计算机组成原理课程实验

北京邮电大学

计算机学院 (国家示范性软件学院)

课程综述——要求

- 一. 实验占总成绩20% (具体以理论课教师通知为准)
- 二. 实验报告要求:
- 1. 共<mark>两次综合实验报告</mark>:实验1—实验3提交一个综合报告,实验4—实验6提交—个综合报告。
- 2. 综合报告要求按模板格式填写,提交纸质打印版。内容包括每次实验的记录数据、问题分析、实验结果、实验总结等内容。
- 3. 实验报告务必做到格式清晰、数据详实、分析有条理,真实记录实验的过程和体会。
- 三. 上课要求
- 1. 严格考勤,禁止缺课(允许在其他班级补课)
- 2. 认真做好课前预习

课程综述—

设备简介

模型计算机简介TEC-PLUS

课程综述

实验一 运算器组成实验

实验二 双端口存储器实验

实验三 数据通路实验

实验四 微程序控制实验

实验五 CPU组成与机器指令的执行实验

实验六 中断原理实验

课程综述

模型计算机框图TEC-PLUS

实验一 运算器组成实验 (独立方式)

实验目的

- ① 熟悉TEC-8模型计算机的节拍脉冲T1、T2、T3。
- ②熟悉双端口通用寄存器组的读写操作。
- ③熟悉运算器的数据传送通路。
- ④ 熟悉ALU (74LS181) 的加、减、与、或功能。

实验电路

实验电路 数据总线 DBUS Z C M SO 00011111 (1FH) **ABUS** \$1 \$2 \$3 LDC M=0, S3-S0=1001, ABUS=1, LDC=1, LDZ=1 ALU CIN=1, 执行A加B运算 LDZ 0FH 10H CIN A端口 B端口 A7-A0 B7—B0 RS0 RDO 4选1 4选1 RD1 RS1 OFH 选择器A 10H # B RS1=0 RD1=0 LRO RD1 RS0=1 RD0=0 RD1=0, RD0=0 LR1 选中R0寄存器 RDO LR2 LR3 LR3 LR2 LRO LR1 DRW DRW DRW R2 R3 DRW RO DRW=1 T3 T3 T3 T3 10H 0FH DBUS SBUS SWI SBUS=0 数据开关

思考: 是否能将ALU的运算结果存入寄存器R3中? Why?

实验任务

- ① 熟悉手工连线方式:完成控制信号模拟开关与运算模块的外部连线。
- ② 熟悉利用数据开关向通用寄存器R3-R0中置入数据。
- ③验证ALU的算术运算和逻辑运算功能。

实验步骤——逻辑笔

1、用逻辑测试笔测试节拍脉冲信号T1、T2、T3:

- ① 将逻辑测试笔的短针端插入TEC-8实验台上的"逻辑测试笔"上面的插孔中,长针端插入"T1"下方的插孔中。
- ② 按复位按钮CLR, 使**时序信号发生器复位**。
- ③ 按一次逻辑测试笔框内的Reset按钮,使**逻辑测试笔上的脉冲计数器复位**,2个黄灯D1、D0 均灭。
- ④ 按一次启动按钮QD,这时指示灯D1、D0的状态应为灭、亮,指示产生了一个T1脉冲;如果再按一次QD按钮,则指示灯D1、D0的状态应当为亮、灭,表示又产生了一个T1脉冲;继续按QD按钮,可以看到在单周期运行方式下,每按一次QD按钮,就产生一个T1脉冲。
- ⑤ 用同样的方法测试T2、T3。

实验步骤——运算器

2、运算器组成实验

□ 实验准备(不要打开电源 🛕)

- 1. 控制器转换开关:独立;
- 2. 编程开关=0;
- 3. DP=1
- 4. 数据通路参考连线:

数据通路	RD0	RI	D1	RS0	RS1	DRW	
电平开关	K0	K	1	K2	К3	K4	
数据通路	LDC	LDZ	S0	S1	S2	S 3	M
电平开关	K5	К6	K7	K8	К9	K10	K11
数据通路	ABUS	S SB	US	CIN	MBUS		
电平开关	K12	K	13	K14	GND		

2、运算器组成实验

□ 向通用寄存器堆内的R3-R0置入数据

- 1. 打开电源→按复位按钮CLR;
- 2. 通过数据开关SD7~SD0向寄存器R3-R0置数;
- 3. 读出R3-R0中的数据,在数据总线DBUS上显示。

□ 验证ALU的算术、逻辑运算功能

1. 按照右图74LS181 ALU算术、逻辑运算功能表, 从7组数据中任选一组验证加、减、与、或等运算。

1A=0FH,B=10H 5A=FFH,B=AA

(3)A = 03H, B = 05H (7)A = 0C5H, B = 61H

(4)A=0AH,B=0AH

工作方式	M=1	M=0算术运算		
S3-S0	逻辑运算	CIN=1无进位	CIN=0有进位	
0000	F=/A	F=A	F=A加1	
0001	F=/(A+B)	F=A+B	F=(A+B)加1	
0010	F=(/A)B	F=A+/B	F=(A+/B)加1	
0011	F=0	F=-1(补码形式)	F=0	
0100	F=/(AB)	F=A加A/B	F=A力DA/B力D1	
0101	F=/B	F=(A+B)加A/B	F=(A+B)加A/B加1	
0110	F=A⊕B	F=A减B减1	F=A減B	
0111	F=A/B	F=(A/B)减1	F=A/B	
1000	F=/A+B	F=A加AB	F=АЛПАВЛП1	
1001	F=/(A⊕B)	F=A加B	F=A力口B力口1	
1010	F=B	F=(A+/B)加AB	F=(A+/B)加AB加1	
1011	F=AB	F=AB减1	F=AB	
1100	F=1	F=A加A	F=A力口A力口1	
1101	F=A+B	F=(A+/B)加A	F=(A+/B)加A加1	
1110	F=A+B	F=(A+/B)加A	F=(A+/B)加A加1	
1111	F=A	F=A减1	F=A	

实验步骤

2、运算器组成实验

注意:

- ① 至少完成一组数据的加、减、与、或四种不同运算。
- ② 将实验结果记录在实验数据记录表中。
- ③ 将实验的操作流程(包括思考题)记录在实验过程记录表中。
 - 01实验一实验数据记录表.xlsx
 - 01实验一 实验过程记录表.xlsx

