Perfect Secrecy (完美保密性)

S. Zhong Y. Zhang

Computer Science and Technology Department
Nanjing University

Outline

- Let's play a game
- 2 Brief review of Probability
- Perfectly-Secret Encryption
 - Definition of an encryption scheme
 - Let us be an adversary
 - Definition of perfectly secrecy
- The One-Time Pad (Vernam's Cipher)
- 5 Limitations of Perfect Secrecy
- 6 Shannon's Theorem

- Let's play a game
- 2 Brief review of Probability
- 3 Perfectly-Secret Encryption
- 4 The One-Time Pad (Vernam's Cipher)
- 5 Limitations of Perfect Secrecy
- 6 Shannon's Theorem

Let's play a game called "10 questions"

Use up-to-10 YES or NO questions to guess which province do I come from.

图: China map (courtesy of chinadiscovery.com)

Game review

Q: What guides your guesses? Why do you make new guesses?

A: Probabilities. You are actually reasoning about the probabilities.

- Let's play a game
- 2 Brief review of Probability
- 3 Perfectly-Secret Encryption
- 4 The One-Time Pad (Vernam's Cipher)
- 5 Limitations of Perfect Secrecy
- 6 Shannon's Theorem

Probability¹

Many events cannot be predicted with total certainty. The probability (概率) is introduced to define or refer to how likely events are to happen. For instance,

Pr[女神, 男神, 霸道总裁统统爱上我] = 0.00001 Pr[你此刻正在看/听这段文字] = 0.99999

¹materials courtesy of mathsisfun.com

Defining Classical Probability

Consider a game or experiment (试验) with a set of possible outcomes \mathcal{O} called sample space (样本空间). An event (事件) A is any collection of possible outcomes, that is, any subset of \mathcal{O} . Define the probability of event A as

$$Pr[A] = \frac{\text{number of outcomes in } A}{\text{total number of possible outcomes}}$$

- The above definition is called "classical definition of probability" (古 典概率定义)
- It assumes the sample space is finite.
- It assumes outcomes are equally likely to happen.

An example of dice-throwing

Take "throwing a dice" for instance. Let X be the point we will get,

$$\mathcal{O} = \{X = 1, X = 2, \dots, X = 6\}$$

$$Pr[X = 6] = |\{X = 6\}|/|\mathcal{O}| = 1/6$$

$$Pr[X > 5] = |\{X = 5, X = 6\}|/|\mathcal{O}| = 2/6$$

Defining Probability Statistically

The two assumptions of classical probability definition often do not hold. People usually use a statistical definition:

Repeat the experiment for n times and let n_A be the number of times that event A happens. Call $\frac{n_A}{n}$ event A's cumulative relative frequency or CRF(A). Define the probability of A as

$$Pr[A] = \lim_{n \to \infty} CRF(A)$$

- The above experiment is called the Bernouli experiment .
- Modern axiom-systematic definition of probability is proposed by Andrey Nikolaevich Kolmogorov based on measure theory.

Conditional probability

Consider two events A and B. The conditional probability (条件概率) of A given B happens is defined as

$$Pr[A|B] = \frac{Pr[A \wedge B]}{Pr[B]},$$

where $A \wedge B$ refers to the event that A and B both happen and is defined as

$$Pr[A \wedge B] = Pr[A \cap B].$$

For instance in the dice-throwing game,

$$Pr[X = 6|X >= 5] = |\{X = 5\} \cap \{X = 5, X = 6\}|/|\{X = 5, X = 6\}| = 1/2$$

