Praktikum z ekonometrie

VŠE Praha

Tomáš Formánek

Block 4 – Linear mixed effect models – Outline

- Introduction
- 2 LME model example
- 3 LME model in matrix form
- 4 More complex LME models
- 5 LME models in R

Introduction

Linear mixed effect model (LME) – generalization of linear (panel) model

• LMEs & longitudinal data: repeated measurements are performed on each individual unit. Several units are sampled. Number of observations may differ across units (both longitudinal & hierarchical data).

```
y_{ti} - observation at time t for i-th individual.

y_{ij} - ith observation of jth individual (if time aspect secondary).
```

• LMEs & nesting (hierarchical) data structures: data with two or more groups/levels of observations.

```
y_{ij} - observation for i-th company within j-th region. y_{ij} - observation for i-th student within j-th class.
```

We can group observations at multiple levels:

```
y_{tij} - measurement at time period t, in region i within state j.
```

• Note how indices are ordered (left to right) from individual to highest level of aggregation. (alternative orderings exist in literature).

Introduction

Linear mixed effect model (LME)

- Nested/hierarchical structure of the LME model:
 - Individual units i (Level 1) are nested
 - within j groups (Level 2) with group-specific observation sizes n_j .
- One or more β -coefficients can vary across groups.
- The same nesting/hierarchical framework applies to longitudinal data and their LME-based analysis:
 - Observations at time t (Level 1) are nested
 - within j individual units (Level 2).
 - If appropriate, individual units can be nested in groups (Level 3) \dots

Introduction

- Mixed models are called "mixed", because the β -coefficients are a mix of fixed parameters and random variables
- Terms "fixed" and "random" have specific meaning for LMEs:
 - A fixed coefficient is an unknown constant to be estimated.
 - A random coefficient varies from "group" to "group". By "group", we mean Level 2 aggregation, if data have 2 levels.
 - coefficients vary among schools (Level 2), not within school.
 - coeffs. vary across individuals (Level 2), not over time (Level 1).
- LME models can have some added complexity:
 - Multiple levels of nesting
 - Crossed random effects
 - Correlations between different random coefficients.
- Random coefficients are not estimated, but they can be predicted.

LME model example

• Data:

London Education Authority Junior School Project dataset,

- we have 887 students (i) in 48 different schools (j),
- we want to predict 5th-year math scores.
- We may start by ignoring the school grouping and any possible regressors we have a trivial model (*single-mean* model):

$$\mathtt{math5}_{ij} = \beta_0 + \varepsilon_{ij}, \quad i = 1, \dots, n_j, \quad j = 1, \dots, M, \quad \varepsilon_{ij} \sim N(0, \sigma_{\varepsilon}^2)$$

where M=48 and n_j differ among schools, $\mathtt{math5}_{ij}$ is the observed math score of *i*-th student at school j, β_0 is the mean math score across our population (being sampled) and ε_{ij} is the individual deviation from overall mean.

Population mean math score & the variance of ε are estimated by taking their sample counterparts. Any "school effect" is ignored.

LME model example - continued

• The school effect (differences among schools) may be incorporated in the model by allowing the mean of each school to be represented by a separate parameter (fixed effect)

$$\mathtt{math5}_{ij} = \beta_{0j} + \varepsilon_{ij}, \quad i = 1, \dots, n_j, \quad j = 1, \dots, M, \quad \varepsilon_{ij} \sim N(0, \sigma_\varepsilon^2)$$

where β_{0j} is the school-specific mean math score and ε_{ij} is the individual deviation from the school-specific mean.

- R syntax: $lm(math5 \sim School-1, data=...)$ $\Rightarrow M = 48$ school-specific intercepts are estimated.
- Using the terminology of LME, β_{0j} are fixed. Hence:
 - Estimated intercepts only model (refer to) the specific sample of schools, while -usually- the main interest is in the population from which the sample was drawn.
 - Regression does not provide an estimate of the between-school variability, which is also of central interest.

