Mathematics for Data Science Tutorial 4 (week 8)

Semester 2, 2019

1. Consider the matrix

$$A = \begin{pmatrix} 3 & 2 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}.$$

- (a) 2 is an eigenvalue of A. Use the trace and determinant to determine the other eigenvalue(s).
- (b) Find the eigenspace corresponding to 2.

Solution:

(a) We have trace(A) = 3 + 1 + 1 = 5 and $det A = -1 \times \begin{vmatrix} 2 & -1 \\ 1 & 0 \end{vmatrix} + 1 \times \begin{vmatrix} 3 & 2 \\ -1 & 1 \end{vmatrix} = 4$.

Since 2 is an eigenvalue, we have $2 + \lambda_1 + \lambda_2 = 5$, i.e. $\lambda_1 + \lambda_2 = 3$, and $2\lambda_1\lambda_2 = 4$, i.e. $\lambda_1\lambda_2 = 2$. Therefore, $\lambda_1 = 1$ and $\lambda_2 = 2$.

(b)

$$\begin{array}{c|ccccc} -1 & -2 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 1 & 0 \\ \hline 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array}$$

Therefore the eigenspace corresponding to $\lambda = 2$ is $E_2 = \{(-1, 1, 1)t | t \in \mathbb{R}\}.$

2. Consider the matrices

$$A_{1} = \begin{bmatrix} -12 & 7 \\ -7 & 2 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} -1 & 3 & 9 \\ 0 & -7 & -18 \\ 0 & 2 & 5 \end{bmatrix}.$$

For each matrix A_i above

- (a) Determine the eigenvalues and eigenvectors.
- (b) For each eigenvalue, state its multiplicity and give the dimension of its associated eigenspace.
- (c) Hence determine whether the matrix A_i is diagonalisable, stating the reason for your answer.
- (d) For each diagonalisable matrix A_i , determine a matrix P such that $P^{-1}A_iP = D$, where D is a diagonal matrix. What is D? (For the purposes of this exercise, order your eigenvalues from smallest to largest i.e. $\lambda_1 \leq \lambda_2 \ldots \leq \lambda_n$.)
- (e) Determine if each matrix A_i is invertible and, where possible, use your results from (d) to write the inverse matrix A_i^{-1} in the form $P\Delta P^{-1}$, where Δ is a diagonal matrix. (You do not need to find A^{-1} if not possible by this method.)

Solution:

- A_1 : (a) A_1 has eigenvalue -5 with multiplicity 2. Eigenvectors are $\mathbf{x} = \mathbf{t}(\mathbf{1}, \mathbf{1}), \mathbf{t} \neq \mathbf{0}$.
 - (b) $E_1 = \{(1,1)t | t \in \mathbb{R}\}, \dim(E_1) = 1.$
 - (c) A_1 is not diagonalisable as it does not have two linearly independent eigenvectors.
 - (d) No answer required as A_1 is not diagonalisable.
 - (e) $det(A) = 25 \neq 0$ so A is invertible though not diagonalisable.
- A_2 : (a) A_2 has eigenvalues 2 and 8 with multiplicities 2 and 1 respectively. For $\lambda=2$ the eigenvectors are $\mathbf{x}=\mathbf{s}(-1,1,0)+\mathbf{t}(-1,0,1), s$ and t not both zero. For $\lambda=8$ the eigenvectors are $\mathbf{x}=\mathbf{t}(1,1,1), t\neq 0$.
 - (b) $E_2 = \{(-1, 1, 0)t + (-1, 0, 1)s | s, t \in \mathbb{R}\}, \dim(E_2) = 2.$ $E_8 = \{(1, 1, 1)t | t \in \mathbb{R}\}, \dim(E_8) = 1.$
 - (c) A_2 is diagonalisable as it has 3 linearly independent eigenvectors.

(d)
$$P = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
 and $D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 8 \end{bmatrix}$.

- (e) $\det(A_2) = 32 \neq 0$ so A_2 is invertible. $\Delta = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1/8 \end{bmatrix}$ with P as above.
- A_3 : (a) A_3 has eigenvalue -1 with multiplicity 3. The eigenvectors are $\mathbf{x} = t(1,0,0) + s(0,-3,1)$, s and t not both zero.
 - (b) $E_3 = \{(1,0,0)t + (0,-3,1)s | s, t \in \mathbb{R}\}, \dim(E_3) = 2.$

- (c) A_3 is not diagonalisable as it does not have three linearly independent eigenvectors.
- (d) No answer required as A_3 is not diagonalisable.
- (e) $det(A_3) = -1 \neq 0$ so A_3 is invertible though not diagonalisable.