 $Pr[X >= 5|X = 6] = |\{X = 5\} \cap \{X = 5, X = 6\}|||\{X = 6\}| = 1$

Considering a game of sampling random variables

Let X and Y be two random variables, and let \mathcal{X} and \mathcal{Y} be their samping spaces. The conditional probability of event X = x happens given event Y = y happens is

$$Pr[X = x | Y = y] = \frac{Pr[X = x \land Y = y]}{Pr[Y = y]}.$$

X and Y are (mutually) independent (独立) iff (if and only if) for all possible x and y

$$Pr[X = x \land Y = y] = Pr[X = x] \cdot Pr[Y = y].$$

• Thus, X and Y are independent iff for all x and y

$$Pr[X = x | Y = y] = Pr[X = x].$$

Extending to *n* variables

Given *n* random variables X_1, X_2, \ldots, X_n with sampling spaces $\mathcal{X}_1, \mathcal{X}_2, \ldots, \mathcal{X}_n$,

• these *n* variables are (mutually) independent (独立) iff for all possible $x_1 \in \mathcal{X}_1, x_2 \in \mathcal{X}_2, \dots, x_n \in \mathcal{X}_n$

$$Pr[X_1 = x_1 \land X_2 = x_2 \land \dots, \land X_n = x_n] = Pr[X_1 = x_1] \cdot \dots \cdot Pr[X_n = x_n].$$

• these n variables are pairwise independent (两两独立) iff for all possible $x_i \in \mathcal{X}_i, x_j \in \mathcal{X}_j$ and all possible $i, j \in \{1, 2, \dots, n\}$ and $i \neq j$

$$Pr[X_i = x_i \land X_j = x_j] = Pr[X_i = x_i] \cdot Pr[X_j = x_j].$$

Q: Can you give an example that random variables X, Y, Z are mutually independent but not pairwise independent? Q: Can you give an example that X, Y, Z are pairwise independent but not independent?

Total Probability Formula

Given n mutally exclusive events E_1, E_2, \ldots, E_n that form a partition of the sample space \mathcal{O} , the total probability formula or law (全概率公式) specifies that the probability of any event A can be computed as

$$Pr[A] = \sum_{i=1}^{n} Pr[A|E_i] \cdot Pr[E_i].$$

Bayes' Theorem

Given two events A and B, the Bayes' Theorem (贝叶斯定理) states

$$Pr[A|B] = \frac{Pr[A] \cdot Pr[B|A]}{Pr[B]}.$$

 It can help you to reason about the chance of one event given another has happened.

A "Cloud in the morning and Rain in the day" example

You are planning a picnic, but the morning is cloudy. You know the following

• 50% of all rainy days start off cloudy! :(

$$Pr[Cloud|Rain] = 50\%$$

Cloudy mornings are common (about 40% of days start cloudy)

$$Pr[Cloud] = 40\%$$

ullet And this is a dry month (only 3 of 30 days tend to be rainy, or 10%)

$$\mathit{Pr}[\mathit{Rain}] = 10\%$$

Should you go?

$$Pr[Rain|Cloud] = ?$$

Bayes' Theorem in sampling-random-variables game

Let X and Y be two random variables, and let \mathcal{X} and \mathcal{Y} be the range spaces of X and Y respectively. Bayes' Theorem states

$$Pr[X = x | Y = y] = \frac{Pr[X = x] \cdot Pr[Y = y | X = x]}{Pr[Y = y]}.$$

- Let's play a game
- 2 Brief review of Probability
- Perfectly-Secret Encryption
 - Definition of an encryption scheme
 - Let us be an adversary
 - Definition of perfectly secrecy
- The One-Time Pad (Vernam's Cipher)
- 5 Limitations of Perfect Secrecy
- 6 Shannon's Theorem

The start of "unbreakable cipher"

In 1949, C.E. Shannon published a paper named "Communication Theory of Secrecy Systems"

- In 1948, Shannon published his landmark paper "A Mathematical Theory of Communication" which founds the Information Theory
- In the CTSS paper, Shannon proved criteria of a unbreakable crypgraphy.
- Shannon proved Vernam cipher was unbreakable.

图: Claude E. Shannon (1916-2001), founder of Information Theory. Photo courtesy of wiki E ト モト 美国 かなで

Shannon's definition of a cipher system

In "Communication Theorey of Secrecy Systems", Shannon defines a secrecy communication system or a cipher system as follows.

