

Using machine	learning to identif	y
jihadist messag	ges on Twitter	

Enghin Omer

Teknisk- naturvetenskaplig fakultet UTH-enheten

Besöksadress: Ångströmlaboratoriet Lägerhyddsvägen 1 Hus 4, Plan 0

Postadress: Box 536 751 21 Uppsala

Telefon: 018 – 471 30 03

Telefax: 018 – 471 30 00

Hemsida: http://www.teknat.uu.se/student

Abstract

Using machine learning to identify jihadist messages on Twitter

Enghin Omer

Jihadist groups like ISIS are spreading online propaganda using various forms of social media such as Twitter and YouTube. One of the most common approaches to stop these groups is to suspend accounts that spread propaganda when they are discovered. However, this approach requires that human analysts manually read and analyze an enormous amount of information on social media. In this work we make a first attempt to automatically detect radical content that is released by jihadist groups on Twitter. We use a machine learning approach that classifies a tweet as radical or non-radical and our results indicate that an automated approach to aid analysts in their work with detecting radical content on social media is a promising way forward.

Handledare: Lisa Kaati Ämnesgranskare: Michael Ashcroft Examinator: Roland Bol IT 15056

Tryckt av: Reprocentralen ITC

This thesis is dedicated to all people that are or have been affected by terrorist activities.

Acknowledgement

I want to express my sincere thanks to my thesis supervisor, Dr. Lisa Kaati, for her expert guidance and continuos support and feedback throughout the research. Her guidance helped me to finish this project and report. Thanks to her we wrote a paper on this topic as well. I am also grateful to my reviewer, Dr. Michael Ashcroft, for his feedback and very valuable lessons he gave about machine learning every Friday. Thanks to my co-workers, Amendra Shrestha and Maxime Meyer, for their support and cooperation. Finally, many thanks to Uppsala University and all the people that has helped me to finish this thesis and my master degree.

Contents

1	Intr	oducti	on	1
2	$Th\epsilon$	eory		3
	2.1	Social	media	3
	2.2	Extre	mist groups and the use social media	3
	2.3	Machi	ne Learning	4
		2.3.1	Algorithms	6
		2.3.2	Text classification	10
		2.3.3	Dataset	10
		2.3.4	Cleaning the data	11
		2.3.5	Feature vectors	11
		2.3.6	Feature selection	12
3	${ m Re}$	lated V	Work	14
4	Bu	ilding	the classifier	17
	4.1	Datase	ets	17
	4.2	Prepre	ocessing the data	20
	4.3	Featur	re vectors	22
		4.3.1	Stylometric features	22
		4.3.2	Time	26
		4.3.3	Sentiment	27
		4.3.4	Feature selections	27

5	$\mathbf{E}\mathbf{x}$	periments	28
	5.1	Experimental set-up	. 28
	5.2	Results	. 29
6	Co	nclusions	32
7	Fu	ture Work	33
8	AF	PPENDIX	35
	8.1	List of function words	. 35
	8.2	List of frequent words	. 38
	8.3	List of Hashtags	. 39

List of Figures

1	Machine learning algorithm work-flow [9]	5
2	The structure of confusion matrix $[1]$	6
3	The margin and support vectors [15]	7
4	The separable case [17] $\dots \dots \dots \dots \dots$	7
5	The non-separable case [16]	8
6	The kernel trick [14] \dots	9
7	The classification after a weak learner was called $[4]$	9
8	Example of overfitting [11]	.3
9	Sentiment tree representation of a tweet [13]	28

List of Tables

1	The datasets used for the experiments	17
2	TW-PRO dataset	19
3	Information that is available about a tweet	19
4	Database table for a tweet	20
5	Database table for a user	20
6	All datasets.	20
7	Number of features	22
8	Stylometric features	23
9	Number of features in the time vector	26
10	The number of feature after the feature selection process	28
11	Results when using features $(S + T + SB)$ on the datasets TW-RAND and TW-PRO	29
12	Results when using all features $(S + T + SB)$ on TW-CON and TW-PRO	30
13	Results when using all features $(S + T + SB)$ on the full dataset	30
14	Results when using all features except time $(S + SB)$ on the full dataset	30

1 Introduction

Since the late 1980s, the Internet has become a central and dynamic means for communication, more and more people are using the benefits of Internet worldwide. A wide range of sophisticated technologies has been developed that are connecting people. In 2014 there were over three billion Internet users and the number is still growing [19]. Internet technology comes with numerous benefits including sharing information and ideas as well as accessing them fast and easy. This has created a medium for businesses, consumers, organizations and governments to communicate with each other. It also created a perfect place for various terrorist organizations to disseminate information that aid their causes. There are many different active terrorist organizations in the world today and almost every day newspapers report about terrorist attacks in different parts of the world. According to FBI [18], terrorism has following characteristics:

- involve violent acts or acts dangerous to human life that violate federal or state law
- appear to be intended to intimidate or coerce a civilian population;
- to influence the policy of a government by intimidation or coercion
- to affect the conduct of a government by mass destruction, assassination, or kidnapping

Many terrorist groups use the Internet to spread propaganda. Propaganda usually includes virtual messages, presentations, audio and video files that contain explanations, justifications and/or promotion of terrorist activities. The aim of the propaganda is recruitment and to influence opinion, emotions and attitudes. The availability of terrorist related material on the Internet plays an important role in radicalization processes. Such processes often accompanies the transformation of recruits into individuals determined to act with violence based on extremist ideologies [22]. Another objective of terrorist propaganda is to generate anxiety, fear and panic in a population by releasing violent videos like killing people who fight against terrorist organizations.

One of the most common approaches to stop these groups is to suspend accounts that spread propaganda when they are discovered. However,

this approach requires that human analysts manually read and analyze an enormous amount of information on social media.

Detecting radical content in order to react on it or to work with partners to remove it is an important task for law enforcement agencies. The automatic detection proposed in this work should be seen as a complementary way to detect radical content and present it to an analyst for further actions. In this thesis we are addressing the problem of classifying tweets as supporting ISIS or not. We sometimes refer to this as classifying tweets into radical or non-radical even though the problem that we are considering cannot be generalized into solving the problem of detecting radical content in general. This work can be seen as piece in the puzzle of reducing terrorist related material available online. By detecting radical content, such messages can be removed and less people will be exposed to the content. Another use of this work may be to help analysts to detect twitter users that promote radical views.

This report is outlined as follows. Chapter 2 describes how jihadists use social media and provides an introduction to machine learning techniques that are used in this thesis. Chapter 3 presents related work that has been done in the area. Chapter 4 covers details about how the classifier was built including information about features and feature vectors. In chapter 5 the experiments that have been conducted and the results are presented. The work is concluded in Chapter 6 and in Chapter 7 some directions for future work are presented.

2 Theory

2.1 Social media

Social media is a group of Internet-based applications that enable users to create and share content or to participate in social networking [48]. There are many different forms of social media: discussion boards, blogs, microblogs and different kind of networking platforms such as Facebook and Weibo. Twitter is one of the most well-known microblog [30]. Twitter enables users to send and read 140-characters messages called "tweets". To mark different themes and topics in a message it is common to use hashtags. A hashtag is a word or an unspaced phrase prefixed with the hash character (#). This is done to increase the visibility of the tweet. Sometimes in order to promote a product, an idea or a political view, hashtag campaigns are organized which means that hashtags related to a specific topic are intensively used.

