

Aula 6 - Problemas NP-Completo

Últimas aulas

- Revisão de Complexidade Computacional
- Revisão de Autômatos
- Máquinas de Turing
- Problemas Indecidíveis Computacionalmente (Problema da Parada)
- Classes de Problemas: P, NP, NP-Difícil e NP-Completo

Universo de Problemas

Universo de Problemas

• Podemos classificar os problemas contidos no conjunto de problemas que podemos resolver computacionalmente.

Classes de Problemas

- Essa classificação pode ser realizada em função da complexidade de tempo ou da complexidade de espaço.
- Em geral, os problemas são classificados em função da complexidade de tempo do melhor algoritmo já encontrado para esse problema.

Problemas de Decisão e Otimização

- Dentre o universo de problemas que podemos resolver computacionalmente, temos uma divisão importante:
 - Problemas de Decisão
 - Problemas de Otimização

São problemas cuja resposta é SIM ou NÃO.

- Por exemplo:
 - É possível colorir o mapa ao lado usando apenas k=5 cores de forma que dois países vizinhos não tenham cores iguais?

São problemas cuja resposta é SIM ou NÃO.

- Por exemplo:
 - É possível colorir o mapa ao lado usando apenas k=5 cores de forma que dois países vizinhos não tenham cores iguais?

Resposta: SIM

São problemas cuja resposta é SIM ou NÃO.

- Por exemplo:
 - É possível colorir o mapa ao lado usando apenas k=4 cores de forma que dois países vizinhos não tenham cores iguais?

São problemas cuja resposta é SIM ou NÃO.

- Por exemplo:
 - É possível colorir o mapa ao lado usando apenas k=4 cores de forma que dois países vizinhos não tenham cores iguais?
 - Resposta: SIM

São problemas cuja resposta é SIM ou NÃO.

- Por exemplo:
 - É possível colorir o mapa ao lado usando apenas k = 3 cores de forma que dois países vizinhos não tenham cores iguais?

São problemas cuja resposta é SIM ou NÃO.

- Por exemplo:
 - É possível colorir o GRAFO ao lado usando apenas k=3 cores de forma que dois países vizinhos não tenham cores iguais?

São problemas cuja resposta é SIM ou NÃO.

- Por exemplo:
 - É possível colorir o GRAFO ao lado usando apenas k=3 cores de forma que dois países vizinhos não tenham cores iguais?

São problemas cuja resposta é SIM ou NÃO.

- Por exemplo:
 - É possível colorir o GRAFO ao lado usando apenas k=3 cores de forma que dois países vizinhos não tenham cores iguais?

São problemas cuja resposta é SIM ou NÃO.

- Por exemplo:
 - É possível colorir o GRAFO ao lado usando apenas k=3 cores de forma que dois países vizinhos não tenham cores iguais?
 - Resposta: Não! Essa parte do grafo requer no mínimo 4 cores, pois cada vértice é vizinho dos outros três.

São problemas cuja resposta é SIM ou NÃO.

- Por exemplo:
 - É possível colorir o GRAFO ao lado usando apenas k=3 cores de forma que dois países vizinhos não tenham cores iguais?
 - Resposta: Não! Essa parte do grafo requer no mínimo 4 cores, pois cada vértice é vizinho dos outros três.

São problemas cuja resposta é SIM ou NÃO.

- Por exemplo:
 - É possível colorir o GRAFO ao lado usando apenas k=3 cores de forma que dois países vizinhos não tenham cores iguais?

Resposta: Não!

São problemas cuja resposta é SIM ou NÃO.

- Por exemplo:
 - É possível colorir o GRAFO ao lado usando apenas k=3 cores de forma que dois países vizinhos não tenham cores iguais?
 - Resposta: Não!

São problemas cuja resposta é SIM ou NÃO.

- Por exemplo:
 - É possível colorir o mapa ao lado usando apenas k=3 cores de forma que dois países vizinhos não tenham cores iguais?
 - Resposta: Não!

• Existe alguma forma de enviar uma informação na rede abaixo, começando no computador ini=1, passando por todos os demais computadores e retornando ao ponto de partida (ini) em menos

de t = 20ms?

- Resposta:
 - Sim?
 - Não?

• Existe alguma forma de enviar uma informação na rede abaixo, começando no computador ini = 1, passando por todos os demais computadores e retornando ao ponto de partida (ini) em menos

de t = 20ms?

Resposta:

• Sim

- Problema da Mochila 0-1:
 - O Problema da Mochila 0-1 considera que existem n itens, com pesos p_1,p_2,\cdots , p_n e valores associados v_1,v_2,\cdots , v_n , e uma mochila de capacidade p
 - Pergunta: Existe alguma combinação dos itens x_1, x_2, \cdots, x_n , onde para cada item i: $x_i = \begin{cases} 1, \text{ se o item i for escolhido} \\ 0, & \text{em caso contrário} \end{cases}$ que satisfaça:
 - $\sum_{i=1}^{n} x_i * p_i \le P$ (não exceder o peso máximo P
 - $\sum_{i=1}^{n} x_i * v_i \ge V$ (a mochila deve contar no mínimo o valor V)

- Objetivo: Verificar se existe uma solução que atenda as condições previamente determinadas.
- Problema Coloração: No máximo k cores
- Problema da Comunicação: No máximo t milissegundos
- Problema da Mochila 0-1: Levar no mínimo o valor V

 A resposta é SIM (existe essa solução) ou NÃO (não existe uma solução que atenda a essas exigências).

