

TGFb+MMP+ifn b Sequence

10	20	30	40	50	60
1234567890	1234567890	1234567890	1234567890	1234567890	1234567890
ATGAGGACTC	CAGGGCTGAG	GGAGCTGCGG	CCTCTGCAC	CGCTGCTGTC	GCTACTGTTG
MetProProS	erGlyLeuAr	gLeuLeuPro	LeuLeuLeuP	roLeuLeuTr	pLeuLeuVal
CCTGACGCTG	CCCGGGGAGC	CCCTGGACTA	TCCACCTGCA	AGACTATOGA	CATGGAGCTG
LeuThrProG	lyProProAl	aAlaGlyLeu	SerThrCysL	ysThrIleAs	pMetGluLeu
GTGAAGGOGGA	AGOGCATOGA	GGCCATODGC	GGCCAGATCC	TCTCCAAGCT	GGGCCCTGCC
ValLysArgL	ysArgIleGl	uAlalleArg	GlyGlnIleL	euSerLysLe	uArgLeuAla
AGCCCCCGGA	GGCAGGGGGGA	GGTGGCGGCC	GGCCCCGCTGC	CGAGAGGCGT	GCTCGCCCTG
SerProProS	erGlnGlyGl	uValProPro	GlyProLeuP	roGluAlaVa	lLeuAlaLeu
TACAACAGCA	CCCGGAGACCG	GGTGGCGGGG	GAGAGTCCAG	AACOGGAGCC	CGAGCTGAG
TyrAsnSerT	hrArgAspAr	gValAlaGly	GluSerAlaG	luProGluPr	oGluProGlu
CGCGACTACT	ACGCCAAGGA	GGTCAACCGC	GTGCTAACTG	TEGAAACCCA	CAAOGAAATC
AlaAspTyrT	yrAlaLysGl	uValThrArg	ValLeuMetV	alGluThrHi	sAsnGluIle
TATGACAAGT	TCAAGCAGAG	TACACACAGC	ATATATATGT	TCTTCAACAC	ATCAGAGCTC
TyrAspLysP	heLysGlnSe	rThrHisSer	IleTyrMetP	hePheAsnTh	rSerGluLeu
CGAGAACCGG	TACCTGAAACC	CGTGTGCTC	TCCCCGGCAG	AGCTGGCTCT	GCTGAGGAGG
ArgGluAlaV	alProGluPr	oValLeuLeu	SerArgAlaG	luLeuArgLe	uLeuArgArg
CCTCAAGTTA	AAAGTGGAGCA	GCAGCTGGAG	CTGTACCCAGA	AATACAGCAA	CAATTCCCTGG
LeuLysLeuL	ysValGluGl	nHisValGlu	LeuTyrGlnL	ysTyrSerAs	nAsnSerTrp
CGATAOCTCA	GCAACCGCT	GCTGGCAOC	AGCGACTCCC	CAGAGTGGTT	ATCTTTTGAT
ArgTyrLeuS	erAsnArgLe	uLeuAlaPro	SerAspSerP	roGluTrpLe	uSerPheAsp
GTCACCGGAG	TITGTGGGCA	GTGGTTGAGC	CGTGGAGGGG	AAATIGAGGG	CTTTCGCGCTT
ValThrGlyV	alValArgGl	nTrpLeuSer	ArgGlyGlyG	luIleGluGl	yPheArgLeu
ACGGCCACT	GCTCTGTGA	CAGCAGGGAT	AACACACTCC	AAGTGGACAT	CAACGGGTC
SerAlaHisC	ysSerCysAs	pSerArgAsp	AsnThrIleG	lnValAspIl	eAsnGlyPhe
ACTACCGGOC	GGCGAGGTGA	CCTGGCCACC	ATTCACTCCA	TGAACCGGCC	TTTCTGCTT
ThrThrGlyA	rgArgGlyAs	pLeuAlaThr	IleHisGlyM	etAsnArgPr	oPheLeuLeu
CCTCATGGOCA	CCCCGCTGGA	GAAGGCGCAG	CATCTGAAA	CGAAATTGGG	<u>GGGACCGGA</u>
LeuMetAlaT	hrProLeuGl	uArgAlaGln	HisLeuGlnS	erGluPheGl	yGlyGlyGly
<u>TCCCCGCTAG</u>	<u>GGCTTGGGCG</u>	<u>GGGAGGGGGC</u>	<u>TCAGGGCGCG</u>	<u>CAATCAACTA</u>	<u>TAACCGAGCTC</u>
SerProLeuG	lyLeuTrpAl	aGlyGlyGly	SerAlaAlaA	laIleAsnTy	rLysGlnLeu
CAGCTOCAAG	AAAGGACGAA	CATTGGAAA	TGTCAGGAGC	TOCTGGAGCA	GCTGAATGGA
GlnLeuGlnG	luArgThrAs	nIleArgLys	CysGlnGluL	euLeuGluGl	nIleAsnGly

