Introducción sobre partículas elementales

Partículas elementales

Las tres generacioness de la Materia (Fermiones)

Quarkos ligeros

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

$$m_u = 2.3^{+0.7}_{-0.5} \text{ MeV}$$

 $m_u/m_d = 0.38-0.58$

$$m_u = 2.3^{+0.7}_{-0.5} \text{ MeV}$$
 Charge $= \frac{2}{3} e I_z = +\frac{1}{2}$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

$$m_d = 4.8^{+0.7}_{-0.3} \; \text{MeV}$$
 Charge $= -\frac{1}{3} \; e$ $I_z = -\frac{1}{2} \; m_s/m_d = 17$ –22 $\overline{m} = (m_u + m_d)/2 = 3.2$ –4.4 MeV

$$I(J^P) = 0(\frac{1}{2}^+)$$

 $m_s = 95 \pm 5 \text{ MeV}$ Charge $= -\frac{1}{3} e \text{ Strangeness} = -1$ $m_s / ((m_u + m_d)/2) = 27 \pm 1$

Quarkos pesados

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$m_c = 1.275 \pm 0.025 \text{ GeV}$$

$$m_c = 1.275 \pm 0.025 \text{ GeV}$$
 Charge $= \frac{2}{3} e$ Charm $= +1$

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$Charge = -\frac{1}{3} e \qquad Bottom = -1$$

Bottom
$$= -1$$

$$m_b(\overline{\rm MS}) = 4.18 \pm 0.03 \text{ GeV}$$

 $m_b(1S) = 4.65 \pm 0.03 \text{ GeV}$

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$Charge = \frac{2}{3} e \qquad Top = +1$$

$$\mathsf{Top} = +1$$

Mass (direct measurements) $m=173.5\pm0.6\pm0.8$ GeV $^{[a,b]}$ Mass ($\overline{\text{MS}}$ from cross-section measurements) $m = 160^{+5}_{-4}$ GeV [a] $m_t - m_{\overline{t}} = -1.4 \pm 2.0 \text{ GeV} \quad (S = 1.6)$ Full width $\Gamma = 2.0^{+0.7}_{-0.6}$ GeV $\Gamma(Wb)/\Gamma(Wq(q=b, s, d)) = 0.91 \pm 0.04$

Top quark

Mass (direct measurements) $m={}^{\rm Jet}\!73.5\pm0.6\pm0.8$ GeV ${}^{[a,b]}$ Mass ($\overline{\rm MS}$ from cross-section measurements) $m=160^{+5}_{-4}$ GeV ${}^{[a]}$ $m_t-m_{\overline t}=-1.4\pm2.0$ GeV $({\rm S}=1.6)$ Full width $\Gamma=2.0^{+0.7}_{-0.6}$ GeV $\Gamma(W\,b)/\Gamma(W\,q(q=b,\,s,\,d))=0.91\pm0.04$

Leptones electron

e

$$J=\frac{1}{2}$$

Mass
$$m=(548.57990946\pm0.00000022)\times10^{-6}$$
 u Mass $m=0.510998928\pm0.000000011$ MeV $\left|m_{e^+}-m_{e^-}\right|/m<8\times10^{-9},\ {\rm CL}=90\%$ $\left|q_{e^+}+q_{e^-}\right|/e<4\times10^{-8}$ Magnetic moment anomaly $(g-2)/2=(1159.65218076\pm0.00000027)\times10^{-6}$ $(g_{e^+}-g_{e^-})/g_{\rm average}=(-0.5\pm2.1)\times10^{-12}$ Electric dipole moment $d<10.5\times10^{-28}$ ecm, ${\rm CL}=90\%$

Mean life $\tau > 4.6 \times 10^{26}$ yr, CL = 90% [a]

Leptones, muon

 $\boldsymbol{\mu}$

$$J=\frac{1}{2}$$

Mass $m=0.1134289267\pm0.0000000029$ u Mass $m=105.6583715\pm0.0000035$ MeV Mean life $\tau=(2.1969811\pm0.0000022)\times10^{-6}$ s $\tau_{\mu^+}/\tau_{\mu^-}=1.00002\pm0.00008$ $c\tau=658.6384$ m Magnetic moment anomaly $(g-2)/2=(11659209\pm6)\times10^{-10}$ ($g_{\mu^+}-g_{\mu^-}$) / $g_{\rm average}=(-0.11\pm0.12)\times10^{-8}$ Electric dipole moment $d=(-0.1\pm0.9)\times10^{-19}$ e cm

