Area and the Definite Integral P-Set

Using the left endpoints, approximate the area under each curve above the x-axis using

- (a) 4 rectangles and
- (b) 8 rectangles

1.
$$f(x) = x^2 + 2$$
 from $x = 0$ to 4
2. $f(x) = x^3$ from $x = 0$ to 4

2.
$$f(x) = x^3$$
 from $x = 0$ to 4

3.
$$f(x) = \frac{1}{x}$$
 from $x = 1$ to 5

Using the right endpoints, approximate the area under each curve above the x-axis using

- (a) 4 rectangles and
- (b) 8 rectangles

4.
$$f(x) = x^2 + 2$$
 from $x = 0$ to 4

4.
$$f(x) = x^2 + 2$$
 from $x = 0$ to 4 5. $f(x) = x^3$ from $x = 0$ to 4

6.
$$f(x) = \frac{1}{x}$$
 from $x = 1$ to 5

Use a graphing utility to find the area under the curve for each given interval.

7.
$$\int_0^4 (x^2 + 2) dx$$

8.
$$\int_0^4 x^3 dx$$

$$9. \int_1^5 \frac{1}{x} \, \mathrm{d}x$$

Provide a sketch of the area under the curve for each. Then use a graphing utility to approximate the area.

10.
$$\int_{1}^{6} (x^3 + 1) dx$$

11.
$$\int_0^9 \sqrt{x} \, dx$$

12.
$$\int_{-2}^{5} |x| \, dx$$

Area and the Definite Integral KEY

1. (a) 22 (b) $\frac{51}{2}$

2. (a) 36 (b) 49

3. (a) $\frac{25}{12}$ (b) $\frac{4609}{2520}$

4. (a) 38 (b) 33.5

5. (a) 100 (b) 81

6. (a) $\frac{77}{60}$ (b) $\frac{3601}{2520}$

7. $\frac{88}{3} = 29.\overline{3}$

8. 64

9. about 1.6094

10. 328.75

11. 18

12. 14.5

