CHAPITRE II:

ARBRE ET ARBORESCENCE

Dans cette partie, le graphe est supposé non orienté.

Théorème 1:

Soient G = (X, E) un graphe, a et $b \in X / (ab) \notin E$

Alors, l'ajout de l'arête (ab) à G a pour effet :

- a. Soit de diminuer le nombre de composantes connexes de G d'une unité si a et b appartiennent à deux composantes connexes différentes, auquel cas l'arête (ab) est un isthme.
- b. Soit de laisser inchangé le nombre de composantes connexes de G, si a et b appartiennent à la même composante connexe.

Théorème 2:

Soit G = (X, E) un graphe.

1. Si G est connexe alors : $|E| \ge n-1$ 2. Si G est sans cycle alors : $|E| \le n-1$

Définition 1:

Un arbre est un graphe connexe et sans cycle. T = (X, E) donc |E| = n-1

Remarque 1:

Toute arête d'un arbre est un isthme.

Théorème 3:

Soit G = (X, E) un graphe simple d'ordre $n \ge 2$. Les propositions suivantes sont équivalentes et caractérisent un arbre :

- i) G est sans cycle et connexe
- ii) G est connexe et est minimal pour cette propriété (c.-à-d. si on supprime un arc de G, il ne sera plus connexe)
- iii) G est connexe et possède (n-1) arêtes
- iv) G est sans cycle et est maximal pour cette propriété (c.-à-d. si on ajoute un arc à G, il aura un cycle)
- v) G est sans cycle et possède (n-1) arêtes
- vi) Il existe dans G une chaîne unique joignant tout couple de sommets.

Démonstration:

$$\begin{array}{ccc}
(i) & \Longrightarrow & (iii) & et & (v) \\
(iii) & \Longrightarrow & (ii) \\
(v) & \Longrightarrow & (iv)
\end{array}$$

d'après théorème 2

Corollaire 1:

Tout graphe connexe admet un graphe partiel qui est un arbre.

Théorème 4:

Un arbre contient au moins deux sommets pendants.

Théorème 5:

Un arbre est un graphe biparti.

Définition 2:

Une forêt est un graphe dont chaque composante connexe est un arbre.

Théorème 6:

Si G = (X, E) est une forêt ayant p composantes connexes alors : |E| = n-p

II) **ARBORESCENCE**:

Dans cette partie, le graphe est supposé orienté.

Définition 3:

Un sommet « s » d'un graphe G est dit racine si pour tout x de X, il existe un chemin de « s » à x. Une arborescence de racine « s », est un arbre ayant « s » comme racine.

Théorème 7:

Les propositions suivantes sont équivalentes et caractérisent une arborescence de racine « s » :

- i) G est un arbre admettant « s » comme racine
- ii) $\forall x \in X$, il existe un chemin unique dans G de « s » à x.
- iii) G admet « s » comme racine et est minimal pour cette propriété.
- iv) G est connexe et de plus : d(s) = 0 et d(x) = 1 $\forall x \neq s$
- v) G est sans cycle et de plus : d(s) = 0 et d(x) = 1 $\forall x \neq s$
- vi) G admet « s » comme racine et est sans cycle.
- vii) G admet « s » comme racine et possède (n-1) arcs.

Corollaire 2:

Tout graphe connexe admettant une racine s, admet un graphe partiel qui est une arborescence de racine s.

III) Problème de l'arbre de poids minimum

Dans cette partie, le graphe est supposé non orienté.

Définition 4:

Soient G = (X, E) un graphe et p l'application :

$$p: E \longrightarrow \mathbb{R}$$

$$u \longrightarrow p(u)$$

p(u) est appelé poids de l'arête u.

A un graphe partiel G = (X, E') de G, on associe son poids défini par : $p(G') = \sum_{u \in E'} (pu)$; Si $G' = (X, \emptyset)$ alors p(G') = 0.

Remarque 2:

Soit $\mathcal{T}=(X,T)$ un graphe partiel de G qui est un arbre. Alors :

- 1. Soit $u=(xy)\in E\setminus T$. G'étant connexe alors il existe une chaîne C_u dans $\mathcal T$ entre x et y. Si $\mathcal T$ est un arbre de poids minimum alors : $p(u)\geq Max\ (p(w))$
- 2. Soit $v \in T$. Si on supprime v, \mathcal{T} se déconnecte. Soit Ω_v , l'ensemble des arêtes de $E \setminus T$ reliant ces composantes connexes. On a : $p(v) \leq Min(p(w))$

Théorème 8:

Les propositions suivantes sont équivalentes et caractérisent un arbre de poids minimum :

$$(i) \quad p(u) \, \geq \, \mathop{Max}_{w \, \in Cu}(p(w))$$

$$\forall u \in E \setminus T$$

$$(ii) \quad p(v) \ \leq \mathop{Min}_{w \ \in \ \Omega v}(p(w))$$

$$\forall v u \in T$$

Algorithme de KRUSKAL

(1) les arêtes sont supposées numérotés dans l'ordre croissant de leurs poids :

$$p(u_1) \leq p(u_2) \leq ... \leq p(u_m)$$

 $poser T = \emptyset \ et \ i = 1$

- (2) a) $si(X, TU\{u_i\})$ contient un cycle, aller en (4)
 - b) $si(X, TU\{u_i\})$ ne contient pas de cycle, aller en (3)
- (3) $poser T := T U \{u_i\}$; aller en (4)
- (4) a) si i = m, Terminer.
 - b) $si \ i < m$ faire i := i+1; aller en (2)

Exemple:

 \mathcal{T} est l'arbre de poids minimum : $p(\mathcal{T}) = 1$