Defining an encryption scheme³

A encryption scheme Π , also called a cipher or a cryptosystem, is defined by three algorithms **Gen**, **Enc**, and **Dec**, as well as a specification of a finite message space $\mathcal M$ with $|\mathcal M|>1$.

• **Gen**: a probabilistic algorithm that outputs a key k according to some distribution² from a finite key space K.

$$k \leftarrow Gen.$$

• **Enc**: an algorithm that takes as input a key $k \in \mathcal{K}$ and a message $m \in \mathcal{M}$, and outputs a ciphertext c:

$$c \leftarrow Enc_k(m)$$
(probabilistic) OR $c := Enc_k(m)$ (deterministic).

• **Dec**: a deterministic algorithm that takes as input a ciphertext c from the set of all ciphertexts C and a key $k \in K$, and outputs a message $m \in M$.

$$m := Dec_k(c)$$
.

²Often a uniformly random distribution is used

In fact we are defining a symmetric or private-key cipher here

S. Zhong, Y. Zhang (CS@NJU)

Example 1: the shift cipher Π_{shft1}

The cipher Π_{shft1} is defined as

- $\mathcal{M} = \{0, \dots, 25\}$ or $\{a, \dots, z\}$
- **Gen**: a probabilistic algorithm that outputs a key k uniformly chosen from a finite key space K.

$$k \stackrel{\$}{\leftarrow} \{0, \dots, 25\}$$

• **Enc**: an algorithm that takes as input a key $k \in \mathcal{K}$ and a message $m \in \mathcal{M}$, and outputs a ciphertext c:

$$C = M + k \mod 26$$

• **Dec**: a deterministic algorithm that takes as input a ciphertext c from the set of all ciphertexts C and a key $k \in K$, and outputs a message $m \in M$.

$$M := C - k \mod 26$$
.

Example 2: the shift cipher Π_{shft2}

The cipher Π_{shft2} is defined as

- $\mathcal{M} = \{0, \dots, 25\}^3 \text{ or } \{a, \dots, z\}^3$
- Gen: a probabilistic algorithm that outputs a key k uniformly chosen from a finite key space K.

$$\mathbf{k} \stackrel{\$}{\leftarrow} \{0, \dots, 25\}$$

• **Enc**: an algorithm that takes as input a key $k \in \mathcal{K}$ and a message $M = m_1 ||m_2||m_3 \in \mathcal{M}$, and outputs a ciphertext c:

$$C = (m_1 + k \mod 26)||(m_2 + k \mod 26)||(m_3 + k \mod 26)||$$

• **Dec**: a deterministic algorithm that takes as input a ciphertext c from the set of all ciphertexts $\mathcal{C} = \{c_1 | |c_2| | c_3\}$ and a key $k \in \mathcal{K}$, and outputs a message $m \in \mathcal{M}$.

$$M := (c_1 - k \mod 26)||(c_2 - k \mod 26)||(c_3 - k \mod 26).$$

- Let's play a game
- 2 Brief review of Probability
- Perfectly-Secret Encryption
 - Definition of an encryption scheme
 - Let us be an adversary
 - Definition of perfectly secrecy
- 4 The One-Time Pad (Vernam's Cipher)
- 5 Limitations of Perfect Secrecy
- 6 Shannon's Theorem

Probabilistic analysis on Π_{shft2}

Recall the shift cipher Π_{shft2} :

$$\mathcal{M} = \{0, \dots, 25\}^3 \text{ or } \{a, \dots, z\}^3$$

Gen: $k \stackrel{\$}{\leftarrow} \{0, \dots, 25\}.$

Enc: $C = (m_1 + k \mod 26)||(m_2 + k \mod 26)||(m_3 + k \mod 26).$

ullet Q: Say a message M is sampled following the distribution

$$Pr[M = ann] = 0.6 \text{ and } Pr[M = bob] = 0.4.$$

After encrypting M with Π_{shft2} , the adversary sees the ciphertext DQQ. Can it know M?

