1 10-04-18

1.1 Algebraic axioms for real numbers

Two binary operations, + addition and \cdot multiplication on \mathbb{R} are defined and have the following propoerties for all $x, y, z \in \mathbb{R}$:

- 1. x + (y + z) = (x + y) + z. Associative law for addition.
- 2. $\exists 0$ such that x + 0 = 0 + x = x. Existence of additive identity.
- 3. There exist an element $-x \in \mathbb{R}$ such that x + (-x) = (-x) + x = 0. Existence of additive inverse.
- 4. x + y = y + x. Commutative law for addition.
- 5. $x \cdot (y \cdot z) = (x \cdot y) \cdot z$. Associative law for multiplication.
- 6. $\exists 1 \neq 0$ such that $x \cdot 1 = 1 \cdot x = x$. Existence of multiplicative identity.
- 7. If $x \neq 0$, then there exist an element $x^{-1} \in \mathbb{R}$ such that $x \cdot x^{-1} = x^{-1} \cdot x = 1$. Existence of multiplicative inverse.
- 8. $x \cdot y = y \cdot x$. Commutative law for multiplication.
- 9. $x \cdot (y+z) = x \cdot y + x \cdot z$. Distributive law.

In the language of algebra, axioms above state that \mathbb{R} with addition and multiplication is a field.

1.2 The order axioms for real number

A binary relation \leq on \mathbb{R} is defined and satisfies the following properties for all $x, y, z \in \mathbb{R}$.

- 1. $x \leq x$. Reflexivity.
- 2. If $x \leq y$, $y \leq x$ then x = y. Antisymmetry.
- 3. If $x \le y$, $y \le z$ then $x \le z$. Transitivity.
- 4. Either $x \leq y$ or $y \leq x$. Totality.
- 5. If $x \leq y$, then $x + y \leq y + z$
- 6. If $0 \le x$ and $0 \le y$, then $0 \le x \cdot y$.

2 17-04-18

2.1 Real Number

 $\mathbb{Q}=\{\frac{n}{m}|n,m\in\mathbb{Z},m\neq 0\}.$ We have $p,q\in\mathbb{Q},$ then

$$p+q=\frac{n}{m}+\frac{k}{l}=\frac{kn+ml}{mk};\ pq=\frac{nl}{mk};\ p\geq q\Leftrightarrow p-q\geq 0$$

For $+, \times, \geq$ satisfy A1-A15.

Remark 1. $\mathbb Q$ is incomplete in the following sense. There is no $r \in \mathbb Q$ such that $r^2 = 2$. Remember Phytagoras theorem, $a^2 + b^2 = c^2$. Pict: $:: if \ c \in \mathbb Q$, then $c = \frac{n}{m} \ (n, m \in \mathbb Z, m \neq 0)$. We may assume that either m or n is odd.

$$c^2 = 2 \to \left(\frac{n}{m}\right)^2 = 2 \to n^2 = 2m^2$$

 $case 1 : n is odd \Rightarrow odd = even (impossible)$

 $case \ 2: n \ is \ even \Rightarrow m \ is \ odd \ (from \ assumtion) \Rightarrow n^2 \ can \ be \ devided \ by \ 4 \ but \ 2m^2 \ can \ not \ devided \ by \ 4 \ (contradiction)$

Question : How to fill the gap of \mathbb{Q} ? Answer : Idea of Weirstrass (supreme axioms)

Definition 1. $A \subset \mathbb{R}$.

- A is bounded from above $\Leftrightarrow \exists b \in \mathbb{R}$ such that $a \leq b \ (\forall a \in A)$. such b is called upper bound of A.
- A is bounded from below $\Rightarrow \exists b' \in \mathbb{R}$ such that $a \geq b' \ (\forall a \in A)$. Such b' is called lower bound of A
- $\alpha = supA$
 - \Leftrightarrow the minimum of the set of upper bound
 - \Leftrightarrow 1. α is an upper bound of A; 2. if b is an upper bound of A, then $\alpha \leq b$.
- $\beta = \inf A \Leftrightarrow \text{the maximum of the set of lower bounds of } A$.

