CSCI 377 Textbook Notes

Chapter 12: Binary Search Trees

- The search tree data structure supports many dynamic-set operations, including search, minimum, maximum, predecessor, successor, insert and delete
- Basic operations conducted on a binary search tree will take time proportional to the height of the tree
 - \circ For a complete binary tree with n nodes, these operations run in $\Theta(\log(n))$ worst-case time

• 12.1: What is a Binary Search Tree?

- A binary search tree is a binary tree represented by a linked data structure in which each node is an object and contains data as well as *left*, *right*, *and parent* attributes which point to the node's left child, right child, and parent respectively
- o If the child or parent is missing a value, the appropriate attribute contains the value NIL
- Only the root node has no parent node
- A binary search tree is stored in such a way as to satisfy the binary-search-tree property:
 - Let x be a node in a binary search tree. If y is a node in the left subtree of x, then $y.key \le x.key$. If y is a node in the right subtree of x, then $y.key \ge x.key$
- This property allows us to print out the values of a binary search tree in sorted order using a fairly simple recursive algorithm called the *in-order tree walk*
 - This algorithm prints a parent in between printing the values in the left sub-tree and right sub-tree
- A pre-order tree walk will print out the root before either subtree, whereas a post-order tree walk will print out the root after either subtree

```
In-Order-Tree-Walk(x)
 if x != NIL
      In-Order-Tree-Walk(x.left)
      print x.key
      In-Order-Tree-Walk(x.right)
```

Theorem 12.1

• If x is the root of an n-node sub-tree, then the function call In-Order-Tree-Walk(x) takes $\Theta(n)$ time

• 12.2: Querying a Binary Search Tree

 \circ In this section the minimum, maximum, successor, and predecessor functions will be examined, including implementations such that they will be supported in O(h) time in any binary search tree of height h

Tree Search

```
Tree-Search(x, k)
if x==NIL or k==x.key
  return x
if k < x.key
  return Tree-Search(x.left, k)
else
  return Tree-Search(x.right, k)</pre>
```

It will begin searching at the root, and for each node make a decision on which subtree to follow until the root of the Tree-Search() call is equal to the k value passed into the function

Minimum and Maximum

```
Tree-Minimum(x)
while x.left != NIL
  x = x.left
return x
```

```
Tree-Maximum(x)
while x.right != NIL
  x = x.right
return x
```

Tree Successor

```
Tree-Successor(x)
if x.right != NIL
  return Tree-Minimum(x.right)
y = x.p
while y != NIL and x == y.right
  x = y
  y = y.p
return y
```

Insertion and Deletion

- Insert(T, z)
 - Walk through the tree starting at the root
 - Find the leaf position where z fits
- Delete(T, z)
 - 3 Possible Cases
 - If z has no children, delete z and modify its parent's link by setting it to NIL
 - 2. If z has one child, elevate the child to take z's position in the tree by replacing the parent's link to point at z's child
 - 3. If z has 2 children, we need to find the successor, y, to take z's place and attach z's right sub-tree to y's right sub-tree as well as z's left sub-tree to y's left sub-tree