2.2 Extremist groups and the use social media

Social media is not only used to communicate with friends and family but also to promote radical views. In many cases individuals and organizations use social media to attract fighters and fundraisers to specific causes. Jihadists, people participating in a jihad [40], have aggressively expanded their use of Twitter as well as other social media applications such as YouTube and Facebook. In 2015 around 90000 Twitter accounts are suspected to support extremist groups [20].

Nowadays it is not necessary to go on the battlefield to join extremist groups and fight with them. Sitting in front of a computer and promoting radical views on social media can be a valuable contribution to promote extremist groups. One example of this is a media mujahideen. Mujahideen is the plural form of mujahid and is used to describe someone involved in jihad [10]. A media mujahideen is formed by people who are fighting on media platforms promoting their extremist propaganda [29].

Since 2011, members of jihadist forums have issued media strategies that encourage the development of a media mujahideen. Guides describing how to use social media platforms and lists of recommended accounts to follow are released in various forums [23]. One such guide is a Twitter guide entitled "The Twitter Guide: The Most Important Jihadi Sites and Support for Jihad and the Mujahideen on Twitter". This guide outlines reasons for using Twitter and states that Twitter is an important arena of the electronic front. The guide has identified 66 important jihadist accounts that users should follow.

One group that is officially recognized as a terrorist group by the United Nations [21] including countries like United States [5], Canada [2], United Kingdom [12] is ISIS. Based on this considerations we assumed that messages posted by users clustering with known ISIS sympathizers contain radical content. In this thesis messages posted on Twitter and promoting ISIS propaganda were used as well as random tweets and tweets having messages against ISIS. This messages were in English and tweets with messages supporting ISIS were collected between 25th of June and 29th of August 2014. The data was used only for research purposes.

ISIS organizes hashtags campaigns showing support for ISIS and its cause. Examples of hashtags are #ILOVEISIS, #ALLEYESONISIS, #IS-LAMICSTATE. Another strategy to spread propaganda on Twitter is by using "trending" hashtags even though they are not related to a specific activity (like hashtags related to WorldCup 2014 or IPhone 6) [7].

Organizations active on network like those spreading propaganda on social media are often diffuse, leaderless, and incredibly resilient. That makes tackling terrorist propaganda a difficult task since jihadists have the ability to reorganize themselves all the time. ISIS, for example, uses dispersed forms of network organization and strategies to disseminate rich audiovisual content from the battlefield in near-real time [8]. This fact makes ISIS a challenge for traditionally hierarchical organizations to counter. ISIS has successfully used social media to recruit new members from all over the world [6]. Studying social media seems to be an important approach to identify and understand radical messages.

2.3 Machine Learning

Machine learning is the science that explores how algorithms can be constructed so that they can learn from data and make future predictions [24]. These algorithms build a mathematical model based on some example inputs and use the model to make some predictions or decisions. Using the

model any input can be mapped to a range of outputs. The flow of creating the model from the input data and the processes of mapping new inputs to expected outputs is illustrated in Figure 1.

Figure 1: Machine learning algorithm work-flow [9]

The goal is to train models that learn without human intervention or assistance. Instead of static programming that tells the computer what to do, machine learning will construct algorithms that can learn from data. It means that the computer will come up with its own model based on the data provided.

In machine learning, learning methods are classified into three categories:

- Supervised learning
- Unsupervised learning
- Reinforcement learning

The results of experiments are visualized using what is called a confusion matrix. A confusion matrix, known also as a contingency table or error matrix is used in machine learning to visualize the results of a supervised learning algorithm [42]. It consists of two rows and two columns which contain the number of false positives, false negatives, true positives and true negatives instances. The structure of the confusion matrix can be seen in Figure 2.

	p' (Predicted)	n' (Predicted)
P (Actual)	True Positive	False Negative
n (Actual)	False Positive	True Negative

Figure 2: The structure of confusion matrix [1]

The columns of the table represents the instances that the model predicted while the rows represent the instances in the actual class. Based on the confusion matrix a series of more detailed analysis can be done.

• Accuracy is the proportion of the sum of true results and the total number of instances. It shows the percentage of total instances that were correctly classified.

Accuracy = (true positive + true negative)/(true positive + true negative+false positive + false negative)

• Precision, also called positive predictive value, is the proportion of true positive values within the positive class.

Precision = true positive/(true positive + false positive)

• Recall is the proportion of positives classified as such.

Recall = true positive/(true positive+false negative)

2.3.1 Algorithms

SVM (support vector machine) is a large margin classifier. It means that its goal is to find a boundary between two classes that maximizes the distance between the data that are part of this classes as in Figure 3. Depending on how the data is distributed there are different approaches on SVM [49].

Figure 3: The margin and support vectors [15]

Linearly separable data case involves the fact that there exists at least one hyperplane that can separate the points of the two classes as in Figure 4. The goal of SVM is to find the hyperplane that gives the largest distance to the training examples. The distance is called margin and the optimal hyperplane is the one that maximizes the margin. The points that are closest to the hyperplane are called support vectors.

Figure 4: The separable case [17]

The linearly separable case is valid for linearly separable data. Such cases are rare in practice. Often, classes contains points that overlap, so

there does not exist a hyperplane that can separate all the classes' points. This means that there will be some samples misclassified. In this case the model needs to include the requirement from the previous case, finding the hyperplane that maximizes the margin, and a new one that minimizes the misclassification errors. A new parameter ε_i is defined for each sample of the training data. It represents the distance of the corresponding training sample to the correct decision boundary as shown in Figure 5. If the sample is in the correct part of the hyperplane then the value of ε_i is 0.

Figure 5: The non-separable case [16]

Another way of solving a non-linearly separable data problem is to map the data to a higher dimensional space and then use a linear classifier as in Figure 6. The way of doing this mapping is called "the kernel trick".

Figure 6: The kernel trick [14]

AdaBoost is a machine learning algorithm that is based on boosting. Boosting is a method that combines moderately inaccurate rules of thumb to create a very accurate classifier. It is based on the assumption that it is easier to find many rules of thumb than a single very accurate one [26]. First an algorithm is defined to find the rules of thumb. A rule of thumb is called a weak learner. The boosting algorithm calls the weak learner repeatedly. Each call generates a weak classifier that separates the inputs like in Figure 7. Decision trees are the most popular weak classifiers used in boosting schemes.

Figure 7: The classification after a weak learner was called [4]

After each call the decision tree algorithm adds a node to its classification tree. The node represents a binary test made on the attributes, and the leafs the label of the data after the decision.

Naive Bayes is a probabilistic classifier based on applying Bayes theorem assuming independence between the features [34]. Naive Bayes computes the probability p of a document d being of class c: p(c|d). Given a document d to be classified, represented by a vector $d = (d_1, ..., d_n)$ the conditional probability can be written using Bayes' theorem as:

$$p(c|d) = \frac{p(c) p(d|c)}{p(d)}$$

2.3.2 Text classification

Text classification is the task of classifying a document into a predefined category [31]. In our case the document is a tweet and the category is a Boolean value indicating if the tweet contains radical content or not. As in every supervised machine learning task a dataset is needed. The text classification process includes the following steps:

- read the documents
- preprocess the text (this may include tokenizing the text, lemmatizing, deleting stop words)
- create feature vectors
- select features
- create a model

2.3.3 Dataset

The first step in creating a model is to ensure that a proper dataset is collected. In a raw format a dataset can consist of documents, images, sound recording etc. The data used to construct a model is called the training data. A training sample is a collection of instances $\{x_i\}_{i=1}^n = \{x_1, x_2, ..., x_n\}$

which acts as the input to the learning algorithm for a statistical model where each instance $\{x_i\}$ represents a specific object [50].

In order to examine the performance of the model a test dataset is used which has the same characteristics as the training dataset, that is to say the same features.

