附录

1. 参数记录表

附表 1 已知条件和给定参数

F		tota 🖂	27.72	
序号	项目	符号	单位	取值范围或数值
1	核电厂输出电功率	$N_{ m e}$	MW	1000
2	一回路能量利用系数	η_1		0.99
3	蒸汽发生器出口蒸汽干度	$x_{ m fh}$	%	99.75
4	蒸汽发生器排污率	ζ́d		1.05%
5	高压缸内效率	$\eta_{ m h,i}$	%	82.07
6	低压缸内效率	$\eta_{1,\mathrm{i}}$	%	83.59
7	汽轮机组机械效率	$\eta_{ m m}$		0.98
8	发电机效率	$\eta_{ m ge}$		0.98
9	新蒸汽压损	$\Delta p_{ m fh}$	MPa	$\Delta p_{ m fh} = 5\% p_{ m fh}$
10	再热蒸汽压损	$\Delta p_{ m rh}$	MPa	$\Delta p_{ m rh} = 3\% p_{ m hz}$
11	回热抽汽压损	$\Delta p_{ m e,j}$	MPa	$\Delta p_{\mathrm{e},j} = 5\% p_{\mathrm{e},j}$
12	低压缸排汽压损	$\Delta p_{ m cd}$	kPa	5%
13	高压给水加热器出口端差	$ heta_{ m h,u}$	J	3
14	低压给水加热器出口端差	$ heta_{ m l,u}$	$^{\circ}$	2
15	加热器效率	$\eta_{ m h}$		0.99
16	给水泵效率	$\eta_{ ext{fwp,p}}$		0.58
17	给水泵汽轮机内效率	$\eta_{ m fwp,ti}$		0.80

压水堆核电厂二回路热力系统初步设计说明书

18	给水泵汽轮机机械效率	$\eta_{ ext{fwp,tm}}$		0.90
19	给水泵汽轮机减速器效率	$\eta_{ ext{fwp,tg}}$		0.98
20	循环冷却水进口温度	$T_{ m sw,1}$	$^{\circ}$	24

附表 2 确定的主要热力参数汇总表

序号	项目	符号	単位	计算公式或来源	数值
1	反应堆冷却剂系统运行压力	$p_{ m c}$	MPa	选定,15~16	15.6
2	冷却剂压力对应的饱和温度	$T_{\mathrm{c,s}}$	$^{\circ}\!$	查水和水蒸汽表确定	345.31
3	反应堆出口冷却剂过冷度	$\Delta T_{ m sub}$	$^{\circ}$ C	选定,15~20	16
4	反应堆出口冷却剂温度	$T_{\rm co}$	$^{\circ}$ C	$T_{\rm co} = T_{\rm c,s}$ - $\Delta T_{ m sub}$	329.31
5	反应堆进出口冷却剂温升	$\Delta T_{ m c}$	$^{\circ}$ C	选定,30~40	35
6	反应堆进口冷却剂温度	$T_{ m ci}$	$^{\circ}\!$	$T_{ m ci} = T_{ m co}$ – $\Delta T_{ m c}$	294.31
7	蒸汽发生器饱和蒸汽压力	p_{s}	MPa	选定,5.0~7.0	6.5
8	蒸汽发生器饱和蒸汽温度	$T_{ m fh}$	$^{\circ}$ C	$p_{\rm s}$ 对应的饱和温度	280.86
9	一、二次侧对数平均温差	$\Delta T_{ m m}$	$^{\circ}\! \mathbb{C}$	$\Delta T_{\rm m} = \frac{T_{\rm co} - T_{\rm ci}}{ln \frac{T_{\rm co} - T_{\rm s}}{T_{\rm ci} - T_{\rm s}}}$	27.31
10	冷凝器中循环冷却水温升	$\Delta T_{ m sw}$	$^{\circ}$ C	选定,6~8	6
11	冷凝器传热端差	δT	$^{\circ}$ C	选定,3~10	5
12	冷凝器凝结水饱和温度	$T_{ m cd}$	$^{\circ}$ C	$T_{\rm cd} = T_{\rm sw,1} + \Delta T_{\rm sw} + \delta T$	35
13	冷凝器的运行压力	$p_{ m cd}$	kPa	T _{cd} 对应的饱和压力	5.6
14	高压缸进口蒸汽压力	$p_{ m h,i}$	MPa	$p_{ m h,i}$ $=$ $p_{ m fh}$ - $\Delta p_{ m fh}$	6.175
15	高压缸进口蒸汽干度	$\mathcal{X}_{ ext{h,i}}$	%	选定	99.51

压水堆核电厂二回路热力系统初步设计说明书

16	高压缸排汽压力	$p_{ m h,z}$	MPa	选定	0.8645
17	高压缸排汽干度	$\mathcal{X}_{\mathrm{h,z}}$	%	选定	86.12
18	汽水分离器进口蒸汽压力	$p_{ m sp,i}$	MPa	选定	0.8645
19	汽水分离器进口蒸汽干度	$\mathcal{X}_{\mathrm{sp,i}}$	%	选定	86.12
	第一级再热器				

