ColumbiaX: Machine Learning Lecture 15

Prof. John Paisley

Department of Electrical Engineering & Data Science Institute

Columbia University

MAXIMUM LIKELIHOOD

APPROACHES TO DATA MODELING

Our approaches to modeling data thus far have been either probabilistic or non-probabilistic in motivation.

- ▶ Probabilistic models: Probability distributions defined on data, e.g.,
 - 1. Bayes classifiers
 - 2. Logistic regression
 - 3. Least squares and ridge regression (using ML and MAP interpretation)
 - 4. Bayesian linear regression
- ▶ Non-probabilistic models: No probability distributions involved, e.g.,
 - 1. Perceptron
 - 2. Support vector machine
 - 3. Decision trees
 - 4. K-means

In *every* case, we have some objective function we are trying to optimize (greedily vs non-greedily, locally vs globally).

MAXIMUM LIKELIHOOD

As we've seen, one *probabilistic* objective function is maximum likelihood.

Setup: In the most basic scenario, we start with

- 1. some set of model parameters θ
- 2. a set of data $\{x_1, \ldots, x_n\}$
- 3. a probability distribution $p(x|\theta)$
- 4. an i.i.d. assumption, $x_i \stackrel{iid}{\sim} p(x|\theta)$

Maximum likelihood seeks to find the θ that maximizes the likelihood

$$\theta_{\text{ML}} = \arg \max_{\theta} \ p(x_1, \dots, x_n | \theta) \stackrel{(a)}{=} \arg \max_{\theta} \ \prod_{i=1}^n p(x_i | \theta) \stackrel{(b)}{=} \arg \max_{\theta} \sum_{i=1}^n \ln p(x_i | \theta)$$

- (a) follows from i.i.d. assumption.
- (b) follows since $f(y) > f(x) \implies \ln f(y) > \ln f(x)$.

MAXIMUM LIKELIHOOD

We've discussed maximum likelihood for a few models, e.g., least squares linear regression and the Bayes classifier.

Both of these models were "nice" because we could find their respective θ_{ML} analytically by writing an equation and plugging in data to solve.

Gaussian with unknown mean and covariance

In the first lecture, we saw if $x_i \stackrel{iid}{\sim} N(\mu, \Sigma)$, where $\theta = {\mu, \Sigma}$, then

$$\nabla_{\theta} \ln \prod_{i=1}^{n} p(x_i | \theta) = 0$$

gives the following maximum likelihood values for μ and Σ :

$$\mu_{\text{ML}} = \frac{1}{n} \sum_{i=1}^{n} x_i, \qquad \Sigma_{\text{ML}} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_{\text{ML}}) (x_i - \mu_{\text{ML}})^T$$

COORDINATE ASCENT AND MAXIMUM LIKELIHOOD

In more complicated models, we might split the parameters into groups θ_1, θ_2 and try to maximize the likelihood over both of these,

$$\theta_{1,\text{\tiny ML}}, \theta_{2,\text{\tiny ML}} = \arg\max_{\theta_1,\theta_2} \sum_{i=1}^n \ln p(x_i|\theta_1,\theta_2),$$

Although we can solve one *given* the other, we can't solve it *simultaneously*.

Coordinate ascent (probabilistic version)

We saw how K-means presented a similar situation, and that we could optimize using coordinate ascent. This technique is generalizable.

Algorithm: For iteration t = 1, 2, ...,

- 1. Optimize $\theta_1^{(t)} = \arg \max_{\theta_1} \sum_{i=1}^n \ln p(x_i|\theta_1, \theta_2^{(t-1)})$
- 2. Optimize $\theta_2^{(t)} = \arg \max_{\theta_2} \sum_{i=1}^n \ln p(x_i|\theta_1^{(t)}, \theta_2)$

COORDINATE ASCENT AND MAXIMUM LIKELIHOOD

There is a third (subtly) different situation, where we really want to find

$$\theta_{1,\text{\tiny ML}} = \arg\max_{\theta_1} \sum_{i=1}^n \ln p(x_i|\theta_1).$$

Except this function is "tricky" to optimize directly. However, we figure out that we can add a second variable θ_2 such that

$$\sum_{i=1}^{n} \ln p(x_i, \theta_2 | \theta_1)$$
 (Function 2)

is easier to work with. We'll make this clearer later.

