Further Pure Mathematics FP3 (6669) Mock paper mark scheme

Question number	Scheme	Marks
1.	$4(1-\operatorname{sech}^2 x) - 2\operatorname{sech}^2 x = 3$	M1
	$6\operatorname{sech}^2 x = 1$	A1
	$\cosh x = \sqrt{6}$	M1 A1
	Using $\operatorname{arcosh} x = \ln\left(x + \sqrt{(x^2 - 1)}\right)$	M1
	$x = \pm \ln\left(\sqrt{6} + \sqrt{5}\right)$	A1 (6)
		(6 marks)
2.	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sinh\left(\frac{1}{2}x\right)$	B1
	$\int y\sqrt{1+\left(\frac{dy}{dx}\right)^2}dx = \int 2\cosh\left(\frac{1}{2}x\right)\sqrt{1+\sinh^2\left(\frac{1}{2}x\right)}dx$	M1 A1
	$= \int 2 \cosh\left(\frac{1}{2}x\right) dx$	
	$= \int (1 + \cosh x) \mathrm{d}x$	
	$= x + \sinh x$	M1 A1
	$2\pi \left[x + \frac{e^x - e^{-x}}{2}\right]_{-\ln 2}^{\ln 2} = \pi \left[\left(2\ln 2 + 2 - \frac{1}{2}\right) - \left(-2\ln 2 + \frac{1}{2} - 2\right)\right]$	M1
	$=\pi(4\ln 2+3)$	A1 (7)
		(7 marks)

Question number	Scheme	Marks
3.	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = -\frac{3\cosh\theta}{\sinh^2\theta}$	B1
	$\int \frac{1}{x\sqrt{(x^2+9)}} dx = \int \frac{1}{\frac{3}{\sinh\theta}} \sqrt{\left(\frac{9}{\sinh^2\theta} + 9\right)} \times \frac{-3\cosh\theta}{\sinh^2\theta} d\theta$	M1 A1
	$= -\frac{1}{3} \int 1 \mathrm{d}\theta = -\frac{1}{3} \theta$	A1
	$x = 3\sqrt{3} \Rightarrow \sinh \theta = \frac{1}{\sqrt{3}} \Rightarrow \theta = \ln\left(\frac{1}{\sqrt{3}} + \frac{2}{\sqrt{3}}\right) = \ln\sqrt{3}$	
	$x = 4 \Rightarrow \sinh \theta = \frac{3}{4} \Rightarrow \theta = \ln \left(\frac{3}{4} + \frac{5}{4} \right) = \ln 2$	M1 A1
	$\left[-\frac{1}{3}\theta \right]_{\ln 2}^{\ln \sqrt{3}} = \frac{1}{3} \left(\ln 2 - \ln \sqrt{3} \right) = \frac{1}{3} \left(\frac{1}{2} \ln 4 - \frac{1}{2} \ln 3 \right) = \frac{1}{6} \ln \frac{4}{3}$	M1 A1 (8)
		(8 marks)
4. (a)	$\frac{dy}{dx} = \frac{1}{1+x} \times \frac{1}{2} x^{-\frac{1}{2}} \left(= \frac{1}{2x^{\frac{1}{2}} (1+x)} \right)$	M1 A1
	$x = \frac{1}{4} \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4}{5}$	A1 (3)
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} (1+x)^{-1} x^{-\frac{1}{2}}$	
	$\frac{d^2 y}{dx^2} = -\frac{1}{2} (1+x)^{-2} \times x^{-\frac{1}{2}} - \frac{1}{4} (1+x)^{-1} \times x^{-\frac{3}{2}}$	M1 A1
	$= -\frac{1+3x}{4x^{\frac{3}{2}}(1+x)^2}$	
	$2x(1+x)\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} + (1+3x)\frac{\mathrm{d} y}{\mathrm{d} x}$	
	$=2x(1+x)\left(-\frac{1+3x}{4x^{\frac{3}{2}}(1+x)^{2}}\right)+(1+3x)\left(\frac{1}{2x^{\frac{1}{2}}(1+x)}\right)$	M1 A1, A1
	= 0 *	A1 cso (6)
		(9 marks)

Question number	Scheme	Marks
5. (a)	$I_n = \int_0^{\frac{\pi}{2}} \sin x \cdot \sin^{n-1} x \mathrm{d}x$	
	$= \left[-\cos x \sin^{n-1} x\right]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} \cos x \cdot (n-1) \sin^{n-2} x \cos x dx$	M1 A1
	$= 0 + \dots$	A1
	$= (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x (1-\sin^2 x) dx$	
	$=(n-1)I_{n-2}-(n-1)I_n$	M1
	Leading to $I_n = \frac{n-1}{n}I_{n-2}$ (**)	A1 (5)
(b)	$\int_0^{\frac{\pi}{2}} x \left(\sin^5 x \cos x\right) dx = \left[\frac{x \sin^6 x}{6}\right]_0^{\frac{\pi}{2}} - \frac{1}{6} \int_0^{\frac{\pi}{2}} \sin^6 x dx$	M1 A1
	$I_6 = \frac{5}{6} \times \frac{3}{4} \times \frac{1}{2} I_0 = \frac{5}{6} \times \frac{3}{4} \times \frac{1}{2} \times \frac{\pi}{2} \left(= \frac{5\pi}{32} \right)$	M1 A1
	Hence $\int_0^{\frac{\pi}{2}} x \left(\sin^5 x \cos x \right) dx = \frac{\pi}{12} - \frac{1}{6} \times \frac{5\pi}{32} = \frac{11\pi}{192}$	A1 (5)
		(10 marks)

