Introdução à Inteligência Computacional Fundamentos, Aplicações e Perspectivas do Curso

Prof. Reginaldo Fernandes

Curso: Análise e Desenvolvimento de Sistemas Disciplina: Inteligência Computacional

Aula #1 - October 23, 2025

Sumário e Agenda do Encontro

- Resolução de Problemas
- 2 Agentes Baseados em Objetivos
- Agentes Baseados em Objetivos
- Busca e Resolução de Problemas
- 6 Algoritmos de Busca
- 6 Escopo da Resolução de Problemas
- O Agentes de Resolução de Problemas
- 8 Agentes de Resolução de Problemas
- O Agentes de Resolução de Problemas
- A Simplificação pelo Objetivo
- 🕕 Foco e Formulação de Objetivos
- Definição Formal de Objetivo
- 📵 A Abstração na Formulação de Problemas
- 🛂 Formulação do Problema
- Exemplo de Formulação de Problemas
- Busca Cega em Ambientes Desconhecidos

Resolução de Problemas

Os agentes mais simples que discutimos até agora são os agentes reflexivos

 Ações baseadas em um mapeamento direto de estados para ações.

Não conseguem operar bem em todos os ambientes

- Este mapeamento pode ser muito grande para armazenar.
- Este mapeamento pode levar muito tempo para aprender.

Agentes Baseados em Objetivos

- Usam ações futuras e a desejabilidade dos resultados.
- Consideram o que o mundo será após uma sequência de ações.

O Papel do Objetivo

- O agente precisa de uma descrição do seu Goal (Objetivo).
- Objetivo define situações desejáveis que o agente deve alcançar.

Sensores Estado Qual é a aparência Como o mundo evolui atual do mundo Oual será a aparência se Ambiente O que minhas ações fazem for executada a ação A Oue ação devo Objetivos executar agora Agente Atuadores

Estratégias Chave

- Busca: Encontrar a sequência de ações (caminho) mais eficiente.
- **Planejamento:** Criar um plano de execução de longo prazo.

Resolução de Problemas (Cont.)

Estudamos um tipo de agente baseado em objetivos: Agente de Resolução de Problemas

1. Agentes de Resolução de Problemas

- Usam Representações Atômicas.
- Estados são vistos como totalidades (wholes).
- Não há estrutura interna visível para os algoritmos de busca.
- Exemplo: Encontrar o caminho mais curto entre $A \rightarrow B$ em um mapa simples.

Distinção e Nível de Abstração Superior:

2. Agentes de Planejamento (Planning Agents)

- Usam Representações Fatoradas ou Estruturadas.
- O estado possui estrutura interna (objetos, propriedades, relações).
- A estrutura interna é usada para planejar ações complexas.
- Exemplo: Planejar ações baseado em "Posição do robô: (x, y)" e "Bateria: 80%".

Resolução de Problemas: Métodos de Busca

Transição: De Agentes para Algoritmos de Busca

Definições Fundamentais

Iniciaremos com as definições de:

- Problemas: Modelagem do ambiente e do objetivo (Estado Inicial, Ações, Custo).
- Soluções: O que caracteriza um caminho válido e ideal.

Algoritmos de Busca:

Algoritmos de Propósito Geral

Descreveremos métodos usados para resolver estes problemas:

- 4 Busca Não Informada (Cega): Explora o espaço sem conhecimento prévio (ex: BFS, DFS).
- **Q** Busca Informada (Heurística): Usa estimativas para guiar a busca ao objetivo (ex: A*).

Resolução de Problemas: Busca Não Informada vs. Informada

1. Algoritmos de Busca Não Informada (Uninformed Search)

Busca Cega (Blind Search)

- Não usam informação sobre o problema além de sua definição (Estado Inicial, Ações, Teste de Objetivo).
- Completude: Podem resolver qualquer problema solucionável.
- Eficiência: Geralmente não são eficientes, pois exploram cegamente o espaço de estados.

2. Algoritmos de Busca Informada (Informed Search)

Busca Heurística

- Usam **informação extra** (heurísticas) para guiar a busca, indicando onde procurar as soluções.
- **Desempenho:** Podem ser muito mais rápidos e eficazes, dependendo da qualidade da heurística.

