- Analyse réelle

I - Suites

I.1 - Suites usuelles

Définition 1 - Suite arithmétique

Soit $a \in \mathbb{R}$. La suite u définie par $u_0 \in \mathbb{R}$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + a$ est une suite arithmétique de raison a.

Proposition 1

Soit u une suite arithmétique de raison a. Pour tout $n \in \mathbb{N}$,

- $\bullet \ u_n = u_0 + na.$
- $\sum_{k=0}^{n} u_k = (n+1)u_0 + \frac{n(n+1)}{2}a$.

Exercice 1. Soit (u_n) la suite définie par $u_0 = 3$ et, pour tout n entier naturel, $u_{n+1} = u_n + 12$. Soit n un entier naturel.

- **1.** Exprimer u_n en fonction de n.
- **2.** Exprimer $\sum_{k=0}^{n} u_k$ en fonction de n.

Définition 2 - Suite géométrique

Soit $q \in \mathbb{R}^* \setminus \{1\}$. La suite u définie par $u_0 \in \mathbb{R}$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = qu_n$ est une suite $g\acute{e}om\acute{e}trique$ de $raison\ q$.

Proposition 2

Soit u une suite géométique de raison q. Pour tout $n \in \mathbb{N}$,

- $\bullet \ u_n = q^n u_0.$
- $\sum_{k=0}^{n} u_k = u_0 \frac{1-q^{n+1}}{1-q} = u_0 \frac{q^{n+1}-1}{q-1}$.

Exercice 2. Soit (u_n) la suite définie par $u_0 = 3$ et, pour tout n entier naturel, $u_{n+1} = 12 \cdot u_n$. Soit n un entier naturel.

- **1.** Exprimer u_n en fonction de n.
- **2.** Exprimer $\sum_{k=0}^{n} u_k$ en fonction de n.

Définition 3 - Suite arithmético-géométrique

Soient $a \in \mathbb{R}$, $q \in \mathbb{R}^* \setminus \{1\}$. La suite u définie par $u_0 \in \mathbb{R}$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = qu_n + a$ est une suite arithmético-géométrique.

Exemple 1 - Étude des suites arithmético-géométriques

Soit (u_n) la suite définie par $u_0 = 1$ et, pour tout n entier naturel, $u_{n+1} = 2u_n + 3$.

• Commençons par chercher une solution ℓ de l'équation $\ell=2\ell+3$.

On obtient $\ell = -3$.

• Pour tout n entier naturel, on pose $v_n = u_n - \ell = u_n + 3$. Montrons que (v_n) est une suite géométrique. Soit $n \in \mathbb{N}$.

$$v_{n+1} = u_{n+1} + 3$$

$$= (2u_n + 3) + 3$$

$$= 2u_n + 6$$

$$= 2(u_n + 3)$$

$$= 2v_n.$$

Ainsi, (v_n) est une suite géométrique de raison 2. De plus, $v_0 = u_0 + 3 = 4$.

• D'après les résultats sur les suites géométriques,

$$\forall n \in \mathbb{N}, v_n = 2^n v_0 = 2^{n+2}.$$

Ainsi,

$$\forall n \in \mathbb{N}, u_n = 2^{n+2} - 3.$$

Exercice 3. Reprendre l'exemple précédent avec la suite définie par $u_0 = 2$ et, pour tout n entier naturel, $u_{n+1} = 3u_n + 4$.

I.2 - Études locale & globale

Définition 4 - Monotonie

Soit (u_n) une suite de nombres réels.

- (u_n) est croissante si $\forall n \in \mathbb{N}, u_n \leq u_{n+1}$.
- (u_n) est décroissante si $\forall n \in \mathbb{N}, u_n \geqslant u_{n+1}$.
- (u_n) est constante si $\forall n \in \mathbb{N}, u_n = u_{n+1}$.
- (u_n) est stationnaire s'il existe $n_0 \in \mathbb{N}$ tel que $\forall n \geqslant n_0, u_{n+1} = u_n.$

Exercice 4.