Question number	Scheme	Marks
6. (a)	$\overrightarrow{PQ} = \begin{pmatrix} -3\\4\\-4 \end{pmatrix}, \overrightarrow{QR} = \begin{pmatrix} 2\\2\\-2 \end{pmatrix}$	B1
	$\overrightarrow{PQ} \times \overrightarrow{QR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -3 & 4 & -4 \\ 2 & 2 & -2 \end{vmatrix} = \begin{pmatrix} 0 \\ -14 \\ -14 \end{pmatrix}$	M1 A2, 1, 0 (4)
(b)	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = -2 \implies y+z=-2 \text{ or equivalent}$	M1 A1 (2)
(c)	y + z = -2 $x + y - z = 6$	
	Let $z = \lambda \implies y = -\lambda - 2, x = 2\lambda + 8$	M1 A1 A1
	$\mathbf{r} = \begin{pmatrix} 8 \\ -2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$	M1
	$ \left(\mathbf{r} - \begin{pmatrix} 8 \\ -2 \\ 0 \end{pmatrix} \right) \times \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = 0 $	A1 (5)
		(11 marks)

Question number	Scheme	Marks
7. (a)	$ \begin{pmatrix} 2 & k & 0 \\ 1 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix} \begin{pmatrix} 9 \\ 3 \\ -2 \end{pmatrix} = \begin{pmatrix} 3k+18 \\ 12 \\ -8 \end{pmatrix} = \lambda \begin{pmatrix} 9 \\ 3 \\ -2 \end{pmatrix} $	M1
	$\lambda = 4 \implies 3k + 18 = 36 \implies k = 6$	M1 A1 (3)
	$\lambda = 4$ is an eigenvalue	B1
	$\begin{vmatrix} 2-\lambda & 6 & 0 \\ 1 & 1-\lambda & 0 \\ 0 & -2 & 1-\lambda \end{vmatrix} = (1-\lambda)((2-\lambda)(1-\lambda)-6)$ $(\lambda-1)(\lambda^2-3\lambda-4) = (\lambda-1)(\lambda-4)(\lambda+1)$ $\lambda = (4,) \ 1, \ -1 \qquad 1 \text{ and } -1$	M1
	$(\lambda - 1)(\lambda^2 - 3\lambda - 4) = (\lambda - 1)(\lambda - 4)(\lambda + 1)$	M1
	$\lambda = (4,) \ 1, \ -1$ 1 and -1	A1 (4)
(c)	$ \begin{vmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & -2 & 1 \end{vmatrix} \begin{pmatrix} t - 2 \\ t \\ 2t \end{vmatrix} = \begin{vmatrix} 3t - 4 \\ 2t - 2 \\ 0 \end{vmatrix} $	M1 A2,1,0
	x = 8t - 4, $y = 2t - 2$, $z = 0$	
	x - 4y - 4 = 0	M1 A1 (5)
		(12 marks)

Question number	Scheme	Marks
8. (a)	$\frac{\mathrm{d}x}{\mathrm{d}u} = 5\sec u \tan u, \ \frac{\mathrm{d}y}{\mathrm{d}u} = 3\sec^2 u$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3\sec^2 u}{5\sec u \tan u} \left(=\frac{3}{5\sin u}\right)$	B1
	$y - 3\tan u = \frac{3}{5\sin u} (x - 5\sec u)$	M1
	Leading to $3x = 5y \sin u + 15(\sec u - \tan u \sin u)$	
	$3x = 5y\sin u + 15\left(\frac{1-\sin^2 u}{\cos u}\right)$	
	$3x = 5y\sin u + 15\cos u (\clubsuit)$	M1
		A1 cso (4)
(b)	Equations of asymptotes $y = \pm \frac{3}{5}x$ both	В1
	Eliminating y or x between $3x = 5y \sin u + 15 \cos u$ and $y = \frac{3}{5}x$	
	$3x = 3x\sin u + 15\cos u$	
	$x = \frac{5\cos u}{1 - \sin u}, y = \frac{3\cos u}{1 - \sin u}$	M1 A1
	Similarly between $3x = 5y \sin u + 15 \cos u$ and $y = -\frac{3}{5}x$	
	$x = \frac{5\cos u}{1 + \sin u}, y = -\frac{3\cos u}{1 + \sin u}$	M1 A1
	Let (x_M, y_M) be the coordinates of the mid-point of RS.	
	$x_{M} = \frac{1}{2} \left(\frac{5\cos u}{1 - \sin u} + \frac{5\cos u}{1 + \sin u} \right) = \frac{5\cos u}{2} \left(\frac{2}{1 - \sin^{2} u} \right) = 5\sec u$	M1
	$y_{M} = \frac{1}{2} \left(\frac{3\cos u}{1 - \sin u} - \frac{3\cos u}{1 + \sin u} \right) = \frac{3\cos u}{2} \left(\frac{2\sin u}{1 - \sin^{2} u} \right) = 3\tan u$	A1
	The coordinates (x_M, y_M) are the same as P .	
	P is the mid-point of RS . (*)	A1 cso (8)
		(12 marks)