Risolvere il massimo numero di esercizi accompagnando le risposte con spiegazioni chiare ed essenziali. *Inserire le risposte negli spazi predisposti. NON SI ACCETTANO RISPOSTE SCRITTE SU ALTRI FOGLI.* 1 Esercizio = 4 punti. Tempo previsto: 2 ore. Nessuna domanda durante la prima ora e durante gli ultimi 20 minuti.

FIRMA	1	2	3	4	5	6	7	8	9	TOT.

1. Dopo aver descritto la nozione di iniettività e suriettività per applicazioni di insiemi, dire se (e perchè) la seguente funzione è iniettiva, suriettiva, se ne descriva l'immagine e si descriva la preimmagine degli elementi del codominio:

$$f: \{1, 2, 3\} \times \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, \dots, 12\}, (x, y) \mapsto xy$$

2.	Dopo aver descritto la nozione di relazione di equivalenza, si dimostri che la seguente relazione su \mathbf{Z} : $x\rho y \Longleftrightarrow xy \in \mathbf{N}$ è di equivalenza e se ne descrivano le classi di equivalenza
3.	Si dimostri per induzione che per ogni $n \in \mathbb{N}_{>}$ i numeri $2^{2^n} + 3^{2^n} + 5^{2^n}$ e $6^{2^n} + 10^{2^n} + 15^{2^n}$ sono divisibili per 19.

4.	Dopo aver en dei 5 assiomi	unciato i cinc	que assiomi di	Peano, si dir	nostri che è p	ossibile costrui	re un sistema fii	nito che soddisfa solo) 4

5.	Si descrivano tutte le soluzioni della seguente equazione congruenziale: $6X \equiv 9 \bmod 15$.
6.	Dimostrare che l'insieme $\mathbf{N}[X]$ dei polinomi a coefficienti in \mathbf{N} è un monoide additivo rispetto alla somma ma non è un gruppo. Quali degli altri assiomi di anello soddisfa?

7.	Determinare la parte reale e la parte immaginaria del seguente numero complesso:	$\frac{3+i}{2-i} + (1+i)^5.$

8.	Determinare gli elementi invertibili rispetto al prodotto dell'anello ${\bf Z}/16{\bf Z}$ e si determini l'inverso di ciascuno di essi.
9.	Determinare il numero di permutazioni in S_6 che si può scrivere come il prodotto di due 3–cicli disgiunti e dimostrare che l'insieme di tali permutazioni non è chiuso rispetto alla composizione.