Inhaltsverzeichnis

1	Zug	und Druck in Stäben	4
	1.1	Spannung	4
	1.2	Dehnung	4
	1.3	Stoffgesetz	5
	1.4	Einzelstab	6
	1.5	Statisch bestimmte Stabsysteme	6
	1.6	Statisch unbestimmte Stabsysteme	7
	1.7	Zusammenfassung	7
2	Spar	nnungszustand	7
	2.1	Spannungvektor und Spannungtensor	7
	2.2	Ebener Spannungszustand	7
		2.2.1 Koordinatentransformation	7
		2.2.2 Hauptspannungen	8
	2.3	Mohrscher Spannungkreis	9
		2.3.1 Dünnwandiger Kessel	9
	2.4	Gleichgewichtsbedingungen	10
	2.5	Zusammenfassung	10
3	Verz	zerrungszustand, Elastizitätsgesetze	10
	3.1	Verzerrungszustand	10
	3.2	Elastizitätsgesetz	11
	3.3	Festigkeitshypothesen	12
	3.4	Zusammenfassung	12
4	Balk	kenbiegung	12
	4.1	Einführung	12
	4.2	Flächenträgheitsmomente	13
		4.2.1 Definition	13
		4.2.2 Parallelverschiebung der Bezugsachsen	13
		4.2.3 Drehung des Bezugssystems, Hauptträgheitsmomente	14
	4.3	Grundgleichungen der geraden Biegung	15
	4.4	Normalspannungen	16
	4.5	Biegelinie	16

		4.5.1 Differentialgleichung der Biegelinie	16
		4.5.2 Einfeldbalken	17
		4.5.3 Balken mit mehreren Feldern	17
		4.5.4 Superposition	17
	4.6	Einfluss des Schubes	17
		4.6.1 Schubspannungen	17
		4.6.2 Durchbiegung infolge Schub	17
	4.7	Schiefe Biegung	18
	4.8	Biegung und Zug/Druck	18
	4.9	Kern des Querschnitts	19
	4.10	Temperaturbelastung	19
	4.11	Zusammenfassung	20
5	Tors	sion	20
	5.1	Einführung	20
	5.2	Die kreiszylindrische Welle	20
	5.3	Dünnwandige geschlossene Profile	21
	5.4	Dünnwandige offene Profile	22
	5.5	Zusammenfassung	23
_	ъ		0.6
6		Arbeitsbegriff in der Elastostatik	23
	6.1	Einleitung	25
	6.2	Arbeitssatz und Formänderungsenergie	23
	6.3	Das Prinzip der virtuellen Kräfte	23
	6.4	Einflusszahlen und Vertauschungssätze	23
	6.5	Anwendung des Arbeitssatzes auf statisch unbestimmte Systeme	
	6.6	Zusammenfassung	23
7	Knie	ckung	23
	7.1	Verzweigung einer Gleichgewichtslage	25
	7.2	Der Euler-Stab	23
	7.3	Zusammenfassung	23
8	Verl	bundquerschnitte	23
-	8.1	Einleitung	23
	8.2	Zug und Druck in Stäben	23

2019 - 11 - 25

Technische	Mechanik	II TM	II	Formeln
TCCIIIISCIIC	MICCHAILIN	TT' T 1/1	11	1 OI III CIII

Seite	3	von	23
эепе	•	VOII	2.0

8.3	Reine Biegung	23
8.4	Biegung und Zug/Druck	23
8.5	Zusammenfassung	23

1 Zug und Druck in Stäben

1.1 Spannung

$$\underbrace{\sigma}_{\text{Spannung}\left[\frac{N}{mm^2}\right]} = \underbrace{\frac{N}{N}}_{\text{Fläche}[mm^2]}$$
(1.1)

$$\underbrace{\sigma}_{\text{Spannung}\left[\frac{N}{mm^2}\right]} = \underbrace{\frac{\text{Kraft}[N]}{F}}_{\text{Fläche}[mm^2]}$$
(1.2)

Normalspannung in einem Schnitt
Senkrecht zur Stabachse $\sigma = \frac{\sigma_0}{2} \left(1 + \cos 2\varphi\right), \tau = \frac{\sigma_0}{2} \left(\sin 2\varphi\right)$ (1.3)

$$\sigma(x) = \frac{N(x)}{A(x)} \tag{1.4}$$

$$A_{\text{erf}} = \frac{|N|}{\sigma_{\text{zul}}} \tag{1.5}$$

1.2 Dehnung

$$\underbrace{\varepsilon}_{\text{Dehnung}[1]} = \underbrace{\frac{\Delta \ell}{\ell_0}}_{\substack{\text{Ursprüngliche} \\ \text{Länge } [m]}} = \frac{\ell - \ell_0}{\ell_0} \tag{1.6}$$

