AFRL-MN-EG-TR-2001-7082

AEROBALLISTIC RANGE TESTS OF MISSILE CONFIGURATIONS WITH NON-CIRCULAR CROSS SECTIONS

Wayne H. Hathaway Arrow Tech Associates 1233 Shelburne Road, Suite D-8 South Burlington, Vermont 05403

Captain Benjamin Kruggel Gregg Abate Gerald Winchenbach John Krieger AFRL/MNAV Eglin AFB, Florida 32542

CONTRACT NUMBER F08630-96-C-0001

September 2001

FINAL REPORT FOR PERIOD JANUARY 2000 to DECEMBER 2000

DISTRIBUTION A: Approved for public release; distribution unlimited.

20011005 186

AIR FORCE RESEARCH LABORATORY, MUNITIONS DIRECTORATE
Air Force Material Command ■ United States Air Force ■ Eglin Air Force Base

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This technical report is releasable to the National Technical Information Services (NTIS). At NTIS it will be available to the general public, including foreign nations.

Contract Number: F08630-96-C-0001

Contractor: Arrow Tech Associates

1233 Shelburne Rd. Ste. D-8 S. Burlington, VT 05403

This technical report has been reviewed and is approved for publication.

FREDERICK A. DAV

Technical Director

Assessment and Demonstrations Division

GREGG ABATE

Flight Vehicles Integration Branch

Anyone having need for a copy of this report should first contact the Defense Technical Information Center (DTIC) at the address shown below. If you are a registered DTIC User, DTIC can provide you with a copy. Please do not request copies from the Air Force Research Laboratory, Munitions Directorate. Requests for additional copies should be directed to:

Defense Technical Information Center (DTIC) 8725 John J. Kingman Road, Ste 0944 Ft Belvoir, VA 22060-6218

This report is published in the interest of the scientific and technical information exchange. Publication of this report does not constitute approval or disapproval of the ideas or findings.

If your address has changed, if you wish to be removed from our mailing list, or if your organization no longer employs the addressee, please notify AFRL/MNAV, 101 W. Eglin Blvd., Suite 332, Eglin AFB FL 32542-6810, to help us maintain a current mailing list.

Do not return copies of this report unless contractual obligations or notice on a specific document requires that it be returned.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503.

(0704-0188), Washington, DC 20503.	orations tale reports, 12	. 15 Jeneraon Savio Ingliwayi St	ine ine i, i i ingresi, i	7. 20202 1302,			
1. AGENCY USE ONLY (Leave blank)		2. REPORT DATE				ATES COVERED	
	ļ	September 2001		Final Repo	ort January 2	2000 - December 2000	
4. TITLE AND SUBTITLE					5. FUNDING		
AEROBALLISTIC RANGE TESTS OF MISSILE CONFIGURATIONS WITH				C: F08630-96-C-0001			
NON-CIRCULAR CROSS SECTION	NS				l		
					PE: 626021	₹	
6. AUTHOR(S)					PR: 2502		
Wayne H Hathaway (Arrow Tech), (TA: 67		
(AFRL/MNAV), Gerald Winchenback	:h (AFRL/MNA	V), and John Krieger	(AFRL/MNA	V)	WU: 01		
7. PERFORMING ORGANIZATION NAME	(S) AND ADDRESS	(ES)				ING ORGANIZATION REPORT	
Arrow Tech Associates					NUMBER		
1233 Shelburne Road, Suite D-8							
South Burlington VT 05403							
9. SPONSORING/MONITORING AGENCY						RING/MONITORING AGENCY	
Air Force Research Laboratory Mun		te			REPORT	NUMBER	
Assessment and Demonstrations Div					AEDI MAI	EC TR 2001 7002	
Flight Vehicles Integration Branch (Eglin AFB FL 32542	2-6810		AFRL-MIN	-EG-TR-2001-7082	
Point of Contact: Gregg Abate, 850-	882-4085						
11. SUPPLEMENTARY NOTES	T 4317C						
SUBJECT TO EXPORT CONTROL							
Availability of report is specified on	front cover						
10- DIOTRIDITION/AVAILABILITY OTAT	PD (D) IT				101 DIGEDIE	NUTRON CODE	
12a. DISTRIBUTION/AVAILABILITY STATE DISTRIBUTION A: Approved for p		latelbution unlimited			126. DISTRIE	BUTION CODE	
DISTRIBUTION A: Apployed for p	oublic release, di	istribution unimited					
13. ABSTRACT (Maximum 200 words)				i			
13. Abstract (maximum 200 worts)							
Non-axisymmetric body shapes are o	urrently being c	onsidered by weapon	designers. Th	ese annlicat	ions and rea	uirements include increased range	
increased maneuverability, and confe							
experimental aerodynamics on sever	al basic cross se	ctional shape variation	ns. The resulti	ng datahase	will serve to	supplement the existing database of	
experimentally determined aerodyna							
Aerodynamic force and moment coe							
(ARF). The range of Mach numbers							
configurations were tested and evalu							
(four-fin), 0.8/0.6 eccentric blended	elliptical (four-f	in) four-fin square a	nd three-fin tri:	angular Th	ese experim	ental test results provide a good	
comparison of the shape effects on the	ie hasic aerodyn	amics with respect to	axial force no	rmal force	and nitching	moment	
comparison of the shape effects on the	ic ousic derouyii	annes with respect to	axiai ioree, no	mai lorce,	and pitcime	inoment.	
14. SUBJECT TERM				l	15. NUMBER		
	:		~ ·	Ļ	86		
Elliptic Bodies, Non-Circular Cross	Section, Experin	mental Aerodynamics	Spark range to	ests,	16. PRICE CODE		
Trajectory analysis, Aerodynamics			T		·		
17. SECURITY CLASSIFICATION OF	18. SECURITY CI		19. SECURITY		TION	20. LIMITATION OF ABSTRACT	
REPORT UNCLASSIFIED	OF THIS PAG	E LASSIFIED	OF ABSTR	ACT CLASSIFII	2D	UL	
I ONCLASSITIED	ı UNCI	LASSIFIED	I UN	ししれるろほぼ	ענ		

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 INTENTIONALLY LEFT BLANK

PREFACE

This report documents the aerodynamic coefficients and stability derivatives resulting from a series of free flight tests of a generic missile configuration with circular and non-circular cross sections over a Mach number range of 0.75 through 3.5. All configurations had a common rectangular tail fin design and were either of a three-fin of four-fin variety depending upon the missile cross-section. These tests were conducted in the USAF Aeroballistic Research Facility, located at Eglin AFB, FL. The period of testing covered a time period of 1997 to 2000.

The data analysis was accomplished by the Arrow Tech Associates of South Burlington, Vermont 05401-4985, under Contract F08630-96-C-0001, with the Air Force Research Laboratory Munitions Directorate, Eglin Air Force Base, Florida 32542-5434. Mr. Gerald Winchenbach, Dr. Gregg Abate, and Captain Benjamin Kruggel of AFRL were the principal investigators and test directors. Mr. John Krieger of the ARF conducted the test that included launch, instrumentation, data acquisition, and image processing.

INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

	page
PREFACE	v
LIST OF FIGURES	ix
LIST OF TABLES	xi
INTRODUCTION	1
AEROBALLISTIC TESTING	3
Aeroballistic Research Facility Models and Test Conditions Aerodynamic Parameter Identification	4
RESULTS AND DISCUSSION	9
 Circular Cross Section Configurations Elliptic Cross Section Configurations Square Cross Section Configurations Triangular Cross Section Configurations 	23
CONCLUSIONS	31
APPENDIX A - NOMENCLATURE	33
APPENDIX B – FIXED PLANE AERODYNAMIC MODEL	35
6DOF - Methodology Aerodynamic Forces and Moments	36
APPENDIX C – BODY FIXED AERODYNAMIC MODEL	
6DOF – Methodology Aerodynamic Forces and Moments	39 41
APPENDIX D FLIGHT TRIAL DATA	45
1. Four-Fin Circular 2. Three-Fin Circular 3. 0.8 Elliptical 4. 0.6 Elliptical	53 57
5. Blended Elliptical	65
PEERENCES	

INTENTIONALLY LEFT BLANK

LIST OF FIGURES

Figure	ţе
1. USAF Aeroballistic Research Facility (ARF), Eglin AFB, FL	4
2. Model Cross Section Configurations	.5
3. ARFDAS Aerodynamic Parameter Identification Process	.7
4. Three- Fin and Four-Fin Circular Configurations1	0
5. Zero Yaw Axial Force Coefficient versus Mach Number – Circular Cross Section Configurations	1
6. Normal Force Coefficient Derivative versus Mach Number – Circular Cross Section Configuration	1
7. Pitch Moment Coefficient Derivative versus Mach Number – Circular Cross Section Configuration	2
8. Pitch Damping Moment Coefficient versus Mach Number – Circular Cross Section Configuration	
9. Elliptic Cross Section Configurations1	4
10. Zero Yaw Axial Force Coefficient versus Mach Number – Elliptic Cross Section Configurations	.5
11. Pitch-Plane (Alpha-Plane) Force Coefficient Derivative versus Mach Number - Elliptic Cross Section Configurations	6
12. Yaw-Plane (Beta-Plane) Normal Force Coefficient Derivative versus Mach Number - Elliptic Cross Section Configurations	6
13. Pitch-Plane (Alpha-Plane) Moment Coefficient Derivative versus Mach Number - Elliptic Cross Section Configurations	.7
14. Pitch-Plane (Alpha-Plane) Moment Coefficient Derivative versus Mach Number with Common Moment Reference - Elliptic Cross Section Configurations	.7
15. Yaw-Plane (Beta-Plane) Moment Coefficient Derivative versus Mach Number - Elliptic Cross Section Configurations	.8
16. Yaw-Plane (Beta-Plane) Moment Coefficient Derivative versus Mach Number with Common Moment Reference - Elliptic Cross Section Configurations1	9
17. Pitch-Plane (Alpha-Plane) Damping Moment Coefficient versus Mach Number - Elliptic Cross Section Configurations	9

18.	Yaw-Plane (Beta-Plane) Damping Moment Coefficient versus Mach Number - Elliptic Cross Section Configurations
19.	Pitch-Plane (Alpha-Plane) Center of Pressure Location versus Mach Number – Elliptic Cross Section Configurations
20.	Yaw-Plane (Beta-Plane) Center of Pressure Location versus Mach Number – Elliptic Cross Section Configurations
21.	Pitch-Plane (Alpha-Plane) Center of Pressure Location versus Mach Number (enhanced scale) – Elliptic Cross Section Configurations
22.	Yaw-Plane (Beta-Plane) Center of Pressure Location versus Mach Number (enhanced scale) – Elliptic Cross Section Configurations
23.	Square Body Cross Section Configuration
24.	Zero Yaw Axial Force Coefficient versus Mach Number – Square Cross Section Configuration
25.	Normal Force Coefficient Derivative versus Mach Number – Square Cross Section Configuration
26.	Pitch Moment Coefficient Derivative versus Mach Number – Square Cross Section Configuration
27.	Pitch Moment Damping Coefficient versus Mach Number – Square Cross Section Configuration
28.	Center of Pressure Location versus Mach Number (enhanced scale) – Square Cross Section Configuration
29.	Triangular Body Cross Section Configuration20
30.	Zero Yaw Axial Force Coefficient versus Mach Number – Triangular Cross Section Configuration
31.	Normal Force Coefficient Derivative versus Mach Number – Triangular Cross Section Configuration
32.	Pitch Moment Coefficient Derivative versus Mach Number – Triangular Cross Section Configuration
33.	Pitch Damping Moment Coefficient versus Mach Number – Triangular Cross Section Configuration
34.	Center of Pressure Location versus Mach Number (enhanced scale) – Triangular Cross Section Configuration

LIST OF TABLES

Table	page
1: Model Physical Properties	5
D-1: 4-Fin Circular Model Physical Properties	46
D-2: 4-Fin Circular Range Conditions	
D-3: 4-Fin Circular 6DOF Aerodynamics – Single Fits	48
D-4: 4-Fin Circular 6DOF Aerodynamics – Multiple Fits	
D-5: 3-Fin Circular Model Physical Properties	
D-6: 3-Fin Circular Range Conditions	51
D-7: 3-Fin Circular 6DOF Aerodynamics – Single Fits	52
D-8: 3-Fin Circular 6DOF Aerodynamics – Multiple Fits	
D-9: 0.8 Elliptical Model Physical Properties	
D-10: 0.8 Elliptical Range Conditions	55
D-11: 0.8 Elliptical 6DOF Aerodynamics - Single Fits	56
D-12: 0.8 Elliptical 6DOF Aerodynamics – Multiple Fits	
D-13: 0.6 Elliptical Model Physical Properties	58
D-14: 0.6 Elliptical Range Conditions	59
D-15: 0.6 Elliptical 6DOF Aerodynamics – Single Fits	60
D-16: 0.6 Elliptical 6DOF Aerodynamics – Multiple Fits	61
D-17: Blended Elliptical Model Physical Properties	62
D-18: Blended Elliptical Range Conditions	63
D-19: Blended Elliptical 6DOF Aerodynamics – Single Fits	64
D-20: Blended Elliptical 6DOF Aerodynamics – Multiple Fits	65
D-21: Square Model Physical Properties	66
D-22: Square Range Conditions	67
D-23: Square 6DOF Aerodynamics – Single Fits	68
D-24: Square 6DOF Aerodynamics – Multiple Fits	69
D-25: Triangular Model Physical Properties	70
D-26: Triangular Range Conditions	
D-27: Triangular 6DOF Aerodynamics – Single Fits	72

D-28: Triangular 6DOI	Aerodynamics	- Multiple Fits	73
-----------------------	--------------	-----------------	----

SECTION I

INTRODUCTION

Current munition designs are departing from conventional right circular cross-sections for many reasons including enhanced performance, increased range, increased maneuverability, and stealth. Improved manufacturing and production capability for both metal and composite structures is also leading weapon designers to consider non-circular vehicle shapes. The objective of this effort is to obtain an experimental aerodynamic database on several basic cross sectional shape variations within a free-flight ballistics range. The results will serve to supplement existing data and will be used to improve current analytical design methodologies that estimate vehicle aerodynamics. A total of seven configurations were tested. The models were designed to have an equivalent cross sectional area and identical fin planform to isolate effects due to the body alone. The primary goals for this effort are (1) to determine shape effects on the aerodynamics and (2) provide an experimental database for aeroprediction methodology.

The free-flight ballistic range has several advantages compared to wind tunnels The most important one is that the test object is in for aerodynamic research. unrestrained flight. Thus, no model support (sting) or wall interference effects are present during the measurement of the data. Additionally, the ballistic range allows for the determination of aerodynamic stability coefficients and derivatives that are not easily measured in a wind tunnel. Each trial conducted in the ballistic range results in a unique initial starting attitude (initial conditions) upon launch resulting in pitch and yaw motion that enables the test engineers to determine the dynamic derivatives and coefficients. Analyzing two or more trials simultaneously results in a common set of aerodynamic parameters of the configuration independent of initial conditions. This can be done over a range of Mach numbers to determine the aerodynamic parameters as a function of Mach number. It is also desirable to have trials with sufficient pitch and yaw amplitudes to cover the angle-of-attack regime of interest. A drawback of ballistic range testing is size limitations. Typical free-flight models are sub-scale so matching the full scale Reynolds number if difficult or impossible. However, this is also a limitation of wind tunnel tests and, in either case, care must be used when interrupting results.

