Отчёт по курсу "Введение в численные методы" Вариант №2.2

Выполнил студент 208 группы ВМК МГУ Булкин Антон Павлович

2023 год

Математическая постановка задачи

Найдите приближенное значение интеграла методом трапеций, разбив интервал интегрирования на n равных частей, где $n=16,\,32,\,64$

Интеграл:
$$\int_a^b \frac{1}{(25x^2+1)\sqrt{x}} \, \mathrm{d}x$$

Рассмотрите два интервала интегрирования:

1.
$$a = 1, b = 2$$

$$a = 0, b = 1$$

Сравните результаты с аналитическим значением интеграла.

Используемые формулы и алгоритмы

Метод трапеций вычислений определённого интеграла на отрезке

Нам необходимо найти значение определённого интеграла $\int_a^b f(x)$ на отрезке [a,b]. Заменим функцию на отрезке [a,b] многочленом Лагранжа первой степени с узлами $x_0=a,x_1=b$. Это соответствует замене кривой на секущую. Искомый интеграл, равный площади криволинейной фигуры, заменяется на площадь трапеции (рис. 1).

Рис. 1: Иллюстрация метода трапеций

Тогда приближенное значение интеграла будет равно:

$$\int_{a}^{b} f(x) dx \approx \frac{1}{2} (b - a) [f(a) + f(b)]$$
 (1)

Из курса "Введение в численные методы", главный член равен

$$R = -\frac{(b-a)^3}{12} f''(\bar{x})$$

Вообще говоря, длина отрезка b-a не мала, поэтому остаточный член может быть велик. Для повышения точности на отрезке [a,b] вводят достаточно густую сетку $a=x_0< x_1< x_2< \cdots < x_n=b$. Интеграл разбивают на сумму интегралов по шагам сетки и к каждому шагу применяют формулу (1). Следовательно, обобщенная формула трапеций имеет вид:

$$\int_{a}^{b} f(x) dx \approx \frac{1}{2} \sum_{i=1}^{N} (x_{i} - x_{i-1}) (f_{i-1} + f_{i})$$

$$R \approx -\frac{1}{12} \sum_{i=1}^{N} (x_i - x_{i-1})^3 f''(x_i)$$

Для равномерной сетки она выглядит существенно проще:

$$\int_{a}^{b} f(x) dx \approx h \left(\frac{f_0 + f_N}{2} + f_1 + f_2 + \dots + f_{N-1} \right)$$

$$R \approx -\frac{1}{12} \sum_{i=1}^{N} h^3 f''(\bar{x}_i) \approx -\frac{1}{12} h^2 \int_{a}^{b} f''(x) dx$$

$$h = x_i - x_{i-1} = const$$

Именно её мы будем использовать далее, как первый способ вычисления определённого интеграла.

Метод средних прямоугольников вычисления определённого интеграла

Рассмотрим $\int_a^b f(x) dx$ на отрезке [a,b]. Если на отрезке [a,b] взять единственный узел квадратурной формулы x_0 , то функция аппроксимируется многочленом нулевой степени - константой $f(x_0)$. Поскольку симметрия формулы численного интегрирования приводит к повышению её точности, то выберем в качестве единственного узла середину отрезка интегрирования $\bar{x} = \frac{a+b}{2}$ Приближённо заменяя площадь криволинейной трапеции площадью прямоугольника (рис. 2), получим формулу средних прямоугольников:

$$\int_{a}^{b} f(x) dx \approx (b - a) f\left(\frac{a + b}{2}\right)$$
 (2)

Рис. 2: Иллюстрация метода средних прямоугольников

Так же, как и для метода трапеций, для повышения точности вводится достаточно густая сетка $a=x_0 < x_1 < x_2 < \cdots < x_n = b$, и для каждого из интервалов находят значение интеграла по формуле (2). Тогда получается обобщённая формула средних прямоугольников:

$$F \approx \sum_{i=1}^{N} (x_i - x_{i-1}) f\left(\frac{x_i + x_{i-1}}{2}\right), \quad R \approx \frac{1}{24} \sum_{i=1}^{N} (x_i - x_{i-1})^3 f''(\bar{x}_i)$$

На равномерной сетке формула имеет вид:

$$F \approx h \sum_{i=1}^{N} f_{i-\frac{1}{2}}, \quad R \approx \frac{h^2}{24} \int_a^b f''(x) dx$$

Неприменимость метода трапеций для вычисления значения определенного интеграла на отрезке $\left[0,1\right]$

