## SORBONNE UNIVERSITÉ

Travaux d'étude et de recherche

# Autour du théorème de Dvoretzky

Mathieu GALLO Enseignant : Omer Friedland

date



La genèse du théorème de Dvoretzky provient d'une conjecture proposé par Grothendieck en 1956, inspiré par le théorème de Dvoretzky-Rogers (1950). Dvoretzky répondra positivement a la conjecture en 1960, aboutissant au résultat suivant :

**Théorème 1.** Il existe une fonction  $k: ]0,1[\times \mathbb{N} \to \mathbb{N}$ , tel que  $\forall \varepsilon \in ]0,1[$ ,  $k(\varepsilon,n) \stackrel{n\to\infty}{\longrightarrow} \infty$  et pour tout  $n \in \mathbb{N}$  et tous compact convexe symétrique  $K \subset \mathbb{R}^n$ , il existe un sous espace  $V \subset \mathbb{R}^n$  tel que :

- (i) dim  $V = k(\varepsilon, n)$
- (ii)  $\exists r > 0 \text{ tel que}, r.(V \cap B_2^n) \subset V \cap K \subset (1 + \epsilon)r.(V \cap B_2^n)$

V.Milman en 1971 donna une nouvelle preuve du théorème de Dvoretzky en utilisant le phénomène de concentration de la mesure, il a de plus amélioré le théorème en donnant une estimation de la dépendance en n pour la dimension de V,  $k(\varepsilon, n) \ge c(\varepsilon) \cdot \log(n)$ .

**Théorème 2.** Pour toute  $\varepsilon > 0$ , il existe une constante c > 0 tel que pour tout  $n \in \mathbb{N}$  et pour tous corps convexe symétrique  $K \subset \mathbb{R}^n$ , il existe un sous espace  $V \subset \mathbb{R}^n$  tel que :

- (i) dim  $V \ge c \cdot \log(n)$
- (ii)  $\exists r > 0$  tel que,  $r.(V \cap B_2^n) \subset V \cap K \subset (1 + \epsilon)r.(V \cap B_2^n)$

Il existe une reformulation du théorème en terme de norme.

**Théorème 3.** Pour tout  $\varepsilon > 0$  il existe c > 0 tel que pour toute  $n \in \mathbb{N}$  et pour toute norme ||.|| sur  $\mathbb{R}^n$  alors  $l_2^k$  est  $(1 + \varepsilon)$ -isomorphe à  $(\mathbb{R}^n, ||.||)$  pour un  $k \ge c.\log(n)$ .

Nous allons montrer que ses deux derniers théorème sont équivalent.

(2) $\Rightarrow$ (3) Posons  $K = Adh(B_{||.||}(0,1)) = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}$  et appliquons le théorème 2, celui ci nous procure un sous-espace V de  $\mathbb{R}^n$ , avec dim  $V := k \ge c \cdot \log(n)$  et  $V \cap K$  est  $\varepsilon$ -ecuclidien.

Donnons nous une base orthonormée  $\{v_i\}_{1 \le i \le k}$  de V et posons

$$\phi: \begin{array}{ccc} (V,||.||) & \mapsto & (\mathbb{R}^k,|.|_k) \\ \sum_{i=1}^k x_i v_i & \to & \sum_{i=1}^k x_i e_i \end{array}$$

Soit  $v \in V \cap K$  tel que ||v|| = 1, comme  $K \cap V$  est  $\varepsilon$ -euclidien on a que

$$r \le |v|_n \le (1+\varepsilon)r$$

La borne supérieur est immédiate car  $K \cap V \subset r(1+\varepsilon)$ . $(V \cap B_2^n)$ , pour la borne inférieur il suffit de remarquer que  $(V \cap K)$  est un fermer de V qui contient l'ouvert  $r.(V \cap B_2^n)$  de V, comme v est dans la frontière de  $K \cap V$  il n'est pas dans l'intérieur de  $K \cap V$  et donc dans aucun ouvert contenue dans  $V \cap K$ .

