

General information

Designation

Prunus avium

Typical uses

Furniture; turnery; decorative ware;

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O		
Material family	Natural	
Base material	Wood (hardwood)	
Renewable content	100	%

Composition detail (polymers and natural materials)

Wood	100	%

Price

Price	* 3.04	-	4.88	USD/lb
Price per unit volume	* 104	-	204	USD/ft^3

Physical properties

Density	0.0199	-	0.0242	lb/in^3		
---------	--------	---	--------	---------	--	--

Mechanical properties

Mechanical properties				
Young's modulus	* 0.197	-	0.22	10^6 psi
Yield strength (elastic limit)	* 0.383	-	0.461	ksi
Tensile strength	* 0.638	-	0.769	ksi
Elongation	* 0.94	-	1.15	% strain
Compressive strength	* 0.777	-	0.95	ksi
Flexural modulus	0.18	-	0.2	10^6 psi
Flexural strength (modulus of rupture)	* 0.638	-	0.769	ksi
Shear modulus	* 0.0205	-	0.028	10^6 psi
Shear strength	* 4.48	-	5.44	ksi
Rolling shear strength	* 0.165	-	0.495	ksi
Bulk modulus	* 0.102	-	0.113	10^6 psi
Poisson's ratio	* 0.02	-	0.04	
Shape factor	5.6			
Hardness - Vickers	* 3.85	-	4.7	HV
Hardness - Brinell	27	-	33	НВ
Hardness - Janka	* 866	-	1.06e3	lbf

Cherry (prunus avium) (t)

#EJUPIICK							
Fatigue strength at 10^7 cycles	* 0.191	-	0.231	ksi			
Mechanical loss coefficient (tan delta)	* 0.02	-	0.026				
Differential shrinkage (radial)	0.16	-	0.18	%			
Differential shrinkage (tangential)	0.26	-	0.3	%			
Radial shrinkage (green to oven-dry)	* 3.2	-	7	%			
Tangential shrinkage (green to oven-dry)	* 6.8	-	11.5	%			
Volumetric shrinkage (green to oven-dry)	* 11	-	18	%			
Work to maximum strength	* 0.0906	-	0.11	ft.lbf/in^3			
Impact & fracture properties							
Fracture toughness	* 0.39	-	0.477	ksi.in^0.5			
Thermal properties							
Glass temperature	171	-	216	F			
Maximum service temperature	248	-	284	F			
Minimum service temperature	* -99.4	-	-9.4	F			
Thermal conductivity	* 0.0537	-	0.0659	BTU.ft/hr.ft^2.℉			
Specific heat capacity	0.396	-	0.408	BTU/lb.F			
Thermal expansion coefficient	* 16.1	-	21.8	µstrain/℉			
Electrical properties							
Electrical resistivity	* 8.27e13	3 -	2.76e14	μohm.in			
Dielectric constant (relative permittivity)	* 3.49	-	4.27				
Dissipation factor (dielectric loss tangent)	* 0.047	-	0.057				
Dielectric strength (dielectric breakdown)	* 25.4	-	50.8	V/mil			
Magnetic properties							
Magnetic type	Non-ma	gneti	3				
Optical properties							
Transparency	Opaque	Opaque					
Critical materials risk							
Contains >5wt% critical elements?	No	No					
Durability							
Water (fresh)	Limited						
Water (salt)	Limited						
Weak acids	Limited	use					
Strong acids	Unacce		9				
Weak alkalis	Accepta						
Strong alkalis	Unacce	ptable	9				

Cherry (prunus avium) (t)

Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	4.99e3	-	5.5e3	BTU/lb	
-------------------------------------	--------	---	-------	--------	--

Sources

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

	CO2 footprint, primary production	0.574	-	0.633	lb/lb	
--	-----------------------------------	-------	---	-------	-------	--

Sources

0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammond and Jones, 2008); 0.909 kg/kg (Hubbard and Bowe, 2010)

Water usage	* 1.84e4	-	2.03e4	in^3/lb	
-------------	----------	---	--------	---------	--

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 244	-	270	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.0426	-	0.0471	lb/lb
Fine machining energy (per unit wt removed)	* 603	-	666	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.105	-	0.116	lb/lb
Grinding energy (per unit wt removed)	* 1e3	-	1.11e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 0.175	-	0.193	lb/lb

Recycling and end of life

, ,				
Recycle	×			
Recycle fraction in current supply	8.55	-	9.45	%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 8.49e3	-	9.16e3	BTU/lb
Combustion CO2	* 1.69	-	1.78	lb/lb
Landfill	✓			
Biodegrade	✓			

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture

Links

ProcessUniverse	
Reference	
Shape	

