

Бокатуев М. С. ИУ5-62Б

Рубежный контроль №1 (вариант 1)

Задача

Для заданного набора данных проведите корреляционный анализ. В случае наличия пропусков в данных удалите строки или колонки, содержащие пропуски. Сделайте выводы о возможности построения моделей машинного обучения и о возможном вкладе признаков в модель.

Набор данных

https://scikit-learn.org/stable/modules/generated/ sklearn.datasets.load_iris.html#sklearn.datasets.load_iris

Дополнительное требование

Для произвольной колонки данных построить гистограмму.

Решение

```
In []: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_iris

In []: iris = load_iris()
data = pd.DataFrame(data=iris.data, columns=iris.feature_names)
data['target'] = iris.target
data.head()
```

Out[]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	0	5.1	3.5	1.4	0.2	0
	1	4.9	3.0	1.4	0.2	0
	2	4.7	3.2	1.3	0.2	0
	3	4.6	3.1	1.5	0.2	0
	4	5.0	3.6	1.4	0.2	0

```
In [ ]: data.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 150 entries, 0 to 149
      Data columns (total 5 columns):
           Column
                             Non-Null Count Dtype
       --- ----
                             _____
       0
           sepal length (cm) 150 non-null
                                             float64
       1
           sepal width (cm) 150 non-null
                                             float64
           petal length (cm) 150 non-null
                                             float64
       2
       3
           petal width (cm)
                             150 non-null
                                             float64
                             150 non-null
                                             int32
           target
      dtypes: float64(4), int32(1)
      memory usage: 5.4 KB
In [ ]: print('Количество пропущенных значений')
        data.isnull().sum()
      Количество пропущенных значений
Out[]: sepal length (cm)
        sepal width (cm)
                            0
        petal length (cm)
                            0
        petal width (cm)
                            0
        target
                            0
        dtype: int64
```

Пропуски в данных не обнаружены.

```
In []: __, axes = plt.subplots(2, 2, figsize=(12, 7))
    sns.histplot(data['sepal length (cm)'], ax=axes[0][0])
    sns.histplot(data['sepal width (cm)'], ax=axes[0][1])
    sns.histplot(data['petal length (cm)'], ax=axes[1][0])
    sns.histplot(data['petal width (cm)'], ax=axes[1][1])
    plt.subplots_adjust(hspace=0.4, wspace=0.3)
    plt.show()
```


Корреляционный анализ

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
sepal length (cm)	1.000000	-0.117570	0.871754	0.817941	0.782561
sepal width (cm)	-0.117570	1.000000	-0.428440	-0.366126	-0.426658
petal length (cm)	0.871754	-0.428440	1.000000	0.962865	0.949035
petal width (cm)	0.817941	-0.366126	0.962865	1.000000	0.956547
target	0.782561	-0.426658	0.949035	0.956547	1.000000

Выше представлены матрица корреляций признаков между собой и матрица корреляции между признаками и прогнозируемой величиной. Из значений первой матрицы видим крайне высокую корреляцию между следующими парами признаков:

- sepal length (cm) и petal length (cm)
- sepal length (cm) и petal width (cm)
- petal length (cm) и petal width (cm)

Так как одновременное использование этих пар признаков в моделях машинного обучения привело бы к мультиколлинеарности, следует оставить только один признак из этого множества. Вторая матрица демонстрирует, что наибольшая связь наблюдается между прогнозируемой величиной и признаком petal width (cm), поэтому логичнее оставить именно его, так как его вклад в модель обучения будет наибольшим. У признака sepal width (cm) взаимосвязь с остальными не слишком высокая и при этом некоторая корреляция с прогнозируемой величиной имеется, поэтому оставляем его.

Таким образом, в результате корреляционного анализа было принято решение в первую очередь пробовать использовать в моделях машинного обучения для прогноза величины target 2 признака: petal width (cm) и sepal width (cm).