

PSRF Application Skill Development Project Report

Project Sponsor

Project Coordinator - TP Lim

Mentor

Participant

Terence Lim

Ho-Kok Gho

Stephen Fu

December 15, 2010

Outlines

- □ Background
 - Project Introduction
 - Project Schedule
 - ◆ Pre-Requisites
- ☐ Test Program Development & Debugging
 - ◆ Test Flow and Bin Summary
 - ◆ Modulator (Baseband to RF) Test
 - Datalog and Waveform Analysis for Modulator
 - ◆ Demodulator (RF to Baseband) Test
 - ◆ Datalog and Waveform Analysis for Demodulator
- □ Summary

Background

Project Introduction

The purpose of this project is to further enhance AE's PSRF debugging and programming skill after attended the one week standard PSRF training. Treat this as customer project, AE will gain true learning RF project experience.

AE will also gain RF device knowledge after completing the project.

Background

Project Schedule

This project is planed to be finished within 2 weeks, schedule is created for project tracing.

	Task Name		Start	Finish	Predece		Dec 5, '10 Dec 12, '10															
	TUSK HUTTO	Duration	Store	Titheri	Tredect	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S		
1	☐ PSRF ASD Project Schedule	10 days	Mon 12/6/10	Fri 12/17/10				_								11		71. 31.		7		
2	☐ Preparation	1.5 days	Mon 12/6/10	Tue 12/7/10				•	-													
3	Collection of Project information(test plan, datasheet	0.5 days	Mon 12/6/10	Mon 12/6/10					100													
4	Tester Booking & Study the test plan and device	1 day	Mon 12/6/10	Tue 12/7/10	3																	
5	☐ Offline Test Program Development	3 days	Tue 12/7/10	Fri 12/10/10								•										
6	Transmitter(BB-RF) PowerOut Test	0.5 days	Tue 12/7/10	Tue 12/7/10	2																	
7	Transmitter(BB-RF) Sideband Suppression	0.5 days	Wed 12/8/10	Wed 12/8/10	6																	
8	Transmitter(BB-RF) Harmonics Test	0.5 days	Wed 12/8/10	Wed 12/8/10	7						1											
9	Receiver(RF-BB) Gain Test	0.5 days	Thu 12/9/10	Thu 12/9/10	8																	
10	Receiver(RF-BB) P1dB Test	0.5 days	Thu 12/9/10	Thu 12/9/10	9																	
11	Receiver(RF-BB) I/Q Imbalance Test	0.5 days	Fri 12/10/10	Fri 12/10/10	10																	
12	□ Debugging On Line	4 days	Fri 12/10/10	Thu 12/16/10								-						-	25			
13	Transmitter(BB-RF) Debugging and Analysis	2 days	Fri 12/10/10	Tue 12/14/10	5																	
14	Receiver(RF-BB) Debugging and Analysis	2 days	Tue 12/14/10	Thu 12/16/10	13											Ĭ						
15	☐ Datalog&Waveform Collection and Documentation	1.5 days	Thu 12/16/10	Fri 12/17/10														V	_	7		
16	Test Program Optimize and Datalog&Waveform Colle	0.5 days	Thu 12/16/10	Thu 12/16/10	12																	
17	Project Documentation & Presentation	1 day	Fri 12/17/10	Fri 12/17/10	16																	

Background

Pre-Requisites

Software

SmarTest version 6.5.2

RedHat Linux System

Hardware

Pin Scale V93000 tester platform, Port Scale RF with 12 ports and 2 Source cards and Analog module S/M in position 231.

RedHat workstation

Universal RF Loadboard Rev4

Modulator (MiniCircuits ZAMIQ-895M) & Demodulator (MiniCircuits

ZAMIQ-895D)

4 pcs of pin->SMA and 4 pcs of SMA->SMA

Personnel/Manpower

Man-hours required:

8 * 10 = 80 (hours)

Prerequisite knowledge/skill:

V93000 SOC Basic, Mix-Signal & PSRF Training RF Fundamental Training or equivalent training Knowledge of RF device testing concepts.

Test Flow and Bin Summary

Modulator (Baseband to RF) Test

Device Connections & Pin Names

ZAMIQ-895M

PLL_Input

BBI_Input

BBQ_Input

RF_In

BBI Out

BBQ_Out

PLL_Input1

RF_Out

RFE

RFE

MCB

MCB

RFE

MCB

MCB

RFE

324

324

23116

23112

23116

23112

324

324

3A1

2A1

S2

S2

1A1

S1

S1

3C1

Modulator (Baseband to RF) Test

RF Port Block Diagram

Modulator (Baseband to RF) Test

Create the Frequency List for Power Out/Unwanted Sideband Suppression/ Harmonics Tests.

