28. a.	Demonstrate the following morphological operation with example.		4	3	
	(i) Dilation	2 2	Ċ	_	•
	(ii) Erosion	2 6			
2	(iii) Opening and closing	Ü			
	(OR)				
b .	Explain the various types of region based segmentation method.	10	4	3	3
29. a.	Implement the Huffman coding for the word WELCOME and also find	10	3	4	:
	average length, entropy and efficiency.	н .			
-					
	(OR)	10	2	4	,
b.	Describe the following image compression algorithm	10	2	4	2
15	(i) Rigid registration algorithm				
	(ii) Dimensionality transformation				
20	To the state of th	10	4	5	1
30. a.	Explain the digital implementation of filter back projection algorithm in	10		,	
	detail.				
	(OR)				
h	Demonstrate digital water marking algorithm with example.	10	4	5	1
o.	L'OILOIDHAID AIGHILLIAN AIGHILLIAN TIAM DIAMIPIO				

24NF6&7-18ECE363J Page 4 of 4

Reg. No.			(0)					
0		 		 				

B.Tech. DEGREE EXAMINATION, NOVEMBER 2022

Sixth and Seventh Semester

					, INIAGE PROCESSING cademic year 2018-2019 to 2019-2020)}			
Note: (i)			t - A should be answered in OMR s	heet w	vithin first 40 minutes and OMR sheet		d be	han	ded
(ii)			to hall invigilator at the end of 40^{th} to B should be answered in answer b						
(11)		1 41	1 - D should be answered in answer b	OORIC					
Time	: 21/	4 Ho	urs			Max.	Ma	rks:	75
			PART - A (25 × 1 =	= 25 I	Marks)	Marks	BL	CO	PO
			Answer ALL Q						
	1.	Iden	tify the range of light intensity le	evel to	which the human eye can adapt	1	1	1	1
		(A)	10^{-6} to 10^{-4}	(B)	$10^4 \text{ to } 10^6$:00			
		(C)	10^{-6} to 10^4	(D)	10^{-5} to 10^{5}				
	2.	Cho	ose the number of bits required for	or dis	playing coloring image	1	3	1	1
			4 bits/pixels		6 bits/pixels				
		(C)	8 bits/pixels	(D)	12 bits/pixels				
	3.	Calc	ulate the number of bit required	for st	torage of 128×128 image with 64	1	3	1	1
		~ .	levels						
		` /	4096	` '	8192				
		(C)	12288	(D)	98304				
Si	4.	Con	pute the Euclidean distance	$(D_1),$	city-block distance (D_2) and	1	3	1	1
					d Q, where P and Q be (3,0) and				
			respectively.		w				
			$(\sqrt{10},3,4)$	(B)	$\left(\sqrt{10},4,3\right)$				
			/		$(\sqrt{8},2,3)$				
		(C)	$(\sqrt{8},4,3)$	(D)	$(\sqrt{8},2,3)$			87	
	5	Dalo	te image transform used for fast	comr	nutation	1	2	1	1
	٦.		Convolution and correlation	_					
		` '	Correlation		Compression				
	6	Wha	at is the name of process used	d to	correct the power-law response	1	1	2	1
	0,		nomena?		ooneer and person and person				
		_	Beta correction	(B)	Alpha correction				
		. ,	Gamma correction	(D)	Pie correction				
	7.	Whi	ch of the following is a second-o	rder (derivative operator?	1	1	2	1
	. •		Histogram		Laplacian				
		(C)	Gaussian		Poisson				

