COMP90042

Workshop Week 07

☐ Homework 3

Due: Wednesday, April 18

Syllabus

1	Introduction and Preprocessing	Text classification
2	Lexical semantics	Distributional semantics
3	Part of Speech Tagging	Hidden Markov Models
4	Unsupervised Hidden Markov Models	Context-Free Grammars
5	Probabilistic Parsing	Dependency parsing
	Easter hol	iday break
6	N-gram language models	Neural language models
7	Information Extraction	Question Answering
8	Topic Models	ANZAC day holiday
9	Information Retrieval Boolean	Indexing and querying in the vector
	search and the vector space model	space model, evaluation
10	Index and vocabulary compression	Efficient query processing
11	The Web as a Graph: Page-rank & HITS	Machine Translation (word based)
12	Machine translation (phrase based)	Subject review
	and neural encoder-decoder	

Outline

- N-gram language models
- ☐ Neural language models
- □ Smoothing

Language models (LMs)

- LMs can tell us the probability of a sequence of words (usually a sentence)
 - \square Calculate $P(This\ is\ an\ apple)$

- LMs can generate sentences
 - ☐ The model samples the next word based on probability distribution until '</s>' is generated
 - \square Because the model defines $P(current\ word|previous\ words)$

Two types of language models

- □ Note: Others probably don't call them Type I & II...
- ☐ Type I
 - $\square \sum_{all\ sents} P(sent) \neq 1$, but $\sum_{len(sent)=L} P(sent) = 1$ for any L
 - ☐ Example: most commonly used unigram LMs

- ☐ Type II
 - $\square \sum_{all\ sents} P(sent) = 1$
 - □ Strictly following the principle (probabilities sum up to 1)

Type I example

- \square sent1 = a b c a b c
- \square sent2 = c b a b c
- \square sent3 = b a b a
- Unigram counts
- \Box {a: 5, b: 6, c: 4}
- ☐ Bigram counts

		current		
		а	b	С
<u>S</u>	< S>	1	1	1
iou	а	0	4	0
previous	b	3	0	3
pr	С	1	1	0

Type I models

- \square sent1 = a b c a b c
- \square sent2 = c b a b c
- \square sent3 = b a b a
- Unigram counts
- \Box {a: 5, b: 6, c: 4}
- ☐ Bigram counts

		current		
		а	b	С
S	<s></s>	1	1	1
previous	а	0	4	0
rev	b	3	0	3
Q	С	1	1	0

- Unigram model (type I)
- $\Box P(a) = \frac{5}{15} = \frac{1}{3}$
- $\Box P(b) = \frac{6}{15} = \frac{2}{5}$
- $\square P(c) = \frac{4}{15}$
- ☐ Bigram model (type I)

		current			
		а	b	С	
S	<s></s>	1/3	1/3	1/3	
iou	а	0	1	0	
revious	b	1/2	0	1/2	
g	С	1/2	1/2	0	

Type I models

- Unigram model
- $\square P(a,b,c) = P(a)P(b)P(c)$

- ☐ Bigram model
- P(a,b,c) = P(a| < s >)P(b|a)P(c|b)

☐ Unigram model (type I)

$$\square P(a) = \frac{5}{15} = \frac{1}{3}$$

$$\square P(b) = \frac{6}{15} = \frac{2}{5}$$

$$\square P(c) = \frac{4}{15}$$

☐ Bigram model (type I)

		current			
		а	b	С	
S	<s></s>	1/3	1/3	1/3	
iou	а	0	1	0	
previous	b	1/2	0	1/2	
ď	С	1/2	1/2	0	

Type II example

- \square sent1 = a b c a b c </s>
- \square sent2 = c b a b c </s>
- \square sent3 = b a b a </s>
- Unigram counts
- \Box {a: 5, b: 6, c: 4, </s>: 3}
- ☐ Bigram counts

		current			
		a b c			
S	<s></s>	1	1	1	0
ion	а	0	4	0	1
previous	b	3	0	3	0
Q	С	1	1	0	2

