REDBIO Argentina

Jornada
"Soja en el Siglo XXI: a 15 años de la aprobación del primer evento transgénico en Argentina"

10 de mayo 2011

Lic. Javier GILLI EEA INTA Marcos Juárez

Salones de la Fundación Cassará, Av. de Mayo 1190, C.A.B.A.

l primer reporte en Sudamérica fue en Paraguay durante la campaña 2000-2001(Yorinori , 2003), luego en Brasil (Yorinori et. al, 2003) y Argentina (Rossi, 2003) y en el 2003 e olivia (Yorinori et. al, 2003).

Entre Ríos campaña 2004/05.

Aportar al control integrado de la enfermedad, a través del <u>mejoramiento genético del cultivo</u>

PROYECTOS

- 1.PNCER1337. "MEJORAMIENTO MOLECULAR DE CEREALES Y OLEAGINOSAS"
- **2.PNCER1338.** "DESARROLLO DE GENOTIPOS DE SOJA"
- **3.PNOLE31041.** "MEJORAMIENTO GENETICO DE LA SANIDAD Y CALIDAD EN SOJA"
- **4.**AEBIO241362. "PLATAFORMA MERCOSUR PARA EL DESARROLLO DE HERRAMIENTAS GENÓMICAS Y POSTGENÓMICAS PARA EL CONTROL DE LA ROYA ASIÁTICA DE LA SOJA"
- **5.SOUTHNOMICS** PROCISUR
- **6.BIOTECSOJASUR** "APOYO AL DESARROLLO DE LAS BIOTECNOLOGÍAS EN EI MERCOSUR-BIOTECH"

Estrategia

Caracterización de germoplasma

FENOTIPO

GENOTIPO

Mapeo de genes mayores

BIPARENTAL

POR ASOCIACIÓN

Selección asistida por marcadores moleculares

EN RETROCRUZAS

EN POBLACIONES DE CRIA

CARACTERIZACIÓN FENOTIPIC EEA INTA Cerro Azul - Misiones

900 Genotipos Exóticos y Cultivares

Genotipos Destacados	Gen	Reacciór
PI 547875 isolinea williams 82	Rpp1	S
PI 547878 isolinea williams 82	Rpp2	S
PI 547879 isolinea williams 82	Rpp4	R
PI200492	Rpp1	S

Rpp2

Rpp3

Rpp4

S

R

Hatwing and Bromfield, (1983); McLean and Byth, (1980); Hartwig, (1986).

PI230970

PI461312

PI459025

Recursos Genéticos EmbrapaCenargen

50 Genotipos con antecedentes

	Conocipos con ant	0004011100
Ge	enotipos Destacados	Reacción
1	PI 594756	R
2	PI 587880A	R
3	PI 200455	R
4	PI416819	R
5	PI417115	R
6	PI594723	R
7	PI594754	R
8	PI594760B	R
9	PI594766	R
10	PI594767	R
11	PI200526	R
12	YORI 1	R
13	BACURI	R
14	HYUNGA	R
15	PI423956	R
16	PI471904	R
17	PI203398	R
18	PI416764	R
19	SHIRANUI	R
20	PI423966	R

CARACTERIZACIÓN MOLECULAR

File Edit View History Bookmarks Tools Help

Mapped Soybean SSR Loci Ju... 💠

SDA Beltsville Agricultural Research Center (BARC)

Soybean Genomics and Improvement Laboratory

Plant Sciences Research Center (BARC) Search

<u>Home</u>

Technology

SNP

Publications

Related links

Soy Map

Detection

An Integrated Genetic Linkage Map of the Soybean July 2003

Newly developed SSRs were mapped in one or more of the five soybean populations: Minsoy × Noir 1, Minsoy × Archer, Noir 1× Archer, Clark × Harosov, and A81-356022 × PI468916. A JoinMap analysis resulted in a map with 20 linkage groups containing a total of 1849 markers, including 1015 SSRs, 709 RFLPs, 73 RAPDs, 23 classical traits and 29 others. Among these, 417 were new SSRs to the maps constructed by Cregan et al. (1999a). Two hundred of these new loci were developed in collaboration with the Monsanto Co. From 12 to 29 new SSR markers were added to each linkage group. Of the newly developed markers, 90 were positioned to 30 of the 36 gaps of 20 cM or more that had existed in the previous version of the map (Cregan et al. 1999).

