MEMS1045 Automatic control

Lecture 1
Introduction & revision

Objectives

- Describe the course including the class policy, topics, learning outcomes, etc.
- Explain the concepts of open and closedloop control
- Revise ordinary differential equations and Laplace transform

Instructors' & class information

- **Instructor:** S.C. Fok, PhD
- Office: Room 222 (Zone 4) Currently outside China
- Office hours: Wednesday 14:00 16:00;
 - Thursday 10:00 12:00
- Email: saicheong.fok@scupi.cn
- TAs:
 - * He Tingting, email: <u>1415696650@qq.com</u> (section 1)
 - * Li Xiaomin, email: <u>1103489384@qq.com</u> (section 2)

Lectures:

- **Section 1:** in Zone 3-101 on Monday 8:15-11:00
- **Section 1:** in Zone 3-101 on Tuesday 13:50-16:25

Learning resources

■ Textbook:

Control System Engineering, 8th edition, Norman S. Nise, Wiley, ISBN – 978-1-119-59435-2

Additional references and supplementary notes (if needed) will be posted on Blackboard

Course objective

The aims of this course are:

- * Introduce students to the modelling, analysis and design of control systems, including applications to electromechanical systems
- * Enable students to appreciate how characteristics such as stability, transient response, and steady-state error can be changed through dynamic compensation
- Design feedback controllers for single-input, single-output, linear timeinvariant systems based on classical control design techniques
- Utilize computer-aided tools in the modelling, analysis and design of feedback control systems

Skill Set

Design including analysis & communication; utilization of computer-aided tools in control system designs

Course overview

No.	Topics
1	Review of differential equations and Laplace transform
2	Modeling of dynamic systems
3	Stability analysis of linear dynamic systems
4	Time response analysis
5	Stability analysis
6	Steady-state error analysis
7	Root locus techniques and design of feedback controller via root locus
8	Frequency response techniques and design of feedback controllers via frequency response

Course learning outcomes

At the completion of this course, students will be able to:

- Analyze system dynamics using mathematical models
- Examine the stability of the dynamic systems
- Evaluate the characteristics of dynamic systems in the time and frequency domains
- Design feedback controllers to regulate the system performance that meets required specification

Assessments & Grading

Description	Percentage
Assignments, quizzes, & class participation	20%
Labs & project	20%
Midterm	30%
Final exam	30%

 Students must follow/satisfy the rules/requirements stated in the assessment items

Class policy

- Attendance at all scheduled class section is expected
- Students who are absent should inform the instructor in a timely manner. They are responsible to acquire class materials and assignment notes from their classmates
- All assignments must be neatly completed and submitted on time. Only in exceptional circumstances where supporting evidence is supplied and discussed with the instructor, in a timely manner, will
 - (a) extensions be granted
 - (b) late work be accepted without penalty (Penalty will be decided by the instructor based on the circumstances)
- Academic misconduct is not tolerated
- All disputes and appeal of grades must be filed through a written process

Class policy

Blackboard

- Important information concerning this unit of study is placed on Blackboard, accessible via https://learn.scupi.cn/
- It is your responsibility to access on a regular basis the Blackboard site for
 - Course materials,
 - Course announcements,
 - Online quizzes, assignments, projects, etc.
- You should also check your SCUPI email regularly

10

What is the course about?

- This course deals with the mathematical modeling and response analysis of dynamic systems so that appropriate controllers can be designed to regulate their performances
- Systems covered include mechanical, electrical and electromechanical systems
- What will we do in this course:
- 1. Model derive mathematical equations (ODE) to describe the system
- 2. Solve determine the solution to the mathematical model
- 3. Analyse evaluate the system performance characteristics
- 4. Control design controllers to meet specific performance criteria

What is control?

Given a system G with some inputs for which we can set the values, we want to change its behavior by supplying the proper inputs (u)

Often we consider y = z

Model of the system to be controlled = GControllable inputs = uDisturbances (we cannot influence them) = dVariable to be controlled to a certain value = zMeasurements available from the system = y

Example – temperature control

- \diamond The input u set the timer to automatically set the valve position to obtain a desired room temperature
- ❖ This is an example of open-loop control system (no feedback)
- ❖ The timer could open and close the valve at constant times like a central heating with no thermostat. It may not work properly: either you sweat or you freeze!!

