FACULDADE DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO UNICAMP EA-044 – PLANEJAMENTO E ANÁLISE DE SISTEMAS DE PRODUÇÃO Prova 1 - 17/09/2013

- 1) Uma indústria produz fosfato a partir do processamento de rochas extraídas de oito diferentes minas; i-1, 2, ..., 8. O processamento de cada tipó de rocha resulta em um produto com diferentes concentrações de fosfato o produto da rocha i tem r_i % de fosfafo; o seu custo de extração e processamento é de \$c,/tonelada. A indústria fornece mensalmente fosfato para 18 diferentes clientes, k=1, 2, ..., 10, sendo a quantidade a ser fornecida a cada mês t conhecida, p_{la}, a um preço de \$v_k/tonelada. O produto fornecido para cada cliente deve ter a concentração de fosfato dentro de limites previamente estabelecidos (\$s_k^{min}, s_k^{max}). O produto processado pode ser estocado, com custo mensal de estocagem de \$b/tonelada. A indústria pode processar por mês até d toneladas de fosfato. O gerente da indústria quer determinar qual o "mix" de processamento de rochas para os próximos 12 meses. Formule como um problema de Programação Linear,
- 2) Resolva o problema a seguir pelo Método Simplex.

Max
$$-1x1 - 2x2 + 3x3$$

S. a: $x1 + x2 + x3 \le 6$
 $x1 - x2 + x3 \ge -6$
 $x1, x2 \ge 0, 0 \le x3 \le 4$.

Determine a solução ótima pelo Método das Duas Fases.

Min z = -x1 - 2x2
S. a:
$$x1 + x2 \le -1$$

 $x1 + 2x2 \ge -4$
 $x1, x2 \le 0$

4) As tabelas a seguir mostram o final da Fase I para os problemas P1 e P2 respectivamente (A primeira linha é relativo à função objetivo e x5 é a variável artificial. O que se pode concluir dos dois problemas. Justifique.

X1	X2	- X3	X4	X5	b
• 1	0 1	• 0	• 1	00	
2	2	1	-2	0	2
-1	1	0	1	1	4

Xl	X2	X3-	X4	X5	b	
	• 1	0 0	• 7	. 0		
-2	1	1	-2	0	2	
0	0	0	0	1	0	11

5) A tabela a seguir mostra o quadro ótimo do problema a seguir. Supondo que cada restrição é relativa ao consumo de uma dada matéria-prima e que uma quantidade adicional pode ser adquirida. Qual matéria-prima seria vantajosa comprar? Justifique.

Max z =
$$2 \times 1 + \times 2$$

S. a: $\times 1 + \times 2 \le 4$

	$-X1 + 2X2 \le 2$,	$x_1, x_2 \ge 0$		
0	-1	-2	0	
1	1	1	0	4
0	3	1	1	6