

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : C12N 15/49, A61K 48/00	A2	(11) International Publication Number: WO 00/39302 (43) International Publication Date: 6 July 2000 (06.07.00)
(21) International Application Number: PCT/US99/31245		(72) Inventors: BARNETT, Susan; Chiron Corporation, 4560 Horton Street – R440, Emeryville, CA 94608 (US). ZUR MEGEDE, Jan; Chiron Corporation, 4560 Horton Street – R440, Emeryville, CA 94608 (US). SRIVASTAVA, Indresh; Chiron Corporation, 4560 Horton Street – R440, Emeryville, CA 94608 (US). LIAN, Ying; Chiron Corporation, 4560 Horton Street – R440, Emeryville, CA 94608 (US). HARTOG, Karin; Chiron Corporation, 4560 Horton Street – R440, Emeryville, CA 94608 (US). LIU, Hong; Chiron Corporation, 4560 Horton Street – R440, Emeryville, CA 94608 (US). GREER, Catherine; Chiron Corporation, 4560 Horton Street – R440, Emeryville, CA 94608 (US). SELBY, Mark; Chiron Corporation, 4560 Horton Street – R440, Emeryville, CA 94608 (US). WALKER, Christopher; Chiron Corporation, 4560 Horton Street – R440, Emeryville, CA 94608 (US).
(22) International Filing Date: 30 December 1999 (30.12.99)		(74) Agents: DOLLARD, Anne, S.; Chiron Corporation, Intellectual Property – R440, P.O. Box 8097, Emeryville, CA 94662-8097 (US) et al.
(30) Priority Data: 60/114,495 31 December 1998 (31.12.98) US 60/168,471 1 December 1999 (01.12.99) US		(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
		Published <i>Without international search report and to be republished upon receipt of that report.</i>
(54) Title: IMPROVED EXPRESSION OF HIV POLYPEPTIDES AND PRODUCTION OF VIRUS-LIKE PARTICLES		
(57) Abstract		
<p>The present invention relates to the efficient expression of HIV polypeptides in a variety of cell types, including, but not limited to, mammalian, insect, and plant cells. Synthetic expression cassettes encoding the HIV Gag-containing polypeptides are described, as are uses of the expression cassettes in applications including DNA immunization, generation of packaging cell lines, and production of Env-, tat- or Gag-containing proteins. The invention provides methods of producing Virus-Like Particles (VLPs), as well as, uses of the VLPs including, but not limited to, vehicles for the presentation of antigens and stimulation of immune response in subjects to whom the VLPs are administered.</p>		

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Larvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

IMPROVED EXPRESSION OF HIV POLYPEPTIDES AND
PRODUCTION OF VIRUS-LIKE PARTICLES

5 **TECHNICAL FIELD**

Synthetic expression cassettes encoding the HIV polypeptides (e.g., Gag-, pol-, prot-, reverse transcriptase, Env- or tat-containing polypeptides) are described, as are uses of the expression cassettes. The 10 present invention relates to the efficient expression of HIV polypeptides in a variety of cell types. Further, the invention provides methods of producing Virus-Like Particles (VLPs), as well as, uses of the VLPs and high level expression of oligomeric envelope proteins.

15

BACKGROUND OF THE INVENTION

Acquired immune deficiency syndrome (AIDS) is recognized as one of the greatest health threats facing modern medicine. There is, as yet, no cure for this 20 disease.

In 1983-1984, three groups independently identified the suspected etiological agent of AIDS. See, e.g., Barre-Sinoussi et al. (1983) Science 220:868-871; Montagnier et al., in Human T-Cell Leukemia Viruses 25 (Gallo, Essex & Gross, eds., 1984); Vilmer et al. (1984) The Lancet 1:753; Popovic et al. (1984) Science 224:497-500; Levy et al. (1984) Science 225:840-842. These isolates were variously called lymphadenopathy-associated virus (LAV), human T-cell lymphotropic virus

type III (HTLV-III), or AIDS-associated retrovirus (ARV). All of these isolates are strains of the same virus, and were later collectively named Human Immunodeficiency Virus (HIV). With the isolation of a related

5 AIDS-causing virus, the strains originally called HIV are now termed HIV-1 and the related virus is called HIV-2. See, e.g., Guyader et al. (1987) *Nature* 326:662-669; Brun-Vezinet et al. (1986) *Science* 233:343-346; Clavel et al. (1986) *Nature* 324:691-695.

10 A great deal of information has been gathered about the HIV virus, however, to date an effective vaccine has not been identified. Several targets for vaccine development have been examined including the env, Gag, pol and tat gene products encoded by HIV.

15 Haas, et al., (*Current Biology* 6(3):315-324, 1996) suggested that selective codon usage by HIV-1 appeared to account for a substantial fraction of the inefficiency of viral protein synthesis. Andre, et al., (*J. Virol.* 72(2):1497-1503, 1998) described an increased immune response elicited by DNA vaccination employing a synthetic gp120 sequence with optimized codon usage. Schneider, et al., (*J. Virol.* 71(7):4892-4903, 1997) discuss inactivation of inhibitory (or instability) elements (INS) located within the coding sequences of the

20 Gag and Gag-protease coding sequences.

25 The Gag proteins of HIV-1 are necessary for the assembly of virus-like particles. HIV-1 Gag proteins are involved in many stages of the life cycle of the virus including, assembly, virion maturation after particle release, and early post-entry steps in virus replication. The roles of HIV-1 Gag proteins are numerous and complex (Freed, E.O., *Virology* 251:1-15, 1998).

Wolf, et al., (PCT International Application, WO 96/30523, published 3 October 1996; European Patent Application, Publication No. 0 449 116 A1, published 2 October 1991) have described the use of altered pr55 Gag of HIV-1 to act as a non-infectious retroviral-like particulate carrier, in particular, for the presentation of immunologically important epitopes. Wang, et al., (*Virology* 200:524-534, 1994) describe a system to study assembly of HIV Gag- β -galactosidase fusion proteins into virions. They describe the construction of sequences encoding HIV Gag- β -galactosidase fusion proteins, the expression of such sequences in the presence of HIV Gag proteins, and assembly of these proteins into virus particles.

Recently, Shiver, et al., (PCT International Application, WO 98/34640, published 13 August 1998) described altering HIV-1 (CAM1) Gag coding sequences to produce synthetic DNA molecules encoding HIV Gag and modifications of HIV Gag. The codons of the synthetic molecules were codons preferred by a projected host cell.

The envelope protein of HIV-1 is a glycoprotein of about 160 kD (gp160). During virus infection of the host cell, gp160 is cleaved by host cell proteases to form gp120 and the integral membrane protein, gp41. The gp41 portion is anchored in (and spans) the membrane bilayer of virion, while the gp120 segment protrudes into the surrounding environment. As there is no covalent attachment between gp120 and gp41, free gp120 is released from the surface of virions and infected cells.

Haas, et al., (*Current Biology* 6(3):315-324, 1996) suggested that selective codon usage by HIV-1 appeared to account for a substantial fraction of the inefficiency of viral protein synthesis. Andre, et al., (*J. Virol.*

72(2):1497-1503, 1998) described an increased immune response elicited by DNA vaccination employing a synthetic gp120 sequence with optimized codon usage.

5 **SUMMARY OF THE INVENTION**

The present invention relates to improved expression of HIV *Env*-, *tat*-, *pol*-, *prot*-, reverse transcriptase, or *Gag*-containing polypeptides and production of virus-like particles.

10 In one embodiment the present invention includes an expression cassette, comprising a polynucleotide encoding an HIV *Gag* polypeptide comprising a sequence having at least 90% sequence identity to the sequence presented as SEQ ID NO:20. In certain embodiments, the polynucleotide
15 sequence encoding said *Gag* polypeptide comprises a sequence having at least 90% sequence identity to the sequence presented as SEQ ID NO:9 or SEQ ID NO:4. The expression cassettes may further include a polynucleotide sequence encoding an HIV protease polypeptide, for example a nucleotide sequence having at least 90% sequence identity to a sequence selected from the group consisting of: SEQ ID NO:5, SEQ ID NO:78, and SEQ ID NO:79. The expression cassettes may further include a polynucleotide sequence encoding an HIV reverse
20 transcriptase polypeptide, for example a sequence having at least 90% sequence identity to a sequence selected from the group consisting of: SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, and SEQ ID NO:84. The expression cassettes may further include a polynucleotide
25 sequence encoding an HIV *tat* polypeptide, for example a sequence selected from the group consisting of: SEQ ID NO:87, SEQ ID NO:88, and SEQ ID NO:89. The expression cassettes may further include a polynucleotide sequence encoding an HIV polymerase polypeptide, for example a
30

sequence having at least 90% sequence identity to the sequence presented as SEQ ID NO:6. The expression cassettes may include a polynucleotide sequence encoding an HIV polymerase polypeptide, wherein (i) the nucleotide 5 sequence encoding said polypeptide comprises a sequence having at least 90% sequence identity to the sequence presented as SEQ ID NO:4, and (ii) wherein the sequence is modified by deletions of coding regions corresponding to reverse transcriptase and integrase. The expression 10 cassettes described above may preserves T-helper cell and CTL epitopes. The expression cassettes may further include a polynucleotide sequence encoding an HCV core polypeptide, for example a sequence having at least 90% sequence identity to the sequence presented as SEQ ID 15 NO:7.

In another aspect, the invention includes an expression cassette, comprising a polynucleotide sequence encoding a polypeptide including an HIV Env polypeptide, wherein the polynucleotide sequence encoding said Env 20 polypeptide comprises a sequence having at least 90% sequence identity to SEQ ID NO:71 (Figure 58) or SEQ ID NO:72 (Figure 59). In certain embodiments, the Env expression cassettes includes sequences flanking a V1 region but have a deletion in the V1 region itself, for 25 example the sequence presented as SEQ ID NO:65 (Figure 52, gp160.modUS4.delV1). In certain embodiments, the Env expression cassettes, include sequences flanking a V2 region but have a deletion in the V2 region itself, for example the sequences shown in SEQ ID NO:60 (Figure 47); 30 SEQ ID NO:66 (Figure 53); SEQ ID NO:34 (Figure 20); SEQ ID NO:37 (Figure 24); SEQ ID NO:40 (Figure 27); SEQ ID NO:43 (Figure 30); SEQ ID NO:46 (Figure 33); SEQ ID NO:76 (Figure 64) and SEQ ID NO:49 (Figure 36). In certain

embodiments, the Env expression cassettes include sequences flanking a V1/V2 region but have a deletion in the V1/V2 region itself, for example, SEQ ID NO:59 (Figure 46); SEQ ID NO:61 (Figure 48); SEQ ID NO:67 (Figure 54); SEQ ID NO:75 (Figure 63); SEQ ID NO:35 (Figure 21); SEQ ID NO:38 (Figure 25); SEQ ID NO:41 (Figure 28); SEQ ID NO:44 (Figure 31); SEQ ID NO:47 (Figure 34) and SEQ ID NO:50 (Figure 37). The Env-encoding expression cassettes may also include a mutated cleavage site that prevents the cleavage of a gp140 polypeptide into a gp120 polypeptide and a gp41 polypeptide, for example, SEQ ID NO:57 (Figure 44); SEQ ID NO:61 (Figure 48); SEQ ID NO:63 (Figure 50); SEQ ID NO:39 (Figure 26); SEQ ID NO:40 (Figure 27); SEQ ID NO:41 (Figure 28); SEQ ID NO:42 (Figure 29); SEQ ID NO:43 (Figure 30); SEQ ID NO:44 (Figure 31); SEQ ID NO:45 (Figure 32); SEQ ID NO:46 (Figure 33); and SEQ ID NO:47 (Figure 34). The Env expression cassettes may include a gp160 Env polypeptide or a polypeptide derived from a gp160 Env polypeptide, for example SEQ ID NO:64 (Figure 51); SEQ ID NO:65 (Figure 52); SEQ ID NO:66 (Figure 53); SEQ ID NO:67 (Figure 54); SEQ ID NO:68 (Figure 55); SEQ ID NO:75 (Figure 63); SEQ ID NO:73 (Figure 61); SEQ ID NO:48 (Figure 35); SEQ ID NO:49 (Figure 36); SEQ ID NO:50 (Figure 37); SEQ ID NO:76 (Figure 64); and SEQ ID NO:74 (Figure 62). The Env expression cassettes may include a gp140 Env polypeptide or a polypeptide derived from a gp140 Env polypeptide, for example SEQ ID NO:56 (Figure 43); SEQ ID NO:57 (Figure 44); SEQ ID NO:58 (Figure 45); SEQ ID NO:59 (Figure 46); SEQ ID NO:60 (Figure 47); SEQ ID NO:61 (Figure 48); SEQ ID NO:62 (Figure 49); SEQ ID NO:63 (Figure 50); SEQ ID NO:36 (Figure 23); SEQ ID NO:37 (Figure 24); SEQ ID NO:38 (Figure 25); SEQ ID NO:39

(Figure 26); SEQ ID NO:40 (Figure 27); SEQ ID NO:41 (Figure 28); SEQ ID NO:42 (Figure 29); SEQ ID NO:43 (Figure 30); SEQ ID NO:44 (Figure 31); SEQ ID NO:45 (Figure 32); SEQ ID NO:46 (Figure 33); and SEQ ID NO:47 (Figure 34). The Env expression cassettes may also include a gp120 Env polypeptide or a polypeptide derived from a gp120 Env polypeptide, for example SEQ ID NO:54 (Figure 41); and SEQ ID NO:55 (Figure 42); SEQ ID NO:33 (Figure 19); SEQ ID NO:34 (Figure 20); and SEQ ID NO:35 (Figure 21). The Env expression cassettes may include an Env polypeptide lacking the amino acids corresponding to residues 128 to about 194, relative to strains SF162 or US4, for example, SEQ ID NO:55 (Figure 42); SEQ ID NO:62 (Figure 49); SEQ ID NO:63 (Figure 50); and SEQ ID NO:68 (Figure 55).

In another aspect, the invention includes a recombinant expression system for use in a selected host cell, comprising, one or more of the expression cassettes described herein operably linked to control elements compatible with expression in the selected host cell. The expression cassettes may be included on one or on multiple vectors and may use the same or different promoters. Exemplary control elements include a transcription promoter (e.g., CMV, CMV+intron A, SV40, RSV, HIV-Ltr, MMLV-ltr, and metallothionein), a transcription enhancer element, a transcription termination signal, polyadenylation sequences, sequences for optimization of initiation of translation, and translation termination sequences.

In another aspect, the invention includes a recombinant expression system for use in a selected host cell, comprising, any one of the expression cassettes described herein operably linked to control elements

compatible with expression in the selected host cell. Exemplary control elements include, but are not limited to, a transcription promoter (e.g., CMV, CMV+intron A, SV40, RSV, HIV-LTR, MMLV-LTR, and metallothionein), a transcription enhancer element, a transcription termination signal, polyadenylation sequences, sequences for optimization of initiation of translation, and translation termination sequences.

In yet another aspect, the invention includes a cell comprising one or more of the expression cassettes described herein operably linked to control elements compatible with expression in the cell. The cell can be, for example, a mammalian cell (e.g., BHK, VERO, HT1080, 293, RD, COS-7, or CHO cells), an insect cell (e.g., 15 *Trichoplusia ni* (Tn5) or Sf9), a bacterial cell, a plant cell, a yeast cell, an antigen presenting cell (e.g., primary, immortalized or tumor-derived lymphoid cells such as macrophages, monocytes, dendritic cells, B-cells, T-cells, stem cells, and progenitor cells thereof).

20 In another aspect, the invention includes methods for producing a polypeptide including HIV Gag-, prot-, pol-, reverse transcriptase, Env- or Tat-containing polypeptide sequences, said method comprising, incubating the cells comprising one or more the expression cassettes 25 describe herein, under conditions for producing said polypeptide.

30 In yet another aspect, the invention includes compositions for generating an immunological response, comprising one or more of the expression cassettes described herein. In certain embodiments, the compositions also include an adjuvant.

In a still further aspect, the invention includes methods of generating an immune response in a subject, comprising introducing a composition comprising one or

more of the expression cassettes described herein into the subject under conditions that are compatible with expression of said expression cassette in the subject. In certain embodiments, the expression cassette is
5 introduced using a gene delivery vector. More than one expression cassette may be introduced using one or more gene delivery vectors.

In yet another aspect, the invention includes a purified polynucleotide comprising a polynucleotide sequence encoding a polypeptide including an HIV Env polypeptide, wherein the polynucleotide sequence encoding said Env polypeptide comprises a sequence having at least 90% sequence identity to SEQ ID NO:71 (Figure 58) or SEQ ID NO:72 (Figure 59). Further exemplary purified
15 polynucleotide sequences were presented above.

The polynucleotides of the present invention can be produced by recombinant techniques, synthetic techniques, or combinations thereof.

In another embodiment, the invention includes a
20 method for producing a polypeptide including HIV Gag polypeptide sequences, where the method comprises incubating any of the above cells containing an expression cassette of interest under conditions for producing the polypeptide.

25 The invention further includes, a method for producing virus-like particles (VLPs) where the method comprises incubating any of the above-described cells containing an expression cassette of interest under conditions for producing VLPs.

30 In another aspect the invention includes a method for producing a composition of virus-like particles (VLPs) where, any of the above-described cells containing an expression cassette of interest are incubated under

conditions for producing VLPs, and the VLPs are substantially purified to produce a composition of VLPs.

In a further embodiment of the present invention, packaging cell lines are produced using the expression 5 cassettes of the present invention. For example, a cell line useful for packaging lentivirus vectors comprises suitable host cells that have an expression vector containing an expression cassette of the present invention wherein said polynucleotide sequence is operably linked to control elements compatible with 10 expression in the host cell. In a preferred embodiment, such host cells may be transfected with one or more expression cassettes having a polynucleotide sequence that encodes an HIV *polymerase* polypeptide or 15 polypeptides derived therefrom, for example, where the nucleotide sequence encoding said polypeptide comprises a sequence having at least 90% sequence identity to the sequence presented as SEQ ID NO:6. Further, the HIV *polymerase* polypeptide may be modified by deletions of 20 coding regions corresponding to reverse transcriptase and integrase. Such a polynucleotide sequence may preserve T-helper cell and CTL epitopes, for example when used in a vaccine application. In addition, the polynucleotide sequence may also include other polypeptides. Further, 25 polynucleotide sequences encoding additional polypeptides whose expression are useful for packaging cell line function may also be utilized.

In another aspect, the present invention includes a gene delivery or vaccine vector for use in a subject, 30 where the vector is a suitable gene delivery vector for use in the subject, and the vector comprises one or more of any of the expression cassettes of the present

invention where the polynucleotide sequences of interest are operably linked to control elements compatible with expression in the subject. Such gene delivery vectors can be used in a method of DNA immunization of a subject, 5 for example, by introducing a gene delivery vector into the subject under conditions that are compatible with expression of the expression cassette in the subject. Gene delivery vectors useful in the practice of the present invention include, but are not limited to, 10 nonviral vectors, bacterial plasmid vectors, viral vectors, particulate carriers (where the vector is coated on a polylactide co-glycolide particles, gold or tungsten particle, for example, the coated particle can be delivered to a subject cell using a gene gun), liposome preparations, and viral vectors (e.g., vectors derived 15 from alphaviruses, pox viruses, and vaccinia viruses, as well as, retroviral vectors, including, but not limited to, lentiviral vectors). Alphavirus-derived vectors include, for example, an alphavirus cDNA construct, a 20 recombinant alphavirus particle preparation and a eukaryotic layered vector initiation system. In one embodiment, the subject is a vertebrate, preferably a mammal, and in a further embodiment the subject is a human.

25 The invention further includes a method of generating an immune response in a subject, where cells of a subject are transfected with any of the above-described gene delivery vectors (e.g., alphavirus constructs; alphavirus cDNA constructs; eukaryotic 30 layered vector initiation systems (see, e.g., U.S. Patent Number 5,814,482 for description of suitable eukaryotic layered vector initiation systems); alphavirus particle

preparations; etc.) under conditions that permit the expression of a selected polynucleotide and production of a polypeptide of interest (i.e., encoded by any expression cassette of the present invention), thereby eliciting an immunological response to the polypeptide. Transfection of the cells may be performed *ex vivo* and the transfected cells are reintroduced into the subject. Alternately, or in addition, the cells may be transfected *in vivo* in the subject. The immune response may be humoral and/or cell-mediated (cellular).

Further embodiments of the present invention include purified polynucleotides. In one embodiment, the purified polynucleotide comprises a polynucleotide sequence having at least 90% sequence identity to the sequence presented as SEQ ID NO:20, and complements thereof. In another embodiment, the purified polynucleotide comprises a polynucleotide sequence encoding an HIV Gag polypeptide, wherein the polynucleotide sequence comprises a sequence having at least 90% sequence identity to the sequence presented as SEQ ID NO:20, and complements thereof. In still another embodiment, the purified polynucleotide comprises a polynucleotide sequence encoding an HIV Gag polypeptide, wherein the polynucleotide sequence comprises a sequence having at least 90% sequence identity to the sequence presented as SEQ ID NO:9, and complements thereof. In further embodiments the polynucleotide sequence comprises a sequence having at least 90% sequence identity to one of the following sequences: SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, and complements thereof.

The polynucleotides of the present invention can be produced by recombinant techniques, synthetic techniques, or combinations thereof.

These and other embodiments of the present invention will readily occur to those of ordinary skill in the art in view of the disclosure herein.

5 **BRIEF DESCRIPTION OF THE FIGURES**

Figure 1 shows the locations of the inactivation sites for the native HIV-1SF2 Gag protein coding sequence.

10 Figure 2 shows the locations of the inactivation sites for the native HIV-1SF2 Gag-protease protein coding sequence.

Figures 3A and 3B show electron micrographs of virus-like particles. Figure 3A shows immature p55Gag virus-like particles in COS-7 cells transfected with a 15 synthetic HIV-1_{SF2} gag construct while Figure 3B shows mature (arrows) and immature VLP in cells transfected with a modified HIV-1_{SF2} gagprotease construct (GP2, SEQ ID NO:70). Transfected cells were fixed at 24 h (gag) or 48 h (gagprotease) post-transfection and subsequently 20 analyzed by electron microscopy (magnification at 100,000X). Cells transfected with vector alone (pCMVKm2) served as negative control (data not shown).

Figure 4 presents an image of samples from a series of fractions which were electrophoresed on an 8-16% SDS 25 polyacrylamide gel and the resulting bands visualized by commassie blue staining. The results show that the native p55 Gag virus-like particles (VLPs) banded at a sucrose density of range of 1.15 - 1.19 g/ml with the peak at approximately 1.17 g/ml.

30 Figure 5 presents an image similar to Figure 4 where the analysis was performed using Gag VLPs produced by a synthetic Gag expression cassette.

Figure 6 presents a comparison of the total amount of purified HIV p55 Gag from several preparations obtained from two baculovirus expression cassettes encoding native and modified Gag.

5 Figure 7 presents an alignment of modified coding sequences of the present invention including a synthetic Gag expression cassette (SEQ ID NO:4), a synthetic Gag-protease expression cassette (SEQ ID NO:5), and a synthetic Gag-polymerase expression cassette (SEQ ID NO:6). A common region (Gag-common; SEQ ID NO:9) extends 10 from position 1 to position 1262.

15 Figure 8 presents an image of wild-type Gag-HCV core expression samples from a series of fractions which were electrophoresed on an 8-16% SDS polyacrylamide gel and the resulting bands visualized by commassie staining.

Figure 9 shows the results of Western blot analysis of the gel shown presented in Figure 8.

20 Figure 10 presents results similar to those shown in Figure 9. The results in Figure 10 indicate that the main HCV Core-specific reactivity migrates at an approximate molecular weight of 72,000 kD, which is in accordance with the predicted molecular weight of the Gag-HCV core chimeric protein.

25 Figures 11A to 11D present a comparison of AT content, in percent, of cDNAs corresponding to an unstable human mRNA (human IFN γ mRNA; 11A), wild-type HIV Gag native RNA (11B), a stable human mRNA (human GAPDH mRNA; 11C), and synthetic HIV Gag RNA (11D).

30 Figure 12 shows the location of the inactivation sites for the native HIV-1SF2 Gag-polymerase sequence.

Figure 13A presents a vector map of pESN2dhfr.

Figure 13B presents a map of the pCMVIII vector.

Figure 14 presents a vector map of pCMV-LINK.

Figure 15 presents a schematic diagram showing the relationships between the following forms of the HIV Env polypeptide: gp160, gp140, gp120, and gp41.

Figure 16 depicts the nucleotide sequence of wild-type gp120 from SF162 (SEQ ID NO:30).

Figure 17 depicts the nucleotide sequence of the wild-type gp140 from SF162 (SEQ ID NO:31).

Figure 18 depicts the nucleotide sequence of the wild-type gp160 from SF162 (SEQ ID NO:32).

Figure 19 depicts the nucleotide sequence of the construct designated gp120.modsF162 (SEQ ID NO:33).

Figure 20 depicts the nucleotide sequence of the construct designated gp120.modsF162.delV2 (SEQ ID NO:34).

Figure 21 depicts the nucleotide sequence of the construct designated gp120.modsF162.delV1/V2 (SEQ ID NO:35).

Figures 22A-H show the percent A-T content over the length of the sequences for IFN γ (Figures 2C and 2G); native gp160 Env US4 and SF162 (Figures 2A and 2E, respectively); GAPDH (Figures 2D and 2H); and the synthetic gp160 Env for US4 and SF162 (Figures 2B and 2F, respectively).

Figure 23 depicts the nucleotide sequence of the construct designated gp140.modsF162 (SEQ ID NO:36).

Figure 24 depicts the nucleotide sequence of the construct designated gp140.modsF162.delV2 (SEQ ID NO:37).

Figure 25 depicts the nucleotide sequence of the construct designated gp140.modsF162.delV1/V2 (SEQ ID NO:38).

Figure 26 depicts the nucleotide sequence of the construct designated gp140.mut.modsF162 (SEQ ID NO:39).

Figure 27 depicts the nucleotide sequence of the construct designated gp140.mut.modsF162.delV2 (SEQ ID NO:40).

Figure 28 depicts the nucleotide sequence of the construct designated gp140.mut.modSF162.delV1/V2 (SEQ ID NO:41).

5 Figure 29 depicts the nucleotide sequence of the construct designated gp140.mut7.modSF162 (SEQ ID NO:42).

Figure 30 depicts the nucleotide sequence of the construct designated gp140.mut7.modSF162.delV2 (SEQ ID NO:43).

10 Figure 31 depicts the nucleotide sequence of the construct designated gp140.mut7.modSF162.delV1/V2 (SEQ ID NO:44).

Figure 32 depicts the nucleotide sequence of the construct designated gp140.mut8.modSF162 (SEQ ID NO:45).

15 Figure 33 depicts the nucleotide sequence of the construct designated gp140.mut8.modSF162.delV2 (SEQ ID NO:46).

Figure 34 depicts the nucleotide sequence of the construct designated gp140.mut8.modSF162.delV1/V2 (SEQ ID NO:47).

20 Figure 35 depicts the nucleotide sequence of the construct designated gp160.modSF162 (SEQ ID NO:48).

Figure 36 depicts the nucleotide sequence of the construct designated gp160.modSF162.delV2 (SEQ ID NO:49).

25 Figure 37 depicts the nucleotide sequence of the construct designated gp160.modSF162.delV1/V2 (SEQ ID NO:50).

Figure 38 depicts the nucleotide sequence of the wild-type gp120 from US4 (SEQ ID NO:51).

30 Figure 39 depicts the nucleotide sequence of the wild-type gp140 from US4 (SEQ ID NO:52).

Figure 40 depicts the nucleotide sequence of the wild-type gp160 from US4 (SEQ ID NO:53).

Figure 41 depicts the nucleotide sequence of the construct designated gp120.modUS4 (SEQ ID NO:54).

Figure 42 depicts the nucleotide sequence of the construct designated gp120.modUS4.del 128-194 (SEQ ID NO:55).

5 Figure 43 depicts the nucleotide sequence of the construct designated gp140.modUS4 (SEQ ID NO:56).

Figure 44 depicts the nucleotide sequence of the construct designated gp140.mut.modUS4 (SEQ ID NO:57).

Figure 45 depicts the nucleotide sequence of the construct designated gp140.TM.modUS4 (SEQ ID NO:58).

10 Figure 46 depicts the nucleotide sequence of the construct designated gp140.modUS4.delV1/V2 (SEQ ID NO:59).

Figure 47 depicts the nucleotide sequence of the construct designated gp140.modUS4.delV2 (SEQ ID NO:60).

15 Figure 48 depicts the nucleotide sequence of the construct designated gp140.mut.modUS4.delV1/V2 (SEQ ID NO:61).

Figure 49 depicts the nucleotide sequence of the construct designated gp140.modUS4.del 128-194 (SEQ ID NO:62).

Figure 50 depicts the nucleotide sequence of the construct designated gp140.mut.modUS4.del 128-194 (SEQ ID NO:63).

25 Figure 51 depicts the nucleotide sequence of the construct designated gp160.modUS4 (SEQ ID NO:64).

Figure 52 depicts the nucleotide sequence of the construct designated gp160.modUS4.delV1 (SEQ ID NO:65).

Figure 53 depicts the nucleotide sequence of the construct designated gp160.modUS4.delV2 (SEQ ID NO:66).

30 Figure 54 depicts the nucleotide sequence of the construct designated gp160.modUS4.delV1/V2 (SEQ ID NO:67).

Figure 55 depicts the nucleotide sequence of the construct designated gp160.modUS4.del 128-194 (SEQ ID NO:68).

5 Figure 56 depicts the nucleotide sequence of the common region of Env from wild-type US4 (SEQ ID NO:69).

Figure 57 depicts the nucleotide sequence of the common region of Env from wild-type SF162 (SEQ ID NO:70).

10 Figure 58 depicts the nucleotide sequence of synthetic sequences corresponding to the common region of Env from US4 (SEQ ID NO:71).

Figure 59 depicts the nucleotide sequence of synthetic sequences corresponding to the common region of Env from SF162 (SEQ ID NO:72).

15 Figure 60 presents a schematic representation of an Env polypeptide purification strategy.

Figure 61 depicts the nucleotide sequence of the bicistronic construct designated gp160.modUS4.Gag.modSF2 (SEQ ID NO:73).

20 Figure 62 depicts the nucleotide sequence of the bicistronic construct designated gp160.modSF162.Gag.modSF2 (SEQ ID NO:74).

Figure 63 depicts the nucleotide sequence of the bicistronic construct designated gp160.modUS4.-delV1/V2.Gag.modSF2 (SEQ ID NO:75).

25 Figure 64 depicts the nucleotide sequence of the bicistronic construct designated gp160.modSF162.delV2.Gag.modSF2 (SEQ ID NO:76).

Figures 65A-65F show micrographs of 293T cells transfected with the following polypeptide encoding 30 sequences: Figure 65A, gag.modSF2; Figure 65B, gp160.modUS4; Figure 65C, gp160.modUS4.delV1/V2.gag.modSF2 (bicistronic Env and Gag); Figures 65D and 65E, gp160.modUS4.delV1/V2 and

gag.modSF2; and Figure 65F, gp120.modSF162.delV2 and gag.modSF2.

Figures 66A and 66B present alignments of selected modified coding sequences of the present invention including a common region defined for each group of synthetic Env expression cassettes. Figure 66A presents alignments of modified SF162 sequences. Figure 66B presents alignments of modified US4 sequences. The SEQ ID NOs for these sequences are presented in Tables 1A and 1B.

Figure 67 shows the ELISA titers (binding antibodies) obtained in two rhesus macaques (H445, lines with solid black dots; and J408, lines with open squares). The y-axis is the end-point gp140 ELISA titers and the x-axis shows weeks post-immunization. The dashed lines at 0, 4, and 8 weeks represent DNA immunizations. The alternating dash/dotted line at 27 weeks indicates a DNA plus protein boost immunization.

Figure 68 (SEQ ID NO:77) depicts the wild-type nucleotide sequence of Gag reverse transcriptase from SF2.

Figure 69 (SEQ ID NO:78) depicts the nucleotide sequence of the construct designated GP1.

Figure 70 (SEQ ID NO:79) depicts the nucleotide sequence of the construct designated GP2.

Figure 71 (SEQ ID NO:80) depicts the nucleotide sequence of the construct designated FS(+).protinact.RTopt.YM. FS(+) indicates that there is a frameshift in the GagPol coding sequence.

Figure 72 (SEQ ID NO:81) depicts the nucleotide sequence of the construct designated FS(+).protinact.RTopt.YMWM.

Figure 73 (SEQ ID NO:82) depicts the nucleotide sequence of the construct designated FS(-

) .protmod.RTopt.YM. FS(-) indicates that there is no frameshift in the GagPol coding sequence.

Figure 74 (SEQ ID NO:83) depicts the nucleotide sequence of the construct designated

5 FS(-).protmod.RTopt.YMWM.

Figure 75 (SEQ ID NO:84) depicts the nucleotide sequence of the construct designated FS(-) .protmod.RTopt(+).

Figure 76 (SEQ ID NO:85) depicts the nucleotide sequence of wild type Tat from isolate SF162.

Figure 77 (SEQ ID NO:86) depicts the amino acid sequence of the tat polypeptide.

Figure 78 (SEQ ID NO:87) depicts the nucleotide sequence of a synthetic Tat construct designated

15 Tat.SF162.opt.

Figure 79 (SEQ ID NO:88) depicts the nucleotide sequence of a synthetic Tat construct designated tat.cys22.sf162.opt. The construct encodes a tat polypeptide in which the cystein residue at position 22 of the wild type Tat polypeptide is replaced by a glycine residue.

Figures 80A to 80E are an alignment of the nucleotide sequences of the constructs designated Gag.mod.SF2, GP1 (SEQ ID NO:78), and GP2 (SEQ ID NO:79).

25 Figure 81 (SEQ ID NO:89) depicts the nucleotide sequence of the construct designated tataminoSF162.opt, which encodes the amino terminus of that tat protein. The codon encoding the cystein-22 residue is underlined.

Figure 82 (SEQ ID NO:90) depicts the amino acid sequence of the polypeptide encoded by the construct designated tat.cys22.SF162.opt (SEQ ID NO:88).

DETAILED DESCRIPTION OF THE INVENTION

The practice of the present invention will employ, unless otherwise indicated, conventional methods of chemistry, biochemistry, molecular biology, immunology and pharmacology, within the skill of the art. Such techniques are explained fully in the literature. See, e.g., *Remington's Pharmaceutical Sciences*, 18th Edition (Easton, Pennsylvania: Mack Publishing Company, 1990); *Methods In Enzymology* (S. Colowick and N. Kaplan, eds., Academic Press, Inc.); and *Handbook of Experimental Immunology*, Vols. I-IV (D.M. Weir and C.C. Blackwell, eds., 1986, Blackwell Scientific Publications); Sambrook, et al., *Molecular Cloning: A Laboratory Manual* (2nd Edition, 1989); *Short Protocols in Molecular Biology*, 4th ed. (Ausubel et al. eds., 1999, John Wiley & Sons); *Molecular Biology Techniques: An Intensive Laboratory Course*, (Ream et al., eds., 1998, Academic Press); *PCR (Introduction to Biotechniques Series)*, 2nd ed. (Newton & Graham eds., 1997, Springer Verlag).

As used in this specification and the appended claims, the singular forms "a," "an" and "the" include plural references unless the content clearly dictates otherwise. Thus, for example, reference to "an antigen" includes a mixture of two or more such agents.

25

1. DEFINITIONS

In describing the present invention, the following terms will be employed, and are intended to be defined as indicated below.

30

"Synthetic" sequences, as used herein, refers to Env-, tat- or Gag-encoding polynucleotides whose expression has been optimized as described herein, for example, by codon substitution, deletions, replacements and/or inactivation of inhibitory sequences. "Wild-type"

or "native" sequences, as used herein, refers to polypeptide encoding sequences that are essentially as they are found in nature, e.g., Gag encoding sequences as found in the isolate HIV-1SF2 or Env encoding sequences as found in the isolates HIV-1SF162 or HIV1US4.

5 As used herein, the term "virus-like particle" or "VLP" refers to a nonreplicating, viral shell, derived from any of several viruses discussed further below.

10 VLPs are generally composed of one or more viral proteins, such as, but not limited to those proteins referred to as capsid, coat, shell, surface and/or envelope proteins, or particle-forming polypeptides derived from these proteins. VLPs can form spontaneously upon recombinant expression of the protein in an

15 appropriate expression system. Methods for producing particular VLPs are known in the art and discussed more fully below. The presence of VLPs following recombinant expression of viral proteins can be detected using conventional techniques known in the art, such as by

20 electron microscopy, biophysical characterization, and the like. See, e.g., Baker et al., *Biophys. J.* (1991) 60:1445-1456; Hagensee et al., *J. Virol.* (1994) 68:4503-4505. For example, VLPs can be isolated by density gradient centrifugation and/or identified by

25 characteristic density banding (e.g., Example 7).

Alternatively, cryoelectron microscopy can be performed on vitrified aqueous samples of the VLP preparation in question, and images recorded under appropriate exposure conditions.

30 By "particle-forming polypeptide" derived from a particular viral protein is meant a full-length or near full-length viral protein, as well as a fragment thereof, or a viral protein with internal deletions, which has the ability to form VLPs under conditions that favor VLP

formation. Accordingly, the polypeptide may comprise the full-length sequence, fragments, truncated and partial sequences, as well as analogs and precursor forms of the reference molecule. The term therefore intends

5 deletions, additions and substitutions to the sequence, so long as the polypeptide retains the ability to form a VLP. Thus, the term includes natural variations of the specified polypeptide since variations in coat proteins often occur between viral isolates. The term also

10 includes deletions, additions and substitutions that do not naturally occur in the reference protein, so long as the protein retains the ability to form a VLP. Preferred substitutions are those which are conservative in nature, i.e., those substitutions that take place within a family

15 of amino acids that are related in their side chains. Specifically, amino acids are generally divided into four families: (1) acidic -- aspartate and glutamate; (2) basic -- lysine, arginine, histidine; (3) non-polar -- alanine, valine, leucine, isoleucine, proline,

20 phenylalanine, methionine, tryptophan; and (4) uncharged polar -- glycine, asparagine, glutamine, cystine, serine threonine, tyrosine. Phenylalanine, tryptophan, and tyrosine are sometimes classified as aromatic amino acids.

25 An "antigen" refers to a molecule containing one or more epitopes (either linear, conformational or both) that will stimulate a host's immune system to make a humoral and/or cellular antigen-specific response. The term is used interchangeably with the term "immunogen."

30 Normally, a B-cell epitope will include at least about 5 amino acids but can be as small as 3-4 amino acids. A T-cell epitope, such as a CTL epitope, will include at least about 7-9 amino acids, and a helper T-cell epitope at least about 12-20 amino acids. Normally, an epitope

will include between about 7 and 15 amino acids, such as, 9, 10, 12 or 15 amino acids. The term "antigen" denotes both subunit antigens, (i.e., antigens which are separate and discrete from a whole organism with which the antigen 5 is associated in nature), as well as, killed, attenuated or inactivated bacteria, viruses, fungi, parasites or other microbes. Antibodies such as anti-idiotype antibodies, or fragments thereof, and synthetic peptide mimotopes, which can mimic an antigen or antigenic 10 determinant, are also captured under the definition of antigen as used herein. Similarly, an oligonucleotide or polynucleotide which expresses an antigen or antigenic determinant *in vivo*, such as in gene therapy and DNA immunization applications, is also included in the 15 definition of antigen herein.

For purposes of the present invention, antigens can be derived from any of several known viruses, bacteria, parasites and fungi, as described more fully below. The term also intends any of the various tumor antigens. 20 Furthermore, for purposes of the present invention, an "antigen" refers to a protein which includes modifications, such as deletions, additions and substitutions (generally conservative in nature), to the native sequence, so long as the protein maintains the 25 ability to elicit an immunological response, as defined herein. These modifications may be deliberate, as through site-directed mutagenesis, or may be accidental, such as through mutations of hosts which produce the antigens.

30 An "immunological response" to an antigen or composition is the development in a subject of a humoral and/or a cellular immune response to an antigen present in the composition of interest. For purposes of the present invention, a "humoral immune response" refers to

an immune response mediated by antibody molecules, while a "cellular immune response" is one mediated by T-lymphocytes and/or other white blood cells. One important aspect of cellular immunity involves an antigen-specific response by cytolytic T-cells ("CTL"s). CTLs have specificity for peptide antigens that are presented in association with proteins encoded by the major histocompatibility complex (MHC) and expressed on the surfaces of cells. CTLs help induce and promote the destruction of intracellular microbes, or the lysis of cells infected with such microbes. Another aspect of cellular immunity involves an antigen-specific response by helper T-cells. Helper T-cells act to help stimulate the function, and focus the activity of, nonspecific effector cells against cells displaying peptide antigens in association with MHC molecules on their surface. A "cellular immune response" also refers to the production of cytokines, chemokines and other such molecules produced by activated T-cells and/or other white blood cells, including those derived from CD4+ and CD8+ T-cells.

A composition or vaccine that elicits a cellular immune response may serve to sensitize a vertebrate subject by the presentation of antigen in association with MHC molecules at the cell surface. The cell-mediated immune response is directed at, or near, cells presenting antigen at their surface. In addition, antigen-specific T-lymphocytes can be generated to allow for the future protection of an immunized host.

The ability of a particular antigen to stimulate a cell-mediated immunological response may be determined by a number of assays, such as by lymphoproliferation (lymphocyte activation) assays, CTL cytotoxic cell assays, or by assaying for T-lymphocytes specific for the

antigen in a sensitized subject. Such assays are well known in the art. See, e.g., Erickson et al., *J. Immunol.* (1993) 151:4189-4199; Doe et al., *Eur. J. Immunol.* (1994) 24:2369-2376. Recent methods of
5 measuring cell-mediated immune response include measurement of intracellular cytokines or cytokine secretion by T-cell populations, or by measurement of epitope specific T-cells (e.g., by the tetramer technique) (reviewed by McMichael, A.J., and O'Callaghan,
10 C.A., *J. Exp. Med.* 187(9)1367-1371, 1998; McHeyzer-Williams, M.G., et al, *Immunol. Rev.* 150:5-21, 1996; Lalvani, A., et al, *J. Exp. Med.* 186:859-865, 1997).

Thus, an immunological response as used herein may be one which stimulates the production of CTLs, and/or
15 the production or activation of helper T- cells. The antigen of interest may also elicit an antibody-mediated immune response. Hence, an immunological response may include one or more of the following effects: the production of antibodies by B-cells; and/or the
20 activation of suppressor T-cells and/or $\gamma\delta$ T-cells directed specifically to an antigen or antigens present in the composition or vaccine of interest. These responses may serve to neutralize infectivity, and/or mediate antibody-complement, or antibody dependent cell
25 cytotoxicity (ADCC) to provide protection to an immunized host. Such responses can be determined using standard immunoassays and neutralization assays, well known in the art.

An "immunogenic composition" is a composition that
30 comprises an antigenic molecule where administration of the composition to a subject results in the development in the subject of a humoral and/or a cellular immune response to the antigenic molecule of interest.

By "subunit vaccine" is meant a vaccine composition which includes one or more selected antigens but not all antigens, derived from or homologous to, an antigen from a pathogen of interest such as from a virus, bacterium, parasite or fungus. Such a composition is substantially free of intact pathogen cells or pathogenic particles, or the lysate of such cells or particles. Thus, a "subunit vaccine" can be prepared from at least partially purified (preferably substantially purified) immunogenic polypeptides from the pathogen, or analogs thereof. The method of obtaining an antigen included in the subunit vaccine can thus include standard purification techniques, recombinant production, or synthetic production.

"Substantially purified" generally refers to isolation of a substance (compound, polynucleotide, protein, polypeptide, polypeptide composition) such that the substance comprises the majority percent of the sample in which it resides. Typically in a sample a substantially purified component comprises 50%, preferably 80%-85%, more preferably 90-95% of the sample. Techniques for purifying polynucleotides and polypeptides of interest are well-known in the art and include, for example, ion-exchange chromatography, affinity chromatography and sedimentation according to density.

A "coding sequence" or a sequence which "encodes" a selected polypeptide, is a nucleic acid molecule which is transcribed (in the case of DNA) and translated (in the case of mRNA) into a polypeptide *in vivo* when placed under the control of appropriate regulatory sequences (or "control elements"). The boundaries of the coding sequence are determined by a start codon at the 5' (amino) terminus and a translation stop codon at the 3' (carboxy) terminus. A coding sequence can include, but

is not limited to, cDNA from viral, prokaryotic or eucaryotic mRNA, genomic DNA sequences from viral or prokaryotic DNA, and even synthetic DNA sequences. A transcription termination sequence may be located 3' to
5 the coding sequence.

Typical "control elements", include, but are not limited to, transcription promoters, transcription enhancer elements, transcription termination signals, polyadenylation sequences (located 3' to the translation stop codon), sequences for optimization of initiation of translation (located 5' to the coding sequence), and translation termination sequences, see e.g., McCaughan et al. (1995) PNAS USA 92:5431-5435; Kochetov et al (1998) FEBS Letts. 440:351-355.

15 A "nucleic acid" molecule can include, but is not limited to, prokaryotic sequences, eucaryotic mRNA, cDNA from eucaryotic mRNA, genomic DNA sequences from eucaryotic (e.g., mammalian) DNA, and even synthetic DNA sequences. The term also captures sequences that include
20 any of the known base analogs of DNA and RNA.

"Operably linked" refers to an arrangement of elements wherein the components so described are configured so as to perform their usual function. Thus, a given promoter operably linked to a coding sequence is
25 capable of effecting the expression of the coding sequence when the proper enzymes are present. The promoter need not be contiguous with the coding sequence, so long as it functions to direct the expression thereof. Thus, for example, intervening untranslated yet
30 transcribed sequences can be present between the promoter sequence and the coding sequence and the promoter sequence can still be considered "operably linked" to the coding sequence.

"Recombinant" as used herein to describe a nucleic acid molecule means a polynucleotide of genomic, cDNA, semisynthetic, or synthetic origin which, by virtue of its origin or manipulation: (1) is not associated with all or a portion of the polynucleotide with which it is associated in nature; and/or (2) is linked to a polynucleotide other than that to which it is linked in nature. The term "recombinant" as used with respect to a protein or polypeptide means a polypeptide produced by expression of a recombinant polynucleotide. "Recombinant host cells," "host cells," "cells," "cell lines," "cell cultures," and other such terms denoting prokaryotic microorganisms or eukaryotic cell lines cultured as unicellular entities, are used interchangeably, and refer to cells which can be, or have been, used as recipients for recombinant vectors or other transfer DNA, and include the progeny of the original cell which has been transfected. It is understood that the progeny of a single parental cell may not necessarily be completely identical in morphology or in genomic or total DNA complement to the original parent, due to accidental or deliberate mutation. Progeny of the parental cell which are sufficiently similar to the parent to be characterized by the relevant property, such as the presence of a nucleotide sequence encoding a desired peptide, are included in the progeny intended by this definition, and are covered by the above terms.

Techniques for determining amino acid sequence "similarity" are well known in the art. In general, "similarity" means the exact amino acid to amino acid comparison of two or more polypeptides at the appropriate place, where amino acids are identical or possess similar chemical and/or physical properties such as charge or hydrophobicity. A so-termed "percent similarity" then

can be determined between the compared polypeptide sequences. Techniques for determining nucleic acid and amino acid sequence identity also are well known in the art and include determining the nucleotide sequence of 5 the mRNA for that gene (usually via a cDNA intermediate) and determining the amino acid sequence encoded thereby, and comparing this to a second amino acid sequence. In general, "identity" refers to an exact nucleotide to nucleotide or amino acid to amino acid correspondence of 10 two polynucleotides or polypeptide sequences, respectively.

Two or more polynucleotide sequences can be compared by determining their "percent identity." Two or more amino acid sequences likewise can be compared by 15 determining their "percent identity." The percent identity of two sequences, whether nucleic acid or peptide sequences, is generally described as the number of exact matches between two aligned sequences divided by the length of the shorter sequence and multiplied by 100. 20 An approximate alignment for nucleic acid sequences is provided by the local homology algorithm of Smith and Waterman, Advances in Applied Mathematics 2:482-489 (1981). This algorithm can be extended to use with peptide sequences using the scoring matrix developed by 25 Dayhoff, Atlas of Protein Sequences and Structure, M.O. Dayhoff ed., 5 suppl. 3:353-358, National Biomedical Research Foundation, Washington, D.C., USA, and normalized by Gribskov, Nucl. Acids Res. 14(6):6745-6763 (1986). An implementation of this algorithm for nucleic 30 acid and peptide sequences is provided by the Genetics Computer Group (Madison, WI) in their BestFit utility application. The default parameters for this method are

described in the Wisconsin Sequence Analysis Package Program Manual, Version 8 (1995) (available from Genetics Computer Group, Madison, WI). Other equally suitable programs for calculating the percent identity or
5 similarity between sequences are generally known in the art.

For example, percent identity of a particular nucleotide sequence to a reference sequence can be determined using the homology algorithm of Smith and Waterman with a default scoring table and a gap penalty of six nucleotide positions. Another method of establishing percent identity in the context of the present invention is to use the MPSRCH package of programs copyrighted by the University of Edinburgh,
10 developed by John F. Collins and Shane S. Sturrok, and distributed by IntelliGenetics, Inc. (Mountain View, CA). From this suite of packages, the Smith-Waterman algorithm can be employed where default parameters are used for the scoring table (for example, gap open penalty of 12, gap extension penalty of one, and a gap of six). From the data generated, the "Match" value reflects "sequence identity." Other suitable programs for calculating the percent identity or similarity between sequences are generally known in the art, such as the alignment program
15 BLAST, which can also be used with default parameters. For example, BLASTN and BLASTP can be used with the following default parameters: genetic code = standard; filter = none; strand = both; cutoff = 60; expect = 10; Matrix = BLOSUM62; Descriptions = 50 sequences; sort by =
20 HIGH SCORE; Databases = non-redundant, GenBank + EMBL + DDBJ + PDB + GenBank CDS translations + Swiss protein + Spupdate + PIR. Details of these programs can be found at
25

the following internet address:
<http://www.ncbi.nlm.gov/cgi-bin/BLAST>.

One of skill in the art can readily determine the proper search parameters to use for a given sequence in
5 the above programs. For example, the search parameters may vary based on the size of the sequence in question.
Thus, for example, a representative embodiment of the present invention would include an isolated polynucleotide having X contiguous nucleotides, wherein
10 (i) the X contiguous nucleotides have at least about 50% identity to Y contiguous nucleotides derived from any of the sequences described herein, (ii) X equals Y, and
(iii) X is greater than or equal to 6 nucleotides and up to 5000 nucleotides, preferably greater than or equal to
15 8 nucleotides and up to 5000 nucleotides, more preferably 10-12 nucleotides and up to 5000 nucleotides, and even more preferably 15-20 nucleotides, up to the number of nucleotides present in the full-length sequences described herein (e.g., see the Sequence Listing and
20 claims), including all integer values falling within the above-described ranges.

The synthetic expression cassettes (and purified polynucleotides) of the present invention include related polynucleotide sequences having about 80% to 100%,
25 greater than 80-85%, preferably greater than 90-92%, more preferably greater than 95%, and most preferably greater than 98% sequence (including all integer values falling within these described ranges) identity to the synthetic expression cassette sequences disclosed herein (for example, to the sequences presented in Tables 1A and 1B) when the sequences of the present invention are used as the query sequence.

Two nucleic acid fragments are considered to "selectively hybridize" as described herein. The degree of sequence identity between two nucleic acid molecules affects the efficiency and strength of hybridization events between such molecules. A partially identical nucleic acid sequence will at least partially inhibit a completely identical sequence from hybridizing to a target molecule. Inhibition of hybridization of the completely identical sequence can be assessed using hybridization assays that are well known in the art (e.g., Southern blot, Northern blot, solution hybridization, or the like, see Sambrook, et al., *Molecular Cloning: A Laboratory Manual*, Second Edition, (1989) Cold Spring Harbor, N.Y.). Such assays can be conducted using varying degrees of selectivity, for example, using conditions varying from low to high stringency. If conditions of low stringency are employed, the absence of non-specific binding can be assessed using a secondary probe that lacks even a partial degree of sequence identity (for example, a probe having less than about 30% sequence identity with the target molecule), such that, in the absence of non-specific binding events, the secondary probe will not hybridize to the target.

When utilizing a hybridization-based detection system, a nucleic acid probe is chosen that is complementary to a target nucleic acid sequence, and then by selection of appropriate conditions the probe and the target sequence "selectively hybridize," or bind, to each other to form a hybrid molecule. A nucleic acid molecule that is capable of hybridizing selectively to a target sequence under "moderately stringent" typically

hybridizes under conditions that allow detection of a target nucleic acid sequence of at least about 10-14 nucleotides in length having at least approximately 70% sequence identity with the sequence of the selected 5 nucleic acid probe. Stringent hybridization conditions typically allow detection of target nucleic acid sequences of at least about 10-14 nucleotides in length having a sequence identity of greater than about 90-95% with the sequence of the selected nucleic acid probe.

10 Hybridization conditions useful for probe/target hybridization where the probe and target have a specific degree of sequence identity, can be determined as is known in the art (see, for example, Nucleic Acid Hybridization: A Practical Approach, editors B.D. Hames and S.J. Higgins, (1985) Oxford; Washington, DC; IRL Press).

With respect to stringency conditions for hybridization, it is well known in the art that numerous equivalent conditions can be employed to establish a 20 particular stringency by varying, for example, the following factors: the length and nature of probe and target sequences, base composition of the various sequences, concentrations of salts and other hybridization solution components, the presence or 25 absence of blocking agents in the hybridization solutions (e.g., formamide, dextran sulfate, and polyethylene glycol), hybridization reaction temperature and time parameters, as well as, varying wash conditions. The selection of a particular set of hybridization conditions 30 is selected following standard methods in the art (see, for example, Sambrook, et al., Molecular Cloning: A

Laboratory Manual, Second Edition, (1989) Cold Spring Harbor, N.Y.).

A first polynucleotide is "derived from" second polynucleotide if it has the same or substantially the
5 same basepair sequence as a region of the second polynucleotide, its cDNA, complements thereof, or if it displays sequence identity as described above.

A first polypeptide is "derived from" a second polypeptide if it is (i) encoded by a first
10 polynucleotide derived from a second polynucleotide, or (ii) displays sequence identity to the second polypeptides as described above.

Generally, a viral polypeptide is "derived from" a particular polypeptide of a virus (viral polypeptide) if
15 it is (i) encoded by an open reading frame of a polynucleotide of that virus (viral polynucleotide), or (ii) displays sequence identity to polypeptides of that virus as described above.

"Encoded by" refers to a nucleic acid sequence which
20 codes for a polypeptide sequence, wherein the polypeptide sequence or a portion thereof contains an amino acid sequence of at least 3 to 5 amino acids, more preferably at least 8 to 10 amino acids, and even more preferably at least 15 to 20 amino acids from a polypeptide encoded by
25 the nucleic acid sequence. Also encompassed are polypeptide sequences which are immunologically identifiable with a polypeptide encoded by the sequence.

"Purified polynucleotide" refers to a polynucleotide of interest or fragment thereof which is essentially
30 free, e.g., contains less than about 50%, preferably less than about 70%, and more preferably less than about 90%, of the protein with which the polynucleotide is naturally associated. Techniques for purifying polynucleotides of interest are well-known in the art and include, for

example, disruption of the cell containing the polynucleotide with a chaotropic agent and separation of the polynucleotide(s) and proteins by ion-exchange chromatography, affinity chromatography and sedimentation 5 according to density.

By "nucleic acid immunization" is meant the introduction of a nucleic acid molecule encoding one or more selected antigens into a host cell, for the *in vivo* expression of an antigen, antigens, an epitope, or 10 epitopes. The nucleic acid molecule can be introduced directly into a recipient subject, such as by injection, inhalation, oral, intranasal and mucosal administration, or the like, or can be introduced *ex vivo*, into cells which have been removed from the host. In the latter 15 case, the transformed cells are reintroduced into the subject where an immune response can be mounted against the antigen encoded by the nucleic acid molecule.

"Gene transfer" or "gene delivery" refers to methods or systems for reliably inserting DNA or RNA of interest 20 into a host cell. Such methods can result in transient expression of non-integrated transferred DNA, extrachromosomal replication and expression of transferred replicons (e.g., episomes), or integration of transferred genetic material into the genomic DNA of host 25 cells. Gene delivery expression vectors include, but are not limited to, vectors derived from bacterial plasmid vectors, viral vectors, non-viral vectors, alphaviruses, pox viruses and vaccinia viruses. When used for immunization, such gene delivery expression vectors may 30 be referred to as vaccines or vaccine vectors.

"T lymphocytes" or "T cells" are non-antibody producing lymphocytes that constitute a part of the cell-mediated arm of the immune system. T cells arise from immature lymphocytes that migrate from the bone marrow to

the thymus, where they undergo a maturation process under the direction of thymic hormones. Here, the mature lymphocytes rapidly divide increasing to very large numbers. The maturing T cells become immunocompetent 5 based on their ability to recognize and bind a specific antigen. Activation of immunocompetent T cells is triggered when an antigen binds to the lymphocyte's surface receptors.

The term "transfection" is used to refer to the 10 uptake of foreign DNA by a cell. A cell has been "transfected" when exogenous DNA has been introduced inside the cell membrane. A number of transfection techniques are generally known in the art. See, e.g., Graham et al. (1973) *Virology*, 52:456, Sambrook et al. 15 (1989) *Molecular Cloning, a laboratory manual*, Cold Spring Harbor Laboratories, New York, Davis et al. (1986) *Basic Methods in Molecular Biology*, Elsevier, and Chu et al. (1981) *Gene* 13:197. Such techniques can be used to introduce one or more exogenous DNA moieties into 20 suitable host cells. The term refers to both stable and transient uptake of the genetic material, and includes uptake of peptide- or antibody-linked DNAs.

A "vector" is capable of transferring gene sequences to target cells (e.g., bacterial plasmid vectors, viral 25 vectors, non-viral vectors, particulate carriers, and liposomes). Typically, "vector construct," "expression vector," and "gene transfer vector," mean any nucleic acid construct capable of directing the expression of a gene of interest and which can transfer gene sequences to 30 target cells. Thus, the term includes cloning and expression vehicles, as well as viral vectors.

Transfer of a "suicide gene" (e.g., a drug-susceptibility gene) to a target cell renders the cell sensitive to compounds or compositions that are

relatively nontoxic to normal cells. Moolten, F.L. (1994) *Cancer Gene Ther.* 1:279-287. Examples of suicide genes are thymidine kinase of herpes simplex virus (HSV-tk), cytochrome P450 (Manome et al. (1996) *Gene Therapy* 3:513-520), human deoxycytidine kinase (Manome et al. 5 (1996) *Nature Medicine* 2(5):567-573) and the bacterial enzyme cytosine deaminase (Dong et al. (1996) *Human Gene Therapy* 7:713-720). Cells which express these genes are rendered sensitive to the effects of the relatively nontoxic prodrugs ganciclovir (HSV-tk), cyclophosphamide 10 (cytochrome P450 2B1), cytosine arabinoside (human deoxycytidine kinase) or 5-fluorocytosine (bacterial cytosine deaminase). Culver et al. (1992) *Science* 256:1550-1552, Huber et al. (1994) *Proc. Natl. Acad. Sci.* 15 USA 91:8302-8306.

A "selectable marker" or "reporter marker" refers to a nucleotide sequence included in a gene transfer vector that has no therapeutic activity, but rather is included to allow for simpler preparation, manufacturing, 20 characterization or testing of the gene transfer vector.

A "specific binding agent" refers to a member of a specific binding pair of molecules wherein one of the molecules specifically binds to the second molecule through chemical and/or physical means. One example of a 25 specific binding agent is an antibody directed against a selected antigen.

By "subject" is meant any member of the subphylum chordata, including, without limitation, humans and other primates, including non-human primates such as 30 chimpanzees and other apes and monkey species; farm animals such as cattle, sheep, pigs, goats and horses; domestic mammals such as dogs and cats; laboratory animals including rodents such as mice, rats and guinea pigs; birds, including domestic, wild and game birds such

as chickens, turkeys and other gallinaceous birds, ducks, geese, and the like. The term does not denote a particular age. Thus, both adult and newborn individuals are intended to be covered. The system described above
5 is intended for use in any of the above vertebrate species, since the immune systems of all of these vertebrates operate similarly.

By "pharmaceutically acceptable" or "pharmacologically acceptable" is meant a material which
10 is not biologically or otherwise undesirable, i.e., the material may be administered to an individual in a formulation or composition without causing any undesirable biological effects or interacting in a deleterious manner with any of the components of the
15 composition in which it is contained.

By "physiological pH" or a "pH in the physiological range" is meant a pH in the range of approximately 7.2 to 8.0 inclusive, more typically in the range of approximately 7.2 to 7.6 inclusive.

20 As used herein, "treatment" refers to any of (I) the prevention of infection or reinfection, as in a traditional vaccine, (ii) the reduction or elimination of symptoms, and (iii) the substantial or complete elimination of the pathogen in question. Treatment may
25 be effected prophylactically (prior to infection) or therapeutically (following infection).

"Lentiviral vector", and "recombinant lentiviral vector" are derived from the subset of retroviral vectors known as lentiviruses. Lentiviral vectors refer to a
30 nucleic acid construct which carries, and within certain embodiments, is capable of directing the expression of a nucleic acid molecule of interest. The lentiviral vector includes at least one transcriptional promoter/enhancer or locus defining element(s), or other elements which

control gene expression by other means such as alternate splicing, nuclear RNA export, post-translational modification of messenger, or post-transcriptional modification of protein. Such vector constructs must 5 also include a packaging signal, long terminal repeats (LTRS) or portion thereof, and positive and negative strand primer binding sites appropriate to the lentiviral vector used (if these are not already present in the retroviral vector). Optionally, the recombinant 10 lentiviral vector may also include a signal which directs polyadenylation, selectable markers such as Neo, TK, hygromycin, phleomycin, histidinol, or DHFR, as well as one or more restriction sites and a translation termination sequence. By way of example, such vectors 15 typically include a 5' LTR, a tRNA binding site, a packaging signal, an origin of second strand DNA synthesis, and a 3'LTR or a portion thereof.

"Lentiviral vector particle" as utilized within the present invention refers to a lentivirus which carries at 20 least one gene of interest. The retrovirus may also contain a selectable marker. The recombinant lentivirus is capable of reverse transcribing its genetic material (RNA) into DNA and incorporating this genetic material into a host cell's DNA upon infection. Lentiviral vector 25 particles may have a lentiviral envelope, a non-lentiviral envelope (e.g., an amphi or VSV-G envelope), or a chimeric envelope.

"Nucleic acid expression vector" or "Expression cassette" refers to an assembly which is capable of 30 directing the expression of a sequence or gene of interest. The nucleic acid expression vector includes a promoter which is operably linked to the sequences or gene(s) of interest. Other control elements may be present as well. Expression cassettes described herein

may be contained within a plasmid construct. In addition to the components of the expression cassette, the plasmid construct may also include a bacterial origin of replication, one or more selectable markers, a signal 5 which allows the plasmid construct to exist as single-stranded DNA (e.g., a M13 origin of replication), a multiple cloning site, and a "mammalian" origin of replication (e.g., a SV40 or adenovirus origin of replication).

10 "Packaging cell" refers to a cell which contains those elements necessary for production of infectious recombinant retrovirus (e.g., lentivirus) which are lacking in a recombinant retroviral vector. Typically, such packaging cells contain one or more expression 15 cassettes which are capable of expressing proteins which encode Gag, pol and env proteins.

"Producer cell" or "vector producing cell" refers to a cell which contains all elements necessary for production of recombinant retroviral vector particles.

20

2. MODES OF CARRYING OUT THE INVENTION

Before describing the present invention in detail, it is to be understood that this invention is not limited to particular formulations or process parameters as such 25 may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments of the invention only, and is not intended to be limiting.

Although a number of methods and materials similar 30 or equivalent to those described herein can be used in the practice of the present invention, the preferred materials and methods are described herein.

2.1 SYNTHETIC EXPRESSION CASSETTES**2.1.1 MODIFICATION OF HIV-1 GAG NUCLEIC ACID CODING
SEQUENCES**

One aspect of the present invention is the
5 generation of HIV-1 Gag protein coding sequences, and
related sequences, having improved expression relative to
the corresponding wild-type sequence. An exemplary
embodiment of the present invention is illustrated herein
modifying the Gag protein wild-type sequences obtained
10 from the HIV-1SF2 strain (SEQ ID NO:1; Sanchez-Pescador,
R., et al., *Science* 227(4686) : 484-492, 1985; Luciw,
P.A., et al. U.S. Patent No. 5,156,949, issued October
20, 1992; Luciw, P.A., et al., U.S. Patent No. 5,688,688,
November 18, 1997). Gag sequence obtained from other HIV
15 variants may be manipulated in similar fashion following
the teachings of the present specification. Such other
variants include, but are not limited to, Gag protein
encoding sequences obtained from the isolates HIV_{IIIB},
HIV_{SF2}, HIV-
20 1_{SF162}, HIV-1_{SF170}, HIV_{LAV}, HIV_{LAI}, HIV_{MN}, HIV-1_{CM235}, HIV-1_{us4},
other HIV-1 strains from diverse subtypes (e.g.,
subtypes, A through G, and O), HIV-2 strains and diverse
subtypes (e.g., HIV-2_{uc1} and HIV-2_{uc2}), and simian
immunodeficiency virus (SIV). (See, e.g., *Virology*, 3rd
25 Edition (W.K. Joklik ed. 1988); *Fundamental Virology*, 2nd
Edition (B.N. Fields and D.M. Knipe, eds. 1991);
Virology, 3rd Edition (Fields, BN, DM Knipe, PM Howley,
Editors, 1996, Lippincott-Raven, Philadelphia, PA; for a
description of these and other related viruses).
30 First, the HIV-1 codon usage pattern was modified so
that the resulting nucleic acid coding sequence was
comparable to codon usage found in highly expressed human
genes (Example 1). The HIV codon usage reflects a high
content of the nucleotides A or T of the codon-triplet.

The effect of the HIV-1 codon usage is a high AT content in the DNA sequence that results in a decreased translation ability and instability of the mRNA. In comparison, highly expressed human codons prefer the 5 nucleotides G or C. The Gag coding sequences were modified to be comparable to codon usage found in highly expressed human genes. In Figure 11 (Example 1), the percent A-T content of cDNA sequences corresponding to the mRNA for a known unstable mRNA and a known stable 10 mRNA are compared to the percent A-T content of native HIV-1SF2 Gag cDNA and to the synthetic Gag cDNA sequence of the present invention. Experiments performed in support of the present invention showed that the synthetic Gag sequences were capable of higher level of 15 protein production (see the Examples) relative to the native Gag sequences. The data in Figure 11 suggest that one reason for this increased production is increased stability of the mRNA corresponding to the synthetic Gag coding sequences versus the mRNA corresponding to the 20 native Gag coding sequences.

Second, there are inhibitory (or instability) elements (INS) located within the coding sequences of the Gag coding sequences (Example 1). The RRE is a secondary RNA structure that interacts with the HIV encoded Rev- 25 protein to overcome the expression down-regulating effects of the INS. To overcome the post-transcriptional activating mechanisms of RRE and Rev, the instability elements were inactivated by introducing multiple point mutations that did not alter the reading frame of the 30 encoded proteins. Figure 1 shows the original SF2 Gag sequence, the location of the INS sequences, and the modifications made to the INS sequences to reduce their effects. The resulting modified coding sequences are

presented as a synthetic Gag expression cassette (SEQ ID NO:4).

Modification of the Gag polypeptide coding sequences resulted in improved expression relative to the wild-type 5 coding sequences in a number of mammalian cell lines (as well as other types of cell lines, including, but not limited to, insect cells). Further, expression of the sequences resulted in production of virus-like particles (VLPs) by these cell lines (see below). Similar Gag 10 polypeptide coding sequences can be obtained from a variety of isolates (families, sub-types, strains, etc.) including, but not limited to such other variants include, but are not limited to, Gag polypeptide encoding sequences obtained from the isolates HIV_{IIIB}, HIV_{SF2}, HIV- 15 1_{SF162}, HIV-1_{SF170}, HIV_{LAV}, HIV_{LAI}, HIV_{MN}, HIV-1_{CM235}, HIV-1_{US4}, other HIV-1 strains from diverse subtypes (e.g., subtypes, A through G, and O), HIV-2 strains and diverse subtypes (e.g., HIV-2_{UC1} and HIV-2_{UC2}), and simian immunodeficiency virus (SIV). (See, e.g., Virology, 3rd Edition (W.K. 20 Joklik ed. 1988); Fundamental Virology, 2nd Edition (B.N. Fields and D.M. Knipe, eds. 1991; Virology, 3rd Edition (Fields, BN, DM Knipe, PM Howley, Editors, 1996, Lippincott-Raven, Philadelphia, PA). Gag polypeptide encoding sequences derived from these variants can be 25 optimized and tested for improved expression in mammals by following the teachings of the present specification (see the Examples, in particular Example 1).

2.1.2 FURTHER MODIFICATION OF SEQUENCES INCLUDING HIV-1
30 GAG NUCLEIC ACID CODING SEQUENCES

Experiments performed in support of the present invention have shown that similar modifications of HIV-1 Gag-protease, Gag-reverse transcriptase and Gag-polymerase sequences also result in improved expression

of the polyproteins, as well as, the production of VLPs formed by polypeptides produced from such modified coding sequences.

For the Gag-protease sequence (wild type, SEQ ID NO:2; modified, SEQ ID NOS:5, 78, 79), the changes in codon usage were restricted to the regions upstream of the -1 frameshift (Figure 2). Further, inhibitory (or instability) elements (INS) located within the coding sequences of the Gag-protease polypeptide coding sequence were altered as well (indicated in Figure 2). Exemplary constructs (which include the -1 frameshift) encoding modified Gag-protease sequences include those shown in SEQ ID NOS:78 and 79 (Figures 69 and 70). These are: GP1 (SEQ ID NO:78) in which the protease region was also codon optimized and INS inactivated and GP2 (SEQ ID NO:79), in which the protease region was only subjected to INS inactivation.

For other Gag-containing sequences, for example the Gag-polymerase sequence (wild type, SEQ ID NO:3; modified, SEQ ID NO:6) or Gag-reverse transcriptase (wild type, SEQ ID NO:77; modified SEQ ID NOS:80-84), the changes in codon usage are similar to those for the Gag-protease sequence. Those expression cassettes which contain a frameshift in the GagPol coding sequence are designated "FS(+)" (SEQ ID NOS:80 and 81, Figures 71 and 72) while the designation "FS(-)" (SEQ ID Nos: 82, 83 and 84, Figures 73, 74 and 75) indicates that there is no frameshift utilized in this coding sequence.

In addition to polyproteins containing HIV-related sequences, the various Gag-, Gag-prot, Gag-pol, Gag-reverse transcriptase encoding sequences of the present invention can be fused to other polypeptides (creating chimeric polypeptides) for which an immunogenic response is desired. An example of such a chimeric protein is the

joining of the improved expression Gag encoding sequences to the Hepatitis C Virus (HCV) core protein. In this case, the HCV-core encoding sequences were placed in-frame with the HIV-Gag encoding sequences, resulting in 5 the Gag/HCV-core encoding sequence presented as SEQ ID NO:7 (wild type sequence presented as SEQ ID NO:8).

Further sequences useful in the practice of the present invention include, but are not limited to, sequences encoding viral epitopes/antigens {including but 10 not limited to, HCV antigens (e.g., E1, E2; Houghton, M..., et al., U.S. Patent No. 5,714,596, issued February 3, 1998; Houghton, M..., et al., U.S. Patent No. 5,712,088, issued January 27, 1998; Houghton, M..., et al., U.S. Patent No. 5,683,864, issued November 4, 1997; 15 Weiner, A.J., et al., U.S. Patent No. 5,728,520, issued March 17, 1998; Weiner, A.J., et al., U.S. Patent No. 5,766,845, issued June 16, 1998; Weiner, A.J., et al., U.S. Patent No. 5,670,152, issued September 23, 1997), HIV antigens (e.g., derived from nef, tat, rev, vpu, vif, 20 vpr and/or env); and sequences encoding tumor antigens/epitopes. Additional sequences are described below. Also, variations on the orientation of the Gag and other coding sequences, relative to each other, are also described below.

25 Gag, Gag-protease, Gag-reverse transcriptase and/or Gag-polymerase polypeptide coding sequences can be obtained from any HIV isolates (different families, subtypes, and strains) including but not limited to the isolates HIV_{111b}, HIV_{SF2}, HIV_{SP162}, HIV_{US4}, HIV_{cm235}, HIV_{LAV}, 30 HIV_{LAI}, HIV_{MN}) (see, e.g., Myers et al. Los Alamos Database, Los Alamos National Laboratory, Los Alamos, New Mexico (1992); Myers et al., *Human Retroviruses and Aids*, 1997, Los Alamos, New Mexico: Los Alamos National Laboratory). Synthetic expression cassettes can be generated using

such coding sequences as starting material by following the teachings of the present specification (e.g., see Example 1). Further, the synthetic expression cassettes of the present invention include related Gag polypeptide 5 coding sequences having greater than 75%, preferably greater than 80-85%, more preferably greater than 90-95%, and most preferably greater than 98% sequence identity (or any integer value within these ranges) to the synthetic expression cassette sequences disclosed herein 10 (for example, SEQ ID NO:4; SEQ ID NO:5; SEQ ID NO:6; and SEQ ID NO:20, the Gag Major Homology Region).

2.1.3 EXPRESSION OF SYNTHETIC SEQUENCES ENCODING HIV-1 GAG AND RELATED POLYPEPTIDES

15 Several synthetic Gag-encoding sequences (expression cassettes) of the present invention were cloned into a number of different expression vectors (Example 1) to evaluate levels of expression and production of VLPs. Two modified synthetic coding sequences are presented as 20 a synthetic Gag expression cassette (SEQ ID NO:4) and a synthetic Gag-protease expression cassette (SEQ ID NOS:78 and 79). Other synthetic Gag-encoding proteins are presented, for example, as SEQ ID NOS:80 through 84. The 25 synthetic DNA fragments for Gag-encoding polypeptides (e.g., Gag, Gag-protease, Gag-polymerase, Gag-reverse transcriptase) were cloned into expression vectors described in Example 1, including, a transient expression vector, CMV-promoter-based mammalian vectors, and a shuttle vector for use in baculovirus expression systems. Corresponding wild-type sequences were cloned into the 30 same vectors.

These vectors were then transfected into a several different cell types, including a variety of mammalian

cell lines, (293, RD, COS-7, and CHO, cell lines available, for example, from the A.T.C.C.). The cell lines were cultured under appropriate conditions and the levels of p24 (Gag) expression in supernatants were evaluated (Example 2). The results of these assays demonstrated that expression of synthetic Gag-encoding sequences were significantly higher than corresponding wild-type sequences (Example 2; Table 2).

Further, Western Blot analysis showed that cells containing the synthetic Gag expression cassette produced the expected 55 kD (p55) protein at higher per-cell concentrations than cells containing the native expression cassette. The Gag p55 protein was seen in both cell lysates and supernatants. The levels of production were significantly higher in cell supernatants for cells transfected with the synthetic Gag expression cassette of the present invention. Experiments performed in support of the present invention suggest that cells containing the synthetic Gag-prot expression cassettes produced the expected Gag-prot protein at comparably higher per-cell concentrations than cells containing the wild-type expression cassette.

Fractionation of the supernatants from mammalian cells transfected with the synthetic Gag expression cassette showed that it provides superior production of both p55 protein and VLPs, relative to the wild-type Gag sequences (Examples 6 and 7).

Efficient expression of these Gag-containing polypeptides in mammalian cell lines provides the following benefits: the Gag polypeptides are free of baculovirus contaminants; production by established methods approved by the FDA; increased purity; greater yields (relative to native coding sequences); and a novel method of producing the Gag-containing polypeptides in

CHO or other mammalian cells which is not feasible in the absence of the increased expression obtained using the constructs of the present invention. Exemplary Mammalian cell lines include, but are not limited to, BHK, VERO, 5 HT1080, 293, 293T, RD, COS-7, CHO, Jurkat, HUT, SUPT, C8166, MOLT4/clone8, MT-2, MT-4, H9, PM1, CEM, myeloma cells (e.g., SB20 cells) and CEMX174, such cell lines are available, for example, from the A.T.C.C.).

A synthetic Gag expression cassette of the present 10 invention also demonstrated high levels of expression and VLP production when transfected into insect cells (Example 7). Further, in addition to a higher total protein yield, the final product from the synthetic p55-expressed Gag consistently contained lower amounts of 15 contaminating baculovirus proteins than the final purified product from the native p55-expressed Gag.

Further, synthetic Gag expression cassettes of the present invention have also been introduced into yeast vectors which were transformed into and efficiently 20 expressed by yeast cells (*Saccharomyces cerevisea*; using vectors as described in Rosenberg, S. and Tekamp-Olson, P., U.S. Patent No. RE35,749, issued, March 17, 1998).

In addition to the mammalian and insect vectors 25 described in the Examples, the synthetic expression cassettes of the present invention can be incorporated into a variety of expression vectors using selected expression control elements. Appropriate vectors and control elements for any given cell type can be selected by one having ordinary skill in the art in view of the 30 teachings of the present specification and information known in the art about expression vectors.

For example, a synthetic Gag expression cassette can be inserted into a vector which includes control elements operably linked to the desired coding sequence, which

allow for the expression of the gene in a selected cell-type. For example, typical promoters for mammalian cell expression include the SV40 early promoter, a CMV promoter such as the CMV immediate early promoter (a CMV promoter can include intron A), RSV, HIV-LTR, the mouse mammary tumor virus LTR promoter (MMLV-LTR), FIV-LTR, the adenovirus major late promoter (Ad MLP), and the herpes simplex virus promoter, among others. Other nonviral promoters, such as a promoter derived from the murine 5 metallothionein gene, will also find use for mammalian expression. Typically, transcription termination and polyadenylation sequences will also be present, located 10 3' to the translation stop codon. Preferably, a sequence for optimization of initiation of translation, located 5' to the coding sequence, is also present. Examples of 15 transcription terminator/polyadenylation signals include those derived from SV40, as described in Sambrook, et al., *supra*, as well as a bovine growth hormone terminator sequence. Introns, containing splice donor and acceptor 20 sites, may also be designed into the constructs for use with the present invention (Chapman et al., *Nuc. Acids Res.* (1991) 19:3979-3986).

Enhancer elements may also be used herein to increase expression levels of the mammalian constructs. 25 Examples include the SV40 early gene enhancer, as described in Dijkema et al., *EMBO J.* (1985) 4:761, the enhancer/promoter derived from the long terminal repeat (LTR) of the Rous Sarcoma Virus, as described in Gorman et al., *Proc. Natl. Acad. Sci. USA* (1982b) 79:6777 and 30 elements derived from human CMV, as described in Boshart et al., *Cell* (1985) 41:521, such as elements included in the CMV intron A sequence (Chapman et al., *Nuc. Acids Res.* (1991) 19:3979-3986).

The desired synthetic Gag polypeptide encoding sequences can be cloned into any number of commercially available vectors to generate expression of the polypeptide in an appropriate host system. These systems 5 include, but are not limited to, the following:

baculovirus expression {Reilly, P.R., et al., BACULOVIRUS EXPRESSION VECTORS: A LABORATORY MANUAL (1992); Beames, et al., Biotechniques 11:378 (1991); Pharmingen; Clontech, Palo Alto, CA)}, vaccinia expression {Earl, P. L., et al., 10 "Expression of proteins in mammalian cells using vaccinia" In *Current Protocols in Molecular Biology* (F. M. Ausubel, et al. Eds.), Greene Publishing Associates & Wiley Interscience, New York (1991); Moss, B., et al., U.S. Patent Number 5,135,855, issued 4 August 1992}, 15 expression in bacteria {Ausubel, F.M., et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley and Sons, Inc., Media PA; Clontech}, expression in yeast {Rosenberg, S. and Tekamp-Olson, P., U.S. Patent No. RE35,749, issued, March 17, 1998; Shuster, J.R., U.S. Patent No. 5,629,203, 20 issued May 13, 1997; Gellissen, G., et al., Antonie Van Leeuwenhoek, 62(1-2):79-93 (1992); Romanos, M.A., et al., Yeast 8(6):423-488 (1992); Goeddel, D.V., *Methods in Enzymology* 185 (1990); Guthrie, C., and G.R. Fink, *Methods in Enzymology* 194 (1991)}, expression in 25 mammalian cells {Clontech; Gibco-BRL, Ground Island, NY; e.g., Chinese hamster ovary (CHO) cell lines (Haynes, J., et al., *Nuc. Acid. Res.* 11:687-706 (1983); 1983, Lau, Y.F., et al., *Mol. Cell. Biol.* 4:1469-1475 (1984); Kaufman, R. J., "Selection and coamplification of 30 heterologous genes in mammalian cells," in *Methods in Enzymology*, vol. 185, pp537-566. Academic Press, Inc., San Diego CA (1991)}, and expression in plant cells {plant cloning vectors, Clontech Laboratories, Inc., Palo Alto, CA, and Pharmacia LKB Biotechnology, Inc.,

Piscataway, NJ; Hood, E., et al., *J. Bacteriol.* 168:1291-1301 (1986); Nagel, R., et al., *FEMS Microbiol. Lett.* 67:325 (1990); An, et al., "Binary Vectors", and others in Plant Molecular Biology Manual A3:1-19 (1988);
5 Miki, B.L.A., et al., pp.249-265, and others in Plant DNA Infectious Agents (Hohn, T., et al., eds.) Springer-Verlag, Wien, Austria, (1987); *Plant Molecular Biology: Essential Techniques*, P.G. Jones and J.M. Sutton, New York, J. Wiley, 1997; Miglani, Gurbachan *Dictionary of Plant Genetics and Molecular Biology*, New York, Food Products Press, 1998; Henry, R. J., *Practical Applications of Plant Molecular Biology*, New York, Chapman & Hall, 1997}.

Also included in the invention is an expression vector, such as the CMV promoter-containing vectors described in Example 1, containing coding sequences and expression control elements which allow expression of the coding regions in a suitable host. The control elements generally include a promoter, translation initiation codon, and translation and transcription termination sequences, and an insertion site for introducing the insert into the vector. Translational control elements have been reviewed by M. Kozak (e.g., Kozak, M., *Mamm. Genome* 7(8):563-574, 1996; Kozak, M., *Biochimie* 76(9):815-821, 1994; Kozak, M., *J Cell Biol* 108(2):229-241, 1989; Kozak, M., and Shatkin, A.J., *Methods Enzymol* 60:360-375, 1979).

Expression in yeast systems has the advantage of commercial production. Recombinant protein production by 30 vaccinia and CHO cell line have the advantage of being mammalian expression systems. Further, vaccinia virus expression has several advantages including the following: (i) its wide host range; (ii) faithful post-

transcriptional modification, processing, folding, transport, secretion, and assembly of recombinant proteins; (iii) high level expression of relatively soluble recombinant proteins; and (iv) a large capacity 5 to accommodate foreign DNA.

The recombinantly expressed polypeptides from synthetic Gag-encoding expression cassettes are typically isolated from lysed cells or culture media. Purification can be carried out by methods known in the art including 10 salt fractionation, ion exchange chromatography, gel filtration, size-exclusion chromatography, size-fractionation, and affinity chromatography.

Immunoaffinity chromatography can be employed using antibodies generated based on, for example, Gag antigens.

15 Advantages of expressing the Gag-containing proteins of the present invention using mammalian cells include, but are not limited to, the following: well-established protocols for scale-up production; the ability to produce VLPs; cell lines are suitable to meet good manufacturing 20 process (GMP) standards; culture conditions for mammalian cells are known in the art.

2.1.4 MODIFICATION OF HIV-1 ENV NUCLEIC ACID CODING SEQUENCES

25 One aspect of the present invention is the generation of HIV-1 Env protein coding sequences, and related sequences, having improved expression relative to the corresponding wild-type sequence. Exemplary embodiments of the present invention are illustrated 30 herein modifying the Env protein wild-type sequences obtained from the HIV-1 subtype B strains HIV-1US4 and HIV-1SF162 (Myers et al., Los Alamos Database, Los Alamos National Laboratory, Los Alamos, New Mexico (1992); Myers et al., *Human Retroviruses and Aids*, 1997, Los Alamos,

New Mexico: Los Alamos National Laboratory). Env sequence obtained from other HIV variants may be manipulated in similar fashion following the teachings of the present specification. Such other variants include those 5 described above in Section 2.1.1 and on the World Wide Web (Internet), for example at <http://hiv-web.lanl.gov/cgi-bin/hivDB3/public/wdb/ssampublic> and <http://hiv-web.lanl.gov>.

First, the HIV-1 codon usage pattern was modified so 10 that the resulting nucleic acid coding sequence was comparable to codon usage found in highly expressed human genes (Example 1). The HIV codon usage reflects a high content of the nucleotides A or T of the codon-triplet. The effect of the HIV-1 codon usage is a high AT content 15 in the DNA sequence that results in a decreased translation ability and instability of the mRNA. In comparison, highly expressed human codons prefer the nucleotides G or C. The Env coding sequences were modified to be comparable to codon usage found in highly 20 expressed human genes. Experiments performed in support of the present invention showed that the synthetic Env sequences were capable of higher level of protein production (see the Examples) relative to the native Env sequences. One reason for this increased production may 25 be increased stability of the mRNA corresponding to the synthetic Env coding sequences versus the mRNA corresponding to the native Env coding sequences.

Modification of the Env polypeptide coding sequences resulted in improved expression relative to the wild-type 30 coding sequences in a number of mammalian cell lines. Similar Env polypeptide coding sequences can be obtained from a variety of isolates (families, sub-types, etc.). Env polypeptide encoding sequences derived from these variants can be optimized and tested for improved

expression in mammals by following the teachings of the present specification (see the Examples, in particular Example 2).

5 **2.1.5 FURTHER MODIFICATION OF HIV-1 ENV NUCLEIC ACID
 CODING SEQUENCES**

In addition to proteins containing HIV-related sequences, the Env encoding sequences of the present invention can be fused to other polypeptides (creating 10 chimeric polypeptides). Also, variations on the orientation of the Env and other coding sequences, relative to each other, are contemplated. Further, the HIV protein encoding cassettes of the present invention can be co-expressed using one vector or multiple vectors. 15 In addition, the polyproteins can be operably linked to the same or different promoters.

Env polypeptide coding sequences can be obtained from any HIV isolates (different families, subtypes, and strains) including but not limited to the isolates HIV_{IIIB}, 20 HIV_{SF2}, HIV_{UB4}, HIV_{CM235}, HIV_{SF162}, HIV_{LAV}, HIV_{LAI}, HIV_{MN}) (see, e.g., Myers et al., Los Alamos Database, Los Alamos National Laboratory, Los Alamos, New Mexico (1992); Myers et al., *Human Retroviruses and Aids*, 1997, Los Alamos, New Mexico: Los Alamos National Laboratory). Synthetic 25 expression cassettes can be generated using such coding sequences as starting material by following the teachings of the present specification (e.g., see Example 1). Further, the synthetic expression cassettes (and purified polynucleotides) of the present invention include related 30 Env polypeptide coding sequences having greater than 90%, preferably greater than 92%, more preferably greater than 95%, and most preferably greater than 98% sequence identity to the synthetic expression cassette sequences disclosed herein (for example, SEQ ID NOs:71-72; and/or

the sequences presented in Tables 1A and 1B) when the sequences of the present invention are used as the query sequence.

5 2.1.6 **EXPRESSION OF SYNTHETIC SEQUENCES ENCODING HIV-1
ENV AND RELATED POLYPEPTIDES**

Several synthetic Env-encoding sequences (expression cassettes) of the present invention were cloned into a number of different expression vectors (Example 1) to evaluate levels of expression and production of Env polypeptide. A modified synthetic coding sequence is presented as synthetic Env expression cassettes (Example 1, e.g., Tables 1A and 1B). The synthetic DNA fragments for Env were cloned into eucaryotic expression vectors described in Example 1 and in Section 2.1.3 above, including, a transient expression vector and CMV-promoter-based mammalian vectors. Corresponding wild-type sequences were cloned into the same vectors.

These vectors were then transfected into a several different cell types, including a variety of mammalian cell lines, (293, RD, COS-7, and CHO, cell lines available, for example, from the A.T.C.C.). The cell lines were cultured under appropriate conditions and the levels of gp120, gp140 and gp160 Env expression in supernatants were evaluated (Example 2). Env polypeptides include, but are not limited to, for example, native gp160, oligomeric gp140, monomeric gp120 as well as modified sequences of these polypeptides. The results of these assays demonstrated that expression of synthetic Env encoding sequences were significantly higher than corresponding wild-type sequences (Example 2; Tables 3 and 4).

Further, Western Blot analysis showed that cells containing the synthetic Env expression cassette produced

the expected protein (gp120, gp140 or gp160) at higher per-cell concentrations than cells containing the native expression cassette. The Env proteins were seen in both cell lysates and supernatants. The levels of production 5 were significantly higher in cell supernatants for cells transfected with the synthetic Env expression cassettes of the present invention as compared to wild type.

Fractionation of the supernatants from mammalian 10 cells transfected with the synthetic Env expression cassettes showed that it provides superior production of Env proteins, relative to the wild-type Env sequences (Examples 2 and 3).

Efficient expression of these Env-containing 15 polypeptides in mammalian cell lines provides the following benefits: the Env polypeptides are free of baculovirus or other viral contaminants; production by established methods approved by the FDA; increased purity; greater yields (relative to native coding sequences); and a novel method of producing the Env-containing polypeptides in CHO cells which is less feasible in the absence of the increased expression 20 obtained using the constructs of the present invention.

Exemplary cell lines (e.g., mammalian, yeast, insect, etc.) include those described above in Section 25 2.1.3 for Gag-containing constructs. Further, appropriate vectors and control elements (e.g., promoters, enhancers, polyadenylation sequences, etc.) for any given cell type can be selected, as described above in Section 2.1.3, by one having ordinary skill in the art in view of the teachings of the present specification and information known in the art about expression vectors. In addition, the recombinantly expressed polypeptides from synthetic Env-encoding expression cassettes are typically isolated 30 and purified from lysed cells or culture media, as

described above for Gag-encoding expression cassettes. An exemplary purification is described in Example 4 and shown in Figure 60.

5 2.1.7 MODIFICATION OF HIV-1 TAT NUCLEIC ACID CODING
SEQUENCES

Another aspect of the present invention is the generation of HIV-1 tat protein coding sequences, and related sequences, having improved expression relative to 10 the corresponding wild-type sequence. Exemplary embodiments of the present invention are illustrated herein modifying the tat wild-type nucleotide sequence (SEQ ID NO:85, Figure 76) obtained from SF162 as described above. Exemplary synthetic tat constructs are 15 shown in SEQ ID NO:87, which depicts a tat construct encoding a full-length tat polypeptide from strain SF162; SEQ ID NO:88, which depicts a tat construct encoding a tat polypeptide having the cystein residue at position 22 changed; and SEQ ID NO:89, which depicts a tat construct 20 encoding the amino terminal portion of a tat polypeptide from strain SF162. The amino portion of the tat protein appears to contain many of the epitopes that induce an immune response. In addition, further modifications include replacement or deletion of the cystein residue at 25 position 22, for example with a valine residue, an alanine residue or a glycine residue (SEQ ID Nos: 88 and 89, Figures 79 and 81), see, e.g., Caputo et al. (1996) *Gene Ther.* 3:235. In Figure 81, which depicts a tat construct encoding the amino terminal portion of a tat 30 polypeptide, the nucleotides (nucleotides 64-66) encoding the cystein residues are underlined. The design and construction of suitable construct can be readily done using

the teachings of the present specification. As with Gag, pol, prot and Env, tat polypeptide coding sequences can be obtained from a variety of isolates (families, subtypes, etc.).

5 Modification of the tat polypeptide coding sequences result in improved expression relative to the wild-type coding sequences in a number of cell lines (e.g., mammalian, yeast, bacterial and insect cells). Tat polypeptide encoding sequences derived from these
10 variants can be optimized and tested for improved expression in mammals by following the teachings of the present specification (see the Examples, in particular Example 2).

Various forms of the different embodiments of the
15 invention, described herein, may be combined. For example, polynucleotides may be derived from the polynucleotide sequences of the present invention, including, but not limited to, coding sequences for Gag polypeptides, Env polypeptides, polymerase polypeptides,
20 protease polypeptides, tat polypeptides, and reverse transcriptase polypeptides. Further, the polynucleotide coding sequences of the present invention may be combined into multi-cistronic expression cassettes where typically each coding sequence for each polypeptide is preceded by
25 IRES sequences.

2.2 PRODUCTION OF VIRUS-LIKE PARTICLES AND USE OF THE CONSTRUCTS OF THE PRESENT INVENTION TO CREATE PACKAGING CELL LINES

30 The group-specific antigens (Gag) of human immunodeficiency virus type-1 (HIV-1) self-assemble into noninfectious virus-like particles (VLP) that are released from various eucaryotic cells by budding (reviewed by Freed, E.O., *Virology* 251:1-15, 1998). The

synthetic expression cassettes of the present invention provide efficient means for the production of HIV-Gag virus-like particles (VLPs) using a variety of different cell types, including, but not limited to, mammalian cells.⁵

Viral particles can be used as a matrix for the proper presentation of an antigen entrapped or associated therewith to the immune system of the host. For example, U.S. Patent No. 4,722,840 describes hybrid particles comprised of a particle-forming fragment of a structural protein from a virus, such as a particle-forming fragment of hepatitis B virus (HBV) surface antigen (HBsAg), fused to a heterologous polypeptide. Tindle et al., *Virology* (1994) 200:547-557, describes the production and use of chimeric HBV core antigen particles containing epitopes of human papillomavirus (HPV) type 16 E7 transforming protein.¹⁰

15

Adams et al., *Nature* (1987) 329:68-70, describes the recombinant production of hybrid HIVgp120:Ty VLPs in yeast and Brown et al., *Virology* (1994) 198:477-488, the production of chimeric proteins consisting of the VP2 protein of human parvovirus B19 and epitopes from human herpes simplex virus type 1, as well as mouse hepatitis virus A59. Wagner et al., (*Virology* (1994) 200:162-175, Brand et al., *J. Virol. Meth.* (1995) 51:153-168; *Virology* (1996) 220:128-140) and Wolf, et al., (EP 0 449 116 A1, published 2 October 1991; WO 96/30523, published 3 October 1996) describe the assembly of chimeric HIV-1 p55Gag particles. U.S. Patent No. 5,503,833 describes the use of rotavirus VP6 spheres for encapsulating and delivering therapeutic agents.²⁰

25

30

2.2.1 VLP PRODUCTION USING THE SYNTHETIC EXPRESSION
CASSETTES OF THE PRESENT INVENTION

Experiments performed in support of the present invention have demonstrated that the synthetic expression 5 cassettes of the present invention provide superior production of both protein and VLPs, relative to native coding sequences (Examples 7 and 15). Further, electron microscopic evaluation of VLP production (Examples 6 and 10, Figures 3A-B and 65A-F) showed that free and budding immature virus particles of the expected size were produced by cells containing the synthetic expression cassettes.

Using the synthetic expression cassettes of the present invention, rather than native coding sequences, 15 for the production of virus-like particles provide several advantages. First, VLPs can be produced in enhanced quantity making isolation and purification of the VLPs easier. Second, VLPs can be produced in a variety of cell types using the synthetic expression 20 cassettes, in particular, mammalian cell lines can be used for VLP production, for example, CHO cells. Production using CHO cells provides (i) VLP formation; (ii) correct myristylation and budding; (iii) absence of non-mammalian cell contaminants (e.g., insect viruses 25 and/or cells); and (iv) ease of purification. The synthetic expression cassettes of the present invention are also useful for enhanced expression in cell-types other than mammalian cell lines. For example, infection 30 of insect cells with baculovirus vectors encoding the synthetic expression cassettes resulted in higher levels of total protein yield and higher levels of VLP production (relative to wild-type coding sequences). Further, the final product from insect cells infected with the baculovirus-Gag synthetic expression cassettes

consistently contained lower amounts of contaminating insect proteins than the final product when wild-type coding sequences were used (Examples).

VLPs can spontaneously form when the particle-forming polypeptide of interest is recombinantly expressed in an appropriate host cell. Thus, the VLPs produced using the synthetic expression cassettes of the present invention are conveniently prepared using recombinant techniques. As discussed below, the Gag polypeptide encoding synthetic expression cassettes of the present invention can include other polypeptide coding sequences of interest (for example, Env, tat, rev, HIV protease, HIV polymerase, HCV core; see, Example 1). Expression of such synthetic expression cassettes yields VLPs comprising the product of the synthetic expression cassette, as well as, the polypeptide of interest.

Once coding sequences for the desired particle-forming polypeptides have been isolated or synthesized, they can be cloned into any suitable vector or replicon for expression. Numerous cloning vectors are known to those of skill in the art, and the selection of an appropriate cloning vector is a matter of choice. See, generally, Ausubel et al, *supra* or Sambrook et al, *supra*. The vector is then used to transform an appropriate host cell. Suitable recombinant expression systems include, but are not limited to, bacterial, mammalian, baculovirus/insect, vaccinia, Semliki Forest virus (SFV), Alphaviruses (such as, Sindbis, Venezuelan Equine Encephalitis (VEE)), mammalian, yeast and *Xenopus* expression systems, well known in the art. Particularly preferred expression systems are mammalian cell lines, vaccinia, Sindbis, insect and yeast systems.

For example, a number of mammalian cell lines are known in the art and include immortalized cell lines

available from the American Type Culture Collection (A.T.C.C.), such as, but not limited to, Chinese hamster ovary (CHO) cells, 293 cells, HeLa cells, baby hamster kidney (BHK) cells, mouse myeloma (SB20), monkey kidney cells (COS), as well as others. Similarly, bacterial hosts such as *E. coli*, *Bacillus subtilis*, and *Streptococcus spp.*, will find use with the present expression constructs. Yeast hosts useful in the present invention include *inter alia*, *Saccharomyces cerevisiae*, 5 *Candida albicans*, *Candida maltosa*, *Hansenula polymorpha*, *Kluyveromyces fragilis*, *Kluyveromyces lactis*, *Pichia guillermondii*, *Pichia pastoris*, *Schizosaccharomyces pombe* and *Yarrowia lipolytica*. Insect cells for use with baculovirus expression vectors include, *inter alia*, *Aedes aegypti*, *Autographa californica*, *Bombyx mori*, *Drosophila melanogaster*, *Spodoptera frugiperda*, and *Trichoplusia ni*. 10 See, e.g., Summers and Smith, *Texas Agricultural Experiment Station Bulletin No. 1555* (1987). Fungal hosts include, for example, *Aspergillus*.

20 Viral vectors can be used for the production of particles in eucaryotic cells, such as those derived from the pox family of viruses, including vaccinia virus and avian poxvirus. Additionally, a vaccinia based infection/transfection system, as described in Tomei et 25 al., *J. Virol.* (1993) 67:4017-4026 and Selby et al., *J. Gen. Virol.* (1993) 74:1103-1113, will also find use with the present invention. In this system, cells are first infected *in vitro* with a vaccinia virus recombinant that encodes the bacteriophage T7 RNA polymerase. This 30 polymerase displays exquisite specificity in that it only transcribes templates bearing T7 promoters. Following infection, cells are transfected with the DNA of interest, driven by a T7 promoter. The polymerase expressed in the cytoplasm from the vaccinia virus

recombinant transcribes the transfected DNA into RNA which is then translated into protein by the host translational machinery. Alternately, T7 can be added as a purified protein or enzyme as in the "Progenitor" system (Studier and Moffatt, *J. Mol. Biol.* (1986) 189:113-130). The method provides for high level, transient, cytoplasmic production of large quantities of RNA and its translation product(s).

Depending on the expression system and host selected, the VLPs are produced by growing host cells transformed by an expression vector under conditions whereby the particle-forming polypeptide is expressed and VLPs can be formed. The selection of the appropriate growth conditions is within the skill of the art. If the VLPs are formed intracellularly, the cells are then disrupted, using chemical, physical or mechanical means, which lyse the cells yet keep the VLPs substantially intact. Such methods are known to those of skill in the art and are described in, e.g., *Protein Purification Applications: A Practical Approach*, (E.L.V. Harris and S. Angal, Eds., 1990).

The particles are then isolated (or substantially purified) using methods that preserve the integrity thereof, such as, by density gradient centrifugation, e.g., sucrose gradients, PEG-precipitation, pelleting, and the like (see, e.g., Kirnbauer et al. *J. Virol.* (1993) 67:6929-6936), as well as standard purification techniques including, e.g., ion exchange and gel filtration chromatography.

VLPs produced by cells containing the synthetic expression cassettes of the present invention can be used to elicit an immune response when administered to a subject. One advantage of the present invention is that VLPs can be produced by mammalian cells carrying the

synthetic expression cassettes at levels previously not possible. As discussed above, the VLPs can comprise a variety of antigens in addition to the Gag polypeptides (e.g., Env, tat, Gag-protease, Gag-polymerase, Gag-HCV-core). Purified VLPs, produced using the synthetic expression cassettes of the present invention, can be administered to a vertebrate subject, usually in the form of vaccine compositions. Combination vaccines may also be used, where such vaccines contain, for example, other 10 subunit proteins derived from HIV or other organisms (e.g., env) or gene delivery vaccines encoding such antigens. Administration can take place using the VLPs formulated alone or formulated with other antigens. Further, the VLPs can be administered prior to, 15 concurrent with, or subsequent to, delivery of the synthetic expression cassettes for DNA immunization (see below) and/or delivery of other vaccines. Also, the site of VLP administration may be the same or different as other vaccine compositions that are being administered. 20 Gene delivery can be accomplished by a number of methods including, but are not limited to, immunization with DNA, alphavirus vectors, pox virus vectors, and vaccinia virus vectors.

VLP immune-stimulating (or vaccine) compositions can 25 include various excipients, adjuvants, carriers, auxiliary substances, modulating agents, and the like. The immune stimulating compositions will include an amount of the VLP/antigen sufficient to mount an immunological response. An appropriate effective amount 30 can be determined by one of skill in the art. Such an amount will fall in a relatively broad range that can be determined through routine trials and will generally be an amount on the order of about 0.1 µg to about 1000 µg,

more preferably about 1 μ g to about 300 μ g, of VLP/antigen.

A carrier is optionally present which is a molecule that does not itself induce the production of antibodies
5 harmful to the individual receiving the composition.

Suitable carriers are typically large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, lipid aggregates (such as
10 oil droplets or liposomes), and inactive virus particles. Examples of particulate carriers include those derived from polymethyl methacrylate polymers, as well as microparticles derived from poly(lactides) and poly(lactide-co-glycolides), known as PLG. See, e.g.,
15 Jeffery et al., *Pharm. Res.* (1993) 10:362-368; McGee JP, et al., *J Microencapsul.* 14(2):197-210, 1997; O'Hagan DT, et al., *Vaccine* 11(2):149-54, 1993. Such carriers are well known to those of ordinary skill in the art.
Additionally, these carriers may function as
20 immunostimulating agents ("adjuvants"). Furthermore, the antigen may be conjugated to a bacterial toxoid, such as toxoid from diphtheria, tetanus, cholera, etc., as well as toxins derived from *E. coli*.

Such adjuvants include, but are not limited to: (1) aluminum salts (alum), such as aluminum hydroxide, aluminum phosphate, aluminum sulfate, etc.; (2) oil-in-water emulsion formulations (with or without other specific immunostimulating agents such as muramyl peptides (see below) or bacterial cell wall components),
25 such as for example (a) MF59 (International Publication No. WO 90/14837), containing 5% Squalene, 0.5% Tween 80, and 0.5% Span 85 (optionally containing various amounts of MTP-PE (see below), although not required) formulated

into submicron particles using a microfluidizer such as Model 110Y microfluidizer (Microfluidics, Newton, MA), (b) SAF, containing 10% Squalane, 0.4% Tween 80, 5% pluronic-blocked polymer L121, and thr-MDP (see below)

5 either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion, and (c) Ribi™ adjuvant system (RAS), (Ribi Immunochem, Hamilton, MT) containing 2% Squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group

10 consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL + CWS (Detox™); (3) saponin adjuvants, such as Stimulon™ (Cambridge Bioscience, Worcester, MA) may be used or particle generated therefrom such as

15 ISCOMs (immunostimulating complexes); (4) Complete Freunds Adjuvant (CFA) and Incomplete Freunds Adjuvant (IFA); (5) cytokines, such as interleukins (IL-1, IL-2, etc.), macrophage colony stimulating factor (M-CSF), tumor necrosis factor (TNF), beta chemokines (MIP, 1-

20 alpha, 1-beta Rantes, etc.); (6) detoxified mutants of a bacterial ADP-ribosylating toxin such as a cholera toxin (CT), a pertussis toxin (PT), or an *E. coli* heat-labile toxin (LT), particularly LT-K63 (where lysine is substituted for the wild-type amino acid at position 63)

25 LT-R72 (where arginine is substituted for the wild-type amino acid at position 72), CT-S109 (where serine is substituted for the wild-type amino acid at position 109), and PT-K9/G129 (where lysine is substituted for the wild-type amino acid at position 9 and glycine

30 substituted at position 129) (see, e.g., International Publication Nos. W093/13202 and W092/19265); and (7)

other substances that act as immunostimulating agents to enhance the effectiveness of the composition.

Muramyl peptides include, but are not limited to, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-
5 acteyl-normuramyl-L-alanyl-D-isogluatme (nor-MDP), N-acetylmuramyl-L-alanyl-D-isogluatminyl-L-alanine-2-(1'-2'-dipalmitoyl-sn-glycero-3-huydroxyphosphoryloxy)-ethylamine (MTP-PE), etc.

Dosage treatment with the VLP composition may be a
10 single dose schedule or a multiple dose schedule. A multiple dose schedule is one in which a primary course of vaccination may be with 1-10 separate doses, followed by other doses given at subsequent time intervals, chosen to maintain and/or reinforce the immune response, for
15 example at 1-4 months for a second dose, and if needed, a subsequent dose(s) after several months. The dosage regimen will also, at least in part, be determined by the potency of the modality, the vaccine delivery employed, the need of the subject and be dependent on the judgment
20 of the practitioner.

If prevention of disease is desired (e.g., reduction of symptoms, recurrences or of disease progression), the antigen carrying VLPs are generally administered prior to primary infection with the pathogen of interest. If
25 treatment is desired, e.g., the reduction of symptoms or recurrences, the VLP compositions are generally administered subsequent to primary infection.

2.2.2 **USING THE SYNTHETIC EXPRESSION CASSETTES OF THE**
30 **PRESENT INVENTION TO CREATE PACKAGING CELL LINES**

A number of viral based systems have been developed for use as gene transfer vectors for mammalian host cells. For example, retroviruses (in particular,

lentiviral vectors) provide a convenient platform for gene delivery systems. A coding sequence of interest (for example, a sequence useful for gene therapy applications) can be inserted into a gene delivery vector and packaged in retroviral particles using techniques known in the art. Recombinant virus can then be isolated and delivered to cells of the subject either *in vivo* or *ex vivo*. A number of retroviral systems have been described, including, for example, the following: (U.S. Patent No. 5,219,740; Miller et al. (1989) *Biotechniques* 7:980; Miller, A.D. (1990) *Human Gene Therapy* 1:5; Scarpa et al. (1991) *Virology* 180:849; Burns et al. (1993) *Proc. Natl. Acad. Sci. USA* 90:8033; Boris-Lawrie et al. (1993) *Cur. Opin. Genet. Develop.* 3:102; GB 2200651; EP 0415731; EP 0345242; WO 89/02468; WO 89/05349; WO 89/09271; WO 90/02806; WO 90/07936; WO 90/07936; WO 94/03622; WO 93/25698; WO 93/25234; WO 93/11230; WO 93/10218; WO 91/02805; in U.S. 5,219,740; U.S. 4,405,712; U.S. 4,861,719; U.S. 4,980,289 and U.S. 4,777,127; in U.S. Serial No. 07/800,921; and in Vile (1993) *Cancer Res* 53:3860-3864; Vile (1993) *Cancer Res* 53:962-967; Ram (1993) *Cancer Res* 53:83-88; Takamiya (1992) *J Neurosci Res* 33:493-503; Baba (1993) *J Neurosurg* 79:729-735; Mann (1983) *Cell* 33:153; Cane (1984) *Proc Natl Acad Sci USA* 81:6349; and Miller (1990) *Human Gene Therapy* 1.

Sequences useful for gene therapy applications include, but are not limited to, the following. Factor VIII cDNA, including derivatives and deletions thereof (International Publication Nos. WO 96/21035, WO 97/03193, WO 97/03194, WO 97/03195, and WO 97/03191). Factor IX cDNA (Kurachi et al. (1982) *Proc. Natl. Acad. Sci. USA* 79:6461-6464). Factor V cDNA can be obtained from pMT2-V (Jenny (1987) *Proc. Natl. Acad. Sci. USA* 84:4846, A.T.C.C. Deposit No. 40515). A full-length factor V

cDNA, or a B domain deletion or B domain substitution thereof, can be used. B domain deletions of factor V, include those reported by Marquette (1995) *Blood* 86:3026 and Kane (1990) *Biochemistry* 29:6762. Antithrombin III cDNA (Prochownik (1983) *J. Biol. Chem.* 258:8389, A.T.C.C. Deposit No. 57224/57225). Protein C encoding cDNA (Foster (1984) *Proc. Natl. Acad. Sci. USA* 81:4766; Beckmann (1985) *Nucleic Acids Res.* 13:5233). Prothrombin cDNA can be obtained by restriction enzyme digestion of a published vector (Degen (1983) *Biochemistry* 22:2087). The endothelial cell surface protein, thrombomodulin, is a necessary cofactor for the normal activation of protein C by thrombin. A soluble recombinant form has been described (Parkinson (1990) *J. Biol. Chem.* 265:12602; Jackman (1987) *Proc. Natl. Acad. Sci. USA* 84:6425; Shirai (1988) *J. Biochem.* 103:281; Wen (1987) *Biochemistry* 26:4350; Suzuki (1987) *EMBO J.* 6:1891, A.T.C.C. Deposit No. 61348, 61349).

Many genetic diseases caused by inheritance of defective genes result in the failure to produce normal gene products, for example, thalassemia, phenylketonuria, Lesch-Nyhan syndrome, severe combined immunodeficiency (SCID), hemophilia A and B, cystic fibrosis, Duchenne's Muscular Dystrophy, inherited emphysema and familial hypercholesterolemia (Mulligan et al. (1993) *Science* 260:926; Anderson et al. (1992) *Science* 256:808; Friedman et al. (1989) *Science* 244:1275). Although genetic diseases may result in the absence of a gene product, endocrine disorders, such as diabetes and hypopituitarism, are caused by the inability of the gene to produce adequate levels of the appropriate hormone insulin and human growth hormone respectively.

In one aspect, gene therapy employing the constructs and methods of the present invention involves the

introduction of normal recombinant genes into T cells so that new or missing proteins are produced by the T cells after introduction or reintroduction thereof into a patient. A number of genetic diseases have been selected
5 for treatment with gene therapy, including adenine deaminase deficiency, cystic fibrosis, α_1 -antitrypsin deficiency, Gaucher's syndrome, as well as non-genetic diseases.

In particular, Gaucher's syndrome is a genetic disorder characterized by a deficiency of the enzyme glucocerebrosidase. This enzyme deficiency leads to the accumulation of glucocerebroside in the lysosomes of all cells in the body. For a review see *Science* 256:794 (1992) and Scriver et al., *The Metabolic Basis of 10 Inherited Disease*, 6th ed., vol. 2, page 1677). Thus, gene transfer vectors that express glucocerebrosidase can be constructed for use in the treatment of this disorder. Likewise, gene transfer vectors encoding lactase can be used in the treatment of hereditary lactose intolerance,
15 those expressing AD can be used for treatment of ADA deficiency, and gene transfer vectors encoding α_1 -antitrypsin can be used to treat α_1 -antitrypsin deficiency. See Ledley, F.D. (1987) *J. Pediatrics* 110:157-174, Verma, I. (Nov. 1987) *Scientific American* pp. 68-84, and International Publication No. WO 95/27512
20 entitled "Gene Therapy Treatment for a Variety of Diseases and Disorders," for a description of gene therapy treatment of genetic diseases.

In still further embodiments of the invention,
30 nucleotide sequences which can be incorporated into a gene transfer vector include, but are not limited to, proteins associated with enzyme-deficiency disorders, such as the cystic fibrosis transmembrane regulator (see, for example, U.S. Patent No. 5,240,846 and Larrick et al.

(1991) *Gene Therapy Applications of Molecular Biology*, Elsevier, New York and adenosine deaminase (ADA) (see U.S. Patent No. 5,399,346); growth factors, or an agonist or antagonist of a growth factor (Bandara et al. (1992) 5 *DNA and Cell Biology*, 11:227); one or more tumor suppressor genes such as p53, Rb, or C-CAMI (Kleinerman et al. (1995) *Cancer Research* 55:2831); a molecule that modulates the immune system of an organism, such as a HLA molecule (Nabel et al. (1993) *Proc. Natl. Acad. Sci. USA* 10 90:11307); a ribozyme (Larsson et al. (1996) *Virology* 219:161); a peptide nucleic acid (Hirshman et al. (1996) *J. Invest. Med.* 44:347); an antisense molecule (Bordier et al. (1995) *Proc. Natl. Acad. Sci. USA* 92:9383) which can be used to down-regulate the expression or synthesis 15 of aberrant or foreign proteins, such as HIV proteins or a wide variety of oncogenes such as p53 (Hesketh, *The Oncogene Facts Book*, Academic Press, New York, (1995); a biopharmaceutical agent or antisense molecule used to treat HIV-infection, such as an inhibitor of p24 20 (Nakashima et al. (1994) *Nucleic Acids Res.* 22:5004); or reverse-transcriptase (see, Bordier, *supra*).

Other proteins of therapeutic interest can be expressed *in vivo* by gene transfer vectors using the methods of the invention. For instance sustained *in vivo* 25 expression of tissue factor inhibitory protein (TFPI) is useful for treatment of conditions including sepsis and DIC and in preventing reperfusion injury. (See International Publications Nos. WO 93/24143, WO 93/25230 and WO 96/06637). Nucleic acid sequences encoding 30 various forms of TFPI can be obtained, for example, as described in US Patent Nos. 4,966,852; 5,106,833; and 5,466,783, and incorporated into the gene transfer vectors described herein.

Erythropoietin (EPO) and leptin can also be expressed *in vivo* from genetically modified T cells according to the methods of the invention. For instance EPO is useful in gene therapy treatment of a variety of 5 disorders including anemia (see International Publication No. WO 95/13376 entitled "Gene Therapy for Treatment of Anemia"). Sustained delivery of leptin by the methods of the invention is useful in treatment of obesity. See International Publication No. WO 96/05309 for a 10 description of the leptin gene and the use thereof in the treatment of obesity.

A variety of other disorders can also be treated by the methods of the invention. For example, sustained *in vivo* systemic production of apolipoprotein E or 15 apolipoprotein A from genetically modified T cells can be used for treatment of hyperlipidemia (see Breslow et al. (1994) *Biotechnology* 12:365). Sustained production of angiotensin receptor inhibitor (Goodfriend et al. (1996) *N. Engl. J. Med.* 334:1469) can be provided by the methods 20 described herein. As yet an additional example, the long term *in vivo* systemic production of angiostatin is useful in the treatment of a variety of tumors. (See O'Reilly et al. (1996) *Nature Med.* 2:689).

In other embodiments, gene transfer vectors can be 25 constructed to encode a cytokine or other immunomodulatory molecule. For example, nucleic acid sequences encoding native IL-2 and gamma-interferon can be obtained as described in US Patent Nos. 4,738,927 and 5,326,859, respectively, while useful muteins of these 30 proteins can be obtained as described in U.S. Patent No. 4,853,332. Nucleic acid sequences encoding the short and long forms of mCSF can be obtained as described in US Patent Nos. 4,847,201 and 4,879,227, respectively. In particular aspects of the invention, retroviral vectors

expressing cytokine or immunomodulatory genes can be produced as described herein (for example, employing the packaging cell lines of the present invention) and in International Application No. PCT US 94/02951, entitled "Compositions and Methods for Cancer Immunotherapy."

5 Examples of suitable immunomodulatory molecules for use herein include the following: IL-1 and IL-2 (Karupiah et al. (1990) *J. Immunology* 144:290-298, Weber et al.

(1987) *J. Exp. Med.* 166:1716-1733, Gansbacher et al.

10 (1990) *J. Exp. Med.* 172:1217-1224, and U.S. Patent No.

4,738,927); IL-3 and IL-4 (Tepper et al. (1989) *Cell*

57:503-512, Golumbek et al. (1991) *Science* 254:713-716,

and U.S. Patent No. 5,017,691); IL-5 and IL-6 (Brakenhof et al. (1987) *J. Immunol.* 139:4116-4121, and

15 International Publication No. WO 90/06370); IL-7 (U.S.

Patent No. 4,965,195); IL-8, IL-9, IL-10, IL-11, IL-12,

and IL-13 (*Cytokine Bulletin*, Summer 1994); IL-14 and

IL-15; alpha interferon (Finter et al. (1991) *Drugs*

42:749-765, U.S. Patent Nos. 4,892,743 and 4,966,843,

20 International Publication No. WO 85/02862, Nagata et al.

(1980) *Nature* 284:316-320, Familletti et al. (1981)

Methods in Enz. 78:387-394, Twu et al. (1989) *Proc. Natl.*

Acad. Sci. USA 86:2046-2050, and Faktor et al. (1990)

Oncogene 5:867-872); beta-interferon (Seif et al. (1991)

25 *J. Virol.* 65:664-671); gamma-interferons (Radford et al.

(1991) *The American Society of Hepatology* 20082015,

Watanabe et al. (1989) *Proc. Natl. Acad. Sci. USA*

86:9456-9460, Gansbacher et al. (1990) *Cancer Research*

50:7820-7825, Maio et al. (1989) *Can. Immunol.*

30 *Immunother.* 30:34-42, and U.S. Patent Nos. 4,762,791 and

4,727,138); G-CSF (U.S. Patent Nos. 4,999,291 and

4,810,643); GM-CSF (International Publication No. WO

85/04188); tumor necrosis factors (TNFs) (Jayaraman et

al. (1990) *J. Immunology* 144:942-951); CD3 (Krissanen et

al. (1987) *Immunogenetics* 26:258-266); ICAM-1 (Altman et al. (1989) *Nature* 338:512-514, Simmons et al. (1988) *Nature* 331:624-627); ICAM-2, LFA-1, LFA-3 (Wallner et al. (1987) *J. Exp. Med.* 166:923-932); MHC class I molecules,
5 MHC class II molecules, B7.1-.3, β_2 -microglobulin (Parnes et al. (1981) *Proc. Natl. Acad. Sci. USA* 78:2253-2257); chaperones such as calnexin; and MHC-linked transporter proteins or analogs thereof (Powis et al. (1991) *Nature* 354:528-531). Immunomodulatory factors may also be
10 agonists, antagonists, or ligands for these molecules. For example, soluble forms of receptors can often behave as antagonists for these types of factors, as can mutated forms of the factors themselves.

Nucleic acid molecules that encode the above-
15 described substances, as well as other nucleic acid molecules that are advantageous for use within the present invention, may be readily obtained from a variety of sources, including, for example, depositories such as the American Type Culture Collection, or from commercial sources such as British Bio-Technology Limited (Cowley, Oxford England). Representative examples include BBG 12 (containing the GM-CSF gene coding for the mature protein of 127 amino acids), BBG 6 (which contains sequences encoding gamma interferon), A.T.C.C. Deposit No. 39656
20 (which contains sequences encoding TNF), A.T.C.C. Deposit No. 20663 (which contains sequences encoding alpha-interferon), A.T.C.C. Deposit Nos. 31902, 31902 and 39517 (which contain sequences encoding beta-interferon), A.T.C.C. Deposit No. 67024 (which contains a sequence
25 which encodes Interleukin-1b), A.T.C.C. Deposit Nos. 39405, 39452, 39516, 39626 and 39673 (which contain sequences encoding Interleukin-2), A.T.C.C. Deposit Nos. 59399, 59398, and 67326 (which contain sequences encoding Interleukin-3), A.T.C.C. Deposit No. 57592 (which

contains sequences encoding Interleukin-4), A.T.C.C. Deposit Nos. 59394 and 59395 (which contain sequences encoding Interleukin-5), and A.T.C.C. Deposit No. 67153 (which contains sequences encoding Interleukin-6).

5 Plasmids containing cytokine genes or immunomodulatory genes (International Publication Nos. WO 94/02951 and WO 96/21015) can be digested with appropriate restriction enzymes, and DNA fragments containing the particular gene of interest can be inserted into a gene
10 transfer vector using standard molecular biology techniques. (See, e.g., Sambrook et al., *supra.*, or Ausubel et al. (eds) *Current Protocols in Molecular Biology*, Greene Publishing and Wiley-Interscience).

Exemplary hormones, growth factors and other
15 proteins which are useful for long term expression are described, for example, in European Publication No. 0437478B1, entitled "Cyclodextrin-Peptide Complexes." Nucleic acid sequences encoding a variety of hormones can be used, including those encoding human growth hormone,
20 insulin, calcitonin, prolactin, follicle stimulating hormone (FSH), luteinizing hormone (LH), human chorionic gonadotropin (HCG), and thyroid stimulating hormone (TSH). A variety of different forms of IGF-1 and IGF-2 growth factor polypeptides are also well known the art
25 and can be incorporated into gene transfer vectors for long term expression *in vivo*. See, e.g., European Patent No. 0123228B1, published for grant September 19, 1993, entitled "Hybrid DNA Synthesis of Mature Insulin-like Growth Factors." As an additional example, the long term
30 *in vivo* expression of different forms of fibroblast growth factor can also be effected employing the compositions and methods of invention. See, e.g., U.S. Patent Nos. 5,464,774, 5,155,214, and 4,994,559 for a description of different fibroblast growth factors.

