3.11	DEF (Differentierborkeit) Sai GERMoffen, fili->12m.
((;)	Die Flet f haist differenzierhor im Phil Soh, folls
7	JA: Rh -> Rm lineo, JS>> Jr: R=Uj(0) -> Rm sodoss
	f(s+h)-f(s) = A.h + r(h) thells(0) mits+hel
	$\lim_{h \to 0} \frac{r(h)}{\ h\ } = 0$
(ii)	Ist I dist be in oller Plater Seh down nemen

3.12 BEM (to- Def de Diffhorkeit)

wir of diffher louf a).

(i) (Offene Defberach) Wir beschrönber uns beide mehrdin Diffhorkail out offene Definitions beraiche. Anders ob in 1-d Foll konn mon sich dem Rond des Defberachs our viclen Richtungen nohun, was die Soche sehr verkompligieren winde.

Cinschipe; hier linksschije Abl leicht za definieren 3 1.7 ciii)

Roland Steinbauer, 23. Mai 2013

(III) (Die Ableitung?) Plut (ii) lept nohe, doss uit (ouch) in 3.11 A ob die Ableitung von fin Ebegachnen. Dies hoben wir in 3.11 ollerdings ous putem brund nicht petan: beror vir des konnen, missen vir sichepohen, doss A andeutig durch 3.11 bestimmt ist.

Ausedon wirden Wit A ouch porne buchnen (können) -boror vir es probothis benennen.

Erfreulicherwase leomma uns bu beiden Problemen die Portielles Ablatages Juhilfe D

3.13 SATZ+DEF (Diffhor =) port diffhor, Jorobi-Potrix)

2 Sti G=Rhoffen und sa f= (fr., fm): G→IR diffhoring El. Donn sind alle Komponen denfll for G - IR (1 Ejem) (in dle Richdungen) porhell diffhor in & under pill

$$A = \begin{pmatrix} D_1f_1(\zeta) & D_2f_1(\zeta) & \dots & D_nf_1(\zeta) \\ D_1f_2(\zeta) & \dots & D_nf_2(\zeta) \\ D_nf_m(\zeta) & \dots & D_nf_n(\zeta) \end{pmatrix} = : D_1f_2(\zeta) \begin{pmatrix} e_1e_2e_2e_2e_2e_2 \\ \vdots & \vdots & \vdots \\ D_nf_m(\zeta) & \dots & D_nf_n(\zeta) \end{pmatrix}$$

Die Mohix Dfes) hant Josobi-Pohix vonfing.

3.14 BETT+ TERTINOLOGIE (3.12 ciii) pelost, die Ableitung)

Eine Kurtfossung von 3.13 ist: S fdiffhoring ->

Alle Komponenten f; part. { diffbor in { and A = Df(s)

	Ins besondere Ist A durch die Josobi-120 bix Dfis)
	eindertig bestimmt & (laitht) berechenher Trati
	und wird die Ablatung von fin & perount. Co. 3.5%
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
_	Revers [nicht schwieripobe viel Janderstie] Komponenten Seien (mit der Nototion von 3.13)
ĺ	- Seien (mit de Nototion von 3.13)
1	S= ({1,, {n}, h= (h1,, hn), r= (γ1,, rm)
	Die Gleichung in 3.12, f(5+h)-f(5) = Ah+1(h) loulet
2,	in Komponenten (1 = j = m) Notrixmult A.h
TEMS!	(*) $f_{j}(\xi+h)-f_{j}(\xi)=a_{j_{n}}h_{n}+r_{j}(h)$
in Z	The state of the s
70± =	Ausde Bedingung on r, This -> (h->0) folph flejem
4	
)	(**) lim $\frac{r_j(h)}{ h } = 0$ [Idee: Solomnt mon 2u pst. Ahl.)
	Spezical für h= s.e; (sell, e; de i-le Einheihvelder) nehmen (x), (xx) folpende Form on: [aje(ei)e=Zojedie] fj (stse;)-fj(s) = oj; s + p;(s) mid = oji
	$\sum_{e=1}^{\infty} q_{je}(e_i)_e = Z_{ije}(e_i)_e$
	fi(stse;)-fi(s) = oj; s + si(s) mid = oji
•	$f_{j}(s):=r_{j}(se_{i}) \text{ and } \lim_{s\to 0} \frac{f_{j}(s)}{s}=\lim_{s\to 0} \frac{r_{j}(se_{i})}{ se_{i} }=0.$
1	311.71°
)	=> S => f; (s+se;) dilf bur in Plut & mit Abl. aj:
	=> fi port diffhor ing noch x; und D. f; (3) = 0; i.
	Violent and State PAired Air V(I AV (C. C. e. 2012)

