Session 9

Assignment 1

Task 1:

1. You survey households in your area to find the average rent they are paying. Find the standard deviation from the following data:

\$1550, \$1700, \$900, \$850, \$1000, \$950

Solution:

Step 1: Calculate Mean of sample Mean = (1550+1700+900+850+1000+950) / 6 = \$1,158.33

Step 2: Calculate X_i – Mean

Step 3: Calculate $(X_i - Mean)^2$

Step 4: Calculate Sum $([X_i - Mean]^2)$

Step 5: Calculate Sum $([X_i - Mean]^2)/[n-1])$

$$s^{2} = \frac{\sum (X - \overline{X})^{2}}{N - 1}$$

$$S^{2} \rightarrow \text{Variance}$$

(This is the **Variance**)

Step 6: Calculate SQRT $\{Sum ([X_i - Mean]^2) / [n-1])\}$

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$

$$S \rightarrow \text{Standard Deviation}$$

(This is the **Standard Deviation**)

As per the sample,

Mean = \$1,158.33 Standard Deviation = \$367.99

X _i (Rent)	X _i – Mean	$(X_i - Mean)^2$
\$1,550.00	\$391.67	\$153,405.39
\$1,700.00	\$541.67	\$293,406.39
\$900.00	- \$258.33	\$66,734.39
\$850.00	- \$308.33	\$95,067.39
\$1,000.00	- \$158.33	\$25,068.39
\$950.00	- \$208.33	\$43,401.39

Mean	\$1,158.33		
$Sum((X_i - Mean)^2)$	\$677,083.34		
$Sum((X_i - Mean)^2)/(n-1)$	φ125 <i>417 (5</i>		
Variance	\$135,416.67		
$SQRT(Sum((X_i - Mean)^2)/(n-1))$	\$367.99		
Standard Deviation	φ 3 07.33		

2. Find the variance for the following set of data representing trees in California (heights in feet):

3, 21, 98, 203, 17, 9

Solution:

Step 1: Calculate Mean for sample data (3+21+98+203+17+9) / 6 = 58.5

Step 2: Calculate X_i – Mean

Step 3: Calculate $(X_i - Mean)^2$

Step 4: Calculate Sum ($[X_i - Mean]^2$) Step 5: Calculate Sum ($[X_i - Mean]^2$) / [n-1])

$$S^{2} = \frac{\sum (X - \overline{X})^{2}}{N - 1}$$

$$S^{2} = \text{Variance}$$

(This is the **Variance** of the sample)

As per the sample,

Mean = 58.5**Variance = 6219.9**

X _i (Height)	X _i – Mean	$(X_i - Mean)^2$
3	-55.5	3080.25
21	-37.5	1406.25
98	39.5	1560.25
203	144.5	20880.25
17	-41.5	1722.25
9	-49.5	2450.25

Mean	58.5	
$Sum((X_i - Mean)^2)$	31099.5	
$Sum((X_i - Mean)^2) / (n-1)$	<i>(</i> 210.0	
Variance	0219.9	

3. In a class on 100 students, 80 students passed in all subjects, 10 failed in one subject, 7 failed in two subjects and 3 failed in three subjects. Find the probability distribution of the variable for number of subjects a student from the given class has failed in.

Solution:

For a random student,

The probability of failing in 0 subjects, P(X=0) = 0.8

The probability of failing in 1 subjects, P(X=1) = 0.1

The probability of failing in 2 subjects, P(X=2) = 0.07

The probability of failing in 3 subjects, P(X=3) = 0.03

The probability distribution can be shown as:

X	0	1	2	3
P(X)	0.8	0.1	0.07	0.03

Task 2:

1. A test is conducted which is consisting of 20 MCQs (multiple choices questions) with every MCQ having its four options out of which only one is correct. Determine the probability that a person undertaking that test has answered exactly 5 questions wrong.

Solution:

$$n = 20$$

 $k = 20 - 5 = 15$
 $n - k = 5$

The probability of success = probability of giving a right answer = s = 1/4

Hence, probability of failure = probability of giving a wrong answer

$$=1-s$$

$$= 1 - 1/4$$

$$= 3/4$$

Substitute the values in the formula for Binomial distribution,

So, P (exactly 5 out of 20 answers incorrect) = C(20, 5) * (1/4) 15 * (3/4) 5

$$P (5 \text{ out of } 20) = ((20 * 19 * 18 * 17 * 16) / (5 * 4 * 3 * 2 * 1)) * (1 / 4) 15 * (3 / 4) 5$$

$$= 0.0000034$$

Therefore, the required probability is **0.0000034** approximately.

2. A die marked A to E is rolled 50 times. Find the probability of getting a "D" exactly 5 times.

Solution:

$$n = 50, k = 5, n - k = 45$$

The probability of success = probability of getting a "D" = s = 1/5

Hence, the probability of failure = probability of not getting a "D" = 1 - s = 4/5

C(50, 5) * (1/5) 5 * (4/5) 45 =**0.0295** times approximately

3. Two balls are drawn at random in succession without replacement from an urn containing 4 red balls and 6 black balls. Find the probabilities of all the possible outcomes.

Solution:

Given,

Total number of black balls = 6

Total number of red balls = 4

P (drawing a black ball) = 6/10 = 3/5

P (drawing a red ball) = 4/10 = 2/5

Probability of all possible outcomes = 3/5*2/5+3/5*3/5+2/5*2/5 = 0.76