

Actuator Selection using SVMs and Neural Networks

Nomenclature

SVM: Support Vector Machines

NN: Neural Network

GANN: Generative Adversarial Neural Network

Introduction

Soft Actuators are artificial muscles which are used to provide different motion capabilities using self deformation.

Problem: Classify actuators suitable for a specific working parameter/use case.

Fig. 1 Soft Pneumatic Actuator | Soft Robotics Toolkit

As biological muscles are for animals, artificial muscles are for robots.

Dataset

- There are seven types of muscle actuators: PZT, DEA, IPMC, SMA, SFA, SCP, TSA.
- Five physical properties: Bandwidth, Strain, Stress, Efficiency, Power Density.

А	ט	C	U	L	31	U	11	31
Reference	Actuator 7	T Bandwidth	Strain (%)	Stress (MP	Efficiency	Power Dens	ity (W/g)	
[1]	PZT	10000	0.2	110	90	0.2		
	PZT	100			90			
	DEA	100	200	8	85	0.2		
	IPMC	10	40	0.3		0.02		
	SMA	3	5	200	1.3	50		
	SMA	0.5	250	2	10	0.03		
	SFA	130	50	10	30	11		
	SFA	100	300		30	22		
	SFA				30	10		
	TSA	5	50	80	76	0.5		
	SCP	3	49	11	1.02	27		
[2]	SMA	3	10	200	3	4.3		
A** *X	PZT	5000	0.2	35	50			

SVM Confidence Scores

If more than 1 model can be used; i.e. 3/5 features are available [a, b, c], then we need to select the better model:

a+b or a+c or b+c: Confidence score maps the performance of the models, giving the more reliable model for selection.


```
[0.522 0.514 0.542 0.455 0.71 0.609 0.629 0.695 0.46 0.455]
   [0.43, 0.38, 0.12, 0.44, 0.07, 0. , 0.04, 0.15, 0. ]
```

Confidence

SVM Code: SVM architecture: Scikit Learn

```
1 data = pd.read csv("data/original data.csv")
 2 cols = list(data)[2:]
 3 column pairs = []
 4 for i in range(len(cols)):
       for j in range(len(cols)):
           if i<i:
 6
                column pairs.append((cols[i],cols[j]))
 8 accuracies = []
   kernels = ['linear', 'poly', 'rbf', 'sigmoid']
   for j in range(len(kernels)):
11
        print("Kernel = {}".format(kernels[i]))
12
        accuracies.append([])
        for i in range(len(column pairs)):
13
14
            column1,column2 = column pairs[i]
15
           X,y = Functions.data clean(data, column1, column2)
           X train, X test, y train, y test = train_test_split(X, y, test_size=0.2, random_state=1)
16
            svc = SVC(C=0.1, random state=1, kernel=kernels[j], degree= 3)
17
            svc.fit(X train, y train)
18
           v predict = svc.predict(X test)
19
            accuracies[j].append(np.round(metrics.accuracy_score(y_test, y_predict),3))
20
            print("Accuracy of Pair - {} and {} = {}".format(column pairs[i][0],column pairs[i][1],accuracies[i][i]))
21
22
        print()
23
```

SVM Code: PlotMultilabel Boundaries

```
def plot multilabel boundary(X,y,linear, rbf, poly, sig,column1,column2):
       h = .01
 2
 3
       x \min, x \max = X[:, 0].\min() - 1, X[:, 0].\max() + 1
       y \min, y \max = X[:, 1].min() - 1, X[:, 1].max() + 1
 5
       xx, yy = np.meshgrid(np.arange(x min, x max, h), np.arange(y min, y max, h))
        titles = ['Linear kernel', 'RBF kernel', 'Polynomial kernel', 'Sigmoid kernel']
 6
 7
        for i, clf in enumerate((linear, rbf, poly, sig)):
 8
            plt.subplot(2, 2, i + 1)
 9
10
            #plt.subplots adjust(wspace=0.1, hspace=0.1)
            Z = clf.predict(np.c [xx.ravel(), yy.ravel()])
11
            y map = {'PZT':0, 'DEA':1, 'IPMC':2, 'SMA':3, 'SFA':4, 'TSA':5, 'SCP':6, 'EAP':7, 'SMP':8}
12
            for j in range(len(Z)):
13
14
                Z[j] = y map[Z[j]]
15
            Z = Z.reshape(xx.shape)
            plt.contourf(xx, yy, Z, cmap=plt.cm.PuBuGn, alpha=0.7)
16
17
            plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.PuBuGn,
                                                                       edgecolors='grey')
18
            plt.xlabel(column1)
            plt.ylabel(column2)
19
            plt.xlim(xx.min(), xx.max())
20
            plt.ylim(yy.min(), yy.max())
21
22
            plt.xticks(())
            plt.yticks(())
23
            plt.title(titles[i])
24
25
            plt.show()
```