Resolução de Problemas: Definindo o Escopo

Escopo dos Problemas Abordados

Ambiente de Tarefas Simplificado

Nesta seção, consideraremos apenas o tipo mais simples de ambiente de tarefa:

• A solução é sempre uma sequência de ações fixa (sem contingências).

Limitação do Estudo:

Caso Geral (Contingente)

 O caso geral, onde as futuras ações dependem das futuras percepções (percepts), não será discutido neste módulo.

Avaliação dos Algoritmos

- Usaremos os conceitos de Complexidade Assintótica.
- Isso inclui a notação O (Big-O notation) e a introdução ao conceito de NP-completeness (complexidade intratável).

Agentes de Resolução de Problemas

Agentes de Resolução de Problemas

Objetivo Primário da IA:

- Espera-se que os agentes maximizem sua Medida de Desempenho.
- O processo de atingir essa meta complexa pode ser **simplificado**.

Adoção de um Objetivo (Goal):

Para simplificar a maximização de desempenho, o agente precisa:

- Adotar um Objetivo: Definir uma situação futura desejável.
- **Visar Satisfazê-lo:** Focar em alcançar esse estado.

Foco da Análise:

• Analisaremos por que e como um agente decide adotar e perseguir um objetivo.

Exemplo: Por Que Precisamos de Objetivos?

Cenário:

• Imagine um agente turista na cidade de Arad, Romênia.

Medida de Desempenho (Performance Measure):

A medida de desempenho do agente engloba diversos fatores simultâneos:

- Aprimorar o bronzeado.
- Melhorar o Romeno.
- Apreciar as vistas turísticas.
- Aproveitar a vida noturna.
- Evitar ressacas.
- ... (muitos outros).

O Problema de Decisão é Complexo:

- Muitos Objetivos: Há múltiplas metas que devem ser avaliadas.
- Muitos Trade-offs: É necessário equilibrar objetivos conflitantes (ex: vida noturna vs. evitar ressacas; bronzeado vs. aprender).

Conclusão: O agente precisa de um Objetivo Simplificado para começar a agir.

Exemplo: Adoção do Objetivo Explícito

A Simplificação da Decisão

- Suponha que o agente tenha um bilhete não reembolsável.
- O voo de partida de **Bucareste** é no dia seguinte.

Adoção do Objetivo:

Neste cenário, faz sentido o agente adotar um objetivo explícito e primário:

Meta: Chegar a Bucareste, até amanhã.

Benefício Imediato:

- Qualquer curso de ação que não chegue a Bucareste a tempo pode ser rejeitado imediatamente.
- Essas ações não precisam de nenhuma consideração adicional.

Resultado: O problema de decisão do agente é grandemente simplificado.

Objetivos: Organização do Comportamento

A Função Principal dos Objetivos (Goals)

Os objetivos ajudam o agente a **organizar o comportamento** (ou seja, a tomar decisões de forma mais eficiente):

- Limitação de Objetivos: Os objetivos a serem alcançados pelo agente são limitados pelo Goal escolhido.
- Limitação de Ações: As ações que o agente precisa considerar também são limitadas (exclui ações que não levam ao objetivo).

Próxima Etapa: Formulação do Problema

- A Formulação do Objetivo (Goal Formulation) é o primeiro passo na resolução de problemas.
- A formulação do objetivo é baseada na situação atual do agente e na sua Medida de Desempenho (Performance Measure).

Foco: Uma vez que o objetivo é definido, precisamos saber como alcançá-lo – isto nos leva à Formulação do Problema.

Definição de Goal e Tarefa do Agente

Definição de Goal (Objetivo)

- O Objetivo será considerado um conjunto de estados do mundo.
- São todos os estados nos quais a condição do objetivo é satisfeita.
- Exemplo: O objetivo "Chegar a Bucareste" é o conjunto de todos os estados onde o agente está na localização "Bucareste".

A Tarefa do Agente

A principal tarefa do agente é descobrir **como agir** para que um estado objetivo seja alcançado.

Isso envolve considerar ações atuais e futuras.

Próxima Etapa: Precisamos de uma forma de **modelar** esses estados e ações para que o agente possa planejar.

