СИСТЕМНЫЙ АНАЛИЗ И МОДЕЛИРОВАНИЕ

ПРАКТИКУМ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «МИНСКИЙ ГОСУДАРСТВЕННЫЙ ВЫСШИЙ РАДИОТЕХНИЧЕСКИЙ КОЛЛЕДЖ»

СИСТЕМНЫЙ АНАЛИЗ И МОДЕЛИРОВАНИЕ

Практикум

для учащихся специальности 2-40 01 01

«Программное обеспечение информационных технологий» и студентов специальности 1-08 01 01-07

«Профессиональное обучение. (Информатика)»

Минск МГВРК 2010 УДК 519 ББК 22.19 С40

Рекомендовано к изданию кафедрой информатики (протокол № 8 от 17.03.2010 г.) и Научно-методическим советом учрежде ния образования «Минский государственный высший радиотех нический колледж» (протокол № 6 от 24.03.2010 г.)

Составители:

Г. Н. Соловей, С. Н. Кудина, И. Г. Смолер, ассистенты кафедры информатики

Рецензент

Ю. А. Скудняков, зав. кафедрой информатики МГВРК, канд. техн. наук, доцент

Системный анализ и моделирование: практикум для С40 учащихся специальности 2-40 01 01 «Программное обес печение информационных технологий» и студентов специальности 1-08 01 01-07 «Профессиональное обучение. (Информатика)» / сост. Г. Н. Соловей, С. Н. Кудина, И. Г.

Смолер. – Минск : МГВРК, 2010. – 120 с. ISBN 978-985-526-088-3

Цель пособия — обеспечить учащихся и студентов необхо димым практическим материалом, позволяющим самостоя тельно решать задачи с использованием основных алгоритмов курса «Системный анализ и моделирование».

Предназначено для учащихся, студентов и преподавателей колледжа.

УДК 519 ББК 22.19

© Соловей Г. Н., Кудина С. Н., Смолер И. Г., составление, 2010 ISBN 978-985-526-088-3 © Учреждение образования «Мин

ский государственный высший ра диотехнический колледж», 2010

2

Предисловие

Учебная дисциплина «Системный анализ и моделирование» является одной из основных в цикле специальных и базируется на знаниях и навыках, полученных при изучении следующих дисциплин: «Элементы высшей математики», «Основы матема тической статистики и теории вероятностей», «Технология раз работки программ», «Методы и алгоритмы принятия решений».

Цель практикума «Системный анализ и моделирование» — научить студентов решать задачи с помощью изученных методов. Реализация рассмотренных моделей с помощью ЭВМ, осу ществляемая на практических занятиях, опирается на знания ме тодов и средств программирования, умения разрабатывать алго ритмы и программы.

В результате выполнения практической работы студент (учащийся) должен уметь:

- осуществлять выбор моделей при разработке математиче ской постановки задачи;
- реализовывать модели с помощью изученных методов на ЭВМ;
- самостоятельно разбираться в моделях рассмотренных классов и методах принятия решений на них.

В пособии приведены варианты индивидуальных заданий по всем основным разделам курса, которые можно использовать для контроля приобретенных навыков в решении задач.

Практикум является руководством для проведения работ по курсу «Системный анализ и моделирование» и предназна чен для учащихся специальности 2-40 01 01 «Программное обеспечение информационных технологий» и студентов спе циальности 1-08 01 01-07

«Профессиональное обучение. (Ин форматика)».

Практические работы 1, 14, 15 выполняются только уча щимися специальности 2-40 01 01 «Программное обеспечение информационных технологий», 11, 12, 13, 14, и ресурсов на производство всей продукции по первому 16 только cmy дентами «Профессиональное обучение. (Инфор Остальные работы предназначены и для учащихся и для _ 8 ед. Определить, с какой ин студентов. В этом случае предусмотрен разный уровень сложности заданий задания, непосредственно в самой работе, имеют более высокий этих запасах иметь максимум продукции. уровень и не выполняются учащимися специальности 2-40 01.01.

ПРАКТИЧЕСКАЯ РАБОТА 1 Составление математических моделей. Графический способ ОПТИМИЗАЦИИ

Задание 1

В соответствии с вариантом:

- 1) свести исходные данные в таблицу, удобную для по строения модели;
 - 2) составить математическую модель задачи;
 - 3) найти оптимальное решение задачи графическим методом.

Задание 2

В соответствии с вариантом решить задачу линейного Найти про граммирования графическим методом. максимальное и минимальное значения целевой функции.

Вариант 1

Задание 1

Продукция может производиться двумя технологически ми способами T_1 и T_2 . На производство

продукции затрачива ются ресурсы трех видов R_1 , R_2 , R_3 запасы которых соответ ственно равны: 15, 18, 8. Расход специальности технологическому способу со ставляет 2, 4, 0, а по второму *матика*)». -3, 2, 2. Выход продукции по способу T_1 равен 10 ед., по T_2 отмеченные* применять каждый технологический способ, чтобы при

Задание 2

$$fx x x$$
() 3 4 extr;
$$= + \xrightarrow{12}$$

$$\Box - + \leq$$

3

Вариант 2

Задание 1

Предприятие выпускает два вида изделий Π_1 и Π_2 , на изготов ление которых идет три вида сырья: S_1 , S_2 , S_3 , запасы которых соот ветственно равны 200, 110, 120 кг. Расход сырья на 1000 ед. про дукции составляет: S_1 – 20, 10; $S_2 - 15$, 5; $S_3 - 10$, 10. Оптовая цена за 1000 шт. изделий соответственно равна: 15 и 17 тыс. руб. Се бестоимость производства 1000 шт. изделий составляет 12 и 15 тыс. руб. Составить план выпуска продукции, обеспечивающий сбыт максимальную прибыль, предполагая, что неограничен.

$$fx x x$$
() 5 extr;
$$= + \frac{1}{12}$$

$$\Box - \ge 39,$$

$$x x$$

Задание 1

Из двух сортов бензина делают две смеси A и Б. Смесь A содержит 60 % бензина 1-го сорта и 40 % — 2-го сорта. Смесь Б содержит 80 % бензина 1-го сорта и 20 % — 2-го сорта. Продаж ная цена 1 кг смеси A равна 10 тыс. руб., смеси Б — 12 тыс. руб.

Составить план образования смесей, при котором будет получен максимальный доход, если в наличии $48\ \mathrm{T}$ бензина 1-го сорта и $20\ \mathrm{T}-2$ -го сорта.

Задание 2

$$fx x x$$
() 9 2 extr;
= + \rightarrow{12}

Задание 1

x x

Предприятие имеет три производственных фактора в количе стве 5, 6, 7 тыс. ед. и может организовать производство двумя раз личными способами. Расход производственных факторов по пер вому способу производства составляет 1, 4, 1 тыс. ед., по второму

1, 1, 3 тыс. соответственно. По первому способу за единицу време ни предприятие выпускает в месяц 3 тыс. изделий, по второму — 2 тыс. изделий. Сколько времени предприятие должно работать каждым способом, чтобы получить максимум продукции?

$$fx x x$$
() 5 3 extr;
$$= + \rightarrow$$
12

Задание 1

На каждую автоколонну из 10 машин, направленных для вывоза груза из района A, выделяются 4 авторемонтных мастер ских, 3 машины техпомощи и 2 мотоцикла. На такую же автоко лонну для вывоза груза из района B выделяются 3 авторемонтных мастерских и 1 машина техпомощи. Одна колонна из района A вы возит 2 тыс. т груза, из района B-1 тыс. т груза. Какое количество автоколонн следует направить в каждый район, чтобы обеспечить максимальный вывоз груза, если имеются 200 машин, 20 авторе монтных мастерских, 10 машин техпомощи и 16 мотоциклов?

Задание 2

$$fx x x$$
() 5 7 extr;
$$= + \rightarrow 12$$

$$\Box - + \leq 3 14 78,$$

$$x x$$

$$\begin{vmatrix} x x \\ - \leq \Box + \geq \Box \Box \\ \Box \\ 5 6 26, \end{vmatrix} \ge \ge$$

$$\begin{array}{c} x \, x \\ 12 \\ x \, x \\ 4 \, 26, \\ 12 \\ x \, x \\ 0, \, 0. \\ 12 \end{array}$$

6

Вариант 6

Задание 1

Предприятие выпускает два вида изделий Π_1 и Π_2 , используя четыре группы станков (A, Б, В, Γ), фонды рабочего времени кото рых составляют 32, 27, 20, 30 часов соответственно. На производ ство одного изделия Π_1 каждая группа станков соответственно тра тит: 4, 0, 1, 3 ч, а изделия Π_2 – 2, 3, 2, 2 ч. Прибыль от реализации каждого изделия Π_1 равна 2 тыс. руб., Π_2 – 3 тыс. руб. Составить план производства, дающий максимальную прибыль.

$$fx \, x \, x \\ () \, 9 \, 2 \, \text{extr}; \\ = + \rightarrow \\ 12 \\ x \, x \\ \Box - \geq \\ 11 \, 3 \, 24, \\ \Box + \leq \Box - + \geq \\ \Box \\ x \, x \\ 9 \, 4 \, 110, \\ 12 \\ x \, x \\ 2 \, 7 \, 15, \\ 12 \\ \Box \\ = \geq \geq$$

$$\begin{array}{c} x \, x \\ 0, \, 0. \end{array}$$

Задание 1

материальные затраты – 15 ден. ед.; производство 1 ц мясабыли ми нимальными. обходится в 180 ден. ед., из которых 100 ден. ед. – трудовые затраты, 80 ден. ед. – материальные. Государственные заку почные цены: за 1 ц молока – 35 тыс. ден. ед., а за 1 ц мяса – 200 тыс. ден. ед. Определить оптимальный план производства мо лока и мяса, если на животноводство выделено 190 тыс. ден. ед. Фонд зарплаты – 100 тыс. ден. ед., остальное – на оборудование.

Задание 2

() 3 2 extr;
= +
$$\rightarrow$$

 $fxxx$
 $\Box - + \leq$
4 5 29,
 xx
 $\Box - \leq \Box + \geq \Box \Box$
 \Box
3 14,
 xx
12
5 2 38,
 xx
12
 xx
0, 0.

Вариант 8

Задание 1

Из Минска в Гродно необходимо перевезти оборудование трех типов: 84 ед. типа I, 80 ед. типа II, 150 ед. типа III. Для этого используют два вида транспорта А и Б. Количество оборудо вания каждого типа на транспорт А составляет: 3, 4, 3 ед., – на транспорт Б: 2, 1, 13 ед. соответственно. Затраты на В животноводческом совхозе на производство 1 ц молока траперевозку транспортом А равны 8 ден. ед., Б – 12 ден. ед. тится 25 ден. ед., из них на трудовые затраты – 10 ден. ед., на Составить та кой план перевозок, чтобы транспортные расходы

Задание 2

$$fx \, x \, x$$
() 4 3 extr;
$$= + \xrightarrow{12}$$

$$\Box - \ge 24,$$

$$x \, x$$

$$12 \quad + \le \Box - + \ge \Box \Box$$

$$\Box \quad = \ge \ge$$

$$x \, x$$

$$3 \, 37,$$

$$12 \quad 49 \, 20,$$

$$x \, x$$

$$12 \quad x \, x$$

$$0, 0.$$

Вариант 9

Задание 1

Трикотажная фабрика производит свитеры и кофточки, ис пользуя шерсть, силон и нитрон, запасы которых соответственно равны 900, 400, 300 кг. Количество каждой пряжи на изготовле 7 ние десяти свитеров составляет: 4, 2, 1 кг, а десяти кофточек – 2, 1, 1 кг соответственно. Прибыль от реализации 10 ед. продук ции: 6 и 5 ден. ед. Составить план выпуска, максимизирующий

прибыль.

Задание 2

$$fx \, x \, x$$
() 5 extr;
$$= + \xrightarrow{12}$$

$$\Box - \ge 10 \, 57,$$

$$x \, x$$

$$\Box + \le \Box - \le \Box \Box$$

$$\Box \qquad \Box \ge \ge 2 \, 3 \, 53,$$

$$x \, x$$

$$12$$

$$6 \, 7 \, 15,$$

$$x \, x$$

$$12$$

$$x \, x$$

$$0, \, 0.$$

8

Вариант 10

Задание 1

Кондитерская фабрика выпускает карамель двух видов: К, и К₂. Для производства карамели требуется сахарный песок, пато ка, фруктовое пюре. Запасы этих видов сырья равны соответст венно: 700, 300 и 150 т. Другие виды сырья, входящие в готовый продукт в небольших количествах, не учитываются. Расход сы рья на 1 т карамели группы К₁ составляет: 0,6 т сахарного песка и 0,2 т патоки; группы K_2 : 0,5 т сахарного песка, 0,3 т патоки и 0,3т фруктового пюре. Уровень прибыли на единицу каждого вида выпускаемой карамели (в ден. ед. за 1 т): для $K_1 - 1000$, для $K_2 -$ 1500. Определить оптимальный план выпуска карамели, Задание 2 максимизирующий прибыль фабрики.

$$fx \, x \, x$$
() extr;
$$= + \rightarrow 12$$

$$\Box - \geq 46,$$

$$x \, x$$

$$\Box + \leq \Box - + \geq \Box \Box$$

$$\Box + \leq \Box - + \geq \Box \Box$$

$$\Box + \leq \Box - + \geq \Box \Box$$

$$\Box + \leq \Box - + \geq \Box \Box$$

$$\Box + \leq \Box - + \geq \Box \Box$$

$$\Box + \leq \Box - + \geq \Box \Box$$

$$\Box + \leq \Box - + \geq \Box \Box$$

$$\Box + \leq \Box + + \geq \Box$$

$$\Box + \Rightarrow$$

$$\Box +$$

Вариант 11

Задание 1

Предприятие электронной промышленности выпускает две модели радиоприемников, причем каждая модель произ водится на отдельной технологической линии. Суточный объ ем производства первой линии – 60 изделий, второй линии – 75 из делий. На радиоприемник первой модели расходуется 10 од нотипных элементов электронных схем, на радиоприемник второй модели 8 таких же элементов. Максимальный суточ ный запас используемых элементов равен 800 ед. Прибыли от реализации одного приемника первой и второй моделей равны 30 и 20 ден. ед. соответственно. Определить оптимальные су точные объемы производства двух видов моделей.

f x x x() 2 3 extr; **=** + →

объема реализации продукции обоих видов. Для изготовления продукции А и Б используются два вида сырья, суточный за пас которых ограничен величиной 140 и 80 кг. Расход сырья на

x x 12 6,

единицу продукции А составляет: 1-го вида – 2 кг, 2-го – 2 кг;

Вариант 12

Задание 1

Небольшая фабрика изготавливает краски и для внутренних (I) и наружных (II) работ. Продукция обоих видов поступает в опто вую продажу. Для производства красок используются два исход ных продукта — А и Б. Максимально возможные суточные запасы этих продуктов составляют 6 т и 8 т соответственно. Расход про дуктов на 1 т краски I составляет 2 и 1 ед., для краски II — 1 и 2 ед.

Изучение рынка сбыта показало, что суточный спрос на краску I никогда не превышает спроса на краску II более чем на 1 т. Кроме того, установлено, что спрос на краску I никогда не превышает 2 т в сутки.

Оптовая цена 1 т краски I равна 2 тыс. ден. ед., краски II -3 тыс. ден. ед.

Какое количество краски каждого вида должна произво дить фабрика, чтобы доход от реализации продукции был мак симальным?

