บทที่ 10 สายอากาศยากิ-อูดะ

10.1 บทน้ำ

สายอากาศยากิ-อูดะ (Yagi-Uda antenna) เป็นสายอากาศที่ได้รับความนิยมเป็นอย่างมาก สำหรับนำมาใช้ในย่านความถี่ HF (3 – 30 MHz) VHF (30 – 300 MHz) และ UHF (300 – 3000 MHz) ซึ่งโครงสร้างของสายอากาศประเภทนี้ประกอบด้วยไดโพลหลายตัวมาต่อเรียงแบบอาร์เรย์เชิงเส้นดังแสดง ในรูปที่ 10.1 จากรูปจะเห็นได้ว่ามีองค์ประกอบหนึ่งทำหน้าที่เป็นตัวขับสัญญาณ (Driven) โดยถูกป้อน สัญญาณผ่านทางสายนำสัญญาณ ซึ่งกระแสจากตัวขับจะถูกคัปปลิ้งให้กับองค์ประกอบพาราชิติก (Parasitic element) อื่น ๆ โดยที่องค์ประกอบพาราชิติกส่วนหนึ่งจะทำหน้าเป็นไดเร็กเตอร์ (Director) เพื่อควบคุมลำคลื่นให้ชี้ทิศทางไปด้านหน้า และมีองค์ประกอบตัวหนึ่งทำหน้าที่เป็นตัวสะท้อน (Reflector) วางอยู่ด้านหลังของตัวขับเพื่อสะท้อนคลื่นให้ลำคลื่นไปด้านหน้าเช่นกัน

สายอากาศยากิ-อูดะ มักถูกนำมาประยุกต์ใช้เป็นสายอากาศรับสัญญาณโทรทัศน์ในย่านความถึ่ VHF และ UHF โดยที่โครงสร้างของสายอากาศจะถูกสร้างด้วยเส้นลวดตัวนำ แต่ถ้านำมาประยุกต์ใช้งาน ในย่านความถี่ไมโครเวฟ มักจะสร้างสายอากาศบนแผ่นวงจรพิมพ์ (Printed Circuit Board : PCB)

รูปที่ 10.1 โครงสร้างของสายอากาศยากิ-อูดะ

10.2 องค์ประกอบของสายอากาศยากิ-อูดะ

สายอากาศยากิ-อูดะ 3 องค์ประกอบเป็นยากิที่สั้นที่สุด ซึ่งประกอบด้วยตัวขับหนึ่งตัวและ องค์ประกอบพาราซิติกสองตัวดังแสดงในรูปที่ 10.2 โดยองค์ประกอบพาราซิติกที่ยาวกว่าตัวขับจะทำ หน้าที่เป็นตัวสะท้อน และองค์ประกอบพาราซิติกที่สั้นกว่าตัวขับจะทำหน้าที่เป็นไดเร็กเตอร์ โดยทั่วไป แล้วตัวขับจะมีความยาวน้อยกว่า $\lambda / 2$ เล็กน้อย $(0.45\lambda - 0.49\lambda)$ ในขณะที่ความยาวของไดเร็ก เตอร์จะอยู่ที่ประมาณ $0.4\lambda - 0.45\lambda$ อย่างไรก็ตามไดเร็กเตอร์แต่ละองค์ประกอบไม่จำเป็นต้องมี ความยาวและเส้นผ่าศูนย์กลางเท่ากัน โดยระยะห่างระหว่างไดเร็กเตอร์แต่ละตัวจะอยู่ที่ประมาณ $0.3\lambda - 0.4\lambda$ สำหรับความยาวของตัวสะท้อนมักจะให้มีความยาวมากกว่าตัวขับ นอกจากนี้ระยะห่าง ระหว่างตัวขับและตัวสะท้อนจะให้มีค่าน้อยกว่าระยะห่างระหว่างไดเร็กเตอร์และให้ใกล้กับตัวขับมากที่สุด

โดยปกติแล้วสำหรับสายอากาศยากิ-อูดะ 3 องค์ประกอบ จะกำหนดให้มีความยาวของแต่ละ องค์ประกอบคือ

