#### **CEGM1000**

# Modelling, Uncertainty and Data for Engineers 7-NOV-2022



#### Formula Sheet

Observables  $Y = \begin{bmatrix} Y_1, Y_2, \dots, Y_m \end{bmatrix}^T$ Observations (realization of Y)  $y = \begin{bmatrix} y_1, y_2, \dots, y_m \end{bmatrix}^T$ Unknown parameters  $x = \begin{bmatrix} x_1, x_2, \dots, x_n \end{bmatrix}^T$ Random errors  $\epsilon = \begin{bmatrix} \epsilon_1, \epsilon_2, \dots, \epsilon_m \end{bmatrix}^T \text{ with } \epsilon \sim N(0, \Sigma_{\epsilon})$ 

Functional model  $\mathbb{E}(Y) = \mathbf{A} \cdot \mathbf{x} \ \text{ or } \ Y = \mathbf{A} \cdot \mathbf{x} + \epsilon$  Stochastic model  $\mathbb{D}(Y) = \Sigma_Y = \Sigma_\epsilon$ 

 $\begin{array}{ll} \text{Estimator of x} & \hat{X} \\ \text{Estimate of x (realization of } \hat{X}) & \hat{\mathbf{x}} \\ \text{Adjusted (or predicted) observations} & \hat{\mathbf{y}} = \mathbf{A} \cdot \hat{\mathbf{x}} \\ \text{Residuals} & \hat{\epsilon} = \mathbf{y} - \mathbf{A} \cdot \hat{\mathbf{x}} \\ \end{array}$ 

Least squares estimator of x  $\hat{X} = \left(\mathbf{A}^T \mathbf{A}\right)^{-1} \mathbf{A}^T \cdot Y$  Weighted least squares estimator of x  $\hat{X} = \left(\mathbf{A}^T W \mathbf{A}\right)^{-1} \mathbf{A}^T W \cdot Y$  Best linear unbiased estimator (BLUE)  $\hat{X} = \left(\mathbf{A}^T \Sigma_Y^{-1} \mathbf{A}\right)^{-1} \mathbf{A}^T \Sigma_Y^{-1} \cdot Y$ 

#### Test statistics (with distribution under $H_0$ ):

Generalized likelihood ratio test statistic  $T_q = \hat{\epsilon}^T \Sigma_Y^{-1} \hat{\epsilon} - \hat{\epsilon}_a^T \Sigma_Y^{-1} \hat{\epsilon}_a \sim \chi^2(q,0)$ Overall model test statistic  $T_{q=m-n} = \hat{\epsilon}^T \Sigma_Y^{-1} \hat{\epsilon} \sim \chi^2(q,0)$ w-test statistic  $W = \frac{C^T \Sigma_Y^{-1} \hat{\epsilon}}{\sqrt{C^T \Sigma_Y^{-1} \Sigma_{\hat{\epsilon}} \Sigma_Y^{-1} C}} \sim N(0,1)$ 

### Linear propagation laws if $\hat{X} = L^T \cdot Y$

#### Useful stuff from linear algebra:

Transpose of product  $(\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C})^T = \mathbf{C}^T \mathbf{B}^T \mathbf{A}^T$  Transpose of symmetric matrix W  $(\mathbf{A}^T W \mathbf{A}) \text{ and } (\mathbf{A}^T W \mathbf{A})^{-1} \text{ are symmetric}$   $W^T = \mathbf{W}$ 

#### **Taylor Series:**

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \dots + \frac{h^n}{n!}f^n(x) + O(h^{n+1})$$

#### Backward Euler:

$$f'(x) = \frac{f(x) - f(x - h)}{h} + O(h)$$

#### Forward Euler:

$$f'(x) = \frac{f(x+h) - f(x)}{h} + O(h)$$

#### Central Difference:

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$

## Distributions

Probability density functions, cumulative density functions and parameters of some relevant distributions.

