NLP Homework – A.Y. 2020-2021 Leonardo Emili

Homework 1

Word-in-Context as a binary classification task:

The cat chases after the *mouse*. Click the right *mouse* button.

Data preprocessing

- Tokenization and lemmatization to prepare our data
- Derive a frequency-based vocabulary from the training set
- Filter out rare words (i.e. Hapax Legomea)
- Pre-trained static word embeddings from Word2Vec and GloVe

Word-in-Context (WiC) disambiguation Our approach

- Bidirectional LSTM to encode input sentences
- (shallow) Context-aware representation of the input tokens
- Multi-Layer Perceptron (MLP) architecture as baseline
- Experiment with different settings

Architecture

Experiments

Model	F1 (%)
MLP	62.85
+ lemmatization	63.57
+ rare words removal	61.17
+ lowercase	61.28
BiLSTM	67.6
+ lemmatization	68.3
+ rare words removal	69.14
+ lowercase	67.73

Embedding	F1 (%)
Word2Vec	69.14
300d GloVe	64.77
Word2Vec \oplus 300d GloVe $^{\scriptscriptstyle(*)}$	66.05
Word2Vec \oplus 300d GloVe $^{(**)}$	66.18

Homework 2

ABSA identification pipeline:

Data statistics

Data preprocessing

- Extract POS tags from our data
- Apply data augmentation with masking (+160% dataset size)
- Average BERT WordPiece embeddings

Our approach – Individual learners

- Solve the aspect terms extraction task using NER
- Jointly extract aspect terms and identify polarities (i.e. A+B)
- Jointly extract category terms and identify polarities (i.e. C+D)

The food is tasty and portion sizes are appropriate.

Task A+B: O B_{POS} O O O B_{POS} I_{POS} O O

Task C+D: $[FOOD_{POS}]$

0

Our approach – Multitask learning

- Learn multiple tasks in parallel (Caruana, 1996)
- Aspect terms can be useful to predict categories (Xue et al., 2017)
- Benchmark against individual learners approaches

Unified architecture

Experiments – Tables

Architecture	Core features	Aspects		Categories $(\Phi_{restaurant})$	
	Core reacures	F_1^{macro}	F_1^{micro}	F_1^{macro}	F_1^{micro}
MLP	BERT	35.82	47.73	34.59	41.97
	+ Word2Vec	36.95	50.09	33.76	42.51
	+ POS	38.10	48.58	36.42	42.86
BiLSTM	BERT	49.54	59.91	50.69	62.34
	+ Word2Vec	49.20	61.50	51.63	64.50
	+ POS	50.04	65.02	55.00	66.47
BiLSTM (attention)	BERT	47.79	58.47	49.05	60.18
	+ Word2Vec	47.98	59.22	49.34	60.79
	+ POS	49.46	60.18	53.88	64.05
CRF- BiLSTM	BERT	47.57	57.17	48.95	59.48
	+ Word2Vec	48.11	60.10	48.03	59.22
	+ POS	49.85	62.93	51.13	62.88
Transformer (encoder)	BERT	35.92	48.19	49.44	61.07
	+ Word2Vec	36.79	50.10	49.93	61.86
	+ POS	37.33	50.53	51.09	63.01

Model	Asp	ects	Categories $(\Phi_{restaurant})$	
Wiodei	F_1^{macro}	F_1^{micro}	F_1^{macro}	F_1^{micro}
Aspect classifier	41.25	60.16	1-	
Category classifier	-	-	38.23	49.12
Multistep classifier	50.04	65.02	55.00	66.47

Experiments – Confusion matrices

Task A+B Task C+D

References

- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training
 of deep bidirectional transformers for language understanding.
- Rich Caruana. 1996. Algorithms and applications for multitask learning. In Proceedings of the Thirteenth International Conference on Machine Learning, pages 87–95. Morgan Kaufmann.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need.
- Wei Xue, Wubai Zhou, Tao Li, and Qing Wang. 2017. Mtna: A neural multi-task model for aspect category classification and aspect term extraction on restaurant reviews.
- Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in vector space.
- Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectors for word representation. In EMNLP, volume 14, pages 1532–1543.

Thanks for the attention!