Inteligência Artificial Aula 13- Planejamento¹

Silvia Moraes

¹Este material não pode ser reproduzido ou utilizado de forma parcial sem a permissão dos autores.

Sinopse

- Nesta aula, continuamos a falar de planejamento.
- Este material foi construído com base nos capítulos:
 - 11 do livro Artificial Intelligence a Modern Approach de Russel & Norvig

Sumário

- 1 O que vimos ...
- 2 Representação de Problemas de Planejamento
- 3 Planejamento com busca no espaço de estados

Aulas anteriores

- Agente Reativos e Cognitivos
- Solução de Problemas
 - Representação, Espaço de Estados, Plano: sequência de ações
 - Busca sem informação
 - Busca com informação: Best First, A*, Hill Climbing, Simulated Anneling, Algoritmos Genéticos
 - Algoritmo de busca adversária: Minimax
- Introdução a Planejamento

 A linguagem de representação básica para planejadores clássicos é chamada de STanford Research Institute Problem Solver (STRIPS).

Estados:

- O mundo é decomposto em condições lógicas
- Os estados são representados por conjunções de literais positivos e literais básicos de primeira ordem
 Ex1: Pobre ∧ Desconhecido (estado de um agente infeliz)
 Ex2: Em(Avião₁, Garulhos) (localização de um avião)
- Trabalha com a hipótese de mundo fechado: quaisquer condições não mencionadas são falsas.

Objetivo:

- Estado parcialmente especificado.
 Ex: O estado Rico ∧ Famoso ∧ Feio satisfaz o objetivo Rico ∧ Famoso
- Ações:

- ...
- Ações:
 - Possui uma cabeça, lista de pré-condições e efeitos.
 - cabeça: nome da ação e lista de parâmetros;
 - precondição: literais positivos, define o que deve ser verdadeiro para a execução da ação
 - efeito: o que altera no estado quando a ação é executada.
 Quando o efeito é ¬P, um literal negativo, este é considerado falso.
 - Esquema de ação:

```
Ação(Voar(p, de, para), PRECOND: Em(p, de) \land Aviao(p) \land Aeroporto(de) \land Aeroporto(para), EFFECT: \neg Em(p, de) \land Em(p, para))
```

Exemplo 1:

- Considerando
 Ação(Voar(p, de, para),
 PRECOND: Em(p, de) ∧ Aviao(p) ∧ Aeroporto(de) ∧ Aeroporto(para),
 EFFECT: ¬Em(p, de) ∧ Em(p, para))
- e o estado atual:

```
Em(P1, Garulhos) \land Em(P2, Gale\~ao) \land Avi\~ao(P1) \land Avi\~ao(P2) \land Aeroporto(Garulhos) \land Aeroporto(Gale\~ao)
```

- O estado satisfaz a precondição da Ação Voar:
 PRECOND: Em(p, de) ∧ Aviao(p) ∧ Aeroporto(de) ∧ Aeroporto(para)
- Substituindo $\{p/P_1, de/Garulhos, para/Galeão\}$ a ação $Voar(P_1, Garulhos, Galeão)$ é aplicável.

- Exemplo 2: Transporte aéreo de Cargas
 - Envolve o carregamento e descarregamento de cargas de aviões e voos desses aviões de um lugar para outro.
 - O problema pode ser definido com 3 ações: Carregar, Descarregar e Voar

```
Ação( Carregar(c, p, a), PRECOND: Em(c, a) \land Em(p, a), Carga(c), Aviao(p) \land Aeroporto(a), EFFECT: \neg Em(c, a) \land Em(c, p))

Ação( Descarregar(c, p, a), PRECOND: Em(c, p) \land Em(p, a), Carga(c), Aviao(p) \land Aeroporto(a), EFFECT: Em(c, a) \land \neg Em(c, p))

Ação( Voar(p, de, para), PRECOND: Em(p, de) \land Aviao(p) \land Aeroporto(de) \land Aeroporto(para), EFFECT: \neg Em(p, de) \land Em(p, para))
```

