Wide Band Gap II-VI Selenides for Short Wavelength Intersubband Devices

A. Shen^{1,a)}, W.O. Charles¹, B.S. Li¹, K.J. Franz², C. Gmachl², Q. Zhang³, and M.C.

Tamargo⁴

¹Department of Electrical Engineering, The City College of the City University of New

York

²Department of Electrical Engineering, Princeton University

³Department of Physics, The City College of the City University of New York

⁴Department of Chemistry, The City College of the City University of New York

Abstract

In this paper, we present our recent progress towards the realization of short

wavelength intersubband devices with wide band gap II-VI selenide semiconductors.

Intersubband electroluminescence at 4.8 µm was observed in a ZnCdSe/ZnCdMgSe

quantum cascade structure at temperatures up to room temperature. We also developed a

new ZnCdSe/MgSe quantum structure with metastable MgSe barriers. Intersubband

absorption in the 3-5 µm range was observed. Calculations suggest that with this structure

intersubband transitions as short as 1.55 µm may be achieved.

PACS: 81.05.Dz, 81.07.St, 81.15.Hi, 85.35.Be

Keywords: A3. Molecular beam epitaxy, B1. ZnCdSe, B1. MgSe, B1. ZnCdMgSe, B2.

Semiconducting II-VI materials, B3. Infrared devices.

a) aidong@sci.ccny.cuny.edu

I. Introduction

Advanced quantum devices based on intersubband (ISB) transitions in semiconductor low-dimensional structures have been extensively studied during the past two decades. These devices, developed through the convergence of band structure engineering [1] and molecular beam epitaxy (MBE) [2], range from emitters – quantum cascade (QC) lasers [3], to detectors – quantum well (QW) infrared photodetectors [4], and all-optical switches and modulators [5]. One of the major advantages of ISB devices is the ability to tune the operating wavelength independently of the material band gap. For example, high performance QC lasers realized with InGaAs/InAlAs QWs can cover the spectral range from 4 to 24 µm [6]. Recently, significant efforts have been made to extend the wavelength range of the QC lasers. On the long wavelength side, to reach the terahertz (30-300 µm) range, completely new design strategies must be adopted, such as using electron-electron scattering to replace the electron-phonon scattering [7] or spatially separating the phonon scattering region from the optical transition region [8]. On the short wavelength side, however, new material systems must be explored, since the shortest wavelength achievable is determined by the available conduction band offset (CBO), $\Delta E_{\rm c}$, in a material system.

One material system that has been extensively studied for short wavelength ISB devices is the antimonide-based heterostructures, including InGaAs/AlAsSb on InP substrates and InAs/AlSb on InAs substrates. Although at present the performance of Sb-based QC devices is not comparable to that of InGaAs/InAlAs QC lasers, very impressive

results have been reported [9, 10]. In addition to Sb-based heterostructures, nitride-based materials have also been investigated for short wavelength ISB devices. Recently, ISB photoluminescence at 2.13 µm in GaN/AlN QWs has been reported [11].

We have proposed the use of wide band gap II-VI semiconductors as an alternative material system for short wavelength ISB devices [12]. In this paper, we summarize our results of ISB electroluminescence (EL) in ZnCdSe/ZnCdMgSe QC structures. Furthermore, a new ZnCdSe/MgSe QW structure with metastable MgSe barriers was grown and characterized. Calculations indicate that ISB transition at wavelengths as short as 1.55 µm can be achieved in ZnCdSe/MgSe coupled QWs, making the material a promising candidate for ultrafast all-optical switches operating at optical communication wavelengths.

