Simulação e Modelagem de Sistemas - UNISINOS

Geração de números pseudo-randômicos

Algoritmo que gere uma seqüência de números → DETERMINÍSTICA

Na natureza: jogo de dados, roleta, movimento browniano...

Abordagem atual

- construção de funções
- número gerado depende do número anterior na sequência
- seqüências pseudo-randômicas

RAND Corp. (1955): sequência (tabela) de 1 milhão de n^{os} randômicos, a partir de ruído eletrônico em um tubo de vácuo;

- projeto Rand (Força Aérea americana; Research And No Development:-)
- complexidade algorítmica = conteúdo de informação algorítmica (CIA) = randomicidade algorítmica;
- CIA introduzido independentemente por Kolmogorov / Chaitin / Solomonoff;
- string de 0s e 1s; quais os algoritmos que farão o comput. gerar esta seqüência
 - o O tamanho do algoritmo + curto é o CIA desta string;
 - o ex.: string = 110 110 110 110 \rightarrow 4x print (110) \Longrightarrow baixo CIA
 - o esta cadeia tem ALTA compressabilidade;
- uma cadeia randômica não é comprimível (ou tem baixa compressabilidade) e tem CIA máximo!
- randomicidade ≠ complexidade: alta entropia (elementos simples) = CIA alto mas sem complexidade

random.org

Request HotBits

Fill out this form to generate genuine random numbers. Generate 100 random integers (maximum 10,000).	Generate 128 random bytes (maximum 2048) Format:
Smallest value 1 (limit -1000,000,000).	
Largest value 100 (limit 1000,000,000). Format in 5 columns.	 Hexadecimal (sample) Binary download to a file C language constant declaration (sample)
Get Numbers Reset Form	Get HotBits Reset defaults

Propriedades desejáveis de geradores pseudo-randômicos

- 1. os nos devem ser uniformemente distribuídos;
- 2. os nos devem ser independentes, i.e., sem correlação dentro da sequência;
- 3. ciclo deve ser grande;
- 4. a sequência deve ser reprodutível; deve ser possível utilizar diferentes sementes (*seeds*), o que gera sequências diferentes;
- 5. gerador deve ser rápido;
- 6. espaço de memória necessário deve ser pequeno.

Qual é o dia onde a distrib. das gotas de chuva foi ao acaso?

Métodos clássicos para geração de sequências pseudo-randômicas Random number generators should not be chosen at random.

– Donald Knuth (1986)

• método do quadrado médio (John von Neumann+Metropolis em 1940)

Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin. – John von Neumann (1951)

Exemplo:

$$\frac{\text{Exemple.}}{\text{semente}} = 6735$$

$$X_1 = 6735^2 = 45360225 \rightarrow 3602$$

$$X_2 = 3602^2 = 12974409 \rightarrow 9744$$

$$X_3 = 9744^2 = 94945536 \rightarrow 9455$$

$$X_4 = 9455^2 = 89\overline{3970}25 \rightarrow 3970$$

b) conversão para base unitária (Xi entre 0 e 1)

$$X_1 = 3602/9999 = 0,36023$$

 $X_2 = 9744/9999 = 0,97449$
 $X_3 = 9455/9999 = 0,94559$

c) convertendo para um intervalo (de A
$$\rightarrow$$
B) FN_i = A+(B-A)* X_i se A=5 e B=15 então:

$$FN_1 = 5 + (10) * 0,36023 = 8,602$$

$$FN_2 = 5 + (10) * 0.97449 = 14.7449$$

$$FN_3 = 5 + (10) * 0.94559 = 14,4559$$

2 gerador congruente linear (LCG)

LCG aditivo:

$$X_i = (a*X_{i-1} + c) \bmod m$$

Exemplo:

$$X_0=4$$
 $a=3$ $c=1$ $m=5$ $X_i = (3 * X_{i-1} + 1) \mod 5$

$$X_1 = 13 \mod 5 = 3$$

 $X_2 = 10 \mod 5 = 0$
 $X_3 = 1 \mod 5 = 1$
 $X_4 = 4 \mod 5 = 4$ Ciclo = 4 iterações

$X_5 = 13 \mod 5 = 3$

LCG multiplicativo: c=0 Exemplo:

$$X_0=4^{-1}$$
 a=3 m=5

$$X_i = (3 * X_{i-1}) \mod 5$$

$$X_1 = 12 \mod 5 = 2$$

$$X_2 = 6 \mod 5 = 1$$

$$X_3 = 3 \mod 5 = 3$$

$$X_4 = 9 \mod 5 = 4$$

Xi : um número da següência

a : constante multiplicativa

c : constante aditiva

 X_0 : semente

Obs.:

O modulo m determina o intervalo dos valores obtidos [0 a m-1]

Obs.:

Os maiores ciclos seriam obtidos quando:

 $a \rightarrow raiz$ primitiva de m :

$$a^p = 1 + mK$$

Onde

$$p = m-1$$

K é inteiro