TGF β +MMP+ifn β Sequence

10	20	30	40	50	60	
1234567890	1234567890	1234567890	1234567890	1234567890	1234567890	
AAGATCAACC	TCACTTACAG	GGCGGACTTC	AAGATCCCTA	TGGAGATGAC	GGAGAAAGATG	1020
LysIleAsnL	euThrTyrAr	gAlaAspPhe	LysIleProM	etGluMetTh	rGluLysMet	
CAGAACAGTT	ACACTGCCTT	TGCCATOCAA	GAGATGCTCC	AGAATGCTTT	TCTTGCTTC	1080
GlnLysSerT	yrThrAlaPh	eAlaIleGln	GluMetLeuG	InAsnValPh	eLeuValPhe	
AGAAACAAATT	TCTCCAGCAC	TGGGTCGAAT	GAGACTATTG	TTGTACGCTC	CTCTGGATGAA	1140
ArgAsnAsnP	heSerSerTh	rGlyTrpAsn	GluThrIleV	alValArgLe	uLeuAspGlu	
CTOCACCAGC	AGACAGTGT	TCTGAAGACA	GTACTAGAGG	AAAAGCAAGA	GGAAACAGATTG	1200
LeuHisGlnG	lnThrValPh	eLeuLysThr	ValLeuGluG	luLysGlnGl	uGluArgLeu	
AOGTGGGAGA	TGCTCTAAC	TGCTCTCAC	TTCAGAGAGCT	ATTAATGGAG	GGTGCAAAGG	1260
ThrTrpGluM	etSerSerTh	rAlaLeuHis	LeuLysSerT	yrTyrTrpAr	gValGlnArg	
TACCTTAAAC	TCATGAAGTA	CAACAGCTAC	GCCTGGATGG	TGGTCGGAGC	AGAGATCTTC	1320
TyrLeuLysL	euMetLysTy	rAsnSerTyr	AlaTrpMetV	alValArgAl	aGluIlePhe	
AGGAACCTTC	TCATCATTCG	AAGACTTACC	AGAAACTTCC	AAAATGATC	TAGAACC	1376
ArgAsnPheL	euIleIleAr	gArgLeuThr	ArgAsnPheG	InAsn...	Se rArg	
				uGA		

