Normalisation by evaluation

Sam Lindley

Laboratory for Foundations of Computer Science The University of Edinburgh

Sam.Lindley@ed.ac.uk

August 11th, 2016

Normalisation and embedded domain specific languages

Why normalisation for embedded DSLs (QDSLs)

What is normalisation by evaluation (NBE)

How to use NBE for embedded DSLs (EBN)

Reduction-based normalisation

Equational normalisation

NBE

 $norm = reify \circ \llbracket - \rrbracket$

Why NBE?

- ► Embedding DSLs (Shayan's lecture tomorrow)
- Partial evaluation (Oleg's finally-tagless optimisations)
- Semantics
- Proof theory
- ► Type theory
- Efficiency

Typing rules

$$\frac{\text{VAR}}{\Gamma, x : A, \Delta \vdash \text{Var } x : A}$$

$$\rightarrow \text{-I}$$

$$\frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \text{Lam } x M : A \rightarrow B}$$

$$\frac{\Gamma \vdash L : A \rightarrow B}{\Gamma \vdash A \Rightarrow B}$$

$$\frac{\Gamma \vdash A \Rightarrow B}{\Gamma \vdash A \Rightarrow B}$$

$$\frac{\Gamma \vdash A \Rightarrow B}{\Gamma \vdash A \Rightarrow B}$$

Conversions

$$(\operatorname{Lam} x M) N \simeq_{\beta} M[N/x]$$
$$M \simeq_{\eta} \operatorname{Lam} x (M x)$$

β -normal form (intensional)

$$(NF) \quad M ::= N \mid \mathsf{Lam} \ x \ M$$

$$(NE) \quad N ::= \operatorname{Var} x \mid \operatorname{App} N M$$

$\beta\eta$ -long normal form (extensional)

$$(\mathsf{NF}) \qquad M_t ::= N_t \\ M_{A \to B} ::= \mathsf{Lam} \ x \ M_B \\ (\mathsf{NE}) \qquad N_B ::= \mathsf{Var} \ x \ | \ \mathsf{App} \ N_{A \to B} \ M_A$$

NF = normal formNE = neutral

Semantics

S can be any countably infinite set.

Theorem (Soundness)

If
$$\Gamma \vdash M \simeq N : A$$
, then $\llbracket M \rrbracket = \llbracket N \rrbracket$.

Theorem (Completeness)

If
$$[M] = [N]$$
, then $\Gamma \vdash M \simeq N : A$.

What is reification?

Reification extracts a term from a semantic object by "poking it".

Example 1:
$$f \in [[\iota \to \iota]]$$

Structure of normal forms / parametricity \Longrightarrow

reify
$$f = \text{Lam } x \text{ (Var } x)$$

But this *is not* reification.

Example 2:
$$g \in [[\iota \to \iota \to \iota]]$$

Two possible closed normal forms of this type:

$$\operatorname{Lam} x (\operatorname{Lam} y (\operatorname{Var} x))$$
 and $\operatorname{Lam} x (\operatorname{Lam} y (\operatorname{Var} y))$

Pick a suitably *syntactic* interpretation for ι and run g.

- $g'x'y' = x' \implies \text{reify } g = \text{Lam } x \text{ (Lam } y \text{ (Var } x))$
- $g x' y' = y' \implies \text{reify } g = \text{Lam } x (\text{Lam } y (\text{Var } y))$

This is reification.

Residualising semantics

Extensional NBE

```
\begin{split} \operatorname{reify}_A : & \llbracket A \rrbracket \to \operatorname{NF}_A \\ \operatorname{reify}_t N &= N \\ \operatorname{reify}_{A \to B} f &= \operatorname{Lam} x \left( \operatorname{reify}_B \left( f \left( \operatorname{reflect}_A \left( \operatorname{Var} x \right) \right) \right) \right), \quad x \operatorname{fresh} \\ \operatorname{reflect}_A : & \operatorname{NE}_A \to \llbracket A \rrbracket \\ \operatorname{reflect}_t N &= N \\ \operatorname{reflect}_{A \to B} N &= \lambda \nu. \operatorname{reflect}_B \left( \operatorname{App} N \left( \operatorname{reify}_A \nu \right) \right) \\ \operatorname{norm}_A M &= \operatorname{reify}_A \left( \llbracket M \rrbracket \varnothing \right) \end{split}
```

Type-directed partial evaluation (TDPE)

TDPE is an implementation of NBE in which the object language is a subset of the host language and the residualising semantics coincides with the semantics of that subset of the host-language.

[Danvy, POPL 1996]

Correctness properties for NBE

Theorem (Soundness)

If
$$M \simeq N$$
 then $[M] = [N]$.

