Network Layer - Switching

Dr. T. Venkatesh Dept of CSE, IIT Guwahati

Slides from lectures of Prof. Srini Seshan, CMU and Prof. Jim Kurose, UMass, Amherst

Overview

- Principles behind network layer services
 - network layer service models
 - forwarding versus routing
 - Addressing for scalable routing
- How a router works
 - routing (path selection)
 - dealing with scale
- Advanced topics: IPv6, mobility
- Instantiation, implementation in the Internet

Network Layer

- on sending side encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in every host, router
- Router examines header fields in all IP datagrams passing through it

Key Network-Layer Functions

- forwarding: move packets from router's input to appropriate router output
- □ routing: determine route taken by packets from source to dest.
 - Routing algorithms

analogy:

- routing: process of planning trip from source to dest
- forwarding: process
 of correct left turns,
 right turns, exits,
 etc.

Routing vs. Forwarding

- Routing: control plane
 - Computing paths the packets will follow
 - Routers talking amongst themselves
 - Creating the forwarding tables
- Forwarding: data plane
 - Directing a data packet to an outgoing link
 - Using the forwarding tables

Service View: Connection setup

Q: What service model for "channel" transporting datagrams from sender to receiver?

- Example services for a datagram
 - Guaranteed delivery, guaranteed delivery with delay less than 100ms
- Example services for a flow of datagrams
 - In-order datagram delivery
 - Guaranteed minimum bandwidth of flow
 - Bounds on delay and jitter within the packet flow
- Before datagrams flow, two hosts and intervening routers are configured to a specific service model (no choice)
 - Routers get involved or Routers do not get involved
- Network and transport layer connection service
 - Network: between two hosts
 - Transport: between two processes

Guaranteed Service – Connection-oriented

- Source establishes connection
 - Reserve resources along hops in the path
- Source sends data
 - Transmit data over the established connection
- Source tears down connection
 - Free the resources for future connections
- Bandwidth and path fixed for every pair of users by the network

Pros and Cons

- Advantages
 - Predictable performance
 - Reliable, in-order delivery
 - Simple forwarding
 - No overhead for packet headers

- Disadvantages
 - Wasted bandwidth
 - Blocked connections
 - Connection set-up delay
 - Per-connection state inside the network

Connection-less or Datagram Service

- Message divided into packets
 - Header identifies the destination address
- Packets travel separately through the network
 - Forwarding based on the destination address
 - Packets may be buffered temporarily
- Destination reconstructs the message
- Resources not reserved no guarantee of packet delivery in congestion

Best-Effort: Good Enough?

- Packet loss and delay
 - Sender can resend
- Packet corruption
 - Receiver can detect, and sender can resend
- Out-of-order delivery
 - Receiver can put the data back in order

- Packets follow different paths
 - Doesn't matter
- Network failure
 - Drop the packet
- Network congestion
 - Drop the packet

Virtual circuits

"source-to-dest path behaves much like telephone circuit"

- performance-wise
- o network actions along source-to-dest path
- call setup, teardown for each call before data can flow
- each packet carries VC identifier (not destination host address)
- every router on source-dest path maintains "state" for each passing connection
- link, router resources (bandwidth, buffers) may be allocated to VC

A VC consists of:

- Path from source to destination
- 2. VC numbers, one number for each link along path
- 3. Entries in forwarding tables in routers along path
- VC numbers are configured as a part of forwarding table
 - Signaling protocol used to configure VC paths

Forwarding table

Forwarding table in northwest router:

Incoming interface	Incoming VC#	Outgoing interface	Outgoing VC #
1	12	3	22
2	63	1	18
3	7	2	17
1	97	3	87

Routers maintain connection state information!

Virtual circuits: signaling protocols used to setup, maintain teardown VC □ used in ATM, frame-relay, X.25 (not used in today's Internet) ■ Multi-protocol label switching uses similar ideas application 6. Receive data application 5. Data flow begins transport transport Call connected 3. Accept cill network network Initiate call 2. incoming c data link data link physical physical

Datagram or VC network: why?

Internet

- data exchange among computers
 - "elastic" service, no strict timing req.
- "smart" end systems (computers)
 - can adapt, perform control, error recovery
 - simple inside network, complexity at "edge"
- many link types
 - different characteristics
 - uniform service difficult

ATM (VC)

- evolved from telephony
- human conversation:
 - strict timing, reliability requirements
 - need for guaranteed service
- ☐ "dumb" end systems
 - telephones
 - complexity inside network

Datagram networks

- ☐ no call setup at network layer
- □ routers: no state about end-to-end connections
 - no network-level concept of "connection"
- packets forwarded using destination host address
 - o packets between same source-dest pair may take different paths

Forwarding table

4 billion possible entries

<u>Destination Address Range</u>	<u>Link Interface</u>
11001000 00010111 00010000 00000000 through 11001000 00010111 00010111 11111111	0
11001000 00010111 00011000 00000000 through 11001000 00010111 00011000 11111111	1
11001000 00010111 00011001 00000000 through 11001000 00010111 00011111 11111111	2
otherwise	3

Longest prefix matching

Prefix Match	Link Interface
_11001000 00010111 00010	0
11001000 00010111 00011000	1
11001000 00010111 00011	2
otherwise	3

Examples

DA: 11001000 00010111 00010110 10100001 Which interface?

