

Popularity

Popularization

Iron.io IronWorker

Google Cloud Functions Microsoft Azure Functions IBM OpenWhisk Auth0 Webtask

2014

2013

2016

Amazon AWS Lambda "re:Invent" Galactic Fog Gestalt Laser

Distinction

SERVERLESS Architecture

SERVERLESS COMPUTING

SERVERLESS NETWORK FILE SYSTEM

Definition

- 1. Cloud computing execution model
- 2. Cloud provider runs the server and
- 3. Dynamically manages machine resources
- 4. Deployment of stateless functions

Developer Control

Full stack services (SaaS)

- Shared infrastructure
- Shared application code

Hardware/VM Deployment

- Custom infrastructure
- Custom application code

Serverless

Less Control More Control

Architecture

General unspecific platform architecture

Internal Architecture

Characteristics

Benefits

NO LONGER MANAGE SERVER OR INFRASTRUCTURE

STATELESS FUNCTIONS ENABLE PROVIDER (TO PATCH SERVER OR MOVE TENANT, NO NEED TO WAIT)

Maybe too constraining for some applications (language, stateless, hardware, ...)

Risk of vendor lock-in (if additional features like reporting, ... are used in conjunction)

Drawbacks

Use Cases

Bursty, compute intensive workload

Avoid IO operations

Event processing

Hello World of AWS Lambda: Event driven image processing

API composition

Offloading API calls

and glue logic from mobile app to backend

Image from Baldini et al., Serverless Computing: Open Trends and Current Problems https://arxiv.org/pdf/1706.03178.pdf

API aggregation

Reducing the number of API calls required for a mobile client

Flow control

Batched invocation for issue tracking

Different Eco Systems

	AWS Lambda	Microsoft Azure	Google Cloud Functions
Memory (MB)	64 * k in (2,,47)	1536	128 * k in (1,,32)
CPU	Proportional to Memory	Unknown	Proportional to Memory
Language	Node, Python, Ruby, Java, Go, .Net Others via custom runtime	C#, Java, JavaScript, TypeScript, Python, Powershell	Nodejs, Python, Go, Java
Runtime OS	Amazon Linux	Windows 10, Linux	Debian 8
Local disk (MB)	512	500	> 512
Timeout (sec)	900 (configurable from default: 3)	600	540 (configurable from default: 60)
Billing factor	Execution time Allocated memory	Execution time Consumed memory	Execution time Allocated memory Allocated CPU

Comparison

As of 2020-11-06:

AWS: https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html

Azure: https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/azure-subscription-service-limits

Google: https://cloud.google.com/functions/quotas

Many other:

- ♦ IBM OpenWhisk
- ♦ Iron.io Ironworker
- Auth0 Webtask
- ♦ Galactic Fog Gestal Laser

\$...

according to:

Lynn et al.: A Preliminary Review of Enterprise Serverless Cloud Computing Fucntion as a Service Platforms

Performance and Price Comparison

4 short examples

Function Throughput on Concurrent Invocations

CPU Performance

Provider	GFLOPS per function	TFLOPS in total of 3000
AWS	19.63	66.30
Azure	2.15	7.94
Google	4.35	13.04
IBM	3.19	12.30
	•	•

Lee et al: Evaluation of Production Serverless Computing Environments https://ieeexplore.ieee.org/abstract/document/8457830

Median Write/Read Speed (MB/s)

Provider	100 Concurrent		1 Concurrent	
	Write	Read	Write	Read
AWS	39.49	92.95	82.98	152.98
Azure	-	-	44.14	423.92
Google	3.57	54.14	9.44	55.88
IBM	0.50	33.89	7.86	68.23
'	•	'		•

Building Binary Tree with Cost-Awareness

Platform	RAM	Cost/Sec	Elapsed Second	Total Cost (Rank)
AWS Lambda	3008MB	\$4.897e-5	20.3	\$9.9409e-4 (6)
AWS EC2 (t2.micro)	1GiB	\$3.2e-6	29.5	\$9.439e-05 (3)
Azure Functions	192MB	\$3e-6	71.5	\$2.145e-4 (4)
Azure VM	1GiB	\$3.05e-6	88.9	\$2.71145e-4 (5)
Google Functions	2GB	\$2.9e-5	34.5	\$0.001 (7)
Google Compute (f1-micro)	600MB	\$2.1e-6	19.2	\$4.0319e-05 (1)
IBM OpenWhisk	128MB	\$2.2125e-6	34.2	\$7.5667e-05 (2)
-		,	'	

(only AWS Lambda)

Getting started on AWS Lambda

That's it!

AWS LAMBDA CONSOLE

AWS LAMBDA DESIGNER

CREATING HELLOWORLD

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-awscli.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html

(here: IntelliJ)

Kotlin: Kotless

PHP: BREF

Further Read

- . AWS Whitepaper:
 - https://d1.awsstatic.com/whitepapers/serverless-architectures-with-aws-lambda.pdf
- 2. Any of the mentioned resources
- 3. Google scholar: `Serverless Computing`
- 4. Resources and examples of this Github repo:
 - 1. https://github.com/HartmannS/serverless_presentation