LME model with random intercept

- Random effects model can solve the above problems by treating the school effects as random variations around a population mean.
- Fixed effects model can be reparametrized as:

$$y_{ij} = \beta_{0j} + \varepsilon_{ij}$$

$$y_{ij} = \frac{\beta_0}{\beta_0} + (\beta_{0j} - \frac{\beta_0}{\beta_0}) + \varepsilon_{ij},$$

Random effect $u_{0j} = \beta_{0j} - \beta_0$ is the school-specific deviation from overall mean β_0 . It can be used to replace the the fixed effect β_{0j} :

$$u_{0j} = \beta_{0j} - \beta_0 \implies \beta_{0j} = \beta_0 + u_{0j}$$
. Hence:
 $y_{ij} = \beta_0 + u_{0j} + \varepsilon_{ij}$.

• u_{0j} is a random variable, specific for the *j*-th school, with zero mean and unknown variance σ_u^2 .

 u_{0j} is a random effect, associated with the particular sample units (schools are selected at random from the population).

LME model with random intercept

• The random effects model is given as:

$$y_{ij} = \beta_0 + u_{0j} + \varepsilon_{ij}, \qquad u_{0j} \sim N(0, \sigma_u^2), \qquad \varepsilon_{ij} \sim N(0, \sigma_\varepsilon^2),$$

and we assume u_{0j} are *iid* and independent from ε_{ij} .

- Observations within the same school share the same random effect u_{0j} , hence are positively "correlated" with ICC = $\sigma_u^2/(\sigma_u^2 + \sigma_{\varepsilon}^2)$ (see ICC on next slide).
- This random effects model has three parameters: β_0 , σ_u^2 and σ_{ε}^2 . (regardless of M, the number of schools).
- Note that the random effect u_{0j} "looks like" a coefficient, but we are only interested in estimating σ_u^2 .
- However, upon observed data (and estimated model), we do make predictions using fitted values of \hat{u}_{j} .

LME model with random intercept and fixed slope

• Exogenous regressors can be used in LMEs (like in LRMs). For example, math5 grades depend on math3 (3rd year grades).

$$\begin{aligned} & \mathtt{math5}_{ij} = (\beta_0 + u_{0j}) + \beta_1 \, \mathtt{math3}_{ij} + \varepsilon_{ij}, \\ & \mathtt{alternatively:} \\ & \mathtt{math5}_{ij} = \beta_0 + \beta_1 \, \mathtt{math3}_{ij} + u_{0j} + \varepsilon_{ij}, \end{aligned}$$

- Intercept is random, given the u_{0i} element.
- Slope of the regression line for each school is fixed at β_1math3 has a *fixed effect*.

LME model: ICC

• ICC: Intra class correlation in a LME regression model:

$$ICC = \frac{\sigma_u^2}{\sigma_u^2 + \sigma_\varepsilon^2}$$

- Describes how strongly units in the same group are "correlated".
- While interpreted as a type of correlation, ICC operates on groups, rather than paired observations. See <u>Wikipedia</u> for formal definition & relation between ICC and actual correlation.
- Example: $\mathtt{math5}_{ij} = \beta_0 + \beta_1 \, \mathtt{math3}_{ij} + u_{0j} + \varepsilon_{ij},$ where $\sigma_u^2 = \mathrm{var}(u_{0j})$ and $\sigma_\varepsilon^2 = \mathrm{var}(\varepsilon_{ij}).$
- Here, ICC measures "correlation" between math5 observations (randomly chosen) within a given school.

Note: ICC has another useful interpretation. Say, ICC = 0.6 in our $\mathtt{math5}_{ij}$ example. Hence, differences between schools explain 60% of variance "left over" after the variance explained by fixed effects (i.e. by $\mathtt{math3}_{ij}$).

LME model with random intercept and slope

• If teaching is different from school to school, it would make sense to have different slopes for each of the schools.

