box topology: basis opens (a_1, b_1) × (a_2, b_2) × ...

product topology:

basis opens B_{J, **a**, **b**}
for finite J and (a_i)_{i in J}, (b_i)_{i in J}
where

 $B_{J}, a, b = \{x \mid a_i < x_i < b_i \text{ for } i \text{ in } J\}$

uniform (metric) topology:

basis opens B_u(x, δ) where for $0 < \delta < 1$

where, for $0 < \delta < 1$,

 $B_u(x, \delta) = \{y \mid sup_i \mid x_i - y_i \mid < \delta \}$

do any two coincide?

1) fix $0 < \delta < 1$ let $U = B_u(0, \delta) = \{x \mid |x_i| < \delta \text{ for all } i\}$ then U is not open in the product topology because no B_{J} , a, b} sub U

2) let $V = (-1, 1) \times (-1, 1) \times (-1, 1) \times ...$ then V is not open in the uniform topology because PS2, #6(1)

Rem on PS2, #8 show the closure of Y in X is

{x in X | every basis open at x intersects Y}

(Munkres §15, 19) [generalize T_{prod}, T_{box}]

let {X_i}_i be any collection of topological spaces their (set-theoretic) product is

prod_i
$$X_i = \{(x_i)_i | x_i \text{ in } X_i \text{ for all } i\}$$

the ith <u>projection</u> map is pr_i : prod_i X_i to X_i

<u>Df</u> the box topology on prod_i X_i is:

the topology generated by the basis {prod_i U_i | U_i is open in X_i for all i}

<u>Df</u> the product topology on prod_i X_i is:

I) the topology generated by the subbasis {C_{i, U} for any i and open U sub X_i} where C_{i, U} = {(x_j)_j | x_i in U}

II) the coarsest topology s.t. pr_i is cts for all i

<u>Lem</u> I) and II) do define the same topology

<u>Pf</u> let T be any topology on prod_i X_i. then

pr_i is cts wrt T

iff C_{i, U} is open in T for all open U sub X_i iff the topology def by I) is a subcollection of T

<u>Prop</u>	a) box top finer than product top
	b) if there are finitely many X_i's,
	then box top = product top

<u>Pf</u>a) proved similarly to analytic caseb) follows from observingprod_i U_i = bigcap_i C_{i, U_i}

Ex suppose each X_i is discrete

the box top on prod_i X_i is also discrete the product top on prod_i X_i need not be

e.g. take $X_i = \{0, 1\}$ for all i then $\{0\} \times \{0\} \times ...$ is not open in the product top [why the product topology is nicer in general:]

<u>Thm</u> consider f = prod_i f_i : Y to prod_i X_i

f is cts wrt the product topology iff f_i = pr i ∘ f : Y to X i is cts for all i

Lem if {B_i}_i is a basis for T on X, then f: Y to X is cts wrt T iff f^{-1}(B_i) is open in X for all i

Pf any open in X is a union of basis opens

Pf of Thm {finite intersections of C_{i, U}} is a basis for the product top on X so:

f is cts wrt product topology on X iff $f^{-1}(any fin intersxn of C_{i, U}'s)$ is open iff $f^{-1}(C_{i, U})$ is open for all i, U iff f_i is cts for all i \Box

Moral to give a cts function into (X, T_{prod}) is to give a cts function into X_i for each i

Another Moral to check continuity of f, check f^{-1}(B) for basis elts B

 \underline{Ex} analogue of thm for box top is false, even when $X_i = Y = \text{analytic } R$

let f : R to R^{\(\omega\)} be def by f(x) = (x, x, x, ...)

[what next?]

let $U = (-1, 1) \times (-1/2, 1/2) \times (-1/3, 1/3) \times ...$ then for all i, $f^{-1}(U)$ sub $f_i^{-1}((-1/i, 1/i))$

= (-1/i, 1/i)

so $f^{-1}(U) = \{0\}$

<u>Digression</u> the Axiom of Choice says:

given <u>any</u> collection of nonempty sets $(X_i)_{i \in I}$ we can choose an elt from X_i for all i

equivalently ("Tychonoff's Thm")
a product of nonempty sets is always nonempty

[is AoC true?]

sometimes the choice function is obvious e.g., if $X_i = R$ for all i, then $R^\omega = \text{prod}_i X_i$ is nonempty too

the point is to deal with cases where it is not

Ex the collection of subsets of R^{ω} :

it contains

 \emptyset , {(0, 0, 0, ...)}, {(0, 1, 0, 1, ...)}, {(3, 1, 4, 1, 5, 9, ...)}, {(0, 0, 0, ...), (0, 1, 0, 1, ...)}, {x s.t. x_{2025} = 0}, \mathbb{R}^{∞} .

can you describe a rule that, given an arbitrary subset of R^ω, exhibits an elt of that subset?