

EVALUACIÓN DE BACHILLERATO PARA EL ACCESO A LA UNIVERSIDAD 206-MATEMÁTICAS II. EBAU2021 - JULIO

OBSERVACIONES IMPORTANTES: Se debe responder a un máximo de 4 cuestiones y no es necesario hacerlo en el mismo orden en que están enunciadas. Cada cuestión tiene una puntuación de 2,5 puntos. Si se responde a más de 4 cuestiones, sólo se corregirán las 4 primeras, en el orden que haya respondido el estudiante. Solo se podrán usar las tablas estadísticas que se adjuntan. No se podrán usar calculadoras gráficas ni programables.

1: Considere el siguiente sistema de ecuaciones en función del parámetro a:

$$\begin{cases} x + ay - z = 0 \\ 2x + y + az = 0 \\ x + 5y - az = a + 1 \end{cases}$$

- a) [0,75 p.] Determine para qué valores de a el sistema tiene solución única.
- b) [1 p.] Determine para qué valor de *a* el sistema tiene infinitas soluciones y resuélvalo en ese caso.
- c) [0,75 p.] Determine para qué valor de *a* el sistema no tiene solución.
- **2:** Considere la matriz $A = \begin{pmatrix} 2 & a \\ -1 & 2 \end{pmatrix}$.
 - a) [1 p.] Si se denota por tr(A) la traza de la matriz A (es decir, la suma de los elementos de su diagonal principal) y por |A| el determinante de A, compruebe que, para cualquier valor de a, se cumple la ecuación $A^2 = tr(A)A |A|I$, donde I denota la matriz identidad de orden 2.
 - b) [0.5 p.] Determine para qué valores de a la matriz A es regular (o inversible).
 - c) [1 p.] Para a = -3, resuelva la ecuación matricial $AX A^t = A$, donde A^t denota la matriz traspuesta de A.
- **3:** Dada la función $f(x) = x^2 e^{-x}$ definida para todo valor de $x \in \mathbb{R}$, se pide:
 - a) [1,5 p.] Calcule sus extremos relativos (máximos y mínimos) y determine sus intervalos de crecimiento y decrecimiento.
 - b) [1 **p.**] Calcule $\lim_{x \to +\infty} f(x)$ y $\lim_{x \to -\infty} f(x)$

4:

- a) [1,5 p.] Calcule la integral indefinida $\int xsen(x^2)dx$ utilizando el método de cambio de variable (o método de sustitución).
- b) [1 **p.**] Determine el menor valor de a > 0 para el cual se cumple $\int_{0}^{a} xsen(x^{2})dx = 1$

5: Considere las rectas de ecuaciones

$$r: \frac{x-1}{1} = \frac{y}{1} = \frac{z-1}{-1}$$
 $y s: \begin{cases} x-2y = -1 \\ y+z = 1 \end{cases}$.

- a) [0,75 p.] Compruebe que las rectas se cortan en un punto y calcule su punto de corte.
- b) [1 p.] Determine el ángulo que forman las dos rectas.
- c) [0,75 p.] Calcule la ecuación del plano que contiene a las dos rectas.
- **6:** Los puntos A = (2,0,0) y B = (-1,12,4) son dos vértices de un triángulo. El tercer vértice C se encuentra en la recta r dada por

$$r: \begin{cases} 4x + 3z = 33 \\ y = 0 \end{cases}$$

- a) [1,5 p.] Calcule las coordenadas del tercer vértice C sabiendo que la recta r es perpendicular a la recta que pasa por A y C.
- b) [1 p.] Determine si el triángulo ABC tiene un ángulo recto en A y calcule su área.
- 7: Una urna contiene cinco bolas negras, numeradas del 1 al 5, y siete bolas blancas, numeradas del 1 al 7. Se saca de la urna una bola al azar. Calcule:
 - a) [0,5 p.] La probabilidad de que la bola sea blanca.
 - b) [0,5 p.] La probabilidad de que bola esté numerada con un número par.
 - c) [0,5 p.] La probabilidad de que bola esté numerada con un número par, sabiendo que es una bola blanca.
 - d) [0,5 p.] La probabilidad de que bola sea blanca y esté numerada con un número par.
 - e) [0,5 p.] La probabilidad de que bola sea blanca, sabiendo que está numerada con un número par
- 8: Juan es un estudiante bastante despistado y su tutora está cansada de que llegue tarde a clase. Él se defiende diciendo que no es para tanto y que la tutora le tiene manía. Ella le propone el siguiente trato: si en los próximo 9 días Juan llega tarde como mucho 2 días, la tutora le sube 1 punto en la nota final de la evaluación. Sabiendo que la probabilidad de que Juan llegue tarde a clase cada día es 0,45, determine:
 - a) [1 p.] El tipo de distribución que sigue la variable aleatoria que cuenta el número de días que Juan llega tarde a clase en los próximos 9 días. ¿Cuáles son sus parámetros?
 - b) [0,5 p.] ¿Cuál es la media y la desviación típica de esta distribución?
 - c) [1 p.] ¿Cuál es la probabilidad de que Juan consiga la ansiada subida de 1 punto en la nota final?

SOLUCIONES

1: Considere el siguiente sistema de ecuaciones en función del parámetro a:

$$\begin{cases} x + ay - z = 0 \\ 2x + y + az = 0 \\ x + 5y - az = a + 1 \end{cases}$$

- a) [0,75 p.] Determine para qué valores de a el sistema tiene solución única.
- b) [1 p.] Determine para qué valor de a el sistema tiene infinitas soluciones y resuélvalo en ese caso.
- c) [0,75 p.] Determine para qué valor de a el sistema no tiene solución.

Realizamos el estudio completo y luego respondemos a las preguntas planteadas en cada apartado.

Consideramos la matriz de coeficientes
$$A = \begin{pmatrix} 1 & a & -1 \\ 2 & 1 & a \\ 1 & 5 & -a \end{pmatrix}$$

y la matriz ampliada
$$A/B = \begin{pmatrix} 1 & a & -1 & 0 \\ 2 & 1 & a & 0 \\ 1 & 5 & -a & a+1 \end{pmatrix}$$
.

Averiguamos donde se anula el determinante de la matriz de coeficientes A.

$$|A| = \begin{vmatrix} 1 & a & -1 \\ 2 & 1 & a \\ 1 & 5 & -a \end{vmatrix} = -a + a^2 - 10 + 1 + 2a^2 - 5a = 3a^2 - 6a - 9$$

$$|A| = 0 \Rightarrow 3a^2 - 6a - 9 = 0 \Rightarrow a^2 - 2a - 3 = 0 \Rightarrow$$

$$a = \frac{2 \pm \sqrt{(-2)^2 + 12}}{2} = \frac{2 \pm 4}{2} = \begin{cases} \frac{2+4}{2} = 3\\ \frac{2-4}{2} = -1 \end{cases}$$

Analizamos tres casos por separado.

CASO 1.
$$a \ne -1$$
 y $a \ne 3$

En este caso el determinante de A es no nulo y su rango es 3. El rango de la ampliada A/B también es 3, así como el número de incógnitas.

El sistema es compatible determinado (solución única).

CASO 2.
$$a = -1$$

Las matrices quedan
$$A = \begin{pmatrix} 1 & -1 & -1 \\ 2 & 1 & -1 \\ 1 & 5 & 1 \end{pmatrix}$$
 y $A/B = \begin{pmatrix} 1 & -1 & -1 & 0 \\ 2 & 1 & -1 & 0 \\ 1 & 5 & 1 & 0 \end{pmatrix}$.

Como la matriz ampliada solo tiene añadida una cuarta columna con todo ceros el rango de A y de A/B van a ser el mismo, por lo que el sistema es compatible. Como el rango de A no es 3 pues el determinante es nulo, el rango de A = Rango de A/B pero menor que el número de incógnitas (3).

El sistema es compatible indeterminado (infinitas soluciones).

CASO 3.
$$a = 3$$

Las matrices quedan
$$A = \begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 3 \\ 1 & 5 & -3 \end{pmatrix}$$
 y $A/B = \begin{pmatrix} 1 & 3 & -1 & 0 \\ 2 & 1 & 3 & 0 \\ 1 & 5 & -3 & 4 \end{pmatrix}$.

Transformamos la matriz A/B en otra matriz triangular equivalente con el método de Gauss.

$$A/B = \begin{pmatrix} 1 & 3 & -1 & 0 \\ 2 & 1 & 3 & 0 \\ 1 & 5 & -3 & 4 \end{pmatrix} \Rightarrow \begin{cases} \text{Fila } 2^{a} - 2 \cdot \text{Fila } 1^{a} \\ 2 & 1 & 3 & 0 \\ -2 & -6 & 2 & 0 \\ \hline 0 & -5 & 5 & 0 \\ \text{Nueva Fila } 2^{a} \end{cases} \begin{cases} \text{Fila } 3^{a} - \text{Fila } 1^{a} \\ 1 & 5 & -3 & 4 \\ -1 & -3 & 1 & 0 \\ \hline 0 & 2 & -2 & 4 \\ \text{Nueva Fila } 3^{a} \end{cases} \Rightarrow$$

$$\Rightarrow \begin{pmatrix} 1 & 3 & -1 & 0 \\ 0 & -5 & 5 & 0 \\ 0 & 2 & -2 & 4 \end{pmatrix} \Rightarrow \begin{cases} \frac{1}{5} \cdot \text{Fila } 2^{a} \to \text{Nueva Fila } 2^{a} \\ \frac{1}{2} \cdot \text{Fila } 3^{a} \to \text{Nueva Fila } 3^{a} \end{cases} \Rightarrow \begin{pmatrix} 1 & 3 & -1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & -1 & 2 \end{pmatrix} \Rightarrow$$

$$\Rightarrow \begin{cases} \text{Fila } 3^{a} + \text{Fila } 2^{a} \\ 0 & 1 & -1 & 2 \\ \frac{0}{0} & 0 & 0 & 2 \\ \text{Nueva Fila } 3^{a} \end{cases} \Rightarrow (A/B)' = \begin{pmatrix} 1 & 3 & -1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

Obervando la matriz triangular obtenida vemos que al quitar la 4ª columna nos queda una matriz triangular con 2 filas no nulas, el rango de A es 2, pero si la miramos al completo observamos que hay 3 filas no nulas, el rango de A/B es 3. Los rangos de A y de A/B son distintos. Por lo que el sistema es incompatible (no tiene solución).

- a) El sistema tiene solución única para $a \ne -1$ y $a \ne 3$
- b) El sistema tiene infinitas soluciones para a = -1.

$$\begin{cases} x - y - z = 0 \\ 2x + y - z = 0 \\ x + 5y + z = 0 \end{cases} \Rightarrow \begin{cases} \text{Ecuación } 2^{a} - 2 \cdot \text{Ecuación } 1^{a} \\ 2x + y - z = 0 \\ \hline 0 \quad 3y + z = 0 \\ \text{Nueva ecuación } 2^{a} \end{cases} \begin{cases} \text{Ecuación } 3^{a} - \text{Ecuación } 1^{a} \\ x + 5y + z = 0 \\ \hline 0 \quad 6y + 2z = 0 \\ \text{Nueva ecuación } 3^{a} \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} x - y - z = 0 \\ 3y + z = 0 \Rightarrow \\ 6y + 2z = 0 \end{cases} \Rightarrow \begin{cases} \text{Ecuación } 3^{\text{a}} - 2 \cdot \text{Ecuación } 2^{\text{a}} \\ 6y + 2z = 0 \\ \hline 0 & 0 = 0 \end{cases} \Rightarrow \begin{cases} x - y - z = 0 \\ 3y + z = 0 \Rightarrow \\ 0 = 0 \end{cases}$$
Nueva ecuación 3^{a}

$$\Rightarrow \begin{cases} x - y - z = 0 \\ 3y + z = 0 \end{cases} \Rightarrow \begin{cases} x - y - z = 0 \\ \boxed{z = -3y} \end{cases} \Rightarrow x - y + 3y = 0 \Rightarrow x + 2y = 0 \Rightarrow \boxed{x = -2y}$$

Las soluciones del sistema son x = -2t; y = t, z = -3t.

c) Para a = 3 el sistema no tiene solución.

- **2:** Considere la matriz $A = \begin{pmatrix} 2 & a \\ -1 & 2 \end{pmatrix}$.
- a) [1 p.] Si se denota por tr(A) la traza de la matriz A (es decir, la suma de los elementos de su diagonal principal) y por |A| el determinante de A, compruebe que, para cualquier valor de a, se cumple la ecuación $A^2 = tr(A)A |A|I$, donde I denota la matriz identidad de orden 2.
- b) [0.5 p.] Determine para qué valores de a la matriz A es regular (o inversible).
- c) [1 p.] Para a = -3, resuelva la ecuación matricial $AX A^t = A$, donde A^t denota la matriz traspuesta de A.
 - a) Calculamos la expresión de ambos miembros de la igualdad $A^2 = tr(A)A |A|I$

Primer miembro
$$\Rightarrow A^2 = \begin{pmatrix} 2 & a \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & a \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 4-a & 2a+2a \\ -2-2 & -a+4 \end{pmatrix} = \boxed{\begin{pmatrix} 4-a & 4a \\ -4 & 4-a \end{pmatrix}}$$

Segundo miembro
$$\Rightarrow tr(A)A - |A|I = (2+2)\begin{pmatrix} 2 & a \\ -1 & 2 \end{pmatrix} - \begin{vmatrix} 2 & a \\ -1 & 2 \end{vmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} =$$

$$= 4\begin{pmatrix} 2 & a \\ -1 & 2 \end{pmatrix} - (4+a)\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 8 & 4a \\ -4 & 8 \end{pmatrix} - \begin{pmatrix} 4+a & 0 \\ 0 & 4+a \end{pmatrix} =$$

$$= \begin{pmatrix} 8-4-a & 4a-0 \\ -4-0 & 8-4-a \end{pmatrix} = \begin{bmatrix} 4-a & 4a \\ -4 & 4-a \end{bmatrix}$$

Como se comprueba se obtiene lo mismo.

b) Vemos cuando el determinante de A es no nulo.

$$|A| = \begin{vmatrix} 2 & a \\ -1 & 2 \end{vmatrix} = 4 + a$$
$$|A| = 0 \Rightarrow 4 + a = 0 \Rightarrow a = -4$$

La matriz A es regular para cualquier valor de a distinto de -4.

c) Para a = -3 la matriz es invertible.

$$A = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix} \Rightarrow |A| = 1 \neq 0$$

Calculamos su inversa.

$$A^{-1} = \frac{Adj(A^{T})}{|A|} = \frac{Adj\begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}}{1} = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$$

Despejamos en la ecuación la matriz X.

