WHAT IS CLAIMED:

1. A method for the prophylactic or therapeutic treatment of a disease or disorder associated with vascular health, said method comprising administering to a subject in need of such treatment an amount effective to treat a disease or disorder associated with vascular health, of a compound of Formula (I):

$$R_4$$
 R_5
 R_6
 R_9
 R_7
 R_2
 R_7
 R_7
 R_7
 R_7
 R_7

wherein:

5

10

15

20

25

 X_1 and X_2 are independently selected from the group consisting of oxy and a dialkyl substituted silyl;

R₁ is C₁-C₄ alkyl;

 R_2 and R_3 are independently selected from the group consisting of H and a C_1 - C_4 alkyl;

R₄, R₅, R₆, and R₇ are independently selected from the group consisting of H, methoxy, and a branched or straight chain C₁-C₆ alkyl; and

R₈ and R₉ are independently selected from the group consisting of hydrogen, hydroxy, trifluoromethyl, halide, amine, alkyl, alkenyl, aryl, heteroaryl, alkanoyl, aryloyl, heteroaryloyl, -O(C₁-C₆ alkyl), -OCO-(H or C₁-C₇ alkyl), -OCO-(C₃-C₇ alkenyl), -OCO-(aryl), -OCO-(heteroaryl), -(C₀-C₈ alkyl)-COOH, -(C₂-C₈ alkenyl)-COOH, -OCO-(C₀-C₆ alkyl)-COOH, -OCO-(C₂-C₆ alkenyl)-COOH, and -CO-(C₂-C₆ alkenyl)-COOH;

wherein when the R₈ or R₉ substituents are alkyl, alkenyl, aryl, heteroaryl, alkanoyl, aryloyl, heteroaryloyl, -O(C₁-C₆ alkyl), -OCO-(H or C₁-C₇ alkyl), -OCO-(C₃-C₇ alkenyl), -OCO-(aryl), -OCO-(heteroaryl), -(C₀-C₈ alkyl)-COOH, -(C₂-C₈ alkenyl)-COOH, -OCO-(C₀-C₆ alkyl)-COOH, -OCO-(C₂-C₆ alkenyl)-COOH, -CO-

(C₀-C₆ alkyl)-COOH, or -CO-(C₂-C₆ alkenyl)-COOH, they may be independently substituted with one or more functionalities independently selected from the group consisting of C₁-C₆ alkyl, halogen, -OH, -OCH₃, -OCH₂CH₃, halomethyl, dihalomethyl, trihalomethyl, -NH₂, -NO₂, -CN, -NC, -C(=NH)(-NH₂), -SH, -COOH, -COOCH₃, and -COOCH₂CH₃;

with the proviso that said compound of Formula (I) is not a compound of Formula (IV)

$$R_{13}$$
 R_{14}
 R_{15}
 R_{16}
 R_{12}
 R_{15}
 R_{16}
 R_{17}
 R_{18}
 R_{19}
 R

wherein:

5

10

15

20

25

 R_{10} and R_{15} are each independently $C_1 - C_6$ alkyl;

 R_{11} , R_{12} and R_{13} are each independently hydrogen or $C_1 - C_6$ alkyl;

R is hydrogen or $-C(O) - (CH_2)_m - Q$, wherein Q is hydrogen or -COOH and m is an integer 1, 2, 3 or 4;

Z is a thio, oxy or methylene group;

A is a $C_1 - C_4$ alkylene group;

 R_{14} and R_{16} are each independently a $C_1 - C_6$ alkyl or $-(CH_2)_n$ -(Ar), wherein n is an integer 0, 1, 2 or 3; and Ar is phenyl or naphthyl unsubstituted or substituted with one to three substituents selected from the group consisting of hydroxy, methoxy, ethoxy, halogen, trifluoromethyl, $C_1 - C_6$ alkyl, or $-NR_{17}$ R_{18} , wherein R_{17} and R_{18} are each independently hydrogen or $C_1 - C_6$ alkyl; with the proviso that when R_{11} and at least one of R_{14} or R_{16} is $C_1 - C_6$ alkyl, and Ar is not substituted with trifluoromethyl or $-NR_{17}$ R_{18} , then R is $-C(O) - (CH_2)_m - Q$; or a pharmaceutically acceptable salt thereof.

