Εκμάθηση Αναπαραστάσεων (Representation Learning)

Βαθιά Μηχανική Μάθηση

ΔΠΜΣ Επιστήμης Δεδομένων & Μηχανικής Μάθησης

Εθνικό Μετσόβιο Πολυτεχνείο

Γιώργος Αλεξανδρίδης (gealexan@mail.ntua.gr)

Αναπαραστάσεις

- Ένα πρόβλημα λύνεται ευκολότερα αν η αναπαράσταση του είναι η κατάλληλη
 - Λχ ευκολότερα υπολογίζουμε την πράξη 30 × 40 με τους αραβικούς αριθμούς παρά με τους ελληνικούς (Λ × Μ)
- Στη μηχανική μάθηση μια **αναπαράσταση** θεωρείται καλή αν διευκολύνει τη διαδικασία μάθησης
 - Καλός συμβιβασμός μεταξύ
 - 1. Συγκέντρωσης **όσο το δυνατόν περισσότερων** χαρακτηριστικών σχετικών με την είσοδο
 - 2. Διατήρησης όσων εμφανίζουν ενδιαφέρουσες ιδιότητες
 - λχ ανεξαρτησία μεταξύ τους

Αναπαραστάσεις

- Εκμάθηση κατάλληλων αναπαραστάσεων ιδιαίτερα σημαντική για προβλήματα **ημι-επιβλεπόμενης** και **μη-επιβλεπόμενης** μάθησης
- Πολλές φορές έχουμε μεγάλο όγκο δεδομένων χωρίς ετικέτα και πολύ μικρό με ετικέτα
 - Η επιβλεπόμενη μάθηση θα περιορίζονταν στο μικρό υποσύνολο των δεδομένων με ετικέτες
 - · Πιθανά προβλήματα υπερπροσαρμογής
 - Μέσω διαδικασίας μη-επιβλεπόμενης μάθησης
 - Μπορούμε να μάθουμε χαρακτηριστικά του χώρου εισόδου
 - Χρησιμοποιούμε τις αναπαραστάσεις που μαθαίνουμε στο πρόβλημα της επιβλεπόμενης μάθησης

Μη-επιβλεπόμενη προπαίδευση (unsupervised pretraining)

- Βασίζεται σε μοντέλα που μαθαίνουν λανθάνουσες αναπαραστάσεις της εισόδου τους (λχ ΑΚ)
- Κάθε επίπεδο προ-εκπαιδεύεται χωριστά, χρησιμοποιώντας την είσοδο από το αμέσως προηγούμενο
 - Παράγεται μια καινούργια αναπαράσταση των δεδομένων η οποία, ιδανικά, είναι απλούστερη
- · Χρήση για την αρχικοποίηση δικτύων όπως βαθιοί ΑΚ, deep belief networks, βαθιές μηχανές Boltzmann
 - · Αποτέλεσε έναυσμα για την ανανέωση του ενδιαφέροντος για τα βαθιά δίκτυα από το 2006 και μετά

Απληστη μη-επιβλεπόμενη ανά επίπεδο προπαίδευση

Greedy layer-wise unsupervised pretraining

1. Άπληστη

• Κάθε τμήμα της βελτιστοποιείται ανεξάρτητα από τα υπόλοιπα

2. Ανά-επίπεδο

- Δομικό στοιχείο της βελτιστοποίησης είναι το επίπεδο
- Όταν βελτιστοποιείται το k-οστό επίπεδο, τα υπόλοιπα παραμένουν σταθερά

3. Μη-επιβλεπόμενη

• Χρήση αλγορίθμων μη-επιβλεπόμενης μάθησης

4. Προπαίδευση

 Αποτελεί αρχικό βήμα πριν την εφαρμογή αλγορίθμου εκπαίδευσης που βελτιστοποιεί όλα τα επίπεδα μαζί

Χαρακτηριστικά

- Συνδυασμός **δύο** παρατηρήσεων
 - 1. Επιλογή αρχικών παραμέτρων βαθιού μοντέλου συνήθως έχει σημαντική επίπτωση στο ίδιο το μοντέλο
 - 2. Η **εκμάθηση** της **κατανομής** της **εισόδου** διευκολύνει στην εκμάθηση της **αντιστοίχισης** μεταξύ εισόδου-εξόδου
- Επιλογή αρχικών παραμέτρων στα βαθιά μοντέλα
 - Με κατάλληλη επιλογή, το μοντέλο καλύπτει περιοχές που δε θα «έφτανε» διαφορετικά
 - Αχ εκεί που η εκτίμηση της κλίσης θα ήταν αδύνατη
 - Δύσκολο να κατανοηθεί ποιες πλευρές των προπαιδευμένων χαρακτηριστικών μπορούν να διατηρηθούν στο στάδιο της επιβλεπόμενης μάθησης
- Διευκόλυνση επιβλεπόμενης μάθησης
 - Αχ βοηθάει να μπορούμε να ξεχωρίσουμε το πλήθος των τροχών σε περίπτωση που φτιάχνουμε ταξινομητή που ξεχωρίζει εικόνες αυτοκινήτων από μοτοσυκλετών