One challenge in free flight testing is the model design and construction. Since the model is typically launched via circular tube (e.g., powder gun) it must be encased within a sabot for launch. In addition, the model/sabot package must be sized to fit the particular launcher and be capable of withstanding the in-bore accelerations. Therefore, the size of the model is often small and results in high precision tolerances during manufacture. The in-bore acceleration requirement means that the model/sabot design must capable of surviving the launch cycle. Hence, the models require adequate strength to be launched without suffering structural damage.

This report documents the aerodynamic coefficients and stability derivatives extracted from trajectory data collected during free flight tests of five non-axisymmetric configurations. In addition, two circular configurations were tested to establish a baseline reference for the results. The models were designed so that the cross-sectional area was common for all configurations. The tests were conducted in the USAF Aeroballistic Research Facility. During this period of the tests, the Flight Vehicle Integration Branch of the Air Force Research Laboratory Munitions Directorate solely maintained and operated the Facility. Recently, the University of Florida Graduate Engineering and Research Center (UF/GERC) has become a partner in the management of the facility.

SECTION II

AEROBALLISTIC TESTING

1. Aeroballistic Research Facility

The Aeroballistic Research Facility¹ (ARF) is an enclosed concrete structure used to examine the exterior ballistics of various free-flight configurations. The facility contains a gun room, control room, model measurement room, blast chamber, and an instrumented range. Figure 1 contains an illustration of the ARF and an interior view. The range atmosphere is controlled and closely monitored.

The 200-meter range has a 16-square meter cross-section for the first 70-meters and a 25-square meter cross-section for the remaining length. The range has 131 locations available as instrumentation sites and each location is separated by 1.5-meters. Presently, 50 of these sites are used to house fully instrumented orthogonal shadowgraph stations. At each of these stations, the maximum shadowgraph window (an imaginary circle in which a projectile will cast a shadow on two orthogonal reflective screens) is 2-meters in diameter. The orthogonal photographs of the model's shadow are then used to determine the spatial position and angular orientation of the test model at each of the 50-instrumented sites. The range is an atmospheric test facility where the temperature and the relative humidity are controlled to 22 ±1 °C and less than 55% respectively.

The Comprehensive Automated Data Reduction and Analysis System (CADRA)² is used to read the film and calculate the trajectory. The film is digitized using a high resolution scanning process. Automated image processing is done using CADRA.

A chronograph system provides the flight times for the projectile at each station. These times together with the spatial position and orientation obtained from the orthogonal photographs processed by the CADRA system provide the basic trajectory data for the subsequent analysis. These discrete times, positions, and orientations are then used by the Aeroballistic Research Facility Data Analysis System (ARFDAS)³ to determine the aerodynamic coefficients and stability derivatives acting on the model during the observed flight.

a) exterior view
b) interior view
Figure 1. USAF Aeroballistic Research Facility (ARF), Eglin AFB, FL

2. Models and Test Conditions

A total of seven configurations were designed and tested for this effort. All configurations are designed to have an equivalent cross sectional area (i.e. reference area). In addition, the reference length used in the data analysis was common for all configurations. For missile configurations, the reference length is typically the diameter of the projectile. For the non-circular configurations, an "equivalent" diameter is used for the reference length such that the area of a circle based upon this diameter is equivalent to the non-circular area. However, since the cross-sectional areas were equivalent for all configurations, the reference length is the same for all configurations as well. This allows for one-to-one comparison of the data of each configuration to isolate the body alone influence.

The fin planform was identical for all configurations. This will further isolate the effects of the body alone. The test configurations are 8.08 calibers in length with a 2.2 caliber ogive. Figure 2 contains a schematic illustrating the test model configurations tested during this research program. The model dimensional details are provided in the following sections along with the aerodynamic data. A fin tab was attached to the fin tip trailing edge of one fin of each model in order to determine roll orientation. The flight data covered a Mach number range of 0.75 to 3.5. Table 1 lists the nominal physical properties for the configurations tested.

Figure 2. Model Cross Section Configurations

Table 1: Model Physical Properties

Configuration	Circular 4 Fin	Circular 3 Fin	0.8 Elliptical 4 Fin	0.6 Elliptical 4 Fin	Blended Elliptical 4 Fin	Square 4 Fin	Triangular 3 Fin
Diameter (d), mm	17	17	17	17	17	17	17
Length (L), mm	137.5	137.5	137.5	137.5	137.5	137.5	137.5
Mass, g	844	835	880	916	912	853	824
I_x , gram-cm ²	36.0	34.6	38.0	42.3	39.8	38.4	40.5
I _v , gram-cm ²	1270	1230	1355	1290	1410	1304	1230
C.G. location (X_{CG}) , mm from nose	58.6	58.6	62.5	64.8	63.5	59.5	59.5
Number of ARF Trials	15	15	17	15	11	13	18

3. Aerodynamic Parameter Identification

Extraction of the aerodynamic coefficients and stability derivatives is the primary goal in analyzing the trajectories measured in the ARF. The process is summarized in Figure 3 and is accomplished by using ARFDAS³. ARFDAS incorporates a standard linear theory analysis^{4,5} and a six degree-of-freedom (6DOF) numerical integration technique⁶. The 6DOF routine in ARFDAS incorporates the Maximum Likelihood Method (MLM)⁷ to match the theoretical trajectory to the experimentally measured trajectory. The MLM is an iterative procedure that adjusts the aerodynamic coefficients to maximize a likelihood function. The use of this likelihood function eliminates the inherent assumption in least squares theory that the magnitude of the measurement noise must be consistent between dynamic parameters (irrespective of units). In general, the aerodynamics can be nonlinear functions of the angle of attack, Mach number, and aerodynamic roll angle. ARFDAS also has the ability to analyze nonaxisymmetric projectiles using a "body fixed" aerodynamic model. The "fixed plane" method for the analysis of axisymmetric projectiles is given in Appendix B and the "body fixed" method is described in Appendix C.

ARFDAS represents a complete ballistic range data reduction system capable of analyzing both symmetric and asymmetric bodies. The essential steps of the data reduction system are to: (a) assemble the dynamic range data (time, position, attitude), physical properties, and atmospheric conditions, (b) perform linear theory analysis, and (c) perform 6DOF analysis for final aerodynamics. These steps have been integrated into ARFDAS to provide the test engineer with a convenient and efficient means of interaction. At each step in the analysis, permanent records for each flight are maintained such that subsequent analysis with data modifications are much faster.

Each model fired in the ARF was initially analyzed separately, then combined in appropriate groups for simultaneous analysis using the multiple fit capability. This provides a common set of aerodynamics that match each of the separately measured position-attitude-time profiles. The multiple fit approach provides a more complete spectrum of angular and translational motion than would be available from any one trajectory considered separately. This increases the probability that the determined coefficients define the model's aerodynamics over the entire range of test conditions.

ARFDAS - Aeroballistic Research Facility Data Analysis System

Figure 3. ARFDAS Aerodynamic Parameter Identification Process

INTENTIONALLY LEFT BLANK

SECTION III

RESULTS AND DISCUSSION

Aerodynamic force and moment coefficients and stability derivatives have been extracted from each set of free flight motion data measured in the ARF. The methodology includes both linear theory and six degree-of-freedom (6DOF) matching of the observed motions to determine the aerodynamics. The parameter identification methodology provides a best match to the experimentally measured motion by determining the aerodynamic forces and moments acting on the flight vehicle resulting in the measured motion.

The following sub-sections present the aerodynamic data determined from the ballistic range trials for each class of configuration: circular, elliptic, square, and triangular. Appendix D contains the tabular data of the physical properties, range conditions, and 6DOF aerodynamic results for each configuration. The 6DOF results contain both the single and multiple fit analysis data. It is believed that the multiple fit analysis represent the best estimates of the configurations aerodynamics since the combined trajectories contain more data over a wider range of angles of attack. The plots of aerodynamic data presented in the following sub-sections contain hollow and solid data symbols. A hollow symbol represents the result of a single fit analysis and a solid symbol represents the result of matching multiple flight trajectories to a common set of aerodynamics. It should be noted that the angular motion amplitude for most flights was very small. Such small amplitude angular and swerve motion diminish the accuracy of the resultant aerodynamic coefficients since its effect on matching the measured motion becomes less significant.

1. Circular Cross Section Configurations

Two circular cross-section configurations, a three-fin and a four-fin, were tested to provide a baseline for the other non-circular configurations. The four-fin configuration provides a baseline for the elliptic and square cross-section configurations and the three-fin provide a baseline for the triangular configuration. The two circular cross-section configurations had identical bodies and fin planform dimensions. Figure 4 contains a schematic of these two configurations.

Figure 5 presents the zero yaw axial force coefficient (C_{Xo}) versus Mach number as determined from the flight data for both the three-fin and four-fin circular cross section configurations. Since the only difference in the three and four fin models is the number of fins, the difference in drag seen in this figure is a direct result of the additional fin. The data indicate there is about a 5% difference in drag over the Mach number range from 0.6 through 3.2

3-Fin Configuration

4-Fin Configuration

Figure 4. Three- Fin and Four-Fin Circular Configurations

Figure 6 shows the normal force coefficient derivative ($C_{N\alpha}$) versus Mach number for the three-fin and four-fin circular configurations. Here, the additional normal force resulting from the four versus three fins is quantified. There is about an 18% difference in normal force coefficient derivative at Mach 0.8. The difference increases to about 30% at Mach 1.4 and then decreases to about 5% at Mach 3.

Figure 7 contains the pitch moment coefficient derivative $(C_{m\alpha})$ as a function of Mach number. The difference in static stability for three versus four fins is clearly seen and is accurately determined. The difference in pitch moment coefficient derivative for the three-fin and four-fin configurations is about 20% over the entire Mach number range.

The variation of pitch damping moment coefficient (C_{mq}) versus Mach number is shown in Figure 8. Due to the small amplitude motion, it was difficult to accurately

determine the pitch damping moment. However, Figure 8 indicates that there was not a significant difference in the pitch damping with three versus four fins.

Figure 5. Zero Yaw Axial Force Coefficient versus Mach Number – Circular Cross Section Configurations

Figure 6. Normal Force Coefficient Derivative versus Mach Number – Circular Cross Section Configuration

Figure 7. Pitch Moment Coefficient Derivative versus Mach Number – Circular Cross Section Configuration

Figure 8. Pitch Damping Moment Coefficient versus Mach Number – Circular Cross Section Configuration

2. Elliptic Cross Section Configurations

Three elliptic cross-section configurations were tested in this effort. The first configuration had an elliptic cross section with a 0.8 eccentricity (ratio of minor diameter to major diameter) and the second had an elliptic cross section with a 0.6 eccentricity. The third configuration was a "blended" cross section that had a 0.6 eccentricity on the top half and a 0.8 eccentricity on the lower half. All three configurations contained four fins and are shown in Figure 9. As noted in Table 1, the center of gravity for each configuration was different.

Analysis of the flight data was done using the 6DOF "body fixed" equations of motion within ARFDAS³ (see Appendix C). This allowed solving for unique force and moment coefficients in the pitch (alpha) and yaw (beta) planes (e.g. $C_{m\alpha} \neq C_{n\beta}$). The four-fin circular cross section configuration serves as a baseline for the elliptic configurations. Since all configurations tested in this effort have a common cross sectional area, the reference length and area are common to all configurations and this allows for direct comparison of the resultant data. However, there was variation in the CG locations of the various configurations and this will be important for moment coefficient comparisons.

The zero yaw axial force coefficient (C_{Xo}) versus Mach number as determined from the three elliptic cross section configuration flight data is contained in Figure 10. Also included for comparison are the 4-fin circular cross section results. Here again, the solid symbols represent "multiple fit" data versus single shot analysis. Although there is some scatter in the data in the Mach 0.8 regime, overall the data appear consistent for all configurations.

Figure 11 shows the pitch-plane (or alpha-plane) normal force coefficient derivative ($C_{Z\alpha}$) versus Mach number. The data of Figure 11 show the increase in body lift generated with the elliptic body in the plane of the major diameter.

Figure 12 shows the yaw-plane (or beta-plane) yaw force coefficient derivative (C_{PB}) versus Mach number. The yaw-plane force coefficient derivative results have more scatter than the pitch-plane force coefficient derivative as seen in Figure 11 due to low amplitude motion. However, the trend shows decreased lift in the yaw-plane (minor diameter) versus the pitch-plane.

0.8 Elliptic Configuration

0.6 Elliptic Configuration

Blended Elliptic Configuration

Figure 9. Elliptic Cross Section Configurations

Figure 10. Zero Yaw Axial Force Coefficient versus Mach Number – Elliptic Cross Section Configurations

Figure 13 contains the pitch (alpha-plane) moment coefficient derivative ($C_{m\alpha}$) as a function of Mach number as extracted from the ARF flight data measurements. As indicated, the moment references were the individual CG locations for each configuration. The Mach number trends are similar as would be expected. However, to make direct comparisons between the configurations, the moment reference should be common for each configuration. Figure 14 contains the same results with the moments adjusted to a common body reference location coincident with the CG location for the four-fin circular cross section model. The moment adjustments were done using the following equation⁶:

$$C_{m\alpha}(58.6mm \text{ Ref}) = C_{m\alpha}(CG \text{ Ref}) + C_{Z\alpha}(\frac{58.6 - CG \text{ Ref}}{d})$$
 (1)

Comparing the pitching moment results for all three elliptic configurations and the circular cross section (Figure 14), the differences are small with the possible exception of the transonic Mach regime. This would imply that the increase in Normal force for the elliptic shapes was coupled with a forward movement of the center of pressure location resulting in an equivalent pitching moment.

Figure 11. Pitch-Plane (Alpha-Plane) Force Coefficient Derivative versus Mach Number - Elliptic Cross Section Configurations

Figure 12. Yaw-Plane (Beta-Plane) Normal Force Coefficient Derivative versus Mach Number - Elliptic Cross Section Configurations

Figure 13. Pitch-Plane (Alpha-Plane) Moment Coefficient Derivative versus Mach Number - Elliptic Cross Section Configurations

Figure 14. Pitch-Plane (Alpha-Plane) Moment Coefficient Derivative versus Mach Number with Common Moment Reference - Elliptic Cross Section Configurations

Figure 15 contains the yaw (beta-plane) moment coefficient derivative $(C_{n\beta})$ as a function of Mach number as extracted from the free-flight data measurements. Here again, as in the case for the pitch plane, the moment references were the individual CG locations for each configuration. The yaw moment coefficient derivatives were adjusted to a common body axial location and the results are plotted in Figure 16.

Comparing the yawing moment results for all three elliptic configurations and the circular cross section (Figure 16), the differences are small with the possible exception of the transonic Mach regime as is the case for the moment in the alpha-plane. However, the yaw force (beta plane) showed a slight decrease as compared to the circular cross section. This would imply that the decrease in yaw force for the elliptic shapes was coupled with a rearward movement of the center of pressure location resulting in an equivalent yawing moment.

The damping moment coefficients in the alpha plane (C_{mq}) and the beta plane (C_{nr}) extracted from the flight data are plotted in Figure 17 and Figure 18. The qualitative trends show a small decrease in the damping moment in the beta plane (minor diameter).

Figure 15. Yaw-Plane (Beta-Plane) Moment Coefficient Derivative versus Mach Number - Elliptic Cross Section Configurations

Figure 16. Yaw-Plane (Beta-Plane) Moment Coefficient Derivative versus Mach Number with Common Moment Reference - Elliptic Cross Section Configurations

Figure 17. Pitch-Plane (Alpha-Plane) Damping Moment Coefficient versus Mach Number - Elliptic Cross Section Configurations

Figure 18. Yaw-Plane (Beta-Plane) Damping Moment Coefficient versus Mach Number - Elliptic Cross Section Configurations

The center of pressure can be found via the following equation⁶:

$$\frac{X_{c.p.}}{L} = \frac{X_{CG}}{L} - \frac{C_{m\alpha}}{C_{N\alpha}} \frac{d}{L}.$$
 (2)

The center of pressure for the pitch-plane (alpha-plane) was computed based on the resulting normal force and pitch moment coefficients in the pitch-plane. These results are presented in Figure 19 on a scale consistent with the total body length. The center of pressure for the yaw-plane (beta-plane) was computed in a similar fashion based on the resulting yaw force and yaw moment coefficients in the beta plane. These results are presented in Figure 20 on a scale consistent with the total body length.