- 1. Soit (u_n) une suite arithmétique de raison 10. Quelle est la monotonie de cette suite? Et si la raison vaut -3?
- 2. Soit (u_n) une suite arithmétique de raison 3. Quelle est la monotonie de cette suite? Et si la raison vaut 1? Et si la raison vaut $\frac{1}{2}$?

Définition 5 - Majorée, Minorée

Soit (u_n) une suite de nombres réels.

- \bullet La suite (u_n) est majorée s'il existe un réel M tel que $\forall n \in \mathbb{N}, u_n \leqslant M$.
- La suite (u_n) est minorée s'il existe un réel m tel que $\forall n \in \mathbb{N}, m \leqslant u_n$.
- La suite (u_n) est bornée si elle est majorée et minorée.

Exercice 5. Montrer que la suite de terme général $u_n = \sum_{k=0}^n \frac{1}{2^n}$ est bornée.

I.3 - Limites

Proposition 3 - Opérations sur les limites

Soit (u_n) et (v_n) deux suites telles que $\lim_{n\to +\infty} u_n = a$ et $\lim v_n = b$.

• La somme $(u_n + v_n)$

	$b \in \mathbb{R}$	$+\infty$	$-\infty$
$a \in \mathbb{R}$	a+b	$+\infty$	$-\infty$
$+\infty$	$+\infty$	$+\infty$	×
$-\infty$	$-\infty$	×	$-\infty$

• Le produit $(u_n v_n)$

	$b \in \mathbb{R}$	$+\infty$	$-\infty$
$a \in \mathbb{R}$	ab	$\pm \infty \ (a \neq 0)$	$\pm \infty \ (a \neq 0)$
$+\infty$	$\pm \infty \ (b \neq 0)$	$+\infty$	$-\infty$
$-\infty$	$\pm \infty \ (b \neq 0)$	$-\infty$	$+\infty$

• Le quotient (u_n/v_n)

	$b \in \mathbb{R}^*$	$+\infty$	$-\infty$
$a \in \mathbb{R}$	a/b	0	0
$+\infty$	$\pm \infty$	×	×
$-\infty$	$\pm \infty$	×	×

Exercice 6. Déterminer la limite des suites de terme général :

1.
$$u_n = n^2 + \sqrt{n}$$
.

3.
$$w_n = \frac{1}{\sqrt{n+3}}$$
.

2.
$$v_n = n^2 - \sqrt{n}$$
.

Proposition 4 - Limites classiques

Soit $q \in \mathbb{R}$.

- Si q > 1, alors $\lim_{n \to +\infty} q^n = +\infty$. Si -1 < q < 1, alors $\lim_{n \to +\infty} q^n = 0$.

2

Chapitre I - Analyse réelle D 2

Exercice 7. Soit $x \in]-1,1[$. Déterminer la limite de la suite (S_n) de terme général $S_n = \sum_{k=0}^n x^k$.

Théorème 1 - Théorème d'encadrement

Soient u, v, w trois suites réelles et $\ell \in \mathbb{R}$ telles que v et w convergent vers ℓ . Si, à partir d'un certain rang, $v \leq u \leq w$, alors u est une suite convergente et sa limite vaut ℓ .

Exercice 8.

- 1. Généraliser ce théorème au cas des suites de limites infinies.
- **2.** Montrer que $\lim_{n \to +\infty} \frac{3^n}{n!} = 0$.

Théorème 2 - Théorème de la limite monotone - Cas croissant

Soit u une suite croissante.

- Si u est majorée, alors elle converge.
- Si u n'est pas majorée, alors elle tend vers $+\infty$.

Exercice 9.

- 1. Écrire l'énoncé du théorème dans le cas de suites décroissantes.
- **2.** Montrer que la suite (S_n) de terme général $\sum_{k=0}^n \frac{1}{k!}$ est convergente.

