

ROUNDTRIPPING BETWEEN SMALL-MOLECULE AND BIOPOLYMER REPRESENTATIONS

Noel O'Boyle and Roger Sayle

NextMove Software

Evan Bolton

PubChem

Rank Sales Q4 2012	Trade Name	Name	Type of biologic
1	Abilify	aripiprazole	
2	Nexium	esomeprazole	
3	Crestor	rosuvastatin	
4	Cymbalta	duloxetine	
5	Humira	adalimumab	Monoclonal antibody
6	Advair Diskus	fluticasone/salmeterol	
7	Enbrel	etanercept	Protein attached to monoclonal antibody
8	Remicade	infliximab	Monoclonal antibody
9	Copxone	glatiramer acetate	Peptide
10	Neulasta	pegfilgrastim	PEG attached to protein
11	Rituxan	rituximab	Monoclonal antibody
12	Spiriva	tiotropium bromide	
13	Atripla	emtricitabine/tenofovir/efavirenz	
14	OxyContin	oxycodone	
15	Januvia	sitagliptin	

Source: Drugs.com Statistics, Q4 2012 (http://www.drugs.com/stats/top100/2012/q4/sales)

A PICTURE IS WORTH A THOUSAND WORDS...?

...BUT IT DEPENDS ON THE PICTURE

FDA IUPAC

IS IT A FILE FORMAT PROBLEM?

- HELM (Hierarchical editing language for macromolecules)
 - Developed at Pfizer, and promoted by Pistoia Alliance
 - Hierarchical description of monomers and oligomers and connections between them

RNA1{P.R(A)P.R(G)P.R(C)P.R(U)P.R(T)P.R(T)P.R(T)}|CHEM1{SS3} \$RNA1,CHEM1,1:R1-1:R1\$\$\$

Name	Structure	Attachment
		Points
Dipropanol		R1-H
Disulfide		R2-H
	NZ NZ	
	Dipropanol	Dipropanol

IS IT A FILE FORMAT PROBLEM?

- PLN (Protein line notation)
 - Developed by Biochemfusion
 - Also software to edit and depict
 - Adheres closely to IUPAC recommendations and extended to handle cycles and arbitrary modified residues

H-ASDF-OH.H-CGTY-OH id=P0001 **

- SCSR (Self-contained sequence representation)
 - Developed as part of Accelrys Draw
 - Extension of Mol V3000
 - Can convert between all-atom representation and condensed forms

...OR IS IT A PERCEPTION PROBLEM?

- Existing all-atom representations are fully capable of storing biopolymers
 - PDB files have been used to store biopolymers for some time
 - SMILES and MOL files can store macromolecules
- On-the-fly perception from connection table
 - Perception of biopolymer units and the nature of the connections between those
- Convert perceived structure to any of several all-atom or biopolymer representations

SMILES

[C@@H]1([C@H](O)[C@@H](O)[C@H] (O)[C@H](O1)CO)O[C@H]1[C@@H]([C @H](C(O)O[C@@H]1CO)O)O

IUPAC CONDENSED

L-cysteinyl-L-tyrosyl-L-isoleucyl-L-glutaminyl-L-alpha-aspartyl-L-cysteinyl-L-prolyl-L-leucyl-glycinamide (1->6)-disulfide

 $\label{eq:constant} \text{Cc1cn}(c(=O)[\text{nH}]c1=O)[\text{C@H}]([\text{C@@H}]([\text{C@@H}]([\text{C@H}](O2)\text{CO}[\text{P@@}](=O)([\text{O-}])O[\text{C@@H}]3[\text{C@H}]([\text{C@H}](O[\text{C@H}]([\text{C@}](=O)([\text{O-}])O$