Remark 2. supA(infA) is uniquely determined if it exist. For example, $sup\mathbb{Q}(inf\mathbb{Q})$ does not exist. \mathbb{C} is not bounded from above (below)

Remark 3. Completeness axioms. Every nonempty subset of \mathbb{R} which is bounded from above (below) has a supremum (infimum) in \mathbb{R}

2.2 Real sequence

Definition 2. For $x \in \mathbb{R}$, $|x| = \begin{cases} x, & x \ge 0 \\ -x, & x \le 0 \end{cases}$

Remark 4. • $|x| \ge 0$, $|x| = 0 \Leftrightarrow x = 0$

- \bullet |xy| = |x||y|
- $|x + y| \le |x| + |y|$ (triangle inequality)

An infinite sequence of $\mathbb{R} \Leftrightarrow a : \mathbb{N} \to \mathbb{R}$ usually we write $a_n = a(n), n \in \mathbb{N}$ or $\{a_n\}_{n \in \mathbb{N}}$ or a_1, a_2, \ldots

Question: Limiting behavior of a_n as n increases?

Answer: $a_n \to l$, $n \to \infty \Leftrightarrow$ as n become larger and larger, the value a_n become arbitrarily close to l.

Definition 3. $\epsilon - N$ definition of the limit. $\{a_n\}$ converges to $l \in \mathbb{R} \Leftrightarrow \forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } |a_n - l| < \epsilon, \forall n \geq N$. We write $\lim_{n \to \infty} a_n = l$.

Definition 4. • $a_n \to +\infty \Leftrightarrow \forall M > 0$. $\exists N \in \mathbb{N}$ such that $a_n > M$ $(\forall n \geq N)$

• $a_n \to -\infty \Leftrightarrow \forall M > 0$. $\exists N \in \mathbb{N} \text{ such that } a_n < -M \ (\forall n \ge N)$

Remark 5. A convergent sequence has a unique limit.

$$\begin{aligned} & \quad \cdot \cdot \cdot \\ & \quad \epsilon = \frac{1}{2}|l-l\prime| > 0 \\ & \quad \exists N \in \mathbb{N} \ such \ that \ |a_n-l| < \epsilon, \ (\forall n \geq N) \\ & \quad \exists N\prime \in \mathbb{N} \ such \ that \ |a_n-l\prime| < \epsilon, \ (\forall n \geq N\prime) \end{aligned}$$

Set $\tilde{N} = max\{N, N'\} \in \mathbb{N}$. For $n \geq \tilde{N} \Rightarrow |a_n - l| < \epsilon$, $|a_n - l'| < \epsilon$ is impossible.

Afifah Maya Iknaningrum (1715011053)

1. Problem: Let $\{a_n\}, \{b_n\}, \{c_n\}$ be a real sequence. Suppose that for every $n \in \mathbb{N}$, we have

$$b_n \le a_n \le c_n$$

and also suppose that

$$\lim_{n \to \infty} b_n = l = \lim_{n \to \infty} c_n$$

for some $l \in \mathbb{R}$. Then

$$\lim_{n \to \infty} a_n = l.$$

Answer: By definition of limit, $\forall \epsilon > 0, \exists N_1, N_2 \in \mathbb{N}$ such that for $l \in \mathbb{R}$

$$|b_n - l| < \epsilon, \ \forall n \ge N_1,$$

$$|c_n - l| < \epsilon, \ \forall n \ge N_2.$$

Then we can obtain

$$|b_n - l| < \epsilon \Leftrightarrow -\epsilon < b_n - l < \epsilon \Leftrightarrow l - \epsilon < b_n < l + \epsilon,$$

$$|c_n - l| < \epsilon \Leftrightarrow -\epsilon < c_n - l < \epsilon \Leftrightarrow l - \epsilon < c_n < l + \epsilon.$$

