

Forecasting: principles and practice

Rob J Hyndman

2 ARIMA models

Outline

- 1 Stationarity and differencing
- 2 Backshift notation
- 3 Autoregressive models
- 4 Moving Average models
- 5 Non-seasonal ARIMA models
- **6** Seasonal ARIMA models
- 7 Lab Session 3

Stationarity

Definition

If $\{y_t\}$ is a stationary time series, then for all s, the distribution of (y_t, \ldots, y_{t+s}) does not depend on t.

Stationarity

Definition

If $\{y_t\}$ is a stationary time series, then for all s, the distribution of (y_t, \ldots, y_{t+s}) does not depend on t.

A stationary series is:

- roughly horizontal
- constant variance
- no patterns predictable in the long-term

Stationarity

Definition

If $\{y_t\}$ is a stationary time series, then for all s, the distribution of (y_t, \ldots, y_{t+s}) does not depend on t.

A stationary series is:

- roughly horizontal
- constant variance
- no patterns predictable in the long-term
- Transformations (e.g., logs) can help to **stabilize** the variance.
- Differences can help to stabilize the mean.

```
dj %>% autoplot() +
  ylab("Dow Jones Index") + xlab("Day")
```



```
dj %>% diff() %>% autoplot() +
  ylab("Change in Dow Jones Index") + xlab("Day")
```



```
hsales %>% autoplot() +
  xlab("Year") + ylab("Total sales") +
  ggtitle("Sales of new one-family houses, USA")
```



```
hsales %>% diff(lag=12) %>% autoplot() +
   xlab("Year") + ylab("Total sales") +
   ggtitle("Seasonal differences of sales of new one-family h
```



```
hsales %>% diff(lag=12) %>% diff(lag=1) %>% autoplot() +
   xlab("Year") + ylab("Total sales") +
   ggtitle("Seasonal differences of sales of new one-family h
```



```
usmelec %>% log() %>% diff(lag=12) %>%
autoplot()
```



```
usmelec %>% log() %>% diff(lag=12) %>%

diff(lag=1) %>% autoplot()
```


Outline

- 1 Stationarity and differencing
- 2 Backshift notation
- 3 Autoregressive models
- 4 Moving Average models
- 5 Non-seasonal ARIMA models
- **6** Seasonal ARIMA models
- 7 Lab Session 3

Backward shift operator

Shift back one period

$$By_t = y_{t-1}$$

Backward shift operator

Shift back one period

$$By_t = y_{t-1}$$

Shift back two periods:

$$B(By_t) = B^2y_t = y_{t-2}$$

Backward shift operator

Shift back one period

$$By_t = y_{t-1}$$

Shift back two periods:

$$B(By_t) = B^2y_t = y_{t-2}$$

Shift back 12 periods

$$B^{12}y_t = y_{t-12}$$

First differences

$$y'_t = y_t - y_{t-1} = y_t - By_t = (1 - B)y_t$$
.

First differences

$$y'_t = y_t - y_{t-1} = y_t - By_t = (1 - B)y_t$$
.

Second-order differences (i.e., first differences of first differences):

$$y_t'' = (1 - B)^2 y_t$$
.

First differences

$$y'_t = y_t - y_{t-1} = y_t - By_t = (1 - B)y_t$$
.

Second-order differences (i.e., first differences of first differences):

$$y_t'' = (1 - B)^2 y_t$$
.

dth-order differences:

$$(1-B)^d y_t$$
.

First differences

$$y'_t = y_t - y_{t-1} = y_t - By_t = (1 - B)y_t$$
.

Second-order differences (i.e., first differences of first differences):

$$y_t'' = (1 - B)^2 y_t$$
.

dth-order differences:

$$(1 - B)^d y_t$$
.

Seasonal difference followed by first difference:

$$(1-B)(1-B^m)y_t$$
.

Outline

- 1 Stationarity and differencing
- 2 Backshift notation
- 3 Autoregressive models
- 4 Moving Average models
- 5 Non-seasonal ARIMA models
- **6** Seasonal ARIMA models
- 7 Lab Session 3

Autoregressive models

Autoregressive (AR) models:

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \varepsilon_t$$

$$(1 - \phi_1 B - \dots - \phi_p B^p) y_t = c + \varepsilon_t$$

where ε_t is white noise. This is a multiple regression with **lagged values** of y_t as predictors.

Stationarity conditions

We normally restrict autoregressive models to stationary data, and then some constraints on the values of the parameters are required.

