Floating Point Numbers and Excess-k Format for Signed Integers

Floating Point Number Representation

- IEEE Standard 754
- 32-bit single precision

- Exponent is represented in Excess-k representation
- bias, $k=2^{(8-1)}-1=2^7-1=127$
- Excess-127
- Example: True exponent=3,Biased exponent= 3+127 = 130

Excess-k Representation for Signed Integers

- Signed integers can also be represented using Excess-k format
- Integers obtained after representing the signed integers in excess-k format are called as biased integers
- Biased integer = true integer + k
 - -k is called as bias
 - For any *n*-bit integers, bias, $k=2^{(n-1)}-1$
 - True integer: The actual value of an integer. It can be positive or negative value
 - Biased integer: The positive integer value obtained by adding bias to the actual integer
- This representation is typically used in representing the exponent part of the floating point number

Illustration of Excess-7 Format for 4-bit Signed Integers

Biased integer= True integer+k

X	Ŷ	\widehat{X} in binary
-7	0	0000
-6	1	0001
-5	2	0010
-4	3	0011
-3	4	0100
-2	5	0101
-1	6	0110
0	7	0111
1	8	1000
2	9	1001
3	10	1010
4	11	1011
5	12	1100
6	13	1101
7	14	1110
8	15	1111

Range of numbers

- Exponent field is 8-bit in length
- Exponent is represented in Excess-k format
- Biased exponent is in the range: $0 \le \hat{X}_e \le 255$
- The biased exponent value 0 and 255 is used to represent special values
- Actual biased exponent takes the values from 1 to 254
 - Hence, true exponent is in the range: $-126 \le X_e \le +127$

X_e	$\widehat{\mathbf{X}}_{e}$	X_m	Remark
-	0	0	The value exact 0 is represented

- Exponent field is 8-bit in length
- Exponent is represented in Excess-k format
- Biased exponent is in the range: $0 \le \hat{X}_e \le 255$
- The biased exponent value 0 and 255 is used to represent special values
- Actual biased exponent takes the values from 1 to 254
 - Hence, true exponent is in the range: $-126 \le X_e \le +127$

X_e	$\widehat{\mathbf{X}}_{oldsymbol{e}}$	X_m	Remark
-	0	0	The value exact 0 is represented
-	255	0	The value ∞ is represented

- Exponent field is 8-bit in length
- Exponent is represented in Excess-k format
- Biased exponent is in the range: $0 \le \hat{X}_e \le 255$
- The biased exponent value 0 and 255 is used to represent special values
- Actual biased exponent takes the values from 1 to 254
 - Hence, true exponent is in the range: $-126 \le X_e \le +127$

\mathbf{X}_{e}	$\widehat{\mathbf{X}}_{e}$	X_m	Remark
-	0	0	The value exact 0 is represented
-	255	0	The value ∞ is represented
-	0	≠0	Denormalized value

- Exponent field is 8-bit in length
- Exponent is represented in Excess-k format
- Biased exponent is in the range: $0 \le \hat{X}_e \le 255$
- The biased exponent value 0 and 255 is used to represent special values
- Actual biased exponent takes the values from 1 to 254
 - Hence, true exponent is in the range: $-126 \le X_e \le +127$

X_e	$\widehat{\mathbf{X}}_{e}$	\mathbf{X}_{m}	Remark
-	0	0	The value exact 0 is represented
-	255	0	The value ∞ is represented
-	0	≠0	Denormalized value
-	255	≠0	Not a number (NaN)

- Exponent field is 8-bit in length
- Exponent is represented in Excess-k format
- Biased exponent is in the range: $0 \le \hat{X}_e \le 255$
- The biased exponent value 0 and 255 is used to represent special values
- Actual biased exponent takes the values from 1 to 254
 - Hence, true exponent is in the range: $-126 \le X_e \le +127$

X_e	$\widehat{\mathbf{X}}_{e}$	X_m	Remark
-	0	0	The value exact 0 is represented
-	255	0	The value ∞ is represented
-	0	≠0	Denormalized value
-	255	≠0	Not a number (NaN)
-126 to 127	1 to 254	0 or ≠0	Normalized value

Range and Resolution in 32-bit Single Precision

Range:

- Resolution:
 - Different exponent will have different resolution

64-bit Double Precision

- Exponent field is 11-bit in length
- Exponent is represented in Excess-1023 format
- Biased exponent is in the range: $0 \le \hat{X}_e \le 2047$
- The biased exponent value 0 and 2047 is used to represent special values
- Actual biased exponent takes the values from 1 to 2046
 - Hence, true exponent is in the range:

$$-1022 \le X_e \le +1023$$

Resolution: 2^{-52+true exponent}

Range and Resolution in 64-bit Double Precision

Range:

- Resolution:
 - Different exponent will have different resolution
 - 2-52+true exponent

Arithmetic Operations on Floating Point Numbers

Floating Point Addition/Subtraction

- $X: X_s \widehat{X}_e X_m$
- Y: $Y_s \hat{Y}_e Y_m$
- Z = X + Y or Z = X Y
- Resultant $Z: Z_s \ \hat{Z}_e \ Z_m$
- Focus: 32-bit single precision floating point numbers
- Addition Subtraction Rule:
 - 1. Choose the number with smallest exponent
 - Shift its mantissa right a number of steps equal to the difference of exponent
 - Set the exponent of the result equal to the larger exponent
 - Perform addition/subtraction on the mantissas and determine the sign of the result
 - 4. Normalize the resulting value, if necessary

Floating Point Addition/Subtraction: Example 1

• $X: X_s \widehat{X}_e X_m$

X: 1.00000...00x2⁰

• Y: $Y_s \hat{Y}_e Y_m$

Y: 1.11110...00x2⁻⁵

• Z = X + Y

Addition Subtraction Rule:

1. Choose the number with smallest exponent and let that be Y

Shift its mantissa right a number of steps equal to the difference of exponents

difference =
$$|0+5| = 5$$

Perform addition/subtraction on the mantissas and determine the sign of the result

X: 1.0000000000...00x20

Y: 0.0000111110...00x20

Z: 1.00001111110...00x20

3. Normalize the resulting value, if necessary

Exponent Comparator

X	Excess-3	2s complement
-7	0000	1001
-6	0001	1010
-5	0010	1011
-4	0011	1100
-3	0100	1101
-2	0101	1110
-1	0110	1111

Floating Point Multiplication and Division

32-bit single precision

Multiply rule:

Add the exponent and subtract 127 (i.e. bias)

Multiply the mantissas and determine the sign of the result

Normalize the resulting value, if necessary

Ariane 5

- Exploded 37 seconds after liftoff
- Cargo worth \$500 million

Why

- Computed horizontal velocity as floating-point number
- data conversion from 64-bit floating point to 16-bit signed integer value
- Worked OK for Ariane 4
- Overflowed for Ariane 5
 - Used same software