Problemas de Otimização

- Diferente dos problemas de decisão, os problemas de otimização busca a melhor solução possível.
- Problema da Coloração: Qual é o menor número possível de cores que permite pintar o mapa sem que dois países vizinhos tenham cores iguais?
- Problema da Comunicação: Qual é o menor tempo possível para que uma mensagem partindo do computador ini passe por todos os computadores uma única vez e retorne ao ponto de partida?
- Problema da Mochila: Qual é o maior valor que podemos carregar na mochila, considerando o limite de peso e os itens (valores e pesos unitários)?

Problemas de Decisão vs Otimização

- Vale observar que todo problema de otimização possui uma versão de decisão equivalente:
- Por exemplo: Problema da Coloração Otimização: Qual é o menor número de cores necessárias para pintar o mapa:
- Problema da Coloração Otimização:
 - 1. É possível pintar o mapa usando k = 1 cores?
 - 2. É possível pintar o mapa usando k = 2 cores?
 - 3. É possível pintar o mapa usando k=3 cores?
 - n. É possível pintar o mapa usando k=n cores, onde n equivale ao número de países/regiões no mapa?

O valor k do primeiro caso que retornar SIM é a resposta da versão de otimização.

Problemas de Decisão vs Otimização

- Vale observar que todo problema de decisão possui uma versão de otimização equivalente:
- Por exemplo: Problema da Mochila 0-1 Decisão: Existe alguma combinação de itens que possibilite valor V?
- Problema da Mochila 0-1 Otimização:
 - Qual é o maior valor *X* que podemos carregar na mochila, considerando o limite de peso e os itens (valores e pesos unitários)?
 - Se $X \ge V$, então a resposta da versão de decisão é SIM
 - Se X < V, então a resposta da versão de decisão é NÃO

Problemas de Decisão vs Otimização

- Essa relação entre Problemas de Decisão e Otimização implica que saber resolver um implica que sabemos resolver o outro (com algum trabalho extra).
- Nosso estudo das Classes de Problema vai focar nos Problemas de Decisão.
- Entretanto é importante lembrar que o nível de dificuldade de um é equivale ao outro.

Classes de Problemas

- Os Problemas de Decisão podem ser classificados em algumas categorias.
- Dentre outras, as principais são:
 - P
 - NP
 - NP-Difícil
 - NP-Completo

- A Classe P contém os problemas de decisão para os quais se conhece um algoritmo de tempo $O(n^k)$, onde k é uma constante (não cresce junto do n), capaz de resolver o problema.
- Entretanto, como vimos nos slides anteriores:
 - Se sabemos resolver a versão de decisão, sabemos resolver a versão de otimização.
 - Logo: A Classe P contém todos os problemas que podemos resolver computacionalmente em tempo $\mathcal{O}(n^k)$

Exemplo - Classe P

- Entradas: Um grafo com custos associados as arestas e dois vértices $v \in u$
- Questão: Existe um caminho que parte de v e chega até u com custo menor ou igual à k?
- Resposta: Sim ou Não

Ponto de Partida: 2

Ponto de Chegada: 1

Custo Máximo: $k \leq 12$

Exemplo - Classe P

- Entradas: Um grafo com custos associados as arestas e dois vértices $v \in u$
- Questão: Existe um caminho que parte de v e chega até u com custo menor ou igual à k?
- Resposta: Sim ou Não

Ponto de Partida: 2 Ponto de Chegada: 1

Custo Máximo: $k \leq 12$

Resposta: SIM

Existe um algoritmo que identifica o menor caminho e seu custo?

Sim. Algoritmo de Dijkstra.

Esse algoritmo é capaz de encontrar o menor caminho entre o vértice inicial e todos os demais vértices do grafo.

Complexidade do Algoritmo: $O(n^3)$

- Dado um problema qualquer.
- Existe um algoritmo de tempo polinomial que resolve esse problema?
 - Sim: O problema está na Classe P
 - Não: Precisamos avaliar mais para classificar esse problema
- Importante: Resolver um problema implica em ser capaz de encontrar a solução ótima para todas as entradas possíveis desse problema.
- Algoritmos aproximativos tem tempo polinomial, mas não encontram a solução ótima. As soluções nesses casos são aproximadas.

- Se P contém todos os problemas de decisão para os quais se conhece um algoritmo de tempo polinomial.
- Então NP deve conter os problemas de decisão para os quais NÃO se conhece um algoritmo de tempo polinomial.
- Não!
- Se fosse assim $P \neq NP$.
- Mas esse é um problema em aberto!
- Hoje sabemos apenas que $P \subseteq NP$.

- O nome NP vem de tempo polinomial não determinístico (nondeterministic polynomial time).
- Vale relembrar o conceito de não determinístico:
 - Máquina de Turing Determinística: Todas as possíveis transições devem ser apresentadas (equivale ao conceito de um algoritmo).
 - Máquina de Turing Não Determinística: Explora todos as possíveis transições. A máquina entra em estado de aceitação se alguma combinação de transições levar ao estado de aceitação.
- Como existe uma associação entre Máquinas de Turing e algoritmos: Existe um algoritmo hipotético que é capaz de resolver o problema em tempo polinomial.

