电路的基本概念和基本定律

一、是非题

- 1. 在电路的节点处,各支路电流的参考方向不能都设为指向节点,否则将只有流入节点的电流,而没有流出节点的电流。
- 2. 电流强度的大小定义为单位时间内通过单位面积的电量。
- 3. 在电路中,由于所标明的电流参考方向是任意假定的,所以电流可能为正,也可能为负。
- 4. 电路中某两点的电位都很高,则这两点间的电压一定很高。
- 5. 电路中某两点间的电压等于两点的电位差, 所以该两点间的电压与参考点有关。
- 6. 若改变电路中的参考点,则电路中各点的电位一般都将改变。
- 7. 某元件的电压 u 和电流 i 为非关联参考方向,若用 p=ui 算得的功率值为-5W,则该元件实际供出 5W 的功率。
- 8. 若某元件的电流 I 和电压 U采用非关联参考方向,则 P=UI 为该元件供出的功率。
- 9. 短路元件的电压为零,其电流不一定为零。开路元件的电流为零,其电压不一定为零。
- 10. 根据 P=UI,对于额定值 220V、40W 的灯泡,由于其功率一定,如电源电压越高,则其电流必越小。
- 11. 有两个额定电压相同的电炉,电阻不同。因为 $P = I^2 R$,所以电阻大的功率大。
- 12. 如果电池被短路,输出的电流将最大,此时电池输出的功率也最大。
- 13. 无论流过电压源的电流多大,电压源的电压总保持常量或给定的时间函数。
- 14. 如果一个电压源的电压 以=0,则它相当于开路。
- 15. 直流电源的内阻为零时,电源电动势就等于电源端电压。
- 16. 某实际直流电源的开路电压为 U_6 ,若该电源外接一个电阻器,其电阻值在某范围变化时都满足 U_6 = U_6 ,则在一定的电流条件下,该实际电源的模型为一电压源。

- 17. 与电压源并联的各网络,对电压源的电压并无影响;与电流源串联的各网络,对电流源的电流并无影响。
- 18. 如果一个电流源的电流 $I_s=0$,则它相当于开路。
- 19. 电路中任意两点 a、b 之间的电压 u_{ab} ,等于从 a 点沿任意一条路径到 b 点间所有元件电压的代数和。
- 20. KCL 对于电流的参考方向或实际方向均成立, KVL 对于电压的参极性或实际极性 也都是成立的。
- 21. 在列写 KCL 和 KVL 方程时,对各变量取正号或负号,均按该变量的参考方向确定,而不必考虑它们的实际方向。
- 22. 线性电阻的电压、电流特性曲线的斜率总是正值。
- 23. 实际直流电源的特性越接近电压源时,其内阻越小。实际电源的特性越接近电流源时,其内阻越大。
- 24. 将小灯泡与可变电阻串联后接到直流电压源上,当电阻增大时,灯泡的电压减小,所以灯泡变暗。

答案部分

- 1. (-)2. (+)3. (+)4. (-)5. (-)6. (+)7. (-)8. (+)9. (+)10. (-)
- 11. (-) 12. (-) 13. (+) 14. (-) 15. (+) 16. (+) 17. (+) 18. (+) 19. (+)
- 20. (+) 21. (+) 22. (-) 23. (+)

二、单项选择题

- 1. 电路的作用是
- (A) 把机械能转变为电能
- (B) 把电能转变为机械能、光能、热能
- (C) 把电信号转变为语言和音乐
- (D) 实现电能的传输和转换, 信号的传递和处理

图中 UBA=-1V, 则

- (A) A 点电压比 B 点电压高 (B) A 点电位比 B 点高
- (C)B点电位比 A 点高
- (D) 不能比较两点电位
- 3. 1 度电可供 220V、40W 的灯泡正常发光的时间是
- (A) 20 小时(B) 40 小时(C) 45 小时(D) 25 小时
- 4. 图(N) 所示线性电阻 R 的伏安特性曲线为图()。

- 5.12V、6W的灯泡接至6V的电源,如灯泡电阻为常数,通过灯丝的电流为
- (A) 2A (B) 1A (C) 0. 5A (D) 0. 25A

6. 用具有一定内阻的电压表测出实际电源的端电压为 6V,则该电源的开路电压 U_{oc} 应为 (A) U_{oc} >6V (B) U_{oc} <6V (C) U_{oc} =6V (D) 不能确定

7. 图示电路中, Is>0、Us>0, 则吸收功率的元件是

- (A) 电压源 (B) 电流源 (C) 无法确定
- 8. 在有n个节点,b条支路的连通电路中,可以列出独立KCL方程的个数为
- (A) n (B) b-n+1 (C) n+b (D) n-1
- 11. 若 4Ω电阻在 10s 内消耗的能量为 160J,则该电阻的电压为
- (A) 10V (B) 8V (C) 16V (D) 90V
- $I = \frac{U}{R}$ 12. 按照下列各图中标出的 U、 I、 R,可以应用公式 $I = \frac{R}{R}$ 的为图?