General condition for stationarity

Complex roots of $1 - \phi_1 z - \phi_2 z^2 - \cdots - \phi_p z^p$ lie outside the unit circle on the complex plane.

Stationarity conditions

We normally restrict autoregressive models to stationary data, and then some constraints on the values of the parameters are required.

General condition for stationarity

Complex roots of $1 - \phi_1 z - \phi_2 z^2 - \cdots - \phi_p z^p$ lie outside the unit circle on the complex plane.

- For p = 1: $-1 < \phi_1 < 1$.
- For p = 2:

$$-1 < \phi_2 < 1$$
 $\phi_2 + \phi_1 < 1$ $\phi_2 - \phi_1 < 1$.

■ More complicated conditions hold for $p \ge 3$.

Outline

- 1 Stationarity and differencing
- 2 Backshift notation
- 3 Autoregressive models
- 4 Moving Average models
- 5 Non-seasonal ARIMA models
- **6** Seasonal ARIMA models
- 7 Lab Session 3

Moving Average (MA) models

Moving Average (MA) models:

$$y_t = c + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q}$$

$$y_t = c + (1 + \theta_1 B + \dots + \theta_q B^q) \varepsilon_t$$

where ε_t is white noise. This is a multiple regression with **past** *errors* as predictors.

Invertibility

 Invertible models have property that distant past has negligible effect on forecasts. Requires consraints on MA parameters.

General condition for invertibility

Complex roots of $1 + \theta_1 z + \theta_2 z^2 + \cdots + \theta_q z^q$ lie outside the unit circle on the complex plane.

Invertibility

 Invertible models have property that distant past has negligible effect on forecasts. Requires consraints on MA parameters.

General condition for invertibility

Complex roots of $1 + \theta_1 z + \theta_2 z^2 + \cdots + \theta_q z^q$ lie outside the unit circle on the complex plane.

- For $q = 1: -1 < \theta_1 < 1$.
- **For** q = 2:

$$-1 < \theta_2 < 1$$
 $\theta_2 + \theta_1 > -1$ $\theta_1 - \theta_2 < 1$.

■ More complicated conditions hold for $q \ge 3$.

Outline

- 1 Stationarity and differencing
- 2 Backshift notation
- 3 Autoregressive models
- 4 Moving Average models
- 5 Non-seasonal ARIMA models
- **6** Seasonal ARIMA models
- 7 Lab Session 3

Autoregressive Moving Average models:

$$\begin{aligned} \mathbf{y}_t &= \mathbf{c} + \phi_1 \mathbf{y}_{t-1} + \dots + \phi_p \mathbf{y}_{t-p} \\ &\quad + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q} + \varepsilon_t \\ \phi_p(\mathbf{B}) \mathbf{y}_t &= \theta_q(\mathbf{B}) \varepsilon_t \end{aligned}$$

Autoregressive Moving Average models:

$$\begin{aligned} y_t &= c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} \\ &+ \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q} + \varepsilon_t \\ \phi_p(B) y_t &= \theta_q(B) \varepsilon_t \end{aligned}$$

- Predictors include both lagged values of y_t and lagged errors.
- $\phi_p(B)$ is a pth order polynomial in B
- \blacksquare $\theta_q(B)$ is a qth order polynomial in B

Autoregressive Moving Average models:

$$\begin{aligned} y_t &= c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} \\ &\quad + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q} + \varepsilon_t \\ \phi_p(B) y_t &= \theta_q(B) \varepsilon_t \end{aligned}$$

- Predictors include both lagged values of y_t and lagged errors.
- $\phi_p(B)$ is a pth order polynomial in B
- \bullet $\theta_q(B)$ is a qth order polynomial in B

Autoregressive Integrated Moving Average models

- Combine ARMA model with differencing.
- $(1 B)^d y_t$ follows an ARMA model.

