2006 Vol. 8, No. 13 2839–2842

Expedient Synthesis of Chiral 1,2- and 1,4-Diamines: Protecting Group Dependent Regioselectivity in Direct Organocatalytic Asymmetric Mannich Reactions

Naidu S. Chowdari, Moballigh Ahmad, Klaus Albertshofer, Fujie Tanaka, and Carlos F. Barbas, III*

The Skaggs Institute for Chemical Biology and the Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037 carlos@scripps.edu

Received April 24, 2006

ABSTRACT

Organocatalytic asymmetric Mannich reaction of protected amino ketones with imines in the presence of an L-proline-derived tetrazole catalyst afforded diamines with excellent yields and enantioselectivities of up to 99%. The amino ketone protecting group controlled the regioselectivity of the reaction providing access to chiral 1,2-diamines from azido ketones and 1,4-diamines from phthalimido ketones.

Chiral diamines are important building blocks for the synthesis of pharmaceuticals and are motifs frequently encountered in natural products. For example, chiral ethylenediamine derivatives are used in the preparation of *cis*-platin analogues employed in cancer therapy. As synthetic tools, chiral diamines are used extensively as chiral auxiliaries and catalysts. Despite their significance, the asymmetric synthesis of diamines is not straightforward. Chiral diamines are most frequently synthesized from diols or aziridines or by addition of glycine ester enolates to imines. The direct reductive coupling of imines has also been reported, but this approach is limited to the preparation of symmetrical vicinal diamines and has low stereoselectivity.

Thus, more direct and efficient routes are needed for the synthesis of this significant class of compounds.

In recent years, organocatalysis has emerged as a powerful tool for asymmetric aldol,⁶ Mannich,⁷ Michael,⁸ Diels—Alder,⁹ amination,¹⁰ oxidation,¹¹ halogenation,¹² Robinson annulation,¹³ and multicomponent reactions.¹⁴ Although hydroxy ketones have been employed in organocatalysis,^{6b,7j,8c} use of amino ketones has not yet been reported. Amino ketones are not stable; therefore, we envisioned use of azido ketones and protected amino ketones as surrogates for amino ketones. We previously used amino aldehydes in direct

⁽¹⁾ Lucet, D.; Gall, T. L.; Mioskowski, C. Angew. Chem., Int. Ed. 1998, 37, 2580.

⁽²⁾ Reedijk, J. Chem. Commun. 1996, 801.

⁽³⁾ Whitesell, J. K. Chem. Rev. 1989, 89, 1581.

^{(4) (}a) Bernardi, L.; Gothelf, A. S.; Hazell, R. G.; Jorgensen, K. A. *J. Org. Chem.* **2003**, *68*, 2583. (b) Davis, F. A.; Deng, J. *Org. Lett.* **2004**, *6*, 2789. (c) Viso, A.; Fernandez de la Pradilla, R.; Lopez-Rodriguez, M. L.; Garcia, A.; Flores, A.; Alonso, M. *J. Org. Chem.* **2004**, *69*, 1542. (d) Ooi, T.; Kameda, M.; Fujii, J.; Maruoka, K. *Org. Lett.* **2004**, *6*, 2397.

⁽⁵⁾ Annunziata, R.; Benaglia, M.; Caporale, M.; Raimondi L. *Tetrahedron Asymmetry* **2002**, *13*, 2727.

organocatalytic aldol reactions as an effective route to β -hydroxy- α -amino acids. ^{6j} Here, we report direct, regiospecific, asymmetric synthesis of 1,2- and 1,4-diamines based on the Mannich reaction of imines with azido ketones and with protected amino ketones, respectively.

(6) (a) List, B.; Lerner, R. A.; Barbas, C. F., III. J. Am. Chem. Soc. 2000, 122, 2395. (b) Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F., III. J. Am. Chem. Soc. 2001, 123, 5260. (c) Córdova, A.; Notz, W.; Barbas, C. F., III. J. Org. Chem. 2002, 67, 301. (d) Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798. (e) Bogevig, A.; Kumaragurubaran, N.; Jorgensen, K. A. Chem. Commun. 2002, 620. (f) Tang, Z.; Jiang, F.; Yu, L.-T.; Cui, X.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z.; Wu, Y.-D J. Am. Chem. Soc. 2003, 125, 5262. (g) Mase, N.; Tanaka, F.; Barbas, C. F., III. Angew. Chem., Int. Ed. 2004, 43, 2420. (h) Torii, H.; Nakadai, M.; Ishihara, K.; Saito, S.; Yamamoto, H. Angew. Chem., Int. Ed. 2004, 43, 1983. (i) Artikka, A.; Arvidsson, P. I. Tetrahedron: Asymmetry 2004, 15, 1831. (j) Thayumanavan, R.; Tanaka, F.; Barbas, C. F., III. Org. Lett. 2004, 6, 3541. (k) Kofoed, J.; Nielsen, J.; Reymond, J.-L. Bioorg. Med. Chem. Lett. 2003, 13, 2445. (1) Chandrasekhar, S.; Narsihmulu, Ch.; Reddy, N. R.; Sultana, S. S. Chem. Commun. 2004, 2450. (m) Berkessel, A.; Koch, B.; Lex, J. Adv. Synth. Catal. 2004, 346, 1141 (n) Suri, J. T.; Ramachary, D. B.; Barbas, C. F., III. Org. Lett. 2005, 7, 1383. (o) Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas, C. F., III. J. Am. Chem. Soc. 2006, 128, 734. (p) Gondi, V. B.; Gravel, M.; Rawal, V. H. Org. Lett. 2005, 7, 5657.