Örtliche (lokale Dehnung)

$$\varepsilon(x) = \frac{\mathrm{d}u}{\mathrm{d}x} \tag{1.7}$$

1.3 Stoffgesetz

Hooke'sches Gesetz

$$\underbrace{E}_{\text{Elastizitätsmodul}} = \underbrace{\frac{\sigma}{\sigma}}_{\text{Dehnung}[1]}$$

$$\underbrace{E}_{\text{Dehnung}[1]}$$

$$\underbrace{\varepsilon}_{\text{Dehnung}[1]}$$

Umgestellt nach Sigma, übliche Form:

$$\sigma = E\varepsilon = \frac{\Delta\ell}{\ell_0}E$$

$$\underbrace{\varepsilon}_{\text{Dehnung[1]}} = \frac{\sigma}{E} \tag{1.9}$$

$$\underbrace{\varepsilon_{T}}_{\text{W\"{a}rmedehnung}[1]} = \underbrace{\alpha}_{\text{C}} \cdot \underbrace{\Delta T}_{\text{Temperatur\'{a}nderung}[°C]}$$

$$\underbrace{\text{Thermischer Aus-}}_{\text{dehnungskoeffizient}} \cdot \underbrace{\text{Temperatur\'{a}nderung}[°C]}_{\text{(W\"{a}rmeausdehnugnskoeffizient)}}$$

$$\underbrace{[1/°C]}$$

$$(1.10)$$

$$\varepsilon = \frac{\sigma}{E} + \alpha_T \Delta T \tag{1.11}$$

$$\sigma = E\left(\varepsilon - \alpha_T \Delta T\right) \tag{1.12}$$

1.4 Einzelstab

$$\frac{\mathrm{d}N}{\mathrm{d}x} + \underbrace{n}_{\text{Linienkraft}} = 0 \tag{1.13}$$

$$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{N}{EA} + \alpha_T \Delta T \tag{1.14}$$

$$\Delta \ell = u(l) - u(0) = \int_0^\ell \varepsilon dx$$
 (1.15)

$$\Delta \ell = \int_0^\ell \left(\frac{N}{EA} + \alpha_T \Delta T \right) dx$$
 (1.16)

$$\Delta \ell = \frac{F\ell}{EA} + \alpha_T \Delta T \ell$$
 (1.17)

Für $\Delta T = 0$

$$\Delta \ell = \frac{F\ell}{EA} \tag{1.18}$$

Oder F = 0

$$\Delta \ell = \alpha_T \Delta T \ell \tag{1.19}$$

$$(EAu')' = -n + (EA\alpha_t \Delta T)'$$
(1.20a)

Sei in 1.20
aEA=const und $\Delta T=const$

$$EAu'' = -n \tag{1.20b}$$

1.5 Statisch bestimmte Stabsysteme

$$u = |\Delta \ell_1| = \frac{F\ell}{EA} \frac{1}{\tan \alpha},$$

$$v = \frac{\Delta \ell_2}{\sin \alpha} + \frac{u}{\tan \alpha} = \frac{F\ell}{EA} \frac{1 + \cos^3 \alpha}{\sin^2 \alpha \cos \alpha}$$
(1.21)

1.6 Statisch unbestimmte Stabsysteme

1.7 Zusammenfassung

2 Spannungszustand

2.1 Spannungvektor und Spannungtensor

$$t = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A} = \frac{\mathrm{d}F}{\mathrm{d}A}$$
 (2.1)

$$\boldsymbol{t} = \tau_{yx}\boldsymbol{e_x} + \sigma_y\boldsymbol{e_y} + \tau_{yz}\boldsymbol{e_z}$$
 (2.2)

$$\tau_{xy} = \tau_{yx}, \tau_{xz} = \tau_{zx}, \tau_{yz} = \tau_{zy}$$

$$(2.3)$$

2.2 Ebener Spannungszustand

2.2.1 Koordinatentransformation

$$\sigma_{\xi} = \sigma_{x} \cos^{2} \varphi + \sigma_{y} \sin^{2} \varphi + 2\tau_{xy} \sin \varphi \cos \varphi$$

