IZOTÓPTECHNIKA 26(4):251-257 (1983)

A HAZAI GYÁRTMÁNYÚ 3,3'-DIJÓDTIRONIN RIA KÉSZLETTEL SZERZETT KLINIKAI TA-PASZTALATOK

Gyertyánfy Géza<sup>1</sup>, Földes János<sup>1</sup>, Tóth Géza<sup>2</sup>, Dévényi Nóra<sup>2</sup>

<sup>1</sup>A Semmelweis Orvostudományi Egyetem I. Belklinikája Budapest, Korányi S.u.2. 1083

<sup>2</sup>A Magyar Tudományos Akadémia Izotópintézete, Budapest, Pf. 77, 1525

/Érkezett 1983. május 16-án/

A szérumban két, biológiailag aktiv pajzsmirigyhormont, a tiroxint  $/T_4/$  és a trijódtironint  $/T_3/$  lehet kimutatni. A  $T_3$  80%-a a szövetekben keletkezik a  $T_4$  dejodálódása révén.

A dejodálódás két enzim: az 5-dejodináze és az 5'-dejodináze hatására megy végbe. Amennyiben a dejodálódás az 5'-dejodináze hatására történik, a biológiailag aktiv 3,5,3'-trijódtironin /továbbiakban T<sub>3</sub>/ keletkezik, mig az 5-dejodináze enzim a biológiailag inaktiv 3,3,5'-trijódtironint /reverse trijódthyronin, továbbiakban r-T<sub>3</sub>/ hozza létre. További dejodálódás hatására dijódtironinok /T<sub>2</sub>/ keletkeznek. A trijódtironinból és az r-T<sub>3</sub>-ból egyaránt képződik 3,3'-dijódtironin /továbbiakban 3,3'-T<sub>2</sub>/, ugyanakkor a trijódtironinból még 3,5-dijódtironin, az r-T<sub>3</sub>-ból pedig 3,5'-dijódtironin is keletkezik.¹ Mindezeket az 1. ábra szemlélteti.

E dejodált metabolitok a keringésben jelen vannak, és radioimmunoassay segitségével kimutathatók<sup>2-8</sup>. Ilyen irányu vizsgálataink első lépéseként a szérum 3,3<sup>L</sup>T<sub>2</sub>-tartalmának meghatározásával foglalkoztunk.

# VIZSGÁLATI MÓDSZEREK

A 3,3'-T<sub>2</sub> kimutatására a Magyar Tudományos Akadémia Izotópintézetében kidolgozott és forgalomba hozott, RK-14 kódszámu RIA készletet használtuk.

#### 1. ábra

A tiroxin dejodálódásának menete Ход удаления йода из тироксина Deiodination of thyroxin A szérum T2-tartalmának meghatározása RIA módszerzel, extrakció nélkül történik. A készlet reagensei a következők: liofilizált antiszérum, jelzett 3,3'T2, /tracer/, barbital puffer, 3,3'-T2 standard, 3,3'-T2-mentesitett szérum, kontroll szérum és 20%-os vizes PEG oldat.

Felhasználáskor a puffert 3,0 ml, az antiszérumot 5,0 ml, a T<sub>2</sub>-mentesitet szérumot pedig 4,0 ml desztillált vizben feloldjuk. A standardot 1,0 ml desztillált vizben feloldva 800 pmol·l<sup>-1</sup> koncentrációju oldatot kapunk, ez lesz a standard görbe első pontja. Ebből készitjük el a standard görbe többi koncentrációját, mentesitett szérummal való higitással. E koncentrációk a következők: 400, 200, 100, 50, 25 és 12,5 pmol·l<sup>-1</sup>.

A meghatározás Burger és Sakoloff eljárása alapján történik<sup>2</sup>, és menete a következő.

