Cl603 Data Mining

Tutorial 3

1. Consider the data set shown below:

Customer ID	Transaction ID	Items Bought
1	0001	{a, d, e}
1	0024	{a, b, c, e}
2	0012	{a, b, d, e}
2	0031	{a, c, d, e}
3	0015	{b, c, e}
3	0022	{b, d, e}
4	0029	{c, d}
4	0040	{a, b, c}
5	0033	{a, d, e}
5	0038	{a, b, c}

- a. Compute the **support** for itemsets **{e}**, **{b,d}**, and **{b,d,e}** by treating each transaction as a market basket.
- b. Use the results from part a to compute the **confidence** for the association rules $\{b,d\} \rightarrow \{e\}$ and $\{e\} \rightarrow \{b,d\}$. Is confidence a symmetric measure?
- c. Repeat *part a* by treating each customer ID as a market basket. Each item should be treated as a binary variable (1 if an item appears in at least one transaction bought by the customer, 0 otherwise)
- d. Use the results in part (c) to compute the confidence for the association rules
 {b,d} → {e} and {e} → {b,d}.

2. Consider the data set shown below

a. Compute the **support count** and **support** for each item.

TID	Items Bought
1	Milk, Bread, Butter
2	Bread, Cheese
3	Bread, Jam
4	Milk, Bread, Cheese
5	Milk, Jam
6	Bread, Jam
7	Milk, Jam
8	Milk, Bread, Jam, Butter
9	Milk, Bread, Jam

- b. Generate the **frequent itemsets** with minsup = 2 using the $F_{K-1} \times F_{k-1}$ candidate itemset generation method.
- c. Determine all the rules from the largest k-itemset(s) from *part b* with the consequents that contain only 1-itemsets.
- d. Using the formula $X_1 \cap X_2 \to Y_1 \cup Y_2$ merge the rules determined in *part c* to determine all the rules for the k-itemset(s).
- e. Determine the confidence $(X \rightarrow Y)$ for each rule generated in *parts c and d*.
- f. Determine the lift $(X \to Y)$ for each rule generated in *parts c and d*.