2001~2002 学年第二学期《 高等数学 》期末考试试题 (180 学时)

一、填空题(每小题4分)

1、曲线
$$\begin{cases} x^2 - y^2 + z^2 = 0 \\ x = 2 \end{cases}$$
 在点(2, 3, $\sqrt{5}$)处的切线与 Z 轴正向所成的倾角

2、设
$$f(x,y)$$
是连续函数,改变 $\int_{-1}^{0} dx \int_{x+1}^{\sqrt{1-x^2}} f(x,y) dy$ 的积分次序______。

3、L 是从 A (1, 6) 沿
$$xy = 6$$
 至点 B (3, 2) 的曲线段,则 $\int_L e^{x+y} (ydx + xdy) = 0$

4、
$$\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$$
的和等于______。

5、若
$$\sum_{n=1}^{\infty} a_n$$
 收敛, $S_n = a_1 + a_2 + \dots + a_n$,则 $\lim_{n \to \infty} (S_{n+1} + S_{n-1} - 2S_n) = \underline{\hspace{1cm}}$ 。

二、试解下列各题(每小题5分)

- 1、设 $\vec{a} = \vec{i} + \vec{j}$, $\vec{b} = -2\vec{j} + \vec{k}$, 求以向量 \vec{a} , \vec{b} 为边的平行四边形的对角线的长度。
- 2、设 $u = \sec(2y xyz)$, 求 u_x , u_y , u_z

三、(10 分) 计算
$$\iint_{\Sigma} x(y-z)dydz + (x-y)dxdy$$
, 其中 Σ 是曲线 $z=y^2$ ($0 \le z \le 3$)

绕 Z 轴旋转一周而成, 且从 Z 轴正向看的下侧。

四、(10 分) 设函数
$$z(x,y)$$
 由方程组
$$\begin{cases} x = e^{u+v} \\ y = e^{u-v} \end{cases}$$
, (u, v 为参数) 所确定,求 $\frac{\partial^2 z}{\partial x^2} \Big|_{\substack{x=1 \ y=1}}$.

五、(10 分) 计算
$$\iint_D |x^2 + y^2 - 2| dx dy$$
, 其中区域 D 为 $x^2 + y^2 \le 3$ 。

- 六、(11 分)有一母线平行于 Z 轴的三棱柱,它的底是 xoy 面上以 A(1,0),B(1,0),C(-1,0) 为顶点的三角形,试求此三棱柱介于平面 z=0 与旋转面 $z=x^2+y^2$ 之间的那部分体积。七、(10 分) 计算 $\iint_{\Sigma} z^2 ds$,其中 Σ 是柱面 $x^2+y^2=4$ 介于 $0 \le z \le 6$ 的部分。
- 八、(12 分) 设 $\stackrel{\frown}{AB}$ 在极坐标系下的方程为 $r=f(\theta)$,其中 $f(\theta)$ 是 $[0,2\pi]$ 上具有连续导数的正值函数,且 $\theta=\alpha$ 对应点 A, $\theta=\beta$ 对应点 B($0<\alpha<\beta<2\pi$)。试证明:

$$\int_{AB} -y dx + x dy = \int_{\alpha}^{\beta} f^{2}(\theta) d\theta$$

九、 $(7 \, \text{分})$ 求幂级数 $\sum_{n=1}^{\infty} \frac{n^2}{n!} x^n$ 的收敛区间及和函数。