• A: Unfortunately yes, the adversary can know M is ann. :(

Adversary's reasoning

A smart adversary can know M according to the following reasoning. According to Total Probability Theorm,

$$Pr[C = DQQ]$$
= $Pr[M = ann] \cdot Pr[C = DQQ|M = ann]$
 $+Pr[M = bob] \cdot Pr[C = DQQ|M = bob]$
= $Pr[M = ann] \cdot Pr[K = 3] + Pr[M = bob] \cdot Pr[K = \emptyset]$
= $0.6 \cdot 1/26 + 0.4 \cdot 0$
= $3/130$.

Based on Bayes' Theorem,

$$\Pr[\textit{M} = \textit{ann}|\textit{C} = \textit{DQQ}] = \frac{\Pr[\textit{M} = \textit{ann}] \cdot \Pr[\textit{C} = \textit{DQQ}|\textit{M} = \textit{ann}]}{\Pr[\textit{C} = \textit{DQQ}]} = 1.$$

Similar probabilistic analysis on Π_{shft1}

Recall cipher Π_{shft1} :

Gen: $k \stackrel{\$}{\leftarrow} \{0, \dots, 25\}.$

Enc: $C = M + k \mod 26$.

 $\mathcal{M} = \{0, \dots, 25\}$ or $\{a, \dots, z\}$.

Q1: Say our message M follows the distribution

$$Pr[M = b] = 0.6 \text{ and } Pr[M = g] = 0.4.$$

What the probability that the ciphertext is Z given M as above?

A:
$$Pr[C = Z] = Pr[M = b \land K = 24] + Pr[M = g \land K = 19]$$

= $Pr[M = b] \cdot Pr[K = 24] + Pr[M = g] \cdot Pr[K = 19]$
= $0.6 \cdot 1/26 + 0.4 \cdot 1/26 = 1/26$.

After-encryption probabilistic analysis

- Q2: Now we sample a message M follows the distribution Pr[M=b]=0.6 and Pr[M=g]=0.4., encrypt it and get a ciphertext Z. What the probability that M=b?
 - A: Based on Bayes' Theorem, we have $Pr[M=b|C=Z] = \frac{Pr[M=b] \cdot Pr[C=Z|M=b]}{Pr[C=Z]}$ $= \frac{Pr[M=b] \cdot Pr[K=24]}{Pr[C=Z]}$ $= \frac{Pr[M=b] \cdot 1/26}{1/26} = Pr[M=b] = 0.6$

- Let's play a game
- 2 Brief review of Probability
- Perfectly-Secret Encryption
 - Definition of an encryption scheme
 - Let us be an adversary
 - Definition of perfectly secrecy
- The One-Time Pad (Vernam's Cipher)
- 5 Limitations of Perfect Secrecy
- 6 Shannon's Theorem

Revisit the definition of Perfectly Secret Encryption

定义 3.1 (Perfectly Secret Encryption).

An encryption scheme (**Gen**,**Enc**,**Dec**) over a massage space \mathcal{M} is **perfect secret** if for every possible distribution over \mathcal{M} ,

$$Pr[M = m | C = c] = Pr[M = m]$$

holds for every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$ that Pr[C = c] > 0.

Revisiting Π_{shft1} and Π_{shft2}

• According to the definition, it is easy to know $\Pi_{\it shft2}$ is not perfectly-secret:

$$Pr[M = ann|C = DQQ] = 1 \neq Pr[M = ann] = 0.6.$$

• Q: Is Π_{shft1} perfectly — secret? A: Probably yes, but we still need to prove it.

Revisiting Π_{shft1} and Π_{shft2}

定理 3.2.

 Π_{shft1} is a perfectly-secret encryption scheme.

