

State of the Art Calcium Scoring

Disclosure: Philips Medical Systems Consultant

Harvey S. Hecht, MD, FACC, FSCCT
Associate Director of Cardiovascular Imaging
Professor of Medicine, Mount Sinai School of Medicine

Coronary Arterial Remodeling

Examples of Coronary Artery Scans

Coronary Calcium Scores as Function of Patient Age and Gender – Results of National Database

MEN	EBCT (EBCT Coronary Calcium Scores in Asymptomatic Patients as a Function of							
(n=28,250)		Pati	ent Age at t	he Time of t	the Examina	tion			
Percentiles	40-45	46-50	51-55	56-60	61-65	66-70	70+		
/Age (yrs)									
10	0	0	0	1	1	3	3		
25	0	1	2	5	12	30	69		
50	2	3	15	54	117	166	350		
75	11	36	110	229	386	538	844		
90	69	151	346	588	933	1151	1650		
WOMEN									
(n=14,540)									
10	0	0	0	0	0	0	0		
25	0	0	0	0	0	1	4		
50	0	0	1	1	3	25	51		
75	1	2	6	22	68	148	231		
90	4	21	61	127	208	327	698		

1. Risk Prediction

Coronary artery calcium (CAC) is unequivocally the most powerful predictor of cardiac risk in the asymptomatic primary prevention population and should replace risk factor based analyses (FRS, Procam, ESC).

Prognostic Power of CAC in Asymptomatic Patients

Arad (1) Park (2) Raggi (3)	N 1,173 967 632	Mean Age (years) 53 67 52	Follow up (years) 3.6 6.4 2.7	Calcium Score Cutoff CAC>160 CAC >142.1 Top Quartile	Comparator Group for RR Calculat CAC< 160 CAC < 3.7 Lowest	Relative Risk Ratio 20.2 4.9 13
wo In ever	y stud	y, CAC	has	s been s	uperior	.8
kor to and	signific	cantly	adde	ed to the	area	0.5 .9
Sha under t	tne RC	C curv	ve to	r all risk	tactor	.4
Ara based	aalvse	sl				0.7
Vliegenthart (10)	1795	71	3.3	CAC>1000	CAC<100	1.8 8.3
Thegorithan (10)			0.0	CAC 400-1000	CAC<100	4.6
Budoff (11)	25,503	56	6.8	CAC>400	CAC 0	9.2
Lagoski (12)	3601	45-84	3.75	CAC>0	CAC 0	6.5
Becker (13)	1726	57.7	3.4	CAC>400	CAC 0	6.8 men
						7.9 women
Detrano (14)	6814	62.2	3.8	CAC>300	CAC 0	14.1
Erbel (15)	4487	45-75	5	>75 th %	<25 th %	11.1 men
						3.2 women

Prognostic Studies of a Zero Coronary Calcium Score

Study	Total Patients	Zero CAC Patients N (%)	F/U yrs	MI+Death %/yr (N)	All Events %/yr (N)
Prospecti		,	,		• • • • • • • • • • • • • • • • • • • •
Arad Becker Detrano	5585 1726 6722	1504 (26.9) 379 (21.9) 3409 (50.7)	4.3 mean 3.4 mean 3.9 median	not available 0% (0) 0.06% (8)	0.13% (8) 0.9% (12) 0.11% (15)
Pooled prospective	14,303 ve	5282 (36.9)	3.9	not available	0.17%(35)
	llysis 2000-2008 ve and Retrosp				
Sarwar	71,595	29,132 (41.0)	4.2	not available	0.1% (154)
Retrospe	ctive All Cause	Mortality 2009			
Blaha	44,052	19,898 (45.5)	5.6	not available	0.1% (104)

Summary of CAC Absolute Event Rates

CAC	FRS Risk	10 yr event rate
0	very low	1.1-1.7 %
1-100	low	2.3-5.9 %
100-400	intermediate	12.8-16.4 %
>400	high	22.5-28.6 %
>1000	very high	37 %

