

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

THIS PAGE BLANK (USPTO)

09/70325/JP00/01361

JP00/01361

06.03.00

日本国特許庁
PATENT OFFICE
JAPANESE GOVERNMENT

EU

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日

Date of Application:

1999年 3月17日

REC'D 25 APR 2000

WO PCT

出願番号

Application Number:

平成11年特許願第072218号

出願人

Applicant(s):

セイコーインスツルメンツ株式会社

PRIORITY
DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

2000年 4月 7日

特許庁長官
Commissioner,
Patent Office

近藤 隆彦

出証番号 出証特2000-3023302

【書類名】 特許願
【整理番号】 99000098
【提出日】 平成11年 3月17日
【あて先】 特許庁長官 殿
【国際特許分類】 G01N 37/00
【発明者】
【住所又は居所】 千葉県千葉市美浜区中瀬1丁目8番地 セイコーインス
ツルメンツ株式会社内
【氏名】 新輪 隆
【発明者】
【住所又は居所】 千葉県千葉市美浜区中瀬1丁目8番地 セイコーインス
ツルメンツ株式会社内
【氏名】 加藤 健二
【発明者】
【住所又は居所】 千葉県千葉市美浜区中瀬1丁目8番地 セイコーインス
ツルメンツ株式会社内
【氏名】 市原 進
【発明者】
【住所又は居所】 千葉県千葉市美浜区中瀬1丁目8番地 セイコーインス
ツルメンツ株式会社内
【氏名】 千葉 徳男
【発明者】
【住所又は居所】 千葉県千葉市美浜区中瀬1丁目8番地 セイコーインス
ツルメンツ株式会社内
【氏名】 光岡 靖幸
【発明者】
【住所又は居所】 千葉県千葉市美浜区中瀬1丁目8番地 セイコーインス
ツルメンツ株式会社内
【氏名】 大海 学

【発明者】

【住所又は居所】 千葉県千葉市美浜区中瀬1丁目8番地 セイコーインス
ツルメンツ株式会社内

【氏名】 笠間 宣行

【特許出願人】

【識別番号】 000002325

【氏名又は名称】 セイコーインスツルメンツ株式会社

【代表者】 伊藤 潔

【代理人】

【識別番号】 100096286

【弁理士】

【氏名又は名称】 林 敬之助

【手数料の表示】

【予納台帳番号】 008246

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9003012

【ブルーフの要否】 不要

【書類名】 明細書

【発明の名称】 光マイクロカンチレバーとその製造方法および光マイクロ
カンチレバーホルダ

【特許請求の範囲】

【請求項1】 走査型近視野顕微鏡に用いる光マイクロカンチレバーにおいて、

光入射／出射端と自由端とを有し、伝播光を伝播する光導波路と、

前記自由端に形成され、先端に微小開口が設けられたチップ部と、

前記光入射／出射端から伝播してきた伝播光を前記微小開口に導くように反射し
、または前記微小開口から伝播してきた伝播光を前記光入射／出射端に導くよう
に反射する反射手段と、を具備したことを特徴とする光マイクロカンチレバー。

【請求項2】 走査型近視野顕微鏡に用いる光マイクロカンチレバーにおいて、

光入射／出射端と自由端と、かつ前記光入射／出射端を通過する伝播光の光軸
に対して角度を有するノーズ部分とを有し、伝播光を伝播する光導波路と、

前記自由端に形成され、先端に微小開口が設けられたチップ部と、

前記光入射／出射端から伝播してきた伝播光を前記微小開口に導くように反射し
、または前記微小開口から伝播してきた伝播光を前記光入射／出射端に導くよう
に反射する反射手段と、を具備したことを特徴とする光マイクロカンチレバー。

【請求項3】 前記光導波路は、コアと、そのコアの一方側または両側または
コアの周囲に堆積されたクラッドとからなることを特徴とする請求項1または
請求項2に記載の光マイクロカンチレバー。

【請求項4】 前記光導波路上に、前記チップ部が形成されている側に遮光
膜を設け、前記チップ部が形成されている側の反対側に反射膜を設けたことを特
徴とする請求項1から請求項3のいずれか1つに記載の光マイクロカンチレバー
。

【請求項5】 走査型近視野顕微鏡に用いる光マイクロカンチレバーの製造
方法において、

基板に、光導波路の型とする段差形成工程と、

前記基板上に反射膜を堆積する反射膜堆積工程と、
前記反射膜上に光導波路を堆積する光導波路堆積工程と、
前記光導波路を加工してチップ部を形成するチップ部形成工程と、
前記光導波路上に遮光膜を堆積する遮光膜堆積工程と、
前記チップ部の先端に微小開口を形成する微小開口形成工程と、
光入射／出射端となる側の前記基板を残して自由端となる側の前記基板を除去することにより支持部を形成する支持部形成工程と、を含むことを特徴とする光マイクロカンチレバーの製造方法。

【請求項6】 前記段差形成工程で形成した前記段差の角度を、前記反射膜堆積工程で堆積した前記反射膜により前記光入射／出射端から伝播してきた伝播光を微小開口に導くことができる角度、または前記微小開口から伝播してきた伝播光を前記光入射／出射端に導くことができる角度とすることを特徴とする請求項5に記載の光マイクロカンチレバー製造方法。

【請求項7】 走査型近視野顕微鏡に用いる光マイクロカンチレバーにおいて、

光入射／出射端と自由端とを有し、伝播光を伝播する光導波路と、
前記光入射／出射端となる側に形成され、前記光導波路に光を入射する光または、前記光導波路から出射する光に作用する光学素子の位置を固定する光学素子用ガイドと、前記光入射／出射端と前記光学素子用ガイドとの間に設けられた溝とを有する支持部と、を具備したことを特徴とする光マイクロカンチレバー。

【請求項8】 走査型近視野顕微鏡に用いる光マイクロカンチレバーの製造方法において、

基板に、光導波路の型とする段差を形成する段差形成工程と、
前記基板に、光学素子用のガイドを形成する光学素子用ガイド形成工程と、
前記基板上に光導波路を堆積する光導波路堆積工程と、
光導波路の光入射／出射端を形成する光入射／出射端形成工程と、
前記光入射／出射端と前記光学素子用ガイドとの間の前記基板を加工して溝を形成する溝形成工程と、
前記光学素子用ガイド上の前記光導波路を除去して前記光学素子用ガイドを露

