

INVERSÃO RADIAL 3D DE DADOS MAGNÉTICOS

Leonardo Beserra Vital

Tese apresentada ao Programa de Pósgraduação em Geofísica do Observatório Nacional, como parte dos requisitos necessários à obtenção do título de Doutor em Geofísica.

Orientador(a): Dr. Vanderlei Coelho

Oliveira Junior

Co-orientador(a): Dra. Valéria Cristina

Ferreira Barbosa

Rio de Janeiro Outubro de 2020

Contents

1	Met	odologia	1
	1.1	Problema direto	1
	1.2	Problema inverso	2
		1.2.1 Vínculos	4
	1.3	Algoritmo de inversão	Ĝ
Bi	ibliog	graphy	11

List of Figures

1.1	Representação esquemática do modelo interpretativo. (a) Anomalia	
	de campo total produzida por uma fonte magnética 3D localizada em	
	subsuperfície (volume cinza escuro em b). (b) Modelo interpretativo	
	formado por L prismas retos, verticalmente justapostos e com seção	
	horizontal descrita por um polígono. A profundidade do topo z_0 do	
	modelo interpretativo coincide com a da fonte magnética (volume	
	cinza escuro)	2
1.2	Representação esquemática do k -ésimo prisma P^k , $k=1,\ldots,L$, que	
	compõe o modelo interpretativo (Figura 1b). Este prisma tem es-	
	pessura dz, profundidade do topo z_1^k e seção horizontal descrita por	
	um polígono com V vértices igualmente espaçados entre 0° e 360° .	
	A posição dos vértices é descrita em termos das coordenadas polares	
	$r_j^k \in \theta_j, j = 1, \ldots, V$, em relação a uma origem O^k com coordenadas	
	Cartesianas (x_0^k, y_0^k)	3
1.3	Desenho esquemático do vínculo de suavidade sobre distâncias ad-	
	jacentes dentro de um mesmo prisma φ_1 . A figura exibe o k-ésimo	
	prisma P^k e as distâncias radiais adjacentes r^k_j e r^k_{j+1} relacionadas ao	
	vínculo	5
1.4	Desenho esquemático do vínculo de suavidade sobre distâncias adja-	
	centes pertencentes a prismas adjacentes φ_2 . A figura exibe o k-ésimo	
	prisma P^k e seu adjacente P^{k+1} , assim como as distâncias radiais ad-	
	jacentes r_j^k e r_j^{k+1} relacionadas ao vínculo	6
1.5	Desenho esquemático do vínculo de suavidade nas coordenadas das	
	origens pertencentes a prismas adjacentes φ_3 . A figura exibe os	
	prisma P^k e P^{k+1} e suas respectivas as coordenadas Cartesianas	
	(x_0^k, y_0^k) , referidas à origem O^k , e (x_0^{k+1}, y_0^{k+1}) , referidas à origem O^{k+1} .	
	A posição entre as origens deve ser a mínima posível	7

LIST OF FIGURES

1.6	Desenho esquemático do vínculo de Tikhonov de ordem zero nas	
	distâncias radiais de um prisma φ_4 . A figura exibe os prisma P^k e	
	suas respectivas distâncias radiais r_j^k referidas à origem O^k . O vínculo	
	atua sobre as distâncias radiais do prismas, levando-as próximas a zero.	8
1.7	Desenho esquemático do vínculo de Tikhonov de ordem zero φ_5 na	
	espessura dos prismas dz . A figura exibe os prisma P^k e sua espessura.	
	O vínculo atua sobre a espessura de todos prismas levando-a próxima	
	a zero, uma vez que dz é igual para todos os prismas	Ć

List of Tables

Chapter 1

Metodologia

1.1 Problema direto

Seja \mathbf{d}^o o vetor de dados observados, cujo i-ésimo elemento d_i^o , $i=1,\ldots,N$, é a anomalia de campo total observada no ponto (x_i,y_i,z_i) em um sistema de coordenadas Cartesiano com os eixos x,y e z apontando para Norte, para Leste e para baixo, respectivamente. Considere que as anomalias de campo total produzidas por pequenas fontes magnéticas interferências distorcem localmente a anomalia causada por uma fonte alvo 3-D principal. Por simplicidade, podemos assumir que o campo geomagnético principal é constante na área de estudo, com declinação D_0 e inclinação I_0 . Este trabalho segue a mesma abordagem apresentada por OLIVEIRA JR. et al. (2011a), OLIVEIRA JR. e BARBOSA (2013a), e VITAL et al. (2019) para definir o modelo interpretativo que aproxima a geometria da fonte alvo. Esse modelo é formado por um conjunto de L prismas retos verticalmente justapostos tendo a mesma espessura dz e o mesmo vetor de magnetização total com intensidade m_0 , declinação D e inclinação I (Figura 1.1).