| Distribution | PDF                                                                                                 | CDF                                                                                                                            | Mean and variance                                                  |
|--------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Exponential  | $f(x) = \lambda e^{-\lambda x}$                                                                     | $F(x) = 1 - e^{-\lambda x}$                                                                                                    | $\mu = \frac{1}{\lambda}$ $\sigma^2 = \frac{1}{\lambda^2}$         |
| Gumbel       | $f(x) = \frac{1}{\beta}e^{-\left(z+e^{-z}\right)}$ , where $z = \frac{x-\alpha}{\beta}$             | $F(x) = e^{-e^{-z}}$                                                                                                           | $\mu = \alpha + \beta \gamma$ $\sigma^2 = \frac{\pi^2}{6} \beta^2$ |
| Normal       | $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)}$                   | $F(x) = \frac{1}{2} \left( 1 + \operatorname{erf}\left(\frac{x-\mu}{\sigma\sqrt{2}}\right) \right)$                            | $\sigma = \sigma$                                                  |
| Uniform      | $f(x) = \begin{cases} \frac{1}{b-a} & \text{for } x \in [a, b] \\ 0 & \text{otherwise} \end{cases}$ | $F(x) = \begin{cases} 0 & \text{for } x < a \\ \frac{x-a}{b-a} & \text{for } x \in [a,b] \\ 1 & \text{for } x > b \end{cases}$ | $\mu = \frac{1}{2}(a+b)$ $\sigma^2 = \frac{1}{12}(b-a)^2$          |

## Table for standard normal distribution $Z \sim N(0,1)$

Recall that if  $X \sim N(\mu, \sigma^2)$  then  $Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$ 

The table shows one-sided (**right-hand**) probabilities  $\alpha$  as function of the critical value  $k_{\alpha}$ , i.e.  $\alpha = P(Z \ge k_{\alpha})$ .

Values of  $k_{\alpha}$ : value up to first decimal in first column, second decimal in first row. Example:  $\alpha = 0.0250$  for  $k_{\alpha} = 1.96$ .

