

Universidade Federal de Sergipe - UFS

Departamento de Sistemas de Informação - Itabaiana - DSI/Ita **Programação II - SINF0064**

Exercício 13 - A Tartatura e a Lebre

Prof. Dr. Alcides Xavier Benicasa

Exercício EM DUPLA AVALIATIVO

Envio: encaminhar arquivos para SIGAA Assunto: EX13 - A Tartatura e a Lebre

Simulação: A Lebre e a Tartaruga. Neste problema você recriará um dos momentos verdadeiramente grandiosos da história, a saber, a corrida clássica entre a tartaruga e a lebre. Você usará a geração aleatória de números para desenvolver uma simulação desse memorável evento.

Nossos competidores começam a corrida no "*Quadrado 1*" de 70 quadrados. Cada quadrado representa uma posição possível ao longo do trajeto da corrida. A linha de chegada está no quadrado 70. O primeiro concorrente a alcançar ou passar do quadrado 70 é recompensado com um balde de cenouras e alface. O trajeto é percorrido por uma montanha escorregadia, de modo que, ocasionalmente, os competidores perdem o contato com o chão.

Há um relógio que apresenta o tempo em os segundos. A cada segundo indicado pelo relógio, seu programa deverá ajustar a posição dos animais de acordo com as seguintes regras: Use variáveis para controlar as posições dos animais (ou seja, os números das posições vão de 1 a 70). O jogo deve começar com os dois animais na posição 1 (ou seja, "na linha de partida"). Se um animal escorregar para antes do quadrado 1, mova-o de volta para o quadrado 1.

Tabela 1: Regras referentes aos movimentos feitos pela tartaruga e pela lebre usados no ajuste

de posições.

Animal	Tipo do movimento	Porcentagem do tempo	Movimento real
Tartaruga	Caminha rapidamente	50%	3 quadrados à direita
	Escorrega	20%	6 quadrados à esquerda
	Caminha lentamente	30%	1 quadrado à direita
Lebre	Dorme	20%	Não faz nenhum movimento
	Dá um salto grande	20%	9 quadrados à direita
	Escorrega bastante	10%	12 quadrados à esquerda
	Dá um salto pequeno	30%	1 quadrados à direita
	Escorrega pouco	20%	2 quadrados à esquerda

Gere as porcentagens da tabela anterior produzindo um inteiro aleatório, i, na faixa de $1 \le i \le 10$. No caso da tartaruga, execute um "caminha rapidamente" quando $1 \le i \le 5$, um "escorrega" quando $6 \le i \le 7$ ou um "caminha lentamente" quando $8 \le i \le 10$. Use uma técnica similar para mover a lebre.

Comece a corrida imprimindo: BANG!!!! E LÁ VÃO ELES!!!!

Depois, para cada segundo marcado pelo relógio (ou seja, a cada repetição do loop), imprima uma linha com 70 posições mostrando a letra "T" na posição da tartaruga e "L" na posição da lebre. Ocasionalmente, os competidores estarão no mesmo quadrado. Nesse caso, a tartaruga morde a lebre e seu programa deve imprimir "AI!!!" iniciando naquela posição. Todas as posições impressas diferentes das que levam o "T", o "L" ou a palavra "AI!!!" (no caso de os animais ocuparem o mesmo quadrado) devem estar em branco.

Depois de cada linha ser impressa, teste se algum dos animais alcançou ou passou do quadrado 70. Em caso positivo, imprima o vencedor e termine a simulação. Se a tartaruga vencer, imprima TARTARUGA VENCEU!!! É ISSO AÍ!!! Se a lebre vencer, imprima LEBRE VENCEU!!! MARMELADA!!! Se ambos os animais vencerem na mesma batida do relógio, você pode querer favorecer a tartaruga ("a parte mais fraca") ou pode desejar imprimir HOUVE UM EMPATE. Se nenhum animal vencer, realize o *loop* novamente para simular a próxima batida do relógio.

Quando estiverem prontos para executar o programa, montem um grupo de fãs para assistirem a corrida. Vocês ficarão surpresos ao verem como eles se mostrarão interessados!

Utilizar os conceitos de PONTEIROS e ALOCAÇÃO DINÂMICA que julgarem necessários.