

SEM/SET for COMP1047

https://bluecastle-cn-surveys.nottingham.ac.uk

COMP1047 AY2023: Final Exam Review Guideline

- NO calculator is allowed.
- We will provide you the MIPS Ref Card appended at the end of the exam paper.
- Dictionary is permitted as per usual exam rules.
- The final exam covers the three (3) aspects that have been taught in the lecture and exercised in the labs:
 - Basic Concepts and MIPS programming
 - ISA and CPU Design
 - Computer Networking

Basic concepts and MIPS programming

- Chapter 1: Introduction
 - General concepts (no need to memorize exact numbers)
 - von Neumann architecture
- Chapter 2: Computer Performance
 - Timing Response time, CPU Timing related, relative performance, CPI related
 - Other performance metrics power/energy, reliability, etc.
- Chapter 3: Computer Arithmetic
 - Number formats decimal, binary, hexadecimal, and their conversion.
 - Negative numbers sign/magnitude, 2's complement and conversion, sign extension, overflow
 - Shift operations
 - Floating point representation all except double precision standard
- Chapters 4 & 5: MIPS programming 1 & 2
 - All concepts: registers, memory (address, data, addressing, endianness), immediate, etc.
 - and related instructions: arithmetic, memory, logical, branch/jump, etc.
 - Floating point, multiplication, division instructions will not be covered.
 - Arrays and Procedures, but no recursive procedures.
 - Syscall will not be covered.

ISA and CPU design

- Chapter 6: MIPS ISA
 - R-, I-, J-types instructions definitions, design, and conversion. MIPS ref card will be provided for assistance.
 - Content in the handout may be included, too.
- Chapter 7: ALU Design
 - All concepts including
 - Basic hardware principles and functionalities
 - Hardware details will not be covered, such as 1-bit adder logical expression, multi-bit adders design.
 - ALU design principle, schematic, and control
 - Add, Sub, And, Or, Slt, Nor, Nand, etc.
- Chapter 8: Single-Cycle CPU design
 - All concepts including
 - Drawing the datapaths for R-type, lw, sw, beg instructions.
 - You don't need to know how the controller is designed, but need to know what are the corresponding control signals required to make the components work properly.

CPU design

Chapter 9: Pipelined CPU Design

- Describe the pipelined behavior for instruction execution:
 - At which cycle, which instruction is executing at which stage
 - At a certain stage, which component in CPU is functioning: reading/writing registers/memories, ALU calculation, etc.
- Comprehend all types of hazards, including RAW data hazard (both for R-type and lw instructions)
- Indicate the stalling and forwarding methods applied to mitigate the data hazard.
 - Draw arrows and bubbles on the pipeline, as in the lab questions
- Know that control hazard cannot be completely removed, but can use early branching for performance improvement.
- Calculate the CPI
 - The <u>ideal</u> CPI for pipelined processor is 1
 - The CPI for 'lw' is dependent on whether there is data hazard.
 - The CPI for branching is dependent on whether the branch is taken.
 - Calculate the average CPI for 'lw' and 'beq' considering hazard
 - Calculate the average CPI of the overall CPU given the percentage of each kind of instruction.
- Calculate the total execution time of the pipeline
 - For a piece of assembly code, calculate the total execution time w or w/o hazard
- May need to draw the Pipelined CPU design.