

What is claimed is:

- 1 1. An active filter that can be connected to a power line between a power
2 source and a load, the active filter comprising:
 - 3 a current generator that can be connected to the power line, wherein in response
4 to a control signal the current generator generates a current i_{APF} to compensate for
5 polluting harmonics on the power line; and
 - 6 a controller that generates a control signal that controls the current generator to
7 compensate for the polluting harmonics on the power line, such that the current i_{APF}
8 does not exceed a selected threshold value.
- 1 2. The active filter of claim 1, wherein the controller further includes a limiter
2 that generates said control signal based on feedback values of the current i_{APF} and the
3 current i_L flowing through the load, to control the current generator such that the current
4 i_{APF} does not exceed the selected threshold value.
- 1 3. The active filter of claim 2, further comprising:
 - 2 a first sensor that senses the current i_{APF} and provides a corresponding
3 signal to the limiter that represents the feedback value for the current i_{APF} ; and
 - 4 a second sensor that senses the current i_L flowing through the load and
5 provides a corresponding signal to the limiter that represents the feedback value for the
6 current i_L .

1 4. The active filter of claim 2, wherein the limiter is configured to control the
2 current generator such that even if the current i_{APF} necessary to compensate for the
3 polluting harmonics on the power line exceeds said selected threshold value, the
4 current i_{APF} generated by the current generator is limited to at most the selected
5 threshold value.

1 5. The active filter of claim 2, wherein:
2 the power source comprises an input voltage source providing a voltage
3 v_s ; and
4 the limiter generates the control signal such that the current i_{APF} is
5 controlled as:

$$6 \quad i_{APF} = \begin{cases} i_L - v_s / R_{EM} ; & |i_L - v_s / R_{EM}| < I_{\max} \\ I_{\max} ; & |i_L - v_s / R_{EM}| \geq I_{\max} \end{cases},$$

7 where R_{EM} represents the equivalent resistance seen by the input
8 voltage source v_s , and I_{\max} represents said selected threshold value.

1 6. The active filter of claim 5, further comprising a reference current
2 generator that provides a reference current value to the controller, wherein the
3 reference current value represents the ratio value V_s / R_{EM} .

1 7. The active filter of claim 6, wherein:

2 the current generator includes an energy storage device that sources or
3 sinks the current i_{APF} as necessary to compensate for polluting harmonics on the power
4 line, wherein the current i_{APF} does not exceed the selected threshold value; and
5 the reference current generator receives a voltage feedback value from
6 the current generator that represents the energy storage device voltage, and the
7 reference current generator determines the value R_{EM} based on the voltage feedback
8 value from the current generator, to achieve energy balance whereby the energy
9 storage device voltage does not exceed a selected limit.

1 8. The active filter of claim 1, wherein the current generator comprises:
2 an energy storage device; and
3 a switch controlled by the control signal from the controller, such that the
4 energy storage device sources or sinks the current i_{APF} as necessary to compensate for
5 polluting harmonics on the power line, wherein the current i_{APF} does not exceed a
6 selected threshold value.

1 9. The active filer of claim 8, wherein:
2 the energy storage device includes a capacitor device; and
3 the current generator further includes an inductor, such that the capacitor
4 devices sources or sinks the current i_{APF} , through the inductor.

1 10. An active filter connected to a power line between a power source and a
2 load to compensate for polluting harmonics on the power line, the active filter
3 comprising:

4 a current generator connected to the power line in a parallel circuit with the
5 power source and the load, wherein in response to a control signal the current
6 generator generates a current i_{APF} to compensate for polluting harmonics on the power
7 line; and

8 a current controller that controls the current generator to compensate for the
9 polluting harmonics on the power line, the controller including:

10 a first sensor that senses the current i_{APF} and provides a corresponding signal
11 that represents a feedback value for the current i_{APF} ;

12 a second sensor that senses the current i_L flowing through the load and provides
13 a corresponding signal that represents the feedback value for the current i_L ; and

14 a limiter that generates said control signal based on feedback values of the
15 current i_{APF} and the current i_L , wherein the limiter is configured to control the current
16 generator such that if the current i_{APF} necessary to compensate for the polluting
17 harmonics on the power line exceeds a selected threshold value, the current i_{APF}
18 generated by the current generator is limited to at most the selected threshold value.

1 11. The active filter of claim 10, wherein:

2 the power source comprises an input voltage source providing a voltage
3 v_s ; and

4 the limiter generates the control signal such that the current i_{APF} is
 5 controlled as:

$$6 \quad i_{APF} = \begin{cases} i_L - v_S / R_{EM} ; & |i_L - v_S / R_{EM}| < I_{\max} \\ I_{\max} ; & |i_L - v_S / R_{EM}| \geq I_{\max} \end{cases},$$

7 where R_{EM} represents the equivalent resistance seen by the input
 8 voltage source v_S , and I_{\max} represents said selected threshold value.