Definindo Ações e Estados: O Nível de Detalhe

Tarefa do Agente:

• O agente precisa decidir quais tipos de ações e estados deve considerar.

O Nível de Detalhe é Crítico:

- Considere ações excessivamente detalhadas, como:
 - "Mover o pé esquerdo uma polegada para frente"
 - "Girar o volante um grau para a esquerda"

Consequências do Excesso de Detalhe:

- O agente provavelmente jamais encontraria a saída do estacionamento (devido ao número de passos).
- Há muita incerteza no mundo (ruído) naquele nível de detalhe.
- Haveria muitos passos em uma única solução (ineficiência).

Conclusão: A formulação exige um nível de abstração adequado.

Definição: Formulação do Problema

Definição Formal

• A Formulação do Problema é o processo de decidir quais ações e estados considerar.

Propósito Central

- É o processo de abstração que transforma uma tarefa complexa de maximização de desempenho em uma meta de busca.
- A formulação é realizada com base em um Goal (Objetivo) já definido.

Foco na Abstração

 Ao escolher o nível de detalhe dos estados e ações, a formulação garante que o problema seja solucionável e eficiente para o agente.

Exemplo Prático: Viajando para Bucareste

Nível de Abstração Adotado:

- As **Ações** são definidas no nível de **dirigir de uma cidade principal para outra**.
- Cada Estado corresponde a estar em uma determinada cidade.

Ponto de Partida e Objetivo:

- Estado Inicial: O agente está em Arad.
- Objetivo: Chegar a Bucareste.
- O agente está considerando para onde ir a partir de Arad.

Ações Possíveis (A partir de Arad):

- Três estradas levam para fora de Arad, correspondendo às ações:
 - Dirigir para Sibiu.
 - ② Dirigir para Timisoara.
 - 3 Dirigir para Zerind.

Busca por Solução: Nenhuma destas ações imediatas satisfaz o objetivo. O agente precisa de uma seguência de acões.

Exemplo: Ausência de Informação Prévia

A Situação de Incerteza

• A menos que o agente "conheça a Romênia" (ou seja, tenha um modelo do mundo), ele não saberá **qual estrada seguir** a partir de Arad.

Consequências da Busca Cega

- O agente não sabe qual de suas ações possíveis é a melhor para chegar a Bucareste.
- O agente não conhece o estado que resultará de suas ações (além do nome da próxima cidade).

A Necessidade de Exploração

- Sem informação extra (heurística), o ambiente é considerado desconhecido.
- O agente não tem escolha a não ser tentar uma ação aleatoriamente (ou de forma sistemática cega, como BFS/DFS).

Transição: Precisamos de um modelo formal do problema para que o agente possa **planejar antes de agir**.

Exemplo: O Poder da Informação (O Mapa)

A Importância do Modelo (O Mapa)

- Suponha que o agente possua um mapa da Romênia.
- O mapa fornece ao agente a informação necessária para o planejamento:
 - ① Os **estados** em que ele pode se encontrar (cidades).
 - ② As ações que pode realizar (estradas entre cidades).

O Processo de Planejamento (Busca)

- O agente pode usar essa informação para considerar estágios subsequentes: simular uma jornada hipotética através de cada uma das três cidades iniciais.
- O objetivo é encontrar um caminho no mapa que, eventualmente, chegue a Bucareste.

Execução da Solução

- Assim que o agente encontra um caminho (solução) no mapa, ele deve alcançar o objetivo agindo.
- Isso é feito **executando as ações** na sequência planejada (dirigindo os trechos individuais da viagem).

Avaliação de Ações com Valor Desconhecido

O Dilema da Decisão Imediata

• Um agente com opções imediatas de **valor desconhecido** (como "ir para Sibiu ou Timisoara?") ainda pode decidir o que fazer.

Como a Decisão é Tomada:

O agente decide o que fazer ao:

- Examinar ações futuras (Planejamento).
- ② Encontrar uma sequência de ações que leve, eventualmente, a estados de valor conhecido.

O Valor Conhecido (Goal):

- O estado de **Bucareste** tem um valor conhecido (satisfaz o objetivo).
- A busca é o processo de **transferir o valor** desse estado final para a primeira ação imediata.