Müanyagcsövekbe bemértünk 50 μl standard oldatot, illetve kontroll szérumot. A zérus koncentrációju csövekbe 50 μl mentesitett szérumot pipettázunk. Ezután mindegyik csőbe 50 μl jelzett 3,3'-T₂ oldatot és 100 μl antiszérumot mérünk. Két csőbe csak nyomjelzőt adagolunk, az összaktivitás meghatározása céljából. E csöveket mérésig félretesszük. A csövek tartalmát - az előbb emlitett két cső kivételével - vortex keverővel homogenizáljuk. A csöveket 5 óra hosszat szobahőmérsékleten, majd egy éjszakán keresztül +4°C-on inkubáljuk. Másnap mindegyik csőbe - kivéve a két összaktivitásos csövet - 500 μl vizes PEG oldatot mérünk, a csövek tartalmát vortex keverővel összekeverjük, majd 2000-3000 g gyorsulással legalább 25 percig, +4°C-on centrifugáljuk. Ezután a felüluszót leszivjuk, és megmérjük a csapadék radioaktivitását.

Mindezt az 1. táblázat szemlélteti.

Ezután kiszámitjuk a standard görbére vonatkozó B/B<sub>0</sub> százalékokat és féllogaritmikus skálán felvesszük a mérőgörbét. A vizszintes tengelyen a standard koncentrációt, a függőleges tengelyen a B/B<sub>0</sub> százalékot ábrázoljuk. Lehetséges a logisztikus ábrázolás is. Az ismeretlen szérum B/B<sub>0</sub> százalékát kiszámitva, a koncentrációt a mérőgörbéről leolvassuk.

Vizsgálatainkhoz a klinikai beteganyagból származó eu-, hyper- és hypothyreosisos szérummintákat használtuk, azokból poolozott mintákat készitve. Eseteinket is klinikai beteganyagból választottuk.

Vizsgálatainkat a következő szempontok szerint végeztük:

- 1. az ellenanyag fajlagosságának ellenőrzése,
- 2. az optimális ellenanyag-koncentráció megállapitása,
- 3. a mérőgörbe statisztikai adatainak vizsgálata,
- a módszer megbizhatóságának tanulmányozása eu-, hyper- és hypothyreosisos szérumokkal.
- 5. eu-, hyper- és hypothyreosisos betegszérum 3,3'-T2-tartalmának meghatározása.

### 1. táblázat

Az immunoassay menete Ход иммуноанализа Assay protocol

| C s ő            |           |                                                    |                |             |
|------------------|-----------|----------------------------------------------------|----------------|-------------|
| Reagens          | Standard  | Minta                                              | Во             | Total       |
| Standard         | 50        |                                                    |                | -           |
| Minta            | -         | 50                                                 | _              | -           |
| T2-mentes szérum | -         | -                                                  | 50             | -           |
| 125I-3,3'-T2     | 50        | 50                                                 | 50             | 50          |
| Antiszérum       | 100       | 100                                                | 100            | -           |
|                  | vortexelj | ük; inkubáljuk s                                   | szobahőmérsékl | eten öt óra |
|                  | hosszat,  | majd +4°C-on egg                                   | y éjszakán ker | resztül     |
| PEG oldat        | 500       | 500                                                | 500            | -           |
|                  | sulással  | ük; centrifugál;<br>20 percig;<br>zót leszivjuk, a |                |             |
|                  |           | ég μl-ben értend                                   | dő.            |             |

## EREDMÉNYEK

 Az ellenanyag fajlagosságát /a keresztreakciók vizsgálatát/ az MTA Izotópintézete ellenőrizte. A vizsgálat eredményét a 2. táblázat mutatja.