20	五九 英次 进口 广	n	MPa	ردر ۱ <u>۲</u> ۰	0.0550
20	再热蒸汽进口压力	p _{rh1,i}	MPa	选定	0.8559
21	再热蒸汽进口干度	Xrh1,i	%	% 选定	
22	加热蒸汽进口压力	$p_{ m rh1,hs}$	MPa	选定	2.7012
23	加热蒸汽进口干度	Xrh1,hs	%	选定	91.92
	第二级再热器				
24	再热蒸汽进口压力	prh2,i	MPa	选定	0.8473
25	再热蒸汽进口温度	$T_{ m rh2,i}$	$^{\circ}\! \mathbb{C}$	选定	214.11
26	再热蒸汽出口压力	$p_{ m rh2,z}$	MPa	选定	0.8387
27	再热蒸汽出口温度	$T_{ m rh2,z}$	$^{\circ}\!$	选定	263.47
28	加热蒸汽进口压力	p _{rh2,hs}	MPa	选定	6.175
29	加热蒸汽进口干度	$x_{\rm rh2,hs}$	%	选定	99.51
	低压缸				
30	进口蒸汽压力	$p_{1,i}$	MPa	选定	0.8387
31	进口蒸汽温度	$T_{1,i}$	$^{\circ}$	选定	263.47
32	排汽压力	$p_{1,z}$	MPa	选定	0.0059
33	排汽干度	$x_{1,z}$	%	选定	0.8927
34	回热级数	Z		选定	7

压水堆核电厂二回路热力系统初步设计说明书

35	低压给水加热器级数	$Z_{ m l}$		选择	4
36	高压给水加热器级数	$Z_{ m h}$		选择	2
37	第一次给水回热分配	$\Delta h_{ m fw}$	kJ/kg	$\Delta h_{\rm fw} = \frac{h_{\rm fw} - h_{\rm cd}}{Z}$	116.26
	第二次给水回热分配				
38	高压加热器给水焓升	$\Delta h_{ m fw,h}$	kJ/kg	$\Delta h_{\rm fw,h} = \frac{h_{\rm fw} - h_{\rm dea,o}}{Z_{\rm h}}$	116.37

39	除氧器及低加给水焓升	$\Delta h_{ m fw,l}$	kJ/kg	$\Delta h_{\text{fw,l}} = \frac{h_{\text{dea,o}} - h_{\text{cd}}}{Z_{\text{l}} + 1}$	116.21
40	低压加热器给水参数				
	第 1 级进口给水比焓	$h_{ m lfwi,1}$	kJ/kg	$h_{\mathrm{lfwi},j} = h_{\mathrm{lfwo},j ext{-}1}$	146.64
	第 1 级出口给水比焓	$h_{ m lfwo,1}$	kJ/kg	$h_{ ext{lfwo},j} = h_{ ext{lfwi},j} + \Delta h_{ ext{fw}}$	262.85
	第 1 级进口给水温度	$T_{ m lfwi, 1}$	$^{\circ}\!$	按(p _{cwp} , h _{lfwi,j})查水蒸汽表	34.45
	第 1 级出口给水温度	$T_{ m lfwo,1}$	$^{\circ}$ C	按(p _{cwp} , h _{lfwo,j})查水蒸汽表	62.36
	第 2 级进口给水比焓	h _{lfwi, 2}	kJ/kg	$h_{\mathrm{lfwi},j} = h_{\mathrm{lfwo},j-1}$	262.85
	第 2 级出口给水比焓	$h_{ m lfwo,2}$	kJ/kg	$h_{\mathrm{lfwo},j} = h_{\mathrm{lfwi},j} + \Delta h_{\mathrm{fw}}$	379.07
	第 2 级进口给水温度	$T_{ m lfwi,2}$	$^{\circ}\!\mathbb{C}$	按(p _{cwp} , h _{lfwi,j})查水蒸汽表	62.36
	第 2 级出口给水温度	$T_{\rm lfwo,2}$	$^{\circ}\!\mathbb{C}$	按(p _{cwp} , h _{lfwo,j})查水蒸汽表	90.17
	第 3 级进口给水比焓	h _{lfwi, 3}	kJ/kg	$h_{\mathrm{lfwi},j} = h_{\mathrm{lfwo},j-1}$	379.068
	第 3 级出口给水比焓	$h_{ m lfwo,3}$	kJ/kg	$h_{\mathrm{lfwo},j} = h_{\mathrm{lfwi},j} + \Delta h_{\mathrm{fw}}$	495.28
	第 3 级进口给水温度	T _{lfwi, 3}	$^{\circ}\!\mathbb{C}$	按(p _{cwp} , h _{lfwi,j})查水蒸汽表	90.17
	第 3 级出口给水温度	$T_{\rm lfwo,3}$	$^{\circ}\! C$	按(p _{cwp} ,h _{lfwo,j})查水蒸汽表	117.77
	第 4 级进口给水比焓	h _{lfwi, 4}	kJ/kg	$h_{\mathrm{lfwi},j} = h_{\mathrm{lfwo},j ext{-}1}$	495.28

