USING PRIORS TO IMPROVE* ESTIMATES OF MUSIC STRUCTURE

Jordan B. L. Smith Masataka Goto

National Institute of Advanced Industrial Science and Technology (AIST), Japan

Wednesday, August 10th 2016 Oral Session #5: Structure

* or not

WHERE DO BOUNDARIES COME FROM?

- ➤ The music!
 - Sudden changes
 - ➤ Repetitions
 - ➤ Homogenous stretches

- ➤ The listener!
 - ➤ Person listens to the above, then decides on best description

MODELING "GOOD-LOOKING" DESCRIPTIONS

➤ Which is a better description of the piece *L'esempio imperfetta*?

Good descriptions of the signal

"Good-looking" descriptions

USUAL APPROACH

Single algorithm:

Multiple algorithms:

PROPOSAL

2. Use priors to predict likelihood of outputs Input priors 1. Run committee estimated of algorithms from corpus Algorithm 1 Output 1 Likelihood 1 Algorithm 2 Likelihood 2 Output 2 Choose output Input with greatest song Likelihood 3 Algorithm 3 Output 3 likelihood Algorithm N Likelihood N Output N

3. Use likelihoods to predict most accurate output

REGULARITIES

➤ Look at properties of SALAMI annotations

BACKGROUND

- ➤ Some strategies to model priors are widespread. E.g.:
 - ➤ Force segment length to fall within specific range (say, between 10 and 40 seconds)
 - ➤ Encourage segments to be 16, 32, or 64 beats long
- ➤ Learning directly from annotated audio is another option:
 - ➤ Turnbull et al. (2007) used machine learning to do binary classification of excerpts as boundaries or non-boundaries
 - ➤ Ullrich et al. (2014) did the same with neural nets and achieved a huge increase in performance

BACKGROUND

- ➤ Other notable examples:
 - ➤ Paulus and Klapuri (2009): "Defining a 'Good' Structural Description." Cost function relates to description "quality".
 - ➤ Sargent, Bimbot and Vincent (2011): Estimate median segment length; use to regulate cost function.
 - ➤ Rodriguez-Lopez, Volk and Bountoridis (2014): Similar approach, using corpus-estimated priors for melodic segmentation.
 - ➤ McFee et al. (2014): Used annotations to optimise their feature representation, then used a standard approach.

PROPOSAL

2. Use priors to predict likelihood of outputs

3. Use likelihoods to predict most accurate output

1. COMMITTEE OF ALGORITHMS

- ➤ Foote (2000) novelty-based segmentation parameters:
 - ➤ chroma, MFCC or tempogram features
 - ➤ median kernel size
 - checkerboard kernel size
 - ➤ novelty function adaptive threshold size
- ➤ Serra et al. (2012) structure feature-based segmentation parameters:
 - ➤ feature
 - ➤ embedded feature dimension size
 - nearest neighbour region
 - ➤ adaptive threshold for peak picking

- ➤ 40 members altogether
- ➤ Used MSAF to run algorithms (Nieto and Bello 2015)

2. SET OF PRIORS

- ➤ Per-segment properties:
 - $ightharpoonup A_1 = Segment length (L_i)$
 - ➤ A_2 = Fractional segment length $(L_i / \text{song length})$
 - ➤ A_3 = Ratio of L_i to median segment length
 - ➤ A_4 = Ratio of adjacent segment lengths (L_i/L_{i+1})
- ➤ Per-description properties:
 - ➤ A_5 = Median segment length (median of L_i)
 - $ightharpoonup A_6$ = Number of segments
 - $ightharpoonup A_7 = Minimum segment length$
 - $ightharpoonup A_8 = Maximum segment length$
 - $ightharpoonup A_9$ = Standard deviation of segment length