(7) (a) Notz, W.; Sakthivel, K.; Bui, T.; Barbas, C. F., III. Tetrahedron Lett. 2001, 42, 199. (b) Córdova, A.; Notz, W.; Zhong, G.; Betancort, J. M.; Barbas, C. F., III. J. Am. Chem. Soc. 2002, 124, 1842. (c) Córdova, A, Watanabe, S.-I.; Tanaka, F.; Notz, W.; Barbas, C. F., III. J. Am. Chem. Soc. 2002, 124, 1866. (d) Chowdari. N. S.; Ramachary, D. B.; Barbas, C. F., III. Synlett 2003, 1906. (e) Notz, W.; Tanaka, F.; Chowdari, N. S.; Thayumavan, R.; Barbas, C. F., III. J. Org. Chem. 2003, 68, 9624. (f) List, B.; Pojarliev, P.; Biller, W. T.; Martin, H. J. J. Am. Chem. Soc. 2002, 124, 937. (c) College A. List, B.; Pojarliev, P.; Biller, W. T.; Martin, H. J. J. Am. Chem. Soc. 2002. 124, 827. (g) Cobb, A. J. A.; Shaw, D. M.; Ley, S. V. Synlett 2004, 558. (h) Zhuang, W.; Saaby, S.; Jorgensen, K. A. Angew. Chem., Int. Ed. 2004, 43, 476. (i) Chowdari, N. S.; Suri, J. T.; Barbas, C. F., III. Org. Lett. 2004, 6, 2507. (j) Notz, W.; Watanabe, S.-I.; Chowdari, N. S.; Zhong, G.; Betancort, J. M.; Tanaka, F.; Barbas, C. F., III. Adv. Synth. Catal. 2004, 346, 1131. (k) Mitsumori, S.; Zhang, H.; Cheong, P. H.; Houk, K. N.; Tanaka, F.; Barbas, C. F., III. J. Am. Chem. Soc. 2006, 128, 1040. (1) Bahmanyar, S.; Houk, K. N. Org. Lett. 2003, 5, 1249. (m) Cordova, A.; Barbas, C. F., III. Tetrahedron Lett. 2001, 43, 7749 (n) Enders, D.; Grondal, C.; Vrettou, M.; Raabe, G. Angew. Chem., Int. Ed. 2004, 44, 4079. (o) Kano, T.; Yamaguchi, Y.; Tokuda, O.; Maruoka, K. J. Am. Chem. Soc. 2005, 127, 16408. (p) Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12964. (q) Lou, S.; Taoka, B. M.; Ting, A.; Schaus, S. E. J. Am. Chem. Soc. 2005, 127, 11256.

(8) (a) Betancort, J. M.; Sakthivel, K.; Thayumanavan, R.; Tanaka, F.; Barbas, C. F., III. *Synthesis* **2004**, *9*, 1509. (b) Enders, D.; Seki, A. *Synlett* **2002**, 26. (c) Andey, O.; Alexakis, A.; Bernardinelli, G. *Org. Lett.* **2003**, *5*, 2559. (d) Cobb, A. J. A.; Longbottom, D. A.; Shaw, D. M.; Ley, S. V. *Chem. Commun.* **2002**, 1808.

(9) (a) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. *J. Am. Chem. Soc.* **2000**, *122*, 4243. (b) Ramachary, D. B.; Chowdari. N. S.; Barbas, C. F., III. *Angew. Chem.* Int. Ed. **2003**, *42*, 4233. (c) Unni, A. K.; Takenaka, N.; Yamamoto, H.; Rawal, V. H. *J. Am. Chem. Soc.* **2005**, *127*, 1336.

(10) (a) Bogevig, A.; Juhl, K.; Kumaragurubaran, N.; Zhuang, W.; Jorgensen, K. A. *Angew. Chem., Int. Ed.* **2002**, *41*, 1790. (b) List, B. *J. Am. Chem. Soc.* **2002**, *124*, 5656. (c) Momiyama, N.; Yamamoto, H. *J. Am. Chem. Soc.* **2005**, *127*, 1080. (d) Rowland, G. B.; Zhang, H.; Rowland, E. B.; Chennamadhavuni, S.; Wang, Y.; Antilla, J. C. *J. Am. Chem. Soc.* **2005**, *127*, 15696.

(11) (a) Zhong, G. Angew. Chem., Int. Ed. 2003, 42, 4247. (b) Hayashi, Y.; Yamaguchi, J.; Sumiya, T.; Shoji, M. Angew. Chem., Int. Ed. 2003, 43, 1112. (c) Omiyama, N.; Torii, H.; Saito, S.; Yamamoto, H. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5374.

(12) (a) Brochu, M. P.; Brown, S. P.; MacMillan, D. W. C. J. Am. Chem. Soc. 2004, 126, 4108. (b) Franzen, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.; Kjrsgaard, A.; Jorgensen, K. A. J. Am. Chem. Soc. 2005, 127, 18296. (c) Steiner, D. D.; Mase, N.; Barbas, C. F., III. Angew. Chem., Int. Ed. 2005, 44, 3706.

(13) Bui, T.; Barbas, C. F., III. Tetrahedron Lett. 2000, 41, 6951.

(14) (a) Chowdari. N. S.; Ramachary, D. B.; Córdova, A.; Barbas, C. F., III. *Tetrahedron Lett.* **2002**, *43*, 9591. (b) Chowdari. N. S.; Ramachary, D. B.; Barbas, C. F., III. *Org. Lett.* **2003**, *5*, 1685. (c) Ramachary, D. B.; Barbas, C. F., III. *Chem. Eur. J.* **2004**, *10*, 5323. (d) Huang, Y.; Walji, A. M.; Larsen, C. H.; MacMillan, D. W. C. *J. Am. Chem. Soc.* **2005**, *127*, 15051. (e) Marigo, M.; Schulte, T.; Franzen, J.; Jorgensen, K. A. *J. Am. Chem. Soc.* **2005**, *127*, 15710.

We initially studied the Mannich reaction of *N-p*-methoxyphenyl (*N*-PMP) protected α -imino ethyl glyoxylate with azidobutanone using a catalytic amount of L-proline **1** (30 mol %) in dimethyl sulfoxide (DMSO) at room temperature. The reaction was complete within 48 h and provided the Mannich product in 84% yield with excellent enantioselectivity (>92% ee) albeit poor diastereoselectivity (*syn/anti* = 51:49) (Table 1, entry 1). At 4 °C in DMF, the