Polynucleotide sequences coding for the above-described molecules can be obtained using recombinant methods, such as by screening cDNA and genomic libraries from cells expressing the gene, or by deriving the gene 5 from a vector known to include the same. For example, plasmids which contain sequences that encode altered cellular products may be obtained from a depository such as the A.T.C.C., or from commercial sources. Plasmids containing the nucleotide sequences of interest can be 10 digested with appropriate restriction enzymes, and DNA fragments containing the nucleotide sequences can be inserted into a gene transfer vector using standard molecular biology techniques.

Alternatively, cDNA sequences for use with the 15 present invention may be obtained from cells which express or contain the sequences, using standard techniques, such as phenol extraction and PCR of cDNA or genomic DNA. See, e.g., Sambrook et al., *supra*, for a description of techniques used to obtain and isolate DNA. Briefly, mRNA from a cell which expresses the gene of 20 interest can be reverse transcribed with reverse transcriptase using oligo-dT or random primers. The single stranded cDNA may then be amplified by PCR (see U.S. Patent Nos. 4,683,202, 4,683,195 and 4,800,159, see 25 also *PCR Technology: Principles and Applications for DNA Amplification*, Erlich (ed.), Stockton Press, 1989)) using oligonucleotide primers complementary to sequences on either side of desired sequences.

The nucleotide sequence of interest can also be 30 produced synthetically, rather than cloned, using a DNA synthesizer (e.g., an Applied Biosystems Model 392 DNA Synthesizer, available from ABI, Foster City, California). The nucleotide sequence can be designed with the appropriate codons for the expression product

desired. The complete sequence is assembled from overlapping oligonucleotides prepared by standard methods and assembled into a complete coding sequence. See, e.g., Edge (1981) *Nature* 292:756; Nambair et al. (1984) 5 *Science* 223:1299; Jay et al. (1984) *J. Biol. Chem.* 259:6311.

The synthetic expression cassettes of the present invention can be employed in the construction of packaging cell lines for use with retroviral vectors.

One type of retrovirus, the murine leukemia virus, or "MLV", has been widely utilized for gene therapy applications (see generally Mann et al. (*Cell* 33:153, 1993), Cane and Mulligan (*Proc, Nat'l. Acad. Sci. USA* 81:6349, 1984), and Miller et al., *Human Gene Therapy* 15 1:5-14, 1990.

Lentiviral vectors typically, comprise a 5' lentiviral LTR, a tRNA binding site, a packaging signal, a promoter operably linked to one or more genes of interest, an origin of second strand DNA synthesis and a 20 3' lentiviral LTR, wherein the lentiviral vector contains a nuclear transport element. The nuclear transport element may be located either upstream (5') or downstream (3') of a coding sequence of interest. Within certain embodiments, the nuclear transport element is not RRE. 25 Within one embodiment the packaging signal is an extended packaging signal. Within other embodiments the promoter is a tissue specific promoter, or, alternatively, a promoter such as CMV. Within other embodiments, the lentiviral vector further comprises an internal ribosome entry site. 30

A wide variety of lentiviruses may be utilized within the context of the present invention, including for example, lentiviruses selected from the group consisting of HIV, HIV-1, HIV-2, FIV and SIV.

In one embodiment of the present invention synthetic Env and/or Gag-polymerase expression cassettes are provided comprising a promoter and a sequence encoding synthetic Gag-polymerase (SEQ ID NO:6) and at least one of vpr, vpu, nef or vif, wherein the promoter is operably linked to Gag-polymerase and vpr, vpu, nef or vif.

Within yet another aspect of the invention, host cells (e.g., packaging cell lines) are provided which contain any of the expression cassettes described herein.

For example, within one aspect packaging cell line are provided comprising an expression cassette that comprises a sequence encoding synthetic Env and/or Gag-polymerase, and a nuclear transport element, wherein the promoter is operably linked to the sequence encoding Env and/or Gag-polymerase. Packaging cell lines may further comprise a promoter and a sequence encoding tat, rev, or an envelope, wherein the promoter is operably linked to the sequence encoding tat, rev, or, the envelope. The packaging cell line may further comprise a sequence encoding any one or more of nef, vif, vpu or vpr.

In one embodiment, the expression cassette (carrying, for example, the synthetic Env, synthetic tat and/or synthetic Gag-polymerase) is stably integrated. The packaging cell line, upon introduction of a lentiviral vector, typically produces viral particles. The promoter regulating expression of the synthetic expression cassette may be inducible. Typically, the packaging cell line, upon introduction of a lentiviral vector, produces viral particles that are essentially free of replication competent virus.

Packaging cell lines are provided comprising an expression cassette which directs the expression of a synthetic Env (or Gag-polymerase) gene, an expression cassette which directs the expression of a Gag (or Env)

gene optimized for expression (e.g., Andre, S., et al., *Journal of Virology* 72(2):1497-1503, 1998; Haas, J., et al., *Current Biology* 6(3):315-324, 1996). A lentiviral vector is introduced into the packaging cell line to produce a vector particle producing cell line.

As noted above, lentiviral vectors can be designed to carry or express a selected gene(s) or sequences of interest. Lentiviral vectors may be readily constructed from a wide variety of lentiviruses (see RNA Tumor Viruses, Second Edition, Cold Spring Harbor Laboratory, 1985). Representative examples of lentiviruses included HIV, HIV-1, HIV-2, FIV and SIV. Such lentiviruses may either be obtained from patient isolates, or, more preferably, from depositories or collections such as the American Type Culture Collection, or isolated from known sources using available techniques.

Portions of the lentiviral gene delivery vectors (or vehicles) may be derived from different viruses. For example, in a given recombinant lentiviral vector, LTRs may be derived from an HIV, a packaging signal from SIV, and an origin of second strand synthesis from HrV-2. Lentiviral vector constructs may comprise a 5' lentiviral LTR, a tRNA binding site, a packaging signal, one or more heterologous sequences, an origin of second strand DNA synthesis and a 3' LTR, wherein said lentiviral vector contains a nuclear transport element that is not RRE.

Briefly, Long Terminal Repeats ("LTRs") are subdivided into three elements, designated U5, R and U3. These elements contain a variety of signals which are responsible for the biological activity of a retrovirus, including for example, promoter and enhancer elements which are located within U3. LTRs may be readily identified in the provirus (integrated DNA form) due to their precise duplication at either end of the genome.

As utilized herein, a 5' LTR should be understood to include a 5' promoter element and sufficient LTR sequence to allow reverse transcription and integration of the DNA form of the vector. The 3' LTR should be understood to 5 include a polyadenylation signal, and sufficient LTR sequence to allow reverse transcription and integration of the DNA form of the vector.

The tRNA binding site and origin of second strand DNA synthesis are also important for a retrovirus to be 10 biologically active, and may be readily identified by one of skill in the art. For example, retroviral tRNA binds to a tRNA binding site by Watson-Crick base pairing, and is carried with the retrovirus genome into a viral particle. The tRNA is then utilized as a primer for DNA 15 synthesis by reverse transcriptase. The tRNA binding site may be readily identified based upon its location just downstream from the 5'LTR. Similarly, the origin of second strand DNA synthesis is, as its name implies, important for the second strand DNA synthesis of a 20 retrovirus. This region, which is also referred to as the poly-purine tract, is located just upstream of the 3'LTR.

In addition to a 5' and 3' LTR, tRNA binding site, and origin of second strand DNA synthesis, recombinant 25 retroviral vector constructs may also comprise a packaging signal, as well as one or more genes or coding sequences of interest. In addition, the lentiviral vectors have a nuclear transport element which, in preferred embodiments is not RRE. Representative 30 examples of suitable nuclear transport elements include the element in Rous sarcoma virus (Ogert, et al., J ViroL 70, 3834-3843, 1996), the element in Rous sarcoma virus (Liu & Mertz, Genes & Dev., 9, 1766-1789, 1995) and the element in the genome of simian retrovirus type I

(Zolotukhin, et al., *J Virol.* 68, 7944-7952, 1994). Other potential elements include the elements in the histone gene (Kedes, *Annu. Rev. Biochem.* 48, 837-870, 1970), the α -interferon gene (Nagata et al., *Nature* 287, 5 401-408, 1980), the β -adrenergic receptor gene (Koilkka, et al., *Nature* 329, 75-79, 1987), and the c-Jun gene (Hattorie, et al., *Proc. Natl. Acad. Sci. USA* 85, 9148-9152, 1988).

Recombinant lentiviral vector constructs typically 10 lack both *Gag-polymerase* and *env* coding sequences. Recombinant lentiviral vector typically contain less than 20, preferably 15, more preferably 10, and most preferably 8 consecutive nucleotides found in *Gag-polymerase* or *env* genes. One advantage of the present 15 invention is that the synthetic *Gag-polymerase* expression cassettes, which can be used to construct packaging cell lines for the recombinant retroviral vector constructs, have little homology to wild-type *Gag-polymerase* sequences and thus considerably reduce or eliminate the 20 possibility of homologous recombination between the synthetic and wild-type sequences.

Lentiviral vectors may also include tissue-specific 25 promoters to drive expression of one or more genes or sequences of interest. For example, lentiviral vector particles of the invention can contain a liver specific promoter to maximize the potential for liver specific expression of the exogenous DNA sequence contained in the vectors. Preferred liver specific promoters include the hepatitis B X-gene promoter and the hepatitis B core 30 protein promoter. These liver specific promoters are preferably employed with their respective enhancers. The enhancer element can be linked at either the 5' or the 3' end of the nucleic acid encoding the sequences of interest. The hepatitis B X gene promoter and its

enhancer can be obtained from the viral genome as a 332 base pair *EcoRV-NcoI* DNA fragment employing the methods described in Twu, et al., *J Virol.* 61:3448-3453, 1987. The hepatitis B core protein promoter can be obtained 5 from the viral genome as a 584 base pair *BamHI-BglII* DNA fragment employing the methods described in Gerlach, et al., *Virol* 189:59-66, 1992. It may be necessary to remove the negative regulatory sequence in the *BamHI-BglII* fragment prior to inserting it. Other liver 10 specific promoters include the AFP (alpha fetal protein) gene promoter and the albumin gene promoter, as disclosed in EP Patent Publication 0 415 731, the -1 antitrypsin gene promoter, as disclosed in Rettenger, et al., *Proc. Natl. Acad. Sci.* 91:1460-1464, 1994, the fibrinogen 15 gene promoter, the APO-A1 (Apolipoprotein A1) gene promoter, and the promoter genes for liver transference enzymes such as, for example, SGOT, SGPT and glutamyle transferase. See also PCT Patent Publications WO 90/07936 and WO 91/02805 for a description of the use of 20 liver specific promoters in lentiviral vector particles.

Lentiviral vector constructs may be generated such that more than one gene of interest is expressed. This may be accomplished through the use of di- or oligo-cistronic cassettes (e.g., where the coding regions are 25 separated by 80 nucleotides or less, see generally Levin et al., *Gene* 108:167-174, 1991), or through the use of Internal Ribosome Entry Sites ("IRES").

Packaging cell lines suitable for use with the above described recombinant retroviral vector constructs may be 30 readily prepared given the disclosure provided herein. Briefly, the parent cell line from which the packaging cell line is derived can be selected from a variety of

mammalian cell lines, including for example, 293, RD, COS-7, CHO, BHK, VERO, HT1080, and myeloma cells.

After selection of a suitable host cell for the generation of a packaging cell line, one or more 5 expression cassettes are introduced into the cell line in order to complement or supply in *trans* components of the vector which have been deleted.

Representative examples of suitable expression cassettes have been described herein and include 10 synthetic Env, tat, Gag, synthetic Gag-protease, synthetic Gag-reverse transcriptase and synthetic Gag-polymerase expression cassettes, which comprise a promoter and a sequence encoding, e.g., Env, tat, or Gag-polymerase and at least one of vpr, vpu, nef or vif, 15 wherein the promoter is operably linked to Env, tat or Gag-polymerase and vpr, vpu, nef or vif. As described above, optimized Env, Gag and/or tat coding sequences may also be utilized in various combinations in the generation of packaging cell lines.

Utilizing the above-described expression cassettes, 20 a wide variety of packaging cell lines can be generated. For example, within one aspect packaging cell line are provided comprising an expression cassette that comprises a sequence encoding synthetic HIV (e.g., Gag, Env, tat, 25 Gag-polymerase, Gag-reverse transcriptase or Gag-protease) polypeptide, and a nuclear transport element, wherein the promoter is operably linked to the sequence encoding the HIV polypeptide. Within other aspects, packaging cell lines are provided comprising a promoter 30 and a sequence encoding Gag, tat, rev, or an envelope (e.g., HIV env), wherein the promoter is operably linked to the sequence encoding Gag, tat, rev, or, the envelope. Within further embodiments, the packaging cell line may comprise a sequence encoding any one or more of nef, vif,

vpu or vpr. For example, the packaging cell line may contain only nef, vif, vpu, or vpr alone, nef and vif, nef and vpu, nef and vpr, vif and vpu, vif and vpr, vpu and vpr, nef vif and vpu, nef vif and vpr, nef vpu and vpr, vvir vpu and vpr, or, all four of nef vif vpu and vpr.

In one embodiment, the expression cassette is stably integrated. Within another embodiment, the packaging cell line, upon introduction of a lentiviral vector, produces particles. Within further embodiments the promoter is inducible. Within certain preferred embodiments of the invention, the packaging cell line, upon introduction of a lentiviral vector, produces particles that are free of replication competent virus.

The synthetic cassettes containing optimized coding sequences are transfected into a selected cell line. Transfected cells are selected that (i) carry, typically, integrated, stable copies of the Gag, Pol, and Env coding sequences, and (ii) are expressing acceptable levels of these polypeptides (expression can be evaluated by methods known in the prior art, e.g., see Examples 1-4). The ability of the cell line to produce VLPs may also be verified (Examples 6, 7 and 15).

A sequence of interest is constructed into a suitable viral vector as discussed above. This defective virus is then transfected into the packaging cell line. The packaging cell line provides the viral functions necessary for producing virus-like particles into which the defective viral genome, containing the sequence of interest, are packaged. These VLPs are then isolated and can be used, for example, in gene delivery or gene therapy.

Further, such packaging cell lines can also be used to produce VLPs alone, which can, for example, be used as

adjuvants for administration with other antigens or in vaccine compositions. Also, co-expression of a selected sequence of interest encoding a polypeptide (for example, an antigen) in the packaging cell line can also result in
5 the entrapment and/or association of the selected polypeptide in/with the VLPs.

2.3 DNA IMMUNIZATION AND GENE DELIVERY

A variety of polypeptide antigens can be used in the practice of the present invention. Polypeptide antigens can be included in DNA immunization constructs containing, for example, any of the synthetic expression cassettes described herein fused in-frame to a coding sequence for the polypeptide antigen, where expression of the construct results in VLPs presenting the antigen of interest. Antigens can be derived from a wide variety of viruses, bacteria, fungi, plants, protozoans and other parasites. For example, the present invention will find use for stimulating an immune response against a wide variety of proteins from the herpesvirus family, including proteins derived from herpes simplex virus (HSV) types 1 and 2, such as HSV-1 and HSV-2 gB, gD, gH, VP16 and VP22; antigens derived from varicella zoster virus (VZV), Epstein-Barr virus (EBV) and cytomegalovirus (CMV) including CMV gB and gH; and antigens derived from other human herpesviruses such as HHV6 and HHV7. (See, e.g. Chee et al., *Cytomegaloviruses* (J.K. McDougall, ed., Springer-Verlag 1990) pp. 125-169, for a review of the protein coding content of cytomegalovirus; McGeoch et al., *J. Gen. Virol.* (1988) 69:1531-1574, for a discussion of the various HSV-1 encoded proteins; U.S. Patent No. 5,171,568 for a discussion of HSV-1 and HSV-2 gB and gD proteins and the genes encoding therefore; Baer et al., *Nature* (1984) 310:207-211, for the identification of

protein coding sequences in an EBV genome; and Davison and Scott, *J. Gen. Virol.* (1986) 67:1759-1816, for a review of VZV.)

Additionally, immune responses to antigens from the hepatitis family of viruses, including hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), the delta hepatitis virus (HDV), hepatitis E virus (HEV), and hepatitis G virus, can also be stimulated using the constructs of the present invention. By way of example, the HCV genome encodes several viral proteins, including E1 (also known as E) and E2 (also known as E2/NS1), which will find use with the present invention (see, Houghton et al. *Hepatology* (1991) 14:381-388, for a discussion of HCV proteins, including E1 and E2). The δ -antigen from HDV can also be used (see, e.g., U.S. Patent No. 5,389,528, for a description of the δ -antigen).

Similarly, influenza virus is another example of a virus for which the present invention will be particularly useful. Specifically, the envelope glycoproteins HA and NA of influenza A are of particular interest for generating an immune response. Numerous HA subtypes of influenza A have been identified (Kawaoka et al., *Virology* (1990) 179:759-767; Webster et al. "Antigenic variation among type A influenza viruses," p. 127-168. In: P. Palese and D.W. Kingsbury (ed.), *Genetics of influenza viruses*. Springer-Verlag, New York).

Other antigens of particular interest to be used in the practice of the present invention include antigens and polypeptides derived therefrom from human papillomavirus (HPV), such as one or more of the various early proteins including E6 and E7; tick-borne encephalitis viruses; and HIV-1 (also known as HTLV-III, LAV, ARV, etc.), including, but not limited to, antigens such as gp120, gp41, gp160, Gag and pol from a variety of

isolates including, but not limited to, HIV_{IIIB}, HIV_{SF2}, HIV-1_{SP162}, HIV-1_{SP170}, HIV_{LAV}, HIV_{LAI}, HIV_{MN}, HIV-1_{CM235}, HIV-1_{US4}, other HIV-1 strains from diverse subtypes (e.g., subtypes, A through G, and O), HIV-2 strains and diverse 5 subtypes (e.g., HIV-2_{UC1} and HIV-2_{UC2}). See, e.g., Myers, et al., Los Alamos Database, Los Alamos National Laboratory, Los Alamos, New Mexico; Myers, et al., *Human Retroviruses and Aids, 1990*, Los Alamos, New Mexico: Los Alamos National Laboratory.

10 Proteins derived from other viruses will also find use in the claimed methods, such as without limitation, proteins from members of the families Picornaviridae (e.g., polioviruses, etc.); Caliciviridae; Togaviridae (e.g., rubella virus, dengue virus, etc.); Flaviviridae; 15 Coronaviridae; Reoviridae; Birnaviridae; Rhabdoviridae (e.g., rabies virus, etc.); Filoviridae; Paramyxoviridae (e.g., mumps virus, measles virus, respiratory syncytial virus, etc.); Orthomyxoviridae (e.g., influenza virus types A, B and C, etc.); Bunyaviridae; Arenaviridae; 20 Retroviridae, e.g., HTLV-I; HTLV-II; HIV-1; HIV-2; simian immunodeficiency virus (SIV) among others. See, e.g. *Virology*, 3rd Edition (W.K. Joklik ed. 1988); *Fundamental Virology*, 2nd Edition (B.N. Fields and D.M. Knipe, eds. 1991); *Virology*, 3rd Edition (Fields, BN, DM Knipe, PM 25 Howley, Editors, 1996, Lippincott-Raven, Philadelphia, PA) for a description of these and other viruses.

Particularly preferred bacterial antigens are derived from organisms that cause diphtheria, tetanus, pertussis, meningitis, and other pathogenic states, 30 including, without limitation, antigens derived from *Corynebacterium diphtheriae*, *Clostridium tetani*, *Bordetella pertusis*, *Neisseria meningitidis*, including serotypes *Meningococcus A, B, C, Y* and *WI35* (*MenA, B, C, Y* and *WI35*), *Haemophilus influenza type B (Hib)*, and

Helicobacter pylori. Examples of parasitic antigens include those derived from organisms causing malaria, tuberculosis, and Lyme disease.

Furthermore, the methods described herein provide
5 means for treating a variety of malignant cancers. For example, the system of the present invention can be used to enhance both humoral and cell-mediated immune responses to particular proteins specific to a cancer in question, such as an activated oncogene, a fetal antigen,
10 or an activation marker. Such tumor antigens include any of the various MAGEs (melanoma associated antigen E), including MAGE 1, 2, 3, 4, etc. (Boon, T. *Scientific American* (March 1993):82-89); any of the various tyrosinases; MART 1 (melanoma antigen recognized by T
15 cells), mutant ras; mutant p53; p97 melanoma antigen; CEA (carcinoembryonic antigen), among others.

DNA immunization using synthetic expression cassettes of the present invention has been demonstrated to be efficacious (Examples 8 and 10-12). Animals were
20 immunized with both the synthetic expression cassette and the wild type expression cassette. The results of the immunizations with plasmid-DNAs showed that the synthetic expression cassettes provide a clear improvement of immunogenicity relative to the native expression
25 cassettes. Also, the second boost immunization induced a secondary immune response, for example after two to eight weeks. Further, the results of CTL assays showed increased potency of synthetic expression cassettes for induction of cytotoxic T-lymphocyte (CTL) responses by
30 DNA immunization.

It is readily apparent that the subject invention can be used to mount an immune response to a wide variety of antigens and hence to treat or prevent a large number of diseases.

2.3.1 DELIVERY OF THE SYNTHETIC EXPRESSION CASSETTES OF THE
PRESENT INVENTION

Polynucleotide sequences coding for the above-described molecules can be obtained using recombinant methods, such as by screening cDNA and genomic libraries from cells expressing the gene, or by deriving the gene from a vector known to include the same. The sequences can be analyzed by conventional sequencing techniques. Furthermore, the desired gene can be isolated directly from cells and tissues containing the same, using standard techniques, such as phenol extraction and PCR of cDNA or genomic DNA. See, e.g., Sambrook et al., *supra*, for a description of techniques used to obtain, isolate and sequence DNA. Once the sequence is known, the gene of interest can also be produced synthetically, rather than cloned. The nucleotide sequence can be designed with the appropriate codons for the particular amino acid sequence desired. In general, one will select preferred codons for the intended host in which the sequence will be expressed. The complete sequence is assembled from overlapping oligonucleotides prepared by standard methods and assembled into a complete coding sequence. See, e.g., Edge, *Nature* (1981) 292:756; Nambair et al., *Science* (1984) 223:1299; Jay et al., *J. Biol. Chem.* (1984) 259:6311; Stemmer, W.P.C., (1995) *Gene* 164:49-53.

Next, the gene sequence encoding the desired antigen can be inserted into a vector containing a synthetic expression cassette of the present invention (e.g., see Example 1 for construction of various exemplary synthetic expression cassette). The antigen is inserted into the synthetic coding sequence such that when the combined sequence is expressed it results in the production of VLPs comprising the polypeptide and/or the antigen of

interest. Insertions can be made within the Gag coding sequence or at either end of the coding sequence (5', amino terminus of the expressed polypeptide; or 3', carboxy terminus of the expressed polypeptide -- e.g., 5 see Example 1) (Wagner, R., et al., *Arch Virol.* 127:117-137, 1992; Wagner, R., et al., *Virology* 200:162-175, 1994; Wu, X., et al., *J. Virol.* 69(6):3389-3398, 1995; Wang, C-T., et al., *Virology* 200:524-534, 1994; Chazal, N., et al., *Virology* 68(1):111-122, 1994; Griffiths, 10 J.C., et al., *J. Virol.* 67(6):3191-3198, 1993; Reicin, A.S., et al., *J. Virol.* 69(2):642-650, 1995).

Up to 50% of the coding sequences of p55Gag can be deleted without affecting the assembly to virus-like particles and expression efficiency (Borsetti, A., et al., 15 *J. Virol.* 72(11):9313-9317, 1998; Gamier, L., et al., *J. Virol.* 72(6):4667-4677, 1998; Zhang, Y., et al., *J. Virol.* 72(3):1782-1789, 1998; Wang, C., et al., *J. Virol.* 72(10):7950-7959, 1998). In one embodiment of the present invention, immunogenicity of the high level expressing 20 synthetic p55GagMod and p55GagProtMod expression cassettes can be increased by the insertion of different structural or non-structural HIV antigens, multiepitope cassettes, or cytokine sequences into deleted, mutated or truncated regions of p55GagMod sequence. In another 25 embodiment of the present invention, immunogenicity of the high level expressing synthetic Env expression cassettes can be increased by the insertion of different structural or non-structural HIV antigens, multiepitope cassettes, or cytokine sequences into deleted regions of 30 gp120Mod, gp140Mod or gp160Mod sequences. Such deletions may be generated following the teachings of the present invention and information available to one of ordinary skill in the art. One possible advantage of this approach, relative to using full-length modified Env

sequences fused to heterologous polypeptides, can be higher expression/secretion efficiency and/or higher immunogenicity of the expression product. Such deletions may be generated following the teachings of the present
5 invention and information available to one of ordinary skill in the art. One possible advantage of this approach, relative to using full-length Env, Gag or Tat sequences fused to heterologous polypeptides, can be higher expression/secretion efficiency and/or
10 immunogenicity of the expression product.

When sequences are added to the amino terminal end of Gag (for example, when using the synthetic p55GagMod expression cassette of the present invention), the polynucleotide can contain coding sequences at the 5' end
15 that encode a signal for addition of a myristic moiety to the Gag-containing polypeptide (e.g., sequences that encode Met-Gly).

The ability of Gag-containing polypeptide constructs to form VLPs can be empirically determined following the
20 teachings of the present specification.

HIV polypeptide/antigen synthetic expression cassettes include control elements operably linked to the coding sequence, which allow for the expression of the gene *in vivo* in the subject species. For example,
25 typical promoters for mammalian cell expression include the SV40 early promoter, a CMV promoter such as the CMV immediate early promoter, the mouse mammary tumor virus LTR promoter, the adenovirus major late promoter (Ad MLP), and the herpes simplex virus promoter, among
30 others. Other nonviral promoters, such as a promoter derived from the murine metallothionein gene, will also find use for mammalian expression. Typically, transcription termination and polyadenylation sequences will also be present, located 3' to the translation stop

codon. Preferably, a sequence for optimization of initiation of translation, located 5' to the coding sequence, is also present. Examples of transcription terminator/polyadenylation signals include those derived 5 from SV40, as described in Sambrook et al., *supra*, as well as a bovine growth hormone terminator sequence.

Enhancer elements may also be used herein to increase expression levels of the mammalian constructs. Examples include the SV40 early gene enhancer, as 10 described in Dijkema et al., *EMBO J.* (1985) 4:761, the enhancer/promoter derived from the long terminal repeat (LTR) of the Rous Sarcoma Virus, as described in Gorman et al., *Proc. Natl. Acad. Sci. USA* (1982b) 79:6777 and elements derived from human CMV, as described in Boshart 15 et al., *Cell* (1985) 41:521, such as elements included in the CMV intron A sequence.

Furthermore, plasmids can be constructed which include a chimeric antigen-coding gene sequences, encoding, e.g., multiple antigens/epitopes of interest, 20 for example derived from a single or from more than one viral isolate.

Typically the antigen coding sequences precede or follow the synthetic coding sequences and the chimeric transcription unit will have a single open reading frame 25 encoding both the antigen of interest and the synthetic Gag coding sequences. Alternatively, multi-cistronic cassettes (e.g., bi-cistronic cassettes) can be constructed allowing expression of multiple antigens from a single mRNA using the EMCV IRES, or the like. Lastly, 30 antigens can be encoded on separate transcripts from independent promoters on a single plasmid or other vector.

Once complete, the constructs are used for nucleic acid immunization or the like using standard gene

delivery protocols. Methods for gene delivery are known in the art. See, e.g., U.S. Patent Nos. 5,399,346, 5,580,859, 5,589,466. Genes can be delivered either directly to the vertebrate subject or, alternatively, 5 delivered *ex vivo*, to cells derived from the subject and the cells reimplanted in the subject.

A number of viral based systems have been developed for gene transfer into mammalian cells. For example, retroviruses provide a convenient platform for gene 10 delivery systems. Selected sequences can be inserted into a vector and packaged in retroviral particles using techniques known in the art. The recombinant virus can then be isolated and delivered to cells of the subject either *in vivo* or *ex vivo*. A number of retroviral 15 systems have been described (U.S. Patent No. 5,219,740; Miller and Rosman, *BioTechniques* (1989) 7:980-990; Miller, A.D., *Human Gene Therapy* (1990) 1:5-14; Scarpa et al., *Virology* (1991) 180:849-852; Burns et al., *Proc. Natl. Acad. Sci. USA* (1993) 90:8033-8037; and Boris- 20 Lawrie and Temin, *Cur. Opin. Genet. Develop.* (1993) 3:102-109.

A number of adenovirus vectors have also been described. Unlike retroviruses which integrate into the host genome, adenoviruses persist extrachromosomally thus 25 minimizing the risks associated with insertional mutagenesis (Haj-Ahmad and Graham, *J. Virol.* (1986) 57:267-274; Bett et al., *J. Virol.* (1993) 67:5911-5921; Mittereder et al., *Human Gene Therapy* (1994) 5:717-729; Seth et al., *J. Virol.* (1994) 68:933-940; Barr et al., 30 *Gene Therapy* (1994) 1:51-58; Berkner, K.L. *BioTechniques* (1988) 6:616-629; and Rich et al., *Human Gene Therapy* (1993) 4:461-476).

Additionally, various adeno-associated virus (AAV) vector systems have been developed for gene delivery.

AAV vectors can be readily constructed using techniques well known in the art. See, e.g., U.S. Patent Nos. 5,173,414 and 5,139,941; International Publication Nos. WO 92/01070 (published 23 January 1992) and WO 93/03769 (published 4 March 1993); Lebkowski et al., *Molec. Cell. Biol.* (1988) 8:3988-3996; Vincent et al., *Vaccines* 90 (1990) (Cold Spring Harbor Laboratory Press); Carter, B.J. *Current Opinion in Biotechnology* (1992) 3:533-539; Muzyczka, N. *Current Topics in Microbiol. and Immunol.* (1992) 158:97-129; Kotin, R.M. *Human Gene Therapy* (1994) 5:793-801; Shelling and Smith, *Gene Therapy* (1994) 1:165-169; and Zhou et al., *J. Exp. Med.* (1994) 179:1867-1875.

Another vector system useful for delivering the polynucleotides of the present invention is the enterically administered recombinant poxvirus vaccines described by Small, Jr., P.A., et al. (U.S. Patent No. 5,676,950, issued October 14, 1997).

Additional viral vectors which will find use for delivering the nucleic acid molecules encoding the antigens of interest include those derived from the pox family of viruses, including vaccinia virus and avian poxvirus. By way of example, vaccinia virus recombinants expressing the genes can be constructed as follows. The DNA encoding the particular synthetic Gag/antigen coding sequence is first inserted into an appropriate vector so that it is adjacent to a vaccinia promoter and flanking vaccinia DNA sequences, such as the sequence encoding thymidine kinase (TK). This vector is then used to transfect cells which are simultaneously infected with vaccinia. Homologous recombination serves to insert the vaccinia promoter plus the gene encoding the coding sequences of interest into the viral genome. The resulting TK recombinant can be selected by culturing the

cells in the presence of 5-bromodeoxyuridine and picking viral plaques resistant thereto.

Alternatively, avipoxviruses, such as the fowlpox and canarypox viruses, can also be used to deliver the genes. Recombinant avipox viruses, expressing immunogens from mammalian pathogens, are known to confer protective immunity when administered to non-avian species. The use of an avipox vector is particularly desirable in human and other mammalian species since members of the avipox genus can only productively replicate in susceptible avian species and therefore are not infective in mammalian cells. Methods for producing recombinant avipoxviruses are known in the art and employ genetic recombination, as described above with respect to the production of vaccinia viruses. See, e.g., WO 91/12882; WO 89/03429; and WO 92/03545.

Molecular conjugate vectors, such as the adenovirus chimeric vectors described in Michael et al., *J. Biol. Chem.* (1993) 268:6866-6869 and Wagner et al., *Proc. Natl. Acad. Sci. USA* (1992) 89:6099-6103, can also be used for gene delivery.

Members of the Alphavirus genus, such as, but not limited to, vectors derived from the Sindbis, Semliki Forest, and Venezuelan Equine Encephalitis viruses, will also find use as viral vectors for delivering the polynucleotides of the present invention (for example, a synthetic Gag- or Env-polypeptide encoding expression cassette as described in Example 14 below). For a description of Sindbis-virus derived vectors useful for the practice of the instant methods, see, Dubensky et al., *J. Virol.* (1996) 70:508-519; and International Publication Nos. WO 95/07995 and WO 96/17072; as well as, Dubensky, Jr., T.W., et al., U.S. Patent No. 5,843,723,

issued December 1, 1998, and Dubensky, Jr., T.W., U.S. Patent No. 5,789,245, issued August 4, 1998.

A vaccinia based infection/transfection system can be conveniently used to provide for inducible, transient expression of the coding sequences of interest (for example, a synthetic Gag/HCV-core expression cassette) in a host cell. In this system, cells are first infected *in vitro* with a vaccinia virus recombinant that encodes the bacteriophage T7 RNA polymerase. This polymerase displays exquisite specificity in that it only transcribes templates bearing T7 promoters. Following infection, cells are transfected with the polynucleotide of interest, driven by a T7 promoter. The polymerase expressed in the cytoplasm from the vaccinia virus recombinant transcribes the transfected DNA into RNA which is then translated into protein by the host translational machinery. The method provides for high level, transient, cytoplasmic production of large quantities of RNA and its translation products. See, e.g., Elroy-Stein and Moss, *Proc. Natl. Acad. Sci. USA* (1990) 87:6743-6747; Fuerst et al., *Proc. Natl. Acad. Sci. USA* (1986) 83:8122-8126.

As an alternative approach to infection with vaccinia or avipox virus recombinants, or to the delivery of genes using other viral vectors, an amplification system can be used that will lead to high level expression following introduction into host cells. Specifically, a T7 RNA polymerase promoter preceding the coding region for T7 RNA polymerase can be engineered. Translation of RNA derived from this template will generate T7 RNA polymerase which in turn will transcribe more template. Concomitantly, there will be a cDNA whose expression is under the control of the T7 promoter. Thus, some of the T7 RNA polymerase generated from

translation of the amplification template RNA will lead to transcription of the desired gene. Because some T7 RNA polymerase is required to initiate the amplification, T7 RNA polymerase can be introduced into cells along with 5 the template(s) to prime the transcription reaction. The polymerase can be introduced as a protein or on a plasmid encoding the RNA polymerase. For a further discussion of T7 systems and their use for transforming cells, see, e.g., International Publication No. WO 94/26911; Studier 10 and Moffatt, *J. Mol. Biol.* (1986) 189:113-130; Deng and Wolff, *Gene* (1994) 143:245-249; Gao et al., *Biochem. Biophys. Res. Commun.* (1994) 200:1201-1206; Gao and Huang, *Nuc. Acids Res.* (1993) 21:2867-2872; Chen et al., *Nuc. Acids Res.* (1994) 22:2114-2120; and U.S. Patent No. 15 5,135,855.

The synthetic expression cassette of interest can also be delivered without a viral vector. For example, the synthetic expression cassette can be packaged as DNA or RNA in liposomes prior to delivery to the subject or 20 to cells derived therefrom. Lipid encapsulation is generally accomplished using liposomes which are able to stably bind or entrap and retain nucleic acid. The ratio of condensed DNA to lipid preparation can vary but will generally be around 1:1 (mg DNA:micromoles lipid), or 25 more of lipid. For a review of the use of liposomes as carriers for delivery of nucleic acids, see, Hug and Sleight, *Biochim. Biophys. Acta.* (1991) 1097:1-17; Straubinger et al., in *Methods of Enzymology* (1983), Vol. 101, pp. 512-527.

30 Liposomal preparations for use in the present invention include cationic (positively charged), anionic (negatively charged) and neutral preparations, with cationic liposomes particularly preferred. Cationic liposomes have been shown to mediate intracellular

delivery of plasmid DNA (Felgner et al., *Proc. Natl. Acad. Sci. USA* (1987) 84:7413-7416); mRNA (Malone et al., *Proc. Natl. Acad. Sci. USA* (1989) 86:6077-6081); and purified transcription factors (Debs et al., *J. Biol. Chem.* (1990) 265:10189-10192), in functional form.

Cationic liposomes are readily available. For example, N[1-2,3-dioleyloxy)propyl]-N,N,N-triethyl-ammonium (DOTMA) liposomes are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, NY. (See, also, Felgner et al., *Proc. Natl. Acad. Sci. USA* (1987) 84:7413-7416). Other commercially available lipids include (DDAB/DOPE) and DOTAP/DOPE (Boerhinger). Other cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, e.g., Szoka et al., *Proc. Natl. Acad. Sci. USA* (1978) 75:4194-4198; PCT Publication No. WO 90/11092 for a description of the synthesis of DOTAP (1,2-bis(oleoyloxy)-3-(trimethylammonio)propane) liposomes.

Similarly, anionic and neutral liposomes are readily available, such as, from Avanti Polar Lipids (Birmingham, AL), or can be easily prepared using readily available materials. Such materials include phosphatidyl choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), dioleoylphosphatidyl ethanolamine (DOPE), among others. These materials can also be mixed with the DOTMA and DOTAP starting materials in appropriate ratios. Methods for making liposomes using these materials are well known in the art.

The liposomes can comprise multilammellar vesicles (MLVs), small unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs). The various liposome-nucleic acid complexes are prepared using methods known in the art. See, e.g., Straubinger et al., in METHODS OF

IMMUNOLOGY (1983), Vol. 101, pp. 512-527; Szoka et al.,
Proc. Natl. Acad. Sci. USA (1978) 75:4194-4198;
Papahadjopoulos et al., *Biochim. Biophys. Acta* (1975)
394:483; Wilson et al., *Cell* (1979) 17:77); Deamer and
5 Bangham, *Biochim. Biophys. Acta* (1976) 443:629; Ostro et
al., *Biochem. Biophys. Res. Commun.* (1977) 76:836; Fraley
et al., Proc. Natl. Acad. Sci. USA (1979) 76:3348); Enoch
and Strittmatter, Proc. Natl. Acad. Sci. USA (1979)
76:145); Fraley et al., J. Biol. Chem. (1980) 255:10431;
10 Szoka and Papahadjopoulos, Proc. Natl. Acad. Sci. USA
(1978) 75:145; and Schaefer-Ridder et al., *Science* (1982)
215:166.

The DNA and/or protein antigen(s) can also be delivered in cochleate lipid compositions similar to
15 those described by Papahadjopoulos et al., *Biochem.
Biophys. Acta*. (1975) 394:483-491. See, also, U.S.
Patent Nos. 4,663,161 and 4,871,488.

The synthetic expression cassette of interest (e.g., any of the synthetic expression cassettes described in
20 Example 1) may also be encapsulated, adsorbed to, or associated with, particulate carriers. Such carriers present multiple copies of a selected antigen to the immune system and promote migration, trapping and retention of antigens in local lymph nodes. The
25 particles can be taken up by profession antigen presenting cells such as macrophages and dendritic cells, and/or can enhance antigen presentation through other mechanisms such as stimulation of cytokine release. Examples of particulate carriers include those derived
30 from polymethyl methacrylate polymers, as well as microparticles derived from poly(lactides) and poly(lactide-co-glycolides), known as PLG. See, e.g., Jeffery et al., *Pharm. Res.* (1993) 10:362-368; McGee JP,

et al., *J Microencapsul.* 14(2):197-210, 1997; O'Hagan DT, et al., *Vaccine* 11(2):149-54, 1993.

Furthermore, other particulate systems and polymers can be used for the *in vivo* or *ex vivo* delivery of the gene of interest. For example, polymers such as polylysine, polyarginine, polyornithine, spermine, spermidine, as well as conjugates of these molecules, are useful for transferring a nucleic acid of interest. Similarly, DEAE dextran-mediated transfection, calcium phosphate precipitation or precipitation using other insoluble inorganic salts, such as strontium phosphate, aluminum silicates including bentonite and kaolin, chromic oxide, magnesium silicate, talc, and the like, will find use with the present methods. See, e.g., 15 Felgner, P.L., *Advanced Drug Delivery Reviews* (1990) 5:163-187, for a review of delivery systems useful for gene transfer. Peptoids (Zuckerman, R.N., et al., U.S. Patent No. 5,831,005, issued November 3, 1998) may also be used for delivery of a construct of the present 20 invention.

Additionally, biolistic delivery systems employing particulate carriers such as gold and tungsten, are especially useful for delivering synthetic expression cassettes of the present invention. The particles are 25 coated with the synthetic expression cassette(s) to be delivered and accelerated to high velocity, generally under a reduced atmosphere, using a gun powder discharge from a "gene gun." For a description of such techniques, and apparatuses useful therefore, see, e.g., U.S. Patent 30 Nos. 4,945,050; 5,036,006; 5,100,792; 5,179,022; 5,371,015; and 5,478,744. Also, needle-less injection systems can be used (Davis, H.L., et al, *Vaccine* 12:1503-1509, 1994; Bioject, Inc., Portland, OR).

Recombinant vectors carrying a synthetic expression cassette of the present invention are formulated into compositions for delivery to the vertebrate subject. These compositions may either be prophylactic (to prevent infection) or therapeutic (to treat disease after infection). The compositions will comprise a "therapeutically effective amount" of the gene of interest such that an amount of the antigen can be produced *in vivo* so that an immune response is generated in the individual to which it is administered. The exact amount necessary will vary depending on the subject being treated; the age and general condition of the subject to be treated; the capacity of the subject's immune system to synthesize antibodies; the degree of protection desired; the severity of the condition being treated; the particular antigen selected and its mode of administration, among other factors. An appropriate effective amount can be readily determined by one of skill in the art. Thus, a "therapeutically effective amount" will fall in a relatively broad range that can be determined through routine trials.

The compositions will generally include one or more "pharmaceutically acceptable excipients or vehicles" such as water, saline, glycerol, polyethyleneglycol, hyaluronic acid, ethanol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, surfactants and the like, may be present in such vehicles. Certain facilitators of immunogenicity or of nucleic acid uptake and/or expression can also be included in the compositions or coadministered, such as, but not limited to, bupivacaine, cardiotoxin and sucrose.

Once formulated, the compositions of the invention can be administered directly to the subject (e.g., as

described above) or, alternatively, delivered *ex vivo*, to cells derived from the subject, using methods such as those described above. For example, methods for the *ex vivo* delivery and reimplantation of transformed cells
5 into a subject are known in the art and can include, e.g., dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, lipofectamine and LT-1 mediated transfection, protoplast fusion, electroporation, encapsulation of the
10 polynucleotide(s) (with or without the corresponding antigen) in liposomes, and direct microinjection of the DNA into nuclei.

Direct delivery of synthetic expression cassette compositions *in vivo* will generally be accomplished with
15 or without viral vectors, as described above, by injection using either a conventional syringe, needless devices such as Bioject® or a gene gun, such as the Accell® gene delivery system (PowderJect Technologies, Inc., Oxford, England). The constructs can be delivered
20 (e.g., injected) either subcutaneously, epidermally, intradermally, intramuscularly, intravenous, intramucosally (such as nasally, rectally and vaginally), intraperitoneally or orally. Delivery of DNA into cells of the epidermis is particularly preferred as this mode
25 of administration provides access to skin-associated lymphoid cells and provides for a transient presence of DNA in the recipient. Other modes of administration include oral ingestion and pulmonary administration, suppositories, needle-less injection, transcutaneous and
30 transdermal applications. Dosage treatment may be a single dose schedule or a multiple dose schedule.

2.3.2 EX VIVO DELIVERY OF THE SYNTHETIC EXPRESSION
CASSETTES OF THE PRESENT INVENTION

In one embodiment, T cells, and related cell types (including but not limited to antigen presenting cells, such as, macrophage, monocytes, lymphoid cells, dendritic cells, B-cells, T-cells, stem cells, and progenitor cells thereof), can be used for ex vivo delivery of the synthetic expression cassettes of the present invention. T cells can be isolated from peripheral blood lymphocytes (PBLs) by a variety of procedures known to those skilled in the art. For example, T cell populations can be "enriched" from a population of PBLs through the removal of accessory and B cells. In particular, T cell enrichment can be accomplished by the elimination of non-T cells using anti-MHC class II monoclonal antibodies. Similarly, other antibodies can be used to deplete specific populations of non-T cells. For example, anti-Ig antibody molecules can be used to deplete B cells and anti-MacI antibody molecules can be used to deplete macrophages.

T cells can be further fractionated into a number of different subpopulations by techniques known to those skilled in the art. Two major subpopulations can be isolated based on their differential expression of the cell surface markers CD4 and CD8. For example, following the enrichment of T cells as described above, CD4⁺ cells can be enriched using antibodies specific for CD4 (see Coligan et al., *supra*). The antibodies may be coupled to a solid support such as magnetic beads. Conversely, CD8⁺ cells can be enriched through the use of antibodies specific for CD4 (to remove CD4⁺ cells), or can be isolated by the use of CD8 antibodies coupled to a solid support. CD4

lymphocytes from HIV-1 infected patients can be expanded ex vivo, before or after transduction as described by Wilson et. al. (1995) *J. Infect. Dis.* 172:88.

5 Following purification of T cells, a variety of methods of genetic modification known to those skilled in the art can be performed using non-viral or viral-based gene transfer vectors constructed as described herein. For example, one such approach involves transduction of 10 the purified T cell population with vector-containing supernatant of cultures derived from vector producing cells. A second approach involves co-cultivation of an irradiated monolayer of vector-producing cells with the purified T cells. A third approach involves a similar 15 co-cultivation approach; however, the purified T cells are pre-stimulated with various cytokines and cultured 48 hours prior to the co-cultivation with the irradiated vector producing cells. Pre-stimulation prior to such transduction increases effective gene transfer (Nolta et 20 al. (1992) *Exp. Hematol.* 20:1065). Stimulation of these cultures to proliferate also provides increased cell populations for re-infusion into the patient. Subsequent to co-cultivation, T cells are collected from the vector producing cell monolayer, expanded, and frozen in liquid 25 nitrogen.

Gene transfer vectors, containing one or more synthetic expression cassette of the present invention (associated with appropriate control elements for delivery to the isolated T cells) can be assembled using 30 known methods.

Selectable markers can also be used in the construction of gene transfer vectors. For example, a marker can be used which imparts to a mammalian cell transduced with the gene transfer vector resistance to a

cytotoxic agent. The cytotoxic agent can be, but is not limited to, neomycin, aminoglycoside, tetracycline, chloramphenicol, sulfonamide, actinomycin, netropsin, distamycin A, anthracycline, or pyrazinamide. For example, neomycin phosphotransferase II imparts resistance to the neomycin analogue geneticin (G418).

The T cells can also be maintained in a medium containing at least one type of growth factor prior to being selected. A variety of growth factors are known in the art which sustain the growth of a particular cell type. Examples of such growth factors are cytokine mitogens such as rIL-2, IL-10, IL-12, and IL-15, which promote growth and activation of lymphocytes. Certain types of cells are stimulated by other growth factors such as hormones, including human chorionic gonadotropin (hCG) and human growth hormone. The selection of an appropriate growth factor for a particular cell population is readily accomplished by one of skill in the art.

For example, white blood cells such as differentiated progenitor and stem cells are stimulated by a variety of growth factors. More particularly, IL-3, IL-4, IL-5, IL-6, IL-9, GM-CSF, M-CSF, and G-CSF, produced by activated T_H and activated macrophages, stimulate myeloid stem cells, which then differentiate into pluripotent stem cells, granulocyte-monocyte progenitors, eosinophil progenitors, basophil progenitors, megakaryocytes, and erythroid progenitors. Differentiation is modulated by growth factors such as GM-CSF, IL-3, IL-6, IL-11, and EPO.

Pluripotent stem cells then differentiate into lymphoid stem cells, bone marrow stromal cells, T cell progenitors, B cell progenitors, thymocytes, T_H Cells, T_C cells, and B cells. This differentiation is modulated by

growth factors such as IL-3, IL-4, IL-6, IL-7, GM-CSF, M-CSF, G-CSF, IL-2, and IL-5.

Granulocyte-monocyte progenitors differentiate to monocytes, macrophages, and neutrophils. Such differentiation is modulated by the growth factors GM-CSF, M-CSF, and IL-8. Eosinophil progenitors differentiate into eosinophils. This process is modulated by GM-CSF and IL-5.

The differentiation of basophil progenitors into mast cells and basophils is modulated by GM-CSF, IL-4, and IL-9. Megakaryocytes produce platelets in response to GM-CSF, EPO, and IL-6. Erythroid progenitor cells differentiate into red blood cells in response to EPO.

Thus, during activation by the CD3-binding agent, T cells can also be contacted with a mitogen, for example a cytokine such as IL-2. In particularly preferred embodiments, the IL-2 is added to the population of T cells at a concentration of about 50 to 100 µg/ml. Activation with the CD3-binding agent can be carried out for 2 to 4 days.

Once suitably activated, the T cells are genetically modified by contacting the same with a suitable gene transfer vector under conditions that allow for transfection of the vectors into the T cells. Genetic modification is carried out when the cell density of the T cell population is between about 0.1×10^6 and 5×10^6 , preferably between about 0.5×10^6 and 2×10^6 . A number of suitable viral and nonviral-based gene transfer vectors have been described for use herein.

After transduction, transduced cells are selected away from non-transduced cells using known techniques. For example, if the gene transfer vector used in the transduction includes a selectable marker which confers resistance to a cytotoxic agent, the cells can be

contacted with the appropriate cytotoxic agent, whereby non-transduced cells can be negatively selected away from the transduced cells. If the selectable marker is a cell surface marker, the cells can be contacted with a binding agent specific for the particular cell surface marker, whereby the transduced cells can be positively selected away from the population. The selection step can also entail fluorescence-activated cell sorting (FACS) techniques, such as where FACS is used to select cells from the population containing a particular surface marker, or the selection step can entail the use of magnetically responsive particles as retrievable supports for target cell capture and/or background removal.

More particularly, positive selection of the transduced cells can be performed using a FACS cell sorter (e.g. a FACSVantage™ Cell Sorter, Becton Dickinson Immunocytometry Systems, San Jose, CA) to sort and collect transduced cells expressing a selectable cell surface marker. Following transduction, the cells are stained with fluorescent-labeled antibody molecules directed against the particular cell surface marker. The amount of bound antibody on each cell can be measured by passing droplets containing the cells through the cell sorter. By imparting an electromagnetic charge to droplets containing the stained cells, the transduced cells can be separated from other cells. The positively selected cells are then harvested in sterile collection vessels. These cell sorting procedures are described in detail, for example, in the FACSVantage™ Training Manual, with particular reference to sections 3-11 to 3-28 and 10-1 to 10-17.

Positive selection of the transduced cells can also be performed using magnetic separation of cells based on expression of a particular cell surface marker. In such

separation techniques, cells to be positively selected are first contacted with specific binding agent (e.g., an antibody or reagent that interacts specifically with the cell surface marker). The cells are then contacted with 5 retrievable particles (e.g., magnetically responsive particles) which are coupled with a reagent that binds the specific binding agent (that has bound to the positive cells). The cell-binding agent-particle complex can then be physically separated from non-labeled cells, 10 for example using a magnetic field. When using magnetically responsive particles, the labeled cells can be retained in a container using a magnetic field while the negative cells are removed. These and similar separation procedures are known to those of ordinary 15 skill in the art.

Expression of the vector in the selected transduced cells can be assessed by a number of assays known to those skilled in the art. For example, Western blot or Northern analysis can be employed depending on the nature 20 of the inserted nucleotide sequence of interest. Once expression has been established and the transformed T cells have been tested for the presence of the selected synthetic expression cassette, they are ready for infusion into a patient via the peripheral blood stream.

25 The invention includes a kit for genetic modification of an *ex vivo* population of primary mammalian cells. The kit typically contains a gene transfer vector coding for at least one selectable marker and at least one synthetic expression cassette contained 30 in one or more containers, ancillary reagents or hardware, and instructions for use of the kit.

EXPERIMENTAL

Below are examples of specific embodiments for carrying out the present invention. The examples are offered for illustrative purposes only, and are not 5 intended to limit the scope of the present invention in any way.

Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperatures, etc.), but some experimental error and deviation should, 10 of course, be allowed for.

Example 1**Generation of Synthetic Gag and Env Expression Cassettes**

15 **A. Modification of HIV-1 Gag, Gag-protease, Gag-reverse transcriptase and Gag-polymerase Nucleic Acid Coding Sequences**

The Gag (SEQ ID NO:1), Gag-protease (SEQ ID NO:2), Gag-polymerase (SEQ ID NO:3), and Gag-reverse 20 transcriptase (SEQ ID NO:77) coding sequences were selected from the HIV-1SF2 strain (Sanchez-Pescador, R., et al., Science 227(4686): 484-492, 1985; Luciw, P.A., et al. U.S. Patent No. 5,156,949, issued October 20, 1992; Luciw, P.A., et al., U.S. Patent No. 5,688,688, November 25 18, 1997). These sequences were manipulated to maximize expression of their gene products.

First, the HIV-1 codon usage pattern was modified so that the resulting nucleic acid coding sequence was comparable to codon usage found in highly expressed human 30 genes. The HIV codon usage reflects a high content of the nucleotides A or T of the codon-triplet. The effect of the HIV-1 codon usage is a high AT content in the DNA sequence that results in a high AU content in the RNA and in a decreased translation ability and instability of the

mRNA. In comparison, highly expressed human codons prefer the nucleotides G or C. The Gag-encoding sequences were modified to be comparable to codon usage found in highly expressed human genes.

5 Figure 11 presents a comparison of the percent A-T content for the cDNAs of stable versus unstable RNAs (comparison window size = 50). Human IFN γ mRNA is known to (i) be unstable, (ii) have a short half-life, and (iii) have a high A-U content. Human GAPDH
10 (glyceraldehyde-3-phosphate dehydrogenase) mRNA is known to (i) be a stable RNA, and (i) have a low A-U content. In Figure 11, the percent A-T content of these two sequences are compared to the percent A-T content of native HIV-1SF2 Gag cDNA and to the synthetic Gag cDNA
15 sequence of the present invention. The top two panels of the figure show the percent A-T content over the length of the sequences for IFN γ and native Gag. The bottom two panels of the figure show the percent A-T content over the length of the sequences for GAPDH and the synthetic
20 Gag. Experiments performed in support of the present invention showed that the synthetic Gag sequences were capable of higher level of protein production (see the Examples) than the native Gag sequences. The data in Figure 11 suggest that one reason for this increased
25 production may be increased stability of the mRNA corresponding to the synthetic Gag coding sequences versus the mRNA corresponding to the native Gag coding sequences.

Second, there are inhibitory (or instability)
30 elements (INS) located within the coding sequences of the Gag and Gag-protease coding sequences (Schneider R, et al., J Virol. 71(7):4892-4903, 1997). RRE is a secondary RNA structure that interacts with the HIV encoded Rev-protein to overcome the expression down-regulating

effects of the INS. To overcome the requirement for post-transcriptional activating mechanisms of RRE and Rev, and to enhance independent expression of the Gag polypeptide, the INS were inactivated by introducing 5 multiple point mutations that did not alter the reading frame of the encoded proteins. Figure 1 shows the original SF2 Gag sequence, the location of the INS sequences, and the modifications made to the INS sequences to reduce their effects.

10 For the Gag-protease sequence (wild type, SEQ ID NO:2; synthetic, SEQ ID NOS:5, 78 and 79), the changes in codon usage were restricted to the regions up to the -1 frameshift and starting again at the end of the Gag reading frame (Figure 2; the region indicated in lower 15 case letters in Figure 2 is the unmodified region). Further, inhibitory (or instability) elements (INS) located within the coding sequences of the Gag-protease polypeptide coding sequence were altered as well (indicated in Figure 2). The synthetic coding sequences 20 were assembled by the Midland Certified Reagent Company (Midland, Texas).

Modification of the Gag-polymerase sequences (wild type, SEQ ID NO:3; synthetic, SEQ ID NO:6) and Gag-reverse transcriptase sequences (SEQ ID NOS:80 through 25 84) include similar modifications as described for Gag-protease in order to preserve the frameshift region. Locations of the inactivation sites and changes to the sequence to alter the inactivation sites are presented in Figure 12 for the native HIV-1_{SF2} Gag-polymerase sequence.

30 In one embodiment of the invention, the full length polymerase coding region of the Gag-polymerase sequence is included with the synthetic Gag sequences in order to increase the number of epitopes for virus-like particles expressed by the synthetic, optimized Gag expression

cassette. Because synthetic HIV-1 Gag-polymerase expresses the potentially deleterious functional enzymes reverse transcriptase (RT) and integrase (INT) (in addition to the structural proteins and protease), it is important to inactivate RT and INT functions. Several in-frame deletions in the RT and INT reading frame can be made to achieve catalytic nonfunctional enzymes with respect to their RT and INT activity. (Jay. A. Levy (Editor) (1995) *The Retroviridae*, Plenum Press, New York.

10 ISBN 0-306-45033X. Pages 215-20; Grimison, B. and Laurence, J. (1995), *Journal Of Acquired Immune Deficiency Syndromes and Human Retrovirology* 9(1):58-68; Wakefield, J. K., et al., (1992) *Journal Of Virology* 66(11):6806-6812; Esnouf, R., et al., (1995) *Nature Structural Biology* 2(4):303-308; Maignan, S., et al., (1998) *Journal Of Molecular Biology* 282(2):359-368; Katz, R. A. and Skalka, A. M. (1994) *Annual Review Of Biochemistry* 73 (1994); Jacobo-Molina, A., et al., (1993) *Proceedings Of the National Academy Of Sciences Of the United States Of America* 90(13):6320-6324; Hickman, A. B., et al., (1994) *Journal Of Biological Chemistry* 269(46):29279-29287; Goldgur, Y., et al., (1998) *Proceedings Of the National Academy Of Sciences Of the United States Of America* 95(16):9150-9154; Goette, M., et al., (1998) *Journal Of Biological Chemistry* 273(17):10139-10146; Gorton, J. L., et al., (1998) *Journal of Virology* 72(6):5046-5055; Engelman, A., et al., (1997) *Journal Of Virology* 71(5):3507-3514; Dyda, F., et al., *Science* 266(5193):1981-1986; Davies, J. F., et al., (1991) *Science* 252(5002):88-95; Bujacz, G., et al., (1996) *Febs Letters* 398(2-3):175-178; Beard, W. A., et al., (1996) *Journal Of Biological Chemistry* 271(21):12213-12220; Kohlstaedt, L. A., et al., (1992)

Science 256 (5065) :1783-1790; Krug, M. S. and Berger, S. L. (1991) Biochemistry 30 (44) :10614-10623; Mazumder, A., et al., (1996) Molecular Pharmacology 49 (4) :621-628; Palaniappan, C., et al., (1997) Journal Of Biological Chemistry 272 (17) :11157-11164; Rodgers, D. W., et al., (1995) Proceedings Of the National Academy Of Sciences Of the United States Of America 92 (4) :1222-1226; Sheng, N. and Dennis, D. (1993) Biochemistry 32 (18) :4938-4942; Spence, R. A., et al., (1995) Science 267 (5200) :988-993.)

10 Furthermore selected B- and/or T-cell epitopes can be added to the Gag-polymerase constructs within the deletions of the RT- and INT-coding sequence to replace and augment any epitopes deleted by the functional modifications of RT and INT. Alternately, selected B-
15 and T-cell epitopes (including CTL epitopes) from RT and INT can be included in a minimal VLP formed by expression of the synthetic Gag or synthetic GagProt cassette, described above. (For descriptions of known HIV B- and T-cell epitopes see, HIV Molecular Immunology Database CTL
20 Search Interface; Los Alamos Sequence Compendia, 1987-1997; Internet address: <http://hiv-web.lanl.gov/immunology/index.html>.)

The resulting modified coding sequences are presented as a synthetic Gag expression cassette (SEQ ID NO:4), a synthetic Gag-protease expression cassette (SEQ ID NOS:5, 78 and 79), and a synthetic Gag-polymerase expression cassette (SEQ ID NO:6). Synthetic expression cassettes containing codon modifications in the reverse transcriptase region are shown in SEQ ID NOS:80 through 30 84. An alignment of selected sequences is presented in Figure 7. A common region (Gag-common; SEQ ID NO:9) extends from position 1 to position 1262.

The synthetic DNA fragments for Gag and Gag-protease were cloned into the following expression vectors:

pCMVKm2, for transient expression assays and DNA immunization studies, the pCMVKm2 vector was derived from pCMV6a (Chapman et al., *Nuc. Acids Res.* (1991) 19:3979-3986) and comprises a kanamycin selectable marker, a 5 ColE1 origin of replication, a CMV promoter enhancer and Intron A, followed by an insertion site for the synthetic sequences described below followed by a polyadenylation signal derived from bovine growth hormone -- the pCMVKm2 vector differs from the pCMV-link vector only in that a 10 polylinker site was inserted into pCMVKm2 to generate pCMV-link (Figure 14, polylinker at positions 1646 to 1697); pESN2dhfr (Figure 13A) and pCMVPLEdhfr (also known as pCMVIII as shown in Figure 13B), for expression in Chinese Hamster Ovary (CHO) cells; and, pAcc13, a shuttle 15 vector for use in the Baculovirus expression system (pAcc13, was derived from pAcc12 which was described by Munemitsu S., et al., *Mol Cell Biol.* 10(11):5977-5982, 1990).

A restriction map for vector pCMV-link is presented 20 in Figure 14. In the figure, the CMV promoter (CMV IE ENH/PRO), bovine growth hormone terminator (BGH pA), kanamycin selectable marker (kan), and a ColE1 origin of replication (ColE1 ori) are indicated. A polycloning site is also indicated in the figure following the CMV 25 promoter sequences.

A restriction map for vector pESN2dhfr is presented in Figure 13A. In the figure, the CMV promoter (pCMV, hCMVIE), bovine growth hormone terminator (BGH_pA), SV40 30 origin of replication (SV40ori), neomycin selectable marker (Neo), SV40 polyA (SV40pA), Adenovirus 2 late promoter (Ad2VLP), and the murine dhfr gene (*mu* dhfr) are indicated. A polycloning site is also indicated in the figure following the CMV promoter sequences.

Briefly, construction of pCMVPLEdhfr (pCMVIII) was as follows. To construct a DHFR cassette, the EMCV IRES (internal ribosome entry site) leader was PCR-amplified from pCite-4a+ (Novagen, Inc., Milwaukee, WI) and inserted into pET-23d (Novagen, Inc., Milwaukee, WI) as an Xba-Nco fragment to give pET-EMCV. The dhfr gene was PCR-amplified from pESN2dhfr to give a product with a Gly-Gly-Gly-Ser spacer in place of the translation stop codon and inserted as an Nco-BamH1 fragment to give pET-5. E-DHFR. Next, the attenuated neo gene was PCR amplified from a pSV2Neo (Clontech, Palo Alto, CA) derivative and inserted into the unique BamH1 site of pET-E-DHFR to give pET-E-DHFR/Neo_(m2). Then, the bovine growth hormone terminator from pCDNA3 (Invitrogen, Inc., Carlsbad, CA) 10 was inserted downstream of the neo gene to give pET-E-DHFR/Neo_(m2)BGHt. The EMCV-dhfr/neo selectable marker cassette fragment was prepared by cleavage of pET-E-DHFR/Neo_(m2)BGHt. The CMV enhancer/promoter plus Intron A was transferred from pCMV6a (Chapman et al., *Nuc. Acids Res.* (1991) 19:3979-3986) as a HindIII-SalI fragment into 15 pUC19 (New England Biolabs, Inc., Beverly, MA). The vector backbone of pUC19 was deleted from the NdeI to the SapI sites. The above described DHFR cassette was added to the construct such that the EMCV IRES followed the CMV promoter to produce the final construct. The vector also contained an amp^r gene and an SV40 origin of replication. 20 25

Selected pCMVKm2 vectors containing the synthetic expression cassettes have been designated as follows: pCMVKm2.GagMod.SF2, pCMVKm2.GagprotMod.SF2, and pCMVKm2.GagpolMod.SF2, pCMVKm2.GagprotMod.SF2.GP1 (SEQ ID NO:78) and pCMVKm2.GagprotMod.SF2.GP2 (SEQ ID NO:79). Other exemplary Gag-encoding expressing cassettes are shown in the Figures and as Sequence Listings.

B. Modification of HIV-1 Gag/Hepatitis C Core Chimeric Protein Nucleic Acid Coding Sequences Generation of Synthetic Expression Cassettes

To facilitate the ligation of the Gag and HCV core coding sequences, PCR amplification was employed. The synthetic p55Gag expression cassette was used as a PCR template with the following primers: GAG5 (SEQ ID NO:11) and P55-SAL3 (SEQ ID NO:12). The PCR amplification was conducted at 55°C for 25 cycles using Stratagene's Pfu polymerase. The resulting PCR product was rendered free of nucleotides and primers using the Promega PCR clean-up kit and then subjected to EcoRI and SalI digestions. For HCV core coding sequences, the following primers were used with an HCV template (Houghton, M., et al., U.S. Patent No. 5,714,596, issued February 3, 1998; Houghton, M., et al., U.S. Patent No. 5,712,088, issued January 27, 1998; Houghton, M., et al., U.S. Patent No. 5,683,864, issued November 4, 1997; Weiner, A.J., et al., U.S. Patent No. 5,728,520, issued March 17, 1998; Weiner, A.J., et al., U.S. Patent No. 5,766,845, issued June 16, 1998; Weiner, A.J., et al., U.S. Patent No. 5,670,152, issued September 23, 1997): CORESAL 5 (SEQ ID NO:13) and 173CORE (SEQ ID NO:14) using the conditions outlined above. The purified product was digested with SalI and BamHI restriction enzymes. The digested Gag and HCV core PCR products were ligated into the pCMVKm2 vector digested with EcoRI and BamHI. Ligation of the PCR products at the SalI site resulted in a direct fusion of the final amino acid of p55Gag to the second amino acid of HCV core, serine. Amino acid 173 of core is a serine and is followed immediately by a TAG termination codon. The sequence of the fusion clone was confirmed. The pCMVKm2 vector containing the synthetic expression

cassette was designated as pCMVKm2.GagModHCVcore.

The EcoRI-BamHI fragment of p55Gag-core 173 was also cloned into EcoRI-BamHI-digested pAcC13 for baculovirus expression. Western blots confirmed expression and 5 sucrose gradient sedimentation along with electron microscopy confirmed particle formation. To generate the above clone but containing the synthetic Gag sequences (instead of wild-type), the following steps were performed: pCMVKm2-modified p55Gag was used as template 10 for PCR amplification with MS65 (SEQ ID NO:15) and MS66 (SEQ ID NO:16) primers. The region amplified corresponds to the BspHI and SalI sites at the C-terminus 15 of synthetic Gag sequence. The amplification product was digested with BspHI and SalI and ligated to SalI/BamHI digested pCMV-link along with the Sal/BspHI fragment from 20 pCMV-Km-p55modGag , representing the amino terminal end of modified Gag, and the SalI/BamHI fragment from pCMV-p55Gag-core173. Thereafter, a T4-blunted-SalI partial/BamHI fragment was ligated into pAcC4-SmaI/BamHI to generate pAcC4-p55GagMod-core173 (containing the 25 synthetic sequence presented as SEQ ID NO:7).

C. Defining of the Major Homology Region (MHR) of HIV-1 p55Gag

25 The Major Homology Region (MHR) of HIV-1 p55 (Gag) is located in the p24-CA sequence of Gag. It is a conserved stretch of 20 amino acids (SEQ ID NO:19). The position in the wild type HIV-1_{SP2} Gag protein is from aa 286-305 and spans a region from nucleotides 856-915 in 30 the native HIV-1_{SP2} Gag DNA-sequence. The position in the synthetic Gag protein is from aa 288-307 and spans a region from nucleotides 862-921 for the synthetic Gag DNA-sequence. The nucleotide sequence for the MHR in the synthetic

GagMod.SF2 is presented as SEQ ID NO:20. Mutations or deletions in the amino acid sequence of the MHR can severely impair particle production (Borsetti, A., et al., *J. Virol.* 72(11):9313-9317, 1998; Mammano, F., et 5 al., *J Virol* 68(8):4927-4936, 1994).

Percent identity to the MHR nucleotide sequence can be determined, for example, using the MacDNAsis program (Hitachi Software Engineering America Limited, South San Francisco, CA), Higgins algorithm, with the following 10 exemplary parameters: gap penalty = 5, no. of top diagonals = 5, fixed gap penalty = 5, K-tuple = 2, window size = 5, and floating gap penalty = 10.

D. Generation of Synthetic Env Expression Cassettes

Env coding sequences of the present invention include, but are not limited to, polynucleotide sequences encoding the following HIV-encoded polypeptides: gp160, gp140, and gp120 (see, e.g., U.S. Patent No. 5,792,459 for a description of the HIV-1_{SF2} ("SF2") Env 15 polypeptide). The relationships between these polypeptides is shown schematically in Figure 15 (in the figure: the polypeptides are indicated as lines, the amino and carboxy termini are indicated on the gp160 line; the open circle represents the oligomerization 20 domain; the open square represents a transmembrane spanning domain (TM); and "c" represents the location of a cleavage site, in gp140.mut the "X" indicates that the cleavage site has been mutated such that it no longer functions as a cleavage site). The polypeptide gp160 25 includes the coding sequences for gp120 and gp41. The polypeptide gp41 is comprised of several domains including an oligomerization domain (OD) and a transmembrane spanning domain (TM). In the native 30 envelope, the oligomerization domain is required for the

non-covalent association of three gp41 polypeptides to form a trimeric structure: through non-covalent interactions with the gp41 trimer (and itself), the gp120 polypeptides are also organized in a trimeric structure.

5 A cleavage site (or cleavage sites) exists approximately between the polypeptide sequences for gp120 and the polypeptide sequences corresponding to gp41. This cleavage site(s) can be mutated to prevent cleavage at the site. The resulting gp140 polypeptide corresponds to
10 a truncated form of gp160 where the transmembrane spanning domain of gp41 has been deleted. This gp140 polypeptide can exist in both monomeric and oligomeric (i.e. trimeric) forms by virtue of the presence of the oligomerization domain in the gp41 moiety. In the
15 situation where the cleavage site has been mutated to prevent cleavage and the transmembrane portion of gp41 has been deleted the resulting polypeptide product is designated "mutated" gp140 (e.g., gp140.mut). As will be apparent to those in the field, the cleavage site can be
20 mutated in a variety of ways. The native amino acid sequence in the SF162 cleavage sites is: APTKAKRRVVQREKR (SEQ ID NO:21), where KAKRR (SEQ ID NO:22) is termed the "second" site and REKR (SEQ ID NO:23) is the "first site". Exemplary mutations include the following
25 constructs: gp140.mut7.modSF162 which encodes the amino acid sequence APTKA**I**SSVVQSEKS (SEQ ID NO:24) in the cleavage site region; gp140.mut8.modSF162 which encodes the amino acid sequence APTIA**I**SSVVQSEKS (SEQ ID NO:25) in the cleavage site region and gp140mut.modSF162 which
30 encodes the amino acid sequence APTKAKRRVVQREKS (SEQ ID NO:26). Mutations are denoted in bold. The native amino acid sequence in the US4 cleavage sites is:
APTQAKRRVVQREKR (SEQ ID NO:27), where QAKRR (SEQ ID NO:28) is termed the "second" site and REKR (SEQ ID

NO:23) is the "first site". Exemplary mutations include the following construct: gp140.mut.modUS4 which encodes the amino acid sequence APTQAKRRVVQREKS (SEQ ID NO:29) in the cleavage site region. Mutations are denoted in bold.

5

E. Modification of HIV-1 Env (Envelope) Nucleic Acid Coding Sequences

In one embodiment of the present invention, wild-type Env coding sequences were selected from the HIV-1_{SF162} ("SF162") strain (Cheng-Mayer (1989) *PNAS USA* 86:8575-8579). These SF162 sequences were as follows: gp120, SEQ ID NO:30 (Fig. 16); gp140, SEQ ID NO:31 (Fig. 17); and gp160, SEQ ID NO:32 (Fig. 18).

In another embodiment of the present invention, wild-type Env coding sequences were selected from the HIV-US4 strain (Mascola, et al. (1994) *J. Infect. Dis.* 169:48-54). These US4 sequences were as follows: gp120, SEQ ID NO:51 (Fig. 38); gp140, SEQ ID NO:52 (Fig. 39); and gp160, SEQ ID NO:53 (Fig. 40).

These Env coding sequences were manipulated to maximize expression of their gene products.

First, the wild-type coding region was modified in one or more of the following ways. In one embodiment, sequences encoding hypervariable regions of Env, particularly V1 and/or V2 were deleted. In other embodiments, mutations were introduced into sequences encoding the cleavage site in Env to abrogate the enzymatic cleavage of oligomeric gp140 into gp120 monomers. (See, e.g., Earl et al. (1990) *PNAS USA* 87:648-652; Earl et al. (1991) *J. Virol.* 65:31-41). In yet other embodiments, hypervariable region(s) were deleted, N-glycosylation sites were removed and/or cleavage sites mutated.

Second, the HIV-1 codon usage pattern was modified

so that the resulting nucleic acid coding sequence was comparable to codon usage found in highly expressed human genes. The HIV codon usage reflects a high content of the nucleotides A or T in the codon-triplet. The effect of
5 the HIV-1 codon usage is a high AT content in the DNA sequence that results in a decreased translation ability and instability of the mRNA. In comparison, highly expressed human codons prefer the nucleotides G or C. The Env coding sequences were modified to be comparable
10 to codon usage found in highly expressed human genes.

Figures 22A-22H present comparisons of the percent A-T content for the cDNAs of stable versus unstable RNAs (comparison window size = 50). Human IFN γ mRNA is known to (i) be unstable, (ii) have a short half-life, and
15 (iii) have a high A-U content. Human GAPDH (glyceraldehyde-3-phosphate dehydrogenase) mRNA is known to (i) be a stable RNA, and (i) have a low A-U content. In Figures 22A-H, the percent A-T content of these two sequences are compared to the percent A-T content of (1)
20 native HIV-1 US4 Env gp160 cDNA, a synthetic US4 Env gp160 cDNA sequence (i.e., having modified codons) of the present invention; and (2) native HIV-1 SF162 Env gp160 cDNA, a synthetic SF162 Env gp160 cDNA sequence (i.e., having modified codons) of the present invention.
25 Figures 22A-H show the percent A-T content over the length of the sequences for IFN γ (Figures 22C and 22G); native gp160 Env US4 and SF162 (Figures 22A and 22E, respectively); GAPDH (Figures 22D and 22H); and the synthetic gp160 Env for US4 and SF162 (Figures 22B and
30 22F). Experiments performed in support of the present invention showed that the synthetic Env sequences were capable of higher level of protein production (see the Examples) than the native Env sequences. The data in Figures 22A-H suggest that one reason for this increased

production is increased stability of the mRNA corresponding to the synthetic Env coding sequences versus the mRNA corresponding to the native Env coding sequences.

5 To create the synthetic coding sequences of the present invention the gene cassettes were designed to comprise the entire coding sequence of interest. Synthetic gene cassettes were constructed by oligonucleotide synthesis and PCR amplification to
10 generate gene fragments. Primers were chosen to provide convenient restriction sites for subcloning. The resulting fragments were then ligated to create the entire desired sequence which was then cloned into an appropriate vector. The final synthetic sequences were
15 (i) screened by restriction endonuclease digestion and analysis, (ii) subjected to DNA sequencing in order to confirm that the desired sequence had been obtained and (iii) the identity and integrity of the expressed protein confirmed by SDS-PAGE and Western blotting (See,
20 Examples. The synthetic coding sequences were assembled at Chiron Corp. or by the Midland Certified Reagent Company (Midland, Texas).

Exemplary modified coding sequences are presented as synthetic Env expression cassettes in Table 1A and 1B.
25 The following expression cassettes (i) have unique, terminal *EcoRI* and *XbaI* cloning sites; (ii) include Kozak sequences to promote optimal translation; (iii) tPA signal sequences (to direct the ENV polypeptide to the cell membrane, see, e.g., Chapman et al., *infra*); (iv)
30 open reading frames optimized for expression in mammalian cells; and (v) a translational stop signal codon.

Table 1A: Exemplary Synthetic Env Expression
Cassettes (SF162)

	Expression Cassette	Seq Id	Further Information
5	gp120 SF162	30	wild-type; Figure 16
	gp140 SF162	31	wild-type; Figure 17
	gp160 SF162	32	wild-type; Figure 18
	gp120.modSF162	33	none; Figure 19
	gp120.modSF162.delV2	34	deleted V2 loop; Figure 20
10	gp120.modSF162.delV1/V2	35	deleted V1 and V2; Figure 21
	gp140.modSF162	36	none; Figure 23
	gp140.modSF162.delV2	37	deleted V2 loop; Figure 24
	gp140.modSF162.delV1/V2	38	deleted V1 and V2; Figure 25
	gp140.mut.modSF162	39	mutated cleavage site; Fig. 26
15	gp140.mut.modSF162.delV2	40	deleted V2; mutated cleavage site; Figure 27
	gp140.mut.modSF162.delV1/V2	41	deleted V1 & V2; mutated cleavage site; Figure 28
	gp140.mut7.modSF162	42	mutated cleavage site; Fig. 29
	gp140.mut7.modSF162.delV2	43	mutated cleavage site; deleted V2; Figure 30
20	gp140.mut7.modSF162.delV1/V2	44	mutated cleavage site; deleted V1 and V2; Figure 31
	gp140.mut8.modSF162	45	mutated cleavage site; Fig. 32
	gp140.mut8.modSF162.delV2	46	mutated cleavage site; deleted V2; Figure 33
25	gp140.mut8.modSF162.delV1/V2	47	mutated cleavage site; deleted V1 and V2; Figure 34
	gp160.modSF162	48	none; Figure 35
	gp160.modSF162.delV2	49	deleted V2 loop; Figure 36
	gp160.modSF162.delV1/V2	50	deleted V1 & V2; Figure 37

Table 1B:
Exemplary Synthetic Env Expression Cassettes (US4)

Expression Cassette	Seq Id	Further Information
gp120 US4	51	wild-type; Figure 38
gp140 US4	52	wild-type; Figure 39
gp160 US4	53	wild-type; Figure 40
gp120.modUS4	54	none; Figure 41
gp120.modUS4.del 128-194	55	deletion in V1 and V2 regions; Figure 42
gp140.modUS4	56	none; Figure 43
gp140.mut.modUS4	57	mutated cleavage site; Figure 44
gp140TM.modUS4	58	native transmembrane region; Figure 45
gp140.modUS4.delV1/V2	59	deleted V1 and V2; Figure 46
gp140.modUS4.delV2	60	deleted V1; Figure 47
gp140.mut.modUS4.delV1/V2	61	mutated cleavage site; deleted V1 and V2; Figure 48
gp140.modUS4.del 128-194	62	deletion in V1 and V2 regions; Figure 49
gp140.mut.modUS4.del 128-194	63	mutated cleavage site; deletion in V1 and V2 regions; Figure 50
gp160.modUS4	64	none; Figure 51
gp160.modUS4.delV1	65	deleted V1; Figure 52
gp160.modUS4.delV2	66	deleted V2; Figure 53
gp160.modUS4.delV1/V2	67	deleted V1 and V2; Figure 54
gp160.modUS4del 128-194	68	deletion in V1 and V2 regions; Figure 55

Alignments of the sequences presented in the above
25 tables are presented in Figures 66A and 66B.

A common region (Env-common) extends from nucleotide position 1186 to nucleotide position 1329 (SEQ ID NO:69,

Fig. 56) relative to the wild-type US4 sequence and from nucleotide position 1117 to position 1260 (SEQ ID NO:79, Fig. 57) relative to the wild-type SF162 sequence. The synthetic sequences of the present invention
5 corresponding to these regions are presented, as SEQ ID NO:71 (Figure 58) for the synthetic Env US4 common region and as SEQ ID NO:72 (Figure 59) for the synthetic Env SF162 common region.

Percent identity to this sequence can be determined,
10 for example, using the Smith-Waterman search algorithm (Time Logic, Incline Village, NV), with the following exemplary parameters: weight matrix = nuc4x4hb; gap opening penalty = 20, gap extension penalty = 5, reporting threshold = 1; alignment threshold = 20.

15 Various forms of the different embodiments of the present invention (e.g., constructs) may be combined.

F. Cloning Synthetic Env Expression Cassettes of the Present Invention.

20 The synthetic DNA fragments encoding the Env polypeptides were typically cloned into the eucaryotic expression vectors described above for Gag, for example, pCMVKm2/pCMVlink (Figure 4), pCMV6a, pESN2dhfr (Figure 13A), pCMVIII (Figure 13B; alternately designated as the
25 pCMV-PL-E-dhfr/neo vector).

Exemplary designations for pCMVlink vectors containing synthetic expression cassettes of the present invention are as follows: pCMVlink(gp140.modSF162;
30 pCMVlink(gp140.-modSF162.delV2;
pCMVlink(gp140.mut.modSF162;
pCMVlink(gp140.mut.modSF162.delV2; pCMVKm2(gp140.modUS4;
pCMVKm2(gp140.modUS4.delV2; pCMVKm2(gp140.mut.modUS4;
and, pCMVKm2(gp140.mut.modUS4.delV1/V2.

G. Generation of Synthetic Tat Expression Cassettes

Tat coding sequences have also been modified according to the teachings of the present specification. The wild type nucleotide sequence encoding tat from 5 variant SF162 is presented in Figure 76 (SEQ ID NO:85). The corresponding wild-type amino acid sequence is presented in Figure 77 (SEQ ID NO:86). Figure 81 (SEQ ID NO:89) shows the nucleotide sequence encoding the amino terminal of the tat protein and the codon encoding cysteine-22 is underlined. Other exemplary constructs 10 encoding synthetic tat polypeptides are shown in Figures 78 and 79 (SEQ ID NOs:87 and 88). In one embodiment (SEQ ID NO:88), the cystein residue at position 22 is replaced by a glycine. Caputo et al. (1996) Gene Therapy 3:235 15 have shown that this mutation affects the trans activation domain of Tat.

Various forms of the different embodiments of the invention, described herein, may be combined.

20 H. Deposit of Vectors

Selected exemplary constructs shown below and described herein are deposited at Chiron Corporation, Emeryville, CA, 94662-8097, and were sent to the American Type Culture Collection, 10801 University Boulevard, 25 Manassas, VA 20110-2209 on December 27, 1999.

Plasmid Name	Chiron	Date Sent
	Deposit #	to ATCC
pCMVgp160.modUS4	5094	27 Dec 99
pCMVgp160delI.modUS4	5095	27 Dec 99
pCMVgp160del2.modUS4	5096	27 Dec 99
5 pCMVgp160del-2.modUS4	5097	27 Dec 99
pCMVgp160del128-194.mod.US4	5098	27 Dec 99
pCMVgp140mut.modUS4del128-194	5100	27 Dec 99
pCMVgp140.mut.mod.US	5101	27 Dec 99
pCMVgp160.modSF162	5125	27 Dec 99
10 pCMVgp160.modSF162.delV2	5126	27 Dec 99
pCMVgp160.modSF162.delV1V2	5127	27 Dec 99
pCMVgp140.mut.modSF162delV2	5128	27 Dec 99
pCMVgp140.mut7.modSF162	5129	27 Dec 99
pCMVgp140.mut7.modSF162delV2	5130	27 Dec 99
15 pCMVgp140.mut8.modSF162	5131	27 Dec 99
pCMVgp140.mut8.modSF162delV2	5132	27 Dec 99
pCMVgp140.mut8.modSF162delV1V2	5133	27 Dec 99
pCMVKm2.Gagprot.Mod.SF2.GP1	5150	27 Dec 99
pCMVKm2.Gagprot.Mod.SF2.GP2	5151	27 Dec 99

20

Example 2Expression Assays for theSynthetic Gag, Env and Tat Coding Sequences25 A. Gag and Gag-Protease Coding Sequences

The HIV-1SF2 wild-type Gag (SEQ ID NO:1) and Gag-protease (SEQ ID NO:2) sequences were cloned into expression vectors having the same features as the vectors into which the synthetic Gag (SEQ ID NO:4) and Gag-protease (SEQ ID NOs:5, 78 or 79)) sequences were cloned.

Expression efficiencies for various vectors carrying the HIV-1SF2 wild-type and synthetic Gag sequences were evaluated as follows. Cells from several mammalian cell lines (293, RD, COS-7, and CHO; all obtained from the 5 American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209) were transfected with 2 µg of DNA in transfection reagent LT1 (PanVera Corporation, 545 Science Dr., Madison, WI). The cells were incubated for 5 hours in reduced serum medium (Opti- 10 MEM, Gibco-BRL, Gaithersburg, MD). The medium was then replaced with normal medium as follows: 293 cells, IMDM, 10% fetal calf serum, 2% glutamine (BioWhittaker, Walkersville, MD); RD and COS-7 cells, D-MEM, 10% fetal calf serum, 2% glutamine (Opti-MEM, Gibco-BRL, 15 Gaithersburg, MD); and CHO cells, Ham's F-12, 10% fetal calf serum, 2% glutamine (Opti-MEM, Gibco-BRL, Gaithersburg, MD). The cells were incubated for either 48 or 60 hours. Supernatants were harvested and filtered through 0.45 µm syringe filters and, optionally, stored 20 at -20°C.

Supernatants were evaluated using the Coulter p24-assay (Coulter Corporation, Hialeah, FL, US), using 96-well plates coated with a murine monoclonal antibody directed against HIV core antigen. The HIV-1 p24 antigen binds to the coated wells. Biotinylated antibodies 25 against HIV recognize the bound p24 antigen. Conjugated strepavidin-horseradish peroxidase reacts with the biotin. Color develops from the reaction of peroxidase with TMB substrate. The reaction is terminated by 30 addition of 4N H₂SO₄. The intensity of the color is directly proportional to the amount of HIV p24 antigen in a sample.

The results of these expression assays are presented in Tables 2A and 2B. Tables 2A and 2B shows data

obtained using the synthetic Gag-protease expression cassette of SEQ ID NO:5. Similar results were obtained using the Gag-protease expression cassettes of SEQ ID NOS:78 and 79.

Table 2: in vitro gag and gagprot p24 expression

5 TABLE 2a. Increased in vitro expression from modified vs. native gag plasmids in supernatants and lysates from transiently transfected cells

experiment	native (nat) ^a modified (mod) ^b	supernatant (sup) lysate (lys)	cell line	hours post transfection	total ng p24 (fold increase)
1	nat	sup	293	48	3.4
	mod	sup	293	48	1260 (371)
	nat	sup	293	60	3.2
	mod	sup	293	60	2222 (694)
2	nat	sup	293	60	1.8
	mod	sup	293	60	1740 (966)
3	nat	sup	293	60	1.8
	mod	sup	293	60	580 (322)
4	nat	lys	293	60	1.5
	mod	lys	293	60	85 (57)
1	nat	sup	RD	48	5.6
	mod	sup	RD	48	66 (12)
	nat	sup	RD	60	7.8
	mod	sup	RD	60	70.2 (9)
2	nat	lys	RD	60	1.9
	mod	lys	RD	60	7.8 (4)
1	nat	sup	COS-7	48	0.4
	mod	sup	COS-7	48	33.4 (84)
2	nat	sup	COS-7	48	0.4
	mod	sup	COS-7	48	10 (25)
	nat	lys	COS-7	48	3
	mod	lys	COS-7	48	14 (5)

^a pCMVLink.Gag.SF2.PRE

^b pCMVKm2.GagMod.SF2

5 TABLE 2b. *In vitro* expression from modified gag and gagprotease plasmids in supernatants and lysates from transiently transfected cells

plasmid	supernatant (sup) lysate (lys)	cell line	hours post transfection	total ng p24 ^d
Gag ^a	sup	293	60	760
GagProt(GP1) ^b	sup	293	60	380
GagProt(GP2) ^c	sup	293	60	320
Gag	lys	293	60	78
GagProt(GP1)	lys	293	60	1250
GagProt(GP2)	lys	293	60	400
Gag	sup	COS-7	72	40
GagProt(GP1)	sup	COS-7	72	150
GagProt(GP2)	sup	COS-7	72	290
Gag	lys	COS-7	72	60
GagProt(GP1)	lys	COS-7	72	63
GagProt(GP2)	lys	COS-7	72	58

^a pCMVKm2.GagMod.SF2

^b pCMVKm2.GagProtMod.SF2(GP1) gagprotease with codon optimization and inactivation of INS in protease

^c pCMVKm2.GagProtMod.SF2(GP2) gagprotease with only inactivation of INS in protease

^d Shown are representative results from 3 independent experiments for each cell line tested.

The data showed that the synthetic Gag and Gag-protease expression cassettes provided dramatic increases in production of their protein products, relative to the native (HIV-1SF2 wild-type) sequences, when expressed in 5 a variety of cell lines.

B. Env Coding Sequences

The HIV-SF162 ("SF162") wild-type Env (SEQ ID NO:1-3) and HIV-US4 ("US4") wild-type Env (SEQ ID NO:22-24) 10 sequences were cloned into expression vectors having the same features as the vectors into which the synthetic Env sequences were cloned.

Expression efficiencies for various vectors carrying the SF162 and US4 wild-type and synthetic Env sequences 15 were evaluated essentially as described above for Gag except that cell lysates were prepared in 40 µl lysis buffer (1.0 % NP40, 0.1 M Tris pH 7.5) and frozen at -20°C and capture ELISAs were performed as follows.

For Capture ELISAs, 250 ng of an ammonium sulfate 20 IgG cut of goat polyclonal antibody to gp120SF2/env2-3 was used to coat each well of a 96-well plate (Corning, Corning, NY). Serial dilutions of gp120/SF2 protein (MID 167) were used to set the quantitation curve from which expression of US4 or SF162 gp120 proteins from 25 transfection supernatant and lysates were calculated.

Samples were screened undiluted and, optionally, by serial 2-fold dilutions. A human polyclonal antibody to HIV-1 gp120/SF2 was used to detect bound gp120 envelope 30 protein, followed by horse-radish peroxidase (HRP)-labeled goat anti-human IgG conjugates. TMB (Pierce, Rockford, IL) was used as the substrate and the reaction is terminated by addition of 4N H₂SO₄. The reaction was quantified by measuring the optical density (OD) at 450 nm. The intensity of the color is directly

proportional to the amount of HIV gp120 antigen in a sample. Purified SF2 gp120 protein was diluted and used as a standard.

The results of the transient expression assays are
5 presented in Tables 3 and 4. Table 3 depicts transient expression in 293 cells transfected with a pCMVKm2 vector carrying the Env cassette of interest. Table 4 depicts transient expression in RD cells transfected with a pCMVKm2 vector carrying the Env cassette of interest.

5

Table 3

Native (N) Synthetic (S)	Cell Line	Total sup (ng)	Sup fold increase (S v. N)	Total lysate (ng)	Cell lysate fold increase (S v. N)	Total (ng)	Total fold increase (S v. N)
N-GP120.US4	RD	87	<1			88	
S-GP120.modus4	RD	690	8	2	5	693	8
N-GP140.US4	RD	526		0		526	
S-GP140.modus4	RD	1305	2	1	2	1306	2
S-GP140mut.modus4	RD	35	N/A	25	N/A	60	N/A
S-GP140TM.modus4	RD	0	N/A	5	N/A	5	N/A
N-GP160.US4	RD	0		8		8	
S-GP160.modus4	RD	0	0	30	4	30	4

Table 4

CHO Cell Lines Expression Level of US4 Envelope Constructs				
	Constructs	CHO Clone #	MTX Level	Expression Level* (ng/ml)
5	gp120.modUS4	1	3.2μM	250-450
		2	1.6μM	350-450
		3	200nM	230-580
		4	200nM	300-500
10	gp140.modUS4	1	1μM	155-300
		2	1μM	100-260
		3	1μM	200-430
15	gp140.mut. modUS4	1	1μM	110-270
		2	1μM	100-235
		3	1μM	100-220
	gp140.modUS4 .delV1/V2	1	50nM	313-587**
		2	50nM	237-667**
		3	50nM	492-527**
	gp140.mut. modUS4.delV1 /V2	1	50nM	46-328**
		2	50nM	82-318**
		3	50nM	204-385**

*All samples measured at T-75 flask stage unless otherwise indicated

**at 24 well and 6 well plate stages

***in a three liter bioreactor perfusion culture this clone yielded approximately 2-5 μg/ml.

The data showed that the synthetic Env and expression cassettes provided a significant increase in production of their protein products, relative to the native (HIV-1SF162 or US4 wild-type) sequences, when
5 expressed in a variety of cell lines.

C. CHO Cell line Env expression data

Chinese hamster ovary (CHO) cells were transfected with plasmid DNA encoding the synthetic HIV-1 gp120 or
10 gp140 proteins (e.g., pESN2dhfr or pCMVIII vector backbone) using Mirus Transit-LT1 polyamine transfection reagent (Pan Vera) according to the manufacturers instructions and incubated for 96 hours. After 96 hours, media was changed to selective media (F12 special with
15 250 µg/ml G418) and cells were split 1:5 and incubated for an additional 48 hours. Media was changed every 5-7 days until colonies started forming at which time the colonies were picked, plated into 96 well plates and screened by gp120 Capture ELISA. Positive clones were
20 expanded in 24 well plates and screened several times for Env protein production by Capture ELISA, as described above. After reaching confluence in 24 well plates, positive clones were expanded to T25 flasks (Corning, Corning, NY). These were screened several times after
25 confluence and positive clones were expanded to T75 flasks.

Positive T75 clones were frozen in LN2 and the highest expressing clones amplified with 0-5 µM methotrexate (MTX) at several concentrations and plated in
30 100mm culture dishes. Plates were screened for colony formation and all positive clones were again expanded as described above. Clones were expanded and amplified and screened at each step by gp120 capture ELISA. Positive clones were frozen at each methotrexate level. Highest

producing clones were grown in perfusion bioreactors (3L, 100L) for expansion and adaptation to low serum suspension culture conditions for scale-up to larger bioreactors.

5 Tables 5 and 6 show Capture ELISA data from CHO cells transfected with pCMVIII vector carrying a cassette encoding synthetic HIV-US4 and SF162 Env polypeptides (e.g., mutated cleavage sites, modified codon usage and/or deleted hypervariable regions). Thus, stably
10 transfected CHO cell lines which express Env polypeptides (e.g., gp120, gp140-monomeric, and gp140-oligomeric) have been produced.

Table 5

CHO Cell Lines Expression Level of US4 Envelope Constructs				
	Constructs	CHO Clone #	MTX Level	Expression Level' (ng/ml)
5	gp120.modUS4	1	3.2μM	250-450
		2	1.6μM	350-450
		3	200nM	230-580***
		4	200nM	300-500
10	gp140.modUS4	1	1μM	155-300
		2	1μM	100-260
		3	1μM	200-430
15	gp140.mut. modUS4	1	1μM	110-270
		2	1μM	100-235
		3	1μM	100-220
	gp140.modUS4 .delV1/V2	1	50nM	313-587**
		2	50nM	237-667**
		3	50nM	492-527**
	gp140.mut. modUS4.delV1 /V2	1	50nM	46-328**
		2	50nM	82-318**
		3	50nM	204-385**

All samples measured at T-75 flask stage unless otherwise indicated

**at 24 well and 6 well plate stages

***in a three liter bioreactor perfusion culture this clone yielded approximately 2-5 μg/ml.

Table 6

CHO Cell Lines Expression Level of SF162 Envelope Constructs				
	Constructs	CHO Clone #	MTX Level	Expression Level (ng/ml)
5	gp120.modSF162	1	0	755-2705
		2	0	928-1538
		3	0	538-1609
	gp140.modSF162	1	20 nM	180-350
10	gp140.mut. modSF162	1	20 nM	164-451
		2	20 nM	188-487
		3	20 nM	233-804
10	gp120.modSF162 .delV2	1	800nM	528-1560
		2	800nM	487-1878
		3	800nM	589-1212
15	gp140.modSF162 .delV2	1	800nM	300-600
		2	800nM	200-400
		3	800nM	200-500
15	gp140.mut. modSF162.delV2	1	800nM	300-700
		2	400nM	1161
		3	800nM	400-600
		4	400nM	1600-2176

All samples measured at T-75 flask stage unless otherwise indicated

The results presented above demonstrate the ability
of the constructs of the present invention to provide
expression of Env polypeptides in CHO cells. Production
of polypeptides using CHO cells provides (i) correct
glycosylation patterns and protein conformation (as
determined by binding to panel of MAbs); (ii) correct
binding to CD4 receptor molecules; (iii) absence of non-

mammalian cell contaminants (e.g., insect viruses and/or cells); and (iv) ease of purification.

{ D. Tat Coding Sequences

5 The HIV-SF162 ("SF162") wild-type Tat (SEQ ID NO:85) sequences were cloned into expression vectors having the same features as the vectors into which the synthetic Tat sequences were cloned (SEQ ID NOS:87, 88 and 89).

10 Expression efficiencies for various vectors carrying the SF162 wild-type and synthetic Tat sequences are evaluated essentially as described above for Gag and Env using capture ELISAs with the appropriate anti-tat antibodies and/or CHO cell assays. Expression of the polypeptides encoded by the synthetic cassettes is 15 improved relative to wild type.

Example 3

Western Blot Analysis of Expression

A. Gag and Gag-Protease Coding Sequences

20 Human 293 cells were transfected as described in Example 2 with pCMV6a-based vectors containing native or synthetic Gag expression cassettes. Cells were cultivated for 60 hours post-transfection. Supernatants were prepared as described. Cell lysates were prepared 25 as follows. The cells were washed once with phosphate-buffered saline, lysed with detergent [1% NP40 (Sigma Chemical Co., St. Louis, MO) in 0.1 M Tris-HCl, pH 7.5], and the lysate transferred into fresh tubes. SDS-polyacrylamide gels (pre-cast 8-16%; Novex, San Diego, CA) were loaded with 20 µl of supernatant or 12.5 µl of cell lysate. A protein standard was also loaded (5 µl, broad size range standard; BioRad Laboratories, Hercules, CA). Electrophoresis was carried out and the proteins were transferred using a BioRad Transfer Chamber (BioRad

Laboratories, Hercules, CA) to Immobilon P membranes (Millipore Corp., Bedford, MA) using the transfer buffer recommended by the manufacturer (Millipore), where the transfer was performed at 100 volts for 90 minutes. The 5 membranes were exposed to HIV-1-positive human patient serum and immunostained using o-phenylenediamine dihydrochloride (OPD; Sigma).

The results of the immunoblotting analysis showed that cells containing the synthetic Gag expression 10 cassette produced the expected p55 protein at higher per-cell concentrations than cells containing the native expression cassette. The Gag p55 protein was seen in both cell lysates and supernatants. The levels of production were significantly higher in cell supernatants 15 for cells transfected with the synthetic Gag expression cassette of the present invention. Experiments performed in support of the present invention suggest that cells containing the synthetic Gag-prot expression cassette produced the expected Gag-prot protein at comparably 20 higher per-cell concentrations than cells containing the native expression cassette.

In addition, supernatants from the transfected 293 cells were fractionated on sucrose gradients. Aliquots of the supernatant were transferred to Polyclear™ ultra- 25 centrifuge tubes (Beckman Instruments, Columbia, MD), under-laid with a solution of 20% (wt/wt) sucrose, and subjected to 2 hours centrifugation at 28,000 rpm in a Beckman SW28 rotor. The resulting pellet was suspended in PBS and layered onto a 20-60% (wt/wt) sucrose gradient 30 and subjected to 2 hours centrifugation at 40,000 rpm in a Beckman SW41ti rotor.

The gradient was then fractionated into approximately 10 x 1 ml aliquots (starting at the top, 20%-end, of the gradient). Samples were taken from

fractions 1-9 and were electrophoresed on 8-16% SDS polyacrylamide gels. Fraction number 4 (the peak fraction) corresponds to the expected density of Gag protein VLPs. The supernatants from 293/synthetic Gag

5 cells gave much stronger p55 bands than supernatants from 293/native Gag cells, and, as expected, the highest concentration of p55 in either supernatant was found in fraction 4.

These results demonstrate that the synthetic Gag
10 expression cassette provides superior production of both p55 protein and VLPs, relative to the native Gag coding sequences.

B. Env Coding Sequences

15 Human 293 cells were transfected as described in Example 2 with pCMVKm2-based; pCMVlink-based; p-CMVII-based or pESN2-based vectors containing native or synthetic Env expression cassettes. Cells were cultivated for 48 or 60 hours post-transfection. Cell lysates and supernatants were prepared as described (Example 2). Briefly, the cells were washed once with phosphate-buffered saline, lysed with detergent [1% NP40 (Sigma Chemical Co., St. Louis, MO)] in 0.1 M Tris-HCl, pH 7.5], and the lysate transferred into fresh tubes.
20 SDS-polyacrylamide gels (pre-cast 8-16%; Novex, San Diego, CA) were loaded with 20 µl of supernatant or 12.5 µl of cell lysate. A protein molecular weight standard and an HIV SF2 gp120 positive control protein (5 µl, broad size range standard; BioRad Laboratories, Hercules,
25 CA) were also loaded. Electrophoresis was carried out and the proteins were transferred using a BioRad Transfer Chamber (BioRad Laboratories, Hercules, CA) to Immobilon P membranes (Millipore Corp., Bedford, MA) using the transfer buffer recommended by the manufacturer

(Millipore), where the transfer was performed at 100 volts for 90 minutes. The membranes were then reacted against polyclonal goat anti-gp120SF2/env2-3 anti-sera, followed by incubation with swine anti-goat IgG-peroxidase (POD) (Sigma, St. Louis, MO). Bands indicative of binding were visualized by adding DAB with hydrogen peroxide which deposits a brown precipitate on the membranes.

The results of the immunoblotting analysis showed that cells containing the synthetic Env expression cassette produced the expected Env gp proteins of the predicted molecular weights as determined by mobilities in SDS-polyacrylamide gels at higher per-cell concentrations than cells containing the native expression cassette. The Env proteins were seen in both cell lysates and supernatants. The levels of production were significantly higher in cell supernatants for cells transfected with the synthetic Env expression cassette of the present invention.

C. Tat Coding Sequences

Human 293 cells are transfected as described in Example 2 with various vectors containing native or synthetic Tat expression cassettes. Cells are cultivated and isolated proteins analyzed as described above. Immunoblotting analysis shows that cells containing the synthetic Tat expression cassette produced the expected Tat proteins of the predicted molecular weights as determined by mobilities in SDS-polyacrylamide gels at higher per-cell concentrations than cells containing the native expression cassette.

Example 4Purification of Env polypeptidesA. Purification of Oligomeric gp140

Purification of oligomeric gp140 (o-gp140 US4) was conducted essentially as shown in Figure 60. For the experiments described herein, o-gp140 refers to oligomeric gp140 in either native or modified (e.g., optimized expression sequences, deleted, mutated, truncated, etc.) form. Briefly, concentrated (30-50X) supernatants obtained from CHO cell cultures were loaded onto an anion exchange (DEAE) column which removed DNA and other serum proteins. The eluted material was loaded onto a ceramic hydroxyapatite column (CHAP) which bound serum proteins but not HIV Env proteins. The flow-through from the DEAE and CHAP columns was loaded onto a Protein A column as a precautionary step to remove any remaining serum immunoglobulins. The Env proteins in the flow-through were then captured using the lectin *gluvanthus navalis* (GNA, Vector Labs, Burlingame, CA). GNA has high affinity for mannose rich carbohydrates such as Env. The Env proteins were then eluted with GNA substrate. To remove other highly glycosylated proteins, a cation exchange column (SP) was used to purify gp140/gp120. In a final step, which separates gp120 from o-gp140, a gel filtration column was used to separate oligomers from monomers. Sizing and chromatography analysis of the final product revealed that this strategy lead to the successful isolation of oligomeric gp140.

B. Purification of gp120

Purification of gp120 was conducted essentially as previously described for other Env proteins. Briefly, concentrated supernatants obtained from CHO cell cultures were loaded onto an anion exchange (DEAE) column which

removed DNA and other serum proteins. The eluted material was loaded onto a ceramic hydroxyapatite column (CHAP) which bound serum proteins but not HIV Env proteins. The flow-through from the CHAP column was 5 loaded a cation exchange column (SP) where the flow-through was discarded and the bound fraction eluted with salt. The eluted fraction(s) were loaded onto a Suprose 12/Superdex 200 Tandem column (Pharmacia-Upjohn, Uppsala, Sweden) from which purified gp120 was obtained. Sizing 10 and chromatography analysis of the final product revealed that this strategy successfully purified gp120 proteins.

Example 5

Analysis of Purified Env Polypeptides

15 A. Analysis of o-gp140

It is well documented that HIV Env protein binds to CD4 only in its correct conformation. Accordingly, the ability of o-gp140 US4 polypeptides, produced and purified as described above, to bind CD4 cells was 20 tested. O-gp140 US4 was incubated for 15 minutes with FITC-labeled CD4 at room temperature and loaded onto a Biosil 250 (BioRad) size exclusion column using Waters HPLC. CD4-FITC has the longest retention time (2.67 minutes), followed by CD4-FITC-gp120 (2.167 min). The 25 shortest retention time (1.9 min) was observed for CD4-FITC-o-gp140 US4 indicating that, as expected, o-gp140 US4 binds to CD4 forming a large complex which reduces retention time on the column. Thus, the o-gp140 US4 produced and purified as described above is of the 30 correct size and conformation.

In addition, the US4 o-gp140, purified as described above, was also tested for its ability to bind to a variety of monoclonal antibodies with known epitope specificities for the CD4 binding site, the CD4 inducible

site, the V3 loop and oligomer-specific gp41 epitope. O-gp140 bound strongly to these antibodies, indicating that the purified protein retains its structural integrity.

5 B. Analysis of gp120

As described above, CD4-FITC binds gp120, as demonstrated by the decreased retention time on the HPLC column. Thus, US4 gp120 purified by the above method retains its conformational integrity. In addition, the properties of purified gp120 can be tested by examining its integrity and identity on western blots, as well as, by examining protein concentration, pH, conductivity, endotoxin levels, bioburden and the like. US4 gp120, purified as described above, was also tested for its ability to bind to a variety of monoclonal antibodies with known epitope specificities for the CD4 binding site, the CD4 inducible site, the V3 loop and oligomer-specific gp41 epitope. The pattern of mAb binding to gp120 indicated that the purified protein retained its structural integrity, for example, the purified gp120 did not bind the mAb having the oligomer-specific gp41 epitope (as expected).

Example 6

25 Electron Microscopic Evaluation of VLP Production

The cells for electron microscopy were plated at a density of 50-70% confluence, one day before transfection. The cells were transfected with 10 µg of DNA using transfection reagent LT1 (Panvera) and incubated for 5 hours in serum-reduced medium (see Example 2). The medium was then replaced with normal medium (see Example 2) and the cells were incubated for 14 hours (COS-7) or 40 hours (CHO). After incubation the cells were washed twice with PBS and fixed with 2%

glutaraldehyde. Electron microscopy was performed by Prof. T.S. Benedict Yen, Veterans Affairs, Medical Center, San Francisco, CA).

Electron microscopy was carried out using a
5 transmission electron microscope (Zeiss 10c). The cells were pre-stained with osmium and stained with uranium acetate and lead citrate. The magnification was 100,000X.

Figures 3A and 3B show micrographs of CHO cells
10 transfected with pCMVKM2 carrying the synthetic Gag expression cassette (SEQ ID NO:5) or carrying the Gag-prot expression cassette (SEQ ID NO:79). In the figure, free and budding immature virus-like-particles (VLP) of the expected size (100 nm) are seen for the Gag
15 expression cassette (Figure 3A) and both immature and mature VLPs are seen for the Gag-prot expression cassette (Figure 3B). COS-7 cells transfected with the same vector have the same expression pattern. VLP can also be found intracellularly in CHO and COS-7 cells.

Native and synthetic Gag expression cassettes were compared for their associated levels of VLP production when used to transfect human 293 cells. The comparison was performed by density gradient ultracentrifugation of cell supernatants and Western-blot analysis of the
20 gradient fractions. There was a clear improvement in production of VLPs when using the synthetic Gag construct.

Example 7

30 Expression of Virus-like Particles in the Baculovirus System

A. Expression of Native HIV p55 Gag

To construct the native HIV p55 Gag baculovirus shuttle vector, the prototype SF2 HIV p55 plasmid, pTM1-

Gag (Selby M.J., et al., *J Virol.* 71(10):7827-7831, 1997), was digested with restriction endonucleases *Nco*I and *Bam*HI to extract a 1.5 Kb fragment that was subsequently subcloned into pAcC4 (*Bio/Technology* 6:47-55, 1988), a derivative of pAc436. Generation of the recombinant baculovirus was achieved by co-transfected 2 µg of the HIV p55 Gag pAcC4 shuttle vector with 0.5 µg of linearized, *Autographa californica* baculovirus (AcNPV) wild-type viral DNA into *Spodoptera frugiperda* (Sf9) 10 cells (Kitts, P.A., Ayres M.D., and Possee R.D., *Nucleic Acids Res.* 18:5667-5672, 1990). The isolation of recombinant virus expressing HIV p55 Gag was performed according to standard techniques (O'Reilly, D.R., L.K. Miller, and V. A. Luckow, *Baculovirus Expression Vector: A Laboratory Manual*, W.H. Freeman and Company, New York, 15 1992).

Expression of the HIV p55 Gag was achieved using a 500 ml suspension culture of Sf9 cells grown in serum-free medium (Miaorella, B., D. Inlow, A. Shauger, and D. Harano, *Bio/Technology* 6:1506-1510, 1988) that had been infected with the HIV p55 Gag recombinant baculovirus at a multiplicity of infection (MOI) of 10. Forty-eight hours post-infection, the supernatant was separated by centrifugation and filtered through a 0.2 µm filter. 20 Aliquots of the supernatant were then transferred to Polyclear™ (Beckman Instruments, Palo Alto, CA) ultracentrifuge tubes, underlaid with 20% (wt/wt) sucrose, and subjected to 2 hours centrifugation at 24,000 rpm using a Beckman SW28 rotor.

30 The resulting pellet was suspended in Tris buffer (20 mM Tris HCl, pH 7.5, 250 mM NaCl, and 2.5 mM ethylenediaminetetraacetic acid [EDTA]), layered onto a 20-60% (wt/wt) sucrose gradient, and subjected to 2 hours centrifugation at 40,000 rpm using a Beckman SW41ti

rotor. The gradient was then fractionated starting at the top (20% sucrose) of the gradient into approximately twelve 0.75 ml aliquots. A sample of each fraction was electrophoresed on 8-16% SDS polyacrylamide gels and the resulting bands were visualized after commassie staining (Figure 4). Additional aliquots were subjected to refractive index analysis.

The results shown in Figure 4 indicated that the p55 Gag virus-like particles banded at a sucrose density of range of 1.15 - 1.19 g/ml with the peak at approximately 1.17 g/ml. The peak fractions were pooled and concentrated by a second 20% sucrose pelleting. The resulting pellet was suspended in 1 ml of Tris buffer (described above). The total protein yield as estimated by Bicimchrominic Acid (BCA) (Pierce Chemical, Rockford, IL) was 1.6 mg.

B. Expression of Synthetic HIV p55 Gag

A baculovirus shuttle vector containing the synthetic p55 Gag sequence was constructed as follows. The synthetic HIV p55 expression cassette (Example 1) was digested with restriction enzyme *Sal*I followed by incubation with T4-DNA polymerase. The resulting fragment was isolated (PCR Clean-Up™, Promega, Madison, WI) and then digested with *Bam*HI endonuclease. The shuttle vector pAcC13 (Munemitsu S., et al., *Mol Cell Biol.* 10(11):5977-5982, 1990) was linearized by digestion with *Eco*I, followed by incubation with T4-DNA polymerase, and then isolated (PCR Clean-Up™). The linearized vector was digested with *Bam*HI, treated with alkaline phosphatase, and isolated by size fragmentation in an agarose gel. The isolated 1.5 kb fragment was ligated with the prepared pAcC13 vector. The resulting clone was designated pAcC13-Modif.p55Gag.

The expression conditions for the synthetic HIV p55 VLPs differed from those of the native p55 Gag as follows: a culture volume of 1 liter used instead of 500 ml; *Trichoplusia ni* (Tn5) (Wickham, T.J., and Nermerow, 5 G.R., *BioTechnology Progress*, 9:25-30, 1993) insect cells were used instead of Sf9 insect cells; and, an MOI of 3 was instead of an MOI of 10. Experiments performed in support of the present invention showed that there was no appreciable difference in expression level between the 10 Sf9 and Tn5 insect cells with the native p55 clone. In terms of MOI, experience with the native p55 clone suggested that an MOI of 10 resulted in higher expression (approximately 2-fold) of VLPs than a lower MOI.

The sucrose pelleting and banding methods used for 15 the synthetic p55 VLPs were similar to those employed for the native p55 VLPs (described above), with the following exceptions: pelleted VLPs were suspended in 4 ml of phosphate buffered saline (PBS) instead of 1.0 ml of the Tris buffer; and four, 20-60% sucrose gradients were used 20 instead of a single gradient. Also, due to the high concentration of banded VLPs, further concentration by pelleting was not required. The peak fractions from all 4 gradients were simply dialyzed against PBS. The approximate density of the banded VLPs ranged from 1.23- 25 1.28 g/ml. A total protein yield as estimated by BCA was 46 mg. Results from the sucrose gradient banding of the synthetic p55 are shown in Figure 5.

A comparison of the total amount of purified HIV p55 30 Gag from several preparations obtained from the two baculovirus expression cassettes has been summarized in Figure 6. The average yield from the native p55 was 3.16 mg/liter of culture (n=5, standard deviation (sd) ± 1.07 , range = 1.8-4.8 mg/L) whereas the average yield from the

synthetic p55 was more than ten-fold higher at 44.5 mg/liter of culture (n=2, sd=±6.4).

In addition to a higher total protein yield, the final product from the synthetic p55-expressed Gag
5 consistently contained lower amounts of contaminating baculovirus proteins than the final product from the native p55-expressed Gag. This difference can be seen in the two commassie-stained gels Figures 4 and 5.

10 C. Expression of Native and Synthetic Gag-Core

Expression of the HIV p55 Gag/HCV Core 173 (SEQ ID NO:8) was achieved using a 2.5 liter suspension culture of Sf9 cells grown in serum-free medium (Miaorella, B., D. Inlow, A. Shauger, and D. Harano. 1988 Bio/Technology 6:1506-1510). The cells were infected with an HIV p55 Gag/HCV Core 173 recombinant baculovirus. Forty-eight hours post-infection, the supernatant was separated from the cells by centrifugation and filtered through a 0.2 µm filter. Aliquots of the supernatant were then
15 transferred to a Polyclear™ (Beckman Instruments, Palo Alto, CA) ultracentrifuge tubes containing 30% (wt/wt) sucrose, and subjected to 2 hours of centrifugation at 24,000 rpm in a Beckman SW28 rotor and ultracentrifuge.

The resulting pellet was suspended in Tris buffer
20 (50 mM Tris-HCl, pH 7.5, 500 mM NaCl) and layered onto a 30-60% (wt/wt) sucrose gradient and subjected to 2 hours centrifugation at 40,000 rpm in a Beckman SW41ti rotor and ultracentrifuge. The gradient was then fractionated starting at the top (30%) of the gradient into
25 approximately 11 x 1.0 ml aliquots. A sample of each fraction was electrophoresed on 8-16% SDS polyacrylamide gels and the resulting bands were visualized after
30 commassie staining.

A subset of aliquots were also subjected to Western blot analysis using monoclonal antibody 76C.5EG (Steimer, K.S., et al., *Virology* 150:283-290, 1986) which is specific for HIV p24 (a subunit of HIV p55). The peak fractions from the sucrose gradient were pooled and concentrated by a second 20% sucrose pelleting. The resulting pellet was suspended in 1 ml of buffer Tris buffer and the total protein yield as estimated by BCA (Pierce Chemical, Rockford, IL) was ~ 1.0 mg.

The results from the SDS PAGE are shown in Figure 8 and the anti- p24 Western blot results are shown in Figure 9. Taken together, these results indicate that the HIV p55 Gag/HCV Core 173 chimeric VLPs banded at a sucrose density similar to that of the HIV p55 Gag VLPs and the visible protein band that migrated at a molecular weight of ~ 72,000 kd was reactive with the HIV p24-specific monoclonal antibody. An additional immunoreactive band at approximately 55,000 kd also appeared to be reactive with the anti-p24 antibody and may be a degradation product.

Although aliquots from the above preparation were not tested for reactivity with an HCV Core-specific antibody (an anti-CD22 rabbit serum), results from a similar preparation are shown in Figure 10 and indicate that the main HCV Core-specific reactivity migrates at an approximate molecular weight of 72,000 kd which is in accordance with the predicted molecular weight of the chimeric protein.

The expression conditions for the synthetic HIV p55 Gag/HCV Core 173 (SEQ ID NO:8) VLPs differed from those of the native p55 Gag and are as follows: a culture volume of 1 liter used instead of 2.5 liters, *Trichoplusia ni* (Tn5) (Wickham, T.J., and Nemerow, G.R. 1993 *BioTechnology Progress*, 9:25-30) insect cells were

used instead of Sf9 insect cells and an MOI of 3 was instead of an MOI of 10. The sucrose pelleting and banding methods used for the synthetic HIV p55 Gag/HCV Core 173 VLPs were similar to those employed for the native HIV p55 Gag/HCV Core 173 VLPs. However, differences included: pelleted VLPs were suspended in 1 ml of phosphate buffered saline (PBS) instead of 1.0 ml of the Tris buffer, and a single 20-60% sucrose gradients was used. A comparison of the total amount of purified HIV p55 Gag/HCV Core 173 from multiple preparations obtained from the two baculovirus expression cassettes showed that there was an increase in expression using the synthetic HIV p55 Gag/HCV Core 173 cassette.

15 D. Alternative method for the enrichment of HIV p55 Gag VLPs

In addition to purification from the media, p55 (Gag protein) expressed in baculovirus (e.g., using a synthetic expression cassette of the present invention) can also be purified as virus-like particles from the infected insect cells. For example, forty-eight hours post infection, the media and cell pellet are separated by centrifugation and the cell pellet is stored at -70°C until future use. At the time of processing, the cell pellet is suspended in 5 volumes of hypotonic lysis buffer (20 mM Tris-HCl, pH 8.2, 1 mM EGTA; 1 mM MgCl₂, and Complete Protease Inhibitor[®] (Boehringer Mannheim Corp., Indianapolis, IN]). If needed, the cells are then dounced 8-10 times to complete cell lysis.

The lysate is then centrifuged at approximately 1000-1500 x g for 20 minutes. The supernatant is

decanted into UltraClear™ tubes, underlaid with 20% sucrose (w/w) and centrifuged at 24,000 rpm in SW28 buckets for 2 hours. The resulting pellet is suspended in Tris buffer (20 mM Tris HCl, pH 7.5, 250 mM NaCl, and 2.5 mM ethylene-diamine-tetraacetic acid (EDTA) with 0.1% IGEPAL detergent (Sigma Chemical, St. Louis, MO) and 250 units/ml of benzonase (American International Chemical, Inc., Natick, MA) and incubated at 4°C for at least 30 minutes. The suspension is subsequently layered onto a 20-60% sucrose gradient and spun at 40,000 rpm using an SW41ti rotor for 20-24 hours.

After ultracentrifugation, the sucrose gradient is fractionated and aliquots run on SDS PAGE to identify peak fractions. The peak fractions are dialyzed against PBS and

measured for protein content. Negatively stained electron micrographs typically show non-enveloped VLPs somewhat smaller in diameter (80-120 nm) than the budded VLPs. HIV Gag VLPs prepared in this manner are also capable of generating Gag-specific CTL responses in mice.

Example 8

25 In Vivo Immunogenicity of Synthetic Gag Expression

Cassettes

A. Immunization

To evaluate the possibly improved immunogenicity of the synthetic Gag expression cassettes, a mouse study was performed. The plasmid DNA, pCMVKM2 carrying the synthetic Gag expression cassette, was diluted to the following final concentrations in a total injection volume of 100 µl: 20 µg, 2 µg, 0.2 µg, and 0.02 µg. To

overcome possible negative dilution effects of the diluted DNA, the total DNA concentration in each sample was brought up to 20 µg using the vector (pCMVKM2) alone. As a control, plasmid DNA of the native Gag expression cassette was handled in the same manner. Twelve groups of four Balb/c mice (Charles River, Boston, MA) were intramuscularly immunized (50 µl per leg, intramuscular injection into the tibialis anterior) according to the schedule in Table 7.

10

Table 7

Group	Gag Expression Cassette	Concentration of Gag plasmid DNA (µg)	Immunized at time (weeks):
1	Synthetic	20	0 ¹ , 4
2	Synthetic	2	0, 4
3	Synthetic	0.2	0, 4
4	Synthetic	0.02	0, 4
5	Synthetic	20	0
6	Synthetic	2	0
7	Synthetic	0.2	0
8	Synthetic	0.02	0
9	Native	20	0
10	Native	2	0
11	Native	0.2	0
12	Native	0.02	0

1 = initial immunization at "week 0"

25 Groups 1-4 were bled at week 0 (before immunization), week 4, week 6, week 8, and week 12. Groups 5-12 were bled at week 0 (before immunization) and at week 4.

B. Humoral Immune Response

The humoral immune response was checked with an anti-HIV Gag antibody ELISAs (enzyme-linked immunosorbent assays) of the mice sera 0 and 4 weeks post immunization (groups 5-12) and, in addition, 6 and 8 weeks post immunization, respectively, 2 and 4 weeks post second immunization (groups 1-4).