Suposições do Ambiente para a Busca

Para usar Algoritmos de Busca, assumimos que o ambiente é:

- 1. Observável: O agente sempre sabe o estado atual.
 - Exemplo: Cada cidade no mapa tem uma placa indicando sua presença.
- 2. Discreto: Em qualquer estado, há apenas um número finito de ações para escolher.
 - Exemplo: Cada cidade está ligada a um pequeno número de outras cidades.
- 3. Conhecido: O agente sabe quais estados são alcançados por cada ação.
 - Exemplo: Um mapa preciso atende a essa condição de navegação.
- 4. Determinístico: Cada ação tem apenas um resultado.
 - Exemplo Ideal: Dirigir de Arad para Sibiu leva idealmente apenas a Sibiu (sem falhas ou resultados múltiplos).

Consequência das Suposições do Modelo

A Solução em um Ambiente Idealizado

 Devido às suposições de ambiente observável, conhecido e determinístico, a solução do problema é sempre uma sequência fixa de ações.

Por que a Sequência Fixa Funciona?

 Se o mundo é conhecido e previsível (determinístico), o agente pode simular a sequência inteira do início ao fim antes de agir.

O Caso Geral (Mais Complexo):

- Em geral, a solução de um problema de IA seria uma estratégia de ramificação (branching strategy).
- Isso significa que as ações futuras dependeriam das percepções futuras do agente (e.g., "Se a porta estiver fechada, gire a chave; se aberta, siga em frente").

Exemplo: Condições Sub-Ideais e Planos de Contingência

Cenário Sub-Ideal (Falha de Execução)

- O agente planeja dirigir: Arad → Sibiu → Rimnicu Vilcea.
- Mas, por acidente, o agente chega a **Zerind** em vez de Sibiu.

A Necessidade de um Plano de Contingência

- Em condições sub-ideais, um **plano de contingência** é necessário para lidar com desvios ou falhas de execução.
- Assumimos ambiente observável, conhecido e determinístico.
- O agente sabe exatamente onde estará (e o que perceberá) após a primeira ação.

Consequência no Nosso Modelo:

- Apenas um percepto é possível após a primeira ação.
- Portanto, a solução pode especificar apenas uma segunda ação possível.

Foco: A busca é por uma sequência de ações fixa (e não uma estratégia de ramificação).

Definição: O Ciclo de Vida do Agente

Definição: Busca (Search)

- É o processo de **procurar uma sequência de ações** que alcança o objetivo (**goal**).
- O algoritmo de busca recebe um Problema como entrada e retorna uma Solução.
- A solução tem a forma de uma sequência de ações.

Definição: Execução (Execution)

• Uma vez que uma solução é encontrada, as ações recomendadas podem ser **executadas**.

Design Simples para o Agente

O processo de tomada de decisão é resumido no ciclo:

Formular \implies Buscar \implies Executar

Pseudocódigo: Variáveis e Lógica Base

Função Principal:

• function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action

Variáveis Persistentes (Memória do Agente):

O agente mantém as seguintes variáveis na memória:

- seq: A sequência de ações planejada, inicialmente vazia.
- state: Descrição do estado atual do mundo.
- goal: O objetivo atual, inicialmente nulo.
- problem: A formulação do problema.

Lógica de Recálculo:

• Funcionamento: O agente recalcula o plano (seq) somente quando a sequência anterior está vazia ou falhou.

Pseudocódigo: Agente de Resolução de Problemas Simples (Algoritmo)

```
função AGENTE-DE RESOLUÇÃO-DE-PROBLEMAS-SIMPLES(percepção) retorna uma ação
persistente: seq, uma sequência de ações, inicialmente vazia
             estado, alguma descrição do estado atual do mundo
             objetivo, um objetivo, inicialmente nulo
             problema, uma formulação de problema
estado ← ATUALIZAR-ESTADO(estado, percepção)
se seg está vazia então faca
  objetivo \leftarrow FORMULAR-OBJETIVO(estado)
  problema \leftarrow FORMULAR-PROBLEMA(estado, objetivo)
  seq \leftarrow BUSCA(problema)
  se seg = falhar então retorne uma ação nula
ac\tilde{a}o \leftarrow PRIMEIRO(seq)
seg \leftarrow RESTO(seg)
retornar ação
```

Figure: AGENTE DE RESOLUÇÃO DE PROBLEMAS SIMPLES

Ignorando Percepções (Open-Loop)

Comportamento Durante a Execução

- Enquanto o agente está executando a sequência de ações (solução), ele ignora suas percepções (percepts).
- Para a escolha da ação, as percepções são irrelevantes (não são usadas na decisão).

