Deep Neural Networks Are Easily Fooled

Anthony Dickson

Can you spot the ostrich?

- Left columns are the original image, right columns are all 'pictures of ostriches', centre columns are the difference of the two images magnified 10x.
- The adversarial examples (right columns) are indistinguishable from the original images!

Are you sure about that?

Neural networks are often very confident when they are fooled.

Size does not matter

• A single pixel attack can be enough to fool a deep neural network...

Simple Transformations

Natural

"revolver"

"vulture"

Adversarial

"mousetrap"

"orangutan"

 A simple rotation and translation can be all it takes to fool these convolutional neural networks.

These are not the people you are looking for...

Impersonator

Impersonated

You would not want security systems to make important decisions solely based on the output of these networks if they can be fooled so easily.

Adversarial Attacks in Computer Vision Tasks

- A pattern of noise is added to an image.
- The target/victim neural network assigns an incorrect label for the given image with a high level of confidence.
- The adversarial example is indistinguishable from the original image.

Not Just Images

- Adversarial attacks are widespread throughout these deep learning models.
- Adversarial attacks can work for other types of data.
- Attacks are not limited to convolutional neural networks.
- There has been work showing successful attacks on natural language processing and speech recognition.

A Landmark Paper

- Christian Szegedy et al.'s 2013 work "Intriguing properties of neural networks" was one of the first to touch on the subject.
- They created adversarial examples by finding the smallest pattern of noise that causes the target network to classify the given input with a certain label.
- They showed that adversarial examples generalise across different models and across models trained on different data.

Adversarial Attacks Are Effective and Pervasive

- Deep neural networks are easily fooled with adversarial examples.
- When they are fooled, they have a high level of confidence.
- Adversarial attacks seem to be possible for any type of neural network or dataset.
- Adversarial examples generalise.

Robust Neural Networks

Adversarial Training

- Train on adversarial examples.
- Provides limited defence.
- Adversarially trained networks are less vulnerable to attacks but are still fooled with a high level of confidence.

Robust Optimisation

- Incorporate an adversary into the optimisation process.
- Adversarial loss can be used as a regulariser.
 - $\eta = \epsilon \operatorname{sign}(\nabla_x J(\theta, x, y))$ Adversarial Example
 - $\tilde{J}(\theta, x, y) = \alpha J(\theta, x, y) + (1 \alpha)J(\theta, x + \eta, y)$ Normal Loss Adversarial Loss
- Some methods opt for a minimax game theory approach.
 - $\min_{\theta} \mathbf{E}_{(x,y)\sim D} \left[\max_{\eta \in S} L(\theta, x + \eta, y) \right]$ $Model \qquad Adversary$
- Currently the most effective defence against adversarial attacks.
- Some of the methods can be a bit slow.

A Feature, Not a Bug?

Ilyas et al., 2019

Adversarial Examples Are Not Bugs, They Are Features

Previously: Adversarial examples are possibly due to:

Linearity of deep neural networks (e.g. ReLU activation) High-dimensional geometry of data and complex decision boundaries.

Robust and Non-robust Features

- Authors propose the existence of robust and non-robust features.
- Robust features are resistant against adversarial perturbations to some degree, non-robust features are not.
- Hypothesis: models trained with supervised learning rely on both robust and non-robust features.

Training on Robust and Non-Robust Features

- Train separate models on the robust and non-robust features.
- On clean test set there is little difference between models trained on robust or nonrobust features.
- Models trained on robust features are indeed more resilient against attacks.

Summary

- Deep neural networks are vulnerable to adversarial attacks.
- These attacks generalise between different models.
- We can build neural networks that are more robust against these attacks by:
 - Adding a pool of adversarial examples to the training data
 - Training models with adversarial loss as a regulariser
 - Training models with a loss function that incorporates the adversary
 - Training models with a dataset of robust features.
- Adversarial examples may actually be a feature of supervised learning, rather than a bug.