μ^- DECAY MODES	Fraction (Γ_i/Γ) Co	nfidence level (MeV/c)
$e^-\overline{\nu}_e\nu_\mu$	pprox 100%	53
$e^-\overline{ u}_e u_\mu\gamma$	[d] $(1.4\pm0.4)\%$	53
$e^-\overline{\nu}_e \nu_\mu e^+e^-$	[e] $(3.4\pm0.4)\times10^{-5}$	53

Leptones, tau

au

$$J=\frac{1}{2}$$

Mass
$$m=1776.82\pm0.16$$
 MeV $(m_{\tau^+}-m_{\tau^-})/m_{\rm average}<2.8\times10^{-4},~{\rm CL}=90\%$ Mean life $\tau=(290.6\pm1.0)\times10^{-15}$ s $c\tau=87.11~\mu{\rm m}$ Magnetic moment anomaly >-0.052 and $<0.013,~{\rm CL}=95\%$ ${\rm Re}(d_{\tau})=-0.220$ to $0.45\times10^{-16}~{\rm e\,cm},~{\rm CL}=95\%$ ${\rm Im}(d_{\tau})=-0.250$ to $0.0080\times10^{-16}~{\rm e\,cm},~{\rm CL}=95\%$

Neutrinos

•	Fermion	Symbol	Mass	
•	Generation 1			
•	Electron neutrino	V_{e}	< 2.2 eV	
•	Electron antineutrino	V_{e}	< 2.2 eV	
•	Generation 2			
•	Muon neutrino	V_{μ}	_ < 170 keV	
•	Muon antineutrino	${ m V}_{\mu}$	< 170 keV	
• Generation 3				
•	Tau neutrino	V_{τ}	- < 15.5 MeV	
•	Tau antineutrino	$V_{ au}$	< 15.5 MeV	

$$\begin{array}{l} p, \ N^+ = uud; \qquad \qquad I(J^P) = \frac{1}{2}(\frac{1}{2}^+) \\ \text{Mass } m = 1.00727646681 \pm 0.00000000009 \text{ u} \\ \text{Mass } m = 938.272046 \pm 0.000021 \text{ MeV} \tiny{[a]} \\ |m_p - m_{\overline{p}}|/m_p < 2 \times 10^{-9}, \text{ CL} = 90\% \tiny{[b]} \\ |\frac{q_{\overline{p}}}{m_p}|/(\frac{q_p}{m_p}) = 0.99999999991 \pm 0.000000000009 \\ |q_p + q_{\overline{p}}|/e < 2 \times 10^{-9}, \text{ CL} = 90\% \tiny{[b]} \\ |q_p + q_e|/e < 1 \times 10^{-21} \tiny{[c]} \\ \text{Magnetic moment } \mu = 2.792847356 \pm 0.000000023 \ \mu_N \\ (\mu_p + \mu_{\overline{p}}) \ / \ \mu_p = (-0.1 \pm 2.1) \times 10^{-3} \\ \text{Electric dipole moment } d < 0.54 \times 10^{-23} \tiny{ecm} \\ \text{Electric polarizability } \alpha = (12.0 \pm 0.6) \times 10^{-4} \tiny{fm}^3 \\ \text{Magnetic polarizability } \beta = (1.9 \pm 0.5) \times 10^{-4} \tiny{fm}^3 \\ \text{Charge radius} = 0.877 \pm 0.005 \tiny{fm} \\ \text{Magnetic radius} = 0.777 \pm 0.016 \tiny{fm} \\ \text{Mean life } \tau > 2.1 \times 10^{29} \tiny{years, CL} = 90\% \tiny{[d]} \quad (p \rightarrow \tiny{invisible mode)} \\ \text{Mean life } \tau > 10^{31} \tiny{to} 10^{33} \tiny{years} \tiny{[d]} \quad (\text{mode dependent)} \end{array}$$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Mass $m = 1.0086649160 \pm 0.0000000004$ u Mass $m = 939.565379 \pm 0.000021$ MeV [a] $(m_n - m_{\overline{n}})/m_n = (9 \pm 6) \times 10^{-5}$ $m_n - m_p = 1.2933322 \pm 0.0000004 \text{ MeV}$ = 0.00138844920(46) uMean life $\tau = 880.1 \pm 1.1 \text{ s}$ (S = 1.8) $c\tau = 2.6383 \times 10^8 \text{ km}$

