## Generate Divisors of N

We want to find the all divisors of N. We begin by writing the number as a product of prime factors:

$$N = p_1^{q_1} x p_2^{q_2} x p_3^{q_3} x \dots x p_k^{q_k}$$

We store the prime number and their frequency. Then, recursively generate all possible combination and store the divisors.

```
#include <stdio.h>
#include <math.h>
#include <algorithm>
using namespace std;
#define SIZE N 1000
#define SIZE P 1000
bool flag[SIZE N+5];
int primes[SIZE P+5];
int seive()
{
       int i,j,total=0,val;
       for(i=2;i<=SIZE N;i++) flag[i]=1;</pre>
       val=sqrt(SIZE N)+1;
       for(i=2;i<val;i++)</pre>
               if(flag[i])
                       for(j=i;j*i<=SIZE N;j++)</pre>
                              flag[i*j]=0;
       for(i=2;i<=SIZE N;i++)</pre>
               if(flag[i])
                      primes[total++]=i;
       return total;
}
```

```
int store_primes[100],freq_primes[100], store_divisor[10000],
Total Prime, ans;
//Very Much Faster Divisor Function.....
void divisor(int N)
       int i, val, count;
       val=sqrt(N)+1;
       Total Prime=0;
       for(i=0;primes[i]<val;i++)</pre>
              if(N%primes[i]==0)
              {
                     count=0;
                     while (N%primes[i] == 0)
                            N/=primes[i];
                             count++;
                     store primes[Total Prime]=primes[i];
                     freq primes[Total Prime]=count;
                     Total Prime++;
                     val=sqrt(N)+1; // sqrt again for fast compute.
              }
       }
       if(N>1)
              store primes[Total Prime]=N;
              freq primes[Total Prime]=1;
              Total Prime++;
       }
}
void Generate(int cur,int num)
{
    int i,val;
    if(cur==Total Prime)
        store_divisor[ans++]=num;
    }
    else
    {
        val=1;
        for(i=0;i<=freq primes[cur];i++)</pre>
            Generate(cur+1,num*val);
            val=val*store primes[cur];
        }
    }
}
int main()
```

```
{
       int total=seive();
       int n,i;
       while (scanf("%d", &n) == 1)
              divisor(n);
              ans=0;
              Generate(0,1);
              sort(&store divisor[0],&store divisor[ans]);
              printf("Total No of Divisors: %d\n",ans);
              for(i=0;i<ans;i++)</pre>
                      printf("%d ",store divisor[i]);
              printf("\n");
       return 0;
}
/*
Input:
20
30
15
Output:
Total No of Divisors: 6
1 2 4 5 10 20
Total No of Divisors: 8
1 2 3 5 6 10 15 30
Total No of Divisors: 4
1 3 5 15
*/
```

# Generate Number of Divisors [1 to N]

```
N=p_1^{q_1} x p_2^{q_2} x p_3^{q_3} x \dots x p_k^{q_k}
We know:
                =p_1^{q_1} \times M [where M = p_2^{q_2} \times p_3^{q_3} \times \dots \times p_k^{q_k}]
Number of Divisor N is:
             D(N)=(q1+1) x (q2+1) x (q3+1) x .... x (qk+1)
Number of Divisor M is:
             D(M) = (q2+1) x (q3+1) x ... x (qk+1)
Solve the simple math we find the relation:
             D(N) = (q1+1) \times D(M)
```

Sample C++ Code:

```
int D[1000010];
void DivisorGenerate()
    int i,j,val,N,M,count;
    D[1]=1;
    for(i=2;i<=1000000;i++)
        N=M=i;
        val=sqrt(N)+1;
        for(j=0;primes[j]<val;j++)</pre>
             if (M%primes[j]==0)
                 count=0;
                 while (M%primes[j]==0)
                     M/=primes[j];
                     count++;
                 D[N] = (count+1) *D[M];
                 break;
             }
        }
        if(M==N)
                              //Special Case if N equal prime
             D[N]=2;
    }
```

