

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

PHYSICS 0625/31

Paper 3 Extended

October/November 2009

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

You may lose marks if you do not show your working or if you do not use appropriate units. Take the weight of 1 kg to be 10 N (i.e. acceleration of free fall = 10 m/s^2).

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

1 Fig 1.1 shows part of a measuring instrument.

Fig. 1.1

(a)	State the name of this instrument.
(α)	
	[1]
(b)	Record the reading shown in Fig. 1.1.
	[1]
(c)	Describe how you would find the thickness of a sheet of paper used in a magazine.
	[3]
	[Total: 5]

2	The list below	gives the	approximate	densities	of various	metals
---	----------------	-----------	-------------	-----------	------------	--------

19 g/cm³

11 g/cm³

copper $9g/cm^3$ iron $8g/cm^3$

gold

lead

At an antiques market, a collector buys what is advertised as a small ancient gold statue. When the collector tests it in the laboratory, he finds its mass is 600 g and its volume is $65\,\mathrm{cm}^3$.

(a) In the space below, describe how the volume of the statue could be measured. You may draw diagrams if you wish.

[3]

(b) Use the figures given above to decide whether the statue was really made of gold. Show your working.

Was the statue made of gold? (Tick one box.)

ye	S	
no		

[3]

[Total: 6]

3 A student investigated the stretching of a spring by hanging various weights from it and measuring the corresponding extensions. The results are shown below.

For Examiner's Use

weight/N	0	1	2	3	4	5
extension/mm	0	21	40	51	82	103

(a) On Fig. 3.1, plot the points from these results. Do not draw a line through the points yet. [2]

Fig. 3.1

(b)	The student appears to have made an error in recording one of the results. Which result is this?	For Examiner's Use
(c)	Ignoring the incorrect result, draw the best straight line through the remaining points. [1]	
(d)	State and explain whether this spring is obeying Hooke's Law.	
(e)	Describe how the graph might be shaped if the student continued to add several more weights to the spring.	
(f)	The student estimates that if he hangs a 45 N load on the spring, the extension will be 920 mm.	
	Explain why this estimate may be unrealistic.	
	[Total: 8]	

4	(a)	A fo	rce acting on an object causes the object to accelerate.
		In w	hich direction is the acceleration?
			[1]
	(b)	Any	object moving in a circle has a force acting on it towards the centre of the circle.
		Wha	at does this force do to the object?
			[1]
	(c)	A w	oman of mass 60 kg is standing in a lift at a shopping centre.
		(i)	The lift is at rest.
			1. State the value of the weight of the woman.
			[1]
			2. State the value of the force exerted on the woman by the floor of the lift.
			[1]
		(ii)	Calculate the force required to accelerate a mass of 60 kg at 2.5 m/s ² .
			force = [2]
	((iii)	The lift accelerates upwards at 2.5 m/s ² .
			Calculate the force exerted on the woman by the floor when the lift is accelerating.
			force = [1]
	((iv)	The lift reaches a steady upward speed.
			State the value of the force exerted on the woman by the floor at this steady speed.
			[1]
			[Total: 8]

5 A farmer uses an electric pump to raise water from a river in order to fill the irrigation channels that keep the soil in his fields moist.

For Examiner's Use

Fig. 5.1

Every minute, the pump raises 12kg of water through a vertical height of 3m.

(a) Calculate the increase in the gravitational potential energy of 12kg of water when it is raised 3 m.

increase in gravitational potential energy =[3]

(b) Calculate the useful power output of the pump as it raises the water.

power =[3]

[Total: 6]

6 A vertical cylinder has a smooth well-fitting piston in it. Weights can be added to or removed from a tray on the top of the piston.

For Examiner's Use

(a) Weights are added to the tray, as shown in Fig. 6.1.

Fig. 6.1

(i)	State what happens to the pressure of the air in the cylinder as a result of adding
	these weights.

......[1]

(ii) The initial pressure of the trapped air is 1.05×10^5 Pa. When the weights are added, the volume of the air decreases from $860\,\text{cm}^3$ to $645\,\text{cm}^3$.

The temperature of the air does not change.

Calculate the final pressure of the trapped air.

(iii) The area of the piston is $5.0 \times 10^{-3} \, \text{m}^2$.

Calculate the weight that is added to the piston.

(b)	The weights are kept as shown in Fig. 6.1. The temperature of the air in the cylinder is increased.				
	(i)	State what happens to the volume of the air in the cylinder as a result of this temperature rise.			
		[1]			
	(ii)	State how, if at all, the pressure of the air changes as the temperature changes.			
		[1]			
	(iii)	State what must be done to prevent the volume change in (b)(i).			
		[1]			
	(iv)	The volume change in (b)(i) is prevented. State what happens to the pressure of the air in the cylinder.			
		[1]			
		[Total: 12]			

7 Three wires and a meter are used to construct a thermocouple for measuring the surface temperature of a pipe carrying hot liquid, as shown in Fig. 7.1.

