大学物理 College Physics

主讲 华中科技大学 刘超飞

● 氢原子的薛定谔方程

$$V = -\frac{e^2}{4\pi\varepsilon_0 r}$$
 库伦势场

三维定态薛定谔方程:
$$\nabla^2 \psi(r) + \frac{2m}{\hbar^2} (E - V) \psi(r) = 0$$

球坐标系求解:

(1) 能量量子化:
$$E_n = -\frac{me^4}{8\epsilon_0^2 h^2} \cdot \frac{1}{n^2}$$
 $n = 1, 2, \cdots$

玻尔理论与量子力学结果一致。

n: 主量子数

(2) 角动量大小的量子化:

$$L = \sqrt{l(l+1)} \hbar$$
 $l=0,1,2\cdots n-1$ (共 n 个值)

1: 角量子数 无轨道可言

(3) 角动量的空间取向量子化

$$L_z = m_l \hbar$$
 $m_l = 0, \pm 1, \pm 2 \cdots \pm l$

 m_l 或者m: 磁量子数

对一个确定的l, m_l 有 2l+1 个值

(4) 电子的波函数和概率分布:

$$\rho_{nl}(r) = \frac{\mathrm{d}W(r)}{\mathrm{d}r} = r^2 \left| R_{nl}(r) \right|^2$$

——径向概率密度

没有轨道的概念,几率分布(电子云) 轨道半径:玻尔理论 vs 量子力学

$$\rho_{lm}(\theta,\phi) = \frac{\mathbf{d}W(\theta,\phi)}{\mathbf{d}\Omega} = |Y_{lm}(\theta,\phi)|^2$$
—角向概率密度

六、电子自旋

1. 斯特恩—盖拉赫实验

无外场作用时,原子射线将集结在与缝平行的直线上。 加上非均匀磁场,原子射线在观测屏分为上下两束!

⇒ 原子必然有磁矩!

原子轨道磁矩为
$$\mu=\frac{e}{2m}L$$
角动量 $L=\sqrt{l(l+1)}\hbar$ S态银原子射线 $l=0$

⇒ 原子轨道磁矩为0 还有什么磁矩?!

2. 电子自旋

1925年,不到25岁的年轻大学生乌伦贝克和高斯米特(荷兰)

提出"电子自旋"的假说.

- 1) 电子除绕原子核旋转外,还绕自身的轴旋转——自旋 因此具有自旋角动量和自旋磁矩(\vec{L}_s , $\vec{\mu}_s$)
- 2) 每个电子的自旋角动量 L_s 是量子化的

$$L_S = \sqrt{s(s+1)}\hbar$$
 $s = \frac{1}{2}$ —自旋量子数

其在空间取向也是量子化的,

且在空间某方向的投影只能取两个值:

$$L_{SZ} = m_S \hbar$$
 $m_S = \pm \frac{1}{2}$ —自旋磁量子数

不但电子有自旋,中子、质子、光子等所有 微观粒子都存在自旋,只不过取值不同。

关于电子自旋的讨论:

电子自旋角动量大小为:

$$\begin{cases} L_s = \sqrt{s(s+1)} \, \hbar \\ s = \frac{1}{2} \end{cases} \Rightarrow L_s = \frac{\sqrt{3}}{2} \hbar$$

把电子视为质量均匀分布的球体,角动量为

$$\begin{cases} L_s = J\omega \\ J = \frac{2}{5}mR^2 \\ \omega = v / R \end{cases}$$

$$\Rightarrow v = \frac{5}{2}\frac{L_s}{mR}$$

而电子半径:
$$R \sim 10^{-15}$$
 m $\Rightarrow v \sim 10^{11}$ m/s $>> 10^{8}$ m/s

电子表面旋转速度将超过光速!

所以只能解释为: 自旋是内秉角动量!