$$\tau_{\xi\eta} = -(\sigma_{x} - \sigma_{y}) \sin \varphi \cos \varphi + \tau_{xy} (\cos^{2} \varphi - \sin^{2} \varphi)$$
(2.5a)

$$\sigma_{\eta} = \sigma_x \sin^2 \varphi + \sigma_y \cos^2 \varphi - 2\tau_{xy} \cos \varphi \sin \varphi$$
 (2.5b)

$$\sigma_{\xi} = \frac{1}{2}(\sigma_x + \sigma_y) + \frac{1}{2}(\sigma_x - \sigma_y)\cos 2\varphi + \tau_{xy}\sin 2\varphi,$$

$$\sigma_{\eta} = \frac{1}{2}(\sigma_x + \sigma_y) - \frac{1}{2}(\sigma_x - \sigma_y)\cos 2\varphi + \tau_{xy}\sin 2\varphi,$$

$$\tau_{\xi\eta} = - \frac{1}{2}(\sigma_x - \sigma_y)\sin 2\varphi + \tau_{xy}\cos 2\varphi,$$
(2.6)

$$\sigma_{\xi} + \sigma_{\eta} = \sigma_x + \sigma_y \tag{2.7}$$

2.2.2 Hauptspannungen

$$\tan 2\varphi^* = \frac{2\tau_{xy}}{\sigma_x - \sigma_y} \tag{2.8}$$

$$\cos 2\varphi^* = \frac{1}{\sqrt{1 + \tan^2 2\varphi^*}} = \frac{\sigma_x - \sigma_y}{\sqrt{(\sigma_x - \sigma_y)^2 + 4\tau_{xy}^2}}$$

$$\sin 2\varphi^* = \frac{\tan 2\varphi^*}{\sqrt{1 + \tan^2 2\varphi^*}} = \frac{2\tau_{xy}}{\sqrt{(\sigma_x - \sigma_y)^2 + 4\tau_{xy}^2}}$$
(2.9)

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
 (2.10)

$$\left| \tan 2\varphi^{**} = -\frac{\sigma_x - \sigma_y}{2\tau_{xy}} \right|$$
(2.11)

$$\tau_{\text{max}} = \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
 (2.12a)

$$\tau_{\text{max}} = \pm \frac{1}{2} (\sigma_1 - \sigma_2) \tag{2.12b}$$

$$\sigma_M = \frac{1}{2}(\sigma_x + \sigma_y) = \frac{1}{2}(\sigma_1 + \sigma_2)$$
(2.13)

2.3 Mohrscher Spannungkreis

$$\sigma_{\xi} - \frac{1}{2}(\sigma_x + \sigma_y) = \frac{1}{2}(\sigma_x - \sigma_y)\cos 2\varphi + \tau_{xy}\cos 2\varphi$$

$$\tau_{\xi\eta} = -\frac{1}{2}(\sigma_x - \sigma_y)\sin 2\varphi + \tau_{xy}\cos 2\varphi$$
(2.14)

$$\left[\sigma_{\xi} - \frac{1}{2} (\sigma_x + \sigma_y) \right]^2 + \tau_{\xi\eta}^2 = \left(\frac{\sigma_x - \sigma_y}{2} \right)^2 + \tau_{xy}^2$$
 (2.15)

$$\boxed{\left(\sigma - \sigma_M\right)^2 + \tau^2 = r^2} \tag{2.16}$$

$$r^{2} = \frac{1}{4} \left[(\sigma_{x} + \sigma_{y})^{2} - 4(\sigma_{x}\sigma_{y} - \tau_{xy}^{2}) \right]$$
 (2.17)

2.3.1 Dünnwandiger Kessel

$$\sigma_x = \frac{1}{2} p \frac{r}{t} \tag{2.18}$$

$$\sigma_{\varphi} = p \frac{r}{t} \tag{2.19}$$

$$\sigma_t = \sigma_\varphi = \frac{1}{2} p \frac{r}{t}$$
 (2.20)

2.4 Gleichgewichtsbedingungen

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + f_x = 0$$
 (2.21a)

$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + f_y = 0$$
 (2.21b)

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + f_x = 0$$

$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + f_y = 0$$

$$\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_z}{\partial z} + f_z = 0$$
(2.22)

2.5 Zusammenfassung

3 Verzerrungszustand, Elastizitätsgesetze

3.1 Verzerrungszustand

$$\varepsilon_x = \frac{\partial u}{\partial x}, \ \varepsilon_y = \frac{\partial v}{\partial y}$$
 (3.1)

