

Inteligência Artificial

Busca Cega ou Exaustiva

Prof. Dr^a. Andreza Sartori <u>asartori@furb.br</u>

Documentos Consultados/Recomendados

- KLEIN, Dan; ABBEEL, Pieter. Intro to Al. UC Berkeley. Disponível em: http://ai.berkeley.edu.
- FARIA, Fabio Augusto. Inteligência Artificial. Universidade Federal de São Paulo, 2017.
- LIMA, Edirlei Soares. Inteligência Artificial. PUC-Rio, 2015.
- RUSSELL, Stuart J. (Stuart Jonathan); NORVIG, Peter.
 Inteligência artificial. Rio de Janeiro: Campus, 2013. 1021 p, il.
- VIERIU, Radu-Laurenţiu. Artificial Intelligence. Università degli Studi di Trento, 2016.

Conteúdo Programático

Unidade 1: Fundamentos de Inteligência Artificial

Unidade 2: Busca

Unidade 3: Sistemas Baseados em Conhecimento

Unidade 4: Redes Neurais Artificiais

Unidade 5: Aplicações de Inteligência Artificial

Conteúdo Programático

Unidade 1: Fundamentos de Inteligência Artificial

Unidade 2: Busca

Unidade 3: Sistemas Baseados em Conhecimento

Unidade 4: Redes Neurais Artificiais

Unidade 5: Aplicações de Inteligência Artificial

Conteúdo Programático

Unidade 1: Fundamentos de Inteligência Artificial

Unidade 2: Busca

- 2.1. Resolução de Problemas por meio de busca
- 2.2. Busca Cega ou Exaustiva
- 2.3. Busca Heurística
- 2.4. Busca Competitiva
- 2.5. Busca Local
 - 2.5.1 Algoritmos Genéticos (AG)

Relembrando: Problema de Busca

Relembrando: Definição de um Problema

- Estado Inicial: Estado inicial do agente.
 - Ex: Em(Arad)
- Estado Objetivo (Estado Final): Estado buscado pelo agente.
 - Ex: Em(Bucharest)
- Ações Possíveis (Função Sucessor): Conjunto de ações que o agente pode executar.
 - Ex: Ir(Cidade, PróximaCidade)
- Espaço de Estados: Conjunto de estados que podem ser atingidos a partir do estado inicial.
 - Ex: Mapa da Romênia.
- Custo de Caminho: Custo numérico de cada caminho.
 - Ex: Distância em KM entre as cidades.

Relembrando: Solução para um Problema

- A solução para um problema é um caminho desde o estado inicial até o estado objetivo (estado final).
- A qualidade da solução é medida pela função de custo de caminho, isto é, a solução que tiver menor custo de caminho entre todas as soluções.

Medida de Desempenho do Algoritmo de Busca

- Uma estratégia de busca é definida pela escolha da ordem da expansão de nós
- Estratégias são avaliadas de acordo com os seguintes critérios:
 - Completeza: o algoritmo sempre encontra a solução se ela existe?
 - Otimização (Custo de Caminho): a estratégia encontra a solução ótima? - Qualidade da solução
 - Para passos com igual custo, é aquela em menor profundidade na árvore de busca

Medida de Desempenho do Algoritmo de Busca

- Uma estratégia de busca é definida pela escolha da ordem da expansão de nós
- Estratégias são avaliadas de acordo com os seguintes critérios:
 - Complexidade De Tempo (Custo de Busca): quanto tempo ele leva para encontrar a solução? - Número de nós gerados
 - Complexidade De Espaço (Custo de Busca): quanta memória é necessária para executar a busca? - Número máximo de nós na memória.

Custo Total

Custo do Caminho + Custo de Busca.

Métodos de Busca

Busca Cega ou Exaustiva:

 Não tem nenhuma informação adicional sobre os estados, isto é, não sabe qual o melhor nó da fronteira a ser expandido. Apenas distingue o estado objetivo dos não objetivos.

Busca Heurística:

 Ou busca com informação, estima qual o melhor nó da fronteira a ser expandido baseado em funções heurísticas.

Busca Competitiva:

Considera que há oponentes hostis e imprevisíveis. Ex: Jogos

Busca Local:

- Operam em um único estado e movem-se para a vizinhança deste estado.
- Algorítmos Genéticos:
 - Variante de Busca Local em que é mantida uma grande população de estados. Novos estados são gerados por mutação e por crossover, que combina pares de estados da população.

Algoritmos de Busca Cega ou Exaustiva

As estratégias de busca sem informação se distinguem pela ordem em que os nós são expandidos.

- Busca em extensão/largura;
- Busca em profundidade;
- 3. Busca por aprofundamento iterativo;
- 4. Busca de custo uniforme.

Algoritmos de Busca Cega ou Exaustiva

As estratégias de busca sem informação se distinguem pela ordem em que os nós são expandidos.

- Busca em extensão/largura;
- 2. Busca em profundidade;
- 3. Busca por aprofundamento iterativo;
- 4. Busca de custo uniforme.

