

PHYSIKALISCHES GRUNDPRAKTIKUM

Versuch 16

DER TRANSFORMATOR

Praktikant: Tobias Wegener Alexander Osterkorn	E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de
Tutor: Ralph Schäfer	Gruppe:
Durchgeführt am: 12.9.2013	Protokoll abgegeben: 10.9.2013
Testiert:	

Inhaltsverzeichnis

1	Ein	leitung	2
2	The	eorie	2
	2.1	Unbelasteter Transformator	2
	2.2	Belasteter Transformator	3
	2.3	Lissajous-Figuren	4
3	Dur	chführung	6
4	Aus	swertung	8
	4.1	Unbelasteter Transformator	8
	4.2	Belasteter Transformator	9
		4.2.1 Phasenverschiebung aus Zeigerdiagramm	
			10
		· · ·	13
			13
5	Dis	kussion	14
	5.1	Unbelasteter Transformator	14
	5.2	Belasteter Transformator	14
	5.3	Energierechnungen	

1 Einleitung

Der Transformator hat eine herausragende Bedeutung in der modernen Elektrotechnik. Mit ihm ist es möglich, Amplituden von Wechselspannungen zu vergrößern oder zu verkleinern.

In diesem Versuch werden einige Messungen am unbelasteten und belasteten "Trafo" durchgeführt.

2 Theorie

2.1 Unbelasteter Transformator

Abb. 3 zeigt das Schema eines Transformators. Er besteht aus der Primärspule L_1 , der Sekundärspule L_2 und einem Eisenkern, um den beide Spulen gewickelt sind.

Beim *idealen Transformator* geht man davon aus, dass der Transformator verlustfrei arbeitet. *Unbelastet* heißt, dass der Sekundärkreis offen ist, hier also kein Strom fließt.

Die Wechselspannung U_1 an der Spule L_1 mit N_1 Windungen erzeugt einen Strom I_1 , der nach dem Faradayschen Induktionsgesetz eine Induktionsspannung

$$U_{\rm ind} = -L_1 \frac{\mathrm{d}I_1}{\mathrm{d}t} = -N_1 \frac{\mathrm{d}\Phi}{\mathrm{d}t} = -U_1 \tag{1}$$

mit dem magnetischen Fluss Φ erzeugt. [dem2]

Dieser Fluss fließt über den Eisenkern auch durch die Spule L_2 , wo wiederum eine Spannung

$$U_2 = -N_2 \frac{d\Phi}{dt} = N_2 \frac{U_1}{N_1} \tag{2}$$

induziert wird.

Daraus folgt das *Transformatorgesetz*

$$\frac{U_2}{U_1} = -\frac{N_2}{N_1} \ . \tag{3}$$

Das Minuszeichen entspricht einer gleichsinnigen Wicklung beider Spulen, hier hat die Sekundärspannung eine Phasenverschiebung von 180°.

Im Primärkreis bewirkt die Spule L_1 eine Phasenverschiebung von 90° zwischen Strom und Spannung, was dazu führt, dass insgesamt keine Leistung aufgenommen wird. [dem2]

2.2 Belasteter Transformator

Beim belasteten Transformator wird der Sekundärkreis durch eine *Impedanz* \underline{Z} geschlossen, so dass die Spannung U_2 einen Strom $I_2 = U_2/\underline{Z}$ erzeugt.

Der Fluss dieses Stromes durch die Spule L_2 erzeugt einen magnetischen Fluss Φ_2 , der sich mit dem magnetischen Fluss Φ_1 der Primärspule zum Gesamtfluss $\Phi = \Phi_1 + \Phi_2$ addiert.

Dieser Fluss muss aber genauso groß sein wie im unbelasteten Betrieb, da sich die im Primärkreis angelegte Spannung U_1 nicht geändert hat. [gerthsen] Die Kompensation dieses zusätzlichen elektrischen Flusses Φ_2 leistet ein zusätzlicher Strom I'_1 auf der Primärseite, der allerdings eine Phasenverschiebung ungleich 90° zur Spannung U_1 hat. Im Folgenden schränken wir uns auf Sekundärwiderstände $\underline{Z} = R$ ein, dann gilt $I_2 = U_2/R$.