Χαρακτηριστικά

- Η μη-επιβλεπόμενη προπαίδευση βοηθά όταν η **αρχική αναπαράσταση** των δεδομένων είναι **«φτωχή»**
 - λχ επεξεργασία κειμένου και απεικόνιση σε διανυσματικό χώρο
- Χρησιμότητα
 - Όταν τα δεδομένα χωρίς ετικέτα είναι πολυπληθή
 - Όταν η σχέση εισόδου-εξόδου είναι περίπλοκη
- Μειονεκτήματα
 - Δύο φάσεις εκπαίδευσης
 - Κάθε μια με δικές της παραμέτρους
 - Δεν μπορεί να προβλεφθεί η απόδοση της δεύτερης πριν τελειώσει η πρώτη
 - Δεν επιτρέπει τον ορισμό του βαθμού συμμετοχής της
 - Όπως λχ στην ομαλοποίηση
- Σήμερα χρησιμοποιείται κυρίως σε προβλήματα **επεξεργασίας φυσικής** γλώσσας

Μάθηση μέσω μεταφοράς (transfer learning)

- Χρησιμοποίηση γνώσης που έχει αποκτηθεί σε ένα πεδίο (λχ μια κατανομή P₁) για την επίτευξη καλύτερης γενίκευσης σε ένα άλλο (που περιγράφεται από κατανομή P₂)
 - Προϋπόθεση ότι **οι παράγοντες** που εξηγούν τις διακυμάνσεις στην P_1 είναι σχετικές με τις διακυμάνσεις που αναμένεται να εντοπιστούν στην P_2
- Ιδιαίτερα χρήσιμο σε προβλήματα οπτικής αναγνώρισης
 - Πολλές κατηγορίες αντικειμένων μοιράζονται χαρακτηριστικά χαμηλού επιπέδου όπως ακμές, σχήματα κλπ
- Σε ορισμένες περιπτώσεις, ο διαμοιρασμός χαρακτηριστικών γίνεται σε **ανώτερα επίπεδα**
 - λχ σε προβλήματα αναγνώρισης φωνής

Περιπτώσεις μάθησης μέσω μεταφοράς

- Προσαρμογή πεδίου (domain adaptation)
 - Ίδιο ζητούμενο, ελαφρά μεταβολή εισόδου
 - Αχ σύστημα ανάλυσης συναισθήματος που έχει εκπαιδευτεί σε κριτικές ταινιών χρησιμοποιείται για την ανάλυση κριτικών μουσικής
 - Η ορολογία μεταβάλλεται μεταξύ των πεδίων, ωστόσο υπάρχει κοινή συνισταμένη για το ποιο σχόλιο είναι θετικό ή αρνητικό
- Εννοιολογική ολίσθηση (concept drift)
 - Βαθμιαία αλλαγή στην κατανομή των δεδομένων εισόδου συναρτήσει του χρόνου
 - Λχ σύστημα εντοπισμού ανεπιθύμητης αλληλογραφίας ανταποκρίνεται στις αλλαγές του λεξιλογίου που χρησιμοποιούν οι spammers

Ποιότητα των αναπαραστάσεων

- Τι καθιστά μια αναπαράσταση καλύτερη από μια άλλη;
 - 1. Ιδανικά, τα χαρακτηριστικά της αναπαράστασης **ανταποκρίνονται** στις υποκείμενες αιτίες που παράγουν τα δεδομένα
 - Μια καλή αναπαράσταση για το p(x) βοηθά στον υπολογισμό του p(y|x), αν το y συμπεριλαμβάνεται στις κυρίαρχες αιτίες παραγωγής του x
 - 2. Η αναπαράσταση είναι ευκολότερη στη μοντελοποίηση
 - Αν μια αναπαράσταση h αναπαριστά τις περισσότερες από τις αιτίες που δημιουργούν τα x και η έξοδος y σχετίζεται με τα κυρίαρχα χαρακτηριστικά, τότε είναι πιο εύκολο να προβλεφθεί το y από το x