Exemplo 2: Transporte aéreo de Cargas

- Iniciar
 - $(Em(C_1, Garulhos) \land Em(C_2, Gale\~ao), Em(P_1, Garulhos) \land Em(P_2, Gale\~ao) \land Carga(C_1) \land Carga(C_2) \land Avi\~ao(P_1) \land Avi\~ao(P_2) \land Aeroporto(Garulhos) \land Aeroporto(Gale\~ao))$
- Objetivo ($Em(C_1, Galeão) \land Em(C_2, Garulhos)$)
- O plano a seguir é a solução do problema: [Carregar($C_1, P_1, Garulhos$), $Voar(P_1, Garulhos, Galeão$), $Descarregar(C_1, P_1, Galeão$), Carregar($C_2, P_2, Galeão$), $Voar(P_1, Galeão, Garulhos)$, $Descarregar(C_2, P_2, Garulhos)$]

- Exemplo 3- Troca de Pneu: consiste em trocar um pneu furado.
 - O **estado inicial** é o pneu furado e o estepe no porta-malas. Iniciar(Em(Furado, Eixo) ∧ Em(Estepe, PortaMalas))
 - O objetivo é ter um estepe em bom estado e corretamente colocada no eixo do carro.
 Objetivo (Em(Estepe, Eixo))
 - Ações: ...

- Exemplo 3- Troca de Pneu: consiste em trocar um pneu furado.
 - •

Plano: ?

Ações:

```
A \cite{cases} A \cite{cases} A \cite{cases} (Remover(Estepe, Porta Malas), \\ \textbf{PRECOND:} Em(Estepe, Porta Malas), \\ \textbf{EFFECT:} \cite{cases} Em(Estepe, Porta Malas) \land Em(Estepe, Chão) \land \\ Em(nulo, Porta Malas)) \\ A \cite{cases} A \cite{cases} (Remover(Furado, Eixo), \\ \textbf{PRECOND:} Em(Furado, Eixo), \\ \textbf{EFFECT:} \cite{cases} Em(Furado, Eixo) \land Em(Furado, Chão) \land Em(nulo, Eixo)) \\ A \cite{cases} A \cite{cases
```

- Exemplo 3- Troca de Pneu: consiste em trocar um pneu furado.
- •
- O plano a seguir é a solução do problema: [Remover(Estepe, PortaMalas), Remover(Furado, Eixo), Montar(Estepe, Eixo)]

- Exemplo 4- Mundo dos blocos: consiste em um conjunto de blocos (cubos) dispostos sobre uma mesa.
 - Os blocos podem ser empilhados, apenas um bloco sobre outro.
 - Um braço robô pode levantar um bloco e movê-lo para outra posição, sobre a mesa ou em cima de outro bloco.
 - o braço só pode levantar um bloco de cada vez.

```
\label{eq:local_action} \begin{split} &A \tilde{c} \tilde{a} o (Mover(b,x,y),\\ &PRECOND: Bloco(b) \wedge Sobre(b,x) \wedge Livre(b) \wedge Livre(y)\\ &EFFECT: Sobre(b,y) \wedge \neg Sobre(b,x) \wedge Livre(b) \wedge \neg Livre(y)\\ &A \tilde{c} \tilde{a} o (MoverParaMesa(b,x),\\ &PRECOND: Bloco(b) \wedge Sobre(b,x) \wedge Livre(b)\\ &EFFECT: Sobre(b,Mesa) \wedge \neg Sobre(b,x) \wedge Livre(x) \end{split}
```

- Exemplo 4- Mundo dos blocos: consiste em um conjunto de blocos (cubos) dispostos sobre uma mesa.
 - Dado o estado inicial: $Iniciar(Sobre(A, Mesa) \land Sobre(B, Mesa) \land Sobre(C, Mesa)$ $\land Bloco(A) \land Bloco(B) \land Bloco(C)$ $\land Livre(A) \land Livre(B) \land Livre(C)$
 - Objetivo: Objetivo(Sobre(A, B), Sobre(B, C))
 - Plano: ?

