Appl. No. 10/777,643 Doc. Ref.: **BF2**

HOT RUNNER TYPE MOLD, HOT RUNNER VALVE TO BE USED FOR THAT MOLD, AND INJECTION MOLDING METHOD FOR WHICH SUCH A HOT RUNNER TYPE MOLD IS USED

Patent number:

JP7266379

Publication date:

1995-10-17

Tougoton

SHIRASE RIKURO

Applicant:

MEIKI CO LTD

Classification:

international;

B29C45/26; B29C45/28; B29C45/40; B29C45/57; B29C45/64; B29C45/73

- european:

Application number: JP19940064802 19940401

Priority number(s):

Abstract of JP7266379

PURPOSE:To provide a hot runner type mold wherein pressurizing force is applied efficiently to a resin material filled into a molding cavity and generation of a short shot in a molded product is prevented.

CONSTITUTION:In a hot runner type mold possessing a resin flow path 18 comprised of a sprue 34, runners 36, 52 and a gate 50, a flow path intercepting device 70 cutting the resin flow path 18 apart into a sprue 34 side and gate 50 side is provided and while a pressurizing device 70 pressurizing a molten resin material on the inside of the resin flow path 18 which is on a gate 50 side cut apart by the flow path intercepting device 70 is provided, valve device 74 opening or closing the gate 50 is provided.

Data supplied from the esp@cenet database - Patent Abstracts of Japan

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-266379

(43)公開日 平成7年(1995)10月17日

(51) Int.Cl. ⁶ B 2 9 C	45/28 45/40 45/57	識別記号	庁内整理番号 7415-4F 7415-4F 7639-4F 8927-4F	FI	F I 技術						技術表示箇所
	45/64		7365-4F 審査請求	未請求	請求項	₹の数10	OL	(全	9	頁)	最終頁に続く
(21)出願番号		特顧平6-64802	(71)出顧人 000155159 株式会社名機製作所								
(22)出願日		平成6年(1994)4			愛知県	大府市	北崎	叮大	根2	野地	
			(72)発明者 白勢 陸邸 愛知県大府市北崎町大根2番地 株式会社 名機製作所内								
				(74)	代理人	弁理士	中島	Ξ	千雄	G	42名)

(54) 【発明の名称】 ホットランナ式金型とそれに用いられるホットランナバルブおよびかかるホットランナ式金型を 用いた射出成形方法

(57)【要約】

【目的】 成形キャピティに充填された樹脂材料に対して加圧力が効率的に及ぼされて、成形品におけるショートショットの発生が防止されるホットランナ式金型を提供すること。

【構成】 スプル34,ランナ36,52およびゲート50からなる樹脂流路18を有するホットランナ式金型において、樹脂流路18をスプル34側とゲート50側に分断する流路遮断手段70を設けると共に、該流路遮断手段70によって分断されたゲート50側の樹脂流路18内の溶融樹脂材料を加圧する加圧手段70を設ける一方、ゲート50を開閉するパルプ手段74を設けた。

【特許請求の範囲】

【請求項1】 射出装置から供給される溶融樹脂材料を 成形キャピティに導くスプル、ランナおよびゲートから なる樹脂流路を有すると共に、かかるランナ部分を加熱 する加熱手段を設けてなるホットランナ式金型におい

前記樹脂流路を前記スプル側と前記ゲート側に分断する 流路遮断手段を設けると共に、該流路遮断手段によって 分断されたゲート側の樹脂流路内の溶融樹脂材料を加圧 する加圧手段を設ける一方、前記ゲートを開閉するパル 10 プ手段を設けたことを特徴とするホットランナ式金型。

【請求項2】 前記ゲートに接続されたゲート傾ランナ の周壁面に、前記スプルに接続されたスプル側ランナを 開口させて連通せしめる一方、かかるゲート側ランナの 周壁面に設けたスプル側ランナの開口部を覆蓋してそれ らゲート側ランナとスプル側ランナを分断し得る前配流 路遮断手段と、該ゲート側ランナに嵌め込まれて前記ゲ ート側に向かって押し込まれることにより該ゲート側ラ ンナ内の溶融樹脂材料を加圧し得る前記加圧手段と、前 記ゲートに挿入されて該ゲートを閉鎖し得る前記パルプ 20 手段とを、それぞれ設けた請求項1に記載のホットラン ナ式金型。

【請求項3】 前記ゲート側ランナに滑動可能に嵌入さ れた第一の弁体によって、前記流路遮断手段および前記 加圧手段を構成すると共に、該第一の弁体を軸方向に貫 通して滑動可能に配設された第二の弁体によって、前記 パルプ手段を構成した請求項2に記載のホットランナ式 金型。

