Processamento Digital de Imagens

Restauração de Imagens

Eduardo A. B. da Silva
Programa de Engenharia Elétrica - COPPE/UFRJ
Laboratório de Sinais, Multimídia e Telecomunicações
eduardo@smt.ufrj.br

Sergio L. Netto
Programa de Engenharia Elétrica - COPPE/UFRJ
Laboratório de Sinais, Multimídia e Telecomunicações
sergioln@smt.ufrj.br

Abril de 2017

Sumário

- Restauração de Imagens
 - Restauração de Imagens
 - Filtragem Inversa
 - Filtragem de Wiener

Restauração de Imagens

- ⇒ Recuperação de degradações na imagem causadas pelo "ambiente" de aquisição de imagem:
 - Ruído de sensores:
 - Embaçamento devido à falta de foco da câmera;
 - Movimento relativo entre câmera e objeto:
 - Turbulência atmosférica aleatória:
 - Etc....
- ⇒ Sua validade depende da acurácia com que se conhece o processo de degradação e do processo do projeto de filtros.
- ⇒ A medida de fidelidade utilizada é, usualmente, o erro médio quadrático (MSE). Se usa às vezes os critérios de máxima entropia e "weighted" MSE.

- ⇒ Qual a diferença para "Image Enhancement"?
 - "Enhancement" envolve mais o realce ou extração de características da imagem do que restauração de degradações;
 - Problemas de restauração de imagens podem ser quantificados precisamente, enquanto critérios de realce são difíceis de representar matematicamente;
 - Técnicas de restauração de imagens frequentemente dependem das propriedades de uma classe ou conjunto de dados, enquanto as técnicas de realce dependem muito mais de cada imagem.

Modelos de Observação de Imagens

\Rightarrow Tipicamente:

Restauração:

Modelos de Formação de Imagens

Exemplo: Motion Blur \Rightarrow movimento no eixo x com velocidade ϑ .

$$v(x,y) = \frac{1}{T} \int_0^T v(x - \vartheta t, y) dt, \quad \alpha = \vartheta t$$

$$v(x,y) = \frac{1}{T} \int_0^{\vartheta T} v(x - \alpha, y) \frac{d\alpha}{\vartheta}$$

$$\begin{cases} \frac{1}{2}, & 0 < \alpha < a \end{cases}$$

Seja
$$P_a(\alpha) = \begin{cases} \frac{1}{a}, & 0 \le \alpha \le a \\ 0, & n.d.p. \end{cases}$$

$$v(x,y) = \int_{-\infty}^{\infty} P_{\vartheta T}(\alpha) v(x-\alpha,y) d\alpha = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{\vartheta T}(\alpha) \delta(\beta) v(x-\alpha,y-\beta) d\alpha d\beta$$

 \Rightarrow Equivale a filtrar com um filtro com resposta ao impulso $h(x,y) = P_{\vartheta T}(x)\delta(y)$ (sinc na frquência);

Para movimento linear uniforme em direções arbitrárias, temos (na frequência):

$$H(m,n) = \frac{T}{\pi(\alpha m + \beta n)} \sin(\pi(\alpha m + \beta n)) e^{-j\pi(\alpha m + \beta n)}$$

Exemplo: Turbulência atmosférica

$$H(u,v) = e^{-k(u^2+v^2)^{5/6}}$$

Outros Modelos de Formação de Imagens

TABLE 8.1 Examples of Spatially Invariant Models

Type of system	Impulse response $h(x, y)$	Frequency response $H(\xi_1, \xi_2)$
Diffraction limited, coherent (with rectangular aperture)	ab sinc(ax) sinc(by)	$\operatorname{rect}\left(\frac{\xi_1}{a}, \frac{\xi_2}{b}\right)$
Diffraction limited, incoherent (with rectangular aperture)	$\operatorname{sinc}^2(ax) \operatorname{sinc}^2(by)$	$\operatorname{tri}\left(\frac{\xi_1}{a}, \frac{\xi_2}{b}\right)$
Horizontal motion	$\frac{1}{\alpha_0} \operatorname{rect}\left(\frac{x}{\alpha_0} - \frac{1}{2}\right) \delta(y)$	$e^{-i\pi\xi_1\alpha_0}\operatorname{sinc}(\xi_1\alpha_0)$
Atmospheric turbulence	$\exp\{-\pi\alpha^2(x^2+y^2)\}$	$\frac{1}{\alpha^2} \exp \left[-\pi (\xi_1^2 + \xi_2^2) \right]$
Rectangular scanning aperture	$rect\left(\frac{x}{\alpha}, \frac{y}{\beta}\right)$	α β
CCD interactions	$\sum_{k,l=-1}^{1} \alpha_{k,l} \delta(x-k\Delta, y-l\Delta)$	$\sum_{k,l=-1}^{1} \alpha_{k,l} e^{-j2\pi\Delta(\xi_1 k + \xi_2 l)}$

