章末检测卷(一)

(时间:120分钟 满分:150分)

一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选 项中,只有一项是符合题目要求的) 1.给出下列四个关系式: ① $\sqrt{7}$ ∈ **R**; ②**Z** ∈ **Q**; ③0 ∈ ∅; ④∅⊆{0}, 其中正确的个 数是() A.1 B.2 C.3 D.4 解析 ①④正确;对于②,Z与Q的关系是集合间的包含关系,不是元素与集合 的关系;对于③, ∞是不含任何元素的集合,故0€∞,选B. 答案 B 2.已知集合 $M = \{0, 1, 2, 3, 4\}, N = \{1, 3, 5\}, P = M \cap N, 则 P$ 的子集共有() A.2 个 B.4 个 C.6 个 D.8 个 解析 易知 $P = M \cap N = \{1, 3\}$, 故 P 的子集共有 $2^2 = 4$ 个. 答案 B 3.已知集合 $A = \{1, a\}, B = \{1, 2, 3\}, 则 "<math>a = 3$ " 是 " $A \subseteq B$ " 的() A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分又不必要条件 解析 $: a = 3 \Rightarrow A \subseteq B$, 而 $A \subseteq B \Rightarrow a = 3$, : "a = 3" 是 " $A \subseteq B$ 的充分不必要条件". 答案 B 4.已知 $M = \{v \in \mathbb{R} | v = |x| \}$, $N = \{x \in \mathbb{R} | x = m^2 \}$, 则下列关系中正确的是() $A.M \square N$ B.M=N $C.M \neq N$ $D.N \square M$

解析 : $M = \{y \in \mathbb{R} | y = |x|\} = \{y \in \mathbb{R} | y \ge 0\}$, $N = \{x \in \mathbb{R} | x = m^2\} = \{x \in \mathbb{R} | x \ge 0\}$,

 $\therefore M = N$.

答案 B

5.命题 $p: ax^2 + 2x + 1 = 0$ 有实数根, 若k p 是假命题, 则实数 k 的取值范围为()

A.
$$\{a | a < 1\}$$

B.
$$\{a|a \leq 1\}$$

$$C.\{a|a>1\}$$

$$D.\{a|a \ge 1\}$$

解析 因为綈 p 是假命题,所以 p 为真命题,即方程 $ax^2 + 2x + 1 = 0$ 有实数根.

当 a=0 时,方程为 2x+1=0, $x=-\frac{1}{2}$,满足条件.当 $a\neq 0$ 时,若使方程 ax^2+2x

+1=0有实数根,则 $\Delta=4-4a \ge 0$,即 $a \le 1$.

答案 B

6.已知命题 $p: \forall x \in \mathbf{R}, \sqrt{1-x^2} \leq 1, 则($

A.綈 $p: \exists x \in \mathbf{R}, \sqrt{1-x^2} \geqslant 1$

B.綈 $p: \forall x \in \mathbf{R}, \sqrt{1-x^2} \ge 1$

C.綈 $p: \exists x \in \mathbf{R}, \sqrt{1-x^2} > 1$

D.綈 $p: \forall x \in \mathbb{R}, \sqrt{1-x^2} > 1$

解析 根据全称量词命题的否定方法,当命题 $p: \forall x \in \mathbb{R}$, $\sqrt{1-x^2} \le 1$ 时,綈 $p: \exists x \in \mathbb{R}$, $\sqrt{1-x^2} > 1$.故选 C.

答案 C

7.满足 " $a \in A$,且 $8-a \in A$, $a \in \mathbb{N}$ "的有且只有 2 个元素的集合 A 的个数是()

A.1

B.2

C.3

D.4

解析 由题意可知,满足题设条件的集合 A 有 {0,8}, {1,7}, {2,6}, {3,5}, 共 4 个.

答案 D

8.已知集合 $A = \{(x, y)|x, y 为实数,且 <math>y = x^2\}$, $B = \{(x, y)|x, y 为实数,且 <math>y = 1$ $-x\}$,则 $A \cap B$ 的元素个数为(

A.无数个 B.3

C.2 D.1

解析 联立
$$\begin{cases} y = x^2, \\ x + y = 1, \end{cases}$$
 消去 y 得 $x^2 + x - 1 = 0$,

 $\therefore \Delta = 1^2 - 4 \times (-1) \times 1 = 5 > 0$, ∴方程 $x^2 + x - 1 = 0$ 有 2 个不同的实数解, ∴方程

组
$$\begin{cases} y=x^2, \\ & \text{有 2 组解}, : A \cap B \text{ 的元素有 2 个, 故选 C.} \end{cases}$$

答案 C

二、多项选择题(本大题共 4 小题 , 每小题 5 分 , 共 20 分.在每小题给出的四个选项中有多项符合题目要求 , 全部选对得 5 分 , 选对但不全的得 3 分 , 有选错的不得分)

9.对任意实数 a, b, c, 下列命题中,假命题是()

A."ac>bc"是"a>b"的必要条件

B. "ac=bc" 是 "a=b" 的必要条件

C."ac>bc"是"a>b"的充分条件

D. "ac=bc" 是"a=b"的充分条件

解析 $a = b \Rightarrow a - b = 0 \Rightarrow (a - b)c = 0 \Rightarrow ac = bc$, $\therefore ac = bc$ 是 a = b 的必要条件.

