

ФАКУЛТЕТ ЗА ИНФОРМАТИЧКИ НАУКИ И КОМПЈУТЕРСКО ИНЖЕНЕРСТВО

ЛИНЕАРНА РЕГРЕСИЈА

Машинско учење

Цени на куќи (Portland, OR)

<u>Надгледувано учење</u>

Даден е "точниот одговор" за секој примерок од податоците

Проблем на регресија

Предвидување на излез со реална вредност

Множество за тренирање за цените на куќите (Portland, OR)

Површина во m ² (x)	Цена во 1000 \$ (у)
2104	460
1416	232
1534	315
852	178
•••	•••

Нотација:

m = Број на примероци за тренирање

x = влезни променливи (карактеристики)

у = излезни (целни) променливи

Множество за тренирање

Површина во m ² (x)	Цена во 1000 \$ (у)
2104	460
1416	232
1534	315
852	178
•••	•••

Хипотеза:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i : Параметри

Како да се изберат θ_i ?

Линеарна регресија со една променлива (униваријантна)

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Идеја:

- Избери ги θ_0 , θ_1 така што $h_{\theta}(x)$ е блиску до y за нашите примероци од множеството за тренирање
- Функција на цена на чинење (средна квадратна грешка)

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

- $\mathcal{X}^{(i)}$, $\mathcal{Y}^{(i)}$: Вредности на влезот и излезот на i-тиот примерок, соодветно

Општ облик на линеарна регресија со една променлива

Хипотеза:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Параметри:

$$\theta_0, \theta_1$$

Функција на цена на чинење:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Цел:

минимизирај
$$J(\theta_0,\theta_1)$$
 θ_0,θ_1

Поедноставен облик

$$\theta_0 = 0$$

$$h_{\theta}(x) = \theta_1 x$$

$$\theta_1$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

минимизирај $J(\theta_1)$ θ_1

$$h_{\theta}(x)$$

(за фиксно θ_I ова е функција од x)

$$J(\theta_1)$$

(функција од параметарот θ_I)

$$h_{\theta}(x)$$

(за фиксно θ_I ова е функција од x)

$$J(\theta_1)$$

(функција од параметарот $heta_I$)

(за фиксно θ_I ова е функција од x)

Општ облик на линеарна регресија со една променлива

Хипотеза:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Параметри:

$$\theta_0, \theta_1$$

Функција на цена на чинење:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Цел:

минимизирај
$$J(\theta_0,\theta_1)$$
 θ_0,θ_1

Поедноставен облик

$$\theta_0 = 0$$

$$h_{\theta}(x) = \theta_1 x$$

$$\theta_1$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

минимизирај
$$J(\theta_1)$$
 θ_1

 $J(heta_0, heta_1)$

(функција од параметрите $heta_{0}$, $heta_{1}$)

 $J(heta_0, heta_1)$ (функција од параметрите $heta_o$, $heta_I$)

 $h_{\theta}(x)$

 $J(heta_0, heta_1)$ (функција од параметрите $heta_o$, $heta_I$)

 $h_{\theta}(x)$

 $J(heta_0, heta_1)$ (функција од параметрите $heta_0$, $heta_1$)

 $h_{\theta}(x)$

 $J(heta_0, heta_1)$ (функција од параметрите $heta_o$, $heta_I$)

Имаме некоја функција $J(heta_0, heta_1)$

Сакаме да најдеме $\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$

Пристап:

- Започни со некои иницијални вредности за $heta_0, heta_1$
- Менувај ги $heta_0, heta_1$ за да се намали $J(heta_0, heta_1)$ се додека не дојдеш до минимум

Gradient descent алгоритам

Повторувај додека не конвергира {

$$heta_j \coloneqq heta_j - lpha rac{\partial}{\partial heta_j} J(heta_0, heta_1)$$
 (за j =0 и j =1)

ТОЧЕН ПРИСТАП: ИСТОВРЕМЕНО АЖУРИРАЊЕ

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

НЕТОЧЕН ПРИСТАП:

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 := temp1$$

$$\theta_0 = 0$$

$$\theta_1 \coloneqq \theta_1 - \alpha$$

наклонот е позитивен

$$\frac{\partial}{\partial \theta_1} J(\theta_1) \ge 0$$

$$\frac{\partial}{\partial \theta_1} J(\theta_1) \le 0$$

$$\theta_0 = 0$$

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

Ако α е премногу мало, алгоритамот може да биде премногу бавен.