DA: 11001000 00010111 00011000 10101010 Which interface?

Router Architecture Overview Two key router functions: □ run routing algorithms/protocol (RIP, OSPF, BGP) □ *forwarding* datagrams from incoming to outgoing link input port output port switching fabric input port output port routing processor

Switching Via Memory

First generation routers:

- □ traditional computers with switching under direct control of CPU
- packet copied to system's memory
- □ speed limited by memory bandwidth (2 bus crossings per datagram)
- □Improvisation: Each line card has copy of forwarding table
 - □ Update the forwarding table on the fly at each line card.

Switching Via a Bus

- datagram from input port memory to output port memory via a shared bus
 - Cache bits of forwarding table in line cards, send directly over bus to outbound line card

- bus contention: switching speed limited by bus bandwidth
- 1 Gbps bus, Cisco 1900: sufficient speed for access and enterprise routers (not regional or backbone)

Switching Via An Interconnection Network

- overcome bus bandwidth limitations
- interconnection nets developed to connect processors in multiprocessor
- ☐ Advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.
- ☐ Cisco 12000: switches Gbps through the interconnection network
- Every input port has a connection to every output port
- During each timeslot, each input connected to zero or one outputs
- Advantage: Exploits parallelism
- Disadvantage: Need scheduling algorithm

Output Ports

- **Buffering** required when datagrams arrive from fabric faster than the transmission rate
- □ *Scheduling discipline* chooses among queued datagrams for transmission

Output Port Queueing

- buffering when arrival rate via switch exceeds output line speed
- queueing (delay) and loss due to output port buffer overflow!

Input Port Queuing

- ☐ Fabric slower than input ports combined -> queueing may occur at input queues
- ☐ Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward
- queueing delay and loss due to input buffer overflow!

IPv4 Datagram

- Hlen: Indicated in 32-bit words (typically 5)
- TOS: Used in differentiated services
- Identifier, flags, fragment offset → used primarily for fragmentation
- Time to live (number of hops)
 - Must be decremented at each router
 - Packets with TTL=0 are thrown away
 - Ensure packets exit the network
- Protocol
 - Demultiplexing to higher layer protocols
 - TCP = 6, ICMP = 1, UDP = 17...
- Header checksum
 - Ensures some degree of header integrity
 - Relatively weak 16 bit
- Options
 - E.g. Source routing, record route, etc.
 - Performance issues
 - · Poorly supported

IP Fragmentation

- Every network has own Maximum Transmission Unit (MTU)
 - Largest IP datagram it can carry within its own packet frame
 - E.g., Ethernet is 1500 bytes
 - Don't know MTUs of all intermediate networks in advance
- IP Solution
 - When hit network with small MTU, fragment packets

Reassembly

- Where to do reassembly?
 - End nodes or at routers?
- End nodes
 - Avoids unnecessary work where large packets are fragmented multiple times
 - If any fragment missing, delete entire packet
- Dangerous to do at intermediate nodes
 - How much buffer space required at routers?
 - What if routes in network change?
 - Multiple paths through network
 - All fragments only required to go through destination

Fragmentation Related Fields

- Length
 - Length of IP fragment
- Identification
 - To match up with other fragments
- Flags
 - Don't fragment flag
 - More fragments flag
- Fragment offset
 - Where this fragment lies in entire IP datagram
 - Measured in 8 octet units (13 bit field)

Fragmentation and Reassembly Concepts

- Demonstrates many Internet concepts
- Decentralized
 - Every network can choose MTU
- Connectionless
 - Each (fragment of) packet contains full routing information
 - Fragments can proceed independently and along different routes
- Best effort
 - Fail by dropping packet
 - Destination can give up on reassembly
 - No need to signal sender that failure occurred
- Complex endpoints and simple routers
 - · Reassembly at endpoints

Internet Control Message Protocol (ICMP)

- Short messages used to send error & other control information
- Examples
 - Ping request / response
 - Can use to check whether remote host reachable
 - Destination unreachable
 - · Indicates how packet got & why couldn't go further
 - Flow control
 - Slow down packet delivery rate
 - Redirect
 - Suggest alternate routing path for future messages
 - Router solicitation / advertisement
 - Helps newly connected host discover local router
 - Timeout
 - Packet exceeded maximum hop limit

IP MTU Discovery with ICMP

- Typically send series of packets from one host to another
- Typically, all will follow same route
 - Routes remain stable for minutes at a time
- Makes sense to determine path MTU before sending real packets
- Operation
 - Send max-sized packet with "do not fragment" flag set
 - If encounters problem, ICMP message will be returned
 - "Destination unreachable: Fragmentation needed"
 - · Usually indicates MTU encountered