## Generate Sum of Divisors [1 to N]

$$n = p_1^{e_1} * p_2^{e_2} * \dots * p_k^{e_k}$$

$$= p_1^{e_1} * m \qquad m = p_2^{e_2} * \dots * p_k^{e_k}$$

$$\sigma(n) = \frac{p_1^{e_1+1} - 1}{p_1 - 1} * \frac{p_2^{e_2+1} - 1}{p_2 - 1} * \dots * \frac{p_k^{e_k+1} - 1}{p_k - 1}$$

$$\sigma(\mathbf{m}) = \frac{p_2^{e_2+1}-1}{p_2-1} * \cdots * \frac{p_k^{e_k+1}-1}{p_k-1}$$

### Replace The value:

$$\sigma(n) = \frac{p_1^{e_1+1}-1}{p_1-1} * \sigma(m)$$

# Generate Relative Prime [1 to N]

$$n = p_1^{e_1} * p_2^{e_2} * \dots * p_k^{e_k}$$

$$= p_1^{e_1} * m \qquad m = p_2^{e_2} * \dots * p_k^{e_k}$$

$$\Phi(n) = (p_1^{e_1} - p_1^{e_1-1}) (p_2^{e_2} - p_2^{e_2-1}) \dots (p_k^{e_k} - p_k^{e_k-1})$$

$$\Phi(m) = (p_2^{e_2} - p_2^{e_2-1}) \dots (p_k^{e_k} - p_k^{e_k-1})$$

Replace The value:

$$\phi(n) = (p_1^{e_1} - p_1^{e_1-1}) * \phi(n)$$

# Number of Trailing Zeroes of N Factorial Base B

It is a usual exercise in Elementary Number Theory to compute the number of trailing zeroes in the base 10 expansion of the factorial of any integer. In fact, given any base b and any integer n, it is easy to compute the number of trailing zeroes of the base b expansion of n!. Namely, if we denote such number by  $Z_b(n)$ , we have.

### Lemma 1.

- (1)  $Z_p(n) = \sum_{i \ge 1} \left[ \frac{n}{p^i} \right] = \frac{n \sigma_p(n)}{p 1}$ , where  $\sigma_p(n)$  is the sum of the digits of the base p expansion of n.
- (2)  $Z_{p^r}(n) = \left[\frac{Z_p(n)}{r}\right]$  for every  $r \ge 1$ . (3) If  $b = p_1^{r_1} \cdots p_s^{r_s}$ , then  $Z_b(n) = \min_{1 \le i \le s} Z_{p_i^{r_i}}(n)$ .

#### C++ Code:

```
#include <stdio.h>
#include <math.h>
#include <algorithm>
using namespace std;
#define SIZE N 1000
#define SIZE P 1000
bool flag[SIZE N+5];
int primes[SIZE P+5];
int seive()
{
       int i,j,total=0,val;
       for(i=2;i<=SIZE N;i++) flag[i]=1;</pre>
       val=sqrt(SIZE N)+1;
       for(i=2;i<val;i++)
               if(flag[i])
                      for(j=i;j*i<=SIZE N;j++)</pre>
                              flag[i*j]=0;
```

```
for(i=2;i<=SIZE N;i++)</pre>
               if(flag[i])
                      primes[total++]=i;
       return total;
int factors in factorial(int N,int p)
{
       int sum=0;
       while(N)
               sum+=N/p;
              N/=p;
       }
       return sum;
}
int Trailingzero Base B(int N,int B)
       int i,ans,freq,power;
       ans=1000000000;
       for (i=0; primes[i] \le B; i++)
               if(B%primes[i]==0)
               {
                      freq=0;
                      while (B%primes[i] ==0)
                              freq++;
                              B/=primes[i];
                      power=factors in factorial(N,primes[i]);
                      ans=min(ans,power/freq);
               }
       return ans;
}
int main()
{
       int total=seive();
       int i,N,B,zero;
       while (scanf("%d %d", &N, &B) == 2)
       {
               zero=Trailingzero Base B(N,B);
              printf("%d\n",zero);
       return 0;
```

## Last Non Zero Digit of Factorial

#### **Approach 1: Slow**

We want to last non zero digit of Factorial N. Example: 5! = 120, here last non zero digit 2. How calculate? We know any factorial can be represented by prime factor.

$$N! = 2^{q2} \times 3^{q3} \times 5^{q5} \times 7^{q7} \times 11^{q11} \times 13^{q13}...$$

