

Wi-Fi 6/6E

Department of Computer Science

Student ID: 111062656

Name: 許芷毓

Outline

- Introduction
- Wi-Fi SPEC
- **Technology Analysis**
- **Industry Analysis**
- Conclusion
- Reference

Introduction

History

Wi-Fi generations

Generation	IEEE standard	Maximum throughput	Adopted	Radio frequency GHZ
Wi-Fi <i>"0"*</i>	802.11	2Mbit/s	1997	2.4
Wi-Fi "1"*	802.11b	11Mbit/s	1999	2.4
Wi Fi "2"*	802.11a	54Mbit/s	1999	5
Wi-Fi "3"*	802.11g	54Mbit/s	2003	2.4
Wi-Fi 4	802.11n	600Mbit/s	2008	2.4/5
Wi-Fi 5	802.11ac	6.8Gbit/s	2014	5
Wi-Fi 6	802.11ax	10Gbit/s	2019	2.4/5
Wi-Fi 6E	802.11ax	10Gbit/s	2020	6
Wi-Fi 7	802.11be	46Gbit/s	2024	1–7.25 (2.4/5/6)

^{*}non-official designation

Outline

- Introduction
- Wi-Fi SPEC
- **Technology Analysis**
- **Industry Analysis**
- Conclusion
- Reference

Wi-Fi SPEC

■ Wi-Fi comparison

	Wi-Fi 5	Wi-Fi 6	Wi-Fi 6E
Operating bands	5 GHz	2.4 GHz, 5 GHz	6 GHz
Modulation scheme	OFDM	OFDMA	OFDMA
Channel width	20 MHz, 40 MHz, 80 MHz, 160 MHz	20 MHz, 40 MHz, 80 MHz, 160 MHz	20 MHz, 40 MHz, 80 MHz, 160 MHz
Highest modulation	256-QAM	1024-QAM	1024-QAM
MIMO streams	Up to 8x8	Up to 8x8	Up to 8x8
MU-MIMO	Downlink MU-MIMO	Downlink and Uplink-MU-MIMO	Downlink and Uplink-MU-MIMO
Target Wake Time (TWT)	No	Yes	Yes
BSS Coloring	No	Yes	Yes
Extended Range Improvements	No	Yes	Yes

Outline

- Introduction
- Wi-Fi SPEC
- **Technology Analysis**
- **Industry Analysis**
- Conclusion
- Reference

Technology Analysis

- Frequency Band: 2.4 GHz, 5 GHz and 6 GHz(Wi-Fi 6E)
- Modulation: 1024-QAM
- Modulation scheme: OFDMA
- MU-MIMO
- Basic Service Set (BSS) Coloring
- **Target Wake Time (TWT) Battery life**
- Security: WPA3

Frequency Band

■ 2.4 GHz

■ 5 GHz (DFS, Dynamic Frequency Selection)

Frequency Band

6 GHz Channels in United States & Europe/CEPT

Frequency Band

Modulation

256-QAM vs. 1024-QAM

- Bits per symbol: From 8 bit to 10 bit
- Increasing the data throughput of a single spatial stream by 25%

Modulation scheme

■ OFDM vs. OFDMA

OFDMA

■ Subcarrier Size

802.11ax subcarriers

RU type	20 MHz BW	40 MHz BW	80 MHz BW	80+80/160 MHz BW
26-tone RU	9	18	37	74
52-tone RU	4	8	16	32
106-tone RU	2	4	8	16
242-tone RU	1	2	4	8
484-tone RU	N/A	1	2	4
996-tone RU	N/A	N/A	1	2
2x996-tone RU	N/A	N/A	N/A	1

OFDMA allows subcarriers in a channel bandwidth to be grouped into smaller portions called "Resource Units" (RU).

OFDMA

For example:

6edge + 1 + 26 + 26 + 1 + 26 + 26 + 13 + 7DC + 13 + 26 + 26 + 1 + 26 + 26 + 1 + 5edge = 256

MU-MIMO

Single-User MIMO

Serves one device at a time

Multi-User MIMO

Multi-user beamforming (MUBF) serves multiple devices simultaneously

OFDMA vs. MU-MIMO

OFDMA and MU-MIMO

OFDMA

- OFDMA increases efficiency
- OFDMA reduces latency
- Ideal for low-bandwidth applications

MU-MIMO

- MU-MIMO increases capacity
- MU-MIMO results in higher speeds per user
- · Ideal for high-bandwidth applications

MU-MIMO is similar to multiple trucks serving users simultaneously

Basic Service Set (BSS) Coloring

■ Basic Service Set (BSS) Coloring

RESOURCE SCHEDULING SIGNIFICANTLY IMPROVES DEVICE BATTERY LIFE

TWT: Target Wake Time

- AP and devices negotiate and define a specific times to access the medium
- Reduced contention and overlap between users
- Significantly increases the device sleep time to reduce power consumption

Outline

- Introduction
- Wi-Fi SPEC
- **Technology Analysis**
- **Industry Analysis**
- Conclusion
- Reference

Industry Analysis

■ Smartphones with Wi-Fi 6 (2019) Compatibility

		Smartphones	Date
	Samsung Galaxy	S10, S10+, S10e	March 2019
5C ->	iPhone	11 Series	September 2019
5G →	Xiaomi	Mi 10 5G, Mi 10 Pro 5G	February 2020
	Vivo	iQOO 3 5G	February 2020
	Sony Xperia	1 II	February 2020
	Realme	X50 Pro 5G	February 2020
	LG	V60 ThinQ 5G	March 2020
	OnePlus	8, 8 Pro	April 2020
	Motorola	Edge Plus	May 2020
	ASUS	ROG Phone 3, Phone 3 Strix	July 2020
	Google	Pixel 6 and 6 Pro	October 2021