出する光学素子用ガイド露出工程と、

光入射／出射端となる側の前記基板を残して自由端となる側の前記基板を除去することにより支持部を形成する支持部形成工程と、を含むことを特徴とする光マイクロカンチレバーの製造方法。

【請求項9】 走査型近視野顕微鏡に用いる光マイクロカンチレバーの製造方法において、

基板に、光導波路の型とする段差を形成する段差形成工程と、

前記基板に、前記光導波路に光を入射する光または、前記光導波路から出射する光に作用する光学素子の位置を固定する光学素子用ガイドを形成する光学素子用ガイド形成工程と、

前記基板上に反射膜を堆積する反射膜堆積工程と、

前記反射膜上に光導波路を堆積する光導波路堆積工程と、

前記光導波路を加工してチップ部を形成するチップ部形成工程と、

前記光導波路上に遮光膜を堆積する遮光膜堆積工程と、

前記チップ部の先端に微小開口を形成する微小開口形成工程と、

前記光導波路の光入射／出射端となる部分の前記遮光膜と前記光導波路と前記反射膜とを除去して光導波路の光入射・出射端を形成する光入射／出射端形成工程と、

前記光入射／出射端と前記光学素子用ガイドとの間の前記基板を加工して溝を形成する溝形成工程と、

前記光学素子用ガイド上の前記遮光膜と前記光導波路と前記反射膜とを除去して前記光学素子用のガイドを露出するガイド露出工程と、

光入射／出射端となる側の前記基板を残して自由端となる側の前記基板を除去することにより支持部を形成する支持部形成工程と、を含むことを特徴とする光マイクロカンチレバーの製造方法。

【請求項10】 光マイクロカンチレバーを支持する光マイクロカンチレバー用ガイドと、前記光導波路に光を入射する光または、前記光導波路から出射する光に作用する光学素子の位置を固定する光学素子用ガイドと、を具備することを特徴とする光マイクロカンチレバーホルダ。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、伝播光を効率良く伝播することができる光マイクロカンチレバーとその製造方法と、光マイクロカンチレバーとその光マイクロカンチレバーに入射させる光または、光マイクロカンチレバーから出射する光に作用する光学素子を固定する光マイクロカンチレバーホルダに関するものである。

【0002】

【従来の技術】

現在、先端が先鋭化された光媒体からなるプローブを、光の波長以下まで測定試料に近づけることで、試料の光学特性や形状を測定する走査型近視野顕微鏡（以下、SNOMと言う）が知られている。この走査型近視野顕微鏡では、試料に対して垂直に保持した直線状の光ファイバプローブの先端を、試料表面に対して水平に振動させ、試料表面と光ファイバプローブ先端のせん断力によって生じる振動の振幅の変化を検出している。なお、この振幅の変化は、光ファイバプローブの先端にレーザ光を照射してその影の変化により検出される。この走査型近視野顕微鏡では、光ファイバプローブの振動の振幅が一定となるように試料を微動機構で動かすことによって光ファイバプローブの先端と試料表面の間隔を一定に保ち、微動機構に入力した信号強度から表面形状を検出したり、試料の光透過性の測定を行う。

【0003】

また、鈎状に形成した光ファイバプローブを原子間力顕微鏡（以下、AFMと言う）のカンチレバーとして使用し、AFM動作すると同時に、光ファイバプローブに導入されたレーザ光により、その先端に近視野光を生成し、生成した近視野光と試料とを相互作用させることで、試料の表面形状を検出すると共に試料の光学特性の測定を行う走査型近視野原子間力顕微鏡が提案されている（特開平7-174542号公報）。図12は、従来例の光導波路プローブの側断面図である。この光導波路プローブ110では、光導波路101として光ファイバが用いられ、その光導波路101の周囲は金属膜102で覆われている。光導波路プロ

ープ110の一端には先鋭化されたチップ部103が形成されており、チップ部103の先端には近視野光を生成するための微小開口104が設けられている。なお、チップ部103は、光導波路プローブ110の先端部を、図示しない試料に向けて湾曲されることにより形成されている。

【0004】

更に、従来は、図13に示したような光マイクロカンチレバーが知られている。この光マイクロカンチレバー120では、光導波路111をコアとクラッドの積層により構成し、光導波路111の表面には金属膜112が設けられている。光マイクロカンチレバー120の一端には先鋭化されたチップ部119、他端には光マイクロカンチレバー120を固定するための支持部114が形成されている。チップ部119の先端には、近視野光を発生させるための微小開口113が設けられている。

【0005】

なお、光マイクロカンチレバー120においては、チップ部119が形成されている端をカンチレバーの自由端、支持部114が形成されている光導波路の端を光入射端117と称する。そして、自由端は、微小開口113を図示しない試料に対して近接させるために湾曲している。また、光入射端117からは光導波路111に伝播光が入射される。

【0006】

支持部114には、光ファイバを固定するための光ファイバ用ガイド溝115が形成されている。図14は、光ファイバ用ガイド溝115に光ファイバ130を固定した状態を示す。光ファイバ130からの伝播光は、光入射端117を介して光導波路111に入射され、光導波路111により微小開口113に導かれる。この微小開口113を通過しようとする伝播光により、微小開口113付近に近視野光が発生する。なお、逆に、試料表面に発生している近視野光を微小開口113で散乱させて伝播光を発生させると共に、この伝播光を微小開口113と光導波路111を介して、光入射端117側で検出することが可能である。支持部114に光ファイバ用ガイド溝115を設けているので、光ファイバ130の装着が容易となり、交換時などにおいて、光マイクロカンチレバー120と光

ファイバ130のアライメントの手間が省ける。

【0007】

【発明が解決しようとする課題】

しかしながら、上記光ファイバープローブ110は、光ファイバ101を材料として多くの工程を手作業により製造しているため量産性が低い。更に、光ファイバ101が金属膜102で覆われているとしても、光ファイバ101が湾曲している個所に伝播光の損失が発生し、伝播光を効率良く伝播することができない問題点があった。この湾曲の角度が急なほど伝播光の損失が大きくなる。逆に、湾曲の角度が滑らかなほど光ファイバープローブが長くなってしまい、取り扱いが面倒になる問題点があった。