In Figure 21, these center of pressure results in the pitch-plane, for the multiple fit results only, are plotted on an expanded scale. This provides a detailed comparison of the most accurate results showing a slight forward movement of the normal force center of pressure (alpha plane) with the elliptic configurations. Figure 22 shows the center of pressure results for the yaw-plane on the same expanded scale for that of the pitch-plane. In general, the center of pressure in the yaw-plane is about 5% of the body length aft of the center of pressure in the pitch-plane. However, the data is not refined to make an accurate quantitative measurement.

Figure 19. Pitch-Plane (Alpha-Plane) Center of Pressure Location versus Mach Number – Elliptic Cross Section Configurations

Figure 20. Yaw-Plane (Beta-Plane) Center of Pressure Location versus Mach Number – Elliptic Cross Section Configurations

Figure 21. Pitch-Plane (Alpha-Plane) Center of Pressure Location versus Mach Number (enhanced scale) – Elliptic Cross Section Configurations

Figure 22. Yaw-Plane (Beta-Plane) Center of Pressure Location versus Mach Number (enhanced scale) – Elliptic Cross Section Configurations

3. Square Cross Section Configurations

One square cross section configuration was tested in this effort. The aerodynamic data from this configuration will be compared with the four-fin circular configuration data. Figure 23 depicts the four-fin square cross section configuration tested in this effort. It should be noted from Figure 23 that the square section blends with a segment of the ogive. In addition, the corners of the square are rounded as shown in Figure 23. This data was analyzed using the fixed plane equations of motion in ARFDAS.

Square Configuration

Figure 23. Square Body Cross Section Configuration

Figure 24 contains the zero yaw axial force coefficient results extracted from the flight data. The supersonic drag for the square cross section is about 7 percent higher than the circular cross section but at subsonic velocities, there is very little difference in the data.

Figure 25 contains the normal force coefficient derivative results for the square cross section configuration. Relative to the four-fin circular cross section, the normal force is larger in the supersonic regime, only slightly larger in the transonic regime, and about the same subsonic.

The pitch moment coefficient derivative results are presented in Figure 26. The square cross section models resulted in about a 10% increase in pitch moment coefficient derivative versus the four-fin circular configuration in the supersonic regime. The difference is smaller, about 5% in the subsonic regime.

The pitch damping moment coefficient derivative results are presented in Figure 27. Here only a slight change from the four-fin circular configuration is noticed.

The normal force center of pressure was computed based on the extracted normal force and pitching moment (see equation 2). The results are plotted in Figure 28. Differences in center of pressure location between the two configurations are small.

Figure 24. Zero Yaw Axial Force Coefficient versus Mach Number – Square Cross Section Configuration

Figure 25. Normal Force Coefficient Derivative versus Mach Number – Square Cross Section Configuration

Figure 26. Pitch Moment Coefficient Derivative versus Mach Number – Square Cross Section Configuration

Figure 27. Pitch Moment Damping Coefficient versus Mach Number – Square Cross Section Configuration

Figure 28. Center of Pressure Location versus Mach Number (enhanced scale) – Square Cross Section Configuration

4. Triangular Cross Section Configurations

Figure 29 depicts the three-fin triangular cross section configuration tested in this effort. The results presented are compared against the three-fin circular cross section. It should be noted from Figure 29 that the triangular section blends with a segment of the ogive. In addition, the corners of the triangular cross section are rounded.

Triangular Configuration

Figure 29. Triangular Body Cross Section Configuration

Initially, the extraction of the aerodynamics was performed with the body fixed equations of motion and asymmetric aerodynamic model. Analysis of the data was also done using the fixed plane model. The quality of the match to the measured motion was equivalent for both. The conclusion is that the differences (e.g. $C_{m\alpha}$ versus $C_{n\beta}$) do not have a measurable effect on the low amplitude motion measurements from these flights in the ARF. Therefore, additional flights with induced motion for larger amplitudes are required to adequately define the aerodynamic asymmetries.

Figure 30 contains the axial force coefficient results extracted from the flight data. The transonic and low supersonic drag for the triangular cross section is higher than the circular cross section.

Figure 31 contains the normal force coefficient derivative results. The normal force experimental results for the triangular configuration show more scatter than the circular configuration as a result of the low motion amplitude. However, the increase in normal force resulting from the triangular cross section is quantified.

The pitching moment coefficient derivative results are presented in Figure 32.

The pitching moment for the triangular cross section is larger throughout the Mach range, but particularly below Mach 2.5.

The pitch damping results are presented in Figure 33. Differences between the pitch damping coefficients are considered within the measurement noise relative to the effect of matching the observed motion.

The normal force center of pressure was computed based on the extracted normal force and pitching moment via equation 2. The results are plotted in Figure 34. The center of pressure for the triangular cross section is about 0.5 calibers forward as compared to the circular cross section.

Figure 30. Zero Yaw Axial Force Coefficient versus Mach Number – Triangular Cross Section Configuration

Figure 31. Normal Force Coefficient Derivative versus Mach Number – Triangular Cross Section Configuration

Figure 32. Pitch Moment Coefficient Derivative versus Mach Number – Triangular Cross Section Configuration

Figure 33. Pitch Damping Moment Coefficient versus Mach Number – Triangular Cross Section Configuration

Figure 34. Center of Pressure Location versus Mach Number (enhanced scale)
Triangular Cross Section Configuration

SECTION IV

CONCLUSIONS

This report documents experimental aerodynamic test results of a variety of cross sectional shapes; all of which have the same cross sectional area. Aerodynamic force and moment coefficients have been extracted from free-flight data measured in the AFRL Aeroballistic Research Facility (ARF). The range of Mach numbers covered during these trials ranged from Mach 0.75 to 3.5 and comprised a total of 104 flights. A total of seven configurations were tested and evaluated: four-fin circular, three-fin circular, 0.8 eccentric elliptical (four-fin), 0.6 eccentric elliptical (four-fin), 0.8/0.6 eccentric blended elliptical (four-fin), four-fin square, and three-fin triangular.

These experimental test results provide a good comparison of the shape effects on the basic aerodynamics with respect to axial force, normal force, and pitching moment. There is a high degree of confidence in the aerodynamic data derived from these ballistics range tests. There was repeatability and a common set of aerodynamics was derived from multiple flights.

The circular cross section configurations, a 4-fin and a 3-fin configuration, established a baseline reference of experimental aerodynamics for comparison to the non-axisymmetric configurations.

With respect to axial force, the elliptical cross sections did not exhibit any increase in drag, but did result in increased normal force. However, both the square and triangular cross section configurations incurred a drag penalty to achieve an increase in normal force.

This aeroballistic test program has provided an experimental aerodynamic database that can be used to improve aeroprediction methodologies.

Additional testing at higher angles of attack, especially for the elliptical configurations, is recommended. The test flight data reported here do not contain large enough angular motion amplitude to accurately quantify aerodynamic asymmetries.

INTENTIONALLY LEFT BLANK

APPENDIX A - NOMENCLATURE

6DOF	Six degree of freedom
AFB	Air Force Base
AFRL	Air Force Research Laboratory
AFRS	Air Force Research Shape
ARF	Aeroballistic Research Facility
ARFDAS	Aeroballistic Research Facility Data Analysis
	System
C	Celsius
CADRA	Comprehensive Aerodynamic Data Reduction
	Analysis
CG	Center of gravity
<i>Ix</i>	Moment of inertia about x-axis
Ixy	Cross product moment of inertia
Iy	Moment of inertia about y-axis
Iz	Moment of inertia about z-axis
M	Mach number
mbar	milibar
MLM	Maximum Likelihood Method
UF/GERC	University of Florida Graduate Engineering and
	Research Center
X_{CG}	Center of gravity location w.r.t nose
X_{CP}	Center of pressure location w.r.t nose

INTENTIONALLY LEFT BLANK

APPENDIX B - FIXED PLANE AERODYNAMIC MODEL

1. 6DOF - Methodology

The aerodynamic data presented in this report obtained using the "fixed plane" 6DOF analysis is detailed in this appendix. Here, the equations of motion are derived with respect to a fixed plane coordinate system. The x-axis points downrange, the y-axis points to the left looking downrange, and the z-axis points up.

FIXED PLANE EQUATIONS OF MOTION

$$\begin{split} \dot{u} &= g \sin \theta - qw + rv - a_{cu} + F_x / \overline{m} \\ \dot{v} &= -ru - rw \tan \theta - a_{cv} + F_y / \overline{m} \\ \dot{w} &= -g \cos \theta + rv \tan \theta + qu - a_{cw} + F_z / \overline{m} \\ \dot{p} &= l / I_x \\ \dot{q} &= -r^2 \tan \theta - (I_x / I_y) rp + m / I_y \\ \dot{r} &= qr \tan \theta + (I_x / I_y) qp + n / I_y \end{split}$$

Where a_{cu} , a_{cv} , and a_{cw} are coriolis accelerations dependent on the latitude λ_R and azimuth δ_R of the range and rotational rate of the earth ω_e .

BODY FIXED CORIOLIS ACCELERATIONS

$$\begin{split} a_{cx} &= -2\omega_e (\dot{y}\sin\lambda_R + \dot{z}\cos\lambda_R\sin\delta_R) \\ a_{cy} &= +2\omega_e (\dot{x}\sin\lambda_R - \dot{z}\cos\lambda_R\cos\delta_R) \\ a_{cz} &= +2\omega_e (\dot{x}\cos\lambda_R\sin\delta_R + \dot{y}\cos\lambda_R\cos\delta_R) \\ a_{cu} &= +a_{cx}\cos\theta\cos\psi + a_{cy}\cos\theta\sin\psi - a_{cz}\sin\theta \\ a_{cy} &= -a_{cx}\sin\psi + a_{cy}\cos\psi \\ a_{cy} &= +a_{cx}\sin\theta\cos\psi + a_{cy}\sin\theta\sin\psi + a_{cz}\cos\theta \end{split}$$

Once the aerodynamic forces and moments (i.e., F_x , F_y , F_z , l, m, n) are determined, the solution of the Equations of Motion will define the 6DOF flight motion with respect to the fixed plane coordinate system. Since the position-attitude measurements, as acquired from the ballistic spark range, are relative to the Earth-fixed coordinate system, additional transformation equations are required. These transformation equations are shown below in terms of the fixed plane Euler angles (θ, ψ) and the angle of rotation about the missile axis (ϕ) .

EARTH FIXED TRANSFORMATION EQUATIONS (FIXED PLANE)

$$\dot{x} = u \cos \theta \cos \psi - v \sin \psi + w \sin \theta \cos \psi$$

$$\dot{y} = u \cos \theta \sin \psi + v \cos \psi + w \sin \theta \sin \psi$$

$$\dot{z} = -u \sin \theta + w \cos \theta$$

$$\dot{\theta} = q$$

$$\dot{\psi} = r / \cos \theta$$

$$\dot{\phi} = p + r \tan \theta$$

The Equations of Motion and the Earth Fixed Transformation Equations are numerically integrated using a fourth-order Runge-Kutta scheme.

2. Aerodynamic Forces and Moments.

The fixed plane aerodynamic forces and moments are defined as follows:

$$\begin{split} F_x &= -\overline{q}A\overline{C}_X \\ F_y &= \overline{q}A[-\overline{C}_{N\alpha}\frac{v}{V} + \frac{pd}{2V}\overline{C}_{Yp\alpha}\frac{w}{V} \\ &\quad + (\overline{C}_{N\delta}\delta_A)\sin\phi - (\overline{C}_{N\delta}\delta_B)\cos\phi] \\ F_z &= \overline{q}A[-\overline{C}_{N\alpha}\frac{w}{V} - \frac{pd}{2V}\overline{C}_{Yp\alpha}\frac{v}{V} - \overline{C}_{Y_{\varphi\alpha}}\frac{v}{V} \\ &\quad - (\overline{C}_{N\delta}\delta_A)\sin\phi - (\overline{C}_{N\delta}\delta_B)\sin\phi] \\ l &= \overline{q}A[\frac{pd}{2V}\overline{C}_{lp} + \overline{C}_l] \\ m &= \overline{q}Ad[\overline{C}_{m\alpha}\frac{w}{V} + \frac{qd}{2V}\overline{C}_{mq} + \frac{pd}{2V}\overline{C}_{np\alpha}\frac{v}{V} \\ &\quad + \overline{C}_{n\gamma\alpha}\frac{v}{V} + \overline{C}_{n\alpha}\frac{v}{V} + \overline{C}_{m\delta}\delta_A\cos\phi - \overline{C}_{m\delta}\delta_B\sin\phi] \\ n &= \overline{q}Ad[-\overline{C}_{m\alpha}\frac{v}{V} + \frac{rd}{2V}\overline{C}_{mq} + \frac{pd}{2V}\overline{C}_{np\alpha}\frac{w}{V} \\ &\quad + \overline{C}_{n\gamma\alpha}\frac{w}{V} + \overline{C}_{n\alpha}\frac{w}{V} + \overline{C}_{m\delta}\delta_A\sin\phi + \overline{C}_{m\delta}\delta_B\cos\phi] \\ A &= \text{reference area} \\ d &= \text{reference length} \end{split}$$

where:

$$d$$
 = reference length \overline{q} = dynamic pressure = $\frac{1}{2} \rho V^2$ $V = \sqrt{u^2 + v^2 + w^2}$

The aerodynamic coefficients and derivatives are assumed to be nonlinear functions of Mach number, sine of the total angle of attack, and the aerodynamic roll angle. This assumption is made in a general sense in defining a generalized aerodynamic math model. These expansion are shown as follows:

AERODYNAMIC COEFFICIENT EXPANSIONS (FIXED PLANE)

Axial Force Coefficient

$$\overline{C}_X = C_{XO} + C_{X\alpha_2} \varepsilon^2 + C_{X\alpha_4} \varepsilon^4 + C_{Xm} (M_i - M_r) + C_{Xm2} (M_i - M_r)^2 + C_{X\gamma\alpha_2} \varepsilon^2 \cos N$$
Normal Force Coefficient Derivative

$$\overline{C}_{N\alpha} = C_{N\alpha} + C_{N\alpha_3} \varepsilon^2 + C_{N\alpha_5} \varepsilon^4 + C_{N\alpha_m} (M_i - M_r) + C_{N\gamma\alpha_3} \varepsilon^2 \cos N_{\gamma}$$

Magnus Force Coefficient Derivative

$$\overline{C}_{\gamma_{p\alpha}} = C_{\gamma_{p\alpha}} + C_{\gamma_{p\alpha_3}} \varepsilon^2$$

Induced Side Force Coefficient

$$\overline{C}_{\gamma\gamma\alpha} = C_{\gamma\gamma\alpha} \varepsilon^2 \sin N\gamma$$

Spin Decay Roll Moment Coefficient

$$\overline{C}_{ln} = C_{ln} + C_{ln\alpha_1} \varepsilon^2 + C_{lnm} (M_i - M_r)$$

Static/Induced Roll Moment Coefficient

$$\overline{C}_{l} = C_{l\delta}\delta + C_{l\gamma\alpha2}\sin N\gamma$$

Pitching Moment Coefficient Derivative

$$\overline{C}_{m\alpha} = C_{m\alpha} + C_{m\alpha_3} \varepsilon^2 + C_{m\alpha_5} \varepsilon^4 + C_{m\alpha m} (M_i - M_r) + C_{m\alpha m2} (M_i - M_r)^2 + C_{N\alpha} (CG - CG_r) + C_{m\gamma\alpha_3} \varepsilon^2 \cos N\gamma + C_{m\alpha} \left(\frac{pd}{2V}\right)$$

Pitch Damping Moment Coefficient

$$\overline{C}_{mq} = C_{mq} + C_{mq\alpha_2} \varepsilon^2 + C_{mq_4} \varepsilon^4 + C_{mqm} (M_i - M_r)$$

Magnus Moment Coefficient Derivative

$$\overline{C}_{np\alpha} = C_{np\alpha} + C_{np\alpha_3} \varepsilon^2 + C_{np\alpha_5} \varepsilon^4 + C_{np\alpha m} (M_i - M_r)$$

Induced Side Moment Coefficient Derivative

$$\overline{C}_{n\gamma\alpha} = C_{n\gamma\alpha} \sin N_{\gamma} + C_{n\gamma\alpha_3} \varepsilon^2 \sin N_{\gamma}$$

Trim Force Coefficients

$$\overline{C}_{N\delta}\delta_A,\overline{C}_{N\delta}\delta_B$$

Trim Moment Coefficients

$$C_{m\delta}\delta_A, C_{m\delta}\delta_B$$

Out of Plane Side Moment Due to Pitch

 $\overline{C}_{r\alpha}$

The aerodynamic roll angle, γ , is computed by transforming the fixed plane missile velocities into the rolling body coordinate system.

$$v_b = v\cos\phi + w\sin\phi$$

$$w_b = -v\sin\phi + w\cos\phi$$

$$\gamma = \tan^{-1}(v_b/w_b)$$

The sine of the total angle of attack is calculated as follows:

$$\varepsilon = \sqrt{\frac{v^2 + w^2}{V}}$$

Slight variations in the center of gravity (CG) between test projectiles (models) are accounted for by assigning a reference CG location (CG_r) and making an appropriate correction to the pitching moment coefficient derivative. The pitching moment coefficient is the only coefficient of which slight changes in CG have a first order effect on the observed motion.

