MATH 751 MIDTERM REVIEW

MARIO L. GUTIERREZ ABED

Lemma 13.3) Let \mathcal{B} and \mathcal{B}' be bases for the topologies \mathcal{T} and \mathcal{T}' , respectively, on X. Then the following are equivalent:

- (1) \mathfrak{I}' is finer than \mathfrak{I} .
- (2) For each $x \in X$ and each basis element $B \in \mathcal{B}$ containing x, there is a basis element $B' \in \mathcal{B}'$ such that $x \in B' \subset B$.

Proof. $((2) \Rightarrow (1))$ Given an element U of \mathfrak{T} , we wish to show that $U \in \mathfrak{T}'$. Let $x \in U$. Since \mathcal{B} generates \mathfrak{T} , there is an element $B \in \mathcal{B}$ such that $x \in B \subset U$. Condition (2) tells us there exists $B' \in \mathcal{B}'$ such that $x \in B' \subset B$. Then $x \in B' \subset U$, so $U \in \mathfrak{T}'$, by definition.

 $((1) \Rightarrow (2))$ We are given $x \in X$ and $B \in \mathcal{B}$, with $x \in B$. Now B belongs to \mathcal{T} by definition and $\mathcal{T} \subset \mathcal{T}'$ by condition (1); therefore, $B \in \mathcal{T}'$. Since \mathcal{T}' is generated by \mathcal{B}' , there is an element $B' \in \mathcal{B}'$ such that $x \in B' \subset B$.

Theorem 18.1) Let X and Y be topological spaces, and let $f: X \to Y$. Then the following are equivalent:

- (1) f is continuous.
- (2) For every subset A of X, we have $f(\bar{A}) \subset \overline{f(A)}$.
- (3) For every closed subset B of Y, the set $f^{-1}(B)$ is closed in X.
- (4) For each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subset V$.

(If condition (4) holds for the point $x \in X$, we say that f is **continuous** at the point x.)

Proof. We will show that $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$ and that $(1) \Rightarrow (4) \Rightarrow (1)$:

 $((1) \Rightarrow (2))$ Assume that f is continuous and let A be a subset of X. We want to show that if $x \in \overline{A}$, then $f(x) \in \overline{f(A)}$. Let V be a neighborhood of f(x). Then $f^{-1}(V)$ is an open set of X containing x; it must intersect A in some point $y \neq x$. Then V intersects f(A) in the point f(y), so that $f(x) \in \overline{f(A)}$, as desired.

 $((2) \Rightarrow (3))$ Let B be closed in Y and let $A = f^{-1}(B)$. We wish to prove that A is closed in X; thus we'll show that $\bar{A} = A$. By elementary set theory, we have $f(A) = f(f^{-1}(B)) \subset B$. Therefore, if $x \in \bar{A}$, then

$$f(x) \in f(\bar{A}) \subset \overline{f(A)} \subset \bar{B} = B,$$

so that $x \in f^{-1}(B) = A$. Thus $\bar{A} \subset A$, and hence $\bar{A} = A$, as desired.

 $((3) \Rightarrow (1))$ Let V be an open set of Y and set $B = Y \setminus V$. Then

$$f^{-1}(B) = f^{-1}(Y) \smallsetminus f^{-1}(V) = X \smallsetminus f^{-1}(V).$$

Now B is a closed set of Y. Then $f^{-1}(B)$ is closed in X by hypothesis, so that $f^{-1}(V)$ is open in X, as desired.

 $((1) \Rightarrow (4))$ Let $x \in X$ and let V be a neighborhood of f(x). Then the set $U = f^{-1}(V)$ is a neighborhood of x such that $f(U) \subset V$.

 $((4) \Rightarrow (1))$ Let V be an open set of Y, and let x be a point of $f^{-1}(V)$. Then $f(x) \in V$, so that by hypothesis there is a neighborhood U_x of x such that $f(U_x) \subset V$. Then $U_x \subset f^{-1}(V)$. It follows that $f^{-1}(V)$ can be written as the union of the open sets U_x , so that it is open.

Theorem 18.4) (Maps into Products) Let $f: A \to X \times Y$ be given by the equation

$$f(a) = (f_1(a), f_2(a)).$$

Then f is continuous iff the functions

$$f_1: A \to X$$
 and $f_2: A \to Y$

are continuous.