Um zu ermitteln, wie groß der Strom I_1' sein muss, betrachtet man die Scheinleistung in beiden Stromkreisen. Am Sekundärkreis wird die Leistung U_2I_2 aufgenommen, also muss nach der Energieerhaltung im Primärkreis auch die Leistung U_1I_1' aufgebracht werden; denn der Leerlaufstrom I_0 leistet nur Blindleistung. Also gilt

$$U_1 I_1' = U_2 I_2 \iff \frac{I_1'}{I_2} = \frac{U_2}{U_1} = -\frac{N_2}{N_1} \iff I_1' = -\frac{N_2}{N_1} I_2.$$

Der insgesamt auf der Primärseite fließende Strom ist damit

$$I_1 = I_0 + I_1' = I_0 - \frac{N_2}{N_1} I_2$$
 (4)

Hierbei ist natürlich stets zu beachten, dass alle Ströme zeitabhängig sind und obige Formel inklusive Phasenverschiebungen interpretiert werden muss (also im Sinne einer komplexen Addition), insbesondere wird der Strom I_1 zumeist größer werden als der kleine Leerlaufstrom I_0 . [gerthsen] Die

Abbildung 1: Phasenverschiebung von Primärstrom I_1 und Primärspannung U_1

beschriebenen Sachverhalte finden sich in Abb. 1. Dabei wird von einer allgemeinen Phasenverschiebung ϕ_0 zwischen I_0 und U_1 ausgegangen. Direkt aus der Skizze folgt dann

$$\tan(\phi) = \frac{I_0 \sin(\phi_0)}{I_1' + I_0 \cos(\phi_0)} \,. \tag{5}$$

Für Effektivwerte U_1 und I_1 definieren wir noch die Wirkleistung [gerthsen]

$$P_{\rm W} = U_1 I_1 \cos(\phi) \tag{6}$$

und die Blindleistung [gerthsen]

$$P_{\rm B} = U_1 I_1 \sin(\phi) \ . \tag{7}$$

2.3 Lissajous-Figuren

Gegeben zwei Schwingungen $x = a\sin(\omega t)$ und $y = b\sin(\omega t + \varphi)$ gleicher Frequenz mit Phasenverschiebung φ . Plottet man diese Schwingungen gegeneinander, erhält man eine Lissajous-Figur wie in Abb. 2.

Um aus einer gegebenen Figur die Phasenverschiebung zu bestimmen, betrachtet man einen Punkt x=0. Dann gilt $\omega t=0,\pi$ und nach dem Sinus-Additionstheorem gilt auch

$$y_0 = y(0) = b(\underbrace{\sin(\omega t)}_{=0} \cos(\varphi) + \underbrace{\cos(\omega t)}_{=\pm 1} \sin(\varphi)).$$

Dann erhält man die Phasenverschiebung zu

$$\varphi = \arcsin\left(\frac{y_0}{b}\right) \text{ und analog } \varphi = \arcsin\left(\frac{x_0}{a}\right).$$
 (8)

Abbildung 2: Lissajousfigur für x-y-Schwingung mit gleicher Frequenz

3 Durchführung

Abbildung 3: Skizze des im Versuch verwendeten Transformators [LP-16]

Abbildung 4: Schaltplan des Versuchs [LP-16]

Es wird ein Versuchsaufbau nach den Abb. 3 und 4 verwendet. Zunächst wird ein unbelasteter Transformator untersucht, d.h. der Widerstand R_2 wird überbrückt. Folgende Messreihen werden durchgeführt:

- Im Primärkreis wird der Strom I_1 variiert und die Spannung U_1 gemessen.
- Am Primärkreis wird die Spannung U_1 variiert und U_2 im Sekundärkreis gemessen.
- Primär- und Sekundärkreis werden getauscht und dieselbe Messung durchgeführt.

Abbildung 5: Ablauf dritter Versuchsteil [LP-16]

Der Ablauf des dritten Versuchsteils ist in Abb. 5 skizziert.

Zuletzt werden am belasteten Transformator (R_1 und R_2 sind aktiviert) verschiedene Sekundärströme I_2 eingestellt und am Oszilloskop Primärstrom und Primärspannung geplottet. Der Strom wird dabei über eine Stromzange gemessen.

Im "x-y-Modus" des Oszilloskops werden Strom und Spannung gegeneinander geplottet, so dass sich eine Lissajous-Figur (siehe Theorie) ergibt. Diese wird über die Speicherfunktion des Oszilloskops gedruckt.

