Ein harmonikales Analogon: Leibniz' Stammbaum-Modell in der Dissertatio de arte combinatoria*

Von

WERNER SCHULZE (WIEN)

Summary

The Lambdoma, considered the most important harmonical pattern of order is to be understood as a further development of a figure attributed to the Pythagoreans "in the shape of the capital letter Lambda" – therefore named Lambda (0). Diagrams similar to the Lambdoma without explicit harmonical significance can be found in the writings of several medieval and modern authors, including Ramon Llull (1), whose influence on Leibniz is already evident in the Dissertatio de arte combinatoria, Leipzig 1666. Leibniz and Llull are linked particularly by the idea of Kombinatorik as ars inveniandi in the sense of a universal language, whose extension of knowledge is self-creating (2).

In the larger context of Llull's historical influence, Kombinatorik as structural logic and harmonical Lambdoma we also have to see Leibniz's genealogical scheme in his academic dissertation (3). The harmonical analysis of this model contains convincing parallels to the structural build-up of the Lambdoma (4). However, the analogies go further, as is shown by the reference to Leibniz's Dyadik, to the 64 hexagrams of the *I Ging* (Fu-Shi-order) and the comparison of the *I Ging* (structured according to the Wen-scheme) with the genetical code. Harmonically structured systematized thought reveals itself as that possibility of an interpretation of the universe, which Leibniz did not really have in mind. However, we can find that thought at the decisive points of his theory of philosophical principles (prestabilized harmony, monadology) so to speak as the pythagorean-platonic inheritance (5).

0. Einleitung: Lambda und Lambdoma

Was dem Chemiker das Periodische System der Elemente, dem Zahlentheoretiker die Folge der natürlichen Zahlen, dem Akustiker die Obertonreihe, ist dem mit der harmonikalen Grundlagenforschung Befaßten das Lambdoma: nicht ein beliebiges, sondern das einfachste und umfassendste Ordnungsschema der durch Zahlen und Proportionen darstellbaren Töne und Intervalle. Es ist das Verdienst von Albert von Thimus (1806–1878) und insbesondere von Hans Kayser (1891–1964), dieses Tonkoordinatenschema entwickelt, umfassend interpretiert und außerdem als ein weitreichend gültiges Naturgesetz aufgewiesen zu haben¹.

^{*} Dieser Aufsatz ist dem 1985 verstorbenen Logiker (Von der Analogie zum Syllogismus, Paderborn 1954; Klassenlogische Syllogistik, Paderborn-München-Wien-Zürich 1984), Lull-Exegeten (Raimund Lull, 2 Bde., Düsseldorf 1962/64; Das Leben des seligen Raimund Lull, Düsseldorf 1964) und Harmonik-Freund (El pensar armónico, Madrid 1945), Pater Prof. emer. Dr. Erhard Wolfram Platzeck OFM, in Verehrung und Dankbarkeit gewidmet.

¹ Albert von Thimus: Die harmonikale Symbolik des Alterthums, Köln 1868, S. 132ff.; Hans Kayser, Lehrbuch der Harmonik, Zürich 1950; Rudolf Haase, Harmonikale Synthese, Wien 1980, S. 65–80; Gerhard Jahoda, Identische Strukturen pythagoreischer Zahlenschemata, Wien 1971, S. 11–44; Leopold Spitzer, Die harmonikale Symbolik des A. Frh. von Thimus, Wien 1978, S. 79–87; Werner Schulze, Harmonik und Theologie bei Nikolaus Cusanus, Wien 1983, S. 53–68.

Abb. 1: Lambdoma mit Monochord

Dem Lambdoma kann, wie aus Abb. 1 ersichtlich, ein Monochord angelegt werden. Teilungspunkte der Saite lassen sich dann gewinnen, indem man Gerade, die durch den Koordinatenschnittpunkt (0/0) und einen erwählten Punkt (Tonort, Tonzahl als Proportion zur Basis 1) des zweidimensionalen Tonnetzes verlaufen, mit der Monochordsaite zu einem Schnitt bringt. Versetzt man den solchermaßen abgegrenzten Saitenteil in Schwingung, wird der betreffende Tonort, dem die Tonzahl (Frequenz) direkt entspricht, hörbar, mit anderen Worten: erstens die Saitenlänge und zweitens die Schwingungszahl pro Zeiteinheit, mithin eine sowohl räumliche wie zeitliche Quantität, werden als Erlebnisqualität apperzipierbar. Das Lambdoma wird auf diese Weise gleichsam ein klingendes cartesisches Koordinatensystem.

Aber wie es Chemie gab, ehe Dimitrij Mendelejew und Lothar Meyer 1869 das Periodische System der Elemente fanden, und wie akustische Überlegungen auch zwei Jahrtausende vor der im 17. Jahrhundert erfolgten Entdeckung der Obertonreihe (Marin Mersenne) und ihres Zahlengesetzes (Joseph Sauveur) angestellt wurden, ebenso existierte harmonikales Denken auch vor Thimus und Kayser. So kristallisieren sich im Blick auf das Lambdoma in der pythagoreischen Harmonik zwei Ansätze heraus: erstens die immer wieder auftauchende und bis zurück zu Krantor von Soloi, einem Enkelschüler Platons, zu verfolgende Tendenz, entweder die aus der Eins sich

entfaltenden natürlichen Zahlen (beziehungweise der natürlichen Brüche mit dem Zähler 1) oder Reihen der Potenzzahlen (respektive ihrer Reziproken) in Gestalt des Lambda anzuschreiben, also nur die äußersten Reihen des Lambdoma zu bringen ohne Ausfüllung (πλήρωσις, πλήρωμα) zu einem durchgängig geschlossenen Raster von Zahlen und Brüchen; zweitens das komplette Schema, ebenfalls hie und da für völlig verschiedene Anwendungsbereiche geltend gemacht, jedoch ohne die Vorstellung, wie sie für das Lambda kennzeichnend ist: die Form des Großbuchstabens Lambda, nach unten ausstrahlend. Die erste Form, die wir Lambda nennen, ist die ältere und kann den Pythagoreern zugeschrieben werden, die zweite Form entbehrt in ihren frühen Erscheinungen des harmonikalen Sinnbezugs und tritt auf unabhängig vom Lambda (welches als Vorform des Lambdoma betrachtet werden kann). Doch beide Formen sind der Ideengeschichte des Lambdoma zuzuordnen; dieses selbst allerdings ist, wie gesagt, eine eigenschöpferische Leistung von Thimus und vor allem Kayser, also eine harmonikale Anschauungs- beziehungsweise Anhörungsform der letzten etwa 120 Jahre. Folgende koordinative Tabelle, einer eigenen Publikation² entnommen, möge den historischen und systematischen Sachverhalt hinsichtlich Lambda und Lambdoma verdeutlichen.

Erscheinungs-	Bedeutungsfelder der Lambda-Figur											
formen der Lambda-Figur	mathematisch- (theo)logisch	musikalisch	harmonikal- symbolisch	wissen- schaftlich								
Lambda	NIKOMACHOS IAMLICHOS—	MACROBIUS → BOETHIUS										
Lambdoma	LULLUS ↓ LEIBNIZ	SALINAS	seit THIMUS, KAYSER	GOLD- SCHMIDT								

Es ist zu fragen: Spielt das Lambda oder das Lambdoma in den Schriften von Leibniz irgendeine Rolle? In der Diskussion während des II. Internationalen Leibniz-Kongresses, Hannover 1972, verneinte – einer mündlichen Mitteilung Rudolf Haases zufolge – Joseph Ehrenfried Hofmann diese Frage³. Lambda und Lambdoma als ausdrücklich harmonikale Ordnungsmuster kommen bei Leibniz tatsächlich nicht vor, doch das Schema als solches läßt sich bei ihm nachweisen. Bevor jedoch auf das Leibnizsche Lambdoma in der Frühschrift Dissertatio de arte combinatoria⁴ eingegan-

² Schulze, a.a.O. (Anm. 1), S. 53.

