```
4-tuple
     (CPU, CPU, CPU, CPU)
     (FD, CPU, SD, FD) ...
     3*3*3*3=3^4
(2,0,0)
(1,0,1).
   User 1@CPU, 2@FD or 1@FD & 2@CPU
   1<sup>st</sup> choice (CPU,FD) (FD, CPU)
(0,2,0)
(0,0,2)
(1, 1, 0)
(0,1,1)
3 P_{(2,0,0)} + 3 P_{(2,0,0)}
= 4 * P_{(1,1,0)} + 2 * P_{(1,0,1)}
```

6 $P_{(2,0,0)} = 4 * P_{(1,1,0)} + 2 * P_{(1,0,1)}$

Choice 1: (Location of User 1, Location of User 2) 3ⁿ

Choice 2: (#users at CPU, #users at fast disk, #users at slow disk)

Comparing the two choices of states (CPU, FD) (FD, CPU) (1,1,0) (2,0,0) -> (0,1,1) (3 delta) * (3 delta)

Utilisation Law	U = S X
Forced Flow Law	V(j) = X(j)/X(0)
Service demand Law	D(j)=U(j)/X(0)
Little's Law	N=X*R
Interactive response	M=X(0)*(Z+R)

Throughput of the system = Arrival rate of the CPU

Arrival rate of CPU = Throughput of the CPU

Water tank analogy

A pipe goes in, a pipe goes out

To have steady water level in the tank, you need

Rate of water into the tank = rate of water out of the tank

Rate of going into the state (2,0,0) = 4 P110 + 2 P101

Rate of leaving the state (2,0,0)

= 3 P200 +3 P200

= 6 P200

4 P110 + 2 P101 = 6 P220

```
2 users
(2,0,0)
(1,1,0), (1,0,1)
(0,2,0), (0,1,1) (0,0,2)

4 users
(4,0,0)
(3,1,0), (3,0,1)
(2,2,0), (2,1,1) (2,0,2)
(1,3,0) (1,2,1) (1,1,2) (1,0,3)
(0,4,0) (0,3,1) (0,2,2) (0,1,3) (0,0,4)
```

	Meaning
λ	1 / (Mean-time-to-failure for a machine)
μ	1 / (Mean service time to repair a machine)
M	Number of machines (M > N)
N	Number of repair staff

	Meaning
λ	1 / (Mean-time-to-failure for a machine)
μ	1 / (Mean service time to repair a machine)
M	Number of machines
N	Number of repair staff
P(k)	Prob[k machines have failed]

