Direct Product

Definition

Let G and H be groups and define the binary operation on $G \times H$ by:

$$(g_1, h_1)(g_2, h_2) = (g_1g_2, h_1h_2)$$

The binary algebraic structure $G \times H$ is called the *direct product* of G and H.

Theorem

Let G and H be groups. The direct product $G \times H$ is a group.

Proof

Assume $(g_1, h_1), (g_2, h_2), (g_3, h_3) \in G \times H$

$$[(g_1, h_1)(g_2, h_2)](g_3, h_3) = (g_1g_2, h_1h_2)(g_3h_3)$$

$$= ((g_1g_2)g_3, (h_1h_2)h_3)$$

$$= (g_1(g_2g_3), h_1(h_2h_3))$$

$$= (g_1, h_1)(g_2g_3, h_2h_3)$$

$$= (g_1, h_1)[(g_2, h_2)(g_3h_3)]$$

 $\therefore G \times H$ is associative under the operation.

Assume
$$(g,h) \in G \times H$$

 $(g,h)(e_G,e_H) = (ge_G,he_H) = (g,h)$
 $(e_G,e_H)(g,h) = (e_Gg,e_Hh) = (g,h)$
 $\therefore G \times H$ has identity (e_G,e_H) .
Assume $(g,h) \in G \times H$
 $(g^{-1},h^{-1}) \in G \times H$
 $(g,h)(g^{-1},h^{-1}) = (gg^{-1},hh^{-1}) = (e_G,e_H)$
 $(g^{-1},h^{-1})(g,h) = (g^{-1}g,h^{-1}h) = (e_G,e_H)$
 $\therefore G \times H$ is closed under inverses.
 $\therefore G \times H$ is a group.

This definition can be expanded to multiple groups:

Definition

 $(e_G, e_H) \in G \times H$

Let $G_1, \ldots G_n$ be a finite collection of groups and define the binary operation on $G_1 \times \cdots \times G_n$ as component-wise multiplication. The binary algebraic structure of $G_1 \times \cdots \times G_n$, denoted $\prod_{k=1}^n G_k$, is called the *direct product* of the G_k .

When the groups in question are additive/abelian, then the binary algebraic structure is called a direct sum and is defined by:

$$\bigoplus_{k=1}^{n} G_i = G_1 \oplus \cdots \oplus G_n$$

Theorem

Let G_1, \ldots, G_n be a collection of groups. The direct product $\prod_{k=1}^n G_k$ is a group.

Proof

Assume $g,h,i\in\prod_{k=1}^nG_k$ Assume 1 < k < n $g_k, h_k, i_k \in G_k$ $(g_k h_k)i_k = g_k(h_k i_k)$ $\therefore \prod_{k=1}^n G_k$ is associative under the operation.

$$\begin{aligned} e_k &\in G_k \\ g_k e_k &= e_k g_k = g_k \\ &\therefore \prod_{k=1}^n G_k \text{ has identity } (e_1, \dots, e_n). \end{aligned}$$

$$\begin{aligned} g_k^{-1} &\in G_k \\ g_k g_k^{-1} &= g_k^{-1} g_k = e_k \\ &\therefore \prod_{k=1}^n G_k \text{ is closed under inverses.} \end{aligned}$$

 $\therefore \prod_{k=1}^n G_k$ is a group.

When the number of groups is infinite (countable or not):

Definition

Let $\{G_i \mid i \in I\}$ be a family of groups and define:

$$\prod_{i \in I} G_i = \{g : I \to \bigcup_{i \in I} G_i \mid g(i) = g_i \in G_i\}$$

and define the binary operation on $\prod_{i \in I} G_i$ by:

$$(gh)(i) = g(i)h(i)$$

The binary algebraic structure $\prod_{i \in I} G_i$ is called the *direct product* of $\{G_i \mid i \in I\}$.

Theorem

Let $\{G_i \mid i \in I\}$ be a family of groups. The direct product $\prod_{i \in I} G_i$ is a group.

