Scribe: Haoming Wang Lecturer: Prof. Xuantian Lin @ NTU

机器学习基石 I: VC Dimension

Key word: VC dimension, VC dimension of Perceptron, Penalty for Model Complexity

1 VC dimension

在上一讲中, 已经证明若 \mathcal{H} 的 break point 为 k, 则其成长函数 $m_{\mathcal{H}}(N)$ 的上界 (的上界) 是 k-1 次 多项式

$$m_{\mathcal{H}}(N) \leq B(N,k) \leq \sum_{i=0}^{k-1} C_N^i \leq N^{k-1},$$

因此对于任意 $g = \mathcal{A}(\mathcal{D}) \in \mathcal{H}$ 有

$$\mathbb{P}_{\mathcal{D}}[|E_{in}(g) - E_{out}(g)| > \epsilon] \leq \mathbb{P}_{\mathcal{D}}[\exists h \in \mathcal{H} \text{ s.t. } |E_{in}(h) - E_{out}(h)| > \epsilon]$$
$$\leq 4m_{\mathcal{H}}(2N)e^{-\frac{1}{8}\epsilon^{2}N}$$
$$\leq 4(2N)^{k-1}e^{-\frac{1}{8}\epsilon^{2}N}.$$

这说明, 当我们拥有一个好的 hypothesis set \mathcal{H} ($m_{\mathcal{H}}(N)$ breaks at k), 一个好的样本集 $\mathcal{D}(N)$ 足够大使得 $E_{in}(g) = E_{out}(g)$ p.a.c.), 一个好的算法 \mathcal{A} (可以从 \mathcal{H} 中选出 $E_{in}(h)$ 足够小的 h 作为 g), 则机器学习或许是可行的.

Definition 1.1: VC dimension

假设集 \mathcal{H} 的 VC dimension $d_{vc}(\mathcal{H})$ 是样本可以被 shatter 的最大容量. 即存在 N 个样本, 使得 $m_{\mathcal{H}}(N) = 2^N$, 且任何 M > N 个样本都有 $m_{\mathcal{H}}(M) < 2^M$, 则 $d_{vc}(\mathcal{H}) = N$.

换句话说, $d_{vc}(\mathcal{H}) = k - 1$, k 是最小突破点. 如果 $N \leq d_{vc}(\mathcal{H})$ 则存在 N 个输入样本, 使得可以被 \mathcal{H} shatter. (注意不是任意 N 个输入样本), 因此我们可以将上面的公式改写为

$$\mathbb{P}_{\mathcal{D}}[|E_{in}(g) - E_{out}(g)| > \epsilon] \le 4(2N)^{d_{vc}(\mathcal{H})} e^{-\frac{1}{8}\epsilon^2 N}.$$

一个好的情况, 是 $d_{vc}(\mathcal{H})<\infty$, 此时我们说 g 是可以被泛化到样本 \mathcal{D} 之外的, 即 $E_{in}(g)=E_{out}(g)$ p.a.c.

2 VC dimension of Perceptron

回顾二维感知器模型,对于线性可分的样本集 \mathcal{D} ,我们已经证明只要迭代的次数足够 PLA 最终会收敛到 $E_{in}(g)=0$;对于 \mathbf{x}_n 服从某一分布 (线性不可分), $y_n=f(\mathbf{x}_n)$ 的数据集, $d_{vc}=3$,当样本量 N 足够时,有 $E_{in}(g)=E_{out}(g)$ p.a.c. 从而二维感知器模型可以学习.下面考虑 n 维的情况.

一维感知器模型 (Positive/Negative rays) 的 VC dimension $d_{vc}=2$; 二维感知器模型的 VC dimension $d_{vc}=3$, 猜测 n 维感知器模型的 $d_{vc}=n+1$.

Theorem 2.1: d_{vc} of n-Perceptron

n 维感知器模型的 VC dimension $d_{vc} = n + 1$.

我们分别证明 $d_{vc} \ge n+1$ 以及 $d_{vc} \le n+1$. 注意, $d_{vc} \ge n+1$ 说明, 存在某 n+1 个输入样本可以被 \mathcal{H} shatter. 下面我们构造 n+1 个输入, 并证明它们是可以被 shatter 的. 令 \mathbf{x}_0 为 origin $\mathbf{0}$; 令 \mathbf{x}_i 为单位向量 \mathbf{e}_i :

$$X = \begin{bmatrix} \mathbf{x}_0^T \\ \mathbf{x}_1^T \\ \vdots \\ \mathbf{x}_n^T \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 1 & 1 & \cdots & 0 \\ 1 & \vdots & \ddots & 0 \\ 1 & 0 & \cdots & 1 \end{bmatrix}$$

Note 1. 我们统一令每个输入的第一个元素为 1, 因为 $\sum_{i=1} w_i x_i + b = \sum_{i=0} w_i x_i$, 其中 $w_0 = b$, $x_0 = 1$.