- Notice in this second case that θ_2 is on the *left* side of the conditioning bar. This implies a prior on θ_2 , (whatever " θ_2 " turns out to be).
- ▶ We will next discuss a fundamental technique called the EM algorithm for finding $\theta_{1,\text{ML}}$ by using Function 2 instead.

EXPECTATION-MAXIMIZATION
ALGORITHM

A MOTIVATING EXAMPLE

Let $x_i \in \mathbb{R}^d$, be a vector with *missing data*. Split this vector into two parts:

- 1. x_i^o observed portion (the sub-vector of x_i that is measured)
- 2. x_i^m missing portion (the sub-vector of x_i that is still unknown)
- 3. The missing dimensions can be different for different x_i .

We assume that $x_i \stackrel{iid}{\sim} N(\mu, \Sigma)$, and want to solve

$$\mu_{\scriptscriptstyle \mathrm{ML}}, \Sigma_{\scriptscriptstyle \mathrm{ML}} = \arg\max_{\mu,\Sigma} \; \sum_{i=1}^n \ln p(x_i^o|\mu,\Sigma).$$

This is tricky. However, if we knew x_i^m (and therefore x_i), then

$$\mu_{\text{ML}}, \Sigma_{\text{ML}} = \arg\max_{\mu, \Sigma} \sum_{i=1}^{n} \ln \underbrace{p(x_i^o, x_i^m | \mu, \Sigma)}_{= p(x_i | \mu, \Sigma)}$$

is very easy to optimize (we just did it on a previous slide).

CONNECTING TO A MORE GENERAL SETUP

We will discuss a method for optimizing $\sum_{i=1}^n \ln p(x_i^o|\mu,\Sigma)$ and imputing its missing values $\{x_1^m,\ldots,x_n^m\}$. This is a very general technique.

General setup

Imagine we have two parameter sets θ_1, θ_2 , where

$$p(x|\theta_1) = \int p(x, \theta_2|\theta_1) d\theta_2$$
 (marginal distribution)

Example: For the previous example we can show that

$$p(x_i^o|\mu,\Sigma) = \int p(x_i^o, x_i^m|\mu, \Sigma) dx_i^m = N(\mu_i^o, \Sigma_i^o),$$

where μ_i^o and Σ_i^o are the sub-vector/sub-matrix of μ and Σ defined by x_i^o .

THE EM OBJECTIVE FUNCTION

We need to define a general *objective function* that gives us what we want:

- 1. It lets us optimize the marginal $p(x|\theta_1)$ over θ_1 ,
- 2. It uses $p(x, \theta_2|\theta_1)$ in doing so purely for computational convenience.

The EM objective function

Before picking it apart, we claim that this objective function is

$$\ln p(x|\theta_1) = \int q(\theta_2) \ln \frac{p(x,\theta_2|\theta_1)}{q(\theta_2)} d\theta_2 + \int q(\theta_2) \ln \frac{q(\theta_2)}{p(\theta_2|x,\theta_1)} d\theta_2$$

Some immediate comments:

- $q(\theta_2)$ is any probability distribution (assumed continuous for now)
- ▶ We assume we know $p(\theta_2|x, \theta_1)$. That is, given the data x and fixed values for θ_1 , we can solve the conditional posterior distribution of θ_2 .