9 different priors many log-likelihood values

```
-5.71 -5.85 -5.48 -8.75 -5.05 -6.63 -1.82 -6.27 -7.48
     -5.71 -5.76
                  -8.75 -4.93 -6.63 -1.82
                                           -6.27 -7.42
           -5.65
                  -7.13 \quad -3.92 \quad -5.34 \quad -1.82
                                           -4.85 -5.22
-4.72 -4.97 -5.06
                  -6.71 -3.68 -4.98 -1.82 -3.99 -4.17
-5.71 -5.85 -5.48 -8.75 -5.05 -6.63 -1.82 -6.27 -7.48
                  -8.75
      -5.71 -5.76
                        -4.93 -6.63
                                     -1.82
-4.97 -5.09 -5.65
                  -7.13 -3.92 -5.34
                                    -1.82
      -4.97 -5.06
                  -6.71
                        -3.68 -4.98 -1.82
      -4.51 -4.08
                  -5.47 -3.69 -4.55 -1.82
      -4.50 -4.07 -5.27 -3.69 -4.55 -1.82
                                           -3.76 -3.63
-4.33 -4.76 -4.10
                  -5.88 -3.72 -4.72
                                    -1.82
                  -5.89
                        -3.76 -4.72
     -4.75
            -3.99
                                     -1.82
     -4.51 -4.08 -5.47 -3.69 -4.55 -1.82
                                           -3.76 -3.63
                  -5.27 -3.69 -4.55 -1.82
      -4.50 -4.07
-4.33 -4.76 -4.10
                  -5.88 -3.72 -4.72
                                     -1.82
-4.33 -4.75 -3.99 -5.89 -3.76 -4.72
                                    -1.82
                  -8.75 -3.91 -6.63
-5.61 -6.37 -6.04
                                     -1.82
                                           -5.67 -6.60
-6.27 -6.10 -6.32 -10.28 -5.27 -6.73
                                    -1.82
                                           -6.40 - 8.73
            -4.27 -5.81 -3.66 -4.72
                                     -1.82
-4.58 -4.98 -4.57 -6.09 -3.69 -4.98
                                    -1.82
-5.61 -6.37 -6.04 -8.75 -3.91 -6.63
                                    -1.82
                                           -5.67 -6.60
-6.27 -6.10 -6.32 -10.28 -5.27 -6.73
                                     -1.82
-4.38 -4.71 -4.27
                  -5.81 -3.66 -4.72
                                     -1.82
-4.58 -4.98 -4.57 -6.09 -3.69 -4.98 -1.82 -3.99
                  -5.68
      -4.52
            -4.22
                        -3.64 - 4.55
                                     -1.82
      -4.51 -4.21
                  -5.68 -3.64 -4.55 -1.82
     -4.72 -4.15 -5.87 -3.72 -4.72
                                    -1.82
      -4.71
            -4.22
                  -6.10 -3.69 -4.72
                                     -1.82
-4.20 -4.52 -4.22
                  -5.68 -3.64 -4.55 -1.82
                                           -3.76 -3.63
                  -5.68 -3.64 -4.55 -1.82
      -4.51 -4.21
     -4.72 -4.15 -5.87 -3.72 -4.72
                                    -1.82
-4.34 -4.71 -4.22 -6.10 -3.69 -4.72
                                    -1.82
                                           -3.74 -3.63
-6.27 -6.10 -6.32 -10.28 -5.27 -6.73
                                     -1.82
-6.27 -6.10 -6.32 -10.28 -5.27 -6.73
                                     -1.82
-6.27 -6.10 -6.32 -10.28 -5.27 -6.73
                                     -1.82
                                           -6.40 -8.73
      -6.10 -6.32 -10.28 -5.27 -6.73
                                     -1.82
-6.27 -6.10 -6.32 -10.28 -5.27 -6.73
                                     -1.82 -6.40 -8.73
      -6.10 -6.32 -10.28 -5.27 -6.73
                                     -1.82 -6.40 -8.73
-6.27 -6.10 -6.32 -10.28 -5.27 -6.73
                                     -1.82 -6.40 -8.73
     -6.10 -6.32 -10.28 -5.27 -6.73 -1.82 -6.40 -8.73
```

40 committee members

How to choose an output based on the priors?

3. USING PRIORS TO PREDICT BEST ANSWER

- ➤ Grab bag of techniques:
 - ➤ Maximize an individual prior (A₁ through A₉)
 - ➤ Maximize combination of priors:
 - > sum of the prior likelihoods
 - ➤ minimum of A₁ through A₉
 - ➤ use a linear model to predict *f*-measure based on all likelihoods
 - use a higher-order linear model (interactions / quadratic models)

PROPOSAL

RESULTS: FOOTE AND SERRA COMMITTEE ON PUBLIC SALAMI

System	f-measure (+/-3_seconds)	f-measure (+/- 0.5 seconds)	••••••	A ₁ - Segment length	
A ₁	0.4230	0.1051		A ₂ - Fractional segment	
A 2	0.4156	0.0958		length A ₃ - Ratio to median	
■ A ₃	0.4176	0.1140	Individual priors	segment length A ₄ - Ratio of adjacent segment lengths A ₅ - Median segment length A ₆ - Number of segments A ₇ - Minimum segment	
A 4	0.4194	0.1072			
■ A ₅	0.3597	0.0863			
A ₆	0.3781	0.0991			
■ A ₇	0.0603	0.0124		length	
A 8	0.3907	0.0961		A ₈ - Maximum segment length	
A ₉	0.3956	0.0950		A ₉ - Standard deviation of	
ΣΑί	0.4260	0.1093	segment length Multiple priors		
min A _i	0.4206	0.1046	muitipie prio	13	
Linear model	0.4399	0.0845			
Interactions	0.4451	0.0688	Linear models	S	
Quadratic	0.4494	0.0739			
Committee mean	0.2826	0.0691			
Baseline	0.4439	0.1151			
Theoretical max	0.6015	0.2572			

EXPERIMENT #2: MIREX COMMITTEE

- ➤ Could a more diverse committee of state-of-the-art algorithms do better?
- ➤ Run the same experiment with new committee:
 - ➤ Set of 23 MIREX participants, 2012–2014.

