$_{ m QCM}^{ m Algo}$

- 1. Quel algorithme recherche les plus courts chemins entre tous les sommets pris 2 à 2?
 - (a) Bellman
 - (b) Dijkstra
 - (c) Floyd
- 2. Un plus court chemin élémentaire ne peut pas contenir?
 - (a) De circuit absorbant
 - (b) De chemin à coût strictement négatif
 - (c) De circuit à coût strictement positif
 - (d) De circuit de coût nul
- 3. Quel(s) algorithme(s) de plus court chemin admet(tent) des coûts quelconques?
 - (a) Bellman
 - (b) Dijkstra
 - (c) floyd
- 4. Le coût d'un graphe non orienté est?
 - a La somme des coûts des arêtes qui le composent
 - (b) La somme des arêtes qui le composent
 - (c) La somme des coûts des chaînes qui le composent
 - (d) La somme des coûts des arcs qui le composent
- 5. Quel(s) algorithme(s) de plus court chemin n'admet(tent) pas de circuit?
 - (a) Bellman
 - (b) Dijkstra
 - (c) Floyd
- 6. Le coût d'un chemin est?
 - (a) La somme des coûts des arêtes qui le composent
 - (b) La somme des arêtes qui le composent
 - (c) La somme des arcs qui le composent
 - (d) La somme des coûts des arcs qui le composent
- 7. Un de ces algorithmes utilise un principe analogue à celui de WARSHALL, lequel?
 - (a) Bellman
 - (b) Dijkstra
 - (c) Floyd

- 8. La longueur d'un chemin est?
 - (a) La somme des coûts des arêtes qui le composent
 - (b) La somme des arêtes qui le composent
 - (c) La somme des arcs qui le composent
 - (d) La somme des coûts des arcs qui le composent
- 9. Si en retirant un sommet s d'un graphe connexe, le graphe n'est plus connexe, on dit que s est?
 - (a) Un isthme
 - (b) Un point d'articulation
 - (c) Une racine
- 10. Le plus court chemin est toujours le moins long?
 - (a) oui
 - (b) non
 - (c) ça dépend

QCM N°12

lundi 18 mars 2013

Question 11

La définition de « (f_n) converge uniformément vers f sur I » est

- (a) $\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant N \Longrightarrow \forall x \in I \ |f_n(x) f(x)| < \varepsilon$
- b. $\forall x \in I, \ \forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant N \Longrightarrow |f_n(x) f(x)| < \varepsilon$
- c. $\forall \varepsilon > 0, \ \forall x \in I, \ \exists N \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant N \Longrightarrow |f_n(x) f(x)| < \varepsilon$
- d. rien de ce qui précède

Question 12

Soit (f_n) la suite de fonctions définie par $f_n(x) = nxe^{-nx}$. Alors

- (a) (f_n) converge simplement vers la fonction nulle sur \mathbb{R}_+
- b. (f_n) ne converge pas simplement sur \mathbb{R}_-
- c. rien de ce qui précède

Question 13

Soit (f_n) la suite de fonctions définie pour tout $x \in [0,1]$ par $f_n(x) = \frac{ne^x}{e^x + n}$. Alors

- a. (f_n) converge simplement vers la fonction nulle sur [0,1]
- b. (f_n) converge simplement vers la fonction $f: x \mapsto 1$ sur [0,1]
- \bigcirc (f_n) converge simplement vers la fonction $f: x \mapsto e^x$ sur [0,1]
- d. rien de ce qui précède

Question 14

Soit (f_n) la suite de fonctions définie pour tout $x \in [0,1[$ par $f_n(x) = x^n$. Alors (f_n) converge simplement vers la fonction nulle sur [0,1[.

