НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Дисциплина: «Дискретная математика»

Домашнее задание 1

Вариант 002

Выполнил: Абрамов Артем, студент группы БПИ1511

Преподаватель: Авдошин С.М., профессор департамента программной инженерии факультета компьютерных наук

- 1. На плоскости задано множество точек V=1,2,3,4,5,6 своими координатами (x=4,y=1),(x=4,y=3),(x=2,y=7),(x=9,y=6),(x=10,y=7),(x=6,y=10)
- 2. Вычислим элементы d_{ij} весовой матрицы смежности графа G=< V, V*V> по формуле dij=|xi-xj|+|yi-yj|

0	3	9	8	11	5
3	0	8	7	8	4
9	8	0	3	8	4
8	7	3	0	11	3
11	8	8	11	0	10
5	4	4	3	10	0

3. Используя метод ветвей и границ, найдем множество кодов всех оптимальных гамильтоновых циклов являющихся решением задачи коммивояжера на графе G. Петли не могут быть частью решения. Поэтому положим диагональные элементы равными бесконечности.

∞	3	9	8	11	5
3	∞	8	7	8	4
9	8	∞	3	8	4
8	7	3	∞	11	3
11	8	8	11	∞	10
5	4	4	3	10	∞

Обозначим через $S = \{p: V \to V\}(p(l) = l)\&(\forall j \subset V)(\forall j \subset V)((p(i) = p(j)) \Longrightarrow (i = j))$ множество кодов всех гамильтоновых циклов $v = (p_1, p_2, p_3, p_4, p_5, p_6, p_1)$ графа G, заданного весовой матрицей смежности D. Здесь p_i используется в качестве сокращенной записи p(i).

Найдем нижнюю границу b множества S

s	1	2	3	4	5	6	$\min \alpha$
1	∞	3	9	8	11	5	3
2	3	∞	8	7	8	4	3
3	9	8	∞	3	8	4	3
4	8	7	3	∞	11	3	3
5	11	8	8	11	∞	10	8
6	5	4	4	3	10	∞	3

s	1	2	3	4	5	6
1	∞	0	6	5	8	2
2	0	∞	5	4	5	1
3	6	5	∞	0	5	1
4	5	4	0	∞	8	0
5	3	0	0	3	∞	2
6	2	1	1	0	7	∞
$\min \beta$	0	0	0	0	5	0

$$b = \alpha + \beta = 28$$

Определим дугу ветвления для разбиения множества s

S	1	2	3	4	5	6
1	∞	0	6	5	3	2
2	0	∞	5	4	0	1
3	6	5	∞	0	0	1
4	5	4	0	∞	3	0
5	3	0	0	3	∞	2
6	2	1	1	0	2	∞

(1,2)

s0	1	2	3	4	5	6	min
1	∞	∞	6	5	3	2	2
2	0	∞	5	4	0	1	0
3	6	5	∞	0	0	1	0
4	5	4	0	∞	3	0	0
5	3	0	0	3	∞	2	0
6	2	1	1	0	2	∞	0
min	0	0	0	0	0	0	

$$b0 = b + 2 + 0 = 30$$

s1	1	3	4	5	6	min
2	∞	5	4	0	1	0
3	6	∞	0	0	1	0
4	5	0	∞	3	0	0
5	3	0	3	∞	2	0
6	2	1	0	2	∞	0
min	2	0	0	0	0	

$$b1 = b + 0 + 2 = 30$$

s0	1	2	3	4	5	6
1	∞	∞	4	3	1	0
2	0	∞	5	4	0	1
3	6	5	∞	0	0	1
4	5	4	0	∞	3	0
5	3	0	0	3	∞	2
6	2	1	1	0	2	∞

s1	1	3	4	5	6
2	∞	5	4	0	1
3	4	∞	0	0	1
4	3	0	∞	3	0
5	1	0	3	∞	2
6	0	1	0	2	∞

Определим дугу ветвления для разбиения множества ${ m s1}$

s1	1	3	4	5	6
2	∞	5	4	0	1
3	4	∞	0	0	1
4	3	0	∞	3	0
5	1	0	3	∞	2
6	0	1	0	2	∞

(2,5)

s10	1	3	4	5	6	min
2	∞	5	4	∞	1	1
3	4	∞	0	0	1	0
4	3	0	∞	3	0	0
5	1	0	3	∞	2	0
6	0	1	0	2	∞	0
min	0	0	0	0	0	

$$b10 = b1 + 1 + 0 = 31$$

sH	1	3	4	6	mın
3	4	∞	0	1	0
4	3	0	∞	0	0
5	∞	0	3	2	0
6	0	1	0	∞	0
min	0	0	0	0	

$$b11 = b1 + 0 + 0 = 30$$

s10	1	3	4	5	6
2	∞	4	3	∞	0
3	4	∞	0	0	1
4	3	0	∞	3	0
5	1	0	3	∞	2
6	0	1	0	2	\sim

s11	1	3	4	6
3	4	∞	0	1
4	3	0	∞	0
5	∞	0	3	2
6	0	1	0	∞

Определим дугу ветвления для разбиения множества ${ m s0}$

s0	1	2	3	4	5	6
1	∞	∞	4	3	1	0
2	0	∞	5	4	0	1
3	6	5	∞	0	0	1
4	5	4	0	∞	3	0
5	3	0	0	3	∞	2
6	2	1	1	0	2	∞