A profundidade do topo do prisma mais raso é definida por z_0 . Cada prisma possui a seção horizontal definida por um polígono com V vértices igualmente espaçados de 0° a 360°. As posições horizontais dos vértices que formam o k-ésimo prisma são definidas por distâncias radiais (ou apenas raios) r_j^k , com respeito a uma origem (x_0^k, y_0^k) localizada dentro do prisma, k = 1, ..., L, j = 1, ..., V (Figura 1.2). A anomalia de campo total predita pelo modelo interpretativo no ponto (x_i, y_i, z_i) , i = 1, ..., N, é dada por:

$$d_i(\mathbf{p}) \equiv \sum_{k=1}^{L} f_i^k(\mathbf{r}^k, x_0^k, y_0^k, dz, z_1^k, m_0, D, I, D_0, I_0), \qquad (1.1)$$

onde \mathbf{r}^k é um vetor de dimensão $V \times 1$ que contém os raios r_j^k dos vértices pertencentes ao k-ésimo prisma, que possui origem no ponto (x_0^k, y_0^k) e profundidade do topo em

Figure 1.1: Representação esquemática do modelo interpretativo. (a) Anomalia de campo total produzida por uma fonte magnética 3D localizada em subsuperfície (volume cinza escuro em b). (b) Modelo interpretativo formado por L prismas retos, verticalmente justapostos e com seção horizontal descrita por um polígono. A profundidade do topo z_0 do modelo interpretativo coincide com a da fonte magnética (volume cinza escuro).

 $z_1^k = z_0 + (k-1)dz$. Na Equação 1.1, **p** é um vetor de parâmetros de dimensão $M \times 1$, M = L(V+2) + 1, que define a geometria do modelo interpretativo:

$$\mathbf{p} = \begin{bmatrix} \mathbf{r}^{1\top} & x_0^1 & y_0^1 & \dots & \mathbf{r}^{L\top} & x_0^L & y_0^L & dz \end{bmatrix}^{\top}, \qquad (1.2)$$

onde o sobre-escrito " \top " indica transposição. A anomalia de campo total $d_i(\mathbf{p})$ (Equação 1.1) é computada por meio das fórmulas de Plouff (PLOUFF, 1976) implementadas no pacote de Python Fatiando a Terra (UIEDA *et al.*, 2013).

1.2 Problema inverso

Este trabalho propõe um método robusto de inversão magnética para estimar a posição e a forma de uma fonte magnética alvo 3D na presença de fontes interferentes. A formulação do problema consiste em um problema de otimização não-linear vinculado para estimar um vetor de parâmetros **p** (Equação 1.2) minimizando a

Figure 1.2: Representação esquemática do k-ésimo prisma P^k , $k=1,\ldots,L$, que compõe o modelo interpretativo (Figura 1b). Este prisma tem espessura dz, profundidade do topo z_1^k e seção horizontal descrita por um polígono com V vértices igualmente espaçados entre 0° e 360° . A posição dos vértices é descrita em termos das coordenadas polares r_j^k e θ_j , $j=1,\ldots,V$, em relação a uma origem O^k com coordenadas Cartesianas (x_0^k,y_0^k)

função objetivo

$$\Gamma(\mathbf{p}) = \phi(\mathbf{p}) + \sum_{\ell=1}^{5} \alpha_{\ell} \, \varphi_{\ell}(\mathbf{p}) \,, \tag{1.3}$$

sujeito aos vínculos de desigualdade

$$p_l^{min} < p_l < p_l^{max}, \quad l = 1, \dots, M,$$
 (1.4)

onde p_l^{min} e p_l^{max} definem, respectivamente, os limites inferior e superior para o lésimo elemento p_l do vetor de parâmetros \mathbf{p} , $\varphi_\ell(\mathbf{p})$ são as funções que representam
os vínculos que impõem informação a priori sobre a forma da estimativa do corpo
3D, e $\phi(\mathbf{p})$ é a função desajuste dos dados ou data-misfit. Podemos definir $\phi(\mathbf{p})$ através de duas abordagens diferentes com o propósito de comparar os resultados.
Na primeira abordagem, $\phi(\mathbf{p})$ é definida de acordo com o trabalho de VITAL et~al.(2019) como