Example – cruise control

- ❖ This is an example of closed-loop control system (feedback)
- \bullet The reference input is r (the driver desired speed). With feedback, the actual speed y will become as close as possible to r

Open vs closed-loop control

- ❖ Feedback is a key tool that can be used to modify the behavior of a system.
- This behavior altering effect of feedback is a key mechanism that control engineers exploit deliberately to achieve the objective of acting on a system to ensure that the desired performance specifications are achieved

Applications

Highly maneuverable aircraft, like this X-29, often require sophisticated control systems to fly stably.

Underwater vehicle

System and models

For the design of the controller, we have to deal in general with the real system "G" and derive a "good" mathematical model of the real system within the operating conditions

 \triangleright Systems can be represented by inputs u(t) and outputs y(t):

Differential equations

An *n*-order linear ordinary differential equation (ODE) has the form:

$$a_0 \frac{d^n y}{dt^n} + a_1 \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_{n-1} \frac{dy}{dt} + a_n y = u$$

- ❖ If the coefficients of all terms (i.e. a_i , i=0,...,n) are constant, it is called a linear time-invariant ODE; e.g. $2\ddot{y} + 3\dot{y} + 5y = 9$
- ❖ It is called a time-varying linear ODE if any coefficient is dependent on time, e.g.

$$\ddot{y} + (1 - t)y = u$$

❖ A differential equation is called nonlinear if it is not linear, e.g.

$$\ddot{y} + (y^2 - 1)\dot{y} + y + y^3 = u$$

Differential equations

To solve an n-order linear ODE (with known coefficients)

$$a_0 \frac{d^n y}{dt^n} + a_1 \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_{n-1} \frac{dy}{dt} + a_n y = u$$

- \diamond The input *u* has to be known and
- \diamond We need to know the *n* initial conditions (or states)

$$y(0), \frac{dy}{dt}\Big|_{t=0}, \frac{d^2y}{dt^2}\Big|_{t=0}, \cdots, \frac{d^{n-1}y}{dt^{n-1}}\Big|_{t=0}$$

- Outputs y: Variables of interest to be calculated or measured Initial states and inputs u(t) completely determine future outputs
- E.g. to solve $2\ddot{y} + 3\dot{y} + 5y = u$, we need to know the input u, y(0), and $\dot{y}(0)$

Linear systems

Linearity property:

• Linear system: equations describing the system are linear and principle of superposition holds, e.g. $\frac{dy}{dt} + a(t)y = u$ $\mathbf{u}_1(t) \rightarrow \mathbf{y}_1(t)$, and $\mathbf{u}_2(t) \rightarrow \mathbf{y}_2(t)$

Then
$$\mathbf{u}_1(t) + \mathbf{u}_2(t) \longrightarrow \mathbf{y}_1(t) + \mathbf{y}_2(t)$$

and $\mathbf{k}\mathbf{u}_1(t) \longrightarrow \mathbf{k}\mathbf{y}_1(t)$

• Nonlinear system: equations describing the system are nonlinear and principle of superposition does not hold, e.g.

$$\dot{y} + a(t)y + y^3 = u$$

Principle of superposition

Revision – Laplace transform

- ❖ Used to solve linear ODEs
- Let f(t) = a function such that f(t) = 0 for t < 0
- \clubsuit The Laplace transform of f(t) is define as

$$\mathcal{L}[f(t)] = F(s) = \int_0^\infty f(t)e^{-st}dt$$

where $s = \sigma + j\omega$ is a complex variable

 \clubsuit The inverse Laplace transform converts F(s) back to f(t):

$$\mathcal{L}^{-1}[F(s)] = f(t) = \frac{1}{2j\pi} \int_{\sigma - j\infty}^{\sigma + j\infty} F(s)e^{st}ds$$

Revision – Laplace transform

TABLE 2.1 Laplace transform table

Item no.	f(t)	F(s)	
1.	$\delta(t)$	1	Impulse
2.	u(t)	$\frac{1}{s}$	Step
3.	tu(t)	$\frac{1}{s^2}$	Ramp
4.	$t^n u(t)$	$\frac{n!}{s^{n+1}}$	
5.	$e^{-at}u(t)$	$\frac{1}{s+a}$	Exponential
6.	$\sin \omega t u(t)$	$\frac{\omega}{s^2 + \omega^2}$	Sine
7.	$\cos \omega t u(t)$	$\frac{s}{s^2 + \omega^2}$	Cosine