Take $N = max\{N_1, N_2\}$, then $\forall n > N$

$$b_n \le a_n \le c_n$$

$$\Leftrightarrow l - \epsilon < b_n \le a_n \le c_n < l + \epsilon$$

$$\Leftrightarrow l - \epsilon < a_n < l + \epsilon$$

$$\Leftrightarrow -\epsilon < a_n - l < \epsilon$$

$$\Leftrightarrow |a_n - l| < \epsilon.$$

It is proved that $\forall \epsilon > 0, \ \exists N \in \mathbb{N}$ such that for $l \in \mathbb{R}$

$$|a_n - l| < \epsilon, \ \forall n \ge N$$

or we can write

$$\lim_{n \to \infty} a_n = l.$$

2. (a) Problem: If a sequence of real numbers converges, then it is bounded.

Answer: Let $\{x_n\}$ be a sequence in real number. Suppose $\{x_n\}$ is converge to $a \in \mathbb{R}$ as $n \to \infty$. Then $\forall \epsilon > 0, \ \exists N \in \mathbb{N}$ such that $\forall n > N$,

$$|x_n - a| < \epsilon$$
.

From triangle inequality we obtain

$$|x_n - a| < \epsilon$$

$$|x_n| - |a| < \epsilon$$

$$|x_n| < \epsilon + |a|.$$

Takes $M = max\{\epsilon + |a|, x_1, x_2, \dots, x_N\}$, we obtain

$$|x_n| \leq M$$
.

It shows that $\forall \epsilon > 0, \exists M > 0$ such that $|x_n| \leq M, \forall n$ or it is proved that $\{x_n\}$ is bounded.

(b) <u>Problem</u>: If a sequence of real numbers converge, then it is a Cauchy sequence.

Answer: Let $\{x_n\}, \{x_m\}$ be a sequence in real number. Suppose $\{x_n\}, \{x_m\}$ is converge to $a \in \mathbb{R}$ as $n \to \infty$. Then $\forall \epsilon > 0$, $\exists N_1, N_2 \in \mathbb{N}$ such that $\forall n > N_1$,

$$|x_n - a| < \frac{\epsilon}{2}$$

and $\forall m > N_2$,

$$|x_m - a| < \frac{\epsilon}{2}.$$

Takes $N = max\{N_1, N_2\}$ then $\forall n, m > N$

$$|x_n - x_m| \leq |x_n - a + a - x_m|$$

$$\leq |x_n - a| + |x_m - a|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$< \epsilon.$$

Then, it is proved that $\forall \epsilon > 0, \ \exists N \in \mathbb{N} \text{ such that for } n, m > N$

$$|x_n - x_m| < \epsilon$$

or it is Cauchy sequence.

3 07-05-2018

3.1 Landau Symbol

Symbol for representing the behavior of functions. O: big o and o: small o. Let f,g be function around $x=a\in\mathbb{R}$ (or x>M for some $M\in\mathbb{R}$)

- f(x) = O(g(x)) as $x \to a$ if $\exists \delta > 0, \exists A > 0$ such that $|f(x)| \le A$ g(x) for $0 < |x a| < \delta$. Means: eventually the graph f(x) is below of y = A g(x).
- f(x) = O(g(x)) as $x \to a$ if $\exists m > M, \exists A > 0$ such that $|f(x)| \le A$ g(x) for x > m. Means: |f(x)| is eventually dominated by linear function as $x \to \infty$

Example:

 $f(x) = O(x^2)$, $(x \to \infty)$ then f(x) is eventually dominated by a quadratic function as $x \to \infty$. f(x) = O(1) as $x \to \infty$ then f(x) is a bounded function around ∞

Explanation behavior: f(x) is a polynomial time behaviour as $x \to \infty$. $f(x) = O(e^{ax})$, $f(x) = o(x^n)$ for some $n \in \mathbb{N}$.