| $k_{lpha}$ | 0.00   | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.0        | 0.5000 | 0.4960 | 0.4920 | 0.4880 | 0.4840 | 0.4801 | 0.4761 | 0.4721 | 0.4681 | 0.4641 |
| 0.1        | 0.4602 | 0.4562 | 0.4522 | 0.4483 | 0.4443 | 0.4404 | 0.4364 | 0.4325 | 0.4286 | 0.4247 |
| 0.2        | 0.4207 | 0.4168 | 0.4129 | 0.4090 | 0.4052 | 0.4013 | 0.3974 | 0.3936 | 0.3897 | 0.3859 |
| 0.3        | 0.3821 | 0.3783 | 0.3745 | 0.3707 | 0.3669 | 0.3632 | 0.3594 | 0.3557 | 0.3520 | 0.3483 |
| 0.4        | 0.3446 | 0.3409 | 0.3372 | 0.3336 | 0.3300 | 0.3264 | 0.3228 | 0.3192 | 0.3156 | 0.3121 |
| 0.1        | 0.0110 | 0.0100 | 0.00.2 | 0.0000 | 0.0000 | 0.0201 | 0.0220 | 0.0102 | 0.0100 | 0.0121 |
| 0.5        | 0.3085 | 0.3050 | 0.3015 | 0.2981 | 0.2946 | 0.2912 | 0.2877 | 0.2843 | 0.2810 | 0.2776 |
| 0.6        | 0.2743 | 0.2709 | 0.2676 | 0.2643 | 0.2611 | 0.2578 | 0.2546 | 0.2514 | 0.2483 | 0.2451 |
| 0.7        | 0.2420 | 0.2389 | 0.2358 | 0.2327 | 0.2296 | 0.2266 | 0.2236 | 0.2206 | 0.2177 | 0.2148 |
| 0.8        | 0.2119 | 0.2090 | 0.2061 | 0.2033 | 0.2005 | 0.1977 | 0.1949 | 0.1922 | 0.1894 | 0.1867 |
| 0.9        | 0.1841 | 0.1814 | 0.1788 | 0.1762 | 0.1736 | 0.1711 | 0.1685 | 0.1660 | 0.1635 | 0.1611 |
|            |        |        |        |        |        |        |        |        |        |        |
| 1.0        | 0.1587 | 0.1562 | 0.1539 | 0.1515 | 0.1492 | 0.1469 | 0.1446 | 0.1423 | 0.1401 | 0.1379 |
| 1.1        | 0.1357 | 0.1335 | 0.1314 | 0.1292 | 0.1271 | 0.1251 | 0.1230 | 0.1210 | 0.1190 | 0.1170 |
| 1.2        | 0.1151 | 0.1131 | 0.1112 | 0.1093 | 0.1075 | 0.1056 | 0.1038 | 0.1020 | 0.1003 | 0.0985 |
| 1.3        | 0.0968 | 0.0951 | 0.0934 | 0.0918 | 0.0901 | 0.0885 | 0.0869 | 0.0853 | 0.0838 | 0.0823 |
| 1.4        | 0.0808 | 0.0793 | 0.0778 | 0.0764 | 0.0749 | 0.0735 | 0.0721 | 0.0708 | 0.0694 | 0.0681 |
|            |        |        |        |        |        |        |        |        |        |        |
| 1.5        | 0.0668 | 0.0655 | 0.0643 | 0.0630 | 0.0618 | 0.0606 | 0.0594 | 0.0582 | 0.0571 | 0.0559 |
| 1.6        | 0.0548 | 0.0537 | 0.0526 | 0.0516 | 0.0505 | 0.0495 | 0.0485 | 0.0475 | 0.0465 | 0.0455 |
| 1.7        | 0.0446 | 0.0436 | 0.0427 | 0.0418 | 0.0409 | 0.0401 | 0.0392 | 0.0384 | 0.0375 | 0.0367 |
| 1.8        | 0.0359 | 0.0351 | 0.0344 | 0.0336 | 0.0329 | 0.0322 | 0.0314 | 0.0307 | 0.0301 | 0.0294 |
| 1.9        | 0.0287 | 0.0281 | 0.0274 | 0.0268 | 0.0262 | 0.0256 | 0.0250 | 0.0244 | 0.0239 | 0.0233 |
|            | İ      |        |        |        |        |        |        |        |        |        |
| 2.0        | 0.0228 | 0.0222 | 0.0217 | 0.0212 | 0.0207 | 0.0202 | 0.0197 | 0.0192 | 0.0188 | 0.0183 |
| 2.1        | 0.0179 | 0.0174 | 0.0170 | 0.0166 | 0.0162 | 0.0158 | 0.0154 | 0.0150 | 0.0146 | 0.0143 |
| 2.2        | 0.0139 | 0.0136 | 0.0132 | 0.0129 | 0.0125 | 0.0122 | 0.0119 | 0.0116 | 0.0113 | 0.0110 |
| 2.3        | 0.0107 | 0.0104 | 0.0102 | 0.0099 | 0.0096 | 0.0094 | 0.0091 | 0.0089 | 0.0087 | 0.0084 |
| 2.4        | 0.0082 | 0.0080 | 0.0078 | 0.0075 | 0.0073 | 0.0071 | 0.0069 | 0.0068 | 0.0066 | 0.0064 |
|            |        |        |        |        |        |        |        |        |        |        |
| 2.5        | 0.0062 | 0.0060 | 0.0059 | 0.0057 | 0.0055 | 0.0054 | 0.0052 | 0.0051 | 0.0049 | 0.0048 |
| 2.6        | 0.0047 | 0.0045 | 0.0044 | 0.0043 | 0.0041 | 0.0040 | 0.0039 | 0.0038 | 0.0037 | 0.0036 |
| 2.7        | 0.0035 | 0.0034 | 0.0033 | 0.0032 | 0.0031 | 0.0030 | 0.0029 | 0.0028 | 0.0027 | 0.0026 |
| 2.8        | 0.0026 | 0.0025 | 0.0024 | 0.0023 | 0.0023 | 0.0022 | 0.0021 | 0.0021 | 0.0020 | 0.0019 |
| 2.9        | 0.0019 | 0.0018 | 0.0018 | 0.0017 | 0.0016 | 0.0016 | 0.0015 | 0.0015 | 0.0014 | 0.0014 |
|            |        |        |        |        |        |        |        |        |        |        |
| 3.0        | 0.0013 | 0.0013 | 0.0013 | 0.0012 | 0.0012 | 0.0011 | 0.0011 | 0.0011 | 0.0010 | 0.0010 |
| 3.1        | 0.0010 | 0.0009 | 0.0009 | 0.0009 | 0.0008 | 0.0008 | 0.0008 | 0.0008 | 0.0007 | 0.0007 |
| 3.2        | 0.0007 | 0.0007 | 0.0006 | 0.0006 | 0.0006 | 0.0006 | 0.0006 | 0.0005 | 0.0005 | 0.0005 |
| 3.3        | 0.0005 | 0.0005 | 0.0005 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0003 |
| 3.4        | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0002 |

## Table for central $\chi^2$ distribution

Central  $\chi^2$  distribution: critical value  $k_{\alpha}$  as function of level of significance  $\alpha$  and degrees of freedom q. Example:  $\alpha=0.010$  and q=10 yield  $k_{\alpha}=23.2093$ .