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$$
 (3.2)

$$\tan 2\varphi^* = \frac{\gamma_{xy}}{\varepsilon_x - \varepsilon_y} \tag{3.4}$$

$$\varepsilon_{1,2} = \frac{\varepsilon_x + \varepsilon_y}{2} \pm \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right) + \left(\frac{1}{2}\gamma_{xy}\right)}$$
 (3.5)

$$\varepsilon_x = \frac{\partial u}{\partial x}, \quad \varepsilon_y = \frac{\partial v}{\partial y}, \quad \varepsilon_z = \frac{\partial w}{\partial z},$$
 (3.6a)

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}, \quad \gamma_{xz} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}, \quad \gamma_{yz} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}, \quad (3.6b)$$

$$\begin{bmatrix}
\varepsilon_{x} & \varepsilon_{xy} & \varepsilon_{xz} \\
\varepsilon_{yx} & \varepsilon_{y} & \varepsilon_{yz} \\
\varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{z}
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{x} & \frac{1}{2}\gamma_{xy} & \frac{1}{2}\gamma_{xz} \\
\frac{1}{2}\gamma_{xy} & \varepsilon_{x} & \frac{1}{2}\gamma_{yz} \\
\frac{1}{2}\gamma_{xz} & \frac{1}{2}\gamma_{yz} & \varepsilon_{z}
\end{bmatrix}$$
(3.7)

3.2 Elastizitätsgesetz

$$\left|\varepsilon_{y} = -\nu\varepsilon_{x}\right| \tag{3.8}$$

$$\varepsilon_x = \frac{1}{E} (\sigma_x - \nu \sigma_y), \varepsilon_y = \frac{1}{E} (\sigma_y - \nu \sigma_x)$$
(3.9)

$$\tau_{xy} = G\gamma_{xy} \tag{3.10}$$

$$G = \frac{E}{2(1+\eta)} \tag{3.11}$$

$$\varepsilon_{x} = \frac{1}{E} (\sigma_{x} - \nu \sigma_{y})$$

$$\varepsilon_{y} = \frac{1}{E} (\sigma_{y} - \nu \sigma_{x})$$

$$\gamma_{xy} = \frac{1}{G} \tau_{xy}$$
(3.12a)

$$\sigma_{x} = \frac{E}{1 - \nu^{2}} (\varepsilon_{x} + \nu \varepsilon_{y})$$

$$\sigma_{y} = \frac{E}{1 - \nu^{2}} (\varepsilon_{y} - \nu \varepsilon_{x})$$

$$\tau_{xy} = G\gamma_{xy}$$
(3.12b)

$$\varepsilon_1 = \frac{1}{E}(\sigma_1 - \nu \sigma_2), \quad \varepsilon_2 = \frac{1}{E}(\sigma_2 - \nu \sigma_1)$$
(3.13)

$$\varepsilon_{x} = \frac{1}{E} \left[\sigma_{x} - \nu \left(\sigma_{y} + \sigma_{z} \right) \right] + \alpha_{T} \Delta T$$

$$\varepsilon_{y} = \frac{1}{E} \left[\sigma_{y} - \nu \left(\sigma_{z} + \sigma_{x} \right) \right] + \alpha_{T} \Delta T$$

$$\varepsilon_{z} = \frac{1}{E} \left[\sigma_{z} - \nu \left(\sigma_{x} + \sigma_{y} \right) \right] + \alpha_{T} \Delta T$$

$$\gamma_{xy} = \frac{1}{G} \tau_{xy}, \quad \gamma_{xz} = \frac{1}{G} \tau_{xz}, \quad \gamma_{yz} = \frac{1}{G} \tau_{yz}$$

$$(3.14)$$

3.3 Festigkeitshypothesen

$$\sigma_V \le \sigma_{zul} \tag{3.15}$$

$$\sigma_V = \sigma_1 \tag{3.16}$$

$$\sigma_V = \sqrt{\left(\sigma_x - \sigma_y\right)^2 + 4\tau_{xy}^2}$$
(3.17)

$$\sigma_V = \sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3\tau_{xy}^2}$$
 (3.18)

