NAME:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
INDEX NO:		
545/2 Chemistry Paper 2 2 Hours	NTUNGAMO	

ASSOCIATION OF SECONDARY SCHOOLS HEADTEACHERS OF UGANDA (ASSHU) NTUNGAMO

NTUNGAMO DISTRICT JOINT MOCK EXAMINATIONS 2023

Uganda Certificate of Education

CHEMISTRY 545/2

PAPER 2

DURATION: 2 Hours

INSTRUCTIONS TO CANDIDATES

Section A consists of 10 structured questions. Answer ALL questions in this section.

Answers to these questions MUST be written in the spaces provided.

Section **B** consists of 4 semi-structured questions. Answer any **two** questions from this section. Answers to these questions must be written in the answer booklet(s) provided.

In both Sections, all the working must be clearly shown.

Where necessary;

1 mole of gas occupies 24l at room temperature.

1 mole of gas occupies 22.4l at s.t.p.

For Examiner's Use Only

1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total
111	11		arren ale			**************************************	115-19	ALL PAR		al rio	lade.	Tarana Saya	20216	

Turn Over

SECTION A: (50 MARKS)

Answer all questions in this Section.

			g mixtures can be s	Separateu.
(i)	Oxygen and nitr	ogen		(1 mk)
(ii)	Iron (II) Chlorid	e and Iron (II) oxide.		(1 mk)
Give a	reason why it is p	ossible to separate the mix	ture in (a) (ii) using	the method
you sta	ated.			(1 mk)
•••••				
Sea wa	ter contains mainl	y Sodium Chloride and tra	ces of Potassium Br	omide.
State o	ne practical meth	od that can be used to obta	in the following fro	m sea water.
(i)	Chlorine			(1 mk)
(ii)	A reasonably p	are sample of Sodium Chlor	ide.	(1 mk)
2 Tab		10° - 10° april - 10° april		
2. Tab	V bolone Student	the group and period in the	Periodic Table to v	which elements I
anu		he table and answer the qu	estions that follow.	
		Group		
Tab			Period	
Tab Elei	ment			
Tab Elei X	ment	II	3	
Tab Elei	шен			0 8 15 mm 22 1 1

ator	the electronic configuration of the ion that can be forme in of $old X$.	(1 mk)
(c) Eler	nent X reacted with alarm 17	
(i)	nent X reacted with element Y to form a compound Z .	
(1)	Using the outermost shell electrons only, draw a diagram	n to show
	how Z is formed.	(1 mk)
	and the same and the same and the same	
(ii)	State the type of bond in:	
	Z	(1 mls)
	atoms of X	(1 1)
		(1 тк)
An oxid	of the color of th	E U I I
	e of phosphorous, T contains 43.7% phosphorus.	
(a) (i)	Calculate the empirical formula of T 1, 0=16)	
	1, 0-10)	(3 mks)
•••••		
(ii) D	etermine the molecular formula of T	
		(1)
	Relative formula mass of T =284)	(1 mk)
	The second secon	
		th Litmuc nonon
-	as dissolved in water and the resultant solution tested w	
b) T wa	Write equation for the reaction between \mathbf{T} and water.	(1 ½ mks)
-	Write equation for the reaction between T and water.	
-	Write equation for the reaction between T and water.	

(ii)	State what was observed on the Litmus Paper.	(1 mk)
		X to utul
(a) Wri	te an ionic equation for the reaction that occurs in the Labor	ratory
prep	paration of carbondioxide.	(1 mk)
(h) Na	me a substance used to day Cook and the last	<i>f</i>
	ne a substance used to dry Carbondioxide and give a reason or answer.	for (2 mks)
(2)		
(c) Stat		emain .
	Why Carbondioxide is used in fire extinguishers?	(1 mk)
(ii)	The effect of increased concentration of Carbondioxide on	the
	environment.	(1 mk)
(a) Wh	at is meant by the term had water?	(1 mk)
(b) Nar	ne two cations and two anions present in hard water.	
	Cations	()
(ii) A	anions	(1 mk)

