Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики»

Факультет Санкт-Петербургская школа физико-математических и компьютерных наук

Рецензия на выпускную квалификационную работу

студента 4 курса группы БПМ201С образовательной программы «Прикладная математика и информатика» НИУ ВШЭ — Санкт-Петербург Буянтуева Александра Алексеевича

на тему: «Построение линейных избыточных кодов при помощи обучения с подкреплением»

№ п/п	Критерии оценки	Оценка
1.	Актуальность работы	10
2.	Полнота обзора существующих решений и сопоставления с ними	7
3.	Сложность и объемность программной реализации или предложенных технологических решений	8
4.	Качество итогового продукта, в т.ч. полнота верификации, тестирования и т.д.	9
5.	Качество оформления работы, в т.ч. отчета и программного кода. Ясность и четкость изложения в отчете.	10
6.	Четкость выдерживания запланированного графика работы, своевременность прохождения основных этапов выполнения ВКР, взаимодействие с руководителем ВКР	10

Комментарии к оценкам:

- 1. Актуальность работы. Разработка новых схем кодов коррекции ошибок является актуальной задачей так как используется во всех протоколах хранения и передачи информации с целью повышения отказоустойчивости в случае повреждения или утери данных. Основным результатом работы является фреймворк для построения схем кодирования на основе RL и полученные на его основе схемы, показывающие хорошие результаты. Применение RL для решения задач дискретной оптимизации со сложной структурой являются относительно редким, но в большинстве задачи, где это удаётся формализовать и применить, получались новые неочевидные решения.
- 2. Полнота обзора. Александр приводит недостаточно полный обзор методов: представлены только методы смежного класса с предложенным

- RL-FEC (LDPC, Flex-FEC) и референсный Reed-Solomon, но не приведены хотя бы в общих чертах прочие методы построения кодов коррекции ошибок (например, Hamming, Hadamard, Turbo, RRNS).
- 3. Сложность программного продукта. Александр реализовал: прототип кодирования и декодирования кодов в рассматриваемом классе; фреймворк для обучения агента построения схемы избыточного кодирования с использованием RL.
- 4. Качество продукта, верификации, тестирования. В целом проведено хорошее исследование и сравнение с известными схемами кодирования со схожими по сложности алгоритмами кодирования/декодирования. Проведенные тесты подтверждают практическую эффективность предложенных методов. К сожалению, в работе отсутствует сравнение по эффективности процедур кодирования/декодирования для разных подходов, что немного умаляет полноту верификации, однако подобное исследование заметно сложнее стандартных требований ВКР.
- 5. Качество оформления работы. Работа оформлена аккуратно, ясно и четко.
- 6. Выдерживание графика работы. Запланированный график работы выдержан четко.

Вопросы:

- 1. На странице 34 указывается, что в рамках работы рассматривались размеры блоков <= 64, что позволяет использовать битовую арифметику для эффективной реализации вспомогательных опреаций. Допустимо ли использование различных SIMD инструкций современных процессоров для блоков большего размера?
- 2. Из данных, представленных в главе 6, неочевидно, влияет ли модель потерь на эффективность используемых схем. Что можно сказать о наличии или отсутствии такого влияния?

Рецензент:

канд. физ.-мат. наук, инженер ключевых проектов ООО «МПГ АйТи Солюшнз»

Р. С. Пусев

Дата: 27.05, 2024