Teoria dos Grafos Aula 2

Aula passada

- Logística
- Objetivos
- Grafos, o que são?
- Formando pares

Aula de hoje

- Mais problemas
- Definições
- Algumaspropriedades
- Representando grafos: Matriz e lista

Objetivos da Disciplina

- Grafos como ferramenta de modelagem
- abstração de problemas reais
- Algoritmos eficientes em grafos para resolver problemas

Abordagem?

- Estudo de problemas reais
- Construção de algoritmos eficientes
- complexidade de algoritmos
- Técnicas para construção de algortimos

Grafo

Abstração que permite codificar relacionamentos entre pares de objetos

Exemplos?

Poder da Abstração

•Muitos problemas resolvidos com o mesmo algoritmo (solução) em cima da abstração!

Pesquisando no Facebook

- Milhões de pessoas (profiles)
- Profiles interligados via relacionamentos declarados
- ■Problema 1: Como saber se duas pessoas estão "conectadas" através de uma sequência de relacionamentos?
- ■Problema 2: Qual é o menor caminho entre duas pessoas?

Facebook resolve os dois problemas!

Pesquisando no Facebook

- Como abstrair o problema (via grafos)?
- Objeto: profiles (pessoas)
- Relacionamento: relacionamentos declarados

Carlos e Ana: Conectados? Menor caminho?

Pesquisando no Facebook

- Como FB resolve o problema?
- milhões de profiles e relacionamentos!

Algoritmo (eficiente)!

Viagem entre Cidades

- Cidades brasileiras
- Estradas entre cidades

Problema 1: Como saber se duas cidades estão "conectadas" por estradas?

Problema 2: Qual é o menor (melhor) caminho entre duas cidades?

Viagem entre Cidades

Como abstrair o problema (via grafos)?

Abstração parecida!

Algoritmo parecido! (algumas variações)

Grafo

Abstração que permite codificar relacionamentos entre pares de objetos

Como representá-lo formalmente?

Conjuntos!

Conjuntos de objetos e de pares relacionados

Grafo

- V = conjunto de objetos
- chamaremos de vértices ou nós
- E = conjunto de pares relacionados
- chamaremos de arestas
- ■par não ordenado: (a,b) == (b,a)
- Exemplo: G = (V, E)
- $V = \{1, 2, 3, 4\}$
- $\blacksquare E = \{(1,2), (1,3), (2,3), (3,4)\}$

Representação Gráfica

- Desenho de G (o que vimos até agora)
- representação gráfica dos conjuntos
- \blacksquare Exemplo: G = (V, E)
- $\blacksquare V = \{1, 2, 3, 4\}$
- $\blacksquare E = \{(1,2), (1,3), (2,3), (3,4)\}$

Adjacência e Incidência

- Vértices adjacentes são vértices "vizinhos"
- mais precisamente...
- Dado grafo G= (V, E)
- ■Dois vértices a e b são adjacentes se existe e = (a, b) no conjunto E
- Aresta e é incidente aos vértices a e b
- ■Exemplo: G = (V, E)
- $\blacksquare V = \{1, 2, 3, 4\}$
- $\blacksquare E = \{(1,2), (1,3), (2,3), (3,4)\}$
 - 4 e 1 são adjacentes?
 - ■3 e 2 são adjacentes?

Vértices e Arestas

----> zero!

Número de vértices de um grafo

Número de arestas de um grafo

- ■Dado G = (V, E)
- Menor número de arestas de G?
- Maior número de arestas de G?
 - Inúmero de pares não ordenados em um conjunto de $n \longrightarrow \binom{n}{2} = \frac{n(n-1)}{2} \le n^2$ = |V| objetos

Grau

- ■Grau de um vértice v
- número de vértices adjacentes a v
- ■função grau(*v*)
- \blacksquare Exemplo: G = (V, E)

$$\blacksquare V = \{1, 2, 3, 4\}$$

$${}^{\bullet}\mathsf{E} = \{(1,2), (1,3), (2,3), (3,4)\}$$

- Grau mínimo de um vértice?
- Grau máximo de um vértice?

Grafo Regular

- Todos os vértices têm mesmo grau
- ■no caso de *r*-Regular, grau é *r*
- ■Exemplo: G é 2-regular, n = 3

$$V = \{1, 2, 3\}$$

$$\bullet E = \{(1,2), (1,3), (2,3)\}$$

- ■Dado G = (V, E), e G r-regular
- Quantas arestas tem G?

Grafo Regular

■São regulares?

■É possível ter qualquer combinação de n e r?

Grafo Completo

- Aresta presente entre cada par de vértices
- todos os vértices tem grau máximo
- Notação de grafo completo
- K_n onde n é o número de vértices
- Exemplos

■Quantas arestas têm K_n?

Caminho

- Como definir "caminho" em um grafo?
- Ex. caminho entre 1 e 7?

- Caminho entre dois vértices
- sequência de vértices conectados por arestas
- ■Caminho entre v₁ e v₂
- sequência $v_1, ..., v_k$, tal que: $(v_i, v_{i+1}) \in E$

$$(v_i, v_{i+1}) \in E$$

$$i = 1, ... k - 1$$

- Ex. caminho entre 1 e 7?
- $\blacksquare 1, 2, 3, 7 \longrightarrow (1,2), (2,3), (3,7)$
- ■1, 5, 6, 2, 6, 7 é caminho?

Caminho Simples

- Vértices do caminho são distintos
- não há "voltas"

- Ex. caminho entre 1 e 7?
- ■1, 5, 6, 2, 6, 7 ← não é caminho simples
- ■1, 5, 8, 7 ← é caminho simples
- Comprimento do caminho
- número de arestas que o forma
- ■Dado G = (V, E)
- qual é o menor caminho simples entre dois vértices?
- qual é o maior?

