Propositional Logic

CS161

Prof. Guy Van den Broeck

What are Logic-Based Systems?

Structure: Reasoning 'engine'

- Knowledge base: declarative sentences
- Dominant paradigm 1958-1988
 Al proved a new theorem in lattice theory!
- Current research on unifying logic, prob., neural

Wumpus World

- Grid world
- Pit causes breeze in adjacent cells
- Wumpus causes stench in adjacent cells
- Find the gold

Wumpus World

SSSSS Stench		Breeze	PIT
700	SSSSS Stench S	PIT	Breeze
SSSSS Stench		Breeze	
START	Breeze	PIT	Breeze

Wumpus World: Discussion

- Overcome ignorance about the world by reasoning
- Conclusions guaranteed to be correct
- Inferred new knowledge
 - from observations
 - from lack of observations
 - at different point in time

Syntax: What am I allowed to write?

- x+5=y or x5y+=?
- Variables/propositions: X, Y, Z, Rain, Sun
- Grammar of sentences:
 - Variables are sentences (called atoms)
 - If α is a sentence, so is $\neg \alpha$
 - If α and β are sentences, so are $(\alpha \lor \beta)$, $\alpha \land \beta$, $\alpha \Rightarrow \beta$, $\alpha \Leftrightarrow \beta$, ... (not all required)
- Negated atoms are literals

Semantics

Worlds or Truth Assignments

Sentences and Worlds

- Syntax:LR, RR, LD, RD
- Exactly one robot: sentences α

- Relationship between sentence lpha and world ω
 - $-\alpha$ is true at ω

$$\omega \models \alpha$$

 α holds in ω

 ω satisfies α

 $-\alpha$ is false at ω

$$\omega \not\models \alpha$$

Semantics

- Knowledge/meaning is a set of worlds ω
- Meaning of α is that the "set of worlds ω where α is true" are the only ones possible:

$$M(\alpha) = \{\omega : \omega \models \alpha\}$$

- Example:
 - Initially all 16 worlds

Meaning/Semantics

Semantics

- Knowledge/meaning is a set of worlds ω
- Meaning of α is that the "set of worlds ω where α is true" are the only ones possible:

$$M(\alpha) = \{\omega : \omega \models \alpha\}$$

- Example:
 - Initially all 16 worlds
 - Sentence α removes 10,12,14,16 and 9,11,13,15
 - Sentence: Dirt and robot cannot co-exist

Meaning/Semantics

Semantics

- Knowledge/meaning is a set of worlds ω
- Meaning of α is that the "set of worlds ω where α is true" are the only ones possible:

$$M(\alpha) = \{\omega : \omega \models \alpha\}$$

- Example:
 - Initially all 16 worlds
 - Sentence α removes 10,12,14,16 and 9,11,13,15
 - Sentence: Dirt and robot cannot co-exist
 - Sentence: Robot in left cell

Meaning/Semantics

Formal Semantics + Algorithm

$$\omega \models \alpha$$
?

Syntax Conversion Rules

Wumpus World Example

Relationships Between Sentences

Entailment

Propositional Reasoning