自旋和静质量、电荷等一样,是微观粒子的固有属性。

总结前面的讨论:

原子中电子的状态应由四个量子数来决定

n —主量子数	<i>n</i> = 1,2,	$E_n = -\frac{me^4}{8\varepsilon_0^2 h^2} \cdot \frac{1}{n^2}$
<i>l</i> —角量子数	<i>I</i> = 0,1,2,, <i>n</i> -1	$L = \sqrt{l(l+1)}\hbar$
m_l —轨道磁量子数	$m_I = 0, \pm 1, \pm 2,, \pm I$	$L_{\rm z}=m_{l}\hbar$
m _s —自旋磁量子数	$m_{\rm s}$ = \pm 1/2	$L_{SZ} = m_S \hbar$

无论是单电子原子,还是多电子原子,每一组量子数 (n, l, m_l, m_s) 将决定电子的一个状态。

电子的波函数:
$$\psi_{n,l,m_l,m_s} = R_{nl}(r) \cdot \Theta_{lm_l}(\theta) \cdot \Phi_{m_l}(\phi) \cdot \chi_{m_s}$$

或:
$$\psi_{n,l,m_l,m_s} = R_{nl}(r) \cdot Y_{lm_l}(\theta,\phi) \cdot \chi_{m_s}$$

电子自旋波函数

七、原子的壳层结构

在含有多个电子的原子中,每个电子在受到核的作用的同时还受到其他电子的作用(复杂运动)。

电子的状态仍由四个量子数决定,但电子能量不仅与n有关,还与l有关。

1916年,W. Kossel提出多电子原子中核外电子按壳层分布的形象化模型

分别用大写字母K, L, M, N, O, P, ... 等表示;

在每一主壳层内,又按角量子数 l 分为若干支壳层, l = 0, 1, 2, 3, 4, 5,...的支壳层分别用小写字母s, p, d, f, g, h,... 表示

氢原子内电子的状态

l = 0	l=1	l=2	l=3	l=4	l=5
S	p	d	f	\boldsymbol{g}	h
1 s					
2 s	2 <i>p</i>				
3 s	<i>3p</i>	<i>3d</i>			
4 <i>s</i>	4 <i>p</i>	4 <i>d</i>	4 <i>f</i>		
5 <i>s</i>	5 <i>p</i>	5 <i>d</i>	5 <i>f</i>	5 <i>g</i>	
6 s	6 <i>p</i>	6 <i>d</i>	6 <i>f</i>	6 <i>g</i>	6 <i>h</i>
	1s 2s 3s 4s 5s	s p 1s 2s 2p 3s 3p 4s 4p 5s 5p	s p d 1s 2s 2p 3s 3p 3d 4s 4p 4d 5s 5p 5d	s p d f 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f	1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 5g

●在光谱学中,谱线的命名与角量子数有关,相应于一定角动量的线系都赋予一定的名字,如对于跃迁 $hv = E_2 - E_1$

- 对于确定的 n 和 l, 用nl 表示, 如1s, 2s, 2p, ...;
- 当一个原子的每个电子组态 n 和 l 均被指定后,则称该原子具有一定的电子组态,例如:

Cu: 1s²2s²2p⁶3s²3p⁶4s¹3d¹⁰

八、基态原子的核外电子排布服从的规律

1 泡利不相容原理

问题:原子中的电子可以分布在不同的壳层上,每一主壳层和支壳层上能容纳多少电子呢?

泡利不相容原理:

1925年,泡利提出: 在一个原子中,不可能有两个或两个 以上的电子具有完全相同的量子态。

即:原子中的任何两个电子不可能有完全相同的一组量子数 (n, l, m_l, m_s) 。

泡利

1945年诺贝尔 物理学奖

每一壳层上容纳的电子数:

- 对于每一支壳层,对应的量子数为n, l, 它们的磁量子数 m_l = 0,±1,±2,...,±l, 共有(2l+1)种可能值
- 对于每一个 m_i 值又有两种自旋量子数 m_s =±1
- \Rightarrow 在同一支壳层上(同一个l)可容纳的电子数为: 2 2l+1
 - 对于某一主壳层n,角量子数可取 = 0,1,2,...,(n-1), 共n种可能值
- \Rightarrow 主壳层n上可容纳的电子数为: $N_n = \sum_{l=0}^{n-1} 2 \ 2l + 1 = 2n^2$

