Iniciação Científica

RELATÓRIO FINAL

Aprendizado profundo e geometria hiperbólica

Universidade de São Paulo Instituto de Ciências Matemáticas e Computação

> Aluno: Lucas Giraldi Almeida Coimbra Orientador: Carlos Henrique Grossi Ferreira

Junho de 2023 São Carlos

Conteúdo

1	Intr	rodução	
2	Geo	ometria riemanniana	
	2.1	Variedades e métricas riemannianas	
	2.2	Conexões e derivada covariante	
	2.3	Jacobiana e teorema da função inversa	
	2.4	Geodésicas e transporte paralelo	
	2.5	Mapa exponencial e mapa logarítmico	
	2.6	Curvatura por via de tensores	
	2.7	Conceitos métricos	
3	Modelos para a geometria hiperbólica		
	3.1	O semi-espaço de Poincaré	
	3.2	O hiperboloide de Lorentz	
	3.3	O n-disco de Poincaré	
	3.4	O n-disco de Beltrami-Klein	
	3.5	O modelo do hemisfério	
	3.6	Isometrias entre os modelos	
	3.7	Generalizando operações euclidianas	
4	Redes neurais		
	4.1	PyTorch e tensores	
	4.2	Trabalhando com tensores	

1 Introdução

2 Geometria riemanniana

2.1 Variedades e métricas riemannianas

Uma variedade topológica de dimensão n é um espaço topológico M Hausdorff com base enumerável que é localmente euclidiano de dimensão n, isso é, para cada $p \in M$ existe um aberto U e um homeomorfismo $\phi \colon U \to V \subset \mathbb{R}^n$. O par (U, ϕ) será comumente chamado de carta sobre p. Se (V, ψ) é uma outra carta em M tal que $U \cap V \neq \emptyset$, chamamos de mapas de transição as funções

$$\phi \circ \psi^{-1} : \psi(U \cap V) \to \mathbb{R}^n \quad \text{e} \quad \psi \circ \phi^{-1} : \phi(U \cap V) \to \mathbb{R}^n.$$
 (1)

Se os mapas de transição forem suaves, diremos que (U, ϕ) e (V, ψ) são compatíveis. Uma estrutura diferenciável em M é uma cobertura de M por cartas que são duas a duas compatíveis. Dizemos que M é suave ou diferenciável se possuir uma estrutura diferenciável.

A partir de agora, toda carta estará em uma estrutura diferenciável previamente fixada, e portanto toda variedade será suave. Se $p \in M$ dizemos que $F: M \to N$ é suave em p se existirem (U, ϕ) carta sobre p e (V, ψ) carta sobre F(p) tais que $\psi \circ F \circ \phi^{-1}$ é suave. A função F é suave em $U \subset M$ se for suave em todo ponto de U, e é apenas suave se for suave em todo ponto de M.

Uma curva em M é um mapa suave $c: I \to M$ onde I é um intervalo de \mathbb{R} . Se $p \in M$, definimos por C_p^{∞} como o conjunto dos mapas $f: U \subset M \to \mathbb{R}$ suaves, onde U é uma vizinhança qualquer de p. Esse espaço é uma álgebra com as três operações:

- se $f: U \to \mathbb{R}$ e $g: V \to \mathbb{R}$, definitions $f + g: U \cap V \to \mathbb{R}$ por (f + g)(p) = f(p) + g(p);
- se $f: U \to \mathbb{R}$ e $\lambda \in \mathbb{R}$, definimos $\lambda f: U \to \mathbb{R}$ por $(\lambda f)(p) = \lambda f(p)$;
- se $f: U \to \mathbb{R}$ e $g: V \to \mathbb{R}$, definitions $fg: U \cap V \to \mathbb{R}$ por (fg)(p) = f(p)g(p).

Dada uma curva $c:]-\varepsilon, \varepsilon[\to M,$ definimos c'(0) como sendo um mapa $c'(0): C_p^{\infty} \to \mathbb{R}$ dado por

$$c'(0)f = \frac{d}{dt}\Big|_{t=0} (f \circ c)(t). \tag{2}$$

Esse mapa é linear e satisfaz a regra de Leibniz, isso é,

$$c'(0)(fg) = f(c(0)) \cdot c'(0)g + c'(0)f \cdot g(c(0)). \tag{3}$$

Se $p \in M$, o espaço tangente a M em $p \in M$ como o conjunto

$$T_p M = \{ c'(0) \mid c \colon] - \varepsilon, \varepsilon [\to \mathbb{R} \text{ e } c(0) = p \}.$$

$$\tag{4}$$

Se M tem dimensão n, então T_pM é um espaço vetorial de dimensão n. Seus elementos são chamados de vetores tangentes. Uma métrica riemanniana em M é a associação de um produto interno $\mathfrak{g}_p(-,-)$ em T_pM para cada $p \in M$. Mais do que isso, pedimos que essa associação seja suave. Entenderemos o que isso significa a seguir.

Um campo vetorial em M é uma associação X de um vetor $X_p \in T_p M$ para cada $p \in M$. Se $\phi = (x^1, \ldots, x^n)$ é uma carta sobre $p \in M$ e $r = (r^1, \ldots, r^n)$ são as coordenadas em \mathbb{R}^n , definimos as derivadas parciais de $f \in C_p^{\infty}$ por

$$\left. \frac{\partial f}{\partial x^i} \right|_p = \left. \frac{\partial}{\partial r^i} \right|_{\phi(p)} (f \circ \phi^{-1})(r). \tag{5}$$

Cada derivada parcial em p pode ser vista como um elemento de T_pM , afinal, se e^1, \ldots, e^n é a base canônica de \mathbb{R}^n , então dadas as curvas $c^i(t) = te^i$ temos

$$\left. \frac{\partial}{\partial x^i} \right|_p = (\phi^{-1} \circ c^i)'(0). \tag{6}$$

Esses vetores tangentes formam uma base para T_pM .

Se (U, ϕ) é uma em M e X é um campo vetorial em M, então para cada $p \in M$ podemos escrever, de maneira única,

$$X_p = \sum_{k=1}^n a^i(p) \left. \frac{\partial}{\partial x^i} \right|_p. \tag{7}$$

Dizemos que o campo vetorial X é suave se existir uma cobertura de M por cartas tais que os mapas a^i são sempre suaves. Ao dizermos que a métrica riemanniana tem que ser suave, queremos dizer que, para quaisquer X, Y campos suaves em M, o mapa $p \mapsto \mathfrak{g}_p(X_p, Y_p)$ tem que ser suave. Uma variedade riemanniana é uma variedade suave equipada com uma métrica riemanniana.

2.2 Conexões e derivada covariante

Denotamos o conjunto de todos os campos suaves em M por $\mathfrak{X}(M)$. Se $M=\mathbb{R}^n$, vamos entender quem é a derivada direcional. Se $X=(v^1,\ldots,v^n)\in\mathbb{R}^n$ e X_p é o vetor tangente a p na direção X, então dada $f\colon\mathbb{R}^n\to\mathbb{R}$ definimos a derivada direcional de f na direção X_p

$$D_{X_p} f = \lim_{t \to 0} \frac{f(p + tX) - f(p)}{t} = \sum_{k=1}^n v^k \left. \frac{\partial f}{\partial x^i} \right|_p = X_p f. \tag{8}$$

Podemos então trocar f por um campo vetorial suave $Y = \sum b^i \partial/\partial x^i$ e obtermos a derivada direcional de Y na direção X_p

$$D_{X_p}Y = \sum_{k=1}^n D_{X_p} b^i \left. \frac{\partial}{\partial x^i} \right|_p. \tag{9}$$

Note que a derivada $D_{X_p}Y$ é um vetor tangente em p. Dessa forma, se X é um campo vetorial em \mathbb{R}^n podemos definir D_XY como o campo vetorial que, em p, vale $D_{X_p}Y$. Esse mapa é a derivada direcional de Y na direcão X.

