

AB-025: Using SPICE to Model DC Motors

http://www.precisionmicrodrives.com/application-notes-technical-guides/application-bulletins/ab-025-using-spice-to-model-dc-motors

A1 - Vibration motor model netlist

V_drive N001 0 PULSE(0.0 3 3m 50m 50m 200m 0 1)

L_Motor N001 N005 {L_Motor}

R_Motor N005 N007 {R_motor}

V_SENSE_1 N011 0 0 Rser=0

L_inertia N008 N009 {L_inertia_rotor} Rser=0.0 Rpar=0

R_loss N010 N012 {R_loss}

V SENSE 2 N012 0 0 Rser=0

B§V_torque N003 0 V=I(V_SENSE_1)*K_t

Back_emf N007 N011 V=I(V_SENSE_2)*K_emf

B3 0 N002 I=I(V_SENSE_2)

C1 N002 0 1 Rser=0 Lser=0 Rpar=0 Cpar=0

R1 N002 0 1

B§V_gravity N004 N006 V= L_inertia_emass*radius * sin(V(n004)) * 9.81

V_load_torque N006 N008 OV

L_inertia1 N009 N010 {L_inertia_emass} Rser=0.0 Rpar=0

SW1 N004 N003 A 0 turnoff

D1 N001 A turn_on

C2 A 0 1

.model D D

.lib C:\Program Files (x86)\LTC\LTspiceIV\lib\cmp\standard.dio

.tran 0 400m 0m 0.001m startup

.PARAM K_t = 900u

.PARAM K_emf = 900u

.PARAM R_motor = 5.5

.PARAM L_Motor = 50u

.PARAM R_loss = 300n

.PARAM L_inertia_rotor = 15n

.PARAM radius = 0.002m

.PARAM L inertia emass = 15n

.model turnoff SW(Vt = 1u Ron = 0.000001p)

.model turn_on D(Vfwd = 0.6 Rrev = 0.0001 Ron = 0.000001)

.backanno

.end

www.PrecisionMicrodrives.com

ENQUIRIES@PRECISIONMICRODRIVES.COM

AB-025: Using SPICE to Model DC Motors

http://www.precisionmicrodrives.com/application-notes-technical-guides/application-bulletins/ab-025-using-spice-to-model-dc-motors

A2 - Gearmotor model netlist

V_drive N001 0 PULSE(0.0 3 50m 0 0m 8 0 1)

L_Motor N001 N006 {L_Motor_coil}

R_Motor N006 N008 {R_motor}

V_SENSE_1 N014 0 0

L_inertia N002 N005 {L_rotor_inertia} Rser=0.0 Rpar=0

V_SENSE_2 N013 0 0 Rser=0

B§V_torque N002 0 V=I(V_SENSE_1)*K_t

Back_emf N008 N014 V=I(V_SENSE_2)*K_emf

B3 0 N004 I=I(V_SENSE_2)

C1 N004 0 1 Rser=0 Lser=0 Rpar=0 Cpar=0

R1 N004 0 1

R_loss_1 N005 N009 {R_loss_internal}

V_Sense_3 N012 0 0 Rser=0

B1 0 N011 I=I(V_SENSE_3)

C2 N011 0 1 Rser=0 Lser=0 Rpar=0 Cpar=0

R2 N011 0 1

R_loss_external N003 N007 {R_loss_external}

L_inertia1 N007 N010 {L_load_inertia} Rser=0.0 Rpar=0

B2 0 N003 I= I(V_SENSE_2) / Gr

B§Shaft_feedback N009 N013 V=V(N004,n012) / Gr

V§Load_torque N010 N012 0

.tran 0 300m 0m 0.001m startup

.PARAM $K_t = 0.0007$

.PARAM K_emf 0.0007

.PARAM R_motor = 5.5

.PARAM L_Motor_coil = 50u

.PARAM R_loss_internal = 300n

.PARAM L_rotor_inertia = 0.00000002

.PARAM R loss 2 = 0.0000003

.PARAM R_loss_external = 0.0000003

.PARAM L_load_inertia = 0.00000002

.PARAM Gr = 5

.backanno

.end

www.PrecisionMicrodrives.com

Enquiries@PrecisionMicrodrives.com