Composition-based Multi-Relational Graph Convolutional Networks

Shikhar Vashishth*^{1,2} svashish@cs.cmu.edu

Soumya Sanyal*1 soumyasanyal@iisc.ac.in

Vikram Nitin^{1,3} vikram.nitin@columbia.edu

Partha Talukdar¹ ppt@iisc.ac.in

¹Indian Institute of Science, ²Carnegie Mellon University, ³Columbia University

Multi-relational Graphs

- Graphs with directed-labeled edges
- Multi-relational graphs are pervasive, examples include...

Knowledge Graphs

Graph Convolutional Networks (GCNs)

GCN First-order approximation

(Kipf et. al. 2016)

$$h_v = f\left(rac{1}{|\mathcal{N}(v)|} \sum_{u \in \mathcal{N}(v)} W x_u + b
ight), \;\; orall v \in \mathcal{V}.$$

- Most GCN formulations are for simple undirected graphs
- Naive extension of GCNs to Multi-relational graphs using relation-specific filter matrix (W)
 - Suffers from overparameterization

Existing Multi-Relational GCN models

Methods	Node Embeddings	Directions	Relations	Relation Embeddings
GCN Kipf & Welling (2016)	✓			
Directed-GCN Marcheggiani & Titov (2017)	\checkmark	\checkmark		
Weighted-GCN Shang et al. (2019)	\checkmark		\checkmark	
Relational-GCN Schlichtkrull et al. (2017)	✓	\checkmark	\checkmark	

- **Directed-GCN:** Utilizes direction-specific filter matrix
- Weighted-GCN: Learns a scalar weight for each relation
- Relational-GCN: Relation-specific filters in terms of basis matrices

Although solve overparameterization to different degrees of granularity, none of them learn relation embeddings

Motivation

- Extensive research done on embedding Knowledge Graphs
 where representations of both nodes and relations are jointly
 learned.
- Can we develop a GCN framework that can leverage the advances in KGE approaches to:
 - Learn both node and relation embeddings
 - Solve the issue of overparameterization

KG Embedding methods

Graph ConvNets

Contributions

- We propose CompGCN, a novel framework for incorporating multi-relational information in GCNs which leverages a variety of composition operations from KG embedding techniques.
- Unlike previous GCN methods, CompGCN jointly learns to embed both nodes and relations in the graph

Methods	Node Embeddings	Directions	Relations	Relation Embeddings
GCN Kipf & Welling (2016)	✓			
Directed-GCN Marcheggiani & Titov (2017)	✓	\checkmark		
Weighted-GCN Shang et al. (2019)	✓		\checkmark	
Relational-GCN Schlichtkrull et al. (2017)	✓	\checkmark	\checkmark	
COMPGCN (Proposed Method)	✓	✓	✓	✓

Relational Graph with Embeddings

Relational Graph with Embeddings

CompGCN Update

CompGCN: Update Equation

Node Update:

Composition Operation:

$$\phi(\pmb{h}_u^k, \pmb{h}_r^k) \;=\; \left\{ egin{array}{ll} \pmb{e}_s - \pmb{e}_r & ext{Subtraction (TransE)} \ \pmb{e}_s * \pmb{e}_r & ext{Multiplication (DistMult)} \ \pmb{e}_s \star \pmb{e}_r & ext{Circular-correlation (HolE)} \end{array}
ight.$$

Relation Update:

$$oldsymbol{h}_r^{k+1} = oldsymbol{W}_{rel}^k \ oldsymbol{h}_r^k$$

Link Prediction in Knowledge Graph

Knowledge Graph

Inferring missing links

Node Classification

Graph Classification

Molecule Classification

CompGCN: Link Prediction Results

Effect of different GCN models and composition operators

Scoring Function $(=X) \rightarrow$		ConvE		
Methods ↓	MRR	MR	H@10	
X	0.325	244	0.501	
X + D-GCN	0.344	200	0.524	
X + R-GCN	0.342	197	0.524	
X + W-GCN	0.344	201	0.525	
X + COMPGCN (Sub)	0.352	199	0.530	
X + COMPGCN (Mult)	0.353	216	0.532	
X + COMPGCN (Corr)	0.355	197	0.535	
X + COMPGCN (B = 50)	0.350	193	0.530	

ConvE + CompGCN(Corr) gives best performance across all settings.

CompGCN: Link Prediction Results

Performance on Link Prediction

,	FB15k-237			005	WN18RR				
	MRR	H@10	H@3	H@1		MRR	H@10	H@3	H@1
R-GCN	.248	.417	<u>=</u> ;	.151		=	==00	_	 8
ConvE	.325	.501	.356	.237		.43	.52	.44	.40
SACN	.35	.54	.39	.26		.47	.54	.48	.43
RotatE	.338	.533	.375	.241		.476	.571	.492	.428
COMPGCN	.355	.535	.390	.264		.479	.546	.494	.443

CompGCN provides a consistent improvement across all the datasets.

CompGCN: Results

Performance on Node Classification and Graph Classification

CompGCN outperforms or performs comparably to existing baselines.

CompGCN: Scalability

Effect of number of relation basis vectors and relations on FB15k-237

COMPGCN outperforms RGCN even with limited parameters.

Conclusion

- Multi-relational graphs are prevalent in real-world problems.
- Current GCN approaches mainly focus on simple undirected graphs.
- We propose CompGCN, a parameter efficient method for embedding both nodes and relation types.
- We demonstrate the effectiveness of CompGCN for link prediction, node and graph classification tasks.

Paper Link:

<u>Composition-Based Multi-Relational</u> <u>Graph Convolutional Networks</u>

Thank you!

Source Code:

Research Supported by:

github.com/malllabiisc/CompGCN