The irrationality of e

Theorem.

The number $e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!}$... is irrational.

Proof.

For convenience, we denote $s_n = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$ and $e = \lim_{n \to \infty} s_n$.

Assume that $e=\frac{p}{q}$ is rational, here p,q are positive integers having no common prime factor. Then the number $q!(e-s_q)$ should be a positive integer since q!e and $q!s_q$ are both integers and $e>s_q$. On the other hand, note that

$$e - s_q = \frac{1}{(q+1)!} + \frac{1}{(q+2)!} + \dots$$

$$< \frac{1}{(q+1)!} \left(1 + \frac{1}{(q+1)} + \frac{1}{(q+1)^2} + \dots \right)$$

$$= \frac{1}{q!} \times \frac{1}{q}$$

It follows that $q!(e-s_q) < \frac{1}{q} < 1$, which is a contradiction.

Q.E.D.