Autoregressive Integrated Moving Average models

ARIMA(p, d, q) model

- AR: p = order of the autoregressive part
 - I: d =degree of first differencing involved
- MA: q =order of the moving average part.
 - White noise model: ARIMA(0,0,0)
 - Random walk: ARIMA(0,1,0) with no constant
 - Random walk with drift: ARIMA(0,1,0) with const.
 - \blacksquare AR(p): ARIMA(p,0,0)
 - \blacksquare MA(q): ARIMA(0,0,q)

Backshift notation for ARIMA

 \blacksquare ARIMA(p, 0, q) model:

$$\begin{aligned} \mathbf{y}_t &= \mathbf{c} + \phi_1 \mathbf{y}_{t-1} + \dots + \phi_p \mathbf{y}_{t-p} + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q} + \varepsilon_t \\ \mathbf{y}_t &= \mathbf{c} + \phi_1 \mathbf{B} \mathbf{y}_t + \dots + \phi_p \mathbf{B}^p \mathbf{y}_t + \varepsilon_t + \theta_1 \mathbf{B} \varepsilon_t + \dots + \theta_q \mathbf{B}^q \varepsilon_t \\ \mathbf{or} &\quad (1 - \phi_1 \mathbf{B} - \dots - \phi_p \mathbf{B}^p) \mathbf{y}_t = \mathbf{c} + (1 + \theta_1 \mathbf{B} + \dots + \theta_q \mathbf{B}^q) \varepsilon_t \end{aligned}$$

Backshift notation for ARIMA

 \blacksquare ARIMA(p, 0, q) model:

$$\begin{aligned} y_t &= c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q} + \varepsilon_t \\ y_t &= c + \phi_1 B y_t + \dots + \phi_p B^p y_t + \varepsilon_t + \theta_1 B \varepsilon_t + \dots + \theta_q B^q \varepsilon_t \\ \text{or} \quad &(1 - \phi_1 B - \dots - \phi_p B^p) y_t = c + (1 + \theta_1 B + \dots + \theta_q B^q) \varepsilon_t \end{aligned}$$

ARIMA(1,1,1) model:

$$(1 - \phi_1 B)$$
 $(1 - B)y_t = c + (1 + \theta_1 B)\varepsilon_t$
 \uparrow \uparrow \uparrow \uparrow
AR(1) First MA(1)
difference

Backshift notation for ARIMA

 \blacksquare ARIMA(p, 0, q) model:

$$y_{t} = c + \phi_{1}y_{t-1} + \dots + \phi_{p}y_{t-p} + \theta_{1}\varepsilon_{t-1} + \dots + \theta_{q}\varepsilon_{t-q} + \varepsilon_{t}$$

$$y_{t} = c + \phi_{1}By_{t} + \dots + \phi_{p}B^{p}y_{t} + \varepsilon_{t} + \theta_{1}B\varepsilon_{t} + \dots + \theta_{q}B^{q}\varepsilon_{t}$$
or
$$(1 - \phi_{1}B - \dots - \phi_{p}B^{p})y_{t} = c + (1 + \theta_{1}B + \dots + \theta_{q}B^{q})\varepsilon_{t}$$

ARIMA(1,1,1) model:

Written out:

$$y_{t} = c + y_{t-1} + \phi_{1}y_{t-1} - \phi_{1}y_{t-2} + \theta_{1}\varepsilon_{t-1} + \varepsilon_{t}$$

25

R model

Intercept form

$$(1 - \phi_1 B - \cdots - \phi_p B^p)(1 - B)^d y_t = c + (1 + \theta_1 B + \cdots + \theta_q B^q) \varepsilon_t$$

Mean form

$$(1 - \phi_1 B - \dots - \phi_p B^p)(1 - B)^d (y_t - \mu t^d / d!) =$$

$$(1 + \theta_1 B + \dots + \theta_q B^q) \varepsilon_t$$

- \blacksquare μ is the mean of $(1 B)^d y_t$.
- $c = \mu(1 \phi_1 \cdots \phi_p).$
- R uses mean form.
- Including c equivalent to y_t having dth order polynomial trend.

```
autoplot(uschange[,"Consumption"]) +
  xlab("Year") + ylab("Quarterly percentage change") +
  ggtitle("US consumption")
```


(fit <- auto.arima(uschange[,"Consumption"]))</pre> ## Series: uschange[, "Consumption"] ## ARIMA(2,0,2) with non-zero mean ## ## Coefficients: ## ar1 ar2 ma1 ma2 mean ## 1.391 -0.581 -1.180 0.558 0.746 ## s.e. 0.255 0.208 0.238 0.140 0.084 ## ## sigma^2 estimated as 0.351: log likelihood=-165.1

AIC=342.3 AICc=342.8 BIC=361.7

```
## Series: uschange[, "Consumption"]
## ARIMA(2,0,2) with non-zero mean
##
## Coefficients:
##
         ar1 ar2 ma1 ma2
                                    mean
## 1.391 -0.581 -1.180 0.558 0.746
## s.e. 0.255 0.208 0.238 0.140 0.084
##
## sigma^2 estimated as 0.351: log likelihood=-165.1
```