Fixons des coordonnées à v dans la base  $\{v_j\}_{1 \le j \le k}$ ,  $v = \sum_{i=1}^k x_i v_i$ , on a que  $|v|_n = \sqrt{\sum_{i=1}^k x_i^2}$  et donc :

$$r \leq \sqrt{\sum_{i=1}^k x_i^2} \leq (1+\varepsilon)r$$

Mais comme  $|\phi(v)|_k = \left|\sum_{i=1}^k x_i e_i\right| = \sqrt{\sum_{i=1}^k x_i^2}$ , on a que :

$$r \le |\phi(v)|_k \le (1+\varepsilon)r$$

Pour tous  $x \in V \setminus \{0\}$  on peut appliqué ce qui précède à  $\frac{x}{||x||}$ , en utilisant la linéarité de  $\phi$  on obtient :

$$r||x|| \le |\phi(x)|_k \le (1+\varepsilon)r||x||$$

(3) $\Rightarrow$ (2) Soit  $\varepsilon > 0$ , par le théorème 3 il existe c > 0 tel que pour tous  $n \in \mathbb{N}$  il existe un k > c.  $\log(n)$  tel que  $l_2^k$  est  $(1+\varepsilon)$ -isomorphe à  $(R^n, ||.||)$  pour n'importe quelle norme ||.|| sur  $\mathbb{R}^n$ . Considérons un compact convexe symétrique  $K \subset \mathbb{R}^n$  et  $||y|| = \inf \left\{ \lambda > 0 \; ; \; \frac{y}{\lambda} \in K \right\}$ , alors  $\exists T : l_2^k \to (\mathbb{R}^n, ||.||)$  linéaire tel que :

$$\forall x \in \mathbb{R}^k$$
,  $|x| \le ||Tx|| \le (1+\varepsilon)|x|$ 

ceci implique immédiatement que T est injective, notons  $V = \operatorname{Im} T$ , alors la co-restriction a V de T est bijective. Soit  $y \in \partial(K \cap V)$ , c'est à dire ||y|| = 1, on sait qu'il existe un unique  $x \in \mathbb{R}^k$  tel que Tx = y, on en déduit donc

$$|x| \le 1 \le (1+\varepsilon)|x| \iff \frac{1}{1+\varepsilon} \le |x| \le 1$$

la convexité et la symétrie centrale de  $K \cap V$  nous permet de conclure que :

$$\frac{1}{1+\varepsilon}T(B_2^k) \subset K \cap V \subset T(B_2^k)$$



#### Mesures de Haar

**Définition & Théorème.** (Mesures de Haar) Soit (X, d) un espace métrique, G un groupe topologique localement compact qui agit sur X et tel que :

$$\forall x, y \in X \ \forall g \in G, \ d(gx, gy) = d(x, y) \tag{*}$$

 $\Box$ 

alors il existe une unique mesure à un coefficient multiplicatif près, régulière définit sur les boréliens de X qui est invariante sous l'action de G, cette mesure est appeler mesure de Haar de X (où G est sous-entendu).

Considérons  $X = S^{n-1}$  avec la distance euclidienne et X = O(n) avec la norme  $||M|| = \sup_{|x|=1} |Mx|$  alors G = O(n) le groupe des isométries vérifie  $(\star)$  pour la multiplication matricielle sur  $S^{n-1}$  et O(n), par le théorème précédent on peut définir sans ambiguïté  $\mu, v$  les mesures de Haar normalisés respectivement sur  $S^{n-1}$  et O(n). Montrons quelques propriété qui serons utile par la suite.

**Lemme.** Soit  $f \in C(S^{n-1})$  et  $Y = (g_1, ..., g_n)$  où les  $\{g_i\}_{1 \le i \le n}$  sont i.i.d suivant une loi normale  $\mathcal{N}(0,1)$ , alors

$$\int_{S^{n-1}} f \, d\mu = \mathbb{E}\left[f\left(\frac{Y}{|Y|}\right)\right]$$

*Démonstration.* Par unicité de la mesure de Haar , il nous suffit de montrer que pour tous M ∈ O(n) et  $f ∈ C(S^{n-1})$ :

$$\mathbb{E}\bigg[f\Big(\frac{MY}{|MY|}\Big)\bigg] = \mathbb{E}\bigg[f\Big(\frac{Y}{|Y|}\Big)\bigg]$$

$$\mathbb{E}\bigg[f\Big(\frac{MY}{|MY|}\Big)\bigg] = \int_{\mathbb{R}^n\setminus\{0\}} f\Big(\frac{My}{|y|}\Big) \exp\Big\{-\frac{1}{2}|y|^2\Big\} dy_1...dy_n = \int_{\mathbb{R}^n\setminus\{0\}} f\Big(\frac{y}{|y|}\Big) \exp\Big\{-\frac{1}{2}|M^{-1}y|^2\Big\} dy_1...dy_n$$

comme  $|\det M| = 1$  et  $|M^{-1}y| = |y|$ , on a :

$$\mathbb{E}\bigg[f\Big(\frac{MY}{|MY|}\Big)\bigg] = \mathbb{E}\bigg[f\Big(\frac{Y}{|Y|}\Big)\bigg]$$