³ Auch in Hofmanns Beitrag Leibniz als Mathematiker, in: Leibniz. Sein Leben – sein Wirken – Welt, Hannover 1966, S. 421–458, finden Abacus, Lambda und Lambdoma keine Erwähnung.

⁴ Leibniz, Dissertatio de arte combinatoria, Lipsiae 1666, GP IV, S. 27-104. (GP = Die philosophischen Schriften von G. W. Leibniz, hrg. C. I. Gerhardt, 7 Bde., Berlin 1875-1890). Daß es sich bei Leibniz' Frühschrift nicht um ein Werk handelt, auf das er in seinem späteren Leben herabgeblickt hat (trotz kritischer Anmerkungen in Zusammenhang mit der Frankfurter

gen wird, bedarf es einer Darlegung derselben, allerdings anders angewandten Figur, wie wir sie bei der neben Athanasius Kircher wichtigsten Autorität in Leibniz' Kombinatorik-Schrift vorfinden, bei Ramon Llull⁵.

1. Das Lambdoma in Ramon Llulls ars electionis

Nikolaus von Kues (1401–1464), von Leibniz sehr geschätzt, betrieb wie dieser umfangreiche Lull-Studien, worüber die zahlreichen, meist eigenhändigen Abschriften von Werken Lulls in der heute noch erhaltenen Privatbibliothek des Cusanus Zeugnis geben⁶. Unter den Exzerpten befindet sich auch eine verloren geglaubte, von Honecker⁷ 1937 entdeckte, nur in der Kueser Abschrift erhaltene Abhandlung *De arte electionis* (1299); in ihr wird das Prinzip der Gerechtigkeit bei Durchführung von Wahlen (electiones) kirchlicher Führungsgremien erörtert. Folgende Abbildung, der die analoge tabula gimel aus Leibniz' *Dissertatio*⁸ beigegeben wird, ist der Lullschen Schrift entnommen:

cd	de	ef	fg	gh	hi	ik
ce	df	eg	fh	gi	hk	
cf	dg	eh	fi	gk		-
cg	dh	ei	fk		-	
ch	di	ek		•		
ci	dk		1			
-	!					
	ce cf cg	ce df cf dg cg dh ch di ci dk	ce df eg cf dg eh cg dh ei ch di ek ci dk	ce df eg fh cf dg eh fi cg dh ei fk ch di ek ci dk	ce df eg fh gi cf dg eh fi gk cg dh ei fk ch di ek ci dk	ce df eg fh gi hk cf dg eh fi gk cg dh ei fk ch di ek ci dk

Abb. 2 und 3: Lulls und Leibniz' Buchstabenschema zur Kombinatorik

Auf den Sachverhalt, daß auch Cusanus auf diese Weise die Struktur des Lambdoma kannte, ist hier nicht weiter einzugehen. (Der Schriftvergleich erweist Nikolaus eindeutig als den Schreiber des Kueser Codex, der unsere Lull-Schrift enthält.)

Zweitausgabe 1690), beweist eine unbetitelte Abhandlung (GP VII, S. 184ff.), die er mit den Worten "Vetus verbum est, DEUM omnia pondere, mensura, numero fecisse." (Salomos Weisheit 11₂₁) beginnt, sich sodann als der pythagoreischen Tradition zugehörig bekennt und in diesem Zusammenhang auf den besonderen Wert seiner *Dissertatio* verweist.

⁵ Zu Lulls Leben und Persönlichkeit vgl. in erster Linie Erhard Wolfram Platzeck, Raimund Lull. Sein Leben – seine Werke – die Grundlagen seines Denkens (Prinzipienlehre), Bd. 1, Düsseldorf 1962.

⁶ Bibliothek des Hospitals Bernkastel-Kues, Cod. Cus. 81–88, ingesamt 68 Werke Lulls enthaltend. Abhandlung *De arte electionis* Cod. Cus. 83, fol. 47v–48r.

⁷ Martin Honecker, Lullus-Handschriften aus dem Besitz des Kardinals Nikolaus von Cues, = Spanische Forschungen, R. 1, Bd. 6, Münster 1937, S. 252-307.

⁸ GP IV, S. 42.

Vielmehr ist es im Hinblick auf das Leibnizsche Anliegen, die Kombinatorik als universale Wissenschaftsmethode zu verwenden, angebracht, die Zusammenhänge zunächst bei Lull darzulegen, da sie die Leistungsfähigkeit des kombinatorischen Kalküls zeigen:

Werner Schulze

Beginnen wir bei der Wahlkombinatorik der ars electionis, die als eine von zahlreichen Anwendungsfällen der Lullschen ars generalis aufzufassen ist: In einem Vorwahlsystem werden 9 Kandidatinnen (b bis k) aus dem Kreis der Nonnen, deren Äbtissin zu wählen ist, bestimmt. Anschließend finden in einem direkten und offenen Verfahren $36\left(=\frac{8}{2}\cdot 9\right)$ Wahldurchgänge statt in der Form, daß sowohl die Wahlpflichtigen wie auch die restlichen 7 wählbaren Nonnen ihr Ja oder Nein zu jeder möglichen paarweisen Gruppierung der Wählbaren abgeben. Abgestimmt wird also über jede einzelne Gruppe m.n (m, n verschieden und Element der Menge b, c, d, e, f, g, h, i, k).

Allgemein gelten folgende Gesetzmäßigkeiten (x sei die Zahl der Wählbaren, y die Zahl der Wähler):

$$\frac{x}{2} \cdot (x-1) \qquad \text{die Anzahl der Wahldurchgänge,}$$

$$\frac{x}{2} \cdot (x-1) \cdot (y-2) \qquad \text{die Anzahl der Willenskundgebungen (Handzeichen, Stimmzettel oder anders) im Verlauf sämtlicher Wahldurchgänge,}$$

$$(x-1) \cdot (y-2) \qquad \text{die maximal erreichbare Anzahl der Ja-Stimmen, die eine wählbare Person erreichen kann.}$$

Als Sieger beendet die Wahl, wer aufgrund dieses sicherlich langwierigen, allerdings gründlichen und gerechten Verfahrens die meisten Ja-Stimmen auf sich zu vereinen vermag⁹.

Werden die Buchstaben in Lulls "Treppenfigur" durch Zahlen ersetzt (a =0, b=1, . . . , k=9), zeigt sich, daß es sich um ein Teildreieck des harmonikalen Lambdoma handelt, und zwar um jenes, welches aus der obersten Waagrechten (Zähler 1), der Senkrechten mit dem Nenner 9 und der der Zeugertonlinie nächstliegenden Parallelen besteht:

```
1/2 2/3 3/4 4/5 5/6 6/7 7/8 8/9
1/3 2/4 3/5 4/6 5/7 6/8 7/9
1/4 2/5 3/6 4/7 5/8 6/9
1/5 2/6 3/7 4/8 5/9
1/6 2/7 3/8 4/9
1/7 2/8 3/9
1/8 2/9
1/9
```

⁹ Regeln, was bei Stimmengleichheit zu geschehen habe, werden nicht gegeben. Es erscheint auch nicht nötig, dafür Richtlinien zu erstellen, da sich als günstiger Nebeneffekt des Lullschen Wahlprinzips ergibt, daß Stimmengleichheit kaum auftreten wird. Denn es gilt: [(x-1) · (y-2)] > (y-1), das heißt, die Zahl der in diesem Wahlverfahren die wählbaren Personen betreffenden Urteile ist wesentlich größer, als wenn immer nur über einen einzelnen abgestimmt wird. Somit ist die Wahrscheinlichkeit von Stimmengleichheit wesentlich herabgesetzt. In Klostergemeinschaften mit einem eher kleinen Wählerkreis wird diese Eigenschaft um so positiver zur Wirkung kommen.