IUPAC CONDENSED

P-rGuo-P-rCyd-P-rGuo-P-rGuo-P-rAdo-P-rUrd-P-rUrd-P-rUrd-P-rAdo-P-m2Gua-Rib-P-rCyd-P-rUrd-P-rCyd-P-rAdo-P-rGuo-P-rGuo-P-rGuo-P-rGuo-P-rGuo-P-rGuo-P-rAdo-P-rGuo-P-rGuo-P-rAdo-P-rGuo-P-rAdo-P-rCyd-P-rAdo-P-rCyd-P-rAdo-P-rAdo-P-rGuo-P-rAdo-P-rGuo-P-rAdo-P-rGuo-P-rAdo-P-rGuo-P-rAdo-P-rGuo-P-rGuo-P-rAdo-P-rGuo-P-rGuo-P-m7Gua-Rib-P-rUrd-P-rCyd-P-m5Cyt-Rib-P-rUrd-P-rGuo-P-m5Ura-Rib-P-rPrd-P-rCyd-P-rGuo-P-rGuo-P-rGuo-P-rCyd-P-rAdo-P-rCyd-P-rAdo-P-rGuo-P-rAdo-P-rAdo-P-rUrd-P-rCyd-P-rAdo-P-rCyd-P-rCyd-P-rAdo-P-rCyd-P-rAdo-P-rCyd-P-rAdo-P-rCyd-P-rCyd-P-rAdo-P-rCyd-P-rCyd-P-rCyd-P-rAdo-P-rCyd-P-r

IN FAVOR OF PERCEPTION

- Cost
 - A new file format means a new compound registry system
- Ability to roundtrip
- Flexibility
 - New and unusual monomer? Will be faithfully stored in the MOL file
- Interchange of data
 - SMILES and MOL files are already a de-facto standard
 - HELM requires the (all-atom) monomer definitions
- Analysis
 - Can combine tools for small-molecule analysis with those that take as input biopolymer formats
- File-format lock-in
 - Difficult to migrate if you base your registry system on a particular file format

CHAINS PERCEPTION ALGORITHM

- The input is a connection table
- Typical sources include SMILES, MOL and PDB files
- As an option, graph connectivity only can be used, allowing molecules without bond orders to be handled (e.g. from PDB files)

CHAINS PERCEPTION ALGORITHM

- Identify nucleic acid backbone
- Recognize sidechains
- Identify peptide backbone
- Recognize sidechains
- Identify oligosaccharide backbone
- Recognize monosaccharides
- Label unidentified connected components as "Unknown" monomers
- Add connections between monomers

CHAINS PERCEPTION ALGORITHM

- Identify nucleic acid backbone
- Recognize sidechains
- Identify peptide backbone
- Recognize sidechains
- Identify oligosaccharide backbone
- Recognize monosaccharides
- Label unidentified connected components as "Unknown" monomers
- Add connections between monomers

BIOLOGICALLY-IMPORTANT MONOSACCHARIDE CLASSES

Hexopyranoses

e.g. D-Glucopyranose

Hexofuranoses

e.g. D-Glucofuranose

Hexopyranuronic acids e.g. D-Glucopyranonic acid

Pentopyranoses

e.g. D-Xylopyranose

Pentofuranoses

e.g. D-Xylofuranose

Non-2-ulopyranosonic acids

e.g. Neuraminic acid

Hex-2-ulopyranoses

e.g. D-Fructopyranose

Hex-2-ulofuranoses

e.g. D-Fructofuranose

BIOLOGICALLY-IMPORTANT MONOSACCHARIDE CLASSES

Hexopyranoses

e.g. D-Glucopyranose

Hexofuranoses

e.g. D-Glucofuranose

Hexopyranuronic acids e.g. D-Glucopyranonic acid

Pentopyranoses

e.g. D-Xylopyranose

Pentofuranoses

e.g. D-Xylofuranose

Non-2-ulopyranosonic acids

e.g. Neuraminic acid

Hex-2-ulopyranoses

e.g. D-Fructopyranose

Hex-2-ulofuranoses

e.g. D-Fructofuranose

POLYMER MATCHING

- Matching of linear, cyclic and dendrimeric polymers and copolymers can be efficiently implemented by graph relaxation algorithms.
- Each atom records a set of possible template equivalences represented as a bit vector.
- These bit vectors are iteratively refined using the bit vectors of neighboring atoms.