The antibody titers of the sera were determined by anti-Gag antibody ELISA. Briefly, sera from immunized mice were screened for antibodies directed against the HIV p55 Gag protein. ELISA microtiter plates were coated with 0.2 µg of HIV-1_{SP2} p24-Gag protein per well overnight and washed four times; subsequently, blocking was done with PBS-0.2% Tween (Sigma) for 2 hours. After removal of the blocking solution, 100 µl of diluted mouse serum was added. Sera were tested at 1/25 dilutions and by serial 3-fold dilutions, thereafter. Microtiter plates were washed four times and incubated with a secondary, peroxidase-coupled anti-mouse IgG antibody (Pierce, Rockford, IL). ELISA plates were washed and 100 µl of 3, 3', 5, 5'-tetramethyl benzidine (TMB; Pierce) was added per well. The optical density of each well was measured after 15 minutes. The titers reported are the reciprocal of the dilution of serum that gave a half-maximum optical density (O.D.). The ELISA results are presented in Table 8.

Table 8

Group	Inoculum (μ g)	Expression cassette	Sera - Week 4 ³	Sera - Week 6	Sera - Week 8
5	1	S ¹ - gag	98	455	551
	2	S - gag	59	1408	227
	3	S - gag	29	186	61
	4	S - gag	< 20	< 20	< 20
	5	S - gag	67	n.a. ⁴	n.a.
	6	S - gag	63	n.a.	n.a.
10	7	S - gag	57	n.a.	n.a.
	8	S - gag	< 20	n.a.	n.a.
	9	N ² - gag	43	n.a.	n.a.
	10	N - gag	< 20	n.a.	n.a.
	11	N - gag	< 20	n.a.	n.a.
	12	N - gag	< 20	n.a.	n.a.

1 = synthetic gag expression cassette (SEQ ID NO: 4)

2 = native gag expression cassette (SEQ ID NO: 1)

3 = geometric mean antibody titer

4 = not applicable

20

The results of the mouse immunizations with plasmid-DNAs show that the synthetic expression cassettes provide a clear improvement of immunogenicity relative to the native expression cassettes. Also, the second boost immunization induced a secondary immune response after two weeks (groups 1-3).

25

C. Cellular Immune Response

The frequency of specific cytotoxic T-lymphocytes (CTL) was evaluated by a standard chromium release assay of peptide pulsed Balb/c mouse CD4 cells. Gag expressing vaccinia virus infected CD-8 cells were used as a positive control (vvGag). Briefly, spleen cells (Effector cells, E) were obtained from the BALB/c mice immunized as described above (Table 8) were cultured, restimulated, and assayed for CTL activity against Gag

peptide-pulsed target cells as described (Doe, B., and Walker, C.M., *AIDS* 10(7):793-794, 1996). The HIV-1_{SP2} Gag peptide used was p7g SEQ ID NO:10. Cytotoxic activity was measured in a standard ⁵¹Cr release assay. Target (T) cells were cultured with effector (E) cells at various E:T ratios for 4 hours and the average cpm from duplicate wells was used to calculate percent specific ⁵¹Cr release. The results are presented in Table 9.

Cytotoxic T-cell (CTL) activity was measured in splenocytes recovered from the mice immunized with HIV Gag DNA (compare Effector column, Table 9, to immunization schedule, Table 8). Effector cells from the Gag DNA-immunized animals exhibited specific lysis of Gag p7g peptide-pulsed SV-BALB (MHC matched) targets cells indicative of a CTL response. Target cells that were peptide-pulsed and derived from an MHC-unmatched mouse strain (MC57) were not lysed (Table 9; MC/p7g).

Table 9

Table 9. Cytotoxic T-lymphocyte (CTL) responses in mice immunized with HIV-1 gag DNA				
		Percent specific lysis of target cells*		
Immunization	E:T	SVBALB none	SVBALB p7g	RMA p7g
20 µg DNA gagmod	100:1	2	49	<1
	30:1	3	30	<1
	10:1	<1	14	<1
2 µg DNA gagmod	100:1	2	37	<1
	30:1	2	21	<1
	10:1	<1	13	<1
0.2 µg DNA gagmod	100:1	2	32	<1
	30:1	3	25	<1
	10:1	1	14	<1
0.02 µg DNA gagmod	100:1	1	17	<1
	30:1	1	16	<1
	10:1	1	8	<1
20 µg DNA gag native	100:1	2	49	<1
	30:1	2	24	<1
	10:1	1	12	<1
2 µg DNA gag native	100:1	<1	18	<1
	30:1	1	14	<1
	10:1	1	7	<1
0.2 µg DNA gag native	100:1	3	30	<1
	30:1	3	17	<1
	10:1	2	7	<1
0.02 µg DNA gag native	100:1	4	2	<1
	30:1	1	2	<1
	10:1	1	2	<1

*representative results of two animals per DNA-dose;

positive CTL responses are indicated by boxed data

The results of the CTL assays show increased potency of synthetic Gag expression cassettes for induction of cytotoxic T-lymphocyte (CTL) responses by DNA immunization.

Example 9In vivo Immunization with Env polypeptidesA. Immunogenicity Study of US4 o-gp140 in Ras-3c Adjuvant System

5 Studies have been conducted using rabbits immunized with US4 o-gp140 purified as described above. Studies are also underway in animals to determine immunogenicity of US4 gp120, SF162 o-gp140 and SF162 gp120.

10 Two rabbits (#1 and #2) were immunized intramuscularly at 0, 4, 12 and 24 weeks with 50 µg of US4 o-gp140 in the Ribi™ adjuvant system (RAS-3c), (Ribi Immunochem, Hamilton, MT) containing 2% Squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL, Ribi Immunochem, Hamilton, MT).
15 In each experiment described herein, o-gp140 can be native, mutated and/or modified. Antibody responses directed against the US4 o-gp140 protein were measured by ELISA. Results are shown in Table 10.

Table 10

Rabbit/sample	Approximate o-gp140 ELISA titer
pre-immunization	0
#1: post1 (0 week immuniz)	400
#1: post2 (4 week immuniz)	15,000
#1: post3 (12 week immuniz)	50,000
#1: post4 (24 week immuiz)	100,000
#2: post1 (0 week immuniz)	600
#2: post2 (4 week immuniz)	12,000
#2: post3 (12 week immuniz)	25,000
#2: post4 (24 week immuiz)	55,000

The avidities of antibodies directed against the US4 o-gp140 protein were measured in a similar ELISA format employing successive washes with increasing concentrations of ammonium isothiocyanate. Results are shown in Table 11.

Table 11

Time of sample	Approx. Antibody avidity (NH ₄ HCN Conc. in M)
pre-immunization	0.02
post1 (0 week immuniz)	1.8
post2 (4 week immuniz)	3.5
post3 (12 week immuniz)	5.5
post4 (24 week immuniz)	5.1

These results show that US4 o-gp140 is highly immunogenic and able to induce substantial antibody responses after only one or two immunizations.

5 B. Immunogenicity of US4 o-gp140 in MF59-based Adjuvants

Groups of 4 rabbits were immunized intramuscularly at 0, 4, 12 and 24 weeks with various doses of US4 o-gp140 protein in three different MF59-based adjuvants (MF59 is described in International Publication No. WO 90/14837 and typically contains 5% Squalene, 0.5% Tween 80, and 0.5% Span 85). Antibody titers were measured post-third by ELISA using SF2 gp120 to coat the plates. QHC is a quill-based adjuvant (Iscotek, Uppsala, Sweden). Results are shown in Table 12.

15

Table 12

Antigen dose (μ g)	Adjuvant	Anti-gp120 _{sf2} Ab GMT*
12.5	MF59	7231
25	MF59	8896
50	MF59	12822
12.5	MF59/MPL	24146
25	MF59/MPL	27199
50	MF59/MPL	23059
50	MF59/MPL/QHC	31759

*GMT = geometric mean titer

Thus, adjuvanted o-gp140 generated antigen-specific antibodies. Further, the antibodies were shown to increased in avidity over time.

30

C. Neutralizing Antibodies

Neutralizing antibodies post-third immunization were measured against HIV-1 SF2 in a T-cell line adapted virus

(TCLA) assay and against PBMC-grown HIV-1 variants SF2, SF162 and 119 using the CCR5+ CEMx174 LTR-GFP reporter cell line, 5.25 (provided by N. Landau, Salk Institute, San Diego, CA) as target cells. Results are shown in Table 13.

5

Table 13
Neutralizing antibody responses in rabbits immunized
with o-gp140.modUS4 protein

Group	Animal	SF2 TCLA*	SF2 PBMC [#]	SF162 PBMC [#]	119 PBMC [#]
Experiment 1					
o-gp140/ Ras-3c 50 mg	217 218	>640 >640	100% 96	49 37	17 29
Experiment 2					
o-gp140/ MF59 50 mg	792 793 794 795	45 50 59 128	71 87 87 92	39 26 13 15	26 4 0 0
o-gp140/ MF59 + MPL 50 mg	804 805 806 807	173 134 N.D.** 441	91 93 95 100	47 28 49 31	18 4 13 15
o-gp140/MF59 + MPL + QHC 50 mg	808 809 810 811	465 496 >640 92	98 100 101 92	46 44 27 24	40 39 4 37

*TCLA neutralizing antibody titers (50% inhibition).

**Not Determined

[#] % Inhibition at 1:10 dilution of sera with any detectable non-specific inhibition in pre-bleeds subtracted.

35

The above studies in rabbits indicate that the US4 o-gp140 protein is highly immunogenic. When administered with adjuvant, this protein was able to induce substantial antibody responses after only one or two immunizations.

5 Moreover, the adjuvanted o-gp140 protein was able to generate antigen-specific antibodies which increased in avidity after successive immunizations, and substantial neutralizing activity against T-cell line adapted HIV-1. Neutralizing activity was also observed against PBMC-grown

10 primary HIV strains, including the difficult to neutralize CCR5 co-receptor (R5)-utilizing isolates, SF162 and 119.

Example 10

In Vivo Immunogenicity of Synthetic Env Expression

15 Cassettes

A. General Immunization Methods

To evaluate the immunogenicity of the synthetic Env expression cassettes, studies using guinea pigs, rabbits, mice, rhesus macaques and baboons were performed. The

20 studies were structured as follows: DNA immunization alone (single or multiple); DNA immunization followed by protein immunization (boost); DNA immunization followed by Sindbis particle immunization; immunization by Sindbis particles alone.

25 B. Humoral Immune Response

The humoral immune response was checked in serum specimens from immunized animals with an anti-HIV Env antibody ELISAs (enzyme-linked immunosorbent assays) at various times post-immunization. The antibody titers of

30 the sera were determined by anti-Env antibody ELISA as described above. Briefly, sera from immunized animals were

screened for antibodies directed against the HIV gp120 or gp140 Env protein. Wells of ELISA microtiter plates were coated

overnight with the selected Env protein and washed four times; subsequently, blocking was done with PBS-0.2% Tween (Sigma) for 2 hours. After removal of the blocking solution, 100 μ l of diluted mouse serum was added. Sera were tested at 1/25 dilutions and by serial 3-fold dilutions, thereafter. Microtiter plates were washed four times and incubated with a secondary, peroxidase-coupled anti-mouse IgG antibody (Pierce, Rockford, IL). ELISA plates were washed and 100 μ l of 3, 3', 5, 5'-tetramethyl benzidine (TMB; Pierce) was added per well. The optical density of each well was measured after 15 minutes. Titers are typically reported as the reciprocal of the dilution of serum that gave a half-maximum optical density (O.D.).

Example 11

DNA-immunization of Baboons Using Synthetic Gag

Expression Cassettes

A. Baboons

Four baboons were immunized 3 times (weeks 0, 4 and 8) bilaterally, intramuscular into the quadriceps using 1mg pCMVKM2.GagMod.SF2 plasmid-DNA (Example 1). The animals were bled two weeks after each immunization and a p24 antibody ELISA was performed with isolated plasma. The ELISA was performed essentially as described in Example 5 except the second antibody-conjugate was an anti-human IgG, g-chain specific, peroxidase conjugate (Sigma Chemical Co., St. Louis, MD 63178) used at a dilution of 1:500. Fifty μ g/ml yeast extract was added to the dilutions of plasma

samples and antibody conjugate to reduce non-specific background due to

preexisting yeast antibodies in the baboons. The antibody titer results are presented in Table 14.

5

Table 14

	Immunizati on no.	Weeks	Antigen	wpi ^a / Baboon No.	Ab-titer ^b
10	1	0	gagmod DNA	0 w/219	< 10
				0 w/220	< 10
				0 w/221	< 10
				0 w/222	< 10
15	2	6		2 wp 1st/219	< 10
				2 wp 1st/220	< 10
				2 wp 1st/221	< 10
				2 wp 1st/222	15
20	4	14	gagmod DNA	2 wp 4th/219	< 10
				2 wp 4th/220	88
				2 wp 4th/221	< 10
				2 wp 4th/222	56
25	5	30	gagmod DNA	2 wp 5th/219	< 10
				2 wp 5th/220	391
				2 wp 5th/221	237
				2 wp 5th/222	222
30	6	46	gag VLP protein	2 wp 6th/219	753
				2 wp 6th/219	4330
				2 wp 6th/219	5000
				2 wp 6th/219	2881

^a wpi = weeks post immunization

^b geometric mean antibody titer

30

In Table 14, pre-bleed data are given as Immunization No. 0; data for bleeds taken 2 weeks post-first immunization are given as Immunization No. 1; data for bleeds taken 2 weeks post-second immunization are given as Immunization No. 2; and, data for bleeds taken 2 weeks post-third immunization are given as Immunization No. 3.

Further, lymphoproliferative responses to p24 antigen were also observed in baboons 221 and 222 two weeks post-fourth immunization (at week 14), and enhanced substantially post-boosting with VLP (at week 44 and 76).
5 Such proliferation results are indicative of induction of T-helper cell functions.

B. Rhesus Macaques

The improved potency of the codon-modified gag expression plasmid observed in mouse and baboon studies was confirmed in rhesus macaques. Four of four macaques had detectable Gag-specific CTL after two or three 1 mg doses of modified gag plasmid. In contrast, in a previous study, only one of four macaques given 1 mg doses of plasmid-DNA encoding the wild-type HIV-1_{sf2} Gag showed strong CTL activity that was not apparent until after the seventh immunization. Further evidence of the potency of the modified gag plasmid was the observation that CTL from two of the four rhesus macaques reacted with three nonoverlapping Gag peptide pools, suggesting that as many as three different Gag peptides are recognized and indicating that the CTL response is polyclonal. Additional quantification and specificity studies are in progress to further characterize the T cell responses to Gag in the plasmid-immunized rhesus macaques. DNA immunization of macaques with the modified gag plasmid did not result in significant antibody responses, with only two of four animals seroconverting at low titers. In contrast, in the same study the majority of macaques in groups immunized with p55Gag protein seroconverted and had strong Gag-specific antibody titers. These data suggest that a prime-boost

strategy (DNA-prime and protein-boost) could be very promising for the induction of a strong CTL and antibody response.

In sum, these results demonstrate that the synthetic
5 Gag plasmid DNA is immunogenic in non-human primates.
When similar experiments were carried out using wild-type
Gag plasmid DNA no such induction of anti-p24 antibodies
was observed after four immunizations.

10

Example 12DNA- and Protein Immunizations of Animals Using Env
Expression Cassettes and PolypeptidesA. Guinea Pigs

Groups comprising six guinea pigs each were
15 immunized intramuscularly at 0, 4, and 12 weeks with
plasmid DNAs encoding the gp120.modUS4, gp140.modUS4,
gp140.modUS4.delV1, gp140.modUS4.delV2,
gp140.modUS4.delV1/V2, or gp160.modUS4 coding sequences
of the US4-derived Env. The animals were subsequently
20 boosted at 18 weeks with a single intramuscular dose of
US4 o-gp140.mut.modUS4 protein in MF59 adjuvant. Anti-
gp120 SF2 antibody titers (geometric mean titers) were
measured at two weeks following the third DNA
immunization and at two weeks after the protein boost.
25 Results are shown in Table 15.

Table 15

Group	GMT post-DNA immuniz.	GMT post-protein boost
gp120.modUS4	2098	9489
gp140.modUS4	190	5340
gp140.modUS4.delV1	341	7808
gp140.modUS4.delV2	386	8165
gp140.modUS4.delV1/V2	664	8270
gp160.modUS4	235	9928

10

These results demonstrate the usefulness of the synthetic constructs to generate immune responses, as well as, the advantage of providing a protein boost to enhance the immune response following DNA immunization.

15

B. Rabbits

Rabbits were immunized intramuscularly and intradermally using a Bioject needless syringe with plasmid DNAs encoding the following synthetic SF162 Env polypeptides: gp120.modSF162, gp120.modSF162.delV2, gp140.modSF162, gp140.modSF162.delV2, gp140.mut.modSF162, gp140.mut.modSF162.delV2, gp160.modSF162, and gp160.modSF162.delV2. Approximately 1 mg of plasmid DNA (pCMVlink) carrying the synthetic Env expression cassette was used to immunize the rabbits. Rabbits were immunized with plasmid DNA at 0, 4, and 12 weeks. At two weeks after the third immunization all of the constructs were shown to have generated significant antibody titers in the test animals. Further, rabbits immunized with constructs containing deletions of the V2 region

generally generated similar antibody titers relative to rabbits immunized with the companion construct still containing the V2 region.

The nucleic acid immunizations are followed by 5 protein boosting with o-gp140.modSF162.delV2 (0.1 mg of purified protein) at 24 weeks after the initial immunization. Results are shown in Table 16.

Table 16

Group	GMT 2wks post-2nd DNA immunization	GMT 2wks post-3rd DNA immunization	GMT 2wks post-protein boost
gp120.modSF162	4573	5899	26033
gp120.modSF162.delV2	3811	3122	29606
gp140.modSF162	1478	710	12882
gp140.modSF162.delV2	1572	819	11067
gp140.mut.modSF162	1417	788	8827
gp140.mut.modSF162.delV2	1378	1207	13301
gp160.modSF162	23	81	7050
gp160.modSF162.delV2	85	459	11568

All constructs are highly immunogenic and generate substantial antigen binding antibody responses after only 2 immunizations in rabbits.

C. Baboons

Groups of four baboons were immunized intramuscularly with 1 mg doses of DNA encoding different forms of synthetic US4 gp140 (see the following table) at 0, 4, 8, 12, 28, and 44 weeks. The animals were also boosted twice with US4 O-gp140 protein (gp140.mut.modUS4) at 44 and 76 weeks using MF59 as adjuvant. Results are shown in Table 17.

Table 17

Animal	Treatment	2 Wks Post 5th DNA immuniza- tion	2 Wks post 6th DNA (plus o- gp140 prot. immuniz.)	2 Wks post 7th DNA (o-gp140 protein only)
5	CY 215	8.3	446	1813
	CY 216	8.3	433	1236
	CY 217	68	1660	2989
	CY 218	101	2556	1610
Geomean:		26.2	951.4	1812.1
10	CY 219	8.3	8.3	421
	CY 220	8.3	8.3	3117
	CY 221	8.3	954	871
	CY 222	8.3	71	916
Geomean:		8.3	46.5	1011.5
15	CY 223	41.4	10497	46432
	CY 224	8.3	979	470
	CY 225	modUS4	2935	3870
	CY 226	47	1209	4009
Geomean:		68.3	2457.4	4289.6
20	CY 227	8.3	56	5001
	CY 228	8.3	806	1170
	CY 229	modUS4	48	3402
	CY 230	8.3	38	6520
GMT*:		8.3	95.3	3375.3

*GMT = geometric mean titer

The results in Table 17 demonstrate the usefulness
 25 of the synthetic constructs to generate immune responses
 in primates such as baboons. In addition, all animals

showed evidence of antigen-specific (*Env* antigen) lymphoproliferative responses.

D. Rhesus Macaques

5 Two rhesus macaques (designated H445 and J408) were immunized with 1 mg of DNA encoding SF162 gp140 with a deleted V2 region (SF162.gp140.delV2) by intramuscular (IM) and intradermal (ID) routes at 0, 4, 8, and 28 weeks. Approximately 100 µg of the protein encoded by
10 the SF162. gp140mut.delV2 construct was also administered in MF59 by IM delivery at 28 weeks.

ELISA titers are shown in Figure 61. Neutralizing antibody activity is shown Tables 18 and 19. Neutralizing antibody activity was determined against a variety of primary HIV-1 isolates in a primary lymphocyte or "PBMC-based" assay (see the following tables). Further, the phenotypic co-receptor usage for each of the primary isolates is indicated. As can be seen in the tables neutralizing antibodies were detected against
15 every isolate tested, including the HIV-1 primary isolates (i.e., SF128A, 92US660, 92HT593, 92US657, 92US714, 91US056, and 91US054).

Table 18

	Treatment		Bleed 0	Bleed 1	Bleed 2
Animal	1st Immunization	2nd Immunization	1st Imm'n	2nd Imm'n	2 Wks post 2nd
5	EO 456	25µg 120mod DNA	8.3	45	309
	EO 457		8.3	254	460
	EO 458		8.3	8.3	93
	EO 459		8.3	43	45
	EO 460		8.3	8.3	274
10	EO 461	25µg 120mod DNA	8.3	47	1502
	EO 462		8.3	80	5776
	EO 463		8.3	89	3440
	EO 464		8.3	8.3	3347
	EO 465		8.3	69	1127
15	EO 466	50µg 120mod DNA	8.3	63	102
	EO 467		8.3	112	662
	EO 468		8.3	94	459
	EO 469		8.3	58	48
	EO 470		8.3	95	355
20	EO 471	50µg 120mod DNA	8.3	110	9074
	EO 472		8.3	8.3	4897
	EO 473		8.3	49	4089
	EO 474		8.3	59	5280
	EO 475		8.3	8.3	929
25	EO 476	25µg 120mod DNA	8.3		653
	EO 477		8.3	87	22675
	EO 478		8.3	76	3869
	EO 479		8.3		1004
	EO 480		8.3	71	7080

Table 19

	Treatment		Bleed 0	Bleed 1	Bleed 2
Animal	1st Immunization	2nd Immunization	1st Imm'n	2nd Imm'n	2 Wks post 2nd
EO 481			8.3	8.3	8.3
EO 482			8.3	8.3	8.3
EO 483	Sindbis/Env	(None)	8.3	78	103
EO 484			8.3	8.3	32
EO 485			8.3	76	207
EO 486			8.3	8.3	458
EO 487			8.3	8.3	345
EO 488	Sindbis/Env	Sindbis/Env	8.3	8.3	331
EO 489			8.3	103	111
EO 490			8.3	8.3	5636

Lymphoproliferative activity (LPA) was also determined by antigenic stimulation followed by uptake of ³H-thymidine in these animals and is shown in Table 20. Experiment 1 was performed at 14 weeks post third DNA immunization and Experiment 2 was performed at 2 weeks post fourth DNA immunization using DNA and protein. For gp120ThaiE, gp120SF2 and US4 o-gp140, appropriate background values were used to calculate Stimulation Indices (S.I.; Antigenic stimulation CPM/Background CPM).

1.0

Table 20

S.I.: Calculated as Ag CPM/Background CPM				
Animal/ exp#	gp120Thai E	gp120 SF2	env2-3SF2	o- gp140US4
J408/#1	2	1	1	5
H445/#1	1	1	1	6
J408/#2	1	1	2	3
H445/#2	0	0	3	2

As can be seen by the results presented in Table 20 lymphoproliferative responses to o-gp140.US4 antigen were also in all four animals at both experimental time points. Such proliferation results are indicative of induction of T-helper cell functions.

The results presented above demonstrate that the synthetic gp140.modSF162.delV2 DNA and protein are immunogenic in non-human primates.

Example 13

In vitro expression of recombinant Sindbis RNA and DNA containing the synthetic Gag or Env expression cassettes

5 A. Synthetic Gag expression cassettes

To evaluate the expression efficiency of the synthetic Gag expression cassette in Alphavirus vectors, the synthetic Gag expression cassette was subcloned into both plasmid DNA-based and recombinant vector particle-based Sindbis virus vectors. Specifically, a cDNA vector construct for *in vitro* transcription of Sindbis virus RNA vector replicons (pRSIN-luc; Dubensky, et al., *J Virol.* 70:508-519, 1996) was modified to contain a *PmeI* site for plasmid linearization and a polylinker for insertion of heterologous genes. A polylinker was generated using two oligonucleotides that contain the sites *XhoI*, *PmlI*, *ApaI*, *NarI*, *XbaI*, and *NotI* (XPANXNF, SEQ ID NO:17, and XPANXNR, SEQ ID NO:18).

The plasmid pRSIN-luc (Dubensky et al., *supra*) was digested with *XhoI* and *NotI* to remove the luciferase gene insert, blunt-ended using Klenow and dNTPs, and purified from an agarose gel using GeneCleanII (Biol01, Vista, CA). The oligonucleotides were annealed to each other and ligated into the plasmid. The resulting construct was digested with *NotI* and *SacI* to remove the minimal Sindbis 3'-end sequence and A_{40} tract, and ligated with an approximately 0.4 kbp fragment from PKSSIN1-BV (WO 97/38087). This 0.4 kbp fragment was obtained by digestion of pKSSIN1-BV with *NotI* and *SacI*, and purification after size fractionation from an agarose gel. The fragment contained the complete Sindbis virus 3'-end, an A_{40} tract and a *PmeI* site for linearization. This new vector construct was designated SINBVE.

The synthetic HIV Gag coding sequence was obtained from the parental plasmid by digestion with *Eco*RI, blunt-ending with Klenow and dNTPs, purification with GeneCleanII, digestion with *Sal*I, size fractionation on an agarose gel, and purification from the agarose gel using GeneCleanII. The synthetic Gag coding fragment was ligated into the SINBVE vector that had been digested with *Xho*I and *Pml*I. The resulting vector was purified using GeneCleanII and designated SINBVGag. Vector RNA replicons may be transcribed *in vitro* (Dubensky et al., *supra*) from SINBVGag and used directly for transfection of cells. Alternatively, the replicons may be packaged into recombinant vector particles by co-transfection with defective helper RNAs or using an alphavirus packaging cell line as described, for example, in U.S. Patent Numbers 5,843,723 and 5,789,245, and then administered *in vivo* as described..

The DNA-based Sindbis virus vector pDCMVSIN-beta-gal (Dubensky, et al., *J Virol.* 70:508-519, 1996) was digested with *Sal*I and *Xba*I, to remove the beta-galactosidase gene insert, and purified using GeneCleanII after agarose gel size fractionation. The HIV Gag gene was inserted into the the pDCMVSIN-beta-gal by digestion of SINBVGag with *Sal*I and *Xho*I, purification using GeneCleanII of the Gag-containing fragment after agarose gel size fractionation, and ligation. The resulting construct was designated pDSIN-Gag, and may be used directly for *in vivo* administration or formulated using any of the methods described herein.

BHK and 293 cells were transfected with recombinant Sindbis vector RNA and DNA, respectively. The supernatants and cell lysates were tested with the Coulter p24 capture ELISA (Example 2).

BHK cells were transfected by electroporation with recombinant Sindbis RNA. The expression of p24 (in ng/ml) is presented in Table 21. In the table, SINGag#1 and 2 represent duplicate measurements, and SIN β gal represents a negative control. Supernatants and lysates were collected 24h post transfection.

Table 21

Construct	Supernatant	Lysate
SIN β gal RNA	0	0
SINGag#1 RNA	7 ng	Max (approx. 1 μ g)
SINGag#2 RNA	1 ng	700 ng

293 cells were transfected using LT-1 (Example 2) with recombinant Sindbis DNA. Synthetic pCMVKM2GagMod.SF2 was used as a positive control. Supernatants and lysates were collected 48h post transfection. The expression of p24 (in ng/ml) is presented in Table 22.

20

Table 22

Construct	Supernatant	Lysate
SINGag DNA	3	30
pCMVKM2.GagMod.SF2 DNA	32	42

The results presented in Tables 21 and 22 demonstrate that Gag proteins can be efficiently expressed from both DNA and RNA-based Sindbis vector

30 systems using the synthetic Gag expression cassette (p55Gag.mod).

B. Synthetic Env expression cassettes

To evaluate the expression efficiency of the synthetic Env expression cassette in Alphavirus vectors,

synthetic Env expression cassettes were subcloned into both plasmid DNA-based and recombinant vector particle-based Sindbis virus vectors as described above for Gag.

The synthetic HIV Env coding sequence was obtained from the parental plasmid by digestion with *Sal*I and *Xba*I, size fractionation on an agarose gel, and purification from the agarose gel using GeneCleanII. The synthetic Env coding fragment was ligated into the SINBVE vector that had been digested with *Xho*I and *Xba*I. The resulting vector was purified using GeneCleanII and designated SINBVE. Vector RNA replicons may be transcribed *in vitro* (Dubensky et al., *supra*) from SINBVE and used directly for transfection of cells. Alternatively, the replicons may be packaged into recombinant vector particles by co-transfection with defective helper RNAs or using an alphavirus packaging cell line and administered as described above for Gag.

The DNA-based Sindbis virus vector pDCMVSIN-beta-gal (Dubensky, et al., *J Virol.* 70:508-519, 1996) was digested with *Sal*I and *Xba*I, to remove the beta-galactosidase gene insert, and purified using GeneCleanII after agarose gel size fractionation. The HIV Env gene was inserted into the the pDCMVSIN-beta-gal by digestion of SINBVE with *Xba*I and *Xho*I, purification using GeneCleanII of the Env-containing fragment after agarose gel size fractionation, and ligation. The resulting construct was designated pDSIN-Env, and may be used directly for *in vivo* administration or formulated using any of the methods described herein.

BHK and 293 cells were transfected with recombinant Sindbis vector RNA and DNA, respectively. The supernatants and cell lysates were tested by capture ELISA.

BHK cells were transfected by electroporation with recombinant Sindbis RNA. The expression of Env (in ng/ml) is presented in Table 23. In the table, the Sindbis RNA containing synthetic Env expression cassettes 5 are indicated and β gal represents a negative control. Supernatants and lysates were collected 24h post transfection.

Table 23

	Construct	Supernatant (Neat) ng/ml	Lysate (1:10 dilution) ng/ml
10	β gal RNA	0	0
	gp140.modUS4	726	7147
	gp140.modSF162	3529	7772
15	gp140.modUS4.delV1/V2	1738	6526
	gp140.modUS4.delV2	960	3023
	gp140.modSF162.delV2	2772	3359

293 cells were transfected using LT-1 mediated 20 transfection (PanVera) with recombinant Sindbis DNA containing synthetic expression cassettes of the present invention and β gal sequences as a negative control. Supernatants and lysates were collected 48h post transfection. The expression of Env (in ng/ml) is 25 presented in Table 24.

Table 24

Construct	Supernatant (Neat) ng/ml	Lysate (1:10 dilution) ng/ml
βgal	0	0
gp140.modSF162.delV2	1977	801
gp140.modSF162	949	746

The results presented in Tables 23 and 24 demonstrated that Env proteins can be efficiently expressed from both DNA and RNA-based Sindbis vector systems using the synthetic Env expression cassettes of the present invention.

Example 14

A. In vivo Immunization with Gag-containing DNA and/or Sindbis particles

CB6F1 mice were immunized intramuscularly at 0 and 4 weeks with plasmid DNA and/or Sindbis vector RNA-containing particles each containing GagMod.SF2 sequences as indicated in Table 25. Animals were challenged with recombinant vaccinia expressing SF2 Gag at 3 weeks post second immunization (at week 7). Spleens were removed from the immunized and challenged animals 5 days later for a standard ⁵¹C release assay for CTL activity. Values shown in Table 25 indicate the results from the spleens of three mice from each group. The boxed values in Table 25 indicate that all groups of mice receiving immunizations with pCMVKm2.GagMod.SF2 DNA and/or SindbisGagMod.SF2 virus particles either alone or in combinations showed antigen-specific CTL activity.

30

Table 25

Cytotoxic T-lymphocyte (CTL) responses in mice immunized with HIV-1 gagmod DNA and Sindbis gagmod virus particles					
		Percent specific lysis of target cells*			
5	Immunization	E:T	SVBALB none	SVBALB p7g	RMA p7g
10	pCMVKm2.GagMod.SF2 DNA a at 0, 4 wks	100:1	5	20	1
		25:1	5	20	<1
		6:1	4	8	<1
15	SindbisGagMod.SF2 virus particles b at 0, 4 weeks	100:1	10	49	<1
		25:1	7	20	<1
		6:1	5	12	<1
20	pCMVKm2.GagMod.SF2 DNA at 0 wks SindbisGagMod.SF2 virus particles at 4 wks	100:1	9	58	<1
		25:1	7	42	2
		6:1	4	13	<1
25	SindbisGagMod.SF2 virus particles at 4 wks	100:1	5	38	<1
		25:1	4	18	<1
	pCMVKm2.GagMod.SF2 DNA at 0 wks	6:1	3	13	1

a 20 µg

b 10⁷ particles

* Challenge with recombinant vaccinia virus expressing HIV-1SF2 Gag at 3 weeks post second immunization (week 7). Spleens taken 5 days later. Ex vivo CTL assay performed by standard ⁵¹Cr release assay. Values seen represent results from 3 pooled mouse spleens per group

B. In vivo Immunization with Env-containing DNA and/or Sindbis particles

Balb/C mice were immunized intramuscularly at 0 and 4 weeks (as shown in the following table) with plasmid DNA and/or Sindbis-virus RNA-containing particles each containing gp120.modUS4 sequences. Treatment regimes and antibody titers are shown in Table 26. Antibody titers were determined by ELISA using gp120 SF2 protein to coat the plates.

Table 26

	Treatment		Bleed 0	Bleed 1 (8 wks)	Bleed 2 (10 wks)	
Animal	1st Immunization	2nd Immunization	1st Imm'n	2nd Imm'n	2 Wks post 2nd	
5	EO 456	25µg 120mod DNA	(None)	8.3	45	309
	EO 457			8.3	254	460
	EO 458			8.3	8.3	93
	EO 459			8.3	43	45
	EO 460			8.3	8.3	274
10	EO 461	25µg 120mod DNA	25µg 120mod DNA	8.3	47	1502
	EO 462			8.3	80	5776
	EO 463			8.3	89	3440
	EO 464			8.3	8.3	3347
	EO 465			8.3	69	1127
15	EO 466	50µg 120mod DNA	(None)	8.3	63	102
	EO 467			8.3	112	662
	EO 468			8.3	94	459
	EO 469			8.3	58	48
	EO 470			8.3	95	355
20	EO 471	50µg 120mod DNA	50µg 120mod DNA	8.3	110	9074
	EO 472			8.3	8.3	4897
	EO 473			8.3	49	4089
	EO 474			8.3	59	5280
	EO 475			8.3	8.3	929
25	EO 476	25µg 120mod DNA	Sindbis/Env	8.3	653	
	EO 477			8.3	87	22675
	EO 478			8.3	76	3869
	EO 479			8.3		1004
	EO 480			8.3	71	7080
30	EO 481	Sindbis/Env	(None)	8.3	8.3	8.3
	EO 482			8.3	8.3	8.3
	EO 483			8.3	78	103
	EO 484			8.3	8.3	32
	EO 485			8.3	76	207
35	EO 486	Sindbis/Env	Sindbis/Env	8.3	8.3	458
	EO 487			8.3	8.3	345
	EO 488			8.3	8.3	331
	EO 489			8.3	103	111
	EO 490			8.3	8.3	5636

40 As can be seen from the data presented above, all of the mice generally demonstrated substantial immunological responses by bleed number 2. For Env, the best results were obtained using either (i) 50 µg of gp120.modUS4 DNA for the first immunization followed by a second

immunization using 50 µg of gp120.modUS4 DNA, or (ii) 25 µg of gp120.modUS4 DNA for the first immunization followed by a second immunization using 10⁷ pfus of Sindbis.

5 The results presented above demonstrate that the Env and Gag proteins of the present invention are effective to induce an immune response using Sindbis vector systems which include the synthetic Env (e.g., gp120.modUS4) or Gag expression cassettes.

10

Example 15

Co-Transfection of Env and Gag as Monocistronic and Bicistronic Constructs

DNA constructs encoding (i) wild-type US4 and SF162 Env polypeptides, (ii) synthetic US4 and SF162 Env polypeptides (gp160.modUS4, gp160.modUS4.delV1/V2, gp160.modSF162, and gp120.modSF162.delV2), and (iii) SF2gag polypeptide (i.e., the Gag coding sequences obtained from the SF2 variant or optimized sequences corresponding to the gagSF2 -- gag.modSF2) were prepared. These monocistronic constructs were co-transfected into 293T cells in a transient transfection protocol using the following combinations: gp160.modUS4; gp160.modUS4 and gag.modSF2; gp160.modUS4.delV1/V2; gp160.modUS4.delV1/V2 and gag.modSF2; gp160.modSF162 and gag.modSF2; gp120.modSF162.delV2 and gag.modSF2; and gag.modSF2 alone.

Further several bicistronic constructs were made where the coding sequences for Env and Gag were under the control of a single CMV promoter and, between the two coding sequences, an IRES (internal ribosome entry site (EMCV IRES); Kozak, M., Critical Reviews in Biochemistry and Molecular Biology 27(45):385-402, 1992; Witherell, G.W., et al., Virology 214:660-663, 1995) sequence was

introduced after the Env coding sequence and before the Gag coding sequence. Those constructs were as follows: gp160.modUS4.gag.modSF2, SEQ ID NO:73 (Figure 61); gp160.modUSF162.gag.modSF2, SEQ ID NO:74 (Figure 62);
5 gp160.modUS4.delV1/V2.gag.modSF2, SEQ ID NO:75 (Figure 63); and gp160.modSF162.delV2.gag.modSF2, SEQ ID NO:76 (Figure 64).

Supernatants from cell culture were filtered through 0.45 µm filters then ultracentrifuged for 2 hours at
10 24,000 rpm (140,000Xg) in an SW28 rotor through a 20% sucrose cushion. The pelleted materials were suspended and layered on a 20-60% sucrose gradient and spun for 2 hours at 40,000 rpm (285,000Xg) in an SW41Ti rotor. Gradients were fractionated into 1.0 ml samples. A total
15 of 9-10 fractions were typically collected from each DNA transfection group.

The fractions were tested for the presence of the Env and Gag proteins (across all fractions). These results demonstrated that the appropriate proteins were
20 expressed in the transfected cells (i.e., if an Env coding sequence was present the corresponding Env protein was detected; if a Gag coding sequence was present the corresponding Gag protein was detected).

Virus like particles (VLPs) were known to be present through a selected range of sucrose densities. Chimeric virus like particles (VLPs) were formed using all the tested combinations of constructs containing both Env and Gag. Significantly more protein was found in the supernatant collected from the cells transfected with
25 "gp160.modUS4.delV1/V2 and gag.modSF2" than in all the other supernatants.

Western blot analysis was also performed on sucrose gradient fractions from each transfection. The results show that bicistronic plasmids gave lower amounts of VLPs

than the amounts obtained using co-transfection with monocistronic plasmids.

In order to verify the production of chimeric VLPs by these cell lines the following electron microscopic analysis was carried out.

293T cells were plated at a density of 60-70% confluence in 100 mm dishes on the day before transfection. The cells were transfected with 10 µg of DNA in transfection reagent LT1 (Panvera Corporation, 545 Science Dr., Madison, WI). The cells were incubated overnight in reduced serum medium (opti-MEM, Gibco-BRL, Gaithersburg, MD). The medium was replaced with 10% fetal calf serum, 2% glutamine in IMDM in the morning of the next day and the cells were incubated for 65 hours. Supernatants and lysates were collected for analysis as described above (see Example 2).

The fixed, transfected 293T cells and purified ENV-GAG VLPs were analyzed by electron microscopy. The cells were fixed as follows. Cell monolayers were washed twice with PBS and fixed with 2% glutaraldehyde. For purified VLPs, gradient peak fractions were collected and concentrated by ultracentrifugation (24,000 rpm) for 2 hours. Electron microscopic analysis was performed by Prof. T.S. Benedict Yen (Veterans Affairs, Medical Center, San Francisco, CA).

Electron microscopy was carried out using a transmission electron microscope (Zeiss 10c). The cells were pre-stained with osmium and stained with uranium acetate and lead citrate. Immunostaining was performed to visualize envelope on the VLP. The magnification was 100,000X.

Figures 65A-65F show micrographs of 293T cells transfected with the following constructs: Figure 65A, gag.modSF2; Figure 65B, gp160.modUS4; Figure 65C,

gp160.modUS4.delV1/V2.gag.modSF2 (bicistronic Env and Gag); Figures 65D and 65E, gp160.modUS4.delV1/V2 and gag.modSF2; and Figure 65F, gp120.modSF162.delV2 and gag.modSF2. In the figures, free and budding immature virus-like-particles (VLPs) of the expected size (approximately 100 nm) decorated with the Env protein were seen. In sum, gp160 polypeptides incorporate into Gag VLPs when constructs were co-transfected into cells. The efficiency of incorporation is 2-3 fold higher when constructs encoding V-deleted Env polypeptides from high synthetic expression cassettes are used.

Although preferred embodiments of the subject invention have been described in some detail, it is understood that obvious variations can be made without departing from the spirit and the scope of the invention as defined by the appended claims.

What Is Claimed Is:

1. An expression cassette, comprising
5 a polynucleotide sequence encoding a polypeptide including an HIV Gag polypeptide, wherein the polynucleotide sequence encoding said Gag polypeptide comprises a sequence having at least 90% sequence identity to the sequence presented as SEQ ID NO:20.

10 2. The expression cassette of claim 1, comprising, a polynucleotide sequence encoding a polypeptide including an HIV Gag polypeptide, wherein the polynucleotide sequence encoding said Gag polypeptide
15 comprises a sequence having at least 90% sequence identity to the sequence presented as SEQ ID NO:9.

20 3. The expression cassette of claim 1, wherein said polynucleotide sequence encoding a polypeptide including an HIV Gag polypeptide comprises a sequence having at least 90% sequence identity to the sequence presented as SEQ ID NO:4.

25 4. The expression cassette of claim 1, wherein said polynucleotide sequence further includes a polynucleotide sequence encoding an HIV protease polypeptide.

30 5. The expression cassette of claim 4, wherein the nucleotide sequence encoding said polypeptide comprises a sequence having at least 90% sequence identity to a sequence selected from the group consisting of: SEQ ID NO:5, SEQ ID NO:78, and SEQ ID NO:79.

6. The expression cassette of claim 1, wherein said

polynucleotide sequence further includes a polynucleotide sequence encoding an HIV *reverse transcriptase* polypeptide.

5 7. The expression cassette of claim 6, wherein the nucleotide sequence encoding said polypeptide comprises a sequence having at least 90% sequence identity to a sequence selected from the group consisting of: SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, and SEQ
10 ID NO:84.

8. The expression cassette of claim 1, wherein said polynucleotide sequence further includes a polynucleotide sequence encoding an HIV *tat* polypeptide.

15 9. The expression cassette of claim 8, wherein the nucleotide sequence encoding said polypeptide comprises a sequence having at least 90% sequence identity to a sequence selected from the group consisting of: SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88 and SEQ ID NO:89.
20

10. The expression cassette of claim 1, wherein said polynucleotide sequence further includes a polynucleotide sequence encoding an HIV *polymerase* polypeptide, wherein the nucleotide sequence encoding said polypeptide comprises a sequence having at least 90% sequence identity to the sequence presented as SEQ ID NO:6.
25

30 11. The expression cassette of claim 1, wherein said polynucleotide sequence further includes a polynucleotide sequence encoding an HIV *polymerase* polypeptide, wherein (i) the nucleotide sequence encoding said polypeptide comprises a sequence having at least 90%

sequence identity to the sequence presented as SEQ ID NO:4, and (ii) wherein the sequence is modified by deletions of coding regions corresponding to reverse transcriptase and integrase.

5

12. The expression cassette of claim 11, wherein said polynucleotide sequence preserves T-helper cell and CTL epitopes.

10

13. The expression cassette of claim 1, wherein said polynucleotide sequence further includes a polynucleotide sequence encoding an HCV core polypeptide, wherein the nucleotide sequence encoding said polypeptide comprises a sequence having at least 90% sequence identity to the sequence presented as SEQ ID NO:7.

15

14. An expression cassette, comprising a polynucleotide sequence encoding a polypeptide including an HIV Env polypeptide, wherein the polynucleotide sequence encoding said Env polypeptide comprises a sequence having at least 90% sequence identity to SEQ ID NO:71 (Figure 58) or SEQ ID NO:72 (Figure 59).

20

15. The expression cassette of claim 14, wherein said Env polypeptide includes sequences flanking a V1 region but has a deletion in the V1 region itself.

25

16. The expression cassette of claim 15, wherein the polynucleotide sequence encoding the polypeptide comprises the sequence presented as SEQ ID NO:65 (Figure 52 gp160.modUS4.delV1).

30

17. The expression cassette of claim 14, wherein

said Env polypeptide includes sequences flanking a V2 region but has a deletion in the V2 region itself.

18. The expression cassette of claim 17, wherein
5 the polynucleotide sequence encoding the polypeptide is selected from the group consisting of: SEQ ID NO:60 (Figure 47); and SEQ ID NO:66 (Figure 53).

19. The expression cassette of claim 17, wherein
10 the polynucleotide sequence encoding the polypeptide is selected from the group consisting of: SEQ ID NO:34 (Figure 20); SEQ ID NO:37 (Figure 24); SEQ ID NO:40 (Figure 27); SEQ ID NO:43 (Figure 30); SEQ ID NO:46 (Figure 33); SEQ ID NO:49 (Figure 36); and SEQ ID NO:76 (Figure 64).

20. The expression cassette of claim 14, wherein said Env polypeptide includes sequences flanking a V1/V2 region but has a deletion in the V1/V2 region itself.

21. The expression cassette of claim 20, wherein
the polynucleotide sequence encoding the polypeptide is selected from the group consisting of: SEQ ID NO:59 (Figure 46); SEQ ID NO:61 (Figure 48); SEQ ID NO:67 (Figure 54); and SEQ ID NO:75 (Figure 63).

22. The expression cassette of claim 20, wherein
the polynucleotide sequence encoding the polypeptide is selected from the group consisting of: SEQ ID NO:35 (Figure 21); SEQ ID NO:38 (Figure 25); SEQ ID NO:41 (Figure 28); SEQ ID NO:44 (Figure 31); SEQ ID NO:47 (Figure 34) and SEQ ID NO:50 (Figure 37).

23. The expression cassette of claim 14, wherein said Env polypeptide has a mutated cleavage site that prevents the cleavage of a gp140 polypeptide into a gp120 polypeptide and a gp41 polypeptide.

5

24. The expression cassette of claim 23, wherein the polynucleotide sequence encoding the polypeptide is selected from the group consisting of: SEQ ID NO:57 (Figure 44); SEQ ID NO:61 (Figure 48); and SEQ ID NO:63 (Figure 50).

10

25. The expression cassette of claim 23, wherein the polynucleotide sequence encoding the polypeptide is selected from the group consisting of: SEQ ID NO:39 (Figure 26); SEQ ID NO:40 (Figure 27); SEQ ID NO:41 (Figure 28); SEQ ID NO:42 (Figure 29); SEQ ID NO:43 (Figure 30); SEQ ID NO:44 (Figure 31); SEQ ID NO:45 (Figure 32); SEQ ID NO:46 (Figure 33); and SEQ ID NO:47 (Figure 34).

20

26. The expression cassette of claim 14, wherein said Env polypeptide includes a gp160 Env polypeptide or a polypeptide derived from a gp160 Env polypeptide.

25

27. The expression cassette of claim 26, wherein the polynucleotide sequence encoding the polypeptide is selected from the group consisting of: SEQ ID NO:64 (Figure 51); SEQ ID NO:65 (Figure 52); SEQ ID NO:66 (Figure 53); SEQ ID NO:67 (Figure 54); SEQ ID NO:68 (Figure 55); SEQ ID NO:75 (Figure 63); and SEQ ID NO:73 (Figure 61).

30

28. The expression cassette of claim 26, wherein

the polynucleotide sequence encoding the polypeptide is selected from the group consisting of: SEQ ID NO:48 (Figure 35); SEQ ID NO:49 (Figure 36); SEQ ID NO:50 (Figure 37); SEQ ID NO:76 (Figure 64); and SEQ ID NO:74 (Figure 62).

29. The expression cassette of claim 14, wherein said Env polypeptide includes a gp140 Env polypeptide or a polypeptide derived from a gp140 Env polypeptide.

10

30. The expression cassette of claim 29, wherein the polynucleotide sequence encoding the polypeptide is selected from the group consisting of: SEQ ID NO:56 (Figure 43); SEQ ID NO:57 (Figure 44); SEQ ID NO:58 (Figure 45); SEQ ID NO:59 (Figure 46); SEQ ID NO:60 (Figure 47); SEQ ID NO:61 (Figure 48); SEQ ID NO:62 (Figure 49); and SEQ ID NO:63 (Figure 50).

20

31. The expression cassette of claim 29, wherein the polynucleotide sequence encoding the polypeptide is selected from the group consisting of: SEQ ID NO:36 (Figure 23); SEQ ID NO:37 (Figure 24); SEQ ID NO:38 (Figure 25); SEQ ID NO:39 (Figure 26); SEQ ID NO:40 (Figure 27); SEQ ID NO:41 (Figure 28); SEQ ID NO:42 (Figure 29); SEQ ID NO:43 (Figure 30); SEQ ID NO:44 (Figure 31); SEQ ID NO:45 (Figure 32); SEQ ID NO:46 (Figure 33); and SEQ ID NO:47 (Figure 34).

30

32. The expression cassette of claim 14, wherein said Env polypeptide includes a gp120 Env polypeptide or a polypeptide derived from a gp120 Env polypeptide.

33. The expression cassette of claim 32, wherein
the polynucleotide sequence encoding the polypeptide is
selected from the group consisting of: SEQ ID NO:54
(Figure 41); and SEQ ID NO:55 (Figure 42).

5

34. The expression cassette of claim 32, wherein
the polynucleotide sequence encoding the polypeptide is
selected from the group consisting of: SEQ ID NO:33
(Figure 19); SEQ ID NO:34 (Figure 20); and SEQ ID NO:35
10 (Figure 21).

35. The expression cassette of claim 14, wherein
the polynucleotide sequence encoding the polypeptide is
selected from the group consisting of: SEQ ID NO:55
15 (Figure 42); SEQ ID NO:62 (Figure 49); SEQ ID NO:63
(Figure 50); and SEQ ID NO:68 (Figure 55).

36. A recombinant expression system for use in a
selected host cell, comprising, an expression cassette of
20 any of claims 1-35, and wherein said polynucleotide
sequence is operably linked to control elements
compatible with expression in the selected host cell.

37. The recombinant expression system of claim 36,
25 wherein said control elements are selected from the group
consisting of a transcription promoter, a transcription
enhancer element, a transcription termination signal,
polyadenylation sequences, sequences for optimization of
initiation of translation, and translation termination
30 sequences.

38. The recombinant expression system of claim 36,
wherein said transcription promoter is selected from the

group consisting of CMV, CMV+intron A, SV40, RSV, HIV-Ltr, MMLV-ltr, and metallothionein.

39. A cell comprising an expression cassette of any
5 claims 1-35, and wherein said polynucleotide sequence
is operably linked to control elements compatible with
expression in the selected cell.

40. The cell of claim 39, wherein the cell is a
10 mammalian cell.

41. The cell of claim 40, wherein the cell is
selected from the group consisting of BHK, VERO, HT1080,
293, RD, COS-7, and CHO cells.
15

42. The cell of claim 41, wherein said cell is a
CHO cell.

43. The cell of claim 39, wherein the cell is an
20 insect cell.

44. The cell of claim 43, wherein the cell is
either *Trichoplusia ni* (Tn5) or Sf9 insect cells.

25 45. The cell of claim 39, wherein the cell is a
bacterial cell.

46. The cell of claim 39, wherein the cell is a
yeast cell.
30

47. The cell of claim 39, wherein the cell is a
plant cell.

48. The cell of claim 39, wherein the cell is an antigen presenting cell.

49. The cell of claim 48, wherein the lymphoid cell
5 is selected from the group consisting of macrophage,
monocytes, dendritic cells, B-cells, T-cells, stem cells,
and progenitor cells thereof.

50. The cell of claim 39, wherein the cell is a
10 primary cell.

51. The cell of claim 39, wherein the cell is an immortalized cell.

15 52. The cell of claim 39, wherein the cell is a tumor-derived cell.

53. A method for producing a polypeptide including
HIV Gag polypeptide sequences, said method comprising,
20 incubating the cells of claim 39, under conditions
for producing said polypeptide.

54. A method for producing virus-like particles
(VLPs), comprising,
25 incubating the cells of claim 39, under conditions
for producing said VLPs.

55. A method for producing a composition of virus-like particles (VLPs), comprising,
30 (a) incubating the cells of claim 39, under conditions for producing said VLPs; and
(b) substantially purifying said VLPs to produce a composition of VLPs.

56. A cell line useful for packaging lentivirus vectors, comprising

suitable host cells that have been transfected with an expression vector containing an expression cassette of 5 any of claims 1-35, and wherein said polynucleotide sequence is operably linked to control elements compatible with expression in the host cell.

57. The cell line of claim 56, wherein suitable 10 host cells have been transfected with an expression vector containing the expression cassette of any of claims 1-13.

58. The cell line of claim 56, wherein suitable 15 host cells have been transfected with an expression vector containing the expression cassette of claim 1-3.

59. The cell line of claim 56, wherein suitable 20 host cells have been transfected with an expression vector containing the expression cassette of claim 14-35.

60. A gene delivery vector for use in a Mammalian subject, comprising

a suitable gene delivery vector for use in said 25 subject, wherein the vector comprises an expression cassette of any of claims 1-35, and wherein said polynucleotide sequence is operably linked to control elements compatible with expression in the subject.

30 61. A method of DNA immunization of a subject, comprising,

introducing a gene delivery vector of claim 60 into said subject under conditions that are compatible with expression of said expression cassette in said subject.

62. The method of claim 61, wherein said gene delivery vector is a nonviral vector.

5 63. The method of claim 61, wherein said vector is delivered using a particulate carrier.

10 64. The method of claim 63, wherein said vector is coated on a gold or tungsten particle and said coated particle is delivered to said subject using a gene gun.

65. The method of claim 63, wherein said vector is encapsulated in a liposome preparation.

15 66. The method of claim 61, wherein said vector is a viral vector.

67. The method of claim 66, wherein said viral vector is a retroviral vector.

20 68. The method of claim 67, wherein said viral vector is a lentiviral vector.

69. The method of claim 61, wherein said subject is
25 a mammal.

70. The method of claim 69, wherein said mammal is a human.

30 71. A method of generating an immune response in a subject, comprising

transfected cells of said subject a gene delivery vector of claim 60, under conditions that permit the expression of said polynucleotide and production of said

polypeptide, thereby eliciting an immunological response to said polypeptide.

5 72. The method of claim 71, wherein said vector is a nonviral vector.

73. The method of claim 72, wherein said vector is delivered using a particulate carrier.

10 74. The method of claim 73, wherein said vector is coated on a gold or tungsten particle and said coated particle is delivered to said vertebrate cell using a gene gun.

15 75. The method of claim 73, wherein said vector is encapsulated in a liposome preparation.

76. The method of claim 71, wherein said vector is a viral vector.

20 77. The method of claim 76, wherein said viral vector is a retroviral vector.

25 78. The method of claim 77, wherein said viral vector is a lentiviral vector.

79. The method of claim 71, wherein said subject is a mammal.

30 80. The method of claim 79, wherein said mammal is a human.

81. The method of claim 71, wherein said transfecting is done *ex vivo* and said transfected cells

are reintroduced into said subject.

82. The method of claim 71, wherein said transfecting is done *in vivo* in said subject.

5

83. The method of claim 71, where said immune response is a humoral immune response.

10 84. The method of claim 71, where said immune response is a cellular immune response.

15 85. A gene delivery vector comprising an alphavirus vector construct, wherein said alphavirus construct comprises an expression cassette according to any one of claims 1 through 35.

20 86. The gene delivery vector of claim 85, wherein the alphavirus vector construct is a cDNA vector construct.

87. The gene delivery vector of claim 85, wherein the alphavirus comprises a recombinant alphavirus particle preparation.

25 88. The gene delivery vector of claim 85, wherein the vector comprises a eukaryotic layered vector initiation system.

30 89. A method of stimulating an immune response in a subject comprising administering the gene delivery vector of any one of claims 85 through 88 in an amount effective to stimulate an immune response in said subject.

90. The method of claim 89, wherein the gene

delivery vector is administered intramuscularly, intramucosally, intranasally, subcutaneously, intradermally, transdermally, intravaginally, intrarectally, orally or intravenously.

orig.gagSF2

ATGGGTGCGAGAGCCTCGGTATTAAGCGGGGGAGAATTAGATAAAATGGGAAAAAAATCGGTTAAGGCCAGGGGGAAAG

Inact. 1
 AAAAAATAAGTAAAACATATGTATGGCAAGCAGGGAGCTAGAACGATTGCAGTCATCCTGGCTGTTAGAA
 G C C G C C

Inact. 2
 ACATCAGAAGGCTGCAGACAAATATTGGACAGCTACAGCCATCCCTCAGACAGGATCAAGAGAACTTAGATCATTA
 G G C C

Inact. 3
 TATAATACAGTAGCAACCCCTCTATTGTGTACATCAAAGGATAGATGTAAAAGACACCAAGGAAGCTTAGAGAAAGATA
 C GC C C G

Inact. 4
 GAGGAAGAGCAAAACAAAAGTAAGAAAAGGCACAGCAAGCAGCAGCTGCAGCTGGCACAGGAAACAGCAGCCAGGTC
 GTCC G C G

AGCCAAAATTACCCCTATAGTCAGAACCTACAGGGCAAATGGTACATCAGGCCATATCACCTAGAACTTTAAATGCA
 TGGTAAAAGTAGTAGAAGAAAAGGCTTCAGCCCAGAAGTAATACCCATGTTTCAGCATTATCAGAAGGAGCCACC

Inact. 5
 CCACAGATTTAACACCATGCTAACACAGTGCCCCGACATCAAGCAGCCATGCAAATGTTAAAAGAGACTATCAAT
 G CC G G T G C

GAGGAAGCTGCAGAATGGGATAGAGTCATCCAGTCAGGCATGCAGGGCTATTGCACCAGGCCAAATGAGAGAACCAAGG

GGAAGTGACATAGCAGGAACACTAGTACCCCTCAGGAACAAATAGGATGGATGACAATAATCCACCTATCCCAGTA

Inact. 6
 GGAGAAATCTATAAAAGATGGATAATCTGGATTAAATAAAATAGTAAGHATGTATAGCCCTACCAGCATTCTGGAC
 G C G G G

ATAAGACAAGGACCAAGGAACCCCTTAGAGATTATGTAGACCGGTTCTATAAAACTCTAAGAGGGAACAAAGCTTC
 T

CAGGATGTTAAAATGGATGACAGAACCTTGTGGTCCAAAATGCAAACCCAGATTGTAAGAGACTATTTAAAAGCA
 C CC G G T

TTGGGACCCAGCAGCTACACTAGAAGAAATGATGACAGCATGTCAGGGAGTGGGGGGACCCGGCCATAAGCAAGAGTT
 C C C

TTGGCTGAAGCCATGAGCCAAGTAACAAATCCAGCTAACATAATGATGCAGAGAGGCAATTAGGAACCAAGAAAG

ACTGTTAAGTGTTCATTGTGGAAAGAAGGGCACATAGCCAAAATGCAGGGCCCTAGGAAAAGGGCTGTTGG

AGATGTGGAAGGAAAGGACACCAATGAAAGATTGCACTGAGAGACAGGCTAATTTTTAGGAAAGATCTGGCTTCC

TACAAGGGAAAGGCCAGGGATTTCAGAGCAGACCAGAGCCAACAGCCCCACCAGAACAGAGACTTCAGGTTGG

GAGGAGAAAACAACCTCCCTCTCAGAACAGCAGGCCATAGACAAGGAACGTATCCTTAACTTCCCTCAGATCACTC

TTTGGCAACGACCCCTCGTCACAATAA

FIG. 1

native HIV-1SF2 gag-protease 2 / 131

→ From here codon optimization + inactivation (GP1) and (GP2)

ATGGGTGCGAGAGCGTCGGTATTAAGCGGGGAGAATTAGATAATGGAAAAAAATCGTTAAGGCCAGGGGAAAG

Inact.1
AAAAAAATATAAGTTAAAACATATAGTATGGCAAGCAGGGAGCTAGAACGATTGCAGTCATCCCTGGCTGTTAGAA
G G C C G C C

Inact.2
ACATCAGAAGGCTGCAGACAAATATTGGACAGCTACAGCCATCCCTCAGACAGGATCAGAAGAACCTAGATCATTAA
G G C C

Inact.2
TATAATAAGTAGCAACCCTCTATTGTGTACATCAAAGGGATAGATGTAAGAACACCAAGGAAGCTTAGAGAAAGATA
C C G C C C G

Inact.4
GAGGAAGAGCAAAACAAAGTAAGAAAAGGACAGCAAGCAGCAGCTGCAGCTGGCACAGGAAACAGCAGCCAGGT
GTCC G C G

AGCCAAAATTACCTATAGTCAGAACCTACAGGGCAAATGGTACATCAGGCCATATCACCTAGAACCTAAATGCA
TGGGTAAAAGTAGTAGAAGAAAAGGCTTCAGCCCAGAAGTAATACCCATGTTTCAGCATTATCAGAAGGAGCCACC

Inact.5
CCACAGAGATTTAACACCATGCTAACACACAGTGGGGGACATCAAGCAGCCATGCAAATGTTAAAGAGACTATCAAT
G CC G G T G

GAGGAAGCTGCAGAATGGGATAGAGTCATCCAGTGCATGCAGGGCTATTGCACCAGGCCAAATGAGAGAACCAAGG
GGAAGTGACATAGCAGGAACACTAGTACCCCTCAGGAACAAATAGGATGGATGACAATAATCCACCTATCCCAGTA

Inact.6
GGAGAAATCTATAAAAGATGGATAATCCTGGATTAAATAAAATAGTAAGAGTGTATAGCCCTACAGCATTCTGGAC
G C G G C G G

ATAAGACAAGGACCAAGGAACCCCTTAGAGATTATGTAGACCGGTTCTATAAAACTCTAAGAGGAAACAAGCTTC
CAGGATGTAAAAAATTGGATGACAGAACCTTGTGGTCCAAATGCAAACCCAGATTGTAAGACTTTTAAAGCA
C CC G G T

Inact.7
TTGGGACCAGCAGCTACACTAGAAGAAATGATGACAGCATGTCAGGGAGTGGGGGACCCGGCCATAAGCAAGAGTT
C C C G

Inact.8
TTGGGTGAAGCCATGAGCAAGTAACAAATCCAGCTACATAATGATGCAGAGAGGCAATTAGGAAACAAAGAAAG
C G G G G G C

Inact.9
ACTGTTAAGTGTTCATTGTGGCAAAGAAGGGCACATTAGCCAAAATTGCAAGGGCCCTAGGAAGAAGGGCTGTTGG
C C C C G C C C G

AGATGTGGAAGGGAGGCACCAATGAAAGATTGCACTGAGAGACAGGCTAATTAGGAAAGATCTGGCTTCC
→ From here no changes to native sequence (GP1) and (GP2)

TACAAGGGAAGGCCAGGGAAATTCTTCAGAGCAGACCAGGCCAACAGCCCCACCAGAACAGAGAGCTTCAGGTTGGG

GAGGAGAAAACAACCTCCCTCAGAAGCAGGAGCCGATAGACAAGGAACGTATCCTTAACCTCCCTCAGATCACTC
From here codon optimization + inactivation (GP1)

TTTGGCAACGACCCCTCGTCACATAAGGATAGGGGGCAACTAAAGGAAGCTCTATTAGATACAGGAGCAGATGATA
G C C G G G C G G

Inact.11 or only inactivation (GP2)
CACTATTAGAAGAAATGAAATTGCCAGGAAATGGAAACCAAAATGATAGGGCAATTGGAGGTTTATCAAAGTAA
G C G C C G G

Inact.12
GACAGTACGATCAGATAACCTGTAGAAATCTGTGGACATAAGCTATAGGTACAGTATTAGTAGGACCTACACCTGTCA
G C

Inact.13
ACATAATTGGAAGAAATCTGTGAOTCAGATTGGTTACTTTAAATTCCCTTAACTAGTGGCTATTGAAACTGTACCAAG
C C C C G C C C G

Inact.14
TAAAATTAAGCCAGGAATGGATGGCCAAAAGTAAAGCAATGGCATTGTAA
G G G G G C C G G

FIG. 2

(A)

(B)

FIG. 3A

FIG. 3B

4 / 131

FIG. 4

FIG. 5

5 / 131

FIG. 6

6 / 131

GagPol . ModSF		10	20	30	40	50
GagProt . ModS	1 ATGGCGGCC	GGCCAGCGT	GCTGAGCGGC	GGCGAGCTGG	ACAGTGGGA	50
GagProt . ModS	1 ATGGCGGCC	GGCCAGCGT	GCTGAGCGGC	GGCGAGCTGG	ACAGTGGGA	50
Gag . ModSF2	1 ATGGCGGCC	GGCCAGCGT	GCTGAGCGGC	GGCGAGCTGG	ACAGTGGGA	50
Gag . ModSF2	60	70	80	90	100	
GagPol . ModSF	51 GAAGATCCGC	CTGCCGCCG	GCGCAAGAA	GAAGTACAAG	CTGAAGCACA	100
GagProt . ModS	51 GAAGATCCGC	CTGCCGCCG	GCGCAAGAA	GAAGTACAAG	CTGAAGCACA	100
Gag . ModSF2	51 GAAGATCCGC	CTGCCGCCG	GCGCAAGAA	GAAGTACAAG	CTGAAGCACA	100
Gag . ModSF2	110	120	130	140	150	
GagPol . ModSF	101 TCGTGTGGGC	CAGCCGGAG	CTGAGCGCT	TGCGCGTGA	CCCCGGCCTG	150
GagProt . ModS	101 TCGTGTGGGC	CAGCCGGAG	CTGAGCGCT	TGCGCGTGA	CCCCGGCCTG	150
Gag . ModSF2	101 TCGTGTGGGC	CAGCCGGAG	CTGAGCGCT	TGCGCGTGA	CCCCGGCCTG	150
Gag . ModSF2	160	170	180	190	200	
GagPol . ModSF	151 CTGGAGACCA	GCGAGGGCTG	CCGCCAGATC	CTGGCGAAC	TGAGGCCAG	200
GagProt . ModS	151 CTGGAGACCA	GCGAGGGCTG	CCGCCAGATC	CTGGCGAAC	TGAGGCCAG	200
Gag . ModSF2	151 CTGGAGACCA	GCGAGGGCTG	CCGCCAGATC	CTGGCGAAC	TGAGGCCAG	200
Gag . ModSF2	210	220	230	240	250	
GagPol . ModSF	201 CCTGGAGACC	GGCAGGGAGG	AGCTGGCGAG	CCTGTACAAC	ACCGTGGCCA	250
GagProt . ModS	201 CCTGGAGACC	GGCAGGGAGG	AGCTGGCGAG	CCTGTACAAC	ACCGTGGCCA	250
Gag . ModSF2	201 CCTGGAGACC	GGCAGGGAGG	AGCTGGCGAG	CCTGTACAAC	ACCGTGGCCA	250
Gag . ModSF2	260	270	280	290	300	
GagPol . ModSF	251 CCCCTGTACTG	CCTGGCACCG	CGCATCGACG	TCAAGGACAC	CAAGGAGGCC	300
GagProt . ModS	251 CCCCTGTACTG	CCTGGCACCG	CGCATCGACG	TCAAGGACAC	CAAGGAGGCC	300
Gag . ModSF2	251 CCCCTGTACTG	CCTGGCACCG	CGCATCGACG	TCAAGGACAC	CAAGGAGGCC	300
Gag . ModSF2	310	320	330	340	350	
GagPol . ModSF	301 CTGGAGAAGA	TCGAGGGAGA	GCAGAACAAAG	TCCAAGRAGA	AGGCCAGCA	350
GagProt . ModS	301 CTGGAGAAGA	TCGAGGGAGA	GCAGAACAAAG	TCCAAGRAGA	AGGCCAGCA	350
Gag . ModSF2	301 CTGGAGAAGA	TCGAGGGAGA	GCAGAACAAAG	TCCAAGRAGA	AGGCCAGCA	350
Gag . ModSF2	360	370	380	390	400	
GagPol . ModSF	351 GGCGCGCGCC	GGCGCGCGCC	CCGGCAACAG	CAGCCAGGTG	AGCCAGAACT	400
GagProt . ModS	351 GGCGCGCGCC	GGCGCGCGCC	CCGGCAACAG	CAGCCAGGTG	AGCCAGAACT	400
Gag . ModSF2	351 GGCGCGCGCC	GGCGCGCGCC	CCGGCAACAG	CAGCCAGGTG	AGCCAGAACT	400
Gag . ModSF2	410	420	430	440	450	
GagPol . ModSF	401 ACCCCATCGT	GCAGAACCTG	CAGGGCCAGA	TGGTGCACCA	GGCCATCAGC	450
GagProt . ModS	401 ACCCCATCGT	GCAGAACCTG	CAGGGCCAGA	TGGTGCACCA	GGCCATCAGC	450
Gag . ModSF2	401 ACCCCATCGT	GCAGAACCTG	CAGGGCCAGA	TGGTGCACCA	GGCCATCAGC	450

FIG. 7A

7 / 131

GagPol . ModSF	451	CCCCGCACCC	TGAAACGGCCTG	GCTGAAGGTG	TGGAGGAGA	AGGCCTTCAG	500
GagProt . ModS	451	CCCCGCACCC	TGAAACGGCCTG	GTTGAAGGTG	TGGAGGAGA	AGGCCTTCAG	500
Gag . ModSF2	451	CCCCGCACCC	TGAAACGGCCTG	GTTGAAGGTG	TGGAGGAGA	AGGCCTTCAG	500
GagPol . ModSF	501	CCCCGGAGGT	ATCCCCATGT	TCAGGGCCCT	GAGCGGGG	GCCACCCCCC	550
GagProt . ModS	501	CCCCGGAGGT	ATCCCCATGT	TCAGGGCCCT	GAGCGGGG	GCCACCCCCC	550
Gag . ModSF2	501	CCCCGGAGGT	ATCCCCATGT	TCAGGGCCCT	GAGCGGGG	GCCACCCCCC	550
GagPol . ModSF	551	AGGACCTGAA	CACGATGTTG	AACACCGTGG	GCGGCCACCA	GGCGCCCATG	600
GagProt . ModS	551	AGGACCTGAA	CACGATGTTG	AACACCGTGG	GCGGCCACCA	GGCGCCCATG	600
Gag . ModSF2	551	AGGACCTGAA	CACGATGTTG	AACACCGTGG	GCGGCCACCA	GGCGCCCATG	600
GagPol . ModSF	601	CAGATGCTGA	AGGAGACAT	CAACGAGGAG	GCGGCCGAGT	GGGACCCGGT	650
GagProt . ModS	601	CAGATGCTGA	AGGAGACAT	CAACGAGGAG	GCGGCCGAGT	GGGACCCGGT	650
Gag . ModSF2	601	CAGATGCTGA	AGGAGACAT	CAACGAGGAG	GCGGCCGAGT	GGGACCCGGT	650
GagPol . ModSF	651	GCACCCCGTG	CACGCCGGCC	CCATCGCCCC	CGGCCAGATG	CGCGAGCCCC	700
GagProt . ModS	651	GCACCCCGTG	CACGCCGGCC	CCATCGCCCC	CGGCCAGATG	CGCGAGCCCC	700
Gag . ModSF2	651	GCACCCCGTG	CACGCCGGCC	CCATCGCCCC	CGGCCAGATG	CGCGAGCCCC	700
GagPol . ModSF	701	GGGGCAGCGA	CATGCCGGG	ACCAACAGCA	CCCTGCAGGA	GCAGATCGGC	750
GagProt . ModS	701	GGGGCAGCGA	CATGCCGGG	ACCAACAGCA	CCCTGCAGGA	GCAGATCGGC	750
Gag . ModSF2	701	GGGGCAGCGA	CATGCCGGG	ACCAACAGCA	CCCTGCAGGA	GCAGATCGGC	750
GagPol . ModSF	751	TGGATGACCA	ACAACCCCC	CATCCCCGTG	GGCGAGATCT	ACAAGCCGGT	800
GagProt . ModS	751	TGGATGACCA	ACAACCCCC	CATCCCCGTG	GGCGAGATCT	ACAAGCCGGT	800
Gag . ModSF2	751	TGGATGACCA	ACAACCCCC	CATCCCCGTG	GGCGAGATCT	ACAAGCCGGT	800
GagPol . ModSF	801	GATCATCCTG	GGCCTGAACA	AGATCGTGG	GATGTACAGC	CCCACCAAGCA	850
GagProt . ModS	801	GATCATCCTG	GGCCTGAACA	AGATCGTGG	GATGTACAGC	CCCACCAAGCA	850
Gag . ModSF2	801	GATCATCCTG	GGCCTGAACA	AGATCGTGG	GATGTACAGC	CCCACCAAGCA	850
GagPol . ModSF	851	TCCTGGACAT	CGGCCAGGGC	CCAAAGGAGC	CTTCGGCGA	CTACGGGGAC	900
GagProt . ModS	851	TCCTGGACAT	CGGCCAGGGC	CCAAAGGAGC	CTTCGGCGA	CTACGGGGAC	900
Gag . ModSF2	851	TCCTGGACAT	CGGCCAGGGC	CCAAAGGAGC	CTTCGGCGA	CTACGGGGAC	900

FIG. 7B

GagPol . ModSF	901	CGCTTCTACA	AGACCCTGCG	CGCTGAGCAG	GCAGCCAGG	ACGTAAAGAA	950
GagProt . ModS	901	CGCTTCTACA	AGACCCTGCG	CGCTGAGCAG	GCAGCCAGG	ACGTAAAGAA	950
Gag . ModSF2	901	CGCTTCTACA	AGACCCTGCG	CGCTGAGCAG	GCAGCCAGG	ACGTAAAGAA	950
GagPol . ModSF	951	CTGGATGACC	GAGACCCCTGC	TGGTGCAGAA	CGCCAACCCC	GACTGCAAGA	1000
GagProt . ModS	951	CTGGATGACC	GAGACCCCTGC	TGGTGCAGAA	CGCCAACCCC	GACTGCAAGA	1000
Gag . ModSF2	951	CTGGATGACC	GAGACCCCTGC	TGGTGCAGAA	CGCCAACCCC	GACTGCAAGA	1000
GagPol . ModSF	1001	CCATCCTGAA	GGCTCTCGGC	CCCGGGGCCA	CCCTGGAGGA	GATGATGACC	1050
GagProt . ModS	1001	CCATCCTGAA	GGCTCTCGGC	CCCGGGGCCA	CCCTGGAGGA	GATGATGACC	1050
Gag . ModSF2	1001	CCATCCTGAA	GGCTCTCGGC	CCCGGGGCCA	CCCTGGAGGA	GATGATGACC	1050
GagPol . ModSF	1051	GCCTGCCAGG	GGGTGGGGGG	CCCCGGGCCAC	AAGGGCCCGG	TGCTGGCCGA	1100
GagProt . ModS	1051	GCCTGCCAGG	GGGTGGGGGG	CCCCGGGCCAC	AAGGGCCCGG	TGCTGGCCGA	1100
Gag . ModSF2	1051	GCCTGCCAGG	GGGTGGGGGG	CCCCGGGCCAC	AAGGGCCCGG	TGCTGGCCGA	1100
GagPol . ModSF	1101	GGCGATGAGC	CAGGTGAGGA	ACCCGGGCAC	CATCATGATG	CAGGGGGGCA	1150
GagProt . ModS	1101	GGCGATGAGC	CAGGTGAGGA	ACCCGGGCAC	CATCATGATG	CAGGGGGGCA	1150
Gag . ModSF2	1101	GGCGATGAGC	CAGGTGAGGA	ACCCGGGCAC	CATCATGATG	CAGGGGGGCA	1150
GagPol . ModSF	1151	ACTTCGCAA	CCAGCGGAAG	ACCGTCAAGT	GCTTCAACTG	CAGGGGGGCA	1200
GagProt . ModS	1151	ACTTCGCAA	CCAGCGGAAG	ACCGTCAAGT	GCTTCAACTG	CAGGGGGGCA	1200
Gag . ModSF2	1151	ACTTCGCAA	CCAGCGGAAG	ACCGTCAAGT	GCTTCAACTG	CAGGGGGGCA	1200
GagPol . ModSF	1201	GGCACACCG	CCAGGAACCTG	CCGGCCCC	CGCAAGAAGG	GCTGCTGGCG	1250
GagProt . ModS	1201	GGCACACCG	CCAGGAACCTG	CCGGCCCC	CGCAAGAAGG	GCTGCTGGCG	1250
Gag . ModSF2	1201	GGCACACCG	CCAGGAACCTG	CCGGCCCC	CGCAAGAAGG	GCTGCTGGCG	1250
GagPol . ModSF	1251	CTGGGGCCGC	GAAGGACACC	AAATGAAAGA	TGGCACTGAG	AGACAGGGCTA	1300
GagProt . ModS	1251	CTGGGGCCGC	GAAGGACACC	AAATGAAAGA	TGGCACTGAG	AGACAGGGCTA	1300
Gag . ModSF2	1251	CTGGGGCCGC	GAAGGACACC	AAATGAAAGA	TGGCACTGAG	AGACAGGGCTA	1300
GagPol . ModSF	1301	ATTTTTTAGG	GAAGATCTGG	CCTTCCTACA	AGGAAGGCC	AGGAATTTT	1350
GagProt . ModS	1301	ATTTTTTAGG	GAAGATCTGG	CCTTCCTACA	AGGAAGGCC	AGGAATTTT	1350
Gag . ModSF2	1301	ACTTCCTGGG	CRAGATCTGG	CCGAGCTACA	AGGGCCCCCC	CGGCRACTTC	1350

FIG. 7C

GagPol.ModSF	1351	CTTCAGAGCA	1360	GACCAGAGCC	1370	CCAGAAGAGA	1380	CGTTCAGGTT	1400
GagProt.ModS	1351	CTTCAGAGCA	1351	GACCAGAGCC	1351	CCAGAAGAGA	1351	GCTTCAGGTT	1400
Gag.ModSF2	1351	CTGCAGAGCC	1410	GCCCCGGAGCC	1420	CACCGCCCCC	1430	GCTTCCGGCTT	1400
GagPol.ModSF	1401	TGGGGAGGAG	1401	AAAAACAACTC	1440	GCAGGAGCCG	1450	ATAGACAAGG	1450
GagProt.ModS	1401	TGGGGAGGAG	1401	AAAAACAACTC	1440	GCAGGAGCCG	1450	ATAGACAAGG	1450
Gag.ModSF2	1401	CGGGGAGGAG	1460	AAGACCCACC	1470	GCAGGAGCC	1480	ATCGACAAGG	1450
GagPol.ModSF	1451	AACTGTATCC	1451	TTTAACCTCC	1490	TCTTTGGCAA	1500	CGACCCCTCG	1500
GagProt.ModS	1451	AACTGTATCC	1451	TTTAACCTCC	1490	TCTTTGGCAA	1500	CGACCCCTCG	1500
Gag.ModSF2	1451	AGCTGTACCC	1510	CCTGACCAAGC	1520	CTGGCCAGCC	1530	CGACCCCCAGC	1500
GagPol.ModSF	1501	TCACAGTAAG	1501	GATCGGGGCC	1540	AGGGCTGCT	1550	CGACACCCGGC	1550
GagProt.ModS	1501	TCACAGTAAG	1501	GATCGGGGCC	1540	AGGGCTGCT	1550	CGACACCCGGC	1550
Gag.ModSF2	1501	AGCAGCTAA.	1560	1570	1580	1550
GagPol.ModSF	1551	GCCGACGACA	1551	CCGTGCTGGA	1590	CTGCCCCGCA	1600	AGTGGAAAGCC	1600
GagProt.ModS	1551	GCCGACGACA	1551	CCGTGCTGGA	1590	CTGCCCCGCA	1600	AGTGGAAAGCC	1600
Gag.ModSF2	1551	1610	1620	1630	1600
GagPol.ModSF	1601	CAAGATGATC	1601	GGCGGGATTCG	1640	CAAGGTGGG	1650	CAGTAGGACCC	1650
GagProt.ModS	1601	CAAGATGATC	1601	GGCGGGATTCG	1640	CAAGGTGGG	1650	CAGTAGGACCC	1650
Gag.ModSF2	1601	1660	1670	1680	1650
GagPol.ModSF	1651	AGATCCCCGT	1651	GGAGATCTGC	1690	CCATGGCAC	1700	CGTGCTGGTG	1700
GagProt.ModS	1651	AGATCCCCGT	1651	GGAGATCTGC	1690	CCATGGCAC	1700	CGTGCTGGTG	1700
Gag.ModSF2	1651	1710	1720	1730	1700
GagPol.ModSF	1701	GSCCCCACCC	1701	CCGTGAACAT	1740	1750	1750
GagProt.ModS	1701	GSCCCCACCC	1701	CCGTGAACAT	1740	1750	1750
Gag.ModSF2	1701	1760	1770	1780	1750
GagPol.ModSF	1751	CTGCACCCCTG	1751	AACTTCCCCA	1790	1800	1750
GagProt.ModS	1751	CTGCACCCCTG	1751	AACTTCCCCA	1790	1800	1750
Gag.ModSF2	1751	1751	1751	1751	1750

FIG. 7D

10 / 131

GagPol . ModSF	1801	TGAGGCCGGG	GATGGACGGC	CCCAAGGTCA	AGCAGTGGCC	CCTGACCGAG	1850
GagProt . Mods	1801	TGAGGCCGGG	GATGGACGGC	CCCAAGGTCA	AGCAGTGGCC	CCTGTAA...	1850
Gag . ModSF2	1801	1850
GagPol . ModSF	1851	GAGAAGATCA	AGGCCCTGGT	GGAGATCTGC	ACCGAGATGG	AGAAGGAGGG	1900
GagProt . Mods	1851	1900
Gag . ModSF2	1851	1900
GagPol . ModSF	1901	CAAAGATCAGC	AAGATCGGCC	CCGAGAACCC	CTACAAACACC	CCCGGTGTTCG	1950
GagProt . Mods	1901	1950
Gag . ModSF2	1901	1950
GagPol . ModSF	1951	CCATCAAGAA	GAAGGGACAGC	ACCPAAGTGGC	GCAAGCTGGT	GGACTTCCGC	2000
GagProt . Mods	1951	2000
Gag . ModSF2	1951	2000
GagPol . ModSF	2001	GAGGTGAACA	AGCGCACCCA	GGACATCTGG	GAGGTGAGC	TGGGCATCCC	2050
GagProt . Mods	2001	2050
Gag . ModSF2	2001	2050
GagPol . ModSF	2051	CCACCCCGCC	GGCCTGAAGA	AGAAGAAAGAG	CGTGACCGGTG	CTGGACGTGG	2100
GagProt . Mods	2051	2100
Gag . ModSF2	2051	2100
GagPol . ModSF	2101	GGGACGCCTA	CTTCAGGGTG	CCCCCTGGACA	AGGACTTCGG	CAAGTACACC	2150
GagProt . Mods	2101	2150
Gag . ModSF2	2101	2150
GagPol . ModSF	2151	GCCTTCACCA	TCCCCAGCAT	CAACAACAGG	ACCCCCGGCA	TCCGCTACCA	2200
GagProt . Mods	2151	2200
Gag . ModSF2	2151	2200
GagPol . ModSF	2201	GTACAACGTG	CTGCCCCAGG	GCTGGAAGGG	CAGCCCCGCC	ATCTTCCAGA	2250
GagProt . Mods	2201	2250
Gag . ModSF2	2201	2250

FIG. 7E

11 / 131

GagPol . ModSF	2251	GCAGCATGAC	CAAGATCCTG	GAGCCCTTCC	GCAAGAGAA	CCCCGACATC	2300
GagProt . Mods	2251	2300
Gag . ModSF2	2251	2300
GagPol . ModSF	2301	GTGATCTACC	AGTACATGGA	CGACCTGTAC	GTGGGAGG	ACCTGGAGAT	2350
GagProt . Mods	2301	2350
Gag . ModSF2	2301	2350
GagPol . ModSF	2351	CGGCCAGCAC	CGCACCCAAGA	TCGGAGGACT	GCGCCAGCAC	CTGCTGGCCT	2400
GagProt . Mods	2351	2400
Gag . ModSF2	2351	2400
GagPol . ModSF	2401	GGGGCTTCAC	CACCCCGAC	AAGAACGACC	AGAAGGAGCC	CCCCTTCCTG	2450
GagProt . Mods	2401	2450
Gag . ModSF2	2401	2450
GagPol . ModSF	2451	TGGATGGCT	ACGAGCTGCA	CCCCGACAAG	TGGACCGTGC	AGCCCCATCAT	2500
GagProt . Mods	2451	2500
Gag . ModSF2	2451	2500
GagPol . ModSF	2501	GCTGCCGAG	AAGGACAGCT	GGACCGTGAA	CGACATCCAG	AAGGTTGGTGG	2550
GagProt . Mods	2501	2550
Gag . ModSF2	2501	2550
GagPol . ModSF	2551	GCAGGCTGAA	CTGGGCCAGC	CAGATCTACG	CCGGCATCAA	GGTGAAGCAG	2600
GagProt . Mods	2551	2600
Gag . ModSF2	2551	2600
GagPol . ModSF	2601	CTGTGCAAGC	TGCTGGCGGG	CACCAAGGCC	CTGACCGAGG	TGATCCCCCT	2650
GagProt . Mods	2601	2650
Gag . ModSF2	2601	2650
GagPol . ModSF	2651	GACCGAGGAG	GCCGAGCTGG	AGCTGGCGGA	GAACCGGGAG	ATCTGAAGG	2700
GagProt . Mods	2651	2700
Gag . ModSF2	2651	2700

FIG. 7F

12 / 131

GagPol.ModSF	2701	AGCCGTGCA	CGAGGTGTAC	TACGCCCA	GCAAGGACTT	GGTCCCCGAG	2750
GagProt.ModS	2701	2750
Gag.ModSF2	2701	2750
GagPol.ModSF	2751	ATCCAGAACG	AGGCCAGGG	CCAGTGGACC	TACCAAGATCT	ACCAGGGGCC	2800
GagProt.ModS	2751	2800
Gag.ModSF2	2751	2800
GagPol.ModSF	2801	CTTCAAAGAAC	CTGAAGACCG	GCAAGTACGC	CGGCATGGGC	GGCCCCACA	2850
GagProt.ModS	2801	2850
Gag.ModSF2	2801	2850
GagPol.ModSF	2851	CCAAACGACGT	GAAGCAGCTG	ACCGAGGCCG	TGCAAGAAGT	GAGCACCGAG	2900
GagProt.ModS	2851	2900
Gag.ModSF2	2851	2900
GagPol.ModSF	2901	AGCATCGTGA	TCTGGGGCAA	GATCCCCAAAG	TTCAAGCTGC	CCATCCAGAA	2950
GagProt.ModS	2901	2950
Gag.ModSF2	2901	2950
GagPol.ModSF	2951	GGAGACCTGG	GGGGCCTGGT	GGATGGAGTA	CTGGAGGCC	ACCTGGATCC	3000
GagProt.ModS	2951	3000
Gag.ModSF2	2951	3000
GagPol.ModSF	3001	CCGAGTGGGA	GTTCGTGAAC	ACCCCCCCC	TGGTGAAGCT	GTGGTACCAAG	3050
GagProt.ModS	3001	3050
Gag.ModSF2	3001	3050
GagPol.ModSF	3060	3070	3080	3090	3100	3150
GagProt.ModS	3051	CTGAGAAGG	AGCCCATCTGT	GGGGCCCGAG	ACCCCTCTACG	TGGACGGGCC	3100
Gag.ModSF2	3051	3100
GagPol.ModSF	3101	CGCCAACCGC	GAGACCZAGC	TGGCAAGGGC	CGGCTACTGT	ACCGACCCGCC	3150
GagProt.ModS	3101	3150
Gag.ModSF2	3101	3150

FIG. 7G

13 / 131

GagPol.ModSF	3151	GCCGCCAGAA	GGTGGTGGC	ATCGCCGACA	CCACCAACCA	GAAGACCGAG	3200
GagProt.Mods	3151	3200
Gag.ModSF2	3151	3200
GagProt.Mods	3201	CTGCAGGCCA	TCCACCTGGC	CCTGAGGAC	AGGGGCTTG	AGGTGAACAT	3250
Gag.ModSF2	3201	3250
GagPol.ModSF	3251	CGTGACCGAC	AGCCAGTAGC	CCCTGGCAT	CATCCAGGCC	CAGCCCGACA	3300
GagProt.Mods	3251	3300
Gag.ModSF2	3251	3300
GagPol.ModSF	3301	AGAGGGAGAG	CGAGGCTGGT	AGCCAGATCA	TCGAGGAGCT	GATCAAGAAG	3350
GagProt.Mods	3301	3350
Gag.ModSF2	3301	3350
GagPol.ModSF	3351	GAGAAGGTGT	ACCTGGCCTG	GGTGGCCGCC	CACAAAGGCA	TCGGGGCAA	3400
GagProt.Mods	3351	3400
Gag.ModSF2	3351	3400
GagPol.ModSF	3401	CGAGGAGGTG	GACAAGCTGG	TGAGGGCCGG	CATCCGCAAG	GTGCTGTTCC	3450
GagProt.Mods	3401	3450
Gag.ModSF2	3401	3450
GagPol.ModSF	3451	TGAACGGCAT	CGACACAGGCC	CAGGAGGAGC	ACGAGAAAGTA	CCACAGCAAC	3500
GagProt.Mods	3451	3500
Gag.ModSF2	3451	3500
GagPol.ModSF	3501	TGGCGGCCA	TGGCCAGCGA	CTTCAACCTG	CCCCCGTGG	TGGCCAAGGA	3550
GagProt.Mods	3501	3550
Gag.ModSF2	3501	3550
GagPol.ModSF	3551	GATGTTGGCC	AGCTGCAGCA	AGTGGCAGCT	GAAGGGCGAG	GCCATGCACG	3600
GagProt.Mods	3551	3600
Gag.ModSF2	3551	3600

FIG. 7H

14 / 131

GagPol.ModSF	3601	GCCAGGTGGA	CTGCAGCCCC	GGCATCTGGC	AGCTGGACTG	CACCCACCTG	3650
GagProt.ModS	3601	3650
Gag.ModSF2	3601	3660	3670	3680	3690	3700
GagPol.ModSF	3651	GAGGGCAAGA	TCATCCTGGT	GGCGTGCAC	GTGCCAGCG	GCTACATCGA	3700
GagProt.ModS	3651	3700
Gag.ModSF2	3651	3710	3720	3730	3740
GagPol.ModSF	3701	GGCCGAGGTG	ATCCCCGGCG	AGACCCGGCA	GGAGACGCC	TACTTCCTGC	3750
GagProt.ModS	3701	3750
Gag.ModSF2	3701	3760	3770	3780	3790
GagPol.ModSF	3751	TGAAAGCTGGC	CGGCCGGCTGG	CCCGTGAAAGA	CCATCCACAC	CGACAACGGC	3800
GagProt.ModS	3751	3800
Gag.ModSF2	3751	3810	3820	3830	3840
GagPol.ModSF	3801	AGCCAACCTCA	CCAGGCCAAC	CGTGAAGGGCC	GCCTGCTGGT	GGGCCGGCAT	3850
GagProt.ModS	3801	3850
Gag.ModSF2	3801	3860	3870	3880	3890
GagPol.ModSF	3851	CAAGCAGGGAG	TTCGGCATCC	CCTACAAACCC	CCAGGCCAG	GGCGTGGTGG	3900
GagProt.ModS	3851	3900
Gag.ModSF2	3851	3910	3920	3930	3940
GagPol.ModSF	3901	AGAGGCATGAA	CAACCGAGCTG	AAGAAAGATCA	TCGGCCAGGT	GGCGGACCAAG	3950
GagProt.ModS	3901	3950
Gag.ModSF2	3901	3960	3970	3980	3990
GagPol.ModSF	3951	GCCGAGGCACC	TGAAGACCGC	C GTGCAGATG	GCCGTGTTCA	TCCACAACTT	4000
GagProt.ModS	3951	4000
Gag.ModSF2	3951	4010	4020	4030	4040
GagPol.ModSF	4001	CAAGCGCAAG	GGGGCATCG	GGGGCTACAG	CGCCGGCGAG	CGATCGTGG	4050
GagProt.ModS	4001	4050
Gag.ModSF2	4001	4050

FIG. 71

15 / 131

GagPol.ModSF	4051	ACATCATCGC	CACCGACATC	CAGACCAAGG	AGCTGCAGAA	GCAGATCACC	4100
GagProt.Mods	4051	4100
Gag.ModSF2	4051	4100
GagPol.ModSF	4101	AAGATCCAGA	ACTTCCGGT	GTACTACCGC	GACAACAGG	ACCCCTGTG	4150
GagProt.Mods	4101	4150
Gag.ModSF2	4101	4150
GagPol.ModSF	4151	GAAGGGCCCC	GCCAAGCTGC	TGTGGAAGGG	CGAGGGGCC	GTGGTGATCC	4200
GagProt.Mods	4151	4200
Gag.ModSF2	4151	4200
GagPol.ModSF	4201	AGGACAAACAG	CGACATCAAG	GTGGTCCCC	GCCGCAAGG	CAAGATCATC	4250
GagProt.Mods	4201	4250
Gag.ModSF2	4201	4250
GagPol.ModSF	4251	CGCGACTACG	GCAAGCAAGAT	GGCGGGCGAC	GACTGCGTGG	CCAGCCGCCA	4300
GagProt.Mods	4251	4300
Gag.ModSF2	4251	4300
GagPol.ModSF	4301	GGACGAGGAC	TAG.	4350
GagProt.Mods	4301	4350
Gag.ModSF2	4301	4350

FIG. 7J

FIG. 8

FIG. 9

FIG. 11A

FIG. 11B

FIG. 11C

FIG. 11D

native HIV-1SF2 gag-polymerase

ATGGGTGCGACAGCGCTCGGTATTAAAGCCCCGGGAGAATTAGATAAATGGAAAAAAATTGGTTAAGGCCAGGGAAAG

Inact. 1 AAAAAATAAGTTAAAACATAATAAGTATGGCAAGCAGGGAGCTAGAACGATTGCGAGTCATCCTGGCTGTAGAA
G G C G C C

Inact. 2 ACATCAGAAGGCTGCAGACAAAATATTGGACAGCTACAGCCATCCCTCAGACAGGATCAGAGAACTAGATCATTAA
Inact. 3 TATAATAAGTAGCAACCCCTTATTTGTGTACATCAAGGATAGATGTAAGAACACCAAGGAAGCTTAGAGAAAGATA
Inact. 4 GAGGAAGGCCAAAACAAAPAGTAAGGAAAGGCACAGCAAGCAGGAGCTGCAGCTGGCACAGGAAACAGCAGGCCAGGTC
GTCC G C

AGCCAAAATTACCCATTAGTGCGAAACCTACAGGGCAAAATGGTACATCAGGCCATATCACCTAGAACTTTAATGCA

TGGGTAAAAGTAGTAGAAGAAAAGGCTTCAGGCCAGAACGAAAGTAATAACCCATTAGCATTATCAGGTTTCAAGGAGGCCACC

Inact. 5 CCACAGATTAAAACCCATGCTAAACACAGTGGGGGACATCAAGCAGCCATTGCAAATGTTAAAAGAGACTATCAAT
G CC G G T G

GAGGAAGCTCGAGAATGGATAGAGTGCATCCAGTGCAGTGCAGGGCTTATTGCACCAGGCCAAATGAGAGAACCAAGG

GGAAGTGCACATAGCAGGAACACTACTAGTACCCCTCAGGAACAAATAGGATGGATGACAATAATCCACCTATCCCAGTA

Inact. 6 GGAGPAATCTATAAAAGATGGATAATCCTGGGATTAAATAATAAGTAAGAAATGTATAAGCCCTACAGCATTCTGGAC
G C G G C G C G

ATAAGACAAAGGACCAAGGAACCCATTAGAGGATTATGAGACCCGGTTCTATAAAACTCTAAGAGCCGAAACAAGCTTCA

FIG. 12A

20 / 131

CAGGATGTAACGGGAAATTGGATGACAGAACCCCTTGTGGTCCAAAATGCCAAACCCAGATTGTAAGACTTAAAGCA
 C C C G Inact. 7
 TGGGACCGCAGCTACACTAGAGAAATGATGACAGCATGTCAGGGACTGGGACCGGCCATAAAGCAAGAGIT
 C G G Inact. 8
 TTGGCTGAAGCCATGAGCCAAGTAAACAATCCAGCTAACATAATGATGCAGAGAGGGCAATTAGGAACCAAAGAAAG
 C G G C G G Inact. 9
 Inact. 9
 ACTGTTAAGTGTTCAATTGTCAGGGCACATAGCCAAAATGAGGGCTAGGGAAAAAGGGCTGTGG
 C C G G C C C G Inact. 10
 AGATGTTGAAAGGAAACCAATGAAAGATTGCACTGAGAGACAGGGCTAAATTAGGGAAAGATCTGGCCCTCC
 TACAAGGGAAAGGCCAGGGAAATTTCCTCTCAGAGCAGGCCAGAGCCAGACAGGGAAACTGTATCCTTTAACTCCCTCAGATCACTC
 GAGGAGAAAACAACTCCCTCTCAGAGCAGGCCAGAGCCAGACAGGGAAACTGTATCCTTTAACTCCCTCAGATCACTC
 TTTGGCAACGACCCCTCGTCACARTAAGGATAGGGGGCAACTAAAGGAAGGCTCTTATTAGATAACAGGGAGATGATA
 G C G G C G G Inact. 11
 CAGTATTAGAAAGAAATGAAATTGCCAGGGAAAATGGAAACCCAAAATGATAAGGGGCAATTGGAGGTTTTATCAAAAGTAA
 G C G C C G G Inact. 12
 GACAGTACGATCAGATAACCTGTTAGAAATCTGTTGACATAAGCTATAGGTACAGTTAGTAGGGACCTACACCTGTCA
 G Inact. 12
 ACATAATTGGAAAGAAATCTGTTGACTCAGATTGGTGTACTTTAAATTCCCATTTAGTCCTATTGAAACTGTACAG
 G G G G C C C G G C Inact. 13
 TAAATTAAGGCCAGGAATGGATGGCCAAAAGTTAGGCAATGGCCATTGACAGAAAGAAAATAAAGCATTAGTAG
 G G G G C C C G G C Inact. 14

FIG. 12B

FIG. 12C

AGATATGACAGAAATTGGAAAAGGAAGGGAAATTTCAAAAATTGGGCCATTACAATAACTCCAGTATTG
 CTATAAAGAAAAAGACAGTACTAAATGGAAAACACTTAGTATTCAAGAGAACTTAATAAGAACCTCAAGACTCT
 GGGAAAGTTAGTTAGAATAACCAACCCCCCAGGGTTAAAAAGAAAAAAATCACTAACAGTATTGGATGTGGGTGATG
 CATACTTTCACTTCCTTAGATAAAGACTTTAGAAAGTATACTICCATTTACCATACCTTAGTATAACAGTATTGGATGTGGGTGATG
 CAGGGATTAGATATCAGTACAATGTGCTGCACAGGGATGGAAAGATCACCCAGCAATAATCCTAAAGTAGCATGCTG
 AAATCTTAGGCCCTTTAGAAACAGAAATCAGACATACTTATCTATCACTGGATGATTGTTAGGGATACCACCCAG
 ACTTAAATAAGGGAGCATAGAACAAATAAGGAACATGGAAACTGAGACACCATGTTGAGGTGGGGATTACCAACCCAG
 ACAAAAAACATCAGAAAGAACCTCCATTCTTGGATGGTTGAACTCCATTCTGATAATAATGGACAGTACAGCCTA
 TAATGCTGCCAGAAAAAGACAGCTGGACTGTCAATGACATACAGAAGTTAGTGGAAAAATGTAATTGGCAAGTCAGA
 TTTATGCAAGGGATTAAAGTAAAGCAGTTATGTAACCTCTTAGAGGAACCAAGGACTAACAGAACTAACAGAACTAA
 CAGAAGAAAGCAGAGCTAGAACCTGGCAGAAACAGGGGAAATTCTAAAGAACCCAGTAAAGAACCTAACAGAACT
 CAAAGAACCTTAGCAGAAATAACAGAACGGCAAGGCCAATGGACATATCAAAATTTCAGGCCATTAAAA
 ATCTGAAAPACAGGAAAGTATGCAAGGGATGGGGTGCACACTPATGATGTAACAGTTAACAGGGCAAGTGCAA
 AAGTATCCACAGAAAGCATAGTAATAATGGGAAAGATCTCTAAATTAAACTACCCATACAAARAGGAACATGGGAAG
 CATGGTGGATGGGATATTGGCAAGCTACCTGGATTCTGAGTGGAGTTGTCATAACCCCTCCCTAGTGAATTAT
 GGTACCAGTTAGAAAAGAACCCATAGTAGGGAGCAGAAACCTTCTATGTAGATGGGCAGCTAATAGGGAGACTTAAT
 TAGGAAAAGCAGGATATGTTACTGACAGAGGAAGACAAAAAAGTTGTCCTCATAGCTGACACAAATCAGAAGACTG
 AATTACAGGCAATTCACTCTAGCTTGCAGGGATTGGGATTAGAAGTAAACATAGTAACAGCTCACPATATGCATTAG
 GAATCATTCAAGCACACCAGATAAGAGTGAATCAGTTAGCTCAGTCAAAIAATAGAGCAGTTAAATAAGGAAA
 AGGTCTACCTGGCATGGTACAGCACACAGAACAGGAAATTGGGAAATGAAACAAGTAGATAATTAGTCAGTGCTGAA
 TCAGGAAGTACTATTTCACCTGCCACCTGTACTGAGCAGGAAATAGTGGCAACTAGATTGACACATCTAGAAGGAAAATTATCC
 TGGCTAGTGTATTTCACCTGACAGTGTACTGTTCCAGGAATATGGCAACTAGATTGACACATCTAGAAGGAAAATTATCC
 AAGCCATGCTAGTGGACAAAGTAGTGTACTGTTCCAGGAATATGGCAACTAGATTGACACATCTAGAAGGAAAATTATCC
 TGGTAGCAGTTCTGTTAGCCAGTGGGATATTAGAACAGAAAGTTCCAGGAGAGACAGGGCAGGAAACAGCATT
 TTCTCTTAAATTAGCAGGAAGATGGCCAGTTAAACATAACAGACAAATGGGCAATTTCACCGTACTACGG
 TTAAGGGCCGCTGTTGGGGCAGGGATCAAGCAGGAATTGGCATTCCCTACAACTCCCAAGCTCAAGGAGTAGTAG
 AACATCTATGAATAATGAAATTAAAGAAAATTATGGACAGGGTAAGAGATCAGGTGAACACCTTAAGAACAGCAGTACAA
 TGGCAGTATTCTACCCACAAATTAAAAGAAAAGGGGGATTAGGGGATAACAGTGCAGGGAAAGAACATAGTAGACATAA
 TAGCAACAGACATAAAACTAAAGAAACTACAAAGCATTCTGGAAAAGGTGAAGGGGCACTGAGTAAATAAGATAAAAGT
 ACAAAAGATCCCCTTGGAAAGGACCAAGGAAAGCTTCTGGAAAAGGTGAAGGGGCACTGAGTAAATAAGATAAAAGT
 CAAGTAGACAGGATGAGGATTAG

FIG. 13A

23 / 131

FIG. 13B

FIG. 14

25 / 131

FIG. 15

26 / 131

9P120wtSF162

GTAGAAAAATTGGGGTCAACAGTCTATTATGGGGTACCTGTGGAAAGGAAGCAACCAACTCTATT
 GTGCCATCAGATGCTAAGCCTATGACACAGGGTACATAATGTCTGGGCCACACATGCCGTGTGACCCAC
 AGACCCTAACCCACAAAGAAATTAGTATGGAAAATGTGACAGAAAATTTAACATGTGGAAAAATAACATG
 GTAGAACAGATGCTAGGGATAATCAGTTATGGGATCAAAGCTTAAGGCTATGTTAAAGTTAACCC
 CACTCTGTGTTACICTACATGCACTAATTGAAAGAATGCTACTAATACCAAGAGTAGTAATTGGAAAGA
 GATGGACAGAGGGAAAATAAAATTGCTTCAAGGTCAACCACAGCATAGAAATAAGATGGCAGAAA
 GAATATGCACFTTTATAAAGCTTGATGTTAGTACCAATTAGATAATAGATAATAAGCTATAATTGATAA
 ATTGTAACACCTCAGTCATTACACAGGCCTGTCCAAAGGTATCCTTGAAACCAATTCCCATACATTATTG
 TGCCCCGGCTGGTTTGCGATTCTAAAGTGTATAATGATAAGAAGTTCAATGGATCAGGACCATGTCATTG
 GTCAGGCCACAGTACATAATGTACACATGGATTAGGCCAGTTGTCACACTCAATTGGCTTTAAATGGCAGTC
 TAGCAGAAAGGGGTAGTATTAGATCTGAAATTCTCACAGACAATGCTAAACTATAATAGTACAGCT
 GAAGGAATTCTGTAGAAATTATGGTACAAGACCTAACATAACAGAAAAGTAACTATAAGGACCG
 GGGAGAGCATTATGCAACAGGACATAATTAGGAGATAAAGACAAGCACATTGTAAACATTAGTGGAG
 AAAATGGAAATAACACTTAAACAGATAGTTACAAAATTACAAGGACAATTGGGAATAAAACAATAGT
 CTTTAAGCAATCCTCAGGAGGGACCCAGAAATTGTTAACAGTTAACAGTTAACATAACTATAAGGCCAA
 TACTGTAATTCAACACAGCTTTAACAGTACTTAAATAGTACTTGGAAATAACTATAAGGCCAA
 CTATCACACTCCCATGCGAAATAAACAAATTATAACAGGTGGCAGGAAGTAGGAAAGCAATTGTATGC
 CCCTCCCATCAGAGGACAAATTAGATGCTCATCAAATAATTACAGGACTGCTTAAACAGAGATGGGGT
 AAAGAGATCAGTAACACCCAGGAGATCTCAGACCTGGAGGTGGAGATATGGGACAAATTGGAGAAGTG
 ATTATAATAAAGTAGTAAAGGAAATTGAGCCATTAGGAGTAGCACCACAGGAAAGGAAGAG
 GGTGCAGAGGAGAAAAAGA

FIG. 16
(SEQ ID NO:30)

9P140wtSF162

GTAGAAAAATTGTTGGGTCAACAGTCTA'UTATGGGTACCTGTTGGAAAGCAACCAACTCTATT'TT
 GTGCATCAGATGCTAAAGCTATGACACAGGGTACATAATGTCAGGCTGGCCACACATGCCCTGTGTAACCCAC
 AGACCCCTAACCCACAAGAAATTAGTATCGAAAATGTCAGGCTAAAGTAACTGTTGGATCAAAGTCTAAGGTTAACATG
 GTAGAACAGATGCAATGAGGATATAATCAGTTATGGGATCAAAGTCTAAGGCTAAAGGCTAAAGGTTAACCC
 CACTCTGTGTTACTCTACATGCACTAAATTGAAAGAATGCTACTPATACCAAGAGTAGTAATTGGAAAGA
 GATGGACAGGGAGAAATAAAAATTGCTCTCAAGGTCAACCACAAAGCATAGAAATAAGATGGCAGAAA
 GAATATGCACTTTTATAAUCTTGATGTAGTACCAATAAGATAATGATAATAAAGCTATAAATTGATAA
 ATTGTAACACCTCAGTCATTACAGGCCCTGTCACAAAGGTATCCTTGAAACCAATTCCCATACATTATTG
 TGCCCCGGCTGGTTTGCGATTCTAAAGTGTAAATGTAAGGTTCAATGGATCAGGACCATGTCACAAAT
 GTCAGCACAGTACAATGTCACACATGGAAATTAGGCCAGTAGTGTCAACTCAATTGCTGTTAAATGGCAGTC
 TAGCAGAAGAAGGGGTAGTATTAGATCTGAAAATTTCACAGACAAATGCTAAAACTATAAGGTTACAGCT
 GAAAGGAATTCTGTAGAAATTATTAGTGTACAAGACTAAACAAATAACAAAGAAFAAGTAACTATAAGGACCG
 GGGAGAGCATTTTATGCAACAGGGACATAATAAGGAGATAATAAGGAGATAATAAGGAGATAATAAGGAG
 AAAAATGGAATAACACTTAAAACAGATAGTTACAAAATTACAAGCACAATTGGGAATAAAACAATAGT
 CTTTAAGCAATCCTCAGGAGGGACCCAGAAATTGTAATGGCACAGTTTAATTGTGGAGGGAAATTTC
 TACTGTAATTCAACACAGCTTTAAATAGTACTTGGAAATAACTATAAGGCAAAATAACACTAATGGAA
 CTATCACACTCCCATTGCAAAATTATAACAGGTGGCAGGAAGTAGGCTATAACAAAGGCAATTGTATGC
 CCTCCCATCAGGGACAAATTAGATGCTICATCAAATAACGGAGATCTTCAGACCTGGAGGATATGGGAAAGT
 AAAGAGATCAGTAACACCACGGAGATCTTCAGACCTGGAGGATATGGGAAAGTAAAGGAGATAATTGGGAAAGT
 ATTATATAATAAAAGTAGTAAAATTGACCCATTAGGAGTAGCACCCACCAAGGCAAAAGGAAGAGT
 GGTGCAGAGAGAAAAGAGCAGTGAACGGCTAGGAGCTATGTTCCCTGGGAGGGCAAGC
 ACTATGGGGCACGGTCACTGACGGTCACTGACGGTCAACGGCTGACGGTCAAGGCAACTCTGGGCATCAAGCA
 AGAACAAATTGCTGAGAGCTATTGAGGGCAACAGGCATCTGTCACAGTCTGGGCATCAAGCA
 GCTCCAGGCAAGAGCTGGCTGTTGGAAAGATAACCTAAAGGATCAACAGGCTCCTAGGGATTGGGGTTGC
 TCTGGAAAAACTCATTGCACCCACTGCTGTGCCATTGGAAATGCTAGTTGGAGTAATAAAATCTGGATCAGA
 TTTGGAAATAACATGACCTGGATGGAGTAGGAGAATTGACAATAACTTAATACACAAACTTAATACACCTT
 AATTGAAAGAATCGCAGAACCAACAAAGAAATGAAACAAAGAATTAGAATTGGGATAAGTGGCAAGT
 TTGTGGAAATTGGTTGACATATCAAATGGCTGTGGTATA

FIG. 17
(SEQ ID NO:31)

gp160wtSF162

GTAGAAAAATTGTGGGTACAGTCTATTATGGGTACCTGTGTGAAAGAAGCAACCACACTCTATTT
 GTGCATCAGATGCTAAAGCCTATGACACAGAGGTACATAATGTCAGGGCCACACATGCCGTACCCAC
 AGACCTAACCCACAAGAAATAGTATTGAAAATGTGACAGAAAATTAAACATGTGAAAATAACATG
 GTAGAACAGATGCATGAGGATATAATCAGTTATGGGATCAAAGTCTAAAGCCATGTGTAAAGTTAACCC
 CACTCTGTGTTACTCTACATTGCACTAATTGAAGAATGCTACTAATACCAAGAGTAGTAATTGAAAGA
 GATGGACAGAGGAGAAATAAAAATTGCTCTTCAGGTCAAGGACCACAGATAAGAAATAAGATGCAGAAA
 GAATATGCACTTTTATAAAACTTGATGTAGTACCAATAGATAATGATAATACAAGCTATAAATTGATAA
 ATTGTAACACCTCAGTCATTACACAGGCCTGTCCAAGGTATCCTTGAACCAATTCCCACATCATTATTG
 TGCCCCGGCTGTTTGCATTCTAAAGTGTAAAGTGTAAAGGTTCAATGGATCAGGACCATGTACAAAT
 GTCAGCACAGTACAATGTCACACATGGATTAGGCCAGTAGTGTCAACTCAATTGCTGTTAAATGGCAGTC
 TAGCAGAAGAAGGGTAGTAATTAGATCTGAAAATTTCACAGACAATGCTAAAACATATAATAGTACAGCT
 GAAGGAATCTGTAGAAATTAAATTGTACAAGACCTAACATAATACAAGAAAAGTATAACTATAGGACCG
 GGGAGAGCATTATGCAACAGGAGACATAATAGGAGATATAAGACAAGCACATTGTAACATTAGTGGAG
 AAAAATGGAATAACACTTAAAACAGATAGTTACAAAATTACAAGCACATTGGAATAAAACAATAGT
 CTTTAAGCAATCCTCAGGAGGGGACCCAGAAATTGTAATGCACTGGTTAATTGTTGAGGGAAATTTTC
 TACTGTAATTCAACACAGCTTTAATAGTACTTGGAAATAACTATAGGACCAATAACACTAATGGAA
 CTATCACACTCCATGCAGAATAAAACAAATTATAAAACAGGTGGCAGGAAGTAGGAAAAGCAATGTATGC
 CCCTCCCATCAGAGGACAAATTAGATGTCATCAAATATTACAGGACTGCTATTACAAGAGATGGTGGT
 AAAGAGATCAGTAACACCACCGAGATCTCAGACCTGGAGGTGGAGATATGAGGGACAATTGGAGAAGTG
 AATTATATAAATATAAAGTAGTAAAATTGAGCATTAGGAGTAGCACCCACCAAGGCAAAGAGAAGAGT
 GGTGCAGAGAGAAAAAGAGCAGTGCAGCTAGGAGCTATGTTCTGGTTCTGGAGCAGCAGGAGAAGC
 ACTATGGCGCACGGTCACTGACGCTGACGGTACAGGCCAGACAATTATTGTCAGTGTATAGTGCAACAGC
 AGAACAAATTGCTGAGAGTATTGAGGCGAACAGCATCTGTTGCAACTCACAGTCTGGGACATCAAGCA
 GCTCCAGGCAAGAGTCTGGCTGTGAAAGATAACCTAAAGGATCAACAGCTCTAGGGATTGGGTTGC
 TCTGGAAAACTCATTGCAACACTGCTGTGCCTTGGAAATGCTAGTTGGAGTAATAATCTCTGGATCAGA
 TTTGGAATAACATGACCTGGATGGAGTGGAGAGAGAAATTGACAATTACACAAACTTAATATACACCTT
 AATTGAAAGAATCGCAGAACCAACAAGAAAAGAATGAACAAGAATTATTAGAATTGATAAGTGGGCAAGT
 TTGTTGGAATTGGTTGACATATCAAATGGCTGTGGTATATAAAAATTCTATAATGATAGTAGGAGGTT
 TAGTAGGTTAAGGATAGTTTACTGTGTTCTATAGTGAATAGAGTTAGGCAGGGATACTCACCATT
 ATCATTTGACACCCGCTTCCCAGCCCCAAGGGGACCCGACAGGCCAGGAAGGAATCGAAGAAGAAGGTGGA
 GAGAGAGACAGAGACAGATCCAGTCATTAGTGCATGGATTATTGCACTCATCTGGGACGATCTACGGA
 GCCTGTGCCTCTCAGCTACCCGCTTGAGAGACTTAATCTGATTGCACTGCAGCGAGGATTGTGAAACTTCT
 GGGACGCAGGGGGTGGGAAGCCCTCAAGTATTGGGGAAATCTCTGCAGTATTGGATTAGGAACTAAAG
 AATAGTGCCTGTTAGTTGATGCCATAGCTATAGCAGTAGCTGAGGGACAGATAGGATTATAGAAG
 TAGCACAAAGAATTGGTAGAGCTTCTCCACATACCTAGAAGAATAAGACAGGGCTTGAAAGGGCTTT
 GCTATAA

FIG. 18

(SEQ ID NO:32)

FIG. 19
(SEQ ID NO:33)

gp120.modsTR162.de1V2

FIG. 20
(SEQ ID NO:34)

gp120.modsF162.delV1v2

FIG. 21
(SEQ ID NO:35)

(SEQ ID NO:35)

32 / 131

FIG. 22A

FIG. 22B

FIG. 22C

FIG. 22D

33 / 131

FIG. 22E

FIG. 22F

FIG. 22G

FIG. 22H

gp140.modSF162

gaattcgccaccatggatgcaatgaagagagggtctgtgtgtgtgtggagcagtc
ttcgcccccccgccgtggagaagctgtgggtgaccgtgtactacggcgtgcccgtgtggaaag
gaggccaccaccaccctgttctgcgccagcgcacccaaggccatacgcacaccgagggtgcacaacgtg
tggccaccaccacgcctgcgtgcccaccgaccctaaccggagatcgctggagaacgtgacc
gagaacttcaacatgtggagaacaacatggtgaggcagatgcacaggacatcatcagcctgtgg
gaccagagcctgaagccctgcgtgaagctgaccccccgtgcgtgaccctgcactgcaccaacctg
aagaacgcccaccaacaccaagagcagcaacttggaggatggacccgcggcgagatcaagaactgc
agcttcaagggtgaccaccagcatccgcaacaagatgcagaaggatcgcggccatcacaagctg
gacgtggtgcccatcgacaacgcacaccagctacaagctgatcaactgcacaccagcgtgatc
accaggcctgccccaggtgagcttcgagccatccccatccactactgcgcggccggccgttc
gccatcctgaagtgcacacaaaatcaacggcagccggccctgcaccaacgtgagcaccgtg
cagtgcacccacggcatccgccccgtggtgagcaccaggctgcgtgaacggcagccctggccgag
gagggcgtggatccgcagcagaacttccgcacacggccaaagaccatcatcgtgcagctgaag
gagagcgtggagatcaactgcacccggcccaacaacacccgcacagagcatcaccatcgcccc
ggccgcgccttctacgcacccggcgcacatcatcgccgacatccgcaggccactgcacacatcagc
ggcgagaagtggaaacaacacccctgaagcagatcgatgcaccaagctgcaggcccagttcgcaacaag
accatcgtgttcaagcagagcagccggcgaccccgagatcgatgcacagcttcaactgcggc
ggcgagtttttactgcacacaggcaccatcacccctgcgcgcataagcagatcatcaaccgcgtggcaggag
aacaacaccaacggcaccatcacccctgcgcgcataagcagatcatcaaccgcgtggcaggag
gtggcaaggccatgtacgcggccatccgcgcgcatacgccgcaccccgagatctccgcggccgc
{ctgcgtgtgacccgcgcacggcgcaaggagatcagcaacaccaccaggatctccgcggccgc
ggcgacatgcgcgacactggcgcagcgagctgtacaaggatcgatcgaggccctg
ggcgtggccccccaccaaggccaaaggccgcgcgcgtggcgacccctggc
gccatgttccctggcttcctggcgccgcgcgcatacgccatggcgccgcgcgc
gtgcaggccgcgcgcgtgtgagccgcgcgcgcgcgcgcgcgcgcgcgc
gcccaggc
gtggagcgctacctgaaggaccaggcagctgcgtggcgatctggcgatctgc
accaccgcgtgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgc
acctggatggatggcgagatcgacactacaccaacctgtatctacaccctgtatcgaggag
agccagaaccaggcaggagaagaacgcagcaggagctgcggagctggacaagtggccaggcctgtgg
aactggatcgacatcgacatcgatggctgtggatctactcgag

FIG. 23
(SEQ ID NO:36)

35 / 131

gp140.modSF162.delV2

gaattcgccaccatggatgcaatgaagagagggtctgtgtgtgtgtggagcagtc
ttcgttcgcccagcgccgtggagaagctgtgggtgaccgttactacggcgtccccgtgtggaaag
gaggccaccaccaccctgttctgcgcacgcacgccaaggcctacgacaccgagggtgcacaacgtg
tggccaccacgcctgcgtgcccaccgaccccaaccccaaggagatcgtgtggagaacgtgacc
gagaacttcaacatgtggagaacaacatggtgagcagatgcacgaggacatcatcagcctgtgg
gaccagagcctgaagccctgcgtgaagctgaccccccgtgcgtgaccctgcactgcaccaacctg
aagaacgccaccaacaccaagagcagcaactggaaaggagatggaccgcggcagatcaagaactgc
agcttcaaggtggcgccggcaagctgtatcaactgcaacacaccagcgtgatcacccaggccgtcccc
aaggtgagcttgcagccatccccatccactactgcgc(cccggccgttgcgcacatcctgaagtgc
aacgacaagaagtcaacggcagcggccctgoaccaacgtgagcaccgtgcagtgcacccacggc
atccgc(cccgtggtagcaccagctgtgtgtgaaacggcagcctggccgaggaggggcgtgtgatc
cgcagcggagaacttacccgacacgcacagaccatcatcgtgcagctgaaggagagcgtggagatc
aactgcacccgc(cccaacaacaacacccgcacagagcatcaccatcgcccccggccgcgccttctac
gccacccggcgcacatcatcggcgcacatccgcagggccactgcaacatcagcggcggagaagtggAAC
aacaccctgaagcagatcgtgaccaagctgcaggcccagttcggcaacaagaccatcgttgtcaag
cagagcagcggcggcgaccccgagatcgtgtacgcacagctcaactgcggcggcgagttttctac
tgcaacagcaccaggctgttcaacagcacctggaaacaacaccatcgcccccacaacaacacccacggc
accatcaccctgc(cctgcgcacatcaaggcagatcatcaaccgcgtggcaggagggtggcaaggccatg
tacgc(ccccatccgcggccagatccgcgtgcagcagcaacatcaccgcgtgtgcgtgacccgc
gacggcggcaaggagatcagcaacaccaccgagatctccgc(cccggcggcgacatcgtgcac
aactggcgcagcagctgtacaagttacaagggtggtagagatcggcccccggcgtggcccccacc
aaggccaaggccgcgtggtagcgcgcgagaagcgcgcgtgacccggggcgcacatgttccctggc
tccctggcccccggcggcagcaccatggcgc(cccgcagcctgacccctgaccgtgcaggcccggccag
ctgcgtgagcggcatcgtgcagcagcagaacaacctgtgcgcgcacatcggaggcccagcagcacctg
ctgcagctgaccgtgtggcatcaaggcagctgcaggcccgcgtgcgtggccgtggagcgttacctg
aaggaccagcagctgtggcatctggcgtgcagcggcaagctgtatcgcaccaccgcgtgtgg
tggaaacgccagctggagcaacaagagcctggaccagatctggaaacaacatgacaccctgatc
gaggcgcagatcacaactacaccaacctgtatcaccctgatcggaggagagccagaaccagcag
gagaagaacgagcaggagctgtggagctggacaagtggccagccctggaaactggatcgacatc
aqcaaqtggctgtggatcatctaactcgag