Ако α е премногу големо, алгоритамот може да го промаши минимумот. Може да не конвергира, па дури и да дивергира.

Моментална вредност на $\, heta_1$

Колку ќе биде вредноста на θ_1 ?

- а) Ќе остане иста
- b) Ќе се зголеми
- с) Ќе се намали
- d) Ќе биде бесконечност

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

Моментална вредност на $\, heta_1$

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 \coloneqq \theta_1$$

Gradient descent може да конвергира во локалниот минимум, дури и кога ратата на учење α е фиксна.

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

Како што се приближуваме кон локалниот минимум, алгоритамот автоматски ќе превзема помали чекори. Што значи, нема потреба да се намалува α во текот на времето.

Gradient descent алгоритам

Повторувај до конвергенција {

$$\theta_{j} \coloneqq \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1})$$

(за j=0 и j=1)

Модел на линеарна регресија

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent за линеарна регресија:

Повторувај до конвергенција {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \cdot x^{(i)}$$

Симултано ажурирање

Наоѓа локален минимум во зависност од почетните услови

Прашање

- Што мислите, дали кај линеарна регресија алгоритамот може да заглави во локален минимум (во зависност од тоа како изгледа функцијата на грешка)?
 - а) Да
 - b) He

Кај линеарната регресија има само еден минимум (цената на чинење е конвексна функција) и нема никогаш да го имаме проблемот на локални минимуми

 $h_{\theta}(x)$

 $J(heta_0, heta_1)$ (функција од параметрите $heta_o$, $heta_I$)

 $h_{\theta}(x)$

 $J(heta_0, heta_1)$ (функција од параметрите $heta_o$, $heta_I$)

 $h_{\theta}(x)$

 $J(heta_0, heta_1)$ (функција од параметрите $heta_o$, $heta_I$)

 $h_{\theta}(x)$

 $J(heta_0, heta_1)$ (функција од параметрите $heta_o$, $heta_I$)

 $h_{\theta}(x)$

 $J(heta_0, heta_1)$ (функција од параметрите $heta_o$, $heta_I$)

 $h_{\theta}(x)$

 $J(heta_0, heta_1)$ (функција од параметрите $heta_o$, $heta_I$)

 $h_{\theta}(x)$

(за фиксни θ_0 , θ_1 ова е функција од x)

 $J(heta_0, heta_1)$ (функција од параметрите $heta_o$, $heta_I$)

 $h_{\theta}(x)$

(за фиксни θ_0 , θ_1 ова е функција од x)

 $J(heta_0, heta_1)$ (функција од параметрите $heta_o$, $heta_I$)

 $h_{\theta}(x)$

(за фиксни θ_0 , θ_1 ова е функција од x)

 $J(heta_0, heta_1)$ (функција од параметрите $heta_o$, $heta_I$)

"Batch" Gradient Descent

- "Batch": Секој чекор на алгоритамот ги користи сите примероци од множеството за тренирање
 - Одлично за конвексни или релативно "smooth" функции на грешка.
- Алтернатива: податоците да се процесираат по делови во секој чекор од алгоритамот.

Што ако имаме повеќе од една влезна променлива?

Површина (m²)	Број на спални	Број на катови	Старост на куќата (години)	Цена(\$1000)		
2104	5	1	45	460		
1416	3	2	40	232		
1534	3	2	30	315		
852	2	1	36	178		
•••	•••	•••	•••	•••		

Нотација:

n = број на карактеристики

 $\chi^{(i)}$ = влез (карактеристики) на i-тиот примерок

 $\boldsymbol{\mathcal{X}}_{j}^{(i)}$ = вредност на карактеристиката j во i-тиот примерок

Хипотеза:

Претходно:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Сега:
$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 ... + \theta_n x_n$$

мултиваријантна линеарна регресија

Заради полесно запишување ќе земеме дека $x_0 = 1$.