- Exemplo 4- **Mundo dos blocos**: consiste em um conjunto de blocos (cubos) dispostos sobre uma mesa.
 - •
 - Plano: [Mover(B, Mesa, C), Mover(A, Mesa, B)]

- A linguagem STRIPS é não expressiva o suficiente para alguns domínios.
- Por essa razão, surgiram variantes dessa linguagem:
 - Action Description Language (ADL): mais expressiva e sucinta Ação(Voar(p: Avião, de: Aeroporto, para: Aeroporto), PRECOND: Em(p, de) ∧ (de ≠ para), EFFECT: ¬Em(p, de) ∧ Em(p, para))

- Mundo dos blocos
 - Em STRIPS, a ação Mover(B, C, C) é permitida.
 - em ADL

```
A \cite{cases} A \c
```

 Vários formalismos de planejamento em IA foram sistematizados em uma sintaxe-padrão denominada PDDL (Planning Domain Definition Language), o qual contém sublinguagens correspondentes a STRIPS, ADL e redes hierárquicas de tarefas.

Linguagem de Representação: exercicio

- Atividade I Robô Shakey: nesse problema o mundo do robô é
 formado por 4 salas, dispostas ao longo de um corredor, onde cada sala
 tem uma porta e um interruptor de luz. O robô pode movimentar-se de
 um lugar para outro, empurrar objetos(como caixas), subir e descer de
 objetos rígidos (como caixas), ligar e desligar interruptores. Ele possui as
 seguintes ações:
 - Ir(x,y): exige que o robô esteja em x e que x e y sejam posições.
 - Empurrar(c,x,y): Empurrar uma caixa da posição x para y
 - Subir(c)/Descer(c): Subir em (ou Descer de) uma caixa, o robô precisa estar na posição da caixa.
 - Ligar(i)/Desligar(i): Para ligar ou desligar um interruptor o robô precisa estar em cima de uma caixa e na posição do interruptor.

Linguagem de Representação: exercicio

- Atividade I Robô Shakey. ...
 - •
 - Descreva as ações e o estado inicial correspondente a imagem a seguir.

Construa um plano para colocar a Caixa2 na Sala 2.

Algoritmos de Planejamento

- Para construir planos, realizamos busca no espaço de estados.
- Como as ações são especificadas em Pré-Condições e Efeitos, é possível construir um plano usando qualquer um desses elementos.
 - Busca para frente (Forward): a busca é feita para frente a partir do estado inicial.
 - Busca para trás (Backward): a busca é feita para trás a partir do objetivo.

Algoritmos de Planejamento

- Busca para Frente (do estado inicial ao objetivo)
 - Semelhante à resolução de problemas
 - Esse tipo de planejamento é chamado de **progressão**
 - Formulação de problema para esse tipo de planejamento
 - Estado inicial: ponto de partida do algoritmo. Em geral, definido por um conjunto de literais positivos
 - Ações aplicáveis: todas aquelas em que as precondições são satisfeitas. Necessária uma função de predição (sucessor).
 - Teste de objetivo: verifica se o estado satisfaz ao objetivo do problema.
 - Custo do passo: em geral é 1 (dificilmente em planejadores STRIPS)

Algoritmos de Planejamento

- Busca para Trás (do objetivo ao estado inicial)
 - Esse tipo de planejamento é chamado de regressão
 - Se o objetivo tiver restrições, esse tipo de planejamento pode ser dificil de usar
 - A linguagem STRIPS favorece o seu uso, pois os objetivos são representados como literais positivos.
 - Exige a implementação de uma função predecessor.
 - A principal vantagem é que permite considerar apenas estados relevantes.