【請求項4】 前記スプルから分岐して、前記ランナお よび前記ゲートが、それぞれ複数設けられている請求項 30 1乃至3の何れかに記載のホットランナ式金型。

【請求項5】 前記成形キャビティの周りに温度調節用 の冷媒通路が形成されている請求項1乃至4の何れかに 記載のホットランナ式金型。

【請求項6】 前記ランナが前記成形キャビティとは異 なる部材によって形成されていると共に、それら両部材 間に断熱部材が介装されている請求項1乃至5の何れか に記載のホットランナ式金型。

【請求項7】 先端開口部にゲートが形成された直線的 なランナ部を有すると共に、該ランナ部の周壁面に開口 40 して樹脂流入口が形成されており、かかるランナ部内を 軸方向に滑動可能に配設された第一の弁体によって、前 記樹脂流入口が連通/遮断可能とされると共に、該第一 の弁体が前記ゲート側に押し込まれることによって該ラ ンナ部が加圧可能とされる一方、かかる第一の弁体を軸 方向に貫通して第二の弁体が滑動可能に配設されてお り、該第二の弁体により前記ゲートが開閉可能とされた ホットランナ式金型に用いられるホットランナパルプ。

【請求項8】 前記第一の弁体を軸方向に往復駆動せし

ンナ部に加圧力を及ぼす第一の駆動手段と、前記第二の 弁体を軸方向に往復駆動せしめて、前記ゲートを開閉す る第二の駆動手段が、それぞれ設けられている請求項7 に記載のホットランナパルプ。

2

【請求項9】 前記パルプ手段によって前記ゲートを閉 鎖した後、射出装置によって前記樹脂流路内に溶融樹脂 材料を充満させる工程と、

かかるパルプ手段によるゲートの閉鎖を解除して該ゲー トを開放することにより、前記成形キャビティ内に溶融 樹脂材料を射出充填する工程と、

前記流路遮断手段によって前記樹脂流路を前記スプル側 と前記ゲート側に分断する工程と、

前配加圧手段により該分断されたゲート側の樹脂流路内 の溶融樹脂材料を加圧して、前配成形キャピティ内に充 填された樹脂材料に加圧力を及ぼす工程と、

前配パルプ手段により前配ゲートを閉鎖した後、型開き して、前記成形キャピティから成形品を取り出す工程と を、含むことを特徴とする請求項1乃至6の何れかに記 載のホットランナ式金型を用いた射出成形方法。

【請求項10】 前記流路遮断手段によって前記樹脂流 路を分断せしめた後、前記成形キャピティ内に充填され た樹脂材料の成形工程と並行して、射出装置により次サ イクルの成形のための樹脂材料の可塑化工程を行う請求 項9に記載の射出成形方法。

【発明の詳細な説明】

[0001]

【技術分野】本発明は、樹脂の射出成形に用いられるホ ットランナ式金型とそれに用いられるホットランナパル プおよびかかるホットランナ式金型を用いた射出成形方 法に関するものである。

[0002]

【背景技術】従来から、櫛の射出成形に際しては、樹脂 の射出圧力を高く設定しないと、各歯の先端まで樹脂材 料が行き渡らずにショートショットが発生することが知 られているが、近年では、例えばマイコンボード用の多 数の接続ピン収納孔を有する小物のコネクタやソケット 類の如く、櫛よりも一層小物で且つ高い成形精度が要求 される射出成形品が増加してきており、そのような小物 の射出成形品において、ショートショットが大きな問題 となっている。

【0003】実際には、マイコンポード用のコネクタや ソケット類では、成形品中に必ず何割かのショートショ ットによる不良品が混在しているのが現状であり、しか もこのショートショットは成形条件からの判断が極めて 困難で、安定した成形を行っていても外部から測定でき ない程の僅かな外乱等によって突如として発生するため に、製品出荷に際して肉眼による確認が必要となり、人 手がかかって能率が悪いという問題があったのである。

【0004】なお、かくの如きショートショットによる めて、前記樹脂流入口を連通/遮断すると共に、前記ラ 50 成形不良を抑えるには、櫛等の成形時よりも樹脂温度お 3

よび金型温度を一層高く設定することが有効であろうと 考えられるが、樹脂および金型温度を高くすると樹脂の 劣化等の問題が生ずるために現実的ではない。また、樹脂材料の射出圧力を一層高く設定することも、ショートショットを防止するのに有効であろうと考えられるが、 射出圧力を高くしても、金型内の樹脂流路内での圧力損失によって成形キャビティに充填された樹脂材料まで有効に圧力が及ばされ難く、満足できる射出圧力を成形キャビティ内の樹脂材料に及ばすには射出装置の大型化等が問題となるために現実的ではなかった。

[0005]

【解決課題】ここにおいて、本発明は、上述の如き事情を背景として為されたものであって、その解決課題とするところは、射出装置の大型化等を伴うことなく、成形キャピティに充填された樹脂材料に対して圧力が効率的に及ぼされ得て、成形品におけるショートショットの発生が軽減乃至は防止されるホットランナ式金型とそれに用いられるホットランナバルブおよびかかるホットランナ式金型を用いた射出成形方法を提供することにある。