- $f(x) = o(g(x)), (x \to \infty)$ if $\forall \epsilon > 0, \exists \delta > 0$ such that $|f(x)| \le \epsilon g(x), 0 < |x a| < \delta$ (or equivalently, if $g(x) \ne 0$, $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$)
- $f(x) = o(g(x)), (x \to \infty)$ if $\forall \epsilon > 0, \exists m > 0$ such that $x > m \Rightarrow |f(x)| \le \epsilon g(x)$ (or equivalently, if $g(x) \ne 0$, $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$)
- f(x) = o(x) as $x \to \infty \Leftrightarrow \lim_{x \to \infty} \frac{f(x)}{x} = 0$
- f(x) = o(x) as $x \to 0 \Leftrightarrow \lim_{x \to 0} \frac{f(x)}{x} = 0$
- f(x) = o(1) as $x \to \infty \Leftrightarrow \lim_{x \to \infty} \frac{f(x)}{1} = 0 \Leftrightarrow \lim_{x \to \infty} f(x) = 0$
- f(x) = o(1) as $x \to a$ $(a \in \mathbb{R}) \Leftrightarrow \lim_{x \to a} f(x) = 0$

Remark 6. 1. f(x) is continuous at $x = a \Leftrightarrow \lim_{x \to \infty} f(x) = f(a)$ iff $\Leftrightarrow \lim_{x \to a} (f(x) - f(a)) = 0$ by previous, $\Leftrightarrow f(x) - f(a) = o(1)$ as $x \to a \Leftrightarrow f(x) = f(a) + o(1)$ as $x \to a$

2.
$$f(x)$$
 is differentiable as $x = a \Leftrightarrow \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a)$ iff $\Leftrightarrow \frac{f(a+h) - f(a)}{h} = f'(a) + o(1)$ as $h \to 0$ $\Leftrightarrow f(a+h) = f(a) + f'(a)$ $h + o(h)$ as $h \to 0$ note: $o(h) \Leftrightarrow \frac{o(h)}{h} = 0 \Rightarrow o(1)$ $h \Rightarrow \frac{o(1)}{h} = o(1) \to 0$ as $h \to 0$

D: domain in \mathbb{R}^2 and f: function on D

$$f_x(a,b) = \frac{\partial f}{\partial x}(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}$$
$$f_y(a,b) = \frac{\partial f}{\partial y}(a,b) = \lim_{k \to 0} \frac{f(a,b+k) - f(a,b)}{k}$$
$$f(a+h,b) = f(a,b) + f_x(a,b)h + o(h) \text{ as } h \to 0$$
$$f(a,b+k) = f(a,b) + f_y(a,b)k + o(k) \text{ as } k \to 0$$

Afifah Maya Iknaningrum (1715011053)

<u>Problem 1:</u> Let C([a,b]) be the set of all continuous functions $f:[a,b]\to\mathbb{R}$ and define

$$d_2(f,g) := \left[\int_a^b (f(x) - g(x))^2 dx \right]^{1/2}$$

for $f, g \in C([a, b])$. Show that $(C([a, b]), d_2)$ is a metric space.

Answer:

To proof that $(C([a,b]), d_2)$ is a metric space, we need to proof:

1. $d_2(f,g) \ge 0$ and $d_2(f,g) = 0 \Leftrightarrow f = g$.

Proof:

By the definitions of $d_2(f, g)$, it is obvious that the value of integral is always positive. So it is proved that $d_2(f,g) \ge 0$.

Then,

 (\Rightarrow) We have

$$d_2(f,g) = \left[\int_a^b (f(x) - g(x))^2 dx \right]^{1/2} = 0$$

The only possible answer will be

$$f(x) - g(x) = 0 \text{ or } f(x) = g(x)$$

 (\Leftarrow) We have f(x) = g(x), using the definition of $d_2(f,g)$

$$d_2(f,g) = \left[\int_a^b (f(x) - g(x))^2 dx \right]^{1/2}$$
$$= \left[\int_a^b 0 dx \right]^{1/2}$$
$$= 0$$

2. $d_2(f,g) = d_2(g,f)$.

Proof:

$$d_{2}(f,g) = \left[\int_{a}^{b} (f(x) - g(x))^{2} dx \right]^{1/2}$$
$$= \left[\int_{a}^{b} (g(x) - f(x))^{2} dx \right]^{1/2}$$
$$= d_{2}(g,f)$$

3. $d_2(f,g) \le d_2(f,h) + d_2(h,g)$.

