Name:	Maths	Class:	***************
-------	-------	--------	-----------------

SYDNEY TECHNICAL HIGH SCHOOL

Year 12 Mathematics Extension 2

HSC Course

Assessment 2

March, 2015

Time allowed: 70 minutes

General Instructions:

- Marks for each question are indicated on the question.
- Approved calculators may be used
- All necessary working should be shown
- Full marks may not be awarded for careless work or illegible writing
- Begin each question on a new page
- Write using black or blue pen
- All answers are to be in the writing booklet provided
- A set of Standard Integrals is provided at the rear of this Question Booklet, and may be removed at any time.

Section 1 Multiple Choice

Questions 1-5

5 Marks

Section II Questions 6-9

40 Marks

Section I

5 marks

Attempt Questions 1-5

Use the multiple choice answer sheet for Questions 1-5.

1. A square root of 8 + 6i is:

(A) 3 - i

(B) 5 - 3i

(C) -3 - i

(D) -3 + i

2. The equation of a curve is given by $x^2 + xy + y^2 = 9$. Which of the following expressions will provide the value of $\frac{dy}{dx}$ at any point on the curve?

- $(A) \qquad \frac{-2x-y}{2y}$
- $(B) \qquad \frac{-2x-y}{x+2y}$
- (C) $\frac{-2x+y}{2y}$
- (D) $\frac{-2x+y}{x+2y}$

3. The equation of an hyperbola is given by $9x^2 - 4y^2 = 36$. The foci and the directrices of this hyperbola are:

- (A) $\left(\pm\sqrt{13}, 0\right)$ and $x = \pm\frac{4\sqrt{13}}{13}$.
- (B) $(0, \pm \sqrt{13})$ and $x = \pm \frac{4\sqrt{13}}{13}$.
- (C) $(\pm \sqrt{13}, 0)$ and $y = \pm \frac{4\sqrt{13}}{13}$.
- (D) $(0, \pm \sqrt{13})$ and $y = \pm \frac{4\sqrt{13}}{13}$.

4. The area bounded by the curves $y = x^2$ and $x = y^2$ is rotated about the x – axis. The volume of the solid of revolution formed in cubic units is:

(A) $\frac{9\pi}{70}$

(B) $\frac{3\pi}{10}$

(C) $\frac{7\pi}{10}$

(D) $\frac{3\tau}{2}$

5. The graph of the function y = f(x) is drawn below:

Which of the following graphs best represents the graph $y = \sqrt{f(x)}$?

(C)

End of Section I

Section II

Total marks (40)

Attempt Questions 6 - 9

Question 6 (10 marks)

Marks

2

2

a) An ellipse E has equation
$$\frac{x^2}{4} + \frac{y^2}{2} = 1$$

(i) Show that the equation of E can be written in the parametric form

$$x = 2\cos\theta, y = \sqrt{2}\sin\theta$$

(ii) Assuming the perimeter of E is given by the formula

$$p = 2 \int_0^{\pi} \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} \ d\theta \ ,$$

show that
$$p = 2\sqrt{2} \int_0^{\pi} \sqrt{2 - \cos^2 \theta} \ d\theta$$

b) (i) If
$$w = \frac{1 + i\sqrt{3}}{2}$$
 show that $w^3 = -1$

1

(ii) Hence calculate w^{12}

1

(iii) Find all the cube roots of -1, both Real and Complex.

2

c) Given that one root of the equation
$$x^4 - 5x^3 + 5x^2 + 25x - 26 = 0$$
 is $3 + 2i$, solve the equation.

2

Question 7 (10 marks) Start a new page

a) If $f(x) = -x^2 + 7x - 10$, on separate diagrams and without using calculus, sketch the following graphs, indicating the intercepts with the axes and any asymptotes for each sketch:

$$y = f(x)$$

(ii)
$$y = |f(x)|$$

(iii)
$$y = \frac{1}{f(x)}$$

$$y = -f(x+2)$$

b) Find all the roots of
$$18x^3 + 3x^2 - 28x + 12 = 0$$
, given that two roots are equal.