II. ZnCdSe/ZnCdMgSe QC structure

A ZnCdSe/ZnCdMgSe QC structure has been designed and growth by MBE [13]. A single stage of the layer sequence in angstroms, starting from the injection barrier, is: 30/34/10/28/20/24/10/22/12/20/16/20/18/18/18/18/20/16/20/16/20/14/22/14/24/12/26/12. Zn_{0.20}Cd_{0.19}Mg_{0.61}Se barriers are in boldface and Zn_{0.43}Cd_{0.57}Se wells are in normal font. The active region (shown in italic font) is a conventional asymmetric coupled QW structure consisting of two wells of 34 Å and 28 Å in thickness separated by a 10 Å-thick barrier. The center region of the injector (underlined layers) is doped with Cl using ZnCl₂ as dopant material. The structure is designed to emit at 4.5 μm under an applied field of

67 kV/cm. Ten periods of the active region-injector layer sequence were grown on a low doped ($< 2x10^{17} \text{ cm}^{-3}$) InP:S substrate. The epilayers were fabricated into 400- μ m diameter circular mesas. EL spectra were collected from the cleaved facets at various temperatures and under different injection current densities.

Fig. 1 shows the EL spectra under two different injection current densities at heat sink temperatures from 78 K to 300 K. At low temperatures (<130 K) and under low injection current, a single emission peak centered at 4.8 μm was observed, which agrees well with our designed value. At higher temperatures or under higher injection current densities, a second peak at longer wavelength begins to appear. The origin of that second peak is still under investigation. Polarization-dependent measurements showed that the two peaks are TM-polarized, indicating that they both originate from ISB transitions.

The voltage-current (V-I) and light-current (L-I) characteristics of the QC structure are shown in Fig. 2. The V-I characteristics are typical for transport through QC structures. At low voltages, the resistance of the sample is high owing to level misalignment. At a voltage of about 5 V, corresponding to an electric field of 90 kV/cm, the energy levels align and the resistance drops. The turn-on field required is somewhat higher than the designed value of 67 kV/cm, possibly due to the non-ideal top contacts. At low temperatures, the L-I characteristics are almost linear. The superlinear L-I behaviour at high temperatures are most likely due to the onset of the second emission peak.

To fully utilize the maximum CBO in this II-VI selenide material system, ZnCdSe/MgSe QWs have been proposed and grown by MBE [14]. MgSe is nearly lattice-matched to InP (with ~ 0.2% mismatch). With slight strain compensation from ZnCdSe, ZnCdSe/MgSe QWs can be grown lattice-matched on InP substrates. The large CBO of 1.2 eV in the structure make it possible to achieve ISB transitions in the near infrared (IR) region. MgSe, however, favours the rocksalt structure. Thus, to maintain the metastable zincblende MgSe in the QW structure, the insertion of thick ZnCdSe spacer layers was needed.

A set of three samples with 30 ZnCdSe QWs and well thickness of 3.2 nm, 3.8 nm and 4.4 nm were grown by MBE. The MgSe barrier thickness is 5.9 nm in all the samples. A 30 nm-thick ZnCdSe spacer layer was inserted between every two QWs (each 2-QW unit consists ofthe following layer sequence: MgSe/ZnCdSe/ MgSe/ZnCdSe/MgSe). The well region is uniformly doped with Cl to (1-2) x 10¹⁸ cm⁻³. The samples were polished into multi-pass waveguide geometry with parallel 45° facets for ISB absorption measurements. Fig. 3 shows the normalized absorbance of the three samples obtained by room-temperature Fourier transform infrared spectroscopy measurements. ISB absorption in the 3-5 µm mid-IR region was observed.

Calculations based on the envelope function approximation indicate that the shortest ISB transition wavelength achievable with the ZnCdSe/MgSe QWs system is

1.65 μm if uncoupled multiple QWs are used. This emission wavelength would be obtained from a QW thickness of 1.5 nm, which is the minimum thickness that can have two confined states in the well. In order to reach the optical communication wavelength of 1.55 μm, a coupled QW scheme may be used. Fig. 4 shows an example of such a coupled QW structure. It consists of two ZnCdSe wells of 8 and 6 monolayers (ML) in thickness separated by a 2 ML-thick MgSe barrier. The energy levels and their corresponding wavefunctions were calculated by the envelop function approximation. The transition between E1 and E4 yields the wavelength of 1.55 μm. The coupled QW scheme was originally proposed for InGaAs/AlAs QWs [15] and has also been used for the InGaAs/AlAsSb system [16] to achieve short wavelength ISB transition.

