PAC2 - ALGEBRA LINEAL

NOM I COGNOMS: JOSEP ANDREU MIRALLES

Considereu una matriu A amb m files i n columnes. Definim el conjunt N(A) com

$$N(A) = \{x \in \mathbb{R}^n \mid Ax = 0\}$$

1. Proveu que N(A) és un subespai vectorial.

Per què *N*(*A*) sigui un subespai vectorial ha de complir les 3 següents condicions:

1.
$$\emptyset \neq N(A) \subseteq \mathbb{R}^n$$
:

x=(0,0,...,0) pertany a N(A) ja que és solució trivial del sistema, i per tant N(A) no és igual al conjunt buit.

Considerem una matriu $\mathbf{A} \in \mathcal{M}_{mxn}$ amb m files i n columnes $\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$ i el vector

 $\mathbf{x} \in \mathbb{R}^{n}$ amb n elements (0,...,0), podem efectuar el producte $\mathbf{A} \cdot \mathbf{x}$, $\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} 0 \\ ... \\ 0 \end{pmatrix} = \mathbf{A} \cdot \mathbf{x}$

 $\begin{pmatrix} a_{11} \cdot 0 + \dots + a_{1n} \cdot 0 \\ \dots \\ a_{m1} \cdot 0 + \dots + a_{mn} \cdot 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \dots \\ 0 \end{pmatrix}.$ Observem doncs que el vector $(0,\dots,0)$ sempre és solució trivial, i per tant $N(A) \neq \emptyset$.

2. $\forall x_1, x_2 \in N(A), x_1 + x_2 \in N(A)$:

Siguin x_1 i x_2 solucions del sistema $Ax=0 \in \mathbb{R}^{n \cdot 1}$

 $A(x_1+x_2) = A \cdot x_1 + A \cdot x_2$ Per la propietat distributiva de les matrius,

 $A \cdot x_1 + A \cdot x_2 = 0 + 0$ $x_1 i x_2$ pertanyen a N(A), per tant $Ax_i = 0$,

 $A(x_1+x_2)=0$ per tant $A(x_1+x_2)=0$, i (x_1+x_2) és solució del sistema i $\in N(A)$.

3. $\forall x \in N(A), \ \forall k \in \mathbb{R}, k \cdot x \in N(A)$:

Sigui x solució del sistema $Ax=0 \in \mathbb{R}^{n \cdot 1}$, i k un escalar $\in \mathbb{R}$.

 $A(k \cdot x) = k(A \cdot x)$ Per la prop. distributiva del producte de matrius amb un escalar,

 $k(A \cdot x) = k(0) = 0$ x pertany a N(A), per tant Ax = 0,

 $A(k \cdot x) = 0$ i per tant $A(k \cdot x) = 0$, i $(k \cdot x)$ és solució del sistema i $\in N(A)$.

Queda doncs demostrat que N(A) és un subespai vectorial.

2. Considereu la matriu A =
$$\begin{pmatrix} 1 & 0 & -1 & 1 \\ 2 & 0 & 1 & -1 \\ 0 & 0 & 3 & 1 \end{pmatrix}$$
 i calculeu el complement ortogonal de *N(A)*.

1. Obtenim una base ortonormal d'N(A):

$$\begin{pmatrix} 1 & 0 & -1 & 1 \\ 2 & 0 & 1 & -1 \\ 0 & 0 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow x = 0, y = \lambda, z = 0, t = 0$$

Obtenim la base ortonormal de N(A) = <(0,1,0,0) > i de dimensió =1.

I obtenim,
$$N(A_{3x4}) = \{(x, y, z, t) \in \mathbb{R}^4 \mid Ax = 0\} = \{(0, y, 0, 0) / y \in \mathbb{R}\} = \langle (0, 1, 0, 0) \rangle$$
.

2. Obtenim el complement ortogonal mitjançant la base de tots els vectors ortogonals del subespai N(A).

Donat qualsevol vector (x, y, z, t) i el vector $(0, 1, 0, 0) \in \mathbb{R}^4$, es diu que són ortogonals si el seu producte escalar és igual a 0.

$$(x \quad y \quad z \quad t) \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = (0) \to y = 0$$

Es evident doncs que els vectors de la forma $(x \ 0 \ z \ t)$ són ortogonals a N(A).

Podem obtenir la base de $N(A)^{\perp}$ = <(x 0 0 0), (0 0 z 0), (0 0 0 t)>, i la base ortonormal d' $N(A)^{\perp}$ = <(1 0 0 0), (0 0 1 0), (0 0 0 1)> de dimensió 3.

I obtenim que $N(A_{3x4})^{\perp} = \{(x, 0, z, t) \in \mathbb{R}^4 \} = \langle (1\ 0\ 0\ 0), (0\ 0\ 1\ 0), (0\ 0\ 0\ 1) \rangle.$