La sortida és directament l'estat, per tant només cal fer el diagrama de transició d'estats per tenir determinat el sistema (noteu que s'ordenen les files per ordre de visita, no per l'estat):

	CE = 0	CE = 1; UD = 0	CE = 1; UD = 1
Q_1Q_0	$Q_1^+Q_0^+$	$Q_1^+ Q_0^+$	$Q_1^+ Q_0^+$
00	00	01	10
01	01	11	00
11	11	10	01
10	10	00	11

Fem les TdV de les entrades als biestables, $com\ si\ fossin\ biestables\ D$:

CE	UD	O_1	Q_0	D_1	D_0
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	1	1
0	1	0	0	0	0
0	1	0	1	0	1
0	1	1	0	1	0
0	1	1	1	1	1
1	0	0	0	0	1
1	0	0	1	1	1
1	0	1	0	0	0
1	0	1	1	1	0
1	1	0	0	1	0
1	1	0	1	0	0
1	1	1	0	1	1
1	1	1	1	0	1

Ara la mateixa taula, però per a biestables JK:

CE	UD	Q_1	Q_0	J_1K_1	J_0K_0
0	0	0	0	0 -	0 -
0	0	0	1	0 -	- 0
0	0	1	0	- 0	0 -
0	0	1	1	- 0	- 0
0	1	0	0	0 -	0 -
0	1	0	1	0 -	- 0
0	1	1	0	- 0	0 -
0	1	1	0	- 0	- 0
1	0	0	0	0 -	1 -
1	0	0	1	1 -	0 -
1	0	1	0	- 1	0 -
1	0	1	1	- 0	- 1
1	1	0	0	1 -	0 -
1	1	0	1	0 -	- 1
1	1	1	0	- 0	1 -
1	1	1	1	- 1	- 0

Fem els quatre mapes de Karnaugh. Per a J_1 :

Q_1Q_0	00	01	11	10
CE UD				
00	0	0	_	_
01	0	0	_	_
11	1	0	_	_
10	0	1	_	_

Per a K_1 :

Per a J_0 :

Per a K_0 :

Escrivim les expressions simplificades en SdP (tractant de minimitzar el nombre de productes únics):

$$J_{1} = \operatorname{CE} \cdot \operatorname{UD} \cdot \overline{Q_{0}} + \operatorname{CE} \cdot \overline{\operatorname{UD}} \cdot Q_{0}$$

$$K_{1} = \operatorname{CE} \cdot \operatorname{UD} \cdot Q_{0} + \operatorname{CE} \cdot \overline{\operatorname{UD}} \cdot \overline{Q_{0}}$$

$$J_{0} = \operatorname{CE} \cdot \operatorname{UD} \cdot Q_{1} + \operatorname{CE} \cdot \overline{\operatorname{UD}} \cdot \overline{Q_{1}} \cdot \overline{Q_{0}}$$

$$K_{0} = \operatorname{CE} \cdot \overline{Q_{1}} + \operatorname{CE} \cdot \overline{\operatorname{UD}} \cdot Q_{0}$$

El logigrama quedaria així:

