### **ASSESSMENT 3**

| ASSESSMENT DATE     | 06-10-2022      |
|---------------------|-----------------|
| STUDENT NAME        | S. Sakthi Priya |
| STUDENT ROLL NUMBER | 713119104016    |
| MAXIMUM MARKS       | 2 Marks         |

```
import pandas as pd
import numpy as np
```

### #1. Download the dataset

```
from google.colab import files
uploaded = files.upload() #2. Load
the dataset into the tool.

df=pd.read_csv('abalone - abalone.csv')
df.head()
```

|   | Sex | Length | Diameter | Height | Whole weight | Shucked weight | Viscera weight | Shell weight | Rings | Age  |
|---|-----|--------|----------|--------|--------------|----------------|----------------|--------------|-------|------|
| 0 | М   | 0.455  | 0.365    | 0.095  | 0.5140       | 0.2245         | 0.1010         | 0.150        | 15    | 16.5 |
| 1 | М   | 0.350  | 0.265    | 0.090  | 0.2255       | 0.0995         | 0.0485         | 0.070        | 7     | 8.5  |
| 2 | F   | 0.530  | 0.420    | 0.135  | 0.6770       | 0.2565         | 0.1415         | 0.210        | 9     | 10.5 |
| 3 | М   | 0.440  | 0.365    | 0.125  | 0.5160       | 0.2155         | 0.1140         | 0.155        | 10    | 11.5 |
| 4 | 1   | 0.330  | 0.255    | 0.080  | 0.2050       | 0.0895         | 0.0395         | 0.055        | 7     | 8.5  |
|   |     |        |          |        |              |                |                |              |       |      |

```
df['age'] = df['Rings']+1.5
df.drop('Rings', axis = 1, inplace = True)
df.age
```

```
16.5
[6] 0
            8.5
    1
    2
           10.5
    3
           11.5
            8.5
    4
            ...
           12.5
    4172
    4173
           11.5
    4174
           10.5
    4175
           11.5
          13.5
    4176
    Name: age, Length: 4177, dtype: float64
```

```
df.shape
(4177, 10)
```

```
df.info()
                                        object
          Sex
                         4177 non-null
 [8]
      0
                        4177 non-null
                                        float64
       1 Length
       2 Diameter
                        4177 non-null
                                       float64
       3 Height
                                       float64
                        4177 non-null
       4 Whole weight 4177 non-null float64
       5 Shucked weight 4177 non-null
                                      float64
       6 Viscera weight 4177 non-null float64
       7
          Shell weight 4177 non-null
                                       float64
          Unnamed: 9
                        4177 non-null float64
       8
       9
                         4177 non-null float64
          age
      dtypes: float64(9), object(1)
      memory usage: 326.5+ KB
```

# # 3. Perform Below Visualizations. #univariate analysis

```
import matplotlib.pyplot as plt
import seaborn as sns
plt.scatter(df.index,df['Height'])
plt.show()
```



### plt.hist(df['Diameter'])

<a list of 10 Patch objects>)



sns.displot(df['Whole weight'])
<seaborn.axisgrid.FacetGrid at 0x7f400117f050>



sns.boxplot(df['Shell weight'])



## sns.countplot(df['age'])



### #Bivariate analysis

```
plt.scatter(df.Length,df.Height)
plt.title('length vs Height')
plt.xlabel('length')
plt.ylabel('height')
```



df.corr()

|                | Length   | Diameter | Height   | Whole weight | Shucked weight | Viscera weight | Shell weight | Unnamed: 9 | age      |
|----------------|----------|----------|----------|--------------|----------------|----------------|--------------|------------|----------|
| Length         | 1.000000 | 0.986812 | 0.827554 | 0.925261     | 0.897914       | 0.903018       | 0.897706     | 0.556720   | 0.556720 |
| Diameter       | 0.986812 | 1.000000 | 0.833684 | 0.925452     | 0.893162       | 0.899724       | 0.905330     | 0.574660   | 0.574660 |
| Height         | 0.827554 | 0.833684 | 1.000000 | 0.819221     | 0.774972       | 0.798319       | 0.817338     | 0.557467   | 0.557467 |
| Whole weight   | 0.925261 | 0.925452 | 0.819221 | 1.000000     | 0.969405       | 0.966375       | 0.955355     | 0.540390   | 0.540390 |
| Shucked weight | 0.897914 | 0.893162 | 0.774972 | 0.969405     | 1.000000       | 0.931961       | 0.882617     | 0.420884   | 0.420884 |
| Viscera weight | 0.903018 | 0.899724 | 0.798319 | 0.966375     | 0.931961       | 1.000000       | 0.907656     | 0.503819   | 0.503819 |
| Shell weight   | 0.897706 | 0.905330 | 0.817338 | 0.955355     | 0.882617       | 0.907656       | 1.000000     | 0.627574   | 0.627574 |

## #multivariate analysis

sns.pairplot(df)

plt.show



### # 4.Perform descriptive statistics on the dataset.

df.describe()

| Length      | Diameter                                                    | Height                                                                                                      | Whole<br>weight                                                                                                                                 | Shucked<br>weight                                                                                                                                                                                                                                                                                                                                                                                                              | Viscera<br>weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Shell<br>weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unnamed: 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4177.000000 | 4177.000000                                                 | 4177.000000                                                                                                 | 4177.000000                                                                                                                                     | 4177.000000                                                                                                                                                                                                                                                                                                                                                                                                                    | 4177.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4177.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4177.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4177.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.523992    | 0.407881                                                    | 0.139516                                                                                                    | 0.828742                                                                                                                                        | 0.359367                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.180594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.238831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.433684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.433684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.120093    | 0.099240                                                    | 0.041827                                                                                                    | 0.490389                                                                                                                                        | 0.221963                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.109614                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.139203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.224169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.224169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.075000    | 0.055000                                                    | 0.000000                                                                                                    | 0.002000                                                                                                                                        | 0.001000                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.001500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.500000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.500000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.450000    | 0.350000                                                    | 0.115000                                                                                                    | 0.441500                                                                                                                                        | 0.186000                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.093500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.130000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.500000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.500000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.545000    | 0.425000                                                    | 0.140000                                                                                                    | 0.799500                                                                                                                                        | 0.336000                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.171000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.234000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.500000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.500000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | 4177.000000<br>0.523992<br>0.120093<br>0.075000<br>0.450000 | 4177.000000 4177.000000<br>0.523992 0.407881<br>0.120093 0.099240<br>0.075000 0.055000<br>0.450000 0.350000 | 4177.000000 4177.000000 4177.000000 0.523992 0.407881 0.139516 0.120093 0.099240 0.041827 0.075000 0.055000 0.000000 0.450000 0.350000 0.115000 | Length         Diameter         Height         weight           4177.000000         4177.000000         4177.000000         4177.000000           0.523992         0.407881         0.139516         0.828742           0.120093         0.099240         0.041827         0.490389           0.075000         0.055000         0.00000         0.002000           0.450000         0.350000         0.115000         0.441500 | Length         Diameter         Height         weight         weight           4177.000000         4177.000000         4177.000000         4177.000000           0.523992         0.407881         0.139516         0.828742         0.359367           0.120093         0.099240         0.041827         0.490389         0.221963           0.075000         0.055000         0.00000         0.002000         0.001000           0.450000         0.350000         0.115000         0.441500         0.186000 | Length         Diameter         Height         weight         weight         weight           4177.000000         4177.000000         4177.000000         4177.000000         4177.000000           0.523992         0.407881         0.139516         0.828742         0.359367         0.180594           0.120093         0.099240         0.041827         0.490389         0.221963         0.109614           0.075000         0.055000         0.000000         0.002000         0.001000         0.009500           0.450000         0.350000         0.115000         0.441500         0.186000         0.093500 | Length         Diameter         Height         weight         despite         despite         despite         despite         despite         despite         despite         despite         despite | Length         Diameter         Height weight weight         weight weight weight         Unnamed: 9           4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000 |

