Lista de Exercícios - Unidade 2

Convergência Estocástica e Resultados Limite 50 Questões Completas

Curso de Inferência Estatística

Outubro 2025 - Versão Atualizada

Sumário

1	Introdução	2
2	Lei Fraca dos Grandes Números	2
3	Convergência via Momentos (Resultado 2P)	3
4	Teorema de Slutsky	4
5	Teorema Central do Limite	5
6	Método Delta / Teorema de Mann-Wald	6
7	Convergência em Distribuição	7
8	Gabarito e Dicas 8.1 Dicas Gerais de Resolução	8 9

1 Introdução

Esta lista contém 50 questões organizadas por teorema, com 5 questões para cada um dos principais resultados da Unidade 2. Cada questão indica explicitamente qual teorema está sendo testado e utiliza diversas distribuições estudadas no curso.

Distribuições utilizadas: Normal, Poisson, Uniforme, Exponencial, Chi-quadrado, Bernoulli, Cauchy, Gamma e Beta.

Teoremas cobertos:

- 1. Lei Fraca dos Grandes Números
- 2. Convergência via Momentos
- 3. Teorema de Slutsky
- 4. Teorema Central do Limite
- 5. Método Delta / Teorema de Mann-Wald
- 6. Convergência em Distribuição
- 7. TCL para Variância Amostral
- 8. Teorema da Função Contínua (Convergência em Distribuição)
- 9. Estimadores Consistentes
- 10. Propriedades Assintóticas dos EMVs

2 Lei Fraca dos Grandes Números

[Questão 1] Lei Fraca dos Grandes Números

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim N(\mu, \sigma^2)$ onde $\mu = 5$ e $\sigma^2 = 4$.

- (a) Mostre que $\bar{X}_n \xrightarrow{P} 5$.
- (b) Calcule $P(|\bar{X}_n 5| \ge 0.5)$ usando a desigualdade de Chebyshev para n = 64.
- (c) Compare o resultado do item (b) com o valor exato obtido usando que $\bar{X}_n \sim N(5, 4/n)$.

[Questão 2] Lei Fraca dos Grandes Números

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim \text{Poisson}(\lambda)$ onde $\lambda = 3$.

- (a) Verifique que $E[X_i]$ e $Var(X_i)$ são finitos.
- (b) Mostre que $\bar{X}_n \xrightarrow{P} 3$.
- (c) Encontre n tal que $P(|\bar{X}_n 3| \ge 0.3) \le 0.05$ usando a desigualdade de Chebyshev.

[Questão 3] Lei Fraca dos Grandes Números

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim U(0, \theta)$ onde $\theta = 10$.

- (a) Calcule $E[X_i]$ e $Var(X_i)$.
- (b) Mostre que $\bar{X}_n \xrightarrow{P} 5$.
- (c) Use a LFGN para justificar que \bar{X}_n é um estimador consistente para $\theta/2$.

[Questão 4] Lei Fraca dos Grandes Números

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim \text{Exp}(\beta)$ onde $\beta = 2$ (taxa).

- (a) Calcule $E[X_i]$ e $Var(X_i)$.
- (b) Mostre que $\bar{X}_n \xrightarrow{P} 1/2$.
- (c) Se quisermos estimar β usando $T_n=1/\bar{X}_n$, mostre que T_n é consistente para β usando o teorema da função contínua.

[Questão 5] Lei Fraca dos Grandes Números

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim \text{Cauchy}(0, 1)$ (distribuição de Cauchy padrão).

- (a) Explique por que a LFGN não pode ser aplicada diretamente neste caso.
- (b) Mostre que $E[|X_i|] = \infty$.
- (c) Discuta o comportamento de \bar{X}_n neste caso. Ele converge?

3 Convergência via Momentos (Resultado 2P)

[Questão 6] Convergência via Momentos

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim \chi_k^2$ (qui-quadrado com k graus de liberdade).

- (a) Mostre que $E[X_i] = k$ e $Var(X_i) = 2k$.
- (b) Use o Resultado 2P com r=2 para mostrar que $\bar{X}_n \xrightarrow{P} k$.
- (c) Calcule explicitamente $E[(\bar{X}_n k)^2]$ e mostre que converge para zero.

[Questão 7] Convergência via Momentos

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim \text{Bernoulli}(p)$ onde p = 0.6.