Type II models

- \square sent1 = a b c a b c </s>
- \square sent2 = c b a b c </s>
- \square sent3 = b a b a </s>
- Unigram counts
- \square {a: 5, b: 6, c: 4, </s>: 3}
- ☐ Bigram counts

		current			
		a b c			
ns	<s></s>	1	1	1	0
0	а	0	4	0	1
previ	b	3	0	3	0
Q	С	1	1	0	2

- Unigram model (type II)
- $\square P(a) = \frac{5}{18}, P(b) = \frac{6}{18} = \frac{1}{3}$
- $\Box P(c) = \frac{4}{18} = \frac{2}{9}$
- $P(</s>) = \frac{3}{18} = \frac{1}{6}$
- ☐ Bigram model (type II)

		current			
		a b c			
ns	<s></s>	1/3	1/3	1/3	0
ion	а	0	4/5	0	1/5
revio	b	1/2	0	1/2	0
d	С	1/4	1/4	0	1/2

Type II models

Unigram model

$$P(a,b,c)$$
= $P(a)P(b)P(c)P()$

☐ Bigram model

$$P(a,b,c) = P(a| < s >)$$

$$P(b|a)$$

$$P(c|b)$$

$$P(|c)$$

Unigram model (type II)

$$\square P(a) = \frac{5}{18}, P(b) = \frac{6}{18} = \frac{1}{3}$$

$$\Box P(c) = \frac{4}{18} = \frac{2}{9}$$

$$\square P() = \frac{3}{18} = \frac{1}{6}$$

☐ Bigram model (type II)

		current			
		a b c			
S	<s></s>	1/3	1/3	1/3	0
ion	а	0	4/5	0	1/5
revious	b	1/2	0	1/2	0
ď	С	1/4	1/4	0	1/2

Outline

- N-gram language models
- ☐ Neural language models
- □ Smoothing

Log-bilinear

Feed forward NN

Log-bilinear

Feed forward NN

Log-bilinear

Feed forward NN

Log-bilinear

Feed forward NN

Softmax

- Convert an array to a valid probability distribution
 - ☐ Values are all positive and sum up to 1

- $\Box a = [2, 3, 5]$

Log-Bilinear LM

- ☐ Parameters:
 - □ embedding matrix (or 2 matrices, for input & output) of size V x d
 - weights now d x d
- \square If d \ll V then considerable saving vs V^2
- d chosen as parameter typically in [100, 1000]
- \square Model is called the *log-bilinear LM*, and is closely related to word2vec

Can't we use word embeddings?

FFNNLM

☐ Application to language modelling

Feed forward neural net LMs

- Neural networks more general approach, based on same principle
 - embed input context words
 - transform in "hidden" space
 - un-embed to prob over full vocab
- Neural network used to define transformations
 - e.g., feed forward LM (FFLM)

Recurrent NNLMS

■ What if we structure the network differently, e.g., according to sequence with Recurrent Neural Networks (RNNs)

con ... 000. p(w4) p (wa) .. 000 ... 000 ... 00 recurrent shund (mmag 20000 (000000) 00000 Shared

Recurrent NNLMS

- □ Start with
 - \square initial hidden state \boldsymbol{h}_{0}
- \square For each word, w_i , in order i=1..m
 - \square embed word to produce vector, \boldsymbol{e}_i
 - \square compute hidden $\boldsymbol{h}_i = \tanh(W \boldsymbol{e}_i + V \boldsymbol{h}_{i-1} + \boldsymbol{b})$
 - \square compute output $P(w_{i+1}) = \operatorname{softmax}(U h_i + c)$
- \square Train such to minimise $\sum_{i} \log P(w_i)$
 - lacksquare to learn parameters W, V, U, $m{b}$, $m{c}$, $m{h}_{\theta}$

Outline

- N-gram language models
- ☐ Neural language models
- Smoothing

Laplacian (Add-one) smoothing

 \square Simple idea: pretend we've seen each n-gram once more than we did.

For unigram models (V= the vocabulary),

$$P_{add1}(w_i) = \frac{C(w_i) + 1}{M + |\boldsymbol{V}|}$$

For bigram models,

$$P_{add1}(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i) + 1}{C(w_{i-1}) + |\mathbf{V}|}$$

For trigram models generally,

$$P_{add1}(w_i|w_{i-1},w_{i-2}) = \frac{C(w_{i-2},w_{i-1},w_i) + 1}{C(w_{i-2},w_{i-1}) + |\mathbf{V}|}$$

Laplacian smoothing

☐ Bigram counts & probs

		current			
		a b c			
ns	<s></s>	1	1	1	0
ion	а	0+ <i>€</i>	4+ <i>€</i>	0+ <i>€</i>	$1+\epsilon$
previo	b	3	0	3	0
Q	С	1	1	0	2