Ciclo

Caminho simples que começa e termina no mesmo vértice

$$\mathbf{v}_1 = \mathbf{v}_k$$

- Ex. ciclo em 5?
- **■**5, 1, 2, 3, 7, 6, 5
- **■**5, 1, 4, 8, 5
- Comprimento do ciclo
- número de arestas que o forma

- ■Dado G = (V, E)
- qual é o maior ciclo?
- n vértices, ciclo hamiltoniano

Subgrafo

- Um grafo que é "parte" de outro grafomais precisamente...
- ■Dado G = (V, E)
- ■G' = (V', E') é subgrafo de G se
- $V' \subseteq V \in E' \subseteq E$

Subgrafo Exemplo

■Dado G = (V, E)

É subgrafo de G?

É subgrafo de G?

É subgrafo de G?

Clique

- Um grafo completo "dentro" de outro grafomais precisamente...
- ■Dado G = (V, E)
- ■G' = (V', E') é um clique de G se
- ■G' é subgrafo de G
- ■G' é um grafo completo

Clique Exemplo

■Dado G = (V, E)

Qual é o maior clique de G?

Problema "difícil": encontrar maior clique de um grafo É clique de G?

É clique de G?

Conexo

- Grafo está "conectado"
- como definir mais precisamente?
- ■Grafo G=(V, E) é conexo se
- existe caminho entre qualquer par de vértices
- Caso contrário, G é desconexo

Conexo

Problema: Como saber se um grafo é conexo?

- Como você resolveria este problema?
- Veremos algoritmo (eficiente)
- Na próxima aula...

Componentes Conexos

- Maiores subgrafos "conectados" de um grafomais precisamente...
- Subgrafos maximais de G que sejam conexos
- maximal: subconjunto que maximiza a propriedade, no caso subgrafo conexo

Exemplo:

Representando Grafos

- Grafo G=(V, E)
- V = conjunto de vértices (inteiros)
- E = conjunto de arestas (pares não-ordenados)
- Exemplo
- $\blacksquare V = \{1, 2, 3, 5, 6, 7\},\$
- $\blacksquare E = \{(1,2), (1,5), (2,3), (2,6), (3,7), (5,7)\}$

Representação matemática de grafos

Como representar no computador?

Representando Grafos

Como representar grafos no computador?

Estrutura de dados

- Duas estruturas fundamentais
- matriz
- Iista
- Qual é a estrutura mais adequada (ou mais eficiente)?

Depende do algoritmo!

Representação via Matriz

- Como representar utilizando matrizes?
- Idéia: associar vértices à linhas e colunas da matriz
- elemento da matriz indica se há aresta

Matriz de adjacência

- ■Matriz n x n (n é número de vértices)
- ■a_{ij} = 1 , se existe aresta entre vértices *i* e *j*
- ■a_{ij} = 0 , caso contrário.

Matriz de Adjacência

Exemplo

	1	2	3	4
1	0	1	1	0
1 2 3	1	0	1	0
3	1	1	0	1
4	0	0	1	0

	1	2	3	4	5	
1	0	1	1	0	0	•
2	1 1 0	0	1	0	1	2
3	1	1	0	1	0	
4	0	0	1	0	1	
5	0	1	0	1	0	

Representação via Matriz

Matriz de adjacência

como fica a matriz de adjacência de um grafo completo?

Representação via Matriz

Grafo de Nauru

Matriz de Incidência

- Idéia: associar vértices às linhas e arestas às colunas
- elemento da matriz indica se aresta incide sobre o vértice

Matriz de incidência

- ■Matriz n x m (n vértices, m arestas)
- $\mathbf{a}_{ij} = 1$, se vértice *i* incide sobre aresta *j*
- ■a_{ii} = 0 , caso contrário.

Matriz de Incidência

Exemplo

	e ₁	e_{2}	e_3	$e_{_4}$
1	1	1	0	0
2	1 0	0	1	0
3	0	1	1	1
4	0	0	0	1

	e ₁	e_2	e_3	e_4	$e_{_{5}}$	$e_{_6}$	
1	1	1	0	0	0	1	-
2	1	0	1	1	1	0	4
3	0	1	0	1	0	0	
4	0	0	0	0	1	0	
5	0	0	1	0	0	1	

Desvantagem

Desvantagem da representação matricial?

- Considere grafos grandes e esparços
- grande: muitos vértices
- esparço: relativamente poucas arestas
- Matriz formada principalmente de zeros!

Grande consumo de memória (desnecessário)!

Como resolver este problema?

Representação via Listas

Idéia: associar a cada vértice uma lista de vértices adjacentes

Lista de adjacência

- Vértices associados a um vetor, dimensão n (número de vértices no grafo)
- Cada vértice possui uma lista de vértices adjacentes

Lista de Adjacência

1	>[2	3	
2	>[1	3	
3	>[1	2	4
1	>	3		

Desvantagem

Desvantagem da representação com lista?

- Considere grafos onde vértices tem muitos vizinhos (mas bem menos do que n)
- Listas vão ser grandes (longas)
- Problema?

Tempo de acesso! Ex. descobrir se dois vértices são vizinhos

Vantagens/Desvantagens

■Tempo de execução	Matriz	Lista
■Inserir aresta?	O(1)	O(1)
■Remover aresta?	O(1)	O(g _{max})
■Testar adjacência (v₁ e v₂ são vizinhos)?	O(1)	O(g _{max})
Listar vizinhos de v?	O(n)	O(g _{max})

Melhor estrutura depende do algoritmo!