Name	Туре	Description	Equation Definition	Evaluation Result					
Carrier_Freq	Double Constant	10.	880e6	880e6					
Lower_Sideband	Double Constant		Carrier_Freq-Offset_Freq	877.8125e6					
Lower_Sideband1	Double Constant		Carrier_Freq-Offset_Freq1	879.9e6					
Lower_Sideband2	Double Constant		Carrier_Freq-Offset_Freq2	878e6					
Offset_Freq	Double Constant		2.1875e6	2.1875e6					
Offset_Freq1	Double Constant		0.1e6	100e3					
Offset_Freq2	Double Constant		2e6	2e6					
Offset_Freq3	Double Constant		3e6	3e6					
RX_Test_Freq	Double Constant		Carrier_Freq+Offset_Freq3	883e6					
Second_Harmonic	Double Constant		2*Lower_Sideband2	1.756e9					
Upper_Sideband	Double Constant		Carrier_Freq+Offset_Freq	882.1875e6					
Upper_Sideband1	Double Constant		Carrier_Freq+Offset_Freq1	880.1e6					
Power_Sweep	Power List		step(-20,10,2)	-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 1					
RX_Stim_Freq	Frequency List		RX_Test_Freq	883e6					
Ref_Clock_Freq	Frequency List		Carrier_Freq	880e6					
TX_CS_SS	Frequency List		Lower_Sideband Carrier_Freq Upper_Sideband	877.8125e6 880e6 882.1875e6					
TX_CS_SS1	Frequency List		Lower_Sideband1 Carrier_Freq Upper_Sideband1	879.9e6 880e6 880.1e6					
TX_CS_SS2	Frequency List		Lower_Sideband2 Second_Harmonic	878e6 1.756e9					
PowerValue	Double Variable		-20	-20					

Modulator (Baseband to RF) Test

Create Ref_Clock_Stim.

Modulator (Baseband to RF) Test

Ref_Clock_Stim Hardware Setup

Modulator (Baseband to RF) Test

Calculate Fs for AWG Waveform

Power Out Test: Baseband Signal Ft = 2.1875MHz

Number of Points N = 512

Frequency Bin M = 7

Sampling Frequency Fs = 160 MHz

Master Clock on the RF Measurement can be set

to Fs*3 = 480MHz

Sideband Suppression Test: Baseband Signal Ft = 100KHz

Number of Points N = 2048

Frequency Bin M = 5

Sampling Frequency Fs = 40.96 MHz

Master Clock on the RF Measurement can be set

to Fs*10 = 409.6MHz

Harmonics Test: Baseband Signal Ft = 2MHz

Number of Points N = 256

Frequency Bin M = 5

Sampling Frequency Fs = 102.4 MHz

Master Clock on the RF Measurement can be set

to Fs*4 = 409.6MHz

10/11/2016 Verigy Fundamentals

Modulator (Baseband to RF) Test

Create the TX_OUT_Measure Meas Definition

Verigy Fundamentals

Modulator (Baseband to RF) Test

Final RF Sequence Block View

Add RF measurement for different output frequency depending test Requirement, Change measurement Bandwidth accordingly and Change the Output power for Ref_Clock_Stim depending on the device specification.

