5_More_Supervised_Models

June 5, 2024

1 Supervised Learning Algorithms

In this notebook, several supervised learning algorithms are used to create binary classifiers that distinguish between benign and malicious traffics in the ids-2017 dataset. Hyperparameters are optimized to obtain a model with the best results and the models are compared

```
[1]: from notebook_utils import load processed dataset 2017, plot_confusion matrix,
      -metrics_report, upsample_dataset, extract_and_plot_metrics
     from sklearn.decomposition import PCA
     import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
     import glob
     import os
     from sklearn.model_selection import train_test_split, RandomizedSearchCV
     from sklearn.preprocessing import StandardScaler
     from sklearn.metrics import classification_report, average_precision_score,
      →make_scorer, precision_score, accuracy_score, confusion_matrix
     from notebook_utils import upsample_dataset
     %matplotlib inline
     %load_ext autoreload
     %autoreload 2
     file_path =
      -r"CIC-IDS-2017\CSVs\GeneratedLabelledFlows\TrafficLabelling\processed\ids2017_processed.
[2]: X_train, Y_train, X_eval, Y_eval, X_test, Y_test, scaler =_
      →load_processed_dataset_2017(file_path)
    performance_models = {}
[4]: import joblib
     def save_model(model, model_name):
         file_path = f'models/{model_name}.pkl'
         joblib.dump(model, file_path)
```

```
print(f'Model saved to {file_path}')

def load_model(model_name):
    file_path = f'models/{model_name}.pkl'
    model = joblib.load(file_path)
    print(f'Model loaded from {file_path}')
    return model

os.makedirs('models', exist_ok=True)
```

1.1 1. Naive Bayes

```
[5]: from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import GridSearchCV

# Define a small parameter grid
param_grid_nb = {
        'var_smoothing': [1e-9, 1e-8, 1e-7, 1e-6, 1e-5]
}

# Initialize the GaussianNB model
nb_model = GaussianNB()

# Initialize GridSearchCV
grid_search_nb = GridSearchCV(estimator=nb_model, param_grid=param_grid_nb,u_scoring='accuracy', n_jobs=2, cv=2, verbose=2)

# Fit the model on the scaled training data
grid_search_nb.fit(scaler.transform(X_train), Y_train.is_attack)

# Get the best model
best_nb_model = grid_search_nb.best_estimator_
save_model(best_nb_model, 'gaussian_nb_model.pkl')
```

Fitting 2 folds for each of 5 candidates, totalling 10 fits Model saved to models/gaussian_nb_model.pkl.pkl

plot_confusion_matrix("GaussianNB", Y_test, Y_pred)

Evaluation Set Performance

Classification Report (Evaluation):

	precision	recall	f1-score	support
0	0.9992	0.4445	0.6153	227310
1	0.3060	0.9985	0.4685	55764
accuracy			0.5537	283074
macro avg	0.6526	0.7215	0.5419	283074
weighted avg	0.8626	0.5537	0.5864	283074

Accuracy: 0.5536714781293938

Test Set Performance

Classification Report (Test):

	precision	recall	f1-score	support
0 1	0.9992 0.3051	0.4421 0.9986	0.6130 0.4674	227310 55765
accuracy			0.5517	283075
macro avg	0.6522	0.7203	0.5402	283075
weighted avg	0.8625	0.5517	0.5843	283075

Classification Report (Test):

	precision	recall	f1-score	support
0	0.9446	0.6808	0.7913	227310
1	0.3916	0.8373	0.5336	55765
accuracy			0.7117	283075
macro avg	0.6681	0.7591	0.6625	283075
weighted avg	0.8357	0.7117	0.7406	283075

1.2 2. K-Nearest Neighbors (KNN)

```
[8]: from sklearn.neighbors import KNeighborsClassifier
     knn_model = KNeighborsClassifier(n_neighbors=5)
     knn_model.fit(scaler.transform(X_train), Y_train.is_attack)
     # Predict and evaluate on the evaluation set
     print("Evaluation Set Performance")
     metrics_report("Evaluation", Y_eval.is_attack, knn_model.predict(scaler.
      ⇔transform(X_eval)), print_avg=False)
     # Predict and evaluate on the test set
     print("Test Set Performance")
     Y_pred = knn_model.predict(scaler.transform(X_test))
     performance_models["KNN"] = metrics_report("Test", Y_test.is_attack, Y_pred,__
      →print_avg=False)
     plot_confusion_matrix("KNN", Y_test, Y_pred)
     save_model(knn_model, 'knn_model')
    Evaluation Set Performance
    Classification Report (Evaluation):
                  precision
                               recall f1-score
                                                   support
               0
                     0.9735
                               0.9986
                                         0.9858
                                                    227310
               1
                     0.9934
                                                     55764
                               0.8890
                                         0.9383
        accuracy
                                         0.9770
                                                    283074
       macro avg
                     0.9834
                               0.9438
                                         0.9621
                                                    283074
                                         0.9765
    weighted avg
                     0.9774
                               0.9770
                                                    283074
    Accuracy: 0.9769742187555197
    Test Set Performance
```

Classification Report (Test):

	precision	recall	f1-score	support
0	0.9734	0.9987	0.9859	227310
1	0.9941	0.8888	0.9385	55765
accuracy			0.9771	283075
macro avg	0.9838	0.9438	0.9622	283075
weighted avg	0.9775	0.9771	0.9766	283075