Table 1. Effect of Various Catalysts and Solvents on the Organocatalytic Asymmetric Synthesis of 1,2-Azidoamines^a

catalyst	solvent	time (h)	yield (%)	syn/anti	ee (syn/anti)
1	DMSO	48	84	51/49	92/98
1	DMF, 4 °C	187	82	92/8	96/99
1	IPA, 4 °C	24	80	89/11	99/99
2	DMSO	24	80	56/44	79/69
3	DMSO	4	93	94/6	98/70
3	DMF	6	90	82/18	75/88
3	DMF, 4 °C	39	92	91/9	97/65
3	NMP	6	88	84/16	85/86
3	NMP, 4 °C	40	90	91/9	97/90
3	IPA, 4 °C	24	80	95/5	99/99
3	$\mathrm{CH_{2}Cl_{2}}$	120	93	83/17	90/43
3	$\mathrm{CH_{3}CN}$	72	84	78/22	72/45
3	dioxane	31	80	78/22	91/22
3	toluene	95	76	76/24	89/16
3	$[bmim]BF_4$	48	83	78/22	73/44
	1 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 DMSO 1 DMF, 4 °C 1 IPA, 4 °C 2 DMSO 3 DMSO 3 DMF 3 DMF, 4 °C 3 NMP 3 NMP, 4 °C 3 IPA, 4 °C 3 CH ₂ Cl ₂ 3 CH ₃ CN 3 dioxane 5 toluene	catalyst solvent (h) 1 DMSO 48 1 DMF, 4 °C 187 1 IPA, 4 °C 24 2 DMSO 24 3 DMF 6 3 DMF, 4 °C 39 3 NMP 6 3 NMP, 4 °C 40 3 IPA, 4 °C 24 3 CH ₂ Cl ₂ 120 3 CH ₃ CN 72 3 dioxane 31 4 0 95	catalyst solvent (h) (%) 1 DMSO 48 84 1 DMF, 4 °C 187 82 1 IPA, 4 °C 24 80 2 DMSO 24 80 3 DMF 6 90 3 DMF, 4 °C 39 92 3 NMP 6 88 3 NMP, 4 °C 40 90 3 IPA, 4 °C 24 80 3 CH ₂ Cl ₂ 120 93 3 CH ₃ CN 72 84 3 dioxane 31 80 3 toluene 95 76	catalyst solvent (h) (%) syn/anti 1 DMSO 48 84 51/49 1 DMF, 4 °C 187 82 92/8 1 IPA, 4 °C 24 80 89/11 2 DMSO 24 80 56/44 3 DMSO 4 93 94/6 3 DMF 6 90 82/18 3 DMF, 4 °C 39 92 91/9 3 NMP 6 88 84/16 3 NMP, 4 °C 40 90 91/9 3 IPA, 4 °C 24 80 95/5 3 CH ₂ Cl ₂ 120 93 83/17 3 CH ₃ CN 72 84 78/22 3 dioxane 31 80 78/22 3 toluene 95 76 76/24

^a ee was determined by chiral HPLC analysis. Syn/anti ratio was based on ¹H NMR. Stereochemistry was assigned on the basis of previous Mannich reactions. ^{7j}

diastereoselectivity improved to 92:8, but the reaction required 187 h to reach completion (entry 2). When 2-propanol (IPA) was used the reactivity and enantioselectivity were increased relative to the room-temperature reaction, but diastereoselectivity was decreased (entry 3).

We then tested L-proline-derived sulfonamide 2 and tetrazole 3 as catalysts; these catalysts are stronger acids than proline and have been used previously in enamine-based organocatalysis. The reaction rate was acceptable for catalyst 2 (24 h for completion); however, diastereoselectivity was poor (entry 4). Catalyst 3 performed very well with respect to reaction time (4 h), diastereoselectivity (syn/anti = 94/6), and enantioselectivity (98%) (entry 5). Catalyst 3 performed well in a variety of solvents (entries 5–15). Of the solvents screened, DMSO was the best in terms of reaction time, yield, and diastereo- and enantioselectivities. At

2840 Org. Lett., Vol. 8, No. 13, 2006

⁽¹⁵⁾ For preparation of catalyst **2**, see ref 6m: For catalyst **3**, see: Almquist, R. G.; Chao, W.-R.; White, C. J. *J. Med. Chem.* **1985**, 28, 1067. Franckevièius, V.; Knudsen, K. R.; Ladlow, M.; Longbottom, D. A.; Ley, S. V. *Synlett* **2006**, *6*, 889.

4 °C, IPA, *N*,*N*-dimethylformamide (DMF), and *N*-methyl-2-pyrrolidone (NMP) also provided good diastereo- and enantioselectivity but required longer reaction times (24–40 h). Reaction rates were relatively slow in CH₂Cl₂, CH₃CN, 1,4-dioxane, toluene, and [1-butyl-3-methylimidazolium]BF₄. We also tested (*S*)-2-(methoxymethyl)pyrrolidine^{7m} and (*S*)-(+)-1-(2-pyrrolidinylmethyl)pyrrolidine/CF₃CO₂H,^{6g} but these catalysts provided product in negligible amounts.

Under these optimized conditions (catalyst 3 in DMSO), we next studied three-component Mannich reactions using different azidoketones and various aldehydes (Table 2). The

Table 2. Mannich Reactions for the Synthesis of Various 1,2-Azidoamines

reaction with azidoacetone was complete within 30 min, whereas azidoacetophenone reacted slowly and required 40 h for completion. These reactions also worked well with 10 mol % of catalyst as exemplified for azidoacetone; in this case the product 5 was obtained in 1.5 h with 94% yield, excellent diastereoselectivity (syn/anti=86/14), and enantioselectivity (99%). Reaction with benzyloxyacetaldehydeand carbohydrate-derived aldehydes yielded the azidoamines 7–9 with protected hydroxyl and polyhydroxy functionalities. All of these products were obtained regiospecifically with good diastereoselectivity (syn/anti=70/30 to 91/9) and enantioselectivity (82-99% ee).

