ASTR8150/PHYS8150 Signal Analysis Fourier Transforms, Gaussian Processes

Fabien Baron

Georgia State University fbaron@gsu.edu

Fall 2021

DFT: Discrete Fourier Transform

• The Discrete Fourier Transform (DFT) transforms a sequence of N complex numbers $\{\mathbf{x_n}\} := x_0, x_1, \dots, x_{N-1}$ into another sequence of complex numbers, $\{\mathbf{X_k}\} := X_0, X_1, \dots, X_{N-1}$, which is defined by

$$X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-\frac{i2\pi}{N}kn} = \sum_{n=0}^{N-1} x_n \cdot \left[\cos\left(\frac{2\pi}{N}kn\right) - i \cdot \sin\left(\frac{2\pi}{N}kn\right) \right].$$

• The inverse transform is given by:

$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k \cdot e^{i2\pi k n/N}$$

- The DFT is a linear transformation and thus can also be written in terms of a DFT matrix F
- The transform is sometimes denoted by the symbol \mathcal{F} or \mathbf{F} , as in $\mathbf{X} = \mathcal{F} \{ \mathbf{x} \}$ or $\mathcal{F} (\mathbf{x})$ or \mathbf{Fx} .
- When scaled appropriately it becomes a unitary matrix $\mathcal{F}\mathcal{F}^{-1} = I$ and the X_k thus be viewed as coefficients of x in an orthonormal basis.

FFT: Fast Fourier Transform

- Evaluating this definition directly requires $O(N^2)$ operations: there are N outputs X_k , and each output requires a sum of N terms. An FFT is any method to compute the same results in $O(N \log N)$ operations.
- The Fast Fourier Transform is computed on a uniformly sampled array and returns a uniformly sampled **spatial frequency decomposition**.

NFFT: Non-equispaced Fourier Transform

 The NFFT is a generalization of the FFT so that it works on a non-uniformly sampled signal and/or returns non-uniformly sampled spatial frequency decomposition.

Variance and covariance: a reminder

- Variance of a scalar-valued random variable X: $\sigma_X^2 = \text{var}(X) = E[(X E[X])^2] = E[(X E[X]) \cdot (X E[X])]$
- Covariance between two scalar-valued random variables *X* and *Y*:

$$cov(X, Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y]$$

Covariance matrix of random vector X:

$$\begin{split} \boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{X}} &= \begin{bmatrix} E[(X_1 - E[X_1])(X_1 - E[X_1])] & E[(X_1 - E[X_1])(X_2 - E[X_2])] & \cdots & E[(X_1 - E[X_1])(X_n - E[X_n])] \\ E[(X_2 - E[X_2])(X_1 - E[X_1])] & E[(X_2 - E[X_2])(X_2 - E[X_2])] & \cdots & E[(X_2 - E[X_2])(X_n - E[X_n])] \\ & \vdots & & \ddots & \vdots \\ E[(X_n - E[X_n])(X_1 - E[X_1])] & E[(X_n - E[X_n])(X_2 - E[X_2])] & \cdots & E[(X_n - E[X_n])(X_n - E[X_n])] \end{bmatrix} \\ &= E[(\boldsymbol{X} - E[\boldsymbol{X}])^{\top}(\boldsymbol{X} - E[\boldsymbol{X}])] \end{split}$$

• Cross-covariance matrix of random vectors \mathbf{X} and \mathbf{Y} : $\Sigma_{\mathbf{XY}} = E[(\mathbf{X} - E[\mathbf{X}])^{\top} (\mathbf{Y} - E[\mathbf{Y}])]$

Linear regression

- $y_i = f(x_i) + \epsilon_i = \theta_1 + \theta_2 x_i + \epsilon_i$ where $\epsilon \sim \mathcal{N}(0, \sigma^2)$
- In matrix notation

$$\mathbf{Y} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_N \end{bmatrix}^{\top} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} + \epsilon$$

$$= \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_N \end{bmatrix}^{\top} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} + \epsilon = \mathbf{X}^{\top} \boldsymbol{\theta} + \epsilon \quad \text{where } \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$$