每一壳层上容纳的电子数:

主壳层n上可容纳的电子数为: $N_n = 2n^2$

支壳层上(同一个/)可容纳的电子数: 2 21+1

		0 s	1 p	2 d	3 f	4 g	5 h	6 i	N _n
1	K	2	_						2
2	\boldsymbol{L}	2	6						8
3	M	2	6	10					18
4	N	2	6	10	14				32
5	0	2	6	10	14	18			50
6	P	2	6	10	14	18	22		72
7	Q	2	6	10	14	18	22	26	98

例题: 试确定基态氦原子中电子的量子数。 (n, l, m_l, m_s)

解: 氦原子有两个电子。

这两个电子正好填满1s态,即n=1, l=0,因而 $m_{l}=0$ 。

根据泡利不相容原理,这两个电子的量子数不能完全相同,所以它们的自旋量子数分别为 $m_s = +1/2$ 和 -1/2。

因此基态氦原子中两个电子的四个量子数 分别为(1, 0, 0, 1/2)和(1, 0, 0, -1/2)。

2.能量最小原理

原子系统处于正常状态时,每个电子趋向占据未被填充的最低能级.

- 1) 主量子数 n 越低, 离核越近的壳层首先被电子填满.
- 2) 能级也与副量子数有关,有时 n 较小的壳层未满,n 较大的壳层上却有电子填入.

能级的高低由n+0.71判定。

~(徐光宪—经验公式)

例: 比较4s 和 3d 状态

$$\begin{cases} 4s \Rightarrow (n+0.7l) = (4+0.7\times0) = 4 \\ 3d \Rightarrow (3+0.7\times2) = 4.4 \end{cases}$$

: 电子先进入 4S 态

能级结构图

第16章 半导体与激光简介

一、半导体的基本概念

固体按导电性能的高低可以分为

半导体的电阻率介于导体和绝缘体之间。 其电学性能可用能带理论解释。

1. 固体的能带

a. 固体的晶格结构

固体(晶体)是具有大量 分子、原子或离子的有 规则排列的点阵结构。

在晶体中,电子受到周期性势场的作用。

晶体中原子相互影响, 形成周期性势垒

氯化钠晶体

- 氯离子 Cl⁺
- 钠离子 Na-

b. 共有化电子

- 求解定态薛定谔方程,可以得出两个重要结论:
 - 1.电子的能量是量子化的;
 - 2.电子的运动有隧道效应。

对于原子的外层电子(高能级电子), 其势垒宽度较小, 穿透概率较大。

这些电子不再局限于一个原子,可以在整个固体中运动,称为共有化电子。

原子的内层电子与原子核结合较紧,一般不是共有化电子。

c. 能带

固体中的电子能级有什么特点?

量子力学计算表明,固体中若有N个原子,由于各原子间的相互作用,对应于原来孤立原子的每一个能级,变成了N条靠得很近的能级,称为能带。

d. 能带中电子的排布

固体中的一个电子只能处在某个能带中的某一能级上。

排布原则: {1.服从泡里不相容原理(费米子) 2.服从能量最小原理

电子排布时,从最低的能级排起, 占据能带中的位置。

有关能带被占据情况的几个名词:

- 1. 满带(排满电子)
- 2. 价带(能带中一部分能级排满电子)—亦称导带
- 3. 空带(未排电子)—亦称导带
- 4. 禁带 (不能排电子)

作业: 15—T15-T16

作业要求

- 1. 独立完成作业。
- 2. 图和公式要有必要的标注或文字说明。
- 3. 作业纸上每次都要写姓名以及学号(或学号末两位)。
- 4. 课代表收作业后按学号排序,并装入透明文件袋。
- 5. 每周二交上周的作业。迟交不改。
- 6. 作业缺交三分之一及以上者综合成绩按零分计。