Note: u(t) = 1 for t > 0 and u(t) = 0 for t < 0

Revision – Laplace transform

TABLE 2.2 Laplace transform theorems

Item no.	Т	Theorem	Name
1.	$\mathcal{L}[f(t)] = F(s)$	$= \int_{0-}^{\infty} f(t)e^{-st}dt$	Definition
2.	$\mathcal{L}[kf(t)]$	=kF(s)	Linearity theorem
3.	$\mathcal{L}[f_1(t) + f_2(t)]$	$)] = F_1(s) + F_2(s)$	Linearity theorem
4.	$\mathcal{L}[e^{-at}f(t)]$	=F(s+a)	Frequency shift theorem
5.	$\mathcal{L}[f(t-T)]$	$= e^{-sT} F(s)$	Time shift theorem
6.	$\mathcal{L}[f(at)]$	$= \frac{1}{a} F\left(\frac{s}{a}\right)$	Scaling theorem
7.	$\mathcal{L}\left[\frac{df}{dt}\right]$	= sF(s) - f(0-)	Differentiation theorem
8.	$\mathcal{L}\left[\frac{d^2f}{dt^2}\right]$	$= s^2 F(s) - s f(0-) - f'(0-)$	Differentiation theorem
9.	$\mathscr{L}\left[\frac{d^nf}{dt^n}\right]$	$= s^{n}F(s) - \sum_{k=1}^{n} s^{n-k} f^{k-1}(0-)$	Differentiation theorem
10.	$\mathcal{L}\left[\int_{0-}^{t}f(\tau)d\tau\right]$	$=\frac{F(s)}{s}$	Integration theorem
11.	$f(\infty)$	$=\lim_{s\to 0} sF(s)$	Final value theorem1
12.	f(0+)	$= \lim_{s \to \infty} sF(s)$	Initial value theorem ²

¹For this theorem to yield correct finite results, all roots of the denominator of F(s) must have negative real parts, and no more than one can be at the origin.

²For this theorem to be valid, f(t) must be continuous or have a step discontinuity at t = 0 (that is, no impulses or their derivatives at t = 0).

Poles and zeros

Given a complex function F(s) of the form:

$$F(s) = \frac{K(s+z_1)(s+z_2)\cdots(s+z_m)}{(s+p_1)(s+p_2)^3\cdots(s+p_n)} = \frac{\text{numerator}}{\text{denominator}}$$

 \diamond Points at which F(s) equals infinity are called poles, i.e.

$$s = -p_1$$
, $s = -p_2$, ..., $s = -p_n$ are called poles

- ❖ The poles can be real or complex
- ❖ If the denominator involves multiple factors $(s+p)^r$ then s=-p is called a multiple pole of order r (if r=1, it is a simple pole)
- Points at which F(s) = 0 are called zeros, i.e.

$$s = -z_1, s = -z_2, ..., s = -z_m$$
 are called zeros

F(s) is a strictly proper rational function if m < n

Distinct real poles

If F(s) is a strictly proper rational function with distinct real poles (in denominator), it can always be written as a sum of simple partial fractions:

$$F(s) = \frac{A_1}{(s+p_1)} + \frac{A_2}{(s+p_2)} + \dots + \frac{A_n}{(s+p_n)}$$

where $A_1, A_2, ..., A_n$ are constants

❖ The value of coefficient A_k (for k=1, ... n) can be found using:

$$A_k = (s + p_k)F(s)\Big|_{s = -p_k}$$

Since

$$\mathcal{L}^{-1}\left[\frac{A_k}{(s+p_k)}\right] = A_k e^{-p_k t}$$

$$f(t) = \mathcal{L}^{-1}[F(s)] = A_1 e^{-p_1 t} + A_2 e^{-p_2 t} + \dots + A_n e^{-p_n t} \text{ for } t > 0$$

Example 1

Solve $\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 4y = 5u(t)$ given u = unit step and all initial conditions are zero

$$(s^{2}Y(s) - sy(0) - \dot{y}(0)) + 5(sY(s) - y(0)) + 4Y(s) = \frac{5}{s}$$

$$s^{2}Y(s) + 5sY(s) + 4Y(s) = (s+1)(s+4)Y(s) = \frac{5}{s}$$

$$Y(s) = \frac{5}{s(s+1)(s+4)} = \frac{A_{1}}{s} + \frac{A_{2}}{s+1} + \frac{A_{3}}{s+4}$$

$$A_{1} = (s)Y(s)\Big|_{s=0} = \frac{5}{4}$$

$$A_{2} = (s+1)Y(s)\Big|_{s=-1} = -\frac{5}{3}$$

$$A_{3} = (s+4)Y(s)\Big|_{s=-4} = \frac{5}{12}$$

$$y(t) = \frac{5}{4} - \frac{5}{3}e^{-t} + \frac{5}{12}e^{-4t} \quad \text{for } t > 0$$