- (a.) vrai
- b. faux

Question 15

Soit (f_n) une suite de fonctions quelconque convergeant simplement vers une fonction f sur \mathbb{R} tel que pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}$,

 $|f_n(x) - f(x)| \le \frac{x}{n+1}$

Alors

a. (f_n) converge uniformément vers f sur $\mathbb R$

b. (f_n) ne converge pas uniformément vers f sur $\mathbb R$

(c.) on ne peut rien dire sur la convergence uniforme de (f_n) vers f sur \mathbb{R}

Question 16

Les fonctions f_n et f sont définies sur un intervalle I de \mathbb{R} et à valeurs réelles. Supposons que (f_n) converge simplement vers f sur I, que tous les f_n sont continues sur I et que f est discontinue sur I. Alors

a. (f_n) converge uniformément vers f sur I

(b) (f_n) ne converge pas uniformément vers f sur I

c. on ne peut rien dire sur la convergence uniforme de (f_n) vers f sur I

Question 17

Supposons que (f_n) converge simplement vers f sur I. Supposons de plus qu'il existe une suite numérique (x_n) à valeurs dans I telle que $(f_n(x_n) - f(x_n))$ ne tend pas vers 0 lorsque $n \to +\infty$. Alors

a. (f_n) converge uniformément vers f sur I

(b) (f_n) ne converge pas uniformément vers f sur I

c. on ne peut rien dire sur la convergence uniforme de (f_n) vers f sur I

Question 18

Soient (E, <, >) un espace euclidien et F un sev quelconque de E. Alors

 $E = F \oplus F^{\perp}$

d. rien de ce qui précède

Question 19

Soient (E, <, >) un espace euclidien, F un sev de E et p_F le projecteur orthogonal sur F. Alors

- $(a.) \operatorname{Ker}(p_F) = F^{\perp}$
- b. $Ker(p_F) = F$
- c. $\operatorname{Im}(p_F) = F^{\perp}$
- d. Pour tout $x \in E$, $x p_F(x) \in F^{\perp}$
 - e. rien de ce qui précède

Question 20

Soient F un sev d'un espace euclidien (E, <, >) et $x \in E$. Alors $\min_{y \in F} ||x - y|| = ||x - p_F(x)||$ où $p_F(x)$ est le projeté orthogonal de x sur F.

- a. vrai
- b. faux

Q.C.M n°12 de Physique

21- La longueur d'onde du photon émis lors d'une transition de l'atome d'hydrogène du niveau d'énergie E_m vers le niveau d'énergie E_n ; (Où $E_n = -\frac{13.6}{n^2}$ et m > n) est :

a)
$$\frac{1}{\lambda_{mn}} = \frac{13.6}{hc} (\frac{1}{n^2} - \frac{1}{m^2})$$

b)
$$\lambda_{m,n} = \frac{13,6.e}{hc} (\frac{1}{n^2} - \frac{1}{m^2})$$

(c)
$$\frac{1}{\lambda_{m,n}} = \frac{13,6.e}{hc} \left(\frac{1}{n^2} - \frac{1}{m^2} \right)$$

22- Pour l'atome d'hydrogène, la série de Balmer, correspond à :

- (a) Toutes les transitions vers n = 2
- b) Toutes les transitions vers n = 3
- c) Toutes les transitions vers n = 1

23- D'après la formule donnant les longueurs d'onde des transitions entre les niveaux d'énergie de l'atome de Bohr : $\frac{1}{\lambda_{m,n}} = R_H (\frac{1}{n^2} - \frac{1}{m^2})$, on peut affirmer que la première longueur d'onde de la série de Lyman est :

a)
$$\lambda = \frac{3}{4.R_H}$$

b)
$$\lambda = \frac{4}{3} R_H$$

$$\delta = \frac{4}{3.R_H}$$

24- La loi de Moseley permet d'apporter une correction au modèle de Bohr, tel que l'énergie devient :

a)
$$E_n = -\frac{13.6}{n} . Z$$
 (en eV) (Z est le nombre de protons).