- Como os computadores atuais são determinísticos, eles (ainda?) não conseguem resolver esses problemas em tempo polinomial.
- Mas como verificamos se um problema está em NP se não temos como simular máquinas/algoritmos não determinísticos?
- Vamos considerar que existe uma máquina mágica e hipotética: um oráculo. Esse oráculo é supostamente capaz de resolver o problema e entregar uma resposta.
- Observe que esse oráculo pode ser uma máquina/algoritmo não determinístico. Basta que ele entregue uma resposta para o problema.

 Sabendo a resposta do oráculo, podemos verificar se ela é uma resposta válida?

 Se for possível CERTIFICAR a resposta SIM em tempo polinomial, o problema está em NP.

Certificar: Verificar se a resposta é válida para as entradas ou não.

- Exemplo: Problema do Caixeiro Viajante
- Entradas: Um grafo completo (existe um caminho entre cada par de vértices) com pesos associados as arestas, vértice inicial *i*, parâmetro *k*.
- Pergunta: Existe um caminho que comece no vértice *i*, passe por todos os vértices do grafo e retorne ao ponto de partida com custo total menor ou igual à *k*?
- Resposta: SIM ou NÃO

- Suponha que o oráculo respondeu que existe um caminho que atenda essas condições.
- Pergunta: O que você precisa para CERTIFICAR a resposta SIM do oráculo (verificar se ela é válida ou não)?
 - · O caminho.
- Como você poderia CERTIFICAR esse caminho?
 - Percorrer o caminho e somar o custo de cada aresta percorrida.
- Qual é a complexidade desse algoritmo certificador?
 - O(n) o tempo necessário para percorrer o caminho

- Observe que:
 - Existe um oráculo (máquina de Turing Não Determinística) que pode responder qualquer entrada do problema em tempo polinomial.
 - Podemos CERTIFICAR a resposta SIM em tempo polinomial.
- Logo:
 - Problema do Caixeiro Viajante está em NP.
- Por que esse problema n\u00e3o est\u00e1 em P?
 - Simples: N\u00e3o sabemos at\u00e9 hoje um algoritmo (determin\u00edstico) de tempo polinomial que possa resolver esse problema
 - As soluções conhecidas até hoje são de tempo O(n!) ou aproximativas.

Por que CERTIFICAR a resposta SIM e n\u00e3o TODAS as respostas?

- Simples:
 - Resposta SIM: Basta verificar se a resposta satisfaz as condições do problema e da entrada.
 - Resposta NÃO: Como verificar se a resposta NÃO é válida?
 - Seria necessário avaliar todas as possibilidades de respostas para verificar se alguma atende aos critérios (do problema e da entrada).
 - E isso NÃO pode ser feito em tempo polinomial.

Por que CERTIFICAR a resposta SIM e n\u00e3o TODAS as respostas?

- SIM: Basta uma resposta para demonstrar que existe uma resposta.
 - Basta um exemplo para provar que é possível

 NÃO: É necessário exaurir todas as respostas possíveis para provar que ela não existe. E isso é muito mais difícil...

- Considere um conjunto $U = \{1, 2, \dots, n\}$ e um conjunto S, formados por subconjuntos de U.
- É possível cobrir todos os elementos de $\it U$ usando no máximo $\it k$ elementos do conjunto $\it S$?
- Resposta: SIM ou NÃO

- Considere um conjunto $U = \{1, 2, 3, 4, 5\}$ e um conjunto $S = \{\{1, 2, 3\}, \{2, 4\}, \{3, 4\}, \{4, 5\}, \{3, 5\}\}.$
- É possível cobrir todos os elementos de *U* usando no máximo 3 elementos do conjunto *S*?
- Resposta: SIM ou NÃO

- Considere um conjunto $U = \{1, 2, 3, 4, 5\}$ e um conjunto $S = \{\{1, 2, 3\}, \{2, 4\}, \{3, 4\}, \{3, 5\}\}.$
- É possível cobrir todos os elementos de *U* usando no máximo 3 elementos do conjunto *S*?
- Resposta: SIM ou NÃO
- Certificado: {1, 2, 3}, {2, 4}, {3, 5}

- Considere um conjunto $U = \{1, 2, 3, 4, 5\}$ e um conjunto $S = \{\{1, 2, 3\}, \{2, 4\}, \{3, 4\}, \{3, 5\}\}.$
- É possível cobrir todos os elementos de *U* usando no máximo **2** elementos do conjunto *S*?
- Resposta: SIM ou NÃO
- NÃO (aparentemente)
- Mas como certificar essa resposta?

- Como certificar a resposta SIM:
 - Basta percorrer cada conjunto da resposta, marcando os vértices.
 - Se, ao final, todos os vértices foram marcados e a resposta contém no máximo k conjuntos então a solução é válida.
 - Complexidade: O(n).