【0008】

上記光マイクロカンチレバー120は、量産性や均一性は優れているが、光導波路111の表面に金属膜112が設けられているとしても、光導波路111が湾曲している個所に伝播光の損失が発生し、伝播光を効率良く伝播することができない問題点があった。更に、製造の工程で、光入射端117と光ファイバ用ガイド溝115との間に、図14に示すように、滑らかな斜面116が生じてしまい、光ファイバ130を光入射端117に十分に近づけることが困難であり、光の入射効率の悪化、すなわちカップリングロスの増大という問題点があった。

【0009】

本発明は上記の点に鑑みてなされたものであって、伝播光を効率良く入射および伝播させることができる光マイクロカンチレバーと、このような光マイクロカンチレバーを作成するための製造方法とを提供することを目的とする。また、光マイクロカンチレバーと光学素子を支持する光マイクロカンチレバーホルダを提供することを目的とする。

【0010】

【課題を解決するための手段】

上記の目的を達成するために、請求項1にかかる光マイクロカンチレバーは、走査型近視野顕微鏡に用いる光マイクロカンチレバーにおいて、光入射／出射端と自由端とを有し、伝播光を伝播する光導波路と、前記自由端に形成され、先端

に微小開口が設けられたチップ部と、前記光入射／出射端から伝播してきた伝播光を前記微小開口に導くように反射し、または前記微小開口から伝播してきた伝播光を前記光入射／出射端に導くように反射する反射手段と、を具備したことを特徴とする。

【0011】

上記光マイクロカンチレバーでは、光入射／出射端からの伝播光を微小開口に導くように反射し、または微小開口からの伝播光を光入射／出射端に導くように反射する反射手段を設けている。この反射手段により、伝播光を効率良く反射させることができ、微小開口に導かれる伝播光の損失を低減することができる。

【0012】

また、請求項2にかかる光マイクロカンチレバーは、走査型近視野顕微鏡に用いる光マイクロカンチレバーにおいて、光入射／出射端と自由端と、かつ前記光入射／出射端を通過する伝播光の光軸に対して角度を有するノーズ部分とを有し、伝播光を伝播する光導波路と、前記自由端に形成され、先端に微小開口が設けられたチップ部と、前記光入射／出射端から伝播してきた伝播光を前記微小開口に導くように反射し、または前記微小開口から伝播してきた伝播光を前記光入射／出射端に導くように反射する反射手段と、を具備したことを特徴とする。

【0013】

上記光マイクロカンチレバーでは、光入射／出射端からの伝播光を微小開口に導くように反射し、または微小開口からの伝播光を光入射／出射端に導くように反射する反射手段と、光入射／出射端を通過する伝播光の光軸に対して角度を有する部分とを設けている。反射手段により、伝播光を効率良く反射させることができ、微小開口に導かれる伝播光の損失を低減することができる。また、光入射／出射端を通過する伝播光の光軸に対して角度を有する部分の長さを調整することにより、大きな段差を有する試料の表面の観察が可能となる。

【0014】

また、請求項3にかかる光マイクロカンチレバーは、請求項1または請求項2に記載の光マイクロカンチレバーにおいて、前記光導波路は、コアと、そのコアの一方側または両側またはコアの周囲に堆積されたクラッドとからなることを特

徴とする。

【0015】

上記光マイクロカンチレバーでは、光導波路が、コアと、そのコアの一方側または両側またはコアの周囲に積層されたクラッドとからなるため、光導波路を伝播する伝播光が外部へ漏れてしまうことを防止でき、また、伝播光が全反射条件で光導波路内を伝播する。

【0016】

また、請求項4にかかる光マイクロカンチレバーは、請求項1から請求項3のいずれか1つに記載の光マイクロカンチレバーにおいて、前記光導波路上に、前記チップ部が形成されている側に遮光膜を設け、前記チップ部が形成されている側の反対側に反射膜を設けたことを特徴とする。

【0017】

上記光マイクロカンチレバーでは、光導波路上に、チップ部が形成されている側に遮光膜を設け、チップ部が形成されている側の反対側に反射膜を設けることにより、光導波路を伝播する伝播光が外部へ漏れてしまうことを防止できる。

【0018】

また、上記の目的を達成するために、請求項5にかかる光マイクロカンチレバーの製造方法は、走査型近視野顕微鏡に用いる光マイクロカンチレバーの製造方法において、基板に、光導波路の型とする段差を形成する段差形成工程と、前記基板上に反射膜を堆積する反射膜堆積工程と、前記反射膜上に光導波路を堆積する光導波路堆積工程と、前記光導波路を加工してチップ部を形成するチップ部形成工程と、前記光導波路上に遮光膜を堆積する遮光膜堆積工程と、前記チップ部の先端に微小開口を形成する微小開口形成工程と、光入射／出射端となる側の前記基板を残して自由端となる側の前記基板を除去することにより支持部を形成する支持部形成工程と、を含むことを特徴とする。

【0019】

上記光マイクロカンチレバーの製造方法は、基板に、光導波路の型とする段差形成工程と、基板上に反射膜を堆積する反射膜堆積工程と、その反射膜上に光導波路を堆積する光導波路堆積工程と、光導波路を加工してチップ部を形成するチ

ップ部形成工程と、光導波路上に遮光膜を堆積する遮光膜堆積工程と、チップ部の先端に微小開口を形成する微小開口形成工程と、光入射／出射端となる側の基板を残して自由端となる側の基板を除去することにより支持部を形成する支持部形成工程とを含む。これにより、光入射／出射端からの伝播光を微小開口に導くように反射し、または微小開口からの伝播光を光入射／出射端に導くように反射する反射膜を形成することができるから、伝播光を効率良く反射することができ、伝播光の損失を低減することができる。また、これらの工程は、シリコンプロセスを用いたバッチ処理が可能なため、量産性や均一性に優れた光マイクロカンチレバーを作成することができる。

【0020】

また、請求項6にかかる光マイクロカンチレバーの製造方法は、請求項5に記載の光マイクロカンチレバー製造方法において、前記段差形成工程で形成した前記段差の角度を、前記反射膜堆積工程で堆積した前記反射膜により前記光入射／出射端から伝播してきた伝播光を微小開口に導くことができる角度、または前記微小開口から伝播してきた伝播光を前記光入射／出射端に導くことができる角度とすることを特徴とする。