**#5.Check for Missing values and deal with them.** df.info()

# Data columns (total 10 columns): # Column Non-Null Count Dtype 0 Sex 4177 non-null object 1 Length 4177 non-null float64 2 Diameter 4177 non-null float64 3 Height 4177 non-null float64 4 Whole weight 4177 non-null float64 5 Shucked weight 4177 non-null float64 6 Viscera weight 4177 non-null float64 7 Shell weight 4177 non-null float64

8 Unnamed: 9 4177 non-null float64 9 age 4177 non-null float64

dtypes: float64(9), object(1)
memory usage: 326.5+ KB

### df.isnull()

|      | Sex   | Length | Diameter | Height | Whole weight | Shucked weight | Viscera weight | Shell weight | Ilnnamad · □ | <b>□</b> 700 | Ľ, |
|------|-------|--------|----------|--------|--------------|----------------|----------------|--------------|--------------|--------------|----|
| 0    | False | False  | False    | False  | False        | False          | False          | False        | False        | False        |    |
| 1    | False | False  | False    | False  | False        | False          | False          | False        | False        | False        |    |
| 2    | False | False  | False    | False  | False        | False          | False          | False        | False        | False        |    |
| 3    | False | False  | False    | False  | False        | False          | False          | False        | False        | False        |    |
| 4    | False | False  | False    | False  | False        | False          | False          | False        | False        | False        |    |
|      | 1111  |        |          |        |              |                |                | ***          |              |              |    |
| 4172 | False | False  | False    | False  | False        | False          | False          | False        | False        | False        |    |
| 4173 | False | False  | False    | False  | False        | False          | False          | False        | False        | False        |    |
| 4174 | False | False  | False    | False  | False        | False          | False          | False        | False        | False        |    |

### df.notnull()

|      | Sex  | Length | Diameter | Height | Whole weight | Shucked weight | Viscera weight | Shell weight | Unnamed: 9 | age  |
|------|------|--------|----------|--------|--------------|----------------|----------------|--------------|------------|------|
| 0    | True | True   | True     | True   | True         | True           | True           | True         | True       | True |
| 1    | True | True   | True     | True   | True         | True           | True           | True         | True       | True |
| 2    | True | True   | True     | True   | True         | True           | True           | True         | True       | True |
| 3    | True | True   | True     | True   | True         | True           | True           | True         | True       | True |
| 4    | True | True   | True     | True   | True         | True           | True           | True         | True       | True |
|      |      |        |          |        | •••          |                |                | (949)        | ***        |      |
| 4172 | True | True   | True     | True   | True         | True           | True           | True         | True       | True |

df.fillna(0)



df['Length'].fillna('No Length',inplace=True)
df.head()

|   | Sex | Length | Diameter | Height | Whole weight | Shucked weight | Viscera weight | Shell weight | Unnamed: 9 | age  |
|---|-----|--------|----------|--------|--------------|----------------|----------------|--------------|------------|------|
| 0 | М   | 0.455  | 0.365    | 0.095  | 0.5140       | 0.2245         | 0.1010         | 0.150        | 16.5       | 16.5 |
| 1 | М   | 0.350  | 0.265    | 0.090  | 0.2255       | 0.0995         | 0.0485         | 0.070        | 8.5        | 8.5  |
| 2 | F   | 0.530  | 0.420    | 0.135  | 0.6770       | 0.2565         | 0.1415         | 0.210        | 10.5       | 10.5 |
| 3 | М   | 0.440  | 0.365    | 0.125  | 0.5160       | 0.2155         | 0.1140         | 0.155        | 11.5       | 11.5 |
| 4 | T   | 0.330  | 0.255    | 0.080  | 0.2050       | 0.0895         | 0.0395         | 0.055        | 8.5        | 8.5  |

df.drop('Shucked weight',axis=1,inplace=True)
df.tail()



print(df.isnull().sum())

Sex 0 Length 0 Diameter 0 Height 0 Whole weight 0 Viscera weight 0 Shell weight 0 Unnamed: 9 0 age 0 dtype: int64

