DEEP LEARNING FOR DRIVING DETECTION ON MOBILE PHONES

Chetan Ramiah, Allen Tran, Evan Cox and George Mohler August 14, 2016

Metromile

USAGE BASED INSURANCE

Mileage is a large component of automotive risk yet almost all premiums are a flat fee per time period

· Low mileage drivers subsidize high mileage drivers

Usage based insurance charges in proportion to mileage.

Metromile

 Pulse device (GPS + other sensors) installed in OBDII port in vehicle

INTRODUCTION

Mobile phones have an array of sensors that enable smart driving apps

- · usage-based insurance
- · safe driving

This paper: detect driving activity in an energy-efficient manner using Convolutional Networks

FINDINGS

- 1. In activity classification, deep learning beats traditional ML approaches after $\approx 500\ hours$ of data
- 2. Conv. nets can distinguish between modes of automotive behavior (0.8 AUC)
- 3. Conv. net to detect driving implemented on phone (8MB storage, 4 seconds at test time)

EXISTING APPROACHES

Feature generation + standard classifiers

· Trees and ensembles of trees, SVM, KNN, Naive Bayes, MLPs

Typical features

- · sliding windows, moments of raw time series/FFT
- · auto-regressive coefficients

Key advantage of Deep Learning approach here: no need to do feature engineering

MODEL OVERVIEW

Classification via a convolutional network on spectrograms of sensor readings

- 1. activity classification (still/walking/automotive)
- 2. driving classification within automotive (driving/not driving)

Challenges:

- · has to be energy efficient (low power sensors vs GPS)
- · sensor hardware/quality differs across phones
- · sensor readings are oriented relative to the device

DATA

Random two minute samples from 2,133 drivers of sensor readings using Android consumer smartphones

5,400 hours of accelerometer and gyroscope readings

- · removed sleeping/at rest readings
- · interpolated at 50hz for acc and 10hz for gyro to neutralize hardware differences
- · split into 30 second windows w/ 50% overlap

EXPERIMENTS

Two supervised learning experiments

- 1. Activity Classification (walk or still or automotive)
 - · labels from Android platform
- 2. Driving detection (driving or not)
 - · labels derived from iBeacon device installed in vehicle

EXPERIMENTS: BENCHMARK

Model based on Hemminki (2013) used as benchmark

· Random Forest with hand engineered features

Table: Baseline features

Domain	Features	
	Mean, STD, Variance, Median, Min,	
Statistical	Max, Range, Interquartile range	
	Kurtosis, Skewness, RMS	
Time	Integral, Zero-Crossing Rate	
Frequency	FFT DC first five frequency responses,	
	Wavelet Entropy, Wavelet Magnitude	

EXPERIMENTS: MODELS

Models based on convolutional networks. Why?

- · learn features from raw input
- · parameter sharing reduces free parameters
- raw sensor input has notion of "local" regions (time, frequency)

CNN Architectures

- 1. spectrogram or raw sensor time series as input
- 2. multi-stream

SINGLE STREAM CNN

Figure: spectrogram

Figure: time series

MULTI-STREAM CNN

Figure: multi-stream spectrogram

Figure: multi-stream spectrogram

SPECTROGRAMS

Spectrograms, from rolling FFTs, are useful representations of sensor input

- · time on horizontal, frequency on vertical axis
- · color/value represents amplitude at that frequency and time window

Figure: multi-stream spectrogram

SPECTROGRAMS ARE GOOD INITIAL REPRESENTATIONS

Figure: T-SNE visualization of the activity recognition problem.

ACTIVITY CLASSIFICATION

Table: Activity recognition results

Approach	AUC
Baseline	0.84
Accelerometer Spectrogram	0.89
Accelerometer Time Series	0.83
Accelerometer and Gyroscope	0.89
Accelerometer and GPS	0.91

ACTIVITY CLASSIFICATION: CONFUSION MATRIX

Figure: Confusion matrix for activity recognition

ACTIVITY CLASSIFICATION: SIZE OF DATA

Deep Learning wins ≥ 500 hours

Table: AUC scores for activity recognition with varying dataset sizes

Dataset Size	Baseline	Accelerometer CNN
50 hours	0.82	0.78
150 hours	0.82	0.82
500 hours	0.84	0.86
1000 hours	0.84	0.88
1300 hours	0.83	0.89

DRIVING DETECTION

Subset of data labeled automotive and

- · driving labels from iBeacon device installed in vehicles
- · restricted to single vehicle policies

362 unique vehicle types

Figure: Frequency of top ten vehicles in driving detection dataset.

DRIVING DETECTION

Table: Driving detection results

Approach	AUC
Baseline	0.67
Accelerometer Spectrogram CNN	0.77
Accelerometer Temporal CNN	0.75
Accelerometer and Gyroscope CNN	0.77
Accelerometer and GPS CNN	0.80

CONCLUSION

Sensor input \rightarrow Spectrogram \rightarrow Convolutional Network works well for driving detection