Zwischen Lulls Treppenfigur und dem Lambdoma ergeben sich im wesentlichen zwei Berührungspunkte:

- 1. Die Lullsche ars electionis, Teil einer umfassenden ars magna, ist beliebig erweiterbar. Raimund sagt: "Wenn aber in der Versammlung mehr als neun Personen sind, werden die Kammern in der oben beschriebenen Figur unter Hinzufügung eines "l' vermehrt" (si vero in ecclesia plures sint quam IX persone, multiplicentur camere in figura suprascripta addendo "l'). Werden also mehr als 9 Personen in einen Wahlvorschlag eingebracht, wird das Schema vergrößert und entsprechend sind 45, 55, 66 . . . einzelne Wahldurchgänge durchzuführen. Auch das Lambdoma, als Tafel aller durch Proportionen ausdrückbaren Intervalle also unendlich vieler –, ist durch eine Erweiterbarkeit über jede Zahl-Grenze hinaus ausgezeichnet.
- 2. In Raimunds Schema bleibt der Buchstabe a ausgespart. Wie der Vergleich mit dem Figurenbestand der ars inventiva zeigt, ist A immer Symbol des Unnennbaren, der entweder ungenannt verbleibt und gründend gegenwärtig ist, oder als Genannter in der Mitte steht und solchermaßen allen Elementen des Ganzen die Richtung weist (A in der Mitte der Kreisfiguren zur Kombinatorik). In der analogen mathematischen In-Definition des 0/0 hat zumal die mystische Auslegung des Lambdoma ähnliches gesehen: gründende Gegenwart, Unnennbarkeit, Un-Grund.

Lulls Wahlkombinatorik ist ein spezieller Anwendungsbereich dessen, was als ars magna, ars generalis, ars combinandi, ars inventiva bezeichnet wird; diese "Lullsche Kunst" hatte unter anderem Einfluß auf Nikolaus von Kues (ars coniecturalis¹⁰), Athanasius Kircher (ars magna sciendi) und Leibniz (ars combinatoria, scientia generalis). Der theologische Kern, die Prädikamentenlehre, weist eine dem Schema der ars electionis wesensgleiche kombinatorische Figur auf, die figura A: Auf die als Kreismitte symbolisierte Person Gottes (A) sind die 9 auf den Kreisumfang gezeichneten und mitsammen durch Linien verbundenen praedicamenta bezogenen (B = Bonitas, C = Magnitudo, D = Duratio, E = Potestas, F = Sapientia, G = Voluntas, H = Virtus, I = Veritas, K = Gloria). Keinesfalls sind damit die Bedeutungen der Buchstaben eindeutig festgelegt, sondern sie sind äquivok, können Stellvertreter von Relationen (differentia, concordantia, contrarietas; principium, medium, finis; maioritas, aequalitas, minoritas), Regeln, Fragewörtern, Tugenden, Lastern oder anderem sein, und gleiches gilt für den Buchstaben im Zentrum. Insgesamt gibt es vier Lullsche Symbolfiguren, denen ein einheitlicher Grundbestand zueigen ist trotz (oder wegen) ihrer verschiedenen Anwendbarkeit: in der ars electionis sind es wählbare Personen, die für B bis K zu substituieren sind, in der ars inventiva die göttlichen Grundwürden (dignitates). Allen Figuren eignet ein mit dem Anfangsbuchstaben des Alphabets bezeichnetes Zentrum, um das herum Buchstaben als logische Leerstellen in Zweiergruppen oder tripelweise angeordnet sind.

Die grundlegenden Operationen der ars inventiva sind Substitution (der logischen Leerstellen, beispielsweise durch die göttlichen Wesensattribute), Permutation und, als beliebige Zusammen- und Gegenüberstellung, die Komposition. Insgesamt liegt keine reine Formallogik vor, da die Buchstaben Stellvertreter für Bedeutungen sind. Das logische Grundgerüst aller Lullschen Symbolfiguren und die

¹⁰ Winfried Happ, Zahlenspekulation und Theorie der Mutmaßung bei Nikolaus von Cues (Ein Versuch der Interpretation von De coniecturis), MS Diss. Köln 1951, S. 60.

Regel der universellen Komponierbarkeit rücken Raimunds Kombinationskunst in die Nähe des harmonikalen Lambdoma.

Da es sich beim Lull-Diagramm in der ars election is um eine Wiederentdeckung in unserem Jahrhundert handelt, ist von dieser Schrift kein Einfluß auf Leibniz möglich. Da aber Raimunds Treppenfigur auch zum Figurenbestand der ars inventiva gehört und die Werke Lulls im 17. Jahrhundert mehrmals ediert wurden (1609, 1617, 1651), liegt es nahe, daß Leibniz bei seinen intensiven Lull-Studien auch auf die uns beschäftigende Figur gestoßen ist und von dorther eine Anregung zur Entwicklung seiner Doppelindices sowie der im übernächsten Abschnitt explizierten Verwandtschaftstabelle erfahren hat.

2. Llull und Leibniz

Die mathematisch orientierte Wissenschaftstheorie unserer Tage kann "auf eine lange Tradition zurückblicken, die bis zur Ars generalis des Raimundus Lullus und bis zu Leibniz zurückreicht"¹¹. Dieser Zusammenhang¹² zwischen Ramon Llull und Leibniz, der sich in der mathematisch-logischen Struktur ihrer Denkungsart und zumal in ihrer Bemühung um eine aus sich selbst wissenserweiternde Universalsprache zeigt, soll im folgenden dargelegt werden (freilich nur in einem solchen Ausmaß, als es der Blick auf die Ideengeschichte des Lambdoma erfordert).

Lullsche Kombinatorik erlebt im 17. Jahrhundert eine Renaissance. Athanasius Kircher ist ihr genauso verpflichtet wie Leibniz, der mit Kircher 1670 darüber einen Briefwechsel führt und 1690, als Bibliothekar der Herzog August-Bibliothek in Wolfenbüttel, daselbst Kirchers auf der Basis der Kombinatorik entwickelte Komponiermaschine kennenlernt¹³. Für unseren Zusammenhang überaus wichtig ist Kirchers Schrift Ars Magna Sciendi¹⁴, die 1669, also drei Jahre nach Leibniz' akademischer Dissertation, erschien; sie enthält neben Untersuchungen zu Permutationsmöglichkeiten, Faktoriellen-Tabellen und anderen der Leibnizschen Arbeit ähnlichen Themen eine tabula universalis seu Abacus polysophus. Dieses Schema ist durch kombinatorische Komposition von Lulls 9 göttlichen Grundwürden (Bonitas, Magnitudo, . .) und 9 Relationen (differentia, concordantia, . . .) gebildet und stellt bei Ersatz der Symbola durch die fortlaufende Naturzahlenfolge das komplette, bis

¹¹ Erhard Oeser, Begriff und Systematik der Abstraktion. Die Aristotelesinterpretation bei Thomas von Aquin, Hegel und Schelling als Grundlegung der philosophischen Erkenntnislehre, Wien/München 1969, S. 457.

¹² Paolo Rossi, Clavis universalis. Arti mnemoniche e logica combinatoria da Lullo a Leibniz, Milano-Napoli 1980; Erhard-Wolfram Platzeck, Gottfried Wilhelm Leibniz und Raimund Lull, in: Virtus politica. Festgabe zum 75. Geburtstag von Alfons Hufnagel, 1974, S. 387–409. Leibniz dürfte von Lull maßgeblicher beeinflußt worden sein als von Erhard Weigel, bei dem er wenige Jahre vor Abfassung der Dissertation Vorlesungen hörte. (Später, vor allem bei der Abfassung seiner theologia naturalis namens Philosophica Mathematica, Jena 1693, wird wohl Weigel mehr von Leibniz profitiert haben als umgekehrt.)

