

Recursion: Simple Examples

Paolo Camurati
Dip. Automatica e Informatica
Politecnico di Torino

Maximum of an array

- Specifications
 - Given an array of $n=2^k$ integers
 - Find its maximum and print it on standard output

divide and conquer a = 2 and n/n' = 2

Maximum in an array of integers

- If n=1, find maximum explicitly
- If n>1
 - Divide array in 2 subarrays, each being half the original array
 - Recursively search for maximum in each subarray
 - Compare results and return bigger one

In the main program (initial call #0):

result = max(a, 0, 3);
$$= 0 r = 3$$

```
int max(int a[],int l,int r){
  int u, v;
  int m = (l + r)/2;
  if (l == r)
    return a[l];
  u = max (a, l, m);
  v = max (a, m+1, r);
  if (u > v)
    return u;
  else
    return v;
}
```

```
a 10 \ 3 \ 40 \ 6
n = 2^{2}
```


$$I = 0 r = 3 m = 1$$

```
int max(int a[],int l,int r){
  int u, v;
  int m = (l + r)/2;
  if (l == r)
    return a[l];
  u = max (a, l, m);
  v = max (a, m+1, r);
  if (u > v)
    return u;
  else
    return v;
}
```

max(a, 0, 1);

a 10 3 40 6

```
l = 0 r = 3 m = 1
```

Recursive call #1

```
int max(int a[],int l,int r){
  int u, v;
  int m = (l + r)/2;
  if (l == r)
    return a[l];
  u = max (a, l, m);
  v = max (a, m+1, r);
  if (u > v)
    return u;
  else
    return v;
}
```

```
int max(int a[],int l,int r){
  int u, v;
  int m = (l + r)/2;
  if (l == r)
    return a[l];
  u = max (a, l, m);
  v = max (a, m+1, r);
  if (u > v)
    return u;
  else
    return v;
}
```

```
\max(a, 0, 1);
```



```
l = 0 r = 1
```

```
a 10 3 40 6

10 3
```

```
int max(int a[],int l,int r){
   int u, v;
   int m = (l + r)/2;
   if (l == r)
     return a[l];
   u = max (a, l, m);
   v = max (a, m+1, r);
   if (u > v)
     return u;
   else
     return v;
}
```

```
\max(a, 0, 1);
```



```
10 3 40 6
```

```
int max(int a[],int 1,int r){
  int u, v;
  int m = (1 + r)/2;
  if (1 == r)
   return a[1];
  u = max (a, 1, m);
  v = max (a, m+1, r);
  if (u > v)
    return u;
  else
    return v;
```

l = 0 r = 1 m = 0

```
max(a, 0, 1);
```



```
l = 0 r = 1 m = 0
```

```
a 10 3 40 6
10 3
```

```
int max(int a[],int l,int r){
  int u, v;
  int m = (l + r)/2;
  if (l == r)
    return a[l]:
    u = max (a, l, m);
    v = max (a, m+1, r);
    if (u > v)
        return u;
    else
        return v;
}

    Recursive call #2
    return v;
}
```

```
max(a, 0, 0);
```



```
I = 0 r = 0
```

```
int max(int a[],int l,int r){
  int u, v;
  int m = (l + r)/2;
  if (l == r)
    return a[l];
  u = max (a, l, m);
  v = max (a, m+1, r);
  if (u > v)
    return u;
  else
    return v;
}
```



```
max(a, 0, 0);
```



```
I = 0 r = 0 m = 0
```

```
int max(int a[],int l,int r){
  int u, v;
  int m = (l + r)/2;
  if (l == r)
    return a[l];
  u = max (a, l, m);
  v = max (a, m+1, r);
  if (u > v)
    return u;
  else
    return v;
}
```



```
\max(a, 0, 0);
```



```
I = 0 r = 0 m = 0
```

```
int max(int a[],int 1,int r){
  int u, v;
  int m = (1 + r)/2;
  if (1 == r)
    return a[1];
  u = max (a, 1, m);
  v = max (a, m+1, r);
  if (u > v)
    return u;
  else
    return v;
}
```



```
\max(a, 0, 1);
```



```
l = 0 r = 1 m = 0
```

```
a 10 3 40 6

m r

++ +

10 3 u = 10
```

```
int max(int a[],int 1,int r){
  int u, v;
  int m = (l + r)/2;
  if (l == r)
    return a[l];
  u = max (a, l, m);
  v = max (a, m+1, r);
  if (u > v)
    return u;
  else
    return v;
}
```

```
max(a, 0, 1);
```



```
l = 0 r = 1 m = 0
```

```
a 10 3 40 6

| m r

++ + 1

10 3 u = 10
```

```
int max(int a[],int l,int r){
  int u, v;
  int m = (l + r)/2;
  if (l == r)
    return a[l];
  u = max (a, l, m);
  v = max (a, m+1, r);
  if (u > v)
    return u;
  else
    return v;
}

    Recursive call #3
    return v;
}
```

```
max(a, 1, 1);
```



```
l = 1 r = 1
```

```
int max(int a[],int l,int r){
   int u, v;
   int m = (l + r)/2;
   if (l == r)
     return a[l];
   u = max (a, l, m);
   v = max (a, m+1, r);
   if (u > v)
     return u;
   else
     return v;
}
```



```
max(a, 1, 1);
```



```
I = 1 r = 1 m = 1
```

```
int max(int a[],int l,int r){
  int u, v;
  int m = (l + r)/2;
  if (l == r)
    return a[l];
  u = max (a, l, m);
  v = max (a, m+1, r);
  if (u > v)
    return u;
  else
    return v;
}
```

```
a 10 3 40 6

10 3 u = 10
```

```
max(a, 1, 1);
```



```
I = 1 r = 1 m = 1
```

```
int max(int a[],int l,int r){
  int u, v;
  int m = (l + r)/2;
  if (l == r)
    return a[l];
  u = max (a, l, m);
  v = max (a, m+1, r);
  if (u > v)
    return u;
  else
    return v;
}
```



```
max(a, 0, 1);
```



```
l = 0 r = 1 m = 0
```

```
a 10 3 40 6 u = 10

m r

++ +

10 3 return u

for call #1
```

```
int max(int a[],int l,int r){
  int u, v;
  int m = (l + r)/2;
  if (l == r)
    return a[l];
  u = max (a, l, m);
  v = max (a, m+1, r);
  if (u > v)
    return u;
  else
    return v;
}
```

```
max(a, 0, 3);

max(a, 0, 3);

r

t

a 10 3 40 6 u = 10
```

