Revisão	
Inversão de matrites por escalonamen	to Ex1
Determinantes por escalonamento	Ex 2
Operações com vetores	+. 2
- adicai	Ex 3
- Subtração	
- multiplicação por escalar	
Vetor definido por dois pontos Distância entre dois pontos	Exy
Norma de um vetor.	
Produto escalar e ângulos entre vetores	Ex5
Equação ponto-normal (reta e plano)	Ex6
Equação paramétrica (reta e plano)	
Produto vetorial	EX7
1 1 4.	
Lembrete: Uma fração do tipo 1,2,3 na cal	culadora
anifica 1+2. Para transforma-la	ruma frace
gnifica 1+2. Para transforma-la reprinte a perte as seguintes teclas):
<u> </u>	
Shift a b/c	
Neste exemplo, 1,2,3 = 5,3.	

tilibra

1	a) Seja a matriz A = \frac{-1}{4-22}. Calcule sua inversa A pelo método de escalonamento.		
-			
	A I -1 40100 =-40 -100		
	4-22010 4-22010 =-421+2		
	051001 051001		
_	(1)-40-100 1-40-100		
	0142 410 = 1/2 0 1 1/4 2/7 1/40		
	051001 051001 = -5L2+L3		
	1 -4 0 -1 00 1 -4 0 -1 00		
	0 1/2 2/3 1/4 0 0 1 1/2 1/4 0 = -1 1/3 + 1/2		
	0 0 2/7 -1%-5/1 = = 1/2 0 0 1 -5-5/7/2 1		
	$\frac{1}{1}$		
	$1 - 40 - 100 = 4L_2 + L_1 10031-2$ $0 1014-1/2$ $0 10134-1/2$		
	001-5-5/4 7/2 001-5-5/4 7/2		
	b) la cule a inversa de $A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & -2 \\ 0 & 5 & 1 \end{bmatrix}$		
	A T		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$0 - 2 - 2 0 1 0 0 - 2 - 2 0 1 0 = -\frac{1}{2} L_2$		
	051001 051001		
	1000-100		
	0110-120		
	$051001 = -5L2+L3$ $00-40\frac{5}{2}1 = -\frac{1}{4}L3ilibra$		

tilibra

KV = 2(3, 2, -1) = (6, 4, -2)

- a) o vetor AB
- b) distância entre A e B.

•
$$\overrightarrow{AB} = B - A = (4,0,1) - (1,0,3)$$

= $(4-1,0-0,1-3)$
= $(3,0,-2)$

• dist
$$(A,B) = ||AB|| = \sqrt{3^2 + o^2 + (-2)^2} = \sqrt{9 + 4} = \sqrt{13} \approx 3,6$$

El laloule os ângulos de B conforme mostrado na Figura abaixo.

$$A = (0,3)$$
, $B = (1,0)$, $C = (3,3)$ e $D = (5,3)$
 $\overrightarrow{BA} = A - B = (0,3) - (1,0) = (-1,3)$
 $\overrightarrow{BC} = C - B - (3,3) - (1,0) = (2,3)$
 $\overrightarrow{CB} = -\overrightarrow{BC} = -(2,3) = (-2,-3)$

$$\vec{CD} = D - C = (5,3) - (3,3) = (2,0)$$

• ângulo α $\cos \alpha = \frac{BA \cdot BC}{\|BA\| \|BC\|} = \frac{(-1,3) \cdot (2,3)}{\sqrt{(-1)^2 + 3^2}} = \frac{(-1) \cdot 2 + 3 \cdot 3}{\sqrt{10} \sqrt{13}} = \frac{7}{\sqrt{10} \cdot 13} = \frac{7}{\sqrt{10$

$$d = \arccos\left(\frac{7}{\sqrt{130}}\right) \cong 52^{\circ}$$
 Na calculadora: $d = \cos^{-1}\left(7 \rfloor \sqrt{130}\right)$