RESULTS: MIREX COMMITTEE ON MIREX SALAMI

System	f-measure (+/-3 seconds)	f-measure (+/- 0.5 seconds)	• • • • • • • • • • • • • • •	A ₁ - Segment length
A ₁	0.6273	0.2733		A ₂ - Fractional segment
A ₂	0.3487	0.0996		length A₃ - Ratio to median
■ A ₃	0.3487	0.0996		segment length
A 4	0.3487	0.0996	Individual	A ₄ - Ratio of adjacent segment lengths
■ A ₅	0.3916	0.1385	•	A ₅ - Median segment length
A 6	0.3768	0.1594	priors	A ₆ - Number of segments A ₇ - Minimum segment
■ A ₇	0.3487	0.0996		length
■ A ₈	0.4662	0.1356		A ₈ - Maximum segment length
A 9	0.4233	0.1514		A ₉ - Standard deviation of
ΣAi	0.6273	0.2733	Mailtiala mic	segment length
■ min A _i	0.6273	0.2733	Multiple pric	075
Linear model	0.5591	0.4005		
Interactions	0.6273	0.4005	Linear model	S
Quadratic	0.6273	0.4005		
Committee mean	0.4447	0.1697		
Baseline	0.6273	0.4005		
Theoretical max	0.7345	0.5157		

FAILURE ANALYSIS: EXISTING FIT TO PRIORS

- ➤ The method doesn't work. Why not?
 - ➤ Are the algorithms already producing "good-looking" descriptions?

FAILURE ANALYSIS: CORRELATION BETWEEN FITNESS AND ACCURACY

FAILURE ANALYSIS: CORRELATION BETWEEN FITNESS AND ACCURACY

likelihood

Many guesses have low-quality and low fitness, boosting correlation unhelpfully

FANTASY

REALITY

CONCLUSION

➤ Annotations have strong regularities:

- ➤ Restricted segment scale
- ➤ Regular segment proportions

- ➤ These seem to be **not useful** for post-hoc algorithm improvement...
 - ➤ ...but they may still be useful if modeled at earlier stages in an algorithm
- Cause of failure: algorithm output already very good looking!
 - Good signal-derived descriptions already fall into space of plausible descriptions

REFERENCES

- ➤ Jonathan Foote. Automatic audio segmentation using a measure of audio novelty. In *Proceedings of the IEEE International Conference on Multimedia & Expo*, 452–455, 2000.
- ➤ Brian McFee, Oriol Nieto, and Juan Pablo Bello. Hierarchical evaluation of segment boundary detection. In *Proceedings of ISMIR*, Málaga, Spain, 2015.
- ➤ Oriol Nieto and Juan Pablo Bello. Systematic exploration of computational music structure research. In *Proceedings of ISMIR*, New York, NY, USA, 2016.
- ➤ Jouni Paulus and Anssi Klapuri. Music structure analysis using a probabilistic fitness measure and a greedy search algorithm. *IEEE Transactions on Audio, Speech & Language Processing*, 17(6):1159–1170, 2009.
- ➤ Marcelo Rodríguez-López, Anja Volk, and Dimitrios Bountouridis. Multi-strategy segmentation of melodies. In *Proceedings of ISMIR*, 207–212, Taipei, Taiwan, November 2014.
- ➤ Gabriel Sargent, Frédéric Bimbot, and Emmanuel Vincent. A regularity-constrained Viterbi algorithm and its application to the structural segmentation of songs. In *Proceedings of ISMIR*, 483–488, Miami, FL, USA, 2011.
- ➤ Joan Serrà, Meinard Müller, Peter Grosche, and Josep Ll. Arcos. Unsupervised detection of music boundaries by time series structure features. In *Proceedings of the AAAI International Conference on Artificial Intelligence*, 1613–1619, Toronto, Canada, 2012.
- ➤ Jordan B. L. Smith, J. Ashley Burgoyne, Ichiro Fujinaga, David De Roure, and J. Stephen Downie. Design and creation of a large-scale database of structural annotations. In *Proceedings of ISMIR*, 555–560, Miami, FL, USA, 2011.
- ➤ Douglas Turnbull, Gert Lanckriet, Elias Pampalk, and Masataka Goto. A supervised approach for detecting boundaries in music using difference features and boosting. In *Proceedings of ISMIR*, 51–54, Vienna, Austria, 2007.
- ➤ Karen Ullrich, Jan Schlüter, and Thomas Grill. Boundary detection in music structure analysis using convolutional neural networks. In *Proceedings of ISMIR*, 417–422, Taipei, Taiwan, November 2014.
- ➤ MIREX. http://www.music-ir.org/mirex/wiki/MIREX_HOME

THANKS!

Special thanks to
Juan Pablo Bello, Elaine
Chew, Meinard Müller
and Schloss Dagstuhl