1 12. The active filter of claim 11, further comprising a reference current
 2 generator that provides a reference current value to the controller, wherein the
 3 reference current value represents the ratio value V_S / R_{EM} .

1 13. The active filter of claim 12, wherein:
 2 the current generator includes an energy storage device that sources or
 3 sinks the current i_{APF} as necessary to compensate for polluting harmonics on the power
 4 line, wherein the current i_{APF} does not exceed the selected threshold value; and
 5 the reference current generator receives a feedback value from the
 6 current generator that represents the level of the energy stored in the energy storage
 7 device, and the reference current generator determines the value R_{EM} based on the
 8 feedback value from the current generator, to achieve energy balance whereby the
 9 energy level of the energy storage device is maintained within predetermined limits.

1 14. The active filter of claim 13, wherein the current generator further
2 comprises a switch controlled by the control signal from the controller, such that the
3 energy storage device sources or sinks the current i_{APF} as necessary to compensate for
4 polluting harmonics on the power line, wherein the current i_{APF} does not exceed a
5 selected threshold value.

1 15. The active filer of claim 14, wherein:
2 the energy storage device includes a capacitor device; and
3 the current generator further includes an inductor, such that the capacitor
4 devices sources or sinks the current i_{APF} , through the inductor.

1 16. A method of filtering a power line having a power source and a load
2 connected thereto, comprising the steps of:
3 providing a current generator that can be connected to the power line, wherein
4 the current generator generates a current i_{APF} to compensate for polluting harmonics on
5 the power line; and
6 controlling the current generator to compensate for the polluting harmonics on
7 the power line, such that the current i_{APF} does not exceed a selected threshold value.

1 17. The method of claim 16, wherein the steps of controlling the current
2 generator further includes the steps of controlling the current generator based on
3 feedback values of the current i_{APF} and the current i_L flowing through the load, such that
4 the current i_{APF} does not exceed the selected threshold value.

1 18. The method of claim 17, wherein the steps of controlling the current
2 generator further includes the step of:

3 sensing the APF current i_{APF} with a first sensor that provides a
4 corresponding signal representing the feedback value for the current i_{APF} ; and
5 sensing the load current i_L with a second sensor that provides a
6 corresponding signal representing the feedback value for the current i_L .

1 19. The method of claim 17, wherein the steps of controlling the current
2 generator further includes the step of:

3 controlling the current generator such that even if the current i_{APF}
4 necessary to compensate for the polluting harmonics on the power line exceeds said
5 selected threshold value, the current i_{APF} generated by the current generator is limited
6 to at most the selected threshold value.

1 20. The method of claim 17, wherein:

2 the power source comprises an input voltage source providing a voltage
3 v_S ; and

4 the current i_{APF} is controlled such that:

5
$$i_{APF} = \begin{cases} i_L - v_S / R_{EM} ; & |i_L - v_S / R_{EM}| < I_{\max} \\ I_{\max} ; & |i_L - v_S / R_{EM}| \geq I_{\max} \end{cases}$$

6 where R_{EM} represents the equivalent resistance seen by the input
7 voltage source v_S , and I_{\max} represents said selected threshold value.

1 21. The method of claim 20, further comprising the steps of determining a
2 reference current value that represents the ratio value V_S / R_{EM} .

1 22. The method of claim 21, wherein:
2 the current generator includes an energy storage device that sources or
3 sinks the current i_{APF} as necessary to compensate for polluting harmonics on the power
4 line, wherein the current i_{APF} does not exceed the selected threshold value; and
5 the steps of determining a reference current value, further includes the
6 steps of receiving a voltage feedback value from the current generator that represents
7 the energy storage device voltage, and determining the value R_{EM} based on the voltage
8 feedback value from the current generator, to achieve energy balance whereby the
9 energy storage device voltage does not exceed a selected limit.

1 23. The method of claim 16, wherein the current generator comprises:
2 an energy storage device; and
3 a controllable switch, such that the energy storage device sources or sinks
4 the current i_{APF} as necessary to compensate for polluting harmonics on the power line,
5 wherein the current i_{APF} does not exceed a selected threshold value.

1 24. The method of claim 23, wherein:
2 the energy storage device includes a capacitor device; and
3 the current generator further includes an inductor, such that the capacitor
4 devices sources or sinks the current i_{APF} , through the inductor.

1 25. The method of claim 16, wherein the step of controlling the current
2 generator further includes controlling the current generator to compensate for the
3 polluting harmonics on the power line, such that the current i_{APF} is bounded by a
4 selected upper threshold and a selected lower threshold.