Roland Steinbauer, 28. Mai 2013

Old wird folgen de Terminologie versendet:

grootfes:=Dfest)

heiß der Grootient von fin Phos. Domil schreiht sich die Def der Diffhorkeit für f. 12 - 12 ohs den Bowleisen der olle Folls vpl 2.311) wie folgt

3 f(5+h)-f(5) = { prodf(5), h > +r(h) mid r(h) ->0 (h->0)

 $\frac{2.3}{9}: f:\mathbb{R}^2 \to \mathbb{R}, f(x,y) = \sin(x)\cos(y),$ $growt f(x,y) = \begin{pmatrix} \cos(x)\cos(y) \\ -\sin(x)\sin(y) \end{pmatrix}$

3.16 BEM (Umfamuliaranjen de Diffhorkeit) Folgende einfoche Um formulierungen de Diffhorkeit sind oft nütilich: Für GSR offen, f=(foj...,fm):G-R , geli sind lolgende Aussopen öphivolent

(1) fdiffbor in {

(2) Alle Komponenden f;: 6->17 sind diffhor in E Dofu Dofu (8)

3. ATELIN (9)

Of 1

Dofu

(3) $\exists A: \mathbb{R}^{h} \rightarrow \mathbb{R}^{m}$ linear, sooloss $\lim_{h \rightarrow 0} \frac{f(\varsigma+h) - f(\varsigma) - Ah}{||h||} = 0$

r(h)=f(s+h)-f(g)-Ah rg(.Bes/3)1.19

Vorlesungsausarbeitung RAimukAieVfLAK (SoSem 2013

Roland Steinbauer, 23, Mai 2013

3.1788 (Differentieren, Josobi-Patrix) (i) (lin. Abb) Sei f: Rn-) Rm linear, oho f(x)=Bx mit Bane (mxn)-Robix. Donn pild to th f(5+h)-f(5) = B(5+h)-B5 = Bh + O.

Also ist Def 3.M mit rch) = 0 erfüllt under pill A=B, d.h. Df(5)=B + 5 e Rh.

[Die Ablaitungeine lin. Abb ist (in jedem Plet) die Mohix selbst; dos ist schon ouf Rso: f(x)=0x f(x)=0 fx]

(ii) Su f: R3 > R2, f(x,y,t) = (x2+x+2). Down hol die
Josobi- Protrix die Gestalt

 $\mathcal{D}f(x,y,z) = \begin{pmatrix} \mathcal{D}_1 f_1 & \mathcal{D}_2 f_1 \mathcal{D}_3 f_1 \\ \mathcal{D}_1 f_2 & \mathcal{D}_2 f_2 \mathcal{D}_3 f_3 \end{pmatrix} (x,y,z) = \begin{pmatrix} 2x+yz & xz & xy \\ Z & O & 1 \end{pmatrix}.$

3.18 4ARNUNG (port dillhor & dillhor, je nicht einmol slehig) (i) In 3.17 (ii) hoben wir gran die Jocobi-Nobrix berechnet, domil ist aber nicht pezagt, doss f auch diffhor ist

Totsochlich pilt 3.13 Alle Komponenten Pj I distiller in g port oliffhar in elle Richtungen
in g (x)

