Diagonalisace matic

Odpřednesenou látku naleznete v kapitolách 10.1, 10.3 a 10.4 skript *Abstraktní a konkrétní lineární algebra*.

Minulá přednáška

- Pojmy vlastní hodnota a vlastní vektor lineárního zobrazení.
- $oldsymbol{2}$ Věta o diagonalisovatelnosti čtvercových matic nad \mathbb{C} .

Dnešní přednáška

- **1** Diagonalisovatelnost matic nad \mathbb{C} a nad \mathbb{R} .
- Dvě aplikace: řešení rekurentních rovnic a funkce matic.^a

^aTyto dvě aplikace nebudou zkoušeny!

Připomenutí důležité vlastnosti tělesa C

Každý polynom p(x) v $\mathbb{C}[x]$ stupně n má přesně n kořenů (počítaných i s násobnostmi).^a

- **1** Komplexní číslo λ je kořen polynomu $p(x) \in \mathbb{C}[x]$ násobnosti k, pokud platí rovnost $p(x) = (x \lambda)^k \cdot q(x)$ pro $q(x) \in \mathbb{C}[x]$ a $q(\lambda) \neq 0$.
- ② Speciálně: číslo λ má jako kořen p(x) násobnost nula právě tehdy, když λ není kořenem polynomu p(x).

Důsledek (téma 8B, tvar věty o diagonalisaci pro $\mathbb{F}=\mathbb{C}$)

Pro čtvercovou matici **A** nad \mathbb{C} jsou následující podmínky ekvivalentní:

- Matice A diagonalisovatelná.
- ② Pro každé komplexní číslo λ platí: násobnost λ jako kořene polynomu $\operatorname{char}_{\mathbf{A}}(x)$ je rovna $\dim(\operatorname{eigen}(\lambda,\mathbf{A}))$.

^aTéto vlastnosti tělesa ℂ se říká <mark>algebraická uzavřenost</mark>.

Příklad

Pauliho matice^a jsou následující tři matice nad \mathbb{C} :

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Všechny tyto matice jsou diagonalisovatelné:

Matice Z již diagonální je.

^aJde o důležitý příklad v kvantové mechanice a kvantovém počítání. Matice X, Y a Z jsou operátory spinu ve směrech os x, y, z a značívají se též σ_x (také: σ_1) σ_v (také: σ_2) σ_z (také: σ_3)

Užitečná početní cvičení: platí rovnosti

- ② $\{\sigma_j, \sigma_k\} = 2\delta_{jk}\mathbf{E}_2$, kde $\{\sigma_j, \sigma_k\} = \sigma_j\sigma_k + \sigma_k\sigma_j$ je tzv Poissonova závorka a δ_{jk} je Kroneckerův symbol.
- 3 $[\sigma_j, \sigma_k] = \sum_{l=1}^3 2i\epsilon_{jkl}\sigma_l$, kde $[\sigma_j, \sigma_k] = \sigma_j\sigma_k \sigma_k\sigma_j$ je tzv komutátor a ϵ_{jkl} je Levi-Civitův symbol.

4/17

Příklad (pokrač.)

2 Diagonalisace matice $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Platí
$$char_X(x) = x^2 - 1 = (x - 1) \cdot (x + 1)$$
.

Vlastní hodnoty a vlastní vektory matice X jsou: $\lambda_1=1$,

$$\mathbf{t}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 a $\lambda_2 = -1$, $\mathbf{t}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

Tudíž

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

a operátor X je diagonální v bázi $(\mathbf{t}_1, \mathbf{t}_2)$.

Příklad (pokrač.)

3 Diagonalisace matice $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$.

Platí char
$$_{Y}(x) = x^{2} - 1 = (x - 1) \cdot (x + 1)$$
.

Vlastní hodnoty a vlastní vektory matice Y jsou: $\lambda_1=1$,

$$\mathbf{v}_1 = \begin{pmatrix} -i \\ 1 \end{pmatrix}$$
 a $\lambda_2 = -1$, $\mathbf{v}_2 = \begin{pmatrix} i \\ 1 \end{pmatrix}$.

Tudíž

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

a operátor Y je diagonální v bázi ($\mathbf{v}_1, \mathbf{v}_2$).

