Регулярные выражения

Пусть Σ – алфавит, тогда

- Пустой язык Ø является регулярным
- Язык {ε}, состоящий из пустого слова ε, является регулярным
- Для всех $a \in \Sigma$ язык, состоящий из одной буквы $\{a\}$, регулярный
- Если L, L₁ и L₂ регулярные языки, то регулярными будут
 - объединение L₁ υ L₂

$$\Sigma = \{a, b\}$$

 $L_1 = \{\epsilon, bb, ba\}$
 $L_2 = \{a, aab\}$
 $L_1 \cup L_2 = \{\epsilon, bb, ba, a, aab\}$

Пусть Σ – алфавит, тогда

- Пустой язык Ø является регулярным
- Язык {ε}, состоящий из пустого слова ε, является регулярным
- Для всех $a \in \Sigma$ язык, состоящий из одной буквы $\{a\}$, регулярный
- Если L, L₁ и L₂ регулярные языки, то регулярными будут
 - объединение L₁ υ L₂
 - конкатенация L₁ L₂

$$\begin{split} \Sigma &= \{a,b\} \\ L_1 &= \{\epsilon,bb,ba\} \\ L_2 &= \{a,aab\} \\ L_1 \bullet L_2 &= \{a,aab,bba,bbaab,baa,baaab\} \end{split}$$

Пусть Σ – алфавит, тогда

- Пустой язык Ø является регулярным
- Язык {ε}, состоящий из пустого слова ε, является регулярным
- Для всех $a \in \Sigma$ язык, состоящий из одной буквы $\{a\}$, регулярный
- Если L, L_1 и L_2 регулярные языки, то регулярными будут
 - объединение L₁ υ L₂
 - конкатенация L₁ L₂

```
\Sigma = \{a, b\}
L = \{ab, b\}
L^* = \{\epsilon, ab, b, abab, bab, abb, bb, (ab)^3, ...\}
```

• результат применения звезды Клини L*

Регулярный язык —— Детерминированный конечный автомат

a*bb*a((a|b)b*a)* q_1 q_2 q_3

Регулярные выражения в Python

Проблемы записи регулярных выражений

```
len('\\') == 1
len(r'\\') == 2

[GU(L///) == 5
```

Raw strings

Задачи, решаемые регулярными выражениями

- Проверка соответствия строки шаблону
- Извлечение данных из строки по шаблону
- Изменение данных в строке, подходящих под шаблон

Модуль re


```
• . ~ a, b, c, ... \n (re.DOTALL)
```

• * $a^* \sim \varepsilon$, a, aa, aaa, ...; $ab^* \sim a$, ab, abb, ...; $(ab)^* \sim \varepsilon$, ab, abab

 $\bullet \quad + \quad a+ \equiv aa^*$

• ? ab?c ~ ac, abc

Про жадность

```
*?
+
→
+?
```

• $\{m\}$

• $\{m, n\}$ a{2, 4} ~ aa, aaa, aaaa

• $\{m,\}$ $a\{2,\} = aa+$

• $\{,n\}$

• [...] $[abc] \sim a, b, c; [0-9] \sim 0, 1, ..., 9; [_0-9a-zA-Z]; [^abc]$

• labc | de | f ~ abc, de, f

• ()

^

• \$

$$d = [0-9], D = [^0-9]$$

$$s = [^1], S = [^1]$$

$$\w = [a-zA-Z0-9], \w = [^\w]$$

• ___

• (?:...)

non-grouping

• (?=...)

positive lookahead

· (?!...)

negative lookahead

• (?<=...)

positive lookbehind

· (?<!...)

negative lookbehind

Вопросы производительности

```
te.search(r.something interesting, string)
te.search(r.something interesting, string)
```

```
regex = re.compile(r'something interesting')
for string in very_big_data:
    regex.search(string)
```

Извлечение данных из строки по шаблону

Изменение данных в строке, подходящих под шаблон