Proof:

Using fact that

$$\int (a+b)^2 = \int a^2 + \int b^2 + 2 \int ab$$

and via Schwartz inequality

$$\int ab \le \sqrt{\int a^2} \sqrt{\int b^2}$$

then

$$\int (a+b)^2 \le \int a^2 + \int b^2 + 2\sqrt{\int a^2} \sqrt{\int b^2} = \left(\sqrt{\int a^2} + \sqrt{\int b^2}\right)^2$$

Using these fact with a = f - h and b = h - g,

$$d_{2}(f,g) = \left[\int_{a}^{b} (f(x) - g(x))^{2} dx \right]^{1/2}$$

$$= \left[\int_{a}^{b} (f(x) - h(x) + h(x) - g(x))^{2} dx \right]^{1/2}$$

$$\leq \left(\left[\int_{a}^{b} (f(x) - h(x))^{2} dx \right]^{1/2} + \left[\int_{a}^{b} (h(x) - g(x))^{2} dx \right]^{1/2} \right)^{2(1/2)}$$

$$\leq \left[\int_{a}^{b} (f(x) - h(x))^{2} dx \right]^{1/2} + \left[\int_{a}^{b} (h(x) - g(x))^{2} dx \right]^{1/2}$$

$$\leq d_{2}(f, h) + d_{2}(h, g)$$

Problem 2: Let (X, d) be a metric space. Prove that the function

$$\tilde{d}(x,y) := \frac{d(x,y)}{1 + d(x,y)} \; , \quad (x,y \in X)$$

is also a metric on X.

Answer:

It is known that (X, d) is metric space. Then for $x, y, z \in X$ we have the following

- 1. $d(x,y) \ge 0$ and $d(x,y) = 0 \Leftrightarrow x = y$
- 2. d(x, y) = d(y, x)
- 3. $d(x,z) \le d(x,y) + d(y,z)$.

We want to proof that $\tilde{d}(x,y) := \frac{d(x,y)}{1+d(x,y)}$ is also a metric space. We need to proof :

1. $\tilde{d}(x,y) \ge 0$ and $\tilde{d}(x,y) = 0 \Leftrightarrow x = y$.

Proof:

Using the fact that $d(x,y) \geq 0$, it is obvious that

$$\tilde{d}(x,y) = \frac{d(x,y)}{1 + d(x,y)} \ge 0.$$

$$(\Rightarrow)$$

$$\tilde{d}(x,y) = \frac{d(x,y)}{1 + d(x,y)} = 0$$

only possible if $\tilde{d}(x,y) = 0$. Using properties of (X,d),

$$d(x,y) = 0 \Leftrightarrow x = y$$

, then it proved that $\tilde{d}(x,y) = 0 \Leftrightarrow x = y$.

 (\Leftarrow) For x = y, using the fact $d(x, y) = 0 \Leftrightarrow x = y$, we have

$$\tilde{d}(x,y) = \frac{d(x,y)}{1 + d(x,y)} = 0$$

2. $\tilde{d}(x,y) = \tilde{d}(y,x)$.

$\underline{\text{Proof}:}$

Because (X, d) is metric space, then d(x, y) = d(y, x) is hold. Such that

$$\tilde{d}(x,y) = \frac{d(x,y)}{1+d(x,y)}$$
$$= \frac{d(y,x)}{1+d(y,x)}$$
$$= \tilde{d}(y,x)$$

3. $\tilde{d}(x,z) \leq \tilde{d}(x,y) + \tilde{d}(y,z)$.

