

Module 7: Hands-On: 2

Data Manipulation.

Step 1: Open Anaconda Navigator

Step 2: Click on Launch button under jupyter notebooks.

Step 3: After the notebook opens click on new and Python 3.

Step 4: Import the required packages and read the data.

```
import pandas as pd
 In [1]:
          import numpy as np
 In [9]: data = pd.read_csv('housing.csv')
In [12]:
          data.head()
Out[12]:
               RM LSTAT PTRATIO
                                      MEDV
           0 6.575
                     4.98
                               15.3 504000.0
           1 6.421
                     9.14
                               17.8 453600.0
           2 7.185
                     4.03
                               17.8 728700.0
           3 6.998
                     2.94
                               18.7 701400.0
           4 7.147
                     5.33
                               18.7 760200.0
```

Step 5: Analyze the shape of data.

```
In [13]: data.shape
Out[13]: (489, 4)
```


Step 6: Extract a subset of data using iloc.

In [16]:	<pre>data.iloc[:5, :]</pre>					
Out[16]:						
		RM	LSTAT	PTRATIO	MEDV	
	0	6.575	4.98	15.3	504000.0	
	1	6.421	9.14	17.8	453600.0	
	2	7.185	4.03	17.8	728700.0	
	3	6.998	2.94	18.7	701400.0	
	4	7.147	5.33	18.7	760200.0	
In [21]:	da	ta.ilo	c[2:5,	:2]		
Out[21]:						
		RM	LSTAT			
	2	7.185	4.03			
	3	6.998	2.94			
	4	7.147	5.33			
In [19]:	da	ta.ilo	c[2:4,	1:2]		
Out[19]:						
		LSTAT	_			
	2	4.03				
	3	2.94	ļ			

Step 7: Extract a subset of data using loc.

In [25]: data.loc[:5, 'LSTAT':'MEDV'] Out[25]: LSTAT PTRATIO MEDV 4.98 15.3 504000.0 9.14 17.8 453600.0 1 17.8 728700.0 2 4.03 2.94 18.7 701400.0 5.33 18.7 760200.0 5 5.21 18.7 602700.0

Step 8: Change all values in LSTAT column to 1.

In [26]: data['LSTAT'] = 1
 data.head()

Out[26]:

		RM	LSTAT	PTRATIO	MEDV
	0	6.575	1	15.3	504000.0
	1	6.421	1	17.8	453600.0
	2	7.185	1	17.8	728700.0
	3	6.998	1	18.7	701400.0
	4	7.147	1	18.7	760200.0

Python for Data Science Certification Course

Step 9: Apply function to change LSTAT value to its double (multiply by 2).

In [28]: data['LSTAT'] = data['LSTAT'].apply(lambda x : x * 2)
In [29]: data

Out[29]:

	RM	LSTAT	PTRATIO	MEDV
0	6.575	2	15.3	504000.0
1	6.421	2	17.8	453600.0
2	7.185	2	17.8	728700.0
3	6.998	2	18.7	701400.0
4	7.147	2	18.7	760200.0