Theorem (Consistency)

reify
$$[\![M]\!] \simeq M$$

soundness \land consistency \Longrightarrow completeness of the semantics

Proving consistency

- ▶ existence of normal forms \land soundness \land preservation of normal forms $(\forall M \in \mathsf{NF.reify}\ [\![M]\!] = M)$ \implies consistency
- otherwise, consistency is typically proved with logical relations

Intensional residualising semantics

$$\begin{bmatrix} I \end{bmatrix} = \mathsf{NE}_{t} \\
\llbracket A \to B \rrbracket = (\llbracket A \rrbracket \to \llbracket B \rrbracket) + \mathsf{NE}_{A \to B}$$

$$\begin{aligned} & \llbracket \operatorname{Var} x \rrbracket \rho = \rho \ x \\ & \llbracket \operatorname{Lam} x M \rrbracket \rho = \lambda v. \llbracket M \rrbracket \rho [x \mapsto v] \\ & \llbracket \operatorname{App} M N \rrbracket \rho = \operatorname{app} \llbracket M \rrbracket \rho \ \llbracket N \rrbracket \rho \end{aligned}$$

Intensional NBE

```
\mathsf{app} : \llbracket A \to B \rrbracket \to \llbracket A \rrbracket \to \llbracket B \rrbracket
      app f v = f v
    app N v = App N (reify_{\Delta} v)
         \operatorname{reify}_{A}: [A] \to \operatorname{NF}_{A}
    reify _{\Lambda} N = N
reify<sub>A \rightarrow R</sub> f = \text{Lam } x \text{ (reify}_R \text{ (app } f \text{ (reflect}_A \text{ (Var } x))))}, \text{ x fresh}
      reflect_A : NE_A \rightarrow [A]
reflect_A N = N
  \operatorname{norm}_A M = \operatorname{reify}_A (\llbracket M \rrbracket \emptyset)
```

Intensional residualising semantics

$$\begin{bmatrix} [t] &= \mathsf{NE}_t \\ [A \to B] &= ([A] \to [B]) + \mathsf{NE}_{A \to B}
\end{bmatrix}$$

$$\begin{split} & \llbracket \operatorname{Var} x \rrbracket \rho = \rho \ x \\ & \llbracket \operatorname{Lam} x M \rrbracket \rho = \lambda \nu. \llbracket M \rrbracket \rho [x \mapsto \nu] \\ & \llbracket \operatorname{App} M N \rrbracket \rho = \operatorname{app} \llbracket M \rrbracket \rho \ \llbracket N \rrbracket \rho \end{split}$$

Intensional NBE

```
\begin{split} &\operatorname{\mathsf{app}} \,:\, [\![A \to B]\!] \to [\![A]\!] \to [\![B]\!] \\ &\operatorname{\mathsf{app}} f \,\, v = f \,\, v \\ &\operatorname{\mathsf{app}} N \,\, v = \operatorname{\mathsf{App}} N \,\, (\mathsf{reify} \,\, v) \\ &\operatorname{\mathsf{reify}} \,:\, [\![A]\!] \to \operatorname{\mathsf{NF}}_A \\ &\operatorname{\mathsf{reify}} N = N \\ &\operatorname{\mathsf{reify}} f = \operatorname{\mathsf{Lam}} x \,\, (\mathsf{reify} \,\, (\operatorname{\mathsf{app}} f \,\, (\operatorname{\mathsf{Var}} x))), \quad x \,\, \mathsf{fresh} \\ &\operatorname{\mathsf{norm}} M = \operatorname{\mathsf{reify}} \,\, ([\![M]\!] \emptyset) \end{split}
```

Untyped lambda calculus

Intensional residualising semantics

$$\llbracket \Lambda \rrbracket = \mathsf{NE} + (\llbracket \Lambda \rrbracket \to \llbracket \Lambda \rrbracket)$$

$$\begin{split} & \llbracket \operatorname{Var} x \rrbracket \rho = \rho \ x \\ & \llbracket \operatorname{Lam} x M \rrbracket \rho = \lambda \nu. \llbracket M \rrbracket \rho [x \mapsto \nu] \\ & \llbracket \operatorname{App} M N \rrbracket \rho = \operatorname{app} \llbracket M \rrbracket \rho \ \llbracket N \rrbracket \rho \end{split}$$