**Lemme.** Soit  $A \subset S^{n-1}$  un borélien alors pour tous  $x \in S^{n-1}$ 

$$v(T \in O(n); Tx \in A) = \mu(A)$$

*Démonstration.* Soit  $M \in O(n)$  et  $x \in S^{n-1}$  alors la mesure définis pas  $\omega_x(A) = v \Big( T \in O(n) ; Tx \in A \Big)$  vérifie

$$\omega_x(MA) = v(T \in O(n); M^T T x \in A) = v(T \in O(n); T x \in A) = \omega_x(A)$$

L'unicité de la mesure de Haar nous permet de conclure que  $\omega_x = \mu$  car  $\omega_x(S^{n-1}) = 1$  et en particulier  $\omega_x$  ne dépend pas de x.

## Début de la démonstration du théorème de Dvoretzky

**Théorème 4.** Soit  $f: S^{n-1} \to \mathbb{R}$  une fonction Lipschitzienne de constante L > 0, alors

$$\mu\left\{x\in S^{n-1}; |f(x)-\mathbb{E}[f]| > \varepsilon\right\} \le 2e^{-\frac{\varepsilon^2 n}{2L^2}}$$

Dans cette partie on s'intéresse a démontrer le résultat suivant :

**Théorème 5.** Pour tous  $\varepsilon > 0$  il existe c > 0 tel que pour tout  $n \in \mathbb{N}$  et pour toute norme ||.|| sur  $\mathbb{R}^n$  il existe un sousespace  $V \subset \mathbb{R}^n$  tel que :

- (i) dim  $V \ge c \cdot \left(\frac{E}{h}\right)^2 n$
- (ii) Pour tous  $x \in V$ :  $(1 \varepsilon)E|x| \le ||x|| \le (1 + \varepsilon)E|x|$

où  $E = \int_{S^{n-1}} ||y|| d\mu(y)$  et b > 0 est le plus petit réel positif tel que  $||.|| \le b|.|$ .

*Démonstration.* Soit  $1 > \delta, \theta > 0$  tel que

$$\frac{1}{1-\theta} < 1 + \varepsilon/2$$
 et  $\frac{1-2\theta}{1-\theta} > 1 - \varepsilon/2$ 

$$\frac{1+\delta}{1-\theta} < 1+\varepsilon \text{ et } \frac{1-2\theta-\delta}{1-\theta} > 1-\varepsilon$$

Posons  $\eta = \frac{\delta E}{b}$  et fixons  $V_0 \subset \mathbb{R}^n$  un sous-espace et  $M \subset V_0 \cap S^{n-1}$  un  $\theta$ -net, où dim  $V_0 = k$  avec  $|M| < \frac{1}{2}e^{\frac{\eta^2 n}{2}} < (\frac{3}{\theta})^k$ . (on justifira l'existence d'un tel ensemble dans lemme qui suit cette démonstration)

$$v\Big(\cap_{x\in M} \{T\in O(n); |||Tx||-E|\leq b\eta\Big) = 1-|M|v\Big(T\in O(n); |||Ty||-E|>b\eta\Big), \text{ pour un } y\in M.$$

or  $v(T \in O(n); |||Ty|| - E| > b\eta) = \mu(y \in S^{n-1}; |||y|| - E| > b\eta) \le 2e^{-\frac{\eta^2 n}{2}}, \text{ donc}:$ 

$$v\Big(\cap_{x\in M} \{T\in O(n); |||Tx||-E|\leq b\eta\}\Big) \geq 1-|M|2e^{-\frac{\eta^2n}{2}}>0$$

Il existe donc  $T \in O(n)$  tel que pour tous  $x \in M$  on ait  $\big| ||Tx|| - E \big| \le b\eta$ , comme T est une isométrie on a que N =: TM est un  $\theta$ -net sur  $V \cap S^{n-1}$  avec  $V =: TV_0$ .