	第 4 级出口给水比焓	$h_{ m lfwo,4}$	kJ/kg	$h_{\mathrm{lfwo},j} = h_{\mathrm{lfwi},j} + \Delta h_{\mathrm{fw}}$	611.496
	第 4 级进口给水温度	$T_{ m lfwi,4}$	$^{\circ}$ C	按(p _{cwp} , h _{lfwi,j})查水蒸汽表	117.77
	第 4 级出口给水温度	$T_{ m lfwo,4}$	$^{\circ}$ C	接(p _{cwp} ,h _{lfwo,j})查水蒸汽表	145.07
	除氧器				
41	进口给水比焓	$h_{ m dea,i}$	kJ/kg	$h_{ m dea,i} = h_{ m lfwo,Zl}$	611.496
42	出口给水比焓	$h_{ m dea,o}$	kJ/kg	$h_{ m dea,o} = h_{ m dea,i} + \Delta h_{ m fw}$	727.71
43	出口给水温度	$T_{ m dea}$	$^{\circ}\!$	h _{dea,o} 对应的饱和水温度	171.94
44	运行压力	$p_{ m dea}$	MPa	T _{dea} 对应的饱和压力	0.8299
45	高压加热器给水参数				
	第 1 级进口给水比焓	$h_{ m hfwi,1}$	kJ/kg	$h_{\mathrm{hfwi},i} = h_{\mathrm{hfwo},i ext{-}I}$	727.71
	第 1 级出口给水比焓	$h_{ m hfwo,1}$	kJ/kg	$h_{ ext{hfwo},i} = h_{ ext{hfwi},i} + \Delta h_{ ext{fw}}$	844.08
	第 1 级进口给水温度	$T_{ m hfwi,1}$	$^{\circ}$	按(p _{fwp} , h _{hfwi,i})查水蒸汽表	171.07
	第 1 级出口给水温度	$T_{ m hfwo,1}$	$^{\circ}\!$	按(p _{fwp} , h _{hfwo,i})查水蒸汽表	197.61
	第 2 级进口给水比焓	$h_{ m hfwi,2}$	kJ/kg	$h_{\mathrm{hfwi},i} = h_{\mathrm{hfwo},i ext{-}1}$	844.08
	第 2 级出口给水比焓	$h_{ m hfwo,2}$	kJ/kg	$h_{ ext{hfwo},i} = h_{ ext{hfwi},i} + \Delta h_{ ext{fw}}$	960.45
	第 2 级进口给水温度	$T_{ m hfwi,2}$	$^{\circ}\!$	按(pfwp,hhfwi,i)查水蒸汽表	197.61
	第 2 级出口给水温度	$T_{ m hfwo,2}$	$^{\circ}\!$	按(pfwp,hhfwo,i)查水蒸汽表	223.4
46	高压缸抽汽($i=1,\dots,Z_h$)				
	第 1 级抽汽压力	Phes,1	MPa		1.6575
	第 1 级抽汽干度	$x_{\mathrm{hes},1}$	%		0.8878
	第 2 级抽汽压力	Phes,2	MPa		3.3052
	第 2 级抽汽干度	Xhes,2	%		0.9294

47	低压缸抽汽($j=1,\dots,Z_1$)			
	第 1 级抽汽压力	$p_{\mathrm{les,1}}$	MPa	0.0256
	第 1 级抽汽干度	Xles, 1	%	0.9345
	第 2 级抽汽压力	$p_{\mathrm{les},2}$	MPa	0.0802
	第 2 级抽汽干度	Xles, 2	%	0.9738
	第 3 级抽汽压力	$p_{\mathrm{les},3}$	MPa	0.2076
	第 3 级抽汽干度	Xles, 3	%	1.0
	第 4 级抽汽压力	$p_{\mathrm{les},4}$	MPa	0.4631
	第 4 级抽汽干度	Xles, 4	%	1.0

附表 3 热平衡计算结果汇总表

			以 并		计算结果				
序号	项目	符号	单位	1	2	3	•••	n	
1	核电厂效率	$\eta_{ m e,NPP}$	%	0.3	0.3	0.3		0.316	
2	反应堆热功率	Q_{R}	MW	3333	3333	3333		3167.8	
3	蒸汽发生器总蒸汽产量	$D_{\rm s}$	kg/s	1815.7	1815.7	1815.7		1725.5	
4	汽轮机高压缸耗汽量	$G_{ m s,hp}$	kg/s	2005.5	1097.3	1975.3		1534.2	
5	汽轮机低压缸耗汽量	$G_{ m s,lp}$	kg/s	871.24	1213.3	877.28		1049.2	
6	第一级再热器耗汽量	$G_{ m s,rh1}$	kg/s	57.11	79.5	57.51		68.78	
7	第二级再热器耗汽量	$G_{ m s,rh2}$	kg/s	61.63	85.8	62.06		74.22	
8	除氧器耗汽量	$G_{ m s,dea}$	kg/s	41.03	61.37	42.02		52.35	
9	给水泵汽轮机耗汽量	$G_{ m s,fwp}$	kg/s	109.7	121.57	121.57		115.54	
10	给水泵给水量	$G_{ m fw}$	kg/s	1833.8	1834.7	1834.7		1743.6	

11	给水泵扬程	$H_{ m fwp}$	MPa	6.97	6.97	6.97	6.97
12	高压缸抽汽量						
	第 1 级抽汽量	$G_{{ m hes},I}$	kg/s	103.35	105.53	108.53	101.22
	第 2 级抽汽量	$G_{ m hes,2}$	kg/s	122.53	115.73	119.28	111.08
13	低压缸抽汽量						
	第 1 级抽汽量	$G_{\mathrm{les},1}$	kg/s	45.46	61.63	46.33	53.84
	第 2 级抽汽量	$G_{\mathrm{les},2}$	kg/s	47.46	64.34	48.37	56.21
	第 3 级抽汽量	$G_{\mathrm{les},3}$	kg/s	49.72	67.41	50.68	58.89
	第 4 级抽汽量	$G_{\mathrm{les},4}$	kg/s	53.47	70.74	53.18	61.80