Repeated real poles

If F(s) is a strictly proper rational function with some distinct real poles and some repeated real poles (in denominator), e.g.

$$F(s) = \frac{b_m s^m + \dots + b_0}{(s + p_1)^r (s + p_{r+1})(s + p_{r+2}) \dots (s + p_n)}$$

the partial-fraction expansion of F(s) is

$$\frac{B_1}{s+p_1} + \frac{B_2}{(s+p_1)^2} + \dots + \frac{B_{r-1}}{(s+p_1)^{r-1}} + \frac{B_r}{(s+p_1)^r} + \frac{A_{r+1}}{s+p_{r+1}} + \frac{A_{r+2}}{s+p_{r+2}} + \dots + \frac{A_n}{s+p_n}$$

 \clubsuit The coefficients of A_j (for distinct real poles) can be found as previously discussed

$$A_k = (s + p_k)F(s)\Big|_{s = -p_k}$$

Repeated real poles

$$\frac{B_1}{s+p_1} + \frac{B_2}{(s+p_1)^2} + \dots + \frac{B_{r-1}}{(s+p_1)^{r-1}} + \frac{B_r}{(s+p_1)^r} + \frac{A_{r+1}}{s+p_{r+1}} + \frac{A_{r+2}}{s+p_{r+2}} + \dots + \frac{A_n}{s+p_n}$$

* The coefficients of B_i (for j=r, r-1, ..., 1) can be found by:

$$B_r = (s + p_1)^r F(s)|_{s = -p_1}$$

$$B_{r-1} = \frac{1}{1!} \left\{ \frac{d}{ds} (s + p_1)^r F(s) \right\} \Big|_{s = -p_1}$$

...
$$B_{r-k} = \frac{1}{k!} \left\{ \frac{d^k}{ds^k} (s + p_1)^r F(s) \right\} \Big|_{s=-p_1}$$

...
$$B_1 = \frac{1}{(r-1)!} \left\{ \frac{d^{r-1}}{ds^{r-1}} (s + p_1)^r F(s) \right\} \Big|_{s=-p_1}$$

Inverse transform for t > 0: $f(t) = \mathcal{L}^{-1}[F(s)]$

$$= \left[B_1 + B_2 t + \dots + \frac{B_{r-1}}{(r-2)!} t^{r-2} + \frac{B_r}{(r-1)!} t^{r-1} \right] e^{-p_1 t} + A_{r+1} e^{-p_{r+1} t} + \dots + A_n e^{-p_n t}$$

Example 2

Solve $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 4y = 2u(t)$ given u = unit step and all initial conditions are zero

Take Laplace transform:
$$s^2Y(s) + 4sY(s) + 4Y(s) = \frac{2}{s}$$

 $(s+2)^2Y(s) = \frac{2}{s}$
 $Y(s) = \frac{2}{s(s+2)^2} = \frac{A_1}{s} + \frac{B_2}{(s+2)^2} + \frac{B_1}{s+2}$

where

$$A_{1} = (s)Y(s)\Big|_{s=0} = \frac{1}{2}$$

$$B_{2} = (s+2)^{2}Y(s)\Big|_{s=-2} = -1$$

$$B_{1} = \frac{1}{1!} \left\{ \frac{d}{ds} (s+2)^{2} F(s) \right\} \Big|_{s=-2} = \left\{ \frac{d}{ds} \left(\frac{2}{s} \right) \right\} \Big|_{s=-2} = \left\{ -\left(\frac{2}{s^{2}} \right) \right\} \Big|_{s=-2} = -\frac{1}{2}$$

$$y(t) = \frac{1}{2} - \frac{1}{2} e^{-2t} - t e^{-2t} \quad \text{for } t > 0$$

Complex poles

For unrepeated complex poles (in denominator), F(s), a strictly proper rational function, can always be written as a sum of simple partial fractions:

$$F(s) = \frac{a_1 s + b_1}{(s + p_1)(s + \bar{p}_1)} + \frac{a_2 s + b_2}{(s + p_2)(s + \bar{p}_2)} + \dots + \frac{a_n s + b_n}{(s + p_n)(s + \bar{p}_n)}$$

Note: Complex poles in F(s) always appear in complex conjugate pair $p_1 = \sigma_1 + j\omega_1$ and $\bar{p}_1 = \sigma_1 - j\omega_1$ is the complex conjugate of p_1 $(s + p_1)(s + \bar{p}_1) = s^2 + 2\sigma_1 s + \sigma_1^2 + \omega_1^2 = (s + \sigma_1)^2 + \omega_1^2$

