《代数结构》勘误

摘要

本文旨在列出《代数结构》课本的印刷错误,勘误基于 2009 年版教材。每章习题的印刷错误,如老师有其他更正,以老师为准。在学习途中如发现教材中有其他印刷错误等问题请联系助教。

目录

集合		2
1.1	集合的基本概念	2
1.2	集合的运算	3
1.3	集合的归纳定义	3
数论	初步	3
2.1	整除性	3
2.2	线性不定方程	3
2.3	同余式与线性同余方程	3
2.4	欧拉定理及欧拉函数	4
2.5	整数的因子及完全数	4
2.6	原根与指数	4
映射		4
3.1	映射的基本知识	4
3.2	特殊映射	4
3.3	映射的合成	5
3.4		5
3.5		5
3.6	习题	5
-=	学系	5
		5
	— · · · · -	6
		6
2.0		6
		6
	1.1 1.2 1.3 数论 2.1 2.2 2.3 2.4 2.5 2.6 映射 3.1 3.2 3.3 3.4 3.5 3.6 二元 4.1 4.2 4.3 4.4	1.1 集合的基本概念 1.2 集合的运算 1.3 集合的归纳定义 数论初步 2.1 整除性 2.2 线性不定方程 2.3 同余式与线性同余方程 2.4 欧拉定理及欧拉函数 2.5 整数的因子及完全数 2.6 原根与指数 映射 3.1 映射的基本知识 3.2 特殊映射 3.3 映射的合成 3.4 置换 3.5 开关函数 3.6 习题 二元关系 4.1 基本概念 4.2 等价关系 4.3 序关系 4.4 集合的势

5	群论	初步				
	5.1	群的定义与简单性质 6				
	5.2	群定义的进一步讨论 7				
	5.3	子群 7				
	5.4	循环群				
	5.5	置换群				
	5.6	群的同构 7				
6	商群	7				
	6.1	陪集与 Lagrange 定理				
	6.2	正规子群与商群				
	6.3	群的同态 8				
7	环和					
	7.1	环的定义 8				
	7.2	整环和域				
	7.3	子环和环同态				
	7.4	理想与商环				
	7.5	多项式环				
	7.6	环同态定理				
	7.7	素理想和极大理想 9				
8	格与布尔代数					
	8.1	格的定义与性质				
	8.2	几种特殊的格				
	8.3	格——代数系统				
	8.4	布尔代数 9				

1 集合

1.1 集合的基本概念

1.1.1 集合

1.1.2 集合的相等

在定理 1.1 的证明中,"反过来集合 A 的每个元素也都是集合 A 中的元素",应为"反过来集合 A 的每个元素也都是集合 B 中的元素".

1.1.3 集合的包含

在定义 1.2 的例中,"集合 $\{1,2,3,4\}$ 是集合 $\{x\mid x\in\mathbb{Z}$ 且 $x< x< 5\}$ 的子集",应为"集合 $\{1,2,3,4\}$ 是集合 $\{x\mid x\in\mathbb{Z}$ 且 $0< x< 5\}$ 的子集".

定理 1.3, "对于任何集体 A", 应为"对于任何集合 A".

- 1.1.4 幂集
- 1.1.5 积集
- 1.2 集合的运算
- 1.3 集合的归纳定义

非负偶整数集合的归纳定义的归纳语句, "结果 $n \in E$ ", 应为"如果 $n \in E$ ".

2 数论初步

- 2.1 整除性
- 2.1.1 整除关系及性质
- 2.1.2 最大公因子

在推论 2.2 的证明中," $abx_0x_1+m(ax_0y_2+bx_1y_0+my_0y_1)=1$ ",应为" $abx_0x_1+m(ax_0y_1+bx_1y_0+my_0y_1)=1$ ".

- 2.1.3 最小公倍数
- 2.1.4 素因子分解唯一性定理
- 2.2 线性不定方程

在定理 2.6 的证明中, 式

$$\left(x_0 + \frac{b}{(a,b)}t\right) + b\left(y_0 - \frac{a}{(a,b)}t\right) = n$$

应为

$$a\left(x_0 + \frac{b}{(a,b)}t\right) + b\left(y_0 - \frac{a}{(a,b)}t\right) = n;$$

"若 x,y 是方程 ax + by = n 的解", 应为"若 x_0, y_0 是方程 ax + by = n 的解". 例 1 中, " $x_0 = 0, y_0 = 20$ 是一组特解", 应为" $x_0 = 0, y_0 = 25$ 是一组特解".