Modulator (Baseband to RF) Test

AWG Setups to TX_Out_Measure Analog Control Set

Modulator (Baseband to RF) Test

Final Sequencer Grouping & Code for Test Method

Modulator (Baseband to RF) Test

Final Sequencer Grouping & Code for Test Method

```
DOUBLE Carrier Suppression, Image Rejection;
const STRING measName = "TX OUT Measure1";
ON FIRST INVOCATION BEGIN();
     Analog.primary(measName);
                                                     //set the primary
     MEAS DEF(measName).disableAll().connectAll(); // SW trigger the instruments in the Group and connect the pins
                                                    //Then Execute the definition's "sequence group" in the 1st invocation
     EXECUTE GROUP (measName);
ON FIRST INVOCATION END();
// Fetch the DSP parameters (and cal data) from the MEAS DEF object.
ARRAY D measParams = MEAS DEF(measName).getParameters(1,0);
INT sizeOfOne = measParams.size();
INT numCaptures = 1;
MEAS DEF(measName).get("NumCaptures", numCaptures);
ARRAY D packedMeasParams(sizeOfOne*numCaptures);
DSP EXTRACT (measParams, packedMeasParams, 0, 0, sizeOfOne);
for(INT capNum=1; capNum < numCaptures; capNum++)</pre>
     measParams = MEAS DEF(measName).getParameters(capNum+1, 0);
     DSP EXTRACT (measParams, packedMeasParams, 0, capNum*sizeOfOne, sizeOfOne);
// Run the DSP on the captured data by execting the static DSP function
// - the DSP ROUTINES BEGIN block cleanly handles multisite for you.
ARRAY D measuredPowers(numCaptures);
DSP ROUTINES BEGIN();
     TX OUT Measure1Dsp(measName, packedMeasParams, measParams, measuredPowers);
DSP ROUTINES END();
// Print results to ui.Report window
cout << "********Testsuite: BB RF SideBand Suppression*********</pre>
for(INT capNum=0; capNum < numCaptures; capNum++)</pre>
cout << "\t Capture Num = " << capNum + 1<< ", Measured Power = " << measuredPowers[capNum]<<" dBm "<< endl;</pre>
Carrier Suppression = measuredPowers[0] - measuredPowers[1];
Image Rejection = measuredPowers[0] - measuredPowers[2];
cout <<"\t Carrier_Suppression = " << Carrier_Suppression <<" dB "<< endl;</pre>
cout <<"\t Image Rejection = " << Image Rejection <<" dB "<< endl;</pre>
TEST ( "RF Out", "Carrier Suppression", Carrier Suppression );
TEST( "RF Out", "Image Rejection", Image Rejection );
// To prevent warnings and errors you should disconnect DGTs and AWGs that will no longer be in use.
ON FIRST INVOCATION BEGIN();
     MEAS DEF(measName).disconnectAll();
ON FIRST_INVOCATION_END();
```


Datalog and Waveform Analysis for Modulator

Datalog for Modulator

Power Capture for Modulator

Testsuite: BB RF Power Out Test Graph #1 Trace 1: Jan 13, 2011 9:10:24 PM Pin: RF_Out; Site: 1; TestSuite: BB_RF_Power_Out_Test; Label: Power Out Measurement -30 -50 Y Axis [] -70 -90 -110100 200 300 400 500 600 700 X Axis [] ♥X: 352 Y: -83.69 ▼ Y: -15.39 $\times: 354$ ▼- X: -2

Measured Power: -30dBm < -15.386 dBm < 0dBm

Datalog and Waveform Analysis for Modulator

Power Capture for Modulator

LSB = -15.396 dBm

LO = -37.295 dBm

USB = -40.975 dBm

Carrier_Suppression: 20dB < 21.8979 dB < 60dB

Image Rejection: 20dB < 25.5781 dB < 60dB

10/11/2016 Verigy Fundamentals

Datalog and Waveform Analysis for Modulator

Power Capture for Modulator

Fundamental Signal Power = -15.4653 dBm

2nd Harmonics Power = -75.7937 dBm

2nd harmonics: 30 dB < 60.3283 dB

Demodulator (RF to Baseband) Test

Device Connections & Pin Names

10/11/2016 Verigy Fundamentals

Demodulator (RF to Baseband) Test

RF Port Block Diagram

Demodulator (RF to Baseband) Test

Create Ref Clock Stim1. *PSRF_ASD_Flow SideBand_Suppression Harmonics_Test.cpp RF RX Test Stim Ref Clock Stim1 X Ref_Clock_Stim1 (Stimulus) Stimulus Configuration Resource Allocation Pin Name PLL_Input1 Used with Definition ¥ Stimulus Type CW Minimum Power (dBm) -20 Cal State Off Maximum Power (dBm) -20 ¥ Multi-Pin Stimulus FALSE Ref_Clock_Freq Frequency List Stimulus MUX Direct Export To Analog Sets Stim Instrument S1: RFF319 * RF Blanking FALSE Properties Sequencer Grouping 🖾 Hardware 😭 RF Previewer 💀 RF Sequence Blocks 🛭 當 Firmware 🥙 Error Log 📮 Console 🔲 Properties 🗓 Sample Code Sequence Setting of "Ref_Clock_Stim1" - Functional Block 1 Ref_Clock_Stim1: Initial Settings Comment ¥ Stimulus State On Frequency List Index Output Power (dBm)

