Tutorial - Plotting data from cultures

Daniel Vaulot
04 05 2018

Contents

1	Aim	1
2	Downloads	1
3	Data used	1
	Tutorial description	2
	4.1 Load the libraries	
	4.2 Antibiotics treatments	2
	4.3 Grazing experiment	6

1 Aim

This tutorial explain how plot growth curves for phytoplankton cultures in different conditions. * Antibiotics treatment : 4 RCC cultures, 8 days, 2 antibiotics, 5 concentrations,

2 Downloads

Install the following software:

- R studio : https://www.rstudio.com/products/rstudio/download/#download
- Download and install the following libraries by running under R studio the following lines

```
install.packages("dplyr")  # To manipulate dataframes
install.packages("tidyr")  # To manipulate dataframes

install.packages("stringr")  # To strings

install.packages("ggplot2")  # for high quality graphics
install.packages("gridExtra")  # for grids

install.packages("plotrix")  # needed for standard error
```

3 Data used

- cultures antibiotics.txt contains data obtained by Priscilla Gourvil on antibiotics treatment of RCC strains
- grazing experiment.xlsx contains data obtained by Valeria Jimenez on grazing experiment on Micromonas

4 Tutorial description

4.1 Load the libraries

```
library("ggplot2")
library("gridExtra")
library("plotrix" ) # needed for standard error
library("dplyr")
library("tidyr")
library("stringr")
library("readxl")
```

4.2 Antibiotics treatments

4.2.1 Read and reformat the data

Read the data

```
cell<- read.table("cultures antibiotics.txt", header=TRUE, sep="\t", na.strings="NA", dec=".", strip.wh
knitr::kable(head(cell))</pre>
```

RCC	Antibio	Well	Concentration	X1	X2	Х3	X4	X5	X6	X7
RCC 96	G 418	A01	0.5	35888	17043	3853	593	225	675	591
RCC 96	G418	A02	0.5	27281	20952	337	450	84	394	562
RCC 96	G418	A03	0.5	29952	19630	34846	3853	21318	19996	31639
RCC 96	G418	B01	1.0	33018	17268	6468	337	478	394	253
RCC 96	G418	B02	1.0	26662	20530	34902	675	22555	8268	14062
RCC 96	G 418	B03	1.0	24946	19040	49011	4725	21599	26746	277217

Change from wide format to long format

```
cell<- gather(cell, X1:X7, key = "day", value = "cell_number")
knitr::kable(head(cell))</pre>
```

RCC	Antibio	Well	Concentration	day	cell_number
RCC 96	G 418	A01	0.5	X1	35888
RCC 96	G418	A02	0.5	X1	27281
RCC 96	G418	A03	0.5	X1	29952
RCC 96	G 418	B01	1.0	X1	33018
RCC 96	G 418	B02	1.0	X1	26662
RCC 96	G 418	B03	1.0	X1	24946

Reformat day as numeric

```
cell$day<-as.numeric(str_replace(cell$day, "X", ""))
knitr::kable(head(cell))</pre>
```

RCC	Antibio	Well	Concentration	day	cell_number
RCC 96	G 418	A01	0.5	1	35888
RCC 96	G 418	A02	0.5	1	27281

RCC	Antibio	Well	Concentration	day	cell_number
RCC 96	G 418	A03	0.5	1	29952
RCC 96	G 418	B01	1.0	1	33018
RCC 96	G 418	B02	1.0	1	26662
RCC 96	G 418	B03	1.0	1	24946

Reformat concentration as character

```
cell$Concentration<-as.character(cell$Concentration)
knitr::kable(head(cell))</pre>
```

RCC	Antibio	Well	Concentration	day	cell_number
RCC 96	G 418	A01	0.5	1	35888
RCC 96	G 418	A02	0.5	1	27281
RCC 96	G 418	A03	0.5	1	29952
RCC 96	G 418	B01	1	1	33018
RCC 96	G 418	B02	1	1	26662
RCC 96	G 418	B03	1	1	24946

Compute mean and SD for each RCC, Antibio, Concentration and day using dplyr

Warning: package 'bindrcpp' was built under R version 3.4.4

knitr::kable(head(cell_1))