The full 6DOF equations of motion portion of the analysis eliminates the assumptions of Linear Theory by retaining all cross coupling terms and allowing nonlinearities both as functions of Mach number and angle of attack. In addition, the procedure within ARFDAS allows analysis of up to five test flights simultaneously. This provides improved accuracy of the extracted aerodynamics and their nonlinearities with angle of attack, roll angle, and Mach number.

APPENDIX C - BODY FIXED AERODYNAMIC MODEL

1. 6DOF - Methodology

The aerodynamic data presented in this report that were obtained using the "body fixed" 6DOF analysis is detailed in this appendix. Here, the equations of motion are derived with respect to a rotating body fixed coordinate system. The x-axis points down the axis of the body, the y-axis points out the left side of the body looking downrange, and the z-axis points up with respect to the body. The body fixed coordinate system is rigidly affixed to the projectile and rotates with the body about the x-axis. The inertial frame of reference is the earth. It is assumed the earth is fixed in space and flat. The body fixed equations of motion are given as follows where the subscript "b" refers to the body fixed coordinate system.

BODY FIXED EQUATIONS OF MOTION

$$\begin{split} \dot{u}_{b} &= g \sin \theta - q_{b} w_{b} + r_{b} v_{b} - a_{cub} + \frac{F_{xb}}{m} \\ \dot{v}_{b} &= p_{b} w_{b} - r_{b} u_{b} - g \sin \phi \cos \theta - a_{cvb} + \frac{F_{yb}}{m} \\ \dot{w}_{b} &= q_{b} u_{b} - p_{b} v_{b} - g \cos \phi \cos \theta - a_{cwb} + \frac{F_{zb}}{m} \\ \dot{p}_{b} &= \frac{I_{y} l_{b} + I_{xy} m_{b} - (I_{x} + I_{y} - I_{z}) I_{xy} p_{b} r_{b} + (I_{xy}^{2} + I_{y} (I_{y} - I_{z})) q_{b} r_{b}}{(I_{x} I_{y} - I_{xy}^{2})} \\ \dot{q}_{b} &= \frac{I_{x} m_{b} + I_{xy} l_{b} + (I_{x} + I_{y} - I_{z}) I_{xy} q_{b} r_{b} + (I_{x} (I_{z} - I_{x}) - I_{xy}^{2}) p_{b} r_{b}}{(I_{x} I_{y} - I_{xy}^{2})} \\ \dot{r}_{b} &= \frac{n_{b} + I_{xy} (p_{b}^{2} - q_{b}^{2}) + (I_{x} - I_{y}) p_{b} q_{b}}{I_{z}} \end{split}$$

Where a_{cub} , a_{cvb} , and a_{cwb} are coriolis accelerations dependent on the latitude λ_R and azimuth δ_R of the range and rotational rate of the earth ω_e .

BODY FIXED CORIOLIS ACCELERATIONS

$$a_{cx} = -2\omega_{e}(\dot{y}\sin\lambda_{R} + \dot{z}\cos\lambda_{R}\sin\delta_{R})$$

$$a_{cy} = +2\omega_{e}(\dot{x}\sin\lambda_{R} - \dot{z}\cos\lambda_{R}\cos\delta_{R})$$

$$a_{cz} = +2\omega_{e}(\dot{x}\cos\lambda_{R}\sin\delta_{R} + \dot{y}\cos\lambda_{R}\cos\delta_{R})$$

$$a_{cub} = a_{cx}\cos\theta\cos\psi + a_{cy}\cos\theta\sin\psi - a_{cz}\sin\theta$$

$$a_{cub} = a_{cx}(\sin\theta\sin\phi\cos\psi - \cos\phi\sin\psi) + a_{cy}(\sin\theta\sin\phi\sin\psi + \cos\phi\cos\psi)$$

$$+ a_{cz}(\sin\phi\cos\theta)$$

$$a_{cwb} = a_{cx}(\sin\theta\cos\psi\cos\phi + \sin\phi\sin\psi) + a_{cy}(\sin\theta\cos\phi\sin\psi - \sin\phi\cos\psi)$$

$$+ a_{cz}(\cos\phi\cos\theta)$$

Once the aerodynamic forces and moments (i.e., F_x , F_y , F_z , l, m, n) are determined, the solution of the body fixed equations of motion will define the 6DOF flight motion with respect to the body fixed coordinate system. Since the position-attitude measurements, as acquired from the ballistic spark range, are relative to the Earth-fixed coordinate system, additional transformation equations are required. These transformation equations are shown below in terms of the fixed plane Euler angles (θ, ψ) and the angle of rotation about the missile axis (ϕ) .

EARTH FIXED TRANSFORMATION EQUATIONS (BODY FIXED)

The Equations of Motion and the Earth Fixed Transformation Equations are numerically integrated using a fourth-order Runge-Kutta scheme.

2. Aerodynamic Forces and Moments.

The body fixed aerodynamic forces and moments are defined as follows:

$$\begin{split} F_{xb} &= -\overline{q}A\overline{C}_X \\ F_{yb} &= \overline{q}A[-\overline{C}_{Y0} - \overline{C}_{Y\beta}\frac{v_b}{V} + \frac{p_bd}{2V}\overline{C}_{Y\rho\alpha}\frac{w_b}{V} + \overline{C}_{Y\gamma\alpha}\frac{w_b}{V}] \\ F_{zb} &= \overline{q}A[-\overline{C}_{Z0} - \overline{C}_{Z\alpha}\frac{w_b}{V} - \frac{p_bd}{2V}\overline{C}_{Y\rho\alpha}\frac{v_b}{V} - \overline{C}_{Y\gamma\alpha}\frac{v_b}{V}] \\ l_b &= \overline{q}A[\frac{p_bd}{2V}\overline{C}_{\ell\rho} + C_{\ell\delta}\delta + \overline{C}_{\ell\gamma\alpha}] \\ m_b &= \overline{q}Ad[C_{m0} + \overline{C}_{m\alpha}\frac{w_b}{V} + \frac{q_bd}{2V}\overline{C}_{mq} + \frac{p_bd}{2V}\overline{C}_{n\rho\alpha}\frac{v_b}{V} + \overline{C}_{n\gamma\alpha}\frac{v_b}{V}] \\ n_b &= \overline{q}Ad[-C_{n0} - \overline{C}_{n\beta}\frac{v_b}{V} + \frac{r_bd}{2V}\overline{C}_{nr} + \frac{p_bd}{2V}\overline{C}_{n\rho\alpha}\frac{w_b}{V} + \overline{C}_{n\gamma\alpha}\frac{w_b}{V}] \end{split}$$

where:

$$A = \text{reference area}$$
 $d = \text{reference length}$
 $\overline{q} = \text{dynamic pressure} = \frac{1}{2} \rho V^2$

$$V = \sqrt{u_b^2 + v_b^2 + w_b^2}$$

The aerodynamic coefficients and derivatives are assumed to be nonlinear functions of Mach number, sine of the total angle of attack, and the aerodynamic roll angle. This assumption is made in a general sense in defining a generalized aerodynamic math model. These expansion for the body fixed equations of motion are shown as follows:

AERODYNAMIC COEFFICIENT EXPANSIONS (BODY FIXED)

Axial Force Coefficient

$$\overline{C}_X = C_{XO} + C_{X\alpha_2} \left(\frac{w_b}{V}\right)^2 + C_{X\beta_2} \left(\frac{v_b}{V}\right)^2 + C_{Xm} (M_i - M_r) + C_{X\gamma\alpha_2} \varepsilon^2 \cos N\gamma$$

Normal Force Coefficient Derivative

$$\overline{C}_{Z\alpha} = C_{Z\alpha} + C_{Z\alpha_3} (\frac{w_b}{V})^2 + C_{N\gamma\alpha_3} \varepsilon^2 \cos N_{\gamma}$$

Side Force Coefficient Derivative

$$\overline{C}_{\gamma\beta} = C_{\gamma\beta} + C_{\gamma\beta_3} \left(\frac{v_b}{V}\right)^2 + C_{N\gamma\alpha_3} \varepsilon^2 \cos N\gamma$$

Magnus Force Coefficient Derivative

$$\overline{C}_{Yp\alpha} = C_{Yp\alpha}$$

Induced Side Force Coefficient

$$\overline{C}_{Y\gamma\alpha} = C_{Y\gamma\alpha\gamma} \varepsilon^2 \sin N\gamma$$

Spin Decay Roll Moment Coefficient

$$\overline{C}_{\ell p} = C_{\ell p} + C_{\ell p \alpha_2} \varepsilon^2 + C_{\ell p m} (M_i - M_r)$$

Static/Induced Roll Moment Coefficient

$$\overline{C}_{\ell} = C_{\ell\delta} \, \delta + C_{\ell\gamma\alpha\gamma} \, \sin N\gamma$$

Pitching Moment Coefficient Derivative

$$\overline{C}_{m\alpha} = C_{m\alpha} + C_{m\alpha_3} \left(\frac{w_b}{V}\right)^2 + C_{Z\alpha} (CG - CG_r) + C_{m\gamma\alpha_3} \varepsilon^2 \cos N\gamma$$

Yawing Moment Coefficient Derivative

$$\overline{C}_{n\beta} = C_{n\beta} + C_{n\beta_3} (\frac{v_b}{V})^2 + C_{Y\beta} (CG - CG_r) + C_{m\gamma\alpha_3} \varepsilon^2 \cos N\gamma$$

Pitch Damping Moment Coefficient

$$\overline{C}_{mq} = C_{mq} + C_{mq\alpha_2} \left(\frac{w_b}{V}\right)^2$$

Yaw Damping Moment Coefficient

$$\overline{C}_{nr} = C_{nr} + C_{nr\alpha_2} \left(\frac{v_b}{V}\right)^2$$

Magnus Moment Coefficient Derivative

$$\overline{C}_{np\alpha} = C_{np\alpha}$$

Induced Side Moment Coefficient Derivative

$$\overline{C}_{n\gamma\alpha} = C_{n\gamma\alpha3} \varepsilon^2 \sin N_{\gamma} + C_{n\gamma\alpha5} \varepsilon^4 \sin N_{\gamma}$$

Trim Force Coefficients

$$\overline{C}_{z0}$$
, \overline{C}_{y0}

Trim Moment Coefficients

$$\overline{C}_{m0}$$
, \overline{C}_{n0}

The aerodynamic roll angle, γ , is computed as follows:

$$\gamma = \tan^{-1}(v_b/w_b)$$

The sine of the total angle of attack is calculated as follows:

$$\varepsilon = \sqrt{\frac{v^2 + w^2}{V}}$$

The body fixed pitch and yaw angles are defined as follows:

$$\alpha = \frac{w_b}{V}$$

$$\beta = \frac{v_b}{V}$$

Slight variations in the center of gravity (CG) between test projectiles (models) are accounted for by assigning a reference CG location (CG_r) and making an appropriate correction to the pitching moment coefficient derivative. The pitching moment coefficient is the only coefficient of which slight changes in CG have a first order effect on the observed motion.

The full 6DOF equations of motion portion of the analysis eliminates the assumptions of Linear Theory by retaining all cross coupling terms and allowing nonlinearities both as functions of Mach number and angle of attack. In addition, the procedure within ARFDAS allows analysis of up to five test flights simultaneously. This provides improved accuracy of the extracted aerodynamics and their nonlinearities with angle of attack, roll angle, and Mach number.

