

ISO/IEC JTC 1/WG 7 Working Group on Sensor Networks

Document Number:	N107
Date:	2010-11-02
Replace:	
Document Type:	National Body Contribution
Document Title:	NB of US contribution 1 on the ISO/IEC WD 29182, Sensor Network
	Reference Architecture - All parts 1 - 7
Document Source:	NB of US
Document Status:	For consideration at the 3rd meeting of JTC 1/WG 7.
Action ID:	FYI
Due Date:	
No. of Pages:	22

ISO/IEC JTC 1/WG 7 Convenor:

Dr. Yongjin Kim, Modacom Co., Ltd (Email: cap@modacom.co.kr)

ISO/IEC JTC 1/WG 7 Secretariat:

Ms. Jooran Lee, Korean Standards Association (Email: jooran@kisi.or.kr)

eb-2010-01122

sn1-2010-00029

US NB Contributions (1 of 2) to ISO/IEC 29182 Sensor Network Reference Architecture

Contributions toward all parts 1 - 7

Sensor Networks from System Architecture Perspectives

Agenda

- Problem Statements
- Solution Approaches
- Lessons Learned from a Case Study
- System Architecture for Standards Development
- Architecture Artifacts to Standard Mapping
- Architecture Artifacts Mapping: OVs ←→ SVs
- Example Artifacts Views
- Service Oriented Architecture (SOA)
- Conclusions

Problem Statements

- Diversified applications and market segments for the use of sensor networks complicate in establishing sensor network standards.
 - Do we need sensor network standards for each application or market segment?
- Types of standards exist for sensors and networks separately; however, the standards that make of sensors, networks, data/information interoperable does not exist.
 - Sensors are built into stand-alone stovepipe systems without the concern of interoperability of interfaces and/or data.
 - Sensors and networks become more capable in terms of services they can provides, which lead to the necessity of standardization.
 - The desired future state is plug & play of sensors into any network.
- There is no systematic approach in establishing sensor network standards.
 - How will we identify: (1) current deficiencies in sensor networks; (2) requirements;
 (3) barriers; and so on?
 - What would be a good approach to have co-incidence views of sensors, networks, and data interoperability?

Solution Approaches in Establishing Sensor Network Standards

- Use system architecture approach leading to functional and physical architectures, which provide the co-incidence views of sensors, networks, and data interfaces and interoperability.
 - Identify the current deficiencies, needs, barriers in sensor networks.
 - Evaluate and analyze commonalities and differences among the current sensor networks.
 - Develop sensor networks requirements and their concept of operations.
 - The requirements will be application- or market segment-specific.
- Develop sensor networks standards that allows interoperability among sensors, networks, data/information, and user operational environment.
 - The sensor networks standards should lead to a plug & play capabilities.
- Provide reference architectures (RAs) to developers the ability to design, analyze, and tailor sensor networks.
 - The architectures should be generated on the sensor networks standards to guide sensor manufacturers and network developers to:
 - Quickly integrate into existing networks
 - Bridge gaps between networks
 - Enable efficient future networks
 - Sharing data with other communities/applications
 - Use the shared data to provide services
- The standards and RAs will bring benefits to the manufacturers & developers
 - Save developmental and implemental cost
 - Minimize schedule risks in development and implementation

Sensor Networks: Standards, Implementation, & Interoperability

Case Study – Katrina Disaster 2005

- Hurricane Katrina natural disaster made landfall August 29, 2005, and devastated the city of New Orleans, Louisiana.
- It caused manor damage throughout the State of Louisiana and Mississippi.
- Over 50 agencies from state and local first responders to federal and international participated in the recovery effort.
 - This effort is still going on today nearly three years later.
- Lessons learned included the need for:
 - New classes of sensors
 - Standardized "networked sensors" or "sensor networks" applications
 - Ability to transfer data between diverse sensor types and user groups
 - Ability to integrate diverse networks and data flow
 - Ability to transfer and track real-time imagery across agencies with a variety of media and networks
 - Ability to communicate and direct resources in austere environments
 - Disaster prevention preparation and training

Pending study in netted sensors

- Identify failures and needs in Katrina natural disaster scenario
- Build reference architecture for similar natural disasters
- Evaluate the interoperability and identify the needs of netted sensors standards for effective and efficient response and recovery.

