LSU BIOL 1202 General Biology II Lecture

CHAPTER 22

Descent with Modification, A Darwinian View of

Life

Dr. Adam Hrincevich

CH 22 Learning Objectives

- 1. Compare Darwin's concept of descent with modification to the prevailing ideas of his time.
- Explain how, over time, natural selection results in organisms' adaptation to their environment.
- Use examples to show how evolution is supported by scientific evidence.

I would suggest completing the crossword puzzle to help you understand the terminology and correlate how the terms relate to topics covered in this chapter.

A Darwinian View of Life

- A new era of biology began in 1859 when Charles Darwin published *The* Origin of Species, which focused on the great diversity of organism.
- Darwin noted that current species are descendants of <u>ancestral</u> <u>species.</u>
- Evolution can be defined by Darwin's phrase <u>descent with</u> <u>modification.</u>
- Evolution can be viewed as both a pattern and a process.

Concept 22.1: The Darwinian revolution challenged traditional views of a young Earth inhabited by unchanging species

Darwin's ideas had

Scala Naturae and Classification of Species

- The Greek philosopher Aristotle viewed species as fixed and <u>arranged them on a scala naturae</u>
- The Old Testament holds that species were individually <u>designed by God and therefore perfect</u>
- Carolus Linnaeus interpreted organismal adaptations as evidence that the Creator had designed each species for <u>a specific purpose</u>
- Linnaeus was the founder of taxonomy, the branch of biology concerned with <u>classifying organisms</u>
- He developed the binomial format for <u>naming</u> species (EX: <u>Homo sapiens</u>)

Ideas About Change over Time

- The study of fossils helped to lay the groundwork for Darwin's ideas
- Fossils are remains or traces of organisms from the past, usually found in sedimentary rock, which appears in <u>layers called strata</u>

- Paleontology, the study of fossils, was largely developed by <u>French scientist Georges Cuvier</u>
- Cuvier speculated that the boundaries between strata represent catastrophic events
- Geologists James Hutton & Charles Lyell thought that changes in Earth's surface resulted from slow, steady actions still operating today at the same rate
- This view strongly influenced Darwin's thinking
- French biologist Jean-Baptiste de Lamarck hypothesized that species evolve through use and disuse of <u>body parts and the inheritance of acquired</u> <u>characteristics</u>
- Proposed mechanisms are <u>unsupported by evidence</u>

Lamarck vs. Darwin

Lamarck's theory held that species underwent changes in response to changes in their environment.

Darwin's theory was one of natural selection and survival of the fittest.

Concept 22.2: Descent with modification by natural selection explains the adaptations of organisms and the unity and diversity of life

- Some doubt about the permanence of species preceded Darwin's ideas
- As a boy and into adulthood, Charles Darwin had a consuming interest in nature
- Darwin first studied medicine (unsuccessfully) and then theology at <u>Cambridge University</u>
- After graduating, he took an unpaid position as naturalist and companion to Captain Robert Fitzroy for a five-year, <u>around-the-world voyage on the</u> <u>Beagle</u>

The Voyage of the Beagle

- During his travels on the Beagle, Darwin collected specimens of South American plants and animals
- He observed that fossils resembled living species from the same region, and living species resembled other species from nearby regions
- He experienced an earthquake in Chile and <u>observed</u> the uplift of rocks
- Darwin was influenced by Lyell's Principles of Geology and thought that Earth was >6,000 years old
- He stopped at the Galápagos Islands and hypothesized that species from South America had colonized the Galápagos and speciated on the islands

Darwin's Focus on Adaptation

- In reassessing his observations, Darwin perceived adaptation to the environment and the <u>origin of new</u> <u>species as closely related processes</u>
- From studies made years after Darwin's voyage, biologists have concluded that this is what happened to the Galápagos finches

(b) Insect-eater

(c) Seed-eater

- In 1844, Darwin wrote an essay on natural selection as the mechanism of <u>descent with</u> modification, but did not introduce his theory publicly
- Natural selection is a process in which individuals with favorable inherited traits are <u>more likely to</u> <u>survive and reproduce (and pass on those traits)</u>
- In June 1858, Darwin received a manuscript from Alfred Russel Wallace, who had developed a theory of <u>natural selection similar to Darwin's</u>
- Darwin quickly finished The Origin of Species and published it the next year