INTENTIONALLY LEFT BLANK

APPENDIX D-FLIGHT TRIAL DATA

1. Four-Fin Circular

Table D-1: 4-Fin Circular Model Physical Properties

1 1 0	rităs (e		Yes														
Ç	SC 50 mm /	2011 110 117 11	58.634	58.986	58.986	58.724	58.131	58.916	58.846	58.634	58.986	58.724	58.724	58.724	58.724	58.724	58.724
1	Length	mn \	137.500	137.500	137.500	137.500	137.500	137.500	137.500	137.500	137.500	137.500	137.500	137.500	137.500	137.500	137.500
Inertia Inertia	XX (1-2 m2)	(PS- 1115)	000	000.	000.	000.	. 000	. 000	. 000	. 000	. 000	. 000	000.	000.	000.	000.	000.
Inerti	2 ((xg- (llz)	.127E-03														
Inertia	¥	(kg- mz)	.127E-03									.127E-03				.127E-03	.127E-03
Axial	Inertia	(xg- mz)	.360E-05	.360E-05	.360E-05	.360E-05	.358E-05	.360E-05	.365E-05	.360E-05							
	Mass	1	.843E-01	.844E-01	.844E-01	.843E-01	.845E-01	.845E-01	.846E-01	.843E-01	.844E-01	.843E-01	.843E-01	.843E-01	.843E-01	.843E-01	.843E-01
Projectile	Diameter	(mm)	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000
Shot	Number		S971027	S971032	8971037	S980944	8871038	8971033	S971022	S971024	5971039	5980258	5980253	5980254	8990523	2000566	8990522

Table D-2: 4-Fin Circular Range Conditions

S971027 10 36.6 S971027 10 36.6 S971032 13 54.9 S971037 171.6 S980944 28 105.2 S971038 22 74.7 S971038 22 74.7 S971024 22 74.7 S971039 22 74.7 S980258 47 199.7 S980253 45 199.6 S980254 45 199.7 S980254 45 199.7	•	Pressure Temperature	Relative	Alr	Speed or	Keynords
10 13 13 22 22 24 22 45 45 45	(mbar)	(degrees C)	₽ To To Till T	(kg/m3)	(m/sec)	(x10**-7)
11 1 2 2 8 4 2 2 1 1 2 2 8 4 4 5 5 8 4 5 5 6 8 4 5 5 6 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			1	1		; ; ; ; ; ; ; ; ;
13 28 21 22 47 45 39 45		77. 00	2T. 0000	1. 4103	244. LON	0/1.
17 28 22 19 24 22 45 45 45		20.49	53.0000	1.2113	343.521	. 230
28 19 21 24 22 45 45 45		20.49	53.0000	1.2113	343.521	. 245
22 119 24 22 45 45 39		20.28	54.0000	1,2061	343, 398	. 249
12 22 42 45 74 83 85 85		20.49	53,0000	1.2113	343.521	. 283
21 22 47 45 39 45 45		20.97	51.0000	1.2033	343.801	. 307
22 22 44 44 22 24 45 5 5 5 4 5 5 5 5 5 5		21. 25	59.0000	1.2094	343.965	. 447
22 44 4 4 45 3 4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	.3 1019.98000	21.11	56,0000	1.2075	343.883	. 452
<u>ተ</u> ል		20.56	54.0000	1,2090	343.561	. 461
45 39 45		20.69	53.0000	1.1984	343.637	. 701
45 39 45		20.49	50.0000	1.1659	343.521	. 691
39	.7 1016.60000	21.60	53.0000	1.2015	344.169	. 731
45	_	20.21	57.0000	1,2052	343.357	. 964
		20.56	61.0000	1.2050	343.561	1.001
S990522 32 160.1	.1 1020.32000	20.49	56.0000	1.2105	343.521	1.077

Table D-3: 4-Fin Circular 6DOF Aerodynamics - Single Fits

							1	1 1 1		1 1 1 1 1 1 1		1 1 1 1 1	1 1 1 1 1 1		1 1 1 1 1 1 1 1
Shot Number	Mach	DBSQ ABARM	× 5	CNa CNa3	CYpa Cnpa	Cma Cma3	Cmg Cmg2	CZga3 Cmga3	CYga3 Cnga3	Clga2 Cnsm	Clp	CNda CNdB	Cmda CmdB	Standard Error X(m) Angle(deg Y-Z(m) Roll(deg	Angle(deg) Roll(deg)
S971027	. 551	ທິໝ	301	7.85	00.	-17.462	-26.0	00.	0.0	00.	-3.000	.004	. 005	. 0012	3.341
S971032	. 731	i i	3.61	8.00	00.	-18.424	-26.0	°.°.	0.0.	00.	-3.000	010	.020	.0019	.252
S971037	. 778	 	333	8.10	00.	-17.812	-26.0	0.0.	°.°.	00.	-3.000	012	.031	.0014	3.056
S980944	. 792	3.1	. 292	8.30	00.	-17.973	-26.0	0.0.	°.°.	00.	-4.532 007	008	.035	.0019	.343
8971038	. 900	1.5	. 342	8.50	0.	-18.506	-125.0	0.0.	0.0.	00.	-3.000	005	.012	.0011	.183
8971033	. 982	1.1	.432	8.50	00.	-24.322 .0	-125.0	· · ·	0.0.	00.	-3.000	0000.	.027	.0014	.257 1.818
S971022	1.423	2.1	. 584	9.80	°°.	-18.165	-283.6	0.0.	°.°.	00.	-3.000	.033	063	.0014	.178
8971024	1.442	1.6	. 579	9.80	0.	-17.685	-262.0	0.0.	0.0.	00.	-3.000	015 .005	.032	. 0009	.120
8971039	1.466	1.8	. 575	9.80	00.	-17.838	-300.0	°.°.	0.0.	00.	-3.000	.018	027	.0015	.187
5980258	2, 251	3. 1. 9. 4.	. 486	7.37	°°.	-10.929	-233.7	• •	0.0.	00.	-3.000	.001	018 008	.0015	.146 14.080
8980253	2.279	4.0	.510	7.67	°°.	-10.664	-232.8	0.0.	• •	00.	-3.000	-, 003	.002	.0014	.157
S980254	2.343	1.6	. 486 4.86	6.63	80.	-10.267	-197.3	0.0.	0.0.	. 00	-3.000	.011	028 012	.0010	. 125
8990523	3.075	. 2. 5	.414	5.95	00.	-7.377	-203.7	0.0		. 00	-1.156 .000	002	.005	.00013	.154
2000266	3.195	1.5	. 413	5.80	00.	-6.790	-139.6	0.0	0.0.	00.	-4.318 003	.008	. 022	.0005	.167
8990522	3.422	1.1	391	5.20	°°.	-6.125	-188.2	0.0.	0.0.	00.	191 003	. 003	.005	.00016	.165 9.315

Table D-4: 4-Fin Circular 6DOF Aerodynamics - Multiple Fits

Shot	Shot Numbers	Mach	DBSQ	8	CNa	CYpa	Сла	Cinq	CZga3	CYga3	clga2	CXM	Standar X(m)	Standard Error X(m) Angle(deg)
1 1 1 1 1 1 1 1 1 1) 3 8 1 1 1 1	1 2 8 8 8 1 1	ABARM	25 X	CNa3 CNa5	Cnpa Cnpa3	Cma3 Cma5	Cmq2	Cmga3 Cmga	Cnga3 Cnga5	CXga2 Clp	CmaM CnsM	Y-Z(m)	Roll(deg)
8971027	8971032	. 641	٠ ص	309	7.85	00.	-18.376	-26.0	0.	٥.	00.	. 09	.0016	. 284
			1.5	3.61	٥.	00.	٥.	٥.	0.	٥,	00.	00.	. 0004	2.334
				٥.	٥.	٥.	0,	0.	0.	0.	-3.00	00.		
8971027	8971032	. 713	2.0	.301	7.97	00.	-17.959	-26.0	0.	٥.	00.		. 0017	. 296
S971037	S980944		3.2	3.50	٥.	00.	0.	٥.	٥.	٥.	00.	00.	8000.	3.581
				0.	٥.	۰,	0.	0.	0.	0.	-4.53	. 00		
S980944	8971037	. 785	3.2	.313	7.80	00.	-17.920	-22.1	0.	٥.	00.	20	. 0018	.312
			3.1	3, 73	٥.	00.	٥.	°.	٥.	٥.	00.	٠	.0010	4.238
	•			0.	٥.	٥.	0.	°.	0.	0.	ï	00 .		
8971033	8971038	. 941	4.	. 379	8.50	00.	-21.252	-156.1	٥.	0.	00.	1.18	.0013	. 221
			1.5	4.23	٥.	00.	0.	٥.	٥.	٥.	-00.	. 00-67. 99	6000.	2.377
				٥.	٥.	0.	0.	0.	0.	0.	-3.00	00.		
8971039	S971024	1.444	. 5	. 579	9.84	00.	-18,081	-281.4	٥.	٥.	00.	23	. 0015	.188
S971022			2.1	6.77	٥.	00.	٥.	٥.	٥.	٥.	. 02	00.	. 0007	4.748
				0	٥.	0.	0.	°.	0.	0.	-3.00	00.		
5980253	5980254	2.291	1.2	. 486	7.15	.00	-10.895	-235.8	0.	٥.	00.	16	. 0013	.157
5980258			4.9	4.96	٥.	00.	0.	٥.	٥.	٥.	. 01	3.85	9000.	9.983
				°.	٥.	0	0.	0.	٥.	٥.	-3.00	00.		
8990523	3000566	3.231	9.	. 411	5.80	00.	-6.890	-178.8	0,	٥.	00.	07	.0014	.161
8990522			2.4	3, 58	٥.	00.	0.	٥.	٥.	٥.	00.	3.37	. 0007	8.073
				0.	0.	٥.	٥.	٥.	°.	٥,	-3.09	00.		

2. Three-Fin Circular

Table D-5: 3-Fin Circular Model Physical Properties

Projecti]	[e	Axial	Inertia	Inerti	a Inertia			
Diameter (mm)	Mass (kg)	Inertia (kg- m2)	Υ (kg- m2)	Z (kg-m2)	Z XY (kg-m2) (kg-m2)	Length (mm) (mm	CG (mm from nose)	Spin e)
1	1	1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		, , , , , , , , , , , , , , , , , , , ,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	!
17, 000	.835E-01	.346E-05	.123E-03	.123E-03	000.	137.500	58.131	Yes
17,000	•	.346E-05	.123E-03	.123E-03	000.	137.500	58.025	Yes
17.000	•	.346E-05	•	.123E-03	. 000	137.500	57.992	Yes
17,000	.835E-01	.346E-05	•	.123E-03	000	137,500	58.061	Yes
17.000	.835E-01	.346E-05	.123E-03	.123E-03	. 000	137.500	58, 131	Yes
17.000		.346E-05	•	.123E-03	000.	137.500	58.061	Yes
17.000	·	.346E-05	٠	.123E-03	000.	137.500	58.061	Yes
17.000	•	.346E-05	•	.123E-03	000.	137.500	58.060	Yes
17,000	•	.346E-05		.123E-03	000.	137.500	58.062	Yes
17.000	•	.346E-05	.123E-03	.123E-03	. 000	137.500	58.065	Yes
17.000	.835E-01	.346E-05		.123E-03	. 000	137.500	58.606	Yes
17,000	.835E-01	.346E-05		.123E-03	. 000	137.500	58.606	Yes
17,000	•	.346E-05	•	.123E-03	. 000	137.500	58.060	Yes
17.000	•	.346E-05	•	.123E-03	. 000	137.500	58.060	Yes
17.000	.835E-01	.346E-05	•	.123E-03	. 000	137.500	58.606	Yes

Table D-6: 3-Fin Circular Range Conditions

Shot	No. of Stations	Observed Distance (m)	Pressure (mbar) (Pressure Temperature (mbar) (degrees C)	Relative Humidity	Air Density (kg/m3)	Speed of Sound (m/sec)	Reynolds Number (xl0**-7)
8971035	10	36.6	1021.00000	20.49	53.0000	1.2113	343.521	.168
8971028	13	50.3	1024.05000	21.60	51.0000	1.2103	344.169	. 203
S971031	15	54.9	1015.92000	20.97	51.0000	1.2033	343.801	. 267
S971030	18	62. 4	1024.05000	21.06	51.0000	1.2126	343.854	. 292
S971036	21	74.7	1021.00000	20.49	53.0000	1.2113	343, 521	. 298
S971034	22	74.7	1015.92000	21.06	51.0000	1.2029	343.855	. 349
S971040	23	74.7	1019.30000	20.56	54.0000	1.2090	343.561	. 291
S980252	44	199.7	982. 73000	20.49	50,0000	1.1659	343.521	. 437
S971021	24	82.3	1022.01000	21.25	59,0000	1.2094	343.965	. 456
S971023	24	80.7	1019.98000	21.11	56.0000	1.2075	343.883	. 461
S980255	45	198.1	1016.60000	21.60	53.0000	1.2015	344.169	. 711
S980256	45	199.7	1014.90000	20.83	54,0000	1.2027	343.719	. 722
S990524	42	199.7	1014.90000	20.21	57.0000	1.2052	343.357	. 853
S990525	39	199.6	1021.34000	20.62	57.0000	1.2112	343.597	. 934
S000567	47	195.2	1015.92000	20.56	61.0000	1.2050	343.561	. 991

Table D-7: 3-Fin Circular 6DOF Aerodynamics - Single Fits

Shot Number	Mach	DBSQ ABARM	88	CNa CNa3	СУра	Cma Cma3	Cmg Cmg2	CZga3 Cmga3	CYga3 Cnga3	Clga2 Cnsm	ជា ជាមិ	CNda	Cmda CmdB	Standard X(m) Angl Y-Z(m) Rol	ard Error Angle(deg) Roll(deg)
8971035	. 534	3.0	. 282	6.20	00.	-13.281	-25.0		0.0	00.	-3.000	. 012	.026	.0025	.108
8971028	. 645	2.0	3.41	6.15	00.	-13.339	-25.0	°.	°, °.	00.	-3,671	. 005	014 .035	.0014	.141
8971031	. 855	2.9 9.0	. 303	6.50	80.	-14.408	-81.9	°.°.	•••	00.	-2.064	000 .	.001	.0011	.199
8971030	. 926	3.0	. 331	6.80	80.	-14.758	-101.1	0.0.	0.0	00.	-2.120	. 000	900.	.0010	.163
8971036	. 946	3.7	. 345	6.80	00	-15.942	-200.3	°.°.	0.0.	00.	-2.136	. 000	.016	.0012	.140
8971034	1.118	. 2.	. 552	7.00	00.	-16.275	-275.2	0.0.	0.0.	00.	-2.298	007	.034	.0010	.073
8971040	1.240		. 569	7.00	00.	-14.634	-175.6		0.0.	00.	-2.304	001 .017	008	.0016	3.493
5980252	1.442	3.7	. 556	7.30	00.	-13.089	-283.9	· · ·	00.	00.	-2.159	. 006	009 . 011	.0019	13.360
8971021	1.452	0.0	. 539	7.00	00.	-13.998	-300.0	0.0,	0.0	00.	-2.153 001	0000.	018 029	.0005	. 116
8971023	1.468	. H	. 534	7.00	00.	-13.032	-287.2	°.°.	· ·	00.	-2.145 001	004	.010	.0001	1 .107
S980255	2.280	1.8	4.82	6.97	°.	.6.288	-208.2	· ·	00.	00.	-3.829	007	.011	.0015	5 .089
S980256	2.310	6.2	. 449	6.18	°.	-6.193	-270.7	0.0.	0.0.	00.	-3.500	001 010	. 022	.0016	. 250
S990524	2. 723	2, 2,	4.20	6.43		-5.296	-351.9	0.0,	0.0.	00.	-4.016 013	.005	036 021	.0018	3 .278 8 14.790
8990525	2.966	9.50 9.00	.415	5.85	°.	-4.659	-169.6	0.0.	0.0.	00.	-5.382	.005	037	.0016	6 .142 6 8.807
8000567	3.164	2.7	395	5.25	00.	-4.023	-159.2	•••		00.	-4.239	. 000	.001	.0010	0 .167 8 3.439

Table D-8: 3-Fin Circular 6DOF Aerodynamics - Multiple Fits

CZga3 CYga3 Clga2 CXM X(m) Angle(deg) Cmga3 Cnga3 CXga2 CmaM Y-Z(m) Roll(deg) Cmga Cnga5 Clp CnsM	.0 .0 .00 .16 .0018 .150 .0 .0 .00 .00 .0005 3.993 .0 .0 -3.76 .00	.0 .0 .00 .16 .0029 .264 .0 .0 .00 -5.92 .0007 3.623 .0 .0 -1.89 .00	.0 .0 .00 .14 .0015 .080 .0 .0 .00 12.03 .0007 3.044 .0 .0 -2.30 .00	.0 .0 .0015 .0017 .162 .0 .0 .00 17.15 .0017 9.982 .0 .0 -2.16 .00	.0 .0 .0011 .0017 .217 .0 .0 .00 .00 .0010 7.875 .0 .0 -3.50 .00	.0 .0 .0009 .0018 .253 .0 .0 .00 2.33 .0009 10.950
Cmq CZgs Cmq2 Cmgs Cmq4 Cmgs	. 0.00.0	.0	-260.3 .0 .	. 0	-232.8 .0 .	-155.1
Cma C Cma3 C Cma5 C	-13.353 -1 .0	.13.655 -1.	-15.579 -2 .0 .0	-14.262 -2: .0 .0	.5.998 -2.	-4.792 -1
CYpa Cnpa Cnpa3	00.		000	00.	000.	00.
CNa CNa3 CNa5	6.40	6.40	7.00	7.00	6.20	5.54
X 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	. 292 3.41	.314 3.30	.560 7.54	.553 6.71 .0	. 453 4.79	.415 3.85
DBSQ	3.1	3.6	4.5	. e . e	1.2	3.2
Mach	. 590	. 781	1.179	1.454	2.295	2.951
Shot Numbers	S971028	S971030 S971028	8971040	8971023	S980256	8990524
Shot	S971035	S971036 S971031 S971035	8971034	S971021 S980252	S980255	S000567 S990525

