

VI. Országos Magyar Matematikaolimpia XXXIII. EMMV

országos szakasz, Nagybánya, 2024. február 26-29.

XII. osztály – I. forduló

1. feladat (10 pont). Határozd meg az $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \frac{1}{e^{2x}} \cdot \arctan \frac{e^{2x}}{1 + e^x + e^{2x}}$$

függvény primitív függvényeit!

Turdean Katalin, Zilah Forgács István, Szatmárnémeti

Első megoldás. Hivatalból

(1 pont)

$$I = \int f(x)dx = \int \frac{1}{e^{2x}} \cdot \arctan \frac{e^{2x}}{1 + e^x + e^{2x}} dx = -\int \frac{1}{e^x} \cdot \arctan \frac{1}{e^{-2x} + e^{-x} + 1} \cdot \frac{-1}{e^x} dx.$$
(1 pont)

Az $e^{-x}=u$ változócserét használva azt kapjuk, hogy

$$I = -\int u \cdot \arctan \frac{1}{1 + u + u^2} du.$$

(1 pont)

Használjuk a parciális integrálás módszerét.

$$I = -\left[\frac{u^2}{2} \cdot \arctan \frac{1}{1+u+u^2} + \int \frac{u^2}{2} \cdot \frac{(2u+1)}{(u^2+u+1)^2+1} du\right] =$$
$$-\frac{u^2}{2} \cdot \arctan \frac{1}{1+u+u^2} - \frac{1}{2} \int \frac{2u^3+u^2}{1+(1+u+u^2)^2} du.$$

(1 pont)

Az integrálban szereplő tört nevezője

$$1 + (1 + u + u^{2})^{2} = (u^{2} + 1)^{2} + 2(u^{2} + 1)u + u^{2} + 1 = (u^{2} + 1)(u^{2} + 2u + 2)$$

alakba írható. (1 pont)

Ezt felhasználva, a törtet elemi törtek összegére bontjuk.

$$\frac{2u^3+u^2}{1+(1+u+u^2)^2} = \frac{2u^3+u^2}{(u^2+1)(u^2+2u+2)} = \frac{Au+B}{u^2+1} + \frac{Cu+D}{u^2+2u+2}, \text{ ahol} A, B, C, D \in \mathbb{R}.$$

(1 pont)

Közös nevezőre hozva a két elemi törtet, az alábbi egyenletrendszert kapjuk:

$$\begin{cases} A+C=2\\ 2A+B+D=1\\ 2A+2B+C=0\\ 2B+D=0 \end{cases}$$
 (1 pont)

Megoldva az egyenletrendszert: A=0, B=-1, C=2, D=2. (1 pont) Tehát

$$I = -\frac{u^2}{2} \cdot \arctan \left(\frac{1}{1+u+u^2} - \frac{1}{2} \int \left[\frac{-1}{u^2+1} + \frac{2u+2}{u^2+2u+2}\right] du = -\frac{u^2}{2} \cdot \arctan \left(\frac{1}{1+u+u^2} + \frac{1}{2} \arctan u - \frac{1}{2} \ln(u^2+2u+2) + C\right)$$

(1 pont)

Ahonnan az f függvény, primitív függvényei a következők:

$$F_k \colon \mathbb{R} \to \mathbb{R}, F_k(x) = -\frac{1}{2e^{2x}} \cdot \arctan \frac{e^{2x}}{1 + e^x + e^{2x}} + \frac{1}{2}\arctan \frac{1}{e^x} - \frac{1}{2}\ln \frac{1 + 2e^x + 2e^{2x}}{e^{2x}} + k$$
, ahol $k \in \mathbb{R}$.

(1 pont)

Második megoldás. Hivatalból

(1 pont)

$$I = \int f(x)dx = \int \frac{1}{e^{2x}} \cdot \arctan \frac{e^{2x}}{1 + e^x + e^{2x}} dx = -\int \frac{1}{e^x} \cdot \arctan \frac{1}{e^{-2x} + e^{-x} + 1} \cdot \frac{-1}{e^x} dx.$$

(1 pont)

Az $e^{-x} = u$ változócserét használva azt kapjuk, hogy

$$I = -\int u \cdot \arctan \frac{1}{1 + u + u^2} du.$$

(1 pont)

Használjuk az

$$\operatorname{arctg} \frac{1}{1+u+u^2} = \operatorname{arctg} \frac{1}{u} - \operatorname{arctg} \frac{1}{u+1}, \forall u \in (0, +\infty)$$

(1 pont)

és

$$\operatorname{arctg} u + \operatorname{arctg} \frac{1}{u} = \frac{\pi}{2}, \forall u \in (0, +\infty)$$

(1 pont)

azonosságokat.