DERIVING THE EM OBJECTIVE FUNCTION

Let's show that this equality is actually true

$$\ln p(x|\theta_1) = \int q(\theta_2) \ln \frac{p(x,\theta_2|\theta_1)}{q(\theta_2)} d\theta_2 + \int q(\theta_2) \ln \frac{q(\theta_2)}{p(\theta_2|x,\theta_1)} d\theta_2$$

$$= \int q(\theta_2) \ln \frac{p(x,\theta_2|\theta_1)q(\theta_2)}{p(\theta_2|x,\theta_1)q(\theta_2)} d\theta_2$$

Remember some rules of probability:

$$p(a,b|c) = p(a|b,c)p(b|c)$$
 \Rightarrow $p(b|c) = \frac{p(a,b|c)}{p(a|b,c)}$.

Letting $a = \theta_{2}$, b = x and $c = \theta_{1}$, we conclude

$$\ln p(x|\theta_1) = \int q(\theta_2) \ln p(x|\theta_1) d\theta_2$$
$$= \ln p(x|\theta_1)$$

THE EM OBJECTIVE FUNCTION

The EM objective function splits our desired objective into two terms:

$$\ln p(\mathbf{x}|\theta_1) = \underbrace{\int q(\theta_2) \ln \frac{p(\mathbf{x},\theta_2|\theta_1)}{q(\theta_2)} \, d\theta_2}_{\text{A function only of } \theta_1, \text{ we'll call it } \mathcal{L}} + \underbrace{\int q(\theta_2) \ln \frac{q(\theta_2)}{p(\theta_2|\mathbf{x},\theta_1)} \, d\theta_2}_{\text{Kullback-Leibler divergence}}$$

Some more observations about the right hand side:

- 1. The **KL diverence** is always ≥ 0 and only = 0 when q = p.
- 2. We are assuming that the integral in \mathcal{L} can be calculated, leaving a function only of θ_1 (for a particular setting of the distribution q).

BIGGER PICTURE

Q: What does it mean to iteratively optimize $\ln p(x|\theta_1)$ w.r.t. θ_1 ?

A: One way to think about it is that we want a method for generating:

- 1. A sequence of values for θ_1 such that $\ln p(x|\theta_1^{(t)}) \ge \ln p(x|\theta_1^{(t-1)})$.
- 2. We want $\theta_1^{(t)}$ to converge to a local maximum of $\ln p(x|\theta_1)$.

It doesn't matter how we generate the sequence $\theta_1^{(1)}, \theta_1^{(2)}, \theta_1^{(3)}, \dots$

We will show how EM generates #1 and just mention that EM satisfies #2.

THE EM ALGORITHM

The EM objective function

$$\ln p(\mathbf{x}|\theta_1) = \underbrace{\int q(\theta_2) \ln \frac{p(\mathbf{x},\theta_2|\theta_1)}{q(\theta_2)} \, d\theta_2}_{\text{define this to be } \mathcal{L}(\mathbf{x},\theta_1)} + \underbrace{\int q(\theta_2) \ln \frac{q(\theta_2)}{p(\theta_2|\mathbf{x},\theta_1)} \, d\theta_2}_{\text{Kullback-Leibler divergence}}$$

Definition: The EM algorithm

Given the value $\theta_1^{(t)}$, **find** the value $\theta_1^{(t+1)}$ as follows:

E-step: Set
$$q_t(\theta_2) = p(\theta_2|x, \theta_1^{(t)})$$
 and calculate

$$\mathcal{L}_t(x,\theta_1) = \int q_t(\theta_2) \ln p(x,\theta_2|\theta_1) \, d\theta_2 \, - \underbrace{\int q_t(\theta_2) \ln q_t(\theta_2) \, d\theta_2}_{\text{can ignore this term}}.$$

M-step: Set $\theta_1^{(t+1)} = \arg \max_{\theta_1} \mathcal{L}_t(x, \theta_1)$.