## 2. táblázat Keresztreakciók Перекрестные реакции Cross reactions

| Vegyület | 8     |
|----------|-------|
| Т4       | 0,015 |
| Тз       | 0,085 |
| r-T3     | 0,01  |
| 3'-T1    | 0,46  |
| Triac    | 0,22  |
| Tetrac   | 0,02  |

Ennek értelmében a trijódtironinnal, r-T<sub>3</sub>-mal, tiroxinnal és tetrajódtiro-ecetsavval /tetrac/ szemben a keresztreakció 0,1%-nál kisebb. Csak a trijódtiroecetsavval és a 3'-monojódtirozinnal szemben mutatkozott valamivel nagyobb keresztreakció, de ez is 0,5% alatt volt.

- 2. Az optimális ellenanyag-higitás beállitására vonatkozó vizsgálat eredményét grafikusan a 2. ábra szemlélteti. A meghatározás céljára az 1:35 000 higitás mutatkozott a legalkalmasabbnak.
- 3. A mérőgörbékre vonatkozó eredményeket a 3. táblázatban láthatjuk. Tizenkét mérőgörbe statisztikai jellemző adatait értékelve, a variációs együtthatók átlaga 2,5%, az átlagos kötődés 50%, az átlagos érzékenység pedig 4,7 pmol·l<sup>-1</sup> volt.



Különböző higitásu ellenanyaggal kapott 3,3'- $\mathbf{T}_2$  görbék Стандартные кривые 3,3'- $\mathbf{T}_2$ , полученные с антигенами разного разбавления

Standard curves obtained with antigens of various dilution

#### 3. táblázat

A  $T_2$  mérőgörbék adatai Данные по измерительным кривым  $T_2$  $T_2$  measurement curves data

|                         | Tartomány     | Atlag  |
|-------------------------|---------------|--------|
| <b>VK</b>               | 1,0731-3,2936 | 2,3043 |
| Korrelációs             |               |        |
| együttható              | 0,9116-0,9940 | 0,9738 |
| Kötődési %              | 38,33-61,55   | 50,06  |
| Érzékenység<br>pmol·l-1 | 3,19-10,18    | 4,70   |

A módszer megbizhatóságát vizsgálva az intraassay-meghatározást euthyreosisban 58, hyperthyreosisban 61, hypothyreosisban 35 esetben végeztük el, összesen 154 esetben. Az interassay-meghatározás euthyreosisban 18, hyperthyreosisban 10, hypothyreosisban pedig 9 esetben történt, összesen 37 esetben. Eredményét 4. táblázatban láthatjuk. Az intraassayben a variációs együttható értéke, a pajzsmirigy működési állapotától függően, 8,71 és 18,44% között volt, mig az interassay variációs együtthatójának értéke ennél nagyobbnak adódott; ez különösen hypothyreosisban volt nagy /23,2%/. A standard deviáció értéke az intraassayben 8,0 és 13,54 között volt, interassayben pedig 10,82 és 19,63 között mozgott.

4.

Végül a klinikai betegek közül meghatároztuk 27 euthyreosisos, 8. hypothyreosisos és 36 hyperthyreosisos beteg szérumának 3,3'-T2-tartalmát. A diagnózist a klinikai képen kivül a szérum T4-tartalmának előzőleg már elvégzett meghatározása is megerősitette.

Ezen eredményeket az 5. táblázat szemlélteti. Látható, hogy euthyreosisban a szérum

**átlagos 3,3'-T<sub>2</sub>-tartalma 82,3, hyperthyreosisban** 167,58, hypothyreosisban 56,57 pmol·l<sup>-1</sup>. Az egyes csoportok átlaga közötti különbség szignifikáns,

A szérum 3,3'-T<sub>2</sub>- és tiroxintartalma közötti összefüggést grafikusan a 3. ábra mutatja. Rendszerint erősen megnőtt T<sub>4</sub>-tartalom esetén kapunk igen nagy T<sub>2</sub>-értékeket, amely alacsonyabb T<sub>4</sub>-szint mellett már nem ilyen markáns.