<u>Proof</u>:

Using triangle inequality of (X, d),

$$\begin{split} \tilde{d}(x,z) &= \frac{d(x,z)}{1+d(x,z)} \\ &\leq \frac{d(x,y)+d(y,z)}{1+d(x,y)+d(y,z)} \\ &\leq \frac{d(x,y)}{1+d(x,y)+d(y,z)} + \frac{d(y,z)}{1+d(x,y)+d(y,z)} \\ &\leq \frac{d(x,y)}{1+d(x,y)} + \frac{d(y,z)}{1+d(y,z)} \\ &\leq \tilde{d}(x,y) + \tilde{d}(y,z) \end{split}$$

Afifah Maya Iknaningrum (1715011053)

<u>Problem 1:</u> Prove that a subset of a metric space is open if and only if it is a union of open balls.

Answer:

 (\Rightarrow) Suppose G in (X,d) is open. If G is empty, there no open balls contained in it. Thus union of an empty class, which is empty and therefore equal to G. If G is nonempty, then G is open such that $\forall x \in G, \exists r > 0, B_r(x) \subset G$ then $G = \bigcup_{i=1}^n B_r(x)$.

(\Leftarrow) In metric space, it is known that every open ball is open set. And, union of open set is open. Let $G = \bigcup_{\alpha \in \Lambda} B_r(\alpha)$ for $\alpha \in G, \exists r > 0$. If G is empty, then it is open. So we assume G is nonempty. Consider $y \in G$, then $y \in B_r(\alpha)$ for some $\alpha \in \Lambda$. Since $B_r(\alpha)$ is open, $\exists r > 0$ such that $B_r(y) \subseteq B_r(\alpha) \subseteq G$. Thus $\forall y \in G, \exists r > 0$ such that $B_r(y) \subseteq G$. Consequently, G is open.

<u>Problem 2</u>: Let C([0,1]) be the set of all continuous function $f:[0,1]\to\mathbb{R}$ and define

$$d_1(f,g) := \int_0^1 |f(x) - g(x)| dx$$

for $f,g\in C([0,1])$. Show that $(C([0,1]),d_1)$ is not complete. Hint : Consider the sequence $\{f_n\}_{n\geq 3}$ defined by

$$f_n(x) = \begin{cases} 0 & , 0 \le x < \frac{1}{2} - \frac{1}{n}, \\ n(x + \frac{1}{n} - \frac{1}{2}) & , \frac{1}{2} - \frac{1}{n} \le x < \frac{1}{2}, \\ 1 & , \frac{1}{2} \le x \le 1 \end{cases}$$

Answer:

Considering the sequence $\{f_n\}_{n\geq 3}$ above, then

$$||f_n - f_m|| = \left(\int_{1/2 - 1/n}^{1/2} ||f_n(x) - f_m(x)|| dx\right) \le \left(\frac{-1}{n}\right) \to 0$$

so f_n is Cauchy. Suppose f_n has limit $f \in C([0,1])$. Then

$$\int_{1/2}^{1} |f(x) - f_n(x)| \ dx \le ||f - f_n|| \to 0$$

so f(x) = 1 on [1/2, 1]. Similarly we see f(x) = 0 on [0, 1/2] which is contradiction.

Afifah Maya Iknaningrum (1715011053)

1. Let (X,d) be a complete metrix space and let $f:X\to X$ be a map. Suppose that the iterated map

$$f^k = f \circ \cdots \circ f$$
 (k times)

is a contraction for some $k \geq 2$. (f is not necessarily a contraction.) Prove that f has a unique fixed point $x \in X$.

Answer:

Let x be a fixed point of f^k such that

$$f^k(x) = x$$
 and $f^{k+1}(x) = f(x)$

so $f^k(f(x)) = f(x)$. Hence f(x) is also a fixed point. By uniqueness, f(x) = x.

2. Complete the proof of Picard-Lindelof Theorem by showing that $A: M \to M$ is a contraction if h is small.

Answer:

By induction, we can show that $|A(x_n) - A(x_{n-1})| \le \frac{CA^{n-1}}{n!} |t - t_0|^n$. Because

$$A(x_n) - A(x_{n-1}) = \int (f(t, x_{n-1}) - f(t, x_{n-2}))$$

Next, we can see that $A(x_n)$ is convergent uniformly for $t_0 - h \le t \le t_0 + h$. Putting very small h, we can see that A(x) = x