

데이터 편향성이 예측에 미치는 영향 1

▶ 티쳐블머신을 이용한 이미지 식별

구글 티처블 미산(Teachable Machine)

- https://teachablemachine.withgoogle.com/
- ▶ 이미지, 사운드, 자세를 인식하여 검사
- ▶ 웹기반으로 기계학습 모델을 생성
- ▶ 사용법
 - ▶ 1. 이미지 모으기
 - ▶ 학습시키고자하는 이미지들을 수집
 - ▶ 이미지 그룹별로 그룹핑하는 것이 좋음
 - ▶ 2. 이미지 데이터 업로드(Image Upload)
 - ▶ 3. 학습(Train)
 - ▶ 4. 내보내기
 - ▶ 모델 파일을 다운로드하거나 온라인으로 요청하여 데이터 수신

시작하기

Teachable Machine

이미지, 사운드, 자세를 인식하도록 컴퓨 터를 학습시키세요.

사이트, 앱 등에 사용할 수 있는 머신러닝 모델을 쉽고 빠르게 만들어 보세요. 전문지식이나 코딩 능력이 필요하지 않습니다.

시작하기

⚠ Drive에 있는 기존 프로젝트를 엽니다.

×

파일 또는 웹캠에서 가져온 이미지 를 기반으로 학습시키세요.

이미지 프로젝트

오디오 프로젝트

파일 또는 마이크에서 가져온 1초 분량의 사운드를 기반으로 학습시 키세요.

포즈 프로젝트

파일 또는 웹캠에서 가져온 이미지 를 기반으로 학습시키세요.

'새 이미지 프로젝트

표준 이미지 모델

대부분의 용도에 적합

224 x 224px 컬러 이미지

TensorFlow, TFLite, TF.js로 내보내기

모델 크기: 약 5mb

삽입된 이미지 모델

마이크로 컨트롤러에 적합

96 x 96px 그레이스케일 이미지 마이크로컨트롤러용 TFLite, TFLite, TF.js로 내보내기 모델 크기: 약 500kb

이 모델을 지원하는 하드웨어를 확인하세요.

남지 가 여지 이의 클래스 생성과 학습데이터 업로도

▶ 지도학습 모델 만들기

학습시키기

테스트시키기

생각할 문제

▶ 인공지능 모델은 남자와 여자를 정확하게 구분하였는가?

▶ 인공지능 모델이 남자와 여자를 정확하게 구분하지 못하는 이유는 무엇일까?

▶ 만약 목욕탕에서 여러분이 만든 인공지능 모델로 남자와 여자를 구분하여 출입을 허용한다면 어떤 일이 일어날까?

생각할 문제(답)

- ▶ 인공지능 모델은 남자와 여자를 정확하게 구분하였는가?
 - ▶ 구별하지 못함

- ▶ 인공지능 모델이 남자와 여자를 정확하게 구분하지 못하는 이유는 무엇일까?
 - ▶ 남성은 짧은 머리, 여성은 긴머리로 학습

▶ 만약 목욕탕에서 여러분이 만든 인공지능 모델로 남자와 여자를 구분하여 출 입을 허용한다면 어떤 일이 일어날까?

테스트 결과

새 프로젝트 생성하기

새 프로젝트

이미지 프로젝트

를 기반으로 학습시키세요.

파일 또는 웹캠에서 가져온 이미지

🖿 파일에서 기존 프로젝트를 엽니다.

오디오 프로젝트

파일 또는 마이크에서 가져온 1초 분량의 사운드를 기반으로 학습시 키세요.

포즈 프로젝트

파일 또는 웹캠에서 가져온 이미지 를 기반으로 학습시키세요.

Jniversity

학습데이터2로 학습모델 만들기

테스트시키기

생각할 문제

▶ 다시 학습시킨 인공지능 모델은 남자와 여자를 정확하게 구분하였는가?

▶ 인공지능 모델이 남자와 여자를 정확하게 구분했다면 그 이유는 무엇이고 그 렇지 못한 이유는 무엇일까?

▶ 나이가 이러한 인공지능 모델이 신용평가, 재범예측, 채용 등에 사용된다면 어떠한 문제가 있을 수 있을까?

생각할 문제(정탑)

- ▶ 다시 학습시킨 인공지능 모델은 남자와 여자를 정확하게 구분하였는가?
 - ▶ 구분
- ▶ 인공지능 모델이 남자와 여자를 정확하게 구분했다면 그 이유는 무엇이고 그렇지 못 한 이유는 무엇일까?
 - ▶ 다양한 머리 모양을 가진 여성과 남성으로 학습
- ▶ 나이가 이러한 인공지능 모델이 신용평가, 재범예측, 채용 등에 사용된 다면 어떠한 문제가 있을 수 있을까?
 - ▶ 인공지능 모델을 만들 때 특정 집단의 특징을 모두 반영하지 못한 데이터를 학습시키면 결 과는 정확하지 않을 수 있음
 - ▶ 이와 같은 현상을 인공지능 편향 또는 데이터 편향이라고 함
 - ▶ 인공지능 편향이 발생하면 인공지능으로 인해 차별받는 사람이 생길 수 있음