$$\phi(\mathbf{p}) = \frac{1}{N} \|\mathbf{d}^o - \mathbf{d}(\mathbf{p})\|_2^2 \quad , \tag{1.5}$$

a qual é a norma-2 quadrática (e.g., ASTER et al., 2019b, p. 331) dos resíduos entre o vetor de dados observados \mathbf{d}^o , cujo *i*-ésimo elemento d_i^o representa a anomalia de campo total observada no ponto (x_i, y_i, z_i) , e o vetor de dados preditos $\mathbf{d}(\mathbf{p})$, cujo *i*-ésimo elemento $d_i(\mathbf{p})$ é definido pela Equação 1.1. Alternativamente, podemos

definir a função data-misfit como

$$\phi(\mathbf{p}) = \frac{1}{N} \|\mathbf{d}^o - \mathbf{d}(\mathbf{p})\|_1 \quad , \tag{1.6}$$

que representa a norma-1 (e.g., ASTER et al., 2019b, p. 331) dos resíduos entre os vetores de dados observados do e preditos d(p). É de amplo conhecimento que o vetor de parâmetros que minimiza a norma-2 quadrática (Equação 1.5) pode ser muito afetado negativamente pela presença de pontos espúrios ou outliers e também pelo efeito causado por fontes não-alvos (e.g., ASTER et al., 2019b; CLAERBOUT e MUIR, 1973; FARQUHARSON e OLDENBURG, 1998; OLIVEIRA JR. et al., 2015; SCALES e GERSZTENKORN, 1988; SILVA e CUTRIM, 1989; SILVA e HOHMANN, 1983; UIEDA e BARBOSA, 2012). Através da estimativa do vetor de parâmetros obtida pela minimização da norma-1 Equação 1.6), espera-se que a posição e a forma estimadas do corpo 3D durante a inversão ajustem a anomalia de campo total produzida pela fonte alvo e ignorem a causada pelas fontes interferentes.

Na Equação 1.3, α_{ℓ} , $\ell = 1, ..., 5$, são escalares positivos que definem o peso relativo das funções dos vínculos $\varphi_{\ell}(\mathbf{p})$. Essas funções são definidas seguindo a mesma abordagem utilizada por OLIVEIRA JR. et al. (2011b), OLIVEIRA JR. e BARBOSA (2013b), and VITAL et al. (2019).

1.2.1 Vínculos

As funções dos vínculos $\varphi_{\ell}(\mathbf{p})$ (Equação 1.3), $\ell = 1, ..., 5$, utilizadas aqui para obter soluções estáveis e introduzir informação a priori sobre o corpo estimado, foram organizadas em dois grupos.

Vínculos de suavidade

Esse grupo é formado pelas variações da regularização de Tikhonov de primeira ordem (ASTER et al., 2019a, p. 103) que impõe suavidade sobre os raios r_j^k e sobre as coordenadas Cartesianas x_0^k e y_0^k da origem O^k , $j=1,\ldots,V$, $k=1,\ldots,L$, que define a seção horizontal de cada prisma (Fig.1.1b). Elas foram propostas por OLIVEIRA JR. et al. (2011a) e OLIVEIRA JR. e BARBOSA (2013a) e possuem um papel muito importante em introduzir informação a prior sobre a forma da fonte alvo.

O primeiro vínculo desse grupo é a suavidade sobre os raios adjacentes que definem a seção horizontal de cada prisma. Esse vínculo impõe que os raios adjacentes r_j^k e r_{j+1}^k dentro do mesmo prisma devem ser próximos entre si. Isso força que o prisma estimado terá uma forma aproximadamente cilíndrica, que evita descontinuidades abruptas entre as estimativas das distâncias radiais dentro de um mesmo

prisma. Sua representação esquemática é mostrada na Figura 1.3.

Figure 1.3: Desenho esquemático do vínculo de suavidade sobre distâncias adjacentes dentro de um mesmo prisma φ_1 . A figura exibe o k-ésimo prisma P^k e as distâncias radiais adjacentes r_j^k e r_{j+1}^k relacionadas ao vínculo.

