

Mechanics of Materials I: Fundamentals of Stress & Strain and Axial Loading

Dr. Wayne Whiteman Senior Academic Professional and Director of the Office of Student Services Woodruff School of Mechanical Engineering

Module 31 Learning Outcome

 Derive the strain transformation equations for the case of plane strain (continued)

Plane Strain

In general, \mathcal{E}_x , \mathcal{E}_y , and $\gamma_{xy} = \gamma_{yx}$ are known or can be found

Georgia

Find: ε_n, γ_n for any angle θ **Normal Strain Transformation Equation**

Using Law of Cosines, Geometry, and Trig Identities

$$\varepsilon_n = \varepsilon_x \cos^2 \theta + \varepsilon_y \sin^2 \theta + \gamma_{xy} \sin \theta \cos \theta$$

$$\varepsilon_n = \frac{\varepsilon_x + \varepsilon_y}{2} + \frac{\varepsilon_x - \varepsilon_y}{2} \cos 2\theta + \frac{\gamma_{xy}}{2} \sin 2\theta$$

Plane Strain

In general, \mathcal{E}_{x} , \mathcal{E}_{y} , and $\gamma_{xy}=\gamma_{yx}$ are known or can be found

Georgia Tech

Find: ε_n, γ_n for any angle θ

Similarly using Law of Sines, Geometry, and Trig Identities the following shear strain

ntities
$$\gamma_{nt} = -2(\varepsilon_x - \varepsilon_y)\sin\theta\cos\theta + \gamma_{xy}(\cos^2\theta - \sin^2\theta)$$

transformation equations can be derived.
$$\frac{\gamma_{nt}}{2} = -\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right) \sin 2\theta + \frac{\gamma_{xy}}{2} \cos 2\theta$$

Georgia

Normal Strain Transformation Equation

Shear Strain Transformation Equation

$$\varepsilon_n = \varepsilon_x \cos^2 \theta + \varepsilon_y \sin^2 \theta + \gamma_{xy} \sin \theta \cos \theta$$

$$\gamma_{nt} = -2(\varepsilon_x - \varepsilon_y) \sin \theta \cos \theta + \gamma_{xy} (\cos^2 \theta - \sin^2 \theta)$$

$$\mathcal{E}_{n} = \frac{\mathcal{E}_{x} + \mathcal{E}_{y}}{2} + \frac{\mathcal{E}_{x} - \mathcal{E}_{y}}{2} \cos 2\theta + \frac{\gamma_{xy}}{2} \sin 2\theta \qquad \qquad \frac{\gamma_{nt}}{2} = -\left(\frac{\mathcal{E}_{x} - \mathcal{E}_{y}}{2}\right) \sin 2\theta + \frac{\gamma_{xy}}{2} \cos 2\theta$$