(c) Ba	rium Nitrate solution followed by dilute nitric acid was	added to
	mple of hard water. State what was observed.	(1 mk)
6. An Iron (a) Nan	n spoon was coated with Copper atoms by electrolysis.	
(i) (ii) (iii)	Anode used Cathode used Electrolyte used	(½ mk)
(b) Writ	e equation for the reaction that took place at the; anode	(1 mk)
(ii)	cathode	(1 mk)
(c) (i) N	ame the process that took place at the Cathode.	(½ mk)
(ii) Sta	ate one use of the process in (c)(i).	(½ mk)
Chloride	a gas is prepared in the Laboratory by heating a mixtur and Calcium Hydroxide. The gas evolved is passed thr ium Oxide before it is collected using upward delivery	re of Ammonium ough a tower packed
(a) (i) W	rite an equation for the reaction that leads to the form	(1 ½ mks)
(ii) Sta	te why Ammonia is passed through a tower packed v	
		(½ mk)

CS CamScanner

(iii) Give a reason why Ammonia is collected by upward delivery method.	(½ mk)
(b) (i) Name a reagent that can be used to identify Ammonia gas.	(1 mk)
(ii) State what would be observed if Ammonia was treated with the	
reagent you named in (b)(i).	(1 mk)
(c) Name the catalyst used in the oxidation of Ammonia during the man	nufacture
of Nitric acid.	(½ mk)
 8. The molecular formular of an organic compound, M is C₂H₆. (a) (i) Write the structural formula of M. 	
(ii) Name M	
(iii) Name the group of organic compounds to which M belong	gs. (½ m)
(b) It is not wise to burn M in a living room with closed windows and Explain.	doors.
	(1 mk
(c) State one use of M.	(1 m

(a) State what is meant by the term enthalpy of combustion. (1 mk)	(a) Id	lentify Q	(1 mk)
(d) (i) Name one reagent that can be used to identify Q . (½ mk) (ii) State what would be observed if Q was tested with the reagent you have named in (d)(i). (1 mk) (a) State what is meant by the term enthalpy of combustion. (1 mk) (b) Carbon burns in oxygen according to the following equation: $C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)} \Delta H = -393 k J mol^{-1}$ Calculate the; (i) Amount of heat evolved when 3.6g of carbon is burnt completely in oxygen according to the following equation:	(b) S	tate the conditions under which the reaction takes place.	(1 mk)
(ii) State what would be observed if \mathbf{Q} was tested with the reagent you have named in (d)(i). (1 mk) (a) State what is meant by the term enthalpy of combustion. (1 mk) (b) Carbon burns in oxygen according to the following equation: $C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)} \Delta H = -393 k J mol^{-1}$ Calculate the: (i) Amount of heat evolved when 3.6g of carbon is burnt completely in oxygen according to the following equation:	(c) W	rite an ionic equation for the reaction leading to the formation	n of Q . (4 mks)
you have named in (d)(i) . (1 mk) (a) State what is meant by the term enthalpy of combustion. (1 mk) b) Carbon burns in oxygen according to the following equation: $C_{(s)} + O_{2_{(g)}} \longrightarrow CO_{2_{(g)}} \Delta H = -393 k J mol^{-1}$ Calculate the; (i) Amount of heat evolved when 3.6g of carbon is burnt completely in oxygen according to the following equation:	 (d)(i)	Name one reagent that can be used to identify Q .	(½ mk)
b) Carbon burns in oxygen according to the following equation: $C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)} \Delta H = -393 k J mol^{-1}$ Calculate the; (i) Amount of heat evolved when 3.6g of carbon is burnt completely in oxygen according to the following equation: $C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)} \Delta H = -393 k J mol^{-1}$			ent (1 mk
$C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)} \Delta H = -393 k J mol^{-1}$ Calculate the; (i) Amount of heat evolved when 3.6g of carbon is burnt completely in oxy			
(C=12) (2 mks)	 (a) Sta 	te what is meant by the term enthalpy of combustion.	(1 mk)
	 b) Car <i>C</i> Cald	bon burns in oxygen according to the following equation: $CO_{2(g)} = CO_{2(g)} \Delta H = -393 k J mol^{-1}$ culate the;	