[0006]

【解決手段】そして、かかる課題を達成するために、本発明は、射出装置から供給される溶融樹脂材料を成形キャピティに導くスプル、ランナおよびゲートからなる樹脂流路を有すると共に、かかるランナ部分を加熱する加熱手段を設けてなるホットランナ式金型において、樹脂流路をスプル側とゲート側に分断する流路遮断手段を設けると共に、該流路遮断手段によって分断されたゲート側の樹脂流路内の溶融樹脂材料を加圧する加圧手段を設ける一方、ゲートを開閉するパルプ手段を設けたことを、その特徴とするものである。

【0007】また、かかるホットランナ式金型は、例えば、ゲートに接続されたゲート側ランナの周壁面に、スプルに接続されたスプル側ランナを開口させて連通せしめる一方、かかるゲート側ランナの周壁面に設けたスプル側ランナの閉口部を覆蓋してそれらゲート側ランナとスプル側ランナを分断し得る流路遮断手段と、該ゲート側ランナに嵌め込まれて前記ゲート側に向かって押し込まれることにより該ゲート側ランナ内の溶融樹脂材料を加圧し得る加圧手段と、ゲートに挿入されて該ゲートを閉鎖し得るバルブ手段とを、それぞれ設けることによっ40て、構成され得る。

【0008】 更にまた、かくの如きホットランナ式金型において、流路遮断手段および加圧手段は、例えばゲート側ランナに滑動可能に嵌入された第一の弁体によって構成されると共に、パルプ手段は、例えば該第一の弁体を軸方向に貫通して滑動可能に配設された第二の弁体によって構成され得る。

【0009】また、本発明に従う構造とされたホットランナ式金型においては、ランナおよびゲートを、スプルから分岐する形態をもって複数設けることができる。

【0010】さらに、本発明に従う構造とされたホットランナ式金型においては、成形キャピティの周りに温度 調節用の冷媒通路を形成することも可能である。

【0011】また、本発明に従う構造とされたホットランナ式金型においては、ランナを成形キャビティとは異なる部材によって形成し、それら両部材間に断熱部材を介装せしめることも可能である。

【0012】また一方、本発明は、先端開口部にゲートが形成された直線的なランナ部を有すると共に、該ランナ部の周壁面に開口して樹脂流入口が形成されており、かかるランナ部内を軸方向に滑動可能に配設された第一の弁体によって、樹脂流入口が連通/遮断可能とされると共に、該第一の弁体がゲート側に向かって押し込まれることにより該ランナ部が加圧可能とされる一方、かかる第一の弁体を軸方向に貫通して第二の弁体が滑動可能に配設されており、該第二の弁体によりゲートが開閉可能とされたホットランナ式金型に用いられるホットランナバルブをも、特徴とするものである。

【0013】さらに、そのようなホットランナバルブに 20 おいては、第一の弁体を軸方向に往復駆動せしめて、前 記樹脂流入口を連通/遮断すると共に、ランナ部に加圧 力を及ぼす第一の駆動手段と、前記第二の弁体を軸方向 に往復駆動せしめて、前記ゲートを開閉する第二の駆動 手段とを、それぞれ設けることも可能である。

【0014】また、本発明は、前述の如き、本発明に従う構造とされたホットランナ式金型を用いた射出成形方法であって、(a)パルプ手段によってゲートを閉鎖した後、射出装置によって樹脂流路内に溶融樹脂材料を充満させる工程と、(b)かかるパルプ手段によるゲートの閉鎖を解除して該ゲートを開放することにより、成形キャビティ内に溶融樹脂材料を射出充填する工程と、

(c) 流路遮断手段によって樹脂流路をスプル側とゲート側に分断する工程と、(d) 加圧手段により該分断されたゲート側の樹脂流路内の溶酸樹脂材料を加圧して、成形キャビティ内に充填された樹脂材料に加圧力を及ばす工程と、(e) パルプ手段によりゲートを閉鎖した後、型開きして、成形キャビティから成形品を取り出す工程とを、含む射出成形方法も、特徴とするものである。

【0015】更にまた、かかる本発明方法に従う射出成形を行うに際して、流路遮断手段によって樹脂流路を分断せしめた後、成形キャピティ内に充填された樹脂材料の成形工程と並行して、射出装置により次サイクルの成形のための樹脂材料の可塑化工程を行うことも、可能である。

[0016]