(b)
$$E_n = -\frac{13.6}{n^2} Z^2$$
 (en eV)

c)
$$E_n = -\frac{13.6}{n^2 Z^2}$$
 (en eV)

25- La loi de Moseley s'applique pour des transitions du domaine spectral :
a) visible (b) rayonnement X c) rayonnement UV

26- L'effet Zeeman représente

- a) l'interaction entre le spin \vec{S} de l'électron et le champ magnétique
- b) l'interaction entre le moment orbital \vec{L} et le champ magnétique
- \bigcirc l'interaction entre le moment magnétique de l'électron $\vec{\mu}_e$ et le champ magnétique

27- L'effet Zeeman a permis de mettre en évidence :

- (a) le nombre quantique magnétique m_l
- b) le spin de l'électron
- c) le nombre quantique secondaire 1
- 28- Pour un nombre quantique secondaire l=3, le nombre quantique magnétique m_l prend :
 - a) 3 valeurs
 - 7 valeurs5 valeurs
- 29- Pour la configuration électronique, l'orbitale p est saturée à :
 - (a) 6 électrons
 - b) 2 électrons
 - c) 10 électrons
- 30- La source d'énergie extérieure pour un laser permet :
 - a) la multiplication des photons
 - b) l'augmentation de la puissance laser
 - (c) l'inversion de population

31.	Becaus	e he's over 70 years old, Mr. Carlos is worried his driving test.
	a.	With failing
	b.	To fail
	0	About failing
	d.	To failure
32.	Could y	ou please this article for the annual report?
	a.	advise
	(b.)	revise
	c.	devise
	d.	advice
33.	The mu	sicians began playing Happy Birthday the vice president set foot in the ballroom
	a.	soon
	b.	soon as
	c.	as soon
	(d.)	as soon as
34.	The ana	alyst predicted that the company would not go bankrupt might even show a profit
	a.	either
	b.	or
	c.	so
	a	and
35.	The cor	nsultants issue their reports, though they may miss this week on account of the
	holiday	
	a.	usually
	b.	anymore
	c.	already
	d .	weekly
36.	Have N	Is. Chen to Los Angeles instead of Mr. Trang.
	a.	gone
	b ,	go
	c.	going
	d.	to go
37.	the	press secretary's illness and the fact that a terrible flu is going around, today's
	meetin	g is canceled.
	a.	So that
	b.	Because
	(c.)	Because of
	d	While

8

38.	He sho	uld try a different word document program if he wants it to be able to check
	spelling	and grammar.
	(a)	using
	b.	used
	c.	uses
	d.	use
39.	The sta	ff volleyball team is going out to eat tomorrow after they in the semifinals
	tournar	ment.
	a.	Will compete
	b.	Will have competed
	c.	Are competing
	(d.)	compete
40.	Do	/lan's complex use of language, we are confident that we'll be able to understand his
	a.	In spite
	b.	Since
	(C.)	Despite
	d.	Even though

Méthodologie et Culture générale QCM N° 15 (Transports 2)

4 1	O 11	1	•	7.	. 1	0 1	1 0	0
41	Onelle	est la	longueur	approxima	uve du	(ana	de Sil	P7 1
	Quene	COLIC	LIONGUCUI	approxima	uve au	Cana	uc Du	UL.

- A. Environ 23 km
- B. Environ 43 km
- C. Environ 93 km
- (D) Environ 193 km
- 42. Quand a été mis en service le Canal de Suez ?
- A. 1819
- (B.)1869
- C. 1919
- D. 1939
- 43. Quelle est la longueur approximative du Canal de Panama?
- (A) 77 km
- B. 127 km
- C. 177 km
- D. 227 km
- 44. Quand a été mis en service le Canal de Panama?
- A. 1874
- B. 1904
- **(C)** 1914
- D. 1934
- 45. Quel est, depuis 2007, le plus grand port du monde?
- A. New York
- B. Yokohama
- (C) Shanghai
- D. Rotterdam

46. La première locomotive à effectuer un service commercial fut la *Salamanca* pour le Middelton Railway, à Leeds. En quelle année ?

