ACTIVITIES 16.1 – 16.2

Notes and Solutions

Notes and solutions given only where appropriate.

16.1 1. (a) 2 (b) 4

2. $2 < \pi < 4$

3.

(a) 36° (b) $\cos 36^{\circ} \approx 0.8090$, $2\sin 36 \approx 1.1756^{\circ}$

2.3777

(d) 3.6327 (e) $2.3777 < \pi < 3.6327$

Extension $\alpha = \frac{360}{n}$, $n \sin\left(\frac{180}{n}\right) \cos\left(\frac{180}{n}\right)$, $n \tan\left(\frac{180}{n}\right)$,

$$n\sin\left(\frac{180}{n}\right)\cos\left(\frac{180}{n}\right) < \pi < n\tan\left(\frac{180}{n}\right)$$

- (a) $3.139350203 < \pi < 3.1427146$
- (b) $3.141571983 < \pi < 3.141602989$
- $3.141592654 < \pi < 3.141592654$ (correct to at least 9 decimal places)

16.2 1. (a) $\frac{\pi}{4} \approx 0.785$ (b) $\frac{2\pi}{9} \approx 0.698$ (c) $\frac{5\pi}{38} \approx 0.413$ (d) $\frac{\pi}{3\sqrt{3}} \approx 0.605$

(e) $\frac{\pi}{6} \approx 0.524$ (f) $\frac{2\pi^2}{(\pi + 2)^2} \approx 0.747$ (g) $\frac{2\pi}{15} \approx 0.419$

$$(h) \qquad \frac{\pi \tan 54^{\circ}}{5} \approx 0.865$$

2. One possible conjecture is that $IQ \rightarrow 1$ as the shape becomes closer to a circle.

For an *n*-sided polygon, $IQ = \frac{\pi}{n \tan\left(\frac{\pi}{n}\right)}$.

(For large n, $\frac{\pi}{n}$ is small and $\tan\left(\frac{\pi}{n}\right)$ can be approximated by $\frac{\pi}{n}$, giving the result that $IQ \rightarrow 1$ as $n \rightarrow \infty$.)

ACTIVITY 16.3

Notes and Solutions

16.3 1. (a)
$$A = 3$$
, $G \approx 2.60517$, $H = 2.18978$ (b) $A = 3$, $G = 3$, $H = 3$
3. $(a - b)^2 \ge 0$ \Rightarrow $a^2 - 2ab + b \ge 0^2$ \Rightarrow $a^2 + b^2 \ge 2ab$ \Rightarrow $a^2 + 2ab + b^2 \ge 4ab$ \Rightarrow $a + b \ge 2\sqrt{ab}$ \Rightarrow $a + b \ge 2\sqrt{ab}$ \Rightarrow $a + b \ge G$

Extension Note that
$$H = \frac{2}{\frac{1}{a} + \frac{1}{b}} = \frac{2ab}{a+b}$$
, so to show that $G \ge H$,

we need to show that
$$\sqrt{ab} \ge \frac{2ab}{a+b}$$

or
$$a+b \ge 2\sqrt{ab}$$
 (mutiplying both sides by $\frac{a+b}{\sqrt{ab}}$)

or
$$\frac{a+b}{2} \ge \sqrt{ab}$$
,

which we know is true.

ACTIVITY 16.4

Notes and Solutions

16.4 1. $0 \le y \le 15$

2. (a) 60x + 40y

(b) $60x + 40y \ge 560$

3.

4. The lines C = constant will attain minimum value at the point x = 6, y = 5.

This gives C = 500 and tells us that we should have

6 double deckers,

5 single deckers.