Agora vamos generalizar a derivada direcional em \mathbb{R}^n para uma variedade riemanniana qualquer. Uma conexão afim em M é um mapa

$$\nabla \colon \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$$
$$(X,Y) \mapsto \nabla_X Y$$

que satisfaz as seguintes propriedades:

- se $C^{\infty}(M)$ é o conjunto dos mapas suaves $M \to \mathbb{R}$, então ∇ é $C^{\infty}(M)$ -linear na primeira coordenada;
- ∇ satisfaz a regra de Leibniz na segunda coordenada, isso é, se $f \in C^{\infty}(M)$, então

$$\nabla_X(fY) = (Xf)Y + f\nabla_XY,\tag{10}$$

onde Xf é o mapa suave dado por $(Xf)(p) = X_pf$.

Conexões e métricas riemannianas não estão sempre conectadas. Porém, se M é uma variedade riemanniana e ∇ uma conexão afim em M, então podemos falar sobre alguns aspectos geométricos de ∇ . Definimos o tensor torção de ∇ como sendo o mapa $T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]$, onde $[X,Y]_p f = X_p(Yf) - Y_p(Xf)$ é o bracket de Lie. Do mesmo modo, definimos o tensor curvatura de ∇ como sendo o mapa $R(X,Y) = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]}$, isso é, para um campo vetorial suave Z, temos

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z. \tag{11}$$

Dizemos que uma conexão ∇ em uma variedade riemanniana M é compatível com a métrica se $Z\mathfrak{g}(X,Y) = \mathfrak{g}(\nabla_Z X,Y) + \mathfrak{g}(X,\nabla_Z Y)$. Uma conexão de Levi-Civita é uma conexão compatível com a métrica e que satisfaz T(X,Y) = 0 para todos X,Y campos suaves em M.

Proposição 2.1. Toda variedade riemanniana possui uma, e apenas uma, conexão de Levi-Civita.

Um campo vetorial ao longo de uma curva $c: I \to M$ é a associação V de um vetor $V(t) \in T_{c(t)}M$ para cada $t \in I$. Dizemos que V é suave se, para cada $f: M \to \mathbb{R}$, (Vf)(t) = V(t)f é suave.

Se $c: I \to \mathbb{R}^n$ é uma curva e V é um campo ao longo de c, temos

$$V(t) = \sum_{k=1}^{n} v^{i}(t) \left. \frac{\partial}{\partial x^{i}} \right|_{c(t)}, \tag{12}$$

portanto podemos definir a derivada de V com respeito a t como sendo o campo

$$\frac{dV}{dt} = \sum_{k=1}^{n} \frac{dv^{i}}{dt} \frac{\partial}{\partial x^{i}}.$$
(13)

Essa derivada satisfaz algumas propriedades importantes:

• ela é linear com respeito a V, isso é, se $\lambda \in \mathbb{R}$ e U é outro campo ao longo de c, então

$$\frac{d(\lambda V + U)}{dt} = \lambda \frac{dV}{dt} + \frac{dU}{dt};\tag{14}$$

• ela satisfaz a regra de Leibniz, isso é, se $f \colon I \to \mathbb{R}$ (lembrando aqui que I é o domínio de c) é suave, então

$$\frac{d(fV)}{dt} = \frac{df}{dt}V + f\frac{dV}{dt};\tag{15}$$

• ela é compatível com a derivada direcional em \mathbb{R}^n , isso é, se V se estende para um campo \tilde{V} em \mathbb{R}^n , então

$$\frac{dV}{dt} = D_{c'(t)}\tilde{V}.\tag{16}$$

Vamos agora generalizar o conceito da derivada de V para uma variedade M qualquer, utilizando de conexões afins. Se ∇ é uma conexão afim em M e $c\colon I\to\mathbb{R}$ é uma curva, então definimos uma derivada covariante como um operador D/dt que, para cada campo V ao londo de c associa um outro campo DV/dt ao longo de c. Pedimos que essa associação satisfaça as três propriedades que a derivada definida acima satisfaz:

• D/dt é linear, isso é, se V e U são campos ao longo de c e $\lambda \in \mathbb{R}$ então

$$\frac{D(\lambda V + U)}{dt} = \lambda \frac{DV}{dt} + \frac{DU}{dt};\tag{17}$$

• D/dt satisfaz a regra de Leibniz, isso é, se $f\colon I\to\mathbb{R}$ é suave, então

$$\frac{D(fV)}{dt} = \frac{df}{dt}V + f\frac{DV}{dt};\tag{18}$$

• D/dt é compatível com a conexão afim, isso é: se \tilde{V} é um campo em M que estende V, então

$$\frac{DV}{dt} = \nabla_{c'(t)}V. \tag{19}$$

Definimos acima o que seria **uma** derivada covariante, mas acontece que, fixadas uma conexão e uma curva, sempre existe uma e apenas uma derivada covariante, portanto podemos falar **da** derivada covariante.

2.3 Jacobiana e teorema da função inversa

Se $F: M \to N$ é suave, então para todas as carta (U, ϕ) sobre $p \in (V, \psi)$ sobre F(p) o mapa $\psi \circ F \circ \phi^{-1}$ é suave. Sabemos da teoria de variedades que as derivadas parciais $\partial/\partial\phi^i$ e $\partial/\partial\psi^j$ formam base para T_pM e $T_{F(p)}N$, respectivamente. Considere agora a transformação linear D_pF dada por

$$D_n F(v) f = v(f \circ F) \tag{20}$$

que manda vetores tangentes a p para vetores tangentes a F(p). Na expressão acima, estamos apenas descrevendo como o vetor $D_pF(v)$ age em uma função $f\colon N\to\mathbb{R}$ suave. O mapa D_pF é chamado de derivada de F em p.

Podemos então considerar a matriz de D_pF conforme as bases $\partial/\partial\phi^i$ e $\partial/\partial\psi^j$. Se denotarmos por F^i o mapa $\psi^i \circ F$, então temos que

$$D_p F = \left[\frac{\partial F^i}{\partial \phi^j} \Big|_p \right]. \tag{21}$$

Note que ela coincide com a matriz jacobiana que conhecemos do cálculo. De fato, essa coincidência motiva uma nova versão do teorema da função inversa.

Teorema 2.2. Se $F: M \to N$ é suave $e \dim M = \dim N$, então F é um difeomorfismo local em $p \in M$ se, e somente se, $\det D_p F \neq 0$.

2.4 Geodésicas e transporte paralelo

Se $c: I \to M$ é uma curva, então dizemos que c é uma geodésica se a derivada covariante DT/dt do seu campo velocidade T(t) = c'(t) é nula. Note que a existência de uma conexão, e portanto de uma derivada covariante, não depende da existência de uma métrica riemanniana. Porém, caso a variedade M possua uma métrica, vamos sempre assumir que a conexão considerada é a conexão de Levi-Civita em M.

Proposição 2.3. Geodésicas em variedades riemannianas possuem velocidade constante, isso é, se $c: I \to M$ é uma geodésica, então ||c'(t)|| é constante para cada $t \in I$.