O nó raiz é expandido primeiro, em seguida todos os nós sucessores são expandidos, então todos próximos nós sucessores são expandidos, e assim por diante.

Dan Klein and Pieter Abbeel ai.berkeley.edu

Estratégia: expandir primeiro o nó mais raso.

Implementação: Utiliza-se uma estrutura de fila (FIFO: first-infirst-out). Os nós visitados primeiro serão expandidos primeiro.

Completa?

Sim, se o fator de ramificação é finito.

Ótima?

 Sim, somente no caso em que todas as ações tiverem o mesmo custo. b: máximo fator de ramificação

d: profundidade do nó objetivo menos profundo

m: o comprimento máximo (pode ser ∞)

Tempo?

- $1 + b + b^2 + b^3 + \dots + b^d = O(b^d)$
- A complexidade é exponencial, o que torna impraticável para problemas grandes.

Espaço?

- O(b^d) mantém todos os nós na memória
- árvore com 12 de profundidade: 1 PB

https://qiao.github.io/PathFinding.js/visual/

Algoritmos de Busca Cega ou Exaustiva

As estratégias de busca sem informação se distinguem pela ordem em que os nós são expandidos.

- 1. Busca em extensão/largura;
- Busca em profundidade;
- 3. Busca por aprofundamento iterativo;
- 4. Busca de custo uniforme.

2. Busca em Profundidade

A busca prossegue imediatamente até o nível mais profundo da árvore de busca, onde os nós não tem sucessores.

Dan Klein and Pieter Abbeel ai.berkeley.edu

2. Busca em Profundidade

Estratégia: expande primeiro o nó mais profundo.

Implementação: Utiliza-se uma estrutura de pilha (LIFO - last-in-first-out) para armazenar os nós das fronteira.

Dan Klein and Pieter Abbeel ai.berkeley.edu

2. Propriedades da Busca em Profundidade

Completa?

- Não. Falha em espaços com profundidade infinita, espaços com loops.
- Se modificada para evitar estados repetidos é completa para espaços finitos.

Ótima?

 Não. Encontra a solução "mais à esquerda", independentemente da profundidade ou custo.

Tempo?

- O(b^m): Péssimo quando m é muito maior que d.
- Porém se há muitas soluções pode ser mais eficiente que a busca em extensão.

Espaço?

- O(bm)
- Árvore com 12 de profundidade: 118 KB
- Nós expandindos sem descendentes podem ser removidos.

b: máximo fator de ramificação

d: profundidade do nó objetivo menos profundo

m: o comprimento máximo (pode ser ∞)

Algoritmos de Busca Cega ou Exaustiva

As estratégias de busca sem informação se distinguem pela ordem em que os nós são expandidos.

- 1. Busca em extensão/largura;
- 2. Busca em profundidade;
- 3. Busca por aprofundamento iterativo;
- 4. Busca de custo uniforme.

3. Busca por Aprofundamento Iterativo

 Consiste em uma busca em profundidade onde o limite de profundidade é incrementado gradualmente.

3. Busca por Aprofundamento Iterativo

- Combina os benefícios da busca em profundidade com os benefícios da busca em extensão.
- Evita o problema de caminhos muito longos ou infinitos.
- A repetição da expansão de estados não é tão ruim, pois a maior parte dos nós estão nos níveis inferiores.
- Cria menos estados que a busca em largura e consome menos memória.
- Método de busca sem informação preferido quando existe um espaço de busca grande e a profundidade da solução não é conhecida.

Algoritmos de Busca Cega ou Exaustiva

As estratégias de busca sem informação se distinguem pela ordem em que os nós são expandidos.

- 1. Busca em extensão/largura;
- 2. Busca em profundidade;
- 3. Busca por aprofundamento iterativo;
- 4. Busca de custo uniforme.

Expande sempre o nó de menor custo de caminho. Se o custo de todos os passos forem os mesmos, a busca será idêntica à busca em extensão/largura.

Dan Klein and Pieter Abbeel ai.berkeley.edu

Estratégia: expandir o nó de menor custo primeiro.

- Não se importa com o número de passos que o caminho tem, apenas com seu custo total.
- A primeira solução encontrada é a solução ótima se custo do caminho sempre aumentar ao longo do caminho, ou seja, não existirem operadores com custo negativo.
- Implementação semelhante a busca em largura.
 Adiciona-se uma condição de seleção (custo) dos nós a serem expandidos.

Completa?

 Sim, considerando que a melhor solução tem um custo finito e o custo mínimo é positivo.

Ótima?

 Sim, pois os nós são expandidos em ordem crescente de custo total.

Tempo?

O(b̄ C*/ε̄) onde C* é o custo da solução ótima

Espaço?

- O(b[†]C*/ε[¬])
- Explora pequenos passos antes de explorar caminhos com passos grandes. - exponencial

ε : Custo mímimo de uma ação

C*: Custo da solução ótima

b: Nós

Profundidade da solução mais barata.