- 2.3 同余式与线性同余方程
- 2.3.1 同余式及其性质
- 2.3.2 线性同余方程
- 2.3.3 求解线性同余方程组

例 1 的解中, " $35b_1 \equiv 1 \pmod{2}$ ", 应为" $35b_1 \equiv 1 \pmod{3}$ ".

2.4 欧拉定理及欧拉函数

- 2.4.1 完系与缩系
- 2.4.2 欧拉定理与费马定理
- 2.4.3 计算欧拉函数
- 2.4.4 威尔逊定理

2.5 整数的因子及完全数

在定理 2.14 的证明中, "··· = $\sigma(2^{p-1})\sigma(2^p-1) = (2^{p-1}-1)\cdot 2^p = 2n$ ", 应为"··· = $\sigma(2^{p-1})\sigma(2^p-1) = (2^p-1)\cdot 2^p = 2n$ ".

2.6 原根与指数

2.6.1 a 模 m 的阶

2.6.2 原根

教材 29 页第五行, "则 g^n 也是模 m 的原根", 应为"则 g^l 也是模 m 的原根". 引理 2.5 的证明中, "其中 $a^n \not\equiv 0 \pmod{p}$ ", 应为"其中 $a_n \not\equiv 0 \pmod{p}$ ".

2.6.3 指数

定理 2.17 的证明中," $g^{y^k} \equiv g^{\operatorname{ind}_g n} \pmod p$ ",应为" $g^{yk} \equiv g^{\operatorname{ind}_g n} \pmod p$ ".例 1 的解中,"它们是 $x^3 \equiv 3 \pmod 11$ 的解",应为"它们是 $x^8 \equiv 3 \pmod 11$ 的解".例 2 的解中," $\operatorname{ind}_5 = 4$ ",应为" $\operatorname{ind}_2 5 = 4$ ".表 1 中,p = 37 对应的 $\operatorname{ind}_2 28$ 应为 34 而非 31.

3 映射

3.1 映射的基本知识

3.2 特殊映射

定理 3.3 的证明中,"集合 A 中的元素个数一定大于集合 B 中的元素个数",应为"集合 A 中的元素个数一定大于等于集合 B 中的元素个数".例 4 中 b_i 的定义

$$b_i = \begin{cases} 0 & a_i \notin p, \\ 1 & a_i \in P, \end{cases} \quad 1 \le i \le n.$$

应为

$$b_i = \begin{cases} 0 & a_i \notin P, \\ 1 & a_i \in P, \end{cases} \quad 1 \le i \le n.$$

- 3.3 映射的合成
- 3.4 置换
- 3.4.1 置换的定义与性质

教材第 44 页第一行,"···=
$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \sigma_6$$
",应为"···= $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \sigma_6$ ".

- 3.4.2 轮换
- 3.4.3 对换
- 3.5 开关函数
- 3.5.1 定义和性质

例 3 的证明中, "···=
$$f \cdot f + h \cdot \bar{f} = \cdots$$
", 应为"···= $h \cdot f + h \cdot \bar{f} = \cdots$ ".

3.5.2 开关函数的小项表达式

例 1 的证明中, "f(0,0,0,)", 应为"f(0,0,0)".

- 3.5.3 集合的特征函数
- 3.6 习题

第 1 题的 (3) 中, " (y_1, y_1) ", 应为" (y_1, y_2) ".

第 2 题, " $A = \{-1,0,0\}^2$ ", 应为" $A = \{-1,0,1\}^2$ ".

第 3 题的 (1), " $g: \mathbb{Z} \to \mathbb{Z}^+ \cdot g$ ", 应为" $g: \mathbb{Z} \to \mathbb{Z}^+$ ".

4 二元关系

- 4.1 基本概念
- 4.1.1 关系

教材第 55 页," $\{y\}y \in B, \exists x \in A, (x,y) \in R\}$ ",应为" $\{y \mid y \in B, \exists x \in A, (x,y) \in R\}$ ". 教材第 56 页," $(x_0,y_0) \in R$ ",应为" $(x_0,y_2) \in R$ ".

4.1.2 关系的性质

例 3 中, "aaR₉bc", 应为"abR₉bc".

4.1.3 关系的表示

教材第58页第三段倒数第三行、"两上不同结点",应为"图上不同结点".

