

Especificação

- · Objetivo desse módulo
 - apresentar as técnicas de teste funcional: classes de equivalência, gramáticas regulares, e listas de controle
- Justificativa
 - testes funcionais são testes caixa fechada utilizados para verificar a existência de inadequações com relação às especificações de alto nível
- Material de leitura
 - Myers, G.J.; The Art of Software Testing, 2nd edition; Hoboken, New Jersey: John Wiley & Sons; 2004

Mar 2017

rndt von Staa © LES/DI/PUC-Ric

Critério: partição em classes de equivalência

- Este critério parte do pressuposto que os programas são desenvolvidos de forma uniforme
- Pressupostos (hipóteses assumidas como verdadeiras. Crenças?)
 - se um caso de teste que satisfaz um determinado conjunto de condições leva a uma falha, outras escolhas de valores satisfazendo esse mesmo conjunto detectarão essa mesma falha
 - processamentos não determinísticos violam essa restrição
 - não existe duplicação de fragmentos de código
 - condições de um caso de teste
 - caso de teste abstrato
 - mais critério de valoração selecionado

Myers, G.J.; The Art of Software Testing, 2nd edition; Hoboken, New Jersey: John Wiley & Sons; 2004

Mar 2017

Arndt von Staa © LES/DI/PUC-Rig

Partição em classes de equivalência

- Identifique todas as condições dos dados de entrada descritas na especificação
- Crie uma tabela em que cada linha é uma condição e as colunas indicam
 - valores válidos
 - valores não válidos

Condição	Vale	Não vale

Mar 2017

Arndt von Staa © LES/DI/PUC-Rio

Partição em classes de equivalência

- Verifique se existem condições compostas ligadas por operadores lógicos, ex. and e or
 - decomponha a condição composta em um conjunto de condições elementares possivelmente mutuamente exclusivas
 - 1 <= t && t <= 32, resulta nas condições elementares
 - 1<t
 - 1==t
 - t>1
 - t<32 -t==32

 - t>32

Partição em classes de equivalência

- Verifique se existem casos de teste ambíguos
 - é ambíguo quando o resultado não permite discernir entre a ocorrência ou não de uma ou mais condições
 - ocorreu resultado x mas não sei o que o causou
 - é comum para casos de teste de verificadores de dados
 - se os dados contêm dois ou mais erros, qual erro foi observado?
 - decomponha cada caso de teste ambíguo em diversos outros casos de teste
 - · ou reformule o conjunto

Partição em classes de equivalência

- Verifique se existe algum caso de teste avaliando condições mascaradas
 - uma condição A mascara outra condição B quando a condição A torna impossível determinar
 - se a condição B ocorreu ou não
 - ocorreu A mas não sei dizer se B ocorreu ou não
 - ou se a condição B depende de A
 - ocorreu A então também ocorrerá B
 - decomponha o caso de teste em diversos outros casos de teste
 - ou reformule o conjunto

Mar 2017

Arndt von Staa © LES/DI/PUC-Ric

7

Partição em classes de equivalência

- Crie um conjunto de casos de teste valorado
 - ajuste os casos de teste ao critério de valoração, se necessário criando mais casos de teste
 - no conjunto de casos de teste cada caso exercita pelo menos uma condição não exercitada nos demais casos de teste do conjunto

Mar 2017

Arndt von Staa © LES/DI/PUC-Ric

	Classe	es de	e equivalê	ncia: exem	plo	LES				
				Sistema Sis						
ware			Usuário Senha							
Laboratório de Engenharia de Software	Digite os caracteres Captcha Login Cancelar Mudar senha Esqueci senha									
enhari	Tabela para o caso Login									
e Eng		C	Condição	Vale	Não vale					
ório d		Usuário Senha		Cadastrado 1	Não cadastrado 2					
aborat				Corresponde 3	Não corresponde 4					
T	Captcha		cha	Igual 5	Não igual 6					
	pode ser incrementado com: não forne									
	Mar 2017		Arno	dt von Staa © LES/DI/PUC-Ric)	9				

