4

COORDENADAS POLARES

4.1 EL SISTEMA POLAR

El plano cartesiano es un sistema rectangular, debido a que las coordenadas de un punto geométricamente describen un rectángulo. Si hacemos que este punto represente un vector de magnitud r que parte desde el origen y que tiene ángulo de giro θ , tendríamos otra forma de definir un punto.

Sería suficiente, para denotar al punto de esta manera, mencionar el valor de r y el valor de θ . Esto se lo va a hacer indicando el par ordenado (r,θ) , en este caso se dice que son las **coordenadas polares** del punto.

Se deducen las siguientes transformaciones:

De rectangulares a polares:
$$\begin{cases} r = \sqrt{x^2 + y^2} \\ \theta = \arctan \frac{y}{x} \end{cases}$$
De polares a rectangulares:
$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}$$

Una utilidad de lo anterior la observamos ahora.

Ejemplo

Encuentre las coordenadas polares del punto P(1,1)

SOLUCIÓN:

Representando el punto en el plano cartesiano, tenemos:

$$\begin{cases} r = \sqrt{1^2 + 1^2} = \sqrt{2} \\ \theta = arctg \, \frac{1}{1} = \frac{\pi}{4} \end{cases}$$
 Utilizando las transformaciones

Además se podría utilizar otras equivalencias polares:

$$(\sqrt{2}, \frac{\pi}{4}) = (\sqrt{2}, -7\frac{\pi}{4}) = (-\sqrt{2}, 5\frac{\pi}{4}) = (-\sqrt{2}, -3\frac{\pi}{4})$$
 (Analícelas)

Para representar un punto en el plano, conociendo sus coordenadas polares, no es necesario hallar sus coordenadas rectangulares; se lo puede hacer directamente. Este trabajo puede ser muy sencillo si se dispone de un plano que tenga como referencia ángulos y magnitudes.

Un plano con estas características se lo llama **Sistema Polar** o **Plano Polar**. Consiste de circunferencias concéntricas al origen y rectas concurrentes al origen con diferentes ángulos de inclinación.

Al eje horizontal se lo llama **"Eje Polar"**, al eje vertical se lo llama **"Eje \frac{\pi}{2}"**. El punto de intersección entre estos dos ejes se lo llama **"Polo"**.

Ejercicios propuestos 4.1

Construya un plano polar y marque los puntos cuyas coordenadas polares son dadas. Exprese dichos puntos con r > 0 y con r < 0.

a.
$$(1, \frac{\pi}{2})$$

c.
$$(4, -\frac{2\pi}{3})$$

d.
$$(-1, \pi)$$

e.
$$(-2, \frac{3\pi}{2})$$

Construya un plano polar y marque los puntos cuyas coordenadas polares son dadas. Luego 2. encuentre las coordenadas cartesianas de dichos puntos.

a.
$$(\sqrt{2}, \frac{\pi}{4})$$

e.
$$(4,3\pi)$$

b.
$$(-1, \frac{\pi}{3})$$

f.
$$(2, \frac{2\pi}{3})$$

c.
$$(4, -\frac{7\pi}{6})$$

g.
$$(-2, -\frac{5\pi}{3})$$

d.
$$(\frac{3}{2}, \frac{3\pi}{2})$$

h.
$$(-4, \frac{5\pi}{4})$$

Encuentre las coordenadas polares de los siguientes puntos. 3.

a.
$$(-1,1)$$

b.
$$(2\sqrt{3},-2)$$

c.
$$(-1, -\sqrt{3})$$

(INVESTIGACIÓN) Encuentre la distancia entre los puntos dados en coordenadas polares. Verifique su respuesta hallando la distancia, utilizando coordenadas cartesianas.

a.
$$(1, \frac{\pi}{6}) - (3, \frac{3\pi}{4})$$
.

b.
$$(\sqrt{2}, \frac{\pi}{4}) - (1, 4\pi)$$

b.
$$(\sqrt{2}, \frac{\pi}{4}) - (1, 4\pi)$$
 c. $(1, \frac{\pi}{3}) - (1, \frac{\pi}{6})$

4.2 ECUACIONES EN COORDENADAS POLARES

Una ecuación en coordenadas polares la presentaremos de la forma $r=f(\theta)$. Por tanto para obtener la gráfica, en primera instancia, podemos obtener una tabla de valores para ciertos puntos y luego representarlos en el sistema polar; luego sería cuestión de trazar la gráfica siguiendo estos puntos.