$$I = 0 r = 3 m = 1$$

```
int max(int a[],int l,int r){
  int u, v;
  int m = (l + r)/2;
  if (l == r)
    return a[l];
  u = max (a, l, m);
  v = max (a, m+1, r);
  if (u > v)
    return u;
  else
    return v;
}
```

```
max(a, 0, 3);

max(a, 0, 3);

r

a 10 3 40 6 u = 10
```

$$I = 0 r = 3 m = 1$$

```
int max(int a[],int l,int r){
  int u, v;
  int m = (l + r)/2;
  if (l == r)
    return a[l];
  u = max (a, l, m);
  v = max (a, m+1, r);
  if (u > v)
    return u;
  else
    return v;
}

    Recursive call #4
```

```
max(a, 2, 3);
```



```
l = 2 r = 3
```



```
max(a, 2, 3);
```



```
l = 2 r = 3 m = 2
```

```
a 10 3 40 6 u = 10
```

```
int max(int a[],int 1,int r){
  int u, v;
  int m = (1 + r)/2;
  if (1 == r)
    return a[1];
  u = max (a, 1, m);
  v = max (a, m+1, r);
  if (u > v)
    return u;
  else
    return v;
}
```

```
max(a, 2, 3);
```



```
a 10 3 40 6 u = 10
```

```
I = 2 r = 3 m = 2
```

```
int max(int a[],int l,int r){
  int u, v;
  int m = (l + r)/2;
  if (l == r)
    return a[l]:
    u = max (a, l, m);
    v = max (a, m+1, r);
    if (u > v)
        return u;
    else
        return v;
}

    Recursive call #5
        max(a, 2, 2);
```

```
max(a, 2, 2);
```



```
l = 2 r = 2
```

```
int max(int a[],int l,int r){
   int u, v;
   int m = (l + r)/2;
   if (l == r)
     return a[l];
   u = max (a, l, m);
   v = max (a, m+1, r);
   if (u > v)
     return u;
   else
     return v;
}
```



```
max(a, 2, 2);
```



```
l = 2 r = 2 m = 2
```

```
int max(int a[],int l,int r){
  int u, v;
  int m = (l + r)/2;
  if (l == r)
    return a[l];
  u = max (a, l, m);
  v = max (a, m+1, r);
  if (u > v)
    return u;
  else
    return v;
}
```



```
max(a, 2, 2);
```



```
I = 2 r = 2 m = 2
```

```
int max(int a[],int l,int r){
  int u, v;
  int m = (l + r)/2;
  if (l == r)
    return a[l];
  u = max (a, l, m);
  v = max (a, m+1, r);
  if (u > v)
    return u;
  else
    return v;
}
```



```
max(a, 2, 3);
```



```
l = 2 r = 3 m = 2
```



```
int max(int a[],int l,int r){
  int u, v;
  int m = (l + r)/2;
  if (l == r)
    return a[l];
  u = max (a, l, m);
  v = max (a, m+1, r);
  if (u > v)
    return u;
  else
    return v;
}
```

```
max(a, 2, 3);
```



```
l = 2 r = 3 m = 2
```

```
a 10 3 40 6 u = 10
u = 40 40 6
```

```
int max(int a[],int 1,int r){
  int u, v;
  int m = (1 + r)/2;
  if (1 == r)
    return a[1];
  u = max (a, l, m);
  v = max (a, m+1, r);
  if (u > v)
    return u;
  else
    return v;
}

    Recursive call #6
  return v;
}
```

```
max(a, 3, 3);
```