Proof

```
Assume g,h\in\prod_{i\in I}G_i
(gh)(i) = g(i)h(i) = g_ih_i
But g_i, h_i \in G_i
So (gh)(i) = g_i h_i \in G_i
so gh \in \prod_{i \in I} G_i
\therefore \prod_{i \in I} G_i is closed under the operation.
Assume g, h, k \in \prod_{i \in I} G_i
Assume i \in I
[(gh)k](i) = [(gh)(i)]k(i) = [g(i)h(i)]k(i) = g(i)[h(i)k(i)] = g(i)[(hk)(i)] = [g(hk)](i)
\therefore \prod_{i \in I} G_i is associative under the operation.
e_i \in G_i
\exists e \in \prod_{i \in I} G_i, e(i) = e_i
(ge)(i) = g(i)e(i) = g_ie_i = g_i = g(i)
(ee)(i) = e(i)g(i) = e_ig_i = g_i = g(i)
\therefore \prod_{i \in I} G_i has identity e.
g(i) = g_i \in G_i
g_i^{-1} \in G_i
g_{i} \in G_{i}
\exists g^{-1} \in \prod_{i \in I} G_{i}, g^{-1}(i) = g_{i}^{-1}
(gg^{-1})(i) = g(i)g^{-1}(i) = g_{i}g_{i}^{-1} = e_{i} = e(i)
(g^{-1}g)(i) = g^{-1}(i)g(i) = g_{i}^{-1}g_{i} = e_{i} = e(i)
\therefore \prod_{i \in I} G_i is closed under inverses.
\therefore \prod_{i \in I} G_i is a group.
```

Definition

Let $\prod_{i\in I}G_i$ be a direct product of groups and $\forall\,k\in I$ define the map $\pi_k:\prod_{i\in I}G_i\to G_k$ by:

$$\pi_k(g) = g(k)$$

The π_k are called the *canonical projections* of the direct product.

Theorem

Let $\prod_{i \in I} G_i$ be a direct product of groups and π_k be the canonical projections for the direct product. π_k is an onto homomorphism.

Proof

Assume
$$g,h\in\prod_{i\in I}G_i$$

Assume $k\in I$
 $\pi_k(gh)=(gh)(k)=g(k)h(k)=\pi_k(g)\pi_k(h)$
 $\therefore \pi_k$ is a homomorphism.

Assume
$$g_k \in G_k$$

 $\exists g \in \prod_{i \in I} G_i, g(k) = g_k$
 $\pi_k(g) = g(k) = g_k$
 $\therefore \pi_k$ is a onto.

Theorem

Let $\{\phi_i:G_i\to H_i\mid i\in I\}$ be a family of a group homomorphisms and let $\phi=\prod_{i\in I}\phi_i$ be the map $\phi:\prod_{i\in I}G_i\to\prod_{i\in I}H_i$ defined by $\phi(g)=\prod_{i\in I}\phi_i(g(i))$.

- 1). ϕ is a homomorphism of groups
- 2). $\ker(\phi) = \prod_{i \in I} \ker(\phi_i)$
- 3). $\phi \left[\prod_{i \in I} G_i \right] = \prod_{i \in I} \phi_i[G_i]$
- 4). ϕ is one-to-one iff all of the ϕ_i are one-to-one
- 5). ϕ is onto iff all of the ϕ_i are onto

Proof

1). Assume $a, b \in \prod_{i \in I} G_i$

$$\begin{split} \phi(ab) &= \prod_{i \in I} \phi_i((ab)(i)) \\ &= \prod_{i \in I} \phi_i(a(i)b(i)) \\ &= \prod_{i \in I} \phi_i(a(i))\phi_i(b(i)) \\ &= \prod_{i \in I} \phi_i(a(i)) \prod_{i \in I} \phi_i(b(i)) \\ &= \phi(a)\phi(b) \end{split}$$

 $\therefore \phi$ is a homomorphism.