Matematicamente, o vínculo é dado por

$$\varphi_1(\mathbf{p}) = \sum_{k=1}^{L} \left[\left(r_V^k - r_1^k \right)^2 + \sum_{j=1}^{V-1} \left(r_j^k - r_{j+1}^k \right)^2 \right]$$

$$= \mathbf{p}^\mathsf{T} \mathbf{R}_1^\mathsf{T} \mathbf{R}_1 \mathbf{p} \quad , \tag{1.7}$$

onde

$$\mathbf{R}_1 = \mathbf{I}_L \otimes \left[\begin{pmatrix} \mathbf{I}_V - \mathbf{D}_V^\mathsf{T} \end{pmatrix} \quad \mathbf{0}_{V \times 2} \right]_{(L-1)V \times M} \quad , \tag{1.8}$$

 \mathbf{I}_L é a matriz identidade de ordem L, " \otimes " indica o produto de Kronecker (HORN e JOHNSON, 1991, p. 243), $\mathbf{0}_{V\times 2}$ é uma matriz de ordem $V\times 2$ com elementos nulos, \mathbf{I}_V é a matriz identidade de ordem V e $\mathbf{D}_V^{\mathsf{T}}$ é a matriz de permutação superior de ordem V (GOLUB e LOAN, 2013, p. 20). O gradiente e a Hessian da função $\varphi_1(\mathbf{p})$ (Equação 1.7) são dados por:

$$\nabla \varphi_1(\mathbf{p}) = 2\mathbf{R}_1^\mathsf{T} \mathbf{R}_1 \mathbf{p} \quad , \tag{1.9}$$

e

$$\mathbf{H}_1(\mathbf{p}) = 2\mathbf{R}_1^\mathsf{T} \mathbf{R}_1 \quad . \tag{1.10}$$

O segundo vínculo do grupo é a suavidade sobre os raios adjacentes de prismas adjacentes, o qual impõe que os raios adjacentes r_j^k e r_j^{k+1} entre prismas verticalmente adjacentes sejam próximos entre si. Esse vínculo força que a forma de prismas verticalmente adjacentes seja similar. Uma representação esquemática do vínculo é apresentada na Figura 1.4.

Figure 1.4: Desenho esquemático do vínculo de suavidade sobre distâncias adjacentes pertencentes a prismas adjacentes φ_2 . A figura exibe o k-ésimo prisma P^k e seu adjacente P^{k+1} , assim como as distâncias radiais adjacentes r_j^k e r_j^{k+1} relacionadas ao vínculo.

De forma matemática é dado por

$$\varphi_2(\mathbf{p}) = \sum_{k=1}^{L-1} \left[\sum_{j=1}^{V} \left(r_j^{k+1} - r_j^k \right)^2 \right] ,$$

$$= \mathbf{p}^\mathsf{T} \mathbf{R}_2^\mathsf{T} \mathbf{R}_2 \mathbf{p}$$

$$(1.11)$$

onde

$$\mathbf{R}_2 = \begin{bmatrix} \mathbf{S}_2 & \mathbf{0}_{(L-1)V \times 1} \end{bmatrix}_{(L-1)V \times M} , \qquad (1.12)$$

$$\mathbf{S}_{2} = \left(\begin{bmatrix} \mathbf{I}_{L-1} & \mathbf{0}_{(L-1)\times 1} \end{bmatrix} - \begin{bmatrix} \mathbf{0}_{(L-1)\times 1} & \mathbf{I}_{L-1} \end{bmatrix} \right) \otimes \begin{bmatrix} \mathbf{I}_{V} & \mathbf{0}_{V\times 2} \end{bmatrix} , \qquad (1.13)$$

 $\mathbf{0}_{(L-1)V\times 1}$ é um vetor de ordem $(L-1)V\times 1$ com elementos nulos, $\mathbf{0}_{(L-1)\times 1}$ é um vetor de ordem $(L-1)\times 1$ com elementos nulos e \mathbf{I}_{L-1} é a matriz identidade de ordem L-1. O gradiente e a Hessiana de $\varphi_2(\mathbf{p})$ (Equação 1.11) são dados por:

$$\nabla \varphi_2(\mathbf{p}) = 2\mathbf{R}_2^{\mathsf{T}} \mathbf{R}_2 \mathbf{p} \quad , \tag{1.14}$$

e

$$\mathbf{H}_2(\mathbf{p}) = 2\mathbf{R}_2^{\mathsf{T}}\mathbf{R}_2 \quad . \tag{1.15}$$

O último vínculo deste grupo é a suavidade sobre a posição horizontal das origens arbitrárias de prismas verticalmente adjacentes. Esse vínculo impõe que as coordenadas Cartesianas horizontais estimadas (x_0^k, y_0^k) e (x_0^{k+1}, y_0^{k+1}) das origens O^k e O^{k+1} de prismas verticalmente adjacentes devem ser próximas entre si. Isso controla o mergulho do corpo estimado através da regularização do deslocamento

horizontal de prismas verticalmente adjacentes (Figura 1.5).