【実施例】以下、本発明を更に具体的に明らかにするために、本発明の実施例について、図面を参照しつつ、詳細に説明する。

50 【0017】先ず、図1には、本発明の一実施例として

のホットランナ式金型の概略説明図が示されている。本 実施例の金型は、固定金型10と可動金型12から構成 されており、それら両金型10、12が型合わせされる ことにより、型合わせ面14上に二つの成形キャピティ 16, 16が形成されるようになっている。そして、こ れら固定金型10および可動金型12は、図示しない型 締装置の固定盤および可動盤にそれぞれ取り付けられ て、固定金型10に対して可動金型12が接近/離隔方 向に相対移動せしめられることにより、型閉じ、型締め および型開き作動が行われるようになっている。また、 固定金型10内には、図示しない射出装置のノズルが当 接される部位から成形キャピティ16, 16にまで延び る樹脂流路18が形成されており、この樹脂流路18を 通じて、射出装置のノズルから射出される溶融樹脂材料 が成形キャピティ16,16に導かれて充填されるよう になっている。なお、本実施例では、可動金型12側に 設けられるエジェクタピン等からなる成形品取出し用の エジェクタ機構は、図面上および説明上、省略するが、 そのようなエジェクタ機構としては、従来から公知のも のが、何れも、適宜に採用され得る。

【0018】より詳細には、固定金型10は、図示しな い型締装置の固定盤に取り付けられる取付プロック20 と、可動金型12に型合わせされて成形キャビティ1 6, 16を形成するキャビティ形成プロック22との間 に、スプルプロック24、ランナプロック26および一 対のシリンダブロック28,28が組み付けられて、そ れらがポルト等で一体的に結合されてなる構造とされて

【0019】取付プロック20は、厚肉の略平板形状を 呈しており、その中央部分には板厚方向に貫通する中央 30 孔30が形成されている。そして、この取付プロック2 0に所定距離を隔てて対向位置するように、キャビティ 形成プロック22が配設されている。なお、かかるキャ ビティ形成プロック22および該キャビティ形成プロッ ク22と協働して成形キャピティ16, 16を形成する 可動金型12には、それぞれ、成形キャピティ16,1 6の周りに位置するように、水等が流通せしめられる冷 媒通路31が形成されており、成形キャピティ16,1 6周りの金型温度が制御可能とされている。

【0020】また、スプルプロック24は、略厚肉の円 40 筒形状を呈しており、取付プロック20の中央孔30に 挿通固定されて、キャピティ形成プロック 2 2 側に向か って所定長さで突出して組み付けられている。なお、こ のスプルプロック24の取付プロック20側の閉口部に は、図示しない射出装置がノズルタッチされる球状凹部 32が形成されており、この球状凹部32の底部から軸 方向に延びる中心孔によってスプル34が構成されてい

【0021】 更にまた、スプルプロック24の突出先端 部側には、ランナブロック26が配設されており、スプ 50 た第二のシリンダ室64が、第一のシリンダ室56に対

ルプロック24とキャピティ形成プロック22との間に 固定的に組み付けられている。このランナプロック26 は、略厚肉の平板形状を呈しており、スプルブロック2 4の突出先端部から軸直角方向に広がって配されてい る。そして、かかるランナプロック26の内部には、ス ブルブロック24のスプル34に連通されて、該スプル 3.4に対して直角方向両側に所定長さで延びる二つのス プル側ランナ36,36が形成されている。また、各ス ブル側ランナ36の先端部には、それぞれ、ランナプロ 10 ック26を板厚方向(取付プロック20とキャピティ形 成プロック22との対向方向)に貫通して延びる装着孔 38が設けられている。

6

【0022】なお、スプルプロック24およびランナブ ロック26には、スプル34, スプル側ランナ36およ び装着孔38の周りに位置して複数本のカートリッジヒ ータ40が組み付けられており、それらスプル34,ス ブル側ランナ36および装着孔38が加熱されるように なっている。また、ランナプロック26とキャピティ形 成プロック22との間には断熱部材42が介装されてお 20 り、キャビティ形成プロック22への伝熱が抑えられて いる。

【0023】さらに、スプルプロック24を軸直角方向 に挟んだ両側には、二つのシリンダブロック28,28 が配設されている。かかるシリンダブロック28は、取 付プロック20とランナプロック26の間で挟まれて組 み付けられる本体部44と、該本体部44から突出して ランナプロック28の装着孔38に挿通固定される突出 部46とから構成されている。

【0024】このシリンダプロック28の突出部46 は、中空円筒形状を呈しており、その内孔の軸方向中間 部分には、周壁部を貫通して穿孔された連通孔48を通 じて、ランナプロック26に形成されたスプル側ランナ 36が連通、接続されている一方、かかる内孔の先端側 部分が狭窄されることにより、成形キャピティ16に閉 口するゲート50が形成されている。即ち、かかる突出 部46の内孔によって、スプル側ランナ36を経て導か れた樹脂材料をゲート50を通じて成形キャピティ16 に供給するゲート側ランナ52が構成されているのであ る。なお、図から明らかなように、ゲート側ランナ52 は、ゲート50から直線的に延び、連通孔48によるス ブル側ランナ36との接続部を越えて本体部44内にま で延長形成されている。