3. 0.8 Elliptical

Table D-9: 0.8 Elliptical Model Physical Properties

ghot	Drojectil	a	Axial	Thertia		a Inertia			
Number	Diameter		Inertia	¥		Z XY	Length CG &	ង	Spin
	(ww.)	(kg)	(kg-m2)	(kg-m2)		(kg-m2) (kg-m2)	(mm)	from nose	(c)
S980925	17.000	.864E-01	.370E-05	.134E-03	.133E-03	. 000	137.400	62, 353	Yes
S980927	17.000	.879E-01	.391E-05	.136E-03	.136E-03	. 000	137.400	62.500	Yes
8980926	17.000	.888E-01	.383E-05	.137E-03	.137E-03	. 000	137.400	62, 355	Yes
8980928	17.000	.908E-01	.388E-05	.134E-03	.134E-03	. 000	137.400	61.680	Yes
5980934	17,000	.880E-01	.380E-05	.137E-03	.137E-03	. 000	137.400	62.634	Yes
8580938	17,000	.877E-01	.380E-05	.136E-03	.135E-03	000.	137.400	62.646	Yes
8980935	17.000	.910E-01	.391E-05	.136E-03	.135E-03	. 000	137.400	61.471	Yes
5980940	17.000	.881E-01	.380E-05	.136E-03	.135E-03	000.	137.400	62.361	Yes
5980942	17.000	.880E-01	.380E-05	.136E-03	.135E-03	000.	137.400	62, 432	Yes
5980259	17.000	.875E-01	.378E-05	.135E-03	.135E-03	. 000	137.400	61.976	Yes
S000453	17.000	.883E-01	.380E-05	.136E-03	.135E-03	000.	137.400	62, 503	Yes
8971020	17.000	.882E-01	.384E-05	.137E-03	.137E-03	. 000	137.400	62.874	Yes
8000452	17.000	.883E-01	.380E-05	.136E-03	.135E-03	. 000	137.400	62.623	Yes
S980257	17.000	.887E-01	.375E-05	.136E-03	.136E-03	. 000	137.400	62.340	Yes
2000560	17.000	.889E-01		.136E-03	.135E-03	. 000	137.400	63.000	Yes
5000561	17.000	.879E-01	.380E-05	.136E-03	.135E-03	. 000	137.400	62.705	Yes
5000557	17,000	.889E-01		.136E-03	.135E-03	000.	137.400	63.000	Yes

Table D-10: 0.8 Elliptical Range Conditions

	Stations	Distance (m)	(mbar)	mbar) (degrees C)	Neigelve Humidity %	Alf Density (kg/m3)	Sound (m/sec)	keynolds Number (x10**-7)
S980925	12	44.2	1007.11000	21.04	58.0000	1.1926	343.842	.133
5980927	22	77.7	1015.58000	20.83	56.0000	1.2035	343.719	.187
5980926	22	80.8	1008.13000	21.02	54.0000	1.1939	343.830	. 211
S980928	24	80.8	1015.58000	20.83	56.0000	1.2035	343.719	.215
S980934	28	105.2	1015.92000	20.97	57.0000	1,2033	343.801	.250
8560868	29	100.6	1017.27000	21.46	56.0000	1.2029	344.087	. 280
2980935	28	100.6	1016.26000	20.34	54.0000	1.2063	343.433	. 305
S980940	39	181.4	1016.26000	20.97	54.0000	1.2037	343.801	.389
S980942	44	181.4	1016.26000	20.90	56.0000	1.2040	343.760	. 427
S980259	43	199.7	1010.84000	20.69	53.0000	1.1984	343.637	. 429
5000453	47	199.7	1017.27000	19.51	54.0000	1.2109	342.947	. 588
S971020	31	140.1	1019, 30000	21.18	58.0000	1.2064	343.924	. 620
5000452	44	199.7	1017.27000	19.51	54.0000	1.2109	342.947	999.
S980257	44	199.7	1014.90000	20.83	54.0000	1,2027	343.719	. 715
2000560	40	199.6	1017.27000	19.72	59,0000	1.2100	343.070	1.016
S000561	44	199.7	1017.27000	19.72	59,0000	1.2100	343.070	1.045
S000557	45	199.6	1021.34000	19.31	58,0000	1.2166	342.830	1.120

Table D-11: 0.8 Elliptical 6DOF Aerodynamics - Single Fits

Shot Number	Mach	DBSQ	CX CXA2	CYB	CZA	CYO	CnB CnB3	Ста Ста Ста 3	CnO	Cnr Cnr2	Cmq Cmq2	CXaB2 CmaB3	C1p C1d	Standard Error X(m) Angle(deg) Y-Z(m) Roll(deg)	for deg)
8980925	. 429	3.5	. 328	8.00	10.00	00000.	-14.87	-14.51	0000 .	-100.	-124.	3.300	-1.9	.0018 .331	٦.٥
S980927	. 597	3.0	.285	8.00	10.00	. 0000	-16.21	-14.94	.1069	-151.	-239.	3.300	-6.0	.0019 .283	m =1
5980926	. 680	3.4	.291	7.79	10.37	0027	-15.67	-15.15	.0041	145.	-433.	3.491	-1.9	.0017 .250	0.00
8380928	. 687	8. 4.	.316	8.00	10.00	0134	-14.36	-15.57	0450	238.	-538.	. 500	-6.0	.0012 .217 .0008 2.565	7 S
5980934	. 799	8.6	.365	8.81	11.40	.1745	-14.87	-19.92	.0210	-111.	-330.	3.500 -	.012	.0017 .220 .0007 5.901	0 H
8560938	968.	2. 4. 2. 5	.331	10.00	12.00	0377	-15.64	-18.41	0797 0413	-100.	-314.	4.227	-2.1	.0017 .308	∞ ⊢
5560935	. 973	1.2	. 395	10.01	15.71	. 0000	-20.05	-24.16	0078	-121.	-315.	4.940	-2.1	.0009 .168	<i>1</i> 000
2980940	1.244	2 :2	. 607	8.00	10.91	0019	-14.81	-16.74	0060	-221.	-252.	.500	-4.5 .005	.0016 .183	m 01
S980942	1.365	3.1	. 593	8.07	10.39	.0014	-14.88	-16.05	0041 0625	-252.	-218.	.500	-4.9	.0017 .227 .0005 6.212	L 22
8980259	1.379	2.2	. 588	9.02	8.98 0.	0027	-16.01	-13.84	0024 0436	-97. 0.	-376.	. 500	-4.5	.0013 .118 .0005 2.875	ω rυ
S000453	1.868	1.6 4.1	.526	7.00	8.79	. 0000	-12.48	-11.68	0014 0062	-266.	-232.	5.698	-2.0	.0013 .197 .0008 4.579	L 0
8971020	1.981	. i. 8 . 8	.516	6.40	8.30	0110	-10.53	-10.63	0283 .0156	-381.	-160. 13.	5.343	-1.8	.0012 .138	& O
5000452	2.117	7. 8 3. 9	.507	6.40	8.30	0060	-9.74	-9.65	.0040	-191.	-251.	5.131	-1.7	.0009 .146 .0006 2.957	7
S980257	2.291	3.1	. 490	6.26	8.23	0036	-8.51	-8.30	0122	-286.	-245. 5.	4.925	-1.6	.0013 .166 .0006 5.463	y n
8000260	3.230		. 399	5.10	7.60	.0070	-4.77	-6.00	.0232	-200.	-200.	3.652	-6.0	.0020 .190 .0007 7.893	93 83
2000561	3.324	1.8	. 403	4.37	7.07	. 0000	-4.24	-5.20	.0179	-200.	-200.	3.647	-6.0	.0015 .208	8 2
S000557	3.542	2.2	. 390	5.63	7.91	. 0000	-4.38	-4.41	.0052	-200.	-200.	3.522	.002	.0019 .210 .0005 4.631	0.4

Table D-12: 0.8 Elliptical 6DOF Aerodynamics - Multiple Fits

Shot Numbe	Shot Numbers	Mach	DBSQ	CX CXa2 CXB2	CYB CYB3 CYGa3	CZA CZA2 CZA3	CnB CnB3 Cnga3	Cma Cma2 Cma3	Cnr Cnr2 Cmga3	Cmg Cmg2	CXaB2 CNaB3 CmaB3	Clp Clga2	Standard Error X(m) Angle(Y-Z(m) Roll(standard Error X(m) Angle(deg) Y-Z(m) Roll(deg)
S980927	S980926	. 638		. 000	7.82	10.18	.288 7.82 10.18 -15.68 -15.19 .00 .0 .0 .0 .0 .0 .0 .0 .0	.0.0	142.	-456.	-456. 3.000 -5.54 00 .00	5. 54	.0017 .285	. 285 4. 875
S980940 S980942	S980259	1.330	3.2	. 596 . 00 .	8. 11 . 0	10.43	.596 8.11 10.43 -14.91 -16.12 .00 .0 .0 .0 .0 .00 .0 .0 .0 .0		-231. 0.	-216.	.500 -4.50	4.50 .00	.0018 .203	. 203 4. 826
8971020	S980257	2.136	3.0	. 506 6.38	6.38	8.25	-9.54 .0 .0	-9.43 .0	-334. 6.	-209	-2099. 042 -3.86 70 .00	3.86	.0014 .158	. 158 5. 616
2000261	S000557	3. 433	. 5	. 396 5.07 . 00 . 0 . 00 .	5.07	7.60	. 0	-4.95 .0	-100. 0.	-211. 3.	-211. 3.522 -6.00 30 .00	00.00	.0008 .200	. 200 4. 786

4. 0.6 Elliptical

Table D-13: 0.6 Elliptical Model Physical Properties

Shot Number	Projectile Diameter (mm)	e Mass (kg)	Axial Inertia (kq- m2)	Inertia Y (kg- m2)		Inertia Inertia Z XY (kg- m2) (kg- m2)	Length (mm) (mm	CG CG mm (aso)	Spin e)
	000 6	10-0310	- 1	!	•	000	137 500	64.831	
S980945	17,000	10-E916	423E-05	129E-03	.127E-03	000.	137,500	64,802	Yes
S980932	17,000				.128E-03	. 000	137.500	64.742	Yes
5980933	17.000				.127E-03	000.	137.500	64.883	Yes
8980936	17.000				.127E-03	000.	137.500	64.802	Yes
S980937	17.000				.127E-03	000.	137.500	64.802	Yes
8980939	17.000				.127E-03	. 000	137.500	64.802	Yes
S980943	17.000				.127E-03	. 000	137.500	64.802	Yes
S980941	17.000				.127E-03	000.	137.500	64.802	Yes
S000447	17.000				.127E-03	. 000	137.500	64.802	Yes
5991181	17,000				.127E-03	000.	137.500	64.883	Yes
5990526	17.000		•	.129E-03	.127E-03	000.	137,500	64.802	Yes
S000446	17.000	.916E-01		.423E-05 .129E-03	.127E-03	000.	137.500	64.803	Yes
300055	17,000	.916E-01		.129E-03	.127E-03	000.	137.500	64.802	Yes

Table D-14: 0.6 Elliptical Range Conditions

Shot Number	No. of Stations	Observed Distance (m)	Pressure (mbar)	e Temperature (degrees C)	Relative Humidity %	Air Density (kg/m3)	Speed of Sound (m/sec)	Reynolds Number (x10**-7)
S980929	25	80.8	1014.90000	21.67	58.0000	1.1992	344.210	. 209
S980945	27	100.6	1013.89000	21.16	56.0000	1.2001	343.912	. 235
S980932	53	100.6	1018,63000	21.11	57,0000	1.2059	343.883	.251
8980933	28	105.2	1015.92000	20.97	57.0000	1.2033	343.801	. 299
8980936	29	105.2	1016.26000	20.90	54.0000	1.2040	343.760	.340
S980937	31	105.2	1017.27000	21.46	56.0000	1.2029	344.087	. 347
8980939	44	199.7	1016.26000	20.97	54.0000	1.2037	343.801	. 412
S980943	42	198.1	1015.92000	20.28	54.0000	1,2061	343.398	. 433
S980941	41	169.3	1016.26000	20.97	54.0000	1.2037	343.801	. 433
S000447	26	100.6	1021.68000	20.07	55.0000	1.2138	343.275	. 757
S991181	20	82.2	1021.00000	19.10	54.0000	1, 2171	342.706	. 853
8990526	45	199.7	1021.34000	20.62	57,0000	1.2112	343.597	. 973
S000446	46	199.6	1021.68000	20.07	55,0000	1.2138	343.275	1.043
2000556	44	190.4	1021.34000	19.31	58.0000	1.2166	342.830	1.047

Table D-15: 0.6 Elliptical 6DOF Aerodynamics - Single Fits

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1		;	1 1 1 1 1	1 1 1 1 1		1 1 1	1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1		1 1 1 1 1 1	1 1 1 1 1 1
Shot Number	Mach Number	DBSQ ABARM	CX XZ	CYB CYB3	CZA CZAZ	CY0	CnB CnB3	Cma Cma3	CnO	Cnr Cnr2	Cmg Cmg2	CXaB2 CmaB3	Clp Cld	Standard X(m) Ang Y-Z(m) Rc	rd Error Angle(deg) Roll(deg)
S980929	. 670	е. н.	309	7.49	10.93	.0136	-12.00	-12.79	.0268	-120.	-200.*	200. ******	20.0	. 0020	. 145 2. 359
2980945	. 754	6.5 5.5	. 330	8.44	12.72	0336	-12.41	-12.84	0660	-61. 0.	-261	-8.271 - -405.5 -	-19.0	.0015	. 194 5. 735
8980932	.801	1.9	. 353	7.00	12.21	.0130	-12.18	-13.34	.0306	-178.	-244.* 0	***** -	-22.5	.0014	. 218 3. 115
8980933	. 957	5.9	. 387	7.00	19.49	.0232	-14.20	-22.51	.0519	-100.	-259. -243.	1.500	-2.1	.0018	. 290
5980936	1.086	7.9	.613	8.50	15.69	. 0000	-17.17	-18.78	.0280	-200.	-250.	1.500	-2.3	.0001	. 289
S980937	1.112	1.8	.610	7.00	15.00	. 0000	-14.10	-20.70	0024 . 0168	-168. 8.	-283.	1.500	-2.3	.00018	.185 2.494
8980939	1.316	1.0 3.1	.615	11.50	14.17	.0304	-12.47	-13.59	.0421	- 96. 0.	-261.* 0.	***	25.7	.0016	.175
S980943	1.382	. 5. 5. 5	. 601	11.50	15.00	.0556	-12.17	-13.63	.0696	-150.	-205. * 0.	* 0 . * . * . * .	-9.6	.0015	. 232
S980941	1.383	. 9 4.5		11.50	14.50	.0153	-12.93	-13.12	.0194	-125.	-268.*	* 0 , * *	-9.3	.0019	.182
S000447	2.397	4.9	. 490	5.80	9.56	. 0000	-6.99	-6.59	0054	-42.	-292.	4.670	-1.0	.0001	.178
8991181	2.694	4. ų.	. 447	5.50	9.00	.0031	-5.74	-4.94	.0018	-200.	-324.	4.294	-2.0	.0037	.150 3.331
8990526	3.092	9.	. 422	3.92	8.10	0000	-4.09	-3.66	.0209	-92.	-214.	3.736	-8.0	.0017	. 206
S000446	3, 306	1.6	. 406	4.50	8.00	0000.	-3.92	-3.24	0049	-72. 0.	-161.	3.653	-1.1	.0015	. 212
8000556	3.451	4.1 6.1	. 000	4.02	8.45	0093	-4.16 501.7	-2.96	0069	-151.	-220.	3.518	-1.0	.0021	. 285