$$AX - A^{t} = A \Rightarrow AX = A + A^{t} \Rightarrow X = A^{-1}(A + A^{t})$$

Sustituimos y obtenemos el valor de la matriz X.

$$X = A^{-1} (A + A^{t})$$

$$X = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix} + \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix} = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 4 & -4 \\ -4 & 4 \end{pmatrix} = \begin{pmatrix} 8 - 12 & -8 + 12 \\ 4 - 8 & -4 + 8 \end{pmatrix}$$

$$X = \begin{pmatrix} -4 & 4 \\ -4 & 4 \end{pmatrix}$$

- **3:** Dada la función $f(x) = x^2 e^{-x}$ definida para todo valor de $x \in \mathbb{R}$, se pide:
- a) [1,5 p.] Calcule sus extremos relativos (máximos y mínimos) y determine sus intervalos de crecimiento y decrecimiento.
- b) [1 **p.**] Calcule $\lim_{x \to +\infty} f(x)$ y $\lim_{x \to -\infty} f(x)$
 - a) Derivamos e igualamos a cero en busca de los puntos críticos.

$$f(x) = x^{2}e^{-x} \Rightarrow f'(x) = 2xe^{-x} - x^{2}e^{-x} = (2-x)xe^{-x}$$
$$f'(x) = 0 \Rightarrow (2-x)xe^{-x} = 0 \Rightarrow \begin{cases} x = 0 \\ x = 2 \end{cases}$$

Tenemos dos puntos críticos, comprobamos el comportamiento de la función antes, entre y después de estos valores.

- En $(-\infty,0)$ tomo x=-1 y la derivada vale $f'(-1)=(2-(-1))(-1)e^{-(-1)}=-3e<0$. La función decrece en $(-\infty,0)$.
- En (0,2) tomo x = 1 y la derivada vale $f'(1) = (2-1)(1)e^{-1} = \frac{3}{e} > 0$. La función crece en (0,2).
- En $(2,+\infty)$ tomo x=3 y la derivada vale $f'(3)=(2-3)(3)e^{-3}=-\frac{3}{e^3}<0$. La función decrece en $(2,+\infty)$.

La función sigue el esquema siguiente:

La función crece en (0,2) y decrece en $(-\infty,0)\cup(2,+\infty)$.

La función presenta un mínimo relativo en x = 0.

Como $f(0) = 0^2 e^{-0} = 0$ las coordenadas del mínimo relativo son P(0, 0).

La función presenta un máximo relativo en x = 2.

Como $f(2) = 2^2 e^{-2} = \frac{4}{e^2}$ las coordenadas del máximo relativo son $Q\left(2, \frac{4}{e^2}\right)$

b)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^2 e^{-x} = \lim_{x \to +\infty} \frac{x^2}{e^x} = \frac{+\infty}{e^{+\infty}} = \frac{\infty}{e} = In \det er \min ación(L'Hôpital) =$$

$$= \lim_{x \to +\infty} \frac{2x}{e^x} = \frac{\infty}{\infty} = In \det er \min ación(L'Hôpital) = \lim_{x \to +\infty} \frac{2}{e^x} = \frac{2}{\infty} = \boxed{0}$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^2 e^{-x} = \left(-\infty\right)^2 e^{+\infty} = \left(+\infty\right)\left(+\infty\right) = +\infty$$

4:

a) [1,5 p.] Calcule la integral indefinida $\int xsen(x^2)dx$ utilizando el método de cambio de variable (o método de sustitución).

b) [1 p.] Determine el menor valor de a > 0 para el cual se cumple $\int_{0}^{a} xsen(x^{2})dx = 1$

a)
$$\int x sen(x^2) dx = \begin{cases} x^2 = t \\ 2x dx = dt \\ dx = \frac{dt}{2x} \end{cases} = \int x sen(t) \frac{dt}{2x} = \frac{1}{2} \int sent dt = -\frac{1}{2} \cos t = 0$$

$$= \left\{ \begin{array}{c} \text{Deshacemos el cambio de variable} \\ x^2 = t \end{array} \right\} = \boxed{-\frac{1}{2}\cos(x^2) + K}$$

b)
$$\int_{0}^{a} x sen(x^{2}) dx = 1 \Rightarrow \left[-\frac{1}{2} \cos(x^{2}) \right]_{0}^{a} = 1 \Rightarrow \left[-\frac{1}{2} \cos(a^{2}) \right] - \left[-\frac{1}{2} \cos(0^{2}) \right] = 1 \Rightarrow$$

$$\Rightarrow -\frac{1}{2} \cos(a^{2}) + \frac{1}{2} = 1 \Rightarrow -\cos(a^{2}) + 1 = 2 \Rightarrow \cos(a^{2}) = -1 \Rightarrow a^{2} = \arccos(-1) \Rightarrow$$

$$\Rightarrow a^{2} = \pi + 2\pi k, siendo k = 0, 1, 2, 3, 4, \dots$$

Como nos piden el valor de a positivo más pequeño.

$$a^2 = \pi \Rightarrow \boxed{a = \sqrt{\pi}}$$

5: Considere las rectas de ecuaciones

$$r: \frac{x-1}{1} = \frac{y}{1} = \frac{z-1}{-1}$$
 y $s: \begin{cases} x-2y = -1 \\ y+z = 1 \end{cases}$.