13. 已知电阻元件在图 (a) 所选参考方向下的伏安特性如图 (b) 所示,则元件的电阻为 (A) 0. 5Ω (B) -0.5Ω (C) 2Ω (D) -2Ω

 $\frac{1}{2}$ 、 $\frac{1}{4}$ 、 $\frac{1}{8}$ W 各种规格,在阻值相同时,瓦数越大的,价格越高。现需要用 4. 7kΩ电阻(电流为 10mA),选用哪种规格的电阻较适宜?

- (A) 任选一种都可 (B) 2W (C) $\frac{1}{2}$ W (D) $\frac{1}{8}$ W
- 15. 左下图示电路中,如 U = 10V,则 6V 电压源供出的功率为
- (A) 32W (B) -8W (C) -32W (D) 8W

- 16. 右上图示电路中, 供出功率的元件是
- (A) 5V 电压源 (B) 1A 电流源 (C) 两个电流源 (D) 三个独立源
- 17. 左下图示电路中的电流 I为(A)10A(B)5A(C)0(D)3A

- 18. 电路如右上图所示,短路线中的电流 I为
- (A) 10A (B) 30A (C)-10A (D) 无穷大
- 19. 图示电路中的 I 为(A)-1A(B) OA(C) 1A(D) 2A

- 20. 图示为某电路中的一个回路, 其 KvL 方程为
 - (A) $R_1 I_1 R_2 I_2 + R_3 I_3 R_4 I_4 = U_{s1} + U_{s2} U_{s3} U_{s4}$
 - (B) $R_1 I_1 R_2 I_2 R_3 I_3 + R_4 I_4 = U_{S1} U_{S2} U_{S3} + U_{S4}$
 - (C) $-R_1 I_1 + R_2 I_2 + R_3 I_3 R_4 I_4 = U_{51} + U_{52} U_{53} U_{54}$
 - (D) $R_1 I_1 R_2 I_2 R_3 I_3 + R_4 I_4 = U_{s1} + U_{s2} U_{s3} U_{s4}$

- 22. 右上图示电路中 1A 电流源供出的功率为
- (A) 8W (B) -4W (C) 3W (D) -5W
- 23. 图示电路中当 R 减小时, a 点电位趋向()。
- (A)升高 (B)降低 (C)不变 (D)无法确定

- 24. 图示电路中直流电压源 $U_{S1}=U_{S2}=U_{S3}$,直流电流源 $I_{S1}=I_{S2}=I_{S3}$,且皆为正值,则各独立电源的功率转换情况为
- (A) Is1, Is2 供出功率; Us1, Us2 吸收功率; Us3, Is3 功率为零
- (B) I_{S1}, I_{S3}供出功率; U_{S1}, U_{S2}吸收功率; U_{S3}, I_{S2}功率为零
- (C) U_{S1}, U_{S2}, I_{S3}供出功率; U_{S1}, I_{S1}, I_{S2}吸收功率
- (D) 所有电源的功率均为零

答案

1. (D) 2. (B) 3. (D) 4. (B) 5. (D) 6. (A) 7. (B) 8. (D) 11. (B) 12. (B) 13. (C) 14. (C) 15. (A)

16. (B) 17. (C) 18. (A) 19. (D) 20. (D) 22. (B) 23. (B) 24. (B)

三、填空题

- 1. 一个具有 b 条支路和 n 个节点的平面连通网络,可编写_______个独立的 KCL 方程,_______个独立的 KVL 方程。
- 2. 在集中参数电路中,任意时刻所有元件吸收的电功率的总和。
- 3. 图示两个元件吸收的功率均为 10W,则 $U = ____V$, $I = ____A$ 。

- 4. 1 度电指功率为_____kw 的用电设备在_____h(小时)内所消耗的电能,它等于______J。
- 6. 一个标有"1kΩ、10W"的电阻,其允许通过的最大电流是_____A,允许加在它两端的最大电压是_____V。
- 7. 图示电路中,a、b 两端的开路电压 u 为______V。

- 8. 电流源的输出为常量或一定时间函数值的电流, 其端电压取决于。
- 9. 右上图示部分电路中的电流 *i* 为 。
- 10. 图示电路的电压 Uab 等于 。

 $U = \frac{2}{3} V$ 11. 图(a)、(b)所示部分电路中,要使 ,则 R_a 为____; R_b 为____。

- 14. 某直流电动机的端电压为 220V 时,吸收功率 4. 4kW,则电流为_____A, 1h 消耗的电能为 kWh。
- 15. 图示各元件吸收的功率分别为: (a)___, (b)__, (c)__, (d)__。

17. 有两只白炽灯的额定值分别为: A 灯 220V、100W; B 灯 220V、40W。将它们串联后接在 220V 电源上,则_____灯消耗功率大。将它们并联后接在 220V 电源上,则_____灯消耗功率大。