Exemplos:

Imagem original

Imagem borrada por sinc² forte

Imagem borrada por sinc² fraco

Imagem borrada por movimento horizontal

Abril de 2017

Modelos de Detectores e Gravadores

Para filmes fotográficos, scanners e displays, a resposta a uma entrada w é geralmente não-linear:

$$g = \alpha \omega^{\beta}$$

Ex: Para filmes, um modelo mais acurado é $d=\gamma \log_{10}\omega - d_0$

 ω : intensidade de luz incidente;

d : densidade ótica;

 γ : intensidade de luz incidente;

Luz refletida ou transmitida $g = 10^{-d}$

Modelos de Ruído

Ruído aparece tipicamente durante a aquisição de imagens e/ou trasmissão; ;

Ex: ruído num feixe de elétrons:
$$\eta(x,y) = \underbrace{\sqrt{g(x,y)}\eta_1(x,y)}_{\text{emissão aleatória de elétrons}} + \underbrace{\eta_2(x,y)}_{\text{ruído térmic}}$$

Podemos assumir (simplificadamente) que:

- O ruído é independente das coordenadas espaciais;
- Não há correlação entre os valores dos pixels e os valores do ruído (não é verdade para ruído periódico);

Principais modelos de ruído:

Name	PDF	Mean and Variance	CDF
Uniform	$p_z(z) = \begin{cases} \frac{1}{b-a} & \text{if } a \le z \le b\\ 0 & \text{otherwise} \end{cases}$	$m = \frac{a+b}{2}, \sigma^2 = \frac{(b-a)^2}{12}$	$F_z(z) = \begin{cases} 0 & z < a \\ \frac{z - a}{b - a} & a \le z \le b \\ 1 & z > b \end{cases}$
Gaussian	$p_z(z) = \frac{1}{\sqrt{2\pi b}} e^{-(z-a)^2/2b^2}$ $-\infty < z < \infty$	$m=a, \sigma^2=b^2$	$F_z(z) = \int_{-\infty}^z p_z(v) dv$
Salt & Pepper	$p_z(z) = \begin{cases} P_a & \text{for } z = a \\ P_b & \text{for } z = b \\ 0 & \text{otherwise} \end{cases}$ $b > a$	$m = aP_a + bP_b$ $\sigma^2 = (a - m)^2 P_a + (b - m)^2 P_b$	$F_z(z) = \begin{cases} 0 & \text{for } z < a \\ P_a & \text{for } a \le z < b \\ P_a + P_b & \text{for } b \le z \end{cases}$
Lognormal	$p_z(z) = \frac{1}{\sqrt{2\pi}bz} e^{-[\ln(z) - a]^2/2b^2}$ $z > 0$	$m = e^{a+(b^2/2)}, \sigma^2 = [e^{b^2} - 1]e^{2a+b^2}$	$F_z(z) = \int_0^z p_z(v) \ dv$
Rayleigh	$p_z(z) = \begin{cases} \frac{2}{b}(z - a)e^{-(z - a)^2/b} & z \ge a \\ 0 & z < a \end{cases}$	$m = a + \sqrt{\pi b/4}, \sigma^2 = \frac{b(4-\pi)}{4}$	$F_z(z) = \begin{cases} 1 - e^{-(z-a)^2/b} & z \ge a \\ 0 & z < a \end{cases}$
Exponential	$p_z(z) = \begin{cases} ae^{-az} & z \ge 0\\ 0 & z < 0 \end{cases}$	$m = \frac{1}{a}, \sigma^2 = \frac{1}{a^2}$	$F_z(z) = \begin{cases} 1 - e^{-az} & z \ge 0\\ 0 & z < 0 \end{cases}$

(SMT – COPPE/UFRJ) Abril de 2017 13 ,

Diferentes modelos de ruído podem surgir devido à efeitos de ruído térmico, de circuitos eletrônicos, em *range imaging*, imageamento por laser, erro de chaveamento de circuitos ou registradores, etc..