Задание 2

$$fx x x$$
() 4 extr;
$$= + \rightarrow 12$$

$$\Box + \geq x x$$

$$3 8,$$

$$\Box - + \leq \Box - \leq \Box \Box$$

$$\Box x x$$

$$5 33,$$

$$12$$

$$3 4 11,$$

$$x x$$

$$12$$

$$x x$$

$$0, 0.$$

Вариант 13

Задание 1

Фирма производит два вида продукции – А и Б. Объем сбыта продукции вида А составляет не менее 60 % от общего

10

а на единицу продукции B-4 и 1 соответственно. Цены про дукции A и B равны 20 и 40 ден. ед. соответственно. Опреде лить оптимальный выпуск продукции, обеспечивающий мак симальный доход.

$$fx x x$$
() 2 4 extr;
$$= + \xrightarrow{12}$$

$$x x$$

$$\Box + \leq$$

$$\begin{array}{c}
xx \\
12 \\
-+ \leq -+ \leq -+ \geq -- \\
0 \\
428, \\
xx \\
12
\end{array}$$

$$\begin{array}{c}
xx \\
12 \\
xx \\
39, \\
12 \\
xx \\
0, 0.
\end{array}$$

Задание 1

Фирма выпускает ковбойские шляпы двух фасонов. Трудо фасонов ограничен диапазоном от 150 до 210 шт. Прибыль от металлоло

продажи шляпы 1-го фасона равна 8 ден. ед., а от 2-го фасона – 5 ден. ед. Определить, какое количество шляп каждого фасона следует изготовить, чтобы максимизировать прибыль.

Задание 2

$$fxxx$$
() 2 extr;
$$= + \rightarrow$$

$$12$$

$$\Box + \leq$$
2 4 16,

 $x x_{12} = 1$,

ма – 5 ден. ед. (последняя цифра больше, так как 3 6, использование металлолома сопряжено с его x xпредварительной очисткой). Заказ

Вариант 15

Задание 1

Фирме «Иерихонская сталь» предстоит решить, какое количе емкость изготовления шляпы 1-го фасона вдвое выше трудоем $_{\rm CTBO}$ чистой стали x_1 и металлолома x_2 следует использовать для кости изготовления шляпы 2-го фасона. Если бы фирма выпус приготовления (из соответствующего сплава) литья для одного кала только шляпы 1-го фасона, суточный объем производства из своих заказчиков. Пусть производственные затраты в расчете мог бы составить 500 шляп. Суточный объем сбыта шляп обоих на 1 т чистой стали равняются 3 ден. ед., а затраты на 1 т

> Составить математическую модель задачи и на ее основе ус тановить, сколько каждого корма необходимо расходовать еже дневно, чтобы затраты на него были минимальными.

Задание 2

$$fx x x$$
() 6 2 extr;
$$= - \xrightarrow{12}$$

готов купить и большее количество литья, если фирма «Иерихон ская сталь» поставит перед ним такие условия.

Предположим, что запасы чистой стали ограничены и не превышают 4 т, а запасы металлолома не превышают 6 т. Отно шение веса металлолома к весу чистой стали в процессе получения сплава не должно превышать 7 : 8. Производственно-технологиче ские условия таковы, что на процессы плавки и литья не может быть отведено более 18 ч; при этом на 1 т стали уходит 3 ч, а на 1 т металлолома – 1 ч производственного времени.

Задание 2

() 2 6 extr;

$$= + \rightarrow$$

$$fxxx$$

$$\begin{vmatrix}
12 \\
14 \\
212, \\
xx \\
-+ \ge 1 \\
12
\end{vmatrix} + \ge 1 \\
0, 0.$$

Вариант 17

Задание 1

Предприятие собирает автомашины двух марок: A_1 и A_2 . Для этого требуются следующие материалы: S_1 – комплекты заготовок металлоконструкций в количестве b_1 = 17 шт., не обходимые для сборки автомашин марок A_1 и A_2 (соответст венно 2 и 3 ед.); S_2 – комплекты резиновых изделий в количе стве b_2 = 11 шт. (соответственно 2 и 1 ед.); S_3 – двигатели с арматурой и электрооборудованием в количестве b_3 = 6 комплек тов,

необходимых по одному для каждой автомашины марки A_1 ;

 b_4 = 5 комплектов, необходимых по одному для каждой автома 0, 0. xx = x

Вариант 16

Задание 1

В опытном хозяйстве установили, что откорм животных вы годен тогда, когда животное будет получать в дневном рационе не менее 6 ед. питательного вещества A, не менее 12 ед. вещества B и не менее 4 ед. вещества B. Для кормления животных использу ются два вида корма. B 1 кг корма I содержится 2 ед. вещества A и 2 ед. вещества B, в 1 кг корма II — 1, 4 и 4 ед. соответственно. Цена 1 кг корма II равна 50 ден. ед., корма II — 60 ден. ед.

12

шины марки A_2 . Автомашина марки A_1 стоит 7 тыс. ден. ед., а ав томашина марки A_2 — 5 тыс. ден. ед. Определить план выпус ка, доставляющий максимальную выручку.

$$fx x x$$
() 4 4 extr;
$$= + \xrightarrow{12}$$

$$\Box - + \leq$$

Задание 1

Из двух видов сырья необходимо приготовить смесь, в со став которой должно входить не менее 6 ед. химического веще ства K, не менее 12 ед. вещества L и не менее 4 ед. вещества M. Количество единиц химических веществ, содержащихся в 1 кг смеси 1-го вида: 2, 2 и 3; 2-го вида: 1, 4 и 4 соответственно.

Известно, что цена 1-го вида сырья за 1 кг равна 5 ден. ед., а цена 2-го вида — 6 ден. ед. за 1 кг. Составить смесь, содержащую необходимое количество веществ данного вида и имеющую мини мальную себестоимость.

Задание 2

$$fx x x$$
() 2 extr;
$$= + \rightarrow 12$$

$$\Box + \leq 529,$$

$$x x$$

$$\Box + \geq \Box - + \leq \Box \Box \geq \geq$$

$$3419,$$
 xx
 12
 $537,$
 xx
 12
 xx
 $0, 0.$

Вариант 19

Задание 1

При перевозке 300 контейнеров типа I, 500 контейнеров ти па II и 30 контейнеров типа III используются два вида автома шин: А и Б. На автобазе имеются 6 автомашин вида А и 10 — ви да Б. Автомашина вида А вмещает 50 контейнеров типа II и 9 кон тейнеров типа III; автомашина вида Б — 100 контейнеров типа I, 100 контейнеров типа II и 3 контейнера типа III.

На один рейс по определенному маршруту затраты состав ляют: при использовании машин A и Б соответственно – 2 ден. ед. и 1,8 ден. ед. Определить необходимое количество автомашин вида A и Б, чтобы стоимость перевозки контейнеров всех типов была минимальной.

14

$$fx x x$$
() extr;
$$= + \rightarrow 12$$

$$\Box - \leq x x$$

$$2 2,$$

$$\Box + \leq \Box \geq \Box \Box \Box \geq \geq 7 5 78,$$

$$x x$$

Задание 1

Для сохранения нормальной жизнедеятельности человек дол жен в сутки потреблять не менее 120 у. е. белков, не менее 70 у. е. жиров и не менее 10 у. е. витаминов. В продукте P_1 их содержа ние равно 0,2, 0,75, 0; а в продукте P_2 – 0,1, 0,1, 0,1 соответст венно. Стоимость одной единицы продукта P_1 – 2 ден. ед., P_2 – 3 ден. ед. Требуется организовать питание таким образом, чтобы его стоимость была минимальной, а организм получал необхо димое количество питательных веществ.

Задание 2

$$fx \, x \, x$$
() 4 2 extr;
= + \(\rightarrow{12} \)
\[\rightarrow{1} + \geq \left[- + \left] - + \left[- \left[\left] \right] \]
\[\rightarrow{1} + \left[\left[- + \left] - \left[\left] \right] \]
\[\rightarrow{2} + \left[\right] - + \left[- \left[\left] \right] \]
\[\rightarrow{2} + \left[\right] - + \left[\right] - \left[\left] \]
\[\rightarrow{2} + \left[\right] - \left[\right] - \left[\right] - \left[\right] - \left[\right] \]
\[\rightarrow{2} + \left[\right] - \lef

Вариант 21

Задание 1

Фирма по переработке картофеля производит три вида про дукции: картофельные дольки, кубики и хлопья. Анализ загру женности оборудования и спроса на рынке показывает возмож ность произвести и сбыть до 1,8 т долек, 1,2 т кубиков и 2,4 т хлопьев. Необходимый для переработки картофель фирма заку-

пает у двух поставщиков. Из 1 т картофеля, закупленного у 1-го поставщика, получается: долек -0.2 т, кубиков -0.2 т, хлопьев -0.3 т. Из 1 т картофеля, закупленного у 2-го поставщика, получа ется: долек -0.3 т, кубиков -0.1 т, хлопьев -0.3 т. Прибыль (доход от реализации готовой продукции за выче том стоимости сырья) от продажи продукции, произведенной из картофеля от 1-го поставщика, составляет 5 ден. ед. за 1 т; от продажи продукции, произведенной из картофеля от 2-го по ставщика, 6 ден. ед.

Определить, какое количество картофеля надо приобрести у каждого поставщика, чтобы обеспечить наибольшую относитель ную прибыль с учетом возможности сбыта готовой продукции.

Задание 2

$$\begin{array}{c} x \, x \\ & 2 \, 16, \\ x \, x \\ & 0, \, 0. \end{array}$$

Задание 1

В овощной магазин привозят одним видом транспорта кар тофель из двух колхозов соответственно по 40 и 30 ден. ед. за 1 кг. На разгрузку и складирование 1 т картофеля с помощью ленточного транспортера требуется времени: из 1-го колхоза — 4 мин, из 2-го — 3 мин. Чтобы без задержек удовлетворять по требности покупателей, надо на 12 т картофеля, заказываемых ежедневно магазином, затрачивать не более 40 мин.

Составить математическую модель задачи и с ее помощью установить, сколько картофеля надо привозить в магазин из каж дого колхоза, чтобы общая стоимость картофеля была мини мальной. Известно, что 1-й колхоз может ежедневно постав лять не более 10 т, 2-й — не более 8 т картофеля.

16

Задание 2

$$fxxx$$
() 5 2 extr;
$$= + \rightarrow$$

$$12$$

$$\Box - + \leq$$

$$3 2 5,$$

$$xx$$

$$12$$

$$\Box + \geq \Box + \leq \Box \Box$$

$$\Box + \geq 1$$

$$4 3 8,$$

$$xx$$

$$12$$

$$xx$$

$$\begin{array}{ccc} & 2 & 10, \\ x & x & \\ & & 0, & 0. \end{array}$$

Вариант 23

Задание 1

Предприятие изготавливает продукцию двух видов, для чего требуются четыре вида сырья. Запасы каждого вида сырья ограни чены и составляют соответственно 18, 15, 13, 19 ед. Для изготовле ния 1 ед. продукции 1-го вида необходимо 0, 3, 1, 3 ед. сырья каж дого вида; для 1 ед. продукции 2-го вида -3, 0, 2, 2 ед.

Доход предприятия от реализации одной единицы продук ции каждого вида соответственно равен: 5 и 7 ден. ед. Составить такой план выпуска продукции, при котором до ход от реализации всей продукции оказался бы максимальным.

Задание 2

```
() 2 9 extr;
     = + →
f x x x
          12
2 12,
  x x
   12
□ +≥ □≥ □□
 x x
      4 10,
  12
 48,
  \boldsymbol{x}
 x x
      0, 0.
  12
```

Задание 1

Имеются два участка различного плодородия площадью 150

га и 250 га. Данные об урожайности приведены в таблице:

Культура	Урожайност	ъ участка, ц
	1	2
Пшеница	20	15
Рожь	35	30

По плану должно быть собрано не менее 2000 ц пшеницы и 5000 ц ржи.

Цена 1 ц пшеницы 6 ден. ед., ржи 5 ден. ед.

Найти оптимальное сочетание посевов пшеницы и ржи, если критерием оптимальности служит максимум валовой продукции в денежном выражении.

Задание 2

Вариант 25

Задание 1

Завод выпускает изделия двух моделей (I и II). Для их изго товления используются два вида ресурсов (А и Б), запасы кото рых составляют соответственно 4000 и 5200 ед. Расход ресурсов на одно изделие модели I — 2 и 4 ед., модели II — 5 и 7 ед. соот ветственно. Анализ условий сбыта показывает, что минимальный спрос на продукцию завода составляет 200 и 150 изделий моделей I и II соответственно. Соотношение выпуска изделий моделей I и II должно быть равно 3 : 2. Удельные прибыли от реализации изделий составляют 30 и 20 ден. ед. соответственно. Сформулировать для данных условий задачу определения объе мов выпуска изделий каждой модели, при которых прибыль бу дет максимальной.

$$fx x x$$
() extr;
$$= + \rightarrow 12$$

$$\Box + \geq 27,$$

$$x x$$

$$\Box + \geq \Box + \leq \Box \Box \Rightarrow \geq 414,$$

$$x x$$

$$12$$

$$6542,$$

$$x x$$

$$12$$

$$x x$$

$$0, 0.$$

ОПТИМИЗАЦИЯ ЦЕЛЕВОЙ ФУНКЦИИ С ПОМОЩЬЮ СИМПЛЕКСНОГО МЕТОДА

Задание 1

В соответствии с вариантом:

- 1) свести исходные данные в таблицу, удобную для постро ения модели;
 - 2) составить математическую модель задачи;
 - 3) найти оптимальное решение.

Задание 2*

В соответствии с вариантом решить задачу линейного про граммирования методом искусственного базиса.

(Bce $x_i \ge 0$).

Вариант 1

Задание 1

Цех выпускает три вида изделий. Суточный плановый вы пуск: 90 ед. изделия I, 70 ед. изделия II и 60 ед. изделия III. Су точные ресурсы: 780 ед. производственного оборудования (стан ков, машин и прочего), 850 ед. сырья (металла и прочего) и 790 ед.

электроэнергии. Их расход на одно изделие указан в таблице:

Pecypc	Расход ресурса на изделие			
	I	II	III	
Оборудование, шт Сырье, т Электроэнергия, кВт	2 1 3	3 4 4	4 5 2	

Стоимость изделия I-8 ден. ед., изделия II-7 ден. ед., из делия III-6 ден. ед. Сколько надо производить изделий каждого вида, чтобы стоимость продукции, выпущенной сверх плана, была максимальной?

Задание 2

Вариант 2

Задание 1

Для грузовых перевозок создается автоколонна. На приоб ретение автомашин выделено 600 тыс. ден. ед. Можно заказать машины трех марок — A, B и B, характеризующиеся данными, приведенными в таблице:

Марка автома шины	Стоимость машины, тыс. ден. ед.	Количество водителей, обслуживаю щих машину за смену	Число рабочих смен в сутки	Производи тельность машины за смену, т/км
А	10	1	3	2 100
Б	20	2	3	3 600
В	23	2	3	3 780

Количество машин не должно превышать 30, а общее число водителей в автоколонне должно быть не более 144 человек. Сколько автомашин каждой марки следует заказать, что бы автоколонна имела максимально возможную производи тельность (т/км) в расчете на одни сутки? Считать, что каждая машина будет использоваться в течение всех трех смен, а водители будут работать по одной смене в сутки.

Задание 2

$$Z = x_1 - x_2 - 3x_3 \rightarrow \max;$$

$$0,$$

$$- = \Box + + = \Box$$

$$xx$$

$$12$$

$$xxx$$

$$23.$$

$$123$$

Задание 1

20

Найти оптимальное сочетание посевов трех культур: пше ницы, гречихи и картофеля. Эффективность возделывания на званных культур (в расчете на 1 га) характеризуется показателя ми, значения которых приведены в таблице:

ми, значения которых і	ірп ьедены в те	толице.	
Показатель	Пшеница	Гречиха	Картофель
Урожайность, ц	20	10	100
Затраты труда механиза торов, челдней	0,5	1	5
Затраты ручного труда, челдней	0,5	0,5	20
Прибыль от реализации 1 ц продукции, ден. ед.	4	10	3

Производственные ресурсы: 6000 га пашни, 5000 чел.-дней труда механизаторов, 9000 чел.-дней ручного труда. Критерий оптимальности — максимум прибыли.