18. 左下图所示为某电源的伏安特性,由图可知其 $U_0 = V_1$, $R_0 = \Omega_0$ 。

- 19. 右上图示电路中, 6V 电压源供出功率___W, 1A 电流源供出功率_W。
- 20. 左下图示电路中 6V 电压源供出功率___W, 1A 电流源供出功率___W。

21. 右上图示电路中,开路电压 U为____,电压 U为____。

- 22. 连通电路中有 b 条支路,n 个节点,该电路的独立 KVL 方程的数目为___。
- 23. 电路如图所示。图 (a) 及图 (b) 中各电压源均相等,各电阻也相等,并知图 (a) 中电压 U_1 为 12V,图 (b) 中电流 I 为 2A,则 U_2 =__V,R=__ Ω 。

24. 左下图示电路中电压 U为____,电流源供出功率为____。

25. 右上图示为某电路的一部分,其端钮 A,B,C 与外电路相连。其中电流 I 为 _____A,电压 U_{α} 为 _____V,电阻 R 为 ______Q。

26. 图 (a) 电路中, *R* 增加时电压 *U* 将______, 图 (b) 电路中, *R* 增加时, 电压 *U* 将_____。

- 28. 图示电路中的电压 U₁=_____, U₂ =____。

29. 电路如图所示,试求 I_x=_____, U_x =_____。

30. 图示电路的开路电压 UAB 为_____。

31. 图示电路中 A 点电位为_____, B 点电位为_____。

32. 图示电路中 a、b 间的开路电压 Uab=____。

33. 图示电路中, 当开关 S 断开时, Uab=___, S 闭合时, Iab=___。

34. 左下图示电路中,当开关 S 闭合时,20V 电压源供出的功率为____,当开关 S 断开时,20V 电压源供出的功率为____。

36. 图示电路中,当 $I_S=10A$ 时,电压 U为____V;当 $I_S=8A$ 时,电压 U为___V。

37. 右上图示电路中, I_1 =-0. 1mA 则 I_2 _mA, I_0 为_mA,电压 U=_mV。

38. 左下图示电路中的 I=___A, $I_1=$ ___A。

- 39. 如右上图所示电路中 I₁为____。
- 40. 图示电路中, A、B 两端的开路电压 *U*_{AB}=____。

41. 左下图示电路中,当 S 断开时,a 点的电位为 V_a =____。当 S 闭合时,a 点的电位为 V_a =___。

42. 右上图示电路中电压 *U*_{AB} 为___V, 电流 *I*₁ 为___A, *I*₂ 为__A。

43. 当电压源 U_5 与电阻 U_7 与电阻 U_7 是接如图(a)时,电压 U_7 15V;连接如图(b)时,电压 U_7 5V。则 U_8 应为____。

答案部分

- 1. *n*-1, *b*-*n*+1 2. 恒等于 3. -5, -5 4. 1, 1, 3. 6×10⁶
- 5.6,6,1 6.0.1,100 7.5V 8.外电路 9.-4A 10.7V
- 11. $\frac{2}{9}\Omega$, $\frac{4}{7}\Omega$ 12. 100, 100 14. 20, 4. 4,
- 15. -4. 8W, 9. 6W, -6W, 6W 16. 6A, -3A 17. B, A
- 18. 5, 0. 5 19. 12, 6 20. -6, 8 21. 4V, -5 22. *b*-(*n*-1) 23. 12, 6
- 24. 6V, 16W 25. 3, 19, 1. 5 26. 不变, 减小 27. 12, 0. 5, 24, 2 28. -10V, 6V 29. -8A, 60V 30. -4 31. 7V, -3V
- 32. 3v 33. 0V, 0A 34. 50W, -10W 35. 10, 210 36. 12, 16 37. 0. 9, 8. 1, 41. 5
- 38. -8, 6 39. 2A 40. 1V 41. -2V, -5V 42. 4, 5, 5 43. $U_s = 20 \text{ V}$

四、计算题

1. 下列各图中,方框代表电源或负载,已知:U=220V,I=-1A。试问哪些是电源,

2. 试求图示电路中的电流 I。

3. 在实验中,如果把分压器接反,即把电源接到滑动触头与固定端钮之间,如图所示。能不能改变负载的电压?滑动触头 c 向 a 点移动时,将发生什么后果?

