

Data Science Program

Session -3

Session - 3 Content

Content

- Scatter Plot
- Box Plot
- Covariance
- Correlation

RECAP

Herkes önceki dersten hatırladığı 1 cümle yazabilir mi?

Saçılım Grafiği – Serpilme Diyagramı

- İki değişkenli bir scatter plot, Y eksenindeki bir değişkenin değerlerini ve X eksenindeki diğer değişkenin değerlerini gösterir.
- değişkenler arasındaki ilişkinin yönünü ve büyüklüğünü gösterir

Scatter Plot Pattern

Strength

 Strength, grafikteki dağılmanın veya saçılmanın derecesini gücünü Strong Positive

ifade eder

Linearity

Unusual Features

Scatter Plot Pattern

Unusual Features

- Clusters (Kümelenme)
- Gaps (Boşluklar)
- Outliers (Aykırı Değerler)

Linearity

Slope

Strength

Unusual Features

Pattern of Data in Scatterplot

Box Plot

Box Plot – Kutu Grafiği

• Bir veri kümesinin en etkili grafik özetlerinden biri olan box plot genellikle ortalama, medyan, 25. ve 75. yüzdelikler ve outlier'ları gösterir.

Quantiles same as percentiles except for scale

▷ Common quantiles have special names, such as quartiles (four groups), deciles (ten groups), and percentiles (100 groups).

Percentiles

For data, the pth percentile is the value of x such that p% of the data is less than or equal to x

Percentiles & Quartiles & IQR

- ► Special percentiles:
 - Minimum: 0th percentile
 Median: 50th percentile

 - Maximum: 100th percentile
- Quartiles: 25th and 75th percentiles
 - Sometimes called: "lower fourth" and "upper fourth"
- ► Interquartile Range (IQR):
 - IQR = 75th percentile 25th percentile
 - Sometimes IQR is known as the "fourth spread"

Box Plot

- Box-and-whisker plot bir veri setinin önemli özelliklerini vurgulayan bir EDA keşif veri analizi aracıdır
- Beş tane değer, grafiği çizmek için kullanılır:
 - minimum veri
 - Q1
 - Q2 (medyan)
 - Q3
 - maximum veri

- Örnek
- Box-and-whisker plot çizmek için 15 sınav puanından verileri kullanın

Box Plot - Min & Max Values

_	
	Weight, kg
	38
	25
	37
-	28
	35
	29
	35
	29
Min	34
Q1	30

Step 1: Order the data from smallest to largest.

25 28 29 29 30 34 35 35 37 38

Step 2: Find the median.

25 28 29 29 30 34 35 35 37 38

Median = 32

Step 3: Find the quartiles.

25 28 29 29 30 34 35 35 37 38

Q3 = 35

Step 4: Find the min and the max.

Min = 25

Max = 38

Step 1: Scale / label an axis that fits the five-number.

25 28 29 29 30 34 35 35 37 38

Min = 25 Max = 38

Step 2: Draw a box from Q1 to Q3 with a vertical line through the median.

25 28 29 29 30 34 35 35 37 38

Step 3: Draw a whisker from Q1 to the min and from Q3 to the max.

25 28 29 29 30 34 35 35 37 38

Outliers Detection

1.5*IQR Kuralı

Median 32

İstatistikçi John Tukey'e göre,

• Eğer gözlem değeri Q1'in altında ve Q3'ün üzerinde 1.5*IQR dan daha fazla düşerse bu değer

outlier'dır.

Box Plot - IQR

5, 7, 10, 15, 19, 21, 21, 22, 22, 23, 23, 23, 23, 24, 24, 24, 24, 25

Step 1: Find the median, quartiles, and interquartile range.

Median = 23
Q1 = 20
Q3 = 23.5
IQR = Q3 - Q1 = 23.5 - 20 = 3.5
[35] np.percentile(a, 75)
23.5

5, 7, 10, 15, 19, 21, 21, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24, 24, 25

Step 1: Find the median, quartiles, and interquartile range. **Step 2:** Calculate 1.5 x IQR below the first quartile and check for low outliers.

Q1 - 1.5 x IQR = 20 - 1.5 x 3.5 = 14.75

Low Outliers: 5 7 10

5, 7, 10, 15, 19, 21, 21, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24, 24, 25

Step 1: Find the median, quartiles, and interquartile range.

Step 2: Calculate 1.5 \times IQR below the first quartile and check for low outliers.

Step 3: Calculate 1.5 \times IQR above the third quartile and check for high outliers.

Q3 + 1.5 x IQR = 23.5 + 1.5 x 5 = 28.75

Box Plot'u çiziniz.

Box Plot Comments ??

boxplot of student's heights:

which are true and why?

