Visión Computacional

Image Classification

Jose Laruta

Diplomado en Sistemas Robóticos avanzados -Unifranz - Octubre 2021

Agenda

- 1. Introducción
- 2. Convnet como Backbone
- 3. Arquitecturas para clasificación
- 4. VGG
- 5. Resnet
- 6. MobileNet
- 7. EfficientNet

Introducción

En anteriores sesiones, hemos visto cómo definir y entrenar una red neuronal convolucional desde el inicio. Este enfoque, si bien es eficiente y sirve para tareas y conjuntos de datos personalizados, no siempre es la forma más eficiente de desarrollar una aplicación.

ConvNets como backbone

En anteriores sesiones vimos cómo las capas convolucionales funcionan más bien como **extractores de características** que, a través del entrenamiento por la retropropagación, encuentran los filtros y resaltan las características más importantes para la tarea de predicción.

Esta etapa inicial se suele denominar el backbone de una red convolucional.

Arquitecturas para clasificación de imágenes

Durante los últimos años se han desarrollado varios tipos de arquitecturas que utilizan distintos mecanismos para poder generar modelos con mayor precisión, mejor entrenamiento y mayor eficiencia. Exploraremos algunas de las arquitecturas más populares en la tarea de clasificación.

VGG

VGG fue una de las primeras arquitecturas en incluir una cantidad elevada de capas ocultas. Se compone de un *stack* de bloques convolucionales con filtros 3x3 y 1x1, activación *relu* y *maxpooling* de 2x2, seguido de tres capas densamente conectadas.

VGG propone distintas configuraciones de las cuales las más populares son **VGG16** y **VGG19**.

Fuente: <u>Very Deep Convolutional Networks for Large-Scale Image</u> <u>Recognition</u>

Resnet

Resnet propone un enfoque de bloques *residuales* mediante los cuales se resuelve el problema de *vanishing gradients* en redes neuronales muy profundas.

Fuente: <u>Deep Residual</u> <u>Learning for Image</u> <u>Recognition</u>

MobileNet

Se introduce el uso de *depth-wise convolution* para disminuir la cantidad de procesamiento en los bloques convolucionales sin pérdida sustancial de precisión.

Fuente: <u>MobileNets: Efficient</u>

<u>Convolutional Neural</u>

<u>Networks for Mobile Vision</u>

<u>Applications</u>

EfficientNet

Se basa en una definición de escalado en parámetros y profundidad tomando en cuenta la cantidad de cómputo necesaria para distintos niveles de precisión.

Fuente: <u>EfficientNet:</u>
<u>Rethinking Model Scaling for</u>
<u>Convolutional Neural</u>
<u>Networks</u>