(fit <- auto.arima(uschange[,"Consumption"]))</pre>

AIC=342.3 AICc=342.8 BIC=361.7

ARIMA(2,0,2) model:

```
y_t = c + 1.391y_{t-1} - 0.581y_{t-2} - 1.180\varepsilon_{t-1} + 0.558\varepsilon_{t-2} + \varepsilon_t, where c = 0.746 \times (1 - 1.391 + 0.581) = 0.142 and \varepsilon_t \sim N(0, 0.351).
```


Information criteria

Akaike's Information Criterion (AIC):

AIC =
$$-2 \log(L) + 2(p + q + k + 1)$$
,
where *L* is the likelihood of the data,
 $k = 1$ if $c \neq 0$ and $k = 0$ if $c = 0$.

Information criteria

Akaike's Information Criterion (AIC):

$$AIC = -2\log(L) + 2(p + q + k + 1),$$

where L is the likelihood of the data,

$$k = 1 \text{ if } c \neq 0 \text{ and } k = 0 \text{ if } c = 0.$$

Corrected AIC:

AICc = AIC +
$$\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}$$

Information criteria

Akaike's Information Criterion (AIC):

$$AIC = -2 \log(L) + 2(p + q + k + 1),$$

where L is the likelihood of the data,

$$k = 1 \text{ if } c \neq 0 \text{ and } k = 0 \text{ if } c = 0.$$

Corrected AIC:

AICc = AIC +
$$\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}$$

Good models are obtained by minimizing the AICc.

How does auto.arima() work?

A non-seasonal ARIMA process

$$\phi(B)(1-B)^d y_t = c + \theta(B)\varepsilon_t$$

Need to select appropriate orders: p, q, d

Hyndman and Khandakar (JSS, 2008) algorithm:

- Select no. differences d and D via KPSS test and seasonal strength measure.
- Select p, q by minimising AICc.
- Use stepwise search to traverse model space.

How does auto.arima() work?

Step 1: Select values of *d* and *D*.

Step 2: Select current model (with smallest AICc) from:

ARIMA(2, d, 2)

ARIMA(0, d, 0)

ARIMA(1, d, 0)

ARIMA(0, d, 1)

How does auto.arima() work?

Step 1: Select values of *d* and *D*.

Step 2: Select current model (with smallest AICc) from:

ARIMA(2, d, 2)

ARIMA(0, d, 0)

ARIMA(1, d, 0)

ARIMA(0, d, 1)

Step 3: Consider variations of current model:

- vary one of p, q, from current model by ± 1 ;
- p, q both vary from current model by ± 1 ;
- Include/exclude c from current model.

Model with lowest AICc becomes current model.

Repeat Step 3 until no lower AICc can be found.

autoplot(internet)


```
(fit <- auto.arima(internet))</pre>
## Series: internet
## ARIMA(1,1,1)
##
## Coefficients:
##
          arl mal
       0.650 0.526
##
## s.e. 0.084 0.090
##
## sigma^2 estimated as 10:
                            log likelihood=-254.2
## ATC=514.3 ATCc=514.5
                           BTC=522.1
```

```
(fit <- auto.arima(internet, stepwise=FALSE,
    approximation=FALSE))</pre>
```

```
## Series: internet
## ARIMA(3,1,0)
##
## Coefficients:
##
          ar1 ar2 ar3
## 1.151 -0.661 0.341
## s.e. 0.095 0.135
                      0.094
##
## sigma^2 estimated as 9.66: log likelihood=-252
## ATC=512 ATCc=512.4 BTC=522.4
```

##

checkresiduals(fit, plot=TRUE)

Outline

- 1 Stationarity and differencing
- 2 Backshift notation
- 3 Autoregressive models
- 4 Moving Average models
- 5 Non-seasonal ARIMA models
- **6** Seasonal ARIMA models
- 7 Lab Session 3

where m = number of observations per year.

E.g., $ARIMA(1, 1, 1)(1, 1, 1)_4$ model (without constant)

E.g., ARIMA(1, 1, 1)(1, 1, 1)₄ model (without constant)
$$(1-\phi_1B)(1-\Phi_1B^4)(1-B)(1-B^4)y_t = (1+\theta_1B)(1+\Theta_1B^4)\varepsilon_t$$
.

