# ECC on small devices

Junfeng Fan

Katholieke Universiteit Leuven, Belgium

junfeng.fan@esat.kuleuven.be













Trusted Platform Module





**Credit Card** 









**Credit Card** 

Trusted Platform Module



**RFID Tag** 

## > Why do we want ECC on small devices?









**Credit Card** 

Trusted Platform Module



Let's take RFID as an example...



Let's take RFID as an example...



Let's take RFID as an example...







































• It works!



- It works!
- It's cheap.



- It works!
- It's cheap.
- It's secure.



- It works!
- It's cheap.
- It's secure.
- It's untraceable.



- It works!
- It's cheap.
- It's secure.
- It's untraceable.
- It's scalable.



- It works!
- It's cheap.
- It's secure.
- It's untraceable.
- It's scalable.
- It's fast.



Small area

- It works!
- It's cheap.
- It's secure.
- It's untraceable.
- It's scalable.
- It's fast.



- It works!
- It's cheap.
- It's secure.
- It's untraceable.
- It's scalable.
- It's fast.

Crypto



Small area

Crypto

PKC

- It works!
- It's cheap.
- It's secure.
- It's untraceable.
- It's scalable.
- It's fast.



- It works!
- It's cheap. —— Small area
- It's secure. —— Crypto
- It's untraceable.
  It's scalable.
- It's fast. lightweight



### The Schnorr Protocol [Schnorr'89]



### The Schnorr Protocol [Schnorr'89]



Tracing Attack: 
$$([v]P - R_1)r_2^{-1} = [x]P = -X$$

# The Vaudenay Protocol [Vaudenay'07]

```
• Reader's private key: Ks, Km

    Reader's public key: KP

    Tag's ID: ID, K=FKM(ID)

Reader (Verifier)
                                                       Tag (Prover)
a=TRNG()
                                        a
                                                       c = Enc_{K_P}(ID||K||a)
|D||K||a' = Dec\kappa_s(c)
If a == a'
  K == F_{KM}(ID)
Then accept ID
```

# The Vaudenay Protocol [Vaudenay'07]

```
    Reader's private key: Ks, Km

• Reader's public key : KP

    Tag's ID: ID, K=FKM(ID)

Reader (Verifier)
                                                       Tag (Prover)
a=TRNG()
                                        a
                                                       c = Enc_{K_P}(ID||K||a)
|D||K||a' = Dec_{Ks}(c)
If a == a'
  K == F_{KM}(ID)
Then accept ID
```

If the PKC in use is **IND-CPA-secure**, then the above RFID scheme is **narrow-strong** private.

# An ECC processor for RFID tags



# An ECC processor for RFID tags

- Area & Energy
  - Smaller ALU
  - Less storage



- Physical Security
  - Side-channel analysis
  - Fault analysis

#### Performance

- Fast field arithmetic
- Fast group operations

### Hardware design flow



# Layout of an integrated circuit



#### Area

• Gate Equivalent (GE): equivalent of NAND gates

#### Area

• Gate Equivalent (GE): equivalent of NAND gates



| A | В | Y |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

#### > Area

• Gate Equivalent (GE): equivalent of NAND gates



| A | В | Y |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |



D Flip-Flop (≈ 6 GE)

| CLK | Q | Q              |
|-----|---|----------------|
|     | D | $\overline{D}$ |
|     | Q | Q              |

# Memory requirement



# Memory requirement



# Memory requirement



# Let's make an ECC processor

- Binary fields v.s. Prime fields
- Security level
- Coorinate systems
- Representation of field elements
- Architecture
- Physical security properties

#### > **F**2<sup>m</sup> **V.S. F**p

- Use binary fields instead of prime fields
  - No carry bits, smaller and faster ALU



## Security level



## Security level



# Coordinate systems

| Coordinates                    | Point<br>Representation                                                | Inversion    | Point<br>Multiplication                             |
|--------------------------------|------------------------------------------------------------------------|--------------|-----------------------------------------------------|
| Affine                         | $P_1=(x_1, y_1)$<br>$P_2=(x_2, y_2)$                                   | Each key bit | -                                                   |
| Projective                     | $P_1=(X_1, Y_1, Z_1)$<br>$P_2=(X_2, Y_2, Z_2)$                         | One          | -                                                   |
| López-Dahab<br>(Affine)        | $P_1=(X_1)$ $P_2=(X_2)$                                                | Each key bit |                                                     |
| López-Dahab<br>(Projective)    | $P_1=(X_1, Z_1)$<br>$P_2=(X_2, Z_2)$                                   | One          | Montgomery                                          |
| * W-coordinate<br>(Affine)     | P <sub>1</sub> =(W <sub>1</sub> )<br>P <sub>2</sub> =(W <sub>2</sub> ) | Each key bit | Ladder $(\mathbf{P_2} = \mathbf{P_1} + \mathbf{P})$ |
| * W-coordinate<br>(Projective) | $P_1=(W_1, Z_1)$<br>$P_2=(W_2, Z_2)$                                   | One          |                                                     |

