# Clasificación de redes

## Álvaro González Sotillo

## 9 de septiembre de 2023

# Índice

| 1. | Introducción          | 1  |
|----|-----------------------|----|
| 2. | Modelo de transmisión | 3  |
| 3. | Topología             | 6  |
| 4. | Extensión de la red   | 13 |
| 5. | Propietario de la red | 14 |
| 6. | Modo de transmisión   | 14 |
| 7. | Medio de transmisión  | 15 |
| 8. | Referencias           | 15 |

# 1. Introducción

## 1.1. Preguntas previas

Es posible que ya conozcas muchas cosas acerca de las redes. Veamos si sabes...

- ¿Por qué nos molestamos en crear redes de ordenadores?
  - En casa
  - En el trabajo
- $\blacksquare$  ¿Qué es una dirección  $\mathit{IP?}$  ¿Qué es una dirección  $\mathit{MAC?}$  ¿Qué es un  $\mathit{puerto?}$
- $\blacksquare$  ¿Sabes que es un proxy o un firewall?
- $\blacksquare$  ¿Qué es un servidor DNS?
- $\bullet$  ¿Qué es un servidor DHCP?

## 1.2. Empieza la clase de redes

# EN CLASE DE REDES



## 1.3. Un poco de historia

■ En los años 50, las empresas grandes tenían **un** (1) ordenador

- Muy grande. Muy caro.
- Debía ser compartido por todos los empleados
- Que se debían trasladar físicamente para usarlo
- Idea: conectar terminales (ordenadores baratos)
  - No es necesario el desplazamiento físico
  - Se puede compartir simultáneamente

## 1.4. ¿Por qué usar redes?

Las redes permiten compartir recursos entre ordenadores.

- $\blacksquare$  Hardware
  - $\bullet$  CPU y memoria
  - Disco
  - Impresora, escáner
  - Conexión a otras redes
- $\blacksquare$  Software
  - Programas
  - Datos
  - Aplicaciones

## 1.5. Ventajas de una red

La compartición de recursos aporta las siguientes ventajas:

- Reducción de costes
- Mejora de la comunicación (trabajo en colaborativo en equipo)
- Gestión simplificada
  - Los técnicos pueden centralizar su trabajo
- Como consecuencia, mejora de la productividad

#### 1.6. Criterios de clasificación de redes

- Modelo de transmisión
- Topología (física)
- Extensión
- Propietario de la red
- Modo de transmisión
- Medio de transmisión

## 2. Modelo de transmisión

- Difusión
- Punto a punto

#### 2.1. Redes de difusión:

- 1. A quiere comunicar con B.
- 2. A manda la información a todos los nodos que componen la red (multidifusión).
- 3. De todos estos, solo B se quedará con la información.
- 4. El resto también la reciben, pero la ignoran



Difusión: todos reciben el mensaje, aunque se dirija uno de ellos

#### 2.1.1. Características

- Se necesita un arbitraje del medio.
  - Asignación estática: tiempo dividido en cuantos.
    - o Un host utiliza el medio en su cuanto. Si no lo utiliza, se queda sin usar.
  - Asignación dinámica: bajo demanda.
- Límite máximo de usuarios: colisiones
- Privacidad

Ejemplo de redes de difusión:

- Radio de la policía
- Wifi (aproximadamente)
- Comunicación oral entre personas

## 2.2. Redes punto a punto:

- 1. A quiere conectarse con B.
- 2. Entre A y B existen otros elementos de interconexión que se ocupan de seleccionar un camino de A a B.
- 3. Los equipos que no estén directamente en la interconexión no interactúan



Punto a punto: el hardware limita a un solo destinatario

#### 2.2.1. Características

- Privacidad
- Coste:
  - El medio no está compartido
  - Hardware por cada conexión
- Sin colisión

#### 2.2.2. Conmutación de circuitos:

- Se crea un circuito dedicado (real o virtual) por el que pasa la información.
  - Necesita establecer la conexión y liberarla.
  - Puede desaprovechar recursos.
  - Mientras exista la conexión, la comunicación está garantizada



#### Fuente

#### 2.2.3. Conmutación de paquetes:

- El mensaje se divide en paquetes, que se envían de forma individual
- Cada paquete puede seguir un camino distinto.

- Cada paquete puede llegar o no
- El orden de emisión no tiene por qué ser el de recepción
- Requiere dispositivos más rápidos y complejos.
- La congestión puede afectar a toda la red. Más difícil resolver congestiones.

media/conmutacion-paquetes.gif De Oddbodz - Trabajo propio, CC BY-SA 3.0



#### Fuente

#### 2.2.4. Circuitos vs paquetes

|                                    | Circuitos         | Paquetes          |
|------------------------------------|-------------------|-------------------|
| Retardo inicial                    | Mayor             |                   |
| Asignación dinámica de recursos    |                   | Sí                |
| La congestión afecta a toda la red |                   | Sí                |
| Complejidad en la recepción        |                   | Mayor             |
| Latencia (tras la conexión)        | Menor             |                   |
| Tipo de latencia                   | Constante         | Variable          |
| Tolerancia a fallos                |                   | Mayor             |
| Mejor para                         | Tráfico constante | Tráfico a ráfagas |

# 3. Topología

- La topología es una rama de las matemáticas que estudia la forma intrínseca de un objeto
- No son importantes las deformaciones como:
  - Estiramientos
  - Doblamientos