Reclassification of FRS Risk by CAC Primary Prevention Outcome Studies

Study	% Reclassified	N	Age	Follow up (yrs)
MESA		5878	62.2	5.8
FRS 0-6%	11.6%			
FRS 6-20%	54.4%			
FRS>20%	35.8%			
NRI	25%			
Heinz Nixdorf		4487	45-75	5.0
FRS<10%	15.0%			
FRS 10-20%	65.6%			
FRS>20%	34.2%			
NRI	22.4%			
Rotterdam		2028	69.6	9.2
FRS<10%	12%			
FRS 10-20%	52%			
FRS>20%	34%			
NRI	19%		Hecht.	J Diabetes. 2012:

In Press

Distribution of CAC by FRS in MESA: Potential Implications for Coronary Risk Assessment

5660 asymptomatic pts

CAC	Prevalence
>0	46.4%
>100	20.6%
>300	10.1%

FRS C	AC>300	NNS
0-2.5%	1.7%	59.7
2.6-5%	4.4%	22.7
5.1 -7.5%	7.5%	13.4
7.6-10%	13.1%	7.6
10.1-15%	15.6%	6.4
15.1-20%	24%	4.2
>20%	30%	3.3

Interplay of CAC and Traditional Risk Factors for Prediction of All-Cause Mortality in Asymptomatic Individuals

CAC>400

Total

44, 052 asymptomatic pts

5.6 2.6y f/u

RF: current cigarette smoking dyslipidemia diabetes mellitus

hypertension

1.148

4.234

44,052

Nasir. Circ Cardiovasc Imaging. 2012; 5:467-473

Interplay of CAC and Traditional Risk Factors for Prediction of All-Cause Mortality in Asymptomatic Individuals

Figure 2. Kaplan-Meier survival curves by coronary artery calcium (CAC) scores across increasing risk factor (RF) burden.

Coronary Calcium in Patients with First MI or UA

114 pts: MI (97) or UA (17) 57±11 yrs

102 pts < 60 with MI 41<u>+</u>7 yrs

% of ASHD pts

Calcium Present

Pohle et al. Heart 2003;89:625-8

Schmermund, et al. Circulation 1997;96:1461-9

The 1st S.H.A.P.E. Guideline

Towards the National Screening for Heart Attack Prevention and Education (SHAPE) Program

Naghavi, Falk, Hecht., et al. AJC 2006

The Asymptomatic Low Risk Patient

2010 ACCF/AHA Guideline for Assessment of Cardiovascular Risk in Asymptomatic Adults

CLASS IIb

 Measurement of CAC may be reasonable for cardiovascular risk assessment in persons at low to intermediate risk (6% to 10% 10-year risk) (348–350). (Level of Evidence: B)

ACCF/SCCT/ACR/AHA/ASE/ASNC/SCAI/SCMR 2010 Appropriate Use Criteria for Cardiac Computed Tomography

Detection of CAD/Risk Assessment in Asymptomatic Patients Without Known CAD

	Appropriate Use Score (1-9)				
Noncontrast CT for CCS					
Global CHD Risk Estimate	Low	Intermediate	High		
Family history of premature CHD	A (7)				
Asymptomatic	l (2)	A (7)	U (4)		
No known CAD	\				

The Asymptomatic Intermediate Risk Patient

2010 ACCF/AHA Guideline for Assessment of Cardiovascular Risk in Asymptomatic Adults

2.5.10. Computed Tomography for Coronary Calcium

Measurement of CAC is reasonable for cardiovascular risk assessment in asymptomatic adults at intermediate risk (10% to 20% 10-year risk) (18,348). (Level of Evidence: B)

ACCF/SCCT/ACR/AHA/ASE/ASNC/SCAI/SCMR 2010 Appropriate Use Criteria for Cardiac Computed Tomography

Noncontrast CT for CCS

Global CHD Risk Estimate

Family history of premature CHD

Asymptomatic
No known CAD

Appropriate Use Score (1–9)