System Architecture for Standards Development

Discussion on using system architecture for sensor networks standards development

- Architecture understanding
 - Use the open group description of enterprise architecture
- Architecture artifacts to standards mapping
 - System elements that map to standards illustrate system products that have technical standards current or forecast associated with them
- Architecture artifact mapping
 - Description of the system architecture products that depends on standards
- System communication description¹
 - Depict pertinent information about communication systems, communication links, and communication networks.
 - Useful for document how interfaces are supported by physical media

Systematic system architecture process

- Lead to functional, physical, information architectures of the current, existing sensor networks, if such architectures do not exist.
- Allows to compare and contrast various sensor networks for commonalities and differences identification.
- Help evaluating and determining sensors, networks, data, and service standards for interfaces and interoperability in sensor networks.
- Determine the applications or market-segments that needs reference architectures.

Architecture Understanding

- There is a need to provide an integration framework that sits above individual architectures².
- An "enterprise framework" such as Zachman can be used as an integration framework.
- The purpose of the integration/enterprise framework:
 - Allow the architect to understand how components fit into the framework.
 - Derive the architecture models that focus on enterprise level capabilities.
 - Define the conformance standards that enable the integration of components for maximum leverage and reuse.
- Enterprise architecture (EA) includes the following:
 - Business architecture
 - Information architecture
 - Application architecture
 - Data architecture
 - Technical architecture

Business Architecture Development Phase

- Describe the current baseline business of architecture.
- Develop a target business architecture.
- Analyze the gap between the baseline and target business architecture.
- Select the relevant architectural viewpoints that will enable the architect to demonstrate how the stakeholder concerns are addressed in the business architecture.
- Select the relevant tools and techniques

Information Architecture Development Phase

 This phase involves some combination of applications and data architecture.

Application architecture

- Define major kinds of application system necessary to process data and support the business
- What those applications need to do in order to manage data
- Present information to human and computer actors in the enterprise

Data architecture

- Define the major types and sources of data necessary to support the business
 - Understandable by stakeholders
 - Complete and consistent
 - Stable
- Define the data entities relevant to the enterprise
- Select the relevant tools and techniques

Technical Architecture Development Phase

- Develop a technology architecture that will form the basis of the following implementation work
- Consider what relevant technology architecture resources are available
- Consider generic technology models relevant to your organization's industry "vertical" sector
- Build technology models relevant to common systems architectures.
- Select the relevant tools and techniques

Architecture Artifacts to Standards Mapping

Architecture Artifact Mapping: Operational Views ↔ System Views

Example: Operational Node Connectivity Description

Example: System Interface Description

Example: System Communications Description

Application of Service Oriented Architecture (SOA)

Service Oriented Architecture

- is a computer system's architecture style for creating and using business processes, packaged as services, throughout lifecycle.
- defines and provisions the IT infrastructure to allow different applications to exchange data and participate in processes³.
- Interoperability between different systems and programming languages provides the basis for integration between applications on different platforms through a communication protocol.
- Establish and maintain data flow to a federated data warehouse.
 - This allows new functionality developed to reference a common business format for each data element.

³ Wikipedia Page 17

Service Oriented Architecture⁴

⁴ A Day in the Life of an NCES Developer DISA Customer Conference NCES Overview Ken Fagan

ESB = Enterprise Service Bus

Legacy Systems on Service Bus

Conclusions

- Systematic system architecture provides a method for identifying the needs areas and building foundational basis for developing the sensor network standards.
- International standards are required for sensor networks to enable interoperability for user environments, including services provided by sensors.
- Standards provide the capability to build open architecture in which we build requirements and models for sensor networks.
- Sensor networks standards is an enabler to build interoperable sensors and networks that brings benefits to user communities and industry by reducing:
 - Cost
 - Schedule
 - Risk

Conclusions

- Howard Choe, "Sensor Networks from System Architecture Perspectives," presented at ISO/IEC JTC 1 SGSN Workshop #1, Shanghai, China, June 25, 2008.
- DoD Architecture Framework (DoDAF) v.1.5.
- The Open Group Architecture Framework v8.1.
- Wikipedia on SOA.
- A Day in the Life of an NCES Developer DISA Customer Conference NCES Overview Ken Fagan