Jordanův tvar čtvercové matice

Ať **A** je matice typu $n \times n$ nad \mathbb{F} taková, že polynom $\operatorname{char}_{\mathbf{A}}(x)$ lze rozložit na součin lineárních faktorů.^a

Potom lze dokázat, že A je "téměř diagonalisovatelná". Přesněji: platí $\mathbf{A} \approx \mathbf{J}$, kde

$$J = egin{pmatrix} J_1 & 0 & 0 & 0 & \dots & 0 \ 0 & J_2 & 0 & 0 & \dots & 0 \ 0 & 0 & J_3 & 0 & \dots & 0 \ dots & & & & & \ 0 & 0 & 0 & 0 & \dots & J_n \end{pmatrix}$$

O Jordanově tvaru budeme mluvit na příští přednášce (téma 9A).

^aTo platí například pro libovolnou matici nad ℂ.

Jordanův tvar čtvercové matice (pokrač.)

$$\mathbf{J}_i = egin{pmatrix} \lambda_i & 1 & 0 & 0 & 0 & \dots & 0 \ 0 & \lambda_i & 1 & 0 & 0 & \dots & 0 \ 0 & 0 & \lambda_i & 1 & 0 & \dots & 0 \ dots & & & & & & \ 0 & 0 & 0 & 0 & 0 & \dots & \lambda_i \end{pmatrix}$$

Matici J_i říkáme Jordanova buňka. Na diagonále je vlastní hodnota λ_i matice A. Rozměr matice J_i je roven násobnosti vlastní hodnoty λ jako kořene $\operatorname{char}_A(x)$.

Existenci Jordanova tvaru budou věnovány další přednášky.

Příklad

At $\mathbf{A} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ je regulární matice nad \mathbb{R} . Potom platí:

Matice **A** je tedy nad \mathbb{R} diagonalisovatelná pouze v případě b=0.

V tomto případě ale **A** už je diagonální: $\mathbf{A} = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$ a musí platit $a \neq 0$, protože **A** je regulární.

Matice **A** je tedy maticí změny měřítka (změna je stejná na obou souřadnicových osách).

Příklad (pokrač.)

② V případě $b \neq 0$ matice $\mathbf{A} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ není nad $\mathbb R$ diagonalisovatelná.

Matice **A** (chápaná jako matice nad \mathbb{C}) má vlastní hodnoty $\lambda_1 = a + bi$ a $\lambda_2 = a - bi$, protože $\operatorname{char}_{\mathbf{A}}(x) = x^2 - 2ax + (a^2 + b^2) = (x - (a + ib)) \cdot (x - (a - ib))$.

Označme
$$r=|\lambda_1|=|\lambda_2|=\sqrt{a^2+b^2}$$
. Dále označme jako α úhel a mezi vektory $\left(\begin{array}{c} 1 \\ 0 \end{array} \right)$ a $\left(\begin{array}{c} a \\ b \end{array} \right)$.

Potom

$$\mathbf{A} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} = \begin{pmatrix} r & 0 \\ 0 & r \end{pmatrix} \cdot \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

To jest: **A** je rotace o úhel α , následovaná změnou měřítka.

10/17

^aÚhlu α se říká argument komplexního čísla a+bi. Platí tedy rovnost $a+bi=r\cdot(\cos\alpha+i\sin\alpha)=r\cdot e^{i\alpha}$.

Tvrzení (klasifikace regulárních transformací roviny)

Ať $\mathbf{M}:\mathbb{R}^2\to\mathbb{R}^2$ je regulární a ať nemá 2-násobnou vlastní hodnotu. Pak \mathbf{M} je podobná buď

nebo

Slogan

Regulární transformace roviny bez 2-násobných vlastních hodnot jsou pouze dvou typů:

- Změny měřítka (změna měřítka je na každé souřadnicové ose jiná).
- Rotace následované změnou měřítka stejnou na obou souřadnicových osách.

Důkaz (klasifikace regulárních transformací roviny).

