Examenul de bacalaureat 2012

Proba E.c)

Proba scrisă la MATEMATICĂ

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 9

Filiera teoretică, profilul real, specializarea matematică-informatică

Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	$\log_2(\sqrt{7} + \sqrt{3}) + \log_2(\sqrt{7} - \sqrt{3}) = \log_2(\sqrt{7} + \sqrt{3})(\sqrt{7} - \sqrt{3})$	3 p
	Finalizare	2p
2.	$f(x) = 0 \Leftrightarrow x = -1 \text{ sau } x = -4$	3 p
	Distanța este egală cu 3	2p
3.	Notăm $3^x = t$ și obținem $t + 3t = 4$ $t = 1 \Leftrightarrow x = 0$	3p 2p
4.		-r
	$T_{k+1} = C_{20}^k \cdot x^{20-k} \cdot \left(\frac{1}{\sqrt{x}}\right)^k = C_{20}^k \cdot x^{20-k-\frac{k}{2}}$	2p
	$20 - k - \frac{k}{2} = 14 \iff k = 4$	2p
	Rangul termenului este 5	1p
5.	$m_d = -\frac{3}{2}$	2 p
	Ecuația paralelei este $y - y_A = -\frac{3}{2}(x - x_A)$ adică $y = -\frac{3}{2}x + \frac{15}{2}$	3 p
6.	$\frac{BC}{\sin A} = \frac{AB}{\sin C} \Rightarrow \sin C = \frac{1}{2}$	3 p
	$m(\not < C) = 30^{\circ}$, deoarece $m(\not < A) > m(\not < C)$	2p

SUBIECTUL al II-lea

(30 de puncte)

1.a)	$\det A = \begin{vmatrix} -1 & a & 2a+4 \\ a+2 & a & a+1 \\ a+1 & 2a-1 & 3 \end{vmatrix} =$	200
	$\left \det A = \left a + 2 \right a a + 1 \right =$	2 p
	$\begin{vmatrix} a+1 & 2a-1 & 3 \end{vmatrix}$	
	$\begin{vmatrix} 3a+3 & a & 2a+4 \\ 3a+3 & a & a+1 \\ 3a+3 & 2a-1 & 3 \end{vmatrix} = (3a+3)\begin{vmatrix} 1 & a & 2a+4 \\ 1 & a & a+1 \\ 1 & 2a-1 & 3 \end{vmatrix} = (3a+3)\begin{vmatrix} 1 & a & 2a+4 \\ 0 & 0 & -a-3 \\ 0 & a-1 & -2a-1 \end{vmatrix}$	
	= 3a+3 a $a+1 = (3a+3) 1$ a $a+1 = (3a+3) 0$ 0 $-a-3 $	2 p
	$\begin{vmatrix} 3a+3 & 2a-1 & 3 \end{vmatrix}$ $\begin{vmatrix} 1 & 2a-1 & 3 \end{vmatrix}$ $\begin{vmatrix} 0 & a-1 & -2a-1 \end{vmatrix}$	
	Finalizare	1p
b)	Sistemul este compatibil determinat \Leftrightarrow det $A \neq 0$	2p
	$\det A = 0 \iff a \in \{-1, 1, -3\}$	2p
	$a \in \mathbb{R} \setminus \{-1,1,-3\}$	1p
c)	$\int -x - 2y = 1$	
	$a = -2 \Rightarrow \begin{cases} -x - 2y = 1\\ -2y - z = 1\\ -x - 5y + 3z = 2 \end{cases}$	1p
	$\left[-x-5y+3z=2\right.$	•

Control Programme & Dratage of Examinate		
	$x = -\frac{1}{9}$, $y = -\frac{4}{9}$, $z = -\frac{1}{9}$	4 p
2.a)	$\hat{0}^5 = \hat{0}, \ \hat{1}^5 = \hat{1}, \ \hat{2}^5 = \hat{2}, \ \hat{3}^5 = \hat{3}, \ \hat{4}^5 = \hat{4}$	5p
b)	$f = X^{8} + X^{4} + \hat{3}X^{4} + \hat{3} = X^{4} (X^{4} + \hat{1}) + \hat{3}(X^{4} + \hat{1})$	2p
	$f = \left(X^4 + \hat{1}\right)\left(X^4 + \hat{3}\right)$	3р
c)	$f\left(\hat{0}\right) = \hat{3}$	1p
	$a \neq \hat{0} \Rightarrow a^4 = \hat{1}$	2p
	$f(a) = \hat{1} + \hat{4} + \hat{3} = \hat{3}$ pentru orice $a \neq \hat{0}$	1p
	Finalizare	1p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	f este derivabilă pe \mathbb{R} și $f'(x) = 1 + \frac{x}{\sqrt{x^2 + 1}}$	2p
	$\lim_{x \to 0} \frac{f(x) - 1}{x} = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = f'(0) = 1$	3p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x + \sqrt{x^2 + 1}}{x} = 2$	2p
	$\lim_{x \to +\infty} \left(f(x) - 2x \right) = \lim_{x \to +\infty} \left(\sqrt{x^2 + 1} - x \right) = 0$	2p
	$x \to +\infty$ \\ $y = 2x$ este ecuația asimptotei oblice spre +∞ la graficul funcției f	1p
c)	f este continuă pe \mathbb{R} , $\lim_{x \to -\infty} f(x) = 0$ și $\lim_{x \to +\infty} f(x) = +\infty \Rightarrow f$ este surjectivă, deci ecuația are	2p
	soluție $f'(x) > 0, \forall x \in \mathbb{R} \Rightarrow f$ este strict crescătoare $\Rightarrow f$ este injectivă, deci soluția este unică	3p
2.a)	$f'(x) > 0$, $\forall x \in \mathbb{R} \Rightarrow f$ este strict crescătoare $\Rightarrow f$ este injectivă, deci soluția este unică $I_1 = \int_0^1 x \cdot e^{x^2} dx = \frac{1}{2} e^{x^2} \Big _0^1 =$	3p
	$=\frac{e-1}{2}$	2p
b)	$2I_{p} = \int_{0}^{1} x^{p-1} \left(2xe^{x^{2}}\right) dx = \int_{0}^{1} \left(e^{x^{2}}\right)' x^{p-1} dx = e^{x^{2}} x^{p-1} \Big _{0}^{1} - (p-1) \int_{0}^{1} e^{x^{2}} x^{p-2} dx$	3p 2p
	$2I_p = e - (p-1)I_{p-2} \implies 2I_p + (p-1)I_{p-2} = e$	_
c)	Considerăm funcția continuă $f:[0,1] \to \mathbb{R}$, $f(x) = xe^{x^2}$, șirul de diviziuni $\Delta_n = \left(\frac{k}{n}\right)_{k=\overline{0,n}}$ cu	
	$\ \Delta_n\ \to 0$ și punctele intermediare $\frac{k}{n} \in \left[\frac{k-1}{n}, \frac{k}{n}\right]$	1p
	$\lim_{n \to +\infty} \frac{1}{n^2} \cdot \left(e^{\frac{1^2}{n^2}} + 2e^{\frac{2^2}{n^2}} + \dots + ne^{\frac{n^2}{n^2}} \right) = \lim_{n \to +\infty} \frac{1}{n} \cdot \sum_{k=1}^n \frac{k}{n} \cdot e^{\left(\frac{k}{n}\right)^2} =$	2p
	$= \lim_{n \to +\infty} \frac{1}{n} \cdot \sum_{k=1}^{n} f\left(\frac{k}{n}\right) = \int_{0}^{1} f(x) dx = \frac{e-1}{2}$	2p