II - Fonctions

II.1 - Régularité

Définition 6 - Classe \mathscr{C}^n

Une fonction f est dite de classe \mathscr{C}^n si :

- ses dérivées successives $f, f', \ldots, f^{(n)}$ existent,
- $f^{(n)}$ est continue.

Exemple 2

La fonction $f(x) = x^2$ est de classe \mathscr{C}^2 . On dit aussi qu'elle est deux fois continûment dérivable.

II.2 - Étude d'extrema

Théorème 3 - Régularité & Variations

Soit f une fonction dérivable sur un intervalle I:

- Si f' est nulle sur I, alors f est constante sur I.
- Si f' est strictement positive sur I, sauf éventuellement en des points isolés en lesquels elle s'annule, alors f est strictement croissante sur I.
- Si f' est strictement négative sur I, sauf éventuellement en des points isolés en lesquels elle s'annule, alors f est strictement décroissante sur I.

Exercice 10. Étudier les variations de la fonction $f: x \mapsto x^3 - 6x^2 + 1$.

Théorème 4 - Dérivation & Extrema

Soit f une fonction dérivable sur un ouvert I et $x_0 \in I$. Si f admet un extremum local en x_0 , alors $f'(x_0) = 0$.

Exercice 11.

- 1. Montrer que la réciproque de ce théorème est fausse.
- **2.** Étudier les extrema sur $[-2, +\infty[$ de la fonction $f: x \mapsto -x^3 + x^2$.

Chapitre I - Analyse réelle D 2

II.3 - Formule de Taylor

Théorème 5 - Théorème de Rolle

Soient a < b deux réels et f une fonction continue sur [a, b] et dérivable sur [a, b] telle que f(a) = f(b). Alors il existe $c \in]a, b[$ tel que f'(c) = 0.

Exercice 12. Montrer que ces hypothèses sont optimales.

Définition 7 - Relations de comparaison

Soit $a \in \overline{\mathbb{R}}$ et f, g deux fonctions définies au voisinage de a telles que g ne s'annule pas au voisinage de a.

- f et g sont équivalentes en a, noté $f \sim_a g$ si $\lim_{x \to a} \frac{f(x)}{g(x)} = 1$.
- f est négligeable devant g en a, noté $f = o_a(g)$ si $\lim_{x\to a} \frac{f(x)}{g(x)} = 0$.

Proposition 5 - Croissances comparées

- Au voisinage de $+\infty$:
 - $\star \operatorname{Si} \alpha, \beta, \gamma > 0,$

$$(\ln x)^{\gamma} = o(x^{\beta}), x^{\beta} = o(e^{\alpha x}).$$

 $\star \operatorname{Si} \alpha, \beta, \gamma < 0,$

$$x^{\beta} = o((\ln x)^{\gamma}), e^{\alpha x} = o(x^{\beta}).$$

• Au voisinage de 0 : si $\beta < 0, \gamma > 0$,

$$|\ln x|^{\gamma} = o(x^{\beta}).$$

Exercice 13.

- **1.** Déterminer $\lim_{x\to 0^+} \sqrt{x} \ln\left(\frac{x^2}{1+x}\right)$.
- **2.** Déterminer $\lim_{x \to +\infty} \frac{\ln(x) + x}{x^2 + 1}$

Théorème 6 - Équivalent et dérivation

Si f est une fonction dérivable en a et $f'(a) \neq 0$, alors

$$f(x) - f(a) \sim_a f'(a) \cdot (x - a).$$

Exemple 3 - Équivalents classiques en 0

• Comme $x \mapsto \ln(1+x)$ est dérivable sur $]-1,+\infty[$ de dérivée $x \mapsto \frac{1}{1+x},$

$$\ln(1+x) - \ln(1) \sim_0 \frac{1}{1+0}(x-0)$$
$$\ln(1+x) \sim_0 x.$$

• Comme $x \mapsto e^x$ est dérivable sur \mathbb{R} de dérivée $x \mapsto e^x$,

$$e^{x} - e^{0} \sim_{0} e^{0}(x - 0)$$

 $e^{x} - 1 \sim_{0} x$.