Por Que Ignorar?

- O agente sabe **antecipadamente** (através da fase de Busca) qual será o resultado de cada ação.
- Isso só é possível porque assumimos um ambiente observável, conhecido e determinístico.

Terminologia (Controle)

- Teóricos de Controle chamam isso de Sistema de Laço Aberto (Open-Loop System).
- Ignorar as percepções quebra o laço de feedback entre o agente e o ambiente.

Uso da Solução e Reinício do Ciclo

Fluxo de Processamento

Após formular um **Objetivo (Goal)** e um **Problema** a ser resolvido:

- O agente chama um procedimento de busca para resolver o problema.
- 2 Ele utiliza a solução encontrada (sequência de ações) para guiar suas ações.

Execução da Sequência

- O agente executa o que a solução recomenda como próxima coisa a fazer.
- Tipicamente, esta é a primeira ação da sequência.
- Após a execução, essa ação é removida da sequência.

Recomeço

• Uma vez que toda a solução tenha sido executada (ou seja, a sequência está vazia), o agente **formulará um novo objetivo** (e um novo problema).

Definição Formal de Problemas para

Agentes de Resolução

Definindo Formalmente um Problema de Busca

Um problema de busca pode ser definido formalmente por cinco componentes:

- Estado Inicial (Initial State)
 - O estado a partir do qual o agente começa (e.g., estar na cidade de Arad).
- Ações (Actions)
 - Uma função que retorna o conjunto de ações possíveis em um dado estado.
- Modelo de Transição (Transition Model)
 - Uma função que descreve o resultado de uma ação; retorna o próximo estado após a execução de uma ação.
- Teste de Objetivo (Goal Test)
 - Uma função que verifica se um dado estado satisfaz o objetivo do agente (e.g., verificar se a cidade é Bucareste).
- Ousto do Caminho (Path Cost)
 - Uma função que atribui um custo numérico a um caminho percorrido (e.g., distância total percorrida ou tempo gasto).

1. Estado Inicial (Initial State)

Definição:

- É o estado a partir do qual o agente começa sua jornada de busca.
- Na modelagem atômica, é uma descrição completa, mas sem detalhes internos.

Exemplo:

- O Estado Inicial para o agente na Romênia pode ser descrito como:
- In(Arad)

Propriedade:

• É o único componente do problema que não requer uma função, pois é um valor fixo.

Mapa de Cidades da Romênia

Initial state for agent in Romania can be described as In(Arad)

2. Modelo de Transição (Transition Model)

Definição:

- É a descrição formal do que cada ação faz.
- Essencialmente, define as "regras" do mundo (o mapa).

Função Formal:

• **RESULT**(*s*, *a*) retorna o estado resultante ao realizar a ação *a* no estado *s*.

Estado Sucessor (Successor State):

 Qualquer estado que possa ser alcançado a partir de um dado estado, através de uma única ação.

Exemplo de Transição (No Mapa)

(Se $s = \text{Arad e } a = \text{Dirigir para Sibiu. } \mathbf{RESULT}(s, a) = \text{Sibiu}$)

Definição: O Espaço de Estados (State Space)

Definição:

- Juntos, o estado inicial, as ações e o modelo de transição definem implicitamente o Espaço de Estados do problema.
- É o **conjunto de todos os estados** alcançáveis a partir do estado inicial por qualquer sequência de ações.

Representação (Grafo de Estados):

- O espaço de estados forma uma rede ou grafo dirigido (directed graph).
 - Os **nós** (*nodes*) são os estados.
 - Os links (links) ou arestas são as ações.

Exemplo do Mapa da Romênia:

- O mapa pode ser interpretado como um grafo de espaço de estados.
- Cada estrada entre duas cidades representa duas ações de direção (uma em cada direção).

Definição: Caminho (Path) no Espaço de Estados

Definição Formal de Caminho

- Um Caminho (Path) no espaço de estados é uma sequência de estados.
- Essa sequência de estados é conectada por uma sequência correspondente de ações.