【0025】さらに、本体部44の内部には、取付プロ ック20との間において、第一のピストン54を備えた 第一のシリンダ室56が形成されており、給排路58, 60を通じての作動油の給排によって第一のピストン5 4に駆動力が及ぼされるようになっている。また、取付 プロック20の内部には、各シリンダプロック28の組 付部位において、それぞれ、第二のピストン62を備え 7

して軸方向(ピストン移動方向)に所定距離だけ離れた 位置に形成されており、給排路66,68を通じての作 動油の給排によって第二のピストン62に駆動力が及ぼ されるようになっている。

【0026】そして、第一のシリンダ室56内に配設さ れた第一のピストン54に対して、突出部46側に延び 出す第一の弁体70が一体的に形成されており、かかる 第一の弁体70がゲート側ランナ52内に滑動可能に嵌 め込まれて、第一のピストン54にて及ばされる駆動力 により、軸方向に往復駆動されるようになっている。な 10 ンナ52)内に導いて充満させる。なお、スプルプロッ お、第一の弁体70の先端部は、常時、ゲート傾ランナ 52に嵌め込まれていると共に、それら第一の弁体70 とゲート側ランナ52との滑動面には、シール部材が適 宜に設けられ、第一のシリンダ室56内の作動油やゲー ト側ランナ52内の樹脂材料の漏出が防止されるように

【0027】すなわち、この第一の弁体70がゲート側 ランナ52内に押し込まれて先端部が連通孔48の開口 部を越えることによって、該連通孔48が第一の弁体7 0にて覆蓋されて、スプル側ランナ36とゲート側ラン 20 ナ52が分断され、以て樹脂流路18が遮断されるよう になっているのである。また、第一の弁体70が連通孔 48の開口部を越えて更にゲート側ランナ52内に押し 込まれることにより、ゲート側ランナ52内に加圧力が 及ぼされるようになっているのである。

【0028】また、第一の弁体70および第一のピスト ン54には、それらの中心部を軸方向に貫通して延びる 挿通孔 7 2 が設けられており、この挿通孔 7 2 に対し て、第二の弁体74が、軸方向に滑動可能に挿通されて いる。かかる第二の弁体74は長手ロッド状を呈してお 30 り、ゲート50に対応した外形状とされた先端部76 が、第一のピストン54の先端部から突出されている一 方、その基端部には、第二のシリンダ室64内に配設さ れた第二のピストン62が固設されている。そして、第 二のピストン62によって及ぼされる駆動力により、軸 方向に往復駆動されるようになっており、この第二の弁 体74がゲート側ランナ52内に突出されて先端部76 がゲート50に嵌め込まれることにより、ゲート50が 閉鎖されるようになっている。

[0029] なお、第二の弁体74と、該第二の弁体740 4が挿通された取付プロック10,第一のピストン54 および第一の弁体70との間には、シール部材が適宜に 配設され、第一及び第二のシリンダ室56,64内の作 動油やゲート側ランナ52内の樹脂材料の漏出が防止さ れるようになっている。

【0030】上述の如き構造とされた固定金型10およ び可動金型12からなるホットランナ式金型を用いて樹 脂材料の成形を行うに際しては、例えば、以下の如き方 法が有利に採用され得る。

【0031】先ず、図1に示されているように、固定金 50 圧縮保圧を行う工程においても、成形キャピティ16内

ン54を後退させてスプル倒ランナ36とゲート倒ラン ナ52を連通せしめると共に、第二のピストン62を前 進させて第二の弁体74の先端部76をゲート50に挿 入することによりゲート50を閉鎖せしめる。そして、

型10と可動金型12を型締めする一方、第一のピスト

図示しない射出装置を固定金型のスプルプロック24に ノズルタッチさせて射出操作を行うことにより、図2に 示されているように、加熱溶融された樹脂材料80を樹 脂流路(スプル34、スプル側ランナ36、ゲート側ラ ク24およびランナプロック26は、成形時にカートリ ッジヒータ40によって加熱されており、樹脂流路内で

【0032】すなわち、かかる工程においては、ゲート 50が閉鎖されていることから、固定金型10の樹脂流 路18内に導かれた樹脂材料80は、未だ成形キャビテ ィ16には射出されず、射出装置による射出圧力によっ て樹脂流路18内で加圧保持されるのである。

の樹脂材料80の冷却固化が防止される。

【0033】次いで、図3に示されているように、第一 のピストン54を後退位置に保持せしめたまま、第二の ピストン62を後退させることにより、第二の弁体74 の先端部76をゲート50から離脱させてゲート50を 開放する。

【0034】すなわち、かかる工程において、ゲート5 0の開放と同時に、樹脂流路18内に加圧保持された樹 脂材料80が、成形キャピティ16内に射出されて充填 せしめられるのである。

