

FOR ILLUSTRATIVE PURPOSES

Rolling Up Operational Risk at PG&E

Christine Cowsert Chapman
Farshad Miraftab

Probability Management Annual Conference
March 8, 2017

Quantitative Modeling Initiative

PG&E Gas Operations has embarked on an initiative to improve risk quantification, the accounting of uncertainty, and implementation of probabilistic assessment techniques to improve decision making

Probabilistic / Mechanistic Modeling

Probabilistic Risk Assessment – Fault & Event Trees

Benchmarked with the nuclear PRA team to begin developing fault and event trees that produce *probabilities* for pipeline ruptures for specified assets and risks as the component/segment level

Stochastic Probabilistic Modeling of "Roll-Up" Risks

- Further developing the PRA's to include <u>simulations</u> that can adequately account for <u>uncertainty</u> using <u>innovative</u> techniques of SIPs
- This technique will allow Gas
 Operations to <u>aggregate (roll up)</u>
 simulated probability distribution from
 the component/segment level to the
 system/enterprise level

Probabilistic Modeling – Transmission Pipeline

Where we were: SME-Driven Risk Management

- Do not have probabilistic representations of risk in Enterprise Risk Management process
- Heavily SME-driven without capturing uncertainty of risk scores
- Could not aggregate risk across Gas Operations to a system level

What we are doing: Exploring Probability Management

- Developing prototype simulations of Transmission, Distribution, and Storage asset families
- Addressing the Flaw of Averages by accounting for uncertainty
- Developing prototype risk aggregation across multiple assets

Where we are going: Fully Integrated Risk Management

- Simulations informed by SMEs and SMEs informed by simulations
- Quantitatively aggregating risk across Gas Operations to a system level
- Optimal portfolios of mitigations trade off risk vs cost

6 Phase Framework

Phase/Focus	Phase 1	Phase 2	Phase 3
i nasar ocus	Historical Asset Condition	Time Dependence	Adverse Events
Function / Purpose	Data collecting and analysis of available asset data	Predict corrosion growth rates	Simulated probabilities of pipeline ruptures and leaks
Inputs	ILI Data ECDA Data Strength Test Data	Phase 1 Outputs + Time since inspection Soil Characteristics CP Performance Coating Performance Leak History*	Phase 2 Outputs + Pipeline MAOP Pipeline Diameter Pipeline Thickness Pipeline SMYS
Outputs (SIPs)	Anamoly geometry	Predicted current anamoly geometry	Pipeline rupture and leak probabiliities per mile
Complexity	Medium (ECDA Data) Low (ILI Data)	High	Low
Technique / Approach	Descriptive Analytics; Predictive Analytics	Predictive Analytics; Simulation	ASMEB31.8G Standard (Modified)

Phase/Focus	Phase 4	Phase 5	Phase 6
	Adverse Consequences	Mitigation Impacts	Risk-Based Decisions
Function / Purpose	Simulate leak and rupture consequences	Simulate mitigation impacts to quantify risk reduction	Produced optitmized scenario's of mitigation portfolios
Inputs	Phase 3 Outputs + Total Occupancy Count Average Occupancy Count Leak repair costs* Reliability Impacts	Phase 4 Outputs + Mitigation Benefits	Phase 5 Outputs + Mitigation Costs Resource Constraints System Constraints Financial Constraints Compliance Constraints
Outputs (SIPs)	Risk associated to pipeline rupture or leak (CoF and LoF)	Forecasted risk reductions	Scenario's of mitigation portfolio's and risk tradeoff's
Complexity	Low (Safety) Medium (Reliability)	Medium?	High
Technique / Approach	Predictive Analytics		Presciptive Analytics

Descriptive Analytics	Use of data aggregation and data mining techniques to provide insight into the past. "What has happened?"
Predictive Analytics	Use of statistical models and forecasts techniques to understand the future. "What Could Happen?"
Prescriptive Analytics	Use of optitmization and simulation alogorithms to advice on possible outcomes. "What should we do?"

"Go/No-Go" Probabilistic Decision Process

- Quantitative model being developed to describe the customer outage risk of executing safety projects during high forecasted demand periods
- Model takes into account the following uncertainties:
 - Temperature weather forecasts, customer demand at a given temperature, gas system capacity model assumptions

