8.5 Linear Regression - Overview

Scatterplots

- Displays the relationship between two quantitative variables measured on the same individuals.
- Useful to determine if an association exists!
 - o So is there a pattern where some values of one variable tend to occur with some values of the other variable.
 - Ex) Smaller carat diamonds tend to have lower prices, and as the carat increases prices tend to increase as well.

- Setup of axes
 - o The explanatory (independent) variable goes on the X (horizontal) axis.
 - o The response (dependent) variable goes on the Y (vertical) axis.
 - o Ex) How large a diamond is impacts how much it costs \rightarrow Carat = X; Price = Y.
- Interpreting a scatterplot (what we are looking for in a scatterplot)
 - o Form (pattern of the dots)
 - Linear → Points follow a general linear trend; Straight line.
 - <u>Curved</u> → Points show some evidence of curvature; NOT a straight line.
 - Random scatter → No pattern, points are just scattered about randomly kinda like a cloud of points.

- Positive → Upward trend.
- Negative → Downward trend.
- No Association →There is no pattern or general trend.
- Strength (how strong the association is; how well the data fits the pattern; only applying this to linear relationships)

<u>Example</u>

	Form	Direction	Strength			
(1)	Curred	N/A (+/-)	N/A (steony)			
(2)	Linear	Positive	Moderate			
(3)	Linear	Nogative	strong			
(4)	Roughly Linear	No satire	beak			
(5)	Random Sentter	No association	Very weak			

Correlation

- The correlation (r) is an index that expresses the <u>direction</u> and <u>strength</u> of the relationship.
 - o It combines both of these aspects into a single number measure.
 - o Often referred to as the correlation coefficient (or Pearson's correlation).
- Interpreting correlation
 - o Sign = Direction
 - Absolute value |r| = Strength

- · Properties of Correlation
 - Scale goes from -1 to 1 \rightarrow -1 $\leq r \leq$ 1
 - Only applies to LINEAR relationships.
 - r has no units and is the same regardless of which variable is X or Y.

Does NOT imply a cause-and-effect relationship.

Ex) Ice cream sales and shark attacks have a strong positive correlation.

Using your Calculator!

Using TI-83/84 (and TI-30 XS MultiView / XIIS) to calculate correlation (and regression line).

Steps for the TI-83/84

Enter data: STAT → Edit →
 Enter X data in L₁

Enter Y data in L₂

- Calculate: STAT → CALC → LinReg(ax+b)
 - a) XList: L₁.
 - b) YList: L₂.
 - c) Rest leave blank.
 - d) Calculate!

Steps for the TI-30XS MultiView

1. Data →

Enter X data in L₁ Enter Y data in L₂

- 2. $2^{nd} \rightarrow \text{stat} \rightarrow 2\text{-Var Stats}$
 - a) xDATA: L1
 - b) yDATA: L2
 - c) CALC

Steps for the TI-30 XIIS

- 1. $2^{nd} \rightarrow STAT \rightarrow 2-VAR$ (Enter)
- 2. DATA

 $X_1 = \# (scroll down)$

 $Y_1 = \# (scroll down)$

- ... (repeat for all data points)
- 3. STATVAR (scroll across)
- 4. To exit this menu: $2^{nd} \rightarrow EXIT STAT \rightarrow Y$

Demo dataset

<u>Inputs</u>

Results

^{***} One time setup for TI-83/84: $2^{nd} \rightarrow Catalog \rightarrow DiagnosticOn \rightarrow Enter$

Regression

- Ultimately, we want to determine if we can use a straight line to model the relationship between two variables \rightarrow If so, we can use that model to make predictions!
 - o This process is called Linear Regression.

Step $1 \rightarrow$ Determine if there is a significant correlation (linear relationship).

- a) Calculate correlation.
- b) Compare it to the Table of Critical Values or the Pearson Correlation Coefficient to see if it is statistically significant.
 - Match the sample size n and the Level of significance α (Probability our claims about the data are wrong) to the specific problem.

Step 2 \rightarrow Once we have a significant correlation, we can find the **regression line**.

- Linear equation that fits our data best (aka 'line of best fit').
 - It is IMPORTANT to get the X and Y variables correct!
- Our calculator gives us our equation!

Critical Values of the Pearson Correlation Coefficient								
n	$\alpha = 0.05$	$\alpha = 0.01$						
4	0.950	0.990						
5	0.878	0.959						
6	0.811	0.917						
7	0.754	0.875						

demo ex) n = 4, x = 0.05 1= 0.983 > 0.950 = CV => Significant / => can make predictions V

Equation

Here is the form of our linear equation (written in slope-intercept form):

$$\hat{y} = ax + b$$
 taleviator
= $b_0 + b_1 x$ tankes

- x = Value of the explanatory variable
- \hat{y} = Predicted value of the response variable for the given x
- a (or b₁) = Slope
 - It measures the direction and steepness of the line
- b (or b_0) = Y intercept
 - It is the location where the regression line crosses the Y-axis (value of Y when X = 0)

Step 3 \rightarrow Make **predictions** using the regression line.

- We can think of our regression line, and specifically \hat{y} , as predicted values of Y for all X values in the X range of our sample data!
- Calculating these is simple:
 - Just plug in the new X value to our equation and this will give us the predicted Y.
 - Demo example) Predict Y for X = 7.

$$\hat{y} = 1.638x + 1.103 \qquad \qquad \hat{y} = 1.638(7) + 1.103$$

$$\hat{y} = 12.569$$

Full Example

Hours Spent on Homew	vork 41	20	34	43	9	20	54	52	10	21
Grade on Test	79	63	76	100	55	82	95	80	60	80
									in the	

Pa 1+ 1

(= 0.739)

a) Calculate the correlation for the dataset above and determine if it is statistically significant at a level of significance of $\alpha = 0.05$.

b) If appropriate, determine the regression equation.

=> signs Alcant V

$$\sqrt{\frac{1}{2}} = 0.676 \times + 60.469$$

c) If a student spends 35 hours on homework, make a prediction for their grade on the test.

d) If a student spends 50 hours on homework, make a prediction for their grade on the test.