Si  $x \in V \cap S^{n-1}$ , il existe  $\{y_i\} \subset N$  et  $\{\beta_i\}$  une suite avec  $|\beta_i| \le \theta^i$  tel que  $x = y_1 + \sum_{i=2}^{\infty} \beta_i y_i$ , on a donc

$$||x|| \le ||y_1|| + \sum_{i=2}^{\infty} \theta^i ||y_i|| \le \sum_{i=0}^{\infty} \theta^i (b\eta + E) = \frac{1}{1 - \theta} (b\eta + E)$$

Trouvons maintenant une minoration de ||x||, on a  $||x-y_1|| = \left|\left|\sum_{i=2}^{\infty} \beta^i y_i\right|\right| \le \sum_{i=1}^{\infty} \theta^i ||y_i|| \le \frac{\theta}{1-\theta} (b\eta + E)$  et donc

$$||x|| \ge ||y_1|| - ||x - y_1|| \ge (b\eta + E) - \frac{\theta}{1 - \theta}(E + b\eta) = E\frac{1 - 2\theta}{1 - \theta} - b\eta\frac{1}{1 - \theta}$$

$$E\frac{1-2\theta}{1-\theta} - b\eta \frac{1}{1-\theta} \le ||x|| \le \frac{1}{1-\theta} (b\eta + E)$$

Or on a  $E\frac{1-2\theta}{1-\theta}-b\eta\frac{1}{1-\theta}=E\frac{1-2\theta-\delta}{1-\theta}>E(1-\varepsilon)$  et  $\frac{1}{1-\theta}(b\eta+E)=E\frac{1+\delta}{1-\theta}< E(1+\varepsilon)$  et donc

$$E(1-\varepsilon) \le ||x|| \le E(1+\varepsilon)$$

Pour  $y \in V$  il suffit de prendre  $x = \frac{y}{|y|}$  et l'on a :

$$E(1-\varepsilon)|y| \le ||y|| \le E(1+\varepsilon)|y|$$

Il ne nous reste plus qu'as discuté de la minoration de k, en prenant le logarithme dans  $\frac{1}{2}e^{\frac{\eta^2n}{2}} < (\frac{3}{\theta})^k$ , on obtient :

$$k > \frac{1}{\log(3/\theta)} \left( \frac{\delta^2 E^2}{2b^2} n - \log(2) \right)$$

Je n'arrive pas a conclure pour la dimension, par rapport au livre de Gideon et Milman j'ai remplacer dans les notations  $\varepsilon$  par  $\eta$ ,  $\varepsilon'$  par  $\delta$ ,  $\delta$  par  $\varepsilon$ 

**Lemme.** Pour tous  $0 < \varepsilon < 1$  il existe un  $\varepsilon$ -net sur  $S^{k-1}$  de cardinal inférieur à  $\left(\frac{3}{\varepsilon}\right)^k$ .

*Démonstration.* Soit  $N = \{x_i\}_{i=1,...,m}$  un sous ensemble de  $S^{k-1}$  maximal pour la propriété :  $x, y \in N$ ,  $|x - y| \ge \varepsilon$ , c'est à dire pour tous  $x \in S^{k-1} \setminus N$  il existe  $i \le m$  tel que  $|x - x_i| < \varepsilon$ , donc N est un  $\varepsilon$ -net. Les boules de centre  $x_i$  et de rayon  $\varepsilon/2$  sont donc disjointe deux à deux et toute contenue dans  $B(0, 1 + \frac{\varepsilon}{2})$  d'ou :

$$m\mathrm{Vol}(B(x_1,\frac{\varepsilon}{2})) = \sum_{i=1}^m \mathrm{Vol}(B(x_i,\frac{\varepsilon}{2})) = \mathrm{Vol}(\cup_{1 \leq i \leq m} B(x_i,\frac{\varepsilon}{2})) \leq \mathrm{Vol}(B(0,1+\frac{\varepsilon}{2}))$$

$$m \leq \frac{\operatorname{Vol}(B(0,1+\frac{\varepsilon}{2}))}{\operatorname{Vol}(B(x_1,\frac{\varepsilon}{2}))} = \left(\frac{1+\frac{\varepsilon}{2}}{\frac{\varepsilon}{2}}\right)^k = \left(1+\frac{2}{\varepsilon}\right)^k \leq \left(\frac{3}{\varepsilon}\right)^k$$



### Estimation de la borne inférieur du maximum d'un vecteur gaussien

Dans la suite pour estimer E nous aurons besoin d'une minoration de  $\mathbb{E}\Big[\max_{1\leq i\leq N}g_i\Big]$  pour des  $g_i$  i.i.d suivant  $\mathcal{N}(0,1)$ , nous démontrons une telle borne dans cette section.

**Lemme.** (ratio de Mill) Soit g une variable aléatoire suivant une loi  $\mathcal{N}(0,1)$ , alors

$$\mathbb{P}(g > t) \ge \exp\left(-\frac{t^2}{2}\right) \frac{1}{\sqrt{2\pi}t + 2}$$

Démonstration.

