Limit dan Kekontinuan

Teosofi Hidayah Agung

Departemen Matematika Institut Teknologi Sepuluh Nopember

19 September 2024

1/22

Daftar isi

- Notasi Limit
- Perhitungan Limit
- 3 Limit di Tak-Hingga
- 4 Kekontinuan

2/22

Definisi 1

Notasi limit yang biasanya dibaca "limit f(x) saat x **mendekati** a adalah L" dituliskan sebagai

$$\lim_{x \to a} f(x) = L,$$

Artinya jika kita mengambil nilai x yang sangat dekat dengan a, maka f(x) akan sangat dekat dengan L.

3/22

Definisi 1

Notasi limit yang biasanya dibaca "limit f(x) saat x **mendekati** a adalah L" dituliskan sebagai

$$\lim_{x \to a} f(x) = L,$$

Artinya jika kita mengambil nilai x yang sangat dekat dengan a, maka f(x) akan sangat dekat dengan L.

Catatan

- Kata "mendekati" jangan disamakan dengan "menuju".
- ullet Nilai f(a) tidak harus sama dengan L atau bahkan f(a) tidak terdefinisi.
- Nilai f(x) untuk x = a tidak mempengaruhi nilai limit.

3/22

Figure: Limit secara numerik

Dalam kasus $f(x) = \frac{|x|}{x}$, fungsi ini tidak memiliki limit saat x mendekati 0. Mengapa?

$$f(x) = \begin{cases} -1, & x < 0 \\ 1, & x > 0 \end{cases}$$

Dalam kasus $f(x) = \frac{|x|}{x}$, fungsi ini tidak memiliki limit saat x mendekati 0. Mengapa?

Fungsi $f(x) = \frac{|x|}{x}$ tidak memiliki limit saat x mendekati 0 karena nilai limit dari kiri (-1) tidak sama dengan nilai limit dari kanan (1).

Daftar isi

Notasi Limit

- Perhitungan Limit
- Limit di Tak-Hingga
- 4 Kekontinuan

6/22

Contoh

$$\bullet \lim_{x \to 2} x = 2$$

$$\bullet \lim_{x \to 3} \frac{\sqrt{12 - x} - 3}{x - 3} = -\frac{1}{6}$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

7/22

Definisi 2

Domain fungsi f adalah himpunan semua nilai x yang memenuhi f(x) didefinisikan. Notasi domain fungsi f adalah

$$\mathcal{D}(f) = \{x \in \mathbb{R} \mid f(x) \text{ terdefinisi}\}$$

Range fungsi f adalah himpunan semua nilai f(x) yang mungkin diperoleh saat x berjalan di domain fungsi f. Notasi range fungsi f adalah

$$\mathcal{R}(f) = \{ f(x) \mid x \in \mathcal{D}(f) \}$$

8/22

Fungsi	Domain		Range	
	Himpunan	Interval	Himpunan	Interval
f(x) = ax + b	\mathbb{R}	$(-\infty,\infty)$	\mathbb{R}	$(-\infty,\infty)$
$f(x) = a(x - p)^2 + q$	\mathbb{R}	$(-\infty,\infty)$	$\{f(x)\mid f(x)\geq q\}$	$[q,\infty)$
$f(x) = \frac{1}{g(x)}$	$\{x \mid g(x) \neq 0\}$	$(-\infty,\infty)$	$\{f(x)\mid f(x)\neq 0\}$	$(-\infty,0)\cup(0,\infty)$
$f(x) = \sqrt{g(x)}$	$\{x\mid g(x)\geq 0\}$	$[0,\infty)$	$\{f(x)\mid f(x)\geq 0\}$	$[0,\infty)$

Table: Domain dan Range beberapa fungsi

9/22

Latihan

- 2 Tulislah dalam fungsi sepotong-sepotong f(x) = |4 + |x 1||
- Tentukan domain dan range dari fungsi $f(x) = \frac{1}{\sqrt{4-x^2}}$

