Linear Regression

Why Linear Regression ?

- LR is a fundamental tool in the data scientist's kit.
- Practically speaking, using it is one or two lines of code.
- But it's crucial for us to understand the theory underlying it:
 - Building block for more complex tools
 - We are better data scientists if we understand both HOW and WHY

But first... what is a model?

- Take three minutes to talk to your partner and answer the question..."What is a statistical model?"
- Come up with a one line definition
- Be prepared to share it with the class
- Thoughts to get you going:
 - What are models used for?
 - What's in a model?
 - Why do we make models?

Statistical (Mathematical) Models

- Formalization and quantification of our assumptions about the state of the world
- Distillation of the data (think, mean/median/model)
- Gives us common mathematical language to talk about ways in which we are wrong, incomplete, or inaccurate
- Also used for inference, to make predictions about future data
- "All models wrong, some are useful" George Box

(Simple) Linear Regression

- (Simple): functions of a single variable: Y = f(X)
- Linear: models are lines
- Regression: dependent variable is continuously-valued

Common statistical tests are linear models

Last updated: 29 June. 2019. Also check out the R version!

See worked examples and more details at the accompanying notebook; https://github.com/eigenfoo/tests-as-linear

Common name	Function in scipy.stats	Equivalent linear model in smf.ols	Exact?	The linear model in words	Icon
y is independent of x P: One-sample t-test N: Wilcoxon signed-rank	scipy.stats.ttest_1samp(y) scipy.stats.wilcoxon(y)	smf.ols("y ~ 1", data) smf.ols("y ~ 1", signed_rank(data))	√ for N ≥14	One number (intercept, i.e., the mean) predicts y. - (Same, but it predicts the signed rank of y.)	*
P: Paired-sample t-test N: Wilcoxon matched pairs	scipy.stats.ttest_rel(y1, y2) scipy.stats.wilcoxon(y1, y2)	smf.ols("y2_sub_y1 ~ 1", data) smf.ols("y2_sub_y1 ~ 1", signed_rank(data))	√ for N >14	One intercept predicts the pairwise y≥-y₁ differences (Same, but it predicts the signed rank of y₂-y₁.)	Z:
y ~ continuous x P: Pearson correlation N: Spearman correlation	scipy.stats.pearsonr(x, y) scipy.stats.spearmanr(x, y)	smf.ols("y ~ 1 + x", data) smf.ols("y ~ 1 + x", rank(data))	√ for.N.≥10	One intercept plus x multiplied by a number (slope) predicts y . - (Same, but with <i>ranked</i> x and y)	ببر
y ~ discrete x P: Two-sample t-test P: Welch's t-test N: Mann-Whitney U	scipy.stats.ttest_ind(y1, y2) N/A in Python, but see R version scipy.stats.mannwhitneyu(y1, y1)	smf.ols("y ~ 1 + group", data) ^A N/A in Python, but see R version smf.ols("y ~ 1 + group", signed_rank(data)) ^A	√ √ for N >11	An intercept for group 1 (plus a difference if group 2) predicts y . - (Same, but with one variance <i>per group</i> instead of one common.) - (Same, but it predicts the <i>signed rank</i> of y .)	7
P: One-way ANOVA N: Kruskal-Wallis	scipy.stats.f_oneway(a, b, c) scipy.stats.kruskal(a, b, c)	smf.ols(y ~ 1 + G_2 + G_3 + + G_N) ^A smf.ols(rank(y) ~ 1 + G_2 + G_3 + + G_N) ^A	√ for N >11	An intercept for <code>group 1</code> (plus a difference if <code>group \neq 1</code>) predicts <code>y</code> (Same, but it predicts the <code>rank</code> of <code>y</code> .)	*
P: One-way ANCOVA	N/A in Python, but see R version	$smf.ols("y \sim 1 + G_2 + G_3 + + G_N + x", \\ data)^A$	1	- (Same, but plus a slope on x.) Note: this is discrete AND continuous. ANCOVAs are ANOVAs with a continuous x.	
P: Two-way ANOVA	N/A in Python, but see R version	$\begin{split} &\text{smf.ols}("y \sim 1 + G_2 + G_3 + + G_N + \\ &S_2 + S_3 + + S_K + \\ &G_2"S_2 + G_3"S_3 + + G_N"S_K", data) \end{split}$	1	Interaction term: changing sex changes the y – group parameters. Note: $G_{5:w}$ is an $indicatar (in c-1)$ for each non-intercept levels of the group variable. Similarly for $S_{7:w}$ for sex. The first line (with $S_{7:w}$ is main effect of group, the second (with S_{7}) for sex and the third is the group v sex interaction. For two levels (e.g. male/lemale), line 2 would y to the $S_{7:v}$ and line 3 would be S	[Comir
Counts ~ discrete x N: Chi-square test	scipy.stats.chisquare(data)	$\begin{split} &\textbf{Equivalent log-linear model} \\ &\text{sm.GLM}(y \sim 1 + G_2 + G_3 + + G_N + \\ &S_2 + S_3 + + S_K + \\ &G_2^*S_2 + G_3^*S_3 + + G_N^*S_K, \text{ family} = \}^A \end{split}$	4	Interaction term: (Same as Two-way ANOVA.) Note: Run glm using the following arguments: $gin(model, family=poisson())$ As linear-model, the Chi-square test is $log(y) = log(0) + log(a) + log(b) + log(a\beta)$ where a and β , are proportions. See more into in the accompanying notebook.	Same Two-w ANOV
N: Goodness of fit	scipy.stats.chi2_contingency(data)	sm.GLM(y ~ 1 + G_2 + G_3 ++ G_N , family=) ^A	1	(Same as One-way ANOVA and see Chi-Square note.)	1W-AN