- Como certificar a reposta NÃO:
 - Necessário testar todas as combinações possíveis de conjuntos com no máximo k elementos.
 - Para cada combinação, marcar todos os vértices. Se todos forem marcados, a resposta NÃO está incorreta.
 - Se nenhuma combinação marcar todos os vértices, o NÃO foi certificado.
 - Complexidade:
 - Considerando que existem no máximo $\sum_{x=1}^n \frac{n!}{x!(n-x)!} = 2^n 1$ subconjuntos.
 - Como no pior caso precisamos testar cada um deles
 - A complexidade dessa certificação é $O(2^n)$

Relação entre P e NP

- P: Sabemos resolver em tempo polinomial.
- NP: Dada uma solução SIM, podemos certificá-la em tempo polinomial.
- Sabendo disso: Qual é a relação entre P e NP?
 - $P \subseteq NP (P = NP \text{ ou } P \subset NP)$. Por que?
- Se sabemos resolver, sabemos certificar (o SIM e o NÃO).
- Basta resolver e verificar se as respostas são equivalentes.
- Logo: Todo problema em P está também em NP.

• A Classe NP é restrita aos problemas de decisão.

- Por que?
 - Como certificar uma resposta para um problema de otimização?
 - Problema de Otimização: Melhor solução possível
 - Dada a solução, como podemos CERTIFICAR que ela é a melhor possível?
 - Seria necessário testar todas as outras soluções em busca de uma ainda melhor.
 - Como vimos, isso é muito custoso computacionalmente

Classes de Problemas

- Os Problemas de Decisão podem ser classificados em algumas categorias.
- Dentre outras, as principais são:
 - P
 - NP
 - NP-Difícil
 - NP-Completo

NP-Difícil

- A classe NP-Difícil contém os problemas mais difíceis de se resolver
- São problemas tão difíceis que TODO problema em NP pode ser transformado em tempo polinomial em um problema NP-Difícil.
- Isso implica que:
 - Se UM problema NP-Difícil for resolvido em tempo polinomial então TODOS os problemas em NP também podem ser resolvidos em tempo polinomial.
- Vale observar que os problemas de otimização podem estar contidos na classe NP-Difícil.

NP-Difícil

- Suponha um problema da classe NP-Difícil
- Suponha um outro problema qualquer
- Se:
 - For possível transformar a entrada do problema NP-Difícil em uma entrada do segundo problema E
 - For possível usar o segundo problema para resolver o primeiro E
 - Uma resposta SIM para o segundo problema significar uma resposta SIM para o segundo problema
- Então:
 - Podemos resolver o problema difícil usando o segundo problema
 - Isso prova que o segundo problema é pelo menos tão difícil quanto o primeiro.
 - Além disso, se eu conseguir resolver o segundo problema em tempo polinomial, eu posso resolver TODOS os problemas de NP em tempo polinomial.

• Uma transformação polinomial de um problema Π_1 em um problema Π_2 é uma função f, computável em tempo polinomial, que, para qualquer instância I_1 de Π_1 , constrói uma instância I_2 de Π_2 , tal que I_1 tem resposta SIM para Π_1 se e somente se I_2 tem resposta SIM para Π_2 . Indicamos por $\Pi_1 \propto \Pi_2$.

• Em resumo: Podemos resolver Π_1 através de Π_2

Transformação Polinomial: ● ∝ ●

- Suponha um problema
- Suponha um outro problema qualquer

Transformar a entrada do problema em uma entrada para o problema em tempo polinomial

Resolver o problema

Transformar a saída do problema em uma saída para o problema em tempo polinomial

Saída para o problema

Transformação Polinomial: ● ∝ ●

• Também chamada de Redução Polinomial

Algoritmo para

Capaz de Solucionar o Problema

Transformação Polinomial: ● ∝ ●

Capaz de Solucionar o Problema USANDO Também chamada de Redução Polinomial **UM ALGORITMO PARA** O PROBLEMA Algoritmo para Solução S Solução h(S)para f(I)Instância para *I* Instância f(I)Algoritmo I doproblema para Nenhuma Nenhuma solução solução para I para f(I)

Onde f e h são transformações que requerem tempo polinomial

Exemplo de Transformação Polinomial

- Problema do Ciclo Hamiltoniano (HC):
 - Entradas: Grafo G = (V, E)
 - Questão: *G* apresenta um caminho que começa em um vértice qualquer, passa por todos os vértices do grafo uma única vez e retorna ao ponto de partida?
 - Resposta: SIM ou NÃO

Exemplo de Transformação Polinomial

- Problema do Caixeiro Viajante (TSP):
 - Entradas: Grafo Completo G = (V, E) com custos associados as arestas e um valor k
 - Questão: G apresenta um caminho que começa em um vértice do grafo, passa por todos os vértices uma única vez e retorna ao ponto de partida com custo (soma dos custos das arestas percorridas) menor ou igual à k?
 - Resposta: SIM ou NÃO

Exemplo de Transformação Polinomial

- É possível estabelecer uma transformação polinomial entre Ciclo Hamiltoniano e Caixeiro Viajante?
- HC ∝ TSP:

Algoritmo para HC

Algoritmo para HC

• Como definir f e h?

- Função f:
 - Dada uma instância G = (V, E) de Ciclo Hamiltoniano (HC), construímos uma instância do Caixeiro Viajante: um grafo $G' = K_n = (V, E')$, com peso w(e) associado a cada aresta $e \in E'$ tal que:

•
$$w(e) = \begin{cases} 1, & se \ e \in E \\ n, & se \ e \notin E \end{cases}$$

- Onde K_n equivale a um grafo completo (com todas as arestas possíveis) com n vértices e n = |V|.
- Vale observar que o grafo G' pode ser construído em tempo polinomial.