$$l = 3 r = 3$$

```
int max(int a[],int l,int r){
  int u, v;
  int m = (l + r)/2;
  if (l == r)
    return a[l];
  u = max (a, l, m);
  v = max (a, m+1, r);
  if (u > v)
    return u;
  else
    return v;
}
```



```
max(a, 3, 3);
```



```
l = 3 r = 3 m = 3
```

```
int max(int a[],int l,int r){
  int u, v;
  int m = (l + r)/2;
  if (l == r)
    return a[l];
  u = max (a, l, m);
  v = max (a, m+1, r);
  if (u > v)
    return u;
  else
    return v;
}
```



```
max(a, 3, 3);
```



```
l = 3 r = 3 m = 3
```

```
int max(int a[],int l,int r){
  int u, v;
  int m = (l + r)/2;
  if (l == r)
    return a[l];
  u = max (a, l, m);
  v = max (a, m+1, r);
  if (u > v)
    return u;
  else
    return v;
}
```



```
max(a, 2, 3);
```



```
I = 2 r = 3 m = 2
```

```
int max(int a[],int l,int r){
  int u, v;
  int m = (l + r)/2;
  if (l == r)
    return a[l];
  u = max (a, l, m);
  v = max (a, m+1, r);
  if (u > v)
    return u;
  else
    return v;
}
```



```
result = max (A, 0, 3); \implies result = 40
```

l = 0 r = 3 m = 1

Solution

```
a 10 3 40 6 v = 40
```

```
int max(int a[],int l,int r){
  int u, v;
  int m = (l + r)/2;
  if (l == r)
    return a[l];
  u = max (a, l, m);
  v = max (a, m+1, r);
  if (u > v)
    return u;
  else
  return v;
```

return v

Complexity Analysis

Complexity analysis

•
$$D(n) = \Theta(1)$$

•
$$C(n) = \Theta(1)$$

•
$$a = 2, b = 2$$

Recurrence equation

•
$$T(n) = D(n) + a T(n/b) + C(n)$$

That is

•
$$T(n) = 2T(n/2) + 1$$

•
$$T(1) = 1$$

divide and conquer
$$a = 2 b = 2$$

$$n=1$$

Resolution by unfolding

•
$$T(n) = 1 + 2T(n/2)$$

•
$$T(n/2) = 1 + 2T(n/4)$$

•
$$T(n/4) = 1 + 2T(n/8)$$

Replacing in T(n)

•
$$T(n) = 1 + 2 + 4 + 2^{3}T(n/8)$$

 $= \sum_{i=0}^{\log_{2} n} 2^{i} = (2^{\log_{2} n + 1} - 1)/(2 - 1)$
 $= 2 \cdot 2^{\log_{2} n} - 1 = 2n - 1$

Thus

$$\bullet$$
 T(n) = O(n)

Termination condition n/2ⁱ = 1 i = log₂n

$$\sum_{i=0}^{k} x^{i} = (x^{k+1} - 1)/(x-1)$$

Factorials

Factorial (iterative definition)

•
$$n! \equiv \prod_{i=0}^{n-1} (n-i) = n \cdot (n-1) \cdot \dots \cdot 2 \cdot 1$$

Factorial (recursive definition)

•
$$n! \equiv n \cdot (n-1)!$$
 $n \ge 1$

Decrease and conquer $a = 1 k_i = 1$

Example: 5!

$$5! = 5 \cdot 4! = 120$$

$$4! = 4 \cdot 3! = 24$$

$$3! = 3 \cdot 2! = 6$$

$$2! = 2 \cdot 1! = 2$$

$$1! = 1 \cdot 0! = 1$$

```
#include <stdio.h>
long fact(int n);
main() {
  long n;
  printf("Input n: ");
  scanf("%d", &n);
  printf("%d ! = %d\n", n, fact(n));
long fact(long n) {
  if(n == 0)
    return(1);
  return(n * fact(n-1));
```

Complexity Analysis

- Complexity analysis
 - $D(n) = \Theta(1)$
 - $C(n) = \Theta(1)$
 - a = 1
 - $k_i = 1$
- Recurrence equation
 - $T(n) = D(n) + \sum_{i=0}^{a-1} T(n-ki) + C(n)$
- That is
 - T(n) = 1 + T(n-1) n > 1
 - T(1) = 1

Complexity Analysis

- Resolution by unfolding
 - T(n) = 1 + T(n-1)
 - T(n-1) = 1 + T(n-2)
 - T(n-2) = 1 + T(n-3)
 - ...
- Replacing in T(n)

•
$$T(n) = 1+1+1+T(n-3) = \sum_{i=0}^{n-1} 1 = 1 + (n-1) = n$$

- Thus
 - T(n) = O(n)

Termination n-i = 1 i = n -1

Fibonacci Numbers

■ Fibonacci numbers

•
$$FIB_n = FIB_{n-2} + FIB_{n-1}$$
 $n>1$

- $FIB_0 = 0$
- $FIB_1 = 1$

Example

• 0 1 1 2 3 5 8 13 21 34 ...

