Apprentissage et Reconnaissance de Formes

Théorie de l'apprentissage & Régression

11/02/2020

S. Herbin, B. Le Saux, A. Chan Hon Tong

Organisation du cours

14/01/2020	S. HERBIN	Intrduction + TD
20/01/2020	B. LE SAUX	Arbres + TD
21/01/2020	A. CHAN HON TONG	Réseaux de neurones + TD
27/01/2020	S. HERBIN	SVM + TD
28/01/2020	B. LE SAUX	Non supervisé + TD
03/02/2020	A. CHAN HON TONG	Deep Lerning + TD
10/02/2020	S. HERBIN	Examen écrit (1h30) + Projet
11/02/2020	S. HERBIN	Théorie de l'apprentissage + Projet
18/02/2020	B. LE SAUX	Auto-encodeurs + GAN + Projet
25/02/2020	A. CHAN HON TONG	Applications du DL+ Projet

Objectifs du cours

- Théorie de l'apprentissage automatique
 - Panorama des résultats fondamentaux
- Régression
 - Présentation des techniques classiques de régression
 - Savoir les choisir et utiliser
 - Régression et Deep Learning

Régression: A quoi ça sert

- Prédire une valeur (interpolation, extrapolation)
- Expliquer/détecter/repérer des corrélations/tendances
- Exemples de prédiction:
 - Prédiction de régime moteur
 - Prédiction de durée de survie
 - Estimation de prix
 - Prévision météo ou climatique
 - Prévision de cours de la bourse
 - Super résolution

Global Land-Ocean Temperature Index

└─ Annual Mean

5-year Running Mean

[emperature Anomaly (°C)

Formulation de la régression

- Prédicteur: $W, x \mapsto y$
- Modèle: P(t | x, W) ou $t = y(x, W) + \varepsilon$

Où

- entrée $x \in \mathbb{R}^M$, prédiction $y \in \mathbb{R}^p$, cible $t \in \mathbb{R}^p$
- W paramètres du prédicteur estimé à partir d'un ensemble d'apprentissage: $\mathcal{L} = \{x_i, t_i\}_{i=1..N}$
- ε variable aléatoire décrivant l'erreur de prédiction (souvent considérée gaussienne)

- C'est du « Machine Learning » (Apprentissage supervisé)
- C'est du « Data Mining » (Estimation de dépendances entre variables)

Modèles linéaires

- La base de la régression
 - Fondements mathématiques solides
 - Calculs analytiques ou optimisation séquentielle
- Plusieurs manières de dépasser la linéarité
 - Modèles linéaires généralisés
 - Modèles à base de noyaux (« kernels »)
- Plusieurs manières de maîtriser la complexité
 - « Large margin » (cf. SVM)
 - Régularisateurs

Modèles linéaires généralisés (cas scalaire $y \in \mathbb{R}$)

$$y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + w_2 x_2 + ... = \mathbf{w}^T \mathbf{x}$$
$$y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 \phi_1(\mathbf{x}) + w_2 \phi_2(\mathbf{x}) + ... = \mathbf{w}^T \Phi(\mathbf{x})$$

- Principe simple: utiliser plusieurs fonctions de base ϕ encodant les données source (« features »)
- Une fois définies les fonctions, le problème reste linéaire!
- Comment trouver ces fonctions?
 - Se les donner
 - Les apprendre

Exemples classiques de fonctions de base 1D

Remarque: les sigmoïdes et gaussiennes sont des fonctions d'activation usuelles dans les réseaux de neurones

 \rightarrow les RN permettent d'apprendre les ϕ

Apprentissage = trouver W_{ML}

Forme du prédicteur

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

Critère d'erreur (évaluation)

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2$$

Principe statistique: maximum de vraisemblance

$$W_{ML} = \underset{W}{\operatorname{argmax}} P(t \mid x, W)$$

Maximum Likelihood and Least Squares (1)

Assume observations from a deterministic function with added Gaussian noise:

$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon$$
 where $p(\epsilon|\beta) = \mathcal{N}(\epsilon|0, \beta^{-1})$

which is the same as saying,

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1}).$$

Given observed inputs, $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$, and targets, $\mathbf{t} = [t_1, \dots, t_N]^T$, we obtain the likelihood function

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}).$$

Maximum Likelihood and Least Squares (2)

Taking the logarithm, we get

$$\ln p(\mathbf{t}|\mathbf{w},\beta) = \sum_{n=1}^{N} \ln \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n),\beta^{-1})$$
$$= \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta E_D(\mathbf{w})$$

where

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2$$

is the sum-of-squares error.