- a) [0,75 p.] Compruebe que las rectas se cortan en un punto y calcule su punto de corte.
- b) [1 p.] Determine el ángulo que forman las dos rectas.
- c) [0,75 p.] Calcule la ecuación del plano que contiene a las dos rectas.

a)
$$r: \frac{x-1}{1} = \frac{y}{1} = \frac{z-1}{-1} \Longrightarrow \begin{cases} \overrightarrow{u_r} = (1,1,-1) \\ P_r = (1,0,1) \end{cases}$$

$$s: \begin{cases} x - 2y = -1 \\ y + z = 1 \end{cases} \Rightarrow \begin{cases} x = -1 + 2y \\ z = 1 - y \end{cases} \Rightarrow s: \begin{cases} x = -1 + 2\lambda \\ y = \lambda \\ z = 1 - \lambda \end{cases} \Rightarrow \begin{cases} \overrightarrow{v_s} = (2, 1, -1) \\ Q_s = (-1, 0, 1) \end{cases}$$

Comprobamos si sus vectores directores tienen coordenadas proporcionales.

$$|\overrightarrow{u_r} = (1,1,-1)|$$

 $|\overrightarrow{v_s} = (2,1,-1)|$ $\Rightarrow \frac{1}{2} \neq \frac{1}{1} = \frac{-1}{-1}$

Los vectores directores no tienen coordenadas proporcionales y por tanto las rectas no son ni paralelas ni coincidentes.

Consideramos los vectores $\overrightarrow{u_r}$, $\overrightarrow{v_s}$ y $\overrightarrow{P_rQ_s}$ y vemos si su producto mixto es nulo o no.

$$\begin{vmatrix}
\overrightarrow{P_rQ_s} = (-1,0,1) - (1,0,1) = (-2,0,0) \\
\overrightarrow{u_r} = (1,1,-1) \\
\overrightarrow{v_s} = (2,1,-1)
\end{vmatrix} \Rightarrow \begin{bmatrix} \overrightarrow{u_r}, \overrightarrow{v_s}, \overrightarrow{P_rQ_s} \end{bmatrix} = \begin{vmatrix} -2 & 0 & 0 \\ 1 & 1 & -1 \\ 2 & 1 & -1 \end{vmatrix} = 2 - 2 = 0$$

El producto mixto es nulo y las rectas son coplanarias con distinta dirección y por lo tanto se cortan en un punto.

Averiguamos el punto de corte resolviendo el sistema formado por sus ecuaciones.

$$r: \frac{x-1}{1} = \frac{y}{1} = \frac{z-1}{-1} \Rightarrow r: \begin{cases} x = 1 + \alpha \\ y = \alpha \\ z = 1 - \alpha \end{cases}$$

$$s: \begin{cases} x - 2y = -1 \\ y + z = 1 \end{cases} \Rightarrow s: \begin{cases} x = -1 + 2\lambda \\ y = \lambda \\ z = 1 - \lambda \end{cases} \Rightarrow \begin{cases} 1 + \alpha = -1 + 2\lambda \\ \alpha = \lambda \end{cases} \Rightarrow \begin{cases} \alpha = -2 + 2\lambda \\ \alpha = \lambda \end{cases} \Rightarrow \lambda = -2 + 2\lambda \Rightarrow \alpha = \lambda$$

$$\Rightarrow 2 = \lambda \Rightarrow \begin{cases} x = -1 + 4 = 3 \\ y = 2 \Rightarrow C(3, 2, -1) \\ z = 1 - 2 = -1 \end{cases}$$

El punto de corte de las rectas es C(3,2,-1)

b) Vemos el ángulo que forman sus vectores directores.

$$\frac{\overrightarrow{u_r} = (1, 1, -1)}{\overrightarrow{v_s} = (2, 1, -1)} \Rightarrow \cos(\overrightarrow{u_r}, \overrightarrow{v_s}) = \frac{\overrightarrow{u_r} \cdot \overrightarrow{v_s}}{|\overrightarrow{u_r}| \cdot |\overrightarrow{v_s}|} = \frac{(1, 1, -1)(2, 1, -1)}{\sqrt{1^2 + 1^2 + (-1)^2} \sqrt{2^2 + 1^2 + (-1)^2}} = \frac{2 + 1 + 1}{\sqrt{3}\sqrt{6}} = \frac{4}{\sqrt{18}}$$

$$(r,s) = (\overrightarrow{u_r}, \overrightarrow{v_s}) = \arccos\left(\frac{4}{\sqrt{18}}\right) \approx 19,47^{\circ}$$

Las rectas forman un ángulo de 19°.

c) El plano que contiene las dos rectas tiene como vectores directores los vectores directores de las rectas y el punto C(3,2,-1) pertenece al plano.

