

/ Tree Models

Tree models

/ Tree models are based on if-else decisions. This kind of models needs less preprocessing that models based on multiplications. Tree models are:

- Decision trees
- Random Forest
- Extremely Randomized Trees
- Adaboost
- Gradient Boosting
 - XGBoost
 - LightGBM
 - Catboost

/ Tree models splits the "variable space" in regions (like boxes).

/ Tree models splits the "variable space" in regions (like boxes).

/ Each leaf of the tree is a fixed value (not a class)

Random Forest (RF) & Extremely Randomized Trees

/ Each tree is constructed with a random subset of the training data (by picking not all the variables and not all the samples). The final predictions is an average of all the trees.

Random Forest (RF) & Extremely Randomized Trees

from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.ensemble import ExtraTreesClassifier, ExtraTreesRegressor

Gradient Boosting (GBM)

/ Every new tree improves the error of the previous trees.

Gradient Boosting (GBM)

from sklearn.ensemble import GradientBoostingClassifier,

from xgboost

import XGBClassifier,

from lightgbm

import LGBMClassifier,

from catboost

import CatBoostClassifier,

GradientBoostingRegressor

XGBRegressor

LGBMRegressor

CatBoostRegressor

Decision boundary

/ Tree models always have perpendicular (90 degrees) boundaries (like boxes)

Adaboost and GBM are very similar models.

Decision boundary

/ Hyperparameter tuning is very important

Bad tree (overfitting)

Good tree

GBM Hyperparams

- / Hyperparameter tuning is very important
 - Number of trees: 100...1000
 - Maximum tree depth: 2...10
 - % of rows used to build the tree: 80...90
 - % of feats used to build the tree: 80...90
 - Learning Rate: 0...1 (the lower the better, but slower. Try a log scale)

/ Preprocessing

The rule of thumb is:

- Numerical variables: Do nothing
- Categorical variables: Ordinal encoding
 - For high cardinality (>1000 categories): Binary encoding

Numerical variables

/ Numerical features does not need any scaling or normalization. Because the tree finds an optimal threshold to split by.

Between 0 and 3: Finds 1.7 as the threshold

Ordinal encoding

Categorical Feature		Numeric
Louise	=>	1
Gabriel	=>	2
Emma	=>	3
Adam	=>	4
Alice	=>	5
Raphael	=>	6
Chloe	=>	7
Louis	=>	8
Jeanne	=>	9
Arthur	=>	10

Binary encoding

			Binary Encode				
Categorical Feature		=	x1	x2	x4	x8	
Louise	=>	1	1	0	0	0	
Gabriel	=>	2	0	1	0	0	
Emma	=>	3	1	1	0	0	
Adam	=>	4	0	0	1	0	
Alice	=>	5	1	0	1	0	
Raphael	=>	6	0	1	1	0	
Chloe	=>	7	1	1	1	0	
Louis	=>	8	0	0	0	1	
Jeanne	=>	9	1	0	0	1	
Arthur	=>	10	0	1	0	1	

One Hot Encoding

Categorical Feature		f1	f2	f3	f4	f5	f6	f7	f8	f9	f10
Louise	=>	1	0	0	0	0	0	0	0	0	0
Gabriel	=>	0	1	0	0	0	0	0	0	0	0
Emma	=>	0	0	1	0	0	0	0	0	0	0
Adam	=>	0	0	0	1	0	0	0	0	0	0
Alice	=>	0	0	0	0	1	0	0	0	0	0
Raphael	=>	0	0	0	0	0	1	0	0	0	0
Chloe	=>	0	0	0	0	0	0	1	0	0	0
Louis	=>	0	0	0	0	0	0	0	1	0	0
Jeanne	=>	0	0	0	0	0	0	0	0	1	0
Arthur	=>	0	0	0	0	0	0	0	0	0	1
9											

Ordinal enc. (good)

Good for small cardinality (less than 1000 categories)

Binary enc. (good)

Good for big cardinality (more than 1000 categories)

One Hot Enc. (Bad)

Reference

/ Q&A

What are your doubts?

