10.6 Shortest Path Problems

Introduction

- Many problems can be modeled using graphs with weights assigned to their edges.
 - Weighted Graphs Modeling a Computer Network

Some definitions

- lacktriangle Weighted graph: G = (V, E, W)
- the length of a path in a weighted graph
 - The sum of the weights of the edges of this path

Shortest Path Problem

◆Some problems involving weighted graphs arise frequently.

The weighted Graph of Computer Network:

- What is a least expensive set of telephone lines needed to connect the computers in San Francisco with those in New York?
- Which set of telephone lines gives a fastest response time for communications between San Francisco and New York?

What is a shortest path between two given vertices?

The Description of a Shortest Path Problem

G = (V, E, W) is a weighted graph, where W(x, y) is the weight of edge associated vertices x and y (if $(x, y) \notin E, w(x, y) = \infty$), $a, z \in V$, find the shortest path between a and z.

More problems:

- The shortest path from a to all other vertices of the graph
- The shortest path between all pairs of vertices in a weighted connected simple graph
- Weights: all are 1, positive, or arbitrary real numbers

A Shortest-path Algorithm

Dijkstra's Algorithm

- ◆ A greedy algorithm discovered by the Dutch mathematician E. Dijkstra in 1959.
- ◆ To solve the problem in undirected weighted graphs where all the weights are positive.

◆ Main idea:

Proceed by finding the length of the shortest path from a to a first vertex, the length of the shortest path from a to a second vertex, and so on, until the length of the shortest path from a to z.

The General Principles Used in Dijkstra's Algorithm

[Example 1] What is the length of the shortest path between a and z in the weighted graph.

Solution:

We will solve this problem by finding the length of a shortest path from a to successive vertices, until z is reached.

1) The first closest vertex: d

The only paths starting at a that contain no vertex other than a are a, b and a, d.

The General Principles Used in Dijkstra's Algorithm

[Example 1] What is the length of the shortest path between a and z in the

weighted graph.

Solution:

- 1) The first closest vertex: d
- 2) The second closest vertex: *b*

Looking at all paths that go through only a and d.

The General Principles Used in Dijkstra's Algorithm

Example 1 What is the length of the shortest path between a and z in the

weighted graph.

Solution:

- 1) The first closest vertex: d
- 2) The second closest vertex: *b*
- 3) The third closest vertex: *e*

Examine only paths go through only a, d and b.

4) The forth closest vertex: z

The Details of Dijkstra's algorithm

Let S_k denote the set of vertices after k iterations of labeling procedure.

- 1. Initialization. Label a with 0 and other with ∞ , i.e. $L_0(a)=0$, and $L_0(v)=\infty$ and $S_0=\phi$.
- 2. Form S_k . The set S_k is formed from S_{k-1} by adding a vertex u not in S_{k-1} with the smallest label.
- 3. Update the labels of all vertices not in S_k , so that $L_k(v)$, the label of the vertex v at the kth stage, is the length of the shortest path from a to v that containing vertices only in S_k .
- 4. Step 2 and 3 is iterated by successively adding vertices to the distinguished set the until z is added.

The Details of Dijkstra's algorithm

lacktriangle Update the labels of all vertices not in S_k

Let v be a vertex not in S_k , $L_k(v)$ is the shortest path from a to v containing only vertices in S_k

This shortest path is either

- \checkmark the shortest path from a to v containing only elements of S_{k-1} Or
- \checkmark it is the shortest path from a to u at the (k-1)st stage with the edge (u,v) added.

$$L_k(v)=\min\{L_{k-1}(v), L_{k-1}(u)+w(u,v)\}$$

Pseudocode for Dijkstra's algorithm

```
Algorithm 1 Dijkstra's Algorithm.
Procedure Dijkstra(G: weighted connected simple graph,
with all weights positive)
\{G \text{ has vertices } a = v_0, v_1, \cdots, v_n = z \text{ and weights} \}
w(v_i, v_j), where w(v_i, v_j) = \infty if \{v_i, v_j\} is not an edge in G
For i = 1 to n
   L(v_i) := \infty
L(a) := 0
S := ø
{the labels are now initialized so that the label of a is
zero and all other labels are \infty, and S is the empty set \}
```