Maximum Likelihood and Least Squares (3)

Computing the gradient and setting it to zero yields

$$\nabla_{\mathbf{w}} \ln p(\mathbf{t}|\mathbf{w}, \beta) = \beta \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\} \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} = \mathbf{0}.$$

Solving for W, we get

$$\mathbf{w}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}
ight)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$$

The Moore-Penrose pseudo-inverse, Φ^{\dagger} .

where

$$\mathbf{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}.$$

Maximum Likelihood and Least Squares (4)

Maximizing with respect to the bias, W_0 , alone, we see that

$$w_0 = \overline{t} - \sum_{j=1}^{M-1} w_j \overline{\phi_j}$$

$$= \frac{1}{N} \sum_{n=1}^{N} t_n - \sum_{j=1}^{M-1} w_j \frac{1}{N} \sum_{n=1}^{N} \phi_j(\mathbf{x}_n).$$

We can also maximize with respect to β , giving

$$\frac{1}{\beta_{\mathrm{ML}}} = \frac{1}{N} \sum_{n=1}^{N} \{t_n - \mathbf{w}_{\mathrm{ML}}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2$$

Geometry of Least Squares

Consider

$$\mathbf{y} = \mathbf{\Phi} \mathbf{w}_{\mathrm{ML}} = \left[oldsymbol{arphi}_1, \ldots, oldsymbol{arphi}_M
ight] \mathbf{w}_{\mathrm{ML}}.$$

S is spanned by $\varphi_1, \dots, \varphi_M$.

 W_{ML} minimizes the distance between t and its orthogonal projection on S, i.e. y.

Sorties vectorielles $(y \in \mathbb{R}^P)$

On peut étendre le résultat précédent à:

$$\mathbf{W}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}
ight)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{T}.$$

où $T = [t_1, ..., t_N]^T$ est la matrice des cibles $(N \times p)$

Pour une cible unique $\mathbf{t}_k = [t_{1k}, \dots, t_{Nk}]^{\mathrm{T}}$ on a

$$\mathbf{w}_k = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}
ight)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}_k = \mathbf{\Phi}^{\dagger}\mathbf{t}_k$$

où Φ^{\dagger} ne dépend que des données d'entrée.

Alternative: apprentissage séquentiel

- Dans le cas de problèmes à grandes dimensions d'entrée (M) ou d'échantillons nombreux (N), le calcul de Φ^{\dagger} peut être coûteux.
- On peut alors utiliser une descente de gradient stochastique, échantillon par échantillon:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n$$

=
$$\mathbf{w}^{(\tau)} + \eta (t_n - \mathbf{w}^{(\tau)T} \boldsymbol{\phi}(\mathbf{x}_n)) \boldsymbol{\phi}(\mathbf{x}_n).$$

- On parle alors de least-mean-squares (LMS) algorithm.
- La question est alors de bien déterminer le pas du gradient...

Retour sur régularisation

Sur-apprentissage

	M=0	M = 1	M = 3	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^\star				-231639.30
w_5^{\star}				640042.26
w_6^\star				-1061800.52
w_7^{\star}				1042400.18
w_8^\star				-557682.99
w_9^{\star}				125201.43

Comparaison des erreurs de test et d'apprentissage

Coefficients des polynômes

Influence de la quantité de données

Polynôme d'ordre 9

Moindre carrés régularisés

 Rappel: on peut rajouter une pénalisation à la fonction de coût:

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

Dont l'optimum exact est alors:

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}.$$

Effet de la régularisation

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
$\overline{w_0^{\star}}$	0.35	0.35	0.13
w_1^\star	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
$w_3^{\bar{\star}}$	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^\star	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

Comment fonctionne la régularisation L2

- Le coût global est la somme de deux « cuvettes ».
- La somme est aussi quadratique.
- Le minimum global est sur une ligne joignant l'origine et le minimum sans contrainte.
- La régularisation a pour effet de diminuer les poids.

