HYPERBOLIC MANIFOLDS

Goal: Sg has a hyp. structure 97,2 53 \ Fig8 has hyp. structure

A hyperbolic manifold is a topological manifold with a cover by open sets Ui and open maps $\varphi_i: U_i \longrightarrow H'$ that are homeos onto their image and so for each component X of $U_i \cap U_j$, $\varphi_i \circ \varphi_i^{-1}: \varphi_i(X) \longrightarrow \varphi_j(X)$

is the restriction of an elt of Isom (IH").

Note: A hyp. man inherits a Riem. metric.

Prop. A Riem. manifold is a hyperbolic n-manifold iff each point has a nbd isometric to an open subset of IH?

Pf. -> by defin of inherited metric.

Take the local isometries as the charts $\varphi_i: U_i \longrightarrow H^n$ Let $X = \text{component of } U_i \cap U_j$ Then $\varphi_i \circ \varphi_j^* \mid \varphi_i(X)$ is an isometry $\varphi_i(X) \longrightarrow \varphi_i(X)$. Want an elt of $I_i \cap I_j \cap I_j$

This isometry then agrees on all of cej W.

W

POLYHEDRA

Polyhedron: compact subset of IH", intersection of finitely many half-spaces.

Ideal polyhedron: intersection of finitely many half-spaces in IH", no vertices in IH", closure in IH" u dIH" is a finite set of pts.

M = space obtained from a collection of (possibly ideal) hyp. polyhedra Pi by gluing codim 1 faces by isometries. M° = image of U int Pi.

Thm. M as above. Say each $x \in M$ has a nod Ux and an open mapping $c_{x}: U_{x} \longrightarrow B_{E(x)}(0) \subseteq B^{\circ}$ (ball model) that is (1) a homeo onto its image @ sends x to O and @ restricts to isometry on each component of $U_{x} \cap M^{\circ}$. Then M is a hyperbolic manifold.

Pf. Need to check condition on overlaps.

This works because gluing maps are isometries (see Lackenby)

A First example.

or use the Prop.

SURFACES

Will show Sg has hyp. Structure 972.

I regular • 4g-gon in 1H2 with angles 211/4g

Pf: IVT. Small 4g-gons are near Euclidean, angles > 27/4g Large Ag-gons are ideal, angle O.

Apply the theorem. When we glue, nothing to check on interiors of 1- and 2-cells. At O-cells, angle condition is exactly what is needed.

FIGURE - EIGHT KNOT COMPLEMENT

K =

Consider

3! way to give faces so edges match up

~> cell complex M. with one vertex V.

Will show: M-v = S3/K

First note M is not a manifold. In fact, a neighborhood of v is a cone on T? To see this, a the boundary of a mod of v is a union of 8 triangles. Label the 24 edges, give in pairs, result is T? (tedious but easy).

 $\Gamma = 2$ -complex in S^3 obtained by attaching 4 2-cells to

Sample 2-cell:

(find the other three!)

Claim. 53-1 = 53-11!

Pf. | enlarge missing edge | shrink

Now go back to picture. The claim tells us the 4 disks of picture. The claim tells us the 4 disks of picture. The claim tells us the 4 disks of picture.

Note K is the union of the edges 3,4,5,6.
So to remove K, can collapse these edges, then delete.
But this is MVV!

THE HYPERBOLIC STRUCTURE

MIV has 2 edges, each with 6 dihedral angles around. So if we give two regular ideal tetrahedra, get angle 27 around each edge. Then >> result is hyperbolic.

Hyperbolic volume = 2.0298832

Smallest among Knot complements

FIGURE EIGHT KNOT COMPLEMENT - REBOOT

Idea: Simultaneously inflate balloons above and below. (3-cells). These press against each other in each planar region (2-cells). At crossings, the balloons compete:

see paper model on Purcell p.11

2-sphere pinded near the crossings. To understand the attaching map we unpinch. 2D pic:

Unpinching from point of view of top ball:

Unlabeled edges make up K. To remove K, collapse each to a pt, think of as ideal vertices:

Next, gluing along a bigon is same as gluing along edge. Collapsing both bigons, we identify a with \overline{b} , c with \overline{d} and get:

Doing same from the point of view of the bottom.