Representação do Caminho

- O caminho começa no **Estado Inicial** (S_0) .
- Ações ligam os estados: $S_0 \xrightarrow{A_1} S_1 \xrightarrow{A_2} S_2 \xrightarrow{A_3} \dots \xrightarrow{A_n} S_n$.

O Conceito de Solução

- Uma Solução para o problema é um caminho que leva o agente do Estado Inicial a um Estado Objetivo.
- A busca consiste em encontrar a sequência de ações $\{A_1, A_2, \dots, A_n\}$ que forma este caminho.

3. Teste de Objetivo (*Goal Test*)

Definição:

- O Teste de Objetivo é a função que determina (verifica) se um dado estado é um estado objetivo.
- O teste retorna TRUE se a condição for satisfeita.

O Objetivo como Conjunto de Estados:

- O objetivo do agente na Romênia é o conjunto unitário:
- {In(Bucharest)}

Aplicação do Teste:

 O agente aplica o teste a cada estado que encontra durante a busca

O Estado-Alvo no Mapa

(Bucareste é o alvo do teste de objetivo)

Objetivo Definido por Propriedade Abstrata

Objetivo Abstrato vs. Conjunto Explícito

- Às vezes, o objetivo é especificado por uma **propriedade abstrata**.
- Isso ocorre em vez de ser um conjunto de estados enumerado explicitamente.

Exemplo Clássico: O Jogo de Xadrez

• O objetivo é alcançar um estado chamado "Xeque-Mate" (Checkmate).

Definição da Propriedade (O Teste de Objetivo):

- O estado de Xeque-Mate é definido pela propriedade abstrata:
- "O Rei do oponente está sob ataque e não pode escapar."

Implicação para a Busca:

• O **Teste de Objetivo** deve ser uma função complexa que verifica essa propriedade, e não apenas uma simples comparação de localização (como em *In*(*Bucareste*)).

4. Função de Custo do Caminho (Path Cost)

Definição:

 A Função de Custo do Caminho atribui um custo numérico a cada caminho no espaço de estados.

Relação com o Agente:

 Para agentes de resolução de problemas, a função de custo reflete o que o agente está tentando minimizar em sua medida de desempenho.

Cálculo do Custo:

- O custo total do caminho é a soma dos custos das ações individuais ao longo desse caminho.
- $Custo(S_0 \to S_n) = \sum_{i=0}^{n-1} Custo(Ação_i)$

Exemplo Prático (Romênia):

• Se o tempo é essencial para o agente (voo em Bucareste), o custo do caminho pode ser sua distância em quilômetros (que se correlaciona com o tempo de direção).

Custo de Ação Individual (Step Cost)

Definição:

 O Custo do Passo (c(s, a, s')) é o custo de realizar a ação a no estado s para alcançar o estado s'.

Regra Essencial:

- O custo do passo deve ser não negativo (c ≥ 0).
- Implicação: Não é possível obter ganho de custo (benefício) ao executar uma ação; o custo deve ser sempre zero ou positivo.

Exemplo Prático:

 Os custos dos passos para a Romênia são definidos como as distâncias da rota em quilômetros.

Distâncias (Custo) no Mapa

custo c(Arad, Dirigir para Sibiu, Sibiu) é 140 km)

Definição de Problema e Qualidade da Solução

Definindo o Problema (Estrutura de Dados)

- Os cinco elementos definidos (Estado Inicial, Ações, Modelo de Transição, Teste de Objetivo e Custo) definem um problema.
- Todos podem ser reunidos em uma única estrutura de dados.
- Esta estrutura é passada como **entrada** para um algoritmo de resolução de problemas (*Search Algorithm*).

Definição de Solução

- Uma Solução para um problema é uma sequência de ações.
- A sequência leva o agente do Estado Inicial a um Estado Objetivo.

Medindo a Qualidade da Solução

- A qualidade da solução é medida pela Função de Custo do Caminho (Path Cost Function).
- Uma Solução Ótima é aquela que possui o menor custo de caminho entre todas as soluções possíveis.

Obrigado!

Prof. Reginaldo Fernandes Inteligência Computacional (ADS)