Pattern Recognition and Machine Learning 5. Neural Networks

Seungyong Moon

Seoul National University

April 27th, 2018

Outline

- Feed-forward Network Functions
 - Neural Network
 - Weight-space Symmetries
- Network Training
 - Parameter Optimization
 - Descent Optimization
- 3 Error Backpropagation
 - Evaluation of Error-function Derivatives
- The Hessian Matrix
 - Approximation of Hessian
 - Exact Evaluation of the Hessian
 - Fast Multiplication by the Hessian

Outline

- Feed-forward Network Functions
 - Neural Network
 - Weight-space Symmetries
- 2 Network Training
 - Parameter Optimization
 - Descent Optimization
- 3 Error Backpropagation
 - Evaluation of Error-function Derivatives
- The Hessian Matrix
 - Approximation of Hessian
 - Exact Evaluation of the Hessian
 - Fast Multiplication by the Hessian

Linear models for the regression and classification

linear combination of basis functions

$$y(\mathbf{x}, \mathbf{w}) = f(\sum_{j=1}^{M} w_j \phi_j(\mathbf{x}))$$

x : an input vector

 \mathbf{w} : a set of parameters

 $\{\phi_j\}$: a set of basis function

f: nonlinear function

Neural Network

 In neural networks, each basis function is a nonlinear function of a linear combination of input.

$$\mathbf{y} = f(W\mathbf{x} + \mathbf{b})$$

 ${\bf x}$: an input vector with dimension D

W: a M \times D matrix

b : a bias vector with dimension D

f: an activation function

Neural Network

Figure: Network diagram for two-layer neural network

Neural networks is a series of the transformations(layers).

Neural Network as Universal Approximator

• Neural networks can be expressed as below.

$$\mathbf{y} = f_n(...f_2(W_2(f_1(W_1\mathbf{x} + \mathbf{b_1})) + \mathbf{b_2})... + \mathbf{b_n})$$

- Our purpose: Given $\{\mathbf{x}_i, \mathbf{y}_i\}_i$, find a function that maps \mathbf{x}_i to \mathbf{y}_i approximately.
- Can we do that using neural network?

Neural Network as Universal Approximator

• It is proved by George Cybenko in 1989 for sigmoid activation function.

Outline

- Feed-forward Network Functions
 - Neural Network
 - Weight-space Symmetries
- Network Training
 - Parameter Optimization
 - Descent Optimization
- Error Backpropagation
 - Evaluation of Error-function Derivatives
- The Hessian Matrix
 - Approximation of Hessian
 - Exact Evaluation of the Hessian
 - Fast Multiplication by the Hessian

Weight-space Symmetries

- In neural network, multiple distinct choices for the parameters can give the same mapping function.
- It means that the dimension of parameter(weight) space is extremely high.

Weight-space Symmetries

Outline

- Feed-forward Network Functions
 - Neural Network
 - Weight-space Symmetries
- 2 Network Training
 - Parameter Optimization
 - Descent Optimization
- 3 Error Backpropagation
 - Evaluation of Error-function Derivatives
- The Hessian Matrix
 - Approximation of Hessian
 - Exact Evaluation of the Hessian
 - Fast Multiplication by the Hessian

Loss Function of Neural Network

The loss(error) function of neural network is defined as follows.

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \|\mathbf{y}(\mathbf{x}_n, \mathbf{w}) - \mathbf{t}_n\|^2$$

 \mathbf{x}_n : an input vector

 $\mathbf{y}(\cdot,\cdot)$: an output of neural network

w: a parameter vector

 $\mathbf{t_n}$: the real output corresponding to \mathbf{x}_n

Probabilistic Interpretation

one dimensional case

• Suppose t has a univariate normal distribution.

$$|\mathbf{t}|_{\mathbf{x},\mathbf{w}} \sim N(y(\mathbf{x},\mathbf{w}),\beta^{-1})$$

If we apply MLE, we obtain the error function.

$$\frac{\beta}{2} \sum_{n=1}^{N} \|\mathbf{y}(\mathbf{x}_n, \mathbf{w}) - \mathbf{t}_n\|^2 - \frac{N}{2} \ln \beta + \frac{N}{2} \ln (2\pi)$$

Probabilistic Interpretation

one dimensional case

• Once we have found the optimal \mathbf{w} (denote \mathbf{w}_{ML}), we can calculate β .

$$\frac{1}{\beta_{ML}} = \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{y}(\mathbf{x}_n, \mathbf{w}_{ML}) - \mathbf{t}_n\|^2$$