Figure 1.5: Desenho esquemático do vínculo de suavidade nas coordenadas das origens pertencentes a prismas adjacentes φ_3 . A figura exibe os prisma P^k e P^{k+1} e suas respectivas as coordenadas Cartesianas (x_0^k, y_0^k) , referidas à origem O^k , e (x_0^{k+1}, y_0^{k+1}) , referidas à origem O^{k+1} . A posição entre as origens deve ser a mínima posível.

Algebricamente o vínculo é dado por

$$\varphi_{3}(\mathbf{p}) = \sum_{k=1}^{L-1} \left[\left(x_{0}^{k+1} - x_{0}^{k} \right)^{2} + \left(y_{0}^{k+1} - y_{0}^{k} \right)^{2} \right]$$

$$= \mathbf{p}^{\mathsf{T}} \mathbf{R}_{3}^{\mathsf{T}} \mathbf{R}_{3} \mathbf{p}$$
(1.16)

onde

$$\mathbf{R}_{3} = \begin{bmatrix} \mathbf{S}_{3} & \mathbf{0}_{(L-1)2 \times 1} \end{bmatrix}_{(L-1)2 \times M} , \qquad (1.17)$$

$$\mathbf{S}_{3} = \left(\begin{bmatrix} \mathbf{I}_{L-1} & \mathbf{0}_{(L-1)\times 1} \end{bmatrix} - \begin{bmatrix} \mathbf{0}_{(L-1)\times 1} & \mathbf{I}_{L-1} \end{bmatrix} \right) \otimes \begin{bmatrix} \mathbf{0}_{2\times V} & \mathbf{I}_{2} \end{bmatrix} , \qquad (1.18)$$

 $\mathbf{0}_{(L-1)2\times 1}$ é um vetor de ordem $(L-1)2\times 1$ com elementos nulos, $\mathbf{0}_{2\times V}$ é uma matrix de ordem $2\times V$ com elementos nulos e \mathbf{I}_2 é uma matriz identidade de ordem 2. O gradiente e a Hessiana da função $\varphi_3(\mathbf{p})$ (Equação 1.16) são dados por:

$$\nabla \varphi_3(\mathbf{p}) = 2\mathbf{R}_3^\mathsf{T} \mathbf{R}_3 \mathbf{p} \quad , \tag{1.19}$$

е

$$\mathbf{H}_3(\mathbf{p}) = 2\mathbf{R}_3^\mathsf{T} \mathbf{R}_3 \quad . \tag{1.20}$$

Vínculos de norma Euclidiana mínima

Dois vínculos utilizam a regularização Tikhonov de ordem zero com o propósito de estabilizar o problema inverso sem necessariamente introduzir informação a priori

com significado físico significante sobre a fonte.

A norma Euclidiana mínima dos raios impões que todos os raios estimados dentro de um prisma devem ser próximos de zero (Figura ??).

Figure 1.6: Desenho esquemático do vínculo de Tikhonov de ordem zero nas distâncias radiais de um prisma φ_4 . A figura exibe os prisma P^k e suas respectivas distâncias radiais r_j^k referidas à origem O^k . O vínculo atua sobre as distâncias radiais do prismas, levando-as próximas a zero.