Рассмотрим формулу вычисления определенного интеграла на отрезке методом трапеций для равномерной сетки более подробно.

$$\int_{a}^{b} f(x) dx \approx h \left(\frac{f_0 + f_N}{2} + f_1 + f_2 + \dots + f_{N-1} \right)$$

Как мы видим в данной формуле явно участвуют значения подынтегральной функции в краевых точках отрезка [a,b], где в нашем случае a=0 и b=1. Следовательно, нам необходимо вычислить значение подынтегральной функции в точке x=0, однако в данной точке функция $\frac{1}{(25x^2+1)\sqrt{x}}$ не определена, из-за чего при программной реализации вероятнее всего возникнут ошибки, связанные с делением на 0. Следовательно, становится очевидно, что метод трапеций для вычисления определенного интеграла становится неприменим.

Значения интегралов

Аналитическое значение первого интеграла равно:

$$\int_{1}^{2} \frac{1}{(25x^{2}+1)\sqrt{x}} dx =$$

$$= \frac{\ln\sqrt{2}\sqrt{10}+11}{2\sqrt{10}} - \frac{\ln 11 - \sqrt{2}\sqrt{10}}{2\sqrt{10}} - \frac{\ln\sqrt{10}+6}{2\sqrt{10}} + \frac{\ln 6 - \sqrt{10}}{2\sqrt{10}} + \frac{\arctan\left(\frac{9}{\sqrt{2}\sqrt{10}}\right)}{\sqrt{10}} - \frac{\arctan\left(\frac{4}{\sqrt{10}}\right)}{\sqrt{10}}$$

Примерное десятичное значение равно:

$$\int_{1}^{2} \frac{1}{(25x^{2}+1)\sqrt{x}} \, \mathrm{d}x \approx 0.01683288970140462$$

Аналитическое значение второго интеграла равно:

$$\int_0^1 \frac{1}{(25x^2 + 1)\sqrt{x}} dx =$$

$$= \frac{\ln\sqrt{10} + 6}{2\sqrt{10}} - \frac{\ln 6 - \sqrt{10}}{2\sqrt{10}} + \frac{\arctan\left(\frac{4}{\sqrt{10}}\right)}{\sqrt{10}} + \frac{\pi}{2\sqrt{10}}$$

Примерное десятичное значение равно:

$$\int_0^1 \frac{1}{(25x^2 + 1)\sqrt{x}} \, \mathrm{d}x \approx 0.9672379973052818$$

Программная реализация

Для того, чтобы произвести необходимые вычисления и проанализировать результаты, мною была написана программа на языке C, реализующая оба метода для равномерной сетки c количеством отрезков в разбиении отрезка, равным N=16,32,64.

```
#include <stdio.h>
// using only for calculating tha square root of x
#include <math.h>
double
function(double x)
{
    return 1 / ((25 * x * x + 1) * sqrt(x));
}
double
integral_trap(double (*func)(double), double a, double b, int n)
    double h, result;
   h = (b - a) / n;
    result = (func(a) + func(b)) / 2;
    for (int i = 1; i < n; ++i)</pre>
        result += func(a + i * h);
    return result * h;
}
double
integral_rectan(double (*func)(double), double a, double b, int n)
    double h, result = 0, x = a;
    h = (b - a) / n;
    for (int i = 1; i <= n; i++)</pre>
        x = a + (i - 0.5) * h;
        result += func(x);
    return result * h;
}
int main(void)
{
    double res1, res2,
        a[2] = \{1, 0\},\
        b[2] = \{2, 1\},
        ist_res[2] = {0.01683288970140462, 0.9672379973052818};
    int n_num[] = {16, 32, 64};
    for (int k = 0; k < 2; k++)
        printf("The result for %d interval: [%lf, %lf]:\n", k + 1, a[k], b[k]);
        for (int i = 0; i < (sizeof(n_num) / sizeof(int)); ++i)</pre>
            res1 = integral_trap(function, a[k], b[k], n_num[i]);
            printf("%*d: (T) %.*lf %.*lf %.*lf%%\n", 4, n_num[i], 20,
                   res1, 20, res1 - ist_res[k], 10, (res1 / ist_res[k] * 100));
            res2 = integral_rectan(function, a[k], b[k], n_num[i]);
            printf("%*d: (P) %.*lf %.*lf %.*lf%%\n", 4, n_num[i], 20,
                    res2, 20, (ist_res[k] - res2), 10, (res2 / ist_res[k] * 100));
        }
    return 0;
```