Proof: For any $m \in \mathcal{M} = \{0, \dots, 25\}$, any $c \in \mathcal{C}$ and any possible distribution over \mathcal{M} we have:

$$Pr[M = m | C = c]$$

$$= Pr[M = m \land C = c] / Pr[C = c]$$

$$= \frac{Pr[M = m] \cdot Pr[C = c | M = m]}{Pr[M = 0 \land C = c] + \dots + Pr[M = 25 \land C = c]}$$

$$= \frac{Pr[M = m] \cdot Pr[k = c - m \mod 26]}{Pr[M = 0] \cdot Pr[C = c | M = 0] + \dots + Pr[M = 25] \cdot Pr[C = c | M = 25]}$$

$$= \frac{Pr[M = m]Pr[k = c - m \mod 26]}{Pr[M = 0]Pr[k = c \mod 26] + \dots + Pr[M = 25]Pr[k = c - 25 \mod 26]}$$

$$= Pr[M = m].$$

∢□▶ ∢□▶ ∢ ≣ ▶ ∢ ቜ ▶ ቜ | 둘 | り ぬ ○ ○

An equivalent definition of perfect secrecy

We have an equivalent and useful formulation of perfect secrecy.

引理 3.3.

An encryption scheme (**Gen**, **Enc**, **Dec**) over message space \mathcal{M} is perfectly secret if and only if for every $m, m' \in \mathcal{M}$, and every $c \in \mathcal{C}$:

$$Pr[C = c|M = m] = Pr[C = c|M = m'].$$

- ullet This formulation states that the probability distribution over ${\cal C}$ is independent of the plaintext.
- "It's impossible to distinguish an encryption of m_0 from an encryption of m_1 "

An equivalent definition of perfect secrecy

Proof:

" \Leftarrow ": Assume Pr[C = c|M = m] = Pr[C = c|M = m'] holds for every possible $m, m' \in \mathcal{M}$. We have:

$$Pr[M = m | C = c]$$

$$= Pr[M = m \land C = c] / Pr[C = c]$$

$$= \frac{Pr[M = m] \cdot Pr[C = c | M = m]}{\sum_{m' \in \mathcal{M}} Pr[M = m' \land C = c]}$$

$$= \frac{Pr[M = m] \cdot Pr[C = c | M = m]}{\sum_{m' \in \mathcal{M}} Pr[M = m'] \cdot Pr[C = c | M = m']}$$

$$= Pr[M = m]$$

An equivalent definition of perfect secrecy

Proof (cont'd):" \Rightarrow ": When m'=m, " \Rightarrow " is always true. Now we only consider $m'\neq m$. For every such $m'\in \mathcal{M}$, we can construct a message distribution such that Pr[M=m]=0.7 and Pr[M=m']=0.3. According to the definition of perfect secrecy, we know for every $c\in \mathcal{C}$:

$$Pr[M = m]$$
= $Pr[M = m | C = c]$
= $Pr[M = m \land C = c] / Pr[C = c]$
= $\frac{Pr[M = m] \cdot Pr[C = c | M = m]}{Pr[M = m' \land C = c] + Pr[M = m \land C = c]}$
= $\frac{Pr[M = m] \cdot Pr[C = c | M = m]}{Pr[M = m'] \cdot Pr[C = c | M = m]}$

Therefore we have

$$Pr[C = c|M = m] = 0.3Pr[C = c|M = m'] + 0.7Pr[C = c|M = m]$$
, and $Pr[C = c|M = m] = Pr[C = c|M = m']$.

Perfect adversarial indistinguishability

Now we give a game-based definition of perfect secrecy on an encryption scheme $\Pi = \{\mathit{Gen}, \mathit{Enc}, \mathit{Dec}\}$ with message space \mathcal{M} . The adversarial indistinguishability game/experiment $\mathit{PrivK}^{eav}_{\mathcal{A},\Pi}$ between the adversary and a challenger:

- **①** The adversary $\mathcal A$ chooses a pair of messages $m_0, m_1 \in \mathcal M$, and sends them to the challenger.
- ② The challenger runs **Gen** to generate a key k, chooses a uniform bit $b \in \{0,1\}$, and computes the *challenge ciphertext* by encrypting m_b :

$$c \leftarrow Enc_k(m_b)$$
.