(2,1)

s00	1	2	3	4	5	6	min
1	∞	∞	4	3	1	0	0
2	∞	∞	5	4	0	1	0
3	6	5	∞	0	0	1	0
4	5	4	0	∞	3	0	0
5	3	0	0	3	∞	2	0
6	2	1	1	0	2	∞	0
min	2	0	0	0	0	0	

$$b00 = b0 + 0 + 2 = 32$$

s01	2	3	4	5	6	min
1	∞	4	3	1	0	0
3	5	∞	0	0	1	0
4	4	0	∞	3	0	0
5	0	0	3	∞	2	0
6	1	1	0	2	∞	0
min	0	0	0	0	0	

$$b01 = b0 + 0 + 0 = 30$$

s00	1	2	3	4	5	6
1	∞	∞	4	3	1	0
2	∞	∞	5	4	0	1
3	4	5	∞	0	0	1
4	3	4	0	∞	3	0
5	1	0	0	3	∞	2
6	0	1	1	0	2	∞

s01	2	3	4	5	6
1	∞	4	3	1	0
3	5	∞	0	0	1
4	4	0	∞	3	0
5	0	0	3	∞	2
6	1	1	0	2	∞

Определим дугу ветвления для разбиения множества ${ m s}11$

s11	1	3	4	6
3	4	∞	0	1
4	3	0	∞	0
5	∞	0	3	2
6	0	1	0	∞

(6,1)

s110	1	3	4	6	min
3	4	∞	0	1	0
4	3	0	∞	0	0
5	∞	0	3	2	0
6	∞	1	0	∞	0
min	3	0	0	0	

$$b110 = b11 + 0 + 3 = 33$$

s1	11	3	4	6	\min
	3	∞	0	1	0
	4	0	∞	0	0
	5	0	3	∞	0
n	nin	0	0	0	

$$b111 = b11 + 0 + 0 = 30$$

s110	1	3	4	6
3	1	∞	0	1
4	0	0	∞	0
5	∞	0	3	2
6	∞	1	0	∞

s111	3	4	6
3	∞	0	1
4	0	∞	0
5	0	3	∞

Определим дугу ветвления для разбиения множества ${\rm s}01$

s01	2	3	4	5	6
1	∞	4	3	1	0
3	5	∞	0	0	1
4	4	0	∞	3	0
5	0	0	3	∞	2
6	1	1	0	2	∞

(1,6)

s010	2	3	4	5	6	\min
1	∞	4	3	1	∞	1
3	5	∞	0	0	1	0
4	4	0	∞	3	0	0
5	0	0	3	∞	2	0
6	1	1	0	2	∞	0
min	0	0	0	0	0	

$$b010 = b01 + 1 + 0 = 31$$

s011	2	3	4	5	min
3	5	∞	0	0	0
4	4	0	∞	3	0
5	0	0	3	∞	0
6	∞	1	0	2	0
min	0	0	0	0	

$$b011 = b01 + 0 + 0 = 30$$

s010	2	3	4	5	6
1	∞	3	2	0	∞
3	5	∞	0	0	1
4	4	0	∞	3	0
5	0	0	3	∞	2
6	1	1	0	2	∞

s011	2	3	4	5
3	5	∞	0	0
4	4	0	∞	3
5	0	0	3	∞
6	∞	1	0	2

Определим дугу ветвления для разбиения множества s111

s111	3	4	6
3	∞	0	1
4	0	∞	0
5	0	3	∞

(3,4)

s1110	3	4	6	min
3	∞	∞	1	1
4	0	∞	0	0
5	0	3	∞	0
min	0	3	0	

s1110	3	4	6
3	∞	∞	0
4	0	∞	0
5	0	0	∞

$$b1110 = b111 + 1 + 3 = 34$$

s1111	3	6
4	∞	0
5	0	∞

$$b1111 = b111 + 0 + 0 = 30$$

 $v = \{1, 2, 5, 3, 4, 6, 1\}$

Определим дугу ветвления для разбиения множества ${
m s}011$

s011	2	3	4	5
3	5	∞	0	0
4	4	0	∞	3
5	0	0	3	∞
6	∞	1	0	2

(5,2)

s0110	2	3	4	5	min
3	5	∞	0	0	0
4	4	0	∞	3	0
5	∞	0	3	∞	0
6	∞	1	0	2	0
min	4	0	0	0	

b0110 = b011	+ 0 + 4	4 = 34

s()111	3	4	5	\min
	3	∞	0	0	0
	4	0	∞	3	0
	6	1	0	∞	0
1	nin	0	0	0	

$$b0111 = b011 + 0 + 0 = 30$$

s0110	2	3	4	5
3	1	∞	0	0
4	0	0	∞	3
5	∞	0	3	∞
6	∞	1	0	2

s0111	3	4	5
3	∞	0	0
4	0	∞	3
6	1	0	∞

Определим дугу ветвления для разбиения множества s0111

s0111	3	4	5
3	∞	0	0
4	0	∞	3
6	1	0	∞

(3,5)

