## TRANSFORMING HOW WE SUSTAINABLY UTILIZE OUR AGRICULTURAL RESOURCES FOR FOOD, FEED, FIBER, FUEL, AND CHEMICALS

#### Nathan S. Mosier

Laboratory of Renewable Resources Engineering (LORRE)

Department of Agricultural and Biological Engineering

Purdue University

Purdue University College of Agriculture 2015 Research Award Seminar







#### **TRANSFORMING**

(Oxford English Dictionary)

Catalyst  $cat \cdot a \cdot lyst$  kad(a) last/Greek  $\kappa \alpha \tau \alpha down + \lambda \nu \epsilon i \nu to loosen.$ 

- a substance that increases the rate of a chemical reaction without itself undergoing any permanent chemical change. (1836)
- a person or thing that precipitates an event







#### TRANSFORMING PLANT MATTER



# Catalysts: Accelerates the conversion of molecules

The Explosion in the Alchemist's Laboratory by Justus Gustav van Bentum (Leiden 1670–1727) Holland







Paul Zelinsky, 1986



Andrew Lang's The Blue Fairy Book, ca. 1889 (Henry J. Ford illustration)

## **SPINNING STRAW INTO GOLD**









## **BIOMASS CONVERSION PROCESSES**





#### **Laboratory of Renewable Resources Engineering**

#### **BioProcess Validation and Scale-Up**





- · Biomass to Biofuels
- Biomass to Chemicals

#### **Chemical and Biological Catalysis**



- · Biocatalysts for Biofuels
- Compositional Analysis





#### **SEPARATION TECHNOLOGIES**



- Biological Product Purification
- Value-added Products from Biorefineries

#### **Rapid Prototyping**



Tactical Garbage to Energy Refinery (TGER version 3.0)



<sup>\*</sup> Dr. Michael Ladisch \* Dr. Nathan Mosier \* Dr. Abigail Engelberth \* Dr. Eduardo Ximenes \* Dr. Gozdem Kilaz

#### THE CHALLENGE





Layered mesh of microfibrils in plant cell wall

Single microfibril –



Cellobiose

Office of Biological and Environmental Research, U.S. Department of Energy, Office of Science



Glucose



Zina Deretsky, National Science Foundation; Selaginella cross section SEM by Jing-Ke Weng, Clint Chapple, Purdue University; Lignin structure from Wout Bergjan, John Ralph, Marie Baucher (Annual Review of Plant Biology, Vol. 54:519-546, June 2003); Cellulose structure from http://www.chusa.jussieu.fr/disc/bio\_cell/

#### **FRACTIONATION OF BIOMASS**











#### **FUNGAL CELLULASES**



NREL









Van Zyl et al., Interface

**Focus (2011)** 

#### EFFECT OF PRETREATMENT

Mosier et al, Biores. Tech. (2005) Cellulose Lignin Amorphous Pretreatment Region Heat, Solvent, & Crystalline Catalyst Region Hemicellulose







#### High mag FE-SEM analysis to quantify surface roughness



14

#### EFFECT OF PRETREATMENT



## **HOW CELLULASES WORK**













## **ENZYME MIMETICS FOR BIOMASS HYDROLYSIS**

#### Maleic Acid





Maleic acid (red) hydrolyzing cellulose chain (photo courtesy of Purdue University College of Engineering)







 $\frac{\mathbf{E}}{\mathbf{T} \cdot \mathbf{Y}}$ 



Lu et al., Biotech. Prog. (2007)

## MALEIC ACID: SELECTIVE FRACTIONATION OF XYLOSE FROM VARIOUS TYPES OF BIOMASS









## **MANY REACTIONS**



#### **MECHANISTIC ANALYSIS**





Kinetics solely dependent on [H<sup>+</sup>], indicating **specific** acid catalysis mechanism

#### **MECHANISTIC ANALYSIS**





Kinetics **inversely** dependent on [Maleic acid] at constant pH, Indicating **inverse general** acid catalysis mechanism

#### **MANY REACTIONS**



#### USING TEMPERATURE TO CONTROL TRANSFORMATIONS









## MALEIC ACID ENHANCES FURFURAL YIELD THROUGH IMPROVED SELECTIVITY



Kim et al. Energy & Fuels, 2012.

#### WHAT ABOUT CELLULOSE AND GLUCOSE?



#### HMF AND LEVULINIC ACID ARE VALUABLE



Polymers, Resins, Solvents and Fuels



Levulinic Acid





Segetis







#### **ACTIVATION ENERGY**

Ea(kJ/mol)

MA+AlCl<sub>3</sub> 85

HCl+AlCl<sub>3</sub> 124

MA+AlCl<sub>3</sub> 95 158 51

HCl+AlCl<sub>3</sub> 149 128 72







#### **SELECTIVITY FOR HMF AND LA FORMATION**



Ximing Zhang

#### INTERACTING CATALYSTS AND SUGARS







#### SUMMARY

- Dicarboxylic acid, in enzymes and in chemical catalysts, can direct chemical reactions toward desired products.
- Connecting chemistry, biology, and engineering process technology are needed to make the necessary breakthroughs to realize the bio-economy







#### **CONCLUDING REMARKS**

 Nature has a lot to teach us about transforming matter at the atomic scale.

 Agriculture is holds great potential for providing food, feed, fiber, fuels, and chemicals.

• There is much work left to do to realize this potential!







