ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013 Môn: TOÁN; Khối D (Đáp án - thang điểm gồm 04 trang)

Câu	Đáp án	Điểm
1	a. (1,0 điểm)	
(2,0 điểm)	Khi $m = 1$ ta có $y = 2x^3 - 3x^2 + 1$. • Tập xác định: $D = \mathbb{R}$. • Sự biến thiên: - Chiều biến thiên: $y' = 6x^2 - 6x$; $y' = 0 \Leftrightarrow x = 0$ hoặc $x = 1$.	0,25
	Các khoảng đồng biến: $(-\infty; 0)$ và $(1; +\infty)$; khoảng nghịch biến: $(0; 1)$. - Cực trị: Hàm số đạt cực tiểu tại $x = 1$, $y_{CT} = 0$; đạt cực đại tại $x = 0$, $y_{CD} = 1$. - Giới hạn: $\lim_{x \to -\infty} y = -\infty$; $\lim_{x \to +\infty} y = +\infty$.	0,25
	- Bảng biến thiên: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,25
	• Đồ thị: y O 1 x	0,25
	b. (1,0 điểm)	I
	Phương trình hoành độ giao điểm của đồ thị hàm số (1) với đường thẳng $y=-x+1$ là $2x^3-3mx^2+(m-1)x+1=-x+1$	0,25
	$\Leftrightarrow \begin{bmatrix} x=0 \\ 2x^2 - 3mx + m = 0 \text{ (*)}. \end{bmatrix}$ Yêu cầu của bài toán \Leftrightarrow phương trình (*) có hai nghiệm phân biệt khác 0	0,25
	$\Leftrightarrow \begin{cases} 9m^2 - 8m > 0 \\ m \neq 0 \end{cases}$	0,25
	$\Leftrightarrow m < 0 \text{ hoặc } m > \frac{8}{9}.$	0,25

Câu	Đáp án	Điểm
2 (1,0 điểm)	Phương trình đã cho tương đương với $2\cos 2x \sin x + \cos 2x = 0$	0,25
(1,0 a.c.m)	$\Leftrightarrow \cos 2x(2\sin x + 1) = 0.$	0,25
	• $\cos 2x = 0 \Leftrightarrow x = \frac{\pi}{4} + k\frac{\pi}{2} \ (k \in \mathbb{Z}).$	0,25
	• $2\sin x + 1 = 0 \Leftrightarrow$ $\begin{bmatrix} x = -\frac{\pi}{6} + k2\pi \\ x = \frac{7\pi}{6} + k2\pi \end{bmatrix}$ $(k \in \mathbb{Z}).$	0,25
	Vậy nghiệm của phương trình đã cho là $x = \frac{\pi}{4} + k\frac{\pi}{2}$, $x = -\frac{\pi}{6} + k2\pi$, $x = \frac{7\pi}{6} + k2\pi$ $(k \in \mathbb{Z})$.	
3 (1,0 điểm)	Điều kiện: $0 < x < 1$. Phương trình đã cho tương đương với $\frac{x^2}{1 - \sqrt{x}} = x - 2\sqrt{x} + 2$	0,25
	$\Leftrightarrow \frac{x^2}{(1-\sqrt{x})^2} = \frac{x}{1-\sqrt{x}} + 2 \Leftrightarrow \left(\frac{x}{1-\sqrt{x}} + 1\right) \left(\frac{x}{1-\sqrt{x}} - 2\right) = 0$	0,25
	$\Leftrightarrow \frac{x}{1-\sqrt{x}} - 2 = 0 \text{ (do } \frac{x}{1-\sqrt{x}} > 0 \text{)}$	0,25
	$\Leftrightarrow x=4-2\sqrt{3}$. Đối chiếu với điều kiện ta được nghiệm của phương trình đã cho là $x=4-2\sqrt{3}$.	0,25
4 (1,0 điểm)	Ta có $I = \int_{0}^{1} \left(1 + \frac{2x}{x^2 + 1} \right) dx = \int_{0}^{1} dx + \int_{0}^{1} \frac{2x}{x^2 + 1} dx.$	0,25
	$\bullet \int_{0}^{1} \mathrm{d}x = x \Big _{0}^{1} = 1.$	0,25
		0,25
	Do đó $I=1+\ln 2$.	0,25
5 (1,0 điểm)	$\widehat{BAD} = 120^{\circ} \Rightarrow \widehat{ABC} = 60^{\circ} \Rightarrow \Delta ABC \text{ dèu}$ $\Rightarrow AM = \frac{a\sqrt{3}}{2} \Rightarrow S_{ABCD} = \frac{a^2\sqrt{3}}{2}.$	0,25
	$\Delta SAM \text{ vuông tại } A \text{ có } \widehat{SMA} = 45^{\circ} \Rightarrow \Delta SAM$ vuông cân tại $A \Rightarrow SA = AM = \frac{a\sqrt{3}}{2}$. $Do \text{ dó } V_{S.ABCD} = \frac{1}{3}SA.S_{ABCD} = \frac{a^3}{4}$.	0,25
	Do $AD//BC$ nên $d(D,(SBC)) = d(A,(SBC))$. Gọi H là hình chiếu vuông góc của A trên SM . Ta có $AM \perp BC$ và $SA \perp BC \Rightarrow BC \perp (SAM)$ $\Rightarrow BC \perp AH \Rightarrow AH \perp (SBC) \Rightarrow d(A,(SBC)) = AH$.	0,25
	Ta có $AH = \frac{AM\sqrt{2}}{2} = \frac{a\sqrt{6}}{4}$, suy ra $d(D,(SBC)) = \frac{a\sqrt{6}}{4}$.	0,25