The reaction with azidoacetophenone was very slow (40 h), most likely due to the conjugative stabilization of the reactive enamine by the phenyl group. The decreasing reactivity observed from azidoacetone to azidobutanone and

from benzyloxyacetaldehyde to the carbohydrate-derived aldehyde can be ascribed to increased steric hindrance with the latter substrates. A one-pot reduction and butoxy-carbonyl (Boc) protection of Mannich product 6 to provide differentially protected 1,2-diamine 10 was achieved by using Pd/C and Boc₂O under hydrogen atmosphere (Scheme 1).¹⁶

Scheme 1. Synthesis of Differentially Protected 1,2-Diamine

Next we used phthalimidoacetone, a phthaloyl-protected amino ketone, as donor (Table 3). Reaction of ethyl glyoxalate imine in DMSO in the presence of catalyst 3 at room temperature provided the Mannich product 11 in 86% yield

Table 3. Mannich Reactions for the Synthesis of Protected 1,4-Diamines

NPht + Q + product	PMP 3 (30 mol %) solvent conditions	NPht yield (%)	PMP R ee
O HN PMP CO ₂ Et NPht 11	DMSO, rt, 16 h DMF, 4 °C, 40 h NMP, 4 °C, 60 h NMP, rt, 48 h DMSO, rt, 14 h DMF, 4 °C, 72 h	86 83 88 95 80 87	64 90 91 83 73(-) ^a 74(-) ^a
NPht 12 NO ₂	DMSO, rt, 45 h DMF, 4 °C, 60 h NMP, 4 °C, 84 h NMP, 4 °C, 60 h	53 41 68 56	57 93 97
NPht 13 CN O HN PMP NPht 14 O HN PMP	NMP, 4 °C, 120 h	71	77
NPht O 15	NMP, 4 °C, 48 h	53	_b

^a (-) Represents opposite enantiomer obtained using D-proline-derived tetrazole catalyst *ent-3*. ^b Diasteriomers are formed with 10:1 ratio.

Org. Lett., Vol. 8, No. 13, 2006

and 64% ee as a single regioisomer. At 4 °C, ee's were improved: DMF gave 90% ee, whereas NMP provided 91% ee. The p-nitrobenzaldehyde imine reaction was also studied using three different solvents, and the highest ee (97%) was obtained in NMP solvent at 4 °C. Using these optimized conditions, we synthesized p-cyanophenyl- and phenylsubstituted 1,4-diamines with good to excellent ee's. Imines flanked with electron- withdrawing groups present on their aromatic rings are more reactive than benzaldehyde-PMPimine. A carbohydrate-based imine also reacted with phthalimidoacetone to provide aza sugar 15 in 53% yield. In contrast to our results using azidoketones that provided vicinal diamine derivatives exclusively, phthalimidoacetone provided only the 1,4-diamine derivatives. Upon selective reduction, 11 should give hydroxyornithine, a constituent of an antifungal peptide natural product (Scheme 2).17 Unlike

results obtained using the tetrazole catalyst, with L-proline 1 as catalyst in NMP solvent at room temperature, phthalimidoacetone provided Mannich product 11 in trace amounts accompanying the formation of cycloaddition product 16 with 59% isolated yield based on proline. Proline forms an iminium with ethyl glyoxalate, generated from in situ hydrolysis of glyoxalate imine. Decarboxylation of the iminium species followed by [3 + 2] cycloaddition with ethyl glyoxalate imine provided compound 16. Catalyst 2 also provided Mannich product 11 in trace amounts.

Based on the regioselectivities of products, we propose that the reaction occurs through the transition states shown in Figure 1. The catalyst reacts with azido ketone to form the enamine with the more highly substituted double bond, and attack of the methylene group gives the 1,2-azidoamine as the Mannich product (TS-1). Here deprotonation at the α -carbon is facilitated by the enhanced acidity provided by azide substitution and this enamine is thermodynamically more stable than the enamine generated by deprotonation at the other α -carbon based on resonance considerations. This

Figure 1. Proposed transition states.

reactivity is in accord with mechanisms of Mannich reactions involving hydroxy ketone and dialkyl ketone donors. ^{7j} In the case of phthalimidoketone, attack of the methyl group, rather than the methylene group of the ketone, results in the formation of the 1,4-diamine product through the enamine with the less-substituted double bond (TS-2). Here the competing enamine of TS-3 suffers due to steric hindrance.

In conclusion, we have demonstrated for the first time direct asymmetric Mannich reactions of imines with varied protected amino ketones to afford selective access to chiral 1,2- and 1,4-diamines with excellent yields and enantioselectivities. The identity of the protecting group controlled the regioselectivity of the reaction and provided for the synthesis for 1,2- and 1,4-diamines with azidoketones and phthalimidoketones, respectively. The scope of the azidoketone Mannich reaction appears to be very broad, coupling a wide range of azidoketones and imines. The product chiral azidoketones prepared here are interesting substrates for subsequent Click chemistry-based diversification.¹⁹ These reactions can be performed under environmentally friendly conditions without the requirements for an inert atmosphere or for dry solvents and provide expedient access to this significant class of molecules.

Acknowledgment. This study was supported in part by the Skaggs Institute for Chemical Biology.

Supporting Information Available: Experimental procedures and analytical data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL060980D

2842 Org. Lett., Vol. 8, No. 13, 2006

⁽¹⁶⁾ Saito, S.; Nakajima, H.; Inaba, M.; Moriwake, T. Tetrahedron Lett. 1989, 30, 837.

⁽¹⁷⁾ Paintner, F. F.; Allmendinger, L.; Bauschke, G.; Klemann, P. Org. Lett. 2005, 7, 1423.

⁽¹⁸⁾ Although this type of cycloaddition product was not reported in the Mannich reaction, cyclic products are reported in the literature using two equivalents of aldehyde and proline. See: (a) Kano, T.; Takai, J.; Tokuda, O.; Maruoka, K. *Angew. Chem., Int. Ed.* **2005**, *44*, 3055. (b) Orsini, F.; Pelizzoni, F.; Forte, M.; Destro, R.; Gariboldi, P. *Tetrahedron* **1988**, *44*, 519

⁽¹⁹⁾ Demko, Z, P.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2113.

⁽²⁰⁾ General Experimental Procedure for Mannich Reaction. To a glass vial charged with aldehyde (0.5 mmol) and *p*-anisidine (0.5 mmol) was added DMSO (1 mL). The solution was stirred at room temperature until imine formation was complete as monitored by TLC (30–60 min). Catalyst (30 mol %) and ketone (0.75 mmol) were added, and the reaction was stirred at room temperature. After completion of the reaction as monitored by TLC, half-saturated NH₄Cl solution and ethyl acetate were added with vigorous stirring, the layers were separated, and the organic phase was washed with water. The combined organic phases were dried (Na₂SO₄), concentrated, and purified by flash column chromatography (silica gel. mixtures of hexanes/ethyl acetate) to afford the desired Mannich product.

