CHAPTER 8

File Structures

Reference: Computer Science an Overview

Author: J. Glenn Brook Shear

6th Edition

- Abstractions of the actual data organization on mass storage
- Again: differences between conceptual and actual data organization

8.1: Files, Directories & the Operating System

- OS storage structure:
 - conceptual hierarchy of directories and files

8.1: Files: Conceptual vs. Actual View

- View at OS-level is conceptual
 - actual storage may differ significantly!

8.2: Sequential Files

To 'remember' where data resides on disk, the
 OS maintains a list of sectors for each file

Disk sectors containing the file

Result: sequential view of scattered set of data

8.2: Text Files

- Sequential file consisting of long string of encoded characters (e.g. ASCII-code)
 - But: character-string still interpreted by word processor!

File in "Notepad"

Same file in "MS Word"

8.2: Text files & Markup Languages (e.g.

8.2: From actual storage to conceptual

8.2: Data Conversion

- When programming: note that data transfer to/from file may involve data conversion:
 - e.g., from two's complement notation to ASCII:

So: again it's about the interpretation of data

8.3: Quick File Access

- Disadvantage of sequential files:
 - no quick access to particular file data
- Two techniques to overcome this problem:
 - (1) Indexing or (2) Hashing
- Indexing:

Indexed File

/	12N67	John Smith	23-Jul-71	17,000.00	New York	
4	13C08	Andrew White	27-Jun-70	24,500.00	Boston	
	23G19	Mary Jackson	5-Mar-39	41,000.00	San Francisco	
	24X17	Eleanor Tracy	17-Sep-63	9,635.00	Fort Lauderdale	
	26X28	Michael Flanagan	1-Nov-44	18,800.00	Washington	
	32E76	Glenn White	29-Feb-68	17,000.00	Detroit	
	36Z05	Virginia Moore	27-Jun-70	32,000.00	San Francisco	
	: /	:	:	:	:	
V	: /	:	:	:	:	
	:/	:	:	:	:	

loaded into main memory when opened

Index

12N67	location
13C08	location
23G19	location
24X17	location
26X28	location
32E76	location
36Z05	location
:	:
:	:
:	•

keys

<u>Chapter 8 - Problem 10</u>

Why is a 'patient identification number' a better choice for a key field than the last name of each patient?

- If key unique:
 - additional sequential search never required

Patient's last name is not always unique

8.3: Inverted Files

Variation to (single) indexing: inverted file

Records stored on disk

8.4: Hashing

- Disadvantage of indexing is... the index
 - requires extra space
- Solution: 'hashing'
 - finds position in file using a key value (as in indexing)...
 - ... simply by identifying location directly from the key

How?

 define set of 'buckets' & 'hash function' that converts keys to bucket numbers

8.4: Hash Function: Example

- If storage space divided into 40 buckets and hash function is division:
 - key values 14, 54, & 94 all map onto same bucket (collision)

Chapter 8 - File Structures: Conclusions

- File Structures:
 - abstractions of actual data organization on mass storage
- Changes of 'view':
 - actual storage -> sequential view by OS -> conceptual view presented to user
- Quick access to particular file data by
 - (1) indexing (many forms)
 - (2) hashing (requires no index, but requires bucket search!)

End of the Lecture

CHAPTER 9

Database Structures

 (Large) integrated collections of data that can be accessed quickly

9.1: Historical Perspective

• Originally: departments of large organizations stored all data separately in *flat files*

• Problems: redundancy & inconsistencies

9.1: Integrated Database System

- Better approach:

 integrate all data in a single system, to be accessed by all departments.
 - Schema and Subschema

Example:

University student and faculty records

b. Database-oriented information system

9.1: Disadvantages of Data Integration

- Control of access to sensitive data?
- Misinterpretation of integrated data?

– What about the **right** to hold/collect/interpret data?

9.2: Conceptual Database Layers

9.3: The Relational Model

Relational Model

shows data as being stored in rectangular tables,
 called *relations*, e.g.:

Empl Id	Name	Address	SSN
25X15 34Y70 23Y34	Joe E. Baker Cheryl H. Clark G. Jerry Smith	33 Nowhere St. 563 Downtown Ave. 1555 Circle Dr.	111223333 999009999 111005555 •

- row in a relation is called 'tuple'
- column in a relation is called 'attribute'

9.3: Issues of Relational Design

- So, *relations* make up a relational database...
- ... but this is not so straightforward:

	Empl Id	Name	Address	SSN	Job Id	JobTitle S	kill Cod	e Dept	Start Date	Term Date
	25X15	Joe E. Baker	33 Nowhere St.	111223333	F5	Floor	FM3	Sales	9-1-2001	9-30-2002
	25X15	Joe E. Baker	33 Nowhere St.	111223333	D7	Dept.	K2	Sales	10-1-2002	*
	34Y70	Cheryl H. Clark	563 Downtown Ave.	999009999	F5	Floor manager	FM3	Sales	10-1-2001	*
	23Y34	G. Jerry Smith	1555 Circle Dr.	111005555	S25X	Secretary	15	Personnel	3-1-1999	4-30-2001
	23Y34	G. Jerry Smith	1555 Circle Dr.	111005555	S25Z	Secretary	Т6	Accounting	5-1-2001	*
	•	•	•	•	•	•	•	•	•	•
-	•	•	•	•	•	•	•	•	•	•

• Problem: more than one concept combined in single relation

9.3: Redesign by extraction of 3 concepts

EMPLOYEE relation

Empl ld	Name	Address	SSN
25X15	Joe E. Baker	33 Nowhere St.	111223333
34Y70	Cheryl H. Clark	563 Downtown Ave.	999009999
23Y34	G. Jerry Smith	1555 Circle Dr.	111005555

JOB relation

Job Id	JobTitle	Skill Code	Dept
S25X S26Z F5	Secretary Secretary Floor manager	T5 T6 FM3	Personnel Accounting Sales
•	•	•	•

ASSIGNMENT relation

Empl Id	Job ld	Start Date	Term Date
23Y34 34Y70 25X15	S25X F5 S26Z	3-1-1999 10-1-2001 5-1-2001	4-30-2001 * *
•	•	•	•
•	•	•	•
•	•	•	•

Any information obtained by combining information from multiple relations

9.3: Example:

• Finding all departments in which employee 23Y34 has worked:

9.3: Relational Operations

- Extracting information from a relational database by way of *relational operations*
 - Most important ones:
 - (1) extract tuples (rows) : SELECT
 - (2) extract attributes (columns) : PROJECT
 - (3) combine relations : JOIN
- Such operations on relations produce other relations
 - so: they can be used in combination, to create complex database requests (or 'queries')

9.3: The SELECT operation

9.3: The JOIN operation

JOB relation **ASSIGNMENT** relation Empl Id Job Id Start Date Term Date Job Id **JobTitle** Skill Code Dept S25X 23Y34 3-1-1999 4-30-2001 S25X **T5** Personnel Secretary 34Y70 S26Z Secretary T6 F5 10-1-2001 Accounting 25X15 S26Z 5-1-2001 F5 Floor manager FM3 Sales NEW1 ← JOIN ASSIGNMENT and JOB where ASSIGNMENT. Jobid = JOB.Jobid **NEW1** relation ASSIGNMENT ASSIGNMENT ASSIGNMENT **ASSIGNMENT JOB** JOB **JOB** JOB Empl Id Job Id StartDate **TermDate** Job Id JobTitle SkillCode Dept 23Y34 S25X 3-1-1999 4-30-2001 S25X T5 Personnel Secretary 34Y70 F5 10-1-2001 F5 Floor manager FM3 Sales 25X15 S26Z 5-1-2001 S26Z Secretary T6 Accounting

Chapter 9 - Database Structures: Conclusions

- Database Structures:
 - (large) integrated collections of data that can be accessed quickly
- Database Management System
 - provides high-level view of actual data storage (database model)
- Relational Model most often used
 - relational operations: select, project, join, ...
 - high-level language for database access: SQL

Background: Relational Database

- Ted Codd Mathematician paper
- "A relational Model of data for large shared data banks"
- Chamberlin inspired by Codd's Symposium and convinced IBM to create R system group and to fund a research project to build a prototype of relational DB which leads to DB2 and SQL creations
- IBM focused on IMS in 1968

Background (Continued...)

- Based on Codd's Work two professors from university of Berkeley started a project "Ingres"
- Researched Competition flared between the two groups and number of the research papers are being published. IBM did not realizing the potential of the project, published these papers publicly.

- Larry Ellison formed a company "System Development Labs" which recruited Employees from System R and Ingres. He started developing a system based on the research papers by the funding from CIA and NAVY.
- First Structured Query Language was launched in 1979.
- IBM came up with its version in 1983, with SQL/IDS 1980
- Ellison Changed the Company name to Oracle
- In 2003, \$ 7 Billion Relational DB

Chapter contents

- Good Decision requires good information and good information is derived from raw facts called data.
- Good Decision means which delivers accurate, relevant and timely information.
- What is DB?, What does it do? And Comparison between other Data Management Methods, Different Types of DB and Importance of DB Design.

