试卷 B 参考答案及评分标准

一、选择题(每题1分,共25分) 得分:

1. B	2. C	3. C	4. A	5. C	6. D	7. D	8. B	9. B	10. B
11. A	12. B	13. A	14. C	15. D	16. A	17. D	18. A	19. B	20. B
21. B	22. B	23. C	24. D	25. B					

二、综合题(共75分)

1、(10分)

(1)四类资源各自总数: 3,8,11,10 //1分

(2)当前需求矩阵: 0100 //2分

0750 1002

0 642

(3)安全, 其中的一个安全序列: P0-P2-P1-P3 //3 分

(4)若 P1 提出 Request(0,4,2,0),系统按银行家算法进行检查,因 //4 分

Request(0,4,2,0)<=Need(0,7,5,0)

Request(0,4,2,0)<=Available(1,5,4,0)

系统暂时先为进程 P1 试行分配资源,并修改有关的确数据,如下图所示:

Process	Allocation	Need	Available	
P0	0 0 1 2	0 1 0 0	1 1 2 0	
P1	1 4 2 0	1 3 3 0		
P2	1 3 5 4	1 0 0 2		
Р3	0 0 1 4	0 6 4 2		

现在,可以满足所有进程的运行,安全序列: P0-P2-P1-P3,系统安全

2、(14分)

- (1) 本问题中共有 3 个进程,学生、机房管理员和教师。同步关系答案略 //2 分
 - (2) // 信号量设置完全正确 2 分

semaphore computer_num=2M; //对应于计算机的资源信号量 semaphore student=0; // 对应于要进入机房的学生 semaphore enter=0; // 用来控制学生是否可以进入机房

```
生。
```

```
semaphore mutex=1;组间互斥告诉管理员到达,互斥告诉老师做完作业
                        第i组学生,每组两个学生
                                                  //4分
 Group_i()
              i=1,2....N
{
  If (学生1和学生2都到达)
       P (mutex);
       V(student);
       V(student);
       P(enter);
       P(enter);
       V (mutex);
   }
    学生1和学生2上机实习;
   If (学生1和学生2都做完)
      P (mutex):
     V(finish);
     V(finish);
     P (test);
     P (test);
     V(mutex);
  }
    学生1和学生2离开机房;
    V(computer);
    V(computer);
}
Administrator()
              //3 分
{
   Int i;
   for (i=0; i<n;i++)
   {
    P(computer);
    P(compuer);
    P(student);
    P(student);
    V(enter);
    V(enter);
}
Teacher()
          //3 分
{
   Int i;
   for (i=0; i<n;i++)
```

```
{
    P(finish);
    P(finish);
    检查两个学生的实习结果;
    V(test);
    V(test);
}
```

3、8分

开放性问题,方案合理即可。建议思路:混合索引、多级目录结构,引入索引节点,引入簇的概念等。

4、10分

(1) //3分

Count=2
97
90

(2) 90,97,420,411 //3 分,盘块号正确 1 分,栈正确 2 分

Count=98
120
121
122
•••
396
397
410

(3) 答案略。 //4 分

5、12分,

(1) //3 分

页面大小 4KB,则页内偏移量占 12 位,采用 48 位虚拟地址,则虚页号为 36 位,页表项大小为 8B,每页可容纳 4KB/8B=512 项,所需多级页表级数=36/9=4 级

(2) 98%*110+ (1-98%) *210=112ns

//3 分

(3) 98%*110+ (1-98%) *310=114ns

//3 分

(4) //3分

虚拟地址 48 位,每段最大为 4GB,则最大段数=2⁴⁸/4GB=2¹⁶ 段 每段最大为 4GB,页面大小为 4KB,所以多级页表级数=[(32-12)/9]=3 级

6、12分

(1) //4分

页号	存在位	修改位	引用位	保护方式	引用时间	外存块号	内存块号
0	1	0	1	可读、可执行	1203	22	66
1	1	0	1	可读、可执行	1178	23	67
2	1	0	1	可读、可执行	1225	25	87
3	1	1	1	可读、可写	1020	26	31
4	0	_	-	可读、可写	_	_	_

5	1	0	1	可读、可写	1250	_	1
_	_	•	-	7 60 1 7 7			_

(2) //5 分

访问虚地址 4043H 时,产生缺页中断,采用 LRU 选中 3 号页面淘汰,该页被修改过,操作系统首先将该页写回到外存中,修改页表项,然后将该页分配给 4 号页面,再修改页表,返回到缺页中断的那条指令,重新执行。

虚地址 4043H 的物理块号为 31, 所以物理地址为: 1F043H。

页表的修改为: //3 分

页号	存在位	修改位	引用位	保护方式	引用时间	外存块号	内存块号
0	1	0	1	可读、可执行	1203	22	66
1	1	0	1	可读、可执行	1178	23	67
2	1	0	1	可读、可执行	1225	25	87
3	1→0	1→—	1→—	可读、可写	1020→—	26	31→—
4	0→1	— → 0	 →1	可读、可写	→1256	_	 →31
5	1	0	1	可读、可写	1250	_	1

7、9分

(1) //3 分

读取文件访问磁盘块的顺序为: 50, 100, 600, 80, 800,则寻道距离=(50-30)+(100-50)+(600-100)+(600-80)+(800-80)

(2) //4 分

磁盘块数量为 4MB/4KB=1024 个,则 FAT 表占用 2KB,即两个盘块(0 号、1 号)。100、80 号盘块的 FAT 表项在 0 号盘块,600、800 号盘块的 FAT 项在 1 号盘块。追加操作需要访问磁盘块的顺序为:50,0,1,0,1,800,寻道距离=(50-30)+50+1+1+1+(600-1)

(3) //2 分

1024个盘块号有效位数为10,所以索引项占2字节。