【0021】

上記光マイクロカンチレバーの製造方法では、段差形成工程で形成した段差の角度を、反射膜堆積工程で堆積した反射膜により光入射／出射端から伝播してきた伝播光を微小開口に導くことができ、または微小開口から伝播してきた伝播光を光入射／出射端に導くことができる角度とする。このように形成された反射膜により、伝播光を効率良く反射させることができ、伝播光の損失を低減することができる。

【0022】

また、上記の目的を達成するために、請求項7にかかる光マイクロカンチレバーは、走査型近視野顕微鏡に用いる光マイクロカンチレバーにおいて、光入射／出射端と自由端とを有し、伝播光を伝播する光導波路と、前記光入射／出射端に形成され、前記光導波路に光を入射する光または、前記光導波路から出射する光に作用する光学素子の位置を固定する光学素子用ガイドと、前記光導波路の光入

射／出射端と前記光学素子用ガイドとの間に設けられた溝とを有する支持部と、を具備したことを特徴とする。

【0023】

上記光マイクロカンチレバーでは、光導波路の光入射／出射端と光学素子用ガイドとの間に溝が形成されている。光導波路の光入射／出射端と光学素子用ガイドとの間に溝を形成することにより、光入射／出射端と前記光導波路に光を入射する光または、前記光導波路から出射する光に作用する光学素子の間に邪魔になっていた斜面を略垂直にすることができますから、光学素子を光入射／出射端に近づけることができる。

【0024】

また、上記の目的を達成するために、請求項8にかかる光マイクロカンチレバーの製造方法は、走査型近視野顕微鏡に用いる光マイクロカンチレバーの製造方法において、基板に、光導波路の型とする段差を形成する段差形成工程と、前記基板に、光学素子用ガイドを形成する光学素子用ガイド形成工程と、前記基板上に光導波路を堆積する光導波路堆積工程と、光入射／出射端を形成する入射端形成工程と、前記光入射／出射端と前記光学素子用ガイドとの間の前記基板を加工して溝を形成する溝形成工程と、前記光学素子用ガイド上の前記光導波路を除去して前記光学素子用ガイドを露出する光学素子用ガイド露出工程と、光入射／出射端となる側の前記基板を残して自由端となる側の前記基板を除去することにより支持部を形成する支持部形成工程と、を含むことを特徴とする。

【0025】

上記光マイクロカンチレバーの製造方法は、基板に、光導波路の型とする段差を形成する段差形成工程と、基板に、光学素子用ガイド形成する光学素子用ガイド形成工程と、基板上に光導波路を堆積する光導波路堆積工程と、光導波路の光入射／出射端を形成する光入射／出射端形成工程と、光入射／出射端と光学素子用ガイドとの間の基板を加工して溝を形成する溝形成工程と、光学素子用ガイド上の光導波路を除去して光学素子用ガイドを露出する光学素子用ガイド露出工程と、光入射／出射端となる側の基板を残して自由端となる側の基板を除去することにより支持部を形成する支持部形成工程とを含む。これにより、前記光導波路

に光を入射する光または、前記光導波路から出射する光に作用する光学素子を固定するためのガイドを形成することができると共に、光入射／出射端と光学素子との間に邪魔になっていた斜面を略垂直にすることができる。更に、これらの工程は、シリコンプロセスを用いたバッチ処理が可能なため、量産性や均一性に優れた光マイクロカンチレバーを作成することができる。

【0026】

また、上記の目的を達成するために、請求項9にかかる光マイクロカンチレバーの製造方法は、走査型近視野顕微鏡に用いる光マイクロカンチレバーの製造方法において、基板に、光導波路の型とする段差を形成する段差形成工程と、前記基板に、光学素子用ガイドを形成する光学素子用ガイド形成工程と、前記基板上に反射膜を堆積する反射膜堆積工程と、前記反射膜上に光導波路を堆積する光導波路堆積工程と、前記光導波路を加工してチップ部を形成するチップ部形成工程と、前記光導波路上に遮光膜を堆積する遮光膜堆積工程と、前記チップ部の先端に微小開口を形成する微小開口形成工程と、前記光導波路の光入射／出射端となる部分の前記遮光膜と前記光導波路と前記反射膜とを除去して光導波路の光入射・出射端を形成する光入射／出射端形成工程と、前記光入射／出射端と前記光学素子用ガイドとの間の前記基板を加工して溝を形成する溝形成工程と、前記光学素子用ガイド上の前記遮光膜と前記光導波路と前記反射膜とを除去して前記光学素子用ガイドを露出する光学素子用ガイド露出工程と、光入射／出射端となる側の前記基板を残して自由端となる側の前記基板を除去することにより支持部を形成する支持部形成工程と、を含むことを特徴とする。

【0027】

上記光マイクロカンチレバーの製造方法は、基板に、光導波路の型とする段差を形成する段差形成工程と、基板に、光学素子用ガイド形成する光学素子用ガイド形成工程と、基板上に反射膜を堆積する反射膜堆積工程と、反射膜上に光導波路を堆積する光導波路堆積工程と、光導波路を加工してチップ部を形成するチップ部形成工程と、光導波路上に遮光膜を堆積する遮光膜堆積工程と、チップ部の先端に微小開口を形成する微小開口形成工程と、前記光導波路の光入射／出射端となる部分の前記遮光膜と前記光導波路と前記反射膜とを除去して光導波路の光

入射・出射端を形成する光入射／出射端形成工程と、前記光入射／出射端と前記光学素子用ガイドとの間の前記基板を加工して溝を形成する溝形成工程と、前記光学素子用ガイド上の前記遮光膜と前記光導波路と前記反射膜とを除去して前記光学素子用ガイドを露出する光学素子用ガイド露出工程と、光入射／出射端となる側の前記基板を残して自由端となる側の前記基板を除去することにより支持部を形成する支持部形成工程とを含む。これにより、光学素子を固定するためのガイドを形成することができると共に、光入射／出射端と光学素子との間に邪魔になっていた斜面を略垂直にすることができる。また、光入射／出射端からの伝播光を微小開口に導くように反射し、または微小開口からの伝播光を光入射／出射端に導くように反射する反射膜を形成することができるから、伝播光を効率良く反射することができ、伝播光の損失が発生することがなくなる。更に、これらの工程は、シリコンプロセスを用いたバッチ処理が可能なため、量産性や均一性に優れた光マイクロカンチレバーを作成することができる。

