

2016.8 k2

- |1| 四面体 OABC において,OA = OC であるとする.さらに ,BC を 1:2 に内分する点を D,AD を 3:1 に内分する点を E と するとき, $OE \perp AC$ であるとする.また, $\vec{OA} = \vec{a}$, $\vec{OB} = \vec{b}$, $\vec{OC} = \vec{b}$
 - (1) \vec{e} を \vec{a} , \vec{b} , \vec{c} を用いて表わせ.

 $\vec{c}, \vec{OE} = \vec{e}$ とおく. [135 宮城]

- (2) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c}$ を示せ.
- (3) $OA:OB=2:1,OE\perp BC$ であるとき、 $\angle AOC$ を求めよ.

- $\fbox{2}$ 数列 $\{a_n\},\{b_n\}$ は $,b_n=\sum_{k=1}^n a_k$ の関係を満たしている.次の問い [144 岩手]
 - (1) 数列 a_n の一般項が, $a_n=\frac{n}{3^n}$ であるとき, 数列 $\{b_n\}$ の一般項 b_n を求めよ.
 - (2) 数列 a_n の一般項が、 $a_n = \frac{1}{1+2+3+\cdots\cdots+n}$ であるとき、数 列 $\{b_n\}$ の一般項 b_n を求めよ.

- 氏名
- |3| 次の数列の初項から第n項までの和を求めよ.

$$3, \frac{5}{1^3 + 2^3}, \frac{7}{1^3 + 2^3 + 3^3}, \frac{9}{1^3 + 2^3 + 3^3 + 4^3}, \dots$$

ただし,
$$\sum_{k=1}^{n} \mathbf{k}^3 = \frac{1}{4} (\mathbf{n}^4 + 6 \sum_{k=1}^{n} \mathbf{k}^2 - 4 \sum_{k=1}^{n} \mathbf{k} + \sum_{k=1}^{n} 1)$$
 の関係がある