For Examiner's Use

Fig. 7.1

(a)	Copper wire and constantan wire are used in the construction of the thermocouple.
	State which metal might be used for

wire 2	
wire 3	

(b) State what type of meter is us	sed.
------------------------------------	------

[4]	
 [I]	

(c) State one particular advantage of thermocouples for measuring temperature.

[1]

[Total: 3]

8 Fig. 8.1 shows a thin converging lens. The two principal foci are shown.

For Examiner's Use

Fig. 8.1

A vertical object, 2cm tall, is to be positioned to the left of the lens, with one end on the principal axis.

On Fig. 8.1,

- (a) draw the object in a position which will produce a virtual image, labelling the object with the letter O, [1]
- **(b)** draw two rays showing how the virtual image is formed, [2]
- (c) draw in the image, labelling it with the letter I. [1]

[Total: 4]

9	(a)	State what is meant by specific heat capacity.
		[2]
	(b)	Water has a very high specific heat capacity.
		Suggest why this might be a disadvantage when using water for cooking.
		[1]
	(c)	Fig. 9.1 illustrates an experiment to measure the specific heat capacity of some metal.
		stirrer — thermometer
		boiling water boiling water insulation water
		Fig. 9.1
		The piece of metal is heated in boiling water until it has reached the temperature of the water. It is then transferred rapidly to some water in a well-insulated cup. A very sensitive thermometer is used to measure the initial and final temperatures of the water in the cup.
		specific heat capacity of water = 4200 J/(kg K)
		The readings from the experiment are as follows.
		mass of metal = 0.050 kg mass of water in cup = 0.200 kg initial temperature of water in cup = 21.1 °C final temperature of water in cup = 22.9 °C
		(i) Calculate the temperature rise of the water in the cup and the temperature fall of the piece of metal.
		temperature rise of water =
		temperature fall of metal =[1]

(ii)	Calculate the thermal energy gained by the water in the cup. State the equation that you use.	For Examiner's Use
	thermal energy gained =[3]	
(iii)	Assume that only the water gained thermal energy from the piece of metal.	
	Making use of your answers to (c)(i) and (c)(ii) , calculate the value of the specific heat capacity of the metal. Give your answer to 3 significant figures.	
	specific heat capacity =[2]	
(iv)	Suggest one reason why the experiment might not have given a correct value for the specific heat capacity of the metal.	
	[1]	
	[Total: 10]	

14				
10	Alternating current electricity is delivered at 22000V to a pair of transmission lines. The transmission lines carry the electricity to the customer at the receiving end, where the potential difference is V . This is shown in Fig. 10.1. Each transmission line has a resistance of 3Ω .	For Examiner's Use		
	$\frac{3\Omega}{3\Omega}$			
	Fig. 10.1			
	(a) The a.c. generator actually generates at a much lower voltage than 22000 V.			
	(i) Suggest how the voltage is increased to 22 000 V.			
	[1]			
	(ii) State one advantage of delivering electrical energy at high voltage.			
	[1]			
	(b) The power delivered by the generator is 55 kW. Calculate the current in the transmission lines.			
	current = [2]			
	(c) Calculate the rate of loss of energy from one of the 3Ω transmission lines.			

rate of energy loss =[2]

(d)	Calculate the voltage drop across one of the transmission lines.	For Examiner's Use
	voltage drop =[2	2]
(e)	Calculate the potential difference V at the receiving end of the transmission lines.	
	V =[2	2]
	[Total: 10	0]

Question 11 is on the next page.

11 Fig. 11.1 is a schematic diagram of an electronic circuit controlling a lamp.

Fig. 11.1

Α	В	[2]
---	---	----	---

(b) The output of the temperature sensor is high (logic 1) when it detects raised temperature. The output of the light sensor is high (logic 1) when it detects raised light levels.

State the outputs of A and B when the surroundings are

(i) dark and cold, output of A =

output of B =[1]

(ii) dark and warm, output of A =

output of B =[1]

(iii) bright and warm. output of A =

output of B =[1]

(c) (i) Suggest why B is connected to a relay, rather than directly to the lamp.

______[1] |

(ii) The relay switches on when its input is high. In which of the three combinations in (b) will the lamp light up?

......[1]

(iii) Suggest a practical use for this circuit.

.....[1]

[Total: 8]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.