 $\Box \epsilon$ is usually very small

 \square Could use different ϵ 's to different rows

		current			
		а	b	С	
	<s></s>	1/3	1/3	1/3	0
sno	а	0 + <i>\epsilon</i>	$4 + \epsilon$	0 + <i>\epsilon</i>	$1+\epsilon$
previo	a	$5+4\epsilon$	$5+4\epsilon$	$5+4\epsilon$	$5+4\epsilon$
pre	b	1/2	0	1/2	0
	С	1/4	1/4	0	1/2

COPYRIGHT 2018, THE UNIVERSITY OF MELBOURNE

Backoff and Interpolation

- ☐ Smooth using lower-order probabilities (less context)
- Backoff: fall back to n-1-gram counts only when n-gram counts are zero

$$P_{BO}(w_i|w_{i-2},w_{i-1}) =$$

$$P^*(w_i|w_{i-2},w_{i-1}) \qquad if \ C(w_{i-2},w_{i-1},w_i) > 0$$

$$\alpha(w_{i-2},w_{i-1}) * P_{BO}(w_i|w_{i-1}) \quad otherwise$$

 P^* and α must preserve "sum to 1" property.

Backoff

☐ Bigram probabilities

P(a a)	P(b a)	P(c a)	P(a)
0	4/5	0	1/5

Unigram probabilities

P(a)	P(b)	P(c)	P()
5/18	1/3	2/9	1/6

- Going to use p(a) and p(c) for p(a|a) and p(c|a)
- ☐ But need to sum up to 1

☐ Unigram model (type II)

$$\square P(a) = \frac{5}{18}, P(b) = \frac{6}{18} = \frac{1}{3}$$

$$\Box P(c) = \frac{4}{18} = \frac{2}{9}$$

$$P() = \frac{3}{18} = \frac{1}{6}$$

☐ Bigram model (type II)

		current			
		a b c <			
S	<s></s>	1/3	1/3	1/3	0
ion	а	0	4/5	0	1/5
previous	b	1/2	0	1/2	0
d	С	1/4	1/4	0	1/2

Backoff

☐ Bigram probabilities

P(a a)	P(b a)	P(c a)	P(a)
0	4/5	0	1/5

Unigram probabilities

P(a)	P(b)	P(c)	P()
5/18	1/3	2/9	1/6

Unigram model (type II)

$$\square P(a) = \frac{5}{18}, P(b) = \frac{6}{18} = \frac{1}{3}$$

$$\Box P(c) = \frac{4}{18} = \frac{2}{9}$$

$$\square P() = \frac{3}{18} = \frac{1}{6}$$

☐ Bigram model (type II)

Backoff probabilities

P(a a)	P(b a)	P(c a)	P(a)
μ 5/18	λ4/5	μ 2/9	λ1/5

Choose μ and λ so that $\mu \frac{5}{18} + \lambda \frac{4}{5} + \mu \frac{2}{9} + \lambda \frac{1}{5} = 1$

		current			
		а	b	С	
SN	<s></s>	1/3	1/3	1/3	0
ion	а	0	4/5	0	1/5
revio	b	1/2	0	1/2	0
d	С	1/4	1/4	0	1/2

Backoff and Interpolation

- ☐ Interpolation involves taking a linear combination of all relevant probabilities
- ☐ Defined recursively:

$$P_{interp}(w_i|w_{i-2},w_{i-1}) = \lambda(w_{i-2},w_{i-1}) P(w_i|w_{i-2},w_{i-1}) + (1 - \lambda(w_{i-2},w_{i-1})) P_{interp}(w_i|w_{i-1})$$

- ☐ Interpolation of probabilities preserves "sum to 1" property
- \square λ s can be constant across all contexts
 - ☐ But better if sensitive to n-grams
- ☐ Parameters need to be trained on held out data

Interpolation

☐ Bigram probabilities

P(a a)	P(b a)	P(c a)	P(a)
0	4/5	0	1/5

Unigram probabilities

P(a)	P(b)	P(c)	P()
5/18	1/3	2/9	1/6

☐ Interpolation probabilities

P(a a)	P(b a)	P(c a)	P(a)
λΟ	λ 4/5	λΟ	λ 1/5
+	+	+	+
$(1-\lambda)5/18$	$(1-\lambda)1/3$	$(1-\lambda)2/9$	$(1-\lambda)1/6$