FIG. 24

(SEQ ID NO:37)

gp140.modSF162.delV1V2

gaattcgccaccatggatgcaatgaagagagggctctgtgtgtgtgtgtggaggcagtc
ttcgcccccccgccgtggagaagctgtgggtgaccgtgtactacggcgtgcccgtgtggaaag
gaggccaccaccaccctgttctgcgcacgcacgccaaggcctacgacaccgagggtgcacaacgtg
tgggccacccacgcctgcgtgcccaccgaccctaacccccaggagatcgtgtggagaacgtgacc
gagaacttcaacatgtgaagaacaacatgggtggagcagatgcacgaggacatcatcagcctgtgg
gaccagagcctgaagccctgcgtgaagctgaccccccgtgcgtggcgccggcaactgccagacc
agcgtatcacccaggcgtgcggccatccggccatccccatccactactgcgcggcc
gcggccatccggccatccggccatccggccatccggccatccggccatccggccatccggccatccggcc
agcaccgtgcagtgcacccacggcatccggccatccggccatccggccatccggccatccggccatccggcc
ctggccgaggaggcggtggatccgcagcggagaacttcaccgacaacgccaagaccatcatcgtg
cagctgaaggagagcgtggagatcaactgcacccggccatccggccatccggccatccggccatccggcc
atcgccccccggccgcgccttctacgcaccggccatcatcgccgacatccggccaggcccactgc
aacatcagcggcgagaagtggaaacaacaccctgaagcagatcgtgaccaagctgcaggcccagttc
ggcaacaagaccatcgtttcaagcagagcagcggcgccgagatcgtatgcacagcttc
aactgcggcgccgagtttttctactgcaacagcaccctgcgttcaacagcacccttggaaacaacacc
atcgcccccaacaacacccaacggcaccatcaccctgcgcgcacatcaaggcagatcatcaaccgc
tggcaggagggtggcaaggccatgtacggccccccatccggccgcagatccgcgcgcac
atcaccggcctgcgtgcacccgcacggcgcaaggagatcagcaacaccaccgagatcttccgc
ccggcgccgcccgcacatgcgcgcacactggcgccagcgcgcgcacatgcgcgcgc
gagcccccgtggcgatggccccccaccaaggccaaggcgcgcgcgcgcgcgc
accctggcgccatgttctggccttgcgcgcgcgcgcgcgcgc
accctgaccgtgcaggccgcgcgcgcgcgcgcgcgcgc
gcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgc
gtgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgc
ctgatctgcaccaccgcgcgcgcgcgcgcgcgcgcgc
aacaacatgacccatggatggagtgggagcgcgcgc
atcgaggagagccagaaccaggcaggagaagaac
agcctgtggactggatccgcacatcagcaagtggctgtggatcatctaactcgag

FIG. 25
(SEQ ID NO:38)

gp140.mut.modsF162

gaattcgccaccatggatgcaatgaagagagggtctgtgtgtgtgtgtggagcagtc
ttcgcccccccgccgtggagaagctgtgggtgaccgttactacggcgtcccgttggaaag
gaggccaccaccaccctgttctgcgcagcgcacgccaaggcatacgacaccgaggatgcacaacgtg
tggccaccacgcgtgcccaccgaccccaaccccaaggagatcgtgtggagaacactgtgacc
gagaacttcaacatgttggaaaacaacatggtgagcagatgcacgaggacatcatcagctgtgg
gaccagagcctgaagccctgcgtgaagctgaccccccgtgcgtgaccctgcactgcaccaacctg
aagaacgcaccaacaccaagagcagcaacttggaggatggaccgcggcagatcaagaactgc
agcttcaagggtgaccaccagcatccgcaacaagatgcagaaggagtacgcctgttctacaagctg
gacgttgtgcccattcgacaacgcacaacaccagctacaagctgtatcaactgcacacaccagcgtgatc
acccaggcctgccccaaaggtagcttgcagccatccccatccactactgcgcggccggcttc
gccatcttgaagtgcacgcacaagaagttaacggcagcggccctgcaccaacgtgagcaccgtg
cagtgcacccacggcatccgccccgtgtgagcaccagctgtgtgacccggcagcctggccgag
gagggcgttgtatccgcagcagaacttcaccgcacaacgccaagaccatcatcgtgcagctgaag
gagagcgttgagatcaactgcacccggcccaacaacacccgcacagagcatcaccatcgcccc
ggccgcgccttctacgccacccggcgcacatcatcgccgacatccgcaggcccactgcacatcgc
ggcgagaagtggaaaacaacaccctgaagcagatcgtgtaccaagctgcaggcccagttggcaacaag
accatcgtgttcaagcagagcagcggcggcgcaccccgagatcgtgtatgcacagcttcaactgcggc
ggcgagttttctactgcaacagcacccagctgttcaacacgcacccgttgcaccaacaccatcgcccc
aacaacaccaacccgcacccatcaccctgcctgcgcaccccgatccgcgtgcagcagcaacatcaccggc
gtggggcaaggccatgtacgcggccggccatccgcgtgcaccccgagatcttccgcggccggc
ctgcgtgtgcacccggcgcacggcggcaaggagatcagcaacaccaccgagatcttccgcggccggc
ggcqacatgcgcacaactggcgagcgttacaagtacaagggtggtaagatcgagccctg
ggcggtggccccccaccaaggccaagcggccggcggttgcagcggcggagaagagcgcgtgaccctggc
ccatgttccctgggttccctggcgccggccggcgcacccatccgcggccgcacccgtgaccctgacc
gtgcaggcccgccagctgtgtgagcggcatcgtgcagcagcagaacaacctgtgcgcgcacccatcgc
gcccagcagcacccgtgcagctgacccgtgtggggcatcaagcagctgcaggcccggtgtggcc
gtggagcgttaccctgaaggaccagcagactgtggcatctgggtgcagcggcaagctgtatctgc
accaccggcgtgcctggaaacgcgcacccgtggagcaacaagagcctggaccagatcttggaaacaacatg
acccgttggagttggagcgcgcagatgcacaactacaccaacccgtatctacacccgtatcgaggag
agccagaaccagcaggagaagaacgcagcaggagctgtgtggagctggacaagtggggccagcctgtgg
aactqttcqacatcagcaagtggctgtggtaacatctaactcgcag

FIG. 26

(SEO ID NO:39)

gp140.mut.modSF162.delV2

gaattcgccaccatggatgcaatgaagagagggctctgtgtgtgtgtgtggaggcagtc
ttcgccccccagcgccgtggagaagctgtgggtgaccgtgtactacggcgccgtgtggaaag
gaggccaccaccaccctgttctgcgccagcgacgccaaggcctacgacaccgaggatgcacaacgtg
tggggccacccacgcctgcgtgcccaccgaccaccccccaggagatcgtgtggagaacgtgacc
gagaacttcaacatgttggaaagaacaacatgggtggagcagatgcacgaggacatcatcagcctgtgg
gaccagagcctgaagccctgcgtgaagctgaccccccgtgcgtgaccctgcactgcaccaacctg
aagaacgcccaccaacaccaagagcagcaactggaaaggagatggaccgcggcgagatcaagaactgc
agcttcaagggtggcgccggcaagctgtatcaactgcacaccagcgtgatcacccaggcctgcccc
aagggtgagcttcgagcccatccccatccactactgcgc(ccccggccgttgcgcacatcctgaagtgc
aacgacaagaagttaacggcagcggcccccgtgcaccaacgtgagcaccgtgcagtgcacccacggc
atccgccccgtggtagcaccacagctgtgtgaacggcagecgtggccgaggaggggcggtggtagtc
cgcaagcggagaacttaccgcacaacgccaagaccatcatcgtgcagctgaaggagagcgtggagatc
aactgcacccgccccacaacaacacaccgcacagacatcaccatcgccccggccgcgccttctac
gccaccggcgacatcatcgccgacatccgcaggcccactgcacatcagcggcgagaagtggAAC
aacaccctgaagcagatcgtgaccaagctgcaggcccagttcgccacaagaccatcgtgttcaag
cagagcagcggcgccgaccccgagatcgtgtatgcacagcttcaactgcggcgccgagttttctac
tgcaacagcaccacagctgttcaacagcacctggaaacaacaccatcgccccacaacaacacccacggc
accatcaccctgccccatccgcggccagatccgcgtcagcagcaacatcaccggcctgtgtgacccgc
tacgccccccatccgcggccagatccgcgtcagcagcaacatcaccggcctgtgtgacccgc
gacggcgccaaaggagatcagcaacaccaccgagatcttccgcggccgacatgcgcac
aactggcgcagcagctgtacaagttggtagagatcggccctggcggtggcccccacc
aaggccaaaggcgcccggtggtagcagcggcgagaagagcgcgtgaccctggcgccatgttccctggc
ttccctggcgcccgccggcagcaccatggcgcccgagccctgaccctgaccgtgcaggcccggccag
ctgcgtgagcggcatcgtgcagcaggcagaacaacaccgtgcgcgcacatcgaggcccagcagcacctg
ctgcagctgaccgtgtggggcatcaagcagctgcaggcccgcgtgtggccgtggagcgtacctg
aaggaccagcagctgtggcatctggggctgcagcggcaagctgtgcaccaccgcgtgccc
tggaaacgcccagctggagacaacaagagcctggaccagatctggaaacaacatgacctggatggagtgg
gagcgcgagatcagacaactacaccaacctgtacaccctgtgcaggagagccagaaccagcag
gagaagaacgagcaggagctgtggagctggacaagtggccagccgtgtggactggatcgcacatc
agcaagtggctgtggtagatctaactcgag

FIG. 27

(SEQ ID NO:40)

gp140.mut.modSF162.delV1V2

gaattcgccaccatggatgcaatgaagagagggctctgctgtgtgctgctgtgtggagcagtc
ttcgccccagcgccgtggagaagctgtgggtgaccgtgtactacggcgtgcccgtgtggaaag
gaggccaccaccaccctgttctgcgcacgcacgccaaggcctacgacaccgaggtgcacaacgtg
tgggccacccacgcctgcgtgcccaccgcaccccaaccccaaggagatcgtgtggagaacgtgacc
gagaacttcaacatgtggagaacaacatggtgagcagatgcacgaggacatcatcagcctgtgg
gaccagagcctgaagccctgcgtgaagctgaccccccgtgcgtggcgccggcaactgccagacc
agcgtatcacccaggcctgcggcaagggtgagcttcgagcccatcccatccactactgcgcccc
gcggcttcggccatcctaagtgcAACGACAAGTTCAACGGCAGCGGCCCTGCACCAACGTG
agcaccgtgcagtgcacccacggcatccggccgtggtgagcaccagctgcgtgaacggcagc
ctggccgaggaggcggtgtatccgcagcgagaacttcaccgacaacgcacaccatcatcgtg
cagctgaaggagagcgtggagatcaactgcacccggccacaacaacacccgcaagagcatcacc
atcgcccccgccgcgccttcataccgcaccgcacatcatcgccgacatccgcaggccccactgc
aacatcagcggcgaqaagtggaaacaacacccctgaagcagatcgtgaccaagctgcaggcccagtcc
ggcaacaagaccatcgtgttcaagcagagcagcggcggcagcccgagatcgtatgcacagcttc
aactgcggcggcggcggatcttctactgcacagcaccgcaccccgatcgttcaacagcaccctggaaacaacacc
atcgcccccaacaacacccaacggcaccatccccgtccgcacatcaagcagatcatcaaccgc
tggcaggagggtgggcaaggccatgtacgccccccatccgcggccagatccgcctgcagcagcaac
atcaccggccctgctgcgtgacccgcacggcggcaaggagatcagcaacaccaccgcagatctccgc
cccgccggcggcgcacatcgcgcacaactggcgcagcgcagctgtacaactacaagggtggtaagatc
gagccccctggcgtggcccccaaccaaggccaagcgcgcgtggcgcgcgagaagagcgcgcgtg
accctggccgc
accctgaccgtgcaggccgc
gcacatcgaggcccagcagcaccctgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgc
gtgcgtggccgtggagc
ctgatctgcaccaccgc
aacaacatgaccctggatggagttggagcgcgcgcgcgcgcgcgcgcgcgcgcgc
atcgaggaggccagaaccaggcaggagaagaacgcaggcaggagctgcgtggagatcggacaagttgggccc
agcctgtggactggatcgacatcagcaagtggcgtgtggatcatctaaactcgag

FIG. 28

(SEQ ID NO:41)

gp140.mut7.modsF162

gaattcgccaccatggatgcaatgaagagagggtctgtgtgtgtgtgtggagcagtc
ttcgTTTcgcccagcgccgtggagaagctgtgggtgaccgttactacggcgtgcccggtgtggaaag
gaggccaccaccacccctgttctgcgcacgcacgccaaggctacgacaccgaggatgcacaacgtg
tggccacccacgcctgcgtgcccacccgaccccaaccccaaggatgcgtgtggagaacactgtgacc
gagaactcaacatgtggaaagaacaacatggtgagcagatgcacgaggacatcatcagcctgtgg
gaccagagcctgaagccctgcgtgaagctgaccccccgtgcgtgaccctgcactgcaccaacctg
aagaacgcaccaacaccaagagcagaactggaaggatggaccgcggcagatcaagaactgc
agcttcaagggtgaccaccagcatccgcaacaagatgcagaaggatgcgcctgttctacaagactg
gacgtggtgcctcatcgacaacgcacaacaccagctacaagctgtatcaactgcacaccagcgtgatc
acccagcctgccccaaagggtgagcttgcagccatccccatccactactgcgcctggccggcttc
gccatcctgaagtgcacgcacaagaagttcaacggcagggccccctgcaccaacgtgagcaccgtg
cagtgcacccacggcatccgccccgtggtgagcaccagctgtgtgaacggcagcctggccgag
gagggcgtggatccgcagcagaacttcaccgacacgccaagaccatcatcgtgcagctgaag
gagagcgtggagatcaactgcacccggcccaacaacaacacccgcacagagcatcaccatcgcccc
ggccgcgccttctacgcccacggcgacatcatcggtgcacatccgcaggcccactgcacatcagc
ggcgagaagtggaaacaacaccctgaagcagatcgtgaccaagctgcaggcccagttggcaacaag
accatcgtgttcaaggcagagcagcggcggcgcaccccgagatcgtgtatgcacagcttcaactgcggc
ggcgagttttctactgcaacagcacccagctgttcaacagcacctggaacaacaccatcgcccc
aacaacaccaacggcaccatccccctgcgcacccatccgoggccagatccgtgcagcagaacatcaccggc
gtgggcacaggccatgtacgccccccatccgoggccagatccgtgcagcagaacatcaccggc
ctgcgtgtgacccgcacggcggcaaggagatcagcaacaccccgagatctccgccccggcgc
ggcgacatgcggacaactggcgagcgtgtacaagtacaagggtggtaagatcgagccctg
ggcgtggccccccaccaaggccatcagcagcgtggtgagcagcagaagagcgcgtgaccctggc
gccatgttccctggcttccctggcgccggcggcagcaccatggcgcccgagcctgaccctgacc
gtgcaggccccggcagctgtgtggcgatcgtgcagcagcagaacaacctgtgcgcgcacatcgag
gcccagcagcacctgtgcagctgaccgtgtgggcatcaagcagctgcaggcccggtgtggcc
gtggagcgtacccatggacaggaccagcagctgtggcatctgggctgcagcggcaagctgtatctgc
accaccggcgtgccctggacacgcccagctggagcaacaagagcctggaccagatctggacaacatg
acctggatggagttggagcgcgcagatcgacaaactacaccaacctgtatccacccctgatcgaggag
agccagaaccagcaggagaagaacgcagcaggatgcaggatgcgtggagctggacaagtggggccagcctgtgg
aactgggttcgacatcagcaagtggctgtggtacatctaactcgag

FIG. 29

(SEQ ID NO:42)

gp140.mut7.modSF162.delV2

gaattcgccaccatggatcaatgaagagagggctctgctgtgtgctgtgtggagcagtc
ttcgtttgcgccagcgcgtggagaagctgtgggtgaccgtgtactacggcgtgcccgtgtggaaag
gaggccaccaccaccctgtttctgcgccagcgcacgccaaggcctacgacaccgaggtgcacaacgtg
tgggccacccacgcctgcgtgcccaccgaccctaaccggagatcgtgctggagaacgtgacc
gagaacttcaacatgtggagaacaacatggtgagcagatgcacgaggacatcatcagcctgtgg
gaccagagcctgaagccctgcgtgaagctgaccccccgtgcgtgaccctgcactgcaccaacctg
aagaacgccaacacccaagagcagcaacttggaaaggagatggaccgcggcgagatcaagaactgc
agcttcaagggtggcgccggcaagctgtatcaacttgcacacaccagcgtatcacccaggcctgcccc
aaggtagcttcgagccatccccatccactactgcgcggccggcttcgccttgcataacttgc
aacgacaagaagttaacggcagcggccctgcaccaacgtgagcaccgtgcagtgacccacggc
atccgcggccgtggtagacccagctgtgtgaacggcagcgtggccgaggagggcgtggtagtc
cgcagcgagaacttcaccgacaacgcacatcgatcgatcgacccatcatcgatcgatcgatcgatcgat
aactgcacccgcggcaacaacacacccgcacatcgatcgatcgatcgatcgatcgatcgatcgat
gcacccggcgacatcatcgatcgatcgatcgatcgatcgatcgatcgatcgatcgatcgatcgat
aacacccctgaagcagatcgatcgatcgatcgatcgatcgatcgatcgatcgatcgatcgat
cagagcagcggcgccgaccccgagatcgatcgatcgatcgatcgatcgatcgatcgatcgat
tgcaacacgcaccccgatcgatcgatcgatcgatcgatcgatcgatcgatcgatcgatcgat
accatcaccctgc
tacgccccccatccgcggcccgatccgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgc
gacggcggcaaggagatcgatcgatcgatcgatcgatcgatcgatcgatcgatcgatcgat
aacttggcgcagcagctgttacaagtacaagggtggtagagatcgagccctggcgatggccacc
aaggccatcagcagcgtggtagcagagcagcagagcagcggccgcgcgcgcgcgcgcgcgc
ttccctggcgccgc
ctgcgtgagcggcatcgatcgatcgatcgatcgatcgatcgatcgatcgatcgatcgat
ctgcgtgaccgtgtggggcatcaagcagcagctgcaggcccggtgtggccgtggagcgctac
aaggaccagcagctgtggcatctgggctgcagcggcaagctgtatcgatcgatcgatcgat
tggaaacgcgcagctggagcaacaagagcctggaccagatcgatcgatcgatcgatcgat
gagcggcagatcgatcgatcgatcgatcgatcgatcgatcgatcgatcgatcgatcgat
gagaagaacgcagcaggagctgtggagctggacaagtggcccgccgcgtgtggaaactggat
agcaagtggatgtggatcgatcgatcgatcgatcgatcgatcgatcgatcgatcgatcgat

FIG. 30
(SEQ ID NO:43)

gp140.mut7.modSF162.delV1V2

gaattcgccaccatggatgcaatgaagagagggctctgctgtgtgctgctgtgtggagcagtc
ttcgttcgcccagcgccgtggagaagctgtgggtgaccgttactacggcgtgcccgtgtggaaag
gaggccaccaccaccctgttctgcgccagcgacgccaaggcctacgacaccgaggtgcacaacgtg
tgggccaccacgcctgcgtgcccaccgaccccaacccccaggagatcgtgtggagaacgtgacc
gagaacttcaacatgttggaaagaacaacatggggagcagatgcacgaggacatcatcagcctgtgg
gaccagagcctgaaggcctgcgtgaagctgaccccccgtgcgtggcggcaactgcccagacc
agcgtatcacccaggcctgcggcaagggtggatcgacgcccattccactactgcgcccc
gcggcttcggccatcttgaagtgcacgacaagaagttaacggcagcggccctgcaccaacgtg
agcaccgtgcagtgacccacggcatccggccgtggtagcaccaggctgtgtgaacggcagc
ctggccgaggaggcgtgtgatccgcagcgagaacttcaccgacaacgccaagaccatcatcg
cagctgaaggagagcgtggagatcaactgcacccggccacaacacccgcaagagcatcacc
atcgccccggccgcgccttctacccaccggcgcacatcatcgccgacatccggccaggcccactgc
aacatcagcggcggagaagtggaaacaacacccctgaaggcagatcgtgaccaagctgcaggccc
ggcaacaagaccatgttcaagcagcggcggcggcggcggcggcggcggcggcggcggcggc
aactgcggcggcggcggatcttctactgcacacgcacccaggctgttcaacagcgcac
atcgcccccaacaacacccaacggcaccatccctgcgcgcacatcaaggc
tggcaggagggtggcaaggccatgtacggccggccggcggcggcggcggcggcggcggc
atcacccggcctgctgctgacccgcacggcggcggcggcggcggcggcggcggcggc
cccgccggcggcggcgcacatgcgcgcacactggcgcagcggcggcggcggcggcggc
gagccctggggcgtggcccccaccaaggccatcagcggcggcggcggcggcggcggc
accctggggcggccatgttctgggcttctggggcggcggcggcggcggcggcggc
accctgaccgtgcaggccggccaggctgtgagcggcatcgtgcggcggcggc
gcggcggcggcggcggcggcggcggcggcggcggcggcggcggcggcggc
gtgtggccgtggagcgcgtacccgtggatggggcatcaaggc
ctgatctgcaccaccgcgtggccctggaaacgcggcggcggcggcggc
aacaacatgacactggatggagtgggagcgcgcacactacaccaac
atcgaggagagccagaaccaggcaggagaagaacgcggcggcggc
agcctgtggaaactgggtcgacatcagcaagtggcgtgttgc
actcgag

FIG. 31
(SEQ ID NO:44)

gp140.mut8.modSF162

gaattcgccaccatggatgcaatgaagagagggctctgtgtgtgtgtggaggcagtc
ttcgccccagcgcgtggagaagactgtgggtgaccgttactacggcgtgcccgtgtggaaag
gaggccaccaccaccctgttctgcgccagcgcacgccaaggcctacgacaccgaggtgcacaacgtg
tggccacccacgcctgcgtgcccaccgaccctaaccggagatcgtgtggagaacgtgacc
gagaacttcaacatgtggagaacaacatggtgagcagatgcacgaggacatcatcagcctgtgg
gaccagagcctgaagccctgcgtgaagctgaccccccgtgcgtgaccctgcactgcaccaacctg
aagaacgccaccaacaccaagagcagcaacttggaggatggaccgcggcggagatcaagaactgc
agttcaaggtgaccaccaggcatccgcaacaagatgcagaaggatgcggccgttataaagctg
gacgtgggtgcccacatcgacaacgcacaacaccaggatcaagctgtatcaactgcacaccaggcgtgatc
acccaggcctgcccccaaggtgagcttgcagccatccccatccactactgcgcggccgcggcttc
gcctgcacccacggcatccgccccgtggtagcaccaggatgcgtgtgaacggcagcctggccag
cagtgcacccacggcatccgccccgtggtagcaccaggatgcgtgtgaacggcagcctggccag
gagggcgtggtagtccgcagcagaacttaccgcacaacgccaagaccatcatcgtcagctgaag
gagagcgtggagatcaactgcacccgcaccaacaacacccgcacccatcggcccc
ggccgcgccttctacgcacccggcgcacatcatcgccgacatccgcaggcccactgcacatcagc
ggcgagaagtggaaacaacaccctgaagcagatcgtgaccaagctgcaggcccagttcgcaacaag
accatcgtgttcaagcagagcagccgcggcgcaccccgagatcgtgtgcacagcttcaactgcggc
ggcgagttcttactgcacccgcacccaggatgcgttcaacaggcaccttggaaacaacaccatcggcccc
aacaacaccaacggcaccatcacccctgcctgcgcacatcaaggatcatcaaccgcgtggcaggag
gtgggcaaggccatgtacgc
ctgcgtgtgc
ggcgacatgc
ggcgatggccgc
gc
gc
gtgcaggccgc
gcccaggcagcaccgtgc
gtggagc
accaccgc
acctggatggatggatggatggatggatggatggatggatggatggatggatggatgg
agccagaaccaggcaggagaagaacgaggcaggagctgtggagctggacaactggatgg
aactggatggatggatggatggatggatggatggatggatggatggatggatggatgg

FIG. 32

(SEQ ID NO:45)

gp140.mut8.modSF162.delV2

gaattcgccaccatggatcaatgaagagagggctctgctgtgtgctgtgtggaggcagtc
ttcgccccccaggccgtggagaagactgtgggtgaccgtgtactacggcgtgcccgtgtggaaag
gaggccaccaccacccctgttctgcgccagcgcacgccaaggcatacgacaccgagggtgcacaacgtg
tggccaccacccacgcctgcgtgcccacccgaccccaaccccaaggagatcgtgctggagaacgtgacc
gagaacttcaacatgtggaaagaacaacatggtgaggcagatgcacgaggacatcatcagcctgtgg
gaccagagcctgaagccctgcgtgaagactgaccccccctgtgcgtgaccctgcactgcaccaacctg
aagaacgccaccaacaccaagagcagcaactggaaggagatggaccgcggcgagatcaagaactgc
agcttcaagggtggcgccggcaagctgatcaactgcaacaccagcgtgatcaccaggcctgcccc
aaggtagcttgcagccatccccatccactactgcgcggccggcttcgcctatcctgaagtgc
aacgacaagaagttaacggcagggccctgcaccaacgtgagcaccgtgcagtgcacccacggc
atccgccccgtggtagcaccaggcgtgctgtaacggcagcctggccgaggaggcggtggtagtgc
cgagcggagaacttcaccgacaacgccaagaccatcatcgtagcagctgaaggagagcgtggagatc
aactgcacccggcccaacaacaacacccgcaagagcatcaccatcgccccggccgcgccttctac
gccaccggcgacatcatcgccgacatcgccaggcccactgcacatcagcggcgagaagtggaaac
aacaccctgaagcagatcgtgaccaagactgcaggcccagttcgcaacaagaccatcgtgttcaag
cagagcagcggcgccgaccccgagatcgtgatgcacagctcaactgcggcgccgagttttctac
tgcaacagcaccaggcgttcaacagcacctggaacacaacaccatcgcccccaacaacaccaacggc
accatcaccctgcgcgcacatcaagcagatcatcaaccgcgtggcaggagggtggcaaggccatg
tacggccccccatccgcggccagatccgctgcagcagcaacacatcaccggcctgctgaccgc
gacggcggcaaggagatcagcaacacaccaccgagatcttccggccggccgacatgcgcgac
aactggcgagcagctgtacaagttacaagggtggtagagatcgagccctggcgtggccccacc
atcgccatcagcagcgtggcagagcggagaagagcgcgtgaccctggcgcacatgttctggc
ttccctggcgccggccggcagcaccatgggcggcccgccagccctgaccctgaccgtgcaggcccgc
ctgctgagcggcatcgtgcagcagcagaacaaacctgctgcgcgcacatcgaggcccagcagcacctg
ctgcagctgaccgtgtgggcacatcaagcagactgcaggcccggtgtggccgtggagcgtacctg
aaggaccaggcgtgtggcatctgggctgcagcggcaagactgtacatgcacccgcgtgc
tggAACGCCAGCTGGAGCAACAAGAGCCTGGACCAGATCTGGAAACACATGACCTGGATGGAGTGG
GAGCGCGAGATCGACAACATACACCAACCTGATCTACACCCGTGAGCAGGAGAGCCAGAACACAGCAG
GAGAAGAACGAGCAGGAGCTGGAGCTGGACAAGTGCCCCAGCCGTGGAAACTGGTTCGACATC
AGCAAGTGGCTGTGGTACATCTAACATCGAG

FIG. 33

(SEQ ID NO:46)

gp140.mut8.modSF162.delV1V2

gaattcgccaccatggatcaatgaagagagggctctgctgtgtctgtgtggaggcagtc
ttcgccccccacgcgcgtggagaagactgtgtgggtgaccgtgtactacggcgtgcccgtgtggaaag
gaggccaccaccacccctgttctgcgcacgcacgccaaggcctacgacaccgagggtgcacaacgtg
tggccacccacgcgcgtgcgtgcccaccgaccccaaccccaaccccaaccccaaccccaaccccaaccc
gagaacttcaacatgtggaaagaacaacatggtgaggcagatgcacgaggacatcatcagccctgtgg
gaccagagccctaagccctgcgtgaagctgaccccccctgtgcgtggcgccggcaactgccagacc
agcgtgatcaccaggcctgcgtggaaaggtgagctcgagccatccccatccactactgcgcgggg
gcgcgttcgcacatccctgaagtgcacaacagaatgtcaacggcagcggccctgcaccaacgtg
agcaccgtgcagtgcacccacggcatccgcggccgtggtgaggcaccaggctgtgcgtgaacggcagc
ctggccgaggaggggcgtgtgtatccgcagcagaacttcaccgacaacgccaagaccatcatgtg
cagctgaaggagagcgtggagatcaactgcacccgcggccacaacaacacccgcgaaagagcatcacc
atcgccccccggccgcgccttctacgcccaccggcgacatcatcgccgacatccgcccaggcccactgc
aacatcagcggcgagaagtggaaacaacaccctgaaggcagatcgtgaccaagctgcaggcccagttc
ggcaacaagaccatcgtgtcaagcagagcagcggcgccgaccccgagatcgtgatgcacagcttc
aactgcggcgccgagttttctactgcaacagcaccctgcgttcaacagcacctggaaacaacacc
atcgcccccaacaacaccaacacggcaccatcacccctgcgcgtccgcacatcaaggc
tggcaggagggtggcaaggccatgtacgcggccggccatccgcggccagatccgcgtgcagcagcaac
atcaccggcctgctgtgacccgcgacggcgcaaggagatcagcaacaccaccgagatttccgc
cccgccggcgccgacatgcgcgacactggcgccagcgttacaagtacaagggtggtaagatc
gagccctggcgccatcgccatcagcagcgtggtgccgagagcggcggccgtg
accctggcgccatgttctggcttctggcgccgcggcagcaccatggcgccggcagccctg
accctgaccgtgcaggccgcaccgtgtgagcggcatcgtgcagcagcagaacaacctgtgcgc
ccatcgaggcccagcagcaccctgtgcagcgttgcaccgtgtgggcataagcagctgcaggcccgc
gtgcgtggccgtggagcgttacatgttgcaggaccaggcagcgtgtggcatctggcgccgcaag
ctgatctgcaccacccgcgtgcgtggatggacgcgcggccagatcgttgcaccaactacacc
aacaacatgacactggatggatggggagcgcgcgagatcgcacaactacacc
atcgaggaggccagaaccaggcaggagaagaacgcggagcgtgtggagcgtggacaagtgcc
agcctgtggaaactgggtcgacatcagcaagtggctgtggatcatctaactcgag

FIG. 34

(SEQ ID NO:47)

gp160.modSF162

gaattcgccaccatggatcaatgaagagaggctctgctgtgtgctgtggaggcagtc
ttcgTTTcgcccagcgccgtggagaagctgtgggtgaccgttactacggcgtgcccgtgtggaaag
gaggccaccaccaccctgttctgcgccagcgaGCCaaggcctacgacaccgagggtgcacaacgtg
tggccaccaccacgcctcgctgcccaccgaccctaaccctcaggagatcgtgctggagaacgtgacc
gagaacttcaacatgtggaaaacaacatggtgaggcagatgcacgaggacatcatcagcctgtgg
gaccagagcctgaagccctgcgtgaagctgacccccctgtgcgtgaccctgcactgcaccaacctg
aagaacgcccaccaacccaagagcagcaacttggaaaggagatggaccgcggcagatcaagaactgc
agcttcaaggtgaccaccacatccgcaacaagatgcagaaggagtacgcctgttacaagctg
gacgtgggtgcccatcgacaacgcacaacaccagactacaagctgatcaactgcacacaccagcgtgatc
acccaggcctgccccaaaggtgagctcgagccatccccatccactactgcgcggggccggcttc
gccatccctgaagtgcacgacaagaagttaacacggcagcggccctgcaccaacgtgagcaccgtg
cagtgcacccacggcatccggccctgtggtagccacccagctgctgtaacggcagcctggccgag
gagggcgtggtagccgcagcgagaacttcccgacaacgcacaagaccatcatcgtgcagctgaaag
gagagcgtggagatcaactgcaccccccacaacaacacaccgcagagcatcaccatggcccc
ggccgcgccttctacgcacccggcgcacatcatcggcgcacatccggccaggcccactgcaacatcagc
ggcgagaagtggaaacaacaccctgaagcagatcgtgaccaagctgcaggcccagttcggcaacaag
accatcgtttcaaggcagagcagcggcggcgcaccccgagatcgtgatgcacagcttcaactgcggc
ggcgagttcttactgcacacagcacccagcttcaacagcaccttggaaacaacaccatggcccc
aacaacaccaacggcaccatcacccctggccatcaagcagatcatcaaccgcgtggcaggag
gtgggcaaggccatgtacgccttccatccgcggccagatccgctgcagcagcaacatcaccggc
ctgctgctgacccgcgcacggcggcaaggagatcagcaacaccaccgagatctccgcggccggc
ggcgacatgcgcgcacaactggcgcagcgcagctgtacaagtacaagggtgtgaagatcgagccctg
ggcgtggccccccaccaaggccaagcgcgcgtggtagccgcgagaaagcgcgcgcgtgaccctggc
gccatgtttcttggcttcttggcgccggcagcaccatggcgccgcagcctgaccctgacc
gtgcaggccccccagctgctgagcggcatcgtgcagcagcagaacaacctgcgcgcacatcag
gcccacgcacccctgcgcagctgaccgtgtgggcatcaagcagatcgtgcaggcccgcgtgtggc
gtggagcgcacccctgaaggaccaggcagctgctggcatctgggcgtcagcggcaagctgatctgc
accacccgcgtgccttggaaacgcgcagctggagcaacaagagcctggaccagatctggaaacaacatg
acctggatggagttggagcgcgcagatcgaactacaccaacctgatctacaccctgatcgaggag
agccagaaccaggcaggagaagaacgcaggcaggagctggagctggacaagtggccaggcctgtgg
aactgggttcgcacatcagcaagtggctgtgttatcatcaagatcttcatcatgatcgtggccggcctg
gtggcctgcgcacatcgtgttccatcgcgcacccctggccggccgcaccgcgcgcgcgcgcgc
ctgagcttccatcgcgcacccctggccggccgcaccgcgcgcgcgcgcgcgcgcgcgc
ggcgccgc
gacccgc
atcggtggagctgtggccgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgc
tggatccaggagctgaagaacacagcgcgcgcgcgcgcgcgcgcgcgcgcgc
ggcaccgcaccgcacatcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgc
atccgcgcagggttcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgc

FIG. 35
(SEQ ID NO:48)

gp160.modSF162.delV2

gaattcgccaccatggatgcaatgaagagagggtctgtgtgtgtgtgtggagcagtc
ttcgttcgcccagcgccgtggagaagctgtgggtgaccgttactacggcgtgcccgtgtgaaag
gaggccaccaccaccctgttctgcgcacgcacgccaaggcctacgacaccgaggtgcacaacacgt
tgggccacccacgcctgcgtgcccacccgaccccaaaaaaaccggagatcgtgtggagaacactgtgacc
gagaacttcaacatgtgaaagaacaacatggtgagcagatgcacgaggacatcatcagcctgtgg
gaccagagcctgaagccctgcgtgaagctgaccccccgtgcgtgaccctgcactgcaccaacactg
aagaacgcccaccaacaccaagagcagcaactgaaaggagatggaccgcggcagatcaagaactgc
agcttcaagggtggcgccggcaagctgatcaactgcaacaccagcgttgcacccaggcctgcccc
aaggtagctcgagccatccccatccactactgcgccccccggcgcgcgcacatcctgaagtgc
aacgacaagaagtcaacggcagccccctgcaccaacgtgagcaccgtgcagtgcacccacggc
atccgccccgtggtagcaccctgctgtgtgaacggcagcctggcgaggagggcgtgggtgatc
cgcagcagaacttcaccgacaaacgccaagaccatcatcgtgcagctgaaggagagcgtggagatc
aactgcacccgccccacaacaacacccgcaagagcatcaccatcggccccggccgcgccttctac
gccacccggcagcatcatcggcgcacatccgcccaggcccactgcaacatcagcggcagaaagtggaa
aacaccctgaagcagatcgtgaccaagctgcaggcccagttcggaacaagaccatcgtgttcaag
cagagcagcggcggcgaccccgagatcgtgatgcacagctcaactgcggcggcgagttttctac
tgcaacagcaccctggttcaacagcacctgaaacaacaccatcggccccacaacaccaacggc
accatcaccctgcccgcacatcaaggcagatcatcaaccgcgtggcaggaggtggcaaggccatg
tacgccccccatccgcggccagatccgcgtgcagcagcaacatcaccggcctgcgtgcacccgc
gacggcggcaaggagatcagcaacaccaccggagatcttcggccccggcgccgcacatgcgcac
aactggcgagcggagctgttacaagtacaagggtggtagagatcggccctggcgtggccccacc
aaggccaagcggccgcgtggtagcgcggagaagcgcggcgtgaccctggcgccatgttctggc
ttcctggcgccggccggcagcaccatggcgcccccgcagccctgaccctgaccgtgcaggcccgg
ctgcgtgagcggcatcgtgcagcagcagaacaacctgctgcgcgcacatcaggcccagcagcac
ctgcagctgaccgtgtgggcatcaaggcagctgcaggcccgcgtgctggcgtggagcgttac
aaggaccagcagctgcgtggcatctgggctgcagcggcaagctgatctgcaccaccggcgtgccc
tggaaacgccagctggagcaacaagagaccctggaccagatctggaaacaacatgacccgtggatggag
gagcgcgagatcagacaactacaccaacctgatctacaccctgatcggaggagaccagaaccagc
gagaagaacgagcaggagctgtggagctggacaagtggccagcctgtggaaactggttcgacatc
agcaagtggctgtggatcatcaagatcttcatcatgatcgtggccggccgggtggccctgcgcac
gtgttccaccgtgtgagcatcgtgaaccgcgtgcgcaggcgtacagcccccgtgagcttccagacc
cgcttccccggccccccgcggcccccgcaccgcggccggcatcggaggaggggcggcggcagcgcac
cgccgaccgcagcagccccctggtagcaccgcgtgcgcacccgtggccctgatctggacgcacc
tgcctgttcaagctaccaccgcctgcgcacccgtatcgtgcgcgcacatcgtggagctgc
ggccgcgcggctggaggccctgaagttactggggcaacctgctgcagttactggatccaggag
aagaacagcggccgtgagccctgttgcacgcacatcgcgcacatcgcgcgtggccagggcacc
atcgaggtggcccgagcgcacatcggccgcgccttcgtgcacatccccccgcgcacatccgc
qaqcqcgccccgtgttaactcgag

FIG. 36

(SEQ ID NO:49)

gp160.modSF162.delV1V2

gaattcgccaccatggatgcaatgaagagagggtctgtgtgtgtgtgtggaggcagtc
ttcgccccagcgccgtggagaagctgtgggtgaccgtgtactacggcgtgcccgtgtggaaag
gaggccaccaccaccctgttctgcgccagcgacgccaaggcctacgacaccggaggtgcacaacgtg
tggccaccacccacgcgtgcccaccgaccacccaggagatcgtgtggagaacacgtgacc
gagaacttcaacatgtggaaagaacaacatggtgaggcagatgcacgaggacatcatcagcctgtgg
gaccagagcctgaagccctgcgtgaagctgaccccccgtgtgcgtggcgccgcaactgccagacc
agcgtgatcacccaggcgtgccccaaagggtgagcttcgagccatccccatccactactgccc
gccgcttcgccccatcctgaagtgcacaacgacaagaagttcaacggcagcggccctgcaccaacgtg
agcacccgtgcagtgcacccacggcatccgccccgtggtagcaccaggctgtgtgaacggcagc
ctggccgaggaggaggcgtgtgatccgcagcgagaacctaccgacaacgcacaagaccatcatcgtg
cagctgaaggaggaggcgtggagatcaactgcacccgccccacaacaacacccgcaagaacatcacc
atcggccccggccgcgccttctacgcccaccggcgcacatcatcggcgcacatccgcccaggccactgc
aacatcagcggcggcagaatggaaacaacaccctgaagcagatcgtgaccaagctgcaggcccagttc
ggcaacaagaccatcgtgttcaagcagagcagcggcggcagcccgagatcgtgatgcacagcttc
aactgcggc
atcggccccacaacaacaccaacacggcaccatcacccctgcctgcgcacatcaaggcagatcatcaaccgc
tggcaggagggtgggcaaggccatgtacgccccccatccggggccagatccgcgcggcggcggcggcggc
atcacccggcctgcgtgaccccgcgacggcggcgaaggagatcagcaacacaccggagatctccgc
cccgccggc
gagcccccgtggcgtggcccccaccaaggccaaaggcgcgcgtggtagcgcgcggcggcggcggcggc
accctggc
accctgaccgtgcaggcccgc
gcacatcgaggcccagc
gtgcgtggccgtggagc
ctgatctgcaccaccggcgtggc
aacaacatgaccggatggatggatggggagcgcgcgcgcgcgcgcgcgcgcgcgcgcgc
atcgaggaggcagaaccaggcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgc
agccctgtggaaactgggttcgcacatcagcaagtggctgtggtagatcaagatcttc
ggcggcctggcgtggccctgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgc
tacagccccctgagcttcgcacccgcgttccccggccccggccccgcacccgcggcggc
gaggaggaggcggcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgc
atctgggacgcacgcgcgcgcgcgcgcgcgcgcgcgcgcgcgc
ggcggcctggcgtggccctgcgcgcgcgcgcgcgcgcgcgcgc
tacagccccctgagcttcgcacccgcgttccccggccccggccccgcacccgcggcggc
gaggaggaggcggcgcgcgcgcgcgcgcgcgcgcgcgcgc
atctgggacgcacgcgcgcgcgcgcgcgcgcgcgcgc
ggcggcctggcgtggccctgcgcgcgcgcgcgcgcgc
ctgcactactggatccaggagctgaagaacacgcgcgcgc
gtggccgaggcaccgcaccgcacatcgcgcgcgcgc
ccccggcgcacccgcgcgcgcgcgcgcgcgcgcgc
ccccggcgcacccgcgcgcgcgcgcgcgcgcgcgc

FIG. 37

(SEQ ID NO:50)

gp120wtUS4

ACAAACAGTCTTGTGGGTACAGTCTATTATGGGGTACCTGTGTGGAAAGAAG
CAACCACCACTCTGTTGTGCATCAGATGCTAAAGCATACAAAGCAGAGGC
ACATAACGTCTGGCTACACATGCCGTGTACCCACAGACCCCAACCCACAG
GAAGTAAATTAAACAAATGTGACAGAAAATTAAACATGTGGAAAAATAACA
TGGTGGAACAGATGCATGAGGATATAATCAGTTATGGGATCAAAGCCTAAA
GCCATGTGAAAATTAAACCCACTCTGTGTTACTTTAAATTGTACTGATAAGT
TGACAGGTAGTACTAATGGCACAAATAGTACTAGTGGCACTAATAGTACTAG
TGGCACTAATAGTACTAGTACTAATAGTACTGATAGTTGGGAAAAGATGCCA
GAAGGAGAAAATAAAAACGTCTTCAATATCACCACAAGTGTAAAGAGATA
AAAGTCAGAAAAGAATATTCTCTCTTATAAACTTGATGTAGTACCAATAGAT
AATGATAATGCTAGTATAGATTGATAAAATTGTAATACCTCAGTCATTACACA
AGCCTGTCAAAGGTATCTTGAACCAATTCCCACATATTGTGCCCGG
CTGGTTTGCATTCTAAAGTGTAAAGATAAGAAGTTCAATGGAACAGGACC
ATGTAAAAATGTCAGCACAGTACAATGCACACATGGAATTAGACCAAGTAGTA
TCAACTCACTGCTGTTAAATGGCAGTCTAGCAGAAGAAGAGATAGTACTTA
GATCTGAAAATTTCACAGACAATGCTAAACCATAATAGTACAGCTGAATGA
ATCTGTAGAAAATTGATAAGACCAACAATAATACAAGAAAAAGTATA
CATATAGGACCAGGGAGAGCATTATGCAACAGGTGATATAATAGGAGACA
TAAGACAAGCACATTGTAACATTAGTAAAGCAAACGGACTAACACTTAA
ACAGATAGTTGAAAATTAAAGAGAACAAATTGGAATAATAAAACAATAATC
TTAATTCTCAGGAGGGACCCAGAAATTGTATTCACAGTTAATTG
TGGAGGGAAATTCTATTGTAATACATCACAACATTAAATAGTACCTGGA
ATATTACTGAAGAGGTAAATAAGACTAAAGAAAATGACACTATCATACTCCC
ATGCAGAATAAGACAAATTAAACATGTGGCAAGAAGTAGGAAAAGCAAT
GTATGCCCTCCCATCAGAGGACAAATTAAATGTTCATCAAATATTACAGGG
CTGCTATTAACTAGAGATGGTGGTACTAACATAATAGGACGAACGACACCG
AGACCTTCAGACCTGGGGAGGAAACATGAAGGACAATTGGAGAAGTGAAT
TATATAAATATAAAGTAGTAAGAATTGAACCATTAGGAGTAGCACCCACCA
GGCAAAGAGAAGAGTAGGTGCAAAGAGAGAAAAGA

FIG. 38
(SEQ ID NO:51)

gp140wtUS4

ACAACAGTCTTGTGGTCACAGTCTATTATGGGGTACCTGTGTGGAAAGAAG
 CAACCACCACTCTGTTTGTGCATCAGATGCTAAAGCATAACAAAGCAGAGGC
 ACATAACGTCTGGCTACACATGCCTGTGTACCCACAGACCCCAACCCACAG
 GAAGTAAATTAAACAAATGTGACAGAAAATTAAACATGTGGAAAAATAACA
 TGGTGGAACAGATGCATGAGGATATAATCAGTTATGGATCAAAGCCTAAA
 GCCATGTGTAAAATTAAACCCACTCTGTGTTACTTTAAATTGTACTGATAAGT
 TGACAGGTAGTACTAATGGCACAAATAGTACTAGTGGCACTAATAGTACTAG
 TGGCACTAATAGTACTAGTACTAATAGTACTGTGATAGTGGAAAAGATGCCA
 GAAGGAGAAAATAAAACTGCTCTTCAATATCACCACAAGTGTAAAGAGATA
 AAGTGCAGAAAAGAATATTCTCTCTTCTATAAACTTGATGTAGTACCAATAGAT
 AATGATAATGCTAGTATAGATTGATAAAATTGTAAATACCTCAGTCATTACACA
 AGCCTGTCCAAGGTATCTTGAACCAATTCCCACATCATTATTGTGCCCGG
 CTGGTTTGCATTCTAAAGTGTAAAGATAAGAAGTTCAATGGAACAGGACC
 ATGAAAAATGTCAAGCACAGTACAATGCACACATGGAATTAGACCAGTAGTA
 TCAACTCAACTGCTGTTAAATGGCAGTCTAGCAGAAGAAGAGATAGTACTTA
 GATCTGAAAATTTCACAGACAATGCTAAAACCATAATAGTACAGCTGAATGA
 ATCTGTAGAAAATTAAATTGTATAAGACCCAACAATAATACAAGAAAAGTATA
 CATATAGGACCAGGGAGAGCATTATGCAACAGGTGATATAATAGGAGACA
 TAAGACAAGCACATTGTAACATTAGTAAAGCAAACTGGACTAACACTTAA
 ACAGATAGTTGAAAAATTAAAGAGAACAAATTGGGATAATAAAACAATAATC
 TTTAATTCATCCTCAGGAGGGACCCAGAAATTGTATTACAGTTAATTG
 TGGAGGGAAATTCTATTGTAATACATCACAATTAAATAGTACCTGGA
 ATATTACTGAAGAGGTAAATAAGACTAAAGAAAATGACACTATCATACTCCC
 ATGCAGAATAAGACAAATTATAACATGTGGCAAGAAGTAGGAAAAGCAAT
 GTATGCCCTCCCACATCAGAGGACAAATTAAATGTTCATCAAATATTACAGGG
 CTGCTATTAACTAGAGATGGTGGTACTAACAAATAATAGGACGAACGACACCG
 AGACCTTCAGACCTGGGGAGGAAACATGAAGGACAATTGGAGAAGTGAAT
 TATATAAAATATAAGTAGTAAGAACATTGAACCATTAGGAGTAGCACCCACCA
 GGCAAAAGAGAACAGAGTGGTGCAAAGAGAGAAAAGAGCAGTGGACTAGGAG
 CTTTGTTCATTGGTTCTTGGGAGCAGCAGGAAGCAGTGGCGCAGCGTC
 AGTGACGCTGACGGTACAGGCCAGACAATTATTGTCTGGTATAGTGCACACAG
 CAGAACAAATTGCTGAGAGCTATTGAGGCGAACAGCATCTGTTGCAACTCA
 CGGTCTGGGCATCAAACAGCTCCAGGCAAGAATCTGGCTGTGGAAAGATA
 CCTAAAGGATCAACAGCTCTAGGGATTGGGTTGCTCTGGAAAACCTATT
 GCACCAACTACTGTGCCTGGAACTCTAGTTGGAGTAATAAATCTGACTGAG
 ATTGGGATAATATGACCTGGATGGAGTGGAAAGAGAAATTGGCAATTATA
 CAGGCTTAATATACAATTAAATTGAAATAGCACAAACCAAGCAAGAAAAGAA
 TGAACAAGAATTATTGGAATTAGACAAGTGGCAAGTTGTGGATTGGTT
 GATATAACAAACTGGCTGTGGTATATA

FIG. 39
(SEQ ID NO:52)

gp160wtUS4

ACAACAGTCTGTGGTCACAGTCTATTATGGGTACCTGTGTGGAAAGAAG
 CAACCACCACTCTGTTGTGCATCAGATGCTAAAGCATACAAAGCAGAGGC
 ACATAACGTCTGGCTACACATGCCGTGTACCCACAGACCCCAACCCACAG
 GAAGTAAATTAAACAAATGTGACAGAAAATTAAACATGTGGAAAAATAACA
 TGGTGGAACAGATGCATGAGGATATAATCAGTTATGGATCAAAGCCTAAA
 GCCATGTGAAAATTAAACCCACTCTGTGTTACTTTAAATTGTACTGATAAGT
 TGACAGGTAGTACTAATGGCACAAATAGTACTAGTGGACTAATAGTACTAG
 TGGCACTAATAGTACTAGTACTAATAGTACTGATAGTTGGAAAAGATGCCA
 GAAGGAGAAAATAAAAAACTGCTCTTCAATATCACCACAAGTGTAAAGAGATA
 AAGTGCAGAAAGAATATTCTCTTCTATAAAACTGTGATGTAGTACCAATAGAT
 AATGATAATGCTAGCTATAGATTGATAAAATTGTAATACCTCAGTCATTACACA
 AGCCTGTCAAAGGTATCTTGAAACCAATTCCCACATATTGTGCCCGG
 CTGGTTTGCATTCTAAAGTGTAAAGATAAGAAGTTCAATGGAACAGGACC
 ATGTAATAATGTCAGCACAGTACAATGCACACATGGAATTAGACCAGTAGTA
 TCAACTCAACTGCTGTTAAATGGCAGTCTAGCAGAAGAAGAGATAGTACTTA
 GATCTGAAAATTTCACAGACAATGCTAAAACCATAATAGTACAGCTGAATGA
 ATCTGTAGAAATTAAATTGTATAAGACCCAAACAATAATACAAGAAAAGTATA
 CATATAGGACCAGGGAGAGCATTATGCAACAGGTGATAATAGGAGACA
 TAAGACAAGCACATTGTAACATTAGTAAAGCAAATGGACTAACACTTTAGA
 ACAGATAGTTGAAAAATTAAAGAGAACAAATTGGGATAATAAAACAATAATC
 TTTAATTCTCAGGAGGGACCCAGAAATTGTATTTCACAGTTAATTG
 TGGAGGGAAATTCTATTGTAATACATCACAATTAAATAGTACCTGGA
 ATATTACTGAAGAGGTAAATAAGACTAAAGAAAATGACACTATCATACTCCC
 ATGCAGAATAAGACAAATTAAACATGTGGCAAGAAGTAGGAAAAGCAAT
 GTATGCCCTCCCACATCAGAGGACAAATTAAATGTTCATCAAATATTACAGGG
 CTGCTATTAACTAGAGATGGTGGTACTAACATAATAGGACGAACGACACCG
 AGACCTTCAGACCTGGGGAGGAAACATGAAGGACAATTGGAGAAGTGAAT
 TATATAATATAAAGTAGTAAGAATTGAACCATTAGGAGTAGCACCCACCCA
 GGCAAAGAGAAGAGTGGTCAAAGAGAGAAAAGAGCAGTGGACTAGGAG
 CTTGTTCATGGGTTCTGGGAGCAGCAGGAAGCAGTATGGCGCAGCGTC
 AGTGACGCTGACGGTACAGGCCAGACAATTATTGTCTGGTATAGTGCACAG
 CAGAACAAATTGCTGAGAGCTATTGAGGCGAACAGCATCTGTTGCAACTCA
 CGGTCTGGGCATCAAACAGCTCCTAGGGATTGGGTTGCTCTGGAAAACCTATT
 CCTAAAGGATCAACAGCTCCTAGGGATTGGGTTGCTCTGGAAAACCTATT
 GCACCACTACTGTGCTTGGAACTCTAGTTGGAGTAATAAATCTGACTGAG
 ATTGGGATAATGACCTGGATGGAGTGGAAAGAGAGAAATTGGCAATTATA
 CAGGCTTAATATAACAATTAAATTGAAATAGCACAAACAGCAAGAAAAGAA
 TGAACAAGAATTATTGAAATTAGACAAGTGGCAAGTTGTGGAATTGGTT
 GATATAACAAACTGGCTGTGGTATATAAGAATATTCAAATGATAGTAGGAG
 GCTTGATAGGTTAAGAATAGTTTGCTGTACTTCTATAGTGAATAGAGTT
 AGGCAGGGATACTACCAATATCATTGCAAGACCCGCCTCCAGCTCAGAGGG

FIG. 40A
(SEQ ID NO:53)

GACCCGACAGGCCGAAGGAATCGAAGAAGAAGGTGGAGAGAGAGACAGA
GACAGATCCAATCGATTAGTCATGGATTATTGGCACTCATCTGGGACGATCT
GCGGAGCCTGTGCCTCTTCAGCTACCACCGCTTGAGAGACTTACTCTTGATTG
TAGCGAGGATTGTGGAACTCTGGGACGCAGGGGGTGGGAAGGCCCTCAAGTA
TTGGTGGAAATCTCCTGCAGTATTGGAGTCAGGAGCTAAAGAGTAGTGCTGTT
AGTTTGTAAATGCCACAGCAATAGCAGTAGCTGAAGGGACAGATAGGATTA
TAGAAATAGTACAAAGAATTTTAGAGCTGTAATTCACATACCTAGAAGAAT
AAGACAGGGCTTGGAGAGGGCTTACTATAA

FIG. 40B
(SEQ ID NO:53)

gp120.modUS4

GAATTGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGCTGCTGTGGAGCA
GTCTCGTTGCCAGGCCACCACCGTGTGGGTGACCGTGTACTACGGCGTCCCCGTG
TGGAAGGAGGCCACCACCAACCCCTGTTCTGCCAGCGACGCCAAGGTTACAAGGCCAGGC
CCACAACGTGTGGGCCACCCACGCCCTGCGTGCCTGCCACCGACCCCAACCCCCAGGAGGTGAACC
TGACCAACGTGACCGAGAACTTCAACATGTGGAAGAACAAACATGGTGGAGCAGATGCATGAG
GACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTGAAGCTGACCCCCCTGTGCGTG
ACCTGAACCTGACCGACAAGCTGACCGCAGCACCAACGGCACCAACAGCACCCAGCGCAC
CAACAGCACCAGCGGCCACCAACAGCACCAACAGCACCGACAGCTGGGAGAAGATG
CCCGAGGGCGAGATCAAGAACCTGCAGCTTCAACATCACCACCGCGTGCACAGGTGCA
GAAGGAGTACAGCCTGTTCTACAAGCTGACGTGGTGCCTATGACAACGACAACGCCAGCT
ACCGCCTGATCAACTGCAACACCAACAGCGTGATACCCAGGCCTGCCCAAGGTGAGCTTCGAGC
CCATCCCCATCCACTACTGCGCCCCCGCCGGCTTCGCATCCTGAAGTGCAAGGACAAGAAGT
TCAACGGCACCGCCCCCTGCAAGAACGTGAGCACCGTGCAGTGCACCCACGGCATCCGCCCC
GTGGTGAGCACCCAGCTGCTGCTGAACGGCAGCCTGGCCGAGGAGGAGATCGTGCCTGCGCTC
CGAGAACTTCAACGACAACGCCAAGACCATCATCGTCAGCTGAACGAGTCCGTGGAGATCA
ACTGCATCCGCCCCAACAAACACCGTAAGAGCATCCACATCGGCCCCGGCCGCCTCT
ACGCCACCGCGACATCATCGCGACATCCGCCAGGCCACTGCAACACATCAGCAAGGCCAAC
TGGACCAACACCTCGAGCAGATCGTGGAGAAGCTGCGCGAGCAGTTCGGCAACAAACAAGAC
CATCATCTTCAACAGCAGCAGCGGGCGGCCACCCGAGATCGTGTCCACAGCTTCAACTGCGG
CGCGAGTTCTTCACTGCAACACCAACAGCAGCTGTTCAACAGCACCTGGAACATCACCGAGGA
GGTGAAACAAGACCAAGGAGAACGACACCATCATCTGCCCTGCCATCCGCCAGATCATCA
ACATGTGGCAGGAGGTGGCAAGGCCATGTACGCCCTCCATCCGCCAGATCAAGTGC
AGCAGCAATATTACCGGCCTGCTGCTGACCCCGCAGCGGGACCAACAAACAACCGCACCAA
CGACACCGAGACCTCCGCCCGGGCAACATGAAGGACAACGGCGAGCAGGAGCTGT
ACAAGTACAAGGTGGTGCATCGAGCCCCCTGGCGTGGCCCCACCCAGGCCAAGCGCCGC
GTGGTGAGCGAGAACGCTAAGATACTGGATCCTCTAGA

FIG. 41

(SEQ ID NO:54)

gp120.mod.US4.del128-194

GAATTGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGCTGCTGTGTGG
AGCAGTCTCGTTGCCAGGCCACCACCGTGTGGTGGGTGACCGTGTACTACGGCG
TGCCCGTGTGGAAGGAGGCCACCACCCCTGTTCTGCGCCAGCGACGCCAAGGCTTAC
AAGGCCGAGGCCACAACGTGTGGGCCACCCACGCCCTGCGTGCCTGCCACCGACCCCAACCC
CCAGGAGGTGAACCTGACCAACGTGACCGAGAACTTCAACATGTGGAAGAACAAACATGG
TGGAGCAGATGCATGAGGACATCATCAGCCTGTGGGACCAGAGCCTGAAGGCCCTGCGTG
AAGCTGACCCCCCTGTGCGTGGGGCAGGGAACTGCGAGACCAGCGTGTACCCAGGC
CTGCCCAAGGTGAGCTCGAGCCCATCCCCATCCACTACTGCGCCCCGCCGGCTTCG
CCATCCTGAAGTGAAGGACAAGAACGTTCAACGGCACCGGCCCTGCAAGAACGTGAGC
ACCGTGCAGTGCACCCACGGCATCCGCCCGTGGTGAAGCAGCTGCTGTAACGG
CAGCCTGGCGAGGAGGAGATCGTGTGCGCTCCGAGAACCTCACCGACAACGCCAAGA
CCATCATCGTGCAGCTGAACGAGTCCGTGGAGATCAACTGCATCGCCCCAACAAAC
ACCGTGAAGAGCATCCACATCGGCCCGGCCCTACGCCACCGCGACATCAT
CGGCCACATCCGCCAGGCCACTGCAACATCAGCAAGGCCACTGGACCAACACCCCTCG
AGCAGATCGTGGAGAACGCTGCGCGAGCAGTCTGGCAACAACAAGACCATCATCTCAAC
AGCAGCAGCGCGGGCGACCCCGAGATCGTGTCCACAGCTCAACTGCGGCGGCGAGTT
CTTCTACTGCAACACCAGCCAGCTGTTCAACAGCACCTGGAACATCACCGAGGAGGTGA
ACAAGACCAAGGAGAACGACACCATCATCCTGCCCTGCCATCCGCCAGATCATCAAC
ATGTGGCAGGAGGTGGCAAGGCCATGTACGCCCTGCCATCCGCCAGATCAAGTG
CAGCAGCAATATTACCGGCTGCTGCAACCGCGACGGCGGACCAACAACCGCA
CCAACGACACCGAGACCTCCGCCCGCGCGCAACATGAAGGACAACGGCAGC
GAGCTGTACAAGTACAAGGTGGTGCATCGAGGCCCTGGCGTGGCCCCCAGGC
CAAGGCCCGTGGTGCAGCGCAGAACGCTAAGATATCGGATCCTCTAGA

FIG. 42

(SEQ ID NO:55)

55 / 131

gp140.modUS4

GAATTGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGCTGCTGTGGAGCA
GTCTTCGTTGCCAGGCCACCACCGTCTGCTGGGTGACCGTGTACTACGGCGTGCCCGTG
TGGAAAGGAGGCCACCACCCACCGCTGCTGCCAGCGACGCCAAGGCTAACAGGCCAGGC
CCACAACGTGTGGGCCACCCACGCCCTGCGTGCCTGCCACCGACCCCCAACCCCCAGGAGGTGAACC
TGACCAACGTGACCGAGAACTTCAAACATGTGGAAGAACAAACATGGTGGAGCAGATGCATGAG
GACATCATCAGCCTGTGGGACCAGAGCCTGAAGGCCCTGCGTGAAGCTGACCCCCCTGCGTG
ACCTGAACCTGACCGACAAGCTGACCGCAGCACCAACGGCACCAACAGCACCGGGCAC
AACAGCACCAAGCGGACCAACAGCACCAACAGCACCGACAGCTGGAGAAGATG
CCCGAGGGCAGATCAAGAACTGCAAGCTTCAACATCACCACCGCTGCGCACAAGGTGCA
GAAGGAGTACAGCCTGTTCTACAAGCTGGACGTGGTGCCTGACAAAGACAACGCCAGCT
ACCGCCTGATCAACTGCAACACCAGCGTGTACCCCAGGCTGCCCAAGGTGAGCTTCGAGC
CCATCCCCATCCACTACTGCGCCCCCGCCGGCTCGCCATCCTGAAGTCAAGGACAAGAAGT
TCAACGGCACCGGCCCTGCAAGAACGTGAGCACCGTCACTGCACCCACGGCATCCGCC
GTGGTGAGCACCCAGCTGCTGTAACGGCAGCCTGGCGAGGAGGAGATCGTGTGCGCTC
CGAGAACTTACCGACAACGCCAAGACCATCTGTCAGCTGAACGAGTCCGTGGAGATCA
ACTGCATCCGCCCCAACAAACACCGTAAGAGCATCCACATCGGCCCCGGCGCGCTTCT
ACGCCACCGCGACATCATCGCGACATCCGCCAGGCCACTGCAACATCAGCAAGGCCAAC
TGGACCAACACCTCGAGCAGATCGTGGAGAACGCTGCGCAGCAGTTCGGCAACAACAAGAC
CATCATCTTCAACAGCAGCAGCGCGCGCACCCAGAGATCGTGTCCACAGCTTCAACTGCGG
CGGCAGTTCTACTGCAACACCAAGCCAGCTGTTAACAGCACCTGGAACATACCGAGGA
GGTGAACAAGACCAAGGAGAACGACACCATCATCCTGCCCTGCCGATCCGCCAGATCATCA
ACATGTGGCAGGAGGTGGCAAGGCCATGTAACGCCCCCCCACATCCGCCAGATCAAGTGC
AGCAGCAATTACCGCCTGCTGTAACCGCGACGGCGCACCAACAAACAACCGCACCAA
CGACACCGAGACCTCCGCCCCGGCGCAACATGAAGGACAACCTGGCGCAGCGAGCTGT
ACAAGTACAAGGTGGCGCATCGAGCCCCCTGGCGTGGCCCCCACCCAGGCCAGCGCCGC
GTGGTGCGAGCGCAGAACGCGCCGTGGCGCCCTGTTCATCGGCTTCTGGCGCC
GCCGGAGCACCATGGCGCCGCCCTCGTGAACCGTACCGTCAAGGCCAGCTGCTGAG
CGGCATCGTCAGCAGCAGAACAAACCTGCTGCGCCATCGAGGCCAGCAGCACCTGCTGC
AGCTGACCGTGTGGGCATCAAGCAGCTGCAAGGCCATCTGGCGTGGAGCGCTACCTG
AAGGACGAGCTGCTGGGCATCTGGGCTGCAAGGCCAGCTGATCTGCACCAACCGT
GCCCTGGAAACAGCAGCTGGAGAACAAAGAGGCCAGCGAGATCTGGGACAACATGACCTGGA
TGGAGTGGGAGCGCGAGATCGGCAACTACACCGCCTGATCTAACCTGATCGAGATGCC
CAGAACCGAGCAGGAGAACAGAGCAGGAGCTGCTGGAGCTGGACAAGTGGGCCAGCCTGT
GGAACACTGGTTCGACATACCAACTGGCTGTTACATCTAAGATATCGGATCCTCTAGA

FIG. 43

(SEQ ID NO:56)

gp140.mut.modUS4

GAATTCGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGCTGCTGTGGAGCA
GTCTTCGTTGCCAGGCCACCGTGTGCTGGGTGACCGTGTACTACGGCGTCCCCGTG
TGGAAAGGAGGCCACCAACCACCTGTTCTGCGCCAGCGACGCCAAGGCTTACAAGGCCGAGGC
CCACAACTGTGGGCCACCCACGCCCTGCGTGTGCCCACCGACCCCAACCCCAAGGAGGTGAACC
TGACCAACCTGACCGAGAACTTCAACATGTGGAAGAACAAACATGGTGGAGCAGATGATGAG
GACATCATCAGCCTGTGGGACCAAGGCCTGAAGGCCCTGCGTGAAGCTGACCCCCCTGCGTG
ACCTGAACTGCACCGACAAGCTGACCGGAGCACCAACGGCACCAACAGCACCAAGCGGCAC
AACAGCACAGCGGACCAACAGCACCAACAGCACCGACAGCTGGGAGAAGATG
CCCGAGGGCGAGATCAAGAACTGCAGCTTCAACATCACCACCGCGTGCACAAAGGTGCA
GAAGGAGTACAGCCTGTTCTACAAGCTGGACGTGGTGCCTCATCGACAACGACAACGCCAGCT
ACCGCCTGATCAACTGCAACACCAACAGCGTGTACCCAGGCCTGCCCCAAGGTGAGCTTCGAGC
CCATCCCCATCCACTACTGCGCCCCCGCCGGCTTCGCCATCCTGAAGTGCAGGACAAGGACAAGAAGT
TCAACGGCACCGGCCCTGCAAGAACGTGAGCACCGTGCAGTGCACCCACGGCATCCGCC
GTGGTGAGCACCCAGCTGCTGTAACGGCAGCCTGGCGAGGAGGAGATCGTGCCTGCGCTC
CGAGAACTTACCGACAACGCCAAGACCATCATCGTCAGCTGAAGCAGTCCGTGGAGATCA
ACTGCATCCGCCCCAACAAACACCGCTAACAGCATCCACATCGGCCCCGGCGCCCTTCT
ACGCCACCGCGACATCATCGCGACATCCGCCAGGCCACTGCAACATCAGCAAGGCCAAC
TGGACCAAACACCTCGAGCAGATCGTGGAGAACGCTGCGCGAGCAGTTCGGCAACAAAGAC
CATCATCTTCAACAGCAGCAGCGCGGGCGACCCCGAGATCGTGTCCACAGCTCAACTGC
CGGCGAGTTCTTCACTGCAACACCAAGCCAGCTTCAACAGCACCTGGAACATCACCGAGGA
GGTGAACAAGACCAAGGAGAACGACACCATCATCTGCCCTGCCGATCCGCCAGATCATCA
ACATGTGGCAGGAGGTGGCAAGGCCATGTACGCCCTGCCGATCCGCCAGATCAAGTGC
AGCAGCAATTACCGGCTGCTGACCCCGACGGCGGACCAAACAAACACCGCACCAA
CGACACCGAGACCTTCCGCCCCGGCGGCAACATGAAGGACAACCTGGCGAGCGAGCTGT
ACAAGTACAAGGTGGCGATCGAGCCCTGGCGTGGCCCTGCCGACCGCCAGCTGAG
GTGGTGAGCGAGAACGAGCGCCGTGGCGTGGCCCTGTTCATGGCTTCTGGCGCC
GCCGGGAGCACCATGGCGCCGCCCTCGTGAACCTGACCGTGCAGGCCAGCTGAG
CGGCATCGTCAGCAGCAGAACAAACCTGCTGCGGCCATCGAGGCCAGCAGCACCTGCTGC
AGCTGACCGTGTGGGCATCAAGCAGCTGCAAGGCCATCCTGGCGTGGAGCGCTACCTG
AAGGACGAGCTGCTGGCATCTGGGCTGCAAGCGAACGCTGATCTGCACCAACCGT
GCCCTGGAACAGCAGCTGGAGCAACAAGAGCTGACCGAGATCTGGACAACATGACCTGGA
TGGAGTGGGAGCGCGAGATCGGCAACTACACCGGCTGATCTACAACCTGATCGAGATGCC
CAGAACCGAGCAGGAGAAGAACGAGCAGGAGCTGCTGGAGCTGGACAAGTGGCCAGCCTGT
GGAACCTGGTTCGACATACCAACTGGCTGTTACATCTAAGATATCGGATCCTCTAGA

FIG. 44

(SEQ ID NO:57)

gp140.TM.modUS4

GAATTGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGCTGCTGCTGTGGAGCA
 GTCTTCGTTTCGCCAGGCCACCACCGTGCCTGTTCTGCCAGCGACGCCAAGGCTTA
 CAAGGCCAGGC
 TGGAAGGAGGCCACCACCCACTGCTGCCACCGACCCCAACCCCCAGGAGGTGAACC
 CCACAACGTGTCGGCCACCCACGCCCTGCGTGCCTGCCACCGACCCCAACCCCCAGGAGGTGAACC
 TGACCAACGTGACCGAGAACTTCAACATGTGGAAGAACAAACATGGTGAGCAGATGCATGAG
 GACATCATCAGCTGTGGACCAGAGCCTGAAGCCCTGCGTGAAGCTGACCCCCCTGCGTGC
 ACCCTGAACTGCACCAGACAAGCTGACCGCAGCACCAACGGCACCAACAGCACCGAC
 AGCTGGAGAAGATG
 CAACAGCACCAGCGCACCAACAGCACCAACAGCACCGACAGCACCGACAGCTGGAGAAGATG
 CCCGAGGGCGAGATCAAGAACTGCAGCTCAACATCACCAACCGAGCGTGCAGCAAGGTGCA
 GAAGGGAGTACAGCCTGTTCTACAAGCTGGACGTGGTGCCTCGACAAAGACAACGCCAGCT
 ACCGCCTGATCAACTGCAACACCAAGCGTGTACCCAGGCCCTGCCCAAGGTGAGCTTCGAGC
 CCATCCCCATCCACTACTGCCCCCGCCGGCTCGCATCTGAAGTGAAGGACAAGAAGT
 TCAACGGCACCGGCCCTGCAAGAACGTGAGCACCGTGCAGTGACCCCACGGCATCCGCC
 GTGGTGAGCACCCAGCTGCTGTAACGGCAGCCTGGCGAGGAGGAGATCGTGC
 CGCTCG
 CGAGAACTTCAACGACAAGCCAAGACCATCATCGTCAGCTGAACGAGTCCGTGAGATCA
 ACTGCATCCGCCAACAAACACCGCTAACAGAGCATCCACATCGGCCCGGCCGCTTCT
 ACGCCACCGCGACATCATCGCGACATCCGCCAGGCCACTGCAACATCAGCAAGGCCAAC
 TGGACCAACACCCCTGAGCAGATCGTGGAGAACGAGCTGCGCAGCAGTCCGCAACAAACAAGAC
 CATCATCTTCAACAGCAGCAGCGCGGCCACCCGAGATCGTGTCCACAGCTTCAACTGC
 CGCGAGTTCTACTGCAACACCAAGCCAGCTGTTCAACAGCACCTGGAACATACCGAGGA
 GGTGAACAAGACCAAGGAGAACGACACCATCATCTGCCCTGCCGATCCGCCAGATCATCA
 ACATGTGGCAGGAGGTGGCAAGGCCATGTACGCCCTGCCGAGATCAAGTGC
 AGCAGCAATTACCGGCCCTGCTGCTGACCCGCGACGGCGAACAAACAACCGCACCAA
 CGACACCGAGACCTCCGCCCGCGCAACATGAAGGACAACCTGGCGAGCGAGCTGT
 ACAAGTACAAGGTGGCGCATCGAGCCCCCTGGGCGTGGCCCCCACCCAGGCAAGCGCCGC
 GTGGTGCGCGAGAACGCGCCGTGGCCTGGCGCCCTGTTCATCGGCTTCTGGCGCC
 GCCGGGAGCACCATGGCGCCCTCCGTGACCGTGCAGGCCAGCTGCTGAG
 CGGCATCGTGCAGCAGCAGAACAAACCTGCTGCGGCCATCGAGGCCAGCAGCACCTGCTGC
 AGCTGACCGTGTGGGATCAAGCAGCTGCAAGGCCCATCTGGCGTGGAGCGCTACCTG
 AAGGACCAAGCAGCTGCTGGGATCTGGGCTGAGCGCAAGCTGATCTGCAACCAACCGT
 GCCCTGGAAACAGCAGCTGGAGCAACAAAGAGCCTGACCGAGATCTGGGACAACATGACCTGGA
 TGAGTGGGAGCGCAGATCGCAACTACACCGCCCTGATCTACAACCTGATCGAGATCGCC
 CAGAACCGAGCAGGAGAACAGAGCAGGAGCTGCTGGAGCTGGACAAGTGGGCCAGCCTGT
 GGAACCTGGGTCGACATCACCAACTGGCTGTGGTACATCCGATCTCATGATCGTGGCG
 GCCTGATCGGCCCTGCGCATCGTGTTCGCCGTGCTGAGCATCGTGAAGATACTGGATCCTTA
 GA

FIG. 45

(SEQ ID N:58)

Gp140modUS4.DV1V2

GAATTGCCACCATGGATGCAATGAAGAGAGGGCTTGCTGTGCTGCTGC
TGTGTGGAGCAGTCTCGTTGCCAGGCCACCACCGTGTGGTGGGTGACC
GTGTACTACGGCGTGCCGTGTGAAAGGAGGCCACCACCCCTGTTCTGCG
CCAGCGACGCCAAGGCTTACAAGGCCAGGCCACAAACGTGTGGGCCACCCA
CGCCTGCGTGCACCCACCACCCAAACCCCGAGGAGGTGAACCTGACCAACGTG
ACCGAGAACCTCAACATGTGGAAGAACAAACATGGTGGAGCAGATGCATGAG
GACATCATCAGCCTGTGGGACCAGAGCCTGAAGGCCCTGCGTGGGCCCGGCC
AGGCCTGCCCAAGGTGAGCTCGAGCCCATCCCCATCCACTACTGCGCCCC
CGCCGGCTTCGCCATCCTGAAGTGAAGGACAAGAACGTTCAACGGCACCGGC
CCCTGCAAGAACGCTGAGCACCGTGAGTGCACCCACGGCATCCGCCCGTGG
TGAGCACCCAGCTGCTGTAACGGCAGCCTGGCCAGGAGGAGATCGTGT
GCGCTCCGAGAACCTCACCGACAACGCCAACGACATCATCGTCAGCTGAAC
GAGTCCGTGGAGATCAACTGCATCCGCCAACAACAAACACCGCGTAAGAGCA
TCCACATCGGCCCCGGCCGCCTTCTACGCCACCAGCGACATCATCGCGA
CATCCGCCAGGCCACTGCAACATCAGCAAGGCCACTGGACCAACACCCCTC
GAGCAGATCGTGGAGAACAGCTGCGCGAGCAGTTGGCAACAAACAGACCATC
ATCTTCAACAGCAGCAGCGGGCGACCCGAGATCGTGTCCACAGCTTCA
ACTGCGCGGGCGAGTTCTACTGCAACACCAAGCCAGCTGTTCAACAGCAC
CTGGAACATCACCGAGGAGGTGAACAAGACCAAGGAGAACGACACCATCAT
CCTGCCCTGCCGCATCCGCCAGATCATCAACATGTGGCAGGAGGTGGCAAG
GCCATGTACGCCCCCCCCCATCCGCCAGATCAAGTGCAGCAGCAATATTA
CCGGCCTGCTGCTGACCCCGACGGCGGCCAACAAACACCGCACCAACGA
CACCGAGACCTCCGCCGGCGGGCAACATGAAGGACAACGGCGCAGC
GAGCTGTACAAGTACAAGGTGGTGCAGCGAGCAGTGTGGCAGGAGGTGGCCTGG
CCGAGGCCAAGCGCCGCGTGGTGCAGCGAGAAGCGCGCCGTGGCCTGG
GCGCCCTGTTCATCGGCTTCCCTGGCGCCGGAGCACCATGGCGCCGC
CTCCGTGACCCGTGACCGTGAGGCCAGCTGCTGAGCGGCATCGTGCAG
CAGCAGAACACCTGCTGCGGCCATCGAGGCCAGCAGCACCTGCTGCAGC
TGACCGTGTGGGCATCAAGCAGCTGCAGGCCGATCTGGCGTGGAGCG
CTACCTGAAGGACCAAGCAGCTGCTGGCATTGGGCTGCAAGCGCAAGCTG
ATCTGCACCAACCGTGCCCTGGAACAGCAGCTGGAGCAACAAAGAGCCTGA
CCGAGATCTGGACAACATGACCTGGATGGAGTGGAGCGAGATCGGCA
ACTACACCGGCCTGATCTACAACCTGATCGAGATGCCAGAACACCAGAGGA
GAAGAACGAGCAGGAGCTGCTGGAGCTGGACAAGTGGGCCAGCCTGTGGAA
CTGGTTGACATACCAACTGGCTGTGGTACATCTAAGATATCGGATCCTCTA
GA

FIG. 46
(SEQ ID NO:59)

Gp140modUS4.DV2

GAATTGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCTGC
TGTGTGGAGCAGTCTCGTTGCCAGCGCCACCACCGTGTGTGGGTGACC
GTGTACTACGGCGTGCCGTGTGAAAGGAGGCCACCACCCCTGTTCTGCG
CCAGCGACGCCAAGGCTTACAAGGCCGAGGCCACAAACGTGTGGGCCACCCA
CGCCTGCGTGCCACCAGCCCCAACCCCCCAGGAGGTGAACCTGACCAACGTG
ACCGAGAACTTCAACATGTGGAAGAACAAACATGGTGGAGCAGATGCATGAG
GACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTGAAGCTGACCC
CCCTGTGCGTGAACCTGAACTGCACCGACAAGCTGACCGGCAGCACCAACGG
CACCAACAGCACCGACAGCTGGGAGAAGATGCCGAGGGCAGATCAAGAA
CTGCAGCTTCAACATCGGCGCCGGCGCTGATCAACTGCAACACCAGCGT
ATCACCCAGGCCTGCCCAAGGTGAGCTTGAGGCCATCCCCATCCACTACT
GCGCCCCCGCCGCTTCGCCATCCTGAAGTGAAGGACAAGAAGTTCAACGG
CACCGGGCCCCTGCAAGAACGTGAGCACCCTGCGACTGCACCCACGGCATCCGC
CCCGTGGTGAGCACCCAGCTGCTGTAACGGCAGCCTGGCCGAGGAGGAGA
TCGTGCTGCGCTCCGAGAACTTCACCGACAACGCCAAGACCATCATCGTCA
GCTGAACGAGTCCGTGGAGATCAACTGCATCCGCCAACAAACAACACGCGT
AAGAGCATCCACATCGGCCCCGGCGCGCCTTCTACGCCACCGGCGACATCA
TCGGCGACATCCGCCAGGCCACTGCAACATCAGCAAGGCCAAGTGGACCAA
CACCCCTGAGCAGATCGGAGAAGCTGCGCAGCAGTCGGCAACAACAA
GACCATCATCTTCAACAGCAGCAGCGGGCGACCCGAGATCGTGTCCAC
AGCTTCAACTGCAGCGGAGTTCTTCACTGCAACACCCAGCCAGCTGTTCAA
CAGCACCTGGAACATCACCGAGGAGGTGAACAAGACCAAGGAGAACGACAC
CATCATCCTGCCCTGCCGATCCGCCAGATCATCAACATGTGGCAGGAGGTG
GGCAAGGCCATGTACGCCCTGCCAGATCAAGTGCAGCAGCA
ATATTACCGGCCTGCTGACCCCGCAGGGCGACCAACAACAACCGC
CAACGACACCGAGACCTCCGCCGGCGGCAACATGAAGGACAAC
GCGCAGCGAGCTGTACAAGTACAAGGTGGTGCAGCAGCCCTGGCGTG
GCCGCCACCCAGCCAAGCGCCGCGTGCAGGCCAGCTGAGCAGCAG
GGCCTGGCGCCCTGTTCATCGGCTTCTGGCGCCGCCGGAGCACCAG
GCGCCGCCCTCCGTGACCGTGACCGTGAGGCCAGCTGAGCAGCAG
CGTGCAGCAGCAGAACAAACCTGCTGCGGCCATCGAGGCCAGCAGCAC
CTGCAGCTGACCGTGTGGGCATCAAGCAGCTGCAGGCCGCATCTGGCG
TGGAGCGCTACCTGAAGGACCAAGCAGCTGCTGGCATCTGGGCTGCAGCG
CAAGCTGACCGAGATCTGGGACAACATGACCTGGATGGAGTGGAGCGCGAG
AGCCTGACCGAGATCTGGGACAACATGACCTGGATGGAGTGGAGCGCGAG
ATCGGCAACTACACCGGCTGATCTACAACCTGATCGAGATGCCAGAAC
AGCAGGAGAAGAACGAGCAGGAGCTGCTGGAGCTGGACAAGTGGGCCAGCC
TGTGGAACTGGTTGACATACCAACTGGCTGTGGTACATCTAAGATATCGG
ATCCTCTAGA

FIG. 47
(SEQ ID NO:60)

Gp140modmutUS4.DV1V2

GAATTGCCACCATGGATGCAATGAAGAGAGGGCTTGCTGTGCTGCTGC
TGTGTGGAGCAGTCCTCGTTGCCAGCGCCACCACCGTGTGGTGGGTGACC
GTGTACTACGGCGTCCCCGTGTGGAAGGAGGCCACCACCCCTGTTCTGCG
CCAGCGACGCCAAGGCTTACAAGGCCAGGCCACAAACGTGTGGCCACCC
ACGCCTGCGTGCCCACCGACCCCAACCCCCAGGAGGTGAACCTGACCAACGT
GACCGAGAACTTCAACATGTGGAAGAACAAACATGGTGGAGCAGATGCATGA
GGACATCATCAGCTGTGGGACCAGAGCCTGAAGCCCTGCGTGGGCCGGC
CAGGCCTGCCCAAGGTGAGCTCGAGCCCCTCCACTACTGCGCC
CCGCCGGCTTCGCCATCCTGAAGTGAAGGACAAGAACGTTAACGGCACCGG
CCCCCTGCAAGAACGTGAGCACCGTGCAGTGCACCCACGGCATCCGCCCCGTG
GTGAGCACCCAGCTGCTGTAACGGCAGCCTGGCCAGGAGGAGATCGTGC
TGCCTCCGAGAACTTACCGACAACGCCAAGACCATCATCGTGCAGCTGAA
CGAGTCCTGTGGAGATCAACTGCATCCGCCAACAAACACACGCGTAAGAGC
ATCCACATCGGCCCGGCCGCTTCTACGCCACCGCGACATCATCGCG
ACATCCGCCAGGCCACTGCAACATCAGCAAGGCCACTGGACCAACACCC
CGAGCAGATCGTGGAGAAAGCTGCGCGAGCAGTCGGCAACAACAAGACCAT
CATCTTCAACAGCAGCAGCGGGCGGCCAGATCGTGTTCACAGCTTC
AACTGCGGCGGGAGTTCTTACTGCAACACCAAGCCAGCTGTTCAACAGCA
CCTGGAACATCACCAGGGAGGTGAACAAAGACCAAGGAGAACGACACCATCA
TCCCTGCCCTGCCGATCCGCCAGATCATCAACATGTGGCAGGAGGTGGCAA
GGCCATGTACGCCCGGCCATCCGGGCCAGATCAAGTGCAGCAGCAATATT
ACCGGCCTGCTGCTGACCCCGACGGCGGCCACCAACAACACCGCACCAACG
ACACCGAGACCTCCGCCGGCGGCCAGATGAAGGACAACGGCGCA
GCGAGCTGTACAAGTACAAGGTGGTGCAGCGAGAACAGCGCCGTGGCCT
CACCCAGGCCAAGCGCCGTGGTGCAGCGAGAACAGCGCCGTGGCCT
GGGCGCCCTGTTCATCGGCTTCTGGCGCCGGAGCACCATGGCGCC
GCCTCCGTGACCTGACCGTGCAGGCCAGCTGCTGAGCGGCATCGTGC
AGCAGCAGAACAAACCTGCTGCGGCCATCGAGGCCAGCAGCACCTGCTGCA
GCTGACCGTGTGGGCATCAAGCAGCTGCAGGCCGCATCTGGCGTGGAG
CGCTACCTGAAGGACCAAGCAGCTGCTGGGCATCTGGGCTGCAGCGCAAGC
TGATCTGCACCAACCACCGTGCCTGGAACAGCAGCTGGAGCAACAAGAGCT
GACCGAGATCTGGGACAACATGACCTGGATGGAGTGGAGCGCGAGATCGG
CAACTACACCGCCCTGATCTACAAACCTGATCGAGATCGCCAGAACACAGCAG
GAGAAGAACGAGCAGGAGCTGCTGGAGCTGGACAAGTGGGCCAGCCTGTGG
AACTGGTCGACATACCAACTGGCTGTGGTACATCTAAGATATCGGATCCTC
TAGA

FIG. 48
(SEQ ID NO:61)

gp140.mod.US4.del128-194

GAATTGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGCTGCTGTGTGG
AGCAGTCTCGTTGCCAGGCCACCACCGTCTGTGGGTGACCGTGTACTACGGCG
TGCCCCTGGAAGGAGGCCACCACCCCTGTTCTGCAGCAGCCAAGGCTTAC
AAGGCCGAGGCCACAACGTGTGGGCCACCCACGCTGCGTGCCTGACCCACCC
CCAGGAGGTGAAACCTGACCAACGTGACCGAGAACCTCAACATGTGGAAGAACACATGG
TGGAGCAGATGCATGAGGACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTG
AAGCTGACCCCCCTGTGCGTGGGGCAGGGAACTGCGAGACCAGCGTGTACCCAGGC
CTGCCCAAGGTGAGCTCGAGCCCATCCCCATCCACTACTGCGCCCCGCCGGCTCG
CCATCCTGAAGTGAAGGACAAGAAGTTCAACGGCACCGGCCCTGCAAGAACGTGAGC
ACCGTCAGTGCACCCACGGCATCCGCCCGTGGTGAGCACCCAGCTGCTGCTGAACGG
CAGCCTGGCGAGGAGGAGATCGTGTGCGCTCCGAGAACCTCACCGACAACGCCAAGA
CCATCATCGTCAGCTGAACGAGTCCGTGGAGATCAACTGCATCCGCCCAACAAAC
ACCGTAAGAGCATCCACATCGGCCCGGCCCTTCTACGCCACCGCGACATCAT
CGCGACATCCGCCAGGCCACTGCAACATCAGCAAGGCCACTGGACCAACACCCCTG
AGCAGATCGTGGAGAAGCTGCGCAGCAGTTGGCAACAACAAGACCATCATCTTCAAC
AGCAGCAGCGCGGGGACCCCGAGATCGTGTCCACAGCTCAACTGCGCGGGAGTT
CTTCTACTGCAACACCAAGCCAGCTGTTCAACAGCACCTGGAACATCACCAGGAGGTGA
ACAAGACCAAGGAGAACGACACCATCATCTGCCCTGCCGATCCGCCAGATCATCAAC
ATGTGGCAGGAGGTGGCAAGGCCATGTACGCCCTCCATCCGCCAGATCAAGTG
CAGCAGCAATATTACCGCCTGCTGCTGACCCGCGACGGCGGCCACCAACAACCGCA
CCAACGACACCGAGACCTCCGCCCGGCCGGCAACATGAAGGACAACGGCAGC
GAGCTGTACAAGTACAAGGTGGCGCATCGAGCCCTGGCGTGGGCCACCCAGGC
CAAGCGCCGCGTGGTGCAGCGCGAGAACGGCGCCGTGGGCCCTGGCGCCCTGTTCATCG
GCTTCTGGCGCCGCCGGGAGCACCATGGCGCCCTCCGTGACCCCTGACCGTGCAG
GCCCGCCAGCTGCTGAGCGCATCGTAGCAGCAGCAGAACACCTGCTGCGGCCATCGA
GGCCCGAGCAGCACCTGCTGCGACTGACCGTGTGGGCATCAAGCAGCTGCAGGCCGCA
TCCTGGCGTGGAGCGCTACCTGAAGGACCAAGCAGCAGCTGCTGGGCATCTGGGCTGCAGC
GGCAAGCTGATCTGCACCAACCGTCCCTGGAACAGCAGCTGGAGCAACAAGAGCCT
GACCGAGATCTGGACAACATGACCTGGATGGAGTGGAGCGCGAGATCGGCAACTACA
CCGGCCTGATCTACAACCTGATCGAGATCGCCAGAACAGCAGGAGAAGAACGAGCAG
GAGCTGCTGGAGCTGGACAAGTGGGCCAGCCTGTGGAACTGGTTCGACATACCAACTG
GCTGTGGTACATCTAAGATATCGGATCCTCTAGA

FIG. 49
(SEQ ID NO:62)

62 / 131

gp140.mut.mod.US4.del128-194

GAATTGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCTGCTGTGTGG
AGCAGTCTCGTTGCCAGGCCACCACCGTGTGGTGTGGTGTACTACGGCG
TGCCCCTGGAAGGAGGCCACCACCCACCGCTGCCTGCCCCACCGACCCAAAGGCTTAC
AAGGCCGAGGCCACAACGTGTGGGCCACCCACGCCCTGCTGCCCCACCGACCCAAACCC
CCAGGAGGTGAACCTGACCAACGTGACCGAGAACATTCAACATGTGGAAGAACAAACATGG
TGGAGCAGATGCATGAGGACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTG
AAGCTGACCCCCCTGTGCGTGGGGCAGGGAACTGCGAGACCAGCGTGTACCCAGGC
CTGCCCAAGGTGAGCTCGAGCCCATCCCCATCCACTACTGCGCCCCGCCGGCTTCG
CCATCCTGAAGTCAAGGACAAGAACAGTCAACGGCACCGGCCCTGCAAGAACGTGAGC
ACCGTGCAGTGCACCCACGGCATCCGCCCTGTTGAGCACCCAGCTGCTGCTGAACGG
CAGCCTGGCCGAGGAGGAGATCGTGTGCGCTCCGAGAACATTCAACGCCAACGCAAAGA
CCATCATCGTGAGCTGAACGAGTCCGTGGAGATCAACTGCATCCGCCCTAACAAAC
ACCGTAAGAGCATCCACATCGGCCCGGCCCTTCTACGCCACCGGCACATCAT
CGGCCACATCCGCCAGGCCACTGCAACATCAGCAAGGCCACTGGACCAACACCCCTCG
AGCAGATCGTGGAGAAGCTGCCGAGCAGTCCGAACAAAGACCATCATCTCAAC
AGCAGCAGCGCGGGGACCCCGAGATCGTGTCCACAGCTCAACTGCGCGGAGTT
CTTCTACTGCAACACCCAGCCAGCTGTTCAACAGCACCTGGAACATCACCAGGAGGTGA
ACAAGACCAAGGAGAACGACACCATCATCCTGCCCTGCCATCCGCCAGATCATCAAC
ATGTGGCAGGAGGTGGCAAGGCCATGTACGCCCTGGCGTGGGCCACCAACAACCGCA
CAGCAGCAATTACCGGCCTGCTGCTGACCCGCGACGGCGGCCAGATCAAGTGA
CCAACGACACCGAGACCTCCGCCCGGCCAGACATGAAGGACAACGGCGCAGC
GAGCTGTACAAGTACAAGGTGGTGCACATCGAGCCCTGGCGTGGGCCACCCAGGC
CAAGCGCCCGTGGTGCAGCGAGAACAGAGCGCCGTGGCGCTGGCGCCCTGTCATCG
GCTTCCTGGCGCCGCCGGGAGCACCATGGCGCCCTCCGTGACCCCTGACCGTGCAG
GCCGCCAGCTGCTGAGCGCATCGCAGCAGCAGAACACCTGCTGCGGCCATCGA
GGCCCGAGCAGCACCTGCTGAGCGTGTGGGCATCAAGCAGCTGCAGGCCCGCA
TCCTGGCGTGGAGCGCTACCTGAAGGACCGAGCAGCTGCTGGGCATCTGGGCTGCAGC
GGCAAGCTGATCTGACCAACACCACCGTGCCTGGAACAGCAGCTGGAGCAACAAGAGCCT
GACCGAGATCTGGACAACATGACCTGGATGGAGTGGAGCGCAGATCGGCAACTACA
CCGGCCTGATCTACAACCTGATCGAGATGCCAGAACAGCAGGAGAAGAACGAGCAG
GAGCTGCTGGAGCTGGACAAGTGGGCCAGCCTGGAACGGTTCGACATACCAACTG
GCTGTGGTACATCTAAGATATCGGATCCTCTAGA

FIG. 50
(SEQ ID NO:63)

gp160.modUS4

GAATTGCCACCATGGATGCAATGAAGAGAGGGCTTGCTGTGCTGCTGTGGAGCA
 GTCTCGTTGCCAGGCCACCACCGTGTGCTGGGTGACCGTGTACTACGGCGTCCCCGTG
 TGGAAGGAGGCCACCACCCCTGTTCTGCCAGCGACGCCAAGGCTTACAAGGCCGAGGC
 CCACAACGTGTGGCCACCCACGCCTCGTGTGCCACCGACCCCAACCCCAGGAGGTGAACC
 TGACCAACGTGACCGAGAACTTCAACATGTGGAAGAACAAACATGGTGGAGCAGATGCATGAG
 GACATCATCAGCCTGTGGGACCAAGAGCCTGAAGGCCCTGCGTGAAGCTGACCCCCCTGCGTG
 ACCCTGAACTGCACCAGACAAGCTGACCGGCAGCACCAACGGCACCAACAGCACCAAGCGGCAC
 CAACAGCACCAAGCGGACCAACAGCACCAACAGCACCGACAGCTGGGAGAAGATG
 CCCGAGGGCGAGATCAAGAACTGCAGCTTCAACATCACCAACCGCGTGCAGCAAGGTGCA
 GAAGGGAGTACAGCCTGTTACAAGCTGGACGTGGTGCCTGACAAAGACAACGCCAGCT
 ACCGCCTGATCAACTGCAACACCAGCGTGTACCCAGGCCCTGCCATCTGAAGTGAAGGACAAGAAGT
 CCATCCCCATCCACTACTGCGCCCGGCCGCTTGCCTGCATCTGAAGTGAAGGACAAGAAGT
 TCAACGGCACCGGCCCTGCAAGAACGTGAGCACCGTGCAGTCACCCACGGCATCCGCC
 GTGGTGAGCACCCAGCTGCTGTAACGGCAGCCTGGCGAGGGAGATCGTGTGCGCTC
 CGAGAACTTACCGACAACGCCAACGACCATCATCGTGCAGCTGAACGAGTCCGTGGAGATCA
 ACTGCATCCGCCAACAACACACCGTAAAGAGCATCCACATCGGCCCGGCCGCTTCT
 ACGCCACCGCGACATCGGCCAGGCCACTGCAACATCAGCAAGGCCAAC
 TGGACCAACACCCCTGAGCAGATCGTGGAGAACGCTGCGAGCAGTTCGGCAACAAACAAGAC
 CATCATCTTCAACAGCAGCAGCGCGGCCAACCGAGATCGTGTCCACAGCTTCAACTGCG
 CGCGAGTTCTTCACTGCAACACAGCCAGCTGTTCAACAGCACCTGGAACATCACCGAGGA
 GGTGAACAAGACCAAGGAGAACGACACCATCATCTGCCCTGCCGCATCGGCCAGATCATCA
 ACATGTGGCAGGAGGTGGCAAGGCCATGTACGCCCGGCCAGATCAAGTGC
 AGCAGCAATATTACCGCCCTGCTGACCCCGCACGGCGAACAAACAACCGCACCAA
 CGACACCGAGAACCTCCGCCCGCGCGAACATGAAGGACAACGGCAGCGAGCTGT
 ACAAGTACAAGGTGGTGCATCGAGGCCCTGGCGTGGCCCCACCCAGGCCAACGCC
 GTGGTGAGCGCGAGAACGCCCGTGGCGCCCTGTTCATCGGCCCTGGCG
 GCCGGGAGCACCATGGCGCCCTCCGTGACCGTGCAGGCCAGCTGCTGAG
 CGGCATCGTGCAGCAGCAGAACACCTGCTGCGGCCATCGAGGCCAGCAGCACCTGCTGC
 AGCTGACCGTGTGGGCATCAAGCAGCTGCAAGGCCCATCTGGCGTGGAGCGCTACCTG
 AAGGACGAGCAGCTGGAGCAACAAGAGCCTGACCGAGATCTGGGACAACATGACCTGGA
 GCCCTGGAACAGCAGCTGGAGCAACAAGAGCCTGACCGAGATCTGGGACAACATGACCTGGA
 TGGAGTGGAGCGCGAGATCGGCAACTACACCGCCCTGATCTACAAACCTGATCGAGATCGCC
 CAGAACACAGCAGGAGAACGAGCAGCAGGAGCTGCTGGAGCTGGACAAGTGGCCAGCCTGT
 GGAACACTGGTTCGACATCACCACGGCTGTTGCTGCCGTGAGCATCGTGAACGCCGTCGCCAGGGCT
 GCCTGATCGCCCTGCGCATCGTGTGCTGCCGTGAGCATCGTGAACGCCGTCGCCAGGGCT
 ACAGCCCCATCAGCCTGAGACCCGCTGCCGCCAGCGCGGCCGACCGCCCCGAGGGC
 ATCGAGGAGGAGGGCGCGAGCGCGACCGCGACCGCAGCAACCGCCTGGTGCACGCCCTGCT
 GCCCTGATCTGGACGACCTGCGCAGCCTGCTGCCCTGTTCAGCTACCAACGCCCTGCGCAGCT
 GCTGCTGATCGTGGCCCGCATCGTGGAGCTGCTGGGCCGCCGGCTGGAGGCCCTGAAAGT
 ACTGGTGGAACCTGCTGAGTACTGGAGCCAGGAGCTGAAGAGCAGGCCGTGAGGCCCTGTT
 AACGCCACCGCCATGCCGTGGCGAGGGCACCGACCGCATCGAGATCGTGCAGCGCAT
 CTCCCGGCCGTGATCCACATCCCCGCCCATCCGCCAGGGCTGGAGCGCGCCCTGCTGTA
 AGATATCGGATCTCTAGA

FIG. 51

(SEQ ID NO:64)

gp160.modUS4.delV1

GAATTGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGCTGCTGTGGAGCA
 GTCTCGTTGCCAGCGCACCACCGTGTGTTCTGCGCCAGCAGCCAAGGCTAACAGGCCGAGGC
 TGGAAGGAGGCCACCACCCACGCTGCGTCCCCACCGACCCAAACCCCAAGGAGGTGAACC
 CCACAACTGTGGGCCACCCACGCTGCGTCCCCACCGACCCAAACCCCAAGGAGGTGAACC
 TGACCAACGTGACCGAGAACTTCAACATGTGGAAGAACAAACATGGTGGAGCAGATGCATGAG
 GACATCATCAGCCTGTGGGACCAGAGCCTGAAGGCCCTGCGTGAAGCTGACCCCCCTGTGCGTG
 ACCCTGAACTGCACCGACAAGCTGGCGCCGGCGAGATCAAGAACTGCAGCTAACAT
 CACCACCGCGTGCACAGGTGCAGAAGGAGTACAGCCTGTTCTAACAGCTGGACGTGG
 TGCCCCTGACAAACGACAACGCCAGCTACCGCCTGATCAACTGCAACACAGCGTGAATCACCC
 AGGCCTGCCCAAGGTGAGCTTCAGGCCATCCCCATCCACTACTGCGCCCCCGCCGGCTTCG
 CCATCCTGAAGTGCAAGGACAAGAAGTTAACGGCACCGGCCCTGCAAGAACGTGAGCACC
 GTGAGTGCACCCACGGCATCCGCCCGTGGTGAACGACCCAGCTGCTGTAACGGCAGCCTG
 GCCGAGGAGGAGATCGTGTGCGCTCCGAGAACTTACCGACAACGCCAGACCATATCGT
 GCAGCTGAACGAGTCCGTGGAGATCAACTGCACTCCGCCAACAAACAAACCGCTAAGAGCA
 TCCACATCGGCCCCGGCGCGCCTTACGCCACCGCGACATCATGGCGACATCCGCCAGG
 CCCACTGCAACATCAGCAAGGCCAACTGGACCAACACCCCTGAGCAGATCGTGGAGAAGCTG
 CGCGAGCAGTCCGCAACAACAGACCATATCTTCAACAGCAGCAGCGCCGGCAACCCGA
 GATCGTGTTCACAGCTCACTGCGCGGGAGTTCTACTGCAACACCAAGCCAGCTGTT
 CAACAGCACCTGGAACATCACCGAGGAGGTGAACAAGACCAAGGAGAACGACACCATCATCC
 TGCCCTGCCGATCCGCCAGATCATAACATGTGGCAGGAGGTGGCAAGGCCATGTACGCC
 CCCCCCATCCGCCAGATCAAGTGCAGCAGCAATATTACCGCCTGCTGCTGACCCGCCAC
 GGCGCACCAACAACACCGCACCAACGACACCGAGACCTTCCGCCCGCGCCGGCAACAT
 GAAGGACAACCTGGCGAGCAGCTGTACAAGTACAAGGTGGTGCATCGAGCCCCCTGGCG
 TGGCCCCCAGGCCAAGGCCAGCGCCGTGGTGCAGCGAGAACGCGCCGTGGCCTGGC
 GCCCTGTTCATCGCTTCTGGCGCCGCCGGAGCACCATGGCGCCGCTCCGTGACCTG
 ACCGTGCAGGCCGCCAGCTGCTGAGCGGCATCGTGCAGCAGAGAACAAACCTGCTGCC
 CATCGAGGCCAGCAGCACCTGCTGCAGCTGACCGTGTGGGATCAAGCAGCTGCC
 GCATCCCTGGCGTGGAGCGCTACCTGAAGGACCAAGCAGCTGCTGGCATCTGGGCTGCAG
 GGCAAGCTGATCTGCACCACCGCTGCCCTGGAACAGCAGCTGGAGCAACAAGGCC
 CGAGATCTGGGACAACATGACCTGGATGGAGTGGAGCGCGAGATCGGCAACTACACCG
 TGATCTACAACCTGATCGAGATCGGCCAGAACCGAGCAGGAGAACGAGCAGGAGCTG
 GAGCTGGACAAGTGGGCCAGCCTGTGGAACATGGTTGACATCACCAACTGGCTGGTACATC
 CGCATCTTACATGATCGTGGCGCCCTGATCGGCCCTGCGCATCGTGTGGCTGCTGAGC
 ATCGTGAACCGCGTGCCTGAGGCCAGGGCTACAGCCCCATCGCTGCAGACCCGCTGCC
 CGCGGCCCGACCGCCCCGAGGGCATCGAGGAGGAGGGCGAGCGCCGACCGCA
 GCAACCGCCCTGGTGCACGGCCTGCTGGCCCTGATCTGGAGCACCTGCGCAGCCTG
 TCAGCTACCAACGCCCTGCGCAGCTGCTGATCGTGGCCCGATCGTGGAGCTGCTGG
 GCCCGGGCTGGAGGCCCTGAAGTACTGGTGGACCTGCTGCACTGGAGCCAGGAGCTG
 AAGAGCAGCGCCGTGAGCCTGTTCAACGCCACGCCATGCCGTGGCCAGGGCACCG
 CATCATCGAGATCGTGCAGCGCATCTCCCGCCGTGATCCACATCCCCCGCCGATCC
 GGGCCTGGAGCGCCCTGCTGTAAGATATCGGATCCTCTAGA

FIG. 52
(SEQ ID NO:65)

gp160.mod.US4.delV2

GAATTGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGCTGCTGTGTGG
 AGCAGTCTCGTTGCCAGGCCACCACCGTGTGGGTGACCGTGTACTACGGCG
 TGCCCGTGTGGAAGGAGGCCACCACCCACCGTGTGCCAGCGACGCCAAGGCTTAC
 AAGGCCGAGGCCACAACGTGTGGGCCACCCACGCCGTGCCCACCGACCCCAACCC
 CCAGGAGGTGAAACCTGACCAACGTGACCGAGAACCTAACATGTGGAAGAACAAACATGG
 TGGAGCAGATGCATGAGGACATCATCAGCCTGTGGGACCAAGGCCTGAAGGCCCTGCGTG
 AAGCTGACCCCCCTGTGCGTACCTGACCGACAAGCTGACCGGCAGCACCAA
 CGGCACCAACAGCACCGGCCACCAACAGCACCGAGCGGCACCAACAGCACCA
 ACAGCACCGACAGCTGGGAGAACATGCCAGGGAGATCAAGAACACTGCAGCTTCAAC
 ATCGGCGCCGGCCGCTGATCAACTGCAACACCAGCGTGTACCCAGGCCCTGCCCCAA
 GGTGAGCTTCGAGCCATCCCCATCCACTACTGCCCCCGCCGGCTCGCCATCCTGA
 AGTGAAGGACAAGAACGTTCAACGGCACCGGCCCTGCAAGAACGTGAGCACCGTGCAG
 TGCACCCACGGCATCCGCCCCGTGGTGAGCACCCAGCTGCTGCTGAAACGGCAGCCTGGC
 CGAGGAGGAGATCGTGTGCGCTCCGAGAACCTCACCGACAAGGCCAACATCATCG
 TGCAGCTGAACGAGTCGTGGAGATCAACTGCATCCGCCCCAACAAACAAACACCGTAAG
 AGCATCCACATCGGCCCCGGCCGCCTCTACGCCACCGGCACATCATGGCAGCAT
 CCGCCAGGCCACTGCAACATCAGCAAGGCCAACCTGAGCACCGCAGATCG
 TGGAGAAGCTGCGCAGCAGTGGCAACAAAGACCATCATCTTCAACAGCAGCAGC
 GGCGCGACCCGAGATCGTGTCCACAGCTCAACTGCGCGCGAGTTCTTACTG
 CAACACCAGCCAGCTGTTAACAGCACCTGGAACATCACCGAGGAGGTGAACAAGACCA
 AGGAGAACGACACCATCATCCTGCCCTGCCGATCCGCCAGATCATCAACATGTGGCAG
 GAGGTGGCAAGGCCATGTACGCCCTGGCGATCCGCGCCAGATCAAGTCAGCAGCAA
 TATTACCGGCTGCTGCTGACCCCGACGGCGACCAACAAACACCGCACCAACGACA
 CCGAGACCTCCGCCCGGCGGCAACATGAAGGACAACTGGCGAGCGAGCTGTAC
 AAGTACAAGGTGGTGCATCGAGCCCTGGCGTGGCCCCACCCAGGCCAGCGCC
 CGTGGTGCAGCGCAGAACGCGCCGTGGCGCTGGCGCCCTGTTCATCGGCTTCTGG
 GCGCCGCCGGAGCACCATGGCGCCGCTCGTGAACCTGACCGTGCAGGCCAG
 CTGCTGAGCGGCATCGTGCAGCAGCAGAACACCTGCTGCCGCATCGAGGCCAGCA
 GCACCTGCTGCAGCTGACCGTGTGGGCATCAAGCAGCTGCAGGCCGCATCTGGCG
 TGGAGCGCTACCTGAAGGACCAAGCAGCTGCTGGCATCTGGCTGAGCGGAAGCTG
 ATCTGCACCAACCACCGTGCCCTGGAACACAGCAGCTGGAGCAACAAGAGCCTGACCGAGAT
 CTGGGACAACATGACCTGGATGGAGTGGAGCGCGAGATCGCAACTACACCGGCTGA
 TCTACAACCTGATCGAGATCGCCAGAACCAGCAGGAGAAGAACGAGCAGGAGCTGCTG
 GAGCTGGACAAGTGGCCAGCCTGTGGAACCTGGTGCACATCACCAACTGGCTGTGGTA
 CATCCGCATCTTCATCATGATCGTGGCGGCCTGATCGGCTGCGCATCGTGTGCG
 TGCTGAGCATCGTGAACCGCGTGCAGGCCAGGGCTACAGCCCCATCAGCTGCAGACCGC
 CTGCCCGCCAGCGCGCCCCGACCGCCCCGAGGGCATCGAGGAGGAGGCCGAGCG
 CGACCGCGACCGCAGCAACCGCCTGGCAGGCCCTGCTGCCCTGATCTGGAGCAGACC
 TGGCGAGCCTGTGCCCTGTTCACTGACCGCCTGCGCAGCTGCTGCTGATCGTGGCC
 CGCATCGTGGAGCTGCTGGCGCCGGCTGGAGGCCCTGAAAGTACTGGTGGAACCT
 GCTGCAGTACTGGAGCCAGGAGCTGAAGAGCAGCGCCGTGAGCCTGTTCAACGCCACCG
 CCATGCCGTGGCCAGGGCACCGACCGCATATCGAGATCGTGCAGCGCATCTCCGC
 GCCGTGATCCACATCCCCGCCGATCCGCCAGGGCTGGAGCGCGCCCTGCTGTAAGA
 TATCGGATCCTCTAGA

FIG. 53

(SEQ ID NO:66)

66 / 131

gp160.modUS4delV1/2

GAA TTGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGCTGCTGTGGAGCA
 GTCTCGTTGCCAGCGCCACACCGTGTGGTGACCGTGTACTACGGCGTCCCCGTG
 TGGAAGGAGGCCACCACCCCTGTCGCCCCAGCGACGCCAAGGCTTACAAGGCCAGGC
 CCACAACTGTGGGCCACCCACGCCCTGCGTGGCCCACCGACCCCAACCCCCAGGAGGTGAACC
 TGACCAACGTGACCGAGAACTTCAACATGTGGAAAGAACAAACATGGTGGAGCAGATGCATGAG
 GACATCATCAGCCTGTGGGACCAAGGCCTGAAGCCCTGCGTGGCGCCAGGCCTGCC
 CAAGGTGAGCTCGAGGCCATCCCCATCCACTACTGCGCCCCCGCCGGCTCGCCATCCTGAA
 GTGCAAGGACAAGAACGTTCAACGGCACCGGCCCTGCAAGAACGTAAGCACCGTGAGTGCA
 CCCACGGCATCCGCCCGTGGTGAGCACCCAGCTGCTGAACGGCAACCTGGAGGAG
 GAGATCGTGTGCGCTCCGAGAACCTCACCGACAACGCCAACGACATCATCGTGCAGCTGAA
 CGAGTCCTGGAGATCAACTGCATCCGCCAACAACACAGCGTAAGAGCATCCACATCG
 GCCCCGGCCGCGCCTCTACGCCACGGCGACATCATCGCGACATCCGCCAGGCCACTGCA
 ACATCAGCAAGGCAACTGGACCAAACACCCCTGAGCAGATCGTGGAGAACGCTGCGGAGCAG
 TTCGGCAACAAACAAGACCATCATCTCAACAGCAGCAGCGGGCGACCCGAGATCGTGT
 CCACAGCTTCAACTGGCGCGAGTTCTACTGCAACACCGCCAGCTGTTAACAGCAC
 CTGGAACATCACCGAGGAGGTGAACAAAGACCAAGGAGAACGACACCATCATCCTGCCCTGCC
 GCATCCGCCAGATCATCAACATGTGGCAGGAGGTGGCAAGGCCATGTACGCCCTGCCATC
 CGCGGCCAGATCAAGTGCAGCAGCAATTACCGCCCTGCTGCTGACCCCGACGGCGGAC
 CAACAACAACCGCACCAACGACACCGAGACCTTCCGCCCGCGCGCAACATGAAGGACA
 ACTGGCGCAGCGAGCTGTACAAGTACAAGGTGGCGCATCGAGCCCTGGCGTGGCC
 ACCCAGGCCAGCGCCCGTGGTGAGCGCGAGAACGCGCCGTGGCGTGGCCCTGTT
 CATCGGCTTCTGGCGCCGGAGCACCATGGCGCCGCCCTCCGTGACCCGTACCGTGCA
 GGCCCGCCAGCTGCTGAGCGGCATCGTCAGCAGCAGCAACACCTGCTGCGGCCATCGAGG
 CCCAGCAGCACCTGCTGAGCTGACCGTGTGGGCATCAAGCAGCTGCGAGGCCGATCCTG
 GCCGTGGAGCGTACCTGAAGGACCAAGCAGCAGCTGCTGGCATCTGGGCTGCAAGGCAAGCT
 GATCTGCACCAACCACCGTGGACAGCAGCTGGAGCAACAAGAGCTGACCGAGATCT
 GGGACAACATGACCTGGATGGAGTGGAGCGCGAGATCGGCAACTACACCGCCCTGATCTAC
 AACCTGATCGAGATGCCAGAACCGAGCAGGAGAACGAGCAGGAGCTGCTGGAGCTGG
 ACAAGTGGCCAGCTGTGGAACTGGTTCGACATACCAACTGGCTGTGGTACATCCGATCT
 TCAATCATGATCGTGGCGCCCTGATCGGCCTGCGCATCGTGTGCGCTGCTGAGCATCGTGA
 ACCCGTGCGCCAGGGTACAGCCCATCAGCCTGCGAGACCCGCTGCCGCCAGCGCGC
 CCCGACCGCCCCGAGGGCATCGAGGAGGAGGGCGCGAGCGCGACCGCGACCGCAAGAAC
 GCCTGGTGCACGGCTGCTGGCCCTGATCTGGACGACCTGCGCAGCCTGCTGCTGAGCT
 ACCACCGCCTGCGCACCTGCTGTGATCGTGGCCCGCATCGTGGAGCTGCTGGGCCCGCG
 GCTGGGAGGCCCTGAAGTACTGGTGGAACTGCTGCACTGAGTACTGGAGGCCAGGAGCTGAAGAGC
 AGCGCCGTGAGCTGTCAACGCCACGCCATCGCCGTGGCCAGGGCACCGACCGCATCATC
 GAGATCGTGCAGCGCATCTCCGCCGTGATCCACATCCCCGCCGATCCGCCAGGGCCTG
 GAGCGGCCCTGCTGTAAGATATCGGATCCTCTAGA

FIG. 54
(SEQ ID NO:67)

gp160.modUS4 del 128-194

GAATTCGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGCTGCTGTGTTGGAGCA
 GTCTCGTTCCGCCAGCGCCACCAACCGTGTGTTGGGTGACCGTGTACTACGGCGTCCCCGTG
 TGGAAGGAGGCCACCACCAACCTGTTCTGCAGCGACGCCAAGGCTTACAAGGCCAGGC
 CCACAACTGTGGGCCACCCACGCCAGCGTGTGCCCACCGACCCCAACCCCAAGGAGGTGAACC
 TGACCAACGTGACCGAGAACCTCAACATGTGAAGAACAAACATGGTGGAGCAGATGCATGAG
 GACATCATCAGCCTGTGGGACCAAGAGCCTGAGGCCCTGCGTGAAGCTGACCCCCCTGTGCGTG
 GGGCAGGAAACTCGAGACCAAGCAGCTGATCACCCAGGCCCTGCCCAAGGTGAGCTTCGAGCC
 CATCCCCATCCACTACTGCGCCCCCGCCGGCTCGCCATCCTGAAGTGAAGGACAAGAAGTT
 CAACGGCACCGGCCCTGCAAGAACGTGAGCACCGTGCAGTGCACCCACGGCATCCGCCCCG
 TGGTAGCACCAGCTGCTGAACGGCAGCCTGGCGAGGAGAGTCGTGCTGCCCTCC
 GAGAACCTCACCGACAACGCCAAGACCATCATCGTGCAGCTGAACGAGTCGTGGAGATCAA
 CTGCACTCGCCCCAACAAACAACACCGCTAACAGCATCCACATCGGCCCCGGCCGCGCTTCTA
 CGCCACCGGCCACATCATCGGCACATCCGCCAGGCCACTGCAACATCAGCAAGGCCAAGT
 GGACCAACACCTCGAGCAGATCGTGGAGAACGCTGCGAGCAGTTCGGCAACAACAAGACC
 ATCATCTTCAACAGCAGCAGCGGGCGACCCCGAGATCGTGTCCACAGCTTCAACTGCGGC
 GGCAGGTTCTTCACTGCAACACCAGCCAGCTGTTAACAGCACCTGGAACATCACCGAGGAG
 GTGAACAAGACCAAGGAGAACGACACCATCATCCTGCCCTGCCGATCCGCCAGATCATCAA
 CATGTGGCAGGAGGTGGCAAGGCCATGTACGCCCTCCATCCGCGGCCAGATCAAGTGC
 GCAGCAATTACCGGCTGCTGCTGACCCCGACGGCGACCAACAACAACCGCACCAAC
 GACACCGAGACCTTCCGCCCCGGCGGGCAACATGAAGGACAACCTGGCGCAGCGAGCTGTA
 CAAGTACAAGGTGGTGGCATCGAGCCCTGGGCGTGGCCCCACCCAGGCCAAGGCCGCG
 TGGTAGCAGCGAGAACGCGCCGTGGGCTGGGCCCTGTTACCGCTTCCCTGGCGCC
 CGGGAGCACCATGGGCGCCCTCCGTGACCCGACCGTGCAGGCCAGCTGCTGAGC
 GGCATCGTGCAGCAGACAACCTGCTGCGGCCATCGAGGCCAGCAGCACCTGCTGCA
 GCTGACCGTGTGGGCACTAACAGCAGCTGCAAGGCCGATCCTGCCGTGGAGCGCTACCTGA
 AGGACCAAGCAGCTGCTGGCATCTGGGCTGCAAGCTGATCTGACCCACCGTG
 CCTGGAACAGCAGCTGGAGCAACAAGAGCCTGACCGAGATCTGGACAACATGACCTGGAT
 GGAGTGGGAGCGCGAGATCGGCAACTACACCGGCTGATCTACAACCTGATCGAGATCGCCC
 AGAACCCAGCAGGAGAACGAGCAGGAGCTGCTGGAGCTGGACAAGTGGCCAGCCTGTG
 GAACTGGTTCGACATACCAACTGGCTGTGGTACATCCGATCTTCATCATGATCGTGGCG
 CCTGATCGGCTGCGCATCGTGTGCTGCCGTGAGCATCGTGAACCGCGCGCCAGGGCTA
 CAGCCCCATCAGCCTGCAACCCGCTGCCGCCAGCGCGGCCGACCGCCCCGAGGGCA
 TCGAGGAGGAGGGCGCGAGCGCGACCGCGACCGCAGCAACCGCTGGTGCACGCCCTGCTG
 GCCCTGATCTGGACGACCTGCGAGCCTGCTGCTGCTGAGCTACCGCTGCCGACCTG
 CTGCTGATCGTGGCCCGCATCGTGGAGCTGCTGGGCCGCCGCGCTGGAGGCCCTGAGTAC
 TGGTGGAACCTGCTGCACTGGAGCCAGGAGCTGAAAGAGCAGCGCCGTGAGCCTGTTCAA
 CGCCACCGCCATCGCCGTGGCCAGGGCACCGACCGCATCATCGAGATCGTGCAGCGCATCTT
 CGCGCCGTGATCCACATCCCCGCCGATCCGCCAGGGCTGGAGCGGCCCTGCTGTAAGA
 TATCGGATCCTCTAGA

FIG. 55

(SEQ ID NO:68)