答案 ACD

10.已知全集 $U=\mathbf{R}$,集合 $M=\{x|-2 \le x-1 \le 2\}$ 和 $N=\{x|x=2k-1, k \in \mathbf{N}^*\}$ 关系的 Venn 图如图所示,则阴影部分表示的集合中的元素有()

A.-1 B.0

C.1 D.3

解析 :: $M = \{x \mid -1 \le x \le 3\}$, $N = \{x \mid x = 2k - 1, k \in \mathbb{N}^*\}$,

∴*M*∩*N* = {1,3},故选CD.

答案 CD

11.设集合 $A = \{x | a - 1 < x < a + 1, x \in \mathbf{R}\}$, $B = \{x | 1 < x < 5, x \in \mathbf{R}\}$,则下列选项中,满足 $A \cap B = \emptyset$ 的实数 a 的取值范围可以是()

A.
$$\{a | 0 \le a \le 6\}$$

B.{a|a≤2 或 a≥4}

$$C.\{a|a \leq 0\}$$

 $D.\{a|a \ge 8\}$

解析 $A = \{x | a - 1 < x < a + 1 , x \in \mathbb{R}\}$, $B = \{x | 1 < x < 5 , x \in \mathbb{R}\}$, 又因为 $A \cap B = \emptyset$, 所以 $a + 1 \le 1$ 或 $a - 1 \ge 5$, 即 $\{a | a \le 0$ 或 $a \ge 6\}$, 故选 CD.

答案 CD

12.设全集为 U,在下列选项中,是 B ⊆ A 的充要条件的有()

 $A.A \cup B = B$

 $B.(C_UA) \cap B = \emptyset$

 $C.(C_UA)\subseteq(C_UB)$

 $D.A \cup (C_UB) = U$

解析 由 Venn 图可知, B, C, D都是充要条件, 故选 BCD.

答案 BCD

三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)

13.若集合 $A = \{x | -1 \le x \le 2\}$, $B = \{x | x \le 1\}$,则 $A \cap ([RB]) = \underline{\hspace{1cm}}$

解析 $:B = \{x|x \le 1\}$, $:\mathbb{R}B = \{x|x \ge 1\}$.

 $\therefore A \cap (\lceil_{\mathbf{R}}B) = \{x | 1 \le x \le 2\}.$

答案 $\{x \mid 1 \leq x \leq 2\}$

14. 命题: 存在一个实数对(x, y), 使 2x + 3y + 3<0 成立的否定是

解析 存在量词命题的否定是全称量词命题.

答案 对任意实数对(x, y), $2x+3y+3 \ge 0$ 恒成立

15.若全集 $U=\{n|n$ 是小于 9 的正整数 $\}$, $A=\{n\in U|n$ 是奇数 $\}$, $B=\{n\in U|n$ 是 3

的倍数},则($[UA) \cap B = _____, C_U(A \cup B) = _____(本题第一空 2 分,第二$

空3分).

解析 因为 $U = \{n \mid n \text{ 是小于 } 9 \text{ 的正整数}\}$, 所以 $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$,

则 $A = \{1, 3, 5, 7\}$, $B = \{3, 6\}$, 所以[$UA = \{2, 4, 6, 8\}$, $A \cup B = \{1, 3, 5, 6\}$,

6,7},所以($[UA) \cap B = \{6\}$, $[U(A \cup B) = \{2,4,8\}$.

答案 {6} {2, 4, 8}

16.设集合 $S = \{x | x > 5$ 或 $x < -1\}$, $T = \{x | a < x < a + 8\}$, $S \cup T = \mathbf{R}$, 则 a 的取值范围是

____•

解析 借助数轴可知
$$\begin{cases} a < -1 \\ a + 8 > 5. \end{cases}$$
 - 3 < $a < -1$.

答案 $\{a \mid -3 \le a \le -1\}$

四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)

17.(本小题满分 10 分)已知集合 $A = \{x \mid -4 \le x \le -2\}$,集合 $B = \{x \mid x + 3 \ge 0\}$.

求: $(1)A \cap B$;

- $(2)A \cup B$;
- (3) $\int_{\mathbf{R}} (A \cap B)$.

解 由已知得 $B = \{x | x \ge -3\}$,

- $(1)A \cap B = \{x \mid -3 \le x \le -2\}.$
- $(2)A \cup B = \{x | x \ge -4\}.$
- (3) $\int_{\mathbf{R}} (A \cap B) = \{x | x < -3$ 或 $x > -2\}$.

18.(本小题满分12分)写出下列命题的否定,并判断其真假性.

