UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE INFORMÁTICA

Disciplina: Análise e Projeto de Algoritmos

Entrega da atividade: 26/04/2018

Problema da Árvore de Espalhamento Mínimo

Seja G = (V, E) um grafo de entrada, onde V é o conjunto de vértices e E um conjunto de arestas, seja ainda a função peso $w: E \to \mathbb{R}$ associada para cada aresta (ij). O problema da Árvore de Espalhamento Mínimo consiste em encontrar um subconjunto $T \subset E$, onde T é acíclico, toque em todos os vértices e a soma de suas arestas seja minimizada (min $\sum_{ij \in T} w_{ij}$).

Árvore T de Espalhamento

Atividade 1

Implemente a solução gulosa dos algoritmos de Kruskal e PRIM para o problema da Árvore de Espalhamento Mínimo.

Arquivo de entrada:

n

 w_{ij} (triangulo superior)

onde:

n: |*V*|

 w_{ij} : função de pesos das arestas (triangulo supeior da Matriz de Adjacência)

Arquivo exemplo

4

Problema do Caminho Mínimo

Seja G=(V,E) um grafo de entrada, onde V é o conjunto de vértices e E um conjunto de arestas, seja ainda a função distância $d:E\to\mathbb{R}$ associada para cada aresta (ij). Seja ainda a distância do caminho $p=\langle v_0,v_1,\ldots,v_k\rangle$ o somatório das distâncias de suas arestas constituintes $(w(p)=\sum_{i=1}^k d_{i-1,i})$. O problema do Caminho Mínimo entre dois vértices u e v \in V, com origem em u pode ser dado como

$$\delta(u,v) = \begin{cases} \min\{w(p) : u \sim v\} \text{ se existe um caminho de } u \text{ até } v \\ \infty & caso \ contrário \end{cases}$$

Atividade 2

Implemente a solução gulosa de Dijkstra para o problema do Caminho Mínimo. Considere para todas as instâncias o vértice origem u=0 e v=n-1

Arquivo de entrada:

n d_{ii} (triangulo superior)

onde:

n: |V|

 d_{ij} : função de distâncias das arestas (triangulo superior da Matriz de Adjacência)

Arquivo exemplo

4

23 17 19

22 20

25