• Soit $\alpha \in \mathbb{R}$. Comme $x \mapsto (1+x)^{\alpha}$ est dérivable sur] $-1, +\infty$ [de dérivée $x \mapsto \alpha(1+x)^{\alpha-1}$,

$$(1+x)^{\alpha} - (1+0)^{\alpha} \sim_0 \alpha (1+0)^{\alpha-1} (x-0)$$
$$(1+x)^{\alpha} - 1 \sim_0 \alpha x.$$

Proposition 6 - Relations de comparaison & Opérations

- \sim_a est une relation d'équivalence.
- Si $f(x) \sim_a g(x)$, alors f et g sont de même signe sur un voisinage de a.
- $f \sim g$ si et seulement si f g = o(g).
- Si $f_1 = o(g)$ et $f_2 = o(g)$, alors $f_1 + f_2 = o(g)$.
- Si $f_1 = o(g_1)$ et $f_2 = o(g_2)$, alors $f_1 f_2 = o(g_1 g_2)$. Si $f_1 \sim g_1$ et $f_2 \sim g_2$, alors $f_1 f_2 \sim g_1 g_2$.
- Si $f_1 \sim g_1$, $f_2 \sim g_2$ et g_1 , g_2 ne s'annulent pas au voisinage de a, alors $\frac{f_1}{f_2} \sim_a \frac{g_1}{g_2}$.

• Si f = o(g) et g = o(h), alors f = o(h).

Exercice 14.

1. Ne pas composer des équivalents.

Déterminer une fonction f telle que f(x) et f(2x) ne soient pas équivalentes en $+\infty$.

2. Ne pas additionner des équivalents.

Déterminer un équivalent en 0 de $x \mapsto \frac{1}{1+2x} - 1 + 2x$.

Définition 8 - Développement limité à l'ordre 1 ou 2

Soit a un réel et f une fonction définie sur un voisinage de a.

• f admet un développement limité à l'ordre 1 en 0 s'il existe a_0 et a_1 réels tels que

$$f(x) = a_0 + a_1(x - a) + o_a(x - a).$$

• f admet un développement limité à l'ordre 2 en 0 s'il existe a_0 , a_1 et a_2 réels tels que

$$f(x) = a_0 + a_1(x - a) + a_2(x - a)^2 + o_a((x - a)^2).$$

Exemple 4 - Polynômes et Inverse

• Soit $f: x \mapsto 3 + 2x + 4x^2 + 3x^5 + 25x^{72}$. Alors,

$$f(x) = 3 + 2x + 4x^{2} + x^{2} (3x^{3} + 25x^{70})$$
$$= 3 + 2x + 4x^{2} + x^{2} \varepsilon(x),$$

où $\lim_{x\to 0} \varepsilon(x)=0$. Ainsi, f admet un développement limité à l'ordre 2 en 0.

• Soit $f: x \mapsto \frac{1}{1-x}$. En utilisant la somme des termes d'une

suite géométrique,

$$1 + x + x^{2} = \frac{1 - x^{3}}{1 - x}$$

$$\frac{1}{1 - x} = 1 + x + x^{2} + \frac{x^{3}}{1 - x}$$

$$= 1 + x + x^{2} + x^{2} \frac{x}{1 - x}$$

$$= 1 + x + x^{2} + x^{2} \varepsilon(x),$$

où $\lim_{x\to 0} \varepsilon(x)=0$. Ainsi, f admet un développement limité à l'ordre 2 en 0.

Exercice 15. Soit $\alpha \in \mathbb{R}$. Déterminer les développements limités à l'ordre 2 en 0 des fonctions

1. $x \mapsto 4x^3 + 2x^2 + x + 1$.