3.4 Zusammenfassung

4 Balkenbiegung

4.1 Einführung

$$\sigma(z) = cz \tag{4.1}$$

$$M = \int z\sigma \, dA \tag{4.2}$$

$$I = \int z^2 \, \mathrm{d}A \tag{4.3}$$

$$\sigma = \frac{M}{I}z \tag{4.4}$$

4.2 Flächenträgheitsmomente

4.2.1 Definition

Das statische Moment ist quasi Fläche \times Hebelarm bezogen auf den Schwerpunkt der Fläche:

$$S_y = \int z dA, \quad S_z = \int y dA$$
 (4.5)

$$I_y = \int z^2 dA, \quad I_z = \int y^2 dA$$
 (4.6a)

$$I_{yz} = I_{zy} = -\int yz \, \mathrm{d}A \tag{4.6b}$$

$$I_p = \int r^2 dA = \int (z^2 + y^2) dA = I_y + I_z$$
 (4.6c)

$$i = seltsameWurzel;$$
da bin ich jetzt zu faul (4.7)

4.2.2 Parallelverschiebung der Bezugsachsen

$$I_{\bar{y}} = I_y + \bar{z}_s^2 A$$

$$I_{\bar{z}} = I_z + \bar{y}_s^2 A$$

$$I_{\bar{y}\bar{z}} = I_{yz} - \bar{y}_s \bar{z}_s A$$

$$(4.13)$$

4.2.3 Drehung des Bezugssystems, Hauptträgheitsmomente

$$I_{\eta} = \frac{1}{2} (I_{y} + I_{z}) + \frac{1}{2} (I_{y} - I_{z}) \cos 2\varphi + I_{yz} \sin 2\varphi$$

$$I_{\zeta} = \frac{1}{2} (I_{y} - I_{z}) - \frac{1}{2} (I_{y} - I_{z}) \cos 2\varphi - I_{yz} \sin 2\varphi$$

$$I_{\eta\zeta} = -\frac{1}{2} (I_{y} - I_{z}) \sin 2\varphi + I_{yz} \cos 2\varphi$$

$$(4.14)$$

$$\boxed{I_{\eta} + I_{\zeta} = I_y + I_z = I_p} \tag{4.15}$$

$$\left| \tan 2\varphi^* = \frac{2I_{yz}}{I_y - I_z} \right|$$
(4.16)

$$I_{1,2} = \frac{I_y + I_z}{2} \pm \sqrt{\left(\frac{I_y - I_z}{2}\right)^2 + I_{yz}^2}$$
 (4.17)

4.3 Grundgleichungen der geraden Biegung

$$\frac{\mathrm{d}Q}{\mathrm{d}x} = -q, \quad \frac{\mathrm{d}M}{\mathrm{d}x} = Q \tag{4.18}$$

$$M = \int z\sigma \,\mathrm{d}A \tag{4.19a}$$

$$Q = \int \tau \, \mathrm{d}A \tag{4.19b}$$

$$N = \int \sigma \, \mathrm{d}A$$
 (4.19c)

$$\varepsilon = \frac{\partial u}{\partial x} \tag{4.20}$$

$$\sigma = E \,\varepsilon, \quad \tau = G \,\gamma \tag{4.21}$$

$$\omega = \omega(x) \tag{4.22a}$$

$$u(x,z) = \psi(x)z \tag{4.22b}$$

$$\sigma = E \frac{\partial u}{\partial x} = E \psi' z$$
 (4.23a)

$$\tau = G\left(\frac{\partial\omega}{\partial x} + \frac{\partial u}{\partial z}\right) = G(\omega' + \psi)$$
(4.23b)

$$M = EI\psi'$$
 (4.24)

$$Q = \varkappa GA(\omega' + \psi) \tag{4.25}$$

4.4 Normalspannungen

$$\sigma = \frac{M}{I}z \tag{4.26}$$

$$W = \frac{I}{|z|_{\text{max}}} \tag{4.27}$$

Aber hier mit subscript, also $W_{\text{Achse}} = \frac{I_{\text{Achse}}}{|\text{andere Achse}|_{\text{max}}}$

$$\sigma_{\text{max}} = \frac{|M|}{W} \tag{4.28}$$

4.5 Biegelinie

4.5.1 Differentialgleichung der Biegelinie

$$\omega' + \psi = 0 \tag{4.29}$$

$$Q' = -q, \quad M' = Q, \quad \psi' = \frac{M}{EI}, \quad \omega' = -\psi$$
(4.30)

$$\omega'' = -\frac{M}{EI} \tag{4.31}$$

$$\varkappa_B = \frac{\omega''}{(1 + \omega'^2)^{3/2}} \tag{4.32a}$$

$$\varkappa_B \approx \omega''$$
(4.32b)