### #6.Find the outliers and replace them outliers

Q1=df.quantile(0.25)

|     | Le    | ngth   |          |        | 0.16   | 50    |       |              |   |
|-----|-------|--------|----------|--------|--------|-------|-------|--------------|---|
|     |       | amete  | er       |        | 0.13   | 00    |       |              |   |
|     | He    | ight   |          |        | 0.05   | 99    |       |              |   |
|     |       | _      | weight   |        | 0.71   |       |       |              |   |
|     |       |        | a weigh  | nt     | 0.15   |       |       |              |   |
|     |       |        |          | 1.0    |        |       |       |              |   |
|     | Sh    | ett i  | weight   |        | 0.19   | 90    |       |              |   |
|     | Ri    | ngs    |          |        | 3.00   | 00    |       |              |   |
|     | Ag    | e      |          |        | 3.00   | 00    |       |              |   |
|     | dt    | vne:   | floate   | 54     |        |       |       |              |   |
|     |       |        |          |        |        |       |       |              |   |
| pri | nt(c  | df<(Q1 | 1-1.5*I  | QR))   |        |       |       |              |   |
| (df | E>(Q3 | 3+1.5  | *IQR))   |        |        |       |       |              |   |
| ₽   |       | Age    | Diameter | Height | Length | Rings | Sex   | Shell weight | 1 |
|     | 0     | False  | False    | False  | False  | False |       | False        |   |
|     | 1     | False  | False    | False  | False  | False | False | False        |   |
|     | 2     | False  | False    | False  | False  | False | False | False        |   |
|     | 3     | False  | False    | False  | False  | False | False | False        |   |
|     | 4     | False  | False    | False  | False  | False | False | False        |   |
|     |       |        |          |        |        |       |       |              |   |
|     |       | False  | False    | False  |        | False |       | False        |   |
|     | 4477  | Гајаа  | Гадаа    | годоо  | Enles. | гајаа | Гајаа | гадаа        |   |

False False False False

False False False False

False False False

False False False

False

False

False

False

False

False

### Viscera weight Whole weight 0 False False 1 False False False False 2 3 False False False False

False

False

### sns.boxplot(df.Rings)

4173 False

4174 False

4175 False

4176 False



sns.heatmap(df.corr(),annot=True)



```
np.where(df.age>7,7,df.age)
```

### output

```
array([7, 7, 7, ..., 7, 7])
```

```
print(df['Height'].quantile(0.25))
print(df['Height'].quantile(0.75))
df['Height']=np.where(df['Height']>0.090 ,0.125,df['Height'])
df.describe()
```

|       | Length      | Diameter    | Height      | Whole weight | Viscera weight | Shell weight | Unnamed: 9  | age         |
|-------|-------------|-------------|-------------|--------------|----------------|--------------|-------------|-------------|
| count | 4177.000000 | 4177.000000 | 4177.000000 | 4177.000000  | 4177.000000    | 4177.000000  | 4177.000000 | 4177.000000 |
| mean  | 0.523992    | 0.407881    | 0.118327    | 0.828742     | 0.180594       | 0.238831     | 11.433684   | 11.433684   |
| std   | 0.120093    | 0.099240    | 0.018405    | 0.490389     | 0.109614       | 0.139203     | 3.224169    | 3.224169    |
| min   | 0.075000    | 0.055000    | 0.000000    | 0.002000     | 0.000500       | 0.001500     | 2.500000    | 2.500000    |
| 25%   | 0.450000    | 0.350000    | 0.125000    | 0.441500     | 0.093500       | 0.130000     | 9.500000    | 9.500000    |
| 50%   | 0.545000    | 0.425000    | 0.125000    | 0.799500     | 0.171000       | 0.234000     | 10.500000   | 10.500000   |
| 75%   | 0.615000    | 0.480000    | 0.125000    | 1.153000     | 0.253000       | 0.329000     | 12.500000   | 12.500000   |

