Network Virtualization in Data Centers

Yu Wu

September 13, 2013

▶ internet applications

- ▶ internet applications
- data volumes

- ▶ internet applications
- data volumes

computing power, storage, bandwidth, latency

- ▶ internet applications
- data volumes

computing power, storage, bandwidth, latency

⇒ more efficient underlying infrastructure!

Datacenters have been widely built... (Amazon, Google, Facebook, *etc*)

Datacenters have been widely built... (Amazon, Google, Facebook, *etc*)

far from ideal!

"Dont't solve everything all at once"

Traditionally, dedicated servers are deployed. (clusters, grids, etc.)

Traditionally, dedicated servers are deployed. (clusters, grids, etc.)

 \Rightarrow poor server utilization & high operational cost

Traditionally, dedicated servers are deployed. (clusters, grids, etc.) ⇒ poor server utilization & high operational cost

Server virtualization:

Traditionally, dedicated servers are deployed. (clusters, grids, etc.) \Rightarrow poor server utilization & high operational cost

Server virtualization: multiple virtual machines provisioned from a single physical machine.

Traditionally, dedicated servers are deployed. (clusters, grids, etc.) \Rightarrow poor server utilization & high operational cost

Server virtualization: multiple virtual machines provisioned from a single physical machine.

improved performance isolation, security levels, server utilization *etc*.

no network performance isolation

- no network performance isolation
- application migration

- no network performance isolation
- application migration
- management difficulties
- ·

- no network performance isolation
- application migration
- management difficulties
- **.....**

datacenter networks are still built on TCP/IP protocol stack

- no network performance isolation
- application migration
- management difficulties
- ·

datacenter networks are still built on TCP/IP protocol stack network virtualization has received significant attention.

network virtualization: multiple virtual networks (VNs) provisioned from a shared physical network substrate.

network virtualization: multiple virtual networks (VNs) provisioned from a shared physical network substrate.

each VN can be implemented and managed independently

network virtualization: multiple virtual networks (VNs) provisioned from a shared physical network substrate.

each VN can be implemented and managed independently

Other benifits include:

- customized network protocols.
- performance isolation, application QoS
- local management policies, security

server virtualization + network virtualization

⇒ Datacenter Virtualization

Physical Data Center

---- Mapping of a VM to a server

----- Mapping of a virtual switch to a physical switch

server virtualization + network virtualization ⇒ Datacenter Virtualization

a datacenter where some or all of the hardware (servers, routers, switches, and links) are virtualized.

a collection of virtual resources (VMs, virtual switches, virtual routers) connected via virtual links.

server virtualization + network virtualization ⇒ Datacenter Virtualization

a datacenter where some or all of the hardware (servers, routers, switches, and links) are virtualized.

a collection of virtual resources (VMs, virtual switches, virtual routers) connected via virtual links.

datacenter network is the communication infrastructure.

ToR: connectivity to the servers mounted on the rack

AS: forwards traffic from multiple ToR switches

Core: connectivity to the internet

Clos topology is built up from multiple stages of switches. Each switch in a stage is connected to all switches in the next stage, which provides extensive path diversity.

Clos topology is built up from multiple stages of switches. Each switch in a stage is connected to all switches in the next stage, which provides extensive path diversity.

other topologies exist, e.g., BCube.

Clos topology is built up from multiple stages of switches. Each switch in a stage is connected to all switches in the next stage, which provides extensive path diversity.

other topologies exist, e.g., BCube.

A practical network topology is the assumption for our modeling work

Different roles in a datacenter ecosystem: (A game theoretical perspective)

- cloud providers (infrastructure owners)
- service providers
- end users

Different roles in a datacenter ecosystem: (A game theoretical perspective)

- cloud providers (infrastructure owners)
- service providers
- end users

multiple service providers can deploy their coexisting heterogeneous network architectures required for delivering services and applications over the same physical data center infrastructure. (multi-tenant environment)

What concrete challenges should be addressed?

- each single tenant traditionally owns a VLAN whose number is limited.
- limited forwarding tables on commodity switches.
- differentiated services, in terms of the deadlines, latencies, bandwdith etc.
-

Aled Edwards et al., Diverter: A New Approach to Networking Within Virtualized Infrastructures logical partioning of IP networks is essential for better accommodation of applications and services needs.