【0028】

また、上記の目的を達成するために、請求項10にかかる光マイクロカンチレバーホルダは、光マイクロカンチレバーを支持する光マイクロカンチレバー用ガイドと、前記光マイクロカンチレバーに入射する光または、前記光マイクロカンチレバーから出射する光に作用する光学素子を支持する光学素子用ガイドと、を具備したことを特徴とする。

【0029】

上記光マイクロカンチレバーホルダでは、光マイクロカンチレバーを支持する光マイクロカンチレバー用ガイドと光マイクロカンチレバーに光学素子を支持する光学素子用ガイドが形成されている。光マイクロカンチレバー用ガイドに光マイクロカンチレバーを、光学素子用ガイドに光学素子をセットするだけで光マイクロカンチレバーと光学素子とをアライメントすることができる。

【0030】

【発明の実施の形態】

以下、本発明の光マイクロカンチレバーとその製造方法および光マイクロカンチレバーホルダについて、添付の図面を参照して詳細に説明する。

(実施の形態1)

図1は、本発明の実施の形態1にかかる光マイクロカンチレバーの側断面図である。この光マイクロカンチレバー10は、支持部1と、光導波路2と、遮光膜3と、反射膜4と、先鋭化されたチップ部5と、そのチップ部5の先端に形成された微小開口6と、ミラー7と、から構成されている。なお、光マイクロカンチレバー10では、支持部1が形成されている端を光入射／出射端と言い、チップ部5が形成されている端を自由端と言う。

【0031】

図1中Lで示す部分は、長さが例えば50～1000μm、幅は例えば10～100μm、厚さが例えば4～10μmである。また、前記チップ部5の高さは、例えば5～10μmである。チップ部5の先端半径は、AFM用のカンチレバーのチップと同等で、50nm以下である。また、微小開口6のサイズは、100nm以下である。前記支持部1はシリコンやガラスや石英系材料など、前記光導波路2は二酸化ケイ素やポリイミドなど、前記遮光膜3はクロムやアルミやチタンなど、前記反射膜4は金やアルミなどの高反射率材料からなる。なお、前記ミラー7は、前記反射膜4の一部である。

【0032】

図示しない光源により放出された伝播光は、前記光導波路2の光入射／出射端8から前記光導波路2に入射する。前記ミラー7は、前記光入射／出射端8から伝播してきた伝播光Hを前記微小開口6に導くように反射する。そして、前記微小開口6を通過しようとする伝播光Hにより、微小開口6付近に近視野光が発生する。このように、光マイクロカンチレバー10では、伝播光Hの光路を変更するためにミラー7を用いているので、伝播光を効率良く微小開口6に向けて反射することができ、伝播光の損失を低減することができる。

【0033】

次に、図2を用いて、上記光マイクロカンチレバー10の製造方法について説明する。まず、図2(a)に示すように、シリコン基板50を用意するが、モールドが形成できればガラスや石英基板でも良い。次に、図2(b)に示すように、水酸化カリウム(KOH)やテトラメチルアンモニウムハイドロオキサイド(

TMAH) を用いた異方性エッティングにより、シリコン基板50に段差を形成してモールドを作製する。次に、図2 (c) に示すように、シリコン基板50上に、反射膜材料51と導波路材料52を堆積する。前記反射膜材料51は例えば金やアルミなどの高反射率材料であり、前記導波路材料52は例えば二酸化ケイ素やポリイミドなどである。

【0034】

次に、図2 (d) に示すように、導波路材料52上に、チップ部5となる個所にフォトトレジスト材料のマスク53を形成する。そして、導波路材料52を、ドライエッティングまたはウェットエッティングを施すことにより、図中の点線に沿つて除去する。これにより、図2 (e) に示すように、先鋭化されたチップ部5が形成される。また、前記反射膜材料51の不要な部分はチップ形成とともに除去されてもよいし、後の工程で除去されてもよい。次に、図2 (f) に示すように、シリコン基板50と反射膜材料51と導波路材料52とを覆うように、遮光膜材料55を堆積する。前記遮光膜材料55は例えばクロムやアルミやチタンなどである。

【0035】

次に、図2 (g) に示すように、遮光膜材料55上に、フォトトレジスト材料のマスク56を形成する。そして、ドライエッティングまたはウェットエッティングを施すことにより、チップ部5の先端の遮光膜材料55を除去し、微小開口6 (図2 (h) 参照) を形成する。最後に、図2 (h) に示すように、光入射／出射端となる側のシリコン基板50を残し、自由端となる側のシリコン基板50をエッティングにより除去することで光マイクロカンチレバー10を形成する。

【0036】

前記チップ部5の先端の微小開口6は、導波路材料52を伝播する伝播光がシリコン基板50の段差に堆積されている反射膜材料51において微小開口6に向けて反射される位置に形成する。

【0037】

図3は、光マイクロカンチレバー10を用いた走査型近視野顕微鏡の構成図である。この走査型近視野顕微鏡1000は、光マイクロカンチレバー10と、光

源509と、光源509からの伝播光を集光して光マイクロカンチレバー10の光導波路に照射するレンズ510と、試料501の下方に配置され光マイクロカンチレバー10の先端で発生した近視野光が散乱されることで得られる伝播光を反射するプリズム502と、プリズム502からの伝播光を集光するレンズ505と、レンズ505により集光された伝播光を受光する光検出部506と、を備えている。

【0038】

また、光マイクロカンチレバー10の上方には、レーザ光を発振するレーザ発振器512と、光マイクロカンチレバー10の自由端において反射されたレーザ光を反射するミラー513と、ミラー513において反射されたレーザ光を受光して光電変換する上下2分割した光電変換部511と、を備えている。更に、試料501およびプリズム502を3次元的に移動制御する微動機構503および粗動機構504と、これら微動機構503および粗動機構504を駆動するサーボ機構508と、装置全体を制御するコンピュータ507と、を備えている。この走査型近視野顕微鏡1000は、ダイナミックモードまたはコンタクトモードの観察に適する。

【0039】

次に、走査型近視野顕微鏡1000の動作について説明する。レーザ発振器512から発振されたレーザ光は、光マイクロカンチレバー10の自由端において反射される。光マイクロカンチレバー10は、その先端と試料501との間の原子間力によって変移する。この変移と共に、光マイクロカンチレバー10の自由端において反射されたレーザ光の反射角度が振れ、この振れを光電変換部511で検出する。