¹³ Ulf Scharlau, Athanasius Kircher (1601-1680) als Musikschriftsteller, Marburg 1969, S. 202f. u. 349f.

¹⁴ Athanasius Kircher, Ars Magna Sciendi sive Combinatoria, Amstelodami 1669; vgl. S. 12 das Lullsche Buchstabenschema zur Kombinatorik (= Leibniz' tabula gimel), S. 194 unsere Abb. 4. Zur Kombinatorik bei Lull und Kircher siehe auch David E. Mungello, Curious land: Jesuit accomodation and the origins of sinology, = Stud. Leibn. Suppl. XXV, Stuttgart 1985, bes. S. 175ff.

1	2	3	1	5	6	7	8	9	10	ш	12	13	14	15	16	17	18
33	BA	BD	B P	BS	B Vo	B Vi	BVe	B G	B	B 🜣	B 0-0	вα	<i>B</i> 0	Bω	в м	B Æ,	B Min
AB.	M.H	ЛD	ЛP	A S	MVo	MVi	MVe	MG	ЙĦ	M Ø	M o-	M a	M O	Mω	M M	M Æ	MM
DB	D.A	DD	DР	D S	DVo	DVi	DVe	D G	DĦ	D Q	D •••	ъα	Dο	ာ ယ	DМ	DÆ,	D.Alia
P B	PA	P D	P P	P S	PV.	PVi	P Ve	P G	PĦ	P 🜣	P ⊶	Pα	P O	Pω	P M	P Æ	P.Min
S B	SM	S D	S P	s s	s vo	s vi	s ve	s G	s Ħ	s 🜣	s ⊶	sα	5 0	$s \omega$	s m	S Æ	S Min
VoB	Vo.M	V ₀ D	V _b P	16 S	Vo Vo	V _b Vi	V018	Vo G	Vo¤	15 🛡	1500	16 a	16 O	иω	16 M	14 <u>R</u>	Vo Min
Vib	Vi.M	Vid	ViP	vi s	viv	vivi	vive	Vi G	vi¤	vi 🔈	vio	vi a	ио	uω	v M	ИÆ	Vi.Min
VeB	Ved	VeD	KP	Ve S	VeVo	VeVi	veve	Ve G	ИH	ve ♡	1/200	ve a	ve O	72 W	ve M	1'e Æ	2'e Min
G B	G M	G D	G P	G S	G Vo	GVi	GVe	G G	€ Ħ	€ △	G ••	g a	G 0	<i>င</i> ယ	G M	G Æ	G.Vin
m B	HÆ	ĦĐ	⊨P	⊨ S	□ 1 %	μи	Þνε	H G	II II	Ħ Ø	□⊶	Ħα	пo	1 3	⊨M	¤Æ	الله الما
73	Q.M.	ØĐ	QP	▽ S	7 Vo	0 vi	v ve	♥ G	II	99	۵۰۰	οα	٥ ٥	δ 3	σM	7Æ	V.Min
•••В	o a t	⊶ ⊅	•• <i>P</i>	⊶ S	De 210	→ 24	$-\nu_e$	⊶ G	⊶¤	⊶ ∆	0-00-0	⊶a	⊶ 0	⊶ω	⊶M	⊶Æ	0- 4 1/m
a B	αМ	a d	a P	a s	α νο	a vi	α νε	αε	αĦ	a 7	a ⊶	αa	αO	α ω	αM	a Æ	I.Man
0 B	o M	oρ	0 P	⊙ <i>S</i>	0 1%	૦૫ાં	0νε	ο ε	0 #	0 9	o ⊶	0 <i>x</i>	o o	စ ယ	ом	0 Æ,	O .Hin
ယ္အ	ωM	ω⊅	ωP	ωs	ωνο	ωvi	ωve	ن ت	ಬ=	ಬರ	ಬ⊶	ωα	သ ဝ	ယယ	ω M	úÆ	w.Min
м в	MM	MЭ	M P	M S	Mνο	МV	Μye	M G	М⊨	M 🌣	М⊶	M a	M O	Mω	мм	МÆ,	M.Min
Æ,B	R.M	ÆΣ	Æ, P	Æ, S	Æ Vo	AL, 14	Æ ve	Æ G	ÆĦ	Æ ,7	Æ⊶	Æ, a	ÆO	Æω	Æ M	ÆÆ	Æ. Ui
AinB	MinM	MinD	MinP	Min.S	Min Ib	Min Vi	Nin.Ve	Min.G	Min 🗀	Min	Mico	Alin a	. Him ⊙	Min W	Nin M	Mm Æ	Min Min

Abb. 4: Athanasius Kircher: tabula universalis seu Abacus polysophus

zum Index 18 entwickelte Lambdoma dar. Abgesehen von einer bestechenden Eleganz des darin zum Ausdruck gelangenden Denkens wird folgende harmonikale Analogie sichtbar: Harmonikal ist die Zeugertonlinie (1/1, 2/2, 3/3, . . .) als Wiederkehr des Basistons (bei Erneuerung der mathematischen Proportion), und damit wird die Zeugertonlinie selbst Basis des Gesamt-Systems; analog bedeutet theologisch die "Zeugerlinie" (BB = Bonitas Bonitatis, MM = Magnitudo Magnitudinis, DD = Duratio Durationis, . . .) die Basis allen Geworden-Seins, und damit ist der göttliche Erzeuger durch kombinatorische Symbolik aufgewiesen sowohl als Summum wie als transzendentaler Seins-Grund.

Doch zurück zu Leibniz. Zunächst ist es, in Zusammenhang mit der Entwicklung einer vernunftgemäßen, natürlichen Theologie, die geometrische Darstellbarkeit metaphysischer Denkmöglichkeiten, welche Leibniz an Lull fasziniert, also die Possibilität analoger Sprechweisen in Theologie und Mathematik; darüber hinaus ist er von der

Tauglichkeit der Kombinatorik generell bei Begründung und jedem Fortschritt der Wissenschaft überzeugt. Ähnlich der Lullschen ars generalis schwebt Leibniz eine scientia universalis, oder, wie er sie später nannte, eine scientia generalis vor, welche den Gewißheitsanspruch, wie er im Wissenschaftsbegriff der mathesis universalis gegeben war, in genereller Weise allen Wissenschaften zusprechen sollte. Als adaquate sprachliche Ausdrucksform müßte eine lingua universalis auftreten; Sprache und Erkenntnis wären solcherart harmonisiert und verbürgten nicht zuletzt aufgrund dieser Harmonie den sicheren Entwicklungsgang der Wissenschaft. Und zuletzt ist eine Denken und Sprache analoge ars characteristica universalis¹⁵, eine Zeichensprache gefordert als Fixierung und Formalisierung des Denkbaren, als ein "Alphabet der menschlichen Gedanken". "Das Ergebnis des . . . Gedankenalphabets soll eine Enzyklopädie des gesamten Wissens sein, in der alle Wissenschaften als Kombinationen ihrer grundlegenden Begriffe auftreten"¹⁶. Damit ist Kombinatorik weit mehr als Teil der Algebra, nämlich als Wissens- und Wissenschaftsmethode wirkliche ars inveniandi. Die gesuchte Zeichensprache wäre eine Art mathematische Stammsprache aller menschlichen Sprachen, die Einheit von Reden, Rechnen und Schreiben aufweisend.