Magnetic moment $\mu = -1.9130427 \pm 0.0000005 \; \mu_{ extsf{N}}$

n DECAY MODES

100

Fraction (Γ_i/Γ) Confidence level (MeV/c)

$$pe^-\overline{\nu}_e$$
 $pe^-\overline{\nu}_e\gamma$

[*j*]
$$(3.09\pm0.32)\times10^{-3}$$

Charge conservation (Q) violating mode

$$p\nu_e\overline{\nu}_e$$

$$\times 10^{-27}$$

 $N(1440) 1/2^{+}$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Breit-Wigner mass = 1420 to 1470 (\approx 1440) MeV Breit-Wigner full width =200 to 450 (≈ 300) MeV $p_{\rm beam} = 0.61 \; {\rm GeV}/c \qquad 4\pi \dot{\chi}^2 = 31.0 \; {\rm mb}$ Re(pole position) = 1350 to 1380 (\approx 1365) MeV $-2 \text{Im}(\text{pole position}) = 160 \text{ to } 220 \ (\approx 190) \text{ MeV}$

N(1440) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	55–75 %	398
$N\eta$	$(0.0 \pm 1.0) \%$	†
$N\pi\pi$	30-40 %	347
$\Delta \pi$	20–30 %	147
$\mathit{\Delta}(1232)\pi$, $\mathit{P} ext{-}wave$	15–30 %	147
$N\rho$	<8 %	†
$N\rho$, $S=1/2$, P -wave	$(0.0 \pm 1.0) \%$	†
$N(\pi\pi)_{S-\text{wave}}^{I=0}$	10-20 %	_
$p\gamma$	0.035-0.048 %	414
$p\gamma$, helicity=1/2	0.035-0.048 %	414
$n\gamma$	0.02-0.04 %	413
$n\gamma$, helicity=1/2	0.02-0.04 %	413

\triangle BARYONS (S=0, I=3/2)

$$\Delta^{++}=uuu$$
, $\Delta^{+}=uud$, $\Delta^{0}=udd$, $\Delta^{-}=ddd$

$$\Delta$$
(1232) 3/2⁺

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$$

```
Breit-Wigner mass (mixed charges) = 1230 to 1234 (\approx 1232) MeV Breit-Wigner full width (mixed charges) = 114 to 120 (\approx 117) MeV
```

$$p_{\rm beam}=0.30~{
m GeV}/c$$
 $4\pi\lambda^2=94.8~{
m mb}$ Re(pole position) = 1209 to 1211 (\approx 1210) MeV $-2{
m Im}({
m pole position})=98$ to 102 (\approx 100) MeV

△(1232) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	100 %	229
$N\gamma$	0.55-0.65 %	259

Λ BARYONS (S=-1, I=0)

$$\Lambda^0 = uds$$

$$I(J^P) = 0(\frac{1}{2}^+)$$

```
Mass m=1115.683\pm0.006 MeV (m_{\Lambda}-m_{\overline{\Lambda}})\ /\ m_{\Lambda}=(-0.1\pm1.1)\times 10^{-5} (S = 1.6) Mean life \tau=(2.632\pm0.020)\times 10^{-10} s (S = 1.6)
```

A DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$p\pi^-$	$(63.9 \pm 0.5)\%$	101
$n\pi^0$	$(35.8 \pm 0.5)\%$	104
$n\gamma$	$(1.75\pm0.15)\times10^{-3}$	162
$p\pi^-\gamma$	[/] (8.4 ± 1.4) \times 10 ⁻⁴	101
$pe^-\overline{\nu}_e$	$(8.32\pm0.14)\times10^{-4}$	163
$p\mu^-\overline{ u}_{\mu}$	$(1.57\pm0.35)\times10^{-4}$	131

CHARMED BARYONS

$$(C = +1)$$

$$\begin{array}{lll} \Lambda_c^+ = udc, & \Sigma_c^{++} = uuc, & \Sigma_c^+ = udc, & \Sigma_c^0 = ddc, \\ \Xi_c^+ = usc, & \Xi_c^0 = dsc, & \Omega_c^0 = ssc \end{array}$$

 Λ_c^+

$$I(J^P) = 0(\frac{1}{2}^+)$$

J is not well measured; $\frac{1}{2}$ is the quark-model prediction.