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix} \qquad X = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} \qquad h_{\theta}(x) = \theta^T X$$

Хипотеза: $h_{\theta}(x) = \theta^T X$

Параметри: $\theta_0, \theta_1, \theta_2, ..., \theta_n$

Функција на цена на чинење:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Повторувај $\Big\{$ $\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta) \Big\}$ $\Big\{$ (симултано ажурирање за секое $j=0,\dots,n$)

Gradient Descent

Претходно (n = 1):

Повторувај {

$$\theta_0 \coloneqq \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x^{(i)}$$

$$\}$$

Нов алгоритам $n \ge 1$:

Повторувај {

$$\theta_0 \coloneqq \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

}

Прашање

Кога има n карактеристики, ја дефинираме функцијата на цена на чинење како m

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

За линеарна регресија, која друга нотација исто така е точна:

1.
$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (\theta^T x^{(i)} - y^{(i)})^2$$

3.
$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(\left(\sum_{j=1}^{n} \theta_j x_j^{(i)} \right) - y^{(i)} \right)^2$$

2.
$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} ((\sum_{j=0}^{n} \theta_j x_j^{(i)}) - y^{(i)})^2$$

4.
$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(\left(\sum_{j=0}^{n} \theta_{j} x_{j}^{(i)} \right) - \left(\sum_{j=0}^{n} y_{j}^{(i)} \right) \right)^{2}$$

- a) 1и2
- b) 1и3
- c) 2 u 4
- d) 1и4

Скалирање (нормализација) на карактеристики

Идеја: Да се осигураме дека карактеристиките се во сличен опсег.

$$x_1$$
 = површина (0-2000 m²)

$$x_2 = 6$$
рој на спални (1-5)

Постојат многу варијанти за решавање на скалирањето

Подели ја секоја вредност со максималната

$$x_1 = \frac{noвршина(m^2)}{2000}$$

$$x_2 = \frac{\# cnaлнu}{5}$$

Од секоја вредност одземи ја средната и подели со максимум (девијацијата)

$$x_1 = \frac{nospuuha - 1000}{2000}$$

$$x_2 = \frac{\#cna\pi u - 2}{5}$$

Mean normalization - Од секоја вредност одземи ја средната и подели со опсегот

$$x_1 = \frac{nospuuha - 1000}{2000}$$

$$x_2 = \frac{\#cna\pi u - 2}{4}$$

Прашање

- Да претпоставиме дека користите алгоритам за учење за да ја процените цената на куќите во еден град. Сакате една од вашите одлики x_i да ја долови староста на куќата. Во вашето тренинг множество, сите куќи имаат старост од 30 до 50 години, со просечна старост од 38 години.
- Со кој од следниве изрази би направиле mean normalization на влезните карактеристики?
 - a) x_i = age of house
 - b) x_i = age of house/50
 - c) $x_i = (\text{age of house-38})/50$
 - d) $x_i = (\text{age of house-38})/20$

Gradient descent дебагирање

$$\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

 Како да се осигураме дека алгоритамот работи точно.

- Како да ја избереме ратата на учење α .

 $J(\theta)$

Да се осигураме дека gradient descent работи точно.

-Исцртај крива за вредност на Ј(θ) во секоја итерација -Ако вредноста се намалува алгоритамот е добар -Ако се зголемува треба да се намали ратата на учење

- За доволно мало α , $J(\theta)$ треба да се намалува во секоја итерација
- Но ако α е премногу мало, конвергенцијата ќе биде бавна.

Избирање на вредност за α

- Ако α е премногу мало: бавна конвергенција.
- Ако α е премногу големо: J(θ) може да не се намали со секоја итерација; може и воопшто да не конвергира.

За избирање на α , пробајте

..., 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, ...

