Séries de Tempo

Aula 5 - Modelos ARIMA

Regis A. Ely

Departamento de Economia Universidade Federal de Pelotas

13 de agosto de 2020

Conteúdo

Metodologia Box-Jenkins

Estimação

Diagnóstico

Previsão

Exemplo no R: turismo na Austrália

Estacionariedade

Sazonalidade e diferenciação

Identificação

Estimação

Diagnóstico

Previsão

Metodologia Box-Jenkins

Box e Jenkins (1970) sugeriram uma metodologia para modelar processos ARIMA baseada em quatro etapas¹:

- 1. **Identificação**: determinação das ordens *p*, *d* e q\$ do modelo ARIMA a ser estimado através das funções de autocorrelação e autocorrelação parcial, ou critérios de identificação
- 2. **Estimação**: estimação dos parâmetros do modelo ARIMA(p, d, q), normalmente por máxima verossimilhança
- 3. **Diagnóstico**: inspeção dos resíduos do modelo estimado para verificar se ainda há alguma autocorrelação a ser modelada
- 4. **Previsão**: utilização dos coeficientes estimados para realizar previsões dos valores futuros da série de tempo

¹Pode-se incluir uma etapa inicial que envolve a preparação e transformação dos dados originais.

Metodologia Box-Jenkins

- Já vimos as etapas que envolvem a preparação dos dados e a identificação do modelo a ser estimado
- Nessas etapas iniciais, vimos tópicos como:
 - 1. Sazonalidade e tendência
 - 2. Transformação logarítmica
 - 3. Diferenciação e raíz unitária
 - 4. Critérios de identificação
- Após estas etapas iniciais, devemos estimar o modelo ARIMA de interesse

Estimação

- Modelos ARIMA são usualmente estimados através de funções de máxima verossimilhança
- Há duas opções para estimação destes modelos:
- Máxima verossimilhança condicional: supõe que os choques iniciais são iguais a zero, utilizando a função densidade de distribuição condicional como aproximação da função densidade de distribuição conjunta
- Máxima verossimilhança exata: trata os choques iniciais como parâmetros adicionais do modelo e estima eles conjuntamente com os outros parâmetros

Diagnóstico

- Se um modelo ARIMA(p, d, q) representa bem os dados, então os resíduos serão próximos de um ruído branco
- Isto pode ser testado através de um teste de hipótese estatístico com a hipótese nula de resíduos não autocorrelacionados
- Para construir este teste, primeiro devemos estimar a autocorrelação dos resíduos:

$$\hat{r_k} = rac{\sum\limits_{t=k+1}^n \hat{arepsilon}_t \hat{arepsilon}_{t-k}}{\sum\limits_{t=1}^n \hat{arepsilon}_t^2}$$

Diagnóstico

A partir da autocorrelação residual de uma modelo
 ARIMA(p, d, q) calculada no slide anterior, podemos construir um
 teste de hipótese conhecido como o teste de Ljung-Box:

$$Q(K) = n(n+2) \sum_{k=1}^{K} \frac{\hat{r}_k^2}{(n-k)} \sim \chi^2(K-p-q)$$

- Sendo n o número de observações da série de tempo, K a defasagem máxima considerada no teste, e χ a distribuição qui-quadrada
- A hipótese nula do teste de Ljung-Box é a de resíduos não correlacionados
- Usualmente utilizamos valores de K iguais a 5, 10 e 15

• A previsão de erro quadrático médio mínimo com origem T e horizonte h de um modelo ARIMA(p,d,q) é dada por:

$$\hat{Y}_t(h) = E(c + \phi_1 Y_{T+h-1} + \ldots + \phi_p Y_{T+h-p} + \varepsilon_{T+h} + \theta_1 \varepsilon_{T+h-1} + \ldots + \theta_q \varepsilon_{T+h-q} | Y_T, Y_{T-1}, \ldots)$$

• Ou seja, é o valor esperado condicional de Y_{T+h} dado o passado X_T, X_{T-1}, \dots

Para calcular estas previsões, substituímos esperanças passadas por valores conhecidos e esperanças futuras por previsões:

1.
$$E(Y_{T+j}|Y_T, Y_{T-1}, ...) = \begin{cases} Y_{T+j}, & \text{se } j \leq 0 \\ \hat{Y}_T(j), & \text{se } j > 0 \end{cases}$$

2.
$$E(\varepsilon_{T+j}|Y_T,Y_{T-1},\ldots) = \begin{cases} \varepsilon_{T+j}, & \text{se } j \leq 0 \\ 0, & \text{se } j > 0 \end{cases}$$

Exemplo no R: turismo na Austrália

Para o nosso exemplo, além dos pacotes utilizados na Aula 2 vamos também precisar do pacote fable para estimação dos modelos ARIMA:

```
library(tidyverse)
library(lubridate)
library(tsibble)
library(feasts)
library(fable)
```

Exemplo no R: turismo na Austrália

Vamos utilizar a base de dados de viagens domésticas na Austrália, agrupando o número de viagens em cada região por propósito:

```
data <- tourism %>%
  group_by(Purpose) %>%
  summarise(Trips = sum(Trips))
```