Mass
$$m = 2286.46 \pm 0.14$$
 MeV
Mean life $\tau = (200 \pm 6) \times 10^{-15}$ s (S = 1.6)

BOTTOM BARYONS

$$(B=-1)$$

$$\Lambda_b^0=u\,d\,b,\,\Xi_b^0=u\,s\,b,\,\Xi_b^-=d\,s\,b,\,\Omega_b^-=s\,s\,b$$

 Λ_b^0

$$I(J^P) = 0(\frac{1}{2}^+)$$

 $I(J^P)$ not yet measured; $0(\frac{1}{2}^+)$ is the quark model prediction. Mass $m=5619.4\pm0.7$ MeV $m_{\Lambda^0_b}-m_{B^0}=339.2\pm1.4$ MeV $m_{\Lambda^0_b}-m_{B^+}=339.7\pm0.7$ MeV Mean life $\tau=(1.425\pm0.032)\times10^{-12}$ s

Σ BARYONS

$$(S=-1, I=1)$$

$$\Sigma^+ = uus$$
, $\Sigma^0 = uds$, $\Sigma^- = dds$

$$I(J^P) = 1(\frac{1}{2}^+)$$

Mass $m=1189.37\pm0.07$ MeV (S = 2.2) Mean life $\tau=(0.8018\pm0.0026)\times10^{-10}$ s

Σ ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)
$p\pi^0$	(51.57±0.30) %		189
$n\pi^+$	$(48.31\pm0.30)\%$		185
$p\gamma$	$(1.23\pm0.05) \times$	10^{-3}	225
$n\pi^+\gamma$	[/] (4.5 \pm 0.5) \times	10^{-4}	185
$\Lambda e^+ \nu_e$	($2.0~\pm0.5$) $ imes$	10^{-5}	71

$$\Omega$$
 BARYONS $(S=-3, I=0)$

$$\Omega^- = sss$$

 Ω^{-}

 $\Lambda \pi^-$

$$I(J^P) = 0(\frac{3}{2}^+)$$

449

 $J^P = \frac{3}{2}^+$ is the quark-model prediction; and J = 3/2 is fairly well established.

Mass
$$m=1672.45\pm0.29~{\rm MeV}$$
 $(m_{\Omega^-}-m_{\overline{\Omega}^+})~/~m_{\Omega^-}=(-1\pm8)\times10^{-5}$ Mean life $\tau=(0.821\pm0.011)\times10^{-10}~{\rm s}$

	(3.322 = 3.322) / 23		
$\Omega^{=}$ decay modes	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)
ΛK^-	(67.8±0.7) %		211
$\equiv^0\pi^-$	(23.6 ± 0.7) %		294
$\Xi^-\pi^0$	(8.6±0.4) %		289
$\Xi^-\pi^+\pi^-$	$(3.7^{+0.7}_{-0.6}) \times 10^{-1}$	-4	189
$\Xi(1530)^0\pi^-$	< 7 × 10	-5 90%	17
$\equiv^0 e^- \overline{\nu}_e$	$(5.6\pm2.8)\times10^{-1}$	-3	319
$\Xi^-\gamma$	< 4.6 × 10	-4 90%	314
1	$\Delta S = 2$ forbidden (S2) modes		

S2 < 2.9

$$\Omega_c^0$$

$$I(J^P) = 0(\frac{1}{2}^+)$$

 ${\it J}^{\it P}$ has not been measured; $\frac{1}{2}^+$ is the quark-model prediction.

Mass
$$m=2695.2\pm1.7$$
 MeV (S $=1.3$)
Mean life $au=(69\pm12)\times10^{-15}$ s $c au=21~\mu{\rm m}$

No absolute branching fractions have been measured.

Ω_c^0 DECAY MODES	Fraction (Γ_i/Γ)	$p \; (\text{MeV}/c)$
$\Sigma^+ K^- K^- \pi^+$	seen	689
$\Xi^0 K^- \pi^+$	seen	901
$\Xi^-K^-\pi^+\pi^+$	seen	830
$\Omega^- e^+ \nu_e$	seen	829
$\Omega^-\pi^+$	seen	821
$\Omega^-\pi^+\pi^0$	seen	797
$\Omega^-\pi^-\pi^+\pi^+$	seen	753

LIGHT UNFLAVORED MESONS

$$(S=C=B=0)$$

For
$$I=1$$
 (π, b, ρ, a) : $u\overline{d}$, $(u\overline{u}-d\overline{d})/\sqrt{2}$, $d\overline{u}$; for $I=0$ $(\eta, \eta', h, h', \omega, \phi, f, f')$: $c_1(u\overline{u}+d\overline{d})+c_2(s\overline{s})$

$$\pi^{\pm}$$

$$I^{G}(J^{P}) = 1^{-}(0^{-})$$

Mass $m=139.57018\pm 0.00035$ MeV (S = 1.2) Mean life $\tau=(2.6033\pm 0.0005)\times 10^{-8}$ s (S = 1.2)

