1. Let function f be defined by the polynomial below:

$$f(x) = 8x^4 + 4x^3 + 6x^2 - 9x + 5$$

Draw lines that match each function reflection with its polynomial:

Reflections	Polynomials	
f(-x) •	$\bullet -8x^4 - 4x^3 - 6x^2 + 9x - 5$	
-f(-x) •		
-f(x) •	\bullet $-8x^4+4x^3-6x^2-9x-5$	

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

	0 ()	()	1 ()
x	f(x)	g(x)	h(x)
1	8	g(x)	$\begin{array}{ c c } h(x) \\ \hline 5 \\ \end{array}$
2	1	9	6
3	5	2	1
4	9	3	7
5	2	4	4
6	4	1	9
7	6	5	2
8	7	6	3
9	3	7	8

3. Evaluate h(3).

4. Evaluate $f^{-1}(4)$.

5. By filling more rows of the table, it is possible to make function f even. If that were done, what would be the value of f(-7)?

6. By filling more rows of the table, it is possible to make function g odd. If that were done, what would be the value of g(-5)?

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = -x^3 + x$$

a. Express p(-x) as a polynomial in standard form.

b. Express -p(-x) as a polynomial in standard form.

c. Is polynomial p even, odd, or neither?

d. Explain how you know the answer to part c.

8. I have drawn half of a function. Draw the other half to make it even or odd.

9. Let function f be defined with the equation below.

$$f(x) = 5(x-9)$$

a. Evaluate f(23).

b. Evaluate $f^{-1}(25)$.

10. The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(7).

b. Evaluate $b^{-1}(6)$.

- 11. Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

x	f(x)	-f(x)	f(-x)	-f(-x)
-2	-9			
-1	7			
0	0			
1	7			
2	-9			

b. Is function f even, odd, or neither?

c. How do you know the answer to part b?