Algorithm 1 Linear Algorithm for RWOC

Input:

Input:
$$\mathbf{y}: n\times 1, X_1: n\times p, X_2: n\times q,$$
 learning rate lr , number of iterations k , number of IPOT iterations l , number of IPOT inner iterations m , a parameter in IPOT β initialize: $w_1^{(1)}, w_2^{(1)}$ $\mathbf{b}\leftarrow \frac{1}{n}\mathbf{1}_n$ $S^{(1)}\leftarrow \mathbf{1}\mathbf{1}^T$ for $t=1$ to k do
$$Y_1\leftarrow \mathbf{y}-X_1w_1^{(t)}$$
 $Y_2\leftarrow X_2w_2^{(t)}$ $C_{ij}\leftarrow (Y_1[i]-Y_2[j])^2$ $C_{ij}\leftarrow e^{-\frac{C_{ij}}{\beta}}$ for $h=1$ to l do
$$Q\leftarrow G\odot S^{(h)}$$
 for $f=1$ to m do
$$\mathbf{a}\leftarrow \frac{\mathbf{1}_n}{Q\mathbf{b}}, \mathbf{b}\leftarrow \frac{\mathbf{1}_n}{Q^T\mathbf{a}}$$
 end for
$$S^{(h+1)}\leftarrow diag(\mathbf{a})Qdiag(\mathbf{b})$$
 end for
$$Loss\leftarrow \sum_{i,j}S_{ij}C_{ij}$$
 $w_1^{(t+1)}\leftarrow w_1^{(t)}-lr\cdot \frac{\partial Loss}{\partial w_1}\Big|_{w_1=w_1^{(t)}}$ $w_2^{(t+1)}\leftarrow w_2^{(t)}-lr\cdot \frac{\partial Loss}{\partial w_2}\Big|_{w_2=w_2^{(t)}}$ end for