航空能源技术的变革过程综述

XXX ¹ (西安交通大学)

摘要:

航空能源技术是航空航天技术中的一个重要方面,它为飞行器提供动力,同时也面临着环境污染和能源消耗等挑战。随着新兴航空能源技术的不断推广应用,人类对于环保、高效、可持续的航空能源将会有更高的期望和需求。传统的航空能源技术以化石燃料为主要动力源,但随着环保意识的不断增长和航空业规模的不断扩大,传统航空能源技术所带来的碳排放等环境问题也日益凸显。新兴的航空能源技术如氢燃料电池、生物燃料和电动飞机等在航空能源领域得到了广泛的关注和应用,具有碳排放低、能效高、环保、经济性和可再生等优势,有望解决传统航空能源所面临的环保和可持续性方面的挑战。

关键词: 航空航天技术; 航空能源技术; 新兴技术

1 引言

航空航天技术是现代科技领域的重要组成 部分, 其作为经济、科技、生活等多个领域 的重要推动者,也在不断突破和创新。而航 空能源技术作为航空航天技术中的一个重要 方面,为飞行器提供动力的同时也面临着环 境污染和能源消耗等挑战。因此,航空能源 技术的变革对于改善航空业的效率和环境可 持续性具有重要意义。本文将介绍航空能源 技术的历史和现状, 以及技术变革和未来发 展的情况。[1-2] 在全球化不断推进、经济不断 增长的背景下,人类对于航空航天技术和航 空能源技术的需求也日益增长。航空能源技 术的进步则推动了航空业的发展, 在减少碳 排放、提高能源利用效率、降低航空噪音等 方面,有着重要的意义。[3]随着新兴航空能源 技术的不断推广应用,人类对于环保、高效、 可持续的航空能源将会有更高的期望和需求。 本文旨在全面探讨航空能源技术的变革、发 展与未来展望。

图 1 空中客车公司推出的"ZEROe" 概念机设计最多可运送 200 名乘客, 采用"混合机翼机身, 计划于 2035 年投入使用。

2 航空能源技术的发展状况

传统的航空能源技术以化石燃料为主要动力源,采用涡轮增压发动机和涡扇发动机等燃气轮机技术为主要发动机^[4]。燃气轮机技术已经在航空业范围内得到广泛应用,其技术优势是功率密度大、燃烧效率高,以及可靠性好等。这些优势使得航空器在发动机功率和效率方面有了较大的提升,也为航空业的高速发展提供了基础。然而,随着环保意识的不断增长和航空业规模的不断扩大,传

统航空能源技术所带来的碳排放等环境问题 电机和电动机来推动电动飞机。^[9]它们由熔融 也日益凸显[5]。于是,新兴的航空能源技术。盐和锂等成分制成,这意味着后者无需再通 应运而生。氢燃料电池、生物燃料和电动飞 过化石燃料进行供应。电动飞机不仅可以减 机等新技术在航空能源领域得到了广泛的关 轻空气污染的压力,具有很好的环保特性,还 注和应用,逐渐成为航空能源技术离不开的 可在某些情况下降低空气动力学网络维护的 新兴方向。这些技术具有碳排放低、能效高、 成本。此外, 由于整个系统不使用传统的有 环保、经济性和可再生等优势,有望解决传 统航空能源所面临的环保和可持续性方面的 挑战[1]。当前,航空能源技术正经历着向新 兴技术转化的过程。其中, 氢燃料电池[6]是 一种全新的新能源技术,具有高效、环保、节 能等优势。氡燃料电池工作原理是将氡气与 空气中的氧气反应,产生电能和水,不仅碳 排放量低,而且能效较高,有着很好的环境 和经济效益。生物燃料[7]也是一种具有广泛 应用前景的技术。生物燃料是由植物或其他 有机物质转化为燃料的一种新型能源形式, 具有碳排放量低、经济等优点。在现代航空 业中,生物燃料通常是将永久性荒漠草坪或 非粮食作物进行处理,将其转化为可用燃料。 可以利用生物燃料来替代航空业中的传统燃 料,可以大力推动航空业的节能环保。电动 飞机[8]也是未来发展的趋势之一。相较于传 统燃料动力,在空气阻力较小和短途航程、低 速运营时,电动飞机具有低噪音、零排放等 优点。而且, 电动飞机还可以在特殊情况下 实现垂直起降, 大大提升了飞行器的灵活性 和效率。不过,随着飞行器航程和运营速度 的增加, 电动飞机还需要解决能源储存和供 应方面的挑战。

航空能源技术的创新思路

3.1 电气飞行

电气飞行是另一个拥有广泛应用前景的航 空能源技术。在电气飞行的背景下,它几乎不 术,如图2,它通过将氢气和氧气转化为电能 需要使用化石燃料,可以使用大量的光伏发 来为飞机提供动力。这种技术具有清洁、高