Задание 2

$$35,$$
 $x x x$
 123
 $327.$
 $x x x$
 123

Вариант 4

Задание 1

Для изготовления обуви четырех моделей на фабрике ис пользуются два сорта кожи. Ресурсы рабочей силы и материала, затраты труда и материала для изготовления каждой пары обуви, а также прибыль от реализации единицы продукции приведены в таблице:

Pecypc	Запас ресурса	Затраты ресурса на одну пару модели обуви			
		№ 1	№ 2	№ 3	№ 4
Рабочее время, челч	1 000	1	2	2	1
Кожа 1-го сорта	500	2	1	0	0
Кожа 2-го сорта	1 200	0	1	4	1
	Прибыль, ден. ед.	2	40	10	15

Составить план выпуска обуви по ассортименту, максими зирующий прибыль.

$$Z = x_1 + x_2 + x_3 + x_4 \rightarrow \text{max};$$

$$\begin{bmatrix} + + - = & \\ & - - + = \end{bmatrix}$$

$$x \times x \times x$$

$$\begin{cases} 3 & 7 & 6, \\ & 1 & 2 & 3 & 4 \end{cases}$$

Задание 1

Нефтеперерабатывающий завод получает четыре полуфаб риката: алкилат (400 тыс. л), крекинг-бензин (250 тыс. л), бензин прямой перегонки (450 тыс. л) и изопентон (200 тыс. л). В резуль-

тате смешения этих четырех компонентов в отношении 2:3:5: 2 образуется бензин А стоимостью 120 ден. ед. за 1 тыс. л, в отноше нии 3:1:2:1 – бензин Б стоимостью 100 ден. ед. за 1 тыс. л; в от ношении 2:2:1:3 – бензин В стоимостью 150 ден. ед. за 1 тыс. л.

Составить план, при котором стоимость всей выпущенной продукции будет максимальной.

Задание 2

$$Z = x_1 + 4x_2 + x_3 - 4x_4 \rightarrow \max;$$

участков по изделиям и фонд рабочего времени участков приве дены в таблице:

Производственн ый участок	Производительнос ть участков по изделиям		Затраты на производство		Фонд рабочего времени
	И ₁	И ₂	И ₁	И ₂	
У ₁	4	2	9	20	9,5
У ₂	1	3	15	30	4

Найти оптимальный план размещения заказа по участкам,

$$\begin{array}{c} x \ x \ x \ x \ 1 \ 2 \ 3 \ 4 \\ 0, \end{array}$$

времени участка У2 будет использован полностью.

$$\begin{array}{c}
\square \square + + - = \\
8253. \\
xxxx \\
1234
\end{array}$$

Вариант 6

Задание 1 21

Автопогрузчики АП-1 и АП-2 заняты работами на площад ках Π_1 и Π_2 . Не более чем за 24 ч на площадке Π_1 необходимо погрузить 230 т груза, на площадке Π_2 – 168 т. Количество груза, которое может погрузить каждый автопогрузчик за один час на той или иной площадке, а также стоимость погрузки одной тон ны груза привелены в таблице.

in i p j sw ii p ii p eg e ii p i weetinge.							
Автопогрузчик	Мощность на площадке			сть работ ощадке			
	Π_1	Π_2	Π_1	Π_2			
АП-1	10	12	8	7			
АП-2	13	13	12	13			

Установить, сколько тонн должен погрузить каждый авто погрузчик на той или другой площадке так, чтобы своевременно выполнить задание с минимальными затратами.

3adanue 2

$$Z = x_1 - 2x_2 - 4x_3 \rightarrow \text{max};$$

 $\Box + = \Box \Box + + = \Box$
2 1,
 $x \times x \times x$
123

Задание 1

Производственные участки V_1 и V_2 получили заказ на изго товление 32 изделий U_1 и 4 изделий U_2 . Производительность 22

Задание 2

$$Z = 2x_1 + 8x_2 + 3x_3 \rightarrow \text{max};$$

$$- + = 0 + + = 0$$

$$0 + + = 0$$

$$4 3 7,$$

$$x x x$$

$$123$$

$$7 5 12 19.$$

$$x x x$$

$$123$$

Вариант 8

Задание 1

Предприятие может выпускать продукцию Π_1 , Π_2 , Π_3 и Π_4 , сбыт любого количества которой обеспечен. При производстве продукции расходуются различные ресурсы. Запасы ресурсов, удельные затраты и цена продукции приведены в таблице:

Pecypc	Запас ресурса	Расход ресурса на единицу продукции			ицу
		Π_1	Π_2	Π_3	Π_4
Трудовые ресурсы, челч	4800	4	2	2	8
Полуфабрикаты, кг	2400	2	10	6	0
Станочное оборудо вание,	1500	1	0	2	1

станко-ч					
Цена единицы продукт ед.	ции, ден.	65	70	60	120

Найти оптимальный план выпуска продукции, максимизи рующий выручку предприятия от реализованной продукции.

Задание 2

Вариант 9

Задание 1

 $i=1,\ 3$ Имеющийся фонд материалов M_i () нужно

распреде лить между изготовителями продукции Π_{j} (j=1,5)

так, чтобы получить максимальную прибыль от реализации всей продукции, произведенной из имеющихся материалов. Нормы расхода на еди ницу продукции, запас материалов и прибыль, получаемая от реа лизации единицы готовой продукции, приведены в таблице:

Материал	Фонд	Норма расхода на единицу пр				ции, м ²
	материалов, м²	Π_1	Π_2	Π_3	Π_4	Π_5

$\begin{array}{c} M_1 \\ M_2 \\ M_3 \end{array}$	50 000	0,7	0,9	1,5	2,3	1,8
	28 000	1,4	0,3	0,7	2,5	2,0
	40 000	0,5	2,1	1,8	0,7	2,0
П	рибыль, ден. ед.	5	7	6	9	8

Задание 2

$$Z = x_1 - 5x_2 - x_3 + x_4 \rightarrow \text{max};$$

$$\begin{bmatrix} + + + & = & \\ + + & = & \\ \end{bmatrix} + - =$$

$$xxxx$$

$$\begin{array}{c} 3 & 3 & 3, \\ & & \\ 1 & & \\ 2 & 3 & 4. \\ & & \\ xxx \\ & & \\ &$$

Вариант 11

Задание 1

На предприятии освоены четыре технологии производства основной продукции. Запасы потребляемых ресурсов, затраты их в течение месяца и объемы выпуска готовой продукции при каждой технологии за один и тот же период указаны в таблице:

Ресурс	Запас ресурса, т	Расход ресурса при технологии, т			
		I	II	III	IV

Вариант 10

Задание 1

На заготовительный участок поступило 69 металлических прутьев длиной 107 см. Их необходимо разрезать на заготовки по 13, 15 и 31 см в комплектности, задаваемой отношением 1 : 4 : 2. Построить модель, на основе которой можно сформулировать задачу максимизации комплектов заготовок. Составить оптималь ный план.

P ₁	34	2	4	1	5
P ₂	16	4	1	4	1
P ₃	22	2	3	1	2
Объем в	ыпуска продукции, шт.	7	3	4	2

Установить такое время работы предприятия по каждой технологии, при котором выпуск продукции будет максималь ным, а расход ресурсов не превысит их наличия.

Задание 2

$$Z = x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5 \rightarrow \text{max};$$

$$+ - + = \square + - - =$$

$$xxxx$$

$$272,$$

$$xxxx$$

$$262,$$

$$\square + - + = \square$$

$$xxxx$$

$$272.$$

Задание 2

Вариант 12

Задание 1

На приобретение оборудования для нового производст венного участка выделены 30 тыс. ден. ед. и помещение пло щадью в 45 m^2 . Участок может быть оснащен машинами трех

типов, характеристики которых приведены в таблице:

Машина	Стоимость машины, тыс. ден. ед.	Занимаемая площадь, м ²	Производительнос ть за смену, тыс. ден. ед.
$\begin{array}{c} M_1 \\ M_2 \\ M_3 \end{array}$	6	9	8
	3	4	4
	2	3	3

Найти оптимальный план приобретения машин, обеспечи

 $\boldsymbol{\mathcal{X}} \boldsymbol{\mathcal{X}} \boldsymbol{\mathcal{X}}$ 123

3,

вающий новому производственному участку максимальную про 2 5 0.

x x x

123

изводительность.

25

Задание 2

$$Z = x_1 + 10x_2 - x_3 + 5x_4 \rightarrow \text{max};$$

$$\Box + - - = xxxx$$

$$21,$$

$$\Box - + + + = xxxx$$

$$232,$$

$$\Box + + - = \Box$$

$$xxxx$$

$$55.$$

$$1234$$

Вариант 13

Задание 1

Торговое предприятие реализует товары T_1 , T_2 и T_3 , исполь зуя при этом площади торговых залов и время обслуживающего персонала. Затраты указанных ресурсов на продажу одной пар тии товара каждого вида, их объемы и прибыль, получаемая от

		_
DOUBLING HALL TO SEE TO I	TONTILL TODONO	пиналанна в тобпина:
пранизании кажлои	нартии говара	приведены в таолице:
pour management	Trup Truit To Dup wy	inprince derivation of the contract.

эсилизиции киждон пиртии товира, приведены в тиолице.					
Ресурс	Запас ресурса	Затраты ресурсов по товарам			
		T_1	T_2	T ₃	
Время, челч	370	0,5	0,7	0,6	
Площадь, м ²	90	0,1	0,3	0,2	
Π	рибыль, ден. ед.	5	8	6	

Найти оптимальную структуру товарооборота, обеспечи вающую предприятию максимальную прибыль.

Задание 2

$$Z = x_1 + 2x_6 \longrightarrow \max;$$

| + + =

ко-ч), затраты времени изготовления детали (в ч) и прибыль от выпуска каждой детали приведены в таблице:

Оборудование	Фонд	Технология I, ч		Техноло	огия II, ч
	времени, станко-ч	Д1	Д ₂	Д1	Д ₂
Токарное Фрезерное Сварочное	37 20 30	3 2 0	1 3 1	1 2 1	2 0 4
Прибыль, ден. ед.		11	9	6	6

Составить оптимальный план загрузки оборудования, обес печивающий заводу максимальную прибыль.

Задание 2

Вариант 15

Задание 1

Имеются два проекта строительства жилых домов. Расход стройматериалов, их запас и полезная площадь дома каждого

проекта приведены в таблице:

Стройматериал	Запас стройматериалов, м ³	Расход стройматериалов на один дом, м ³	
		проекта I	проекта II
Кирпич силикатный	1365	7	3
Кирпич красный	1245	6	3
Пиломатериалы	650	1	2
Полез	вная площадь, м ²	60	50
e I		-	1, 12345678

Механический завод при изготовлении деталей $Д_1$ и \overline{Q}_2 пользует токарное, фрезерное и сварочное оборудование. Обра ботку деталей можно вести по технологиям I и II. Полезный

Вариант 14

1, 1, 1,

1,

Определить, сколько домов проекта I и проекта II следует

построить, чтобы полезная площадь была наибольшей.

Задание 2

$$Z = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 \rightarrow \text{max};$$

фонд времени работы каждой группы оборудования (в стан

XXXXXXXX

22220,

1 2 3 4 5 6 7 8

Вариант 16

Задание 1

Сельскохозяйственное предприятие работ P_1 , P_2 и P_3 . Производи может приобрести трак тельность тракторов при вы

$$\begin{array}{ccc}
 & \square & + = \\
 & x x x_{124} & \square \\
 & 2, & \end{array}$$

торы марок M_1 и M_2 для выполнения

объем работ и стоимость каждого трактора приведены в таблице:

Вид работ	Объем работ, га	Производительность трактора марки		
		M_1	M_2	
P ₁ P ₂ P ₃	60 40 30	4 8 1	3 1 3	
Стоимость	трактора, ден. ед.	7	2	

Найти оптимальный вариант приобретения тракторов, обес печивающий выполнение всего комплекса работ при минималь ных денежных затратах на технику.

Задание 2

$$Z = x_1 - x_2 + x_3 - x_4 + x_5 - x_6 + x_7 \rightarrow \text{max};$$

$$\Box - + - + - + =$$

$$2 \ 2 \ 3 \ 0,$$

$$x \ x \ x \ x \ x \ x \ x \ x \ x$$

$$\Box - + - + - = \Box - + + = \Box \Box$$

$$\Box + - + =$$

работ P_1 , P_2 и P_3 . Производи тельность тракторов при выполнении указанных работ, общий $x \, x \, z_3$ 1/2.

 $\begin{array}{c}
2230, \\
xxxxxx \\
234567 \\
xxx \\
242, \\
357 \\
244. \\
xxxx \\
1247
\end{array}$

Вариант 17

Задание 1

На заготовительный участок поступили стальные прутья длиной 111 см. Необходимо разрезать их на заготовки по 19, 23 и 30 см, которых требуется соответственно 311, 215 и 190 шт. Построить модель, на основе которой можно решить задачу вы бора варианта выполнения этой работы, при котором число раз резаемых прутьев минимально.

Задание 2

$$Z = -x_1 + x_2 - 2x_3 - 3x_4 + x_5 \rightarrow \max;$$

28

Вариант 18

Задание 1

Из листов стального проката размером 6×13 м необходимо выкроить 800 заготовок A размером 4×5 м и 400 заготовок Б раз мером 2×3 м. Раскрой можно производить четырьмя способа ми. Количество заготовок каждого типа, получаемых при рас крое одного листа различными способами, указано в таблице:

Заготовка	Количество заготовок при способе раскроя				
	I	II III IV			
A	3	2	1	0	
Б	1	6	9	13	

Составить такой план раскроя, чтобы расход материала был минимальным.

Задание 2

$$Z = -x_1 - x_2 - x_3 + x_4 + x_5 \rightarrow \text{max};$$

$$\Box - + + + - + = -$$

$$2 \ 2 \ 2 \ 2 \ 2,$$

$$x \ x \ x x x x x$$

$$1 \ 2 \ 3 \ 4 \ 5 \ 6$$

$$\Box - + - + - = -$$

$$2 \ 2 \ 4 \ 4 \ 2,$$

$$x \ x \ x \ x \ x \ x$$

$$1 \ 2 \ 3 \ 4 \ 5 \ 6$$

$$\Box + - - + = -$$

$$\Box$$

$$2 \ 2 \ 2 \ 2.$$

$$x \ x \ x \ x \ x$$

$$1 \ 2 \ 3 \ 5 \ 6$$

Вариант 19

Задание 1

На заготовительный участок мебельной фабрики поступили листы фанеры размером 152×152 см. Необходимо разрезать их на заготовки по 105×31 , 47×90 и 30×51 см. Потребность в них со ответственно равна: 315, 215 и 416 шт. Построить модель, на осно ве которой можно сформулировать задачу выбора варианта рас кроя, чтобы количество разрезаемых листов было минимальным.

Задание 2

Вариант 20

Задание 1

Металлургический цех выпускает три вида продукции: А, Б и В. Прибыль от тонны произведенной продукции каждого вида составляет соответственно 35, 25 и 40 ден. ед. Цех располагает необходимым оборудованием, каждый тип которого имеет свой фонд рабочего времени и производительность, указанные в таблице:

Оборудование	Фонд времени, ч	Производительность по видам, т/ч
	-p, -	

		A	Б	В
Печь обжига	2 766	3,5	2,8	-
Травильный агрегат	624	0,083	0,083	0,104
Прокатный стан	416	0,067	0,1	0,083
Отделочный стан № 1	250	1	_	_
Отделочный стан № 2	1 250	_	1	_
Отделочный стан № 3	1 500	_	_	1

Составить план выпуска продукции, обеспечивающий мак симум прибыли.