Ekkor

$$I = -\int u \cdot \left(\operatorname{arctg} \frac{1}{u} - \operatorname{arctg} \frac{1}{u+1} \right) du =$$

$$= -\int u \left(\frac{\pi}{2} - \operatorname{arctg} u - \frac{\pi}{2} + \operatorname{arctg}(u+1) \right) du =$$

$$= \int u \operatorname{arctg} u du - \int u \cdot \operatorname{arctg}(u+1) du =$$

(1 pont)

$$= \frac{u^2}{2} \arctan u - \frac{1}{2} \int \frac{u^2}{1 + u^2} du - \frac{u^2}{2} \arctan (u + 1) + \frac{1}{2} \int \frac{u^2}{1 + (u + 1)^2} du =$$

(1 pont)

$$= \frac{u^2}{2} \left(\operatorname{arctg} u - \operatorname{arctg}(u+1) \right) - \frac{1}{2} \int \left(1 - \frac{1}{1+u^2} \right) du + \frac{1}{2} \int \left(1 - \frac{2u+2}{u^2+2u+2} \right) du =$$

$$= \frac{u^2}{2} \left(\operatorname{arctg} u - \operatorname{arctg}(u+1) \right) - \frac{1}{2}u + \frac{1}{2} \operatorname{arctg} u + \frac{1}{2}u - \frac{1}{2} \ln(u^2 + 2u + 2) + C =$$

$$= \frac{u^2}{2} \left(\operatorname{arctg} u - \operatorname{arctg}(u+1) \right) + \frac{1}{2} \operatorname{arctg} u - \frac{1}{2} \ln(u^2 + 2u + 2) + C.$$

$$(1 \text{ pont})$$

Ahonnan az f függvény, primitív függvényei a következők:

$$F_k \colon \mathbb{R} \to \mathbb{R}, F_k(x) = \frac{1}{2e^{2x}} \cdot \left(\operatorname{arctg} \frac{1}{e^x} - \operatorname{arctg} \left(\frac{1}{e^x} + 1 \right) \right) + \frac{1}{2} \operatorname{arctg} \frac{1}{e^x} - \frac{1}{2} \ln \frac{1 + 2e^x + 2e^{2x}}{e^{2x}} + k$$
ahol $k \in \mathbb{R}$.
$$(1 \text{ pont})$$

2. feladat (10 pont). Adott a (G,\cdot) csoport és az $f\colon G\to G$ függvény úgy, hogy

$$f(xf(y)) = f(x) \cdot y$$
, bármely $x, y \in G$ esetén.

- a) Igazold, hogy f csoportautomorfizmus!
- b) Határozd meg az f függvényt, ha a G csoportnak öt eleme van!

Dávid Géza, Székelyudvarhely Turdean Katalin, Zilah

Megoldás. Hivatalból (1 pont)

a) Jelölje e a csoport semleges elemét. A megadott feltételbe, ha x = e, akkor

$$f(f(y)) = f(e) \cdot y$$
, bármely $y \in G$ esetén. (1)

Ha a (1) egyenletbe y = e, akkor f(f(e)) = f(e)e. Innen következik, hogy

$$f(f(e)) = f(e). (2)$$

(1 pont)

Legyen $x_1, x_2 \in G$ úgy, hogy $f(x_1) = f(x_2)$, ahonnan következik, hogy $f(f(x_1)) = f(f(x_2))$. Ekkor az (1) összefüggés alapján

$$\begin{cases} f(f(x_1)) = f(e) \cdot x_1, \\ f(f(x_2)) = f(e) \cdot x_2 \end{cases} \implies f(e)x_1 = f(e)x_2 \Longrightarrow x_1 = x_2 \Longrightarrow$$

f injektív. (1 pont)

Mivel f injektív a (2) $\Longrightarrow f(e) = e$. Felhasználva a (1) összefüggést és, hogy f(e) = e következik, hogy f(f(y)) = y, bármely $y \in G$ esetén.

Tehát $(f \circ f)(y) = y$ bármely $y \in G$ esetén. Innen következik, hogy $f \circ f = 1_G \Longrightarrow$ f szürjektív és $f^{-1} = f$ (1 pont)

Bizonyítjuk, hogy f morfizmus.

