

Course Offering: Fall 2019

Instructor: Prof. Vijay Janapa Reddi Teaching Fellow: Brian Plancher Office: Maxwell Dworkin 147 Email: vj@eecs.harvard.edu

(Tentative) Research Paper List

Papers for Domain Specific Accelerators

- 1. M 9/16:
 - a. Research Infrastructures for Hardware Accelerators Chapters 1,2,3,5,6
- 2. W 9/18:
 - a. Darwin: A Genomics Co-processor Provides up to 15,000× acceleration on long read assembly: http://bejerano.stanford.edu/papers/p199-turakhia.pdf
 - b. Q100: The Architecture and Design of a Database Processing Unit: http://arcade.cs.columbia.edu/q100-asplos14.pdf

Papers for End to End (E2E) Learning

- 1. W 10/9
 - a. Air Learning: An Al Research Platform for Algorithm-Hardware Benchmarking of Autonomous Aerial Robots https://arxiv.org/abs/1906.00421
 - b. DroNet: Learning to Fly by Driving: http://rpq.ifi.uzh.ch/docs/RAL18 Loquercio.pdf
- 2. M 10/14
 - a. End to End Learning for Self Driving Cars https://arxiv.org/abs/1604.07316
 - b. Autonomous inverted helicopter flight via reinforcement learning http://www.robotics.stanford.edu/~ang/papers/iser04-invertedflight.pdf
- 3. W 10/16
 - a. Learning Dexterity: training a robot hand to manipulate physical objects https://openai.com/blog/learning-dexterity/ https://arxiv.org/abs/1808.00177
 - b. Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection https://ai.googleblog.com/2016/03/deep-learning-for-robots-learning-from.html
- 4. M 10/21
 - a. DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills https://xbpeng.github.io/projects/DeepMimic/index.html
 - b. Imitation Learning for Agile Autonomous Driving https://arxiv.org/abs/1709.07174

Papers for Perception/Mapping/Localization

- 1. M 10/28
 - Movidius Chip for Computer Vision (MobileEye's chip): https://ieeexplore.ieee.org/abstract/document/7006377, https://ieeexplore.ieee.org/abstract/document/7478823
 - b. Point Cloud Acceleration in Hardware for real time analysis https://www.cs.rochester.edu/horizon/pubs/micro19-tigris.pdf
- 2. W 10/30
 - a. Learning to Fly by Crashing: https://arxiv.org/abs/1704.05588
 - b. You Only Look Once (YOLO): State of the Art Object Detector https://arxiv.org/abs/1506.02640

Course Offering: Fall 2019

Instructor: Prof. Vijay Janapa Reddi Teaching Fellow: Brian Plancher Office: Maxwell Dworkin 147 Email: yj@eecs.harvard.edu

- 3. M 11/4
 - a. SLAM Part 1 (background): https://ieeexplore.ieee.org/document/1638022
 - b. SLAMBench: http://apt.cs.manchester.ac.uk/projects/PAMELA/tools/SLAMBench/
 - c. OCTOMAP a state of the art mapping algorithm: https://link.springer.com/article/10.1007/s10514-012-9321-0
- 4. W 11/6
 - a. FastDepth: Fast Monocular Depth Estimation on Embedded Systems and Navion: A 2mW Fully Integrated Real-Time Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones http://navion.mit.edu/
 - High-throughput Computation of Shannon Mutual Information on Chip and FSMI: Fast computation of Shannon Mutual Information for information-theoretic mapping http://navion.mit.edu/

Papers for Planning/Control

- 1. M 11/11
 - a. Realtime Robotics: leveraging hardware acceleration for realtime PRM http://cs.brown.edu/people/gdk/pubs/plan_chip_micro.pdf
 http://people.ee.duke.edu/~sorin/papers/rss16_chip.pdf
 - b. A Programmable Architecture for Robot Motion Planning Acceleration http://irl.cs.brown.edu/pubs/planchip_programmable.pdf
- 2. W 11/13
 - a. PRM-RL: Combining Reinforcement Learning and Sampling-based Planning https://arxiv.org/abs/1710.03937
 - Aggressive Deep Driving: Combining CNNs and MPC (note: we will discuss MPC during the Planning/Control Lectures)
 http://proceedings.mlr.press/v78/drews17a/drews17a.pdf
- 3. M 11/18
 - a. RoboX: Codegeneration for fast embedded linear MPC: https://www.cc.gatech.edu/~hadi/doc/paper/2018-isca-robox.pdf
 - b. Differentiable Physics and Stable Modes for Tool-Use and Manipulation Planning: http://www.roboticsproceedings.org/rss14/p44.pdf
- 4. W 11/20
 - a. Optimization-based Locomotion Planning: Estimation, and Control Design for the Atlas Humanoid Robot:
 - http://scottk.seas.harvard.edu/files/scottk/files/atlas-control.pdf

Papers for Simulated Conference Review Session

- 1. Autoware on Board: Enabling Autonomous Vehicles with Embedded Systems https://ieeexplore.ieee.org/document/8443742
- 2. A 64mW DNN-based Visual Navigation Engine for Autonomous Nano-Drones https://arxiv.org/abs/1805.01831
- 3. Adversarial Examples (for NN) Are Not Easily Detected: Bypassing Ten Detection Methods https://dl.acm.org/citation.cfm?ld=3140444
- 4. DeepPicar: DNN Autonomous Car with a Pi3: https://arxiv.org/pdf/1712.08644.pdf