

Quenching of spectroscopic factors in ^{10,12}Be(d, ³He) reactions

M. Lozano-González, A. Matta, B. Fernández-Domínguez, F. Delaunay, J. Lois-Fuentes

USC-IGFAE, LPC-Caen and FRIB

Zakopane 2024 Conference

A recap on spectroscopic factors

Spectroscopic factors shed light on the occupancy of single-particle states:

$$\left.\frac{d\sigma}{d\Omega}\right|_{exp} = C^2S \cdot \left.\frac{d\sigma}{d\Omega}\right|_{s.p}, \quad C^2S = \begin{cases} (2j+1) \text{ removing} \\ 1 & \text{adding} \end{cases} \quad \text{in IPSM}$$

Experimentally:

Reduction of $\sim 65 \%$!

- **Short-range** correlations: tensor forces....
- Long-range: vibrations, giant resonances,...

L. Lapikás, Nuclear Phys. A 553 (1993)

A long-standing puzzle

A trend with asymmetry energy $\Delta S \equiv S_n - S_p$ is found depending on the experimental **probe!**

T. Aumann et al. Prog. Part. Nucl. Phys. 118 (2021)

 \Rightarrow measure towards more exotic nuclei: $|\Delta S| \uparrow$

Status with light isotopes

Several experiments allowed for the extraction of C^2S with Li-induced (d, 3 He) reactions:

Several challenges in this region:

Dealing with **unbound** nuclei (¹⁰He)

2 Impact of core exitations (completar algo +)

Importance of GMF

Towards exotic nuclei (loosely bound or halo), a **geometrical mismatch factor** emerges from the very different w.f. in the overlap:

N. K. Timofeyuk, private communication (in E748 proposal)

 \Rightarrow Need to establish more systematics for this parameter

Physics case of E748

E748 @ GANIL back in 2017. Using ^{10,12}Be(d, ³He) reactions to:

Experimental setup

Tradional solid target experiment @ LISE

A glance at the analysis

3 E_x from missing mass technique $E_{\mathrm{beam}} + (E, \theta)_{\mathrm{Lab}} \rightarrow E_x$

Results: 10Be(d, 3He)9Li

Results: 10Be(d, 3He) Li

Recent experiment @ Acculina by *E. Yu. Nikolskii et al., NIM B 541 (2023)*. Different beam energy of 40 AMeV

Their analysis: $C^2S = 1.74$

Pang: 2.679(48)

Our C^2S :

■ HT1p: 1.848(33)

Results: 10Be(d, 3He) Li

- Discussion of results
- Which potentials are we going to use?
- Great differences with Pang or HT1p
- And then there is the situation with STA or a standard WS

Results: 10Be(d, 3He)9Li

The **first** excited state $1/2^-$ is also accessible.

First direct measurement: $C^2S = 0.237(46)$

SM calculation by Acculina:

$$C^2S = 0.207$$

Results: 12Be(d, 3He)11Li

- $C^2S = 0.33$ with Haixia + HT1p
- Need to solve puzzle with different OMPs

Fulfils expectation of: $0.65 (\text{quenching}) \cdot 0.5 (\text{GMF})$ This is true with Pang but not with HT1p...

Conclusions

Ola

A ver

Que

Poñemos

Aqui

Acknowledgments

The E748 collaboration:

- Santiago:B. FernándezI PC-Caen:
- A. Matta F. Delaunay
 - N. L. Achouri F. Flavigny
 - J. Gibelin
 - M. Marques N Orr
- IJCLab:
 - D. Beaumel M. Assié
 - IVI. ASSIE
 - Y. Blumenfeld
 - S. Franchoo
 - A. Georgiadou
 - V. Girard-Alcindor
 - F. Hammache
 - N. de Séreville
 - A. Meyer
 - I Stefan

- GANIL:
 - B. Jacquot
 - O. Kamalou
 - A. Lemasson
 - M. Rejmund
 - T. Roger
 - O. Sorlin
 - J.C. Thomas
 - M. Vandebrouck
 - B. Bastin
 - F. de Oliveira
 - C. Stodel
- RIKEN:S. Koyama
 - D. Suzuki
- Surrey:N. Timofeyuk

Elastic cross sections

Normalization of all cross-sections was obtained from fits to the elastic data.

Best OMP: new ones DA1p and Haixia!

Kinematical lines

