数季电路与逻辑设计

Digital circuit and logic design

● 第四章 组合逻辑电路

主讲教师赵贻竹

分析目的

根据给定电路,分析输出与输入之间的逻辑关系

得出电路的逻辑功能的描述

评估此电路的性能

进一步改进电路

■组合逻辑电路的分析

2 写出逻辑函数表达式

逻辑电路图

代数法

根据电路逐级写出各门的输出表达式,

直至写出整个电路的输出逻辑表达式。

■组合逻辑电路的分析

真 值 表

$$F = A\bar{B} + B\bar{C} + C\bar{A}$$

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1		1
1	0	0	1
1	0	1	1/
1	1	0	1
1 -	1	1	0

三变量 非一致 电路

逻辑表达式

$$F = \overline{P_4}\overline{P_5}$$

$$= \overline{P_4} + \overline{P_5}$$

$$= P_1 P_2 + AP_3$$

$$= \overline{A}(B + C) + A\overline{BC}$$

$$= \overline{A}(B + C) + A(\overline{B} + \overline{C})$$

$$= A \oplus B + A \oplus C$$

*
$$P_4 = \overline{P_1 P_2}$$

*
$$P_5 = \overline{AP_3}$$

*
$$P_1 = \bar{A}$$

*
$$P_2 = B + C$$

*
$$P_3 = \overline{BC}$$

真 值 表

А	В	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

$$F = A \oplus B + A \oplus C$$

$$S = \square$$

$$= \overline{AB} \cdot A + \overline{AB} \cdot B$$

$$= (\bar{A} + \bar{B}) \cdot A + (\bar{A} + \bar{B}) \cdot B$$

$$= \bar{A}B + A\bar{B}$$

$$= A \oplus B$$

$$C = AB$$

真 值 表

$$S = A \oplus B$$

$$C = AB$$

А	В	S	С	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

组合逻辑电路的分析

逻辑功能

若将A、B分别作为一位二进制数

- ₩ S是 A、B 相加的 "和"
- № C是相加产生的"进位"

该电路称作"半加器"

- 实现两个一位二进制数加法运算
- 集成芯片

А	В	S	С	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

组合逻辑电路的分析

逻辑表达式

$$W = A \oplus (B + X)$$

$$X = B \oplus (C + Y)$$

$$Y = C \oplus D$$

$$Z = D$$

逻辑表达式的变换

$$X = B \oplus (C + Y)$$

$$= B \oplus (C + C \oplus D)$$

$$= B \oplus (C + D)$$

$$Y = C \oplus D$$

$$\square$$
 $Z = D$

 $X = B \oplus (C + Y)$

 $Y = C \oplus D$

真 值 表

$$\mathsf{W} = A \oplus (B + C + D)$$

$$\mathsf{X} = B \!\oplus\! (C + \! D)$$

$$Y = C \oplus D$$

$$Z = D$$

A	В	С	D	W	X	Y	Z
0	0	0	0	0	0	0	0
				1			
0	0	1	0	1	1	1	0
				1			
0	1	0	0	1	1	0	0
0	1	0	1	1	0	1	1
0	1	1	0	1	0	1	0
0	1	1	1	1	0	0	1

Α	В	С	D	W	X	Y	Z
1	0	0	0	1	0	0	0
1	0	0	1	0	1	1	1
1	0	1	0	0	1	1	0
1	0	1	1	0	1	0	1
1	1	0	0	0	1	0	0
1	1	0	1	0	0	1	1
1	1	1	0	0	0	1	0
1	1	1	1	0	0	0	1

组合逻辑电路的分析

逻辑功能

二进制变补器

16变补器

				W			
1	0	0	0	1	0	0	0
1	0	0	1	0	1	1	1
1	0	1	0	0	1	1	0
1	0	1	1	0	1	0	1
1	1	0	0	0	1	0	0
1	1	0	1	0	0	1	1
1	1	1	0	0	0	1	0
1	1	1	1	0	0	0	1

数季电路与逻辑设计

Digital circuit and logic design

● 谢谢,祝学习快乐!

主讲教师 赵贻竹