2.3.4 Cleaning the data

When data is collected it is usually not "clean" due to several reasons:

- noisy- containing errors or outliers
- misspelled words
- unwanted elements: quotes (retweets), strange symbols

Before using the data it needs to be cleaned. This involves dealing with the missing values, identifying noisy data and correct inconsistent data. Basic methods for dealing with missing items include discarding rows with missing items or estimating the missing item using simple statistical methods such as the mean or median value of the variable whose item is missing [38].

After cleaning the data preprocessing needs to be done. Depending on the situation this may include:

- Stemming (bringing a word to its base form)
- Removing stop words
- Splitting sentences into tokens

2.3.5 Feature vectors

In machine learning a *feature vector* is a n-dimensional vector of numerical features that represents some object [47]. Usually, algorithms that are

used in machine learning requires a numerical representation of feature vectors because this facilitates mathematical computation and statistical analysis. The instance is often represented by a n-dimensional feature vector $x = (x_1, ..., x_n) \epsilon R^n$, where each dimension is called a feature. The length n of the feature vector is known as the dimensionality of the feature vector [50].

Examples of features are:

- count of words
- presence of words
- presence of punctuation marks
- count of punctuation marks
- time-based features like the hour when a post was published

2.3.6 Feature selection

Before creating feature vectors a decision on which features should be used needs to be done. Ideally is to use as less features as possible that maximizes the information the model gains. The reasons for using as few features as possible are:

- More features lead to more noise which means irrelevant data is used to create the model.
- There is the risk of *overfitting*. Overfitting occurs when all the data is tried to fit into the model [47]. An example of overfitting can be seen in Figure 8.
- Computational constraints. More features and parameters used in the model will lead to more complex computational operations.

There are several feature selections methods. In this work we have used the *information gain* algorithm to analyze feature selections. Information gain tells us how important a given attribute of the feature vectors is [32]. The way information gain IG is computed for a set of training examples T and an attribute a is as follow:

Figure 8: Example of overfitting [11]

$$IG(T, a) = H(T) - H(T \mid a)$$

where T is a set of training examples of form $(x, y) = (x_1, ..., x_n, y)$, x_i is the value of the ith attribute of example x and y is the corresponding class label. H(T) is the information entropy and is computed as follow:

$$-\sum_{i}^{n} P(x_i) \log_b P(x_i)$$

where X is a discrete random variable and P(X) is its probability.

3 Related Work

A lot of research has been done on tweets classification where tweets are classified into several classes as in [25] where tweets are classified as having a negative, neutral or positive sentiment or like in [41] where tweets are classified into categories such as News, Events, Opinions, Deals, and Private Messages. Not as much research has focused on classification of text as being radical/terrorist related or not.

One approach is described in [46] where radical tweets are classified in the categories Media, War terrorism, Extremism, Operations, Jihad, Country and Al-Qaeda using security dictionaries of enriched themes where each theme was categorized by semantically related words. In [46] they built dictionaries by looking at tweets containing hashtags like Al-Qaeda, Jihad, Terrorism and Extremism and by collecting relevant words for their purpose. A document was vectorized not according to the frequency of words but on the basis of presence of security related keywords. For example if the categories in which the messages should be classified are Jihad, Terrorism and Country, then for each category that the message contains related words the value will be 1 otherwise 0. The presence of one or more words relevant to predefined categories (War-Terrorism, Extremism, Jihad etc.) was used to deduce final category. The high results obtained, over 90% accuracy, led to the idea that keywords might be a good approach in classifying tweets.

An approach using ISIS related tweets to predict future support or opposition for ISIS was done in [36] where the authors used Twitter data to study the antecedents of ISIS support of users. As features vectors, they used bag of words features including individual terms, hashtags and user mentions. Bag of words is the representation of text as a multiset of its words. At a personal, historic level, they managed to predict future support or opposition of an user for ISIS with 87% accuracy. For this they trained a SVM classifier with a linear kernel with default parameters. One of the problems encountered in their work was to separate pro-ISIS tweets to con-ISIS tweets. They noticed that in anti-ISIS tweets when referring to Islamic State users write ISIS (77.3\% of the tweets), while in pro-ISIS tweets they write Islamic State (93.1%). The good result of the classifier indicates that SVM might be a good approach in classifying tweets. In this work we are separating pro-ISIS tweets and tweets against ISIS. In this work we use a list of users that are divided into clusters with known ISIS supporters and therefore we did not have to use methods such as the one described in [36]

to separate pro ISIS tweets from tweets against ISIS.

In [25] a study using sentiment analysis of tweets was conducted. They classify a tweet as being negative, neutral or positive. Some of the features are based on the polarity of words. This is determined by using several dictionaries like Dictionary of Affect in Language (DAL) or WordNet which assigns each word a pleasantness score between 1 (negative) and 3 (positive). Other features include counting features (counting the number of positive or negative words) and presence of exclamation marks and capitalized text. The polarity of words feature, counting and presence of exclamation marks and capitalized text form what they call senti-features. In their experiments using a SVM classifier and unigram features they get 71.36% accuracy. On the other hand when unigram features are combined with senti-features the result increases to 75.39% showing the contribution of the senti-features for tweets Go et al. [27] have done another study in tweet sentiment classification. sentiment classification. They used machine learning algorithms like Naive Bayes, maximum entropy, and SVM for classification. In their approach the emoticons (facial expressions pictorially represented using punctuation and letters usually used to represent the user's mood) are stripped out from the training data because there is a negative impact on the accuracies of the maximum entropy and SVM classifiers. This approach allows the classifiers to learn from other relevant feature they use like unigrams, bigrams or part of speech. Bigrams are used to classify tweets that contain negated phrases like "not good", or "not bad". In their experiments negation as an implicit feature with unigrams does not improve accuracy so they use bigrams as well. Compared to unigrams features, accuracy improves for Naive Bayes from 81.3% to 82.7%. Since bigrams seem to help in increasing the accuracy of classifying tweets we use them in this work as well.

Twitter provides a list of most popular topics people tweet about known as trending topics in real time but it is often hard to understand what these trending topics are about. In [33] Twitter trending topics are classified into 18 different categories like sports, politics, technology etc. A bag-of-words approach for text classification is used. For each topic, a document is made from trend definition and varying number of tweets. The tf-idf (term frequency inverse document frequency) weights are computed for each word. The tf-idf measure allows to evaluate the importance of a word(term) to a document. This, tf-idf is used to filter out common words. For each of the 18 labels, top most 500 or 1000 frequent words with their tf-idf weights are used to build the dataset for machine learning. The best accuracy are obtained from using Naive Bayes Multinomial classifier (65.36%). It performs

better that Naive Bayes (45.31%) and SVM (61.76%).

4 Building the classifier

4.1 Datasets

In this work we used three different datasets. We will call these datasets TW-PRO, TW-RAND and TW-CON. The datasets are described in Table 1.

Dataset	Description	
TW-PRO	PRO Tweets that are pro ISIS,	
	based on hashtags and network of known jihadists.	
TW-RAND	Randomly collected tweets discussing various topics.	
TW-CON	Tweets from accounts that are against ISIS.	

Table 1: The datasets used for the experiments.

