Electric Vehicle Sales Analysis

About Dataset:

- The dataset contains the following columns:
- Year: The year of the sales.
- Month_Name: The month in which sales occurred.
- Date: The specific date of the sales.
- State: The state in India where the sales occurred.
- Vehicle_Class: The class of the vehicle (e.g., sedan, SUV, etc.).
- Vehicle_Category: The category of the vehicle (e.g., commercial, passenger).
- Vehicle_Type: The type of the vehicle (e.g., 2-wheeler, 4-wheeler).
- EV_Sales_Quantity: The quantity of EV sales.

Objective:

This project aims to analyze and predict the sales of Electric Vehicles (EV) by state in India using machine learning.

Steps:

- 1. Data Collection: Load and inspect the dataset.
- ▶ 2. Data Preprocessing: Handle missing values, convert date formats, and perform feature engineering.
- > 3. Exploratory Data Analysis (EDA): Visualize trends and relationships between variables.
- ▶ 4. Feature Engineering: Create new features from the date column and encode categorical variables.
- 5. Modeling: Build a regression model to predict EV sales.
- ▶ 6. Evaluation: Evaluate the model performance and interpret the results.
- 7. Visualization: Visualize the results and trends using graphs and charts. dataset.

Data Loading:

df = pd.read_csv(r'C:\Users\HP\Downloads\Electric Vehicle Sales by State in India.csv')
df

	Year	Month_Name	Date	State	Vehicle_Class	Vehicle_Category	Vehicle_Type	EV_Sales_Quantity
0	2014.0	jan	1/1/2014	Andhra Pradesh	ADAPTED VEHICLE	Others	Others	0.0
1	2014.0	jan	1/1/2014	Andhra Pradesh	AGRICULTURAL TRACTOR	Others	Others	0.0
2	2014.0	jan	1/1/2014	Andhra Pradesh	AMBULANCE	Others	Others	0.0
3	2014.0	jan	1/1/2014	Andhra Pradesh	ARTICULATED VEHICLE	Others	Others	0.0
4	2014.0	jan	1/1/2014	Andhra Pradesh	BUS	Bus	Bus	0.0
96840	2023.0	dec	12/1/2023	Andaman & Nicobar Island	MOTOR CAR	4-Wheelers	4W_Personal	1.0
96841	2023.0	dec	12/1/2023	Andaman & Nicobar Island	MOTOR CYCLE/SCOOTER-USED FOR HIRE	2-Wheelers	2W_Shared	5.0
96842	2023.0	dec	12/1/2023	Andaman & Nicobar Island	OMNI BUS	Bus	Bus	0.0
96843	2023.0	dec	12/1/2023	Andaman & Nicobar Island	THREE WHEELER (GOODS)	3-Wheelers	3W_Goods	0.0
96844	2023.0	dec	12/1/2023	Andaman & Nicobar Island	THREE WHEELER (PASSENGER)	3-Wheelers	3W_Shared	0.0

Data Preparation and Cleaning:

```
df.shape
(96845, 8)
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 96845 entries, 0 to 96844
Data columns (total 8 columns):
     Column
                        Non-Null Count Dtype
                        96845 non-null float64
     Month Name
                        96845 non-null object
                        96845 non-null object
     Date
     State
                        96845 non-null object
     Vehicle Class
                        96845 non-null object
     Vehicle Category
                        96845 non-null object
     Vehicle Type
                        96845 non-null object
     EV Sales Quantity 96845 non-null float64
dtypes: float64(2), object(6)
memory usage: 5.9+ MB
```

```
df.nunique()
Year
                       11
Month Name
                       12
                      121
Date
                       34
State
Vehicle Class
                       73
Vehicle Category
                        5
Vehicle Type
                       12
EV_Sales_Quantity
                     1447
dtype: int64
df.isnull().sum()
Year
Month_Name
Date
State
Vehicle Class
Vehicle Category
Vehicle_Type
EV_Sales_Quantity
dtype: int64
df.duplicated().sum()
np.int64(0)
```

```
df['Year'] = df['Year'].astype(int)
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 96845 entries, 0 to 96844
Data columns (total 8 columns):
     Column
                        Non-Null Count
     Year
                        96845 non-null int64
     Month Name
                        96845 non-null object
     Date
                        96845 non-null object
                       96845 non-null object
     State
    Vehicle Class
                       96845 non-null object
    Vehicle Category
                       96845 non-null object
    Vehicle_Type
                       96845 non-null object
     EV Sales Quantity 96845 non-null float64
dtypes: float64(1), int64(1), object(6)
memory usage: 5.9+ MB
```

count of vehicles in different category:

```
vc = df['Vehicle_Category'].value_counts()
vc
```

```
Vehicle_Category
```