테스트 결과

스스로 해보기

- ▶ 이외 어떠한 경우 데이터 편향이 발생활 수 있을까?
 - ▶ 한쪽 그룹의 데이터만 많이 학습 시키는 경우

" 인공지능은 지금까지의 전통적인 사회적 편견을 학습하여 사회적 편향을 더욱 강화시킬 수도 있다"

정리

- ▶ 인공지능 편향/ 데이터 편향
 - ▶ 인공지능 모델을 만들 때 특정 집단의 특징을 모두 반영하지 못한 데이터를 학습시킴으로써 나타나는 현상
- ▶ 인공지능 편향으로 나타나는 문제
 - ▶ 인공지능 편향은 공정하지 못한 인공지능 모델을 생성
 - ▶ 공정하지 못한 인공지능은 인종차별, 남녀차별 등의 문제를 일으킴
- ▶ 인공지능을 개발과 사용에 있어 윤리가 필요한 까닭
 - ▶ 인공지능 개발자는 인공지능 모델을 학습시킬 데이터를 제공하고 제공되는 데이터는 불완전 성과 결함을 가질 수 있음
 - ▶ 인공지능은 사람의 손으로 만들어지기 때문에 사람의 생각이 반영될 수 밖에 없음
 - ▶ 인공지능 사용자는 인공지능에 대한 맹목적 신뢰는 경계할 필요가 있음
 - ▶ 공정한 인공지능을 만들기 위한 노력이 필요함

인공지능과 데이터 윤리

류현수 rhs@ssu.ac.kr

머신러닝에서의 범활 수 있는 오류

켄터키주의 결혼율과 고깃배에서 떨어져 익시한 사람 수

▶ 상관계수 : 0.95

일반적으로 상관계수가 0.3이상이면 약한상관 관계, 0.7이상 1에 가까울 수록 높은 상관관계

People who drowned after falling out of a fishing boat

correlates with

Marriage rate in Kentucky

출처 : https://tylervigen.com/

메인주의 이혼율과 1인당 마기린 소비량

▶ 상관계수 : 0.99

Divorce rate in Maine

correlates with

Per capita consumption of margarine

tylervigen.com

출처 : https://tylervigen.com/

수영장에서 익시한 사람과 미국 핵발전소 생산량

▶ 상관계수 : 0.90

Number people who drowned while in a swimming-pool

correlates with

Power generated by US nuclear power plants

출처 : https://tylervigen.com/

상관관계 vs 인과관계

▶ 상관관계

- ▶ 데이터에서 어떠한 변인(변수)과 다른 여러 변인(변수)들 간의 관련성
- ▶ 한 변수가 변화함에 따라 다른 변수가 어떻게 변화하는가?와 같은 변화의 강도와 방향
- ▶ 상관계수 : 두 변수 사이의 상관 관계의 정도를 수치적으로 나타낸 계수
 - ▶ -1~1 까지의 값, 음수이면 음의상관, 양수이면 양의 상관, 0이면 관계없음
- ▶ 활용 예)
 - ▶ 자동차 보험가입 시 운전자 정보제공(나이, 성별, 결혼)
 - ▶ 대학입시에서 내신성적과, 수학능력 고려

▶ 인과관계

- ▶ 원인과 결과의 관계로 하나의 원인이 다른 결과를 일으키는 관계
- ▶ "상관은 인과를 함축하지 않는다. (Correlation does not imply causation)"
 - ▶ 상관이 있는 것만으로 인과를 단정하지 못하고 인과의 전제에 지나지 않음

상관관계 vs 인과관계

▶ 인공지능의 예측

▶ 머신러닝은 관찰된 행동에 대한 데이터를 근거로 상관관계가 충분하면, 새로운 데이터에 대해서도 결정을 내릴 수 있다는 가정에 기반

▶ 레모네이드 판매량 예측의 예

학습데이터 셋 (training data set)

		HL 🗆 🗆 🗇	
날짜	온도	방문고객 수	판매량
2021.1.3	20	20	40
2021.1.4	21	54	42
2021.1.5	22	21	44
2021.1.6	23	30	46
2021.1.7	24	10	48

판매량과 상관관계가 높은 학습피쳐 선별

온도	판매량
20	40
21	42
22	44
23	46
24	48

학습을 통한 모델 생성

새로운 데이터에 대한 예측

날짜	온도	판매량
2021.1.8	26	?
2021.1.9	27	?

상관관계 vs 인과관계

- ▶ "검중되지 않은 순수한 가설은 팩트로 여겨지지 않는다."
 - ▶ 팩드를 찾는 학문적 방법
 - ▶ 여러 번의 검증을 거쳐, 실험에서 반박할 수 없는 결과가 나온가설들만 이론이 됨
 - ▶ 이 이론의 예측이 통제된 반복된 실험에서 여러 번 옳은 것으로 입증되어야 팩트로 받아들여짐
 - ▶ 학문적 방법을 무시하고, 머신러닝 알고리즘으로부터 나온 상관관계만을 신뢰하여 실제 예측에 활용하는데는 위험성있으며 예측의 활용에 신중함이 필요함