2. 计算程序

使用 python 语言编写

```
01."""
02.name:夏从義
03.time:2022.06.15
04."""
05.
06.import numpy as np
07.from iapws import IAPWS97 as ip
08.import math
09.
10.N e = 1000 # 核电厂输出电功率
11.η_1 = 0.99 # 一回路能量利用系数
12.x_fh = 0.9975 # 蒸汽发生器出口蒸汽干度
13.ξd = 0.0105 # 蒸汽发生器排污率
14.η_hi = 0.8207 # 高压缸内效率
15.η li = 0.8359 # 低压缸内效率
16.η_m = 0.98 # 汽轮机组机械效率
17.η_ge = 0.98 # 发电机效率
18.θ_hu = 3 # 高压给水加热器出口端差
19.θ_lu = 2 # 低压给水加热器出口端差
20.η_h = 0.99 # 加热器效率
21.η_fwpp = 0.58 # 给水泵效率
```

```
22.n fwpti = 0.8 # 给水泵汽轮机内效率
23.n fwptm = 0.9 # 给水泵汽轮机机械效率
24.η_fwptg = 0.98 # 给水泵汽轮机减速器效率
25.T swl = 24 # 循环冷却水进口温度
26.p c = 15.6 # 反应堆冷却剂系统运行压力
27.T_cs = ip(P=p_c,x=0).T - 273.15 # 冷却剂压力对应的饱和温度
28.ΔT sub = 16 # 反应堆出口冷却剂过冷度
29.T_co = T_cs - ΔT_sub # 反应堆出口冷却剂温度
30. ΔT_c = 35 # 反应堆进出口冷却剂温升
31. T_ci = T_co - ΔT_c # 反应堆进口冷却剂温度
32.p s = 6.5 # 蒸汽发生器饱和蒸汽压力
33.T fh = ip(P=p s, x=x fh).T - 273.15 # 蒸汽发生器饱和蒸汽温度
34.h_fh = ip(P=p_s, x=x_fh).h # 蒸汽发生器出口比焓
35.\Delta T m = (T co - T ci) / math.log((T co - T fh) / (T ci -
           T_fh)) # 对数平均温差
36.ΔT sw = 6 # 冷凝器中循环冷却水温升
37.δT = 5 # 冷凝器传热端差
38.T cd = T swl + ΔT sw + δT # 冷凝器凝结水饱和温度
39.p_cd = ip(T=T_cd + 273.15, x=0).P # 冷凝器运行压力
40.p_{fh} = p_{s}
41.
42.Δp_fh = 0.05 * p_fh # 新蒸汽压损
43.p hi = p fh - Δp fh # \overline{B} \overline{
44.h_hi = h_fh # 高压缸进口比焓
45.x hi = ip(P=p hi, h=h hi).x # 高压缸进口蒸汽干度
46.s_hi = ip(P=p_hi, h=h_hi).s # 高压缸进口熵
47.p_hz = 0.14 * p_hi # 高压缸排汽压力
48.h hzo = ip(P=p hz, s=s hi).h # 高压缸排汽理想比焓
49.h_hz = h_hi - (h_hi - h_hzo) * η_hi # 高压缸排汽真实焓值
50.x hz = ip(P=p hz, h=h hz).x # 高压缸出口干度
51.
52.Δp rh = 0.01 * p hz # 汽水分离再热器中每一级再热蒸汽压损
53.p spi = p hz # 汽水分离器进口压力
54.x_spi = x_hz # 汽水分离器进口干度
55.p_rh1i = p_spi - Δp_rh # 一级再热器进口压力
56.h_spz = ip(P=p_rh1i, x=0).h # 汽水分离器疏水比焓
57.x rh1i = 0.995 # 一级再热器进口干度
58.h_rh1i = ip(P=p_rh1i, x=x_rh1i).h # 一级再热器进口比焓
59.p rh2i = p rh1i - Δp rh # 二级再热器进口压力
60.p_rh2z = p_rh2i - Δp_rh # 二级再热器出口压力
61.p_rh2hs = p_hi # 二级再热器加热蒸汽进口压力
62.x_rh2hs = x_hi # 二级再热器加热蒸汽进口干度
63.T_rh2hs = ip(P=p_rh2hs, x=x_rh2hs).T - 273.15 # 二级再热器加热蒸汽
         温度
```

```
64.h rh2hs = h hi # 二级再热器加热蒸汽进口比焓
65.h rh2hz = ip(P=p rh2hs, x=0).h # 二级再热器加热蒸汽出口比焓
66.T_rh2z = T_rh2hs - 14 # 二级再热气出口温度
67.h_rh2z = ip(P=p_rh2z, T=T_rh2z + 273.15).h # 二级再热器出口比焓
68.Δh rh = 0.5 * (h rh2z - h rh1i) # 再热器中焓升
69.h_rh2i = h_rh2z - Δh_rh # 二级再热器进口比焓
70.T rh2i = ip(P=p rh2i, h=h rh2i).T - 273.15 # 二级再热器进口温度
71.
72.T rh1z = T rh2i # 一级再热器进口温度
73.T rh1hz = T rh1z + 14 # 一级再热器加热蒸汽温度
74.p_rh1hz = ip(T=T_rh1hz + 273.15, x=0).P # 一级再热器加热蒸汽压力
75.h rh1hz = ip(T=T rh1hz + 273.15, x=0).h # 一级再热器加热蒸汽出口焓
76.p rh1 = p rh1hz / 0.95 # 一级再热器抽汽压力
77.h_rh1hso = ip(P=p_rh1, s=s_hi).h # 一级再热器理想抽汽比焓
78.h_rh1hs = h_hi - (h_hi - h_rh1hso) * η_hi # 一级再热器真实抽汽比焓
79.x rh1hs = ip(P=p rh1hz, h=h rh1hs).x # 一级再热器加热蒸汽进口干度
80.
81. Δp_cd = 0.05 * p_cd # 低压缸排汽压损
82.p_lz = p_cd + Δp_cd # 低压缸排汽压力
83.h li = h rh2z # 低压缸进口比焓
84.p_li = p_rh2z # 低压缸进口压力
85.s li = ip(h=h li, P=p li).s # 低压缸进口熵
86.T_li = ip(h=h_li, P=p_li).T # 低压缸进口温度
87.h lho = ip(P=p lz, s=s li).h # 低压缸出口理想比焓
88.h_lo = h_li - (h_li - h_lho) * n_li # 低压缸出口真实比焓
89.x lz = ip(P=p lz, h=h lo).x # 低压缸排汽干度
90.
91.p_fw = p_s + 0.1 # 给水压力
92.h s = ip(P=p s, x=0).h # 蒸汽发生器运行压力下饱和水比焓
93.h_cd = ip(P=p_cd, x=0).h # 冷凝器出口凝结水比焓
94.Z 1 = 4 # 低压给水加热器级数