SVM output

Bivariate model accuracies


```
Output exceeds the size limit. Open the full output data in a text editor
Kernel = linear
Accuracy of Pair - Bandwidth (Hz) and Strain (%) = 0.5
Accuracy of Pair - Bandwidth (Hz) and Stress (MPa) = 0.333
Accuracy of Pair - Bandwidth (Hz) and Efficiency (%) = 0.167
Accuracy of Pair - Bandwidth (Hz) and Power Density (W/g) = 0.167
Accuracy of Pair - Strain (%) and Stress (MPa) = 0.697
Accuracy of Pair - Strain (%) and Efficiency (%) = 0.722
Accuracy of Pair - Strain (%) and Power Density (W/g) = 0.438
Accuracy of Pair - Stress (MPa) and Efficiency (%) = 0.6
Accuracy of Pair - Stress (MPa) and Power Density (W/g) = 0.385
Accuracy of Pair - Efficiency (%) and Power Density (W/g) = 0.417
Kernel = poly
Accuracy of Pair - Bandwidth (Hz) and Strain (%) = 0.417
Accuracy of Pair - Bandwidth (Hz) and Stress (MPa) = 0.222
Accuracy of Pair - Bandwidth (Hz) and Efficiency (%) = 0.167
Accuracy of Pair - Bandwidth (Hz) and Power Density (W/g) = 0.333
Accuracy of Pair - Strain (%) and Stress (MPa) = 0.658
Accuracy of Pair - Strain (%) and Efficiency (%) = 0.5
Accuracy of Pair - Strain (%) and Power Density (W/g) = 0.375
Accuracy of Pair - Stress (MPa) and Efficiency (%) = 0.467
Accuracy of Pair - Stress (MPa) and Power Density (W/g) = 0.231
Accuracy of Pair - Efficiency (%) and Power Density (W/g) = 0.417
Kernel = rbf
Accuracy of Pair - Stress (MPa) and Efficiency (%) = 0.333
Accuracy of Pair - Stress (MPa) and Power Density (W/g) = 0.308
Accuracy of Pair - Efficiency (%) and Power Density (W/g) = 0.25
```

Support Vector Machines

- Equation of Hyperplane: wT(x) + b = 0
- where: b = Intercept and bias term of the hyperplane equation
- In D dimensional space, the hyperplane would always be D -1 dimensional.
- The goal of the support vector method approach is to maximize the minimum distance d between the hyperplane and the support vectors.
- For perfectly separable datasets, there are no issues, but for non perfectly separable datasets we can introduce a penalty for every misclassified datapoint to smoothen the learning curve,

$$d_H(\phi(x_0)) = \frac{|w^T(\phi(x_0)) + b|}{||w||_2}$$

$$||w||_2 = \sqrt{w_1^2 + w_2^2 + w_3^2 + \dots + w_n^2}$$

Performance of Supervised Learning Methods other than SVMs

Sparse Data leads to network stagnancy during training[1];

i.e. network learns working with zeroes.

Unable to perform with data in the sparse fields.

SVMs:

The research used 10 SVMs; each for any two features; i.e. No sparse data problem.

NN code: Used Tensorflow.keras()

NN Architecture: L x 25 x 25 x 15 x 9 L = 2 for bivariate model; L = 5 for multivariate model;

```
# for i in range()

model = tensorflow.keras.Sequential([

tensorflow.keras.layers.Platten(input_shape=(2,1)),

tensorflow.keras.layers.Dense(25, activation='relu'),

tensorflow.keras.layers.Dense(25, activation='relu'),

tensorflow.keras.layers.Dense(15, activation='relu'),

tensorflow.keras.layers.Dense(9, activation='relu')

tensorflow.keras.layers.Dense(9, activation='relu')

model.compile(optimizer='adam', loss=tensorflow.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])

model.fit(X[:,1:3], labels, epochs=10)
```

Our Approach to counter Data sparsity.

Methods Tested:

- 1. Generative Algorithm for generating similar data.
- 2. Data Imputation
- 3. Data augmentation with Real-life-parameters

Generative Algorithm: Tabular GANN[2][3]

Used GANN for generating a tabular database to fill gaps in the training data.

Issue: To generate feature "x1" for class "A", some data of "x1" should be available.

Due to the missing values in multiple classes, An All-feature classifier was not possible with this method.

Result: Model ran partially; Output data showed negligible accuracy.

Data Imputation: Statistical Method of Data Generation[4][5]

- There are seven types of muscle actuators: PZT, DEA, IPMC, SMA, SFA, SCP, TSA.
- Five physical properties: Bandwidth, Strain, Stress, Efficiency, Power Density.