- A 1812
- B. 1832
- C. 1852
- D. 1872
- 47. Quand fut achevée la première liaison transcontinentale américaine entre Sacramento (Californie) et Omaha (Nebraska) ? La jonction eut lieu dans l'Utah.
- A. Le 10 mai 1839
- (B) Le 10 mai 1869
- C. Le 10 mai 1899
- D. Le 10 mai 1929
- 48. Quelle est la longueur approximative du Transsibérien, la plus longue ligne ferroviaire du monde, de Moscou à Vladivostock (le voyage dure une semaine).
- A. Environ 5 300 kilomètres
- B. Environ 7 300 kilomètres
- © Environ 9 300 kilomètres
- D. Environ 11 300 kilomètres
- 49. Combien de kilomètres de voies la SNCF exploite-t-elle aujourd'hui?
- A. Environ 5 000 kilomètres
- B. Environ 10 000 kilomètres
- © Environ 30 000 kilomètres
- D. Environ 80 000 kilomètres
- 50. Quand le premier TGV a-t-il été mis en service ?
- A. Septembre 1981
- B. Septembre 1988
- C. Septembre 1995
- D. Septembre 2002

QCM Electronique - InfoSPE

<u>Pensez à bien lire les questions ET les réponses proposées (attention à la numérotation des réponses)</u>

Q1.	La :	sortie	d'un	AOP	ne	peut	en	aucun	cas	être	saturée	si	le	montage	possède	une
rétroa	ction	n.														1
	a-	Vrai									b) Fau	IX				

- Q2. L'AOP fonctionne en mode linéaire si le montage possède une rétroaction positive.
 - a- Vrai (b-) Faux
- Q3. L'impédance d'entrée d'un AOP étant infinie, on a toujours $V^+ = V^$
 - a- Vrai (b-) Faux
- Q4. Le courant de sortie d'un AOP idéal est nul
 a- Vrai

 (b-) Faux
- Q5. Quelles sont les caractéristiques d'un AOP idéal en fonctionnement linéaire ?
 - a- $V_s=\pm V_{sat}$ selon le signe de ϵ . b- $V_s=0$ c- $\epsilon=0$ d- $V_s=\epsilon$
- Q6. Dans quels cas l'AOP fonctionne-t-il en régime non-linéaire (2 réponses) ?
 - (a-) S'il possède un rebouclage de la sortie sur l'entrée +.
 - (b) S'il n'y a pas de rétroaction.
 - c- S'il possède une rétroaction sur l'entrée -.
 - d- L'AOP ne peut pas fonctionner en mode non-linéaire.
- Q7. Que se passe-t-il si, dans un montage, l'AOP comprend 1 rétroaction positive et une rétroaction négative?
 - a- L'AOP fonctionnera toujours en mode linéaire.
 - b- L'AOP fonctionnera toujours en mode saturé.
 - (5) Il faut faire une étude de stabilité pour conclure.
 - d- L'AOP surchauffe.

Soit le montage ci-contre :

Q8. Que vaut v_s ?

a-
$$v_s = -v_e$$

(c)
$$v_s = v_e$$

b-
$$v_s = 0$$

Soit le montage ci-contre :

Q9. Quel est le mode de fonctionnement de I'AOP?

- a- Mode saturé.
- (b-) Mode linéaire
- c- Tout dépend du signe de v_e .

Q10. Que vaut v_s ?

$$a- v_s = -R_1. v_e$$

$$v_s = -\frac{R_1}{R_2} \cdot v_e$$

$$c- v_s = -R_2. v_e$$

a-
$$v_s = -R_1 \cdot v_e$$
 b- $v_s = -\frac{R_1}{R_2} \cdot v_e$ c- $v_s = -R_2 \cdot v_e$ d- $v_s = -\frac{R_2}{R_1} \cdot v_e$

QCM Architecture

<u>Pensez à bien lire les questions ET les réponses proposées (attention à la numérotation</u> des réponses)

Q11.	L'instruction	BRA	est une	instruction	de	branchement	inconditionnel	qui	produit
un c	ode non reloge	able	*						

a- VRAI

(b-) FAUX

Q12. Quelles valeurs prendront les flags N, Z, C et V après l'addition suivante : \$7A+\$FF (opération sur 1 octet)

(a-)	N
_	Z

N=0

c- N=0

d- N=0

Z=0

Z=0

Z=1

Z=1 C=1

C=1 V=0 C=1 V=0 C=1 V=0

V=1

Q13. Soit le code suivant :

Le traitement sera effectué :