Decrease and conquer $a = 2 k_i = 1 k_{i-1} = 2$

Example: Computing FIB₅

So

```
#include <stdio.h>
long fib(long n);
main() {
  long n;
  printf("Input n: ");
  scanf("%d", &n);
  printf("Fibonacci of %d is: %d \n", n, fib(n));
long fib(long n) {
  if(n == 0 | | n == 1)
    return (n);
  return (fib(n-2) + fib(n-1));
```

Complexity Analysis

Complexity Analysis

- $D(n) = \Theta(1)$
- $C(n) = \Theta(1)$
- a = 2
- $k_i = 1$
- $k_{i-1} = 2$

Recurrence equation

•
$$T(n) = D(n) + \sum_{i=0}^{a-1} T(n-ki) + C(n)$$

Complexity Analysis

■ That is

•
$$T(n) = 1 + T(n-1) + T(n-2)$$

•
$$T(0) = 1$$

•
$$T(1) = 1$$

• ...

Conservative approximation

•
$$T(n-2) \leq T(n-1)$$

•
$$T(n) = 1 + 2T(n-1)$$

•
$$T(n) = 1$$

Complexity Analysis

Resolution by unfolding

•
$$T(n) = 1 + 2T(n-1)$$

•
$$T(n-1) = 1 + 2T(n-2)$$

•
$$T(n-2) = 1 + 2T(n-3)$$

•

Replacing in T(n)

•
$$T(n) = 1 + 2 + 4 + 2^{3}T(n-3) = \sum_{i=0}^{n-1} 2^{i} = 2^{n} - 1$$

Thus

•
$$T(n) = O(2^n)$$

Termination n-i = 1 i= n -1

$$\sum_{i=0}^{k} x^i = (x^{k+1} - 1)/(x-1)$$

Binary search

- Binary search
 - Does key k belong to the sorted array v[n]?
 Yes/No
 Assumption: n = 2^p
- Approach
 - At each step: compare k with middle element in the array:
 - =: Termination with success
 - <: Search continues in left sub-array</p>
 - >: Search continues in right sub-array

Divide and conquer a = 1 b = 2


```
int BinSearch(int v[], int 1, int r, int k){
  int m;
  if (1 > r)
    return(-1);
 m = (1+r) / 2;
  if (k < v[m])
    return(BinSearch(v, 1, m-1, k));
  if (k > v[m])
    return(BinSearch(v, m+1, r, k));
  return m;
}
```

Complexity Analysis

Complexity analysis

•
$$D(n) = \Theta(1)$$

•
$$C(n) = \Theta(1)$$

•
$$a = 1, b = 2$$

Recurrence equation

•
$$T(n) = D(n) + a T(n/b) + C(n)$$

That is

•
$$T(n) = T(n/2) + 1$$

•
$$T(1) = 1$$

$$n=1$$

Complexity Analysis

- Resolution by unfolding
 - T(n/2) = T(n/4) + 1
 - T(n/4) = T(n/8) + 1
 - T(n/8) = ...
- Replacing in T(n)

•
$$T(n) = 1 + 1 + 1 + T(n/8)$$

= $\sum_{i=0}^{\log_2 n} 1$
= $1 + \log_2 n$

• T(n) = O(logn)

Termination: n/2ⁱ = 1 i= log₂n

The ruler

- Draw one mark at each point between 0 and 2ⁿ (excepted boundaries) where
 - The middle mark is n units high
 - The 2 marks in the middle of the 2 left and right halves are n-1 units high
 - etc.
 - Function mark(x, h) draws a mark of height h in position x

Divide and conquer a = 2 b = 2

Solution

Algorithm

- Divide interval in 2
- Recursively draw (shorter) marks in left half
- Draw (higher) mark in the middle
- Recursively draw (shorter) marks in right half
- Termination condition: marks of height 0

-


```
Recursive
                                              descent/termination
     void ruler(int 1, int r, int h) {
       int m;
       m = (1 + r)/2;
       if (h > 0) {
                                                   recursive call
         ruler(l, m, h-1);
         mark(m, h);
Division
         ruler(m, r, h-1);
                                               elementary solution
                                                  recursive call
     void mark(int m, int h) {
       int i;
       printf("%d \t", m);
       for (i = 0; i < h; i++)
         printf("*");
       printf("\n");
```

Complexity Analysis

Complexity analysis

•
$$D(n) = \Theta(1), C(n) = \Theta(1)$$

•
$$a = 2, b = 2$$

Recurrence equation

•
$$T(n) = D(n) + a T(n/b) + C(n)$$

That is

•
$$T(n) = 2T(n/2) + 1$$
 $n > 1$

•
$$T(1) = 1$$
 $n=1$

$$T(n) = O(n)$$

Reverse printing

- Read a string from input
- Print it in reverse order (starting from last character and moving back to first one)