Abbildung 6: Abhängigkeit der Primärspannung U_1 vom Primärstrom I_1 beim unbelasteten Transformator

4 Auswertung

4.1 Unbelasteter Transformator

In Abb. 6 wurden verschiedene Primärspannungen U_1 (bzw. deren Effektivwerte) gegen den Primärstrom I_1 geplottet. Für die kleineren Werte I_1 gibt es einen linearen Zusammenhang, in größeren Strombereichen flacht die Kurve ab.

Das liegt daran, dass sich der magnetische Fluss durch die Spule irgendwann nicht mehr gleichförmig erhöhen lässt, da der Eisenkern seine $S\"{a}ttigungsmagnetisierung$ erreicht und so der Wert für L_1 in Formel 1 nicht konstant bleibt. Die lineare Regression in Abb. 7 ergibt

$$m_1 = \frac{U_2}{U_1} = 0.09468 \pm 0.00018$$

und in Abb. 8

$$m_2 = \frac{U_1}{U_2} = 10.59 \pm 0.02$$
.

Für das Übersetzungsverhältnis $u = N_1/N_2$ gilt dann

$$u = m_2 = 10.59 \pm 0.02$$
 und $u = \frac{1}{m_1} = 10.56 \pm 0.02$,

woraus sich im gewichteten Mittel $u = 10.575 \pm 0.015$ ergibt.

4.2 Belasteter Transformator

4.2.1 Phasenverschiebung aus Zeigerdiagramm

Man betrachte Abb. 9. Der Strom durch den Widerstand $I_{1,R}$ und der Strom durch die Primärspule $I_{1,T}$ wurden in der Durchführung so eingestellt, dass sie betragsmäßig gleich groß sind.

Der Strom $I_{1,R}$ ist phasengleich mit U_1 und rein reell, da an Widerständen keine Phasenverschiebung stattfindet. Auch der Transformatorstrom $I_{1,T}$ hat einen reellen Anteil. Das ist der in der Theorie beschriebene Kompensationsstrom für den zusätzlichen magnetischen Fluss durch die Spule L_1 .

Insgesamt stellt sich eine Phasenverschiebung ϕ zwischen $I_{1,T}$ und U_1 ein. Die korrekte komplexe Addition der Ströme führt zu einer Raute mit dem Gesamtstrom I_{ges} auf der Diagonalen, der genau den Phasenwinkel $\phi/2$ mit

 U_1 bildet. Aus der Rautengeometrie folgt sofort

$$\cos(\phi/2) = \frac{I_{\rm ges}/2}{I_R} = \frac{I_{\rm ges}}{2I_R}$$

mit der Fehlerfortpflanzung

$$\sigma_{\phi} = \left(\frac{\sigma_{I}}{I_{R}\sqrt{1 - \left(\frac{I_{\rm ges}}{2I_{R}}\right)^{2}}}\right)\sqrt{1 + \frac{I_{\rm ges}^{2}}{I_{R}^{2}}} \ .$$

Die Fehler der Multimeteranzeige für die beiden Ströme werden zu $\sigma_I=1.5\%\cdot 2\,\mathrm{A}+0.003\,\mathrm{A}=0.033\,\mathrm{A}$ angesetzt.

Die Fehler zu diesen Werten sind ohne Zweifel zumindest fragwürdig, der Multimeterfehler wurde aber wie üblich abgeschätzt und die Fehlerfortpflanzung mehrfach geprüft.

4.2.2 Phasenverschiebung aus Lissajous-Figur

Die Phasenverschiebung zwischen Primärstrom und Spannung lässt sich ebenfalls mit den ausgedruckten Lissajous-Figuren bestimmen. Siehe dazu

Abbildung 9: Zeigerdiagramm zum Durchführungsteil 3. Der Strom $I_{1,R}$ durch den Widerstand und der Strom $I_{1,T}$ durch den Transformator addieren sich zum Gesamtstrom $I_{\rm ges}$

I_2 [A]	I_1 [A]	$I_{\rm ges}$ [A]	ϕ [rad]	$\sigma_{\phi} [\mathrm{rad}]$
0	0.120	0.190	1.3	0.9
1	0.184	0.334	0.9	0.9
2	0.234	0.464	0.3	2.4
3	0.314	0.625	0.2	2.4
4	0.394	0.786	0.14	2.7
5	0.478	0.955	0.09	4.0