- 4. 对右上图示电路,试分别以 g 点和 b 点为电位参考点,计算 a、b、c 三点的电位 V_a 、 V_c 以及 U_{ab} 。
- 5. 图示电路中,若 i_5 =0,试求电阻 R_4 和 6V 电流源的电流 i'。

7. 试用支路分析法求图示电路的各支路电流 I_1 、 I_2 、 I_3 。

8. 左下图示电路中,已知 $U_1=1V$, $U_2=2V$ 。试求电导 G、 G2。

- 9. 在右上图示电路中,已知 I_1 =3mA, I_2 =1mA,试确定某电气元件 X 的电流 I_x 和电压 U_x ,并确定它是电源还是负载?
- 10. 电路如图所示, Us=40V, 试用支路分析法求电流 I₁ 及 I₂。

11. 左下图示电路中,已知: I=20mA, $I_2=12$ mA, $R_1=1$ k Ω , $R_2=2$ k Ω , $R_3=10$ k Ω 。试求电流表 A_4 和 A_5 的读数。

12. 电路如右上图所示, 求 Uab

13. 图示部分电路中, U=24V, I=0. 5A 试求电阻 R_x 的电流 I_x 和电阻 R_x。

- 14. 如右上图所示电路中,以 d 为参考点时, a、b、c 点的电位分别为 4V、-3V、2V,电流 I=3A。试求各元件的功率,并说明哪些元件供出功率、哪些元件吸收功率。
- 15. 在指定的电压 U和电流 I参考方向下写出下列各元 U和 I的约束方程。

16. 电路如图示,分别以 C 点和 B 点为参考点,求各点的电位及电压 U_{AB} 、 U_{AC} 。

17. 右上图中所示二端元件是耗能元件,a、b 两端电压的绝对值是 5V,通过的电流的绝对值是 4A。图中所标的电流方向是参考方向,电压极性是参考极性。试求图示两种情况下 U_{ab} 和 I 的代数值及元件消耗的功率。

19.如图所示两电路, 试求开关 S 断开和闭合时 a、b、c 三点的电位。

21. 试求各图所示电路中电阻消耗的功率。

22. 试分别画出当在 u、i 为关联参考方向和非关联参考方向两种情况下,电阻值为 10Ω 的线性电阻的伏安特性曲线。

23. 流过图(a) 1k **Ω**电阻电流 i(t) 的波形如(b) 所示,试画出(a) 中电压 u(t) 的波形

24. 在图示两种情况下,求 P 点的电位及电阻 R 的电流 I。

25. 下列两图中,a、b 两点的电位各为 V_a =10V、 V_a =5V,电阻 R=0. 5 Ω 。试问: (1)如果电压、电流参考方向如图(a)所示,I、U是多少? (2)如果电压、电流参考方向如图(b)所示,则 I、U又是多少?

26. 电路如图示,已知 I = -5A, $R = 10\Omega$,试求电压 U,并标出电压的实际极性。

27. 有一电阻器 A 的电阻为 4Ω , 消耗的功率为 5W, 试求其电压。另一电阻器 B 的电阻为 8Ω , 额定功率为 10W, 也接在同一电压上, 试求电阻器 B 的电流和功率, 并说明它是否达到额定功率。

28. 图示电路中,若: $(1)S_1$ 、 S_2 都断开; $(2)S_1$ 闭合而 S_2 断开; $(3)S_1$ 、 S_2 都闭合。试分别求出上述情况下电源的电流及电压。

29. 图示电路中; 若: $(1)S_1$ 、 S_2 都断开; $(2)S_1$ 闭合而 S_2 断开; $(3)S_1$ 、 S_2 都闭合。 试分别求出上述各情况电流源的电压 U。

30. 试求下列各图中电流源的电压 U。

31. 试求下列各电路中的未知电流。

32. 电路如图所示,试分别求出各电路中的电压 U。

33. 电路如图所示,试求各电路中的电压 U和电流 I。

34. 试求图示电路中各未知电压。

35. 电路如图示, 求: (1)图(a)、(b)电路中 U_1 ; (2)图(c)电路中的 U_1 、 U_2 、 U_3 。

36. 试求图示电路中的 I_3 、 U_{ab} 、 U_{cb} 和 U_{db} 。

- 37. 电路如图所示,已知 R=1k Ω 、 $R_2=500\Omega$ 、U=1V 和 I=1mA,求端口电压 U_1 。
- 38. 电路如左下图所示,试求电源电压 Us 和-5V 电压源的功率。

- 39. 试求右上图示电路中的电阻 R。
- 40. 选择最简单方法计算图示电路的各支路电流。

41. 电路如左下图所示, 试求电流 I和电压 U。

- 42. 在右上图示电路中,已知 UAB=20V,试求电压 Us。
- 43. 电路如图所示 N 为二端网络。已知 $U_{S1}=100$ V, $U_{S2}=80$ V, $R_{2}=2\Omega$, $I_{2}=2$ A。若流入二端 网络的电流 I=4A,试求电阻 R_{1} 及流入二端网络 N 的功率。

44. 求图示电路中的电流 I 和电压 U。

45. 一个电阻元件的电压u(t) = 10t V $(t \ge 0)$, 如在 $0 \le t \le 30 \text{ s}$ 期间,该电阻消耗的电能为 8368J,试求其电阻值 R。

47. 已知某元件的电压、电流波形如图所示。试画出该元件的伏安特性曲线,标明元件的参数值。

48. 在下图电路中,若: (1) A 点接地; (2) A、B 两点都接地; (3) A、C 两点都接地。分别求出上述三种情况下的电流 I 和电压 U_{AB} 。