- (a) Defina $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X}_n)^2$.
- (b) Mostre que $E[S_n^2] = p(1-p) = 0.24$.
- (c) Use o Resultado 2P para mostrar que $S_n^2 \xrightarrow{P} 0.24$.

[Questão 8] Convergência via Momentos

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim U(a, b)$.

- (a) Seja $T_n = X_{(n)}$ (o máximo da amostra). Calcule $E[T_n]$ e mostre que $E[T_n] \to b$.
- (b) Calcule $E[(T_n-b)^2]$ e mostre que converge para zero.
- (c) Conclua que $T_n \xrightarrow{P} b$ pelo Resultado 2P.

[Questão 9] Convergência via Momentos

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim N(\mu, \sigma^2)$.

- (a) Seja $T_n = \frac{1}{n} \sum_{i=1}^n X_i^2$. Calcule $E[T_n]$.
- (b) Mostre que $E[(T_n (\mu^2 + \sigma^2))^2] \to 0$.
- (c) Conclua que $T_n \xrightarrow{P} \mu^2 + \sigma^2$.

[Questão 10] Convergência via Momentos

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim \text{Exp}(\lambda)$ (taxa λ).

- (a) Defina $T_n = \frac{n}{\sum_{i=1}^n X_i}$. Este é o estimador de máxima verossimilhança para λ .
- (b) Mostre que $E[1/T_n] = 1/\lambda$ (dica: $\sum_{i=1}^n X_i \sim \text{Gamma}(n,\lambda)$).
- (c) Argumente que $T_n \xrightarrow{P} \lambda$ usando a LFGN e o teorema da função contínua.

4 Teorema de Slutsky

[Questão 11] Teorema de Slutsky

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim N(\mu, \sigma^2)$.

- (a) Mostre que $\xrightarrow{\sqrt{n}(\bar{X}_n-\mu)} \xrightarrow{D} N(0,1)$ pelo TCL.
- (b) Mostre que $S_n \xrightarrow{P} \sigma$.
- (c) Use o Teorema de Slutsky para mostrar que $\frac{\sqrt{n}(\bar{X}_n-\mu)}{S_n} \xrightarrow{D} N(0,1)$.

[Questão 12] Teorema de Slutsky

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim \text{Exp}(\lambda)$ onde $\lambda = 2$.

- (a) Pelo TCL, $\sqrt{n}(\bar{X}_n 1/2) \xrightarrow{D} N(0, 1/4)$.
- (b) Defina $U_n = \sqrt{n}(\bar{X}_n 1/2)$ e $V_n = \bar{X}_n$. Mostre que $U_n \xrightarrow{D} N(0, 1/4)$ e $V_n \xrightarrow{P} 1/2$.
- (c) Use Slutsky para encontrar a distribuição limite de $W_n = U_n \cdot V_n = \sqrt{n} \bar{X}_n (\bar{X}_n 1/2)$.

4

[Questão 13] Teorema de Slutsky

Sejam $\{X_n, n \geq 1\}$ v.a.'s i.i.d. com $X_i \sim U(0, \theta)$ onde $\theta > 0$ é desconhecido.

- (a) Sabe-se que $U_n = \frac{n}{\theta}(\theta T_n) \xrightarrow{D} \text{Exp}(1)$ onde $T_n = X_{(n)}$.
- (b) Mostre que $T_n \xrightarrow{P} \theta$.
- (c) Defina $Q_n = \frac{n(\theta T_n)}{T_n}$. Use Slutsky para encontrar a distribuição limite de Q_n .

[Questão 14] Teorema de Slutsky

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim \text{Poisson}(\lambda)$.

- (a) Pelo TCL, $\frac{\sqrt{n}(\bar{X}_n \lambda)}{\sqrt{\lambda}} \xrightarrow{D} N(0, 1)$.
- (b) Mostre que $\sqrt{\bar{X}_n} \xrightarrow{P} \sqrt{\lambda}$.
- (c) Use Slutsky para mostrar que $\frac{\sqrt{n}(\bar{X}_n \lambda)}{\sqrt{\bar{X}_n}} \xrightarrow{D} N(0, 1)$.

[Questão 15] Teorema de Slutsky

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim \text{Cauchy}(\theta, 1)$ (localização θ , escala 1).