Полиномна регресија

$$\theta_0 + \theta_1 x + \theta_2 x^2$$

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 =$$

$$\theta_0 + \theta_1 (noepuuha) + \theta_2 (noepuuha)^2 + \theta_3 (noepuuha)^3$$

$$x_1 = (noepuuha)$$
 $x_2 = (noepuuha)^2$ $x_3 = (noepuuha)^3$

Аналитичко решение на линеарната регресија

	Површина (m²)	Број на спални	Број на катови	Старост на куќата (год)	Цена (\$1000)	
 c_0	x_1	\mathcal{X}_2	x_3	x_4	У	
1	2104	5	1	45	460	
1	1416	3	2	40	232	
1	1534	3	2	30	315	
1	852	2	1	36	178	
1	3000	4	1	38	540	

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \\ 1 & 3000 & 4 & 1 & 38 \end{bmatrix}$$

$$y = \begin{vmatrix} 460 \\ 232 \\ 315 \\ 178 \\ 540 \end{vmatrix}$$

Нормална равенка

$$\Theta = (X^T X)^{-1} X^T y$$

Можен проблем со инверзната матрица?

т примероци за тренирање, п карактеристики.

Gradient Descent

- Треба да се избере α .
- Потребни се повеќе итерации.

• Работи добро кога n е големо.

Нормална равенка

- Не треба да се избере α .
- Не е потребно итерирање.
- Треба да се пресмета $(X^T X)^{-1}$
- Бавно ако n е големо.

Linear regression

 Using probabilistic notation, linear regression can be represented as

$$p(y|\mathbf{x}, \boldsymbol{\theta}) = \mathcal{N}(y|\mathbf{w}^T\mathbf{x}, \sigma^2)$$

- It can also model non-linear relationships by replacing x with some non-linear function φ(x)
 - Known as basis function expansion

$$p(y|\mathbf{x}, \boldsymbol{\theta}) = \mathcal{N}(y|\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}), \sigma^2)$$

Polynomial regression is just one such expansion

$$\phi(x) = [1, x, x^2, \dots, x^d]$$

Linear regression

- Linear regression applied to 2D data. Vertical axis is temperature, horizontal axes are location within a room. Data was collected by some remote sensing motes at Intel's lab in Berkeley, CA.
- Temperature data is fitted using two forms of $\hat{f}(x)$

a)
$$\hat{f}(x) = w_0 + w_1 x_1 + w_2 x_2$$

b)
$$\hat{f}(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1^2 + w_4 x_2^2$$

(b)

Maximum Likelihood Estimation

 A common way to estimate the parameters of a statistical model is to compute the MLE

$$\hat{\boldsymbol{\theta}} \triangleq \arg \max_{\boldsymbol{\theta}} \log p(\mathcal{D}|\boldsymbol{\theta})$$

• If we assume that the training examples are iid the log-likelihood is given as $\ell(\theta) \triangleq \log p(\mathcal{D}|\theta) = \sum_{i=1}^{N} \log p(y_i|\mathbf{x}_i,\theta)$

One can then maximize the likelihood or minimize the negative log-likelihood (NLL) $\sum_{N \in \mathcal{N}} \log n(u | \mathbf{x} \in \mathbf{A})$

$$NLL(\boldsymbol{\theta}) \triangleq -\sum_{i=1}^{N} \log p(y_i|\mathbf{x}_i, \boldsymbol{\theta})$$

By inserting the definition of the Gaussian, we have

$$\ell(\boldsymbol{\theta}) = \sum_{i=1}^{N} \log \left[\left(\frac{1}{2\pi\sigma^2} \right)^{\frac{1}{2}} \exp \left(-\frac{1}{2\sigma^2} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 \right) \right] = \frac{-1}{2\sigma^2} RSS(\mathbf{w}) - \frac{N}{2} \log(2\pi\sigma^2)$$

Residual sum of squares

 RSS in the previous equation stands for Residual sum of squares and is defined by:

$$RSS(\mathbf{w}) \triangleq \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

