

A Rose by Any Other Name: LLM-Generated Explanations Are Good Proxies for Human Explanations to Collect Label Distributions on NLI

Beiduo Chen, Siyao Peng, Anna Korhonen, Barbara Plank

MaiNLP, Center for Information and Language Processing, LMU Munich, Germany

Munich Center for Machine Learning (MCML), Munich, Germany

Language Technology Lab, University of Cambridge, United Kingdom

Introduction & Method

- ➤ Can Model Explanations Help LLMs Approximate HJD as Humans Do?
- Can Model-EX Enhance Performance on OOD ANLI Test Set?
- Human versus Model: Are They Different and Does It Matter?
- ➤ Can Human Preference Lead to Better Explanation Selection?
- Conclusion

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Introduction & Method

Introduction & Method

Introduction & Method

Dataset Name	Number of Instances	Annotations per Instance	Explanations	Valid Overlap
MNLI (Williams et al., 2018)	433K total, 40K multi-label	1 or 5	No	341
ChaosNLI (Nie et al., 2020a)	1.5K from each of α NLI, SNLI, MNLI	100	No	341
VariErr NLI (Weber-Genzel et al., 2024)	500	4	1 per label	341
ANLI test (Nie et al., 2020a)	1K (R1), 1K (R2), 1.2K (R3)	1	Yes (Rationale)	0

HLV: human label variation

HJD: human judgment distribution

MJD: model judgment distribution

LF / LG: label-free / label-guided

- Introduction & Method
- > Can Model Explanations Help LLMs Approximate HJD as Humans Do?
- Can Model-EX Enhance Performance on OOD ANLI Test Set?
- Human versus Model: Are They Different and Does It Matter?
- ➤ Can Human Preference Lead to Better Explanation Selection?
- Conclusion

Can Model Explanations Help LLMs Approximate HJD as Humans Do?

Distributions	Dist. Co	mpariso	n BER	T Fine-T	uning Co	ompari	son (dev	/test)	RoBER	Ta Fine-	Tuning	Compa	rison (d	ev/test)	Global
Distributions	KL↓ JS	D ↓ TVD	<u> </u>	(L	CE Lo	oss ↓	Weighte	ed F1 ↑	KL	- \downarrow	CE Lo	oss ↓	Weight	ed F1↑	D.Corr ↑
ChaosNLI HJD	0.000 0.0	0.00	0 0.073	/ 0.077	0.967 /	0.974	0.645 /	0.609	0.062 /	0.060	0.933 /	0.922	0.696 /	0.653	1.000
VariErr dist.	3.604 0.2	282 0.29	6 0.177	/ 0.179	1.279 /	1.279	0.552 /	0.522	0.166 /	0.173	1.246 /	1.261	0.616	0.594	0.688
MNLI dist.	1.242 0.2	281 0.29	5 0.104	/ 0.100	1.062 /	1.042	0.569 /	0.555	0.101 /	0.093	1.052 /	1.020	0.625 /	0.607	0.795
Llama3 MJD	0.259 0.2	262 0.28	4 0.099	/ 0.101	1.045 /	1.044	0.516 /	0.487	0.094 /	0.096	1.030 /	1.031	0.545 /	0.522	0.689
+ human-ex	0.238 0.2	250 0.26	9 0.098	/ 0.099	1.043 /	1.039	0.575 /	0.556	0.091 /	0.092	1.021 /	1.019	0.641	0.616	0.771
+ LF model-ex	0.295 0.2	278 0.31	0.106	/ 0.107	1.066 /	1.063	0.539 /	0.533	0.103 /	0.105	1.059 /	1.058	0.581	0.571	0.744
+ VariErr LG model-ex	0.234 0.2	247 0.26	6 0.097	/ 0.098	1.041 /	1.037	0.558 /	0.544	0.089 /	0.091	1.016 /	1.014	0.633 /	0.626	0.760
+ MNLI LG model-ex	0.242 0.2	251 0.27	5 0.096	/ 0.097	1.037 /	1.034	0.589 /	0.580	0.090 /	0.092	1.019 /	1.018	0.657	0.645	0.849
GPT-40 MJD	0.265 0.2	263 0.28	9 0.103	/ 0.096	1.059 /	1.029	0.526 /	0.517	0.093 /	0.092	1.027 /	1.018	0.525 /	0.521	0.703
+ human-ex	0.187 0.2	207 0.22	3 0.093	/ 0.098	1.027 /	1.036	0.570 /	0.552	0.079 /	0.080	0.986 /	0.987	0.617	0.617	0.769
+ LF model-ex	0.252 0.2	242 0.27	5 0.101	/ 0.102	1.052 /	1.047	0.537 /	0.545	0.157 /	0.167	1.220 /	1.244	0.587	0.561	0.752
+ VariErr LG model-ex	0.192 0.2	209 0.22	6 0.092	/ 0.093	1.026 /	1.022	0.554 /	0.551	0.088 /	0.089	1.013 /	1.008	0.618	0.598	0.761

- Introduction & Method
- ➤ Can Model Explanations Help LLMs Approximate HJD as Humans Do?
- Can Model-EX Enhance Performance on OOD ANLI Test Set?
- > Human versus Model: Are They Different and Does It Matter?
- Can Human Preference Lead to Better Explanation Selection?
- Conclusion

Can Model-EX Enhance Performance on OOD ANLI Test Set?

