Dedução Natural (parte 2)

Douglas O. Cardoso douglas.cardoso@cefet-rj.br docardoso.github.io

Douglas O. Cardoso CEFET-RJ Petrópolis

Roteiro

- 1 Suposições
- 2 Regras para disjunção
- 3 Contradições
- 4 Regras Derivadas
- 5 Equivalências Populares

Roteiro

- 1 Suposições
- 2 Regras para disjunção
- 3 Contradições
- 4 Regras Derivadas
- 5 Equivalências Populares

Introdução da implicação $(i \rightarrow)$

Intuição: se a suposição de que "vacas voam" permite afirmar que "há rebanhos aéreos", é possível concluir que "se vacas voassem, haveriam rebanhos aéreos".

Douglas O. Cardoso CEFET-RJ Petrópolis

Suposições e Sub-universos

- Ao fazer uma suposição, é criado um "sub-universo", dentro do "universo" atual
- As proposições do universo atual continuam válidas no sub-universo
- No sub-universo o que foi suposto é tido como uma proposição válida qualquer
- As proposições obtidas no sub-universo dependem da suposição feita, então não são válidas fora do sub-universo
- É possível criar um sub-universo dentro de outro já existente

Exemplo de uso: Introdução da implicação

Prove que: $p \to (q \to r) \vdash p \land q \to r$

1
$$p \to (q \to r)$$

2
$$[p \wedge q]$$

2.2
$$q \rightarrow r$$

3
$$p \land q \rightarrow r$$

suposição

$$e \wedge 2$$

$$e \to 1, 2.1$$

$$e \wedge 2$$

$$e \to 2.2, 2.3$$

$$i \rightarrow 2, 2.4$$

Exemplo de uso: Introdução da implicação

Prove que: $p \land q \rightarrow r \vdash p \rightarrow (q \rightarrow r)$

1
$$p \wedge q \rightarrow r$$

$$2 \qquad [p]$$

2.1.1
$$p \wedge q$$

2.2
$$q \rightarrow r$$

3
$$p \to (q \to r)$$

$$i \wedge 2, 2.1$$

$$e \to 1, 2.1.1$$

$$i \to 2.1, 2.1.2$$

$$i \rightarrow 2, 2.2$$

Teste seus conhecimentos

Prove que: $p \to q \vdash p \land r \to q \land r$

- 1 $p \rightarrow q$
- 2 $[p \wedge r]$
- 2.1 *p*
- 2.2
- 2.3 q
- 2.4 $q \wedge r$
- 3 $p \wedge r \rightarrow q \wedge r$

premissa

suposição

- $e \wedge 2$
- $e \wedge 2$
- $e \rightarrow 1, 2.1$
- $i \land 2.2, 2.3$
- $i \rightarrow 2, 2.4$

Roteiro

- 1 Suposições
- 2 Regras para disjunção
- 3 Contradições
- 4 Regras Derivadas
- 5 Equivalências Populares

Introdução do ∨

■ Introdução do \vee ($i\vee$):

$$\frac{\phi}{\phi \vee \psi}$$

$$\frac{\psi}{\phi \lor \psi}$$

Intuição: acreditar que "o céu é verde" permite afirmar que "o céu é verde e/ou vacas voam".

 Ou seja, espera-se que ao menos uma das alternativas seja verdade.

Exemplo de uso: introdução do \lor

Prove que: $p, \neg q \vdash (q \lor p) \lor \neg r$.

$$2. \neg q$$

3.
$$q \lor p$$

$$i \vee 1$$

4.
$$(q \lor p) \lor \neg r$$

$$i \vee 3$$

Eliminação do ∨: intuição

- Digamos que eu acredite que "vacas e/ou ovelhas voam".
- Ou seja, pelo menos um desses voa, mas eu não sei qual.
- Ao supor que "vacas voam", posso concluir que "há rebanhos aéreos".
- Se eu supor que "ovelhas voam", chego a mesma conclusão.
- Então, sem supor nada, posso afirmar que "há rebanhos aéreos".
 - Só não sei se são rebanhos de ovelhas ou vacas.

Eliminação do \vee $(e \vee)$

$$\begin{array}{cccc}
 & [\phi] & [\psi] \\
\vdots & \vdots \\
 \hline
 & \phi \lor \psi & \chi & \chi \\
\hline
 & \chi
\end{array}$$

- O uso dessa regra se dá em 4 passos:
 - 1. É identificada a disjunção que será a base da eliminação;
 - Pela suposição de um operando da disjunção, é concluído um certo fato;
 - 3. Pela suposição do outro operando, é obtida a mesma conclusão;
 - 4. Então, é inferida como fato a conclusão de ambas suposições.
- Lembre-se: não misture as suposições; são sub-universos distintos!

