Stochastic Processes: Homework 6

Chris Hayduk

October 14, 2020

Problem 1. Durrett, Exercise 1.51

We have the following transition matrix,

Problem 2. Durrett, Exercise 1.52

(a) Larry starts with 1 coupon. That is, $X_0 = 1$. We also have the following transition probability:

$$p = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 0 & 0 \\ 0.5 & 0 & 0.5 & 0 \\ 2 & 0 & 0.5 & 0 & 0.5 \\ 3 & 0 & 0 & 0 & 1 \end{pmatrix}$$

We have h(0) = 0 and h(3) = 1 with the remaining finite set of states $\{1, 2\}$. Hence, we can apply Theorem 1.28, which gives us $h(x) = \sum_y p(x,y)h(y)$. In addition, since $P_x(V_{\{0\}} \wedge V_{\{3\}} < \infty) > 0$ for x = 1, 2, we also have that $h(x) = P_x(V_3 < V_0)$. We have q = p = 0.5, so for 0 < x < 3, we get,

$$h(x) = 0.5h(x+1) + 0.5h(x-1)$$

We get,

$$h(1) = 0.5h(2)$$

$$h(2) = 0.5 + 0.5h(1)$$

Combining equation (1) and (2) yields $h(2) = 0.5/0.75 \approx 0.667$. Hence, we have,

$$h(1) = P_1(V_3 < V_0) = \frac{0.25}{0.75}$$

$$\approx 0.333$$

(b) We have the following system of equations,

$$g(1) = 1 + 0.5g(2)$$

$$g(2) = 1 + 0.5g(1)$$

So we get that g(2) = 1 + 0.5 + 0.25g(2) = 2 and thus g(1) = 1 + 0.5(2) = 2 as well.

Hence, starting from 1 ticket, Larry will need 2 plays on average in order to win or lose the game.

Problem 3. Durrett, Exercise 1.67

(a) Observe that for $X_n = n$ with $0 \le n \le 5$, we there are n sides of the die which have already been seen and 6 - n sides which have not been seen. Since each side is equally probable to show up, we have that,

$$P(X_{n+1} = n) = n/6$$
$$P(X_{n+1} = n+1) = (6-n)/6$$

When $X_n = 6$, we have $P(X_{n+1} = 6) = 1$.

Thus, the transition probability matrix is,

$$p = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1/6 & 5/6 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 2/6 & 4/6 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3/6 & 3/6 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0 & 4/6 & 2/6 & 0 \\ 5 & 0 & 0 & 0 & 0 & 0 & 5/6 & 1/6 \\ 6 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

(b) Let $T = \min\{n : X_n = 6\}$. We need to find ET. That is, ET the expected minimum number of rolls to see all 6 sides of the die.

Consider the matrix after deleting the row and column corresponding to 6:

$$r = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1/6 & 5/6 & 0 & 0 & 0 \\ 0 & 0 & 2/6 & 4/6 & 0 & 0 \\ 0 & 0 & 0 & 3/6 & 3/6 & 0 \\ 4 & 0 & 0 & 0 & 0 & 4/6 & 2/6 \\ 5 & 0 & 0 & 0 & 0 & 0 & 5/6 \end{bmatrix}$$

So we have,

$$I - r = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 5/6 & -5/6 & 0 & 0 & 0 \\ 0 & 0 & 4/6 & -4/6 & 0 & 0 \\ 0 & 0 & 0 & 3/6 & -3/6 & 0 \\ 4 & 0 & 0 & 0 & 0 & 2/6 & -2/6 \\ 5 & 0 & 0 & 0 & 0 & 0 & 1/6 \end{bmatrix}$$

This yields,

$$(I-r)^{-1} = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 1 & 6/5 & 3/2 & 2 & 3 & 6 \\ 0 & 6/5 & 3/2 & 2 & 3 & 6 \\ 0 & 0 & 3/2 & 2 & 3 & 6 \\ 0 & 0 & 3/2 & 2 & 3 & 6 \\ 0 & 0 & 0 & 2 & 3 & 6 \\ 0 & 0 & 0 & 0 & 3 & 6 \\ 0 & 0 & 0 & 0 & 0 & 6 \end{pmatrix}$$

Lastly, we have

$$(I-r)^{-1}\mathbb{1} = \begin{pmatrix} 14.7\\13.7\\12.5\\11\\9\\67 \end{pmatrix}$$

Thus, starting from state 0, we would expect to make 14.7 moves on average before seeing all 6 sides of the die.