4. táblázat Megbizhatóság Надежность Confidence

|                          | Átlag, pmol·l⁻¹   | 95%-os megbizha-<br>tósági határ |
|--------------------------|-------------------|----------------------------------|
| Hypothyreosis<br>n = 8   | 56,57 p < 0,05    | 45,84 - 67,31                    |
| Euthyreosis $n = 27$     | 82,27<br>p < 0,01 | 69,30 - 95,24                    |
| Hyperthyreosis<br>n = 36 | 167,58            | 137,58 - 197,58                  |

táblázat
 Betegeredmények
 Данные больных
 Patients data

|                          | Intraassay |        |  |
|--------------------------|------------|--------|--|
|                          | SD         | VK     |  |
| Euthyreosis<br>n = 58    | 8,295      | 12,423 |  |
| Hyperthyreosis<br>n = 61 | 13,540     | 8,707  |  |
| Hypothyreosis<br>n = 35  | 8,03       | 18,44  |  |
|                          | Interassay |        |  |
| Euthyreosis<br>n = 18    | 10,89      | 15,088 |  |
| Hyperthyreosis<br>n = 10 | 19,633     | 11,739 |  |
| Hypothyreosis<br>n = 9   | 10,823     | 23,21  |  |



A szérum T<sub>4</sub>- és 3,3'-T<sub>2</sub>-koncentrációjának összefüggése Вэаммосвязь конментрации Т<sub>4</sub> и 3,3'-Т<sub>2</sub> сы-

воротки

The relation between T4 and 3,3'-T2 concentrations of the serum

# MEGBESZÉLÉS

A pajzsmirigyhormonok perifériális metabolizmusát tanulmányozva, szükséges a T4, T3 és r-T3 dejodációs termékeinek a kimutatása a szérumban. Ilyen irányu vizsgálataink első lépéseként egyrészt ellenőriztük az MTA Izotópintézetében előállitott és a 3,3'-T2 meghatározására alkalmas készlet

megbizhatóságát, másrészt meghatároztuk a szérum  $3,3'-T_2$ -tartalmát eu-, hyper- és hypothyreosisos beteganyagon, és az eredményeket összefüggésbe hoztuk a szérum  $T_4$ -tartalmával.

A T<sub>2</sub> ellenanyag specifikusnak bizonyult. A T<sub>47</sub> illetve a T<sub>3</sub>-metabolitokkal szemben a keresztreakció minden esetben 0,5%-nál kisebbnek adódott. Ez az eredmény összhangban volt Faber és munkatársainak, valamint Skovsted és munkatársainak eredményeivel<sup>7</sup>'. Adataink alapján a 3,3'-T<sub>2</sub>-meghatározás általános érzékenysége 4,7 pmol·l<sup>-1</sup>értékünek bizonyult, és ez megfelel Hüfner és Grüssendorf régebbi eredményeinek<sup>5</sup>.

A módszer megbizhatóságát vizsgálva az eu; hyper- és hypothyreosisos tartományban meghatároztuk az intraassay és interassay variációs együtthatóit. Noha ezek az eu- és hyperthyreosisos szérumokat vizsgálva elég nagynak bizonyultak, mégis megfeleltek a világirodalmi adatoknak 1,4,7. A hypothyreosisos szérumok esetében azonban az interassay variációs együtthatója 23%-nak adódott. Mindez arra utal, hogy a módszer megbizhatóságát a továbbiakban még növelni kell.