รูปที่ 10.2 โครงสร้างของสายอากาศยากิ-อูดะ 3 องค์ประกอบ

ระยะห่างระหว่างตัวสะท้อนกับตัวขับที่ดีที่สุด (กรณีที่ต้องการสภาพเจาะจงทิศทางสูงสุด) จะมี ค่าอยู่ระหว่าง 0.15λ ถึง 0.25λ และระยะห่างระหว่างตัวขับกับไดเร็กเตอร์จะมีค่าอยู่ระหว่าง 0.2λ ถึง 0.35λ โดยแบบรูปการแผ่พลังงานของสายอากาศยากิ-อูดะในระนาบสนามไฟฟ้าและระนาบ สนามแม่เหล็กเมื่อกำหนดให้ระยะห่างระหว่างตัวสะท้อนกับตัวขับ และระยะห่างระหว่างตัวขับกับไดเร็ก เตอร์มีค่าเท่ากับ 0.2λ แสดงในรูปที่ 10.3

(ก) ระนาบสนามไฟฟ้า (ระนาบ $\phi=0^\circ$)

(ก) ระนาบสนามแม่เหล็ก (ระนาบ $\phi=90^\circ$)

รูปที่ 10.3 แบบรูปการแผ่พลังงานของสายอากาศยากิ-อูดะ 3 องค์ประกอบ

นอกจากนี้สภาพเจาะจงทิศทางของสายอากาศยากิ-อูดะสามารถเพิ่มขึ้นได้ด้วยการเพิ่มจำนวน ของไดเร็กเตอร์ และสภาพเจาะจงทิศทางเป็นสัดส่วนโดยตรงกับความยาวรวมทั้งหมดของสายอากาศใน เทอมของความยาวคลื่น รูปที่ 10.4 แสดงความสัมพันธ์ระหว่างจำนวนของไดเร็กเตอร์และสภาพเจาะจง ทิศทางของสายอากาศยากิ-อูดะ เมื่อพารามิเตอร์ต่าง ๆ ของสายอากาศแสดงในตารางที่ 10.1 จากรูปจะ เห็นได้ว่าเมื่อเพิ่มจำนวนของไดเร็กเตอร์ขึ้นเพียงไม่กี่องค์ประกอบจะส่งผลให้สภาพเจาะจงทิศทางเพิ่มขึ้น อย่างรวดเร็ว นั่นคือเมื่อจำนวนไดเร็กเตอร์เพิ่มก็จะทำให้ความยาวรวมทั้งหมดของสายอากาศเพิ่มขึ้นจึง ทำให้สภาพเจาะจงทิศทางเพิ่มขึ้นตาม

รูปที่ 10.4 สภาพเจาะจงทิศทางเทียบกับจำนวนของไดเร็กเตอร์ของสายอากาศยากิ-อูดะ (ขนาดของสายอากาศแสดงในตารางที่ 10.1)

ตารางที่ 10.1 พารามิเตอร์ของสายอากาศยากิ-อูดะ

ความยาวของตัวสะท้อน	0.482λ
ความยาวของตัวขับ	0.45λ
ความยาวของไดเร็กเตอร์	0.40λ
ระยะห่างระหว่างตัวขับกับตัวสะท้อน	0.2λ
ระยะห่างระหว่างตัวขับกับไดเร็กเตอร์ตัวแรก	0.2λ
ระยะห่างระหว่างไดเร็กเตอร์แต่ละตัว	0.2λ

10.3 การออกแบบสายอากาศยากิ-อูดะ

พารามิเตอร์สำคัญสำหรับการออกแบบสายอากาศยากิ-อูดะที่ต้องการคือ สภาพเจาะจงทิศทาง ซึ่งตัวแปรที่ต้องพิจารณาสำหรับสภาพเจาะจงทิศทางของสายอากาศยากิ-อูดะ คือ

จำนวนองค์ประกอบ: โดยทั่วไปแล้วเมื่อจำนวนองค์ประกอบมากขึ้นจะส่งผลให้สายอากาศมี สภาพเจาะจงทิศทางที่มากกว่า เนื่องจากตัวขับและตัวสะท้อนจะมีอย่างละ 1 ตัว ดังนั้นการเพิ่มจำนวน องค์ประกอบคือการเพิ่มจำนวนไดเร็กเตอร์นั่นเอง

ระยะห่างระหว่างองค์ประกอบ: โดยทั่วไปแล้วระยะห่างระหว่างองค์ประกอบที่มากกว่าจะทำ ให้สายอากาศมีสภาพเจาะจงทิศทางที่สูงกว่า ซึ่งระยะห่างที่ควรพิจารณาอย่างมากคือ ระยะห่างระหว่าง ตัวขับกับตัวสะท้อน และตัวขับกับไดเร็กเตอร์ตัวแรก