49. 图示电路中, 48及 8为已知, 试求电位 44, 12和 13。

50. 图示直流电路中,电阻负载的电压 U=200V、吸收的功率 P=1.5kW,电阻 $P=4\Omega$ 。试求输入端的电压 U=200V、吸收的功率 P=1.5kW,电阻

51. 由四个元件组成的电路如图所示。已知:电流 I=2A;元件 1 供出功率 500W;元件 3、4 是耗能元件,功率分别为 400W 和 150W。试求:(1)元件 2 的功率;(2)各元件的电压;(3)耗能元件的电阻值。

52. 已知某实验室有 60W 的白炽灯 10 盏,另有 1200W 的电阻炉两台,都跨接在 220V 的电源上。试求:(1)每个白炽灯和电阻炉的电流;(2)总功率;(3)在 3h 内所消耗的总电能。

53. 图示各电路中, 电压源电压 Us=100V。试求各图中的电流和电压源功率。

54. 图示电路中, $U_{ab}=6V$,I=1A 时, $U_{ab}=5$. 8V。试问 I=2A,3A,4A 时, U_{ab} 分别为多少?画出 U_{ab} 与 I 的关系曲线。

55. 一台直流发电机的开路电压为 123V。将 4Ω电阻接至发电机时,电阻吸收的功率 为 3.6kW。试计算发电机内部的功率损耗。

56. 图示电路中电流源 I=10A,试分别求出各图中的电压 U及电流源的功率。

60. 电路如图所示已知 100V 电压源供出 100W 功率,求元件 A 的电压和电流。

61. 试求左下图示电路中各支路的电流。

- 62. 试求右上图示电路中各支路的电压和电流。
- 63. 电路如左下图所示,试求图中的开路电压 U_{ab} 。

- 64. 电路如右上图所示。已知 Uab=25V, 试求 Us。
- 65. 晶体管电路如图所示。已知: R_1 =62k Ω , R_2 =20k Ω , U_{be}=0. 7V, 试求 I_b。

66. 试求图示电路中的电压 U2和 U。

67. 在图示电路中,如果 I_3 =1A,求 I_S 及其电压 U_o

- 68. 电路如右上图所示。各电流源电流不变。若 0. 1A 电流源在 0. 5min 内吸收能量 120J,试求流过元件 A 的电流 I。
- 69. 一台直流电动机通过两根导线接在 220V 的电压源上,每根导线的电阻为 R_i =0. 2 Ω 。已知电动机吸收的功率为 10kW,试求电动机的端电压和电流。
- 70. 将图 (a) 、图 (b) 、图 (c) 元件分别接到图 (N) 网络的 a、b 端钮时,图 (N) 中 18 Ω 电阻的电压皆为 36V。试分别求 U_8 、 U_8 和 U_8 U_8 U

71. (1) 求图示电路中的 U₁、U₂和 I。 (2) 若 9V 电压源反接,再求 U₁, U₂和 I。

- 72. 试求右上图示电路中的电流 I_1 、 I_2 、电压 I_1 和 2A 电流源的功率。
- 73. 在图示电路中,已知 I_1 =3A, I_2 =2A,试求 I_5 、 R_4 及 U_5 。

- 74. 右上图示电路中,已知 I_1 =2A, U_{ab} =2V,试求 I_2 、R 及 I_S 。
- 75. 图示电路中,已知: U_{S1} =7V, U_{S2} =16V, U_{S3} =14V, R_1 =16 Ω , R_2 =3 Ω , R_3 =9 Ω ,求开关 S 断开和闭合两种情况下的各支路电流。

76. 如图所示电路中,已知: $U_{S1}=10V$, $U_{S2}=6V$, $U_{S3}=3V$, $R_1=R_2=R_3=300\Omega$, $R_4=25\Omega$,试求支路电流 I_1 、 I_2 、 I_3 、 I_4 。

77. 电路如图所示,已知电流源供出 0.1W 功率,I=4mA,求 G 和 G。

答案部分

- 1. 答案(a)、(d) 是电源(b)、(c) 是负载
- 2. 答案 I=0
- 3. **答案**能改变负载的电压,电池被短路,电池电流将很大,使电池被烧坏,亦可能损坏电位器。
- 4. 答案(1)以 g 点为参考点

$$I = \frac{12 + 10}{2 \times 10^{3}} \text{ A} = 11 \text{ mA}$$

$$V_{a} = (1 \times 10^{3} \times 11 \times 10^{-3} - 10) \text{ V} = 1\text{ V}, \quad V_{b} = -10\text{ V},$$

$$V_{c} = 12, \quad U_{ab} = V_{a} - V_{b} = 11\text{ V}$$

- (2) 以 b 点为参考点 以=0, Va=1×10³×11×10⁻³V=11 Vc=22V Uab= Va- 以=11V
- 5. **答案** *i*₅=0, *U*_{R4}=2V

