Sequence to Sequence Models

Deep Learning

Woohwan Jung

Outline

- Basic models
- Beam search
- Attention mechanism

Basic models

Sequence to Sequence Model 27/23

 χ <1> χ <2> χ <3> χ <4> χ <5>

Jane visite l'Afrique en septembre

Jane is visiting Africa in September y<1> y<2> y<3> y<4> y<5>

Image Captioning Was 0/0/21 25

RNN93 Est Stot

Machine Translation as Building a Conditional Language Model

Language model: $\underline{a^{<0>}} \qquad \underbrace{p(y^{<1>},...,y^{< T_y>})}_{x^{<1>}} \qquad \underbrace{p(y^{<1>},...,y^{< T_y>})}_{y^{<1>}}$

Machine Translation as Building a Conditional Language Model

Finding the Most likely Translation

Jane visite l'Afrique en septembre.

$$\frac{P(y^{<1>}, \dots, y^{} | x)}{\text{English}}$$

French

- Jane is visiting Africa in September.
- → Jane is going to be visiting Africa in September.
- In September, Jane will visit Africa.
- Her African friend welcomed Jane in September.

$$\underset{y<1>,...,y}{\arg\max} P(\hat{y}^{<1>}, \hat{y}^{<2>}, ..., y^{} | x)$$

Attention mechanism

The Problems of Long Sequences

Jane s'est rendue en Afrique en septembre dernier, a apprécié la culture et a rencontré beaucoup de gens merveilleux; elle est revenue en parlant comment son voyage était merveilleux, et elle me tent e d'y aller aussi.

Jane went to Africa last September, and enjoyed the culture and met many wonderful people; she came back raving about how wonderful her trip was, and is tempting me to go too.

https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/figure1_bleuscore_vs_sentencelength/

[Bahdanau et. al., 2014. Neural machine translation by jointly learning to align and translate]

[Bahdanau et. al., 2014. Neural machine translation by jointly learning to align and translate]

[Bahdanau et. al., 2014. Neural machine translation by jointly learning to align and translate]

$$a^{< t>} = (\vec{a}^{< t>}, \vec{a}^{< t>})$$

Computing Attention $\alpha^{< t,t'>}$

$$\alpha^{\langle t,t'\rangle} = \frac{\exp(e^{\langle t,t'\rangle})}{\sum_{t'=1}^{T_{\mathcal{X}}} \exp(e^{\langle t,t'\rangle})}$$

$$\underbrace{e^{< t, t'>}}_{= v_a^{\mathsf{T}}} \tanh(W_{as} s^{< t-1>} + U_{aa} a^{< t'>})$$

$$= v_a^{\mathsf{T}} \tanh(W_a[s^{< t-1>}; a^{< t'>}])$$

[Bahdanau et. al., 2014. Neural machine translation by jointly learning to align and translate]

scala

(+ Ex = 0)

Attention

References

- Sequence to sequence models, Alireza Akhavan Pour
- https://d2l.ai/chapter_recurrent-modern/beam-search.html