Az f morfizmus $\iff f(xy) = f(x)f(y), \forall x, y \in G$. Legyen $x, y \in G$. Az $y \in G$ esetén, létezik egyetlen egy $z \in G$ úgy, hogy f(z) = y.

$$f(xy) = f(x \cdot f(z)) = f(x)z = f(x) \cdot f^{-1}(y) = f(x) \cdot f(y).$$

Tehát f morfizmus.

Mivel f morfizmus és bijektív, az f automorfizmus.

(1 pont)

b) Ha a G-nek öt eleme van, akkor a (G, \cdot) ciklikus csoport. Tehát a $G = \{e, a, a^2, a^3, a^4\}$ alakú, ahol $a^5 = e$. (1 pont)

Az a) alpontban beláttuk, hogy $(f \circ f)(x) = x, \forall x \in G$, tehát az f bijektív és $f^{-1} = f$. Mivel f csoportautomorfizmus ezért f(e) = e. Mivel $f^{-1}(x) = f(x), \forall x \in G$, ezért ha f(x) = y, akkor f(y) = x. Az $f_1: G \to G$, $f_1(x) = x$ függvény teljesíti a megadott feltételt. (1 pont)

Ha $f \neq f_1$, akkor vizsgáljuk meg, hogy f(a) mivel lehet egyenlő.

Az $f(a) \neq e$, mert az f injektív.

Ha
$$f(a) = a$$
, akkor $f(a^k) = (f(a))^k = a^k \Longrightarrow f(x) = x, \forall x \in G.$ (1 pont)

Ha $f(a) \neq a$, akkor a következő esetek lehetnek:

- 1. $f(a) = a^2$, ekkor $f(a^2) = a \Longrightarrow (f(a))^2 = a \Longrightarrow a^4 = a \Longrightarrow a^3 = e$, ami ellentmondás.
- 2. $f(a) = a^3$, ekkor $f(a^3) = a \Longrightarrow (f(a))^3 = a \Longrightarrow a^9 = a \Longrightarrow a^4 = a \Longrightarrow a^3 = e$, ami ellentmondás.
- 3. $f(a) = a^4$, ekkor $f(a^4) = a \Longrightarrow (f(a))^4 = a \Longrightarrow a^{16} = a \Longrightarrow a = a$, ami lehetséges.

Tehát $f(a) = a^4$. Mivel f bijektív, akkor $f(a^2) = a^3$ és $f(a^3) = a^2$. Ekkor $(f(a))^2 = a^3$, ahonnan azt kapjuk, hogy $(a^4)^2 = a^3 \iff a^3 = a^3$, ami lehetséges. (1 pont)

Az $f(xf(y)) = f(x) \cdot y$, bármely $x, y \in G$ feltétel ekvivalens az $f(x) \cdot f(f(y)) = f(x) \cdot y$, bármely $x, y \in G$ feltétellel vagyis azzal, hogy $f(f(y)) = y, \forall y \in G$. Ezt a feltételt két függvény teljesíti: az $\frac{\mathbf{x} \quad | \mathbf{e} \quad \mathbf{a} \quad a^2 \quad a^3 \quad a^4}{\mathbf{f}(\mathbf{x}) \quad | \mathbf{e} \quad \mathbf{a} \quad a^2 \quad a^3 \quad a^4} \quad \text{és} \quad \frac{\mathbf{x} \quad | \mathbf{e} \quad \mathbf{a} \quad a^2 \quad a^3 \quad a^4}{\mathbf{f}(\mathbf{x}) \quad | \mathbf{e} \quad a^4 \quad a^3 \quad a^2 \quad \mathbf{a}}. \tag{1 pont}$

- 3. feladat (10 pont). Határozd meg azokat az $f:(0,+\infty)\to(0,+\infty)$ és $g:(0,+\infty)\to(0,+\infty)$ függvényeket, amelyek egyszerre teljesítik a következő feltételeket:
- a) az $F\colon (0,+\infty) \to (0,+\infty), F(x) = f(x)\cdot e^{-x}$ függvény a g függvény primitív függvénye;
- b) a $G: (0, +\infty) \to (0, +\infty), G(x) = g(x) \cdot e^{-x}$ függvény az f függvény primitív függvénye;
- c) f(x) > g(x), bármely $x \in (0, +\infty)$ esetén!