【0035】続いて、成形キャピティ16内への樹脂材 料80の充填終了の直前或いは直後に、図4に示されて いる如く、第二のピストン62を後退位置に保持せしめ たまま、第一のピストン54を前進させることにより、 第一の弁体70によって連通孔48を覆蓋してスプル側 ランナ36とゲート側ランナ52を分断し、樹脂流路1 8を遮断せしめると共に、そこから更に第一のピストン 54を前進させることにより、第一の弁体70によって ゲート側ランナ52内に充満された樹脂材料80に加圧 力を及ぼす。

【0036】すなわち、かかる工程において、第一の弁 体70が前進移動せしめられることにより、ゲート側ラ ンナ52に充満された樹脂材料80を通じて、成形キャ ピティ16内に充填された樹脂材料に対して、更に加圧 力が及ぼされて、かかる樹脂材料が圧縮されるのであ る。なお、このような樹脂材料の圧縮時には、スプル側 ランナ36が成形キャピティ16とは非連通状態とされ ていることから、射出成形機によって保圧する必要がな く、並行して次の成形サイクルのための可塑化工程に入 ることもできる。

【0037】そして、このように第一の弁体70によ り、成形キャピティ16に充填された樹脂材料に対して の樹脂は冷却固化が進行することとなるが、かかる樹脂 の冷却工程中に、第一のピストン54を前進位置に保持 せしめたまま、第二のピストン62を前進させて第2の 弁体74の先端部76をゲート50に挿入させることに より、ゲート50を閉鎖する。

【0038】これにより、成形キャピティ16内が、保 圧状態下で、樹脂流路18と遮断されるのであり、以 て、樹脂流路18内の樹脂材料80はカートリッジヒー タ40で加熱されて溶融状態に維持される一方、成形キャピティ16内の樹脂材料は冷媒通路31を流通せしめ られる冷媒によって冷却されて固化せしめられることと なる。

【0039】そして、成形キャビティ16内の樹脂の冷却固化後、固定金型10と可動金型12を型開きして、図示しないエジェクタ機構によって成形品を離型させることにより、目的とする成形品を取り出す。なお、型開き時には、ゲート50が第二のピストン62の先端部76によって閉鎖されていることから、樹脂流路18内で溶融状態に保持された樹脂材料80の漏れ出しも防止され得る。

【0040】従って、上述の如き構造とされたホットランナ式金型においては、第一のピストン54にて第一の弁体70が駆動されることにより、成形キャピティ16に直接接続された樹脂流路部分であるゲート側ランナ52内において樹脂材料80に加圧力が及ぼされることから、樹脂流路による圧力損失が最小限に抑えられて、成形キャピティ16に充填された樹脂材料に大きな加圧力が効率的に及ぼされるのであり、それによって、マイコンボード用の多数の接続ピン収納孔を有する小物のコネクタやソケット類等の成形に際しても、樹脂材料の成形30キャピティ16内への充填が有利に且つ安定して為され得て、ショートショット等による成形不良が効果的に軽減乃至は防止され得るのである。

【0041】しかも、かかるホットランナ式金型においては、スプル側ランナ36とは遮断されて密閉状とされたゲート側ランナ52内において溶融状態に保たれた樹脂材料80に加圧力が及ぼされることから、成形キャビティ16に充填された樹脂材料に対する加圧が有利に為されると共に、成形キャビティ16内の樹脂材料が冷却固化し始めても樹脂材料に対する保圧力が有利に維持さ40れることから、冷却収縮に対するパックアップも可能となり、成形の安定化が図られると共に、成形品の寸法精度も有利に向上され得るのである。

【0042】また、このようなホットランナ式金型を用いれば、射出成形機における射出圧を大きく設定する必要がないことから、大型の射出成形機を必要とすることもない。

【0043】さらに、かかるホットランナ式金型においては、ゲート50が第二の弁体74によって閉鎖されることから、型開時におけるゲート50からの樹脂漏れや 50

ハナタレ現象等も効果的に防止され得るのである。

10

【0044】また、かかるホットランナ式金型においては、ゲート50を第二の弁体74で閉塞せしめた状態下で、射出装置から樹脂材料80を樹脂流路18内に充填して加圧せしめた後、ゲート50を開放して加圧樹脂材料80を成形キャピティ16内に射出することにより、成形キャピティ16内への樹脂材料の充填時間の短縮化が図られるのであり、更に、それに加えて、成形キャピティ16内に充填された樹脂材料の加圧保持時には、スプル側ランナ36よりも射出装置側が成形キャピティ16から遮断されて保圧の必要がなくなることから、成形キャピティ16内での樹脂の冷却固化工程と並行して、次の成形サイクル用の可塑化工程を行うこともできるのであり、それによって、特別な機能を有する射出装置を用いることとなる。

