

Cloud Computing

"The interesting thing about cloud computing is that we've redefined cloud computing to include everything that we already do.... I don't understand what we would do differently in the light of cloud computing other than change the wording of some of our ads." (Larry Ellison - CEO Oracle)

Computer Networks 5

What's a protocol?

Human protocols:

- "what's the time?"
- "I have a question"
- introductions
- ... specific messages sent
- ... specific actions taken when message received, or other events

Network protocols:

- computers (devices) rather than humans
- all communication activity in Internet governed by protocols

Protocols define the format, order of messages sent and received among network entities, and actions taken on msg transmission, receipt

Computer Networks 7

Problems

Users (applications) want a reliable and error-free (virtual) communication channel.

The virtual channel is implemented using physical channels

- The physical channel can be simplex, half-duplex, or full-duplex
- Low-level messages can't be arbitrary in length
- A fast transmitter doesn't have to drown a slow receiver
- We have to determine the (best?) route to get the destination
- The order of arrival of the messages must be the same as the order in which they were sent

Computer Networks 16

Università di Catania	Communication type		
	Connectionless	⇔ Connection oriented	
	Reliable	⇔ Not reliable	
			Computer Networks 17

Universi di Catan	tà ia	Taxonomy					
	Interprocessor distance	Processors located in same	Example				
	1 m	Square meter	Personal area network				
	10 m	Room					
	100 m	Building	Local area network				
	1 km	Campus					
	10 km	City	Metropolitan area network				
	100 km	Country					
	1000 km	Continent	→ Wide area network				
	10,000 km	Planet	The Internet				
			Computer Networks 51				

Circuit Switching

Computer Networks 57

Arpanet

Leonard Kleinrock and the first IMP

omputer Networks 63

DATE	METER	PROBLEM & REMEDY	OPERATOR	DOWNTIME
290ct 19	1750	IMPTST RUNNING - TESTING LINE	T. THACH	
		TO UCSB - LINEIS OPEN SO B'REG		
		IS COUNTING ERRORS BUT SHOULD CEASE		
-		COUNTING IF TEL. CO. GETS LINE FIXED.		
		CHARLEY PLEASE CALL BEN AT SRI!		
2900769	2100	LONDRD OP. PROGRAM	KK	
		FOIZ BEN BARKER		
		382		
	22:30	Talked to SRI	CSCO	
		Host to Host		
		Lefto. inp. Trogram	1519	
		canning after sending	(30-	
		a host lend mossage		
		to use		
30 Oct 69	1030	Stopped op, prog		
		Started Impist to trace line troubly	7 THACH	
		on 1GWI (acsB)		

- an unreliable, connectionless
 Datagram service (UDP)
- a reliable, connection-oriented service (TCP)

Introduces an identifier for each connection (port)

It requires a service at the bottom layer that can transport Datagram from one host to another that is not directly connected.

Network security

- field of network security:
 - how bad guys can attack computer networks
 - how we can defend networks against attacks
 - how to design architectures that are immune to attacks
- Internet not originally designed with (much) security in mind
 - *original vision:* "a group of mutually trusting users attached to a transparent network"
 - · Internet protocol designers playing "catch-up"
 - security considerations in all layers!

Bad guys: malware

- malware can get in host from:
 - virus: self-replicating infection by receiving/executing object (e.g., email attachment)
 - worm: self-replicating infection by passively receiving object that gets itself executed
- spyware malware can record keystrokes, web sites visited, upload info to collection site
- infected host can be enrolled in botnet, used for spam or distributed denial of service (DDoS) attacks

Bad guys: denial of service

Denial of Service (DoS):
attackers make resources
(server, bandwidth) unavailable
to legitimate traffic by
overwhelming resource with
bogus traffic

- 1. select target
- 2. break into hosts around the network
- 3. send packets to target from compromised hosts

Bad guys: packet interception

packet "sniffing":

- broadcast media (shared Ethernet, wireless)
- promiscuous network interface reads/records all packets (e.g., including passwords!) passing by

Wireshark software used for our end-of-chapter labs is a (free) packet-sniffer