Задание 2

$$Z = x_1 - 3x_2 - x_3 - x_4 - x_5 - x_6 + x_7 + x_8 \rightarrow \text{max};$$

 $\Box + + + + + + + =$

Вариант 21

Задание 1

Предприятие изготавливает приборы типов A, Б и B, которые реализует соответственно по 6 000, 7 000 и 11 500 ден. ед. за изде лие. Трудоемкость их производства задана отношением 1 : 2 : 3. Ранее предприятие изготавливало только приборы типа A в коли честве 900 шт. за сутки. Однако изменение объема поставок экра нированного провода (при сборке приборов каждого типа расходу ется одинаковое количество этого материала) в планируемом году позволит выпускать за сутки 1 000 приборов. Для укомплектования

x x x x x x x x x

каждого прибора необходим датчик того же типа, что и тип прибо ра. Их предполагается получать по кооперированным поставкам в количестве, обеспечивающем в сутки сборку не более 400, 500 и 200 приборов типов А, Б и В соответственно. Построить модель, на основе которой можно решить задачу определения напряженных месячных планов по объему реализации и ассортименту выпускае мой продукции. Найти оптимальные планы.

Задание 2

$$Z = 2x_1 + 3x_2 - x_3 + 5x_4 \rightarrow \max;$$

$$\Box + + - = 5437,$$

$$x x x x$$

$$\Box + - = x x x$$

$$233,$$

$$\Box + + + = \Box$$

$$238.$$

$$x x x x$$

$$x x x$$

$$1234$$

Вариант 22

Задание 1

В сплав может входить не менее 4 % никеля и не более 80 % железа. Для составления сплава используются три вида сырья, содержащего никель, железо и прочие вещества. Стоимость раз личных видов сырья и процентное содержание в нем соответст вующих компонентов сплава представлены в таблице:

12345678 x x x x x x x x x 2 3 5 3, 12345678

	I	II	III
Железо Никель Прочие	70 5 25	90 2 8	85 7 8
Стоимость 1 кг, ден. ед.	6	4	5

30				
	Компонент сплава	Содержание компоне	нтов для сырья вида, %	31
Определить бу дет мини	состав сплава, при котор мальной.	ром стоимость 1 кг]-+≤
<i>Задание 2</i> $Z = 2x_1 + 3x_2$	→ max;		2 2 0, 123 2 2 4,	
			x x x 123 x x	
<i>X X X</i> 123			21.	-
□ ++ □ x x x	= []+ = [] [] + + =		ххх 1235 Вариант 24),

Задание 1

Вариант 23

2 8.

Задание 1

349,

4,

x x x

126

Фабрика выпускает кожаные брюки, куртки и пальто специ ального назначения в ассортименте, заданном отношением 2 : 1 : 3. В процессе изготовления изделия проходят три производствен ных участка: дубильный, раскройный и пошивочный. Фабрика имеет практически неограниченную сырьевую базу, однако

сложная технология предъявляет высокие требования к квали фикации рабочих. Время обработки изделий на каждом участке,

их плановая себестоимость и оптовая цена приведены в таблице:

Ресурс	Брюки	Куртка	Пальто
Норма времени на участках, челч: дубильном раскройном пошивочном	0,3 0,4 0,5	0,4 0,4 0,4	0,6 0,7 0,8
Полная себестоимость, ден. ед.	15	40,5	97,8

Ограничения на фонд времени для дубильного, раскройного и пошивочного участков составляют соответственно 3360, 2688 и 5040 ч. Учитывая заданный ассортимент, построить модель, на основе которой можно сформулировать задачу определения на пряженного месячного плана по прибыли от реализованной про дукции. Найти оптимальный план.

Задание 2
$$Z = -6x_2 + 6x_3 \rightarrow \max;$$

32

На заводе ежемесячно скапливается около 14 т отходов ме талла, из которого можно штамповать большие и малые шайбы. Месячная потребность завода в больших шайбах – 600 тыс. шт., в малых – 1100 тыс. шт. (недостающее количество шайб закупа ется на специализированном предприятии). Оптовая цена боль ших шайб – 1,9 ден. ед. (за тысячу штук), малых – 5,2 ден. ед. Расход металла на тысячу больших шайб – 22 кг, на тысячу ма лых – 8 кг. Для изготовления шайб используются два пресса холодной штамповки. Производительность каждого за смену – 9 тыс. шт. больших шайб либо 11,5 тыс. шт. малых. Завод рабо тает в две смены. Построить модель, на основе которой можно решить задачу определения плана производства шайб (из отхо дов), обеспечивающего максимальную долю в валовой продук ции предприятия. За плановый период принять год. Найти опти мальный план.

$$Z = -4x_1 + 8x_2 - 16x_3 - 7x_4 \to \text{max};$$

$$\Box - + \le x \times 20,$$

$$\Box - + \le x \times 4$$

Вариант 25

Задание 1

На кондитерской фабрике весь ассортимент выпускаемой карамели разделен на три однородные группы, условно обозна ченные K_1 , K_2 и K_3 . Расход основного сырья и его запас указаны в таблице:

33

Виды основного сырья	Общий запас сырья, т	Расход сырья на 1 т, т			
		K_1	К ₂	К ₃	
Сахар-песок	700	0,7	0,7	0,7	
Патока	300	0,3	0,3	0,2	
Фруктовое пюре	0	0,2	0,3		
Урове.	100	110	120		

Другие виды сырья, входящие в готовый продукт в неболь ших количествах, не учитываются. Составить план выпуска про дукции, обеспечивающий максимум прибыли.

$$Z = 12x_1 + x_2 - 2x_3 \rightarrow \max;$$

$$\Box - - \ge -$$

$$2 \ 10,$$

$$x \ x$$

$$12$$

- 1) составить модель задачи, двойственной к исходной. Пользу ясь теоремами двойственности по решению исходной задачи, най ти оптимальный план и экстремальную величину целевой функ ции двойственной задачи;
- 2) *сформулировать в экономических терминах значения двойственных переменных и дополнительных двойственных оценок.

Все необходимые числовые данные приведены в таблице.

Варианты 1-9

		hanibi 1–2									
Данны	Номер варианта										
е	1	2	3	4	5	6	7	8	9		
n	4	3	4	3	3	3	3	4	3		
b	20	150	280	1 200	600	24	500	10 0	360		
<i>b</i>	37	180	80	15 0	30	10	550	260	19 2		
<i>b</i> ₃	30	120	250	3 000	144	6	200	370	18 0		
₁₁ a	2	2	2	15	10	5	2	2,5	18		
₁₂ a	2	3	1	20	20	7	1	2,5	15		

 $x x_{13}$ 2.

ПРАКТИЧЕСКАЯ РАБОТА 3 Решение двойственных задач. Экономическая интерпретация задач

₁₃ a	3	4	1	25	23	4	0	2	12
₁₄ a	0	_	1	_	_	_	_	1,5	_
₂₁ a	3	1	1	2	1	5	0	4	6
₂₂ a	1	4	0	3	1	2	2	10	4
₂₃ a	1	5	1	2,5	1	1	1	4	8
₂₄ a	2	ı	1	-	ı	ı	I	6	-
$_{31}a$	0	3	1	35	5	2	0	8	5
₃₂ a	1	4	2	60	6	1	1	7	3
₃₃ a	1	2	1	60	6	1	0	4	3
₃₄ a	4	_	0	_	_	_	_	10	_
₁ <i>c</i>	11	8	4	300	35	18	3	40	9
<i>C</i> 2	6	7	3	250	60	12	4	50	10
<i>C</i> 3	9	6	6	450	63	8	1	10 0	16
<i>C</i> 4	6	-	7	_	_	-	_	80	_

ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

На предприятии имеется возможность выпускать n видов продукции Π_j (j=1...n). При ее изготовлении используются ре сурсы P_1 , P_2 , P_3 . Размеры допустимых затрат ресурсов ограниче ны соответственно величинами b_1 , b_2 , b_3 . Расход ресурса i-го (i =

=1...3) вида на единицу продукции j-го вида составляет $a_{ij}^{\text{еди}}$ ниц. Цена единицы продукции j-го вида равна c_{ij} ден. ед.

Задание 1

В соответствии с вариантом:

- 1) составить экономико-математическую модель задачи, поль зуясь которой можно найти план выпуска продукции, обеспечи вающий предприятию максимальную прибыль;
- 2) симплексным методом найти оптимальный план выпус ка продукции и максимальную величину прибыли. Раскрыть экономический смысл дополнительных переменных в опти мальном плане.

Задание 2

В соответствии с вариантом:

34

Варианты 10-17

Данны	Номерварианта										
e	10	11	12	13	14	15	16	17			
n	3	4	5	3	3	3	4	5			
$_{1}b$	180	2	3	400	6 000	12	1 000	3			
₂ <i>b</i>	210	2	2	250	5 000	25	500	5			
₃ b	244	2	2	200	9 000	18	1 200	4			
<i>a</i>	4	1	1	1/6	1	6	1	1			

a 12	2	1	1	3/7	1	4	2	2
a 13	1	0	1	1/4	1	3	3	3
a 14	_	2	2	-	_	-	1	6
a 15	_	-	2	_	_	_		2
<i>a</i> 21	3	0	0	1/4	1/2	5	2	2
a 22	1	1	1	1/7	1	3	1	3
а	3	1	1	1/4	5	2	0	1

23								
a 24	_	0	1	-	-	_	0	6
a 25	_	_	2	-	_	-	0	0
<i>a</i> 31	1	1	1	1/6	1/2	4	0	3
<i>a</i> 32	2	0	1	1/7	1/2	5	1	1
<i>a</i> 33	3	1	0	3/8	20	4	4	2
<i>a</i> 34	_	0	2	_	_	-	1	6
<i>a</i> 35	_	_	1	-	-	-	-	4
₁ c	10	3	5	120	80	1	2	3
₂ C	14	7	2	100	100	2	40	4
₃ C	12	4	8	150	300	3	10	1
₄ C	_	2	3	_		_	15	3
₅ C	_	_	6	_	_	_	_	2

36

Варианты 18-25

ւ	nann	1 10 4	,					
Данны	Номерварианта							
e	18	19	20	21	22	23	24	25
n	4	4	3	3	3	3	3	3

₁ <i>b</i>	4	24	12	8	5	12	4	18
₂ <i>b</i>	3	12	27	18	4	27	7	16
$_3b$	3	35	6	6	2	6	12	8
<i>a</i>	1	1	2	4	0	2	1	1
<i>a</i>	3	2	1	1	2	1	3	2
<i>a</i>	0	4	6	2	5	6	0	1
<i>a</i> 14	1	8	П	_	-	-	ı	_
<i>a</i>	_	_	_	_	_	_	_	-
<i>a</i> 21	2	3	3	6	2	3	1	2
a 22	1	5	3	1	4	3	0	1
a 23	0	1	9	3	2	9	2	1
<i>a</i> 24	0	0	I		I	I	ı	_
<i>a</i> 25	_	I	I	_	I	I	-	_
<i>a</i> 31	0	6	2	6	1	2	1	1
<i>a</i> 32	1	0	1	1	0	1	3	1
<i>a</i> 33	4	3	2	1	1	2	2	0

<i>a</i> 34	1	1	-	-	-	-	-	-
<i>a</i> 35	-	-	-	-	-	-	-	-
₁ C	2	0,4	14	24	20	14	3	3
₂ C	4	0,2	6	4	8	6	8	4
₃ C	1	0,5	22	8	30	22	5	2
₄ C	1	0,8	_	_	_	_	_	_
₅ C	_	_	_	_	_	_	_	_

$\begin{matrix} A_1 \\ A_2 \\ A_3 \end{matrix}$	40	6	4	2	7
	36	8	10	14	12
	24	16	12	6	13
Потребнос	24	20	30	26	

Поставщик	Запас груза a_i	Потребитель				
		B_1	B_2	B_3	B_4	B_5
$egin{array}{c} A_1 \ A_2 \ A_3 \end{array}$	200 450 500	3 6 5	1 4 2	5 2 3	4 7 4	2 3 6
Потребно	сть в грузе b_j	300	400	200	10 0	150

ПРАКТИЧЕСКАЯ РАБОТА 4 Решение транспортных задач

Задание 1

В соответствии с вариантом:

- 1) построить начальный опорный план задачи (методом ми нимального элемента);
 - 2) решить задачу (методом потенциалов).

Задание 2*

В соответствии с вариантом:

- 1) построить начальный опорный план задачи (методом Фо геля);
 - 2) решить задачу (методом потенциалов).

Вариант 1

Поставщик	Запас груза	Потребитель			
	a_i	B_1	B_2	B_3	B_4

Вариант 3

Поставщик	Запас груза a_i	Потребитель		ТЬ
		B_1	B_2	B_3
$\begin{matrix} A_1 \\ A_2 \\ A_3 \end{matrix}$	40 36 24	4 3 9	6 5 10	7 8 6
Потреб	Потребность в грузе b_j		40	60

38

37

Поставщик	Запас груза a_i	Потребитель

39

		B_1	B_2	B_3	B_4
$egin{array}{c} A_1 \ A_2 \ A_3 \end{array}$	30 190 250	4 3 5	7 1 6	2 0 3	3 4 7
Потребнос	сть в грузе b_j	70	120	150	130

Поставщик	Запас груза a_i	Потребитель				
		B_1	B_2	B_3	B_4	B_5
A_1 A_2 A_3 A_4	100 70 130 150	4 7 6 2	1 3 4 5	2 4 7 6	5 2 1 4	6 5 8 7
Потребн	ость в грузе b_j	80	12 0	70	13 0	50

Вариант 6

Поставщик	Запас Потребитель						
	груза a_i	B_1	B_2	B_3	B_4	B_5	B_6
A_1 A_2 A_3 A_4 A_5	600	7	1	4	6	5	8
	800	1	3	5	2	4	6
	550	4	5	6	3	1	7
	730	5	3	7	2	8	4
	900	2	4	3	5	6	3
Потребность в грузе b_j		75	58	44	62	55	64
		0	0	0	0	0	0

Вариант 7

Поставщик	Запас груза a_i	Потребитель			
		B_1	B_2	B_3	B_4
$egin{array}{c} A_1 \ A_2 \ A_3 \ A_4 \end{array}$	300 200 500 700	5 6 4 2	1 3 5 4	2 7 3 6	3 1 2 4
Потребно	ость в грузе b_j	230	420	650	400

Вариант 8

Duphuni 0								
Поставщик	Запас		Потребитель					
	груза a_i	B_1	B_2	B_3	B_4	B_5	B_6	B_7
$A_1 \\ A_2 \\ A_3 \\ A_4$	1 040 2 700 1 885 1 457	5 4 7 2	1 2 3 5	4 6 1 7	3 5 4 1	6 1 2 4	7 8 5 3	2 3 6 4
Потребност b_j	ь в грузе	590	740	875	1537	120 0	150 0	64 0

вариант 9				
Поставщик	Запас груза <i>а</i> ,	По	требите.	ЛЬ
		B_1	B_2	B_3
$egin{array}{c} A_1 \ A_2 \ A_3 \end{array}$	50 100 130	1 4 6	3 5 2	2 7 4
	Потребность в грузе b	70	100	110

Поставщик	Запас	Потребитель					
	груза a_i	B_1	B_2	B_3	B_4	B_5	B_6
$A_1 \\ A_2 \\ A_3 \\ A_4$	3 000 5 000 1 250 7 300	2 5 3 1	4 7 6 3	3 4 1 2	1 5 4 6	6 2 3 4	3 1 7 5
Потребность в грузе b_j		2300	3200	4000	1760	150 0	2220

Вариант 11

Поставщик	Запас груза a_i	Потребитель			
		B_1	B_2	B_3	B_4
$egin{array}{c} A_1 \ A_2 \ A_3 \ A_4 \ \end{array}$	40 25 28 32	8 4 6 10	4 10 7 12	6 5 8 8	2 6 5 9
Потребн	ость в грузе b_j	28	32	20	45

40

Вариант 12

Поставщик	Запас груза a_i	Потребитель			ель	
		B_1	B_2	B_3	B_4	B_5
A_1 A_2	100 80 40	9 6 8	6 9 7	8 13 12	11 15 5	10 12 9