ifn+MMP+TGF β Sequence

10	20	30	40	50	60
1234567890	1234567890	1234567890	1234567890	1234567890	1234567890
AIGAACAAACA	GGTGGATCCT	CCAGGCTCGG	TTCCTGCCTGT	GCTTCTCCAC	CACAGGCCCT
MetAsnAsnA	rgTrpIleLe	uHisAlaAla	PheLeuLeuC	ysPheSerTh	rThrAlaLeu
60					
TOCATCAACT	ATAAGCAGCT	CCAGCTCCAA	AAAGGAOGA	ACATTOGGAA	ATGTCAGGAG
SerIleAsnT	yrLysGlnLe	uGlnLeuGln	GluArgThrA	sIleArgLy	sCysGlnGlu
120					
CTCCTGGAGC	AGCTGAATGG	AAAGATCAAC	CTCACCTACA	GGGGGGACTT	CAAGATCCCT
LeuLeuGluG	InLeuAsnGl	yLysIleAsn	LeuThrTyrA	rgAlaAspPh	eLysIlePro
180					
ATGGAGATGA	CGGACAAAGAT	CCAGAAGAGT	TACACTGCT	TTCGCATCCA	AGAGATGCTC
MetGluMetT	hrGluLysMe	uGlnLysSer	TyrThrAlaP	heAlaIleGl	nGluMetLeu
240					
CAGAAATGTCT	TTCCTGCTTT	CAGAAACAAT	TTCTOCAGCA	CTGGGTGGAA	TGAGACTATT
GlnAsnValP	heLeuValPh	eArgAsnAsn	PheSerSerT	hrGlyTrpAs	nGluThrIle
300					
GTGTTACGTC	TCCTGGATGA	ACTCCACCAG	CAGACAGTGT	TTCCTGAAGAC	AGTACTAGAG
ValValArgL	euLeuAspGl	uLeuHisGln	GlnThrValP	heLeuLysTh	rValLeuGlu
360					
GAAAAGCAAG	AGGAAAGATT	GAAGTGGGAG	ATGTCCTCAA	CTGCTCTCCA	CTTGAAGAGC
GluLysGlnG	luGluArgLe	uThrTrpGlu	MetSerSerT	hrAlaLeuHi	sLeuLysSer
420					
TATTACTGGG	GGGTGCAAAG	GTACCTTAAA	CTCATGAAGT	ACAAACAGCTA	GGCCCTGGATG
TyrTyrTrpA	rgValGlnAr	gTyrLeuLys	LeuMetLysT	yrAsnSerTy	rAlaTrpMet
480					
GTGGTCCGAG	CAGACATCTT	CAGGAACCTT	CTCATCATTC	GAAGACTTAC	CAGAAACTTC
ValValArgA	laGluIlePh	eArgAsnPhe	LeuIleIleA	rgArgLeuTh	rArgAsnPhe
540					
CAAAACQAAT	TC <u>CCCCGAGG</u>	CGGAT <u>CCCCCG</u>	CTGGGCTT	GGGGGGGGAG	GGGCTT <u>CCCC</u>
GlnAsnGluP	heGlyGlyGl	yGlySerPro	LeuGlyLeuF	rpAlaGlyGl	yGlySerAla
600					
GGCGCACTAT	CCACCTGCAA	GACTATGAC	ATGGAGCTGG	TGAAGGGAA	GGCCATCGAG
AlaAlaLeuS	erThrCysLy	sThrIleAsp	MetGluLeuV	allysArgLy	sArgIleGlu
660					
GGCATCGCG	GGCAGATCCT	GTGCAAGCTG	GGGCTCGGCA	GGCCCCGGAG	GGAGGGGGAG
AlaIleArgG	lyGlnIleLe	uSerLysLeu	ArgLeuAlaS	erProProSe	rGlnGlyGlu
720					
GTGGGGGGGG	GGGGCTGOC	CGAGGCGGTC	CTGCCCCGT	ACAAACAGCAC	CGCGGACCGG
ValProProG	lyProLeuPr	cGluAlaVal	LeuAlaLeuT	yrAsnSerTh	rArgAspArg
780					
GTGGGGGGGG	AGAGTGAGA	ACGGGAGCCC	GAGCTTGAGG	CGACTACTA	GGCCAAGGAG
ValAlaGlyG	luSerAlaGl	uProGluPro	GluProGluA	laAspTyrTy	rAlaLysGlu
840					
GTCACCCGCG	TGCTAACTGGT	GGAAACCCAC	AACGAAATCT	ATGACAAGTT	CAAGCAGAGT
ValThrArgV	alLeuMetVa	lGluThrHis	AsnGluIleT	yrAspLysPh	eLysGlnSer
900					
ACACACAGCA	TATATATGTT	CTCAACACA	TCAGAGCTOC	GAGAAGCCGT	ACCTGAACCC
ThrHisSerI	leTyrMetPh	ePheAsnThr	SerGluLeuA	rgGluAlaVa	lProGluPro
960					