Seja M uma variedade suave com uma conexão ∇ . Se (U, x^1, \ldots, x^n) é uma carta em M, então temos os campos vetoriais $\partial_i = \partial/\partial x^i$. Sabemos que todo campo vetorial em U se escreve como combinação linear destes, e portanto temos

$$\nabla_{\partial_i} \partial_j = \sum_{k=1}^n \Gamma_{ij}^k \partial_k. \tag{22}$$

Os coeficientes Γ_{ij}^k são chamados de símbolos de Christoffel de ∇ em (U, x^1, \dots, x^n) .

Sejam M uma variedade com uma conexão ∇ , $(U, \phi) = (U, x^1, \dots, x^n)$ uma carta em M e Γ_{ij}^k os seus símbolos de Christoffel. Note que, se $c: I \to M$ é uma curva e $y = \phi \circ c$, então temos

$$T = c'(t) = \sum_{k=1}^{n} \frac{dy^k}{dt} \partial_k.$$
 (23)

Dessa maneira, segue que

$$\frac{DT}{dt} = \sum_{j=1}^{n} \frac{d^2 y^j}{dt^2} \partial_j + \sum_{j=1}^{n} \frac{dy^j}{dt} \frac{D\partial_j}{dt} = \sum_{j=1}^{n} \frac{d^2 y^j}{dt^2} \partial_j + \sum_{j=1}^{n} \frac{dy^j}{dt} \nabla_{c'(t)} \partial_j$$
(24)

$$= \sum_{j=1}^{n} \frac{d^2 y^j}{dt^2} \partial_j + \sum_{i,j=1}^{n} \frac{dy^j}{dt} \nabla_{\frac{dy^i}{dt} \partial_i} \partial_j = \sum_{j=1}^{n} \frac{d^2 y^j}{dt^2} \partial_j + \sum_{i,j=1}^{n} \frac{dy^j}{dt} \frac{dy^i}{dt} \nabla_{\partial_i} \partial_j$$
 (25)

$$=\sum_{k=1}^{n}\frac{d^{2}y^{k}}{dt^{2}}\partial_{k}+\sum_{i,j,k=1}^{n}\frac{dy^{j}}{dt}\frac{dy^{i}}{dt}\Gamma_{ij}^{k}\partial_{k}=\sum_{k=1}^{n}\left(\frac{d^{2}y^{k}}{dt^{2}}+\sum_{i,j=1}^{n}\frac{dy^{i}}{dt}\frac{dy^{j}}{dt}\Gamma_{ij}^{k}\right)\partial_{k}.$$
(26)

Portanto, temos o seguinte resultado.

Teorema 2.4. Se M é uma variedade suave com uma conexão ∇ e $c: I \rightarrow M$ é uma curva, então c é uma geodésica se, com respeito a qualquer carta $(U, \phi) = (U, x^1, \dots, x^n)$, as componentes de $y = \phi \circ c$ satisfazem o sistema de EDOs

$$\frac{d^2y^k}{dt^2} + \sum_{i,j=1}^n \frac{dy^i}{dt} \frac{dy^j}{dt} \Gamma_{ij}^k = 0$$
 (27)

As equações do sistema acima são chamadas de equações geodésicas. Pelo teorema de existência e unicidade de solução para EDOs temos a existência e unicidade de geodésicas.

Teorema 2.5. Seja M uma variedade suave com uma conexão ∇ . Dado $p \in M$ e $X_p \in T_pM$, existe uma geodésica $c\colon I \to M$ tal que c(0) = p e $c'(0) = X_p$. Mais do que isso, essa geodésica é única no sentido de que qualquer outra geodésica satisfazendo essas propriedades deve coincidir com c na intersecção de seus domínios.

Um difeomorfismo entre variedades suaves M e N é um mapa $F: M \to N$ suave, bijetor e com inversa suave. Se M e N forem riemannianas, dizemos que F é uma isometria se, para todos $p \in M$ e $X_p, Y_p \in T_pM$, temos

$$\mathfrak{g}_p(X_p, Y_p) = \mathfrak{g}_{F(p)}(D_p F(X_p), D_p F(Y_p)). \tag{28}$$

Proposição 2.6. Isometrias preservam conexões de Levi-Civita. Mais ainda, mapas que preservam conexões, preservam geodésicas. Como corolário, isometrias preservam geodésicas.

Se $c: I \to M$ é uma curva e V é um campo ao longo de c, então dizemos que V é paralelo se DV/Dt = 0. Dessa forma, uma geodésica é uma curva cujo campo velocidade é paralelo. Fixado $X_p \in T_{c(t_0)}M$, existe um único campo V ao longo de c, paralelo, tal que $V(t_0) = X_p$. Se $c: [a, b] \to M$ é uma curva e V é um campo paralelo ao longo de c, dizemos que V(b) é obtido a partir de V(a) por translação paralela. Dizemos que V(b) é o transporte <math>transporte transporte transporte <math>transporte <math>transporte transporte <math>transporte transporte <math>transporte transporte <math>transporte transporte <math>transporte transporte <math>

Proposição 2.7. Se V e W são paralelos ao longo de c em uma variedade riemanniana M, então ||V|| e $\mathfrak{g}(V,W)$ são constantes.

Um problema importante com questão ao transporte paralelo é a existência. Ela está garantida pelo resultado abaixo.

Teorema 2.8. Se M é uma variedade suave com uma conexão ∇ e c: $[a,b] \rightarrow M$ uma curva. Dado $v \in T_{c(a)}M$, existe um campo vetorial paralelo V_t ao longo de c tal que $V_a = v$.

2.5 Mapa exponencial e mapa logarítmico

Uma geodésica $c: I \to M$ é maximal se não podemos estender c para um intervalo maior do que I sem que a curva deixe de ser uma geodésica. Do Teorema 2.5 temos que, dado $p \in M$ e $X_p \in T_pM$ existe uma única geodésica maximal c com c(0) = p e $c'(0) = X_p$. Vamos denotar essa geodésica por γ_{X_p} .

O mapa exponencial em um ponto $p \in M$ é a função dada por $\operatorname{Exp}_p(X_p) = \gamma_{X_p}(1)$. Esse mapa não está necessariamente definido para todo $X_p \in T_pM$, visto que nem sempre γ_{X_p} possui 1 no seu domínio. Uma variedade com uma conexão é dita completa se toda geodésica puder ter seu domínio estendido para todo \mathbb{R} . No caso de variedades riemannianas consideradas com a conexão de Levi-Civita, temos dois resultados que nos ajudam no sentido de definir Exp_p para um conjunto satisfatório de vetores.

Proposição 2.9. Para qualquer $p \in M$, com M variedade riemanniana, existem uma vizinhança U de p e dois números $\epsilon, \delta > 0$ tais que para todos $q \in U$ e $v \in T_qM$ com $||v|| < \delta$, existe uma única geodésica $\gamma:]-\varepsilon, \varepsilon[\to M \text{ com } \gamma(0) = q \text{ e } \gamma'(0) = v.$

Corolário 2.10. Para qualquer $p \in M$, com M variedade riemanniana, existem uma vizinhança U de p e um número $\delta > 0$ tais que para todos $q \in U$ e $v \in T_qM$ com $||v|| < \delta$ existe uma única geodésica $\gamma \colon]-2,2[\to M$ com $\gamma(0) = q$ e $\gamma'(0) = v$.