Ποιότητα των αναπαραστάσεων

- Πρόβλημα ημι-επιβλεπόμενης μάθησης
 - Κακή περίπτωση: Av $p(x) \in \mathcal{U}$ τότε δεν μπορούμε να μάθουμε την p(y|x)
 - <u>Καλή περίπτωση</u>: Μίξη καλώς διαχωριζόμενων κατανομών, όπως στο δίπλα σχήμα

Παράγοντες συνάφειας (casual factors)

- Πως μπορούν να συνδεθούν p(x) και p(y|x);
 - Αν y στενά συνδεδεμένο με έναν από τους **παράγοντες συνάφειας** του x, τότε p(x) και p(y|x) στενά συνδεδεμένα μεταξύ τους
 - h: σύνολο παραγόντων συνάφειας
 - · Υποκείμενες αιτίες που καθορίζουν το **h** πολύ μεγάλες σε πλήθος
 - Δύσκολο να βρεθούνε με εξαντλητική αναζήτηση
 - Πχ σε πρόβλημα αναγνώρισης αντικειμένων σε εικόνα, πόσοι είναι οι πιθανοί παράγοντες συνάφειας;
 - Στρατηγικές αντιμετώπισης
 - 1. Ταυτόχρονη χρήση επιβλεπόμενων και μη-επιβλεπόμενων τεχνικών, για να «ανακαλύψευ» το μοντέλο τους σημαντικότερους παράγοντες διακύμανσης στα δεδομένα
 - 2. Απεικόνιση σε μεγαλύτερους χώρους αναπαραστάσεων, όταν χρησιμοποιούνται μόνο μηεπιβλεπόμενες τεχνικές

Καθορισμός προεξεχόντων χαρακτηριστικών

- Τεχνικές εκμάθησης αναπαραστάσεων συνήθως βελτιστοποιούν ένα συγκεκριμένο κριτήριο για να εντοπίσουν τις προεξέχουσες αιτίες παραγωγής των δεδομένων
 - λχ μέσο τετραγωνικό σφάλμα
 - · Δεν είναι πάντα αρκετό, μιας και παρακάτω «χάνονται» η μπάλα και το αυτί στις αναπαραστάσεις
- **Εναλλακτικοί τρόποι** καθορισμού προεξεχόντων χαρακτηριστικών
 - · Αν ομάδα pixel περιέχει συχνά εμφανιζόμενο πρότυπο, τότε αυτό αναγνωρίζεται ως προεξέχων
 - · Μοντέλο λειτουργίας των Generative Adversarial Networks (GANs), που αναγνωρίζουν το αυτί στη δεξιά εικόνα

Κατανεμημένες και μη-κατανεμημένες αναπαραστάσεις

- Κατανεμημένες αναπαραστάσεις (distributed representations)
 - · Χρησιμοποιούν n χαρακτηριστικά που παίρνουν k τιμές για να περιγράψουν k^n διαφορετικές έννοιες
- Μη-κατανεμημένες ή συμβολικές αναπαραστάσεις
 - Κάθε είσοδος αντιστοιχίζεται σε συγκεκριμένη κατηγορία ή σύμβολο
 - Δεν είναι σαφείς οι σχέσεις συνάφειας μεταξύ των συμβόλων
- Κατανεμημένες αναπαραστάσεις επιτυγχάνουν γενίκευση
 - πχ σε συμβολική αναπαράσταση η *«γάτα»* και ο *«σκύλος»* απέχουν όσο οποιαδήποτε άλλα σύμβολα
 - · Σε κατανεμημένη αναπαράσταση μπορεί να ενώνονται μέσω χαρακτηριστικών όπως λχ το ότι είναι θηλαστικά, τετράποδα κλπ
- Χώρος χαρακτηριστικών κατανεμημένων αναπαραστάσεων έχει την ιδιότητα της ομοιότητας
 - Σημασιολογικά κοντινές έννοιες απεικονίζονται σε «κοντινή» απόσταση στο χώρο
 - Αυτό δεν ισχύει στις συμβολικές αναπαραστάσεις