- (a) Explique por que o TCL não pode ser aplicado diretamente para \bar{X}_n .
- (b) Suponha que, por outro método, sabemos que $a_n(M_n \theta) \xrightarrow{D}$ Cauchy(0, 1) onde M_n é a mediana amostral e a_n é alguma constante.
- (c) Discuta se seria possível usar Slutsky neste contexto se tivéssemos $V_n \xrightarrow{P} c$.

5 Teorema Central do Limite

[Questão 16] Teorema Central do Limite

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim \text{Bernoulli}(p)$ onde p = 0.3.

- (a) Calcule $E[X_i]$ e $Var(X_i)$.
- (b) Use o TCL para aproximar $P(\bar{X}_n \leq 0.35)$ para n = 100.
- (c) Compare com a aproximação normal para a binomial: $S_n = \sum_{i=1}^n X_i \sim \text{Binomial}(n, p)$.

[Questão 17] Teorema Central do Limite

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim \text{Exp}(\lambda)$ onde $\lambda = 1$.

- (a) Verifique que $E[X_i] = 1$ e $Var(X_i) = 1$.
- (b) Use o TCL para aproximar $P(0.9 \le \bar{X}_n \le 1.1)$ para n = 50.
- (c) Calcule a distribuição exata de $S_n = \sum_{i=1}^n X_i$ e compare.

[Questão 18] Teorema Central do Limite

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim U(0, 1)$.

- (a) Calcule $E[X_i] = 1/2$ e $Var(X_i) = 1/12$.
- (b) Use o TCL para encontrar $P\left(\left|\bar{X}_n \frac{1}{2}\right| \le 0.05\right)$ para n = 100.
- (c) Encontre *n* tal que $P(|\bar{X}_n \frac{1}{2}| \le 0.01) \ge 0.95$.

[Questão 19] Teorema Central do Limite

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim \text{Poisson}(\lambda)$ onde $\lambda = 5$.

- (a) Lembre que para Poisson, $E[X_i] = Var(X_i) = \lambda = 5$.
- (b) Use o TCL para aproximar $P(\bar{X}_n \geq 5.5)$ para n = 100.
- (c) Use o TCL para aproximar $P(S_n \ge 550)$ onde $S_n = \sum_{i=1}^n X_i$ e compare com o item anterior.

[Questão 20] Teorema Central do Limite

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim \text{Cauchy}(0, 1)$.

- (a) Mostre que $E[X_i]$ não existe (integral diverge).
- (b) Explique por que o TCL não se aplica.
- (c) Pesquise: qual é a distribuição de \bar{X}_n neste caso? (Dica: A soma de Cauchys independentes é Cauchy)

6 Método Delta / Teorema de Mann-Wald

[Questão 21] Método Delta

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim N(\mu, \sigma^2)$ onde $\mu > 0$.

- (a) Pelo TCL, $\sqrt{n}(\bar{X}_n \mu) \xrightarrow{D} N(0, \sigma^2)$.
- (b) Use o Método Delta com $g(x) = \sqrt{x}$ para encontrar a distribuição assintótica de $\sqrt{n}(\sqrt{\bar{X}_n} \sqrt{\mu})$.
- (c) Calcule $g'(\mu)$ e escreva explicitamente a variância assintótica.

[Questão 22] Método Delta

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim \text{Poisson}(\lambda)$.

- (a) Sabe-se que $\sqrt{n}(\bar{X}_n \lambda) \xrightarrow{D} N(0, \lambda)$.
- (b) Use o Método Delta com $g(x)=x^3$ para encontrar a distribuição assintótica de $\sqrt{n}(\bar{X}_n^3-\lambda^3)$.
- (c) Verifique que a variância assintótica é $9\lambda^5.$

[Questão 23] Método Delta

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim \text{Exp}(\lambda)$ (taxa λ).

- (a) Pelo TCL, $\sqrt{n}(\bar{X}_n 1/\lambda) \xrightarrow{D} N(0, 1/\lambda^2)$.
- (b) Use o Método Delta com $g(x) = \log(x)$ para encontrar a distribuição assintótica de $\sqrt{n}(\log(\bar{X}_n) \log(1/\lambda))$.
- (c) Simplifique a variância assintótica.