- tenant-aware addressing.
- no need for configuring switches.
- virtual software routers.
- VNET on each physical machines.
- modified ARP
- NAT-like solutions.

Aled Edwards et al., Diverter: A New Approach to Networking Within Virtualized Infrastructures logical partioning of IP networks is essential for better accommodation of applications and services needs.

- tenant-aware addressing.
- no need for configuring switches.
- virtual software routers.
- VNET on each physical machines.
- modified ARP
- NAT-like solutions.

No QoS guarantee; Performance

Albert Greenberg et al., VL2: A Scalable and Flexible Data Center Networks

- topology-aware and tenant-aware addressing.
- two types of IP addresses, AAs and LAs.
- AA-to-LA mapping

Albert Greenberg et al., VL2: A Scalable and Flexible Data Center Networks

- topology-aware and tenant-aware addressing.
- two types of IP addresses, AAs and LAs.
- ► AA-to-LA mapping

improved scalability; eliminates ARP and DHCP requests

Fang Hao et al., Enhancing Dynamic Cloud-based Services using Network Virtualization

- VM migrations
- keep the IP address, not straightforward for different networks.
- a cluster of forwarding elements (L3), virtual routers.
- a central controllers (CC)

Fang Hao et al., Enhancing Dynamic Cloud-based Services using Network Virtualization

- VM migrations
- keep the IP address, not straightforward for different networks.
- a cluster of forwarding elements (L3), virtual routers.
- ▶ a central controllers (CC)

scalability issues

Theophilus Benson et al., CloudNaaS: A Cloud Networking Platform for Enterprise Applications

- provides a unified, comprehensive framework for migrating enterprise applications to the clouds.
- OpenFlow enabled forwarding.

Theophilus Benson et al., CloudNaaS: A Cloud Networking Platform for Enterprise Applications

- provides a unified, comprehensive framework for migrating enterprise applications to the clouds.
- OpenFlow enabled forwarding.

network congestion and poor utilization

Future Research Directions...

Virtualized Edge Data Centers

- Most of the existing studies focus on one large datacenter containing lots of machines
- ► Far away from end users
- results in higher communication cost and potentially sub-optimal service quality in terms of delay, jitter and throughput.

Virtualized Edge Data Centers

- Most of the existing studies focus on one large datacenter containing lots of machines
- ► Far away from end users
- results in higher communication cost and potentially sub-optimal service quality in terms of delay, jitter and throughput.

services located close to end-users

Virtualized Edge Data Centers

- Most of the existing studies focus on one large datacenter containing lots of machines
- Far away from end users
- results in higher communication cost and potentially sub-optimal service quality in terms of delay, jitter and throughput.

services located close to end-users

challenges: how to best divide the service infrastructure between remote and edge centers? How to efficiently manage services hosted in multiple data centers? ...

Virtual Datacenter Embedding

- efficient mapping of virtual resources to physical ones. (NP hardness)
- existing research focuses on VM embeddings. Other resources should be considered as well.
- resource demand changes, reconfiguration cost.
- energy cost. The main challenge is to jointly optimize the placement of VMs and VNs.
- fault tolerance.
- failure of a physical link can drag down muliple virtualized datacenters that share the link.
- embed virtualized datacenters across multiple geographical regions.

Virtual Datacenter Embedding

- efficient mapping of virtual resources to physical ones. (NP hardness)
- existing research focuses on VM embeddings. Other resources should be considered as well.
- resource demand changes, reconfiguration cost.
- energy cost. The main challenge is to jointly optimize the placement of VMs and VNs.
- fault tolerance.
- failure of a physical link can drag down muliple virtualized datacenters that share the link.
- embed virtualized datacenters across multiple geographical regions.

what is the ideal physical network topology?

Programmability

- increase flexibility to facilitate the introduction of new protocols, services and architectures.
- ► SDN (programming network control plane)
- problems of current standard, OpenFlow.

Network Performance Guarantees

- diversed performance requirements, latency, throughput, deadlines, etc.
- confict objectives for network performance and network utilizations.
- a good trade-off
- other challenges: TCP incast problem.

Pricing

- ▶ important in multi-tenant environments.
- fair and efficient.
- coupling among multiple virtualized resources.
- market-driven
- ▶ auction, game theory

Q & A Thanks