(The maps f_1 and f_2 are called the **coordinate functions** of f.)

Proof. (\Rightarrow) Let $\pi_1: X \times Y \to X$ and $\pi_2: X \times Y \to Y$ be projections onto the first and second factors, respectively. These maps are continuous. For $\pi_1^{-1}(U) = U \times Y$ and $\pi_2^{-1}(V) = X \times V$, and these sets are open if U and V are open. Note that for each $a \in A$, we have

$$f_1(a) = \pi_1(f(a))$$
 and $f_2(a) = \pi_2(f(a))$.

If the function f is continuous, then f_1 and f_2 are composites of continuous functions and therefore continuous.

(\Leftarrow) Conversely, suppose that f_1 and f_2 are continuous. We show that for each basis element $U \times V$ for the topology of $X \times Y$, its inverse image $f^{-1}(U \times V)$ is open. A point a is in $f^{-1}(U \times V)$ iff $f(a) \in U \times V$, that is, iff $f_1(a) \in U$ and $f_2(a) \in V$. Therefore,

$$f^{-1}(U \times V) = f_1^{-1}(U) \bigcap f_2^{-1}(V).$$

Since both of the sets $f_1^{-1}(U)$ and $f_2^{-1}(V)$ are open, so is their intersection. Hence, f is continuous, as desired.

Theorem 19.6) Let $f: A \to \prod_{\alpha \in J} X_{\alpha}$ be given by the equation

$$f(a) = (f_{\alpha}(a))_{\alpha \in J},$$

where $f_{\alpha} \colon A \to X_{\alpha}$ for each α . Let $\prod X_{\alpha}$ have the product topology. Then the function f is continuous iff each function f_{α} is continuous.

Proof. (\Rightarrow) Let π_{β} be the projection of the product onto its β^{th} factor. The function π_{β} is continuous, for if U_{β} is open in X_{β} , then the set $\pi_{\beta}^{-1}(U_{\beta})$ is a subbasis element for the product topology on $\prod X_{\alpha}$. Now suppose that $f : A \to \prod X_{\alpha}$ is continuous. The function f_{β} equals the composite $\pi_{\beta} \circ f$; being the composite of two continuous functions, it follows that is also continuous. Since this is true for any $\beta \in J$, we have proven this direction.

(\Leftarrow) Conversely, suppose that each coordinate function f_{α} is continuous. To prove that f is continuous, it suffices to prove that the inverse image under f of each subbasis element is open in A. A typical subbasis element for the product topology on $\prod X_{\alpha}$ is a set of the form $\pi_{\beta}^{-1}(U_{\beta})$, where β is some index and U_{β} is open in X_{β} . Now

$$f^{-1}(\pi_{\beta}^{-1}(U_{\beta})) = f_{\beta}^{-1}(U_{\beta}),$$

because $f_{\beta} = \pi_{\beta} \circ f$. Since f_{β} is continuous, this set is open in A, as desired.

To see why this theorem fails if we use the box topology instead, look at the following example:

Example: Take \mathbb{R}^{ω} , the countable Cartesian product of the real line, and consider the function $f: \mathbb{R} \to \mathbb{R}^{\omega}$ given by

$$f(x) = (x, x, x, \dots);$$

the n^{th} coordinate function of f is the function $f_n(x) = x$. Each of the coordinate functions $f_n \colon \mathbb{R} \to \mathbb{R}$ is continuous in the standard topology on \mathbb{R} , and thus f itself is continuous if \mathbb{R}^{ω} is given the product topology, but f is not continuous in the box topology.

Why? Consider the set

$$U = \prod_{n=1}^{\infty} (-1/n, 1/n).$$

This set U is open (it is a basis element) in the box topology, but not in the product topology. We assert that $f^{-1}(U)$ is not open in \mathbb{R} . If $f^{-1}(U)$ were open in \mathbb{R} , it would contain some interval $(-\delta, \delta)$ about the point 0. But this would mean that $f((-\delta, \delta)) \subset U$, so that, by applying the projection map on the n^{th} coordinate to both sides of this inclusion, we would get

$$f_n((-\delta, \delta)) = (-\delta, \delta) \subset (-1/n, 1/n)$$
 for all n .