Trained Classifiers	BER	TANLI	Test	RoBERTa ANLI Test			
Trained Classifiers	R1↑	R2 ↑	R3 ↑	R1 ↑	R2 ↑	R3 ↑	
Zero-shot-LM	0.170	0.176	0.197	0.167	0.167	0.168	
MNLI-FT-LM	0.220	0.269	0.293	0.292	0.262	0.257	
ChaosNLI HJD	0.268	0.289	0.332	0.357	0.331	0.338	
VariErr dist	0.302	0.259	0.319	0.402	0.311	0.321	
MNLI dist	0.229	0.260	0.279	0.317	0.275	0.281	
Llama3 MJD	0.246	0.276	0.306	0.304	0.297	0.304	
+ human-ex	0.296	0.289	0.349	0.400	0.330	0.344	
+ LF model-ex	0.292	0.295	0.328	0.314	0.262	0.323	
+ VariErr LG model-ex	0.305	0.285	0.349	0.411	0.324	0.319	
+ MNLI LG model-ex	0.284	0.283	0.321	0.339	0.287	0.307	
GPT-40 MJD	0.258	0.263	0.295	0.309	0.282	0.302	
+ human-ex	0.351	0.294	0.332	0.393	0.324	0.325	
+ LF model-ex	0.285	0.283	0.315	0.350	0.282	0.310	
+ VariErr LG model-ex	0.341	0.293	0.330	0.393	0.324	0.323	

- Introduction & Method
- ➤ Can Model Explanations Help LLMs Approximate HJD as Humans Do?
- Can Model-EX Enhance Performance on OOD ANLI Test Set?
- > Human versus Model: Are They Different and Does It Matter?
- ➤ Can Human Preference Lead to Better Explanation Selection?
- Conclusion

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Human versus Model: Are They Different and Does It Matter?

- Introduction & Method
- ➤ Can Model Explanations Help LLMs Approximate HJD as Humans Do?
- Can Model-EX Enhance Performance on OOD ANLI Test Set?
- > Human versus Model: Are They Different and Does It Matter?
- > Can Human Preference Lead to Better Explanation Selection?
- Conclusion

Can Human Preference Lead to Better Explanation Selection?

Distributions	Dist.	Compa	arison	RoBERTa Fine	Global		
	KL↓	JSD↓	TVD ↓	KL↓	CE Loss↓	Weighted F1↑	D.Corr ↑
Llama3 MJD	0.258	0.261	0.286	0.092 / 0.095	1.025 / 1.026	0.531 / 0.512	0.684
+ human ex	0.240	0.249	0.275	0.089 / 0.091	1.014 / 1.015	0.618 / 0.597	0.750
+ replace preferred mode	el ex			'			
greedy 75.75%	0.241	0.248	0.274	0.088 / 0.090	1.013 / 1.013	0.619 / 0.594	0.733
representative 55.25%	0.240	0.248	0.274	0.088 / 0.091	1.013 / 1.014	0.619 / 0.597	0.739
+ replace unpreferred mo	odel ex			•			
greedy 68.5%	0.239	0.247	0.273	0.087 / 0.090	1.011 / 1.012	0.623 / 0.599	0.752
representative 63.25%	0.237	0.246	0.271	0.088 / 0.090	1.011 / 1.012	0.621 / 0.607	0.761

Datasets		Lexical			Syntacti	С	Sem	AVG	
	$n = 1 \downarrow$	n = 2 ↓	n = 3↓	n = 1↓	n = 2↓	n = 3↓	Cos.↓	Euc.↓	AVG↓
human-ex	0.335	0.098	0.042	0.767	0.341	0.140	0.528	0.520	0.428
replaced pro	eferred ı	model e	:X						
greedy	0.416	0.157	0.082	0.874	0.488	0.233	0.540	0.532	0.474
represent.									
replaced un	preferre	d mode	el ex						
greedy	0.387	0.130	0.069	0.841	0.432	0.196	0.527	0.528	0.457
represent.	0.378	0.130	0.073	0.837	0.426	0.195	0.534	0.532	0.455

- Introduction & Method
- ➤ Can Model Explanations Help LLMs Approximate HJD as Humans Do?
- Can Model-EX Enhance Performance on OOD ANLI Test Set?
- > Human versus Model: Are They Different and Does It Matter?
- Can Human Preference Lead to Better Explanation Selection?
- Conclusion

MAXIMILIANS-UNIVERSITÄT Conclusion

- Model explanations are comparable to humans in approximating HJD on NLI, and can be scaled up from a few annotations of datasets without explanations.
- Modeling HLV information can improve NLI classifiers' performance, and MJDs generated by our method are robust on OOD datasets w/o labels or explanations.
- Model and human explanations result in similar performance, while noise replacement clearly hurts, indicating that the relevant contents of explanations are crucial.
- The potential of variability as a metric for measuring the model explanations.
- Experiments show that MJDs from LLMs and model explanations result in comparable scores with MJDs from LLM and human explanations — A rose by any other name would smell as sweet.
- Notably, our approach generalizes to explanation-free datasets and remains effective in challenging out-of-domain test sets. Results indicate that LLM-generated explanations can significantly reduce annotation costs, making it a scalable and efficient proxy for capturing human label variation.

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

Thank you !!!

Resource:

Paper

Acknowledgement:

e l l i s

Presenter: Beiduo Chen

Email: Beiduo.Chen@lmu.de