Sequential Bayesian Updates

February 25, 2019

Bayesian Search Theory

- In the 1960's the U.S. Navy faced a couple of problems.
- They had misplaced the USS Scorpion in 1968 and a B-52 bomber crashed in 1966 (along with it's payload, a hydrogen bomb).
- How were these wrecks eventually found?
- Actually, just using the idea of sequential bayesian estimation from the lecture slides!
- Most figures in this example are taken from this Metron presentation.

Scorpion Itinerary

Figure 1: Itinerary and uncertainty region for the USS Scorpion.

Mathematical Model for the search

- Divide up the search area into N cells, denoted by i = 1, 2, ...N.
- Let $\theta_i \in \{0,1\}$ denote whether the target is in cell i.
- Define $p_i = p(\theta_i = 1)$ as the **prior** distribution based on knowledge of the target's location.
- Define $x_i^j \in \{0,1\}$ as the result of the j^{th} search of cell i.
- Define $q=\mathrm{p}(x_i^j=1|\theta_i=1)$ as the probability of detecting the target in any cell. i.e. have the same probability of successfully searching every cell.

Figure 2: Example of a search grid with the target in one cell

The Original *Scorpion* Prior

- 1	1	NOT	E: C	HADI	RT N	NDICA	ERS	TO P	ROBA	BILIT	FOL	LOW!	IVID	NG E	l ic	,000	i	
IOTE: *	INDI	CATE	s			LANK			ENUN									
	SCORPION.			1	10 < NUMBER ≤ 100							-			٠,	7		
		_	В			ά.	, is		NU		≤ 10		3	12	14	현	6	
1	1											5	26	35	55	56	9	
	2										, e	46	74	42	ie	ļ	4	2
	3								8	60	140	99	45	so	4	2	•	•
	4	2	21	137	é	7	-			239	105	30	5	3			•	
	i e	40	46	747	30	E			277	38	5	. 2			,			
114	326	3		28	3	e 3	*!	62	•	8	7	ļ	7	3	4			
359	175	174	8	282	245	82	4	ę5	35	27	0	2	6		4			
24	25	44	82	297	230	129	115	ø	33	7.	14	-0-	ø	2	5	•		
117	25	şò	20	1 111	9	55	99	46	30	(4	5	3	5		6			
2	1160	17	함		24	45	34	27	19	ış.	5	7	5	5	'			
		7	13	12	9		3	3		14	5	4	3	2	•			Г
	12		1					١	4	4		6	4	1.				
											3	2						
											3	2						
			匚															
- 1		1	į.	i i	I	1 - 1	l	1	1	ı	1	ı	1	1	ı	1	1	1

FIGURE 2. Overall A Priori distribution for Scorpion search

Figure 3: Original Prior Distribution for the *Scorpion* search. The sub was found 200 yards from the original highest probability cell!

 Another key assumption: if the target isn't there we won't find it (no false alarms), i.e.:

$$p(x_i = 0 | \theta_i = 0) = 1$$

- With this assumption the procedure for an Bayesian Search is:
 - ▶ Set up a prior $p(\theta_i)$ for every cell.
 - ightharpoonup Search a single cell i.
 - ▶ If the target is found, stop.
 - ▶ If not, update the probability of the target being located in cell i, $p(\theta_i = 1|Search\ did\ not\ detect)$.
 - ▶ Update the probability in all the other cells based on the search in cell i, $p(\theta_i = 1|Search \operatorname{did} \operatorname{not} \operatorname{detect} \operatorname{in} \operatorname{in} \operatorname{cell} i)$.
 - ▶ Set the updated probabilities as the new prior.
 - Search the next cell, and repeat.

• Even if we search a cell, the wreck could still be there.

- Even if we search a cell, the wreck could still be there.
- Use Bayes Law to update the probability:

$$p(\theta_i = 1 | Search \ did \ not \ detect) = \frac{p(Search \ did \ not \ detect \ in \ cell \ i | \theta_i = 1)p(\theta_i = 1)}{p(Search \ did \ not \ detect \ in \ cell \ i)}$$

- Even if we search a cell, the wreck could still be there.
- Use Bayes Law to update the probability:

$$p(\theta_i = 1 | Search \text{ did not detect}) = \frac{p(Search \text{ did not detect in cell } i | \theta_i = 1)p(\theta_i = 1)}{p(Search \text{ did not detect in cell } i)}$$

•

$$p(\theta_i = 1 | x_i = 0) = \frac{p(x_i^1 = 0 | \theta_i = 1)p(\theta_i = 1)}{p(\theta_i = 1)p(x_i = 1 | \theta_i = 1) + p(\theta_i = 0)p(x_i = 0 | \theta_i = 0)} = \frac{p(x_i^1 = 0 | \theta_i = 1)p(\theta_i = 1)p(\theta_i = 1)}{p(\theta_i = 1)p(\theta_i = 1) + p(\theta_i = 0)p(\theta_i = 0)} = \frac{p(x_i^1 = 0 | \theta_i = 1)p(\theta_i = 1)p(\theta_i = 1)}{p(\theta_i = 1)p(\theta_i = 1)p(\theta_i = 1)p(\theta_i = 0)} = \frac{p(x_i^1 = 0 | \theta_i = 1)p(\theta_i = 1)p(\theta_i = 1)p(\theta_i = 1)p(\theta_i = 1)p(\theta_i = 0)p(\theta_i = 1)p(\theta_i = 0)p(\theta_i = 1)p(\theta_i = 0)p(\theta_i = 0)p$$