Intensional NBE

```
\begin{array}{l} \operatorname{app}: \left[\!\!\left[\Lambda\right]\!\!\right] \to \left[\!\!\left[\Lambda\right]\!\!\right] \\ \operatorname{app} f \ v = f \ v \\ \operatorname{app} N \ v = \operatorname{App} N \ (\operatorname{reify} \ v) \\ \operatorname{reify}: \left[\!\!\left[\Lambda\right]\!\!\right] \to \operatorname{NF} \\ \operatorname{reify} N = N \\ \operatorname{reify} f = \operatorname{Lam} x \ (\operatorname{reify} \ (\operatorname{app} f \ (\operatorname{Var} x))), \quad x \ \operatorname{fresh} \\ \operatorname{norm} M = \operatorname{reify} \left( \left[\!\!\left[M\right]\!\!\right] \emptyset \right) \end{array}
```

Typing rules

$$\begin{array}{c} \times\text{-I} \\ \Gamma \vdash M:A_1 \qquad \Gamma \vdash M:A_2 \\ \hline \Gamma \vdash \mathsf{Pair}\ M\ N:A_1 \times A_2 \end{array} \qquad \begin{array}{c} \times\text{-E} \\ \hline \Gamma \vdash M:A_1 \times A_2 \\ \hline \Gamma \vdash \mathsf{Proj}_i\ M:A_i \end{array}$$

Conversions

App (Lam
$$xM$$
) $N \simeq_{\beta} M[N/x]$
Proj_i (Pair $M_1 M_2$) $\simeq_{\beta} M_i$
 $M \simeq_{\eta} \text{Lam } x \text{ (App } M x)$
 $M \simeq_{\eta} \text{Pair (Proj}_1 M) \text{ (Proj}_2 M)$

$\beta\eta$ -long normal form

$$\begin{array}{ll} (\mathsf{NF}) & M_t ::= N_t \\ & M_{A \to B} ::= \mathsf{Lam} \ x \ M_B \\ & M_{A \times B} ::= \mathsf{Pair} \ M_A \ M_B \\ (\mathsf{NE}) & N_B ::= \mathsf{Var} \ x \ | \ \mathsf{App} \ N_{A \to B} \ M_A \ | \ \mathsf{Proj}_1 \ N_{B \times A} \ | \ \mathsf{Proj}_2 \ N_{A \times B} \end{array}$$

Semantics

S can be any countably infinite set.

Residualising semantics

$$\begin{bmatrix} [\iota] &= \mathsf{NE}_{\iota} \\ [A \to B] &= [A] \to [B] \\ [A \times B] &= [A] \times [B] \end{bmatrix}$$

Extensional NBE

```
 \begin{split} \operatorname{reify}_A : & \llbracket A \rrbracket \to \operatorname{NF}_A \\ \operatorname{reify}_t N &= N \\ \operatorname{reify}_{A \to B} f &= \operatorname{Lam} x \left( \operatorname{reify}_B \left( f \left( \operatorname{reflect}_A \left( \operatorname{Var} x \right) \right) \right) \right), \quad x \text{ fresh} \\ \operatorname{reify}_{A \times B} p &= \operatorname{Pair} \left( \operatorname{reify}_A p.1 \right) \left( \operatorname{reify}_B p.2 \right) \\ \operatorname{reflect}_A : & \operatorname{NE}_A \to \llbracket A \rrbracket \\ \operatorname{reflect}_t N &= N \\ \operatorname{reflect}_{A \to B} N &= \lambda v. \operatorname{reflect}_B \left( \operatorname{App} N \left( \operatorname{reify}_A v \right) \right) \\ \operatorname{reflect}_{A \times B} N &= \left( \operatorname{reflect}_A \left( \operatorname{Proj}_1 N \right), \operatorname{reflect}_B \left( \operatorname{Proj}_2 N \right) \right) \\ \operatorname{norm}_A M &= \operatorname{reify}_A \left( \llbracket M \rrbracket \emptyset \right) \end{split}
```

Typing rules

$$\begin{array}{c} +\text{-}\mathrm{I} \\ \Gamma \vdash M : A_1 + A_2 \\ \hline \Gamma \vdash \ln \mathrm{j}_i \ M : A_1 + A_2 \\ \hline \Gamma \vdash \ln \mathrm{j}_i \ M : A_1 + A_2 \end{array} \qquad \begin{array}{c} +\text{-}\mathrm{E} \\ \Gamma \vdash M : A_1 + A_2 \\ \hline \Gamma, x_1 : A_1 \vdash N_1 : C \qquad \Gamma, x_2 : A_2 \vdash N_2 : C \\ \hline \Gamma \vdash \mathsf{Case} \ M \ x_1 \ N_1 \ x_2 \ N_2 : C \end{array}$$