【0040】

光電変換部511により検出した信号は、コンピュータ507に送られる。コンピュータ507は、試料501に対する光マイクロカンチレバー10のアプローチや、表面の観察の際に光マイクロカンチレバー10の撓みが設定値を超えないように、サーボ機構508により微動機構503および粗動機構504を制御する。

【0041】

また、光源509から放出された伝播光は、レンズ510により集光され、光マイクロカンチレバー10の光導波路を介して微小開口に照射される。これにより、光マイクロカンチレバー10の微小開口付近に近視野光が発生する。一方、プリズム502により反射した試料501の光学的情報は、レンズ505により集光され、光検出部506に導入される。コンピュータ507は、光検出部506の信号を受け取り、その信号から試料501の光学的情報を検出してトポ像や光学像などを作成する。

【0042】

このように、上記実施の形態1による光マイクロカンチレバー10によれば、ミラー7により、光導波路2の光入射／出射端8から伝播してきた伝播光Hを微小開口6に導くように反射するから、伝播光Hを近視野光に効率良く変換することができ、伝播光の損失を低減することができる。また、チップ部5を鋭く、微小開口を小さくできるので高解像度のトポ像や光学像を得ることが可能となる。また、ミラー7から微小開口6までの距離が短いため、より伝播光の損失を低減することができ、強度の大きな近視野光を発生することができる。また、全体的にサイズが小さいため、取り扱いが容易である。

【0043】

また、上記実施の形態1による光マイクロカンチレバー10の製造方法によれば、光入射／出射端からの伝播光Hを微小開口6に導くように反射するミラー7を形成することができるから、伝播光の損失が低減された光マイクロカンチレバー10を容易に製造することができる。また、図2に示した工程は、シリコンプロセスを用いたバッチ処理が可能なため、量産性や均一性に優れた光マイクロカンチレバーを作成することができる。

【0044】

上記では、光導波路2が1層構造であるように図示したが、光導波路2を、屈折率の高いコアと屈折率の低いクラッドからなる2層または3層またはコアの周囲をクラッドで覆った構造とすることにより、伝播光が外部へ漏れてしまうことを防止できる。また、上記では、ミラー7は光入射／出射端8から伝播してきた

伝播光Hを微小開口6に導くように反射するように説明したが、微小開口6から伝播してきた伝播光Hを、ミラー7により、光入射／出射端8に導くように反射することも可能である。

【0045】

(実施の形態2)

図4は、本発明の実施の形態2にかかる光マイクロカンチレバーの側断面図である。この光マイクロカンチレバー20では、光導波路2の光入射／出射端8を伝播する伝播光の光軸に対して角度を有するノーズ部9が形成され、そのノーズ部9の先端にチップ部5が形成されている。なお、これ以外の構成に関しては、実施の形態1の上記光マイクロカンチレバー10の構成と同じであるため、その説明は省略する。

【0046】

前記ノーズ部9の長さは例えば20～200μmであり、光マイクロカンチレバー20のこれ以外の寸法は実施の形態1の上記光マイクロカンチレバー10の寸法と同じである。このようなノーズ部9を形成するためには、厚めのシリコン基板50を用意して、図2(b)に形成した段差を長く形成すれば良く、それ以降の製造工程は図2(c)～図2(h)に示した製造工程と同じである。この光マイクロカンチレバー20を、図3の走査型近視野顕微鏡1000の光マイクロカンチレバー10に代えて用いることができる。

【0047】

図示しない光源により発生された伝播光は、前記光導波路2の光入射／出射端8から前記光導波路2に入射される。前記ミラー7は、前記光入射／出射端8から伝播してきた伝播光Hを前記微小開口6に導くように反射する。前記微小開口6を通過しようとする伝播光Hにより、微小開口6付近に近視野光が発生する。このように、光マイクロカンチレバー20では、伝播光Hの光路を変更するためにミラー7を用いているので、伝播光を効率良く微小開口6に向けて反射することができ、伝播光の損失を低減することができる。

【0048】

このように、上記実施の形態2による光マイクロカンチレバー20によれば、

ミラー7により、光導波路2の光入射／出射端8から伝播してきた伝播光Hを微小開口6に導くように反射するから、伝播光Hを効率良く微小開口6に向けて反射することができ、伝播光の損失を低減することができる。また、長いノーズ部9を設けているため、大きな段差を有する試料の表面の観察が可能となる。

【0049】

(実施の形態3)

図5は、本発明の実施の形態3にかかる光マイクロカンチレバーの側断面図である。この光マイクロカンチレバー30は、支持部31に、光ファイバを支持するための光ファイバ用ガイド溝32と、その光ファイバ用ガイド溝32と光導波路2の光入射／出射端8との間に溝33と、が形成されている。光ファイバ用ガイド溝32は、例えばV溝である。なお、これ以外の構成は実施の形態1の上記光マイクロカンチレバー10の構成と同じであるためその説明は省略する。なお、光ファイバの他に光導波路に入射する光、または、光導波路から出射する光に作用する光学素子は例えば、発光ダイオードや半導体レーザやレンズやビームスプリッターやフォトダイオードなどがある。その場合、光ファイバ用ガイド溝32は、それぞれの素子の形態にあわせた光学素子用ガイドとなる。

【0050】

図6は、光マイクロカンチレバー30の光ファイバ用ガイド溝32に光ファイバ130を固定した状態を示す。光ファイバ130からの伝播光は、光入射／出射端8を介して光導波路2に入射され、光導波路2により微小開口6に導かれる。なお、光マイクロカンチレバー30に光ファイバ用ガイド溝32を形成することにより、交換時などにおいて、光マイクロカンチレバー30と光ファイバ130のアライメントの手間が省ける。また、光入射／出射端8と光ファイバ用ガイド溝32との間に深い溝33が形成されているために、従来邪魔になっていた斜面(図14参照)がなく、光ファイバ130を光入射／出射端8に近づけることができる。これにより、光ファイバ130と光導波路2とのカップリングロスが低減されて、光導波路2に入射する伝播光の強度が大きくなり、微小開口6からは強度の大きな近視野光を発生させることができる。

【0051】

次に、図7および図8を用いて、上記光マイクロカンチレバー30の製造方法について説明する。まず、図7(a)に示すように、シリコン基板70を用意するが、モールド形成ができればガラスや石英基板でも良い。次に、図7(b)に示すように、KOHやTMAHを用いた異方性エッチングにより、シリコン基板70に2つの段差71、72と光ファイバ用ガイド溝32を形成してモールドを作製する。次に、図7(c)に示すように、シリコン基板70上に、反射膜材料74と導波路材料75を堆積する。前記反射膜材料74は例えば金やアルミなどの高反射率材料であり、前記導波路材料75は例えば二酸化ケイ素やポリイミドなどである。