ความยาวรวมของสายอากาศ: เมื่อคำนวณระยะห่างและจำนวนขององค์ประกอบที่เหมาะสม แล้ว สภาพเจาะจงทิศทางจะแปรผันตรงกับความยาวของสายอากาศ

สำหรับการออกแบบสายอากาศยากินั้นสามารถออกแบบได้หลายวิธี โดยในที่นี้จะใช้วิธีการ ออกแบบของ Viezbike ตามตารางที่ 10.2 ซึ่งมีพื้นฐานในการออกแบบคือ

- 1. ใช้ข้อมูลการออกแบบในตารางที่ 10.2 โดยที่ความยาวของบูม (ส่วนที่ใช้ในการจับยึด องค์ประกอบต่าง ๆ ของสายอากาศยากิ-อูดะ) อยู่ในช่วงความยาวระหว่าง 0.4λ ถึง 4.2λ และมี เส้นผ่าศูนย์กลางต่อความยาวคลื่นของแต่ละองค์ประกอบคือ d / $\lambda = 0.0085$
- 2. สามารถใช้รูปที่ 10.5 ช่วยในการออกแบบความยาวของไดเร็กเตอร์และตัวสะท้อนสำหรับ กรณี $0.001 \leq d \ / \ \lambda \leq 0.04$

รูปที่ 10.5 เส้นโค้งสำหรับใช้ในการออกแบบความยาวของไดเร็กเตอร์และตัวสะท้อนตามตาราง 10.2

ตารางที่ 10.2 ขนาดความยาวของแต่ละองค์ประกอบ ความยาวบูม ระยะห่างระหว่างองค์ประกอบ และ สภาพเจาะจงทิศทาง / เส้น ผ่าน ปุ่นป่ากัก งางจะเล่น มวดท่านหางอกแบบ สาชอหาศ

$d/\lambda = 0.0085$	ความยาวบูมของยากิ-อูดะ (λ)						
$S_R = 0.2\lambda$	0.4	0.8	1.2	2.2	3.2	4.2	
ความยาวตัวสะท้อน $(l_{_{\! 1}}/\lambda)$	0.482	0.482	0.482	0.482	0.482	0.475	
l_3	0.442	0.428	0.428	0.432	0.428	0.424	
l_4		0.424	0.420	0.415	0.420	0.424	
l_5		0.428	0.420	0.407	0.407	0.420	
l_6			0.428	0.398	0.398	0.407	
l_7				0.390	0.394	0.403	
l_8				0.390	0.390	0.398	
l_9				0.390	0.386	0.394	
l_{10}				0.390	0.386	0.390	
l_{11}				0.398	0.386	0.390	
l_{12}				0.407	0.386	0.390	
l_{13}					0.386	0.390	
l_{14}					0.386	0.390	
l_{15}					0.386	0.390	
l_{16}					0.386		
l_{17}					0.386		
ระยะห่างระหว่างไดเร็กเตอร์ $(S_{_D} \ / \ \lambda)$	0.20	0.20	0.25	0.20	0.20	0.308	
สภาพเจาะจงทิศทางเทียบกับไดโพล (dBd)	7.1	9.2	10.2	12.25	13.4	14.2	
ความโค้งที่ใช้ในการออกแบบ (ดูรูปที่ 10.5)	А	В	В	С	В	D	

dbd = dbi - 2.15

l=0.45%-

ตัวอย่างที่ 10.1 จงออกแบบสายอากาศยากิ-อูดะ ให้มีสภาพเจาะจงทิศทางเท่ากับ 9.2 dBd ที่ความถึ่ 50.1 MHz โดยที่เส้นผ่าศูนย์กลางขององค์ประกอบพาราซิติกที่ต้องการคือ 2.54 cm และ เส้นผ่าศูนย์กลางของบูมเท่ากับ 5.1 cm จงหาความยาวของแต่ละองค์ประกอบ ระยะห่างระหว่าง องค์ประกอบ และความยาวรวมทั้งหมดของสายอากาศ

