Mathestützkurs für MB Übung: komplexe Zahlen

Fachschaft Maschinenbau Wintersemester 2021/2022

iist die Imaginäre Einheit. Es gilt $i=\sqrt{-1} \Rightarrow i^2=-1$

Kartesische Darstellung:	z = x + yi
Polare Darstellung:	$z = r(\cos\varphi + i\sin\varphi)$
Eulersche Darstellung:	$z = r \cdot e^{i\varphi}$

Die Komplexe Zahlenebene mit:

Realteil	x
Imaginärteil	y
Betrag	r
Argument	$\varphi \in (-\pi, \pi]$

Umformung:

$x = r\cos\varphi$	$r = z = \sqrt{x^2 + y^2}$
$y = r \sin \varphi$	$ \tan \varphi = \frac{y}{x} $

Konjugierte komplexe Zahl \bar{z} :

z = x + iy	⇔	$\bar{z} = x - iy$
$z = re^{i\varphi}$	⇔	$\bar{z} = re^{-i\varphi}$
$\overline{z+w} = \bar{z} + \bar{w}$		$\bar{z} \cdot \bar{w} = \overline{z \cdot w}$

Wurzeln komplexer Zahlen:

Die Lösungen der Gleichung $z^n = r \cdot e^{i\varphi}$ sind die
n komplexen Zahlen

$$z_k = \sqrt[n]{r} \cdot \exp\left(\frac{i\varphi}{n} + k \cdot \frac{2\pi i}{n}\right)$$
 für $k = 0, 1, 2, \dots, n-1$

Aufgabe 1:

Bestimme die Beträge und Winkel! Allgemein gilt: Um bei Winkeln sicher zu gehen, ist es hilfreich die Zahlen in der komplexen Zahlenebene zu zeichnen!

- a) $z_a = 3 i$
- b) $z_b = 1 + i$

Berechne z_c und z_d in beliebiger Darstellung.

- c) $z_c = z_a 2z_b$
- d) $z_d = \frac{z_a^2 + \bar{z}_b}{z_c}$

Aufgabe 2:

Stelle z_a und z_b in Kartesicher Form dar. Bestimme dazu Real- und Imaginärteil.

- a) $z_a = e^{i\frac{3}{4}\pi}$
- b) $z_b = \sqrt{2}e^{i\frac{5}{4}\pi}$

Berechne z_c und z_d .

- c) $z_c = \bar{z}_a \cdot (-z_b)$
- d) $z_d = \frac{2 \cdot e^{\pi i} \cdot z_a}{z_b}$

Aufgabe 3:

Bestimme die 3 Wurzeln der Gleichung und stelle die Ausgangsgleichung und die Wurzeln in der komplexen Zahlenebene dar.

$$z^3 = 8 \cdot e^{i\frac{5}{6}\pi}$$

Hinweis: Zeichne z^3 und die 3 Wurzeln z_0, z_1, z_2 in die komplexe Zahlenebene.

Kontrolllösungen

Aufgabe 1: a)
$$r = \sqrt{10}$$
, $\varphi = -0.3218$, b) $r = \sqrt{2}$, $\varphi = -0.785$, c) $z_c = 1 - 3i$, d) $z_d = 3 + 2i = 3.606 \cdot e^{0.588i}$

Aufgabe 2: a)
$$z_a=-\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}},$$
 b) $z_b=-1-i,$ c) $-\sqrt{2}i,$ d) $\sqrt{2}i$

Aufgabe 3:
$$z_0 = 2 \cdot e^{\frac{\sqrt{2}}{18}\pi i}$$
, $z_1 = 2 \cdot e^{\frac{17}{18}\pi i}$, $z_2 = 2 \cdot e^{\frac{29}{18}\pi i}$