NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Lau Tze Siong, Teo Wei Hao

MA1102R Calculus AY 2006/2007 Sem 1

Question 1

(a) Since $\lim_{x\to 0} e^{4x} - 1 - 4x = 0$ and $\lim_{x\to 0} x^2 = 0$, we apply L'Hôpital's rule to get

$$\lim_{x \to 0} \frac{e^{4x} - 1 - 4x}{x^2} = \lim_{x \to 0} \frac{4e^{4x} - 4}{2x}$$
$$= \lim_{x \to 0} \frac{16e^{4x}}{2}$$
$$= 8.$$

(b) Since $-1 \le \cos \frac{1}{x^2} \le 1$ for all $x \in \mathbb{R} - \{0\}$, we have $-x^2 \le x^2 \cos \frac{1}{x^2} \le x^2$ for all $x \in \mathbb{R} - \{0\}$. Since $\lim_{x \to 0} -x^2 = 0 = \lim_{x \to 0} x^2$, by Squeeze Theorem, $\lim_{x \to 0} x^2 \cos \frac{1}{x^2} = 0$.

Question 2

(a) We have,

$$\int_0^1 \frac{1}{(x+1)(x^2+1)} dx = \int_0^1 \frac{1}{2(x+1)} - \frac{x-1}{2(x^2+1)} dx$$

$$= \left[\frac{1}{2} \ln(x+1) \right]_0^1 - \int_0^1 \frac{2x}{4(x^2+1)} - \frac{1}{2(x^2+1)} dx$$

$$= \frac{1}{2} \ln 2 - \left[\frac{1}{4} \ln(x^2+1) - \frac{1}{2} \tan^{-1} x \right]_0^1$$

$$= \frac{1}{4} \ln 2 + \frac{\pi}{8}.$$

(b) We have,

$$\int_{1}^{e} t(\ln t)^{2} dt = \left[\frac{t^{2}}{2}(\ln t)^{2}\right]_{1}^{e} - \int_{1}^{e} t \ln t dt$$

$$= \frac{e^{2}}{2} - \left(\left[\frac{t^{2}}{2}\ln t\right]_{1}^{e} - \int_{1}^{e} \frac{t}{2} dx\right)$$

$$= \frac{e^{2}}{2} - \left(\frac{e^{2}}{2} - \left[\frac{t^{2}}{4}\right]_{1}^{e}\right)$$

$$= \frac{e^{2} - 1}{4}.$$

Question 3

By equating the equations of the curve $y = 2 - x^2$ and $y = x^2$, we see that they intersect when x = 1. Using Cylindrical Shells method, we obtain the volume as the integral,

$$\int_{0}^{1} 2\pi x \left[(2 - x^{2}) - (x^{2}) \right] dx = \pi \left(\int_{0}^{1} 4x dx - \int_{0}^{1} 4x^{3} dx \right)$$
$$= \pi \left(\left[2x^{2} \right]_{0}^{1} - \left[x^{4} \right]_{0}^{1} \right)$$
$$= \pi.$$

Question 4

- (a) We have $\left(\frac{1}{\ln(n+1)}\right)_{n\in\mathbb{Z}^+}$ to be positive, decreasing and $\lim_{n\to\infty}\frac{1}{\ln(n+1)}=0$. Hence by Alternating Series Test, $\sum_{n=1}^{\infty}\frac{(-1)^n}{\ln(n+1)}$ is convergent.
- (b) Applying Root test, we have $\lim_{n\to\infty}\frac{n^{\frac{1}{n}}}{(\ln n)^{\frac{1}{2}}}=\frac{1}{\left(\lim_{n\to\infty}\ln n\right)^{\frac{1}{2}}}=0.$ Hence the series $\sum_{n=2}^{\infty}\frac{n}{(\ln n)^{\frac{n}{2}}}$ converges.
- (c) Since $\sum_{i=1}^{n} \frac{1}{i} \le 1 + \sum_{i=2}^{n} \int_{i-1}^{i} \frac{1}{t} dt = 1 + \int_{1}^{n} \frac{1}{t} dt = 1 + \ln n \text{ for all } n \in \mathbb{Z}^{+}, \text{ we have,}$ $\ln \frac{1}{2 \cdot \sqrt{2} \cdot \dots \cdot \sqrt[n]{2}} = (-\ln 2) \sum_{i=1}^{n} \frac{1}{i} \le (-\ln 2)(1 + \ln n)$ $= -\ln 2 (\ln 2)(\ln n)$ $= \ln \left(\frac{1}{2}\right) + \ln \frac{1}{n^{\ln 2}} = \ln \frac{1}{2n^{\ln 2}}.$

Since $\ln x$ is an increasing function in x on \mathbb{R}^+ , we have $\frac{1}{2 \cdot \sqrt{2} \cdot \dots \cdot \sqrt[n]{2}} \leq \frac{1}{2} \left(\frac{1}{n^{\ln 2}} \right)$.

Since $\sum_{n=1}^{\infty} \frac{1}{n^{\ln 2}}$ is a p-series with p < 1, it diverges, and so by comparison test, this series diverges.

Question 5

(a) Differentiating f(x) with respect to x, we have,

$$f'(x) = x^2 e^x + 2xe^x.$$

Let f'(x) = 0, then we have,

$$x^2e^x + 2xe^x = 0$$
$$x(x+2)e^x = 0.$$

Since f' exists on \mathbb{R} , we have x = 0 and x = -2 to be the only critical points. Differentiating f'(x) with respect to x,

$$f^{(2)}(x) = x^2 e^x + 4xe^x + 2e^x.$$

Since $f^{(2)}(0) > 0$, (0,0) is a local minimum. Since $f^{(2)}(-2) < 0$, $(-2, 4e^{-2})$ is a local maximum.