Autocorrelação

Na etapa de identificação, primeiro vamos plotar as funções de autocorrelação para cada série de tempo através da função ACF²:

```
data %>%
  ACF(log(Trips)) %>%
  autoplot()
```

Podemos observar uma persistência na autocorrelação das séries, além de correlações altas nos períodos sazonais

²Note que estamos utilizando o logaritmo natural da série de tempo antes para estabilizar a variância

Autocorrelação

Teste de estacionariedade

Para verificar se as séries de tempo são estacionárias obtemos o número de diferenças necessárias para torná-las estacionárias de acordo com o teste KPSS:

```
data %>%
 features(log(Trips), unitroot ndiffs)
## # A tibble: 4 \times 2
## Purpose ndiffs
## <chr> <int>
## 1 Business
## 2 Holiday
## 3 Other
## 4 Visiting
```

Teste de estacionariedade

4 Visiting

O mesmo teste pode ser aplicado para o período sazonal, verificando se existem raízes unitárias sazonais:

```
data %>%
 features(log(Trips), unitroot ndiffs)
## # A tibble: 4 \times 2
## Purpose ndiffs
## <chr> <int>
## 1 Business
## 2 Holiday
## 3 Other
```

Sazonalidade e diferenciação

Primeiro vamos remover a sazonalidade dos dados através da função STL e depois vamos tirar a primeira diferença dos logaritmos para remover a raíz unitária:

```
data <- data %>%
  model(STL = STL(Trips)) %>%
  components() %>%
  select(Purpose, Quarter, Trips, season_adjust) %>%
  group_by(Purpose) %>%
  mutate(Var_Trips = difference(log(season_adjust)))
```

Sazonalidade e diferenciação

4 Visiting

Agora vamos testar novamente a raíz unitária dos dados dessazonalizados e diferenciados:

```
data %>%
  features(Var Trips, unitroot ndiffs)
## # A tibble: 4 \times 2
## Purpose ndiffs
## <chr> <int>
## 1 Business
## 2 Holiday
## 3 Other
```

Sazonalidade e diferenciação

4 Visiting

Também vamos testar novamente a raíz unitária sazonal dos dados dessazonalizados e diferenciados:

```
data %>%
  features(Var Trips, unitroot nsdiffs)
## # A tibble: 4 \times 2
## Purpose nsdiffs
## <chr> <int>
## 1 Business
## 2 Holiday
## 3 Other
```

Autocorrelação

Depois de estacionarizar e dessazonalizar a série de tempo, podemos agora plotar novamente a autocorrelação:

```
data %>%
  ACF(Var_Trips) %>%
  autoplot()
```

A persistência na autocorrelação das séries desapareceu, bem como as correlações altas nos períodos sazonais

Autocorrelação

Autocorrelação parcial

Para conseguirmos identificar quais modelos estimar precisamos também observar as autocorrelações parciais para cada um das séries de tempo através da função PACF:

```
data %>%
  PACF(Var_Trips) %>%
  autoplot()
```

Autocorrelação parcial

Estimação

Agora vamos estimar quatro modelos possíveis com base na inspeção das funções ACF e PACF para cada uma das 4 séries de tempo:

```
my_arima <- data %>%
model(
    MA_1 = ARIMA(Var_Trips ~ 1 + pdq(0,0,1)),
    MA_2 = ARIMA(Var_Trips ~ 1 + pdq(0,0,2)),
    AR_1 = ARIMA(Var_Trips ~ 1 + pdq(1,0,0)),
    AR_2 = ARIMA(Var_Trips ~ 1 + pdq(2,0,0))
)
```

Podemos acessar os coeficientes de todos os modelos estimados através da função tidy(my_arima)

Estimação automática

A função ARIMA possui um algoritmo automatizado (Hyndman e Khandakar, 2008) para fazer todas as etapas de testes de estacionariedade utilizando KPSS, seleção das defasagens com base no critério de Akaike, e estimação dos modelos ARIMA com ou sem componentes sazonais:

```
arima_fit <- data %>%
  model(ARIMA = ARIMA(log(Trips)))
```

Para estimar um modelo ARIMA de maneira automática, basta omitir os argumentos após a variável dependente

Estimação automática

Novamente, podemos acessar os coeficientes através da função tidy:

```
tidy(arima_fit)
```

```
## # A tibble: 11 x 7
##
     Purpose
              .model term
                          estimate std.error statistic p.value
##
     <chr>
             <chr>
                    <chr>>
                             <dbl>
                                      <dbl>
                                                <dbl>
                                                        <dbl>
                                               -4.10 1.05e- 4
##
   1 Business ARTMA
                    ar1
                            -0.441
                                     0.108
##
   2 Business ARIMA ar2
                            -0.473
                                     0.105
                                               -4.49 2.51e- 5
##
   3 Business ARTMA smal
                            -0.924
                                     0.149
                                                -6.21 2.74e - 8
##
   4 Holiday
             ARIMA
                    ma1
                            -0.686
                                     0.0928
                                                -7.39 1.71e-10
   5 Holiday ARIMA
##
                    sma1
                            -0.831
                                     0.126
                                                -6.59 5.45e- 9
##
   6 Other
             AR.TMA
                    ma1
                            -0.532
                                     0.105
                                                -5.05 2.83e- 6
##
   7 Other
             AR.TMA
                    sar1
                            0.209
                                     0.113
                                                1.85 6.79e- 2
##
   8 Visiting ARIMA
                    ar1
                            0.899
                                     0.0635
                                                14.2 5.10e-23
##
   9 Visiting ARIMA
                    ma1
                            -0.429
                                     0.118
                                                -3.63 5.19e- 4
## 10 Visiting ARIMA
                    sar1
                            -0.542
                                     0.115
                                                -4.701.14e-5
  11 Visiting ARIMA
                    sar2
                            -0.268
                                     0.114
                                               -2.36 2.11e- 2
```