Fig. 2

Ifn+MMP+TGFb Sequence

10	20	30	40	50	60	
1234567890	1234567890	1234567890	1234567890	1234567890	1234567890	1234567890
GIGITGCTCT	CCCAGGAGA	GCTGCGCTTG	CTGAGGGAGC	TCAAGTTAAA	ACTGGAGGAG	1020
VaLeuLeuS	erArgAlaGl	uIeuArgLeu	LeuArgArgL	eIysLeuIy	sValGluGln	
CACGTGGAGC	TGTACAGAA	ATACAGCAAC	AATTCTGGC	GATACTTCAG	CAACCGGCTG	1080
HisValGlul	euTyrGlnIly	sTyrSerAsn	AsnSerTrpA	rgTyrLeuSe	rAsnArgLeu	
CTGGCACCCCA	GGGACTGCC	AGAGTGGTTA	TCTTTTGATG	TCACOOGGAGT	TGIGGGCAG	1140
LeuAlaProS	erAspSerPr	cGluTrpLeu	SerPheAspV	alThrGlyVa	IValArgGln	
TGGTTGAGCC	GIGGAGGGGA	AATTGAGGGC	TTTGGCTTA	GGGGCCACTG	CTCCCTGTGAC	1200
TrpLeuSerA	rgGlyGlyGl	uIleGluGly	PheArgLeuS	erAlaHisCy	sSerCysAsp	
AGCAGGGATA	ACACACTGCA	AGTGGACATC	AAAGGGTICA	CTACCGGCG	CGGAGGTGAC	1260
SerArgAspA	snThrLeuGl	nValAspIle	AsnGlyPheT	hrThrGlyAr	gArgGlyAsp	
CTGGCCACCA	TTCATGGCAT	GAACCGGCT	TTCCTGCTTC	TCATGGCCAC	CCCGCTGGAG	1320
LeuAlaThrI	leHisGlyMe	tAsnArgPro	PheLeuLeuL	euMetAlaTh	rProLeuGlu	
AGGGCCCCAGC	ATCTGCAAAG	CtgaTCTAGA	CC			1362
ArgAlaGlnH	isLeuGlnSe	r...SerArg				