95. Z h = 2 # 高压给水加热器级数
96.Z = Z l + Z h + 1 # 回热级数(包括除氧器)
97. Δh_fwop = (h_s - h_cd) / (Z + 1) # 每一级加热器理论给水焓升
98.h_fwop = h_cd + Z * Δh_fwop # 最佳给水比焓
99.T fwop = ip(P=p fw, h=h fwop).T - 273.15 # 最佳给水温度
100.T_fw = 0.88 * T_fwop # 实际给水温度
101.h fw = ip(P=p fw, T=T fw + 273.15).h # 给水比焓
102.Δh_fw = (h_fw - h_cd) / Z # 每一级给水的实际焓升
103.
104.p dea = 0.96 * p hz # 除氧器运行压力(假定值)
105.h_deao = ip(P=p_dea, x=0).h # 除氧器出口比焓
106.T dea = ip(P=p dea, h=h deao) # 除氧器出口给水温度
```

```
107.
108.Δh_fwh = (h_fw - h_deao) / Z_h # 高压给水加热器每级焓升
109.Δh_fwl = (h_deao - h_cd) / (Z_l + 1) # 低压给水加热器每级焓升
110.p_cwp = 3.1 * p_dea # 凝水泵出口压力
111. p fwp = 1.2 * p s # 给水泵出口压力
112.Δp_fwh = (p_fwp - p_fw) / Z_h # 高压给水加热器每级压降
113. Δp_cwl = (p_cwp - p_dea) / (Z_l + 1) # 低压给水加热器每级压降
114.
115.# 第一级低压给水加热器
116. T_{\text{lew1}} = ip(P=p_{\text{cwp}} - \Delta p_{\text{cwl}}, h=h_{\text{cd}} + \Delta h_{\text{fwl}}).T
    273.15 + θ lu # 疏水温度
117.h lew1 = ip(T=T lew1 + 273.15, x=0).h # 疏水比焓
118.p_lew1 = ip(T=T_lew1 + 273.15, x=0).P # 疏水压力
119.p les1 = p lew1 / 0.95 # 抽汽压力
120.h_leso1 = ip(P=p_les1, s=s_li).h # 抽汽理想比焓
121.h_les1 = h_li - (h_li - h_leso1) * η_li # 抽汽真实比焓
122.x_les1 = ip(P=p_les1, h=h_les1).x # 抽汽干度
123.
124.# 第二级低压给水加热器
125.T_lew2 = ip(P=p_cwp - 2 * \Delta p_cwl, h=h_cd + 2 * \Delta h_fwl).T -
    273.15 + θ lu # 疏水温度
126.h_lew2 = ip(T=T_lew2 + 273.15, x=0).h # 疏水比焓
127.p lew2 = ip(T=T lew2 + 273.15, x=0).P # 疏水压力
128.p_les2 = p_lew2 / 0.95 # 抽汽压力
129.h_leso2 = ip(P=p_les2, s=s_li).h # 抽汽理想比焓
130.h_les2 = h_li - (h_li - h_leso2) * n_li # 抽汽真实比焓
131.x_les2 = ip(P=p_les2, h=h_les2).x # 抽汽干度
132.
133.# 第三级低压给水加热器
134.T lew3 = ip(P=p cwp - 3 * \Delta p cwl, h=h cd + 3 * \Delta h fwl).T -
    273.15 + θ_lu # 疏水温度
135.h lew3 = ip(T=T lew3 + 273.15, x=0).h # 疏水比焓
136.p_lew3 = ip(T=T_lew3 + 273.15, x=0).P # 疏水压力
137.p_les3 = p_lew3 / 0.95 # 抽汽压力
138.h_leso3 = ip(P=p_les3, s=s_li).h # 抽汽理想比焓
139.h_les3 = h_li - (h_li - h_leso3) * η_li # 抽汽真实比焓
140.x les3 = ip(P=p les3, h=h les3).x # 抽汽干度
141.
142.# 第四级低压给水加热器
143.T_lew4 = ip(P=p_cwp - 4 * \Delta p_cwl, h=h_cd + 4 * \Delta h_fwl).T -
    273.15 + θ lu # 疏水温度
144.h lew4 = ip(T=T lew4 + 273.15, x=0).h # 疏水比焓
145.p_lew4 = ip(T=T_lew4 + 273.15, x=0).P # 疏水压力
146.p les4 = p lew4 / 0.95 # 抽汽压力
```

```
147.h leso4 = ip(P=p les4, s=s li).h # 抽汽理想比焓
148.h_les4 = h_li - (h_li - h_leso4) * η_li # 抽汽真实比焓
149.x_les4 = ip(P=p_les4, h=h_les4).x # 抽汽干度
150.
151.# 第一级高压给水加热器
152.T_hew1 = ip(P=p_fwp - \Delta p_fwh, h=h_deao + \Delta h_fwh).T -
    273.15 + θ hu # 疏水温度
153.h_hew1 = ip(T=T_hew1 + 273.15, x=0).h # 疏水比焓
154.p_hew1 = ip(T=T_hew1 + 273.15, x=0).P # 疏水压力
155.p_hes1 = p_hew1 / 0.95 # 抽汽压力
156.h heso1 = ip(P=p hes1, s=s hi).h # 抽汽理想比焓
157.h hes1 = h hi - (h hi - h heso1) * η hi # 抽汽真实比焓
158.x_hes1 = ip(P=p_hes1, h=h_hes1).x # 抽汽干度
159.
160.# 第二级高压给水加热器
161. T_hew2 = ip(P=p_fwp - 2 * \Delta p_fwh, h=h_deao + 2 * \Delta h_fwh).T -
    273.15 + θ hu # 疏水温度
162.h hew2 = ip(T=T hew2 + 273.15, x=0).h # 疏水比焓
163.p_hew2 = ip(T=T_hew2 + 273.15, x=0).P # 疏水压力
164.p_hes2 = p_hew2 / 0.95 # 抽汽压力
165.h heso2 = ip(P=p hes2, s=s hi).h # 抽汽理想比焓
166.h_hes2 = h_hi - (h_hi - h_heso2) * η_hi # 抽汽真实比焓
167.x hes2 = ip(P=p hes2, h=h hes2).x # 抽汽干度
168.