But we know that, pair(5,2) create a trailing zero and power of 5(q5) is less than power of 2(q2). So we discard it for this problem

$$N!'' = 2^{q^2-q^5} \times 3^{q^3} \times 7^{q^7} \times 11^{q11} \times 13^{q13}...$$

So that last non Zero digit:

```
L(N)=(N!")%10
     =(( 2^{q^2-q^5}%10) x (3^{q^3}%10) x (7^{q^7}%10) x (11^{q11}%10) x (13^{q13}%10) ......)%10
```

#### **Approach 2: Very Faster**

```
L(0)=1
L(1)=1
L(2)=2
L(3)=6
L(4)=4
L(N) = (2^{N/5} \times L(N/5) \times L(N\%5))\%10
    = ((2^{N/5} \%10) \times L(N/5) \times L(N\%5))\%10
```

```
int PTwo(int N)
{
    int T[]={6,2,4,8};
    if(N==0) return 1;
    return T[N%4];
}
int LastNZDigit(int N)
{
    int A[]={1,1,2,6,4};
    if(N<5) return A[N];</pre>
    return (PTwo(N/5)*LastNZDigit(N/5)*LastNZDigit(N%5))%10;
}
```

## **Greatest Common Divisor**

- If d|a and d|b, then d|(ax+by) for any integers x and y GCD(a, b) = GCD(b, a)
- GCD(a, b) = GCD(-a, b)
- GCD(a, b) = GCD(|a|, |b|)
- GCD(a,0) = |a|
- GCD(a, ka) = |a|
- If a and b are any integers, not both zero, then GCD(a,b) is the smallest positive element of the set  $\{ax + by : x, y \text{ in } \mathbf{Z}\}\$  of linear combinations of a and b.
- GCD(a, b) = GCD(b, a mod b)
- LCM(a,b)=(a\*b)/GCD(a,b)

If 
$$A = p_1^{x_1} x p_2^{x_2} x p_3^{x_3} x \dots x p_k^{x_k}$$

$$B = p_1^{y1} x p_2^{y2} x p_3^{y3} x \dots x p_k^{yk}$$

GCD(A,B)= 
$$p_1^{\min(x_1,y_1)} x p_2^{\min(x_2,y_2)} x \dots x p_k^{\min(x_k,y_k)}$$

$$LCM(A,B) = p_1^{\max(x_1,y_1)} x p_2^{\max(x_2,y_2)} x \dots x p_k^{\max(x_k,y_k)}$$

### **Extended Euclidean Algorithm:-**

Given a and b. Extended Euclidean Algorithm to find x, y and gcd(a,b). Form This equation ax+by=gcd(a,b)

```
int Extended Euclidean(int a, int b, int &x, int &y)
{
    if(b==0)
        x=1; y=0;
        return a;
    int d=Extended Euclidean(b,a%b,y,x);
    y=y-(a/b)*x;
    return d;
}
```

## Congruence

**Definition:** Two integers a and b are said to be congruence (or equivalent) module an integer m — written  $a \equiv b \mod m$  — if m | (a-b).

**Example:** In class we said that  $19\equiv 2 \mod 17$ , that  $51\equiv 0 \mod 17$ , and that  $10 \equiv -10 \mod 20$ .

- 1. **Reflexive:** for any integer a and any modulus m, we have  $a \equiv a \mod m$ .
- 2. **Symmetric:** for any integers a and b and any modulus m, if  $a \equiv b \mod a$  $b \equiv a \mod m$ . *m* then
- 3. **Transitive:** for any integers a,b and c, and any modulus m, if  $a \equiv b \mod a$  $b \equiv c \mod m$ , then  $a \equiv c \mod m$ .

#### **Proof:**

To prove the reflexive property, note that  $a \equiv a \mod m$  just means that we want to verify  $m \mid (a-a)=0$ . We saw a while back, though, that any integer m divides 0, so this statement is valid.

To prove symmetry, we need to show that  $a \equiv b \mod m$  implies  $b \equiv a \mod m$ . If  $a \equiv b \mod m$ m, though, the definition of modular congruence tells us that  $m \mid (a-b)$ , so that mk=(a-b). But then we have m(-k)=-(a-b)=b-a, and so  $m \mid (b-a)$ . By the definition of modular congruence, we therefore have  $b \equiv a \mod m$ .