Decrease and conquer $a = 1 k_i = 1$

```
main() {
  char str[max+1];
  printf("Input string: ");
  scanf("%s", str);
  printf("Reverse string is: ");
  reverse_print(str);
void reverse_print(char *s) {
  if(*s != '\0') {
    reverse_print(s+1);
    putchar(*s);
  return;
```

Complexity Analysis

- Complexity analysis
 - $D(n) = \Theta(1), C(n) = \Theta(1)$
 - $a = 1, k_i = 1$
- Recurrence equation
 - $T(n) = D(n) + \sum_{i=0}^{a-1} T(n-ki) + C(n)$
- That is
 - T(n) = 1 + T(n-1)

n > 1

- T(1) = 1
- Then
 - T(n) = O(n)

decrease and conquer $a = 1 k_i = 1$

Linked list

- Recursive list processing
 - Count the number of elements in a list
 - Traverse a list in order
 - Traverse a list in reverse order
 - Delete an element from the list

```
int count (link x) {
  if (x == NULL)
    return 0;
  return 1 + count(x->next);
void traverse (link h) {
  if (h == NULL)
    return;
  printf("%d", h->item);
  traverse(h->next);
void traverseR (link h) {
  if (h == NULL)
    return;
  traverseR(h->next);
  printf("%d", h->item);
```

```
link delete(link x, Item v) {
   if (x == NULL)
     return NULL;
   if ( x->item == v) {
      link t = x->next;
      free(x);
     return t;
   }
   x->next = delete(x->next, v);
   return x;
}
```

Complexity Analysis

- Complexity analysis
 - $D(n) = \Theta(1), C(n) = \Theta(1)$
 - $a = 1, k_i = 1$
- Recurrence equation
 - $T(n) = D(n) + \sum_{i=0}^{a-1} T(n-ki) + C(n)$
- That is
 - T(n) = 1 + T(n-1) n > 1
 - T(1) = 1
- Then
 - T(n) = O(n)

Greatest Common Divisor

- The greatest common divisor gcd of 2 non 0 integers x and y is the greatest among the common divisors of x and y
- Inefficient algorithm based on decomposition in prime factors

$$\bullet \mathsf{X} = p_1^{e_1} \cdot p_2^{e_2} \cdot \cdot \cdot p_r^{e_r}$$

$$\bullet \mathsf{y} = p_1^{f_1} \cdot p_2^{f_2} \cdot \cdot \cdot p_r^{f_r}$$

•
$$gcd(x,y) = p_1^{\min(e_1,f_1)} \cdot p_2^{\min(e_2,f_2)} \cdot \cdot \cdot p_r^{\min(e_r,fr)}$$

Decrease and conquer a = 1 variable k_i

Common factors with the minimum exponent

Euclid's Algorithm: Version 1

Version 1 is based on subtraction

```
if x > y

gcd(x, y) = gcd(x-y, y)

else

gcd(x, y) = gcd(x, y-x)
```

Termination

```
if x=y
return x
```

E

Examples

```
 = \gcd(20, 8) = 
    = \gcd(20-8, 8) = \gcd(12, 8)
    = \gcd(12-8, 8) = \gcd(4, 8)
    = \gcd(4, 8-4) = \gcd(4, 4)
    = 4 \rightarrow \text{return } 4
gcd (600, 54) =
    = \gcd(600-54, 54) = \gcd(546, 54)
    = \gcd(546-54, 54) = \gcd(492, 54) \dots
    = \gcd(6,54) = \gcd(6,54-6) \dots
    = \gcd(6, 12) = \gcd(6,6)
    = 6 \rightarrow \text{return } 6
```

```
#include <stdio.h>
int gcd(int x, int y);
main() {
  int x, y;
  printf("Input x and y: ");
  scanf("%d%d", &x, &y);
  printf("gcd of %d and %d: %d \n", x, y, gcd(x, y));
}
int gcd(int x, int y) {
  if (x == y)
    return (x);
  if (x > y)
    return gcd (x-y, y);
  else
    return gcd (x, y-x);
}
```


Euclid's Algorithm: Version 2

Version 2 is based on the remainder of integer divisions

```
if y > x

swap (x, y) // that is; tmp=x; x=y; y=tmp;

gcd(x, y) = gcd(y, x%y)
```

Termination

if
$$y = 0$$
 return x

Exa

Examples

```
■ gcd (20, 8) =
= gcd (8, 20\%8) = gcd (8, 4)
= gcd (4, 8\%4) = gcd (4, 0)
= 4 \rightarrow return 4
```

```
■ gcd (600, 54) =
= \gcd (54, 600\%54) = \gcd (54, 6)
= \gcd (6, 54\%6) = \gcd (6, 0)
= 6 \rightarrow \text{return } 6
```