Low Intermediate High

A (7)

I (2)

A (7)

U (4)

The Asymptomatic High Risk Patient

2010 ACCF/AHA Guideline for Assessment of Cardiovascular Risk in Asymptomatic Adults

ACCF/SCCT/ACR/AHA/ASE/ASNC/SCAI/SCMR 2010 Appropriate Use Criteria for Cardiac Computed Tomography

Detection of CAD/Risk Assessment in Asymptomatic Patients Without Known CAD

Appropriato Hea Score (1-0)

	Appropriate use score (1-3)		
Noncontrast CT for CCS			
Global CHD Risk Estimate	Low	Intermediate	High
Family history of premature CHD	A (7)		
Asymptomatic	I (2)	A (7)	U (4)
No known CAD			

Diabetes

2010 ACCF/AHA Guideline for Assessment of Cardiovascular Risk in Asymptomatic Adults

2.6.1.1. RECOMMENDATIONS FOR PATIENTS WITH DIABETES

CLASS IIa

 In asymptomatic adults with diabetes, 40 years of age and older, measurement of CAC is reasonable for cardiovascular risk assessment (344,397–399). (Level of Evidence: B)

2. Risk Factors Revisited

"The most important role of risk factors is to identify the modifiable targets of risk reduction in patients with risk already established by CAC."

Hecht. AJC 2008;101: 1085-7

Figure 1. Factors Shown to Be Associated With the Incidence and/or Progression of CAC From MESA

3. Redefinition of Normal Lipids

There are no "normal cholesterol" values that apply to the individual patients in the population based studies from which they were derived

"normal": cholesterol values at which level there is no subclinical atherosclerosis

"abnormal": cholesterol values at which level there *is* subclinical atherosclerosis, with the severity of "abnormal" depending on the degree of subclinical atherosclerosis.

4. Redefinition of Residual Risk

Old Definitions: The gap between attained and ideal "normal"

cholesterol levels dictated by guidelines,

i.e., the difference between 2 blood tests

or

Occurrence of events despite treatment

New Definition: Disease progression measured by serial CAC evaluation of subclinical atherosclerosis

The "ideal" lipid level at which disease stabilization occurs will vary from patient to patient, and cannot possibly be accurately assessed by lipid values provided in guidelines

Measures of subclinical atherosclerosis rather than lipids define residual risk just as they define pre-treatment risk

4. CAC Progression

CAC Progression Trials in Asymptomatic Patients

Trial/ Duration	N	Δ CAC	ΔLDL	Final LDL	
Belles 2005 / 1 year	615				
atorvastatin 80 mg		+15.1%	-46.6%	92.2	
pravastatin 40 mg		+14.3%	-24.5%	129.0	
St. Francis 2005 / 4.3 yrs	1000				
atorvastatin 20 mg		+18.8%	-43.4%	NA	
placebo		+17.0%	-39.1%	NA	
Schmermund 2006 / 1 yr	366				
atorvastatin 80 mg		+27%	-19%	87.3	
atorvastatin 10 mg		+25%	+2%	109.3	

Progression of CAC and Risk of First MI in Patients Receiving Cholesterol-Lowering Therapy

Progression of CAC and Risk of First MI in Patients Receiving Cholesterol-Lowering Therapy

3.2 + 0.7 years of follow-up

p<0.0001

Raggi, Callister, Shaw, ATVB 2004

Progression of CAC Predicts All-Cause Mortality

4609 consecutive asymptomatic pts Interscan time 3.1 yrs; 288 deaths

After adjusting for baseline score, age, sex, and time between scans:

SQRT method HR: 3.34 >15% yearly increase HR: 2.98

CONCLUSION: Serial assessment may have clinical value in assessing plaque progression and future cardiovascular risk.

