| Review of PDEs                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------|
| What makes ODEs ordinary is that They only involve derivatives in one variable!                                             |
| $\frac{dx}{dt} = f(x,t)$ $\frac{dx}{dt} = f(x,t)$ $\frac{dx}{dt} = f(x,t)$                                                  |
| Partial differential equations (PDEs) involve<br>derivatives in more than one variable:<br>Exampled For a variable T=T(x,t) |
| Tot = 1 Time dittusion                                                                                                      |
| time derivative spatial (will return (rate of change derivative to 12.5) of I in time) (i.e. slope of                       |
| Tin speces                                                                                                                  |
| Remember: when you are considering derivates in multiple variables, use partial derivida                                    |

| one variable because change can be caused by:                                                       |
|-----------------------------------------------------------------------------------------------------|
| one variable because chance can be                                                                  |
| caused by:                                                                                          |
| -> Time-dependent processes at                                                                      |
| one location ( )                                                                                    |
| <u> </u>                                                                                            |
| -> spatially-dependent processes                                                                    |
| -> 5 patially-dependent processes which involve change over space (327)                             |
|                                                                                                     |
| The relationship between these derivates,                                                           |
| typically in time and space, and we                                                                 |
| con do so by combining what we learned                                                              |
| about solving coupled systems of ODEs                                                               |
| with some new tricks                                                                                |
|                                                                                                     |
| Classification of PDEs                                                                              |
|                                                                                                     |
| -Most PDEs of interest in Earth<br>Gience involve Zud order derivatives.                            |
| Gience involve 2 <sup>nd</sup> order derivatives.                                                   |
|                                                                                                     |
| -> hey can generally be classified into                                                             |
| -> They can generally be classified into three categories, with diff non methods to solve each type |
| V 2010C 200. 1   1                                                                                  |





-> Some combination of These PDES
is used in some way or another
to describe many processes in
Earth science. Is space and time-depends
-> We will extend what we have
learned about DDE numerical
methods to solve PDES using
numerical methods.





| Diffusion Equation                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                |
| Typically represents The action of small-<br>scale processes to "mix" a quantity<br>down-gradient (i.e. moving from greater<br>to lower)       |
| scale processes to "mix" a quantity                                                                                                            |
| down-gradient (i.e. moving from greater                                                                                                        |
| to lokes                                                                                                                                       |
| Total diffusivity                                                                                                                              |
| 00 = D 32 D > 0                                                                                                                                |
| JE DXZ                                                                                                                                         |
| JJ = D 32 T D>0  important                                                                                                                     |
| This is the time-dependent version of<br>the 1D diffusion in the Earth we                                                                      |
| the 1D diffusion in the Earth we                                                                                                               |
| Cousides CA hotose                                                                                                                             |
| - Often use to describe heat conduction                                                                                                        |
| - Lan also model spreading Idiffusion                                                                                                          |
| of material in a possus matrix                                                                                                                 |
|                                                                                                                                                |
| live contaminant in an aprifer                                                                                                                 |
| -Often use to describe heat conduction  -lan also model spreading Idiffusion  of material in a possus matrix  (i.e. contaminant in an agrifes) |
|                                                                                                                                                |
| How to discretize?                                                                                                                             |
| How to discretize?                                                                                                                             |
|                                                                                                                                                |





| -> So, we know that when d is constant<br>in time and space, The wave equation<br>has a solution of a traveling wave                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| in time and space, The wave equation                                                                                                                                 |
| has a solution of a troveling were                                                                                                                                   |
|                                                                                                                                                                      |
| i.e. $u(x,t) = f(x-at) + g(x+at)$                                                                                                                                    |
|                                                                                                                                                                      |
| -> However this is not so simple if  a is not constant for all x, t,  -> In Earth sciences, we trequently  consider waves that travel through  lasteroseevers medici |
| a is not constant for all x, t.                                                                                                                                      |
| -> In Earth sciences, we trequestly                                                                                                                                  |
| consider waves that travel through                                                                                                                                   |
| heterogeneors media:                                                                                                                                                 |
| Althospheric arcuity works                                                                                                                                           |
| Altmospheric gravity workes<br>Seismic woves                                                                                                                         |
| Ocean waves                                                                                                                                                          |
| Porosity waves etcrete<br>-> Such problems cannot be solved<br>analytically for arbitrary x(x,t)                                                                     |
| -> Such andleuns cannot be solved                                                                                                                                    |
| analytically for arbitrary d(x,t)                                                                                                                                    |
|                                                                                                                                                                      |
| A numerica (method: discretize ux, ux tems                                                                                                                           |
| 1/2 - 22 1                                                                                                                                                           |
| X = a+idx Then use centered  difference formulas for  both terms.                                                                                                    |
| L- LAL IN 1                                                                                                                                                          |
| tx=KDt both terms.                                                                                                                                                   |
| . 7                                                                                                                                                                  |