Die Idee vieler Barockgelehrter (Kircher, Becher, Leibniz) bestand darin, Kombinatorik und Analogie zur Grundlage einer neuen Sicht der Dinge zu verbinden, also die für eine besondere Wissenschaft gültig erkannten und angewandten Kombinationsregeln per analogiam auch anderen Wissenschaften zuzuweisen. Theologisch ist diese Wissenschaftshaltung begründet in der Spiegelungstheorie, die als besondere Ausprägung der Lehre von der analogia entis verstanden werden kann: Der göttliche Gründergeist ist im Ganzen der Weltschöpfung re-präsent. Leibniz war der Gedanke der Spiegelung möglicherweise bei Nicolaus Cusanus, Idiota de mente V (Löffelschnitzergleichnis¹⁷) begegnet, eine Stelle, in der letztlich der Handwerkergott des platonischen Timaios, freilich christlich-theologisch gewandelt, fortlebt. Die Schöpfung wäre demnach einem innen polierten "Spiegel-Löffel" (coclear speculare) vergleichbar, in dem das Antlitz Gottes, als des Erzeugers des Löffels, widerstrahlt. So ist auch für Leibniz Gott Anfangs- und Final-Grund aller Entsprechungen, aller prästabilierter Harmonie. (Pythagoreisch-platonische) Leib/Seele-Harmonie - bildlich die von Gott gleichgestellten Uhren -, Analogie und Monadologie gehören damit zusammen (womit sich Leibniz an die pythagoreische Weltsicht anschließt):

"Was das ideale System der Entsprechungen trägt, das ist ein Grundgesetz, durch das jedes auf jedes so bezogen wird, daß jegliches allem anderen Rechnung trägt... Entsprechend stimmen die unendlich vielen repraesentationes mundi so zusammen, daß keine der anderen widerspricht... Harmonie bildet die Grundverfassung der wirklichen, objektiven Welt"¹⁸.

Worin besteht unmittelbar und zentral die geistige Nähe zwischen Lull und Leibniz? Einmal ist es die Reduktion, die Rückführung auf die Elemente (der Sprache,

¹⁵ Rita Widmaier, Die Rolle der chinesischen Schrift in Leibniz' Zeichentheorie, = Stud. Leibn. Suppl. XIII/2 (1981), S. 278-298.

¹⁶ Eberhard Knobloch, Die mathematischen Studien von G. W. Leibniz zur Kombinatorik, = Stud. Leibn. Suppl. X, Wiesbaden 1973, S. 56.

¹⁷ Schulze, a.a.O. (Anm. 1), S. 49f.

¹⁸ Wolfgang Janke, Leibniz als Metapyhsiker, in: Leibniz. Sein Leben – sein Wirken – seine Zeit, Hannover 1966, S. 361-420, Zitat S. 391.

Mathematik, Logik oder anderer Systeme), auf (sprach)logische Einheiten, ursprüngliche und voneinander gesonderte Begriffe (notiones distinctae primitivae); Reduktion ist damit Vorausbedingung aller Kombinatorik, da nicht Komplexes, sondern Zerteilt-Einfaches eine Zusammensetzung erfährt. Zum anderen wird der inversive Weg beschritten, die Deduktion als Wahrheitserweiterung aus den elementaren, gesicherten Inhalten, die Hinleitung zu den notiones compositae. Auch die ars characteristica universalis, die Entwickung einer allgemeinen Zeichensprache, hat Reduktion (als Zerlegung in einfachste Bestandteile) und Deduktion (als Zusammensetzung der Bestandteile zu Kombinationen) nachzuvollziehen. Wie aus der Buchstabenkombinatorik Wörter und Sätze entstehen, so verhält es sich auch mit den elementaren Denkinhalten und den fortschreitenden Erkenntnissen der Wissenschaft. In einem Brief an Herzog Johann Friedrich von Braunschweig-Lüneburg drückt Leibniz den Gedanken folgendermaßen aus¹⁹:

"In Philosophia habe ich ein mittel funden, dasjenige was Cartesius und andere per Algebram et Analysin in Arithmetica et Geometria gethan, in allen scientien zu wege zu bringen per Artem Combinatoriam, welche Lullius und P. Kircher zwar excolirt, bey weiten aber in solche deren intima nicht gesehen. Dadurch alle Notiones compositae der ganzen welt in wenig simplices als deren Alphabet reduciret, und aus solchen alphabets combination wiederumb alle dinge . . . ein weg gebahnet wird."

Leibniz sieht in seiner Methode also ein Mehr gegenüber den Vorfahren, welche das kombinatorische Prinzip entweder auf die Mathematik beschränkten oder, falls sie es als allgemeine Wissenschaftsmethode anerkannten, die der Kombinatorik innewohnenden universalen Möglichkeiten nur undeutlich zu sehen vermochten. Dieses Mehr gegenüber den Denkbemühungen seiner Vorgänger besteht auch in Leibniz' Erkenntnis, daß die mathematischen Disziplinen als solche noch nicht den Wesenskern der geistigen Welt ausmachen, sondern das Innere der Welt

"etwas mehr ist. Ich habe schon anderwärts angedeutet, daß es eine wichtigere Rechnung als die der Arithmetik und der Geometrie gibt, die Rechnung, die von der Analyse der Ideen abhängt. Es würde dies eine allgemeine Stammsprache sein, deren Herstellung mich eine der wichtigsten Sachen dünkt, die man unternehmen könnte"²⁰.

Manche Zeugnisse lassen darauf schließen, daß Leibniz selbst sein ganzes Leben hindurch auf dem Wege war, diese universale Stammsprache zu finden. Ein Ausspruch seines Schülers Christian Wolff²¹ deutet ebenfalls darauf:

"Ich besinne mich noch gar wohl, daß, als er wenige Wochen für seinem Ende mich das letzte mal besuchte, er mich versicherte, er wollte seine metaphysischen Wahrheiten auf eine geometrische Art demonstrieren, daß man an seinen Demonstrationen so wenig, als an Euclides seinen aussetzen könnte."

Mit Euklid und Lullus sind Namen einer Entwicklungslinie genannt, ohne die Leibniz tatsächlich undenkbar wäre. Im Hinblick auf die Leibnizsche Lambdoma-Darstellung sind an Vorläufern vor allem Boethius, Cusanus, Salinas, Descartes, Kircher und Weigel zu nennen²².

¹⁹ GP I, S. 57f.

²⁰ Robert Habs (Hrsg.): Kleinere philosophische Schriften von Leibniz, Leipzig 1900, S. 125 f.

²¹ Gottschalk Eduard Guhrauer: Gottfried Wilhelm Freiherr von Leibnitz. Eine Biographie, Breslau 1842, Bd. II, Anm. zu S. 325.

²² Schulze, a.a.O., S. 63.

Gr.	2	3		4	5	9
Personae 4 Filius.	12 Nepos.	32 Pronepos.		80 Abnepos	192 Atnepos.	Ab- paru- elis 1.5 448 Trinepos.
						Ab- patru- elis 1.5
					Pro- patru- elis 1.4	
	Filius		Patru- elis- parvus	1.3		Prosub- conso- brinus 2.4
		Pa- tru elis 1.2			Sub- conso- brinus 2.3	
DA.TUS	FR AT ER 1.1		Con- sobri- nus	2.2		Prosub- patruus Magnusve vel*) 3.3
		Pa- tru- us 2.1			Subpa- truus Mag- nus 3.2	
	Patris		Patru- us Mag- nus	3.1		Subpropa- pa- truus 4.2
					Pro- patruus 4.1	ø
						Ab- pa- truus 5.1
Gr. Cognationes 1. Patris 2	2. Avi 3	3. Proavi 4		4. Abavi 5	5. Atavi 6	6. Tritavi 7

*) Consobrinus secundus.