Ejercicio Propuesto 4.2

- 1. Encuentre la ecuación cartesiana de la curva descrita por la ecuación polar dada.
 - a. $r \operatorname{sen}(\theta) = 2$

b. $r = 2 \operatorname{sen}(\theta)$

 $c. \quad r = \frac{1}{1 - \cos(\theta)}$

d. $r^2 = \operatorname{sen}(2\theta)$

e. $r^2 = \theta$

 $f. \quad r = \frac{3}{2 - 4\cos(\theta)}$

2. Encuentre la ecuación polar de la curva descrita por la ecuación cartesiana dada.

a.
$$v = 5$$

e. y = x + 1

b.
$$x^2 + y^2 = 25$$

f.
$$x^2 = 4y$$

c.
$$2xy = 1$$

g.
$$x^2 - y^2 = 1$$

d.
$$b^2x^2 + a^2y^2 = a^2b^2$$

h.
$$y = \frac{x^2}{4\pi}$$

3. Realice una tabla de valores y trace punto a punto en un plano polar, la gráfica de:

1.
$$r = \frac{6}{\cos \theta}$$

$$2. \quad r = \frac{6}{\sin \theta}$$

3.
$$r = 6\cos\theta$$

4.
$$r = 3 + 3\cos\theta$$

5.
$$r = 6 + 3\cos\theta$$

6.
$$r = 3 + 6\cos\theta$$

$$7. \quad r = \frac{9}{3 + 3\cos\theta}$$

$$8. \quad r = \frac{9}{6 + 3\cos\theta}$$

9.
$$r = \frac{9}{3 + 6\cos\theta}$$

4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS POLARES

Se trata ahora de presentar ecuaciones polares típicas que permitan por inspección describir su lugar geométrico.

4.3.1 RECTAS

4.3.1.1 Rectas tales que contienen al polo.

La ecuación cartesiana de una recta tal que el origen pertenece a ella, es de la forma y = mx

Realizando las transformaciones respectivas:

$$y = mx$$

$$r \sec \theta = m r \cos \theta$$

$$\frac{\sec \theta}{\cos \theta} = m$$

$$tg \theta = tg \phi$$

Resulta, finalmente:

$$\theta = \phi$$

Ejemplo

Graficar
$$\theta = \frac{\pi}{4}$$

Por inspección de la ecuación dada concluimos rápidamente que el lugar geométrico es una recta, que pasa por el polo con un ángulo de $\frac{\pi}{4}$. Es decir:

4.3.1.2 Rectas tales que NO contienen al polo y se encuentran a una distancia "d" del polo.

Observemos la siguiente representación gráfica:

Del triangulo tenemos: $\cos(\theta - \phi) = \frac{d}{r}$

Por tanto, la ecuación del mencionado lugar geométrico sería:

$$r = \frac{d}{\cos(\theta - \phi)}$$

Ejemplo

Graficar
$$r = \frac{4}{\cos(\theta - \frac{\pi}{6})}$$

Coordenadas Polares

SOLUCIÓN:

Por inspección de la ecuación dada concluimos rápidamente que el lugar geométrico es una recta, que se encuentra a una distancia de 4 unidades del polo y la medida del ángulo de la perpendicular a la recta es $\frac{\pi}{6}$. ES decir:

Ahora veamos casos especiales:

1. Si $\phi = 0^{\circ}$ entonces la ecuación resulta $r = 0^{\circ}$

$$r = \frac{d}{\cos \theta}$$
. Ut

Una recta

vertical.

Al despejar resulta $r \cos \theta = d$ es decir x = d.

2. Si $\phi = \frac{\pi}{2}$ entonces la ecuación resulta:

$$r = \frac{d}{\cos(\theta - \frac{\pi}{2})} = \frac{d}{\cos\theta\cos\frac{\pi}{2} + \sin\theta\sin\frac{\pi}{2}} = \frac{d}{\sin\theta}$$

Una recta horizontal.

3. Si $\phi = \pi$ entonces la ecuación resulta:

$$r = \frac{d}{\cos(\theta - \pi)} = \frac{d}{\cos\theta\cos\pi + \sin\theta\sin\pi} = \frac{d}{-\cos\theta}$$

Una recta vertical.

4. Si $\phi = 3\frac{\pi}{2}$ entonces la ecuación resulta:

$$r = \frac{d}{\cos(\theta - 3\frac{\pi}{2})} = \frac{d}{\cos\theta\cos3\frac{\pi}{2} + \sin\theta\sin3\frac{\pi}{2}} = \frac{d}{-\sin\theta}$$

Una recta horizontal.