Demodulator (RF to Baseband) Test

Ref_Clock_Stim1 Hardware Setup

Demodulator (RF to Baseband) Test

Create RX_Test_Stim

VERIGY

Demodulator (RF to Baseband) Test

RX_Test_Stim Hardware Setup

Demodulator (RF to Baseband) Test

Calculate Fs for Digitizer

RF to Banseband Test: Baseband Signal Ft = 3MHz

Number of Points N = 512

Frequency Bin M = 25

Sampling Frequency Fs = 61.44 MHz

Master Clock on the RF Measurement can be set

to Fs*8 = 491.52MHz

RF Sequencer Block View

Demodulator (RF to Baseband) Test

VERIGY

Digitizer Setups to RX_Test_Stim Analog Control Set

Demodulator (RF to Baseband) Test

Final Sequencer Grouping & Code for Test Method

Demodulator (RF to Baseband) Test

Final Sequencer Grouping & Code for Test Method

```
ARRAY D freqArrayI, freqArrayQ, timeArrayI, timeArrayQ;
ARRAY COMPLEX igArray, ifreq, gfreq;
DOUBLE i_real,q_real,i_image,q_image,i_phase,q_phase,i_mag,q_mag;
DOUBLE RX_Amp_Imbalance, RX_Phase_Imbalance,pwr;
Analog.primary("RX Test Stim");
pwr = DATA DEF("Power Sweep").getValue(0);
DATA DEF("PowerValue").set(pwr);
ON FIRST INVOCATION BEGIN();
 STIM DEF().disableAll().connectAll();
 EXECUTE GROUP();
                                 // SW Triggers the sequence
ON FIRST INVOCATION END();
igArray = DGT("BBI Out").getComplexWaveform();
timeArrayI = iqArray.getReal(); timeArrayQ = iqArray.getImag();
DSP FFT(timeArrayI,ifreq,RECT); DSP FFT(timeArrayQ,qfreq,RECT);
i real = ifreq[25].real();
                             i image = ifreq[25].imag();
i mag = sqrt(i real*i real+i image*i image);
q real = qfreq[25].real(); q image = qfreq[25].imag();
q mag = sqrt(q real*q real+q image*q image);
i mag = 20*log10(i mag*sqrt(500.0/50.0)); //convert to dBm
q mag = 20*log10(q mag*sqrt(500.0/50.0)); //convert to dBm
i phase = 180*(atan2(i image, i real))/M PI; q phase = 180*(atan2(q image, q real))/M PI;
cout <<"\t I mag = "<<i_mag<<" dBm "<<endl; cout <<"\t Q mag = "<<q_mag<<" dBm "<<endl;</pre>
cout <<"\t I phase = "<<i phase<<" Degree "<<endl; cout <<"\t Q phase = "<<q phase<<" Degree "<<endl;</pre>
RX Amp Imbalance = q mag - i mag;
RX_Phase_Imbalance = 90 - abs(q phase - i_phase);
if(RX Phase Imbalance > 180 )
       RX Phase Imbalance = RX Phase Imbalance -180;
else if (RX Phase Imbalance < -180 )
       RX Phase Imbalance = RX Phase Imbalance +180;
cout <<"\t IQ Amplitude Imbalance = "<<RX Amp Imbalance<<" dB "<<endl;</pre>
cout <<"\t IQ Phase Imbalance = "<<RX Phase Imbalance<<" Degree "<<end1;
TEST ( "BBI Out, BBQ Out", "RX Amp Imbalance", RX Amp Imbalance );
TEST ( "BBI Out, BBQ Out", "RX Phase Imbalance", RX Phase Imbalance );
```


Datalog and Waveform Analysis for Demodulator

Datalog for Demodulator

ERIGY

Datalog for RFTOBB

I Waveform Capture in Time & Frequency Domain

Datalog and Waveform Analysis for Demodulator

Q Waveform Capture in Time & Frequency Domain

Datalog and Waveform Analysis for Demodulator

I/Q Waveform Capture Overlap in Time Domain

IQ Amplitude Imbalance: -0.5 dB < 0.262095 dB < 0.5 dB

IQ Phase Imbalance: -5 Degree < 0.875716 Degree < 5 Degree

Summary

Achievement of Skill & Knowledge:

- 1. Basic Knowledge of RF testing and RF device.
- 2. Good Skill about basic RF test like IP3,S-parameter,Carrier Suppression.
- 3. Basic test development skill for RF chip, Create Frequency List, Stimulus and Power measurement.
- 4. How to use of Spectrum Analyzer to measure RF signal power.
- 5. How to debug RF testing with Sequencer Grouping.
- 6. Understanding of V93K Hardware for RF testing, RF source Card, RF Front End Card, MB Av8 Card.
- Understanding and application of flowing API function: DATA_DEF, STIM_DEF, EXECUTE_GROUP, DSP_FFT, DSP_RF_CW_POWER, MEAS_DEF
- 8. Basic Calculation of power for sine signal.

Q/A

Thanks!