Finally, for transitivity we are supposed to assume that  $a \equiv b \mod m$  and  $b \equiv c \mod m$ , and somehow conclude that  $a \equiv c \mod m$ . To prove this result, we note that the first two congruence conditions tells us that  $m \mid (a-b)$  and  $m \mid (b-c)$ . Our result on divisibility of integral linear combinations, then, tells us that  $m \mid (a-b)+(b-c)=a-c$ . Hence the definition of modular congruence tells us that  $a \equiv c \mod m$ .

The benefit of showing that modular congruence is an equivalence relation is that this tells us that congruence class partition the integers into distinct sets. For instance, when the modulus is 3, we know that every integer fits into one of the three collections

Coming up with a collection of integers which represent all these possible classes, then, is an important task. This leads to the following

**Definition:** A collection of integers is called a complete residue system for modulus m if every integer is congruent modulo m to exactly one element from the collection.

The **modular multiplicative inverse** of an integer a modulo m is an integer x such that

$$a^{-1} \equiv x \pmod{m}$$
.

That is, it is the multiplicative inverse in the ring of integers modulo m. This is equivalent to

$$ax \equiv aa^{-1} \equiv 1 \pmod{m}$$
.

The multiplicative inverse of a modulo m exists if and only if a and m are coprime (i.e., if gcd(a, m) = 1). If the modular multiplicative inverse of a modulo m exists, the operation of division by a modulo m can be defined as multiplying by the inverse, which is in essence the same concept as division in the field of reals.

The modular multiplicative inverse of a modulo m can be found with the extended Euclidean algorithm.

$$ax + by = \gcd(a, b)$$

where a, b are given and x, y, and gcd(a, b) are the integers that the algorithm discovers. So, since the modular multiplicative inverse is the solution to

$$ax \equiv 1 \pmod{m}$$

by the definition of congruence,  $m \mid ax - 1$ , which means that m is a divisor of ax - 1. This, in turn, means that

$$ax - 1 = qm$$
.

Rearranging produces

$$ax - qm = 1$$

with a and m given, x the inverse, and q an integer multiple that will be discarded. This is the exact form of equation that the extended Euclidean algorithm solves—the only difference being that gcd(a, m) = 1 is predetermined instead of discovered. Thus, a needs to be co-prime to the modulus, or the inverse won't exist. The inverse is x, and q is discarded.

### C++ Code Inverse Modulo Using Extended Euclidean Algorithm:

```
#include <iostream>
#include <algorithm>
#include <stdio.h>
using namespace std;
int Extended Euclidean(int a,int b,int &x,int &y)
    if(b==0)
        x=1; y=0;
        return a;
    }
    int d;
    d=Extended Euclidean(b,a%b,y,x);
    y=y-(a/b)*x;
    return d;
}
int Inverse Modulo(int a,int m)
{
    int x,y,d;
    d=Extended_Euclidean(a,m,x,y);
    if(d==1) return (x+m)%m; //Solution Exists
    return -1; //No Solution
}
int main()
    int ans,a,m;
    while(scanf("%d %d",&a,&m))
        ans=Inverse Modulo(a,m);
        printf("%d\n",ans);
    return 0;
}
//Input:
98 101
65 79
Output:
67
62
```

## Inverse Modulo (Using Fermat Little Theorem)

The modular multiplicative inverse of an integer a modulo m is an integer x such that:

$$a^{-1} \equiv x \pmod{m}$$
.

That is, it is the multiplicative inverse in the ring of integers modulo m. This is equivalent to

$$ax \equiv aa^{-1} \equiv 1 \pmod{m}$$
.

The multiplicative inverse of a modulo m exists if and only if a and m are coprime (i.e., if gcd(a, m) = 1). Let's see, Calculate Modular Multiplicative Inverse using Fermat Little Theorem:

Fermat's little theorem states that if **m** is a prime and **a** is an integer co-prime to m, then:

```
a^{m-1} \equiv 1 \pmod{m}
a^{-1}a^{m-1} \equiv a^{-1} \pmod{m}
a^{m-2} \equiv a^{-1} \pmod{m}
```

