Review

MTT720 / Bayesian Analysis I

Exam Information

- Final Exam on Dec. 13 (17-20) : need to **register** via SISU.
 - Closed book, bring pencils, erasers, and a calculator
 - A list of pdf/pmf's is given. (Lindley-Smith theorem/law of iterated expectation, etc. will be given if there are any related problems)
 - Be sure to show your work to get to the answers: partial credits are given to the right definitions, (mathematical not verbal) steps, etc.
 - You can write in Finnish for your reasonings.
- Exam covers all the contents dealt. Review the lab problems, lecture examples, and practice problems.
- What I expect you have learned
 - Bayes' Theorem
 - Know how to derive posterior distributions
 - Find conjugate priors. Distinguish noninformative priors.
 - Posterior inference: find posterior mean and variance, posterior probabilities, posterior interval estimates
 - Predictive distributions, etc.

More Information

- Grading : Lab (20%), Take-home task (10%), Final exam (70%)
- Take-home Assignment
 - Need to use R/ BUGS/ JAGS/ STAN for most of the problems.
 - Due 23.12 (a bit flexible but not unlimited!) : course grade will be delayed if submitted late. Inform clearly when you will finish up.
 - For submission, include all output and your own codes with brief comments so that I can reproduce your results when grading.
 - No collaboration is allowed: no credit will be given when detected.
 - Feel free to **consult the instructor for help**: Individual guidance will be given for you to proceed further upon requests.

Bayesian statistics

- Based on an idea of subjective probability, it provides a natural, intuitively plausible way to draw inferences for statistical problems by updating previous information based on data observations.
- Bayesian inference specifies probability distributions for the unknown parameters.
 - Anything unknown is a random variable.
 - Probability distributions are assumed for the unknown parameters and for the observations (i.e. both parameters and observations are random quantities).
 - Inferences are based on the prior distribution and the observed data.

Bayes' theorem

- The basic tool of inference is the Bayes' theorem.
- Bayes' theorem

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$
$$= \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B| \sim A)P(\sim A)}$$

■ Theorem: let $A_1, A_2, ..., A_n$ be a set of mutually exclusive and exhaustive events. Then,

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{j=1}^{n} P(B|A_j)P(A_j)}$$

Law of Total Probability:

$$P(B) = P(B, A) + P(B, \sim A) = P(B|A)P(A) + P(B| \sim A)P(\sim A)$$

Bayesian Method for Inference

- Specify the prior distribution $[\theta], f(\theta)$ which expresses our knowledge about θ prior to observing the data.
- Form the Likelihood : $[X|\theta], f(x|\theta)$ Model a set of observations with a probability distribution (expressed in the form of the likelihood function) with unknown parameter(s)
- Posterior Apply Bayes' theorem to derive posterior distribution which expresses all that is known about θ after observing the data: $\lceil \theta | X \rceil$, $f(\theta | x)$
- Posterior Inference
 Derive appropriate inference statements from posterior distribution:
 e.g. point / interval estimates, probabilities of specified hypotheses.

$$\begin{array}{lcl} [\theta|X] & = & \dfrac{[X|\theta][\theta]}{[X]} \\ \\ f(\theta|x) & = & \dfrac{f(x|\theta)f(\theta)}{f(x)} = \dfrac{f(x|\theta)f(\theta)}{\int f(x|\theta)f(\theta)d\theta} & \text{for continuous } \theta \end{array}$$

Kernel and Normalizing constant in the likelihood function

- In Bayesian statistics spotting kernels of distributions can be very useful in computing posterior distributions.
- For a random variable X with density(mass) function $f(\boldsymbol{x}|\theta)$ if $f(\boldsymbol{x}|\theta)$ can be expressed in the form $cq(\boldsymbol{x}|\theta)$ where c is a constant, not depending upon \boldsymbol{x} , then such $q(\boldsymbol{x}|\theta)$ is a <u>kernel</u> of the density $f(\boldsymbol{x}|\theta)$.
- lacktriangle The constant c is called a normalizing constant with the fact

$$\int_{S} f(\boldsymbol{x}|\boldsymbol{\theta}) d\boldsymbol{x} = \int_{S} cq(\boldsymbol{x}|\boldsymbol{\theta}) d\boldsymbol{x} = 1 \quad \Rightarrow 1/c = \int_{S} q(\boldsymbol{x}|\boldsymbol{\theta}) d\boldsymbol{x}.$$

