РАСПОЗНАВАНИЕ ЭМОЦИЙ ПО ГОЛОСУ

Казаковцев В.Л.

Шабанов Д.А.

Глухов И.А.

Михайлов А.И.

Выбор программных средств

- Почему Python?
- Список используемых библиотек:
- NumPy
- Pandas
- TensorFlow
- Skit-Learn
- Librosa

Кодирование звуковой информации

МЕЛ

Человеческое ухо более чувствительно к изменениям звука на низких частотах, чем на высоких

Единица измерения высоты звука — мел:

$$mel = 1127.01048 \ln \left(1 + \frac{freq}{700}\right)$$

АУДИОСИГНАЛ: ФУНКЦИЯ АМПЛИТУДЫ И ВРЕМЕНИ

Мелкепстральные коэффициенты

ПРЕОБРАЗОВАНИЕ

- К записанному в дискретном виде сигналу применяем преобразование Фурье
- Составляем гребенку фильтров, используя оконную функцию
- Применяем дискретное косинусное преобразование

Выбор модели

СВЁРТОЧНАЯ НЕЙРОННАЯ СЕТЬ

- Слой свёртки
- Слой активации
- Слой субдискретизации

CXEMA

Результаты

МЕТРИКИ КАЧЕСТВА

Среднее значение *accuracy*: 91.4

Среднеквадратическое отклонение *accuracy*: 2.6

ПРИМЕР ИСПОЛЬЗОВАНИЯ

СПАСИБО ЗА ВНИМАНИЕ