- $(1)\forall x \in \mathbb{Z}, |x| \in \mathbb{N};$
- (2)每一个平行四边形都是中心对称图形;
- (3)有些三角形是直角三角形;
- $(4)\exists x \in \mathbb{R}, x+1 \leq 0;$
- $(5)\exists x \in \mathbb{R}, \ x^2 + 2x + 3 = 0.$

解 (1)∃x∈**Z** , |x|∉**N** , 假命题.

- (2)有些平行四边形不是中心对称图形,假命题.
- (3)所有三角形都不是直角三角形,假命题.
- (4)∀x∈**R** , x + 1>0 , 假命题.
- (5) \forall *x*∈**R** , x^2 + 2x + 3≠0 , 真命题.

19.(本小题满分 12 分)已知集合 $A = \{-4, 2a-1, a^2\}$, $B = \{a-5, 1-a, 9\}$,分别求适合下列条件的 a 的值.

- $(1)9 \in (A \cap B);$
- $(2){9} = A \cap B$.

解 (1): 9 \in $(A \cap B)$, \therefore 2a - 1 = 9 或 a^2 = 9 ,

∴a = 5 或 a = 3 或 a = -3.

当 a = 5 时, A = { -4, 9, 25}, B = {0, -4, 9};

当 a = 3 时 , a - 5 = 1 - a = -2 , 不满足集合元素的互异性;

当 a = -3 时, A = {-4, -7, 9}, B = {-8, 4, 9},

所以a = 5或a = -3.

(2)由(1)可知,

当 a = 5 时 , $A \cap B = \{-4, 9\}$, 不合题意 ,

当 a = -3 时 , $A \cap B = \{9\}$, 所以 a = -3.

20.(本小题满分 12 分)已知 $A = \{x | x^2 - ax + a^2 - 12 = 0\}$, $B = \{x | x^2 - 5x + 6 = 0\}$,且满足下列三个条件:

① $A \neq B$; ② $A \cup B = B$; ③ $\varnothing \square (A \cap B)$, 求实数 a 的值.

解 $B = \{2, 3\}$, $:: A \cup B = B$, $:: A \subseteq B$,

 $:: A \neq B$, $:: A \square B$.

又: $\varnothing \square (A \cap B)$, $\therefore A \neq \varnothing$, $\therefore A = \{2\}$ 或 $A = \{3\}$,

∴方程 x^2 - ax + a^2 - 12 = 0 只有一解 ,

由 $\Delta = (-a)^2 - 4(a^2 - 12) = 0$ 得 $a^2 = 16$,

∴a = 4 或 a = -4.

当 a = 4 时,

集合 $A = \{x | x^2 - 4x + 4 = 0\} = \{2\}$ 符合;

当a = -4时,

集合 $A = \{x | x^2 + 4x + 4 = 0\} = \{-2\}$ (舍去).

综上, a=4.

21.(本小题满分 12 分)求证: 方程 $x^2-2x-3m=0$ 有两个同号且不相等的实根的充要条件是 $-\frac{1}{3}$ <m<0.

证明 (1)充分性: $\because -\frac{1}{3} < m < 0$,

∴方程 x^2 - 2x - 3m = 0 的判别式 Δ = 4 + 12m>0,

且 - 3m > 0,

∴方程 x^2 - 2x - 3m = 0 有两个同号且不相等的实根.

(2)必要性:若方程 $x^2 - 2x - 3m = 0$ 有两个同号且不相等的实根,

则有
$$\begin{cases} \Delta = 4 + 12m > 0, \\ x_1x_2 = -3m > 0, \end{cases}$$
解得 $-\frac{1}{3} < m < 0.$

综合(1)(2)知,方程 x^2 - 2x - 3m = 0 有两个同号且不相等的实根的充要条件是 - $\frac{1}{3}$ <m<0.

22.(本小题满分 12 分)设集合 $A = \{x | x^2 - 3x + 2 = 0\}$, $B = \{x | x^2 + 2(a+1)x + (a^2 - 5) = 0\}$,

(1)若 $A \cap B = \{2\}$, 求实数 a 的值;

(2)若 $A \cup B = A$,求实数 a 的取值范围.

解 $(1)A = \{1, 2\}$. $: A \cap B = \{2\}$,

∴2∈B, 代入B中方程, 得 a^2 +4a+3=0,

所以a = -1或a = -3.

当 a = -1 时, B = {-2,2}, 满足条件;

当 a = -3 时 , $B = \{2\}$, 也满足条件.

综上, a 的值为 - 1 或 - 3.

(2): $A \cup B = A$, $B \subseteq A$.

①当 $\Delta = 4(a+1)^2 - 4(a^2 - 5) = 8(a+3) < 0$, 即 a < -3 时, $B = \emptyset$ 满足条件;

②当 $\Delta = 0$,即a = -3时, $B = \{2\}$,满足要求;

③当 △>0,即 a>-3时,

 $B = A = \{1, 2\}$ 才能满足要求,经检验不可能成立.

综上可知 a 的取值范围是 $\{a|a \le -3\}$.