- Link to Genetic Linkage Map of the Soybean.
- Download Spreadsheet of Genetic Linkage Map.

Mapping populations:

Five widely used soybean mapping populations were used for SSR positioning:

USDA/Iowa State University Population (MS). This is a F2-derived mapping population from the interspecific cross of the

💢 🏠 📵 http://bfgl.anri.barc.usda.gov/soybean/index.html

Soybean Linkage Map - 2006

Soybean Linkage Map - 2006

View Soybean Map and SNP Data

Please cite the following reference when using the information related to Single Nucleotide Polymorphisms (SNPs) contained in the map provided here:

Choi, I.Y., Hyten, D.L., Matukumalli, L.K., Song, Q., Chaky, J.M., Quigley, C.V., Chase, K., Lark, K.G., Reiter, R.S., Yoon, M.S. et al. (2007) A Soybean Transcript Map: Gene Distribution, Haplotype and SNP Analysis. Genetics. (doi:10.1534/genetics.107.070821)

Please cite the following reference when using the information related to Simple Sequence Repeat (SSRs) contained in the map provided here:

Song, Q.J., Marek, L.F., Shoemaker, R.C., Lark, K.G., Concibido, V.C., Delannay, X., Specht, J.E., and Cregan, P.B. (2004) A New Integrated Genetic Linkage Map of the Soybean. Theor. Appl. Genet. 109:122-128.

For information concerning SNP discovery in soybean and the frequency of sequence variants in soybean genes and genomic sequence please cite:

Zhu, Y.L., Song, Q.J., Hyten, D.L., Van Tassell, C.P., Matukumalli, L.K., Grimm, D.R., Hyatt, S.M., Fickus, E.W., Young, N.D. and Cregan, P.B. (2003) Single-nucleotide polymorphisms in soybean. Genetics. 163: 1123-1134.

The development of the Soybean Linkage Map was partially supported with funding from the United Soybean Board.

REGIONES CANDIDATAS

ISOLÍNEAS

Genotipo	Genotipo	Isolínea	Gen		
Recurrente	Donador				
Williams82	PI200492	PI547875	Rpp1		
Williams82	PI230970	PI547878	Rpp2		
Williams82	PI459025	PI547879	Rpp4		

Conversión del genotipo Williams 82 a través de 5 Retro-cruzas (Bernard et al., 1989)

MICROSATELITES

39 - NO INFORMATIVOS

OLIMORFICOS

Satt472 (GL G) — PI 547879 (Rpp4)

Satt244 (GL J)

→ PI 547878 (Rpp2)

ISOLÍNEAS - PI457879 Rpp4

Bernardi C. 2010. Tesina de graduación. Licenciatura en Genética UNM. Posadas Misiones. Argentina

Mapa de Ligamiento

Agregar a la matriz de datos el carácter Resistencia a Roya

POBLACION BIPARENTAL Y PROGENIES F_{2:3}

Progenies F_{2:3} - Test de progenies Análisis Fenotípico

2:3

Extracción de ADN Análisis molecular

Genotipo	Tipo de Lesión	Rango de Severidad	Rango de Esporulación
Susceptible	S	10~70	1 ~ 3
Resistente	R	1 ~ 30	O

CRITERIO DE SELECCIÓN:

as plantas con esporulación o y menos del 30% de la sup. foliar afectada s consideraron resistentes, el resto se consideró susceptible

Fueron evaluadas 1000 plantas de 120 familias

				_
de Reacción	Observadas	Esperadas	Chi-Cuadrado	
R	25	30	0,83	Esperamos qu
Н	57	60	0,15	se cumpla la 1'
S	38	30	2,13	Ley de Mendel 1:2:1
Total	120	120	3,11	

X²: 3,11 - p 0,05

UN GEN expresa la resistencia

Marcadores Moleculares

Durante el HRM, la fluorescencia es inicialmente alta (dsDNA). Cuando la temperatura comienza a elevarse para realizar el melt, el ADN se disocia (ssDNA) y la fluorescencia comienza a disminuir.