\Delta Each of the term can be arranged as

$$\frac{a_1s + b_1}{(s + p_1)(s + \bar{p}_1)} = \frac{A_1(s + \sigma_1)}{(s + \sigma_1)^2 + \omega_1^2} + \frac{B_1\omega_1}{(s + \sigma_1)^2 + \omega_1^2}$$

M

Complex poles

$$\mathcal{L}^{-1} \left[\frac{a_1 s + b_1}{(s + p_1)(s + \bar{p}_1)} \right] = \mathcal{L}^{-1} \left[\frac{A_1 (s + \sigma_1)}{(s + \sigma_1)^2 + \omega_1^2} + \frac{B_1 \omega_1}{(s + \sigma_1)^2 + \omega_1^2} \right]$$
$$= \{ A_1 \cos(\omega_1 t) \} e^{-\sigma_1 t} + \{ B_1 \sin(\omega_1 t) \} e^{-\sigma_1 t}$$

The value of coefficients A_1 and B_1 can be obtained by completing the squares in the denominator and comparing terms in the numerator

Notes on complex numbers: $z = x + jy = |z| \angle \theta = |z| e^{j\theta}$ Magnitude: $|z| = \sqrt{x^2 + y^2}$ and angle: $\angle z = \theta = \tan^{-1}\left(\frac{y}{x}\right)$ Real part: $x = |z|\cos(\theta)$ and imaginary part: $y = |z|\sin(\theta)$ Euler's theorem: $e^{j\theta} = \cos(\theta) + j\sin(\theta)$ $z_1 \pm z_2 = (x_1 \pm x_2) + j(y_1 \pm y_2)$ and $\alpha z_1 = \alpha x_1 + j\alpha y_1$ $z_1 z_2 = |z_1||z_2|\angle(\theta_1 + \theta_2)$ and $\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|}\angle(\theta_1 - \theta_2)$

Example 3

Solve
$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = 3u(t)$$
 given all initial conditions are zero

Take Laplace transform:
$$s^2Y(s) + 2sY(s) + 5Y(s) = \frac{3}{s}$$

$$(s^2 + 2s + 5)Y(s) = \frac{3}{s}$$

$$Y(s) = \frac{3}{s(s^2 + 2s + 5)} = \frac{3}{s(s^2 + 2\sigma_1 s + \sigma_1^2 + \omega_1^2)}$$

Note complex roots:

$$(s^2 + 2s + 5) = (s + 1 + 2j)(s + 1 - 2j)$$
 or $\sigma_1 = 1$ and $\omega_1 = 2$;

Hence

$$Y(s) = \frac{3}{s(s^2 + 2s + 5)} = \frac{K_1}{s} + \frac{A_1(s + \sigma_1)}{(s + \sigma_1)^2 + \omega_1^2} + \frac{B_1\omega_1}{(s + \sigma_1)^2 + \omega_1^2}$$

For real distinct root:

$$K_1 = (s)Y(s)\Big|_{s=0} = \frac{3}{5}$$

Example 3

This reduces the Laplace function to:

$$Y(s) = \frac{3}{s(s^2 + 2s + 5)} = \frac{3}{5s} + \frac{A_1(s+1)}{(s+1)^2 + 4} + \frac{2B_1}{(s+1)^2 + 4}$$

$$Y(s) = \frac{3}{s(s^2 + 2s + 5)} = \frac{(3/5)}{s} + \frac{A_1(s+1) + 2B_1}{(s^2 + 2s + 5)}$$

$$\frac{3}{s(s^2 + 2s + 5)} = \frac{(3/5)(s^2 + 2s + 5) + A_1s(s+1) + 2B_1s}{s(s^2 + 2s + 5)}$$

Comparing the terms on the LHS and RHS:

$$A_1 + \frac{3}{5} = 0 \text{ and } \frac{6}{5} + A_1 + 2B_1 = 0 \text{ or } A_1 = -\frac{3}{5} \text{ and } B_1 = \frac{3}{10}$$

$$F(s) = \frac{(3/5)}{s} + \frac{-(3/5)(s + \sigma_1)}{(s + \sigma_1)^2 + \omega_1^2} + \frac{(3/10)\omega_1}{(s + \sigma_1)^2 + \omega_1^2}$$

Inverse transform:

$$y(t) = (3/5) - \{(3/5)\cos(2t)\}e^{-t} + \{(3/10)\sin(2t)\}e^{-t} \text{ for } t > 0$$