Choice of Priors

- Informative prior distributions reflect specific information about the parameter of interest.
 - priors based on subjective opinion should be chosen with care in practice
- Noninformative priors: 'reference priors' (reference for prior sensitivity) vague (or diffuse) prior, flat prior
- Improper priors: not a valid probability distribution $\int_{\Theta} f(\theta) d\theta = \infty$. It can be used as long as it induces a proper posterior distribution
- Conjugate prior produces a posterior distribution (along with the data model) that has the same functional form as the prior (but with new, updated parameter values).
 - easy to understand the respective contributions of the prior and the data information to the posterior

Examples of conjugacy:

Beta prior-binomial data, Gamma prior-Poisson data, Normal prior-Normal data

Example: Binomial data & Beta conjugate prior

Likelihood :
$$X|\theta \sim \text{Binomial } (n,\theta)$$

$$f(x|\theta) = \binom{n}{x} \theta^x (1-\theta)^{n-x}$$

$$\text{Prior : } \theta \sim \text{Beta } (\alpha,\beta)$$

$$f(\theta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1}$$

$$f(\theta|x) \propto f(x|\theta)f(\theta) \propto \theta^{x}(1-\theta)^{n-x}\theta^{\alpha-1}(1-\theta)^{\beta-1}$$
$$\propto \theta^{x+\alpha-1}(1-\theta)^{n-x+\beta-1} : \text{ kernel of Beta}(x+\alpha,n-x+\beta)$$

Thus, the posterior distribution is $\theta | X \sim \text{Beta}(x + \alpha, n - x + \beta)$

Suppose that only individual binary values are observed for data: $Y_1,...,Y_n|\theta \sim \text{Bern}(\theta)$ where $\sum_{i=1}^n Y_i = X_i$

Then,
$$L(\theta: \mathbf{y}) = \prod \theta^{y_i} (1 - \theta)^{1 - y_i} = \theta^{\sum y_i} (1 - \theta)^{n - \sum y_i} = \theta^x (1 - \theta)^{n - x}$$

 $\Rightarrow \theta | \mathbf{Y} \sim \text{Beta}(x + \alpha, n - x + \beta)$ Likelihood Principle

Example: Poisson - Gamma conjugacy

$$\begin{array}{ll} \text{Likelihood:} \ \, \boldsymbol{X} | \lambda \sim \ \, \text{Poisson}(\lambda) & p(\boldsymbol{x} | \lambda) = \frac{1}{\prod x_i!} \lambda^{\sum x_i} e^{-n\lambda} \\ \text{Prior:} \ \, \lambda \sim \ \, \text{Gamma}(\alpha, \beta) & p(\lambda) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \lambda^{\alpha-1} e^{-\lambda/\beta} \end{array}$$

$$\begin{split} p(\lambda|\boldsymbol{x}) &\propto f(\boldsymbol{x}|\lambda) f(\lambda) &= \lambda^{\sum x_i} \exp(-n\lambda) \ \lambda^{\alpha-1} \exp(-\lambda/\beta) \\ &= \lambda^{\sum x_i + \alpha - 1} \exp(-(n + \frac{1}{\beta})\lambda) \\ &: \text{kernel of } \operatorname{Gamma}(\sum x_i + \alpha, \frac{1}{n + 1/\beta}) \end{split}$$

$$\Rightarrow$$
 Posterior: $\lambda | \boldsymbol{X} \sim \mathsf{Gamma}(n\overline{X} + \alpha, \frac{1}{n+1/\beta})$

Posterior Mean :
$$E[\ \lambda | \mathbf{X}] = \frac{\sum x_i + \alpha}{n + \frac{1}{\beta}} = \frac{n \frac{\sum x_i}{n} + \frac{\alpha \beta}{\beta}}{n + \frac{1}{\beta}}$$

: weighted average of \overline{X} and prior mean $E[\lambda] = \alpha \beta$

Posterior Inference

1. Point Estimation

Posterior mean $(E[\theta|X])$, Posterior variance $(Var[\theta|X])$, Mode, etc.

- 2. Interval Estimation : Bayesian credible intervals Interpretation: there is $100(1-\alpha)\%$ probability that θ lies in such an interval.
- i) Bayesian **equal-tailed** intervals / quantile intervals $(\theta_L, \ \theta_U)$ is a $100(1-\alpha)\%$ equal-tailed interval for θ when

$$P(\theta < \theta_L | \boldsymbol{X}) = \frac{\alpha}{2} = P(\theta > \theta_U | \boldsymbol{X})$$

e.g. 95% equal-tailed interval is an interval : $[q_{0.025},q_{0.975}]$ where $q_{0.025}$ and $q_{0.975}]$ are the quantiles of the posterior distribution.

ii) **Highest posterior density (HPD)** intervals (or Highest density region) : posterior density for every point in this set is higher than the posterior

density for any point outside of this set.