데이터의 불완전성과 결함에 따른 예측 오류와 차별

데이터 안의 차별

▶ 아마존 AI 채용시스템

- ▶ 2014년 아마존 자동평가 시스템을 구축하여 활용하고자 했으나 폐기
- ▶ 인픗으로 이전 **1**0년간 지원서류가 활용
- ▶ 지원자들의 이력서에 1개에서 5개 사이의 별점을 부여하도록 고안
- ▶ 100개의 이력서를 주고 프로그램이 상위 5개를 추천하면 채용하는 방식
- → 남성 지원자를 선호하는 패턴 발견
- ▶ 10년간 지원서류(이 시기 성공적인 지원자들은 거의 남성)
- ▶ 성별을 인풋으로 넣지 않아도 성별과 상관관계가 있는 특성을 찾아냄
- ▶ 지원서류에 성별관련 특성이 나타나면 나쁜점수 부여
 - ▶ 이력서에 '여자 체스서클 '에서 활동했다고 되어있으면 부정적 평가
 - ▶ 여대 졸업증명서는 더 부정적으로 평가

데이터 안의 차별

- ▶ 학습데이터의 편향성이 미치는 영향
 - ▶ 이전 학습데이터에서 민감한 특성과 관련해 편향된 결과가 있었다면
 알고리즘이 배후에 놓인 민감한 특성을 알지못한다 해도 그 특성과 다른 특성의 상관관계를 통해 편향을 찾아낼 수 있음
 - ▶ 머신러닝은 지금까지의 선호 경향을 더 강화시켜 더더욱 단일한 문화로 나가아게끔 할 수 있어, 편향을 더 강화시킬 수도 있음

▶ 특정그룹의 데이터 부쪽으로 인한 차별

조이 부올람위니 (Joy Buolamwini) 테트토그(201*7*)

"How I'm fighting bias in algorithm"

출처 : https://www.youtube.com/watch?v=UG X 7g63rY

▶ 안면인식 시스템 편향성 사례

구분	세부내용
국립표준기술연구 소(NIST)	 안면인식 알고리즘이 여성, 성소수자, 흑인을 포함한 유색인종을 잘 인식해내지 못함 (2019년, 12월) 백인 대비 흑인과 아시아인의 정확도가 10~100배 떨어짐
콜로라도 대볼더 캠퍼스	 기업들이 제공하는 안면인식 서비스가 생물학적 성과 정체성이 일치하지 않는 '비시스 젠더(non-cisgender)'의 인식에 많은 오류를 보임(2019년 10월) 시스젠더를 인식하는 오류는 5%, 트랜스 남성을 여성으로 잘못인식하는 경우가 38%
BBC 보도	- 영국의 여권사진 검사시스템은 흑인 여성 사진을 백인 남성사진보다 여권 규정에 <mark>부적</mark> 합하다고 판정 내릴 가능성이 두 배 이상 높음 (2020년 10월)
미국시민 자유연맹 (ACLU)	- <mark>아마존의 안면인식기술 '레코그니션</mark> '을 이용해 미국 상하원 의원을 식별한 결과, 28명을 '범죄자'로 판별, 이중 유색인종이 11명이었고 이는 <mark>유색인종에 대한 불공정 가능성 존재</mark> (2018년 8월)

출처 : 안면인식 도입의 사회적 논란과 시사점: 미국사례 중심으로, ERTI Insight 기술정책 브리프 2020.12

▶ MIT Gender Shades 프로젝트

- ▶ 상용화된 안면인식기술의 성별 분류 정확도를 모니터링하는 프로젝트
- ▶ 조사결과 IBM, 마이크로소프트 등과 같은 회사의 안면인식 시스템은 백인일수록, 남성 일수록 더 좋은 식별 성능을 나타냄
- ▶ 가장 정확도가 낮은 흑인 여성과의 가장 높은 백인남성과의 정확도 차이는 약 35%p 수준

분류	흑인남성	흑인여성	백인남성	백인여성	최대격차
마이크로소 프트	94.0%	79.2%	100%	98.3%	20.8%
FACE++	99.3%	65.5%	99.2%	94.0%	33.8%
IBM	88.0%	65.3%	99.7%	92.9%	34.4%

- ▶ 이미지(영상) 인식 시스템
 - ▶ 의료영역의 다양한 인종의 데이터 부족으로 인한 차별
 - ▶ 선진국에서 이루어진 연구들을 토대로 주로 백인 대상이 많음
 - ▶ 인공지능을 활용한 의료분야에서도 데이터부족으로 특정 그룹은 의료 혜택을 받지 못하는 차별이 발생할 수 있음
- ▶ 음성인식 시스템
 - ▶ 음성인터페이스는 지판이나 마우스보다 더 상용화 될 것으로 예상
 - ▶ 엘리베이터, 비자신청 등
 - ▶ 악센트가 강한 사람들, 사투리를 쓰는 사람, 언어장애가 있는 사람들이 음성인식 서비스를 받는데 차별이 발생할 수 있음
- ▶ 인터넷과 디지털기기 접근이 낮은 국가나 여성들의 데이터 부족이로 인한 차별 가능성이 존재