Pseudocode for Dijkstra's algorithm

```
While z \notin S
Begin
   u := a vertex not in S with L(u) minimal
   5:=5∪ {u}
   for all vertices v not in S
      if L(u) + w(u,v) < L(v) L(v) := L(u) + w(u,v)
{this adds a vertex to S with minimal label and
updates the labels of vertices not in 5}
End \{L(z)=\text{length of shortest path from } a \text{ to } z\}
```


Example 2 Find the length of the shortest path between *a* and *z* in the given weighted graph.

In performing Dijkstra's algorithm it is sometimes more convenient to keep track of labels of vertices using a table instead of redrawing the graph.

Vertex	S	Link			
а					
b					
С					
d					
е					
Z					

Vertex	S	Link	L ₀			
а			0			
b			∞			
С			∞			
d			∞			
е			∞			
Z			∞			

Vertex	S	Link	L ₀	L ₁		
а	1		0			
b		а	∞	4		
С		а	∞	2		
d			∞	∞ ∞		
е			∞	∞		
Z			∞	∞ ∞		

Vertex	S	Link	L ₀	L ₁	L ₂		
а	1		0				
b		<i>a</i> → <i>c</i>	∞	4	3		
С	1	а	∞	2			
d		<i>a</i> → <i>c</i>	∞	∞ ∞	10		
е		а→с	∞	∞	12		
Z			∞	∞	∞		

Vertex	S	Link	L ₀	L ₁	L ₂	L ₃	
а	1		9				
b	1	$a \rightarrow c$	8	4	3		
С	1	а	8	2			
d		$a \rightarrow c \rightarrow b$	8	∞	10	8	
е		а→с	∞	∞	12	12	
Z			8	∞	8	8	

Vertex	S	Link	L ₀	L ₁	L ₂	L ₃	L ₄	
а	1		0					
b	1	<i>a</i> → <i>c</i>	∞	4	3			
С	1	а	∞	2				
d	1	$a \rightarrow c \rightarrow b$	∞	∞ o	10	8		
е		$a \rightarrow c \rightarrow b \rightarrow d$	∞	∞	12	12	10	
Z		$a \rightarrow c \rightarrow b \rightarrow d$	∞	∞	∞	8	14	

Vertex	S	Link	L ₀	L ₁	L ₂	L ₃	L_4	L ₅
а	1		0					
b	1	<i>a</i> → <i>c</i>	∞	4	(M)			
С	1	а	∞	2				
d	1	$a \rightarrow c \rightarrow b$	∞	∞ ∞	10	8		
е	1	$a \rightarrow c \rightarrow b \rightarrow d$	∞	∞	12	12	10	
z		$a \rightarrow c \rightarrow b \rightarrow d \rightarrow$	∞	∞	8	∞	14	13
		е						

Vertex	S	Link	L ₀	L ₁	L ₂	L ₃	L ₄	L ₅
а	1		0					
b	1	<i>a</i> → <i>c</i>	∞	4	3			
С	1	а	∞	2				
d	1	$a \rightarrow c \rightarrow b$	∞	∞	10	8		
е	1	$a \rightarrow c \rightarrow b \rightarrow d$	∞	∞	12	12	10	
z	1	$a \rightarrow c \rightarrow b \rightarrow d \rightarrow$	∞	∞	∞	∞	14	13)
		е						

Dijkstra's Algorithm applies to a directed graph.

Some Questions

- 1. How to extend Dijkstra's algorithm to find the length of a shortest path between the vertex a and every other vertex of the gragh?
- 2. How to extend Dijkstra's algorithm to constructed a shortest path between these two vertices?
- 3. How to find the length of a shortest path between all pairs of vertices in a weighted connected simple graph?

