Graph coloring

Michał Adamaszek

?

?

April 9, 2017

Contents

1	Preface	2
2	Temporary 2.1 Notation 2.2 Aha foo bar 2.3 Section 2.4 Including sage code 2.5 TODOs	3 3 3 3 4
3	Basic graph theory	5
4	Vertex coloring	6
5	Planar graphs	7
6	Chromatic polynomial	8
7	Edge coloring	9
8	Chromatic number of Euclidean spaces	10
9	Coloring and topology	11
10	Exam problems	12

Preface

These lecture notes...

Temporary

2.1 Notation

A graph is G = (V, E) and it has n = |V|, m = |E|. If there are more graphs the next one is H. A coloring with c colors is a function $f: V \to \{1, \ldots, c\} = C$. The chromatic number is χ . A bipartite graph has parts A, B, or X, Y.

2.2 Aha foo bar

This is just a testing ground for now.

Here is ade finition

Definition 1. We say that a definition is a definition is

$$\int_{M} d\omega = \int_{\partial M} \omega \tag{2.1}$$

On the other hand, here is a remark:

Remark 2. I would like the contents of a remark not to be italicised.

2.3 Section

It would be good to split each chapter into 2-4 sections.

2.4 Including sage code

We include SAGE source code like this:

```
def FunnyGraph(n):
c = graphs.CompleteGraph(n)
c.delete_edges(graphs.CycleGraph(n).edges())
return graphs.MycielskiStep(c).join(graphs.WheelGraph(n+1))
```

G = FunnyGraph(99)

At the very end I will implement it using a pygmentize highlighter for python.

Figures can be drawn in tikz or whatever, or included from another file. In any case, it would be good to have every figure inside a figure environment with a label and caption.

2.5 TODOs

List of todos for MA:

- Remove this file
- Add pygmentize
- Expand and check bibliography

Basic graph theory

Roughly lex1.tex and lec2.tex without defining chromatic number.

Vertex coloring

Define chromatic number and the lec3.tex, lec4.tex

Planar graphs

Roughly lec5.tex, lec6.tex

Chromatic polynomial

Roughly lec7.tex, lec8.tex

Edge coloring

Roughly lec9.tex, lec10.tex

Chromatic number of Euclidean spaces

Roughly lec11.tex, lec12.tex, lec13.tex

Coloring and topology

To be written up, MA

Exam problems

To be written, MA

Bibliography

[D] R. Diestel, Graph Theory, Graduate Texts in Mathematics 173, Springer–Verlag