

BIOLAP

By:

Akshay Kumar (50169103, akumar34) Priyanka Singh (50169994, psingh28) Sahil Dureja (50168872, sahildur)

Part I: Implementation

The implementation of our schema is as follows:

- We chose this schema instead of star schema as dividing the fact table into several fact tables area wise not only save space it makes the query a little efficient as there would be less rows to process.
- Further dividing the fact tables would lead into more number of joins thereby increasing the query time.
- Also, further extending the dimension tables like in snowflake schema would have led to more number of joins and therefore making the queries less efficient.
- Further we have tried to increase the efficiency by creating a temp table which contained p_id, UID and probe_id. This helped when we tried to find the pearson correlation. As the query was running within a loop instead of processing the whole query every time, the non-changing part of the query was stored in the temp table and only a part of the query was running in the loop.

We have implemented the schema given with some changes to increase the efficiency of some queries. Like for queries trying to relate patient and disease with another entity like drug direct querying does not work because of many of the values being null instead of repeated data. For this we saved the patient-disease information in a separate table. This table can be joined with other fact table. This can also be done by nested query but former approach is faster as the required lookup is already stored.

Part II: Sample Queries

```
Question1:
Query A:
SELECT COUNT(*) FROM testtable4 as tt4
      INNER JOIN disease as d
             ON tt4.ds_id = d.ds_id
             WHERE d.description = "tumor";
Result:
COUNT(*)
 53
Query B:
SELECT COUNT(*) FROM testtable4 as tt4
      INNER JOIN disease as d
             ON tt4.ds_id = d.ds_id
             WHERE d.type = "leukemia";
Result:
COUNT(*)
27
Query C:
SELECT COUNT(*) FROM testtable4 as tt4
      INNER JOIN disease as d
             ON tt4.ds_id = d.ds_ id
             WHERE d.name = "ALL";
Result:
COUNT(*)
 13
```

Question 2:

Query:

```
SELECT DISTINCT(drug.type) FROM `testtable4` AS tt4
INNER JOIN disease AS d
ON tt4.ds_id=d.ds_id
INNER JOIN clinical_fact AS cf
ON tt4.p_id=cf.p_id
INNER JOIN drug
ON drug.dr_id=cf.dr_id
WHERE d.description = "tumor";
```

Result:

20 results

Drug Type 017 Drug Type 005 Drug Type 016 Drug Type 002 Drug Type 010 Drug Type 009
Drug Type 016 Drug Type 002 Drug Type 010
Drug Type 002 Drug Type 010
Drug Type 010
Drug Type 009
Drug Type 008
Drug Type 007
Drug Type 019
Drug Type 001
Drug Type 004
Drug Type 006
Drug Type 014
Drug Type 013

Drug Type 020		
Drug Type 015		
Drug Type 003		
Drug Type 018		
Drug Type 012		
Drug Type 011		

Question3:

Query:

SELECT tt3.p_id, tt3.s_id, tt4.name, mf.s_id, mf.exp, pb.UID FROM testtable3 AS tt3
INNER JOIN testtable4 AS tt4 ON tt3.p_id = tt4.p_id
INNER JOIN microarray_fact AS mf ON tt3.s_id = mf.s_id
INNER JOIN probe AS pb ON mf.pb_id = pb.pb_id
INNER JOIN gene_fact AS gf ON pb.UID = gf.UID
WHERE tt4.name = "ALL"
AND mf.mu_id = "001"
AND gf.cl_id = "00002";

Result:

325 results

p_id	s_id	name	exp	UID
47880	973218	ALL	36	2616922
47880	973218	ALL	102	55191224
47880	973218	ALL	142	51323880
47880	973218	ALL	42	58732744
47880	973218	ALL	115	40425172
47880	973218	ALL	179	45666597
47880	973218	ALL	177	71758989
47880	973218	ALL	133	88305510

Question 4:

Query 1:

SELECT AVG(mf.exp) , VAR_SAMP(mf.exp) , COUNT(mf.exp) FROM `testtable3` AS tt3 INNER JOIN `testtable4` AS tt4 ON tt3.p_id = tt4.p_id INNER JOIN microarray_fact AS mf ON tt3.s_id = mf.s_id INNER JOIN probe ON probe.pb_id = mf.pb_id INNER JOIN testtable5 AS tt5 ON tt5.UID = probe.UID WHERE tt4.name = "ALL" AND tt5.go id = "0012502"

Query 2:

SELECT AVG(mf.exp) , VAR_SAMP(mf.exp) , COUNT(mf.exp) FROM `testtable3` AS tt3 INNER JOIN `testtable4` AS tt4 ON tt3.p_id = tt4.p_id INNER JOIN microarray_fact AS mf ON tt3.s_id = mf.s_id INNER JOIN probe ON probe.pb_id = mf.pb_id INNER JOIN testtable5 AS tt5 ON tt5.UID = probe.UID WHERE tt4.name != "ALL" AND tt5.go_id = "0012502"

Result:

t = 1.0071347875363 p(one tailed) = 0.15703092528161 p(two tailed) = 0.31406185056321

Question 5:

Query 1:

SELECT tt4.name, AVG(mf.exp) , COUNT(*) , SUM(mf.exp) FROM testtable4 AS tt4 INNER JOIN testtable3 AS tt3 ON tt4.p_id = tt3.p_id INNER JOIN microarray_fact AS mf ON tt3.s_id = mf.s_id INNER JOIN probe ON mf.pb_id = probe.pb_id INNER JOIN testtable5 AS tt5 ON probe.UID = tt5.UID WHERE tt5.go_id = "0007154" AND (tt4.name = "ALL"OR tt4.name = "AML"OR tt4.name = "Breast tumor"OR tt4.name = "Colon tumor") GROUP BY tt4.name

Query 2 (Run for each selected disease):

SELECT mf.exp FROM testtable4 AS tt4 INNER JOIN testtable3 AS tt3 ON tt4.p_id = tt3.p_id INNER JOIN microarray_fact AS mf ON tt3.s_id = mf.s_id INNER JOIN probe ON mf.pb_id = probe.pb_id INNER JOIN testtable5 AS tt5 ON probe.UID = tt5.UID WHERE tt5.go_id = "0007154" AND tt4.name = "Colon tumor"

Result:

SSd = 30415.354295497, SSe = 3165344.330037 MSd = 10138.451431832, MSe = 3229.9431939153 F = 3.1388946563926

Question 6:

For one same disease (ALL)

Query 1:

SELECT distinct clinical fact.p id FROM clinical fact join disease on clinical fact.ds id=disease.ds id left join (SELECT p id,s id FROM clinical fact where clinical fact.s id!="null") as samplejoined on samplejoined.p id=clinical fact.p id left join microarray fact on microarray fact.s id=samplejoined.s id left join probe probe.pb id=microarray fact.pb id left join gene fact on gene fact.UID=probe.UID where disease.name="ALL" and gene_fact.go_id="0012502"

Query 2 (Run for each patient with disease):

SELECT exp FROM clinical_fact join disease on clinical_fact.ds_id=disease.ds_id left join (SELECT p_id,s_id FROM clinical_fact where clinical_fact.s_id!="null") as samplejoined on samplejoined.p_id=clinical_fact.p_id left join microarray_fact on microarray_fact.s_id=samplejoined.s_id left join probe on probe.pb_id=microarray_fact.pb_id left join gene_fact on gene_fact.UID=probe.UID where disease.name="ALL" and gene_fact.go_id="0012502" AND clinical_fact.p_id="77689" ORDER BY probe.pb_id ASC

Result:

Sum of all possible correlations = 7.689842120158 Count of N1 X (N1 - 1) /2 = 78 Average Correlation = 0.098587719489205

For one disease with all the rest:

Query 1A:

SELECT distinct clinical fact.p id FROM clinical fact disease join on clinical fact.ds id=disease.ds id left join (SELECT p id,s id FROM clinical fact where clinical_fact.s_id!="null") as samplejoined on samplejoined.p_id=clinical_fact.p_id left join microarray fact microarray fact.s id=samplejoined.s id left join probe probe.pb id=microarray fact.pb id left join gene fact on gene fact.UID=probe.UID where disease.name="ALL" and gene fact.go id="0012502"

Query 1B (for each patient with disease):

SELECT exp FROM clinical_fact join disease on clinical_fact.ds_id=disease.ds_id left join (SELECT p_id,s_id FROM clinical_fact where clinical_fact.s_id!="null") as samplejoined on samplejoined.p_id=clinical_fact.p_id left join microarray_fact on microarray_fact.s_id=samplejoined.s_id left join probe on probe.pb_id=microarray_fact.pb_id left join gene_fact on gene_fact.UID=probe.UID where disease.name="ALL" and gene_fact.go_id="0012502" AND clinical_fact.p_id="77689" ORDER BY probe.pb_id ASC