Wi-Fi 6 Router SPEC

IPQ8071

Specifications

CPU: Qualcomm IPQ8071 (optional IPQ8072/IPQ8070) 2.4 AX Chip: Qualcomm 2X2; SINGLE-BAND; 802.11AX QCN5024 5GHZ AX Chip: Qualcomm 4X4; SINGLE-BAND; 802.11AX QCN5054
5GHZ AX Chip: Qualcomm 4X4; SINGLE-BAND; 802.11AX QCN5054
Ethernet 5 Giga port switch: Qualcomm QCA8075
Power management: PMP8074
Default DDR3-2400 512Mbyte
Default 256Mbyte
1x 3G/4G/5G M.2 Module with SIM card
1* WAN 1000M with POE PD 25W Support (802.3at & af standard)
3* LAN Giga Ethernet RJ45 Port
1x SIM Card Slot
Yes
1x DC Jack Connector: 12V@2A
20 Watt (Max)
OpenWRT or Qualcomm QSDK which includes Uboot, Kernel and Tool Chain
Temperature: Operating: -20°C to 85°C, Storage: -40°C to 90°C
Humidity (non-condensing): Operating: 5% to 95%, Storage: Max. 90%
Dimensions: 155 x 120 x 16 mm

Wi-Fi 6 Router

■ IPQ8071 WIFI 11AX PHY rate: 2402 Mbps (5 GHz) and 574 Mbps (2.4 GHz), enabling an AX3000 product.

Figure 1-1 IPQ8071 functional block diagram

- 5 GHz: SU-MIMO (4ss, 1 user), DL MU-MIMO (4ss, 4 users), DL-OFDMA (8 users)
- 2.4 GHz: SU-MIMO (2ss, 1 user), DL MU-MIMO (2ss, 2 users), DL-OFDMA (8 users)

Curious as to what countries have actually adopted the new Wi-Fi 6E / 6 GHz frequency spectrum?

- Adopted 5925-6425 MHz
- Adopted 5925-7125 MHz
- Considering 5925-6425 MHz
- Considering 5925-7125 MHz
- Adopted 5925-6425 MHz, Considering 6425-7125 MHz

Source: Wi-Fi Alliance | Nations Adopting Wi-Fi 6E / 6 GHz

STRENGHTS

- Higher Date rate
- Lower Latency
- Energy-Saving
- Enhanced security
- Not crowded 6 GHz

WEAKNESSES

For customer

- Higher price
- To Upgrade is complicated Wi-Fi 6E
- 6 GHz band is not allowed in some countries yet

OPORTUNITIES

- eSports
- IoT

THREATS

• Wi-Fi 7 (2024)

Outline

- **Introduction**
- Wi-Fi SPEC
- **Technology Analysis**
- **Industry Analysis**
- Conclusion
- Reference

Conclusion

- Wi-Fi is a mature technology. Its development strategies are clear.
 - Lower Latency
 - Higher Throughputs
 - Increasing Access Point Capacity
- Features of Wi-Fi 6/6E
 - 1024-QAM
 - MU-MIMO
 - OFDMA
 - TWT
 - BSS Coloring
 - WPA3
 - 6GHz (Wi-Fi 6E)
- Wi-Fi 7 is coming. Users might choose Wi-Fi 7 instead of Wi-Fi 6E.
 - Wi-Fi 6E acts as a bridge between Wi-Fi 6 and Wi-Fi 7

Reference

- https://en.wikipedia.org/wiki/Wi-Fi
- https://www.blog.adva.com/en/wi-fis-continuing-evolution-or-revolution
- https://www.wevolver.com/article/the-evolution-of-wi-fi-networks-from-ieee-80211-to-wi-fi-6e
- https://www.alibaba.com/product-detail/WiFi-6-Router-IPQ8071-Enterprise-Wireless 1600200192970.html
- https://www.semanticscholar.org/paper/Revisiting-Wireless-Internet-Connectivity%3A-5G-vs-6-Oughton-Lehr/1eae0baff29f258cf5846eda5e101d7499c69fb7
- http://www.technical-direct.com/wi-fi-6-new-tech/
- https://www.arubanetworks.com/zh-hant/faq/what-is-wi-fi-6e/
- https://www.qorvo.com/design-hub/blog/80211ax-5-things-to-know
- https://www.asus.com/tw/support/FAQ/1042759/
- https://www.litepoint.com/wp-content/uploads/2020/06/Wi-Fi-6E-Whitepaper-060220-web.pdf
- https://www.rfvenue.com/blog/2014/12/15/comparing-uhf-and-24-ghz-wireless-microphones
- https://www.wi-fi.org/knowledge-center/faq/what-is-dynamic-frequency-selection-dfs
- https://www.wirelessinnovation.org/assets/Webinar_Slides/Spectrum_Sharing_Deep_Dive/Lukaszewski%20-%206%20GHz%20Band%20Overview%20-%20WInnForum%20Spectrum%20Sharing%20Workshop.pdf
- http://www.danets.com/turbotenna/WiFi6.php
- https://www.pcmarket.com.hk/wifi-6%E6%96%B0%E5%88%B6%E5%BC%8F%E9%9D%A2%E4%B8%96-%E8%B6%85%E7%B0%A1%E5%96%AE%E8%AC%9B%E8%A7%A3%E8%83%8C%E5%BE%8C802-11ax%E6%8A%80%E8%A1%93/
- https://blogs.cisco.com/networking/wi-fi-6-ofdma-resource-unit-ru-allocations-and-mappings
- https://www.extremenetworks.com/extreme-networks-blog/ofdm-and-ofdma-subcarriers-what-are-the-differences/
- https://www.wpgdadatong.com/tw/blog/detail/46372