Conversions

```
\begin{aligned} &\mathsf{App}\;(\mathsf{Lam}\;x\;M)\;N\simeq_{\beta}M[N/x]\\ &\mathsf{Proj}_{i}\;(\mathsf{Pair}\;M_{1}\;M_{2})\simeq_{\beta}M_{i}\\ &\mathsf{Case}\;(\mathsf{Inj}_{i}\;M)\;x_{1}\;N_{1}\;x_{2}\;N_{2}\simeq_{\beta}N_{i}[M/x_{i}]\\ &\qquad\qquad\qquad M\simeq_{\eta}\mathsf{Lam}\;x\;(\mathsf{App}\;M\;x)\\ &\qquad\qquad\qquad M\simeq_{\eta}\mathsf{Pair}\;(\mathsf{Proj}_{1}\;M)\;(\mathsf{Proj}_{2}\;M)\\ &\qquad\qquad\qquad N[M/z]\simeq_{\eta}\mathsf{Case}\;M\;x_{1}\;N[\mathsf{Inj}_{1}\;x_{1}/z]\;x_{2}\;N[\mathsf{Inj}_{2}\;x_{2}/z] \end{aligned}
```

Extensional normalisation with sums is hard due to the unruly η -rule. [Ghani, TLCA 1995; Altenkirch et al., LICS 2001; Balat et al., POPL 2004; Lindley, TLCA 2007; Scherer, TLCA 2015]

Semantics

S can be any countably infinite set.

Despite the unruly η -rule, the semantics for sums is straightforward.

Extensional NBE?

```
\operatorname{reify}_A: [A] \to \operatorname{NF}_A
           reifv. N = N
       reify_{A\to B} f = Lam x (reify_B (f (reflect_A (Var x)))), x fresh
       reify_{A \times B} p = Pair (reify_A p.1) (reify_B p.2)
reify<sub>A<sub>1</sub>+A<sub>2</sub></sub> (i, v) = lnj_i (reify<sub>A<sub>i</sub></sub> v)
           reflect_A : NE_A \rightarrow \llbracket A \rrbracket
        reflect, N=N
  reflect_{A\rightarrow B} N = \lambda \nu. reflect_B (App N (reify_A \nu))
   reflect_{A \times B} N = (reflect_A (Proj_1 N), reflect_B (Proj_2 N))
 reflect_{A_1+A_2} N = ???
```

Typing rules

$$\frac{\Gamma\text{-}\mathrm{I}}{\Gamma\vdash M:A} \\ \frac{\Gamma\vdash \mathrm{Val}\; M:\mathsf{T}A}{\Gamma\vdash \mathsf{Val}\; M:\mathsf{T}A}$$

$$\frac{\mathsf{T-E}}{\Gamma \vdash M : \mathsf{T}A} \qquad \Gamma, x : A \vdash N : \mathsf{T}B}{\Gamma \vdash \mathsf{Let} \ x \ M \ N : \mathsf{T}B}$$

Conversions

$$\begin{aligned} \operatorname{\mathsf{App}} \left(\operatorname{\mathsf{Lam}} x \, M \right) \, N &\simeq_{\beta} M[N/x] \\ \operatorname{\mathsf{Proj}}_i \left(\operatorname{\mathsf{Pair}} M_1 \, M_2 \right) &\simeq_{\beta} M_i \\ \operatorname{\mathsf{Let}} x \left(\operatorname{\mathsf{Val}} M \right) \, N &\simeq_{\beta} N[M/x] \\ \operatorname{\mathsf{Let}} y \left(\operatorname{\mathsf{Let}} x \, L \, M \right) \, N &\simeq_{\gamma} \operatorname{\mathsf{Let}} x \, L \left(\operatorname{\mathsf{Let}} y \, M \, N \right) \\ M &\simeq_{\eta} \operatorname{\mathsf{Lam}} x \left(\operatorname{\mathsf{App}} M \, x \right) \\ M &\simeq_{\eta} \operatorname{\mathsf{Pair}} \left(\operatorname{\mathsf{Proj}}_1 M \right) \left(\operatorname{\mathsf{Proj}}_2 M \right) \\ M &\simeq_{\eta} \operatorname{\mathsf{Let}} x \, M \left(\operatorname{\mathsf{Val}} x \right) \end{aligned}$$

$\beta\eta$ -long normal form

$$\begin{array}{ll} (\mathsf{NF}) & M_t ::= N_t \\ & M_{A \to B} ::= \mathsf{Lam} \ x \ M_B \\ & M_{A \times B} ::= \mathsf{Pair} \ M_A \ M_B \\ & M_{\mathsf{TB}} ::= \mathsf{Val} \ M_A \ | \ \mathsf{Let} \ x \ N_{\mathsf{TA}} \ M_{\mathsf{TB}} \\ (\mathsf{NE}) & N_B ::= \mathsf{Var} \ x \ | \ \mathsf{App} \ N_{A \to B} \ M_A \ | \ \mathsf{Proj}_1 \ N_{B \times A} \ | \ \mathsf{Proj}_2 \ N_{A \times B} \end{array}$$

Semantics

$$\begin{bmatrix} [\iota] = S \\ [A \to B] = [A] \to [B] \\ [A \times B] = [A] \times [B] \\ [TA] = T[A]$$

S can be any countably infinite set.