5

2. $x \mapsto \frac{1}{1+x}$

Proposition 7 - Développement limité & Régularité

Soit f une fonction définie sur un intervalle I et $a \in I$.

- f admet un développement limité à l'ordre 0 en a si et seulement si f est continue en a. En particulier, si $f(x) = a_0 + o_a(1)$, alors $\lim_{x \to a} f(x) = f(a) = a_0$.
- f ademt un développement limité à l'ordre 1 en a si et seulement si f est dérivable en a. En particulier, si $f(x) = a_0 + a_1(x a) + o_a(x a)$, alors $a_0 = f(a) = \lim_{x \to a} f(x)$ et $a_1 = f'(a)$. La tangente en f à a a donc pour équation $a_0 + a_1(x a)$.

Théorème 7 - Formule de Taylor-Young

Soit $f: I \to \mathbb{K}$ une fonction de classe \mathscr{C}^n . Alors, pour tout $a \in I$,

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + o((x-a)^n).$$

Exemple 5 - Développements limités classiques en 0

• La fonction $f: x \mapsto e^x$ est de classe \mathscr{C}^2 sur \mathbb{R} et

$$f': x \mapsto e^x,$$

 $f'': x \mapsto e^x.$

Ainsi,

$$e^{x} = e^{0} + e^{0}(x - 0) + \frac{e^{0}}{2}(x - 0)^{2} + o(x^{2})$$
$$= 1 + x + \frac{x^{2}}{2} + o(x^{2}).$$

• La fonction $f: x \mapsto \ln(1+x)$ est de classe \mathscr{C}^2 sur $]-1, +\infty[$ et

$$f': x \mapsto \frac{1}{1+x},$$

$$f'': x \mapsto -\frac{1}{(1+x)^2}.$$

Ainsi,

$$\ln(1+x) = \ln(1+0) + \frac{1}{1+0}x - \frac{\frac{1}{(1+0)^2}}{2}x^2 + o(x^2)$$
$$= x - \frac{x^2}{2} + o(x^2).$$

• Soit $\alpha \in \mathbb{R}$. La fonction $f: x \mapsto (1+x)^{\alpha}$ est de classe \mathscr{C}^2

sur]
$$-1, +\infty$$
[et

$$f': x \mapsto \alpha (1+x)^{\alpha-1},$$

$$f'': x \mapsto \alpha (\alpha-1)(1+x)^{\alpha-2}.$$

Ainsi,

$$\ln(1+x) = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + o(x^2).$$

Exercice 16. Déterminer le développement limité à l'ordre 2 en 0 de $x\mapsto \mathrm{e}^{\sqrt{1+x}}$.

Proposition 8 - Développement limité & Comportement local

Soit f une fonction de classe \mathscr{C}^2 sur un intervalle I contenant a.

- Si f''(a) > 0, alors f se situe au-dessus de sa tangente sur un voisinage de 0.
- Si f''(a) < 0, alors f se situe au-dessus de sa tangente sur un voisinage de 0.

Exemple 6

6

Comportement au voisinage de 1 de $f: x \mapsto e^{1-\sqrt{x}}$. La fonction f est de classe \mathscr{C}^2 et

$$f': x \mapsto -\frac{e^{1-\sqrt{x}}}{2\sqrt{x}},$$
$$f'': x \mapsto \frac{\sqrt{x}+1}{4x^{3/2}} e^{1-\sqrt{x}}.$$

D'après la formule de Taylor-Young,

$$e^{1-\sqrt{x}} = 1 - \frac{1}{2}(x-1) + \frac{1}{4}(x-1)^2 + o_1((x-1)^2).$$

En particulier, il existe une fonction ε qui tend vers 0 en 0 telle

Chapitre I - Analyse réelle D 2

que

$$e^{1-\sqrt{x}} - \underbrace{\left[1 - \frac{1}{2}(x-1)\right]}_{\text{éq. de la tangente}} = \frac{1}{4}(x-1)^2 + o_1((x-1)^2)$$
$$= \frac{(x-1)^2}{4} + (x-1)^2 \varepsilon(x-1)$$
$$= \frac{1}{4}(x-1)^2 (1 + \varepsilon(x-1)).$$