This is a contradiction because the components of U get arbitrarily close to 0—any δ -neighborhood will eventually be outside some component of U.

Theorem 26.7) The product of finitely many compact spaces is compact.

Proof. We shall prove that the product of two compact spaces is compact; the theorem then follows by induction for any finite number of products.

<u>Step 1.</u> Suppose that we are given spaces X and Y, with Y compact. Suppose that x_0 is a point of X, and N is an open set of $X \times Y$ containing the slice $x_0 \times Y$ of $X \times Y$. We now prove the following:

There is a neighborhood W of x_0 in X such that N contains the entire set $W \times Y^{-1}$.

First let us cover $x_0 \times Y$ by basis elements $\{U_i \times V_i\}$ (for the topology of $X \times Y$) lying in N. The space $x_0 \times Y$ is compact, being homeomorphic to Y. Therefore, we can cover $x_0 \times Y$ by finitely many such basis elements

$$U_1 \times V_1 \dots, U_n \times V_n$$
.

(We assume the each of the basis elements $U_i \times V_i$ actually intersects $x_0 \times Y$, since otherwise that basis element would be of no use to us; we could discard it from the finite collection and still have a covering of $x_0 \times Y$.)

Now define

$$W = U_1 \bigcap \cdots \bigcap U_n$$
.

¹The set $W \times Y$ is often called a **tube** about $x_0 \times Y$.

The set W is open, and it contains x_0 because each set $U_i \times V_i$ intersects $x_0 \times Y$. We assert that the sets $U_i \times V_i$, which were chosen to cover the slice $x_0 \times Y$, actually cover the tube $W \times Y$. Let $x \times y$ be a point of $W \times Y$. Consider the point $x_0 \times y$ of the slice $x_0 \times Y$ having the same y-coordinate as this point. Now $x_0 \times y$ belongs to $U_i \times V_i$ for some i, so that $y \in V_i$. But $x \in U_j$ for every j (because $x \in W$). Therefore, we have $x \times y \in U_i \times V_i$, as desired.

Since all the sets $U_i \times V_i$ lie in N, and since they cover $W \times Y$, the tube $W \times Y$ lies also in N (see figure below:)

$$\{W_1,\ldots,W_k\}$$

covering X. The union of the tubes

$$W_1 \times Y, \dots, W_k \times Y$$

is all of $X \times Y$; since each may be covered by finitely many elements of \mathcal{A} , so may $X \times Y$ be covered.

Remark: The statement proved in *Step 1* of the preceding proof will be quite useful, so we formally state it as a lemma for referencing purposes:

Lemma. (The tube lemma) Consider the product space $X \times Y$, where Y is compact. If N is an open set of $X \times Y$ containing the slice $x_0 \times Y$ of $X \times Y$, then N contains some tube $W \times Y$ about $x_0 \times Y$, where W is a neighborhood of x_0 in X.

Definition. A collection \mathfrak{C} of subsets of X is said to have the **finite intersection property** if for every finite subcollection

$$\{C_1,\ldots,C_n\}$$

of C, the intersection $C_1 \cap \cdots \cap C_n$ is nonempty.

Theorem 26.9) Let X be a topological space. Then X is compact iff for every collection \mathbb{C} of closed sets in X having the finite intersection property, the intersection $\bigcap_{C \in \mathbb{C}} C$ of all elements of \mathbb{C} is nonempty.

Proof. Given a collection \mathcal{A} of subsets of X, let

$$\mathcal{C} = \{ X \setminus A \mid A \in \mathcal{A} \}$$

be the collection of their components. Then the following statements hold:

- (1) \mathcal{A} is a collection of open sets iff \mathcal{C} is a collection of closed sets.
- (2) A covers X iff the intersection $\bigcap_{C \in \mathcal{C}} C$ of all the elements of \mathcal{C} is empty.
- (3) The finite subcollection $\{A_1, \ldots, A_n\}$ of \mathcal{A} covers X iff the intersection of the corresponding elements $C_i = X \setminus A_i$ of \mathcal{C} is empty.