T can be any *monad*:

$$T: \star \to \star$$

return: $A \to TA$

(>>=): $TA \to (A \to TB) \to TB$

return $v >= f = f v$

($c >= f$) $>= g = c >= (\lambda x.f x >= g)$
 $c = c >= (\lambda x.return x)$

Digression: pronouncing the word "monad"

Is it "moanad" or "monnad"?

Does "monad" rhyme with "gonad" or does its first syllable rhyme with the first syllable of "monoid"?

A monad is a monoid in the category of endofunctors!

Extensional NBE?

```
\operatorname{reify}_A: [A] \to \operatorname{NF}_A
       reify, N = N
   reify_{A\rightarrow B} f = Lam x (reify_B (f (reflect_A (Var x)))), x fresh
   reify<sub>A \times B</sub> p = Pair (reify_A p.1) (reify_B p.2)
     reify<sub>TA</sub> c = ??? (need to collect let bindings here)
       reflect_A : NE_A \rightarrow [A]
    reflect, N=N
reflect_{A \to B} N = \lambda v. reflect_B (N (reify_A v))
reflect_{A\times B} N = (reflect_A (Proj_1 N), reflect_B (Proj_2 N))
  reflect<sub>TA</sub> N = ??? (need to register a let binding for N here)
```

Residualising monads

To support reification the monad T must include sufficient syntactic data in order to keep track of let bindings.

A residualising monad is a monad equipped with operations

bind:
$$NE_{TA} \rightarrow TV_A$$
 (register a let binding)
collect: $TNF_{TA} \rightarrow NF_{TA}$ (collect let bindings)

satisfying the equations:

```
collect (return M) = M
collect (bind N \gg f) = Let x N (collect (f x)), x fresh
```

where V_A is the set of object variables of type A.

Residualising monads

Continuation monad

$$TA = (A \rightarrow \mathsf{NF}) \rightarrow \mathsf{NF}$$

$$\mathsf{return} \ v = \lambda k.k \ v$$

$$c \gg f = \lambda k.c \ (\lambda x.f \ x \ k)$$

$$\mathsf{bind} \ N = \lambda k.\mathsf{Let} \ x \ N \ (k \ x), \quad x \ \mathsf{fresh}$$

$$\mathsf{collect} \ c = c \ \mathsf{id}$$

Free monad over a list of let bindings

$$TA = \mu X. \text{Val } A + \text{Let } x \text{ NE}_{\mathsf{T}B} X$$

$$\text{return } v = \text{Val } v$$

$$\text{Val } v \ggg f = f v$$

$$\text{Let } x N c \ggg f = \text{Let } x N (c \ggg f)$$

$$\text{bind } N = \text{Let } x N (\text{Val } x), \quad x \text{ fresh }$$

$$\text{collect } (\text{Val } M) = M$$

$$\text{collect } (\text{Let } x N c) = \text{Let } x N (\text{collect } c)$$

Residualising semantics

$$\begin{bmatrix} \iota \end{bmatrix} = \mathsf{NE}_{\iota} \\
\llbracket A \to B \rrbracket = \llbracket A \rrbracket \to \llbracket B \rrbracket \\
\llbracket A \times B \rrbracket = \llbracket A \rrbracket \times \llbracket B \rrbracket \\
\llbracket \mathsf{TA} \rrbracket = \mathsf{T} \llbracket A \rrbracket$$

$$\begin{split} & \llbracket \operatorname{Var} x \rrbracket \rho = \rho \ x \\ & \llbracket \operatorname{Lam} x \ M \rrbracket \rho = \lambda v. \llbracket M \rrbracket \rho [x \mapsto v] \\ & \llbracket \operatorname{App} M \ N \rrbracket \rho = \llbracket M \rrbracket \rho \ \llbracket N \rrbracket \rho \\ & \llbracket \operatorname{Pair} M \ N \rrbracket \rho = (\llbracket M \rrbracket \rho, \llbracket N \rrbracket \rho) \\ & \llbracket \operatorname{Proj}_i M \rrbracket \rho = (\llbracket M \rrbracket \rho).i \\ & \llbracket \operatorname{Val} M \rrbracket \rho = \operatorname{return} \ \llbracket M \rrbracket \rho \\ & \llbracket \operatorname{Let} x \ M \ N \rrbracket \rho = \llbracket M \rrbracket \rho \ggg \lambda x. \llbracket N \rrbracket \rho \end{split}$$

T can be any residualising monad.

