## Karol Cidyło

Zadanie 6 z listy 1.

Pseudokod:

```
deleteMaxNumbers(t[], n) {
    count = 0;
    j = n/2;
    i = 0;
    while ((j < n) and (i < n / 2)) {
        if (2 * t[i] <= t[j) {
            count++;
            i++;
        }
        j++;
    }
    return count;
}</pre>
```

Rozwiązanie działa w czasie O(n) sprawdzimy każdy element z tablicy maksymalnie raz.

## Lemat.

Istnieje optymalne rozwiązanie, które wykreśla pary liczb z ciągu w taki sposób, że pierwszy element z pary jest zawsze w pierwszej połowie ciągu, a drugi w drugiej połowie.

## Dowód.

Weźmy optymalne rozwiązanie i nazwijmy je OPT.

Weżmy teraz takie pary liczb z rozwiązania optymalnego, które nie spełniają tego lematu.

Nie możemy mieć sytuacji, w której pierwszy element z pary jest w drugiej połowie, a drugi w pierwszej. Wynika to ze sposobu parowania oraz tego, że mamy niemalejący ciąg liczb dodatnich.

Rozważmy więc sytuacje, w której OPT wybrał pary liczb, których oba elementy należą do tej samej połowy tablicy.

Niech to będzie para  $(a_i, a_j)$  dla pierwszej połowy tablicy oraz para  $(a_k, a_l)$  dla drugiej połowy tablicy.

Ze sposobu parowania oraz faktu, że mamy niemalejący ciąg liczb wynika:

 $2*a_i <= a_j$  oraz  $2*a_k <= a_l$ , wiemy , że skoro  $a_j$  jest w pierwszej połowie ciągu,  $a_k$  w drugiej to  $a_j <= a_k$ . Czyli wynika też:  $2*a_i <= a_k$  i  $2*a_j <= a_l$  możemy zatem przekształcić pary wybrane przez OPT do par  $(a_i, a_k)$  oraz  $(a_j, a_l)$ . Po przekształceniu wciąż mamy taką samą liczbę par wykreślonych przez oba algorytmy.

Rozważmy kolejną sytuacje, w której w algorytmie OPT liczba par wybranych w pierwszej połowie jest różna od liczby par wybranych w drugiej połowie.

Weźmy przypadek gdzie w pierwszej połowie jest więcej par, a dokładnie o jedną więcej, niech to będzie para  $(a_i, a_j)$ , w takim razie w drugiej połowie musi być

jakiś niesparowany element, niech to będzie  $a_k$ ,  $2*a_i <= a_j$  oraz z faktu, że ciąg jest niemalejący  $2*a_i <= a_j <= a_k$ , więc również  $2*a_i <= a_k$ , czyli możemy to przekształcić do pary  $(a_i\ , a_k)$ . W przypadku gdzie takich par jest więcej powtarzamy powyższe kroki i zawsze będziemy w stanie dopasować element z pierwszej połowy z niesparowanym elementem z prawej połowy. W przypadku odwrotnej sytuacji, gdzie w drugiej połowie jest więcej par stosujemy analogiczne rozwiązanie. W tych przypadkach będziemy w stanie przekształcić pary rozwiązania OPT nie tracąc przy tym żadnego wykreślenia. Algorytm, który wykreśla pary liczb z ciągu, gdzie pierwszy element jest w pierwszej połowie,a drugi w drugiej wykreśla tyle samo par co algorytm OPT.

Teraz wystarczy pokazać, że pary są dobierane w taki sposób, że pierwszy element z pary(z pierwszej połowy) jest dopasowany z najmniejszym możliwym elementem z drugiej połowy ciągu.

Załóżmy, że i < j < k < l oraz j < n/2 i k >= n/2

Rozważamy takie wykreślone pary:  $(a_j, a_k)$  oraz  $(a_i, a_l)$ 



W naszym algorytmie najpierw porównywalibyśmy ze sobą  $a_i$  oraz  $a_k$  zanim doszlibyśmy do porównania  $a_j$  oraz  $a_k$  Więc też mielibyśmy wykreśloną parę  $(a_i \text{ oraz } a_k)$ . Skoro  $a_j$  mogliśmy wykreślić z $a_k$  to tak samo możemy wykreślić w parze z $a_l$ 



Korzystając z lematu oraz przekształceń takich jak powyżej możemy rozwiązanie algorytmu optymalnego przekształcić do takiego, które zwraca nasz algorytm dając ten sam wynik. Z tego wynika, że algorytm daje optymalne rozwiązanie.