68 / 131

Env_US4_C4wt
GACACTATCATCAGCAGAATAAGACAAATTATAAACATGTGGCAAGAAGTAGG
AAAAGCAATGTATGCCCTCCCATCAGAGGACAAATTAAATGTTCATCAAATATTACAG
GGCTGCTATTAACAGAGATGGTGGT

FIG. 56
(SEQ ID NO:69)

Env_SF162_C4wt

GGAACATCACACTCCATGCAGAATAAAACAAATTATAAACAGGTGGCAGGAAGTAGG
AAAAGCAATGTATGCCCTCCCATCAGAGGACAAATTAGATGCTCATCAAATATTACAG
GACTGCTATTAACAAGAGATGGTGGT

FIG. 57
(SEQ ID NO:70)

Env_US4_C4mod

GACACCATCATCCTGCCCTGCCGCATCCGCCAGATCATCAACATGTGGCAGGAGGTGGG
CAAGGCCATGTACGCCCTGCCATCCGCCAGATCAAGTGCAGCAGAACATCACCG
GCCTGCTGCTGACCCGCGACGGCGGC

FIG. 58
(SEQ ID NO:71)

Env_SF162_C4mod

GGCACCATCACCTGCCCTGCCGCATCAAGCAGATCATCAACCGCTGGCAGGAGGTGGG
CAAGGCCATGTACGCCCTGCCATCCGCCAGATCCGCTGCAGCAGAACATCACCG
GCCTGCTGCTGACCCGCGACGGCGGC

FIG. 59
(SEQ ID NO:72)

69 / 131

FIG. 60

70 / 131

gp160mod.us4.gag.modSF2

GAATTGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCTGTGTGGAGCAGTCTCGTTCGCCAGGCCACCACCGTGCTGTGGGTGACCGTGTACTACGGCGTG
 CCCGTGTGGAAGGAGGCCACCACCCACCGCTGCGCCAGCGACGCCAAGGCTTACAAGGCCGAGGCCACAACCGACCCCAACCCCCAGGAGGTGAACCTGACCAACGTGACCGAGA
 CACTCAACATGTGGAAGAACAAACATGGTGGAGCAGATGCATGAGGACATCATCAGCCTGTGGGACCAAGGCCTGAAGGCCCTGCGTAAGCTGAGCTGACCCCTGTGCTGAAGCTG
 ACCCCCCCTGTGCGTGACCCCTGAACTGCACCGACAAGCTGACCGGCAGGCCACCAACAGCACCAACAGCACCAACAGCAC
 AACAGCACCAAGCGGCCACCAACAGCACCAACAGCACCAACAGCACCAACAGCAC
 GACAGCTGGGAGAAGATGCCCGAGGGCAGATCAAGAACTGCAGCTTCACATCACCACCGACCGTGCAGCAACAGCTGGAGCTGGTGC
 AGCGTGCAGCAAGGTGCAGAAGGAGTACAGCCTGTTACAAGCTGGACGTGGTGC
 ATCGACAAACGACAACGCCAGCTACCGCTGATCAACTGCAACACCAGCGTGTACCCAGGCCCTGCCCAAGGTGAGCTTCAGCCATCCCCATCCACTACTGCGCCCCGCCGGCTTC
 GCCATCCTGAAGTGAAGGACAAGAAGATTCACCGCACCAGGCCCTGCAAGAACGTGAGC
 ACCGTGCAGTGCACCCACGGCATCCGCCCGTGGTGGAGCAGCTGCTGCTGAACGGCAGCCTGGCCAGGAGAGATCGTGCCTCCGAGA
 ACTTACCGACAACAGCACCGCCCTCTACGCCACCGGCAGATCATCGGC
 CGTAAGAGCATCCACATCGGCCCGGCCCTCTACGCCACCGGCAGATCATCGGC
 GACATCCGCCAGGCCACTGCAACATCAGCAAGGCCAACTGGACCAACACCCTCGAGCAG
 ATCGTGGAGAAGCTGGCGAGCAGTTCGGCAACAAACAGACCATCATCTTCAACAGCAGC
 AGCGCGGCCGACCCCGAGATCGTGTTCACAGCTCAACTGGCGGGAGTTCTTCTAC
 TGCAACACCAGCCAGCTGTTCAACAGCACCTGGAACATCACCGAGGAGGTGAACAAGACC
 AAGGAGAACGACACCACATCCTGCCCTGCCGCATCCGCCAGATCATCAACATGTGGCAG
 GAGGTGGCAAGGCCATGTACGCCCTGCCGCATCCGCCAGATCAAGTGCAGCAGCAAT
 ATTACCGGCTGCTGCTGACCCCGCAGGGCGGCCACCAACAACCGCACCAACGACACC
 GAGACCTTCCGCCCGGCCGGCAACATGAAGGACAACGGCGCAGCGAGCTGTACAAG
 TACAAGGTGGTGCACATCGAGCCCTGGCGTGGCCCTGCCAGGCCAGCGCCGCTG
 GTGCAGCGCGAGAACGGCGCCGTGGCGCTGGCGCCCTGTTCATCGGCTTCTGGCG
 GCCGGGAGCACCATGGCGGCCCTCCGTGACCGTGCAGGCCAGCTGCTG
 AGCGGCATCGCAGCAGCAGAACACCTGCTGCCGCATCGAGGCCAGCAGCACCTG
 CTGCAGCTGACCGTGTGGGCATCAAGCAGCTGCAGGCCCATCTGGCGTGGAGCGC
 TACCTGAAGGACCAGCAGCTGCTGGGCATCTGGCGTGCAGCGCAAGCTGATCTGCACC
 ACCACCGTCCCTGAAACAGCAGCTGGAGCAACAGAGGCCCTGACCGAGATCTGGACAAC
 ATGACCTGGATGGAGTGGAGCGCGAGATCGGCAACTACACCGGCCTGATCTACAACCTG
 ATCGAGATGCCAGAACCGAGCAGGAGAACAGCAGGAGCTGCTGGAGCTGGACAAG
 TGGGCCAGGCTGTGGAACGGTGGTCACATCCAACGGCTGTGTTACATCCGCATCTTC
 ATCATGATCGTGGCGGCCCTGATCGGCCCTGCGCATCGTGTGCGCTGAGCATCGTG
 AACCGCGTGCAGGCCAGGGCTACAGCCCCATCAGGCCCTGCGCACCGCCAGCGC
 GGCCCGACCGCCCGAGGGCATCGAGGAGGAGGGCGAGCGCAGCGCACCGCAGC
 AACCGCCTGGTGCACGCCCTGCTGGCCCTGATCTGGACCGACCTGCCAGCAGCTG
 TTCAGCTACCAACGCCCTGCGCGACCTGCTGCTGATCGTGTGGCCCGCATCGTGGAGCTGCTG
 GGCGCCCGGGCTGGAGGCCCTGAAAGTACTGGTGGAACCTGCTGCGAGTACTGGAGGCCAG
 GAGCTGAAGAGCAGGCCGTGAGGCTGTTCAACGCCACGCCATGCCGTGGCGAGGGC
 ACCGACCGCAGTACATCGAGATCGTGCAGCGCATCTCCGCCGTGATCCACATCCCCCGC
 CGCATCCGCCAGGGCTGGAGCGGCCCTGCTGTAAGATATCGGATCCTCTAGAGAATTG

FIG. 61A

(SEQ ID NO:73)

{CGCCCCCCCCCCCCCCCCCTCCCTCCCCCCCCCTAACGTTACTGGCCGAAGCCGC
TTGGAATAAGGCCGGTGTGCGTTGTCTATATGTTATTTCACCATATTGCCGTCTTT
GGCAATGTGAGGGCCCGAAACCTGGCCCTGTCTTGTGACGAGCATTCTAGGGGTCTT
TCCCTCTGCCAAAGGAATGCAAGGTCTGTTGAATGTCGTGAAGGAAGCAGTTCTCTG
GAAGCTTCTGAAGACAAACACGCTGTAGCGACCTTTGAGGCAGCGGAACCCCCA
CCTGGCAGGGTGCCTCTGCCAAAAGCCACGTGTATAAGATAACACCTGCAAAGGCG
GCACAACCCAGTGCACGTTGTGAGTTGAGTGTGAAAGAGTCAAATGGCTCTCC
TCAAGCGTATTCAACAAGGGCTGAAGGATGCCAGAAGGTACCCATTGTATGGGATCT
GATCTGGGCCTCGGTGCACATGCTTACATGTTAGTCGAGGTTAAAAAAACGTCTA
GGCCCCCGAACACCACGGGACGTGGTTTCCTTGAAAAAACGATAATACCATGGCGC
CCGGCCAGCGTGTGAGCGGGGGCAGCTGGACAAGTGGAGAGATCCGCTGCGCCC
CGCGGCAAGAAGAAGTACAAGCTGAAGCACATCGTGTGGCCAGCCGAGCTGGAGCG
CTTCGCCGTGAACCCCGCCTGCTGGAGACCAGCAGGAGCTGCCAGATCTGGCCA
GCTGCAGCCAGCCTGCAGACCGGAGCGAGGAGCTGCGAGCCTGTACAACACCGTGGC
CACCTGTACTGCGTGCACCAGCGCATCGACGTCAAGGACACCAAGGAGGCCCTGGAGAA
GATCGAGGAGGAGCAGAACAAAGTCAAGAAGAAGGCCAGCAGGCCGCCGCCGCC
CACCGGCAACAGCAGCCAGGTGAGCCAGAACACTACCCATCGTCAGAACCTGCAGGGCCA
GATGGTGCACCAGGCCATCAGCCCCGACCCCTGAACGCTGGTGAAGGTGGTGGAGGA
GAAGGCCCTCAGCCCCGAGGTGATCCCCATGTTAGCGCCCTGAGCGAGGGGCCACCC
CCAGGACCTGAACACGATGTTGAAACACCGTGGCCACCAAGGCCATGCAGATGCT
GAAGGAGACCATCAACGAGGAGGCCAGTGGAGCCGTGCAACCCGTGCAACGCCGG
CCCCATGCCCGGCCAGATGCGCGAGCCCCGCCAGCGACATGCCGGCACCAACAG
CACCCCTGCAGGAGCAGATCGCTGGATGACCAACAACCCCCCATCCCCGTGGCAGAT
CTACAAGCGGTGGATCATCCTGGCCTGAACAAGATCGTGGATGTACAGCCCCACCA
CATCCTGGACATCCGCCAGGGCCCCAAGGAGCCCTTCCGCAGTACGTGGACCGCTTCTA
CAAGACCTGCAGCTGAGCAGGCCAGGACGTGAAGAAGTGGATGACCGAGACCT
GCTGGTGCAGAACGCCAACCCCCACTGCAAGACCATCCTGAAGGCTCTGGCCCCGCC
CACCCCTGGAGGAGATGATGACCGCTGCCAGGGCGTGGCGGCCACAAGGCCCG
CGTGCAGGGCGAGGCATGAGCCAGGTGACGAACCGGCCAGCATCATGATGCAGCGCG
CAACTCCGCAACCAGCGGAAGACCGTCAAGTCTCAACTGCGCAAGGAGGCCACAC
CGCCAGGAACCTGCCGCCCGCAAGAAGGCTGCTGGCGCTGCCGCCAGGGCCA
CCAGATGAAGGACTGCACCGAGGCCAGGCAACTTCTGGCAAGATCTGGCCCAGCTA
CAAGGGCCGCCGGCAACTTCTGCAGAGCCGCCAGGCCACCGCCCCCCCCGAGGA
GAGCTTCCGCTTCGGCGAGGAGAAGACCAACCCCCAGCCAGAAGCAGGAGCCATCGACAA
GGAGCTGTACCCCTGACCGACCTGCGCAGCCTGTTGGCAACGACCCAGCAGCCAGTA
AGAATTCAACTCGAGCAAGTCTAGA

FIG. 61B
(SEQ ID NO:73)

72 / 131

gp160mod.SF162.gag.modSF2

GAATTGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGCTGCTGTGTGG
 AGCAGTCTCGTTCCGCCCAGCGCGTGGAGAAGCTGTGGGTGACCGTGTACTACGGCG
 TGCCCGTGTGGAAGGAGGCCACCACCCCTGTTCTGCCTGCCAGCGACGCCAAGGCCCTAC
 GACACCGAGGTGACAACGTGTGGGCCACCCACGCCCTGCCTGCCACCGACCCAAACCC
 CCAGGAGATCGTGTGGAGAACGTGACCGAGAACTCAACATGTGGAAGAACAAACATGG
 TGGAGCAGATGCAACGAGGACATCATCAGCCTGTGGGACCAGAGCCTGAAGGCCCTGCGTG
 AAGCTGACCCCCCTGTGCGTGAACCTGCACCAACCTGAAGAACGCCACCAACAC
 CAAGAGCAGCAACTGGAAGGAGATGGACCGCGCAGATCAAGAACTGCAGCTCAAGG
 TGACCAACAGCATCCGCAACAAGATGCAGAAGGAGTACGCCCTGTTCTACAAGCTGGAC
 GTGGTGCCCATCGACAACGACAACACCAGCTACAAGCTGATCAACTGCAACACCAGCGT
 GATCACCCAGGCCTGCCCAAGGTGAGCTCGAGCCATCCCCATCCACTACTGCGCCC
 CCGCCGGCTCGCCATCCTGAAGTGCAACGACAAGAAGTTCAACGGCAGCGGGCCCTGC
 ACCAACGTGAGCACCGTCAGTGCACCCACGGCATTGGCCCCGTGGTGAGCACCCAGCT
 GCTGCTGAACGGCAGCCTGGCGAGGGAGGGCGTGGTATCCGAGCGAGAACATTCAACCG
 ACAACGCCAAGACCATCATCGTCAGCTGAAGGAGAGCGTGGAGATCAACTGCACCCGC
 CCCAACAAACACCCGCAAGAGCATACCATTGGCCCCGGCGCCTTCTACGCCAC
 CGGCGACATCATGGCGACATCCGCCAGGCCACTGCAACATCAGCGGCGAGAACGTGGA
 ACAACACCCCTGAAGCAGATCGTGAACCAAGCTGCAGGCCAGTTCGGCAACAAGACCATC
 GTGTTCAAGCAGAGCAGCGCGACCCGAGATCGTGTGATGCACAGCTCAACTGCGG
 CGGCGAGTTCTTCTACTGCAACAGCACCCAGCTGTTCAACAGCACCTGGAACAAACCCA
 TCGGCCCCAACAAACCAACGGCACCATTACCCCTGCCCTGCCGCATCAAGCAGATCATC
 AACCGCTGGCAGGAGGTGGCAAGGCCATGTACGCCCTGCCGCAGATCCGCGGCCAGATCCG
 CTGCAGCAGCAACATCACCGGCCTGCTGCTGACCCCGCAGGGCGAACATGCGCAGAACACTGGCGCAGCGAG
 ACACCAACCGAGATCTCCGCCCCGGCGGCCAGATCGCAGAACACTGGCGCAGCGAG
 CTGTACAAGTACAAGGTGGTGAAGATCGAGCCCTGGCGTGGCCCCCACCAAGGCCAA
 GCGCCCGCTGGTGCAGCGCGAGAACGCGCCCGTGACCCCTGGCGCCATGTTCTGGGCT
 TCCTGGGCGCCGCCAGCACCATGGCGCCCGAGCCTGACCGTGCAGGCC
 CGCCAGCTGCTGAGCGGCATCGTCAGCAGCAGAACACCTGCTGCGGCCATCGAGGC
 CCAGCAGCACCTGCTGAGCTGACCGTGTGGGCATCAAGCAGCTGCAGGCCCGCGTGC
 TGGCCGTGGAGCGTACCTGAAGGACCAGCAGCTGCTGGGCATCTGGGCTGCGAGCGC
 AAGCTGATCTGACCCACCGCCGTGCCCTGGAACGCCAGCTGGAGAACAAAGAGGCTGGA
 CCAGATCTGGAACAAACATGACCTGGATGGAGTGGAGCGCGAGATCGACAACACCCA
 ACCTGATCTACACCCCTGATCGAGGGAGAGCCAGAACCAGCAGGAGAACGAGCAGGAG
 CTGCTGGAGCTGGACAAGTGGGCCAGCCTGGAACCTGGTTCGACATCAGCAAGTGGCT
 GTGGTACATCAAGATCTCATCATGATCGTGGCGGCCCTGGTGGGCCATCGCAGCTGT
 TCACCGTGTGAGCATCGTGAACCGCGTGCCTGCCAGGGCTACAGCCCTGAGCTTCCAG
 ACCCGCTCCCCGCCCGCCCCCGAGCGCCCGAGGGCATCGAGGAGGGCG
 CGAGCGCGACCGCAGCGAGGCCCTGGTGCAGGCCCTGCTGGCCCTGATCTGGG
 ACGACCTGCGCAGCCGTGCTGCTGTTCACTACACCGCCTGCGCGACCTGATCTGATC
 GCCGCCCGCATCGTGGAGCTGCTGGGCCCGCGCTGGGAGGCCCTGAAGTACTGGGG
 CAACCTGCTGAGTACTGGATCCAGGAGCTGAAGAACAGCGCCGTGAGCCTGTCGACG
 CCATGCCATGCCGTGGCGAGGGCACCGACCGCATCATCGAGGTGGCCAGCGCATTG
 GGCGCGCTTCCCTGCACATCCCCCGCCGCATCCGCCAGGGCTTCGAGCGGCCCTGCT

FIG. 62A

(SEQ ID NO:74)

GTAACTCGAGCAAGTCTAGAGAATTCCGCCCCCCCCCCCCCCCCCTCTCCCTCCCC
CCCCCTAACGTTACTGGCGAAGCCGCTTGAATAAGGCCGTGTGCCTTGTCTATAT
GTTATTTCCACCATTGCCGTCTTGGCAATGTGAGGCCGAAACCTGCCCTG
TCTTCTTGACGAGCATTCTAGGGTCTTCCCCTCTGCCAAAGGAATGCAAGGTCTG
TTGAATGTCGTGAAGGAAGCAGTCTCTGGAAAGCTTCTGAAGACAAACAACGTCTG
AGCAGCCCTTGCAGGCAGCGAACCCCCCACCTGGCAGAGGTGCCCTGCAGGCCAA
AGCCACGTGTATAAGATAACACCTGCAAGGCCACAACCCAGTGCCACTTGTGAGT
TGGATAGTGTGGAAAGAGTCAAATGGCTCTCCTCAAGCGTATTCAACAAGGGCTGAA
GGATGCCAGAAGGTACCCATTGTATGGATCTGATCTGGGCCTCGGTGCACATGCT
TTACATGTGTTAGTCGAGGTTAAAAAAACGTCTAGGCCCGAACACGGGACGTG
GTTTCCTTGAAAAACACGATAATACCATGGCGCCCGCCAGCGTGTGAGCGCG
GCGAGCTGGACAAGTGGAGAAGATCCGCTGCCCGCCGGCAAGAAGAAGTACAAG
CTGAAGCACATCGTGTGGCCAGCCGAGCTGGAGCGCTGCCGTGAACCCGGCCT
GCTGGAGACCAGCGAGGGCTGCCAGATCCTGGCCAGCTGCAGCCCAGCCTGCAGA
CCGGCAGCGAGGAGCTGCGCAGCCTGTACAACACCGTGGCACCCCTGACTGCGTGCAC
CAGCGCATCGACGTCAGGACACCAAGGAGGCCCTGGAGAAGATCGAGGAGGAGCAGAA
CAAGTCCAAGAAGAAGGCCAGCAGGCCGCCGCCGCCACCGCAACAGCAGCC
AGGTGAGCCAGAACTACCCATCGTCAGAACCTGCAGGGCAGATGGTGCACCGAGG
ATCAGCCCCCGCACCTGAACGCCCTGGTGAAGGTGGAGGAGAAGGCCCTCAGGCC
CGAGGTGATCCCCATGTTAGCGCCCTGAGCGAGGGGCCACCCCCCAGGACCTGAACA
CGATGTTGAAACACCGTGGCGGCCACCAAGGCCCATGCAGATGCTGAAGGAGGACATC
AACGAGGAGGCCCGAGTGGGACCGCGTGCACCCCGTGCACCCGCCCATGCC
CGGCCAGATGCGCGAGCCCCCGCCAGCGACATGCCGGCACCAAGCACCCCTGCAGG
AGCAGATCGGCTGGATGACCAACAACCCCCCATCCCCGTGGCGAGATCTACAAGCGG
TGGATCATCCTGGGCTGAACAAGATCGTCGGATGTACAGCCCCACCGCATCCTGGA
CATCCGCCAGGGCCCCAAGGAGGCCCTCCCGACTACGTGGACCGCTTCTACAAGACCC
TGCGCGCTGAGCAGGCCAGCAGGACGTGAAGAACTGGATGACCGAGACCTGCTGGTG
CAGAACCCAACCCGACTGCAAGACCATCCTGAAGGCTCTGGGCCGCCACCC
GGAGGAGATGATGACCGCCTGCCAGGGCGTGGCGGCCACAGGCCCGCTG
TGGCCGAGGCAGTGGCAGGCAACTCCCGACCATCATGATGCGAGCGGGCAAC
TTCCGCAACCAGCGGAAGACCGTCAAGTGTCAACTGCCAGGAGGGCACACCGC
CAGGAACCTCCGCCGCCCCCGCAAGAAGGGCTGCTGGCGCTGCCGCGAGGGCCACC
AGATGAAGGACTGACCGAGCGCCAGGCCAACTCCCGCAAGATCTGGCCAGCTAC
AAGGGCCGCCCGCAACTCCGTGCAAGAGGCCGCCAGCCACCGCCCCCGAGGA
GAGCTTCCGCTTCCGGAGGAGAAGACCAACCCAGCCAGAAGCAGGAGCCATCGACA
AGGAGCTGTACCCCTGACCAAGCCTGCGCAGCCTGTTGGCAACGACCCCCAGCAGCCAG
TAAGAATTCAACTCGAGCAAGTCTAGA

FIG. 62B

(SEQ ID NO:74)

gp160modUS4.delV1/V2.gag.modSF2

GAATTGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCTGCTGTGTGGA
 GCAGTCTTCGTTGCCAGGCCACCACCGTCTGTGGGTGACCGTGACTACGGCGTG
 CCCGTGTGGAAGGAGGCCACCACCCCTGTTCTGCCAGCGACGCCAAGGCTACAAG
 GCCGAGGCCACAACGTGTGGGCACCCACGCCCTGCGTCCCACCGGACCCCAACCCCCAG
 GAGGTGAACCTGACCAACGTGACCGAGAACTTCAACATGTGGAAGAACAAACATGGTGGAG
 CAGATGCATGAGGACATCATCAGCCTGTGGGACAGAGCCTGAAGCCCTGCGTGGCGCC
 GGCCAGGCCTGCCCAAGGTGAGCTCGAGCCATCCCCATCCACTACTGCGCCCCCGCC
 GGCTTCGCCATCCTGAAGTGCAGGACAAGAACAGTTCAACGGCACCGGCCCTGCAAGAAC
 GTGAGCACCGTGCAGTGCACCCACGGCATCCGCCCGTGGTGAGCACCCAGCTGCTGCTG
 AACGGCAGCCTGGCCGAGGAGGAGATCGTGCCTGCCAGAACACTTCAACGACAACGCC
 AAGACCATCATCGTGCAGCTGAACGAGTCCGTGGAGATCAACTGCATCCGCCAACAAAC
 AACACCGTAAGAGCATCCACATCGGCCCGGCCCTTACGCCACCGGCCACATC
 ATCGCGACATCCGCCAGGCCACTGCAACATCAGCAAGGCCACTGGACCAACACCCCTC
 GAGCAGATCGTGGAGAACGCTGCCGAGCAGTCGGCAACAAGACCATCATTTCAAC
 AGCAGCAGCGCGGCCGACCCCGAGATCGTGTTCACAGCTCAACTGCCGGCGAGTTC
 TTCTACTGCAACACCAAGCCAGCTGTTCAACAGCACCTGGAACATCAGGCCAGGAGGTGAAC
 AAGACCAAGGAGAACGACACCATCATCCTGCCCTGCCGATCCGCCAGATCATCAACATG
 TGGCAGGAGGTGGCAAGGCCATGTACGCCCTGCCCTGCCGAGATCAAGTGCAGC
 AGCAATATTACCGGCTGCTGCTGACCCCGCAGGGCGCACCAACAACCGCACCAAC
 GACACCGAGACCTCCGCCCGGCCGAGCACATGAAGGACAACGGCGAGCGAGCTG
 TACAAGTACAAGGTGGTGCATCGAGCCCTGGCGTGGCCCCCACCCAGGCCAGCG
 CGCGTGGTGCAGCGAGAGCGCGCCGTGGCGCCCTGTTACCGCTTCTG
 GGCGCCGCCGGAGCACCATGGCGCCGCTCCGTGACCGTGAGGCCAG
 CTGCTGAGCGGCATCGCAGCAGCACAAACCTGCTGCCGCACTGAGGCCAGCAG
 CACCTGCTGAGCTGACCGTGTGGGCATCAAGCAGCTGCAGGCCGATCCTGCCGTG
 GAGCGCTACCTGAAGGACCAAGCAGCAGCTGGAGAACAGAGCCTGACCGAGATCTGG
 TGCACCACCAACCGTGCCTGGAACAGCAGCTGGAGAACAGAGCAGCTGCTGGAGCTG
 GACAACATGACCTGGATGGAGTGGAGCGCGAGATCGGCAACTACACCGCCTGATCTAC
 AACCTGATCGAGATCGCCAGAACACCAGCAGGAGAACAGCAGGAGCTGCTGGAGCTG
 GACAAGTGGCCAGCCTGGAACCTGGTGCACATCACCAACTGGCTGTGGTACATCCGC
 ATCTTCATCATGATCGTGGCGGCCTGATCGGCCTGCCGATCGTGTGCTGCCGTGAGC
 ATCGTGAACCGCGTGCAGGGCTACAGCCCCATCAGCCTGCAGACCCGCCCTGCCGCC
 CAGCGCGCCCGACCGCCCCGAGGGCATCGAGGAGGGCGAGCGCGACCGCGAC
 CGCAGCAACCGCCTGGTCACGGCCTGCTGGCCCTGATCTGGACGACCTGCCGAGCCTG
 TGCTGTTCACTACACCGCCTGCCGACCTGCTGCTGATCGTGGCCCGCATCGTGGAG
 CTGCTGGGCCGCCGCGCTGGAGGCCCTGAAAGTACTGGTGGAAACCTGCTGCAGTACTGG
 AGCCAGGAGCTGAAGAGCAGGCCGTGAGCCTGTTCAACGCCACCGCCATGCCGTGGCC
 GAGGGCACCGACCGCATCGAGATCGCAGCGCATCTCCGCCGTGATCCACATC
 CCCCCGCCATCCGCCAGGGCTGGAGCGCCCTGCTGTAAGATATCGGATCCTCTAGA
 GAATTCCGCCCTCCCCCCCCCCCCCTCTCCCTCCCCCCCCCTAACGTTACTGGCCGA
 AGCCGCTTGGATAAGGCCGGTGTGCGTTGTCTATGTTATTTCCACCATATTGCCG
 TCTTTGGCAATGTGAGGGCCGGAAACCTGGCCCTGCTCTGACGAGCATTCTAGG
 GGTCTTCCCTCTGCCAAAGGAATGCAAGGTCTGTTGAATGCGTGAAGGAAGCAGTT

FIG. 63A

(SEQ ID NO:75)

CCTCTGGAAGCTTCTTGAAGACAAACAACGTCTGTAGCGACCCTTGAGGCAGCGGAAC
CCCCCACCTGGCGACAGGTGCCTCTGGCCAAAAGCCACGTGTATAAGATACACCTGCA
AAGGCGGCACAACCCCAGTGCCACGTTGTGAGTTGGATAGTTGTGGAAAGAGTCAAATGG
CTCTCCTCAAGCGTATTCAACAAGGGCTGAAGGATGCCAGAAGGTACCCATTGTATG
GGATCTGATCTGGGGCCTCGGTGCACATGCTTACATGTGTTAGTCGAGGTTAAAAAAA
CGTCTAGGCCCCCGAACCACGGGACGTGGTTTCCCTTGAACACGATAATACCAT
GGCGCCCGGCCAGCGTGTAGCGCGGAGCTGGACAAGTGGAGAAGATCCGCCT
GCGCCCCGGCGCAAGAAGAAGTACAAGCTGAAGCACATCGTGTGGCAGCCGGAGCT
GGAGCGCTTCGCCGTGAACCCCGCTGCTGGAGACCAGCGAGGGCTGCCAGATCCT
GGGCCAGCTGCAGCCCAGCCTGCAGACCCGAGCGAGGAGCTGCGCAGCCTGTACACAC
CGTGGCCACCCCTGACTCGTGCACCAGCGCATCGACGTCAAGGACACCAAGGAGGCCCT
GGAGAAGATCGAGGAGGAGCAGAACAGTCCAAGAAGAAGGCCAGCAGGCCCGCCGC
CGCCGGCACCGAACAGCAGCCAGGTGAGCCAGAACACTACCCATCGTGCAGAACCTGCA
GGGCCAGATGGTGCACCAGGCCATCAGCCCCGACCCCTGAACGCCCTGGTGAAGGTGGT
GGAGGAGAAGGCCCTCAGCCCCGAGGTGATCCCCATGTTCAGGCCCTGAGCGAGGGCGC
CACCCCCCAGGACCTGAACACGATGTTAACACCGTGGCGGCCACCAGGCCATGCA
GATGCTGAAGGAGACCATCAACGAGGAGGCCAGTGGGACCGCGTGCACCCGTGCA
CGCCGGCCCCATGCCCGGCCAGATGCGCGAGCCCGCGCAGCGACATGCCGGCAC
CACCAAGCACCCTGCAGGAGCAGATGGCTGGATGACCAACAACCCCCCATCCCCGTGG
CGAGATCTACAAGCGGTGGATCATCCTGGCCTGAACAAGATCGTGCAGGATGTACAGCCC
CACCAAGCACCCTGCAGGAGCAGATGGCTGGATGACCAACAACCCCCCATCCCCGTGG
CTTCTACAAGACCCCTGCAGGAGCAGATGGCTGGATGACCAACAACCCCCCATCCCCGTGG
GACCCCTGCTGGTGCAGAACGCCAACCCGACTGCAAGAACCATCCTGAAGGCTCTCGGCC
CGCCGCCACCCCTGGAGGAGATGATGACCCCTGCCAGGGCGTGGCGCCGGCCACAA
GGCCCGCGTGTGGCCAGGCAGTGCAGGAGCAGGACATGATGCA
GCGCGCAACTTCCGCAACCAGCGGAAGACCGTCAAGTGCCTCAACTGCGCAAGGAGGG
CCACACCGCCAGGAACCTGGCGCCGGCAAGAACGGGCTGCTGGCGCTGCCGGCG
GGGCCACCCAGATGAAGGACTGCAACCGAGCGCCAGGCCAACTTCTGGCAAGATCTGGCC
CAGCTACAAGGGCCGCCCGCAACTTCTGCAGAGCCGCCAGGCCACCGCCCCCCC
CGAGGAGAGCTTCCGCTTCGGCGAGGAGAACGACCAACCCAGGCCAGAACGAGGCC
CGACAAAGGAGCTGACCCCTGACCGCCTGCGCAGCCTGTTGGCAACGACCCAGCAG
CCAGTAAGAATTCAAGACTCGAGCAAGTCTAGA

FIG. 63B

(SEQ ID NO:75)

gp160.modSF162.delV2.gag.modSF2

GAATTGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGCTGCTGTGTGGA
 GCAGTCTTCGTTGCCAGCGCCGTGGAGAAGCTGTGGGTGACCGTGACTACGGCGTG
 CCCGTGTGGAAGGAGGCCACCACCCACCTGTTCTGCGCCAGCGACGCCAAGGCCTACGAC
 ACCGAGGTGACAACGTGTGGGCCACCCACGCCTGCGTGCCACCAGACCCCAACCCCCAG
 GAGATCGTGTGGAGAACGTGACCGAGAACTTCAACATGTGGAAGAACAAACATGGTGGAG
 CAGATGCACGAGGACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTGAAGCTG
 ACCCCCCCTGCGTGACCCCTGCACTGCACCAACCTGAAGAACGCCACCAACCCAAGAGC
 AGCAACTGGAAGGAGATGGACCGCGCGAGATCAAGAACTGCAGCTCAAGGTGGCGCC
 GGCAAGCTGATCAACTGCAACACCAAGCGTGATCACCCAGGCCCTGCCCAAGGTGAGCTTC
 GAGCCCATCCCCATCCACTACTGCGCCCCGCCGCTCGCATCCTGAAGTGCACCGAC
 AAGAAGTTCAACGGCAGCGGCCCTGCACCAACGTGAGCACCGTGCAGTGCACCCACGGC
 ATCCGCCCCGTGGTGAGCACCCAGCTGCTGAACGGCAGGCCCTGGCGAGGAGGGCGTG
 GTGATCCGCGAGCAGAACCTCACCGACAACGCCAACGACATCATCGTCAGCTGAAGGAG
 AGCGTGGAGATCAACTGCACCCGCCAACAACACCCGCAAGAGCAGTCACCCATCGGC
 CCCGGCCGCCCTTCTACGCCACGGCACATCATCGCGACATCGCCAGGCCACTG
 AACATCAGCGCGAGAACGAGTGGAACAAACACCCCTGAAGCAGATCGTACCGAAGCTGCAGGCC
 CAGTTCGGCAACAAGACCATCGTGTCAAGCAGAGCAGCGGGCGACCCCGAGATCGT
 ATGCACAGCTCAACTGCGCGCGAGTTCTTCTACTGCAACAGCACCCAGCTGTTCAAC
 AGCACCTGGAACAAACACCATCGGCCCAACAAACACCAACGGCACCATCACCCCTGCCCTGC
 CGCATCAAGCAGATCATCAACCGCTGGCAGGAGGTGGCAAGGCCATGTACGCC
 ATCCGCGGCCAGATCCGCTGCAGCAGCAACATCACCGCCCTGCTGCTGACCCGCAACGGC
 GGCAAGGAGATCAGAACACCAACCGAGATCTCCGCCCGGGCGGCGACATCGCGAC
 AACTGGCGAGCAGCTGACAAGTACAAGGTGGTAAGATCGAGGCCCTGGCGTG
 CCCACCAAGGCCAACGCCGCGTGGTGCAGCGAGAACGCCGCGCGTACCCCTGGCG
 ATGTTCTGGCTTCTGGCGCCCGCAGCACCATGGCGCCCGAGCCTGACCCCTG
 ACCGTGCAGGCCAGCAGCACCTGCTGCAGCTGACCGTGTGGGCATCAAGCAGCTGCAG
 GCCATCGAGGCCAGCAGCACCTGCTGCAGCTGACCGTGTGGGCATCTGGCG
 GCGCGCGTGTGGCGCTACCTGAAGGACAGCAGCTGCTGGGCATCTGGCG
 TGCAGCGGCAAGCTGATCTGCACCAACCGCCGTGCCCTGGAACGCCAGCTGGAGCAACAAG
 AGCCTGGACAGATCTGGAACAAACATGACCTGGATGGAGTGGAGCGCGAGATCGACAAC
 TACACCAACCTGATCTACACCCCTGATCGAGGAGAGCCAGAACCCAGCAGGAGAACGAG
 CAGGAGCTGCTGGAGCTGGACAAGTGGGCCAGCCTGTTGAACCTGGCTGACATCAGCAAG
 TGGCTGTGGTACATCAAGATCTTCATCATGATCGTGGCGCCCTGGTGGCCCTGCGC
 GTGTTCACCGTGTGAGCATCGTGAACCGCGTGCAGGCCAGGGCTACAGGCC
 CAGACCCGCTTCCCCGCCCGCGGCCCGACCCCGAGGGCATCGAGGAGGAGGGC
 GGCAGCGCAGCGCACCGCAGCAGGCCCTGGTGCACGCCCTGCTGCCCTGATCTGG
 GACGACCTGCGCAGCCTGTCAGCTACCAACGCCCTGCGCACCTGATCTGATC
 GCCGCCCGCATCGTGGAGCTGCTGGGCCCGCGCTGGGAGGCCCTGAAGTACTGGGC
 AACCTGCTGCAGTACTGGATCCAGGAGCTGAAGAACAGCGCCGTGAGCCTGTTGACGCC
 ATCGCCATCGCCGTGCCAGGGCACCGACCGCATCGAGGTGGCCAGCGCAGCG
 CGCGCCTTCTGCACATCCCCGCCGCATCCGCCAGGGCTTCGAGCGGCCCTGCTG
 TAACTCGAGCAAGTAGAGAATTCCGCCCCCCCCCCCCCTCTCCCTCCCCCCCC
 TTACGTTACTGGCGAAGCCGCTTGGATAAGGCCGGTGTGCGTTGTCTATATGTTATT
 TTCCACCATATTGCCGTCTTGGCAATGTGAGGCCGGAAACCTGCCCTGCTTCTT

FIG. 64A

(SEQ ID NO:76)

GACGAGCATTCTAGGGTCTTCCCTCTGCCAAGGAATGCAAGGTCTGTTGAATGT
CGTGAAGGAAGCAGTCCTCTGAAAGCTCTGAAGACAACACGTCTGTAGCGACCCCT
TTGCAGGCAGCGAACCCCCCACCCTGGCACAGGTGCCCTCTGGGCCAAAAGCCACGTGT
ATAAGATACACCTGCAAAGGCGCACAAACCCCAGTGCCACGTTGTGAGTTGGATAGTTGT
GGAAAGAGTCAAATGGCTCTCTCAAGCGTATTCAACAAGGGCTGAAGGATGCCAGAA
GGTACCCCATGTATGGGATCTGATCTGGGCTCGGTGCACATGTTACATGTGTTA
GTCGAGGTTAAAAAACGTCTAGGCCCCCGAACACGGGACGTGGTTTCCTTGAAA
AACACGATAATACCATGGCGCCCGCAGCGTGTGAGCGCGCGAGCTGGACAAGT
GGGAGAAGATCCGCTGCGCCCCGGCGAACAGAAGTACAAGCTGAAGCACATCGTGT
GGGCCAGCCCGAGCTGGAGCGCTTCGCGCTGAACCCCGGCTGCTGGAGGACCGAGG
GCTGCCGCCAGATCTGGGCCAGCTGCAGCCCAGCCTGCAGACCGGAGCGAGGAGCTGC
GCAGCTGTACAACACCGTGGCACCCCTGTACTGCGTGCACCAGCGCATTGACGTCAAGG
ACACCAAGGAGGCCCTGGAGAACAGATCGAGGAGGAGCAGAACAGTCAAGAACAGG
AGCAGGCCCGCCGCCGGCACCGAACAGCAGCCAGGTGAGCCAGAACACTACCCCA
TCGTGCAGAACCTGCAGGGCCAGATGGTGACCAGGCCATCAGCCCCCGCACCTGAACG
CCTGGGTGAAGGTGGAGGAGAACAGGCTTCAGCCCCGAGGTGATCCCCATGTTAGCG
CCCTGAGCGAGGGGCCACCCCCCAGGACCTGAACACGATGTTGAACACCGTGGGCC
ACCAGGCCGCATGCAGATGCTGAAGGAGACCATCAACGAGGAGGCCGAGTGGGACC
GCGTGCACCCCGTGCACGCCGCCCATGCCCGGCCAGATGCGCAGGCCGCG
GCGACATGCCCGCACACCAGCACCTGCAGGAGCAGATGGCTGGATGACCAACAACC
CCCCCATCCCCGTGGCGAGATCTACAAGCGGTGGATCATCTGGCCTGAACAAAGATCG
TGC GGATGTACAGCCCCACCAGCATCCTGGACATCCGCCAGGGCCCAAGGAGCCCTCC
GCGACTACGTGGACCGCTTCTACAAGACCTGCGCCTGAGCAGGCCAGCCAGGACGTGA
AGAACTGGATGACCGAGACCTGCTGGTGAGAACGCCAACCCGACTGCAAGACCATCC
TGAAGGCTCTGGCCCCGCCACCCCTGGAGGAGATGATGACCGCCTGCCAGGGCTGG
GCCGCCCGGCCACAAGGCCCGCTGCTGCCAGGCCAGGTGACGAACCCGG
CGACCATCATGATGCAGCGCGCAACTCCGAACCAAGCGGAAGACCGTCAAGTGCCTCA
ACTGCGCAAGGAGGGCACACCGCAGGAACCTGCGCCGGCCACAGATGAGGACTGCACCGAGGCCAGGCCAACCTCC
GGCGCTGCCCGCGAGGGCACAGATGAGGACTGCACCGAGGCCAGGCCAACCTCC
TGGGCAAGATCTGGCCAGCTACAAGGCCGCCGGCAACTCCTGCAGAGGCCGG
AGCCCACCGCCCCCGAGGAGAGCTTCCGCTCGCGAGGAGAACGCCACCCAGCC
AGAACGAGGCCATGACAAGGAGCTGTACCCCTGACCGCCTGCCAGCGCAGCCTGTCG
GCAACGACCCAGCAGCCAGTAAGAACATTGAGACTCGAGCAAGTCTAGA

FIG. 64B

(SEQ ID NO:76)

FIG. 65C

FIG. 65B

FIG. 65A

FIG. 65F

FIG. 65E

FIG. 65D

50

gp160 . modSF162	(1)	GAATTCCCATGGATGCAATGAAAGAGGGCTCTGCTGTGCTGCT
gp160 . modSF162 . delV2	(1)	GAATTCCCATGGATGCAATGAAAGAGGGCTCTGCTGTGCTGCT
gp160 . modSF162 . delV1V2	(1)	GAATTCCCATGGATGCAATGAAAGAGGGCTCTGCTGTGCTGCT
gp140 . modSF162	(1)	GAATTCCCATGGATGCAATGAAAGAGGGCTCTGCTGTGCTGCT
gp140 . mut . modSF162	(1)	GAATTCCCATGGATGCAATGAAAGAGGGCTCTGCTGTGCTGCT
gp140 . mut7 . modSF162	(1)	GAATTCCCATGGATGCAATGAAAGAGGGCTCTGCTGTGCTGCT
gp140 . mut8 . modSF162	(1)	GAATTCCCATGGATGCAATGAAAGAGGGCTCTGCTGTGCTGCT
gp120 . modSF162	(1)	GAATTCCCATGGATGCAATGAAAGAGGGCTCTGCTGTGCTGCT
Consensus		GAATTCCCATGGATGCAATGAAAGAGGGCTCTGCTGTGCTGCT
	51	
gp160 . modSF162	(51)	GCTGTGGAGCAGTCTTCGTTTGCCCCAGGCCCGTGGAGAAGCTGTGGG
gp160 . modSF162 . delV2	(51)	GCTGTGGAGCAGTCTTCGTTTGCCCCAGGCCCGTGGAGAAGCTGTGGG
gp160 . modSF162 . delV1V2	(51)	GCTGTGGAGCAGTCTTCGTTTGCCCCAGGCCCGTGGAGAAGCTGTGGG
gp140 . modSF162	(51)	GCTGTGGAGCAGTCTTCGTTTGCCCCAGGCCCGTGGAGAAGCTGTGGG
gp140 . mut . modSF162	(51)	GCTGTGGAGCAGTCTTCGTTTGCCCCAGGCCCGTGGAGAAGCTGTGGG
gp140 . mut7 . modSF162	(51)	GCTGTGGAGCAGTCTTCGTTTGCCCCAGGCCCGTGGAGAAGCTGTGGG
gp140 . mut8 . modSF162	(51)	GCTGTGGAGCAGTCTTCGTTTGCCCCAGGCCCGTGGAGAAGCTGTGGG
gp120 . modSF162	(51)	GCTGTGGAGCAGTCTTCGTTTGCCCCAGGCCCGTGGAGAAGCTGTGGG
Consensus		GCTGTGGAGCAGTCTTCGTTTGCCCCAGGCCCGTGGAGAAGCTGTGGG
	101	
gp160 . modSF162	(101)	TGACCGGTGTACTACGGCGTGGCCGTGGAAAGGAGGGCCACCAACCCTG
gp160 . modSF162 . delV2	(101)	TGACCGGTGTACTACGGCGTGGCCGTGGAAAGGAGGGCCACCAACCCTG
gp160 . modSF162 . delV1V2	(101)	TGACCGGTGTACTACGGCGTGGCCGTGGAAAGGAGGGCCACCAACCCTG
gp140 . modSF162	(101)	TGACCGGTGTACTACGGCGTGGCCGTGGAAAGGAGGGCCACCAACCCTG
gp140 . mut . modSF162	(101)	TGACCGGTGTACTACGGCGTGGCCGTGGAAAGGAGGGCCACCAACCCTG
gp140 . mut7 . modSF162	(101)	TGACCGGTGTACTACGGCGTGGCCGTGGAAAGGAGGGCCACCAACCCTG
gp140 . mut8 . modSF162	(101)	TGACCGGTGTACTACGGCGTGGCCGTGGAAAGGAGGGCCACCAACCCTG
gp120 . modSF162	(101)	TGACCGGTGTACTACGGCGTGGCCGTGGAAAGGAGGGCCACCAACCCTG
Consensus		TGACCGGTGTACTACGGCGTGGCCGTGGAAAGGAGGGCCACCAACCCTG
	150	

FIG. 66A-1

gp160.modSF162	(151)	TTC TGG CCC AGCGGACGCCAAGGCCCTACCGACACCGAGGTGCACAACGTTG	151
gp160.modSF162.delV2	(151)	TTC TGG CCC AGCGGACGCCAAGGCCCTACCGACACCGAGGTGCACAACGTTG	
gp160.modSF162.delV1V2	(151)	TTC TGG CCC AGCGGACGCCAAGGCCCTACCGACACCGAGGTGCACAACGTTG	
gp140.modSF162	(151)	TTC TGG CCC AGCGGACGCCAAGGCCCTACCGACACCGAGGTGCACAACGTTG	
gp140.mut.modSF162	(151)	TTC TGG CCC AGCGGACGCCAAGGCCCTACCGACACCGAGGTGCACAACGTTG	
gp140.mut7.modSF162	(151)	TTC TGG CCC AGCGGACGCCAAGGCCCTACCGACACCGAGGTGCACAACGTTG	
gp140.mut8.modSF162	(151)	TTC TGG CCC AGCGGACGCCAAGGCCCTACCGACACCGAGGTGCACAACGTTG	
gp120.modSF162	(151)	TTC TGG CCC AGCGGACGCCAAGGCCCTACCGACACCGAGGTGCACAACGTTG	
Consensus	(201)	TTC TGG CCC AGCGGACGCCAAGGCCCTACCGACACCGAGGTGCACAACGTTG	200
			250
gp160.modSF162	(201)	GCC CAC CC AC CG CC CT GCG C CC ACC GAC CC CA ACC C C C AG GG AG AT CGT GC	151
gp160.modSF162.delV2	(201)	GCC CAC CC AC CG CC CT GCG C CC ACC GAC CC CA ACC C C C AG GG AG AT CGT GC	
gp160.modSF162.delV1V2	(201)	GCC CAC CC AC CG CC CT GCG C CC ACC GAC CC CA ACC C C C AG GG AG AT CGT GC	
gp140.modSF162	(201)	GCC CAC CC AC CG CC CT GCG C CC ACC GAC CC CA ACC C C C AG GG AG AT CGT GC	
gp140.mut.modSF162	(201)	GCC CAC CC AC CG CC CT GCG C CC ACC GAC CC CA ACC C C C AG GG AG AT CGT GC	
gp140.mut7.modSF162	(201)	GCC CAC CC AC CG CC CT GCG C CC ACC GAC CC CA ACC C C C AG GG AG AT CGT GC	
gp140.mut8.modSF162	(201)	GCC CAC CC AC CG CC CT GCG C CC ACC GAC CC CA ACC C C C AG GG AG AT CGT GC	
gp120.modSF162	(201)	GCC CAC CC AC CG CC CT GCG C CC ACC GAC CC CA ACC C C C AG GG AG AT CGT GC	
Consensus	(201)	GCC CAC CC AC CG CC CT GCG C CC ACC GAC CC CA ACC C C C AG GG AG AT CGT GC	251
			300
gp160.modSF162	(251)	TGG AG A AC GT GAC CG GA AAC TT CA AC AT GT GG AA GA AC AC AT GG TG AG	151
gp160.modSF162.delV2	(251)	TGG AG A AC GT GAC CG GA AAC TT CA AC AT GT GG AA GA AC AC AT GG TG AG	
gp160.modSF162.delV1V2	(251)	TGG AG A AC GT GAC CG GA AAC TT CA AC AT GT GG AA GA AC AC AT GG TG AG	
gp140.modSF162	(251)	TGG AG A AC GT GAC CG GA AAC TT CA AC AT GT GG AA GA AC AC AT GG TG AG	
gp140.mut.modSF162	(251)	TGG AG A AC GT GAC CG GA AAC TT CA AC AT GT GG AA GA AC AC AT GG TG AG	
gp140.mut7.modSF162	(251)	TGG AG A AC GT GAC CG GA AAC TT CA AC AT GT GG AA GA AC AC AT GG TG AG	
gp140.mut8.modSF162	(251)	TGG AG A AC GT GAC CG GA AAC TT CA AC AT GT GG AA GA AC AC AT GG TG AG	

FIG. 66A-2

gp120 . modSF162	(251)	TGGAGAACCGTACCGAGAACCTTCACATGTGGAAACAATGTGGAAACAATGGTGAG	350
Consensus	(251)	TGGAGAACCGTACCGAGAACCTTCACATGTGGAAACAATGTGGAAACAATGGTGAG	
gp160 . modSF162	(301)	CAGATGCACGAGGACATCATCAGGCCCTGTTGGGACCAGAGCCCTGAAGCCCTG	
gp160 . modSF162 . delV2	(301)	CAGATGCACGAGGACATCATCAGGCCCTGTTGGGACCAGAGCCCTGAAGCCCTG	
gp160 . modSF162 . delV1V2	(301)	CAGATGCACGAGGACATCATCAGGCCCTGTTGGGACCAGAGCCCTGAAGCCCTG	
gp140 . modSF162	(301)	CAGATGCACGAGGACATCATCAGGCCCTGTTGGGACCAGAGCCCTGAAGCCCTG	
gp140 . mut . modSF162	(301)	CAGATGCACGAGGACATCATCAGGCCCTGTTGGGACCAGAGCCCTGAAGCCCTG	
gp140 . mut7 . modSF162	(301)	CAGATGCACGAGGACATCATCAGGCCCTGTTGGGACCAGAGCCCTGAAGCCCTG	
gp140 . mut8 . modSF162	(301)	CAGATGCACGAGGACATCATCAGGCCCTGTTGGGACCAGAGCCCTGAAGCCCTG	
gp120 . modSF162	(301)	CAGATGCACGAGGACATCATCAGGCCCTGTTGGGACCAGAGCCCTGAAGCCCTG	
Consensus	(301)	CAGATGCACGAGGACATCATCAGGCCCTGTTGGGACCAGAGCCCTGAAGCCCTG	
351			
gp160 . modSF162	(351)	CGTGAAGCTGACCCCCCTGTGGCTGACCCCTGTCACCTGCACCAACCTGAAGA	400
gp160 . modSF162 . delV2	(351)	CGTGAAGCTGACCCCCCTGTGGCTGACCCCTGTCACCTGCACCAACCTGAAGA	
gp160 . modSF162 . delV1V2	(351)	CGTGAAGCTGACCCCCCTGTGGCTGACCCCTGTCACCTGCACCAACCTGAAGA	
gp140 . modSF162	(351)	CGTGAAGCTGACCCCCCTGTGGCTGACCCCTGTCACCTGCACCAACCTGAAGA	
gp140 . mut . modSF162	(351)	CGTGAAGCTGACCCCCCTGTGGCTGACCCCTGTCACCTGCACCAACCTGAAGA	
gp140 . mut7 . modSF162	(351)	CGTGAAGCTGACCCCCCTGTGGCTGACCCCTGTCACCTGCACCAACCTGAAGA	
gp140 . mut8 . modSF162	(351)	CGTGAAGCTGACCCCCCTGTGGCTGACCCCTGTCACCTGCACCAACCTGAAGA	
gp120 . modSF162	(351)	CGTGAAGCTGACCCCCCTGTGGCTGACCCCTGTCACCTGCACCAACCTGAAGA	
Consensus	(351)	CGTGAAGCTGACCCCCCTGTGGCTGACCCCTGTCACCTGCACCAACCTGAAGA	
401			
gp160 . modSF162	(401)	ACGCCACCAACACCAAGGAGAACCTGGAAAGGAGATGGACCGGGGGGAG	450
gp160 . modSF162 . delV2	(401)	ACGCCACCAACACCAAGGAGAACCTGGAAAGGAGATGGACCGGGGGGAG	
gp160 . modSF162 . delV1V2	(375)	-----	
gp140 . modSF162	(401)	ACGCCACCAACACCAAGGAGAACCTGGAAAGGAGATGGACCGGGGGGAG	
gp140 . mut . modSF162	(401)	ACGCCACCAACACCAAGGAGAACCTGGAAAGGAGATGGACCGGGGGGAG	
gp140 . mut7 . modSF162	(401)	ACGCCACCAACACCAAGGAGAACCTGGAAAGGAGATGGACCGGGGGGAG	
gp140 . mut8 . modSF162	(401)	ACGCCACCAACACCAAGGAGAACCTGGAAAGGAGATGGACCGGGGGGAG	
gp120 . modSF162	(401)	ACGCCACCAACACCAAGGAGAACCTGGAAAGGAGATGGACCGGGGGGAG	
Consensus	(401)	ACGCCACCAACACCAAGGAGAACCTGGAAAGGAGATGGACCGGGGGGAG	

FIG. 66A-3

gp160.modSF162	(451)	ATCAAGAACTGCAGCTCAAGGTGACCCACCAGCATCCGCAACAAGATGCA	450
gp160.modSF162.delV2	(451)	ATCAAGAACTGCAGCTCAAGGTGGG	
gp160.modSF162.delV1V2	(376)	-----GGC-----	
gp140.modSF162	(451)	ATCAAGAACTGCAGCTCAAGGTGACCAACCAGCATCCGCAACAAGATGCA	
gp140.mut.modSF162	(451)	ATCAAGAACTGCAGCTCAAGGTGACCAACCAGCATCCGCAACAAGATGCA	
gp140.mut7.modSF162	(451)	ATCAAGAACTGCAGCTCAAGGTGACCAACCAGCATCCGCAACAAGATGCA	
gp140.mut8.modSF162	(451)	ATCAAGAACTGCAGCTCAAGGTGACCAACCAGCATCCGCAACAAGATGCA	
gp120.modSF162	(451)	ATCAAGAACTGCAGCTCAAGGTGACCAACCAGCATCCGCAACAAGATGCA	
Consensus	(451)	ATCAAGAACTGCAGCTCAAGGTGACCAACCAGCATCCGCAACAAGATGCA	550
gp160.modSF162	(501)	GAAGGGAGTACGCCCTGTTACAAGCTGGACGTGGGCCATCGACAAACG	
gp160.modSF162.delV2	(478)	-----GCC-----GG-----	
gp160.modSF162.delV1V2	(379)	-----GGC-----GG-----	
gp140.modSF162	(501)	GAAGGGAGTACGCCCTGTTACAAGCTGGACGTGGGCCATCGACAAACG	
gp140.mut.modSF162	(501)	GAAGGGAGTACGCCCTGTTACAAGCTGGACGTGGGCCATCGACAAACG	
gp140.mut7.modSF162	(501)	GAAGGGAGTACGCCCTGTTACAAGCTGGACGTGGGCCATCGACAAACG	
gp140.mut8.modSF162	(501)	GAAGGGAGTACGCCCTGTTACAAGCTGGACGTGGGCCATCGACAAACG	
gp120.modSF162	(501)	GAAGGGAGTACGCCCTGTTACAAGCTGGACGTGGGCCATCGACAAACG	
Consensus	(501)	GAAGGGAGTACGCCCTGTTACAAGCTGGACGTGGGCCATCGACAAACG	551
gp160.modSF162	(551)	ACAACACCCAGCTACAAGCTGATCAACTGCAACACCAGGTGATCACCCAG	551
gp160.modSF162.delV2	(492)	-----CAAGCTGATCAACTGCAACACCAGGTGATCACCCAG	
gp160.modSF162.delV1V2	(384)	-----CAACTGCCAGACCCAGGTGATCACCCAG	
gp140.modSF162	(551)	ACAAACACCCAGCTACAAGCTGATCAACTGCAACACCAGGTGATCACCCAG	
gp140.mut.modSF162	(551)	ACAAACACCCAGCTACAAGCTGATCAACTGCAACACCAGGTGATCACCCAG	

FIG. 66A-4

gp140 . mut7 . modSF162	(551)	ACAAACACCAGCTACAAGCTGATCAACTGCAACACCAGCGTGAATCACCCAG
gp140 . mut8 . modSF162	(551)	ACAAACACCAGCTACAAGCTGATCAACTGCAACACCAGCGTGAATCACCCAG
gp120 . modSF162	(551)	ACAAACACCAGCTACAAGCTGATCAACTGCAACACCAGCGTGAATCACCCAG
Consensus		650
gp160 . modSF162	(601)	GCCTGCCCAAAAGGTGAGCTTCGAGCCCATCCCCATCCACTACTGCCCCC
gp160 . modSF162 . delV2	(520)	GCCTGCCCAAAAGGTGAGCTTCGAGCCCATCCCCATCCACTACTGCCCCC
gp160 . modSF162 . delV1V2	(412)	GCCTGCCCAAAAGGTGAGCTTCGAGCCCATCCCCATCCACTACTGCCCCC
gp140 . modSF162	(601)	GCCTGCCCAAAAGGTGAGCTTCGAGCCCATCCCCATCCACTACTGCCCCC
gp140 . mut . modSF162	(601)	GCCTGCCCAAAAGGTGAGCTTCGAGCCCATCCCCATCCACTACTGCCCCC
gp140 . mut7 . modSF162	(601)	GCCTGCCCAAAAGGTGAGCTTCGAGCCCATCCCCATCCACTACTGCCCCC
gp140 . mut8 . modSF162	(601)	GCCTGCCCAAAAGGTGAGCTTCGAGCCCATCCCCATCCACTACTGCCCCC
gp120 . modSF162	(601)	GCCTGCCCAAAAGGTGAGCTTCGAGCCCATCCCCATCCACTACTGCCCCC
Consensus		700
gp160 . modSF162	(651)	CGCCGGCTTCGCCATCCTGAAGTGCACGGCAAGAAGTTCAACGGCAGCG
gp160 . modSF162 . delV2	(570)	CGCCGGCTTCGCCATCCTGAAGTGCACGGCAAGAAGTTCAACGGCAGCG
gp160 . modSF162 . delV1V2	(462)	CGCCGGCTTCGCCATCCTGAAGTGCACGGCAAGAAGTTCAACGGCAGCG
gp140 . modSF162	(651)	CGCCGGCTTCGCCATCCTGAAGTGCACGGCAAGAAGTTCAACGGCAGCG
gp140 . mut . modSF162	(651)	CGCCGGCTTCGCCATCCTGAAGTGCACGGCAAGAAGTTCAACGGCAGCG
gp140 . mut7 . modSF162	(651)	CGCCGGCTTCGCCATCCTGAAGTGCACGGCAAGAAGTTCAACGGCAGCG
gp140 . mut8 . modSF162	(651)	CGCCGGCTTCGCCATCCTGAAGTGCACGGCAAGAAGTTCAACGGCAGCG
gp120 . modSF162	(651)	CGCCGGCTTCGCCATCCTGAAGTGCACGGCAAGAAGTTCAACGGCAGCG
Consensus		750
gp160 . modSF162	(701)	GCCCCCTGCACCAACGTGAGCACCGTGAGTGCACCCACGGCATCCGGCCC
gp160 . modSF162 . delV2	(620)	GCCCCCTGCACCAACGTGAGCACCGTGAGTGCACCCACGGCATCCGGCCC
gp160 . modSF162 . delV1V2	(512)	GCCCCCTGCACCAACGTGAGCACCGTGAGTGCACCCACGGCATCCGGCCC
gp140 . modSF162	(701)	GCCCCCTGCACCAACGTGAGCACCGTGAGTGCACCCACGGCATCCGGCCC
gp140 . mut . modSF162	(701)	GCCCCCTGCACCAACGTGAGCACCGTGAGTGCACCCACGGCATCCGGCCC
gp140 . mut7 . modSF162	(701)	GCCCCCTGCACCAACGTGAGCACCGTGAGTGCACCCACGGCATCCGGCCC
gp140 . mut8 . modSF162	(701)	GCCCCCTGCACCAACGTGAGCACCGTGAGTGCACCCACGGCATCCGGCCC
gp120 . modSF162	(701)	GCCCCCTGCACCAACGTGAGCACCGTGAGTGCACCCACGGCATCCGGCCC
Consensus		800

FIG. 66A-5

		800
gp160 .modSF162	(751)	GTTGGT GAGC ACCC AGCT GCTG CTGCTGAACGGCAGCC TGGCCGAGGGCGT
gp160 .modSF162 .delV2	(670)	GTGGT GAGC ACCC AGCT GCTG CTGCTGAACGGCAGCC TGGCCGAGGGCGT
gp160 .modSF162 .delV1V2	(562)	GTGGT GAGC ACCC AGCT GCTG CTGCTGAACGGCAGCC TGGCCGAGGGCGT
gp160 .modSF162 .delV1V2	(751)	GTGGT GAGC ACCC AGCT GCTG CTGCTGAACGGCAGCC TGGCCGAGGGCGT
gp140 .modSF162	(751)	GTGGT GAGC ACCC AGCT GCTG CTGCTGAACGGCAGCC TGGCCGAGGGCGT
gp140 .mut .modSF162	(751)	GTGGT GAGC ACCC AGCT GCTG CTGCTGAACGGCAGCC TGGCCGAGGGCGT
gp140 .mut 7 .modSF162	(751)	GTGGT GAGC ACCC AGCT GCTG CTGCTGAACGGCAGCC TGGCCGAGGGCGT
gp140 .mut 8 .modSF162	(751)	GTGGT GAGC ACCC AGCT GCTG CTGCTGAACGGCAGCC TGGCCGAGGGCGT
gp120 .modSF162	(751)	GTGGT GAGC ACCC AGCT GCTG CTGCTGAACGGCAGCC TGGCCGAGGGCGT
Consensus	(751)	GTGGT GAGC ACCC AGCT GCTG CTGCTGAACGGCAGCC TGGCCGAGGGCGT
	850	
gp160 .modSF162	(801)	GTTGAT CCGCAGCCAGAAGAACTTCACCGACAAGGCCAACGACCATCATCGTC
gp160 .modSF162 .delV2	(720)	GTTGAT CCGCAGCCAGAAGAACTTCACCGACAAGGCCAACGACCATCATCGTC
gp160 .modSF162 .delV1V2	(612)	GTTGAT CCGCAGCCAGAAGAACTTCACCGACAAGGCCAACGACCATCATCGTC
gp140 .modSF162	(801)	GTTGAT CCGCAGCCAGAAGAACTTCACCGACAAGGCCAACGACCATCATCGTC
gp140 .mut .modSF162	(801)	GTTGAT CCGCAGCCAGAAGAACTTCACCGACAAGGCCAACGACCATCATCGTC
gp140 .mut 7 .modSF162	(801)	GTTGAT CCGCAGCCAGAAGAACTTCACCGACAAGGCCAACGACCATCATCGTC
gp140 .mut 8 .modSF162	(801)	GTTGAT CCGCAGCCAGAAGAACTTCACCGACAAGGCCAACGACCATCATCGTC
gp120 .modSF162	(801)	GTTGAT CCGCAGCCAGAAGAACTTCACCGACAAGGCCAACGACCATCATCGTC
Consensus	(801)	GTTGAT CCGCAGCCAGAAGAACTTCACCGACAAGGCCAACGACCATCATCGTC
	900	
gp160 .modSF162	(851)	AGCTGAAGGAGAGCGTGGAGATCAACTGCACCCGGCCCAACAAACACCC
gp160 .modSF162 .delV2	(770)	AGCTGAAGGAGAGCGTGGAGATCAACTGCACCCGGCCCAACAAACACCC
gp160 .modSF162 .delV1V2	(662)	AGCTGAAGGAGAGCGTGGAGATCAACTGCACCCGGCCCAACAAACACCC

FIG. 66A-6

gp140.modSF162	(851)	AGCTGAAGGAGGGTGGAGATCAACTGCACCCGCCCAACAAACACC
gp140.mut.modSF162	(851)	AGCTGAAGGAGGGTGGAGATCAACTGCACCCGCCCAACAAACACC
gp140.mut7.modSF162	(851)	AGCTGAAGGAGGGTGGAGATCAACTGCACCCGCCCAACAAACACC
gp140.mut8.modSF162	(851)	AGCTGAAGGAGGGTGGAGATCAACTGCACCCGCCCAACAAACACC
gp120.modSF162	(851)	AGCTGAAGGAGGGTGGAGATCAACTGCACCCGCCCAACAAACACC
Consensus	(851)	AGCTGAAGGAGGGTGGAGATCAACTGCACCCGCCCAACAAACACC
	901	
gp160.modSF162	(901)	CGCAAGAGCATCACCATGGCCCCGGCGCGCCTTCTACGCCACGGGA
gp160.modSF162.delV2	(820)	CGCAAGAGCATCACCATGGCCCCGGCGCGCCTTCTACGCCACGGGA
gp160.modSF162.delV1V2	(712)	CGCAAGAGCATCACCATGGCCCCGGCGCGCCTTCTACGCCACGGGA
gp140.modSF162	(901)	CGCAAGAGCATCACCATGGCCCCGGCGCGCCTTCTACGCCACGGGA
gp140.mut.modSF162	(901)	CGCAAGAGCATCACCATGGCCCCGGCGCGCCTTCTACGCCACGGGA
gp140.mut7.modSF162	(901)	CGCAAGAGCATCACCATGGCCCCGGCGCGCCTTCTACGCCACGGGA
gp140.mut7.modSF162	(901)	CGCAAGAGCATCACCATGGCCCCGGCGCGCCTTCTACGCCACGGGA
gp140.mut8.modSF162	(901)	CGCAAGAGCATCACCATGGCCCCGGCGCGCCTTCTACGCCACGGGA
gp120.modSF162	(901)	CGCAAGAGCATCACCATGGCCCCGGCGCGCCTTCTACGCCACGGGA
Consensus	(901)	CGCAAGAGCATCACCATGGCCCCGGCGCGCCTTCTACGCCACGGGA
	951	
gp160.modSF162	(951)	CATCATCGGCAGACATCGGCCAGGGCCACTGCAACATCAGGGGAGAAGT
gp160.modSF162.delV2	(870)	CATCATCGGCAGACATCGGCCAGGGCCACTGCAACATCAGGGGAGAAGT
gp160.modSF162.delV1V2	(762)	CATCATCGGCAGACATCGGCCAGGGCCACTGCAACATCAGGGGAGAAGT
gp140.modSF162	(951)	CATCATCGGCAGACATCGGCCAGGGCCACTGCAACATCAGGGGAGAAGT
gp140.mut.modSF162	(951)	CATCATCGGCAGACATCGGCCAGGGCCACTGCAACATCAGGGGAGAAGT
gp140.mut7.modSF162	(951)	CATCATCGGCAGACATCGGCCAGGGCCACTGCAACATCAGGGGAGAAGT
gp140.mut8.modSF162	(951)	CATCATCGGCAGACATCGGCCAGGGCCACTGCAACATCAGGGGAGAAGT
gp120.modSF162	(951)	CATCATCGGCAGACATCGGCCAGGGCCACTGCAACATCAGGGGAGAAGT
Consensus	(951)	CATCATCGGCAGACATCGGCCAGGGCCACTGCAACATCAGGGGAGAAGT
	1000	

FIG. 66A-7

gp160 . modSF162	(1001)	GGAAACAAACACCTGAAAGCAGATCGTGACCAAGCTGCAGGGCCAGTTGGC	1001
gp160 . modSF162 . delV2	(920)	GGAAACAAACACCTGAAAGCAGATCGTGACCAAGCTGCAGGGCCAGTTGGC	
gp160 . modSF162 . delV1V2	(812)	GGAAACAAACACCTGAAAGCAGATCGTGACCAAGCTGCAGGGCCAGTTGGC	
gp140 . modSF162	(1001)	GGAAACAAACACCTGAAAGCAGATCGTGACCAAGCTGCAGGGCCAGTTGGC	
gp140 . mut . modSF162	(1001)	GGAAACAAACACCTGAAAGCAGATCGTGACCAAGCTGCAGGGCCAGTTGGC	
gp140 . mut7 . modSF162	(1001)	GGAAACAAACACCTGAAAGCAGATCGTGACCAAGCTGCAGGGCCAGTTGGC	
gp140 . mut8 . modSF162	(1001)	GGAAACAAACACCTGAAAGCAGATCGTGACCAAGCTGCAGGGCCAGTTGGC	
gp120 . modSF162	(1001)	GGAAACAAACACCTGAAAGCAGATCGTGACCAAGCTGCAGGGCCAGTTGGC	
Consensus	(1001)	GGAAACAAACACCTGAAAGCAGATCGTGACCAAGCTGCAGGGCCAGTTGGC	
	1051		
gp160 . modSF162	(1051)	AACAAGAACCATCGTGTCAAGCAGGGAGGGAGGGGAGCCCCGAGATCGT	
gp160 . modSF162 . delV2	(970)	AACAAGAACCATCGTGTCAAGCAGGGAGGGGAGCCCCGAGATCGT	
gp160 . modSF162 . delV1V2	(862)	AACAAGAACCATCGTGTCAAGCAGGGAGGGGAGCCCCGAGATCGT	
gp140 . modSF162	(1051)	AACAAGAACCATCGTGTCAAGCAGGGAGGGGAGCCCCGAGATCGT	
gp140 . mut . modSF162	(1051)	AACAAGAACCATCGTGTCAAGCAGGGAGGGGAGCCCCGAGATCGT	
gp140 . mut7 . modSF162	(1051)	AACAAGAACCATCGTGTCAAGCAGGGAGGGGAGCCCCGAGATCGT	
gp140 . mut8 . modSF162	(1051)	AACAAGAACCATCGTGTCAAGCAGGGAGGGGAGCCCCGAGATCGT	
gp120 . modSF162	(1051)	AACAAGAACCATCGTGTCAAGCAGGGAGGGGAGCCCCGAGATCGT	
Consensus	(1051)	AACAAGAACCATCGTGTCAAGCAGGGAGGGGAGCCCCGAGATCGT	
	1101		
gp160 . modSF162	(1101)	GATGCACAGCTTCAAACTGCGGGGGGAGTTCTACTGCAAACAGCACCC	
gp160 . modSF162 . delV2	(1020)	GATGCACAGCTTCAAACTGCGGGGGGAGTTCTACTGCAAACAGCACCC	
gp160 . modSF162 . delV1V2	(912)	GATGCACAGCTTCAAACTGCGGGGGGAGTTCTACTGCAAACAGCACCC	
gp140 . modSF162	(1101)	GATGCACAGCTTCAAACTGCGGGGGGAGTTCTACTGCAAACAGCACCC	
gp140 . mut . modSF162	(1101)	GATGCACAGCTTCAAACTGCGGGGGGAGTTCTACTGCAAACAGCACCC	
gp140 . mut7 . modSF162	(1101)	GATGCACAGCTTCAAACTGCGGGGGGAGTTCTACTGCAAACAGCACCC	
gp140 . mut8 . modSF162	(1101)	GATGCACAGCTTCAAACTGCGGGGGGAGTTCTACTGCAAACAGCACCC	
gp120 . modSF162	(1101)	GATGCACAGCTTCAAACTGCGGGGGGAGTTCTACTGCAAACAGCACCC	
Consensus	(1101)	GATGCACAGCTTCAAACTGCGGGGGGAGTTCTACTGCAAACAGCACCC	
	1151		
gp160 . modSF162	(1151)	AGCTGTCAACAGCACCTGGAACACCATGGCCCCAACACACCAAC	

FIG. 66A-8

gp160 .modSF162 .delV2	(1070)	AGCTGTTCAACAGCACCTGGAACACAACACCATCGGGCCCCAACAACACCCAAAC
gp160 .modSF162 .delV1V2	(962)	AGCTGTTCAACAGCACCTGGAACACAACACCATCGGGCCCCAACAACACCCAAAC
gp140 .modSF162	(1151)	AGCTGTTCAACAGAACCTGGAACACAACACCATCGGGCCCCAACAACACCCAAAC
gp140 .mut .modSF162	(1151)	AGCTGTTCAACAGAACCTGGAACACAACACCATCGGGCCCCAACAACACCCAAAC
gp140 .mut7 .modSF162	(1151)	AGCTGTTCAACAGAACCTGGAACACAACACCATCGGGCCCCAACAACACCCAAAC
gp140 .mut8 .modSF162	(1151)	AGCTGTTCAACAGAACCTGGAACACAACACCATCGGGCCCCAACAACACCCAAAC
gp120 .modSF162	(1151)	AGCTGTTCAACAGAACCTGGAACACAACACCATCGGGCCCCAACAACACCCAAAC
Consensus	(1151)	AGCTGTTCAACAGAACCTGGAACACAACACCATCGGGCCCCAACAACACCCAAAC
	1201	
gp160 .modSF162	(1201)	GGCACCATTACCCCTGCCCTGCCGCATCAAGCAGATCATCAACCGCTGGCA
gp160 .modSF162 .delV2	(1120)	GGCACCATTACCCCTGCCCTGCCGCATCAAGCAGATCATCAACCGCTGGCA
gp160 .modSF162 .delV1V2	(1012)	GGCACCATTACCCCTGCCCTGCCGCATCAAGCAGATCATCAACCGCTGGCA
gp140 .modSF162	(1201)	GGCACCATTACCCCTGCCCTGCCGCATCAAGCAGATCATCAACCGCTGGCA
gp140 .mut .modSF162	(1201)	GGCACCATTACCCCTGCCCTGCCGCATCAAGCAGATCATCAACCGCTGGCA
gp140 .mut7 .modSF162	(1201)	GGCACCATTACCCCTGCCCTGCCGCATCAAGCAGATCATCAACCGCTGGCA
gp140 .mut8 .modSF162	(1201)	GGCACCATTACCCCTGCCCTGCCGCATCAAGCAGATCATCAACCGCTGGCA
gp120 .modSF162	(1201)	GGCACCATTACCCCTGCCCTGCCGCATCAAGCAGATCATCAACCGCTGGCA
Consensus	(1201)	GGCACCATTACCCCTGCCCTGCCGCATCAAGCAGATCATCAACCGCTGGCA
	1251	
gp160 .modSF162	(1251)	GGAGGTGGCAAGGCCATGTACGCCCCCATCGGGCCAGATCCGGCT
gp160 .modSE162 .delV2	(1170)	GGAGGTGGCAAGGCCATGTACGCCCCCATCGGGCCAGATCCGGCT
gp160 .modSF162 .delV1V2	(1062)	GGAGGTGGCAAGGCCATGTACGCCCCCATCGGGCCAGATCCGGCT
gp140 .modSF162	(1251)	GGAGGTGGCAAGGCCATGTACGCCCCCATCGGGCCAGATCCGGCT
gp140 .mut .modSF162	(1251)	GGAGGTGGCAAGGCCATGTACGCCCCCATCGGGCCAGATCCGGCT
gp140 .mut7 .modSF162	(1251)	GGAGGTGGCAAGGCCATGTACGCCCCCATCGGGCCAGATCCGGCT
gp140 .mut8 .modSF162	(1251)	GGAGGTGGCAAGGCCATGTACGCCCCCATCGGGCCAGATCCGGCT
gp120 .modSF162	(1251)	GGAGGTGGCAAGGCCATGTACGCCCCCATCGGGCCAGATCCGGCT
Consensus	(1251)	GGAGGTGGCAAGGCCATGTACGCCCCCATCGGGCCAGATCCGGCT

FIG. 66A-9

gp160 .modSF162 gp160 .modSF162 .delV2 gp160 .modSF162 .delV1V2 gp140 .modSF162 gp140 .mut .modSF162 gp140 .mut7 .modSF162 gp140 .mut8 .modSF162 gp120 .modSF162 Consensus	(1301) (1220) (1112) (1301) (1301) (1301) (1301) (1301) (1301)	GCAGCAGCAACATCACCGGCTGCTGACCCGGGACGGGGCAAGGAG GCAGCAGCAACATCACCGGCTGCTGACCCGGGACGGGGCAAGGAG GCAGCAGCAACATCACCGGCTGCTGACCCGGGACGGGGCAAGGAG GCAGCAGCAACATCACCGGCTGCTGACCCGGGACGGGGCAAGGAG GCAGCAGCAACATCACCGGCTGCTGACCCGGGACGGGGCAAGGAG GCAGCAGCAACATCACCGGCTGCTGACCCGGGACGGGGCAAGGAG GCAGCAGCAACATCACCGGCTGCTGACCCGGGACGGGGCAAGGAG GCAGCAGCAACATCACCGGCTGCTGACCCGGGACGGGGCAAGGAG
	1301	1350
gp160 .modSF162 gp160 .modSF162 .delV2 gp160 .modSF162 .delV1V2 gp140 .modSF162 gp140 .mut .modSF162 gp140 .mut7 .modSF162 gp140 .mut8 .modSF162 gp120 .modSF162 Consensus	(1351) (1270) (1162) (1351) (1351) (1351) (1351) (1351) (1351)	ATCAGCAACACCAGAGATCTTCCGGCCCCGGGGGGGACATGGCGA ATCAGCAACACCAGAGATCTTCCGGCCCCGGGGGGACATGGCGA ATCAGCAACACCAGAGATCTTCCGGCCCCGGGGGGACATGGCGA ATCAGCAACACCAGAGATCTTCCGGCCCCGGGGGGACATGGCGA ATCAGCAACACCAGAGATCTTCCGGCCCCGGGGGGACATGGCGA ATCAGCAACACCAGAGATCTTCCGGCCCCGGGGGGACATGGCGA ATCAGCAACACCAGAGATCTTCCGGCCCCGGGGGGACATGGCGA ATCAGCAACACCAGAGATCTTCCGGCCCCGGGGGGACATGGCGA
	1351	1400
gp160 .modSF162 gp160 .modSF162 .delV2 gp160 .modSF162 .delV1V2 gp140 .modSF162 gp140 .mut .modSF162 gp140 .mut7 .modSF162 gp140 .mut8 .modSF162 gp120 .modSF162 Consensus	(1351) (1270) (1162) (1351) (1351) (1351) (1351) (1351) (1351)	ATCAGCAACACCAGAGATCTTCCGGCCCCGGGGGGGACATGGCGA ATCAGCAACACCAGAGATCTTCCGGCCCCGGGGGGACATGGCGA ATCAGCAACACCAGAGATCTTCCGGCCCCGGGGGGACATGGCGA ATCAGCAACACCAGAGATCTTCCGGCCCCGGGGGGACATGGCGA ATCAGCAACACCAGAGATCTTCCGGCCCCGGGGGGACATGGCGA ATCAGCAACACCAGAGATCTTCCGGCCCCGGGGGGACATGGCGA ATCAGCAACACCAGAGATCTTCCGGCCCCGGGGGGACATGGCGA ATCAGCAACACCAGAGATCTTCCGGCCCCGGGGGGACATGGCGA
	1351	1450
gp160 .modSF162 gp160 .modSF162 .delV2 gp160 .modSF162 .delV1V2 gp140 .modSF162 gp140 .mut .modSF162 gp140 .mut7 .modSF162 gp140 .mut8 .modSF162 gp120 .modSF162 Consensus	(1401) (1320) (1212) (1401) (1401) (1401) (1401) (1401) (1401)	CAACTGGGGCAGGGAGCTGTACAAGTACAAGGTGGTAAGATCGAGCCCC CAACTGGGGCAGGGAGCTGTACAAGTACAAGGTGGTAAGATCGAGCCCC CAACTGGGGCAGGGAGCTGTACAAGTACAAGGTGGTAAGATCGAGCCCC CAACTGGGGCAGGGAGCTGTACAAGTACAAGGTGGTAAGATCGAGCCCC CAACTGGGGCAGGGAGCTGTACAAGTACAAGGTGGTAAGATCGAGCCCC CAACTGGGGCAGGGAGCTGTACAAGTACAAGGTGGTAAGATCGAGCCCC CAACTGGGGCAGGGAGCTGTACAAGTACAAGGTGGTAAGATCGAGCCCC CAACTGGGGCAGGGAGCTGTACAAGTACAAGGTGGTAAGATCGAGCCCC
	1401	1401

FIG. 66A-10

89 / 131

FIG. 66A-11

gp160.modSF162	(1601)	TGCTGAGGGGCATCGTGCAGCAGGAGAACACCTGCTGCCGCCATCGAG	1650
gp160.modSF162.delV2	(1520)	TGCTGAGGGCATCGTGCAGCAGGAGAACACCTGCTGCCGCCATCGAG	
gp160.modSF162.delV1V2	(1412)	TGCTGAGGGCATCGTGCAGCAGGAGAACACCTGCTGCCGCCATCGAG	
gp160.modSF162	(1601)	TGCTGAGGGCATCGTGCAGCAGGAGAACACCTGCTGCCGCCATCGAG	
gp140.modSF162	(1601)	TGCTGAGGGCATCGTGCAGCAGGAGAACACCTGCTGCCGCCATCGAG	
gp140.mut.modSF162	(1601)	TGCTGAGGGCATCGTGCAGCAGGAGAACACCTGCTGCCGCCATCGAG	
gp140.mut7.modSF162	(1601)	TGCTGAGGGCATCGTGCAGCAGGAGAACACCTGCTGCCGCCATCGAG	
gp140.mut8.modSF162	(1601)	TGCTGAGGGCATCGTGCAGCAGGAGAACACCTGCTGCCGCCATCGAG	
gp120.modSF162	(1513)		
Consensus	(1601)	TGCTGAGGGCATCGTGCAGCAGGAGAACACCTGCTGCCGCCATCGAG	
	1651		1700
gp160.modSF162	(1651)	GCCCAGCAGCACCTGCTGCAGGTGACCGTGTGGGCATCAAGCAGCTGCA	
gp160.modSF162.delV2	(1570)	GCCCAGCAGCACCTGCTGCAGGTGACCGTGTGGGCATCAAGCAGCTGCA	
gp160.modSF162.delV1V2	(1462)	GCCCAGCAGCACCTGCTGCAGGTGACCGTGTGGGCATCAAGCAGCTGCA	
gp140.modSF162	(1651)	GCCCAGCAGCACCTGCTGCAGGTGACCGTGTGGGCATCAAGCAGCTGCA	
gp140.mut.modSF162	(1651)	GCCCAGCAGCACCTGCTGCAGGTGACCGTGTGGGCATCAAGCAGCTGCA	
gp140.mut7.modSF162	(1651)	GCCCAGCAGCACCTGCTGCAGGTGACCGTGTGGGCATCAAGCAGCTGCA	
gp140.mut8.modSF162	(1651)	GCCCAGCAGCACCTGCTGCAGGTGACCGTGTGGGCATCAAGCAGCTGCA	
gp120.modSF162	(1513)		
Consensus	(1651)	GCCCAGCAGCACCTGCTGCAGGTGACCGTGTGGGCATCAAGCAGCTGCA	
	1701		1750
gp160.modSF162	(1701)	GGCCCCGGTGTGGCGTGAAGGACCAGCAGCTGCTGG	
gp160.modSF162.delV2	(1620)	GGCCCCGGTGTGGCGTGAAGGACCAGCAGCTGCTGG	
gp160.modSF162.delV1V2	(1512)	GGCCCCGGTGTGGCGTGAAGGACCAGCAGCTGCTGG	
gp140.modSF162	(1701)	GGCCCCGGTGTGGCGTGAAGGACCAGCAGCTGCTGG	
gp140.mut.modSF162	(1701)	GGCCCCGGTGTGGCGTGAAGGACCAGCAGCTGCTGG	
gp140.mut7.modSF162	(1701)	GGCCCCGGTGTGGCGTGAAGGACCAGCAGCTGCTGG	
gp140.mut8.modSF162	(1701)	GGCCCCGGTGTGGCGTGAAGGACCAGCAGCTGCTGG	

FIG. 66A-12

gp120 . modSF162	(1513)	GGCCCGGCGTGGCTGGAGGGCTAACCTGAAGGACCAAGCAGCTGG
Consensus	(1701)	1751
gp160 . modSF162	(1751)	GCATCTGGGGCTGAGGGCAAGCTGATCTGCACCCGGCGTGG
	(1670)	GCATCTGGGGCTGAGGGCAAGCTGATCTGCACCCGGCGTGG
gp160 . modSF162 . delV2	(1562)	GCATCTGGGGCTGAGGGCAAGCTGATCTGCACCCGGCGTGG
gp160 . modSF162 . delV1V2	(1751)	GCATCTGGGGCTGAGGGCAAGCTGATCTGCACCCGGCGTGG
gp140 . modSF162	(1751)	GCATCTGGGGCTGAGGGCAAGCTGATCTGCACCCGGCGTGG
gp140 . mut . modSF162	(1751)	GCATCTGGGGCTGAGGGCAAGCTGATCTGCACCCGGCGTGG
gp140 . mut 7 . modSF162	(1751)	GCATCTGGGGCTGAGGGCAAGCTGATCTGCACCCGGCGTGG
gp140 . mut 8 . modSF162	(1751)	GCATCTGGGGCTGAGGGCAAGCTGATCTGCACCCGGCGTGG
gp120 . modSF162	(1513)	GCATCTGGGGCTGAGGGCAAGCTGATCTGCACCCGGCGTGG
Consensus	(1751)	1850
gp160 . modSF162	(1801)	AACGCCAGCTGGAGCAACAAGAGCCTGGACCAACTGAC
gp160 . modSF162 . delV2	(1720)	AACGCCAGCTGGAGCAACAAGAGCCTGGACCAACTGAC
gp160 . modSF162 . delV1V2	(1612)	AACGCCAGCTGGAGCAACAAGAGCCTGGACCAACTGAC
gp140 . modSF162	(1801)	AACGCCAGCTGGAGCAACAAGAGCCTGGACCAACTGAC
gp140 . mut . modSF162	(1801)	AACGCCAGCTGGAGCAACAAGAGCCTGGACCAACTGAC
gp140 . mut 7 . modSF162	(1801)	AACGCCAGCTGGAGCAACAAGAGCCTGGACCAACTGAC
gp140 . mut 8 . modSF162	(1801)	AACGCCAGCTGGAGCAACAAGAGCCTGGACCAACTGAC
gp120 . modSF162	(1513)	AAACGCCAGCTGGAGCAACAAGAGCCTGGACCAACTGAC
Consensus	(1801)	1851
gp160 . modSF162	(1851)	CTGGATGGAGTGGAGGGGGAGATGGAGACTACACCAACCTGATCTACA
gp160 . modSF162 . delV2	(1770)	CTGGATGGAGTGGAGGGGGAGATGGAGACTACACCAACCTGATCTACA
gp160 . modSF162 . delV1V2	(1662)	CTGGATGGAGTGGAGGGGGAGATGGAGACTACACCAACCTGATCTACA
gp140 . modSF162	(1851)	CTGGATGGAGTGGAGGGGGAGATGGAGACTACACCAACCTGATCTACA
gp140 . mut . modSF162	(1851)	CTGGATGGAGTGGAGGGGGAGATGGAGACTACACCAACCTGATCTACA
gp140 . mut 7 . modSF162	(1851)	CTGGATGGAGTGGAGGGGGAGATGGAGACTACACCAACCTGATCTACA
gp140 . mut 8 . modSF162	(1851)	CTGGATGGAGTGGAGGGGGAGATGGAGACTACACCAACCTGATCTACA
gp120 . modSF162	(1513)	CTGGATGGAGTGGAGGGGGAGATGGAGACTACACCAACCTGATCTACA
Consensus	(1851)	1900

FIG. 66A-13

92 / 131

				1950
gp160.modSF162	(1901)	CCCTGATCGAGGAGGCCAGAACCCAGCAGGAGAAGAACGGCAGGAGCTG		
gp160.modSF162.delV2	(1820)	CCCTGATCGAGGAGGCCAGAACCCAGCAGGAGAAGAACGGCAGGAGCTG		
gp160.modSF162.delV1V2	(1712)	CCCTGATCGAGGAGGCCAGAACCCAGCAGGAGAAGAACGGCAGGAGCTG		
gp140.modSF162	(1901)	CCCTGATCGAGGAGGCCAGAACCCAGCAGGAGAAGAACGGCAGGAGCTG		
gp140.mut.modSF162	(1901)	CCCTGATCGAGGAGGCCAGAACCCAGCAGGAGAAGAACGGCAGGAGCTG		
gp140.mut7.modSF162	(1901)	CCCTGATCGAGGAGGCCAGAACCCAGCAGGAGAAGAACGGCAGGAGCTG		
gp140.mut8.modSF162	(1901)	CCCTGATCGAGGAGGCCAGAACCCAGCAGGAGAAGAACGGCAGGAGCTG		
gp120.modSF162	(1513)	-----		
Consensus	(1901)	CCCTGATCGAGGAGGCCAGAACCCAGCAGGAGAAGAACGGCAGGAGCTG	2000	
gp160.modSF162	(1951)	CTGGAGCTGGACAACTGGCCAGCAGGCTGTGGAACCTGGTTCGACATCAGCAA		
gp160.modSF162.delV2	(1870)	CTGGAGCTGGACAACTGGCCAGCAGGCTGTGGAACCTGGTTCGACATCAGCAA		
gp160.modSF162.delV1V2	(1762)	CTGGAGCTGGACAACTGGCCAGCAGGCTGTGGAACCTGGTTCGACATCAGCAA		
gp140.modSF162	(1951)	CTGGAGCTGGACAACTGGCCAGCAGGCTGTGGAACCTGGTTCGACATCAGCAA		
gp140.mut.modSF162	(1951)	CTGGAGCTGGACAACTGGCCAGCAGGCTGTGGAACCTGGTTCGACATCAGCAA		
gp140.mut7.modSF162	(1951)	CTGGAGCTGGACAACTGGCCAGCAGGCTGTGGAACCTGGTTCGACATCAGCAA		
gp140.mut8.modSF162	(1951)	CTGGAGCTGGACAACTGGCCAGCAGGCTGTGGAACCTGGTTCGACATCAGCAA		
gp120.modSF162	(1513)	-----		
Consensus	(1951)	CTGGAGCTGGACAACTGGCCAGCAGGCTGTGGAACCTGGTTCGACATCAGCAA	2050	
gp160.modSF162	(2001)	GTTGGCTGTGGTACATCAAGATCTTCATCATGATCGGGGGCCTGGTGG		
gp160.modSF162.delV2	(1920)	GTTGGCTGTGGTACATCAAGATCTTCATCATGATCGGGGGCCTGGTGG		
gp160.modSF162.delV1V2	(1812)	GTTGGCTGTGGTACATCAAGATCTTCATCATGATCGGGGGCCTGGTGG		
gp140.modSF162	(2001)	GTTGGCTGTGGTACATCAACTCGAG-----		
gp140.mut.modSF162	(2001)	GTTGGCTGTGGTACATCAACTCGAG-----		

FIG. 66A-14

gp140 . mut7 . modSF162	(2001)	GTGGCTGGTACATCTAACTCGAG--	
gp140 . mut8 . modSF162	(2001)	GTGGCTGGTACATCTAACTCGAG--	
gp120 . modSF162	(1513)		
Consensus	(2001)	GTGGCTGGTACATCTAACTCGAG	
	2051		2100
gp160 . modSF162	(2051)	GCCTGCGCATCGTGTACACCGTGCATCGTGAAACCGCGTGCAGCAG	
gp160 . modSF162 . delV2	(1970)	GCCTGCGCATCGTGTACACCGTGCATCGTGAAACCGCGTGCAGCAG	
gp160 . modSF162 . delV1V2	(1862)	GCCTGCGCATCGTGTACACCGTGCATCGTGAAACCGCGTGCAGCAG	
gp140 . modSF162	(2026)		
gp140 . mut . modSF162	(2026)		
gp140 . mut7 . modSF162	(2026)		
gp140 . mut8 . modSF162	(2026)		
gp120 . modSF162	(1513)		
Consensus	(2051)		
	2101		2150
gp160 . modSF162	(2101)	GGCTACAGCCCCCTGAGCTTCCAGACCCGTTCCCCGGCCCCGGGCC	
gp160 . modSF162 . delV2	(2020)	GGCTACAGCCCCCTGAGCTTCCAGACCCGCTTCCCCGGCCCCGGGCC	
gp160 . modSF162 . delV1V2	(1912)	GGCTACAGCCCCCTGAGCTTCCAGACCCGCTTCCCCGGCCCCGGGCC	
gp140 . modSF162	(2026)		
gp140 . mut . modSF162	(2026)		
gp140 . mut7 . modSF162	(2026)		
gp140 . mut8 . modSF162	(2026)		
gp120 . modSF162	(1513)		
Consensus	(2101)		
	2151		2200
gp160 . modSF162	(2151)	CGACCGCCCCGAGGGCATCGAGGAGGAGGGGGGAGGGGACCGGACCC	
gp160 . modSF162 . delV2	(2070)	CGACCGCCCCGAGGGCATCGAGGAGGAGGGGGAGGGGACCGGACCC	
gp160 . modSF162 . delV1V2	(1962)	CGACCGCCCCGAGGGCATCGAGGAGGAGGGGGAGGGGACCGGACCC	
gp140 . modSF162	(2026)		
gp140 . mut . modSF162	(2026)		
gp140 . mut7 . modSF162	(2026)		
gp140 . mut8 . modSF162	(2026)		
gp120 . modSF162	(1513)		
Consensus	(2151)		

FIG. 66A-15

		2250
gp160 . modSF162	(2201)	GCAGCAGCCCCCTGGTGCACGGCCCTGCTGGCCCTGATCTGGGACGACCTG
gp160 . modSF162 . delV2	(2120)	GCAGCAGCCCCCTGGTGCACGGCCCTGATCTGGGACGACCTG
gp160 . modSF162 . delV1V2	(2012)	GCAGCAGCCCCCTGGTGCACGGCCCTGATCTGGGACGACCTG
gp140 . modSF162	(2026)	-----
gp140 . mut . modSF162	(2026)	-----
gp140 . mut7 . modSF162	(2026)	-----
gp140 . mut8 . modSF162	(2026)	-----
gp120 . modSF162	(1513)	-----
Consensus	(2201)	2251
gp160 . modSF162	(2251)	CGCAGCCTGTGCCCTGTTCAAGCTTACCCACCGGCTGCGCGACCTGATCCCTGAT
gp160 . modSF162 . delV2	(2170)	CGCAGCCTGTGCCCTGTTCAAGCTTACCCACCGGCTGCGCGACCTGATCCCTGAT
gp160 . modSF162 . delV1V2	(2062)	CGCAGCCTGTGCCCTGTTCAAGCTTACCCACCGGCTGCGCGACCTGATCCCTGAT
gp140 . modSF162	(2026)	-----
gp140 . mut . modSF162	(2026)	-----
gp140 . mut7 . modSF162	(2026)	-----
gp140 . mut8 . modSF162	(2026)	-----
gp120 . modSF162	(1513)	-----
Consensus	(2251)	2301
gp160 . modSF162	(2301)	CGCCGCCGCATCGTGGAGCTGCTGGGGCGCCGGCTGGGAGGGCCCTGA
gp160 . modSF162 . delV2	(2220)	CGCCGCCGCATCGTGGAGCTGCTGGGGCGCCGGCTGGGAGGGCCCTGA
gp160 . modSF162 . delV1V2	(2112)	CGCCGCCGCATCGTGGAGCTGCTGGGGCGCCGGCTGGGAGGGCCCTGA

FIG. 66A-16

95 / 131

gp140.modSF162	(2026)		2400
gp140.mut.modSF162	(2026)		
gp140.mut7.modSF162	(2026)		
gp140.mut8.modSF162	(2026)		
gp120.modSF162	(1513)		
Consensus	(2301)		
		2351	
gp160.modSF162	(2235)	AGTACTGGGGCAACCTGCTGCAGTACTGGATCCAGGAGCTGAAGAACAGC	
gp160.modSF162.delV2	(2227)	AGTACTGGGGCAACCTGCTGCAGTACTGGATCCAGGAGCTGAAGAACAGC	
gp160.modSF162.delV1V2	(2116)	AGTACTGGGGCAACCTGCTGCAGTACTGGATCCAGGAGCTGAAGAACAGC	
gp140.modSF162	(2026)		
gp140.mut.modSF162	(2026)		
gp140.mut7.modSF162	(2026)		
gp140.mut8.modSF162	(2026)		
gp120.modSF162	(1513)		
Consensus	(2351)		
		2401	
gp160.modSF162	(2401)	GCCGTGAGCCCTGTTCGACGCCATGCCCATGCCGAGGGCACCCGA	
gp160.modSF162.delV2	(2320)	GCCGTGAGCCCTGTTCGACGCCATGCCCATGCCGAGGGCACCCGA	
gp160.modSF162.delV1V2	(2212)	GCCGTGAGCCCTGTTCGACGCCATGCCCATGCCGAGGGCACCCGA	
gp140.modSF162	(2026)		
gp140.mut.modSF162	(2026)		
gp140.mut7.modSF162	(2026)		
gp140.mut8.modSF162	(2026)		
gp120.modSF162	(1513)		
Consensus	(2401)		

FIG. 66A-17

		2451	CCGGCATCATCGAGGTGGCCCAGGCCATCGGCCGCCCTTCCTGCACATCC
gp160.modsSF162	(2451)	(2370)	CCGGCATCATCGAGGTGGCCCAGGCCATCGGCCGCCCTTCCTGCACATCC
gp160.modsSF162.delV2	(2370)	(2262)	CCGGCATCATCGAGGTGGCCCAGGCCATCGGCCGCCCTTCCTGCACATCC
gp160.modsSF162.delV1V2	(2262)	(2026)	
gp140.modsSF162	(2026)		
gp140.mut.modsSF162			
gp140.mut7.modsSF162			
gp140.mut8.modsSF162			
gp120.modsSF162			
Consensus	(2451)		
		2501	CCCGCCGCATCCGCCAGGGCTTCGAGGCCCTGCTGTAACTCGAG
gp160.modsSF162	(2501)	(2420)	CCCGCCGCATCCGCCAGGGCTTCGAGGCCCTGCTGTAACTCGAG
gp160.modsSF162.delV2	(2420)	(2312)	CCCGCCGCATCCGCCAGGGCTTCGAGGCCCTGCTGTAACTCGAG
gp160.modsSF162.delV1V2	(2312)	(2026)	
gp140.modsSF162	(2026)		
gp140.mut.modsSF162			
gp140.mut7.modsSF162			
gp140.mut8.modsSF162			
gp120.modsSF162			
Consensus	(2501)		
		2547	

FIG. 66A-18

		Start of tPA	
	1	↓	40
gp160	(1)	GAATTGCCACCATGGATGCAATGAAGAGAGGGCTCTGCT	
gp160 del V1	(1)	GAATTGCCACCATGGATGCAATGAAGAGAGGGCTCTGCT	
gp160 del V2	(1)	GAATTGCCACCATGGATGCAATGAAGAGAGGGCTCTGCT	
gp160 del V1-2	(1)	GAATTGCCACCATGGATGCAATGAAGAGAGGGCTCTGCT	
gp 160 del 128-194	(1)	GAATTGCCACCATGGATGCAATGAAGAGAGGGCTCTGCT	
gp140TM	(1)	GAATTGCCACCATGGATGCAATGAAGAGAGGGCTCTGCT	
gp140	(1)	GAATTGCCACCATGGATGCAATGAAGAGAGGGCTCTGCT	
gp140mut	(1)	GAATTGCCACCATGGATGCAATGAAGAGAGGGCTCTGCT	
gp120	(1)	GAATTGCCACCATGGATGCAATGAAGAGAGGGCTCTGCT	
Consensus	(1)	GAATTGCCACCATGGATGCAATGAAGAGAGGGCTCTGCT	
	41		80
gp160	(41)	GTGTGCTGCTGCTGTGTGGAGCAGTCTCGTTTCGCCCCAG	
gp160 del V1	(41)	GTGTGCTGCTGCTGTGTGGAGCAGTCTCGTTTCGCCCCAG	
gp160 del V2	(41)	GTGTGCTGCTGCTGTGTGGAGCAGTCTCGTTTCGCCCCAG	
gp160 del V1-2	(41)	GTGTGCTGCTGCTGTGTGGAGCAGTCTCGTTTCGCCCCAG	
gp 160 del 128-194	(41)	GTGTGCTGCTGCTGTGTGGAGCAGTCTCGTTTCGCCCCAG	
gp140TM	(41)	GTGTGCTGCTGCTGTGTGGAGCAGTCTCGTTTCGCCCCAG	
gp140	(41)	GTGTGCTGCTGCTGTGTGGAGCAGTCTCGTTTCGCCCCAG	
gp140mut	(41)	GTGTGCTGCTGCTGTGTGGAGCAGTCTCGTTTCGCCCCAG	
gp120	(41)	GTGTGCTGCTGCTGTGTGGAGCAGTCTCGTTTCGCCCCAG	
Consensus	(41)	GTGTGCTGCTGCTGTGTGGAGCAGTCTCGTTTCGCCCCAG	
	end of tPA	↓	120
	81		
gp160	(81)	CGCCACCACCGTGCCTGTGGGTGACCGTGTACTACGGCGTG	
gp160 del V1	(81)	CGCCACCACCGTGCCTGTGGGTGACCGTGTACTACGGCGTG	
gp160 del V2	(81)	CGCCACCACCGTGCCTGTGGGTGACCGTGTACTACGGCGTG	
gp160 del V1-2	(81)	CGCCACCACCGTGCCTGTGGGTGACCGTGTACTACGGCGTG	
gp 160 del 128-194	(81)	CGCCACCACCGTGCCTGTGGGTGACCGTGTACTACGGCGTG	
gp140TM	(81)	CGCCACCACCGTGCCTGTGGGTGACCGTGTACTACGGCGTG	
gp140	(81)	CGCCACCACCGTGCCTGTGGGTGACCGTGTACTACGGCGTG	
gp140mut	(81)	CGCCACCACCGTGCCTGTGGGTGACCGTGTACTACGGCGTG	
gp120	(81)	CGCCACCACCGTGCCTGTGGGTGACCGTGTACTACGGCGTG	
Consensus	(81)	CGCCACCACCGTGCCTGTGGGTGACCGTGTACTACGGCGTG	
	121		160
gp 160	(121)	CCCGTGTGGAAGGAGGCCACCACCCCTGTTCTGCGCCA	
gp160 del V1	(121)	CCCGTGTGGAAGGAGGCCACCACCCCTGTTCTGCGCCA	
gp160 del V2	(121)	CCCGTGTGGAAGGAGGCCACCACCCCTGTTCTGCGCCA	
gp160 del V1-2	(121)	CCCGTGTGGAAGGAGGCCACCACCCCTGTTCTGCGCCA	
gp 160 del 128-194	(121)	CCCGTGTGGAAGGAGGCCACCACCCCTGTTCTGCGCCA	
gp140TM	(121)	CCCGTGTGGAAGGAGGCCACCACCCCTGTTCTGCGCCA	
gp140	(121)	CCCGTGTGGAAGGAGGCCACCACCCCTGTTCTGCGCCA	
gp140mut	(121)	CCCGTGTGGAAGGAGGCCACCACCCCTGTTCTGCGCCA	
gp120	(121)	CCCGTGTGGAAGGAGGCCACCACCCCTGTTCTGCGCCA	
Consensus	(121)	CCCGTGTGGAAGGAGGCCACCACCCCTGTTCTGCGCCA	

FIG. 66B-1

98 / 131

		161		200
gp160	(161)	GCGACGCCAAGGCTTACAAGGCCGAGGCCACAAACGTGTG		
gp160 del V1	(161)	GCGACGCCAAGGCTTACAAGGCCGAGGCCACAAACGTGTG		
gp160 del V2	(161)	GCGACGCCAAGGCTTACAAGGCCGAGGCCACAAACGTGTG		
gp160 del V1-2	(161)	GCGACGCCAAGGCTTACAAGGCCGAGGCCACAAACGTGTG		
gp 160 del 128-194	(161)	GCGACGCCAAGGCTTACAAGGCCGAGGCCACAAACGTGTG		
gp140TM	(161)	GCGACGCCAAGGCTTACAAGGCCGAGGCCACAAACGTGTG		
gp140	(161)	GCGACGCCAAGGCTTACAAGGCCGAGGCCACAAACGTGTG		
gp140mut	(161)	GCGACGCCAAGGCTTACAAGGCCGAGGCCACAAACGTGTG		
gp120	(161)	GCGACGCCAAGGCTTACAAGGCCGAGGCCACAAACGTGTG		
Consensus	(161)	GCGACGCCAAGGCTTACAAGGCCGAGGCCACAAACGTGTG		
		240		
gp160	(201)	GGCCACCCACGCCCTGCGTGGCCACCGAACCCCAACCCCCAG		
gp160 del V1	(201)	GGCCACCCACGCCCTGCGTGGCCACCGAACCCCAACCCCCAG		
gp160 del V2	(201)	GGCCACCCACGCCCTGCGTGGCCACCGAACCCCAACCCCCAG		
gp160 del V1-2	(201)	GGCCACCCACGCCCTGCGTGGCCACCGAACCCCAACCCCCAG		
gp 160 del 128-194	(201)	GGCCACCCACGCCCTGCGTGGCCACCGAACCCCAACCCCCAG		
gp140TM	(201)	GGCCACCCACGCCCTGCGTGGCCACCGAACCCCAACCCCCAG		
gp140	(201)	GGCCACCCACGCCCTGCGTGGCCACCGAACCCCAACCCCCAG		
gp140mut	(201)	GGCCACCCACGCCCTGCGTGGCCACCGAACCCCAACCCCCAG		
gp120	(201)	GGCCACCCACGCCCTGCGTGGCCACCGAACCCCAACCCCCAG		
Consensus	(201)	GGCCACCCACGCCCTGCGTGGCCACCGAACCCCAACCCCCAG		
		280		
gp160	(241)	GAGGTGAACCTGACCAACGTGACCGAGAACATTCAACATGT		
gp160 del V1	(241)	GAGGTGAACCTGACCAACGTGACCGAGAACATTCAACATGT		
gp160 del V2	(241)	GAGGTGAACCTGACCAACGTGACCGAGAACATTCAACATGT		
gp160 del V1-2	(241)	GAGGTGAACCTGACCAACGTGACCGAGAACATTCAACATGT		
gp 160 del 128-194	(241)	GAGGTGAACCTGACCAACGTGACCGAGAACATTCAACATGT		
gp140TM	(241)	GAGGTGAACCTGACCAACGTGACCGAGAACATTCAACATGT		
gp140	(241)	GAGGTGAACCTGACCAACGTGACCGAGAACATTCAACATGT		
gp140mut	(241)	GAGGTGAACCTGACCAACGTGACCGAGAACATTCAACATGT		
gp120	(241)	GAGGTGAACCTGACCAACGTGACCGAGAACATTCAACATGT		
Consensus	(241)	GAGGTGAACCTGACCAACGTGACCGAGAACATTCAACATGT		
		320		
gp160	(281)	GGAAGAACAAACATGGTGGAGCAGATGCATGAGGACATCAT		
gp160 del V1	(281)	GGAAGAACAAACATGGTGGAGCAGATGCATGAGGACATCAT		
gp160 del V2	(281)	GGAAGAACAAACATGGTGGAGCAGATGCATGAGGACATCAT		
gp160 del V1-2	(281)	GGAAGAACAAACATGGTGGAGCAGATGCATGAGGACATCAT		
gp 160 del 128-194	(281)	GGAAGAACAAACATGGTGGAGCAGATGCATGAGGACATCAT		
gp140TM	(281)	GGAAGAACAAACATGGTGGAGCAGATGCATGAGGACATCAT		
gp140	(281)	GGAAGAACAAACATGGTGGAGCAGATGCATGAGGACATCAT		
gp140mut	(281)	GGAAGAACAAACATGGTGGAGCAGATGCATGAGGACATCAT		
gp120	(281)	GGAAGAACAAACATGGTGGAGCAGATGCATGAGGACATCAT		
Consensus	(281)	GGAAGAACAAACATGGTGGAGCAGATGCATGAGGACATCAT		
		360		
gp160	(321)	CAGCCTGTGGGACCAGAGCCTGAAAGCCCTGCGTGAAGCTG		
gp160 del V1	(321)	CAGCCTGTGGGACCAGAGCCTGAAAGCCCTGCGTGAAGCTG		
gp160 del V2	(321)	CAGCCTGTGGGACCAGAGCCTGAAAGCCCTGCGTGAAGCTG		
gp160 del V1-2	(321)	CAGCCTGTGGGACCAGAGCCTGAAAGCCCTGCGTGGCGCC		
gp 160 del 128-194	(321)	CAGCCTGTGGGACCAGAGCCTGAAAGCCCTGCGTGAAGCTG		
gp140TM	(321)	CAGCCTGTGGGACCAGAGCCTGAAAGCCCTGCGTGAAGCTG		
gp140	(321)	CAGCCTGTGGGACCAGAGCCTGAAAGCCCTGCGTGAAGCTG		
gp140mut	(321)	CAGCCTGTGGGACCAGAGCCTGAAAGCCCTGCGTGAAGCTG		
gp120	(321)	CAGCCTGTGGGACCAGAGCCTGAAAGCCCTGCGTGAAGCTG		
Consensus	(321)	CAGCCTGTGGGACCAGAGCCTGAAAGCCCTGCGTGAAGCTG		

FIG. 66B-2

99 / 131

361

400

gp160	(361) ACCCCCCCTGTGCGTGACCCCTGAACCTGCACCGACAAGCTGA
gp160 del V1	(361) ACCCCCCCTGTGCGTGACCCCTGAACCTGCACCGACAAGCTGG
gp160 del V2	(361) ACCCCCCCTGTGCGTGACCCCTGAACCTGCACCGACAAGCTGA
gp160 del V1-2	(361) GGC-----
gp 160 del 128-194	(361) ACCCCCCCTGTGCGTGGGGCAGGG-----
gp140TM	(361) ACCCCCCCTGTGCGTGACCCCTGAACCTGCACCGACAAGCTGA
gp140	(361) ACCCCCCCTGTGCGTGACCCCTGAACCTGCACCGACAAGCTGA
gp140mut	(361) ACCCCCCCTGTGCGTGACCCCTGAACCTGCACCGACAAGCTGA
gp120	(361) ACCCCCCCTGTGCGTGACCCCTGAACCTGCACCGACAAGCTGA
Consensus	(361) ACCCCCCCTGTGCGTGACCCCTGAACCTGCACCGACAAGCTGA
	401
gp160	(401) CGGGCAGCACCAACGGCACCAACAGCACCGACCGCGGCCACCAA
gp160 del V1	(401) GCGCCGGC-----
gp160 del V2	(401) CGGGCAGCACCAACGGCACCAACAGCACCGACCGCGGCCACCAA
gp160 del V1-2	(364) -----
gp 160 del 128-194	(385) -----
gp140TM	(401) CGGGCAGCACCAACGGCACCAACAGCACCGACCGCGGCCACCAA
gp140	(401) CGGGCAGCACCAACGGCACCAACAGCACCGACCGCGGCCACCAA
gp140mut	(401) CGGGCAGCACCAACGGCACCAACAGCACCGACCGCGGCCACCAA
gp120	(401) CGGGCAGCACCAACGGCACCAACAGCACCGACCGCGGCCACCAA
Consensus	(401) CGGGCAGCACCAACGGCACCAACAGCACCGACCGCGGCCACCAA
	441
gp160	(441) CAGCACCAGCGGCACCAACAGCACCGACCAACAGCACCC
gp160 del V1	(409) -----
gp160 del V2	(441) CAGCACCAGCGGCACCAACAGCACCGACCAACAGCACCC
gp160 del V1-2	(364) -----
gp 160 del 128-194	(385) -----
gp140TM	(441) CAGCACCAGCGGCACCAACAGCACCGACCAACAGCACCC
gp140	(441) CAGCACCAGCGGCACCAACAGCACCGACCAACAGCACCC
gp140mut	(441) CAGCACCAGCGGCACCAACAGCACCGACCAACAGCACCC
gp120	(441) CAGCACCAGCGGCACCAACAGCACCGACCAACAGCACCC
Consensus	(441) CAGCACCAGCGGCACCAACAGCACCGACCAACAGCACCC
	481
gp160	(481) GACAGCTGGGAGAAGATGCCGAGGGCGAGATCAAGAACT
gp160 del V1	(409) -----GGCGAGATCAAGAACT
gp160 del V2	(481) GACAGCTGGGAGAAGATGCCGAGGGCGAGATCAAGAACT
gp160 del V1-2	(364) -----
gp 160 del 128-194	(385) -----
gp140TM	(481) GACAGCTGGGAGAAGATGCCGAGGGCGAGATCAAGAACT
gp140	(481) GACAGCTGGGAGAAGATGCCGAGGGCGAGATCAAGAACT
gp140mut	(481) GACAGCTGGGAGAAGATGCCGAGGGCGAGATCAAGAACT
gp120	(481) GACAGCTGGGAGAAGATGCCGAGGGCGAGATCAAGAACT
Consensus	(481) GACAGCTGGGAGAAGATGCCGAGGGCGAGATCAAGAACT
	521
gp160	(521) GCAGCTTCAACATCACCACCGCGTGCGCGACAAGGTGCA
gp160 del V1	(521) GCAGCTTCAACATCACCACCGCGTGCGCGACAAGGTGCA
gp160 del V2	(521) GCAGCTTCAACATCGGCGCCGGC-----
gp160 del V1-2	(521) -----
gp 160 del 128-194	(521) -----
gp140TM	(521) GCAGCTTCAACATCACCACCGCGTGCGCGACAAGGTGCA
gp140	(521) GCAGCTTCAACATCACCACCGCGTGCGCGACAAGGTGCA
gp140mut	(521) GCAGCTTCAACATCACCACCGCGTGCGCGACAAGGTGCA
gp120	(521) GCAGCTTCAACATCACCACCGCGTGCGCGACAAGGTGCA
Consensus	(521) GCAGCTTCAACATCACCACCGCGTGCGCGACAAGGTGCA

FIG. 66B-3

100 / 131

		561		600
gp160	(561)	GAAGGAGTACAGCCTGTTCTACAAGCTGGACGTGGTGC	CC	
gp160 del V1	(465)	GAAGGAGTACAGCCTGTTCTACAAGCTGGACGTGGTGC	CC	
gp160 del V2	(544)	-----	-----	
gp160 del V1-2	(364)	-----	-----	
gp 160 del 128-194	(385)	-----	-----	
gp140TM	(561)	GAAGGAGTACAGCCTGTTCTACAAGCTGGACGTGGTGC	CC	
gp140	(561)	GAAGGAGTACAGCCTGTTCTACAAGCTGGACGTGGTGC	CC	
gp140mut	(561)	GAAGGAGTACAGCCTGTTCTACAAGCTGGACGTGGTGC	CC	
gp120	(561)	GAAGGAGTACAGCCTGTTCTACAAGCTGGACGTGGTGC	CC	
Consensus	(561)	GAAGGAGTACAGCCTGTTCTACAAGCTGGACGTGGTGC	CC	640
		601		
gp160	(601)	ATCGACAACGACAACGCCAGTACCGCCTGATCAACTGCA		
gp160 del V1	(505)	ATCGACAACGACAACGCCAGTACCGCCTGATCAACTGCA		
gp160 del V2	(544)	-----	CGCCTGATCAACTGCA	
gp160 del V1-2	(364)	-----	-----	
gp 160 del 128-194	(385)	-----	-----	AACTGCG
gp140TM	(601)	ATCGACAACGACAACGCCAGTACCGCCTGATCAACTGCA		
gp140	(601)	ATCGACAACGACAACGCCAGTACCGCCTGATCAACTGCA		
gp140mut	(601)	ATCGACAACGACAACGCCAGTACCGCCTGATCAACTGCA		
gp120	(601)	ATCGACAACGACAACGCCAGTACCGCCTGATCAACTGCA		
Consensus	(601)	ATCGACAACGACAACGCCAGTACCGCCTGATCAACTGCA		680
		641		
gp160	(641)	ACACCAGCGTGTACCCCCAGGGCTGCCCAAGGTGAGCTT		
gp160 del V1	(545)	ACACCAGCGTGTACCCCCAGGGCTGCCCAAGGTGAGCTT		
gp160 del V2	(560)	ACACCAGCGTGTACCCCCAGGGCTGCCCAAGGTGAGCTT		
gp160 del V1-2	(364)	-----	CAGGCCTGCCCAAGGTGAGCTT	
gp 160 del 128-194	(392)	AGACCAGCGTGTACCCCCAGGGCTGCCCAAGGTGAGCTT		
gp140TM	(641)	ACACCAGCGTGTACCCCCAGGGCTGCCCAAGGTGAGCTT		
gp140	(641)	ACACCAGCGTGTACCCCCAGGGCTGCCCAAGGTGAGCTT		
gp140mut	(641)	ACACCAGCGTGTACCCCCAGGGCTGCCCAAGGTGAGCTT		
gp120	(641)	ACACCAGCGTGTACCCCCAGGGCTGCCCAAGGTGAGCTT		
Consensus	(641)	ACACCAGCGTGTACCCCCAGGGCTGCCCAAGGTGAGCTT		720
		681		
gp160	(681)	CGAGCCCCATCCCCATCCACTACTGCGCCCCCGCCGGCTTC		
gp160 del V1	(585)	CGAGCCCCATCCCCATCCACTACTGCGCCCCCGCCGGCTTC		
gp160 del V2	(600)	CGAGCCCCATCCCCATCCACTACTGCGCCCCCGCCGGCTTC		
gp160 del V1-2	(387)	CGAGCCCCATCCCCATCCACTACTGCGCCCCCGCCGGCTTC		
gp 160 del 128-194	(432)	CGAGCCCCATCCCCATCCACTACTGCGCCCCCGCCGGCTTC		
gp140TM	(681)	CGAGCCCCATCCCCATCCACTACTGCGCCCCCGCCGGCTTC		
gp140	(681)	CGAGCCCCATCCCCATCCACTACTGCGCCCCCGCCGGCTTC		
gp140mut	(681)	CGAGCCCCATCCCCATCCACTACTGCGCCCCCGCCGGCTTC		
gp120	(681)	CGAGCCCCATCCCCATCCACTACTGCGCCCCCGCCGGCTTC		
Consensus	(681)	CGAGCCCCATCCCCATCCACTACTGCGCCCCCGCCGGCTTC		760
		721		
gp160	(721)	GCCATCCTGAAGTGAAGGACAAGAACAGTCAACGGCACCG		
gp160 del V1	(625)	GCCATCCTGAAGTGAAGGACAAGAACAGTCAACGGCACCG		
gp160 del V2	(640)	GCCATCCTGAAGTGAAGGACAAGAACAGAAGTCAACGGCACCG		
gp160 del V1-2	(427)	GCCATCCTGAAGTGAAGGACAAGAACAGAACAGTCAACGGCACCG		
gp 160 del 128-194	(472)	GCCATCCTGAAGTGAAGGACAAGAACAGAACAGTCAACGGCACCG		
gp140TM	(721)	GCCATCCTGAAGTGAAGGACAAGAACAGAACAGTCAACGGCACCG		
gp140	(721)	GCCATCCTGAAGTGAAGGACAAGAACAGAACAGAACAGTCAACGGCACCG		
gp140mut	(721)	GCCATCCTGAAGTGAAGGACAAGAACAGAACAGAACAGTCAACGGCACCG		
gp120	(721)	GCCATCCTGAAGTGAAGGACAAGAACAGAACAGAACAGAACAGTCAACGGCACCG		
Consensus	(721)	GCCATCCTGAAGTGAAGGACAAGAACAGAACAGAACAGAACAGTCAACGGCACCG		

