Staging User Feedback toward Rapid Conflict Resolution in Data Fusion

Romila Pradhan*, Siarhei Bykau , Sunil Prabhakar*

*Purdue University, Bloomberg L.P.

Fusing data from multiple sources

Data Item	CS CS	S_1	S_2	S_3	S ₄
Zootopia			Howard	Spencer	Spencer
Kung Fu Panda	Steve	enson		Nelson	
Inside Out			leFauve	Docter	
Finding Dory					Stanton
Minions	Coffin		Renaud		
Rio	Jones			Saldanha	

Data fusion systems

^[1] Xin Luna Dong, Laure Berti-Equille, Divesh Srivastava. Data Fusion: Resolving Conflicts from Multiple Sources. WAIM 2013.

Comparison with ground truth

^[1] Xin Luna Dong, Laure Berti-Equille, Divesh Srivastava. Data Fusion: Resolving Conflicts from Multiple Sources. WAIM 2013.

Involve the User

How to be most effective with user feedback?

This talk

4 ranking strategies

Feedback Errors

Non-expert

- Confidence
- Error-rate
- Conflicting feedback

Query-by-committee (QBC)

Uncertainty Sampling (US)

Data Item	Correctness of claims			
Kung Fu Panda	Stevenson (0.015)	Nelson (0.985)		
Minions	Coffin (0.921)	Renaud (0.079)		

Implication of a validation

	S_2	S_3	S ₄
Zootopia	Howard	Spencer	Spencer
		Nelson	
	IeFauve	Docter	
			Stanton
	Renaud		
		Saldanha	

Implication of a validation

		S ₄
		Spencer
Finding Dory		Stanton

Ideal utility function

Practical utility function

Entropy Utility Function

Maximum Expected Utility (MEU)

Value of perfect information

entropy utility if claim is true
$$VPI(\theta_i) = EU(D,\mathcal{F}) - \sum_{v_i^k \in V_i} EU(D,\mathcal{F} \mid v_i^k = true) p_i^k$$

Best alternative in the absence of ground truth

Approximate-MEU

Key idea: Propagation of changes

$$VPI(\theta_i) = EU(D,\mathcal{F}) - \sum_{v_i^k \in V_i} EU(D,\mathcal{F} \mid v_i^k = true) p_i^k$$
 no need to fuse for every claim!

removed bottleneck iterative computation of MEU

Users can be wrong

Honest but unsure user

80% certain about a claim

Error-rate of user

user is correct 85% of the time

Conflicting feedback from a crowd of workers

6/10

3/10

1/10

Real-world datasets

	Books ¹	FlightsDay ²	Population ³	Flights ²
Items	1263	5836	40696	121567
Sources	894	38	2545	38
Claims	24303	80452	46734	1931701

Feedback Simulation

- Books: silver standard provided in [4]
- Flight information: data provided by carrier websites considered ground truth
- Population: manually identified the true claim for data items having multiple claims

^{1.} X. L. Dong, L. Berti-Equille, and D. Srivastava. Integrating conflicting data: The role of source dependence. PVLDB, 2009

^{2.} X. Li, X. L. Dong, K. Lyons, W. Meng, and D. Srivastava. Truth finding on the deep web: Is the problem solved? PVLDB, 2012

^{3.} J. Pasternack and D. Roth. Knowing what to believe (when you already know something). COLING, 2010

^{4.} http://lunadong.com/fusionDataSets.htm

Competing methods

- Item-level ranking methods
 - QBC / US
- Decision-theoretic ranking methods
 - MEU / Approx-MEU
 - Greedy Upper Bound (GUB) ——— ground-truth-utility-based
- Random
 - all data items equally beneficial

Large number of sources, few claims: holistic ranking

Books

Large number of sources, few claims: holistic ranking

Population

Large number of claims, few sources: either QBC/holistic

FlightsDay

Large number of claims, few sources: either QBC/holistic

Flights

Contributions

- Integrating user feedback to improve the performance of existing data fusion systems
- Designed strategies to generate an effective ordering for validating claims
 - scalable decision-theoretic solution for iterative fusion
 - explored imperfect feedback scenarios
- Evaluation on real-world datasets confirmed that guided feedback rapidly increases the effectiveness of data fusion