Homework 4

By signing my name, I agree to abide by the Stern Code of Conduct
Question 1
a. Compute the mean \bar{x} of the list of numbers 4, 3, 4, 4, 5
b. Consider the random variable X which has probability distribution function $p_X(1) = 1/10, p_X(2) = 1/10, p_X(3) = 2/10, p_X(4) = 4/10, p_X(5) = 2/10$. Draw a graph of the probability distribution function of X . Label the axes of your graph.
c. Is this graph a histogram? Why or why not?
d. Compute $E[X]$.
e. Compute $\mathbf{Var}(X)$. You can use R, or any calculator, to simplify the final answer.
f. Do you think it's plausible that the list from part (a) might have been sampled from th distribution of X ?

Question 2

Suppose $Y \sim \text{Bin}(n, p)$, and recall these facts from class:

- $\mu = E[Y] = np$
- $\sigma^2 = \operatorname{Var}(Y) = np(1-p)$
- Chebyshev's inequality: $P(|Y \mu| \ge a) \le \sigma^2/a^2$.
- This inequality says the probability that Y falls *outside* the range from μa to $\mu + a$ can't be too high, where the specific meaning of too high depends on σ^2 and a^2 .

For this problem, let p = 1/2.

a. Simplify the formulas for μ and σ^2 using p=1/2.

b. What value of a can you plug in to Chebyshev's inequality to make the right hand side less or equal to 1/2? Write out the inequality for that value of a, simplifying as much as you can, and using the formulas above for μ and σ^2 .

c. Now let n=100, so np=50. According to Chebyshev's inequality, $P(y_L \le Y \le y_U) \le 1/2$ for some specific numbers y_L and y_U . What are these two numbers? Round up y_U and round down y_L to the nearest integers.