Model saved to models/knn_model.pkl

Classification Report (Test):

	precision	recall	f1-score	support
0	0.9446	0.6808	0.7913	227310
1	0.3916	0.8373	0.5336	55765
accuracy			0.7117	283075
macro avg	0.6681	0.7591	0.6625	283075
weighted avg	0.8357	0.7117	0.7406	283075

1.3 3. Quadratic Discriminant Analysis (QDA)

```
[9]: from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
      from sklearn.model selection import GridSearchCV
      # Apply PCA
      pca = PCA(n_components=0.90)
      X_train_pca = pca.fit_transform(scaler.transform(X_train))
      X_eval_pca = pca.transform(scaler.transform(X_eval))
      X_test_pca = pca.transform(scaler.transform(X_test))
      # Define a small parameter grid
      param_grid_qda = {
          'reg_param': [0.0, 0.1, 0.2, 0.3],
          'tol': [1e-4, 1e-5, 1e-6]
      }
      # Initialize the QDA model
      qda model = QuadraticDiscriminantAnalysis()
      # Initialize GridSearchCV with reduced number of folds
      grid_search_qda = GridSearchCV(estimator=qda_model, param_grid=param_grid_qda,_u
       ⇔scoring='accuracy', n_jobs=2, cv=2, verbose=2)
      # Fit the model on the PCA-transformed training data
      grid_search_qda.fit(X_train_pca, Y_train.is_attack)
      # Get the best model
      best_qda_model = grid_search_qda.best_estimator_
      # Print the best hyperparameters
      print("Best Hyperparameters for QDA:", grid_search_qda.best_params_)
      save_model(best_qda_model, 'qda_model.pkl')
     Fitting 2 folds for each of 12 candidates, totalling 24 fits
     Best Hyperparameters for QDA: {'reg_param': 0.3, 'tol': 0.0001}
     Model saved to models/qda model.pkl.pkl
[10]: # Predict and evaluate on the evaluation set
      print("Evaluation Set Performance")
      metrics_report("Evaluation", Y_eval.is_attack, best_qda_model.
       →predict(X_eval_pca), print_avg=False)
      # Predict and evaluate on the test set
      print("Test Set Performance")
      Y_pred = best_qda_model.predict(X_test_pca)
      performance models["QDA"] = metrics_report("Test", Y_test.is_attack, Y_pred,__
       →print_avg=False)
      plot_confusion_matrix("QDA", Y_test, Y_pred)
```

Evaluation Set Performance Classification Report (Evaluation):

	precision	recall	f1-score	support
0	0.9444	0.6844	0.7936	227310
1	0.3938	0.8357	0.5353	55764
accuracy			0.7142	283074
macro avg	0.6691	0.7600	0.6645	283074
weighted avg	0.8359	0.7142	0.7427	283074

Accuracy: 0.7141772116125112

Test Set Performance

Classification Report (Test):

	precision	recall	f1-score	support
0	0.9446	0.6808	0.7913	227310
1	0.3916	0.8373	0.5336	55765
accuracy			0.7117	283075
macro avg	0.6681	0.7591	0.6625	283075
weighted avg	0.8357	0.7117	0.7406	283075

1.4 4. Support Vector Machine

The SVM takes too long with the number of features and number of training examples. PCA components are used to reduce the number of features.

```
[11]: from sklearn.svm import LinearSVC
    from sklearn.decomposition import PCA
    import joblib
    import os

# Apply PCA to reduce the number of features
    pca = PCA(n_components=5)
    X_train_pca = pca.fit_transform(X_train)
    X_eval_pca = pca.transform(X_eval)
    X_test_pca = pca.transform(X_test)

# Define the LinearSVC model with chosen hyperparameters
    linear_svc_model = LinearSVC(C=1, max_iter=10000, dual="auto")
```

```
# Fit the model on the training data
linear_svc_model.fit(X_train_pca, Y_train.is_attack)
# Save the model
save_model(linear_svc_model, 'linear_svc_binary_pca')
# Evaluate the model
# Predict on the evaluation set
y_pred_eval = linear_svc_model.predict(X_eval_pca)
performance_eval = metrics_report("Evaluation", Y_eval.is_attack, y_pred_eval,_
 →print_avg=False)
# Predict and evaluate on the test set
y_pred_test = linear_svc_model.predict(X_test_pca)
performance_models["LinearSVC"] = metrics_report("Test", Y_test.is_attack,__
 →y_pred_test, print_avg=False)
# Plot the confusion matrix
plot_confusion_matrix("LinearSVC", Y_test, y_pred_test)
Model saved to models/linear_svc_binary_pca.pkl
```

Classification Report (Evaluation):

	precision	recall	f1-score	support
0	0.8403	0.8796	0.8595	227310
1	0.3935	0.3186	0.3521	55764
accuracy			0.7690	283074
macro avg	0.6169	0.5991	0.6058	283074
weighted avg	0.7523	0.7690	0.7595	283074

Accuracy: 0.7690497891010831 Classification Report (Test):

	precision	recall	f1-score	support
0	0.8403	0.8781	0.8588	227310
1	0.3915	0.3196	0.3519	55765
accuracy			0.7681	283075
macro avg	0.6159	0.5989	0.6053	283075
weighted avg	0.7519	0.7681	0.7589	283075

1.5 5. Conclusion

[16]: extract_and_plot_metrics(performance_models)

[0.7116559215755541, 0.7681109246666078, 0.7116559215755541, 0.7116559215755541] ['QDA', 'LinearSVC', 'KNN', 'GaussianNB']

In conclusion, the models used perfrom worse than the tree based and deep neural networks. Therefore, they won't be tested with the ids2018 dataset.