That means:  $(a^{-1} \mod m) = (a^{m-2} \mod m)$  if m is prime

### How Can we calculate the value of $(a^{m-2} \mod m)$ ? Using Big Mod Algorithm: Here is C++ Code:

```
int BigMod(long long B,long long P,long long M)
{
       long long R=1;
       while (P>0)
               if(P%2==1)
                      R=(R*B)%M;
               P/=2;
               B= (B*B) %M;
       }
       return R;
}
int Inverse Modulo(int a,int m)
{
    return BigMod(a,m-2,m);
}
```

## Wilson Theorem and Its Generalization

Wilson's theorem can be generalized to the following statement:

$$\forall n \in \mathbb{N} : (n-1)! \equiv \begin{cases} -1 \pmod{n} & \leftarrow n \text{ is prime} \\ 2 \pmod{n} & \leftarrow n = 4 \\ 0 \pmod{n} & \text{otherwise} \end{cases}$$

# Gauss's generalization

The following is a stronger generalization of Wilson's theorem, due to Carl Friedrich Gauss:

$$\prod_{\substack{k=1\\ \gcd(k,m)=1}}^{m} k \equiv \begin{cases} 0 \pmod{m} & \text{if } m=1\\ -1 \pmod{m} & \text{if } m=4, \ p^{\alpha}, \ 2p^{\alpha}\\ 1 \pmod{m} & \text{otherwise} \end{cases}$$

Here  $\mathbf{p}$  is an odd prime and  $\mathbf{\alpha}$  is positive integer.

Problem ID: TJU 3618

## **Divisibility Properties**

**Definition:**.  $d \mid n$  means there is an integer k such that n = dk.

**Theorem:** (Divisibility Properties). If n, m, and d are integers then

the following statements hold:

1. n | n (everything divides itself)

2.  $d \mid n$  and  $n \mid m \Rightarrow d \mid m$  (transitivity)

3. d | n and d |  $m \Rightarrow d$  | an + bm for all a and b (linearity property)

4.  $d \mid n \Rightarrow ad \mid an \text{ (multiplication property)}$ 

## **Divisibility Rules**

### By Janine Bouyssounouse

The divisibility rules make math easier. Did you ever wonder how people could tell if something was divisible by a number just by looking at it? These rules are how they do it. Memorize a few simple rules and simplifying fractions and prime factorization will be so much easier.

| Number          | Divisibility Rule                               | Example                   |  |
|-----------------|-------------------------------------------------|---------------------------|--|
| Two (2)         | A number is divisible by two if it is           | 642 is divisible by two   |  |
| 1 1/10 111      | even. Another way to say a word is              | because it ends in a      |  |
|                 | even is to say it ends in 0, 2, 4, 6 or 8.      | two, which makes it an    |  |
|                 |                                                 | even number               |  |
| Three           | A number is divisible by three if the           | 423 is divisible by three |  |
| (3)             | sum of the digits adds up to a                  | because $4 + 2 + 3 = 9$ . |  |
|                 | multiple of three.                              | Since nine is a multiple  |  |
|                 | 410001100000000000000000000000000000000         | of three (or is divisible |  |
|                 |                                                 | by three), then 423 is    |  |
|                 |                                                 | divisible by three        |  |
| Four (4)        | A number is divisible by four if it is          | 128 is divisible by four  |  |
|                 | even and can be divided by two twice.           | because half of it is 64  |  |
|                 |                                                 | and 64 is still divisible |  |
| - UV            |                                                 | by two                    |  |
| Five (5)        | A number is divisible by five if it <b>ends</b> | 435 is divisible by five  |  |
| 165 168         | in a five or a zero.                            | because it ends in a five |  |
| Six (6)         | A number is divisible by six if it is           | 222 is divisible by six   |  |
| s. of (1) 1 1 1 | divisible by both two and three.                | because it is even, so it |  |
|                 | 77                                              | is divisible by two and   |  |
|                 |                                                 | its digits add up to six, |  |
|                 |                                                 | which makes it divisible  |  |
|                 |                                                 | by three                  |  |
| Nine (9)        | A number is divisible by nine if the            | 9243 is divisible by      |  |
|                 | sum of the digits adds up to a                  | nine because the sum of   |  |
|                 | multiple of nine. This rule is similar to       | the digits adds up to     |  |
|                 | the divisibility rule for three.                | eighteen, which is a      |  |
|                 |                                                 | multiple of nine          |  |
| Ten (10)        | A number is divisible by ten if it <b>ends</b>  | 730 is divisible by ten   |  |
|                 | in a zero. This rule is similar to the          | because it ends in zero   |  |
|                 | divisibility rule for five.                     |                           |  |

## Linear Diophantine Equations

**Theorem 4.6** Let a, b and c be integers with a and b not both zero.

The linear Diophantine equation

$$ax + by = c$$

has a solution if and only if  $d = \gcd(a, b)$  divides c.