List of common parametric (P) non-parametric (N) tests and equivalent linear models. The notation y = 1 + x is R shorthand for $y = 1 + b + a \times w$ hich most of us learned in school. Models in similar colors are highly similar, but really, notice how similar they all are across colors! For non-parametric models, the inear models are reasonable approximations for non-small sample sizes (see "Exact" column and click links to see simulations). Other less accurate approximations exist, e.g., Wilcoxon for the sign test and Goodness-of-fit for the binomial test. The signed rank function is $signed_{rank}(df) = np. sign(df) * df. rank()$. The variables G_i and S_i are "dummy coded" indicator variables (either 0 or 1) exploiting the fact that when $\Delta x = 1$ between categories the difference equals the slope. Subscripts (e.g., G₂ or y₁) indicate different columns in data. Im requires long-format data for all non-continuous models. All of this is exposed in greater detail and worked examples at https://example.com/restar-sinear/.

Jonas Kristoffer Lindeløv, George Ho https://lindeloev.net. https://eigenfoo.xyz

A See the note to the two-way ANOVA for explanation of the notation.

Using one Variable to Predict Another

- As population density increases, so do housing prices.
- As the number of trees decreases, the concentration of CO₂ goes up.

Example: Car Weight and MPG

A Line as a Model

- Predictions for all values of the X variable
 - Model shape: $\hat{y} = \beta_1 x + \beta_0$

values:
$$E = y - \hat{y}$$

$$E^2 = (y - \hat{y})^2$$

Goal: Minimize Error

Which of these lines fits the data best?

$r_{P} = \frac{\sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i} (x_{i} - \bar{x})^{2}} \sqrt{\sum_{i} (y_{i} - \bar{y})^{2}}}$

How to Construct the Best-Fit Line

$$\beta_1 = r_P \frac{\sigma_y}{\sigma_x}$$

$$\beta_0 = \bar{y_1} - \beta_1 \bar{x}$$

Outliers

Dropping Outliers

Keeping Outliers

Example:
Construct the best-fit line
for the points:
(1, 2), (3, 9), and (5, 10).

$$x_i : [1, 3, 5]$$

 $y_i : [2, 9, 10]$

First we'll calculate x_bar and y_bar:

$$\bar{x} = \frac{1+3+5}{3} = 3$$

$$\bar{y} = \frac{2+9+10}{3} = 7$$

 $x_i : [1, 3, 5]$ $y_i : [2, 9, 10]$

Now we can calculate r_p:

 $\Sigma(x_i - \bar{x})(y_i - \bar{y}) = (1 - 3)(2 - 7) + (3 - 3)(9 - 7) + (5 - 3)(10 - 7) = 16$

$$\Sigma(x_i - \bar{x})^2 = (1 - 3)^2 + (3 - 3)^2 + (5 - 3)^2 = 8$$

$$\Sigma(y_i - \bar{y})^2 = (2 - 7)^2 + (9 - 7)^2 + (10 - 7)^2 = 38$$

$$x_i : [1, 3, 5]$$

 $y_i : [2, 9, 10]$

Now we can calculate r_p:

$$r_{P} = \frac{\sum (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i} (x_{i} - \bar{x})^{2}} \sqrt{\sum_{i} (y_{i} - \bar{y})^{2}}} = \frac{16}{\sqrt{(8)(38)}} = \frac{4}{\sqrt{19}}$$

$$x_i : [1, 3, 5]$$

 $y_i : [2, 9, 10]$

Now we'll calculate the standard deviations of x and y ...

$$\sigma_x = \sqrt{\frac{8}{3}}$$

$$\sigma_y = \sqrt{\frac{38}{3}}$$

$$x_i : [1, 3, 5]$$

 $y_i : [2, 9, 10]$

... and use those to calculate beta_1:

$$\beta_1 = r_P \frac{\sigma_y}{\sigma_x} = \frac{4}{\sqrt{19}} \left(\frac{\sqrt{\frac{38}{3}}}{\sqrt{\frac{8}{3}}} \right) = \frac{4}{\sqrt{19}} \left(\frac{\sqrt{38}}{\sqrt{8}} \right) = \frac{4\sqrt{2}}{2\sqrt{2}} = 2$$

 $x_i : [1, 3, 5]$ $y_i : [2, 9, 10]$

Finally, we'll use beta_1 to calculate beta_0:

$$\beta_0 = \bar{y} - \beta_1 \bar{x} = 7 - (2)(3) = 1$$

So now we have our linear equation!

$$\hat{y} = \beta_1 x + \beta_0 = 2x + 1$$

