DIGITAL SYSTEMS LABORATORY WORK MODUL 8 :

FLIP-FLOP APPLICATION

By:

NUR ANNIDA I'FFAH SUPARDI

L200183147

INFORMATION TECHNOLOGY FACULTY OF COMMUNICATION AND INFORMATICS UNIVERSITY OF MUHAMMADIYAH SURAKARTA

NIM : L200183147

Name : Nur Annida I'ffah Supardi

Assistant Name : Salsa Sasmita Mukti
Date of Practicum : Friday, May 10 st 2019

Trial 1. Make a jk-ff counter

1. Make a combination of JK flip-flop as in the picture

2. Simulate your circuit!

Click on the switch based on the table and fill in the blank fields in the table!

	INPUT			OUTPUT			
	CLEAR	JK	CLK	A	В	C	D
1	1	1	0	0	0	0	0
2	1	1	1	0	0	0	0
3	1	1	0	0	0	0	1
4	1	1	1	0	0	0	1
5	1	1	0	0	0	1	0
6	1	1	1	0	0	1	0
7	1	1	0	0	0	1	1
8	1	1	1	0	0	1	1
9	1	1	0	0	1	0	0
10	1	1	1	0	1	0	0
11	1	1	0	0	1	0	1
12	1	1	1	0	1	0	1
13	1	1	0	0	1	1	0
14	1	1	1	0	1	1	0

15	1	0	0	0	1	1	0
16	1	0	1	0	1	1	0
17	1	1	0	0	1	1	1
18	1	1	1	0	1	1	1
19	0	1	0	0	0	0	0
20	0	1	1	0	0	0	0

3. What is the function of:

A. Clk switch: to save binary

B. Jk switch: as the main counter

C. Clear switch: to reset the condition of the JK switch.

4. Conclusion:

For current flips the condition will change if JK = 0.

Trial 2. Counter mod 10

1. Make a combination of JK flip-flop as in the picture

2. Simulate your circuit!

Click on the switch based on the table and fill in the blank fields in the table!

	INPUT JK CLK		OUTPUT				
			A	В	C	D	
1	1	0	0	0	0	0	
2	1	1	0	0	0	0	
3	1	0	0	0	0	1	

4	1	1	0	0	0	1
5	1	0	0	0	1	0
6	1	1	0	0	1	0
7	1	0	0	0	1	1
8	1	1	0	0	1	1
9	1	0	0	1	0	0
10	1	1	0	1	0	0
11	1	0	0	1	0	1
12	1	1	0	1	0	1
13	1	0	0	1	1	0
14	1	1	0	1	1	0
15	1	0	0	1	1	1
16	1	1	0	1	1	1
17	1	0	1	0	0	0
18	1	1	1	0	0	0
19	1	0	1	0	0	1
20	1	1	1	0	0	1
21	0	0	1	0	0	1
22	0	1	1	0	0	1
23	1	0	0	0	0	1
24	1	1	0	0	0	1

3. Conclusion:

If jk = 1 and clk = 0 it will save the previous data.

If jk = 1 and clk = 1 it will save the previous data and add one so that the data will change.

If jk = 0 and clk = 0 or 1 then the result will be 0.

Trial 3. Make a register JK-FF

1. Make a combination of JK flip-flop as in the picture

2. Simulate your circuit!

Click on the switch based on the table and fill in the blank fields in the table!

	CLR	JK	CLK	A	В	C	D
1	0	X	-	0	0	0	0
2	1	1	-	0	0	0	0
3	1	1	1	0	0	0	1
4	1	1	2	0	0	1	1
5	1	1	3	0	1	1	1
6	1	0	4	1	1	1	0
7	1	0	5	1	1	0	0
8	1	0	6	1	0	0	0
9	1	0	7	0	0	0	0
10	1	0	8	0	0	0	0
11	1	1	9	0	0	0	1
12	1	0	10	0	0	1	0
13	1	0	11	0	1	0	0
14	1	0	12	1	0	0	0
15	1	0	13	0	0	0	0

3. Conclusion:

For the JK value = 1 and the CLOCK IN then can calculate.

The happen exchange of the value if 2x click.

Clear = \overrightarrow{RESET} , if he value Clear = 0. So, the value can change.