Ideas from The Origin of Species

- Darwin explained three broad observations:
 - 1. The unity of life
 - The diversity of life
 - 3. The ways organisms are suited to life in their environments

Descent with Modification

- Darwin never used the word <u>evolution</u> in the first edition of <u>The Origin of Species</u>
- The phrase descent with modification summarized Darwin's perception of the unity of life
- The phrase refers to the view that all organisms are related through descent from an <u>ancestor that lived</u> <u>in the remote past</u>
- In the Darwinian view, the history of life is like a tree with branches <u>representing life's diversity</u>
- Darwin reasoned that large morphological gaps between related groups could be explained by this branching process and past extinction events

Figure 22.8

Artificial Selection, Natural Selection, and Adaptation

 Darwin noted that humans have modified other species by selecting and breeding individuals with desired traits, a <u>process called artificial selection</u>

- Darwin drew two inferences from two observations
- Observation #1: Members of a population often vary in their inherited traits
- Observation #2: All species can produce more offspring than the environment can support, and many of these offspring fail to survive and reproduce

- Inference #1: Individuals whose inherited traits give them a higher probability of surviving and reproducing in a given environment tend to <u>leave</u> more offspring than other individuals
- Inference #2: This unequal ability of individuals to survive and reproduce will lead to the accumulation of <u>favorable traits in the population over generations</u>

- Darwin was influenced by Thomas Malthus, who noted the potential for the human population to increase faster than <u>food supplies and other</u> <u>resources</u>
- World Population now??? 7.73 billion (August 2019)
- If some heritable traits are advantageous, individuals with these traits will produce more offspring that survive to reproduce, and this will increase the frequency of these traits in the next generation
- This process increases the frequency of individuals with favorable adaptations and explains how organisms become increasingly well <u>suited for life in</u> <u>their environment</u>

Key Features of Natural Selection

- Individuals with certain heritable traits survive and reproduce at <u>a higher rate than other individuals</u>
- Natural selection increases the frequency of adaptations that are <u>favorable in a given environment</u>
- If an environment changes over time, natural selection may result in adaptation to these new conditions and may give rise to new species
- Note that individuals do <u>not evolve</u>; <u>populations</u> <u>evolve over time</u>
- Natural selection can only increase or decrease heritable traits that vary in a population
- Adaptations vary with different environments

Figure 22.12

Praying mantis insects

Concept 22.3: Evolution is supported by an overwhelming amount of scientific evidence

- New discoveries continue to fill the gaps identified by Darwin in The Origin of Species
- Four types of data document the <u>pattern of evolution</u>
 - 1. <u>Direct observations</u>
 - Homology
 - 3. The fossil record
 - 4. <u>Biogeography</u>
- Two examples provide evidence for natural selection: natural selection in response to introduced species and the <u>evolution of drug-</u> <u>resistant bacteria</u>

Natural Selection in Response to Introduced Species

- Soapberry bugs use their "beak" to <u>feed on seeds</u> within fruits
- Feeding is most effective when beak length is closely matched to seed depth within the fruit
- In southern Florida, they feed on the native balloon vine with larger fruit; they have <u>longer beaks</u>
- In central Florida, they feed on the introduced goldenrain tree with smaller fruit; they have <u>shorter</u> <u>beaks</u>

- In all cases, beak size has evolved in populations that feed on introduced plants with fruits that are smaller or larger than the native fruits
- These cases are examples of <u>evolution by natural</u> <u>selection</u>
- In Florida, this evolution in beak size occurred in less than 35 years

Field Study

Soapberry bug with beak inserted in balloon vine fruit

Results

Data from S. P. Carroll and C. Boyd, Host race radiation in the soapberry bug: natural history with the history, *Evolution* 46:1052–1069 (1992).