【0052】

次に、図7(d)に示すように、段差71上に堆積されている導波路材料75を、ドライエッティングまたはウェットエッティングを施すことにより除去し、先鋭化されたチップ部5を形成する。次に、図7(e)に示すように、シリコン基板70と反射膜材料74と導波路材料75とを覆うように、遮光膜材料77を堆積する。また、ドライエッティングまたはウェットエッティングを施すことにより、チップ部5の先端の遮光膜材料77を除去して微小開口6を形成する。次に、図7(f)に示すように、段差72上の遮光膜材料77と導波路材料75と反射膜材料74とをドライエッティングまたはウェットエッティングを施すことにより除去して光入射／出射端8を形成する。

【0053】

次に、図8(g)に示すように、光入射／出射端8と光ファイバ用ガイド溝32との間のシリコン基板70をドライエッティングまたはウェットエッティングを施すことにより除去して、光ファイバ用ガイド溝73より深い溝33を形成する。次に、図8(h)に示すように、光ファイバ用ガイド溝32上の反射膜材料74と導波路材料75と遮光膜材料77とをドライエッティングまたはウェットエッティングを施すことにより除去して、光ファイバ用ガイド溝32を露出する。最後に、図8(i)に示すように、光入射／出射端となる側のシリコン基板70を残し、自由端となる側のシリコン基板70をエッティングにより除去することで光マイクロカンチレバー30を形成する。

【0054】

このように、上記実施の形態3による光マイクロカンチレバー30によれば、光ファイバ用ガイド溝32を形成することにより、交換時などにおいて、光マイクロカンチレバー30と光ファイバ130のアライメントにかかる手間を省くことができる。また、光入射／出射端8と光ファイバ用ガイド溝32との間に深い溝33が形成されているために、光ファイバ130を光入射／出射端8に近づて、光導波路2にカップリングロスが低減された強度の大きな伝播光を入射させることができ、微小開口6から強度の大きな近視野光を発生させることができる。

【0055】

この光マイクロカンチレバー30を、図3の走査型近視野顕微鏡1000の光マイクロカンチレバー10に代えて用いることができる。この場合は、レンズ510で集光した伝播光を、光ファイバを介して、光マイクロカンチレバー30の光導波路に導くことになる。

【0056】

また、上記実施の形態3による光マイクロカンチレバー30の製造方法によれば、光入射／出射端8と光ファイバ用ガイド溝32との間に深い溝33が形成されている光マイクロカンチレバー30を容易に製造することができる。また、図7および図8に示した製造工程は、シリコンプロセスを用いたバッチ処理が可能なため、量産性や均一性に優れた光マイクロカンチレバーを作成することができる。

【0057】

(実施の形態4)

図9は、本発明の実施の形態4にかかる光マイクロカンチレバーホルダの模式図である。この光マイクロカンチレバーホルダ40では、シリコンやステンレスやプラスチック製の基板41に、V字型のガイド溝42とガイド溝43が形成されている。なお、ガイド溝43は、ガイド溝42より深い。

【0058】

図10および図11は、上記光マイクロカンチレバーホルダ40に、実施の形態1の光マイクロカンチレバー10および光ファイバ130をセットした状態を

示す。図10では、ガイド溝42に光マイクロカンチレバー10の光導波路がセットされ、ガイド溝43に光ファイバ130がセットされている。一方、図11では、ガイド溝42に光ファイバ130がセットされ、ガイド溝43に光マイクロカンチレバー10の支持部1がセットされている。なお、図11に示した状態では、光マイクロカンチレバー10のチップ部が光マイクロカンチレバーホルダ40と反対側に位置しているので、試料とチップ部との間に基板41が存在しない分、チップ部を試料表面に接近させることができ図10に示した状態よりも容易である。なお、なお、光ファイバ130の他に光導波路に入射する光、または、光導波路から出射する光に作用する光学素子は、例えば、発光ダイオードや半導体レーザやレンズやビームスプリッターやフォトダイオードなどがある。その場合、ガイド溝42または、ガイド溝43はそれぞれの素子の形態にあわせた光学素子用ガイドとなる。

【0059】

このように、上記実施の形態4による光マイクロカンチレバーホルダ40によれば、2つのガイド溝を設け、一方のガイド溝に光マイクロカンチレバーをセットし、他方のガイド溝に光ファイバをセットすることにより、交換時などに、光マイクロカンチレバーと光ファイバのアライメントにかかる手間を省くことができる。

【0060】

【発明の効果】

以上説明したように、本発明にかかる光マイクロカンチレバーによれば、光入射／出射端からの伝播光を微小開口に導くように反射し、または微小開口からの伝播光を光入射／出射端に導くように反射する反射手段を設けるため、近視野光を生成するための伝播光の損失を低減することができる。

【0061】

また、本発明にかかる光マイクロカンチレバーによれば、光入射／出射端を通過する伝播光の光軸に対して角度を有する部分を設けているため、大きな段差を有する試料の表面の観察が可能となる。

【0062】

また、本発明にかかる光マイクロカンチレバーによれば、光導波路が、コアと、そのコアの一方側または両側またはコアの周囲に堆積されたクラッドとからなるため、光導波路を伝播する伝播光は外部に漏れなくなり、また、伝播光が全反射条件で光導波路内を伝播するため、伝播光を効率良く伝播することができる。

【0063】

また、本発明にかかる光マイクロカンチレバーによれば、光導波路上に、チップ部が形成されている側に遮光膜を設け、チップ部が形成されている側の反対側に反射膜を設けているため、光導波路を伝播する伝播光は外部に漏れなくなり、伝播光を効率良く伝播することができる。

【0064】

また、本発明にかかる光マイクロカンチレバーの製造方法によれば、基板に、所定の角度の段差を形成する段差形成工程と、基板上に反射膜を堆積する反射膜堆積工程と、その反射膜上に光導波路を堆積する光導波路堆積工程と、反射膜と光導波路とを加工してチップ部を形成するチップ部形成工程と、光導波路の上に遮光膜を堆積する遮光膜堆積工程と、チップ部の先端に微小開口を形成する微小開口形成工程と、光入射／出射端となる側の基板を残して自由端となる側の基板を除去することにより支持部を形成する支持部形成工程とを含むため、伝播光の損失を低減させた、量産性や均一性に優れた光マイクロカンチレバーを容易に製造することができる。