(ii) Es kommt sogor noch dicke: Die Bedingung out der rechten Seite implified nichtainmoldie Stchigliet, genous saif: 6 -> 17, 5 = 6 down pilt

Ein expligites Gegenbap ich dos Peono-Bsp ous 213:

 $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} \\ 0 \end{cases}$ (x,y) \$ (0,0) (x,y)=(0,0)

Down pild [2.13] findie pord. Flat

y -> f(0,y) = 0 Fy => Def(0,0) =0.

w Also ist fin (0,0) port diffhor ober unstetig - und dohe ouch nicht diffhor wie ou) Solt 3.19 (unlen: [diffbor => stehig) folpt.

(11) Alle vird wiede put, wenn die port. Ableitungen nicht nu- existieren, sondern olech stehig sind. Dos Zaigen uir in Solf 3.20 unten.

(iv) Funsulas holten uit obe fest, doss - wie out IR-die Diffhor het die Skhykeil implijiert und wat dieselbeappendos, vie out Il pultip blaber for f. R=4->12,5el pilt

f dillbor in S of skehing in S.

fex)=1x1 in x=0 [13], 3.8(vi)]

3.19 SATZ (diffhor -) stelip) Sei GER often und sei 2 f: G -> R" diffhor in SEG. Donn ist fouch ship in S. Bovas: [solbe Idee vic 13] 1.13 nor mil Folgen shott lim v. Flat] Sci (x (k)) Folge in G mit x (k) > 5; sche h (k) = x (h) => b (4) -> 0 and es pill $f(x^{(k)}) - f(\xi) = f(\xi + h^{(k)}) - f(\xi)$ = Df(g)h(k)+r(h(u) -> Df(p.0+0 Abo f(x(4))-> f(g) => f slehy in g.

3.20 SATZ (Stelig port diffs =) diffhor) Sai GERT often, } saif: a -> TR porkell diffhor and seien oble porhellen Ableitungen Dif: G >IR (1=1=n) slehy in g. Donnist of disther in g.

Bevais [Anwender des MNS & elvos Būrokropie]

(1) Vorpeplanke (:

Wirsehen n=2; de oblgemeine Follerfordet donn nor aine Anpossurg de Notohion.

Sciobo (5,7)EG and & so klain, doss W:=[5-8,5+8]x[7-8,3+8] = G

(Z) Berechnen des Inkrements:

Fir (a,B) mil Id, IPICE gild (5.M)+(a,B) & W und wir konnen rechnen

(5,7)

1 Nungild: mil (d,B)->(0,0) folgt
$\begin{cases} X_1 \rightarrow \xi, \ Y_1 \rightarrow \eta, \ \eta_1 \land \lambda \rightarrow \eta \\ S_1 f. D_2 f. Stehry in (\xi, \eta) \end{cases}$
Juf. Def steling in (5.7)
$ \longrightarrow D_1 f(x_n, \gamma + p) \rightarrow D_1 f(s, \gamma) $ $ = D_2 f(s, \gamma_n) \rightarrow D_2 f(s, \gamma) $
(*),(**) > r_1(d,p)->0, r_2(d,p)->0 für (d,p)->(0,0)
$\stackrel{(\Delta)}{=} \frac{r(d, N)}{ (d) } \rightarrow 0 (d, N) \rightarrow (0, 0)$
3.21 Berg (Terminolopie - Jusammen fossurg de Situation)
(i) (81 F64)
Gelder die Bedingungen von Solz 3.20 in oblen Philen
geh, d.h. falls für f: 12 h → 12 alle port.
Ableitungen out pont Gestelig sind, clonn ist
stehip [wegen 2-8]. In villige Anologie (introje
stetip [wegen 2-8]. In vollige Anologie (Eintroge)
Zum 1-d Fold [13] 1.30 cii)] nenner vir solche
Flat Isdehip diffhor by E1- Flat.
Also sind slehig diffhore Flit pe def porbell
sking diffhere Flet.