Bencze Mihály, Brassó

Megoldás. Hivatalból (1 pont)

Az a) feltétel szerint F deriválható, tehát $f:(0,+\infty)\longrightarrow (0,+\infty)$ és $f(x)=F(x)\cdot e^x$ is deriválható. Ugyanígy a b) feltételből azt kapjuk, hogy a g is deriválható. (1 pont)

$$a) \Longrightarrow F'(x) = g(x), \forall x \in (0, +\infty) \text{ és } b) \Longrightarrow G'(x) = f(x), \forall x \in (0, +\infty).$$

$$\begin{cases} G'(x) + F'(x) = f(x) + g(x), \forall x \in (0, +\infty) \\ G'(x) - F'(x) = f(x) - g(x), \forall x \in (0, +\infty) \end{cases} \implies \begin{cases} (G(x) + F(x))' = f(x) + g(x), \forall x \in (0, +\infty) \\ (G(x) - F(x))' = f(x) - g(x), \forall x \in (0, +\infty) \end{cases}$$

$$\begin{cases} ((g(x) + f(x))e^{-x})' = f(x) + g(x), \forall x \in (0, +\infty) \\ ((g(x) - f(x))e^{-x})' = f(x) - g(x), \forall x \in (0, +\infty) \end{cases}$$

(1 pont)

Tekintsük az $u:(0,+\infty)\longrightarrow (0,+\infty), u(x)=f(x)+g(x)$ és a $v:(0,+\infty)\longrightarrow (0,+\infty), v(x)=$ f(x) - g(x) függvényeket. Az u és v deriválhatóak és $(u(x) \cdot e^{-x})' = u(x), \forall x > 0$ és $-(v(x) \cdot e^{-x})' = u(x)$ $v(x), \forall x > 0.$

Rendre meghatározzuk az u és v függvényeket:

$$(u(x) \cdot e^{-x})' = u(x) \iff u'(x) \cdot e^{-x} - u(x)e^{-x} = u(x) \iff u'(x) = u(x)(1 + e^{x}), \forall x > 0.$$
 (1 pont)
Az $u(x) = f(x) + g(x) > 0, \forall x > 0$, tehát $u(x) \neq 0, \forall x > 0$.

Az
$$u(x) = f(x) + g(x) > 0$$
, $\forall x > 0$, tehát $u(x) \neq 0$, $\forall x > 0$.
Igy $\frac{u'(x)}{u(x)} = 1 + e^x$, azaz $(\ln u(x))' = 1 + e^x$, $\forall x > 0$. (1 pont)

Innen következik, hogy $\ln u(x) = x + e^x + k_1$, ahol $k_1 \in \mathbb{R}$, vagyis $u(x) = e^{x + e^x + k_1} = e^{k_1} \cdot e^{x + e^x} = ae^{x + e^x}$, ahol a > 0 tetszőleges valós szám. Tehát $f(x) + g(x) = a \cdot e^{x + e^x}, \forall x > 0$.

A
$$-(v(x) \cdot e^{-x})' = v(x) \iff -v'(x) \cdot e^{-x} + v(x)e^{-x} = v(x) \iff v'(x) = v(x)(1 - e^x), \forall x > 0.$$

A $v(x) = f(x) - g(x) > 0, \forall x > 0$, tehát $v(x) \neq 0, \forall x > 0$.

Igy
$$\frac{v'(x)}{v(x)} = 1 - e^x$$
, azaz $(\ln v(x))' = 1 - e^x$, $\forall x > 0$. (1 pont)

Innen következik, hogy $\ln v(x) = x - e^x + k_2$, ahol $k_2 \in \mathbb{R}$, vagyis $v(x) = b \cdot e^{x - e^x}$, $\forall x > 0$, ahol b > 0tetszőleges valós szám. Tehát $f(x) - g(x) = b \cdot e^{x - e^x}, \forall x > 0.$ Tehát

$$\begin{cases} f(x) + g(x) = a \cdot e^{x + e^x}, \forall x \in (0, +\infty) \\ f(x) - g(x) = b \cdot e^{x - e^x}, \forall x \in (0, +\infty) \end{cases}.$$

(1 pont)

Innen azt kapjuk, hogy

$$\begin{cases} f(x) = \frac{1}{2} \left(a \cdot e^{x + e^x} + b \cdot e^{x - e^x} \right), \forall x \in (0, +\infty) \\ g(x) = \frac{1}{2} \left(a \cdot e^{x + e^x} - b \cdot e^{x - e^x} \right), \forall x \in (0, +\infty) \end{cases}$$