Question 8 (10 marks) Start a new page

- b) Given that the Argand Diagram for |z-2| + |z-4| = 10 is an ellipse,
 - (i) Find the co-ordinates of the centre of this ellipse and the lengths of the major and minor axes
 - (ii) On an Argand Diagram, show the region for which z satisfies the inequalities 3

$$z + \bar{z} \le 6$$
 and $|z - 2| + |z - 4| \le 10$

c) Find the perimeter of the shape in the Argand Diagram described by
$$|z-1| \le 1 \qquad \text{and} \quad 0 \le \arg z \le \frac{\pi}{6}$$

Question 9 (10 marks) Start a new page

- a) Find the equation of the tangent to $\frac{x^2}{16} + \frac{y^2}{25} = 1$ at the point $P(4\cos\theta, 5\sin\theta)$.
- b) $P(2p, \frac{2}{p})$ is a variable point on the hyperbola xy=4. The normal to the hyperbola at P meets the hyperbola again at $Q(2q, \frac{2}{q})$. M is the midpoint of PQ.
 - (i) Show that the equation of the normal at P is given by $p^3x py = 2(p^4 1)$
 - Show that $q = -\frac{1}{p^3}$
 - (iii) Show that M has coordinates $\left[\frac{1}{p}\left(p^2 \frac{1}{p^2}\right), p\left(\frac{1}{p^2} p^2\right)\right]$
 - (iv) Show that, as P moves on the curve xy = 4, the locus of M is given by $(x^2 y^2)^2 = -x^3y^3$

End of Examination

b) $i) w = \frac{1}{2}(1+i\sqrt{3})$ $i' w' = \frac{1}{2}(1+i\sqrt{3})^2$ = { (1+1/3 × 1+1/3) = to (1+i/5)(-2+2/3i) =-== (1+iV3)(1-iV3) $ii) W^{12} = (W^3)^4$ = $(-1)^4$ (iii) Cube roots of -1 are Solutions of w=-1 Let w = Cood + i SnD 11 W3 = COS30 + 15m38 Thus CS38 + isw38 =- 1 W 0 5 30 56TE 1: 30 = T, 3T, STC Q=T, T, 5T This wir = cis to or 1+ivs (asgur) 45 = cis 1 0 0 −1 (real) 43 = cis 5x on + -is

(b) P(x) = 18x+3x-28x+12 Solve P(x) = 54x +6x-28 =0 $\frac{1}{1}$ $27x^2 + 3x - 14 = 0$ 1 x = -3 ± 19+47x14 <u>36</u> \$ -42 54 54 So one of these is a repeated root of PCE) i (3x-2) is a factor Tre- 12x +4 is a factor $(-9x^2-12x+4)18x^3+3x^2-28x+12$ 18x3-24x2+8x 27x2-36x +12 27x2 -36x +12 $(2x+3)^{2}$ which has roots 2 x -3 ONLY

9. a) 52 + y = 1 Off. inplicitly 2e + 2y dy = 0 1; dy = -252 16 25 do 16y Egn of tang is J-55m0=-5000 (x-45mby-20528=-5coox+2550 OR COSQ X + 50 y = 1 2g = 4 $P(2p, \frac{2}{p})$ $P(2p, \frac{2}{p})$ $P(2p, \frac{2}{p})$ Egnoy NORMAL is $y - \frac{2}{p} = p^2(x - 2p) - 0$ By-2 = \$3x-29x or $\beta^2 \times -\beta y = 2(\beta^4 - 1) \approx \kappa e y' d$

(ii) Revertige to to Ausstrating &(2q, =) 2 - = p mpQ = POVIO M/2p+2q, P p+9, $\left(\begin{array}{c} p - \frac{1}{p^3} \\ p - \frac{1}{p^3} \end{array}\right)$ Mis [+ (p2- 1), p((p2

(N) Checking (se -y2) = - se y $\angle AS = \left[\frac{1}{p^2} \left(\frac{p^2 - p^2}{p^2}\right) - \frac{p^2}{p^2} \left(\frac{p^2 - p^2}{p^2}\right)\right]$ $= \left[\frac{1}{p^2} \left(\frac{1}{p^2} - \frac{1}{p^2} \right)^2 - \frac{1}{p^2} \left(\frac{1}{p^2} - \frac{1}{p^2} \right)^2 \right]$ $= \left(\frac{1}{2} - \frac{1}{2}\right)^2 \left(\frac{1}{2} - \frac{1}{2}\right)$ $=\left(\begin{array}{c} 1 \\ 1 \end{array}\right)^{2}$ $= -\frac{1}{p^2} \left(\frac{1}{p^2} - \frac{1}{p^2} \right)^2 \left(\frac{1}{p^2} - \frac{1}{p^2} \right)^2$ $=+\left(\frac{1}{p^2}-\frac{1}{p^2}\right)\left(\frac{1}{p^2}-\frac{1}{p^2}\right)^3$ $=\left(\frac{1}{b^2}-b^2\right)^b$ As LHS = RHS We have Confirmed Locus of Mis $\left(x^2-y^2\right)^2=-2c^3y^3$