More meaningful for multimodal distributions

Likelihood of Normal data

$$X_1,...,X_n \text{ iid } \mathsf{N}(\mu,\tau) \qquad \tau > 0$$

$$p(\boldsymbol{x}|\mu,\tau) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\tau}} \exp\left(-\frac{(x_i - \mu)^2}{2\tau}\right)$$

$$\propto \tau^{-\frac{n}{2}} \exp\left(-\frac{\sum x_i^2 - 2\mu \sum x_i + n\mu^2}{2\tau}\right) \propto \tau^{-\frac{n}{2}} \exp\left(-\frac{n\mu^2 - 2\mu n\overline{x}}{2\tau}\right)$$

$$\begin{aligned}
&\propto \tau^{-\frac{n}{2}} \exp\left(-\frac{\sum x_i - 2\mu \sum x_i + n\mu}{2\tau}\right) \propto \tau^{-\frac{n}{2}} \exp\left(-\frac{n\mu - 2\mu nx}{2\tau}\right) \\
&\text{Or,} \\
&p(x|\mu,\tau) &= \left[\frac{1}{\sqrt{2\pi\tau}}\right]^n \exp\left(-\frac{1}{2\tau} \left[\sum_{i=1}^n (x_i - \overline{x} + \overline{x} - \mu)^2\right]\right) \\
&= \left[\frac{1}{\sqrt{2\pi\tau}}\right]^n \exp\left(-\frac{\sum (x_i - \overline{x})^2}{2\tau}\right) \exp\left(-\frac{n(\mu - \overline{x})^2}{2\tau}\right) \\
&\propto \tau^{-\frac{n}{2}} \exp\left(-\frac{1}{2\tau} \left[n(\mu - \overline{x})^2 + S\right]\right), \quad S = \sum_{i=1}^n (x_i - \overline{x})^2 \\
&\propto \tau^{-\frac{n}{2}} \exp\left(-\frac{n(\mu - \overline{x})^2}{2\tau}\right)
\end{aligned}$$

Normal Samples with one unknown parameter

■ Case 1. μ is unknown with no prior information, but τ is known Take a flat prior for μ : $p(\mu)=1$ (Jeffreys' prior)

Posterior : $\mu | \boldsymbol{X} \sim N(\overline{X}, \frac{\tau}{n})$

■ Case 2. Conjugate prior for $\mu \sim N(\mu_0, \sigma_0^2)$ & Variance (τ) known Posterior: Normal (μ^*, σ^{2*}) where

Posterior mean :
$$\mu^*=\frac{n\bar{x}/\tau+\mu_0/\sigma_0^2}{n/\tau+1/\sigma_0^2}$$
 variance : $\sigma^{2*}=\frac{1}{n/\tau+1/\sigma_0^2}$

■ Case 3. $N(\mu, \tau)$: μ is known & τ is unknown Conjugate prior for τ : $\tau \sim \mathsf{IG}(a, b)$

Posterior:
$$\tau | \boldsymbol{X} \sim \text{inverse Gamma} \left(a + \frac{n}{2}, \frac{1}{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2} + \frac{1}{h}} \right)$$

Case 2. Conjugate prior for μ & Variance (τ) known

 $\begin{array}{ll} \mbox{Likelihood}: \ \pmb{X} | \mu \sim \ \mbox{Normal}(\mu,\tau) \\ \mbox{Prior:} & \mu \sim \ \mbox{Normal}(\mu_0,\sigma_0^2) \end{array}$

$$p(\mu|\mathbf{x}) \propto p(\mathbf{x}|\mu)p(\mu) \propto \exp\left(-\frac{n}{2\tau}(\mu - \overline{x})^2\right) \exp\left(-\frac{1}{2\sigma_0^2}(\mu - \mu_0)^2\right)$$
$$= \exp\left(-\frac{1}{2}\left[\frac{n}{\tau}(\mu - \overline{x})^2 + \frac{1}{\sigma_0^2}(\mu - \mu_0)^2\right]\right) = \exp\left(-\frac{1}{2}Q\right)$$

Complete the square for μ , i.e. find μ^* , σ^{2*} such that the inside of the exponential function has the form $\frac{1}{\sigma^{2*}}(\mu-\mu^*)^2$,

$$\begin{split} Q &\propto & \left(\frac{n}{\tau} + \frac{1}{\sigma_0^2}\right)\mu^2 - 2\left(\frac{n}{\tau}\overline{x} + \frac{1}{\sigma_0^2}\mu_0\right)\mu + \dots \\ &= & \left(\frac{n}{\tau} + \frac{1}{\sigma_0^2}\right)\left[\mu - \frac{n\overline{x}/\tau + \mu_0/\sigma_0^2}{n/\tau + 1/\sigma_0^2}\right]^2 + R \end{split}$$