Examples

314159 are 271828 mutually prime

```
• gcd (314159, 271828)=
   = \gcd(271828, 314159\%271828) = \gcd(271828, 42331)
   = \gcd(42331, 271828\%42331) = \gcd(42331, 17842)
   = \gcd(17842, 42331\%17842) = \gcd(17842, 6647)
   = \gcd(6647, 17842\%6647) = \gcd(6647, 4548)
   = \gcd(4548, 6647\%4548) = \gcd(4548, 2099)
   = \gcd(2099, 4548\%2099) = \gcd(2099, 350)
   = \gcd(350, 2099\%350) = \gcd(350, 349)
   = \gcd(349, 350\%349), \gcd(349, 1)
   = \gcd(1,349\%1) = \gcd(1,0)
   =1 \rightarrow \text{return } 1
```

```
#include <stdio.h>
int gcd(int m, int n);
main() {
  int m, n, r;
  printf("Input m and n: ");
  scanf("%d%d", &m, &n);
  if (m>n)
    r = gcd(m, n);
  else
    r = gcd(n, m);
  printf("gcd of (%d, %d) = %d\n", m, n, r);
int gcd(int m, int n) {
  if(n == 0)
    return(m);
  return gcd(n, m % n);
```


Complexity Analysis

Complexity analysis

- $D(x,y) = \Theta(1)$
- $C(x,y) = \Theta(1)$
- a = 1
- Variable reduction

Worst case

- x and y are 2 consecutive Fibonacci numbers
- x = FIB(n+1)
- y = FIB(n)

Termination: n steps

Complexity Analysis

- Recurrence equation
 - T(x,y) = T(FIB(n+1), FIB(n))= 1 + T(FIB(n),FIB(n+1)%FIB(n))
 - T(x,0) = 1
- But by construction
 - FIB(n+1)%FIB(n) = FIB(n-1)

Termination: n steps

Complexity Analysis

- T(x,y) = T(FIB(n+1), FIB(n))= 1 + T(FIB(n), FIB(n+1)%FIB(n))= $\sum_{i=0}^{n-1} 1 = n$
- T(x, y) = O(n)
 - But, as $y = FIB(n) = (\phi^{n-} \phi'^{n}) / \sqrt{5} = \Theta(\phi^{n})$
 - Then n is a function of log_φ(y)
- Thus
 - T(n) = O(log(y))

Determinant of a (n'n) matrix

- Laplace Algorithm with unfolding on row I
 - Square matrix M (n·n) with indices from 1 to n
- Computation
 - $det(M) = \sum_{1 \le j \le n} (-1)^{i+j} M[i][j] \cdot det(M_{minor i, j})$
 - Where $M_{\text{minor }i,\;j}$ is obtained from M eliminating row i and column $\;j$

Divide and conquer $a = n \quad k_i = 2n-1$

Example

$$M = \begin{bmatrix} -2 & 2 & -\overline{3} \\ -1 & 1 & 3 \\ 2 & 0 & -1 \end{bmatrix}$$

$$\det(\mathsf{M}) = (-1)^{1+1} \cdot (-2) \cdot \det(\mathsf{M}_{\mathsf{minor}\ 1,\ 1}) + \\ (-1)^{1+2} \cdot (2) \cdot \det(\mathsf{M}_{\mathsf{minor}\ 1,\ 2}) + \\ (-1)^{1+3} \cdot (-3) \cdot \det(\mathsf{M}_{\mathsf{minor}\ 1,\ 3})$$

Example

$$M_{\text{minor 1, 1}} = -\frac{1}{1} + \frac{2}{1} + \frac{3}{1} = \begin{bmatrix} 1 & 3 \\ 0 & -1 \end{bmatrix}$$

$$M_{\text{minor 1, 2}} = -\frac{1}{1} + \frac{3}{1} = \begin{bmatrix} -1 & 3 \\ 2 & -1 \end{bmatrix}$$

$$M_{\text{minor 1, 3}} = -\frac{1}{1} + \frac{3}{1} = \begin{bmatrix} -1 & 1 \\ 2 & 0 \end{bmatrix}$$

Example

- Elementary case
 - Square matrix M 2x2
 - $det(M) = M[1][1] \cdot M[2][2] M[1][2] \cdot M[2][1]$

$$\det(\begin{bmatrix} 1 & 3 \\ 0 & -1 \end{bmatrix}) = -1 - 0 = -1$$

$$\det(\begin{bmatrix} -1 & 3 \\ 2 & -1 \end{bmatrix}) = 1 - 6 = -5$$

$$\det(\begin{bmatrix} -1 & 1 \\ 2 & 0 \end{bmatrix}) = 0 - 2 = -2$$

Example

Then

$$M = \begin{bmatrix} -2 & 2-3 \\ -1 & 1 & 3 \\ 2 & 0-1 \end{bmatrix}$$

•
$$\det(M) = (-1)^{1+1} \cdot (-2) \cdot \det(M_{\text{minor } 1, 1}) +$$

 $(-1)^{1+2} \cdot (2) \cdot \det(M_{\text{minor } 1, 2}) +$
 $(-1)^{1+3} \cdot (-3) \cdot \det(M_{\text{minor } 1, 3})$
 $= (1) \cdot (-2) \cdot (-1) + (-1) \cdot (2) \cdot (-5) + (1) \cdot (-3) \cdot (-2)$
 $= 18$