2). Let $e\in\prod_{i\in I}H_i, \forall\, i\in I, e(i)=e_H$ e is the identity element for $\prod_{i\in I}H_i$

$$a \in \ker(\phi) \iff \phi(a) = e$$

$$\iff \forall i \in I, \phi(a(i)) = e(i) = e_H$$

$$\iff \forall i \in I, a(i) \in \ker(\phi_i)$$

$$\iff a \in \prod_{i \in I} \ker(\phi_i)$$

3).

$$b \in \phi \left[\prod_{i \in I} G_i \right] \iff \exists a \in \prod_{i \in I} G_i, \phi(a) = b$$

$$\iff \forall i \in I, \phi_i(a(i)) = b(i)$$

$$\iff \forall i \in I, b(i) \in \phi_i[G_i]$$

$$\iff b \in \prod_{i \in I} \phi_i[G_i]$$

4).

$$\begin{array}{lll} \phi \text{ is one-to-one} & \Longleftrightarrow & \phi(a) = \phi(b) \implies a = b \\ & \Longleftrightarrow & \forall \, i \in I, \phi_i(a(i)) = \phi_i(b(i)) \implies a(i) = b(i) \\ & \Longleftrightarrow & \forall \, i \in I, \phi_i \text{ is one-to-one} \end{array}$$

5).

$$\begin{array}{ll} \phi \text{ is onto} & \Longleftrightarrow & b \in \prod_{i \in I} H_i \implies \exists \, a \in \prod_{i \in I} G_i, \phi(a) = b \\ \\ \iff & \forall \, i \in I, b(i) \in H_i \implies \exists \, a(i) \in G_i, \phi(a(i)) = b(i) \\ \\ \iff & \forall \, i \in I, \phi_i \text{ is onto} \end{array}$$

Theorem

Let $\{G_i \mid i \in I\}$ and $\{N_i \mid i \in I\}$ be families of groups such that $\forall i \in I, N_i \triangleleft G_i$:

$$\prod_{i \in I} N_i \triangleleft \prod_{i \in I} G_i$$

Proof

 $\begin{array}{l} \text{Assume } n \in \prod_{i \in I} N_i \\ \text{Assume } g \in \prod_{i \in I} G_i \\ \text{Assume } i \in I \\ n(i) \in N_i \\ g(i) \in G_i \\ N_i \triangleleft G_i \\ g(i)(n(i))g^{-1}(i) \in N_i \\ gng^{-1} \in \prod_{i \in I} N_i \\ \therefore \prod_{i \in I} N_i \triangleleft \prod_{i \in I} G_i \end{array}$

Theorem

Let $\{G_i \mid i \in I\}$ and $\{N_i \mid i \in I\}$ be families of groups such that $\forall i \in I, N_i \triangleleft G_i$:

$$\prod_{i \in I} G_i / \prod_{i \in I} N_i \simeq \prod_{x \in I} G_i / N_i$$

Proof

Assume $i \in I$

Let $\pi_i:G_i\to G_i/N_i$ be the (onto) canonical homomorphism

 $\ker(\pi_i) = N_i$

Let
$$\pi:\prod_{i\in I}G_i\to\prod_{i\in I}G_i/N_i$$
 be defined by $\pi(g)=\prod_{i\in I}\pi_i(g(i))$

By the previous theorem:

1). π is a (onto) homomorphism

2).
$$\ker(\pi) = \prod_{i \in I} \ker(\pi_i) = \prod_{i \in I} N_i$$

Thus, we have the following setup per the FIT:

Thus, there exists an isomorphism $\phi:\prod_{i\in I}G_i/\prod_{i\in I}N_i\to\prod_{i\in I}G_i/N_i$

$$\therefore \prod_{i \in I} G_i / \prod_{i \in I} N_i \simeq \prod_{i \in I} G_i / N_i.$$