TW-RAND consists of 2000 random tweets. The topics discussed were varying and were not related to ISIS. An example of such a tweet is following one:

"RT @KimKardashian: I can't wait for Call Of Duty Black Ops II to come out!!!! The graphics look crazy"

TW-CON consists of tweets from accounts that were talking about ISIS and some of them were even against it but none of them supporting it. Examples of such accounts are: stopisisforever, No2ISISofficial, STOPI-SIS2GETHER, anti_isis_iraq. The assumption that these accounts were not posting messages supporting ISIS was made based on the user name and manual verification. Accounts with user names such as the ones mentioned above are most probable promoting messages against ISIS. Examples of tweets posted by those accounts are:

Example 1:

"Iraqi forces fight ISIS to recapture Tikrit http://video.foxnews.com/v/4088263981001/iraqi-forces-fight-isis-to-recapture-tikrit"

Example 2:

"@RudawEnglish http://bit.ly/1sEYQsg sign the #petition

to let #UN #US #help the Yezidis of #Kurdistan prevent #ISIS #qenocide #StopISIS"

Both the datasets TW-RAND and TW-CON form negative cases (tweets with non-radical content). Beside negative cases we also need positive cases (tweets that contains radical content) to be able to build a classifier that can recognize radical tweets.

TW-PRO is the dataset containing tweets that support ISIS. Finding a dataset that contains tweets that are radical is a difficult task. The most common approach is to use humans that manually classify tweets as radical or non-radical. In this work we used another approach to find a suitable dataset that we can use to train our algorithms on. We have collected a set of tweets containing hashtags that were related to jihadists, and in particular ISIS, from the English language spectrum of pro-ISIS clusters on Twitter. All of the hashtags we used that are listed below have a corresponding Arabic hashtag and are often used within Arabic and non-Arabic tweets to widen the availability of ISIS material in general. We have focused on the English hashtags. The hashtags we have used to collect data are the following:

- #IS
- #ISLAMICSTATE
- #ILoveISIS
- #AllEyesOnISIS
- #CalamaityWillBeFallUS
- #KhalifaRestored
- #Islamicstate

Information that is available about a tweet can be found in Table 3.

It was also the case that not all the tweets were written in English and most important not all of the tweets were messages supporting ISIS. Some of the messages were not related to ISIS at all and they had no violent/radical content. They were inside the corpus because they contained some similar hashtags like #IS for example. In these cases the #IS hashtag

was not referring to the Islamic State but to the verb "is" (to be). Some tweets containing hashtags referring to ISIS and actually talking about ISIS was removed because they contained messages that were against ISIS. The selection of tweets that were written in English was done by using [39].

When it comes to sorting text according to its meaning the problem is complex and requires semantic analysis. Our first approach to select the tweets that were only about ISIS and that are supporting ISIS was to create a bag of words related to terrorism and war. This method proved to not be very efficient since it was not possible to separate pro ISIS tweets from tweets against ISIS based on only the topic. Both kind of tweets contain terrorism and war related words and therefore the bag of words approach could not be used to differentiate the meaning of the sentence.

To tackle this issue we used a list of user accounts describing clusters of known Jihadist sympathizers (retweeting the same users, followers etc.). The list consisted of 6729 user names. At the end only tweets posted or retweeted by these users have been selected and used as positive cases. More information about the dataset TW-PRO that we used (containing pro-ISIS tweets) can be found in Table 2. All duplicate tweets were removed from the datasets.

Total number of tweets	36515
Number of duplicate tweets	0
Number of retweets	27464
Number of original tweets	9051

Table 2: TW-PRO dataset.

id	id of the tweet
created_at	when the tweet was created
text	the text of the tweet
user id	the user id
description	the description that the users provide about himself/herself
time_zone	the time zone
lang	the language set by the user

Table 3: Information that is available about a tweet.

In order to access the tweets easily they were stored in a database. First a parser was build using [3] that extracted the useful information from

the json files containing our tweets. The database created has two tables: Tweet and User as shown in Table 4 and Table 5.

id	the id of the tweet
created at	when the tweet was created
text	the text of the tweet
in reply status id	the id of the tweet that was replied to
in reply user id	the id of the user that was replied to
in reply screen name	the screen name of the user that was replied to
is retweet	if a tweet is retweeted or not

Table 4: Database table for a tweet.

user id	the id of the user
user name	the user name of the user
location	the location set by user
description	the description on the user
time zone	the time zone set by the user
language	the language set by the user

Table 5: Database table for a user.

A total of 135608 tweets were collected and stored. More details about the dataset is shown in Table 6.

Total number of tweets	135608
Number of duplicate tweets	3108
Number of accounts set in English	71719
Number of retweets	79737
Number of original tweets	55871

Table 6: All datasets.

All the datasets where preprocessed in a similar way as described in the following section.

4.2 Preprocessing the data

The data, tweets in our case, contains a lot of "noise" in its raw form. The "noise" consists of information that are not useful for machine learning models. Moreover, such noise can alter the accuracy of results and therefore preprocessing the dataset is necessary. To eliminating "noise" and prepare the corpus for building the model the following preprocessing steps are done:

- Remove RT (retweet tag) and annotation(@username). For example a tweet like: "RT @AkhbarMujahid3: #BREAKING New release by AlHayat Media "Dabiq #3 A Call to Hijrah" https://t.co/vsLu10ZSIx #IS #Syria #Iraq" will be transformed to: "#BREAKING New release by AlHayat Media "Dabiq #3 A Call to Hijrah" https://t.co/vsLu10ZSIx #IS #Syria #Iraq"
- All URLs (i.e., tokens beginning with http or www) are removed. A tweet like: "Pentagon: #US military's bombing raids & theroperations in #Iraq cost 7.5m a day http://t.co/rYMw711CPD #IS #ISIS http://t.co/8nvQVjFKJq" will become: "Pentagon: #US military's bombing raids & theroperations in #Iraq cost 7.5m a day #IS #ISIS"
- Html character codes (i.e., &...;) are replaced with an ASCII equivalent. When downloading tweets the html character code is rendered instead of the ASCII code. A tweet like "Pentagon: #US military's bombing raids & amp; other operations in #Iraq cost 7.5m a day #IS #ISIS ", after replacing the html code with the ASCII code, will be "Pentagon: #US military's bombing raids & other operations in #Iraq cost 7.5m a day #IS #ISIS "
- Lemmatize the text. Lemmatization is often used in computational linguistics problems. It is a process that determines the lemma of a word [35].
 - In English a word can have different inflected forms. For instance the word 'walk' can be used as 'walked', 'walking', 'walks'. The base form of those words is 'walk'. This base form of the words is called lemma. For example a text like "He was with us yesterday and now he is tired" after lemmatizing will transformed to "He be with we yesterday and now he be tired".
 - For lemmatization the toolkit [37] was used.
- Tokenization. Tokenization is often used in lexical analysis. It is the process that splits a text up into words, phrases, symbols or other elements. this elements are called tokens and they are usually used for

further processing [28].

Tokenization is important in text processing because it allows to process each item separately. An example of text tokenization can be the sentence "I can't wait, come or go!" after tokenization will be transformed to token1: "I", token2: "can",token3: "not",token4: "wait",token5: ",",token6: "come",token7: "or",token8: "go",token9: "!". The corpus was tokenized by using [37] and adding some additional transformations.

4.3 Feature vectors

When creating the feature vectors we used three different set of features:

- stylometric features (S)
- time based features (T)
- sentiment based features (SB)

Those approaches combined produced 829 features as described in the following sections. The number of the different set of features can be seen in Table 7.

stylometry based features	811
time based features	37
sentiment	5

Table 7: Number of features.

4.3.1 Stylometric features

Stylometry looks at the variations of literary style between different writers. Usually it includes statistics about the frequency of specific items or the length of words or sentences.

