

Smart Bike: Automatically Shifting Bicycle with Other Embedded Features

Frank Pernice Dylan Dreisch

Kenneth Short

- Background
- Project Goal
- Constraints
- Components
- Design
- Results

- Single-Speed vs. Multispeed Bicycles
 - Single-speed bicycles offer excellent reliability, but they are not well-suited to differences in altitude nor custom user preferences.
 - Multi-speed bicycles allow the user to adjust the bike's gear ratio to suit their needs.

- How do multi-speed bikes work?
 - Multi-speed bikes use derailleurs which moves the bike chain across the various gears.

- Automate the derailleur shifting process so cyclists can better enjoy their ride.
 - Bicycle should maintain a user-defined cadence (pedaling rpm).
- Create a manual electronic shifting mechanism for experienced riders.
- Create a self-powered unit
- Display ride statistics to the cyclist to keep them informed of speed, cadence, current gear ratio and to display warning messages.

- Time
- Money
- Safety
- Mechanical constraints
 - Servo brackets
 - Electronic to Mechanical Motion
 - Component Placement
- Electrical Constraints
 - Power Consumption/Generation
 - Servo Torque
 - MCU Resource Management

- Microcontroller
 - ATMega128
 - Futurlec ET-AVR Stamp
 - 53 Programmable I/O lines
 - 128Kb program memory
 - 4Kb EEPROM
 - Two 16-bit Timer/Counters
 - TWI (I²C), UART

- Inertial measurement unit
 - Invensense MPU-6050
 - 6-axis measurement
 - 3-axis Gyroscope
 - 3-axis Accelerometer
 - Thermometer
 - Digital Motion Processor
 - Performs complex mathematical operations on raw data
 - Communicates over I²C

- Servos
 - Sunkee Tower Pro MG995
 - Metal Geared
 - 15 kg-cm Stall Torque @ 6V
 - 0.13 sec/60° @6V with no load
 - Used for rear derailleur
 - SMAKN MG996R
 - Metal Geared
 - •15 kg-cm Stall Torque @ 6V
 - 0.14 sec/60° @6V with no load
 - Used for front derailleur

- Servo Controller
 - Pololu Micro Maestro
 - 6-channel Servo Controller
 - Allows us to control up to 6 servos over one serial bus (UART)
 - This allows us to reserve the ATMega128's16-bit timer/counters for other purposes.
 - We can easily move the servos without worrying about PWM merely by specifying a desired angle.

- Bluetooth Module
 - Microchip RN42-XV
 - Supports up to Bluetooth 2.1
 - Low power consumption
 - PCB antenna
 - Two modes of operation: Bluetooth Module or Command Mode
 - Bluetooth mode allows us to send data over UART without worrying about Bluetooth protocol commands.

- Hall-Effect Sensors
 - OPTEK OH090U
 - Digital Hall-effect sensor
 - Produces a digital output (as opposed to analog) in the presence of a magnetic field
 - Signal from sensor remains a logic 1 until a magnet passes by. Then the signal goes low until the magnet leaves its vicinity.

- Push Button
 - Two sets of two pushbuttons located on the handlebars.
 - Utilizing button combinations, the perform 7 actions with just 4 buttons.
- LED
- Used as feedback for the rider
- Used to indicate mode
 - -On = Automatic
 - -Off = Manual

- Android Application
 - Connects to the system over Bluetooth.
 - Displays ride statistics to the cyclist
 - Cadence
 - Speed
 - Temperature
 - Current Gear Ratio
 - Warning Messages

- Bottle Dynamo / Generator
 - Generates 12V 6W of power
 - Generally used to power head and tail lights for bicycles, the power coming out is AC
 - Voltage is bridge-rectified and converted to DC
 - Used to charge the battery below.

- Provides 6V for adequate operation
- Supplied 4.5 Ah of charge
- Used to power the entire electrical system.
- On/Off switch used to control power to system

- Printed Circuit Board
 - Designed using CadSoft EAGLE
 - Provides a compact, portable alternative to a breadboard.
 - Male and Female headers allow access to outside components

Final Design

- Component Placement
 - PCB
 - Hall-effect sensors & magnets
 - Servos
 - Buttons & LED
 - Generator
 - Battery & power switch
 - Android smartphone
- Wiring
 - Taped to secure lose wires
 - Held tight to frame with cable ties
 - Minimized with short wires and ribbon cables

- User Controlled Inputs
 - Manual Mode
 - Shift Up/Down in Rear/Front
 - Hill Incoming mode
 - Switch to Automatic
 - Shutdown
 - Automatic Mode
 - Switch to Manual
 - Hill Incoming mode
 - Shutdown

- The bicycle works as intended, allowing for complete manual electronic shifting as well as full automatic shifting based on speed.
- Shifting is as easy and quick as a button press.
- Shifting is smooth and efficient.
- Android app keeps tally of ride statistics

- Electronic shifting is still somewhat error prone
 - Less holding force.
 - Need to disengage servos for protection and power consumption
- Failed Shifts
 - Occasionally it fails to shift into proper gear
 - Occurs mostly on the front gear set.
- Rider error in manual mode
 - Cross chaining
 - Abrupt changes in cadence