169.print("T cs = " + str(T cs))
170.print("T_co = " + str(T_co))
171.print("T_ci = " + str(T_ci))
172.print("T_fh = " + str(T_fh))
173.print("\Delta T_m = " + str(\Delta T_m))
174.print("p cd = " + str(p cd))
175.print("p_hi = " + str(p_hi))
176.print("x_hi = " + str(x_hi))
177.print("p_hz = " + str(p_hz))
178.print("x_hz = " + str(x_hz))
179.print("p spi = " + str(p spi))
180.print("x_spi = " + str(x_spi))
181.print("p rh1i = " + str(p rh1i))
182.print("x_rh1i = " + str(x_rh1i))
183.print("p_rh1hs = " + str(p_rh1hz))
184.print("x_rh1hs = " + str(x_rh1hs))
185.print("p_rh2i = " + str(p_rh2i))
186.print("T rh2i = " + str(T rh2i))
187.print("p_rh2z = " + str(p_rh2z))
188.print("T_rh2z = " + str(T_rh2z))
```

```
189.print("p_rh2hs = " + str(p_rh2hs))
190.print("x_rh2hs = " + str(x_rh2hs))
191.print("p_li = " + str(p_li))
192.print("T li = " + str(T li))
193.print("p lz = " + str(p lz))
194.print("x_lz = " + str(x_lz))
195.print("\Delta h_f w = " + str(\Delta h_f w))
196.print(\Delta h_f = + str(\Delta h_f ))
197.print("\Deltah fwl = " + str(\Deltah fwl))
198.print("\033[0;35m====== 第1级低压给水加热器 ======\033[0m")
199.print("h_lfwi1 = " + str(h_cd))
200.print("h_lfwo1 = " + str(h_cd + \Deltah_fwl))
201.print("T_lfwi1 = " + str(ip(P=p_cwp, h=h_cd).T - 273.15))
202.print("T lfwo1 = " + str(T lew1 - \theta lu))
203.print("p_les1 = " + str(p_les1))
204.print("x_les1 = " + str(x_les1))
205.print("\033[0;35m====== 第2级低压给水加热器 ======\033[0m")
206.print("h_lfwi2 = " + str(h_cd + \Deltah_fwl))
207.print("h_lfwo2 = " + str(h_cd + 2 * \Delta h_fwl))
208.print("T_lfwi2 = " + str(ip(P=p_cwp -
    \Delta p \text{ cwl, h=h cd + } \Delta h \text{ fwl}).T - 273.15))
209.print("T_lfwo2 = " + str(T_lew2 - \theta_lu))
210.print("p les2 = " + str(p les2))
211.print("x_les2 = " + str(x_les2))
212.print("\033[0;35m====== 第 3 级低压给水加热器 ======\033[0m")
213.print("h_lfwi3 = " + str(h_cd + 2 * \Delta h_fwl))
214.print("h_lfwo3 = " + str(h_cd + \frac{3}{4} * \Deltah_fwl))
215.print("T_lfwi3 = " + str(ip(P=p_cwp -
    2 * \Delta p_cwl, h=h_cd + 2 * \Delta h_fwl).T - 273.15))
216.print("T_lfwo3 = " + str(T_lew3 - \theta_lu))
217.print("p_les3 = " + str(p_les3))
218.print("x_les3 = " + str(x_les3))
219.print("\033[0;35m====== 第 4 级低压给水加热器 ======\033[0m")
220.print("h_lfwi4 = " + str(h_cd + \frac{3}{4} * \Deltah_fwl))
221.print("h_lfwo4 = " + str(h_cd + 4 * \Delta h_fwl))
222.print("T_lfwi4 = " + str(ip(P=p_cwp -
    3 * \Delta p \text{ cwl}, \text{ h=h cd} + 3 * \Delta h \text{ fwl}).T - 273.15))
223.print("T_lfwo4 = " + str(T_lew4 - \theta_lu))
224.print("p_les4 = " + str(p_les4))
225.print("x_les4 = " + str(x_les4))
226.print("\033[0;32m======= 除氧器 ======\033[0m")
227.print("h deai = " + str(h cd + 4 * \Delta h fwl))
228.print("h_deao = " + str(h_deao))
229.print("T_dea = " + str(T_dea))
```

```
230.print("p_dea = " + str(p_dea))
231.print("\033[0;36m====== 第1级高压给水加热器 ======\033[0m")
232.print("h_hfwi1 = " + str(h_deao))
233.print("h hfwo1 = " + str(h deao + \Deltah fwh))
234.print("T hfwi1 = " + str(ip(P=p fwp, h=h deao).T - \frac{273.15}{1})
235.print("T_hfw01 = " + str(T_hew1 - \theta_hu))
236.print("h_hes1 = " + str(h_hes1))
237.print("x_hes1 = " + str(x_hes1))
