EI M5

2010-11

MATHEMATIK

Stunde vom 03.12.2010

 $m_t \cdot m_n$

= -1

In dieser Stunde haben wir uns noch einmal kurz mit Tangenten und Normalen beschäftigt. Jetzt zum Schnittwinkeln und Abständen... Die Tafelbilder gibt es etwas weiter unten!

Schnittwinkel zwischen einer Geraden und der x-Achse

Bemerkgung: Ist der Schnittwinkel der y-Achse gegeben, hast du den so auch, weil die beiden Achsen zusammen einen 90°-Winkel einschließen!

Hier gilt einfach $tan(\alpha)=m$, wobei α der Schnittwinkel ist und m die Steigung der Geraden (oft einer Tangenten oder Normalen, ist aber auch egal). Geht mit dem GTR ziemlich einfach zu lösen!

Ein (einfaches) Beispiel

Die Gerade y=2x+5 schneidet die x-Achse unter dem Winkel $\alpha = 63^{\circ}$ (gerundet), was der GTR über <2nd> + <tan()> = arctan() liefert.

Abstand zweier Punkte im xy-Koordinatensystem

Hier herrscht Pythagoras! Einfach die Differenz der x-Werte quadrieren und dazu das Quadrat der Differenz der y-Werte addieren. Das Ergebnis noch wurzeln und schon steht der Abstand da: $d(P,Q) = wurzel\{(x_P-x_Q)^2+(y_P-y_Q)^2\}$.

Ein (einfaches) Beispiel

P(1|2), Q(2|3) haben den Abstand d=wurzel $\{(1-2)^2+(2-3)^2\}$ =wurzel $\{1+1\}$ =wurzel $\{2\}$, was etwa 1,4 entspricht.

An dieser Stelle hatten wir uns die Strecke von S zu R vorgegeben und wollten sie minimieren (also möglichst kurz machen).

Aufhänger war diese Aufgabe gewesen:

Wie das Minimieren dann geht, sollte dir klar sein. Entweder über f' = 0 oder besser und mit dem GTR (wenn du ihn denn benutzen darfst):

Einfach die Funktion (hier war es $(t^2+8)/2$) in den GTR "einkloppen" und das WINDOW so einstellen, dass man das Minimum sehen kann (etwas Rumprobieren hilft immer). Dann über <2nd> und <TRACE> auf <CALC> gehen und dort die Funktion <min> auswählen. Fertig. Ausgegeben werden die Koordinaten des Tiefpunktes.