- Recursive algorithm (indices ranging between 0 and n-1)
- If n = 2, compute
 - M[0][0] · M[1][1] M[0][1] · M[1][0]
- If n>2
 - With row=0 and column ranging from 0 and n-1
 - Store in tmp the value of M_{minor 0, j}
 - Recursively compute det(M_{minor i, i})
 - Store result results in
 - sum = sum + M[0][k] * pow (-1,k)*det (tmp, n-1)

-

```
int det2x2(int m[][MAX]) {
  return(m[0][0]*m[1][1] - m[0][1]*m[1][0]);
void minor(int m[][MAX],int i,int j,int n,int m2[][MAX]){
  int r, c, rr, cc;
  for (rr = 0, r = 0; r < n; r++)
    if (r != i) {
      for (cc = 0, c = 0; c < n; c++) {
        if (c != j) {
           m2[rr][cc] = m[r][c];
           CC++;
        rr++;
```

```
int det (int a[][MAX], int n) {
  int sum, k, i, j, r, c;
  int tmp[MAX][MAX];
  sum = 0;
  if (n == 2)
    return (det2x2(a));
  for (k = 0; k < n; k++) {
   minor (a, 0, k, n, tmp);
   sum = sum + a[0][k] * pow(-1,k) * det (tmp,n-1);
  }
  return (sum);
```


Complexity Analysis

- Demonstration beyond the scope of this course
- T(n) = O(N!)

Hanoi Towers (E. Lucas 1883)

- Initial configuration
 - 3 pegs, 3 disks
 - Disks of decreasing size on first peg
- Final configuration
 - 3 disks on third peg

Decrease and conquer $a = 2 k_i = 1$

Hanoi Towers (E. Lucas 1883)

- Rules
 - Access only to the top disk
 - On each disk overalp only smaller disks
- Generalization
 - Work with n disks and k pegs

Example of solution

Divide and conquer strategy

- Initial problem
 - Move n disks from 0 to 2
- Reduction to subproblems
 - Move n-1 disks from 0 to 1, 2 temporary storage
 - Move last disk from 0 to 2
 - Move n-1 disks from 1 to 2, 0 temporary storage
- Termination condition
 - Move just 1 disk

Solution

- 0, 1, 2: pegs 0, 1, 2
- large disk
- medium disk
- small disk
- 0 means small disk on peg 0, 2 means large disk on peg 2, etc.
- state 011

state transition

- 1. medium and small disks from 0 to 1 $000 \Rightarrow 011$
- 2. large disk from 0 to 2 $011 \Rightarrow 211$
- 3. medium and small disks from 1 to 2 \Rightarrow 222

Recursion tree


```
void Hanoi(int n, int src, int dest) {
        int aux;
                                                  termination
        aux = 3 - (src + dest);
        if (n == 1) {
          printf("src %d -> dest %d \n", src, dest);
          return;
division
                                                 recursive call
        Hanoi(n-1, src, aux);
        printf("src %d -> dest %d \n", src, dest);
        Hanoi(n-1, aux, dest);
                                             elementary solution
division
                                  recursive call
```

Complexity Analysis

- Divide: consider n-1 disks
 - $D(n)=\Theta(1)$
- Solve: solve 2 subproblems whose size is n-1 each
 - 2T(n-1)
- Termination: move 1 disk
 - Θ(1)
- Combine: no action
 - $C(n) = \Theta(1)$

Complexity Analysis

Recurrence equation

•
$$T(n) = D(n) + \sum_{i=0}^{a-1} T(n-ki) + C(n)$$

That is

•
$$T(n) = O(2^n)$$

-

Product of 2 integers

- Multiplication of 2 integers x and y on n digits
 - \bullet n = 2k
- If size is 1, compute x * y (elementary problem)
- If N>1
 - Divide x in 2: x = 10n/2 *xl + xr
 - Divide y in 2: y = 10n/2 *yl + yr
 - Recursively compute xl*yl, xl*yr, xr*yl, xr*yr,
 - Compute
 - x * y = 10n *x| *y| + 10n/2 *(x|*yr + xr*yl) + xr*yr

Divide and conquer

$$a = 4 b = 2$$

$$1356 * 2410 = 3.267.960$$

x 1 3 5 6

* y 2 4 1 0

1 = 4

$$1356 * 2410 = 3.267.960$$

1356 * 2410 = 3.267.960

$$1356 * 2410 = 3.267.960$$

$$10^{n}$$
 X_{l} Y_{l} $10^{n/2}$ X_{l} Y_{r} X_{r} Y_{l} X_{r} Y_{r} Y_{r} $10^{2} * 1 * 2 + 10^{1} * (1 * 4 + 3 * 2) + 3 * 4$

$$13 * 24 = 10^2 * 2 + 10^1 * 10 + 12 = 312$$

$$1356 * 2410 = 3.267.960$$

$$10^{n}$$
 X_{l} Y_{l} $10^{n/2}$ X_{l} Y_{r} X_{r} Y_{l} X_{r} Y_{r} Y_{r} $10^{2} * 1 * 1 * 10^{1} * (1 * 0 + 3 * 1) + 3 * 0$