Autres types de régularisation

Une manière simple: utiliser une autre norme

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q$$

Interprétation géométrique

Remarque: w1=0 à l'optimum. **Sparsité** de la solution.

THE FRENCH AEROSPACE LAB

D'autres pénalisations...

- The Tikhonov regularization: $\psi(w) = 1/2 ||w||_2^2$.
- The ℓ_1 -norm: $\psi(w) = |w|_1$.
- The Elastic-Net: $\psi(w) = |w|_1 + \gamma ||w||_2^2$.
- The Fused-Lasso: $\psi(w) = |w|_1 + \gamma ||w||_2^2 + \gamma_2 \sum_{i=1}^{p-1} |w_{i+1} w_i|$.
- The group Lasso: $\psi(w) = \sum_{g \in G} \eta_g ||w_g||_2$, where G are groups of variables.
- The group Lasso with ℓ_{∞} -norm: $\psi(w) = \sum_{g \in G} \eta_g ||w_g||_{\infty}$, where G are groups of variables.
- The sparse group Lasso: same as above but with an additional ℓ_1 term.
- The tree-structured sum of ℓ_2 -norms: $\psi(w) = \sum_{g \in G} \eta_g ||w_g||_2$, where G is a tree-structured set of groups [15], and the η_g are positive weights.
- The tree-structured sum of ℓ_{∞} -norms: $\psi(w) = \sum_{g \in G} \eta_g ||w_g||_{\infty}$. See [15]
- General sum of ℓ_{∞} -norms: $\psi(w) = \sum_{g \in G} \eta_g ||w_g||_{\infty}$, where no assumption are made on the groups G.
- The path-coding penalties of [24].
- the ℓ_1 -constraint.

http://spams-devel.gforge.inria.fr/documentation.html

Support Vector Regression

$$\begin{aligned} & \text{Min } \frac{1}{2}||w||^2 + C\sum_{i=1}^n (\xi_i + \xi_i^*) \\ & \text{subject to } \begin{cases} u_i - \mathbf{w}^T \mathbf{x}_i - b \leq \epsilon + \xi_i \\ \mathbf{w}^T \mathbf{x}_i + b - u_i \leq \epsilon + \xi_i^* \\ \xi_i \geq 0, \xi_i^* \geq 0 \end{cases} \end{aligned}$$

Formulation comparable à celle de la classification

- Fonction de coût différente (dépend d'un paramètre)
- Expression du « soft margin » symétrique
- « Kernel trick » applicable
- Sparsité de la solution

$$L_{\varepsilon}(y, f(\mathbf{x}, \omega)) = \max(|y - f(\mathbf{x}, \omega)| - \varepsilon, 0)$$

Classification et Régression: : même combat

Régression logistique

 Pour un problème à deux classes, on modélise la probabilité comme:

$$p(C_1 | \mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x} + w_0)$$
 où $\sigma(z) = \frac{1}{1 + \exp(-z)}$

 La fonction de coût (maximum de log-vraisemblance) s'exprime alors comme:

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \ln p(t_n \mid y_n)$$

$$= -\sum_{n=1}^{N} t_n \ln y_n + (1 - t_n) \ln (1 - y_n)$$

$$= -\sum_{n=1}^{N} t_n \ln y_n + (1 - t_n) \ln (1 - y_n)$$

$$= -\sum_{n=1}^{N} t_n \ln y_n + (1 - t_n) \ln (1 - y_n)$$

$$= -\sum_{n=1}^{N} t_n \ln y_n + (1 - t_n) \ln (1 - y_n)$$

$$= -\sum_{n=1}^{N} t_n \ln y_n + (1 - t_n) \ln (1 - y_n)$$

$$= -\sum_{n=1}^{N} t_n \ln y_n + (1 - t_n) \ln (1 - y_n)$$

$$= -\sum_{n=1}^{N} t_n \ln y_n + (1 - t_n) \ln (1 - y_n)$$

$$= -\sum_{n=1}^{N} t_n \ln y_n + (1 - t_n) \ln (1 - y_n)$$

$$= -\sum_{n=1}^{N} t_n \ln y_n + (1 - t_n) \ln (1 - y_n)$$

$$= -\sum_{n=1}^{N} t_n \ln y_n + (1 - t_n) \ln (1 - y_n)$$

$$= -\sum_{n=1}^{N} t_n \ln y_n + (1 - t_n) \ln (1 - y_n)$$

$$= -\sum_{n=1}^{N} t_n \ln y_n + (1 - t_n) \ln (1 - y_n)$$

avec
$$y_n = \sigma(\mathbf{w}^T \mathbf{x}_n + w_0)$$

Optimisation de la régression logistique

- La minimisation du critère n'admet pas formulation analytique
- → descente de gradient
- Le gradient se calcule facilement

$$\frac{\partial E_n}{\partial \mathbf{w}} = (y_n - t_n) \mathbf{x}_n$$

 On peut rajouter comme pour la régression des pénalités de régularisation

Problème liés à la régularisation globale

- La pénalisation est isotrope: toutes les dimensions sont considérées simultanément, avec le même poids
 - → on fait l'hypothèse que les dimensions sont comparables (en unité et signification)
 - → Besoin de normaliser ou « blanchir » les données. Mais risque alors de louper les fortes corrélations entre données.
- Beaucoup de types de régularisation (et d'algorithmes d'optimisation...): comment choisir?
 - Validation croisée
 - Structure du problème (on veut forcer certaines dimensions ou certaines corrélations entre dimensions)
 - On veut obtenir une solution interprétable

 sparsité. Mais il y a d'autres approches algorithmiques pour la rechercher directement.
- Remarque: la recherche sur les algorithmes « sparse » était très active avant le « deep learning era ». Maintenant moins…

Evaluer une régression

- Deux objectifs: prédiction ou modélisation
- Prédiction: on cherche la fonction ayant l'erreur de généralisation la plus faible
- → Erreur estimée sur base de test
- → Recherche des paramètres sur base de validation (validation croisée)
- Modélisation: on cherche la fonction qui explique au mieux les corrélations entre données
- → Tests statistiques (R² et p-values)

Formulation bayésienne

- Principes
 - Considérer la distribution jointe des sorties t conditionnellement aux entrées x comme gaussiennes
 - considérer les poids W comme des variables aléatoires
 - → on évolue dans des espaces de distributions
- Loi a priori P(W)
- Vraisemblance des entrées P(t | x, W)
- Loi a posteriori P(W|t)
- Plus hyper paramètres de modélisation des lois (en général prises gaussiennes)

Gaussienne variance du bruit de sortie
$$p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathsf{N}(t_n \mid \mathbf{w}^T \mathbf{x}_n, \beta^{-1}) \qquad \leftarrow \text{vraisemblance}$$

$$p(\mathbf{w} \mid \alpha) = N(\mathbf{w} \mid 0, \alpha^{-1}\mathbf{I}) \qquad \text{prior} \qquad \text{Inverse de la}$$

$$-\ln p(\mathbf{w} \mid \mathbf{t}) = \frac{\beta}{2} \sum_{n=1}^{N} (t_n - \mathbf{w}^T \mathbf{x}_n)^2 + \frac{\alpha}{2} \mathbf{w}^T \mathbf{w} + const$$

On retrouve une formulation avec régularisation

$$\lambda = \frac{\alpha}{\beta}$$

Exemple

Modèle à deux paramètres:

$$y(x, \mathbf{w}) = w_0 + w_1 x$$

- On peut imager la loi a posteriori sur les poids
- La vraisemblance est gaussienne
- → loi a posteriori aussi gaussienne si la loi a priori l'est