[Questão 24] Método Delta

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim U(0, 1)$.

- (a) Sabemos que $\sqrt{n}(\bar{X}_n 1/2) \xrightarrow{D} N(0, 1/12)$.
- (b) Use o Método Delta com $g(x)=\frac{1}{x}$ para encontrar a distribuição assintótica de $\sqrt{n}\left(\frac{1}{X_n}-2\right)$.
- (c) Calcule explicitamente g'(1/2) e a variância assintótica.

[Questão 25] Método Delta

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim \text{Bernoulli}(p)$ onde 0 .

- (a) Pelo TCL, $\sqrt{n}(\bar{X}_n p) \xrightarrow{D} N(0, p(1-p))$
- (b) Use o Método Delta com $g(x) = \log\left(\frac{x}{1-x}\right)$ (transformação logit) para encontrar a distribuição assintótica de $\sqrt{n} \left[\log\left(\frac{\bar{X}_n}{1-\bar{X}_n}\right) \log\left(\frac{p}{1-p}\right)\right]$.
- (c) Calcule g'(p) e verifique que a variância assintótica é $\frac{1}{p(1-p)}$.

7 Convergência em Distribuição

[Questão 26] Convergência em Distribuição

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim U(0, \theta)$.

- (a) Seja $T_n = X_{(n)}$ o máximo amostral. Encontre a f.d.a. de T_n .
- (b) Defina $U_n = \frac{n}{\theta}(\theta T_n)$. Encontre a f.d.a. de U_n .
- (c) Mostre que $U_n \xrightarrow{D} \mathrm{Exp}(1)$ quando $n \to \infty$.

[Questão 27] Convergência em Distribuição

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim \text{Exp}(1)$.

- (a) Seja $Y_n = \min\{X_1, \dots, X_n\}$. Encontre a distribuição de Y_n .
- (b) Considere $Z_n = n \cdot Y_n$. Encontre a distribuição de Z_n .
- (c) O que acontece com a distribuição de Z_n quando $n \to \infty$?

[Questão 28] Convergência em Distribuição

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim N(0, 1)$.

- (a) Defina $T_n = \frac{1}{n} \sum_{i=1}^n X_i^2$. Qual é a distribuição de $n \cdot T_n$?
- (b) Mostre que $T_n \xrightarrow{P} 1$.
- (c) Use o TCL para encontrar a distribuição assintótica de $\sqrt{n}(T_n-1)$.

[Questão 29] Convergência em Distribuição

Sejam $Y_n \sim \text{Gamma}(n,n)$ (forma $\alpha = n$, taxa $\beta = n$).

- (a) Calcule $E[Y_n]$ e $Var(Y_n)$.
- (b) Mostre que $Y_n \xrightarrow{P} 1$.
- (c) Use o TCL para a distribuição Gamma para mostrar que $\sqrt{n}(Y_n-1) \xrightarrow{D} N(0,1)$.

[Questão 30] Convergência em Distribuição

Sejam $X_n \sim \text{Beta}(n,1)$ para $n \geq 1$.

- (a) Encontre a f.d.p. de X_n e mostre que $E[X_n] = \frac{n}{n+1}$.
- (b) Mostre que $X_n \xrightarrow{P} 1$.
- (c) Defina $Y_n = n(1 X_n)$. Encontre a distribuição limite de Y_n quando $n \to \infty$.

8 Gabarito e Dicas

8.1 Dicas Gerais de Resolução

- 1. **Identifique o teorema aplicável:** Leia atentamente qual teorema está sendo testado no cabeçalho da questão.
- 2. Verifique as condições: Antes de aplicar um teorema, verifique que todas as condições são satisfeitas (i.i.d., momentos finitos, etc.).
- 3. **LFGN:** Use quando precisar mostrar $\bar{X}_n \xrightarrow{P} \mu$. Verifique $E[X_i] < \infty$ e (para versão simples) $Var(X_i) < \infty$.
- 4. **TCL:** Use quando precisar da distribuição de \bar{X}_n padronizada. Sempre resulta em N(0,1) assintoticamente.
- 5. **Slutsky:** Use quando precisar substituir parâmetros desconhecidos ou combinar convergências de tipos diferentes.
- 6. **Método Delta:** Use quando tiver uma transformação não-linear $g(\bar{X}_n)$ e quiser sua distribuição assintótica.

