Overview illustration

- Blue is the history region.
- Light blue is the delay compensation region of uncertainty (abbr. DCU) of size defined by T_1 the time we expect ego to be within this region. We believe that ego is still tracking p_1 during most of this region.
- Red is a finite blending region of size defined by T_2 (detailed later) that we expect the blending of p_1 and p_2 to occur.
- Orange is the future region to track p_2 .
- Green arrow is the derivative of p_2 at point u with angle θ .

Solution Requirements

- 1. Follow p_1 in the history region (blue)
- 2. In the DCU (light blue) region, follow p_1 for most of the duration
- 3. Blend p_1 , p_2 during the blending region (red)
- 4. Follow p_2 in the future region (orange)
- 5. Strive to maintain the derivative at the point dictated by the green arrow

Solution Proposal

Inputs

- 1. Paths p_1 , p_2
- 2. Region times T_1 , T_2

Algorithm

Given two paths

1. Calculate overlapping region of p_1, p_2 in order to define the start of DCU and blending regions

2. Designate the regions using the overlapping regions and T_1 , T_2

- 3. Calculate the angle θ of the derivative at the beginning of the future region. Options:
 - a. Fit a spline on p_2 (perhaps there already is one, since we may want to perform the merge after spline). Then calculate the angle at point u
 - b. Some high-order derivative approximation. For example:

$$f'(x_0) \approx \frac{(x_0 - x_1)^2 (f(x_{-1}) - f(x_0)) + (x_{-1} - x_0)^2 (f(x_1) - f(x_0))}{(x_{-1} - x_0) (x_{-1} - x_1) (x_0 - x_1)}$$

Note: we may be able to assume even spacing if p_2 is the output of a uniformly sampled spline

- 4. Designate weight 1 to all points
- 5. Remove complexity in the blending region to allow for spline blending. Options:
 - a. Remove points from paths p_1 , p_2 in the blending region
 - b. Keep p_2 points, but weigh them increasingly, starting from 0
- 6. Designate point weights in DCU to model uncertainty
 - a. Incrementally decrease weights in the uncertainty region
- 7. Recalculate weights with softmax (or divide by sum if too extreme)

8. Fit a spline on the remaining points with their respective weights, with the derivative constraint