- (b) By Increasing/Decreasing test, f is increasing on $(-\infty, -2)$ and decreasing on (-2, 0). Thus for x < 0, since 2 < e, we have $x^2 e^x = f(x) < f(-2) = \frac{4}{e^2} < \frac{4}{2^2} = 1$, i.e. $e^x < \frac{1}{x^2}$.
- (c) If $e^x = \frac{1}{x^2}$ then we have $f(x) = x^2 e^x = 1$. Since f(1) = e > 1, f(0) = 0, and f is a continuous function, by Intermediate Value Theorem, there exists $a \in [0,1]$ such that f(a) = 1.

By (5b.), $x \in (-\infty, 0)$ give us $f(x) \neq 1$.

Assume on the contrary that there exist $x_1, x_2 \in [0, \infty)$ such that $x_1 \neq x_2$, and $f(x_1) = 1 = f(x_2)$. Then by Rolle's Theorem, there exist $x_3 \in (x_1, x_2)$ such that $f'(x_3) = 0$, a contradiction since $x_3 \neq 0$ and $x_3 \neq -2$. Therefore, there is exactly 1 real number satisfying $e^x = \frac{1}{x^2}$.

Question 6

Let the 2 equal angles of the isosceles triangle be α , and the 2 equal sides of the triangle be x, and the area be A. We note that $\alpha \in \left[0, \frac{\pi}{2}\right]$ and $x \in \left[\frac{P}{4}, \frac{P}{2}\right]$.

Then we have $P = x + x + 2x \cos \alpha = 2x(1 + \cos \alpha)$, and $A = \frac{1}{2}(P - 2x)x \sin \alpha$.

Since $\cos \alpha = \frac{P}{2x} - 1$, we have $\sin \alpha = \sqrt{1 - \cos^2 \alpha} = \frac{\sqrt{4Px - P^2}}{2x}$.

Therefore $A = \frac{1}{2}(P - 2x)\frac{\sqrt{4Px - P^2}}{2}$. Differentiating A with respect to x, we have,

$$\frac{dA}{dx} = \frac{4P^2 - 12Px}{4\sqrt{4Px - P^2}}.$$

Setting $\frac{dA}{dx} = 0$, together with the fact that $\sqrt{4Px - P^2} > 0$ for all $x \in \left(\frac{P}{4}, \frac{P}{2}\right)$, we get,

$$4P^2 - 12Px = 0$$
$$x = \frac{P}{2}.$$

Therefore $x = \frac{P}{4}$, $x = \frac{P}{2}$ and $x = \frac{P}{3}$ are the only critical points.

When $x = \frac{P}{4}$ or $x = \frac{P}{2}$, we have A = 0. When $x = \frac{P}{3}$, we have $A = \frac{P^2\sqrt{3}}{36}$.

Hence $x = \frac{\stackrel{4}{P}}{3}$, $A = \frac{P^2\sqrt{3}}{36}$ is a global maximum point, i.e. the isosceles triangle with the greatest area with a fixed perimeter P is equilateral.

Question 7

Differentiating f(x) with respect to x, we have,

$$f'(x) = \frac{1 - \ln x}{x^2}.$$

Since f' exists on the domain of f, if f(x) is decreasing, then f'(x) < 0. Hence we have,

$$\begin{array}{rcl} \frac{1-\ln x}{x^2} & < & 0\\ 1-\ln x & < & 0\\ \ln x & > & 1\\ x & > & e. \end{array}$$

Since e < 3 < a < b, we have

$$\frac{\ln b}{b} < \frac{\ln a}{a}
a \ln b < b \ln a
\ln b^a < \ln a^b
b^a < a^b (since ln is an increasing function).$$

Question 8

(a) Suppose not. Then $\int_a^b f(x) dx \le 0$.

By Mean Value Theorem for Integrals, there exists $c \in (a, b)$ such that $\int_a^b f(x) dx = (b - a)f(c)$. Since b - a > 0, we have $f(c) \le 0$, a contradiction as all $x \in (a, b)$ have f(x) > 0.

(b) Consider the function $h:[a,b]\to\mathbb{R}$ such that

$$h(y) = \int_a^b f(x)(g(x) - g(y)) \ dx = \int_a^b f(x)g(x) \ dx - g(y) \int_a^b f(x) \ dx.$$

Since g is continuous, h is continuous.

By Extreme Value Theorem, there exist $x_1, x_2 \in [a, b]$ such that $g(x_1) \ge g(x)$ and $g(x_2) \le g(x)$ for all $x \in [a, b]$, i.e. $f(x)(g(x) - g(x_1)) \le 0$ and $f(x)(g(x) - g(x_2)) \ge 0$.

This give us
$$h(x_1) = \int_a^b f(x)(g(x) - g(x_1)) dx \le 0$$
 and $h(x_2) = \int_a^b f(x)(g(x) - g(x_2)) dx \ge 0$.

Hence by Intermediate Value Theorem, there exist $c \in [x_1, x_2]$ such that h(c) = 0.

Therefore $c \in [a, b]$ is such that, $\int_a^b f(x)g(x) dx - g(c) \int_a^b f(x) dx = h(c) = 0$, and so we have $\int_a^b f(x)g(x) dx = g(c) \int_a^b f(x) dx$.