### # 7.Check for Categorical columns and perform encoding.

```
df['Diameter'].value_counts()
```

```
0.450
              139
     0.475
              120
     0.400
              111
     0.500
              110
     0.470
              100
     0.610
                1
     0.650
                1
     0.620
                1
     0.095
                1
     0.615
                1
     Name: Diameter, Length: 111, dtype: int64
df.dtypes
                                object
       Sex
                               float64
       Length
                               float64
       Diameter
       Height
                               float64
      Whole weight
                               float64
      Viscera weight
                               float64
      Shell weight
                               float64
       Unnamed: 9
                               float64
                               float64
       age
       dtype: object
df['Whole weight'].value_counts().sort_index()
       0.0020
                 1
       0.0080
                 1
       0.0105
                1
       0.0130
                1
       0.0140
       2.5500
                1
       2.5550
                1
       2.6570
                1
       2.7795
                 1
       2.8255
       Name: Whole weight, Length: 2429, dtype: int64
pd.get dummies(df,columns=['Whole weight']).tail()
                               Viscera Shell Unnamed:
                                                             Whole
                                                                       Whole
                                                                                     Whole
        Sex Length Diameter Height
                                                   age
                                                       weight_0.002 weight_0.008 ...
                                                                                weight_2.505 weight_2.50
                                weight weight
                                               12.5 12.5
                                                                0
   4172
             0.565
                    0.450 0.125
                                0.2390 0.2490
                                                                          0
                                                                                        0
    4173 M
                    0.440
                          0.125
                                0.2145 0.2605
                                               11.5 11.5
                                                                0
                                                                          0
             0.590
    4174
             0.600
                    0.475
                          0.125
                                0.2875 0.3080
                                               10.5 10.5
                                                                          0
                                               11.5 11.5
   4175
                    0.485
                          0.125
                                0.2610 0.2960
                                                                0
                                                                          0
                                                                                        0
             0.625
                    0.555 0.125 0.3765 0.4950
   4176 M
            0.710
                                               13.5 13.5
   5 rows × 2437 columns
```

```
from sklearn.preprocessing import OneHotEncoder
one encde= OneHotEncoder(sparse=False)
encoded_arr=one_encde.fit_transform(df[['Length','Diameter','Height','Visc
era weight']]) encoded arr
array([[0., 0., 0., ..., 0., 0., 0.],
         [0., 0., 0., ..., 0., 0., 0.]
         [0., 0., 0., ..., 0., 0., 0.]
         [0., 0., 0., ..., 0., 0., 0.]
         [0., 0., 0., ..., 0., 0., 0.]
         [0., 0., 0., ..., 0., 0., 0.]])
#8. Split the data into dependent and independent variables.
x = df.iloc[:, 1:3]
       Length Diameter 🎢
        0.455
                0.365
        0.350
                0.265
        0.530
                0.420
         0.440
                0.365
                0.255
        0.330
           ...
   4172
        0.565
                0.450
        0.590
                0.440
   4173
   4174 0.600
              0.475
y=df.iloc[:,1:4]
      Length Diameter Height
       0.455
              0.365
                   0.095
       0.350
              0.265
                    0.090
   2
       0.530
              0.420
                    0.135
       0.440
              0.365
                    0.125
       0.330
              0.255
                    0.080
  4172
       0.565
              0.450
                    0.165
```

#9. Scale the independent variables.

0.135

0.440

4173

0.590

from sklearn.preprocessing import MinMaxScaler
model=MinMaxScaler()
scaled\_x=pd.DataFrame(model.fit\_transform(x),columns=x.columns)
scaled\_x.head()

| ₽ |   | Length   | Diameter |
|---|---|----------|----------|
|   | 0 | 0.513514 | 0.521008 |
|   | 1 | 0.371622 | 0.352941 |
|   | 2 | 0.614865 | 0.613445 |
|   | 3 | 0.493243 | 0.521008 |
|   | 4 | 0.344595 | 0.336134 |

**#10. Split the data into training and testing** from sklearn.model\_selection import train\_test\_split

x\_train,x\_test,y\_train,y\_test=train\_test\_split(x,y,test\_size=0.2,random\_st
ate=0) x\_train.shape