Ainsi, lorsque x est proche de 1, alors $1 + \varepsilon(x - 1) > 0$ et $(x - 1)^2 \ge 0$. Donc $f(x) - \left[1 - \frac{1}{2}(x - 1)\right] \ge 0$ et la courbe représentative de f se trouve au-dessus de la tangente.

II.4 - Fonctions convexes

Définition 9 - Convexité pour les fonctions de classe \mathscr{C}^2

Soit $f \in \mathcal{C}^2(I)$. f est une fonction convexe si $f'' \geqslant 0$.

Proposition 9 - Convexité & Tangentes

Soit f une fonction convexe et dérivable sur I. Alors,

$$\forall x, a \in I, f(x) \ge f(a) + (x - a)f'(a).$$

Exercice 17. Montrer les inégalités suivantes.

- 1. $\forall u \in]-1, +\infty[, \ln(1+u) \leq u.$
- **2.** $\forall u \in \mathbb{R}, 1+u \leqslant e^u$.

II.5 - Plan d'étude de fonction

- (i). Ensemble de définition.
- (ii). Limites aux bornes de l'ensemble d'étude.
- (iii). Dérivabilité, Variations.
- (iv). Branches infinies.
- (v). Représentation graphique avec les tangentes remarquables.

Exemple 7 - Étude de fonction

Soit $f: x \mapsto x - 1 + \frac{1}{x-2}$ et \mathcal{C}_f sa courbe représentative dans un repère orthonormé.

- (i). f est définie sur $\mathbb{R}\setminus\{2\}$.
- (ii). f est dérivable sur $]-\infty,2[$ et sur $]2,+\infty[$. Sur chacun de ces intervalles,

$$f'(x) = 1 - \frac{1}{(x-2)^2} = \frac{(x-1)(x-3)}{(x-2)^2}.$$

On en déduit le tableau de variations suivant :

La fonction f est deux fois dérivable et $f''(x) = \frac{1}{(x-2)^3}$. Ainsi, $f''(x) \ge 0$ pour tout $x \ge 2$ et f est convexe sur $]2, +\infty[$. Comme $f''(x) \le 0$ pour tout $x \le 2$, alors f est concave sur $]-\infty, 2[$.

(iii). Étude des branches infinies.

Chapitre I - Analyse réelle

- Comme $\lim_{x\to 2^-} f(x) = +\infty$, alors la droite d'équation y=2 est une asymptote verticale à la courbe.
- Comme $\lim_{x\to 2^+} f(x) = -\infty$, alors la droite d'équation y=2 est une asymptote verticale à la courbe.
- y=2 est une asymptote verticale à la courbe. • Comme $\lim_{x\to +\infty} \frac{f(x)}{x} = 1$ et $\lim_{x\to +\infty} f(x) - x = -1$, alors la droite d'équation y=x-1 est asymptote à \mathcal{C}_f en $+\infty$. De plus, $f(x)-x+1=\frac{1}{x-2}\geqslant 0$ pour tout x>2. Ainsi, $\mathcal{C}_f f$ se trouve au-dessus de son asymptote au voisinage de $+\infty$.
- Comme $\lim_{x\to -\infty} \frac{f(x)}{x} = 1$ et $\lim_{x\to -\infty} f(x) x = -1$, alors la droite d'équation y = x 1 est asymptote à \mathcal{C}_f en $-\infty$. De plus, $f(x) x + 1 = \frac{1}{x-2} \leq 0$ pour tout x < 2. Ainsi, f se trouve au-dessous de son asymptote.

(iv). Tracé.

