



## 6. Measurement Data (continued)

#### 6.6. Public Exposure to Radio Frequency Energy Levels (1.1307 (b)(1))

#### 6.6.1. SAR Test Exclusion Calculation

(1)

Requirement: Portable devices as defined in § 2.1093 of this chapter operating

under Part 15 are subject to radio frequency radiation exposure requirements as specified in §§ 1.1307(b) and 2.1093 of this chapter.

For a 1-g SAR, the test exclusion result must be  $\leq$  3.0.

Test Notes: The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6

GHz at test separation distances ≤ 50 mm are determined by the

following formula:

SAR Test Exclusion = 
$$\frac{P_{MAX}}{d_{MIN}} x \sqrt{f_{(GHz)}}$$
 (1)

P<sub>MAX</sub> mW Maximum power of channel, including tune-up tolerance

d<sub>MIN</sub> mm Minimum test separation distance, mm (≤ 50 mm)

 $f_{(GHz)} \;\; GHz \;\; f_{(GHz)}$  is the RF channel transmit frequency in GHz (>100 MHz and <6 GHz)

Equipment Authorization Policies.

FCC OET 447498 - Mobile and Portable Devices RF Exposure Procedures and

Result: The device under test meets the exclusion requirement detailed in FCC OET 447498.

|                  |                      | Phantom   | Without Phantom |
|------------------|----------------------|-----------|-----------------|
|                  |                      | Data      | Data            |
| Input:           | P <sub>MAX</sub> (m\ | V) 0.0001 | 0.0004          |
|                  | d <sub>MIN</sub> (mr | F 00      | 5.00            |
|                  | $f_{(GHz)}$          | 4.204     | 4.285           |
| Test Exclusion:  |                      | 0.00003   | 0.0002          |
| Limit Exemption: |                      | 3.00      | 3.00            |

<sup>&</sup>lt;sup>1</sup> Taken from the peak data in Section 6.5 of this test report (converted to mW).

The device does not exceed the test limit exemption and therefore a routine SAR Evaluation is not required

**Note:** Phantom Data consisted of using a Speag cylinder, Model: Dog Neck, PN: QD DOG 001 BA, Serial # 1001. The Speag cylinder has a length of 30 cm, a diameter of 15 cm (representative of an average neck size for a medium to large dog). The Gel is SPEAG head gel (closest match to neck tissue) and ½" foam spacing was used on the phantom to approximate the dog's fur.

Specifications for the Speag cylinder may be found on the next pages.





- 6. Measurement Data (continued)
  - 6.6. Public Exposure to Radio Frequency Energy Levels (1.1307 (b)(1)) (cont.)

### **Measured data of Head Gel Material**

| f(MHz) | eps.R | sigma(S/m) | loss tangent | f(MHz) | eps.R | sigma(S/m) | loss    |
|--------|-------|------------|--------------|--------|-------|------------|---------|
|        | -     |            | _            |        | -     |            | tangent |
| 1000   | 43.71 | 1.06       | 0.43         | 2550   | 40.30 | 2.01       | 0.35    |
| 1050   | 43.51 | 1.08       | 0.42         | 2600   | 40.17 | 2.06       | 0.35    |
| 1100   | 43.39 | 1.11       | 0.42         | 2650   | 40.04 | 2.10       | 0.36    |
| 1150   | 43.25 | 1.12       | 0.41         | 2700   | 39.97 | 2.15       | 0.36    |
| 1200   | 43.10 | 1.16       | 0.40         | 2750   | 39.82 | 2.18       | 0.36    |
| 1250   | 42.98 | 1.18       | 0.40         | 2800   | 39.74 | 2.23       | 0.36    |
| 1300   | 42.84 | 1.20       | 0.39         | 2850   | 39.66 | 2.27       | 0.36    |
| 1350   | 42.67 | 1.24       | 0.39         | 2900   | 39.54 | 2.32       | 0.36    |
| 1400   | 42.59 | 1.26       | 0.38         | 2950   | 39.45 | 2.36       | 0.36    |
| 1450   | 42.42 | 1.28       | 0.38         | 3000   | 39.34 | 2.40       | 0.37    |
| 1500   | 42.32 | 1.31       | 0.37         | 3050   | 39.22 | 2.45       | 0.37    |
| 1550   | 42.20 | 1.34       | 0.37         | 3100   | 39.14 | 2.48       | 0.37    |
| 1600   | 42.05 | 1.37       | 0.36         | 3150   | 39.01 | 2.53       | 0.37    |
| 1650   | 41.95 | 1.39       | 0.36         | 3200   | 38.94 | 2.57       | 0.37    |
| 1700   | 41.81 | 1.42       | 0.36         | 3250   | 38.83 | 2.61       | 0.37    |
| 1750   | 41.73 | 1.46       | 0.36         | 3300   | 38.71 | 2.65       | 0.37    |
| 1800   | 41.64 | 1.49       | 0.36         | 3350   | 38.66 | 2.70       | 0.37    |
| 1850   | 41.55 | 1.52       | 0.36         | 3400   | 38.53 | 2.74       | 0.38    |
| 1900   | 41.45 | 1.55       | 0.35         | 3450   | 38.46 | 2.79       | 0.38    |
| 1950   | 41.37 | 1.58       | 0.35         | 3500   | 38.39 | 2.83       | 0.38    |
| 2000   | 41.27 | 1.62       | 0.35         | 3550   | 38.28 | 2.88       | 0.38    |
| 2050   | 41.23 | 1.65       | 0.35         | 3600   | 38.24 | 2.93       | 0.38    |
| 2100   | 41.10 | 1.68       | 0.35         | 3650   | 38.12 | 2.97       | 0.38    |
| 2150   | 41.01 | 1.72       | 0.35         | 3700   | 38.05 | 3.02       | 0.39    |
| 2200   | 40.92 | 1.76       | 0.35         | 3750   | 37.99 | 3.06       | 0.39    |
| 2250   | 40.82 | 1.80       | 0.35         | 3800   | 37.86 | 3.11       | 0.39    |
| 2300   | 40.75 | 1.83       | 0.35         | 3850   | 37.82 | 3.16       | 0.39    |
| 2350   | 40.66 | 1.87       | 0.35         | 3900   | 37.71 | 3.21       | 0.39    |
| 2400   | 40.55 | 1.91       | 0.35         | 3950   | 37.64 | 3.26       | 0.39    |
| 2450   | 40.49 | 1.94       | 0.35         | 4000   | 37.59 | 3.30       | 0.39    |
| 2500   | 40.37 | 1.98       | 0.35         | 4050   | 37.46 | 3.36       | 0.40    |
|        |       |            |              |        |       |            |         |