<sup>\*</sup> Binary Edwards Curve only

# Coordinate systems

| Coordinates                    | Point<br>Representation                                                | Inversion    | Point<br>Multiplication                      |
|--------------------------------|------------------------------------------------------------------------|--------------|----------------------------------------------|
| Affine                         | $P_1=(x_1, y_1)$<br>$P_2=(x_2, y_2)$                                   | Each key bit | -                                            |
| Projective                     | $P_1=(X_1, Y_1, Z_1)$<br>$P_2=(X_2, Y_2, Z_2)$                         | One          | -                                            |
| López-Dahab<br>(Affine)        | $P_1=(x_1)$ $P_2=(x_2)$                                                | Each key bit |                                              |
| López-Dahab<br>(Projective)    | $P_1=(X_1, Z_1)$<br>$P_2=(X_2, Z_2)$                                   | One          | Montgomery<br>Ladder                         |
| * W-coordinate<br>(Affine)     | P <sub>1</sub> =(W <sub>1</sub> )<br>P <sub>2</sub> =(W <sub>2</sub> ) | Each key bit | $(\mathbf{P}_2 = \mathbf{P}_1 + \mathbf{P})$ |
| * W-coordinate<br>(Projective) | $P_1=(W_1, Z_1)$<br>$P_2=(W_2, Z_2)$                                   | One          |                                              |

<sup>\*</sup> Binary Edwards Curve only

# Count the number of registers

# **Algorithm 1: Montgomery Powering Ladder**

**Input:**  $k = \{1, k_{t-1},...,k_0\}$  and point **P** 

Output: [k]P

1: 
$$P_1 \leftarrow P$$
,  $P_2 \leftarrow [2]P$ 

2: for *i=t-1* to 0 do

3: if 
$$k_i=1$$
 then

$$\mathbf{P_1} \leftarrow \mathbf{P_1} + \mathbf{P_2}, \mathbf{P_2} \leftarrow [2]\mathbf{P_2}$$

else

$$P_2 \leftarrow P_1 + P_2, P_1 \leftarrow [2]P_1$$

4: end for

Return P<sub>1</sub>

Point Addition:
 Point Doubling:

 
$$(X_1, Z_1) + (X_2, Z_2)$$
 $Z(X_1, Z_1)$ 
 $X_1 \leftarrow X_1 \cdot X_2$ 
 $X_1 \leftarrow X_1^2$ 
 $Z_1 \leftarrow Z_1 \cdot X_2$ 
 $Z_1 \leftarrow Z_1^2$ 
 $T_2 \leftarrow X_1 \cdot Z_1$ 
 $T_1 \leftarrow Z_1^2$ 
 $T_2 \leftarrow X_1 \cdot Z_1$ 
 $T_1 \leftarrow Z_1 \cdot T_1$ 
 $Z_1 \leftarrow X_1 \cdot Z_1$ 
 $Z_1 \leftarrow X_1 \cdot Z_1$ 
 $Z_1 \leftarrow Z_1^2$ 
 $T_1 \leftarrow T_1^2$ 
 $X_1 \leftarrow X_1 \cdot Z_1$ 
 $X_1 \leftarrow X_1^2$ 
 $X_1 \leftarrow X_1 \cdot Z_1$ 
 $X_1 \leftarrow X_1^2 \cdot Z_1$ 
 $X_1 \leftarrow X_1 \cdot Z_$ 