OLIGOSACCHARIDE BACKBONE DETECTION

 Assign initial constraints based upon atomic number, ring membership and heavy atom degree (and optionally valence and charge)

Bit C1: C In ring 3 neighbors

Bit OX: O In ring 2 neighbors

OLIGOSACCHARIDE BACKBONE DETECTION

- Perform iterative graph relaxation at each atom using its neighbor's bit masks
 - Unset bits if do not match neighbor templates

Bit C1: OX C2 OH

Bit OX: C5 C1

 End result: either bitmasks go to zero if not a supported monosaccharide, otherwise each atom will have a bitmask with a single bit set

RECOGNIZE MONOSACCHARIDES

- Find all anomeric centers attached to a peptide (glycoprotein) or with a free OH
 - These are the starting points of oligosaccharide chains

- Travel around each monosaccharide ring from C1->C6
 - Note the location of any substituted OHs or deoxys
 - Note the stereo configuration of the OHs (or subsituted OHs)
 - If an OH links to another monosaccharide, recursively traverse that, building up the oligosaccharide structure
- At C6, name the monosaccharide based on the stereo configuration and record the substitution pattern

SACCHARIDE OR NOT?

D-Glucopyranose

D-gluco-hexopyranose

(2S)-2-methyloxane

(2S)-2-methyl-tetrahydropyran

SACCHARIDE OR NOT?

D-Glucopyranose

D-gluco-hexopyranose

D-Quinovopyranose 6-deoxy-Glucopyranose

6-deoxy-D-*gluco*-hexopyranose

D-Paratopyranose 3,6-dideoxy-Glucopyranose

3,6-dideoxy-D-*ribo*-hexopyranose

(2S)-2-methyloxane

(2S)-2-methyl-tetrahydropyran

D-Amicetopyranose 2,3,6-trideoxy-Glucopyranose

2,3,6-trideoxy-D-*erythro*-hexopyranose

SUPPORTED SACCHARIDES

- Initial work has focussed on the most common saccharides
 - 5- and 6-membered ring forms of Hexoses, Hex-2-uloses, and
 Pentoses, 6-membered ring forms of Hexuronic acid and Non-2-ulosonic acid
 - Currently supported substitutions are those supported by IUPAC condensed notation (N, NAc, OAc, OMe)
- Perceived as monosaccharide if:
 - Matches one of the structures above
 - The hydroxyl group is present at the anomeric position (or substituted by N or O)
 - Another ring hydroxyl group (or substituted hydroxyl group) is present
- Covers 70.2% of the 693 monosaccharides in MonosaccharideDB

48 hexopyranoses

264 deoxy-hexopyranoses

Ċ,Ĭ . 1 HO 70 Å. Å. Ų. Ų. Ų. -0' 4 HO AN * 1 # Ċ. \$ \^`

¢

.

-

...

Ģ′

HOW MANY SACCHARIDES ARE IN PUBCHEM?

	Count
Total occurrence (of supported saccharides)	4050
of which are monosaccharides	1628

CID 449522

3-deoxy-ribHexNAc(b1-4)GlcA(b1-3)GlcNAc(b1-4)GlcA(b1-3)GlcNAc(b1-4)b-GlcA

CID 16663750

4-deoxy-L-thrPen(a1-4)XyI(b1-4)XyI(b1-4)[GlcA4Me(a1-2)]XyI(b1-4)b-XyI

HOW MANY MONOSACCHARIDES ARE IN PUBCHEM?

	Count
Total occurrence (of supported monosaccharides)*	121680
of which have defined stereochemistry	86996
of which unique	1907
Number of possible substituted hexopyranoses†	9540
of which observed	936

^{*} May be present as part of a larger molecule, not necessarily an oligosaccharide

[†] Supported substitutions are amino, acetyl, acetylamino and methoxy

BREAKING NEWS

- Import of GlycosuiteDB into PubChem
 - Database of glycans taken from the literature
 - Covers multiple species
 - Mixture of partial and fully defined structures
- 1487 oligosaccharide structures imported

CHALLENGES AHEAD

THE PERCEPTION OF SUGAR DEPICTIONS

You drew	You meant	You got
	O minio	0 0 0 0

THE PERCEPTION OF SUGAR DEPICTIONS

You drew	You meant	You got
	0	
		0 0 0 0

EXAMPLE

- PubChem CID 29980572
 - SMILES corresponds to 6-deoxy-L-Gul(a1-2)a-L-Alt
- ZINC 22059715
 - SMILES corresponds to 6-deoxy-L-Gul(a1-2)a-L-Alt
- Toronto Research Chemicals F823500
 - Diagram and name corresponds to 6-deoxy-L-Gal(a1-2)Gal
 - But the 2D SDF file depicts chair forms and uses wedges for perspective
- Given a Mol file depiction of a sugar, the challenge is to:
 - Perceive that it is a sugar
 - Interpret the stereo correctly
 - Generate a Mol file that will be read correctly by cheminformatics toolkits that do not have advanced sugar support