4.3.2 CIRCUNFERENCIAS

4.3.2.1 Circunferencias con centro el polo.

La ecuación cartesiana de una circunferencia es:

$$x^2 + y^2 = a^2$$

Aplicando transformaciones tenemos:

$$x^{2} + y^{2} = a^{2}$$

$$(r\cos\theta)^{2} + (r\sin\theta)^{2} = a^{2}$$

$$r^{2}\cos^{2}\theta + r^{2}\sin^{2}\theta = a^{2}$$

$$r^{2}(\cos^{2}\theta + \sin^{2}\theta) = a^{2}$$

$$r^{2} = a^{2}$$

Resultando, finamente:

$$r = a$$

Ejemplo

Graficar r = 2

SOLUCIÓN:

Por inspección de la ecuación dada concluimos que el lugar geométrico es una circunferencia con centro el polo y que tiene radio 2.

4.3.2.2 Circunferencias tales que contienen al polo y tienen centro el punto (a,ϕ)

Observemos el gráfico:

De allí obtenemos el triángulo:

Aplicando la ley del coseno y despejando, tenemos:

$$a^{2} = r^{2} + a^{2} - 2ar\cos(\theta - \phi)$$
$$r^{2} = 2ar\cos(\theta - \phi)$$

Resultando, finalmente:

$$r = 2a\cos(\theta - \phi)$$

Ejemplo

Graficar $r = 4\cos\left(\theta - \frac{\pi}{3}\right)$

SOLUCIÓN:

Por inspección de la ecuación dada concluimos que el lugar geométrico es una circunferencia tal que el polo pertenece a ella y su centro es el punto $\left(2,\frac{\pi}{3}\right)$. Por tanto su gráfico es:

Casos especiales, serían:

1. Si
$$\phi = 0^{\circ}$$
 tenemos $r = 2a\cos(\theta - 0^{\circ}) = 2a\cos\theta$

Que transformándola a su ecuación cartesiana, tenemos:

$$r = 2a\cos\theta$$

$$r = 2a\frac{x}{r}$$

$$r^2 = 2ax$$

$$x^2 + y^2 = 2ax$$

$$(x^2 - 2ax + a^2) + y^2 = 0 + a^2$$

$$(x-a)^2 + y^2 = a^2$$

Una circunferencia con centro el punto (a,0) y radio r=a

2. Si $\phi = \pi$ tenemos $r = 2a\cos(\theta - \pi) = -2a\cos\theta$

Una circunferencia con centro el punto (-a,0) y radio r=a

3. Si $\phi = \frac{\pi}{2}$ tenemos $r = 2a\cos(\theta - \frac{\pi}{2}) = 2a\sin\theta$

Una circunferencia con centro el punto (0,a) y radio r=a

4. Si $\phi = 3\frac{\pi}{2}$ tenemos $r = 2a\cos(\theta - 3\frac{\pi}{2}) = -2a\sin\theta$

Una circunferencia con centro el punto (0,-a) y radio r=a

4.3.3 CÓNICAS tales que el foco es el polo y su recta directriz está a una distancia "d" del polo

Observe la figura.

Se define a la parábola (e=1), a la elipse (0 < e < 1) y a la hipérbola (e>1) como el conjunto de puntos del plano tales que:

$$d(P,F) = e d(P,l)$$

Entonces:

$$d(P,F) = e d(P,l)$$

$$r = e[d - r\cos(\theta - \phi)]$$

$$r = ed - er\cos(\theta - \phi)$$

$$r + er\cos(\theta - \phi) = ed$$

$$r[1 + e\cos(\theta - \phi)] = ed$$

$$r = \frac{ed}{1 + e\cos(\theta - \phi)}$$

Casos especiales son:

1. Si
$$\phi = 0^{\circ}$$
 tenemos
$$r = \frac{ed}{1 + e \cos \theta}$$
2. Si $\phi = \pi$ tenemos
$$r = \frac{ed}{1 - e \cos \theta}$$
3. Si $\phi = \frac{\pi}{2}$ tenemos
$$r = \frac{ed}{1 + e \sin \theta}$$
4. Si $\phi = 3\frac{\pi}{2}$ tenemos
$$r = \frac{ed}{1 + e \sin \theta}$$

Ejemplo 1

Graficar
$$r = \frac{6}{1 + \cos \theta}$$

SOLUCIÓN:

En este caso "e=1" (el coeficiente del coseno) por tanto tenemos una parábola con foco el polo (el origen) y directriz con ecuación cartesiana "x=6" (a la derecha y paralela al eje $\frac{\pi}{2}$). Parábola cóncava a la izquierda.