(iii) Fin- die Proxis lernen vir ous (ii): Soll

line Flet f. R"= 4 -> 12" ouf Diffhorkeit un besucht

Werden, so ist folgende Krochensveise sinvoll;

- (1) Berachne die Jocobi-Rotrix; notwilich nor folls miplich, who oble Komp. olle port. Ableitungen besitien
- (Z) <u>abeprife die Eintröse de</u> Jocobi-Nobrix out Stehipheit. Folls jo, donn ist f sopor E1; Folls nain, mus de Day du Diffhorheit heromperopen werden...

Hochste fait for ...

3.22 BSD (Differentiable FUL)

(i)
$$f: \mathbb{R}^{3} \to \mathbb{R}^{2}$$
, $f(x_{1}, y_{1}) = \begin{pmatrix} x^{2} + xy^{2} \\ 2x + x^{2} \end{pmatrix}$, $Df(x_{1}, y_{1}) = \begin{pmatrix} 2xy + 2xy \\ 2xy + 2y \end{pmatrix}$, $Df(x_{1}, y_{1}) = \begin{pmatrix} 2xy + 2xy \\ 2xy + 2y \end{pmatrix}$, $Df(x_{1}, y_{1}) = \begin{pmatrix} 2xy + 2xy \\ 2xy + 2y \end{pmatrix}$, $Df(x_{1}, y_{1}) = \begin{pmatrix} 2xy + 2xy \\ 1xy + 2xy \end{pmatrix}$

(ii) $f: \mathbb{R}^{2} \to \mathbb{R}^{2}$, $f(x_{1}, y_{1}) = xy + 2xy$, $\int P(x_{1}, y_{1}) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

(iii) $f: \mathbb{C} := \{(x_{1}, y_{1}) \in \mathbb{R}^{2} \mid x_{2} \neq x_{3} \}$, $\int P(x_{1}, y_{1}) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

D $f(x_{1}, y_{1}) = \begin{pmatrix} 1/2y \\ 1/2x \end{pmatrix}$ is $\int P(x_{1}, y_{2}) = \int P(x_{1}, y_{3}) = \int P(x_{1}$

3.23 BEN (Boukester) Andog sum And Foll vollen wir die Verhöplichkait de Diferentiation mit der Grandopuotionen untersuchen [VP[13] 1.13] und dorow lin , Bowloversystim "fin) meh din Differen zienen plus Differentiohisnsrepola pe winner - noticitiet sind hier Einschrönkungen popchen, cola 23 Produkte nor for Flor mit fielbuich = 12 möplick sind...

3.24 Prof (Differentiationsrepela) Sc. 6 512 often. (i) (Cincorkombinohonen) Seien fig: 6 -> 12 m diffhor in Se G. Find, me Rist Stype diffhoring und D(Afterp)(5) = Df(5) + in Dp(5) Showing

(ii) (Produltrepcl) Scien f.p. 4 -> M diffbor in selo.

Donn ist fg diff bor in s und es pilt (Pohl. Yelder)

S grodfp)(s) = f(s) grodg(s) + g(s) prodf(s) (Velder)

Velder)

(iii) (Ketterrepel) Sain f. G-> R", p. R"2 W-> Re

Funktionen W = R" often und f(G) = W. Ist f

diffbor in Se G und p diffhor in m:= fose &,

donn ist die Verknüpfung (Dosübliche Yorge plünkel:

gof: G -> Re diffhor in S (R"26 -> R(G) = W-> Re)

und es eich

Jocobi - Nobrix einer Abb

R^>Re: (exn)-Nobrix)

Produkt de Josebi- Plohite:

Do(m) & M(e,m), Dfig)& M(m,n)

pibleine Plohix in M(e,n) oho

deog

3.25-25P (Kellen-spel)

