Definition (Universal Quantification; \forall is "for all") Suppose Q(x) is a predicate and D the domain of x. Then $\forall x \in D \ Q(x)$ is a **universal statement** defined to be true iff Q(x) is true for every value of x in D and false iff Q(x) is false for one or more values of x in D. (such an x is a **counterexample** that $disproves \ \forall x \in D \ Q(x)$).

Example: Q(x) is " $x = 1 \leftrightarrow x^2 = 1$ ".

 $D = \{0, 1, 2\}$: Is $\forall x \in D \ Q(x)$ true?

 $D' = \{-1, 0, 1\}$: Is $\forall x \in D' \ Q(x)$ true?

Definition (Existential Quantification; \exists is "there exists") Suppose Q(x) is a predicate and D the domain of x. Then $\exists x \in D \ Q(x)$ is an **existential statement** defined to be true iff Q(x) is true for one or more values of x in D (such an x is an **example** that $proves \ \exists x \in D \ Q(x)$) and false iff Q(x) is false for every value of x in D.

Example: Q(x) is " $(x < 1) \land (x^2 > 1)$ ". $D = \{-1, 0, 1\}$: Is $\exists y \in D \ Q(y)$ true?

 $D' = \{-2, -1, 0, 1\}$: Is $\exists y \in D' \ Q(y)$ true?

CS1231

A function $f: X \to Y$ is **one-one** if and only if for all x_1 and x_2 in X, $x_1 = x_2$ if $f(x_1) = f(x_2)$.

CS1231

A function $f: X \to Y$ is **onto** if and only if given any y in Y, it is possible to find an x in X such that y = f(x).

CS1231

The floor of x (denoted $\lfloor x \rfloor$) is the greatest integer that is less than or equal to x.

CS1231

(Well-Ordering Principle) Let S be a nonempty set of integers. If there is an integer smaller than all integers in S, then there is an integer in S that is smaller or equal to all integers in S.

CS3230 (Design and Analysis of Algorithms)

f(n) is O(g(n)) if and only if

there exists a positive real number M and an integer k such that $|f(n)| \leq M|g(n)|$ whenever integer n > k.

CS4232 (Theory of Computation)

Let L be an infinite regular language over Γ . Then there is $w \in L$ such that, for some x, y and z in Γ^* , we have $y \neq e$, w = xyz and $xy^nz \in L$ for all nonnegative integers n.

CS5230 (Computational Complexity)

Suppose P \neq NP. Then there exists a set in NP – P that is not NP-Complete.

$$\forall x \in \mathbf{R} \quad x > 1 \ \to \ x^2 > 1$$

 $\forall x \in \mathbf{R} \quad x^2 \le 1 \ \to \ x \le 1$

$$\forall x \in \mathbf{R} \quad x > 1 \ \to \ x^2 > 1$$

 $\forall x \in \mathbf{R} \quad x^2 > 1 \ \to \ x > 1$

$$\forall x \in \mathbf{R}^+ \quad x > 1 \ \to \ x^2 > 1$$

 $\forall x \in \mathbf{R}^+ \quad x^2 > 1 \ \to \ x > 1$

$$\forall x \in \mathbf{R} \quad x > 1 \ \to \ x^2 > 1$$

 $\forall x \in \mathbf{R} \quad x \le 1 \ \to \ x^2 \le 1$

$$\forall x \in \mathbf{R}^+ \quad x > 1 \ \to \ x^2 > 1$$

 $\forall x \in \mathbf{R}^+ \quad x \le 1 \ \to \ x^2 \le 1$

Symbols, Alphabets and Strings

Definition

An alphabet is a finite set of symbols.

A **string** over alphabet Γ is a finite sequence of symbols from Γ .

The **length** of a string is the length of the sequence.

 Γ^* denotes the set of all strings over Γ .

A language over Γ is a set of strings over Γ .

Example

Let $\Gamma = \{A,B,\ldots,Z,0,1,\ldots,9\}$ and $\Psi = \{A,B,\ldots,Z,a,b,\ldots,z\}.$ Then

A, B, 0, 1, a, b, etc. are symbols,

 Γ and Ψ are alphabets,

CS1231 is a string over Γ , i.e. CS1231 $\in \Gamma^*$,

CS1231 is not a string over Ψ , i.e. CS1231 $\notin \Psi^*$,

School $\in \Psi^*$,

 $SoC \in \Psi^*$.