- (a-) N fois
- b- N+1 fois
- c- N-1 fois

d- Jamais

Q14. Si D0 = \$04A9 8000, quelles valeurs prendront les flags N et Z après l'instruction suivante : TST.B D0

- a- N=0 et Z=0
- (b) N=0 et Z=1
- c- N=1 et Z=0

d- N=1 et Z=1

Q15. Si D0=\$0F89 4E73, quelle valeur prendra ce registre après l'instruction de décalage suivante : LSL.B #4,D0

(a-) D0 = \$0F89 4E30

c- D0 = \$0F89 4E70

b- D0 = \$F894 E730

d- D0 = \$0F89 4E07

Q16.	Dans quel ordre l'inst	ruction suivante va-t-elle	em	piler les registres :	
	MOVEM	L D7/A4/D0-D3/A2,-(47)		
a-	A4, D0, D1, D2, D3,	A2, D7	<u>©</u>	A4, A2, D7, D3, D2, I	D1, D0
b-	D7, A2, D3, D2, D1, I	00, A4	d-	D0, D1, D2, D3, D7,	A2, A4
Q17.	Quelle(s) instruction(s) peut-on utiliser pour a	ppe	er un sous-programn	ne?
a-	BSP	6-) BSR	c-	BRA	d- JMP
Q18.	Quelle instruction pe	ut-on utiliser pour reveni	r d'u	ın sous-programme?	
a- RE	ETURN	b- RTE	c-	BSR	(d-) RTS
Q19.	Les instructions MO	/EM.L D0/D1/A0,-(A7) et	: M0	OVEM.L A0/D1/D0,-(/	A7) dépilent
toute	es les 2 les registres da				
(a-	VRAI		b-	FAUX	
Q20. Q	uelle instruction ne mo	odifie pas la pile :			
a-	MOVEM.L (A7)+,D1-	D0	c-	RTS	
b-	MOVE.L D0,-(A7)		d-	MOVE.L (A7),D0	

- 21. Game theory is...
 - (a.) the attempt to quantify and systematize decision making
 - b. the attempt to use the properties of games to understand behaviour
 - c. the attempt to use games to test and refine our understanding of behaviour
 - d. all of the above
- 22. The most famous example of this is the...
 - a. battle of the sexes
 - b. co-ordination game
 - c.) prisoner's dilemma
 - d. all of the above
- 23. In it, people must decide whether to...
 - a. play the game or not
 - b. agree to set system of rules
 - c. betray their partner
 - d. agree to follow a plan
- 24. This often gives a very cynical view of life because...
 - a. everyone lies when playing
 - b. cheating is remarkably common
 - c. people get frustrated and leave before it is finished
 - none of the above
- 25. People will do this in most cases because...
 - a. it is easier than doing things properly
 - b. they know no one is looking at them while they do it
 - they benefit most when making the selfish decision even when that is detrimental to the group
 - d. they believe that in the end their decisions will have the best overall outcome for all involved
- 26. Robert Axelrod demonstrated a way out of this using...
 - a. a series of thought experiments
 - b. numerous trials involving hundreds of people
 - c. writing a ground breaking book on the subject of choice and its consequences
 - running a series of computer programs against each other
- 27. In it, he demonstrated that the only way to elicit co-operation is to...
 - a. always co-operate
 - (b) start co-operating and only betray once for every time you are betrayed
 - c. start betraying and only co-operate once for every time you are co-operated with
 - d. always betray
- 28. This will only work however if...
 - (a) neither side knows how long the game will go on
 - b. if the game will last more than 100 rounds
 - c. if the critical threshold of turns is reached
 - d. both sides agree before hand to stop at 100 rounds
- 29. A critical concept of game theory is the Nash equilibrium which is...
 - a. when all sides benefit equally from a choice
 - b. when all sides are equally satisfied with a choice
 - c. when all the choices presented are equally attractive
 - (d) when no one is able to unilaterally make a change to improve their outcome
- 30. This can lead to situations where...
 - a. everyone is content and so no further discussion is needed
 - b. everyone a lack of change can lead to stagnation
 - c. no one can make a decisions easily
 - people become trapped in mutually undesirable situations