

Seja o sistema de controle com realimentação unitária

As funções de transferência de malha aberta e fechada podem ser relacionadas da seguinte forma:

$$T(s) = \frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)}$$

No domínio da frequência

$$T(j\omega) = \frac{G(j\omega)}{1 + G(j\omega)}$$

Considerando

$$G(j\omega) = X + jY$$

tem-se

$$T(j\omega) = \frac{X + jY}{1 + X + jY} = M e^{j\alpha}$$

sendo

$$M = \frac{|X+jY|}{|1+X+jY|} = \frac{\sqrt{X^2+Y^2}}{\sqrt{(1+X)^2+Y^2}}$$

$$\alpha = \tan^{-1} \left(\frac{Y}{X} \right) - \tan^{-1} \left(\frac{Y}{1+X} \right)$$

Considerando M constante

$$M^{2} = \frac{X^{2} + Y^{2}}{(1+X)^{2} + Y^{2}}$$

Desenvolvendo a expressão acima

$$X^{2}(1-M^{2})-2M^{2}X-M^{2}+Y^{2}(1-M^{2})=0$$
(1)

Para M=1,

$$\underbrace{X^{2}(1-M^{2})}_{0} - \underbrace{2M^{2}X}_{-2X} - \underbrace{M^{2}}_{-1} + \underbrace{Y^{2}(1-M^{2})}_{0} = 0$$

$$-2X-1=0 \implies X=-\frac{1}{2}$$

que representa a equação de uma reta paralela ao eixo imaginário e que passa pelo ponto (-0.5,0).

Para M≠1, a equação (1)

$$X^{2}(1-M^{2})-2M^{2}X-M^{2}+Y^{2}(1-M^{2})=0$$

pode ser reescrita como

$$\left(X + \frac{M^2}{M^2 - 1}\right)^2 + Y^2 = \frac{M^2}{(M^2 - 1)^2}$$

que representa a equação de uma circunferência com centro e raio dados por

$$\left(\frac{\mathbf{M}^2}{1-\mathbf{M}^2},0\right) \quad \mathbf{e} \quad \frac{\mathbf{M}}{\mathbf{M}^2-1}$$

Assim, se $G(j\omega)$ for representado por seu diagrama polar, os lugares geométricos em que o módulo da F.T.M.F. é constante são círculos de raio $|M/(M^2-1)|$ centrados em $(M^2/(1-M^2),0)$.

Círculos M constantes

Um procedimento similar pode ser adotado em relação à fase, dada por

$$\alpha = \tan^{-1} \left(\frac{Y}{X} \right) - \tan^{-1} \left(\frac{Y}{1+X} \right)$$

Definindo N = tan (α) , após manipulações, chega-se a

$$\left(X + \frac{1}{2}\right)^2 + \left(Y - \frac{1}{2N}\right)^2 = \frac{1}{4} + \left(\frac{1}{2N}\right)^2$$

que representa a equação de uma circunferência com centro e raio dados por

$$\left(-\frac{1}{2},\frac{1}{2N}\right)$$
 e $\sqrt{\frac{1}{4}+\left(\frac{1}{2N}\right)^2}$

Círculos N constantes

Observações:

- cada círculo N passa pela origem e pelo ponto crítico -1+j0.
- as curvas N são de múltiplos valores. Para um dado $\alpha = \alpha_1$, as curvas $\alpha = \alpha_1 \pm 180^\circ$ n (n=1,2,3 ...) serão as mesmas.

Ex: Os círculos N definidos para

$$\alpha$$
 =10°, α =190° e α =-170°

são exatamente os mesmos.

Obtenção da Resposta em Frequência de Malha Fechada

A resposta em frequência de malha fechada é obtida a partir da sobreposição do diagrama polar de $G(j\omega)$ com os círculos M e N.

Para cada valor de ω , os valores de módulo e fase de $T(j\omega)$ são iguais aos valores de M e N, respectivamente, correspondentes ao círculo interceptado pelo diagrama polar de $G(j\omega)$.

Frequência	Círculo M	Círculo N
ω_1	M = 1.1	α = -10 $^{\circ}$
ω_{2}	M = 1.2	α = -20 $^{\circ}$
ω_3	M = 1.4	α = -40 $^{\circ}$
ω_4	M = 2.0	α = 60° = -120°
ω_5	M = 0.6	$\alpha = -40^{\circ} = -220^{\circ}$

Resposta em Frequência de malha fechada

A partir dos círculos M e N é possível obter parâmetros da resposta em Frequência de T(jω):

- Pico de Ressonância (M_R): é o valor de M correspondente à circunferência de menor raio, que tangencia o diagrama de G(jω).
- Frequência de Ressonância (ω_R): é a frequência para a qual M=M_R.
- Largura de Faixa: é a frequência na qual o diagrama de G(jω) toca o círculo

$$\mathbf{M} = \frac{1}{\sqrt{2}}\mathbf{G}(0)$$

■ Margem de Ganho (MG): é o inverso do valor de M na frequência em que o diagrama de $G(j\omega)$ cruza o círculo correspondente à $\alpha = -180^{\circ}$.

 Margem de Fase (MF): é o ângulo de fase na frequência em que o diagrama de G(jω) cruza o círculo correspondente a M = 1.

Encontre a resposta em frequência de malha fechada, utilizando círculos M e N, para um sistema com realimentação unitária cuja F.T.M.A. é dada por

$$G(s) = \frac{50}{s(s+3)(s+6)}$$

Inicialmente precisa-se determinar a o diagrama polar de $G(j\omega)$:

$$G(j\omega) = \frac{50}{-9\omega^2 + j(18\omega - \omega^3)}$$

$$G(j\omega) = \frac{50[-9\omega^2 - j\omega(18 - \omega^2)]}{81\omega^4 + \omega^2(18 - \omega^2)^2}$$
$$= \frac{-450}{81\omega^2 + (18 - \omega^2)^2} - j\frac{50(18 - \omega^2)}{81\omega^3 + \omega(18 - \omega^2)^2}$$

Para $\omega = 0$

$$G(0) = -\frac{450}{18^2} - j\frac{900}{0} = -1.39 - j\infty \Rightarrow \infty \angle -90^\circ$$

Para $\omega \rightarrow \infty$

$$G(j\omega) \approx \frac{1}{(j\omega^3)} \approx \frac{J}{\infty} \Rightarrow 0 \angle 90^\circ$$

Cruzamento com eixo real:

$$(18-\omega^2)=0 \quad \Rightarrow \quad \omega=\sqrt{18}=\pm 2,24$$

$$\omega = 2,24 \implies G(j2,24) = -0,31$$

