

Name: Allen Ben Philipose

Registration No: 18BIS0043

Subject Code: ECE3030

Slot: L5 + *L6*

Faculty: Suresh Chavhan

Lab Assesment - 1

Comparison of Voice Codecs

<u>Aim</u>

To simulate Networks using various voice codecs in Netsim and compare their performance.

Tools Required

Netsim Software

Circuit Diagram

Graphs

"Custom" given as a separate graph and table

<u>Tables</u>

G.711		Throughput	Delay
	APP1_VOICE	0.063872	67.86
	APP2_VOICE	0.063744	67.86
	APP3_VOICE	0.063872	67.86
	APP4_VOICE	0.063872	67.86
	Average	0.06384	67.86

G.729		Throughput	Delay
	APP1_VOICE	0.007989	45.46
	APP2_VOICE	0.007979	45.46
	APP3_VOICE	0.007989	45.46
	APP4_VOICE	0.007989	45.46
	Average	0.0079865	45.46

G.723		Throughput	Delay
AF	PP1_VOICE	0.006387	46.1
AF	PP2_VOICE	0.006374	46.1
AF	PP3_VOICE	0.006387	46.1
AF	PP4_VOICE	0.006387	46.1
Av	erage	0.00638375	46.1

Custom		Throughput (X100)	Delay
APP:	1_VOICE	59.5307	280.038111
APPZ	2_VOICE	59.6064	279.956343
APP:	B_VOICE	59.92	280.1
APP	4_VOICE	59.7643	280.105668
Avei	age	59.70535	280.0500305

Calculations - G.711

Base Band frequency $f_m = 4KHz$

 $Bitrate = n x f_s$

 $f_s = 2 \times f_m = 8 \text{ KHz}$

Bitrate=8 x 8KHz = 64kbps

Transmission Time = X = L/R

 $= (160 \times 8) / 64 \text{ kbps}$

=20 ms

Packet Size = (Data Rate x Transmission Time)/8

 $= (64 \times 20)/8$

= 160 bytes

Payload = (Packet Transmitted x Packet Size)

 $= 499 \times 160$

= 79840

Throughput = $(Payload \times 8)/(10 \times 106)$

= 64 kbps

Calculations - G.723

Base Band frequency $f_m = 400 \text{ Hz}$

 $Bitrate = n x f_s$

 $f_s = 2 x f_m = 800 Hz$

Bitrate = 10 *x* 800Hz = 8 *kbps*

Transmission Time = X = L/R

 $= (24 \times 8)/8 \text{ kbps}$

= 24 ms

Packet Size = (Data Rate x Transmission Time)/8

 $=(8 \times 24)/8$

= 24 bytes

Payload = (Packet Transmitted x Packet Size)

= 333 x 24

= 7992

Throughput = $(Payload \times 8) / (10 \times 10^6)$

= 6.394 kbps

Calculations - G.729

Base Band frequency f_m = 500 Hz

 $Bitrate = n x f_s$

$$f_s = 2 x f_m = 1000 Hz$$

Bitrate = 8 x 1000Hz = 8 kbps

Transmission Time = X = L/R

- $= (20 \times 8) / 8 \text{ kbps}$
- = 20 ms

Packet Size = (Data Rate x Transmission Time)/8

- $= (8 \times 20)/8$
- *= 20 bytes*

Payload = (Packet Transmitted x Packet Size)

- $=499 \times 20$
- = 9980

Throughput = $(Payload \times 8) / (10 \times 10^6)$

= 7.984 kbps

Inference

Higher the throughput and the lower delay shows which is the better codec. The 'custom' codec has a significant difference of throughput when compared to the other codecs, but the delay increase it has also is very high. Hence, the best alternative that we have is the G.711 codec.

Voice codec G.711 has a very high throughput value and the delay, despite being high, is very comparable with the other codecs.

Custom:

Case 1: Data Rate = 200kbps

Assume,

Transmission Time = 20ms

X = L/R

 $L = 20 \text{ ms } \times 200 \text{ kbps} = 4000 \text{ bits}$

Packet size = 4000/8 = 500 bytes

Case 2: Data Rate = 60kbps

Assume,

Transmission Time = 20ms

X = L/R

L = 20 ms x 60 kbps = 1200 bits

Packet size = 1200/8 = 150 bytes

Demonstration of switches and hubs

<u>Aim</u>

To simulate Networks using switches and hubs in Netsim and compare their performance.

Tools Required

Netsim Software

Important Formulae

- i. Payload Received = Packet Received x Packet Size
- ii. Throughput (Mbps) = (Payload Received x 8) / (Simulation Time x 10^6)

Abstract and Inference

From the previous experiment, it can be inferred that the hub connections have more collision of packets and hence the delay is very high. Also, the structure reduces the throughput, which essentially makes the switch a much efficient system in comparison among the both.

Hub works on a physical layer while the switch works on a data link layer. So, the hub transmits the data to all the destinations and the receivers must decide whether to accept the data or not. Switches on the other hand can control the channel of the message transmission.

Circuit Diagram with SWITCH - 4 Nodes

Circuit Diagram with SWITCH - 8 Nodes

Circuit Diagram with HUB - 4 Nodes

Circuit Diagram with HUB - 8 Nodes