A_3						
Потребность в грузе b_j		60	50	40	35	35

Вариант 13

Поставщик	Запас		Потребитель						
	груза a_i	B_1	B_2	B_3	B_4	B_5	B_6		
$A_1 \\ A_2 \\ A_3 \\ A_4$	36 34 32 30	9 4 5 6	3 6 8 2	4 7 8 15	8 11 4 9	10 13 12 6	12 9 10 8		
Потребность	в грузе b_j	20	15	25	27	30	15		

Вариант 14

Поставщик	Запас груза a_i	Потребитель			
		B_1	B_2	B_3	B_4
$\begin{matrix}A_1\\A_2\\A_3\end{matrix}$	15 24 23	17 18 16	20 19 17	22 21 20	
Потребн	Потребность в грузе b_j			12	15

рариант 1		_						
Поставщик	Запас			Потре	битель			
	груза a_i	B_1	B_2	B_3	B_4	B_5	B_6	

A_1	1 780	5	3	1	4	2	6			B_1	B_2	B_3	B_4
$egin{array}{c} A_2 \ A_3 \ A_4 \end{array}$	2 000 1 530 2 860	1 3	3 4	3 7 6	6 4 7	5 1	3 2 5	A_1 A_2	30 50 45	12 16 19	15 20 21	14 18 16	10 17 13
Потребность	в грузе b_j	850	1870	195 0	1670	100	830	А ₃ Потре	бностьвгрузе b_j	20	25	35	40

Поставщик	3 апасгру 3 а a_i	Потребитель				
		B_1	B_2	B_3	B_4	B_5
$A^{1}A^{2}A_{3}$	50 60 40	7 9 6	6 5 8	8 7 4	10 4 9	12 6 7
Потреби	30	20	55	20	25	

Вариант 17

Поставщик	Поставщик Запасгруза a_i		Потребитель					
		B_1	B_2	B_3	B_4	B_5		
$\begin{matrix}A_1\\A_2\\A_3\end{matrix}$	150 170 200	7 8 4	5 10 3	9 4 15	8 11 13	6 12 14		
Потребл	12 0	80	14 0	70	110			

Вариант 18

200000000000000000000000000000000000000		
Поставщик	Запасгрузаа;	Потребитель

41 **Вариант 19**

Поставщик	тавщик Запасгрузаа _і		Потребитель				
		B_1	B_2	B_3	B_4		
A_1 A_2 A_3	A_2 45			14 10 11	12 9 15		
Потре	Потребностьвгрузе b_j			60	80		

Вариант 20

Поставщик	Запасгруза <i>а</i> _i Потребитель		итель		
		B_1	B_2	B_3	B_4
$\begin{matrix} A_1 \\ A_2 \\ A^3 A_4 \end{matrix}$	$\begin{bmatrix} A_2 \\ A_3 \end{bmatrix}$ $\begin{bmatrix} 100 \\ 60 \end{bmatrix}$			10 18 19 15	14 13 20 18
Потре	Потребностьвгрузе b_j			50	100

42

Поставщик	Запасгрузаа,	Потребитель
-----------	--------------	-------------

		B_1	B_2	B_3	B_4
$\begin{matrix} A_1 \\ A_2 \\ A^3 A_4 \end{matrix}$	1 500 500 700 900	12 14 18 17	9 8 19 15	10 13 20 18	15 17 14 21
Потре	Потребностьвгрузе b_j		600	800	1100

Поставщик	Запасгруза a_i	Потребитель				
		B_1	B_2	B_3	B_4	
$\begin{matrix}A_1\\A_2\\A_3\end{matrix}$	40 50 60	25 12 19	23 18 22	19 20 23	21 24 17	
Потребностьвгрузе b_j		35	30	45	32	

Вариант 23

Поставщик	Запас	Потребитель						
	груза a_i	B_1	B_2	B_3	B_4	B_5	B_6	
$\begin{matrix}A_1\\A_2\\A_3\end{matrix}$	120 60 150	5 14 7	10 9 12	15 8 13	6 12 15	14 11 9	13 10 14	
Потребностьвгрузе b_j		45	52	48	55	70	60	

ПРАКТИЧЕСКАЯ РАБОТА 5 ПОСТРОЕНИЕ ОСТОВНОГО ДЕРЕВА ГРАФА.

НАХОЖДЕНИЕ НАИКРАТЧАЙШЕГО РАССТОЯНИЯ МЕЖДУ ЗАДАННЫМИ ВЕРШИНАМИ ГРАФА

 Задание 1

 Всоответствиисвариантом :
 поалгорит- му Prim;

 2)
 построитьостовноедо

 1)
 построитьостовноедо

построитьостовноедерево

минимальноговеса поалгорит- му Prim; 2) построитьостовноедерево 6 минимальноговеса поалгорит- муKruskal.

Вариант 24

Поставщик	Запасгрузаа;	Потребитель				
		B_1	B_2	B_3	B_4	B_5
$\begin{matrix}A_1\\A_2\\A_3\end{matrix}$	150 170 110	7 8 3	2 4 5	11 3 10	5 6 7	9 1 8
Потребн	11 0	12 0	80	50	70	

Вариант 25

Поставщик	Запас	Потребитель								
	груза <i>а</i> _i	B_1	B_2	B_3	B_4	B_5	B_6	B_7		
$A_1 \\ A_2 \\ A_3$	135 270 120	7 9 6	5 4 2	3 5 8	4 10 7	2 3 1	1 6 4	8 5 3		
Потребност <i>j</i>	80	93	56	10 0	125	98	73			

s^{c} 3		<i>e</i> 3				4	
2 1 7		b t	найтикј за- дані довсехо	етствиисвариант ратчайшиецепи о ногоузла (s) остальныхузловв рльзуяалго-	от _а 3	3 a 4 5 1 1 1	
5	a 8		Вариа d	нт 1	1 <i>b</i>	. 1	
	2 <i>b</i>			4		sct 4	
st				8			
2 4							
5	1 1 3	e	1	d	9 e		
		Вариа	нт 2				
cd		10		8 8			
7		Вариа	нт 5	8 ab			
7 1 1		4 ₆ ab 2 3	<i>s</i> 1		6 2	e	4 t
S		c dt				1 7	
1 5 4 1	ef	5 3 1 1		8		2 cd	

44

7 3

45

Вариант 6		42			
а Вариант 9		ab			
2 4					
	2 3 5 4	5 4			
<i>s</i> 6	ct	1		9 c	
1 <i>b</i> 4	s	5 3		ι	
24	1		de 7		

24 6 7 7 3

3 4 de

Вариант 10
1
1
Вариант 7

 $\begin{array}{c}2\\ab\\3\\3\end{array}$

d 2	4	1 6 4 ce 5	4 1		
Вариант 8	Вариант 11		1		
$2^{1}2 ab$	a <i>b</i>	6 3	3		a8
4 3 8 s c	5 9		st 1		
1 46	4	e 1 cd 7 ⁹		47	
Вариант 12 4 ab Вариант 15 1 4 2		6 8 ab	c		
3 3 1	7 4 s	5 5 6 1	$\frac{\partial}{\partial t}$		

3 12 7 1 e t 5 1 5 3		Вариант 16 cd 1		s 1 53 b ct s ^c	1 e 35 1 ⁵ 6
Вариант 1 <i>ef</i> 2	3 a	a 2 7 b 7 51 6		3 d Вариант 14 4	<i>de</i> 4 Вариант 17
₁ a	5 4	6 t 1 2	³ ₈	7	1
sct 5	1 8	2	^s _b 1	<i>a</i> 5	c 7 4 1 4 t 2
Вариант 18			8 57 <i>d</i> La		49

9 *d*

2	2	5 5		<i>b</i> 7	2		8	
6 s c		5 st t		1	I		5	
4 1 1 de				e 1 c	d 10			
з Вариант 19	6	2 8 ab 4			риант 22 5		ab 6 2 3	
1 1 s	c 9	1	t s	4 4 1 c	5 <i>dt</i>	·	ef	
1		¹ 1 de 5					v	
Вариант 20		2			зариант 23 а	ı	3	
1	8 ab 6	5	<i>d</i> 3	7	6	<i>t</i> 9	<i>b</i> 5	t
s 21 ⁵ 3		4		5 50	1	1 1 1		
21 -		4 ce		s^{C}		<i>d</i> 5		6

e

Вариант 24 3 а

Вариант 1

Найти кратчайшую цепь и ее длину между парами вершин:

Вариант 25

4
ab

8
1
5
1
2
e
t
1
7
5
5
5

CE, FC, FD.

51

c d 9 **Вариант 2** Найти кратчайшую цепь и ее длину между парами вершин: FB, AB, BF.

ПРАКТИЧЕСКАЯ РАБОТА 6 Нахождение наикратчайших расстояний между всеми парами вершин графа. Алгоритм Флойда

Задание

В соответствии с вариантом:

- 1) найти матрицу узлов и матрицу элементов для заданного графа;
- 2) найти кратчайшую цепь и ее длину между парами указан ных вершин, используя алгоритм Флойда.

52

Вариант 3

Найти кратчайшую цепь и ее длину между парами вершин: CF, EF, AB.

Вариант 5

Найти кратчайшую цепь и ее длину между парами вершин: AB, BE, CE.

Вариант 4

Найти кратчайшую цепь и ее длину между парами вершин:

Вариант 6

Найти кратчайшую цепь и ее длину между парами вершин:

Вариант 7

Найти кратчайшую цепь и ее длину между парами вершин: CE, FD, CB.

Вариант 9

Найти кратчайшую цепь и ее длину между парами вершин: AC, DB, BF.

Вариант 8

Найти кратчайшую цепь и ее длину между парами вершин: CF, CD, BA.

Найти кратчайшую цепь и ее длину между парами вершин: BC, CD, FE.

Вариант 10

Вариант 11

Найти кратчайшую цепь и ее длину между парами вершин: AD, CA, EA.

Вариант 13

Найти кратчайшую цепь и ее длину между парами вершин: BC, EA, AD.

Вариант 12 Найти кратчайшую цепь и ее длину между парами вершин: EF, AC, DC.

Найти кратчайшую цепь и ее длину между парами вершин: BA, AF, CF.

59

Вариант 14

Вариант 15 DB, BF, CF.

Найти кратчайшую цепь и ее длину между парами вершин:

Найти кратчайшую цепь и ее длину между парами вершин:

AD, AE, FD.

Вариант 16

Найти кратчайшую цепь и ее длину между парами вершин: FA, BE, EA.

Найти кратчайшую цепь и ее длину между парами вершин: DC, AF, DB.

Вариант 19

BF, CD, DB. AD, BA, EF.

Вариант 21

Найти кратчайшую цепь и ее длину между парами вершин:

Вариант 20

Найти кратчайшую цепь и ее длину между парами вершин: BD, DF, AF.

Найти кратчайшую цепь и ее длину между парами вершин: CE, DF, CB.

Вариант 23

Найти кратчайшую цепь и ее длину между парами вершин: DE, FA, CB.

Вариант 24

Найти кратчайшую цепь и ее длину между парами вершин: CE, FA, EA.

Вариант 25

Найти кратчайшую цепь и ее длину между парами вершин: BC, EB, DF.

ПРАКТИЧЕСКАЯ РАБОТА 7 ПОСТРОЕНИЕ ПОТОКОВ МАКСИМАЛЬНОЙ МОЩНОСТИ. АЛГОРИТМ ФОРДА-ФАЛКЕРСОНА

Задание

В соответствии с вариантом:

- 1) используя алгоритм Форда-Фалкерсона, построить на се ти поток максимальной мощности, направленный из источника S к стоку T;
- 2) указать «узкое место» сети и найти его пропускную спо собность.

Вариант 16

Вариант 19

Вариант 25

Вариант 4 Вариант 5 Вариант 6

SA - 2	CD - 3
SC - 6	CE – 7
SD - 9	DE - 6
AB - 5	ET - 7
AC – 6	CT – 9
BC - 7	SA - 4
BT - 8	SC - 8
CD - 3	SD - 2
CE - 7	AB - 4
DE – 4	AC - 5
ET - 4	BC - 9
CT-3	BT - 8
SA - 6	CD-7
SC - 3	CE – 7
SD - 4	DE - 2
AB-4	ET - 4
AC - 5	CT-5
BC - 2	
BT - 5	
- D 0 D	•

Вариант 7 Вариант 8 Вариант 9

ПРАКТИЧЕСКАЯ РАБОТА 8

Нахождение потока ЗАДАННОЙ ВЕЛИЧИНЫ минимальной стоимости. Алгоритм Басакера-Гоуэна

Задание

Длясети (см. практическуюработу7) числоозначаетпропускную способно ET – 7 CT – 9 построитьпотокмаксимальноймощностиминимальнойст Стоимостьдоставкиединицыпотока оимости (всоответствиис вариантом). На каждойдугесетиуказаныдвачисла. Первое

стьребра, авторое – поток поребру. подугеуказанав соответствиисвариантом. SA - 3 SC - 4 SD - 9 AB - 6 AC - 8BC - 6 BT - 4 CD - 3 CE - 7 DE - 3

SA - 8 SC - 9 SD - 6 AB - 8 AC - 2BC - 5 BT - 5 CD - 4 CE - 7 DE - 6 ET - 7CT - 6SA - 6 SC - 3 SD - 5 AB - 4 AC - 5BC - 2BT - 5CD - 9CE - 7DE - 5ET - 7CT - 9

Вариант 10 Вариант 11 Вариант 12

Вариант 1 Вариант 2 Вариант 3

SA - 7 SC - 8 SD - 9 AB	AB-4
-4 AC - 5 BC - 2 BT - 8	AC - 5
CD - 3 CE - 7 DE - 6 ET -	BC-4
4 CT – 5	BT - 8
	CD-7
74	CE - 7
SA-6 $SC-8$ $SD-3$ AB	DE-6
-4 AC -4 BC -2 BT -7	ET-2
CD – 3 CE – 6 DE – 6 ET –	CT-4
4 CT – 5	
SA-7	
SC – 9	
SD-2	

SA - 7 SC - 5 SD - 9 AB-5 AC - 3 BC - 7 BT - 8CD - 9 CE - 7 DE - 8 ET -4 CT - 3

SA-3 SC-6 SD-9 AB-6 AC - 6 BC - 8 BT - 8CD - 6CE - 7DE - 2ET -4 CT - 5

SA-2 SC-7 SD-7 AB-9 AC - 3 BC - 5 BT - 7CD - 3 CE - 4 DE - 4 ET -7 CT - 8

Вариант 13 Вариант 14 Вариант 15

Вариант 22Вариант 23 Вариант 24Вариант 25

75

	թաբոսու 22 0 աթու	ani 25 Daphani 2	TDaphani 20				
SA - 4	SD - 6	BC - 4	CD - 9	DE - 2		В	CT
SC - 3	AB - 5	BT - 8	CE - 7	ET - 9		C	-8
SD - 6	AC - 7	CD - 9	DE - 7	CT-4		-4	SA - 5
AB - 8	BC - 7	CE – 7	ET - 7		SA	BT	SC - 5
AC - 3	BT - 8	DE - 2	CT-5		-6	-8	SD - 7
BC - 7	CD - 8	ET - 7	SA - 2		SC	C	AB - 5
BT - 6	CE – 7	CT - 3	SC - 8		-2	D	AC - 6
CD – 9	DE - 8	SA - 4	SD - 8		SD	-7	BC - 7
CE - 5	ET - 4	SC - 4	AB - 2		- 7	CE	BT - 5
DE - 8	CT-2	SD - 7	AC - 4		A	-7	CD - 5
ET - 7	SA - 2	AB - 2	BC - 4		В	D	CE - 7
CT-4	SC - 4	AC - 9	BT - 6		-2	E	DE - 6
SA - 5	SD - 8	BC - 8	CD – 9		A	-2	ET - 4
SC - 5	AB-2	BT - 8	CE – 7		C	ET	CT - 3
	AC – 9				- 9	-7	

Вариант 16 Вариант 17 Вариант 18

НАХОЖДЕНИЕ ПОТОКА ЗАДАННОЙ Всоответствиисвариантомдлясетипост ВЕЛИЧИНЫ МИНИМАЛЬНОЙ BC – 7 BT – 9 CD – 5 CE – 9 DE – 8 ET **СТОИМОСТИ. АЛГОРИТМ КЛЕЙНА** данноймощностиминимальнойстоимо

роитьпоток засти, используяалгоритм Клейна.