# Common-Z trick (7 --> 6)

#### • 7 registers in total:

$$(x_0, X_1, Z_1, X_2, Z_2, T_1, T_2)$$

#### • Further reduction:

$$(x_0, X_1, X_2, Z, T_1, T_2)$$

$$X_1 \leftarrow X_1 \cdot Z_2$$

$$X_2 \leftarrow X_2 \cdot Z_1$$

$$Z \leftarrow Z_1 \cdot Z_2$$

#### Cost for one iteration:

$$6M+5S \rightarrow 7M+4S$$

| Point Addition: $(X_1, Z_1) + (X_2, Z_2)$                                                                                                                                                                                                                                   | Point Doubling: $2(X_1, Z_1)$                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $T_{1} \leftarrow X_{0}$ $X_{1} \leftarrow X_{1} \cdot X_{2}$ $Z_{1} \leftarrow Z_{1} \cdot X_{2}$ $T_{2} \leftarrow X_{1} \cdot Z_{1}$ $Z_{1} \leftarrow X_{1} + Z_{1}$ $Z_{1} \leftarrow Z_{1}^{2}$ $X_{1} \leftarrow T_{1} \cdot Z_{1}$ $X_{1} \leftarrow X_{1} + T_{2}$ | $T_{1} \leftarrow c$ $X_{1} \leftarrow X_{1}^{2}$ $Z_{1} \leftarrow Z_{1}^{2}$ $T_{1} \leftarrow Z_{1} \cdot T_{1}$ $Z_{1} \leftarrow X_{1} \cdot Z_{1}$ $T_{1} \leftarrow T_{1}^{2}$ $X_{1} \leftarrow X_{1}^{2}$ $X_{1} \leftarrow X_{1} + T_{1}$ |
| Register: 7 Mul.: 4 Sqr.: 1                                                                                                                                                                                                                                                 | Register: 3<br>Mul. : 2<br>Sqr. : 4                                                                                                                                                                                                                 |

# Circular-shift register file



• To support the computations













### A bit-serial multiplier

```
Input: A(x) = \{a_{m-1}, a_{m-2} \dots a_1, a_0\},\
        B(x) = \{b_{m-1}, b_{m-2} \dots b_1, b_n\},\
  and P(x) = \{1, p_{m-1} \dots p_1, 1\}
 Output: C(x) = A(x)B(x) \mod P(x)
1: C(x) \leftarrow 0;
2: for i = m-1 to 0 do
3: C(x) \leftarrow xC(x) + b_i A(x);
    C(x) \leftarrow C(x) \mod P(x);
4: end for
Return: C(x)
```

# A bit-serial multiplier

```
Input: A(x) = \{a_{m-1}, a_{m-2} ... a_1, a_0\},
        B(x) = \{b_{m-1}, b_{m-2} \dots b_1, b_0\},\
 and P(x) = \{1, p_{m-1} \dots p_1, 1\}
Output: C(x) = A(x)B(x) \mod P(x)
```

```
1: C(x) \leftarrow 0;
2: for i = m-1 to 0 do
3: C(x) \leftarrow xC(x) + b_i A(x);
   C(x) \leftarrow C(x) \mod P(x);
4: end for
```

Return: C(x)



Bit-serial multiplier [ Delay:  $\approx$  m cycles ]



Digit-serial Multiplier [ Delay: ≈ m/d cycles ]

Bit-serial multiplier [Delay: ≈ m cycles]

• Target: One point multiplication within 0.25s

• Target: One point multiplication within 0.25s



Digit-size of the multiplier

Physical attacks

# Physical attacks

#### Side-Channel Analysis



# Physical attacks

Side-Channel Analysis



Fault Analysis



# Power analysis



# Simple power analysis

```
k = (k_{1-1}, k_{1-2}, ..., k_0)
```

Left-to-right binary method for point multiplication

```
\mathbf{R} \leftarrow 0
for i=l-1 downto 0 do
\mathbf{R} \leftarrow [2]\mathbf{R}
if k_i = 1 then
\mathbf{R} \leftarrow \mathbf{R} + \mathbf{P}
end if
end for
```

## Simple power analysis

```
k = (k_{1-1}, k_{1-2}, ..., k_0)
```

Left-to-right binary method for point multiplication

```
\mathbf{R} \leftarrow \mathbf{0} for i=l-1 downto 0 do \mathbf{R} \leftarrow [2]\mathbf{R} if ki = 1 then \mathbf{R} \leftarrow \mathbf{R} + \mathbf{P} end if end for
```



## Montgomery Ladder?

# **Algorithm 1: Montgomery Powering Ladder**

```
Input: k = \{1, k_{t-1},...,k_0\} and point P

Output: [k]P

1: P_1 \leftarrow P, P_2 \leftarrow [2]P

2: for i = t-1 to 0 do

3: if k_i = 1 then

P_1 \leftarrow P_1 + P_2, P_2 \leftarrow [2]P_2
else
P_2 \leftarrow P_1 + P_2, P_1 \leftarrow [2]P_1

4: end for

Return P_1
```

