Frequency response

- 1) Changing the frequency affects the currents and voltages in a circuit
- 2) This is due to changes in the impedances of the various components in a circuit
- 3) This affects the working frequency range of a particular device or circuit
- 4) Hence it is important to find out the frequency response of a circuit
- 5) The frequency response of a circuit is a measure of the variation of a load-related voltage or current in relation to the input frequency
- 6) We typically express this in terms of variation in output voltage over the source:

$$H_V(j\omega) = \frac{V_L(j\omega)}{V_S(j\omega)}$$
 How does V_L change relative to V_S for different frequencies? How does V_L change with respect to phase and magnitude?

Low pass filter

Let us consider the response of the output V_0 in relation to the input V_i . We keep the amplitude of V_i constant but vary its frequency ω .

By voltage divider rule:
$$\frac{V_o}{V_i}(j\omega) = \frac{1/j\omega C}{R + 1/j\omega C}$$
$$= \frac{1}{1 + i\omega CR}$$

 $\begin{array}{c}
1 + j\omega CR \\
\text{Note that CR is a constant based on the circuit} \\
\mathbf{v}_o \\
\mathbf{v}_o \\
\text{Powrite CR as a constant with the same unit a}
\end{array}$

Re-write CR as a constant with the same unit as angular frequency:

$$\omega_c = \frac{1}{RC}$$
 This frequency is called the cutoff radian frequency (ω_c) and is a CONSTANT

Sub back into above equation:
$$\frac{V_o}{V_i}(j\omega) = \frac{1}{1 + j(\omega/\omega_c)}$$

Analyze the response of low pass filter

$$\frac{V_o}{V_i}(j\omega) = \frac{1}{1 + j(\omega/\omega_c)}$$

Both the phase and magnitude of V₀/V_i will change $\frac{V_o}{V_o}(j\omega) = \frac{1}{1+i(\omega/\omega)}$ when ω is allowed to vary.

Magnitude

When $\omega \to 0$:

$$V_o/V_i \rightarrow \underline{\hspace{1cm}} \Rightarrow |V_o/V_i| \rightarrow 1$$

$$V_o/V_i \rightarrow \underline{\hspace{1cm}} \Rightarrow |V_o/V_i| \rightarrow 0$$

Phase

When $\omega \to 0$:

$$V_o/V_i \rightarrow \underline{\hspace{1cm}} \Rightarrow \angle(V_o/V_i) \rightarrow 0^\circ$$

When $\omega \to \text{Infinity}$:

$$V_o/V_i \rightarrow \underline{\hspace{1cm}} \Rightarrow \angle(V_o/V_i) \rightarrow -90^\circ$$

Sketch the response of low pass filter

Allows lower frequency signals to pass and filters off higher frequency signals

Observations:

When ω approaches zero, magnitude of V_o/V_i approaches 1 and its phase is close to zero

When ω becomes large, magnitude of V_o/V_i approaches zero and its phase is close to $-\pi/2$

Allows lower frequency signal to pass and filters off higher frequency signals

What about in between these two extremes, around ω_c ?

The above graphs are presentations of semi-log plots

Semi-log plots: y-axis follows a linear scale, x-axis follows a logarithmic scale Logarithmic scale (base 10): Between each interval on axis, we increase/decrease by a factor of 10 (it is the power/index that changes)

At the cut off frequency

$$\frac{V_o}{V_i}(j\omega) = \frac{1}{1 + j(\omega/\omega_c)}$$

At
$$\omega = \omega_c$$
:

Denominator:

Denominator as a phasor:

Plot of denominator for V_o/V_i

$$\frac{V_o}{V_i} =$$

At $\omega = \omega_c$, V_o/V_i drops to $1/\sqrt{2}$ of the maximum and has a phase of -45°

Log-Log Plot for Magnitude (Low Pass)

Two parts of the curve:

When $\omega \ll \omega_c$: $|V_o/V_i|$ stays flat close to 1

When $\omega \gg \omega_c$:

 $|V_o/V_i|$ decreases with ω ; x10 time reduction for every x10 increase in ω

Change of $|V_o/V_i|$ with ω seen as a linear slope on the log-log plot

Change between the 2 parts occurs at ω_c

Log-log plot: **Both** the y-axis and x-axis are on logarithmic scales (base 10). This means moving by 1 interval on either axis, the value increases or decreases by a factor of 10.

Note that on a log scale, one never arrives at zero/infinity.

Bode plot for Low Pass

Bode plot typically comes as a pair of graphs:

- (1) Log-log plot of magnitude ratio of V_o/V_i vs. frequency
- (Log-log plot: Both x and y axes are on logarithmic scales)
- (2) Semi-log plot of the phase of V_0/V_i vs. frequency

(Semi-log plot: Linear scale for y-axis (Phase) and log scale for x-axis)

Magnitude

$$\left| \frac{V_o}{V_i} (j\omega) = \frac{1}{1 + j\omega/\omega_c} \right|$$

Phase

High pass filter

Let us consider the response of the output V_0 in relation to the input V_i . We keep the amplitude of V_i constant but vary its frequency ω .

