

planetmath.org

Math for the people, by the people.

filtration

Canonical name Filtration1

Date of creation 2013-03-22 19:35:39 Last modified on 2013-03-22 19:35:39

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 8

Author CWoo (3771) Entry type Definition Classification msc 03B45 Let M = (W, R, V) be a Kripke model for a modal logic L. Let Δ be a set of wff's. Define a binary relation \sim_{Δ} on W:

$$w \sim_{\Delta} u$$
 iff $\models_{w} A$ iff $\models_{u} A$ for any $A \in \Delta$.

Then \sim_{Δ} is an equivalence relation on W. Let W' be the set of equivalence classes of \sim_{Δ} on W. It is easy to see that if Δ is finite, so is W'. Next, let

$$V'(p) := \{ [w] \in W' \mid w \in V(p) \}.$$

Then V' is a well-defined function. We call a binary relation R' on W' a filtration of R if

- wRu implies [w]R'[u]
- [w]R'[u] implies that for any wff A with $\Box A \in \Delta$, if $\models_w \Box A$, then $\models_u A$.

The triple M' := (W', R', V') is called a *filtration* of the model M.

Proposition 1. (Filtration Lemma) Let Δ be a set of wff's closed under the formation of subformulas: any subformula of any formula in Δ is again in Δ . Then

$$M' \models_{[w]} A$$
 iff $M \models_w A$.