 It can also be written as the square of the vector of the residual errors:

$$RSS(\mathbf{w}) = ||\boldsymbol{\epsilon}||_2^2 = \sum_{i=1}^N \epsilon_i^2 \qquad \epsilon_i = (y_i - \mathbf{w}^T \mathbf{x}_i)$$

 MLE for w is the one that minimizes the RSS, a method known as least squares

Ordinary Least Squares

If we use the following form for the objective function

$$\mathrm{NLL}(\mathbf{w}) = \frac{1}{2}(\mathbf{y} - \mathbf{X}\mathbf{w})^T(\mathbf{y} - \mathbf{X}\mathbf{w}) = \frac{1}{2}\mathbf{w}^T(\mathbf{X}^T\mathbf{X})\mathbf{w} - \mathbf{w}^T(\mathbf{X}^T\mathbf{y})$$
its gradient is $\mathbf{g}(\mathbf{w}) = [\mathbf{X}^T\mathbf{X}\mathbf{w} - \mathbf{X}^T\mathbf{y}] = \sum_{i=1}^N \mathbf{x}_i(\mathbf{w}^T\mathbf{x}_i - y_i)$

and by $g(\mathbf{w}) = 0$ we get the **normal equation** $\mathbf{X}^T \mathbf{X} \mathbf{w} = \mathbf{X}^T \mathbf{v}$

$$\mathbf{X}^T \mathbf{X} \mathbf{w} = \mathbf{X}^T \mathbf{y}$$

The corresponding solution $\hat{\mathbf{w}}$ to this linear system of equations is called the ordinary least squares (OLS) solution

$$\hat{\mathbf{w}}_{OLS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

- Cons:
 - Calculation of (X^TX)⁻¹ is slow for large N
 - Calculation of $(X^TX)^{-1}$ may be impossible due to singularity (if parameters are highly correlated, there's not enough data...)

- One problem with ML estimation is that it can result in overfitting.
- We discuss a way to ameliorate this problem by using MAP estimation with a prior.

- The reason that the MLE can overfit is that it is picking parameter values that are the best for modeling the training data; but if the data is noisy, such parameters often result in complex functions.
- The figure illustrates a fit of degree 14 polynomial to N=21 data points using least square, where the obtained parameters (except w_0) are:
 - 6.560, -36.934, -109.255, 543.452, 1022.561, -3046.224, -3768.013, 8524.540, 6607.897,
 -12640.058, -5530.188, 9479.730, 1774.639, -2821.526
- There are many large positive and negative numbers
- This situation is unstable -> if we change the data a little, the coefficients will change a lot

• We can encourage the parameters to be small, thus resulting in a smother curve, by using a zero-mean Gaussian prior, where $1/\tau^2$ controls its strength

$$p(\mathbf{w}) = \prod_{j} \mathcal{N}(w_j | 0, \tau^2)$$

The corresponding MAP estimation problem becomes:

$$\underset{\mathbf{w}}{\operatorname{argmax}} \sum_{i=1}^{N} \log \mathcal{N}(y_i | w_0 + \mathbf{w}^T \mathbf{x}_i, \sigma^2) + \sum_{j=1}^{D} \log \mathcal{N}(w_j | 0, \tau^2)$$

This is equivalent to minimizing:

$$J(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - (w_0 + \mathbf{w}^T \mathbf{x}_i))^2 + \lambda ||\mathbf{w}||_2^2$$

where $\lambda \triangleq \sigma^2/\tau^2$ and $||\mathbf{w}||_2^2 = \sum_j w_j^2 = \mathbf{w}^T \mathbf{w}$ is the squared two-norm

- The first term is MSE/NLL, and the second is a complexity penalty ($\lambda \geq 0$)
- The corresponding solution is

$$\hat{\mathbf{w}}_{ridge} = (\lambda \mathbf{I}_D + \mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

This is called ridge regression or penalized least squares.