$$13 * 10 = 10^2 * 1 + 10^1 * 3 + 0 = 130$$

$$1356 * 2410 = 3.267.960$$

$$10^{n}$$
 X_{l} Y_{l} $10^{n/2}$ X_{l} Y_{r} X_{r} Y_{l} X_{r} Y_{r} Y_{r} $10^{2} * 5 * 2 + 10^{1} * (5 * 4 + 6 * 2) + 6 * 4$

$$56 * 24 = 10^{2} * 10 + 10^{1} * 32 + 24 = 1344$$

$$1356 * 2410 = 3.267.960$$

$$10^{n}$$
 X_{l} Y_{l} $10^{n/2}$ X_{l} Y_{r} X_{r} Y_{l} X_{r} Y_{r} Y_{r} $10^{2} * 5 * 1 + 10^{1} * (5 * 0 + 6 * 1) + 6 * 0$

$$56 * 10 = 10^2 * 5 + 10^1 * 6 + 0 = 560$$

$$1356 * 2410 = 3.267.960$$

$$n = 4$$

$$10^{n}$$
 X_{l} Y_{l} $10^{n/2}$ X_{l} Y_{r} X_{r} Y_{l} X_{r} Y_{r} Y_{r} $10^{4} * 13 * 24 + 10^{2} * (13 * 10 + 56 * 24) + 56 * 10$

$$1356 * 2410 = 10^4 * 312 + 10^2 * (130 + 1344) + 560 = 3.267.960$$

•

Solution

Identifying left and right subarrays:

Complexity Analysis

- Multiplication by a power of 10
 - Left shift (unit cost) (2 multiplications)
- Addition of numbers on N digits
 - Cost linear in N (3 sums)
- Multiplication
 - Cost of recursion (4 multiplications)

Complexity Analysis

Complexity anslysis

•
$$D(n) = \Theta(1)$$
, $C(n) = \Theta(n)$

•
$$D(n) + C(n) = \Theta(n)$$

•
$$a = 4$$
, $b = 2$

Recurrence equation

•
$$T(n) = D(n) + a T(n/b) + C(n)$$

That is

•
$$T(n) = 4T(n/2) + n$$
 $n > 1$

•
$$T(1) = 1$$
 $n=1$

Complexity Analysis

Termination: n/2ⁱ = 1 i= log₂n

- Resolution by unfolding
 - T(n/2) = 4T(n/4) + n/2
 - T(n/4) = 4T(n/8) + n/4
 - etc.

$\sum_{i=0}^{k} x^{i} = (x^{k+1} - 1)/(x-1)$

Then

- $T(n) = n + 4*(n/2) + 4^2*(n/4) + 4^3*T(n/8)$
 - $= \sum_{0 \le i \le \log_{2} n} 4^{i} / 2^{i * n} = n * \sum_{0 \le i \le \log_{2} n} 2^{i}$
 - = n*(2log2n +1-1)/(2-1) = n*(2*2log2n -1)
 - = 2n2-n
- T(n) = O(n2)

Alternative Solution

- Karatsuba's algorithm (1962)
- Reducing the number of multiplications

•
$$x_1 * y_r + x_r * y_l = x_l * y_l + x_r * y_r - (x_l - x_r) * (y_l - y_r)$$

• 3 recursive multiplications instead of 4

Divide and conquer a = 3 b = 2

Complexity Analysis

Complexity analysis

•
$$D(n) = \Theta(1)$$
, $C(n) = \Theta(n)$

•
$$D(n) + C(n) = \Theta(n)$$

•
$$a = 3, b = 2$$

Recurrence equation

•
$$T(n) = D(n) + a T(n/b) + C(n)$$

That is

•
$$T(n) = 3T(n/2) + n$$

•
$$T(1) = 1$$

$$n=1$$

Complexity Analysis

Termination:

 $n/2^{i} = 1$ $i = log_{2}n$

Resolution by unfolding

$$T(n/2) = 3T(n/4) + n/2$$

 $T(n) = O(n^{\log_2 3})$

$$T(n/4) = 3T(n/8) + n/4$$
 etc.

$$\sum_{i=0}^{k} x^{i} = (x^{k+1} - 1)/(x-1)$$

$$T(n) = n + 3*(n/2) + 3^{2} *(n/4) + 3^{3} *T(n/8)$$

$$= \sum_{0 \le i \le \log 2n} 3^{i} / 2^{i} * n = n * \sum_{0 \le i \le \log 2n} (3/2)^{i}$$

$$= n*((3/2)^{\log_{2}n + 1} - 1)/(3/2 - 1)$$

$$= 2n *3/2 * ((3^{\log_{2}n} / 2^{\log_{2}n}) - 1)$$

$$= 3n*(n^{\log_{2}3} / n - 1)$$

$$= 3n^{\log_{2}3} - n$$

 $a^{log_b n} = n^{log_b a}$