PROOF OF MONOTONIC IMPROVEMENT

Once we're comfortable with the moving parts, the proof that the sequence $\theta_1^{(t)}$ monotonically improves $\ln p(x|\theta_1)$ just requires *analysis*:

$$\begin{split} \ln p(x|\theta_1^{(t)}) &= \mathcal{L}(x,\theta_1^{(t)}) \,+\, \underbrace{\mathit{KL}\left(q(\theta_2) \,\|\, p(\theta_2|x_1,\theta_1^{(t)})\right)}_{=\,\,0\,\,\text{by setting}\,\,q\,=\,p} \\ &= \mathcal{L}_t(x,\theta_1^{(t)}) \quad\leftarrow \text{E-step} \\ &\leq \mathcal{L}_t(x,\theta_1^{(t+1)}) \quad\leftarrow \text{M-step} \\ &\leq \mathcal{L}_t(x,\theta_1^{(t+1)}) \,+\, \underbrace{\mathit{KL}\left(q_t(\theta_2) \,\|\, p(\theta_2|x_1,\theta_1^{(t+1)})\right)}_{>\,\,0\,\,\text{because}\,\,q\neq p} \\ &= \mathcal{L}(x,\theta_1^{(t+1)}) \,+\, \mathit{KL}\left(q(\theta_2) \,\|\, p(\theta_2|x_1,\theta_1^{(t+1)})\right) \\ &= \ln p(x|\theta_1^{(t+1)}) \end{split}$$

ONE ITERATION OF EM

Start: Current setting of θ_1 and $q(\theta_2)$

For reference:

$$\ln p(x|\theta_1) = \mathcal{L} + KL$$

$$\mathcal{L} = \int q(\theta_2) \ln \frac{p(x, \theta_2|\theta_1)}{q(\theta_2)} d\theta_2$$

$$KL = \int q(\theta_2) \ln \frac{q(\theta_2)}{p(\theta_2|x, \theta_1)} d\theta_2$$

ONE ITERATION OF EM

E-step: Set $q(\theta_2) = p(\theta_2|x, \theta_1)$ and update \mathcal{L} .

For reference:

$$\ln p(x|\theta_1) = \mathcal{L} + KL$$

$$\mathcal{L} = \int q(\theta_2) \ln \frac{p(x, \theta_2|\theta_1)}{q(\theta_2)} d\theta_2$$

$$KL = \int q(\theta_2) \ln \frac{q(\theta_2)}{p(\theta_2|x, \theta_1)} d\theta_2$$

ONE ITERATION OF EM

M-step: Maximize \mathcal{L} wrt θ_1 . Now $q \neq p$.

For reference:

 $\ln p(x|\theta_1) = \mathcal{L} + KL$

$$\mathcal{L} = \int q(heta_2) \ln rac{p(x, heta_2| heta_1)}{q(heta_2)} d heta_2$$

$$KL = \int q(\theta_2) \ln \frac{q(\theta_2)}{p(\theta_2|x,\theta_1)} d\theta_2$$

EM FOR MISSING DATA

THE PROBLEM

We have a data matrix with missing entries. We model the columns as

$$x_i \stackrel{iid}{\sim} N(\mu, \Sigma).$$

Our goal could be to

- 1. Learn μ and Σ using maximum likelihood
- 2. Fill in the missing values "intelligently" (e.g., using a model)
- 3. Both

We will see how to achieve both of these goals using the EM algorithm.

EM FOR SINGLE GAUSSIAN MODEL WITH MISSING DATA

The original, generic EM objective is

$$\ln p(x|\theta_1) = \int q(\theta_2) \ln \frac{p(x,\theta_2|\theta_1)}{q(\theta_2)} d\theta_2 + \int q(\theta_2) \ln \frac{q(\theta_2)}{p(\theta_2|x,\theta_1)} d\theta_2$$

The EM objective for this specific problem and notation is

$$\sum_{i=1}^{n} \ln p(x_{i}^{o}|\mu, \Sigma) = \sum_{i=1}^{n} \int q(x_{i}^{m}) \ln \frac{p(x_{i}^{o}, x_{i}^{m}|\mu, \Sigma)}{q(x_{i}^{m})} dx_{i}^{m} + \sum_{i=1}^{n} \int q(x_{i}^{m}) \ln \frac{q(x_{i}^{m})}{p(x_{i}^{m}|x_{i}^{o}, \mu, \Sigma)} dx_{i}^{m}$$

We can calculate everything required to do this.