(i) $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) = \begin{pmatrix} x-y \\ xy \end{pmatrix}$; $g: \mathbb{R}^2 \to \mathbb{R}^3$, $g(x,y) = \begin{pmatrix} x+y \\ 3x+2y \end{pmatrix}$ $S = (S_n S_n) = (0,1)$, $f(0,1) = (-1,0) = (\eta_n \eta_1) = \eta$ $Df(x,y) = \begin{pmatrix} 1 & -1 \\ y & x \end{pmatrix}$, $Df(0,1) = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$ $Dg(x,y) = \begin{pmatrix} 1 & 1 \\ 3 & 2 \\ 0 & 1 \end{pmatrix}$, $Dg(f(0,1)) = Dg(-1,0) = \begin{pmatrix} 1 & 1 \\ 3 & 2 \\ 0 & 1 \end{pmatrix}$ hange poinicht vom Pht ob

Vorlesungsausarbeitung RAimukAieVfLAK (SoSem 2013)

Reland Steinbauer, 23, Mai 2013

$$g \cdot f(x,y) = g(x-y,xy) = \begin{pmatrix} x-y+xy \\ 3(x-y)+2xy \end{pmatrix}$$

$$D(p \circ f)(x, y) = \begin{pmatrix} 1+y, -1+x \\ 3+2y - 3+2x \\ y \end{pmatrix}, D(p \circ f)(0, 1) = \begin{pmatrix} 2 & -1 \\ 5 & -3 \\ 0 & 1 \end{pmatrix}$$

es
$$p(x)$$

$$(g \circ f)'(z) = D \rho(f(z)) \cdot D f(z) = \frac{1}{|f(z)|^2}$$

$$\frac{(g \circ f)'(\varsigma) = D \rho(f(\varsigma)) \cdot D f(\varsigma)}{(f \circ f)'(\varsigma)} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} \cdot \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} \cdot \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} \cdot \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} \cdot \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} \cdot \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \\ = (f \circ f)'(\varsigma) \end{cases} = \begin{cases} (f \circ f)'(\varsigma) \end{cases} =$$

Revas vo- 3.25

(i) (Einfocke) for sommer sehen de Defs] Fir Nh/l klais pill
$$f(\xi + h) - f(\xi) = Df(\xi)h + r_1(h), r_1(h)/h \rightarrow 0$$
 } (*) $f(\xi + h) - p(\xi) = Dg(\xi)h + r_2(h), r_2(h)/h \rightarrow 0$ }

 $\frac{r(h)}{\|h\|} = \int \frac{r_A(h)}{\|h\|} + \int \frac{r_2(h)}{\|h\|} \longrightarrow 0$

(ii) Anolopia (i) [Haise II 165.3] (iii) Einfaches Um schreiben des 1-d Jevasas (3) 1.23.

3.26 NOTIVATION (Pichturpsobleiturp) Wir steller uns jeht folgende Auf pobe: Wir wollen durch an hupelijes belønde eine Stor Se bouen. Dozu missen 412 ous pehand von einem Kunkt die Starpung in verschiedene Kichtlergen bestimmer, um ju sahen vos an punstigu Toosservatouf voice.

Dos augrundeliegende moth. Problem ist os die Ableitung ene Ful f. R26 - R in eine bestimmte Richtung zu bestimmen. Doba ist die Nichtung durch einen Velctor v mit AVII = 1 papaben - anen sopenonten Lichtangsvektor.

Eine noheliegende Definition-plach for GSRh

3.77 DEF (Richtungsobleidung) Si: GER" offen, se G 1: G - Reine Funktion und VER" mit IIVII = 1 Folls der Grenzwert

existict and endlich ist, so name vir Defigs die Richtangsableidung von fin sin Richtung v.

3.28 BEOBACHTUNG (Richtungsoll. vs port. Ableitung)

Schen wir in 3.27 v= e; , down schen 412

$$D_{v} f(\varsigma) = \lim_{t \to 0} \frac{f(\varsigma + te;) - f(\varsigma)}{t} = D_{i} f(\varsigma)$$

oho ist die Richtungsobleitung in Dichtung der i-ten Koordinater ochse gerode die i-te port. Ableitung, Die port. Ableitunger sindaho spezielle Dichtungsobleitungen.