Παράδειγμα κατανεμημένης αναπαράστασης

- Διάνυσμα n = 3 δυαδικών χαρακτηριστικών
 - Λαμβάνει 2³ = 8 τιμές, που αντιστοιχούν σε διαφορετικές περιοχές του χώρου εισόδου
- Διαχωρισμός του χώρου εισόδου σε 3 περιοχές
 - · Κάθε χαρακτηριστικό ορίζεται ως το **κατώφλι εξόδου** ενός γραμμικού μετασχηματισμού
 - Αν h_i^+ αντιπροσωπεύει τα σημεία για τα οποία $h_i = 1$ και h_i^- τα σημεία για τα οποία $h_i = 0$ τότε η αναπαράσταση $[1,1,1]^T$ αντιστοιχεί στην περιοχή $h_1^+ \cap h_2^+ \cap h_3^+$
- Στη γενική περίπτωση, μια κατανεμημένη αναπαράσταση η χαρακτηριστικών μαθαίνει η^δδιαφορετικές περιοχές
 - **Εκθετικά περισσότερες** σε πλήθος σε σχέση λχ με τον αλγόριθμο των *k*-μέσων που μαθαίνει μόλις *n*

Παράδειγμα μη-κατανεμημένης αναπαράστασης

- Διαχωρισμός χώρου εισόδου σε 3 περιοχές
 - Αλγόριθμος εύρεσης πλησιέστερου γείτονα
 - Διαφορετικοί αλγόριθμοι μη-κατανεμημένης αναπαράστασης επιτυγχάνουν διαφορετικές γεωμετρίες
 - Όλοι όμως τεμαχίζουν τον χώρο σε περιοχές με διαφορετικό σύνολο παραμέτρων

• Πλεονέκτημα

- Αλγόριθμος «μαθαίνει» την κατανομή των δεδομένων χωρίς να λύνει ένα δύσκολο πρόβλημα βελτιστοποίησης
 - Δεδομένου ότι υπάρχει <u>ικανός αριθμός παραμέτρων</u> για να περιγραφεί το πρόβλημα

• Μειονεκτήματα

- Τοπική γενίκευση
- Δεν μπορούν να «μάθουν» πιο περίπλοκους χώρους

Χαρακτηριστικά Συμβολικών Αναπαραστάσεων

- Υπόθεση ομαλότητας (smoothness assumption)
 - Av $u \approx v$ για τη συνάρτηση f που θέλουμε να μάθουμε ισχύει εν γένει $f(u) \approx f(v)$
 - Βάση αλγορίθμων που μαθαίνουν συμβολικά χαρακτηριστικά
- «Κατάρα» της διαστατικότητας (curse of dimensionality)
 - Αν f μεταβάλλεται σε πολλές περιοχές, τότε χρειαζόμαστε τουλάχιστον τόσα δείγματα όσες και οι διακριτές περιοχές
- Κάθε σύμβολο αποτελεί διαφορετικό βαθμό ελευθερίας για κάθε περιοχή
 - Μπορούμε να μάθουμε **«αυθαίρετές» απεικονίσεις** μεταξύ περιοχών
 - Δεν μπορούμε να γενικεύσουμε για νέες περιοχές

Χαρακτηριστικά Κατανεμημένων Αναπαραστάσεων

- Αλγόριθμος εκμάθησης κατανεμημένων χαρακτηριστικών που εξάγει
 δυαδικά χαρακτηριστικά μέσω ορισμού κατωφλίου σε γραμμικές
 συναρτήσεις
 - \cdot Κάθε δυαδικό χαρακτηριστικό τεμαχίζει το χώρο \mathbb{R}^d σε 2 υπο-περιοχές
 - \cdot Από n υπερεπίπεδα του χώρου \mathbb{R}^d δημιουργούνται $\mathcal{O}(n^d)$ περιοχές
 - Εκθετικές ως προς τον χώρο της εισόδου
 - Πολυωνυμικές ως προς το εύρος των λανθανουσών χαρακτηριστικών
- Με $\mathcal{O}(nd)$ δείγματα προσεγγίζουμε $\mathcal{O}(n^d)$ περιοχές στο χώρο εισόδου
 - Στις συμβολικές αναπαραστάσεις απαιτούνται $\mathcal{O}(n^d)$ δείγματα
- Η παραπάνω συλλογιστική επεκτείνεται και στις περιπτώσεις που ο χώρος χωρίζεται από μη-γραμμικά κατώφλια

Βιβλιογραφία

- Ian Goodfellow, Yoshua Bengio, Aaron Courville "Deep Learning" MIT Press (https://www.deeplearningbook.org/)
 - Εισαγωγή (§15.1)
 - Μη-επιβλεπόμενη προπαίδευση (§15.1)
 - Μάθηση μέσω μεταφοράς (§15.2)
 - Παράγοντες συνάφειας (§15.3)
 - · Κατανεμημένες και μη-κατανεμημένες αναπαραστάσεις (§15.4)