- ullet Non-diagonal $oldsymbol{\Sigma}$ will be used in the case the data points are covariant
- Likelihood of θ :

$$\mathcal{L}(\boldsymbol{\theta}|\boldsymbol{Y}) = \Pr(\boldsymbol{Y}|\boldsymbol{\theta}) = \frac{1}{\sqrt{(2\pi)^N \det(\boldsymbol{\Sigma})}} e^{-\frac{1}{2}(\boldsymbol{Y} - \boldsymbol{X}^{\top}\boldsymbol{\theta})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{Y} - \boldsymbol{X}^{\top}\boldsymbol{\theta})}$$

Fabien Baron (GSU)

Signal Analysis

Fall 2021 6/15

Linear regression: mean solution and predictor

• Likelihood of θ :

$$\mathcal{L}(\boldsymbol{\theta}|\boldsymbol{Y}) = \Pr(\boldsymbol{Y}|\boldsymbol{\theta}) = \frac{1}{\sqrt{(2\pi)^N \det(\boldsymbol{\Sigma})}} e^{-\frac{1}{2}(\boldsymbol{Y} - \boldsymbol{X}^{\top}\boldsymbol{\theta})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{Y} - \boldsymbol{X}^{\top}\boldsymbol{\theta})}$$

• Maximum likelihood (take the log, derive with respect to θ) results in the **normal equation** giving the most likely θ :

$$\hat{\boldsymbol{\theta}} = (\boldsymbol{X} \boldsymbol{\Sigma}^{-1} \boldsymbol{X}^{\top})^{-1} \boldsymbol{X} \boldsymbol{\Sigma}^{-1} \boldsymbol{Y}$$

• Given $\hat{\boldsymbol{\theta}}$ and any new \boldsymbol{X}_* , we can now predict \boldsymbol{Y}_* , using the predictor **projection** "hat" matrix \boldsymbol{H} defined as:

$$\mathbf{Y}_* = (\mathbf{X}_*)^{\top} \hat{\boldsymbol{\theta}} = \underbrace{(\mathbf{X}_*)^{\top} (\mathbf{X} \mathbf{\Sigma}^{-1} \mathbf{X}^{\top})^{-1} \mathbf{X} \mathbf{\Sigma}^{-1}}_{\mathbf{H}} \mathbf{Y} = \mathbf{H} \mathbf{Y}$$

ullet All this is not fully Bayesian... What about $\Pr(\hat{m{ heta}})$, or $\Pr(m{Y}_*)$?

Fabien Baron (GSU) Signal Analysis Fall 2021 7/15

Marginal and Conditional Gaussians

• Important theorem, used when both the prior and likelihood are normally distributed. If we have:

$$\mathsf{Pr}(m{x}) \sim \mathcal{N}(m{\mu}, m{\Lambda})$$
 $\mathsf{Pr}(m{y}|m{x}) \sim \mathcal{N}(m{A}m{x} + m{b}, m{\Sigma})$

then we will have

$$\Pr(\mathbf{y}) \sim \mathcal{N}(\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{\Sigma} + \mathbf{A}\boldsymbol{\Lambda}\mathbf{A}^{\top})$$

$$\Pr(\mathbf{x}|\mathbf{y}) \sim \mathcal{N}((\boldsymbol{\Lambda}^{-1} + \mathbf{A}^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{A})^{-1} \left(\mathbf{A}^{\top}\boldsymbol{\Sigma}^{-1}(\mathbf{y} - \mathbf{b}) + \boldsymbol{\Lambda}^{-1}\boldsymbol{\mu}\right), (\boldsymbol{\Lambda}^{-1} + \mathbf{A}^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{A})^{-1})$$

• Reference: Bishop "Pattern Recognition and Machine Learning", eqs 2.113 to 2.117

◆ロト ◆個ト ◆差ト ◆差ト 差 める(*)

Application to the Linear Regression case

- Somewhat confusing, but we have: $\mathbf{y} \to \mathbf{Y}$, $\mathbf{x} \to \mathbf{\theta}$, $\mathbf{A} \to \mathbf{X}^{\top}$, $\mathbf{b} \to \mathbf{0}$, and $\Sigma \to \Sigma$
- We need to set $\Pr(\theta) \sim \mathcal{N}(\mu, \Lambda)$ with possibly the edge case of $\mu = \mathbf{0}$ and $\Lambda^{-1} \to \mathbf{0}$ to simulate a nearly uniform prior.
- We already have:

$$\mathsf{Pr}(\boldsymbol{Y}|\boldsymbol{\theta},\boldsymbol{X}) \sim \mathcal{N}(\boldsymbol{X}^{\top}\boldsymbol{\theta},\boldsymbol{\Sigma})$$