- 7. Distribuição Cauchy: Lembre-se que é o contraexemplo padrão não tem momentos finitos!
- 8. Cálculos de variância: Para $Var(\bar{X}_n) = \sigma^2/n$. Para soma: $Var(S_n) = n\sigma^2$.
- 9. Padronização: Sempre padronize corretamente: $(T_n E[T_n])/\sqrt{\operatorname{Var}(T_n)}$.
- 10. **Derivadas no Método Delta:** Não esqueça de calcular $g'(\theta)$ e elevar ao quadrado para a variância.

8.2 Respostas Selecionadas

Questão $\mathbf{5(c)}$: \bar{X}_n tem a mesma distribuição que X_1 (distribuição Cauchy) para todo n. Não há convergência!

Questão 11(c): Este é o resultado fundamental que permite usar estatística t quando σ é desconhecido.

Questão 16(b): $P(\bar{X}_n \le 0.35) \approx P\left(Z \le \frac{0.35 - 0.3}{\sqrt{0.21/100}}\right) = P(Z \le 1.09) \approx 0.862.$

Questão 21(b): Variância assintótica: $\sigma^2/(4\mu)$. Questão 26(c): Use que $\lim_{n\to\infty} \left(1-\frac{u}{n}\right)^n = e^{-u}$.

Questão 30(c): $Y_n \xrightarrow{D} \text{Exp}(1)$ (use transformação de variáveis).

TCL para Variância Amostral 9

[Questão 31] TCL para Variância Amostral

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim N(\mu, \sigma^2)$ onde $\mu = 0$ e $\sigma^2 = 1$.

- (a) Calcule $\mu_4 = E[(X_i \mu)^4]$ para a distribuição normal padrão.
- (b) Use o TCL para variância amostral para encontrar a distribuição assintótica de $\sqrt{n}(S_n^2-1)$.
- (c) Construa um intervalo de confiança assintótico de 95% para σ^2 quando n=100 e $S_n^2 = 1.2.$

[Questão 32] TCL para Variância Amostral

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim \text{Exp}(\lambda)$ onde $\lambda = 2$.

- (a) Calcule $E[X_i] = 1/2$, $Var(X_i) = 1/4$, e $\mu_4 = E[(X_i 1/2)^4]$.
- (b) Dica: Para exponencial, $\mu_4 = 9/\lambda^4$. Verifique este valor.
- (c) Use o TCL para S_n^2 para encontrar $P(S_n^2 > 0.3)$ aproximadamente quando n = 50.

[Questão 33] TCL para Variância Amostral

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim U(0, 1)$.

- (a) Calcule $E[X_i] = 1/2$, $Var(X_i) = 1/12$, e o quarto momento central.
- (b) Mostre que $\mu_4 = E[(X_i 1/2)^4] = 1/80$.
- (c) Use o TCL para S_n^2 para a proximar $P(|S_n^2-1/12|\leq 0.01)$ quando n=100.

[Questão 34] TCL para Variância Amostral

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim \text{Poisson}(\lambda)$ onde $\lambda = 5$.

- (a) Para Poisson, mostre que $\mu_4 = \lambda + 3\lambda^2 + \lambda^3 = 5 + 75 + 125 = 205$.
- (b) Use o TCL para variância amostral: $\sqrt{n}(S_n^2 \lambda) \xrightarrow{d} N(0, \mu_4 \lambda^2)$.
- (c) Calcule a variância assintótica e use-a para aproximar $P(S_n^2 > 6)$ quando n = 80.

[Questão 35] TCL para Variância Amostral

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim \text{Bernoulli}(p)$ onde p = 0.4.

- (a) Calcule $Var(X_i) = p(1-p) = 0.24 \text{ e } \mu_4 = p(1-p)[(1-p)^2 + p^2].$
- (b) Simplifique: $\mu_4 = p(1-p)(1-2p(1-p))$ e calcule para p=0.4.
- (c) Use o TCL para S_n^2 para testar $H_0:\sigma^2=0.24$ vs $H_1:\sigma^2\neq 0.24$ ao nível 5% quando n=100 e $S_n^2=0.28$.

10 Teorema da Função Contínua para Convergência em Distribuição

[Questão 36] Teorema da Função Contínua (Distribuição)

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim N(\mu, \sigma^2)$.