Expedient Synthesis of Chiral 1,2- and 1,4-Diamines: Protecting Group Dependent Regioselectivity in Direct Organocatalytic Asymmetric Mannich Reactions

Naidu S. Chowdari, Moballigh Ahmad, Klaus Albertshofer, Fujie Tanaka, and Carlos F. Barbas III*

Contribution from The Skaggs Institute for Chemical Biology and the Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California

Supporting Information

General. Chemicals and solvents were either purchased *puriss p.A.* from commercial suppliers or purified by standard techniques. For thin-layer chromatography (TLC), silica gel plates Merck 60 F254 were used and compounds were visualized by irradiation with UV light and/or by treatment with a solution of *p*-anisaldehyde (23 mL), conc. H_2SO_4 (35 mL), acetic acid (10 mL), and ethanol (900 mL) followed by heating. Flash chromatography was performed using silica gel Merck 60 (particle size 0.040-0.063 mm), ¹H NMR and ¹³C NMR spectra were recorded on Bruker DRX-400, DRX-500 MHz. Chemical shifts are given in δ relative to tetramethylsilane (TMS), the coupling constants *J* are given in Hz. The spectra were recorded in CDCl₃ as solvent at room temperature, TMS served as internal standard ($\delta = 0$ ppm) for ¹H NMR, and CDCl₃ was used as internal standard ($\delta = 77.0$ ppm) for ¹³C NMR. HPLC was carried out using a Hitachi organizer consisting of a D-2500 Chromato-Integrator, a L-4000 UV-Detector, and a L-6200A Intelligent Pump. Optical rotations were recorded on a Perkin Elemer 241 Polarimeter ($\lambda = 589$ nm, 1 dm cell). High-resolution mass spectra were recorded on an IonSpec FTMS mass spectrometer with a DHB-matrix.

General experimental procedure for two-component Mannich reaction (Table 1): To a glass vial charged with imine (0.5 mmol) in solvent (1 mL) was added ketone (0.75 mmol) followed by catalyst (30 mol%) and the reaction was stirred until completion as monitored by TLC. Then, a half saturated NH₄Cl solution and ethyl acetate were added with vigorous stirring,

the layers were separated and the organic phase was washed with water. The combined organic phases were dried (Na₂SO₄), concentrated, and purified by flash column chromatography (silica gel, mixtures of hexanes/ethyl acetate) to afford the desired Mannich product.

General experimental procedure for three-component Mannich reaction (Table 2 & 3): To a glass vial charged with aldehyde (0.5 mmol) and *p*-anisidine (0.5 mmol) was added DMSO (1 mL) and stirred at room temperature until imine formation is complete as monitored by TLC (30-60 min). Then catalyst (30 mol%) followed by ketone (0.75 mmol) was added and the reaction was stirred at room temperature. After completion of the reaction as monitored by TLC, half saturated NH₄Cl solution and ethyl acetate were added under vigorous stirring, the layers were separated and the organic phase was washed with water. The combined organic phases were dried (Na₂SO₄), concentrated, and purified by flash column chromatography (silica gel, mixtures of hexanes/ethyl acetate) to afford the desired Mannich product.

(2S,3S)-ethyl-3-azido-2-(4-methoxyphenylamino)-4-oxohexanoate (4):

To a glass vial charged with α -imino ethyl glyoxylate (104 mg, 0.5 mmol) in DMSO (1 mL) was added azidobutanone (0.75 mmol) followed by catalyst **3** (30 mol%) and stirred at room temperature for 4 h as monitored by TLC. Then, a half saturated NH₄Cl solution and ethyl

acetate were added with vigorous stirring, the layers were separated and the organic phase was washed with water. The combined organic phases were dried (Na₂SO₄), concentrated, and purified by flash column chromatography (silica gel, mixtures of hexanes/ethyl acetate) to afford the desired Mannich product. ¹H NMR (CDCl₃, 400 MHz): δ 1.06 (t, 3H), 1.26 (t, 3H, J = 7.2 Hz), 2.64 (dq, 2H, J₁= 1.6 Hz, J₂ = 7.2 Hz), 3.73 (s, 3H), 4.22 (m, 2H), 4.49 (d, 1H, J = 3.2 Hz), 4.52 (m, 1 H), 6.63 (d, J = 8.8 Hz, 2H), 6.76 (d, J = 8.8 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 7.07, 7.22, 33.53, 55.52, 60.07, 61.99, 62.08, 70.12, 70.16, 114.65, 114.80, 116.37, 116.54, 116.58, 140.05, 153.62, 170.69, 206,02; HRMS for C₁₅H₂₀N₄O₄ (MH⁺): calcd 321.1557, obsd 321.1553; HPLC (Daicel Chiralcel OJ-H, hexane/isopropanol = 85: 15, flow rate 1.0 mL/min, λ = 254 nm): t_R = 22.90 min (*syn*, major), t_R = 27.82 min (*syn*, minor), t_R = 43.23 min (*anti*, major), t_R = 76.30 min (*anti*, minor).

(2S,3S)-ethyl-3-azido-2-(4-methoxyphenylamino)-4-oxopentanoate

(5): To a glass vial charged with α -imino ethyl glyoxylate (104 mg, 0.5 mmol) in DMSO (1 mL) was added azidoacetone (0.75 mmol) followed by catalyst 3 (30 mol%) and stirred at room temperature for 30 min as monitored by TLC. Then, a half saturated NH₄Cl solution and ethyl

acetate were added with vigorous stirring, the layers were separated and the organic phase was washed with water. The combined organic phases were dried (Na₂SO₄), concentrated, and purified by flash column chromatography (silica gel, mixtures of hexanes/ethyl acetate) to afford the desired Mannich product. ¹H NMR (CDCl₃, 400 MHz): δ 1.27 (t, J = 7.2 Hz, 3H), 2.31 (s, 3H), 3.73 (s, 3H), 4.04 (d, 1H, J = 6.0 Hz), 4.22 (m, 2 H), 4.51 (m, 2H), 6.44 (d, J = 8.8 Hz, 2H), 6.76 (d, J = 8.8 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.11, 27.66, 55.52, 55.67, 59.94, 62.11, 70.33, 70.38, 114.67, 114.81, 116.38, 116.53, 138.80, 139.99, 153.66, 170.53, 203.31; HRMS for C₁₄H₁₈N₄O₄ (MNa⁺): calcd 329.122, obsd 329.1224; HPLC (Daicel Chirapak AD, hexane/isopropanol = 97 : 3, flow rate 1.0 mL/min, λ = 254 nm): t_R = 20.47 min (*syn*, minor), t_R = 22.07 min (*syn*, major), t_R = 24.44 min (*anti*, minor), t_R = 26.27 min (*anti*, major).