민감한 정보를 누락시킴으로써 빚어지는 차별

▶ 범죄자와 무고한 시민을 구별하는 예

민감한 정보를 누락시킴으로써 빚어지는 차별

▶ 범죄자와 무고한 시민을 구별하는 예

민감한 정보를 누락시킴으로써 빚어지는 차별

- ▶ 범죄지와 무고한 시민을 구별하는 예
 - ▶ 머신이 민감한 특성을 대면하지 못하는 상태에서 두 집단의 행동이 차이가 날때 차별적 인 결정이 빚어질 수 있음

← 남성 차별의 분할선

: 두 명의 무고한 남성을 재범자 측에 분류 재범을 저지른 두 여성을 무고한 시민으로 분류

※ 민감한 특성(성별)을 알고리즘에 알려주지 않았지만 불이익이 빚어질 수 있음

현실의 마이너리티 리포트

- ▶ 예측 *I안(Predictive Policing)
 - ▶ 기계학습을 통한 특정 시기, 특정 장소에서 피해자가 될 가능성이 높은 사람과 가해자가 될 가능성이 높은 사람을 구별
 - ▶ 판결이나 가석방시 재범 가능성 계산

구분	세부내용
컴파스 (COMPAS)	 미국 노스포인트사에서 개발한 인공지능 유사한 다른 범죄자들의 기록과 특정 범죄자의 정보를 빅데이터 분석을 통해범죄자의 재범 가능성을 예측 위스콘신 주에서 활용, 유타, 버지니아, 인디애나 주 등 유사한 소프트웨어 활용
프레트폴 (PrePol)	 미국 캘리포니아주립대(UCLA)에서 개발한 범죄 정보를 분석해 10~12시간 뒤 범죄가 일어 날 시간과 장소를 도출하는 프로그램 캘리포니아, 워싱턴, 사우스 캐롤라이나, 아리조나, 테네시, 일리노이 등 미국 일부지역과 영국, 네덜란드 등에 적용
갱단 범죄 예방 프로그램 (Complete Analytics Pilot Program to Fight Gang Grime)	 액센추어사에서 개발 영국 경찰에서 운용하는 강력 범죄 예측 프로그램 5년 내 범죄 기록을 수집, 갱 조직원이 저지른 개인 범죄 기록의 날짜, 장소, 행동, SNS 게시물, 조직 내 다른 멤버를 욕하는 듯한 발언 등 세세히 수집범죄

다이나믹 학습을 통한 차별

- ▶ 2016년 마이크로소트 챗봇 '테이tay'
 - ▶ 컴퓨터가 인간 언어를 이해할 수 있도록하기 위한 MS실험 프로젝트
 - ▶ 미국 18~24세 연령층 사용자를 겨냥
 - ▶ 메시지 킥, 그룹미, 트위터를 통해 사람과 대화
 - ▶ AI 신경망 기술 기반으로 인간들의 대화의 단어사용법, 질문에 대답하는 방식, 특정사안에 관한 정보, 의견 등을 학습하여 반응에 반영
 - ▶ 차별 발언으로 공개 16시간 만에 운영 중단
- ▶ 2020년 국내 스캐너랩 '이루다'
 - ▶ 혐오, 혐별 발언 및 개인정보유출 등 유사한 문제로 약 3주 만에 종료
 - ▶ 인공지능 윤리에 대한 논의를 본격화 시킴
- ▶ 혐오적인 표현을 블랙리스트로 관리하며 자동필터링 하는 것은 한계가 있음
 - ▶ 우회적인 표현 등은 필터링이 어려움

fam from the internet that's got zero chill! The more you talk the smarter Tay gets

● the internets分 tay.ai/#aboutⅢ 가입일: 2015년 12월

편향적 데이터를 학습한 인공지능

- ▶ 2018년 MIT에서 개발한 세계최초 사이코패스 로봇 '노먼'
 - ▶ http://norman-ai.mit.edu/
 - ▶ 편향된 데이터가 기계학습 알고리즘에 사용될 때 어떤 결과를 야기하는지를 보여주기 위한 연구목적으로 개발
 - ▶ 미국 대표 소셜뉴스사이트 '레딧(Reddit)'에서 주로 죽음 등을 다루는 어둡고 부정적인 게시물로 학습

로드샤흐(Rorschach) 테스트 결과

- 표준 AI로봇 : 나무 가지 위에 앉아 있는 새들
- 노먼 : 한 남자가 감전되어 죽음에 이른다.

기술의 윤리적 사용을 위한 울직임

▶ 기술의 윤리적 사용을 위한 자성과 규제의 올직임

- ▶ 완전하지 않은 이미지/음성 인식 기술의 성급한 사용에 대한 정부의 책임 강조
- ▶ 현재 미국의 연방의회 및 일부 지방정부에서는 정부 기관의 안면, 음성, 바이오, 보행 인식 사용의 법안 통과 또는 금지
- ▶ 영국은 세계 최초로 경찰 안면인식 기술 사용의 위법성을 인정
- ▶ 산업계(마이크로소프트, 아마존, IBM, 트위터, 페이스북 등)에서는 서비스 나품 및 사용을 유예하거나 철수하고 문제 해결을 위한 전담팀 발쪽하여 개선

인공지능의 개요와 머신러닝의 학습방법

목차

- ▶ 인공지능의 정의와 분류
- ▶ 머신러닝의 학습방법
 - ▶ 지도학습
 - ▶ 비지도학습
 - ▶ 강화학습

학습 목표

- ▶ 인공지능의 정의와 분류를 설명할 수 있다
- ▶ 인공지능의 용어간 관계를 설명할 수 있다.
- ▶ 머신러닝의 학습방법(지도/비지도/강화)에 대해 설명할 수 있다.