Tabelle 1: Phasenverschiebung aus den Multimetermessungen

im Theorieteil Formel 8. In der Tabelle 2 sind die abgelesenen Werte und die daraus berechnete Phasenverschiebung angegeben. Da die Skalierung der Achsen für diese Berechnung egal ist, sind "Oszi-Kästchen" (div) als Einheit angegeben. Eine Schwierigkeit dabei ist, dass auf den Ausdrucken nicht die gesamte Lissajous-Figur zu sehen ist, so dass unter anderem die konkrete Bestimmung des Mittelpunkts unter Umständen sehr fehlerbehaftet sein kann. Der Fehler für das Ablesen eines Wertes wird etwas pauschal auf $\sigma_a = \sigma_{x_0} = 0.5$ div gesetzt, was teilweise schon im Bereich eines relativen Fehlers von 25% liegt.

Für die Fehlerberechnung wird die Fehlerfortpflanzung

$$\sigma_{\phi}^{2} = \left(\frac{1}{a} \frac{1}{\sqrt{1 - \left(\frac{x_{0}}{a}\right)^{2}}}\right)^{2} \sigma_{x_{0}}^{2} + \left(\frac{x_{0}}{a^{2}} \frac{1}{\sqrt{1 - \left(\frac{x_{0}}{a}\right)^{2}}}\right)^{2} \sigma_{a}^{2}$$

verwendet. Aus den Werten in Tab. 2 bildet man noch die gewichteten Mittelwerte und erhält die Endergebnisse in Tab. 3.

I_2 [A]	x_0 [div]	a [div]	y_0 [div]	b [div]	$\phi_x \text{ [rad]}$	σ_{ϕ_x} [rad]	ϕ_y [rad]	σ_{ϕ_y} [rad]
0	4.5	4.7	2.2	2.3	1.30	0.60	1.30	1.10
1	4.0	5.9	2.0	2.9	0.74	0.14	0.76	0.29
2	2.2	5.2	0.9	2.0	0.44	0.12	0.50	0.40
3	2.0	5.4	1.0	2.7	0.38	0.11	0.40	0.22
4	1.6	5.6	1.1	3.3	0.30	0.10	0.34	0.17
5	1.2	5.1	1.1	3.8	0.24	0.11	0.29	0.15

Tabelle 2: Ablesen der Lissajous-Figuren und Berechnung der Phasenverschiebung

I_2 [A]	ϕ [rad]	$\sigma_{\phi} [\mathrm{rad}]$
0	1.30	0.50
1	0.75	0.13
2	0.44	0.11
3	0.38	0.10
4	0.30	0.09
5	0.26	0.09

Tabelle 3: Gewichtete Mittelwerte der Phasenverschiebung aus den Lissajous-Figuren

4.2.3 Theoretischer Wert

Nun wird noch Formel 5 mit Glg. 4 verwendet um einen theoretischen Wert für die Phasenverschiebung zu ermitteln. Dabei wird vom Mittelwert der beiden gemessenen Leerlaufphasenverschiebungen $\phi_0 = 1.3$ rad und dem gemessenen Leerlaufstrom $I_0 = 0.12$ A ausgegangen.

Man erhält dann die Abb. 10. Auf das Plotten der Fehler der Multimetermessung wurde verzichtet.

Abbildung 10: Vergleich der bestimmten Phasenverschiebungen ϕ in Abhängigkeit vom Sekundärstrom I_2 mit der Theoriekurve

4.2.4 Energierechnungen

Mit dem Wert $I_2 = 5$ A, dem gemessenen Gesamtstrom $I_{\text{ges}} = 0.478$ A, der eingestellten Spannung $U_1 = 200$ V und der Phasenverschiebung $\phi = 0.028$ rad, die sich aus der Theoriekurve ergibt, erhalten wir aus den Formeln 6 und 7

$$P_{\rm W} = 191 \, {\rm W} \quad {\rm und} \quad P_{\rm B} = 5 \, {\rm W} \; .$$

Die Wirkleistung beim unbelasteten Transformator ist analog $P_{\rm W}=200\,{\rm V}\cdot 0.12\,{\rm A}\cdot\cos(1.3\,{\rm rad})=6.42\,{\rm W}.$ Da ein Jahr bekanntlich exakt 365.2425 Tage hat, folgt für den Preis 365.2425 \cdot 24 \cdot 6.42 \cdot 0.001 \cdot 0.2 Euro = 11.26 Euro, was mehr als eine Kugel Eis ist.

