杭州电子科技大学学生考试卷期末(A)卷

考试课程		概率论与数理统计							2009年 01月 05 日		戓 绩		
课程·	号	A	0702140	教	师号			任ì	课教师姓 名				
考生姓	E名			学号	(8位)			年级			专业		
_			=	四	五	六	t	í	八	力	L	+	

- 一、选择题,将正确答案填在括号内(每小题3分,共18分)
- 1. 设随机事件 A , B 满足 P(B) = P(B|A) ,则下列结论中正确的是

A.
$$P(\overline{A}B) = P(\overline{A})P(\overline{B})$$
 B. $P(A \cup B) = P(A) + P(B)$

B.
$$P(A \cup B) = P(A) + P(B)$$

C.
$$A, B$$
 互不相容 D. $P(A) = P(B|A)$

$$D. P(A) = P(B|A)$$

2. 设 X 是[0, 1]上的连续型随机变量,并且 $P\{X \le 0.3\} = 0.8$. 记 Y = 1 - X,若要使

$$P{Y \le k} = 0.2$$
,则常数 $k = ($).

3. 设随机变量 X的概率密度为 $f(x) = \frac{1}{\pi(1+x^2)}$, $-\infty < x < +\infty$, 则 Y = 2X的概率密度为

A.
$$\frac{1}{\pi(1+v^2)}$$

B.
$$\frac{2}{\pi(4+v^2)}$$

$$C. \frac{1}{\pi(1+\frac{y^2}{4})}$$

$$D. \frac{1}{\pi(1+4y^2)}$$

4. 设(X,Y)的联合分布律如下表所示:

Y X	0	1	2
-1	1/15	t	1/5
1	S	1/5	3/10

则(s,t)=()时,X与Y相互独立.

A.
$$(\frac{1}{5}, \frac{1}{15})$$
; B. $(\frac{1}{15}, \frac{1}{5})$

B.
$$(\frac{1}{15}, \frac{1}{5})$$

C.
$$(\frac{1}{10}, \frac{2}{15})$$
; D. $(\frac{2}{15}, \frac{1}{10})$

D.
$$(\frac{2}{15}, \frac{1}{10})$$

5. X_1, X_2, \dots, X_8 和 Y_1, Y_2, \dots, Y_{10} 分别来自两个正态总体 $N(-1,2^2)$ 和 $N(2,5^2)$ 的样本且 相互独立, S_1^2 和 S_2^2 分别为两个样本的样本方差,则服从F(7,9)的统计量是

A.
$$\frac{2S_1^2}{5S_2^2}$$
;

B.
$$\frac{5S_1^2}{2S_2^2}$$

C.
$$\frac{4S_2^2}{25S_1^2}$$
; D. $\frac{25S_1^2}{4S_2^2}$

D.
$$\frac{25S_1^2}{4S_2^2}$$

6. 在假设检验中,记 H_0 为原假设, H_1 为备择假设,则显著性水平 α 是指(

A.
$$P\{$$
接受 $H_0|H_0$ 为假 $\}=\alpha$; B. $P\{$ 接受 $H_1|H_1$ 为假 $\}=\alpha$

B.
$$P$$
{接受 $H_1 | H_1$ 为假}= α

C.
$$P{$$
拒绝 $H_0|H_0$ 为真 $}=\alpha$; D. $P{$ 拒绝 $H_1|H_1$ 为真 $}=\alpha$

D.
$$P$$
{拒绝 $H_1|H_1$ 为真}= α

- 二、填空题(每小题3分,共15分)
- 1. 从 5 双不同的鞋子中任取 4 只, 这 4 只鞋子中至少有 2 只配成一双的概率是

2. 设
$$P(A \cup B) = 0.8$$
, $P(B) = 0.4$,则 $P(A|\overline{B}) =$ ______.

3. 某人投篮, 投中的概率为 0.6, 现投了 3 次,则此人投中 2 次的概率为_____.

4. 设
$$X$$
与 Y 相互独立且都服从 N (0,1),则 D (2 X -3 Y +1)=______.

5. 设随机变量 $X \sim U(-1,2)$,则由切比雪夫不等式 $P\{|X-\frac{1}{2}| \le 1\} \ge ____$.

三、(本题 7 分) 设随机变量
$$X$$
的密度函数为 $f(x) = \begin{cases} ax + b, 0 < x < 1 \\ 0, else \end{cases}$,又已知 $P\{X < \frac{1}{3}\} = P\{X > \frac{1}{3}\}$,(1) 求常数 $a \Rightarrow b$;(2) 求 X 的分布函数 $F(x)$

- 四. (本题 15 分)设二维随机变量(X,Y)的概率密度为 $f(x,y) = \begin{cases} Cxy^2, 0 < y < x < 1 \\ 0, 其它 \end{cases}$
 - (1) 求常数 C;
 - (2) 求关于 X和关于 Y的边缘概率密度; 并问 X与 Y是否相互独立?
 - (3) 求概率 P{X+Y<1}.

五. (本题 8 分) 设随机变量 (X,Y) 的概率分布律为:

X	0	1	2
Y			
-1	0.3	0.1	0.2
1	0.1	0.3	0

求: (1) 关于 Z = XY的分布律;

(2) 协方差 Cov(X,Y).

六. (本题 6 分)设各零件的重量都是随机变量,它们相互独立,且服从相同的分布,其数学期望为 0.5kg ,均方差为 0.1kg ,问 5000 只零件的总重量超过 2510kg 的概率约为多少? (结果用标准正态分布函数 $\Phi(x)$ 表示)

七. (本题 6 分) 设总体 X 具有概率密度 $f(x,\theta) = \begin{cases} (\theta+1)x^{\theta}, & 0 < x < 1 \\ 0, & \text{其它} \end{cases}$, 其中 $\theta > -1$ 是 未知参数. 又 X_1, X_2, \cdots, X_n 为来自该总体的一个样本, x_1, x_2, \cdots, x_n 为样本值. 试求未

知参数 θ 的最大似然估计量.

八. (本题 5 分)设某种清漆的干燥时间服从正态分布 $X \sim N(\mu, \sigma^2)$,现随机地抽取 9 个样品,测得干燥时间的均值x=6 (小时),样本均方差 s=0.6, σ^2 为未知,求 μ 的置信水平为 95%的置信区间. ($t_{0.025}(8)=2.3060$, $t_{0.025}(9)=2.2622$,精确到第二位小数).

九. (本题 6 分) 某产品的一项质量指标 $X \sim N(\mu, 0.05^2)$,现从一批产品中随机地抽取 5 件,测得样本方差 $s^2 = 0.0078$,问根据这一数据能否推断该批产品的方差较以往 的有显著的变化?(取显著性水平 $\alpha = 0.05$)

$$(\chi_{0.025}^2(5) = 12.833, \chi_{0.975}^2(4) = 0.484, \chi_{0.95}^2(4) = 0.711, \chi_{0.975}^2(5) = 0.831$$

 $\chi_{0.025}^2(4) = 11.143$

十. (本题 4 分)设 $X_1, X_2 ..., X_n$ 是总体N(0,1)的简单随机样本,记 $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$,

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
, $T = \overline{X}^2 - \frac{1}{n} S^2$, i.e. $D(T) = \frac{2}{n(n-1)}$