- Even if we search a cell, the wreck could still be there.
- Use Bayes Law to update the probability:

$$p(\theta_i = 1 | Search \ did \ not \ detect) = \frac{p(Search \ did \ not \ detect \ in \ cell \ i | \theta_i = 1) p(\theta_i = 1)}{p(Search \ did \ not \ detect \ in \ cell \ i)}$$

•

$$p(\theta_i = 1 | x_i = 0) = \frac{p(x_i^1 = 0 | \theta_i = 1)p(\theta_i = 1)}{p(\theta_i = 1)p(x_i = 1 | \theta_i = 1) + p(\theta_i = 0)p(x_i = 0 | \theta_i = 0)} = \frac{p(x_i^1 = 0 | \theta_i = 1)p(\theta_i = 1)p(\theta_i = 1)}{p(\theta_i = 1)p(\theta_i = 1) + p(\theta_i = 0)p(\theta_i = 0)} = \frac{p(x_i^1 = 0 | \theta_i = 1)p(\theta_i = 1)p(\theta_i = 1)}{p(\theta_i = 1)p(\theta_i = 1)p(\theta_i = 0)p(\theta_i = 0)} = \frac{p(x_i^1 = 0 | \theta_i = 1)p(\theta_i = 1)p(\theta_i = 0)p(\theta_i = 0)}{p(\theta_i = 1)p(\theta_i = 1)p(\theta_i = 0)p(\theta_i = 0)p(\theta_i = 0)p(\theta_i = 0)} = \frac{p(x_i^1 = 0 | \theta_i = 1)p(\theta_i = 0)p(\theta_i = 0)p$$

•

$$\frac{(1-q)p_i}{p_i(1-q)+(1-p_i)(1)} = p_i \frac{1-q}{1-p_i q}$$

- Even if we search a cell, the wreck could still be there.
- Use Bayes Law to update the probability:

$$p(\theta_i = 1 | Search \text{ did not detect}) = \frac{p(Search \text{ did not detect in cell } i | \theta_i = 1)p(\theta_i = 1)}{p(Search \text{ did not detect in cell } i)}$$

•

$$p(\theta_i = 1 | x_i = 0) = \frac{p(x_i^1 = 0 | \theta_i = 1)p(\theta_i = 1)}{p(\theta_i = 1)p(x_i = 1 | \theta_i = 1) + p(\theta_i = 0)p(x_i = 0 | \theta_i = 0)} = \frac{p(x_i^1 = 0 | \theta_i = 1)p(\theta_i = 1)p(\theta_i = 1)}{p(\theta_i = 1)p(\theta_i = 1) + p(\theta_i = 0)p(\theta_i = 0)} = \frac{p(x_i^1 = 0 | \theta_i = 1)p(\theta_i = 1)p(\theta_i = 1)}{p(\theta_i = 1)p(\theta_i = 1) + p(\theta_i = 0)p(\theta_i = 0)} = \frac{p(x_i^1 = 0 | \theta_i = 1)p(\theta_i = 1)p(\theta_i = 1)p(\theta_i = 0)}{p(\theta_i = 1)p(\theta_i = 1)p(\theta_i = 0)p(\theta_i = 0)p(\theta_i = 0)p(\theta_i = 0)p(\theta_i = 0)} = \frac{p(x_i^1 = 0 | \theta_i = 1)p(\theta_i = 0)p(\theta_i =$$

•

$$\frac{(1-q)p_i}{p_i(1-q)+(1-p_i)(1)} = p_i \frac{1-q}{1-p_i q}$$

This changes every other cell as well.

The other cells

 Not finding the target in a cell should increase the probability that the target is in other cells.

The other cells

- Not finding the target in a cell should increase the probability that the target is in other cells.
- Again apply Bayes rule:

```
\begin{aligned} &\mathbf{p}(\theta_j = 1 | \text{Search did not detect in in cell } i) = \\ &\frac{\mathbf{p}(\text{Search did not detect in cell } i | \theta_j = 1) \mathbf{p}(\theta_j = 1)}{\mathbf{p}(\text{Search did not detect in cell } i)} = \end{aligned}
```

The other cells

- Not finding the target in a cell should increase the probability that the target is in other cells.
- Again apply Bayes rule:

$$p(\theta_j = 1 | \text{Search did not detect in in cell } i) = \frac{p(\text{Search did not detect in cell } i | \theta_j = 1)p(\theta_j = 1)}{p(\text{Search did not detect in cell } i)} = \frac{p(\text{Search did not detect in cell } i)}{p(\text{Search did not detect in cell } i)}$$

 But p(Search did not detect in cell i|θ_j = 1) = 1, so the update for the other cells is:

$$p(\theta_j = 1 | x_i = 0) = \frac{p_j}{p_i(1-q) + (1-p_i)}$$

Searching the next cell

Create a new prior over every cell:

$$p_j = p(\theta_j = 1 | x_i = 0)$$

- Then apply the same formulas as before.
- The key ingredient for a successful search is an accurate prior.
- For shipwrecks priors are usually a combination of a normal distribution centered on the itinerary/last known points and the output of many fluid flow simulations to approximate drift.

Visual Example - Air France Flight 447

Figure 4: The prior distribution for the Air France Crash generated by Metron

Visual Example - Air France Flight 447

Figure 5: Sequential Posterior Distributions generated after searching for a while. Note that it becomes "better" to search some locations over again as probabilities are updated.

Comments

- How do you choose where to search? How much time do you spend in each cell?
- If you don't assume a continuous path, this is actually a convex optimization problem, so it has a global solution to maximize the probability of finding the target.
- Most searches incorporate several different teams and search methods, with different probabilities of missing the target.
- In the Malaysian Air case, there is not much good prior information available, but searchers did use Bayesian approaches.