5 Diskussion

5.1 Unbelasteter Transformator

Die beiden berechneten Werte für das Übersetzungsverhältnis u liegen dicht zusammen und enthalten sich gegenseitig in ihren jeweiligen 2- σ -Umgebungen.

5.2 Belasteter Transformator

Die Bestimmung der Phasenverschiebung aus der Multimetermessung liefert Werte, die zumindest global das Verhalten zeigen, das die Theoriekurve in Abb. 10 vorgibt, also einen asymptotischen Abfall gegen Null. Wie schon im Auswertungsteil angedeutet, sind die Fehler so groß, dass sie im Prinzip die Messwerte unbrauchbar machen.

Daran wird deutlich, dass es sich hier wirklich um eine Präzisionsmessung handelt. Schon kleine Änderungen des gemessenen Stroms im Bereich von einigen 10 Milliampere können den bestimmten Phasenwinkel stark verändern. Bei der Vermessung der Lissajous-Figuren war ein Problem, dass die Auflösung des Oszis es nicht zuließ, die Lissajous-Figur vollständig zu drucken. So gibt es unter anderem eine gewisse Unsicherheit bei der Wahl des Koordinatenursprungs.

Die Messdaten aus den Lissajous-Figuren ergeben einen akzeptablen Fehler (stets unter 50% relativem Fehler) und enthalten sogar die Multimeter-Messwerte in ihrer 2- σ -Umgebung. Diese beiden Messungen liegen also relativ nah beieinander.

Auffällig ist eher die starke Abweichung beider Messreihen von der Theoriekurve, die noch unter den Werten der beiden Messungen liegt. Insofern ist zu vermuten, dass auch diese Kurve fehlerbehaftet ist. Insbesondere kann es sein, dass der Leerlaufstrom noch größer ist, als gemessen und angenommen. Das würde zumindest zu einem deutlich veränderten Kurvenverlauf führen.

5.3 Energierechnungen

Bei diesen kleinen Rechnungen wurden die Werte des Transformators bei zugeschaltetem Widerstand R_1 verwendet.

Nach Abb. 9 ist der Phasenwinkel des Stroms ohne Widerstand genau doppelt so groß, insofern ließe sich auch das einfach berechnen.

Die Höhe der Stromkosten für das Handyladegerät hat die Praktikanten verstört und zu stromsparendem Verhalten animiert.

Messwerte

Durchführung 1

I_1 [mA]	
16.8	
24.08	
31.09	
38.2	
44.6	
51.6	
58.2	
64.9	
71.9	
78.9	
85.4	
92.4	
99.3	
106.7	
113.4	
120.8	
128.3	
136.3	
145	
154.6	
165.6	
182.1	
209	
265.5	
333.2	
374	

Tabelle 5: Messwerte unbel. Trafo 1

Durchführung 2

U_1 [V]	U_2 [V]
50	4.6
60.2	5.6
70.3	6.6
79.8	7.5
89.9	8.4
100.1	9.4
110.2	10.3
119.8	11.2
130.2	12.2
140.1	13.1
150	14.1
160.3	15.1
170.6	16
180	16.9
190.1	17.9
200	18.9
210	19.8
220	20.7
230	21.7
240	22.5
250	23.3
3.1	, 1 1

Tabelle 7: Messwerte unbel. Trafo 2a

U_2 [V]	U_1 [V]
3	32.5
5	51.6
6.67	68.9
7.48	77.4
8.63	89.2
10.04	103.8
11.03	114.3
12.56	130
13.24	136.8
14.7	172.6

Tabelle 8: Messwerte unbel. Trafo 2b

Durchführung 3

I_2 [A]	I_1 [A]	$I_{\rm ges}$ [A]
0	0.12	0.19
1	0.184	0.334
2	0.234	0.464
3	0.314	0.625
4	0.394	0.786
5	0.478	0.955

Tabelle 9: Messwerte Teil 3