<u>File</u>	<u>Height</u>	<u>Duplica</u>	<u>ites</u>	Duncan Van Keulen
randomInts01		47	0	
randomInts02		49	0	
randomInts03		47	0	
randomInts04		51	0	
randomInts05		48	0	
randomInts06		46	0	
randomInts07		47	0	
randomInts08		51	0	
randomInts09		49	0	
randomInts10		49	0	
State				
31415				

<u>Stats</u>

Maximum	51
Minimum	46
Average	48.4
Median	48.5
Standard Deviation	1 712697677

Questions:

- 1. Lg(n) is a better approximation of the time complexity because 45-50 is a lot closer to 20 (lg(1000000)) than 1000000
- 2. There is not a lot of variance in the height of the trees (~2). A "default" BST performs best with random data, and since all of the given data was random, it's not really that surprising that it would perform similarly on each.
- 3. There weren't any duplicates in any of the files, which isn't really that surprising even considering that there were ten million 64 bit integers that's a lot of options
- 4. The "a" value of the time complexity looks to be about 2.25 because lg(1000000) = 20 and 2.25 * 20 = 45 and that's around the heights of the BST's after a million values