Instead of fixed effects (using interaction terms math3:School), we use random slopes: $u_{1j} = \beta_{1j} - \beta_1$.

$$\mathtt{math5}_{ij} = (\beta_0 + u_{0j}) + (\beta_1 \, \mathtt{math3}_{ij} + u_{1j} \, \mathtt{math3}_{ij}) + \varepsilon_{ij},$$
 alternatively:

$$\mathtt{math5}_{ij} = \underbrace{\beta_0 + \beta_1 \, \mathtt{math3}_{ij}}_{fixed} + \underbrace{u_{0j} + u_{1j} \, \mathtt{math3}_{ij}}_{random} + \varepsilon_{ij},$$

- We can test whether this extra complexity is justified.
- u_{0i} and u_{1i} are often correlated, their independence can be tested.
- Fitted values of math 5_{ij} can be produced, along with \hat{u}_{0j} and \hat{u}_{1j} .

LME model in matrix form

• Linear models

$$y = X\beta + \varepsilon$$
 $\varepsilon \sim N(0, \sigma_{\varepsilon}^2 I),$

• can be generalized into LME models

$$m{y} = m{X}m{eta} + m{Z}m{u} + m{arepsilon} \qquad m{u} \sim N(m{0}, m{G}) \qquad m{arepsilon} \sim N(m{0}, m{R}),$$

where (for balanced panels):

X is a $(n \times k)$ matrix, k is the number of fixed effects,

Z is a $(n \times p)$ matrix, p is the number of random effects,

 ${m G}$ is a $(p \times p)$ variance-covariance matrix of the $random\ effects,$

 \boldsymbol{R} is a $(n \times n)$ variance-covariance matrix of errors.

- Independence between u and ε is assumed.
- Often, $\mathbf{R} = \sigma_{\varepsilon}^2 \mathbf{I}_n$ is assumed group-wise correlations.
- ullet G is diagonal, if $random\ effects$ are mutually independent.

More complex LME models - brief outline

Different types of LME models exist:

- LME models with (multilevel) nested effects,
- LME models with crossed effects,
- Complex behavior of the error term in LME models can be addressed.
- LME models with non-Gaussian dependent variables (binary, Poisson, etc.).

LME models with multilevel nested effects

Multi-level model example: For 17 years, we follow a total of 86 individual states organized within 9 "global-level" regions (e.g. South America, Europe, Middle East, etc.).

- GDP_{tij} represents individual GDP per capita measurements for: t-th time period, e.g. with values (t = 2000, ..., 2016). i-th state nested within region j $(i = 1, ..., M_j)$, j-th region (j = 1, ..., 9),
- We fit GDP as a function of productivity P and unemployment U. States are nested in regions, we have 2 levels of random intercepts: $u_{0i(j)}$ for each state (within a region), v_{0j} for the regions, random slopes can be added as well.
- $GDP_{tij} = \beta_0 + \beta_1 P_{tij} + \beta_2 U_{tij} + u_{0i(j)} + v_{0j} + \varepsilon_{tij}$.

LME models with crossed random effects

Crossed random effects example:

- Grunfeld (1958) analyzed data on 10 large U.S. corporations, collected annually from 1935 to 1954 to investigate how investment I depends on market value M and capital stock C.
- Here, we want *random effects* for a given firm and year. We want the year effect to be the same across all firms, i.e. not nested within firms.
- $\mathbf{I}_{ti} = \beta_0 + \beta_1 \, \mathbf{M}_{ti} + \beta_2 \, \mathbf{C}_{ti} + u_{0i} + v_{0t} + \varepsilon_{ti}$. where $i = 1, \dots, 10$ and firms are followed over $t = 1, \dots, 20$ years. (the usual "it" index ordering can be used as well)

LME models in R

• {lme4} package https://www.jstatsoft.org/article/view/v067i01/0

• {nlme} package
https://cran.r-project.org/web/packages/nlme/nlme.pdf

https://www.r-bloggers.com/2017/12/ linear-mixed-effect-models-in-r/

• Finch, Bolin, Kelley: Multilevel Modeling Using R (2014).