【0065】

また、本発明にかかる光マイクロカンチレバーの製造方法によれば、段差形成工程で形成した段差の角度を、反射膜堆積工程で堆積した反射膜により光入射／出射端から伝播してきた伝播光を微小開口に導くことができる角度、または微小開口から伝播してきた伝播光を光入射／出射端に導くことができる角度としたため、近視野光を生成するための伝播光を効率良く反射することができ、伝播光の損失を低減させた光マイクロカンチレバーを容易に製造することができる。

【0066】

また、本発明にかかる光マイクロカンチレバーによれば、光導波路の光入射

／出射端と光学素子用ガイドとの間に溝を形成することにより、光学素子を光入射／出射端に近づて、伝播光の損失を低減させることができるので、強度の大きな近視野光を発生させることができる。

【0067】

また、本発明にかかる光マイクロカンチレバーの製造方法によれば、基板に、少なくとも光導波路の光入射／出射端となる個所付近に段差を形成する段差形成工程と、基板に、光学素子用のガイドを形成するガイド形成工程と、基板上に光導波路を堆積する光導波路堆積工程と、段差形成工程で段差を形成した個所の光導波路を除去して光導波路の光入射／出射端を形成する入射端形成工程と、光入射／出射端と光学素子用のガイドとの間の基板を加工して溝を形成する溝形成工程と、光学素子用のガイド上の光導波路を除去して光学素子用のガイドを露出する光学素子用ガイド露出工程と、光入射／出射端となる側の基板を残して自由端となる側の基板を除去することにより支持部を形成する支持部形成工程とを含むため、伝播光の損失を低減させた、量産性や均一性に優れた光マイクロカンチレバーを容易に製造することができる。

【0068】

また、本発明にかかる光マイクロカンチレバーの製造方法によれば、基板に、少なくとも光導波路の光入射／出射端となる個所付近に段差を形成する段差形成工程と、基板に、光学素子用のガイド形成する光学素子用ガイド形成工程と、基板上に反射膜を堆積する反射膜堆積工程と、反射膜上に光導波路を堆積する光導波路堆積工程と、光導波路を加工してチップ部を形成するチップ部形成工程と、光導波路上に遮光膜を堆積する遮光膜堆積工程と、チップ部の先端に微小開口を形成する微小開口形成工程と、前記段差形成工程で段差を形成した個所の前記遮光膜と前記光導波路と前記反射膜とを除去して光導波路の光入射／出射端を形成する入射端形成工程と、前記光入射／出射端と前記光学素子用のガイドとの間の前記基板を加工して溝を形成する溝形成工程と、前記光学素子用のガイド上の前記遮光膜と前記光導波路と前記反射膜とを除去して前記光学素子用のガイドを露出する光学素子用ガイド露出工程と、光入射／出射端となる側の前記基板を残して自由端となる側の前記基板を除去することにより支持部を形成する支持部

形成工程とを含むので、光学素子とのアライメントが容易で、量産性や均一性に優れた光マイクロカンチレバーを得ることができる。

【0069】

また、本発明にかかる光マイクロカンチレバーホルダによれば、光マイクロカンチレバーを支持する光マイクロカンチレバー用ガイドと光マイクロカンチレバーに光を入射させるための光学素子を支持する光学素子用ガイドが形成されているため、光マイクロカンチレバー用ガイドに光マイクロカンチレバーを、光学素子用ガイドに光学素子をセットするだけで光マイクロカンチレバーと光学素子をアライメントすることができ、アライメントにかかる手間を省けることが可能となる。

【図面の簡単な説明】

【図1】

実施の形態1にかかる光マイクロカンチレバーの側断面図である。

【図2】

図1の光マイクロカンチレバーの製造工程の説明図である。

【図3】

図1の光マイクロカンチレバーを用いた走査型近視野顕微鏡の構成図である。

【図4】

実施の形態2にかかる光マイクロカンチレバーの側断面図である。

【図5】

実施の形態3にかかる光マイクロカンチレバーの側断面図である。

【図6】

図5の光マイクロカンチレバーの光学素子用ガイドに光ファイバをセットした状態の説明図である。

【図7】

図5の光マイクロカンチレバーの製造工程の説明図である。

【図8】

図5の光マイクロカンチレバーの製造工程の説明図である。

【図9】

実施の形態4にかかる光マイクロカンチレバーホルダの模式図である。

【図10】

図9の光マイクロカンチレバーホルダに光マイクロカンチレバーと光ファイバをセットした状態の説明図である。

【図11】

図9の光マイクロカンチレバーホルダに光マイクロカンチレバーと光ファイバをセットした状態の説明図である。

【図12】

従来の光ファイバプローブの側断面図である。

【図13】

光ファイバガイド溝を有する従来の光マイクロカンチレバーの側断面図である。

【図14】

図13の光マイクロカンチレバーの光ファイバ用ガイドに光ファイバをセットした状態の説明図である。

【符号の説明】

- | | |
|----|-------------|
| 10 | 光マイクロカンチレバー |
| 1 | 支持部 |
| 2 | 光導波路 |
| 3 | 遮光膜 |
| 4 | 反射膜 |
| 5 | チップ部 |
| 6 | 微小開口 |
| 7 | ミラー |
| 8 | 光入射／出射端 |

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図1.1】

【図1.2】

【図13】

【図14】

【書類名】 要約書

【要約】

【課題】 伝播光の損失を低減させた光マイクロカンチレバーを提供すること。

【解決手段】 光マイクロカンチレバー10は、支持部1と、光導波路2と、遮光膜3と、反射膜4と、先鋭化されたチップ部5と、そのチップ部5の先端の微小開口6と、光導波路2の光入射／出射端8から伝播してきた伝播光Hを微小開口6に導くように反射するミラー7と、から構成されている。

【選択図】 図1

特平11-072218

出願人履歴情報

識別番号 [000002325]

1. 変更年月日 1997年 7月23日

[変更理由] 名称変更

住 所 千葉県千葉市美浜区中瀬1丁目8番地

氏 名 セイコーインスツルメンツ株式会社