Probabilistic Interpretation

K-dimensional case

Suppose t has a multivariate normal distribution.

$$|\mathbf{t}|_{\mathbf{x},\mathbf{w}} \sim \mathcal{N}(y(\mathbf{x},\mathbf{w}), \beta^{-1}I)$$

• If we apply MLE, the error function is also propotional to.

$$\sum_{n=1}^{N} \|\mathbf{y}(\mathbf{x}_n, \mathbf{w}) - \mathbf{t}_n\|^2$$

• and β is given by

$$\beta_{ML}^{-1}I = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{y}(\mathbf{x}_n, \mathbf{w}) - \mathbf{t}_n) (\mathbf{y}(\mathbf{x}_n, \mathbf{w}) - \mathbf{t}_n)^T$$
$$\frac{1}{\beta_{ML}} = \frac{1}{NK} \sum_{n=1}^{N} \|\mathbf{y}(\mathbf{x}_n, \mathbf{w}) - \mathbf{t}_n\|^2$$

Binary Classifier

- Think about a binary classifier in which we have a single target variable t such that t = 1 denotes class 1 and t = 0 denotes class 2.
- How to train the binary classifier using neural network?

Binary Classifier

- Consider a neural network whose the last activation function is sigmoid function.
- And, suppose t has a Bernoulli distribution of the form

$$t|_{\mathbf{x},\mathbf{w}} \sim B(1,y(\mathbf{x},\mathbf{w}))$$

After applying MLE, we get a loss function as follows.

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln (1 - y_n)\}$$

• We call it cross-entropy loss function

Multi-class Classifier

- Consider the case where each input is assigned to one of K mutually exclusive classes.
- Suppose $\mathbf{t}(=\{t_k\})$ is one-hot encoding vector indicating the class, and the activation function of the output layer is softmax.
- Also, suppose that t has a distribution as follows.

$$p(t_k = 1 | \mathbf{x}, \mathbf{w}) = y_k(\mathbf{x}, \mathbf{w})$$

 $y_k : k$ th element of the output

Multi-class Classifier

 After calculating the negative log likelihood of the distribution. we can get the loss function.

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} (\mathbf{t}_n)_k \ln y(\mathbf{x}_n, \mathbf{w})$$

Parameter Optimisation

- Our goal: Given $E(\mathbf{w})$, find the optimal \mathbf{w}^*
- How to find?
 - Analytic method
 - Iterative method

Outline

- Feed-forward Network Functions
 - Neural Network
 - Weight-space Symmetries
- 2 Network Training
 - Parameter Optimization
 - Descent Optimization
- 3 Error Backpropagation
 - Evaluation of Error-function Derivatives
- The Hessian Matrix
 - Approximation of Hessian
 - Exact Evaluation of the Hessian
 - Fast Multiplication by the Hessian

Descent Method

Descent method

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + t^{(k)} \Delta \mathbf{w}^{(k)}$$

 $t^{(k)}$: step size at time k

 $\Delta \mathbf{w}^{(k)}$: search direction

Gradient Descent Method

• General descent method with $\Delta \mathbf{w}^{(k)} = -\nabla E(\mathbf{w}^{(k)})$

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - t^{(k)} \nabla E(\mathbf{w}^{(k)})$$
$$t^{(k)} : \text{step size at time k}$$

Taylor expansion

• The error function can be approximated by

$$E(\mathbf{w} + \mathbf{v}) \approx E(\mathbf{w}) + \nabla E(\mathbf{w})\mathbf{v} + \frac{1}{2}\mathbf{v}^T \nabla^2 E(\mathbf{w})\mathbf{v}$$

• At a local minimum, the Hessian matrix is positive definite.

Taylor Expansion

- Find the optimal v that minimize the quadratic approximation.
- After differentiating the quadratic function with respect to \mathbf{v} , we can get the following result.

$$\nabla E(\mathbf{w}) = -\nabla^2 E(\mathbf{w}) v$$
$$v = -(\nabla^2 E(\mathbf{w}))^{-1} \nabla E(\mathbf{w})$$

Newton's Method

ullet General descent method with $\Delta \mathbf{w}^{(k)} = -(
abla^2 E(\mathbf{w}^{(k)}))^{-1}
abla E(\mathbf{w}^{(k)})$

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - t^{(k)} (\nabla^2 E(\mathbf{w}^{(k)}))^{-1} \nabla E(\mathbf{w}^{(k)}))$$
$$t^{(k)} : \text{step size at time k}$$

Stochastic Gradient Method

Suppose that the error function has a form as below.

$$E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{x}_n, \mathbf{w})$$

• Then, the gradient of the error function is

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} \nabla E_n(\mathbf{x}_n, \mathbf{w})$$

 If the number of terms is large, it is very expensive to compute the gradient of the error function at each step.