Posterior: $\mu|X\sim {\sf Normal}(\mu^*,\sigma^{2*})$ with $\mu^*=\frac{n\bar{x}/\tau+\mu_0/\sigma_0^2}{n/\tau+1/\sigma_0^2},~\sigma^{2*}=\frac{1}{n/\tau+1/\sigma_0^2}$

Predictive Distribution

Want to predict a **future observation** y given that we have observed $X = (X_1,...,X_n)$. Assume that $X_1,...,X_n$ are independent given θ . Bayesian inference about y is based on its posterior predictive distribution:

$$\begin{aligned} & p(y|\boldsymbol{x}) & = & \int p(y,\theta|\boldsymbol{x})d\theta = \int p(y|\theta,\boldsymbol{x})p(\theta|\boldsymbol{x})d\theta = \int \underbrace{p(y|\theta)}_{lkhd} \underbrace{p(\theta|\boldsymbol{x})}_{posterior} d\theta \\ & = & \sum_{\theta} p(y|\theta)p(\theta|\boldsymbol{x}) \quad \text{for discrete cases} \end{aligned}$$

The mean and variance of a predictive distribution can be obtained using standard formulae:

$$\begin{array}{rcl} E(Y) & = & E_{\Theta}[E(Y|\theta)] \\ \mathsf{Var}(Y) & = & E_{\Theta}[\mathsf{Var}(Y|\theta)] + \mathsf{Var}_{\Theta}[E(Y|\theta)] \end{array}$$

 $\Rightarrow E(Y|X), Var(Y|X)$ can be otained in the same pattern.

Example: Posterior predictive distribution

Predicting t successes in m future observations $\Leftrightarrow t|\theta \sim \mathsf{Binomial}(m,\theta)$

Data:
$$X \sim \text{Binom}(n, \theta)$$
 with a conjugate prior $\theta \sim \text{Beta}(\alpha, \beta)$
 $\Rightarrow \text{Posterior: } \theta | X \sim \text{Beta}(\alpha + s, n + \beta - s)$
 $p(t|x) = \int p(t|\theta)p(\theta|x)d\theta$
 $\int_{-\infty}^{1} f(x) dx dx = \int_{-\infty}^{\infty} \frac{\Gamma(n + \alpha + \beta)}{\Gamma(n + \alpha + \beta)} dx$

$$= \int_0^1 \binom{m}{t} \theta^t (1-\theta)^{m-t} \frac{\Gamma(n+\alpha+\beta)}{\Gamma(\alpha+s)\Gamma(n+\beta-s)} \theta^{\alpha+s-1} (1-\theta)^{n+\beta-s-1} d\theta$$

$$= \binom{m}{t} \frac{\Gamma(n+\alpha+\beta)}{\Gamma(\alpha+s)\Gamma(n+\beta-s)} \frac{\Gamma(t+\alpha+s)\Gamma(m-t+n+\beta-s)}{\Gamma(m+n+\alpha+\beta)}$$

Frequentists' approach

- i) First, estimate θ by $\hat{\theta}$ (MLE, unbiased estimator, etc.)
- ii) Substitute θ by $\hat{\theta}$. (e.g. $\mathsf{Binom}(m,\theta)$ by $\mathsf{Binom}(m,\hat{\theta})$)
- iii) Predict y based on the distribution with the estimate of θ plugged in.
- (e.g. $\mathsf{Binom}(m,\hat{\theta})$) ignores uncertainty of $\hat{\theta}$

Example: Discrete posterior predictive function

	θ	$p(\theta)$	likelihood	$prior \times lkhd$	posterior
'great'	1/2	0.2	0.1048	0.02096	0.5008
'good'	1/4	0.5	0.0413	0.02065	0.4934
'poor'	1/8	0.3	0.0008	0.00024	0.0058
		1		0.04185	1

$$\begin{split} p(y|x=10) &= \sum_{\theta = \frac{1}{2}, \frac{1}{4}, \frac{1}{8}} p(y|\theta) p(\theta|x=10) \\ &= \left(\frac{12^y e^{-12}}{y!} \times 0.5008\right) + \left(\frac{6^y e^{-6}}{y!} \times 0.4934\right) + \left(\frac{3^y e^{-3}}{y!} \times 0.0058\right) \\ &= \frac{(12^y e^{-12})0.5008 + (6^y e^{-6})0.4934 + (3^y e^{-3})0.0058}{y!} \end{split}$$

For example,

$$P(y = 10|x = 10) = \frac{(12^{10}e^{-12})0.5008 + (6^{10}e^{-6})0.4934 + (3^{10}e^{-3})0.0058}{10!}$$
$$= 0.073$$

Mixtures of conjugacy

The family of mixtures of conjugates can approximate any prior distribution to any required level of accuracy.