Exemplo de uso: eliminação do \vee

Prove que: $q \to r \vdash p \lor q \to p \lor r$

1.
$$q \rightarrow r$$

2.
$$[p \lor q]$$

2.1.1.
$$p \vee r$$

2.2.
$$[q]$$

2.2.2.
$$p \lor r$$

2.3.
$$p \lor r$$

3.
$$p \lor q \to p \lor r$$

$$i \lor 2.1$$

premissa

$$e
ightarrow$$
 1, 2.2

 $i \vee 2.2.1$

$$i \rightarrow 2. \ 2.3$$

Teste seus conhecimentos

Prove que: $(p \lor q) \lor r \dashv \vdash p \lor (q \lor r)^{-1}$.

 $^{^1}$ " $\phi \dashv \vdash \psi$ " indica a realização de duas provas: $\phi \vdash \psi$ e $\psi \vdash \phi$.

Roteiro

- Contradições

contrárias uma a outra.

Uma contradição é a conclusão de qualquer combinação de premissas

■ Contradições também são conhecidas como Absurdos.

■ O símbolo usado para representar uma contradição é ⊥.

$$\frac{\phi \qquad \neg \phi}{\Box}$$

Intuição: afirmar "hoje vai chover" logo após "hoje não vai chover"; contraditório, não?

Contradições ○●○○○○

■ Esta regra também é conhecida como "eliminação da negação".

Redução ao Absurdo

$$\begin{array}{c} [\phi] \\ \vdots \\ \bot \\ \end{array}$$

■ Redução ao Absurdo (raa):

- Intuição: se a suposição de que "vacas voam" leva a conclusão absurda de que "1=2", é natural então inferir que "vacas não voam".
- Esta regra também é conhecida como "introdução da negação".

Exemplo de uso: Absurdo, Redução ao Absurdo

Prove que: $\neg p \rightarrow q, \neg p \rightarrow \neg q \vdash p$.

1.
$$\neg p \rightarrow q$$

2.
$$\neg p \rightarrow \neg q$$

3.
$$[\neg p]$$

3.2.
$$\neg q$$

premissa

premissa

suposição

$$e \rightarrow$$
 3, 1

$$e
ightarrow$$
3, 2

Exemplo de uso: Absurdo, Redução ao Absurdo (2)

Prove que: $p \to \neg p \vdash \neg p$.

1.
$$p \rightarrow \neg p$$

$$2.1. \neg p$$

$$e \rightarrow 1$$
, 2

Contradições ○○○○○

Teste seus conhecimentos

Prove que: $p \land \neg q \rightarrow r, \neg r, p \vdash q$.

Roteiro

- 1 Suposições
- 2 Regras para disjunção
- 3 Contradições
- 4 Regras Derivadas
- 5 Equivalências Populares

Informações Gerais

- Regras derivadas são sequências "auto-contidas" de aplicações das regras básicas de inferência (DN).
- São "atalhos" na descrição de provas, evitando repetições de passos.
- Não há impedimentos para o uso ou mesmo criação de regras derivadas, mas é necessário prová-las.
- Algumas regras derivadas são tão conhecidas quanto as regras básicas.

Douglas O. Cardoso CEFET-RJ Petrópolis

Modus Tollens

1.
$$p \rightarrow q$$

$$\frac{\phi \to \psi \qquad \neg \psi}{\neg \phi}$$

$$e \rightarrow 1$$
. 3

CEFET-RJ Petrópolis

Princípio do Terceiro Excluído
$$(pte)$$
:

$$\frac{\varnothing}{\phi \vee \neg \phi}$$

1.
$$[\neg(p \lor \neg p)]$$

1.1.
$$[p]$$

1.1.1.
$$p \vee \neg p$$

$$1.1.2. \perp$$

1.2.
$$\neg p$$

1.3.
$$p \vee \neg p$$

2.
$$p \vee \neg p$$

$$i \vee 1.1$$

$$rra$$
 1.1, 1.1.2

$$i \vee 1.2$$

Regra de Resolução 1

Regra de Resolução 1
$$(res_1)$$
:

$$\frac{\phi \vee \psi \qquad \neg \phi}{\psi}$$

1.
$$p \vee q$$

$$2. \neg p$$

3.
$$[\neg q]$$

$$3.1.1. \perp$$

3.2.
$$[q]$$

$$e \lor$$

$$\psi$$

$$e \lor 1. \ 3.1. \ 3.1.1. \ 3.2. \ 3.2.1$$

Regra de Resolução 2

Regra de Resolução 2
$$(res_2)$$
:

1.
$$p \lor q$$

2.
$$\neg p \lor r$$

3.1.
$$r$$

3.2.
$$q \vee r$$

4.1.
$$q \vee r$$

5.
$$q \vee r$$

$$\frac{\phi \vee \psi \qquad \neg \phi \vee \chi}{\psi \vee \chi}$$

premissa

premissa

suposição

$$res_1$$
 2, 3

$$i \lor 3.1$$

$$i \vee 4$$

$$e \lor 1, 3, 3.2, 4, 4.1$$

Roteiro

- 1 Suposições
- 2 Regras para disjunção
- 3 Contradições
- 4 Regras Derivadas
- 5 Equivalências Populares