 Sans données, on échantillonne la loi a priori

 La loi a priori a peu d'impact si 20 points

Utilisation de la loi a posteriori

- Elle permet de faire des prédictions, des tirages aléatoires, des estimations d'intervalle de confiance...
- Dans le cas gaussien, on peut calculer explicitement en intégrant sur les paramètres

$$p(t_{test} \mid x_{test}, \alpha, \beta, D) = \int p(t_{test} \mid x_{test}, \beta, \mathbf{w}) \quad p(\mathbf{w} \mid \alpha, \beta, D) \, d\mathbf{w}$$

$$\uparrow \qquad \qquad \uparrow$$
Données d'apprentissage
$$\downarrow p(t_{test} \mid x_{test}, \beta, \mathbf{w}) \quad p(\mathbf{w} \mid \alpha, \beta, D) \, d\mathbf{w}$$

$$\uparrow \qquad \qquad \uparrow$$

$$\downarrow p(\mathbf{w} \mid \alpha, \beta, D) \, d\mathbf{w}$$

$$\uparrow \qquad \qquad \uparrow$$

$$\downarrow p(\mathbf{w} \mid \alpha, \beta, D) \, d\mathbf{w}$$

$$\uparrow \qquad \qquad \uparrow$$

$$\downarrow p(\mathbf{w} \mid \alpha, \beta, D) \, d\mathbf{w}$$

$$\downarrow p(\mathbf{w} \mid \alpha, D) \, d\mathbf{w}$$

$$\downarrow p(\mathbf{$$

- On peut aussi introduire directement les corrélations dans les modèles et utiliser le « kernel trick »
- → Processus Gaussiens (« kriging »)

Exemple de prédiction à partir d'une base de fonctions sinusoïdales

Intervalle de confiance à un écart-type + moyenne

Echantillonnage de la loi a posteriori

Régression et Deep Learning

- Les RN sont des fonctions paramétriques
- On dispose d'un algorithme « générique » d'optimisation: gradient stochastique (et variantes)
- Fonction de coût: erreur quadratique, cosinus...
- Difficulté: comment introduire la régularisation?
 - « Weight decay » (pénalisation L2)
 - « Drop-out »
 - « Early stopping »
 - Ajout de bruit
 - Multi-tâche
 - Lasso?
 - Discussion générale ici: https://www.deeplearningbook.org/contents/regularization.html

Estimation de pose 6D

https://www.groundai.com/project/posecnn-a-convolutional-neural-network-for-6d-object-pose-estimation-in-cluttered-scenes/

« Single image super-resolution » en deep learning

Régression: les questions à se poser

- Quels sont les modèles & algorithmes?
 - Modèles linéaires généralisés
 - Processus gaussiens (krigeage)
 - Ensembles de prédicteurs (random forest, boosting, bagging...)
 - Réseaux de neurones
- Comment valider les modèles?
 - Validation croisée
 - Tests statistiques
- Comment maîtriser les grandes dimensions?
 - Projection / Construction de caractéristiques (« feature construction »)
 - Sélection de caractéristiques (« feature selection »)
 - Sparsité
- Comment contrôler les données aberrantes (« outliers »)?
 - Régularisation
 - Estimateurs robustes
 - RANSAC

Implémentations logicielles

SPAMS

- Bibliothèque orientée sparsité
- http://spams-devel.gforge.inria.fr/documentation.html

Scikit-learn

- La plupart des modèles classiques implémentés
- Réseaux de neurones (mais pas profonds)
- https://scikit-learn.org/stable/supervised_learning.html#supervised-learning

Pytorch

- Quelques exemples sur le site (https://github.com/pytorch/examples)
 - Régression polynomiale, Super-resolution
- Quelques tutoriels sur le web

Tensorflow

- Quelques modules élémentaires
 - LinearRegressor, DNNRegressor
- Un tutoriel https://www.tensorflow.org/tutorials/keras/basic_regression

Kaggle

Plein d'exemples dans les « kernels »

Références et sources

- Présentations et livre de C. Bishop (https://www.microsoft.com/en-us/research/people/cmbishop/#!prml-book)
- Cours de G. Hinton
 (http://www.cs.toronto.edu/~hinton/csc2515/lectures.html)
- Autres livres (en ligne):
 - Elements of Statistical Learning
 https://web.stanford.edu/~hastie/Papers/ESLII.pdf
 - An Introduction to Statistical Learning http://www-bcf.usc.edu/~gareth/ISL/
 - Gaussian processes
 http://www.gaussianprocess.org/gpml/
 - Machine Learning: a Probabilistic Perspective https://www.cs.ubc.ca/~murphyk/MLbook/index.html