4.1.4 关系的运算

教材第 59 页第六行, " $a_i \in A$ ", 应为" $a_i \in A_1$ ". 教材第 60 页第一行, "(1,3,)", 应为"(1,3)". 教材第 61 页第四行, " aR^+b ", 应为" cR^+b ".

4.2 等价关系

定理 4.5 的证明中, " $[a] \cup [b] = \varnothing$ ", 应为" $[a] \cap [b] = \varnothing$ ".

4.3 序关系

- 4.3.1 部分序
- 4.3.2 线性序
- 4.3.3 极大元与极小元
- 4.3.4 最大元与最小元

教材 69 页第四行, " $y_2\tilde{\rho}y_1$ ", 应为" $y_1\tilde{\rho}y_2$ ".

4.3.5 上界与下界

- 4.4 集合的势
- 4.4.1 有限集合与可数集合
- 4.4.2 势的大小

定理 4.11 的证明中, "由此得出 $A \prec \mathcal{P}(A)$ ", 应为"由此得出 $A \nsim \mathcal{P}(A)$ ".

4.4.3 无限集合

4.5 习题

第 3 题, " $R_2 = \{a,b\}\cdots$ ", 应为" $R_2 = \{(a,b)\cdots$ ". 第 6 题, " $(a,b) \sim (b,d)$ ", 应为" $(a,b) \sim (c,d)$ ". 第 20 题, " $\mathbb{N} \times \mathbb{N}$ ", 应为" $\mathbb{R} \times \mathbb{R}$ ".

5 群论初步

5.1 群的定义与简单性质

例 5 中的表应如表1.

定理 5.3 的证明中," $e_2*e_1=e_1$ ",应为" $e_2*e_1=e_2$ ". 定理 5.3 的证明中," $e_2*e_1=e_2$ ",应为" $e_2*e_1=e_1$ ". 定理 5.4 中,"(a')'=a'",应为"(a')'=a".

*	1	-1	i	-i
1	1	-1	i	-i
-1	-1	1	-i	i
i	i	-i	-1	1
-i	-i	i	1	-1

表 1: 例 5 表

5.2 群定义的进一步讨论

定理 5.6 的证明中," $a*e=e_r$ ",应为" $a*x=e_r$ ".

定理 5.7 的证明中, " $G' \subseteq G$ ", 应为" $G' \subseteq G$ ".

教材第 81 页, "一个有限群的乘法可以用一个群来表示", 应为"一个有限群的乘法可以 用一个群表来表示".

教材第 82 页的三幅图, " G_4 ", 应为" C_4 ".

例 2 中, "全体 n 阶有理数方阵记为 $(\mathbb{Q})_n$ ", 应为"全体 n 阶有理数方阵记为 \mathbb{Q}_n ".

5.3 子群

教材第 84 页, "如果本身就是 G 的子群", 应为"如果 S 本身就是 G 的子群". 教材第 84 页, " $T = \{a_1^{e_1} * a_2^{e_2} * \cdots * a_n^{e_n} \cdots \}$ ", 应为" $T = \{a_1^{e_1} * a_2^{e_2} * \cdots * a_n^{e_n} \cdots \}$ ".

5.4 循环群

例 1 中, " $i^3 = -1$ ", 应为" $i^3 = -i$ ". 教材第 86 页, "从而 $a^n \in H$ ", 应为"从而 $a^v \in H$ ".

5.5 置换群

定理 5.13 的证明中, "n 元转换共有 n! 个", 应为"n 元置换共有 n! 个".

5.6 群的同构

教材第 90 页, "分别换名为 e,b,c", 应为"分别换名为 e,a,b,c". 定义 5.8 中, " $\langle G,*\rangle$ ", 应为" $\langle G_1,*\rangle$ ". 教材第 91 页, " $\psi:\mathbb{N}\to\mathbb{N}^+$ ", 应为" $\psi:\mathbb{R}\to\mathbb{R}^+$ ". 例 2 中, "若 a 是 n 阶无", 应为"若 a 是 n 阶元".

6 商群

6.1 陪集与 Lagrange 定理

定理 6.2 中, "H 是所有左陪集集合", 应为"H 的所有左陪集集合".

定义 6.2 中, "左(右) 陪集体个数", 应为"左(右) 陪集个数".

6.2 正规子群与商群

第一句,"李节",应为"本节".