Função h:

• G tem resposta SIM para HC se, e somente se, G' tem resposta SIM para TSP, considerando k=n.

Isso quer dizer:

- (⇒) Se G tem um ciclo hamiltoniano então G' tem um ciclo de custo n que passa por todos os vértices.
- (⇐) Se G' tem um ciclo de custo n que passa por todos os vértices então G tem um ciclo hamiltoniano

HC ∝ **TSP**

Exemplo:

Transformação Polinomial

Instância TSP Grafo $G' = K_n = (V, E')$ k = n

Possui ciclo hamiltoniano sss possui ciclo de custo n

- (\Rightarrow) Se existe um ciclo hamiltoniano em G, então o mesmo ciclo em G' tem peso n.
- Cada aresta desse ciclo em G tem peso 1 em G', logo a soma dos custos desse ciclo é de exatamente n
- Logo G' tem resposta SIM.

- (\Leftarrow) Se G' tem resposta SIM para TSP, então existe um ciclo C que passa por todos os vértices com custo k = n em G'
- Se o ciclo C passa por todos os vértices e tem custo n então ele inclui apenas arestas de custo 1.
- Se ele inclui apenas aresta de custo 1, essas mesmas arestas existem em G.
- Se todas as arestas de *C* existem em G, G possui um ciclo hamiltoniano.
- Logo: Se G' tem resposta SIM para TSP então G tem resposta SIM para HC

HC ∝ **TSP**

• Exemplo:

Transformação Polinomial

Instância TSP Grafo $G' = K_n = (V, E')$ k = n

Possui ciclo hamiltoniano sss possui ciclo de custo $oldsymbol{n}$

- Considerando que:
 - É possível transformar uma instância de HC em uma instância do TSP em tempo polinomial.
 - Uma resposta SIM para TSP implica uma resposta sim para HC
 - Uma resposta SIM para HC implica uma resposta sim para TSP
- Então:
 - HC pode ser reduzido em tempo polinomial à TSP.
 - Podemos resolver HC através de um algoritmo para o TSP.

- A transformação polinomial tem duas aplicações nos estudos dos algoritmos:
- 1. Eu não sei resolver o problema A, mas sei transformar em tempo polinomial o problema A em B e resolver o problema B.
 - O algoritmo para B se torna um algoritmo para A.
- Eu sei que um problema A é muito difícil. Se eu posso transformar em tempo polinomial todas as instâncias do problema A em instâncias do problema B (A

 B), estou demonstrando que B é pelo menos tão difícil quanto A.
 - Caso contrário, B seria uma solução para A e não seria tão difícil assim...

- Se $\Pi_1 \propto \Pi_2$ e $\Pi_2 \in P$, então $\Pi_1 \in P$.
 - Se toda instância de Π_1 pode ser transformada em tempo polinomial em uma instância de Π_2
 - E podemos resolver instâncias de Π_2 em tempo polinomial
 - Então: podemos resolver todas as instâncias de Π_1 em tempo polinomial (via $\Pi_2)$
- Se $\Pi_1 \propto \Pi_2$ e $\Pi_2 \propto \Pi_3$ então $\Pi_1 \propto \Pi_3$
 - Se podemos transformar em tempo polinomial Π_1 em Π_2 e Π_2 em Π_3
 - Então também podemos transformar Π_1 em Π_3 em tempo polinomial.

- Um problema Π é NP-Difícil se:
 - Todo problema $\Pi_0 \in NP$, $\Pi_0 \propto \Pi$
- Dessa forma, para caracterizar um problema como NP-Difícil seria necessário demonstrar que todo problema em NP pode ser transformado em tempo polinomial em Π
- Isso é praticamente impossível, uma vez que são muitos problemas em NP.

- Um problema Π é NP-completo se:
 - $\Pi \in NP$
 - Todo problema $\Pi_0 \in NP$, $\Pi_0 \propto \Pi$

Se o problema Π está em NP e vale a regra anterior, então Π está em NP-Completo.

- Se:
 - Π_1 e $\Pi_2 \in NP$
 - Π_1 é NP-completo
 - $\Pi_1 \propto \Pi_2$
- Então:
 - Π_2 é NP-completo.
- Com base nessas afirmativas, podemos concluir que basta demonstrar uma transformação polinomial de um problema NP-Completo em um outro problema para demonstrar que esse segundo problema também é NP-Completo.

Transformação Polinomial

 Com base nessas afirmativas, podemos concluir que basta demonstrar uma transformação polinomial de um problema NP-Completo em um outro problema para demonstrar que esse segundo problema também é NP-Completo.

- Qual é o problema?
 - Como provar que um problema é NP-Completo sem que já exista um problema NP-Completo?
 - Seria necessário provar que todo problema em NP pode ser transformado nesse problema?

Teorema de Cook-Levin

- Cook e Levin demonstraram o primeiro problema NP-Completo.
- Teorema de Cook-Levin: Satisfatibilidade Booleana é NP-Completo
- Problema da Satisfatibilidade Booleana (SAT):
 - Entradas: Variáveis $x_1, x_2, ..., x_n$ e Cláusulas $C_1, C_2, ..., C_n$ formadas por disjunções de variáveis.
 - Questão: Existe uma atribuição de valores booleanos (verdadeiros e falsos) às variáveis que implique que a conjunção de todas as cláusulas seja verdadeira.