Informações Gerais

- Duas fórmulas ϕ e ψ para as quais vale $\phi \vdash \psi$ assim como $\psi \vdash \phi$ são ditas equivalentes (segundo prova).
- Para provar uma equivalência $\phi \dashv \vdash \psi$ é necessário provar tanto a "ida" $\phi \vdash \psi$ quanto a "volta" $\psi \vdash \phi$.
- Assim como as regras derivadas, algumas equivalências são populares pelo seu uso frequente em provas.
- São apresentadas a seguir algumas dessas equivalências, e a prova da ida de cada uma delas. É sugerido como exercício provar cada volta.

Douglas O. Cardoso

Contraposição (cp): $\phi \rightarrow \psi \dashv \vdash \neg \psi \rightarrow \neg \phi$

- 1. $p \rightarrow q$
- 2. $[\neg q]$
- 2.1. [*p*]
- 2.1.1. q
- 2.1.2. ⊥
- **2**.2. ¬*p*
- 3. $\neg q \rightarrow \neg p$

- premissa
- suposição suposição
- . . 1 0 1
- e
 ightarrow 1, 2.1
- abs 2, 2.1.1
- rra 2.1, 2.1.2
 -
 - $i \rightarrow 2$, 2.2

- * Usando modus tollens
- 1. $p \rightarrow q$
- 2. $[\neg q]$
- **2**.1. $\neg p$
- 3. $\neg q \rightarrow \neg p$
- - $i \to 3.1, 2.1$

premissa

suposição

mt 1. 2

1

31/36

Leis de (Augustus) De Morgan: $\neg \phi \lor \neg \psi \dashv \vdash \neg (\phi \land \psi)$

De Morgan (dm): $\neg p \lor \neg q \dashv \vdash \neg (p \land q)$

1.
$$\neg p \lor \neg q$$

2.
$$[p \land q]$$

2.1.
$$[\neg p]$$

2.2.
$$[\neg q]$$

2.3.
$$\perp$$
 3. $\neg(p \land q)$

premissa

$$e \wedge 2$$

suposição
$$e \wedge 2$$

$$e \lor 1, 2.1, 2.1.2, 2.2, 2.2.2$$

Leis de (Augustus) De Morgan: $\neg \phi \land \neg \psi \dashv \vdash \neg (\phi \lor \psi)$

De Morgan (dm): $\neg p \land \neg q \dashv \vdash \neg (p \lor q)$

1.
$$\neg p \land \neg q$$

2.
$$[p \lor q]$$

2.1.1.
$$¬p$$

2.1.2.
$$\perp$$
 2.2. $[q]$

2.2.1.
$$\neg q$$

3.
$$\neg (p \lor q)$$

premissa

suposição

$$e \wedge 1$$

$$e \wedge 1$$

$$e \lor 1, 2.1, 2.1.2, 2.2, 2.2.2$$

Equivalência implicação-disjunção $\neg \phi \lor \psi \dashv \vdash \phi \to \psi$

Equivalência implicação-disjunção (eid): $\neg p \lor q \dashv \vdash p \to q$

1.
$$\neg p \lor q$$

premissa

suposição

 res_1 1, 2

3.
$$p \rightarrow q$$

$$i \rightarrow 2, 2.1$$

Propriedade distributiva, conjunção sobre disjunção

Distribuição de conjução sobre disjunção: $p \wedge (q \vee r) \dashv \vdash (p \wedge q) \vee (p \wedge r)$

1.
$$p \land (q \lor r)$$
 premissa

2.
$$p$$
 $e \wedge 1$

3.
$$(q \lor r)$$
 $e \land 1$

4.
$$[q]$$
 suposição

4.1.
$$p \wedge q$$
 $i \wedge 2, 4$

4.2.
$$(p \wedge q) \vee (p \wedge r)$$
 $i \vee 4.1$

5.
$$[r]$$
 suposição

5.1.
$$p \wedge r$$
 $i \wedge 2, 5$

5.2.
$$(p \land q) \lor (p \land r)$$
 $i \lor 5.1$

6.
$$(p \land q) \lor (p \land r)$$
 $e \lor 3, 4, 4.2, 5, 5.2$

Propriedade distributiva, disjunção sobre conjunção

Distribuição de disjunção sobre conjunção: $p \lor (q \land r) \dashv \vdash (p \lor q) \land (p \lor r)$

4. $(p \lor q) \land (p \lor r)$ $e \lor 1, 2, 2.3, 3, 3.5$

Douglas O. Cardoso