Problem 2: Fully Restrained Beam under Uniform Load

Governing Equation

The beam equation is identical to Problem 1:

$$\frac{d^4w}{dx^4} = -\frac{q}{EI}$$

with identical parameters E, I, q, and L.

Boundary Conditions

• Both ends (x = 0 and x = L):

$$w(0) = w(L) = 0, \quad \frac{dw}{dx}\Big|_{x=0} = \frac{dw}{dx}\Big|_{x=L} = 0$$

Analytical Solution

$$w_{\text{exact}}(x) = -\frac{q}{24EI} \left(x^4 - 2Lx^3 + L^2x^2 \right)$$

PINN Implementation

- Architecture: FNN with 4 layers (1-50-50-50-1)
- Activation: Swish
- Optimizer: Adam (lr = 5×10^{-5}) + L-BFGS
- Loss: PDE residual + 4 boundary conditions
- **Training**: 15,000 Adam + L-BFGS iterations

Figure 1: PINN prediction vs analytical solution for fully restrained beam deflection