(ii) If d | c, then one solution may be found by determining u and v such that d = ua + vb and then setting

$$x_0 = uc/d$$
 and  $y_0 = vc/d$ .

All other solutions are given by

$$x = x_0 + (b/d)t$$
,  $y = y_0 - (a/d)t$ 

for  $t \in \mathbb{Z}$ .

### Finding all Solutions

We have (under the condition  $d \mid c$ ) infinitely many solutions to our linear Diophantine equation. But could there be others about which we are currently unaware?

We shall need the following result in the course of our discussion.

**Lemma 4.5** Let r, s and t be integers and assume that r and s are coprime. If  $r \mid st$ , then  $r \mid t$ .

Recall that to say r and s are coprime is to say that their greatest common divisor is 1.

PROOF: gcd(r,s) = 1, so by part (ii) of Theorem 2.6, there exist integers u and v such that

$$ur + vs = 1.$$

Therefore

$$t = t(ur + vs) = utr + vst.$$

Now  $r \mid st$  by assumption, while clearly r divides utr. Hence  $r \mid (utr + vst)$ , so  $r \mid t$ , as claimed.

Now let us return to our linear Diophantine equation (4.1). Suppose we have fixed one solution  $(x_0, y_0)$  to (4.1). Let (x, y) be any other solution. So we have

$$ax + by = c = ax_0 + by_0.$$

Hence

$$a_1d(x - x_0) = b_1d(y - y_0).$$

Dividing by d gives

$$a_1(x-x_0) = b_1(y-y_0).$$

Now  $a_1 = a/d$  and  $b_1 = b/d$ , so we have  $gcd(a_1, b_1) = 1$  (see Question 3 on Tutorial Sheet II). Hence  $a_1$  and  $b_1$  are coprime, while the above equation tells us

$$a_1 \mid b_1(y - y_0).$$

Hence Lemma 4.5 tells us that

$$a_1 \mid (y_0 - y).$$

This means that  $y_0 - y = a_1t$  for some  $t \in \mathbb{Z}$ . Substituting into the above equation gives

$$a_1(x - x_0) = b_1 a_1 t$$
.

Therefore

$$x - x_0 = b_1 t.$$

Hence  $x = x_0 + b_1 t$  and  $y = y_0 - a_1 t$ .

So we have shown that all solutions to (4.1) arise in the form we previously presented.

We summarise our finding as follows:

Example 4.8 A customer bought some apples and some oranges, 12 pieces of fruit in total, and they cost him £1.32. If an apple costs 3p more than an orange, and if more apples than oranges were purchased, how many pieces of each fruit were bought?

**Solution:** Let x be the number of apples bought. Then 12 - x is the number of oranges bought. Let y be the cost of an apple. Then y-3 is the cost of an orange. We obtain the following equation

$$xy + (12 - x)(y - 3) = 132.$$

Therefore

$$xy + 12y - 36 - xy + 3x = 132$$
$$3x + 12y = 168$$
$$x + 4y = 56$$

We can solve this equation by inspection:

$$x = 56 - 4t, \quad y = t \quad \text{(for } t \in \mathbb{Z}\text{)}.$$

But we have further requirements: 6 < x < 12, so

$$6 < 56 - 4t < 12$$
.

Therefore

$$44 < 4t < 50$$
$$11 < t < 12\frac{1}{2}.$$

Hence t = 12. We deduce that

$$x = 8, y = 12.$$

So the customer bought 8 apples at 12p each and 4 oranges at 9p each. (Finally check our working:  $8 \cdot 12 + 4 \cdot 9 = 132$ .)