SAT - Satisfatibilidade Booleana

- Dadas as variáveis: $x_1, x_2, ..., x_n$
- Podemos definir uma fórmula como uma conjunção de disjunções das variáveis: $(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor x_3) \land (x_1 \lor \overline{x_3}) \land (x_2 \lor \overline{x_3} \lor x_4)$
- Onde: ∨ e ∧ equivalem aos operadores lógico OU e E respectivamente
- Questão: Existe uma atribuição de valores às variáveis que torne a fórmula verdadeira (satisfaça a fórmula)?
- Respostas: SIM ou NÃO

SAT - Satisfatibilidade Booleana

•
$$(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_3}) \land (x_1 \lor x_3) \land (x_2 \lor \overline{x_3} \lor x_4)$$

- Supondo $x_1 = Verdadeiro$ e $x_3 = Falso$
- $(\overline{x_1} \lor \overline{x_3})$: Falso OU Verdadeiro = Verdadeiro
- $(x_1 \lor x_3)$: Verdadeiro OU Falso = Verdadeiro
- Isso vale para todas as variáveis e cláusulas

Teorema de Cook-Levin

Teorema de Cook-Levin: Satisfatibilidade Booleana é NP-Completo

- Para demonstrar que SAT é NP-Completo precisamos:
 - 1. Demonstrar que SAT está em NP.
 - 2. Demonstrar que todo problema em NP pode ser reduzido em tempo polinomial a SAT.

1) SAT está em NP

Essa é a parte fácil da prova.

 Supondo que um oráculo forneceu uma resposta: uma atribuição de verdadeiro e falso para as n variáveis

• Podemos verificar se essa atribuição satisfaz todas as cláusulas em tempo O(m), onde m é o número de cláusulas.

Logo: SAT está em NP.

2) Todo problema em NP pode ser reduzido em tempo polinomial a SAT.

- Como é impossível demonstrar que essa condição é verdadeira para cada problema em NP, a base da demonstração envolve encontrar uma generalização que englobe todos os problemas em NP.
- O Teorema de Cook-Levin estabelece condições ou padrões para que uma linguagem pertencente a NP seja reconhecida.

- Essas condições são então "mapeadas" como uma fórmula de SAT.
- Como todo problema de NP pode ser reduzido em tempo polinomial a SAT, então SAT é um problema NP-Difícil.

Teorema de Cook-Levin

Teorema de Cook-Levin: Satisfatibilidade Booleana é NP-Completo

- Para demonstrar que SAT é NP-Completo precisamos:
 - 1. Demonstrar que SAT está em NP.
 - 2. Demonstrar que todo problema em NP pode ser reduzido em tempo polinomial a SAT. (SAT é NP-Difícil)
- Uma vez que as duas condições foram demonstradas, temos o primeiro problema NP-Completo: Satisfatibilidade Booleana.

3-SAT e Circuit SAT (CSAT)

- Além da versão padrão de SAT é possível definir variantes do problema:
- 3-SAT: Cada cláusula é formada por exatamente 3 variáveis.
 - $(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor x_3 \lor x_4) \land (x_1 \lor \overline{x_3} \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor x_4) \land (x_1 \lor \overline{x_2} \lor x_4)$

3-SAT e Circuit SAT (CSAT)

- Além da versão padrão de SAT é possível definir variantes do problema:
- Circuit Sat: Dado um circuito lógico formado por portas lógicas E, OU e NÃO com n entradas, onde cada entrada pode assumir o estado LIGADO ou DESLIGADO. Existe uma forma combinação de valores para as entradas tal que o resultado do circuito seja LIGADO?

Como provar que 3-SAT é NP-Completo?

- 1. Provar que 3-SAT está em NP.
 - Simples: Podemos certificar qualquer resposta SIM em tempo polinomial. Basta verificar se todas as cláusulas são verdadeiras.
- 2. Provar que SAT ∝ 3-SAT
 - Como podemos resolver SAT através de 3-SAT e SAT é NP-Difícil, então 3-SAT também é NP-Difícil
 - Como podemos converter uma instância de SAT em 3-SAT?
 - Converter cláusulas de qualquer tamanho em cláusulas de tamanho exatamente 3

- Considere uma instância qualquer de SAT com n variáveis $\{u_1, u_2, ..., u_n\}$ e m cláusulas $\{C_1, C_2, ..., C_n\}$.
- Queremos converter essa instância em uma instância de 3-SAT.
- Cada cláusula C_i pode ter:
 - 1 variável
 - 2 variáveis
 - 3 variáveis (ótimo, esse caso já está OK).
 - 4 ou mais variáveis

- Se a cláusula C_i tem 1 variável: $C_i = \{u\}$
 - Vamos criar mais duas variáveis w_1^i e w_2^i
 - E vamos transformar a cláusula C_i em quatro novas cláusulas C_1^i , C_2^i , C_3^i , C_4^i
 - $C_1^i = (u \vee w_1^i \vee w_2^i)$
 - $C_2^i = (u \vee w_1^i \vee \overline{w_2^i})$
 - $C_3^i = (u \vee \overline{w_1^i} \vee w_2^i)$
 - $C_4^i = (u \vee \overline{w_1^i} \vee \overline{w_2^i})$
- Observe que a única forma das quatro cláusulas retornarem verdadeiro é $C_i = \{u\}$ ser satisfazível. Logo $C_1^i \wedge C_2^i \wedge C_3^i \wedge C_4^i$ é satisfazível se e somente se C_i também é.
- Por exemplo, Se $u = \text{Falso } w_1^i = \text{Verdadeiro e } w_2^i = \text{Verdadeiro, então } C_4^i$ é falso. Testem todas as 8 combinações!