The Correctness of Dijkstra's Algorithm

[Theorem 1] Dijkstra's algorithm finds the length of a shortest path between two vertices in a connected simple undirected weighted graph.

Proof:

We use an inductive argument. Take as the induction hypothesis the following assertion: At the kth iteration

- I. the label of every vertex v in S is the length of the shortest path from a to this vertex, and
- II. the label of every vertex not in S is the length of the shortest path from a to this vertex that contains only vertices in S.
- $(1) \quad k=0$

$$L_0(a)=0, L_0(v)=\infty, S=\phi$$

The Correctness of Dijkstra's Algorithm

(2) Assume that the inductive hypothesis holds for the kth iteration.

Let v be the vertex added to S at the (k+1)st iteration so that v is a vertex not in S at the end of the kth iteration with the smallest label.

- \blacksquare (I) holds at the end of the (k+1)st iteration
 - ✓ The vertices in S before the (k+1)st iteration are labeled with the length of the shortest path from a.
 - \checkmark w must be labeled with the length of the shortest path to it from a.

If this were not the case, at the end of the kth iteration there would be a path of length less than $L_k(v)$ containing a vertex not in S.

Let u be the first vertex not in S in such a path. There is a path with length less than $L_k(v)$ from a to u containing only vertices of S. This contradicts the choice of v.

The Correctness of Dijkstra's Algorithm

■ (II) is true.

Let u be a vertex not in S after k+1 iteration.

A shortest path from a to u containing only elements of S either contains v or it does not.

- If it does not contain v, then by the inductive hypothesis its length is $L_k(u)$.
- For it does contain v, then it must be made up of a path from a to v of the shortest possible length containing elements of S other than v, followed by the edge from v to u. In this case its length would be $L_k(v)+w(v,u)$.

This shows that (II) is true, because $L_{k+1}(v) = \min\{L_k(v), L_k(u) + w(u,v)\}$

The Computational Complexity of Dijkstra's Algorithm

[Theorem 2] Dijkstra's algorithm uses $O(n^2)$ operations (additions and comparisons) to find the length of the shortest path between two vertices in a connected simple undirected weighted graph.

Analysis:

- Use no more than n-1 iteration
- Each iteration, using no more than n-1 comparisons to determine the vertex not in S_k with the smallest label no more than 2(n-1) operations are used to update no more than n-1 labels

- * Problem: A traveling salesperson wants to visit each of n cities exactly once and return to his starting point with minimum total ...
- * The graph model: weighted, complete, undirected graph
- * The equivalent problem for TSP: Find a Hamilton circuit with minimum total weight in the weighted complete undirected graph.

An example

The shortest H circuit:

(A,B,D,C,A), length is 10

- **⊗** Solving TSP
- ◆ The most straightforward one:
 - Examine all possible Hamilton circuits and select one of minimum total length.

How many are there different length of Hamilton circuits in a complete graph with n vertices?

$$(n-1)!/2$$

Note:

(n-1)!/2 grows extremely rapidly.

For example, with 25 vertices, $24!/2 \approx 3.1 \times 10^{23}$

- Approximation algorithm
 - do not necessary produce the exact solution
 - to produce a solution that is close to an exact solution

For example,

The length of this path: 40

The exact solution: 37

(a,c,e,b,d,a)

The time complexity: $1+2+3+...+(n-2)=\frac{1}{2}(n-1)(n-2)$

Compare with d and d_0 : $\frac{d}{d_0} \le \frac{1}{2} [\log_2 n] + \frac{1}{2}$

* More about TSP

TSP has both pratical and theoretical importance.

Website for TSP: http://www.tsp.gatech.edu/

Homework:

SE: P. 716 3, 5(3), 16, 17, 26

EE: P. 751 3, 5(3), 16, 17, 26