3.66±0.33 3.66±0.31	
l l	GT	17.16	4.32	-	-	3.25	4.08±0.66	
VCTK	CPC HuBERT VQ-VAE	23.01 19.66 31.97	14.49 11.44 19.80	10.56 9.77 5.20	11.13 10.43 5.59	4.25 5.79 4.28	3.33±0.61 3.41±0.66 3.39±0.58	

4 □ ト 4 個 ト 4 差 ト 4 差 ト 9 へ (?)

Sullivan, Peter Textless November 2021 23/32

Results cont.

Dataset Method		Voice Conversion				F0 Manipulation		
		PER↓	WER↓	EER↓	MOS ↑	$\ $	VDE↑	FFE↑
VCTK	GT	17.16	4.32	3.25	4.11±0.29	$\ $	-	-
LJ	CPC HuBERT VQ-VAE	22.22 19.09 40.88	16.11 12.23 36.96	0.46 0.31 9.65	3.57±0.15 3.71±0.24 2.90±0.17	- 11	46.68 39.20 10.54	48.71 48.42 12.08
VCTK	CPC HuBERT VQ-VAE	23.58 20.85 36.88	15.98 12.72 29.44	4.83 6.01 11.56	3.42 ± 0.24 3.58 ± 0.28 3.08 ± 0.34	:	25.29 23.46 7.03	26.97 26.67 7.80

24/32

Results cont.

Second Paper Wrap Up

- Multistream!
- Elimination of log-mel step
- Evaluate Codec performance

26/32

Table of Contents

- Overview
- On Generative Spoken Language Modeling from Raw Audio
- Speech Resynthesis from Discrete Disentangled Self-Supervised Representations
- 4 Text-Free Prosody-Aware Generative Spoken Language Modeling

Sullivan, Peter Textless November 2021 27/32

Text-Free Prosody-Aware Generative Spoken Language Modeling [2]

Final Paper Main idea

LMing now with Prosody!

- Replaces uLM with multistream transformer
- Three streams: pseudo-units, prosody, speaker embedding
- New Prosody quantization speaker-mean normalized log F0

Sullivan, Peter Textless November 2021 28/32

Modified uLM

New uLM system

Multi-stream Transformer model Note: Time delay of prosody and embedding

| □ ▶ ◀┛ ▶ ◀돌 ▶ ◀돌 ▶ · 돌 · 쒸익⊙

Prosody Quantization

Speaker-mean normalized log F0

"ratio to the mean pitch in the log space"

Sullivan, Peter Textless November 2021 30/32

References I

- [1] Heigold, G., Moreno, I., Bengio, S., and Shazeer, N. End-to-end text-dependent speaker verification. In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2016), IEEE, pp. 5115–5119.
- [2] Kharitonov, E., Lee, A., Polyak, A., Adi, Y., Copet, J., Lakhotia, K., Nguyen, T.-A., Rivière, M., Mohamed, A., Dupoux, E., et al. Text-free prosody-aware generative spoken language modeling. arXiv preprint arXiv:2109.03264 (2021).
- [3] Kong, J., Kim, J., and Bae, J. Hifi-gan: Generative adversarial networks for efficient and high fidelity speech synthesis. arXiv preprint arXiv:2010.05646 (2020).

40.40.41.41.1.000

Sullivan, Peter Textless November 2021 31/32

References II

- [4] LAKHOTIA, K., KHARITONOV, E., HSU, W.-N., ADI, Y., POLYAK, A., BOLTE, B., NGUYEN, T.-A., COPET, J., BAEVSKI, A., MOHAMED, A., ET AL. Generative spoken language modeling from raw audio. arXiv preprint arXiv:2102.01192 (2021).
- [5] OORD, A. v. D., VINYALS, O., AND KAVUKCUOGLU, K. Neural discrete representation learning. arXiv preprint arXiv:1711.00937 (2017).
- [6] POLYAK, A., ADI, Y., COPET, J., KHARITONOV, E., LAKHOTIA, K., HSU, W.-N., MOHAMED, A., AND DUPOUX, E. Speech resynthesis from discrete disentangled self-supervised representations.
 arXiv preprint arXiv:2104.00355 (2021).

4 D > 4 D > 4 E > 4 E > E 9 Q C