Homework 1

Solutions: 27.05.2024

Part I: Theory

I.1. Linear model example

Exercise I.1 (Polynomial Curve Fitting). Given a set of points and their targets $\{x_i, t_i\}_{i=1}^N$ so that for $i \in [N]$, $x_i \in \mathbb{R}$ and $t_i \in \mathbb{R}$, the *curve fitting problem* is loosely defined as finding a function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x_i) \approx t_i$ for all $i \in [N]$.

In order to find such a function, we restrict ourselves to a set of parametrized functions \mathcal{F} : each function can be parametrized with a vector $\mathbf{w} \in \mathbb{R}^{D+1}$.

To quantify the problem further, in this exercise, we limit ourselves to polynomial functions of degree D for the set \mathcal{F} , and can therefore write

$$f(x, \mathbf{w}) = w_0 + w_1 x + \ldots + w_D x^D = \sum_{k=0}^{D} w_k x^k$$
 (1)

Notice how f is linear in w, the parameter. Such model is called a linear model.

With N samples, we defined the loss (or error, or energy) of our parameter as the point-wise square distance between its estimation and the target:

$$E(\boldsymbol{w}) = \frac{1}{2} \sum_{i=1}^{N} (f(x_i, \boldsymbol{w}) - t_i)^2$$
(2)

1. Is the function E convex in w? How to find the optimal parameter w^* at which the loss is minimum?

2. Compute the gradient
$$\nabla_{\boldsymbol{w}} E(\boldsymbol{w}) = \begin{pmatrix} \partial_{w_0} E(\boldsymbol{w}) \\ \vdots \\ \partial_{w_D} E(\boldsymbol{w}) \end{pmatrix} \in \mathbb{R}^{D+1}$$
.

3. Show that the optimal parameter \mathbf{w}^* satisfies the following system of equation:

$$\forall k \in [D+1], \quad \sum_{j=0}^{D} A_{kj} w_j^* = T_k,$$

where

$$A_{kj} = \sum_{i=1}^{N} (x_i)^{k+j}, \qquad T_k = \sum_{i=1}^{N} (x_i)^k t_i.$$
 (3)

4. Is such a system of equation solvable? When / not?

It is usual to add a *regularizer* to the objective, penalizing "complex" models. This also can help selecting a model when several models are solutions to the optimization problem.

One of the most common regularizer is the parameter squared-norm: with a penalizer weight $\lambda \in \mathbb{R}_+$, the Equation (2) is modified to give

$$E_{\lambda}(\boldsymbol{w}) = E(\boldsymbol{w}) + \frac{\lambda}{2} \|\boldsymbol{w}\|^{2} = \frac{1}{2} \sum_{i=1}^{N} (f(x_{i}, \boldsymbol{w}) - t_{i})^{2} + \frac{\lambda}{2} \|\boldsymbol{w}\|^{2}.$$
 (4)

resume What is the role of λ ?

resume Is E_{λ} convex?

resume Show that each component of the optimal weight w_i^{\star} is now found by solving

$$\forall k \in [D+1], \quad \sum_{j=0}^{D} A_{kj} w_j + \lambda w_k = T_k,$$

with A_{kj} and T_k defined as in Equation (3).

Matrix expression It is sometimes preferable to deal with vector and matrices, rather than scalar expressions. When the model is linear in w, it is possible to express it as a *linear product* between a matrix and a vector. The expression in Equation (1) can be thought as a dot product between w and the vector of powers of x, that define

as
$$\phi(x) := \begin{pmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^D \end{pmatrix}$$
, so that

$$f(x, \boldsymbol{w}) = \boldsymbol{w}^{\top} \boldsymbol{\phi}(x).$$

Stacking all the N examples in a matrix, and denoting $\phi_i := \phi(x_i)$, we define

$$\Phi \coloneqq \begin{pmatrix} | & | & & | \\ \boldsymbol{\phi}_1 & \boldsymbol{\phi}_2 & \cdots & \boldsymbol{\phi}_N \\ | & | & & | \end{pmatrix} \in \mathbb{R}^{(D+1) \times N}$$

