LECTURE 5 - MATH 6301

Assume that (X,d) and (Y,g) are two metric spaces and let $\alpha \in X$, be The be two points. Then we say that a function $f:X\setminus ag \longrightarrow Y$ has an accumulation value (cluster value) by at the point α , if there exists a sequence $\{x_n\}\subset X\setminus ag$ such that $\lim \alpha_n=\alpha$ and $\lim f(\alpha_n)=b$.

We denote by $A_a(f)$ the set of all accumulation values of f at a.

PROBLEM 1 Show that Aa(f) is a closed set.

We are interested in a particular case when the set $A_a(f)$ is bounded and non-empty. Then we can put

$$\limsup_{x\to a} f(x) := \sup_{x\to a} A_{\alpha}(f)$$

liming f(a) := inf A (f)

ROMARK: Notice that it is possible that

(a)
$$A_{\alpha}(\xi) = \emptyset$$
 Example: $f: R \cdot \gamma \circ \gamma \to R$ $f(\alpha) = \frac{1}{2}$, $A_{o}(\xi) = \emptyset$

Notice that

$$f(a) = \sin\left(\frac{1}{a}\right)$$

$$y = f(a)$$

$$3a = \frac{1}{a}$$

$$4(a-1) = y$$

f(x) = = = = sin (=)

101 D

A o (f) = [-1,1]

Notice that if $f, g: X \rightarrow \mathbb{R}$ is a given function then by (excluding the point $a \in X$) one can consider the set of all accumulation points $A_a(f)$, $A_a(g)$

Then notice that if (Aa(8) & p, Aa(8) bounded) we have $\begin{cases}
f(a) \leq g(a) \implies \begin{cases}
limsup f(a) \leq limsup g(a) \\
n \to a
\end{cases}$ $lim uf f(a) \leq lim cuf g(a)$ $x \to a$ PROBLEM 4: Let (:X,d) and (Y,g) be two metric spaces, a = X, and f: X - Y a function. Show that f is continuous at a iff $A_{\alpha}(f) = 2f(\alpha)$ REMARK: Since it would be convenient to include the values ∞ and $-\infty$ as the possible values of function $f: X \to \mathbb{R}$ (and consequently avoid mating repetitive essemptions that Au(f) is bounded), we can simply introduce the concept of the so-celled extended set of real numbers: TR:= 1-030 IR v 2003 ie we assume that $\sqrt{-\infty} < \alpha < \infty$ (so we extend the order on R) and we can equipe R with the metric: $d(a,y) = \begin{cases} |avctan(x) - avctan(y)| \\ I - avctan y \\ I + avctan a \end{cases}$ if ziyeR (×) of x=-00, yelR y=∞ if x=00, y=-00 12~(元) Y(x)=acden2 PROBLEM 5: Show that the function d: R x R -> IR given by (x) (a) is a metric on R (b) restricted to R < R generates the sque topology on R as the structed metric 1x-y/.

REMARK: Once the concept of living and living is extended to function $f: X \to \mathbb{R} = [-\infty, \infty]$, there is no need to make additional assumption because Aa(f) is always well defined in $[-\infty, \infty]$ (we now admit $\pm \infty$ as possible accumulation values)

Example: (M) $f(x) = \begin{cases} \frac{1}{2} & x \neq 0 \\ 0 & z = 0 \end{cases}$ lum sup $f(x) = \infty$ $\lim_{x \to 0} f(x) = -\infty$

(b) flal= 22 x eR 205

 $\lim\sup_{x\to 0}f(x)=\infty\qquad \lim\inf_{x\to 0}f(x)=\infty$

(c) $f(x) = \int_{\alpha}^{1} x dx$ $\lim_{x \to 0} f(x) = \infty$

COMPACTNESS IN METRIC SPACES

Let (X, U) be a metric space, $A \subset X$ a set. We say that $A \subset X$ is an open over of $A \rightleftharpoons A \subset X$ $A \subset X$ A

Any family & Vijjej < & Uijie such that & Vijjej is an open over of A

is called a subcover of & Uiques.
DEFINITION: A set $A \subset X$ is said to be compact iff every open cover $\{U_i\}_{i \in I}$ of A contains a finite subcover, i.e $\exists \ \{U_i, U_{i_2}, \dots, U_{i_n}, U_{i_n}, U_{i_n}, U_{i_n}\} \subset \{U_i, U_{i_n}, U_{i_n}\}$
If A=X is compact, New we say that X is a compact space.
DEFINITION: We say that $A \subset X$ is totally bounded of f $A \subset B(a_1) \cup \cup B_{\varepsilon}(a_n) = \bigcup_{i=1}^{n} B_{\varepsilon}(a_i)$ $E > 0$ da, $a_{21}, a_{n} \in A$ $E \in \mathcal{F}_{nucle}$ set
THEOREM Let (X,d) be a metric space. The following conclidors one equivalent (a) X is a compact space
(b) Every sequence in X has a convergent subsequence, i.e. The sequence in X has a convergent subsequence, i.e. lim an = to the sequence in X has a convergent subsequence, i.e. lim an = to
(c) X is complete and totally bounded.
REHARK: (a) Notice that if ACX is a compact set Hen A is cleved. (b) If ACX is compact then it is bounded (c) If A is compact and BCA is chapted then Bis compact. THEOREM: A set ACR" is compact to A = A and A is bounded.
PROOF: $n=1$ idea $\alpha_n = \alpha_1$