Exemplo: considere a seguinte imagem:

- ⇒ Qual a aparência de seu histograma?
- \Rightarrow Adicione ruído com diferentes distribuições.

Estimação de modelos de ruído

 \Rightarrow Dada uma imagem, como posso estimar o modelo do ruído?

Ruído periódico

Surge devido à interferência elétrica ou eletromecânica durante aquisição.

Restauração de Ruído Periódico

⇒ Operamos no domínio da frequência.

Filtros:

From left to right, perspective plots of ideal, Butterworth (of order 1), and Gaussian bandreject

Filtros:

Filtragem Inversa

Filtro Inverso

Considere nosso modelo típico de distorção:

Na ausência de ruído $(\eta(x, y) = 0)$, temos:

$$V(\omega_1,\omega_2)=H(\omega_1,\omega_2)U(\omega_1,\omega_2)$$

Uma solução para corrigir as distorções introduzidas pelo sistema $H(\omega_1, \omega_2)$ é então utilizar um filtro de restauração inverso:

$$H'(\omega_1,\omega_2)=rac{1}{H(\omega_1,\omega_2)}$$

(SMT - COPPE/UFRJ) UFRJ Abril de 2017 24 / 51

Assim:

$$egin{aligned} \hat{U}(\omega_1,\omega_2) &= H^{\prime}(\omega_1,\omega_2)V(\omega_1,\omega_2) \ &= rac{1}{H(\omega_1,\omega_2)}H(\omega_1,\omega_2)U(\omega_1,\omega_2) \ &= F(\omega_1,\omega_2) \end{aligned}$$

 \Rightarrow Problema: o projeto de filtros inversos é difícil porque eles são usualmente instáveis $(H^I(\omega_1,\omega_2)$ não existe se $H(\omega_1,\omega_2)=0)$;

(SMT - COPPE/UFRJ) UFRJ Abril de 2017 2

Abril de 2017

Na presença de ruído, nosso modelo é:

$$V(\omega_1, \omega_2) = H(\omega_1, \omega_2)U(\omega_1, \omega_2) + N(\omega_1, \omega_2)$$

•

Utilizando o filtro inverso:

$$\hat{U}(\omega_1, \omega_2) = V(\omega_1, \omega_2)H'(\omega_1, \omega_2) = U(\omega_1, \omega_2) + \frac{N(\omega_1, \omega_2)}{H(\omega_1, \omega_2)}$$

.

 \Rightarrow Se $H(\omega_1,\omega_2)$ é pequeno, amplifico (muito) o ruído;

Ex:

Filtro Pseudo-Inverso

Uma solução é fazer:

$$H^{-}(\omega_1,\omega_2) = egin{cases} rac{1}{H(\omega_1,\omega_2)}, & H(\omega_1,\omega_2)
eq 0 \\ 0, & H(\omega_1,\omega_2) = 0 \end{cases}$$

Na prática, considero $H(\omega_1, \omega_2) < \varepsilon$

Seja
$$V(\omega_1, \omega_2) = H(\omega_1, \omega_2)U(\omega_1, \omega_2) \Rightarrow \hat{U}(\omega_1, \omega_2) = \frac{V(\omega_1, \omega_2)}{H(\omega_1, \omega_2)}$$

Se adiciono ruído
$$\Rightarrow \hat{U}(\omega_1, \omega_2) = \frac{V(\omega_1, \omega_2)}{H(\omega_1, \omega_2)} + \frac{N(\omega_1, \omega_2)}{H(\omega_1, \omega_2)}$$

- \Rightarrow Ainda assim, se $H(\omega_1,\omega_2)$ é muito pequeno, mesmo uma pequena quantidade de ruído pode ser muito amplificada.
- \Rightarrow Posso aumentar ε , piorando o desempenho do filtro;

Ex: Na ausência de ruído:

Imagem original

Imagem recuperada pelo filtro inverso

Imagem borrada

Imagem recuperada pelo filtro pseudo-inverso

Ex: Na presença de ruído:

Imagem restaurada pelo filtro pseudo-inverso

Filtragem de Wiener

- ⇒ Usada para restaurar imagens na presença de embaçamento e ruído.
- ⇒ Olha a imagem e o ruído como dois processos estocásticos:

$$v(m,n)$$
 é uma observação do processo $u(m,n), \quad E[u(m,n)] = E[v(m,n)] = 0.$

Nosso problema é: a partir da observação de v(m, n), qual a estimativa $\hat{u}(m, n)$ de u(m, n) que minimiza o erro médio quadrático

$$\sigma_e^2 = E[|u(m, n) - \hat{u}(m, n)|^2]$$

A estimativa que minimiza o erro é dada por:

$$\hat{u}(m,n) = \underbrace{E[u(m,n) \mid v(k,l)]}_{ ext{diffcil de calcular (preciso de } p_{u|v})}, \forall k,l.$$

Uma solução é trabalhar com a melhor estimativa linear para $\hat{u}(m, n)$:

- \Rightarrow Assumo que $\hat{u}(m,n)$ é do tipo $\sum_{l}\sum_{l}g(m,n;k,l)v(k,l)$
- \Rightarrow Acho g(m, n; k, l) tal que σ_{R}^{2} é mínimo.

Assumindo que os procesos u(m, n) e v(m, n) são gaussianos, do princípio da ortogonalidade temos que:

$$E\{[(u(m,n)-\hat{u}(m,n)]v(m',n')\}=0, \forall m,n,m',n'$$

(o erro de estimação é ortogonal à estimativa)

$$\Rightarrow \sum_{k} \sum_{l} g(m, n; k, l) r_{vv}(k, l; m', n') = r_{uv}(m, n; m', n')$$

Equação de Wiener

Se u e v são conjuntamente estacionários: $r_{uv}(m, n; m', n') = r_{uv}(m - m', n - n')$

$$\Rightarrow \sum_{k} \sum_{l} g(m-k, n-l) r_{vv}(k, l) = r_{uv}(m, n)$$

Calculando a transformada de Fourier:

$$G(\omega_1,\omega_2)S_{vv}(\omega_1,\omega_2) = S_{uv}(\omega_1,\omega_2) \Rightarrow G(\omega_1,\omega_2) = S_{uv}(\omega_1,\omega_2)S_{vv}^{-1}(\omega_1,\omega_2)$$

Temos ainda que:

$$\hat{u}(m,n) = \sum_{k} \sum_{l} g(m-k,n-l)v(k,l) \Rightarrow \hat{U}(\omega_1,\omega_2) = G(\omega_1,\omega_2)V(\omega_1,\omega_2)$$

Supondo o sistema linear com ruído aditivo:

$$v(m,n) = \sum_{k} \sum_{l} h(m-k,n-l)u(k,l) + \eta(m,n),$$

Assim, temos que:

$$S_{vv}(\omega_1,\omega_2) = \mid H(\omega_1,\omega_2) \mid^2 S_{uu}(\omega_1,\omega_2) + S_{\eta\eta}(\omega_1,\omega_2)$$

$$S_{uv}(\omega_1,\omega_2)=H^*(\omega_1,\omega_2)S_{uu}(\omega_1,\omega_2)$$
 (Se η é descorrelatado de u)

$$G(\omega_1, \omega_2) = \frac{H^*(\omega_1, \omega_2) S_{uu}(\omega_1, \omega_2)}{\mid H(\omega_1, \omega_2) \mid^2 S_{uu}(\omega_1, \omega_2) + S_{\eta\eta}(\omega_1, \omega_2)} =$$

⇒ Filtro de Wiener

O filtro é completamente determinado pela densidade espectral de potência do objeto (processo) e do ruído e da resposta em frequência do sistema de imagem;

⇒ O filtro de Wiener é em geral não separável;

Filtro de Wiener para Imagens com Médias Não Nulas

Como
$$\mu_{\nu}(m,n) = h(m,n) * \mu_{\mu}(m,n) + \mu_{\eta}(m,n),$$

Se
$$\bar{x}(m, n) = x(m, n) - \mu_x(m, n)$$
,

$$\Rightarrow \bar{v}(m,n) = h(m,n) * \bar{u}(m,n) + \bar{\eta}(m,n) \Rightarrow \begin{array}{l} \text{Posso aplicar o filtro de Wiener nas imagens sem média} \end{array}$$

- \Rightarrow Posso estimar $\mu(m, n)$ fazendo médias locais.
- \Rightarrow Se μ_u e μ_η são constantes, só uma constante é adicionada à imagem processada.