## Montgomery Ladder?

# **Algorithm 1: Montgomery Powering Ladder**

**Input:**  $k = \{1, k_{t-1},...,k_0\}$  and point **P** 

Output: [k]P

1: 
$$P_1 \leftarrow P$$
,  $P_2 \leftarrow [2]P$ 

3: if 
$$k_i=1$$
 then

$$\mathbf{P}_1 \leftarrow \mathbf{P}_1 + \mathbf{P}_2, \mathbf{P}_2 \leftarrow [2]\mathbf{P}_2$$

else

$$P_2 \leftarrow P_1 + P_2, P_1 \leftarrow [2]P_1$$

4: end for

Return P<sub>1</sub>



## Montgomery Ladder?

# **Algorithm 1: Montgomery Powering Ladder**

**Input:**  $k = \{1, k_{t-1},...,k_0\}$  and point **P** 

Output: [k]P

1: 
$$P_1 \leftarrow P, P_2 \leftarrow [2]P$$

3: if 
$$k_i=1$$
 then

$$\mathbf{P}_1 \leftarrow \mathbf{P}_1 + \mathbf{P}_2, \mathbf{P}_2 \leftarrow [2]\mathbf{P}_2$$

else

$$P_2 \leftarrow P_1 + P_2, P_1 \leftarrow [2]P_1$$

4: end for

**Return** P<sub>1</sub>













Key guess *k=k'* 

Power Model









Fault analysis

## Fault analysis







The specified curve is:

**E**: 
$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$
,

and  $P(X_P, Y_P)$  is on E.



The specified curve is:

**E**: 
$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$
,

and  $P(X_P, y_P)$  is on E.

Inject a fault: P(X<sub>P</sub>, y<sub>P</sub>) → P'(X<sub>P</sub>, y'<sub>P</sub>),

E': 
$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_{6}'$$



The specified curve is:

E: 
$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

and  $P(X_P, y_P)$  is on E.

Inject a fault: P(X<sub>P</sub>, y<sub>P</sub>) → P'(X<sub>P</sub>, y'<sub>P</sub>),

E': 
$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_{6}$$

Not used for PA/PD

### Point validation



### Point validation



### **But:**

Can the adversary inject faults after the validation step?

• Consider a curve defined on **F***p*:

**E**: 
$$y^2z = x^3 + axz^2 + bz^3$$
.

y coordinates is not needed for Montgomery ladder.

• Consider a curve defined on **F***p*:

**E**: 
$$y^2z = x^3 + axz^2 + bz^3$$
.

y coordinates is not needed for Montgomery ladder.

The twist of E:

• E': 
$$\varepsilon y^2 Z = x^3 + a x Z^2 + b Z^3$$

where  $\varepsilon$  is quadratic non-residue in  $F_{p}$ .

Let (X<sub>P</sub>, -) be a point on E, then a random fault on X<sub>P</sub> may lead to a point on E' with a probability of 1/2.

Consider a curve defined on F<sub>p</sub>:

**E**: 
$$y^2z = x^3 + axz^2 + bz^3$$
.

y coordinates is not needed for Montgomery ladder.

The twist of E:

• E': 
$$\varepsilon y^2 Z = x^3 + a x Z^2 + b Z^3$$
,

where  $\varepsilon$  is quadratic non-residue in  $\mathbf{F}_{p}$ .

Let (X<sub>P</sub>, -) be a point on E, then a random fault on X<sub>P</sub> may lead to a point on E' with a probability of 1/2.

So, it is necessary to perform PV after point multiplication.

Consider a curve defined on F<sub>p</sub>:

**E**: 
$$y^2z = x^3 + axz^2 + bz^3$$
.

y coordinates is not needed for Montgomery ladder.

• The twist of **E**:

• E': 
$$\varepsilon y^2 z = x^3 + a x z^2 + b z^3$$
,

where  $\varepsilon$  is quadratic non-residue in  $F_p$ .

Let (X<sub>P</sub>, -) be a point on E, then a random fault on X<sub>P</sub> may lead to a point on E' with a probability of 1/2.

So, it is necessary to perform PV after point multiplication.

#### **But:**

Can the adversary inject faults before the validation step?