2. The method of claim 1, wherein X_1 and X_2 are independently selected from the group consisting of oxy and dimethyl-silyl; R_1 is methylene; R_2 and R_3 are hydrogen, R_4 , R_5 , R_6 , and R_7 are independently selected from the group consisting of

hydrogen and tert-butyl; and R₈ and R₉ are independently selected from the group consisting of hydroxy and methoxy.

- 3. The method of claim 1, wherein R_4 and R_5 are tert-butyl, and R_8 is hydroxy.
- 4. A method for the prophylactic or therapeutic treatment of a disease or disorder associated with vascular health, said method comprising administering to a subject in need of such treatment an amount effective to treat a disease or disorder associated with vascular health, of a compound of Formula (II):

$$R_{4}$$
 R_{5}
 R_{6}
 R_{9}
 R_{7}
 R_{2}
 R_{1}
 R_{3}
 R_{1}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{6}
 R_{9}
 R_{7}

10 wherein

15

20

25

5

 X_1 and X_2 are independently selected from the group consisting of thio, oxy, and a dialkyl substituted silyl;

 R_1 is C_1 - C_4 alkyl;

 R_2 and R_3 are independently selected from the group consisting of H and a C_1 - C_4 alkyl;

R₄, R₅, R₆, and R₇ are independently selected from the group consisting of H, methoxy, and a branched or straight chain C₁-C₆ alkyl; and

 R_8 and R_9 are independently selected from the group consisting of hydrogen, hydroxy, trifluoromethyl, halide, amine, alkyl, alkenyl, aryl, heteroaryl, alkanoyl, aryloyl, heteroaryloyl, $-O(C_1-C_6 \text{ alkyl})$, $-OCO-(H \text{ or } C_1-C_7 \text{ alkyl})$, $-OCO-(C_3-C_7 \text{ alkenyl})$, -OCO-(aryl), -OCO-(heteroaryl), $-(C_0-C_8 \text{ alkyl})-COOH$, $-(C_2-C_8 \text{ alkenyl})-COOH$, $-OCO-(C_0-C_6 \text{ alkyl})-COOH$, $-OCO-(C_2-C_6 \text{ alkenyl})-COOH$, and $-CO-(C_2-C_6 \text{ alkenyl})-COOH$;

wherein when the R₈ or R₉ substituents are alkyl, alkenyl, aryl, heteroaryl, alkanoyl, aryloyl, heteroaryloyl, -O(C₁-C₆ alkyl), -OCO-(H or C₁-C₇ alkyl), -OCO-

(C₃-C₇ alkenyl), -OCO-(aryl), -OCO-(heteroaryl), -(C₀-C₈ alkyl)-COOH, -(C₂-C₈ alkenyl)-COOH, -OCO-(C₀-C₆ alkyl)-COOH, -OCO-(C₂-C₆ alkenyl)-COOH, -CO-(C₀-C₆ alkyl)-COOH, or -CO-(C₂-C₆ alkenyl)-COOH, they may be independently substituted with one or more functionalities independently selected from the group consisting of C₁-C₆ alkyl, halogen, -OH, -OCH₃, -OCH₂CH₃, halomethyl, dihalomethyl, trihalomethyl, -NH₂, -NO₂, -CN, -NC, -C(=NH)(-NH₂), -SH, -COOH, -COOCH₃, and -COOCH₂CH₃;

with the proviso that when said compound of Formula (II) is not a compound of Formula (IV)

$$R_{10}$$
 R_{13}
 R_{14}
 R_{16}
 R_{11}
 R_{12}
 R_{15}
 R_{16}
 R_{10}
 R_{10}
 R_{10}
 R_{11}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{16}
 R_{17}

