SMASK RECESS TERM S.6 PURE MTC ASSIGNMENT

Show that, if $x^2 + x + b = 0$ and $x^2 + ax + b = 0$ have a common root then $(b-1)^2 = (a-1)(1-ab)$

(0-1) = (a-1)(1-aa).
2. If the equations
$$x^2 + ax + b = 0$$
 and $cx^2 + 2ax - 3b = 0$ have a common root, prove that
$$b = \frac{5a^2(c-2)}{(c+3)^2}.$$

4. Solve the equations:
(i)
$$2 - 5e^{-x} + 5e^{-2x} = 0$$
.

4. Solve the equations,
(i)
$$2 - 5e^{-x} + 5e^{-2x} = 0$$
.

$$(i) 2-5e^{-x}+5e^{-2x}=0.$$

(i)
$$z-3e-45e=0$$
.
(ii) $x^2+2x=34+\frac{35}{x^2+2x}$.

(ii)
$$x^{\frac{1}{3}} + 16x^{\frac{1}{3}} = 17$$
.
(iv) $2x^{4} - 9x^{3} + 14x^{2} - 9x + 2 = 0$.
(v) $4x^{2} + 25y^{2} = 100, xy = 4$.

(vi)
$$9x^{\frac{3}{4}} + 4x^{\frac{2}{3}} = 37$$
.
(vii) $\frac{1}{x} - \frac{1}{x+3} = \frac{1}{k} - \frac{1}{k+3}$.
(viii) $\sqrt{2-x} + \sqrt{3+x} = 3$.
Use row reduction to solve the simultaneous equations $2x + 3y + 4z = 8.3x - 2y - 3z = -2.5x + 4y + 2z = 3$.

$$2x+3y+4z=8,3x-2y-3z=-2,3x+4y+2z=3.$$
 Use row reduction to Achelon form to solve
$$2x+3y+4z=8,3x-2y-3z=-2,5x+4y+2z=3.$$
 Write down the sum, the sum of the product in pairs and the product of the roots of the equations

(i)
$$3x^3 - 4x^2 + 2x + 5 = 0$$
.
(ii) $x^3 - 5x^2 + 2 = 0$.
HINT: If the roots of the equation $ax^3 + bx^2 + cx + d = 0$ are a, β, γ then

to the sum of the other two.

The roots of the equation
$$x^3 - 5x^2 + x + 12 = 0$$
 are α, β, γ . Calculate the value of $(\alpha + 2)(\beta + 2)(\gamma + 2)$.

Find the relationship between a, b and c if one root of the equation $ax^3 + bx^2 + cx + d = 0$ is equal

 $\alpha + \beta + \gamma = -\frac{b}{a}; \alpha\beta + \alpha\gamma + \gamma\beta = \frac{c}{a}; \alpha\beta\gamma = \frac{a}{a}$

11. If
$$(x+1)^3$$
 is a factor of $2x^4 + 7x^3 + 6x^2 + Ax + B$, find the values of A and B.
12. Solve the equation $5x^3 - 111x^2 + 74x - 16 = 0$ given that the roots are in a G.P.

f'(x) = 0. Hence solve the equation $18x^3 + 3x^2 - 88x - 80 = 0$ given that it has a repeated root

13. Solve the equation $64x^3 - 240x^2 + 284x - 105 = 0$ given that the roots are in A.P.

15. Prove that the remainder when p(x) is divided by $(x-a)^2$ is $(x-a)p^2(a)+p(a)$. Hence given that $x^4 + bx + c$ is divisible $(x-2)^2$, find the value of b and c

14. Solve the equation $3x^3 + 14x^2 + 2x - 4 = 0$

16. If the roots of the equation $x^3 - 5x^2 + qx - 8 = 0$ are in G.P, show that q = 10

19. Given that $12x^3 - 20x^2 - 21x + 36 = 0$ has a repeated root, solve the equation where the tangent meets the curve again.

22. Prove that $\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$. Hence solve the equation $8x^3 - 6x + 1 = 0$ correct to 4 s.f.

23. Use the substitution
$$x = 2\sin\theta$$
, to solve $3x^3 - 9x + 2 = 0$ correct to 4s.f.

24. If $\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$, prove that for any non-zero numbers l , m , n $\frac{la + mc + ne}{lb + md + nf} = \frac{a}{b} = \frac{c}{d} = \frac{e}{f}$.

25. If $\frac{a}{b} = \frac{c}{d} = \frac{e}{b}$, prove that $\frac{a - c}{b} = \frac{b - d}{d}$.

25. If
$$\frac{a}{b} = \frac{c}{d}$$
, prove that $\frac{a-c}{a+c} = \frac{b-d}{b+d}$.

26. If $\frac{a}{b} = \frac{c}{d}$, prove that $\frac{la+mb}{la+\mu b} = \frac{lc+md}{lc+\mu d}$.

27. If $\frac{a}{b} = \frac{c}{d}$, prove that $\frac{a^2-b^2}{a^2+b^2} = \frac{c^2-d^2}{c^2+d^2}$.

28. Solve the simultaneous equations

(i)
$$\frac{x-y}{4} = \frac{z-y}{3} = \frac{2z-x}{1}, x+3y+2z=4.$$

29. Prove that if $x + \frac{1}{x} = y+1$, then $\frac{(x^2-x+1)^2}{x(x-1)^2} = \frac{y^2}{y-1}$. Hence solve the equation

 $\frac{x}{1} = \frac{x+y}{3} = \frac{x-y+z}{2}, x^2+y^2+z^2+x+2y+4z-6=0.$

 $(x^2 - x + 1)^2 - 4x(x - 1)^2 = 0.$

35. Show on an Argand diagram the locus of z when
(a) |z-1-i|=2

(a)
$$|z-1-i|=2$$

Ġ

(b) Re
$$z=1$$
 and $-\frac{\pi}{3} \le \arg z \le \frac{\pi}{4}$. In each case find the least value of $|z|$.

