Министерство образования и науки Украины Харьковский национальний университет радиоэлектроники

Кафедра	Электронных вычеслительних машин				
<u></u>					
	Документация				
	С производственной практики				
Система контр	оля управления доступом к студентческому общежитию				
ХНУРЭ					
		—			
Выполнили:	Проверил:				
		D			
Плеханов Д.В.	доц. Токарев В.	В.			
Бован И.В.					
Приходько Д.С.					
Кондратенко И.В.					
Усаров А.В.					

Содержание

1	Модель СКУД	3
2	Обзор и анализ RFID-меток.	4
3	Выбор на основании проведенного обзора и анализа	7
4	Диаграмма использования	8
5	Диаграмма состояний (алгоритм работы СКУД)	9
6	Проектирование базы данных.	10
7	Пользовательский интерфейс системы	13
8	Плагин на языке C (связь БД с платформой Arduino)	14
9	Инструкция по применению	15

1 Модель СКУД

Системы контроля и управления доступом (СКУД) – это контрольнопозволяет управлять безопасностью пропускная система, осуществлять контроль доступа. Используемая для реализации системы технология Radio Frequency IDentification (радиочастотная идентификация – РЧИ) — это метод удаленного хранения и получения информации путем передачи радиосигналов с помощью устройств, называемых RFID-метками. Данная технология является одной из тех, элементами которых являются пользователями построенных на носимые систем, ЭТИХ технологиях, высокотехнологичные идентификаторы специальные токены.

Рисунок 1. — Модель СКУД

2 Обзор и анализ RFID-меток.

Любая RFID-система состоит из считывающего устройства (считыватель, ридер или интеррогатор) и транспондера (он же RFID-метка, иногда также применяется термин RFID-тег). В основном RFID-метки состоят из двух частей. Первая — интегральная схема (ИС) для хранения и обработки информации, модулирования и демодулирования радиочастотного (RF) сигнала и некоторых других функций. Вторая — антенна для приёма и передачи сигнала.

Таблица 1. — Пассивные RFID-метки

Функциональные возможности.	Только прочтение/прочтение-запись.
Частота.	125KHz / 13.56MHz / 915 MHz / 2.45GHz прочтение-запись.
Расстояние прочтения.	До 6 м + (с установленной антенной).
Размеры.	Разные, ~ 0,8 мм в диаметре.

Bec.	6 — 54 гр.
Память.	До 16 Kbit.
Срок эксплуатации.	10 лет.
Температурный режим.	— 40 до + 70 по Цельсию.

Ниже приведён пример распределения характеристик РЧИ-меток по рабочим частотным диапазонам:

Таблица 2. — Классификация RFID по диапазонам частот:

Характеристика	Низкие	Высокие	Ультра-	Микроволны
	частоты (НЧ,	частоты	высокие	(SHF) - 2,4
	LF) – 125-134	(BY, HF) –	частоты	ГГц
	КГц	13,56 МГц	(УВЧ,	
			UHF) –	
			860-960	
			МГц	

Максимальное расстояние считывания	от 3 до 70 см.	от 3 до 100 см.	от 10 см до 4 м.	2-10 м.
Скорость передачи данных радиометка- считыватель	около 9600 бит/сек.	до 64 кбит/сек.	до 128 кбит/сек.	до 128 кбит/сек.
Наличие антиколлизии	Есть, но не у всех микросхем.	Есть.	Есть.	Есть.
Объем памяти радиометки	32-1024 байта.	8-16384 байт.	64-1024 бит (ISO), 64 или 96 бит (EPC).	от 64 бит до 32 кбит.

3 Выбор на основании проведенного обзора и анализа

Использованный нами архитектурный тип метки – «пассивная». Пассивные RFID-метки не имеют встроенного источника энергии. Чип, обеспечивающий работу метки, питается от индуцируемого в антенне сигналом запроса электрического тока. Поскольку нам требуется только прочтение и запись данных о входе в общежитие. Также она имеет подходящую нам частоту прочтения и записи данных, метка функционирует без источника питания, получая энергию из сигнала считывателя. Пассивные метки меньше и легче активных, также они имеют фактически неограниченный срок службы. В пассивной системе излучение считывателя постоянно во времени (не модулировано) и служит только источником питания для идентификатора. Использование пассивной RFID-технологии обеспечивает решение, которое намного дешевле многократно используемых активных пломб.

4 Диаграмма использования

Рисунок 2. — Диаграмма использования.

На данной диаграмме мы можем наблюдать как происходит само использование данной конструкции. В первую очередь пользователь взаимодействует с электронным ключом, после чего идет процесс ожидания во время которого идет проверка по базе данных, если пользователь находится в БД, то дверь откроется, после чего индивид может спокойно пройти и попасть внутрь общежития и во время закрытия двери после прохождения она захлопнется вновь. Также есть кнопка открытия самой двери изнутри.

5 Диаграмма состояний (алгоритм работы СКУД)

Рисунок 3. — Диаграмма состояний.

На этой диаграмме мы можем наблюдать возможность администратора добавлять RFID-метки и так же открывать саму дверь, а пользователь в свою очередь имеет возможность только взаимодействовать с самим механизмом.

6 Проектирование базы данных.