By voltage divider rule:
$$\frac{V_o}{V_i}(j\omega) = \frac{R}{R + 1/j\omega C}$$
$$= \frac{1}{1 + 1/j\omega CR}$$

Once again we re-write RC to define the cut off radian frequency, ω_c whereby $\omega_c = 1/RC$:

Sub back into above equation:
$$\frac{V_o}{V_i}(j\omega) = \frac{1}{1 + (\omega_c / j\omega)}$$

Analyze response of high pass filter

$$\frac{V_o}{V_i}(j\omega) = \frac{j(\omega/\omega_c)}{1 + j(\omega/\omega_c)}$$

Both the phase and magnitude of V_o/V_i will change when ω is allowed to vary.

Magnitude

When $\omega \rightarrow 0$:

$$V_o/V_i \rightarrow \underline{\hspace{1cm}} \Rightarrow |V_o/V_i| \rightarrow 0$$

When $\omega \rightarrow$ Infinity:

$$\bullet + V_o/V_i \to \underline{\hspace{1cm}} \Rightarrow |V_o/V_i| \to 1$$

Phase

When $\omega \rightarrow 0$:

$$V_o/V_i \rightarrow \underline{\hspace{1cm}} \Rightarrow \angle(V_o/V_i) \rightarrow 90^\circ$$

When $\omega \rightarrow$ Infinity:

$$V_o/V_i \rightarrow \underline{\hspace{1cm}} \Rightarrow \angle(V_o/V_i) \rightarrow 0^\circ$$

Sketch response of high pass filter

Allows higher frequency signals to pass and filters off lower frequency signals

Semi-log plots: y-axis on linear scale, x-axis on logarithmic scale

Observations:

When ω approaches zero, V_o/V_i approaches zero and phase is close to $\pi/2$ When ω becomes large, V_o/V_i approaches 1 and phase is close to 0 Allows higher frequency signals to pass and filters off lower frequency signals

What about in between these two extremes, around ω_c ?

At the cut off frequency

$$\frac{V_o}{V_i}(j\omega) = \frac{1}{1 + (\omega_c / j\omega)}$$

At
$$\omega = \omega_c$$
:

Denominator:

Denominator as a phasor:

Plot of denominator for V_o/V_i

Note that numerator adds a phase shift of 90° from j

$$\frac{V_o}{V_i} =$$

At $\omega = \omega_c$, V_o/V_i is once again $1/\sqrt{2}$ of the maximum and has a phase of 45^o

Log-Log Plot for |V₀/V_i| (High Pass)

When $\omega \gg \omega_c$: $|V_o/V_i|$ stays flat close to 1

When $\omega \ll \omega_c$: $|V_o/V_i|$ decreases with ω ; x10 time reduction for every x10 reduction in ω

Seen as a linear slope on the loglog plot

Bode plot for High Pass

Bode plot typically comes as a pair of graphs:

(1) Log-log plot of magnitude ratio of V_o/V_i vs. frequency

(Log-log plot: Both x and y axes are on logarithmic scales)

(2) Semi-log plot of the phase of V_o/V_i vs. frequency

(Semi-log plot: Linear scale for y-axis (Phase) and log scale for x-axis)

Magnitude

$$\left| \frac{V_o}{V_i} (j\omega) = \frac{1}{1 + \omega_c / j\omega} \right|$$

Phase

Other examples on filters 1

Determine the frequency response characteristics (low pass or high pass) for the following filter circuits. Hence draw the bode plot of the filter.

Other examples on filters 2

Determine the frequency response characteristics (low pass or high pass) for the following filter circuits. Hence draw the bode plot of the filter.

Compute the frequency response of V_I/V_s for the following circuit:

$$R_1 = 1k\Omega$$
; $C = 10\mu F$; $R_L = 10k\Omega$

First find the combined impedance of the capacitor C

$$Z_{RC} = \frac{R_L}{\left(1 + j\omega R_L C\right)} = \frac{10}{\left(1 + j0.1\omega\right)} \,\mathrm{k}\Omega$$

Now apply voltage divider rule:

$$\frac{V_L}{V_S}(j\omega) = \frac{Z_{RC}}{Z_{RC} + R_1} = \frac{10/(1+j0.1\omega)}{[10/(1+j0.1\omega)]+1}$$
$$= \frac{10}{11+j0.1\omega} = \frac{100}{110+j\omega}$$

$$\frac{V_L}{V_S}(j\omega) = \frac{100}{110 + j\omega} = \left(\frac{100}{110}\right) \left(\frac{1}{1 + j\omega/110}\right)$$