- (a) Pelo TCL, $Z_n = \frac{\sqrt{n}(\bar{X}_n \mu)}{\sigma} \xrightarrow{d} N(0, 1)$.
- (b) Use o teorema da função contínua com $g(x) = x^2$ para mostrar que $Z_n^2 \xrightarrow{d} \chi_1^2$.
- (c) Conclua que $n\left(\frac{\bar{X}_n-\mu}{\sigma}\right)^2 \xrightarrow{d} \chi_1^2$.

[Questão 37] Teorema da Função Contínua (Distribuição)

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim \text{Exp}(\lambda)$.

- (a) Pelo TCL, $\frac{\sqrt{n}(\bar{X}_n-1/\lambda)}{\sqrt{1/\lambda^2}} \xrightarrow{d} N(0,1)$.
- (b) Defina $Z_n = \lambda \sqrt{n}(\bar{X}_n 1/\lambda)$. Use o teorema da função contínua com g(x) = |x| para encontrar a distribuição de $|Z_n|$.
- (c) Mostre que $Z_n^2 \xrightarrow{d} \chi_1^2$.

[Questão 38] Teorema da Função Contínua (Distribuição)

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim U(0, 1)$.

- (a) Sabemos que $\sqrt{12n}(\bar{X}_n 1/2) \xrightarrow{d} N(0, 1)$.
- (b) Use o teorema da função contínua com $g(x) = e^x$ para encontrar a distribuição limite de $\exp(\sqrt{12n}(\bar{X}_n 1/2))$.
- (c) Esta é uma distribuição log-normal. Identifique seus parâmetros.

[Questão 39] Teorema da Função Contínua (Distribuição)

Sejam $U_n \xrightarrow{d} U \sim N(0,1)$ e $V_n \xrightarrow{d} V \sim N(0,1)$ independentes.

- (a) Mostre que $(U_n, V_n) \xrightarrow{d} (U, V)$ (convergência conjunta).
- (b) Use o teorema da função contínua com $g(u,v) = u^2 + v^2$ para mostrar que $U_n^2 + V_n^2 \xrightarrow{d} \chi_2^2$.
- (c) Generalize para p variáveis independentes.

[Questão 40] Teorema da Função Contínua (Distribuição)

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim \text{Poisson}(\lambda)$ onde $\lambda = 10$.

- (a) Pelo TCL, $\frac{\sqrt{n}(\bar{X}_n-10)}{\sqrt{10}} \stackrel{d}{\to} N(0,1)$.
- (b) Defina $Y_n = \sqrt{\bar{X}_n}$. Use o método delta combinado com o teorema da função contínua para analisar a distribuição de $\sqrt{n}(Y_n \sqrt{10})$.

11

(c) Compare com a transformação estabilizadora de variância para Poisson.

11 Estimadores Consistentes

[Questão 41] Estimadores Consistentes

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim U(0, \theta)$ onde $\theta > 0$.

- (a) Seja $T_n = X_{(n)}$ o máximo amostral. Encontre $E[T_n]$ e $Var(T_n)$.
- (b) Mostre que $EQM[T_n] = E[(T_n \theta)^2] \to 0$ quando $n \to \infty$.
- (c) Conclua que T_n é consistente para θ .
- (d) Compare com $\hat{\theta}_1 = 2\bar{X}_n$. Qual é mais eficiente assintoticamente?

[Questão 42] Estimadores Consistentes

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim \text{Exp}(\lambda)$.

- (a) Considere três estimadores para λ :
 - $T_n^{(1)} = 1/\bar{X}_n$ (método dos momentos)
 - $T_n^{(2)} = n / \sum_{i=1}^n X_i \text{ (EMV)}$
 - $T_n^{(3)} = 1/X_{(1)}$ (inverso do mínimo)
- (b) Mostre que $T_n^{(1)}$ é consistente usando LFGN e teorema da função contínua.
- (c) Mostre que $T_n^{(2)}$ é consistente.
- (d) $T_n^{(3)}$ é consistente? Justifique.

[Questão 43] Estimadores Consistentes

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim N(\mu, \sigma^2)$.