Classes de equivalência: exemplo LES a: 1, 3, 5 Usuário correto: Usuário incorreto: id errada torna impossível determinar se - b: 2, 3, 5 reconhece senha errada • id errada, senha a que corresponderia ao usuário correto, captcha válido - c: 1, 4, 5 • id válida, senha errada, captcha válido Condição Vale Não vale - d: 1, 3, 6 • id válida, senha válida, Usuário Cadastrado 1 Não cadastrado 2 captcha não válido Senha Corresponde 3 Não corresponde 4 Não igual 6 Captcha Igual 5 valores errados mascaram mutuamente um ao outro, portanto cada condição de erro precisa ser testada individualmente

	1	2	3	4	5	6	7	8	9	10	11	12	13
Usuário	-	-	-	-	s	s	s	s	s	n	n	n	-
Senha	-	-	-	-	s	s	-	n	n	-	-	-	_
Captcha	-	n	n	n	s	s	s	s	s	s	s	s	-
Cancela	Ø	n	n	r	n	n	n	n	n	n	n	n	n
Login	-	Ø	n	n	s	n	n	s	n	Ø	n	n	n
Muda	ı	-	s	n	-	s	n	ı	s	-	s	n	n
Esqueci	-	-	ı	s	ı	ı	s	ı	ı	-	-	s	n
Autoriza					х								
llegal		×	х	х				х	х	×	×	×	
Cancela	Х												
Muda						х							
Informa							х						
Impossível													x
	64	16	8	4	4	2	2	4	2	8	4	2	8
													†
											F	orque e	esta colu

Classes de equivalência: exemplo Como valorar? idUsuario cadastrado não cadastrado valor que não existe, prefixo de valor que existe – tem n chars usar n-1, início e final extensão de valor que existe – tem n chars usar n+1, início e final senha idem captcha idem mas esses são gerados a cada vez como automatizar o fornecimento?

Critério lista de quesitos

- Esse critério baseia-se em um documento contendo uma lista dos quesitos que a organização considera relevantes
- Quesitos são adicionados e eliminados à medida que a organização vai identificando o que é relevante
- Alguns quesitos são sempre relevantes:
 - critério de valoração
- Outros dependem do tipo de software que é desenvolvido

Mar 201

Arndt von Staa © LES/DI/PUC-Ric

13

Critério: Lista de quesitos

- Lista de condições de especiais, ex.
 - falta de energia
 - falta de memória
 - falta de espaço em disco
 - erro de leitura
 - erro de transmissão de dados
 - consumo de energia (ex. celulares)
 - . . .

Mar 2017

Arndt von Staa © LES/DI/PUC-Ri

Critério: Lista de quesitos

- Como simular essas condições?
 - objetos de imitação (mock objects)
 - módulos de simulação, módulos dublê tratad

tratado em aula futura

- simulam o funcionamento e as falhas de funcionamento
- realizam operações como se fossem os objetos de produção

Hunt, A.; Thomas, D.; *Pragmatic Unit Test: in Java with JUnit*; Raleigh, North Carolina: The Pragmatic Bookshelf; 2004

Mar 201

Arndt von Staa © LES/DI/PUC-Ric

15

Quesitos para aplicações Web

- Verifique a corretude dos instaladores
 - todas as variáveis de ambientes e registry estão corretamente inicializadas
 - para cada variável de ambiente ou condição do ambiente sempre examinar se contém valor válido (ex. ODBC)
- Verifique se as mensagens de erro informam corretamente o problema observado
 - devem ser evitadas mensagens do gênero
 - Ox81234 procure o gerente da aplicação
 - idMaquina errado
 - mensagem: CPF não possui Lattes, ou candidato não possui formação necessária
 - que erros podem ter ocorrido? No caso, CPF incorreto
 - emitida pela Plataforma Carlos Chagas do CNPq

Mar 2017

Arndt von Staa © LES/DI/PUC-Rio

Quesitos para aplicações Web

- Verifique a sensibilidade a parâmetros de uso do *browser*
- Verifique o comportamento com vários browsers
- Verifique o comportamento com várias versões de um browser
- Verifique o comportamento com vários tipos de periféricos

Vários *browsers*, várias versões de um *browser* – como testar isso?