Fig. 3

Protein	Sequence	Reference
MMP-1/MMP-8		
Human type I collagen (α_1)	Ala-Pro-Gln-Gly ₁₆ ~Ile ₁₇ -Ala-Gly-Gin	80
Human type I collagen (α_2)	Gly-Pro-Gln-Gly ₁₅ ~Leu ₁₆ -Leu-Gly-Ala	80
Human type II collagen	Gly-Pro-Gln-Gly ₁₅ ~Leu ₁₆ -Ala-Gly-Gin	80
Human type III collagen	Gly-Pro-Leu-Gly ₁₅ ~Ile ₁₆ -Ala-Gly-Ile	80
Human α_2 -macroglobulin	Gly-Pro-Glu-Gly ₁₇ ~Leu ₁₈ -Arg-Val-Gly	84
Rat α_2 -macroglobulin	Ala-Ala-Tyr-His ₆₁ ~Leu ₆₂ -Val-Ser-Gln	84
Rat α_2 -macroglobulin	Met-Asp-Ala-Phe ₆₁ ~Leu ₆₂ -Gln-Ser-Ser	84
Rat α_2 -macroglobulin	Glu-Pro-Gln-Ala ₆₃ ~Leu ₆₄ -Ala-Met-Ser	84
Rat α_1 -macroglobulin	Gln-Ala-Leu-Ala ₆₃ ~Met ₆₄ -Ser-Ala-Ile	84
Rat α_1 -macroglobulin	Pro-Ser-Tyr-Phe ₆₁ ~Leu ₆₂ -Asn-Ala-Gly	79
Chicken ovostatin	Tyr-Glu-Ala-Gly ₆₃ ~Leu ₆₄ -Gly-Val-Val	84
Human pregnancy zone protein	Ala-Gly-Leu-Gly ₆₁ ~Val ₆₂ -Val-Glu-Arg	84
Human pregnancy zone protein	Ala-Gly-Leu-Gly ₆₁ ~Ile ₆₂ -Ser-Ser-Thr	84
α_1 -Protease inhibitor	Gly-Ala-Met-Phe ₆₂ ~Leu ₆₃ -Glu-Ala-Ile	85
Human aggrecan	Ile-Pro-Glu-Asn ₆₁ ~Phe ₆₂ -Phe-Gly-Val	86
Human aggrecan	Thr-Glu-Gly-Gly ₆₁ ~Ala ₆₂ -Arg-Gly-Ser	86
Human cartilage link	Arg-Ala-Ile-His ₆₁ ~Ile ₆₂ -Gln-Ala-Glu	87
Human insulin-like growth factor binding protein-3	Leu-Arg-Ala-Tyr ₆₀ ~Leu ₆₁ -Leu-Pro-Ala	88
MMP-2		
Guinea pig α_1 (I) gelatin	Gly-Ala-Hyp-Gly ₃₇ ~Leu ₃₈ -Glx-Gly-His	24
Rat α_1 (I) gelatin	Gly-Pro-Gln-Gly ₁₀ ~Val ₁₁ -Arg-Gly-Glu	30
Rat α_1 (I) gelatin	Gly-Pro-Ala-Gly ₂₁ ~Val ₂₂ -Gln-Gly-Pro	30
Rat α_1 (I) gelatin	Gly-Pro-Ser-Gly ₃₀ ~Leu ₃₁ -Hyp-Gly-Pro	30
Rat α_1 (I) gelatin	Gly-Pro-Ala-Gly ₃₁ ~Glu ₃₂ -Arg-Gly-Ser	30
Rat α_1 (I) gelatin	Gly-Ala-Lys-Gly ₃₀ ~Leu ₃₁ -Thr-Gly-Ser	30
Rat α_1 (I) gelatin	Gly-Pro-Ala-Gly ₃₂ ~Gln ₃₃ -Asp-Gly-Pro	30
Rat α_1 (I) gelatin	Gly-Pro-Ala-Gly ₆₄ ~Phe ₆₅ -Ala-Gly-Pro	30
Rat α_1 (I) gelatin	Gly-Pro-Ile-Gly ₆₅ ~Asn ₆₆ -Val-Gly-Ala	30
Rat α_1 (I) gelatin	Gly-Pro-Hyl-Gly ₆₅ ~Ser ₆₆ -Arg-Gly-Ala	30
Bovine type I collagen (α_1)	Gly-Pro-Gln-Gly ₁₅ ~Ile ₁₆ -Ala-Gly-Gin	22
Bovine type I collagen (α_2)	Gly-Pro-Gln-Gly ₁₅ ~Leu ₁₆ -Leu-Gly-Ala	22
Human aggrecan	Ile-Pro-Glu-Asn ₆₁ ~Phe ₆₂ -Phe-Gly-Val	89
Human galectin-3	Pro-Pro-Gly-Ala ₆₂ ~Tyr ₆₃ -His-Gly-Ala	90
Human cartilage link	Arg-Ala-Ile-His ₆₁ ~Ile ₆₂ -Gln-Ala-Glu	87
Human cartilage link	Gly-Pro-His-Leu ₆₁ ~Leu ₆₂ -Val-Gln-Ala	87
Human insulin-like growth factor binding protein-3	Leu-Arg-Ala-Tyr ₆₀ ~Leu ₆₁ -Leu-Pro-Ala	88
MMP-3		
Human α_2 -macroglobulin	Gly-Pro-Glu-Gly ₆₉ ~Leu ₇₀ -Arg-Val-Gly	79
Human α_2 -macroglobulin	Arg-Val-Gly-Phe ₆₉ ~Tyr ₇₀ -Glu-Ser-Asp	79
Human α_1 -antichymotrypsin	Leu-Leu-Ser-Ala ₇₀ ~Leu ₇₁ -Val-Glu-Thr	91
α_1 -protease inhibitor	Glu-Ala-Ile-Pro ₇₁ ~Met ₇₂ -Ser-Ile-Pro	91
Antithrombin III	Ile-Ala-Gly-Ala ₇₃ ~Ser ₇₄ -Leu-Asn-Pro	91
Chicken ovostatin	Leu-Asn-Ala-Gly ₇₇ ~Phe ₇₈ -Thr-Ala-Ser	79, 92
Human aggrecan	Ile-Pro-Glu-Asn ₇₈ ~Phe ₇₉ -Phe-Gly-Val	93
Substance P	Lys-Pro-Gln-Gln ₇₈ ~Phe ₇₉ -Phe-Gly-Leu	37
Human ProMMP-1	Asp-Val-Ala-Gln ₇₈ ~Phe ₇₉ -Val-Leu-Thr	43
Human ProMMP-3	Asp-Thr-Leu-Glu ₇₈ ~Val ₇₉ -Met-Arg-Lys	94
Human ProMMP-3	Asp-Val-Gly-His ₇₈ ~Phe ₇₉ -Arg-Thr-Phe	94
Human ProMMP-8	Asp-Ser-Gly-Gly ₇₈ ~Phe ₇₉ -Met-Leu-Thr	95
Human ProMMP-9	Arg-Val-Ala-Glu ₇₈ ~Met ₇₉ -Arg-Gly-Glu	48
Human ProMMP-9	Asp-Leu-Gly-Arg ₇₈ ~Phe ₇₉ -Gln-Thr-Phe	48
Human fibronectin	Pro-Phe-Ser-Pro ₇₈ ~Leu ₇₉ -Val-Ala-Thr	21

