DESIGN OF AN AXIAL COMPRESSOR ROTOR

Notes for the class exercise (other comments during the class work)

Assumptions:

- 1. intermediate stage → inlet flow not axial (if possible normal stage)
- 2. Free vortex design for the blade: as $V_a \frac{\partial V_a}{\partial r} + \frac{V_t}{r} \frac{\partial (rV_t)}{\partial r} = 0$ \rightarrow Va constant along the blade height
- 3. Constant density at inlet; constant blade height; constant mean diameter
- 4. Axial velocity may change in the stage.

INPUT DATA:

- Static to static pressure ratio: 1.25
- Mass flow rate: 120 kg/s
- Inlet static conditions: P = 1bar_A, T = 288 K

Draft PROCEDURE for the rotor design

Proposed procedure:

- a. Application of Balje diagram
- b. First choice according to Vavra results for the best efficiency point (φ , χ)
- c. Check on Howell correlation
- d. Design of rotor blades by Lieblein correlations

Velocity triangles:

- 1. By the pressure ratio \rightarrow L_{is,SS} = L_{is,TT} as in first approx, normal stage V₁ = V₃
- 2. By the mass flow + inlet conditions \rightarrow volumetric flow rate
- 3. By step 1 and 2 and $\omega_{\rm S}$, Ds chosen on Balje \rightarrow Rpm, Dtip, $\eta_{\rm TT}$

but by the reaction coeff. definition: $\chi = 1 - V_{t\infty}/U$

- 4. By Dtip, λ_D = Dhub/Dtip (by Balje) \rightarrow Dmean, Dhub and blade height
- 5. Chosen on Vavra at midspan: $\phi = 0.5$ \rightarrow Vax and $\chi = \frac{h_2 h_1}{Lu} = 0.5$
- 6. By mass flow rate \rightarrow Vax: check with Vavra result and change in blade height (Iteration of steps 4 6, by changing λ_D to find out the correct blade height)
- 7. by ω and radii \rightarrow U everywhere; given the Euler work, Vax, radii, $\omega \rightarrow \lambda$, φ can be calculated for all radii
- 8. to find out, α_{1M} : $\lambda = \frac{Lu}{U^2/2} = 2U \frac{(V_{2t} V_{1t})}{U^2} = [V_{t\infty} = (V_{2t} + V_{1t})/2] = 4(V_{t\infty} V_{1t})/U$

$$V_{1t}/U = V_{t\infty}/U - \lambda/4 = 1 - \chi - \lambda/4$$

$$tg \ \alpha_1 = V_{1t}/V_a = V_{1t}/U \cdot 1/\varphi$$

$$\alpha_1 = atg\left(\frac{1 - \chi - \lambda/4}{\varphi}\right)$$

$$V_{2t} = Lu/U + V_{1t}$$
 or $V_{2t}/U = V_{1t}/U + \lambda/2$ 9. $V_{2t,M}: V_{2t} = U(1-\chi+\lambda/4)$

- 10. Free vortex application: $V_{1t} * r = cost$; $V_{2t} * r = cost$; all **Vt** upstream and downstream
- 11. Reaction degree, when free vortex applied and with Va=cost along the axial length:

$$\chi = 1 - V_{t\infty} / U = 1 - (V_{2t} + V_{1t}) / 2U = 1 - \frac{V_{2t,M} r_M + V_{1t,M} r_M}{2U r} = 1 - \frac{V_{2t,M} r_M + V_{1t,M} r_M}{2\omega r^2}$$

$$\gamma = 1 - K / r^2$$

- 12. Given the reaction degree, the temperature downstream of the rotor can be calculated; afterwards, by η_{TT} , T2is, P2is, rho2, new Vax, new reaction coefficient (that takes into account for the different axal velocity between inlet and outlet).
- 13. Since the Vax seems to be different along blade span, free vortex imposes the same Vax → new alfa2. After two iterations, of step 12, 13 the final Vax is achieved.
- 14. Given Vax, Vt, all W can be calculated → and also flow deflection on rotor/stator
- 15. Check on Howell correlation the loading → rotor can be loaded a bit
- 16. Change of Ds, ω_S to find out RPM = 3000 (as we are close to it) and smaller diameters
- 17. Repeat steps from 4 to 15

blade calculation:

- 1. The first table reports kinematic quantities useful for Lieblein criterion application
- 2. The following parameter are set:
 - Max blade thickness with respect to chord (Th = 8)
 - \bullet Blade chord, constant along the blade height = 0.13 m
 - ❖ solidity =1 at midspan
 - * camber angle (geometrical deflection) for 3 sections from Lieblein chart.
- Given the pitch and the mean radius \rightarrow n° blades
- Given the blades count + radius \rightarrow pitch, solidity at hub and tip
- Chosen the camber on draft charts, C_L can be calculated ($\theta_{eq} = 25 C_L$)
- Optimum incidence: $i_{opt} = i_{0,10} K_{i,th} + n \theta$
 - o By slides $10 \rightarrow i_{0,10}$
 - o By slides $11 \rightarrow K_{i,th}$

- o By slides $11 \rightarrow n$
- Deviation angle: $\delta = \delta_{0,10} K_{\delta,th} + \frac{mg}{\sigma^b}$
 - o By slides $12 \rightarrow \delta_{0,10}$
 - o By slides $12 \rightarrow K_{\delta,th}$
 - o By slides $13 \rightarrow m$
 - o By slides $13 \rightarrow b$
- The kinematic deflection can now be calculated and check if what required: $\Delta\beta = \epsilon = \theta + i \delta$
- if $\Delta\beta$ it not correct, θ_{eq} has to be modified and recalculated
- <u>Stagger</u>: given the NACA65, the difference between the mean line and the stagger is $\theta/2$. With reference to Slide 17: $\beta_1 = \gamma \theta/2 i_{opt}$ $\longrightarrow \gamma = \beta_1 + \theta/2 + i_{opt}$
- axial chord: $C_a = C \cos \gamma$ tangential chord: $C_t = C \sin \gamma$
- outlet kinematic angle check: since $\beta_{2,g} = \gamma \theta/2$ $\rightarrow \beta_{2,cin} = \beta_{2,g} + \delta$ and it is possible vthe check the actual outlet flow direction / deflection ($\Delta\beta_{nom}$; $\Delta\beta_{reale}$)

LOADING CRITERION: The Lieblein global diffusion factor is applied:

for rotors: $D = \frac{W_1 - W_2}{W_1} + \frac{|W_{1t} - W_{2t}|}{2W_1\sigma}$ Better to have: D < 0.6; for stator use absolute quantities.

PROFILE LOSSES EVALUATION: The formula proposed by Lieblein is applied

BLADE GEOMETRY BUILT UP

Generic profile definition:

• from SLIDE 18, The chord-wise thickness for the NACA 65 profile with max thickness of 8% can be calculated:

t = t% * chord * TH/10 con TH = 8 (max thickness with respect of the chord)

• from SLIDE 19, the mean line can be determined, as well as the pressure side and suction side one

$$y = y\%$$
 * chord * CL in fact, $y = f(\theta)$, but $C_L = f(\theta) \rightarrow y = f(C_L)$
 $x = x\%$ * chord
 $dy/dx = dy/dx$ * CL : mean line slope

warning:

- 1. the slope is positive up to 50% of the chord and then negative till 100%
- 2. neglect the rounding of the leading and trailing edge

the generic coordinate is so far described by:

<u>pressure side</u>: $x_p = x + t * \sin(a \tan (dy/dx))$ <u>suction side</u>: $x_p = x - t * \sin(a \tan (dy/dx))$ $y_p = y - t * cos(atan (dy/dx))$ $y_p = y + t * cos(atan (dy/dx))$

transfer of the profile into the machine coordinate system:

It consists of the profile rotation from the intrinsic blade coordinate system to the machine one by applying a rotation: the angle of rotation is the stagger angle.

Tangential coordinate:

 $T = -x_p \operatorname{sen}(\gamma) - y_p \cos(\gamma)$

Axial coordinate:

 $Ax = x_p \cos(\gamma) - y_p \sin(\gamma)$

Values of T and Ax are different for each radial section - Hub, Mid and Tip

Profile Stacking:

the profile has to be stacked by keeping the chord mean points (each mean point for every radial section) to be coincident on the blade to blade plane.

Tangential shift: $\Delta C_t = C_{t, x} / 2$

with x = hub, mid, tip

Axail shift: $\Delta C_a = C_{a,x} / 2$

with x = hub, mid, tip

 $T = T - \Delta C_t$

 $Ax = Ax + \Delta C_a$