238.print("\033[0;36m====== 第2级高压给水加热器 ======\033[0m")
239.print("h_hfwi2 = " + str(h_deao + \Deltah_fwh))
240.print("h_hfwo2 = " + str(h_deao + 2 * \Delta h_fwh))
241.print("T_hfwi2 = " + str(ip(P=p_fwp -
              \Delta p_{\text{fwh}}, h=h_deao + \Delta h_{\text{fwh}}).T - 273.15))
242.print("T hfw02 = " + str(T hew2 - \theta hu))
243.print("h_hes2 = " + str(h_hes2))
244.print("x_hes2 = " + str(x_hes2))
245.print("\033[0;31m----- 循环开始-
          \033[0m")
246.
247.η_eNPP = 0.3 # 假定核电厂效率初值
248.G cd = 1000 # 假定冷凝器出口凝结水流量初值
249. while True:
250. Q_R = N_e / η_eNPP # 反应堆热功率
251.
                           D_s = Q_R * \eta_1 * 1000 / ((h_fh - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (1 + \xi d) * (h_s - h_s) + (h_s 
             h fw)) # 总蒸汽产量
                           G_fw = (1 + ξd) * D_s # 蒸汽发生器给水流量
252.
                            H_fwp = p_fwp - p_dea # 给水泵扬程
253.
254.
                           \rho_{\text{fw}} = 0.5 * (ip(P=p_{\text{fwp}}, h=h_{\text{deao}}).rho + ip(P=p_{\text{dea}}, x=0).r
         ho) # 给水泵内密度
                            N fwpp = 1000 * G fw * H fwp / p fw # 给水泵有效功率
255.
256.
                           N_{\text{fwpt}} = N_{\text{fwpp}} / (\eta_{\text{fwpp}} * \eta_{\text{fwpti}} * \eta_{\text{fwptm}} * \eta_{\text{fwptg}})
       给水泵汽轮机有效功率
257.
                            H a = h hi - h hz # 给水泵汽轮机内的绝热焓降
258.
                        G_sfwp = N_fwpt / H_a # 给水泵汽轮机耗汽量
259.
                           while True:
260.
                                         # 低压给水加热器抽汽量
261.
                                         G_{les4} = G_{cd} * \Delta h_{fwl} / (\eta_h * (h_{les4} - h_{lew4})) # #
262.
          四级
263.
                                         G_{les3} = (G_{cd} * \Delta h_{fwl} - \eta_h * G_{les4} * (h_{lew4} - \eta_h * G_{les4})
              h_lew3)) / (η_h * (h_les3 - h_lew3)) # 第三级
264.
                                         G les2 = (G cd * \Delta h fwl -
             \eta_h * (G_{les4} + G_{les3}) * (h_{lew3} - h_{lew2})) / (\eta_h * (h_{les2} - h_{lew2})) / (\eta_h 
             h lew2)) # 第二级
```

```
265.
           G_{les1} = (G_{cd} * \Delta h_{fwl} -
    \eta_h * (G_{les4} + G_{les3} + G_{les2}) * (h_{lew2} -
    h_lew1)) / (η_h * (h_les1 - h_lew1)) # 第一级
266.
267.
            G slp = G cd - ξd * D s - G sfwp # 低压缸耗汽量
268.
            G_{srh1} = G_{slp} * (h_{rh2i} - h_{rh1i}) / (\eta_h * (h_{rh1hs} - h_{rh1i}) / (\eta_h * (h_{rh1hs} - h_{rh1i}))
  h_rh1hz)) # 第一级再热器抽汽量
            G_{srh2} = G_{slp} * (h_{rh2z} - h_{rh2i}) / (\eta_h * (h_{rh2hs} - h_{rh2i})) / (\eta_h * (h_{rh2hs} - h_{rh2i}))
269.
    h_rh2hz)) # 第一级再热器抽汽量
270.
271.
            # 高压给水加热器抽汽量
272.
            G_{hes2} = (G_{fw} * \Delta h_{fwh} - \eta_h * G_{srh2} * (h_{rh2hz} - \eta_h + G_{srh2})
   h_hew2)) / (η_h * (h_hes2 - h_hew2)) # 二级
273.
            G hes1 = (G fw * \Deltah fwh -
   \eta_h * ((G_srh2 + G_hes2) * (h_hew2 -
    h hew1) + G srh1 * (h rh1hz - h hew1))) / (n h * (h hes1 -
    h hew1)) # 一级
274.
275.
            G_fss = G_slp * (x_rh1i - x_spi) / x_spi # 汽水分离器疏
   水量
           h deai = h cd + 4 * Δh fwl # 除氧器入口给水比焓
276.
            G_sdea = (G_fss * (h_spz -
277.
    h deao) + (G srh1 + G srh2 + G hes1 + G hes2) * (h hew1 -
