Home Exercise 2: Solving LPs graphically

For each of the following, determine the direction in which the objective function increases:

- (1) $z = 4x_1 x_2$
- (2) $z = -x_1 + 2x_2$
- (3) $z = -x_1 3x_2$

Hint. Think of the gradient of the objective function.

Home Exercise 2:

The functions's increase is in direction of their gradients

$$\nabla z = \begin{pmatrix} \partial z & \partial z \\ \partial x_1 & \partial x_2 \end{pmatrix}$$
(1) $z = 4x_1 - x_2$

$$=) \nabla z = \begin{pmatrix} 3 & (4x_1 - x_2), & \partial & (4x_1 - x_2) \end{pmatrix} = (4, -1)$$

The vector $(4, -1)$ is direction in which the objective function increases

(2) $z = -x_1 + 2x_2$

$$=) \nabla z = \begin{pmatrix} 3 & (-x_1 + 2x_2), & \partial & (-x_1 + 2x_2) \end{pmatrix} = (-1, 2)$$

The vector $(-1, 2)$ is direction in which the objective function increases

(3) $z = -x_1 - 3x_2$

$$=) \nabla z = \begin{pmatrix} 3 & (-x_1 - 3x_2), & \partial & (-x_1 - 3x_2) \end{pmatrix} = (-1, -3)$$

The vector $(-1, -3)$ is direction in which the objective function increases