Abb. 7: Leibniz-Schema gedreht, mit Koordinaten

3. Leibniz' Stammbaum-Modell

Leibniz oblag als Geheimer Kammer- und Hofrat die Aufgabe der Abfassung der Historia Domus, der Chronik des Herrscherhauses. Es fällt auf, daß er sich mehr als ein Jahrzehnt zuvor, im Rahmen seiner Dissertatio, mit Fragen der Systematik von Stammbäumen, von Vorfahren, Nachkommen, Ehebündnissen und ähnlichem auseinandersetzt. Es interessiert ihn, wie Verwandtschaftsverhältnisse in einer allgemeinen Übersicht erfaßt werden können, wie – letzten Endes – so etwas wie ein Stammschema der gesamten Menschheit logisch strukturiert wäre. Üblicherweise halten sich Stammbaum-Zeichnungen an das platonische Diairese-Modell oder an die Unterscheidung von genus / species. Leibniz bietet demgegenüber das Ordnungsschema der Abb. 5.

Als Grundidee zur Entwicklung dieser Figur dient der Generationsbegriff. Aus Abbildung 6 werden die vier Hauptmerkmale des Schemas deutlich:

- 1. alle Parallelen von rechts (oben) nach links unten weisen die Vater-Sohn-Relation auf, also die direkte Nachkommenschaft;
- 2. alle Parallelen von links (oben) nach rechts unten stellen vorangegangene Generationen dar;
- 3. alle spiegelgleichen Punkte auf den Horizontalen haben gleichen Generationsabstand von der Ausgangsperson (datus);
 - 4. alle Vertikalen symbolisieren gleiche Generationsstufe.

Die vier Hauptunterschiede zwischen dem herkömmlichen Stammbaum-Modell und Leibniz' Vorschlag sind:

herkömmliches Stammbaum-Modell	Leibniz' Modell						
geschlechtsspezifis c h	geschlechtsunspezifisch (Mutter = Vater, Schwester = Bruder)						
vertikal: Generationsabfolge	vertikal: gleiche Generationsstufe (Generationenabfolge: alle Paralleler von links oben nach rechts unten)						
horizontal: Geschwisterbezug und Ehe	horizontal: Generationenabstand (Eherelation unberücksichtigt)						
Schema ist sinnvoll bei Anwendung auf konkrete Personen	Schema ist zuallererst in seiner Abstraktheit sinnvoll						

Zur nachfolgenden harmonikalen Interpretation empfiehlt es sich, das Schema zu drehen: Die Schrägen werden zu horizontalen und vertikalen Linien, und umgekehrt die Horizontalen und Vertikalen zu Schrägen. Fügt man zudem als Koordinate die von Leibniz nur angedeuteten äußeren Reihen (in der Sprache der Harmonik: die "Schenkelreihen") hinzu, ergibt sich die Abbildung 7.

Jede Person kann mittels der allgemeinen Form m.n generations- und verwandtschaftsmäßig vollständig beschrieben werden (für m, n entweder 0 oder eine natürliche Zahl). |m-n| ist die Größe für den Generationsabstand zur Bezugsperson (m=n=0), (m-n) < 0 bedeutet nachkommende Generation, (m-n) > 0 Vorfahre.

Zusammenfassend läßt sich sagen: Neben dem herkömmlichen Modell der Darstellung von Stammbäumen gibt es ein zweites, offenbar von Leibniz entwickeltes. Dieses erstrebt die höchste Stufe an Absolutheit von jeder inhaltlichen Fixierung, verzichtet in diesem Sinn sogar auf die Geschlechterdifferenz und auf die Darstellung von Ehebündnissen. Leibniz' Vorschlag hat den Generationsbegriff zum Ausgangspunkt und erweist sich als mit dem Lambdoma strukturgleich. Damit drängt sich die Notwendigkeit einer harmonikalen Analyse von selbst auf.

4. Harmonikale Interpretation des Leibniz-Schemas

Raimund Lulls Wahlverfahren regelnde Treppenfigur und, damit strukturgleich, die figura A der ars inventiva sind als kombinatorische Darstellungen mit dem Lambdoma unmittelbar und ohne Schwierigkeit in Beziehung zu bringen. Weit mehr noch rechtferigt das Leibnizsche Stammbaum-Modell eine harmonikale Analyse, da hier kein ausschließlich formallogisches Schema vorliegt, sondern inhaltliche Elemente gesetzt sind, deren sinnvolle (oder gegebenenfalls sinnentbehrende) Verbindung mit den Hauptmerkmalen des Lambdoma nun zur Diskussion steht. Die harmonikale Deutung kann bereichert werden, indem man das Leibniz-Modell fallweise in die gewohnte Art der Stammbaum-Schematik überträgt, damit gleichsam eine "Koordinationstransformation" durchführt (ähnlich wie bei der Umwandlung von Cartesischen und Polarkoordinaten).

Betrachten wir vorweg die Zeugertonlinie (m=n, also 0.0, 1.1, 2.2., usf.). Auf den ersten Blick sieht man in ihr vielleicht bloß die Bruder-Cousin-Großcousin-Linie und vermißt die erwartete zentrale Stellung. Da die konstitutive Idee des Leibniz-Schemas jedoch der Generationsbegriff ist, gewinnt die Zeugertonlinie als Generationskonstante zur Bezugsperson herausragende Bedeutung und steht damit in Wesensanalogie zur Zeugertonlinie des Lambdoma als Tonkonstante des Basistons.

Alle Parallelen zur Zeugertonlinie (|m-n| konstant) sind ebenfalls Linien identischer Generationsstufe (die Zeugertonlinie mit |m-n|=0 kann insofern als Spezialfall eines Parallelenbündels betrachtet werden). |m-n| ist der Generationsabstand zur gegebenen Person (m=n=0).

Die erste Parallele unter der Zeugertonlinie mit den auf die Ausgangsperson relativierten einzelnen Verwandten Vater/Onkel/Großonkelskind drückt zugleich die Verwandtschaftsbeziehung Vater-Relation/Onkel-Relation/Großonkelskind-Relation aus, wie sie jeweils für die betreffende gesamte Horizontale (n konstant) – harmonikal die "Untertonreihe" – gilt. (Die Untertonreihen stellen also differente Verwandtschaftsbeziehungen dar und fallen deshalb aus der Evidenz der übrigen harmonikalen Analogien). Transformiert in die gewohnte Anschauungsform ergibt sich Abb. 8.

Weitere Ergebnisse der harmonikalen Analyse sind:

Punkte auf Senkrechten zur Zeugertonlinie mit gleichem Abstand zu ihr deuten auf symmetrisch-gleichen Generationsabstand zum Ausgangspunkt (datus, 0.0). Harmonikal entspricht dies dem zum Zeugerton spiegelgleichen Intervallschritt nach oben beziehungsweise unten.

Die Schenkelreihen (m oder n gleich 0) stellen direkte Vorfahren oder Nachkommen dar.

Abb. 8: Leibniz' Stammbaum-Modell (Ausschnitt), transformiert

Alle Vertikalen (m konstant) zeigen die Vater/Sohn-Relation, sind also genauso dominant wie in der Grundlagenlehre der Musik die Obertonreihen, deren Proportionszahlen (Frequenzverhältnisse) den Positionszahlen des Leibniz-Schemas direkt entsprechen $\left(\frac{m}{n}, \frac{m}{n+1}, \frac{m}{n+2}, \ldots\right)$.

Mit der Darlegung des harmonikalen Gehalts von Leibniz' Stammbaum-Modell konnte nicht nur der "harmonikale Leibniz" um eine Perspektive erweitert werden, sondern die harmonikale Grundlagenforschung, als harmonikaler Strukturalismus, erhält in der Strukturlogik von Generationstabellen ein neues Thema und eine interessante Ergänzung zur vielfältigen Bedeutung des Lambdoma.