A common stylometric analysis method is called writer invariant or author invariant. It claims that all texts written by the same author are similar or invariant. In other words texts written by the same author will be more similar than those written by different ones. Even though we are not interested in the authors of tweets, stylometry is an important analysis method, since the topic all jihadist authors write about is similar and the purpose of the messages is the same, mainly to spread ISIS propaganda, it is reasonable to believe that the style of writing they have might be similar. A common approach of writer invariant method is the frequency of function words. Beside frequency of function words, stylometric analysis can include length of sentences, the number of sentences etc.

A function word is a word that has little lexical meaning or ambiguous meaning and is used to link other parts of speech in a sentence. Function words features are commonly used in text recognition problems. In this work we focus only on stylometric statistics applied for words. This due to the fact that a tweet cannot be longer than 140 characters. In addition, the frequency of hashtags are analyzed. Table 8 contains the features used for the stylometric analysis.

function	frequency of various function words	293
words		
frequent	frequency of most frequent words	173
words		
punctuation	frequency of characters . , , , ; , : , $$, - , [,] , { , } ,	13
	!,?,&	
hashtags	frequency of most frequent hastags	100
letter	frequency of most frequent letter bigrams	133
bigrams		
word	frequency of most frequent word bigrams	99
bigrams		

Table 8: Stylometric features.

The list of the function words, frequent words and hashtags that are used in the stylometric analysis can be found in the Appendix.

The stylometric analysis is done as follows:

• First a vector of the same size as the numbers of function words (293) is created. For each position in vector we associate a function word with 0.

function word1	function word2	 function word293
0	0	 0

- When a tweet is parsed and a function word is found in the tweet, the value corresponding to that function word in the vector is increased by 1.
- When the whole tweet is read, the corresponding vector is normalized, meaning that each number associated with is divided with the total number of distinct function words contained in the tweet.

An example of building a function word vector can be considered on the following tweet:

"Iraqi forces fight ISIS to recapture all Tikrit"

In the tweet and the list of function words we can find two common function words: to and all. We increase the corresponding number for theses words by 1. At this moment we have a vector that looks like following:

function	all	to		function	function
word1				word292	word293
0	1	00 1	00	0	0

The last step consists of normalizing the vector. Each number is divided with the number of distinct function words that are in the tweet and the list with 293 function words. In this example we have two such words. After normalizing the vector will have following values:

function	all	to		function	function
word1				word292	word293
0	0.5	00 0.5	0	0	0

Notice that at the end the sum of all values contained in the vector will always be 1. Messages that contain radical content that are posted on Twitter by those who support terrorist organizations like ISIS tend to follow similar topics. Therefore, we use the most frequent words from the dataset containing tweets against ISIS. The words that we have selected all have a frequency greater than 180. A total of 173 words have been selected. The

process of creating the feature vector for most common words is identical with the one of creating function words feature vector described previously.

When selecting the most frequent words we ignored stop words. Stop words are commonly used words like conjunctions or prepositions. A total of 32 stop words was used. The list of stop words was created by selecting short function words from the function words list.

Hashtags are used to emphasize the meaning and importance of some words and to permit users to easily find messages with specific themes or content. Hashtags usually contain the essence of the message. Similar to the process of collecting the most frequent words in the pro-ISIS dataset, we collected the most frequent hashtags. Only hashtags that appeared in the dataset more than 75 times were collected. At the end we had a list of 100 hashtags. As expected the list contained hashtags about ISIS or their activities. For example the two most frequent hashtags used were #IS and #AllEyesOnISIS. The entire list of hashtags can be found in the Appendix section. The process of creating a feature vector for hashtags is once again identical to the one of creating function words vector or most frequent words vector.

Punctuation is another stylometric feature. Here, 13 different punctuation marks are considered. Even though a tweet is not a long text and therefore there are not many punctuation marks, users sometimes repeatedly use some punctuation marks like question or exclamation mark in order to emphasize wonder or excitement. An example of this usage is:

"Who wants the truth about ISIS??? Well here it it from Sheikh AlAdnani in his recent speech #AllEyesOnISIS http:// t.co/LFT790b5bo"

Since bigrams have been successfully used before to classify tweets [27] we decided to use bigrams. In this work we have two approaches for using bigrams. First one is to use word bigrams which means that a bigram will be formed by two words. The other approach is to use letter bigrams which means we considered forming a bigram with two letters. We only selected word bigrams that had the frequency greater than 250. At the end we formed a list containing 99 word bigrams. The same process was followed to create the list of letter bigrams. Only letter bigram with a frequency greater than 3000 were selected. We formed a list containing 133 letter bigrams. The process of forming the word bigram feature vector and letter

bigram feature vector is the same as forming function words, most frequent words and hashtags feature vectors previously described.

4.3.2 Time

In this work we used different features that describes time aspect of the tweets. These features are listed in Table 9.

hour	the hour when the tweet was posted	
day of week	the day of the week when the tweet was posted	7
period of week	when the tweet was posted: weekday/weekend	2
period of day	the period of day when the tweet was posted	4

Table 9: Number of features in the time vector.

We divided a day into 4 periods of 6 hours each starting from 00:00. Since the data was collected between June 2014 and August 2014 we did not consider using months as features. To build a feature vector for time, the following steps were done:

- 1. A vector of size 37 is created and filled with 0:s.
- 2. All vector items corresponding to the time when the tweet was posted are set to 1.

Consider a tweet that has the date:

Fri Aug 29 19:20:40 +0000 2014

In this case the features will be:

• hour: 19:00

• day of week: Friday

• period of week: weekday

• period of day: 3

and the feature vector will look like:

hour1	 hour19	Mon-	 Fri-	week-	 pe-	pe-
		day	day	end	riod3	riod4
0	1	0	1	0	1	0

4.3.3 Sentiment

Sentiment analysis refers to the attitude of the writer towards a specific topic or a text. It has been used extensively to classify sentiments in movie and book reviews and tweets [25, 43]. In this work we have investigated if the radical content spread by users on Twitter has any correlation with the sentiment that is associated to the message. For this we used a sentiment analysis tool described in [37]. The sentiment analysis tool is mainly developed for predicting the sentiment of movie reviews. The tool is useful in our setting as well because it works not only by looking at each word separately but it builds up a representation of whole sentences based on the sentence structure. The sentiment is computed based on how words compose the meaning of the sentence. The values the sentiment can take are: very negative, negative, neutral, positive, very positive. In the next picture the live demo of the tool was used to see the representation of the tweet "#ISIS kills an will continue killing the crusades #AllEyesOnISIS" and its associated sentiment.

As can be seen in Figure 9 the computed sentiment of a tweet is negative. We computed the sentiment of all tweets from the training data set and the average sentiment was negative. Most of the tweets we consider have negative sentiments. The sentiment feature vector has the length of 5, where each feature corresponds to a sentiment. The vector was built following the same steps as in the previous examples.

4.3.4 Feature selections

In order to only select features that contribute to classify the tweets, information gain has been performed. Features that had no contribution have been removed. The initial structure of feature vectors can be seen in Table 7. The structure of feature vectors after features selection can be seen in Table 10.

Figure 9: Sentiment tree representation of a tweet [13]

stylometry based techniques	579
time based techniques	36
sentiment	4

Table 10: The number of feature after the feature selection process.

5 Experiments

5.1 Experimental set-up

The experiments were conducted using a tool called Weka which is a suite of machine learning software written in Java. For our experiments we used three different classifiers: Support Vector Machine (SVM), Naive Bayes and AdaBoost. For Naive Bayes and AdaBoost the default configuration was chosen. For SVM a linear kernel was used.

5.2 Results

We performed experiments using different classification techniques, datasets, and features to evaluate the ability these techniques have to distinguish extremist from non-extremist tweets. We also examine which features appeared to be most important in facilitating this task. Between 4000 and 7500 tweets were used in total.