Fase:

$$G = \frac{H^* S_{uu}}{\mid H \mid^2 S_{uu} + S_{nn}} \Rightarrow \angle G = -\angle H = \angle \frac{1}{H}$$

- ⇒ A fase do filtro de Wiener é igual à fase do filtro inverso;
- ⇒ O filtro de Wiener não compensa distorções de fase causadas pelo ruído.

Filtro de Wiener para Ruído

Sem embaçamento:
$$H=1 \Rightarrow G= \frac{S_{uu}}{\mid H\mid^2 S_{uu}+S_{\eta\eta}} = \frac{SNR}{SNR+1}$$

- \Rightarrow SNR grande \Rightarrow G \approx 1 (não preciso atenuar o sinal)
- \Rightarrow SNR pequeno \Rightarrow G \approx SNR (Atenuo o sinal de acordo com a sua realção sinal ruído: quanto mais ruído, mais atenuo)
- \Rightarrow Para imagens naturais, *SNR* tende a ser grande em baixas frequências e pequeno em altas frequências: o filtro de Wiener se comporta como um passa-baixas;

Relação com filtragem inversa

Se
$$S_{\eta\eta} = 0 \Rightarrow G = \frac{S_{uu}}{\mid H \mid^2 S_{uu} + S_{mn}} = \frac{H^* S_{uu}}{\mid H \mid^2 S_{uu}} = \frac{1}{H} \Rightarrow$$
 é igual ao filtro inverso.

$$\lim_{S_{\eta\eta}\to 0}G=\lim_{S_{\eta\eta}\to 0}\frac{H^*S_{uu}}{\mid H\mid^2S_{uu}+S_{\eta\eta}}=\begin{cases}\frac{1}{H}, & H\neq 0\\0, & H=0\end{cases}\Rightarrow \boxed{\text{Filtro Pseudo-Inverso}}$$

Resposta em frequência do filtro de Wiener

Exemplo:

Imagem restaurada pelo filtro pseudo-inverso

Imagem borrada com ruído

Imagem restaurada pelo filtro de Wiener

PSDs desconhecidas

E se não conheço S_{nn} e $S_{\mu\mu}$?

$$\Rightarrow$$
 Faço $\frac{S_{\eta\eta}}{S_{\mu\nu}}=K$:

$$\Rightarrow G = \frac{H^* S_{uu}}{\mid H \mid^2 S_{uu} + S_{\eta \eta}} = \frac{H^*}{\mid H \mid^2 + \frac{S_{\eta \eta}}{S_{vu}}} = \frac{H^*}{\mid H \mid^2 + K}$$

 $\Rightarrow K$ pode ser determinado manualmente;

Exemplo

(K escolhido manualmente para melhores resultados)

Exemplo: Detecção de placas (pré-processamento)

blur = 30 pixels

Abril de 2017

Filtragem de Wiener FIR

A equação do filtro de Wiener é:

$$G(\omega_1,\omega_2) = \frac{H^*(\omega_1,\omega_2)S_{uu}(\omega_1,\omega_2)}{\mid H(\omega_1,\omega_2)\mid^2 S_{uu}(\omega_1,\omega_2) + S_{\eta\eta}(\omega_1,\omega_2)} \Rightarrow g(n_1,n_2) \text{ \'e em geral IIR}.$$

- ⇒ Entretanto, sua resposta efetiva tem, em geral, tamanho bem menor que a imagem;
- ⇒ Filtros FIR ótimos podem aproximar o desempenho do filtro de Wiener;
- \Rightarrow O filtro de Wiener é implementado como um filtro de resposta ao impulso g(m,n) que minimiza o erro quadrático:

$$\hat{u}(m,n) = \sum_{i,j \in W} g(i,j)v(m-i,n-j), \qquad W = -M \le i,j \le M$$

Da expressão do filtro de Wiener temos que:

$$\Rightarrow$$
 $G \mid H \mid^2 S_{uu} + GS_{nn} = HS_{uu} \Rightarrow \text{seja } a(k, l) = (h \star h)(k, l)$

$$\Rightarrow$$
 [$g * a * r_{uu} + g * r_{nn}$](k, l) = $h * r_{uu}(k, l)$

$$\Rightarrow [a * r_{uu} + r_{\eta\eta}] * g(k, l) = h * r_{uu}(k, l)$$

 \Rightarrow Se g é FIR com $(2M+1) \times (2M+1)$ coeficientes, resolvo o sistema acima com $(2M+1) \times (2M+1)$ incógnitas (coeficientes de g).