O Corolário 2.10 nos diz que o mapa exponencial está sempre definido em todas as direções, porém essa existência só está garantida para velocidades pequenas. Se você for muito rápido, pode ficar cansado muito rápido e não dar tempo do seu conjunto de parâmetros englobar o 1.

Proposição 2.11. A derivada $D_0 \operatorname{Exp}_p$ é a identidade em T_pN para qualquer $p \in M$.

A Proposição acima garante, em particular, que sempre existe um $\varepsilon > 0$ tal que Exp_p mapeia $B(0,\varepsilon)$ difeomorficamente em M. Por causa disso, existe uma inversa para o mapa exponencial, que chamaremos de mapa logarítmico.

2.6 Curvatura por via de tensores

Fixada uma conexão ∇ em M,já conhecemos o tensor de torção, que é dado por

$$T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]. \tag{29}$$

Ao tomarmos $X = \partial_i$ e $Y = \partial_j$ em uma carta (U, ϕ) , temos $[X, Y] = \partial_i \partial_j - \partial_j \partial_i = 0$, portanto se a conexão ∇ é a de Levi-Citiva, temos pelo anulamento da torção que $\nabla_{\partial_i} \partial_j = \nabla_{\partial_j} \partial_i$. Dessa maneira, as derivadas desses campos comutam.

Vamos tentar entender o que acontece para o tensor de curvatura. Comecemos lembrando que ele é dado por

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z. \tag{30}$$

Ao tomarmos $X = \partial_i$, $Y = \partial_j$ e Z qualquer, temos novamente que [X, Y] = 0, portanto $\nabla_{[X,Y]}Z = 0$. Dessa forma, segue que

$$R(\partial_i, \partial_j) Z = \nabla_{\partial_i} \nabla_{\partial_i} Z - \nabla_{\partial_i} \nabla_{\partial_i} Z. \tag{31}$$

Porém, mesmo que ∇ seja a conexão de Levi-Civita, não temos garantia de que R(X,Y)Z=0, dessa forma nem sempre derivar um campo em direções diferentes independe da ordem dessas derivadas. O que vai medir a diferença entre essas operações é a curvatura da sua variedade.

Para entendermos a curvatura geometricamente, precisamos falar de holonomia. Dado $p \in M$ e γ : $[a,b] \to M$ fechada em p e contrátil, para cada $v \in T_pM$ podemos considerar o campo V_t ao longo de γ que seja paralelo e satisfaça $V_a = v$. O vetor $v' = V_b$, que é o transporte paralelo de v ao longo de γ , é chamado de holonomia de v ao longo de γ .

A menos que sua variedade possua curvatura 0, isso é, se R(X,Y)Z = 0 para todos X,Y,Z, a sempre existirá $v \in T_pM$ tal que $v' \neq v$. Ou seja, o ângulo entre esses dois vetores é também medido pela curvatura.

Agora vamos entender quem são as possíveis curvaturas de uma variedade riemanniana. Por enquanto, vamos dar enfoque em três principais tipos: a seccional (ou gaussiana), a de Ricci e a escalar.

A primeira coisa a notar é que, dados $x, y, z \in T_pM$, podemos construir campos suaves X, Y, Z ao redor de p de maneira que $X_p = x$, $Y_p = y$ e $Z_p = z$. Definimos então R(x,y)z como sendo o campo R(X,Y)Z no ponto p.

Teorema 2.12. Seja $p \in M$ com dim $M \ge 2$ e $W \le T_p M$ um subespaço de dimensão 2 (também conhecido como plano). Considere x, y uma base para W e defina o número

$$K(W) = \frac{\mathfrak{g}_p(R(x,y)x,y)}{|x \wedge y|^2},\tag{32}$$

onde $|x \wedge y|$ é a área do paralelogramo formado por x e y, que pode ser explicitamente calculada por

$$|x \wedge y| = \sqrt{||x||^2 ||y||^2 - \mathfrak{g}_p(x, y)},$$
 (33)

onde $||\cdot||$ é a norma induzida pela métrica $\mathfrak g$. Temos então que K(W) não depende da base escolhida para W.

A quantidade K(W) definida no teorema acima é a curvatura seccional ou curvatura gaussiana de W em p. Agora podemos usar essa curvatura para falarmos de curvatura de Ricci. Dado $p \in M$ e $v \in T_pM$ unitário, considere $w \in v^{\perp}$. Se $P_w = \mathbb{R}v + \mathbb{R}w$, então temos a curvatura seccional $K(P_w)$. A curvatura de Ricci em p na direção v é a média de todas essas curvaturas seccionais, ou seja,

$$\operatorname{Ricci}_{p}(v) = \lambda \int_{S} K(P_{w})dV, \tag{34}$$

onde S é a esfera unitária em T_pM , dV é a forma de volume em S e λ é uma constante positiva que é, honestamente, irrelevante. De fato, ela pode ser calculada explicitamente se utilizarmos a seguinte proposição.

Proposição 2.13. Se w_1, \ldots, w_{n-1} é uma base ortonormal de v^{\perp} , então

$$Ricci_{p}(v) = \frac{1}{n-1} \sum_{i=1}^{n-1} \mathfrak{g}_{p}(R(x, z_{i})x, z_{i}).$$
(35)

Probabilisticamente, podemos pensar que curvatura de Ricci é a curvatura seccional média de planos aleatórios da forma P_w . Isso nos dá alguma ideia do porquê não conseguimos recuperar as curvaturas seccionais a partir da curvatura de Ricci: há perda de informação, pois a partir da média de um conjunto de dados raramente conseguimos recuperar quem são esses dados.

Por fim, a curvatura escalar nada mais é do que uma média das curvaturas de Ricci, ou seja, se $p \in M$, podemos considerar uma base ortonormal z_1, \ldots, z_n de T_pM . A curvatura escalar é o número definido por

$$K_s(p) = \frac{1}{n} \sum_{i=1}^n \operatorname{Ricci}_p(z_i). \tag{36}$$

Por mais que a curvatura escalar não dependa de uma direção, e apenas do ponto, não é a ela que nos referimos ao dizer que M tem curvatura constante κ em $p \in M$. Essa expressão diz que todas as curvaturas seccionais em p valem κ .

2.7 Conceitos métricos

Antes de brincarmos com a geometria hiperbólica, vamos falar de duas definições que aparecem na teoria de espaços métricos e que podem ser úteis mais para frente. Dado um espaço métrico (X,d), o produto de Gromov é uma operação que, dados três pontos $x,y,z\in X$, retorna o número

$$(y,z)_x = \frac{1}{2}(d(x,y) + d(x,z) - d(y,z)). \tag{37}$$

Dizemos que X é δ -hiperbólico, com $\delta > 0$, se para todos $x, y, z, w \in X$ temos

$$(x, z)_w \ge \min\{(x, y)_w, (y, z)_w\} - \delta.$$
 (38)

Uma definição equivalente envolve triângulos geodésicos. Uma geodésica em (X,d) é a imagem isométrica de um intervalo [a,b]. Se γ é essa isometria, $x=\gamma(a)$ e $y=\gamma(b)$, denotamos a imagem de γ por [x,y]. Um triângulo geodésico com vértices $x,y,z\in X$ é a união das geodésicas [x,y], [y,z] e [z,x]. Se para cada $m\in [x,y]$ existe um ponto em $n\in [y,z]\cup [z,w]$ tal que $d(m,n)<\delta$, dizemos que o triângulo geodésico $\Delta(x,y,z)$ é δ -fino. Dizemos que (X,d) é δ -hiperbólico se todo triângulo geodésico é δ -fino.