FIG. 66B-4

101 / 131

		761	800
gp160	(761)	GCCCCCTGCAAGAACGTGAGCACCCTGCAGTCACCCACGG	
gp160 del V1	(665)	GCCCCCTGCAAGAACGTGAGCACCCTGCAGTCACCCACGG	
gp160 del V2	(680)	GCCCCCTGCAAGAACGTGAGCACCCTGCAGTCACCCACGG	
gp160 del V1-2	(467)	GCCCCCTGCAAGAACGTGAGCACCCTGCAGTCACCCACGG	
gp 160 del 128-194	(512)	GCCCCCTGCAAGAACGTGAGCACCCTGCAGTCACCCACGG	
gp140TM	(761)	GCCCCCTGCAAGAACGTGAGCACCCTGCAGTCACCCACGG	
gp140	(761)	GCCCCCTGCAAGAACGTGAGCACCCTGCAGTCACCCACGG	
gp140mut	(761)	GCCCCCTGCAAGAACGTGAGCACCCTGCAGTCACCCACGG	
gp120	(761)	GCCCCCTGCAAGAACGTGAGCACCCTGCAGTCACCCACGG	
Consensus	(761)	GCCCCCTGCAAGAACGTGAGCACCCTGCAGTCACCCACGG	
		801	840
gp160	(801)	CATCCGCCCGTGGTGAGCACCCAGCTGCTGCTGAACGGC	
gp160 del V1	(705)	CATCCGCCCGTGGTGAGCACCCAGCTGCTGCTGAACGGC	
gp160 del V2	(720)	CATCCGCCCGTGGTGAGCACCCAGCTGCTGCTGAACGGC	
gp160 del V1-2	(507)	CATCCGCCCGTGGTGAGCACCCAGCTGCTGCTGAACGGC	
gp 160 del 128-194	(552)	CATCCGCCCGTGGTGAGCACCCAGCTGCTGCTGAACGGC	
gp140TM	(801)	CATCCGCCCGTGGTGAGCACCCAGCTGCTGCTGAACGGC	
gp140	(801)	CATCCGCCCGTGGTGAGCACCCAGCTGCTGCTGAACGGC	
gp140mut	(801)	CATCCGCCCGTGGTGAGCACCCAGCTGCTGCTGAACGGC	
gp120	(801)	CATCCGCCCGTGGTGAGCACCCAGCTGCTGCTGAACGGC	
Consensus	(801)	CATCCGCCCGTGGTGAGCACCCAGCTGCTGCTGAACGGC	
		841	880
gp160	(841)	AGCCTGGCCGAGGGAGGAGATCGTGCCTCGCTCCGAGAACT	
gp160 del V1	(745)	AGCCTGGCCGAGGGAGGAGATCGTGCCTCGCTCCGAGAACT	
gp160 del V2	(760)	AGCCTGGCCGAGGGAGGAGATCGTGCCTCGCTCCGAGAACT	
gp160 del V1-2	(547)	AGCCTGGCCGAGGGAGGAGATCGTGCCTCGCTCCGAGAACT	
gp 160 del 128-194	(592)	AGCCTGGCCGAGGGAGGAGATCGTGCCTCGCTCCGAGAACT	
gp140TM	(841)	AGCCTGGCCGAGGGAGGAGATCGTGCCTCGCTCCGAGAACT	
gp140	(841)	AGCCTGGCCGAGGGAGGAGATCGTGCCTCGCTCCGAGAACT	
gp140mut	(841)	AGCCTGGCCGAGGGAGGAGATCGTGCCTCGCTCCGAGAACT	
gp120	(841)	AGCCTGGCCGAGGGAGGAGATCGTGCCTCGCTCCGAGAACT	
Consensus	(841)	AGCCTGGCCGAGGGAGGAGATCGTGCCTCGCTCCGAGAACT	
		881	920
gp160	(881)	TCACCGACAACGCCAAGACCATCATCGTGCAGCTGAACGA	
gp160 del V1	(785)	TCACCGACAACGCCAAGACCATCATCGTGCAGCTGAACGA	
gp160 del V2	(800)	TCACCGACAACGCCAAGACCATCATCGTGCAGCTGAACGA	
gp160 del V1-2	(587)	TCACCGACAACGCCAAGACCATCATCGTGCAGCTGAACGA	
gp 160 del 128-194	(632)	TCACCGACAACGCCAAGACCATCATCGTGCAGCTGAACGA	
gp140TM	(881)	TCACCGACAACGCCAAGACCATCATCGTGCAGCTGAACGA	
gp140	(881)	TCACCGACAACGCCAAGACCATCATCGTGCAGCTGAACGA	
gp140mut	(881)	TCACCGACAACGCCAAGACCATCATCGTGCAGCTGAACGA	
gp120	(881)	TCACCGACAACGCCAAGACCATCATCGTGCAGCTGAACGA	
Consensus	(881)	TCACCGACAACGCCAAGACCATCATCGTGCAGCTGAACGA	
		921	960
gp160	(921)	GTCCGTGGAGATCAA CTGCATCCGCCCAACAACAAACACG	
gp160 del V1	(825)	GTCCGTGGAGATCAA CTGCATCCGCCCAACAACAAACACG	
gp160 del V2	(840)	GTCCGTGGAGATCAA CTGCATCCGCCCAACAACAAACACG	
gp160 del V1-2	(627)	GTCCGTGGAGATCAA CTGCATCCGCCCAACAACAAACACG	
gp 160 del 128-194	(672)	GTCCGTGGAGATCAA CTGCATCCGCCCAACAACAAACACG	
gp140TM	(921)	GTCCGTGGAGATCAA CTGCATCCGCCCAACAACAAACACG	
gp140	(921)	GTCCGTGGAGATCAA CTGCATCCGCCCAACAACAAACACG	
gp140mut	(921)	GTCCGTGGAGATCAA CTGCATCCGCCCAACAACAAACACG	
gp120	(921)	GTCCGTGGAGATCAA CTGCATCCGCCCAACAACAAACACG	
Consensus	(921)	GTCCGTGGAGATCAA CTGCATCCGCCCAACAACAAACACG	

FIG. 66B-5

SUBSTITUTE SHEET (RULE 26)

102 / 131

		961	1000
gp160	(961)	CGTAAGAGCATCCACATCGGCCCCGGCCGCGCCTTCTACG	
gp160 del V1	(865)	CGTAAGAGCATCCACATCGGCCCCGGCCGCGCCTTCTACG	
gp160 del V2	(880)	CGTAAGAGCATCCACATCGGCCCCGGCCGCGCCTTCTACG	
gp160 del V1-2	(667)	CGTAAGAGCATCCACATCGGCCCCGGCCGCGCCTTCTACG	
gp 160 del 128-194	(712)	CGTAAGAGCATCCACATCGGCCCCGGCCGCGCCTTCTACG	
gp140TM	(961)	CGTAAGAGCATCCACATCGGCCCCGGCCGCGCCTTCTACG	
gp140	(961)	CGTAAGAGCATCCACATCGGCCCCGGCCGCGCCTTCTACG	
gp140mut	(961)	CGTAAGAGCATCCACATCGGCCCCGGCCGCGCCTTCTACG	
gp120	(961)	CGTAAGAGCATCCACATCGGCCCCGGCCGCGCCTTCTACG	
Consensus	(961)	CGTAAGAGCATCCACATCGGCCCCGGCCGCGCCTTCTACG	
		1001	1040
gp160	(1001)	CCACCGGGGACATCATCGGCACATCCGCCAGGCCACTG	
gp160 del V1	(905)	CCACCGGGGACATCATCGGCACATCCGCCAGGCCACTG	
gp160 del V2	(920)	CCACCGGGGACATCATCGGCACATCCGCCAGGCCACTG	
gp160 del V1-2	(707)	CCACCGGGGACATCATCGGCACATCCGCCAGGCCACTG	
gp 160 del 128-194	(752)	CCACCGGGGACATCATCGGCACATCCGCCAGGCCACTG	
gp140TM	(1001)	CCACCGGGGACATCATCGGCACATCCGCCAGGCCACTG	
gp140	(1001)	CCACCGGGGACATCATCGGCACATCCGCCAGGCCACTG	
gp140mut	(1001)	CCACCGGGGACATCATCGGCACATCCGCCAGGCCACTG	
gp120	(1001)	CCACCGGGGACATCATCGGCACATCCGCCAGGCCACTG	
Consensus	(1001)	CCACCGGGGACATCATCGGCACATCCGCCAGGCCACTG	
		1041	1080
gp160	(1041)	CAACATCAGCAAGGCCAACTGGACCAACACCCTCGAGCAG	
gp160 del V1	(945)	CAACATCAGCAAGGCCAACTGGACCAACACCCTCGAGCAG	
gp160 del V2	(960)	CAACATCAGCAAGGCCAACTGGACCAACACCCTCGAGCAG	
gp160 del V1-2	(747)	CAACATCAGCAAGGCCAACTGGACCAACACCCTCGAGCAG	
gp 160 del 128-194	(792)	CAACATCAGCAAGGCCAACTGGACCAACACCCTCGAGCAG	
gp140TM	(1041)	CAACATCAGCAAGGCCAACTGGACCAACACCCTCGAGCAG	
gp140	(1041)	CAACATCAGCAAGGCCAACTGGACCAACACCCTCGAGCAG	
gp140mut	(1041)	CAACATCAGCAAGGCCAACTGGACCAACACCCTCGAGCAG	
gp120	(1041)	CAACATCAGCAAGGCCAACTGGACCAACACCCTCGAGCAG	
Consensus	(1041)	CAACATCAGCAAGGCCAACTGGACCAACACCCTCGAGCAG	
		1081	1120
gp160	(1081)	ATCGTGGAGAACGCTGCGCAGCAGTTCGGAACAACAAGA	
gp160 del V1	(985)	ATCGTGGAGAACGCTGCGCAGCAGTTCGGAACAACAAGA	
gp160 del V2	(1000)	ATCGTGGAGAACGCTGCGCAGCAGTTCGGAACAACAAGA	
gp160 del V1-2	(787)	ATCGTGGAGAACGCTGCGCAGCAGTTCGGAACAACAAGA	
gp 160 del 128-194	(832)	ATCGTGGAGAACGCTGCGCAGCAGTTCGGAACAACAAGA	
gp140TM	(1081)	ATCGTGGAGAACGCTGCGCAGCAGTTCGGAACAACAAGA	
gp140	(1081)	ATCGTGGAGAACGCTGCGCAGCAGTTCGGAACAACAAGA	
gp140mut	(1081)	ATCGTGGAGAACGCTGCGCAGCAGTTCGGAACAACAAGA	
gp120	(1081)	ATCGTGGAGAACGCTGCGCAGCAGTTCGGAACAACAAGA	
Consensus	(1081)	ATCGTGGAGAACGCTGCGCAGCAGTTCGGAACAACAAGA	
		1121	1160
gp160	(1121)	CCATCATCTTCAACAGCAGCAGCGGGCGGAGCCCCGAGAT	
gp160 del V1	(1025)	CCATCATCTTCAACAGCAGCAGCGGGCGGAGCCCCGAGAT	
gp160 del V2	(1040)	CCATCATCTTCAACAGCAGCAGCGGGCGGAGCCCCGAGAT	
gp160 del V1-2	(827)	CCATCATCTTCAACAGCAGCAGCGGGCGGAGCCCCGAGAT	
gp 160 del 128-194	(872)	CCATCATCTTCAACAGCAGCAGCGGGCGGAGCCCCGAGAT	
gp140TM	(1121)	CCATCATCTTCAACAGCAGCAGCGGGCGGAGCCCCGAGAT	
gp140	(1121)	CCATCATCTTCAACAGCAGCAGCGGGCGGAGCCCCGAGAT	
gp140mut	(1121)	CCATCATCTTCAACAGCAGCAGCGGGCGGAGCCCCGAGAT	
gp120	(1121)	CCATCATCTTCAACAGCAGCAGCGGGCGGAGCCCCGAGAT	
Consensus	(1121)	CCATCATCTTCAACAGCAGCAGCGGGCGGAGCCCCGAGAT	

FIG. 66B-6

103 / 131

			1200
		1161	
gp160	(1161)	CGTGTCCACAGCTCAACTGCGCGGCCGAGTTCTTCTAC	
gp160 del V1	(1065)	CGTGTCCACAGCTCAACTGCGCGGCCGAGTTCTTCTAC	
gp160 del V2	(1080)	CGTGTCCACAGCTCAACTGCGCGGCCGAGTTCTTCTAC	
gp160 del V1-2	(867)	CGTGTCCACAGCTCAACTGCGCGGCCGAGTTCTTCTAC	
gp 160 del 128-194	(912)	CGTGTCCACAGCTCAACTGCGCGGCCGAGTTCTTCTAC	
gp140TM	(1161)	CGTGTCCACAGCTCAACTGCGCGGCCGAGTTCTTCTAC	
gp140	(1161)	CGTGTCCACAGCTCAACTGCGCGGCCGAGTTCTTCTAC	
gp140mut	(1161)	CGTGTCCACAGCTCAACTGCGCGGCCGAGTTCTTCTAC	
gp120	(1161)	CGTGTCCACAGCTCAACTGCGCGGCCGAGTTCTTCTAC	
Consensus	(1161)	CGTGTCCACAGCTCAACTGCGCGGCCGAGTTCTTCTAC	
		1201	1240
gp160	(1201)	TGCAACACCAGCCAGCTGTTAACAGCACCTGGAACATCA	
gp160 del V1	(1105)	TGCAACACCAGCCAGCTGTTAACAGCACCTGGAACATCA	
gp160 del V2	(1120)	TGCAACACCAGCCAGCTGTTAACAGCACCTGGAACATCA	
gp160 del V1-2	(907)	TGCAACACCAGCCAGCTGTTAACAGCACCTGGAACATCA	
gp 160 del 128-194	(952)	TGCAACACCAGCCAGCTGTTAACAGCACCTGGAACATCA	
gp140TM	(1201)	TGCAACACCAGCCAGCTGTTAACAGCACCTGGAACATCA	
gp140	(1201)	TGCAACACCAGCCAGCTGTTAACAGCACCTGGAACATCA	
gp140mut	(1201)	TGCAACACCAGCCAGCTGTTAACAGCACCTGGAACATCA	
gp120	(1201)	TGCAACACCAGCCAGCTGTTAACAGCACCTGGAACATCA	
Consensus	(1201)	TGCAACACCAGCCAGCTGTTAACAGCACCTGGAACATCA	
		1241	1280
gp160	(1241)	CCGAGGAGGTGAAACAAGACCAAGGAGAACGACACCATCAT	
gp160 del V1	(1145)	CCGAGGAGGTGAAACAAGACCAAGGAGAACGACACCATCAT	
gp160 del V2	(1160)	CCGAGGAGGTGAAACAAGACCAAGGAGAACGACACCATCAT	
gp160 del V1-2	(947)	CCGAGGAGGTGAAACAAGACCAAGGAGAACGACACCATCAT	
gp 160 del 128-194	(992)	CCGAGGAGGTGAAACAAGACCAAGGAGAACGACACCATCAT	
gp140TM	(1241)	CCGAGGAGGTGAAACAAGACCAAGGAGAACGACACCATCAT	
gp140	(1241)	CCGAGGAGGTGAAACAAGACCAAGGAGAACGACACCATCAT	
gp140mut	(1241)	CCGAGGAGGTGAAACAAGACCAAGGAGAACGACACCATCAT	
gp120	(1241)	CCGAGGAGGTGAAACAAGACCAAGGAGAACGACACCATCAT	
Consensus	(1241)	CCGAGGAGGTGAAACAAGACCAAGGAGAACGACACCATCAT	
		1281	1320
gp160	(1281)	CCTGCCCTGCCGCATCCGCCAGATCATCAACATGTGGCAG	
gp160 del V1	(1185)	CCTGCCCTGCCGCATCCGCCAGATCATCAACATGTGGCAG	
gp160 del V2	(1200)	CCTGCCCTGCCGCATCCGCCAGATCATCAACATGTGGCAG	
gp160 del V1-2	(987)	CCTGCCCTGCCGCATCCGCCAGATCATCAACATGTGGCAG	
gp 160 del 128-194	(1032)	CCTGCCCTGCCGCATCCGCCAGATCATCAACATGTGGCAG	
gp140TM	(1281)	CCTGCCCTGCCGCATCCGCCAGATCATCAACATGTGGCAG	
gp140	(1281)	CCTGCCCTGCCGCATCCGCCAGATCATCAACATGTGGCAG	
gp140mut	(1281)	CCTGCCCTGCCGCATCCGCCAGATCATCAACATGTGGCAG	
gp120	(1281)	CCTGCCCTGCCGCATCCGCCAGATCATCAACATGTGGCAG	
Consensus	(1281)	CCTGCCCTGCCGCATCCGCCAGATCATCAACATGTGGCAG	
		1321	1360
gp160	(1321)	GAGGTGGGCAAGGCCATGTACGCCCCCCCCCATCCGCGGCC	
gp160 del V1	(1225)	GAGGTGGGCAAGGCCATGTACGCCCCCCCCCATCCGCGGCC	
gp160 del V2	(1240)	GAGGTGGGCAAGGCCATGTACGCCCCCCCCCATCCGCGGCC	
gp160 del V1-2	(1027)	GAGGTGGGCAAGGCCATGTACGCCCCCCCCCATCCGCGGCC	
gp 160 del 128-194	(1072)	GAGGTGGGCAAGGCCATGTACGCCCCCCCCCATCCGCGGCC	
gp140TM	(1321)	GAGGTGGGCAAGGCCATGTACGCCCCCCCCCATCCGCGGCC	
gp140	(1321)	GAGGTGGGCAAGGCCATGTACGCCCCCCCCCATCCGCGGCC	
gp140mut	(1321)	GAGGTGGGCAAGGCCATGTACGCCCCCCCCCATCCGCGGCC	
gp120	(1321)	GAGGTGGGCAAGGCCATGTACGCCCCCCCCCATCCGCGGCC	
Consensus	(1321)	GAGGTGGGCAAGGCCATGTACGCCCCCCCCCATCCGCGGCC	

FIG. 66B-7

104 / 131

		1400
gp160	(1361) AGATCAAGTGCAGCAGCAATATTACCGGCCTGCTGCTGAC	
gp160 del V1	(1265) AGATCAAGTGCAGCAGCAATATTACCGGCCTGCTGCTGAC	
gp160 del V2	(1280) AGATCAAGTGCAGCAGCAATATTACCGGCCTGCTGCTGAC	
gp160 del V1-2	(1067) AGATCAAGTGCAGCAGCAATATTACCGGCCTGCTGCTGAC	
gp 160 del 128-194	(1112) AGATCAAGTGCAGCAGCAATATTACCGGCCTGCTGCTGAC	
gp140TM	(1361) AGATCAAGTGCAGCAGCAATATTACCGGCCTGCTGCTGAC	
gp140	(1361) AGATCAAGTGCAGCAGCAATATTACCGGCCTGCTGCTGAC	
gp140mut	(1361) AGATCAAGTGCAGCAGCAATATTACCGGCCTGCTGCTGAC	
gp120	(1361) AGATCAAGTGCAGCAGCAATATTACCGGCCTGCTGCTGAC	
Consensus	(1361) AGATCAAGTGCAGCAGCAATATTACCGGCCTGCTGCTGAC	
	1440	
gp160	(1401) CCGCGACGGCGGGACCAACAACAACCACCGCACCAACGACACC	
gp160 del V1	(1305) CCGCGACGGCGGGACCAACAACAACCACCGCACCAACGACACC	
gp160 del V2	(1320) CCGCGACGGCGGGACCAACAACAACCACCGCACCAACGACACC	
gp160 del V1-2	(1107) CCGCGACGGCGGGACCAACAACAACCACCGCACCAACGACACC	
gp 160 del 128-194	(1152) CCGCGACGGCGGGACCAACAACAACCACCGCACCAACGACACC	
gp140TM	(1401) CCGCGACGGCGGGACCAACAACAACCACCGCACCAACGACACC	
gp140	(1401) CCGCGACGGCGGGACCAACAACAACCACCGCACCAACGACACC	
gp140mut	(1401) CCGCGACGGCGGGACCAACAACAACCACCGCACCAACGACACC	
gp120	(1401) CCGCGACGGCGGGACCAACAACAACCACCGCACCAACGACACC	
Consensus	(1401) CCGCGACGGCGGGACCAACAACAACCACCGCACCAACGACACC	
	1480	
gp160	(1441) GAGACCTTCCGCCCCGGCGCGGAAACATGAAGGACAAC	
gp160 del V1	(1345) GAGACCTTCCGCCCCGGCGCGGAAACATGAAGGACAAC	
gp160 del V2	(1360) GAGACCTTCCGCCCCGGCGCGGAAACATGAAGGACAAC	
gp160 del V1-2	(1147) GAGACCTTCCGCCCCGGCGCGGAAACATGAAGGACAAC	
gp 160 del 128-194	(1192) GAGACCTTCCGCCCCGGCGCGGAAACATGAAGGACAAC	
gp140TM	(1441) GAGACCTTCCGCCCCGGCGCGGAAACATGAAGGACAAC	
gp140	(1441) GAGACCTTCCGCCCCGGCGCGGAAACATGAAGGACAAC	
gp140mut	(1441) GAGACCTTCCGCCCCGGCGCGGAAACATGAAGGACAAC	
gp120	(1441) GAGACCTTCCGCCCCGGCGCGGAAACATGAAGGACAAC	
Consensus	(1441) GAGACCTTCCGCCCCGGCGCGGAAACATGAAGGACAAC	
	1520	
gp160	(1481) GGCGCAGCGAGCTGTACAAGTACAAGGTGGTGCGCATCGA	
gp160 del V1	(1385) GGCGCAGCGAGCTGTACAAGTACAAGGTGGTGCGCATCGA	
gp160 del V2	(1400) GGCGCAGCGAGCTGTACAAGTACAAGGTGGTGCGCATCGA	
gp160 del V1-2	(1187) GGCGCAGCGAGCTGTACAAGTACAAGGTGGTGCGCATCGA	
gp 160 del 128-194	(1232) GGCGCAGCGAGCTGTACAAGTACAAGGTGGTGCGCATCGA	
gp140TM	(1481) GGCGCAGCGAGCTGTACAAGTACAAGGTGGTGCGCATCGA	
gp140	(1481) GGCGCAGCGAGCTGTACAAGTACAAGGTGGTGCGCATCGA	
gp140mut	(1481) GGCGCAGCGAGCTGTACAAGTACAAGGTGGTGCGCATCGA	
gp120	(1481) GGCGCAGCGAGCTGTACAAGTACAAGGTGGTGCGCATCGA	
Consensus	(1481) GGCGCAGCGAGCTGTACAAGTACAAGGTGGTGCGCATCGA	
	1560	
gp160	(1521) GCCCCTGGCGTGGCCCCACCCAGGCCAAGGCCCGCGTG	
gp160 del V1	(1425) GCCCCTGGCGTGGCCCCACCCAGGCCAAGGCCCGCGTG	
gp160 del V2	(1440) GCCCCTGGCGTGGCCCCACCCAGGCCAAGGCCCGCGTG	
gp160 del V1-2	(1227) GCCCCTGGCGTGGCCCCACCCAGGCCAAGGCCCGCGTG	
gp 160 del 128-194	(1272) GCCCCTGGCGTGGCCCCACCCAGGCCAAGGCCCGCGTG	
gp140TM	(1521) GCCCCTGGCGTGGCCCCACCCAGGCCAAGGCCCGCGTG	
gp140	(1521) GCCCCTGGCGTGGCCCCACCCAGGCCAAGGCCCGCGTG	
gp140mut	(1521) GCCCCTGGCGTGGCCCCACCCAGGCCAAGGCCCGCGTG	
gp120	(1521) GCCCCTGGCGTGGCCCCACCCAGGCCAAGGCCCGCGTG	
Consensus	(1521) GCCCCTGGCGTGGCCCCACCCAGGCCAAGGCCCGCGTG	

FIG. 66B-8**SUBSTITUTE SHEET (RULE 26)**

105 / 131

		1561	1600
gp160	(1561)	GTGCAGCGCGAGAAGCGCGCCGTGGGCCTGGGCGCCCTGT	
gp160 del V1	(1465)	GTGCAGCGCGAGAAGCGCGCCGTGGGCCTGGGCGCCCTGT	
gp160 del V2	(1480)	GTGCAGCGCGAGAAGCGCGCCGTGGGCCTGGGCGCCCTGT	
gp160 del V1-2	(1267)	GTGCAGCGCGAGAAGCGCGCCGTGGGCCTGGGCGCCCTGT	
gp 160 del 128-194	(1312)	GTGCAGCGCGAGAAGCGCGCCGTGGGCCTGGGCGCCCTGT	
gp140TM	(1561)	GTGCAGCGCGAGAAGCGCGCCGTGGGCCTGGGCGCCCTGT	
gp140	(1561)	GTGCAGCGCGAGAAGCGCGCCGTGGGCCTGGGCGCCCTGT	
gp140mut	(1561)	GTGCAGCGCGAGAAGAGCGCCGTGGGCCTGGGCGCCCTGT	
gp120	(1561)	GTGCAGCGCGAGAAGCGCTAAG-----	
Consensus	(1561)	GTGCAGCGCGAGAAGCGCCGTGGGCCTGGGCGCCCTGT	
		1601	1640
gp160	(1601)	TCATCGGCTTC-CTGGGC CGCCGCCGGAGCACC ATGGCG	
gp160 del V1	(1505)	TCATCGGCTTC-CTGGGC CGCCGCCGGAGCACC ATGGCG	
gp160 del V2	(1520)	TCATCGGCTTC-CTGGGC CGCCGCCGGAGCACC ATGGCG	
gp160 del V1-2	(1307)	TCATCGGCTTC-CTGGGC CGCCGCCGGAGCACC ATGGCG	
gp 160 del 128-194	(1352)	TCATCGGCTTC-CTGGGC CGCCGCCGGAGCACC ATGGCG	
gp140TM	(1601)	TCATCGGCTTC-CTGGGC CGCCGCCGGAGCACC ATGGCG	
gp140	(1601)	TCATCGGCTTC-CTGGGC CGCCGCCGGAGCACC ATGGCG	
gp140mut	(1601)	TCATCGGCTTC-CTGGGC CGCCGCCGGAGCACC ATGGCG	
gp120	(1583)	ATATCGGATCCTCTAGA-----	
Consensus	(1601)	TCATCGGCTTCNCTGGGC CGCCGGAGCACC ATGGCG	
		1641	1680
gp160	(1640)	CCGCCTCCGTGACCTGACCGTGACGGCCGCCAGCTGCT	
gp160 del V1	(1544)	CCGCCTCCGTGACCTGACCGTGACGGCCGCCAGCTGCT	
gp160 del V2	(1559)	CCGCCTCCGTGACCTGACCGTGACGGCCGCCAGCTGCT	
gp160 del V1-2	(1346)	CCGCCTCCGTGACCTGACCGTGACGGCCGCCAGCTGCT	
gp 160 del 128-194	(1391)	CCGCCTCCGTGACCTGACCGTGACGGCCGCCAGCTGCT	
gp140TM	(1640)	CCGCCTCCGTGACCTGACCGTGACGGCCGCCAGCTGCT	
gp140	(1640)	CCGCCTCCGTGACCTGACCGTGACGGCCGCCAGCTGCT	
gp140mut	(1640)	CCGCCTCCGTGACCTGACCGTGACGGCCGCCAGCTGCT	
gp120	(1600)	-----	
Consensus	(1641)	CCGCCTCCGTGACCTGACCGTGACGGCCGCCAGCTGCT	
		1681	1720
gp160	(1680)	GAGCGGCATCGTGCAGCAGCAGAACACCTGCTGCGCGCC	
gp160 del V1	(1584)	GAGCGGCATCGTGCAGCAGCAGAACACCTGCTGCGCGCC	
gp160 del V2	(1599)	GAGCGGCATCGTGCAGCAGCAGAACACCTGCTGCGCGCC	
gp160 del V1-2	(1386)	GAGCGGCATCGTGCAGCAGCAGAACACCTGCTGCGCGCC	
gp 160 del 128-194	(1431)	GAGCGGCATCGTGCAGCAGCAGAACACCTGCTGCGCGCC	
gp140TM	(1680)	GAGCGGCATCGTGCAGCAGCAGAACACCTGCTGCGCGCC	
gp140	(1680)	GAGCGGCATCGTGCAGCAGCAGAACACCTGCTGCGCGCC	
gp140mut	(1680)	GAGCGGCATCGTGCAGCAGCAGAACACCTGCTGCGCGCC	
gp120	(1600)	-----	
Consensus	(1681)	GAGCGGCATCGTGCAGCAGCAGAACACCTGCTGCGCGCC	
		1721	1760
gp160	(1720)	ATCGAGGCCAGCAGCACCTGCTGAGCTGACCGTGTGGG	
gp160 del V1	(1624)	ATCGAGGCCAGCAGCACCTGCTGAGCTGACCGTGTGGG	
gp160 del V2	(1639)	ATCGAGGCCAGCAGCACCTGCTGAGCTGACCGTGTGGG	
gp160 del V1-2	(1426)	ATCGAGGCCAGCAGCACCTGCTGAGCTGACCGTGTGGG	
gp 160 del 128-194	(1471)	ATCGAGGCCAGCAGCACCTGCTGAGCTGACCGTGTGGG	
gp140TM	(1720)	ATCGAGGCCAGCAGCACCTGCTGAGCTGACCGTGTGGG	
gp140	(1720)	ATCGAGGCCAGCAGCACCTGCTGAGCTGACCGTGTGGG	
gp140mut	(1720)	ATCGAGGCCAGCAGCACCTGCTGAGCTGACCGTGTGGG	
gp120	(1600)	-----	
Consensus	(1721)	ATCGAGGCCAGCAGCACCTGCTGAGCTGACCGTGTGGG	

FIG. 66B-9

106 / 131

			1800
		1761	
gp160	(1760)	GCATCAAGCAGCTGCAGGCCCGCATCTGGCCGTGGAGCG	
gp160 del V1	(1664)	GCATCAAGCAGCTGCAGGCCCGCATCTGGCCGTGGAGCG	
gp160 del V2	(1679)	GCATCAAGCAGCTGCAGGCCCGCATCTGGCCGTGGAGCG	
gp160 del V1-2	(1466)	GCATCAAGCAGCTGCAGGCCCGCATCTGGCCGTGGAGCG	
gp 160 del 128-194	(1511)	GCATCAAGCAGCTGCAGGCCCGCATCTGGCCGTGGAGCG	
gp140TM	(1760)	GCATCAAGCAGCTGCAGGCCCGCATCTGGCCGTGGAGCG	
gp140	(1760)	GCATCAAGCAGCTGCAGGCCCGCATCTGGCCGTGGAGCG	
gp140mut	(1760)	GCATCAAGCAGCTGCAGGCCCGCATCTGGCCGTGGAGCG	
gp120	(1600)	-----	
Consensus	(1761)	GCATCAAGCAGCTGCAGGCCCGCATCTGGCCGTGGAGCG	
		1840	
		1801	
gp160	(1800)	CTACCTGAAGGACCAGCAGCTGCTGGGCATCTGGGCTGC	
gp160 del V1	(1704)	CTACCTGAAGGACCAGCAGCTGCTGGGCATCTGGGCTGC	
gp160 del V2	(1719)	CTACCTGAAGGACCAGCAGCTGCTGGGCATCTGGGCTGC	
gp160 del V1-2	(1506)	CTACCTGAAGGACCAGCAGCTGCTGGGCATCTGGGCTGC	
gp 160 del 128-194	(1551)	CTACCTGAAGGACCAGCAGCTGCTGGGCATCTGGGCTGC	
gp140TM	(1800)	CTACCTGAAGGACCAGCAGCTGCTGGGCATCTGGGCTGC	
gp140	(1800)	CTACCTGAAGGACCAGCAGCTGCTGGGCATCTGGGCTGC	
gp140mut	(1800)	CTACCTGAAGGACCAGCAGCTGCTGGGCATCTGGGCTGC	
gp120	(1600)	-----	
Consensus	(1801)	CTACCTGAAGGACCAGCAGCTGCTGGGCATCTGGGCTGC	
		1880	
		1841	
gp160	(1840)	AGCGGCAAGCTGATCTGCACCAACCACCGTGCCCTGGAACA	
gp160 del V1	(1744)	AGCGGCAAGCTGATCTGCACCAACCACCGTGCCCTGGAACA	
gp160 del V2	(1759)	AGCGGCAAGCTGATCTGCACCAACCACCGTGCCCTGGAACA	
gp160 del V1-2	(1546)	AGCGGCAAGCTGATCTGCACCAACCACCGTGCCCTGGAACA	
gp 160 del 128-194	(1591)	AGCGGCAAGCTGATCTGCACCAACCACCGTGCCCTGGAACA	
gp140TM	(1840)	AGCGGCAAGCTGATCTGCACCAACCACCGTGCCCTGGAACA	
gp140	(1840)	AGCGGCAAGCTGATCTGCACCAACCACCGTGCCCTGGAACA	
gp140mut	(1840)	AGCGGCAAGCTGATCTGCACCAACCACCGTGCCCTGGAACA	
gp120	(1600)	-----	
Consensus	(1841)	AGCGGCAAGCTGATCTGCACCAACCACCGTGCCCTGGAACA	
		1920	
		1881	
gp160	(1880)	GCAGCTGGAGCAACAAGAGCCTGACCGAGATCTGGGACAA	
gp160 del V1	(1784)	GCAGCTGGAGCAACAAGAGCCTGACCGAGATCTGGGACAA	
gp160 del V2	(1799)	GCAGCTGGAGCAACAAGAGCCTGACCGAGATCTGGGACAA	
gp160 del V1-2	(1586)	GCAGCTGGAGCAACAAGAGCCTGACCGAGATCTGGGACAA	
gp 160 del 128-194	(1631)	GCAGCTGGAGCAACAAGAGCCTGACCGAGATCTGGGACAA	
gp140TM	(1880)	GCAGCTGGAGCAACAAGAGCCTGACCGAGATCTGGGACAA	
gp140	(1880)	GCAGCTGGAGCAACAAGAGCCTGACCGAGATCTGGGACAA	
gp140mut	(1880)	GCAGCTGGAGCAACAAGAGCCTGACCGAGATCTGGGACAA	
gp120	(1600)	-----	
Consensus	(1881)	GCAGCTGGAGCAACAAGAGCCTGACCGAGATCTGGGACAA	
		1960	
		1921	
gp160	(1920)	CATGACCTGGATGGAGTGGAGCTGGAGCGCGAGATCGGCAACTAC	
gp160 del V1	(1824)	CATGACCTGGATGGAGTGGAGCTGGAGCGCGAGATCGGCAACTAC	
gp160 del V2	(1839)	CATGACCTGGATGGAGTGGAGCTGGAGCGCGAGATCGGCAACTAC	
gp160 del V1-2	(1626)	CATGACCTGGATGGAGTGGAGCTGGAGCGCGAGATCGGCAACTAC	
gp 160 del 128-194	(1671)	CATGACCTGGATGGAGTGGAGCTGGAGCGCGAGATCGGCAACTAC	
gp140TM	(1920)	CATGACCTGGATGGAGTGGAGCTGGAGCGCGAGATCGGCAACTAC	
gp140	(1920)	CATGACCTGGATGGAGTGGAGCTGGAGCGCGAGATCGGCAACTAC	
gp140mut	(1920)	CATGACCTGGATGGAGTGGAGCTGGAGCGCGAGATCGGCAACTAC	
gp120	(1600)	-----	
Consensus	(1921)	CATGACCTGGATGGAGTGGAGCTGGAGCGCGAGATCGGCAACTAC	

FIG. 66B-10**SUBSTITUTE SHEET (RULE 26)**

107 / 131

		1961	2000
	gp160	(1960)	ACCGGCCTGATCTACAACCTGATCGAGATGCCAGAACCC
	gp160 del V1	(1864)	ACCGGCCTGATCTACAACCTGATCGAGATGCCAGAACCC
	gp160 del V2	(1879)	ACCGGCCTGATCTACAACCTGATCGAGATGCCAGAACCC
	gp160 del V1-2	(1666)	ACCGGCCTGATCTACAACCTGATCGAGATGCCAGAACCC
gp 160 del 128-194		(1711)	ACCGGCCTGATCTACAACCTGATCGAGATGCCAGAACCC
	gp140TM	(1960)	ACCGGCCTGATCTACAACCTGATCGAGATGCCAGAACCC
	gp140	(1960)	ACCGGCCTGATCTACAACCTGATCGAGATGCCAGAACCC
	gp140mut	(1960)	ACCGGCCTGATCTACAACCTGATCGAGATGCCAGAACCC
	gp120	(1600)	-----
	Consensus	(1961)	ACCGGCCTGATCTACAACCTGATCGAGATGCCAGAACCC
		2001	2040
	gp160	(2000)	AGCAGGAGAAGAACGAGCAGGAGCTGCTGGAGCTGGACAA
	gp160 del V1	(1904)	AGCAGGAGAAGAACGAGCAGGAGCTGCTGGAGCTGGACAA
	gp160 del V2	(1919)	AGCAGGAGAAGAACGAGCAGGAGCTGCTGGAGCTGGACAA
	gp160 del V1-2	(1706)	AGCAGGAGAAGAACGAGCAGGAGCTGCTGGAGCTGGACAA
gp 160 del 128-194		(1751)	AGCAGGAGAAGAACGAGCAGGAGCTGCTGGAGCTGGACAA
	gp140TM	(2000)	AGCAGGAGAAGAACGAGCAGGAGCTGCTGGAGCTGGACAA
	gp140	(2000)	AGCAGGAGAAGAACGAGCAGGAGCTGCTGGAGCTGGACAA
	gp140mut	(2000)	AGCAGGAGAAGAACGAGCAGGAGCTGCTGGAGCTGGACAA
	gp120	(1600)	-----
	Consensus	(2001)	AGCAGGAGAAGAACGAGCAGGAGCTGCTGGAGCTGGACAA
		2041	2080
	gp160	(2040)	GTGGCCAGCCTGTGGAACTGGTCGACATCACCAACTGG
	gp160 del V1	(1944)	GTGGCCAGCCTGTGGAACTGGTCGACATCACCAACTGG
	gp160 del V2	(1959)	GTGGCCAGCCTGTGGAACTGGTCGACATCACCAACTGG
	gp160 del V1-2	(1746)	GTGGCCAGCCTGTGGAACTGGTCGACATCACCAACTGG
gp 160 del 128-194		(1791)	GTGGCCAGCCTGTGGAACTGGTCGACATCACCAACTGG
	gp140TM	(2040)	GTGGCCAGCCTGTGGAACTGGTCGACATCACCAACTGG
	gp140	(2040)	GTGGCCAGCCTGTGGAACTGGTCGACATCACCAACTGG
	gp140mut	(2040)	GTGGCCAGCCTGTGGAACTGGTCGACATCACCAACTGG
	gp120	(1600)	-----
	Consensus	(2041)	GTGGCCAGCCTGTGGAACTGGTCGACATCACCAACTGG
		2081	2120
	gp160	(2080)	CTGTGGTACATCCGATCTCATCATGATCGTGGCGGCC
	gp160 del V1	(1984)	CTGTGGTACATCCGATCTCATCATGATCGTGGCGGCC
	gp160 del V2	(1999)	CTGTGGTACATCCGATCTCATCATGATCGTGGCGGCC
	gp160 del V1-2	(1786)	CTGTGGTACATCCGATCTCATCATGATCGTGGCGGCC
gp 160 del 128-194		(1831)	CTGTGGTACATCCGATCTCATCATGATCGTGGCGGCC
	gp140TM	(2080)	CTGTGGTACATCCGATCTCATCATGATCGTGGCGGCC
	gp140	(2080)	CTGTGGTACATC-----
	gp140mut	(2080)	CTGTGGTACATC-----
	gp120	(1600)	-----
	Consensus	(2081)	CTGTGGTACATCCGATCTCATCATGATCGTGGCGGCC
		2121	2160
	gp160	(2120)	TGATCGGCCTGCGCATCGTGTTCGCCGTGCTGAGCA-----
	gp160 del V1	(2024)	TGATCGGCCTGCGCATCGTGTTCGCCGTGCTGAGCA-----
	gp160 del V2	(2039)	TGATCGGCCTGCGCATCGTGTTCGCCGTGCTGAGCA-----
	gp160 del V1-2	(1826)	TGATCGGCCTGCGCATCGTGTTCGCCGTGCTGAGCA-----
gp 160 del 128-194		(1871)	TGATCGGCCTGCGCATCGTGTTCGCCGTGCTGAGCA-----
	gp140TM	(2120)	TGATCGGCCTGCGCATCGTGTTCGCCGTGCTGAGCATCGT
	gp140	(2092)	-----
	gp140mut	(2092)	-----
	gp120	(1600)	-----
	Consensus	(2121)	TGATCGGCCTGCGCATCGTGTTCGCCGTGCTGAGCANNNN

FIG. 66B-11

108 / 131

			2200
gp160	(2156)	-TCGTGAACCGCGTGCGCCAGGGCTACAGCCCCATCAGCC	
gp160 del V1	(2060)	-TCGTGAACCGCGTGCGCCAGGGCTACAGCCCCATCAGCC	
gp160 del V2	(2075)	-TCGTGAACCGCGTGCGCCAGGGCTACAGCCCCATCAGCC	
gp160 del V1-2	(1862)	-TCGTGAACCGCGTGCGCCAGGGCTACAGCCCCATCAGCC	
gp 160 del 128-194	(1907)	-TCGTGAACCGCGTGCGCCAGGGCTACAGCCCCATCAGCC	
gp140TM	(2160)	GTAAGATATCGGATCCTCTAGA-----	
gp140	(2092)	-TAAGATATCGGATCCTCTAGA-----	
gp140mut	(2092)	-TAAGATATCGGATCCTCTAGA-----	
gp120	(1600)	-----	
Consensus	(2161)	NTCGTGAACCGCGTGCGCCAGGGCTACAGCCCCATCAGCC	2240
		2201	
gp160	(2195)	TGCAGACCCGCCTGCCGCCAGCGCGCCCCGACCGCCC	
gp160 del V1	(2099)	TGCAGACCCGCCTGCCGCCAGCGCGCCCCGACCGCCC	
gp160 del V2	(2114)	TGCAGACCCGCCTGCCGCCAGCGCGCCCCGACCGCCC	
gp160 del V1-2	(1901)	TGCAGACCCGCCTGCCGCCAGCGCGCCCCGACCGCCC	
gp 160 del 128-194	(1946)	TGCAGACCCGCCTGCCGCCAGCGCGCCCCGACCGCCC	
gp140TM	(2182)	-----	
gp140	(2113)	-----	
gp140mut	(2113)	-----	
gp120	(1600)	-----	
Consensus	(2201)	TGCAGACCCGCCTGCCGCCAGCGCGCCCCGACCGCCC	2280
		2241	
gp160	(2235)	CGAGGGCATCGAGGAGGAGGGCGGCAGCGCGACCGCGAC	
gp160 del V1	(2139)	CGAGGGCATCGAGGAGGAGGGCGGCAGCGCGACCGCGAC	
gp160 del V2	(2154)	CGAGGGCATCGAGGAGGAGGGCGGCAGCGCGACCGCGAC	
gp160 del V1-2	(1941)	CGAGGGCATCGAGGAGGAGGGCGGCAGCGCGACCGCGAC	
gp 160 del 128-194	(1986)	CGAGGGCATCGAGGAGGAGGGCGGCAGCGCGACCGCGAC	
gp140TM	(2182)	-----	
gp140	(2113)	-----	
gp140mut	(2113)	-----	
gp120	(1600)	-----	
Consensus	(2241)	CGAGGGCATCGAGGAGGAGGGCGGCAGCGCGACCGCGAC	2320
		2281	
gp160	(2275)	CGCAGCAACCGCCTGGTGCACGGCTGCTGGCCCTGATCT	
gp160 del V1	(2179)	CGCAGCAACCGCCTGGTGCACGGCTGCTGGCCCTGATCT	
gp160 del V2	(2194)	CGCAGCAACCGCCTGGTGCACGGCTGCTGGCCCTGATCT	
gp160 del V1-2	(1981)	CGCAGCAACCGCCTGGTGCACGGCTGCTGGCCCTGATCT	
gp 160 del 128-194	(2026)	CGCAGCAACCGCCTGGTGCACGGCTGCTGGCCCTGATCT	
gp140TM	(2182)	-----	
gp140	(2113)	-----	
gp140mut	(2113)	-----	
gp120	(1600)	-----	
Consensus	(2281)	CGCAGCAACCGCCTGGTGCACGGCTGCTGGCCCTGATCT	2360
		2321	
gp160	(2315)	GGGACGACCTGCGCAGCCTGTGCCTGTTCAGCTACCACCG	
gp160 del V1	(2219)	GGGACGACCTGCGCAGCCTGTGCCTGTTCAGCTACCACCG	
gp160 del V2	(2234)	GGGACGACCTGCGCAGCCTGTGCCTGTTCAGCTACCACCG	
gp160 del V1-2	(2021)	GGGACGACCTGCGCAGCCTGTGCCTGTTCAGCTACCACCG	
gp 160 del 128-194	(2066)	GGGACGACCTGCGCAGCCTGTGCCTGTTCAGCTACCACCG	
gp140TM	(2182)	-----	
gp140	(2113)	-----	
gp140mut	(2113)	-----	
gp120	(1600)	-----	
Consensus	(2321)	GGGACGACCTGCGCAGCCTGTGCCTGTTCAGCTACCACCG	

FIG. 66B-12**SUBSTITUTE SHEET (RULE 26)**

109/131

		2361	2400
gp160	(2355)	CCTGCGCACCTGCTGCTGATCGTGGCCCGCATCGTGGAG	
gp160 del V1	(2259)	CCTGCGCACCTGCTGCTGATCGTGGCCCGCATCGTGGAG	
gp160 del V2	(2274)	CCTGCGCACCTGCTGCTGATCGTGGCCCGCATCGTGGAG	
gp160 del V1-2	(2061)	CCTGCGCACCTGCTGCTGATCGTGGCCCGCATCGTGGAG	
gp 160 del 128-194	(2106)	CCTGCGCACCTGCTGCTGATCGTGGCCCGCATCGTGGAG	
gp140TM	(2182)	-----	
gp140	(2113)	-----	
gp140mut	(2113)	-----	
gp120	(1600)	-----	
Consensus	(2361)	CCTGCGCACCTGCTGCTGATCGTGGCCCGCATCGTGGAG	2440
	2401		
gp160	(2395)	CTGCTGGGCCGCCGGCTGGGAGGCCCTGAAGTACTGGT	
gp160 del V1	(2299)	CTGCTGGGCCGCCGGCTGGGAGGCCCTGAAGTACTGGT	
gp160 del V2	(2314)	CTGCTGGGCCGCCGGCTGGGAGGCCCTGAAGTACTGGT	
gp160 del V1-2	(2101)	CTGCTGGGCCGCCGGCTGGGAGGCCCTGAAGTACTGGT	
gp 160 del 128-194	(2146)	CTGCTGGGCCGCCGGCTGGGAGGCCCTGAAGTACTGGT	
gp140TM	(2182)	-----	
gp140	(2113)	-----	
gp140mut	(2113)	-----	
gp120	(1600)	-----	
Consensus	(2401)	CTGCTGGGCCGCCGGCTGGGAGGCCCTGAAGTACTGGT	2480
	2441		
gp160	(2435)	GGAACCTGCTGCAGTACTGGAGCCAGGAGCTGAAGAGCAG	
gp160 del V1	(2339)	GGAACCTGCTGCAGTACTGGAGCCAGGAGCTGAAGAGCAG	
gp160 del V2	(2354)	GGAACCTGCTGCAGTACTGGAGCCAGGAGCTGAAGAGCAG	
gp160 del V1-2	(2141)	GGAACCTGCTGCAGTACTGGAGCCAGGAGCTGAAGAGCAG	
gp 160 del 128-194	(2186)	GGAACCTGCTGCAGTACTGGAGCCAGGAGCTGAAGAGCAG	
gp140TM	(2182)	-----	
gp140	(2113)	-----	
gp140mut	(2113)	-----	
gp120	(1600)	-----	
Consensus	(2441)	GGAACCTGCTGCAGTACTGGAGCCAGGAGCTGAAGAGCAG	2520
	2481		
gp160	(2475)	CGCCGTGAGCCTGTTCAACGCCACGCCATCGCCGTGGCC	
gp160 del V1	(2379)	CGCCGTGAGCCTGTTCAACGCCACGCCATCGCCGTGGCC	
gp160 del V2	(2394)	CGCCGTGAGCCTGTTCAACGCCACGCCATCGCCGTGGCC	
gp160 del V1-2	(2181)	CGCCGTGAGCCTGTTCAACGCCACGCCATCGCCGTGGCC	
gp 160 del 128-194	(2226)	CGCCGTGAGCCTGTTCAACGCCACGCCATCGCCGTGGCC	
gp140TM	(2182)	-----	
gp140	(2113)	-----	
gp140mut	(2113)	-----	
gp120	(1600)	-----	
Consensus	(2481)	CGCCGTGAGCCTGTTCAACGCCACGCCATCGCCGTGGCC	2560
	2521		
gp160	(2515)	GAGGGCACCGACCGCATCATCGAGATCGTCAGCGCATCT	
gp160 del V1	(2419)	GAGGGCACCGACCGCATCATCGAGATCGTCAGCGCATCT	
gp160 del V2	(2434)	GAGGGCACCGACCGCATCATCGAGATCGTCAGCGCATCT	
gp160 del V1-2	(2221)	GAGGGCACCGACCGCATCATCGAGATCGTCAGCGCATCT	
gp 160 del 128-194	(2266)	GAGGGCACCGACCGCATCATCGAGATCGTCAGCGCATCT	
gp140TM	(2182)	-----	
gp140	(2113)	-----	
gp140mut	(2113)	-----	
gp120	(1600)	-----	
Consensus	(2521)	GAGGGCACCGACCGCATCATCGAGATCGTCAGCGCATCT	

FIG. 66B-13

110 / 131

FIG. 66B-14

111 / 131

FIG. 67

HIV-1SF2 wt RT (PISPIET-->GIRKVL)

CCCATTAGTCTATTGAAACTGTACAGTAAAATTAAAGCCAGGAATGGATGGCCAAAA
GTTAAGCAATGCCATTGACAGAAGAAAAATAAAGCATTAGTAGAGATATGTACAGAA
ATGGAAAAGGAAGGGAAAATTCAAAAATTGGCCTGAAAATCCATACAATACTCCAGTA
TTTGCATAAAGAAAAAGACAGTACTAAATGGAGAAAATCTAGTAGATTTCAGAGAACTT
AATAAAAGAACTCAAGACTCTGGGAAGTTCACTTAGGAATACCACACCCCGCAGGGTTA
AAAAAGAAAAATCAGTAACAGTATTGGATGTGGGTGATGCATACTTTCAGTTCCCTTA
GATAAAGACTTAAAGTATACTGCATTACCATACCTAGTATAAACAAATGAGACACCA
GGGATTAGATATCAGTACAATGTGCTGCCACAGGGATGGAAAGGATCACAGCAATATTC
CAAAGTAGCATGACAAAAATCTTAGAGCCTTTAGAAAACAGAATCCAGACATAGTTATC
TATCAAatacatggatTTGTATGTAGGATCTGACTTAGAAATAGGGCAGCATAGAAC
AAAATAGAGGAACGTGAGACAGCATCTGTTGAGGTGGGATTACACACCAGACAAAAAA
CATCAGAAAGAACCTCATTCTTtggatgggatatGAACCTCATCCTGATAAAATGGACA
GTACAGCCTATAATGCTGCCAGAAAAAGACAGCTGGACTGTCATGACATACAGAAGTTA
GTGGGAAAATTGAATTGGCAAGTCAGATTATGCAGGGATAAAGTAAAGCAGTTATGT
AAACTCCTTAGAGGAACCAAAGCACTAACAGAAGTAATACCACTAACAGAAGCAGAG
CTAGAACTGGCAGAAAACAGGGAGATTCTAAAAGAACAGTACATGAAGTATATTATGAC
CCATCAAAAGACTTAGTAGCAGAAATACAGAAGCAGGGCAAGGCCATGGACATATCAA
ATTATCAAGAGCCATTAAAAATCTGAAAACAGGAAAGTATGCAAGGATGAGGGGTGCC
CACACTAATGATGAAACAGTTAACAGAGGCAGTGCAAAAGTATCACAGAAAGCATA
GTAATAATGGGAAAGATTCTAAATTAAACTACCCATACAAAAGGAAACATGGAGCA
TGGTGGATGGAGTATTGGCAAGCTACCTGGATTCTGAGTGGAGTTGTCAATACCCCT
CCCTTAGTGAATTATGGTACCAAGTTAGAGAAAGAACCCATAGTAGGAGCAGAAACTTTC
TATGTAGATGGGGCAGCTAACAGGAGACTAAATTAGGAAAGCAGGATATGTTACTGAC
AGAGGAAGACAAAAGTTGTCTCATAGCTGACACAAACAAATCAGAAAGACTGAATTACAA
GCAATTCTAGCTTGCAAGGATTGGGATTAGAAGTAAACATAGTAACAGACTCACAA
TATGCATTAGGAATCATCAAGCACAACCAGATAAGAGTGAATCAGAGTTAGTCAGTCAA
ATAATAGAGCAGTTAATAAAAAGGAAAAGGTCTACCTGGCATGGTACCAAGCACACAAA
GGAATTGGAGGAAATGAACAAGTAGATAATTAGTCAGTGCTGGAATCAGGAAAGTACTA

FIG. 68

(SEQ ID NO:77)

GagProtMod.SF2 (GP1)

GTCGACGCCACCATGGCGCCCGGCCAGCGTGCTGAGCGCCGGCGAGCTGGACAAGTGG
GAGAAGATCCGCCTGCGCCCGGGCAAGAAGAAGTACAAGCTGAAGCACATCGTGTGG
GCCAGCCGCGAGCTGGAGCGCTCGCCGTGAACCCGGCCTGCTGGAGACCAGCGAGGGC
TGCCGCCAGATCCTGGGCCAGCTGCAGCCCAGCCTGCAGACCGCAGCGAGGAGCTGCGC
AGCCTGTACAACACCGTGGCCACCCCTGTACTGCGTGCACCAGCGCATCGACGTCAAGGAC
ACCAAGGAGGCCCTGGAGAAGATCGAGGAGGAGCAGAACAAAGTCCAAGAAGAAGGCCAG
CAGGCCGCCGCCGCCGGCACCGCAACAGCAGCCAGGTGAGCCAGAACTACCCATC
GTGCAGAACCTGCAGGGCCAGATGGTGACCCAGGCCATCAGCCCCCGCACCTGAACGCC
TGGGTGAAGGTGGTGGAGGAGAAGGCCTTCAGCCCCGAGGTGATCCCCATGTTAGCGCC
CTGAGCGAGGGGCCACCCCCCAGGACCTGAACACGATGTTAACACCGTGGCGGCCAC
CAGGCCGCATGCAGATGCTGAAGGAGACCATCAACGAGGAGGCCAGTGGGACCGC
GTGCACCCCGTGCACGCCGCCCATGCCCGGCCAGATGCGCGAGCCCCGGCAGC
GACATGCCGGCACCACCAAGCACCCCTGCAGGAGCAGATCGGCTGGATGACCAACAACCC
CCCATCCCCGTGGCGAGATCTACAAGCGGTGGATCATCCTGGCCTGAACAAGATCGT
CGGATGTACAGCCCCACCAGCATCCTGGACATCCGCCAGGGCCCCAAGGAGCCCTCCGC
GACTACGTGGACCGCTTCTACAAGACCCCTGCGCGCTGAGCAGGCCAGGACGTGAAG
AACTGGATGACCGAGACCCCTGCTGGTGCAGAACGCCAACCCGACTGCAAGACCATCCTG
AAGGCTCTGGCCCCGGCCACCCCTGGAGGAGATGATGACCGCCTGCCAGGGCTGGC
GGCCCCGGCACAAGGCCCGTGTGGCGAGGCATGAGCCAGGTGACGAACCCGGCG
ACCATCATGATGCAGCGCGCAACTTCCGCAACCAGCGGAAGACCGTCAAGTGTCAAC
TGCAGCAAGGAGGCCACACCGCCAGGAACCGCCGCCAGGCCAGGACGTGCTGG
CGCTGCGGCCCGAAGGACACCAAATGAAAGATTGCACTGAGAGACAGGCTAATTTTA
GGGAAGATCTGGCCTCCTACAAGGGAAGGCCAGGGATTTCAGAGCAGGCTAATTTTA
CCAACAGCCCCACCAGAAGAGAGCTTCAGGTTGGGAGGAGAAAACAACCCCTCTCAG
AAGCAGGAGCCGATAGACAAGGAACGTATCCTTAACTCCCTCAGATCACTCTTGGC
AACGACCCCTCGTCACAGTAAGGATCGCGGCCAGCTCAAGGAGGCCAGTGCACACCG
GCGCCGACGACACCGTGTGGAGGAGATGAAACCTGCCGGCAAGTGGAAAGGCCAAGATGA
TCGGCGGGATCGGGGCTTCATCAAGGTGCGGCAGTACGACCGAGATCCCCGTGGAGATCT
GGGCCACAAGGCCATCGGCACCGTGTGGTGGGCCACCCCGTGAACATCATCGGCC
GCAACCTGCTGACCCAGATCGGCTGCACCCCTGAACCTCCCATCAGCCCCATCGAGACGG
TGCCCGTGAAGCTGAAGCCGGGATGGACGGCCCCAAGGTCAAGCAGTGGCCCTGTAAG
AATTC

FIG. 69

(SEQ ID NO:78)

GagProtMod_SF2 (GP2)

GTCGACGCCACCATGGCGCCCGGCCAGCGTGCTGAGCGGGCGAGCTGGACAAGTGG
 GAGAAGATCCGCCTGCGCCCGGGCAAGAAGAAGTACAAGCTGAAGCACATCGTGTGG
 GCCAGCCGCGAGCTGGAGCGCTCGCCGTGAACCCCGGCCGTGGAGACCAGCGAGGGC
 TGCCGCCAGATCCTGGGCCAGCTGCAGCCCAGCCTGCAGACCGCAGCGAGGAGCTGCGC
 AGCCTGTACAACACCGTGGCCACCCGTACTGCGTGCACCAGCGCATCGACGTCAAGGAC
 ACCAAGGAGGCCCTGGAGAAGATCGAGGAGGAGCAGAACAAAGTCCAAGAAGAAGGCCAG
 CAGGCCGCCGCCGCCGGCACCGAACAGCAGCCAGGTGAGCCAGAACTACCCCATC
 GTGCAGAACCTGCAGGGCCAGATGGTGACCCAGGCATCAGCCCCCGCACCTGAACGCC
 TGGGTGAAGGTGGTGGAGGAGAAGGCCTTCAGCCCCGAGGTGATCCCCATGTTAGCGCC
 CTGAGCGAGGGGCCACCCCCCAGGACCTGAACACGATGTTAACACCCGTGGCGGCCAC
 CAGGCCGCATGCAGATGCTGAAGGAGACCATCAACGAGGAGGCCGAGTGGACCGC
 GTGCACCCCGTGCACGCCGCCCATGCCCGGCCAGATGCGCAGGCCGCCAGC
 GACATGCCGGCACCAACAGCACCCGTGAGGAGCAGATCGGCTGGATGACCAACAACCC
 CCCATCCCCGTGGCGAGATCTAACAGCGGTGGATCATCCTGGCCTGAACAAAGATCGT
 CGGATGTACAGCCCCACCAAGCAGATCCTGGACATCCGCCAGGGCCCCAAGGAGCCCTTCCGC
 GACTACGTGGACCGCTTCTAACAGACCCGTGCGCCTGAGCAGGCCAGCCAGGTGAAG
 AACTGGATGACCGAGACCCGTGGTGAGAACGCCAACCCGACTGCAAGACCATCCTG
 AAGGCTCTGGCCCCGGCCACCCGTGGAGGAGATGATGACCGCCTGCCAGGGCTGGC
 GGCCCCGGCCACAAGGCCCGGTGCTGGCGAGGCATGCCAGGTGACGAACCCGGCG
 ACCATCATGATGCAGCGCGCAACTCCGAACCAAGCGGAAGACCGTCAAGTGTCAAC
 TGCAGCAAGGAGGGCACACCGCCAGGAACCTGCCGCCGCCAGAAGAGGCTGCTGG
 CGCTGGCCCGCGAAGGACACCAATGAAAGATTGCACTGAGAGACAGGCTAATTTTA
 GGGAAAGATCTGGCCTTCTAACAGGAAGGCCAGGGATTTCTTCAGAGCAGACAGAG
 CCAACAGCCCCACCAAGAAGAGAGCTTCAGGTTGGGAGGGAGAAAACAACCTCCCTCAG
 AACGAGGAGCCGATAGACAAGGAACGTATCCTTAACCTCCCTCAGATCACTCTTGGC
 AAGCAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAG
 AACGACCCCTCGTCACAGTAAGGATGGGGGGCAACTCAAGGAAGCGCTGCTGATA
 GAGCAGATGATACTGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAG
 TAGGGGGGATCGGGGGCTTCATCAAGGTGAGGCAGTACGACCAAGATAACCTGTAG
 GTGGACATAAGCTAGGTACAGTATTAGTAGGACCTACACCTGTCAACATAATTG
 GAAATCTGTTGACCCAGATCGGCTGCACCTTGAACCTCCCTCAGGCCATTGAGACGG
 TGCCCGTGAAGTTGAAGGCCGGGATGGACGCCAGGAGGAGGAGGAGGAGGAGGAG
 AATTC

FIG. 70

(SEQ ID NO:79)

115 / 131

FS(+)_ProtInact_RTopt_YM

GCGGCCGCGAAGGACACCAATGAAAGATTGCACTGAGAGACAGGCTAATTTTAGGGA
AGATCTGGCCTTCCTACAAGGGAAAGGCCAGGGATTTCTTCAGAGCAGACCAGGCCAA
CAGCCCCACCAGAAGAGAGCTTCAGGTTGGGAGGAGAAAACAACCCCTCTCAGAACG
AGGAGCCGATAGACAAGGAACTGTATCCTTAACCTCCCTCAGATCACTCTTGGCAACG
ACCCCTCGTCACAATAAGGATCGGGGGCACTCAAGGAAGCGCTGCTCGATAACAGGAGC
AGATGATACTAGTATTAGAAGAAATGAATTGCCAGGAAAATGAAACCAAAATGATAGG
GGGGATCGGGGGCTTCATCAAGGTGAGGCAGTACGACCAGATACTGTAGAAATCTGTGG
ACATAAAGCTATAGGTACAGTATTAGTAGGACCTACACCTGTCAACATAATTGGAAGAAA
TCTGTTGACCCAGATCGGCTGCACCTTGAACCTCCCCATCAGCCCTATTGAGACGGTGCC
CGTGAAGTTGAAGCCGGGATGGACGGCCCCAAGGTCAAGCAATGCCATTGACCGAGGA
GAAGATCAAGGCCCTGGTGGAGATCTGCACCGAGATGGAGAAGGAGGGCAAGATCAGCAA
GATCGGCCCCGAGAACCCCTACAACACCCCCGTGTCGCCATCAAGAAGAAGGACAGCAC
CAAGTGGCGCAAGCTGGTGGACTTCCCGAGCTGAACAAGCGCACCCAGGACTTCTGGGA
GGTGCAGCTGGCATCCCCACCCCGCCGGCTGAAGAAGAAGAGCGTGTACCGTGCT
GGACGTGGCGACGCCTACTTCAGCGTCCCCCTGGACAAGGACTTCCGCAAGTACACCGC
CTTCACCATCCCCAGCATCAACAAACGAGACCCCCGGCATCCGCTACCAAGTACAACGTGCT
GCCCTCAGGCTGGAAGGGCAGCCCCGCATCTCCAGAGCAGCATGACCAAGATCCTGGGA
GCCCTTCCGAAGCAGAACCCGACATCGTACTACCGAGGCCCCCTGTACGTGGCAG
CGACCTGGAGATCGGCCAGCACCACCAAGATCGAGGAGCTGCCAGCACCTGCTGGC
CTGGGGCTTCACCACCCCCGACAAGAAGCACCAGAAGGAGCCCCCTTCTGTGGATGG
CTACGAGCTGCACCCGACAAGTGGACCGTGCAGCCATCATGCTGCCAGAACGGACAG
CTGGACCGTGAACGACATCCAGAAGCTGGTGGCAAGCTGAACCTGGCCAGCAGATCTA
CGCCGGCATCAAGGTGAAGCAGCTGTGCAAGCTGCTGCCGGACCAAGGCCCTGACCGA
GGTGAATCCCCCTGACCGAGGAGGCCAGCTGGAGCTGGCCAGAACCGCAGATCTGAA
GGAGCCCCGTGCACGAGGTGTACTACGACCCAGCAAGGACCTGGTGGCGAGATCCAGAA
GCAGGGCCAGGGCCAGTGGACCTACCAGATCTACCAAGGAGCCCTCAAGAACCTGAAGAC
CGGCAAGTACGCCCGCATGCCGGCCCCACACCAACGACGTGAAGCAGCTGACCGAGGC
CGTGCAGAAGGTGAGCACCAGAGCATCGTACTGGGCAAGATCCCCAAGTTCAAGCT

FIG. 71A
(SEQ ID NO:80)

116 / 131

GCCCCATCCAGAAGGAGACCTGGGAGGCCTGGTGGATGGAGTACTGGCAGGCCACCTGGAT
CCCCGAGTGGGAGTTCGTGAACACCCCCCCCCCTGGTGAAGCTGTGGTACCAGCTGGAGAA
GGAGCCCATCGTGGCGCCGAGACCTTCTACGTGGACGGCGCCGCCAACCGCGAGACCAA
GCTGGGCAAGGCCGGTACGTGACCGACCGGGGCCGGCAGAAGGTGGTGAGCATGCCGA
CACCAACCAACCAGAACGACCGAGCTGCAGGCCATCCACCTGCCCTGCAGGACAGGCCCT
GGAGGTGAACATCGTACCGACAGCCAGTACGCCCTGGGCATCATCCAGGCCAGCCCAG
CAAGAGCGAGAGCGAGCTGGTGAGCCAGATCATCGAGCAGCTGATCAAGAAGGAGAAGGT
GTACCTGGCCTGGGTGCCGCCACAAGGGCATGGCGGCAACGAGCAGGTGGACAAGCT
GGTAGCGCCGGCATCCGAAGGTGCTGTTCTGAACGGCATCGATGGCGGCATCGTGT
CTACCAAGTACATGGACGACCTGTACGTGGCAGCGCGGCCCTAGGATCGATTAAAAGCT
TCCCGGGGCTAGCACCGGTGAATTC

FIG. 71B

(SEQ ID NO:80)

FS(+)_ProtInact_RTotp_YMWM

GC GGCGCGAAGGACACCAAATGAAAGATTGCACTGAGAGACAGGCTAATTTTAGGGA
AGATCTGGCCTTCTACAAGGGAAAGGCCAGGGATTTCAGAGCAGACCAGAGCAA
CAGCCCCACCAAGAGAGCTTCAGGTTGGGAGGAGAAAACAACCCCTCTCAGAAC
AGGAGCCGATAGACAAGGAACGTATCCTTAACCTCCCTCAGATCACTCTTGCAACG
ACCCCTCGTCACAATAAGGATCGGGGGCAACTCAAGGAAGCGCTGCTCGATAACAGGAGC
AGATGATACTAGTATTAGAAGAAATGAATTGCCAGGAAATGGAAACCAAAATGATAGG
GGGGATCGGGGGCTTCATCAAGGTGAGGCAGTACGACCAGATACTGTAGAAATCTGTGG
ACATAAAGCTATAGGTACAGTATTAGTAGGACCTACACCTGTCAACATAATTGGAAGAAA
TCTGTTGACCCAGATCGGCTGCACCTGAACCTCCCCATCAGCCCTATTGAGACGGTGCC
CGTGAAGTTGAAGCCGGGATGGACGGCCCAAGGTCAAGCAATGCCATTGACCGAGGA
GAAGATCAAGGCCCTGGTGGAGATCTGCACCGAGATGGAGAAGGAGGGCAAGATCAGCAA
GATCGGCCCCGAGAACCCCTACAACACCCCCGTGTTGCCATCAAGAAGAAGGACAGCAC
CAAGTGGCGCAAGCTGGTGGACTTCCCGCAGCTGAACAAGCGCACCCAGGACTTCTGGGA
GGTGCAGCTGGCATCCCCCACCCGCCCTGAAGAAGAAGAGCGTGTACCGTGCT
GGACGTGGCGACGCCACTTCAGCGTCCCCCTGGACAAGGACTTCCGCAAGTACACCGC
CTTCACCATCCCCAGCATCAACACGAGACCCCCGGCATCCGCTACCAAGTACAACGTGCT
GCCCCAGGGCTGGAAGGGCAGCCCCGCATCTCCAGAGCAGCATGACCAAGATCCTGGA
GCCCTTCCGAAGCAGAACCCGACATCGTGTACCCAGGCCCCCTGTACGTGGCAG
CGACCTGGAGATGGCCAGCACCGCACCAAGATCGAGGAGCTGCCAGCACCTGCTGCG
CTGGGGCTTCACCACCCCGACAAGAACGACCAGAAGGAGCCCCCTTCCTGCCATCGA
GCTGCACCCGACAAGTGGACCGTGCAAGCCCACATGCTGCCAGAAGGACAGCTGGAC
CGTGAACGACATCCAGAAGCTGGTGGCAAGCTGAACCTGGCCAGCCAGATCTACGCCGG
CATCAAGGTGAAGCAGCTGTGCAAGCTGCTGCCGGCACCAAGGCCCTGACCGAGGTGAT
CCCCCTGACCGAGGAGGCCAGCTGGAGCTGGCCAGAACCGCGAGATCCAGAACGGAGCC
CGTGCACGAGGTGTACTACGACCCAGCAAGGACCTGGTGGCCAGATCCAGAACGGAGGG
CCAGGGCCAGTGGACCTACCAGATCTACCAAGGAGCCCTCAAGAACCTGAAGAACCGGCAA
GTACGCCCGCATGCCGGGCCACACCAACGACGTGAAGCAGCTGACCGAGGCCGTGCA
GAAGGTGAGCACCGAGAGCATCGTGTACCTGGGCAAGATCCCCAAGTTCAAGCTGCCAT

FIG. 72A
(SEQ ID NO:81)

CCAGAAGGAGACCTGGGAGGCCTGGTGGATGGAGTACTGGCAGGCCACCTGGATCCCCGA
GTGGGAGTCGTGAACACCCCCCCCCCTGGTGAAGCTGTGGTACCAGCTGGAGAAGGAGCC
CATCGTGGCGCCGAGACCTTCTACGTGGACGGCGCCGCCAACCGCGAGACCAAGCTGGG
CAAGGCCGGCTACGTGACCGACCGGGGCCGGCAGAAGGTGGTGAGCATGCCGACACCAC
CAACCAGAAGACCGAGCTGCAGGCCATCCACCTGGCCCTGCAGGACAGCGGCCTGGAGGT
GAACATCGTACCGACAGCCAGTACGCCCTGGGCATCATCCAGGCCAGCCCACAAGAG
CGAGAGCGAGCTGGTGAGCCAGATCATCGAGCAGCTGATCAAGAAGGAGAAGGTGTACCT
GGCCTGGGTGCCGCCACAAGGGCATCGCGGCAACGAGCAGGTGGACAAGCTGGTGAG
CGCCGGCATCCGCAAGGTGCTGTTCTGAACGGCATCGATGGCGGCATCGTATCTACCA
GTACATGGACCGACCTGTACGTGGGCAGCGGCCCTAGGATCGATTAAAAGCTTCCCGG
GGCTAGCACCGGTGAATTC

FIG. 72B

(SEQ ID NO:81)

FS(-)_ProtMod_RTopt_YM

GC GGCC CGCA AGGAC ACCAAAT GAAAG ATT GCA CTGAGAGACAGGCTAATTCTTCCGCC
AGGACCTGGCCTTCCTGCAGGGCAAGGCCCGAGTT CAGCAGCGAGCAGACCCGCCA
ACAGCCCCACCCGCCCGAGCTGCAGGTGTGGGGCGAGAACAAACAGCCTGAGCGAGG
CCGGCGCCGACCGCCAGGGCACCGTGAGCTCAACTCCCCAGATCACCTGTGGCAGC
GCCCCCTGGTACCACATCAGGATCGGCGGCCAGCTCAAGGAGGCCTGCTCGACACCGGCG
CCGACGACACCGTGCTGGAGGAGATGAACCTGCCGGCAAGTGGAGCCAAAGATGATCG
GC GGGATCGGGGCTTCATCAAGGTGCAGTACGACCAAGATCCCCGTGGAGATCTGCG
GCCACAAGGCCATCGGCACCGTGCTGGTGGGCCACCCCCGTGAACATCATCGGCCGA
ACCTGCTGACCCAGATCGGCTGCACCCCTGAACCTCCCCATCAGCCCCATCGAGACGGTGC
CCGTGAAGCTGAAGCCGGGATGGACGCCCAAGGTCAAGCAGTGGCCCTGACCGAGG
AGAAGATCAAGGCCCTGGTGGAGATCTGACCGAGATGGAGAAGGAGGGCAAGATCAGCA
AGATCGGCCCCGAGAACCCCTACAACACCCCCGTGTTGCCATCAAGAAGAAGGACAGCA
CCAAGTGGCGCAAGCTGGACTTCCGCGAGCTGAACAAGCGCACCCAGGACTTCTGG
AGGTGCAGCTGGCATCCCCACCCGCCGCTGAAGAAGAAGAGCGTGAACCGTGC
TGGACGTGGCGACGCCACTTCAGCGTCCCCCTGGACAAGGACTTCCGCAAGTACACCG
CCTTCACCATCCCCAGCATCAACAACGAGACCCCGCATCGCTACCGTACAACGTGC
TCCCCAGGGCTGGAAGGGCAGCCCCGCATCTCCAGAGCAGCATGACCAAGATCCTGG
AGCCCTCCGCAAGCAGAACCCGACATCGTATCTACCAAGGCCCCCTGTACGTGGCA
GCGACCTGGAGATCGGCCAGCACCGCACCAAGATCGAGGAGCTGCCAGCACCTGCTGC
GCTGGGGCTTCACCACCCCGACAAGAACGACCAGAAGGAGCCCCCTCCTGTGGATGG
GCTACGAGCTGCACCCGACAAGTGGACCGTGCAGCCATCATGCTGCCGAGAACGGACA
GCTGGACCGTGAACGACATCCAGAACGACTGGTGGCAAGCTGAACCTGGCCAGCCAGATCT
ACGCCGGCATCAAGGTGAAGCAGCTGTGCAAGCTGCTGCCGGCACCAAGGCCCTGACCG
AGGTGATCCCCCTGACCGAGGAGGCCAGCTGGAGCTGCCGAGAACCCCGAGATCCTGA
AGGAGCCCGTGCACGAGGTGTACTACGACCCAGCAAGGACCTGGTGGCCGAGATCCAGA
AGCAGGGCCAGGGCCAGTGGACCTACCAAGATCTACCAAGGAGCCCTCAAGAACCTGAAGA
CCGGCAAGTACGCCCGCATGCCGCCACACCAACGACGTGAAGCAGCTGACCGAGG
CCGTGCAGAACGGTGAGCAGCACCGAGAGCATCGTATCTGGGCAAGATCCCCAAGTTCAAGC

FIG. 73A

(SEQ ID NO:82)

120 / 131

TGCCCATCCAGAAGGAGACCTGGAGGCCTGGTGGATGGAGTACTGGCAGGCCACCTGGA
TCCCCGAGTGGAGTTCGTGAACACCCCCCCCCTGGTGAAGCTGTGGTACCAGCTGGAGA
AGGAGCCCATCGTGGCGCCGAGACCTTCTACGTGGACGGCGCCGCAACCGCGAGACCA
AGCTGGCAAGGCCGGTACGTGACCGACCGGGCCGGCAGAAGGTGGTGAGCATGCCG
ACACCAACCAACCAGAACGACCGAGCTGCAGGCCATCCACCTGGCCCTGCAGGACAGCGGCC
TGGAGGTGAACATCGTGACCGACAGCCAGTACGCCCTGGCATCATCCAGGCCAGCCCG
ACAAGAGCGAGAGCGAGCTGGTGAGCCAGATCATCGAGCAGCTGATCAAGAAGGAGAAGG
TGTACCTGGCCTGGTGCCGCCACAAGGGCATCGCGGCAACGAGCAGGTGGACAAGC
TGGTGAGCGCCGGCATCCGCAAGGTGCTGTTCTGAACGGCATCGATGGCGGCATCGTGA
TCTACCAGTACATGGACGACCTGTACGTGGCAGCGCGGCCCTAGGATCGATTAAAAGC
TTCCCGGGGCTAGCACCGGTGAATT

FIG. 73B
(SEQ ID NO:82)

FS(-)_ProtMod_RTopt_YMWM

GCGGCCGCGAAGGACACCAAATGAAAGATTGCACTGAGAGACAGGCTAATTCTTCCGCG
 AGGACCTGGCCTTCCTGCAGGGCAAGGCCCGCGAGTCAGCAGCGAGCACCCGCGCCA
 ACAGCCCCACCCGCCCGAGCTGCAGGTGTGGGGCGGAGAACAAACAGCCTGAGCGAGG
 CCGGCGCGACCGCCAGGGCACCGTGAGCTCAACTCCCCAGATCACCTGTGGCAGC
 GCCCCCTGGTACCATCAGGATCGGCGGCCAGCTCAAGGAGGCGCTGCTGACACCGGCG
 CCGACGACACCGTGCTGGAGGAGATGAACCTGCCCGCAAGTGGAAAGCCAAGATGATCG
 CGGGGATCGGGGCTTCATCAAGGTGCGCAGTACGACCAGATCCCCGTGGAGATCTGCG
 GCCACAAGGCCATCGGCACCGTGTGGGGCCCACCCCGTGAACATCATCGGCCGCA
 ACCTGCTGACCCAGATCGGCTGCACCCCTGAACCTCCCCATCAGCCCCATCGAGACGGTGC
 CCGTGAAGCTGAAGCCGGGATGGACGGCCCAAGGTCAAGCAGTGGCCCTGACCGAGG
 AGAAGATCAAGGCCCTGGTGGAGATCTGCACCGAGATGGAGAAGGAGGGCAAGATCAGCA
 AGATCGGCCCGAGAACCCCTACAACACCCCCGTGTTGCCATCAAGAAGAAGGACAGCA
 CCAAGTGGCGCAAGCTGGTGGACTTCCCGAGCTGAACAAGCGCACCCAGGACTTCTGG
 AGGTGCAGCTGGGCATCCCCACCCCGCCGCTGAAGAAGAAGAAGAGCGTACCGTGC
 TGGACGTGGCGACGCCTACTTCAGCGTCCCCCTGGACAAGGACTTCCGAAGTACACCG
 CCTTCACCATCCCCAGCATCAAAACGAGACCCCCGGCATCGCTACCGTACAACGTGC
 TGCCCCAGGGCTGGAAGGGCAGCCCCGCCATCTTCAGAGCAGCATGACCAAGATCCTGG
 AGCCCTCCGCAAGCAGAACCCGACATCGTATCTACCAGGCCCCCTGTACGTGGCA
 GCGACCTGGAGATCGGCCAGCACCGCACCAAGATCGAGGAGCTGCCAGCACCTGCTGC
 GCTGGGCTTCACCACCCCGACAAGAACGACCCAGAAGGAGCCCCCTTCCGCCATCG
 AGCTGCACCCGACAAGTGGACCGTGCAGCCATCATGCTGCCGAGAAGGACAGCTGGA
 CCGTGAACGACATCCAGAACGCTGGTGGCAAGCTGAACCTGGCCAGCCAGATCACCG
 GCATCAAGGTGAAGCAGCTGTGCAAGCTGCTGCCGGCACCAAGGCCCTGACCGAGGTGA
 TCCCCCTGACCGAGGAGGCCAGCTGGAGCTGGCGAGAACCGCGAGATCCTGAAGGAGC
 CCGTGCACGAGGTGTACTACGACCCAGCAAGGACCTGGTGGCCAGATCCAGAACGAGG
 GCCAGGGCCAGTGGACCTACCAAGATCTACCAAGGAGCCCTCAAGAACCTGAAGACCGGCA
 AGTACGCCCGCATGCCGGCGCCACACCAACGACGTGAAGCAGCTGACCGAGGCCGTGC
 AGAAGGTGAGCACCGAGAGCATCGTATCTGGGCAAGATCCCCAAGTTCAAGCTGCCCA

FIG. 74A

(SEQ ID NO:83)

122 / 131

TCCAGAAGGAGACCTGGGAGGCCTGGTGGATGGAGTACTGGCAGGCCACCTGGATCCCCG
AGTGGGAGTCGTGAACACCCCCCCCCCTGGTGAAGCTGTGGTACCACTGGAGAAGGAGC
CCATCGTGGCGCCGAGACCTTCTACGTGGACGGCGCCGCCAACCGCGAGACCAAGCTGG
GCAAGGCCGGCTACGTGACCGACCGACCGGGGCCGGCAGAAGGTGGTGAGCATGCCGACACCA
CCAACCAGAAGACCGAGCTGCAGGCCATCCACCTGGCCCTGCAGGACAGCGGCCTGGAGG
TGAACATCGTACCGACAGCCAGTACGCCCTGGCATCATCCAGGCCAGCCGACAAGA
GCGAGAGCGAGCTGGTGAGCCAGATCATCGAGCAGCTGATCAAGAAGGAGAAGGTGTACC
TGGCCTGGGTGCCGCCACAAGGGCATGGCGCAACGAGCAGGTGGACAAGCTGGTGA
GCGCCGGCATCCGCAAGGTGCTGTTCTGAACGGCATCGATGGCGGCATCGTATCTACC
AGTACATGGACGACCTGTACGTGGCAGCGGCCCTAGGATCGATTAAAAGCTTCCCG
GGGCTAGCACCGGTGAATTC

FIG. 74B

(SEQ ID NO:83)

123 / 131

FS(-)_ProtMod_RTopt(+)

GC GGCCGCGAAGGACACCAATGAAAGATTGCACTGAGAGACAGGCTAATTCTTCGCG
AGGACCTGGCCTTCCTGCAGGGCAAGGCCCGAGTTCAGCAGCGAGCAGACCCGCGCCA
ACAGCCCCACCCGCCCGAGCTGCAGGTGTGGGCGGCAGAACACAACAGCCTGAGCGAGG
CCGGCGCCGACCGCCAGGGCACCGTGAGCTCAACTCCCCAGATCACCTGTGGCAGC
GCCCTGGTGACCATCAGGATCGCGGCCAGCTCAAGGAGGGCTGCTGACACCGCG
CCGACGACACCGTGCTGGAGGAGATGAACCTGCCGGCAAGTGGAAAGCCAAGATGATCG
GCGGGATCGGGGCTTCATCAAGGTGCGGCAGTACGACCAGATCCCCGTGGAGATCTGCG
GCCACAAGGCCATCGGCACCGTGCTGGTGGGCCCACCCCGTAACATCATCGGCCGCA
ACCTGCTGACCCAGATCGCTGCACCCCTGAACCTCCCCATCAGCCCCATCGAGACGGTGC
CCGTGAAGCTGAAGCCGGGATGGACGGCCCAAGGTCAAGCAGTGGCCCTGACCGAGG
AGAAGATCAAGGCCCTGGTGGAGATCTGCACCGAGATGGAGAAGGGCAAGATCAGCA
AGATCGGCCCGAGAACCCCTACAACACCCCGTGGCCATCAAGAAGAAGGACAGCA
CCAAGTGGCGCAAGCTGGACTTCCGCGAGCTGAACAAGCGCACCCAGGACTTCTGGG
AGGTGCAGCTGGCATCCCCACCCCGCCGCTGAAGAAGAAGAGCGTGACCGTG
TGGACGTGGCGACGCCTACTTCAGCGTCCCCCTGGACAAGGACTTCCGCAAGTACACCG
CCTTCACCATCCCCAGCATCAACAACGAGACCCCGGATCCGCTACCAAGTACAACGTGC
TGCCCCAGGGCTGGAAGGGCAGCCCCGCATTTCCAGAGCAGCATGACCAAGATCCTGG
AGCCCTTCCGAAGCAGAACCCGACATCGTATCTACAGTACATGGACGACCTGTACG
TGGCAGCGACCTGGAGATCGGCCAGCACCGCACCAAGATCGAGGAGCTGCGCCAGCACC
TGCTGCGCTGGGCTTCACCACCCCGACAAGAAGCACCAGAAGGAGCCCCCTTCTGT
GGATGGGCTACGAGCTGCACCCGACAAGTGGACCGTGAGCCATCATGCTGCCGAGA
AGGACAGCTGGACCGTGAACGACATCCAGAAGCTGGTGGCAAGCTGAACCTGGCCAGCC
AGATCTACGCCGGCATCAAGGTGAAGCAGCTGTGCAAGCTGCTGCGCCGACCAAGGCC
TGACCGAGGTGATCCCCCTGACCGAGGAGGCCAGCTGGAGCTGGCCGAGAACCGCGAGA
TCCTGAAGGAGCCGTGCACGAGGTGTACTACGACCCAGCAAGGACCTGGTGGCCGAGA
TCCAGAAGCAGGCCAGGGCCAGTGGACCTACCAAGATCTACCAAGGAGCCCTTCAAGAAC
TGAAGACCGGCAAGTACGCCGCATGCGCGGCCACACCAACGACGTGAAGCAGCTGA
CCGAGGCCGTGAGAAGGTGAGCACCGAGAGCATCGTATCTGGGCAAGATCCCCAAGT
TCAAGCTGCCCATCCAGAAGGAGACCTGGGAGGCCTGGTGGATGGAGTACTGGCAGGCCA
CCTGGATCCCCGAGTGGAGTTCTGTGAACACCCCCCTGGTGAAGCTGTGGTACCAAGC
TGGAGAAGGAGCCATCGTGGCGCCGAGACCTCTACGTGGACGGCGCCAAACCGCG

FIG. 75A
(SEQ ID NO:84)

124 / 131

AGACCAAGCTGGCAAGGCCGGTACGTGACCGACCGGGGCCGGCAGAAGGTGGTGAGCA
TCGCCGACACCACCAACCAGAACAGACCGAGCTGCAGGCCATCCACCTGGCCCTGCAGGACA
GCGGCCTGGAGGTGAACATCGTGCACCGACAGCCAGTACGCCCTGGCATCATCCAGGCC
AGCCCGACAAGAGCGAGAGCGAGCTGGTGAGCCAGATCATCGAGCAGCTGATCAAGAAGG
AGAAGGTGTACCTGGCCTGGGTGCCGCCACAAGGGCATCGCGGCAACGAGCAGGTGG
ACAAGCTGGTGAGCGCCGGCATCCGCAAGGTGCTGTTCTGAACGGCATCGATGGCGGCA
TCGTGATCTACCACTACATGGACGACCTGTACGTGGGCAGCGGCGGCCCTAGGATCGATT
AAAAGCTTCCCAGGGCTAGCACCGGTGAATT

FIG. 75B
(SEQ ID NO:84)

125 / 131

Tat_wt_SF162 (wildtype)

ATGGAGCCAGTAGATCCTAGATTAGAGCCCTGGAAGCATCCAGGAAGTCAGCCTAAGA
 CTGCTTGACAAATTGCTATTGTAAAAAGTGTGCTTCATTGCCAAGTTGTTCATAAC
 AAAAGGCTTAGGCATCTCCTATGGCAGGAAGAAGCGGGAGACAGCGACGAAGAGCTCCT
 CCAGACAGTGAGGTTCATCAAGTTCTACCAAAGCAACCCGCTTCCCAGCCCCAAGG
 GGACCCGACAGGCCGAAGGAATCGAAGAAGAAGGTGGAGAGAGACAGAGACAGA
 TCCAGTCCATTAG

FIG. 76
 (SEQ ID NO:85)

Tat_SF162

MEPVDPRLEPWKHPGSQPKTACTNCYCKKCCFHQCQVCFITKGLGISYGRKKRRQRRRAPDSE
 VHQSVPKQPASQPQGDPTGPKESKKVERETEDPVH

FIG. 77
 (SEQ ID NO:86)

Tat_SF162_opt

ATGGAGCCCGTGGACCCCCGCTGGAGCCCTGGAAGCACCCGGCAGCCAGCCCAAGAC
 CGCCTGCACCAACTGCTACTGCAAGAAGTGCTGCTTCACTGCCAGGTGTGCTTCATCACC
 AAGGGCCTGGGCATCAGCTACGGCCGCAAGAAGCGCCGCCAGCGCCGCCGCCCCCCCC
 CGACAGCGAGGTGCACCAAGGTGAGCCTGCCAAGCAGCCGCCAGCCAGCCCCAGGGCG
 ACCCCACCGGCCCAAGGAGAGCAAGAAGAAGGTGGAGCGCGAGACCGAGACCGACCC
 GTGCACTAG

FIG. 78
 (SEQ ID NO:87)

Tat_Cys22_SF162_opt

ATGGAGCCCGTGGACCCCCGCTGGAGCCCTGGAAGCACCCGGCAGCCAGCCCAAGAC
 CGCCgGCACCAACTGCTACTGCAAGAAGTGCTGCTTCACTGCCAGGTGTGCTTCATCACC
 AGGGCCTGGGCATCAGCTACGGCCGCAAGAAGCGCCGCCAGCGCCGCCGCCCCCCCC
 GACAGCGAGGTGCACCAAGGTGAGCCTGCCAAGCAGCCGCCAGCCAGCCCCAGGGCGA
 CCCACCGGCCCAAGGAGAGCAAGAAGAAGGTGGAGCGCGAGACCGAGACCGACCC
 TGCACTAG

FIG. 79
 (SEQ ID NO:88)

126 / 131

Alignment GagMod vs GP1_GP2

							Section 1
(1)	1	10	20	30	40	50	60
GagMod.	SF2	(1)	ATGGGCGCCCGGCCAGCGTGTGCTGAGCGGGGGAGCTGGACAAGTGGAGAAGATCCGGCTTGCGCCCCGGGGCA				76
GagProtMod.	SF2 (GP1)	(1)	ATGGGCGCCCGGCCAGCGTGTGCTGAGCGGGGGAGCTGGACAAGTGGAGAAGATCCGGCTTGCGCCCCGGGGCA				
GagProtMod.	SF2 (GP2)	(1)	ATGGGCGCCCGGCCAGCGTGTGCTGAGCGGGGGAGCTGGACAAGTGGAGAAGATCCGGCTTGCGCCCCGGGGCA				
Consensus		(1)	ATGGGCGCCCGGCCAGCGTGTGCTGAGCGGGGGAGCTGGACAAGTGGAGAAGATCCGGCTTGCGCCCCGGGGCA				
							Section 2
(77)	77	90	100	110	120	130	140
GagMod.	SF2	(77)	AGAAGAAAGTACAAAGCTGAAGCAGATCGTGTGGGGCAGGGCTTGCGCTGAACCCCCGGCTGCT				152
GagProtMod.	SF2 (GP1)	(77)	AGAAGAAAGTACAAAGCTGAAGCAGATCGTGTGGGGCAGGGCTTGCGCTGAACCCCCGGCTGCT				
GagProtMod.	SF2 (GP2)	(77)	AGAAGAAAGTACAAAGCTGAAGCAGATCGTGTGGGGCAGGGCTTGCGCTGAACCCCCGGCTGCT				
Consensus		(77)	AGAAGAAAGTACAAAGCTGAAGCAGATCGTGTGGGGCAGGGCTTGCGCTGAACCCCCGGCTGCT				
							Section 3
(153)	153	160	170	180	190	200	210
GagMod.	SF2	(153)	GGAGACCAGCAGGGCTGCCGCCAGATCTGGGCCAGCTGCAGGCCAGCTTGAGGCCAGCAGCAGGAGCTGCGC				228
GagProtMod.	SF2 (GP1)	(153)	GGAGACCAGCAGGGCTGCCGCCAGATCTGGGCCAGCTGCAGGCCAGCTTGAGGCCAGCAGCAGGAGCTGCGC				
GagProtMod.	SF2 (GP2)	(153)	GGAGACCAGCAGGGCTGCCGCCAGATCTGGGCCAGCTGCAGGCCAGCTTGAGGCCAGCAGCAGGAGCTGCGC				
Consensus		(153)	GGAGACCAGCAGGGCTGCCGCCAGATCTGGGCCAGCTGCAGGCCAGCTTGAGGCCAGCAGCAGGAGCTGCGC				
							Section 4
(229)	229	240	250	260	270	280	290
GagMod.	SF2	(229)	AGCCTGTACAACACCGTGGCACCCCTGTACTGGGTGACCAAGGGCATCGACGTCAAGGACACCAAGGGCTGG				304
GagProtMod.	SF2 (GP1)	(229)	AGCCTGTACAACACCGTGGCACCCCTGTACTGGGTGACCAAGGGCATCGACGTCAAGGACACCAAGGGCTGG				
GagProtMod.	SF2 (GP2)	(229)	AGCCTGTACAACACCGTGGCACCCCTGTACTGGGTGACCAAGGGCATCGACGTCAAGGACACCAAGGGCTGG				
Consensus		(229)	AGCCTGTACAACACCGTGGCACCCCTGTACTGGGTGACCAAGGGCATCGACGTCAAGGACACCAAGGGCTGG				
							Section 5
(305)	305	310	320	330	340	350	360
GagMod.	SF2	(305)	AGAAGATCGAGGGAGGAGGAGAACAAAGTCAGAGAAAGGAGGAGAACAAAGTCAGAGAAAGGAGGAGAACAG				370
GagProtMod.	SF2 (GP1)	(305)	AGAAGATCGAGGGAGGAGAACAAAGTCAGAGAAAGGAGGAGAACAAAGTCAGAGAAAGGAGGAGAACAG				
GagProtMod.	SF2 (GP2)	(305)	AGAAGATCGAGGGAGGAGAACAAAGTCAGAGAAAGGAGGAGAACAAAGTCAGAGAAAGGAGGAGAACAG				
Consensus		(305)	AGAAGATCGAGGGAGGAGAACAAAGTCAGAGAAAGGAGGAGAACAAAGTCAGAGAAAGGAGGAGAACAG				

FIG. 80A

127 / 131

Alignment GagMod vs GP1_GP2

					Section 6
GagMod_SF2	(381)	381	390	400	410 420 430 440 456
GagProtMod_SF2(GP1)	(381)	CAGCCAGGTGAGCCAGAAACTACCCCCATCGTGCAGAACCTGCAGGGGCCAGATGGTGACCAAGGCCATCAGCCCCGC			
GagProtMod_SF2(GP2)	(381)	CAGCCAGGTGAGCCAGAAACTACCCCCATCGTGCAGAACCTGCAGGGGCCAGATGGTGACCAAGGCCATCAGCCCCGC			
Consensus	(381)	CAGCCAGGTGAGCCAGAAACTACCCCCATCGTGCAGAACCTGCAGGGGCCAGATGGTGACCAAGGCCATCAGCCCCGC			
					Section 7
GagMod_SF2	(457)	457	470	480	490 500 510 520 532
GagProtMod_SF2(GP1)	(457)	ACCCTGAACGCCCTGGGTGAAGGGGGAGGAGAAGGGCCATTCAAGCCCCGAGGTGATCCCCATGTTCAAGGCCCTGA			
GagProtMod_SF2(GP2)	(457)	ACCCTGAACGCCCTGGGTGAAGGGGGAGGAGAAGGGCCATTCAAGCCCCGAGGTGATCCCCATGTTCAAGGCCCTGA			
Consensus	(457)	ACCCTGAACGCCCTGGGTGAAGGGGGAGGAGAAGGGCCATTCAAGCCCCGAGGTGATCCCCATGTTCAAGGCCCTGA			
					Section 8
GagMod_SF2	(533)	533	540	550	560 570 580 590 608
GagProtMod_SF2(GP1)	(533)	GGGAGGGGCCACCCCCCCCAGAACCTGAAACACGTGTTGAACACCGTGGGGGCCACCAAGGGGCCATGCGATGCT			
GagProtMod_SF2(GP2)	(533)	GGGAGGGGCCACCCCCCCCAGAACCTGAAACACGTGTTGAACACCGTGGGGGCCACCAAGGGGCCATGCGATGCT			
Consensus	(533)	GGGAGGGGCCACCCCCCCCAGAACCTGAAACACGTGTTGAACACCGTGGGGGCCACCAAGGGGCCATGCGATGCT			
					Section 9
GagMod_SF2	(609)	609	620	630	640 650 660 670 684
GagProtMod_SF2(GP1)	(609)	GAAGGGAGACCATCAACGAGGGAGGGGGGGGGAGTGGGACGGGGGTGACCCCCGGTGCACCCCCATGCCCGGGC			
GagProtMod_SF2(GP2)	(609)	GAAGGGAGACCATCAACGAGGGAGGGGGGGGGAGTGGGACGGGGGTGACCCCCGGTGCACCCCCATGCCCGGGC			
Consensus	(609)	GAAGGGAGACCATCAACGAGGGAGGGGGGGAGTGGGACGGGGGTGACCCCCATGCCCGGGC			
					Section 10
GagMod_SF2	(685)	685	690	700	710 720 730 740 750 760
GagProtMod_SF2(GP1)	(685)	CAGATGCGCGAGCCCCGGGAGGGACATGCCGGGAGCCCTGAGGAGGAGATCGGGTGGATGACCA			
GagProtMod_SF2(GP2)	(685)	CAGATGCGCGAGCCCCGGGAGGGACATGCCGGGAGCCCTGAGGAGGAGATCGGGTGGATGACCA			
Consensus	(685)	CAGATGCGCGAGCCCCGGGAGGGACATGCCGGGAGCCCTGAGGAGGAGATCGGGTGGATGACCA			

FIG. 80B

AJ alignment GagMod vs GP1_GP2

								Section 11
(761)	761	770	780	790	800	810	820	836
GagMod . SF2	(761)	ACAACCCCCCATCCCCGTTGGGAGATCTACAAGCGGTGGATCATCCTGGGCCATCACAAAGAACAGATCGTGGGGATGTA						
GagProtMod . SF2 (GP1)	(761)	ACAACCCCCCATCCCCGTTGGGAGATCTACAAGCGGTGGATCATCCTGGGCCATCACAAAGAACAGATCGTGGGGATGTA						
GagProtMod . SF2 (GP2)	(761)	ACAACCCCCCATCCCCGTTGGGAGATCTACAAGCGGTGGATCATCCTGGGCCATCACAAAGAACAGATCGTGGGGATGTA						
Consensus	(761)	ACAACCCCCCATCCCCGTTGGGAGATCTACAAGCGGTGGATCATCCTGGGCCATCACAAAGAACAGATCGTGGGGATGTA						
								Section 12
(837)	837	850	860	870	880	890	900	912
GagMod . SF2	(837)	CAGCCCCACCAGCATCCGGACATCCGGCAAGGGCCCCAAGGAGCCCCTTCGGCAACTACGTGGACCCGCTTCTACAAAG						
GagProtMod . SF2 (GP1)	(837)	CAGCCCCACCAGCATCCGGACATCCGGCAAGGGCCCCAAGGAGCCCCTTCGGCAACTACGTGGACCCGCTTCTACAAAG						
GagProtMod . SF2 (GP2)	(837)	CAGCCCCACCAGCATCCGGACATCCGGCAAGGGCCCCAAGGAGCCCCTTCGGCAACTACGTGGACCCGCTTCTACAAAG						
Consensus	(837)	CAGCCCCACCAGCATCCGGACATCCGGCAAGGGCCCCAAGGAGCCCCTTCGGCAACTACGTGGACCCGCTTCTACAAAG						
								Section 13
(913)	913	920	930	940	950	960	970	988
GagMod . SF2	(913)	ACCCCTGGCGCGCTGAGCGAGGCCAGCCAGGACGTGAAGAACTCTGGATGACCGAGACCCCTGTTGGCAGAACGCCAACCC						
GagProtMod . SF2 (GP1)	(913)	ACCCCTGGCGCGCTGAGCGAGGCCAGCCAGGACGTGAAGAACTCTGGATGACCGAGACCCCTGTTGGCAGAACGCCAACCC						
GagProtMod . SF2 (GP2)	(913)	ACCCCTGGCGCGCTGAGCGAGGCCAGCCAGGACGTGAAGAACTCTGGATGACCGAGACCCCTGTTGGCAGAACGCCAACCC						
Consensus	(913)	ACCCCTGGCGCGCTGAGCGAGGCCAGCCAGGACGTGAAGAACTCTGGATGACCGAGACCCCTGTTGGCAGAACGCCAACCC						
								Section 14
(989)	989	1000	1010	1020	1030	1040	1050	1064
GagMod . SF2	(989)	CGGACTGCAAGACCATCCTGAAAGGCTCTCGGCCACCCCTGGAGGATGATGACCGCCCTGGCAGGGCGT						
GagProtMod . SF2 (GP1)	(989)	CGGACTGCAAGACCATCCTGAAAGGCTCTCGGCCACCCCTGGAGGATGATGACCGCCCTGGCAGGGCGT						
GagProtMod . SF2 (GP2)	(989)	CGGACTGCAAGACCATCCTGAAAGGCTCTCGGCCACCCCTGGAGGATGATGACCGCCCTGGCAGGGCGT						
Consensus	(989)	CGGACTGCAAGACCATCCTGAAAGGCTCTCGGCCACCCCTGGAGGATGATGACCGCCCTGGCAGGGCGT						
								Section 15
(1065)	1065	1070	1080	1090	1100	1110	1120	1130
GagMod . SF2	(1065)	GGGGGGCCCCGGCCACAAGGCCAGGGGGATGAGCCAGGTGACGAACCCGGGACATCATGATG						
GagProtMod . SF2 (GP1)	(1065)	GGGGGGCCCCGGCCACAAGGCCAGGGGGATGAGCCAGGTGACGAACCCGGGACATCATGATG						
GagProtMod . SF2 (GP2)	(1065)	GGGGGGCCCCGGCCACAAGGCCAGGGGGATGAGCCAGGTGACGAACCCGGGACATCATGATG						
Consensus	(1065)	GGGGGGCCCCGGCCACAAGGCCAGGGGGATGAGCCAGGTGACGAACCCGGGACATCATGATG						

FIG. 80C

129 / 131

Alignment GagMod vs GP1_GP2

FIG. 80D

130 / 131

Alignment GagMod vs GP1_GF2

							Section 21
GagMod_SF2(1510)	(1521)	1521	1530	1540	1550	1560	1570
GagProtMod_SF2(GP1)	(1521)	CAGCTCAAGGAGGCCGTGACACCCGGGCCGACGGACACCGTGTGGAGGATGAACCTGCCCGCAAGTGA				1580	1596
GagProtMod_SF2(GP2)	(1521)	CAACTCAAGGAAAGCCGTGCTGATAACAGGAGCAGATGATAACAGTTAGAAGAAATGGAA					
Consensus(1521)	CA	CTCAAGGA GCGTGTCTGA AC GG	GC	GA	AC	GT	TGCA AA TGA
							Section 22
GagMod_SF2(1510)	(1597)	1597	1610	1620	1630	1640	1650
GagProtMod_SF2(GP1)	(1597)	AGCCCAGGATGATGGGGATTCATCAAGGTGGCAGTACGACAGATCCCCGTGGAGATCTGGGG					
GagProtMod_SF2(GP2)	(1597)	AACCAAAAATGATGGGGATTCATCAAGGTGAGGAGTACGACAGATACCTGTAGAAATCTGGGG					
Consensus(1597)	A	CC	AA	ATGAT	GG	GGGATGGGCTCATCAAGGTG	GGCAGTACGACAGAT CC GT GA ATCTG GG
							Section 23
GagMod_SF2(1510)	(1673)	1673	1680	1690	1700	1710	1720
GagProtMod_SF2(GP1)	(1673)	CCACAAGGCCATCGCACCGTGCTGGGGCCCCACCCCCGTGAAACATCATCGGCCGCAACCTGCTGACCCAGATC					
GagProtMod_SF2(GP2)	(1673)	ACATAAAGCTATAGGTACAGTATTAGTAGGACCTACACCTGTCAACATAATTGGAAAGAAATCTGTTGACCCAGATC					
Consensus(1673)	CA	AA	GC	AT	GG	AC	CC
							GT AACAT AT GG G AA CTG TGACCCAGATC
							Section 24
GagMod_SF2(1510)	(1749)	1749	1760	1770	1780	1790	1800
GagProtMod_SF2(GP1)	(1749)	GGCTGACCCCTGAACCTCCCCATCAGCCCCATCGAGACGGTGGCCGTGAAGCTGAAGGCCGATGGACGGCCCA					
GagProtMod_SF2(GP2)	(1749)	GGCTGACCCCTGAACCTCCCCATCAGCCCCATCGAGACGGTGGCCGTGAAGCTGAAGGCCGATGGACGGCCCA					
Consensus(1749)	GGCTGACCC	TGAACCTCCCCATCAGCCC	AT	GAGACGGTGC:CCGTGAAG	TGAAGGCCGGGATGGACGGCCCA		Section 25
GagMod_SF2(1510)	(1825)	1825	1830	1847			
GagProtMod_SF2(GP1)	(1825)	AGGTCAAGGCAGTGGCCCCCTGTAA					
GagProtMod_SF2(GP2)	(1825)	AGGTCAAGCAATGGCCATTGTAA					
Consensus(1825)	AGGTCAAGCA	TGGCC	TGTAA				

FIG. 80E

131 / 131

TataminosF162.opt

ATGGAGCCGTGGACCCCCGCCCTGGAGGCCCTGGAAAGCACCCGGCAGCCAGCCAA
GACCGCCTGCACCAACTGCTACTTGCAAGAAGTGGCTTCCACTGCCAGGTGTGCTT
CATCACCAAAGGCCCTGGCATCAGCTACGGCCAGAAGGCCAGGGCCAGCGCCGC

FIG. 81
(SEQ ID NO:89)

Tat_Cys22_SF162

MEPVDPRLEPWKHPGSQPKTAGTNCYCKKKCFHQVCFITKGLGISYGRKKRQQRRAPPDSE
VHQvSLPKQPASQPQGDPTGPKEKKVERETETDPVHZ

FIG. 82
(SEQ ID NO:90)

SEQUENCE LISTING

<110> Chiron Corporation

<120> IMPROVED EXPRESSION OF HIV POLYPEPTIDES AND PRODUCTION
OF VIRUS-LIKE PARTICLES

<130> 1621.100

<140>
<141>

<160> 90

<170> PatentIn Ver. 2.0

<210> 1
<211> 1509
<212> DNA
<213> Human immunodeficiency virus

<400> 1

atgggtgcga gagcgtcggt attaagcggg ggagaattag ataaatggg aaaaattcgg 60
ttaaggccag ggggaaagaa aaaatataag taaaacata tagtatggc aagcagggag 120
ctagaacat tcgcagtcaa tcctggctg ttagaaacat cagaaggctg cagacaata 180
ttggcacgc tacagccatc ccttcagaca ggatcagaag aacttagatc attatataat 240
acatgtcaaa ccctctattt tgtagatcaa aggtatagatc taaaagacac caaggaagct 300
ttagagaaga tagaggaaga gcaaaacaaa agtaagaaaa aggcacagca agcagcagct 360
gcagctggca caggaaacag cagccaggc agccaaat accctatagt gcagaaccta 420
caggggcaaa tggtagatca ggcataatca cctagaactt taaatgcatg ggtaaaagta 480
gtagaagaaa aggcttcag cccagaagta atacccatgt tttagcatt atcagaagga 540
gccacccac aagatataa caccatgcta aacacagtgg ggggacatca agcagccatg 600
caaattttaa aagagactat caatgaggaa gctgcagaat gggatagatg gcatccatg 660
catgcaggc ctattgcacc aggccaaatg agagaacca gggaaatgta catagcagga 720
actactatgtt cccttcagga acaaataatggatgacaa ataatccacc tatcccagta 780
ggagaaatct ataaaatgt gataatctt ggattaaata aaatgtatgg aatgtatagc 840
cctaccagca ttctggacat aagacaagga ccaaaggAAC ccttttagaga ttatgttagac 900
cggttctata aaactctaag agccaaacaa gcttcacagg atgtaaaaaa ttggatgaca 960
gaaacccctgt tggccaaaaa tgcaaacccca gattgtatggatgacaa ctatTTTAA agcattgggaa 1020
ccagcagcta cactagaaga aatgtatggatgacaa gcatgtcagg gatgtggggg accccggccat 1080
aaagcaagag ttttggctgt aagccatgatc caagtaacaa atccagctaa cataatgtatg 1140
cagagaggca attttagggaa ccaaagaaag actgtttaagt gtttcaattt tggcaagaa 1200
gggcacatag ccaaaaattt cagggccccctt aggaaaaagg gctgttgag atgtggaaagg 1260
gaaggacacc aaatgtatggatgacaa gcatgtcagg gatgtggggg accccggccat 1320
ccttcctaca agggaaaggcc agggaaatTTT cttcagatcaca gaccagagcc aacagccca 1380
ccagaagaga gcttcaggtt tggggaggag aaaacaactc cctctcagaa gcaggagccg 1440
atagacaagg aactgtatcc tttaacttcc ctcagatcaca tctttggcaaa cgacccctcg 1500
tcacaataa 1509

<210> 2

<211> 1845

<212> DNA

<213> Human immunodeficiency virus

<400> 2

atgggtgcga gagcgtcggt attaagcggg ggagaattag ataaatggg aaaaattcgg 60
ttaaggccag ggggaaagaa aaaatataag taaaacata tagtatggc aagcagggag 120
ctagaacat tcgcagtcaa tcctggctg ttagaaacat cagaaggctg cagacaata 180

ttgggacago tacagccatc ccttcagaca ggatcagaag aacttagatc attatataat 240
 acagtgc aa ccctctattt ttttacatcaa aggatagatg taaaagacac caaggaagct 300
 ttagagaaga tagaggaaga gcaaaacaaa agtaagaaaa aggacacagca agcagcagct 360
 gcagctggca caggaaacag cagccaggc accctatagt gcagaaccta 420
 caggggcaaa tggtacatca ggcacatcatc cctagaactt taaatgcattt ggtaaaagta 480
 gtagaagaaa aggcttcag cccagaagta atacccatgt tttcagcattt atcagaagga 540
 gccacccac aagataaaa caccatgcta aacacagtgg ggggacatca agcagccatg 600
 caaatgttaa aagagactat caatgaggaa gtcgcagaat gggatagatg gcatccagtg 660
 catgcaggc ctattgcacc agggcaaaatg agagaaccaa ggggaagtga catagcaggaa 720
 actactagta cccttcagga acaaataatggg tggatgacaa ataattccacc tatcccagta 780
 ggagaaatct ataaaagatg gataatcctg ggattaaata aaatagtaag aatgtatagc 840
 cctaccagca ttctggacat aagacaagga ccaaaggAAC ccttttagaga ttatgttagac 900
 cggttctata aaactctaag agccaaacaa gtttcacagg atgtaaaaaa ttggatgaca 960
 gaaaccttgc tggtccaaaa tgcaaacccca gattgtaaatg ctatTTTAAAG acattggga 1020
 ccagcagcta cactagaaga aatgtatgaca gcatgtcagg gagtgggggg acccgccat 1080
 aaagcaagag ttttggctga agccatgagc caagtaacaa atccagctaa cataatgtatg 1140
 cagagaggca attttaggaa ccaaagaaag actgtttaagt gtttcaattt tggcaaaagaa 1200
 gggcacatag ccaaaaattt cagggccccctt aggaaaaagg gctgttggag atgtggagg 1260
 gaaggacacc aaatgaaaaga ttgcactgag agacaggcta attttttagg gaagatctgg 1320
 ctttcctaca agggaaaggcc agggaaattttt cttcagagca gaccagagcc aacagccccca 1380
 ccagaagaga gtttcaggtt tggggaggag aaaacaactc ctttcagaa gcaggagccg 1440
 atagacaagg aactgtatcc tttaacttcc ctcagatcac tttttggcaatcg acccccctcg 1500
 tcacaataag gatagggggg caactaaagg aagctctattt agatacagga gcatgtatg 1560
 cagtattaga agaaatgaat ttgcaggaa aatggaaacc aaaaatgata gggggattt 1620
 gaggttttat caaagttaaga cagtacgatc agatacctgt agaaatctgt ggacataaaag 1680
 ctataggtac agtatttagta ggacctacac ctgtcaacat aattggaaaga aatctgttga 1740
 cttagattgg ttgtacttta aattccccca tttagtcttat taaaactgttta ccagtaaaat 1800
 taaagccagg aatggatggc ccaaagtttta agcaatggcc attgttga 1845

<210> 3
 <211> 4313
 <212> DNA
 <213> Human immunodeficiency virus

<400> 3
 atgggtgcga gagcgtcggt attaagcggg ggagaatttag ataaatggga aaaaatttcgg 60
 ttaaggccag ggggaaagaa aaaatataag taaaacata tagtatggc aagcaggggag 120
 cttagaacat tcgcagtc aa tcctggctgt ttagaaacat cagaaggctg cagacaaata 180
 ttgggacagc tacagccatc ctttcagaca ggatcagaag aacttagatc attatataat 240
 acagtgc aa ccctctattt ttttacatcaa aggatagatg taaaagacac caaggaagct 300
 ttagagaaga tagaggaaga gcaaaacaaa agtaagaaaa aggacacagca agcagcagct 360
 gcagctggca caggaaacag cagccaggc accctatagt gcagaaccta 420
 caggggcaaa tggtacatca ggcacatcatc cctagaactt taaatgcattt ggtaaaagta 480
 gtagaagaaa aggcttcag cccagaagta atacccatgt tttcagcattt atcagaagga 540
 gccacccac aagataaaa caccatgcta aacacagtgg ggggacatca agcagccatg 600
 caaatgttaa aagagactat caatgaggaa gtcgcagaat gggatagatg gcatccagtg 660
 catgcaggc ctattgcacc agggcaaaatg agagaaccaa ggggaagtga catagcaggaa 720
 actactagta cccttcagga acaaataatggg tggatgacaa ataattccacc tatcccagta 780
 ggagaaatct ataaaagatg gataatcctg ggattaaata aaatagtaag aatgtatagc 840
 cctaccagca ttctggacat aagacaagga ccaaaggAAC ccttttagaga ttatgttagac 900
 cggttctata aaactctaag agccaaacaa gtttcacagg atgtaaaaaa ttggatgaca 960
 gaaaccttgc tggtccaaaa tgcaaacccca gattgtaaatg ctatTTTAAAG acattggga 1020
 ccagcagcta cactagaaga aatgtatgaca gcatgtcagg gagtgggggg acccgccat 1080
 aaagcaagag ttttggctga agccatgagc caagtaacaa atccagctaa cataatgtatg 1140
 cagagaggca attttaggaa ccaaagaaag actgtttaagt gtttcaattt tggcaaaagaa 1200
 gggcacatag ccaaaaattt cagggccccctt aggaaaaagg gctgttggag atgtggagg 1260
 gaaggacacc aaatgaaaaga ttgcactgag agacaggcta attttttagg gaagatctgg 1320
 ctttcctaca agggaaaggcc agggaaattttt cttcagagca gaccagagcc aacagccccca 1380
 ccagaagaga gtttcaggtt tggggaggag aaaacaactc ctttcagaa gcaggagccg 1440

atagacaagg aactgttatcc ttaacttcc ctcaagatcac tctttggcaa cgaccctcg 1500
tcacaataag gatagggggg caactaaagg aagcttatt agatacagg gcagatgata 1560
cagtattaga agaaatgaat ttgcaggaa aatggaaaacc aaaaatgata ggggaaattg 1620
gaggttttat caaagtaaga cagtagcgtc agataacctgt agaaaatctgt ggacataaag 1680
cttaggtac agtattagta ggacctacac ctgtcaacat aatttggaaa aatctgttgc 1740
ctcagattgg ttgtacttta aatttccccca ttgtcctat tggaaactgttgc ccagtaaaat 1800
taaagccagg aatggatggc cccaaaagttt agcaatggcc attgacagaa gaaaaaaataa 1860
aagcattagt agagatatgt acagaaatgg aaaaggaaagg gaaaatttca aaaaattggc 1920
ctgaaaatcc atacaataact ccagtatttgc ctataaaagaa aaaagacagt actaaatgg 1980
gaaaactagt agatttcaga gaacttaata aaagaactca agacttctgg gaagttcagt 2040
taggaatacc acaccccgca gggtaaaaaa agaaaaaaatc agtaacacgttgc 2100
gtgatgcata cttttcagtt cccttagata aagactttag aaagtataact gcatttacca 2160
taccttagtat aaacaatgag acaccaggaa tttagatatca gtacaatgttgc 2220
gatggaaagg atcaccagca atattccaaa gtagcatgac aaaaatcttgc 2280
gaaaacagaa tccagacata gttatctatc aatacatggc tgatttgc 2340
acttagaaat aggccagcat agaacaaaaaa tagaggaact gagacagcat ctgttgaggt 2400
ggggatttac cacaccagac aaaaacatc agaaagaacc tccattcccttgc 2460
atgaactcca tcctgtataaa tggacagtac agcctataat gtcggccagaa aaagacagct 2520
ggactgtcata tgacatacag aagttgttgc 2580
cagggatataa agtaaagcag ttatgttacccat tcccttagagg aaccaaagca ctaacagaag 2640
taataccact aacagaagaa gcagagcttag aactggcaga aaacagggag attctaaaag 2700
aaccagtaca tgaagtatataat tatgacccat caaaagactt agtagcagaa atacagaagc 2760
aggggcaagg ccaatggaca tatcaaattt atcaagagcc attaaaaat ctgaaaacac 2820
gaaagtatgc aaggatgagg ggtgccca ctaatgtatgaaaacatg 2880
tgcaaaaagt atccacagaa agcatagtaa tatggggaaa gattcctaaa tttaaactac 2940
ccatataaaaaa gggaaacatgg gaagcatggt ggttggagta ttggcaagct acctggattc 3000
ctgagtggga gtttgtcaat accccctccct tagtggaaattt atgttaccag ttagagaaag 3060
aaccatagt aggacagaa actttctatg tagatgggc agctaataagg gagactaaat 3120
tagggaaaaggc aggatatgtt actgacagagaa gaagacaaaaa agtgtctcc atagctgaca 3180
caacaaatca gaagactgaa ttacaagca ttcatcttagc tttgcaggat tcgggattag 3240
aagtaaacat agtaacagac tcacaatatg catttaggaat cattcaagca caaccagata 3300
agagtgaatc agagttatgc agtcaaaataat tagagcaggta aaaaaaaaaag gaaaaggct 3360
acctggcatg ggttccagca cacaaggaa ttggggaaa tgaacaagta gataaaattag 3420
tcagtctgg aatcaggaaa gtacttttgc tgaatggat agataaggcc caagaagaac 3480
atgagaaataat tcacagtaat tggagagca tggctatgttgc ttttaacctg ccacctgttag 3540
tagaaaaaga aatagtagcc agctgttgc aatgtcagct aaaaaggagaa gccatgcatt 3600
gacaagtaga ctgtgttca ggaatatggc aacttagtttgc tacacatca gaagggaaaaa 3660
ttatctgttgc agcagttcat gttagccaggat gatataatgaa agcagaaggatc attcctcagg 3720
agacaggggca gggaaacagca tattttctct taaaatttgc aggaaggatgg ccagtaaaaaa 3780
caatacatac agacaatggc agcaatttca ccagttactac ggtttagggcc gcctgttgc 3840
gggcaggggat caagcaggaa ttggcatttgc ctttacaatcc cccaaatgttgc ggagtagtag 3900
aatctatgaa taatgaatta aagaaaatttgc taggacaggta aagagatcgt gctgaacacc 3960
ttaagacagc agtacaaatgc gcaatgttgc tccacaatttgc taaaagaaaaa ggggggatgg 4020
ggggatatacg tgcaggggaa agaataatgc acataatgc aacagacata cccaaactaaag 4080
aactacaaaaaa gcaaaatttcaaaaatgc aatttccgggt ttattacagg gacaacaacaa 4140
atcccccttg gaaaggacca gcaaaatgttgc tctggaaagg tgaagggcc gtagtaatac 4200
aagataatacg tgacataaaaaa gtatgttgc gaaagaaaaaagc aaaaatcatttgc agggattatg 4260
gaaaacagat ggcagggttgc gattgttgc caagtagaca qqatqaaqqat tag 4313

<210> 4
<211> 1515
<212> DNA

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
HIV-Gag

<400> 4

gccaccatgg gcccccgccc cagcgtgctg agcggcggcg agctggacaa gtgggagaag 60
 atccgcctgc gccccggcgg caagaagaag tacaagctga agcacatcg gtgggccage 120
 cgcgagctgg agcgcttcgc cgtgaacccc ggcctgctgg agaccagcga gggctgccgc 180
 cagatcctgg gccagctca gcccagcctg cagaccggca gcgaggagct ggcagcctg 240
 tacaacaccc tgccacccct gtactgcgtg caccagcgc tcgacgtcaa ggacaccaag 300
 gagggccctgg agaagatcg ggaggagcag aacaagtcca agaagaaggc ccagcaggcc 360
 gccgcgcgcg ccggcaccgg caacagcgc caggtgagcc agaactaccc catcgctcag 420
 aacctgcagg gccagatgtt gcaccaggcc atcagcccc gcaccctgaa cgccctgggtg 480
 aagggtggtgg aggagaaggc cttcagcccc gaggtgatcc ccatgttcag cgccctgagc 540
 gagggcgcga cccccccagga cctgaacacg atgttgaaca ccgtggccgg ccaccaggcc 600
 gccatgcaga tgctgaagga gaccatcaac gaggaggccg ccgagtgaaa ccgctgtcgc 660
 cccgtgcacg ccggccccat cgccccccggc cagatgcgcg agccccccggg cagcgacatc 720
 gccggcacca ccagcaccct gcaggagcag atcggctggta tgaccaacaa cccccccatc 780
 cccgtggcg agatctacaa gcgggtggatc atcctggggcc tgaacaagat cgtgcggatg 840
 tacagccccca ccagcatccct ggacatccgc cagggccccca aggagccctt ccgctgactac 900
 gtggaccgct tctacaagac cctgcgcgt gaggcaggcc gccaggacgt gaagaactgg 960
 atgaccgaga ccctgcttgtt gcagaacgccc aaccccgact gcaagaccat cctgaaggct 1020
 ctcggcccccggc cggccaccctt ggaggagatg atgaccgcctt gccaggccgt gggcgcccc 1080
 gcccacaagg cccgcgtgtc gcccggggcg atgagccagg tgacgaaccc ggcgaccatc 1140
 atgatgcagc gcccacaactt ccgcaccccg cggaaagaccg tcaagtgtt caactgcggc 1200
 aaggaggggcc acaccgcacg gaactgcgcg gccccccggca agaaggggctg ctggcgctgc 1260
 gggcgcgagg gcccaccatg gaaggactgc accgagcgcg aggccaaactt cctggcaag 1320
 atctggccca gctacaaggc ccgcggccgc aacttctgc agagccccc cgagcccacc 1380
 gcccccccccggc aggagagctt ccgcgttcggc gaggagaaga ccaccccccag ccagaaggcag 1440
 gagcccatcg acaaggagct gtacccctg accgcctgc gcagectgtt cggcaacgcac 1500
 cccagcagcc agtaa 1515

<210> 5
 <211> 1853
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: synthetic
 HIV-Gag-protease