(ii)	Volume of o	xygen at s.tp that wo	uld be required to produce 7	78.6 kJ
	of heat.			
	(1 mole of g	gas occupies 22.4 dm ²	3 at s.t.p)	(2 mks)
	1)	reaction tokes place	same and an area which the	
	Ole acitea	in leading to the low	drawar add and for the reaction	ru e de V (al.
		<u>SECTI</u>	ON B (30 MARKS)	
		Answer any two q	uestions from this Section.	smexi foliar all
11. (a) Def	fine the term	salt.	O il bern ado ad "	(1 mk)
• •			reparations of the following	salts:
) Sodium Sul		(1 ½ mks)	
,	i) Iron (III) C		(1 ½ mks)	
	With the aid of Lead (II) N from Lead (I	Nitrate crystals can b	ribe how a pure dry sample e prepared in the Laborator	y starting (6 mks)
. ,	hen Lead (II) llowing equa		ongly, it decomposes accord	ding to the
21	$Pb(NO_3)_{2(s)}$	\longrightarrow 2PbO _(s)	$+4NO_{2(g)}+O_{2(g)}$	
0	of gaseous pr	oducts at room temp	rongly heated, calculate the perature?	
(F	b = 207, N =	= 14,0 = 16; 1 mole	of gas occupies 14l at room	.temperature) (2 mks
(d) (i) Name one	e reagent that can be	e used to distinguish betwe	en
Α	luminium io	ns and Lead (II) ions	S	(½ mk
			nd write equation for the r	
t	that takes pla	ace if any, when the	reagent you named in (c)(i) is treated
S	separately w	ith Aluminium Ions	and Lead (II) Ions.	(2½ mk

	70	(4 mks)
(b)	(i) Draw a labelled diagram of the set up of the apparatus for the Laboratory preparation of oxygen using Sodium Peroxide.	(2½ mks)
	(ii) Write equation for the reaction leading to the production of oxygen in (i).	(1½ mks)
(c)	State one biological use of oxygen.	(1 mk)
(d) (i (i (i		gen and; (2 mks) (4 mks)
3.(a) (i) Describe how Sodium Hydroxide can be manufactured using the cathode cell. [Your answer should include equations of the reactions, but not 	
(i) State one use of the product formed at the anode and one use of the byproduct.	(2 mks)
(ii) State one industrial use of Sodium Hydroxide.	(1 mk)
	ate how Sodium Hydroxide can react with the following substan	ces,
(b) St	nd in each case write equation for the reaction:	
(b) St	(i) Sulphuric acid (ii) Aluminium Sulphate solution	(2 mks) (3 mks)
aı	(i) Sulphuric acid	-
aı	nd in each case write equation for the reaction: (i) Sulphuric acid (ii) Aluminium Sulphate solution	(3 mks)

(d) The table below shows the variation in the concentration of Hydrogen Peroxide with time when a sample of Hydrogen Peroxide was mixed with Iron (III) Chloride at room temperature.

Concentration of hydrogen peroxide ($mol \ dm^{-3}$)	0.05	0.10	0.15	0.20	0.25
Time, t (s)	53	26	17	13	10.5
$\frac{1}{t}(s^{-1})$, j. 18	Fynlad	

(i) Copy and complete the table above by computing and filling in the values of $\frac{1}{t}$ (2½ mks)

(ii) Plot a graph of $\frac{1}{t}$ against concentration of hydrogen peroxide. (3 ½ mks)

(iii) Using your graph, deduce how the rate of the reaction varies with the concentration of hydrogen peroxide. (1 mk)

(iv) Determine the slope of the graph. (2 mks)

(v) State **two** ways by which the rate of the reaction in (b) could be made faster. (1 mk)

END