지난시간 배운 내용

주	주제	온라인	오프라인	
1	인공지능의 과거 현재와 미래	1. 강의 및 교과목 소개(공통, 핵심만) 2. 인공지능의 과거와 현재 3. 인공지능의 미래와 다양한 시선 4. 인공지능 개발환경 구축과 사용법(Anaconda)	1. 강의 및 교과목 소개(분반별, 자세히) 2. 인공지능 개발환경 구축과 사용법(Colab)	
2	공공데이터를 이용한 사회문제 발견과 해결책 모색	1. 빅데이터의 정의와 가치 2. 공공데이터 수집하기 3. 공공데이터로부터 새로운 인사이트 발견하기 - 행정구역별 인구 데이터와 공공의료기관 현황 데이터 분석	1. 서울시 CCTV설치 현황 분석하기 2. 서울시 범죄발생 현황 분석하기	
3		1. 인공지능의 정의와 분류 2. 인공지능 학습방법 이해하기 3. 인공지능 알고리즘 소개	1. 머신러닝을 이용한 이미지 식별(구글 티쳐블 머신) 2. 머신러닝을 이용한 보스톤 집값 예측	
4	인공지능과 데이터 윤리	1. 데이터의 불완전성과 결함에 따른 예측 오류와 차별 2. 데이터 편향성이 예측에 미치는 영향 (구글티처블머신) 3. 지도학습(SVM)을 이용한 타이타닉호 생존자 예측	1. 타이타닉호 생존자 예측- 데이터 편향성이 예측에 미치는 영향- 데이터 왜곡에 따른 예측 결과 비교	
5	인공지능과 알고리즘 윤리	1. 알고리즘과 모델링의 개요 2. 알고리즘 기반 의사결정 시스템의 한계 3. 윤리가 필요한 인공지능 4. 오렌지3 설치 및 사용법	1. 오렌지3를 이용한 알고리즘에 따른 예측 결과 비교 - 보스톤 집값 예측 - 폐암환자 생존 여부 예측	
6	인승시등에 내안 으리저 재저고	 자율시스템으로써의 인공지능과 딥러닝 인공지능 안전성과 윤리 인공지능의 윤리적 쟁점 (자율주행자동차, AI로봇, 트랜스휴먼, 프라이버시 문제) 	1. 비윤리적 데이터 생성과 수집 - 웹 스크레핑(크롤링)을 이용한 데이터 수집	
7		기말고시	ŀ	sity

인공지능의 개요

인공지능의 정의

- ▶ 인공지능(Al, Artificial Intelligence) 이란?
 - ▶ 사람과 유사한 지능을 가지도록 인간의 학습능력, 추론능력, 지각능력, 자연어 이해능력 등을 컴퓨터 프로그램으로 실현하는 기술
 - ▶ 문제 해결을 위해 상황을 인지하고, 파악하고 추론하여 답을 얻어내는 인간의 지능을 컴 퓨터가 가질 수 있도록 실현한 기술
 - ▶ 1956년 다트머스 학회에서 존 매커시(John McCarty) 교수가 처음 인공지능이라는 용어를 창안

"기계를 인간 행동의 지식에서와 같이 행동하게 만드는 것"

인공지능의 분류

좁은 인공지능 (Narrow AI)

- 스스로 사고해 문제를 해결할 수 있는 능력이 없는 컴퓨터 기반 AI
- 특정분야에 국한된 인공지능
- 특정 영역에서 인간보다 나은 성과
- Alphgo, Watson, Siri

3 stages of AI

일반 인공지능 (General AI)

- ▶ <mark>스스로 사고</mark>해 문제를 해결할 수 <mark>있는</mark> 능력을 가진 컴퓨터 기반 AI
- 인간 수준의 능력을 가진 인공지능
- 모든 분야에 적용될 수 있는 인공지능
- 자각력과 독립성을 갖춤

- 인간보다 100~1000배 (IQ 1만~10만) 뛰어난 지능을 가진 AI
- 효율, 자기보존, 자원획득, 창의성 같은 원초적 욕구를 기반으로 끊임없이 자기 발전

인공지능의 용어간 관계

Now

- 인공지능(Artificial Intelligence)
- 인간과 비슷하게 시고하는 컴퓨터의 지능을 구현하는 포괄적 개념
- 미스러닝(Artificial Intelligence)
- 데이터를 입력해 컴퓨터를 학습시키거나 스스로 배우게 해 인공지능 성능을 향상시키는 방법
- 딜러닝(Deep Learning)

Future (?)

- 머신러닝의 한 분야로 신경망 (Neural Network)을 통해서 학습하는 방법

이미지 출처 : https://www.datakeen.co/en/what-is-artificial-intelligence/

Soongsil University

머신러닝의 학습방법

미산건 (Machine Learning)

▶ 머신러닝이란?