• The posterior distribution for θ , whose mean is the MAP:

$$\begin{split} \mathsf{Pr}(\boldsymbol{\theta}|\boldsymbol{Y},\boldsymbol{X}) &\sim \mathcal{N}((\boldsymbol{\Lambda}^{-1} + \boldsymbol{X}\boldsymbol{\Sigma}^{-1}\boldsymbol{X}^\top)^{-1} \left(\boldsymbol{X}\boldsymbol{\Sigma}^{-1}\boldsymbol{Y} + \boldsymbol{\Lambda}^{-1}\boldsymbol{\mu}\right), (\boldsymbol{\Lambda}^{-1} + \boldsymbol{X}\boldsymbol{\Sigma}^{-1}\boldsymbol{X}^\top)^{-1}) \\ &= \mathcal{N}(\boldsymbol{\Gamma}^{-1}\boldsymbol{X}\boldsymbol{\Sigma}^{-1}\boldsymbol{Y}, \boldsymbol{\Gamma}^{-1}) \text{ for common case } \boldsymbol{\mu} = \boldsymbol{0} \end{split}$$

And the predictive distribution is (applying the previous slide again):

$$\begin{aligned} \Pr(\boldsymbol{Y}_*|\boldsymbol{X}_*,\boldsymbol{X},\boldsymbol{Y}) &= \int \Pr(\boldsymbol{Y}_*|\boldsymbol{\theta},\boldsymbol{X}_*,\boldsymbol{X},\boldsymbol{Y}) \Pr(\boldsymbol{\theta}|\boldsymbol{X},\boldsymbol{Y}) d\boldsymbol{\theta} \\ &\sim \mathcal{N}(\boldsymbol{X}_*^\top \boldsymbol{\Gamma}^{-1} \boldsymbol{X} \boldsymbol{\Sigma}^{-1} \boldsymbol{Y}, \boldsymbol{X}_*^\top \boldsymbol{\Gamma}^{-1} \boldsymbol{X}_*) \end{aligned}$$

Fabien Baron (GSU) Signal Analysis Fall 2021 9/15

Beyond Linear Regression: basis functions

- Before we had $\boldsymbol{Y} = \boldsymbol{X}^{\top}\boldsymbol{\theta}$, but now we'd prefer a more flexible scheme $\boldsymbol{Y} = \boldsymbol{\phi}(\boldsymbol{X})^{\top}\boldsymbol{\theta}$ where $\boldsymbol{\phi}$ represent a function basis such as polynomials $\boldsymbol{\phi}(\boldsymbol{X}) = (1, x, x^2, x^3)^{\top}$. The matrix $\boldsymbol{\Phi}(\boldsymbol{X})$ is the aggregation of columns $\boldsymbol{\phi}(\boldsymbol{X})$ into a matrix.
- Amazingly, the same analysis works, so that the predictive distribution becomes:

$$\begin{split} & \text{Pr}(\boldsymbol{Y}_*|\boldsymbol{X}_*,\boldsymbol{X},\boldsymbol{Y}) \sim \mathcal{N}(\boldsymbol{\Phi}(\boldsymbol{X}_*)^\top \boldsymbol{\Gamma}^{-1}\boldsymbol{\Phi}(\boldsymbol{X})\boldsymbol{\Sigma}^{-1}\boldsymbol{Y},\boldsymbol{\Phi}(\boldsymbol{X}_*)^\top \boldsymbol{\Gamma}^{-1}\boldsymbol{\Phi}(\boldsymbol{X}_*)) \\ & \text{where } \boldsymbol{\Gamma} = \boldsymbol{\Lambda}^{-1} + \boldsymbol{\Phi}(\boldsymbol{X})^\top \boldsymbol{\Sigma}^{-1}\boldsymbol{\Phi}(\boldsymbol{X}) \end{split}$$

 This means we can find predictive distribution for basis functions. But what if we don't want to specify any functional form for these functions?

