```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from IPython import get_ipython
import warnings
warnings.filterwarnings("ignore")
In [2]:
```

data = pd.read_csv("lung_cancer.csv")

In [3]:
data.head()

Out[3]:

	GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	FATIGUE	A
0	М	69	1	2	2	1	1	2	
1	М	74	2	1	1	1	2	2	
2	F	59	1	1	1	2	1	2	
3	М	63	2	2	2	1	1	1	
4	F	63	1	2	1	1	1	1	
4									•

In [4]: ▶

data.tail()

Out[4]:

	GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	FATIGUE
304	F	56	1	1	1	2	2	2
305	M	70	2	1	1	1	1	2
306	M	58	2	1	1	1	1	1
307	M	67	2	1	2	1	1	2
308	M	62	1	1	1	2	1	2
4								>

```
In [5]:
                                                                                          M
data.shape
Out[5]:
(309, 16)
In [6]:
                                                                                          H
data.columns
Out[6]:
Index(['GENDER', 'AGE', 'SMOKING', 'YELLOW_FINGERS', 'ANXIETY',
       'PEER_PRESSURE', 'CHRONIC DISEASE', 'FATIGUE ', 'ALLERGY ', 'WHEEZI
NG',
       'ALCOHOL CONSUMING', 'COUGHING', 'SHORTNESS OF BREATH',
       'SWALLOWING DIFFICULTY', 'CHEST PAIN', 'LUNG_CANCER'],
      dtype='object')
                                                                                          H
In [7]:
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 309 entries, 0 to 308
Data columns (total 16 columns):
 #
     Column
                             Non-Null Count Dtype
     -----
- - -
 0
     GENDER
                                              object
                             309 non-null
 1
     AGE
                             309 non-null
                                              int64
 2
     SMOKING
                             309 non-null
                                              int64
                             309 non-null
 3
     YELLOW_FINGERS
                                              int64
 4
     ANXIETY
                             309 non-null
                                              int64
 5
     PEER_PRESSURE
                             309 non-null
                                              int64
     CHRONIC DISEASE
                             309 non-null
 6
                                              int64
 7
     FATIGUE
                             309 non-null
                                              int64
 8
                                              int64
     ALLERGY
                             309 non-null
 9
     WHEEZING
                             309 non-null
                                              int64
 10
    ALCOHOL CONSUMING
                             309 non-null
                                              int64
     COUGHING
                             309 non-null
                                              int64
 12
     SHORTNESS OF BREATH
                             309 non-null
                                              int64
 13
     SWALLOWING DIFFICULTY
                             309 non-null
                                              int64
     CHEST PAIN
                             309 non-null
 14
                                              int64
     LUNG CANCER
                             309 non-null
                                              object
dtypes: int64(14), object(2)
memory usage: 38.8+ KB
```

In [8]: ▶

```
data.describe()
```

Out[8]:

	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	
count	309.000000	309.000000	309.000000	309.000000	309.000000	309.000000	30
mean	62.673139	1.563107	1.569579	1.498382	1.501618	1.504854	
std	8.210301	0.496806	0.495938	0.500808	0.500808	0.500787	
min	21.000000	1.000000	1.000000	1.000000	1.000000	1.000000	
25%	57.000000	1.000000	1.000000	1.000000	1.000000	1.000000	
50%	62.000000	2.000000	2.000000	1.000000	2.000000	2.000000	
75%	69.000000	2.000000	2.000000	2.000000	2.000000	2.000000	
max	87.000000	2.000000	2.000000	2.000000	2.000000	2.000000	
4							•

In [9]: ▶

```
data.isnull().sum()
```

Out[9]:

```
GENDER
                          0
AGE
                          0
SMOKING
                          0
YELLOW_FINGERS
                          0
ANXIETY
PEER PRESSURE
                          0
CHRONIC DISEASE
                          0
                          0
FATIGUE
ALLERGY
                          0
WHEEZING
                          0
ALCOHOL CONSUMING
                          0
                          0
COUGHING
SHORTNESS OF BREATH
                          0
SWALLOWING DIFFICULTY
                          0
CHEST PAIN
                          0
LUNG_CANCER
dtype: int64
```

In [12]:

```
data.duplicated().sum()
```

Out[12]:

33

In [14]: ▶

```
data = data.drop_duplicates()
```

```
In [15]:
```

```
data.nunique()
```

Out[15]:

```
2
GENDER
AGE
                           39
SMOKING
                            2
                            2
YELLOW_FINGERS
                            2
ANXIETY
PEER_PRESSURE
                            2
CHRONIC DISEASE
                            2
FATIGUE
                            2
                            2
ALLERGY
                            2
WHEEZING
ALCOHOL CONSUMING
                            2
                            2
COUGHING
SHORTNESS OF BREATH
                            2
SWALLOWING DIFFICULTY
                            2
CHEST PAIN
                            2
                            2
LUNG_CANCER
dtype: int64
```

In [16]: ▶

```
In [17]:
for i in data1.columns:
    plt.figure(figsize=(15,6))
    sns.countplot(data1[i], data = data1,
                    palette='hls')
    plt.xticks(rotation = 90)
    plt.show()
  140
  120
  100
  80
  60
  40
  20
                                         GENDER
  140
  120
In [18]:
for i in data1.columns:
    plt.figure(figsize=(15,6))
    sns.histplot(data1[i])
    plt.xticks(rotation = 90)
    plt.show()
  140
  120
  100
  60
  40
  20
                                         GENDER
```

In [19]: ▶

data2=data.replace({'NO': 0, 'YES': 1,'M':0,'F':1})

In [20]: ▶

sns.pairplot(data2,hue='LUNG_CANCER')

Out[20]:

<seaborn.axisgrid.PairGrid at 0x6c4e36f520>

In [25]:

```
plt.figure(figsize=(15,6))
sns.boxplot(data2['AGE'])
plt.xticks(rotation = 90)
plt.show()
```



```
In [27]: ▶
```

```
data_age = data2['AGE']
Q3 = data_age.quantile(0.75)
Q1 = data_age.quantile(0.25)
IQR = Q3-Q1
lower_limit = Q1 -(1.5*IQR)
upper_limit = Q3 +(1.5*IQR)
age_outliers = data_age[(data_age <lower_limit) | (data_age >upper_limit)]
age_outliers
```

Out[27]:

22 21 238 38 261 39 277 87 Name: AGE, dtype: int64

1.25

1.50

0.50

0.00

-0.25

```
In [28]:

data3 = data2.drop([22, 238, 261, 277])

In [29]:

for i in data3.columns:
    plt.figure(figsize=(15,6))
    sns.distplot(data3[i], color='green')
    plt.tight_layout()
```


In [32]: ▶

data3.corr()

Out[32]:

	GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSUR
GENDER	1.000000	0.024909	-0.033675	0.207346	0.162149	0.28048
AGE	0.024909	1.000000	-0.053188	0.015272	0.023998	0.03240
SMOKING	-0.033675	-0.053188	1.000000	-0.014520	0.154369	-0.03887
YELLOW_FINGERS	0.207346	0.015272	-0.014520	1.000000	0.557641	0.31685
ANXIETY	0.162149	0.023998	0.154369	0.557641	1.000000	0.20577
PEER_PRESSURE	0.280481	0.032400	-0.038872	0.316857	0.205776	1.00000
CHRONIC DISEASE	0.178063	0.004086	-0.143607	0.016338	-0.000271	0.05806
FATIGUE	0.074307	0.047199	-0.037302	-0.093901	-0.172967	0.10118
ALLERGY	-0.151862	0.094199	-0.037489	-0.149165	-0.155672	-0.06840
WHEEZING	-0.114735	0.070826	-0.149404	-0.068139	-0.177993	-0.04645
ALCOHOL CONSUMING	-0.425296	0.045367	-0.061819	-0.280579	-0.163578	-0.15044
COUGHING	-0.120723	0.174810	-0.134205	0.003331	-0.232195	-0.07069
SHORTNESS OF BREATH	0.047495	0.014714	0.053367	-0.103888	-0.146190	-0.21078
SWALLOWING DIFFICULTY	0.057045	-0.027002	0.041523	0.329270	0.471605	0.32517
CHEST PAIN	-0.358701	-0.028664	0.108440	-0.109458	-0.126749	-0.08408
LUNG_CANCER	-0.036082	0.107680	0.034597	0.173962	0.133064	0.18224
1						>