10Ω电阻的电流
$$i''$$
=(6-2)/10=0.4A R_4 =2/0.4=5Ω

$$i'=0.4-(12-6)/5=-0.8A$$

7. **答案** *I*₁-*I*₂-*I*₃=0 (5+5) *I*₁+24 *I*₂=2

$$(20+30+10) I_3-24 I_2=6-20 I_1 = -\frac{7}{95} A = -0.074 A$$

$$I_2 = \frac{13}{114} A = 0.114 A$$
 $I_3 = -0.188A$

8. **答案** *I*=2 (*U*₂-*U*₁) =2A *I*₁= (3+2) A=5A

$$I_2$$
=(5-2)A=3A 所以 G_1 = I_1/U_1 =5S

 $G_2 = I_2 / U_2 = 1.5$ S

- 9. **答案** I_x = I_2 - I_1 =-2mA U_x =10 I_1 +30=60V 是电源
- 10**. 答案** 20 *I*₁+30 *I*₂=40 *I*₁+2= *I*₂

$$I_1 = -0.4A$$
 $I_2 = 1.6A$

11. 答案

 $I_1 = I - I_2 = (20 - 12) \text{ mA} = 8 \text{ mA}$

$$I_{\rm S} = \frac{I_{\rm 2}R_{\rm 2} - I_{\rm 1}R_{\rm 1}}{R_{\rm S}} = \frac{10 \times 2 - 8 \times 1}{10} \, {\rm mA} = 1.6 \, {\rm mA}$$

所以 $I_4 = I_1 - I_3 = (8-1.6)$ mA=6.4mA $I_5 = I_2 + I_3 = (12+1.6)$ mA=13.6mA

12. 答案 U_{ab}=(-9+6×2+3) V=6V

13. 答案

 $U_{ab} = U - 23 I = (24 - 23 \times 0.5) V = 12.5 V$, $I_2 = I - I_1 = (0.5 - 0.25) A = 0.25 A$

 $U_x = U_{ab} - (30+10) I_2 = 2.5$, $I_x = (0.25-2.5/20) A = 0.125A$

$$R_{\rm s}=\frac{2.5}{0.125}\,\Omega=20\,\Omega$$

14. **答案** U_{ab}=7V U_{bc}=-5V U_{cd}=2V U_{da}=-4V

元件 1 吸收 7×3=21W 元件 2 供出 5×3=15

元件 3 吸收 2×3=6W 元件 4 供出 4×3=12W

15. **答案** (a) *U*=-(10³) *I* (b) *U*=-5V (c) *I*=2A (d) *I*=0 (e) *U*=0

16. 答案(1) C 点为参考点: V_C=0, V_A=3V, V_B=1.5V

 $U_{AB}=1.5V$, $U_{AC}=3V$

(2) B 点为参考点: V_B=0, V_A=1.5V, V_C=-1.5 U_{AB}=1.5V, U_{AC}=3V

17. **答案**(a) *U*=5V, *I*=4A(或 *U*=−5V, *I*=−4A)

P=20W

(b) U=5V,I=4A (或 U=5V,I=-4A) P=20W

19. **答案** S 断开时: (a) V_a=10V, V_b=0, V_c=0 (b) V_a=10V, V_b=10V, V_c=10V

S 闭合时: (a) V_a=10V, V_c=0 (b) V_a=10V, V_c=0

21. **答案** (a) *P*=1W(b) *P*=1W(c) *P*=1W(d) *P*=1W

22. 答案关联

非关联

23. 答案

24. 答案(a)
$$V_{\mathbf{p}} = 0$$
 $I = \frac{-24}{5.1 \times 10^3} \text{A} = -4.706 \times 10^{-3} \text{A} = -4.706 \text{ m A}$

$$V_{\rm P} = -12 \, {\rm V}$$
 $I = \frac{-24 + 12}{5.1 \times 10^3} \, {\rm A} = -2.353 \times 10^{-3} \, {\rm A} = -2.353 \, {\rm m \, A}$

25. 答案(1) U=5V, I=10A(2) U=-5V, I=-10A

(a)

26. 答案

$$U = -IR = 50 \text{ V}$$

-
$$U$$
 + R (b) $U = RI = -50 \text{ V}$

$$P = \frac{U^2}{R}$$
 故 $U_1 = \sqrt{4 \times 5}$ V = 4.47 V

$$I_{\rm g} = \frac{4.47}{8}$$
 A = 0.559 A $P_{\rm g} = 0.559 \times 4.47$ W = 2.50 W 未达到额定功率

- 28. 答案(1)0A9V (2)1. 5A9V (3)4. 5A9V
- 29. 答案(1) U=81V(2) U=27V(3) U=0
- 30. 答案(a) U=5V(b) U=2V(c) U=3V(d) U=-2V
- 31. **答案** (a) I_3 = $-I_1$ + I_2 =15A (b) I_3 = I_1 - I_2 - I_4 =-12A