Query 2A:

SELECT distinct clinical fact.p id FROM clinical fact join disease on clinical fact.ds id=disease.ds id left join (SELECT p id,s id FROM clinical fact where clinical_fact.s_id!="null") as samplejoined on samplejoined.p_id=clinical_fact.p_id left join microarray fact.s id=samplejoined.s id microarray fact on left ioin probe probe.pb id=microarray fact.pb id left join gene fact on gene fact.UID=probe.UID where disease.name="AML" and gene_fact.go_id="0012502"

Query 2B (for each patient with disease):

SELECT exp FROM clinical_fact join disease on clinical_fact.ds_id=disease.ds_id left join (SELECT p_id,s_id FROM clinical_fact where clinical_fact.s_id!="null") as samplejoined on samplejoined.p_id=clinical_fact.p_id left join microarray_fact on microarray_fact.s_id=samplejoined.s_id left join probe on probe.pb_id=microarray_fact.pb_id left join gene_fact on gene_fact.UID=probe.UID where disease.name="AML" and gene_fact.go_id="0012502" AND clinical_fact.p_id="48802" ORDER BY probe.pb_id ASC

Result:

Sum of all possible correlations = -7.1455367404653 Count of N1 X N2 = 182 Average Correlation = -0.039261190881678

Part III: Knowledge Discovery

Finding Informative Genes (Patients with Disease):

Query 1:

SELECT probe.UID,AVG(microarray_fact.exp) , VAR_SAMP(microarray_fact.exp) , COUNT(microarray_fact.exp) FROM clinical_fact join disease on clinical_fact.ds_id=disease.ds_id left join (SELECT p_id,s_id FROM clinical_fact where clinical_fact.s_id!="null") as samplejoined on samplejoined.p_id=clinical_fact.p_id left join microarray_fact on microarray_fact.s_id=samplejoined.s_id left join probe on probe.pb_id=microarray_fact.pb_id where disease.name="ALL" and samplejoined.s_id!="NULL" group by probe.UID

Query 2 (Run for each patient with disease):

SELECT probe.UID,AVG(microarray_fact.exp) , VAR_SAMP(microarray_fact.exp) , COUNT(microarray_fact.exp) FROM clinical_fact join disease on clinical_fact.ds_id=disease.ds_id left join (SELECT p_id,s_id FROM clinical_fact where clinical_fact.s_id!="null") as samplejoined on samplejoined.p_id=clinical_fact.p_id left join microarray_fact on microarray_fact.s_id=samplejoined.s_id left join probe on probe.pb_id=microarray_fact.pb_id where disease.name!="ALL" and samplejoined.s_id!="NULL" group by probe.UID

Result (After taking t-test and for p-value less than 0.01):

No. of Informative genes: 38

Classifying new patients:

Finding rA values for Group A (with disease):

TEST1	TEST2	TEST3	TEST4	TEST5
0.80283488739	0.17362912131	-0.165998214559	0.81021292057	-0.13955197108
956	653	95	414	58
0.73995042814	0.24013715477	-0.048497294838	0.72136624028	-0.16265885250
06	262	268	472	496
0.83624020335	0.11476333210	-0.016327282280	0.79185130964	-0.11909672841
478	383	226	546	1
0.81552101443	0.12733460741	0.0618456362914	0.86375120713	-0.11254378217
019	893	36	235	964

Similar 38 rows.

Finding rA values for Group B (without disease):

TEST1	TEST2	TEST3	TEST4	TEST5
-0.14080210347	-0.25466824800	-0.10350204301	-0.08183620026	-0.11142183265
303	519	914	5547	307
0.018930905589	-0.13722482481	0.053641992422	-0.05953301572	-0.19503508700
693	922	049	1666	317
-0.03151142971	0.24964621464	-0.18784866188	-0.02608296322	0.20256320869
7815	029	26	8017	24
0.196469636646	-0.21857907041	-0.08372782646	0.016484361608	-0.13523020022
43	643	4568	417	435

Similar 38 rows.

Final Classification:

USER ID	p VALUE	CLASSIFCATION
test1	4.4408920985006E-16	classfied as ALL
test2	3.2547485151468E-8	classfied as ALL
test3	0.77357051847198	NOT classfied as ALL
test4	4.4408920985006E-16	classfied as ALL
test5	0.0038238124509271	classfied as ALL