Prosimy wypełnić poniższe pola DRUKOWANYMI literami:

Imię i nazwisko	
]
	_
E-mail	
]
	_
Nr telefonu Klasa	
+ 4 8	

Klucz do testu kwalifikacyjnego na Warsztaty Matematyczne 2022

Klasy trzecie i czwarte

Test składa się z uporządkowanych w kolejności <u>losowej</u> 30 zestawów po 3 pytania. Na pytania odpowiada się "tak" lub "nie" poprzez wpisanie odpowiednio "T" bądź "N" w pole obok pytania. W danym trzypytaniowym zestawie możliwa jest dowolna kombinacja odpowiedzi "tak" i "nie". W zestawach zaznaczonych gwiazdką (gwiazdka wygląda tak: *) prócz udzielenia odpowiedzi należy je uzasadnić.

Zasady punktacji

- Za pojedynczą poprawną odpowiedź: 1 punkt.
- Za pojedynczą niepoprawną odpowiedź: -1 punkt.
- Za brak odpowiedzi: 0 punktów.
- Za zadanie zrobione w całości dobrze dodatkowe 2 punkty.
- Za poprawne uzasadnienie pojedynczej odpowiedzi: 1 punkt.
- Za niepoprawne uzasadnienie pojedynczej odpowiedzi bądź brak takowego: 0 punktów.

Powodzenia!

Uwaga! Przez zbiór liczb naturalnych w zadaniach rozumiemy zbiór liczb całkowitych większych od 0.

- 1. Czy istnieje 100 kolejnych liczb naturalnych wśród których:
 - N Dokładnie 12 jest liczbami Fibbonacciego?
 - T Dokładnie 7 jest liczbami pierwszymi?
 - T Dokładnie 7 jest potęgami dwójki o całkowitym wykładniku?

- **2*.** Wielomian W(x) ma współczynniki rzeczywiste oraz W(8) = 8, W(-4) = -8. Wiadomo, że istnieje wielomian P(x) o współczynnikach rzeczywistych taki, że $W(x) = x \cdot P(x^2)$.
 - T Na pewno W(0) = 0.
 - T Na pewno W(8) + W(-8) = 0.
 - Na pewno W(2) = 0.

- **3*.** Niech A = (0,0), B = (1,0), C = (2,0), D = (3,0), E = (0,1). Czy
 - $\boxed{\mathbf{T}} \ \angle BED = \angle ECA?$
 - \square $\angle BEC = \angle EDA$?
 - \square $\angle AEB = \angle EBA$?

- 4. Rozpatrzmy ciąg $a, a+b, a+2b, a+3b, \dots$
 - $\boxed{ \ \ \, }$ Dla $a=720,\,b=7$ są w nim co najmniej 4 liczby pierwsze.
 - ightharpoonup Dla $a=39,\ b=57$ jest w nim liczba pierwsza.
 - $\boxed{\mathbf{T}}$ Dla $a=8953,\,b=22$ jest w nim co najmniej 5 liczb pierwszych.

- 5. Niech d(n) oznacza sumę wszystkich dodatnich dzielników liczby naturalnej n i $D(n) = d(1) + d(2) + \ldots + d(n)$.
 - T $d(840) \le 8400.$
 - N $d(1 \cdot 3 \cdot \ldots \cdot (2n+1)) = d(1) \cdot d(3) \cdot \ldots \cdot d(2n+1)$.
 - $N D(32) \ge 1024.$
- **6.** W klasie w matexie są 23 osoby, w tym 2 dziewczyny, 10 uczestników OM i 20 graczy brydża (grupy są niezależne od siebie). Najbardziej prawdopodobne jest, że...
 - N dwójka najlepszych graczy w brydża w klasie jest dziewczynami.
 - N obie dziewczyny startują w OM i wszyscy uczestnicy OM w tej klasie grają w brydża.
 - T pewne dwie osoby obchodzą urodziny tego samego dnia (przyjmij że rok ma 365 dni, lata przestępne nie istnieją i każdy dzień w roku ma równe prawdopodobieństwo bycia dniem urodzin).
- **7*.** Niech $e_1 = 2$ i dla n > 0 zachodzi $e_{n+1} = e_1 \cdot \ldots \cdot e_n + 1$.
 - \square Dla $a \neq b : NWD(e_a, e_b) = 1.$

- 8. Wielomian $P(x) = 3x^5 + x^4 + 7x^3 2x 1$ posiada pierwiastek:
 - N całkowity.
 - N wymierny.
 - T rzeczywisty.

- **9.** Liczba 1000000000601 jest:
 - N kwadratem liczby całkowitej.
 - N sześcianem liczby całkowitej.
 - N liczbą pierwszą.
- 10*. Równanie $x^2 + 11y^2 = kz^2$ ma nieskończenie wiele rozwiązań w liczbach całkowitych dla:
 - T k=5.
 - N k = 6.
 - $\boxed{\mathbf{T}}$ nieskończenie wielu całkowitych k.