Stochastic Gradient Method

 Just pick one data point randomly, and make an update to the weight vector based on the point at each step.

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - t^{(k)} \nabla E_n(\mathbf{x}_n, \mathbf{w}^{(k)})$$

 or splits the data into small batches and compute the gradient on each (mini)batch.

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - t^{(k)} \sum_{i=1}^{M} \nabla E_{n_i}(\mathbf{x}_{n_i}, \mathbf{w}^{(k)})$$

where $\{\mathbf{x}_{n_1}, \mathbf{x}_{n_2}, \dots, \mathbf{x}_{n_M}\}$ is a batch

Outline

- Feed-forward Network Functions
 - Neural Network
 - Weight-space Symmetries
- 2 Network Training
 - Parameter Optimization
 - Descent Optimization
- 3 Error Backpropagation
 - Evaluation of Error-function Derivatives
- The Hessian Matrix
 - Approximation of Hessian
 - Exact Evaluation of the Hessian
 - Fast Multiplication by the Hessian

Evaluation of Error-function Derivatives

- Forward propagation of 'value'
- Back propagation of 'gradient'
 - By chain rule

Matrix Differentiation Revisited

- Suppose $f(\mathbf{x}) = W\mathbf{x}$ where W is a $m \times n$ matrix.
- Then, the gradient of f_k (kth element of f) with respect to W_{ij} is

$$\frac{\partial f_k}{\partial W_{ij}} = \delta_{ik} \mathbf{x}_j$$

BackProp in Fully-connected Layers

Outline

- Feed-forward Network Functions
 - Neural Network
 - Weight-space Symmetries
- 2 Network Training
 - Parameter Optimization
 - Descent Optimization
- 3 Error Backpropagation
 - Evaluation of Error-function Derivatives
- 4 The Hessian Matrix
 - Approximation of Hessian
 - Exact Evaluation of the Hessian
 - Fast Multiplication by the Hessian

Diagonal approximation

- We need the inverse of the Hessian, rather than the Hessian itself.
- Construct diagonal approximation to the Hessian so that we can easily calculate the inverse of the Hessian.

Diagonal approximation

- Consider a layer $\mathbf{y} = W\mathbf{x}$ where \mathbf{x} is the output of the previous layer.(Don't think about an activation function now)
- Also, consider that an error function that consists of a sum of terms, one for each data point, so that $E = \sum_n E_n$
- Then, the gradient of E_n with respect to W is

$$\frac{\partial E_n}{\partial W_{ij}} = \frac{\partial E_n}{\partial \mathbf{y}_i} \mathbf{x}_j$$

and the diagonal elements of the Hessian is

$$\frac{\partial^2 E_n}{\partial W_{ij}^2} = \frac{\partial^2 E_n}{\partial \mathbf{y}_i^2} \mathbf{x}_j^2$$

Diagonal approximation

- $\frac{\partial^2 E_n}{\partial \mathbf{y}_i^2}$ can be found recursively.
- Suppose f is an activation function whose input is \mathbf{y} , and $\mathbf{z} = \tilde{W}f(\mathbf{y})$ be the next layer.
- Then, the gradient of E_n with respect to **y** is

$$\frac{\partial E_n}{\partial \mathbf{y}_i} = f'(\mathbf{y}_i) \sum_k \frac{\partial E_n}{\partial \mathbf{z}_k} \tilde{W}_{ki}$$

the diagonal elements of the Hessian is

$$\frac{\partial^2 E_n}{\partial \mathbf{y}_i^2} = f'(\mathbf{y}_i)^2 \sum_k \frac{\partial E_n}{\partial \mathbf{z}_k} \tilde{W}_{ki} + f''(\mathbf{y}_i) \sum_{k'} \sum_k \frac{\partial^2 E_n}{\partial \mathbf{z}_{k'} \partial \mathbf{z}_k} \tilde{W}_{k'i} \tilde{W}_{ki}$$

Diagonal approximation

• If we neglect off-diagonal elements, we obtain

$$\frac{\partial^2 E_n}{\partial \mathbf{y}_i^2} = f'(\mathbf{y}_i)^2 \sum_k \frac{\partial E_n}{\partial \mathbf{z}_k} \tilde{W}_{ki} + f''(\mathbf{y}_i) \sum_k \frac{\partial^2 E_n}{\partial \mathbf{z}_k^2} \tilde{W}_{ki}^2$$

Diagonal approximation

- Time complexity: O(W)
 - ullet where W is the number of parameters
- In practice, the Hessian is typically non-diagonal.