ПРАКТИЧЕСКАЯ РАБОТА 9

Задание

```
Вариант 19 Вариант 20 Вариант 21
                  AB - 5
SA-2 SC-6 SD-AC-6
7 AB - 5 AC - 6 BCBC - 7
-7 BT - 5 CD - 3 BT - 8
                                                                                                                2,0/1
CE - 7DE - 6ET - CD - 9
4 CT - 3
                  CE-7
                  DE - 8
                                                        S
76
                                                        4,0/1 1
                  ET-4
                                                                           2,0/1
SA-8 SC-5 SD-CT-6
9 AB – 4 AC – 4 BC
                                                                           cd4,0/6
-9 BT - 8 CD - 4
                                                                                              6
CE - 7 DE - 4 ET -
                                                        3,0/1
8 \text{ CT} - 7
                                     77
                                     V=5
                                                        3,0/3
SA - 6
                                                        3
SC-6
                                                                                             4,0/4 4
                                                        ab \ 2,0/1
SD-5
    Вариант 2 V= 4
                                                                             2,0/1
                                                                                               2,0/8
                                                                                               3,0/1
                      1,0/1
    5,0/6
                                                           1,0/2
                      ab 3,0/1
                                        3,0/1
                                                                             5,0/7
                                        Вариант 5 V = 6^{a}
            t
                                                                                                          ct
                                           S
            S
            2,0/1
                                                                           b
                                                                                                          2,0/44,0/4
                                                                           2,0/1
                                                                      5,0/3
                                                                                                                  3,0/5
                          cd 3,0/4
    2,0/1
                                                                      Вариант 6 V= 5
    Вариант 3 V= 6
                                                                      2,0/1
    4,0/3
                                                                      de4,0/3
                                                                                            4,0/8
                                                5,0/4
                                                                                            ab
    2,0/3
                                                                                                                  3,0/3
                                                4,0/1
```

3,0/1 sc 4,0/2 3,0/2		3,0/2 4,0/2 <i>c</i>	2	2,0/4 2,0/1 de 4,0/1			2,0/1 2,0/1 de 5,0/7		
$4,0/2$ b^t		2,0/1 t				2,0/1 5,0/1			4,0/3
s 1,0/4 2,0/5		Вариант 4	a	2,0/2 ub 2,0/1		Вариант 7 <i>V</i> = 5	5,0/3 ab 2,0/1 3,0/4		
	t s t 2,0/3 4,0/12,0/6	2,0/1	, ,	2,0/1	1,0/2	s c c		2,0/4	
	нт 8 V= 5		₄ 5,0/6 3,0/2 риант 11	de 2,0/1 4,0/1 5,0/2 3,0/4 V= 5		de 3,0/4 2,0/1		79 3,0/2 ab 2,0/3 4,0/1	
3,0/2 4,0/7 <i>ab</i>	s 2,0/5 4,0/1	2,0 d			3,0/4 5,0/1 t	2,0/1 t s			2,0/1 2,0/2

	ab			
		2,0/3 1,0/1		
	3,0/1	2,0/3 1,0/1	D 12 W	4
Вариант 9			Вариант 12 V=	
<i>V</i> = 5				1,0/2
				ab
2,0/1				3,0/1 4,0/1
				t
2,0/4				2,0/1
s ce				
1,0/1	2,0/1			
	t		4,0/6	
	d			
	4,0/1		S	
	4,0/1		cd 5,0/6	
4,0/7		3,0/2	2,0/2	
4,0/4		6,0/1	cd 3,0/4	
4,0/4			4,0/1	
	Вариант 10 <i>V</i>	<i>'</i> = 5		
	ce 2,0/2		12 1/- (
		Вариант	13 V-6	
	3,0/1			
	6,0/1	4,0/5 a	2,0/2	
	4,0/3	3,0/3	3,0/2	
	2.0/1	4,0/4		
	3,0/1 4,0/4			
a	y	3,0/3		
c^t		sb	4,0/1	
C*		2,0/4	SC	b^t

de 4,0/2 3,0/1 3,0/1

2,0/1 3,0/1

5,0/3

80

2,0/4

de 4,0/1

2,0/2

81

Вариант 14 *V*= 5

2,0/1

2,0/2 ab 2,0/1	2,0/5 1,0/2 Вариант 17 V= 5	4,0/1		5,0/1 ab 2,0/3		2,0/1		3,0/2
5,0/1 3,0/	/1							2,0/1
	t					2,0/3		t
s						S	c	
	3,0/2						5,0/4	
5,0/2	de 4,0/1 5,0/2					1,0/4	5,0/4	
Вариант 15 <i>V</i> = 6				Вариант 18 <i>V</i> = 5				
4,0/1	a			2,0/1 de				
	2,0/1			ab	t			
	5,0/1	3,0/1		1,0/2 5,0/3 3,0/2	<i>S</i> 4,0/1			
6,0/2	2,0/2	3,0/2 3,0/7		b ct	<i>d</i> 3,0/1			
2,0/3 2,0/1			s 5,0/1					
1,0/1 3,0/4 7,0/4	Вариант 16		3,0/1					
3,0/1	<i>V</i> = 5		82	4,0	/1			
1,0/1 7,0/1 2,0/1	2,0/4		de 4,0/4		4,0/4			
5,0/2	3,0/5							

3,0/2	<i>ce</i> 2,0/1

3,0/2

Вариант	19
---------	----

	<i>V</i> = 5		
c		S	1,0/5 2,0/1
3,0/2	3,0/1		d
2,0/2	2,0/4	4,0/2	
de 5,0/5	t	<i>ce</i> 1,0/1	

	6,0/7	83
3,0/2	<i>ab</i> 3,0/1 2,0/1	

2,0/1			4,0/1		
Вариант 20		4,0/1		3,0/4	3,0/3
V= 5		Вариант 23 V= 6	4,0/1	4,0/1 sb 5,0/3	sc 3,0/1
4,0/1 2,0/4	4,0/3			3,0/4	2,0/3 bt 3,0/1
2,0/4	2,0/4 4,0/4 3,0/1	<i>a</i> 4,0/2	4,0/2 3,0/2	c^t 3,0/1	

Вариант 21 *V*= 5

de 4,0/1

			-4,0/2 de4,0/2			
	Вар	оиант 24 V= 5			$2,0/2$ a^b	
3,0/3	4,0/1	4,0/1 4,0/	/1 2,0/2	2,0/7	2,0/5	1,0/2
t S			2,0/1 4,0/2 t		c 3,0/	
3,0/1		2,0/3 cd 2,0/3				de 2,0/1
		5,0/3		Вари	иант 25 V= 6	
Вариант	22 V= 4	4,0/2 ab	5,0/2	4,0/1		
		3,0/1 4,0/1 a 3,0/2	2,0/3 4,0/1			
t s		2,0/2 s				ct
2	,0/3				<i>b</i> 2,0/1	2,0/4 4,0/2
2,0/1	84		2,0/3 cd 3,0/1 4,0/2 5,0/3		d e 4,0/2 4,0/5	
	ЧЕСКАЯ РАБОТА		1,0/1			85 Вариант 7 Вариант 8
	ІЬНОМ НАЗНАЧЕНИ		оптимальном назн алгоритм.	ачении	і, используя венгерский	18 4 6 7 8 11 5
Задание В соответстви	и с вариантом решит		Вариант 1 Вари	ант 2		13 5 12 13 5 6 8 10 13 14 17 3 4 2 5 6 5 6 4 15 3 8 4 5 18 6 1 9

0000		957248411	0 5 6 12 9 6 2 4 7 13 10 8 5
0.10.5.0.1.5.0.1.5	14 18 5 9 6 21 12 17 22	10 9 7 11 8 12 11 11 5 8	$15\ 8\ 7\ 4\ 1\ 2\ 2\ 4\ 16\ 9\ \square\ \square$
3 10 5 9 16 8 17 □ □ □ □ 6 8 11 8 18 19 20 7 13 10 3 4	5 13 6 10 13 8 9 □ □ □ □ 9 4 4 5 6 6 7 11 8 7 4 7 3 8	12 4 18 4 12 6 9 8 5 8 5 19 20 10 7 8 6 7 12 13 1 13	12 3 11 9 12 10 11 5 13 8 2 3 12 13 7 6 4 18 5 6 7 \square
5 4 11 6 13 14 11 17 7 12 13 16 17 9	Вариант 9 Вариант 10		
	6 5 8 12 13 9 14 🗆 🗆	0 0 0 0	0 0 0 0
13 0 8 8 10 12 17 \square	1 17 1 4 5 1	12 13 8 5 5 16 17	
Вариант 3 Вариант 4	21 5 6 7 8 6 16	1 2 6 7 8 3 4	
6 5 9 10 7 12 8 0 0 0 0 9 7 11 6 8 11 10 8 10 7 8 10 7 4 5 6 10 5 6 11 12 4 9 8 9	4 1 2 5 6 10 11 10 12 5 13 4 5 12 3 6 14 □ □ □ □ 7 1 9 4 11 2 10 12 4 7 6 8 7 4 5 4 6 1 786 8 9 9 15 3 3 13 5 3 16 □ □	7 10 3 5 7 4 4 5 4 3 8 9 10 9 14 10 15 8 14 2 3 13 6 7 15 10 8 12 1 11 2 4 6 7 1 10 3 8 6 3 19 4 12 13 20 4 \Box	6 7 2 16 3 9 10 4 5 15 20 19 11 4 10 1 2 18 17 3 5 5 6 4 10 578 18 19 11 12 14 14 15 \Box
4 11 5 4 5 12 13 🛘 🗸	Вариант 11 Вариант 12	1 4 5 8 945	
1113 13 12 13 11		1 5 7 10 2 3 4	
7 10 8 11 7 15 12	Вариант 5 Вариант 6 4 5 9 5 6 14 6	8 11 10 □ □	8 2 5 4 7 10 1 8 3 10 17 8 2 3
125 6 10 18 4 8 11 9 2 16 3 6 5 2 5 14 3 10 5 8 7 6 7 13 8 14 6 8 17 10 11 9 5 15 18 5 9	10 17 7 9 14 8 4 9 5 6 7 3 5 4 12 10 11 13	□ □ □ □ □ □ 5 6 7 8 10 11 12 4 18 4 7 678 5 4 3 6 10 4 5 9 10 8 9 5 13 6 6 8 11 12 789 12 4 5	5 6 7 10 1 3 7 4 8 12 5 4 5 6 10 15 1 2 5 6 7 8 7 12 6 18 5 4 \Box
12 6 10	10 9 11 5 6 12 8 7 13 8 12	6 254 □ □	87
□ □ 86	10 9 11 2 3 12 3 7 13 3 12		
Вариант 13 Вариант 14	10 5 7 8 4 3 5 6 7 9 10 5 8 11 4		ант 19 Вариант 20 3256 7 2 13 12 457 824 2
5 1 4 2 10 6 7	3 □ □	8 7 956 7 11 1 3 12 1 4 5 6	1 10 7 6 5 12 5 6 12 13 15
□ □ □ □ □ 4 5 10 4 5 8 10 15 12 14 15 4 5	3 5 10 7 8 10 12	4 10 11 13 15 16 8 🗆 🗆	16 3 4 18 2 5 7 8 12 4 5 6
7 4 8 9 10 12 13 14 5 4 7 8 9		7843561	2 3 12 1
/ 4 0 9 10 12 13 14 3 4 / 8 9	4 6 74567 12 13 11 6 789		0 0

20 5 1 8 9 10	0 18 16 12 4 5 6 7 8 13 15 16 8 9	9 10 6 12 5 7 8 945 7 4 3 4 5 1 2 \square	
0 0 0 0	6781257895791011	. 12	
		Вариа	нт 21 Вариант 22
Вариант 15 Вариант 16			
	11 4 3 15 4 5 14 \Box	8 9 10 4 6 1 2 13 3 4 5 \square	
20 5 12 13 438 □ □ □ □ 9 10 11 12 13 14 15 8 4 5 4	8 4 3 1 12 13 5 □ □ □ □ 4 2 5 3 4 5 6 1 4 256 7 8 9	5 4 3 1254	12 4 5 6 7 2 1
6 7 8 10 5 7 3 4 5 4 3 12 13 4	4 5 6 789	7 2 3 784 3 12 6 7 1 2 785	7 2 11 12 13 2 6 5 156 7 6 1
6 7 8 9 489 854	10 11 12 13 14 15 16 5 6 7	3 4 7 6 897 5 8 6 2 1 4 5 🗆	4 5 7 1245 8 9 14 5 6 7 4 🗆 🗅
		Вариа	нт 23 Вариант 24
Вариант 17 Вариант 18			
1 5 2 10 3 12 4	□ □ 88	12 □ □ 1 5 3 4 7 6 10	□ □ □ □ □ 485 6 6 9 6 5 10 7 4 7 4 7
0 0 0 0 6 7 8 9 10 12 5 8 3 4 5 5 8	4 18 17 7 3 2 1	□ □ □ □ 12 2 4 7 8 9 10 13 3 5 6 4	10 4 13 8 3 8 3 12 3 4 9 2 10 14
9 1 2 13 4 5 6 7 8 9 4 5 6 8	5 6 1 2 14 3 12 6 8 7 12	3 2 1 4 5 8 9 12 15	5 7 6 12 1 7 5 1 10 11 8 4 2 8
10 3 4 8 7 12 13 1 4 5 1 2 3 8 10	10 8 6 7 12 5 4 6 7 13 3 1 2 4 17 3 4	25 5 1 3 8 10 6 1 3 8 1 8 5 1 12 5 8 5 10 4 26 \square	0 0
	6 12 4 5 689 11 2 1 4 6 7	3 2 4 7 5 8 5	89
Вариант 25 Вариант 5Вариант 6 □ □ ∞			
14 5 6715 2 □ □ □ □ 35 7 9512 10 47810 734		33	48581144 47
6812129 6 1 1024412 7 4 1 97715 2 8	∞ 41275446 5	46245949 59	
	112/3440 3	∞	

42113258

21 3653322 ∞

□□∞

Вариант 15Вариант 16

Вариант 23Вариант 24

□ □ ∞ 23384418 32 □ □ ∞ 51173556 47 19372416 21	□□∞ 21344858 35 □□∞ 914304 12 673511 34 ∞ 26371736 52 ∞ 5915732 47 ∞ □□∞ 317644 59	1263033 47 ∞ 18241333 46 ∞ □ □ ∞ 1263033 47 ∞ 18241333 46	37 74657 20
Bapuaht 17Bapuaht 18 Bapuaht 25 □ □ ∞	□□∞ 20281239 32 □□∞ 2115917 27 30254529 47 ∞ 7524015 1 ∞ 6046115 34 ∞ □□∞ 11451421 30	40 345010 44	
Вариант 19Вариант 20 □ □ ∞ ПРАКТИЧЕСКАЯ РАБОТА 12 36512411 46 □ □ ∞	∞ 25604555 59	48203326 38 ∞	

28174610 20 741582 35

□ □ ∞ 50271914 52 92 □ □ ∞ 16153253 55 □ □ ∞ 273450 2 31 33394236 39 ∞ 55491418 12

Задание Всоответствиисвариантомрешить задачуцелочисле нного линейного программирования методом Гомори.