- 11. Dany jest sześciokąt wypukły ABCDEF, w którym $\angle EFA = \angle FAB = \angle ABC = \angle BCD = 120^{\circ}$ i $\angle CFE = \angle FCD$.

 - T AF = BC.
 - \square Na ABCF można opisać okrąg.
- 12. Martyna i Oliwia grają w grę. Ruch polega na zamianie liczby całkowitej n na dowolną liczbę całkowitą z przedziału $\left[\frac{n}{4},\frac{n}{2}\right]$. Przegrywa ta, która nie może wykonać ruchu. Martyna zaczyna.
 - \square Dla n = 100 Martyna ma strategię wygrywającą.
 - N Wśród liczb [1,1000] jest dokładnie 620 dających strategię wygrywającą dla Martyny.
 - N Dla $n = 10^6$ Martyna nie ma strategii wygrywającej.

- 13. Mamy dany trójkąt równoboczny ABC o polu 7. Punkty M i N leżą odpowiednio na bokach AB i AC, że AN=BM. Punkt O jest przecięciem BN i CM, a pole BOC jest równe 2.
 - \square Kat BOC jest równy 120°.
 - T Stosunek $\frac{MB}{AB}$ może być równy $\frac{1}{3}$.
- **14.** Rozważmy ciąg rekurencyjny o wzorze $a_{n+3} = a_{n+2} \cdot a_{n+1} + a_n$ oraz $a_1 = a_2 = a_3 = 1$.
 - N Istnieje taki indeks m, że $a_m = 1000$.
 - Istnieje nieskończenie wiele liczb w tym ciągu podzielnych przez 3.
 - \square Dla każdej liczby całkowitej n istnieje w tym ciągu liczba będąca wielokrotnością n.
- 15*. Mamy stosy kamieni. Dwóch graczy na przemian zabiera dowolną liczbę kamieni z najliczniejszego stosu. Wygrywa ten gracz, po którego ruchu stół zostanie pusty. Czy w podanych układach stosów gracz pierwszy może zawsze wygrać, niezależnie od ruchów przeciwnika?
 - $\begin{array}{|c|c|c|c|}
 \hline
 N & 7, 7, 3, 2, 2, 1
 \end{array}$
 - \Box 6, 6, 6, 6, 6
 - $\boxed{\mathbf{T}}$ 3, 3, 3, 2, 2, 2, 1, 1, 1

- 16. Dane są trzy okręgi o środkach O_1, O_2, O_3 i promieniach odpowiednio 3, 4 i 21, takie że każde dwa z nich są zewnętrznie styczne. W trójkąt $O_1O_2O_3$ wpisano okrag ω o środku O.
 - T Promień ω wynosi 3.
 - ightharpoonup N Długość odcinka OO_2 jest mniejsza niż $\frac{9}{2}$.
 - \square Pole trójkąta $O_1O_2O_3$ jest większe od 81.

	T zawsze istnieje jednokolorowy niestały ciąg arytmetyczny długości 3?
	T istnieje takie kolorowanie, że suma dwóch dowolnych różnych jednokolorowych liczb nie jest potęgą dwójki?
	$\boxed{\mathbf{T}}$ zawsze istnieją takie parami różne jednokolorowe liczby x,y,z że $x+y=z?$
18.	Dany jest turniej - każdy zawodnik rozgrywa dokładnie jeden mecz z każdym innym i nie ma remisów. Cyklem k -elementowym nazwiemy taki ciąg parami różnych zawodników, że pierwszy wygrywa z drugim, drugi z trzecim itd., aż na końcu k -ty wygrywa z pierwszym. Zawsze prawdą jest, że:
	$\boxed{\mathbf{T}}$ jeśli każdy zawodnik zwyciężył z k innymi to istnieje cykl co najmniej $(k+2)$ elementowy.
	$\boxed{\mathbf{T}}$ jeśli każdy zawodnik z kimś wygrał i nikt nie wygrał z każdym to zawsze istnieje cykl.
	$\boxed{\mathbf{T}}$ jeśli w turnieju złożonym z $n\geqslant 3$ zawodników istnieje cykl $n\text{-elementowy}$ to istnieje także 3-elementowy.
19.	Które z następujących zdań są równoważne zdaniu: "Jeżeli p jest prawdziwe, wtedy q jest fałszywe"?
	$\overline{\mathbb{N}}$ Jeżeli q jest fałszywe, to p jest prawdziwe.
	\square Jeżeli q jest prawdziwe, to p jest fałszywe.
	\square Albo oba p i q są fałszywe, albo dokładnie jedno z nich jest fałszywe.
20.	Konstruujemy ciąg a_n , w którym $0 \le a_1, a_2 < 5$ oraz dla $n \ge 1$ $a_{n+2} = a_{n+1} \cdot a_n$ (mod 10). Czy w takim ciągu może wystąpić cyfra:
	N 5?
	T 7?
	T 9?
21.	Zdefiniujmy ciąg cyfr w taki sposób, że na n -tym miejscu ciągu znajduje się pierwsza cyfra rozwinięcia dziesiętnego liczby 2^n . Czyli początek ciągu to $1,2,4,8,1,3,6,\ldots$ Ciąg ten składa się z 9 różnych cyfr. Będziemy rozważać częstotliwość występowania każdej z nich (czyli stosunek wystąpień danej cyfry do określonego miejsca w ciągu do łącznej liczby cyfr do tego miejsca)
	${\color{red} \overline{N}}$ Dla dostatecznie długiego ciągu wszystkie cyfry będą występować równie często.
	T Cyfra 2 będzie występować częściej niż cyfra 3.
	T Cyfra 1 będzie występować ponad dwukrotnie częściej niż cyfra 9.

