Outline for Master thesis: "Studies on approximations of Spanning Trees with Low Crossing Number"

Maximilian Konzack

February 20, 2013

1. Introduction

- a) Definiton of a Spanning Tree with Low Crossing Number
 - Example graph in the plane
 - Crossing distance
 - Equivalence relation on line set
 - Worst case crossing number
- b) Motivation
 - LP Solving
 - Clarkson algorithm
 - Multiplicative weights update method
- c) Known facts
 - Generalization to d dimensions
 - Variations of crossing numbers
 - Spanning crossing number (minimum crossing number)
 - Stabbing number
- d) Own Constribution
- e) Similiar problems
 - Perfect matching
 - Triangulations of minimum total length (non Steiner ones)
 - Relative crossing number
 - Overall small crossing number

- 2. Analysis of the complexity
 - Overview of NP-Hardness
 - Finding optimum
 - Integer Program with exponential constraints
- 3. Approximation approaches
 - a) LP relaxation by Fekete
 - Planarity heuristics
 - Iterative rounding scheme
 - b) Multiplicative weights update scheme
 - Approximation algorithm
 - Used facts: crossing distance, crossing disk
 - c) General iterative, LP-based approximation scheme by Sariel
 - LP formulation with bounded VC dimensions
 - Listing of generic approximation algorithm
 - Randomized rounding scheme
 - \bullet Tailoring to d dimensions and planar case
 - Deterministic rounding in the plane
 - d) Challenges
 - Self crossing edges in approximation
 - Computing spanning tree within connected components
 - ...
- 4. New iterative, LP-based Approximation scheme
 - Sariel's approach revisited
 - LP formulation with connected components
 - Rounding scheme
 - Listing of the algorithm
- 5. Results
 - a) Computational studies
 - Problem sets (Grid, Uniform distribution, high dimensional data sets, ...)
 - Implementation details
 - Hardware
 - b) Observations on experiments

- Pros and Cons of different approximation schemes
- \bullet Comparison with Fekete's technical report
- c) Proven facts
- 6. Conclusion