Extensional NBE

```
\operatorname{reify}_A: [A] \to \operatorname{NF}_A
         reify, N = N
    reify<sub>A \rightarrow B</sub> f = \text{Lam } x \text{ (reify}_B (f \text{ (reflect}_A (\text{Var } x))))},
                                                                                             x fresh
    reify_{A \times B} p = Pair (reify_A p.1) (reify_B p.2)
       reify_{TA} c = collect (c \gg \lambda v.return (reify_A v))
         reflect_A : NE_A \rightarrow \llbracket A \rrbracket
      reflect, N=N
reflect_{A \to B} N = \lambda \nu. reflect_B (N (reify_A \nu))
reflect_{A\times B} N = (reflect_A (Proj_1 N), reflect_B (Proj_2 N))
  reflect<sub>TA</sub> N = \text{bind } N \gg \lambda x.\text{return (reflect}_A (\text{Var } x))
      \operatorname{norm}_A M = \operatorname{reify}_A (\llbracket M \rrbracket \emptyset)
```

[Filinski, TLCA 2001; my PhD thesis]

Computational sums

Typing rules

$$\begin{array}{c} +\text{-}\mathrm{I} \\ \Gamma \vdash M : A_1 + A_2 \\ \hline \Gamma \vdash \ln \mathsf{j}_i \, M : A_1 + A_2 \end{array} \qquad \begin{array}{c} +\text{-}\mathrm{E} \\ \Gamma \vdash M : A_1 + A_2 \\ \hline \Gamma, x_1 : A_1 \vdash N_1 : \mathsf{T}B \qquad \Gamma, x_2 : A_2 \vdash N_2 : \mathsf{T}B \\ \hline \Gamma \vdash \mathsf{Case} \, M \, x_1 \, N_1 \, x_2 \, N_2 : \mathsf{T}B \end{array}$$

Computational sums

Extensional NBE?

```
\operatorname{reify}_A: [A] \to \operatorname{NF}_A
          reifv. N = N
      reify_{A\to B} f = Lam x (reify_B (f (reflect_A (Var x)))), x fresh
       reify_{A \times B} p = Pair (reify_A p.1) (reify_B p.2)
\operatorname{reify}_{A_1+A_2}(i, v) = \operatorname{Inj}_i(\operatorname{reify}_{A_i} v)
         reifv_{TA} c = collect (c \gg \lambda x. return (reifv_A x))
          reflect_A : NE_A \rightarrow \llbracket A \rrbracket
       reflect, N = N
  reflect_{A \to B} N = \lambda v.reflect_B (App N (reify_A v))
   reflect_{A\times B} N = (reflect_A (Proj_1 N), reflect_B (Proj_2 N))
 reflect<sub>A_1+A_2</sub> N = \text{binds } N \gg ??? (need a computation type here)
     reflect_{TA} N = bind N \gg \lambda x.return (reflect_A (Var x))
```

Fix

- ▶ change the type of reflect_A to $NE_A \rightarrow T[A]$
- restrict function types to be of the form $A \rightarrow TB$

Call-by-value

Typing rules

$$\frac{\Gamma, x : A \vdash M : \mathsf{T}B}{\Gamma \vdash \mathsf{Lam} \ x \ M : A \to \mathsf{T}B}$$

$$\frac{\overset{\rightarrow -\mathrm{E}}{\Gamma \vdash L : A \rightarrow \mathsf{T}B} \qquad \Gamma \vdash M : A}{\Gamma \vdash \mathsf{App} \ LM : \mathsf{T}B}$$

