MATH 251, homework 5, due date Monday Feb 9.

Problem 1. Find a homogenous system of linear equations whose space of solutions is $\operatorname{Im} T$ for the following $T \colon \mathbf{R}^3 \to \mathbf{R}^4$:

$$T(x_1, x_2, x_3) = (3x_1 + 4x_2 + 2x_3, x_1 + 2x_2, 2x_1 + x_2 + 3x_3, -x_1 + 5x_2 - 7x_3).$$

Problem 2. Let $a_0 = 1, a_1 = 1$, and for $n \ge 2$ let $a_n = a_{n-1} + a_{n-2}$ be the Fibonacci sequence. Show that for $n \ge 1$, the Fibonacci number a_n is the determinant of

$$\begin{pmatrix} 1 & 1 & 0 & \cdots & 0 & 0 \\ -1 & 1 & 1 & \cdots & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 1 \\ 0 & 0 & 0 & \cdots & -1 & 1 \end{pmatrix},$$

the n by n matrix with all entries zero except for 1 on the main diagonal and the diagonal above it and -1 on the diagonal below it.

Problem 3. Prove that the determinant of the n by n matrix (d_{ij}) , where d_{ij} is the greatest common divisor of the numbers i and j, is equal to $\varphi(1)\varphi(2)\cdots\varphi(n)$.

Here $\varphi(k)$ is the *Euler function*, i.e. the number of numbers $1 \leq i \leq k$ such that the greatest common divisor of i and k is 1. This function satisfies the *Gauss formula*

$$\sum_{d|n} \varphi(d) = n.$$

Hint: For $1 \leq i, j \leq n$ define p_{ij} to be equal to 1 if j divides i and 0 otherwise. Prove

$$d_{ij} = \sum_{k=1}^{n} p_{ik} p_{jk} \varphi(k),$$

and write the matrix (d_{ij}) as the sum of n^n matrices.