Suppose a sum-of-squares of error function

$$E = \frac{1}{2} \sum_{n=1}^{N} (y_n - t_n)^2$$

 $(y_n \text{ and } t_n \text{ is a scalar value})$

• Then, the Hessian of the error function is

$$\nabla^2 E = \sum_{n=1}^N \nabla y_n \nabla y_n^T + \sum_{n=1}^N (y_n - t_n) \nabla^2 y_n$$

• If the network has been trained on the data set, then y_n will be very close to t_n , and the second term will be small.

Therefore the Hessian can be expressed as

$$\nabla^2 E \approx \sum_{n=1}^N \nabla y_n \nabla y_n^T$$

• ∇y_n can be evaluated by back propagation.

 Consider the case of the cross-entropy error function for a network with logistic sigmoid activation function.

$$E = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln (1 - y_n)\}$$

• Let a_n be the output vector without activation. That is,

$$y_n = \sigma(a_n) = \frac{1}{1 + \exp(-a_n)}$$

Then, the error function can be expressed as

$$E = -\sum_{n=1}^{N} \left\{ t_n \ln \frac{1}{1 + \exp(-a_n)} + (1 - t_n) \ln (1 - \frac{1}{1 + \exp(-a_n)}) \right\}$$
$$= \sum_{n=1}^{N} \{ \ln (1 + \exp(-a_n)) + (1 - t_n) a_n) \}$$

 If we differentiate the equation with respect to W, then we can get the following.

$$\nabla E = \sum_{n=1}^{N} \left\{ -\frac{\exp(-a_n)}{1 + \exp(-a_n)} \nabla a_n + (1 - t_n) \nabla a_n \right\}$$
$$= \sum_{n=1}^{N} (y_n - t_n) \nabla a_n$$

• Them the Hessian of the error function is,

$$\nabla^2 E = \sum_{n=1}^N \frac{\partial y_n}{\partial a_n} \nabla a_n \nabla a_n + (y_n - t_n) \nabla^2 a_n$$

• If we neglect the last term and apply the property of logistic sigmoid function, $\sigma'(x) = \sigma(x)(1 - \sigma(x))$, then we can get the following result.

$$abla^2 E pprox \sum_{n=1}^N y_n (1-y_n)
abla a_n
abla a_n$$

Inverse Hessian

- We can use the outer product approximation to approximate the inverse of the Hessian.
- Suppose the Hessian has a form as

$$H = \nabla^2 E \approx \sum_{n=1}^N \nabla y_n \nabla y_n^T$$

• and denote H_k a partial sum of H

$$H_k = \sum_{n=1}^k \nabla y_n \nabla y_n^T$$

Inverse Hessian

Then we can get a recurrence relation

$$H_{k+1} = H_k + \nabla y_{k+1} \nabla y_{k+1}^T$$

and if we apply the following matrix identity

$$(M + \mathbf{v}\mathbf{v}^T)^{-1} = M^{-1} - \frac{(M^{-1}\mathbf{v})(\mathbf{v}^T M^{-1})}{1 + \mathbf{v}^T M^{-1}\mathbf{v}}$$

on the relation, we obtain

$$H_{k+1}^{-1} = H_k^{-1} - \frac{(H_k^{-1} \nabla y_{k+1})(\nabla y_{k+1}^T H_k^{-1})}{1 + \nabla y_{k+1}^T H_k^{-1} \nabla y_{k+1}}$$

Inverse Hessian

- We call it Symmetric Rank 1(SR1) method.
- Usually we choose the initial matrix to be αI .

Quasi-Newton Method

- Quasi-Newton nonlinear optimization algorithms gradually build up an approximation to the inverse of the Hessian during training
 - SR1
 - BFGS
 - L-BFGS
- Usually works very well in full batch, but not transfer well to mini-batch setting.