(2S,3S)-ethyl-3-azido-2-(4-methoxyphenylamino)-4-oxo-4-

phenylbutanoate (6): To a glass vial charged with α -imino ethyl glyoxylate (104 mg, 0.5 mmol) in DMSO (1 mL) was added azidoacetophenone (0.75 mmol) followed by catalyst 3 (30 mol%) and stirred at room temperature for 40 h as monitored by TLC. Then,

a half saturated NH₄Cl solution and ethyl acetate were added with vigorous stirring, the layers were separated and the organic phase was washed with water. The combined organic phases were dried (Na₂SO₄), concentrated, and purified by flash column chromatography (silica gel, mixtures of hexanes/ethyl acetate) to afford the desired Mannich product. ¹H NMR (CDCl₃, 400 MHz): δ 1.20 (t, 3H, J = 7.2 Hz), 3.75 (s, 3H), 4.15 (m, 2 H), 4.26 (m, 1H), 4.59 (m, 1H), 4.97 (d, J = 7.2 Hz, 1H), 6.73 (d, J = 9.2 Hz, 2H), 6.80 (d, J = 9.2 Hz, 2H), 7.52 (m, 2 H), 7.63 (m, 1 H), 7.96 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 13.92, 55.59, 55.63, 60.64, 61.95, 64.05,

114.86, 116.74, 128.63, 128.94, 134.06, 135.26, 139.69, 153.69, 170.41, 194.93; HRMS for $C_{19}H_{20}N_4O_4$ (MH⁺): calcd 369.1557, obsd 369.1556; ee was determined by HPLC analysis of **10**.

(3S,4S)-3-azido-5-(benzyloxy)-4-(4-methoxyphenylamino)pentan-2-

one (7): To a glass vial charged with benzyloxyacetaldehyde (0.5 mmol) and *p*-anisidine (0.5 mmol) was added DMSO (1 mL) and stirred at room temperature until imine formation is complete as monitored by TLC (30 min). Then catalyst **3** (30 mol%) followed by azidoacetone (0.75 mmol)

$$O = HN \longrightarrow O$$

$$O = N$$

was added and the reaction was stirred at room temperature for 30 min. Then, half saturated NH₄Cl solution and ethyl acetate were added under vigorous stirring, the layers were separated and the organic phase was washed with water. The combined organic phases were dried (Na₂SO₄), concentrated, and purified by flash column chromatography (silica gel, mixtures of hexanes/ethyl acetate) to afford the desired Mannich product. ¹H NMR (CDCl₃, 400 MHz): δ 2.18 (s, 3H), 3.46 (t, J = 8.8 Hz, 1H), 3.63 (dd, 1H, J₁ = 4.0 Hz, J₂ = 9.2 Hz), 3.73 (s, 3H), 4.07 (m,

), 4.49-4.52 (m, 2H), 6.55 (d, J = 8.8 Hz, 2H), 6.74 (d, J = 8.8 Hz, 2H), 7.33 (m, 5H); 13 C NMR (CDCl₃, 100 MHz): δ 27.58, 55.23, 55.66, 68.31, 69.47, 73.45, 114.91, 115.17, 127.87, 127.98, 128.48, 137.50, 139.72, 152.80, 204.45; HRMS for $C_{19}H_{22}N_4O_3$ (MH⁺): calcd 355.1765, obsd 355.1766; HPLC (Daicel Chirapak AD, hexane/isopropanol = 98: 2, flow rate 1.0 mL/min, λ = 254 nm): t_R = 20.75 min (*syn*, minor), t_R = 23.81 min (*syn*, major), t_R = 25.07 min (*anti*, minor), t_R = 26.67 min (*anti*, major).

(4S,5S)-4-azido-6-(benzyloxy)-5-(4-methoxyphenylamino)hexan-3-

one (8): To a glass vial charged with benzyloxyacetaldehyde (0.5 mmol) and *p*-anisidine (0.5 mmol) was added DMSO (1 mL) and stirred at room temperature until imine formation is complete as monitored by TLC (30

min). Then catalyst 3 (30 mol%) followed by azidobutanone (0.75 mmol) was added and the reaction was stirred at room temperature for 6 h. Then, half saturated NH₄Cl solution and ethyl

acetate were added under vigorous stirring, the layers were separated and the organic phase was washed with water. The combined organic phases were dried (Na₂SO₄), concentrated, and purified by flash column chromatography (silica gel, mixtures of hexanes/ethyl acetate) to afford the desired Mannich product. 1 H NMR (CDCl₃, 400 MHz): δ 0.97 (t, J = 7.2 Hz, 3 H), 2.50 (q, J = 7.2 Hz, 2H), 3.46 (t, J = 8.8 Hz, 1H), 3.62 (dd, 1H, J_1 = 4.0 Hz, J_2 = 9.2 Hz), 3.73 (s, 3H), 4.07 (m, 1H), 4.44-4.52 (m, 2H), 6.55 (d, J = 8.8 Hz, 2H), 6.74 (d, J = 8.8 Hz, 2H), 7.32 (m, 5H); 13 C NMR (CDCl₃, 100 MHz): δ 7.27, 33.37, 55.35, 55.68, 68.40, 69.09, 73.45, 114.91, 127.88, 128.48, 137.52, 139.81, 152.77, 207.19; HRMS for $C_{20}H_{24}N_4O_3$ (MH $^+$): calcd 369.1921, obsd 369.1924; HPLC (Daicel Chiralcel OJ-H, hexane/isopropanol = 85: 15, flow rate 1.0 mL/min, λ = 254 nm): t_R = 37.55 min (*anti*, minor), t_R = 42.08 min (*syn*, minor), t_R = 44.24 min (*syn*, major), t_R = 66.08 min (*anti*, major).