Results differed depending on what datasets we used. Using TW-PRO and TW-RAND led to better results than if TW-PRO and TW-CON were used. The results for TW-PRO and TW-RAND and the features (S + T + SB) are shown in Table 11. As can be noted AdaBoost performs very well with 100 % accuracy on the test set.

	Non Radical	Radical	Correctly Classified Instances
SVM	1974	24	99.1 %
5 V IVI	11	1990	
Naive Bayes	1997	1	99.9 %
Naive Dayes	1	1990	
AdaBoost	1998	0	100 %
Adaboost	0	1991	

Table 11: Results when using features (S + T + SB) on the datasets TW-RAND and TW-PRO.

The results for using the datasets TW-PRO and TW-CON are shown in Table 12, the accuracy when using the AdaBoost classifier is still high (99.5%). Since the datasets that are used for the experiments in Table 11 and Table 12 differs the results are expected. TW-RAND contains randomly selected tweets while TW-CON are tweets that are against ISIS. The tweets that are against ISIS contains similar hashtags and topics as the TW-PRO dataset and is therefore harder to separate than the randomly collected tweets.

	Non Radical	Radical	Correctly Classified Instances
SVM	1155	38	98.5 %
D V IVI	24	2783	
Naive Bayes	1178	15	96.8 %
Naive Dayes	114	2693	
AdaBoost	1182	11	99.5 %
Adaboost	8	2799	

Table 12: Results when using all features (S + T + SB) on TW-CON and TW-PRO.

	Non Radical	Radical	Correctly Classified Instances
SVM	3099	92	97.9 %
5 V IVI	74	4813	
Naive Bayes	2877	314	89.0 %
Naive Dayes	574	4313	
AdaBoost	1600	0	100 %
Adaboost	0	2905	

Table 13: Results when using all features (S + T + SB) on the full dataset.

Table 13 shows the results for three different classifiers using all features on all the datasets TW-PRO, TW-RAND and TW-CON. As can be seen in the table AdaBoost performs slightly better than both Naive Bayes and SVM.

Given the importance of time features, we decided to examine the degree to which performance was compromised when these were excluded. Table 14 shows the result without time features.

	Non Radical	Radical	Correctly Classified Instances
SVM	3099	92	97.7 %
D V IVI	88	4718	
Naive Bayes	2874	317	89.1 %
Naive Dayes	550	4256	
AdaBoost	1576	0	100 %
Adaboost	0	2423	

Table 14: Results when using all features except time (S + SB) on the full dataset.

Even without using time features, the results remain extremely impressive, with AdaBoost continuing to perform perfectly on the test data.

6 Conclusions

In this work we have presented an approach to classify tweets as containing radical content or not. There have been other attempts to classify radical content on Twitter. We used three different types of features: stylometry based features, time based features and sentiment based features. The results of the experiments proved that these features combined perform better than each individual one.

In order to have relevant results we used different datasets. For our testing dataset we collected random tweets and tweets having messages oriented against ISIS. For the training dataset, the pro ISIS tweets were collected from accounts that cluster with known ISIS supporters.

We run our experiments using three different classifiers: SVM, Naive Bayes and AdaBoost. The excellent results we obtained indicates that classification is a viable way forward to detect radical content on social media, and in particular on Twitter. We look forward to trying to replicate these results on more diverse and or complex data.

7 Future Work

In this work we covered many aspects regarding the attempt to classify radical content on Twitter. Still, there are many ways in which this work can be improved and extended.

It has been observed that radical tweets have a very low ageing factor (AF) [44]. It is a metric showing how fast a tweet was retweeted in a period of time. It is computed as follow:

$$AG = \sqrt[i]{\frac{k}{k+l}}$$

where i is the cut-off time in hours, k is the number of retweets originating at least i hours ago and l is the number of retweets originating less than i hours ago. A low AF value suggests by [45] that the topic is a short-term trending topic while a high value of the AF indicates that the topic is a sustainable topic since people have re-tweeted and discussed the tweet over a longer duration. The one hour ageing factor (1hAF) is the ratio of re-tweets in a sample set that originated more than one hour after the original creation time over the total number of re-tweets in the sample set.

The ageing factor plays an important role in our work due to the strategies that jihadist groups use to promote and promulgate messages. When a radical message is posted, those promoting such ideologies rush to re-tweet it. In the dataset that we have used in our experiments, the average 1hAF factor for a tweets is 0.06. This indicates that messages are re-tweeted quickly.

We believe that it will be interesting to use the ageing factor as part of our feature sets. One problem is that the perfect performance of our AdaBoost models makes it difficult to evaluate the relative importance of new features. More suitable tests will be possible once more complex data is found that we can do experiments on.

One way to improve the presented work is to make the classifier work not only on English tweets but also on tweets written in other languages. Since radical messages are not posted only in English, improving the classifier by making it work with tweets posted in other languages will be a significant

contribution.

Another approach to improve this work is to focus not only on each tweet in particular to classify it as having radical content or not but also trying to label a Twitter account as being radical or not. The achieved result in this work might be the ground base for classifying users instead of tweets. The good results obtained in this work makes us optimistic about using the similar techniques to classify not only tweets but any other form of text.

8 APPENDIX

8.1 List of function words

1.	a	30.	anyone	59.	can
2.	able	31.	anything	60.	certain
3.	aboard	32.	are	61.	circa
4.	about	33.	around	62.	close
5.	above	34.	as	63.	concerning
6.	absent	35.	aside	64.	consequently
7.	according	36.	astraddle	65.	considering
8.	accordingly	37.	astride	66.	could
9.	across	38.	at	67.	couple
10.	after	39.	away	68.	dare
11.	against	40.	bar	69.	deal
12.	ahead	41.	barring	70.	despite
13.	albeit	42.	be	71.	down
14.	all	43.	because	72.	due
15.	along	44.	been	73.	during
16.	alongside	45.	before	74.	each
17.	although	46.	behind	75.	eight
18.	am	47.	being	76.	eigth
19.	amid	48.	below	77.	either
20.	amidst	49.	beneath	78.	enough
21.	among	50.	beside	79.	every
22.	amongst	51.	besides	80.	everybody
23.	amount	52.	better	81.	everyone
24.	an	53.	between	82.	everything
25.	and	54.	beyond	83.	except
26.	another	55.	bit	84.	excepting
27.	anti	56.	both	85.	excluding
28.	any	57.	but	86.	failing
29.	anybody	58.	by	87.	few

88.	fewer	121.	is	154.	no
89.	fifth	122.	it	155.	nobody
90.	first	123.	its	156.	none
91.	five	124.	itself	157.	nor
92.	following	125.	keeping	158.	nothing
93.	for	126.	lack	159.	notwithstanding
94.	four	127.	less	160.	number
95.	fourth	128.	like		numbers
96.	from	129.	little	162.	
97.	front	130.	loads	163.	
98.	given	131.	lots	164.	once
99.	good	132.	majority	166.	
100.	great	133.	many		onto
101.	had	134.	masses		opposite
102.	half	135.	may	169.	or
103.	have	136.	me	170.	other
104.	he	137.	might	171.	ought
105.	heaps	138.	mine	172.	our
106.	hence	139.	minority	173.	ours
107.	her	140.	minus	174.	ourselves
108.	hers	141.	more	175.	out
109.	herself	142.	most	176.	outside
110.	him	143.	much	177.	over
111.	himself	144.	must		part
112.	his	145.	my		past
113.	however	146.	myself		pending
114.	i	147.	near	181.	pertaining
115.	if	148.	need		place
116.	in	149.	neither		plenty
117.	including	150.	nevertheless		plethora
118.	inside	151.	next	186.	plus
119.	instead	152.	nine	187.	quantities