**Théorème 6.**  $\exists A, B > 0$  tel que pour tout N > 1, et  $(g_1, ..., g_N)$  des variables aléatoires i.i.d suivant une loi  $\mathcal{N}(0, 1)$ , on est:

$$\mathbb{E}\Big[\max_{1 \le i \le N} g_i\Big] \ge A\sqrt{\log N} - B$$

Démonstration. Fixons ces notations :

(i) 
$$C(N) = \sqrt{2 - \frac{2 \log \log N}{\log N}}$$

(ii) 
$$\beta_N = C(N) \sqrt{\log N}$$

(iii) 
$$A = \bigcup_{i \le N} \left\{ X_i \ge \beta_N \right\}$$

La démonstration va reposer sur l'égalité suivante :

$$\mathbb{E}\left[\max_{1 \le i \le N} g_i\right] = \mathbb{E}\left[\max_{1 \le i \le N} g_i | A\right] \mathbb{P}(A) + \mathbb{E}\left[\max_{1 \le i \le N} g_i | A^c\right] \mathbb{P}(A^c) \tag{*}$$

Dans un premier temps, on s'intéresse à minoré la partie  $\mathbb{E}\left[\max_{1\leq i\leq N}g_i\big|A^c\right]$ .

$$\mathbb{E}\Big[\max_{1 \le i \le N} g_i \, \Big| \, A^c \Big] \ge \mathbb{E}\Big[g_1 \, \Big| \, A^c \Big] = \frac{1}{\mathbb{P}(A^c)} \int_{\mathbb{R}^N} x_1 \mathbb{1}_{A^c}(x_1, ..., x_N) \prod_{i=1}^N \frac{\exp\left(-\frac{1}{2}x_i^2\right)}{\sqrt{2\pi}} dx_1 ... dx_N$$

$$\mathbb{E}\Big[\max_{1\leq i\leq N}g_i\Big|A^c\Big]\geq \frac{1}{\mathbb{P}\big(g_1\leq \beta_N\big)^N}\Big(\int_{\mathbb{R}}\frac{\exp\big(-\frac{1}{2}x^2\big)}{\sqrt{2\pi}}\mathbb{I}_{\{g_1\leq \beta_N\}}dx\Big)^{N-1}\int_{-\infty}^{\beta_N}x\exp\big(-\frac{1}{2}x^2\big)\frac{dx}{\sqrt{2\pi}}$$

$$\mathbb{E}\Big[\max_{1\leq i\leq N} g_i \,\Big|\, A^c\Big] \geq \frac{1}{\mathbb{P}\big(g_1\leq 0\big)} \int_{-\infty}^0 x \exp\big(-\frac{1}{2}x^2\big) \frac{dx}{\sqrt{2\pi}} = -\sqrt{\frac{2}{\pi}}$$

En substituant dans  $(\star)$ :

$$\mathbb{E}\Big[\max_{1\leq i\leq N}g_i\Big]\geq \beta_N\mathbb{P}(A)-\sqrt{\frac{2}{\pi}}(1-\mathbb{P}(A))=\Big(\beta_N+\sqrt{\frac{2}{\pi}}\Big)\mathbb{P}(A)-\sqrt{\frac{2}{\pi}}$$

On s'intéresse maintenant a minoré  $\mathbb{P}(A)$ .

$$\mathbb{P}(A) = 1 - \mathbb{P}(A^c) = 1 - (1 - \mathbb{P}(g_1 > \beta_N))^N$$

avec  $1 - x \le \exp(-x)$  on a:

$$\mathbb{P}(A) \ge 1 - \exp\left(-N\mathbb{P}(g_1 > \beta_N)\right)$$

avec le ratio de Mill on obtient :

$$\mathbb{P}(A) \ge 1 - \exp\left(-N\exp\left(-\frac{\beta_N^2}{2}\right)\frac{1}{\sqrt{2\pi}\beta_N + 2}\right)$$