$$Q = -(EI\omega'')'$$
(4.33)

$$(EI\omega'')'' = q \tag{4.34a}$$

$$\boxed{EI\omega^{IV} = q} \tag{4.34b}$$

4.5.2 Einfeldbalken

4.5.3 Balken mit mehreren Feldern

4.5.4 Superposition

4.6 Einfluss des Schubes

4.6.1 Schubspannungen

$$\boxed{\frac{\partial \sigma}{\partial x} = \frac{Q}{I} \zeta} \tag{4.35}$$

$$\underbrace{\tau(z)}_{N/mm^2} = \underbrace{\frac{Q}{Q} \underbrace{S(z)}_{mm^4} \underbrace{b(z)}_{mm}}_{mm}$$
(4.37)

4.6.2 Durchbiegung infolge Schub

4.7 Schiefe Biegung

da bin ich	jetzt zu fa	ul	(4.45)

da bin ich jetzt zu faul
$$(4.49)$$

da bin ich jetzt zu faul
$$(4.50)$$

da bin ich jetzt zu faul
$$(4.51)$$

da bin ich jetzt zu faul
$$(4.52)$$

da bin ich jetzt zu faul
$$(4.53b)$$

4.8 Biegung und Zug/Druck

da bin ich	jetzt zu faul	(4.54a)
l da bili icii	jetzt zu iaui	(4.04a)

4.9 Kern des Querschnitts

a bin ich jetzt zu faul (4.5)

da bin ich jetzt zu faul
$$(4.56)$$

4.10 Temperaturbelastung

da bin ich	jetzt zu faul		(4.58))
da biii idii	Jeeze za raar	\	(1.00)	,

da bin ich jetzt zu faul
$$(4.59)$$

da bin ich jetzt zu faul
$$(4.60)$$

$$|da bin ich jetzt zu faul| (4.61)$$

4.11 Zusammenfassung

5 Torsion

5.1 Einführung

5.2 Die kreiszylindrische Welle

da bin ich jetzt zu faul	(5.1)
da bin ich jetzt zu faul	(5.2)
da bin ich jetzt zu faul	(5.3)
da bin ich jetzt zu faul	(5.4)
da bin ich jetzt zu faul	(5.5)
da bin ich jetzt zu faul	(5.6)
da bin ich jetzt zu faul	(5.7)
da bin ich jetzt zu faul	(5.8)
da bin ich jetzt zu faul	(5.9)
da bin ich jetzt zu faul	(5.10)
da bin ich jetzt zu faul	(5.11)
da bin ich jetzt zu faul	[5.12)
da bin ich jetzt zu faul	[(5.13)
da bin ich jetzt zu faul	(5.14)

5.3 Dünnwandige geschlossene Profile

da bin ich jetzt zu faul	(5.15)
da bin ich jetzt zu faul	(5.16)
da bin ich jetzt zu faul	(5.17)
da bin ich jetzt zu faul	(5.18)
da bin ich jetzt zu faul	(5.19)
da bin ich jetzt zu faul	(5.20)
da bin ich jetzt zu faul	(5.21)
da bin ich jetzt zu faul	(5.22)
da bin ich jetzt zu faul	(5.23)
da bin ich jetzt zu faul	(5.24)
da bin ich jetzt zu faul	(5.25)
da bin ich jetzt zu faul	(5.26)
da bin ich jetzt zu faul	(5.27)
da bin ich jetzt zu faul	(5.28)

5.4 Dünnwandige offene Profile

da bin ich jetzt zu faul	(5.29)
--------------------------	--------

da bin ich jetzt zu faul
$$(5.32)$$

- 5.5 Zusammenfassung
- 6 Der Arbeitsbegriff in der Elastostatik
- 6.1 Einleitung
- 6.2 Arbeitssatz und Formänderungsenergie
- 6.3 Das Prinzip der virtuellen Kräfte
- 6.4 Einflusszahlen und Vertauschungssätze
- 6.5 Anwendung des Arbeitssatzes auf statisch unbestimmte Systeme
- 6.6 Zusammenfassung
- 7 Knickung
- 7.1 Verzweigung einer Gleichgewichtslage
- 7.2 Der Euler-Stab
- 7.3 Zusammenfassung
- 8 Verbundquerschnitte
- 8.1 Einleitung
- 8.2 Zug und Druck in Stäben
- 8.3 Reine Biegung
- 8.4 Biegung und Zug/Druck
- 8.5 Zusammenfassung