【0045】更にまた、本実施例のホットランナ式金型においては、第一の弁体70の駆動手段として油圧シリンダ機構が採用されていることから、第一のシリンダ室2056に給排する作動油の圧力を調節することにより、成形キャピティ16内の樹脂材料に加える加圧力を容易に調節制御することができるといった利点もある。

【0046】また、本実施例のホットランナ式金型においては、第一の弁体70の駆動手段として油圧シリンダ機構が採用されていることから、第一のピストン54の径と第一の弁体70の径の比(面積比)を適当に設定、変更することにより、成形キャピティ16内の樹脂材料に対して及ぼされる加圧力を容易に調節することができると共に、簡単な構造によって充分に大きな加圧力を及ぼすことができるのである。

【0047】さらに、本実施例のホットランナ式金型においては、スプル側ランナ36とゲート側ランナ52を連通/遮断する流路遮断手段と、ゲート側ランナ52内の樹脂材料80を加圧する加圧手段とが、共に第一の弁体70によって構成されていることから、構造の簡略化および作動制御の容易化が有利に達成されるといった利点もある。

【0048】また、本実施例のホットランナ式金型にあっては、第一の弁体70の内部を貫通して第二の弁体70 4が配設されていることから、それら両弁体70,74の配設スペースの縮小化、延いては固定金型10のコンパクト化が有利に図られ得るのである。

【0049】 更にまた、本実施例のホットランナ式金型においては、ランナ36,52の周りだけでなく、スプル34の周りにもカートリッジヒータ40が配設されており、樹脂流路18内の樹脂材料の固化が防止されていることから、連続的な射出成形をより安定して行うことができると共に、ランナブロック26とキャビティ形成プロック22の間に断熱部材42が介装されてキャビティ形成プロック22への伝熱が抑えられていると共に、

キャピティ形成プロック22に冷媒通路31が設けられ て冷却可能とされていることから、冷却工程の短縮化に よる成形サイクルの向上が図られるといった利点もあ る。

【0050】以上、本発明の実施例について詳述してき たが、これは文字通りの例示であって、本発明は、かか る具体例にのみ限定して解釈されるものではない。

【0051】例えば、前配実施例では、二つの成形キャ ピティ16, 16を備えた金型に本発明を適用したもの の一具体例を示したが、一つ或いは三つ以上の成形キャ 10 ビティを有する金型にも、本発明は同様に適用可能であ

【0052】また、スプル34から分岐されるランナ3 6. 52およびゲート50の数は、成形キャピティの数 や同一の成形キャビティに開口せしめられるサブゲート の数に応じて決定されるものであり、一つ或いは三つ以 上設けることも可能である。

【0053】更にまた、樹脂流路をスプル側とゲート側 に分断する流路遮断手段や、ゲート側の樹脂流路を加圧 配実施例のものに限定されるものではなく、従来から公 知の各種の弁体や加圧機構等が適宜に適用され得るもの である。例えば、流路遮断手段を加圧手段と別機構によ って構成することも可能であり、また、流路遮断手段や バルブ手段として、樹脂流路に対して直交する方向に挿 入される弁体を用いること等も可能である。

【0054】また、流路遮断手段や加圧手段、パルプ手 段として、前記実施例の如き第一の弁体70および第二 の弁体74を採用する場合にも、それら第一及び第二の 弁体70,74の駆動手段として、例示の如き油圧シリ 30 ンダ機構の他、ソレノイドやモータ等の公知の各種の駆 動機構を採用することができる。

【0055】さらに、ゲート側ランナ52を、ランナブ ロック26内に直接形成するようにしても良い。

【0056】加えて、ランナ36、52を加熱する加熱 手段としては、例示の如きカートリッジヒータの他、ス トリップ型やパンド型の如き公知の各種の電力ヒータ等 が何れも採用可能であり、また、従来手法に従って、サ ーモカップル等を用いた温度制御が適宜に行われること

【0057】その他、一々列挙はしないが、本発明は、 当業者の知識に基づいて、種々なる変更、修正、改良等 を加えた態様において実施され得るものであり、また、 そのような実施厳様が、本発明の趣旨を逸脱しない限 り、何れも、本発明の範囲内に含まれるものであること は、言うまでもないところである。

[0058]

【発明の効果】上述の説明から明らかなように、本発明 に従う構造とされたホットランナ式金型においては、成 形キャピティ近くに位置するスプル側の樹脂流路内にお 50 とから、小物の成形時にもショートショット等による成

いて加圧力が加えられることから、樹脂流路による圧力 損失が抑えられて、成形キャビティに充填された樹脂材 料に大きな加圧力が効率的に及ぼされるのであり、それ によって、樹脂材料の成形キャピティ内への充填が有利 に且つ安定して為され得て、小物の成形時にもショート ショット等による成形不良が効果的に軽減乃至は防止さ れ得るのである。