10

15

20

25

5

wherein:

 R_{10} and R_{15} are each independently $C_1 - C_6$ alkyl;

 R_{11} , R_{12} and R_{13} are each independently hydrogen or C_1-C_6 alkyl;

R is hydrogen or $-C(O) - (CH_2)_m - Q$, wherein Q is hydrogen or -COOH and m is an integer 1, 2, 3 or 4;

Z is a thio, oxy or methylene group;

A is a $C_1 - C_4$ alkylene group;

 R_{14} and R_{16} are each independently a $C_1 - C_6$ alkyl or $-(CH_2)_n$ —(Ar), wherein n is an integer 0, 1, 2 or 3; and Ar is phenyl or naphthyl unsubstituted or substituted with one to three substituents selected from the group consisting of hydroxy, methoxy, ethoxy, halogen, trifluoromethyl, $C_1 - C_6$ alkyl, or $-NR_{17}R_{18}$, wherein R_{17} and R_{18} are each independently hydrogen or $C_1 - C_6$ alkyl; with the proviso that when R_{11} and at least one of R_{14} or R_{16} is $C_1 - C_6$ alkyl, and Ar is not substituted with trifluoromethyl or $-NR_{17}R_{18}$, then R is $-C(O) - (CH_2)_m - Q$; or a pharmaceutically acceptable salt thereof.

5. The method of claim 4, wherein X_1 and X_2 are independently selected from the group consisting of thio and dimethyl-silyl; R_1 is methylene; R_2 and R_3 are independently selected from the group consisting of hydrogen and methyl; R_4 , R_5 , R_6 , and R_7 are independently selected from the group consisting of hydrogen and tertbutyl; and R_8 and R_9 are independently selected from the group consisting of hydrogen, hydroxy, methoxy, and butandioate; with the proviso that when X_1 and X_2 are both thio, R_8 and R_9 are not both hydroxy.

- 6. The method of claim 4, wherein R_4 and R_5 are tert-butyl, and R_8 is hydroxy.
- 7. The method of claim 4, wherein X_1 and X_2 are thio; R_1 is methylene; R_2 and R_3 are methyl; R_4 , R_5 , R_6 , and R_7 are tert-butyl; R_8 is hydroxy; and R_9 is butandioate.
 - 8. A method for the prophylactic or therapeutic treatment of a disease or disorder associated with vascular health, said method comprising administering to a subject in need of such treatment an amount effective to treat a disease or disorder associated with vascular health, of a compound of Formula (V):

wherein G is selected from the group consisting of:

5

15

$$- \bigvee_{N-N}^{Y_{1}} \bigvee_{N+N}^{N-N} - \bigvee_{N+N}^{N+N} \bigvee_{N+N}^{N-N} \bigvee_{N+N}^{N} \bigvee_{N+N}^{N-N} \bigvee_{N+N}^{N} \bigvee_{N}^{N} \bigvee_{N+N}^{N} \bigvee_{N+N}^{N} \bigvee_{N+N}^{N} \bigvee_{N+N}^{N} \bigvee_{N+N}^{N$$

$$- \bigvee_{\mathsf{NH}_2}^{\mathsf{NY}_3} - \bigvee_{\mathsf{NH}_2}^{\mathsf{NY}_3} - \bigvee_{\mathsf{NH}_2}^{\mathsf{NY}_3} - \bigvee_{\mathsf{NH}_2}^{\mathsf{NH}_2} - \bigvee_$$

5

10

15

25

wherein:

Y₁ is -H, C₁-C₄ alkyl, or C₃-C₆ alkenyl;

Y₂ is -H, C₁-C₄ alkyl, or C₃-C₆ alkenyl, aryl, heteroaryl, aryloyl, alkanoyl, or heteroaryloyl;

Y₃ is -H, -CN, C₁-C₄ alkyl, C₃-C₆ alkenyl, aryl or heteroaryl;