Andaresails lossen sich Richtungsobleitungen in allg. Richtungen aus den part. Ableitungen Jusammen sehen, wir die falgende Rogosition Juipl.

3.29 P.ZOD (Richtunpsobl. vis port. Abl.) Si GER offen, gale f:G->R diffhor in S. Donn existing Drf(s) für jeden

Richtungsrelder v und er pilt

 $\int D_r f(\xi) = \langle \operatorname{grod} f(\xi), V \rangle$

Bevers: [Einfocke Rechnung] Für olle 0# 6 klein penup pilt
$$f(\varsigma+tv)-f(\varsigma) = \frac{Df(\varsigma)\cdot tv + r(tv)}{t} = Df(\varsigma)\cdot v + \frac{r(tr)}{t}$$

$$\Rightarrow Df(\varsigma)\cdot v = \langle prodf(\varsigma), v \rangle$$

3.30 BSP (Richtungsobletong) Sci f: R2 -> 12, f(x,y)= x2+y2, {= (1,1), v= (1/12). Donn pill $Dvf(s) = \left\langle \operatorname{prool} f(s), 1 \right\rangle = \left\langle \left(\frac{2}{2} \right), \left(\frac{1/r_2}{1/r_2} \right) \right\rangle = \frac{4}{r_2}$ $\operatorname{proof} f(x, y) = \left(\frac{2x}{2y} \right)$

3.31 BEOBACHTUNG

(Richtung des stocksten Anstreps)

Inder Formel our 3.28 ist one withhise Information verstockt, die wir joht herouskitzeln wollen. Espilt

$$|Dvf(s)|=|Cprodf(s),v\rangle|$$
 $|Dvf(s)|=|Cprodf(s),v\rangle|$
 $|Dvf(s)|=|Cprodf(s)||$
 $|Dvf(s)|=|Cprodf(s)||$
 $|Dvf(s)|=|Cprodf(s)||$
 $|Dvf(s)|=|Cprodf(s)||$

D.h. die Norm des brodienten beschonlet den Betrep ælle Richtungsobleitungen.

Ist our endem gradfigs # 0 donn ist 10:= prodfig) ein Richtungsvekter und wir hoben Il prodfig) ||

 $D_{ro}f(\zeta) = \frac{\langle \operatorname{grod}f(\zeta), \operatorname{grod}f(\zeta) \rangle}{|\operatorname{sprod}f(\zeta)||} = ||\operatorname{prod}f(\zeta)||$

Dos bedeutch, dass der Gradient prod fig) die Richtung des prosten Anshieps ongibt. Genoue 70.71 grad figs in Richdung des protten Anshieps und -prodfig) in Richtung des Slocksten Gefalles.

Diese aberdes wichtigen Ergebnisse holter wir in einem Solf fest

3.32 SATT (Bedeutury des Grodien ten) Si Ge Moffen und sa f. G -> IR diffbor in S. Dann pilt

(i) Ist prod fes)=D, donn verschvinder olle

Richtungsobleitungen Drfes von fing.

(ii) Isd grodfeg) \$0, so pilot as and oller Richtungsobleitungen Drfrs) eine pronte, hömlich

die Richtungsobleitung in Richtung der Growlienten

prodfes [J.h. v = prodfes/11 prodfes/11]. Ihr

Wert ist genode 11 prodfes/11.

3.33 VERANSCHAUCICHUNG & ANKENDUNG: TANGENTIALEBENE

Sa- f: 1224 -> IR dillhor, 56 6.

(i) Wir behochten den Vertikolen Schniff durch den Grophen P(f) = R mil de senkrechten Ebene ube de Geroden t H) {+ tro mit ro= prodfis)//prodfis)//. [Schneide peaper durch die bolik in 3.30]

(ii) Wir kunnen nun leicht die Tongenhalabene on 1 (4) in (5, f(5)) bescheiben. Ein Normalveltor ist pepalen durch NV= (grodf(g)) (Siche Skitte)

Dohe espibl sich für die Heuesche Normalform