Sampling & Reconstruction

- Sampling
- Reconstruction
- Nyquist Shannon Sampling Theorem

Aside: From Chaparro, we'll only work with Secs 8.1-2. Alternatively, Lee & Varaiya Chap 11 covers this topic well.

Bridging CT and DT Systems

- Many "signals" of interest to engineers represent physical attributes of the real world and are analog in nature (e.g., position, velocity, temperature, pressure, voltage, current, strain, electromagnetic field, etc.).
- Digital hardware (including computers) cannot directly use analog signals as it would require infinite memory (both in time and amplitude).
- The first step in an Analog-to-Digital Converter (ADC) is sampling to generate a discrete-time signal from a continuous-time one.

J.Yan, ELEC 221: Sampling and Reconstruction

(Uniform) Sampling

"bridge" converting CT $x: \mathbb{R} \to \mathbb{C}$ \longrightarrow Sampler $y: \mathbb{Z} \to \mathbb{C}$ signal to DT signal

$$y = Sampler_T(x) : \forall n \in \mathbb{Z}, y[n] = x(nT)$$

T — sampling interval

 $f_s=1/T$ — sampling frequency or sampling rate

Q1: Is y a digital signal?

A1: Not yet...values aren't quantized yet.

Q2: As the engineer, if you can specify the sampling rate, how should you do so? NB: Trade-off is that higher sampling rate generally means better approximation of CT signal (less information loss) but requiring more resources (in memory, processing power, cost, etc.)

A2: This depends on the highest frequencies expected. A remarkable fact is that certain sampling conditions allow for perfect reconstruction of the original signal (no loss of information)!

Sampling a Sinusoid & Aliasing

$$\forall t \in \mathbb{R}, x(t) = \cos(2\pi f t) \qquad \forall n \in \mathbb{Z}, y[n] = \cos(2\pi f n T)$$

$$Sampler_T \qquad \forall n \in \mathbb{Z}, y[n] = \cos(2\pi f n T)$$

How does output change if input is $v(t) = \cos(2\pi(f + Nf_s)t)$ for $N \in \mathbb{Z}$?

Observation: $v \neq x$, but $Sampler_T(v) = Sampler_T(x)$

⇒ **Aliasing:** an effect that causes different signals to become indistinguishable (or *aliases* of one another) when sampled. ½ is the "Nyquist Frequency" of the Sampler,

Is Sampler_T a LTI System?

Linearity Check:

$$\xrightarrow{x: \mathbb{R} \to \mathbb{C}} \overrightarrow{Sampler_T} \xrightarrow{y: \mathbb{Z} \to \mathbb{C}}$$

$$y_1 = Sampler_T(x_1) \Rightarrow \forall n \in \mathbb{Z}, y_1[n] = x_1(nT)$$

$$y_2 = Sampler_T(x_2) \Rightarrow \forall n \in \mathbb{Z}, y_2[n] = x_2(nT)$$

$$y = Sampler_T(ax_1 + bx_2) \Rightarrow \forall n \in \mathbb{Z}, y[n] = ax_1(nT) + bx_2(nT) = ay_1[n] + by_2[n]$$

Time Invariance Check:

Recall: CT Systems, S, is Time-Invariant if $\forall \tau \in \mathbb{R}$, $D_{\tau} \circ S = S \circ D_{\tau}$

NB: The delay to get y_1 is of a DT signal (more appropriately D_m where $m \in \mathbb{Z}$) while that to get y_2 is of a CT signal, quite different operators.

Reconstruction (from DT Signal)

Other "bridge" converting DT signal to CT signal

Given a sampled signal, how should we attempt to reconstruct the original (unsampled) - one?

NB: "Aliasing" results in distortion and loss of information, i.e., the original signal cannot confidently be reconstructed.

Reconstruction (from DT Signal)

(b-d) show common reconstruction methods.

Figure 11.7: A model for reconstruction divides it into two stages.

(e) shows the result from an ideal "Impulse Generator", a useful intermediate stage. Recall the "Impulse Train" (aka: Dirac Comb):

$$p: \mathbb{R} \to \mathbb{R}, \forall t \in \mathbb{R}, \quad p(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT)$$

$$\Rightarrow w(t) = \sum_{k=-\infty}^{\infty} y[k] \delta(t - kT)$$

$$= \sum_{k=-\infty}^{\infty} x(kT) \delta(t - kT) = x(t) p(t)$$

Reconstruction (from DT Signal)

Ideal Interpolation

The Ideal Interpolator (aka $Sinc_T$) is the LTI System, S, with impulse response:

$$\forall t \in \mathbb{R}, h(t) = \frac{\sin(\pi t/T)}{\pi t/T} = \operatorname{sinc}(t/T)$$

$$\text{FT} H(\omega) = \begin{cases} T, & -\pi/T < \omega < \pi/T \\ 0, & \text{otherwise} \end{cases}$$
i.e., Ideal Low-Pass Filter

NB: This impulse response is practically unachievable because $\exists \tau \in \mathbb{R}$ such that $\forall t < \tau, h(t) = 0$ (i.e., the noncausal portion never vanishes).