A mixture of the distributions $\pi_j(\theta)$ with weights $a_j(j=1,2,...,m)$ has probability (density) function

$$\pi(\theta) = \sum_{j=1}^{m} a_j \pi_j(\theta)$$
 where $\sum_{j=1}^{m} a_j = 1$

For the individual prior $\pi_j(\theta)$, the (individual) posterior density $p_j(\theta|x)$ can be derived using the Bayes theorem.

$$p_j(\theta|\boldsymbol{x}) = \frac{\pi_j(\theta)p(\boldsymbol{x}|\theta)}{\int \pi_j(\theta)p(\boldsymbol{x}|\theta)d\theta} \equiv \frac{\pi_j(\theta)p(\boldsymbol{x}|\theta)}{c_j} \quad c_j: \text{ normalizing constant}$$

Then, the posterior is a mixture of the respective posterior distributions under each prior.

$$p(\theta|\mathbf{x}) = \sum_{j=1}^m a_j^* p_j(\theta|\mathbf{x})$$
 where $\frac{a_j^*}{\sum_{j=1}^m a_j c_j}$

Normal samples with conjugate NIC prior

Case 4. $N(\mu, \tau)$: Both μ and τ are unknown

Prior : $(\mu,\tau) \sim \text{NIC}\ (p,q,m,v)$, conjugate family of joint prior for μ and τ Posterior : $(\mu,\tau)|X \sim \text{NIC}(p_1,q_1,m_1,v_1)$

$$p_1 = p+n, \quad m_1 = \frac{v^{-1}m + n\bar{x}}{v^{-1} + n}, \quad v_1 = (v^{-1} + n)^{-1}$$

 $q_1 = q + S + (v + n^{-1})^{-1}(\bar{x} - m)^2$

Marginal inference about μ : $\mu | \boldsymbol{X} \sim t_{p_1}(m_1, q_1v_1/p_1)$

$$E[\mu|\mathbf{X}] = m_1 = \frac{v^{-1}\mathbf{m} + n\bar{\mathbf{x}}}{v^{-1} + n}$$
$$Var[\mu|\mathbf{X}] = \frac{q_1v_1}{p_1 - 2}$$

Marginal inference about τ : $\tau | \boldsymbol{X} \sim IC(p_1, q_1)$

Normal Samples with two unknown parameters

Case 5. Normal(μ, τ): μ, τ are unknown.

Take a noninformative prior: $p(\mu, \tau) \propto \frac{1}{\tau} \times 1 \equiv \text{NIC } (-1, 0, m, \infty)$

$$p(\mu, \tau | \boldsymbol{x}) \propto \tau^{-\frac{n}{2}} \exp\left(-\frac{1}{2\tau} \left[\sum_{i=1}^{n} (x_i - \overline{x} + \overline{x} - \mu)^2\right]\right) \times \frac{1}{\tau}$$

$$\propto \tau^{-\frac{n}{2} - 1} \exp\left(-\frac{1}{2\tau} \left[n(\mu - \overline{x})^2 + S\right]\right), \quad S = \sum_{i=1}^{n} (x_i - \overline{x})^2$$

$$\Rightarrow \mu | \tau, \boldsymbol{X} \sim N(\overline{X}, \tau/n)$$

Marginal posterior of μ : $\mu | \mathbf{X} \sim t_{n-1}(\overline{X}, S/n(n-1))$ Marginal posterior of τ : $\tau | \mathbf{X} \sim \mathsf{IC}(n-1, S)$

 $p(\mu|\boldsymbol{x}) = \int_0^\infty p(\mu, \tau|\boldsymbol{x}) d\tau$ by integrating τ out of joint posterior $p(\tau|\boldsymbol{x}) = \int_{-\infty}^\infty p(\mu, \tau|\boldsymbol{x}) d\mu$ by integrating μ out of joint posterior

Two Normal Samples

 $\begin{array}{ll} \text{Likelihood:} \ Y_{1i}|\mu_1,\tau_1 \sim \mathsf{Normal}(\mu_1,\tau_1) & i=1,...,n_1 \\ Y_{2i}|\mu_2,\tau_2 \sim \mathsf{Normal}(\mu_2,\tau_2) & i=1,...,n_2 \end{array}$