$$\begin{vmatrix} \vec{u} = \vec{u_r} = (1, 1, -1) \\ \vec{v} = \vec{v_s} = (2, 1, -1) \\ C(3, 2, -1) \in \pi \end{vmatrix} \Rightarrow \pi = \begin{vmatrix} x - 3 & y - 2 & z + 1 \\ 1 & 1 & -1 \\ 2 & 1 & -1 \end{vmatrix} = 0 \Rightarrow$$

$$\Rightarrow -x \cancel{\cancel{3}} - 2y + 4 + z + 1 - 2z - 2 + y - 2 + x \cancel{\cancel{3}} = 0 \Rightarrow -y - z + 1 = 0 \Rightarrow \boxed{\pi \equiv y + z - 1 = 0}$$

6: Los puntos A = (2,0,0) y B = (-1,12,4) son dos vértices de un triángulo. El tercer vértice C se encuentra en la recta r dada por

$$r: \begin{cases} 4x + 3z = 33 \\ y = 0 \end{cases}$$

- a) [1,5 p.] Calcule las coordenadas del tercer vértice C sabiendo que la recta r es perpendicular a la recta que pasa por A y C.
- b) [1 p.] Determine si el triángulo ABC tiene un ángulo recto en A y calcule su área.
 - a) La situación planteada es la del dibujo siguiente.

Sabemos que el punto C pertenece a la recta r, por lo que cumple sus ecuaciones.

$$r: \begin{cases} 4x + 3z = 33 \\ y = 0 \end{cases} \Rightarrow \begin{cases} P(0,0,11) \in r \\ Q(3,0,7) \in r \end{cases} \Rightarrow r: \begin{cases} P(0,0,11) \in r \\ \overrightarrow{v_r} = \overrightarrow{QP} = (0,0,11) - (3,0,7) = (-3,0,4) \end{cases} \Rightarrow r: \begin{cases} x = -3\alpha \\ y = 0 \\ z = 11 + 4\alpha \end{cases}$$

El punto C tiene coordenadas C(-3a, 0, 11+4a).

Como el vector \overrightarrow{AC} es perpendicular a la recta r, el producto escalar de \overrightarrow{AC} y $\overrightarrow{v_r}$ debe ser cero.

$$\overrightarrow{AC} = (-3a, 0, 11 + 4a) - (2, 0, 0) = (-3a - 2, 0, 11 + 4a)$$

$$\overrightarrow{AC} \cdot \overrightarrow{v_r} = 0 \Rightarrow (-3a - 2, 0, 11 + 4a)(-3, 0, 4) = 0 \Rightarrow 9a + 6 + 0 + 44 + 16a = 0 \Rightarrow$$

$$\Rightarrow 25a = -50 \Rightarrow a = -2 \Rightarrow \frac{C(-3a, 0, 11 + 4a)}{a = -2} \Rightarrow C(6, 0, 3)$$

El punto C tiene coordenadas C(6,0,3)

b) Para que tenga ángulo recto en A el producto escalar de los vectores \overrightarrow{AC} y \overrightarrow{AB} debe ser nulo.

$$\overrightarrow{AC} = (6,0,3) - (2,0,0) = (4,0,3)
\overrightarrow{AB} = (-1,12,4) - (2,0,0) = (-3,12,4)$$

$$\Rightarrow \overrightarrow{AC} \cdot \overrightarrow{AB} = (4,0,3)(-3,12,4) = -12 + 12 = 0$$

El ángulo en el vértice A es de 90°.

Por ser un triángulo rectángulo el área del triángulo es la mitad del producto de la base (módulo del vector \overrightarrow{AC}) por la altura (módulo del vector \overrightarrow{AB}).

$$|\overrightarrow{AC}| = \sqrt{4^2 + 0^2 + 3^2} = 5$$

$$|\overrightarrow{AB}| = \sqrt{(-3)^2 + 12^2 + 4^2} = 13$$

$$\Rightarrow \boxed{Area = \frac{|\overrightarrow{AC}| \cdot |\overrightarrow{AB}|}{2} = \frac{5 \cdot 13}{2} = 32.5 u^2}$$

7: Una urna contiene cinco bolas negras, numeradas del 1 al 5, y siete bolas blancas, numeradas del 1 al

- 7. Se saca de la urna una bola al azar. Calcule:
- a) [0,5 p.] La probabilidad de que la bola sea blanca.
- b) [0,5 p.] La probabilidad de que bola esté numerada con un número par.
- c) [0,5 p.] La probabilidad de que bola esté numerada con un número par, sabiendo que es una bola blanca.
- d) [0,5 p.] La probabilidad de que bola sea blanca y esté numerada con un número par.
- e) [0,5 p.] La probabilidad de que bola sea blanca, sabiendo que está numerada con un número par

Nombramos y describimos los sucesos necesarios para calcular las probabilidades pedidas.

B = Sacar bola blanca = {1 blanco, 2 blanco, 3 blanco, 4 blanco, 5 blanco}

 \overline{B} = Sacar bola negra.