Matriz de datos

Localización del gen Rpp?

Nr	Locus	a	h	b	С	d	-	X2	Df	Signif.	Classes
1	Satt191	26	83	36	0	0	13	4.4	2	_	[a:h:b]
2	Satt012	38	70	40	0	0	10	0.5	2	_	[a:h:b]
3	Satt503	35	62	48	0	0	13	5.4	2	*	[a:h:b]
4	Satt517	35	58	37	0	0	28	1.6	2	_	[a:h:b]
5	Satt288	46	62	38	0	0	12	4.2	2	_	[a:h:b]
6	Sct 199	32	76	37	0	0	13	0.7	2	_	[a:h:b]
7	Satt631	41	80	35	0	0	2	0.6	2	_	[a:h:b]
8	Satt641	41	80	34	0	0	3	0.8	2	_	[a:h:b]
9	Rpp-CA(veg)	25	57	38	0	0	38	3.1	2	_	[a:h:b]
10	Satt152	45	74	37	0	0	2	1.2	2	_	[a:h:b]
12	Satt584	37	79	40	0	0	2	0.1	2	_	[a:h:b]
13	Satt660	42	78	36	0	0	2	0.5	2	_	[a:h:b]
14	Sat 165	49	69	37	0	0	3	3.7	2	_	[a:h:b]
15	Satt622	43	73	35	0	0	7	1.0	2	_	[a:h:b]
16	Satt183	44	72	40	0	0	2	1.1	2	_	[a:h:b]
18	Satt215	36	88	32	0	0	2	2.8	2	_	[a:h:b]
19	Sct_001	38	67	37	0	0	16	0.5	2	_	[a:h:b]
21	Sctt011	32	86	35	0	0	5	2.5	2	_	[a:h:b]
23	Satt134	34	72	41	0	0	11	0.7	2	_	[a:h:b]
24	Satt319	38	79	40	0	0	1	0.1	2	_	[a:h:b]
25	Satt100	42	74	40	0	0	2	0.5	2	_	[a:h:b]
26	Satt460	43	76	38	0	0	1	0.5	2	_	[a:h:b]
27	Satt079	35	78	39	0	0	6	0.3	2	_	[a:h:b]
28	Satt307	41	83	34	0	0	0	1.0	2	_	[a:h:b]
29	Satt202	32	91	32	0	0	3	4.7	2	*	[a:h:b]
30	SNP4	36	66	43	0	0	13	1.8	2	_	[a:h:b]
32	SNPC	29	85	39	0	0	5	3.2	2	-	[a:h:b]

Localización del gen Rpp4

Nr	Locus	а	h	b	С	d	_	X2	D£	Signif.	Classes
1	Satt191	18	66	30	0	0	0	5.4	2	*	[a:h:b]
2	Satt612	31	50	33	0	0	0	1.8	2	_	[a:h:b]
3	Satt288	26	50	38	0	0	0	4.3	2	_	[a:h:b]
5	Sct199	15	66	32	0	0	1	8.3	2	**	[a:h:b]
6	Rpp4	26	39	34	0	0	15	5.8	2	*	[a:h:b]

soja. Una experiencia de colaboración en el MERCOSUR"

Estructura de la población para Mapeo por Asociación

Material vegetal: 88 genotipos (cultivares Argentinos y materiales exóticos)

Marcadores: 16 SSR no ligados (11 GL)

Structure

La estructura mayor se encuentra en K=2 y una subestructuración en K=4

Tecnología Agropecuaria

Structure

Rojo: la mayoría son cultivares de GM cortos.

Verde: la mayoría son cultivares de GM largos y la mayoría de los exótic

Rojo: la mayoría son cultivares de GM largos.