- ▶ 대량의 데이터와 알고리즘을 기반으로 경험을 통해 학습하여 데이터의 특징과 패턴을 발견
- ▶ 프로그래머가 명시적으로 코딩하지 않고 자기 개선과 예제를 통해 학습
- ▶ 학습으로 얻어진 정보를 기반으로 미래의 임의의 데이터에 대한 결과(값, 분포)를 예측
- ▶ 머신러닝에 필요한 주요 요소
 - ▶ 다양한 형식의 데이터 (동영상, 이미지, 텍스트, 로그, html, xml, xlsx 등)
 - ▶ 알고리즘 : 컴퓨터에게 지능(생각)을 심어주는 부분
 - ▶ 수학적 통계 모델, 의사결정트리, 서포트벡터머신, 신경망 등

머신러닝의 학습 방법

머신러닝의 학습 방법

지도학습

- ▶ 지도학습 (Supervised Learning)
 - ▶ 학습할 데이터와 명시적인 정답(레이블)을 이용해 데이터의 특성과 분포를 학습하여 새로운 데이터에 대해 미래결과를 예측하는 방법
 - ▶ 과거의 데이터로부터 학습하여 결과를 예측하는데 주로 사용

- ▶ 분류(Classification)
 - ▶ 학습데이터를 이용해 주어진 입력값이 어떤 종류인지 구별하는 것
- ▶ 회귀(Regression)
 - ▶ 학습 데이터를 이용해 연속적인(숫자) 값을 예측하는 것

지도학습

- ▶ 분류(Classification)
 - ▶ 개와 고양이 분류 예

학습데이터 셋 (training data set)

독립변수 종속변수

이미지 데이터	눈모양	귀모양	정답(label/ Class)		
P.	1	2	Dog		
00	2	3	Cat		
62	1	4	Dog		
1.27	2	5	Cat		
	3	6	Dog		

③ 이것은 개? 고양이?

학습되지 않는 새로운 데이터

지도학습

▶ 회귀(Regression)

▶ 일별 온도와 레모네이드 판매량 예측 예

학습데이터 셋 (training data set)

독립변수 종속변수

날짜	온도	판매량
2021.1.3	20	40
2021.1.4	21	42
2021.1.5	22	44
2021.1.6	23	46
2021.1.7	24	48

데이터의 분포를 가장 잘

날짜	온도	판매량
2021.1.8	26	52
2021.1.9	27	54

③ 1.8과 1.9의 판매량은?

날짜	온도	판매량
2021.1.8	26	?
2021.1.9	27	?

학습되지 않는 새로운 데이터

지도학습의 예

▶ 분류(Classification)

▶ 가지고 있는 데이터에 독립/종속 변수가 있고 종속변수가 이름(범주형 데이터)일 때 사용

독립변수	종속변수
공부시간	합격여부 (합격/불합격)
엑스선 사진과 영상 속 중양의 크 기, 두메	악성 쭁양 여부(양성/음성)
풀종, 산도, 당도, 지역, 연도	와인의 등급
키, 몸무게, 시력, 지병	현역, 공익, 면제
메일발신인, 제목, 본문내용(^i용 단어, 이모티콘 등)	스팸 메일 여부
고기의 지방함량, 지방색, 성숙도, 육색	소고기 등급

▶ 회귀(Regression)

▶ 가지고 있는 데이터에 독립/종속 변수가 있고 종 속변수가 숫자(양적 데이터) 일 때 사용

독립변수	종 속변수
공부시간	시험점수
온도	레모네이드 판매량
역세권, 조망 등	집값
온실 기체량	기온 변화량
자동차 속도	충돌 시 사망 확률
나이	اد

머신러닝의 학습 방법

비지도학습

- ▶ 비지도학습(Unsupervised Learning)
 - ▶ 학습할 데이터에 정답이 없이 명확한 해를 계산하는 대신 입력 데이터만으로 숨겨진 특징이나 패턴을 학습을 통해 발견하는 방법
 - ▶ 군집(Clustering)
 - ▶ 사전 정보가 없는 주어진 데이터들에서 공통적인 요소들을 찾아 유사성이 높은 군들끼리 다른 그룹으로 나누는 방법

- ▶ 연관규칙(Association rule)
 - ▶ 주어진 데이터에서 어떤 항목이 어떤 항목을 동반하여 등장하는지, 항목들 간에 연관규칙을 찾는 방법

비지도학습

▶ 군집(Clustering)

▶ 전국적으로 분포하는 사용자에게 최적의 배달을 위한 배달 본부 배치 예

사용자 위치 데이터

사용자명	위도	경도
Α	7	1
В	6	2
С	2	3
D	1	3
E	5	5
F	4	5
•••	•••	•••

사용자명	위도	경도	그룹
Α	7	1	1
В	6	2	'
С	2	3	2
D	1	3	2
E	5	5	2
F	4	5	3
•••	•••	•••	

비지도학습

▶ 연관규칙(Association rule)

▶ 음악추천 예

음악 구매 내역 (구매한 가수 1, 구매하지 않는 가수 O)

	사용자 1	사용자 2	사용자 3	사용자 4
BTS	1	0	0	1
브루노마스	1	0	0	0
아이유	1	0	0	1
마룬5	0	1	1	0
퀸	0	1	0	0