5. Abschließende Bemerkung zur Einordnung Leibnizens in die Geschichte des harmonikalen Denkens

Abschließend soll die Frage zur Einordnung Leibnizens in die Geschichte harmonikalen Denkens aufgeworfen werden: Wenn die Verbindung von Kombinatorik und Analogie wesentlich zur Wissenschaftsmethodik namhafter Barockgelehrter gehört, und wenn diese Kennzeichnung, zumindest teilweise, auch für Leibniz zutrifft, aus welchen Gründen hat Leibniz das kombinatorische Prinzip nicht auch für die Intervallproportionen der Musik zur Anwendung gebracht, also die Anordnung des (eingangs beschriebenen) Lambdoma erstellt, wie dies beispielsweise Salinas (1513–1590)²³ und Descartes (1596–1650)²⁴ unternommen haben? Zweitens: Weshalb

²⁴ Descartes, Oeuvres, publ. p. Ch. Adam & P. Tannéry, Bd. 1, Paris 1897, S. 98.

²³ Francisco Salinas, *De Musica libri VII*, Salamanca 1577, Nachdr. Kassel/Basel 1958, lib. II, cap. 12.

hat er eine solcherart erstellte Intervallkombinatorik per analogiam nicht auch anderswo gesehen und gesucht, also harmonikal geforscht? Leibniz' seit langem bekannte Dokumente zur Musiktheorie²⁵, seit wenigen Jahren bereichert um die Edition eines großen Teils des musiktheoretischen Nachlasses²⁶, bringen nirgends Intervallproportionentabellen in Lambdomaform. Scheut hier Leibniz vor einer gut möglichen und überdies durch das Realfaktum der Ober- und Kombinationstöne naturgegebenen Anwendung der Kombinatorik zurück? Wäre das Lambdoma nicht, um Leibniz' Schreibweise in der Dissertatio zu gebrauchen, ein weites, gar unendliches Feld von com2nationes? Und inwieweit sind entsprechend Dreiklänge als con3nationes, Vierklänge als con4nationes begreifbar? (Leibniz schreibt combinatio oder com2natio, conternatio oder con3natio, und analog)²⁷.

Die Antwort auf Leibniz', "Zurückhaltung" mag darin liegen, daß es ihm weniger um eine Vielzahl oder gar um unendlich viele Intervallzahlen geht, sondern, durchaus innerhalb des Rahmens der musiktheoretischen Erörterungen seiner Zeit, eher um eine klare Trennung von Grundzahlen und davon abgeleiteten Proportionszahlen. Platon hatte Tim. 35–36 die Zahlen 2 und 3 als Grundzahlen (nicht nur) der Musik herausgestellt, Leibniz konstatiert 2, 3, 5 als solche Fundamentalzahlen²8. Sämtliche Proportionen der in der Musik gebräuchlichen Intervalle kommen mit diesen Zahlen oder ihren multiplikativen Kombinationen aus (8:9, 15:16, 24:25, 80:81, u.v.a.), und insofern versteht Leibniz – ohne daß er es selbst in dieser Deutlichkeit ausgesprochen hat – die mathematische Grundlagentheorie der Musik im Sinn einer Kon3natorik dreier festgelegter Zahlen (2, 3, 5). Diese Vorgangsweise, die im 18. Jahrhundert in den Arbeiten des bedeutenden Musiktheoretikers Leonhard Euler²9 zu voller Blüte gelangte, stellt allerdings keine die damalige Gelehrtendiskussion übersteigende Neuerung dar.

Betreibt Leibniz als Musiktheoretiker zwar nicht uferlose Zahlenkombinatorik, so ist ihm die Denkweise der Kombinatorik in der mathematischen Grundlagenlehre der Musik doch gegenwärtig. Aber der zweite Aspekt, jener der Analogie, fehlt hinsichtlich der Intervallproportionen völlig. Haase hat auf diesen Sachverhalt, welcher die eindeutige Einbeziehung Leibnizens in die Geschichte der Harmonik erschwert,

²⁵ Zwei Briefe von Leibniz an den kaiserlichen Justizrat Christian Goldbach vom 12. 4. und 6. 10. 1712. Briefe 154–155 in: Epistolae ad diversos . . . (ed. Christian Kortholt), Lipsiae 1734, Bd. I, S. 239–243, Zitat S. 241. Der 1. Brief enthält jene bekannte Definition der Musik (Musica est exercitium arithmeticae occultum nescientis se numerare animi), gegen die Schopenhauer zu Felde zog. Siehe dazu: Werner Schulze: Musik als verborgene metaphysische Übung? Bern 1978.

²⁶ Rudolf Haase (Hrg.), Der Briefwechsel zwischen Leibniz und Conrad Henfling = Veröffentlichungen des Leibniz-Archivs 9, Frankfurt 1982.

²⁷ Kaysersche Lambdoma-Spekulation wäre so verstanden Lullianismus als Kombinatorik im Bereich spekulativer Harmonik, und Josef Matthias Hauers Zwölftonspiele sind als Kon4natorik im Feld angewandter Musiktheorie zu kennzeichnen.

²⁸ Siehe Anm. 26 sowie: *Die mathematischen Studien von G. W. Leibniz zur Kombinatorik*. Textband (ed. Eberhard Knobloch), *Stud. Leibn. Suppl.* XVI, Wiesbaden 1976, Faltblatt zu S. 174; die dort abgedruckte Tafel der multiplicationes formarum erinnert an das Vorgehen der multiplikativen Kombinatorik innerhalb der Leibnizschen Überlegungen zur Musiktheorie.

²⁹ Leonhard Euler, Tentamen novae theoriae musicae, Petersburg 1739; De harmoniae veris principiis per speculum musicum praesentatis, Berlin 1773.

mehrmals hingewiesen³⁰. So ergibt sich das Bild, daß Leibniz Kombinatorik im Tonreich (innerhalb der durch das Gehör gewiesenen Sinn-Grenze) als con3natio der Grundzahlen 2, 3, 5 aufweist, andererseits auch die Analogie in vielen Belangen verwendet³¹, beide Prinzipien jedoch nicht zu einem schlüssigen harmonikalen System als mögliche lingua universalis vereint. Auf dem Weg zu einer solchen Universalsprache hätten sich ihm hier Möglichkeiten offenbart, denen er, so dürfen wir berechtigt vermuten, begeistert nachgegangen wäre.

Wir deuten diese Möglichkeiten mit einem Beispiel an. Leibniz erkennt, eine briefliche Mitteilung P. Bouvets aufgreifend³², die Strukturisomorphie seiner Dyadik mit den 64 Hexagrammen des I Ging³³, indem er der unterbrochenen Linie (yin) die 0, der durchgezogenen Linie (yang) die 1 zuordnet. (Daß die Hexagramme dadurch nicht der Reihung des I Ging folgen, sondern sich nach den binären Zahlen von 0 bis 63 auszurichten haben, bedeutet keine Einschränkung der Parallele). Wie die harmonikale Forschung nachweisen konnte, befinden sich die Hexagramme des I Ging nicht nur in strenger Parallelität mit der Leibnizschen Dyadik, sondern auch zum Lambdoma der Harmonik. Es bedarf dann bloß der Anordnung der Hexagramme im Sinn der Fu-Hsi-Ordnung (11. Jhdt. n. Chr.); dabei ist jedes Hexagramm in zwei Trigramme, von denen es nach der Logik der Kom2natorik 8 verschiedene gibt, geteilt. Bis in Einzelheiten entsprechen dann die 64 Hexagramme dem bis zum Index 8 entwickelten harmonikalen Lambdoma³⁴.