IV. Summary

In summary, we have shown that, with their large CBO, wide band gap II-selenide semiconductors are promising materials for short wavelength ISB devices. We have observed ISB electroluminescence in a ZnCdSe/ZnCdMgSe QC structure at temperatures from 78 K to 300 K. ZnCdSe QWs with metastable zincblende MgSe barriers were also grown by MBE. ISB absorption in the 3-5 µm mid-IR region has been observed in the ZnCdSe/MgSe QW structures. Calculations indicate that ISB transitions in the latter material system can reach the optical communication wavelength of 1.55 µm, making it a promising candidate for fabrication of ultrafast all-optical switches.

Acknowledgements

This work is supported in part by MIRTHE (NSF-ERC # EEC-0540832) and PSC-CUNY Research Award (# 61401-0039).

References:

- [1] F. Cappaso, and A. Y. Cho, Surf. Sci. 299-300 (1994) 878.
- [2] A. Y. Cho, Molecular Beam Epitaxy, AIP Press, Woodbury, NY, 1994.
- [3] J. Faist, F. Capasso, C. Sirtori, D.L. Sivco, and A. Y. Cho, in Intersubband Transitions in Quantum Wells: Physics and Device Applications II, edited by H.C. Liu and F. Capasso, Academic, San Diego, 2000, chap. 1, pp. 1-83.
- [4] H.C. Liu, in Intersubband Transitions in Quantum Wells: Physics and Device Applications I, edited by H.C. Liu and F. Capasso, Academic, San Diego, 2000, chap. 3, pp. 129-196.
- [5] A. Neogi, in Intersubband Transitions in Quantum Structures, edited by R. Paiella, McGraw-Hill, New York, 2006, chap. 10, pp. 389-425.
- [6] C. Gmachl, F. Capasso, D.L. Sivco, and A. Y. Cho, Rep. Prog. Phys. 64 (2001) 1533.
- [7] R. Kohler, R. C. Iotti, A. Tredicucci, and F. Rossi, Appl. Phys. Lett. 79 (2001) 3922.
- [8] B.S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 82 (2003) 1015.
- [9] Q. Yang, W. Bronner, C. Manz, B. Raynor, H. Menner, Ch. Mann, K. Kohler, and J. Wagner, Appl. Phys. Lett. 88 (2006) 201109.
- [10] J. Devenson, O. Cathabard, R. Teissier, and A.N. Baranov, Appl. Phys. Lett. 91 (2007) 251102.
- [11] L. Nevou, M. Tchernycheva, F.H. Julien, F. Guillot, and E. Monroy, Appl. Phys. Lett. 90 (2007) 121106.

- [12] H. Lu, A. Shen, M. C. Tamargo, C. Y. Song, and H. C. Liu, S.K. Zhang, R.R. Alfano,M. Munoz, Appl. Phys. Lett. 89 (2006) 131903.
- [13] K. J. Franz, W. O. Charles, A. Shen, A. J. Hoffman, M. C. Tamargo, and C. Gmachl, Appl. Phys. Lett. 92 (2008) 121105.
- [14] B. S. Li, A. Shen, W.O. Charles, Q. Zhang, and M.C. Tamargo, Appl. Phys. Lett., 92 (2008) 261104.
- [15] H. Yoshida, T. Mozume, T. Nishimura, and O. Wada, Electron. Lett. 34 (1998) 913.
- [16] H. Yoshida, T. Mozume, A. Neogi, and O. Wada, Electron. Lett. 35 (1999) 1103.

Fig. 1 EL spectra of a ZnCdSe/ZnCdMgSe QC structure collected at heat sink temperatures from 78 K to 300 K under injection current density of (a) 4.1 kA/cm² and (b) 9.6 kA/cm².

Fig. 2 Voltage-current and light-current characteristics of the QC device at temperatures from 78 K to 300 K.

Fig. 3 ISB absorption spectra of a set of ZnCdSe/MgSe QWs at room temperature.

Fig. 4 Calculated electron energy levels and wavefunctions for asymmetric coupled ZnCdSe/MgSe QWs.