Finite Difference Method

• Evaluate the second derivative by using finite difference.

$$\frac{\partial^2 E}{\partial w_{ij}\partial w_{kl}} = \frac{1}{4\epsilon^2} \{ E(w_{ij} + \epsilon, w_{kl} + \epsilon) - E(w_{ij} + \epsilon, w_{kl} - \epsilon) - E(w_{ij} - \epsilon, w_{kl} + \epsilon) + E(w_{ij} - \epsilon, w_{kl} - \epsilon) \} + O(\epsilon^2)$$

Finite Difference Method

- ullet Needs W^2 perturbations
 - ullet where W is the number of parameters
- Needs O(W) operations for each forward propagation.
- Time complexity: $O(W^3)$

Finite Difference Method

 A more efficient version of numerical differentiation can be found by applying central differences to the first derivatives of the error function.

$$\frac{\partial^2 E}{\partial w_{ij} \partial w_{kl}} = \frac{1}{2\epsilon} \left\{ \frac{\partial E}{\partial w_{ij}} (w_{kl} + \epsilon) - \frac{\partial E}{\partial w_{ij}} (w_{kl} - \epsilon) \right\} + O(\epsilon^2)$$

• Time complexity: $O(W^2)$

Outline

- Feed-forward Network Functions
 - Neural Network
 - Weight-space Symmetries
- 2 Network Training
 - Parameter Optimization
 - Descent Optimization
- 3 Error Backpropagation
 - Evaluation of Error-function Derivatives
- The Hessian Matrix
 - Approximation of Hessian
 - Exact Evaluation of the Hessian
 - Fast Multiplication by the Hessian

Exact Evaluation of the Hessian

- The Hessian can be evaluated exactly, using extension of the technique of back propagation.
- See more details in Bishop(1992)

Outline

- Feed-forward Network Functions
 - Neural Network
 - Weight-space Symmetries
- 2 Network Training
 - Parameter Optimization
 - Descent Optimization
- 3 Error Backpropagation
 - Evaluation of Error-function Derivatives
- The Hessian Matrix
 - Approximation of Hessian
 - Exact Evaluation of the Hessian
 - Fast Multiplication by the Hessian

- The quantity of interest is not the Hessian matrix H itself but the product of H with some vector \mathbf{v} .
- Evaluate $\mathbf{v}^T H$ directly.

- $\mathbf{v}^T H = \mathbf{v}^T \nabla (\nabla E)$
- Consider ∇E as a function on the weight space, and $v^T \nabla$ as an operator on function space.
- Actually, $v^T \nabla$ is a differential operator.(Think about the definition of directional derivative)
- Let $\mathcal{R}\{\cdot\} = \mathbf{v}^T \nabla$
- ullet Trivially, $\mathcal{R}\{oldsymbol{w}\}=\mathcal{R}\{\emph{I}(oldsymbol{w})\}=oldsymbol{v}$

Consider a neural network with 2 layers.

$$a_{j} = \sum_{i} w_{ji} x_{i}$$
$$z_{j} = h(a_{j})$$
$$y_{k} = \sum_{j} w_{kj} z_{j}$$

• Now, we act on these equations using $\mathcal{R}\{\cdot\}$, and we can get the following.

$$\mathcal{R}\{a_j\} = \sum_{i} v_{ji} x_i$$

$$\mathcal{R}\{z_j\} = h'(a_j) \mathcal{R}\{a_j\}$$

$$\mathcal{R}\{y_k\} = \sum_{i} w_{kj} \mathcal{R}\{z_j\} + \sum_{i} v_{kj} x_j$$
(1)

where v_{ii} is the element of the vector v that corresponds to w_{ii}

• Suppose that the error function is a sum of squares function. Then the following holds.

$$\delta_k = \frac{\partial E}{\partial y_k} = y_k - t_k$$
$$\delta_j = \frac{\partial E}{\partial a_j} = h'(a_j) \sum_k w_{kj} \delta_k$$

• If we act on the equation with $\mathcal{R}\{\cdot\}$, we obtain

$$\mathcal{R}\{\delta_k\} = \mathcal{R}\{y_k\}$$

$$\mathcal{R}\{\delta_j\} = h''(a_j)\mathcal{R}\{a_j\} \sum_k w_{kj}\delta_k$$

$$+ h'(a_j) \sum_k v_{kj}\delta_k + h'(a_j) \sum_k w_{kj}\mathcal{R}\{\delta_k\}$$

ullet Finally if we acting on the equation below with the $\mathcal{R}\{\cdot\}$

$$\frac{\partial E}{\partial w_{kj}} = \delta_k z_j$$
$$\frac{\partial E}{\partial w_{ji}} = \delta_j x_i$$

we can get

$$\mathcal{R}\left\{\frac{\partial E}{\partial w_{kj}}\right\} = \mathcal{R}\{\delta_k\}x_j + \delta_k\mathcal{R}\{x_j\}$$
$$\mathcal{R}\left\{\frac{\partial E}{\partial w_{ii}}\right\} = x_i\mathcal{R}\{\delta_j\}$$

each of which is corresponding to an element of $\mathbf{v}^T H$