วิธีทำ

วิธีการในการออกแบบสามารถทำได้คือ

- 1. ที่ความถี่ $f_0=50.1~\mathrm{MHz}$ ความยาวคลื่นมีค่าเท่ากับ $\lambda=5.988~\mathrm{m}=598.8~\mathrm{cm}$ ดังนั้น d / $\lambda=2.54$ / $598.8=4.24\times10^{-3}$ และ D / $\lambda=5.1$ / $598.8=8.52\times10^{-3}$
- 2. จากตาราง 10.2 ถ้าต้องการให้สายอากาศยากิ-อูดะ มีสภาพเจาะจงทิศทางเท่ากับ 9.2 dBd จะต้องมีองค์ประกอบทั้งหมดเท่ากับ 5 องค์ประกอบ (่ไดเร็กเตอร์ 3 ตัว ตัวสะท้อนและตัวขับอย่างละ 1 ตัว) จากตารางจะพบว่า สำหรับอัตราส่วน $d \ / \ \lambda = 0.0085$ ในคอลัมป์ที่ 2 จะได้ความยาวของ องค์ประกอบต่าง ๆ คือ $l_3 = l_5 = 0.428\lambda, \ l_4 = 0.424\lambda$ และ $l_1 = 0.482\lambda$ ความยาวรวมของ สายอากาศควรจะต้องมีค่าเท่ากับ $L = (0.6+0.2)\lambda = 0.8\lambda$ โดยที่ระยะห่างระหว่างไดเร็กเตอร์ เท่ากับ 0.2λ และระยะห่างของตัวสะท้อนเท่ากับ 0.2λ อย่างไรก็ตามจำเป็นที่จะต้องหาค่าที่ เหมาะสมในกรณีที่ต้องการให้เส้นผ่าศูนย์กลางขององค์ประกอบพาราซิติกคือ $d \ / \lambda = 0.00424$
- 3. ดังนั้นจึงจำเป็นต้องใช้กราฟในรูปที่ 10.5 ช่วยในการออกแบบ โดยจะใส่ตำแหน่งของความ ยาว $l_3''=l_5''=0.428\lambda,\ l_4''=0.424\lambda$ และ $l_1''=0.482\lambda$ ลงในเส้นโค้ง (B) กำหนดตำแหน่ง ด้วยสัญลักษณ์ (.)
- 4. ในรูปที่ 10.5 ลากเส้นในแนวตั้งผ่านตำแหน่ง $d \ / \ \lambda = 0.00424$ ตัดกับเส้นโค้ง (B) ซึ่งจะได้ ความยาวของไดเร็กเตอร์ใหม่คือ $l_3' = l_5' = 0.442\lambda$ และความยาวของตัวสะท้อนคือ $l_1' = 0.485\lambda$ กำหนดตำแหน่งด้วยสัญลักษณ์ (x)
- 5. วัดระยะทาง (Δl) บนเส้นโค้งไดเร็กเตอร์ (B) ระหว่างจุด $l_3''=l_5''=0.428\lambda$ และ $l_4''=0.424\lambda$ และวัดระยะทางจากตำแหน่ง $l_3'=l_5'=0.442\lambda$ (ที่กำหนดจุดเป็น x) บนเส้นโค้ง (B) ลงมาด้วยระยะ Δl เช่นกัน ซึ่งจะได้ความยาว $l_4{}'=0.438\lambda$ ดังนั้นความยาวของ องค์ประกอบต่าง ๆ คือ

$$l'_3 = l'_5 = 0.442\lambda$$

 $l'_4 = 0.438\lambda$
 $l'_4 = 0.485\lambda$

6. หาความยาวของแต่ละองค์ประกอบที่สอดคล้องกับขนาดของบูม จากรูปที่ 10.6 อัตราส่วน ระหว่างเส้นผ่าศูนย์กลางของบูมต่อความยาวคลื่นคือ $D \,/\, \lambda = 5.1 \,/\, 598.8 = 8.52 \times 10^{-3}$ จะต้องทำการเพิ่มความยาวของแต่ละองค์ประกอบเท่ากับ 0.005λ ดังนั้นความยาวสุดท้ายของแต่ละองค์ประกอบจะมีค่าคือ

$$\begin{split} l_3 &= l_5 = (0.442 + 0.005)\lambda = 0.447\lambda \\ l_4 &= (0.438 + 0.005)\lambda = 0.443\lambda \\ l_1 &= (0.485 + 0.005)\lambda = 0.490\lambda \end{split}$$