Ejemplo 2

Graficar
$$r = \frac{6}{1 - \cos \theta}$$

SOLUCIÓN:

Como el ejemplo anterior, es una **parábola**; pero ahora como hay un signo negativo en la función trigonométrica, la recta directriz tendrá ecuación cartesiana "x = -6" (a la izquierda y paralela al eje $\frac{\pi}{2}$). Cóncava hacia la derecha.

Ejemplo 3

Graficar
$$r = \frac{6}{1 + \sin \theta}$$

SOLUCIÓN:

Es una **parábola** con foco el polo y recta directriz y = 6 (paralela y arriba del eje polar). **Cóncava hacia abajo**.

Ejemplo 4

Graficar
$$r = \frac{6}{1 - \sin \theta}$$

SOLUCIÓN:

Es una **parábola** con foco el polo y recta directriz y = -6 (paralela y abajo del eje polar). **Cóncava hacia arriba**.

Ejemplo 5

Graficar
$$r = \frac{6}{1 + \frac{1}{2}\cos\theta}$$

SOLUCIÓN:

En este caso " $e = \frac{1}{2}$ " (el coeficiente del coseno), por tanto tenemos una **elipse** con un foco el polo y el otro foco a su izquierda en el eje polar.

NOTA: La ecuación de esta cónica pudo haber sido dada de la siguiente forma también:

$$r = \frac{12}{2 + \cos \theta}$$
 ¿Por qué?

Ejemplo-6

Graficar
$$r = \frac{6}{1 - \frac{1}{2}\cos\theta}$$

SOLUCIÓN:

Es una **elipse** con un foco el polo y el otro a su derecha en el eje polar.

Ejemplo 7

Graficar
$$r = \frac{6}{1 + \frac{1}{2} \operatorname{sen} \theta}$$

SOLUCIÓN:

Es una **elipse** con un foco el polo y el otro en el eje $\frac{\pi}{2}$ hacia abajo.

<u>Ejemplo 8</u>

Graficar
$$r = \frac{6}{1 - \frac{1}{2} \operatorname{sen} \theta}$$

SOLUCIÓN:

Es una **elipse** con un foco el polo y el otro en el eje $\frac{\pi}{2}$ hacia arriba.

Ejemplo 9

Graficar
$$r = \frac{6}{1 + 2\cos\theta}$$

SOLUCIÓN: En este caso " e=2" (el coeficiente del coseno), por tanto tenemos una **hipérbola** con un foco el polo y el otro foco a su derecha en el eje polar.

Coordenadas Polares

Ejemplo 10

Graficar
$$r = \frac{6}{1 - 2\cos\theta}$$

SOLUCIÓN:

Es una hipérbola con un foco el polo y el otro foco a su izquierda en el eje polar.

Ejemplo 11

Graficar
$$r = \frac{6}{1 + 2 \sin \theta}$$

SOLUCIÓN:

Es una **hipérbola** con un foco el polo y el otro foco en el eje $\frac{\pi}{2}$ hacia arriba.

Ejemplo 12

Graficar
$$r = \frac{6}{1 - 2 \operatorname{sen} \theta}$$

SOLUCIÓN:

Es una **hipérbola** con un foco el polo y el otro foco en el eje $\frac{\pi}{2}$ hacia abajo.

4.3.4 CARACOLES

Los caracoles tienen ecuación polar de la forma: $r = a \pm b \cos \theta$ o de la forma $r = a \pm b \sin \theta$

Consideremos tres casos:

1. Si |a| = |b| se llama **CARDIOIDES**

Ejemplo 1

Graficar $r = 6 + 6\cos\theta$

Esta gráfica presenta simetría al eje polar, es decir: $f(\theta) = f(-\theta)$

Ejemplo-2

Graficar $r = 6 - 6\cos\theta$

Ejemplo 3

Graficar $r = 6 + 6 \operatorname{sen} \theta$

Ejemplo 4

Graficar $r = 6 - 6 \operatorname{sen} \theta$

2. Si |a| > |b| se llaman **LIMACON O CARACOL SIN RIZO**

Ejemplo 1

Ejemplo 2

Ejemplo 3

Ejemplo 4

3. Si |a| < |b| se llaman **LIMACON O CARACOL CON RIZO**

Ejemplo 1

Graficar $r = 3 + 6\cos\theta$

Nota: Determine los ángulos de formación del rizo.