Table D-16: 0.6 Elliptical 6DOF Aerodynamics – Multiple Fits

Shot	Shot Numbers	Mach Number	DBSQ ABARM	CX CXa2 CXB2	CYB CYB3 CYga3	CZA CZa2 CZa3	CnB CnB3 Cnga3	Cma Cma2 Cma3	Cnr Cnr2 Cmga3	Cmg Cmg	CXaB2 CNaB3 CmaB3	Clp Clga2	Standard Error X(m) Angle(Y-Z(m) Roll(l Error Angle(deg) Roll(deg)
S980932 S980945	S980929	. 742	6.0	. 332	7.45	7.45 11.81	-12.46 -12.99	.0	86.	-274. **	-274. *****-19.66 0. 0.0 .00	9, 66 . 00	. 0007	. 204
5980937	5580936	1.099	7.9	.610	7.11 .0 .0	15.02	-14.76 -18.84 .0 .0	.0	-179. 28.	-303. 41.	-303. 2.000 -3.64 410 .00	3.64	.0006	.166 4.669
S980939 S980941	S980943	1.360	1.0	.614 11.90 .00 .0 .00 .0		14.81 .0	-12.59	-13.72	-184. 0.	-201. * 0.	-201.*****-12.18 00 17.95 .0	2. 18 7. 95	.0006	.260 4.773
5000447	S991181	2.547	5.7	. 00 . 00	5.79	9.43	43 -6.27 -5.66 .0 -110.0 .0 .0 .0 -109.2	-5.66 .0	-50. 4.	-311. 5.	-311. 4.294 1.57 50 .00	. 00	.0025	.167 5.025
S000446	. 9550008	3. 379	5.5	. 00	4.53	8.30	-3.95 -3.03 17.5 .0	-3.03	-111.	-192. 1.	-192. 3.518 - 10	86°.	.0021	. 000

5. Blended Elliptical

Table D-17: Blended Elliptical Model Physical Properties

Spin	,	•	•		9 Yes						
CG from 1	63.30	63.402	63.51	63.54	63.63	63.60	63.44	63.67	63.69	63.54	63, 653
Length (mm) (mm	137.500	137.500	137.500	137.500	137.500	137.500	137.500	137.500	137.500	137.500	137.500
Inertia Inertia Z XY (kg- m2) (kg- m2)	. 000	000.	. 000	. 000	000.	000.	000.	000.	. 000	000.	000.
!	.140E-03	.140E-03	.141E-03	.140E-03	.140E-03	.140E-03	.140E-03	.140E-03	.141E-03	.141E-03	.142E-03
Inertia Y (kg- m2)	.141E-03	.142E-03	.142E-03	.141E-03	.142E-03	.141E-03	.142E-03	.141E-03	.142E-03	.141E-03	.142E-03
Axial Inertia (kg- m2)		.396E-05									
Mass (kg)	.910E-01	. 910E-01	.914E-01	.908E-01	.908E-01	.909E-01	.908E-01	.908E-01	.916E-01	.910E-01	.912E-01
Projectile Diameter (mm)	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000
Shot Number	5981157	5981155	5981159	2981161	S981162	8990166	8990169	8990168	8990167	8991285	S991284

Table D-18: Blended Elliptical Range Conditions

S981157 20 S981155 24	State	Observed Distance (m)	Pressure (mbar) (Temperature (degrees C)	Relative Humidity &	Air Density (kg/m3)	Speed of Sound (m/sec)	Reynolds Number (x10**-7)
		71.6	1014.23000	19.72	58.0000	1.2064	343.070	. 195
		82.3	1014.23000	20.21	58.0000	1.2044	343, 357	.199
•		74.7	1014.56000	20.00	55.0000	1.2057	343, 234	. 203
•		123.4	1017,95000	19.23	60.0000	1.2129	342, 783	.304
5981162 32		128.0	1015.92000	20,34	60.0000	1.2059	343, 433	. 305
5990166 29		100.6	1014.23000	20,00	58.0000	1,2053	343.234	.316
38		169.2	1028.45000	19.44	69.0000	1.2245	342.906	. 444
S990168 43		179.8	1028.45000	19.44	69.0000	1.2245	342, 906	. 477
• •		146.4	1014.23000	20.00	58,0000	1.2053	343, 234	. 472
S991285 11		39.6	1016.60000	21.94	45.0000	1,2001	344, 368	. 805
S991284 10		36.6	1031.16000	21.18	43.0000	1,2205	343.924	. 832

Table D-19: Blended Elliptical 6DOF Aerodynamics - Single Fits

Shot Number	Mach	DBSQ	CX CXA2	CYB CYB3	CZA CZA2	CX0	CnB CnB3	Ста Ста 3	ChO	Cnr Cnr2	Cmq Cmg2	CXaB2 CmaB3	CL P Cl d	Standard Error X(m) Angle(de Y-Z(m) Roll(de	rd Error Angle(deg) Roll(deg)
S981157	. 623	8. 5. 9. 6.	. 298	7.39	9.00	. 0320	-14.83	-14.66	.0745	118.	-516. 0.	3.354	-1.9	. 0009	. 171 3. 299
S981155	. 636	4.9 8.8	. 000	6.73	9.00	.0202	-15.24	-15.01	.0611	375. 0.	-268.	3.386	-1.9	.0001	.208 4.813
8981159	. 649	, 5 5 5	. 294	7.49	9.89	.0344	-15.39	-14.25	.0791	192.	-200.	3.417	-1.9	.00010	. 179
S981161	. 964	1. 2. 4. 4	. 380	8.62	11.68	0172	-19.24	-25.27	0352 . 0523	-60.	-301. 0.	4.742	-2.1 .001	. 0003	. 201 2. 221
5981162	. 972	1.1	.417	8.12	16.13	0021	-19.14	-24.30	.0031	-123.	-266.	4.859	-2.1	.0001	. 136 3. 460
3990166	1.007	1. 3 2. 8	. 528	9.81	12.34	0206	-18.31	-24.53	0457 0716	-203.	-268.	5.354	-2.2	.00020	.149 3.334
8990169	1.395	1.3	. 598	8.50	13.00	0014	-14.80	-15.98	.0027	-230.	-310.	7.046	-2.2	.0013	.147 3.158
8990168	1.497	3.9 9.6	. 579	8.00	12.73	0035	-14.87	-15.76	0184 .1476	-181.	-275.	6.716	-2.2	.0001	.125 4.726
8990167	1.504	4.1.	. 598	9.00	13.00	. 0000	-15.30	-15.14	.0047	-172.	-222. 10.	6.577	-2.1	.00014	. 228
8991285	2.584	5.7	. 465	6.15	8.35	0201	-6.29	-6.88	0281 .2321	~ 35.	-319.	4.406	-1.3	.0008	.159 1.882
8991284	2. 623	9. 12. 13. 13.	. 454	4.35	8.82	.0140	-7.91 .0	-6.76	.0674	-80.	-219.	4.348	-1.3	.0006	.113 4.573

ųς. Çi

Table D-20: Blended Elliptical 6DOF Aerodynamics - Multiple Fits

Shot Numbers Mach Number	Shot Numbers	Mach Number	рвес	CX CXa2 CXB2	CYB (CYB3 (CYB3 (CZA CZa2 CZa3	CnB CnB3 Cnga3	Cma Cma2 Cma3	Cnr Cnr2 Cmga3	Cmg Cmg2	CXaB2 CNaB3 CmaB3	Clp Clga2	Standard Error X(m) Angle(Y-Z(m) Roll(1 Error Angle(deg) Roll(deg)
S981157 S981159	S981155	. 636	3.6	. 298	6.55	9.75	.298 6.55 9.75 -15.08 -14.48 .00 .0 .0 .0 .0 .0	-14.48	8 H	-268.	-268. 3.417 -1.93 00 .00	. 00	.00011 .259	. 259
S990166 S981161	5981162	. 982	1,1	. 448	8.00	.448 8.00 13.00 .00 .0 .0 .00 .0	-19.06 -24.66 .0 .0 .0	-24.66 .0	-100. 0.	-268.	-268. 4.742 -2.14 0. 00 .00	2.14	.0039 .213	. 213 3. 045
\$990167 \$990169	8990168	1.466	3.0	. 594 1	0.00	13.00	.594 10.00 13.00 -14.47 -15.86 .00 .0 .0 .0 .0 .0 .0 .0 .0		-176. 5.	-353. 8.	-353, 7.046 -2.20 80 -5.14	5. 14	.0030 .292	. 292 3. 481
5991285	S991284	2. 604	7.4	.460 4.53 .00 .0	4.53	8.71	. 0 . 0	-6.84 .0	-25. 0.	-270. 0.	-270. 4.348 -1.32 00 .00	1.32 ,	.0008 .152	. 152 3. 3 <i>67</i>

Table D-21: Square Model Physical Properties

Shot Number	Projectile Diameter (mm)	Mass (kg)	Axial Inertia (kg- m2)	Inertia Y (kg- m2)		Inertia Inertia Z XY (kg- m2) (kg- m2)	Length CG S (mm) (mm from nose)	CG from nose	Spin e)
3000214	17.000	.853E-01	1	.130E-03	.130E-03	. 000	137.396	59.520	Yes
. 6901668	17.000	.853E-01		.130E-03	.130E-03	000.	137.396	59, 593	Yes
890168	17,000	.851E-01	.384E-05	.131E-03	.131E-03	000.	137.396	59, 775	Yes
8000215	17.000	.853E-01		.130E-03	.130E-03	000.	137,396	59, 520	Yes
2201027	17.000	.850E-01		.129E-03	.129E-03	000.	137.396	59.538	Yes
8991076	17.000	.850E-01		.129E-03	.129E-03	000.	137.396	59, 538	Yes
5000454	17.000	.853E-01		.130E-03	.130E-03	000.	137.396	59.520	Yes
5991072	17.000	.850E-01		.130E-03	.130E-03	. 000	137.396	59, 593	Yes
8991180	17.000	.854E-01		.131E-03	.131E-03	000.	137.396	59, 259	Yes
8000450	17.000	.853E-01		.130E-03	.130E-03	000.	137.396	59.520	Yes
S000448	17.000	.853E-01		.130E-03	.130E-03	000.	137.396	59.520	Yes
5000455	17.000	.853E-01		.130E-03	.130E-03	. 000	137.396	59.520	Yes
S000564	17.000	.853E-01		.130E-03	.130E-03	000.	137.396	59.520	Yes

Table D-22: Square Range Conditions

Shot	No. of	Observed	Pressure	Temperature	Relative	Air	Speed of	Reynolds
Number	scations	Distance (m)	(mbar) ((degrees C)	Rumiairy &	Lensity (kg/m3)	(m/sec)	Number (x10**-7)
5000214	13	71.6	1014.90000	18.33	57.0000	1.2130	342.255	
8991069	30	128.0	1017.95000		56.0000	1.2080	343.480	. 266
8991068	33	137.2	1017.95000	20.42	56.0000	1.2080	343.480	. 269
8000215	31	128.0	1024.72000		54.0000	1.2235	342.419	. 386
S991077	46	199.7	1025.06000		52.0000	1.2190	343.111	. 428
8991076	48	199.6	1025.40000		52,0000	1,2191	343.152	. 463
5000454	44	198.1	1014.23000	•	59.0000	1.2073	342.947	. 584
8991072	44	198.1	1026.76000		49.0000	1.2178	343.561	. 693
8991180	44	195.2	1024.72000		53.0000	1.2177	343.234	. 800
S000450	49	199.7	1019.30000		59.0000	1.2139	342.871	. 822
S000448	43	195.2	1019.30000		59.0000	1.2139	342.871	. 824
S000455	47	199.6	1014.23000		59,0000	1,2073	342.947	1.015
S000564	47	199.6	1018.63000		61.0000	1.2102	343.275	1.073

Table D-23: Square 6DOF Aerodynamics - Single Fits

1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1		1 1 1 1 1	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	1 1 1 1			1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	-		
Shot Number	Mach Number	DBSQ ABARM	Z Z	CNa CNa3	CYpa Cnpa	Cma Cma3	Cmg Cmg2	CZga3 Cmga3	CYga3 Cnga3	Clga2 Cnsm	Clp	CNda	Cmda CmdB	X(m) X X-Z(m)	standard Error (m) Angle(deg) Z(m) Roll(deg)
S000214	. 553	2.3	. 332	7.69	00.	-18.679	-297. 4	0.0	0.0	.00	-1.890	.003	. 033	. 0007	3.002
8901668	. 849		.356	7.61	°.	-19.663	-241.9	0.0.		.00	-6.000	.008	024	.0005	. 233
S991068	. 858	٠. نا و	348	9.11	00.	-20.826	-322.5	0.0	0.0.	00.	-6.000	0000.	. 005	. 0005	.185
S000215	1. 211	. 4.	.613	9.16	80.	-20.771	-350.8	°.°.	· ·	00.	-6.000	000.	008	.0005	.137
8991077	1.351	. 5; 3. 6.	. 606	11.92	00.	-19.887	-280.2	0.0.	00	00.	-6.000	000.	. 001	.0006	.141
8991076	1.462	2.5	. 597	9.17	0.	-19.733 .0	-314.4	°°.	0.0.	00.	-6.000	.002	016 .010	.0006	.121
S000454	1.862	2.5	. 565	10.90	°°.	-16.383	-262.3	°. °.	0.0	00.	-6.000	012	.028	.0007	. 085
S991072	2.190	1.5	528	8.32	°°.	-11.717	-302.0	0.0.	0, 0,	00.	-6.000	000.	.011	. 0006	.121.
8991180	2.527	1.2	4.64	8.05	80.	-9,783 .0	-224.7		°.°.	00.	-6.000	000 .	.015	.0008	.162
8000450	2.606	1.3	. 483	7.50	8°.	-8.906	-215.6 .0	0.0.	0.0	00.	-6.000	. 000	.010	.0008	.121
S000448	2.612	1.7	4.49	7.49	00.	-9.772	-217.2	۰.۰	0.0		-6.000	001	. 025	. 0006	.105
8000455	3, 233	1.7	. 431	7.08	00.	-7.040	-154.9			. 00	-6.000	035	.098	. 0008	.152
8000564	3.411	. i	. 421	6.62	8°.	-6.276	-163.9			00.	-5.813 024	. 0000	.011	. 0005	.116

