Diagnose data for cleaning

CLEANING DATA IN PYTHON

Daniel Chen Instructor

Cleaning data

- Prepare data for analysis
- Data almost never comes in clean
- Diagnose your data for problems

Common data problems

- Inconsistent column names
- Missing data
- Outliers
- Duplicate rows
- Untidy
- Need to process columns
- Column types can signal unexpected data values

	Continent	Country	female literacy	fertility	population
0	ASI	Chine	90.5	1.769	1.324655e+09
1	ASI	Inde	50.8	2.682	1.139965e+09
2	NAM	USA	99.0	2.077	3.040600e+08
3	ASI	Indonésie	88.8	2.132	2.273451e+08
4	LAT	Brésil	90.2	1.827	NaN

 $^{^{1}}$ Source: www.eea.europa.eu/data 2 and 3 maps/figures/correlation 4 between 5 fertility 6 and 7 female 8 education

	Continent	Country	female literacy	fertility	population
0	ASI	Chine	90.5	1.769	1.324655e+09
1	ASI	Inde	50.8	2.682	1.139965e+09
2	NAM	USA	99.0	2.077	3.040600e+08
3	ASI	Indonésie	88.8	2.132	2.273451e+08
4	LAT	Brésil	90.2	1.827	NaN

 $^{^{1}}$ Source: www.eea.europa.eu/data 2 and 3 maps/figures/correlation 4 between 5 fertility 6 and 7 female 8 education

	Continent	Country	female literacy	fertility	population
0	ASI	Chine	90.5	1.769	1.324655e+09
1	ASI	Inde	50.8	2.682	1.139965e+09
2	NAM	USA	99.0	2.077	3.040600e+08
3	ASI	Indonésie	88.8	2.132	2.273451e+08
4	LAT	Brésil	90.2	1.827	NaN

 $^{^{1}}$ Source: www.eea.europa.eu/data 2 and 3 maps/figures/correlation 4 between 5 fertility 6 and 7 female 8 education

	Continent	Country	female literacy	fertility	population
0	ASI	Chine	90.5	1.769	1.324655e+09
1	ASI	Inde	50.8	2.682	1.139965e+09
2	NAM	USA	99.0	2.077	3.040600e+08
3	ASI	Indonésie	88.8	2.132	2.273451e+08
4	LAT	Brésil	90.2	1.827	NaN

Column name inconsistencies

 $^{^1}$ Source: www.eea.europa.eu/data 2 and 3 maps/figures/correlation 4 between 5 fertility 6 and 7 female 8 education

	Continent	Country	female literacy	fertility	population
0	ASI	Chine	90.5	1.769	1.324655e+09
1	ASI	Inde	50.8	2.682	1.139965e+09
2	NAM	USA	99.0	2.077	3.040600e+08
3	ASI	Indonésie	88.8	2.132	2.273451e+08
4	LAT	Brésil	90.2	1.827	NaN

• Column name inconsistencies

 $^{^1}$ Source: www.eea.europa.eu/data 2 and 3 maps/figures/correlation 4 between 5 fertility 6 and 7 female 8 education

	Continent	Country	female_ literacy	fertility	population
0	ASI	Chine	90.5	1.769	1.324655e+09
1	ASI	Inde	50.8	2.682	1.139965e+09
2	NAM	USA	99.0	2.077	3.040600e+08
3	ASI	Indonésie	88.8	2.132	2.273451e+08
4	LAT	Brésil	90.2	1.827	NaN

• Column name inconsistencies

 $^{^1}$ Source: www.eea.europa.eu/data 2 and 3 maps/figures/correlation 4 between 5 fertility 6 and 7 female 8 education

	Continent	Country	female literacy	fertility	population
0	ASI	Chine	90.5	1.769	1.324655e+09
1	ASI	Inde	50.8	2.682	1.139965e+09
2	NAM	USA	99.0	2.077	3.040600e+08
3	ASI	Indonésie	88.8	2.132	2.273451e+08
4	LAT	Brésil	90.2	1.827	NaN

Column name inconsistencies

 $^{^1}$ Source: www.eea.europa.eu/data 2 and 3 maps/figures/correlation 4 between 5 fertility 6 and 7 female 8 education

	Continent	Country	female literacy	fertility	population
0	ASI	Chine	90.5	1.769	1.324655e+09
1	ASI	Inde	50.8	2.682	1.139965e+09
2	NAM	USA	99.0	2.077	3.040600e+08
3	ASI	Indonésie	88.8	2.132	2.273451e+08
4	LAT	Brésil	90.2	1.827	NaN

- Column name inconsistencies
- Missing data

 $^{^1}$ Source: www.eea.europa.eu/data 2 and 3 maps/figures/correlation 4 between 5 fertility 6 and 7 female 8 education

	Continent	Country	female literacy	fertility	population
0	ASI	Chine	90.5	1.769	1.324655e+09
1	ASI	Inde	50.8	2.682	1.139965e+09
2	NAM	USA	99.0	2.077	3.040600e+08
3	ASI	Indonésie	88.8	2.132	2.273451e+08
4	LAT	Brésil	90.2	1.827	NaN

- Column name inconsistencies
- Missing data
- Country names are in French

¹ Source: www.eea.europa.eu/data ² and ³ maps/figures/correlation ⁴ between ⁵ fertility ⁶ and ⁷ female ⁸ education

Load your data

```
import pandas as pd

df = pd.read_csv('literary_birth_rate.csv')
```