188. quantity

153. ninth

120. into

189.	quarter	224.	them	259.	versus
190.	regarding	225.	themselves	260.	via
191.	remainder	226.	then	261.	view
192.	respecting	227.	thence	262.	wanting
193.	rest	228.	therefore	263.	was
194.	round	229.	these	264.	we
195.	save	230.	they	265.	were
196.	saving	231.	third	266.	what
197.	second	232.	this	267.	whatever
198.	seven	233.	those	268.	when
199.	seventh	234.	though	269.	where
200.	several	235.	three	270.	whereas
201.	shall	236.	through	271.	wherever
202.	she	237.	throughout	272.	whether
203.	should	238.	thru	273.	which
204.	similar	239.	thus	274.	whichever
205.	since	240.	till	275.	while
206.	six	241.	time	276.	whilst
207.	sixth	242.	to	277.	who
208.	so	243.	tons	278.	whoever
209.	some	244.	top	279.	whole
210.	somebody	245.	toward	280.	whom
211.	someone	246.	towards	281.	whenever
212.	something	247.	two	282.	whose
213.	sorry	248.	under	283.	will
214.	spite	249.	underneath	284.	with
215.	such	250.	unless	285.	within
216.	ten	251.	unlike	286.	without
217.	tenth	252.	until	287.	would
218.	than	253.	unto	288.	yet
219.	thanks	254.	up	289.	you
220.	that	255.	upon	290.	your
221.	the	256.	us	291.	yours
222.	their	257.	used	292.	yourself
223.	theirs	258.	various	293.	yourselves

8.2 List of frequent words

1.	state	33.	report		picture
2.	islamic	34.	iraq	66.	free
3.	not	35.	attack	67.	storm
4.	soldier	36.	fighter	68.	gas
5.	do	37.	assad	69.	time
6.	kill	38.	media	70.	caliphate
7.	support	39.	new	71.	pay
	abu		mujahideen	72.	mosul
				73.	allegiance
9.	allah	41.	division	74.	how
10.	people	42.	base	75.	tax
11.	al	43.	islam	76.	field
12.	now	44.	today	77.	world
13.	army	45.	come	78.	just
14.	muslim	46.	join	79.	leader
15.	city	47.	poor	80.	between
16.	force	48.	use	81.	send
17.	fight	49.	get	82.	leave
	control		remove	83.	training
				84.	street
19.	take	51.	military	85.	only
20.	against	52.	show	86.	spoil
21.	iraqi	53.	release	87.	aid
22.	give	54.	war	88.	christian
23.	battle	55.	brother	89.	pledge
24.	say	56.	clash	90.	call
25.	destroy	57.	under	91.	assault
26.	village	58.	video	92.	want
27.	isis	59.	make	93.	collect
	capture	60	area	94.	operation
	•			95.	hold
	distribute		group	96.	day
30.	syrian	62.	see	97.	need
31.	province	63.	flag	98.	militia
32.	regime	64.	go	99.	${\rm troops}$

100.	part	125.	seize	150.	cob
101.	security	126.	account	151.	martyr
102.	israel	127.	back	152.	jihad
103.	help	128.	year	153.	full
104.	deir	129.	soon	154.	brigade
105.	here	130.	akbar	155.	lion
106.	bakr	131.	claim	156.	anbar
107.	parade	132.	weapon	157.	gaza
108.	malikus	133.	start	158.	burn
109.	office	134.	last	159.	prisoner
110.	border	135.	carry	160.	live
111.	lie	136.	gain	161.	caliph
112.	resident	137.	defeat	162.	ask
113.	iranian	138.	follow		front
114.	syrium	139.	because		
115.	woman	140.	flee		victory
116.	via	141.	u	165.	dead
117.	distribution	142.	vehicle	166.	country
118.	another	143.	supporter	167.	bomb
119.	hand	144.	accept	168.	barracks
120.	also	145.	photo	169.	khilafa
121.	liberate	146.	still	170.	death
122.	member	147.	official	171.	name
123.	road	148.	service	172.	land
124.	try	149.	khilafah	173.	issue

8.3 List of Hashtags

1	. #IS	6.	#IslamicState	11.	#Mosul
2	. #AllEyesOnISIS	7.	#Islam	12.	#Khilafah
3	. #Iraq	8.	#ISIS	13.	#Caliphate
4	. #Islamic_State	9.	#KhilafaRestored	14.	#Jihad
F	#Syria	10	#Muslims	15	#Ragga

16.	#Zakat	45.	#islamicstate	74.	#Pakistan
17.	#Khilafa	46.	#isis	75.	#Nineveh
18.	#Gaza	47.	#USA	76.	# Kurds
19.	#Baghdad	48.	#Diyala	77.	#PRT
20.	#Israel	49.	#Haditha	78.	#Iranian
21.	#Homs	50.	# Muslim	79.	#khilafarestored
22.	#Army	51.	#SaudiArabia	80.	#New
23.	#BREAKING	52.	$\# Live_The_Cause$	81.	#AQ
24.	# Calamity Will Befall US	53.	#PKK		
25.	#Quran	54.	#Lebanon	82.	#Syri
26.	#is	55.	#Christians	83.	#YPG
27.	#Kirkuk	56.	# Indonesia	84.	#Iraqi
28.	#Damascus	57.	#Bayah	85.	#Khalifah
29.	#army	58.	#Hasaka	86.	#AlHayat
30.	# Gaza Under Attack	59.	#Sunnis	87.	#PT
31.	#Breaking	60.	#Israeli	88.	# WorldCup 2014
32.	#Aleppo	61.	$\#AlHayat_Media$	89.	#UN
33.	#Ramadan	62.	#Raqqah	90.	$\# Live_the_cause$
34.	#Palestine	63.	#JN	91.	#khilafah
35.	#iraq	64.	#Hezbollah	92.	#Salahadeen
36.	#SAA	65.	#Syrian	93.	#Racism
37.	#Tikrit	66.	#Jordan	94.	#Kashmir
38.	#US	67.	#Islamicstate	95	#Assad
39.	#Anbar	68.	#Iraqwar		
40.	#Saudi	69.	#FSA	96.	#orphans
41.	#Shia	70.	#Jews	97.	#Maliki
42.	#syria	71.	#Sham	98.	#REPORT
43.	#Iran	72.	#Nigeria	99.	#Hasakah
44.	#URGENT	73.	#ISIL	100.	#saudi

References

- [1] Confusion matrix. http://aimotion.blogspot.se/2010/08/tools-for-machine-learning-performance.html. [Online; accessed 15-April-2015].
- [2] Currently listed entities. http://www.publicsafety.gc.ca/cnt/ntnl-scrt/cntr-trrrsm/lstd-ntts/crrnt-lstd-ntts-eng.aspx. [Online; accessed 20-June-2015].
- [3] Encode or decode json text library for java. http://code.google.com/p/language-detection/.
- [4] First classification of a weak learner. https://alliance.seas.upenn.edu/~cis520/wiki/index.php?n=lectures.boosting. [Online; accessed 19-April-2015].
- [5] Foreign Terrorist Organizations. http://www.state.gov/j/ct/rls/other/des/123085.htm. [Online; accessed 20-June-2015].
- [6] How Does ISIS Recruit, Exactly? Its Techniques Are Ruthless, Terrifying, And Efficient. http://www.bustle.com/articles/40535-how-does-isis-recruit-exactly-its/techniques-are-ruthless-terrifying-and-efficient. [Online; accessed 11-June-2015].
- [7] ISIS hashtag campaign. http://www.telegraph.co.uk/news/worldnews/middleeast/iraq/10923046/
 How-Isis-used-Twitter-and-the-World-Cup-to-spread-its-terror.html. [Online; accessed 11-June-2015].
- [8] ISIS Is Winning the Online Jihad Against the West. http://www.thedailybeast.com/articles/2014/10/01/isis-is-winning-the-online-jihad-against-the-west.html. [Online; accessed 11-June-2015].
- [9] Machine learning flow. http://commons.wikimedia.org/wiki/File: Machine_Learning_Technique..JPG. [Online; accessed 10-April-2015].
- [10] Mujahideen. http://terrorism.about.com/od/m/g/Mujahideen. htm. [Online; accessed 10-June-2015].
- [11] Overfitting. http://www.analyticsvidhya.com/blog/2015/02/avoid-over-fitting-regularization/. [Online; accessed 25-April-2015].

