BT209

Bioreaction Engineering

01/02/2023

The first-order reversible liquid reaction A to R, (C_{A0} =0.05 mol/L, C_{R0} =0) takes place in a batch reactor. After 8 minutes, conversion of A is 33.3% while equilibrium conversion is 66.7%. Find the rate equation for this reaction.

Solution: Problem 1

The first-order reversible liquid reaction A to R, (C_{A0} =0.05 mol/L, C_{R0} =0) takes place in a batch reactor. After 8 minutes, conversion of A is 33.3% while equilibrium conversion is 66.7%. Find the rate equation for this reaction.

Solution
$$X_A = 0.333$$
, $X_{Ae} = 0.667$, $-\ln\left(1 - \frac{X_A}{X_{Ae}}\right) = \frac{M+1}{M+X_{Ae}} = k_1 t$

$$M=0/0.05=0$$
, $k_1=0.05779$ min-1, $kc=k_1/k_2=(M+X_{Ae})/(1-X_{Ae})$, $k_2=k_1/2=0.028895$ min-1

$$-r_A(\text{mol/I.min}) = 0.05775 \text{ (min}^{-1}) C_A(\text{mol/I}) - 0.02887 \text{ (min}^{-1}) C_R(\text{mol/I})$$

In a homogeneous isothermal liquid polymerization, 20% of the monomer disappears in 34 minutes for initial monomer concentration of 0.04 and also for 0.8 mollliter. What rate equation represents the disappearance of the monomer?

Solution: Problem 2

Since the fractional disappearance is independent of initial concentration we have a first order rate, or

$$-\frac{dC}{dt} = kC - or - ln \frac{Co}{C} = kt - where C = monomer concentration$$

We also can find the rate constant. Thus replacing values

$$\ln \frac{C_0}{0.8C_0} = k(34 \, \text{min})$$
 --- or $k = \frac{-\ln 0.8}{34 \, \text{min}} = 0.00657 \, \text{min}^{-1}$

Hence the rate of disappearance of monomer is given by

For the elementary reactions in series

$$A \xrightarrow{k_1} R \xrightarrow{k_2} S$$
, $k_1 = 2k_2$ at $t = 0$
$$\begin{cases} C_A = C_{A0}, \\ C_{R0} = C_{S0} = 0 \end{cases}$$

find the maximum concentration of R and when it is reached.

Aqueous A at a concentration $C_{A0} = 1$ mol/liter is introduced into a batch reactor where it reacts away to form product R according to stoichiometry $A \rightarrow R$. The concentration of A in the reactor is monitored at various times, as shown below:

$$t, \min$$
 0 100 200 300 400 $C_A, \mod/m^3$ 1000 500 333 250 200

For $C_{A0} = 500 \text{ mol/m}^3$ find the conversion of reactant after 5 hours in the batch reactor.

Aqueous A at a concentration $C_{A0} = 1$ mol/liter is introduced into a batch reactor where it reacts away to form product R according to stoichiometry $A \rightarrow R$. The concentration of A in the reactor is monitored at various times, as shown below:

$$t, \min$$
 0 100 200 300 400 $C_A, \mod/m^3$ 1000 500 333 250 200

For $C_{A0} = 500 \text{ mol/m}^3$ find the conversion of reactant after 5 hours in the batch reactor.

From the table of data
$$\text{at } C_A = 500 \quad t = 100 \, \text{min}$$
 Thus
$$\text{at } t = 5 \, \text{hrs} + 100 \, \text{min} = 400 \, \text{min}$$

$$C_A = 200 \, \frac{\text{mol}}{\text{m}^3} \quad \text{or} \quad X_A = 0.6 \, .$$

The rate constant of thermal decomposition of a reactant at different temperature is reported as follows

	508	427	393	356	283
k, cm ³ /mol·s	0.1059	0.003 10	0.000 588	80.9×10^{-6}	0.942×10^{-6}

The units of the rate constant tells that this is a 2nd order reaction $-r_A = kC_A^2 = k_0 e^{-\frac{E}{R}T} C_A^2$ Thus $k = k_0 e^{-\frac{E}{R}T}$ or $ln k = ln k_0 - \frac{E}{R} \left(\frac{1}{T} \right)$

To	T.K	VT K-1	k	In k
1,00	, , ,	/ \ >	Land.	, , , , , , , , , , , , , , , , , , ,
508	781	0,00128	0.1059	-1.6974
427	700	0.00143	0.0031	-5.7764
393	666	0,001502	0.000598	-7.4388
356	629	0.001590	80,9×10-6	-9.4223
273	546	0.001832	0.942 × 10-6	+13.8753

To find the value of ko take the second data point. From Eq (i)

$$\ln k_0 = \ln k - \frac{E}{R} \left(\frac{1}{T} \right)$$

$$= 5.7764 - 22727 \left(\frac{1}{700} \right) = 38.2439$$

$$ark_0 = e^{38.2439} = 4.06 \times 10^{16}$$

So for the temperature range covered in the reported data $-\Gamma_{HI} = 4.06 \times 10^{16} \, e^{-22727/T} \, C_A^2, \quad \text{mol/cm}^3. \text{s}$