- Sí son importantes
  - Los cortes
  - Las uniones
- Son iguales
  - Un círculo y un cuadrado
  - Una taza y un donut
- $\blacksquare$  Son distintos
  - Una botella y una taza (con asa)

#### 3.1. Bus

- Los equipos de la red comparten un único cable.
  - Requiere poco cable
  - Si falla el bus, ningún equipo mantiene la comunicación
  - $\bullet\,$  Son redes de  $difusi\'{o}n$



## 3.2. Anillo

- Cada equipo tiene un enlace con el siguiente equipo
- El último equipo se une con el primero



Características de redes en anillo:

- Si falla un enlace, la red no funciona.
- Son redes punto a punto
- Sin congestión de la red (posiblemente de algún nodo)

#### 3.3. Anillo doble

- Dos anillos "paralelos", cada uno en una dirección
- Si se rompe un enlace o un nodo, se puede recuperar la forma de anillo



## 3.4. Estrella

- Los nodos se conectan a un nodo central.
- El fallo de un enlace no afecta el resto de la red.
- El fallo del nodo central impide el funcionamiento de la red.



# 3.5. Árbol

- Los nodos se conectan de forma jerárquica.
  - Los de un nivel inferior se conectan a uno (y solo uno) de los nodos del nivel superior
  - La raíz del árbol es el único nodo sin nodo superior
- $\blacksquare$  Si un enlace falla, el "subárbol" se queda aislado.



# 3.6. Completa (malla completa)

- $\blacksquare$  Todos los nodos se conectan entre ellos.
- Muy cara, pero muy tolerante a los fallos de nodos y enlaces



Pregunta: ¿cuántos enlaces tiene una malla completa con 7 nodos?

## 3.7. Irregular (malla)

- Es parecida a la completa, pero sin la conexión total entre los nodos
- Es la topología "por descarte"



## 3.8. Preguntas

- ¿Qué topología tiene la red del aula?
- ¿Qué topología tiene la red del instituto?
- ¿Qué topología física tiene la wifi del instituto?
- ¿Qué topología lógica tiene la wifi del instituto?



alvaro.gonzalezsotillo@educa.madrid.org



 $\label{lem:http://www.chrisharrison.net/index.php/Visualizations/InternetMap Submarine Cable Map} \\$ 

## 3.9. Topología física vs topología lógica

- Física: conexiones entre equipos
- $\blacksquare$  Lógica: cómo se utilizan las conexiones

## 3.9.1. Bus lógico

- $\blacksquare$  Una estrella física, en la que el equipo central envía todos los datos al resto.
- Cada equipo mira si es destinatario de dichos datos para procesarlos.

#### 3.9.2. Anillo lógico

- Un bus con uso de testigo.
- El equipo que tiene el testigo, es el poseedor de los permisos para transmitir en el medio.
- Cuando termina, transmite el testigo a otro equipo





## 4. Extensión de la red

- PAN Personal Area Network
  - Hasta 10 metros
  - Alrededor de una persona
- LAN Local Area Network
  - Hasta 1 Km
  - Un edificio
- MAN Metropolitan Area Network
  - Hasta 10 km
  - Una población
- WAN Wide Area Network
  - $\bullet\,$  Más de 10 Km
  - Una región, un país, todo el mundo
- Clasifica estas redes según su extensión
  - GPRS
  - X25
  - Wi-fi
  - $\bullet$  IrDA
  - ADSL
  - $\bullet$  Ethernet
  - Frame Relay

# 5. Propietario de la red

- Redes privadas
  - De particulares o empresas
  - Sólo se conectan equipos y usuarios autorizados
  - Un responsable maneja toda la red
- Redes públicas
  - Compañías telefónicas y de acceso a Internet (ISP Intertet Service Provider)
  - $\bullet$  Se alquilan a usuarios
  - Es difícil controlar a los usuarios de la red



- Clasifica estas redes según su propiertario
  - GPRS
  - X25
  - Wi-fi
  - IrDA
  - $\bullet$  ADSL
  - Ethernet
  - Frame Relay

## 6. Modo de transmisión

- Simplex
  - La comunicación es en un solo sentido
- Semi duplex
  - El canal puede invertirse
  - Pero en cada momento tiene solo un sentido

- Full duplex
  - El canal permite comunicación simultánea en ambos sentidos
- Clasifica estas redes según su modo de transmisión
  - Los 40 principales (93.9 FM)
  - Portero automático
  - Walkie talkie
  - Congreso de los Diputados
  - Sálvame Deluxe

## 7. Medio de transmisión

- Redes cableadas (medios guiados)
  - La señal viaja por un cable
  - Eléctrico
    - o Par trenzado
    - o Cable coaxial
  - Óptico
    - o Fibra óptica
- Redes inalábricas (radiofrecuencia)
- ¿Qué velocidades se pueden alcanzar en los medios guiados descritos?
  - Par trenzado
  - Cable coaxial
  - Fibra óptica
- ¿Qué ventajas e inconvenientes tienen los medios no guiados respecto a los guiados?
- Clasifica estas redes según su medio de transmisión
  - GPRS
  - X25
  - Wi-fi
  - IrDA
  - ADSL
  - Ethernet
  - Frame Relay

#### 8. Referencias

- Formatos:
  - Transparencias
  - PDF
  - EPUB
- Creado con:
  - Emacs
  - org-re-reveal
  - Latex
- Alojado en Github