- [12] PROSCRIBED TERRORIST ORGANISATIONS. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/417888/Proscription-20150327.pdf. [Online; accessed 20-June-2015].
- [13] Sentiment analysis. http://nlp.stanford.edu:8080/sentiment/rntnDemo.html. [Online; accessed 30-April-2015].
- [14] The kernel trick. http://www.nelsonspencer.com/blog/2015/2/15/machine-learning-supervised-learning-pt-2. [Online; accessed 16-April-2015].
- [15] The margin and support vectors. https://www.dtreg.com/solution/view/20. [Online; accessed 15-April-2015].
- [16] The Non-separable case. http://docs.opencv.org/doc/tutorials/ml/non_linear_svms/non_linear_svms.html. [Online; accessed 15-April-2015].
- [17] The separable case. http://docs.opencv.org/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html. [Online; accessed 15-April-2015].
- [18] FBI. http://www.fbi.gov, 2014. [Online; accessed 10-March-2015].
- [19] Internet Users. http://www.internetlivestats.com/internet-users/, 2014. [Online; accessed 10-March-2015].
- [20] Isis propaganda: Study finds up to 90,000 Twitextremist http:// ter accounts supporting group. www.independent.co.uk/life-style/gadgets-and-tech/ isis-propaganda-study-finds-up-to-90000-twitter/ -accounts-supporting-extremist-group-10090309.html, 2014. [Online; accessed 10-March-2015].
- [21] Security Council Adopts Resolution 2170. http://www.un.org/press/en/2014/sc11520.doc.htm, 2014. [Online; accessed 20-June-2015].
- [22] Use of Internet for Terrorist Purposes. http://www.unodc.org/documents/frontpage/Use_of_Internet_for_Terrorist_Purposes.pdf, 2014. [Online; accessed 10-March-2015].
- [23] Nico Prucha Ali Fisher. The call-up: The roots of a resilient and persistent jihadist presence on twitter ctx. 4(3). August 2004.

- [24] Ethem Alpaydin. Introduction to Machine Learning. MIT Press, 2014.
- [25] Ilia Vovsha Owen Rambow Rebecca Passonneau Apoorv Agarwal, Boyi Xie. Sentiment analysis of twitter data.
- [26] Michael Collins, Robert E Schapire, and Yoram Singer. Logistic regression, adaboost and bregman distances. *Machine Learning*, 48(1-3):253–285, 2002.
- [27] Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford, pages 1–12, 2009.
- [28] Peter Jackson and Isabelle Moulinier. Natural language processing for online applications: Text retrieval, extraction and categorization, volume 5. John Benjamins Publishing, 2007.
- [29] Ali Fisher Jamie Bartlett. How to beat the media mujahideen. http://quarterly.demos.co.uk/article/issue-5/how-to-beat-the-media-mujahideen/, 2015.
- [30] Finin T Tseng B Java A, Song X. Why we twitter: understanding microblogging usage and communities. *Proc of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis*, pages 56–65, 2007.
- [31] Thorsten Joachims. Text categorization with support vector machines: Learning with many relevant features. Springer, 1998.
- [32] John T Kent. Information gain and a general measure of correlation. Biometrika, 70(1):163–173, 1983.
- [33] Kathy Lee, Diana Palsetia, Ramanathan Narayanan, Md Mostofa Ali Patwary, Ankit Agrawal, and Alok Choudhary. Twitter trending topic classification. In *Data Mining Workshops (ICDMW)*, 2011 IEEE 11th International Conference on, pages 251–258. IEEE, 2011.
- [34] David D Lewis. Naive (bayes) at forty: The independence assumption in information retrieval. In *Machine learning: ECML-98*, pages 4–15. Springer, 1998.
- [35] Haibin Liu, Tom Christiansen, William A Baumgartner Jr, and Karin Verspoor. Biolemmatizer: a lemmatization tool for morphological processing of biomedical text. *J. Biomedical Semantics*, 3(3):17, 2012.

- [36] Weber Ingmar Magdy Walid. #failedrevolutions: Using twitter to study the antecedents of isis support. arXiv preprint arXiv:1503.02401, 2005.
- [37] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David McClosky. The Stanford CoreNLP natural language processing toolkit. In *Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations*, pages 55–60, Baltimore, Maryland, June 2014. Association for Computational Linguistics. http://www.aclweb.org/anthology/P/P14/P14-5010.
- [38] Dorian Pyle. Data preparation for data mining, volume 1. Morgan Kaufmann, 1999.
- [39] Nakatani Shuyo. Language detection library for java. http://code.google.com/p/language-detection/, 2010.
- [40] Devin R Springer. *Islamic radicalism and global jihad*. Georgetown University Press, 2009.
- [41] Bharath Sriram, Dave Fuhry, Engin Demir, Hakan Ferhatosmanoglu, and Murat Demirbas. Short text classification in twitter to improve information filtering. In *Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval*, SIGIR '10, pages 841–842, New York, NY, USA, 2010. ACM. http://doi.acm.org/10.1145/1835449.1835643.
- [42] Stephen V Stehman. Selecting and interpreting measures of thematic classification accuracy. Remote sensing of Environment, 62(1):77–89, 1997.
- [43] Tun Thura Thet, Jin-Cheon Na, and Christopher SG Khoo. Aspect-based sentiment analysis of movie reviews on discussion boards. *Journal of Information Science*, page 0165551510388123, 2010.
- [44] Victoria Uren and Aba-Sah Dadzie. Ageing factor: a potential altmetric for observing events and attention spans in microblogs. In 1st International Workshop on Knowledge Extraction and Consolidati on from Social Medi(KECSM), 2012.
- [45] Victoria Uren and Aba-Sah Dadzie. Nerding out on twitter: Fun, patriotism and #curiosity. In *Proceedings of the 22Nd International Conference on World Wide Web Companion*, WWW '13 Companion, pages

- 605–612. International World Wide Web Conferences Steering Committee, 2013.
- [46] Pooja Wadhwa and M. P. S. Bhatia. Case Studies in Secure Computing Achievements and Trends, chapter Classification of Radical Messages on Twitter Using Security Associations, page 273. 2014.
- [47] Ian H Witten and Eibe Frank. Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann, 2005.
- [48] Dan Zarrella. The social media marketing book. "O'Reilly Media, Inc.", 2009.
- [49] Tong Zhang. An introduction to support vector machines and other kernel-based learning methods. AI Magazine, 22(2):103, 2001.
- [50] Xiaojin Zhu and Andrew B. Goldberg. *Introduction to Semi-Supervised Learning*. 2009.