<400> 5
 gccaccatgg gcccccgccc cagcgtgctg agcggcggcg agctggacaa gtgggagaag 60
 atccgcctgc gccccggcgg caagaagaag tacaagctga agcacatcg gtgggccage 120
 cgcgagctgg agcgcttcgc cgtgaacccc ggcctgctgg agaccagcga gggctgccgc 180
 cagatcctgg gccagctca gcccagcctg cagaccggca gcgaggagct ggcagcctg 240
 tacaacaccc tgccacccct gtactgcgtg caccagcgc tcgacgtcaa ggacaccaag 300
 gagggccctgg agaagatcg ggaggagcag aacaagtcca agaagaaggc ccagcaggcc 360
 gccgcgcgcg ccggcaccgg caacagcgc caggtgagcc agaactaccc catcgctcag 420
 aacctgcagg gccagatgtt gcaccaggcc atcagcccc gcaccctgaa cgccctgggtg 480
 aagggtggtgg aggagaaggc cttcagcccc gaggtgatcc ccatgttcag cgccctgagc 540
 gagggcgcga cccccccagga cctgaacacg atgttgaaca ccgtggccgg ccaccaggcc 600
 gccatgcaga tgctgaagga gaccatcaac gaggaggccg ccgagtgaaa ccgctgtcgc 660
 cccgtgcacg ccggccccat cgccccccggc cagatgcgcg agccccccggg cagcgacatc 720
 gccggcacca ccagcaccct gcaggagcag atcggctggta tgaccaacaa cccccccatc 780
 cccgtggcg agatctacaa ggggtggatc atcctggggcc tgaacaagat cgtgcggatg 840
 tacagccccca ccagcatccct ggacatccgc cagggccccca aggagccctt ccgctgactac 900
 gtggaccgct tctacaagac cctgcgcgt gaggcaggcc gccaggacgt gaagaactgg 960
 atgaccgaga ccctgcttgtt gcagaacgccc aaccccgact gcaagaccat cctgaaggct 1020
 ctcggcccccggc cggccaccctt ggaggagatg atgaccgcctt gccaggccgt gggcgcccc 1080
 ggcacacaagg cccgcgtgtc gggcggggcg atgagccagg tgacgaaccc ggcgaccatc 1140
 atgatgcagc gcccacaactt ccgcaccccg cggaaagaccg tcaagtgtt caactgcggc 1200
 aaggaggggcc acaccgcacg gaactgcgcg gccccccggca agaaggggctg ctggcgctgc 1260
 ggcgcgcaag gacaccaaat gaaagattgc actgagagac aggctaattt ttagggaaag 1320

acttggcctt cctacaaggg aaggccaggg aattttcttc agagcagacc agagccaaca 1380
 gccccaccag aagagagctt caggaaaagg gaggagaaaa caactccctc tcagaaggcag 1440
 gagccgatag acaaggaaact gtatccttta acttccctca gatcacttgg tggcaacgac 1500
 ccctcgtaac agtaaggatc ggcccgcagc tcaaggaggc gctgctcgac accggcgcgg 1560
 acgacaccgt gctggaggag atgaacctgc cggcaagtg gaagccaaatg atgatcggcg 1620
 gatatcgaaaa ctcatcaag gtgcggcagt acgaccatg cccctggag atctgcggcc 1680
 acaaggccat cggcacccgt ctggggggcc ccacccctgt gaacatcatc gggcaacc 1740
 tgctgaccca gatcggtcgc accctgaact tccccatcag ccccatcgag acgggtggcc 1800
 tgaagctgaa gcccggatg gacggcccca aggtcaagca gtggccctg taa 1853

<210> 6
<211> 4319
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
HIV-Gag-polymerase

<400> 6
 gccaccatgg gcgcccgcgc cagcgtgctg agcggccggc agctggacaa gtgggagaag 60
 atccgcctgc gccccggcgg caagaagaag tacaagctga agcacatcgt gtggggccagc 120
 cgcgagctgg agcgcttcgc cgttaaccccc ggcctgtgg agaccagcga gggctgcgc 180
 cagatcctgg gccagctgca gcccagccgt cagaccggca gcgaggagct ggcgcgcctg 240
 tacaacaccg tggccacccct gtactgcgtg caccagcgcga tcgacgtcaa ggacaccaag 300
 gagggccctgg agaagatcga ggaggagcag aacaagtcca agaagaaggc ccagcaggcc 360
 gcccggccgc cccggcaccgg caacacgcgc cagggtgagcc agaactatccc catcggtcag 420
 aacctgcagg gccagatgtt gcacccggcc atcagcccccc gcacccctgaa cgcctgggtg 480
 aagggtgggg aggagaaggc cttcagcccc gagggtatcc ccatgtttag cgcgcgcggc 540
 gagggcgcga ccccccggga cctgaacacgg atgttgaaaca cctgtggccgg ccaccaggcc 600
 gccatgcaga tgctgaagga gaccatcaac gaggaggccg ccgagtggga cgcgtgcac 660
 cccgtgcacg cccggcccat cggccccggc cagatgcgcg agccccggc cagcgcacatc 720
 gccggcacca ccagcacccct gcaggagcag atcggtgtgg tgaccaacaa ccccccattc 780
 cccgtggccg agatctacaa cgggtggatc atcctggggc tgaacaagat cgtgcggatg 840
 tacagccccca ccagcatccct ggacatccgc caggggccca aggaggccctt cgcgcactac 900
 gtggaccgct tctacaagac cctgcgcgt gaggaggccca gccaggacgt gaagaacttgg 960
 atgaccgaga ccctgttgtt gcagaacgcgc aaccccgact gcaagaccat cctgaaggct 1020
 ctcggccccc cggccacccct ggaggagatg atgaccgcct gccaggccgt gggccggccc 1080
 gcccacaagg cccgcgtgt ggccgaggcg atgagccagg tgacgaaccc ggcgaccatc 1140
 atgatgcagg gcccgaacctt cccgaaccccg cggaaagaccg tcaagtgtttt caactgcggc 1200
 aaggaggggcc acaccgcgcg gaactgcgcg gccccccgcg agaagggtcg ctggcgctgc 1260
 gcccgcgaag gacaccaaat gaaagattgc actgagagac aggctaattt ttttagggaaag 1320
 atctggcctt cctacaaggg aaggccaggg aattttcttc agagcagacc agagccaaca 1380
 gccccaccag aagagagctt caggaaaagg gaggagaaaa caactccctc tcagaaggcag 1440
 gagccgatag acaaggaaact gtatccttta acttccctca gatcacttgg tggcaacgac 1500
 ccctcgtaac agtaaggatc ggcccgcagc tcaaggaggc gctgctcgac accggcgcgg 1560
 acgacaccgt gctggaggag atgaacctgc cggcaagtg gaagccaaatg atgatcggcg 1620
 gatatcgaaaa ctcatcaag gtgcggcagt acgaccatg cccctggag atctgcggcc 1680
 acaaggccat cggcacccgt ctggggggcc ccacccctgt gaacatcatc gggcaacc 1740
 tgctgaccca gatcggtcgc accctgaact tccccatcag ccccatcgag acgggtggcc 1800
 tgaagctgaa gcccggatg gacggcccca aggtcaagca gtggccctg accggaggaga 1860
 agatcaaggc cctgggtggag atctgcaccgg agatggagaa ggaggccaaatg atcagcaaga 1920
 tcggcccccga gaacccctac aacacccccc tggtcgccat caagaagaag gacacccatc 1980
 agtggcgcaa gctgggtggac ttccgcgcgc tgaacaagcg cacccaggac ttctgggg 2040
 tgcaagctggg catccccccac cccggccggcc tgaagaagaa gaagaggctg accgtgttgg 2100
 acgtggccga cgcctacttc aegcgcccccc tggacaaggc cttccgcacg tacaccgcct 2160
 tcaccatccc cagcatcaac aacgagaccc cggcatccg ctaccatgc aacgtgtcgc 2220
 cccaggccgtg gaagggccagc cccggccatct tccagagcag catgaccaag atccctggagc 2280
 cttccgcac gacatcgta tctaccatgc catggacgc ctgtacgtgg 2340

gcagcgacct ggagatccgc cagcaccgc ccaagatcga ggagctgcgc cagcacctgc 2400
 tgcgctgggg cttaaccacc cccgacaaga agcaccagaa ggagcccccc ttccctgttga 2460
 tgggctacga gctgcacccc gacaagtggc ccgtgcagcc catcatgtc cccgagaagg 2520
 acagctggac cgtgaacgac atccagaagc tggggcaca gctgaactgg gccagccaga 2580
 tctacgcggc catcaaggtg aagcagctgt gcaagctgt ggcggcacc aaggccctga 2640
 ccgaggtat cccccctgacc gagggggccg agctggat ggcggagaac cgcgagatcc 2700
 tgaaggagcc cgtgcacgag gtgtactacg accccagcaa ggacctggg gccgagatcc 2760
 agaaggcaggc ccagggccag tggacctacc agatctacca ggagcccttc aagaacctga 2820
 agaccggcaa gtacgcccgc atgcggcgc cccacaccaa cgacgtgaag cagctgaccg 2880
 aggccgtgca gaagggtggc accgagagca tcgtatctg gggcaagatc cccaagttca 2940
 agctgcccatt ccagaaggag acctggggagg cctgggttat ggagtactgg caggccaccc 3000
 ggatccccga gtgggagttc gtgaacaccc cccccctgtt gaagctgtgg taccagctgg 3060
 agaaggagcc catcggtggc gcccggaccc tctacgttga cggccgcgc aaccgcgaga 3120
 ccaagctggg caaggccggc tacgtgaccg accggggccg ccagaagggt gtgagcatcg 3180
 ccgacaccac caaccagaag accgagctgc aggccatcca cctggccctg caggacagcg 3240
 gcctggaggt gaacatctgt accgacagcc agtacgcctt gggcatcatc caggcccgagc 3300
 ccgacaagag cgagagcgag ctgttgagcc agatcatcga cgacgtgatc aagaaggaga 3360
 aggtgtaccc ggcctgggtt cccggccaca agggcatcg cggcaacgag caggtggaca 3420
 agctggtgag cgccggcatac cgcaagggtc tggttcttga cggcatcgac aaggcccgagg 3480
 aggagcacga gaagtaccac agcaactggc ggcggcatggc cagcgaacttc aacctgcccc 3540
 ccgtgggtggc caaggagatc gtggccagct ggcacaaggc ccagctgaag ggcgaggccca 3600
 tgcacggccca ggtggactgc agccggcga tctggcagct ggactgcacc cacctggagg 3660
 gcaagatcat cctgggtggcc gtgcacgttg ccagggctt catcgaggcc gaggtgatecc 3720
 cggccggagac cggccaggag accggctact tccctgttga gctggccggc cgctggcccc 3780
 tgaagacccat ccacaccgc aacggcagca acttcaccag caccaccgtt aaggccgcct 3840
 gtgggtgggc cggcatcaag caggagttcg gcatccccca caaccccccag agccaggccg 3900
 tgggtggagag catgaacaac gagctgaaga agatcatcg ccaggtgcgc gaccaggccg 3960
 agcacctgaa gaccggcgtg cagatggccg tggcatcca caacttcaag cgcaaggccg 4020
 gcatcgccgg ctacagcgcc ggcggcgtt tcgtggacat catcgccacc gacatccaga 4080
 ccaaggagatc gcagaaggcag atcacaaga tccagaactt cccgtgttac taccgggaca 4140
 acaaggaccc cctgttggaa ggcggccca agctgtgtt gaaaggccgag ggcggccgtgg 4200
 tcatccagga caacagcgac atcaaggtgg tgcccccggc caaggccaaatc catcccgcc 4260
 actacggcaa gcagatggcc ggcgacact ggcgtggccag ccggccaggac gaggactag 4319

<210> 7
 <211> 2031
 <212> DNA

<213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: synthetic
 HIV-Gag/HCV-core fusion polypeptide

<400> 7
 gccaccatgg ggcggccgc cagcgtgtt agcggccggc agctggacaa gtgggagaag 60
 atccgcctgc gccccggcgg caagaagaag tacaagctga agcacatgtt gtggggccagc 120
 cggagctgg agcgcttcgc cgttaaaaaa ggcctgtgg agaccagcga gggctgcgc 180
 cagatctgg gccagctgc gcccagctg cagaccggca gcgaggagct ggcggcctg 240
 tacaacaccg tggccaccct gtactgtgtt caccagcgtt tcgacgttca ggcacccaag 300
 gaggccctgg agaagatcga ggaggagcag aacaagtcca agaagaaggc ccagcaggcc 360
 gcccggccg cggcaccgg caacagcgtt caggttgacc agaacttaccatcgatcg 420
 aacctgcagg gccagatgtt gcaccaggcc atcggccccc gcaccctgtt ccgctgggtt 480
 aagggtgggg aggagaaggc cttcagcccc gaggtatcc ccatgtttagt ccggccctgagc 540
 gagggccgcca cccccccaggaa cctgttacacg atgttggaa cctgtggccgg ccaccaggcc 600
 gccatgcaga tgctgaagga gaccatcaac gaggaggccg cggatgggg ccgctgtcacc 660
 cccgtgcacg cggccccat cggcccccggc cagatgcgcg agccccggc cagcgacatc 720
 gccggccacca ccagcaccc tgcaggagcag atcggctggg tgaacaacaa cccccccatc 780
 cccgtggccg agatctacaa gcggtggatc atcctggggc tgaacaagat cgtgcggatg 840
 tacagccccca ccagcatccgc ggacatccgc cagggcccca aggaggccctt ccggcactac 900

gtggaccgct tctacaagac cctgcgcgt gagcaggcca gccaggacgt gaagaactgg 960
 atgaccgaga ccctgctggt gcagaacgcc aaccccact gcaagaccat cctgaaggct 1020
 ctcggccccc cggccaccct ggaggagatg atgaccgcct gccaggcggt gggcgcccc 1080
 ggcacaaagg cccgcgtgct ggccgaggcg atgagccagg tgacgaaccc ggcgaccatc 1140
 atgatgcgc gcgcaactt ccgcaccag cgaaagaccc tcaagtgcct caactgcggc 1200
 aaggagggcc acaccgcag gaactgcgc gccccccgca agaaggcgct ctggcgctgc 1260
 ggcgcgagg gccaccagat gaaggactgc accgagcgc aggccaaactt cctggcaag 1320
 atctggccca gctacaaggg cccgcggc aacttcctgc agagccccc cgagcccacc 1380
 gcccccccg aggagacgtt ccgcgtcgcc gaggagaaga ccaccccgcc ccagaagcag 1440
 gagcccatcg acaaggagct gtacccctg accagcctgc gcagcctgtt cgcaacgcac 1500
 cccagcagcc agtcgacgaa tcctaaacct caaagaaaaa acaaacgtaa caccacccgt 1560
 cgcacacagg acgtcaagtt cccgggtggc ggtcagatcg ttggtgagt ttacttgg 1620
 ccgcgcagg gccctagatt gggtgtgcgc ggcacgagaa agacttccga gcggtcgcaa 1680
 cctcgaggta gacgtcagcc tatccccaaag gctcgccggc cccggggcag gacctggct 1740
 cagcccggtt acccttggcc ccttatggc aatgagggtt ggggtgggc gggatggctc 1800
 ctgtctcccc gtggctctcg gcttagctgg gcccccacag acccccccgc taggtcgcgc 1860
 aatttgggta aggtcatoga tacccctacg tgccgttgc cgcacccat ggggtacata 1920
 ccgcgtcgcc ggcgcctct tggaggcgct gccaggccc tggcgcatttgc cgtccgggtt 1980
 ctggaagacg gcgtgaacta tgcaacaggg aaccccttgc gttgcttta g 2031

<210> 8

<211> 2025

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
HIV-Gag/HCV-Core fusion polypeptide

<400> 8

atgggtgcga gaggcgtcggt attaagcggg ggagaattag ataaatggg aaaaattcgg 60
 ttaaggccag ggggaaagaa aaaatataag taaaacata tagtatggc aagcaggagg 120
 ctagaacatc tcgcagtc aa tcctggcctg ttagaaacat cagaaggctg cagacaaata 180
 ttgggacagc tacagccatc ccttcagaca ggatcagaag aacttagatc attatataat 240
 acatgtcaaa ccctctattt gttacatcaa aggtatgtg taaaagacac caaggaagct 300
 ttagagaaga tagaggaaga gcaaaacaaa agtaagaaaa aggcacagca agcagcagct 360
 gcagctggca caggaaacag cagccaggc agccaaaatt accctatagt gcagaaccta 420
 caggggcaaa tggtacatca ggcataatca ccttagaactt taaatgcattt ggtaaaatgt 480
 gttagaaagaaa aggcttcag cccagaagta atacccatgt tttcagcatt atcagaagga 540
 gccaccccac aagataaaa caccatgta aacacagtgg ggggacatca agcagccatg 600
 caaatgttaa aagagactat caatgaggaa gctgcagaat gggatagatg gcatccatg 660
 catgcaggcc ctattgcacc aggccaaatg agagaaccaa gggaaagtga catagcagg 720
 actacttagt cccttcagga acaaatacgaa tggatgacaa ataatccacc tatccatgt 780
 ggagaaatct ataaaagatg gataatctg ggattaaata aaatgtatgg aatgtatagc 840
 cctaccagca ttctggacat aagacaagga ccaaaggAAC cctttagaga ttatgttagac 900
 cggttctata aaactctaag agccgaacaa gcttcacagg atgtaaaaaa ttggatgaca 960
 gaaacccctgt tggtccaaaa tgcaaacca gattgtaaatg ttttttttttgggaaatggg 1020
 ccagcagcta cactagaaga aatgtatgca gcatgtcagg gagtgggggg accccggccat 1080
 aaagcaagag ttttggctga agccatgagc caagtaacaa atccagctaa cataatgtatg 1140
 cagagggca atttttaggaa ccaaagaaaag actgtttaagt gtttcaatttggcaagaa 1200
 gggcacatag cccaaaatttggccctt aggaaaaagg gctgttggag atgttggaaagg 1260
 gaaggacacc aaatgttggaaatggatggatggatggatggatggatggatggatggatgg 1320
 ccttcctaca agggaaaggcc agggaaattttt cttcagagca gaccagagcc aacagcccc 1380
 ccagaagaga gcttcagggtt tggggaggag aaaacaactt ccttcagacaa gcaggagccg 1440
 atagacaagg aactgtatcc tttacttcc ctcagatcac tttttggcaatggccatgg 1500
 tcacagtcga cgaatccaa acctcaaaaga aaaaacaaac gtaacacccaa ccgtcgcccc 1560
 caggacgtca agttcccggtt tggcggtcag atcgttgggtt gatgttactt gtttccggc 1620
 agggccctta gattgggtgt ggcgcgcacg agaaagactt ccgagccgtc gcaacccatc 1680
 ggttagacgtc agcctatccc caaggctcgat cggcccgagg gcaggacccctg ggctcagccc 1740

gggtaccctt ggccctcta tggcaatgag ggctgcgggt gggcggtatg gtcctgtct 1800
 ccccgtggct ctcggcttag ctggggcccc acagacccccc ggcgttaggtc ggcataatttg 1860
 ggttaaggta tcgataaccct tacgtgcggc ttgcggacc tcatgggtta cataccgctc 1920
 gtcggcgccc ctcttggagg cgctgccagg gcccctggcgc atggcgtccg ggttctggaa 1980
 gacggcgtga actatgcaac agggaacctt cctggttgt cttag 2025

<210> 9
 <211> 1268
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: synthetic Gag
 common region

<400> 9
 gccaccatgg gcgcccgccg cagcgtgctg agcggcgcg agctggacaa gtgggagaag 60
 atccgcctgc gccccggcgg caagaagaag tacaagctga agcacatcg gtggggccagc 120
 cgcgagctgg agcgcttcgc cgtaaacccc ggcctgctgg agaccagcga gggctgcccgc 180
 cagatccctgg gccagctgca gcccagcctg cagaccggca gcgaggagct ggcagcctg 240
 tacaacacccg tggccacccct gtactgcgtg caccagcgc tgcacgtcaa ggacacccaag 300
 gaggccctgg agaagatcga ggaggagcg aacaagtcca agaagaaggc ccagcaggcc 360
 gccggccggc cgggcacccgg caacagcgc caggtgagcc agaactaccc catcgtgcag 420
 aacctgcagg gccagatggt gcaccaggcc atcagcccccc gcaccctgaa cgcctgggtg 480
 aagggtggtgg aggagaaggc cttcagcccc gaggtgatcc ccatgttcag cgcctgagc 540
 gaggggcgcca ccccccacgg cctgaacacg atgttgaaca ccgtggcg ccaccaggcc 600
 gccatgcaga tgctgaagga gaccatcaac gaggaggccg ccgagtggga ccgcgtgcac 660
 cccgtgeacg cggccccat cggcccccggc cagatgcgcg agccccggc cagcgacatc 720
 gccggcacca ccagcaccc tgcaggagcag atcggctgga tgaccaacaa ccccccacatc 780
 cccgtggcgc agatctacaa cgggtggate atcctggggc tgaacaagat cgtgcggatg 840
 tacagccccca ccagcatcct ggacatccgc cagggccccca aggagccctt ccgcgactac 900
 gtggaccgct tctacaagac cctgcgcgt gaggcggccca gccaggacgt gaagaactgg 960
 atgaccgaga ccctgctggt gcagaacgc aaccccgact gcaagaccat cctgaaggct 1020
 ctcggccccc cggccacccct ggaggagatg atgaccgcct gccaggcggt gggcgcccc 1080
 gcccacaagg cccgcgtgt ggccgaggcg atgagccagg tgacgaaccc ggcgaccatc 1140
 atgatgcagc gggcaactt ccgcacccag cggaaagaccg tcaagtgcctt caactgcggc 1200
 aaggagggcc acaccgcac gaaactgcgc gccccccgca agaagggtcg ctggcgctgc 1260
 gggcgcca 1268

<210> 10
 <211> 20
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: HIV-Gag
 peptide p7G

<400> 10
 Gly Gly His Gln Ala Ala Met Gln Met Leu Lys Glu Thr Ile Asn Glu
 1 5 10 15
 Glu Ala Ala Glu
 20

<210> 11
 <211> 30
 <212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer GAG5

<400> 11
aagaattcca tgggtgcgag agcgtcggtta 30

<210> 12
<211> 30
<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer p55-SAL3

<400> 12
atccgtcgac tgtgacgagg ggtcgttgcc 30

<210> 13
<211> 34
<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer CORESAL5

<400> 13
atttgcgac gaatcctaaa cctcaaagaa aaac 34

<210> 14
<211> 30
<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer 173CORE

<400> 14
tattggatcc taagagcaac caggaaggtt c 31

<210> 15
<211> 21
<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer MS65

<400> 15
cgaccatcat ggatgcagcg c 21

<210> 16
<211> 30
<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer MS66

<400> 16

aggattcgtc gagtcgtgc tggggtcgtt

30

<210> 17

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer XPANXNF

<400> 17

gcacgtggc ccggcgcc tc tagagc

26

<210> 18

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer XPANXNR

<400> 18

gctctagagg cgccggggcc acgtgc

26

<210> 19

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: HIV p55 Gag
Major Homology Region

<400> 19

Asp Ile Arg Gln Gly Pro Lys Glu Pro Phe Arg Asp Tyr Val Asp Arg
1 5 10 15Phe Tyr Lys Thr
20

<210> 20

<211> 60

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic p55
Gag Major Homology Region

<400> 20

gacatccgcc agggccccaa ggagcccttc cgcgactacg tggaccgctt ctacaagacc 60

<210> 21

<211> 15

<212> PRT

<213> Human immunodeficiency virus

<400> 21

Ala	Pro	Thr	Lys	Ala	Lys	Arg	Arg	Val	Val	Gln	Arg	Glu	Lys	Arg
1				5				10					15	

<210> 22

<211> 5

<212> PRT

<213> Human immunodeficiency virus

<400> 22

Lys	Ala	Lys	Arg	Arg
1		5		

<210> 23

<211> 4

<212> PRT

<213> Human immunodeficiency virus

<400> 23

Arg	Glu	Lys	Arg
1			

<210> 24

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: aa of
mut7.SF162 cleavage site

<400> 24

Ala	Pro	Thr	Lys	Ala	Ile	Ser	Ser	Val	Val	Gln	Ser	Glu	Lys	Ser
1				5				10					15	

<210> 25

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: aa of
mut8.SF162 cleavage site

<400> 25

Ala	Pro	Thr	Ile	Ala	Ile	Ser	Ser	Val	Val	Gln	Ser	Glu	Lys	Ser
1				5				10					15	

<210> 26

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: aa of
mut.SF162 cleavage site

<400> 26

Ala Pro Thr Lys Ala Lys Arg Arg Val Val Gln Arg Glu Lys Ser
1 5 10 15

<210> 27

<211> 15

<212> PRT

<213> Human immunodeficiency virus

<220>

<223> Description of Artificial Sequence: aa of native
cleavage site in US4

<400> 27

Ala Pro Thr Gln Ala Lys Arg Arg Val Val Gln Arg Glu Lys Arg
1 5 10 15

<210> 28

<211> 5

<212> PRT

<213> Human immunodeficiency virus

<220>

<223> Description of Artificial Sequence: aa of second
cleavage site in US4

<400> 28

Gln Ala Lys Arg Arg
1 5

<210> 29

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: aa of mut.US4
cleavage site

<400> 29

Ala Pro Thr Gln Ala Lys Arg Arg Val Val Gln Arg Glu Lys Ser
1 5 10 15

<210> 30

<211> 1419

<212> DNA

<213> Human immunodeficiency virus

<400> 30

gtagaaaaat tgggttcac agtctattat ggggtacctg tggaaaaga agcaaccacc 60
actctatccc gtgcatacaga tgctaaagcc tatgacacag aggtacataa tgtctggcc 120
acacatgcct gtgtacccac agaccctaac ccacaagaaa tagtattgga aaatgtgaca 180
gaaaattttt acatgtggaa aaataacatg gttagaacaga tgcatacgata tataatcagt 240
ttatggatc aaagtctaaa gccatgtgt aagtttaacc cactctgtgt tactctacat 300
tgcactaatt tgaagaatgc tactaatacc aagagtagta attggaaaaga gatggacaga 360
ggagaaataa aaaattgtct ttcaagggtc accacaaga taagaaataa gatgcagaaa 420
gaatatgcac ttttttataa acttgatgt a taccatag ataatgataa tacaagctat 480
aaattgataa attgtacac ctcagtcatt acacaggcct gtccaaagggt atcccttgaa 540
ccaattccca tacattattg tgccccggct gggtttgcga ttctaaagtg taatgataag 600
aagttcaatg gatcaggacc atgtacaaat gtcagcacag tacaatgtac acatggaaatt 660
aggccagtag tgcactaattt attgtctgtt aatggcagtc tagcagaaga aggggtagta 720
attagatctg aaaatttcac agacaatgtc aaaactataa tagtacagct gaaggaaatct 780
gtagaaatta attgtacaag acctaacaat aatacaagaa aaagtataac tataggaccg 840
gggagagcat ttatgcac aggagacata ataggagata taagacaagc acattgtaac 900
attagtgag aaaaatggaa taacacttta aaacagatag ttacaaaatt acaagcaca 960
tttgggata aaacaatagt cttaagcaa tcctcaggag gggaccaga aattgtatg 1020
cacagttta attgtggagg ggaatttttc tactgttaatt caacacagct tttaatagt 1080
acttggata atactatagg gccaataaaac actaatggaa ctatcacact cccatgcaga 1140
ataaaacaaa ttataaacag gtggcaggaa gtagggaaaag caatgtatgc ccctccatc 1200
agaggacaaa ttagatgtc atcaaatatt acaggactgc tattaacaag agatgggtgt 1260
aaagagatca gtaacaccac cgagatcttc agacctggag gtggagatataatggacaat 1320
tggagaagtg aattatataa atataaaagta gtagggaaaattt agccattagg agtagcacc 1380
accaaggcaa agagaagagt ggtgcagaga gaaaaaaagag cagtgcacgtt agggactatg 1440
ttccctgggt tcttggggc acgaggaaac actatggggc cacggctact gacgctgacg 1500
gtacaggccaa gacaattatt gtctgggtata gtgcacacgc agaacaattt gctgagagct 1560
attgaggcgc aacagcatct gttgcacactc acagtctggg gcatcaagca gctccaggca 1620
agagtccctgg ctgtggaaag atacctaag gatcaacacgc tcctaggat ttgggggttgc 1680

<210> 31
<211> 1932
<212> DNA
<213> Human immunodeficiency virus

<400> 31
gtagaaaaat tgggttcac agtctattat ggggtacctg tggaaaaga agcaaccacc 60
actctatccc gtgcatacaga tgctaaagcc tatgacacag aggtacataa tgtctggcc 120
acacatgcct gtgtacccac agaccctaac ccacaagaaa tagtattgga aaatgtgaca 180
gaaaattttt acatgtggaa aaataacatg gttagaacaga tgcatacgata tataatcagt 240
ttatggatc aaagtctaaa gccatgtgt aagtttaacc cactctgtgt tactctacat 300
tgcactaatt tgaagaatgc tactaatacc aagagtagta attggaaaaga gatggacaga 360
ggagaaataa aaaattgtct ttcaagggtc accacaaga taagaaataa gatgcagaaa 420
gaatatgcac ttttttataa acttgatgt a taccatag ataatgataa tacaagctat 480
aaattgataa attgtacac ctcagtcatt acacaggcct gtccaaagggt atcccttgaa 540
ccaattccca tacattattg tgccccggct gggtttgcga ttctaaagtg taatgataag 600
aagttcaatg gatcaggacc atgtacaaat gtcagcacag tacaatgtac acatggaaatt 660
aggccagtag tgcactaattt attgtctgtt aatggcagtc tagcagaaga aggggtagta 720
attagatctg aaaatttcac agacaatgtc aaaactataa tagtacagct gaaggaaatct 780
gtagaaatta attgtacaag acctaacaat aatacaagaa aaagtataac tataggaccg 840
gggagagcat ttatgcac aggagacata ataggagata taagacaagc acattgtaac 900
attagtgag aaaaatggaa taacacttta aaacagatag ttacaaaatt acaagcaca 960
tttgggata aaacaatagt cttaagcaa tcctcaggag gggaccaga aattgtatg 1020
cacagttta attgtggagg ggaatttttc tactgttaatt caacacagct tttaatagt 1080
acttggata atactatagg gccaataaaac actaatggaa ctatcacact cccatgcaga 1140
ataaaacaaa ttataaacag gtggcaggaa gtagggaaaag caatgtatgc ccctccatc 1200
agaggacaaa ttagatgtc atcaaatatt acaggactgc tattaacaag agatgggtgt 1260
aaagagatca gtaacaccac cgagatcttc agacctggag gtggagatataatggacaat 1320
tggagaagtg aattatataa atataaaagta gtagggaaaattt agccattagg agtagcacc 1380
accaaggcaa agagaagagt ggtgcagaga gaaaaaaagag cagtgcacgtt agggactatg 1440
ttccctgggt tcttggggc acgaggaaac actatggggc cacggctact gacgctgacg 1500
gtacaggccaa gacaattatt gtctgggtata gtgcacacgc agaacaattt gctgagagct 1560
attgaggcgc aacagcatct gttgcacactc acagtctggg gcatcaagca gctccaggca 1620
agagtccctgg ctgtggaaag atacctaag gatcaacacgc tcctaggat ttgggggttgc 1680

tctggaaaaac tcatttgcac cactgctgtg ccttggaaatg ctatgtggag taataaatct 1740
 ctggatcaga ttggaaataa catgacctgg atggagtggg agagagaaaat tgacaattac 1800
 acaaacttaa tatacacctt aattgaagaa tcgcagaacc aacaagaaaa gaatgaacaa 1860
 gaattatttag aattggataa gtggcaagt ttgtggaaatt ggtttgacat atcaaaatgg 1920
 ctgtggata ta 1932

<210> 32
 <211> 2457
 <212> DNA
 <213> Human immunodeficiency virus

<400> 32
 gtagaaaaat tggggtcac agtctattat ggggtacctg tggggaaaga agcaaccacc 60
 actctatccc gtgcatacaga tgctaaagcc tatgacacag aggtacataa tggctgggcc 120
 acacatgcct gtgtacccac agaccctaac ccacaagaaa tagtattgg aatgtgaca 180
 gaaaatttta acatgtggaa aaataacatg tggaaacaga tggcatgagga tataatcagt 240
 ttatgggatc aaagtctaaa gccatgtgt aagttAACCC cactctgtgt tactctacat 300
 tgcactaatt tgaagaatgc tactaataacc aagagtagta attggaaaga gatggacaga 360
 ggagaaataa aaaattgtct ttcaagggtc accacaagca taagaaataa gatgcagaaa 420
 gaatatgcac tttttataa acttgatgt aatccaataa ataatgataa tacaagctat 480
 aaattgtataa attgtacac ctcagtcatt acacaggccgt tggccaaaggat atcccttgaa 540
 ccaattccca tacattttg tggcccggtc gttttgcga ttctaaagtg taatgataag 600
 aagttcaatg gatcaggacc atgtacaaat gtcagcacag tacaatgtac acatggaaat 660
 aggccatgt tgcacttca attgtgttta aatggcagtc tagcagaaga aggggttagta 720
 attagatctg aaaatttcac agacaaatgtc aaaactataa tagtacagct gaagggatct 780
 gtagaaatta attgtacaaag acctaacaat aatacaagaa aaagtataac tattggaccg 840
 gggagagcat tttatgcac agggacata ataggagata taagacaagc acattgtaac 900
 attagtgtag aaaaatggaa taacacttta aaacagatag ttacaaaattt acaaggccaa 960
 tttgggata aaacaatagt cttaagcaat tccctaggag gggaccaga aattgtatg 1020
 cacagttta attgtggagg ggaattttt tactgtattt caacacagct tttatagt 1080
 acttggata atactatagg gccaataaac actaatggaa ctatcacact cccatgcaga 1140
 ataaaaacaaa ttataaacatg gtggcagggaa gtagggaaag caatgtatgc ccctccccatc 1200
 agaggacaaa ttagatgtc atcaaatattt acaggactgc tattacaacaa agatgggtgg 1260
 aaagagatca gtaacaccac cgagatcttca agacctggag tggagatgat gaggacaaat 1320
 tggagaagtg aattatataa atataaaatgt gtaaaaaattt agccatagg agtagcaccc 1380
 accaaggcaa agagaagagt ggtgcagaga gaaaaaaagag cagtgcacgtt aggagctatg 1440
 ttccctgggt tcttggggc acgaggaaatc actatggcc cacggctact gacgctgacg 1500
 gtacaggcca gacaattattt gtcttgtata gtagcaacagc agaacaattt gctggagat 1560
 attggggcgc aacagcatct gttgcacactc acagtctggg gcatcaagca gctccaggca 1620
 " agagtccctgg ctgtggaaag atacctaag gatcaacagc tccttagggat ttgggggttgc 1680
 tctggaaaaac tcatttgcac cactgctgtg ctttggaaatg ctatgtggag taataaatct 1740
 ctggatcaga ttggaaataa catgacctgg atggagtggg agagagaaaat tgacaattac 1800
 acaaacttaa tatacacctt aattgaagaa tcgcagaacc aacaagaaaa gaatgaacaa 1860
 gaattatttag aattggataa gtggcaagt ttgtggaaatt ggtttgacat atcaaaatgg 1920
 ctgtggata taaaatattt cataatgtata gtagggatgt tagtaggtt aaggatagtt 1980
 ttactgtgc ttcttatagt gatataggtt aggcaggatgtt actcaccatt atcatttcag 2040
 acccgcttc cagccccaaag gggaccggac aggcccgaag gaatcaaga agaagggtgg 2100
 gagagagaca gagacatgtt cgtccatta gtagcatggat tattacactt catctggac 2160
 gatctacggg gcctgtgcct ttcaagctac caccgcttga gagacttaat ttgattgca 2220
 gcgaggattt tggaaacttctt gggacgcagg ggggtggaaat ccctcaagta ttggggaaat 2280
 ctctgcagt attggatca ggaactaaag aatagtgtt gtagtttgc ttatgtccata 2340
 gctatagcag tagctgaggg gacagatagg attatagaag tagcacaacaa aattggtaga 2400
 gctttctcc acatacacccatc aagaataaga caggccttgc aaaggccttgc gctataa 2457

<210> 33
 <211> 1453
 <212> DNA
 <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: gp120.modSF162

<400> 33

```

gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtcttcg tttcgccag cgccgtggag aagctgtgg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccacccctg ttctgcgcga ggcacgccaa ggccctacgac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caaccccccag 240
gagatcggtc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcacg aggacatcat cagccgtgtgg gaccagagcc tgaaggccctg cgtgaagctg 360
accccccctgt gcgtgaccct gcactgcacc aacctgaaga acgcacccaa caccaagagc 420
agcaacttggg aggagatggg cccggggcgg atcaagaact gcagettcaa ggtgaccacc 480
accatccgca acaagatgca gaaggagttac gccctgttct acaagctgga cgtggtgccc 540
atcgacaacg acaacacccag ctacaagctg atcaactgca acaccagcgt gatcacccag 600
gcctgccccca aggtgagctt cgagcccatc cccatccact actgcgcccc cccggcttc 660
gccatccctga agtgcacacg caagaagttc aacggcagcg gcccctgcac caacgtgagc 720
accgtgcagt gcacccacgg catccggcccc gtggtgagca cccagctgct gctgaacggc 780
agcctggccg aggagggcgt ggtgatccgc agcgagaact tcaccgacaa cgccaagacc 840
atcatcggtc agctgaagga gagcgtggag atcaactgca cccggcccaa caacaacacc 900
cgcaagagca tcaccatcggtt cccggggccgc gccttctacg ccacccggcga catcatcgcc 960
gacatccgccc agggccactg caacatcagc ggcgagaagt ggaacaacac cctgaagcag 1020
atcggtacca agctgcacggc ccagttccgc aacaagacca tcgtgttcaa gcagagcagc 1080
ggcgccgacc ccgagatctg gatgcacagc ttcaactgct gggcgagtt ctctactgc 1140
aacagcaccc agctgttcaa cagcacctgg aacaacacca tcggcccaa caacaccaac 1200
ggcaccatca ccctgcctgt cccgcatacg cagatcatca accgtgtggca ggaggtggc 1260
aaggccatgt acgcccccccatccgcggc cagatccgt gcagcagcaa catcaccggc 1320
ctgctgtca cccgcacgg cggcaaggag atcagcaaca ccacccgagat ctccggcccc 1380
ggcgccggccg acatgcgcga caactggcgcg acgcgagctgt acaagtacaa ggtggtaag 1440
atcgagcccc tgg 1453

```

<210> 34

<211> 1387

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
gp120.modSF162.delV2

<400> 34

```

gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtcttcg tttcgccag cgccgtggag aagctgtgg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccacccctg ttctgcgcga ggcacgccaa ggccctacgac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caaccccccag 240
gagatcggtc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcacg aggacatcat cagccgtgtgg gaccagagcc tgaaggccctg cgtgaagctg 360
accccccctgt gcgtgaccct gcactgcacc aacctgaaga acgcacccaa caccaagagc 420
agcaacttggg aggagatggg cccggggcgg atcaagaact gcagettcaa ggtgaccacc 480
ggcaagctga tcaactgca caccagctg atcaccctagg cctggcccaa ggtgagcttc 540
gagcccatcc ccatccacta ctggcccccc gccggcttc ccatectgaa gtcaacgcac 600
aagaagttca acggcagccgg cccctgcacc aacgtgagca ccgtgcagtg caccacccggc 660
atccggcccg tggtagaccc ccagctgtcg ctgaacggca gcctggccga ggagggcgtg 720
gtgtacccgc gcgagaactt caccgacaaac gccaagacca tcatcggtca gctgaaggag 780
agcgtggaga tcaactgca cccggcccaa aacaacaccc gcaagagcat caccatcgcc 840
cccgccggcg ccttctacgc caccggcgcac atcatcgccg acatccggca ggcggactgc 900
aacatcagcg gcgagaagt gaaacacacc ctgaagcaga tcgtgaccaa gctgcaggcc 960
cagttcgccgca acaagaccat cgtgttcaag cagagcagcg gccggcaccg cgagatcggt 1020
atgcacacgt tcaactgcgg cggcgagttc ttctactgca acagcaccac gctgttcaac 1080
acacacccat cggccccaac aacaccaacg gcaccatcac cctggccctgc 1140

```

cgcatcaagc agatcatcaa ccgctggcag gaggtggca aggccatgta cgccccccc 1200
 atccgcggcc agatccgctg cagcagcaac atcacccggcc tgctgctgac ccgcgacggc 1260
 ggcaggaga tcagcaaacac caccgagatc ttccgccccg gggggcga catgcgcgac 1320
 aactggcgca gcgagctgta caagtacaag gtggtaaga tggagccctt gggcggtggcc 1380
 cccacca 1387

<210> 35
 <211> 1323
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:
 gp120.modSF162.delV1V2

<400> 35
 gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
 gcagtctcg ttccgcggcag cgccgtggag aagctgtgg tgaccgtgta ctacggcggtg 120
 cccgtgtgga aggaggccac caccacccctg ttctgcgcac ggcacgcacaa ggccctacgac 180
 accgagggtgc acaacgtgtg ggccacccac gcctgctgac ccaccgaccc caaccccccag 240
 gagatcggtgc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catgggtggag 300
 cagatgcacg aggacatcat cagctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
 accccctgt gcgtggggcgc cgccaaactgc cagaccagcc tgatcacccca ggccctgcccc 420
 aaggtgagct tcgagccat ccccatccac tactgcgcac ccggccggctt cgccatcctg 480
 aagtgcacg acaagaagtt caacggcage ggccctgtgca ccaacgtgag caccgtgcag 540
 tgcacccacg gcatccggcc cgtgtgagc acccagatgc tgctgaacgg cagcctggcc 600
 gaggagggcg tggtgatccg cagcgagaac ttcacccgaca acgccaagac catcatcg 660
 cagctgaagg agagcggtga gateaactgc accccggccca acaacaacac cgcgaagagc 720
 atcaccatcg gccccggcc cgccctctac gccacccggcg acatcatcg cgacatccgc 780
 caggccact gcaacatcg cgccgagaag tggaaacaaca ccctgaaagca gatcggtgacc 840
 aagctgcagg cccagttcgg caacaagacc atcggttca agcagagcc cgccggcgac 900
 cccgagatcg tggatgcacag cttcaactgc ggccggcgat tcttctactg caacagcacc 960
 cagctgttca acagcacctg gaacaacaccc atcggtccca acaacaccaa cgccaccatc 1020
 accctgcctt gccgcataa gcagatcatc acccgctggc aggagggtgg caaggccatc 1080
 tacgcccccc ccatccggcc cgagatccgc tgcagcagca acatccgg cctgctgctg 1140
 accccgcacg gcccggcggc gatcagcaac accaccgaga tcttccggcc cgccggcgcc 1200
 gacatgcgcg acaactggcg cagcgagctg tacaagtaca aggtggtaa gatcgagccc 1260
 ctggggcggtgg ccccccaccaa ggccaaagcgc cgcgtgtgca aegcgagaaa gcgctaactc 1320
 gag 1323

<210> 36
 <211> 2025
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: gp140.modSF162

<400> 36
 gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
 gcagtctcg ttccgcggcag cgccgtggag aagctgtgg tgaccgtgta ctacggcggtg 120
 cccgtgtgga aggaggccac caccacccctg ttctgcgcac ggcacgcacaa ggccctacgac 180
 accgagggtgc acaacgtgtg ggccacccac gcctgctgac ccaccgaccc caaccccccag 240
 gagatcggtgc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catgggtggag 300
 cagatgcacg aggacatcat cagctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
 accccctgt gcgtgacccct gcactgcacc aacctgaaga acgcccacca caccaagagc 420
 agcaactggga aggagatggc ccggccggcag atcaagaact gcagcttcaa ggtgaccacc 480
 agcatccgcg acaagatgcg aaggaggatc gcccgtttt acaagctgga cgtgggtggcc 540
 atcgacaacg acaacacccatc ctacaagctg atcaactgcg acaccagcgt gatcaccac 600

gcctgccccca aggtgagctt cgagcccatc cccatccact actgcgcccc cgccggcttc 660
 gccatcctga agtgcaacga caagaagtgc aacggcagcg gcccctgcac caacgtgagc 720
 accgtgcagt gcacccacgg catccgcccc gtggtgagca cccagctgct gctgaacggc 780
 agcctggccg aggagggcgt ggtgatccgc agcgagaact tcaccgcacaa cgccaagacc 840
 atcategtgc agctgaagga gagcgtggag atcaactgca cccgcggccaa caacaacacc 900
 cgcaagagca tcaccatcg ggccggccgc gccttctacg ccacccggcga catcatcgcc 960
 gacatccgcg aggccactg caacatcagc ggcgagaagt ggaacaacac cctgaaggcag 1020
 atcgtgacca agctgcaggc ccagttcgcc aacaagacca tcgtttcaa goagagcagc 1080
 ggccggcgacc ccgagatcgat gatgcacagc ttcaactgca gccggcagtt ctctactgc 1140
 aacagcaccc agctgttcaa cagcacctgg aacaacacca tcggccggccaa caacaccaac 1200
 ggcaccatca ccctgcctg ccgcattcaag cagatcatca accgcgtggca ggaggtggc 1260
 aaggccatgt acgccccccc catccgcggc cagatccgct gcagcagcaa catcaccggc 1320
 ctgtgtctga cccgcgacgg cggcaaggag atcagcaaca ccacccgagat ctccggcccc 1380
 ggccggcgccg acatgcgcga caactggcgc acgcgagctgt acaagtacaa ggtggtaag 1440
 atcgagcccc tgggcgtggc cccaccaag gccaagcgcc gcgtggtgcg ggcgcagaag 1500
 cgcgcgtga ccctggggcgc catgttctg ggcttctgg gcgcggccgg cagcaccatg 1560
 ggccggccgca gcctgaccct gaccgtgcag gcccggccagc tgctgagcgg catcggtcag 1620
 cagcagaaca acctgctgcg cgccatcgag gcccaggcgc acctgctgcg gctgaccgtg 1680
 tggggcatca agcagctgca ggcccgcgtg ctggccgtgg agcgctaccc gaaggaccag 1740
 cagctgtgg gcatctgggg ctgcagcgcc aagctgatct gcaccaccgc cgtgcctgg 1800
 aacgcccagct ggagcaacaa gagcctggac cagatctgca acaacatgac ctggatggag 1860
 tgggagcgcg agatcgacaa ctacaccaac ctgatctaca ccctgatcga ggagagccag 1920
 aaccagcagg agaagaacga gcaggagctg ctggagctgg acaagtggc cagcctgtgg 1980
 aactggttcg acatcagcaa gtggctgtgg tacatcta ac tcgag 2025

<210> 37

<211> 1944

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
gp140.modSF162.delV2

<400> 37

gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgtgtgt gctgtgtgg 60
 gcagtcttcg ttgcggccag cgccgtggag aagctgtggg tgaccgtgta ctacggcgtg 120
 cccgtgtgg aaggaggccac caccacccctg ttctgcgcga gcgacgcggaa ggcctacgac 180
 accgagggtgc acaacgtgtg ggccacccac gcctgcgtgc ccacccggcc caaccccccag 240
 gagatcgtgc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtgag 300
 cagatgcacg aggacatcat cagcgtgtgg gaccagagcc tgaaggccctg cgtgaagctg 360
 accccctgt gcgtgaccct gcactgcacc aacctgaa aacgcacccaa caccacggc 420
 agcaacttgg aaggagatgg ccgcggcgag atcaagaact gcagttcaa ggtggcgcc 480
 ggcaagctga tcaactgca caccagcggtg atcaccacgg cctgccccaa ggtgagcttc 540
 gagcccatcc ccatccacta ctgcggccccc gccggcttc ccacccctgaa gtcaacgcac 600
 aagaagttca acggcaggcg cccctgcacc aacgtgagca ccgtcagtg cacccacggc 660
 atccggcccg tggtgagcac ccagctgtgt ctgaaacggca gcctggccga ggagggcggtg 720
 gtatccgca gcgagaactt caccgacaac gccaagacca tcacgtgcg gctgaaggag 780
 agcgtggaga tcaactgcac ccgcggccaaac aacaacaccc gcaagagcat caccatcgcc 840
 cccggcccgcc ccttctacgc caccggcgac atcatcggtg acatccgcgaa ggcctactgc 900
 aacatcagcg gcgagaagtg gaacaacacc ctgaaagcaga tcgtgacccaa gctgcaggcc 960
 cagttcggtca acaagaccat cgtttcaag cagagcagcg gccggcgaccc cgagatcggt 1020
 atgcacagct tcaactgcgg ccgcggatgtt ctctactgca acagcaccatac gctgttcaac 1080
 agcaccttgg acaacaccat ccgcggccaaac aacaccaacgc gcaccatcacc cctgcctgc 1140
 cgcattcaagc agatcatcaa ccgcgtggcag gaggtggggca aggccatgtaa cgcccccccc 1200
 atccggcccgcc agatccgctg cagcagcaac atcaccggcc tgcgtgtgac ccgcggccggc 1260
 ggcaaggaga tcaactgcac caccgagatc ttccggccccc gccggccggca catgcgcgcac 1320
 aactggcgca gcgagctgttca acaactacaag gtgggtgaaga tcgagccctt gggcggtggcc 1380
 cccaccaagg ccaaggcgcc cgtgggtcagc cgccgagaagc ggcggcgac cctggggcgcc 1440

atgttcctgg gtttccctggg cgccgcggc agcaccatgg ggcgcgcag cctgaccctg 1500
 accgtgcagg cccgcacgt gctgagcggc atcgtgcagc agcagaacaa cctgctgcgc 1560
 gccatcgagg cccagcagca cctgctgcag ctgaccgtgt ggggcataa gcagctgcag 1620
 gcccgcgtgc tggccgtgg agcgtacatgg aaggaccagc agctgtggg catctggggc 1680
 tgacggcga agctgatctg caccaccggc gtgcctgg agcgcagctg gagcaacaag 1740
 agcctggacc agatctggaa caacatgacc tggatggagt gggagcgcga gatcgacaac 1800
 tacaccaacc tcatctacac cctgatcgag gagagccaga accagcagga gaagaacgag 1860
 caggagctgc tggagctgg acaagtggcc agcctgtgg actggttcga catcagcaag 1920
 tggctgttgtt acatctaact cgag 1944

<210> 38
<211> 1944
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
gp140.modSF162.delV1/V2

<400> 38
gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgtgtgt gctgtgtgg 60
gcagtcttcg tticgcggcag cggcgtggag aagctgtggg tgaccgtgtta ctacggcgtg 120
cccggtgtgg aggaggccac caccaccctg ttctgcgcgc ggcacgcac ggccctacgac 180
accgagggtgc acaacgtgtg ggcacccac gcctgcgtgc ccaccgaccc caaccccccag 240
gagatgtgc tggagaacgt gaccgagaac ttcaacatgtt ggaagaacaa catgggtggag 300
cagatgcacg aggacatcat cagcctgtgg gaccagagcc tgaaggccctg cgtgaagctg 360
accacccctgt gcgtgaccct gcactgcacc aacctgaaga acggccaccaa caccacggc 420
agcaactgga aggagatgga cggccggcag atcaagaact gcagcttcaa ggtggggcgc 480
ggcaagctga tcaactgca caccacgttg atcaccggc cctgccccaa ggtgagcttc 540
gagccccatcc ccatccacta ctggcccccc gccgggttcg ccacccatggaa gtgcaacgac 600
aagaagttca acggcaggg cccctgcacc aacgtgagca cctgtcagtg caccacggc 660
atccgcccccg tggtagcac ccagtcgtg ctgaacggca gcctggccga ggagggcgtg 720
gtgatccgca gcgagaacctt caccgacaac gccaagaccca tcacgtgtca gctgaaggag 780
agcgtggaga tcaactgcac cggccccaac aacaacaccc gcaagagcat caccatggc 840
cccgccgcgc ccttctacgc caccggcgcac atcatcgccg acatccgcac ggccactgc 900
aacatcagcg gcgagaagtg gaacaacacc ctgaagcaga tcgtgaccaa gctgcaggcc 960
cagttcggca acaagaccat cgtttcaag cagagcagcg gcggcgaccc cgagatctg 1020
atgcacagct tcaactgcgg cggcagatcc ttctactgtca acagcacccaa gctgttcaac 1080
agcacctgga acaacaccat cggccccaac aacaccaacg gcaccatcac cctgcctgc 1140
cgcatcaagc agatcatcaa ccgttggcag gaggtgggca aggccatgtgc gcccccccc 1200
atccgcccccc agatccgtt caccggcaac atcaccggcc tgctgtgtac cccgcacggc 1260
ggcaaggaga tcagcaacac caccgagatc ttccggcccc gccggccgca catgcgcgc 1320
aactggcgca gcgagctgtca acaatcaag gtggtaaga tcgagccctt gggcggtggcc 1380
ccaccaagg ccaagcggc cgtgtgtcag cgcgagaagc gcgcgcgtac cctggggcgc 1440
atgttcctgg gtttccctggg cggccggcgc agcaccatgg ggcgcgcag cctgaccctg 1500
accgtgcagg cccgcacgt gctgagcggc atcgtgcagc agcagaacaa cctgctgcgc 1560
gcacatcgagg cccagcagca cctgctgcag ctgaccgtgt ggggcataa gcagctgcag 1620
gcccgcgtgc tggccgtgg agcgtacatgg aaggaccagc agctgtggg catctggggc 1680
tgacggcga agctgatctg caccaccggc gtgcctgg agcgcagctg gagcaacaag 1740
agcctggacc agatctggaa caacatgacc tggatggagt gggagcgcga gatcgacaac 1800
tacaccaacc tcatctacac cctgatcgag gagagccaga accagcagga gaagaacgag 1860
caggagctgc tggagctgg acaagtggcc agcctgtgg actggttcga catcagcaag 1920
tggctgttgtt acatctaact cgag 1944

<210> 39
<211> 2025
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
gp140.mut.modSF162

<400> 39

```

gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtcttcg tttcgcggcag cgccgtggag aagctgtggg tgaccgtgta ctacggcgtg 120
cccggtgtgga aggaggccac caccacccctg ttctgcgcaca ggcacgcca ggcctacgac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caacccccag 240
gagatcggtc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtgag 300
cagatgcacg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
acccccctgt gcgtgaccct gcactgcacc aacctaaga aacccacca cacaagagc 420
agcaacttgg aaggagatgga ccgcggcgag atcaagaact gcagctcaa ggtgaccacc 480
agcateccgca acaagatgca gaaggaggtac gcccgttct acaagctgga cgtgggtgccc 540
atcgacaacg acaacaccag ctacaagctg atcaactgca acaccagcgt gatcaccacc 600
gcctgccccca aggtgagtt cgagcccatc cccatccact actgcgcccc cgcggcttc 660
gccatcttga agtgcacacg caagaagttc aacggcagcg gcccgtcaca cAACGTGAGC 720
accgtgcagt gcacccacgg catccggccc gtggtagc cccagctgct gctgaacggc 780
agccctggccg aggagggcgt ggtgatccgc aacgagaact tcaccgacaa cgccaagacc 840
atcatcggtc agtgcacacg gacgtggag atcaactgca cccggcccaa caacaacacc 900
cgcaagagc atcaccatcgcc cccggccgc gccttctacg ccaccggcga catcatcgcc 960
gacatccgccc agggccactg caacatcagc ggccgagaagt ggaacaacac cctgaaggcag 1020
atcggtgacca agtgcaggc ccaggctggc aacaagacca tcgtgttcaa gcagagcagc 1080
ggccggcgacc ccgagatgt gatgcacagc ttcaactgctg gccggcgagtt cttctactgc 1140
aacagcaccc agtgcgttcaa cagcacctgg aacaacacca tcggcccaa caacaccaac 1200
ggcaccatca ccctgcctg ccgcacatcg cagatcatca accgcgtggc ggaggtggc 1260
aaggccatgt acggccccccc catccgcggc cagatccgt gcagcagcaa catcaccggc 1320
ctgctgttga cccgcgcacgg cggcaaggag atcgcacaca ccaccgagat ctccggccc 1380
ggccggcgccg acatgcgcga caactggcgc aacgcgactgt acaagtacaa ggtgggtgaag 1440
atcgagcccc tggggctggc ccccaaccaag gccaaggcgc gctgtgtcga ggcgagaag 1500
agccgcgtga ccctggcgcc catgttctg gccttctgg gcccggccgg cagcaccatg 1560
ggcccccgcg gcctgaccct gaccgtgcag gcccggccagc tgctgacggc catcgac 1620
cagcagaaca acctgtgtgc cgccatcgag gcccaggcgc acctgtgtca gctgaccgtg 1680
tggggcatca agcagctgca gcccggcgtg ctggccgtgg agcgcatact gaaggaccag 1740
cagctgtgg gcatctgggg ctgcacggc aagctgtatct gcaccaccgc cgtccctgg 1800
aacgcacgt ggagcaacaa gagcctggac cagatctgaa acaacatgac ctgatggag 1860
tggggcgccg agatcgacaa ctacaccaac ctgatctaca ccctgtcga ggagagccag 1920
aaccaggcagg agaagaacga gcaggagctg ctggagctgg acaagtggc cagccgttgg 1980
aactggttcg acatcagcaa gtggctgtgg tacatctaactcgag 2025

```

<210> 40

<211> 1944

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
gp140.mut.modSF162.delV2

<400> 40

```

gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtcttcg tttcgcggcag cgccgtggag aagctgtggg tgaccgtgta ctacggcgtg 120
cccggtgtgga aggaggccac caccacccctg ttctgcgcaca ggcacgcca ggcctacgac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caacccccag 240
gagatcggtc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtgag 300
cagatgcacg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
acccccctgt gcgtgaccct gcactgcacc aacctaaga aacccacca cacaagagc 420
agcaacttgg aaggagatgga ccgcggcgag atcaagaact gcagctcaa ggtggccgc 480
ggcaagactga tcaactgca caccacgtg atcaccaccagg cctggcccaa ggtgagctc 540

```

gagccccatcc ccatccacta ctgcgcccc gcccggcttcg ccacatcctgaa gtgcaacgac 600
 aagaagttca acggcagcggg cccctgcacc aacgtgagca ccgtgcagtgc caccacacggc 660
 atccggccccgg tggtgagcac ccagctgctg ctgaacggca gcctggccga ggagggcggtg 720
 gtgatccgca gcgagaacctt caccgacaac gccaagacca tcacatcgta gctgaaggag 780
 agcggtggaga tcaactcgac cccggcccaac aacaacaccc gcaagagcat caccatcgac 840
 cccggcccg ccttctacgc caccggcgac atcatcgccg acatccgcca ggcccactgc 900
 aacatcagcg gcgagaagtg gaacaacacc ctgaagcaga tcgtgaccaa gctgcaggcc 960
 cagtccggca acaagagtg cgttcaag cagagcagcg gcccggaccc cgagatcggt 1020
 atgcacagct tcaactcgcc cgccggatcc ttctactgca acagcaccca gctgttcaac 1080
 agcacctgga acaacacccat cggggcccaac aacaccaacg gcacccatcac cctgcccctgc 1140
 cgcacatcaagc agatcatcaa ccgtggcgag gaggtgggca aggccatgta cggggggggcc 1200
 atccggccgccc agatccgctg cagcagcaac atcaccggcc tgctgctgac cccgcacggc 1260
 ggcaggaga tcagcaacac caccgagatc ttccggcccg gcccggcgaa catgcgcgac 1320
 aactggcgca gcgagctgta caagtacaag gtggtaaga tcgagcccc gggcgtggcc 1380
 cccaccaagg ccaagcgccg cgtggtgac ccgtggcgag gcccggcgac cctggggcgcc 1440
 atgttccctgg gcttccctggg cggccggccg agcaccatgg gcccggcgac cctgaccctg 1500
 accgtgcagg cccggccagct gctgagcgcc atcgtgcagc agcagaacaa cctgctgcgc 1560
 gccatcgagg cccagcagca cctgctgcag ctgaccgtgt ggggcataa gcagctgcag 1620
 gcccgcgtgc tggccgtgg agcgttccctgg aaggaccaggc agctgtggg catctggggc 1680
 tgcagcggca agctgatctg caccacccggc gtggccctggg acgcccagctg gagcaacaag 1740
 agcctggacc agatctggaa caacatgacc tggatggagt gggagcgcga gatcgacaac 1800
 tacaccaacc tgatctacac cctgatcgag gagagccaga accagcagga gaagaacgag 1860
 caggagctgc tggagctgga caagtggggcc accctgtggg actgggttgcg catcagcaag 1920
 tggctgtggg acatctaact cgag 1944

<210> 41
 <211> 1836
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:
 gp140.mut.modSF162.delV1/V2

<400> 41

gaattcgcca ccatggatgc aatgaagaga gggctctgtgt gtgtgtgtgt gctgtgtgg 60
 gcagtcttcg ttccggcccg cggccgtggag aagctgtggg tgaccgtgta ctacggcggtg 120
 cccgtgtggg aggaggccac caccacccctg ttctggccca ggcacggccaa ggccctacgac 180
 accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccacccggccaa caaccccccag 240
 gagatcggtgc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catgggtggag 300
 cagatgcacg aggacatcat cagccgtgtgg gaccagagcc tgaagccctg cgtgaagctg 360
 accccctgt gcgtggggcgcc cggcaactgc cagaccggcg tgatcacccca ggccctggccc 420
 aaggtgagct tcgagcccat ccccatccac tactgcgcggcc cggccggctt cgccatcctg 480
 aagtgcacg acaagaagtt caacggcagc ggcccccgtgca ccaacgtgag cacccgtgcag 540
 tgcacccacg gcatccggcc cgtgggtggc accccagctgc tgctgaaacgg cagccctggcc 600
 gaggaggggcg tggtgatccg cagcggagaac ttccaccgaca acgccaagac catcatcggtg 660
 cagctgaagg agagcgtgg aatcaactgc accccggccca acaacaacac cggcaagagc 720
 atcaccatcg gccccggccg cgccttctac gcaaccggcg acatcatcggtg cgacatccgc 780
 caggcccact gcaacatcg cggcggagaag tggaaacaaca ccctgaagca gatcggtgacc 840
 aagctgcagg cccagttcg cacaacggacc atcgtgttca agcagagcag cggcggcgac 900
 cccgagatcg tggatcgac cttcaactgc ggcggcgagt tttctactg caacagcacc 960
 cagctgttca acagcacctg gcaacacacc atcggccccc acaacacccaa cggcaccatc 1020
 accctggccctt gccgcataaa gcaagatcatc aaccgtgtggc aggaggtggg caaggccatg 1080
 ttcggccccc ccatccggcc ccaatccgc tgcagcggcc acatcacccgg cctgctgctg 1140
 accccggacg gcccggaa gatcggccac accaccggaga tttccggcc cggcggcgcc 1200
 gacatcgccg acaactggcg cagcggatctg tacaagtaca aggtgggtgaa gatcgagccc 1260
 ctggggcggtgg ccccccacca ggcggccggc cggcgtgggtgc agcggccggaa gageggccgtg 1320
 accctggggcg ccatgttctt gggcttccctg ggcggccggcc gcaacccat gggcgcccgcc 1380
 agcctgaccc tgaccgtgca ggcggcccg ctgtgagcg gatcgatcgca gcaacccat 1440

aacctgtcgc	gcccacatcgaa	ggccccagcgac	cacccctgtcg	agctgaccgt	gtggggcata	1500
aaggcagtgc	aggccccgcgt	gctggccgtgt	gagcgctacc	tgaagggacca	gcagctgtcg	1560
ggcatctggg	gctgcagcggt	caagctgatc	tgcaccaccc	ccgtgcccctg	gaacgccacg	1620
tggagcaaca	agagccgtgg	ccagatctgg	aacaacatga	cctggatgg	gtgggagcgc	1680
gagatcgaca	actacaccaa	cctgtatctac	accctgatcg	aggagagcca	gaaccagcag	1740
gagaagaacg	agcaggagct	gctggagctg	gacaagtggg	ccagcctgtg	gaactggttc	1800
gacatcagca	agtggctgtg	gtacatctaa	ctcgag			1836

```
<210> 42
<211> 2025
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence:
qpl140.mut7.modsF162

<400> 42
gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtcctcg tttcccccag cggccgtggag aagctgtggg tgaccgtgta ctacggcgtg 120
cccggtgtgga aggaggccac caccaccctg ttctgcccga ggcacgccaa ggccctacac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccacccgaccc caacccccc 240
gagatcgtgc tggagaacgt gaccgagaac ttcacatgt ggaagaacaa catggtgag 300
cagatgcacg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
acccccctgt gcgtgaccct gcactgcacc aacctgaaga acgccaccaa cacaagagc 420
agcaactgga aggagatgga cccgccccgg atcaagaact gcagcttcaa ggtgaccacc 480
agcatccgca acaagatgca gaaggagtac gcccctttt acaagctgga cgtgggtgccc 540
atcgacaacg acaacaccag ctacaagctg atcaactgca acaccagcgt gatcaccac 600
gcctgccccca aggtgagctt cgagcccatc cccatccact actgcgcccc cgccggcttc 660
gccatcctga agtgcacacga caagaagttc aacggcagcg gcccctgcac caacgtgagc 720
accgtgcagt gcaccacccg catccgcccc gttggtgagca cccagctgt gctgaacccg 780
agcctggccg aggagggcgt ggtgtatccgc agcgagaact tcaccgacaa cgccaagacc 840
atcatcgtgc agctgaagga gagcgtggag atcaactgca cccgccccaa caacaacacc 900
cgcaagagca tcaccatcg ccccgccccg gccttctacg ccaccggcga catcatcgcc 960
gacatccgccc aggccactg caacatcagc ggcgagaagt ggaacaacac cctgaagcag 1020
atcgtgacca agctgcaggc ccagttcggc aacaagacca tcgtgttcaa gcagagcagc 1080
ggcggccgacc cccgagatcgt gatgcacacg ttcaactgcg ggcggcagttt cttctactgc 1140
aacagcaccc agtgttcaa cagcacctgg aacaacacca tcggccccaa caacaccaac 1200
ggcaccatca ccctggccctg cccgatcaag cagatcatca accgctggca ggaggtggc 1260
aaggccatgt acggcccccc catccgccccg cagatccgt gcagcagcaa catcaccggc 1320
ctgctgctga cccgcgacgg cggcaaggaa atcagaacaa ccaccggat cttccggccc 1380
ggcggccggcc acatgcgcga caactgcgcg aegaggtgt acaagtacaa ggtggtgaaag 1440
atcgagcccc tgggcgtggc ccccaccaag gccatcagca gcgtggtgca gagegagaag 1500
agcgccgtga ccctggggcgc catgttccctg ggcttcctgg gcccggccgg cagcaccatg 1560
ggcggcccgca gcctgaccct gaccgtgcag gcccggccagc tgctgagcgg catcgtgcag 1620
cagcagaaca acctgctgcg ccccatcgag gcccggccagc acctgctgcg gctgaccctg 1680
tggggcatca agcagctgca ggcccgctgt ctggccgtgg aegctactt gaaaggaccag 1740
cagctgctgg gcatctgggg ctgcagccgc aagctgatct gcaccacccgc cgtggccctgg 1800
aacgcacgt ggagcaacaa gagcctggac cagatctgaa acaacatgac ctggatggag 1860
tgggagccgc agatcgacaa ctacaccaac ctgatctaca ccctgatcga ggagagccag 1920
aaccagcagg agaagaacga gcaggagctg ctggagctgg acaagtggc cagcctgtgg 1980
aactggttcg acatcagcaa gtggctgtgg tacatcta ac tcqaa 2025

<210> 43
<211> 1944
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
gpl40.mut7.modSF162.delV2

<400> 43

```

gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgtctgct gctgtgtgga 60
gcagtcttcg tttcgccag cgccgtggag aagctgtggg tgaccgtgta ctacggcgtg 120
cccggtgtgga aggaggccac caccaccctg ttctgcgcga ggcacccaa ggcttacgac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caaccccccag 240
gagatcgtgc tggagaaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcacg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accccccctgt gcgtgaccct gcactgcacc aacctgaaga acgccaccaa caccaagagc 420
agcaacttggaa aggagatggaa ccggggcggat atcaagaact gcagcttcaa ggtgggcggc 480
ggcaagctga tcaactgcaa caccagcgtg atcaccggg cctgccccaa ggtgagctc 540
gagcccatcc ccatccacta ctgcggccccc gccggcttcg ccacccctgaa gtgcaacgac 600
aagaagttaa acggcagcgg cccctgcacc aacgtgagca ccgtgcagtg caccacggc 660
atccggcccg tggtagcac ccagctgtgc ctgaacggca gcctggccga ggagggcgtg 720
gtgatccgca gcgagaactt caccgacaac gccaagacca tcacgtgca gctgaaggag 780
agcgtggaga tcaactgcac ccggcccaac aacaacaccc gcaagagcat caccatcgac 840
cccgcccgcg ccttctacgc caccggcgcac atcatcgac acatccgcac ggcccaactgc 900
aacatcagcg gcgagaagtga aacaacacc ctgaagcaga tcgtgacccaa gctgcaggcc 960
cagttcggca acaagacccat cgtgttcaag cagagcagcg gcggcgaccc cgagatcgtg 1020
atgcacacgt tcaactgcgg cggcgagttc ttctactgca acagcacccca gctgttcaac 1080
agcaccttggaa acaacacccat cggcccaac aacaccaacg gcacccatcac cctgccccctgc 1140
cgcacatcaga agatcatcaa ccgctggcag gaggtgggca aggccatgta cggcccccccc 1200
atccggcccg agatccgtg cagcagcaac atcaccggg tgcgtgtgac cccgcacggc 1260
ggcaaggaga tcagcaacac caccggatc ttccggccccc gccggccggca catgcgcgcac 1320
aactggcgca gcgagctgta caagtacaag gtggtagaa tgcagccccct gggcgtggcc 1380
cccaccaagg ccatcagcg cgtggtagc agcgagaaga ggcgcgtgac cctggggcc 1440
atgttccctgg gcttccctggg cggccggccgc agcaccatgg ggcgcgcag cctgaccctg 1500
accgtgcagg cccggccagct gctgagcggc atcgtgcagc agcagaacaa cctgctgcgc 1560
gccatcgagg cccagcagca cctgctgcag ctgaccgtgt gggcatcaa gcagctgcag 1620
gcccgctgc tggccgtggaa ggcgtacccctg aaggaccagc agctgtggg catctggggc 1680
tgcagcggca agctgatctg caccacccggc gtgccttggaa acgcgcagctg gagcaacaag 1740
agcctggacc agatctggaa caacatgacc tggatggagt gggagcgcg gatcgacaac 1800
tacaccaacc tggatctacac cctgatcgag gagagccaga accagcagga gaagaacgag 1860
caggagctgc tggagcttggaa caagtggggcc agcctgttggaa actggatcgac catcagcaag 1920
tggctgttgtt acatctaact cgag 1944

```

<210> 44

<211> 1836

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
gpl40.mut7.modSF162.delV1/V2

<400> 44

```

gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgtctgct gctgtgtgga 60
gcagtcttcg tttcgccag cgccgtggag aagctgtggg tgaccgtgta ctacggcgtg 120
cccggtgtgga aggaggccac caccaccctg ttctgcgcga ggcacccaa ggcttacgac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caaccccccag 240
gagatcgtgc tggagaaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcacg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accccccctgt gcgtggccgc cggcaactgc cagaccgaccc tgatcaccctg ggcctggccc 420
aagggtgatctg tgcagcccat ccccatccac tactgcggcc cggccggctt cgccatctg 480
aagtgcacg acaagaagttt caacggcgcg ggccttgcga ccaacgtgag caccgtgcag 540
tgcacccacg gcatccggcc cgtggtagc acccagctgc tgctgaacgg caccctggcc 600
gaggagggcg tggatcttggaa cagcggaccc ttccaccggac acggccaaacatcatcgtg 660

```

cagctgaagg agagcgtgga gatcaactgc acccgccccca acaacaacac ccgcaagagc 720
 atcaccatcg gccccggccg cgccctctac gccacccggg acatcatcg cgacatccgc 780
 caggcccact gcaacatcg cgccgagaag tggacaacaaca ccctgaagca gatcgtgacc 840
 aagctgcagg cccagttcg caacaagacc atcgttca agcagagcag cgccggcgac 900
 cccgagatcg ttagtcacag cttaactgc ggcggcgagt tcttctactg caacagcacc 960
 cagctgtca acagcacctg gaacaacacc atcgccccca acaacaccaa cgccaccatc 1020
 accctgcctt gccgcataa gcagatcatc aaccgctggc aggagggtggg caaggccatg 1080
 tacgcccccc ccatccgcgg ccagatccgc tgcagcagca acatcacccg cctgctgtg 1140
 acccgcgacg gccgcaagga gatcagcaac accaccgaga tcttccgccc cgccggcgcc 1200
 gacatgcgcg acaactggcg cagcgagctg tacaagtaca aggtggtaa gatcggccc 1260
 ctgggcgtgg cccccaccaa ggccatcagc agcgtggtgc agagcgagaa gagegccgtg 1320
 accctggcgcc ccatgttctt gggcttctg ggccggcccg gcagcaccat gggcccccgc 1380
 agcctgaccc tgaccgtgca ggcggcccg ctgctgagcg gcategtgca gcacgagaac 1440
 aacctgctgc gcccgcataa ggcccgccag cacctgctgc agctgaccgt gtggggcattc 1500
 aagcagctgc aggccccgt gctggccgtg gagcgctacc tgaaggacca gcagctgctg 1560
 ggcacatctggg gctgcagcg caagctgate tgcaccaccg ccgtgcctg gaacgcccage 1620
 tggagcaaca agagcctgga ccagatctgg aacaacatgaa cctggatgga gtgggagcgc 1680
 gagatcgaca actacaccaa cctgatctac accctgatcg aggagagcca gaaccagcag 1740
 gagaagaacg agcaggagct gctggagctg gacaagtggg ccagcctgtg gaactggttc 1800
 gacatcagca agtggctgtg gtacatctaa ctgcag 1836

<210> 45
 <211> 2025
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:
 gp140.mut8.modSF162

<400> 45
 gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
 gcagtcttcg ttccgcggc cgccgtggag aagctgtggg tgaccgtgta ctacggcggt 120
 cccgtgtgga aggaggccac caccacccctg ttctgcgcctt ggcacccaa ggcttacgac 180
 acccgagggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caaccccccag 240
 gagatcgtgc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtgag 300
 cagatgcacg aggacatcat cagcgtgtgg gaccagagcc tgaaggccctg cgtgaagctg 360
 acccccccgtt gctgtgaccc ctgcgtcacc aacctgaaaga acgcccacca caccaagagc 420
 agcaactgga aggagatgga ccgcggcgag atcaagaact gcagctcaa ggtgaccacc 480
 agcatccgca acaagatgca gaaggagtac gcccgttct acaagctgga cgtgggtgccc 540
 atcgacaacg acaacaccag ctacaagctg atcaactgca acaccagcgt gatcaccacc 600
 gcctgccccca aggtgagctt cgagcccatc cccatccact actgcggcccc cgccggcttc 660
 gccatcctga agtgcacacgca caagaagtcc aacggcagcg gcccctgcac caacgtgagc 720
 accgtgcagt gcacccacgg catccgcggc gtggtgagca cccagctgt gctgaacggc 780
 agcctggccg aggagggcgt ggtgatccgc agcggagaact tcaccgacaa cgccaagacc 840
 atcatcgtgc agctgaaggaa gagcgtggag atcaactgca cccggcccaa caacaacacc 900
 cgcacagacgca tcaccatcg cccggccgc gccttctacg ccaccggcga catcatcg 960
 gacatccgccc agggccactg caacatcagc ggcgagaagt ggaacaacac cctgaaggcag 1020
 atcggtgacca agctgcaggc ccagttcgcc aacaagacca tcgtgttcaa gcagagcagc 1080
 ggccggcgacc cccgagatcgt gatgcacacgcttcaactgcg gggcgagtt ctctactgc 1140
 aacagcaccctt agctgttcaa cagcacttgg aacaacacca tcggcccaa caacaccaac 1200
 ggcaccatca ccctgcctt cccatcagc agatcatca accgctggca ggaggtgggc 1260
 aaggccatgt acggccccc catccggcggc cagatccgcgt gcagcagcaa catcaccggc 1320
 ctgcgtgtca cccggcgcacgg cggcaaggag atcagcaaca ccaccgagat cttccggccc 1380
 ggccggcgccg acatgcgcga caactggcgc agcggagctgt acaagtgacaa ggtgggtgaag 1440
 atcgagccccc tggggcgtggc cccacccatc gccatcagca gcgtggtgc gaggcagaag 1500
 agcgcgtga ccctggggcgc catgttccctg ggcttctgg ggcggccggc cagcaccatg 1560
 ggcccccgcga gcctgaccctt gaccgtgcag gcccggccagc tgctgagcgg catcgtgcag 1620
 cagcagaaca acctgctgcg cggccatcgcag gcccagcagc acctgctgca gctgaccgtg 1680

tggggcatca agcagctgca ggcccgcggtg ctggccgtgg agcgctacct gaaggaccag 1740
 cagctgtgg gcatctgggg ctgcagcgcc aagctgatct gcaccaccgc cgtccccctgg 1800
 aacgccagct ggagcaacaa gagcctggac cagatctggaa acaacatgac ctggatggag 1860
 tgggagcgcg agatcgacaa ctacaccaac ctgatctaca ccctgatcga ggagagccag 1920
 aaccagcagg agaagaacga gcaggagctg ctggagctgg acaagtgggc cagcctgtgg 1980
 aactggttcg acatcagcaa gtggctgtgg tacatctaact tcgag 2025

<210> 46
 <211> 1944
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:
 gp140.mut8.modSF162.delV2

<400> 46
 gaattcgcca ccatggatgc aatgaagaga gggctctgt gtgtgctgct gctgtgtgg 60
 gcagtcttcg ttccgcccag cgccgtggag aagctgtggg tgaccgtgta ctacggcggt 120
 cccgtgtgga aggaggccac caccacccctg ttctgcgcac ggcacccaa ggcctacgac 180
 accgaggatgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caaccccccag 240
 gagatcgtgc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
 cagatgcacg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
 acccccccgt gcgtgaccct gcactgcacc aacctgaaga acgcacccaa caccaggac 420
 agcaactgga aggagatgga ccgcggcgag atcaagaact gcagcttcaaa ggtggggcgc 480
 ggcaggctga tcaactgcaa caccacgtgc atcacccagg cctgcacccaa ggtgagctc 540
 gagcccatcc ccatccacta ctgcgcaccc gccggcttcg ccatccgtaa gtgcacacgac 600
 aagaagttca acggcagcgg cccctgcacc aacgtgagca cctgcgtgc acccacggc 660
 atccgccccg tggtgagcac ccagctgtgc ctgaacggca gcctggccga ggagggcgtg 720
 gtgatccgca gcgagaactt caccgacaac gccaagagcca tcatcgtaa gctgaaggag 780
 agcgtggaga tcaactgcac ccgcacccaa aacaacaccc gcaagagcat caccatcgac 840
 cccggccgcg ccttctacgc caccggcgac atcatcgccg acatccgca ggcccactgc 900
 aacatcagcg gcgagaagtg gaacaacacc ctgaagcaga tcgtgacccaa gctgcaggcc 960
 cagttcggca acaagaccat cgtgttcaag cagacgacgc gggcgaccc cgagatcg 1020
 atgcacagct tcaactgcgg cggcgagttc ttctactgca acagcacccaa gctgttcaac 1080
 agcacctgga acaacaccat cggccacccaa aacaccaacg gcaccatcac cctgcctgc 1140
 cgcacatcaagc agatcatcaa ccgcgtggcag gagggtggca aggccatgta cgcacccccc 1200
 atcccgccgc agatccgtgc cagcagcaac atcacccggcc tgctgtgac cgcgcacggc 1260
 ggcaggaga tcaactgcac caccgagatc ttccgcaccc gccggcgacgc catgcgcac 1320
 aactggcgca gcgagctgta caagtacaag gtggtaaga tcgagccctt gggcggtggc 1380
 cccaccatcg ccatcagcag cgtgggtgcag agcgagaaga ggcgcgtgac cctggggcgc 1440
 atgttctgg gcttcctggg cggccgcggc agcaccatgg ggcgcacccag cctgaccctg 1500
 acggcggcagg cccggcagct gctgagcgac atcgatgcacg acgagaacaa cctgcgtgc 1560
 gccatcgagg cccagcagca cctgcgtgcag ctgaccgtgt ggggcataa gcagctgcag 1620
 gcccgcgtgc tggccgtggc ggcgtacctg aaggaccacg agctgctggg catctggggc 1680
 tgcagcggca agctgatctg caccacccgc gtgcctggaa acgcccacgt gagaacaac 1740
 agctggacc agatctggaa caacatgacc tggatggagt gggagcgcga gatcgacaac 1800
 tacaccaacc tcatctacac cctgtatcgag gagagccaga accagcagga gaagaacgag 1860
 caggagctgc tggagctggc caagtgggc acgcctgtgg aactggttcga catcagcaag 1920
 tggctgtggt acatctaact cgag 1944

<210> 47
 <211> 1836
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:
 gp140.mut8.modSF162.delV1/V2

<400> 47

```

gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtcttcg tttcgcccg cgccgtggag aagctgtgg tgaccgtgta ctacggcgtg 120
cccggttggaa aggaggccac caccaccctg ttctgcgcca gcgacgccaa ggcctacgac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caaccccccag 240
gagatcggtc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtgag 300
cagatgcacg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accccccgtg gcgtggggcgc cgccaactgc cagaccagcg tgcataccccca ggcctgcccc 420
aagggtgagct tcgagcccat cccatccac tactgcgcc cgcgggctt cgccatcctg 480
aagtgcacg acaagaagtt caacggcgc ggccttgcgc ccaacgttag caccgtgcag 540
tgcacccacg gcatccggcc cgtgggtgagc acccagctgc tgcataacgg cagcctggcc 600
gaggaggggcg tgggtatccg cagcggagaac ttcaaccgaca acgccaagac catcatcg 660
cagctgaagg agagcgttgg gatcaactgc accccggccca acaacaacac cgcgaagagc 720
atcaccatcg gccccggccg cgcccttctac gccaccggcg acatcatcg cgcacatccgc 780
caggcccact gcaacatcatc cggcgagaag tggacaaca cccatgcgca gatcggtgacc 840
aagctgcagg cccagttcg cacaaggacc atcggttca agcagagcg cggcggcgcac 900
cccgagatcg tgcataccatc cttcaactgc ggcggcgagt ttttctactg caacagcacc 960
cagctgttca acagcacctg gaacaacacc atcgccccc acaacaccaa cgcacccatc 1020
accctgcctt gccgcataaa gcaatcatc aaccgttggc aggagggtgg caaggccatg 1080
tacggggggcc ccatccggcc cgagatccgc tgcagcggca acatcaccgg cctgctgctg 1140
acccgcgacg gccggcaagga gatcagcaac accaccgaga tcttccgccc cggcggcggc 1200
gacatgcgcg acaactggcg cagcgagctg tacaagtaca aggtggtggaa gatcgagccc 1260
ctggggcggtgg ccccccacat cggccatcgc agcgtgggtgc agagcggagaa gagcggccgtg 1320
accctggcgcc ccatgttctt ggggttctg ggcggccgcg gcagcaccat gggcggccgc 1380
agcctgacc tgcataccatc ggcggcccg ctgctgagcg gatcgatcgca gcagcagaac 1440
aacctgtgc ggcgcatacg ggcggcggcag cacatgtgc agctgaccgt gtggggcattc 1500
aagcagctgc agggcccggt gctggccgtg gagcgctacc tgaaggacca gcaagctgtg 1560
ggcatctggg gctgcagcg ccaatgtatc tgcaccaccc cctgcccctg gaacgcccgc 1620
tggagcaaca agagccttgg ccaatgtatc aacaacatcg cctggatggg gtgggagcgc 1680
gagatcgaca actacaccaa cctgatctac accctgtatc aggagagcca gaaccaggcag 1740
gagaagaacg agcaggagct gctggagctg gacaagtggg ccagctgtg gaactgggttc 1800
gacatcagca agtggctgtg gtacatctaa ctgcag 1836

```

<210> 48

<211> 2547

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: gp160.modsF162

<400> 48

```

gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtcttcg tttcgcccg cgccgtggag aagctgtgg tgaccgtgta ctacggcgtg 120
cccggttggaa aggaggccac caccaccctg ttctgcgcca gcgacgccaa ggcctacgac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caaccccccag 240
gagatcggtc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtgag 300
cagatgcacg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accccccgtg gcgtggccgcg cactgcacc aacctgaaga acgcccacca caccacggc 420
agcaacttgg aaggatggc cccggccggatc atcaagaact gcaatcgatc ggtgaccacc 480
agcatccgc acaagatcgca gaaggagtgac gcccgttct acaagcttgg cgtgggtggcc 540
atcgacaaacg acaacaccatg ctacaatgtc atcaactgc acaccacgt gatccacccag 600
gcctggggcc aaggatgtt cggccatccat cccatccact actgcggcc cggccggcttc 660
gcacatcttgc agtgcacgcg caagaatgtt aacggcggccg gcccgttgcac caacgttggc 720
accgtgttgc gcaacccacgg catccggccc gtgggtggcc cccatgtgt gctgaacggc 780
agcctggccg aaggaggccgt ggtgatccgc agcggaaact tcaccggacaa cgccaaagacc 840
atcatcgatc agctgttggg gacgtggag atcaactgc cccggccca aacaacacc 900
cgcaagagca tcaccatcg cccggccgc gccttctac ccaccggcga catcatcgcc 960
gacatccgc aaggccactg caacatcgac ggcggagaat ggaacaacac cctgttggc 1020

```

atcgtgacca agctgcaggc ccagttcggc aacaagacca tcgtgttcaa gcagagcagc 1080
 ggcggcgacc ccgagatcgt gatcacagc ttcaactgcg gcccggagtt cttctactgc 1140
 aacagcaccc agctgttcaa cagcacctgg aacaacacca tcggccccaa caacaccaac 1200
 ggcaccatca ccctgcctg cccatcaag cagatcatca acgcgtggca ggaggtggc 1260
 aaggccatgt acggccccc catccgcggc cagatccgt gcagcagcaa catcacccggc 1320
 ctgtgtcga cccgcacgg cgccaaggag atcagcaaca ccaccgagat ctccggcccc 1380
 ggcggcgccg acatgcgcga caactggcgc agcgagctgt acaagtacaa ggtggtaag 1440
 atcgagcccc tgggcgtggc cccaccaag gccaagcgcc gcgtgtgca gcgcgagaag 1500
 cgcggcgtga ccctggcgc catgttctg ggcttcctgg gcccggccgg cagcaccatg 1560
 ggcggccgca gcctgaccct gaccgtgcg gcccgcacgc tgctgagcgg catcgtgcag 1620
 cagcagaaca acctgctgcg cgcacatcgag gcccagcagc acctgctgca gctgaccgtg 1680
 tggggcatca agcagctgca gcccgcgtg ctggccgtgg agcgctacct gaaggaccag 1740
 cagctgctgg gcatctgggg ctgcagcggc aagctgatct gcaccaccgc cgtccctgg 1800
 aacgccagct ggagcaacaa gagcctggac cagatctggc acaacatgac ctggatggag 1860
 tgggagcgcg agatcgacaa ctacaccaac ctgatctaca ccctgatcga ggagagccag 1920
 aaccagcagg agaagaacga gcaggagctg ctggagctgg acaagtggc cagcctgtgg 1980
 aactggttcg acatcagcaa gtggctgtgg tacatcaaga tcttcatcat gatcgtggc 2040
 ggcctggtgg gcctgcgtat cgttctacc gtgctgagca tcgtgaaccgc cgtgcgcac 2100
 ggctacagcc ccctgagett ccagacccgc ttcccccgc cccgcggcccc cgaccgcggcc 2160
 gagggcatacg aggaggagggg cggcgagcgc gaccgcgacc gcagcagccc cttggtgac 2220
 ggcctgctgg ccctgatctg ggacgacctg cgcagcctgt gcctgtttag ctaccaccgc 2280
 ctgcgcgacc tgatcctgtat cggcccccgc atcgtggagc tgctggccg cccggctgg 2340
 gagggccctga agtactgggg caacctgctg cagtaactgga tccaggagct gaagaacagc 2400
 gccgtgagcc tggcgacgc catcgccatc gccgtggccg agggcaccga ccgcattatc 2460
 gaggtggccc agcgcatcg cccgccttc ctgcacatcc cccgcgcgc cggccaggc 2520
 ttcgagcgcg ccctgctgta actcgag 2547

<210> 49

<211> 2466

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:

gp160.modSF162.delV2

<400> 49

gaattcgcca ccatggatgc aatgaagaga gggctctgt gtgtgtgtgt gctgtgtgga 60
 gcagtctcg tttcgcccg cggcggtggag aagctgtggg tgaccgtgtt ctacggcggt 120
 cccgtgtgga aggaggccac caccacccctg ttctgcgcga ggcacgcacca ggcctacgac 180
 accgagggtgc acaacgtgtg gcccacccac gcctgcgtgc ccaccgcacca caaccccgac 240
 gagatcgtgc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtgag 300
 cagatgcacg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
 accccctgt gcgtgaccct gcactgcacc aacctgaaga acgcccacca caccaagagc 420
 agcaactgga aggagatgga cccggcgag atcaagaact gcagttcaa ggtggccgc 480
 ggcagactga tcaactgcaa caccagcgtg atcaccacccgg cctgcggccaa ggtgagctc 540
 gagcccatcc ccatccacta ctgcgcggcc gccggcttcg ccacccctgaa gtgcaacgc 600
 aagaagttca acggcagcgg cccctgcacc aacgtgagca ccgtgcagtg cacccacggc 660
 atccggcccg tggtgagcac ccagctgtgt ctgaacggca gcctggccga ggagggcgtg 720
 gtgatccgca gcgagaactt caccgacaac gccaagacca tcacgtgca gctgaaggag 780
 agcgtggaga tcaactgcac cccgcaccc aacaacaccc gcaagagcat caccatcgac 840
 cccggccgcg ccttctacgc caccggcgac atcatcgccg acatccgcac ggcggactgc 900
 aacatcagcg gcgagaagtg gaacaacacc ctgaaggcaga tcgtgaccaa gctgcaggcc 960
 cagttcgca acaagaccat cgtgttcaag cagagcagcgc gccggcaccgc cgagatcgtg 1020
 atgcacagct tcaactgcac cggcgatcc ttctactgca acgcacccca gctgttcaac 1080
 agcacctgga acaacaccat cggccggccaa aacaccaacg gcaccatcac cctgcggctgc 1140
 cgcacatcaagc agatcatcaa cccgtggcag gaggtggcga aggccatgta cggccccccc 1200
 atccggcccg agatccgtg caccgacaa atcaccggcc tgctgacgc cccgcacggc 1260
 ggcaggaga tcagcaacac caccgagatc ttccggccgg gccggccgc catgcgcac 1320

aactggcgca gcgagctgta caagtacaag gtggtaaga tcgagccct gggcgtggcc 1380
 cccaccaagg ccaagcgccg cgtggtcag cgcgagaagc gcccgtgc cctggcgcc 1440
 atgttctgg gtttcctggg cggccggc agcaccatgg gcccggcag cctgaccctg 1500
 accgtgcagg cccggcagct gctgagcggc atcgtgcagc agcagaacaa cctgctgc 1560
 gccatcgagg cccagcagca cctgtgcag ctgaccgtt gggcatcaa gcagctgcag 1620
 gcccgcgtgc tggccgtgga ggcgtacctg aaggaccagc agctgtggg catctgggc 1680
 tgcagcggca agctgatctg caccaccggc gtgcctggg acgcgcagctg gagcaacaag 1740
 agcctggacc agatctggaa caacatgacc tggatggagt gggagcgcga gatcgacaac 1800
 tacaccaacc tcatctacac cctgtatcgag gagagccaga accagcagga gaagaacgag 1860
 caggagctgc tggagctgga caagtggcc accgtgttgc actgtttcgatcatcg 1920
 tggctgtggt acatcaagat cttcatcatg atcgtggccgc gcctgtggg cctgcgcattc 1980
 gtgttcaccg tgctgagcat cgtgaaccgc gtgcggccagg gctacagccc cctgagcttc 2040
 cagacccgct tcccccccccc cccggggcccc gaccggccccc agggcatcgaa ggaggagggc 2100
 ggcgagcgcg accgcgaccgc cggcggccccc ctgggtgcacg gcctgtggc cctgatctgg 2160
 gacgacctgc gcagccctgt cctgttcagc taccaccggc tgccgcaccc gatctgtatc 2220
 gccgccccca tcgtggagct gctggggccgc cgcggctggg agggccctgaa gtactggggc 2280
 aacctgtgc agtactggat ccaggagctg aagaacagcg cctgtggaccc gttcgacgccc 2340
 atcgccatcg ccgtggccga gggcaccgac cgcacatcg aggtggccca ggcacatcgcc 2400
 cgcgccttcc tgcacatccc cccgcgcatac cgcgcaggcgc cctgtgttaa 2460
 ctgcgag 2466

<210> 50
<211> 2358
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
gp160.modSF162.delV1/V2

<400> 50
gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgtgtgtt gctgtgtgg 60
gcagtcttcg ttcccccac cgcgtggag aagctgtggg tgaccgtgtt ctacggcg 120
cccggtgtggaa aggaggccac caccaccctg ttctgcgcac ggcacccaa ggcttacgac 180
accgagggtgc acaacgtgtt ggcacccac gcctgcgtgc ccaccgaccc caaccccccag 240
gagatcgtgc tggagaacgtt gaccgagaac ttcaacatgtt ggaagaacaa catgggtgg 300
cagatgcacg aggacatcat cagcgtgtgg gaccagagcc tgaagccctg cgtgaagctg 360
acccccctgtt gctgtggcgc cggcaactgc cagaccagcg tcatcacccca ggcttgc 420
aaggtgagct tgcggccat ccccatccac tactgcgc cccggcgtt cgcacatctg 480
aagtgcacg acaagaagttt caacggcagc ggccctgtca ccaacgtgag caccgtgcag 540
tgcacccacg gcatccggcc cgtgggtgagc acccagctgc tgctgaacgg cagcctggcc 600
gaggaggggcg tggtgatccg cagcggaaatc ttcaccgaca acgccaagac catcatcg 660
cagctgaagg agagctggaa gatcaactgc accccggccca acaacaacac cggcaagagc 720
atcaccatcg gccccggccg cgccttctac gccaccggcg acatcatcg cgacatccgc 780
caggcccaact gcaacatcatcg cggcggaaatc tggaaacaaca ccctgaagca gatctgtacc 840
aagctgcagg cccagttccgg caacaagacc atcgtgttca agcagagcag cggcggcgcac 900
cccgagatcg tcatcgacatc cttcaactgc ggcggcgatg tcttctactg caacagcacc 960
cagctgttca acagcacccatg gaacaaacacc atcggccca acaacacccaa cggcaccatc 1020
accctgcctt gccgcacatca gcatcgatccatc aaccgtgtgg aggaggtggg caaggccatg 1080
tacggccccc ccatecgccgg ccagatccgc tgcaggcgc acatcacccgg cctgtgtctg 1140
accctgcacg gccggcaaggaa gatcgcacacc accccggatg tcttccggcc cggcggcgc 1200
gacatgcgcg acaactggcg cagcgtgtt tacaatgtt gatcgagccc 1260
ctggggcgtgg ccccccacca ggcacccgc cgcgtggcgc agcgcggaaa ggcgcgcgtg 1320
accctggccg ccatgttccctt gggcttccatc ggcgcggccgc gcatcgaccat ggcgcggcc 1380
agcctgaccc tggatgttca gggccggccatc ctgtgtggcgc gcatcgatc gacggcggcc 1440
aacctgtgc ggcacatcgaa gggccggccatc cacatgttgc agctgaccgt gtggggcattc 1500
aagcagctgc agggccggccatc gctggccgtt gggccggccatc tgaaggacca gatcgatcg 1560
ggcatctggg gctgcggccatc caagctgtatc tgcacccaccgc cctgtgcctg gacggccac 1620
tggagcaaca agagctgttca ccaacatcgatc cctggatggaa gtggggcgc 1680

```

gagatcgaca actacaccaa cctgatctac accctgatcg aggagagcca gaaccagcac 1740
gagaagaacg agcaggagct gctggagctg gacaagtggg ccagcctgtg gaactgggtc 1800
gacatcagca agtggctgtg gtacatcaag atcttcatca tgatcgtggg cggcctgggt 1860
ggcctgcgca tcgtgttac cgtgctgagc atcgtgaacc gcgtgcgcca gggctacagc 1920
ccccctgagct tccagaccccg cttcccccgc ccccgccggcc cggaccggccc cgagggcata 1980
gaggaggagg gcggcgagcg cgaccgcgac cgacgcagcc ccctgggtca cggcctgggt 2040
ccccctgatct gggacgacct ggcgcagcctg tgccctgttca gctaccacccg cctgcgcgac 2100
ctgatcctga tcgcccggcc catcgatggag ctgtctggcc gcccgggtcg ggaggccctg 2160
aagtactggg gcaacacctgct gcagtaactgg atccagggac tgaagaacacg cgccgtgagc 2220
ctgttcgacg ccatcgccat cgccgtggcc gagggcacccg accgcatcat cgaggtggcc 2280
cagcgcacatcg gcccgcgcctt cctgcacatc ccccgccgca tccgcccaggg cttcgagcgc 2340
ccccctgctgt aactcgag 2358

```

```
<210> 51
<211> 1494
<212> DNA
<213> Human immunodeficiency virus
```

```

<400> 51
acaacagtc tgtgggtcac agtctattat ggggtacctg tggaaaga agcaaccacc 60
actctgttt gtgcatcaga tgctaaagca tacaaggcg aggcacataa cgtctggct 120
acacatgcct gtgtaccccac agaccccaac ccacaggaa taaatcta acaatgtgaca 180
aaaaattta acatgtggaa aaataacatg gtggaaacaga tgcataggg tataatcagt 240
ttatggatc aaaggctaaa gccatgtgtaa atttaaccc cactctgtgt tactttaaat 300
tgtactgata agttgacagg tagtactaat ggcacaaaata gtactagtgg cactaatgt 360
actagtggca ctaatagtac tagtactaat agtactgata gttggaaaaa gatgccagaa 420
ggagaaataa aaaactgctc tttcaatatic accacaatgt taagagataa agtgcagaaa 480
aatattctc tcttctataa acttgatgtaa gtaccaatag ataatgataa tgctagctat 540
agattgataa attgtaaatac ctcaagtctt acacaaggct gtccaaagggt atctttgaa 600
ccaattccca tacattattt gggccggct ggtttgcga ttctaaatgt taaagataaag 660
aagttcaatg gaacaggacc atgtaaaaat gtcagcacag tacaatgcac acatggaaatt 720
agaccagttag tatcaactca actgctgtta aatggcagtc tagcagaaga agagatagta 780
cttagatctg aaaatttcac agacaatgtc aaaaccataa tagtacagct gaatgaatct 840
gtagaaattt attgtataag acccaacaat aatacaagaa aaagtataca tataaggacca 900
gggagagcat ttatgcAAC aggtgatata ataggagaca taagacaagc acattgtaac 960
attagtaaaag caaactggac taacactttt gaacagatag ttgaaaaatt aagagaacaa 1020
tttggaaata ataaaaacaat aatctttat tcataccctg gaggggaccc agaaattgt 1080
tttcacaggat ttaattgtgg aggggaattt ttctattgttatacatcaca actatattaat 1140
agtacctgga atattactga agaggttaat aagactaaag aaaatgacac tatcataactc 1200
ccatgcagaa taagacaaaat tataaacatg tggcaagaag tagggaaaagc aatgtatgcc 1260
cctcccatca gaggacaaaat taaatgttca tcaaataatc cagggtctgtt attaactaga 1320
gatgggtggtt ctaacaataa taggacgaaac gacacccgaga ccttcagacc tggggggagga 1380
aacatgaagg acaattggag aagtgaatta tataatata aagttagtaag aattgaacca 1440
tttaggatgtt cacccacccca ggccaaagaga agagtggtgc aaagagagaa aaga 1494

```

```
<210> 52
<211> 2007
<212> DNA
<213> Human immunodeficiency virus
```

```
<400> 52
acaacagtct tgtgggtcac agtctattat ggggtacctg tggaaaga agcaaccacc 60
actctgttt gtcatcaga tctaaagca tacaaggcg aggacataa cgtctggct 120
acacatgcct gtgtacccac agaccccaac ccacaggaag taatttAAC aaatgtgaca 180
aaaaattta acatgtggaa aaataacatg gtggacaga tcatgagga tataatcgt 240
ttatggatc aaagctaaa gccatgtgtaa atttaaccc cactctgtgt tactttaaat 300
tgtactgata agttgacagg tagtactaat ggacaaaata gtactagtgg cactaatagt 360
actagtggca ctaatagtac tagtactaat agtactgata gttggaaaa gatgccagaa 420
ggagaaaataa aaaactgtct tttcaatatac accacaagtq taqaqataa aqtcagaaaa 480
```

gaatattctc tcttctataa acttgatgt a gtaccaatag ataatgataa tgcttagctat 540
 agattgataa attgtataac ctcagtcat acacaaggct gtccaaaggt atctttgaa 600
 ccaattccca tacattattg tgccccggct gttttgcga ttctaaagtg taaagataag 660
 aagttcaatg gaacaggacc atgtaaaaat gtcagcacag tacaatgcac acatggaaatt 720
 agaccatcg tatcaactca actgctgtta aatggcagtc tagcagaaga agagatagta 780
 cttagatctg aaaatttcac agacaatgc aaaaccataa tagtacagct gaatgaatct 840
 gtagaaatta attgtataag acccaacaat aatacaagaa aaagtataca tataggacca 900
 gggagagcat tttatgcaac aggtatata ataggagaca taagacaagc acattgtaac 960
 attagtaaag caaaactggac taacactta gaacagatag ttgaaaaatt aagagaacaa 1020
 ttgggaata ataaaacaat aatcttaat tcacatcctcag gaggggaccc agaaattgta 1080
 ttcacagtt ttaattgtgg agggaaattt ttctattgtt atacatcaca actatTTat 1140
 agtacctgga atattactga agaggtaaat aagactaaag aaaatgacac tatcataactc 1200
 ccatgcagaa taagacaaat tataaacatg tggcaagaag taggaaaagc aatgtatgcc 1260
 cctcccatca gaggacaaat taaaatgttca tcaaataatc caggcgtcgt attaactaga 1320
 gatgggtggta ctaacaataa taggacgaac gacaccgaga ctttcagacc tgggggagga 1380
 aacatgaagg acaattggag aagtgaatta tataaatata aagttagtaag aattgaacca 1440
 ttaggatgtg caccaccca ggccaaagaga agagtggc aagagagaa aagagcagtg 1500
 ggacttaggag ctttgttcat tgggttcttgg gagcagcag gaagcactat gggcgagcg 1560
 tcagtgcgc tgacgttaca ggccagacaa ttattgtctg gtataatgc aacgcagaac 1620
 aatttgctga gagctattgtt ggcgcacacatg catctgttgc aactcaggt ctggggcatc 1680
 aaacagctcc aggcaagaat cttggctgtt gaaagatacc taaagatca acagcttcata 1740
 gggatttggg gttgtcttgg aaaactcatt tgcaccacta ctgtgccttgaactctagt 1800
 tggagaataa aatctctgac tgagatttgg gataatatgtt cctggatgga tggggaaaga 1860
 gaaaattggca attatacagg cttaatatac aatthaattt aatagcaca aaaccagcaa 1920
 gaaaagaatg aacaagaattt attgaaattt gacaagtggg caagttgtt gattgggtt 1980
 gatataacaa actggctgtt gtatata 2007

<210> 53
 <211> 2532
 <212> DNA
 <213> Human immunodeficiency virus

<400> 53
 acaacagtct tgggttcac agtctattat ggggtacctg tggaaaaga agcaaccacc 60
 actctgtttt gtgcatttca tgcataagca tacaatgcag aggcacataa cgtctggct 120
 acacatgcct gtgtacccac agaccccaac ccacaggaag taaatTTatc aatgtgaca 180
 gaaaatttta acatgtggaa aaataacatg gtggacaga tgcattgagga tataatcagt 240
 ttatggatc aaagctaaa gccatgttca aatTTatccc cactctgtt tactttaaat 300
 tgcattgtata agttgcacagg tagtactaat ggcacaaaata gtactgtgg cactaatagt 360
 actagtggca ctaatagtac tagtactaat agtactgtata gttggaaaaa gatgccagaa 420
 ggagaaataa aaaactgctc ttcaatatac accacaatgttgaagatata agtgcagaaa 480
 gaatattctc tcttctataa acttgatgtt a gtaccaatag ataatgataa tgcttagctat 540
 agattgataa attgtataac ctcagtcat acacaaggct gtccaaaggt atctttgaa 600
 ccaattccca tacattattg tgccccggct gttttgcga ttctaaagtg taaagataag 660
 aagttcaatg gaacaggacc atgtaaaaat gtcagcacag tacaatgcac acatggaaatt 720
 agaccatcg tatcaactca actgctgtta aatggcagtc tagcagaaga agagatagta 780
 cttagatctg aaaatttcac agacaatgc aaaaccataa tagtacagct gaatgaatct 840
 gtagaaatta attgtataag acccaacaat aatacaagaa aaagtataca tataggacca 900
 gggagagcat tttatgcaac aggtatata ataggagaca taagacaagc acattgtaac 960
 attagtaaag caaaactggac taacactta gaacagatag ttgaaaaatt aagagaacaa 1020
 ttgggaata ataaaacaat aatcttaat tcacatcctcag gaggggaccc agaaattgta 1080
 ttcacagtt ttaattgtgg agggaaattt ttctattgtt atacatcaca actatTTat 1140
 agtacctgga atattactga agaggtaaat aagactaaag aaaatgacac tatcataactc 1200
 ccatgcagaa taagacaaat tataaacatg tggcaagaag taggaaaagc aatgtatgcc 1260
 cctcccatca gaggacaaat taaaatgttca tcaaataatc caggcgtcgt attaactaga 1320
 gatgggtggta ctaacaataa taggacgaac gacaccgaga ctttcagacc tgggggagga 1380
 aacatgaagg acaattggag aagtgaatta tataaatata aagttagtaag aattgaacca 1440
 ttaggatgtg caccaccca ggccaaagaga agagtggc aagagagaa aagagcagtg 1500
 ggacttaggag ctttgttcat tgggttcttgg gagcagcag gaagcactat gggcgagcg 1560

tcagtgcgc tgacggata ggcagacaa ttattgtctg gtatagtgca acagcagaac 1620
 aatttgcga gagctattga ggccaaacag catctgttc aactcacggt ctggggcatc 1680
 aaacagctcc aggcaagaat cctggctgtg gaaagatacc taaaggatca acagctcta 1740
 gggatttggg gttgctctgg aaaactcatt tgccacta ctgtgccttg gaactctagt 1800
 tgagtaata aatctctgac tgagatttgg gataatataa cctggatgga gtgggaaaga 1860
 gaaaattggca attatacagg cttaatatac aatttaattt aatagcaca aaaccagcaa 1920
 gaaaagaatg aacaagaattt atttggatata gacaagtggg caagttgtg gaattgggtt 1980
 gatataacaa actggctgtg gtatataaga atattcataa tgatagtagg aggcttgata 2040
 ggtttaagaa tagttttgc tgtaacttct atagtgaata gagttaggca ggataactca 2100
 ccaatatcat tgcagaccccg cttccagct cagagggac ccgacaggcc cgaaggaatc 2160
 gaagaagaag gtggagagag agacagagac agatccaatc gattagtgc tgattattt 2220
 gcactcatct gggacgatct gcggagcctg tgccctttca gctaccaccg cttgagagac 2280
 ttactcttga ttgttagcgag gatttgtggaa cttctggac gcaggggggt ggaagccctc 2340
 aagtatttggt ggaatctccct gcagtttgg agtcaggagc taaagatgt tgctgttagt 2400
 ttgtttaatg ccacagcaat agcagtagct gaagggacag ataggattt agaaatagta 2460
 caaagaattt ttagagctgt aattcacata cctagaagaa taagacaggg ctggagagg 2520
 gcttactat aa 2532

<210> 54
 <211> 1599
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: gp120.modUS4

<400> 54

gaattcgcca ccatggatgc aatgaagaga gggctctgt gtgtgtgtgt gctgtgtgga 60
 gcagtctcg tttcgccccag cgccaccacc ttgtgtgtgg tgaccgtgtt ctacggcggt 120
 cccgtgtgga aggaggccac caccaccctg ttctgcgcga gcgacgccc ggttacaag 180
 gccgaggccc acaacgtgtg ggcacccac gcctgcgtgc ccaccgaccc caaccccccag 240
 gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catgggtggag 300
 cagatgcatg aggacatcat cagcctgtgg gaccagagcc tgaaggccctg cgtgaagctg 360
 accccctgt gcgtgaccct gaactgcacc gacaagctga cccgcacgc caacggcacc 420
 aacagcacca gcggcacccaa cagcaccacgc ggcaccaaca gcaccacgc caacagcacc 480
 gacagctggg agaagatgcc cgagggcgag atcaagaact gcagcttcaa catcaccacc 540
 agcgtgcgcg acaaggtgca gaaggagatc agcctgttct acaagctgga cgtgggtgccc 600
 atcgacaacg acaacgcac ctaccgcctg atcaactgca acaccagctg gatcaccacc 660
 gcctgccccca aggtgagctt cgagccctact cccatccact actgcgcggcc 720
 gccatcttga agtgcaccca caagaagttt aacggcaccg gcccctgcaaa gaacgtgagc 780
 accgtgcagt gcacccacgg catccggcccc gtggtgagca cccagctgt gctgaacggc 840
 agcctggccg aggaggagat cgtgtgcgc tccgagaact tcacccgacaa cggcaagacc 900
 atcatcgtgc agctgaacga gtccgtggag atcaactgca tccgcggccaa caacaacacg 960
 cgttaagagca tccacatgg ccccgccgc gccttctacg ccacccggcga catcatcgcc 1020
 gacatccgcg aggcccactg caacatcgc aaggccaaact ggaccaacac cctcgagcag 1080
 atcgtggaga agctgcgcga gcagttcgcc aacaacaaga ccatcatctt caacagcagc 1140
 agcggccggcg acccccgagat cgtgttccac agcttcaact gcggccggcga gttcttctac 1200
 tgcaacacca ggcacccatgg caacacgcacc tggacatca cccggggatggt gaacaagacc 1260
 aaggagaacg acaccatcat cctgcctgc cgcacccgcg agatcatcaa catgtggcag 1320
 gaggtgggca aggccatgtt cggccggccccc atccggggcc agatcaagtg cagcagcaat 1380
 attacccggcc tgcgtgttgc cccggacggc ggcaccaaca acaaccgcac caacgacacc 1440
 gagaccttcc gccccggccg cggcaacatg aaggacaact ggccgcacgcga gctgtacaag 1500
 tacaagggtgg tgcgcacatca gccccctggc gtggccccc cccaggccaa gcgcgcgtg 1560
 gtgcagcgcg agaagcgcta agatatcgga tcctctaga 1599

<210> 55
 <211> 1350
 <212> DNA
 <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
gp120.modUS4.del 128-194

<400> 55

```

gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtctcg tttcgccccag cgccaccacc gtgctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccacccctg ttctgcgcaca ggcacgccaa ggcttacaag 180
gccgaggccc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caaccccccag 240
gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtgag 300
cagatgcgtg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accccccctgt gcgtgggggc agggactgtc gagaccagcg tgatcaccca ggctgcccc 420
aaggtgagct tcgagcccat ccccatccac tactgcgcac ccgcccgtt cggccatcctg 480
aagtgcacagg acaagaagtt caacggcacc ggccctgtca agaacgttag caccgtgcag 540
tgcacccacg gcatccgccc cgtggtgagc acccagctgc tgctgaacgg cagcctggcc 600
gaggaggaga tcgtgctcg ctccgagaac ttacccgaca acgccaagac catcatcg 660
cagctgaacg agtccgtgg aatcaactgc atccggccca acaacaacac gcttaagagc 720
atccacatcg gccccggccg cgccttctac gccaccggcg acatcatcg cgacatccgc 780
caggcccact gcaacatcg caaggccaaac tggaccaaca ccctcgagca gatcggtggag 840
aagctgcgcg agcagttcg caacaacaag accatcatct tcaacagcag cagcggccgc 900
gaccggaga tcgtgttcca cagttcaac tgcggcggcg agttttcta ctgcaacacc 960
agccagctgt tcaacagcac ctggAACATC accgaggagg tgaacaagac caaggagaac 1020
gacaccatca tcctgcccctg ccgcattccgc cagatcatca acatgtggca ggaggtggc 1080
aaggccatgt acggccccc catccggccg cagatcaagt gcagcagcaa tattaccggc 1140
ctgctgctga cccgcacgg cggcaccaac aacaaccgca ccaacgacac cgagacccctc 1200
cgccccggcg gcggcaacat gaaggacaac tggcgccagcg agctgtacaa gtacaagggtg 1260
gtgcgcacatcg agcccttggg cgtggccccc acccaggcca agcgcgcgt ggtgcagcgc 1320
gagaaggcgt aagatatacg atccatctaga 1350

```

<210> 56

<211> 2112

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: gp140.modUS4

<400> 56

```

gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtctcg tttcgccccag cgccaccacc gtgctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccacccctg ttctgcgcaca ggcacgccaa ggcttacaag 180
gccgaggccc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caaccccccag 240
gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtgag 300
cagatgcgtg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accccccctgt gcgtgcaccc taaactgcacc gacaagctga cccggcagcac caacggcacc 420
aacagcacca gcggcaccaaa cagcaccagc ggcaccaaca gcaccgacac caacagcacc 480
gacagctggg agaagatgc cgaggccgag atcaagaact gcagctcaa catcaccacc 540
agcgtgcgcg acaagggtgca gaaggaggatc agcctgttct acaagctgga cgtggtggcc 600
atcgacaacg acaacgcacg ctaccgcctg atcaactgca acaccagcgt gatcaccacc 660
gcctgccccca aggtgagctt cgagcccatc cccatccact actgcgcaccc cgccggccctc 720
gcacatcgatcg agtgcacgg caagaaggatc aacggcaccc gcccctgtca gaacgtgagc 780
accgtgcagt gcacccacgg catccggccc gtggtgagca cccagctgct gctgaacggc 840
agccctggccg aggaggatc cgtgcgcgc tccgagaact tcaaccgacaa cgccaagacc 900
atcatcgatcg agctgaacgc gtcctgtggag atcaactgca tccgccccaa caacaacacg 960
cgtaagagca tccacatcg cccggccgc gccttctac ccacccggcgcatcattcg 1020
gacatccgc acccccactg caacatcagc aaggccaaact ggaccaacac cctcgagcag 1080
atcgatcgatcg agctgcgcgc gcaaggatc aacaacaaga ccatcatctt caacagcagc 1140
agcggccggcg acccccggat cgtgttccac agcttcaact gcggccggcgat gttttctac 1200
tgcaacaccca gccagctgtt caacagcacc tggAACATC ccggaggaggtaa gaacaagacc 1260

```

aaggagaacg acaccatcat cctgcctgc cgcatccgcc agatcatcaa catgtggcag 1320
 gaggtggca aggccatgtc cgccccccc atccgcggc agatcaagt cagcagcaat 1380
 attacccggcc tgctgctgac ccgcgacggc ggcaccaaca acaaccgcac caacgacacc 1440
 gagaccttcc gccccggcg cgcaacatg aaggacaact ggccgagcga gctgtacaag 1500
 tacaagggtgg tgccatcga cccctggc gtggcccca cccagccaa gcggccgtg 1560
 gtgcagcgcg agaagcgcg cgtggcctg ggcccgtt tcacggctt cctggcgcc 1620
 gccggggagca ccatggcgcc cgccctccgt accctgaccg tgcaggcccc ccagctgtg 1680
 agcggcateg tgcagcagca gaacaacctg ctgcgcgcca tgcaggcccc gcagcacctg 1740
 ctgcagctga cccgtgtggg catcaagcag ctgcaggccc gcacgcgtc cggtggcgc 1800
 tacctgaagg accagcagct gctggcata tggggctgca gcccggact gatctgcacc 1860
 accaccgtgc cctggAACAG cagctggagc aacaagggcc tgaccggat ctgggacaac 1920
 atgaccttgg tggagtggg gggcgagat gcactaca cccgcctgat ctacaacactg 1980
 atcgagatcg cccagaacca gcaggagaag aacgagcagg agctgtgg gctggacaag 2040
 tggccagcc tggaaactg gttcgacatc accaactggc tgtggtacat ctaagatatac 2100
 ggatcctcta ga 2112

<210> 57

<211> 2112

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
gpl40.mut.modUS4

<400> 57

gaattcgcca ccatggatgc aatgaagaga gggctctgt gtgtgtgtgt gctgtgtgg 60
 gcagtcttcg tttcgccca cgccaccacc gtgtgtggg tgaccgtgtca ctacggcggt 120
 cccgtgtgg aaggaggccac caccaccctg ttctgcggca ggcacccaa ggcttacaag 180
 gcccggccca acaacgtgtg ggccacccac ggctgcgtgc ccaccgacc caacccccc 240
 gaggtgaacc tgaccaacgt gaccgagaac tcaacatgt ggaagaacaa catggtgag 300
 cagatgcatttggg aggacatcat cagccgtgg gaccagagcc tgaaggccctg cgtgaagctg 360
 accccctgt gctgaccctt gaaactgcacc gacaagctgtg ccggcagcac caacggcacc 420
 aacagcacca gcccggccca cagcaccacc ggcaccaaca gcaccagcac caacagcacc 480
 gacagctggg agaagatgcc cgaggccgag atcaagaact gcagcttcaa catcaccacc 540
 agcgtgcgcg acaagggtgca gaaggaggat agcctgttct acaagctgg cgtgggtggcc 600
 atcgacaaacg acaacgcggc ctaccgcctg atcaactgtca acaccagcgt gatcaccacc 660
 gctgtggccca aggtgagtt cgagccatc cccatccact actgcggcccc cgccgggttc 720
 gccatcctga agtgcacccaa caagaagtcc aacggcaccg gcccctgcaaa gaacgtgagc 780
 accgtgcagt gcacccacgg catccggccc gtggtgagca cccagctgt gctgaacggc 840
 agcctggcccg aggaggagat cgtgtgcgc tccgagaact tcaccgacaa cgccaaagacc 900
 atcatcgtgc agtgcacccaa gtcgggtggg atcaactgtca tccggcccaa caacaacacg 960
 cgttaagagca tccacatcgg cccggccgc gccttctacg ccaccggcga catcateggc 1020
 gacatccgccc aggcccactg caacatcgtc aaggccaaact ggaccaacac cctcgagcag 1080
 atcgtggaga agtgcgcgcg gcaggccgttccgca aacaacaaga ccatcatctt caacagcagc 1140
 agcggccggcg accccggat cgtgttccac agcttcaact gcggcggcga gttttctac 1200
 tgcacacca gccagctgtt caacagcacc tggaaacatca ccgaggaggt gaacaagacc 1260
 aaggagaacg acaccatcat cctgcctgc cgcacccggc agatcatcaa catgtggcag 1320
 gaggtggca aggccatgtc cccggccca atccggggcc agatcaagt cagcagcaat 1380
 attacccggcc tgcgtgtgtc ccgcgacggc ggcaccaaca acaaccgcac caacgacacc 1440
 gagacccctcc gccccggcg ggcaacatg aaggacaact ggccgagcga gctgtacaag 1500
 tacaagggtgg tgccatcga cccctggc gtggcccca cccagccaa gcggccgtg 1560
 gtgcagcgcg agaagagcgc cgtggccctg ggccggccgtt tcacggctt cctggcgcc 1620
 gcccggggca ccatggcgcc cgcctccgt accctgaccg tgcaggcccc ccagctgtg 1680
 agcggcateg tgcagcagca gaacaacctg ctgcgcgcca tgcaggcccc gcagcacctg 1740
 ctgcagctga cccgtgtggg catcaagcag ctgcaggccc gcacgcgtc cggtggcgc 1800
 tacctgaagg accagcagct gctggccatc tggggctgca gcccggact gatctgcacc 1860
 accaccgtgc cctggAACAG cagctggagc aacaagggcc tgaccggat ctgggacaac 1920
 atgaccttgg tggagtggg ggcacactaca cccgcctgat ctacaacactg 1980

atcgagatcg cccagaacca gcaggagaag aacgagcagg agctgctgga gctggacaag 2040
 tggccagcc tgtggactg gttcgacatc accaactggc tgtggtacat ctaagatatac 2100
 ggatcctcta ga 2112

<210> 58
 <211> 2181
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: gp140TM.modUS4

<400> 58

gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgtgtgaa 60
 gcagtcttcg tttcgccccag cgccaccacc gtgtgtggg tgaccgtgtta ctacggcgtg 120
 cccgtgtgga aggaggccac caccaccctg ttctgcgcca ggcacgccaa ggcttacaag 180
 gcccaggccc acaacgttg ggccaccac ccctgcgtgc ccacccgaccc caaccccccag 240
 gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catgggtggag 300
 cagatgcattg aggacatcat cagctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
 acccccccgt gcgtgacccct gaactgcacc gacaagctga ccggcagcac caacggcacc 420
 aacagcacca gccgcaccaa cagcaccagc ggcaccaaca gcaccagcac caacagcacc 480
 gacagctggg agaagatgcc cgaggccgag atcaagaact gcagcttcaa catcaccacc 540
 agcgtgcgcg acaagggtgca gaaggagttt acgcctgttca acaagctgaa cgtgggtggcc 600
 atcgacaacg acaacgcacccatc ctacccctg atcaactgca acaccagcgt gatcaccacc 660
 gcctgccccca aggtgagctt cgagccatc cccatccact actgcgcccc cgccggcttc 720
 gccatcctgaa agtgcacca gaaagaatgc aacggcaccg gcccctgcaaa gaacgtgagc 780
 accgtgcagt gcacccacgg catccgcctt gttggtagca cccagctgtt gctgaacggc 840
 agcctggcccg aggaggagat cgtgtgcgc tccggagaact tcaccgacaa cgccaaagacc 900
 atcatcgtgc agctgaacga gtcctgtggag atcaactgca tccggcccaa caacaacacg 960
 cgtaaagagca tccacatcg ccccccggc gccttctac ccacccggcga catccatcg 1020
 gacatccgccc agggccactg caacatcgc aaggccaaact ggaccaacac cctcgagcag 1080
 atcgtggaga agctgcgcgca gcagttcgcc aacaacaaga ccatcatctt caacagcagc 1140
 agccggccgcg acccccgagat cgtttccac agcttcaact gccggcgcga gttttctac 1200
 tgcacaccca gccagctgtt caacagcacc tggaaacatca ccggaggaggt gaacaagacc 1260
 aaggagaacg acaccatcat cctgcctgc cgcatccgc agatcatcaa catgtggcag 1320
 gaggtggca agggccatgtt cgcggccccc atccgcggcc agatcaagtg cagcagcaat 1380
 attacccggcc tgcgtgtgac cccgcacggc ggacccaaca acaaccgcac caacgcacacc 1440
 gagacccctt ccccccgggg cggcaacatg aaggacaact ggcgcagcga gctgtacaag 1500
 tacaagggtgg tgcgcacatcg gcccctggc gtggccccc cccagggccaa gcggccgcgtg 1560
 gtgcagcgcg agaagcgcgc cgtggccctg ggccggccctgt tcacccgtt cctggggcc 1620
 gccggggagca ccatggggcgc cgcctccgtg accctgaccc tgcaggcccg ccacccgttg 1680
 agccggcatcg tgcagcagca gaacaacctg ctgcgcgcac tcgaggccca gcagcacctg 1740
 ctgcagctga cccgtgtggg catcaagcag ctgcaggccc gcacccgttgc cgtggagcgc 1800
 tacctgttggg accagcagct gctggccatc tggggctgtca gccggcaagct gatctgcacc 1860
 accaccgtgc cctggaaacag cagctggagc aacaagagcc tgaccgagat ctggacaac 1920
 atgacccgttggg tggagttgggaa ggcgcagatc ggcaactaca cccgcctgtat ctacaacctg 1980
 atcgagatcg cccagaacca gcaggagaag aacgagcagg agctgctgga gctggacaag 2040
 tggccagcc tgtggactg gttcgacatc accaactggc tgtggtacat ccgcacatctc 2100
 atcatgatcg tggccggccct gatccgcctg cgcacatcgat tcgcccgtt gacatcgatc 2160
 taagatatcg gatccctctat a 2181

<210> 59
 <211> 1818
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:
 gp140.modUS4.delV1/V2

<400> 59
gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtctcg tttcgcggccag cgcccaccacc gtgctgtggg tgaccgtgtta ctacggcggt 120
cccgtgtgga aggaggccac caccaccctg ttctgcccga gcgacgccaa ggcttacaag 180
gccgaggccc acaacgtgtg ggccacccac gcctgcgtgc ccacccgaccc caaccccccag 240
gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaaa catggtgagg 300
cagatgcgtg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtggggegcc 360
ggccaggcct gccccaaaggt gagcttcgag cccatccccca tccactactg cgcccccgcc 420
ggcttcgcca tcctgaagtg caaggacaag aagttcaacg gcacccggccc ctgcaagaac 480
gtgagcacccg tgcagtgcac ccacggcattc cggccctgtgg tgagcaccata gctgctgtg 540
aacggcagcc tggccgagga ggagatcggt ctgcgtcccg agaacttcac cgacaacgccc 600
aagaccatca tcgtgcagct gaacgagtcc gtggagatca actgcattccg ccccaacaac 660
aacacgcgt aagacatcca catcgcccccc ggccgcgcct tctacgcac ccggcgacatc 720
atcggcgaca tccggccaggc ccactgcac acatcgcaac atcagcaagg ccaactggac caacacccctc 780
gagcagatcg tggagaagct ggcgcgagcag ttccggcaaca acaagaccat catcttcaac 840
agcagcagcg gccggcggcc ccgagatcggt ttccacagct tcaactgcgg cgccgagatcc 900
ttctactgca acaccagccca gctgttcaac agcacctggaa acatcaccggaa ggaggtgaac 960
aagaccaagg agaacgcacac catcatcctg ccctgcgcga tccggccagat catcaacatg 1020
tggcaggagg tggccgaggg catgtacgc cccccccatcc gggcccgat caagtgcagc 1080
agcaatatta cccggctgtct gctgaccggc gacggggcgca ccaacaacaa ccgcaccaac 1140
gacaccggaga cttccggccc cggcgccggc aacatgaaagg acaaactggcg cagcgagatcg 1200
tacaagtaca aggtggtgcg catcgaccc ctggggcgat ccccccacccca ggccaagcg 1260
cgctgtgtgc agcgcgagaa ggcgcgcgtg ggcctggggc ccctgttcat cggcttcctg 1320
ggccgcggccg ggagcaccat gggcgccgc tcctgtgacc tggccgtgca ggcccgccag 1380
ctgctgagcg gcacatcgca gcagcagaac aacctgtgc ggcgcacatcgaa ggcggcagcg 1440
cacctgtgc agctgaccgt gtggggcattc aagcagctgc aggcccgcat cttggggcgat 1500
gagcgctacc tgaaggacca gcaagctgtg ggcacatctggg gctgcagcg gcaagctgtac 1560
tgcaccacca ccgtgcctg gaacagcagc tggagcaaca agagcctgtac cgagatctgg 1620
gacaacatga cctggatggc gtggggcgcc gagatcgca actacaccggg cctgtatctac 1680
aacctgtatcg agatcgccca gaaccagcag gagaagaacg aagcaggagct gctggagatcg 1740
gacaagtggg ccagcctgtg gaaactggttc gacatcacca actggctgtg gtacatctaa 1800
gatatcgat cctctaga 1818