A = Sacar número par = {2 negro, 4 negro, 2 blanco, 4 blanco, 6 blanco}.

 \overline{A} = Sacar impar = {1 negro, 3 negro, 5 negro, 1 blanco, 3 blanco, 5 blanco, 7 blanco}.

a) Aplicamos la regla de Laplace.

$$P(B) = \frac{7 \ bolas \ blancas}{12 \ bolas} = \boxed{\frac{7}{12} \approx 0.583}$$

b) Aplicamos la regla de Laplace.

$$P(A) = \frac{5 \ bolas \ con \ número \ par}{12 \ bolas} = \boxed{\frac{5}{12} \approx 0.417}$$

c) Hemos reducido los casos posibles a sólo 7 bolas blancas numeradas del 1 al 7.

Aplicamos la regla de Laplace.

$$P(A/B) = \frac{N^{\circ} \text{ de bolas blancas numeradas con un par}}{N^{\circ} \text{ bolas blancas}} = \frac{3}{7} \approx 0.429$$

d) Sólo hay 3 bolas blancas numeradas con un número par. Aplicamos la regla de Laplace.

$$P(B \cap A) = \left| \frac{3}{12} = 0.25 \right|$$

e) A = Sacar número par = {2 negro, 4 negro, 2 blanco, 4 blanco, 6 blanco} Si sabemos que es par, los casos posibles son solamente 5. De ellos favorables al suceso hay 3.

$$P(B/A) = \boxed{\frac{3}{5} = 0.6}$$

- 8: Juan es un estudiante bastante despistado y su tutora está cansada de que llegue tarde a clase. Él se defiende diciendo que no es para tanto y que la tutora le tiene manía. Ella le propone el siguiente trato: si en los próximo 9 días Juan llega tarde como mucho 2 días, la tutora le sube 1 punto en la nota final de la evaluación. Sabiendo que la probabilidad de que Juan llegue tarde a clase cada día es 0,45, determine:
- a) [1 p.] El tipo de distribución que sigue la variable aleatoria que cuenta el número de días que Juan llega tarde a clase en los próximos 9 días. ¿Cuáles son sus parámetros?
- b) [0,5 p.] ¿Cuál es la media y la desviación típica de esta distribución?
- c) [1 p.] ¿Cuál es la probabilidad de que Juan consiga la ansiada subida de 1 punto en la nota final?
 - a) X = número de días que Juan llega tarde a clase en los próximos 9 días.
 X es una variable aleatoria binomial, pues la probabilidad de llegar tarde a clase es 0,45, independientemente del día y solo puede ocurrir dos cosas: que llegue tarde o no.
 Los parámetros son n = 9 que es el número de repeticiones y p = probabilidad de llegar tarde un día a clase = 0.45.

$$X = B(9, 0.45)$$

- b) La media es n · p = 9 · 0.45 = 4.05 veces. La desviación típica es $\sigma = \sqrt{npq} = \sqrt{9 \cdot 0.45 \cdot 0.55} = 1.49$
- c) Para conseguir la subida de 1 punto debe llegar tarde a clase ninguno, uno o dos días.

$$P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2) = \{\text{Mirando en la tabla de la binomial}\} = 0.0046 + 0.0339 + 0.1110 = 0.1495$$