# 6. Measurement Data (continued)

6.6. Public Exposure to Radio Frequency Energy Levels (1.1307 (b)(1)) (cont.)

### Measured data of Head Gel Material

| Measured data of Head Gel Material |           |            |              |        |       |            |                 |  |
|------------------------------------|-----------|------------|--------------|--------|-------|------------|-----------------|--|
| f(MHz)                             | eps.<br>R | sigma(S/m) | loss tangent | f(MHz) | eps.R | sigma(S/m) | loss<br>tangent |  |
| 4100                               | 37.42     | 3.41       | 0.40         | 5650   | 34.63 | 5.06       | 0.46            |  |
| 4150                               | 37.33     | 3.45       | 0.40         | 5700   | 34.59 | 5.11       | 0.47            |  |
| 4200                               | 37.25     | 3.51       | 0.40         | 5750   | 34.47 | 5.16       | 0.47            |  |
| 4250                               | 37.20     | 3.55       | 0.40         | 5800   | 34.39 | 5.22       | 0.47            |  |
| 4300                               | 37.08     | 3.60       | 0.41         | 5850   | 34.33 | 5.28       | 0.47            |  |
| 4350                               | 37.00     | 3.66       | 0.41         | 5900   | 34.21 | 5.33       | 0.47            |  |
| 4400                               | 36.92     | 3.71       | 0.41         | 5950   | 34.17 | 5.39       | 0.48            |  |
| 4450                               | 36.80     | 3.77       | 0.41         | 6000   | 34.06 | 5.43       | 0.48            |  |
| 4500                               | 36.74     | 3.82       | 0.42         | 6250   | 33.63 | 5.71       | 0.49            |  |
| 4550                               | 36.64     | 3.87       | 0.42         | 6500   | 33.24 | 5.98       | 0.50            |  |
| 4600                               | 36.54     | 3.93       | 0.42         | 6750   | 32.76 | 6.25       | 0.51            |  |
| 4650                               | 36.45     | 3.99       | 0.42         | 7000   | 32.35 | 6.53       | 0.52            |  |
| 4700                               | 36.36     | 4.05       | 0.43         | 7250   | 31.87 | 6.85       | 0.53            |  |
| 4750                               | 36.30     | 4.10       | 0.43         | 7500   | 31.47 | 7.15       | 0.54            |  |
| 4800                               | 36.19     | 4.15       | 0.43         | 7750   | 31.06 | 7.44       | 0.56            |  |
| 4850                               | 36.10     | 4.21       | 0.43         | 8000   | 30.69 | 7.73       | 0.57            |  |
| 4900                               | 36.02     | 4.26       | 0.43         |        |       |            |                 |  |
| 4950                               | 35.92     | 4.32       | 0.44         |        |       |            |                 |  |
| 5000                               | 35.84     | 4.37       | 0.44         |        |       |            |                 |  |
| 5050                               | 35.73     | 4.42       | 0.44         |        |       |            |                 |  |
| 5100                               | 35.63     | 4.49       | 0.44         |        |       |            |                 |  |
| 5150                               | 35.55     | 4.54       | 0.45         |        |       |            |                 |  |
| 5200                               | 35.48     | 4.59       | 0.45         |        |       |            |                 |  |
| 5250                               | 35.38     | 4.64       | 0.45         |        |       |            |                 |  |
| 5300                               | 35,31     | 4.69       | 0.45         |        |       |            |                 |  |
| 5350                               | 35.23     | 4.74       | 0.45         |        |       |            |                 |  |
| 5400                               | 35.13     | 4.79       | 0.45         |        |       |            |                 |  |
| 5450                               | 35.06     | 4.84       | 0.46         |        |       |            |                 |  |
| 5500                               | 34.94     | 4.88       | 0.46         |        |       |            |                 |  |
| 5550                               | 34.83     | 4.94       | 0.46         |        |       |            |                 |  |
| 5600                               | 34.75     | 5.00       | 0.46         |        |       |            |                 |  |