- In general, adding a Gaussian prior to the parameters of a model to encourage them to be small is called ℓ_2 regularization.
- Note that the offset term w_0 is not regularized, since it just affects the height of the function, not its complexity.
- By penalizing the sum of the magnitudes of the weights, we ensure the function is simple
 - since $\mathbf{w} = \mathbf{0}$ corresponds to a straight line, which is the simplest possible function, corresponding to a constant
- In the previous example if $\lambda = 10^{-3}$

```
2.128, 0.807, 16.457, 3.704, -24.948, -10.472, -2.625, 4.360, 13.711, 10.063, 8.716, 3.966, -9.349, -9.232
```


Ridge regression - Example

- (right) Training and test errors for a degree 14 polynomial fit plotted vs $\log(\lambda)$
 - Data was generated from noise
 with variance σ² = 4
- Two examples of fitted curves for different λ values

Lasso Regression

- Another form of regularization is L_I regularization which encourages parameters to be small (or even zero)
- The prior is a Laplace distribution with mean zero, so the resulting error function becomes

$$J(w) = \frac{1}{N} \sum_{i=1}^{N} (y_i - (w_0 + w^T x_i))^2 + \lambda ||w||$$

- For LASSO, the prior distribution peaks at zero, therefore expects (a priori) many of the coefficients to be exactly equal to zero
- Alternatively, for ridge regression, the prior distribution is flatter at zero

Simple linear regression

- When the input is one dimensional, we call the linear regression simple
- The goal is just to find an estimate of the scalar function y = f(x)
- The solution can be calculated as:

$$w_{1} = \frac{\sum_{i}(x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i}(x_{i} - \overline{x})^{2}} = \frac{\sum_{i}x_{i}y_{i} - N\overline{x}\overline{y}}{\sum_{i}x_{i}^{2} - N\overline{x}^{2}} \approx \frac{\operatorname{cov}[X, Y]}{\operatorname{var}[X]}$$

$$w_{0} = \overline{y} - w_{1}\overline{x} \approx \mathbb{E}[Y] - w_{1}\mathbb{E}[X]$$

• A biologist studies the intervals (*m secs*) between the mating calls of a certain species of tree frog and the surrounding temperature (*t* °*C*), and have obtained these observations:

t °C		8	13	14	15	15	20	25	30
m sec	cs	6.5	4.5	6	5	4	3	2	1

- The temperature t: x
 - Input (independent) variable
- The interval m: y
 - Target (dependent) variable
- Find $y = w_0 + w_1 x$ (find w_0, w_1)

 The first approach to calculate this is to first calculate the summary statistics of the data and use them in the simple linear regression model solution

$$w_1 = \frac{\sum_i (x_i - \overline{x})(y_i - \overline{y})}{\sum_i (x_i - \overline{x})^2} = \frac{\sum_i x_i y_i - N \overline{x} \overline{y}}{\sum_i x_i^2 - N \overline{x}^2} \approx \frac{\text{cov}[X, Y]}{\text{var}[X]}$$

$$w_0 = \overline{y} - w_1 \overline{x} \approx \mathbb{E}[Y] - w_1 \mathbb{E}[X]$$

• Therefore, we have:

$$\bar{x} = 17.5$$
 $\bar{y} = 4.0$ $\bar{x}^2 = 306.25$ $\sum_i x_i y_i = 469.5$ $\sum_i x_i^2 = 2804$

Using this we can calculate the upper equations to get

$$w_1 = -0.2556$$
 $w_0 = 8.4739$ $\hat{y} = -0.2556x + 8.4739$

• Once we have the model parameters, we can use them to make predictions, like what is the interval when the $t = 17 \, ^{\circ}C$

$$\hat{y} = -0.2556 * 17 + 8.4739 = 4.1287$$

 Data represents the production of wheat in tons (X) and the price of the kilo of flour (Y):

Wheat production	30	28	32	25	25	25	22	24	35	40
Flour price	25	30	27	40	42	40	50	45	30	25

The sufficient statistics are:

$$\bar{x} = 28.6$$
 $\bar{y} = 35.4$ $\bar{x}^2 = 817.96$ $\sum_i x_i y_i = 9734$ $\sum_i x_i^2 = 8468$

