Measure responses of customers

(1) $\times 1$:Gender, (2) $\times 2$:Hotline indicator 1, (3) $\times 3$:Hotline Indicator 2. The firm has sent out solicitations to 200 persons.

	×															×			
	1	x2	x3	У		×1	x2	x3	У		×1	x2	x3	У	×1	2	x3	У	
1	0	99	73	1	11	1	16	71	0	21	1	88	23	1	31	0	3	63	0
2	1	13	82	0	12	1	23	14	0	22	0	40	62	0	32	1	82	96	1
3	0	49	58	0	13	0	93	66	0	23	1	57	14	0	33	0	50	27	0
4	1	2	97	0	14	0	75	31	0	24	0	6	90	0	34	1	97	6	0
5	1	93	39	0	15	0	48	11	0	25	1	85	73	1	35	1	29	19	0
6	0	26	8	0	16	1	65	50	0	26	1	87	98	1	36	1	19	69	0
7	0	7	62	0	17	0	41	76	0	27	1	40	53	0	37	0	89	20	0
8	1	10	10	0	18	0	61	13	0	28	1	69	54	0	38	1	77	25	0
9	0	91	47	0	19	1	28	82	0	29	0	35	48	0	39	0	31	72	0
10	1	72	84	0	20	0	16	59	0	30	0	62	72	0	40	0	38	4	0

Characteristic

Start with summary statistics:

	×1	x2	x3	у
Mean	0.52	50.095	51.835	0.15
Std. Dev	0.501	29.263	29.177	0.358

Goal: To forecast y as a function of the variables we have data on: x1, x2, x3

Logistic Regression

Logistic regression: y only takes value 0 and 1

$$t = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

$$p(y = 1 \mid t) = \frac{\exp(t)}{1 + \exp(t)}$$

Run logistic regression on the training data

Coefficients:

```
Value Std. Error
(Intercept) -12.39913750 2.12044072
x1 1.33124053 0.64350879
x2 0.08114589 0.01625986
x3 0.07261875 0.01557379
```

Prediction

Suppose the firm has 300 further addresses that you are considering for customer acquisition. Who should the firm contact?

	×1	x2	x3		×1	x2	×3		$\times 1$	x2	x3		$\times 1$	x2	x3
1	1	64	11	11	1	66	73	21	0	21	45	31	0	9	58
2	1	30	32	12	1	15	95	22	1	67	71	32	1	29	65
3	0	49	60	13	1	42	81	23	1	2	70	33	1	14	45
4	1	23	42	14	0	46	25	24	0	12	15	34	1	91	42
5	1	94	63	15	0	9	15	25	1	26	37	35	1	99	6
6	1	52	28	16	1	33	99	26	1	13	79	36	1	52	54
7	0	38	75	17	1	5	74	27	1	28	62	37	1	30	96
8	1	43	23	18	0	49	24	28	0	33	53	38	1	12	50
9	0	49	1	19	0	18	68	29	1	40	58	39	1	84	22
10	1	74	68	20	1	68	16	30	1	44	40	40	1	39	1

List Scoring

- Compute the following for each person in the list
 - The value of t

$$t = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

Predicted response probability

$$p(y = 1 \mid t) = \frac{\exp(t)}{1 + \exp(t)}$$

Predicted lift

Lift =
$$\frac{p(y=1 | x_1, x_2, x_3)}{p(\text{response | population})}$$
$$= \frac{p(y=1 | x_1, x_2, x_3)}{15} \text{ in this case}$$

The firm ought to more interested in persons with the higher values of above measures

List Scoring

The three measures turn out to be the following:

	$\times 1$	χZ	ж3	Score	ру	lift
1	1	64	11	-5.076	0.006	0.041
2	1	30	32	-6.310	0.002	0.012
3	0	49	60	-4.066	0.017	0.112
4	1	23	42	-6.152	0.002	0.014
5	1	94	63	1.135	0.757	5.045
6	1	52	28	-4.815	0.008	0.054
7	0	38	75	-3.869	0.020	0.136
8	1	43	23	-5.908	0.003	0.018
9	0	49	1	-8.350	0.000	0.002
10	1	74	68	-0.125	0.469	3.125
11	1	66	73	-0.411	0.399	2.658
12	1	15	95	-2.952	0.050	0.331

Over all 300 persons, average "py" is 0.126, average "lift" is 0.8408

List Scoring

Sort the prospects in descending order

	×1	x2	x3	score	РУ	lift		×1	x2	x3	score	ÞУ	lift
223	1	97	99	3.99	0.982	6.55	48	0	1	38	-9.56	7.06E-05	0.000471
238	1	100	93	3.8	0.978	6.52	287	0	23	13	-9.59	6.85E-05	0.000457
104	1	97	89	3.27	0.963	6.42	90	1	11	7	-9.67	6.33E-05	0.000422
192	1	83	100	2.93	0.949	6.33	125	0	3	31	-9.90	4.99E-05	0.000333
161	1	82	97	2.63	0.933	6.22	258	0	19	13	-9.91	4.95E-05	0.00033
184	1	94	77	2.15	0.896	5.97	55	0	15	16	-10.00	4.45E-05	0.000297
185	1	98	72	2.11	0.892	5.95	296	0	21	9	-10.00	4.36E-05	0.00029
123	0	93	95	2.05	0.886	5.9	138	1	3	9	-10.20	3.83E-05	0.000255
143	0	87	98	1.78	0.855	5.7	24	0	12	15	-10.30	3.24E-05	0.000216
78	1	75	93	1.77	0.855	5.7	15	0	9	15	-10.60	2.54E-05	0.00017
271	1	74	94	1.76	0.854	5.69	208	0	14	2	-11.10	1.48E-05	0.000099
96	0	96	86	1.64	0.837	5.58	191	0	2	9	-11.60	9.32E-06	0.0000621