    h_deao) + G_cd * (h_deai - h_deao)) / (η_h * (h_deao -
    h hz)) # 除氧器抽汽量
278.
           N tl = (G slp * (h li - h lo) + G les4 * (h li -
   h_les4) + G_les3 * (h_li - h_les3) + G_les2 * (h_li -
   h les2) + G les1 * (h li - h les1)) * η ge * η li * η m # 低压缸
  发电功率
279.
            N th = 1000 * N e - N tl # 高压缸发电功率
280.
           G_{shp} = (N_{th} / (\eta_{ge} * \eta_{hi} * \eta_{m}) - G_{hes1} * (h_{hi} - \eta_{ge})
   h_hes1) - G_hes2 * (h_hi - h_hes2) - G_srh1 * (h_hi -
  h rh1hs)) / (h hi - h hz) # 高压缸耗汽量
281.
       D s new = G srh2 + G shp + G sfwp # 蒸汽发生器总蒸汽产量
282.
283.
            G fw new = (1 + \xi d) * D s new # 蒸汽发生器给水量(新)
            G_{cd_new} = G_{fw_new} - G_{fss} - G_{hes2} - G_{hes1} - G_{srh2} -
284.
   G srh1 - G sdea # 凝结水流量(新)
            Q_R_{new} = (D_s_{new} * (h_fh -
   h_fw) + ξd * D_s_new * (h_s - h_fw)) / (η_1 * 1000) # 反应堆热功
  率 (新)
            η_eNPP_new = N_e / Q_R_new # 核电厂效率
286.
287.
```

```
print("\033[0;34m\eta_eNPP\033[0m" + " = " + str(\eta_eNPP))
288.
                                  print("Q_R = " + str(Q_R))
289.
                                  print("D_s = " + str(D_s))
290.
291.
                                  print("G shp = " + str(G shp))
292.
                                  print("G slp = " + str(G slp))
293.
                                  print("G_srh1 = " + str(G_srh1))
                                  print("G_srh2 = " + str(G_srh2))
294.
                                  print("G_sdea = " + str(G_sdea))
295.
                                  print("G sfwp = " + str(G_sfwp))
296.
297.
                                  print("G_fw = " + str(G_fw))
                                  print("H_fwp = " + str(H_fwp))
298.
299.
                                  print("\033[0;36mG_hes1\033[0m" + " = " + str(G_hes1))
300.
                                  print("\033[0;36mG_hes2\033[0m" + " = " + str(G_hes2)))
                                  print("\033[0;35mG les1\033[0m" + " = " + str(G les1))
301.
                                  print("\033[0;35mG_les2\033[0m" + " = " + str(G_les2)))
302.
303.
                                  print("\033[0;35mG les3\033[0m" + " = " + str(G les3))]
                                  print("\033[0;35mG_les4\033[0m" + " = " + str(G_les4))
304.
305.
                                  print("----- 分 割 线 ----
306.
307.
                                  if abs((G_cd_new - G_cd) / G_cd) < 0.01:</pre>
308.
                                             break
309.
                                  else:
310.
                                             G_{cd} = 0.5 * (G_{cd} new + G_{cd})
                       Q_{R_new} = (D_{s_new} * (h_{fh} - h_{fw}) + \xi d * D_{s_new} * (h_{s} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{fw}) + \xi d * D_{s_new} * (h_{s_new} - h_{f
311.
           h fw)) / (n 1 * 1000) # 反应堆热功率 (新)
312.
                       η_eNPP_new = N_e / Q_R_new # 核电厂效率
313.
                       if abs((\eta_eNPP_new - \eta_eNPP) / \eta_eNPP) < 0.001:
314.
                                 break
315.
                       else:
316.
                                  \eta eNPP = \eta eNPP new
317.
```

3. 热力线图