| $\alpha$     | 0.9990  | 0.9950          | 0.9900          | 0.9750          | 0.9500          | 0.9000          | 0.1000   | 0.0500   | 0.0250   | 0.0100   | 0.0050   | 0.0010   |
|--------------|---------|-----------------|-----------------|-----------------|-----------------|-----------------|----------|----------|----------|----------|----------|----------|
| $rac{q}{1}$ | 0.0000  | 0.0000          | 0.0002          | 0.0010          | 0.0039          | 0.0158          | 2.7055   | 3.8415   | 5.0239   | 6.6349   | 7.8794   | 10.8276  |
| 2            | 0.0000  | 0.0000          | 0.0002          | 0.0506          | 0.0039 $0.1026$ | 0.0138 $0.2107$ | 4.6052   | 5.9915   | 7.3778   | 9.2103   | 10.5966  | 13.8155  |
| 3            | 0.0020  | 0.0100 $0.0717$ | 0.0201          | 0.0300 $0.2158$ | 0.1020 $0.3518$ | 0.5844          | 6.2514   | 7.8147   | 9.3484   | 11.3449  | 12.8382  | 16.2662  |
| 4            | 0.0243  | 0.2070          | 0.1148 $0.2971$ | 0.4844          | 0.3318 $0.7107$ | 1.0636          | 7.7794   | 9.4877   | 11.1433  | 13.2767  | 14.8603  | 18.4668  |
| 5            | 0.0303  | 0.4117          | 0.5543          | 0.4344          | 1.1455          | 1.6103          | 9.2364   | 11.0705  | 12.8325  | 15.0863  | 16.7496  | 20.5150  |
|              |         |                 |                 |                 |                 |                 |          |          |          |          |          |          |
| 6            | 0.3811  | 0.6757          | 0.8721          | 1.2373          | 1.6354          | 2.2041          | 10.6446  | 12.5916  | 14.4494  | 16.8119  | 18.5476  | 22.4577  |
| 7            | 0.5985  | 0.9893          | 1.2390          | 1.6899          | 2.1673          | 2.8331          | 12.0170  | 14.0671  | 16.0128  | 18.4753  | 20.2777  | 24.3219  |
| 8            | 0.8571  | 1.3444          | 1.6465          | 2.1797          | 2.7326          | 3.4895          | 13.3616  | 15.5073  | 17.5345  | 20.0902  | 21.9550  | 26.1245  |
| 9            | 1.1519  | 1.7349          | 2.0879          | 2.7004          | 3.3251          | 4.1682          | 14.6837  | 16.9190  | 19.0228  | 21.6660  | 23.5894  | 27.8772  |
| 10           | 1.4787  | 2.1559          | 2.5582          | 3.2470          | 3.9403          | 4.8652          | 15.9872  | 18.3070  | 20.4832  | 23.2093  | 25.1882  | 29.5883  |
| 11           | 1.8339  | 2.6032          | 3.0535          | 3.8157          | 4.5748          | 5.5778          | 17.2750  | 19.6751  | 21.9200  | 24.7250  | 26.7568  | 31.2641  |
| 12           | 2.2142  | 3.0738          | 3.5706          | 4.4038          | 5.2260          | 6.3038          | 18.5493  | 21.0261  | 23.3367  | 26.2170  | 28.2995  | 32.9095  |
| 13           | 2.6172  | 3.5650          | 4.1069          | 5.0088          | 5.8919          | 7.0415          | 19.8119  | 22.3620  | 24.7356  | 27.6882  | 29.8195  | 34.5282  |
| 14           | 3.0407  | 4.0747          | 4.6604          | 5.6287          | 6.5706          | 7.7895          | 21.0641  | 23.6848  | 26.1189  | 29.1412  | 31.3193  | 36.1233  |
| 15           | 3.4827  | 4.6009          | 5.2293          | 6.2621          | 7.2609          | 8.5468          | 22.3071  | 24.9958  | 27.4884  | 30.5779  | 32.8013  | 37.6973  |
| 16           | 3.9416  | 5.1422          | 5.8122          | 6.9077          | 7.9616          | 9.3122          | 23.5418  | 26.2962  | 28.8454  | 31.9999  | 34.2672  | 39.2524  |
| 17           | 4.4161  | 5.6972          | 6.4078          | 7.5642          | 8.6718          | 10.0852         | 24.7690  | 27.5871  | 30.1910  | 33.4087  | 35.7185  | 40.7902  |
