

Statistics of Financial Markets Project 4

Group No. 8 Group members: Li Mingyang, Guo Junjie, Wu Heyue, Yang Buhan

July 20, 2016

An Introduction to CIR Model

Bond Pricing with CIR model

Calibrating the CIR Model

Spot Rate Series and Term Structure

Definition

In Cox, Ingersoll, Roll (CIR) Model, the short-rate satisfies the SDE

$$dr(t) = a\{b - r(t)\}dt + \sigma\sqrt{r(t)}dW_t$$
 (1)

where a, b, σ are constants and W_t is a Wiener process.

- proposed by Cox, Ingersoll and Ross (1985)
- equilibrium spot rate model
- mean reversion
- nonnegative r(t) if $2ab \ge \sigma^2$

Under the corresponding numeraire:

$$V(t,T) = E_t[exp\{-\int_t^T r(s)ds\}V(T,T)]$$

with

$$dr(t) = \mu_r dt + \sigma_r dW_t$$

and

$$\mu_r = \mu\{r(t), t\}, \, \sigma_r = \sigma\{r(t), t\}$$

By means of the condition that V(T, T) = 1, in combination with $It\hat{o}'s$ Lemma we get:

$$dV(T,T) = \left\{ \frac{\partial V(t,T)}{\partial t} + \frac{1}{2}\sigma^2 \frac{\partial^2 V(t,T)}{\partial r^2} + \frac{\partial^2 V(t,T)}{\partial r} \right\} dt + \sigma \frac{\partial^2 V(t,T)}{\partial r} dW_t$$
(2)

under the risk-neutral measure the PDE of the CIR model is:

$$r(t)V(t,T) = \frac{\partial V(t,T)}{\partial t} + \frac{1}{2}r(t)\sigma^2 \frac{\partial^2 V(t,T)}{\partial r^2} + a\{b - r(t)\}\frac{\partial V(t,T)}{\partial r}$$
(3)

Assuming $V(t, T) = exp\{A(t) - r(t)B(t)\}$ and a nominal value 1, we can consider:

$$\frac{\partial V(t,T)}{\partial t} = \{A'(t) - r(t)B'(t)\}V(t)$$

$$\frac{\partial V(t,T)}{\partial r} = -B(t)V(t)$$

$$\frac{\partial^2 V(t,T)}{\partial r^2} = B^2(t)V(t)$$

With the boundary conditions
$$V(T, T) = 1$$
 and $A(T, T) = B(T, T) = 0$:

$$V(t,T) = exp\{A(t) - r(t)B(t)\}$$

where

$$A(t) = \frac{2ab}{\sigma^2} log \frac{2\psi \exp\{(a+\psi)(T-t)/2\}}{2\psi + (a+\psi)\exp\{\psi(T-t) - 1\}}$$

$$B(t) = \frac{2\exp\{\psi(T-t) - 1\}}{2\psi + (a+\psi)\exp\{\psi(T-t) - 1\}}$$

$$\psi = \sqrt{a^2 + 2\sigma^2}$$

For increasing time perilds τ the term structure curve $Y_T(t)$ converges to the value:

$$Y_{lim} = \frac{2ab}{\psi + a}$$

and the term structure has the following properties:

- ightharpoonup r(t) > b: decreasing term structure
- $ightharpoonup r(t) < Y_{lim}$: increasing term structure
- $b > r(t) > Y_{lim}$: term structure first rises and then falls

Calibrating the CIR Model Dataset and CIR Process Densities

Dataset

The data we use is consist of daily observations of the annualized yield on Chinese Treasury Bond with 1 year to maturity. The time span is from 01. July 2006 to 01. July 2016. The data is downloaded from Wind Database.

CIR Process Densities

For MLE of the parameter vector θ , transition are required. The transition density of CIR process has a closed form expression

Calibrating the CIR Model

Dataset and CIR Process Densities

The density of $r_{t+\Delta t}$ at time $t + \Delta t$ is :

$$p(r_{t+\Delta t}|r_t, \theta, \Delta t) = c \exp(-u - v)(\frac{v}{u})^{\frac{q}{2}} I_q(2\sqrt{uv})$$

where

$$c = \frac{2a}{\sigma^2 \{1 - exp(-a\Delta t)\}}$$

$$u = cr_t exp(-a\Delta t)$$

$$v = cr_{t+\Delta t}$$

$$q = 2ab/\sigma^2 - 1$$

and $I_q(2\sqrt{uv})$ is the modified Bessel function of the first order q.