(3341, 2)

x\_test.shape

(836, 2)

y\_train.shape

(3341, 3)

y test.shape

(836, 3)

### #11. Build the Model

from sklearn.linear model import LinearRegression

```
model = LinearRegression()
model.fit(x,y)
output
LinearRegression()
#12. Train the Model
model.fit(x_train, y_train)
LinearRegression() output
LinearRegression()
#13. Test the Model
pred1=model.predict(x train)
pred1
**
             [[0.18 , 0.135 , 0.08321098],
[0.215 , 0.15 , 0.08626508],
[0.66 , 0.53
     array([[0.18
              . . . ,
             [0.595 , 0.45 , 0.12504125],
[0.625 , 0.49 , 0.12877082],
             [0.41
                          , 0.325
                                         , 0.10702569]])
predictions=model.predict(x test)
predictions
pred=model.predict(x_test) pred
    array([[0.18 , 0.135 , 0.08321098], [0.215 , 0.15 , 0.08626508], [0.66 , 0.53 , 0.13284892],
            [0.595 , 0.45 , 0.12504125],
[0.625 , 0.49 , 0.12877082],
[0.41 , 0.325 , 0.10702569]])
pred=model.predict(x_test)
pred y_pred=(x_test)
y pred
```

|      | Length | Diameter |
|------|--------|----------|
| 668  | 0.550  | 0.425    |
| 1580 | 0.500  | 0.400    |
| 3784 | 0.620  | 0.480    |
| 463  | 0.220  | 0.165    |
| 2615 | 0.645  | 0.500    |

y\_test

|      | Length | Diameter | Height |
|------|--------|----------|--------|
| 668  | 0.550  | 0.425    | 0.125  |
| 1580 | 0.500  | 0.400    | 0.125  |
| 3784 | 0.620  | 0.480    | 0.125  |
| 463  | 0.220  | 0.165    | 0.055  |
| 2615 | 0.645  | 0.500    | 0.125  |
|      |        |          |        |
| 575  | 0.610  | 0.475    | 0.125  |

length=pd.DataFrame({'Actual\_y\_value':[pred1],'predicted\_y\_value':[pred]})
length

```
Actual_y_value predicted_y_value

0 [[0.180000000000055, 0.1350000000000023, 0.... [[0.180000000000055, 0.1350000000000023, 0....
```

```
from sklearn import metrics #Mean Absolute Error
(MAE) metrics.mean_absolute_error(y_test,
predictions) 0.0038991947837602914
#Mean Squared Error (MSE)
metrics.mean_squared_error(y_test, predictions)
7.655875085238909e-05
#Root Mean Squared Error (RMSE)
np.sqrt(metrics.mean_squared_error(y_test, predictions))
0.008749785760370884
```

#14. Measure the performance using Metrics.
from sklearn.metrics import accuracy\_score
accuracy\_score=(y\_test,y\_pred)
accuracy\_score

| (    | Length | Diameter | Height |
|------|--------|----------|--------|
| 668  | 0.550  | 0.425    | 0.125  |
| 1580 | 0.500  | 0.400    | 0.125  |
| 3784 | 0.620  | 0.480    | 0.125  |
| 463  | 0.220  | 0.165    | 0.055  |
| 2615 | 0.645  | 0.500    | 0.125  |
|      |        |          | • • •  |
| 575  | 0.610  | 0.475    | 0.125  |
| 3231 | 0.410  | 0.325    | 0.125  |
| 1084 | 0.445  | 0.345    | 0.125  |
| 290  | 0.540  | 0.435    | 0.125  |
| 2713 | 0.250  | 0.175    | 0.060  |
|      |        |          |        |

from sklearn.metrics import classification\_report
classification\_report(y\_test,y\_pred)
classification report

<function sklearn.metrics.\_classification.classification\_report(y\_true,
y\_pred, \*, labels=None, target\_names=None, sample\_weight=None, digits=2,
output dict=False, zero division='warn')>