Estimando a Produção

Por Desconhecido 🔯 Brasil

Timelimit: 3

A China é uma grande produtora de alimentos, mas também uma enorme consumidora. Pesquisadores chineses perceberam que em certos momentos de sua história a produção agrícola foi maior que o consumo, e em outros momentos esse quadro se inverteu. Preocupados com o futuro da grande nação, passaram a coletar dados sobre a área de plantio, a quantidade de trabalhadores e a produção agrícola. Para melhor investir seus recursos, eles agora desejam fazer uma previsão sobre a produção do país.

O conjunto de dados que os pesquisadores conseguiram coletar é formado por triplas (X_i,Y_i,Z_i) , em que X_i representa a área de plantio, Y_i a quantidade de trabalhadores e Z_i a produção agrícola. Como essa produção está ligada diretamente com os demais dados coletados, eles decidiram estimar a produção futura usando a função linear $a_1+a_2x+a_3y$, que minimiza a soma dos erros quadrados

$$\sum_{i=1}^{n} (z_i - (a_1 + a_2 x_i + a_3 y_i))^2$$

em que n é o total de triplas disponíveis. Desta forma eles serão capazes de planejar melhor a produção e o consumo dos próximos anos. Seu objetivo é calcular a função linear desejada.

Entrada

A entrada é composta de diversas instâncias. Para cada instância da entrada é dado um número inteiro $3 \le n \le 1000$ indicando quantas triplas foram obtidas na coleta de dados. Em cada uma das próximas n linhas é dada uma tripla $\mathbf{X_{i}}$, $\mathbf{Y_{i}}$ e $\mathbf{Z_{i}}$, como área de plantio (em milhares de hectares), a quantidade de trabalhadores envolvidos (dado em milhares de pessoas), e a produção agrícola (dada em toneladas de alimentos), respectivamente. O arquivo de entrada termina quando for encontrado $\mathbf{n} = 0$. Assuma que não existe uma relação linear entre a quantidade de trabalhadores e a área de plantio, ou seja, não existem constantes α, β tais que, para todo i, $xi = \alpha y_i + \beta$. Assuma também que $0 \le \mathbf{X_{i}}, \mathbf{Y_{i}}, \mathbf{Z_{i}} \le 1000$ e que todos os valores dados são inteiros.

Saída

Para cada instância solucionada, você deverá imprimir um identificador Instancia \mathbf{h} em que \mathbf{h} é um número inteiro, sequencial e crescente a partir de 1. Na próxima linha, você deve imprimir os três números $\mathbf{a_1}$, $\mathbf{a_2}$ e $\mathbf{a_3}$, representando os cocientes da função linear procurada. Esses números devem estar truncados em três casas decimais.

Uma linha em branco deve separar a saída de cada instância.

Exemplo de Entrada	Exemplo de Saída
3	Instancia 1
1 0 0	0.000 0.000 1.000
5 1 1	
3 2 2	Instancia 2
5	1.500 0.500 0.000
1 3 2	
3 7 3	

5 10 4 Exemplo de Entrada	Exemplo de Saída
7 400 5	
9 4 6	
0	

VIII Maratona de Programação IME-USP 2004.