Relativistic Electrodynamics

1. The earth and sun are 8.3 light-minutes apart. Ignore their relative motion for this problem and assume they live in a single inertial frame, the Earth-Sun frame. In this frame, two events A and B occur at t=0 on the earth and at 2 minutes on the sun respectively. Find the time difference between the events according to an observer moving at u=0.8c from Earth to Sun. Repeat if observer is moving in the opposite direction at u=0.8c.

[2 marks]

- 2. A muon has a lifetime of $2 \times 10^{-6} s$ in its rest frame. It is created 100km above the earth and moves towards it at a speed of $2.97 \times 10^8 m/s$. In the rest frame of the Earth, how far does it travel before it decays? [2 marks]
- 3. An observer S who lives on the x-axis sees a flash of red light at x = 1210m, then after $4.96\mu s$, a flash of blue at x = 480m. Use subscripts R and B to label the coordinates of the events.
 - (a) What is the velocity relative to S of an observer S' who records the events as occurring at the same place?
 - (b) Which event occurs first according to S' and what is the measured time interval between these flashes?

[2 marks]

- 4. A body of rest mass m moving at speed v approaches an identical body at rest. Find V, the speed of a frame in which the total momentum is zero. [2 marks]
- 5. A rod of length L_0 is at rest in the frame S_0 at an angle Θ_0 with respect to the x_0 axis. The frame S_0 moves relative to the frame S in the standard configuration and with speed v.
 - (a) Determine the length of the rod as measured by an observer stationary in S.
 - (b) Determine the angle Θ the rod makes with the x axis in S.

[2 marks]