This is wrong! See next page.

Corrected bottom view:

HYPERBOLIC STRUCTURES ON DEAL TRUNGULATIONS

Say M = top. manifold obtained by gluing ideal simplices, e.g. 53 \ K.

Q1. Which shapes of tetrahedra give hyp. Structures!

Q2. Which give complete hyp. Structures! (Cauchys converge)

Again, by above thm, need angle 211 around each edge. Recall: ideal A determined by its link

Z= the complex parameter for the tetrahedron.

Note, Z, 1-Z, 1-Z all give congruent triangles. But if we distinguish one vertex of the link (because it is on the edge we are tocusing on) there is a unique complex param.

Let wij = complex param. for jthe tetrahedron around ith edge.

Thm. M inherits a hyp. Structure TTWij = 1

sed/sedside/ Minherits/a/hap/set/+>/XTX/Jajsyl-1 and Earg(wij)=2rr Vi. "gluing equations"

P.F. Claim 1. M a man \Leftrightarrow $|\mathsf{TT}\omega_{ij}|=1 \ \forall \ i$.

Claim 2. M has angle 2π around ith edge \Leftrightarrow $\geq \arg(\omega_{ij})=2\pi$ and $|\mathsf{TT}\omega_{ij}|=1 \ \forall \ i$.

Hotel / Digital XX/ Siye/ epster/ xexsion/

Pf of Claim 1. Let e₁,..., ex be the edges of ideal tets that get identified to ith edge of M.

→ isometries e₁ → e₂ → ··· → e_k → e₁

induced by face gluings.

→ e₁ → e₁ isometry

Subclaim. $e_1 - e_1$ is id \Longrightarrow M a man.

pf. If $e_1 \longrightarrow e_1$ is translation then \bullet each pt

of i^{+b} edge has so many preimages \Longrightarrow M not locally compact.

If $e_1 \longrightarrow e_1$ is reflection, \exists fixed pt \Longrightarrow pt in M with link \cong cone on \mathbb{RP}^2

Subclaim. en—en is id => | Thuij | = 1.

pf. place tetrahedra around ith edge in U3

around line from O to ∞.

and so first has vertices 0,00,1, win

Then second has vertices 0,00, win, win win Lust face 0,00, Thuij gets glued to

first face 0,00,1 in a unique way by isometry.

The isometry fixes 0,00 so it is dilation, which

Substitution should be substituted iff | Thuij | = 1.

Claim 2 now evident.

GLUING EQNS FOR FIG 8

If the 3 complex parameters for the link of a tetrahedron in 631K are Z_1 , $Z_2 = 1 - \frac{1}{2}$, $Z_3 = \frac{1}{1-Z}$ (first tet) and W_1 , $W_2 = 1 - \frac{1}{W}$, $W_3 = \frac{1}{1-W}$ (second) then the two sets of gluing eqns are: $Z_1^2 Z_2 W_1^2 W_2 = 1$ $Z_3^2 Z_2 W_3^2 W_2 = 1$

Set $Z_1 = Z$, $W_1 = W$. First eqn gives: $Z_{\infty}^2 (1 - \frac{1}{2}) W^2 (1 - \frac{1}{W}) = 1$ Z(Z-1) W(W-1) = 1 $Z = \frac{1 \pm \sqrt{1 + 4/(W(W-1))}}{2}$

parameter space has one complex dim.

Seed morning South St. JAN St. St. St. J. St

Note $Z=W=e^{i\pi t_3}$ is a solution. But there are many others.

Will show this is the only solution giving a complete metric.