- (a) Mostre que $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X}_n)^2$ é consistente para σ^2 .
- (b) Mostre que $\tilde{S}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X}_n)^2$ também é consistente para σ^2 .
- (c) Calcule o viés de cada estimador para n finito. Qual você prefere e por quê?

[Questão 44] Estimadores Consistentes

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim \text{Bernoulli}(p)$.

(a) Dado $\varepsilon=0.05$ e $\delta=0.01,$ encontre o tamanho amostral mínimo n_0 tal que

$$P(|\bar{X}_n - p| < \varepsilon) \ge 1 - \delta$$

usando a desigualdade de Chebyshev. Assuma p=0.5 (pior caso).

- (b) Refaça usando a aproximação normal (TCL).
- (c) Compare os dois valores de n_0 .

[Questão 45] Estimadores Consistentes

Sejam X_1,X_2,\ldots,X_n v.a.'s i.i.d. com distribuição desconhecida mas com $E[X_i]=\mu<\infty$ e ${\rm Var}(X_i)=\sigma^2<\infty$.

(a) Defina o estimador "trimmed mean": $\bar{X}_n^{(k)} = \frac{1}{n-2k} \sum_{i=k+1}^{n-k} X_{(i)}$ onde $X_{(1)} \leq \cdots \leq X_{(n)}$ são as estatísticas de ordem, e k é fixo.

12

- (b) Argumente que $\bar{X}_n^{(k)} \xrightarrow{P} \mu$ quando $n \to \infty$ com k fixo.
- (c) Discuta a robustez deste estimador comparado a \bar{X}_n na presença de outliers.

12 Propriedades Assintóticas dos EMVs

[Questão 46] Propriedades Assintóticas dos EMVs

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim N(\mu, \sigma^2)$ onde σ^2 é conhecido.

- (a) Mostre que o EMV de μ é $\hat{\mu}_n = \bar{X}_n$.
- (b) Calcule a informação de Fisher $I_X(\mu) = E\left[\left(\frac{\partial \log f(X;\mu)}{\partial \mu}\right)^2\right]$.
- (c) Use o TCL para EMVs para escrever a distribuição assintótica de $\sqrt{n}(\hat{\mu}_n \mu)$.
- (d) Construa um IC assintótico de 95% para μ .

[Questão 47] Propriedades Assintóticas dos EMVs

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim \text{Poisson}(\lambda)$.

- (a) Mostre que o EMV de λ é $\hat{\lambda}_n = \bar{X}_n$.
- (b) Calcule a informação de Fisher $I_X(\lambda) = \frac{1}{\lambda}$.
- (c) Verifique que $\sqrt{n}(\hat{\lambda}_n \lambda) \xrightarrow{d} N(0, \lambda)$, confirmando $I_X^{-1}(\lambda) = \lambda$.
- (d) Compare com o resultado do TCL clássico.

[Questão 48] Propriedades Assintóticas dos EMVs

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim \text{Exp}(\lambda)$ (taxa λ).

- (a) Mostre que o EMV de λ é $\hat{\lambda}_n = \frac{n}{\sum_{i=1}^n X_i} = \frac{1}{X_n}$.
- (b) Calcule a informação de Fisher $I_X(\lambda) = \frac{1}{\lambda^2}$.
- (c) Use o TCL para EMVs para encontrar a distribuição assintótica de $\sqrt{n}(\hat{\lambda}_n \lambda)$.
- (d) Compare este resultado com o obtido usando o método delta aplicado a $1/\bar{X}_n$.

[Questão 49] Propriedades Assintóticas dos EMVs e Eficiência

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim U(0, \theta)$.

- (a) O EMV de θ é $\hat{\theta}_n^{MLE} = X_{(n)}$. O estimador de momentos é $\hat{\theta}_n^{MM} = 2\bar{X}_n$.
- (b) Mostre que ambos são consistentes.
- (c) Calcule as variâncias assintóticas de $\sqrt{n}(\hat{\theta}_n^{MLE}-\theta)$ e $\sqrt{n}(\hat{\theta}_n^{MM}-\theta)$.
- (d) Qual é mais eficiente? Calcule a eficiência relativa assintótica.
- (e) Nota: Este é um caso onde as condições de regularidade falham! O EMV não tem distribuição normal assintótica.

[Questão 50] Propriedades Assintóticas dos EMVs

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim \text{Bernoulli}(p)$.

