

Task B13

Group 28

Chavan, Vivek; Chi Shing, Li; Küpeli, Ahmet

Motivation, Aim and Preprocessing

Motivation

- Equation systems in realistic <u>FEM Simulation</u> can be extremely large → <u>Massive computational resources</u>
- ➤ Machine experience gained during the simulation is <u>lost</u>, input slightly changed → New Simulation needed!
- Machine learning models can be trained on data generated by conventional FEM tools. Wide range of other

applications1

Project: Boundary Value Problem²

- ▶ Input: S_i [4], U_i [2]
- Output: **F**_i [2]
- Reference Architecture: Time Distributed AlexNET
- Own Architecture: Time Distributed w/ Recurrent Layers (LSTM)

Preprocessing

Normalization using SD and Mean → (-3 to +3)

$$D = D(\mathbf{x}, t)$$

Time & Space Variant Data

Reference Architecture - Time Distributed AlexNET³

Model

Padding = same⁴

> Activation: ReLU, linear

Loss: mae

Pool size: 2 x 2

 \triangleright Stride = 1 x 1

	16	64	128
0.001	0.021	0.049	0.028
0.01	0.073	0.073	0.073
0.1	0.084	0.082	0.083

Test loss by batch size and learning rate for 80 Epochs

Reference Architecture - Time Distributed AlexNET³

Own Architecture – LSTM RNN⁵

Model:

➤ LSTM layer: activation = tanh, returnsequence = true, Dropout = 0.2

> TimeDistributed Dense:

activation = linear

Loss: mae

	8	16	32	64
0.0001	0.0116	0.0137	0.0171	0.0220
0.001	0.0095	0.0093	0.0096	0.0111
0.01	0.0210	0.0189	0.0176	0.0153

Test loss by batch size and learning rate for 80 Epochs

8-128

Own Architecture – LSTM RNN

Discussion and Conclusion

Inferences:

- > SMAPE(AlexNET) = 0.1715%
- > SMAPE(RNN) = 0.1019%
- Comparing the SMAPE values and the predicted loads, it is clear that RNN (own architecture) performs better and is more suitable for our task.
- > Slight underprediction for both networks (due to empty sequences!)
- Large dataset helped in increasing the efficacy of training

Further Work:

- Mask the empty sequences before training the models
- Test out other RNN architectures (e.g.: GRU).
- Further tuning of hyperparameters

Bibliography

- Kononenko O, Kononenko I, 'Machine Learning and Finite Element Method for Physical Systems Modeling', 2018, https://arxiv.org/abs/1801.07337 [Accessed: 14 January 2020].
- 2. Lecture Notes: Computational Intelligence in Engineering.
- 3. A. Krizhevsky, I. Sutskever, and G. Hinton, 'Imagenet classification with deep convolutional neural networks', InNIPS, 2012
- 4. Tensorflow Documntation: https://www.tensorflow.org/api_docs/python/ [Accessed Jan. 2020]
- 5. Hochreiter S., Schmidhuber J., 'Long Short-term Memory ', Neural Computation, 9(8):1735-1780, 1997