Table D-24: Square 6DOF Aerodynamics - Multiple Fits

i iii	Shot Numbers	Mach	DBSQ	X 22 22	CNa CNa3 CNa5	CYpa Cnpa Cnpa3	Cma Cma3 Cma5	Cmq Cmq2 Cmq4	CZga3 Cmga3 Cmga	CYga3 Cnga3 Cnga5	Clga2 CXga2 Clp	CXM Cmam ConsM C	Standard Error X(m) Angle Y-Z(m) Roll	d Error Angle(deg) Roll(deg)
ζij	8991069	. 853	7. 0.	3.97	8.00 0.0	000.	0. 00 . 00 . 00 . 00 . 00 . 00 . 00 .	.009.3	000	000	. 00	09	. 0005	. 221
Ŋ	S991077	1.337	. 5.	6.92	10.27 .0	000.	-20.230	-308.9 .0	000	000	. 00 6. 00	16 3.30	. 0006	. 130 5. 275
Ω	S99107 2	2.026	2.2	. 549 5. 05	9. 53 0. 0	000.	00 -14.273 00 .0	-280.4	000	000	. 00 .	11 12.07 .00	. 0006	. 097 6. 810
Ω Ω	S991180 S000448	2.484	. w e e	. 496 4. 49 . 0	7.44	000	-10.402	-224.8	000	0.00	.00	10 4. 62 . 00	. 0009	. 131
Ø	S000564	3. 323	1.7	. 425 3. 60	7.01	000.	-6.869 .0	-158.6	000	000	.00.	08 4. 21	. 0008	. 135 9. 436

7. Triangular

Table D-25: Triangular Model Physical Properties

	Spin	(e)	Yes																	
	90	m from nos	59.549	59, 527	59.549	59.527	59.549	59.549	59.549	59.597	59.527	59, 626	59.410	59, 782	59, 549	59, 352	59, 527	59.549	59.549	59.549
	Length	m) (mm)	137.396	137.396	137,396	137, 396	137.396	137.396	137.396	137.396	137.396	137.396	137.396	137.396	137.396	137.396	137.396	137.396	137.396	137.396
a Inertia	Z XX	(kg-m2)	000.	. 000	. 000	000 -	. 000	. 000	000.	000.	000.	000.	000.	. 000	. 000	000.	. 000	. 000	. 000	000.
Inertia	Ŋ	(kg-m2)	.123E-03	.124E-03	.123E-03	.123E-03	.123E-03	.123E-03	.123E-03	.123E-03										
Inertia	×	(kg-m2)	.1235-03	.123E-03	.124E-03	.123E-03	.123E-03	.123E-03	.123E-03	.123E-03	.123E-03									
Axial	Inertia	(kg-m2)	.405E-05	.404E-05	.405E-05	.405E-05	.405E-05	.405E-05	.405E-05	.404E-05	.404E-05	.404E-05	.404E-05	.407E-05	.405E-05	.407E-05	.404E-05	.405E-05	.505E-05	.405E-05
		(kg)	.824E-01	.818E-01	.824E-01	.824E-01	.824E-01	.824E-01	.824E-01	.823E-01	.818E-01	.823E-01	.826E-01	.827E-01	.824E-01	.827E-01	.818E-01	.824E-01	.824E-01	.824E-01
Projectile	Diameter	(mm)	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000
Shot	Number		R000213	8000211	8000217	8000212	8000220	5000216	5000221	8991075	2000210	8991078	S991074	8991070	S000451	2991071	8991079	8000562	8000563	8000565

Table D-26: Triangular Range Conditions

R000213 18 S000211 25 S000212 29 S000212 31 S000216 31 S000216 31 S991075 47 S991078 45 S991074 45 S991070 50 S000451 40	Ê)	a mhet ar m e	Humidity	Alr Density	Sound	Keynolds Number
R000213 18 S000211 25 S000212 29 S000220 31 S000216 31 S991075 47 S991076 45 S991074 45 S991070 50		(mbar)	mbar) (degrees C)	ớ	(kg/m3)	(m/sec)	(x10**-7)
S000211 25 S000217 25 S000212 29 S000220 31 S000216 31 S991075 47 S991076 27 S991077 45 S991070 50 S000451 40	71.6	1014.90000	18.33	57.0000	1.2130	342.255	* * *
S000217 25 S000212 29 S000220 31 S000216 31 S991075 47 S991078 45 S991074 45 S991070 50 S000451 40	80.8	1026.76000	18.27	50.0000	1.2274	342.219	. 200
S000212 29 S000220 31 S000216 31 S991075 47 S091078 45 S991074 45 S991070 50 S000451 40	100.6	1026.08000	18.61	53,0000	1,2252	342.419	. 281
S000220 31 S000216 31 S991075 47 S000210 27 S991078 45 S991074 45 S991070 50 S000451 40	105.2	1021, 34000	18.54	49.0000	1,2198	342.378	. 282
S000216 31 S000221 33 S991075 47 S991078 45 S991074 45 S991070 50 S000451 40	114.3	1026.08000	18.61	53.0000	1.2252	342.419	. 290
S000221 33 S991075 47 S000210 27 S991078 45 S991074 45 S991070 50 S000451 40	128.0	1024.72000	18.61	54.0000	1.2235	342.419	.357
S991075 47 S000210 27 S991078 45 S991074 45 S991070 50 S000451 40	128.0	1024.38000	18.54	54.0000	1.2234	342.378	.361
S000210 27 S991078 45 S991074 45 S991070 50 S000451 40	199.7	1025.40000	19.86	52,0000	1,2191	343.152	. 408
S991078 45 S991074 45 S991070 50 S000451 40	105.2	1026.76000	18.27	50.0000	1.2274	342,219	. 429
S991074 45 S991070 50 S000451 40	199.6	1025.06000	19.79	52,0000	1.2190	343.111	. 497
S991070 50 S000451 40	199.7	1025.40000	19.86	52,0000	1.2191	343.152	. 508
S000451 40	199.6	1026.76000	20.42	48.0000	1.2184	343.480	. 637
	195.2	1018,63000	19.17	61.0000	1.2139	342.748	. 729
S991071 36	181.4	1026.76000	20.56	49.0000	1.2178	343.561	. 800
S991079 44	195.2	1024.72000	18.40	53.0000	1.2244	342.296	. 836
S000562 42	199.6	1017.95000	19.93	60.0000	1.2100	343.193	1.044
S000563 45	199.6	1017.95000	19.93	60.0000	1.2100	343.193	1.054
S000565 40	195.2	1018.63000	20.07	61.0000	1.2102	343.275	1.059

Table D-27: Triangular 6DOF Aerodynamics - Single Fits

Shot Number	Mach	DBSQ	ž Š	CNa CNa3	CYpa	Стаз	Cmg Cmg2	CZga3 Cmga3	CYga3 Cnga3	Clga2 Cnsm	CIP	CNda	Cmda CmdB	Standard X(m) Angl Y-Z(m) Rol	lard Error Angle(deg) Roll(deg)
R000213	. 577	1.1	3.30	7.83	00.	-15.042	-82.0	0.0	0.0	00.	-4.000	011	. 015	. 0009	. 207 1.852
S000211	. 624	1.6	3.36	6.93	80	-15.922	-20.1	• • •	0.0.	00.	-4.669	0000.	0000.	.0007	. 306 3. 106
S000217	. 883			10.00	00.	-17.295	-271.9	°. °.	°.°.	00.	-8.000	000 .	. 016	.0010	. 267
S000212	. 890	1.0		10.80	00.	-17.074	0.006-	• • •	0.0.	00.	-8.000	0000.	.005	.0006	. 210 3.557
8000220	606.	4.5	. 354	10.87	00.	-17.991 -446.4	-323.7	0.0.	0.0	00.	-7.947 016	000.	004	.0010	. 219
8000220	606.	4.9		10.87	0°.	-17.991	-323.7	· · ·	0.0	00.	-7.947 016	0000.	004	.0010	. 219 4. 171
S000221	1.134		. 598	11.99	0°.	-20.103	-276.5	0.0.	0.0	00.	-2.305	007	. 020	.0006	.280 8.664
S991075	1, 288	i. 3		11.17	0.	-18.566	-300.0		0.0.	00.	-2.319 001	047	. 089	.0011	199
8000210	1.344	 4	.583	9.00	00.	-17.236 .0	-267.2	• • •	• • •	00.	-6.000	0000.	012 .029	.0009	.275
8991078	1.568	1.7	. 542	9.00	. 00	-14.630 .0	-244.4	0.0.	0.0.	00.	-2.133	018 018	.062	.0009	. 296
8991074	1.602	1.7	. 545	9.00	. 00	-13.112	-342.8	°.°.	0.0	00.	-2.127	0000.	. 001	.0008	3.312
8991070	2.012	2.1	507	6.77	00.	-8.469	-299.9	0.0.	• • •	00.	-1.735 001	000 .	005	.0013	. 267
8000451	2, 308	. 5 4 4	481.79	8.83	00.	-6.635	-228.3	0.0.	0.0.	00.	-1.515	. 000	000 .	.0013	. 268 7. 868
S991071	2. 529	1.6	. 465	6.47	00.	-6.056	-224.3	• • •	• •	00.	-6.000	. 000	000 .	.0014	. 234 5. 839
8991079	2.625	2.9	4.35	9.70	00.	-5.915 .0	1.171.1	0,0	0.0.	00.	-5.917	.017	.018	.0012	. 213 5. 925
8000562	3.321	24.9	3.59	6.11	00.	-4.178 -91.6	1 -67.4	• • •		00.	-5.918	. 000	.067	.0016	. 432 5. 330
8000563	3, 352	1.6	3.58	6.45	00.	-4.297 .0	7 -177.2	• • •	0.0	00.	-3.503	. 000	.016	.0011	. 247 4. 971
8000565	3, 369	2.6	.386 3.57	6.78	00.	-4.125	5 -177.1	• •	0.0	00.	-1.012	000.	012	. 0009	. 254

Table D-28: Triangular 6DOF Aerodynamics - Multiple Fits

Shot 1	Shot Numbers	Mach Number	DBSQ ABARM	CX CX2 CX4	CNa CNa3 CNa5	CYpa Cnpa Cnpa3	Cma Cma3 Cma5	Cmg Cmg2 Cmg4	CZga3 Cmga3 Cmga	CYga3 Cnga3 Cnga5	Clga2 Cxga2 Clp	CXM CmaM CnsM	Standard X(m) Y-Z(m)	d Error Angle(deg) Roll(deg)
R000213	8000211	. 601	4.5 8.5	. 309 3.36	6.73	00.	.15.555	-33.1	000	0.00	.00 .21 20-13.68 -4.59 .00	.21 13.68 .00	.0011	. 284
S000212 S000220	\$000217	. 890	3.5	. 344 :-6. 92	10.38		-17.554 -431.5	-311.0 .0	000	0.00	.00.	.00 .53 .04-17.50 .57 .00	.0013	. 235
S991075 S000216	S000221	1. 181	1.4	. 596 6. 99 . 0	9.44	000	-20.363	-297.7 .0 .0	0.00	0.00	. 00 .	03 -2.34 . 00	.0017	. 266 6. 285
S991074	8991078	1.586	. t 6.1	. 543 6. 48	10.02	000	-14.126	-273.9	000	000	. 00 02	.00 18.64	.0019	. 259 3. 907
S000451 S991071	8991079	2. 488	. 4. 8 r.	. 468 4. 49	7.06	000.	-6.382 .0	-210.0	0.00	000	. 006. 00	08 2.13	.0031	. 251 6. 908
8000865	8000563	3, 360	2.7	.386 3.58	6.36	000.	-4.226 .0	-173.9	000	0.00	.00	. 00 .	.0011	. 258

REFERENCES

- 1 Kittlye, R. L., Packard, J. D., Winchenbach, G. L., "Description and Capabilities of the Aeroballistic Research Facility", AFATL-TR-87-08, May 1987
- 2 Yates, L. A., "A Comprehensive Aerodynamic Data Reduction System For Aeroballistic Ranges", WL-TR-96-7059, October 1996
- 3 M.A. Fischer, and W.H. Hathaway, "ARFDAS Users Manual," AFATL-TR-88-48, Air Force Armament Laboratory, Eglin AFB, FL, November 1988
- 4 Murphy, C.H., "Free Flight Motion of Symmetric Missiles", BRL Report 1216, Aberdeen Proving Ground, MD, July 1963
- 5 Murphy, C.H., "Data Reduction for the Free Flight Spark Ranges", BRL Report 900, Aberdeen Proving Ground, MD, February 1954
- 6 Winchenbach, G. L., "Aerodynamic Testing In A Free-Flight Spark Range," WL-TR-1997-7006, Wright Laboratory, Armament Directorate, Weapon Flight Mechanics Division, Eglin AFB, FL, April 1997
- 7 Hathaway, W. H. and Whyte, R. H., "Aeroballistic Research Facility Free Flight Data Analysis Using The Maximum Likelihood Method," AFATL-TR-79-98, Air Force Armament Laboratory, Eglin AFB, FL, December 1979

INTENTIONALLY LEFT BLANK

DISTRIBUTION

AFRL-MN-EG-TR-2001-7082

Defense Technical Information Center		Commander	_
8725 John J. Kingman Road, Suite 0944		U.S. Army Armament Research Developmen	t and
Fort Belvoir, VA 22060-6218	1	Engineering Center	
•		Attn: AMSTA-AR-CCH-B	
NASA Langley Research Center		Picatinny Arsenal, NJ 07806	1
Technical Library Branch, MS 185			
Attn: Document Cataloging		Commander	
Hampton, VA 23665	1	U.S. Army Armament Research Developmen	t and
Tumpton, VII 25005		Engineering Center	
Commander		Attn: AMSTA-AR-FSE	
Naval Weapons Center (Code 3431)		Picatinny Arsenal, NJ 07806	1
<u>-</u>		1 104111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Attn: Technical Library	1	Commander	
China Lake, CA 93555-6001	1	U.S. Army Armament Research Developmen	nt and
		Engineering Center	it und
Commander		Attn: AMSTA-AR-CCL-B	
U.S. Army Research Laboratory		= -	1
Attn: AMSRL-OP-CI-B (Tech. Lib.)		Picatinny Arsenal, NJ 07806	1
Aberdeen Proving Ground, MD 21005	1	_	
		Commander	
Director		U.S. Army Armament Research Developmen	it and
U.S. Army Research Laboratory		Engineering Center	
Attn: Dr. Peter Plostins		Attn: AMSTA-AR-CCH-A	
Aberdeen Proving Ground, MD 21005	1	Picatinny Arsenal, NJ 07806	1
Director		Director	
		U.S. Army Research Office	
U.S. Army Research Laboratory		PO Box 12211	
Attn: F Brandon	1	Research Triangle Park, NC 27709-2211	1
Aberdeen Proving Ground, MD 21005	1	Research Thangle Lark, 140 27707 2211	•
Director		Director	
U.S. Army Research Laboratory		U.S. Army Benet Laboratory	
Attn: Dr. Ed Schmidt		Attn: SMCAR-CCB-R	
Aberdeen Proving Ground, MD 21005	1	Watervaliet, NY 12189	1
Commander		Director	
U.S. Army Armament Research Development and		U.S. Belvior Research Development and	
		Engineering Center	
Engineering Center		Attn: SATBE-FED	
Attn: SMCAR-TDC	1	Ft. Belvior, VA 22060	1
Picatinny Arsenal, NJ 07806	1	14. Delyloi, 471 22000	•
Commander		Eglin AFB Offices:	
U.S. Army Armament Research Developme	nt and	AFRL/MN CA-N	1
Engineering Center		AFRL/MNAV	10
Attn: AMSTA-AR-AET-A		AFRL / MNOC-1 (STINFO Office)	1
	1	111111111111111111111111111111111111111	
Picatinny Arsenal, NJ 07806	1	Arrow Tech Associates	
A in Their consists Tibror		1233 Shelburne Road, Suite D-8	
Air University Library		South Burlington, Vermont 05403	2
600 Chennault Circle, Bldg 1405	1	South Burnigion, A ormone 62462	_
Maxwell AFB, AL 36112-6424	1	Aeroprediction Incorporated	
		9449 Grover Drive, Suite 201	2
		King George, VA 22485	4