ARBITRARY CHEMICAL MODIFICATIONS

- Roundtripping is straightforward for recognized super-atoms
 - Perceived from all-atom or superatom representation when reading
 - Translated to all-atom or superatom representation when writing
- For "unknown" monomers or chemical modifications, the allatom representation must explicitly be stored along with the connection point(s)
 - E.g. as SMILES, "*CCC" for 1-propyl
 - A lookup table could be used for common modifications
- Note: arbitrary chemical modifications are not representable in many output formats
 - Be careful of relying on a particular polymer file format

VARIABLE ATTACHMENT POINTS

Reported oligosaccharide structures often contain linkages whose exact attachment point is unknown

$$Glc(\beta1\rightarrow?)Glc$$

4 possibilities

Challenge: Is it possible to store this information in a Mol file or SMILES string?

VARIABLE ATTACHMENT POINTS

- SMILES does not support positional variation
 - However ChemAxon have used dangling bonds to implement an extension
 - C*.C1CCCC1 | c:1,3,5,m:1:2.7.3 |
- V3000 Mol file
 - Both MarvinSketch and Accelrys Draw store variable attachment points in the same way using the bond block
 - "M V30 7 1 8 7 ENDPTS=(3 3 2 1) ATTACH=ANY"
 - ChemSketch uses its own extension, while ChemDraw cannot store the information
- V2000 Mol file
 - Accelrys Draw will not save as V2000, ChemDraw cannot store the information
 - MarvinSketch uses its own extension, as does ChemSketch

ACKNOWLEDGEMENTS

- Evan Bolton PubChem
- Daniel Lowe NextMove Software

http://nextmovesoftware.com http://nextmovesoftware.com/blog noel@nextmovesoftware.com

Left: The Biology Project, Immunology http://www.biology.arizona.edu/immunology/tutorials/antibody/structure.html Center: David Goodsell, Antibodies: September 2001 Molecule of the Month, DOI: 10.2210/rcsb_pdb/mom_2001_9

WOULD A SUGAR BY ANY OTHER NAME TASTE AS SWEET?

Carbohydrates

 Originally compounds of formula (CH₂O)_n, but now used as generic term for monosaccharides, oligosaccharides, derivatives thereof

Saccharides

 Considered by some to be synonymous with carbohydrates, otherwise mono-, oligo- and polysaccharides

Monosaccharides

Aldoses, ketoses, uronic acids, and many more

Sugars

Loose term applied to monosaccharides and lower oligosaccharides

Glycans

 "Biochemical" term for oligo- and polysaccharides especially as components of glycoproteins and proteoglycans

External database	Number of sequences in external database	URL
BCSDB (4)	8119	http://www.glyco.ac.ru/bcsdb3/
CCSD (2)	23 402	http://www.genome.jp/dbget- bin/www_bfind?carbbank
CFG (5)	8873	http://www.functionalglycomics.org/
EUROCarbDB	13 467	http://www.ebi.ac.uk/eurocarb/
Glycobase(Lille) (11)	247	http://glycobase.univ-lille1.fr/base/
GLYCOSCIENCES.de	23 285	http://www.glycosciences.de/
KEGG (<u>6</u>)	10 969	http://www.genome.jp/kegg/glycan/
PDB (<u>13</u>)	905	http://www.rcsb.org/pdb/

Taken from Table 1, Ranzinger et al., Nucleic Acids Research, 2001, 39, D373.

HOW MANY MONOSACCHARIDES ARE IN PUBCHEM?

	Count
Total occurrence (of supported monosaccharides)*	121680
of which have defined stereochemistry	86996
of which unique	1907
Number of possible substituted hexopyranoses†	9540
of which observed	936
Number of possible hexopyranose substitution patterns†	5 ⁴ =625
of which observed	75

^{*} May be present as part of a larger molecule, not necessarily an oligosaccharide

[†] Supported substitutions are amino, acetyl, acetylamino and methoxy