Raízes do modelo ARIMA

Após a estimação do modelo, podemos checar se as raízes do modelo estimado são menores do que o círculo unitário com o comando gg_arma:

gg_arma(arima_fit)

Quanto mais próximo do círculo unitário, mais instável é a estimação dos parâmetros³

³O algoritmo automatizado de Hyndman e Khandakar (2008) exclui modelos que contém coeficientes próximos a raíz unitária.

Raízes do modelo ARIMA

Gráficos dos resíduos

Podemos observar o comportamento dos resíduos para cada uma das séries de tempo com a função gg_tsresiduals

• Vamos utilizar como exemplo as viagens por negócios:

```
gg_tsresiduals(filter(arima_fit, Purpose == "Business"))
```

Gráficos dos resíduos

Teste de Ljung-Box

augment(arima fit) %>%

4 Visiting ARIMA

A outra etapa de diagnóstico é o teste de autocorrelação residual de Ljung-Box, que pode ser feito para todas as 4 séries de tempo através do comando features e da função ljung_box:

```
features(.resid, ljung_box, lag = 10, dof = c(2,3,4))
## # A tibble: 4 x 6
##
    Purpose .model lb stat lb pvalue1 lb pvalue2 lb pvalue3
##
    <chr> <chr>
                    <dbl>
                              <dbl>
                                        <dh1>
                                                  <dbl>
                                        0.559
                                                  0.442
## 1 Business ARIMA
                     5.84
                              0.666
## 2 Holiday ARIMA
                     6.43
                              0.599
                                        0.490
                                                  0.377
                     7.23
                              0.512
                                                  0.300
## 3 Other
            ARTMA
                                        0.405
```

0.592

0.484

6.49

0.370

Teste de Ljung-Box

Para calcular o teste de Ljung-Box, devemos especificar os argumentos:

- lag: número de defasagens (K) utilizado no teste;
- dof: número de graus de liberdade a serem reduzidos da distribuição devido ao teste ser aplicado nos resíduos (usualmente utiliza-se dof = p + q)

Note que no nosso exemplo utilizamos dof = c(2,3,4), pois os modelos estimados contém 2, 3 ou 4 coeficientes

 Mais especificamente, devemos olhar para lb_pvalue2 na série Business, lb_pvalue1 na série Holiday e Other, e lb_pvalue3 na série Visiting

. . .

Depois de estimados os modelos, realizamos as previsões para horizonte h com a função forecast. O comando hilo nos mostra os intervalos de confiança das previsões:

```
arima fc <- forecast(arima fit, h = 10)
hilo(arima fc, level = 95)
## # A tsibble: 40 x 6 [10]
## # Kev: Purpose, .model [4]
##
     Purpose .model Quarter
                                     Trips .mean
                                                                `95%`
     <chr> <chr> <qtr>
##
                                     <dist> <dbl>
                                                                <hilo>
## 1 Business ARIMA 2018 Q1 t(N(8.5, 0.0052)) 4728, [4093.826, 5431.570]95
   2 Business ARIMA 2018 Q2 t(N(8.7, 0.0068)) 5894. [4995.532, 6906.867]95
##
##
   3 Business ARIMA 2018 Q3 t(N(8.7, 0.0072)) 6119. [5160.771, 7203.679]95
   4 Business ARIMA 2018 Q4 t(N(8.6, 0.0092)) 5736. [4732.112, 6889.766]95
##
   5 Business ARIMA 2019 Q1 t(N(8.5, 0.012)) 4929. [3968.256, 6052.213]95
##
##
   6 Business ARIMA
                    2019 Q2 t(N(8.7, 0.013)) 5934, [4720.994, 7363.519]95
```

Por fim, podemos plotar as séries de tempo com as previsões e intervalos de confiança automaticamente no R:

```
arima_fc %>% autoplot(data)
```

Temos assim as previsões para o número de viagens por cada propósito para os próximos 10 trimestres⁴

⁴Note que a função forecast já efetua a chamada *back-transformation* ao fazer as previsões, aplicando o exponencial no logaritmo dos dados.

Referências

Box, G. E. P. e Jenkins, G. M. (1970) Time series analysis: Forecasting and control, San Francisco: Holden-Day.

Hyndman, R. J., e Khandakar, Y. (2008). Automatic time series forecasting: The forecast package for R. Journal of Statistical Software, 27(1), 1–22.