Referer	nce Actuator	T Bandwidth St	rain (%)	Stress (MP Ef	ficiency P	ower Density (W/g)	EAP 20223.17 10	41.12 0.1
	PZT	10000	0.2	110	90	0.2	EAP 20223.17 4 0	8 41.12 0.1349
	PZT	100			90		IPMC 10 40 0	.3 2.45 0.0
	DEA	100	200		85	0.2	IPMC 49.37778 2	.5 2.9 0.03959
	IPMC SMA	10	40	0.3 200	1.3	0.02 50	IPMC 49.37778 40 11.917	9 2.45 0.03959
	SMA	0.5	250		1.3	0.03	IPMC 100 3	3 0.002
	SFA	130	50		30	11	IPMC 33 8.2 4	.7 2.45 0.24
	SFA	100	300		30	22	IPMC 49.37778 10	2.45 0.03959
	SFA				30	10	IPMC 49.37778 0.5	3 1.5 0.0025
	TSA SCP	5	50 49		76	0.5 27	IPMC 1 5 11.917	9 2.45 0.03959
[2]	SMA	3	10		1.02	4.3	IPMC 0.2 0.5 11.917	9 2.45 0.03959
	PZT	5000	0.2		50		IPMC 0.2 2.1 11.917	9 2.45 0.03959

Fig. 2a. Original Data b. After statistic data imputation

^[4] Data Imputation; SciKit Learn https://scikit-learn.org/stable/modules/impute.html

^[5] Khan, S., Hoque; "Improved Missing Data Imputation"; Journal of Big Data-Springer; 37(2020)

Fig 3. Data imputation using SciKit Learn

Problem:

Columns for some actuators were almost empty, and there seemed no way to get imputer relevant data like mean etc.

Power Density (W/g)

Red : Original Green : Imputed

Efficiency (%)

Data Imputation: Statistical Method of Data Generation [4][5]

Results showed low accuracy on validation set: 43% [Best Model]

Reason deduced: The imputed data showed little to no coherence with the actual/original working parameters of the actuators.

```
9/9 [=======] - 0s 2ms/step - loss: 4.1923 - accuracy: 0.2242

Epoch 9/10

9/9 [======] - 0s 2ms/step - loss: 3.8033 - accuracy: 0.2100

Epoch 10/10

9/9 [======] - 0s 3ms/step - loss: 3.5285 - accuracy: 0.1993

Epoch 9/10

9/9 [=======] - 0s 3ms/step - loss: 2.2581 - accuracy: 0.4306

Epoch 10/10

9/9 [======] - 0s 416us/step - loss: 2.1953 - accuracy: 0.4270
```

Fig. 4a. accuracy(22%) before imputation, b. accuracy (43%) after imputation

Data Augmentation: Actual Data of Actuators used

Replaced missing data with actual work parameters of the given actuators.

Actuator type	ε_{max}	σ_{max} (MPa)	E (MPa)	$ ho[\mathrm{W/kg}]$	Efficiency	f_{max} (Hz)
Muscle	0.3-0.4	0.1-0.4	5-20	50-284	0.2-0.4	50-500
DC Motors	0.4	0.1		100	0.6-0.9	
Pneumatic	0.1-1	0.5-0.9	50-90	4000	0.4-0.5	50-300
Hydraulic	0.1-1	20-70	$2 - 3 \times 10^3$	1600-2000	0.9-0.98	50-300
SMA	0.07	100-700	$3 - 9 \times 10^4$	6400-6600	0.01-0.02	0.02-0.07
SMP	1.0	2-14	$4 - 12 \times 10^3$	850-880	< 0.1	< 0.01
EAP (I)	0.02-0.4	5 - 34	$0.2 - 3 \times 10^3$	150	< 0.01	1-500
EAP(N/I)	0.2-3.8	5-6	1	1000-2500	0.15-0.9	1-2000
MREs	0.005	0.1-10	1-10	$3 - 4 \times 10^3$	0.6-0.8	
MRFs	0.002	0.1		$3 - 4 \times 10^3$	1	

Data Augmentation: Actual Data of Actuators used

Replaced missing data with actual work parameters of the given actuators.

Result: 52 % accuracy [best model]

Reason: Better Data distribution should be selected.

Conclusion

A bivariate model like SVM is really performant as the data sparsity problem is solved, removing stagnancy.

The Augmented Dataset with NN has a comparable accuracy to the bivariate SVM avg. Thus it can be a potential method to do the classification.

A more rigorous search for a better NN architecture can be done by using Grid Search CV_[6] to solve any NN-capacity problems.