Por fim, precisamos falar de distorção, que é uma medida de fidelidade para certos mergulhos de dados em aprendizado de máquina. Se X e Y são espaços métricos e $f\colon X\to Y$ é um mergulho de dados em X para pontos de Y, a distorção de f em $x,y\in X$ é dada por

$$\mathbb{D}_f(a,b) = \frac{|d(a,b) - d(f(a), f(b))|}{d(a,b)}.$$
(39)

3 Modelos para a geometria hiperbólica

O espaço hiperbólico real é uma variedade riemanniana de curvatura constante igual a -1. Existem diversos modelos isométricos para ele, e agora vamos falar de alguns. Aqui, é importante notar que todos esses modelos estão mergulhados

3.1 O semi-espaço de Poincaré

O primeiro modelo do qual vamos falar é o semi-espaço de Poincaré. Ele é dado, como variedade suave, pelo semi-espaço

$$\mathbb{H}^n = \{ x \in \mathbb{R}^n \mid x_n > 0 \}. \tag{40}$$

Sua métrica, por sua vez, é dada pela expressão

$$ds^{2} = \frac{dx_{1}^{2} + \dots + dx_{n}^{2}}{x_{n}^{2}}.$$
(41)

Essa expressão significa que, para cada $p\in\mathbb{H}^n,$ temos

$$\mathfrak{g}_p(u,v) = \frac{u_1 v_1 + \dots + u_n v_n}{p_n^2}.$$
(42)

As formas diferenciais dx_i recebem os vetores u, v e retornam as respectivas coordenadas. Por sua vez, sempre que x_i aparecer em uma fórmula, ele será substituído pela i-ésima coordenada do ponto onde a métrica está sendo construída.

Esse espaço, assim como toda variedade riemanniana, possui uma estrutura de espaço métrico induzida pela métrica riemanniana. Essa métrica, em \mathbb{H}^n , é dada por

$$d(x,y) = \operatorname{arccosh}\left(1 + \frac{||x-y||^2}{2x_n y_n}\right). \tag{43}$$

3.2 O hiperboloide de Lorentz

O modelo do hiperboloide depende do que chamamos de métrica de Lorentz em \mathbb{R}^{n+1} . Ela é definida por

$$\langle x, y \rangle_{\mathbb{L}} = -x_0 y_0 + x_1 y_1 + \dots + x_n y_n. \tag{44}$$

Como variedade suave, o hiperboloide é definido por

$$\mathbb{L}^n = \{ x \in \mathbb{R}^{n+1} \mid \langle x, x \rangle_{\mathbb{L}} = -1, x_0 > 0 \}. \tag{45}$$

A métrica riemanniana em \mathbb{L}^n é induzida também da métrica de Lorentz, e é dada por

$$ds^2 = -dx_0^2 + dx_1^2 + \dots + dx_n^2. (46)$$

Note que essa métrica não faz muito sentido, visto que o espaço tangente de \mathbb{L}^n deveria ter dimensão n, mas aqui utilizamos n+1 coordenadas. De fato, essa métrica se aplica apenas ao considerarmos o espaço tangente $T_p\mathbb{H}^n$ como o conjunto $p^\perp=\{x\in\mathbb{R}^n\mid \langle x,p\rangle_{\mathbb{L}}=0\}$. A distância no hiperboloide, por sua vez, é dada por

$$d(x,y) = \operatorname{arccosh}(-\langle x, y \rangle_{\mathbb{L}}). \tag{47}$$

É importante notarmos aqui que a métrica riemanniana que definimos não parece ser um produto interno, justamente pelo fator negativo $-dx_0^2$. De fato, a métrica de Lorentz não é um produto interno em \mathbb{R}^n , mas ao restringirmos ela ao espaço p^{\perp} para qualquer $p \in \mathbb{L}^n$, essa restrição é sempre um produto interno.

3.3 O *n*-disco de Poincaré

O n-disco de Poincaré é, como variedade suave, dado por

$$\mathbb{B}^n = \{ x \in \mathbb{R}^n \mid ||x|| < 1 \}. \tag{48}$$

Sua métrica é definida como

$$ds^{2} = 4\frac{dx_{1}^{2} + \dots + dx_{n}^{2}}{(1 - x_{1}^{2} + \dots + x_{n}^{2})^{2}}$$

$$\tag{49}$$

e sua distância por

$$d(x,y) = \operatorname{arccosh}\left(1 + 2\frac{||x - y||^2}{(1 - ||x||^2)(1 - ||y||^2)}\right).$$
(50)

3.4 O n-disco de Beltrami-Klein

O n-disco de Beltrami-Klein é, como variedade suave, dado por

$$\mathbb{K}^n = \{ x \in \mathbb{R}^n \mid ||x|| < 1 \}. \tag{51}$$

É a mesma variedade suave que da origem ao disco de Poincaré, mas a denotamos por uma letra diferente apenas para diferenciar os dois modelos. A diferença é na métrica riemanniana, que em \mathbb{K}^n é dada por

$$ds^{2} = \frac{dx_{1}^{2} + \dots + dx_{n}^{2}}{1 - x_{1}^{2} - \dots - x_{n}^{2}} + \frac{(x_{1}dx_{1} + \dots + x_{n}dx_{n})^{2}}{(1 - x_{1}^{2} - \dots - x_{n}^{2})^{2}}.$$
 (52)

Como consequência, a distância nesse espaço é diferente da distância no disco de Poincaré, e nesse caso é dada por

$$d(x,y) = \frac{1}{2} \ln \left(\frac{||a-x|| \cdot ||b-y||}{||a-y|| \cdot ||b-x||} \right).$$
 (53)

Aqui, a e b são pontos construídos a partir de x e y pelo seguinte método: considere a reta r que passa por x e y e defina por a e b os pontos em que r intersecta \mathbb{S}^{n-1} . O ponto a será escolhido como o que estiver mais próximo a x, e o ponto b por consequência será escolhido como o que estiver mais próximo a y.

3.5 O modelo do hemisfério

O último modelo que iremos visitar é o do hemisfério. Como variedade suave, ele é dado por

$$\mathbb{J}^n = \{ x \in \mathbb{S}^n \mid x_{n+1} > 0 \}, \tag{54}$$

e possui métrica dada por

$$ds^{2} = \frac{dx_{1}^{2} + \dots + dx_{n+1}^{2}}{x_{n+1}^{2}}.$$
 (55)

A distância em \mathbb{J}^n , por sua vez, é dada por

$$d(x,y) = \operatorname{arccosh} (\langle \phi(x), \phi(y) \rangle_{\mathbb{L}}), \tag{56}$$

onde ϕ é o mapa dado por

$$(x_1, \dots, x_{n+1}) \mapsto \left(\frac{x_1}{x_{n+1}}, \dots, \frac{x_n}{x_{n+1}}, \frac{1}{x_{n+1}}\right).$$
 (57)

3.6 Isometrias entre os modelos

Devemos agora explicitar isometrias entre os modelos definidos acima. Para isso, definiremos apenas quatro desses mapas e, como composição de isometrias é uma isometria, definir apenas essas quatro funções nos dará isometrias entre quaisquer dois modelos por meio de tomar inversas e compor.