- **1** V případě, kdy **M** je diagonalisovatelná nad \mathbb{R} , má **M** dvě různé reálné vlastní hodnoty a, b. Tudíž $\mathbf{M} \approx \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, kde $a \cdot b \neq 0$, protože **M** je regulární.
- V případě, kdy M nad R diagonalisovatelná není, má char_M(x) komplexní kořen λ = a + bi, kde b ≠ 0.
 Označme jako v komplexní vlastní vektor příslušný vlastní hodnotě λ. Označme jako T matici se sloupci t₁ = Re(v) (vektor reálných částí položek vektoru v) a t₂ = Im(v) (vektor imaginárních částí položek vektoru v).

Potom platí rovnost $\mathbf{M} = \mathbf{T} \cdot \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \cdot \mathbf{T}^{-1}$. Nyní stačí použít předchozí příklad.

Výpočet mocnin diagonalisovatelné matice

Pro diagonalisovatelnou matici **A** typu $n \times n$ nad \mathbb{F} platí:

 $\mathbf{A} = \mathbf{T}^{-1} \cdot \mathbf{D} \cdot \mathbf{T}$ pro nějakou regulární matici \mathbf{T} .

Tudíž:
$$\mathbf{A}^2 = \mathbf{A} \cdot \mathbf{A} = (\mathbf{T}^{-1} \cdot \mathbf{D} \cdot \mathbf{T}) \cdot (\mathbf{T}^{-1} \cdot \mathbf{D} \cdot \mathbf{T}) = \mathbf{T}^{-1} \cdot \mathbf{D}^2 \cdot \mathbf{T}.$$

Obecně: $\mathbf{A}^k = \mathbf{T}^{-1} \cdot \mathbf{D}^k \cdot \mathbf{T}$, pro všechna přirozená čísla $k \geq 0$.

Protože mocniny diagonální matice lze počítat velmi rychle, lze rychle počítat i mocniny diagonalisovatelných matic.

Ukážeme dvě aplikace umocňování:

- Řešení lineárních homogenních rekurentních rovnic.
 To je důležité při analýze složitosti rekursivních algoritmů.
- Základní myšlenku funkcí matice.
 To je důležité ve fyzice, grafice, kvantovém počítání, ...

Příklad (Fibonacciho posloupnost)

Hledáme posloupnost čísel F(n), splňující lineární rekurentní rovnici F(n+2) = F(n+1) + F(n), pro všechna př. č. $n \ge 0$.

Cíl: chceme explicitní vzorec pro F(n), $n \ge 0$.

Evidentně: známe-li F(0) a F(1), známe všechna F(n).

• Vytvoříme generující matici $\mathbf{F} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ pro kterou platí:

$$\mathbf{F} \cdot \begin{pmatrix} F(0) \\ F(1) \end{pmatrix} = \begin{pmatrix} F(1) \\ F(2) \end{pmatrix} \text{, obecně } \mathbf{F}^n \cdot \begin{pmatrix} F(0) \\ F(1) \end{pmatrix} = \begin{pmatrix} F(n) \\ F(n+1) \end{pmatrix}.$$

② Matice **F** je diagonalisovatelná nad \mathbb{R} : $\lambda_1 = \frac{1+\sqrt{5}}{2}$, $\lambda_2 = \frac{1-\sqrt{5}}{2}$

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \mathbf{T}^{-1} \cdot \mathbf{F} \cdot \mathbf{T}, \quad \mathbf{T} = \begin{pmatrix} 1 & 1 \\ \lambda_1 & \lambda_2 \end{pmatrix}, \quad \mathbf{F}^n = \mathbf{T} \cdot \mathbf{D}^n \cdot \mathbf{T}^{-1}$$

^aPožadavkům $F(0) = x_0$ a $F(1) = x_1$ se říká počáteční podmínka. Pro klasickou Fibonacciho posloupnost jde o F(0) = 1, F(1) = 1.