s01110	3	4	5	min
3	∞	0	∞	0
4	0	∞	3	0
6	1	0	∞	0
min	0	0	3	

s01110	3	4	5
3	∞	0	∞
4	0	∞	0
6	1	0	∞

$$b01110 = b0111 + 0 + 3 = 33$$

s01111	3	4
4	0	∞
6	∞	0

$$b01111 = b0111 + 0 + 0 = 30$$

 $v = \{1, 6, 4, 3, 5, 2, 1\}$

Ответ: множество кодов всех оптимальных гамильтоновых циклов являющихся решением задачи коммивояжера на графе G есть $\{1643521, 1253461\}$. Вес f_o оптимального гамильтонова цикла равен 30.

4. Найдем приближенное решение задачи коммивояжера v_1 с помощью первого алгоритма Кристофидеса. Используя весовую матрицу смежности D графа G , построим кратчайшее связывающее дерево T с помощю алгоритма Прима.

∞	3	9	8	11	5
3	∞	8	7	8	4
9	8	∞	3	8	4
8	7	3	∞	11	3
11	8	8	11	∞	10
5	4	4	3	10	∞

9	8	11
8	7	8
∞	3	8
3	∞	11
8	11	∞
4	3	10

9	8	11	5
8	7	8	4
∞	3	8	4
3	∞	11	3
8	11	∞	10
4	3	10	∞

9	11
8	8
∞	8
3	11
8	∞
4	10

 $\begin{array}{c}
 11 \\
 8 \\
 8 \\
 \hline
 11 \\
 \infty \\
 \hline
 10
 \end{array}$

Рассмотрим матрицу смежности графа.

Возьмем реберо (1,2) с наименьшим весом 3 и выкинем из таблицы колонки 1, 2. Будем искать наименьшее ребро исходящее из вершин 1 или 2.

Это ребро (2,6) с весом 4. Добавим его в дерево и выкинем из таблицы колонку 6. Найдем наименьшее ребро исходящее из вершин 1, 2 или 6.

Это ребро (6,4) с весом 3. Добавим его в дерево и выкинем из таблицы колонку 4. Найдем наименьшее ребро исходящее из вершин 1, 2, 6 или 4.

Это ребро (4,3) с весом 3. Добавим его в дерево и выкинем из таблицы колонку 3. Найдем наименьшее ребро исходящее из вершин 1, 2, 6, 4, 3.

Это ребро (2,5) с весом 8. Добавим его в дерево и выкинем из таблицы колонку 5.

Следовательно кратчайшее связывающее дерево $E(T)=\{(1,2),(2,6),(6,4),(4,3),(2,5)\}$ Вес дерева $f(T)=\sum_{(i,j)\in E(T)}d_{ij}=\sum_{i=1}^6\lambda_i=17$

В графе с удвоенным числом ребер дерева

$$E(T)||E(T)|| = \{(1,2), (2,6), (6,4), (4,3), (2,5), (2,1), (6,2), (4,6), (3,4), (5,2)\}$$

Построим Эйлеров цикл $\mu = (1, 2, 5, 2, 6, 4, 3, 4, 6, 2, 1).$

Удалим повторения вершин в Эйлеровом цикле для получения приближенного решения $v_1 = (1, 2, 5, 6, 4, 3, 1)$.

Вес полученного гамильтонова цикла равен $f(v_1) = 3 + 8 + 10 + 3 + 3 + 9 = 36$

Вычислим относительную точность полученного решения $\epsilon = \frac{f(v_1) - f(v_0)}{f(v_0)} = \frac{36 - 30}{30} = 0.2$

Таким образом найдено приближенное решение задачи коммивояжора.

5. Найдем приближенное решение задачи коммивояжора v_2 с помощю второго алгоритма Кристофидеса. Кратчайшее связывающие дерево имеет ребра $E(T) = \{(1,2),(2,6),(6,4),(4,3),(2,5)\}$

В дереве четыре вершины нечетной степени 1,2,5,3.

В оптимальное паросочетание $E(M) = \{(2,1),(5,3)\}$ входит два ребра. Строим Эйлеров цикл в графе со множеством ребер

$$E(T)||E(M) = \{(2,1), (5,3), (1,2), (2,6), (6,4), (4,3), (2,5)\}$$

Полученный эйлеров цикл является одновременно и гамильтоновым $v_2 = \mu = (1, 2, 5, 3, 4, 6, 1)$

Вес цикла $f(v_2) = 30$.

Относительная точность решения $\epsilon = \frac{f(v_1) - f(v_0)}{f(v_0)} = \frac{30 - 30}{30} = 0$

Таким образом вторым алгоритмом найдено точное решение.