Budoff. JACC Img 2010;3:1229-36

Metabolic Syndrome, DM and Incidence and Progression of CAC: MESA

Metabolic Syndrome, DM and Incidence and Progression of CAC: MESA

Figure 3. CHD Event Rates (per 1,000 Person Years) According to Tertile of CAC Progression by Presence of MetS and DM

Impact of CAC Progression and Statin Therapy on Outcome in Subjects with and without Diabetes

296 asymptomatic DM 300 controls 59+/-6years, 29%women Scan interval 1-2 yrs f/u 5 6+/-11 mos

	Event-Free Survival				
ΔCAC	DM	No DM			
<10%	97.9%	100%			
10-20%	95.9%	97.2%			
21-30%	92.7%	94%			
>30%	79.6%	90.6%			

Death HR: DM vs Controls (N=596)						
ΔCAC	Matched Control Group	DM	p			
10-20% vs. <10%		1.88	0.0001			
21-30% vs. <10%	6 1.0	2.29	0.0001			
>30% vs. <10%	1.0	6.95	0.0001			
*Adjusted for age, gender, HTN, HLP, Family History of CHD, Baseline CAC and Smoking.						

Kiramijyan. AJC: In Press

CAC Progression and Incident CHD Events in MESA

6,778 (52.8% female) 45-84 y 5,682 baseline and f/u 2.5y apart Baseline f/u 7.6y; 343 total, 206 hard events CAC increased 24.9+65.3/y

Adjusted HR (RF + baseline CAC)					
0 CAC	3,396 Total	3,382 Hard			
Per 5AU/y	1.4	1.5			
>0 CAC Per 100AU/y >300/y	1.2 3.8	1.3 6.3			
<5%/y 5-14%/y 15-29%/y >30%/y	1.1 1.6 1.5	1.0 1.4 1.4			

Progression (AU)

No statins 46.2/y Statins 60.0/y P < 0.001

Events
No statins 55.7/y
Statins 119.3/y

Kaplan-Meler Plot of Cumulative Incidence of

Total CHD Among Persons with CAC > 0 at Baseline

Figure 2

ssues

Decrease radiation without increasing noise:

Lower mAs

100 kV: redefine Ca

Convert 0 CAC into >0 CAC

Improve reproducibilty:

Definition of significant change in individuals

Effects of iterative reconstruction algorithms: Too much smoothing?

Adjusted HR (RF + baseline CAC)				
0 CAC	3,396 Total	3,382 Hard		
Per 5AU/y		1.5		
>0 CAC Per 100AU/y >300/y	1.2 3.8	1.3 6.3		
<5%/y 5-14%/y 15-29%/y >30%/y	1.1 1.6 1.5	1.0 1.4 1.4		

Coordinate with cardiology community

Parachute use to prevent death and major trauma related to gravitational challenge: systematic review of randomised controlled trials

Parachutes reduce the risk of injury after gravitational challenge, but their effectiveness has not been proved with randomised controlled trials

What is already known about this topic

Parachutes are widely used to prevent death and major injury after gravitational challenge

Parachute use is associated with adverse effects due to failure of the intervention and iatrogenic injury

Studies of free fall do not show 100% mortality

What this study adds

No randomised controlled trials of parachute use have been undertaken

The basis for parachute use is purely observational, and its apparent efficacy could potentially be explained by a "healthy cohort" effect

Individuals who insist that all interventions need to be validated by a randomised controlled trial need to come down to earth with a bump

Conclusions: As with many interventions intended to prevent ill health, the effectiveness of parachutes has not been subjected to rigorous evaluation by using randomised controlled trials. Advocates of evidence based medicine have criticised the adoption of interventions evaluated by using only observational data. We think that everyone might benefit if the most radical protagonists of evidence based medicine organised and participated in a double blind, randomised, placebo controlled, crossover trial of the

parachute.

"The prospective convert came before Shammai and requested, 'Convert me on condition that you teach me the Torah of Preventive Cardiology while I stand on one foot.' He [Shammai] pushed him out with the ruler in his hand. He then came before Hillel, who converted him. Hillel addressed to him the immortal words, "Coronary artery calcium scanning. That is the entire Torah; the rest is commentary. Go and learn.'"