4 D > 4 B > 4 E > 4 E > 9 Q C

10/22

Daftar isi

Notasi Limit

- Perhitungan Limit
- Limit di Tak-Hingga
- 4 Kekontinuan

11/22

Limit di Tak-Hingga

Definisi 3

 ${\it Misalkan}\ f\ {\it dan}\ g\ {\it adalah}\ {\it dua}\ {\it fungsi}.$ Operasi-operasi pada ${\it fungsi}\ {\it adalah}\ {\it sebagai}\ {\it berikut}$

- Penjumlahan: (f+g)(x) = f(x) + g(x)
- **2** Pengurangan: (f g)(x) = f(x) g(x)
- **3** Perkalian: $(f \cdot g)(x) = f(x) \cdot g(x)$

Kemudian untuk domain dari fungsi hasil operasi adalah

$$\mathcal{D}(f \pm g) = \mathcal{D}(f \cdot g) = \mathcal{D}(f) \cap \mathcal{D}(g)$$

Sedangkan untuk kasus pembagian harus memenuhi $g(x) \neq 0$, sehingga

$$\mathcal{D}(f/g) = (\mathcal{D}(f) \cap \mathcal{D}(g)) - \{x \mid g(x) = 0\}$$

12/22

Limit di Tak-Hingga

Definisi 4

Komposisi fungsi f dan g adalah fungsi baru yang didefinisikan sebagai

$$(f \circ g)(x) = f(g(x))$$

Domain dari fungsi komposisi adalah

$$\mathcal{D}(f \circ g) = \{ x \in \mathcal{D}(g) \mid g(x) \in \mathcal{D}(f) \}$$

13/22

Limit di Tak-Hingga

Latihan

- Domain dari fungsi $f(x) = \frac{1}{x} + \sqrt{4 x^2}$ adalah
- ② Jika $f(g(x)) = x^2 + 1$ dan $f(x) = \sqrt{x-1}$, tentukan g(x)
- **3** Tentukan domain dari $g \circ f$ jika $f(x) = \sqrt{x^2 9}$ dan $g(x) = \frac{2}{x 3}$

14/22

Daftar isi

- Notasi Limit
- Perhitungan Limit
- Limit di Tak-Hingga
- 4 Kekontinuan

15/22

Definisi 5

Grafik fungsi f adalah himpunan semua titik (x,y) dalam koordinat kartesius yang memenuhi persamaan y = f(x).

Definisi 5

Grafik fungsi f adalah himpunan semua titik (x,y) dalam koordinat kartesius yang memenuhi persamaan y=f(x).

Teorema 1

Misalkan y = f(x) adalah fungsi real, maka grafik f(-x) adalah refleksi terhadap sumbu y dari grafik f(x) dan grafik -f(x) adalah refleksi terhadap sumbu x dari grafik f(x).

Kasus
$$f(x) \implies f(-x)$$

$$y = \sqrt{x+1}$$

17/22

Kasus
$$f(x) \implies f(-x)$$

$$y = \sqrt{x+1}$$

$$y = \sqrt{-x+1}$$

$$\mathsf{Kasus}\ f(x) \implies -f(x)$$

$$y = \frac{1}{x - 1}$$

$$y = \frac{1}{x - 1}$$

$$y = \frac{1}{1 - x}$$

Gambarkan grafik fungsi
$$y=f(x)= egin{cases} -x^2+4, & x\geq 1 \\ x+1, & x<1 \end{cases}$$

y = x + 1

19/22

Jadi, grafik fungsi
$$y=f(x)= egin{cases} -x^2+4, & x\geq 1 \\ x+1, & x<1 \end{cases}$$
 adalah

 Tetew (Matematika ITS)
 Kalkulus 1 - Bab 3
 19 September 2024
 21/22

Latihan

Tentukan persamaan dari grafik fungsi berikut

② Gambarkan fungsi f(x) = |4 + |x - 1||

22/22