- **1** The challenger sends *c* to the adversary.
- **3** Based on c, the adversary guess the correct value of b, and outputs b' as its answer to the challenge.
- **1** The output/result of the game is defined to 1:

$$PrivK_{\mathcal{A},\Pi}^{eav}=1$$

if b' = b (A succeeds in the game), and 0 otherwise.

Perfect adversarial indistinguishability

定义 3.4.

Perfect adversary indistinguishability Encryption scheme $\Pi = (\textit{Gen}, \textit{Enc}, \textit{Dec})$ with message space \mathcal{M} is perfectly indistinguishable if for every \mathcal{A} it holds that

$$extit{Pr[PrivK}^{ extit{eav}}_{\mathcal{A},\Pi}=1]=rac{1}{2}.$$

 The definition states that every adversary would do no better or worse in the game than making a uniformly random guess.

Perfect (adversarial) indistinguishability

引理 3.5.

Encryption scheme $\Pi = (\textit{Gen}, \textit{Enc}, \textit{Dec})$ with message space \mathcal{M} is **perfectly secret** if and only if it is **perfectly indistinguishable**.

Perfect (adversarial) indistinguishability

Example: let Π denote the Vigenere cipher for the message space of two-character strings, and where the period is chosen uniformly in $\{1,2\}$. We claim Π is NOT perfectly indistinguishable.

To prove this, we construct an adversary $\mathcal A$ for which $Pr[PrivK^{eav}_{\mathcal A,\Pi}]>\frac{1}{2}.$ Specifically $\mathcal A$ does:

- **1** Choose $m_0 = aa$ and $m_1 = ab$.
- ② Upon receiving the challenge ciphertext $c = c_1 c_2$, output b = 0 if $c_1 = c_2$, and b = 1 otherwise.

Now what does $Pr[PrivK_{\mathcal{A},\Pi}^{\mathsf{eav}}=1]$ equal?

Perfect (adversarial) indistinguishability

$$\begin{split} & \textit{Pr}[\textit{Priv}\textit{K}^{\textit{eav}}_{\mathcal{A},\Pi} = 1] \\ = & 0.5\textit{Pr}[\textit{Priv}\textit{K}^{\textit{eav}}_{\mathcal{A},\Pi} = 1|b=0] + 0.5\textit{Pr}[\textit{Priv}\textit{K}^{\textit{eav}}_{\mathcal{A},\Pi} = 1|b=1] \\ = & 0.5\textit{Pr}[\mathcal{A} \text{ outputs } 0|b=0] + 0.5\textit{Pr}[\mathcal{A} \text{ outputs } 1|b=1] \end{split}$$

In addition, $Pr[\mathcal{A} \text{ outputs } 0|b=0] = \tfrac{1}{2} + \tfrac{1}{2} \cdot \tfrac{1}{26}$ $Pr[\mathcal{A} \text{ outputs } 1|b=1] = 1 - Pr[\mathcal{A} \text{ outputs } 0|b=1] = 1 - \tfrac{1}{2} \cdot \tfrac{1}{26}$ Then, we have:

$$\Pr[\mathit{PrivK}^{\mathit{eav}}_{\mathcal{A},\Pi} = 1] = \frac{1}{2}(\frac{1}{2} + \frac{1}{2} \cdot \frac{1}{26} + 1 - \frac{1}{2} \cdot \frac{1}{26}) = 0.75 > \frac{1}{2}$$

Therefore, Π is not perfectly indistinguishable.

- Let's play a game
- 2 Brief review of Probability
- Perfectly-Secret Encryption
- The One-Time Pad (Vernam's Cipher)
- 5 Limitations of Perfect Secrecy
- 6 Shannon's Theorem

The One-Time Pad, a perfectly-secret encryption scheme

The One-Time Pad

Let $a \oplus b$ denote the bitwise exclusive-or (XOR) of two binary strings a and b, the **One-Time Pad** is as follows:

- Fix an integer l > 0. $\mathcal{M} = \{0, 1\}^l$, $\mathcal{K} = \{0, 1\}^l$, $\mathcal{C} = \{0, 1\}^l$.
- **2 Gen**: $K \stackrel{\$}{\leftarrow} \mathcal{K}$, i.e. $Pr[K = k] = 1/2^l$ for every $k \in \mathcal{K}$.

