Definition

Given:

- \triangleright a manifold \mathcal{M} :
- a Morse function $f: \mathcal{M} \to \mathbb{R}$ with distinct critical values: the **Reeb graph** of f is the 1-dimensional simplicial complex

$$\mathcal{R}(f) = \mathcal{M}(\sim)$$

 $\mathcal{R}(f) = \mathcal{M}(x)$ $x \sim y \text{ if } f(x) = f(y) \text{ and they}$ The segmentation map is the quotient map belong to the same connected component of $f^{-1}(f(x))$

$$\Phi \colon \mathcal{M} \longrightarrow \mathcal{R}(f).$$

Desired algorithm

Input:

- ightharpoonup a PL manifold ${\cal M}$
 - \rightsquigarrow a triangulated mesh \mathcal{M} ;
- ightharpoonup a non-degenerate PL scalar field f on ${\cal M}$
 - \rightsquigarrow a scalar value f(v) for each vertex v of \mathcal{M} .

Output:

pairwise different, in order to ensure non-degeneracy; this

 \triangleright the augmented Reep graph $\mathcal{R}(f)$.

→ graph + segmentation map

Time complexity:

 $ightharpoonup O(m \cdot \log m)$, where m is the size of the 2-skeleton of \mathcal{M} .

#vertices + #edges + #triangles

Parallel.

Geometry of critical points

There are three kinds of critical points:

- ► (local) minima
 ~> Link⁻ empty;
- saddles
 - → Link⁻ or Link⁺ disconnected.

How to detect them on a PL manifold?

Given a vertex v, the **star** of v is the union of all simplices containing v.

The **link** of v is the boundary of its star.

$$Link^+(v) = \{x \in Link(v) : f(x) > f(v)\}\$$

 $Link^-(v) = \{x \in Link(v) : f(x) < f(v)\}\$

Significance of critical points

The critical points of f are closely related to the topology of the Reeb graph $\mathcal{R}(f)$.

- Maxima and minima
 - → nodes of valence 1 (leaves).
- Saddles
 - \rightsquigarrow nodes of valence ≥ 2 .
 - Join saddles: multiple components below.
 Split saddles: multiple components above.
- non-mutually exclusive in dimension > 3