 \bullet O isomorfismo entre \mathbb{L}^n e \mathbb{B}^n é dado por

$$(x_1, \dots, x_{n+1}) \in \mathbb{L}^n \mapsto \left(\frac{x_2}{1+x_1}, \dots, \frac{x_{n+1}}{1+x_1}\right) \in \mathbb{B}^n;$$
 (58)

• O isomorfismo entre \mathbb{B}^n e \mathbb{H}^n é dado por

$$(x_1, \dots, x_n) \in \mathbb{B}^n \mapsto \frac{1}{1 + 2x_1 + ||x||^2} (1 - ||x||^2, 2x_2, \dots, 2x_n) \in \mathbb{H}^n;$$
 (59)

• O isomorfismo entre \mathbb{L}^n e \mathbb{K}^n é dado por

$$(x_1, \dots, x_{n+1}) \in \mathbb{L}^n \mapsto \left(\frac{x_2}{x_1}, \dots, \frac{x_{n+1}}{x_1}\right) \in \mathbb{K}^n;$$

$$(60)$$

• O isomorfismo entre \mathbb{L}^n e \mathbb{J}^n é dado por

$$(x_1, \dots, x_{n+1}) \in \mathbb{L}^n \mapsto \left(\frac{x_1}{x_{n+1}}, \dots, \frac{x_n}{x_{n+1}}, \frac{1}{x_{n+1}}\right) \in \mathbb{J}^n.$$
 (61)

3.7 Generalizando operações euclidianas

O próximo passo agora é generalizar algumas operações de espaços euclidianos para os espaços hiperbólicos. Faremos isso pois, para construir redes neurais em espaços euclidianos, precisamos de álgebra linear, e portanto é uma boa ideia aprender como fazer álgebra linear em um espaço que não é vetorial. Um girogrupo é um conjunto G munido de uma operação binária \oplus satisfazendo as seguintes propriedades:

- existe ao menos um elemento $0 \in G$ tal que $0 \oplus a = a$ para todo $a \in G$. Todo elemento satisfazendo essa condição é chamado de *identidade* à *esquerda*.
- existe alguma identidade à esquerda $0 \in G$ de maneira que, para todo $a \in G$, existe $\ominus a \in G$ de maneira que $\ominus a \oplus a = 0$;
- para todos $a, b, c \in G$, existe um elemento $gyr[a, b]c \in G$ tal que vale a igualdade $a \oplus (b \oplus c) = (a \oplus b) \oplus gyr[a, b]c$;

- O mapa gyr[a, b]: $c \mapsto \text{gyr}[a, b]c$ é um automorfismo de G, isso é, é uma bijeção que satisfaz gyr $[a, b](c \oplus d) = \text{gyr}[a, b]c \oplus \text{gyr}[a, b]d$;
- vale a propriedade de redução à direita, isso é, $gyr[a,b] = gyr[a \oplus b,b]$ para todos $a,b \in G$.

Um girogrupo G é girocomutativo se para todos $a, b \in G$ vale $a \oplus b = \operatorname{gyr}[a, b](b \oplus a)$.

O principal exemplo de girogrupo para o estudo de aprendizado profundo é o girogrupo de Möbius. Considere o n-disco de Poincaré \mathbb{B}^n e defina nele a soma de Möbius dada por

$$x \oplus y = \frac{(1 + 2\langle x, y \rangle + ||y||^2)x + (1 - ||x||^2)y}{1 + 2\langle x, y \rangle + ||x||^2||y||^2}.$$
 (62)

O par (\mathbb{B}^n, \oplus) é um girogrupo girocomutativo, que é chamado de girogrupo de Möbius de raio 1. Em um contexto mais geral, poderíamos tomar o interior de qualquer esfera centrada em 0 em qualquer espaço vetorial real com produto interno, mas para nossos estudos isso não será necessário.

No girogrupo de Möbius podemos definir algumas operações extremamente importantes para a construção de redes neurais:

• o produto por escalar de Möbius é definido por

$$\lambda \otimes x = \begin{cases} \tanh(\lambda \arctan ||x||) \frac{x}{||x||}, & \text{se } x \neq 0, \\ 0, & \text{se } x = 0; \end{cases}$$
 (63)

• podemos aplicar uma matriz $M \in M_n(\mathbb{R})$ em $x \in \mathbb{B}^n$ pela operação

$$M^{\otimes}(x) = \tanh\left(\frac{||Mx||}{||x||} \operatorname{arctanh}||x||\right) \frac{Mx}{||Mx||}; \tag{64}$$

Utilizando essas operações e algum conhecimento sobre geodésicas em \mathbb{B}^n podemos derivar expressões explicitas para os mapas exponencial e logarítmico:

$$\operatorname{Exp}_{p}(v) = p \oplus \left(\tanh \left(\frac{\lambda_{p}||v||}{2} \right) \frac{v}{||v||} \right) \quad \text{e} \quad \operatorname{Log}_{p}(q) = \frac{2}{\lambda_{p}} \operatorname{arctanh}(||-x \oplus y||) \frac{-x \oplus y}{||-x \oplus y||}. \tag{65}$$

onde $p, q \in \mathbb{B}^n$, $v \in T_p\mathbb{B}^n$ e λ_x é um fator de conformalidade entre a métrica euclidiana e a métrica do disco de Poincaré, isso é, λ_p é dado por

$$\lambda_p = \frac{2}{1 - ||p||^2} \tag{66}$$

e claramente satisfaz

$$4\frac{dx_1^2 + \dots + dx_n^2}{(1 - x_1^2 - \dots - x_n^2)^2} = \lambda_x^2 (dx_1^2 + \dots + dx_n^2), \tag{67}$$

ou seja, se \mathfrak{g} é a métrica em \mathbb{R}^n e \mathfrak{g}_B é a métrica no n-disco, então $\mathfrak{g}_B = \lambda_x^2 \mathfrak{g}$.

Se estamos estudando um conjunto de dados em \mathbb{B}^n , é interessante sabermos computar a média desses dados. Existem três maneiras de fazer isso:

• se os dados fazem parte de um grafo, então podemos computar a média de todos os vizinhos x_j de um ponto $x_i \in \mathbb{B}^n$ pela fórmula

$$\mu = \operatorname{Exp}_{x_i} \left(\sum_{j \in \mathcal{N}(i)} w_{ij} \operatorname{Log}_{x_i}(x_j) \right), \tag{68}$$

onde cada $w_{ij} \in \mathbb{R}$ é um peso associado a aresta que liga x_i com x_j ;

• se $x_1, \ldots, x_n \in \mathbb{K}^n$ (agora estamos no disco e Beltrami-Klein), podemos computar o ponto médio de Einstein por

$$\mu = \frac{\sum_{i=1}^{n} \frac{x_i}{||x_i||^2}}{\sum_{i=1}^{n} \frac{1}{||x_i||^2}};$$
(69)

• por último, podemos utilizar as operações já definidas para construir o ponto médio entre $x_1, \ldots, x_n \in \mathbb{B}^n$, que é chamado de *ponto giromédio* dado por

$$m(x_1, \dots, x_n, \alpha) = \frac{1}{2} \otimes \left(\sum_{i=1}^n \frac{\frac{2\alpha_i}{||x_i||^2}}{\sum_{j=1}^n \alpha_j \left(\frac{2}{||x_i||^2} - 1 \right)} x_i \right), \tag{70}$$

onde $\alpha = (\alpha_1, \dots, \alpha_n)$ é uma lista de pesos para cada x_i .

