Finite Automata Theory and Formal Languages Föreläsning 2 - Central concepts of automata theory

Erik Sjöström

March 22, 2016

1 Alphabets

Definition 1.1. An alphabet is a finite, non-empty set of symbols, usually denoted by Σ The number of symbols in Σ is do noted as $|\Sigma|$

Notation. We will use a, b, c, ... to denote symbols.

Anmärkning.

Alphabets will represent the observable events of the automata.

Exempel 1.1.

 $Some\ alphabets:$

- on/off-switch: $\Sigma = \{Push\}$
- simple vending machine: $\Sigma = \{5 \text{ kr, choc}\}\$
- complex vending machine $\Sigma = \{5 \text{ kr}, 10 \text{ kr}, \text{choc}, \text{big choc}\}$
- parity counter $\Sigma = \{p_0, p_1\}$

2 Strings or Words

Definition 2.1. Strings/Words are finite sequences of symbols from some alphabet.

Notation. We will use w, x, y, z, ... to denote words.

Anmärkning.

Words will represent the behaviour of an automaton.

Exempel 2.1.

Some behaviours:

- on/off-switch: Push, Push, Push, Push
- simple vending machine: 5 kr, choc, 5 kr, choc, 5 kr, choc
- parity counter: p_0p_1 or $p_0p_0p_0p_1p_1p_0$

Anmärkning.

Some words do NOT represent behaviour

Exempel 2.2.

simple vending machine: choc, choc, choc

3 Inductive Definition of Σ^*

Definition 3.1. Σ^* is the set of all words for a given alphabet Σ .

This can be described inductively in at least 2 different ways:

- Base case: $\epsilon \in \Sigma^*$
- Inductive step: if $a \in \Sigma$ and $x \in \Sigma^*$ then $ax \in \Sigma^*$
- We will usually work with this definition.

Or:

- Base case: $\epsilon \in \Sigma^*$
- Inductive step: if $a \in \Sigma$ and $x \in \Sigma^*$ then $xa \in \Sigma^*$

We can (recursively) define functions over Σ^* and (inductively) prove properties about those functions.

4 Concatenation

Definition 4.1. Given the string x and y, the concatenation xy is defined as:

$$\epsilon y = y$$
$$(ax')y = a(x'y)$$

Observe that in general $xy \neq xy$

Exempel 4.1.

If x = 010, and y = 11, then xy = 01011, and yx = 11010

Lemma. If Σ has more than one symbol then concatenation is not commutative.

5 Prefix and Suffix

Definition 5.1. Given x and y words over a certain alphabet Σ :

- x is a prefix of y iff there exists z such that y = xz
- x is a suffix of y iff there xists z such that y = zx

Anmärkning.

 $\forall x, \ \epsilon \ is \ both \ a \ prefix \ and \ suffix \ of \ x.$

Anmärkning.

 $\forall x, x \text{ is both a prefix and suffix of } x.$

6 Length and Reverse

Definition 6.1. The *length* function $|\cdot|: \Sigma^* \to \mathbb{N}$ is defined as:

$$|\epsilon| = 0$$
$$|ax| = 1 + |x|$$

Exempel 6.1.

|01010| = 5

Definition 6.2. The reverse function $rev(\): \Sigma^* \to \Sigma^*$ is defined as:

$$rev(\epsilon) = \epsilon$$

 $rev(ax) = rev(x)a$

Exempel 6.2.

 $rev(a_1...a_n) = a_n...a_1$

7 Power

7.1 Of a string

Definition 7.1. We define x^n as follows:

$$x^0 = \epsilon$$
$$x^{n+1} = xx^n$$

Exempel 7.1.

 $(010)^3 = (010010010)$

7.2 Of an alphabet

Definition 7.2. We define Σ^n , the set of words over Σ with length n, as follows:

$$\begin{split} \Sigma^0 &= \{\epsilon\} \\ \Sigma^{n+1} &= \{ax \mid a \in \Sigma, x \in \Sigma^n\} \end{split}$$

Exempel 7.2.

 $\{0,1\}^3 = \{000,001,010,011,100,101,110,111\}$

Notation.

$$\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \dots$$

$$\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \dots$$

8 Some properties

The following properties can be proved by induction:

Lemma. Concatenation is associative: $\forall x, y, z \colon x(yz) = (xy)z$

Lemma. $\forall x : x\epsilon = \epsilon x = x$

Lemma. $\forall x : |x^n| = n * |x|$

Lemma. $\forall \Sigma : |\Sigma| = |\Sigma|^n$

Lemma. $\forall x : rev(rev(x)) = x$

Lemma. $\forall x, y : rev(xy) = rev(y)rev(x)$

9 Languages

Definition 9.1. Given an alphabet Σ , a language \mathcal{L} is a subset of Σ^* , that is, $\mathcal{L} \subseteq \Sigma^*$

Anmärkning.

If $\mathcal{L} \subseteq \Sigma^*$ and $\Sigma \subseteq \Delta$ then $\mathcal{L} \subseteq \Delta^*$

Anmärkning.

A language can be either finite or infinite.

Exempel 9.1.