Ejemplo 2

Graficar $r = 3 - 6\cos\theta$

Ejemplo 3

Ejemplo 4

Graficar $r = 3 - 6 \operatorname{sen} \theta$

4.3.5 ROSAS

Estos lugares geométricos tienen ecuación polar de la forma $r = a \cos(n\theta)$ o $r = a \sin(n\theta)$ para $n > 1 \land n \in N$

De aquí consideramos dos casos:

1. Si n es PAR es una rosa de 2n petálos

Ejemplo

Graficar $r = 4 \operatorname{sen}(2\theta)$

SOLUCIÓN:

Por inspección concluimos que es una rosa de 4 pétalos

2. Si n es IMPAR es una rosa de n petálos

Ejemplo

Graficar $r = 4\cos(3\theta)$

SOLUCIÓN:

Por inspección concluimos que es una rosa de 3 pétalos

4.3.6 LEMNISCATAS

Tienen ecuación polar de la forma $r^2 = a \cos 2\theta$ o de la forma $r^2 = a \sin 2\theta$

Ejemplo 1

Graficar $r^2 = 4\cos 2\theta$

Ejemplo 2

Graficar $r^2 = -4\cos 2\theta$

Ejemplo 3

Graficar $r^2 = 4 \sin 2\theta$

4.3.7 ESPIRALES

Consideramos dos tipos:

4.3.7.1 Espiral de Arquímedes.

Su ecuación polar es de la forma $r = a\theta$

Ejemplo

Graficar $r = 2\theta$

4.3.7.2 Espiral de Logarítmica.

Su ecuación polar es de la forma $r = ae^{b\theta}$

Ejemplo

Graficar $r = 2e^{3\theta}$

Ejercicios propuestos 4.3

1. Trace la gráfica representada por la ecuación polar dada.

1.	r=3
2.	$\theta = \frac{\pi}{}$

3.
$$r = 2 \operatorname{sen}(\theta)$$

4.
$$r = -\cos(\theta)$$

5.
$$r = -3\cos(\theta)$$

$$6. \qquad r = \frac{2}{1 - \sin(\theta)}$$

7.
$$r = \frac{2}{2 - \sin(\theta)}$$

8.
$$r = \frac{2}{1 - 2\operatorname{sen}(\theta)}$$

9.
$$r = 1 - 2\cos(\theta)$$

10.
$$r = 3 + 2 \operatorname{sen}(\theta)$$

11.
$$r = 2 - 4 \operatorname{sen} \theta$$
 ; $0 \le \theta \le \pi$

12.
$$r = 3(1 - \cos(\theta))$$

13.
$$r = 2 + 4 \operatorname{sen}(\theta)$$

14.
$$r - 2 + 5 \operatorname{sen}(\theta) = 0$$

15.
$$r = \operatorname{sen}(3\theta)$$

16.
$$r = \operatorname{sen}(5\theta)$$

17.
$$r = 2\cos(4\theta)$$

$$18. \quad r^2 = 4\cos(2\theta)$$

$$19. \quad r^2 = 3\sin(2\theta)$$

20.
$$r = -6\cos(3\theta)$$

21.
$$r = -4 \sin 3\theta$$

22.
$$r = \theta, \theta > 0$$

23.
$$r = \operatorname{sen}(\theta) + \cos(\theta)$$

24.
$$\operatorname{sen}(\theta) + \cos(\theta) = 0$$

- 2. Graficar en un mismo plano $\begin{cases} r=3\cos\theta\\ r=1+\cos\theta \end{cases}$ y determine los puntos de intersección.
- 3. Graficar en un mismo plano $\begin{cases} r=\sqrt{3}sen\ \theta\\ r=1+\cos\ \theta \end{cases}$ y determine los puntos de intersección.
- 4. Graficar en un mismo plano $\begin{cases} r^2 = -8\cos 2\theta \\ r = 2 \end{cases}$ y determine los puntos de intersección.
- 5. Graficar en un mismo plano $\begin{cases} r = \frac{3}{2 + sen\theta} & \text{y determine los puntos de intersección.} \\ r = 4 + 4sen\theta & \end{cases}$
- 6. Represente en el plano polar la región comprendida en el interior de $r=4\cos(2\theta)$ y exterior a r=2
- 7. Sea $p(r,\theta)$: $\begin{cases} r \leq 2sen3\theta \\ r \geq 1 \end{cases}$, determine $Ap(r,\theta)$