36. If
$$arg(z+3) = \frac{\pi}{3}$$
, find the least

36. If
$$\arg(z+3) = \frac{\pi}{3}$$
, find the least value of $|z|$.

37. If $|z-3+2i|=2$, find the greatest and least value of

(i) $|z|$

(ii) $|z+1|$.

38. Prove by induction that
$$\frac{1}{2} + \frac{1}{6} + \dots + \frac{1}{n(n-1)} = 1 - \frac{1}{n}$$
.

39. Find the sum of integers between 1 and 100 which are not divisible by 3.

$$x^4 - 10x^2 + 9 > 0$$

$$\frac{1}{x} > \frac{1}{3-x}$$

40. Solve the inequalities,
(i)
$$x^4 - 10x^2 + 9 > 0$$
.
(ii) $\frac{x-1}{x} > \frac{2}{3-x}$
(iii) $\frac{2x-4}{x+1} < 4$

41. Find the range(s) of values of k for which the roots of the equation
$$(k-2)x^2 - (8-2k)x - (8-3k) = 0.$$

1. Integrate the following functions with respect to
$$x$$
:

(a) $\left(x^2 - \frac{2}{x}\right)^2$ (b) $\sin 3x \cos 5x$ (c) $x(1+x^2)^{\frac{1}{2}}$ (d) $\frac{1}{\sqrt{5+4x-x^2}}$

(e) $\frac{\sec^2 \sqrt{x}}{\sqrt{x}}$ (f) $\frac{1}{x\sqrt{9x^2-1}}$ (g) $\frac{x+3}{\sqrt{1-6x-x^2}}$

2. Use the substitution $u = +\sqrt{1+x^2}$ to evaluate $\int_{1}^{1/2} \frac{dx}{x(1+x^2)^{\frac{1}{2}}}$

3. Evaluate $\int_{1}^{2} \frac{dx}{x^2\sqrt{x-1}}$, using the substitution $x = \sec^2 \theta$

4. Evaluate $\int_{1}^{2} \frac{dx}{x^2\sqrt{5x^2-1}}$, using (a) $x^2 = \frac{1}{u}$ (b) the sine substitution.

3. Evaluate
$$\int_1^2 \frac{dx}{x^2 \sqrt{x-1}}$$
, using the substitution $x = \sec^2 \theta$.

- 5. Use small changes to show that $(16.02)^{\frac{1}{4}} = 2 \frac{1}{1600}$

- 6. An open cylinder container is made from a 12cm² metal sheet. Show that the maximum volume of the container is $\sqrt{\pi}$.
- 7. Find the area enclosed by the curves $y^2 = 4x$ and $x^2 = 4y$
- 8. Find the equation of the tangent t the point $(1,-1)_{10}$ the curve $y=2-4x^2+x^3$. What are the coordinates of the point where the tangent meets the curve again? Find the equation of the tangent at

9. If
$$y = \tan\left(2\tan^{-1}\frac{x}{2}\right)$$
, show that $\frac{dy}{dx} = \frac{4(1+y^2)}{4+x^2}$

- Differentiate √COS x from first principles.
 A particle is moving in a straight line such that its distance from a faced point O, t seconds after motion begins is s = COS t + COS 2t. Find
- The time when the particle passes through O.
- The velocity of the particle at this instant. The acceleration when the velocity is zero.

TRIGONOMETRY

- 1. Prove that $(\sin 2\alpha \sin 2\beta)\tan(\alpha + \beta) = 2(\sin^2 \alpha \sin^2 \beta)$
- 2. Given that $\sin(x+\beta) = 2\cos(x-\beta)$, prove that $\tan x = \frac{2-\tan\alpha}{1-2\tan\alpha}$ 3. Solve the equation $\cos(2\theta + 45^{\circ}) - \cos(2\theta - 45^{\circ}) = 1 \text{ for } 0^{\circ} \le \theta \le 360^{\circ}$
- 4. Prove that $\cos^6 x + \sin^6 x = 1 \frac{3}{4} \sin^2 2x$.
- 5. The roots of the equation $ax^2 + bx + c = 0$ are $\tan \alpha$ and $\tan \beta$. Express $\sec(\alpha + \beta)$ in If $a = x \cos \theta + y \sin \theta$ and $b = x \sin \theta - y \cos \theta$, prove that $\tan \theta = \frac{bx + ay}{ax - by}$
- 7. Solve $3 \tan^3 x 3 \tan^2 x = \tan x 1$ for $0 \le x \le \pi$
- 8. Prove that $\cos^5 x = \frac{\cos 5x + 5\cos 3x + 10\cos x}{\cos 5x + \cos 5x + 10\cos 5x}$
- Express $10\sin x \cos x + 12\cos 2x$ in the form $R\sin(2x+\alpha)$. Hence solve the equation $10\sin x \cos x + 12\cos 2x = -7 \text{ for } 0^{\circ} \le x \le 360^{\circ}$
- 10. Prove that if $A + B + C = 180^{\circ}$ then

$$\cos^2 2A + \cos^2 2B + \cos^2 2C = 1 + 2\cos 2A\cos 2B\cos 2B$$