Conversions

```
\begin{array}{c} \operatorname{\mathsf{App}}\left(\operatorname{\mathsf{Lam}} x\,M\right)\,N\simeq_{\beta}M[N/x] \\ \operatorname{\mathsf{Proj}}_{i}\left(\operatorname{\mathsf{Pair}} M_{1}\,M_{2}\right)\simeq_{\beta}M_{i} \\ \operatorname{\mathsf{Case}}\left(\operatorname{\mathsf{Inj}}_{i}M\right)\,x_{1}\,N_{1}\,x_{2}\,N_{2}\simeq_{\beta}N_{i}[M/x_{i}] \\ \operatorname{\mathsf{Let}} x\left(\operatorname{\mathsf{Val}} M\right)\,N\simeq_{\beta}N[M/x] \\ \operatorname{\mathsf{Let}} y\left(\operatorname{\mathsf{Case}} L\,x_{1}\,M_{1}\,x_{2}\,M_{2}\right)\,N\simeq_{\gamma}\operatorname{\mathsf{Case}} L\,x_{1}\left(\operatorname{\mathsf{Let}} y\,M_{1}\,N\right)\,x_{2}\left(\operatorname{\mathsf{Let}} y\,M_{2}\,N\right) \\ \operatorname{\mathsf{Let}} y\left(\operatorname{\mathsf{Let}} x\,L\,M\right)\,N\simeq_{\gamma}\operatorname{\mathsf{Let}} x\,L\left(\operatorname{\mathsf{Let}} y\,M\,N\right) \\ M\simeq_{\eta}\operatorname{\mathsf{Lam}} x\left(\operatorname{\mathsf{App}} M\,x\right) \\ M\simeq_{\eta}\operatorname{\mathsf{Pair}}\left(\operatorname{\mathsf{Proj}}_{1}M\right)\left(\operatorname{\mathsf{Proj}}_{2}M\right) \\ M\simeq_{\eta}\operatorname{\mathsf{Case}} M\,x_{1}\left(\operatorname{\mathsf{Val}}\left(\operatorname{\mathsf{Inj}}_{1}\,x_{1}\right)\right)\,x_{2}\left(\operatorname{\mathsf{Val}}\left(\operatorname{\mathsf{Inj}}_{2}\,x_{2}\right)\right) \\ M\simeq_{\eta}\operatorname{\mathsf{Let}} x\,M\left(\operatorname{\mathsf{Val}} x\right) \end{array}
```

The restriction to call-by-value computational sums weakens the unruly η -rule.

$\beta\eta$ -long normal form

```
 \begin{aligned} &(\mathsf{NF}) & M_l ::= N_l \\ & M_{A \to \mathsf{T}B} ::= \mathsf{Lam} \ x \ M_{\mathsf{T}B} \\ & M_{A \times B} ::= \mathsf{Pair} \ M_A \ M_B \\ & M_{A_1 + A_2} ::= \mathsf{Inj}_i \ M_{A_i} \\ & M_{\mathsf{T}B} ::= \mathsf{Val} \ M_A \ | \ \mathsf{Let} \ x \ N_{\mathsf{T}A} \ M_{\mathsf{T}B} \\ & & | \ \mathsf{Case} \ N_{A_1 + A_2} \ x_1 \ M_{\mathsf{T}B} \ x_2 \ M_{\mathsf{T}B}' \\ & (\mathsf{NE}) & N_B ::= \mathsf{Var} \ x \ | \ \mathsf{App} \ N_{A \to B} \ M_A \ | \ \mathsf{Proj}_1 \ N_{B \times A} \ | \ \mathsf{Proj}_2 \ N_{A \times B} \end{aligned}
```

Semantics

S can be any countably infinite set. T can be any monad.

Residualising sum monads

A residualising sum monad is a monad equipped with operations

```
\begin{array}{ll} \text{bind}: \mathsf{NE}_{\mathsf{T}A} \to \mathsf{T}\;\mathsf{V}_A & \text{(register let binding)} \\ \text{binds}: \mathsf{NE}_{A+B} \to \mathsf{T}\;(\mathsf{V}_A + \mathsf{V}_B) & \text{(register case binding)} \\ \text{collect}: \mathsf{T}\;\mathsf{NF}_{\mathsf{T}A} \to \mathsf{NF}_{\mathsf{T}A} & \text{(collect bindings)} \end{array}
```

satisfying the equations:

```
collect (return M) = M

collect (bind N \gg f) = Let x N (collect (f x)), x fresh

collect (binds N \gg f) = Case N x_1 (collect (f (1, x_1)))

x_2 (collect (f (2, x_2))), x_1, x_2 fresh
```

Residualising sum monads

Continuation monad

$$TA = (A \rightarrow \mathsf{NF}) \rightarrow \mathsf{NF}$$
 return $v = \lambda k.k \ v$ $c \gg f = \lambda k.c \ (\lambda x.f \ x \ k)$ bind $N = \lambda k. \mathsf{Let} \ x \ N \ (k \ x), \qquad x \ \mathsf{fresh}$ binds $N = \lambda k. \mathsf{Case} \ N \ x_1 \ (k \ (1, x_1))$ $x_2 \ (k \ (2, x_2)), \qquad x_1, x_2 \ \mathsf{fresh}$ collect $c = c \ \mathsf{id}$