- Se a cláusula C_i tem 2 variáveis: $C_i = \{u_1, u_2\}$
 - Vamos criar mais uma variáveis w_1^i
 - E vamos transformar a cláusula C_i em duas novas cláusulas C_1^i , C_2^i
 - $C_1^i = (u_1 \lor u_2 \lor w_1^i)$
 - $C_2^i = (u_1 \vee u_2 \vee \overline{w_1^i})$
 - Se $C_i = \{u_1, u_2\}$ é satisfazível, então C_1^i e C_2^i também são
 - Se $C_i = \{u_1, u_2\}$ não é satisfazível, então C_1^i é satisfazível e C_2^i não é ou o exato oposto.
 - Logo: Se $C_1^i \wedge C_2^i$ é satisfazível se, e somente se, C_i também for.

- Se a cláusula C_i tem 3 variáveis: $C_i = \{u_1, u_2, u_3\}$
 - Vamos apenas replicar a cláusula.
 - Caso fácil...

- Se a cláusula C_i tem 4 ou mais variáveis: $C_i = \{u_1, u_2, \dots, u_k\}$
 - Vamos dividir C_i em duas ou mais cláusulas
 - Para isso vamos criar novas variáveis $\{w_j^i : 1 \le j \le k-3\}$
 - Vamos criar novas cláusulas correspondentes as anteriores divididas:

•
$$\{C_1^i = (u_1, u_2, w_1^i), C_2^i = (\overline{w_1^i}, u_3, w_2^i), C_3^i = (\overline{w_2^i}, u_4, w_3^i), \dots, C_k^i = (\overline{w_{k-3}^i}, u_{k-1}, u_k)\}$$

- Observe que a primeira cláusula contém as duas primeiras variáveis e uma nova variável de "ligação"
- Já a última cláusula contém uma variável de "ligação", conectando a penúltima cláusula, e as duas últimas variáveis.
- Todas as demais cláusulas contém duas variáveis de ligação: uma conectando a cláusulas anterior, outra conectando a próxima e uma variável de \mathcal{C}_i

- Se a cláusula C_i tem 4 ou mais variáveis: $C_i = \{u_1, u_2, \dots, u_k\}$
 - As novas cláusulas $\{C_1^i, \dots, C_{k-3}^i\}$ são satisfazíveis se e somente se C_i é satisfazível.
 - (=>) $\{C_1^i, ..., C_{k-3}^i\}$ é satisfazível então C_i também é
 - Observe que as TODAS as variáveis de conexão foram marcadas como verdadeiras, cada variável "ajuda" em uma cláusula e atrapalha na próxima. Considerando que a última é uma negação, ela não será satisfeita. Logo, as variáveis de ligação não são suficientes para satisfazer as cláusulas.
 - Desta forma, se $\{C_1^i, \dots, C_{k-3}^i\}$ é satisfazível então existe uma variável u_i verdadeira, o que também satisfaz C_i .
 - (<=) C_i é satisfazível então as novas cláusulas $\{C_1^i, ..., C_{k-3}^i\}$ também são
 - Se C_i é satisfazível, então pelo menos uma variável é verdadeira
 - Seja u_i a variável verdadeira.
 - Podemos atribui falso a variável de conexão da cláusula em que u_i está e em todas as demais cláusulas que a sucedem. Essa atribuição satisfaz as novas cláusulas.

- Considere uma instância qualquer de SAT com n variáveis $\{u_1,u_2,\dots,u_n\}$ e m cláusulas $\{C_1,C_2,\dots,C_n\}$.
- Queremos converter essa instância em uma instância de 3-SAT.
- Cada cláusula C_i pode ter:
 - 1 variável √
 - 2 variáveis √
 - 3 variáveis (ótimo, esse caso já está OK). √
 - 4 ou mais variáveis √
- Desta forma: Podemos resolver SAT através de 3-SAT.

A força de SAT

- Como SAT foi categorizado como o primeiro problema NP-Completo então:
 - Para categorizar todos os demais problemas NP-Completo precisamos demonstrar que é possível estabelecer uma transformação polinomial desses problemas em SAT.
 - Isso implica que:
 - Se existir um algoritmo polinomial para qualquer problema em NP-Completo então esse algoritmo pode resolver SAT
 - E se SAT admitir um algoritmo polinomial então qualquer problema em NP pode ser resolvido por este algoritmo.
 - E portanto: P = NP.

A força de SAT

21 problemas NP-completos de Karp

- Richard Karp, baseado no Teorema de Cook-Levin, demonstrou os 21 primeiros problemas NP-Completos.
- Com base nesse problemas, muitos outros puderam ser provados NP-Completos.
- Cook e Karp receberam o Prêmio Turing por suas contribuições à Computação.