Visually inspect

df.head()

```
female literacy fertility
Continent
             Country
                                                  population
               Chine
     ASI
                                90.5
                                          1.769
                                                1.324655e+09
     ASI
                Inde
                                50.8
                                          2.682 1.139965e+09
                 USA
                                99.0
                                          2.077 3.040600e+08
     NAM
                                          2.132 2.273451e+08
     ASI
           Indonésie
                                88.8
              Brésil
                                90.2
                                                         NaN
     LAT
                                          1.827
```

df.tail()

Con [.]	tinent	Country	female literacy	fertility	population	
0	AF	Sao Tomé-et-Principe	90.5	1.769	1.324655e+09	
1	LAT	Aruba	50.8	2.682	1.139965e+09	
2	ASI	Tonga	99.0	2.077	3.040600e+08	
3	OCE	Australia	88.8	2.132	2.273451e+08	
4	OCE	Sweden	90.2	1.827	NaN	

Visually inspect

```
df.columns
Index(['Continent', 'Country ', 'female literacy', 'fertility', 'population'], dtype='object')
df.shape
(164, 5)
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 164 entries, 0 to 163
Data columns (total 5 columns):
Continent
          164 non-null object
         164 non-null object
Country
female literacy
                164 non-null float64
fertility 164 non-null object
population
             122 non-null float64
dtypes float64(2), object(3)
memory usage: 6.5+ KB
```


Let's practice!

CLEANING DATA IN PYTHON

Exploratory data analysis

CLEANING DATA IN PYTHON

Daniel Chen Instructor

Frequency counts

• Count the number of unique values in our data

Data type of each column

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 164 entries, 0 to 163
Data columns (total 5 columns):
continent 164 non-null object
       164 non-null object
country
female literacy 164 non-null float64
fertility 164 non-null object
population 122 non-null float64
dtypes float64(2), object(3)
memory usage: 6.5+ KB
```


Frequency counts: continent

```
df.continent.value_counts(dropna=False)
```

```
AF 49
ASI 47
EUR 36
LAT 24
OCE 6
NAM 2
Name: continent, dtype: int64
```


Frequency counts: continent

```
df['continent'].value_counts(dropna=False)
```

```
AF 49
ASI 47
EUR 36
LAT 24
OCE 6
NAM 2
Name: continent, dtype: int64
```


Frequency counts: country

```
df.country.value_counts(dropna=False).head()
```

```
Sweden 2
Algerie 1
Germany 1
Angola 1
Indonésie 1
Name: country, dtype: int64
```


Frequency counts: fertility

```
df.fertility.value_counts(dropna=False).head()
```

```
missing 5
1.854 2
1.93 2
1.841 2
1.393 2
Name: fertility, dtype: int64
```


Frequency counts: population

```
df.population.value_counts(dropna=False).head()
```

```
NaN 42
5.667325e+06 1
3.773100e+06 1
1.333388e+06 1
1.661115e+08 1
Name: population, dtype: int64
```


Summary statistics

- Numeric columns
- Outliers
 - Considerably higher or lower
 - Require further investigation

Summary statistics: numeric data

df.describe()

```
female_literacy
                        population
           164.000000
                       1.220000e+02
count
            80.301220
                       6.345768e+07
mean
            22.977265
                       2.605977e+08
std
            12.600000
                       1.035660e+05
min
25%
            66.675000
                       3.778175e+06
50%
            90.200000
                       9.995450e+06
75%
            98.500000
                       2.642217e+07
           100.000000 2.313000e+09
max
```


Let's practice!

CLEANING DATA IN PYTHON

Visual exploratory data analysis

CLEANING DATA IN PYTHON

Daniel Chen Instructor

Data visualization

- Great way to spot outliers and obvious errors
- More than just looking for patterns
- Plan data cleaning steps

Summary statistics

df.describe()

	female_literacy	fertility	population	
count	164.000000	163.000000	1.220000e+02	
mean	80.301220	2.872853	6.345768e+07	
std	22.977265	1.425122	2.605977e+08	
min	12.600000	0.966000	1.035660e+05	
25%	66.675000	1.824500	3.778175e+06	
50%	90.200000	2.362000	9.995450e+06	
75%	98.500000	3.877500	2.642217e+07	
max	100.000000	7.069000	2.313000e+09	

Bar plots and histograms

- Bar plots for discrete data counts
- Histograms for continuous data counts
- Look at frequencies

Histogram

```
df.population.plot('hist')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f78e4abafd0>

```
import matplotlib.pyplot as plt
plt.show()
```


Identifying the error

```
df[df.population > 1000000000]
```

```
continent
              country female literacy fertility
                                                   population
                                  90.5
         ASI
                 Chine
                                            1.769
                                                   1.324655e+09
                                  50.8
         ASI
                  Inde
                                            2.682
                                                  1.139965e+09
                                  96.0
162
             Australia
                                            1.930 2.313000e+09
         OCE
```

- Not all outliers are bad data points
- Some can be an error, but others are valid values

Box plots

- Visualize basic summary statistics
 - Outliers
 - Min/max
 - o 25th, 50th, 75th percentiles

Box plot

```
df.boxplot(column='population', by='continent')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7ff5581bb630>

plt.show()

Box plot

```
df.boxplot(column='population', by='continent')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7ff5581bb630>

plt.show()

Scatter plots

- Relationship between 2 numeric variables
- Flag potentially bad data
 - Errors not found by looking at 1 variable

Let's practice!

CLEANING DATA IN PYTHON