- uso de "máquinas virtuais" simuladores de *browsers* e de suas versões
- para windows existe a ferramenta vmware que permite criar uma variedade de máquinas virtuais cada uma com o seu sistema operacional e versões de software, todas rodando em uma mesma máquina

Mar 2017

Arndt von Staa © LES/DI/PUC-Ric

17

Quesitos para aplicações Web

- Verifique se o sistema operacional cliente (versão e service packs) é consistente com a aplicação
- Verifique se a versão do browser instalada é consistente com a aplicação
- Verifique se os plugins do browser requeridos estão instalados em versão suportada
 - JavaScript, Java Applets, Flash, Lua, ...

• . . .

Max 2017

Arndt von Staa © LES/DI/PUC-Rio

Quesitos para aplicações Web

- Verifique ...
 - a lista do livro [Splaine e Jaskiel, 2001] se estende por centenas de páginas

Mar 2017

Arndt von Staa © LES/DI/PUC-Ri

19

Gramáticas

- Gramáticas são usualmente usadas para verificar se sentenças são válidas
 - sentenças são fragmentos de texto
 - português: análise sintática
 - linguagens de programação
- No entanto, podem ser usadas também para
 - verificar se sequências de ações são válidas
 - gerar sentenças
 - gerar sequências de ações
- A geração pode ser automatizada
 - isso permite criar suítes de teste extensas a partir de uma gramática

Mar 2017

Arndt von Staa © LES/DI/PUC-Ric

Gramáticas regulares

- Um conjunto de um ou mais elementos é uma gramática regular
 - <k> ::= { a, b, c }
- A concatenação de gramáticas regulares é uma gramática regular
 - <k> ::= <g> <h> <i>
- A seleção envolvendo gramáticas regulares é uma gramática regular
 - <k> ::= (<g> | <h> | <i>)
- A repetição envolvendo gramáticas regulares é uma gramática regular , eu prefiro esta notação
 - <k> ::= n1 n2 [<g>] ou <k> ::= <g>* ; <k> ::= <g>+ ;
- A recursão à direita é uma gramática regular
 - <k> ::= (<g> | <g> <k>) → <k> ::= <g>+

Mar 2017

Arndt von Staa © LES/DI/PUC-Ric

21

Gramáticas regulares

- Cada widget é um conjunto de elementos
- A natureza do conjunto depende da classe do widget
 - campos de dados podem valer ou não
 - coletâneas de botões podem assumir exatamente uma das seleções
 - radio butons podem assumir exatamente um dos valores
 - check boxes podem assumir zero ou mais dos valores
 - barras de rolagem podem assumir uma das ações
 - . . .

Adaptado do teste de caminhos baseado em expressões regulares [Staa, 2000]

Mar 201

Arndt von Staa © LES/DI/PUC-Ri

Gramáticas regulares LES Cada campo de dados: um elemento - valores de campos podem ser legais ou ilegais Cada seletor mutuamente exclusivo: uma seleção Sistema Sis Usuário Senha Digite os caracteres | Captcha | Mudar senha Esqueci senha Login Cancelar Gramática (Usuário correto | Usuário incorreto) (Senha correta | Senha incorreta) (Captcha correto | Captcha incorreto) (Login | Cancelar | Mudar | Esqueci)

Referências bibliográficas

- Delamaro, M.E.; Maldonado, J.C.; Jino, M.; Introdução ao Teste de Software; Rio de Janeiro, RJ: Elsevier / Campus; 2007
- Myers, G.J.; *The Art of Software Testing*, 2nd edition; Hoboken, New Jersey: John Wiley & Sons; 2004
- Nguyen, H.Q.; Testing Applications on the Web: Test Planning for Internet-Based Systems; New York: John Wiley & Sons; 2001
- Nguyen, H.Q.; "Testing Web-based Applications"; Software Testing and Quality Engineering; New York: John Wiley & Sons; 2000; pags 23-29
- Splaine, S.; Jaskiel, S.P.; *The Web Testing Handbook*; Orange Park, FA: STQE Publishing; 2001

Mar 201

Arndt von Staa © LES/DI/PUC-Ric