Hyper-, illetve hypothyreosisos betegcsoportunkban a szérum átlagos 3,3'-T2 - tartalma jól elkülönithető volt az euthyreotikus csoporttól, és az eredmény megfelelt a világirodalmi adatoknak¹'²'. A szérum 3,3'-T2- és T4-tartalma közötti összefüggést vizsgálva megállapithatjuk, hogy a szérum nagy T4-koncentrációja esetében az összefüggés szembeötlő, kis T4-tartalma esetében azonban ez már nem mutatható ki. Ennek egyik magyarázata az lehet, hogy hypothyreosisban, az esetek döntő többségében, a szérum T4-tartalma az eutireotikusakénál kisebb, ugyanakkor a T3-koncentráció még nem kicsi. Ebből a trijódtironinból olyan mennyiségben képződhet a szövetekben 3,3'-T2, amely az utóbbi normális szérumkoncentrációját eredményezi. Vizsgálati eredményeinket összegezve megállapithatjuk, hogy az MTA Izotópintézetében előállitott készlet alkalmas a szérum 3,3'-T2-tartalmának meghatározására. Amennyiben azonban a pajzsmirigyhormonok perifériális metabolizmusát részletesebben óhajtjuk vizsgálni, ugy szükséges a szérum 3,3'-T2-tartalma mellett a 3,5-T2- és 3,5'-T2-szintjét is meghatározni.

#### IRODALOM

- 1. L.A. Gavin, et al., J. Clin. Invest. 60 /1978/ 1276
- 2. A. Burger, et al., J. Clin. Endocr. Metab. 45 /1977/ 384
- 3. K.D. Burman, et al., J. Clin. Endocr. Metab. 45 /1977/ 339
- 4. H. Meinhold, F. Schürnbrand, J. Clin. Chem. Clin. Biochem. 15 /1977/ 419
- 5. M. Hüfner, M. Grussendorf, Acta Endocr. 89 /1978/ 679
- 6. P. Laurberg, Scand. J. Clin. Lab. Invest. 38 /1978/ 537
- 7. L. Skovsted, Acta Med. Scand., Suppl. 624: /1979/ 19
- 8. J. Faber , et al., Clin. Endocr. 14 /1981/ 119

Elvégeztük az RK-14 kódszámu, 3,3'- $T_2$  RIA készlet klinikai kipróbálását. Megállapitottuk a mérőgörbe statisztikai jellemző adatait; inter- és intraassay segitségével megvizsgáltuk a módszer megbizhatóságát, majd meghatároztuk eu-, hyper- és hypothyreosisos szérumok /7l betegminta/ 3,3'- $T_2$  koncentrációját. Az egyes csoportok  $T_2$ -szintje egymástól szignífikánsan elkülönült.

A készlet szérum 3,3'-T2 -tartalmának meghatározására alkalmas.

КЛИНИЧЕСКИЕ ОПЫТЫ С РАДИОИММУНОАНАЛИТИЧЕСКИМ НАБОРОМ 3,3'-ДИЙОДТИРОНИНА ВЕН-ГЕРСКОГО ПРОИЗВОДСТВА

Дьертянфи, Г., Фэльдеш, Я., Тот, Г., Девеньи, Н.

Были произведены клинические испытания  $3,3'-T_2$  радиоиммуноаналитического набора RK-14. Были определены статистические характеристики измерительной кривой; с помощью интер- и интраизмерений была исследована надежность метода и определена концентрация  $3,3'-T_2$  в эу-, гипер- и гипотиреотических сыворотках /на 71 образце/.  $T_2$  -уровни отдельных групп однозначно отделяются друг от друга.

Набор пригоден для определения содержания  $3,3'-T_2$  в сыворотке.

CLINICAL EXPERIENCES WITH THE HUNGARIAN MADE DIIODOTHYRONINE RADIOIMMUNOASSAY

Gyertyánfy, G., Földes, J., Tóth, G., Dévényi, N.

Clinical testing of the RK-14 radioimmunoassay kit for the determination of 3,3'- diiodothyronine was performed. The statistical characteristics of the calibration curve were established, the reliability of the method by means of intra- and interassay variation coefficients was studied and the serum 3,3'- $T_2$  concentration of patients with various thyroid diseases was determined /71 cases/. A significant difference was found among the serum levels of 3,3'- $T_2$  in the groups of euthyroid, hyperthyroid and hypothyroid patients.

The RK-14 kit seems to be applicable for the determination of  $3,3'-T_2$  content in the serum.