On peut simplifier a l'intérieur de l'exponentielle :

$$\begin{split} N \exp\left(-\frac{\beta_N^2}{2}\right) & \frac{1}{\sqrt{2\pi}\beta_N + 2} = N^{1 - \frac{C(N)^2}{2}} \frac{1}{\sqrt{2\pi}C(N)\sqrt{\log N} + 2} \\ & 1 - \frac{C(N)^2}{2} = 1 - 1 + \frac{\log\log N}{\log N} = \frac{\log\log N}{\log N} \\ & N^{\frac{\log\log N}{\log N}} = \exp\left(\log\log N\right) = \log N \\ \\ N \exp\left(-\frac{\beta_N^2}{2}\right) \frac{1}{\sqrt{2\pi}\beta_N + 2} = \frac{\log N}{\sqrt{2\pi}C(N)\sqrt{\log N} + 2} \geq \frac{\sqrt{\log N}}{\sqrt{2\pi}C(N) + 2} \end{split}$$

ďoù

$$\mathbb{P}(A) \ge 1 - \exp\left(-\frac{\sqrt{\log N}}{\sqrt{2\pi}C(N) + 2}\right)$$

**Lemme.** *Pour*  $N \ge 2$  *on* a  $C(N) \le C =: C(2) \approx 1,749$ 

*Démonstration.*  $C'(x) = \frac{1 - \log \log x}{2xC(x)\log(x)^2}$ , donc C'(x) = 0 si et seulement si  $x = e^e$ , si  $x < e^e$  alors C'(x) < 0 et si  $x > e^e$  alors C'(x) > 0, de plus

$$\lim_{x \to +\infty} C(x) = \lim_{x \to \infty} \sqrt{2 - \frac{2 \log \log x}{\log x}} = \sqrt{2}$$

Comme  $C > \sqrt{2}$  on a  $C(x) \le C$  pour tous  $x \ge 2$ .

Par le lemme on a donc

$$\mathbb{P}(A) \ge 1 - \exp\left(-K\sqrt{\log N}\right)$$
, avec  $K = \frac{1}{\sqrt{2\pi}C + 2} \approx 0.157$ .

On injecte finalement dans  $\mathbb{E}[\max_{i\leq N} g_i]$ 

$$\mathbb{E}\Big[\max_{1 \le i \le N} g_i\Big] \ge \left(\beta_N + \sqrt{\frac{2}{\pi}}\right) (1 - \exp\left(-K\sqrt{\log N}\right)) - \sqrt{\frac{2}{\pi}}$$

$$\mathbb{E}\Big[\max_{1 \le i \le N} g_i\Big] \ge \left(\sqrt{2\log N - 2\log\log N} + \sqrt{\frac{2}{\pi}}\right) (1 - \exp\left(-K\sqrt{\log N}\right)) - \sqrt{\frac{2}{\pi}}$$

Pour  $x \ge 2$  on a  $\exp(-K\sqrt{\log x}) \le \exp(-K\sqrt{\log 2})$ , en effet comme

$$\left(\exp(-K\sqrt{\log x})\right)' = -\frac{K}{2\sqrt{\log x}}\exp(-K\sqrt{\log x}) < 0$$

par la suite posons  $a =: 1 - \exp(-K\sqrt{\log 2}) \approx 0,123$ 

$$\begin{split} \mathbb{E}\Big[\max_{1\leq i\leq N}g_i\Big] &\geq \left(\sqrt{2\log N} - 2\log\log N + \sqrt{\frac{2}{\pi}}\right)a - \sqrt{\frac{2}{\pi}}\\ \mathbb{E}\Big[\max_{1\leq i\leq N}g_i\Big] &\geq a\sqrt{2\log N} - 2\log\log N - \sqrt{\frac{2}{\pi}}(1-a)\\ \mathbb{E}\Big[\max_{1\leq i\leq N}g_i\Big] &\geq aC(N)\sqrt{\log N} - \sqrt{\frac{2}{\pi}}(1-a)\\ \mathbb{E}\Big[\max_{1\leq i\leq N}g_i\Big] &\geq aC(e^e)\sqrt{\log N} - \sqrt{\frac{2}{\pi}}(1-a) \end{split}$$

posons finalement  $A = aC(e^e) \approx 0.138$  et  $B = \sqrt{\frac{2}{\pi}}(1-a) \approx 0,699$  alors on a :

$$\mathbb{E}\Big[\max_{1 \le i \le N} g_i\Big] \ge A\sqrt{\log N} - B$$

#### Estimation de E

Par la suite on fixe ||.|| une norme sur  $\mathbb{R}^n$ ,  $K = \text{Adh}(B_{||.||})$  tel que  $B_2^n$  soit l'ellipsoïde de volume maximale incluse dans K, on a donc b = 1. Dans cette partie nous allons donner une estimation de E.