Others 54423 2-Wheelers 13121 3-Wheelers 11491 Bus 9119

4-Wheelers 8691 Name: count, dtype: int64

vc.plot(kind= "pie", figsize = (5,4), autopct = "%1.1f%%") plt.title("count of Vehicle by Category") plt.legend(labels = vc.index) plt.show()

count of Vehicle by Category

Sales Contribution by Category:

```
vc_sales = df.groupby('Vehicle_Category')['EV_Sales_Quantity'].sum()
vc_sales

Vehicle_Category
2-Wheelers 1808105.0
3-Wheelers 1620310.0
4-Wheelers 149775.0
Bus 7009.0
Others 8612.0
Name: EV_Sales_Quantity, dtype: float64
```

```
vc_sales.plot(kind = "bar", figsize = (5,3))
plt.title("sales generated by Category")
plt.ylabel("Sales")
plt.show()
```


Sales Contribution by State:

```
st_sales = df.groupby('State')['EV_Sales_Quantity'].sum()
st_sales
```

State	
Andaman & Nicobar Island	202.0
Andhra Pradesh	77356.0
Arunachal Pradesh	40.0
Assam	151917.0
Bihar	213465.0
Chandigarh	11453.0
Chhattisgarh	75275.0
DNH and DD	431.0
Delhi	268538.0
Goa	17382.0
Gujarat	176713.0
Haryana	85250.0
Himachal Pradesh	2886.0
Jammu and Kashmir	16840.0
Jharkhand	47871.0
Karnataka	315498.0
Kerala	133246.0
Ladakh	88.0

Sales by Month:

```
mn_sales = df.groupby('Month_Name')['EV_Sales_Quantity'].sum()
mn_sales
Month_Name
       232194.0
      294022.0
aug
      364558.0
dec
feb
      228739.0
      360703.0
jan
jul
      270473.0
jun
      229754.0
      299888.0
mar
      262747.0
may
      382217.0
nov
      355083.0
oct
      313433.0
sep
Name: EV_Sales_Quantity, dtype: float64
```

```
mn_sales.plot(kind = "line", figsize = (10,4))
plt.title("sales generated by Months")
plt.ylabel("Sales")
plt.show()
                                            sales generated by Months
   380000
   360000
   340000
   320000
Sa 800000
   280000
   260000
   240000
                             dec
                                             jan
                                                                             may
                                                                                             oct
                                                     Month_Name
```

Sales generated by Year:

```
yr_sales = df.groupby('Year')['EV_Sales_Quantity'].sum()
yr_sales
Year
2014
           2392.0
2015
           7805.0
2016
          49855.0
2017
          87420.0
         130254.0
2018
2019
         166819.0
2020
         124684.0
         331498.0
2021
2022
        1024723.0
2023
        1525179.0
2024
         143182.0
Name: EV_Sales_Quantity, dtype: float64
```

```
plt.title("sales generated by Years")
plt.ylabel("Sales")
plt.show()
                                          sales generated by Years
  1.4
  1.2
  1.0
   0.6
   0.4
   0.2
                           2016
                                            2018
                                                                               2022
                                                                                                 2024
         2014
                                                              2020
```

Year

yr_sales.plot(kind = "line", figsize = (10,4))

Sales Generated by Vehicle Type:

```
vt_sales = df.groupby('Vehicle_Type')['EV_Sales_Quantity'].sum()
vt_sales
Vehicle Type
```

```
2W_Personal
                     1796340.0
2W_Shared
                       11765.0
3W Goods
                       44974.0
                       90656.0
3W_Goods_LowSpeed
3W Personal
                          421.0
3W Shared
                       76132.0
3W Shared LowSpeed
                     1408127.0
4W_Personal
                       130676.0
4W Shared
                       19099.0
                         7009.0
Institution Bus
                            0.0
Others
                         8612.0
Name: EV_Sales_Quantity, dtype: float64
```


Dashboard:

Insights:

- ▶ 1.A significant number of vehicles are categorized under the "Other" segment.
- ≥ 2.The 2-wheeler category accounts for the highest sales, underscoring its popularity as a preferred mode of transportation, likely due to affordability, ease of use, and adaptability for personal use.
- ➤ 3.Uttar Pradesh and Maharashtra lead in EV sales, showcasing strong demand in these states. This could be attributed to factors like population density, urbanization, and state-level EV incentives.
- ▶ 4.November records the highest sales volume, likely influenced by festive seasons, year-end discounts, or government policies promoting EV adoption during this time.
- > 5.The year 2023 witnessed the most significant growth in sales, reflecting increased consumer awareness, improved EV infrastructure, and aggressive marketing campaigns by manufacturers.
- ▶ 6.The majority of sales come from 2-wheeler personal vehicles, reinforcing their utility as an efficient and economical transportation option for individual consumers.