- (a) Mostre que o EMV de p é $\hat{p}_n = \bar{X}_n$.
- (b) Calcule a informação de Fisher $I_X(p) = \frac{1}{p(1-p)}$.
- (c) Use o TCL para EMVs para mostrar que $\sqrt{n}(\hat{p}_n p) \xrightarrow{d} N(0, p(1-p))$.
- (d) Queremos estimar $\psi = \log\left(\frac{p}{1-p}\right)$ (log-odds). Use o método delta para encontrar a distribuição assintótica de $\sqrt{n}(\log(\frac{\hat{p}_n}{1-\hat{p}_n})-\psi)$.
- (e) Verifique que a variância assintótica é $\frac{1}{p(1-p)}$, que é exatamente $I_X^{-1}(p)$ (invariância do EMV sob reparametrização).

13 Gabarito e Dicas - Parte 2

13.1 Dicas para as Novas Questões

TCL para Variância Amostral (Questões 31-35):

- Lembre que $\sqrt{n}(S_n^2 \sigma^2) \xrightarrow{d} N(0, \mu_4 \sigma^4)$
- Para Normal: $\mu_4=3\sigma^4$, logo variância assintótica = $2\sigma^4$
- Para Exponencial(λ): $\mu_4 = 9/\lambda^4$, $\sigma^2 = 1/\lambda^2$
- Para Uniforme(0,1): $\mu_4 = 1/80, \ \sigma^2 = 1/12$

Teorema da Função Contínua - Distribuição (Questões 36-40):

- Use quando tiver $U_n \xrightarrow{d} U$ e quiser $g(U_n) \xrightarrow{d} g(U)$
- Exemplo clássico: $Z \sim N(0,1) \Rightarrow Z^2 \sim \chi_1^2$
- Combine com método delta quando necessário

Consistência (Questões 41-45):

- Mostre $T_n \xrightarrow{P} \theta$ via: (1) LFGN, (2) EQM $\to 0$, ou (3) convergência da f.d.a.
- Para $X_{(n)}$ em $U(0,\theta)$: $E[X_{(n)}] = \frac{n\theta}{n+1}$, $Var(X_{(n)}) = \frac{n\theta^2}{(n+1)^2(n+2)}$
- Tamanho amostral via Chebyshev: $n \geq \frac{\sigma^2}{\varepsilon^2 \delta}$

EMVs (Questões 46-50):

- Informação de Fisher: $I_X(\theta) = E\left[\left(\frac{\partial \log f(X;\theta)}{\partial \theta}\right)^2\right] = -E\left[\frac{\partial^2 \log f(X;\theta)}{\partial \theta^2}\right]$
- TCL para EMVs: $\sqrt{n}(\hat{\theta}_n \theta) \xrightarrow{d} N(0, I_X^{-1}(\theta))$

- Para Normal (μ, σ^2) : $I_X(\mu) = 1/\sigma^2$
- Para Poisson(λ): $I_X(\lambda) = 1/\lambda$
- Para Exponencial(λ): $I_X(\lambda) = 1/\lambda^2$
- Para Bernoulli(p): $I_X(p) = 1/(p(1-p))$

13.2 Respostas Selecionadas - Parte 2

Questão 31(a): Para N(0,1): $\mu_4 = E[X^4] = 3$ (use momentos da normal).

 $\mathbf{Quest\~ao}$ 36(c): Este resultado é fundamental para qui-quadrado com 1 grau de liberdade.

Questão 41(a): $E[X_{(n)}] = \frac{n\theta}{n+1}$, $Var(X_{(n)}) = \frac{n\theta^2}{(n+1)^2(n+2)}$, ambos $\to 0$ quando normalizados.

Questão 44(a): Usando Chebyshev com p = 0.5: $n_0 \ge \frac{0.25}{(0.05)^2(0.01)} = 10000$.

Questão 44(b): Usando TCL:
$$n_0 = \left[\left(\frac{z_{0.005} \sqrt{0.25}}{0.05} \right)^2 \right] = \left[(51.5)^2 \right] = 2653.$$

Questão 49(e): Caso especial onde condições de regularidade falham. O EMV converge mais rápido (n ao invés de \sqrt{n}).

Questão 50(e): Demonstração da invariância da informação de Fisher sob transformações.