E.g., ARIMA(1, 1, 1)(1, 1, 1)₄ model (without constant)
$$(1-\phi_1B)(1-\Phi_1B^4)(1-B)(1-B^4)y_t = (1+\theta_1B)(1+\Theta_1B^4)\varepsilon_t$$
.

E.g., ARIMA(1, 1, 1)(1, 1, 1)₄ model (without constant)
$$(1-\phi_1B)(1-\Phi_1B^4)(1-B)(1-B^4)y_t = (1+\theta_1B)(1+\Theta_1B^4)\varepsilon_t$$
.

All the factors can be multiplied out and the general model written as follows:

$$\begin{aligned} y_t &= (1 + \phi_1) y_{t-1} - \phi_1 y_{t-2} + (1 + \Phi_1) y_{t-4} \\ &- (1 + \phi_1 + \Phi_1 + \phi_1 \Phi_1) y_{t-5} + (\phi_1 + \phi_1 \Phi_1) y_{t-6} \\ &- \Phi_1 y_{t-8} + (\Phi_1 + \phi_1 \Phi_1) y_{t-9} - \phi_1 \Phi_1 y_{t-10} \\ &+ \varepsilon_t + \theta_1 \varepsilon_{t-1} + \Theta_1 \varepsilon_{t-4} + \theta_1 \Theta_1 \varepsilon_{t-5}. \end{aligned}$$

```
autoplot(euretail) +
  xlab("Year") + ylab("Retail index")
```



```
(fit <- auto.arima(euretail))</pre>
## Series: euretail
## ARIMA(1,1,2)(0,1,1)[4]
##
## Coefficients:
##
          arl mal ma2 sma1
##
       0.736 - 0.466 \ 0.216 - 0.843
## s.e. 0.224 0.199 0.210
                              0.188
##
## sigma^2 estimated as 0.159: log likelihood=-29.62
## ATC=69.24 ATCc=70.38 BTC=79.63
```

```
(fit <- auto.arima(euretail, stepwise=TRUE,
 approximation=FALSE))
## Series: euretail
## ARIMA(1,1,2)(0,1,1)[4]
##
## Coefficients:
##
          ar1
                 ma1
                         ma2
                              sma1
##
        0.736 - 0.466 \ 0.216 - 0.843
## s.e. 0.224 0.199 0.210
                               0.188
##
## sigma^2 estimated as 0.159: log likelihood=-29.62
## ATC=69.24 ATCc=70.38
                           BTC=79.63
```

checkresiduals(fit, test=FALSE)

Cortecosteroid drug sales

Cortecosteroid drug sales

```
(fit <- auto.arima(h02, lambda=0, max.order=9,
    stepwise=FALSE, approximation=FALSE))</pre>
```

```
## Series: h02
## ARIMA(4,1,1)(2,1,2)[12]
## Box Cox transformation: lambda= 0
##
## Coefficients:
                 ar2 ar3 ar4
##
           ar1
                                      ma1
                                            sar1
##
        -0.042 0.210 0.202 -0.227 -0.742 0.621
## s.e. 0.217 0.181 0.114 0.081 0.207 0.242
##
         sar2
                 sma1
                       sma2
       -0.383 -1.202 0.496
##
      0.118 0.249
                      0.214
## S.e.
```

48

Cortecosteroid drug sales

checkresiduals(fit)

##

Understanding ARIMA models

Long-term forecasts

```
zero c = 0, d + D = 0

non-zero constant c = 0, d + D = 1 c \neq 0, d + D = 0

linear c = 0, d + D = 2 c \neq 0, d + D = 1

quadratic c = 0, d + D = 3 c \neq 0, d + D = 2
```

Forecast variance and d + D

- The higher the value of d + D, the more rapidly the prediction intervals increase in size.
- For d + D = 0, the long-term forecast standard deviation will go to the standard deviation of the historical data.

Prediction intervals

- Prediction intervals increase in size with forecast horizon.
- Calculations assume residuals are uncorrelated and normally distributed.
- Prediction intervals tend to be too narrow.
 - the uncertainty in the parameter estimates has not been accounted for.
 - the ARIMA model assumes historical patterns will not change during the forecast period.
 - the ARIMA model assumes uncorrelated future errors

Outline

- 1 Stationarity and differencing
- 2 Backshift notation
- 3 Autoregressive models
- 4 Moving Average models
- 5 Non-seasonal ARIMA models
- **6** Seasonal ARIMA models
- 7 Lab Session 3

Lab Session 3