※ 미른5와 디른 기수의 유사도 계산

유사도 =
$$\cos \theta = \frac{A \cdot B}{\|A\| \cdot \|B\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$
 코사인유사도 = $\frac{0 \times 0 + 1 \times 1 + 1 \times 0 + 0 \times 0}{\sqrt{0^2 + 1^2 + 1^2 + 0^2} \times \sqrt{0^2 + 1^2 + 0^2 + 0^2}} = \frac{1}{\sqrt{2} \times \sqrt{1}} = 0.71$

미른5와 다른 가수의 유사도 계산

	BTS	브루노 마스	아이유	마룬5	퀸
마룬5	0	0	0	1	0.71

'마룬 5'를 구매한 사용자 3에게 '퀸'의 노래 추천

머신러닝의 학습 방법

머신러닝의 학습 방법

강화학습

▶ 강화학습 (Reinforcement learning)

- ▶ 학습의 주체가 어떤 환경에서의 시행착오의 경험을 통해 학습
- ▶ 지도학습과의 차이는 사람으로부터 학습을 받는 것이 아니라, 변화되는 환경으로부터 보상과 벌을 반복하며 학습한다는 차이를 가짐
 - ▶ 알파고 바둑의 기본 규칙과 자체 경기를 통해 습득한 3,000만 개의 기보를 학습한 후 스스로 대국하며 훈련하는 강화학습 알고리즘을 사용해 개발됨
 - ▶ 자율 주행 자동차와 드론 분야 등에서 활용

▶ Q-러닝

▶주어진 환경(state)에서 주체(agent)가 현재의 상태(state)를 관찰하며 선택할 수 있는 행동(action)들 중 가장 최대의 보상(reward)을 가져다주는 행동이 무엇인지 정책 데이터를 지속적으로 업데이트하는 알고리즘

Q 러닝

▶ 로봇에게 강화학습을 시키는 예

▶ 목표 : 출발점(S)에서 시작하여 도착점(G)까지 구멍(H)에 빠지지 않고 도착

현재상태 (State): 16개의 격자 중 하나

학습주체 (Agent) : 로보트

행동 (Action) : 상하좌우 이동, 제지리

보상 (Reward) : 도착점에 도달 시 +1점

Q러닝

- ▶ 로봇에게 강화학습을 시키는 예
 - ▶ 보상과 벌점의 반복을 통해 경로를 학습
 - 녹색박스 바로 앞에서 녹색격지로 이동한 마지막 행위에 +1
 - <u>빨간</u> +1점의 격지로 들어서는 경우 +1점

강화학습 예

▶ 벽돌깨기 게임의 강화학습 예

https://www.youtube.com/watch?v=V1eYniJORnk

IT 분야 취업 이야기

- 1. IT 관련 공기업 및 금융기관 면접 및 서류 심사
 - 코스콤, KB 국민은행, 한전KDN, 코레일, 농협, 삼성 SSAFY, 국립공원공단, 정보통신기획평가원 등 면접 위원
 - 수출입은행, 금융결제원, 한국무역보험공사 서류전형 평가 위원
 - 프로그래밍 실력을 테스트하기 위한 코딩 테스트를 치루고 있음
- 2. IT 업종 특징
 - •중소기업에서 대기업으로 이동
 - Eo 유튜브: https://youtu.be/anua-taEpvY

성공의 키워드: 신기술(컴퓨터)+경영

스티브잡스

빌게이츠

안철수

김범수

래리페이지 세르게이브린

마크 저커버그

> 3. 2021년 4월 포브스 기준 세계 부자 순위

순위	이름	직함	재산
1	제프 베조스 ^[1]	아마존닷컴 CEO	1,964억 달러 (한화 약 220조 1,600억 원)
2	베르나르 아르노[2]	LVMH 회장	1,686억 달러 (한화 약 189조 1,100억 원)
3	일론 머스크	테슬라, 스페이스X CEO	1,669억 달러 (한화 약 187조 1,000억 원)
4	빌 게이츠	마이크로소프트 공동창업주	1,304억 달러 (한화 약 146조 1,800억 원)
5	마크 저커버그	페이스북 CEO	1,138억 달러 (한화 약 127조 5,700억 원)
6	워렌 버핏	버크셔 해서웨이 회장	1,006억 달러 (한화 약 112조 7,700억 원)
7	래리 엘리슨	오라클 CTO	1,000억 달러 (한화 약 111조 2,200억 원)
8	래리 페이지	구글 공동창업주	
9	세르게이 브린	구글 공동창업주	3. 2021년 4월 한국 부자 순위

로레알 상속녀

https://namu.wiki/w/세계%20부자%20순위

[편집]

슨위

미국의 유명 경제 전문지 포브스의 억만장자 순위를 기반으로 만들었으며, 몇몇 억만장자들의 재산의 액수가 똑같이 표기된 이유는 포브스가 1억 달러(한화 약 1,000억 원) 미만의 재산을 반올림 흑은 반내림하기 때문이다. 때문에, 재산의 액수가 같게 표기된 인물들 중 누구의 재산이 미세하게^[1] 더 많은지는 '순위' 옆 에 '세계 순위'에서 확인 가능하다.