E-STEP (PART ONE)

Set
$$q(x_i^m) = p(x_i^m | x_i^o, \mu, \Sigma)$$
 using current μ , Σ

Let x_i^o and x_i^m represent the observed and missing dimensions of x_i . For notational convenience, think

$$x_i = \begin{bmatrix} x_i^o \\ x_i^m \end{bmatrix} \sim N \left(\begin{bmatrix} \mu_i^o \\ \mu_i^m \end{bmatrix}, \begin{bmatrix} \Sigma_i^{oo} & \Sigma_i^{om} \\ \Sigma_i^{mo} & \Sigma_i^{mm} \end{bmatrix} \right)$$

Then we can show that $p(x_i^m|x_i^o, \mu, \Sigma) = N(\widehat{\mu}_i, \widehat{\Sigma}_i)$, where

$$\widehat{\mu}_i = \mu_i^m + \Sigma_i^{mo}(\Sigma_i^{oo})^{-1}(x_i^o - \mu_i^o), \quad \widehat{\Sigma}_i = \Sigma_i^{mm} - \Sigma_i^{mo}(\Sigma_i^{oo})^{-1}\Sigma_i^{om}.$$

It doesn't look nice, but these are just functions of sub-vectors of μ and sub-matrices of Σ using the relevant dimensions defined by x_i .

E-STEP (PART TWO)

E-step:
$$\mathbb{E}_{q(x_i^m)}[\ln p(x_i^o, x_i^m | \mu, \Sigma)]$$

For each *i* we will need to calculate the following term,

$$\mathbb{E}_q[(x_i - \mu)^T \Sigma^{-1} (x_i - \mu)] = \mathbb{E}_q[\operatorname{trace}\{\Sigma^{-1} (x_i - \mu) (x_i - \mu)^T\}]$$
$$= \operatorname{trace}\{\Sigma^{-1} \mathbb{E}_q[(x_i - \mu) (x_i - \mu)^T]\}$$

The expectation is calculated using $q(x_i^m) = p(x_i^m | x_i^o, \mu, \Sigma)$. So only the x_i^m portion of x_i will be integrated.

To this end, recall $q(x_i^m) = N(\widehat{\mu}_i, \widehat{\Sigma}_i)$. We define

- 1. \hat{x}_i : A vector where we replace the missing values in x_i with $\hat{\mu}_i$.
- 2. \hat{V}_i : A matrix of 0's, plus sub-matrix $\hat{\Sigma}_i$ in the missing dimensions.

M-STEP

M-step: Maximize $\sum_{i=1}^{n} \mathbb{E}_{q}[\ln p(x_{i}^{o}, x_{i}^{m} | \mu, \Sigma)]$

We'll omit the derivation, but the expectation can now be solved and

$$\mu_{\text{up}}, \Sigma_{\text{up}} = \arg\max_{\mu, \Sigma} \sum_{i=1}^{n} \mathbb{E}_{q}[\ln p(x_{i}^{o}, x_{i}^{m} | \mu, \Sigma)]$$

can be found. Recalling the ^ notation,

$$\mu_{\text{up}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{x}_{i},$$

$$\Sigma_{\text{up}} = \frac{1}{n} \sum_{i=1}^{n} \{ (\widehat{x}_{i} - \mu_{\text{up}}) (\widehat{x}_{i} - \mu_{\text{up}})^{T} + \widehat{V}_{i} \}$$

Then return to the E-step to calculate the new $p(x_i^m|x_i^o, \mu_{\rm up}, \Sigma_{\rm up})$.

IMPLEMENTATION DETAILS

We need to initialize μ and Σ , for example, by setting missing values to zero and calculating μ_{ML} and Σ_{ML} . (We can also use random initialization.)

The EM objective function is then calculated after each update to μ and Σ and will look like the figure above. Stop when the change is "small."

The output is μ_{ML} , Σ_{ML} and $q(x_i^m)$ for all missing entries.