RCC	Antibio	Concentration	day	cell_mean	cell_sd	cell_se
RCC 4094	G 418	0.5	1	188562.333	46983.373	27125.863
RCC 4094	G418	0.5	2	100846.333	48010.521	27718.887
RCC 4094	G418	0.5	3	4087.667	3401.215	1963.692
RCC 4094	G418	0.5	4	42195.333	18511.363	10687.541
RCC 4094	G418	0.5	5	8727.667	14751.465	8516.763
RCC 4094	G 418	0.5	6	3806.000	6105.543	3525.037

4.2.2 Define graphics options

Define the color, line type and symbol shape

```
 \begin{tabular}{ll} Concentration\_color <-c ("0.2"="white", "0.5"="white", "0.8"="white", "1"="black", "1.5"="black", "2"="black", "0.8"=1, "1"=2, "1.5"=2, "2"=2) \\ Concentration\_shape <-c ("0.2"=21,"0.5"=22, "0.8"=21, "1"=22, "1.5"=21, "2"=22) \\ \end{tabular}
```

Define graphics options

```
scaling_factor=15
cell_label <- expression (paste("cell.",mL^-1))
cell_breaks=c(100,1000,10000,100000,1000000)
x_max=8
x_breaks=c(0, 2,4,6,8)
x_labels=c("0", "2","4","6","8")</pre>
```

4.2.3 Plot the data

```
plot1<- ggplot(cell_1, aes(x=day, y=cell_mean, group = Concentration, xmin=0, xmax=x_max,</pre>
               shape=Concentration, fill=Concentration, linetype=Concentration)) +
              facet_wrap(~ RCC + Antibio, nrow=4, ncol=2, scales="free") +
                geom_line (size=0.8, colour="black") +
              geom point(size = 4) +
              geom_errorbar(aes(ymin=cell_mean-cell_se, ymax=cell_mean+cell_se), width=0.2, linetype=1)
              theme_bw(scaling_factor) +
              theme(panel.border = element_rect(colour = "black"), panel.grid.major = element_blank(),
              axis.line = element_line(colour = "black"),
                  legend.title=element_text(size=scaling_factor), legend.key=element_blank(),
                  axis.title = element_text(size=scaling_factor),
                  legend.text=element_text(size=scaling_factor), legend.key.height = unit(1, "cm"),
                  axis.text = element_text(size=0.8*scaling_factor), panel.background = element_rect(fi
                theme(legend.position = "top", legend.box = "horizontal") +
                labs(x = "Days", y = cell_label ) +
              scale_x_continuous(breaks=x_breaks, labels=x_labels) +
                scale_y_log10(breaks = cell_breaks ,labels = scales::trans_format("log10", scales::math
              annotation_logticks(sides = "lr") +
                scale_fill_manual(values=Concentration_color) +
              scale_shape_manual(values=Concentration_shape) +
              scale_linetype_manual(values=Concentration_linetype)
# Add next line to zoom
# + coord_cartesian(ylim=c(100, 10000000))
plot1
```



```
# Next can be used to save the plot as pdf
# ggsave(file="Fig 1 version 2.0.pdf", plot=plot1, scale=5, width = 7, height = 10, units = "cm", useDi
```

4.3 Grazing experiment

Micromonas are fed with fluorescent labelled beads and one looks at the % of cells that have beads The idea is to do a plot with 2 different scales for the y axis.

4.3.0.1 Read the data

```
grazing <- read_xlsx("grazing experiment.xlsx", sheet="RCC2306")

# Compute a new variable with the same scale as the cell concentration to be able to plot on the same g
grazing$cell_beads_pct_scaled <- grazing$cell_beads_pct*200000

knitr::kable(head(grazing))</pre>
```

species	RCC#	\exp	treatment	time pnt	$_{ m time}$	rep	Well	Date	allPhyto.Count	PhytoBeac
M. polaris	2306	4	Light 100%L1ASW	Т0	0	A	A09	02.23.2018	17192	
M. polaris	2306	4	Light 100% L1ASW	T0	0	В	A10	02.23.2018	17955	
M. polaris	2306	4	Dark 100% L1ASW	T0	0	A	A11	02.23.2018	13898	
M. polaris	2306	4	Dark 100% L1ASW	T0	0	В	A12	02.23.2018	14525	
M. polaris	2306	4	Light 100% L1ASW	T3	3	A	C09	02.23.2018	19589	
M. polaris	2306	4	Light 100% L1ASW	T3	3	В	C10	02.23.2018	19383	

4.3.0.2 Plot the data

Demonstrate the use of sec_axis.