Using those we can calculate the coefficients and the variance

$$\hat{w}_1 = \frac{\sum_{i=1}^{10} x_i y_i - n\bar{x}\bar{y}}{\sum_{i=1}^{10} x_i^2 - n\bar{x}^2} = \frac{9734 - 10 * 28.6 * 35.4}{8468 - 10 * 28.6^2} = -1.3537$$

$$\hat{w}_0 = \bar{y} - \hat{w}_1\bar{x} = 35.4 + 1.3537 * 28.6 = 74.116$$

• Predict y for x = 45

$$\hat{y} = -1.3537 * 45 + 74.116 = 13.1995$$

Regularization effects of big data

- Regularization is the most common way to avoid overfitting
- Another effective approach is to use lots of data
 - The more training data we have, the better we will learn
 - We expect the test set error to decrease to some plateau as N increases.
 - It will typically go to zero faster for simpler models, since there are fewer parameters to estimate.
- In domains with lots of data, simple methods can work very well, however, more sophisticated learning methods are required for problems with little available data
 - Even in data-rich domain as web search, for personalized results there are not much data available

Polynomial fitting - example

The **truth** is a polynomial of degree 2
The **models** are of degrees 1, 2, 10 and 25

Degrees 1 and 25 give **poor** fit Degrees 2 and 10 give **good fit**

(c)

(d)

Bayesian linear regression

- Instead of a point estimate, sometimes we want to find the full posterior over ${\bf w}$ and σ^2
 - For simplicity, we will assume the noise variance σ^2 is known, so we focus on finding $p(\mathbf{w}|D,\sigma^2)$
 - We assume a Gaussian likelihood model and a Gaussian conjugate prior, so the posterior is

$$p(\mathbf{w}|\mathbf{X}, \mathbf{y}, \sigma^2) \propto \mathcal{N}(\mathbf{w}|\mathbf{w}_0, \mathbf{V}_0) \mathcal{N}(\mathbf{y}|\mathbf{X}\mathbf{w}, \sigma^2 \mathbf{I}_N) = \mathcal{N}(\mathbf{w}|\mathbf{w}_N, \mathbf{V}_N)$$

$$\mathbf{w}_N = \mathbf{V}_N \mathbf{V}_0^{-1} \mathbf{w}_0 + \frac{1}{\sigma^2} \mathbf{V}_N \mathbf{X}^T \mathbf{y}$$

$$\mathbf{V}_N^{-1} = \mathbf{V}_0^{-1} + \frac{1}{\sigma^2} \mathbf{X}^T \mathbf{X}$$

$$\mathbf{V}_N = \sigma^2 (\sigma^2 \mathbf{V}_0^{-1} + \mathbf{X}^T \mathbf{X})^{-1}$$

Bayesian linear regression

• 1D example

$$y(x, \mathbf{w}) = w_0 + w_1 x + \epsilon$$
$$p(y|\mathbf{x}) = \mathcal{N}(y|w_0 x_0 + w_1 x_1, \sigma^2)$$

 Sequential Bayesian updating after seeing 1, 2 and 20 data points

likelihood

Bayesian linear regression

The posterior predictive can be expressed as

$$p(y|\mathbf{x}, \mathcal{D}, \sigma^2) = \int \mathcal{N}(y|\mathbf{x}^T \mathbf{w}, \sigma^2) \mathcal{N}(\mathbf{w}|\mathbf{w}_N, \mathbf{V}_N) d\mathbf{w}$$
$$= \mathcal{N}(y|\mathbf{w}_N^T \mathbf{x}, \sigma_N^2(\mathbf{x}))$$
$$\sigma_N^2(\mathbf{x}) = \sigma^2 + \mathbf{x}^T \mathbf{V}_N \mathbf{x}$$

On the other hand, with MLE we have

$$p(y|\mathbf{x}, \mathcal{D}, \sigma^2) \approx \int \mathcal{N}(y|\mathbf{x}^T\mathbf{w}, \sigma^2) \delta_{\hat{\mathbf{w}}}(\mathbf{w}) d\mathbf{w} = p(y|\mathbf{x}, \hat{\mathbf{w}}, \sigma^2)$$