ЦЕЛОЧИСЛЕННОГО ЛИНЕЙНОГО

ПРОГРАММИРОВАНИЯ

∞
45225928 26
□ □ ∞ 2814 848 35

МЕТОД ГОМОРИ ДЛЯ РЕШЕНИЯ ЗАДАЧ Zxx

Вариант 1Вариант 2 Вариант 9Вариант 10 min;

x x

12

316,

$$x$$
1
5,

 xx
0, 0,

 $\geq \geq$
12

 xx
, целые.

3 2 13,

$$xx$$

12

$$xx$$

0, 0,
 $\geq \geq$
 12
 xx

12

$$\geq \geq$$
 xx
, целые. $=$

0, 0,

x x

$$\begin{array}{c}
12 \\
x x \\
\ge \ge \\
0, 0,
\end{array}$$

x x

21,

x x

≥≥

0, 0,

12

min = -

Zxx

21,

, целые.

x x

1 2

Вариант 11Вариант 12

Вариант 3Вариант 4 max 2 8;

Zxx

=- =-12 12

, целые.

x x

12

x x

≥≥

$$x x x \ge \ge 0, 0, 0,$$

1 2

x x x

3 3, 123

22, xx

Вариант 5Вариант 6 max 7;

Вариант 13Вариант 14

$$2311, xx$$

$$\min 34; Zxx$$

$$= --$$

$$\begin{vmatrix} + \leq \\ \\ \\ \\ xx \end{vmatrix}$$

$$= -$$

$$xx$$

$$\min 34; Zxx$$

$$= --$$

$$\begin{vmatrix} - \leq \\ \\ \\ \\ xx \end{vmatrix}$$

$$= -$$

$$\begin{vmatrix} - \leq \\ \\ \\ \\ \end{bmatrix} + + =$$

$$328,$$

Вариант 7 Вариант 8 Zxx

$$\begin{array}{l}
x \, x \, x \\
\Box - + = 2 \, 1,
\end{array}$$

12

23,

_ - ≤ [] - ++= [] [] + ≤ 12

 $\square^{+\;+\;=\;\square} \ \ ^{+\;\leq\;\square\;\;+\;\geq\;} \square$

2 2 16, 0, 0,

≥≥ x x1 2 , целые.

X X 12

 $\max 2$; Zxx

= + 12

x x x123

3 3,

 \boldsymbol{x} xx x x \geq \geq \geq

3 4,

12 0, 0, 0, x x x

min32 3; Zx x x

= - -

123

 \geq \geq 123 2318,

, целые.

0, 0, 0, 0,

1 234

23,

x x

12

6,

Вариант 15Вариант 16

$$\min 2$$
; $Zx x x$

$$\begin{array}{c}
25, \\
x x x \\
123
\end{array}$$

$$\begin{array}{c} 123 \\ xx \end{array}$$

$$\geq$$
 \geq 0,0, 0,

, целые.

x x

```
Вариант 25
Вариант 17Вариант 18 min2 3;
Zx x x
      = + +
                                    \min 2; Zx x x
                                                                                            = +
        123
                                                                                            max4 3;
                                     = + +
Zxx
                                         123
                                                                                                12
                                 _ + + ≥ [] + ≥ [] + ≥ []
 x x x
                                                                               310,
                                 x x x
  123
                                                                                            8288,
                                        23,
 27,
                                                                                         x x
                                  123
  x x
                                                                                          1 2
                                 x x
                       27,
                                              234, xx
 13
                                                                     \boldsymbol{x}
                       21,
 x x
                                                                     22,
                                              \boldsymbol{x}
                                                               590,
12
                                13
x x x 0, 0, 0, 0,
                                                               ≥≥
                               x x x 0, 0, 0,
                                                               x x
\geq \geq \geq 123
                               \geq \geq \geq 123
                                                               0, 0,
x x
                                                               12
                               x x
, целые.
                                , целые.
                                                      x x
 1 2
                                 , целые. 12
 12
Вариант 19Вариант 20 max2 3;
    Zx x x
= + +
                                                                                   3410,
                                         x x x
1 2 3
                                         123
                                                                                   x x
                                          = +
\Box + + \leq 6 4 325,
                                                                                   12
                                         max 11090;
                                                                                   28,
x x x
                                         Zxx
                                                                                   x x
123
                                                                                   12
\Box + + \leq 53215,
                                         12
                                         ПРАКТИЧЕСКАЯ РАБОТА 13
```

СЕТЕВОЕ ПЛАНИРОВАНИЕ. МОДЕЛИ

УПРАВЛЕНИЯ ПРОЕКТАМИ

0, 0,

x x

, целые.

Задание

Всоответствиисвариантом:

Вариант 21Вариант 22 min 2;

$$= + +$$

$$123$$

$$= + + \ge \square + \ge \square + \ge \square$$

$$xxx$$

$$= 23,$$

$$max 5; Zxx$$

$$\begin{array}{c} = + \\ 12 \\ + \leq \square - + \leq \square \\ \square \end{array} \leq$$

- 2) рассчитать насетевомграфикеранниеипоздниесроки наступлениясобытий,
- 32 5, x x12 6, 0, 0,
- 5) найтиминимальноевремя,

1) поданнымтаблицыпостроитьсетевойграфиккомплекса работинайтиправильнуюнумерациюеговершин;

> атакжерезервывременисобытий; 123 X X 12 7,

- 3) выделить насетевомграфикекритическиепути;
- 4) длянекритическихработнайтиполные исвободные ре- зервывремени; закотороеможетбытьзавер-

шенвеськомплексработ.

Вариант 23Вариант 24 min3 2;

Zx x x

Работа	Последующиеработы	Продолжительностьработы, мес
A_1	A_2	1
A_2	A_3	5

A_3	A_4, A_5	3
A_4	A_6	2
A_5	A_3	6
A_6	A_2, A_7	5
A_7	A_8	5

A_8	A_6	3
		1

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_3 на 7 месяцев, работы A_6 на 2 ме сяца? На какое время можно увеличить продолжительность ра бот A_3 и A_5 , не изменяя ранние сроки выполнения последующих работ?

Вариант 2

, целые. 12

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_2, A_7	4
A_2	A_{5}, A_{6}	6

A_3	A_7	2
A_4	A_{5}, A_{6}	6
A_5	A_6	3
A_6	A_7	3
A_7	A_5	5

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_3 на 8 месяцев, работы

 A_7 на 4 ме сяца? На какое время можно увеличить продолжительность ра бот A_3 и A_6 , не изменяя ранние сроки выполнения последующих работ?

Вариант 3

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_2	6
A_2	A_3	8
A_3	_	2
A_4	A_{6}, A_{9}	3
A_5	A_6, A_7, A_9	4
A_6	A_8	6
A_7	A_8	3
A_8	-	4
A_9	A_3	4

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_7 на 7 месяцев, работы A_9 на 4 ме сяца? На какое время можно увеличить продолжительность ра бот A_7 и A_6 , не изменяя ранние сроки выполнения последующих работ?

98

Вариант 4

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_{5}, A_{6}	5

A_2	A_3, A_7	10
A_3	A_{5}, A_{6}	5
A_4	A_8	3
A_5	A_7	5
A_6	A_4	3
A_7	A_9	4
A_8	A_9	5
A_9	-	39

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_4 на 4 месяца, работы A_6 на 3 месяца? На какое время можно увеличить продолжительность работ A_2 и A_5 , не изменяя ранние сроки выполнения последующих работ?

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_4	5
A_2	A_4, A_5	3
A_3	A_6	7
A_4	A_8	6
A_5	A_4	7
A_6	A_5	3
A_7	A_8	10

A_8	_	8
218		o a constant of the constant o

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_6 на 6 месяцев, работы на 2 ме сяца? На какое время можно увеличить продолжительность работ A_3 и A_6 , не изменяя ранние сроки выполнения последующих работ?

Вариант 6

Бирі	Iani v	
Работа	Последующие работы	Продолжительность работы, мес
A_1	A_7	3
A_2	A_4, A_5, A_6	6
A_3	A_8	2
A_4	A_6	5
A_5	A_7	4
A_6	A_7	3
A_7	A_8	9
A_8	_	3

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_1 на 9 месяцев, работы A_5 на 3 ме сяца? На какое время можно увеличить продолжительность работ A_2 и A_6 , не изменяя ранние сроки выполнения после дующих работ?

Вариант 7

Барі	1anı /	
Работа	Последующие работы	Продолжительность работы, мес
A_1	_	6
A_2	A_1	8
A_3	A_1	12
A_4	A_3	4
A_5	A_3	12
A_6	A_4, A_5	15
A_7	A_2, A_5	12
A_8	A_{6}, A_{7}	8

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_1 на 8 месяцев, работы A_4 на 4 ме сяца? На какое время можно увеличить продолжительность работ A_5 и A_8 , не изменяя ранние сроки выполнения после дующих работ?

Варнан 1 0					
Работа	Последующие работы	Продолжительность работы, мес			
A_1	Т	1			
A_2	-	5			
A_3	A_1	4			
A_4	A_1	3			
	Работа A ₁ A ₂ A ₃	Работа Последующие работы A_1 — A_2 — A_3 A_1			

A_5	A_2	6
A_6	A_4, A_5	5
A_7	A_4, A_5	6
A_8	A_{3}, A_{6}	4

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_2 на 7 месяцев, работы A_3 на 4 ме сяца? На какое время можно увеличить продолжительность работ A_2 и A_7 , не изменяя ранние сроки выполнения после дующих работ?

100

Вариант 9

Dapi	14111 7	
Работа	Последующие работы	Продолжительность работы, мес
A_1	A_2, A_6, A_8	5
A_2	A_5	8
A_3	A_5	4
A_4	A_7	5
A_5	A_8	3
A_6	A_7	3
A_7	A_8	9
A_8	-	12

 A_5 на 3 ме сяца? На какое время можно увеличить продолжительность ра бот A_4 и A_6 , не изменяя ранние сроки выполнения последующих работ?

Вариант 10

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_2	5
A_2	A_3	9
A_3	-	3
A_4	A_5, A_6	5
A_5	A_3	7
A_6	A_7	6
A_7	-	3
A_8	A_{9}, A_{10}	4
A_9	A_6	4
A_{10}	-	2

Как повлияет на срок выполнения комплекса работ увеличе ние продолжительности работы A_2 на 8 месяцев, работы A_4 на 3 ме сяца? На какое время можно увеличить продолжительность ра бот A_1 и A_6 , не изменяя ранние сроки выполнения последующих работ?

Вариант 11

	Как	повлияет	на	срок	выполнения	комплекса	работ	Работа	Последующие работы	Продолжительность работы, мес
У	величен	ие продолж	сител	іьности	работы A_3 на	7 месяцев,	работы		•	

101

A_1	A_4, A_5, A_6	5
A_2	A_3, A_7	10
A_3	A_5, A_6	5
A_4	A_8	3
A_5	A_8	5
A_6	A_9	3
A_7	A_9	4
A_8	-	5
A_9	-	39

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_3 на 8 месяцев, работы A_7 на 2 ме сяца? На какое время можно увеличить продолжительность работ A_2 и A_5 , не изменяя ранние сроки выполнения последующих работ?

Вариант 12

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_2, A_4, A_5	2
A_2	A_{3}, A_{8}	5
A_3	-	1
A_4	A_8	11
A_5	A_6	4
A_6	A_7	8

A_7	_	7
A_8	_	8

Как повлияет на срок выполнения комплекса работ увеличе ние продолжительности работы A_3 на 6 месяцев, работы A_5 ме сяц? На какое время можно увеличить продолжительность работ A_3 и A_2 , не изменяя ранние сроки выполнения последующих работ?

Вариант 13

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_6	20
A_2	A_4, A_6	12
A_3	A_{5}, A_{7}	8
A_4	A_{5}, A_{7}	4
A_5	A_8	14
A_6	A_8	7
A_7	A_6	7
A_8	-	10

102

Как повлияет на срок выполнения комплекса работ увеличе ние продолжительности работы A_3 на 8 месяцев, работы $A_7^{\rm Ha}$ $^{\rm Me}$ сяца? На какое время можно увеличить продолжительность

работ A_1 и A_3 , не изменяя ранние сроки выполнения после дующих работ?

Вариант 14

Бариант 14		
Работа	Последующие работы	Продолжительность работы, мес
A_1	A_4	10
A_2	A_6	13
A_3	A_{7}, A_{8}	8
A_4	A_5	7
A_5	-	15
A_6	A_8	17
A_7	A_5	10
A_8	_	3

Как повлияет на срок выполнения комплекса работ увеличе
ние продолжительности работы A_4 на 1 месяц, работы A_6 на 2 ме
сяца? На какое время можно увеличить продолжительность ра
бот A_1 и A_4 , не изменяя ранние сроки выполнения последующих
работ?

Вариант 15

Daphani 15		
Работа	Последующие работы	Продолжительность работы, мес
A_1	A_7	2
A_2	A_4, A_5, A_6	1
A_3	A_6	2

A_4	A_8	10
A_5	A_7	3
A_6	A_8	4
A_7	A_8	7
A_8	F	2

Как повлияет на срок выполнения комплекса работ увеличе ние продолжительности работы A_7 на 1 месяц, работы A_3 на 5 ме сяцев? На какое время можно увеличить продолжительность ра бот A_3 и A_1 , не изменяя ранние сроки выполнения последующих работ?

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_2, A_5	2
A_2	A_3	2
A_3	_	3
A_4	A_3, A_8	4
A_5	ľ	7
A_6	A_7	4
A_7	A_3	8
A_8	A_7	6

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_5 на 12 месяцев, работы A_8 на 1 ме сяц? На какое время можно увеличить продолжительность работ A_5 и A_1 , не изменяя ранние сроки выполнения последующих работ?

Вариант 17

рариант 17		
Работа	Последующие работы	Продолжительность работы, мес
A_1	A_2, A_5, A_8	12
A_2	A_3, A_4	10
A_3	_	8
A_4	A_8	4
A_5	A_6	2
A_6	A_7	4
A_7	_	8
A_8	_	4

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_6 на 4 месяца, работы A_2 на 1 месяц? На какое время можно увеличить продолжительность работ A_6 и A_7 , не изменяя ранние сроки выполнения последующих работ?

Вариант 18

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_2, A_7	2
A_2	A_5	8

A_3	A_4, A_5	8
A_4	A_6	1
A_5	A_6	10
A_6	-	2
A_7	A_8	10
A_8	-	10

104

Как повлияет на срок выполнения комплекса работ увеличе на 11 ние продолжительности работы A_5 на 3 месяца, работы A_3 месяцев? На какое время можно увеличить продолжительность работ A_3 и A_4 , не изменяя ранние сроки выполнения после дующих работ?

14111 17	
Последующие работы	Продолжительность работы, мес
A_2, A_7	2
A_5, A_6	4
A_7	14
A_5, A_6	2
A_8	6
A_7	8
A_8	3
	Последующие работы A_2, A_7 A_5, A_6 A_7 A_5, A_6 A_8 A_7

A_8	-	2	

Как повлияет на срок выполнения комплекса работ увеличе ние продолжительности работы A_4 на 4 месяца, работы A_7 на 2 ме сяца? На какое время можно увеличить продолжительность ра бот A_4 и A_5 , не изменяя ранние сроки выполнения последующих работ?

Вариант 20

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_4	10
A_2	A_5, A_6, A_7	2
A_3	A_6	3
A_4	A_8	2
A_5	A_4	8
A_6	A_8	4
A_7	A_8	8
A_8	_	10

Как повлияет на срок выполнения комплекса работ увеличе ние продолжительности работы A_5 на 4 месяца, работы A_3 на 5 ме сяцев? На какое время можно увеличить продолжительность ра бот A_6 и A_3 , не изменяя ранние сроки выполнения последующих работ?