Case 1. τ_1 and τ_2 are assumed to be known Can take independent reference priors for μ_1 and μ_2 : $p(\mu_1, \mu_2) = 1$

$$p(\boldsymbol{y}|\mu_1, \mu_2, \tau) \propto \tau_1^{-\frac{n_1}{2}} \exp\left(-\frac{1}{2\tau_1} [n_1(\mu_1 - \overline{y}_1)^2 + S_1]\right)$$
$$\times \tau_2^{-\frac{n_2}{2}} \exp\left(-\frac{1}{2\tau_2} [n_2(\mu_2 - \overline{y}_2)^2 + S_2]\right)$$
$$\Rightarrow p(\mu_1, \mu_2|\boldsymbol{y}_1, \boldsymbol{y}_2) \propto p(\mu_1|\boldsymbol{y}_1)p(\mu_2|\boldsymbol{y}_2)$$

Posterior:

$$\mu_1 | \mathbf{Y} \sim N(\overline{Y}_1, \frac{\tau_1}{n_1})$$
 independent of $\mu_2 | \mathbf{Y} \sim N(\overline{Y}_2, \frac{\tau_2}{n_2})$
 $\Rightarrow \mu_1 - \mu_2 | \mathbf{Y} \sim N(\overline{Y}_1 - \overline{Y}_2, \frac{\tau_1}{n_1} + \frac{\tau_2}{n_2})$

Case 2. Take independent priors uniform in μ_1, μ_2, τ : $p(\mu_1, \mu_2, \tau) = \frac{1}{\tau}$ Assume $\tau_1 = \tau_2 \equiv \tau$

Joint posterior:
$$p(\mu_1, \mu_2, \tau | Y) \propto \underbrace{\tau^{-\frac{n_1 + n_2 + 2}{2}} \exp\left(-\frac{1}{2\tau}(S_1 + S_2)\right)}_{IC(n_1 + n_2, S_1 + S_2)}$$

$$\times \underbrace{\exp\left(-\frac{1}{2\tau}[n_1(\mu_1 - \overline{Y}_1)^2]\right)}_{N(\overline{Y}_1, \frac{\tau}{n_1})} \underbrace{\exp\left(-\frac{1}{2\tau}[n_2(\mu_2 - \overline{Y}_2)^2]\right)}_{N(\overline{Y}_2, \frac{\tau}{n_2})}$$

$$\Rightarrow \mu_1 - \mu_2 | \tau, \boldsymbol{Y} \sim N(\overline{Y}_1 - \overline{Y}_2, \tau\left(\frac{1}{n_1} + \frac{1}{n_2}\right))$$

Initegrating au out

$$\Rightarrow \mu_1 - \mu_2 | Y \sim t_{n_1 + n_2 - 2} (\overline{Y}_1 - \overline{Y}_2, \frac{S_1 + S_2}{n_1 + n_2 - 2} (1/n_1 + 1/n_2))$$

Case. 3 $\tau_1 \neq \tau_2$ unknown

Take conjugate NIC priors independently for (μ_1, au_1) and (μ_2, au_2)

Prior:
$$(\mu_i, \tau_i) \sim \mathsf{NIC}(p_i, q_i, m_i, v_i)$$
 $i = 1, 2$

Posterior: $(\mu_i, \tau_i) | \boldsymbol{Y} \sim \mathsf{NIC}(p_i^*, q_i^*, m_i^*, v_i^*)$ independently

$$p_i^* = p_1 + n_1,$$
 $q_i^* = q_1 + S_1 + (v_1 + n_1^{-1})^{-1} (\overline{Y}_1 - m_1)^2$
 $m_i^* = \frac{v_1^{-1} m_1 + n_1 \overline{Y}_1}{v_1^{-1} + n_1},$ $v_i^* = (v_1^{-1} + n_1)^{-1}$

Marginally,
$$\mu_1 | \boldsymbol{Y}_1 \sim t_{p_1^*}(m_1^*, q_1^*v_1^*/p_1^*)$$

 $\mu_2 | \boldsymbol{Y}_2 \sim t_{p_2^*}(m_2^*, q_2^*v_2^*/p_2^*)$

Direct simulation is easier to get samples from $\mu_1 - \mu_2 | Y$.