Поскольку механизм работы довольно простой нам понадобится всего одна таблица. Наша БД содержит 1 отношение с 4 полями: "id", "name", "surname" и "user key".

	id	name	surname	user_key
	MHg0NTF4Q0ExeDZCQ3g0Ng==	Matvei	Matveiv	NULL
	MHg 1Nzh4Q0V4QUU5eDkz	Anna	Magdalina	NULL
	MHg2MjB4RkIxeDZGQ3g4Qw==	Andrii	Andreev	NULL
•	MHg4NzF4QkYxeDdBQ3g3MQ==	Mihail	Mihailov	NULL
	MHg5MDV4RkUxeEFDOXgwMQ==	Semen	Semenov	NULL
	MHgxODB4QkIxeDZGQXgxMQ==	Filip	Filipov	NULL
	MHgyNzB4RkUxeDZFQXg0MQ==	Peter	Petrov	NULL
	MHgzMzB4RkYweDZCMHg5QQ==	Denys	Detrov	NULL
	MHgzNDB4RkYxeDZCNHg5Ng==	Ivan	Ivanov	NULL
	HULL	NULL	NULL	NULL

Рисунок 4. — Таблица БД.

Использовали мы одной из самых популярных СУБД на сегодняшний день MySQL. Поскольку у нашей команды уже есть есть некий опыт работы с этой БД и в результате опроса команды было принято решение выбрать MySQL в качестве Базы Данных.

Эта серверная система способна эффективно функционировать во взаимодействии с интернет-сайтами и веб-приложениями. При этом она проста в освоении, что лишь увеличивает ее популярность, особенно среди «айтишников»-любителей.

Примечательно, что результатом огромной популярности MySQL стало появление в интернете множества руководств по освоению системы, а также огромного количества всевозможных плагинов и расширений, упрощающих

работу с этой системой. Это в свою очередь лишь придало системе еще большей популярности.

Несмотря на отсутствие некоторого функционала, имеющегося у других СУБД, MySQL обладает достаточно обширным разнообразием доступных инструментов для создания приложений.

Так же хотелось немного рассказать про плюсы и минусы данной СУБД:

Преимущества MySQL:

- 1. Простота в использовании. MySQL легко инсталлируется, а наличие множества плагинов и вспомогательных приложений упрощает работу с базами данных.
- 2. Обширный функционал. Система MySQL обладает практически всем необходимым инструментарием, который может понадобиться в реализации практически любого проекта.
- 3. Безопасность. Система изначально создана таким образом, что множество встроенных функций безопасности в ней работают по умолчанию.
- 4. Масштабируемость. Являясь весьма универсальной СУБД, MySQL в равной степени легко может быть использована для работы и с малыми, и с большими объемами данных.
- 5. Скорость. Высокая производительность системы обеспечивается за счет упрощения некоторых используемых в ней стандартов.

Недостатки MySQL:

- 1. Недостаточная надежность. В вопросах надежности некоторых процессов по работе с данными (например, связь, транзакции, аудит) MySQL уступает некоторым другим СУБД.
- 2. Низкая скорость разработки. Как и многим другим программным продуктам с открытым кодом, MySQL не достает некоторого технического совершенства, что порой сказывается на эффективности процессов разработки.

7 Пользовательский интерфейс системы

Далее описывается сценарий взаимодействия с системой. Житель общежития или предполагаемый злоумышленник, проходя на контролируемую территорию, предоставляет свою RFID-метку. Модуль системы, отвечающий за получение информации с RFID-метки должен выполнить считывание и проанализировать полученные данные, используя базу данных системы, содержащую соответствия между записями на метках и жителями общежития, которым метки принадлежат. Если предоставленная метка зарегистрирована в базе, то система должна пропустить жителя. В ином случае — опционально просигнализировать о неудаче авторизации.

Рисунок 5. — Модульная диаграмма.

Стрелками указаны пути обмена информацией между компонентами.

8 Плагин на языке С (связь БД с платформой Arduino)

Нашей командой была разработана СКУД к студенческому общежитию XHУPE - программный модуль для платформы Arduino Wi-Fi на языке С. Программа при помощи Wi-Fi библиотеки посылает http запрос на сервер о легитимности ключа, в следствии чего пользователь получает или не получает возможность пройти в студенческое общежитие XHУPE. В случае отказа система издает звук, привлекающий внимание сотрудника студенческого общежития, который в свою очередь обратит внимание на человека, который пытается попасть на охраняемую территорию. В случае принятия ключа дверь открывается и пользователь проходит в здание. Также

система имеет 1 кнопку внутри здания, при нажатии на которую открывается входная дверь и пользователь может выйти со студенческого общежития.

Для начала пользователю нужна ключ-карта или же обычный ключ, без него он не сможет пройти внутрь здания. Далее пользователь должен поднести ключ-карту или обычный ключ к сканеру. Дождаться соответствующего звукового сигнала который даст понять пользователю что делать дальше. если пользователь находится в базе данных, то дверь откроется и при неких силовых затратах индивида появиться возможность пройти через дверной проём взявши дверную ручку своей рукой и потянув её на себя. в противном случае дверь будет закрыта и пользователь останется

— С обратной стороны также будет возможность индивиду открыть дверь

специальной кнопкой которая находится сбоку от самой двери.

9 Инструкция по применению

снаружи так и не попав внутрь здания.