机燃料,电动飞机还具有实现可持续性长期 的可靠性和耐久性[10]。电作为能源可以有效 地降低航空器的运营成本,同时为目标导向 的绿色未来提供更可行的解决方案。虽然电 池技术的重量和容量目前仍存在着限制,但 是随着技术的不断发展和完善,电动飞机的 未来应用前景非常广阔。目前, 电动轻型民 用飞机已经实现商业化,而电动商用喷气客 机也正在研究中。

图2氢能

3.2 氢能

氢燃料电池技术是一种新型的航空能源技

效、可再生等优点,有望在未来成为航空领 芦竹就是近年来关于超级能源生物质燃料的 域的主要能源之一。目前,主要有两条技术 路线:一是氢气在改进的燃烧室中点燃,直接 产生动力: 二是发展氡燃料电池, 连接电动机 为飞行器提供动力。研究表明, 使用氢燃料 电池,对气候影响的效益能提高 75%-90% [6] 。众多航空企业已经开始布局研究氢能飞机 和氢能航空动力。例如,空客公司在2020年 9月展示了三款氢燃料 ZEROe 概念飞机,如 图1, 计划在15年之内交付一型用于商业飞 行。此外,巴航工业也于2021年推出了两种 氢动力概念飞机。[11] 除了商用飞机领域,氢 燃料电池技术还在军用领域得到了广泛应用。 例如,美国海军正在开发一种基于氡燃料电 池的无人潜航器,以提高潜艇的隐身性和续 航能力。[8] 总之,氢燃料电池技术在航空领域 具有巨大的潜力和发展前景。随着技术的不 断发展和成本的降低,这种技术有望在未来 更广泛地应用于民用和军用领域。

3.3 生物燃料

生物燃料是一种可再生能源,它可以通过 将生物质转化为燃料来为飞机提供动力。目 前,生物航空燃料被统计为可持续航空燃料 (SAF),是减少航空碳排放的关键之一。[7] 自 2008年商业航空首次混合使用了生物燃料和 化石燃料以来,十几万次航班飞行使用了生 物燃料,通常是将15%的生物燃料和85%的 化石燃料混合。目前,全球对生物航空燃料的 研究正在不断深入,各大企业也在竞相进入 可持续航空燃料制造领域。例如,壳牌公司 投资了专注于提供 SAF 的公司 LanzaJet。生 物燃料技术在不断创新。例如,中国工程院 院士倪维斗提出了一项关于建立基于生物质 新型生态能源系统的建议,即"要通过技术系统技术将变得更加可行,如图3。[13]然而,在 创新,大力发展超级能源生物质燃料",超级 这个新型的强调可持续性的空气力学生态系

一项重大突破。[5] 超级芦竹是一种高效率、高 生物量能源植物。它的年生长量是热带森林 的 5 倍, 玉米的 7 倍以上, 水稻秸秆的 10 倍 左右。此外,"超级芦竹"还具有土壤及水体 修复效率高、吸附重金属能力强、变异率低、 田间管理少、病虫害少、气候及土壤适应性 强等优势。[12] 总之, 生物燃料技术在不断创 新和发展, 为我们提供了更多的可持续能源 选择。

图3字宙空间中的太阳能板,作为新能源可以 自主功能。

航空能源技术变革的挑战和展望

4.1 未来发展前景

在未来几年内,将继续出现航空业同能源 领域相结合的趋势,会更加注重可持续发展, 特别是更加关注设计、测试和使用创新的清 洁航空燃料。作为全球最大的工业空气力学 设施之一,中国也在积极探寻可持续发展战 略,例如支持各种新技术,以使能源使用更 加环保、经济和有效(例如,中国国家航空 发动机技术市场开发有限公司正在寻求战略 合作)。

随着变革的推进,越来越多的氢、生物燃 料以及太阳能、核反应堆等新型空气动力学 统中,我们面临着诸多复杂的问题。这些问 量、稳定性和安全性,同时保障其整体效益。 题包含关注多项可持续性选择及其它相关领 航空能源技术的创新需要建立新的安全标准 域的高速度增长中遇到的问题,需要在技术、和规范。在传统的航空能源系统中,各种安 成本和简化等领域进行重点突破。

4.2 技术难题

跨越航空能源变革进程的重要一环是在技 术领域上的挑战。为了不断实现变革,跨部 门和领域的合作将需要突破当前的技术壁垒。 首要目标是提供更具有简化效果的技术支持, 从而更好地实现能源燃料的有效集成。航空 业可以通过工程实践和设计来解决技术难题, 并使用协作解决方案,将所需的众多组合数 据源绑定在一起。这需要航空业支持基于系 统的设计,并以机构化的方式进行发展,以便 集合多种因素,并寻找最优的可替代品,应 对石油和其他传统能源储备的局限性。

4.3 成本问题

除了技术挑战外,成本也是航空能源技术 转型需要面对的挑战之一。此外,成本问题 也是一个很大的挑战, 尤其是在工程和机械 制造领域。航空业需要解决一系列优化,以 实现成本核算的显著下降。[13,1]为了实现这一 目标,需要进行广泛的经济学研究,并制定 战略性投资计划,通过提高能源生产力来实 现功效,同时也需要实现更有效的产品。对 于航空业而言,对于在研究、制造和质量保 证方面的关键技术创新,还需要强化持续投 资和支持,以便尽早实现效益。