4 Redes neurais

4.1 PyTorch e tensores

Para nossos estudos, definiremos um tensor de maneira indutiva. Um tensor de dimensão 0 é um número. Um tensor de dimensão 1 é uma lista de números, e seu formato é o número de elementos, denotado por (n). Um tensor de dimensão 2 é uma lista de tensores de dimensão 1, que devem ter todos o mesmo formato, ou seja, o mesmo número de elementos. O formato de um tensor bidimensional é um par ordenado (m,n), onde m é o número de tensores de dimensão 1 que o compõe, e n o número de elementos de cada um desses tensores unidimensionais.

De maneira indutiva, um tensor de dimensão n é uma lista de tensores de dimensão n-1, que devem todos ter o mesmo formato. O formato de um tensor n-dimensional é uma lista de n números (x_1, \ldots, x_n) , onde x_1 é o número de tensores (n-1)-dimensionais que o compõe, e (x_2, \ldots, x_n) é o formato de cada um deles.

Vamos agora começar a brincar com programação. Utilizaremos Python com a biblioteca PyTorch para mexer com aprendizado profundo. Para importar essa biblioteca, utilizamos import torch. O próximo passo é entender como funcionam os tensores. Para criar um tensor, utilizamos o comando torch.tensor(). Dentro dos parênteses, podemos colocar 4 parâmetros (existem mais deles, mas esses são os importantes):

- o primeiro parâmetro é um tensor, ou seja, uma lista de listas de listas e etc. assim como definimos nos parágrafos acima;
- dtype recebe um tipo de dado, que o tensor irá armazenar em cada uma de suas entradas;
- device recebe o dispositivo no qual o tensor irá ser armazenado, como uma CPU, uma GPU ou uma TPU;
- requires_grad recebe True ou False e, em caso de True, computa o gradiente do tensor (veremos o que é isso mais para frente) e o armazena na memória.

Podemos retornar o formato, o tipo dos dados ou a dimensão de um tensor pelos atributos shape, dtype e ndim. Por exemplo, considere o tensor:

Podemos utilizar os atributos comentados acima para retornar certas informações importantes:

- TENSOR. shape vai retornar torch. Size([2, 2]), visto que TENSOR tem formato (2, 2);
- TENSOR. dtype vai retornar torch. int64, visto que as entradas da matriz são números inteiros;
- TENSOR.ndim vai retornar 2, visto que o tensor em questão tem dimensão 2, que é a quantidade de números do seu formato.

Podemos indexar tensores. Para retirar um número de um tensor, precisamos especificar as coordenadas desse número em cada dimensão do tensor. Por exemplo, considere o código abaixo.

O output desse código será, como vimos acima, torch.Size([3, 3, 3]). É importante notar que o Python sempre começa a contar do 0, e não é diferente quanto trabalhamos com PyTorch.

Para descobrirmos a posição em que o número 15 está, basta fazermos o processo de trás pra frente. Primeiro, percebemos que ele está na segunda matriz, então ele faz parte de TENSOR[1]. Nessa matriz, ele está segunda linha, portanto ele é um elemento de TENSOR[1,1]. Por fim, ele é o terceiro elemento dessa linha, dessa maneira temos TENSOR[1,1,2] = 15. De fato, se após o código acima escrevermos print(TENSOR[1,1,2]) o resultado será precisamente tensor(15). O retorno não é precisamente 15 pois elementos de tensores também são tensores, mas isso é apenas uma tecnicalidade.

Existem diversas maneiras de construir tensores em Python. Além de torch.tensor, podemos utilizar

• torch.ones, que recebe diversos argumentos, um para cada dimensão que você deseja que o tensor tenha. Esses argumentos precisam ser números maiores do que 1 e representam quantas entradas o tensor terá nas respectivas dimensões. Por exemplo, torch.ones(2,2,2) resulta no tensor abaixo;

- torch.zeros é idêntico ao torch.ones, mas o tensor terá 0 em todas as entradas;
- torch.rand recebe argumentos da mesma maneira que os comandos acima, mas as entradas do tensor serão números aleatórios no intervalo [0, 1] gerados a partir de uma distribuição uniforme;
- torch.zeros_like e torch.ones_like ambos recebem um tensor como entrada e retornam um outro tensor cheio de zeros, no primeiro caso, ou uns, no segundo, que tenha o mesmo formato do tensor recebido;
- torch.full_like recebe um tensor e um valor numérico, e cria um tensor com o mesmo formato do tensor recebido, mas em que todas as entradas são idênticas ao valor recebido;
- torch.arange recebe três parâmetros numéricos start, end e step. Ele retorna um tensor unidimensional que possui valores em [start, end[, começando em start e com um espaçamento de tamanho step entre cada valor.

Tensores só aceita valores numéricos, mas mesmo dentre esses existem vários tipos que podem ser utilizados, e muitas vezes esses tipos geram conflitos quando vamos operar com tensores. É importante portanto aprender a converter tensores de um tipo para outro.

É importante notar que conversão entre tipos não vai, na maioria das vezes, alterar os valores armazenados no tensor. A diferença, por exemplo, é que o tensor [1] possui um valor do tipo inteiro, enquanto o tensor [1.] possui um valor do tipo ponto flutuante. O problema acontece quando convertemos pontos flutuantes para inteiros, visto que acontece um processo de arredondamento.

```
TENSOR = torch.tensor([1.44]) # TENSOR.dtype = torch.float32
print(TENSOR.type(torch.int64))
```

O código acima converte um tensor do tipo torch.float32 para um tensor do tipo torch.int64 e exibe o resultado. Ao executarmos esse código em uma IDE, percebemos que o retorno é tensor [1]), visto que o tensor resultante deve possuir apenas inteiros. É importante que, ao contrário do que pensamos que seria o correto, o arredondamento é sempre feito para baixo, e não seguindo a regra do 5 como nos acostumamos. É possível achar uma lista com todos os possíveis tipos de valores na documentação do PyTorch.

Vamos agora aprender a operar com tensores. Existem cinco operações importantes:

• a adição de tensores se dá elemento a elemento, ou seja, se T e S são k-tensores (tensores com k dimensões), então dado K = T + S temos K [x1, ..., xk] = T [x1, ..., xk] + S [x1, ..., xk]. Por exemplo,

retorna tensor(8), já que T [0,1] + S[0,1] = 2 + 6 = 8.

a subtração, a multiplicação e a divisão funcionam exatamente da mesma maneira, e são calculadas por T - S, T * S e T / S respectivamente. É importante notar que, para a divisão, o tensor S não pode possuir valores valendo 0;

A última operação que vamos analisar é o produto matricial, mas esse é assustadoramente mais complicado então vamos ter que fazer tudo com calma. Ele é definido a partir e vários casos, da seguinte maneira: sejam T e S dois tensores. Se

• T e S tiverem formato (n), então K = torch.matmul(T, S) tem formato () e é dado por

$$K = \sum_{j=0}^{n-1} T[j] \cdot S[j]; \tag{71}$$

• T tem formato (n) e S tem formato (n,m), então K = torch.matmul(T, S) tem formato (m) e é dado por

$$K[i] = \sum_{j=0}^{n-1} T[j] \cdot S[j, i]; \tag{72}$$

• T tem formato (n, m) e S tem formato (m), então K = torch.matmul(T, S) tem formato (n) e é dado por

$$K[i] = \sum_{j=0}^{m-1} T[i,j] \cdot S[j]; \tag{73}$$

• T tem formato (n, m) e S tem formato (m, p), então K = torch.matmul(T, S) tem formato (n, p) e é dado por

$$K[i,j] = \sum_{k=0}^{m-1} T[i,k] \cdot S[k,j];$$
(74)