1,2-Azido amine (9). To a glass vial charged with aldehyde (0.5 mmol) and p-anisidine (0.5 mmol) was added DMSO (1 mL) and stirred at room temperature until imine formation is complete as monitored by TLC (1 h). Then catalyst **3** (30 mol%) followed by azidoacetone (0.75 mmol) was added and the reaction was stirred at room temperature for 36 h. Then, half saturated NH₄Cl solution and ethyl acetate were added

under vigorous stirring, the layers were separated and the organic phase was washed with water. The combined organic phases were dried (Na₂SO₄), concentrated, and purified by flash column chromatography (silica gel, mixtures of hexanes/ethyl acetate) to afford the desired Mannich product. ¹H NMR (CDCl₃, 400 MHz): δ 1.31 (s, 3H), 1.34 (s, 3H), 1.50 (s, 3H), 1.53 (s, 3H), 2.04 (s, 1H), 2.19 (s, 3H), 3.73 (s, 3H), 3.87 (m, 1H), 3.89 (m, 1H), 4.09 (m, 1H), 4.28 (dd, J_1 = 8.0, J_2 = 2.0 Hz, 1H), 4.30 (dd, J_1 = 5.2, J_2 = 2.4 Hz, 1H), 4.43 (d, J = 3.2 Hz, 1H), 4.62 (dd, J_1 = 7.6 Hz, J_2 = 2.4 Hz, 1H), 5.51 (d, J = 5.2 Hz, 1H), 6.61 (d, J = 8.8 Hz, 2H), 6.73 (d, J = 8.8 Hz, 2H); HRMS for C₂₂H₃₀N₄O₇ (MH⁺): calcd 463.2187, obsd 463.2183.

(2S,3S)-ethyl-3-(tert-butoxycarbonylamino)-2-(4-

methoxyphenylamino)-4-oxo-4-phenylbutanoate (10): 10% Pd/C (1 mg) in ethyl acetate (250 μ L) was treated with hydrogen (1 atmasphere) for 10 min. Then Mannich product **3** (6 mg, 16 μ mol) and Boc₂O (4.3 mg, 19 μ mol) in ethyl acetate (250 μ L) were added

and stirred under hydrogen atmosphere for 48 h. Reaction mixture was filtered over celite and washed with ethyl acetate (3 mL). ¹H NMR of the concentrated crude compound shows complete conversion of azide to Boc protected amine. Purification by flash column chromatography (silica gel, mixtures of hexanes/ethyl acetate) provided analytically pure compound **10**. ¹H NMR (CDCl₃, 400 MHz): δ 1.14 (t, J = 5.2 Hz, 3 H), 1.46 (s, 9H), 3.74 (s, 3H), 4.02 (m, 2 H), 4.39 (m, 1H), 5.73 (m, 2H), 6.66 (m, 2H), 6.76 (m, 2H), 7.49 (m, 2 H), 7.61 (m, 1 H), 8.00 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.01, 28.27, 29.69, 55.67, 61.52, 80.61, 114.66, 114.79, 116.05, 116.29, 128.75, 128.84, 128.95, 133.93, 134.94, 153.35, 170.59, 197.07; HRMS for $C_{24}H_{30}N_2O_6$ (MH⁺): calcd 443.2177, obsd 443.2169; HPLC (Daicel Chirapak AD, hexane/isopropanol = 85: 15, flow rate 1.0 mL/min, λ = 254 nm): t_R = 12.13 min (*anti*, minor), t_R = 18.40 min (*syn*, major), t_R = 27.57 min (*syn*, minor), t_R = 32.43 min (*anti*, major).

(S)-ethyl-5-(1,3-dioxoisoindolin-2-yl)-2-(4-

methoxyphenylamino)-4-oxopentanoate (11): To a glass vial charged with α -imino ethyl glyoxylate (104 mg, 0.5 mmol) in NMP (1 mL) was added phthalimido acetone (0.75 mmol) followed by catalyst 3 (30 mol%) and the reaction was stirred at 4 °C for 60 h. Then, a half saturated NH₄Cl solution and ethyl acetate were added with vigorous stirring, the layers were separated and the organic

phase was washed with water. The combined organic phases were dried (Na₂SO₄), concentrated, and purified by flash column chromatography (silica gel, mixtures of hexanes/ethyl acetate) to afford the desired Mannich product. ¹H NMR (CDCl₃, 400 MHz): δ 1.26 (t, 3H, J = 7.2 Hz), 3.05 (dd, J_1 = 5.6, J_2 = 1.2 Hz, 1H), 3.74 (s, 3H), 4.20 (m, 2 H), 4.41 (m, 1H), 4.52 (m, 2H), 6.67 (d, J = 8.8 Hz, 2H), 6.78 (d, J = 8.8 Hz, 2H), 7.74 (m, 2H), 7.87 (m, 2H); ¹³C NMR (CDCl₃, 100

MHz): δ 14.09, 42.13, 47.01, 54.22, 55.66, 61.78, 114.86, 115.89, 123.58, 131.97, 134.20, 140.08, 167.46, 172.36; HRMS for $C_{22}H_{22}N_2O_6$ (MH⁺): calcd 411.1551, obsd 411.1549; HPLC (Daicel Chiralcel OD-H, hexane/isopropanol = 90 : 10, flow rate 1.0 mL/min, λ = 254 nm): t_R = 63.17 min (major), t_R = 81.49 (minor).

(S)-2-(4-(4-methoxyphenylamino)-4-(4-nitrophenyl)-2-

oxobutyl)isoindoline-1,3-dione (12): To a glass vial charged with p-nitrobenzaldehyde imine (0.5 mmol) in NMP (1 mL) was added phthalimido acetone (0.75 mmol) followed by catalyst 3 (30 mol%) and the reaction was stirred at 4 °C for 84 h. Then, a half saturated NH₄Cl solution and ethyl acetate were added with

vigorous stirring, the layers were separated and the organic phase was washed with water. The combined organic phases were dried (Na₂SO₄), concentrated, and purified by flash column chromatography (silica gel, mixtures of hexanes/ethyl acetate) to afford the desired Mannich product. 1 H NMR (CDCl₃, 300 MHz): δ 3.05 (m, 2H), 3.69 (s, 3H), 4.43 (s, 2H), 4.92 (t, J = 6.6 Hz, 1H), 6.47 (d, J = 9.0 Hz, 2H), 6.69 (d, J = 9.0 Hz, 2H), 7.56 (d, J = 8.7 Hz, 2H), 7.77 (m, 2H), 7.86 (m, 2H), 8.19 (d, J = 8.7 Hz, 2H); 13 C NMR (CDCl₃, 75 MHz): δ 46.93, 47.11, 54.65, 55.59, 114.77, 115.62, 123.67, 124.19, 127.40, 131.84, 134.35, 139.90, 149.94, 152.91, 167.48, 200.09; HRMS for C₂₅H₂₁N₃O₆ (MH⁺): calcd 460.1503, obsd 460.1496; HPLC (Daicel Chirapak AD, hexane/isopropanol = 75 : 25, flow rate 1.0 mL/min, $\lambda = 254$ nm): 64.09 min (major), t_R = 82.32 (minor).