Цифровое представление результатов

Проанализируем результат работы программы: Вывод программы имеет вид: n: (T/P) res pogr procent, где:

- (T/P) данные, полученные при вычислении методом трапеций (T) и средних прямоугольников (P), соответственно;
- res результат вычисления определенного интеграла на отрезке соответствующим методом, с точностью до 20 знаков после запятой;
- *pogr* погрешность вычисления, равная модулю разности между десятичным представлением аналитического результата и результат вычислений определенного интеграла соответствующим методом;
- procent отношение между вычисленным значением и аналитическим решением определенного интеграла в процентном виде для наглядности результатов;

```
The result for 1 interval: [1.000000, 2.000000]:
    16: (T) 0.01686037287671099394 0.00002748317530637534 100.1632706909%
    16: (P) 0.01681915847562471394 0.00001373122577990465 99.9184262119%
    32: (T) 0.01683976567616785394 0.00000687597476323534 100.0408484514%
    32: (P) 0.01682945236344523393 0.00000343733795938467 99.9795796324%
        (T) \quad 0.01683460901980655261 \quad 0.00000171931840193401 \quad 100.0102140419\%
        (P) 0.01683203008282093197 0.00000085961858368663 99.9948932204%
 The result for 2 interval: [0.000000, 1.000000]:
    16: (T) inf inf inf%
    16: (P) 0.81561590339018374962 0.15162209391509806622 84.3242206843%
    32: (T) inf inf inf%
11
    32: (P) 0.86023826853807394688 0.10699972876720786896 88.9376007699%
    64: (T) inf inf inf%
13
    64: (P) 0.89161402659268529369 0.07562397071259652215 92.1814516258%
```

Графическое представление результатов

Построим график вычисленных результатов применения данных методов при вычислении определенного интеграла на отрезке [1,2] в зависимости от количества отрезков в разбиении и аналитического решения данного интеграла.

Зеленый график представляет график вычисленные значения по методу трапеций в зависимости от количества отрезков в разбиении.

Красный график представляет график вычисленные значения по методу средних прямоугольников в зависимости от количества отрезков в разбиении.

Синий график представляет значение аналитического решения для данного определенного интеграла на отрезке [1,2].

Количество отрезков в	Вычисленное значение по методу трапеций	Вычисленное значение по методу средних прямоугольников	
разбиении 16	0.01686037287671099394	0.01681915847562471394	
32	0.01683976567616785394	0.01682945236344523393	
64	0.01683460901980655261	0.01683203008282093197	

Построим график вычисленных результатов применения данных методов при вычислении определенного интеграла на отрезке [0,1] в зависимости от количества отрезков в разбиении и аналитического решения данного интеграла.

В связи с невозможностью представления значения результата вычисления методом трапеций определенного интеграла на отрезке [0,1], приведем график погрешности вычислений определенного интеграла на отрезке методом средних прямоугольников, равной модулю разности значения аналитического решения и значений вычисления данного метода при заданном количестве отрезков разбиения.

Количество	Вычисленное значе-	Вычисленное значение по	
отрезков в	ние по методу трапе-	методу средних прямо-	Погрешность вычислений
разбиении	ций	угольников	
16	inf	0.81561590339018374962	0.15162209391509806622
32	inf	0.86023826853807394688	0.10699972876720786896
64	inf	0.89161402659268529369	0.07562397071259652215

Анализ результатов

Ключевым отличием метода средних прямоугольников вычисления определенного интеграла на отрезке от метода трапеций является отсутствие необходимости вычисления значения подынтегральной функции в крайних точках заданного отрезка, так как в нем для вычислений используются средние точки отрезков разбиения, что помогает избежать вычисления значения подынтегральной функции в точке x=0, в нашем случае.

Для обоих методов свойственно улучшение точности вычисления значения определённого интеграла на отрезке при увеличении количества отрезков разбиения при условии применимости данного метода.

Как пример, ниже приведен пример графика в зависимости от количества отрезков в разбиении погрешности значений, полученных при вычислении определенного интеграла методом прямоугольников для второго случая, те вычисления на отрезке [0,1].

Источники и ресурсы

- Вводные лекции по численным методам (Д.П. Костомаров, А.П. Фаворский)
- Численные методы (А.А. Самарский, А.В. Гулин)
- Для построения графиков использовался ресурс www.desmos.com