Příklad (Fibonacciho posloupnost, pokrač.)

$$\begin{array}{l} \bullet \quad \begin{pmatrix} F(n) \\ F(n+1) \end{pmatrix} = \mathbf{T} \cdot \begin{pmatrix} \lambda_1^n & 0 \\ 0 & \lambda_2^n \end{pmatrix} \cdot \mathbf{T}^{-1} \cdot \begin{pmatrix} F(0) \\ F(1) \end{pmatrix} = \\ \begin{pmatrix} 1 & 1 \\ \lambda_1 & \lambda_2 \end{pmatrix} \cdot \begin{pmatrix} \lambda_1^n & 0 \\ 0 & \lambda_2^n \end{pmatrix} \cdot \frac{1}{\lambda_2 - \lambda_1} \cdot \begin{pmatrix} \lambda_2 & -1 \\ -\lambda_1 & 1 \end{pmatrix} \cdot \begin{pmatrix} F(0) \\ F(1) \end{pmatrix} = \\ \frac{1}{\lambda_2 - \lambda_1} \cdot \begin{pmatrix} 1 & 1 \\ \lambda_1 & \lambda_2 \end{pmatrix} \cdot \begin{pmatrix} \lambda_1^n & 0 \\ 0 & \lambda_2^n \end{pmatrix} \cdot \begin{pmatrix} \lambda_2 & -1 \\ -\lambda_1 & 1 \end{pmatrix} \cdot \begin{pmatrix} F(0) \\ F(1) \end{pmatrix}$$

Takže:
$$F(n) = \frac{\lambda_1^n \cdot \lambda_2 - \lambda_2^n \cdot \lambda_1}{\lambda_2 - \lambda_1} \cdot F(0) + \frac{-\lambda_1^n + \lambda_2^n}{\lambda_2 - \lambda_1} \cdot F(1)$$

V klasickém případě (tj když F(0) = F(1) = 1), je

$$F(n) = \frac{\lambda_1^n \cdot \lambda_2 - \lambda_2^n \cdot \lambda_1}{\lambda_2 - \lambda_1} + \frac{-\lambda_1^n + \lambda_2^n}{\lambda_2 - \lambda_1} =$$

$$= \lambda_1^n \cdot \frac{\lambda_2 - 1}{\lambda_2 - \lambda_1} + \lambda_2^n \cdot \frac{1 - \lambda_1}{\lambda_2 - \lambda_1}$$

Poznámky (lineární homogenní rekurence k-tého řádu)

Obdobným způsobem lze řešit jakoukoli homogenní lineární rekurentní rovnici k-tého řádu: hledáme posloupnost X(n) prvků \mathbb{F} , které splňují

$$X(n+k) = a_1X(n+k-1) + a_2X(n+k-2) + \dots + a_kX(n)$$

pro všechna přirozená čísla $n \ge 0$, kde a_1, \ldots, a_k jsou v \mathbb{F} .

Jediné, co potřebujeme, je diagonalisovatelnost generující matice.

- Řešení rekurentních rovnic hraje zásadní úlohu při analýze složitosti rekursivních algoritmů.
- Podobné postupy fungují i pro lineární homogenní diferenciální rovnice k-tého řádu. Viz Dodatek O skript.

Příklad (exponenciála matice)

Víme, že funkce e^x má Taylorův rozvoj $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$.

Pro čtvercovou diagonalisovatelnou matici $\mathbf{X} = \mathbf{T}^{-1} \cdot \mathbf{D} \cdot \mathbf{T}$ definujeme

$$e^{\mathbf{X}} = \sum_{i=0}^{\infty} \frac{\mathbf{X}^n}{n!} = \sum_{i=0}^{\infty} \frac{\mathbf{T}^{-1} \cdot \mathbf{D}^n \cdot \mathbf{T}}{n!} = \mathbf{T}^{-1} \cdot \underbrace{\left(\sum_{i=0}^{\infty} \frac{\mathbf{D}^n}{n!}\right)}_{=e^{\mathbf{D}}} \cdot \mathbf{T}$$

Konvergenci této řady musíme chápat ve smyslu normy.^a

Lze ukázat, že matice $e^{\mathbf{D}}$ je diagonální, a že platí $e^{\mathbf{D}} = (\delta_{ij} \cdot e^{d_{ij}})$.

^aTo je velmi technický pojem, nebudeme o něm mluvit. Více například v knize Roger A. Horn, Charles J. Johnson, *Matrix analysis*, Cambridge University Press, 2012, nebo v přednášce A0B01PAN (Pokročilá analýza), nebo v kapitole 13.2 skript. Analogicky exponenciále lze postupovat pro obecnou funkci $f: \mathbb{R} \to \mathbb{R}$ (případně $f: \mathbb{C} \to \mathbb{C}$), která má Taylorův rozvoj.