定理 6.5 的证明中," $(g_1*g_2)*(a_1*a_2)'=n_3*n_1\in N$ ",应为" $(g_1*g_2)*(a_1*a_2)'=n_3*n_2\in N$ ".

6.3 群的同态

定理 6.9 的证明中,"即 $f:G_1\to G_2$ ",应为" $\widetilde{f}:G_1\to G_2$ ".例 2,"n 阶循环群同构子模 n 同余类群",应为"n 阶循环群同构于模 n 同余类群".

7 环和域

- 7.1 环的定义
- 7.2 整环和域
- 7.3 子环和环同态

定义 7.8 中," $f(R_1)=1_{R_1}$ ",应为" $f(R_1)=1_{R_2}$ ".例 3,"构成环 $\langle L(\mathbb{R}^n,\mathbb{R}^n),+,\cdot\rangle$ ",应为"构成环 $\langle L(\mathbb{R}^n,\mathbb{R}^n),+,\cdot\rangle$ ".例 4," $f([x]_{24})\cdot [y]_{24}$ ",应为" $f([x]_{24}\cdot [y]_{24})$ ".

7.4 理想与商环

定义 7.9 中,"I 是环 R 的空子集",应为"I 是环 R 的非空子集"。例 1 中," $I_1 = \{[1],[3]\}$ ",应为" $I_1 = \{[0],[3]\}$ "。例 2 中," $\{(m,0)+I\mid m\in\mathbb{Z}\}$ ",应为" $\{(m,0)+I_2\mid m\in\mathbb{Z}\}$ "。

7.5 多项式环

7.5.1 环上的多项式

7.5.2 域上的多项式

定理 7.11 中, "则存在唯一的 g(x)", 应为"则存在唯一的 q(x)". 定理 7.12 的证明中, "对任何 $g(x) \in F[x]$ ", 应为"对任何 $q(x) \in F[x]$ ".

7.5.3 域上的多项式商环

7.6 环同态定理

定义 7.11, " φ 是从环 R_1 到环 R_1 的同态映射", 应为 " ϕ 是从环 R_1 到环 R_2 的同态映射".

定理 7.13, "Ker φ 是 R_2 的理想", 应为"Ker φ 是 R_1 的理想".

定理 7.14 的证明中," $\widetilde{\varphi}: R_1 \to R_2/I_1$ ",应为" $\widetilde{\varphi}: R_1 \to R_1/I_1$ ";" $\varphi: R_1 \mathrm{Ker} \ \varphi \to R_2$ ",应为" $\varphi: R_1/\mathrm{Ker} \ \varphi \to R_2$ ".

例 1 的证明中,"由定理 7.13 知",应为"由定理 7.11 知";" $p(\sqrt{2})=a_0-a_1\sqrt{2}=0$ ",应为" $p(-\sqrt{2})=a_0-a_1\sqrt{2}=0$ ".

定理 7.15 的 1°, " $f(S_1)$ 是 R_1 的子环", 应为" $f(S_1)$ 是 R_2 的子环".

7.7 素理想和极大理想

定义 7.12 中, "如果 $a,b \in I$ ", 应为"如果 $a \cdot b \in I$ ".

8 格与布尔代数

- 8.1 格的定义与性质
- 8.2 几种特殊的格
- 8.2.1 完全格和有界格
- 8.2.2 有补格
- 8.2.3 分配格
- 8.2.4 模格
- 8.3 格——代数系统
- 8.3.1 基本定义
- 8.3.2 子格和格的直接积

定义 8.11 中," $\langle A,*,\oplus \rangle$ ",应为" $\langle A_1,*,\oplus \rangle$ ";" $\langle A,\wedge,\vee \rangle$ ",应为" $\langle A_2,\wedge,\vee \rangle$ ";"是由第一分量接 A_1 中的 · 和 \oplus 运算",应为"是由第一分量按 A_1 中的 * 和 \oplus 运算".

- 8.3.3 格的同态与同构
- 8.4 布尔代数
- 8.4.1 布尔代数

定义 8.13 的 2° 中, " $a*b(\oplus c)$ ", 应为" $a*(b\oplus c)$ ".

- 8.4.2 布尔代数的子代数
- 8.4.3 布尔代数的同态与同构
- 8.4.4 布尔代数的原子表示
- 8.4.5 布尔环
- 8.4.6 布尔表达式