4.4 安全问题

航空能源技术实施中面临的另一个挑战是 安全问题。在能源技术验证和实施的过程中,技术改进和优化。未来的航空能源技术可能 必须确保通风和防爆膜等各种安全保障措施 的仔细审查和仔细考虑。[14]同时, 航空业需

全标准和规范已经得到了广泛的应用和验证。 然而,随着新型能源技术的应用,这些标准 和规范可能需要进行更新和改进, 以确保新 技术的安全性和有效性。航空能源技术的创 新需要进行充分的安全评估和测试。[3]在新技 术的应用过程中,需要进行充分的安全评估 和测试,以确保新技术的安全性和有效性。

图 4 SpaceX 开发了可部分重复使用的猎鹰 1 号和猎鹰 9 号运载火箭。SpaceX 同时开发 Dragon 系列的航天器以通过猎鹰 9号发射到 轨道。SpaceX 主要设计、测试和制造内部的 部件,如 Merlin、Kestrel和 Draco 火箭发动 机。

总结

航空行业一直是全球性能源及环境问题的 关键领域之一。当前, 航空能源技术面临的 重大问题是能源效率和环境保护。随着技术 的不断进步, 氢燃料电池技术, 生物燃料技 术以及电动飞机技术都可能会得到进一步的 会得到更大的发展,包括更高效、更经济、更 环保的技术。例如,采用太阳能发电技术可 要建立标准化规范,以确保可再生能源的质 以大幅度减少航空燃料使用量。另外,利用

新型材料或可再生材料开发更加轻量化的航 [7] 空器可以进一步降低航空燃料的使用。此外, 采用空气流量控制技术和智能流体系统可以 进一步提高航空能源效率。

作为世界上最重要的工业空气力学设施之 一, 航空工业对于探索可持续发展的高科技 解决方案拥有巨大的潜力。航空能源技术的 转型进程仍将面临诸多挑战, 但这也意味着 同样地, 我们有机会将技术的进步和提升进 行结合,来实现更加清洁、高效的航空能源 技术。基于减少对化石燃料的依赖、提供更 可持续发展的解决方案以及为全球航空业开 辟新的机会, 航空能源技术区别于它人, 备 受重视, 也将在未来不断进步。

参考文献

- [1] 万燕鸣,熊亚林,王雪颖. 全球主要国家 氢能发展战略分析[J]. 储能科学与技术, 2022, 11(10): 3401.
- [2] 梁春华, 刘红霞, 索德军, 等. 美国航空航 天平台与推进系统的未来发展及启示[J]. 航空发动机, 2013, 39(3): 6-11.
- [3] 张澜涛. 国际能源态势与我国能源安全 [J]. 国际关系学院学报, 2006, 5: 45-52.
- [4] 陈予恕,张华彪. 航空发动机整机动力学 研究进展与展望[J]. 航空学报, 2011, 32 (8): 1371-1391.
- [5] 崔玺康,邢子恒,胡晓佳."双碳"目标下 的可持续航空燃料[J]. 大飞机, 2021.
- 来能源系统中的角色定位及"再电气化" 路径初探[J]. 热力发电, 2020, 49(1): 1-9.

- 黄蔚. 生物燃油——更加清洁和环保的 可再生航空能源[J]. 中国民用航空, 2009, 12.
- [8] 黄俊,杨凤田.新能源电动飞机发展与挑 战[J]. 航空学报, 2016, 37(1): 57-68.
- [9] 黄春峰. 低碳经济时代的新能源航空 发动机技术[J]. 航空制造技术, 2011, 54 (18): 74-77.
- [10] 毕树生, 梁杰, 战强, 等. 机器人技术在航 空工业中的应用[J]. 航空制造技术, 2009, 52(4): 34-39.
- [11] 滕利强. 硬式空中加油作动系统技术现 状与研制探讨[J]. 空军工程大学学报, 2022, 23(4): 20-28.
- [12] 李争, 张蕊, 孙鹤旭, 等. 可再生能源多能 互补制-储-运氢关键技术综述[J]. 电工技 术学报, 2021, 36(3): 446-462.
- [13] 刘莉, 杜孟尧, 张晓辉, 等. 太阳能/氢能 无人机总体设计与能源管理策略研究[J]. 航空学报, 2016, 37(1): 144-162.
- [14] 房书良. 航空电机防爆试验[J]. 航空工艺 技术, 1991(4): 47-48.
- [15] 杨宁. 我国能源安全问题及对策[J]. 郑 州航空工业管理学院学报:管理科学版, 2004, 22(4): 103-105.
- [16] 姚国欣. 加速发展我国生物航空燃料 产业的思考[J]. 中外能源, 2011, 16(4): 18-26.
- [6] 蒋敏华, 肖平, 刘入维, 等. 氢能在我国未 [17] 孙洪磊, 吕继兴, 胡徐腾, 等. 航空公司应 用航空生物燃料的成本效益分析[J]. 化 工进展, 2014, 33(5): 1151-1155.