However, the posterior mean and variance can be found using $E[\delta|\mathbf{Y}] = E[\mu_1|\mathbf{Y}] + E[\mu_2|\mathbf{Y}]$ and $Var[\delta|\mathbf{Y}] = Var[\mu_1|\mathbf{Y}] + Var[\mu_2|\mathbf{Y}]$

Linear Regression: Bayesian Inference

$$Y = X\beta + \epsilon, \quad \epsilon \sim MVN(0, \tau I)$$

Likelihood:
$$\boldsymbol{Y}_{n\times 1}|\boldsymbol{\beta}, \tau \sim N(\boldsymbol{X}_{n\times k}\boldsymbol{\beta}_{k\times 1}, \tau I)$$

 $p(\boldsymbol{Y}|\boldsymbol{\beta}, \tau) = (2\pi\tau)^{-n/2} \exp\left(-\frac{1}{2\tau}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^T(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})\right)$

Prior:
$$\beta, \tau \sim \text{Multivariate NIC } (p, q, \boldsymbol{m}, V)$$

$$p(\boldsymbol{\beta}, \tau) \propto \tau^{-(p+k+2)/2} \exp(-\frac{1}{2\tau} \{q + (\boldsymbol{\beta} - \boldsymbol{m})^T V^{-1} (\boldsymbol{\beta} - \boldsymbol{m})\})$$

Posterior:
$$\boldsymbol{\beta}, \tau | \boldsymbol{Y} \sim NIC(p^*, q^*, \boldsymbol{m}^*, V^*)$$

$$\boldsymbol{\beta}|\boldsymbol{Y} \sim t_{p^*}(\boldsymbol{m}^*, \frac{q^*}{p^*}V^*)$$

$$p^* = p + n \quad q^* = q + S + (\hat{\boldsymbol{\beta}} - \boldsymbol{m})^T (V + (\boldsymbol{X}^T \boldsymbol{X})^{-1})^{-1} (\hat{\boldsymbol{\beta}} - \boldsymbol{m})$$

$$\boldsymbol{m}^* = V^* (V^{-1} \boldsymbol{m} + (\boldsymbol{X}^T \boldsymbol{X}) \hat{\boldsymbol{\beta}}) \quad V^* = (V^{-1} + (\boldsymbol{X}^T \boldsymbol{X}))^{-1}$$

where
$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{Y}$$
 $S = (Y - X\hat{\boldsymbol{\beta}})^T(\boldsymbol{Y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})$

Simple regression

Observations Y_i 's are independent given (a, b, τ) :

$$Y_i|a,b,\tau \sim N(a+bx_i,\tau)$$

This is a linear model in which k=2 and

$$oldsymbol{Y} = egin{bmatrix} Y_1 \ Y_2 \ dots \ Y_n \end{bmatrix}, \quad X = egin{bmatrix} 1 & X_{11} \ 1 & X_{21} \ dots & dots \ 1 & X_{n1} \end{bmatrix} \quad oldsymbol{eta} = egin{bmatrix} a \ b \end{bmatrix}$$

For conjugate NIC $(p, q, \boldsymbol{m}, V)$ prior,

$$\boldsymbol{m} = \begin{bmatrix} E(a) \\ E(b) \end{bmatrix} \quad Var(\boldsymbol{\beta}) = E(\tau)V = \begin{bmatrix} Var(a) & \operatorname{Cov}(a,b) \\ \operatorname{Cov}(a,b) & Var(b) \end{bmatrix}$$

Note
$$V = \frac{1}{E(\tau)} Var(\boldsymbol{\beta})$$
.

Two normal samples in linear model formulation

Data : Y_{ij} , for i = 1, 2 and $j = 1, 2,, n_i$

Assume that variances for two samples are **equal** : $\tau_1 = \tau_2 \equiv \tau$.

Prior:
$$(\boldsymbol{\beta}, \tau)^T = (\mu_1, \mu_2, \tau) \sim \text{Multivariate NIC } (p, q, \boldsymbol{m}, V)$$

Joint Posterior: $(\mu_1, \mu_2, \tau)^T | \mathbf{Y} \sim \text{NIC } (p^*, q^*, \boldsymbol{m}^*, V^*)$

Let
$$\delta = \mu_1 - \mu_2 = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \equiv A\beta$$

By Theorem,

$$(\delta, \tau)|\mathbf{Y} \sim NIC(p^*, q^*, A\mathbf{m}^*, AV^*A^T)$$

$$\delta | \boldsymbol{Y} \sim t_{p^*}(A\boldsymbol{m}^*, AV^*A^T)$$

where $Am^* = m_1^* - m_2^*$

Other Multiparameter Models

■ Theorem (Lindely and Smith)

Likelihood: $Y|\theta_1 \sim N(A_1\theta_1, C_1)$ where A_1, C_1 is known.

Prior: $\theta_1 \sim N(A_2\theta_2, C_2)$ where A_2, θ_2, C_2 is known.