(S)-4-(4-(1,3-dioxoisoindolin-2-yl)-1-(4-

methoxyphenylamino)-3-oxobutyl)benzonitrile (13): To a glass vial charged with p-cyanobenzaldehyde (0.5 mmol) and p-anisidine (0.5 mmol) was added NMP (1 mL) and stirred at room temperature until imine formation is complete as monitored by TLC (1 h). Then catalyst 3 (30 mol%) followed by phthalimido acetone (0.75 mmol) were added and stirred at 4 °C for 60 h.

Then, half saturated NH₄Cl solution and ethyl acetate were added under vigorous stirring, the

layers were separated and the organic phase was washed with water. The combined organic phases were dried (Na₂SO₄), concentrated, and purified by flash column chromatography (silica gel, mixtures of hexanes/ethyl acetate) to afford the desired Mannich product. ¹H NMR (CDCl₃, 400 MHz): δ 3.02 (m, 2H), 3.69 (s, 3H), 4.24 (s, 1H), 4.41 (s, 2H), 4.85 (t, J = 5.6 Hz, 1H), 6.46 (d, J = 9.2 Hz, 2H), 6.68 (d, J = 9.2 Hz, 2H), 7.50 (d, J = 8.8 Hz, 2H), 7.77 (d, J = 8.8 Hz, 2H), 7.75 (m, 2H), 7.86 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 46.96, 47.12, 54.84, 55.58, 55.61, 111.43, 114.77, 115.58, 118.64, 123.65, 127.26, 131.86, 132.75, 134.32, 139.99, 147.89, 152.87, 167.45, 200.15; HRMS for $C_{26}H_{22}N_3O_4$ (MH⁺): calcd 440.1605, obsd 440.1606; HPLC (Daicel Chirapak AD, hexane/isopropanol = 75 : 25, flow rate 1.0 mL/min, λ = 254 nm): 63.90 min (major), t_R = 91.82 (minor).

(S)-2-(4-(4-methoxyphenylamino)-2-oxo-4-

phenylbutyl)isoindoline-1,3-dione (14): To a glass vial charged with benzaldehyde imine (0.5 mmol) in NMP (1 mL) was added phthalimido acetone (0.75 mmol) followed by catalyst 3 (30 mol%) and the reaction was stirred at 4 °C for 120 h. Then, a half saturated NH₄Cl solution and ethyl acetate were added with vigorous stirring, the layers were separated and the organic phase was washed with

water. The combined organic phases were dried (Na₂SO₄), concentrated, and purified by flash column chromatography (silica gel, mixtures of hexanes/ethyl acetate) to afford the desired Mannich product. 1 H NMR (CDCl₃, 300 MHz): δ 3.02 (m, 2H), 3.69 (s, 3H), 4.39 (s, 2 H), 4.84 (t, J = 7.2 Hz, 1H), 6.53 (d, J = 8.8 Hz, 2H), 6.70 (d, J = 8.8 Hz, 2H), 7.36 (m, 5H), 7.74 (m, 2H), 7.86 (m, 2H); 13 C NMR (CDCl₃, 75 MHz): δ 47.23, 47.60, 55.25, 55.63, 114.68, 115.51, 123.57, 126.28, 127.55, 128.92, 131.94, 134.19, 140.71, 142.17, 152.48, 167.51, 200.78; HRMS for $C_{25}H_{22}N_2O_4$ (MH⁺): calcd 415.1652, obsd 415.1642; HPLC (Daicel Chirapak AD, hexane/isopropanol = 75 : 25, flow rate 1.0 mL/min, λ = 254 nm): 28.67 min (major), t_R = 35.10 (minor).

1,4-Diamine (**15**). To a glass vial charged with aldehyde (0.5 mmol) and *p*-anisidine (0.5 mmol)

was added DMSO (1 mL) and stirred at room temperature until imine formation is complete as monitored by TLC (1 h). Then catalyst 3 (30 mol%) followed by phthalimido acetone (0.75 mmol) were added and stirred at room temperature for 20 h. Then, half saturated NH₄Cl solution and ethyl acetate were added under vigorous stirring, the layers were separated and the

organic phase was washed with water. The combined organic phases were dried (Na₂SO₄), concentrated, and purified by flash column chromatography (silica gel, mixtures of hexanes/ethyl acetate) to afford the desired Mannich product. ¹H NMR (CDCl₃, 300 MHz): δ 1.25 (s, 3H), 1.31 (s, 3H), 2.87 (m, 1H), 3.73 (s, 3H), 3.87 (m, 1H), 4.29 (m, 1H), 4.37 (m, 1H), 4.48-4.59 (m, 2H), 5.60 (d, J = 3.2 Hz, 1H), 4.62 (dd, J₁ = 6.4 Hz, J₂ = 7.6 Hz, 1H), 5.51 (d, J = 5.2 Hz, 1H), 6.66 (m, 2H), 6.76 (m, 2H), 7.73 (m, 2H), 7.86 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.11, 14.20, 22.65, 29.57, 29.61, 29.71, 31.58, 34.13, 39.67, 47.19, 51.76, 60.39, 71.03, 108.68, 108.71, 109.23, 114.95, 114.97, 116.17, 123.43, 123.47, 132.14, 134.03, 134.04, 134.06, 140.69, 167.58, 171.14, 202.12; HRMS for C₃₀H₃₄N₂O₉ (MH⁺): calcd 567.2337, obsd 567.2332.

.