Azul: la mayoría son cultivares de GM cortos.

Verde: cantidades similares de cultivares de GM largos y exóticos.

Amarillo: cantidades similares de cultivares de GM largos y exóticos.

Padre Donador (RR)

Padre Recurrente

(100% Rr)

Rr X

rr (Recurrente)

 $RC1F_1 = (50\% Rr : 50\% rr) Rr x rr (Recurrente)$

X

 $RC2F_1 = (50\% Rr : 50\% rr) Rr x rr (Recurrente)$

 $RC3F_1 = (50\% Rr : 50\% rr) Rr$ @

 $RC3F_2 = (25\%RR : 50\% Rr : 25\% rr)$

15 PLANTAS RC3F₂ (Rpp4)

15 PLANTAS RC3F₂ (Rhg4)

RR

X

 $RC3F_2F_1 = (100\% RrRr) RrRr$ @

Progenies RC3F_{2:3} DIVERSIDAD

 $RC3F_{2}F_{1}F_{2} = (1):16$ RRRR

ENSAYOS FENOTIPICOS PARA RESISTENCIA COMBIADA

6 Plantas seleccionadas

L(p|1) - L(p|2) - L(p|4) - L(p|5) L(p|7) - L(p|10)

$RC3F_2F_1$

Combinación											
Código	\bigcirc (RC2F ₂) \circlearrowleft (RC2F ₂)	Plantas RC3F ₂ F								
1	W(pl10)	L(pl1)	2								
2	W(pl1)	L(pl1)	5								
3	H(pl2)	L(pl11)	3								
4	W(pl9)	L(pl1)	2								
5	H(pl15)	L(pl5)	1								
6	H(pl15)	L(pl1)	3								
7	H(pl15)	L(pl5)	4								
8	H(pl11)	L(pl7)	1								
9	H(pl8)	L(pl8)	1								
10	W(pl7)	H(pl6)	1								
11	W(pl8)	L(pl8)	2								
12	L(pl1)	W(pl1)	2								
13	L(pl5)	H(pl11)	1								
14	L(pl5)	W(pl4)	3								
15	L(pl8)	W(pl14)	2								
16	L(pl0)	W(pl8)	2								
17	L(pl10)	H(pl11)	2								
18	H(pl6)	W(pl10)	3								
19	H(pl6)	W(pl3)	2								
20	H(pl6)	W(pl1)	1								
21	H(pl6)	L(pl2)	1								
22	L(pl14)	W(pl2)	4								
23	L(pl14)	W(pl9)	3								

	51 plantas	RC3F ₂ F ₁			
	Gen	Marcadores			
\succ	Rps1-k	Satt159	Satt009	Tgmr	Satt641
	Rpp4	Satt505	Satt288	Satt191	
	Rhg4	Satt424	AK-HSDS	A2D8	Satt632

COMBINACIONES SELECCIONADAS...

digo	Combinación		Planta RC3F ₂ F ₁	Nematodos - Rgh4 GL A2			Roya - Rpp4 GL G			Phyto	ophtora -	- Rps1-k GL N		
uigu	\bigcirc (RC2F ₂)			Satt424	AK-HSDS	A2D8	Satt632	Satt505	Satt288	Satt191	Satt159	Satt009	Tgmr	Satt
8	H(pl11)	L(pl7)	1	Het	Het	Het		Het	Het	Het				
9	H(pl8)	L(pl8)	1	Het	Het	Het		Ν	Het	Het				
5	L(pl8)	W(pl14)	2					Het	Het	Het	Het	Het	Het	١
9	H(pl6)	W(pl3)	2	N	Het	Het					Het	Het	Het	Н
20	H(pl6)	W(pl1)	1	N	Het	Het					N	Het	Het	Н

Satt288 95% de eficacia para seleccionar resistencia a roya

Integrantes...

Clarisa BERNARDI Lic. en Genética Luciana SEQUIN Lic. en Biotecnología Celina GHIONE Lic. en Bioquímica Javier GILLI Lic. en Genética