File System

- Database is evolved from the File Systems.
- Understand the characteristics of the file system.
- Data management limitations by File system.
- Eliminations of the short comings of the file system by DBMS.

Basic Definitions

- Data: raw facts
 - Not processed yet to reveal their meaning
 - Constitute building blocks of information
 - For Examples:
 - Online Surveys
 - Online Data Entry Forms
 - Excel Sheets
 - Reports Forms
- Record keeping with the raw facts
 - Example: Students
 - » Pass 90%
 - » Fail 10 %
 - » Quick Answers

Basic Definitions (Continued...)

- Information: is produced by processing data and reveals meaning of data
 - Good, timely, relevant information key to decision making
 - Good decision making key to organizational survival
 - Example: Informed decisions to meet student grading record
 - Raw data: Storage, Processing and presentation
- Complex formatting: is required when working with complex data types such as sounds, videos 'or' images.
- For Example: Yes/No or Y/N

Basic Definitions (Continued...)

- Knowledge: the body of the information and facts about a specific subjects
- Knowledge implies familiarity awareness and understanding of information.
- New Knowledge can be derived from Old Knowledge.

Basic Definitions (Continued...)

- Data Management is a discipline that focuses on the proper generation, storage and retrieval of data.
- Efficient Data Management requires computer DB.

Basic Definitions (Continued...)

- Database: shared, integrated computer structure housing:
 - End user data
 - Metadata
- Metadata provides a description of the data characteristics and set of relationships that link the data within the Database.
 - Structural Metadata -> data about data
 - Descriptive Metadata-> Content about content

An Example

Converting data to information

Class Roster

Course: MGT 500 Semester: Spring 200X

Business Policy

Section: 2

Name	ID	Major	GPA
Baker, Kenneth D.	324917628	MGT	2.9
Doyle, Joan E.	476193248	MKT	3.4
Finkle, Clive R.	548429344	PRM	2.8
Lewis, John C.	551742186	MGT	3.7
McFerran, Debra R.	409723145	IS	2.9
Sisneros, Michael	392416582	ACCT	3.3

An Example (Cont'd)

Metadata

Data Item		Value		lue	
Name	Туре	Length	Min	Max	Description
Course	Alphanumeric	30			Course ID and name
Section	Integer	1	1	9	Section number
Semester	Alphanumeric	10			Semester and year
Name	Alphanumeric	30			Student name
ID	Integer	9			Student ID (SSN)
Major	Alphanumeric	4			Student major
GPA	Decimal	3	0.0	4.0	Student grade point average

What is a Database Management System (DBMS)

- A collection of programs that manages the database structure and controls access to the data stored in the database
 - Possible to share data among multiple applications or users
 - Example: bank and its ATM machines
 - Makes data management more efficient and effective
 - End users have better access to more and better-managed data
- DBMS hides much of the database's internal complexity from application program and End user

DBMS Manages Interaction

Advantages of the DBMS

- Improved data sharing
 - Shared among users and applications
- Better Data Integration
 - Different User's views into single data Repository
 - Repository: can be a place where multiple DBs or files are located for distribution over the network.
- Minimized Data inconsistency
 - Different versions of the same data.
 - Example: Product ID and Product Number in different departments

Advantages of the DBMS

- Improved Data access
 - Quick answers to the ad hoc queries
 - Query is a complete question: a specific request for data manipulation (read or update data)
 - DBMS sends back an Answer (Query result set) to the application
- Improved Decision Making
 - Better managed data and improved data access >to better quality information ->better decisions
- Increased End User Productivity

Types of the databases

- Single User Database: Runs on a personal Computer
- Multiuser Database: less than 50 workgroup DB, more than 50 Enterprise DB
- Location wise:
 - Single site: Centralized DB
 - Several sites: Distributed DB
- Function wise:
 Operational/transactional/production
 - Time Sensitive information gathered
 - Support a company 's day to day operations

house

- A collection of data designed to support management decision making generally refers to combination of many different DBs across entire enterprise.
 - Generate information to make tactical or strategic decisions
 - Extensive data messaging
 - Historical data from operational DB
 - Examples:
 - Formulate pricing decisions
 - Sale forecast
 - Market Position

Data Mining Concept

 A class of database applications that look for the hidden patterns in a group of data that can be used to predict future behavior.

Disciplines Of Data Mining

Assignment

- What is database structure and Database management system?
- How do you differentiate between file system and computer file systems?
- Give an example of computer file system?
- Bring an example to describe "Database application"?

End of the Lecture