# **Problem - Marbles (**UVa 10090**)**

I have some (say, n) marbles (small glass balls) and I am going to buy some boxes to store them. The boxes are of two types:

> Type 1: each box costs  $c_1$  Taka and can hold exactly  $n_1$  marbles Type 2: each box costs  $c_2$  Taka and can hold exactly  $n_2$  marbles

I want each of the used boxes to be filled to its capacity and also to minimize the total cost of buying them. Since I find it difficult for me to figure out how to distribute my marbles among the boxes, I seek your help. I want your program to be efficient also.

### Input

The input file may contain multiple test cases. Each test case begins with a line containing the integer n (1 <= n <= 2,000,000,000). The second line contains  $c_1$  and  $n_1$ , and the third line

contains  $c_2$  and  $n_2$ . Here,  $c_1$ ,  $c_2$ ,  $n_1$  and  $n_2$  are all positive integers having values smaller than 2,000,000,000.

A test case containing a zero for *n* in the first line terminates the input.

#### Output

For each test case in the input print a line containing the minimum cost solution (two nonnegative integers  $m_1$  and  $m_2$ , where  $m_i$  = number of Type i boxes required) if one exists, print "failed" otherwise.

If a solution exists, you may assume that it is unique.

| Sample Input | Sample Output |  |
|--------------|---------------|--|
| 43           | 13 1          |  |
| 13           | failed        |  |
| 2 4          |               |  |
| 40           |               |  |
| 5 9          |               |  |
| 5 12         |               |  |
| 0            |               |  |

 $n_1m_1 + n_2m_2 = n$  ----- (1)

#### **Solution:**

As this is a linear function, its minimum value will be on either of the boundaries.

## Modular Linear Equations

Find solutions to the equation –

```
ax = b \pmod{n} where a > 0 and n > 0
```

- This equation is solvable for the unknown x if and only if  $gcd(a, n) \mid b$ .
- This equation either has d distinct solutions modulo n, where d = gcd(a, n), or it has no solutions.
- Let  $d = \gcd(a, n)$  and suppose that d = ax' + ny' for some integers x' and y'. If  $d \mid b$ , then the equation  $ax = b \pmod{n}$  has one of its solutions the value  $x_0$ , where  $x_0 = x'(b/d) \mod n$
- The other solutions of the equation would be –

```
x_i = x_0 + i \, (n/d) where i = 0, 1, \dots, d-1
```

### Algorithm:

```
MODULAR-LINEAR-EQUATION-SOLVER(a, b, n)
       (d, x', y') = EXTENDED-EUCLID(a, n)
       if d | b
              x0 = x' (b/d) \mod n
              for i = 0 to d-1
                     print (x0 + i(n/d)) \mod n
       else
              print "no solutions"
```

# Chinese Remainder Theorem

• Given a set of simultaneous congruences

```
x = a_1 \pmod{n_1}
x = a_2 \pmod{n_2}
.....
.....
x = a_i \pmod{n_i}
```

• For i = 1, 2, .... k and for which the  $n_i$  are pairwise relatively prime, the unique solution of the set of congruences is -

$$x = a_1 b_1 (N/n_1) + .... + a_k b_k (N/n_k) \pmod{N}$$

- Where  $N = n_1 n_2 \dots N_k$
- And the b<sub>i</sub> are determined from

```
b_i (N/n_i) = 1 \pmod{n_i}
b_i M = 1 \pmod{n_i} [M = (N/n_i)]
b_i = M^{-1} \pmod{n_i} [Multiply by M]
```

 $b_i$  is the Inverse of M.

### **Practice Problems:**

**LOJ:** 1054, 1067, 1102, 1306, 1007, 1138, 1259, 1278, 1289, 1319, 1306

<u>UVa:</u> 10236, 10329, 10680, 10789, 10924, 10948, 11191, 11347, 11408, 11440, 10090,

**TJU:** 3618, 1233, 1375, 1476, 1528, 1637, 1698, 1730, 1748, 1991, 2218, 2308, 2502, 2520, 2526, 2601, 2648, 2658, 2859, 2901, 2916, 3043, 3076, 3150, 3232, 3237, 3238, 3259, 3261, 3262, 3288, 3293, 3467, 3483, 3496, 3599,3618

### **Prepared By:**

Forhad Ahmed( Email: <a href="mailto:forhadsustbd@gmail.com">forhadsustbd@gmail.com</a>)