• ângulo
$$\beta$$

 $\cos \beta = \frac{\vec{CB} \cdot \vec{CD}}{\|\vec{CB}\| \cdot \|\vec{CD}\|} = \frac{(-2, -3) \cdot (2, 0)}{\sqrt{(-2)^2 + (-3)^2} \cdot \sqrt{2^2 + 0^2}} = \frac{(-2) \cdot 2 + (-3) \cdot 0}{\sqrt{4 + 9} \cdot \sqrt{4 + 0}} = \frac{-4}{\sqrt{13} \cdot \sqrt{4}} = -\frac{4}{\sqrt{13} \cdot \sqrt{4}} = -\frac{4}{\sqrt{52}}$
 $= \frac{4}{\sqrt{13} \cdot \sqrt{4}} = -\frac{4}{\sqrt{13} \cdot \sqrt{4}} = -\frac{4}{\sqrt{52}}$

$\beta = arc \cos \left(\frac{4}{\sqrt{52}} \right) \approx 123^{\circ}$ Na caluladora: B = CO5-1 (-4, V52)

· Equação para métrica X = X0 + t1 V1 + t2 V2 $(x, y, z) = (2, 1, -2) + t_1(3, 0, 1) + t_2(0, 3, 2)$ $(x,y,z) = (2,1,-2) + (3t1,0,t1) + (0,3t2,2t2) x = x_0 + t_1 v_1 + t_2 v_2$ $(x, y, 2) = (2+3t_1, 1+3t_2, -2+t_1+2t_2)$

$$\begin{cases} x = 2 + 3t_1 \\ y = 1 + 3t_2 \\ z = -2 + t_1 + 2t_2 / 1 \end{cases}$$

· Equação ponto-normal Para determina-la, precisamos Le um vetor n ortogonal ao plano. Podemos determina-lo com o produto

vetorial. = 9k - 3i - 6j = -3i - 6j + 9kn= V1 X V2 = $=(-3,-6,9)_{//}$ 032/03

Portanto, temos: $\gamma \cdot P_0 P = 0 \implies (-3, -6, 9) \cdot [(x, y, 7) - (2, 1, -2)] = 0$ \Rightarrow $(-3,-6,9) \cdot (x-2,y-1,z+2) = 0 \Rightarrow -3(x-2)-6(y-1)+9(z+2)=0$ $= 0 - 3x + 6 - 6y + 6 + 9z + 18 = 0 <math>\rightarrow -3x - 6y + 9z + 30 = 0$

Lembrando que a órea do para 4. Ap DC le logramo de finido por dois vetores 3. AQ Ap le logramo de finido por dois vetores 2.

Logo, a área Ap do polígono ABCD pode ser calculada

$$A_p = \frac{1}{2} A_1 + \frac{1}{2} A_2$$

$$\vec{AD} = D - A = (3,6,0) - (1,3,0) = (2,3,0)$$

$$\vec{AC} = C - A = (4,4,0) - (1,3,0) = (3,1,0)$$

$$\vec{AB} = B - A = (3,1,0) - (1,3,0) = (2,-2,0)$$

$$\frac{1}{4D} \times \frac{1}{4C} = \begin{vmatrix} i & j & k & k & k \\ 2 & 3 & 0 & 2 \\ 3 & 1 & 0 & 3 \end{vmatrix} = 2K - 9K = 0i + 0j - 7K = (0,0,-7)$$

$$\frac{\vec{AC} \times \vec{AB}}{\vec{AC} \times \vec{AB}} = \frac{ijk}{3} \frac{ij}{4} = -6k - 2k = pi + 0j - 8k = (0, 0, -8)$$

Portanto:

$$Ap = \frac{1}{2} || \overrightarrow{AD} \times \overrightarrow{AC} || + \frac{1}{2} || \overrightarrow{AC} \times \overrightarrow{AB} ||$$

$$=\frac{1}{2}\sqrt{o^2+o^2+(-7)^2}+\frac{1}{2}\sqrt{o^2+o^2+(-8)^2}$$

$$=\frac{1}{2}\sqrt{49}+\frac{1}{2}\sqrt{64}$$

$$-\frac{1}{2}.7 + \frac{1}{2}8 = \frac{7}{2} + \frac{8}{2} - \frac{15}{2} = \frac{7.5}{2}$$

tilibra