순위	세계 순위	이름	소속	재산
0	66 ^[2]	이건화	삼성그룹 회장	209억 달러 (한화 약 23조 3,400억 원) ^[3]
1	132	서정진	셀트리온 회장	144억 달러 (한화 약 16조 4,200억 원)
2	152	김정주	NXC 대표이사	141억 달러 (한화 약 15조 7,400억 원)
3	194	김범수	카카오 의장	118억 달러 (한화 약 13조 1,800억 원)
4	260	이재용	삼성전자 부회장 ^[4]	92억 달러 (한화 약 10조 2,700억 원)
5	397	권혁빈	스마일게이트 의장	68억 달러 (한화 약 7조 5,900억 원)
6	458	정몽구	현대자동차그룹 명예회장	61억 달러 (한화 약 6조 8,100억 원)

https://namu.wiki/w/한국%20부자%20순위

프랑수아즈 베탕쿠르 메예르스[3]

파이썬(Python) 언어

- 텍스트 기반 프로그래밍 언어
- 사용하기 쉽고 많은 성능을 가지고 있는 오픈 소스
- 사물인터넷 등 구현, 빅데이터 분석, AI 구현
- 파이썬이 엑셀과 파워포인트 대체
- 파이썬 기초 1-1학기, 빅데이터 분석 및 AI 1-2학기 를 교양 필수로 하는 대학 증가
- 다수 대학과 기업에서 파이썬 자격증 과정 도입

컴퓨팅 사고력을 높이면?

정보들을 연결하고 융합시켜 새로운 가치를 만드는 사람

융합 인재

- 컴퓨팅 사고력을 지닌 융합 인재가 필요한 시대
- 새로운 시스템에 대한 아이디어
- 프로그램 개발자와 소통 증진
- 다가올 새로운 세상에 대한 이해

왜 데이터 분석 & AI를 배우는가?

• 빅데이터 분석 : 화학, 의학, 마케팅, 스포츠 거의 모든 분야에서 사용 엑셀, 파워포인트를 대체

• 인공지능

https://www.youtube.com/watch?v=8s7WMO4nzsg (로레알 퍼소)

https://quickdraw.withgoogle.com/

https://aiopen.etri.re.kr/

• 인공지능 윤리 : https://www.moralmachine.net/

빅데이터 분석 실제 사용 현황

- 마켓팅 분석
- 모든 분야의 분석을 위해 사용
- 증권 분석, 바이오 분석 등 각종 통계 자료
- 코로나 19 지도 제작
- 각종 지도 제작에 사용

- 파워포인트 & 엑셀을 대체
- 회사의 데이터베이스를 직접 가져와
 서 분석 자료 작성
- 보고서 결재를 따로 하지 않고 소스 코드를 서버에 업로드
- 파이썬 서버 무료

COS Pro 자격증

- 1. Python, C, C++, Java에 대한 자격증 (1,2,3급)
- 2. YBM 민간 자격증 , 실기, CBT 방식

등급	시간	합격기준 (1000점 만점)	평가 항목	수준
1급 Advanced	90분	600점 이상	10개 문항 (완성3, 부분7)	개발자 채용 시 출제되는 문제와 유사한 수준
2급 Intermediate	50분	600점 이상	10개 문항 (완성2, 부분8)	프로그래밍 언어의 기초적인 개념을 충실히 배운 다음 이를 활용해 간단한 문제를 해결할 수 있는 수준

COS 스크래치 자격증 활용

https://www.ybmit.com/mos_use/cos_use_ex.jsp

COS 인사고과 / 직원교육

기업	내용
농협정보시스템	직원 인사고과 반영
하나은행	전직원 대상 코딩 교육으로 활용
하나금융투자	전직원 대상 코딩 교육으로 활용
하나생명	전직원 대상 코딩 교육으로 활용

COS PRO 파이썬/C/C++/JAVA 자격증 활용

https://www.ybmit.com/mos_use/cospro_use_ex.jsp

COS Pro 채용 평가		
기업	내용	
UG넥스원	채용 시 코딩테스트로 활용	
농협하나로유통	채용 시 코딩테스트로 활용	
다우기술	채용 시 코딩테스트로 활용	
비스텔	채용 시 코딩테스트로 활용	
웹케시	채용 시 코딩테스트로 활용	

외 다수

COS Pro 인사고과 / 직원교육

기업	내용
PSK inc	직원 인사고과 반영
농협정보시스템	직원 인사고과 반영
하나은행	직원 SW교육에 활용
하나 금융 투자	직원 SW교육에 활용
외 다수	

군 가산점 활용사례

군별	구분
육군	SW개발병

세부내용

COS Pro 취득시 가점 (자격증 분야 10점 만점 중 1급 10점, 2급 8점, 3급 6점)

- 한국 정보 올림피아드 <u>http://www.digitalculture.or.kr/koi/KoiMain.do</u>
- ACM_ICPC https://icpc.baylor.edu/
- ACM_ICPC korea http://icpckorea.org/
- MAKE ALL https://www.makeall.com/
- https://www.hankyung.com/economy/article/2021042538501

https://www.ybmit.com/event/revent/woori Code/event.jsp

https://www.kaggle.com/