In [31]: ▶

```
plt.figure(figsize = (10,8))
sns.heatmap(data3.corr(),annot=True, cbar=False, cmap='Blues', fmt='.1f')
plt.show()
```



```
In [33]:
                                                                                                 M
def minmax_norm(df):
    return (data3 - data3.min()) / ( data3.max() - data3.min())
data4= minmax_norm(data3)
In [34]:
data4.head()
Out[34]:
                                                                      CHRONIC
                AGE SMOKING YELLOW_FINGERS ANXIETY PEER_PRESSURE
                                                                               FATIGU
   GENDER
                                                                       DISEASE
 0
       0.0 0.675676
                          0.0
                                          1.0
                                                   1.0
                                                                  0.0
                                                                           0.0
                                                                                   1.
 1
       0.0 0.810811
                          1.0
                                          0.0
                                                   0.0
                                                                  0.0
                                                                           1.0
                                                                                   1.
 2
       1.0 0.405405
                          0.0
                                          0.0
                                                   0.0
                                                                  1.0
                                                                           0.0
                                                                                   1.
 3
       0.0 0.513514
                          1.0
                                          1.0
                                                   1.0
                                                                  0.0
                                                                           0.0
                                                                                   0.
 4
       1.0 0.513514
                          0.0
                                          1.0
                                                   0.0
                                                                  0.0
                                                                           0.0
                                                                                   0.
In [35]:
                                                                                                 H
x=data4.drop('LUNG_CANCER',axis=1)
y=data4['LUNG_CANCER']
In [36]:
                                                                                                 H
x.shape
Out[36]:
(272, 15)
In [37]:
                                                                                                 M
y.shape
Out[37]:
(272,)
                                                                                                 H
In [38]:
from sklearn.model_selection import train_test_split
In [39]:
                                                                                                 M
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.2,
                                                          random_state=42)
```

```
In [40]:
                                                                                        M
from sklearn.linear_model import LogisticRegression
In [41]:
                                                                                        H
model1= LogisticRegression(random state=0)
model1.fit(x_train, y_train)
Out[41]:
LogisticRegression(random_state=0)
                                                                                        H
In [42]:
print("Training Accuracy :", model1.score(x_train, y_train))
print("Testing Accuracy :", model1.score(x_test, y_test))
Training Accuracy: 0.9170506912442397
Testing Accuracy: 0.9454545454545454
In [43]:
                                                                                        H
from sklearn.tree import DecisionTreeClassifier
In [44]:
classifier_dt= DecisionTreeClassifier(criterion='entropy', random_state=0)
classifier_dt.fit(x_train, y_train)
Out[44]:
DecisionTreeClassifier(criterion='entropy', random_state=0)
                                                                                        M
In [45]:
print("Training Accuracy :", classifier_dt.score(x_train, y_train))
print("Testing Accuracy :", classifier_dt.score(x_test, y_test))
Training Accuracy: 0.9953917050691244
Testing Accuracy: 0.8545454545454545
In [53]:
                                                                                        M
data allergy=data4[data4['ALLERGY ']==1]
data_allergy.groupby(['SMOKING','LUNG_CANCER'])['SMOKING'].count()
Out[53]:
SMOKING
         LUNG_CANCER
0.0
         1.0
                        70
1.0
         0.0
                         4
                        74
         1.0
Name: SMOKING, dtype: int64
```

In [54]:

```
print(data4['LUNG_CANCER']==1]['AGE'].describe())
plt.hist(data4['LUNG_CANCER']==1]['AGE'],bins=10)
plt.show()
```

236.000000 count 0.526340 mean 0.211087 std 0.000000 min 25% 0.378378 0.513514 50% 75% 0.702703 1.000000 max

Name: AGE, dtype: float64


```
In [55]:

data4[['SMOKING','YELLOW_FINGERS','LUNG_CANCER']].corr()
```

Out[55]:

	SMOKING	YELLOW_FINGERS	LUNG_CANCER
SMOKING	1.000000	-0.014520	0.034597
YELLOW_FINGERS	-0.014520	1.000000	0.173962
LUNG_CANCER	0.034597	0.173962	1.000000