**Défintion.** Un ellipsoïde D de  $\mathbb{R}^n$  est l'image de la boule unité euclidienne par un élément de GL(n).

Admettons le théorème suivant de Fritz John (1910-1994) :

**Théorème 7.** (Ellipsoïde de John) Tous compact convexe symétrique d'intérieur non vide contient un unique ellipsoïde de volume maximale.

**Lemme.** (Dvoretzky-Rogers) Il existe une base orthonormée  $\{x_i\}_{i=1,\dots,n}$  tel que

$$\forall 1 \le i \le n, \ e^{-1} \left( 1 - \frac{i-1}{n} \right) \le ||x_i|| \le 1$$

*Démonstration.*  $S^{n-1}$  est compact et ||.|| continue, on peux donc prendre un  $x_1 \in S^{n-1}$  qui maximise ||.|| c'est à dire || $x_1$ || = 1, supposons que l'on ai  $x_1, ..., x_{k-1}$  avec  $k \le n$  tel que pour tous  $1 \le i \le k-1$ ,  $x_i$  maximise ||.|| sur  $S^{n-1} \cap_{j < i} x_j \ne \emptyset$  car les  $\{x_i\}_{i=1,...,k-1}$  sont orthogonaux deux à deux et est compact, on peut donc répéter le procéder pour trouver

 $x_k$  qui maximise  $S^{n-1} \cap_{j < k} x_j$ , par récurrence on peut donc avoir n vecteurs avec ses propriétés. Fixons  $1 \le k \le n$ ,  $a, b \in \mathbb{R}^*$  et définissons :

$$\mathscr{E} = \left\{ \sum_{i=1}^{n} a_i x_i ; \sum_{i=1}^{k-1} \left( \frac{a_i}{a} \right)^2 + \sum_{i=k}^{n} \left( \frac{b_i}{b} \right)^2 \le 1 \right\}$$

Supposons  $\sum_{i=1}^n a_i x_i \in \mathcal{E}$ , alors  $\sum_{i=1}^{k-1} a_i x_i \in aB_2^n$  et donc  $||\sum_{i=1}^{k-1} a_i x_i|| \le a$ . Si  $x \in \text{Vect}(x_k, ..., x_n) \cap B_n^2$  on a  $||x|| \le ||x_k||$  par construction, et donc  $\sum_{i=k}^n a_i x_i \in bB_2^n \Rightarrow ||\sum_{i=k}^n a_i x_i|| \le b||x_k||$ , ce qui nous donne la majoration suivante

$$||\sum_{i=1}^{n} a_i x_i|| \le ||\sum_{i=1}^{k-1} a_i x_i|| + ||\sum_{i=k}^{n} a_i x_i|| \le a + b||x_k||$$

Posons  $\phi \in GL(n)$  définit par  $\phi(\sum_{i=1}^n a_i x_i) = \sum_{i=1}^{k-1} a a_i x_i + \sum_{i=k}^n b a_i x_i$  on a  $\phi = \text{diag}(\overbrace{a,...,a}^{(k-1)\times}, \overbrace{b,...,b}^{(n-k+1)\times})$  et donc  $\det \phi = a^{k-1}b^{n-k+1}$  d'où :

$$\int_{\mathcal{E}} dx_1 ... dx_n = \int_{B_2^n} \det \phi dx_1 ... dx_n = a^{k-1} b^{n-k-1} \int_{B_2^n} dx_1 ... dx_n$$

On prend  $a + b||x_k|| = 1$  de sorte que  $\mathscr{E} \subset K$ , comme  $B_2^n$  est l'ellipsoïde de volume maximale inclue dans K, on a que

$$1 \ge \frac{\int_{\mathcal{E}} dx_1 ... dx_n}{\int_{B_n^n} dx_1 ... dx_n} = a^{k-1} b^{n-k+1}$$

Fixons donc pour  $k \ge 2$ ,  $b = \frac{1-a}{||x_k||}$  et  $a = \frac{k-1}{n}$ , en remplaçant dans l'inégalité on obtient :

$$1 \ge a^{k-1} \left( \frac{1-a}{||x_k||} \right)^{n-k+1} \iff ||x_k|| \ge a^{\frac{k-1}{n-k+1}} (1-a) = \left( \frac{k-1}{n} \right)^{\frac{k-1}{n-k+1}} \left( 1 - \frac{k-1}{n} \right)^{\frac{k-1}{n}} \left( 1 - \frac{k-1}{n} \right)^{\frac{k-1}} \left( 1 - \frac{k-1}{n} \right)^{\frac{k-1}{n}} \left( 1 - \frac{k-1}{n} \right)^{\frac{k-1}$$

et  $\log a^{\frac{k-1}{n-k+1}} = \frac{k-1}{n-k+1} \log \left( \frac{k-1}{n} \right) > -1.$ 

