К Лекции 1

Задача 1.1 (Охватить сосну; за скучное решение 0,7 получены, ПРОСТОЕ решение будет стоить 1 балл).

На миллиметровку бросают сосновую иголку длиной 1 см. Найдите среднее число пересечений с линиями сетки (да, сосновая иголка прямой быть не обязана).

Задача 1.2 (О круглых кирпичах; РЕШЕНА ДВУМЯ СПОСОБАМИ).

Летит кирпич размером $3 \times 4 \times 5$. И так волшебно вращается, что все его положения относительно своего центра масс равновероятны. Солнце в зените, найдите среднюю площадь тени.

К Лекции 2

Задача 2.1 (О дискретном случае; 0,5 балла).

Если Ω не более чем счетно, и $\mathcal{F} \subset 2^{\Omega}$, то найдется некоторое не более чем счетное разбиение H_1, \ldots, H_i, \ldots $(i \in I_0)$ множества Ω , что

$$\mathcal{F} = \sigma(\{H_1, \dots, H_i, \dots\}) = \{\bigcup_{i \in I} H_i | I \subset I_0\} \cong 2^{\{H_1, \dots, H_i, \dots\}}.$$

Задача 2.2 (РЕШЕНА).

Пусть дана возрастающая последовательность σ -алгебр \mathcal{F}_i . Будет ли их объединение алгеброй? σ -алгеброй?

Задача 2.3 (К спору о первородстве; 1 балл).

Пусть \mathcal{A} — абстрактная булева алгебра. Его непустое подмножество \mathcal{F} называют фильтром, если $\varnothing \notin \mathcal{F}$, для всех $A \in \mathcal{A}, B \in \mathcal{F}$ из $B \subset A$ следует $A \in \mathcal{F}$ а кроме того для всех $A, B \in \mathcal{F}$ следует $A \cap B \in \mathcal{F}$. Фильтр назовем максимальным, если для всех $A \in \mathcal{A}$ или $A \in \mathcal{F}$, или $\overline{A} \in \mathcal{F}$. Показать, что на множестве всех максимальных фильтров можно построить булеву алгебру, изоморфную исходной булевой алгебре \mathcal{A} .

Задача 2.4 (0,6 баллов).

Доказать, что для любой последовательности событий $A_k \in \mathcal{F}$, для всех $k \in \mathbb{N}$ выполнено

$$\mathbb{P}(\cup_{i=1}^k A_i) = \sum_{i=1}^k \mathbb{P}(A_i) - \sum_{i < j} \mathbb{P}(A_i \cap A_j) + \sum_{i < j < l} \mathbb{P}(A_i \cap A_j \cap A_l) + \dots + (-1)^{k+1} \mathbb{P}(A_1 \cap A_2 \cap \dots A_k).$$

Верно ли это для объединения счетного числа событий? А доказать?

Задача 2.5 (0.7 баллов).

Для любых двух σ -алгебр $\mathcal{F}_1, \mathcal{F}_2$, содержащихся в \mathcal{F} , рассмотрим

$$d(\mathcal{F}_1, \mathcal{F}_2) = 4 \sup_{A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2} |P(A_1)P(A_2) - P(A_1 \cap A_2)|.$$

Докажите, что $0 \le d(\mathcal{F}_1, \mathcal{F}_2) \le 1$. Найдите условия, при которых $d(\mathcal{F}_1, \mathcal{F}_2)$ равно 0 или 1.

Задача 2.6 (О тривиальности горизонта; 1 балл).

Пусть на одном и том же вероятностном пространстве дана последовательность событий A_n . Назовем событие A далеким, если для всех $k \in \mathbb{N}$, по событиям A_n начиная с k-го, можно определить выполнено ли событие A. Докажите, что вероятность любого далекого события равна или нулю, или единице.

Другой вариант формулировки той же задачи: Пусть имеется последовательность событий A_n , введем минимальные σ -алгебры $\mathcal{A}_n = \sigma(A_1, \dots, A_n), \ \mathcal{A}_\infty = \cap_{k \in \mathbb{N}} \mathcal{A}_k$. Докажите, что для любого $A \in \mathcal{A}_\infty$ или $\mathbb{P}(A) = 1$, или $\mathbb{P}(A) = 0$.

Задача 2.7 (Предел должен быть; 1 балл).

Докажите, опираясь на задачу 2.6, что в схеме Бернулли с бесконечным числом независимых испытаний

$$\mathbb{P}\Big(\frac{\text{число успехов за первые }n$$
 испытаний имеет предел при $n\uparrow\infty\Big)=1.$