π ⁺ DECAY MODES	F	raction (Γ	i/Γ	Confidence level	(MeV/c)
$\mu^+ \nu_{\mu}$	[<i>b</i>]	(99.9877	0 ± 0.0000	04) %	30
$\mu^{\dot{+}} \nu_{\mu} \gamma$	[c]	(2.00	± 0.25	$) \times 10^{-4}$	30
$e^+ \nu_e$	[<i>b</i>]	(1.230	± 0.004	$) \times 10^{-4}$	70
$e^+ \nu_e \gamma$	[c]	(7.39	± 0.05	$) \times 10^{-7}$	70
$e^{+}\nu_{e}\pi^{0}$		(1.036	± 0.006	$) \times 10^{-8}$	4
$e^{+}\nu_{e}e^{+}e^{-}$		(3.2	± 0.5	$) \times 10^{-9}$	70
$e^+ \nu_e \nu \overline{\nu}$		< 5		$\times 10^{-6} 90\%$	70

$$\pi^{\mathbf{0}}$$

$$I^{G}(J^{PC}) = 1^{-}(0^{-+})$$

Mass
$$m=134.9766\pm0.0006$$
 MeV (S = 1.1) $m_{\pi^\pm}-m_{\pi^0}=4.5936\pm0.0005$ MeV Mean life $\tau=(8.52\pm0.18)\times10^{-17}$ s (S = 1.2)

π^0 DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)
2γ	(98.823±0.034) %	S=1.5	67
$e^+e^-\gamma$	$(1.174 \pm 0.035)\%$	S=1.5	67

 η

$$I^G(J^{PC}) = 0^+(0^{-+})$$

Mass $m=547.853\pm0.024$ MeV Full width $\Gamma=1.30\pm0.07$ keV

neutral modes

 $(71.91\pm0.34)\%$

charged modes

 $(28.10\pm0.34)\%$

 ρ (770) [h]

 $\pi\pi$

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

Mass $m=775.49\pm0.34$ MeV Full width $\Gamma=149.1\pm0.8$ MeV

 \sim 100

%

 $\omega(782)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=782.65\pm0.12$ MeV (S = 1.9) Full width Γ = 8.49 ± 0.08 MeV $\pi^+\pi^-\pi^0$ (89.2 ±0.7)% $\pi^0\gamma$ (8.28±0.28)%

STRANGE MESONS

$$(S = \pm 1, C = B = 0)$$

 $K^+ = u\overline{s}$, $K^0 = d\overline{s}$, $\overline{K}^0 = \overline{d}s$, $K^- = \overline{u}s$, similarly for K^* 's

$$I(J^P) = \frac{1}{2}(0^-)$$

```
Mass m=493.677\pm0.016 MeV ^{[t]} (S = 2.8)

Mean life \tau=(1.2380\pm0.0021)\times10^{-8} s (S = 1.9)

\mu^+\nu_\mu ( 63.55\pm0.11 ) %

\pi^0\,e^+\nu_e ( 5.07\pm0.04 ) %

\pi^0\,\mu^+\nu_\mu ( 3.353\pm0.034) %

\pi^+\pi^0 ( 20.66\pm0.08 ) %

\pi^+\pi^0\pi^0 ( 1.761\pm0.022) %

\pi^+\pi^+\pi^- ( 5.59\pm0.04 ) %
```

K₅

$$I(J^P) = \frac{1}{2}(0^-)$$

Mean life $\tau=(0.8954\pm0.0004)\times10^{-10}$ s (S=1.1) Assuming *CPT* Mean life $\tau=(0.89564\pm0.00033)\times10^{-10}$ s Not assuming *CPT*

 K_L^0

$$I(J^P) = \frac{1}{2}(0^-)$$

```
m_{K_L} - m_{K_S} = (0.5293 \pm 0.0009) \times 10^{10} \ \hbar \ s^{-1} (S = 1.3) Assuming CPT = (3.484 \pm 0.006) \times 10^{-12} \ \text{MeV} Assuming CPT = (0.5289 \pm 0.0010) \times 10^{10} \ \hbar \ s^{-1} Not assuming CPT Mean life \tau = (5.116 \pm 0.021) \times 10^{-8} \ s (S = 1.1)
```