Câu	Đáp án	Điểm
6 (1,0 điểm)	Do $x > 0, y > 0, xy \le y - 1$ nên $0 < \frac{x}{y} \le \frac{y - 1}{y^2} = \frac{1}{y} - \frac{1}{y^2} = \frac{1}{4} - \left(\frac{1}{y} - \frac{1}{2}\right)^2 \le \frac{1}{4}$.	0,25
	Đặt $t = \frac{x}{y}$, suy ra $0 < t \le \frac{1}{4}$. Khi đó $P = \frac{t+1}{\sqrt{t^2 - t + 3}} - \frac{t-2}{6(t+1)}$.	
	$ X\acute{\text{et}} \ f(t) = \frac{t+1}{\sqrt{t^2 - t + 3}} - \frac{t-2}{6(t+1)}, \ \text{v\'oi} \ 0 < t \le \frac{1}{4}. \ \text{Ta c\'o} \ f'(t) = \frac{7 - 3t}{2\sqrt{(t^2 - t + 3)^3}} - \frac{1}{2(t+1)^2}. $	0,25
	Với $0 < t \le \frac{1}{4}$ ta có $t^2 - t + 3 = t(t - 1) + 3 < 3$; $7 - 3t > 6$ và $t + 1 > 1$.	
	Do đó $\frac{7-3t}{2\sqrt{(t^2-t+3)^3}} > \frac{7-3t}{6\sqrt{3}} > \frac{1}{\sqrt{3}}$ và $-\frac{1}{2(t+1)^2} > -\frac{1}{2}$. Suy ra $f'(t) > \frac{1}{\sqrt{3}} - \frac{1}{2} > 0$.	
	Do đó $P = f(t) \le f\left(\frac{1}{4}\right) = \frac{\sqrt{5}}{3} + \frac{7}{30}.$	0,25
	Khi $x = \frac{1}{2}$ và $y = 2$, ta có $P = \frac{\sqrt{5}}{3} + \frac{7}{30}$. Vậy giá trị lớn nhất của P là $\frac{\sqrt{5}}{3} + \frac{7}{30}$.	0,25
7.a (1,0 điểm)	$\overrightarrow{IM} = \left(-\frac{7}{2}; \frac{1}{2}\right). \text{ Ta có } M \in AB \text{ và } AB \perp IM \text{ nên đường}$ thẳng AB có phương trình $7x - y + 33 = 0$.	0,25
	$A \in AB \Rightarrow A(a;7a+33)$. Do M là trung điểm của AB nên $B(-a-9;-7a-30)$. Ta có $HA \perp HB \Rightarrow \overrightarrow{HA}.\overrightarrow{HB} = 0$ $\Rightarrow a^2 + 9a + 20 = 0 \Rightarrow a = -4$ hoặc $a = -5$.	0,25
	• Với $a=-4 \Rightarrow A(-4;5), B(-5;-2)$. Ta có $BH \perp AC$ nên đường thẳng AC có phương trình $x+2y-6=0$. Do đó $C(6-2c;c)$. Từ $IC=IA$ suy ra $(7-2c)^2+(c-1)^2=25$. Do đó $c=1$ hoặc $c=5$. Do C khác A , suy ra $C(4;1)$.	0,25
	• Với $a=-5 \Rightarrow A(-5;-2), B(-4;5)$. Ta có $BH \perp AC$ nên đường thẳng AC có phương trình $2x-y+8=0$. Do đó $C(t;2t+8)$. Từ $IC = IA$ suy ra $(t+1)^2 + (2t+7)^2 = 25$. Do đó $t=-1$ hoặc $t=-5$. Do C khác A , suy ra $C(-1;6)$.	0,25
8.a (1,0 điểm)	Gọi H là hình chiếu vuông góc của A trên (P) . Suy ra $H(-1+t;-1+t;-2+t)$.	0,25
	$H \in (P) \Leftrightarrow (-1+t)+(-1+t)+(-2+t)-1=0 \Leftrightarrow t=\frac{5}{3}. \text{ Do d\'o } H\left(\frac{2}{3};\frac{2}{3};-\frac{1}{3}\right).$	0,25
	Gọi (Q) là mặt phẳng cần viết phương trình. Ta có $\overrightarrow{AB} = (1;2;3)$ và vectơ pháp tuyến của (P) là $\overrightarrow{n} = (1;1;1)$. Do đó (Q) có vectơ pháp tuyến là $\overrightarrow{n'} = (-1;2;-1)$.	0,25
	Phương trình của mặt phẳng (Q) là: $x-2y+z+1=0$.	0,25
9.a (1,0 điểm)	Điều kiện của bài toán tương đương với $(3+i)z = -1+3i$	0,25
(=,0)	$\Leftrightarrow z=i$.	0,25
	Suy ra $w=-1+3i$.	0,25
	Do đó môđun của w là $\sqrt{10}$.	0,25