```
<210> 60
<211> 2031
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence:
qp140.modus4.delv2

```

<400> 60
gaattcggcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtcttcg tttcgccca gcccaccacc gtgctgtggg tgaccgtgt a ctacggcg 120
cccggtgtgga aggaggccac caccaccctg ttctgcgcca gcgacgcaa ggcttacaag 180
gccgaggccc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caacccccag 240
gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtgag 300
cagatgcatg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accccccctgt gcgtgaccct gaactgcacc gacaagctga ccggcagcac caacggcacc 420
aacagcacca gcccacccaa cagcaccaggc ggcaccaaca gcaccagcac caacagcac 480
gacagctggg agaagatgcc cgagggcgag atcaagaact gcagcttcaa catcgccgccc 540
ggccgcctga tcaactgc aa caccagcgat atcaccagg cctgccccaa ggtgagctc 600
gagccccatcc ccatccacta ctgcgcccccc gceggcttcg ccatcctgaa gtgcaaggac 660
aagaagtta acggcaccgg cccctgcaag aacgtgagca ccgtgcagt cacccacggc 720
atccgcccccg tggtagcac ccagctgtg ctgaacggca gcctggccga ggaggagatc 780
gtgtgcgtc ccgagaacct caccgacaac gccaagacca tcatacgat gctgaacgag 840
tccgtggaga tcaactgcat ccggcccaac aacaacacgc gtaagagcat ccacatcg 900
ccggggcccg ctttctacgc caccggcgac atcatcgccg acatccqcca qqcccaactqc 960

```

aacatcagca aggccaactg gaccaacacc ctcgagcaga tcgtggagaa gctgcgcgag 1020
 cagttcgca acaacaagac catcatctt aacagcagca gccgcggcga ccccgagatc 1080
 gtgttccaca gcttcaactg cgccggcgag ttcttctact gcaacaccag ccagctgttc 1140
 aacagcacct ggaacatcac cgaggagggtg aacaagacca aggagaacga caccatcatc 1200
 ctgccctgcc gcatacccca gatcatcaac atgtggcagg aggtggcaa ggcatgtac 1260
 gcccccccca tccgcggca gatcaagtgc agcagcaata ttacccgcct gctgctgacc 1320
 cgcgacggcg gcaccaacaa caaccgcacc aacgacaccc agacccctcg ccccggeggc 1380
 gcaacatga aggacaactg ggcgagcag ctgtacaagt acaaggtggt ggcacatcgag 1440
 cccctggcg tggcccccac ccagggcaag cgccgcgtgg tgcagcgcga gaagcgcgccc 1500
 gtgggcctgg ggcgcctgtt catcgcttc ctgggcgcgg ccgggagcac catggcgcc 1560
 gcctccgtga ccctgaccgt gcagggccgc cagctgtga gccgcacatcg gcaagcagcag 1620
 aacaacctgc tgcgccatcg cggcccgag cagcacctgc tgcagctgac cgtgtggggc 1680
 atcaaggcgc tgcaaggcccg catctggcc gtggagcgc acctgaagga ccagcagctg 1740
 ctgggcattt ggggctgcag cggcaagctg atctgcacca ccaccgtgcc ctggAACAGC 1800
 agctggagca acaagggct gaccggatc tggacaaca tgcacccgtt ggagtgggg 1860
 cgcgagatcg gcaactacac cggcctgtatc tacaacctga tgcagatcgcc ccagaaccag 1920
 caggagaaga acgagcagga gctgctggag ctggacaagt gggccagct gtggAACTGG 1980
 ttcgacatca ccaactggct gtggatcatc taagatatcg gatcctctag a 2031

<210> 61
<211> 1818
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
gp140.mut.modUS4.delV1/V2

<400> 61
gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgtgtgt gctgtgtgg 60
gcagtcttcg tttcgcccg cgccaccacc gtgtgtggg tgaccgtgtta ctacggcggt 120
cccgtgtgg aaggaggccac caccaccctg ttctgcgccta ggcacgcacaa ggcttacaag 180
gcccggggcc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caacccccc 240
gaggtaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catgggtggag 300
cagatgcatg aggacatcat cagctgtgg gaccagagcc tgaagccctg cgtggcgcc 360
ggccaggcct gccccaaagg tgccttcgag cccatccccca tccactactg cgcggggccc 420
ggcttcgcca tccctgaagtg caaggacaag aagttcaacg gcaccggccc ctgcaagaac 480
gtgagcaccc tgcaagtgcac ccacggcatc cgcccccgtgg tgagcacccca gctgctgtg 540
aacggcagcc tggccgagga ggagatcggt ctgcgtcccg agaacttcac cgacaacgccc 600
aagaccatca tgcgtgcagct gaacggatcc gtggagatca actgcatccg ccccaacaac 660
aacacgcgtt agacatcca catcgcccccc ggccgcgcct tctacgcaccc cggcgacate 720
atcggcgaca tccggccaggc ccactgcaac atcagcaagg ccaactggac caacaccctc 780
gagcagatcg tggagaagct ggcgcagcag ttccggcaaca acaagaccat catcttcaac 840
agcagcagcg gcccgcaccc cgagatcggt ttccacagct tcaactgcgg cggcgagttc 900
ttctactgtca acaccaggca gctgttcaac agcacctggaa acatcaccga ggaggtgaac 960
aagaccaagg agaacgcacac catcatctg ccctgcgcga tccgcccagat catcaacatg 1020
tggcaggagg tggccaaaggc catgtacgccc ccccccattcc gcccgcagat caagtgcagc 1080
agaatattt cccgcctgtt gctgaccgc gacggcggca ccaacaacaa cccgaccaac 1140
gacaccggaa cttccggccc cgccggcgcc aacatgaagg acaactggcg cagcgagctg 1200
tacaagtata aggtggtgcg catcgagccc ctgggcgtgg ccccccacccca ggccaagcgc 1260
cgctgggtgc agcgcgagaa gagcgcgcgtg ggcctggcg ccctgttcat cggcttcctg 1320
ggccgcgcgc ggagcaccat gggccgcgc tccgtgaccc tgaccgtgca ggcccgcac 1380
ctgtgtgcg gcatcgatgc gcaagcagaac aacccgtgc ggcacatcgaa ggcccagcag 1440
caccgtgtgc agctgaccgt gtggggcatc aacgcacgtgc aggcccccat cctggccgtg 1500
gagcgcgtacc tgaaggacca gcaagtgcgtg ggcacatctgg gctgcagcgg caagctgate 1560
tgcaccacca ccgtggccctg gaacagcagc tggagcaaca agacccgtac cgagatctgg 1620
gacaacatga cctggatggg gttggggatggc gagatcgcc actacaccgg cctgatctac 1680
aacctgtatcg agatcgccca gaaccaggcag gagaagaacag agcaggagct gctggagctg 1740
gacaagtggg ccagcctgtg gaaactgggtt gacatcacca actggctgtg gtacatctaa 1800

gatatcgat cctctaga

1818

<210> 62

<211> 1818

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
gp140.modUS4.del 128-194

<400> 62

gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgtgtgt gctgtgtgga 60
 gcagtcttcg ttccggccagg cgccaccaccat gtgtgtgtgg tgaccgtgtta ctacggcgtg 120
 cccgtgtgga aggaggccac caccaccctg ttctgcgcac ggcacgccaa ggcttacaag 180
 gcccggggcc acaacgtgtg ggcacccacat gcctgcgtgc ccaccgaccc caacccccag 240
 gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtgag 300
 cagatgcgtg aggacatcat cagcctgtgg gaccagagcc tgaaggccctg cgtggggcgc 360
 ggcaggccct gccccaaagg gacttcgag cccatccccca tccactactg cgcggccgc 420
 ggcttcgcca tcctgaagtg caaggacaag aagtcaacg gcacggccgc ctgcaagaac 480
 gtgagcaccg tgcgtgcac ccacggcata cgcccccgtgg tgagcacccca gctgtgtgtg 540
 aacggcagcc tggccgagga ggagatcgatg ctgcgtcccg agaacttcac cgacaaacgccc 600
 aagaccatca tcgtgcagct gaacgagatcc gtggagatca actgcataccg ccccaacaac 660
 aacacgcgtg agagcatcca catcggccccc ggccgcgcct tctacgcac cggcgacatc 720
 atcggcgaca tccggccaggc ccactgcaac atcagcaagg ccaactggac caacaccctc 780
 gagcagatcg tggagaagct ggcgcagcag ttcggcaaca acaagaccat catcttcaac 840
 agcagcagcg gccggcgcacc cggatcgatg ttccacagct tcaactgcgg cggcgagttc 900
 ttctactgca acaccagcca gctgttcaac agcacctggaa acatcaaccga ggaggtgaac 960
 aagaccaagg agaacgcac catcatcctg ccctgcgcgc tccgcacatg catcaacatg 1020
 tggcaggagg tggcaaggc catgtacgc ccccccattcc gggccagat caagtgcagc 1080
 agcaatatta cccggcctgt gctgacccgc gacggcggcaca ccaacaacaa ccgcaccaac 1140
 gacaccgaga ccttccggccc cggccggccgc aacatgaagg acaactggcg cagcgactg 1200
 tacaagtaca aggtgggtcg catcgagccc ctggggctgg ccccccacca ggcgaagegc 1260
 cgcgtgggtgc agcgcgagaa gagcgcgcgtg ggcctggccgc ccctgttcat cgggttctg 1320
 ggcgcgcgcgg ggagcaccat gggccgcgc tccgtgaccc tgaccgtgtca gggccgcgc 1380
 ctgtgtgcgcg gcatcgatca gcagcagaac aacctgtgc gcgcacatcgaa gggccgcgc 1440
 caccgtgtgc agctgaccgt gtggggcatac aagcagctgc aggcgcgcata cctggccgtg 1500
 gagcgcgtacc tgaaggacca gcagctgtg ggcacatctgg gctgcagcgg caagctgtatc 1560
 tgcaccacca ccgtgcctg gaacagcagc tggagcaaca agacgcgtac cgagatctgg 1620
 gacaacatga cctggatgga gtggggcgcg gagatcgacca actacaccgg cctgatctac 1680
 aacctgtatcg agatcgccca gaaccagcag gagaagaacg agcaggagct gctggagctg 1740
 gacaagtgggg ccagcctgtg gaactgggtc gacatcacca actgggtgtg gtacatctaa 1800
 gatatcgat cctctaga

1818

<210> 63

<211> 1863

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
gp140.mut.modUS4.del 128-194

<400> 63

gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgtgtgt gctgtgtgga 60
 gcagtcttcg ttccggccagg cgccaccaccat gtgtgtgtgg tgaccgtgtta ctacggcgtg 120
 cccgtgtgga aggaggccac caccaccctg ttctgcgcac ggcacgccaa ggcttacaag 180
 gcccggggcc acaacgtgtg ggcacccacat gcctgcgtgc ccaccgaccc caacccccag 240
 gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtgag 300

cagatgcatg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
 accccccctgt gcgtgggggc agggaaactgc gagaccagcg tgatcaccca ggctgcccc 420
 aaggtgagct tcgagcccat ccccatccac tactgcgccc ccgcggctt cgccatctg 480
 aagtgcagg acaagaagtt caacggcacc ggcccctgca agaacgttag caccgtcag 540
 tgcacccacg qcatccggcc cgtgtgagc acccagctgc tgctgaacgg cagectggcc 600
 gaggaggaga tcgtgtcg 660
 cagctgaacg agtccgttga gatcaactgc atccggccca acaacaacac gcttaagagc 720
 atccacatcg gccccggcc cgccttctac gccaccggcg acatcatcg 780
 caggcccact gcaacatcg caaggccaaac tggaccaaca ccctcgagca gatcgtggag 840
 aagctgcgcg agcagttcg 900
 gaccccgaga tcgtgttcca cagettcaac tgccggggcg agttcttcta ctgcaacacc 960
 agccagctgt tcaacagcac 1020
 gacaccatca ttctgcctg ccgcacatcg cagatcatca acatgtggca ggagggtggc 1080
 aaggccatgt acgccccccc catccgcggc cagatcaagt gcagcagcaa tattacccgc 1140
 ctgctgctga cccgcgcacgg cggcaccaac aacaaccgc 1200
 cgccccggcg gcccggcc 1260
 gtgcgcatcg agccccctgg cgtggccccc acccaggcca agcgcgcgt ggtcagcgc 1320
 gagaagagcg ccgtgggct gggccctg ttcatcg 1380
 accatggcgcc 1440
 gtcagcgc 1500
 accgtgtggg gcatcaagca 1560
 gaccagcgc tgctgggcat ctgggctgc 1620
 ccctggaaaca gcagctgg 1680
 atggagtggg agcgcgagat 1740
 gcccagaacc agcaggagaa 1800
 ctgtggaaact gttcgacat 1860
 aga 1863

<210> 64

<211> 2634

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: gp160.modUS4

<400> 64

gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgtctgct gctgtgtgg 60
 gcagtctcg ttctggcccg cgccaccacc gtgtgtggg tgaccgtgta ctacggcgtg 120
 cccgtgtgga aggaggccac caccacccctg ttctgcgcca ggcacgccaa ggcttacaag 180
 gcccaggccc acaacgtgtg ggcacccac gcctgcgtgc ccaccgaccc caacccccc 240
 gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtgag 300
 cagatgcatg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
 accccccctgt gcgtgacccct gaactgcacc gacaagctga cggcagcac caacggcacc 420
 aacagcacca gggcacccaa cagcaccacg ggcaccaaca gcaccagcac caacagcacc 480
 gacagctggg agaagatgcc cgagggcgag atcaagaact gcagcttcaa catcaccacc 540
 agcgtgcgcg acaagggtgca gaaggaggtac agcgtgttct acaagctgga cgtgggtggcc 600
 atcgacaacg acaacgcacg ctaccgcctg atcaactgca acaccagcgt gatcaccacc 660
 gcctgccccca aggtgagctt cgagccctac cccatccact actgcgcccc cgccggcttc 720
 gccatctgta agtgcacagg caagaagtcc aacggcaccc gcccctgcaaa gaacgtgagc 780
 accgtgcagt gcacccacgg catcccccgttggtgagca cccagctgtc gctgaacggc 840
 agcctggccg aggaggagat cgtgtgcgc tccgagaact tcacccgacca cgccaagacc 900
 atcatctgtc agctgaacga gtccgtggag atcaactgca tccggcccaaa caacaacacg 960
 cgtaagagca tccacatcg ccccgccgc gccttctacg ccacggcgca catcatcg 1020
 gacatccgccc agggccactg caacatcagc aaggccaaact ggaccaacac cctcgagcag 1080
 atcgtggaga agctgcgcg acaacacaaga ccacatctt caacagcagc 1140
 agccggccgcg acccccgagat cgtgttccac agcttcaact gccggccgcgat 1200
 tgcaacacca gcccggctt caacagcacc tggaccaatca cccggaggat gaacaagacc 1260
 aaggagaacg acaccatcat cctgcctgc cgccatccgc agatcatcaa catgtggcag 1320

gaggtgggca aggccatgt aaaaaaaaaaaaaatccgcggcc agatcaagt cagcagcaat 1380
 attacccggcc tgcgtctgac ccgcgcacggc ggcaccaaca acaaccgcac caacgacacc 1440
 gagaccttcc gccccggcg cggcaacatg aaggacaact ggcgcagcga gctgtacaag 1500
 tacaagggtgg tgcgcacatcg aaaaaaaaaaaaaaaaatggggggcc gtcaggccaa gcgcgcgtg 1560
 gtgcagcgcg agaagcgcgc cgtggccctg ggcccctgt tcacatcgctt cttggccgc 1620
 gcccggagca ccatgggcgc cgccctccgt accctgaccg tgccaggccg ccagctgctg 1680
 agccggcatcg tgcagcagca gaacaacctg ctgcgcgcga tcgaggccca gcagcacctg 1740
 ctgcagctga cccgtgtgggg catcaagcag ctgcaggccc gcacatctggc cgtggagcgc 1800
 tacctgaagg accagcagct gctggccatc tggggctgca gccggcaagct gatctgcacc 1860
 accaccgtgc ccttggaaacag cagctggagc aacaagagcc tgaccgagat ctgggacaac 1920
 atgaccttgg a tggagtgaaa ggcgcagatc ggcaactaca ccggccctgat ctacaacctg 1980
 atcgagatcg cccagaacca gcaggagaag aacgagcagg agctgttgg a gctggacaag 2040
 tggccagcc tgcgttggaaactg gttcgacatc accaactggc tgcgttacat ccgcacatcc 2100
 atcatgatcg tggggccgtt gatccggctg cgcacatcgat tgcgttggctt gaggatcg 2160
 aaccgcgtgc gccaggggcta cagccccatc agcctgcaga cccgcctgca cgcccagcgc 2220
 gccccccgacc gccccggagg catcgaggag gagggccggcg agcgcgaccc cgaccgcage 2280
 aaccgcctgg tgcacggccct gctggccctg atctgggacg acctgcgcag cctgtgcctg 2340
 ttcaatcgacc accgcgttgcg cgacccgttgc ctgtatcgatcc cccgcacatcg ggagctgtg 2400
 ggcgcgcgcg gctggggagcc cctgaagtttgc tgggtggacc tgctgcagta ctggagccag 2460
 gagctgaaga gcaagccgcgtt gacccgttgc aacgccaccg ccacatccgtt gggccggggc 2520
 accgaccgcg tcatcgatcg cgtgcagcgc atcttccgcg ccgtgatcca catccccgc 2580
 cgcacatccgcg aggccctgg a ggcgcgcgcg ctgtaaagata tcggatccctc taga 2634

<210> 65

<211> 2538

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
gp160.modUS4.delV1

<400> 65

gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgtgtgt gctgtgtgg 60
 gcagtcttcg tttcgcccaag cgccaccacc gtcgtgtggg tgaccgtgtt ctacggcg 120
 cccgtgttgg aaggaggccac caccacccctg ttctgcgcaca ggcacccaa ggcttacaag 180
 gcccaggccc acaacgtgtg ggcacccacc gcctgcgtgc ccacccgaccc caacccccc 240
 gaggttggacc ttcaatcgatg gaccgagaac ttcaacatgtt ggaagaacaa catgggtgg 300
 cagatgtatcg aggacatcat cagccgttgc gaccagagcc tgaaggccctg cgttgcac 360
 acccccccgtt gctgtaccctt gaaactgcacc gacaagctgg ggcgcggccg cgagatcaag 420
 aactgcagct tcaacatcac caccacgttgc cgcgacaagg tgcagaagga gtacagccgt 480
 ttcttacaatcg tggacgttgtt gcccacatcgac aacgacaacg ccagctaccg cctgtatcaac 540
 tgcacacacca gctgtatcac ccaggccgtc cccaaagggtt gcttcgagcc catccccatc 600
 cactactgcg ccccccggccg ctgcgcacatc ctgaagtgcgca aggacaagaa gttcaacggc 660
 accggcccccgtt gcaagaacgtt gacccgttgc cagtgcaccc acggcatccg cccctgtgg 720
 agcaccacgc tgcgtgttggaa cggcagccgtt gccgaggagg agatcgatcg ggcgcgcg 780
 aacttcacccg acaacgcacca gaccatcatc gtgcagctga acgagtccgtt ggagatcaac 840
 tgcacccggcc ccaacaacaa cacgcgttgc agcatccaca tggcccccgg ccgcgccttc 900
 tacgcacccgc ggcacatcatc cggcgcacatc cggcaggccc actgcacatc cagcaaggcc 960
 aactggacca acaccctega gcaatcgatgtt gagaagctgc ggcgcgcgtt cggcaacaac 1020
 aagaccatca ttccatcgatc cagcgcggc ggcgcaccccg agatcgatgtt ccacacgttcc 1080
 aacttcacccgc ggcgcgcgtt ctactgcac accagccatc tggccgcacatc caccctgg 1140
 atcaccgcagg aggttgcacca gaccaaggag aacgacatca tcacatcgatc ctgcgcac 1200
 cggccacatca tcaacatgttgc gcaaggatgtt gcaaggccca tgcgttggcc ccccatccgc 1260
 ggcgcacatca agtgcacccgcg caatattacc ggcgcgttgc tgacccgcga cggccgcacc 1320
 aacaacaacc gcaaccaacgcg caccgcggacc ttccgcggcc ggcgcgcacca catgaaggac 1380
 aacttcacccgc ggcgcgcgtt caatcgatgtt gtcgtgttgc gtcgcgcgtt gggccgtggcc 1440
 cccaccccgcc ccaacgcgcgcg cgttgcgttgc ggcgcgcgtt ggcgcgcgc 1500
 ctgttgcacatcg tggccctggg cggccgcggg agcaccatgg ggcgcgcctc cgttgcacccgtt 1560

```

accgtgcagg cccggccagct gctgagcggc atcggtcgacg acagagaacaa cctgctgcgc 1620
gccatcgagg cccagcagca cctgctgcag ctgaccgtgt ggggcatcaa gcagctgcag 1680
gccccgcatcc tggccgtgga gcgctacctg aaggaccagc agctgctggg catctggggc 1740
tgcagcgcca agctgatctg caccaccacc gtgccctgga acagcagctg gagcaacaag 1800
agcctgacccg agatctggga caacatgacc tggatggagt gggagcgcga gatcggcaac 1860
tacaccggcc tgatctacaa cctgatcgag atcgcccaga accagcagga gaagaacgag 1920
caggagctgc tggagctgga caagtgggcc agcctgtgga actggttcga catcaccaac 1980
tggctgttgt acatccgcatttcatcatg atcgtggcg gcctgatcgg cctgcgcata 2040
gtgttcgcgc tgctgagcat cgtgaaccgc gtgcgcagg gctacagccc catcagcctg 2100
cagacccgccc tgccgcggcc ggcggggccc gaccgcggcc agggcatcga ggaggagggc 2160
ggcgagcgcg accgcgacccg cagcaaccgc ctggtgacag gcctgctggc cctgatctgg 2220
gacgacccctgc gcagccctgtg cctgttgcgc taccaccgc tgcgcgaccc gctgctgatc 2280
gtggcccgca tcgtggagct gctggggccgc cgccggctggg agggccctgaa gtactggtg 2340
aacctgctgc agtactggag ccaggagctg aagagcagcg ccgtgagcc gttcaacgcc 2400
accggccatcg ccgtggccga gggcaccgac cgcatcatcg agatcgtgca ggcgcatttc 2460
cgccgcgtga tccacatccc cccgcgcata cgccaggggcc tggagcgcgc cctgctgtaa 2520
gatatcggtat cctctaga

```

<210> 66
<211> 2553

<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
gp160.modUS4.delV2

<400> 66

gaattcgcca	ccatggatgc	aatgaagaga	gggctctgct	gtgtgctgct	gctgtgtgga	60
gcagtcttcg	tttcgcccag	cgcaccaccc	gtgctgtggg	tgaccgtgt	ctacggcgtg	120
cccgtgtgga	aggaggccac	caccacccctg	ttctggttca	gacgttacaag	ggcttacaag	180
gcccggggcc	acaacgtgt	ggccacccac	gctgtgtgc	ccaccggaccc	caacccccag	240
gaggtgaacc	tgaccaacgt	gaccgagaac	ttcaacatgt	ggaagaacaa	catggtgag	300
catgtgcatt	aggacatcat	cagcctgtgg	gaccagagcc	tgaagccctg	cgtgaagctg	360
accccccctgt	gcgtgaccct	gaactgcacc	gacaagctga	ccggcagcac	caacggcacc	420
aacagcacca	gcccggaccaa	cagcaccagc	ggcaccaaca	gcaccagcac	caacagcacc	480
gacagctggg	agaagatgcc	cgagggcggag	atcaagaact	gcagcttcaa	catcgccgccc	540
ggccgcctga	tcaactgcac	caccagcgtg	atcaccagg	cctgccccaa	ggtgagctc	600
gagcccatcc	ccatccacta	ctgcggcccc	gcccggctcg	ccatcctgaa	gtgcaaggac	660
aagaagttca	acggcacccgg	ccccctgtcaag	aacgtgagca	ccgtgcagtg	caccacggc	720
atccggccccc	tggtagcac	ccagctgtcg	ctgaacggca	gcctggccga	ggagggagatc	780
gtgctgcgt	ccgagaactt	caccgaaac	gccaagacca	tcatcggtca	gctgaacgag	840
tccgtggaga	tcaactgcatt	ccggccccaac	aacaacacgc	gtaagagcat	ccacatcgcc	900
ccccggcccg	ccttctacgc	caccggcgcac	atcatccggc	acatccggca	ggccccactgc	960
aacatcagca	aggccaaactg	gaccaacacc	ctcgagcaga	tcgtggagaa	gctgcgcgag	1020
cagttcgcca	acaacaagac	catcatcttc	aacagcagca	gcggcggcga	cccccgagatc	1080
gtgttccaca	gcttcaactg	ccggccggcggag	ttcttctact	gcaacaccag	ccagctgttc	1140
aacagcacct	ggaacatcac	cgaggagggt	aacaagacca	aggagaacga	caccatcatc	1200
ttggccctggc	gcatccggca	gatcatcaac	atgtggcagg	agggtggggc	ggccatgtac	1260
ccccccccca	tccggggcca	gatcaagtgc	agcagcaata	ttaccggcct	gctgtgcacc	1320
cgcgacggcg	gcaccaacaa	caaccggcacc	aacgacaccg	agaccttccg	ccccggccgc	1380
ggcaacatga	aggacaactg	gcccggcggag	ctgtacaagt	acaagggtgt	gcgcacatcgag	1440
ccccctggcg	tggcccccac	ccaggcccaag	cgccggctgg	tgcaagcgcga	gaagcgcggc	1500
tggggcttgg	gcgccttgg	catcggttcc	ctggggcccg	ccggggagcac	catggggcc	1560
ccctccgtga	ccctgaccgt	gcaggccccgc	cagctgtga	gcccgcattgt	gcagcagcag	1620
acaacacctgc	tgcgcgccccat	cgaggccccag	cagcacccgc	tgcagctgac	cgtgtggggc	1680
tcaagcagc	tgcaggccccg	catcctggcc	gtggagcgct	acctgaagga	ccagcagctg	1740
tggggcatct	ggggctgca	cgccaaagctg	atctgcacca	ccaccgtgccc	ctggaacacgc	1800
gtgggagca	acaagagct	gaccgagatc	tgggacaaca	tgacactggat	ggagtggggag	1860

cgcgagatcg	gcaactacac	ccggcctgatc	tacaacctga	tcgagatcgc	ccagaaccag	1920
caggagaaga	acgagcagga	gtgtgtggag	ctggacaagt	gggcacgcct	gtggaaactgg	1980
ttcgacatca	ccaactggct	gtggtacatc	cgcacatccat	tcatgategt	ggggccggcttg	2040
atcggcctgc	gcatcggtt	cgccgtgtcg	agcatcgatcg	accgcgtgcg	ccaggggctac	2100
agccccatca	gcctgcagac	ccgcctgccc	gcccagcgcg	gccccgacccg	ccccggggc	2160
atcgaggagg	aggggcgccg	gcgcgacccg	gaccgcagca	accgcctgtt	gcacggcctg	2220
ctggccctga	tctgggacga	cctgcgcgcg	ctgtgcctgt	tcaactacca	ccgcctgcgc	2280
gacctgtc	tgatcggtgc	ccgcacatcg	gagctgtcg	gcccggcg	ctggggagggc	2340
ctgaagtact	ggtggAACCT	gtgcagttac	tggagccagg	agctgaagag	cagcgccgtg	2400
agcctgttca	acgcccacccgc	catcgccgtg	gccgaggggca	ccgaccgcat	catcgagatc	2460
gtgcagcgca	tctttccgcgc	cgtgtatccac	atcccccgcc	gcatccgcac	gggcctggag	2520
cgcccccgtc	tgtaagatat	cggatccctct	aga			2553

<210> 67
<211> 2340
<212> DNA

<212> SMT

<220>

<223> Description of Artificial Sequence:
gp160.modUS4.delV1/V2

<400> 67

gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtctcg tttcggccag cgcccaccacc gtgtgtggg tgaccgtgta ctacggcggt 120
cccggtgtga aggaggccac caccaccctg ttctgcccga ggcacgcca ggcttacaag 180
ggcgaggccc acaacgtgtg ggccaccac gctctggtgc ccacccgaccc caacccccag 240
gagggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtgag 300
cagatgcgtg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgggcgcc 360
ggccaggcct gccccaaaggt gagcttcgag cccatccccca tccactactg cggcccccgc 420
ggcttcgcca tcctgaagtg caaggacaag aagttcaacg gcacccggccc ctgcaagaac 480
gtgagcaccc tgcaagtgcac ccacggcata cgeccccgtgg tgaccaacca gctgctgtg 540
aacggcagcc tggccgagga ggagatcgta ctgacgtcccg agaacttcac cgacaacgc 600
aagaccatca tcgtgcagct gaacgagtcc gtggagatca actgcaccccg ccccaacaac 660
aacacgcgtt agagcatcca catcgcccccc ggcgcgcct tctacgcccac cggcgacatc 720
atcgccgaca tccggcaggc ccactgcaac atcagcaagg ccaactggac caacaccctc 780
gagcagatcg tggagaagct ggcgcgagcg ttccggcaaca acaagaccat catcttcaac 840
agcagcageg gccccgcaccc cgagatcgta ttccacagct tcaactgcgg cggcgaggtc 900
ttctactgca acaccagccca gctgttcaac agcacctgga acatcaccgaa ggaggtgaac 960
aagaccaagg agaaccgacac catcactctt ccctgcgcga tccggccagat catcaacatg 1020
tggcaggagg tggccaaaggg catgtacgccc cccccccatcc ggcgcgcagat caagtgcagc 1080
agaatattttt ccggccctgtt getgaccccg gacggcgccca ccaacaacaa cccgcaccaac 1140
gacacccgaga cttccgc(ccc cggcgccggc aacatgaaagg acaactggcg cagcgagctg 1200
tacaagtata aggttgtgcg catcgacccg ctggggcgat ccccccacccca ggccaagcgc 1260
cgcggtgtgc agcgcgagaa ggcgcgcgtg ggcctggcg ccctgttcat cgggttcctg 1320
ggcgccggcg ggagcaccat gggcgccgc tccgtgaccc tgaccgtgca gggccggccag 1380
ctgctgagcg gcacatgtgc gacgacaaac aacactgtgc ggcacatgca gggcccgacag 1440
cacctgctgc agctgaccgt gtggggcatic aagcagctgc agggcccgat cttggccgt 1500
gagcgctacc tgaaggacca gcagctgctg ggcacatctgg gctgcagcg ggacatgtac 1560
tgcaccacca ccgtgcctg gaacagcagc tggagcaaca agagcctgac cgagatctgg 1620
gacaacatga cctggatggc gtgggagcgc gagatcgca actacaccgg cttgtatctac 1680
aacctgatcg agatcgccccca gaaccagcag gagaagaacg agcaggagct gctggagctg 1740
gacaagtggg ccagccgtg gaactggttc gacatcacca actggctgtg gtacatccgc 1800
atcttcatca tgatgtggg cggccgtatc ggcctgcga tcgtgttgc cgtgctgagc 1860
atcgatcgacc gctgtgcacca gggctacagg cccatcagcc tgacgaccccg cctgcccgc 1920
cagcgcggcc ccgaccggccc cgagggcata gaggaggagg gccgcgcagcg cgaccgcgac 1980
cgcgacacc gctgtgtgc cggccctgtg gccctgatct gggacgaccc ggcgcagctg 2040
tgcctgttca gctaccaccc cctgcgcgcac ctgctgctga tcgtggcccg catcggtggag 2100
ctgctggccc gccgcggctg ggagggccctg aagtactggt ggaacactgtg gcaactgtg 2160

agccaggaggc tgaagagcag cgccgtgagc ctgttcaacg ccaccgcat cggcggtggcc 2220
 gaggggcacgg accgcattat cgagatcggt cagcgcatct tccgcgcgt gatccacatc 2280
 ccccgccgca tccgcccaggc cctggagcgc gcccgtgt aagatatacg 2340

<210> 68
 <211> 2385
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:
 gp160.modUS4del 128-194

<400> 68
 gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgtgtgt gctgtgtgga 60
 gcagtcttcg tttcgccccag cgccaccacc gtgtgtggg tgaccgtgta ctacggcggt 120
 cccgtgtgga aggaggccac caccaccctg ttctgcgcga ggcacgcca ggcttacaag 180
 gccgaggccc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caaccccccag 240
 gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catgggtggag 300
 cagatgcgtg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
 accccctgt gcgtgggggc agggaaactgc gagaccagcg tgatcaccca ggctgtcccc 420
 aaggtagact tcgagccat ccccatccac tactgcgccc cgcgcgcctt cgccatccctg 480
 aagtgcagg acaagaagtt caacggcacc ggccccctgca agaacgtgag caccgtgcag 540
 tgcacccacg gcatccggcc cgtgtgtggc acccagctgc tgctgaacgg cagcctggcc 600
 gaggaggaga tcgtgtgtgg ctccgagaac ttccaccgaca acgccaagac catcatcg 660
 cagctgaacg agtccgtgg aatcaactgc atccggggcc acaacaacac gcgtaaagagc 720
 atccacatcg gccccggccg cgcccttctac gccaccggcg acatcatcg cgacatccgc 780
 caggcccact gcaacatcg caagccaaac tggaccaaca ccctcgagca gatcgtggag 840
 aagctgcgcg agcagttcgg caacaacaag accatcatct tcaacagcag cagcggcgcc 900
 gaccccgaga tcgtgttcca cagttcaac tggcgccggcg agttcttcta ctgcaacacc 960
 agccagctgt tcaacagcac ctgaaacatc accggaggagg tgaacaagac caaggagaac 1020
 gacaccatca tcctgccttg ccgcattccgc cagatcatca acatgtggca ggaggtggc 1080
 aaggccatgt acggccccc catccgcggc cagatcaagt gcagcagcaa tattaccggc 1140
 ctgctgtga cccgcgacgg cggcacaac aacaaccgc ccaacgacac cgagaccc 1200
 cgccccggcg gggcaacat gaaggacaac tggcgccgc agctgtacaa gtacaagggtg 1260
 gtgcgcatcg agccccctggg cgtggccccc acccaggcca agcgcgcgt ggtcagcgc 1320
 gagaagcgcg cctgtgggctt gggccctg ttcatcggtc tcctggcgc cgcgggagc 1380
 accatggcgcc cccgcctccgt gaccctgacc gtgcaggccc gccagctgtc gagcggcattc 1440
 gtgcagcagc agaacaacct gctgcgcgc atcgaggccc agcagcacct gctgcagctg 1500
 accgtgtggg gcatcaagca gctgcaggcc cgcatctgg ccgtggagcg ctacctgaag 1560
 gaccagcagc tgctgggcat ctggggctgc agcggcaagc tgatctgcac caccaccgtg 1620
 ccctggaaaca gcagctggag caacaagagc ctgaccgaga tctggacaa catgacctgg 1680
 atggagtggg agcgcgagat cggcaactac acggccctga tctacaacct gatcgagatc 1740
 gcccagaacc agcaggagaa gaacgagcag gagctgtgtt agctggacaa gtggccage 1800
 ctgtggaaact gggtcgacat caccaactgg ctgtgttaca tccgcacatc catcatgatc 1860
 gtggcgggcc tgatcggtc ggcacatcg ttcgcgtgc tgagcatcgta gaaaccgcgtg 1920
 cgcagggtc acagccccat cagccgtcgac accccgcgtc cggcccgacg cggcccccac 1980
 cgccccggagg gcatcgagga ggagggccggc gagcgccgacc ggcacccgcg caaccgcctg 2040
 gtgcacggcc tgcgtggccct gatctggac gacccgtgc ggcctgtgcct gttcagctac 2100
 caccgcctgc ggcacccgtc gctgtatcgatc gcccgcgtc tggagctgtc gggccgcgc 2160
 ggctgggagg ccctgaagta ctgggtggaaat ctgtgtgtgt actggagcca ggagctgaag 2220
 agcagcgcgc tgagccctttt caacgcacc gccatcgccgc tggccgaggg caccgaccgc 2280
 atcatcgaga tcgtgcagcg catctccgc gccgtgtatcc acatcccccg cgcacatccgc 2340
 cagggcctgg agcgcgcctt gctgtaaat atcggtatcc ctaga 2385

<210> 69
 <211> 144
 <212> DNA
 <213> Human immunodeficiency virus

<400> 69
gacaccatca tcctgccctg ccgcattccgc cagatcatca acatgtggca ggaggtggc 60
aaggccatgt acgccccccc catccgcggc cagatcaagt gcagcagcaa catcacccgc 120
ctgctgctga cccgcgacgg cgcc 144

<210> 70
<211> 144
<212> DNA
<213> Human immunodeficiency virus

<400> 70
ggaactatca cactccatg cagaataaaa caaattataa acaggtggca ggaagtagga 60
aaagcaatgt atgcccccc catcagagga caaatttagat gctcatcaa tattacagga 120
ctgctattaa caagagatgg tggt 144

<210> 71
<211> 144
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic Env
US4 common region

<400> 71
gacaccatca tcctgccctg ccgcattccgc cagatcatca acatgtggca ggaggtggc 60
aaggccatgt acgccccccc catccgcggc cagatcaagt gcagcagcaa catcacccgc 120
ctgctgctga cccgcgacgg cgcc 144

<210> 72
<211> 144
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic Env
SF162 common region

<400> 72
ggcaccatca ccctgccctg ccgcattcaag cagatcatca accgctggca ggaggtggc 60
aaggccatgt acgccccccc catccgcggc cagatccgct gcagcagcaa catcacccgc 120
ctgctgctga cccgcgacgg cgcc 144

<210> 73
<211> 4766
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
gp160.modUS4.gag.modSF2

<400> 73
gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgtgtgt gctgtgtgg 60
gcagtcttcg ttccgcggcag cgccaccacc gttgtgtggg tgaccgtgt ctacggcgtg 120
cccggtgtgg aaggaggccac caccaccctg ttctgcgcgc ggcacccaa ggcttacaag 180
gccgaggccc acaacgtgtg ggcacccac gcttgcgtgc ccaccgaccc caaccccccag 240
gagggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtgag 300
cagatgcatg aggacatcat cagcctgtgg gaccagagcc tgaaggccctg cgtgaagctg 360

acccccctgt gcgtgaccct gaactgcacc gacaagctga cccggcagcac caacggcacc 420
 aacagcacca gcggcaccaa cagcaccagc ggcaccaaca gcaccagcac caacagcacc 480
 gacagctggg agaagatgcc cgaggcgag atcaagaact gcagttcaa catcaccacc 540
 agcgtgcgcg acaagggtca gaaggagtac agccttctt acaagctgga cgtggtgcgg 600
 atcgacaacg acaacgcacg ctacccctg atcaactgca acaccagggt gatcaccagg 660
 gcctgccccca aggtgagctt cgagcccatc cccatccact actgcccggcc 720
 gccatccctga agtgcaccca caagaagttc aacggcaccg gcccctgcaaa gaacgtgagc 780
 accgtgcagt gcacccacgg catccggccc gtggtgagca cccagctgt gctgaacggc 840
 aggctggccg aggaggagat cgtgtgcgc tccgagaact tcaccgacaa cgccaaagacc 900
 atccatcggtc agctgacca gtcggtagg atcaactgca tccggcccaa caacaacacg 960
 cgtaaagagca tccacatcg cccggccgc gccttctacg ccaccggcga catcatcgcc 1020
 gacatccgccc agggccactg caacatcage aaggccaaact ggaccaacac cctcgagcag 1080
 atcgtggaga agctgcgcg gcagttcgcc aacaacaaga ccatcatctt caacagcagc 1140
 agcggcggcg accccgagat cgtgttccac agcttcaact gccggggcga gttttctac 1200
 tgcaacacca gccagctttt caacagcacc tggaaatca cccgaggaggt gaacaagacc 1260
 aaggagaacg acaccatcat cctggccctgc cgcattccggc agatcatcaa catgtggcag 1320
 gaggtgggca aggccatgtt ccccccccccc atccggggcc agatcaagt gacgacaaat 1380
 attaccggcc tgcgtctgac cccgcacggc ggcaccaaca acaaccgcac caacgacacc 1440
 gagaccttcc gccccggcgg cggcaacatg aaggacaact ggcgcagcga gctgtacaag 1500
 tacaagggtgg tgcgcacatca gccccctggc gtggggccca cccaggccaa gcccggcgtg 1560
 gtgcagcgcg agaagcgcgc cgtggccctg ggcggccctgt tcatcggtt cctggggcgc 1620
 gccgggagca ccatgggccc cgcctccctg accctgaccc tgcaggcccgg ccagctgt 1680
 agcggcatacg tgcagcagca gaacaacactg ctgcgcgccta tcgaggcccgg ccagcacctg 1740
 ctgcagctga ccgtgtgggg catcaagcag ctgcaggcccgc gcatcttgc cgtggagcgc 1800
 tacactgagg accagcagct gtcggcatac tggggctgca gccggcaagct gatctgcacc 1860
 accacccgtc cctggaaacag cagctggagc aacaagagcc tgaccgagat ctgggacaac 1920
 atgaccttgg tggagtggga ggcggagatc ggcaactaca cccgcctgtt ctacaacactg 1980
 atcgagatcg cccagaacca gcaggagaag aacggcggcgg agctgttgc gctggacaag 2040
 tggggccagcc tggaaactt gttcgcatac accaacttggc tgggtatcc cccgcatttc 2100
 atcatgatcg tggggccctt gatccggctt cgcattgtt tggcggtt ggcattgtt 2160
 aaccgcgtc gccagggtta cagccccatc accctgttgc cccgccttgc cgcggcgc 2220
 gggcccgacc gccccggggg catcgaggag gaggggcggcgg agcgcgaccg cgcggcgc 2280
 aaccgcctgg tgcacggctt gctggccctg atctgggacg acctgtgcag cctgtgcctg 2340
 ttcaagctacc accgcctgtc cgcacctgtt ctgatgttgc cccgcattgtt ggagctgt 2400
 ggcggccggcg gctggggggc cctgaagttt tgggttgc gtcgttgc gtcgttgc 2460
 gagctgaaga gcagcgcgtt gaggctgttca aacggccaccg ccattgcgtt ggcggggcc 2520
 accgacccgca tcattcgatc cgtgcagcgc atcttccggc cccgtatcca catccccccgc 2580
 cgcattccggcc agggccctggc ggcgcggccctg ctgttgcata tggatccctc tagagaattc 2640
 ccccccccccc cccccccccccctt ccccccccttca acgttactgg cccggccgc 2700
 ttggaaataag gcccgtgtc gtttgcattt atgttattttt ccaccatattt gccgtttttt 2760
 gggccatgtga gggcccgaaa acctggccctt gtttgcatttgc gggatccatcc taggggttt 2820
 tccccctctcg ccaaaggaaat gcaagggttgc ttgaatgttgc tgaaggaaatc agttcccttc 2880
 gaagcttctt gaagacaaac aacgttgcata ggcggccctt gcaaggcagcg gaacccccc 2940
 cctggcgaca ggtgcctctg cggccaaaag ccacgttgcata aagatacacc tgcaaaaggcg 3000
 gcacaacccc agtgcacatgt tggatgttgc atagttgttgc aaagatcaat atggctctcc 3060
 tcaaggcttat tcaacaagggg gtcggaggat gcccggccaaat tacccttgc tatggatct 3120
 gatctggggc ctcgggtgcac atgttttata tggatgttgc gtcgggttaaa aaaacgttca 3180
 gggcccccggc accacggggc cgtggggccctt ctttggaaaaa cacgataata ccatgggccc 3240
 cccgcggccagc gtgttgcggc gggccggatc gacatgttgc gagaagatcc gcctggccccc 3300
 cggccggccagc aagaaggatc aacgttgcgttgc ggcggccgcg agtggagcgc 3360
 ctccggccgtt aacccggggc tggatgttgc cggccggccctt gtcggccaga tcctggggca 3420
 gtcgttgcacc accgttgcata cccggccggc gggccggccctt gtcggccaga tcctggggca 3480
 cacccctgtac tgcgttgcacc accgttgcata cgttgcgttgc gggccggccctt gtcggccaga 3540
 gatcgaggag gggccggccaaat gtcggccggccctt gtcggccaga tcctggggca 3600
 cacccggccac accgttgcata cccggccggccctt gtcggccaga tcctggggca 3660
 gatggatgtc cggccatca gggccggccctt gtcggccaga tcctggggca 3720
 gggcccttc agggccggccctt gtcggccaga tcctggggca 3780
 ccaggacctg aacacgtat tgaacaccgtt gggccggccac cggccggccca tgcagatgt 3840
 gaaggagacc atcaacggggc accgttgcata cccggccggccctt gtcggccaga tcctggggca 3900

ccccatcgcc cccggccaga tgcgcgagcc ccgcggcagc gacatcgccg gcaccaccag 3960
 caccctgcag gagcagatcg gctggatgac caacaacccc cccatccccg tggcgagat 4020
 ctacaagcgg tggatcatcc tggcctgaa caagatcggt cgatgtaca gccccaccag 4080
 catcctggac atccgcagg gccccaaagg gcccctccgc gactacgtt accgcttcta 4140
 caagaccctg cgcgctgagc agggcagcca ggacgtgaag aactggatga ccgagaccct 4200
 gtcgttgcag aacgccaacc cgcactgca gaccatcctg aaggctctcg gccccggc 4260
 caccctggag gagatgtga cgcctgcca gggcgtggc gccccggcc acaaggcccc 4320
 cgtgctggcc gaggcgatga gccaggtgac gaaccggcg accatcatga tgcagcgcgg 4380
 caacttccgc aaccagcgg aagaccgtcaa gtgcttcaac tgccgcagg agggccacac 4440
 cggcaggaac tgccgcgccc cccgcaagaa gggctgtgg cgctgcggcc gcgagggcca 4500
 ccagatgaag gactgcaccg agcgcaggc caacttctg ggcaagatct ggcccagcta 4560
 caagggccgc cccggcaact tcctgcagag ccgccccgag cccaccggcc ccccccggagga 4620
 gagcttccgc ttccggcgagg agaagaccac ccccagccag aagcaggagc ccatcgacaa 4680
 ggagctgtac cccctgacca gcctgcgcag cctgttcggc aacgacccca gcagccagta 4740
 agaattcaga ctgcagcaag tctaga 4766

<210> 74
<211> 4689
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
gp160.modSF162.gag.modSF2

<400> 74
gaattcgcca ccatggatgc aatgaagaga gggctctgt gtgtgtgtct gctgtgtgga 60
 gcaatcttcg ttccggccag cgccgtggag aagctgtgg tgaccgtgtta ctacggcgtg 120
 cccgtgtgga aggaggccac caccacccctg ttctgcgcga ggcacgcacca ggcctacgac 180
 accgagggtgc acaacgtgtg ggccacccac gcctgcgtgc ccacccgaccc caaccccccag 240
 gagatcgatgc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtgag 300
 cagatgcacg aggacatcat cagcctgtgg gaccagaggc tgaaggccctg cgtgaagctg 360
 accccctgt gcgtgaccct gcactgcacc aacctgaaga acgcaccaaa cacaagagc 420
 agcaacttggaa aggagatgga cgcggcgag atcaagaact gcagcttcaa ggtgaccacc 480
 agcatccgca acaagatgca gaaggagtac gcccgttct acaagctgga cgtgggccc 540
 atcgacaacg acaacaccag ctacaagctg atcaactgca acaccagcgt gatcaccagg 600
 gcctgccccca aggtgagctt cgagcccatc cccatccact actgcgcggcc cggccggcttc 660
 gccatcctga agtgcacacg caagaagtgc aacggcagcg gcccctgcac caacgtgagc 720
 accgtgcagt gcacccacgg catccggcccc gtggtgagca cccagctgt gctgaacggc 780
 agcctggcccg aggagggcgt ggtgatccgc agcgagaact tcaccgacaa cggcaagacc 840
 atccatcgatgc agtgcaggg gagegtggag atcaactgca cccggcccaa caacaacacc 900
 cggcaagagca tcaccatcgcc cccggccgc gccttctacg ccacccggcga catcatcgcc 960
 gacatccgccc agggccactg caacatcagc ggcgagaagt ggaacaacac cctgaagcag 1020
 atcgatgcacca agtgcaggc ccagttcgcc aacaagacca tcgtgttcaa gcagagcagc 1080
 ggcggcgcacc ccgagatctgt gatgcacacg ttcaactgct gggggagtt ctctactgc 1140
 aacagcaccac agtgcgttcaa cagcacctgg aacaacacca tcggcccaa caacaccaac 1200
 ggcaccatca ccctgcctcg ccgcacatcaag cagatcatca accgctggca ggaggtggc 1260
 aaggccatgt acggccccc catccgcggc cagatccgt gcagcagcaa catcaccggc 1320
 ctgctgtgtca cccgcgcacgg cggcaaggag atcagcaaca ccaccggat cttccggcc 1380
 ggcggcggcg acatgcgcga caactggcgc acgcgagctgt acaagttacaa ggtggtaag 1440
 atcgagccccc tggggcgatgc ccccaaccaag gccaagcgc gctgtggcga gcgcgagaag 1500
 cgcgcgtgtca ccctggggcgc catgttccctg gcttccttgg ggcggccggc cagcaccatg 1560
 ggcggccgcgc gctgtaccctt gaccgtgcag gcccggccagc tgcgtggcgg catcgatgc 1620
 cagcagaacaa acctgtcgcc cgcacatcgag gcccagcgc acctgtgcac gctgaccgtg 1680
 tggggcatca agcagctgca ggcggcgatgc ctggccgtgg agcgttacatc gaaggaccag 1740
 cagctgtgg gcatctgggg ctgcagcggc aagctgtatc gcaccacccgc cgtggccctgg 1800
 aacgcgcgtt ggagcaacaa gagcgtggac cagatctggaa acaacatgac ctggatggag 1860
 tggggcgatgc agatcgacaa ctacaccaac ctgtatcaca ccctgtatcga ggagagccag 1920
 aaccagcagg agaagaacga gcaggagctg ctggagctgg acaagtggc cagcctgtgg 1980

aactggttcg acatcagcaa gtggctgtgg tacatcaaga tcttcatcat gatcgtggc 2040
 ggcttgggg gcctgcgcat cgtttcacc gtgttgagca tcgtgaaccg cgtgcggccag 2100
 ggctacagcc ccctgagctt ccagacccgc ttccccgccc cccgcggccc cgaccgcccc 2160
 gagggcatcg aggaggaggg cggcgagcgc gaccgcacc gcagecagcc cctgggtcac 2220
 ggctgtgg ccctgatctg ggacgacctg cgcagcctgt gcctgttcaag ctaccacccg 2280
 ctgcgcgacc tgatcctgat cgccgcggc atcgtggagc tgctggccg cgcggctgg 2340
 gaggccctga agtactgggg caacctgctg cagtactgaa tccaggagct gaagaacagc 2400
 gccgtgagcc tggcgtacgc catcgccatc gccgtggccg agggcaccga ccccatcata 2460
 gaggtggccc agcgcattcg cccgcgcctt ctcgcacatcc cccgcgcatt cccgcaggcc 2520
 ttcgagcgcgc ccctgctgtt actcgagcaa gtcttagagaa ttccggggcc cccccccccc 2580
 cccctctccc tccccccccc ctaacgttac tggccgaagc cgcttggaaat aaggccgggt 2640
 tgcgtttgtc tatatgttat ttccacatc attgccgtt tttggcaatg tgaggggcccg 2700
 gaaacctggc cctgttctt tgcacgacat tccctagggtt ctttcccttc tcgccaagg 2760
 aatgcaaggt ctgttgaatg tcgtgaagga agcagttctt ctggaaagctt cttgaagaca 2820
 aacaacgtct gtagcgcacc tttgcaggca gcggaacccc ccacctggcg acaggtgcct 2880
 ctgcggccaa aagccacgtg tataagatac acctgcacaa gcgccacaac cccagtgcct 2940
 cgttgtgagt tggatagttt tggaaaagagt caaatggctc tcctcaagcg tattcaacaa 3000
 ggggctgaag gatgcccaga aggtacccca ttgtatgggta tctgtatctgg ggcctcggtg 3060
 cacatgctt acatgtgtt agtcgaggtt aaaaaaacgtt ctaggggggcc cgaaccacgg 3120
 ggacgtgggtt ttcccttggaa aaacacgata ataccatggg cggccgcgc accgtgctga 3180
 gccgcggcga gctggacaag tgggagaaga tccgcctgcg cccggggccg aagaagaagt 3240
 acaagctgaa gcacatcgta tgggcccggc gcgagctggg ggcgttcgcgtt gtgaaccccg 3300
 gcctgtggg gaccagcggag ggctggccgc agatctggg ccagctgcgc cccagctgc 3360
 agaccggcag cgaggagctg cgcagcctgt acaacaccgtt ggccaccctg tactgcgtgc 3420
 accagcgcattt cgacgtcaag gacaccaagg agggccctggg gaagatcgag gaggagcaga 3480
 acaagtccaa gaagaaggcc cagdaggccg cccgcgcgcg cggcaccggc aacagcagcc 3540
 agtgtggccca gaactacccc atcgtgcaga acctgcaggg ccagatgggtt caccaggcc 3600
 tcagcccccg caccctgaac gcctgggtga aggtgggtgg gggaaaggcc ttccggcccg 3660
 aggtgatccc catgttcaac gcccctgagcg agggccgcac ccccccaggac ctgaacacga 3720
 tggtaacac cgtggccgc caccaggccg ccatgcagat gctgaaggag accatcaacg 3780
 aggaggccgc cgagtgggac cgcgtgcacc cgcgtgcacgc cggcccccattt gccccggcc 3840
 agatgcgcga gccccggccg aegcagatcg cccgcaccac cagcaccctg caggagcaga 3900
 tcggctggat gaccaacaac ccccccatttc cctggggcgaa gatctacaag cggtgatca 3960
 tcctggccctt gaccaagatc gtggggatgtt acagggccac cagcatcctt gacatccggcc 4020
 agggcccaa ggagcccttc cgcgactacg tggaccgctt ctacaagacc ctgcgcgtg 4080
 agcaggccag ccaggacgtt aagaactgga tgaccgagac cctgctgggtt cagaacgccta 4140
 acccccactt caagaccatc ctgaaggctc tcggccccggc ggccaccctg gaggagatga 4200
 tgaccgcctt ccaggccgtt ggcggccccc gccacaaggc cgcgtgtgtt gccgaggccg 4260
 tgagccaggt gacgaacccg gcgaccatca tgatgcagcg cggcaacttc cgcaaccaggc 4320
 ggaagaccgtt caagtgttcc aactgcggca aggagggccca caccgcggcgg aactgcccgg 4380
 ccccccggcaaa gaagggtgtc tggcgtgcgc gccgcggagg ccaccagatg aaggactgca 4440
 ccgagcgccta ggccaaacttc ctggcgaaga tctggcccaatg ctacaaggcc cggccggcc 4500
 acttcctgca gagccgcggc gagcccaccc cccccccggg ggagacgttc cgcttcggcg 4560
 aggagaagac cacccccacgg cagaacgcagg agcccatcgaa caaggagctg tacccttgc 4620
 ccagcctgcg cagcctgttc ggcaacgcacc ccagcagccaa gtaagaattt agactcgagc 4680
 aagtctaga 4689

<210> 75
 <211> 4472
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:
 gp160.modUS4.delV1/V2.gag.modSF2

<400> 75
 gaattcggcca ccatggatgc aatgaagaga gggctctgtt gtgtgtgtgg 60
 gcagtcttcg tttcgcccaag cgcaccaccgc gtgctgtgg tgaccgtgtt ctacggcggt 120

cccgtgtgga aggagggcac caccacccctg ttctgcgcga ggcacgcca ggcttacaag 180
 gcccaggccc acaacgtgtg ggcacccac gcctgcgtgc ccacccgaccc caacccccag 240
 gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
 cagatgcattt aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtggcgcc 360
 gcccaggcct gccccaaagggt gagcttcgag cccatccccca tccactactg cgccccccg 420
 ggcttcgcca tcctgaagtg caaggacaag aagttcaacg gcacccggccc ctgcaagaac 480
 gtgagcaccg tgcagtgcac ccacggcattt cggccctgtgg tgagcaccata gctgtgtgt 540
 aacggcagcc tggccgagga ggagatcgtg ctgcgcctcg agaacttac acgacaacgccc 600
 aagaccatca tcgtgcacgt gaacgagtcc gtggagatca actgcattccg ccccaacaac 660
 aacacgcgttta agagcatcca catcgcccccc ggccgcgcct tctacgcac cggcgacatc 720
 atcggcgaca tccggccaggc ccactgcacatc atcagcaagg ccaactggac caacacccctc 780
 gagcagatcg tggagaagct ggcgcagccat ttcggcaaca acaagaccat catcttcaac 840
 agcagcagcg gcggcgaccc cgagatcgtg ttccacagct tcaactgcgg cgccgagttc 900
 ttctactgca acaccagcca gctgttcaac agcacccgtt acatcaccga ggaggtgaac 960
 aagaccaagg agaacgcacatc catcattccgtt ccctgcccga tccgcagat catcaacatg 1020
 tggcaggagg tggcaaggc catgtacgccc cccccccatcc gcccgcagat caagtgcagc 1080
 agcaatatta cccggctgtt gctgaccggc gacggcgccca ccaacaacaa ccgcaccaac 1140
 gacaccgaga cttccggccc cggccggccg aacatgaagg acaactggcg cagcgagctg 1200
 tacaagtaca aggtggtgcg catcgagccctt ctggggcgtgg ccccccacca gccaagcgc 1260
 cgcgtggtgc agcgcgagaa ggcgcggcgtt ggcctggcgg ccctgttcat cggtttctg 1320
 ggcgcggccg ggagcaccat gggccggccc tccgtgaccc tgacgtgca ggcccgccag 1380
 ctgctgagcg gcacgcgttca acacccgtt ggcacccatcgaa ggcccgacatc 1440
 caccctgtgc agctgaccgt gtggggcatc aagcagctgc agggccgcattt cctggccgtg 1500
 gagcgcattacc tgaaggacca gcaactgttgc ggcattctggg gctgcagccg caagctgtatc 1560
 tgcaccacca ccgtggccctt gaaacgcggc tggagacaca agacccgtac cgagatctgg 1620
 gacaacatga cctggatggta gtggagccg gacatcgccgca actacacccgg cctgatctac 1680
 aacctgatcg agatcgccca gaaaccaggcag gagaagaacg agcaggagct gctggagctg 1740
 gacaagtggg ccagcctgtt gaaactggttt gacatccatc actggctgttgcgtt gtcacatccgc 1800
 atcttcatca tgatcgtggg cggcctgttgc ggcctgcgcgca tctgttgcgttgcgtt gtcgttgcgtt 1860
 atcgtgaacc gctgtgcggcc cggctacagcc cccatcagcc tgcagaccccg cctggccggcc 1920
 cagcgcggcc cccgaccggcc cggaggccatc gaggaggagg gccgcgcgcg cggccgcgcac 1980
 cgcagcaacc gcctggtgcg ccgcctgttgc ggcctgtatc gggacgcaccc ggcgcgcctg 2040
 tgcctgttca gctaccaccc cctgcgcgcac ctgtgtgttgc tctgtggcccg catcgtggag 2100
 ctgctggggcc gccgcggcgtt ggaggccctg aagtactgtt ggaacctgtt gcaactgtt 2160
 agccaggagc tgaagagccg cggcgttgcg ctgttcaaccc ccacccgtt ccgcgtggcc 2220
 gagggcaccg accgcattcat ctagatcgttgc cagcgcattt tccgcggccgtt gatccacatc 2280
 ccccgccgcgca tccggccaggc cctggagccg ggcctgttgc tttatccatgg atccctttaga 2340
 gaattccggcc cccccccccc ccccccctt cccatcccccc ccccttaacgt tactggccga 2400
 agccgcgttgg aataaggccg gtgtgcgttt gtcttatatgt tattttccac catattgccg 2460
 tcttttggca atgtgaggcc cggaaaacctt ggcctgttgc tcttgacccatc cattcctagg 2520
 ggtttttccc ctctcgccaa aggaatgca ggtctgttgc atgtgtgaa ggaaggcgtt 2580
 cctctggaaag ctcttgcaccc acaaacaacg tctgtgttgc tttatccatgg gcaacccatc 2640
 ccccccacccgt ggcacagggtt cctctgcggc caaaaggccac gtgtataaga tacacccatc 2700
 aaggccgcac aaccccaatgtt ccacccgttgc agttggatag ttgtggaaag agtcaaatgg 2760
 ctctccctcaa gcttattccaa caaggggcgtt gaggatccccc agaaggatacc ccattgtatc 2820
 ggtatctgtatc tggggcccttgc gtgcacatgc tttatccatgg tttatccatgg gttaaaaaaaa 2880
 cgttctaggcc ccccgaaacca cggggacgtt gttttccctt gaaaaacacg ataataccat 2940
 gggccggccgcg cccagcgttgc tgagccggccg cggactggac aagtgggaga agatccgcct 3000
 gcccggccgcg ggcagaagaaga agtacaacgtt gaaagccatc tttatccatgg gccgcgcgtt 3060
 ggagcgttgc gccgttgcacc cccgcctgttgc gggagaccaggc gagggtgcgc gccagatcc 3120
 gggccagctt ccccgccatc tgcagacccgg cggccggccgc cccatccatgg tttatccatgg 3180
 cgtggccaccctt ctgttactgttgc tgcacccatccatc gacccatccatgg tttatccatgg 3240
 ggagaagatc gaggaggaggc agaacaacgtt caagaagaag gcccacccatc cccatccatgg tttatccatgg 3300
 cgcggccacc ggcacccatc gccacccatccatc cccatccatgg tttatccatgg tttatccatgg 3360
 gggccagatc tttatccatgg cccatccatgg cccatccatgg tttatccatgg tttatccatgg 3420
 ggagggagaag gcttccatccatc cccatccatgg tttatccatgg tttatccatgg tttatccatgg 3480
 caccccccacg gacccatccatc cttatccatgg cccatccatgg tttatccatgg tttatccatgg 3540
 gatctgtatc gacccatccatc acggaggaggc cggccggccgc gggccaccagg cccatccatgg 3600
 cgcggccccc atcgccccccg gccagatccatc cccatccatgg tttatccatgg tttatccatgg 3660

caccagcacc ctgcaggagc agatcggctg gatgaccaac aacccccc 3720
 cgagatctac aagcggtgga tcatcctggg cctgaacaag atcgtgcgga tgtacagccc 3780
 caccagcatc ctggacatcc gccaggggccc caaggagccc ttcggcgact acgtggaccg 3840
 cttctacaag accctgcgcg ctgagcagge cagccaggac gtgaagaact ggatgaccga 3900
 gaccctgctg gtgcagaacg ccaaaaaaaa ctgcagaagacc atcctgaagg ctctcggccc 3960
 cgccggccacc ctggaggaga tgatgaccgc ctgcccgggc gtggggccggcc cccggccacaa 4020
 ggcggcgtg ctggccgagg cgatgagcca ggtgacgaaac cccggcgacca tcatgtgca 4080
 ggcggcaac ttccgcacc accgcgaaagac cgtcaagtgc ttcaactgcg gcaaggaggg 4140
 ccaacaccgcc aggaactgccc gcgcgggggg caagaaggggc tgctggcgct gcggccgcga 4200
 gggccaccag atgaaggact gcaccgagcg ccaggccaaat ttccctggca agatctggcc 4260
 cagctacaag ggccggcccg gcaacttccct gcaagagccgc cccggccacca 4320
 cgaggagagc ttccgcctcg gcgaggagaa gaccacccccc agccagaagc aggagcccat 4380
 cgacaaggag ctgtacccccc tgaccagcct ggcgcggctg ttccggcaacg accccagcag 4440
 ccagtaagaa ttccagactcg agcaagtcta ga 4472

<210> 76

<211> 4608

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:

gp160.modSF162.delV2.gag.modSF2

<400> 76

gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgtgtgg 60
 gcagtctcg tttcgcccaag cgccgtggag aagctgtggg tgaccgtgta ctacggcgtg 120
 cccgtgtgg aaggaggcac caccacccctg ttctgcgcga ggcacccaa ggcctacgac 180
 accggagggtc acaacgtgtg ggcacccac gcctgcgtgc ccaccgaccc caacccccc 240
 gagatgtgc tggagaacgt gaccggaaac ttcaacatgt ggaagaacaaa catggtggag 300
 cagatgcacg aggacatcat cagctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
 acccccccgt gcgtgacccct gcaactgcacc aacctgaaga acggccaccaa caccaagagc 420
 agcaacttgg aaggatgtgg ccggccgag atcaagaact gcagcttcaa ggtggccgccc 480
 ggcagaactga tcaactgca caccagcgtg atcaccaccc cctgccccaa ggtgagcttc 540
 gagcccatcc ccatccacta ctgcggccccc gccggcttcg ccatctgaa gtcaacgc 600
 aagaagttca acggcagcg cccctgcacc aacgtgagca ccgtgcagtg cacccacggc 660
 atccggcccg tggtagacac ccagctgtgc ctgaacggca gcctggccga ggagggcgtg 720
 gtgatccgca gcgagaactt caccgacaac gccaagacca tcatgtgca gctgaaggag 780
 agcgtggaga tcaactgcac ccgcggccaaac aacaacaccc gcaagagcat caccatcgcc 840
 cccggccgca ccttctacgc caccggcgac atcatcgccg acatccgcca ggcccactgc 900
 aacatcagcg gcgagaagtg gaacaacacc ctgaagcaga tcgtgacccaa gctgcaggcc 960
 cagttcggca acaagaccat cgtttcaag cagagcagcg gcggcgaccc cgagatcggt 1020
 atgcacagct tcaactgcgg cggcgagttc ttctactgca acagcacccaa gctgttcaac 1080
 agcaccttgg acaacaccat cggccggccaaac aacacccaacg gcaccatcac cctgcccctgc 1140
 cgcacatcaagc agatcatcaa ccgctggcag gaggtgggca aggccatgtt cgcggccccc 1200
 atccggccgc agatccgctg cagcagcaac atcaccggcc tgctgtgac ccgegacggc 1260
 ggcagaaggaga tcagcaacac caccggagatc ttccggccccc gggggccgca catgcgcgac 1320
 aactggcgca gcgagctgta caagtacaag gtggtaaga tggggccctt gggcggtggcc 1380
 cccaccaagg ccaagcgccg cgtgggtgcag cgcgagaacg ggcggcgac cctggggcc 1440
 attttctgg gcttcttggg cggccggccgc agcaccatgg ggcggccgac cctgaccctg 1500
 accgtgcagg cccggccagct gctgagcgcc atcgtgcagc agcagaacaaa cctgctgcgc 1560
 gccatcgagg cccagcagca cctgtgcag ctgaccgtgt gggggcatcaa gcagctgcag 1620
 gcccggcgtgc tggccgtggaa ggcgtacccgt aaggaccaggc agctgtggg catctggggc 1680
 tgcagcggca agctgatctt caccacccgc gtggccctggaa acggccagctg gagcaacaag 1740
 agcctggacc agatctggaa caacatgacc tggatggagt gggagcgcga gatcgacaac 1800
 tacaccaacc tgatctacac cctgtacgcg gagagccaga accagcagga gaagaacgag 1860
 caggagctgc tggagctgga caagtggggcc agcctgtggaa actgggtcgaa catcagcaag 1920
 tggctgtgtt acatcaagat ttccatcatg atcgtggggc gcctgggtgg cctgcgcata 1980
 gtgttaccgg tgctgagcat cgtgaaccgc gtgcggccagg gctacagccc cctgagcttc 2040

cagacccgct tccccggcccc ccgcggggccc gaccgcccc agggcatcga ggaggagggc 2100
 ggcgagcgcg accgcgaccc cagcagcccc ctgggtcacg gcctgctggc cctgatctgg 2160
 gacgacctgc gcagcctgtg cctgttcagc taccaccggc tgcgcaccc gatcctgtac 2220
 gccgccccca tcgtggagct gctggggccgc cgccggctggg aggccctgaa gtactggggc 2280
 aacctgctgc agtactggat ccaggagctg aagaacagcg ccgtgagcc gtgcacgccc 2340
 atcgccatcg ccgtggccga gggaccgc cgcacatcg aggtggccca ggcacatcgcc 2400
 cgcccttcc tgcacatccc ccggcgcata cgccagggtc tgcgcgegc cctgctgtaa 2460
 ctcgagcaag tctagagaat tccggggggcc cccccccccc ccctctccct cccccccccc 2520
 taacgttact ggccgaagcc gcttggaaa aggccgggtt gcgtttgtct atatgttatt 2580
 ttcccaccata ttggcgttctt ttggcaatgt gagggccccc aaacctggcc ctgtcttctt 2640
 gacgagcatt cctaggggtc ttcccccctt cgccaaagga atgcaaggcgt tggtaatgt 2700
 cgtgaaggaa gcagttcttc tggaaagcttc ttgaagacaa acaacgtctg tagcgaccct 2760
 ttgcaggcag cggaaacccccc cacctggcga caggtgcctc tgccggccaa agccacgtgt 2820
 ataagataca cctgcaaagg cggcacaacc ccagtgcac gttgtgagtt ggatagttgt 2880
 gggaaagagtc aaatggctct cctcaagcgt attcaacaag gggctgaaagg atgcccagaa 2940
 ggtaccccat tggatgggat ctgatctggg gcctcggtgc acatgttta catgtgttta 3000
 gtcgaggtt aaaaaacgtc tagggggggc gaaccacggg gacgtgggtt tccttgaaa 3060
 aacacgataa taccatgggc gcccggcca gcgtgctgag cggcggcgag ctggacaagt 3120
 gggagaagat ccgcctgcgc cccggggggca agaagaaga caagctgaag cacatcggt 3180
 gggccagccg cgagctggag cgcttcggcc tgaacccccc cctgctggag accagcgagg 3240
 gctgccgcca gatcctgggc cagctgcgc ccagcctgca gaccggcagc gaggagctgc 3300
 gcagcctgtt caacaccgtg gccaccctgt actgcgtgca ccagcgcata gacgtcaagg 3360
 acaccaagga gggccctggag aagatcgagg aggagcagaa caagtccaaag aagaaggccc 3420
 agcaggccgc cggccggcc ggcacccggca acagcagcca ggtgagccag aactacccca 3480
 tcgtgcagaa cctgcaggcgc cagatggtgc accaggccat cagcccccgc accctgaacg 3540
 cctgggtgaa ggtgggtggag gagaaggcct tcagccccc ggtgatcccc atgttcagcg 3600
 ccctgagcga gggcccccacc ccccaaggacc tgaacacgat gttgaacacc gttggcggcc 3660
 accaggccgc catgcagatc ctgaaggaga ccatcaacga ggaggccgccc gagtgggacc 3720
 gctgcaccc cgtgcaccc gggcccatcg ccccccggca gatgcgcgag ccccgccgca 3780
 ggcacatcgc cggcaccacc agcaccctgc aggagcagat cggctggatg accaacaacc 3840
 ccccccattccc cgtggcggag atctacaagc ggtggatcat cctggccctg aacaagatcg 3900
 tgcggatgtt cagccccacc agcatctgg acatccggca gggcccccag gagcccttcc 3960
 ggcactacgt ggaccgcctt tacaagaccc tgcgcgttgc gcagggcagc caggacgtga 4020
 agaactggat gaccgagacc ctgcgttgc agaacgccaa ccccgactgc aagaccatcc 4080
 tgaaggctt cggcccccgg gcccaccctgg aggagatgt gaccgcctgc cagggcgtgg 4140
 gcccggccgg ccacaaggcc cgcgtctgg cggaggccat gagccagggtg acgaacccgg 4200
 cgaccatcat gatgcagcgc ggcaacttcc gcaaccaggcg gaagaccgtc aagtgttca 4260
 actgcggcaa ggagggccac accggccagga actgcgcgc ccccccgcgaag aagggtgtct 4320
 ggcgctgcgg cgcgcaggcc caccagatga aggactgcac cgagcgcac gccaacttcc 4380
 tggcaagat ctggcccaag tacaaggggcc gccccggcaa cttcctgcag agccggccccc 4440
 agcccccaccgc ccccccccgag gagagcttcc gtttggcgca ggagaagacc acccccccagcc 4500
 agaagcagga gcccattcgac aaggagctgt acccccctgac cagcctgcgc agcctgttgc 4560
 gcaacgaccc cagcagccag taagaattca gactcgagca agtctaga 4608

<210> 77

<211> 1680

<212> DNA

<213> Human immunodeficiency virus

<400> 77

cccattagtc ctattgaaac tgttaccagta aaattaaagc caggaatggc tggcccaaaa 60
 gttaagcaat ggcatttgc agaagaaaaa ataaaagcat tagtagagat atgtacagaa 120
 atggaaaaagg aaggaaaaat ttcaaaaattt gggcctgaaa atccatataa tactccagta 180
 tttgtataa agaaaaaaaaga cagtactaaa tggagaaaaac tagtagattt cagagaactt 240
 aataaaagaa ctcaagactt ctggaaagtt cagtttagaa taccaccccc cgcagggtta 300
 aaaaaagaaaa aatcagtaac agtattggat gtgggtatg catactttc agtccctta 360
 gataaaagact ttagaaagta tactgcattt accataccta gtataaaca tgagacacca 420
 gggatttagat atcagtaaa tgtgtgcac cagggatgg aaggatcccc agcaatattc 480
 caaagttagca tgacaaaaat ctttagggcc ttttagaaaaac agaatccaga catagttatc 540

tatcaatacata tggatgattt gtatgttagga tctgacttag aaatagggca gcatagaaca 600
 aaaatagagg aactgagaca gcatctgtt aggtggggat ttaccacacc agacaaaaaa 660
 catcagaaag aaccccccatt cctttggatg ggttatgaac tccatcctga taaatggaca 720
 gtacagccta taatgctgcc agaaaaagac agctggactg tcaatgacat acagaagtta 780
 gtgggaaaat tgaattgggc aagtcaagatt tatgcagggta ttaaagtaaa gcagttatgt 840
 aaactcctta gaggaaccaa agcaactaaca gaagtaatac cactaacaga agaagcagag 900
 ctagaactgg cagaaaacag ggagattcta aaagaaccag tacatgaagt atattatgac 960
 ccatcaaaag acttagtagc agaaatacacag aagcaggggc aaggccaatg gacatatcaa 1020
 atttatcaag agccatttaa aaatctgaaa acaggaaagt atgcaaggat gaggggtgcc 1080
 cacactaatg atgtaaaaca gttAACAGAG gcagtgcAAA aagtatccac agaaagcata 1140
 gtaatatggg gaaagattcc taaatttaaa ctaccatCAC AAAAGGAAAC atgggaagca 1200
 tggtggatgg agtattggca agctacctgg attcctgagt gggagttgt caataccccct 1260
 cccttagtga aattatggta ccagtttagag aaagaaccca tagtaggagc agaaaactttc 1320
 tatgttagatg gggcagctaa tagggagact aaatttaggaa aagcaggata tggtaactgac 1380
 agaggaagac aaaaagttgt ctccatagct gacacaacaa atcagaagac tgaattacaa 1440
 gcaattcatc tagcttgcg ggattcggga tttagaagtaa acatagtaac agactcacaa 1500
 tatgcatttag gaatcatca agcacaacca gataagagtg aatcagagtt agtcagtcaa 1560
 ataatacagac agttaataaa aaaggaaaag gtctacctgg catgggtacc agcacacaaa 1620
 ggaattggag gaaatgaaca agtagataaa tttagtcagtg ctggaatcag gaaagtacta 1680

<210> 78

<211> 1865

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: GP1

<400> 78
 gtcgacgcca ccatgggcgc cgcgcgcgc gtgctgagcg gggcgagct ggacaagtgg 60
 gagaagatcc gcctgcgcgc cggcgcaag aagaagtaca agctgaagca catcggtgtgg 120
 gccagccgcg agctggagcg ctgcgcgtg aaccccgccg tgctggagac cagcgagggc 180
 tgccgcgcaga tcctgggcgc gctgcagccc agcctgcaga cggcgcgcga ggagctgcgc 240
 agcctgtaca acaccgtggc caccctgtac tgcgtgcacc agcgcatacg cgtcaaggac 300
 accaaggagg ccctggagaa gatcgaggag gaggcagaaca agtccaagaa gaaggcccag 360
 caggccgcgc cgcgcgcgc caccggcaac agcagccagg tgagccagaa ctacccatc 420
 gtgcagaacc tgcaggggca gatgtgcac caggccatca gccccccgcac cctgaacgac 480
 tgggtgaagg tggtggagga gaaggccttc agcccccagg tgatccccat gttcagcgcc 540
 ctgagcgagg ggcgcacccc ccagggacctg aacacgtgt tgaacaccgt gggcgccac 600
 caggccgcgc tgcagatgtt gaaggagacc atcaacgagg aggccgcga gtgggaccgc 660
 gtgcacccccc tgcacgcgcg ccccatcgcc cccggccaga tgcgcgagcc cgcggcagc 720
 gacatcgccg gcaccaccag caccctgcag gaggcagatcg gctggatgac caacaacccc 780
 cccatcccccg tggcgagat ctacaagcgg tggatcatcc tgggcctgaa caagatcg 840
 cggatgtaca gccccaccag catctggac atccgcagg gccccaaagga gcccctccgc 900
 gactacgtgg accgcttcta caagaccctg cgcgcgtgac agggcagcca ggacgtgaag 960
 aactggatga cgcagacccct gctggtgcag aacgcacacc cgcactgcaaa gaccatcctg 1020
 aaggctctcg gcccccgcc caccctggag gagatgtga cgcctgcca gggcggtggc 1080
 gggcccgccca acaaggcccg cgtgtggcc gaggcgtat ggcagggtac gaaaccggcg 1140
 accatcatga tgcagcgccg caacctccgc aaccagcggg agaccgtcaa gtgttcaac 1200
 tggcgccagg agggccacac cgcaggaaac tgccgcgcgc cccgcaagaa gggctgtgg 1260
 cgctcgccgc gcgaggaca ccaaataatggaa gattgcactg agagacaggc taattttta 1320
 gggaaagatct ggccttccta caaggaaagg ccaggaaatt ttcttcagag cagaccagag 1380
 ccaacagccc caccagaaga gagtttcagg tttggggagg agaaaacaac tccctctcag 1440
 aacgcaggagc cgatagacaa ggaactgtat cttttactt ccctcagatc actctttggc 1500
 aacgcacccct cgtcacagata aggatcgccg ggcaggctcaaa ggaggcgctg ctgcacaccg 1560
 gcccgcacga caccgtgtcg gaggagatga acctgcccgg caagtggaaag cccaaagatga 1620
 tggcgccggat cgggggcttc atcaaggtgc ggcagttacga ccagatcccc gtggagatct 1680
 gcccgcacaa ggccatcgcc accgtgtgg tggggcccccac ccccgtaac atcatcgcc 1740
 gcaacctgtc gaccccgatc ggctgcaccc tgaacttccc catcagcccc atcgagacgg 1800

tgcggctgaa gctgaagccg gggatggacg gcccccaaggt caagcagtgg cccctgtaa 1860
aattc 1865

<210> 79
<211> 1865
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: GP2

<400> 79
gtcgaccca ccatgggcgc ccgcgccgc gtgctgagcg gggcgagct ggacaagtgg 60
gagaagatcc gcctgcgccc cggccggcaag aagaagtaca agctgaagca catcggtgtgg 120
gccagccgcg agctggagcg ctgcggccgtg aaccccgccg tgctggagac cagcgaggc 180
tgccgcccaga tcctggccca gctgcagcccc agcctgcaga cccgcagcga ggagctgcgc 240
agcctgtaca acaccgtggc caccctgtac tgcgtgcacc agcgcatacg cgtcaaggac 300
accaaggagg ccctggagaa gatcgaggag gacgacaaca agtccaagaa gaaggcccag 360
caggccgccc cccgcgcgg cacccggcaac agcagccagg tgagccagaa ctaccccatc 420
gtgcagaacc tgcaggggca gatgtgcac caggccatca gccccgcac cctgaacgac 480
tgggtgaagg tgggtggagga gaaggccttc agcccccgggg tgatccccat gttcagcgcc 540
ctgagcgagg ggcgcacccc ccagacactg aacacgtgt tgaacaccgt gggcgccac 600
caggccgcca tgcagatgtg gaaggagacc atcaacgagg aggccgcga gtgggaccgc 660
gtgcaccccg tgcacgcgg ccccatcgcc cccggccaga tgcgcgagcc cccgcggcagc 720
gacatcgccg gcaccacccag caccctgcag gacgacatcg gctggatgac caacaacccc 780
cccatcccg tgggcgagat ctacaaggcg tggatcatcc tgggcctgaa caagatcg 840
cgatgtaca gccccaccatcgcgttgcac atccgcagg gcccccaagga gcccctccgc 900
gactacgtgg accgcttcta caagaccctg cgcgcgtgac agggcagcca ggacgtgaag 960
aactggatga ccgagacccct gctggtcag aacgccaacc cgcactgcac gaccatcctg 1020
aaggctctcg gccccggc caccctggag gagatgtac cgcgcctgcca gggcgtggc 1080
ggccccggcc acaaggcccc cggtgtggcc gaggcgatga gccaggtgac gaacccggcg 1140
accatcatga tgcagcgcgg caacttccgc aaccaggcgaa agaccgtcaa gtgttcaac 1200
tgcggcaagg agggccacac cgcgcgggaaac tgcgcgcggc cccgcgaagaa gggctgctgg 1260
cgctgcggcc gcgaaggaca ccaaatgaaa gattgcactg agagacaggc taattttta 1320
ggaaagatct ggccttcta caagggaaagg ccaggaaatt ttcttcagag cagaccagag 1380
ccaaacagccc caccagaaga gagtttcagg tttggggagg agaaaacaac tccctctcag 1440
aagcaggagc cgatagacaa ggaactgtat cttttactt ccctcagatc actctttggc 1500
aacgaccctt cgtcacagta aggatcgaaaa ggcaactcaa ggaagcgctg ctcgatacag 1560
gagcagatga tacagtatta gaagaaatga atttgcagg aaaatgaaaa ccaaaaatga 1620
tagggggat cgggggccttc atcaaggtga ggcgtacga ccagataacct gtagaaatct 1680
gtggcataaa agctataatgtt acagttttttt taggacctac acctgtcaac ataattggaa 1740
gaaatctgtt gacccagatc ggctgcaccc tgaacttccc catcagccct attgagacgg 1800
tgccgctgaa gttgaagccg gggatggacg gcccccaaggt caagcaatgg ccattgtaa 1860
aattc 1865

<210> 80
<211> 2305
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
FS(+).proinact.RTopt.YM

<400> 80
gcggccgcga aggacacccaa atgaaaatgtt gcaactgatggacg acaggctaat tttttggaa 60
agatctggcc ttcctacaag ggaaggccag ggaattttct tcagacgaga ccagaccaa 120
cagccccacc agaagagacg ttcagggttttggggaggagaa aacaactccc tctcagaacg 180
aggagccgat agacaaggaa ctgtatcctt taacttccct cagatcactc tttggcaacg 240

accgcgtc	acaataagga	tcggggggca	actcaaggaa	gcgcgtctcg	atacaggagc	300
agatgataca	gtattagaag	aatgaattt	gccaggaaaa	tggaaaccaa	aatgatagg	360
ggggatcggt	ggctcatca	aggtgaggca	gtacgaccag	ataacctgttag	aatctgtgg	420
acataaaagct	ataggtacag	tattagttagg	acctacaccc	gtcaacataaa	ttggaagaaa	480
tctgttgacc	cagatcggt	gcaccttggaa	cttccccatc	agcccttattg	agacgggtcc	540
cgtgaagttg	aagccgggaa	tggacggccc	caaggtcaag	caatggccat	tgaccgagga	600
gaagatcaag	gccctggtgg	agatctgcac	cgagatggag	aaggagggca	agatcagcaa	660
gatcgcccc	gagaacccct	acaacacccc	cgtgtcgcc	atcaagaaga	aggacagcac	720
caagtggcgc	aagctggtgg	acttcccgca	gctgaacaag	cgcacccagg	acttctggga	780
gggtcagctg	ggcatccccc	accccgccgg	cctgaagaag	aagaagagcg	tgaccgtgt	840
ggacgtggc	gacgcctact	tcagegtgcc	cctggacaag	gacttccgca	agtacaccgc	900
cttcaccatc	cccagcatca	acaacgagac	ccccggcatc	cgctaccagt	acaacgtgt	960
gccccaggc	ttgaagggca	gccccggccat	cttccagagc	agcatgacca	agatccctgga	1020
gccccccgc	aagcagaacc	ccgacatcg	gatctaccag	gccccccctgt	acgtggcag	1080
cgacccgtgg	atcggccagc	accgcaccaa	gatcgaggag	ctgcgcccage	acctgtctcg	1140
ctggggcttc	accacccccc	acaagaagca	ccagaaggag	cccccccttcc	tgtggatggg	1200
ctacgagctg	caccccgaca	agtggaccgt	gcagccccatc	atgtctggccg	agaaggacag	1260
ctggaccctg	aacgacatcc	agaagctgtt	gggcaagctg	aactgggcca	gcccagatcta	1320
cgccggcata	aagggtgaagc	agctgtgca	gctgctggc	ggcaccaagg	ccctgaccga	1380
gggtatcccc	ctgaccgggg	aggccgagct	ggagctggcc	gagaaccgcg	agatccctgaa	1440
ggagccccgt	cacgggtgt	actacgacc	cagcaaggac	ctgtggccg	agatccagaa	1500
gcagggccag	ggccagtgga	cttccaggat	ctaccaggag	cccttcaaga	acctgaagac	1560
cggcaagtac	ggcccatgc	ggggccccc	caccaacgc	gtaaagcgc	tgaccggagc	1620
cgtgcagaag	gtgagcacc	agacatcg	gatctgggc	aagatcccc	agttcaagct	1680
gccccatccag	aaggagac	ggggggcctg	gtggatggag	tactggcagg	ccacccctggat	1740
cccccgatgg	gagttcgtga	acacccccc	cctgggtgaag	ctgtggtacc	agctggagaa	1800
ggagcccatc	gtggcgcccg	agaccttcta	cgtggacg	gcccaccaacc	gcgagaccaa	1860
gctgggcaag	gccgctacg	tgaccgacc	ggggccggcag	aaggtgtga	gcatccccg	1920
caccaccaac	cagaagacc	agctgcaggc	catccaccc	gcctgcagg	acagggccct	1980
ggaggtgaac	atcgtaacc	acagccagta	cgccctggc	atcatccagg	cccgccccga	2040
caagagcgag	agcgagctgg	tgagccagat	catcgagcag	ctgtatcaaga	aggagaaggt	2100
gtacccgtgg	tgggtgccc	cccacaagg	catcgccggc	aacgagcagg	tggacaaggt	2160
ggtgagcggc	ggcatccgca	aggtgtgtt	cctgaacggc	atcgatggcg	gcatctgtat	2220
ctaccagtag	atggacgacc	tgtacgtggg	cagcggccgc	cctaggatcg	attaaaagct	2280
ccccggggct	agcaccgggt	aattc				2305

<210> 81
<211> 2299
<212> DNA
<213> Artif

<220>
<223> Description of Artificial Sequence:
FS(+).proinact.RTopt.YMWM

```
<400> 81
gcggcccgca aggacaccaa atgaaagatt gcactgagag acaggctaat ttttaggga 60
agatctggcc ttccataacaag ggaaggccag ggaattttct tcagagcaga ccagagccaa 120
cagccccacc agaagagagc ttcaaggttt gggaggagaa aacaactccc tctcagaagc 180
aggagccgat agacaaggaa ctgtatcctt taactccct cagatcactc tttggcaacg 240
acccttcgtc acaataagga tcggggggca actcaaggaa gcgcgtctcg atacaggagc 300
agatgataca gtattagaag aaatgaattt gccaggaaaa tgaaaaccaa aaatgatagg 360
ggggatcgaa ggcttcatca aggtgaggca gtacgaccag atacctgttag aatctgtgg 420
acataaaagct ataggtaacag tattatgtt acctacacct gtcaacataa ttggaaagaaa 480
tctgttgcacc cagatcggtc gcacccgtt gttttccatc agccctattt agacggtgcc 540
cgtgaagttt aagccgggaa tggacggccc caaggtaag caatggccat tgaccgagga 600
gaagatcaag gccctggtgg agatctgcac cgagatggag aaggagggc aagatcagcaa 660
gatcgcccccc gagaacccct acaacacccc cgtgttcgcc atcaagaaga aggacagcac 720
caagtggcgc aagctggtgg acttcccgca gctgaacaag cgcacccaaq acttctqqqa 780
```

ggtgcagctg ggcatcccc accccggcgg cctgaagaag aagaagagcg tgaccgtgct 840
 ggacgtggc gacgcctact tcagcgtgcc cctggacaag gacttccgca agtacaccgc 900
 cttcaccatc cccagcatca acaacgagac ccccgccatc cgctaccagt acaaacgtgct 960
 gccccagggc tggaaaggca gccccggcat cttccagagc agcatgacca agatcctgga 1020
 gcccctccgc aaggcagaacc ccgcacatcgat gatctaccag gccccctgt acgtggcag 1080
 cgacacctggag atcgccagc accgcaccaa gatcgaggag ctgcgcgcagc acctgctgctg 1140
 ctggggcttc accaccccg acaagaagca ccagaaggag ccccccttc tgcccatcg 1200
 gctgcacccc gacaagtggc ccgtgcagcc catcatgctg cccgagaagg acagctggac 1260
 cgtgaacgac atccagaagc tggggcggaa gctgaactgg gccagccaga tctacgccc 1320
 catcaaggtg aaggcagctgt gcaagctgct ggcggcacc aaggccctga ccgaggtgat 1380
 ccccccgtacc gaggaggccg agctggagct ggccgagaac cgcgagatcc tgaaggagcc 1440
 cgtgcacgag gtgtactacg accccagcaa ggacctgggt gccgagatcc agaagcaggg 1500
 ccaggggccag tggacctacc agatctacca ggagcccttc aagaacctga agaccggcaa 1560
 gtacgcccgc atgcgcccgg cccacaccaa cgacgtgaag cagctgaccg agggccgtgca 1620
 gaaggtgagc accgagagca tcgtgatctg gggcaagatc cccaagttca agtgccttcat 1680
 ccagaaggag acctggggagg cctgggtggat ggagtaactgg cagggccacct ggatccccga 1740
 gtgggagttc gtgaacaccc ccccccttgat gaagctgtgg taccagctgg agaaggagcc 1800
 catcgccggc gccgagaccc tctacgtggc cggcgccgc aaccgcgaga ccaagctggg 1860
 caaggccggc tacgtgaccg accggggccg gcagaagggtg gtgagcatcg ccgacaccac 1920
 caaccagaag accgagctgc aggccatcca cctggccctg caggacagcg gcctggaggt 1980
 gaacatcggt accgacagcc agtacgcctt gggcatcatac caggcccagc ccgacaagag 2040
 cgagagcggag ctggtgagcc agatcatcgat gcaagctgatc aagaaggaga aggtgtacct 2100
 ggcctgggtg cccggccaca agggcatcgat cggcaacagc caggtggaca agctggtgag 2160
 cgccggcatac cgcaagggtgc tgttctgaa cggcatcgat ggcggcatcg tgatctacca 2220
 gtacatggac gacctgtacg tggcagcgg cggccctagg atcgattaaa agcttcccg 2280
 ggcttagcacc ggtgaattc 2299

<210> 82
 <211> 2306
 <212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
FS(-).protmod.RTopt.YM

<400> 82

gcggccgcga aggacaccaa atgaaagatt gcactgagag acaggctaatttccggc 60
 aggacctggc cttccgtcag ggcaaggccc gcgagttcag cagcgagcag accccgcgc 120
 acagccccac ccgcccgcgag ctgcagggtgt gggggcggcga gaacaacagc ctgagcgagg 180
 cccggccgcga ccgcccaggcc accgtgagct tcaacttccc ccagatcacc ctgtggcagc 240
 gcccccttgtt gaccatcagg atcggccggc. agctcaaggaa ggcgctgctc gacaccggcg 300
 ccgacacac cgtgctggag gagatgaacc tgccggcaa gtggaaagccc aagatgatcg 360
 gcgggatcg gggcttcatc aagggtcgcc agtacgacca gateccccgtg gagatctgctg 420
 gccaacaggc catcgccacc gtgctgggtg gccccaccccc cgtgaacatc atcgccgc 480
 acctgctgac ccagatcgcc tgcacccctga acttccccc cagccccatc gagacgggtc 540
 ccgtgaagct gaagccgggg atggacggcc ccaaggctaa gcagtggccc ctgaccgagg 600
 agaagatcaa ggccctgggtg gagatctgca ccgagatggc gaaggaggcc aagatcagca 660
 agatcgccccc cgagaaccccc tacaacaccc ccgtgttcgc catcaagaag aaggacagca 720
 ccaagtgccggc caagctgggt gacttccggc agctgaacaa ggcgcaccccg gacttctggg 780
 aggtgcagct gggcatcccc caccggccgg gcctgaagaa gaagaagagc gtgaccgtgc 840
 tggacgtggg cgacgcctac ttccagcgtgc ccctggacaa ggacttccgc aagtacaccg 900
 ctttcaccat cccccagcatc aacaacgaga ccccccggcat ccgtaccatc tacaacgtgc 960
 tggcccaggc ctggaaaggc agccccggca ttcccgagag cagcatgacc aagatcctgg 1020
 agcccttccgc caaggcagaac cccgacatcg tgatctacca ggccccctgt tacgtggc 1080
 gcgacacctggc gatcgccag caccgcacca agatcgagga gctgcgcagc cacctgctgc 1140
 gctggggctt caccacccccc gacaagaagc accagaagga gcccccccttc ctgtggatgg 1200
 gctacgagct gcaccccgac aagtggaccg tgcagcccat catgctcccc gagaaggaca 1260
 gctggaccgt gaacgacatc cagaagctgg tggcagatc gaaactggcc agccagatct 1320

acqccggcat caaggtaaag cagctgtgca agctgctgcg cggcaccaag gccctgaccg 1380
 aggtatccc cctgaccggag gaggccgagc tggagctggc cgagaaccgc gagatcctga 1440
 aggagcccggt gcacgaggtg tactacgacc ccagcaaggaa cctggggcc gagatccaga 1500
 agcagggcca gggccagttt acctaccaga tctaccaggaa gcccttcaag aacctgaaga 1560
 cccgcaagta cgccccatcg cgccggcccc acaccaacgaa cgtgaagcag ctgaccgagg 1620
 ccgtcagaa ggtgagcacc gagagcateg tgatctgggg caagatcccc aagttcaagc 1680
 tggccatcca gaaggagacc tggggggctt ggtggatggaa gtactggcag gccacctgga 1740
 tccccgagtg ggagttcggt aacacccccc ccctggtggaa gctgtggtag cagctggaga 1800
 aggagcccat cgtggccccc gagaccttct acgtggacgg cgccgccaac cgccgagacca 1860
 agctggccaa ggccggctac gtgaccggacc gggggccggca gaagggtggtg agcatcgccg 1920
 acaccaccaa ccagaagacc gagctgcagg ccattccacctt ggccctgcag gacagccggcc 1980
 tggaggtgaa catcgtgacc gacagccagt acggccctggg catcatccag gccccagcccg 2040
 acaagagcga gaggcagctg gtgagccaga tcatacgacca gctgatcaag aaggagaagg 2100
 tgtacctggc ctgggtggcc gcccacaagg gcatcggcgg caacgagcag gtggacaagc 2160
 tggtagcgc cggcatccgc aagggtctgt ttctgaacgg catcgatggc ggcatcgtga 2220
 tctaccagta catggacgac ctgtacgtgg gcagccgggg ccctaggatc gattaaaagc 2280
 ttccccgggc tagcaccgggt gaattc 2306

<210> 83
 <211> 2300
 <212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
FS (-) .protmod.RTopt.YMWM

<400> 83
 gcggccgcga aggacaccaa atgaaagatt gcactgagag acaggctaatttcccg 60
 aggacctggc cttectgcag ggcaaggccc gcgagttcag cagcgagcag accccgcgcca 120
 acagccccac ccggccgcgcg ctgcagggtgt gggggccggca gaacaacagc ctgagcgagg 180
 ccggccgcga ccggccagggc accgtgagct tcaacttccc ccagatcacc ctgtggcagc 240
 gccccctggt gaccatcagg atcggccggcc agctcaaggaa ggcgctgctc gacaccggcg 300
 ccgacgacac cgtgctggag gagatgaaacc tgccggcga gtggaaagccc aagatgatcg 360
 gcgggatcgg gggcttcatac aagggtgcggc agtacgacca gatccccgtg gagatctcg 420
 gccacaaggc catcggcacc gtgctggtgg gccccaccccc cgtgaacatc atcggccgca 480
 acctgctgac ccagatcgcc tgcacccatc acttccccat cagccccatc gagacgggtgc 540
 ccgtgaagct gaaggccgggg atggacggcc ccaaggtaa gcagtggccc ctgaccgagg 600
 agaagatcaa gggccctggt gagatctgca ccgagatgga gaaggaggc aagatcagca 660
 agatcggccc cgagaaccccc tacaacaccc ccgtgttcgc catcaagaag aaggacagca 720
 ccaagtggcg caagctgggt gacttcccgag agctgaacaa ggcgcacccag gacttctggg 780
 aggtgcagct gggcatacccc caccggcccg gcctgaagaa gaagaagagc gtgaccgtgc 840
 tggacgtggg cgacgcctac ttcaagctgc ccctggacaa ggacttccgc aagtagacccg 900
 ccttcacccat ccccagcatc aacaacgaga ccccccggcat ccgttaccatc tacaacgtgc 960
 tgccccaggc ctggaaaggc agccccggca ttctccagag cagcatgacc aagatcctgg 1020
 agcccttcgg caagcagaac cccgacatcg tgatctacca ggccccctg tacgtggcga 1080
 gcgaccttgg aatcgcccg caccgcacca agatcgagga gtcgcggccag caccgtctgc 1140
 gctggggctt caccacccca gacaagaagc accagaaggaa gcccccttc ctgccccatcg 1200
 agctgcaccc cgacaagtgg accgtgcagc ccatcatgtc gcccggagaag gacagctgg 1260
 ccgtgaacgca catccagaag ctggggggca agctgaactg ggcgcaggccatc acctacgccc 1320
 gcatcaaggt gaaggcagctg tgcaagctgc tgccgcggcactaaggccctg accgagggtga 1380
 tccccctgac cgaggaggcc gagctggagc tggccggagaa ccgcggagatc ctgaaaggagc 1440
 ccgtgcacga ggtgtactac gaccccgacca aggacactggt ggcgcaggatc cagaaggcagg 1500
 gccaggggcca gtggacctac cagatctacc aggagccctt caagaacctg aagaccggca 1560
 agtacgccccg catgcgcggc gcccacacca acgacgtgaa gcagctgacc gaggccgtgc 1620
 agaagggttag caccgagagc atcgtatctt gggggcaagat ccccaagttc aagctgcccc 1680
 tccagaagga gacctggggag ccctgggtggaa tgtagtactg gcaggccacc tggatcccc 1740
 agtggggatgtt cgtgaacacc ccccccctgg tgaagctgtg gtaccagctg gagaaggagc 1800
 ccacatcggtt ccggcggacc ttctacgtgg acggccggcc caaccgcgag accaagctgg 1860

```

gcaaggccgg ctacgtgacc gaccggggcc ggcagaagggt ggtgagcatc gcccacacca 1920
ccaaccagaa gaccgagctg caggccatcc acctggccct gcaggacagc ggcctggagg 1980
tgaacategt gaccgacagc cagtacgccc tgggcatcat ccaggccccag cccgacaaga 2040
gcgagagcga gctggtgagc cagatcatcg agcagctgtat caagaaggag aagggttacc 2100
tggcctgggt gcccggccac aagggcatacg gggcaacga gcagggtggac aagctggta 2160
gcgcggccat ccgcaagggtg ctgttccctga acggcatcga tggcggcatc gtgtatctacc 2220
agtacatgga cgacctgtac gtgggcagcg gccccttag gatcgattaa aagcttcccg 2280
gggctagcac cggtgaattc 2300

<210> 84
<211> 2312
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
FS(-).protmod.RTopt(+)

<400> 84
gcggccgcga aggacaccaa atgaaagatt gcactgagag acaggctaat ttcttcgcg 60
aggaccttgc cttctgcag ggcaaggccc gcgagttcg cagcgagcg acccgcgc 120
acagccccac ccgcgcgag ctgcagggtg gggcggcga gaacaacagc ctgagcgagg 180
ccggcgcgcga ccgcaggccc accgtgagct tcaacttccc ccagatcacc ctgtggcagc 240
gcccccttgtt gaccatcagg atcggcggcc agctcaagga ggcgtgtcc gacaccggcg 300
ccgacgacac cgtgttggag gagatgaacc tgccggcaa gtggaaagccc aagatgtcg 360
gcgggatcgg gggcttcatac aaggtgcggc agtacgacca gatccccgtg gagatctcg 420
gccacaaggc catggcacc gtgttggcgg gcccccccccc cgtgaacatc atcggccgca 480
acctgtcgac ccagatggc tgcaccctga acttccccat cagccccatc gagacgggtc 540
ccgtgaagct gaagccgggg atggacggcc ccaaggctaa gcagtggccc ctgaccggg 600
agaagatcaa ggccttggc gggatctgcg cggagatgga gaaggagggc aagatcagca 660
agatcgcccc cgagaaccccc tacaacaccc cgtgttcgc catcaagaag aaggacagca 720
ccaagtggcg caagttggc gacttccgcg agctgaacaa ggcaccccg gacttctggg 780
aggtgcagct gggcatcccc caccggccg gcctgaagaa gaagaagagc gtgaccgtc 840
tggacgtggg cgacgcctac ttcagctgc ccttggacaa ggacttccgc aagtacaccc 900
ccttccacat ccccgacatc aacaacgaga ccccccgc cgcgttccatc tacaacgtgc 960
tgccccaggg ctggaaaggcc agcccccgc tcttccagag cagcatgacc aagatcctgg 1020
agcccttccg caagcagaac cccgacatcg tgatctacca gtacatggac gacctgtacg 1080
tggcagcga cctggagatc ggccagcacc gcaccaagat cgaggagctg cgccagcacc 1140
tgctgcgtg gggcttcacc accccccgaca agaagcaca gaaggagccc cccttccctgt 1200
ggatgggtca cgagctgcac cccgacaagt ggaccgtgc gcccatcatg ctgcccggaga 1260
aggacagctg gaccgtgaac gacatccaga agctgggggg caagctgaac tggccagcc 1320
agatctacgc cggcatcaag gtgaaggcgc tgcgtcaagct gctgcgcgc accaaggccc 1380
tgaccggaggt gatccccctg accggaggagg ccgagctgg gctggccgag aaccgcgaga 1440
tcctgttggaa gcccgtgcac gaggtgtact acgaccccg caaggacctg gtggccgaga 1500
tccagaagca gggccaggcc cagtggacat accagatcta ccaggagccc ttcaagaacc 1560
tgaagacccgg caagtaegcc cgcgtgcgc ggcacccacac caacgacgtg aagcagctg 1620
ccggccgcgt gcaagggtg agcaccgaga gcacgtgtat ctggggcaag atccccaaat 1680
tcaagctgcc catccagaag gagacctggg aggcctggg gatgggtac tggcaggcca 1740
cctggatccc cgagttgggg ttcgttgcaca cccccccctt ggttggatcg tggtaccagc 1800
tggagaagga gcccattgtg ggccggaga ctttctactgt ggacggccgc gccaaccgcg 1860
agaccaagct gggcaaggcc ggctacgtg cggacccggg cggcagaag gtggtgagca 1920
tcggccgacac caccaaccag aagaccgaga tgcaggccat ccacctggcc ctgcaggaca 1980
gcggccctggg ggttgcacatc gtgttgcaca gccagatcgc cttggccatc atccaggccc 2040
agcccgacaa gagcgagagc gagctggtgc gccagatcat cgagcagctg atcaagaagg 2100
agaaggtgtt cctggctgg gtggccggcc acaagggtat cggccggcaac gaggcggatgg 2160
acaagctggt gaggccggc atccgcagg tgcgttccat gaacggcatc gatggccgca 2220
tcgtgtatca ccagtatcg gacgacctgt acgtggccag cggccggccctt aggtatcgatt 2280
aaaagcttcc cggggcttagc accgggtgaat tc 2300

```

<210> 85

<211> 306

<212> DNA

<213> Human immunodeficiency virus

<400> 85

atggagccag tagatcttag attagagccc tggaaagcatc caggaagtca gcctaagact 60
 gcttgcacaa attgctattg taaaaagtgt tgcttcatt gccaaaggtttgc ttccataaca 120
 aaaggcttag gcatctctta tggcaggaag aagcggagac agcgacgaag agctccctcca 180
 gacagtgggg ttcatcaagt ttctcttacca aagcaaccccg ctccccagcc ccaaggggac 240
 ccgacacggcc cgaaggaatc gaagaagaag gtggagagag agacagagac agatccagtc 300
 cattag 306

<210> 86

<211> 101

<212> PRT

<213> Human immunodeficiency virus

<400> 86

Met	Glu	Pro	Val	Asp	Pro	Arg	Leu	Glu	Pro	Trp	Lys	His	Pro	Gly	Ser
1				5				10				15			

Gln	Pro	Lys	Thr	Ala	Cys	Thr	Asn	Cys	Tyr	Cys	Lys	Lys	Cys	Cys	Phe
			20					25				30			

His	Cys	Gln	Val	Cys	Phe	Ile	Thr	Lys	Gly	Leu	Gly	Ile	Ser	Tyr	Gly
					35		40				45				

Arg	Lys	Lys	Arg	Arg	Gln	Arg	Arg	Arg	Ala	Pro	Pro	Asp	Ser	Glu	Val
					50		55			60					

His	Gln	Val	Ser	Leu	Pro	Lys	Gln	Pro	Ala	Ser	Gln	Pro	Gln	Gly	Asp
					65		70			75		80			

Pro	Thr	Gly	Pro	Lys	Glu	Ser	Lys	Lys	Val	Glu	Arg	Glu	Thr	Glu
					85			90			95			

Thr	Asp	Pro	Val	His											
				100											

<210> 87

<211> 306

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: tat.SF162.opt

<400> 87

atggagcccg tggaccggcc cctggagccc tggaaagcacc ccggcagcca gcccaagacc 60
 gcctgcacca actgctactg caagaagtgc tgcttccact gccagggttg ctcatcacc 120
 aaggggcctgg gcatcagcta cggccgcaag aagcggccgccc agcggccggc cgcccccccc 180
 gacagcggagg tgcaccagggt gagctgtccc aagcagccccc ccagccagcc ccagggcgac 240
 cccacccggcc ccaaggagag caagaagaag gtggagcgcg agacccgagac cgaccccgatg 300
 cactag 306

<210> 88

<211> 306

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
tat.cys22.SF162.opt

<400> 88

```
atggagcccg tggacccccc cctggagccc tggaaaggcacc ccggcagcca gcccaagacc 60
gcggcacca actgctactg caagaagtgc tgcttccact gccaggtgtg cttcatcacc 120
aagggcctgg gcatcagcta cggccgcaag aagcgccgccc agcgccgccc cgcccccccc 180
gacagcgagg tgcaccagg tggcctgccc aagcagcccg ccagccagcc ccagggcgac 240
cccacccggcc ccaaggagag caagaagaag gtggagcgcg agacccgagac cgaccccgta 300
cactag
```

<210> 89

<211> 168

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
tatamino.SF162.opt

<400> 89

```
atggagcccg tggacccccc cctggagccc tggaaaggcacc ccggcagcca gcccaagacc 60
gcctgcacca actgctactg caagaagtgc tgcttccact gccaggtgtg cttcatcacc 120
aagggcctgg gcatcagcta cggccgcaag aagcgccgccc agcgccgccc 168
```

<210> 90

<211> 102

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: tat cys22
SF162 protein

<400> 90

Met	Glu	Pro	Val	Asp	Pro	Arg	Leu	Glu	Pro	Trp	Lys	His	Pro	Gly	Ser
1				5				10				15			

Gln	Pro	Lys	Thr	Ala	Gly	Thr	Asn	Cys	Tyr	Cys	Lys	Lys	Cys	Cys	Phe
				20				25				30			

His	Cys	Gln	Val	Cys	Phe	Ile	Thr	Lys	Gly	Leu	Gly	Ile	Ser	Tyr	Gly
					35			40				45			

Arg	Lys	Lys	Arg	Arg	Gln	Arg	Arg	Arg	Ala	Pro	Pro	Asp	Ser	Glu	Val
					50			55			60				

His	Gln	Val	Ser	Leu	Pro	Lys	Gln	Pro	Ala	Ser	Gln	Pro	Gln	Gly	Asp
					65			70			75		80		

Pro	Thr	Gly	Pro	Lys	Glu	Ser	Lys	Lys	Val	Glu	Arg	Glu	Thr	Glu	
					85				90			95			

Thr	Asp	Pro	Val	His	Glx										
					100										

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
6 July 2000 (06.07.2000)

PCT

(10) International Publication Number
WO 00/39302 A3

(51) International Patent Classification⁷: C12N 15/49,
A61K 48/00

4560 Horton Street - R440, Emeryville, CA 94608 (US).
WALKER, Christopher; Chiron Corporation, 4560
Horton Street - R440, Emeryville, CA 94608 (US).

(21) International Application Number: PCT/US99/31245

(74) Agents: **DOLLARD, Anne, S.**; Chiron Corporation, In-
tellectual Property - R440, P.O. Box 8097, Emeryville, CA
94662-8097 et al. (US).

(22) International Filing Date:
30 December 1999 (30.12.1999)

(25) Filing Language:

English

(81) Designated States (*national*): AE, AL, AM, AT, AU, AZ,
BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK,
DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL,
IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU,
LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT,
RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA,
UG, UZ, VN, YU, ZA, ZW.

(30) Priority Data:
60/114,495 31 December 1998 (31.12.1998) US
60/168,471 1 December 1999 (01.12.1999) US

(84) Designated States (*regional*): ARIPO patent (GH, GM,
KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant: CHIRON CORPORATION [US/US]; 4560
Horton Street, Emeryville, CA 94608 (US).

Published:

— With international search report.

(88) Date of publication of the international search report:
4 January 2001

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 00/39302 A3

(54) Title: IMPROVED EXPRESSION OF HIV POLYPEPTIDES AND PRODUCTION OF VIRUS-LIKE PARTICLES

(57) Abstract: The present invention relates to the efficient expression of HIV polypeptides in a variety of cell types, including, but not limited to, mammalian, insect, and plant cells. Synthetic expression cassettes encoding the HIV Gag-containing polypeptides are described, as are uses of the expression cassettes in applications including DNA immunization, generation of packaging cell lines, and production of Env-, tat- or Gag-containing proteins. The invention provides methods of producing Virus-Like Particles (VLPs), as well as, uses of the VLPs including, but not limited to, vehicles for the presentation of antigens and stimulation of immune response in subjects to whom the VLPs are administered.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 99/31245

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 C12N15/49 A61K48/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 C12N A61K C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, STRAND, MEDLINE, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 98 34640 A (MERCK & CO; SHIVER ET AL.) 13 August 1998 (1998-08-13) cited in the application claims 4,5; examples 3,4 ---	1-4
X	WO 97 31115 A (MERCK & CO; SHIVER ET AL.) 28 August 1997 (1997-08-28) page 54 nucleotides 856-995 example 11 ---	14,26, 29,32
X	WO 98 12207 A (GENERAL HOSPITAL CORPORATION) 26 March 1998 (1998-03-26) Figure 1 nucleotides 1315-1458 page 13 -page 21 ---	14,26, 29,32
		-/-

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

Z document member of the same patent family

Date of the actual completion of the international search

10 August 2000

Date of mailing of the international search report

22.08.00

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Cupido, M

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 99/31245

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	WO 99 41397 A (OXFORD BIOMEDICA LTD; KINGSMAN ET AL.) 19 August 1999 (1999-08-19) SEQ ID NO:2 example 2 ---	1-3
E	WO 00 15819 A (CHILDRENS MEDICAL CENTER;GRAY ET AL.) 23 March 2000 (2000-03-23) SEQ ID NO:4,pHDMH ---	1-3
A	SCHNEIDER R ET AL: "Inactivation of the human immunodeficiency virus type 1 inhibitory elements allows rev-independent expression of gag and gag/protease and particle formation" JOURNAL OF VIROLOGY, vol. 71, no. 7, July 1997 (1997-07), pages 4892-4903, XP002137891 AMERICAN SOCIETY FOR MICROBIOLOGY US cited in the application figure 1 ---	1-13, 36-53
A	ANDRE S ET AL: "INCREASED IMMUNE RESPONSE ELICITED BY DNA VACCINATION WITH A SYNTHETIC GP120 SEQUENCE WITH OPTIMIZED CODON USAGE" JOURNAL OF VIROLOGY,US,THE AMERICAN SOCIETY FOR MICROBIOLOGY, vol. 72, no. 2, 1 February 1998 (1998-02-01), pages 1497-1503, XP002073767 ISSN: 0022-538X cited in the application the whole document ---	14,36-53
A	LU S ET AL: "IMMUNOGENICITY OF DNA VACCINES EXPRESSING HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 ENVELOPE GLYCOPROTEIN WITH AND WITHOUT DELETIONS IN THE V1/2 AND V3 REGIONS" AIDS RESEARCH AND HUMAN RETROVIRUSES,US,MARY ANN LIEBERT, vol. 14, no. 2, 20 January 1998 (1998-01-20), pages 151-155, XP000907375 ISSN: 0889-2229 the whole document ---	15,17,20
		-/-

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 99/31245

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>STAMATATOS L AND CHENG-MAYER C: "An envelope modification that renders a primary, neutralization-resistant clade B HIV-1 isolate highly susceptible to neutralization by sera from other clades" JOURNAL OF VIROLOGY, vol. 72, no. 10, October 1998 (1998-10), pages 7840-7845, XP002139602 AMERICAN SOCIETY FOR MICROBIOLOGY US the whole document -----</p>	15,17,20

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 99/31245

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

Although claims 61-84 , 89 and 90 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
- No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-13, 57 and 58 (all completely); 36-56, 60-90 (all partly)

Expression cassette encoding an HIV gag polypeptide, vectors and cells comprising said cassette, uses thereof to produce polypeptides or virus-like particles, methods of treating a subject using said vectors.

2. Claims: 14-35 and 59 (all completely); 36-56 and 60-90 (all partly)

As subject 1 but limited to expression cassettes encoding HIV env polypeptide.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 99/31245

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9834640	A 13-08-1998	AU 6271198 A CN 1252075 T EP 0969862 A NO 993810 A PL 335050 A		26-08-1998 03-05-2000 12-01-2000 07-10-1999 27-03-2000
WO 9731115	A 28-08-1997	AU 2124697 A BG 102784 A BR 9707672 A CN 1216064 A CZ 9802667 A EP 0904380 A HR 970092 A HU 9901112 A JP 2000505299 T NO 983876 A PL 328730 A		10-09-1997 31-05-1999 13-04-1999 05-05-1999 17-03-1999 31-03-1999 30-04-1998 28-07-1999 09-05-2000 21-10-1998 15-02-1999
WO 9812207	A 26-03-1998	AU 4355697 A CN 1237977 A CZ 9900968 A EP 0929564 A HU 9904239 A PL 332431 A		14-04-1998 08-12-1999 15-09-1999 21-07-1999 28-04-2000 13-09-1999
WO 9941397	A 19-08-1999	AU 2527499 A		30-08-1999
WO 0015819	A 23-03-2000	AU 6139699 A		03-04-2000