Mivel a és b pozitívak, ezért $f(x) > 0, \forall x > 0$. Ahhoz, hogy $g(x) > 0, \forall x > 0$ teljesüljön az szükséges, hogy $a \cdot e^{x+e^x} > b \cdot e^{x-e^x}, \forall x > 0$ vagyis, hogy $a \cdot e^{e^x} > be^{-e^{-x}}, \forall x > 0$. Innen azt kapjuk, hogy $e^{2e^x}>\frac{b}{a}, \forall x>0$. A $h(x)=e^{2e^x}, \forall x>0$ függvény szigorúan növekvő és folytonos. Tehát $\inf_{x>0}h(x)=\lim_{x\searrow 0}h(x)=e^2$. Tehát $\frac{b}{a}\leq e^2$, azaz $b\leq e^2\cdot a$.

4. feladat (10 pont). A (G, \cdot) véges csoportnak 2n eleme van. Legyen $H = \{x \in G \mid x^2 = e\}$, ahol $e \ a \ (G, \cdot)$ csoport semleges eleme. Jelölje |H| a H halmaz számosságát.

a) Igazold, hogy ha $|H| \ge n+1$ és $x \cdot y \in H$, bármely $x,y \in H$ esetén, akkor a (G,\cdot) Abel-féle csoport!

b) Igazold, hogy ha n páratlan, akkor $|H| \le n + 1$.

(***)

Megoldás. Hivatalból

(1 pont)

a) Legyen x és y a H két tetszőleges eleme. Ezért $x^2=e$ és $y^2=e$, és $(xy)^2=e$,mert $xy\in H$. Innen azt kapjuk, hogy $x^2y^2=e\cdot e=e=(xy)^2\Longrightarrow x^2y^2=(xy)^2\Longrightarrow xxyy=xyxy$, ahonnan következik, hogy xy=yx. Tehát $xy=yx, \forall x,y\in H$ esetén. (1 pont)

 $x^2=e\Longrightarrow x^{-1}=x\Longrightarrow (x^{-1})^2=x^2=e\Longrightarrow x^{-1}\in H.$ Tehát a (H,\cdot) részcsoportja a (G,\cdot) csoportnak.

Lagrange tétele alapján a H rendje osztója a G rendjének. Mivel $|H| \ge n + 1$ és |G| = 2n ezért |H| = 2n, mert ha egy természetes szám osztója nagyobb a szám felénél, akkor az maga a szám. Tehát H = G.

Mivel $xy = yx, \forall x, y \in H$ ezért $xy = yx, \forall x, y \in G$, tehát a (G, \cdot) Abel- féle csoport. (1 pont)

b) Legyen $H = \{a_0, a_1, a_2, ..., a_k\}$. Feltételezzük, hogy k > n vagyis $k \ge n + 1$.

Mivel $e^2 = e$, az $e \in H$, és feltételezhetjük, hogy $a_0 = e$. (1 pont)

Ha $a_i, a_j \in H, i \neq j$ és $a_i \neq e, a_j \neq e$, akkor $a_i a_j \notin H$. Valóban, ha $a_i \cdot a_j \in H$, akkor a $H_1 = \{e, a_i, a_j, a_i a_j\}$ részcsoportja lenne a G-nek.

A H_1 - nek négy különböző eleme van, mert $a_i \cdot a_j \neq a_i, a_i \cdot a_j \neq a_j$ és $a_i \cdot a_j \neq e$, ugyanis, ha $a_i \cdot a_j = e$, akkor $a_i \cdot a_j = e = a_i \cdot a_i$, ahonnan $a_j = a_i$ következne. (1 pont)

Tehát H_1 -nek négy eleme van. Mivel (H_1, \cdot) részcsoportja a (G, \cdot) csoportnak, következik, hogy 4|2n vagyis 2|n, ami ellentmondás, mert n páratlan. (1 pont)

Ha i, j > 0 és $i \neq j$ akkor az $a_1 a_2, a_1 a_3, ..., a_1 a_k$ elemek egyike sem e és mind benne vannak a $G \setminus H$ halmazban. Ezen elemek száma k - 1. Ez viszont lehetetlen, mivel a

$$2n = |G| = |H| + |G \setminus H| \ge k + 1 + k - 1 \ge 2(n+1) > 2n$$

ellentmondáshoz vezet. (1 pont)

6/6