• T tem formato (x_{k-1}) e S tem formato (x_1, \ldots, x_k) com k > 2, então K = torch.matmul(T, S) tem formato $(x_1, \ldots, x_{k-2}, x_k)$ e é dado por

$$K[i_1, \dots, i_{k-1}] = \sum_{j=0}^{x_{k-1}-1} T[j] \cdot S[i_1, \dots, i_{k-2}, j, i_{k-1}]$$
(75)

• T tem formato (x_1, \ldots, x_k) com k > 2 e S tem formato (x_k) , então K = torch.matmul(T, S) tem formato (x_1, \ldots, x_{k-1}) e é dado por

$$K[i_1, \dots, i_{k-1}] = \sum_{j=0}^{x_k - 1} T[i_1, \dots, i_{k-1}, j] \cdot S[j];$$
(76)

• T tem formato (n, x_{k-1}) e S tem formato (x_1, \ldots, x_k) com k > 2, então K = torch.matmul(T, S) tem formato $(x_1, \ldots, x_{k-2}, n, x_k)$ e é dado por

$$K[i_1, \dots, i_k] = \sum_{i=0}^{x_{k-1}-1} T[i_{k-1}, j] \cdot S[i_1, \dots, i_{k-2}, j, i_k];$$

$$(77)$$

• T tem formato (x_1, \ldots, x_k) com k > 2 e S tem formato (x_k, m) , então K = torch.matmul(T, S) tem formato $(x_1, \ldots, x_{k-1}, m)$ e é dado por

$$K[i_1, \dots, i_k] = \sum_{j=0}^{x_k - 1} T[i_1, \dots, i_{k-1}, j] \cdot S[j, i_k];$$
(78)

Os últimos dois casos são os mais complicados. Primeiro, definimos que dois formatos (x_1, \ldots, x_k) e (y_1, \ldots, y_s) são transmissiveis se $k, s \geq 1$, ou seja, se ambos não são escalares, e se, para todo i com $1 \leq i \leq \max\{k, s\}$ temos que

- y_i ou x_i não existem, ou
- $y_i = 1$ ou $x_i = 1$ ou,
- $x_i = y_i$.

Se k > 2, T tem formato (x_1, \ldots, x_k) e S tem formato (y_1, \ldots, y_k) , então se (x_1, \ldots, x_{k-2}) e (y_1, \ldots, y_{k-2}) são transmissíveis e $x_k = y_{k-1}$, podemos calcular K = torch.matmul(T, S), que tem formato

$$(\max\{x_1, y_1\}, \dots, \max\{x_{k-2}, y_{k-2}\}, x_{k-1}, y_k)$$
(79)

e é dado por

$$K[i_1, \dots, i_k] = \sum_{i=0}^{x_k - 1} T[\alpha_1, \dots, \alpha_{k-2}, i_{k-1}, j] \cdot S[\beta_1, \dots, \beta_{k-2}, j, i_k],$$
(80)

onde $\alpha_n = \min(i_n, x_n - 1)$ e $\beta_m = \min(i_m, y_m - 1)$.

O último caso é o que acontece se os tensores não tem a mesma dimensão. Se T tem formato (x_1, \ldots, x_k) e S tem formato (y_1, \ldots, y_s) com $k \neq s$ e k, s > 2, então temos dois casos: k > s ou k < s. Se k > s, vamos construir um novo tensor S1 com dimensão k e formato dado por $(1, \ldots, 1, y_1, \ldots, y_s)$ onde as k - s primeiras entradas valem 1. Esse tensor, claro, é dado por

$$S_1[0, ..., 0, i_1, ..., i_s] = S[i_1, ..., i_s].$$
 (81)

Ao assumirmos que T e S são transmissíveis (ou seja, os seus formatos menos as duas últimas dimensões são transmissíveis), então T e S1 também serão, e portanto pelo caso anterior podemos calcular K = torch. matmul(T,S1), que será precisamente o tensor resultante ao calcularmos K = torch. matmul(T, S). O caso k < s é análogo, porém o tensor que será modificado é o T.

Para terminarmos a seção, podemos construir um análogo à transposição de matrizes, mas para tensores. Se T é um tensor de formato (x_1, \ldots, x_k) , o seu transposto é de formato (x_k, \ldots, x_1) e é dado por

$$T^{\perp}[i_1, \dots, i_k] = T[i_k, \dots, i_1].$$
 (82)

Para calcular o transposto pelo PyTorch, basta utilizar

```
torch.permute(T,list(torch.arange(T.ndim - 1, -1, -1))).
```

A função torch.permute recebe um tensor de dimensão k e uma lista com os números de 0 até k-1 em qualquer ordem. Ela retorna então um novo tensor k-dimensional, contendo as mesmas entradas do tensor original, mas com o formato trocado de maneira a respeitar a lista de números. Para ser um pouco mais construtivo, imagine que T tem formato (x_1, \ldots, x_k) . Se $1 = [n1, \ldots, nk]$ é uma lista com os inteiros de 0 até k-1, então o tensor T1 = torch.permute(T, 1) é dado por

$$T_1[i_1, \dots, i_k] = T[i_{n_1+1}, \dots, i_{n_k+1}].$$
 (83)

Note que, para transpor um tensor k-dimensional, basta que a lista passada como argumento de torch. permute seja $[k-1, \ldots, 0]$, que é justamente o resultado de

```
list(torch.arange(T.ndim - 1, -1, -1))
```

4.2 Trabalhando com tensores

Tensores podem ficar bem grandes e, para entender uma grande quantidade de dados, é interessante saber computar certas informações estatísticas sobre esses dados. Para isso, existem quatro

Referências

- [1] Hugo Cattarucci Botós. «Geometrias Clássicas». 2020. URL: https://github.com/HugoCBotos/geometria-classica/blob/master/Geometrias%20C1%C3%A1ssicas%20-%20Hugo%20C.%20Bot%C3%B3s.pdf.
- [2] M. Ferreira e G. Ren. «Möbius gyrogroups: A Clifford algebra approach». Em: *Journal of Algebra* 328.1 (2011).
- [3] Anna Wienhard e Gye-Seon Lee. «Curvature of Riemannian Manifolds». 2015. URL: https://www.mathi.uni-heidelberg.de/~lee/Soeren05.pdf.
- [4] PyTorch documentation PyTorch 1.13 documentation. Acessado: 01-03-2023. URL: https://pytorch.org/docs/stable/index.html.
- [5] Loring W. Tu. Differential Geometry: Connections, Curvature and Characteristic Classes. Springer-Verlag New York Inc, 2017. ISBN: 978-3-319-55082-4.
- [6] Wei Peng e Tuomas Varanka e Abdelrahman Mostafa e Henglin Shi e Guoying Zhao. «Hyperbolic Deep Neural Networks: A Survey». Em: JOURNAL OF LATEX CLASS FILES 14.8 (2015).
- [7] Abraham Ungar. «Beyond Pseudo-rotations in Pseudo-Euclidean Spaces An Introduction to the Theory of Bi-gyrogroups and Bi-gyrovector Spaces». Em: ed. por Themistocles M. Rassias. Elsevier, 2018. Cap. 2 e 3, 9 até 97.
- [8] James W. Cannon e William J. Floyd e Richard Kenyon e Walter R. Parry. «Flavours of Geometry». Em: ed. por Silvio Levy. MSRI Publications, 1997. Cap. 2, 59 até 115.