Nyquist-Shannon Sampling Theorem

If a low-pass continuous-time signal x(t) is band-limited (i.e., it has a spectrum $X(\omega)$ such that $X(\omega) = 0$ for $|\omega| > \omega_{max}$, where ω_{max} is the maximum frequency in x(t) we then have:

The information in x(t) is preserved by a sampled signal $x_s[n]$, with samples $x_s[n] = x(nT_s) = x(t)|_{t = nT_s}, n = 0, \pm 1, \pm 2, ...,$ provided that the sampling frequency $\omega_s = 2\pi/T_s$ (rad/sec) is such that

$$\omega_s \ge 2\omega_{max}$$
 Nyquist sampling rate condition (8.17)

or equivalently if the sampling rate $f_{\rm s}$ (samples/sec) or the sampling period $T_{\rm s}$ (sec/sample) are

Often mistakenly includes equality. Equality doesn't cause aliasing but
$$f_S = \frac{1}{T_S} > \frac{\omega_{max}}{\pi}$$
 (8.18) likely results in lost info.

When the Nyquist sampling rate condition is satisfied, the original signal x(t) can be reconstructed by passing the sampled signal $x_s[n]$ through an ideal low-pass filter with frequency response:

ideal Impulse Generator cascaded to an

$$H(j\omega) = \begin{cases} T_s - \omega_s/2 < \omega < \omega_s/2 \\ 0 & \text{otherwise} \end{cases} = T_s \left[u \left(\omega + \frac{\omega_s}{2} \right) - u \left(\omega - \frac{\omega_s}{2} \right) \right]$$

The reconstructed signal is given by the following sinc interpolation from the samples

$$X_{r}(t) = \sum_{n=-\infty}^{\infty} X(nT_{s}) \frac{\sin(\pi(t - nT_{s})/T_{s})}{\pi(t - nT_{s})/T_{s}}$$
(8.19)

Sampling Theorem & FTs

The Nyquist-Shannon Sampling Theorem is understood better in the frequency domain so we resort to Fourier Transforms (for the original analog signal, the FT is also commonly called the CTFT (Continuous-Time FT) while the sampled signal has a DTFT (Discrete-Time FT) that similarly describes the signal's frequency content. NB: ω of CTFT & Ω of DTFT related by ω T= Ω .

Nyquist Frequency vs Nyquist Rate

A subtle but important distinction arises in the use of these terms which address two different problems (often confused in some resources).

Nyquist Frequency: Given a system with sampling rate f_s , the Nyquist Frequency is the upper bound on an input signal's frequency so that it can be completely recovered through ideal interpolation (it's a property of the system): $f_{Nyquist} = f_s/2$. $(X(f) = 0 \text{ for } f \ge f_{Nyquist}) \Rightarrow x(t)$ recoverable

Nyquist (Sampling) Rate: Given a bandlimited signal with maximum frequency f_{max} , the Nyquist Rate is the minimum sampling rate required for complete recovery of the signal through ideal interpolation (it's a property of the signal or a set of signals): $f_{Sampling} > 2f_{max}$

Efts: For the edge-case $x(t) = Acos(2\pi f_{Nyquist} + \phi)$, observe that we don't get aliasing but explore why x(t) still isn't generally recoverable (try plotting the sampled signal).

Sampling & Reconstruction TimeFrequency Perfect x(t) $X(\omega)$ reconstruction X = CTFT(x) χ possible when the Nyquist- $-\pi/T$ π/T Shannon $Sampler_T$ Sampling $Y(\Omega)$ Y = DTFT(y)condition is 1/Tу satisfied! If it is -2π 2π $-\pi$ not satisfied, π an anti-aliasing $ImpulseGen_T$ $W(\omega)$ filter placed W = CTFT(w)1/T**BEFORE** w Sampler_T may $-2\pi/T$ $-\pi/T$ $2\pi/T$ be applied to reduce $Sinc_T$ z(t) $Z(\omega)$ distortion. Z = CTFT(z) $IdealInterpolator_T$ Z, $-\pi/T$ π/T

J.Yan, ELEC 221: Sampling and Reconstruction

Eg: Adapted from L&V Exercise 11.6

Consider a CT audio signal x with CTFT shown below, bandlimited to 10 kHz. Suppose that it is sampled at 40 kHz (resulting in a new DT signal x_{40}). Let X_{40} be the DTFT of x_{40} .

(a) Sketch $|X_{40}(\Omega)|$, carefully marking magnitudes and frequencies.

The height of each peak is 1/T=40,000 here.

Eg: L&V Exercise 11.6 (cont.)

(b) Sketch $|X_{20}(\Omega)|$ where X_{20} is the DTFT of X_{20} , sampling at 20 kHz.

(c) Sketch $|X_{15}(\Omega)|$ where X_{15} is the DTFT of X_{15} , sampling at 15 kHz. What ideal anti-aliasing filter should be applied before sampling to reduce distortion?