- 1. the girls are taller on average
- 2. the boys are taller on average
- 3. the girls show less spread in height
- 4. the boys show less spread in height
- 5. the shortest person is a girl

- 6. the tallest person is a boy
- 7. both data sets are skewed to the left
- 8. half the boys are over 172 cm tall
- 9. half the girls are under 165cm tall

Covariance & Correlation

Covariance

Kovaryans

- İki veri arasındaki değişimin yönünü gösterir
- Değişkenlerin birlikte nasıl değiştiğini görmek önemlidir

Covariance Formula

For Population

$$Cov(x,y) = \frac{\sum (x_i - \overline{x}) * (y_i - \overline{y})}{N}$$

For Sample

$$Cov(x,y) = \frac{\sum (x_i - \overline{x}) * (y_i - \overline{y})}{(N-1)}$$

COVARIANCE Large Negative Covariance Nearly Zero Large Positive Covariance CORRELATION Positive Zero Negative Correlation Correlation

Covariance

Cov(x,y) > 0

- İlişki pozitiftir.
- X artarken Y de artar

Cov(x,y) < 0

- İlişki negatiftir.
- X artarken Y azalır

Cov(x,y) = 0

Correlation

• İki değişkenin arasında ilişki yoktur, birbirinden bağımısızlar.

Correlation

Korelasyon

- iki değişken arasındaki ilişkinin derecesini verir.
- Bu değer -1 ile 1 arasındadır.
- -1 mutlak strong negative ilişkinin varlığını, +1 mutlak strong pozitif ilişkinin varlığını söyler

Correlation doesn't imply causation

Correlation

- Correlation (r): measures the direction and strength of the linear relationship between two quantitative variables
- r = correlation
- r < 0 Negative association
- r > 0 Positive association
- r = 0 No correlation

Correlation does NOT equal slope!

Sample Correlation

Population Correlation

Hayattan correlation örnekleri veriniz.

Pearson Correlation Coefficient

Pearson Katsayısı

- İki değişken arasındaki korelasyon katsayısını hesaplamak için farklı yöntemler vardır. En ünlüsü Pearson Korelasyon Katsayısı. Sample için r ile, Populasyon için R (veya ρ) ile gösterilir
- İlişkinin gücünü gösteren -1 ile 1 arasında bir sayıdır.

Correlation – Linear Relationship

Examples of Approximate r Value

$$r = -0.8$$

$$r = +0.2$$

$$r = +0.4$$

Üstteki r değerlerini alttaki plot'lar ile eşleştiriniz

Correlation - r Calculation

Cigarette (X)	Lung Capacity (Y)
0	45
5	42
10	33
15	31
20	29

$$r = \frac{n\Sigma(xy) - (\Sigma x)(\Sigma y)}{\sqrt{\left[n\Sigma x^2 - (\Sigma x)^2\right]\left[n\Sigma y^2 - (\Sigma y)^2\right]}}$$

$$r_{xy} = \frac{(5)(1585) - (50)(180)}{\sqrt{\left[(5)(750) - 50^2\right]\left[(5)(6680) - 180^2\right]}}$$

$$= \frac{7925 - 9000}{\sqrt{(3750 - 2500)(33400 - 32400)}}$$

$$= \frac{-1075}{\sqrt{(1250)(1000)}} = -.9615$$

	Number of TV Ads	Number of Cars Sold			
Week	X	у	xy	x ²	y ²
1	3	13	39	9	169
2	6	31	186	36	961
3	4	19	76	16	361
4	5	27	135	25	729
5	6	23	138	36	529
6	3	19	57	9	361
	Σx = 27	Σy = 132	Σxy = 631	Σx ² = 131	$\Sigma y^2 = 3110$

$$r = \frac{n\sum xy - (\sum x)(\sum y)}{\sqrt{\left[n\sum x^2 - (\sum x)^2\right]\left[n\sum y^2 - (\sum y)^2\right]}}$$

$$r = \frac{n \sum xy - (\sum x)^{2} \sum y}{\sqrt{[n \sum x^{2} - (\sum x)^{2}] [n \sum y^{2} - (\sum y)^{2}]}} = \frac{(6)(631) - (27)(132)}{\sqrt{[6)(131) - (27)^{2}] [6)(3110) - (132)^{2}]}}$$
$$= \frac{222}{\sqrt{[67] [1236]}} = \frac{222}{265.43} \underbrace{0.836}$$

Online Calculator

Variable 1	Variable 2
5	50
10	70
15	100
20	100
25	150
30	140
35	110

Online Calculator link

https://www.youtube.com/watc h?v=DAH8DyLXdjM Explanatory and Response Variables, Correlation (2.1)

Python Calculation

input :

```
import numpy as np

temp=[93,84,82,78,98,70]

number_of_people=[13,10, 11, 8, 15, 9]

print("covariance: ", np.cov(temp, number_of_people))

print("correlation: ", np.corrcoef(temp, number_of_people))

output:
```


Peardeck Interaction

Do you have any questions?

Send it to us! We hope you learned something new.