 Y_4 is $(CH_2)_n$, where n is 0-4, or C_2 - C_6 alkenyl;

 Y_5 is NH, $(CH_2)_n$, where n is 0-4, or C_2 - C_6 alkenyl;

Y₆ is C₁-C₄ alkyl, C₃-C₆ alkenyl, aryl, heteroaryl, alkylaryl, or alkylheteroaryl;

 Y_7 is H, C_1 - C_4 alkyl, C_3 - C_6 alkenyl, aryl, heteroaryl, alkylaryl, or alkylheteroaryl, or NH Y_8 ;

 Y_8 is C_1 - C_4 alkyl, C_3 - C_6 alkenyl, aryl, heteroaryl, alkylaryl, or alkylheteroaryl;

 Y_9 is C_1 - C_4 alkyl, C_3 - C_6 alkenyl, aryl, or heteroaryl;

Y₁₀ is alkyl, aryl, heteroaryl, alkylaryl, or alkylheteroaryl;

L is C₁-C₆ alkyl or C₂-C₆ alkenyl; and

5

15

wherein G may be additionally substituted with one or more substituents independently selected from the group consisting of -F, -Cl, -Br, -I, -NH₂, -OH, -CN, -SH, -CH₃, -CH₂CH₃, -CCH₃, -OCH₃, -OCH₂CH₃, -COOH, -COOCH₃, and -COOCH₂CH₃.

- 9. A method according to any of claims 1 to 8, wherein said disease or 10 disorder associated with vascular health is selected from the group consisting of: major adverse cardiac events, vascular access dysfunction, and male erectile dysfunction.
 - 10. A method according to any of claims 1 to 9, wherein said subject is selected from the group consisting of a hemodialysis patient, an end stage renal disease patient, or a diabetic patient.
 - 11. A method according to any of claims 1 to 10, wherein said subject is a subject having an increased oxidative burden or elevated oxidative stress, a subject having a vascular access shunt or graft, or a subject suffering from diabetes and experiencing erectile dysfunction or seeking prophylactic therapy.
- 20 12. A method according to any of claims 1 to 11, wherein said subject is a human.
 - 13. A method according to any of claims 1 to 12, wherein said compound is administered to the subject orally.
- 14. A method according to any of claims 1 to 13, wherein about 1mg to about 10g of said compound is administered per day to said subject in single, divided, or continuous doses to achieve a blood plasma concentration of said compound which is therapeutically effective in said treatment.

15. A method according to any of claims 1 to 13, wherein about 0.1g to about 3g of said compound is administered per day to said subject in single, divided, or continuous doses to achieve a blood plasma concentration of said compound which is prophylactically effective in said treatment.

- 5 16. A method according to any of claims 1 to 8, wherein said disease or disorder associated with vascular health is a major adverse cardiac event.
 - 17. The method of claim 16, wherein said subject is a subject having an increased oxidative burden or elevated oxidative stress.
- 18. The method of claim 16, wherein treatment includes a reduction in the risk of occurrence of said major adverse cardiac event.
 - 19. The method of claim 16, wherein said method comprises identifying a subject as having an increased oxidative burden or elevated oxidative stress.
 - 20. The method of claim 16, wherein said subject has normal or normalized lipid levels.
- 15 21. A method according to any of claims 1 to 8, wherein said disease or disorder associated with vascular health is vascular access dysfunction.
 - 22. The method of claim 21, wherein said subject is a hemodialysis patient and said compound is administered directly following hemodialysis.
- 23. The method of claim 21, wherein said subject suffers from end stage 20 renal disease.
 - 24. The method of claim 21, wherein said vascular access dysfunction is associated with arteriovenous shunt stenosis.
 - 25. A method according to any of claims 1 to 8, wherein said disease or disorder associated with vascular health is erectile dysfunction.
- 25 26. The method of claim 25, wherein said subject is a diabetic suffering from erectile dysfunction.