| 18           | 4.9048  | 6.2648          | 7.0149          | 8.2307          | 9.3905          | 10.8649         | 25.9894  | 28.8693  | 31.5264  | 34.8053  | 37.1565  | 42.3124  |
| 19           | 5.4068  | 6.8440          | 7.6327          | 8.9065          | 10.1170         | 11.6509         | 27.2036  | 30.1435  | 32.8523  | 36.1909  | 38.5823  | 43.8202  |
| 20           | 5.9210  | 7.4338          | 8.2604          | 9.5908          | 10.8508         | 12.4426         | 28.4120  | 31.4104  | 34.1696  | 37.5662  | 39.9968  | 45.3147  |
| 21           | 6.4467  | 8.0337          | 8.8972          | 10.2829         | 11.5913         | 13.2396         | 29.6151  | 32.6706  | 35.4789  | 38.9322  | 41.4011  | 46.7970  |
| 22           | 6.9830  | 8.6427          | 9.5425          | 10.9823         | 12.3380         | 14.0415         | 30.8133  | 33.9244  | 36.7807  | 40.2894  | 42.7957  | 48.2679  |
| 23           | 7.5292  | 9.2604          | 10.1957         | 11.6886         | 13.0905         | 14.8480         | 32.0069  | 35.1725  | 38.0756  | 41.6384  | 44.1813  | 49.7282  |
| $^{24}$      | 8.0849  | 9.8862          | 10.8564         | 12.4012         | 13.8484         | 15.6587         | 33.1962  | 36.4150  | 39.3641  | 42.9798  | 45.5585  | 51.1786  |
| 25           | 8.6493  | 10.5197         | 11.5240         | 13.1197         | 14.6114         | 16.4734         | 34.3816  | 37.6525  | 40.6465  | 44.3141  | 46.9279  | 52.6197  |
| 26           | 9.2221  | 11.1602         | 12.1981         | 13.8439         | 15.3792         | 17.2919         | 35.5632  | 38.8851  | 41.9232  | 45.6417  | 48.2899  | 54.0520  |
| 27           | 9.8028  | 11.8076         | 12.8785         | 14.5734         | 16.1514         | 18.1139         | 36.7412  | 40.1133  | 43.1945  | 46.9629  | 49.6449  | 55.4760  |
| 28           | 10.3909 | 12.4613         | 13.5647         | 15.3079         | 16.9279         | 18.9392         | 37.9159  | 41.3371  | 44.4608  | 48.2782  | 50.9934  | 56.8923  |
| 29           | 10.9861 | 13.1211         | 14.2565         | 16.0471         | 17.7084         | 19.7677         | 39.0875  | 42.5570  | 45.7223  | 49.5879  | 52.3356  | 58.3012  |
| 30           | 11.5880 | 13.7867         | 14.9535         | 16.7908         | 18.4927         | 20.5992         | 40.2560  | 43.7730  | 46.9792  | 50.8922  | 53.6720  | 59.7031  |
| 40           | 17.9164 | 20.7065         | 22.1643         | 24.4330         | 26.5093         | 29.0505         | 51.8051  | 55.7585  | 59.3417  | 63.6907  | 66.7660  | 73.4020  |
| 50           | 24.6739 | 27.9907         | 29.7067         | 32.3574         | 34.7643         | 37.6886         | 63.1671  | 67.5048  | 71.4202  | 76.1539  | 79.4900  | 86.6608  |
| 60           | 31.7383 | 35.5345         | 37.4849         | 40.4817         | 43.1880         | 46.4589         | 74.3970  | 79.0819  | 83.2977  | 88.3794  | 91.9517  | 99.6072  |
| 70           | 39.0364 | 43.2752         | 45.4417         | 48.7576         | 51.7393         | 55.3289         | 85.5270  | 90.5312  | 95.0232  | 100.4252 | 104.2149 | 112.3169 |
| 80           | 46.5199 | 51.1719         | 53.5401         | 57.1532         | 60.3915         | 64.2778         | 96.5782  | 101.8795 | 106.6286 | 112.3288 | 116.3211 | 124.8392 |
| 90           | 54.1552 | 59.1963         | 61.7541         | 65.6466         | 69.1260         | 73.2911         | 107.5650 | 113.1453 | 118.1359 | 124.1163 | 128.2989 | 137.2084 |
| 100          | 61.9179 | 67.3276         | 70.0649         | 74.2219         | 77.9295         | 82.3581         | 118.4980 | 124.3421 | 129.5612 | 135.8067 | 140.1695 | 149.4493 |