(c)
$$I_4 = I_1 + I_2 - I_3 = -2AI_7 = I_4 + I_6 - I_5 = -8A$$

(d)
$$I_4 = I_1 - I_2 = 4AI_6 = I_3 - I_2 = -2AI_5 = I_4 - I_6 = 6A$$

- 32. **答案** (a) *U*=1V (b) *U*=2V (c) *U*=4V
- 33. 答案 (a) *U*=40V *I*=1A (b) *U*=40V *I*=1A (c) *U*=40V *I*=1A
- 34. **答案** *U*₁=-6V *U*₂=6V *U*₃=-12V

35. 答案 (a) *U*=3V (b) *U*=-2V (c) *U*₁=-5V, *U*₂=-4V, *U*₃=0

36. **答案** *I*₃=5A*U*_{ab}=10V*U*_{cb}=12V*U*_{db}=16V

37. **答案** *U*₁= *I*(*R*₁+*R*₂)+*U*=2. 5V

38. **答案** Us=2×2-1×1+5=8V 吸收 15W

39. **答案** I_R=1A 而 U_R=0 故 R=0

40. 答案

I2=20A 沿外回路列 KVL 方程

 $110+100-4I_1-90=0I_1=30A$

 $I_3 = I_1 - I_2 = 10$ A 列上网孔的 KVL 方程 $2I_4 + 2(20 + I_4) = 110I_4 = 17.5$ A, $I_5 = (17.5 + 20)$ A=37.5A, $I_6 = I_3 + I_5 = (10 + 37.5)$ A=47.5

41. 答案
$$I = \frac{1+2}{1}$$
 A = 3 A $U = \left(3 \times \frac{1+2-4}{2+3} + 4 - 2\right)$ V = $\frac{7}{5}$ V = 1.4 V

42. **答案**由题意 *U*_{AB}=20=1·*I*_{AC}+1·*I*_{CB} 而 *I*_{CB}=20+*I*_{AC}

$$I_{\rm AC} = 0 I_{\rm CB} = 20 {\rm A}$$
 $I_{\rm FA} = \frac{25 + U_{\rm EC}}{1} = \frac{25 - 20 \times 1}{1} = 5 {\rm A}$

 $U_S = -5 \times 1 + 25 + (20 - 5) \times 1 = 35V$

43. **答案** *I*₁=*I*-*I*₂=(4-2) A=2A

 $U_{S1}-R_1I_1=U_{2S}-R_2I_2$, $R_1=12\Omega P=(U_{S2}-R_2I_2)I=304W$

44. 答案 3 I+1+5=0, I=-2A

设 3Ω 与 2Ω 串联支路的电流为 I_1 (方向从 3Ω 到 2Ω)

$$I_1 = \frac{4-5-1}{2+3} A = -0.4 A$$
 $U=2I_1+1=0.2V$

45. 答案
$$W = \int_0^t p \, dt = \int_0^{30} \frac{(10t)^2}{R} \, dt = 8368 \, J$$

$$_{th}R = 107.6 \Omega$$

47. 答案

48. 答案(1) *I*=0, *U*_{AB}=0 (2) *I*=0, *U*_{AB}=0 (3) *I*=-3A, *U*_{AB}=-6V

49. 答案
$$V_1 = -\frac{2}{3}U_S V_2 = -\frac{1}{3}U_S V_3 = \frac{1}{3}U_S$$

$$I = \frac{P_{\rm L}}{U_{\rm L}} = 7.5~{\rm A}$$
50. 答案

 $U_S = RI + U_L = (4 \times 7.5 + 200) V = 230V$

 $P_{\rm S}$ =230×7.5W=1725W

51. **答案** P₂=400+150-500=50W (供出功率)

$$\begin{split} \mathcal{U}_{\text{ad}} &= \frac{500}{2} \, \text{V} = 250 \, \text{V} \ \mathcal{U}_{\text{Ba}} = \frac{50}{2} \, \text{V} = 25 \, \text{V} \ \mathcal{U}_{\text{BC}} = \frac{400}{2} \, \text{V} = 200 \, \text{V} \\ \mathcal{U}_{\text{CD}} &= \frac{150}{2} \, \text{V} = 75 \, \text{V} \ R_{\text{s}} = \frac{200}{2} \, \Omega = 100 \, \Omega \, R_{\text{4}} = \frac{75}{2} \, \Omega = 37.5 \, \Omega \end{split}$$

52. 答案(1) 每盏灯电流:

$$I_{\mathbf{A}} = \frac{P_{\mathbf{A}}}{U_{\mathbf{A}}} = \frac{60}{220} \,\text{A} = 0.273 \,\text{A}$$

每台电阻炉的电流 $I_{\rm B} = \frac{P_{\rm B}}{U_{\rm B}} = 5.45\,{\rm A}$

- $(2) P=10P_A+2P_B=3000W$
- (3) $W=Pt=3\times3kWh=9kWh$
- 53. **答案** (a) *I*=0, *P*=0 (b) *I*=1A, 供出 100W (c) *I*=-10A, 吸收 100W
- 54. **答案** *U*_S=*U*_{ab}+*IR*₀*U*_S=6V*R*₀=0. 2Ω

