## Aprendizaje por refuerzo y técnicas generativas.

Deep Q Network (DQN)

## Introducción a los modelos Generativos

#### Introducción

Tradicionalmente existen dos paradigmas de aprendizaje y distintos tipos de modelos, como son el aprendizaje *Supervisado* y *No Supervisado* 



#### Introducción

A su vez, existen diferentes modelos o diferentes problemas (paradigmas) que afrontar con los modelos de IA:

- **Discriminativos**: predicen la probabilidad de pertenecer a una clase dado las carácterísticas de los datos de entrada.
- **Generativos**: buscan modelar cómo se generan los datos observados y pueden generar nuevos datos similares



# Introducción - paradigmas de los modelos generativos

- No solo aprenden a diferenciar, sino que aprenden la estructura de los datos
- Son útiles en aprendizaje no supervisado
- Es más sencillo obtener una idea de qué caracteriza una clase
- Son más costosos computacionalemente

# Introducción - paradigmas de los modelos generativos

Ejemplos y evolución de los modelos generativos:

- Naive Bayes (1960~1970)
- Máquinas de Boltzmann (RBM) (1980)
- Modelos de Markov (HMM) (1960~1970)
- Gaussian Mixture Models (GMMs) (1977)
- Autoencoders variacionales (AEs) (2013)
- Generative Adversarial Networks (GANs) (2014)
- Transformers (2017)
- Diffusion Models (2020)

# **Autoencoders - AEs**

#### ¿Qué son los Autoencoders?

Un tipo de red neuronal que puede aprender a comprimir y luego reconstruir datos.

- Un autoencoder es un tipo de red neuronal utilizada en tareas de **aprendizaje no supervisado**.
- Su objetivo es aprender una representación compacta de los datos de entrada.
- Consiste en dos partes principales: el codificador y el decodificador.
- El objetivo principal de un autoencoder es *minimizar la diferencia* entre los datos de entrada y los datos reconstruidos por el decodificador.

## ¿Qué son los Autoencoders?

Son redes neuronales con una arquitectura compuesta de dos componentes que se entrenan al mismo tiempo:

- **Codificador**: Transforma los datos de entrada en una representación de menor dimensión.
- **Decodificador**: Toma esta representación y reconstruye los datos originales.



## Areas de aplicación

Son muy útiles en una amplia variedad de aplicaciones.

- Reducción de dimensionalidad: aprender representaciones comprimidas de datos de alta dimensionalidad, lo que permite reducir el número de características necesarias para describir los datos.
- **Eliminación de ruido**: Al entrenar con datos ruidosos y luego reconstruirlos, se pueden obtener versiones limpias y filtradas de los mismos.
- **Detección de anomalías**: modelar la distribución de los datos normales y detectar desviaciones significativas como anomalías. (detección de fraudes, fallas en equipos, etc.)
- **Generación de datos**: Al muestrear del espacio latente, los autoencoders pueden generar nuevas muestras de *datos similares* a los ejemplos de entrenamiento.

## **Arquitectura Convolutional Autoencoder**



Imagen obtenida de Deep Clustering with Convolutional Autoencoders

## **Entrenamiento Semi-supervisado**

El entrenamiento es exactamente igual que cualquier red neuronal, la diferencia radica en qué se utiliza como **"etiquetas"**.

- La *función de pérdida* se calcula comparando la salida obtenida (imagen reconstruida) con los datos que se espera obtener (imagen sin ruido, etc)
- La razón principal por la que se considera "semisupervisado" es que el proceso de entrenamiento no requiere etiquetas explícitas (gato, perro, etc).



## **Variational Autoencoders**

Los **Autoencoders** tienen un gran problema: no son buenos generadores de datos.

¿Por qué?

Pensemos en un ejemplo sencillo: la reconstrucción de imágenes del dataset MNIST.

¿Cómo pensáis que será el espacio latente?



Al **no ser una distribución de datos continua**, tendremos problemas cuando la entrada sea ligeramente distinta a los datos con los que se entrenó el autoencoder:



¿Qué ocurrirá cuando la entrada sean imágenes que generen espacios latentes entre medio de las muestras de entrenamiento?

- Espacios continuos: En un espacio continuo, los datos pueden tomar un rango infinito de valores dentro de un intervalo determinado.
- Espacios discretos: En un espacio discreto, los datos solo pueden tomar un conjunto finito o contablemente infinito de valores distintos.



La mejor situación que buscamos es conseguir:

- Un espacio latente continuo y ordenado
- En el espacio ordenado permite tener las muestras similares agrupadas
- No se pierde la capacidad de interpolar entre diferentes muestras



## Motivación - ¿Cómo lo conseguimos?

- Solo podemos forzar a la propia red a que ordene el espacio latente
- ¿Cómo?
- Durante el entrenamiento, se minimiza una función de perdida
- ¿Y...?
- Pués ahí es donde vamos a trabajar, pero entonces ya no usamos un Autoencoder...



#### Recursos didácticos

- 1. Reducing the dimensionality of data with neural networks. science, 313(5786):504–507, 2006
- 2. Extracting and composing robust features with denoising autoencoders, 2008.
- 3. Semi-Supervised Recurrent Variational Autoencoder Approach for Visual Diagnosis of Atrial Fibrillation
- 4. Variational Autoencoders, Radboud University