Lecture XII Return to conic rections Recall that

linear transformation $\{x = ax'\}$ $\{y = by'\}$ (*) transforms ellipse = + + == 1 to circle $(x')^2 + (y')^2 = 1$.

[Sure (*) is not orthogonal transformation (if $a \neq 1$, $b \neq 1$.] Consider the following example in R² C: x2+y2+2pxy+x+9=1 How looks this curve? [We will allow not only isometries (orthogonal transformations and translations) but also arbitrary affine transformations Consider first linear transformation

Shis is linear transformation, which is not orthogonal. — It does not preserve the length and scalar products

[This is not isometry]

* Moreover we will allow in the second part of lecture also projective transformations which are not affine.

2) p = -1 $4 v^2 + 2u = 1$

2(1-4/6-1261 2(119) 7

Lecture
$$XII$$

3) $-1
$$2(1+p)u^2 + 2u + 2(1-p)v^2 = 1$$

$$2(1+p)\left[u + \frac{1}{2(1+p)}\right]^2 + 2(1-p)v^2 = 1 + \frac{1}{2(1+p)}. (*)$$
This is an ellipse with centre at the point $u = -\frac{1}{2(1+p)}$, $v = 0$.
Under linear transformation
$$u = -\frac{1}{2(1+p)} + C_1u \text{ with specially } (**)$$

$$v = C_2v \text{ chosen } C_1, C_2$$$

it will be transformed to the circle

\[\vec{u} + \vec{v} = 1. \]

4) p>1 or p<-1
In this case (*) definer hyperbola
Under linear affine transform. (**)

(with especially chosen C1, C2) it will transform
to hyperbola Y2-V=1

Lecture XII Example - 1. $\chi^{2} + \gamma^{2} = Z^{2}$ $\left(u = \frac{\chi}{2}, V = \frac{\gamma}{2}\right)$ [X:4:5] -- [5:4:X] 72- 42 = X2 2- 12 = 1 --- hyperbola. (X+Z)2+12= (X-Z)2 4XZ+Y2=0. $\frac{4u + v^2 = 0}{(u = \frac{4}{2})}$ parabols $\frac{(u = \frac{4}{2}, v = \frac{4}{2})}{PARABOLA}$ Ellipse Mykerbola are on an equal footing in projective geometry.