Esse vínculo foi proposto por OLIVEIRA JR. et al. (2011a) e OLIVEIRA JR. e BARBOSA (2013a) e pode ser reescrito como

$$\varphi_4(\mathbf{p}) = \sum_{k=1}^L \sum_{j=1}^V (r_j^k)^2$$

$$= \mathbf{p}^\mathsf{T} \mathbf{R}_4^\mathsf{T} \mathbf{R}_4 \mathbf{p}$$
(1.21)

onde

$$\mathbf{R}_4 = \begin{bmatrix} \mathbf{S}_4 & \mathbf{0}_{(M-1)\times 1} \\ \mathbf{0}_{1\times (M-1)} & 0 \end{bmatrix}_{M\times M} , \qquad (1.22)$$

e

$$\mathbf{S}_4 = \begin{bmatrix} \mathbf{I}_V & \mathbf{0}_{V \times 2} \\ \mathbf{0}_{2 \times V} & \mathbf{I}_2 \end{bmatrix}_{(V+2) \times (V+2)} . \tag{1.23}$$

O gradiente e a Hessiana da função $\varphi_4(\mathbf{p})$ (Equação 1.21) são:

$$\nabla \varphi_4(\mathbf{p}) = 2\mathbf{R}_4^\mathsf{T} \mathbf{R}_4 \mathbf{p} \quad , \tag{1.24}$$

e

$$\mathbf{H}_4(\mathbf{p}) = 2\mathbf{R}_4^\mathsf{T} \mathbf{R}_4 \quad . \tag{1.25}$$

Finalmente, o último vínculo é a norma Euclidiana mínima da espessura, que

impõe que a espessura comum dz de todos os prismas seja próxima de zero. Esse vínculo força que a profundidade da base do modelo seja o mais rasa possível (Figura 1.7)

Figure 1.7: Desenho esquemático do vínculo de Tikhonov de ordem zero φ_5 na espessura dos prismas dz. A figura exibe os prisma P^k e sua espessura. O vínculo atua sobre a espessura de todos prismas levando-a próxima a zero, uma vez que dz é igual para todos os prismas.

Esse vínculo pode ser escrito matematicamente como

$$\varphi_5(\mathbf{p}) = dz^2 = \mathbf{p}^\mathsf{T} \mathbf{R}_5^\mathsf{T} \mathbf{R}_5 \mathbf{p}$$
(1.26)

onde

$$\mathbf{R}_{5} = \begin{bmatrix} \mathbf{0}_{(M-1)\times(M-1)} & \mathbf{0}_{(M-1)\times1} \\ \mathbf{0}_{1\times(M-1)} & 1 \end{bmatrix}_{M\times M} . \tag{1.27}$$

O gradiente e a Hessiana da função $\varphi_5(\mathbf{p})$ (Equação 1.26) são:

$$\nabla \varphi_5(\mathbf{p}) = 2\mathbf{R}_5^\mathsf{T} \mathbf{R}_5 \mathbf{p} \quad , \tag{1.28}$$

 \mathbf{e}

$$\mathbf{H}_5(\mathbf{p}) = 2\mathbf{R}_5^\mathsf{T} \mathbf{R}_5 \quad . \tag{1.29}$$

1.3 Algoritmo de inversão

Dada um profundidade do top z_0 do prisma mais raso, a intensidade de magnetização total m_0 de todos os prismas, uma aproximação inicial $\hat{\mathbf{p}}_{(0)}$ para o vetor

de parâmetros \mathbf{p} (Equação 1.2), e os limites p_l^{min} e p_l^{max} (Equação 1.4), o método de Levenberg-Marquardt (e.g., SEBER e WILD, 2003, p. 624) é utilizado para estimar o vetor de parâmetros $\hat{\mathbf{p}}^*$ que minimiza a função objetivo $\Gamma(\mathbf{p})$ (Equação 1.3), sujeita aos vínculos de desigualdade definidos pela Equação 1.4. Para incorporar esses vínculos de desigualdade, foi utilizada a mesma abordagem apresentada por BARBOSA et al. (1999), OLIVEIRA JR. et al. (2011b) e OLIVEIRA JR. e BARBOSA (2013b). Abaixo, segue o algoritmo de inversão aqui proposto:

Bibliography

- ASTER, R. C., BORCHERS, B., THURBER, C. H., 2019a, Parameter Estimation and Inverse Problems. Elsevier. ISBN: 978-0-12-804651-7.
- ASTER, R. C., BORCHERS, B., THURBER, C. H., 2019b, Parameter Estimation and Inverse Problems. Elsevier. ISBN: 978-0-12-804651-7.
- BARBOSA, V. C. F., SILVA, J. B. C., MEDEIROS, W. E., 1999, "Stable inversion of gravity anomalies of sedimentary basins with nonsmooth basement reliefs and arbitrary density contrast variations", *Geophysics*, v. 64, n. 3, pp. 754–764. doi: 10.1190/1.1444585.
- CLAERBOUT, J. F., MUIR, F., 1973, "ROBUST MODELING WITH ERRATIC DATA", *Geophysics*, v. 38, n. 5, pp. 826–844. doi: 10.1190/1.1440378.
- FARQUHARSON, C. G., OLDENBURG, D. W., 1998, "Non-linear inversion using general measures of data misfit and model structure", *Geophysical Journal International*, v. 134, n. 1 (07), pp. 213–227. ISSN: 0956-540X. doi: 10.1046/j.1365-246x.1998.00555.x.
- GOLUB, G. H., LOAN, C. F. V., 2013, Matrix Computations (Johns Hopkins Studies in the Mathematical Sciences). Johns Hopkins University Press. ISBN: 978-1-4214-0794-4.
- HORN, R. A., JOHNSON, C. R., 1991, *Topics in Matrix Analysis*. Cambridge University Press. ISBN: 0-521-30587-X.
- OLIVEIRA JR., V. C., SALES, D. P., BARBOSA, V. C. F., et al., 2015, "Estimation of the total magnetization direction of approximately spherical bodies", *Nonlinear Processes in Geophysics*, v. 22, n. 2, pp. 215–232. doi: 10.5194/npg-22-215-2015.
- OLIVEIRA JR., V. C., BARBOSA, V. C. F., 2013a, "3-D radial gravity gradient inversion", *Geophysical Journal International*, v. 195, n. 2, pp. 883–902. ISSN: 0956-540X.

- OLIVEIRA JR., V. C., BARBOSA, V. C. F., 2013b, "3-D radial gravity gradient inversion", *Geophysical Journal International*, v. 195, n. 2, pp. 883–902. ISSN: 0956-540X. doi: 10.1093/gji/ggt307.
- OLIVEIRA JR., V. C., BARBOSA, V. C. F., SILVA, J. B. C., 2011a, "Source geometry estimation using the mass excess criterion to constrain 3-D radial inversion of gravity data", *Geophysical Journal International*, v. 187, n. 2, pp. 754–772. ISSN: 0956-540X.
- OLIVEIRA JR., V. C., BARBOSA, V. C. F., SILVA, J. B. C., 2011b, "Source geometry estimation using the mass excess criterion to constrain 3-D radial inversion of gravity data", *Geophysical Journal International*, v. 187, n. 2, pp. 754–772. ISSN: 0956-540X. doi: 10.1111/j.1365-246X.2011.05172.x.
- PLOUFF, D., 1976, "Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections", *Geophysics*, v. 41, n. 4, pp. 727–741. ISSN: 0016-8033.
- SCALES, J. A., GERSZTENKORN, A., 1988, "Robust methods in inverse theory", $Inverse\ Problems$, v. 4, n. 4 (oct), pp. 1071–1091. doi: 10.1088/0266-5611/4/010.
- SEBER, G. A. F., WILD, C. J., 2003, Nonlinear regression. John Wiley & Sons, Inc. ISBN: 0-471-47135-6.
- SILVA, J. B., CUTRIM, A. O., 1989, "A robust maximum likelihood method for gravity and magnetic interpretation", *Geoexploration*, v. 26, n. 1, pp. 1 31. ISSN: 0016-7142. doi: 10.1016/0016-7142(89)90017-3.
- SILVA, J. B., HOHMANN, G. W., 1983, "Nonlinear magnetic inversion using a random search method", *Geophysics*, v. 48, n. 12, pp. 1645–1658. doi: 10.1190/1.1441445.
- UIEDA, L., BARBOSA, V. C. F., 2012, "Robust 3D gravity gradient inversion by planting anomalous densities", *Geophysics*, v. 77, n. 4, pp. G55–G66. doi: 10.1190/geo2011-0388.1.
- UIEDA, L., OLIVEIRA JR., V. C., BARBOSA, V. C. F., 2013, "Modeling the Earth with Fatiando a Terra". In: van der Walt, S., Millman, J., Huff, K. (Eds.), *Proceedings of the 12th Python in Science Conference*, pp. 96 103.

VITAL, L. B., OLIVEIRA JR., V. C., BARBOSA, V. C. F., 2019, "Radial magnetic inversion to retrieve the geometry of 3D sources". In: *SEG Technical Program Expanded Abstracts 2019*, pp. 1754–1758. doi: 10.1190/segam2019-3215805.1.