Matemática IV - Transformada de Laplace, uso en Ingeniería Mecánica

Juan Ignacio Agüero, Damián Adolfo Leguina y Paulina Antico October 24, 2022

${\bf Contents}$

1	Transformada de Laplace	2
2	Transformada de Laplace Inversa	3
3	1	4 4
4	Bibliografía	7

1 Transformada de Laplace

Nombrada así en honor al matemático $Pierre-Simon\ de\ Laplace\ (1749-1827),$ es una transformada integral que convierte una función de una variable real, (usualmente t), al dominio algebraico s.

Formula

Establezcamos f(t) para $0 \le t \le \infty$ y s denotando una variable real arbitraria. La transformada de Laplace de f(x) designada o bien por $\mathcal{L}\{f(t)\}$ o bien F(s), es

$$\mathcal{L}\{f(t)\} = \int_{t=0}^{\infty} e^{-st} f(t) dt$$

2 Transformada de Laplace Inversa

Es la función inversa a la Transformada de Laplace, representada componentes

$$\mathcal{L}^{-1}\left[F\left(s\right)\right]\left(t\right)$$

La transformada inversa de Laplace permita transformar una función en el dominio algebraico al dominio real.

Formula

Existen varias formulas para representar la transformada inversa de Laplace, una de ellas es la conocida como la Formula Inversa de Mellin, también llamada integral de Bromwich o integral de Fourier-Mellin:

$$f\left(t\right) = \mathcal{L}^{-1}\left\{F\left(s\right)\right\} = \frac{1}{2\pi i} \lim_{T \to +\infty} \int_{\gamma - iT}^{\gamma + iT} e^{st} F\left(s\right) ds$$

3 Ingeniería Mecánica

La *Ingeniería Mecánica* es una rama de la ingeniería que combina ingeniería física con matemática para poder diseñar, analizar, crear y mantener sistemas mecánicos.

3.1 relación con la transformada de Laplace

En la Ingeniería Mecánica, la transformada de Laplace se usa para resolver ecuaciones diferenciales de un sistema mecánico para encontrar la función de transferencia¹ de ese sistema.

3.2 Ejemplo: Tanque de agua

La imagen muestra un tanque de agua llenándose a un radio $f_{entrada}$, y se vacía a un radio f_{salida} , en el instante t=0, el tanque esta vacío. Lo primero que podemos deducir de este sistema es que va a haber una tasa relacionando $f_{entrada}$ con f_{salida} , sí $f_e=f_s$, entonces la altura del agua acumulada h permanece constante, si $f_e>f_s$, h va a crecer, y $f_e< f_s$, h decrece.

Ecuación diferencial

En este caso, podemos asumir que el agua acumulada es el cambio del volumen del agua en el tiempo.

$$f_e - f_s = \frac{\Delta V}{\Delta t}$$

El volumen siendo el area A por la altura, asumiendo que el area de la sección transversal es constante, la altura h es la única variable en la función del volumen, por lo que la variación del volumen $\Delta V = A \cdot dh$, por lo que la ecuación diferencial queda en:

$$f_e - f_s = \frac{A \cdot dh}{dt} = A \frac{dh}{dt}$$

 $^{^1\}mathrm{La}$ función de transferencia de un sistema es una función que modela la salida de un sistema para cada entrada posible.

Flujo de salida

El flujo de salida esta dominado por la presión p que ejerce el agua para salir por el tubo que funciona como una restricción R, por lo tanto $f_s = p/R$. La presión esta definida como $p = \rho g h$, donde ρ es la densidad del agua, h es la altura del cuerpo de agua en un moment t y g la aceleración de la gravedad, por lo tanto

$$f_s = \frac{\rho g h}{R}$$

Reemplazando en la ecuación diferencial se puede escribir como:

$$f_e - \frac{\rho gh}{R} = A \frac{dh}{dt}$$
$$\therefore f_e = A \frac{dh}{dt} + \frac{\rho gh}{R}$$

Aplicando Laplace

$$\mathcal{L}[f_e](s) = \mathcal{L}\left[A\frac{dh}{dt} + \frac{\rho gh}{R}\right](s)$$

$$\therefore F_e(s) = AsH(s) - h(0) + \frac{\rho g}{R}H(s)$$

$$\therefore F_e(s) = AsH(s) + \frac{\rho g}{R}H(s)$$

$$\therefore F_e(s) = \left[As + \frac{\rho g}{R}\right]H(s)$$

Función de transferencia

La función transferencia G(s) se determina con la expresión

$$G\left(s\right) = \frac{Y\left(s\right)}{X\left(s\right)}$$

Donde X(s) es la entrada de un sistema e Y(s) la salida. En nuestro sistema, es $F_e(s)$, la salida H(s), por lo que tenemos que adaptar nuestra ecuación.

$$F_{e}\left(s\right) = \left[As + \frac{\rho g}{R}\right] H\left(s\right)$$

$$\frac{F_{e}\left(s\right)}{As + \frac{\rho g}{R}} = H\left(s\right)$$

$$\frac{1}{As + \frac{\rho g}{R}} = \frac{H\left(s\right)}{F_{e}\left(s\right)} \Rightarrow G\left(s\right) = \frac{1}{As + \frac{\rho g}{R}}$$

De esta manera obtenemos obtuvimos la función de transferencia, la principal ventaja de una función de transferencia es la de poder minimizar los componentes de un sistema a ecuaciones algebraicas simples en lugar de utilizar ecuaciones diferenciales complejas para el análisis y diseño de sistemas.

Transformada inversa de Laplace y función transferencia

El uso de la transformada de Laplace en una función transferencia es util para saber cual es el valor de la salida en un momento y(t), dado que:

$$G(s) = \frac{Y(s)}{X(s)}$$

$$Y(s) = G(s)X(s)$$

$$y(t) = \mathcal{L}^{-1}[Y(s)] = \mathcal{L}^{-1}[G(s)X(s)]$$

Para simplificar, vamos a imaginar que f_e es una entrada tipo impulso unitario, lo que significaría que F(s) = 1.

$$\begin{split} H\left(s\right) &= G\left(s\right) \cdot F_{e}\left(s\right) \\ H\left(s\right) &= \frac{1}{As + \frac{\rho g}{R}} \cdot 1 \\ H\left(s\right) &= \frac{1}{As + \frac{\rho g}{R}} \cdot \frac{\frac{1}{A}}{\frac{1}{A}} \\ H\left(s\right) &= \frac{\frac{1}{A}}{s + \frac{\rho g}{AR}} \\ \mathcal{L}^{-1}\left[H\left(s\right)\right] &= \mathcal{L}^{-1}\left[\frac{\frac{1}{A}}{s + \frac{\rho g}{AR}}\right] = \frac{1}{A}\mathcal{L}^{-1}\left[\frac{1}{s + \frac{\rho g}{AR}}\right] \\ h\left(t\right) &= \frac{1}{A} \cdot e^{-\frac{\rho g}{AR}t} \end{split}$$

4 Bibliografía

```
ECE 209: Review of Circuits as LTI... - Theodore P. Pavlic [Link]

APPLICATIONS OF LAPLACE... - Prof. L.S. Sawant [Link]

Modeling a Process - Filling a Tank - Gavin Duffy [Link]

Transfer Functions (Continuous-Time) - Dr James E. Pickering [Link]

]
```