When $\omega \rightarrow 0$:

$$V_o/V_i \rightarrow$$

$$|V_o/V_i| \rightarrow$$

$$\angle(V_o/V_i) \rightarrow$$

When $\omega \rightarrow$ Infinity:

$$V_0/V_i \rightarrow$$

$$|V_0/V_i| \rightarrow$$

$$\angle(V_o/V_i) \rightarrow$$

Magnitude

Phase

Compute the frequency response of $V_{\rm L}/I_{\rm S}$ for the following circuit:

$$R_1 = 1k\Omega$$
; $L = 2mH$; $R_L = 4k\Omega$

$$Z_{RL} = R_L + j\omega L = 4000 + j(2 \times 10^{-3})\omega \Omega$$

Now apply current divider rule:

$$\frac{V_L}{I_S}(j\omega) = \left(\frac{I_L}{I_S}\right) R_L = \left(\frac{R_1}{R_1 + Z_{RL}}\right) R_L$$

$$= \frac{(1000)(4000)}{1000 + 4000 + j(2 \times 10^{-3})\omega} = \frac{4 \times 10^6}{5000 + j(2 \times 10^{-3})\omega}$$

$$= \frac{800}{1 + j(4 \times 10^{-7})\omega}$$

$$\frac{V_L}{I_S}(j\omega) = \frac{800}{1 + j(4 \times 10^{-7})\omega}$$

When $\omega \rightarrow 0$:

$$V_o/V_i \rightarrow$$

$$\angle(V_o/V_i) \rightarrow$$

When $\omega \rightarrow$ Infinity:

$$V_o/V_i \rightarrow$$

$$|V_0/V_i| \rightarrow$$

$$\angle(V_o/V_i) \rightarrow$$

Magnitude

Phase

General form for low pass filter

$$\frac{V_o}{V_i}(j\omega) = A \left[\frac{1}{1 + j(\omega/\omega_c)} \right]$$

A is a constant and real number

A defines the magnitude of V_o/V_i in the **pass band**

General form for high pass filter

$$\frac{V_o}{V_i}(j\omega) = A \left[\frac{j(\omega/\omega_c)}{1 + j(\omega/\omega_c)} \right]$$

A is a constant and real number A defines the magnitude of V_o/V_i in the **pass band**

RLC Series Resonator (Bandpass filter)

RLC bandpass filter. The circuit preserves frequencies within a band.

Let us consider the response of the output V_0 in relation to the input V_i . We keep the amplitude of V_i constant but vary its frequency ω.

By voltage divider rule:

$$\frac{V_o}{V_o} = \frac{V_o}{V_i} (j\omega) = \frac{R}{R + j\omega L + 1/j\omega C}$$

$$= \frac{1}{1 + j\left(\frac{\omega L}{R} - \frac{1}{\omega RC}\right)}$$

$|V_0/V_i|$ is max when denominator is minimized

Plot of denominator for V_0/V_i

We can see that the output will be at its maximum when the imaginary part of the denominator is zero:

$$(\omega L/R) - [1/(\omega RC)] = 0 \rightarrow \omega^2 = 1/(LC)$$

When this happens, the impedances of the capacitor and inductor are equal and opposite. This is known as resonance. Max value of V_0/V_i for all frequencies is 1 in this case.

Quality factor

- (1) There is no "flat" part in the frequency response curve
- (2) Response peaks at one frequency: $\omega = 1/\sqrt{(LC)}$, this is known at the resonance frequency, ω_0
- (3) For frequencies move further away from ω_0 (whether higher or lower), $|V_o/V_i|$ gets increasingly smaller

$$\frac{V_o}{V_i}(j\omega) = \frac{j\omega CR}{1 - \omega^2 LC + j\omega CR}$$

Make the subst. using: $\omega_0 = \frac{1}{\sqrt{LC}}$

$$\frac{V_o}{V_i}(j\omega) = \frac{j\left(\frac{\omega}{\omega_0}\right)\frac{R}{\sqrt{L/C}}}{1 - \left(\frac{\omega}{\omega_0}\right)^2 + j\left(\frac{\omega}{\omega_0}\right)\frac{R}{\sqrt{L/C}}}$$
If

If we define: $Q = \frac{\sqrt{L/C}}{R}$

$$\frac{V_o}{V_i}(j\omega) = \frac{j(\omega/\omega_0)(1/Q)}{1 - (\omega/\omega_0)^2 + j(\omega/\omega_0)(1/Q)}$$

Q is known as the **Quality Factor** and it describes the sharpness or width of the peak relative to ω_0

Frequency response

As Q increases, the resonance peak becomes sharper In this sense, the resonator only responds at the resonance frequency, ω_0

Frequencies outside ω_0 are filtered out

The resonator works like frequency selector

$$\frac{V_o}{V_i}(j\omega) = \frac{j(\omega/\omega_0)(1/Q)}{1 - (\omega/\omega_0)^2 + j(\omega/\omega_0)(1/Q)} \qquad \frac{V_o}{V_i}(j\omega) = \frac{R}{R + j\omega L + 1/j\omega C}$$

Magnitude

When $\omega \to 0$ or \to Infinity: $|V_o/V_i| \to 0$ When $\omega = \omega_0$: $|V_o/V_i| = 1$

Phase

When $\omega \to 0$: $\angle (V_o/V_i) = 90^\circ$ since $V_o/V_i \to j\omega CR$ When $\omega \to Infinity$: $\angle (V_o/V_i) = -90^\circ$ since $V_o/V_i \to R/j\omega L$ When $\omega = \omega_0$: $\angle (V_o/V_i) = 0$ since $V_o/V_i \to 1$