

Deep Regression Representation with Topology

Shihao Zhang, Kenji Kawaguchi, Angela Yao National University of Singapore

Motivation

- **Classification**: disconnected
- **Regression**: connected

The representation topologies of classification and regression are different

Q: Why different topologies?

Q: What topology (shape) the representations should have for effective regression?

Figure: Visualization of the feature space from depth estimation Lowering the intrinsic dimension results in a lower H(Z|Y), implying a higher generalization ability

Feature and target spaces are topologically similar, and enforcing such similarity is helpful

Desirable representation

- Intrinsic dimension equals the target space.
- Topologically similar to the target space.

Theorem 1: Optimizing the Information Bottleneck ⇒ minimizing H(Z|Y) and H(Y|Z)

Information Bottleneck

Theoretical Analysis (informal)

Intrinsic dimension equals to the target space

Generalization Error

 $\mathbb{E}_{\{\mathbf{x},\mathbf{z},\mathbf{y}\}\sim P}[||f(\mathbf{z})-\mathbf{y}||_2]$ $\leq \mathbb{E}_{\{\mathbf{x},\mathbf{z},\mathbf{y}\}\sim S}(||f(\mathbf{z})-\mathbf{y}||_2) + 2L_1Q(\mathcal{H}(\mathbf{Z}|\mathbf{Y}))$

Generalization error is bounded by $H(Z|Y) \Rightarrow$ minimizing H(Z|Y) to improve the generalization ability

Intrinsic dimension

 $\mathcal{H}(\mathbf{Z}|\mathbf{Y}) = \mathbb{E}_{\mathbf{y}_i \sim \mathcal{Y}} \mathcal{H}(\mathbf{Z}|\mathbf{Y} = \mathbf{y}_i)$ $\leq \mathbb{E}_{\mathbf{y}_i \sim \mathcal{Y}}[-\log(\epsilon)Dim_{ID}\mathcal{M}_i + \log\frac{K}{C(\epsilon)}]$

H(Z|Y) is bounded by the intrinsic dimensions (ID) of $M_i \Longrightarrow$ minimizing the ID of M to lower H(Z|Y)ID of M should larger than ID of the target space to guarantee sufficient representation capabilities ⇒ ID equals the target space is desirable

Topologically similar to the target space

Definition (Optimal Representation): Z is optimal if H(Y|Z) = H(X|Z)and H(Z|Y) is minimal

Z is optimal if and only if Z is homeomorphic to Y', where Y' = Y - N, N is the aleatoric uncertainty

Method & Results

- The k_{th} persistent homology $PH_k(S)$ is the set of 'birth' and 'death' intervals of the kdimensional holes.
- $edge_s$: edges of the minimal spanning tree of S
- $PH_0(S)$ can be regarded as the length of the minimal spanning tree of S

Intrinsic dimension can be estimated as the slop between $\log \sum PH_0(S)$ and $\log |S|^{[2]}$

Encourage a lower intrinsic dimension:

 $L'_d(Z) = slop(\log \sum PH_0(Z), \log |Z|)$

Encourage the same intrinsic dimension: Enforcing topological similarity[1]:

(c) Regression $+\mathcal{L}_d$

 $L_t = ||Z(edge_z) - Y(edge_z)||_2^2 + ||Z(edge_y) - Y(edge_y)||_2^2$

(e) Regression $+\mathcal{L}_R$

Memory (MB)

11821

11833

12211

12211

12211

 $L_d = |L'_d(Z)/L'_d(Y)|$

indicate the best performance.

Table 2. Quantitative comparison (MAE) on AgeDB. We report

results as mean \pm standard variance over 3 runs. **Bold** numbers

(d) Regression $+\mathcal{L}_t$

Table 5. Quantitative comparison of the time consumption and memory usage on the synthetic dataset and NYU-Depth-v2, and

the corresponding training times are 10000 and 1 epoch, respec-

Few tively. Depth Estimation 13.63 ± 0.43 7.80 ± 0.12 6.80 ± 0.06 9.11 ± 0.31 Coordinate Prediction n_m Regularizer (ResNet-50) (2 Layer MLP) 13.61 ± 0.32 Memory (MB) 13.28 ± 0.73 1929 13.61 ± 0.50 1942 12.79 ± 0.65 1950 6.59 ± 0.03 8.75 ± 0.03 12.67 ± 0.24 1980 $7.32 \pm 0.09 \quad 6.50 \pm 0.15 \quad 8.38 \pm 0.11 \quad 12.18 \pm 0.38$ 300 2370

L				
Method	Swiss Roll	Mammoth	Torus	Circle
Baseline	2.99 ± 0.43	211 ± 55	3.01 ± 0.11	0.154 ± 0.006
+ InfDrop	4.15 ± 0.37	367 ± 50	2.05 ± 0.04	0.093 ± 0.003
+ OE	2.95 ± 0.69	187 ± 88	2.83 ± 0.07	0.114 ± 0.007
$\overline{+\mathcal{L}_d'}$	2.74 ± 0.85	141 ± 104	1.13 ± 0.06	0.171 ± 0.04
$+\mathcal{L}_d$	0.66 ± 0.08	89 ± 66	0.62 ± 0.12	0.090 ± 0.019
$+\mathcal{L}_t$	1.83 ± 0.70	80 ± 61	0.95 ± 0.05	0.036 ± 0.004
$+\mathcal{L}_d+\mathcal{L}_t$	$\textbf{0.61} \pm \textbf{0.17}$	49 ± 27	$\textbf{0.61} \pm \textbf{0.05}$	$\textbf{0.013} \pm \textbf{0.008}$

References

[1] Moor et al. Topological Autoencoders. ICML. 2021

[2] Birdal et al. Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks. NeurIPS. 2021