Calibrating the CIR Model

Log-likelihood function of CIR Model

The likelihood function for interest rate time series is:

$$L(\theta) = \prod_{t=1}^{n-1} p(r_{t+1}|r_t, \theta, \Delta t)$$

then the log-likelihood function of the CIR process is given by:

$$logL(\theta) = \sum_{t=1}^{n-1} logp(r_{t+1}|r_t, \theta, \Delta t)$$

$$= (n-1)log c + \sum_{t=1}^{n-1} [-u_t - v_{t+1} + 0.5q log \frac{v_{t+1}}{u_t} + log \{l_q(2\sqrt{u_t v_t})\} \}$$
(4)

where $u_t = cr_t exp(-a\Delta t)$, and $v_{t+1} = cr_{t+1}$.

Since MLE needs good starting values, we can collect the starting values for parameter by OLS. The conditional mean function for CIR is:

$$m(r;\theta) = E_{\theta}(r_t|r_{t-1} = r) = \gamma_0 + \gamma_1 r$$

with

$$\gamma_0 = -b\{\exp(-a\Delta t) - 1\}$$

and

$$\gamma_1 = exp(-a\Delta t)$$

Conditional LSE for a and b are:

$$\hat{a} = -\frac{1}{\Delta t} \left[\left\{ n^{-1} \sum_{t=1}^{n} (r_t - \bar{r}_n) (r_{t-1} - \bar{r}_n') \right\} / \left\{ n^{-1} \sum_{t=1}^{n} (r_{t-1} - \bar{r}_n')^2 \right\} \right]$$

$$\hat{b} = -\frac{\bar{r}_n - \exp(-a\Delta t)\bar{r}_n'}{\exp(-a\Delta t) - 1}$$

where
$$\bar{r_n} = n^{-1} \sum_{t=1}^n r_t$$
 and $\bar{r_n}' = n^{-1} \sum_{t=1}^n r_{t-1}$.

Conditional second moment is:

$$v(r;\theta) = E_{\theta}[\{r_{t} - E_{\theta}(r_{t}|r_{t-1} = r)\}^{2}|r_{t-1} = r] = \sigma^{2}(\eta_{0} + \eta_{1}r)$$

$$\eta_{0} = \frac{b}{2a}\{exp(-a\Delta t) - 1\}^{2}$$

$$\eta_{1} = -\frac{1}{a}exp(-a\Delta t)\{exp(-a\Delta t) - 1\}$$

Estimator for σ :

$$\hat{\sigma}^2 = n^{-1} \sum_{t=1}^n \frac{\{r_t - m(r_{t-1}; \hat{a}, \hat{b})\}^2}{\hat{\eta_0} + \hat{\eta_1} r_{t-1}}$$

where $\hat{\eta_0}$ and $\hat{\eta_1}$ are evaluated at (\hat{a}, \hat{b}) .

Calibrating the CIR Model

The starting values for parameter we get using the dataset are $\hat{\theta_0} = (\hat{a_0}, \hat{b_0}, \hat{\sigma_0}) = (0.3161, 0.0275, 0.0372)$.

Then maximize the log-likelihood function in equation (2) over its parameter space we can get

$$\hat{\theta} = (\hat{a}, \hat{b}, \hat{\sigma}) = \arg\max_{\theta} \log L(\theta) = (0.2452, 0.0279, 0.0373)$$

Spot Rate Series and Term Structure Simulated Spot Rate

Using the estimated parameters $\hat{\theta} = (0.2452, 0.0279, 0.0373)$, we simulate the spot rate of CIR Model, and it's as figure 1 shows:

Figura 1: Simulated Spot Rate

Spot Rate Series and Term Structure

Term Structure implied by the estimated parameters

For the spot interest rate is greater than b, the term structure is as figure 2 shows, the yield reduces as the time to maturity increases.

Figura 2: Term Structure with r(t) > b

Spot Rate Series and Term Structure

Term Structure implied by the estimated parameters

For the spot interest rate is smaller than Y_{lim} , the term structure is as figure 3 shows, the yield rises as the time to maturity increases.

Figura 3: Term Structure with $r(t) < Y_{lim}$

Spot Rate Series and Term Structure

Term Structure implied by the estimated parameters

For the spot interest rate is between b and Y_{lim} , the term structure is as figure 4 shows, the term structure first rises and then falls.

Figura 4: Term Structure with $b > r(t) > Y_{lim}$