17. Pokolorujmy wszystkie liczby całkowite dodatnie na 2 kolory. Czy:

- 22. Czy liczba, której przedstawienie w systemie binarnym to 1011000011 jest:
 - N podzielna przez 3?
 - N dzielnikiem 10110000111 (system binarny)?
 - T w systemie czwórkowym postaci 23003?
- **23.** Jeżeli funkcja $f: \mathbb{R} \to \mathbb{R}$, spełnia dla każdej liczby rzeczywistej f(x) = f(f(x)) + x, to:
 - $\begin{tabular}{c} \hline \end{tabular} f$ jest różnowartościowa

 - T $f^{42}(1) = 1$, przy czym $f^k(x) = f(f^{k-1}(x))$, $f^1(x) = f(x)$
- **24.** Ciąg Fibonacciego to taki ciąg, że $F_0 = 0$, $F_1 = 1$ oraz $F_{n+2} = F_{n+1} + F_n$ dla n całkowitych nieujemnych. Niech f(n) będzie najmniejszą taką liczbę naturalną, że n dzieli $F_{f(n)}$ oraz $F_{f(n)+1} 1$, lub równe 0 jeśli nie ma takiej liczby. Wówczas:

 - N f(66) < f(88)
 - $\boxed{\mathbf{N}}$ istnieje nieskończenie wiele takich n, że f(n) = 0
- 25*. Jaś napotkał tablicę z liczbami naturalnymi od 1 do 20 i postanowił zagrać w grę. W każdym ruchu ściera dwie liczby z tablicy i rysuje trójkąt prostokątny o przyprostokątnych tych długości, po czym dopisuje do liczb na tablicy długość wysokości opuszczonej na przeciwprostokątną. Które z tych nierówności może spełniać otrzymana na końcu liczba?
 - $\boxed{\mathbf{N}} \quad 1 \leqslant x$
 - $N \le \frac{\sqrt{2}}{2}$
 - $\boxed{\mathbf{T}} \quad \frac{\sqrt{2}}{2} \leqslant x$

26.	Na tablicy napisanych jest 97 liczb postaci $\frac{49}{k}$ dla $1 \leqslant k \leqslant 97$. W każdym ruchu
	pewne dwie liczby a i b zosają zmazane i zastąpione przez liczbę $2ab-a-b+1$.
	Jaka liczba może pozostać na tablicy po 96 krokach?

- 27. Pod domem Ani zatrzymują się autobusy linii 1 i 2, pierwszy kursuje co 10 minut zaczynając od 10:05 i jeździ do sklepu z rogalikami o nadzieniu truskawkowym, a drugi co 20 minut od 12:00 i jeździ do sklepu z rogalikami o nadzieniu śliwkowym. Ania codziennie wychodzi na przystanek o losowej porze między 15:00 i 16:00, a następnie wsiada w pierwszy autobus który przyjedzie.

 Jakie jest prawdopodobieństwo, że Ania będzie czekała nie dłużej niż 5 minut oraz pojedzie do sklepu z rogalikami o nadzieniu truskawkowym?
 - $\begin{array}{|c|c|}\hline N & \frac{1}{4}\\\hline T & \frac{1}{2}\\\hline \end{array}$
 - $\frac{1}{N}$ $\frac{3}{4}$
- **28.** O jaki kąt zgodnie ze wskazówkami zegara nalezy obrócić parabolę o równaniu $y=x^2$, żeby miała miejsce zerowe dla $x=2\sqrt{3}$.
 - T 60°
 - N 45°
 - N 30°
- **29.** Ile liczb całkowitych z przedziału [1, 2022] można przedstawić jako różnicę kwadratów dwóch liczb całkowitych.
 - T więcej niż 1011
 - N więcej niż 1516
 - N więcej niż 2000

30*. Liczba $\sqrt{13 + 2\sqrt{12}} - \sqrt{3(7 + \sqrt{48})}$ jest:

- T ujemna.
- T całkowita.
- ${\color{red} \overline{\bf N}}$ niewymierna.