Fig. 4

	Sequence	Reference
Bovine insulin-like growth factor binding protein-3	Leu-Arg-Ala-Tyr ₉₉ ~Leu ₁₀₀ -Leu-Pro-Ala Ala-Pro-Gly-Asn ₁₀₀ ~Ala ₁₀₁ -Ser-Glu-Ser	88 88
Bovine $\alpha 1$ (II) collagen, N-telopeptide	Phe-Ser-Ser-Glu ₁₁₆ ~Ser ₁₁₇ -Lys-Arg-Glu	88
Bovine $\alpha 1$ (II) collagen, N-telopeptide	Ala-Gly-Gly-Ala ₁₁₈ ~Gln ₁₁₉ -Met-Gly-Val	96
Bovine $\alpha 1$ (IX) collagen, NC2	Gln-Met-Gly-Val ₁₁₉ ~Met ₁₂₀ -Gln-Gly-Pro	96
Bovine $\alpha 2$ (IX) collagen, NC2	Met-Ala-Ala-Ser~Leu-Lys-Arg-Pro	96
Bovine $\alpha 3$ (IX) collagen, NC2	~Ala-Lys-Arg-Glu	96
Bovine $\alpha 1$ (XI) collagen, N- telopeptide	~Leu-Arg-Lys-Pro	96
Bovine $\alpha 1$ (XI) collagen, N- telopeptide	Gln-Ala-Gin-Ala~Leu-Leu-Gln-Gln	96
Human cartilage link	Arg-Ala-Ile-His ₁₆ ~Ile ₁₇ -Gln-Ala-Glu	87
Bovine insulin, B chain	Leu-Val-Glu-Ala ₁₄ ~Leu ₁₅ -Tyr~Leu-Val	97
Bovine insulin, B chain	Glu-Ala-Leu-Tyr ₁₅ ~Leu ₁₆ -Val-Cys-Gly	21, 97
MMP-7	Ile-Pro-Glu-Asn ₃₄ ~Phe ₃₅ -Phe-Gly-Val	89
Human aggrecan	Gly-Pro-His-Leu ₃₅ ~Leu ₃₆ -Val-Glu-Ala	87
Human aggrecan	Pro-Pro-Glu-Glu ₃₆ ~Leu ₃₇ -Lys-Phe-Gln	98
MMP-9		
Human type V collagen ($\alpha 1$)	Gly-Pro-Pro-Gly ₄₉ ~Val ₅₀ -Val-Gly-Pro	99
Human type V collagen ($\alpha 2$)	Gly-Pro-Pro-Gly ₄₉ ~Leu ₅₀ -Arg-Gly-Glu	99
Human type XI collagen ($\alpha 1$)	Gly-Pro-Gly-Gly ₄₉ ~Val ₅₀ -Val-Gly-Pro	99
Human aggrecan	Ile-Pro-Glu-Asn ₅₁ ~Phe ₅₂ -Phe-Gly-Val	89
Human galectin-3	Pro-Pro-Gly-Ala ₅₂ ~Tyr ₅₃ -His-Gly-Ala	90
Human cartilage link	Arg-Ala-Ile-His ₁₆ ~Ile ₁₇ -Gln-Ala-Glu	87
MMP-10		
Human cartilage link	Arg-Ala-Ile-His ₁₆ ~Ile ₁₇ -Gln-Ala-Glu	87
Human cartilage link	Gly-Pro-His-Leu ₂₅ ~Leu ₂₆ -Val-Glu-Ala	87

Fig. 5

R D T D T D E D E L C C

M.W. 1 2 3

Fig. 6

Protein **Lanes**

	1	2	M.W.	3	4	5	6
LAP-IFN	+	-		+	-	+	-
IFN-LAP	-	+		-	+	-	+
MMP1	-	-		-	-	+	+
MMP3	-	-		+	+	-	-

Fig. 7

Fig. 8a

Fig. 8b

A.

B.

Fig. 9

Fig. 10. Effect of IFN- β on EAE in C57BL/6 mice.

A.

B.

Fig. 10