3/4/22, 6:26 PM Assignment2

CS156 (Introduction to AI), Spring 2022

Homework 2 submission

Roster Name: Austin Rivard

Preferred Name (if different):

Student ID: 015044445

Email address: austin.rivard@sjsu.edu

Any special notes or anything you would like to communicate to me about this homework submission goes in here.

References and sources

List all your references and sources here. This includes all sites/discussion boards/blogs/posts/etc. where you grabbed some code examples.

Solution

Load libraries and set random number generator seed

```
In [1]:
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    from sklearn.model_selection import train_test_split
    from scipy.spatial import distance
    from sklearn.metrics import accuracy_score
In [2]:

np.random.seed(42)
```

Code the solution

1) 2-D data

```
def knn(newObservation, referenceData: pd.DataFrame, k=3):
    # 1. create array of distances from each reference data point to new observati
    # scipy.spatial.distance.euclidean()

distances = distance.cdist([newObservation], referenceData.values[:, 0:-1], me
    # 2. nearestNeighbors are the points with least smallest distance, found using
```

```
# 3. the new observation is classified as the most common classification of it
         # if there is a tie, take the first (but perhaps random would be better?)
         return nearestNeighbors['classification'].mode().iloc[0]
In [4]:
        #generate 2d data
        n = 100
        X1 = np.random.normal(loc=-2, scale=2, size=n//2)
       X2 = np.random.normal(loc=2, scale=2, size=n//2)
       X = np.concatenate((X1, X2))
        Y = np.random.normal(size=n)
In [5]:
       num labels = 2
        labels = np.concatenate([[i] * (n // num_labels) for i in range(num_labels)])
        print(labels)
       In [6]:
        df = pd.DataFrame({'X': X, 'Y': Y})
        df.head()
               X
                       Υ
Out[6]:
       0 -1.006572 -1.415371
       1 -2.276529 -0.420645
       2 -0.704623 -0.342715
         1.046060 -0.802277
       4 -2.468307 -0.161286
In [7]:
       X train, X test, Y train, Y test = train test split(df, labels, test size=0.2, ra
In [8]:
       ref data = X train.assign(classification = Y train)
        print(ref data.head())
                         Y classification
       43 -2.602207 0.184634
       62 -0.212670 1.158596
                                       1
          1.046060 -0.802277
                                       0
       71 5.076073 -0.815810
                                       1
       45 -3.439688 0.781823
In [9]:
       pred = knn(X_test.iloc[0], ref_data, k=3)
       print(f'prediction = {pred}, actual = {Y test[0]}')
       prediction = 0, actual = 0
```

nearestNeighbors = referenceData.assign(dist=distances[0]).nsmallest(k, 'dist'

3/4/22, 6:26 PM Assignment2

```
In [10]:
          Y_pred = X_test.apply(knn, axis=1, referenceData=ref_data, k=3)
          print(Y_pred.head())
               0
         26
         86
               1
         2
               0
         55
               1
         75
               1
         dtype: int64
In [11]:
          print(f'Accuracy of the predictions on the test data set is {accuracy_score(Y_te
          plt.subplot(1, 2, 1)
          plt.scatter(X_train.iloc[:,0],X_train.iloc[:,1], s=25, c=Y_train, marker=".")
          plt.scatter(X_test.iloc[:,0],X_test.iloc[:,1], s=50, c=Y_test, marker="v")
          plt.title("Actual labels")
          plt.subplot(1, 2, 2)
          plt.scatter(X_train.iloc[:,0],X_train.iloc[:,1], s=25, c=Y_train, marker=".")
          plt.scatter(X_test.iloc[:,0],X_test.iloc[:,1], s=50, c=Y_pred, marker="v")
          plt.title("Predicted labels")
          plt.tight_layout()
          plt.show()
```

Accuracy of the predictions on the test data set is 0.95

2) 3-D data

```
In [12]: #generate 3d data
n = 1000
num_classes = 4

X = np.random.normal(loc=0, scale=3, size=n)

Y1 = np.random.normal(loc=-3, scale=1, size=n//num_classes)
Y2 = np.random.normal(loc=1, scale=2, size=n//num_classes)
Y3 = np.random.normal(loc=3, scale=1, size=n//num_classes)
Y4 = np.random.normal(loc=5, scale=3, size=n//num_classes)
```

3/4/22, 6:26 PM Assignment2

```
Y = np.concatenate((Y1, Y2, Y3, Y4))
          Z1 = np.random.normal(loc=-1, scale=1, size=n//num_classes)
          Z2 = np.random.normal(loc=1, scale=1, size=n//num_classes)
          Z3 = np.random.normal(loc=4, scale=1, size=n//num_classes)
          Z4 = np.random.normal(loc=-3, scale=1, size=n//num classes)
          Z = np.concatenate((Z1, Z2, Z3, Z4))
          labels = np.concatenate([[i] * (n // num_classes) for i in range(num_classes)])
In [13]:
          df = pd.DataFrame({'X': X, 'Y': Y, 'Z': Z})
          df.head()
                   Χ
                             Υ
                                       Z
Out[13]:
          0
             1.073362 -2.874775 0.804348
          1
             1.682354 -3.429406 -1.190904
            3.249154 -2.877702 -0.280242
          3
            3.161406 -2.456702 -2.293273
          4 -4.133008 -2.951140 -1.956436
In [14]:
          X_train, X_test, Y_train, Y_test = train_test_split(df,labels, test_size=0.2, ra
In [15]:
          ref data = X train.assign(classification = Y train)
          ref data.head()
                     Χ
                               Υ
                                         Z classification
Out[15]:
          687 -1.077876 3.424061 5.388338
                                                     2
                                                     2
          500 -1.568169 3.350630 4.386809
          332 -0.198239 1.646335
                                 1.555513
                                                     1
          979 -3.310768 5.020400 -2.484372
                                                     3
          817 -1.451658 -1.011587 -5.832156
                                                     3
In [16]:
          Y pred = X test.apply(knn, axis=1, referenceData=ref data, k=3)
          print(Y pred)
         993
                 3
         859
                 3
         298
                 1
         553
                 2
         672
                 1
         679
                 2
         722
                 2
         215
                 0
         653
                 2
```

150 0 Length: 200, dtype: int64

```
In [17]:
    print(f'Accuracy of the predictions on the test data set is {accuracy_score(Y_te)
        fig = plt.figure(figsize=(18, 15))

        ax = plt.subplot(2, 3, 1, projection='3d')
        ax.scatter(X_train.iloc[:,0],X_train.iloc[:,1], X_train.iloc[:,2], s=25, c=Y_train.scatter(X_test.iloc[:,0],X_test.iloc[:,1], X_test.iloc[:,2], s=50, c=Y_test, plt.title("Actual labels")

        ax = plt.subplot(2, 3, 2, projection='3d')
        ax.scatter(X_train.iloc[:,0],X_train.iloc[:,1], X_train.iloc[:,2], s=25, c=Y_train.scatter(X_test.iloc[:,0],X_test.iloc[:,1], X_test.iloc[:,2], s=50, c=Y_pred, plt.title("Predicted labels")

        plt.tight_layout()
        plt.show()
```

Accuracy of the predictions on the test data set is 0.915

Actual labels Predicted labels

