CHO3 - G^{tés} sur les fonctions - Exercices (Correction)

Exercice 1

- **1.** La fonction f est définie sur [-2;3] car la courbe est tracée pour x allant de -2 à 3.
- **2.** L'image de 1 par f est 2 (hauteur de la courbe en x = 1).
- **3.** Par lecture graphique, on lit f(3) = 0 (la courbe est *sur* l'axe des abscisses).
- **4.** Les antécédents de 2 par f sont (on trace la droite horizontale de hauteur 2): -2; -1,4; 1 et 2,5.
- **5.** On peut citer -0.75 ou 3.88 (par exemple) comme nombre qui n'admettent pas d'antécédents par f.

Exercice 2 ____

- 1. L'image de -1 par j est j(-1) = -8 et l'image de 2 par j est j(2) = 4.
- **2.** On lit h(-1) = 1 et h(4) = 2.
- **3.** On trace la droite horizontale de hauteur 4 et on note les abscisses des points d'intersection de C_j avec cette droite.

Les solutions de j(x) = 4 sont donc x = 2 et x = 3.

4. On s'intéresse aux points d'intersection des deux courbes. Les solutions de h(x) = j(x) sont donc x = 0; x = 1 et x = 4.

Exercice 3 ____

- 1. a. Les solutions de f(x) = 0 sont $x \approx -1.3$; $x \approx 0.5$ et $x \approx 2.85$.
 - **b.** Les solutions de f(x) = g(x) sont x = -1; x = 0 et x = 2.
 - **c.** Les solutions de g(x) = -3 sont $x \approx -2.8$ et $x \approx 1.8$
- 2. Résoudre graphiquement :
 - **a.** $f(x) \ge -1$ donne $S = [-1,5;0,75] \cup [2,8;3]$.
 - **b.** f(x) < g(x) donne $S = [-3; -1[\cup]0; 2[$.
 - **c.** $g(x) \le 1$ donne $S = [-3; -1,75] \cup]0,75;3].$

Exercice 4 _

- **1.** La fonction f est définie sur [-4;7].
- **2.** Graphiquement, f(2) = 2; et l'image de -4 par f est f(-4) = -1.
- 3. Les éventuels antécédents de 1,5 par f sont (on trace la droite horizontale de hauteur 1,5): 1,1; 3 et 5,6.
- **4.** Le maximum de f sur [-4;7] est M=3 (atteint en x=7). Le minimum de f sur [-4;7] est m=-2 (atteint en x=-2).
- **5.** Les solutions de :
 - **a.** f(x) = 0 sont x = 0;
 - **b.** $f(x) \ge 0$ sont S = [0; 7];
 - **c.** f(x) = 2 sont x = 2 et $x \approx 6,25$.
- **6. a.** La fonction f est:
 - décroissante sur [-4; -2];
 - puis croissante sur [-2;2];
 - puis décroissante sur [2;4];

- puis croissante sur [4;7].
- **b.** On obtient donc le tableau de variations suivant :

x	-4	-2	2	4	7
f	-1	-2	2		3

Exercice 5

x	-5	a	-2	1	4	b	6	c	10
f	-4		7	2	6	0	-1	0	, 1

- **1. a.** La fonction f est définie sur [-5;10] (valeurs extrêmes de la ligne des x).
 - **b.** Le maximum de f sur [-5;10] est M=7 (atteint en x=-2).
 - **c.** Le minimum de f sur [-5;10] est m=-4 (atteint en x=-5).
 - **d.** On *compte* le nombre de fois où les flèches *passent* par 0, et on comptabilise 3 solutions pour f(x) = 0.
 - e. On obtient le tableau de signes :

x	-5		а		b		c		10
f(x)		_	0	+	0	_	0	+	

On peut proposer la courbe suivante :

- 2. Pour comparer des images, on peut commencer par repérer s'ils sont « sur une même flèche » :
 - **a.** f(3) et f(4) sont sur une même flèche (\nearrow), donc $f(3) \le f(4)$;
 - **b.** f(5,5) et f(5,7) sont sur une même flèche (\(\cappa\)), donc $f(5,5) \ge f(5,7)$;
 - **c.** f(2) et f(7) ne sont pas sur une même flèche, mais $-1 \le f(7) \le 1 < 2 \le f(2) \le 6$, donc f(7) < f(2);
 - **d.** f(-4) et f(0) ne sont pas sur une même flèche, et rien ne permet de les comparer...

Exercice 6

- 1. a. L'altitude du projectile au temps t = 2 s est $h(2) = -5 \times 2^2 + 100 \times 2 = 180$ soit 180 m.
 - **b.** L'altitude du projectile au temps t = 10 s est $h(10) = -5 \times 10^2 + 100 \times 10 = 500$ soit 500 m.
- **2. a.** On peut *lire* les variations de f sur [0;20]:
 - f est croissante sur [0;10] (et va de 0 à 500);
 - f est décroissante sur [10;20] (et va de 500 à 0).
 - **b.** La période pendant laquelle l'altitude du projectile est supérieure ou égale à 320 m est entre 4 s et 16 s.