- 27. The method of claim 25, wherein said treatment is given prophylactically.
- 28. The method of claim 25, wherein said treatment is a combination treatment comprising a phosphodiesterase inhibitor as a second active ingredient.
- 5 29. A pharmaceutical composition comprising a compound of Formula (V), or a salt or hydrochloride thereof,

wherein G is selected from the group consisting of:

10

$$- \bigvee_{N-N}^{Y_1} \bigvee_{N+N}^{N-N} - \bigvee_{N+N}^{N+N} \bigvee_{N+N}^{N-N} \bigvee_{N+N}^{N} \bigvee_{N+N}^{N$$

$$- \bigcirc \qquad \qquad \bigvee_{\mathsf{NH}_2} \qquad - \bigcirc \qquad \bigvee_{\mathsf{NH}_2} \qquad$$

15

$$NHY_2$$
 NHY_2
 NHY_2
 NHY_2

20

wherein:

5

15

20

10 Y_1 is -H, C_1 - C_4 alkyl, or C_3 - C_6 alkenyl;

 Y_2 is -H, C_1 - C_4 alkyl, or C_3 - C_6 alkenyl, aryl, heteroaryl, aryloyl, alkanoyl, or heteroaryloyl;

Y₃ is -H, -CN, C₁-C₄ alkyl, C₃-C₆ alkenyl, aryl or heteroaryl;

 Y_4 is $(CH_2)_n$, where n is 0-4, or C_2 - C_6 alkenyl;

 Y_5 is NH, $(CH_2)_n$, where n is 0-4, or C_2 - C_6 alkenyl;

Y₆ is C₁-C₄ alkyl, C₃-C₆ alkenyl, aryl, heteroaryl, alkylaryl, or alkylheteroaryl;

 Y_7 is H, C_1 - C_4 alkyl, C_3 - C_6 alkenyl, aryl, heteroaryl, alkylaryl, or alkylheteroaryl, or NH Y_8 ;

Y₈ is C₁-C₄ alkyl, C₃-C₆ alkenyl, aryl, heteroaryl, alkylaryl, or alkylheteroaryl;

Y₉ is C₁-C₄ alkyl, C₃-C₆ alkenyl, aryl, or heteroaryl;

Y₁₀ is alkyl, aryl, heteroaryl, alkylaryl, or alkylheteroaryl;

L is C₁-C₆ alkyl or C₂-C₆ alkenyl; and

wherein G may be additionally substituted with one or more substituents independently selected from the group consisting of -F, -Cl, -Br, -I, -NH₂, -OH, -

25 CN, -SH, -CH₃, -CH₂CH₃, -CF₃, -OCH₃, -OCH₂CH₃, -COOH, -COOCH₃, and -COOCH₂CH₃;

and a pharmaceutically acceptable excipient.

30. The pharmaceutical composition of claim 29, wherein said compounds of Formula (V) are formulated for oral administration in a self-emulsifying drug delivery system.

31. The pharmaceutical composition of claim 29, further comprising one or members of the group consisting of lactose, calcium phosphate, kaolin, glycerin, propylene glycol, polyethylene glycol, peanut oil, liquid paraffin, olive oil, sodium carboxymethylcellulose, methylcellulose, hydroxypropyl methylcelluose, sodium alginate, polyvinylpyrrolidone, gum tragacanth, gum acacia; dispersing agents, wetting agents, and thickening agents.

5

15

- 32. The pharmaceutical composition of any one of claims 29 to 31, further comprising one or more other active ingredients useful in the prophylactic or therapeutic treatment of major adverse cardiac events.
 - 33. The pharmaceutical composition of any one of claims 29 to 31, further comprising one or more other active ingredients useful in the prophylactic or therapeutic treatment of vascular access dysfunction.
 - 34. The pharmaceutical composition of any one of claims 29 to 31, further comprising one or more other active ingredients useful in the prophylactic or therapeutic treatment of erectile dysfunction.