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_7	2
A_2	A_4, A_6	11
A_3	A_4, A_5, A_6	4
A_4	A_8	4
A_5	A_7	1
A_6	A_7	2
A_7	A_8	2
A_8	-	4

Как повлияет на срок выполнения комплекса работ увеличе на 3 ме ние продолжительности работы A_6 на 1 месяц, работы A_1 сяца? На какое время можно увеличить продолжительность работ A_1 и A_5 , не изменяя ранние сроки выполнения последующих работ?

	Работа	Последующие работы	Продолжительность работы, мес		
	A_1	A_2, A_6, A_8	5		
іиче	A_2	A_5	3		
5 ме ь ра	A_3	A_5	2		
ь ра щих	A_4	A_7	25		
	A_5	A_8	20		
105	A_6	A_7	20		
	<u> </u>	•	•		

A_7	A_8	15
A_8	_	5

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_2 на 12 месяцев, работы A_6 на 5 ме сяцев? На какое время можно увеличить продолжительность работ A_2 и A_5 , не изменяя ранние сроки выполнения последующих работ?

Вариант 23

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_2	15
A_2	A_3	5
A_3	_	5
A_4	A_{5}, A_{6}	30
A_5	A_3	50
A_6	_	30
A_7	A_8,A_9	10
A_8	A_5	20

106

Как повлияет на срок выполнения комплекса работ увеличе ние продолжительности работы A_8 на 4 месяца, работы A_9 на 35 ме сяцев? На какое время можно увеличить продолжительность работ A_1 и A_9 , не изменяя ранние сроки выполнения после

дующих работ?

Вариант 24

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_4, A_5, A_6	2
A_2	A_3, A_7	1
A_3	A_{5}, A_{6}	3
A_4	A_8	5
A_5	A_8	4
A_6	A_9	3
A_7	A_9	2
A_8	-	1
A_9	_	2

Как повлияет на срок выполнения комплекса работ увеличе ние продолжительности работы A_1 на 1 месяц, работы A_3 сяца? На какое время можно увеличить продолжительность ра бот A_1 и A_7 , не изменяя ранние сроки выполнения последующих работ?

Варнант 23							
Работа	Последующие работы	Продолжительность работы, мес					
A_1	A_2	6					
A_2	A_3	7					
A_3	=	3					

A_4	A_{6}, A_{9}	4
A_5	A_6, A_7, A_9	1
A_6	A_8	4
A_7	A_8	3
A_8	-	2
A_9	A_3	9

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_7 на 12 месяцев, работы A_4 на 3 ме сяца? На какое время можно увеличить продолжительность работ A_6 и A_7 , не изменяя ранние сроки выполнения последующих работ?

107

ПРАКТИЧЕСКАЯ РАБОТА 14 Вариант 9Вариант 10

РЕШЕНИЕ МАТРИЧНЫХ ИГР В ЧИСТЫХ 2) 4 4 6 5 СТРАТЕГИЯХ Выполнитьвозможные упрощения платежных мат риц. 1 112 □ □ 4133 Задание Всоответствиисвариантом: 76 6 3 □ □ 2343 1 2 1 4 □ □ □ 1 показатьсуществование илиот сутствиечистых от ти- мальных стратегий, найтиценуигры; 3432 □ □ □ 1 2 3 5

Вариант 11Вариант 12

Вариант 1Вариант 2

Вариант 13Вариант 14

Вариант ЗВариант 4

Вариант 3 Вариант 4

Вариант 21Вариант 22

		10 8 6 $^{\square}$ $^\square$	31 5 4 $^{\square}$ $^{\square}$
51 343 $^{\square}$ $_{\square}$ $_{\square}$ 3	$\begin{smallmatrix}1&3&3&1&2\end{smallmatrix}^{\square}\square\square\square$	□ 22 7 5	□ 6 6 2 0
21 2 2	20323	0000	
□ □ 364 7 6	□ □ 2 1 0 1 3	53 1 1	4276
		33 1 1	4276 L
		5 5 2 0	5 3 5 5
			Вариант 5 Вариант 6
Вариант 23Вариант 24			
2 111	$4\ 0\ 3\ 0\ ^{\square\ \square}\ \square\ \square\ 3\ 2\ 4\ 1$	3 8	5 20 3 4
0 0 0 0		$\begin{smallmatrix} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ $	□ □ 0 43 1 2 □ □
1 1 2 4	5 3 5 2	1 1 9 0	
$^{\square}$	Вариант 25		958
	6 7111		0 0 0 0 0 0 4
		8	3 2 6
		5367	5 2 0
Вариант 7 Вариант8	□ □2 23 -1	4 7	
		Вариант 9 Вариант10	
3 42 1 6	$^{\square} ^{\square} _{\square} ^{\square} 2 3$	5344	□ □ 3 5 6 8
2 03 1 4 🗆 🗆 8 2443			
□ □ 0 1 202	3 2	2678]
	□ □ □ -2 6	2 6 7 8 2 4 5 5	ШШ
2 4			
	SA 15	Вариант 11 Вариант12	
ПРАКТИЧЕСКАЯ РАБОТ	***************************************	ихплатежныхматрицинайтирешени 🛭 🗀	
ГРАФИЧЕСКИЙ МЕТОД РЕШЕН ИГР		уяграфическийметод.	пп 3 3
		3 6] [] [
Задание Всоответствиисвариантомпроизи	110		1 1 8
ро-	BeethBosmomibley II () 4		

$$0-3$$
 4 2 \square \square \square \square 470 -3

Вариант 3 Вариант23 Вариант24

Вариант 4

Вариант25 460

307

112 70-1 8 \square \square \square \square 55 4 6

Вариант 6

x	0	1	2	3	4	5
$g_1(x)$	0	4,1	4,8	5,7	6,3	7,9
$g_2(x)$	0	3,2	3,9	5,0	7,0	8,8
$g_3(x)$	0	4,0	6,0	6,8	9,0	11,0

Вариант 7

Dupmani						
x	0	1	2	3	4	5
$g_1(x)$	0	2,1	4,2	6,0	8,2	9,8
$g_2(x)$	0	1,8	3,5	5,0	6,6	8,0

x
$g_1(x)$
$g_2(x)$

$g_3(x)$	0
----------	---

Вариант 5

x	
$g_1(x)$	
$g_2(x)$	
$g_3(x)$	11

х	0
$g_1(x)$	0
$g_2(x)$	0
$g_3(x)$	0

g ₃ (x)	0 4,0	5,0 5,7	7,3	10,0
--------------------	-------	---------	-----	------

200722022						
x	0	1	2	3	4	5
$g_1(x)$	0	2,0	2,2	3,0	3,4	4,0
$g_2(x)$	0	3,0	3,1	4,0	4,4	5,0
$g_3(x)$	0	3,1	4,0	4,7	5,0	6,0

Вариант	9
---------	---

200 0 2200 22 2							
x	0	1	2	3	4	5	

$g_1(x)$	0	0,2	0,6	1,6	2,4	4,4
$g_2(x)$	0	1,0	1,8	2,0	3,0	5,0
$g_3(x)$	0	1,3	2,4	3,4	4,0	5,4

Вариант 10

x	0	1	2	3	4	5
$g_1(x)$	0	1,0	2,3	3,4	3,5	4,3
$g_2(x)$	0	2,0	3,0	4,5	4,9	5,1
$g_3(x)$	0	3,1	3,5	4,0	4,6	5,5

Вариант 11

x	0	1	2	3	4	5
$g_1(x)$	0	3,6	4,0	4,6	5,0	7,4
$g_2(x)$	0	2,5	3,0	3,7	4,8	6,7
$g_3(x)$	0	3,4	3,5	4,8	5,7	7,8

Вариант 12

x	0	1	2	3	4	5
$g_1(x)$	0	0,5	1,2	1,7	2,0	2,9
$g_2(x)$	0	0,9	1,0	1,5	1,8	3,0
$g_3(x)$	0	1,5	1,8	2,5	2,9	3,5

114

Вариант 13

x	0	1	2	3	4	5
$g_1(x)$	0	3,3	3,8	4,5	5,0	5,3
$g_2(x)$	0	3,6	3,9	4,2	5,8	6,3
$g_3(x)$	0	2,6	2,9	3,8	4,5	4,9

Вариант 14

x	0	1	2	3	4	5
$g_1(x)$	0	0,8	1,4	2,0	3,0	4,9
$g_2(x)$	0	0,3	1,0	2,3	2,5	5,3
$g_3(x)$	0	2,0	4,0	4,5	5,2	5,8

Вариант 15

x	0	1	2	3	4	5
$g_1(x)$	0	1,9	2,5	2,9	3,3	4,4
$g_2(x)$	0	1,5	2,0	2,4	3,1	5,0
$g_3(x)$	0	2,0	3,2	3,9	4,0	6,0

x	0	1	2	3	4	5
$g_1(x)$	0	2,5	2,7	3,0	3,1	3,3
$g_2(x)$	0	2,0	3,0	4,0	5,0	5,5

$g_3(x)$	0	2,0	3,4	4,9	5,3	6,0	x	0	1	2	3	4	5
							$g_1(x)$	0	3,4	4,5	5,0	6,1	6,7
Вариант	17						$g_2(x)$	0	3,0	4,0	5,1	6,3	7,0
x	0	1	2	3	4	5	$g_3(x)$	0	4,1	4,4	5,4	7,0	7,2
$g_1(x)$	0	2,0	3,0	4,8	5,5	7,0		•					
$g_2(x)$	0	3,0	3,2	3,8	5,2	6,5	Вариант	21					
$g_3(x)$	0	1,0	2,2	3,0	5,0	6,0	x	0	1	2	3	4	5
							$g_1(x)$	0	1,3	1,5	2,0	2,8	3,4
Вариант	18		_	_			$g_2(x)$	0	1,6	2,5	2,7	3,0	4,0
x	0	1	2	3	4	5	$g_3(x)$	0	3,0	3,5	3,8	4,0	5,0
$g_1(x)$	0	1,4	2,1	2,5	2,7	3,0		•					
$g_2(x)$	0	0,8	1,2	1,6	2,2	2,8	Вариант 22						
$g_3(x)$	0	1,2	1,8	2,2	2,6	3,2	х	0	1	2	3	4	5
							$g_1(x)$	0	2,3	3,1	3,5	4,5	5,0
Вариант	19						$g_2(x)$	0	2,2	3,5	4,1	5,5	6,2
x	0	1	2	3	4	5	$g_3(x)$	0	3,4	3,8	4,1	5,7	6,0
$g_1(x)$	0	2,5	3,2	4,0	5,0	6,2		•	•	•	•	•	
$g_2(x)$	0	2,0	3,0	4,0	5,2	6,8	Вариант	23					
$g_3(x)$	0	2,0	3,5	5,0	6,1	7,0	x	0	1	2	3	4	5
							$g_1(x)$	0	4,0	4,6	4,9	5,2	5,5
						115	$g_2(x)$	0	2,0	2,5	3,0	3,5	3,9
20							$g_3(x)$	0	3,0	3,6	3,8	4,0	5,8

Вапиант 24

200 5110111						
x	0	1	2	3	4	5
$g_1(x)$	0	1,2	2,3	3,4	4,5	5,6
$g_2(x)$	0	0,9	1,3	2,6	3,0	3,7
$g_3(x)$	0	2,1	3,2	4,3	5,4	6,5

Вариант 25

x	0	1	2	3	4	5
$g_1(x)$	0	1,9	2,2	3,4	5,1	5,0
$g_2(x)$	0	2,2	3,8	4,0	5,5	6,3
$g_3(x)$	0	3,3	3,9	4,6	5,7	6,6

116

Рекомендуемаялитература

- 1. Волков, И. К. Исследование операций: учебник длявузов / И. К. Волков, Е. А. Загоруйко; подред. В. С. Зарубина, А. П. Крищенко. – 2-еизд. – М.: Изд-воМГТУ им. Н. Э. Бау- мана, 2002. - 436 c.
- 2. Костевич, Л. С. Математическоепрограммирование : информационныетехнологииоптимальных решений: учеб. пособие / Л. С. Костевич. – Минск: Нов. знание, 2003. – 424 с.: ил.
- 3. Кудрявцев, Е. М. Исследование операций взадачах, алгоритмах, программах / Е. М. Кудрявцев. – М.: Радиоисвязь, 1984. - 184 с.: ил.
- 4. Кузнецов, А. В. Высшаяматематика: математическоепрограммирование / А. В. Кузнецов, В. А. Сокович, Н. И. Холод. –

- Минск: Выш. шк., 1994. 287 с.: ил.
- 5. Кузнецов, А. В. Руководствокрешению задач поматематическомупрограммированию: учеб. пособие / А. В. Кузнецов, Н. И. Холод, Л. С. Костевич; подобщ. ред. А. В. Кузнецова. – 2-еизд. – Минск: Выш. шк., 2001.–448 с.: ил.
- 6. Окулов, С. М. Программированиевалгоритмах / С. М. Окулов. - 2-еизд. - М.: БИНОМ, 2006. - 283 с.: ил.
- 7. Самарский, А. А. Математическоемоделирование. Идеи. Методы. Примеры / А. А. Самарский, А. П. Михайлов. - М.: Нау- ка, 1997.
- 8. Сборникзадачиупражнений повысшейматематике: математическоепрограммирование: учеб. пособие / А. В. Кузнецов [и др.]; подобщ. ред. А. В. Кузнецова, Р. А. Рутковского. – 2-еизд. – Минск. : Выш. шк., 2002. – 447 с. : ил.
- 9. Экономико-математическиеметодыимодели: учеб. пособие / Н. И. Холод [и др.]; подобщ. ред. А. В. Кузнецова. – 2-еизд. – Минск: БГЭУ, 2000. – 412 с.

Оглавление

Практическая работа 1 Составление математических моделей. Практическая работа 2 Оптимизация целевой функции с помощью

Практическая работа 3

117

Решение двойственных задач.	
Экономическая интерпретация задач	
линейного программирования	
Практическая работа 4	
Решение транспортных задач	
Практическая работа 5	
Построение остовного дерева графа.	
Нахождение найкратчайшего расстояния	
между заданными вершинами графа	
Практическая работа 6	
Нахождение наикратчайших расстояний	
между всеми парами вершин графа.	
Алгоритм Флойда	
Практическая работа 7	
Построение потоков максимальной мощности. Алгоритм	
Форда-Фалкерсона	
Практическая работа 8	
Нахождение потока заданной величины	
минимальной стоимости.	
Алгоритм Басакера-Гоуэна	
Практическая работа 9	
Нахождение потока заданной величины	
минимальной стоимости. Алгоритм Клейна 77	
Практическая работа 10	
Задача об оптимальном назначении	
18	
Практическая работа 11	
Задача коммивояжера	90
Практическая работа 12	
Метод Гомори для решения задач целочисленного	
линейного программирования	93
Учебное издание	

Практическая работа 13
Сетевое планирование. Модели
управления проектами
Практическая работа 14
Решение матричных игр в чистых стратегиях 108
Практическая работа 15
Графический метод решения матричных игр 110
Практическая работа 16
Динамическое программирование
Рекомендуемая литература

СИСТЕМНЫЙ АНАЛИЗ И МОДЕЛИРОВАНИЕ

Практикум для учащихся специальности 2-40 01 01 «Программное обеспечение информационных технологий» и студентов специальности 1-08 01 01-07 «Профессиональное обучение. (Информатика)»

С о с т а в и т е л и : Соловей Галина Николаевна Кудина Светлана Николаевна Смолер Ирина Геннадьевна

Ответственный за выпуск О. П. Козельская Редактор О. А. Артемчик Корректор Г. Л. Говор Компьютерная верстка В. С. Понтус

Подписано в печать 15.11.2010. Формат $60.84^{1}/_{16}$. Бумага писчая. Ризография. Усл. печ. л. 6,98. Уч.-изд. л. 5,84 Тираж 150 экз. Заказ 223.

Издатель и полиграфическое исполнение: учреждение образования «Минский государственный высший радиотехнический колледж»

ЛИ № 02330/0494033 от 08.01.2009.
Пр. Независимости, 62, 220005, Минск.