Q1. Find the argument of $\frac{1-i\sqrt{3}}{1+i\sqrt{3}}$ mathong /// mathong /// mathong ///						
	1+173					
(a) $\pi/3$						
(b) $2\pi/3$						
(c) $7\pi/6$						
(d) π mothongo						
Q2. Find the value of	$4+5\left(-\frac{1}{2}+\frac{i\sqrt{3}}{2}\right)^{334}$	$+3\left(\frac{-1}{2}+\frac{i\sqrt{3}}{2}\right)^{365}$				
	/// mathongo	/// mathongo				
(a) $1-i\sqrt{3}$						
(b) $-1+i\sqrt{3}$						
(c) $i\sqrt{3}$ methongo						
(d) $-i\sqrt{3}$ athongo						
Q3. $x + iy = (1 - i\sqrt{3})^{10}$						
(a) $\left(2^{99}, 2^{99}\sqrt{3}\right)$						
/// mathongo						
(b) $\left(2^{99}, -2^{99}\sqrt{3}\right)$						
(c) $\left(-2^{99}, 2^{99}\sqrt{3}\right)$						
(d) none althougo						
Q4. If ω is the cube root of unity find $\arg(i\omega) + \arg(i\omega^2)$						
(a) 0 mathongo						
(b) $\pi/2$						
(c) π mathongo						

(d)
$$-\pi$$

Q5. If
$$\pi (2 - 2\sqrt{3}i)^2 = i(\sqrt{3} + i)^4$$
 then $\arg(z)$

(a)
$$\frac{77}{5\pi}$$
 mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

$$(6)/4\frac{\pi}{6}$$
 mathongo ///. mathongo ///. mathongo ///. mathongo ///.

(d)
$$\frac{7\pi}{6}$$
 mathongo /// mathongo /// mathongo /// mathongo ///

Q6. The roots of the equation
$$(x-1)^3 + 8 = 0$$
 are

Q7. If
$$x^2 - x + 1 = 0$$
 then the value of $\sum_{n=1}^{5} \left(x^n + \frac{1}{x^n} \right)^2$

$$(1+\omega)(1+\omega^2)(1+\omega^3)\cdots(1+\omega^{3n})$$

(a)
$$2^{3n}$$
 mathongo ///. mathongo ///. mathongo ///. mathongo ///.

(b)
$$2^{2n}$$
 mathongo ///. mathongo ///. mathongo ///. mathongo ///.

Q9. If W is an imaginary cube root of unity then the value of