 $I=2AU_{ab}=5.6V$, $I=3AU_{ab}=5.4V$, $I=4AU_{ab}=5.2V$

55. **答案** P= I² R *I*=30A $I = \frac{U_{\rm S}}{R + R_{\rm o}}$

 $R_0=0.1\Omega P_0=I^2R_0=30^2\times 0.1W=90W$

- 56. 答案 (a) *U*=0*P*=0
- (b) *U*=50V 供出 500W (c) *U*=10V 供出 100W
- 60. **答案** *I*=1A*U*=(-1×20+100-60) V=20V

61. 答案

 $I_1 = 1 \text{ A } I_2 = 1 \text{ A } I_3 = 4 \text{ A}$

 I_4 =5A I_5 =6A I_6 =5A

62. 答案 U_{BC} =-2V U_{AD} =5V U_{AB} =4V I_{AB} =0. 5A

 I_{BC} =-1A I_{AD} =0.25A I_{CA} =0.75A I_{CD} =-1.75A I_{DB} =-1.5A

63. **答案** *U*=-5V

$$U_{ab} = \frac{36}{28 + 36} U_{s} - \frac{28}{28 + 36} U_{s} = 25 \text{ V}$$
 $U_{s} = 200 \text{ V}$

65. 答案 KVL: I_2R_2 =6+ $U_{be}I_2$ =0. 335mA KVL: I_1R_1 + U_{be} =24

 $I_1=0.376\text{mA}$ $I_b=I_1-I_2=0.041\text{mA}$

$$I_s = \left(1 + \frac{1 \times 8 + 2}{5}\right)$$
A = 3 A $U = (3 \times 2 + 1 \times 8 + 2)$ V=16V

68. **答案** № *IUt*, 120=0. 1×*U*×0. 5×60 *U*=40V

(方向从下至上)

$$I_{\mathbf{F}} = \frac{40}{500}$$
A = 0.08 A (方向从下至上)

I=(0.1+0.08-0.06) A=0.12A

69. 答案 $P=UI-2\overset{?}{I}R_I$ 即 $10^4=220I-0.4\overset{?}{I}I=500$ A 和 I=500A

 $I=50AU=(220-2\times50\times0.2)V=200V$

70. 答案 I=2AU_{ab}=35A(a)U_s=35V

(b)
$$I_S=2A$$
 (c) $I_R=35 \text{ V}$ $I_R=2 \text{ A}$ $R=\frac{U_R}{I_R}=17.5 \Omega$

- 71. **答案** (1) *U*₁=(9+4) V=13V *U*₂=(2×3+9) V=15V *I*=4(2) 9V 电压源反接时,则 *U*₁=-5V *U*₂=-3, *I*=-14A
- 72. **答案** I_1 =5A I_2 =0 U_1 =-8V 电流源供出功率为: 6W
- 73. **答案**应用 KVL5 I₁=10 I₂+10 I₅ 故 I₅=-0. 5A

应用 KCL $I_3 = I_1 + I_5 = 2$. 5A $I_4 = I_2 - I_5 = 2$. 5A

应用 KVL $I_4R_4=10I_5+6I_3$ 故 $R_4=4\Omega$

 $U_S = 5I_1 + 6I_3 = 30V$

74. 答案 I₅=1A I₃=1A

应用 KVL6 I₁+U_{ab}=I₂×14 故 I₂=1A I₄=I₂+I₅=2A 应用 KVL

 $6I_3=2I_5+R_4I_4R_4=2\Omega$

应用 KVL9 I_6 =6 I_1 +6 I_3 故 I_6 =2A I_8 = I_1 + I_2 + I_6 =5A

75. 答案 S 断开时

 $I_5 = -I_3 - I_1 = -2$, 12A

 $I_6 = I_3 - I_2 = 7.89$ A

$$I_1 = \frac{U_{\text{S2}} + U_{\text{S3}}}{R_1} = 0.03 \,\text{A} \ I_2 = \frac{U_{\text{S2}}}{R_2} = 0.02 \,\text{A} \ I_3 = \frac{U_{\text{S3}}}{R_3} = 0.01 \,\text{A}$$

$$I_4 = I_1 + I_3 = 0.04 \,\text{A}$$

77. **答案**电流源的电压
$$U = \frac{0.1}{10^{-2}} V = 10 V$$
 (上 "+",下 "-")

$$I_{G_1 = (10-4) \text{ mA} = 6} G_1 = \frac{I_{G_1}}{U} = \frac{6 \times 10^{-3}}{10} S = 0.6 \times 10^{-3} S$$

$$\pm \text{ KVL} 10 = \frac{4 \times 10^{-3}}{G_2} + \frac{4 \times 10^{-3}}{3 \times 10^{-3}}$$

$$_{\pm \sqrt{2}}G_2 = \frac{6}{13} \times 10^{-3} \,\mathrm{S} = 0.462 \times 10^{-3} \,\mathrm{S}$$