Exemplo: Supondo $r_{\eta\eta}(k,l) = \sigma_n^2 \delta(k,l)$ (ruído branco)

Definindo
$$r_{uu}(k, l) = \sigma^2 r_0(k, l)$$

$$\Rightarrow [(a*\sigma^2r_0)(k,l) + \sigma_\eta^2\delta(k,l)]*g(k,l) = h*(\sigma^2r_0)(k,l)$$

$$\Rightarrow \left[\frac{\sigma_{\eta}^{2}}{\sigma^{2}}\delta(k,l) + r_{0}(k,l) * a(k,l)\right] * g(k,l) = h(k,l) * r_{0}(k,l)$$

Empilhando as linhas e as colunas

$$\underbrace{\left[\frac{\sigma_{\eta}^2}{\sigma^2}\mathbf{I} + \mathbf{R}\right]}_{(2M+1)^2 \text{ coefs}} = r_{uv} \Rightarrow \text{"truncado" para } (2M+1)^2 \text{ amostras}.$$

"truncado" para

$$(2M+1)^2(2M+1)^2$$

Sem embaçamento: $H=1 \Rightarrow h(k,l) = \delta(k,l) = a(k,l) \Rightarrow$ filtro FIR ótimo de ruído.

O tamanho do filtro FIR cresce com a quantidade de embaçamento e com o ruído.

Sem embaçamento:
$$\left[\frac{\sigma_{\eta}^2}{\sigma^2}\delta(k,l) + r_0(k,l)\right] * g(k,l) = r_0(k,l)$$

$$SNR \to \infty \Rightarrow g(k, l) = \delta(k, l) \Rightarrow g$$
 possui 1 pixel.

$$SNR \rightarrow 0 \Rightarrow \sigma_{\eta}^2 g(k, l) = r_0(k, l) \Rightarrow \begin{cases} g \text{ possui tantas amostras quanto a} \\ \text{região de suporte de } r_0(k, l) \end{cases}$$

$$\Rightarrow$$
 Se $r_0(k, l) = 0.95^{\sqrt{k^2 + l^2}} \Rightarrow g$ de tamanho 32 é suficiente.

Filtros FIR Variantes com o Deslocamento

Filtragem de imagens com embaçamento variantes no deslocamento:

 \Rightarrow Um bom modelo é assumir média e variâncias não-estacionárias e autocovariâncias estacionárias, isto é:

$$\begin{cases} E[u(m,n)] = \mu(m,n) \\ E\{[u(m,n) - \mu(m,n)][u(m-k,n-l) - \mu(m-k,n-l)]\} = \sigma^2(m,n)r_0(k,l) \end{cases}$$

Supondo que a PSF possui região de suporte contida em W e h, μ e σ^2 variam lentamente:

$$\Rightarrow \hat{u}(m,n) = \sum_{(i,j)\in W} \tilde{g}_{m,n}(i,j)v(m-i,n-j)$$

$$\tilde{g}_{m,n}(i,j) = g_{m,n}(i,j) + \frac{1}{(2M+1)^2} \left[1 - \sum_{(k,l) \in W} g_{m,n}(k,l) \right]$$

$$g_{m,n}(i,j)$$
 é a solução da equação $\left[\frac{\sigma_{\eta}^2}{\sigma_{m,n}^2}\mathbf{I} + \mathbf{R}\right]g = r_{uv}$, com $\sigma_{m,n}^2$ estimado da observação.

Outros Filtros no Domínio da Frequência

• Filtro de média geométrica:

$$G_s = (H^-)^s \left(rac{S_{uu} H^*}{S_{uu} \mid H \mid^2 + S_{\eta\eta}}
ight)^{1-s}, \quad 0 \leq s \leq 1, \quad H^- = ext{filtro pseudo-inverso}.$$

 \Rightarrow se $s = \frac{1}{2} \Rightarrow \mathsf{PSD}$ da saída = PSD do objeto.