Damit nicht genug. Schönberger³⁵ entdeckte, daß auch der genetische Code sich in direkter Entsprechung zur Ordnung des *I Ging*, wie sie der Philosophenkönig Wen

- 30 Rudolf Haase, Leibniz und die Musik. Ein Beitrag zur Geschichte der harmonikalen Symbolik, Hommerich 1963; Leibniz und die harmonikale Traditon, in: Akten des II. Intern. Leibniz-Kongresses Hannover, Band I, Wiesbaden 1973, S. 123-134. Es ist Haases Verdienst, in Kepler und Leibniz die neuzeitlichen harmonikalen Denker von Rang herausgestellt zu haben (vgl. Haase, Geschichte des harmonikalen Pythagoreismus, Wien 1969). Bei Leibniz, dessen Monadologie, prästabilierte Harmonie, sowie im mathematischen Bereich die Dyadik und die Doppelindices harmonikal verstehbar sind, dürfen Vorbehalte allerdings nicht fehlen. So ist bei ihm der Gedanke einer Weltharmonie auf der Basis von Musikgesetzen als leitende Idee zwar vorhanden (darin liegt eine Ähnlichkeit zu Kepler), doch gelangt Leibniz nie zu einer konkreten Ausarbeitung im Sinne der Harmonik, also mittels der Proportionsgesetze der musikalischen Intervalle. Auch sind es in salomonisch-augustinisch-cusanischer Tradition Maß, Zahl, Gewicht, durch welche Gott in der Schöpfung zu einer Re-präsenz gelangt, aber es ist nicht die harmonikal aufgefaßte Zahl, Gottes Werk nicht seine Re-sonanz.
- ³¹ Bernhard Sticker, Naturam cognosci per analogiam. Das Prinzip der Analogie in der Naturforschung bei Leibniz, in: Akten des Intern. Leibniz-Kongresses Hannover, Bd. II, Wiesbaden 1969, S. 176–196.
- ³² Brief Bouvets an Leibniz vom 4. Nov. 1701. Siehe Widmaier, a.a.O., S. 289; David Mungello, *Die Quellen für das Chinabild Leibnizens*, in: *Stud. Leibn*. XIV/2 (1982), S. 234–243.
- 33 Leibniz, Zwei Briefe über das binäre Zahlensystem und die chinesische Philosophie, ed., übers., komm. R. Loosen und F. Vonessen, Stuttgart 1968, S. 34–37. Leibniz, selbst bedeutendster Repräsentant der westlichen China-Forschung im 17. Jahrhundert, konnte sich in seinem kulturphilosophischen Anliegen, die gleiche Höhe christlich-abendländischer und konfuzianischchinesischer Kultur aufzuzeigen, auf den anerkannten China-Experten Athanasius Kircher (China Monumentis . . ., Amstelodami 1667) berufen und sich insbesondere auf die authentischen Forschungen des in China missionierenden Jesuitenpater Joachim Bouvet stützen.
 - ³⁴ Rudolf Haase, Harmonikale Synthese, Wien 1980, S. 66ff.
- 35 Martin Schönberger, Verborgener Schlüssel zum Leben. Weltformel I-Ging im genetischen Code, Frankfurt 1977.

erstellte, befindet. Nach einer Variierung der Wen-Ordnung erfolgt die Zerlegung des Hexagramms in drei Bigramme, von denen es 4 verschiedene gibt³⁶. Die 4 Basen, die im Molekularaufbau als Träger des genetischen Code fungieren und durch Bigramme wesensmäßig darstellbar sind, bilden Dreierkonfigurationen, sogenannte Tripletts. Drei Bigramme ergeben zusammen ein Hexagramm, alle Permutationen von Tripletts die 64 Hexagramme des *I Ging*, so daß die konstitutiven Merkmale von genetischem Code und Lambdoma dieselben sind.

E	Ħ		빝	Ħ	별		빝	1 A 1 A	$\begin{smallmatrix} 2 & C \\ \frac{2}{1} & A \\ A \end{smallmatrix}$	3 A 1 A	4 U 1 A	5 A 1 A	6 C 1 A	7 C 1 A	8 C 1 A
	Ħ		Ц	Ē	Ц		ii.	$\tfrac{1}{2} \overset{A}{\overset{A}{_{A}}}$	2 G 2 A	3 G 2 A	4 G 2 A	5 Å	6 U 2 A	7 U 2 A	$\frac{8}{2} \stackrel{\text{U}}{\text{A}}$
Ē	Ħ		描	E	Ħ	B	H	1 A 3 C	$\frac{2}{3}$ $\frac{C}{C}$	3 A C	4 N 3 C	$\frac{5}{3}\stackrel{A}{C}$	6 C	⁷ / ₃ C	§ C
П	Ħ	Ħ	H	П	Ħ	П	Ш	1 A G C	2 G 4 G	₹ G	₫ G C	\$ Û	6 U 4 U	7 G 4 C	8 U 4 C
Ē	Ħ	Ħ	H	Ħ	Ħ	Ħ	Ħ	1 A 5 G	2 A 5 G	3 G 5 G	4 A 5 G	5 G	6 C 5 G	⁷ G G	8 C 5 G
Ħ	Ħ	Ħ	Ħ		Ħ	П	Ц	1 G 6 G	€ G 6 G	9 G 9 G	4 G 6 G	를 ()	€ G C C	7 G 6 G	€ G Ω Ω
Ħ	Ħ	Ħ	H	Ħ	H	Ħ	H	1 A	² C ₹ 0	³ G ₹ 0	∮ 0	5 C	€ C C U	₹ G 7 U	§ U ₹ C 7 U
Ħ	H	Ħ	H	П	H	Π	II	1 G 8 U	2 C 8 U	3 G 8 U	4 G 8 U	5 U 8 U	⁸ Ω C	7 G 8 U	8 U 8 U

Abb. 9: Hexagramme des I Ging

Abb. 10: Genetischer Code

In harmonikaler Deutung sind Dyadik und I Ging ein Oktavgesetz, da ihr Aufbau eine Zweierpotenzreihe darstellt (die Folge der Zweierpotenzen ist das gültige Permutationsgesetz und gibt auch die Mengenverhältnisse der dyadischen Zahlen an: $1=2^{\circ}$, $10=2^{\circ}$, $100=2^{\circ}$, $1000=2^{\circ}$, $1001=2^{\circ}+1$, usf.). In der Schrift Anhang zu den Gesetzen 990 sq. werden die mathematischen Analogien $2^{\circ}:2^{\circ}=2^{\circ}:2^{\circ}$ und $2^{\circ}:2^{\circ}=2^{\circ}:2^{\circ}$ als Naturregel aufgefaßt, die alle Gattungen und Arten durchwirkt. Da der Verfasser dieses Textes, Philipp von Opus, Platons Mitarbeiter war, fügt sich – wie zumal aus Parallelstellen Timaios 35 sq. herauszulesen ist – auch Platon ein in das entworfene Bild eines kulturübergreifenden, einheitlichen Grundes in Naturlehre, Symbolik und mathematischer Logik.

Metaphysische Wahrheiten auf ",geometrische Art" demonstriert, ",daß man an seinen Demonstrationen so wenig als an Euklides seinen aussetzen könnte" (Wolff über Leibniz), ",alle Notiones compositae der ganzen welt in wenig simplices als deren Alphabet reduciret, und aus solchen alphabets combination wiederumb alle dinge . . . ein weg gebahnet wird" (Leibniz): Die Harmonik offenbart sich als die Lehre schlechthin, welche der Barockphilosophie im Sinne einer Verbindung vom Kombinatorik und Analogie vorgeschwebt sein mag. Daß Leibniz das Wesen des harmonikalen Zugriffs verschlossen blieb, ist damit eine erneut zu bedauernde Tatsache.

³⁶ Die Kombinatorik-Formel des *I Ging* ist denkbar einfach: Zwei verschiedene Linien ergeben, zu Gruppen von n Linien vereint, 2ⁿ Möglichkeiten ihrer Kombination; so für das Hexagramm 2⁶ = 64 Möglichkeiten, für das Trigramm 8, für das Bigramm 4. *I Ging* und Dyadik sind damit Ausdrucksformen der Potenzreihe von 2.