Curve for Marginal Response Rate vs Number of Solicitations Made

 Consider n solicitations are made to the n "best" prospects. Plot each value of n against the nth highest predicted response rate

Curve for Number of Positive Responses vs Number of Solicitations Made

If n solicitations are made to the n "best" prospects, the expected number of positive responses (sales) is the cumulative sum of the n highest values of p(y=1)

n	p(y=1)	Cumsum
1	0.982	0.982
2	0.978	1.96
3	0.963	2.92
4	0.949	3.87
5	0.933	4.81
6	0.896	5.7
7	0.892	6.59
8	0.886	7.48
9	0.855	8.33
10	0.855	9.19
11	0.854	10
12	0.837	10.9
300 2	9.32E-06	37.801

Note that $300 \times 0.126 = 37.8$

Curve for Number of Positive Responses vs Number of Solicitations Made

Rollout run on best prospects

- Whom should the rollout run be deployed on? How many in rollout?
 - Limited supply rule: Suppose firm has only k items. Then firm should choose n such that the sum of n highest predicted response rate (cumsum()) is just under k.
 - Example, for k=20, cumsum(25)=19.57 and cumsum(26)=20.07. Therefore, the firm should mail to the 25 highest prospects.

Model Assessment via Holdout Data

- Assume that the firm had actual response data for the second list of 300 persons.
- Examine the "confusion" matrix, which is the crosstab of predicted response against actual response.
- Note: Predicted response is 0 if response rate is less than 0.5 and 1 otherwise

Predicted y

0 1

Actual y 0 249 9
1 25 17

Total error rate is
$$\frac{9+25}{300} = .1133$$

Holdout Data Analysis

						pred			
n	×1	x2	×3	score	ру	У	act.Y	cum(act.Y)	cum(act.Y)/n
1	1	97	99	3.992	0.982	1	1	1	1.000
2	1	100	93	3.800	0.978	1	0	1	0.500
3	1	97	89	3.266	0.963	1	1	2	0.667
4	1	83	100	2.929	0.949	1	1	3	0.750
5	1	82	97	2.630	0.933	1	1	4	0.800
6	1	94	77	2.151	0.896	1	0	4	0.667
7	1	98	72	2.113	0.892	1	0	4	0.571
8	0	93	95	2.046	0.886	1	0	4	0.500
9	0	87	98	1.777	0.855	1	1	5	0.556
10	1	75	93	1.771	0.855	1	1	6	0.600
11	1	74	94	1.763	0.854	1	0	6	0.545
12	0	96	86	1.636	0.837	1	1	7	0.583

Holdout Data Analysis

Example

- Marketing Problem: catalog company wants to acquire new customers
- Method: use a rented list, e.g., from another catalog company
- Predict: will a customer on this list respond if we send an offer?
- One approach
 - Perform a test mailing on the list
 - Build data-mining model linking response to other information in the database
 - Apply model to entire database

Linear Regression Model

Linear regression model:

$$y = B_0 + B_1x_1 + B_2x_2 + B_3x_3 + \varepsilon$$

 $p(y = 1 | t) = B_0 + B_1x_1 + B_2x_2 + B_3x_3$

List Scoring with the Linear Regression Model

	×1	x2	x3	py.linprob	lift.linprob
1	1	64	11	0.0483	0,322
2	1	30	32	-0.0434	-0.289
3	0	49	60	0.16	1.07
4	1	23	42	-0.0339	-0.226
5	1	94	63	0.482	3,21
6	1	52	28	0.0639	0.426
7	0	38	75	0.172	1,15
8	1	43	23	-0.0132	-0.0879
9	0	49	1	-0.135	-0.899
10	1	74	68	0.391	2,61
11	1	66	73	0.37	2.47
12	1	15	95	0.185	1,23

List Scoring with the Linear Regression Model

Sort the prospects in decreasing order of lift:

	×1	x2	x3	py.linprob	lift.linprob		×1	x2	×3	py.linprob	lift.linprob
223	1	97	99	0.68	4.53	125	0	3	31	-0.251	-1.67
238	1	100	93	0.667	4.45	55	0	15	16	-0.257	-1.71
104	1	97	89	0.63	4.2	296	0	21	9	-0.257	-1,71
192	1	83	##	0.604	4.02	152	1	12	9	-0.263	-1.75
123	0	93	95	0.59	3.94	205	1	1	21	-0.266	-1.78
161	1	82	97	0.583	3.89	289	1	13	7	-0.267	-1.78
143	0	87	98	0.571	3.8	90	1	11	7	-0.278	-1.86
96	0	96	86	0.563	3.75	24	0	12	15	-0.279	-1.86
184	1	94	77	0.552	3.68	15	0	9	15	-0.296	-1.98
185	1	98	72	0.55	3.67	138	1	3	9	-0.315	-2.1
134	0	85	93	0.534	3.56	208	0	14	2	-0.332	-2.22
78	1	75	93	0.522	3.48	191	0	2	9	-0.367	-2.45

Curve for Marginal Response Rate vs Number of Solicitations Made

 Consider n solicitations are made to the n "best" prospects. Plot each value of n against the nth highest predicted response rate

