Exercise 1.25

Nolan Hauck

Last updated Tuesday 12th March, 2024 at 15:57

Complete the proof of Theorem 1.19, which states: If $\subset \mathbb{R}$, the following are equivalent:

- 1. $E \in \mathcal{M}_{\mu}$
- 2. $E = V \setminus N_1$ where V is a G_{δ} set and $\mu(N_1) = 0$.
- 3. $E = H \cup N_2$ where H is an F_{σ} set and $\mu(N_2) = 0$.

Solution. The book states that (b) and (c) implying (a) are both "obvious", since μ is complete on \mathcal{M}_{μ} . If $E = V \setminus N_1$ for some G_{δ} set V and some $\mu(N_1) = 0$, then $E = V \cap N_1^c$. V is a G_{δ} , so is Borel, and $\mathcal{M}_{\mu} \supset \mathcal{B}_{\mathbb{R}}$. The way the theorem is stated seems to imply that $N_1 \in \mathcal{M}_{\mu}$, so E is an intersection between two sets in a σ -algebra, and is thus in that σ -algebra.

The same can be said if $E = H \cup N_2$ for some F_{σ} set H and some $\mu(N_2) = 0$. Then H is a Borel set and N_2 is assumed to be measurable, so E is a union of two measurable sets and is therefore measurable.

My only problem with this is that there seems to be no reason to mention the completeness of μ on \mathcal{M}_{μ} . If what the statement of the theorem means instead is that $\mu(N_1) = 0$ in the sense of the outer measure generated by some IRC function F, then N_1 and N_2 will be subsets of null sets in \mathcal{M}_{μ} and thus be measurable themselves by completeness.

The book proves that (a) \Longrightarrow (b) and (a) \Longrightarrow (b) in the case that $\mu(E) < \infty$. So suppose $\in \mathcal{M}_{\mu}$ and $\mu(E) = \infty$. Then consider $\mathbb{R} = \bigcup_{n=1}^{\infty} I_n$ where $I_n(-n,n)$. Then $E \cap I_n \in \mathcal{M}_{\mu}$ for all n since $I_n \in \mathcal{B}_{\mathbb{R}}$, and $\mu(E \cap I_n) \leq \mu(-n,n) = 2n < \infty$. By outer regularity, for each n and for each $k \in \mathbb{N}$, there exists V_{kn} open such that $E \cap I_n \subseteq V_{kn}$ and $\mu(V_{kn}) \leq \mu(E \cap I_n) + 2^{-n} \frac{1}{k}$. Since we are dealing with finite measures here, we have $\mu(V_{kn} \setminus (E \cap I_n)) \leq 2^{-n} \frac{1}{k}$. Let $V_k = \bigcup_{n=1}^{\infty} V_{kn}$. Then V_k is open for all k, and $V = \bigcap_{k=1}^{\infty}$ is a G_{δ} . Note that $E \cap I_n \nearrow E$ so that $E \subset V_k$ for all k, and thus $E \subset V$. Then for each k,

$$\mu(V \setminus E) = \mu\left(\bigcap_{k=1}^{\infty} (V_k \setminus E)\right)$$

$$\leq \mu(V_k \setminus E)$$

$$= \mu\left(\bigcup_{n=1}^{\infty} (V_{kn} \setminus E)\right)$$

$$\leq \sum_{n=1}^{\infty} \mu(V_{kn} \setminus E)$$

$$\leq \sum_{n=1}^{\infty} \mu(V_{kn} \setminus (E \cap I_n)) \leq \sum_{n=1}^{\infty} 2^{-n} \frac{1}{k} = \frac{1}{k}.$$
(1)

since $V_{kn} \setminus E \subseteq V_{kn} \setminus (E \cap I_n)$ for each n and k. Thus $\mu(V \setminus E) = 0$. So let $N_1 = V \setminus E$. Then $E = V \setminus (V \setminus E)$ and (a) \Longrightarrow (b).

Now we show (a) \Longrightarrow (c). This argument is almost the same. By inner regularity, for each n and for each k, there is a compact set H_{kn} so that $H_{kn} \subset E \cap I_n$ and $\mu(H_{kn}) \geq \mu(E \cap I_n) - 2^{-n} \frac{1}{k}$. Since $\mu(E \cap I_n) < \infty$, this is the same as saying $\mu((E \cap I_n) \setminus H_{kn}) \leq 2^{-n} \frac{1}{k}$. For each k, let $H_k = \bigcap_{n=1}^{\infty} H_{kn}$. Then H_k is closed (and compact) and $H_k \subseteq E$ for all k. Let $H = \bigcup_{k=1}^{\infty} H_k$. Then $H \subseteq E$. Then note that $\bigcup_{n=1}^{\infty} E \cap I_n = E$. So for all k,

$$\mu(E \setminus H) = \mu \left(E \setminus \bigcup_{k=1}^{\infty} H_k \right)$$

$$= \mu \left(\bigcap_{k=1}^{\infty} E \setminus H_k \right)$$

$$\leq \mu(E \setminus H_k)$$

$$= \mu \left(E \setminus \bigcap_{n=1}^{\infty} H_{kn} \right)$$

$$= \mu \left(\bigcup_{n=1}^{\infty} E \setminus H_{kn} \right)$$

$$= \mu \left(\bigcup_{n=1}^{\infty} (E \cap I_n) \setminus H_{kn} \right)$$

$$\leq \sum_{n=1}^{\infty} 2^{-n} \frac{1}{k} = \frac{1}{k}$$
(2)

So $\mu(E \setminus H) = 0$. Let $N_2 = E \setminus H$. Then $E = H \cup (E \setminus H)$ and (a) \Longrightarrow (c).