易知 X 可逆, 对于这 n+1 个输入的任意输出 \mathbf{y} , 令 $\mathbf{w} = X^{-1}\mathbf{y}$, 则 $X\mathbf{w} = \mathbf{y}$, 从而 $\operatorname{sign}(X\mathbf{w}) = \mathbf{y}$. 因 此该 n+1 个输入可以被 shatter, 即 $d_{vc} \geq d+1$.

若 \mathcal{H} 的 $d_{vc} \leq n+1$, 则说明, 对于任意 n+2 个输入, \mathcal{H} 都不可以被 shatter, 即存在一个输出 \mathbf{y} , 使得 $\forall h \in \mathcal{H}$ 有 $h(\mathcal{X}) \neq \mathbf{y}$. 其中 $\mathcal{X} = \{\mathbf{x}_0, \cdots, \mathbf{x}_{n+1}\}$. 注意到 $\mathbf{x}_i \in \mathbb{R}^n$, 这么说明 \mathcal{X} 线性相关, 即存在一组不全为零的实数 λ_i , $i=0,\cdots,n+1$, 使得

$$\mathbf{x}_{n+1} = \sum_{i=0}^{n} \lambda_i \mathbf{x}_i.$$

$$\mathbf{w}^T \mathbf{x}_{n+1} = \sum_{i=0}^n \lambda_i \mathbf{w}^T \mathbf{x}_i > 0.$$

即 $sign(\mathbf{w}^T\mathbf{x}_{n+1}) \neq -1$, 因此任意 n+2 个输入, 必存在一组输出不能被实现, 即不可被 shatter, 因此 $d_{vc} \leq n+1$. 综上 n 维感知器的 $d_{vc} = n$.

我们来考察以下 VC dimension 的物理含义, 考虑一个 n 维 Perceptron 的公式

$$y = \operatorname{sign}(\mathbf{w}^T \mathbf{x}) = \operatorname{sign}(w_0 x_0 + \cdots + w_n x_n)$$
,

其中 $w_0 = b$. 即 Perceptron 一共有 n+1 个参数进行调节, 正式的说, Perceptron 共有 n+1 个自由度. d_{vc} 衡量的就是 hypothesis set \mathcal{H} 进行二分类的自由度, 它表示 \mathcal{H} 的分类能力 (灵活程度), 一个较高的 d_{vc} 可以找到 $E_{in}(h)$ 更小的 h, 但是也会增加 BAD ($|E_{in}(h) - E_{out}(h)| > \epsilon$, 过拟合) 发生的概率.

对于 Positive ray $\mathcal{H} = \{h = \mathrm{sign}\,(x-a): a \in \mathbb{R}\}$ 而言, 其二分类自由度只有一个参数 a, 因此其 $d_{vc} = 1$. 对于 Positive Interval $\mathcal{H} = \{h = \mathrm{sign}\,((x-a)(a+h-x): a \in \mathbb{R}, h \in \mathbb{R}^+)\}$. 其二分类自由度有两个参数 a, 因此其 $d_{vc} = 2$. 对于 n 维 Perceptron 而言, 若令 b = 0 (即直线/平面/超平面必须过原点), 则其自由度少一个, 此时 $d_{vc} = n$.

3 Penalty for Model Complexity

回顾霍夫丁不等式,对于任意 $g = \mathcal{A}(\mathcal{D}) \in \mathcal{H}$,有

$$\mathbb{P}_{\mathcal{D}}[\underbrace{|E_{in}(g) - E_{out}(g)| > \epsilon}_{BAD}] \leq \underbrace{4(2N)^{d_{vc}(\mathcal{H})} e^{-\frac{1}{8}\epsilon^2 N}}_{\delta}.$$

如果我们要有 $1-\delta$ 的置信度保证BAD不发生,则置信区间为

$$\epsilon = \sqrt{rac{8}{N} \ln \left(rac{4(2N)^{d_{vc}}}{\delta}
ight)} =: \Omega(N, \mathcal{H}, \delta)$$

定义 $\Omega(N,\mathcal{H},\delta)$ 为模型复杂度的惩罚项 (penalty for model complexity). 换句话说, 我们有 $1-\delta$ 的概率保证

$$E_{out}(g) \leq E_{in}(g) + \underbrace{\sqrt{\frac{8}{N} \ln\left(\frac{4(2N)^{d_{vc}}}{\delta}\right)}}_{\Omega(N,\mathcal{H},\delta)}$$

Note 2. 一般我们不在乎 $E_{out} < E_{in}$ 的情况.

因此当假设集 \mathcal{H} 的 d_{vc} 增加的时候, \mathcal{H} 的解释能力增强, 样本内误差 E_{in} 下降. 当 d_{vc} 增加的时候, 模型复杂度的惩罚项增加, 模型置信区间变宽, E_{out} 增加.