**Proposition.** (Estimation de E ) Il existe  $c = c(\varepsilon) > 0$  tel que  $E \ge c\sqrt{\frac{\log n}{n}}$ .

*Démonstration.* Par le lemme de Dvoretzky-Rogers il existe une base orthonormé  $x_1,...,x_n$  tel que pour  $1 \le i \le \lfloor n/2 \rfloor$ ,  $||x_i|| \ge e^{-1} \left(1 - \frac{n/2 - 1}{n}\right) = e^{-1} \left(\frac{1}{2} + \frac{1}{n}\right) \ge (2e)^{-1}$ . Comme  $\mu$  est invariante par composition par une transformation orthogonale on a que

$$E =: \int_{S^{n-1}} || \sum_{i=1}^{n} a_i x_i || \ d\mu(a) = \int_{S^{n-1}} || \sum_{i=1}^{n-1} a_i x_i - a_n x_n || \ d\mu(a)$$

et donc

$$\begin{split} \int_{S^{n-1}} || \sum_{i=1}^n a_i x_i || \ d\mu(a) &= \frac{1}{2} \int_{S^{n-1}} || \sum_{i=1}^n a_i x_i || \ d\mu(a) + \frac{1}{2} \int_{S^{n-1}} || \sum_{i=1}^{n-1} a_i x_i - a_n x_n || \ d\mu(a) \\ \int_{S^{n-1}} || \sum_{i=1}^n a_i x_i || \ d\mu(a) &\geq \frac{1}{2} \int_{S^{n-1}} 2 \max \Big\{ || \sum_{i=1}^{n-1} a_i x_i ||, || a_n x_n || \Big\} d\mu(a) \geq \ldots \geq \int_{S^{n-1}} \max_{1 \leq i \leq n} \Big\{ |a_i| \ ||x_i|| \Big\} d\mu(a) \\ \int_{S^{n-1}} || \sum_{i=1}^n a_i x_i || \ d\mu(a) \geq \int_{S^{n-1}} \max_{1 \leq i \leq [n/2]} \Big\{ |a_i| \ ||x_i|| \Big\} d\mu(a) \geq (2e)^{-1} \int_{S^{n-1}} \max_{1 \leq i \leq [n/2]} |a_i| d\mu(a) \end{split}$$

Soit  $(g_1,...,g_n)$  , des variables aléatoire i.i.d de loi  $\mathcal{N}(0,1)$  alors

$$\int_{S^{n-1}} \max_{1 \le i \le [n/2]} |a_i| d\mu(a) = \mathbb{E}\left[\left(\sum_{i=1}^n g_i^2\right)^{-\frac{1}{2}} \max_{1 \le i \le [n/2]} |g_i|\right]$$

**Lemme.**  $\left(\sum_{i=1}^n g_i^2\right)^{\frac{1}{2}}(g_1,...,g_n)$  et  $\left(\sum_{i=1}^n g_i^2\right)^{-\frac{1}{2}}$  sont indépendants.

Démonstration du lemme.

Par le lemme on à donc

$$\mathbb{E}\Big[\Big(\sum_{i=1}^{n}g_{i}^{2}\Big)^{-\frac{1}{2}}\max_{1\leq i\leq [n/2]}|g_{i}|\Big].\mathbb{E}\Big[\Big(\sum_{i=1}^{n}g_{i}^{2}\Big)^{\frac{1}{2}}\Big] = \mathbb{E}\Big[\max_{1\leq i\leq [n/2]}|g_{i}|\Big]$$

la fonction racine carré est concave, par l'inégalité de Jensen on a donc :

$$\mathbb{E}\left[\left(\sum_{i=1}^{n} g_{i}^{2}\right)^{\frac{1}{2}}\right] \leq \mathbb{E}\left[\sum_{i=1}^{n} g_{i}^{2}\right]^{\frac{1}{2}} = \sqrt{n}\mathbb{E}[g_{1}^{2}]^{\frac{1}{2}} = \sqrt{n}$$

Et finalement par le théorème 6 :

$$E \geq \frac{1}{2e\sqrt{n}}\mathbb{E}\big[\max_{1 \leq i \leq [n/2]}|g_i|\big] \geq \frac{A\sqrt{\log(n/2)} - B}{2e\sqrt{n}}$$