24NF6&7-18ECE363J

Page 1 of 4

8.	Predict the alternate approach to median	n filtering	1	2	2	1	
	(A) Use a mask (I	3) Gaussian filter					
	(C) Sharpening (I	D) Laplacian filter					
9.	Identify which of the following fails to	work on dark intensity distribution	1	1	2	1	
	(A) Laplacian transform (I	B) Gaussian transform					
	(C) Histogram transform (I	D) Power law transform					
10.	Predict the type of slicing technique us	sed to highlight a specific range of	1	1	2	1	
	(A) Gray-level slicing (I	B) Bit-plane slicing					
	(C) Contrast stretching (I	D) Byte-level slicing					
11.	Relate the image segmentation approach	n used for region growing	1	2	3	3	
		3) Graph partitioning method					
	(C) Watershed transformation (I	O) Clustering method					
12.	Match the type of segmentation method on a dark background	d used for two types of light object	1	1	3	3	
	•	B) Global thresholding					
	(C) Adaptive thresholding (I	Multiple thresholding					
13.	Identify the mask used for line detection	e	1	1	3	3	
	(A) Gaussian (E	B) Laplacian					
25	(C) Ideal (I	D) Butterworth					
14.	Choose which of the following uses cross	ssing operator?	1	3	3	3	
	(A) First derivative (E	Second derivative					
	(C) Sobel operator (I	D) Gaussian operator					
15.	Interpret the advantages of canny operat	or	1	2	3	3	
	(A) Simplicity of the method (E	B) Performance is good					
	(C) Complex (I	D) Low performance					
16.	Recall redundancy of the data used by for	ormula	1 .	1	4	5	
	(A) 1 (E	3) (-1)					
	(A) $\frac{1}{C}$	$1-\left(\frac{1}{C}\right)$					
	(C) $1 + \left(\frac{1}{C}\right)$ (E)	$1 - \left(\frac{-1}{C}\right)$ $1 - \frac{1}{C}$					
	$1+\left(\overline{C}\right)$	$1-\frac{1}{C}$					
17.	Match sequence of code assigned said to	be	1	1	4	5	
		B) Word					
	(C) Byte (D	O) Nibble					
18.	Select which one is not a type of data red	dundancy	1	2	4	5	
		3) Spatial					
	(C) Temporal (I						
ň	·						

	1	9.	Predict every run length will introduce		1	2	4	5	
			(A) New pixels (B) New matrix						
			(C) New frames (D) New intensi	ty					
				2	-				
	2	20.	Identify the reason for doing compression		1	1	4	5	
			(A) Storage (B) Reduce band		16.00				
			(C) Money (D) Both A and	В					
	2	21.	Relate the advantage of iterative reconstruction technic	ques vers filter back	1	2	5	1	
			projection (A) By the letter (B) By						
				ction kerner of filter					
,			(C) Better handling of noisy (D) Faster recon images	struction				28	
	2	2	Which of the following represent the accumulation of	the Dorr sum of all	1	1	5	1	
	۷		Which of the following represent the accumulation of rays that pass through the point (X,Y) ?	the Ray sum of an				•	
			(A) Fourier reconstruction (B) Filter back p	rojection					
			(C) Back projection (D) Radon trans						
							_		
	2	3.	Identify the mathematical technique that involves the	e estimation of an	1	1	5	1	
			unknown value from known value			(2)			
			(A) Filtering (B) Interpolation (C) Convolution (D) Summation	1				•	
			(C) Convolution (D) Summation						
	2	4.	Recall the type of transform used as line integral along t	the nath of rays	1	1	5	1	
	_		(A) Radon (B) DCT	are paul of lays					
			(C) DFT (D) DST						
	a		8						
	2	5.	Match the type of transform used as an input data for fo of MRI	purier reconstruction	1	1	5	1	
			(A) Cosine (B) Sine						
			(C) Radon (D) Inverse rado	n					
			$PART - B (5 \times 10 = 50 Marks)$		Marks	BL	со	PO	
			Answer ALL Questions						
	26.	a.	Describe in detail about elements of visual perception w	rith neat diagram.	10	2	1	1	
							**		
		1	(OR)		10	×	-1	1	
		b.	Compute the Haar basis for N=4.		10	5	1	1	
	27	9	Explain the following gray level transformation technic	1100		4	2	1	
	41.	a.	Explain the following gray level transformation techniq (i) Image negative	ues	-	•	-	•	
			(ii) Intensity level slicing		5 5				
			(iii) interiory rever bileting				٠.		
			(OR)						
		b.	Illustrate in detail about image smoothening in spatial d	omain.	10	4	2	1	

Page 2 of 4

24NF6&7-18ECE363J

Page 3 of 4