√: Effective x: Attacked ?: Not clear or not published

-: Not related **H**: helps the attack \*: Implementation dependent

|                                | Passive attacks |               |              |                  |            |                | Active attacks        |           |                  |                  |               |              |                |  |
|--------------------------------|-----------------|---------------|--------------|------------------|------------|----------------|-----------------------|-----------|------------------|------------------|---------------|--------------|----------------|--|
|                                |                 |               |              |                  |            |                | Safe-error Weak curve |           |                  |                  | e             | Differential |                |  |
|                                | SPA<br>TA       | Temp-<br>late | DPA          | Doubl.<br>Attack | RPA<br>ZPA | Carry<br>based | M<br>type             | C<br>type | Invalid<br>Point | Invalid<br>curve | Twist curve   | Sign change  | Diff.<br>Fault |  |
| Indistinguishable PA/PD        | √               | -             | -            | ?                | -          | -              | -                     | -         | -                | -                | -             | -            | -              |  |
| Double-add-always              | $\checkmark$    | -             | -            | X                | -          | -              | -                     | Н         | -                | -                | -             | -            | -              |  |
| Montgomery ladder <sup>⊥</sup> | √               | -             | -            | X                | ?          | -              | √*                    | -         | -                | -                | Н             | $\checkmark$ | -              |  |
| Montgomery ladder <sub>T</sub> | $\checkmark$    | -             | -            | X                | X          | -              | √*                    | -         | -                | -                | $\checkmark$  | -            | -              |  |
| Random key splitting           | -               | ?             | $\checkmark$ | ?                | $\sqrt{}$  | X              | -                     | -         | -                | -                | ?             | ?            | ?              |  |
| Scalar randomization           | -               | X             | X            | X                | $\sqrt{}$  | X              | -                     | -         | -                | -                | -             | ?            | ?              |  |
| Base point blinding            | _               | X             | Χ            | X                | $\sqrt{}$  | -              | -                     | -         | ?                | *?               | -             | -            | ?              |  |
| Randomized proj. coord.        | -               | √             | $\sqrt{}$    | ?                | Χ          | -              | -                     | -         | -                | -                | -             | -            | ?              |  |
| Randomized EC Iso.             | -               | ?             | $\sqrt{}$    | ?                | Χ          | -              | -                     | -         | -                | -                | -             | -            | ?              |  |
| Randomized Field Iso.          | -               | ?             | $\sqrt{}$    | ?                | X          | -              | -                     | -         | -                | -                | -             | -            | ?              |  |
| Point validity check           | -               | -             | -            | -                | -          | -              | -                     | Н         | $\sqrt{}$        | ?                | $\sqrt{\bot}$ | Н            | $\checkmark$   |  |
| Curve integrity check          | -               | -             | -            | -                | -          | -              | -                     | -         | -                | $\checkmark$     | -             | -            |                |  |
| Coherence check                | -               | -             | -            | -                | -          | -              | -                     | Н         | -                | ?                | -             | √*           | <b>√</b>       |  |



**The Schnorr Protocol** 



**The Schnorr Protocol** 



**The Schnorr Protocol** 



**The Schnorr Protocol** 

$$P=(x,\pm 1)$$
 or  $P=(x)$ 

$$P=(x,\pm 1)$$
 or  $P=(x)$ 



No inversions involved in scalar multiplication

$$P=(x,\pm 1)$$
 or  $P=(x)$ 



No inversions involved in scalar multiplication



It has no weak twists

 $P=(x,\pm 1)$  or P=(x)

+

No inversions involved in scalar multiplication

+

It has no weak twists

+

A random (*n*-bit) fault on curve parameters is not likely to hit a weak curve

 $P=(x,\pm 1)$  or P=(x)

+

No inversions involved in scalar multiplication

+

It has no weak twists

+

A random (*n*-bit) fault on curve parameters is not likely to hit a weak curve

+

The protocol has minimum attacking points

 $P=(x,\pm 1)$  or P=(x)

+

No inversions involved in scalar multiplication

+

It has no weak twists

+

A random (*n*-bit) fault on curve parameters is not likely to hit a weak curve

+

The protocol has minimum attacking points

+

Lightweight countermeasures

## Comparison



<sup>\*</sup> ECC/BEC over GF(2163)

<sup>\*</sup> HECC over GF(283)

<sup>\*</sup> NTRU parameter: {N=167, q=128, p=3}

## An ECC processor for RFID (Expected in Nov, 2010)



An ECC processor for RFID (Expected in Nov, 2010)



Thanks for your attention.