$\mathbf{Q2}$

$$f((0,1,0),(0,1,0)) = 0 \cdot 0 + 0 \cdot 0$$

= 0

However, $(0,1,0) \neq 0$, so f does not satisfy the property of definiteness.

$\mathbf{Q3}$

Let S be the set of inner products with the positivity condition. Let S' be the set of inner products with the new condition. To start, let $f \in S$. Then, $f(v,v) > 0 \ \forall v \in V$ with $v \neq 0$, so the new condition is satisfied since $\exists v \in V$ with f(v,v) > 0. So, $f \in S'$, so $S \subseteq S'$. INCMPLETE

$\mathbf{Q8}$