Home work 2

Dongkyu Kim(20162050)

September 9, 2017

Relative permittivity ϵ_r

Relative permititivities at room temperature

 $Silicon(\epsilon_{r,s})$: 11.68

Silicon dioxide $(\epsilon_{r,d})$: 3.9

Case1

Thickness[m]: 3×10^{-3} (silicon), 7×10^{-3} (silicon dioxide)

Figure 1: The position x versus electric potential V(x).

The boundary conditions for V(x): V(x=0)=1 and $V(x=10^{-2})=3$ where $0 \le x \le 10^{-2}$

The silicon domain is $0 \le x \le 3 \times 10^{-3}$ and the silicon dioxide is $3 \times 10^{-3} \le x \le 10^{-2}$.

Capacitance per area: $4.31 \times 10^{-9} [C^2/Nm^3]$ (numeric) Capacitance per area: $4.31 \times 10^{-9} [C^2/Nm^3]$ (theory)

Figure 2: The position x versus electric potential V(x).

The boundary conditions for V(x) : V(x=0)=1 and $V(x=10^{-2})=5$ where $0 \le x \le 10^{-2}$

The silicon domain is $0 \le x \le 3 \times 10^{-3}$ and the silicon dioxide is $3 \times 10^{-3} \le x < 10^{-2}$.

Capacitance per area: $4.31 \times 10^{-9} [C^2/Nm^3]$ (numeric) Capacitance per area: $4.31 \times 10^{-9} [C^2/Nm^3]$ (theory)

Case2

thickness[m]: 5×10^{-3} (silicon), 5×10^{-3} (silicon dioxide)

Figure 3: The position x versus electric potential V(x).

The boulary conditions for V(x) : V(x=0)=1 and $V(x=10^{-2})=3$ where $0 \le x \le 10^{-2}$

The silicon domain is $0 \le x \le 5 \times 10^{-3}$ and the silicon dioxide is $5 \times 10^{-3} \le x \le 10^{-2}$.

Capacitance per area: $5.18 \times 10^{-9} [C^2/Nm^3]$ (numeric) Capacitance per area: $5.18 \times 10^{-9} [C^2/Nm^3]$ (theory)

Figure 4: The position x versus electric potential V(x). The boundary conditions for V(x):V(x=0)=1 and $V(x=10^{-2})=5$ where $0 \le x \le 10^{-2}$ The silicon domain is $0 \le x \le 5 \times 10^{-3}$ and the silicon dioxide is $5 \times 10^{-3} \le x \le 10^{-2}$. Capacitance per area: $5.18 \times 10^{-9} [C^2/Nm^3]$ (numeric) Capacitance per area: $5.18 \times 10^{-9} [C^2/Nm^3]$ (theory)