The first statement is trivial, while the second and third follow from DeMorgan's law:

$$X \setminus \left(\bigcup_{\alpha \in I} A_{\alpha}\right) = \bigcap_{\alpha \in I} \left(X \setminus A_{\alpha}\right).$$

The proof of the theorem now proceeds in two easy steps: taking the contrapositive (of the theorem), and then the complement (of the sets).

The statement that X is compact is equivalent to saying: "Given any collection \mathcal{A} of open subsets of X, if \mathcal{A} covers X, then some finite subcollection of \mathcal{A} covers X." This statement is equivalent to its contrapositive, which is the following: "Given any collection \mathcal{A} of open sets, if no finite subcollection of \mathcal{A} covers X, then \mathcal{A} does not cover X." Now letting \mathcal{C} be as defined above

$$\mathcal{C} = \{X \smallsetminus A \mid A \in \mathcal{A}\}$$

and applying (1)-(3), we see that this statement is in turn equivalent to the following: "Given any collection \mathcal{C} of closed sets, if every finite intersection of elements of \mathcal{C} is nonempty, then the intersection of all the elements of \mathcal{C} is nonempty as well." This is just the condition of our theorem.

Remark: A special case of this theorem occurs when we have a **nested sequence** $C_1 \supset C_2 \supset \cdots \supset C_n \supset C_{n+1} \supset \cdots$ of closed sets in a compact space X. If each of the sets C_n is nonempty, then the collection $\mathcal{C} = \{C_n\}_{n \in \mathbb{N}}$ automatically has the finite intersection property. Then the intersection

$$\bigcap_{n\in\mathbb{N}}C_n$$

is nonempty.

Theorem 27.1) Let X be a totally ordered set having the least upper bound property. In the order topology, each closed interval in X is compact.

Proof. Given a < b, let \mathcal{A} be a covering of [a, b] by sets open in [a, b] in the subspace topology (which is the same as the order topology because [a, b] is convex). We wish to prove the existence of a finite subcollection of \mathcal{A} covering [a, b].

Step 1. First we prove the following:

If x is a point of [a,b] different from b, then there is a point y > x of [a,b] such that the interval [x,y] can be covered by at most two elements of A.

If x has an immediate successor in X, let y be this immediate successor. Then [x, y] consists of the two points x and y (i.e. $[x, y] = \{x, y\}$) so that it can be covered by at most two elements of A. If x has no immediate successor in X, choose an element A of A containing x. Because $x \neq b$ and A is open, A contains an interval of the form [x, c), for some $c \in [a, b]$. Now choose a point $y \in (x, c)$; then the interval [x, y] is covered by the single element A of A.

<u>Step 2.</u> Let C be the set of all points y > a of [a, b] such that the interval [a, y] can be covered by finitely many elements of A. Now applying Step 1 to the case x = a, we see that there exists at least one such y, so C is not empty. Let c be the least upper bound of the set C; then $a < c \le b$.

<u>Step 3.</u> We now show that c belongs to C; that is, we show that the interval [a,c] can be covered by finitely many elements of \mathcal{A} . Choose an element A of \mathcal{A} containing c. Since A is open, it contains an interval of the form (d,c] for some d in [a,b]. If we assume that $c \notin C$, there must be a point $z \in C$ lying in the interval (d,c), because otherwise d would be a smaller upper bound on C than c (see Figure 27.1 below). Since $z \in C$, the interval [a,z] can be covered by finitely many, say n, elements of \mathcal{A} . Now [z,c] lies in the single element A of \mathcal{A} , hence $[a,c]=[a,z]\bigcup[z,c]$ can be covered by n+1 elements of \mathcal{A} . Thus $c\in C$, contrary to assumption.

<u>Step 4.</u> Finally, we show that c = b and our theorem is proved. Suppose that c < b. Applying Step 1 to the case x = c, we conclude that there exists a point y > c of [a, b] such that the interval [c, y] can be covered by finitely many elements of \mathcal{A} (see Figure 27.2 above). We proved in Step 3 that c is in C, so [a, c] can be covered by finitely many elements of \mathcal{A} . Therefore, the interval

$$[a, y] = [a, c] \cup [c, y]$$

can also be covered by finitely many elements of \mathcal{A} . This means that y is in C, contradicting the fact that c is an upper bound on C. $(\Rightarrow \Leftarrow)$