Câu	Đáp án	Điểm
7.b (1,0 điểm)	Ta có tâm của (C) là $I(1;1)$. Đường thẳng IM vuông góc với Δ nên có phương trình $x=1$. Do đó $M(1;a)$.	0,25
	Do $M \in (C)$ nên $(a-1)^2 = 4$. Suy ra $a = -1$ hoặc $a = 3$. Mà $M \notin \Delta$ nên ta được $M(1;-1)$.	0,25
	$N \in \Delta \Rightarrow N(b;3)$. Trung điểm của MN thuộc (C) $\Rightarrow \left(\frac{b+1}{2}-1\right)^2 + (1-1)^2 = 4 \Rightarrow b=5 \text{ hoặc } b=-3.$ $N = \Delta \Rightarrow N(b;3)$. Do đó $N(5;3)$ hoặc $N(-3;3)$.	0,25
	$P \in \Delta \Rightarrow P(c;3)$. - Khi $N(5;3)$, từ $\overrightarrow{MP} \perp \overrightarrow{IN}$ suy ra $c=-1$. Do đó $P(-1;3)$. - Khi $N(-3;3)$, từ $\overrightarrow{MP} \perp \overrightarrow{IN}$ suy ra $c=3$. Do đó $P(3;3)$.	0,25
8.b (1,0 điểm)	$d(A,(P)) = \frac{ (-1)-2.3-2(-2)+5 }{\sqrt{1^2+(-2)^2+(-2)^2}}$	0,25
	$=\frac{2}{3}$.	0,25
	Vector pháp tuyến của (P) là $\overrightarrow{n} = (1, -2, -2)$.	0,25
	Phương trình mặt phẳng cần tìm là $x-2y-2z+3=0$.	0,25
9.b (1,0 điểm)	Ta có $f(x)$ xác định và liên tục trên đoạn $[0;2]$; $f'(x) = \frac{2x^2 + 4x - 6}{(x+1)^2}$.	0,25
	Với $x \in [0; 2]$ ta có $f'(x) = 0 \Leftrightarrow x = 1$.	0,25
	Ta có $f(0)=3; f(1)=1; f(2)=\frac{5}{3}.$	0,25
	Giá trị nhỏ nhất của $f(x)$ trên đoạn [0; 2] là 1; giá trị lớn nhất của $f(x)$ trên đoạn [0; 2] là 3.	0,25

----- Hết -----