Some languages:

- Swedish, English, French, Spanish...
- Any programming language
- \emptyset , $\{\epsilon\}$, and Σ^* are languages over any Σ
- The set of prime Natural numbers: $\{1, 3, 5, 7, 11, ...\}$

10 Some Operations on Languages

Definition 10.1. Given $\mathcal{L}, \mathcal{L}_1, \mathcal{L}_2$ languages, we define the following languages:

 $\mathcal{L}^0 = \{\epsilon\}$

- Union, intersection: The same as for any set.
- Concatenation: $\mathcal{L}_1\mathcal{L}_1 = \{x_1x_2 \mid x_1 \in \mathcal{L}_1, x_2 \in \mathcal{L}_2\}$
- Closure: $\mathcal{L}^* = \bigcup_{n \in \mathbb{N}} \mathcal{L}^n$ where $\mathcal{L}^0 = \{\epsilon\}$, $\mathcal{L}^{n+1} = \mathcal{L}^n \mathcal{L}$

Anmärkning.

$$\emptyset^* = \{\epsilon\}$$

$$\mathcal{L}^* = \mathcal{L}^0 \cup \mathcal{L}^1 \cup \mathcal{L}^2 \cup \dots = \{\epsilon\} \cup \{x_1 \dots x_n \mid n > 0, x_i \in \mathcal{L}\}$$

Notation. $\mathcal{L}^* = \mathcal{L}^1 \cup \mathcal{L}^2 \cup \mathcal{L}^3 \cup ...$

Exempel 10.1.

Let
$$\mathcal{L} = \{aa, b\}$$
, then

$$\begin{split} \mathcal{L}^1 &= \mathcal{L} \\ \mathcal{L}^2 &= \mathcal{L}\mathcal{L} = \{aaaa, aab, baa, bb\} \\ \mathcal{L}^3 &= \mathcal{L}^2\mathcal{L} \\ \vdots \\ \mathcal{L}^* &= \{\epsilon, aa, b, aaaa, aab, baa, bb, \ldots\} \end{split}$$

11 How to Prove the Equality of Languages?

Given the languages \mathcal{L} and \mathcal{M} , how can we prove that $\mathcal{L} = \mathcal{M}$

A few possibilities:

- \bullet Languages are sets so we prive that $\mathcal{L}\subseteq\mathcal{M}$ and $\mathcal{M}\subseteq\mathcal{L}$
- Transitivity of equality: $\mathcal{L} = \mathcal{L}_1 = ... = \mathcal{L}_m = \mathcal{M}$
- We can reason about the elements in the language:

Exempel 11.1.

 ${a(ba)^n \mid n \ge 0} = {(ab)^n a \mid n \ge 0}$ can be proved by induction on n.

12 Algebraic Laws for Languages

Laws of concatenation:

- Associativity: $\mathcal{L}(\mathcal{MN}) = (\mathcal{LM})\mathcal{N}$
- Not commutative: $\mathcal{LM} \neq \mathcal{ML}$
- Distributivity: $\mathcal{L}(\mathcal{M} \cup \mathcal{N}) = \mathcal{L}\mathcal{M} \cup \mathcal{L}\mathcal{N}$
- Distributivity: $(\mathcal{M} \cup \mathcal{N})\mathcal{L} = \mathcal{M}\mathcal{L} \cup \mathcal{N}\mathcal{L}$
- Identity: $\mathcal{L}\left\{\epsilon\right\} = \left\{\epsilon\right\} \mathcal{L} = \mathcal{L}$
- Annihilator: $\mathcal{L}\emptyset = \emptyset \mathcal{L} = \emptyset$
- Other Rules:

$$- \emptyset^* = \{\epsilon\}^* = \{\epsilon\}$$

$$-\mathcal{L}^{+} = \mathcal{L}\mathcal{L}* = \mathcal{L}^{*}\mathcal{L}$$

$$- (\mathcal{L}^*)^* = \mathcal{L}^*$$

Anmärkning.

While:

$$\mathcal{L}(\mathcal{M} \cap \mathcal{N}) \subseteq \mathcal{L}\mathcal{M} \cap \mathcal{L}\mathcal{N}$$

and

 $(\mathcal{M} \cap \mathcal{N})\mathcal{L} \subseteq \mathcal{M}\mathcal{L} \cap \mathcal{N}\mathcal{L}$

both hold, in general

$$\mathcal{LM} \cap \mathcal{LN} \subseteq \mathcal{L}(\mathcal{M} \cap \mathcal{N})$$

and

 $\mathcal{ML} \cap \mathcal{NL} \subseteq (\mathcal{M} \cap \mathcal{N})\mathcal{L}$

don't.

Exempel 12.1.

Consider the case where:

$$\mathcal{L} = \{\epsilon, a\}, \mathcal{M} = \{a\}, \mathcal{N} = \{aa\}$$

Then

$$\mathcal{LM} \cap \mathcal{LN} = \{aa\}$$

but

$$\mathcal{L}(\mathcal{M} \cap \mathcal{N}) = \mathcal{L}\emptyset = \emptyset$$

13 Functions between Languages

Definition 13.1. A function $f: \Sigma^* \to \Delta^*$ between 2 languages should satisfy:

$$f(\epsilon) = \epsilon$$

 $f(xy) = f(x)f(y)$

Intuitively, $f(a_1...a_n) = f(a_1)...f(a_n)$

Anmärkning.

$$f(a) \in \Delta^* \text{ if } a \in \Sigma$$