	х	р												
n		0,01	0,05	0,10	0,15	0,20	0,25	0,30	1/3	0,35	0,40	0.	45	H
2	0	0,9801	0,9025	0,8100	0,7225	0,6400	0,5625	0,4900	0,4444	0,4225	0,3600	U.	UZ-01	Т
	1	0,0198	0,0950	0,1800	0,2550	0,3200	0,3750	0,4200	0,4444	0,4550	0,4800	0,4	950	
	2	0,0001	0,0025	0,0100	0,0225	0,0400	0,0625	0,0900	0,1111	0,1225	0,1600	0,:	025	
3	0	0,9703	0,8574	0,7290	0,6141	0,5120	0,4219	0,3430	0,2963	0,2746	0,2160	0,	364	Г
	1	0,0294	0,1354	0,2430	0,3251	0,3840	0,4219	0,4410	0,4444	0,4436	0,4320	0,4	084	
	2	0,0003	0,0071	0,0270	0,0574	0,0960	0,1406	0,1890	0,2222	0,2389	0,2880	0,3	341	
	3	0,0000	0,0001	0,0010	0,0034	0,0080	0,0156	0,0270	0,0370	0,0429	0,0640	0,	911	
4	0	0,9606	0,8145	0,6561	0,5220	0,4096	0,3164	0,2401	0,1975	0,1785	0,1296	0,	915	Г
	1	0,0388	0,1715	0,2916	0,3685	0,4096	0,4219	0,4116	0,3951	0,3845	0,3456	0,:	995	
	2	0,0006	0,0135	0,0486	0,0975	0,1536	0,2109	0,2646	0,2963	0,3105	0,3456	0,:	375	
	3	0,0000	0,0005	0,0036	0,0115	0,0256	0,0469	0,0756	0,0988	0,1115	0,1536	0,3	005	
	4	0,0000	0,0000	0,0001	0,0005	0,0016	0,0039	0,0081	0,0123	0,0150	0,0256	0,	410	L
5	0	0,9510	0,7738	0,5905	0,4437	0,3277	0,2373	0,1681	0,1317	0,1160	0,0778	0,0	503	Г
	1	0,0480	0,2036	0,3281	0,3915	0,4096	0,3955	0,3602	0,3292	0,3124	0,2592	0,:	059	
	2	0,0010	0,0214	0,0729	0,1382	0,2048	0,2637	0,3087	0,3292	0,3364	0,3456	0,3	369	
	3	0,0000	0,0011	0,0081	0,0244	0,0512	0,0879	0,1323	0,1646	0,1811	0,2304	0,:	757	
	4	0,0000	0,0000	0,0005	0,0022	0,0064	0,0146	0,0284	0,0412	0,0488	0,0768	0,	128	
	5	0,0000	0,0000	0,0000	0,0001	0,0003	0,0010	0,0024	0,0041	0,0053	0,0102	0,	185	L
6	0	0,9415	0,7351	0,5314	0,3771	0,2621	0,1780	0,1176	0,0878	0,0754	0,0467	0,0	277	
	1	0,0571	0,2321	0,3543	0,3993	0,3932	0,3560	0,3025	0,2634	0,2437	0,1866	0,	359	
	2	0,0014	0,0305	0,0984	0,1762	0,2458	0,2966	0,3241	0,3292	0,3280	0,3110	0,1	780	
	3	0,0000	0,0021	0,0146	0,0415	0,0819	0,1318	0,1852	0,2195	0,2355	0,2765	0,3	032	
	4	0,0000	0,0001	0,0012	0,0055	0,0154	0,0330	0,0595	0,0823	0,0951	0,1382	0,1	361	
	5	0,0000	0,0000	0,0001	0,0004	0,0015	0,0044	0,0102	0,0165	0,0205	0,0369	0,0	809	
	6	0,0000	0,0000	0,0000	0,0000	0,0001	0,0002	0,0007	0,0014	0,0018	0,0041	0,0	183	L
7	0	0,9321	0,6983	0,4783	0,3206	0,2097	0,1335	0,0824	0,0585	0,0490	0,0280	0,0	152	
	1	0,0659	0,2573	0,3720	0,3960	0,3670	0,3115	0,2471	0,2048	0,1848	0,1306	0,0	372	
	2	0,0020	0,0406	0,1240	0,2097	0,2753	0,3115		0,3073	0,2985	0,2613	0,2	140	
	3	0,0000	0,0036	0,0230	0,0617	0,1147	0,1730	0,2269	0,2561	0,2679	0,2903	0,2	918	
	4	0,0000	0,0002	0,0026	0,0109	0,0287	0,0577	0,0972	0,1280	0,1442	0,1935	0,1	888	
	5	0,0000	0,0000	0,0002	0,0012	0,0043	0,0115	0,0250	0,0384	0,0466	0,0774	0,1	172	
	6	0.0000	0,0000	0,0000	0,0001	0.0000	0,0013	0,0036	0,0064	0,0084	0,0172	0,0	320 337	
8	7	0,0000	-,	0,0000	0,0000	-,	0,0001	0,0002	-,	0,0008	0,0016	0,0	184	⊢
8	1	0,9227	0,6634	0,4305 0,3826	0,2725	0,1678	0,1001	0,0576	0,0390	0,0319	0,0168	0,0	548	
	2	0.0026			-,	0.2938	0,2670	0,1977	0,1561	0,1373		0.1	569	
	3	0,0026	0,0515	0,1488	0,2376	0,2930	0,3115	0,2965	0,2731	0,2587	0,2090	0.1	568	
	4	0.0000	0.0004	0.0046	0.0185	0.0459	0.0865	0,2541	0,2731	0,2780	0,2787	0.1	327	
	5	0.0000	0.0000	0.0004	0.0026	0.0092	0.0231	0.0467	0.0683	0.0808	0,2322	0.1	719	
	6	0.0000	0.0000	0.0000	0.0002	0.0011	0.0038	0.0100	0.0171	0.0217	0,1238	0.0	703	
	7	0.0000	0.0000	0,0000	0,0002	0,0001	0,0004	0,0100	0,0024	0,0033	0,0079	0,0	164	,
	8	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00012	0.00024	0.0002	0,0078	'n,		ĺ
9	0		-,	-,	-,		-,	-,	0,0002	-		_	046	١
_	1	0,0130	0,0302	0,0074	0,2310	0,1342	0,0701	0,0404			0.000		339	ı
	2	0.0004	0.0000	0.4722	0.2507	0.2020							110	J
	3	0.0001	0,0077	0.0446	0.1069	0.1762	0.2336		0.2731	_				
		3,0001	5,0077	5,0170	5,1000	5,17.02	5,2000	5,2000	5,2.01	3,20		-,-		l