 \Rightarrow Posterior: $\theta_1|Y \sim N(Bb,B)$ where

$$B = (A_1^T C_1^{-1} A_1 + C_2^{-1})^{-1} \quad b = A_1^T C_1^{-1} \mathbf{Y} + C_2^{-1} A_2 \boldsymbol{\theta_2}$$

- Marginal distribution of $m{Y} \sim N(A_1A_2m{ heta_2},C_1+A_1C_2A_1^T)$
- Multinomial data : $Y|\theta \sim \text{Multinomial}(n,\theta)$ i.e. $p(y|\theta) \propto \theta_1^{y_1} \cdots \theta_k^{y_k}$ Prior: $\theta \sim \text{Dirichlet } D(\alpha_1,...,\alpha_k)$

$$p(\boldsymbol{\theta}) = \frac{\Gamma(\alpha_1 + \dots + \alpha_k)}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_k)} \theta_1^{\alpha_1 - 1} \cdots \theta_k^{\alpha_k - 1}, \quad \sum_j \theta_j = 1$$

 \Rightarrow Posterior: $\theta | Y \sim \text{Dirichlet } D(\alpha_1 + y_1, ..., \alpha_k + y_k)$

Hierarchical Models

Hierarchical modeling is used when information is available on several different levels of observational units.

The joint posterior is:

$$\begin{array}{ccc} p(\theta,\phi|\boldsymbol{x}) & \propto & p(\boldsymbol{x}|\theta)p(\theta|\phi)p(\phi) \\ p(\boldsymbol{\theta},\boldsymbol{\phi},\boldsymbol{\lambda},\boldsymbol{\xi}|\boldsymbol{x}) & \propto & p(\boldsymbol{x}|\boldsymbol{\theta})p(\boldsymbol{\theta}|\boldsymbol{\phi})p(\boldsymbol{\phi}|\boldsymbol{\lambda})p(\boldsymbol{\lambda}|\boldsymbol{\xi})p(\boldsymbol{\xi}) \end{array}$$

The marginal posterior distributions:

$$p(\theta|\mathbf{x}) \propto p(\mathbf{x}|\theta)p(\theta)$$
 $p(\phi|\mathbf{x}) \propto p(\phi)p(\mathbf{x}|\phi)$

Example: Hierarchical models

Likelihood:
$$Y_i | \theta_i \sim \mathsf{Binom}(n_i, \theta_i) \quad j = 1, ..., J$$

Prior:
$$\theta_j | \alpha, \beta \sim \text{Beta}(\alpha, \beta)$$
 Hyperprior: $p(\alpha, \beta) \propto \frac{1}{(\alpha + \beta)^{5/2}}$

a) Joint posterior:
$$p(\boldsymbol{\theta}, \alpha, \beta | \boldsymbol{y}) \propto p(\boldsymbol{y} | \boldsymbol{\theta}) p(\boldsymbol{\theta} | \alpha, \beta) p(\alpha, \beta)$$
$$\propto \frac{1}{(\alpha + \beta)^{5/2}} \prod_{j=1}^{J} \left[\theta_j^{y_j} (1 - \theta_j)^{n_j - y_j} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta_j^{\alpha - 1} (1 - \theta_j)^{\beta - 1} \right]$$

b) Marginal conditional density:

$$\Rightarrow p(\boldsymbol{\theta}|\alpha,\beta,\boldsymbol{y}) = \prod_{j=1}^{J} \frac{\Gamma(\alpha+\beta+n_j)}{\Gamma(\alpha+y_j)\Gamma(\beta+n_j-y_j)} \theta_j^{y_j+\alpha-1} (1-\theta_j)^{n_j-y_j+\beta-1}$$

c) Marginal posterior (up to a proportionality constant):

$$\begin{split} p(\alpha,\beta|\boldsymbol{y}) &= \frac{p(\alpha,\beta,\boldsymbol{\theta}|\boldsymbol{y})}{p(\boldsymbol{\theta}|\alpha,\beta,\boldsymbol{y})} \equiv \frac{\text{density from a)}}{\text{density from b)}} \\ &\propto \frac{1}{(\alpha+\beta)^{5/2}} \prod_{j=1}^J \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\alpha+y_j)\Gamma(\beta+n_j-y_j)}{\Gamma(\alpha+\beta+n_j)} \end{split}$$

Bayesian vs. Frequentist Inference

- Frequentists are disturbed by the dependence of the posterior results on the subjective prior distribution
- Bayesians say that the prior distribution is not the only subjective element in an analysis. The assumptions about the sampling distributions are also subjective.
- Whose probability distribution should be used? When there are enough data, a good Bayesian analysis and a good frequentist analysis will tend to agree. If the results are sensitive to prior information, a Bayesian analyst is obligated to report this sensitivity and to present different results obtained from a wide range of prior information.
- Bayesians can often handle problems the frequentist approach cannot. Bayesians often apply frequentist techniques but with a Bayesian interpretation. Most untrained people interpret results in the Bayesian way more easily. (Often the Bayesian answer is what the decision maker really wants to hear.)