The Evolution of Drug-Resistant Bacteria

- The bacterium Staphylococcus aureus is commonly found on people
- One strain, <u>methicillin-resistant S. aureus (MRSA), is</u> <u>a dangerous pathogen</u>
- Resistance to penicillin evolved in S. aureus by 1945, two years after it was first widely used
- Resistance to methicillin evolved in S. aureus by 1961, two years after it was first widely used

MRSA INFECTIONS

- Methicillin works by inhibiting an enzyme used by bacteria to produce cell walls
- MRSA bacteria use a different enzyme in <u>cell wall</u> <u>production</u>
- When exposed to methicillin, MRSA strains are more likely to survive and <u>reproduce than nonresistant S.</u> <u>aureus strains</u>
- MRSA strains are now <u>resistant to many antibiotics</u>
- In recent decades, antibiotic resistance has spread faster than <u>new antibiotics have been discovered</u>
- A new antibiotic, "teixobactin," was discovered in 2015 and shows <u>promise for treating resistant</u> <u>pathogens</u>

Figure 22.14

- Natural selection does not create new traits, but edits or selects for traits <u>already present in the population</u>
- Evolution by natural selection can occur rapidly in species with <u>short generation times</u>
- The current, local environment determines which traits will be selected for or selected <u>against in any</u> <u>specific population</u>
- Individuals do not evolve, it is <u>POPULATIONS that</u> evolve
- Evolution relies on mutations, or <u>changes in DNA</u> <u>sequences.</u>
- Mutations can be single nucleotides all the way through <u>loss/gain of entire chromosomes</u>

Anatomical and Molecular Homologies

- Homology is similarity resulting from common ancestry
- Homologous structures are anatomical resemblances that represent <u>variations on a structural</u> <u>theme present in a common ancestor</u>

- Comparative embryology reveals anatomical homologies <u>not visible in adult organisms</u>
 - EX: All vertebrate embryos have <u>a post-anal tail and</u> <u>pharyngeal arches</u>

- Vestigial structures are remnants of features that served a function in the organism's ancestors
- Examples of homologies at the molecular level are genes shared among <u>organisms inherited from a</u> <u>common ancestor</u>

Homologies and "Tree Thinking"

- Evolutionary trees are diagrams that reflect hypotheses about the relationships among different groups
- Homologies form <u>nested patterns in evolutionary</u> <u>trees</u>
- Evolutionary trees can be made using different types of data, for example, <u>anatomical and DNA sequence</u> <u>data</u>

A Different Cause of Resemblance: Convergent Evolution

- Convergent evolution is the evolution of similar, or analogous, <u>features in distantly related groups</u>
- Analogous traits arise when groups independently adapt to <u>similar environments in similar ways</u>
- Convergent evolution does <u>not provide information</u> <u>about ancestry</u>

Figure 22.18

The Fossil Record

 The fossil record provides evidence of the extinction of species, the origin of <u>new groups</u>, <u>and changes</u> <u>within groups over time</u>

- Fossils can document important transitions
 - EX: The transition from <u>land to sea in the ancestors of</u> cetaceans

 Fossil evidence shows that living cetaceans and their close relatives, the even-toed ungulates, are more different from each other today than were <u>early</u> <u>cetaceans and even-toed ungulates</u>

Homologous Structures

Similar anatomy/structure, but different uses

Analogous Structures

Analogous & Homologous Structures

Biogeography

- Biogeography, the scientific study of the geographic distribution of <u>species</u>, <u>provides evidence of evolution</u>
- Earth's continents were formerly united in a single large continent called <u>Pangaea</u>, but have since separated by continental drift
- An understanding of continent movement and modern distribution of species allows us to <u>predict when and</u> <u>where different groups evolved</u>

- Endemic species are species that are <u>not found</u> anywhere else in the world
- Islands have many endemic species that are often closely related to <u>species on the nearest mainland or</u> <u>island</u>
- Darwin suggested that species from the mainland colonized islands and gave rise to <u>new species as</u> <u>they adapted to new environments</u>

What Is Theoretical About Darwin's View of Life?

- In science, a theory accounts for many observations and data, and attempts to explain and <u>integrate a</u> <u>great variety of phenomena</u>
- Darwin's theory of evolution by natural selection integrates diverse areas of biological study and stimulates <u>many new research questions</u>
- Ongoing research adds to <u>our understanding of</u> <u>evolution</u>