AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the

application:

1. (Currently amended) A flow field plate (separator) for a fuel cell or electrolyser,

comprising one or more branched primary fluid delivery/removal channels feeding narrower

secondary fluid diffusion channels defined by an array of lands forming a network of

interconnected fluid diffusion channels therebetween.

2. (Original) A flow field plate, as claimed in Claim 1, in which the flow field comprises a

tiled array of flow field segments defining a reactant flow field, each segment comprising

one or more branched primary fluid delivery/removal channels feeding narrower secondary

fluid diffusion channels defined by an array of lands forming a network of interconnected

fluid diffusion channels therebetween.

3. (Original) A flow field plate as claimed in Claim 2, in which the flow field segments are

arranged in parallel.

4. (Original) A flow field plate as claimed in Claim 2, in which the flow field segments are

arranged in series.

U.S. Serial No. 10/560,658 Response to Office Action dated July 15, 2009

Page 3 of 16

 $5. \ (Original) \quad A \ flow \ field \ plate \ as \ claimed \ in \ Claim \ 2, \ in \ which \ the \ flow \ field \ segments \ are$

arranged as a parallel assembly of series connected flow field segments.

6. (Original) A flow field plate as claimed in Claim 2, in which the flow field segments are

arranged as a series assembly of parallel connected flow field segments.

7. (Previously presented) A flow field plate, as claimed Claim 6, in which the branched

primary fluid delivery/removal channels comprise a hexagonal network of channels.

8. (Previously presented) A flow field plate, as claimed in Claim 6, comprising one or

more branched fluid delivery channels, interdigitated with one or more branched fluid

removal channels, and a permeable wall separating same formed by the array of lands.

9. (Original) A flow field plate as claimed in Claim 8, in which the permeable wall is

concertinaed, having wall segments extending along each fold of the wall, and end wall

segments at each turn of the wall.

10. (Previously presented) A flow field plate, as claimed in Claim 1, in which the lands are

shaped to define fluid diffusion channels having substantially constant width,

11. (Currently amended) A flow field plate, as claimed in Claim 1, in which the lands are

shaped to define fluid diffusion channels having a strongly variable channel width.

12.(Currently amended) A flow field plate, as claimed in Claim 11, in which the lands are non-circular and the shape of the individual lands not aligned with differs from the symmetry of the arrangement of the a group of lands, thereby defining fluid diffusion channels having a variable width.

13. (Original) A flow field plate, as claimed in Claim 12, in which the lands are diamond, square, or triangular shaped lands on a hexagonal array.

14. (Original) A flow field plate, as claimed in Claim 10, in which the lands are polygonal in form

15. (Original) A flow field plate, as claimed in Claim 14, in which the lands are hexagonal in form.

16. (Previously presented) A flow field plate, as claimed in Claim 1, in which the flow field comprises impermeable barriers separating regions of the flow field and with apertures in or defined by the impermeable barriers providing choke points for the passage of fluid.

17. (Previously presented) A flow field plate, as claimed in Claim 1, in which the fluid delivery/removal channels and the fluid diffusion channels are gas delivery/removal channels and gas diffusion channels respectively.

U.S. Serial No. 10/560,658 Response to Office Action dated July 15, 2009

Page 5 of 16

18. (Original) A flow field plate, as claimed in Claim 17, in which lands are provided in the

gas delivery/removal channels to resist ingress in use of a gas diffusion layer into channels of

the flow field.

19. (Previously presented) A fuel cell comprising one or more flow field plates in

accordance with Claim 1.

20. (Original) A fuel cell as claimed in Claim 19, in which the power deliverable by each

flow field plate is in excess of 750mW.cm⁻² calculated on the working surface of the flow

field.

21. (New) A flow field plate, as claimed in Claim 1, wherein the flow field plate is a

separator.