Gaussian process

- A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.
- A Gaussian process is a distribution over functions, rather than over variables
- We define the mean function m(x) and the covariance function k(x, x') of a real process f(x) and we note $f \sim \mathcal{GP}(m(x), k(x, x'))$ so that:

$$m(\mathbf{x}) = E[f(\mathbf{x})]$$

$$k(\mathbf{x}, \mathbf{x'}) = E[(f(\mathbf{x}) - m(\mathbf{x}))(f(\mathbf{x'}) - m(\mathbf{x'}))]$$

Fabien Baron (GSU)

The squared exponential kernel

• The squared exponential is a classic choice for a first exposition to Gaussian processes

$$\Sigma = cov(f(x), f(x')) = k(x, x') = \sigma_k^2 e^{-\frac{1}{2} \frac{(x - x')^2}{l^2}}$$

- It is parametrized by hyperparameter I, the characteristic length-scale of the process over which correlation is strong, and σ_k , the strength of correlation.
- Samples $\mathbf{Y} \sim \mathcal{N}(\mathbf{M}, K)$ can be generated by :
 - 1 computing Σ using the kernel expression over a given range for X.
 - 2 computing the Cholesky decomposition \boldsymbol{L} of $\boldsymbol{\Sigma} = \boldsymbol{L}\boldsymbol{L}^{\top}$
 - 3 computing Y = m + Lu where $u \sim \mathcal{N}(0, I)$
- Demo:

https://distill.pub/2019/visual-exploration-gaussian-processes/

Fabien Baron (GSU) Signal Analysis

Fall 2021

12 / 15

Predictions: posterior

- Typical example is data $\mathbf{Y} = f(\mathbf{X}) + \epsilon$, with $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma_n^2 \mathbf{I})$.
- $\operatorname{cov}(y_i, y_j) = k(x_i, y_j) + \sigma_n^2 \delta_{ij} \to \operatorname{cov}(\boldsymbol{Y}) = \boldsymbol{K}(\boldsymbol{X}, \boldsymbol{X}) + \sigma_n^2 \boldsymbol{I}$
- The joint distribution of the measurements and the predictions is:

$$\begin{bmatrix} \mathbf{Y} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I} & \mathbf{K}(\mathbf{X}, \mathbf{X}_*) \\ \mathbf{K}(\mathbf{X}_*, \mathbf{X}) & \mathbf{K}(\mathbf{X}_*, \mathbf{X}_*) \end{bmatrix} \right)$$

• The predictive distribution is: $\Pr(\mathbf{f}_*|\mathbf{X},\mathbf{Y},\mathbf{X}_*) \sim \mathcal{N}\left(\bar{\mathbf{f}}_*,\operatorname{cov}(\mathbf{f}_*)\right)$, with

$$\begin{split} & \bar{\boldsymbol{f}}_* = \boldsymbol{K}(\boldsymbol{X}_*, \boldsymbol{X}) \left(\boldsymbol{K}(\boldsymbol{X}, \boldsymbol{X}) + \sigma_n^2 \boldsymbol{I}\right)^{-1} \boldsymbol{Y} \\ & \operatorname{cov}(\boldsymbol{f}_*) = \boldsymbol{K}(\boldsymbol{X}_*, \boldsymbol{X}_*) \left(\boldsymbol{K}(\boldsymbol{X}, \boldsymbol{X}) + \sigma_n^2 \boldsymbol{I}\right)^{-1} \boldsymbol{K}(\boldsymbol{X}_*, \boldsymbol{X}) \end{split}$$

4□ ► 4□ ► 4 = ► 4 = ► 9 < 0</p>

Marginalization of kernel parameters

- The prior $\Pr(\mathbf{f}|\mathbf{X}) \sim \mathcal{N}(\mathbf{0}, \mathbf{K})$ and likelihood $\Pr(\mathbf{Y}|\mathbf{f}) \sim \mathcal{N}(\mathbf{f}(\mathbf{X}), \sigma_n^2 \mathbf{I})$ give the marginal likelihood over the function values $\Pr(\mathbf{Y}|\mathbf{X}) \sim \mathcal{N}(\mathbf{0}, \mathbf{K} + \sigma_n^2 \mathbf{I})$
- For kernels with hyperparameters (e.g. σ_k and l for the squared exponential), one can write the expression for the log-marginal likelihood as a function of the hyperparameters, then optimize it.
- This allows us to find the best parameters supported by the data, and in turn to refine our future predictions.

4□▶ 4□▶ 4□▶ 4□▶ □ 900

14 / 15

Going beyond this introduction

- "Gaussian Processes for Machine Learning", Rasmussen & Williams, PDF downloadable here: http://www.gaussianprocess.org/gpml/
- "Pattern Recognition and Machine Learning", Bishop, with examples by contributors in Matlab http://prml.github.io/ or Python https://github.com/ctgk/PRML