12

【0059】しかも、かかるホットランナ式金型におい ては、ゲートが第二の弁体によって閉鎖されることか ら、型開時におけるゲートからの樹脂漏れ等も有効に防 止されるのであり、それによって、ハナタレ等の成形不 良が防止されて一層安定した成形操作が実現され得るの である。

【0060】また、本発明に従う構造とされたホットラ ンナ式金型を用いれば、成形キャピティ内に充填された 樹脂材料の加圧のために射出成形機における射出圧を大 きく設定する必要がないことから、大型の射出成形機を 必要とすることもない。

【0061】さらに、本発明に係るホットランナ式金型 する加圧手段およびゲートを開閉するパルプ手段は、前 20 にあっては、ゲート側ランナの周壁面にスプル側ランナ を開口させて連通せしめると共に、かかるゲート側ラン ナ部分に、流路遮断手段、加圧手段およびパルプ手段 を、それぞれ配設することにより、有利に形成され得

> 【0062】また、そのようなホットランナ式金型にお いて、ゲート側ランナに滑動可能に嵌入された第一の弁 体によって流路遮断手段および加圧手段を構成すると共 に、該第一の弁体を軸方向に貫通して滑動可能に配設さ れた第二の弁体によってバルブ手段を構成すれば、構造 の簡略化およびコンパクト化が有利に図られ得る。

> 【0063】更にまた、本発明に従う構造とされたホッ トランナ式金型においては、スプルから分岐してランナ およびゲートを複数設けることも可能であり、それによ って、複数の成形キャピティを有する金型やサブゲート を備えた金型にも、本発明が有利に適用され得る。

> 【0064】さらに、成形キャピティの周りに冷媒通路 を形成すれば、ランナ部分を加熱する加熱手段による影 響が軽減乃至は解消されて、成形キャピティ内に充填さ れた樹脂の冷却固化が有利に為され得る。

【0065】また、ランナを形成する部材と成形キャビ ティを形成する部材の間に断熱部材を介装すれば、ラン ナ側から成形キャピティ側への伝熱が抑えられて、成形 キャピティ内での樹脂の冷却固化工程に対する、ランナ 部分を加熱する加熱手段による悪影響が有利に軽減され

【0066】さらに、本発明に従う構造とされたホット ランナバルブを採用すれば、成形キャピティに充填され た樹脂材料に大きな加圧力を及ぼしめて、樹脂材料を大 きな圧力で成形キャピティ内に充填することができるこ

形不良が効果的に軽減乃至は防止され得るホットランナ 式金型が有利に実現され得るのである。

【0067】また、本発明方法に従えば、射出装置によ って及ぼされる射出圧の大きさに拘わらず、加圧手段に よる加圧力が、成形キャピティ内に充填された樹脂材料 に対して効率的に及ぼされることから、大型の射出装置 を用いることなく、ショートショット等による成形不良 が有利に軽減乃至は防止され得るのである。

【0068】 更にまた、本発明方法に従う射出成形に際 しては、成形キャピティ内に充填された樹脂材料による 10 成形工程と並行して、次サイクルの成形のための可塑化 工程を実施することも可能であり、それによって成形サ イクルの向上が有利に図られ得ることとなる。

【図面の簡単な説明】

【図1】本発明の一実施例としてのホットランナ式金型 の構造を概略的に示す断面説明図である。

【図2】図1に示されたホットランナ式金型を用いた成 形操作の一工程を説明するためのホットランナバルプ部 分だけを示す断面図である。

【図3】図1に示されたホットランナ式金型を用いた成 20 52 ゲート側ランナ 形操作の図2に続く工程を説明するためのホットランナ バルブ部分の断面図である。

【図4】図1に示されたホットランナ式金型を用いた成 形操作の図3に続く工程を説明するためのホットランナ バルブ部分の断面図である。

【図5】図1に示されたホットランナ式金型を用いた成 形操作の図4に続く工程を説明するためのホットランナ バルプ部分の断面図である。

【符号の説明】

- 10 固定金型
- 12 可動金型
- 16 成形キャピティ
- 18 樹脂流路
- 20 取付プロック
- 22 キャピティ形成プロック
- 24 スプルプロック
- 26 ランナブロック
- 28 シリンダブロック
 - 31 冷媒通路
 - 34 スプル
 - 36 スプル側ランナ
 - 40 カートリッジヒータ
 - 断熱部材 42
 - 44 本体部
 - 46 突出部
 - 48 連通孔
 - 50 ゲート
- 54 第一のピストン
- 56 第一のシリンダ室
- 62 第二のピストン
- 64 第二のシリンダ室
- 70 第一の弁体
- 72 挿通孔
- 第二の弁体

【図1】

[図2]

[図5]

【図3】

【図4】

フロントページの続き

(51) Int. Cl. ⁶ B 2 9 C 45/73 識別記号

庁内整理番号 7639-4F FΙ

技術表示箇所