Residualising sum monads

Free monad over a tree of let and case bindings

$$TA = \mu X. \text{Val } A + \text{Let } x \text{ NE}_{TB} X + \text{Case NE}_{A_1 + A_2} x_1 X x_2 X$$

$$\text{return } v = v$$

$$\text{Val } v \gg f = f v$$

$$\text{Let } x N c \gg f = \text{Let } x N (c \gg f)$$

$$\text{Case } N x_1 c_1 x_2 c_2 \gg f = \text{Case } N x_1 (c_1 \gg f) x_2 (c 2 \gg f)$$

$$\text{bind } N = \text{Let } x N (\text{Val } x), \qquad x \text{ fresh}$$

$$\text{binds } N = \text{Case } N x_1 (\text{Val } (1, x_1))$$

$$x_2 (\text{Val } (2, x_2)), \qquad x_1, x_2 \text{ fresh}$$

$$\text{collect } (\text{Val } M) = M$$

$$\text{collect } (\text{Let } x N c) = \text{Let } x N (\text{collect } c)$$

$$\text{collect } (\text{Case } N x_1 c_1 x_2 c_2) = \text{Case } N x_1 (\text{collect } c_1) x_2 (\text{collect } c_2)$$

Residualising semantics

T can be any residualising sum monad.

Extensional NBE

```
\operatorname{reify}_A: [A] \to \operatorname{NF}_A
                         reify, N = N
                \operatorname{reify}_{A \to T_B} f = \operatorname{Lam} x (\operatorname{reify}_{T_B} (\operatorname{reflect}_A (\operatorname{Var} x) \gg f)),
                    reify<sub>A \times B</sub> p = Pair (reify<sub>A</sub> p.1) (reify<sub>B</sub> p.2)
          reify<sub>A<sub>1</sub>+A<sub>2</sub></sub> (i, v) = lnj_i (reify<sub>A<sub>i</sub></sub> v)
                      reify_{TA} c = collect (c \gg \lambda x. return (reify_A x))
                         reflect_A: NE_A \to T[A]
                     reflect, N = \text{return } N
          \operatorname{reflect}_{A \to TB} N = \operatorname{return} (\lambda v.\operatorname{reflect}_{TB} (\operatorname{App} N (\operatorname{reify}_A v)) \gg \operatorname{id})
              \operatorname{reflect}_{A \times B} N = \operatorname{reflect}_A (\operatorname{Proj}_1 N) \gg \lambda x.
                                               \operatorname{reflect}_{R}(\operatorname{Proj}_{2} N) \gg \lambda y.\operatorname{return}(x, y)
           \operatorname{reflect}_{A_1+A_2} N = \operatorname{binds} N \gg \lambda(i, x_i).\operatorname{reflect}_{A_i} (\operatorname{Var} x_i) \gg \lambda v.\operatorname{return} (i, v)
                 reflect_{TA} N = return (bind N \gg \lambda x. reflect_A (Var x))
                     \operatorname{norm}_A M = \operatorname{reifv}_A (\llbracket M \rrbracket \emptyset)
[Filinski, TLCA 2001; Lindley, NBE 2009]
```

A summary of extensional NBE for sums

- Normalising with sums is non-trivial
- Call-by-value sums can be interpreted using continuations or a suitable free monad
 [Danvy, POPL 1996; Filinski, TLCA 2001; Lindley, NBE 2009]
- Call-by-name sums require more care [Altenkirch et al., LICS 2001; Balat et al., POPL 2004]

From reduction-based normalisation to NBE

NBE can be derived from reduction-based normalisation by a series of standard program transformations.

Example: naive β -reduction \longrightarrow intensional NBE

Input: naive normalisation algorithm (top-down traversal contracting β -redexes by substitution)

- 1. add an environment in place of substitution
- 2. factor through weak normalisation (not reducing under lambda)
- 3. replace lambda abstractions with closures
- 4. replace closures with higher-order functions

Output: intensional NBE

[my PhD thesis; Danvy, AFP 2008]

Some references

Per Martin-Löf. An intuitionistic theory of types. OUP, 1972.

Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation functional. LICS 1991.

Olivier Danvy. Type-directed partial evaluation. POPL 1996.

Andrzej Filinski. Normalization by evaluation for the computational lambda calculus. TLCA 2001.

Sam Lindley. Normalisation by evaluation in the compilation of typed functional programming languages. PhD Thesis, 2005.

Sam Lindley. Accumulating bindings. NBE 2009.

NBE

 $norm = reify \circ \llbracket -
rbracket$