Correctness: $M = C \oplus K = (M \oplus K) \oplus K = M \oplus (K \oplus K) = M$. Secrecy: ?

Secrecy of One-Time Pad

定理 4.1.

The One-Time Pad is a perfectly-secret encryption scheme.

Proof: Fix arbitrary input distribution over \mathcal{M} , for every possible m and c,

$$Pr[M = m | C = c]$$
= $Pr[M = m, C = c]/Pr[C = c]$
= $Pr[K = m \oplus c] \cdot Pr[M = m]/\sum_{m' \in \mathcal{M}} (Pr[M = m'] \cdot Pr[C = c | M = m'])$
= $Pr[K = m \oplus c] \cdot Pr[M = m]/\sum_{m' \in \mathcal{M}} (Pr[M = m'] \cdot Pr[K = m' \oplus c])$
= $2^{-l}Pr[M = m]/(2^{-l}\sum_{m' \in \mathcal{M}} Pr[M = m'])$
= $2^{-l}Pr[M = m]/2^{-l}$

= Pr[M = m]

Limitations of One-Time Pad

Perfect secrecy sounds perfect. But any drawbacks?

- the key is required to be as long as the message.
- only secure if used once (with the same key).

$$C_1=M_1\oplus K; C_2=M_2\oplus K\Rightarrow C_1\oplus C_2=M_1\oplus M_2.$$

- only secure against ciphertext-only attack.
 - M = 101, $Enc_K(M) = 111 \Rightarrow K = 010$

- Let's play a game
- 2 Brief review of Probability
- 3 Perfectly-Secret Encryption
- 4 The One-Time Pad (Vernam's Cipher)
- 5 Limitations of Perfect Secrecy
- 6 Shannon's Theorem

Limitations of Perfect Secrecy

定理 5.1.

Let (**Gen**, **Enc**, **Dec**) be a perfectly-secret encryption scheme over a message space \mathcal{M} , and let \mathcal{K} be the key space as determined by **Gen**. Then $|\mathcal{K}| \geq |\mathcal{M}|$.

Proof: Consider the uniform distribution over \mathcal{M} (as the input), we know there is a $c \in \mathcal{C}$ such that $Pr[\mathcal{C} = c] > 0$. According to the definition of perfect secrecy, we know for every $m \in \mathcal{M}$,

$$Pr[M = m | C = c] = Pr[M = m] = 1/|\mathcal{M}| > 0,$$

which implies there is at least one key k for each m such that $\mathbf{Dec}_k(c)=m$. Accordingly, there are at least $|\mathcal{M}|$ different keys in \mathcal{K} , one for each different $m\in\mathcal{M}$. Thus, we have $|\mathcal{K}|\geq |\mathcal{M}|$.

- Let's play a game
- 2 Brief review of Probability
- 3 Perfectly-Secret Encryption
- 4 The One-Time Pad (Vernam's Cipher)
- 5 Limitations of Perfect Secrecy
- 6 Shannon's Theorem

Shannon's Theorem

定理 6.1 (Shannon's Theorem).

Let (**Gen, Enc, Dec**) be an encryption scheme over a message space \mathcal{M} for which $|\mathcal{M}| = |\mathcal{C}| = |\mathcal{K}|$. This scheme is perfectly secret if and only if:

- Every key $k \in \mathcal{K}$ is chosen with equal probability $1/|\mathcal{K}|$ by algorithm Gen.
- ② For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there exists a single key $k \in \mathcal{K}$ such that $Enc_k(m)$ outputs c.
 - Only applies when $|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|$.
 - Useful for deciding whether a given scheme is perfectly secret.