IST565 Data Mining

Name: Akshay Chaurasia Email: ahchaura@syr.edu
SUID: 309898873 Date: 9/8/2019

HW2 Instruction

This is a real job interview question from a data analysis company, and I doubt there is a standard answer to this question. So feel free to explore your story by using the data exploration and transformation techniques appropriately.

----instruction quote begins-----

Here is a small dataset for you to work with.

Each of 5 schools (A, B, C, D and E) is implementing the same math course this semester, with 35 lessons. There are 30 sections total. The semester is about 3/4 of the way through.

For each section, we record the number of students who are:

- very ahead (more than 5 lessons ahead)
- middling (5 lessons ahead to 0 lessons ahead)
- behind (1 to 5 lessons behind)
- more behind (6 to 10 lessons behind)
- very behind (more than 10 lessons behind)
- completed (finished with the course)

What's the story (or stories) in this	data? Find it,	and tell it visually	y and, above all,	truthfully.
instruction quote ends				

Name: Akshav Chaurasia

Email: ahchaura@syr.edu Date: 9/8/2019 SUID: 309898873

> summary(schooldata)

```
schoo1
                                       Middling
          Section
                         Very Ahead
                                                        Behind
                                                                     More Behind
                                                                                      Very Behind
            : 1.00
                       Min. :0
                                    Min. : 2.00
                                                    Min. : 4.00
                                                                    Min. : 0.000
                                                                                           : 0.000
       Min.
                                                                                      Min.
       1st Qu.: 2.25
                                    1st Qu.: 4.25
                                                    1st Qu.:15.25
                       1st Qu.:0
                                                                    1st Qu.: 1.000
                                                                                     1st Qu.: 1.250
B:12
                                    Median: 7.50
Mean: 7.40
3rd Qu.: 9.75
                                                                    Median : 2.000
       Median: 5.50
                                                    Median :22.00
                                                                                     Median : 5.500
C: 3
                       Median :0
                                                                    Mean : 3.333
       Mean : 5.90
                       Mean :0
                                                    Mean :25.13
                                                                                     Mean : 6.967
       3rd Qu.: 9.00
                                                    3rd Qu.:34.25
                                                                                      3rd Qu.:11.500
                       3rd Qu.:0
                                                                     3rd Qu.: 4.750
              :13.00
                                           :19.00
                                                           :56.00
                                                                           :12.000
                                                                                             :24.000
       Max.
                       Max.
                                    Max.
                                                    Max.
                                                                    Max.
                                                                                     Max.
 Completed
       : 1.00
1st Qu.: 6.00
Median :10.00
Mean :10.53
3rd Qu.:14.00
Max.
       :27.00
```

str(schooldata)

```
30 obs. of 8 variables:
'data.frame':
            : Factor w/ 5 levels "A", "B", "C", "D", ...: 1 1 1 1 1 1 1 1 1 1 ...
$ School
$ Section
            : int 1 2 3 4 5 6 7 8 9 10 ...
$ Very Ahead : int 0000000000...
            : int
                   5 8 9 14 9 7 19 3 6 13 ...
$ Middling
            : int
                   54 40 35 44 42 29 22 37 29 40 ...
$ Behind
$ More Behind: int
                   3 10 12 5 2 3 5 11 8 5 ...
                  9 16 13 12 24 10 14 18 12 5 ...
 Very Behind: int
$ completed : int 10 6 11 10 8 9 19 5 10 20 ...
```

Using **summary()** and **str()**, we can find out the summary and the structure of the given dataset

Here, we can see that all the variables are numeric, except for school.

Email: ahchaura@syr.edu

Name: Akshay Chaurasia

SUID: 309898873 Date: 9/8/2019

> show(schooldata)

>		nooldata)						
	Schoo1	Section	Very Ahead	Middling		More Behind	Very Behind	
1 2	A	1	0	5	54	3	9	10
2	A	2	0	8	40	10	16	6
3	Α	3	0	9	35	12	13	11
4	Α	4	0	14	44	5	12	10
5	A	5	0	9	42	2	24	8
6	A	6	0	7	29	3	10	9
7	A	7	0	19	22	5	14	19
8	A	8	0	3	37	11	18	5
9	A	9	0	6	29	8	12	10
10		10	0	13	40	5	5	20
11		11	0	8	32	4	10	15
12		12	0	2	16	2	3	14
13		13	0	10	30	3	8	5
14		1	0	4	22	0	6	7
15		2	0	5	7	2	1	3
16		3	0	6	31	1	1	8
17		4	0	4	7	0	0	7
18		5	0	8	14	4	0	14
19		6	0	8	11	1	2	18
20		7	0	9	21	0	2	13
21		8	0	10	23	2	5	6
22		9	0	10	21	0	3	5
23		10	0	3	8	1	1	15
24		11	0	7	19	2	1	10
25		12	0	10	17	1	0	19
26		1	0	2	15	2	4	13
27		2	0	7	20	1	7	1
28		3	0	2	4	1	1	5
29		1	0	3	8	2	6	3
30	E	1	0	11	56	7	15	27

> table(schooldata\$School)

> table(schooldata\$Section)

```
> table(schooldata$school)

A B C D E
13 12 3 1 1
> table(schooldata$section)

1 2 3 4 5 6 7 8 9 10 11 12 13
5 3 3 2 2 2 2 2 2 2 2 2 2 1
> |
```

Here we can see the number of math section across each school. School A has 13 sections, school B has 12 sections, school C has 3 sections, school D and E have 1 section each,

Name: Akshay Chaurasia SUID: 309898873

Email: ahchaura@syr.edu

Date: 9/8/2019

Here we can see that more students (approximately 750) are lagging by 1-5 lessons whereas number of students (approximately 100) lagging by 6-10 lessons is comparatively less. We can also see that no student is very ahead (by5 lessons).

Name: Akshay Chaurasia

Email: ahchaura@syr.edu SUID: 309898873 Date: 9/8/2019

Here, we can see the same thing as earlier. More number of students are in range of behind by 1-5 lessons.

Email: ahchaura@syr.edu

Name: Akshay Chaurasia

SUID: 309898873 Date: 9/8/2019

No school has students who are "Very ahead"

A is ahead of other schools in almost every other category, probably because **it has comparatively more students**.

Number of students in school C, E and D are very less.

IST565 Data Mining

Name: Akshay Chaurasia Email: ahchaura@syr.edu

SUID: 309898873 Date: 9/8/2019

Conclusions:

1. The number of students across schools are:

- 2. The number of students who are behind (1-5 lessons behind) are substantially higher than the other categories.
- 3. There are no students who are very ahead in the course, in any school.
- 4. Most of the students are 1-5 lessons behind, across all the schools.
- 5. Following is the order of sizes of levels of completion:
- 6. Behind > Completed > Middling > Very Behind > More Behind > Very Ahead