Multilayer Perceptron (MLP) para previsão de séries temporais

Aluno: Gustavo Henrique Ferreira de Miranda Oliveira

Orientador: Adriano Lorena Inácio de Oliveira

Centro de Informática - UFPE 22/08/2017

Projeto Github

MLP_forecasting

Link: https://github.com/GustavoHFMO/MLP_forecasting

Importar Dataset 3

Times Series Data Library

Link: https://datamarket.com/data/list/?q=provider:tsdl

DataMarket has been acquired by Qlik"

Read more about this exciting development on DataMarket's blog.

Time Series Data Library

The Time Series Data Library (TSDL) was created by Rob Hyndman, Professor of Statistics at Monash University, Australia.

Importar Dataset 4

Pandas

Link: http://pandas.pydata.org/pandas-docs/stable/

- read_excel()
- read_csv()

pandas: powerful Python data analysis toolkit

PDF Version

Zipped HTML

Normalizar Dataset

5

Classe Particionar_series.py

- Normalizar()
- Desnormalizar()

$$[0,1] \rightarrow f(x) = \frac{x - Min}{Max - Min}$$

Particionar Dataset 6

Classe Particionar_series.py

- Part_train()
- Part_val()
- Part_test()

Classe Particionar_series.py

Janela_tempo()

- $X = [x_1, x_2, x_3, x_4, x_5, x_6, ..., x_n]$
- p = 3
- Dados de entrada = n p

Entradas	Saídas
x_1, x_2, x_3	<i>x</i> ₄
x_2, x_3, x_4	<i>x</i> ₅
x_3, x_4, x_5	<i>x</i> ₆
101	· · ·
$x_{n-3}, x_{n-2}, x_{n-1}$	x_n

MLP em Python 9

Sklearn.neural_network

Link: http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html

MLPRegressor()

sklearn.neural_network.MLPRegressor

class sklearn.neural_network. MLPRegressor (hidden_layer_sizes=(100,), activation='relu', solver='adam', alpha=0.0001, batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08)

sklearn.metrics.regression

Link: http://scikit-learn.org/stable/modules/model_evaluation.html#regression-metrics

- mean_absolute_error()
- mean_squared_error()
- mean_squared_log_error()
- median_absolute_error()

$$MSE(y, \hat{y}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}}-1} (y_i - \hat{y}_i)^2.$$

Plotar Previsão

Classe Main.py

- matplotlib.pyplot
- Plotar_predicoes()

Multilayer Perceptron (MLP) para previsão de séries temporais

Aluno: Gustavo Henrique Ferreira de Miranda Oliveira

Orientador: Adriano Lorena Inácio de Oliveira

Centro de Informática - UFPE 22/08/2017