Calculus I

Trig functions with power notation and the chain rule

Todor Milev

2019

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \cos(x^3)$$
.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \cos(x^3)$$
.
Let $u = ?$
Let $g(u) = ?$
Then $f(x) = g(u)$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \cos(x^3)$$
.
Let $u = x^3$.
Let $g(u) = ?$
Then $f(x) = g(u)$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \cos(x^3)$$
.
Let $u = x^3$.
Let $g(u) = ?$
Then $f(x) = g(u)$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

```
Differentiate f(x) = \cos(x^3).

Let u = x^3.

Let g(u) = \cos u.

Then f(x) = g(u).
```

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

```
Differentiate f(x) = \cos(x^3).

Let u = x^3.

Let g(u) = \cos u.

Then f(x) = g(u).

Chain Rule: f'(x) = g'(u)u'
```

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

```
Differentiate f(x) = \cos(x^3).

Let u = x^3.

Let g(u) = \cos u.

Then f(x) = g(u).

Chain Rule: f'(x) = g'(u)u'

= (?) (?)
```

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

```
Differentiate f(x) = \cos(x^3).

Let u = x^3.

Let g(u) = \cos u.

Then f(x) = g(u).

Chain Rule: f'(x) = g'(u)u'

= (-\sin u) (?)
```

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

```
Differentiate f(x) = \cos(x^3).

Let u = x^3.

Let g(u) = \cos u.

Then f(x) = g(u).

Chain Rule: f'(x) = g'(u)u'

= (-\sin u) (?)
```

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

```
Differentiate f(x) = \cos(x^3).

Let u = x^3.

Let g(u) = \cos u.

Then f(x) = g(u).

Chain Rule: f'(x) = g'(u)u'

= (-\sin u)(3x^2)
```

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \cos(x^3)$$
.
Let $u = x^3$.
Let $g(u) = \cos u$.
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$
 $= (-\sin u)(3x^2)$
 $= -3x^2\sin(x^3)$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \cos^3 x$$
.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \cos^3 x$$
.
Let $u = ?$
Let $g(u) = ?$
Then $f(x) = g(u)$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \cos^3 x$$
.
Let $u = \cos x$.
Let $g(u) = ?$
Then $f(x) = g(u)$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \cos^3 x$$
.
Let $u = \cos x$.
Let $g(u) = ?$
Then $f(x) = g(u)$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \cos^3 x$$
.
Let $u = \cos x$.
Let $g(u) = u^3$.
Then $f(x) = g(u)$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \cos^3 x$$
.
Let $u = \cos x$.
Let $g(u) = u^3$.
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \cos^3 x$$
.
Let $u = \cos x$.
Let $g(u) = u^3$.
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$
 $= (?)$ (?)

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \cos^3 x$$
.
Let $u = \cos x$.
Let $g(u) = u^3$.
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$
 $= (3u^2)$ (?

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \cos^3 x$$
.
Let $u = \cos x$.
Let $g(u) = u^3$.
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$
 $= (3u^2)$ (?

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \cos^3 x$$
.
Let $u = \cos x$.
Let $g(u) = u^3$.
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$
 $= (3u^2)(-\sin x)$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \cos^3 x$$
.
Let $u = \cos x$.
Let $g(u) = u^3$.
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$
 $= \left(3u^2\right)(-\sin x)$
 $= -3\sin x(\cos x)^2$.