and can therefore compute the model on the whole dataset in one expression: $\mathbf{y}(\mathbf{w}) = \Phi^{\top} \mathbf{w} \in \mathbb{R}^{N}$. Each entry i of \mathbf{y} corresponds to a different sample x_{i} . Then, stacking the targets into a vector $\mathbf{t} \in \mathbb{R}^{N}$, the error function (2) can equivalently written as

$$E(w) = \frac{1}{2} ||y(w) - t||^2,$$

and the regularized error as

$$E_{\lambda}(\boldsymbol{w}) = \frac{1}{2} \| \boldsymbol{y}(\boldsymbol{w}) - \boldsymbol{t} \|^{2} + \frac{\lambda}{2} \| \boldsymbol{w} \|^{2}$$

resume Show that $\nabla E_{\lambda}(\boldsymbol{w}) = \Phi(\Phi^{\top}\boldsymbol{w} - \boldsymbol{t}) + \lambda \boldsymbol{w}$, so that \boldsymbol{w}^{\star} solves the linear equation

$$(\Phi\Phi^{\top} + \lambda I_{D+1})\boldsymbol{w}^{\star} = \Phi \boldsymbol{t}.$$

I.2. Subgradients

When a convex loss function $E: \mathbb{R}^d \to \mathbb{R}$ is not differentiable, its *subgradient* can be used. It is defined as the set, for $x \in \mathbb{R}^d$,

$$\partial E(x) = \{ g \in \mathbb{R}^d \mid \forall y \in \mathbb{R}^d, \ E(y) \geqslant E(x) + \langle g, y - x \rangle \}.$$

If E is differentiable at x, then $\partial E(x) = {\nabla E(x)}.$

For instance, for $E: \mathbb{R} \to \mathbb{R}$, $x \mapsto E(x) = |x|$, E is differentiable at any $x \neq 0$, with gradient -1 on $(-\infty, 0)$ and 1 on $(0, +\infty)$.

At x = 0, we compute, for any $y \in \mathbb{R}$ and $g \in \mathbb{R}$:

$$E(y) \geqslant E(0) + \langle g, y - 0 \rangle \iff |y| \geqslant \langle g, y \rangle$$

 $\iff |y| \geqslant qy$

This condition has to be true for any $y \in \mathbb{R}$. This is only true when $g \in [-1,1]$. Therefore,

$$\partial E(x) = \begin{cases} \{-1\} & \text{if } x < 0 \\ [-1, 1] & \text{if } x = 0 \\ \{1\} & \text{if } x > 0 \end{cases}$$

Geometrically, this can be interpreted as having, for the absolute value at the origin, any lines with slope between -1 and 1 lower-bounding the graph of the function.

Exercise I.2. Let $E : \mathbb{R} \to \mathbb{R}$, $x \mapsto E(x) = \max(0, 1 - x)$.

1. Where is E differentiable?

2. Show that
$$\partial E(x) = \begin{cases} \{-1\} & \text{if } x < 1 \\ [-1,0] & \text{if } x = 1 \\ \{0\} & \text{if } x > 1 \end{cases}$$

Part II: Programming

Exercise II.1 (Model fitting). This exercise implements some results found in Exercise I.1.

- 1. **Generation of the target.** In this toy example, we generate the N points ourselves. The true target t_i will be sinusoidal, with some noise, i.e. $t_i = \sin(2\pi x_i) + \varepsilon$, where $\varepsilon \sim \mathcal{N}(0, \sigma^2)$. The different scales (for σ, x_i) are given as $\sigma = 0.1$, and $x_i \sim \mathcal{U}([0, 1])$, uniform distribution on the segment [0, 1].
 - The generation of the data is performed by the function gen_s_in_d_ata in the file ex02/utils.py.
- 2. Implement the parametrization function (1) as f(x, w), where the dimensions D is implied by the size of w.
- 3. Implement the error function E defined in (2), and its gradient $\nabla E(w)$.
- 4. Find w^* , either by
 - a) gradient descent; or
 - b) solving the linear system of equations (3).