Deep Learning

Hung-yi Lee

李宏毅

Deep learning attracts lots of attention.

• I believe you have seen lots of exciting results before.

Deep learning trends at Google. Source: SIGMOD 2016/Jeff Dean

Ups and downs of Deep Learning

- 1958: Perceptron (linear model)
- 1969: Perceptron has limitation
- 1980s: Multi-layer perceptron
 - Do not have significant difference from DNN today
- 1986: Backpropagation
 - Usually more than 3 hidden layers is not helpful
- 1989: 1 hidden layer is "good enough", why deep?
- 2006: RBM initialization
- 2009: GPU
- 2011: Start to be popular in speech recognition
- 2012: win ILSVRC image competition
- 2015.2: Image recognition surpassing human-level performance
- 2016.3: Alpha GO beats Lee Sedol
- 2016.10: Speech recognition system as good as humans

Three Steps for Deep Learning

Deep Learning is so simple

Different connection leads to different network structures

Network parameter θ : all the weights and biases in the "neurons"

Fully Connect Feedforward Network

6/32

Fully Connect Feedforward Network

Fully Connect Feedforward Network

This is a function.

Input vector, output vector

$$f\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = \begin{bmatrix}0.62\\0.83\end{bmatrix} \quad f\left(\begin{bmatrix}0\\0\end{bmatrix}\right) = \begin{bmatrix}0.51\\0.85\end{bmatrix}$$

Given network structure, define *a function set*

Fully Connect Feedforward Network Dim of layer (#neurons)

For one layer (of all neurons)

Matrix Operation

We don't usually use "sigmoid" in these days.

$$\sigma\left(\begin{bmatrix}1 & -2\\ -1 & 1\end{bmatrix}\begin{bmatrix}1\\ -1\end{bmatrix} + \begin{bmatrix}1\\ 0\end{bmatrix}\right) = \begin{bmatrix}0.98\\ 0.12\end{bmatrix}$$

$$\begin{bmatrix} 4 \\ -2 \end{bmatrix}$$

Neural Network

Neural Network

$$y = f(x)$$

Using <u>parallel computing</u> techniques to <u>speed up matrix operation</u>

Output Layer as Multi-Class Classifier

The output will be linearly separable features.

S"categorical cross entropy": one-hot representation
Sparse categorical cross entropy": integers
These two loss functions are exactly the same.
The only difference is the format of y.

Example Application

We can use one-hot encoding on y. (We can also don't use it of course.)

Example Application

Handwriting Digit Recognition

Example Application

You need to <u>decide the network structure</u> to let a good function in your function set.

FAQ

When do we need DL? When the feature extraction is very hard (harder than the network design)

ex: Speech recognition

 Q: How many layers? How many neurons for each layer?

Trial and Error

+

Intuition

- Q: Can the structure be automatically determined? Yes
 - E.g. Evolutionary Artificial Neural Networks (ex: genetic algorithm)
- Q: Can we design the network structure? Sure

Convolutional Neural Network (CNN)

Three Steps for Deep Learning

Deep Learning is so simple

Loss for an Example

Total Loss

For all training data ...

Total Loss:

$$L = \sum_{n=1}^{N} l^n$$

Find *a function in function set* that
minimizes total loss L

Find the network parameters θ^* that minimize total loss L

Three Steps for Deep Learning

Deep Learning is so simple

Gradient Descent

Gradient Descent

Gradient Descent

This is the "learning" of machines in deep learning

Even alpha go using this approach.

People image

Actually

I hope you are not too disappointed :p

Backpropagation Ch.8

• Backpropagation: an efficient way to compute $\partial L/\partial w$ in neural network

Ref:

http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lecture/DNN%20b ackprop.ecm.mp4/index.html

Three Steps for Deep Learning

Deep Learning is so simple

Concluding Remarks

Deeper is Better?

Layer X Size	Word Error Rate (%)
1 X 2k	24.2
2 X 2k	20.4
3 X 2k	18.4
4 X 2k	17.8
5 X 2k	17.2
7 X 2k	17.1

Not surprised, <u>more</u> parameters, better performance

Overfitting

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Universality Theorem

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Can be realized by a network with one hidden layer

(given **enough** hidden neurons)

Reference for the reason:
http://neuralnetworksandde
eplearning.com/chap4.html

Why "Deep" neural network not "Fat" neural network?

"深度學習深度學習"

- My Course: Machine learning and having it deep and structured
 - http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLSD15_2. html
 - 6 hour version: http://www.slideshare.net/tw_dsconf/ss-62245351
- "Neural Networks and Deep Learning"
 - written by Michael Nielsen
 - http://neuralnetworksanddeeplearning.com/
- "Deep Learning"
 - written by Yoshua Bengio, Ian J. Goodfellow and Aaron Courville
 - http://www.deeplearningbook.org