7-Profunctors.

We will see that Feasibility relation is just a special case of 7-profunctors where 7 = Bool.

In order to understand the interpretation of co-design problem

[tormalizing and operating] we need understand pro-functors

(Intuitively)

Bool- Category | Preorder

Bool- functor | Monotone map

Bool- profunctor | feasibility velotion

V- Rofunctors:

ort: let $\mathcal{V} = (V, \leq, I, \otimes)$ be a quantale (unital commutative) and let \mathcal{X} and \mathcal{Y} be \mathcal{V} - categories. A \mathcal{V} -profunctor from \mathcal{X} to \mathcal{Y} denoted $\Phi: \mathcal{X} \longrightarrow \mathcal{Y}$, is a \mathcal{V} -functor $\Phi: \mathcal{X}^{op} \times \mathcal{Y} \longrightarrow \mathcal{V}$

Because this is the wodamain (7 is entiched in itself.

· By det of 7-product and x°P definition we can say that

 \mathcal{V} -profunctor is same as a function $\underline{\sigma}$: $Ob(X) \times ob(Y) \rightarrow V$ such that for any $X, x' \in X$ and $y, y' \in Y$ the following inequality holds in \mathcal{V} :

 $x(x',x) \otimes \overline{\phi}(x,y) \otimes (Y(y,y') \leq \overline{\phi}(x',y')$

Proof: V- profuntor. 13 of: xopx y -> ?

so, by definition of 7-product

ob (xor, xy) = xor y ((xiy), cx

(x,y) & (x',y') are objects in xor xy

 $(x,y) \in (x',y')$ are objects in $x^{op} \times y$ so, $x^{op} \in x y$ $((x,y), (x',y')) = x^{op}(x,x') \otimes y(y,y') - (i)$ $x^{op}(x,x') = x((x',x)) (By det of <math>x^{op})$ — (ii) $x^{op}(x,y), \phi(x',y'))$; $\phi(x,y)$ — $\phi(x,y')$ — $\phi(x',y')$ — (iii)

(Pimark 2.89)

3000 x y ((x,y), (x',y')) < 2 (p(x,y), p(x',y')) x(x',x) @ (y(y,y') < o(x,y) - o o(x',y') Now according to def 2,79 x(x',x) @ \$(x,y) & y(y,y') < b(x',y') V=Bood profunctor · Feasibility Matrix: of can be expressed as a matrix the (m,n)th entry is the value of \$ (m,n) EB. Fill out the Book mater. Ex: 4.11 & Ex 4.12 for better understanting 2-profunctors Interpreting the co-disign diagram: LHS: produces (set of posts, each indicating a resource) KLKIT Box: feasibility relation R.H.S: requirements (set 1 Now, each of these resources (produce or requirements) are taken as pre-orders. Then we take product pre-order of proorders on the left and similary for those on the right. The box is thin the feasibility relation Box: () — ()
product of products product of requirements Now, feasibility relation says is it possible to get to the source from me target (can we get produce from the requirements) (understand move example) The collage above statement is valid for the cohole collage

Now according to o