ML visualizations :: CHEAT SHEET

Usage

- Inter cluster distance map shows how distant are the cluster centres and the relative sizes of them.
- From Clustering heatmap one may tell how are the examples clustered and what features differentiate clusters.
- Locking at the **Elbow plot** it's easy to find optimal parameters.
- **Parallel coordinates** visualize the characteristic features for the chosen clusters.
- **Beeswarm** is to get an overview of which features are most important for a model.
- On the Waterfall plot we see features each contributing to push the model output from the base value to the model output.

Libraries

For Inter cluster distance and Elbow plot:

import yellowbrick.cluster

For Parallel coordinates:

import yellowbrick.features

For Clustering heatmap:

import seaborn as sns

For Beeswarm and Waterfall plots:

import shap

Links

- <u>vellowbrick</u>
- seaborn
- SHAP

Clustering

Inter cluster distance map:

visualizer =
yellowbrick.cluster.InterclusterDistance(mode
l, size = (700, 500))
visualizer.fit(X)
visualizer.show()

Clustering heatmap:

heatmap = sns.clustermap(data)

Elbow plot for KMeans:

visualizer =
yellowbrick.cluster.KElbowVisualizer(sklear
n.cluster.KMeans(), k = (4, 12), metric =
"distortion", size = (700, 500))
visualizer.fit(X)
visualizer.show()

Parallel coordinates plot:

features = ["sepal_length", "sepal_width",
 "petal_length", "petal_width"]
classes = ["setosa", "virginica",
 "versicolour"]

visualizer =
yellowbrick.features.ParallelCoordinates(classes = classes, features = features,
sample = 0.05, shuffle = True, size = (700, 500))
visualizer.fit_transform(X, y)

Feature analysis

Beeswarm plot:

explainer = shap.Explainer(model)
shap_values = explainer(X)
shap.plots.beeswarm(shap_values)

Waterfall plot:

explainer = shap.Explainer(model)
shap_values = explainer(X)
shap.plots.waterfall(shap_values[0])

visualizer.show()

Usage

- **Correlation matrix** displays how correlated are attributes.
- Confusion matrix shows the performance of the classification algorithm.
- **Validation curve** plots the model's scores over a varying hyper parameter.
- **Learning curve** plots the model's scores over varying numbers of training samples.
- ROC curves tell how much the model is capable of distinguishing between classes.
- Calibration plots helps to figure out if the probabilities of classifier trustworthy.

Libraries

For Correlation matrix:

import seaborn as sns
import numpy as np

For Confusion matrix:

import sklearn.metrics
import seaborn as sns
import numpy as np

For Validation curve:

import yellowbrick.model_selection
import numpy as np

For Learning curve:

import yellowbrick.model_selection

For ROC curves:

import yellowbrick.classifier

For Calibration plots:

import scikitplot as skplt

Links

- sklearn
- <u>skplot</u>
- numpy

Classification

Correlation matrix:

mask = np.triu(np.ones_like(data.corr(),
dtype = bool))

fig = sns.heatmap(data.corr(), mask = mask,
cmap = "YlGnBu", annot = True, vmax = 0.3,
center = 0, square = True, linewidths = 0.5,
cbar kws = {'shrink':0.5})

Confusion matrix:

cm = sklearn.metrics.confusion_matrix(y,
y_pred)
fig = sns.heatmap(cm/np.sum(cm), fmt = '.2%',
annot = True, cmap = 'Blues')

Validation curve:

visualizer =
yellowbrick.model_selection.ValidationCurve(m
odel, param_name = "max_depth", param_range =
np.arange(1, 11), scoring = "r2", size =
(700, 500))
visualizer.fit(X, y)
visualizer.show()

Learning curve:

visualizer =
yellowbrick.model_selection.LearningCurve(
model, scoring = 'f1_weighted', size = (700,
500))
visualizer.fit(X, y)
visualizer.show()

ROC curves:

classes = ["not_spam", "is_spam"]
visualizer =
yellowbrick.classifier.ROCAUC(model, classes
= classes, size = (700, 500))
visualizer.fit(X_train, y_train)
visualizer.score(X_test, y_test)
visualizer.show()

Calibration plots:

rf_probas = RandomForestClassifier().fit(X_train,
y_train).predict_proba(X_test)
lr_probas = LogisticRegression().fit(X_train,
y_train).predict_proba(X_test)
nb_probas = GaussianNB().fit(X_train,
y_train).predict_proba(X_test)
svm_scores = LinearSVC().fit(X_train,
y_train).decision_function(X_test)

probas_list = [rf_probas, lr_probas,
nb_probas, svm_scores]
clf_names = ['Random Forest',
'Logistic Regression', 'Gaussian Naive Bayes',
'Support Vector Machine']
skplt.metrics.plot_calibration_curve(y_test,
probas_list, clf_names)