21 problemas NP-completos de Karp

Problemas NP-Completo

- O que acontece quando restringimos um problema?
 - Por exemplo: Sabemos que o problema da k-coloração é NP-Completo.
 - Mas o que acontece quando restringimos esse problema: k=3 em grafos planares.
 - O nível de dificuldade permanece?
 - Não! Muitas vezes ao restringir o problema, ele fica tratável computacionalmente (passa a admitir um algoritmo de tempo polinomial).
- Logo, quando identificamos que um problema é uma restrição de outro:
 - Ou ele tem o mesmo nível de dificuldade (a restrição não facilitou)
 - Ou ele é mais fácil (as instâncias restritas podem ser resolvidas mais facilmente).

Problemas NP-Completo

- O que acontece quando generalizamos um problema?
 - O problema já é complicado em uma instância controlada e reduzida.
 - O que acontece quando consideramos qualquer instância?
 - O problema fica mais fácil ou mais difícil?
 - Ele fica mais difícil.
- Logo, quando percebemos que um problema é uma generalização de um outro (uma versão mais abrangente)
 - O primeiro problema é pelo menos tão ou mais difícil que o segundo.
- Isso é trivial: Se as instâncias difíceis estão contidas no universo da generalização, então a generalição não poderia ser mais fácil...

Para pensar

- Como poderíamos demonstrar que Clique é NP-Completo?
- Problema da Clique:
 - Entradas: Grafo G = (V, E) e inteiro k
 - Pergunta: Existe um subconjunto $V' \subseteq V$, com pelo menos k vértices tal que todos os vértices desse conjunto são vizinhos entre si?
 - Saída: Sim ou Não.

$$k = 4?$$

$$k = 3$$
?

NÃO.

SIM.

Teorema: Clique é NP-completo?

- Clique \in NP: Para um G = (V, E) usamos o conjunto V' V de vértices da clique como um certificado SIM para G. Verificar se V' é uma clique leva um tempo polinomial: para cada par u, v V', ver se $(u, v) \in E$.
- Vamos provar que Clique é NP-Difícil através de 3-SAT. Dada uma fórmula booleana F com m cláusulas C_1, C_2, \ldots, C_m , será construído um grafo G tal que G é satisfatível se e somente se G possui uma clique de tamanho G.
- Para cada cláusula $C_r = (u_1^r, u_2^r, u_3^r)$ será adicionada uma tripla v_1^r, v_2^r, v_3^r de vértices em V.
- Vamos adicionar uma aresta entre dois vértices v_i^r , v_i^s se:
 - v_i^r e v_i^s estão em triplas diferentes, ou seja, r = s, e
 - seus literais correspondentes são consistentes, ou seja, u_i^r não é a negação de u_i^s .

Teorema: Clique é NP-completo

• Exemplo: $F = (u_1 \lor \overline{u_2} \lor \overline{u_3}) \land (\overline{u_1} \lor u_2 \lor u_3) \land (u_1 \lor u_2 \lor u_3)$

 C_2

Teorema: Clique é NP-completo

(→) Seja F satisfatível. Então, cada cláusula C_r contém pelo menos um literal Verdadeiro e cada literal corresponde a um vértice v_i^r. Se selecionarmos um literal verdadeiro de cada cláusula, obtemos um conjunto V' com m vértices. Para quaisquer dois vértices v_i^r e v_j^s ∈ V', onde r ≠ s, ambos correspondem a literais u_i^r e u_j^s com valor V na atribuição verdade e, assim, u_i^r não pode ser negação de u_j^s. Logo, a aresta (v_i^r,v_j^s) ∈ E, e V' é clique.

•

• (←) Suponha que G tenha uma clique V', |V|=m. Nenhuma aresta em G conecta vértices na mesma tripla; logo, V' contém exatamente um vértice por tripla. Podemos atribuir V a cada literal u_ir tal que v_ir ∈ V', sem tornar V literais complementares, já que G não contém arestas entre literais inconsistentes. Como cada cláusula é satisfeita, F é satisfeita.

Primeiro Trabalho de Computabilidade

- Tema: Problemas NP-Completos e Reduções Polinomiais
- O trabalho deverá ser feito em duplas

- Fase 1) Identifiquem problemas NP-Completos que:
 - Sua dupla julgue esse problema interessante
 - Vocês consigam acompanhar/entender a transformação polinomial que caracterizou esse problema como NP-Completo.
 - Na próxima aula, apresentar uma lista com três problema e suas respectivas transformações polinomiais (diferentes das vistas em sala).
 - A partir das listas de problemas e duplas, vamos buscar uma atribuição de temas tal que cada dupla tenha um tema diferente.
 - Prazo: Uma semana

Primeiro Trabalho de Computabilidade

- Tema: Problemas NP-Completos e Reduções Polinomiais
- O trabalho deverá ser feito em duplas

• Fase 2) Na aula seguinte (prazo 15 dias a contar dessa aula), apresentar a prova de que o problema escolhido é de fato NP-Completo.

Bibliografia Recomendada para o Trabalho:

- 1. http://catalogo-redesirius.uerj.br/sophia web/index.asp?codigo sophia=301976
- 2. http://catalogo-redesirius.uerj.br/sophia web/index.asp?codigo_sophia=301974
- 3. http://catalogo-redesirius.uerj.br/sophia_web/index.asp?codigo_sophia=302475