รูปที่ 10.6 การเพิ่มความยาวของแต่ละองค์ประกอบให้เหมาะสมกับเส้นผ่าศูนย์กลางของบูม

ตัวอย่างที่ 10.1 จงออกแบบสายอากาศยากิ-อูดะ ให้มีสภาพเจาะจงทิศทางเท่ากับ 9.2 dBd ที่ความถึ่ 50.1 MHz โดยที่เส้นผ่าศูนย์กลางขององค์ประกอบพาราซิติกที่ต้องการคือ 2.54 cm และ เส้นผ่าศูนย์กลางของบูมเท่ากับ 5.1 cm จงหาความยาวของแต่ละองค์ประกอบ ระยะห่างระหว่าง

$$\frac{d}{3} = \frac{2.54 \text{ cm}}{5.988 \text{ m}} = 0.00424$$

$$D_{y/} = S. 1/_{598.8} = 0.00852$$

element 5 element (1-Reflector, 1-Driven,

3 Director)
$$l_2 = 0.45$$
 \ \[\lambda \]
\[

$$l_1'' = 0.482\%$$
 an omen
 $l_2'' = l_5'' = 0.428\%$ for $l_4'' = 0.424\%$
 $l_4'' = 0.424\%$
 $l_4'' = 0.0085$
No sure of the min

รูปที่ 10.5 เส้นโค้งสำหรับใช้ในการออกแบบความยาวของไดเร็กเตอร์และตัวสะท้อนตามตาราง 10.2

25m 16 2, 13, la 12: lo 15 has Alisanon Boom Diameter.

รูปที่ 10.6 การเพิ่มความยาวของแต่ละองค์ประกอบให้เหมาะสมกับเส้นผ่าศูนย์กลางของบูม

$$\lambda_{2} = 0.485 \, \lambda_{1} + 0.005 \, \lambda_{2} = 0.49 \, \lambda_{3} = 0.442 \, \lambda_{1} + 0.005 \, \lambda_{2} = 0.447 \, \lambda_{3} = 0.438 \, \lambda_{1} + 0.005 \, \lambda_{2} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{4} = 0.438 \, \lambda_{1} + 0.005 \, \lambda_{2} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{4} = 0.438 \, \lambda_{1} = 0.443 \, \lambda_{2} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{4} = 0.438 \, \lambda_{1} = 0.443 \, \lambda_{2} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{4} = 0.005 \, \lambda_{1} = 0.443 \, \lambda_{2} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{4} = 0.005 \, \lambda_{1} = 0.443 \, \lambda_{2} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{4} = 0.005 \, \lambda_{1} = 0.443 \, \lambda_{2} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{4} = 0.005 \, \lambda_{1} = 0.443 \, \lambda_{2} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{4} = 0.005 \, \lambda_{1} = 0.443 \, \lambda_{2} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{4} = 0.005 \, \lambda_{1} = 0.443 \, \lambda_{2} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{4} = 0.005 \, \lambda_{1} = 0.443 \, \lambda_{2} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{4} = 0.005 \, \lambda_{1} = 0.443 \, \lambda_{2} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{2} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{4} = 0.005 \, \lambda_{1} = 0.443 \, \lambda_{2} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{4} = 0.005 \, \lambda_{1} = 0.443 \, \lambda_{2} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{4} = 0.005 \, \lambda_{1} = 0.443 \, \lambda_{2} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{4} = 0.005 \, \lambda_{1} = 0.443 \, \lambda_{2} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{4} = 0.005 \, \lambda_{1} = 0.443 \, \lambda_{2} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{4} = 0.005 \, \lambda_{1} = 0.443 \, \lambda_{2} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{4} = 0.005 \, \lambda_{1} = 0.443 \, \lambda_{2} = 0.443 \, \lambda_{2} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{4} = 0.005 \, \lambda_{1} = 0.443 \, \lambda_{2} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{4} = 0.005 \, \lambda_{1} = 0.443 \, \lambda_{2} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{4} = 0.005 \, \lambda_{1} = 0.443 \, \lambda_{2} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{4} = 0.005 \, \lambda_{1} = 0.443 \, \lambda_{2} = 0.443 \, \lambda_{3} = 0.443 \, \lambda_{4} = 0.005 \, \lambda_{1} = 0.443 \, \lambda_{2} = 0.443$$