LECTURE 15

WINTER 2021
APPLIED MACHINE LEARNING
CIHANG XIE

SLIDE CREDIT:
NARGES NOROUZI
HUNG-YI LEE

THREE STEPS FOR DEEP LEARNING

FULLY CONNECT FEEDFORWARD NETWORK

Deep means many hidden layers

THREE STEPS FOR DEEP LEARNING

Step I: define a set of function Step 2: goodness of function Step 3: pick the best function

TOTAL LOSS

For all training data ...

Total Loss:

$$L = \sum_{r=1}^{R} l_r$$

As small as possible

Find <u>the network</u>

<u>parameters θ*</u> that minimize total loss L

THREE STEPS FOR DEEP LEARNING

Step I: define a set of function Step 2: goodness of function Step 3: pick the best function

GRADIENT DESCENT

Network parameters $\theta = \{\theta_1, \theta_2, \dots\}$

Find **network parameters** θ^* that minimize total loss L

OUTLINE

Introduction of Deep Learning

"Hello World" for Deep Learning

Tips for Deep Learning

RECIPE FOR DEEP LEARNING

RECIPE FOR DEEP LEARNING

YES

Choosing proper loss

Mini-batch

New activation function

Adaptive Learning Rate

Momentum

Good Results on Testing Data?

YES

Good Results on Training Data?

CHOOSING PROPER LOSS

When using softmax output layer, choose cross entropy

Total Loss

http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf

RECIPE FOR DEEP LEARNING

YES

Choosing proper loss

Mini-batch

New activation function

Adaptive Learning Rate

Momentum

Good Results on Testing Data?

YES

Good Results on Training Data?

model.fit(x_train, y_train, epochs = 200, batch_size = 100)

MINI-BATCH

We do not really minimize total loss!

Mini-batch

Mini-batch

- Randomly initialize network parameters
- Pick the Ist batch $L' = l^1 + l^{31} + \cdots$ Update parameters once
- Pick the 2^{nd} batch $L'' = l^2 + l^{16} + \cdots$ Update parameters once
- Until all mini-batches have been picked

one epoch

Repeat the above process

TODAY

- More Deep Learning Topics
 - Another activation function ReLu
 - Adaptive learning rate
 - Momentum

RECIPE FOR DEEP LEARNING

YES

Choosing proper loss

Mini-batch

New activation function

Adaptive Learning Rate

Momentum

Good Results on Testing Data?

YES

Good Results on Training Data?

HARD TO GET THE POWER OF DEEP ...

VANISHING GRADIENT PROBLEM

Smaller gradients

Learn very slow

Almost random

Larger gradients

Learn very fast

Already converge

VANISHING GRADIENT PROBLEM

Intuitive way to compute the derivatives $...\frac{\partial l}{\partial \theta} = ? \frac{\Delta l}{\Delta \theta}$

RELU

Rectified Linear Unit (ReLU)

[Xavier Glorot, AISTATS'11] [Andrew L. Maas, ICML'13] [Kaiming He, arXiv'15]

Reason:

- I. Fast to compute
- 2. Biological reason
- 3. Vanishing gradient problem

RELU

RELU

A Thinner linear network

RELU - VARIANT

Leaky ReLU

Parametric ReLU

α also learned by gradient descent

• SILU [Elfwing et al 2018; Hendrycks et al 2017; Ramachandran et al 2017] $SILU(x) = x \ sigmoid(x)$

SmoothReLU

RECIPE FOR DEEP LEARNING

YES

Choosing proper loss

Mini-batch

New activation function

Adaptive Learning Rate

Momentum

Good Results on Testing Data?

YES

Good Results on Training Data?

LEARNING RATES

Set the learning rate α carefully

If learning rate is too large

Total loss may not decrease after each update

LEARNING RATES

Set the learning rate α carefully

If learning rate is too large

Total loss may not decrease after each update

If learning rate is too small

Training would be too slow

LEARNING RATES

- Popular & Simple Idea: Reduce the learning rate by some factor every few epochs.
 - At the beginning, we are far from the destination, so we use larger learning rate
 - After several epochs, we are close to the destination, so we reduce the learning rate

- E.g.
$$\frac{1}{t}$$
 decay: $\alpha^{(t)} = \frac{\alpha}{\sqrt{t+1}}$

- Learning rate cannot be one-size-fits-all
 - Giving different parameters different learning rates

ADAGRAD

Original:
$$\theta \leftarrow \theta - \alpha \partial L / \partial \theta$$

Adagrad:
$$\theta \leftarrow \theta - \alpha_{\theta} \partial L / \partial \theta$$

Parameter-dependent learning rate

$$\alpha_{\theta} = \frac{\alpha}{\sqrt{\sum_{i=0}^{t}(g^{i})^{2}}}$$
 constant
$$g^{i} \text{ is } \partial L / \partial \theta \text{ obtained at the } i^{th} \text{ update}$$

Summation of the square of the previous derivatives

$$\alpha_{\theta} = \frac{\alpha}{\sqrt{\sum_{i=0}^{t} (g^{i})^{2}}}$$

$$heta_1 egin{array}{c} extbf{g}^0 \ extbf{0.1} \ ext$$

$$\theta_2 = \frac{g^0}{20.0}$$

Learning rate:

Learning rate:

$$\frac{\alpha}{\sqrt{0.1^2}} = \frac{\alpha}{0.1} = \frac{\alpha}{\sqrt{20^2}} = \frac{\alpha}{\sqrt{20^2}}$$

 $\sqrt{0.1^2 + 0.2^2}$

- Observation: I. Learning rate is smaller and smaller for all parameters
 - 2. Smaller derivatives, larger learning rate, and vice versa

Very useful tutorial on an overview of gradient descent optimization algorithms

QU17 4

Quiz 4

Not available until May 18 at 3:00pm | Due May 18 at 11:59pm | 8 pts | 8 Questions

QUESTIONSP