Коллоквиум по Математическому анализу-2, семестр 2

Виноградова Дарья, Залялов Александр, Миронов Алексей, Стрельцов Артём, Т

Содержание

14	Дайте определение гладкого k -мерного подмногообразия в \mathbb{R}^n и сопутствующее определение гладких координат. Приведите пример параметрической кривой, которая параметрически задана дифференцируемыми функциями, но не является гладким 1-мерным многообразием в какой-нибудь точке	2
15	Сформулируйте теорему о неявной функции. Допустим кривая $X\subseteq \mathbb{R}^2$ задана уравнением $f(x,y)=0,$ и известно, что $\mathrm{grad} f(x_0,y_0)=(2;0).$ Какую из координат x,y можно использовать в качестве локальной координаты на X в окрестности точки (x_0,y_0) ?	2
16	Сформулируйте общую теорему о неявном отображении. Допустим, кривая $X\subseteq\mathbb{R}^3$ задана уравнениями $f(x,y,z)=0,\ g(x,y,z)=0,$ и известно, что $\mathrm{grad}f(x_0,y_0,z_0)=(2;0;0),\ \mathrm{grad}f(x_0,y_0,z_0)=(0;1;3).$ Какие из координат x,y,z можно использовать в качестве локальных координат на X в окрестности точки (x_0,y_0,z_0) ?	3
17	Дайте определение касательного вектора к подмножеству $X \subseteq \mathbb{R}^n$ в точке $A \in X$. Как устроено множество всех касательных векторов к гладкому подмногообразию в фиксированной точке?	3
18	Допустим, что все точки множества $X\subset \mathbb{R}^n$ удовлетворяют уравнению $f(x)=0$. Докажите, что в любой точке $x^{(0)}\in X$ любой касательный вектор к X перпендикулярен градиенту $\operatorname{grad} f(x^{(0)})$. Опишите касательное пространство к k -мерному подмногообразию \mathbb{R}^n , заданному системой неявных уравнений (без доказательства).	4
19	Необходимое и достаточное условия локального экстремума для функции нескольких переменных (без доказательства).	4
20	Дайте определение точки условного минимума	5
21	Сформулируйте теорему о множителях Лагранжа. Объясните идею доказательства в случае, если подмножество $X \subset \mathbb{R}^n$ является гладким многообразием.	5

14 Дайте определение гладкого k-мерного подмногообразия в \mathbb{R}^n и сопутствующее определение гладких координат. Приведите пример параметрической кривой, которая параметрически задана дифференцируемыми функциями, но не является гладким 1-мерным многообразием в какой-нибудь точке

Определение. Подмножество $M \subseteq \mathbb{R}^n$ называется гладким k-мерным (nod)многообразием в \mathbb{R}^n , если $\forall x \in M$ существует окрестность $U, x \in U$, такая что на $M \cap U$ можно задать гладкие координаты.

Определение. Гладкие координаты — отображение $\Phi: V \to M$, где $V \subseteq \mathbb{R}^k$, задаваемое уравнениями

$$\begin{cases} x_1 = \phi_1(t_1, \dots, t_k) \\ \vdots \\ x_n = \phi_n(t_1, \dots, t_k) \end{cases}$$

где (x_1,\ldots,x_n) — координаты в \mathbb{R}^n , (t_1,\ldots,t_k) — координаты в \mathbb{R}^k , при этом $(t_1,\ldots,t_k)\in V$ тогда и только тогда, когда $(x_1,\ldots,x_n)\in M$. При этом ϕ_1,\ldots,ϕ_n дифференцируемы по каждой переменной и матрица частных производных невырождена.

$$\begin{pmatrix} \frac{\partial \phi_1}{\partial t_1} & \frac{\partial \phi_2}{\partial t_1} & \cdots & \frac{\partial \phi_n}{\partial t_1} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \phi_1}{\partial t_k} & \frac{\partial \phi_2}{\partial t_k} & \cdots & \frac{\partial \phi_n}{\partial t_k} \end{pmatrix}$$

Ранг этой матрицы должен быть k в любой точке $t \in V$ (то есть все строки должны быть линейно независимы).

Пример:

$$\begin{cases} x = t^2 \\ y = t^3 \end{cases}$$

Обе функции дифференцируемые, но в точке t=0 обе производные обращаются в ноль. Поэтому кривая не гладкая.

15 Сформулируйте теорему о неявной функции. Допустим кривая $X \subseteq \mathbb{R}^2$ задана уравнением f(x,y) = 0, и известно, что $\operatorname{grad} f(x_0,y_0) = (2;0)$. Какую из координат x,y можно использовать в качестве локальной координаты на X в окрестности точки (x_0,y_0) ?

Теорема. Пусть есть функция $F: \mathbb{R}^2 \to \mathbb{R}$, для которой выполнены условия:

- 1. F определена и непрерывна в окрестности (x_0, y_0)
- 2. $F'_u(x_0,y_0) \neq 0$ и F'_u непрерывна в (x_0,y_0)
- 3. $F(x_0, y_0) = 0$.

Тогда найдётся окрестность $U_{\delta,\epsilon}(x_0,y_0) = \left\{ (x,y) \left| \begin{array}{c} x \in (x_0 - \delta, x_0 + \delta) \\ y \in (y_0 - \epsilon, y_0 + \epsilon) \end{array} \right. \right\}$ и непрерывная функция f такая, что в $U_{\delta,\epsilon}(x_0,y_0)$ $F(x,y) = 0 \Leftrightarrow y = f(x)$ (то есть можно выразить y от x в данной окрестности при выполненных выше условиях).

Если кроме всех условий выше F дифференцируема в $U_{\delta,\epsilon}(x_0,y_0)$, то f дифференцируема в $U_{\delta}(x_0)$ и

$$f'(x_0) = -\frac{F_x'(x_0, y_0)}{F_y'(x_0, y_0)}$$

Задача: проверяем условия теоремы, производная по x не равна нулю, а производная по y равна. Значит в качестве координаты можно взять y, а x — нельзя. Обратите внимание, координата — эта не та переменная, по которой дифференцируем.

16 Сформулируйте общую теорему о неявном отображении. Допустим, кривая $X \subseteq \mathbb{R}^3$ задана уравнениями f(x,y,z) = 0, g(x,y,z) = 0, и известно, что $\operatorname{grad} f(x_0,y_0,z_0) = (2;0;0)$, $\operatorname{grad} f(x_0,y_0,z_0) = (0;1;3)$. Какие из координат x,y,z можно использовать в качестве локальных координат на X в окрестности точки (x_0,y_0,z_0) ?

Обозначения: $x=(x_1,\ldots,x_n),\ y=(y_1,\ldots y_m),\ (x,y)=(x_1,\ldots,x_n,y_1,\ldots y_m).$ Ещё обозначения: если функции g_1,\ldots,g_s зависят от t_1,\ldots,t_r , то

$$\frac{D(g_1, \dots, g_s)}{D(t_1, \dots, t_r)} = \begin{pmatrix} \frac{\partial g_1}{\partial t_1} & \frac{\partial g_1}{\partial t_2} & \dots & \frac{\partial g_1}{\partial t_r} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_s}{\partial t_1} & \frac{\partial g_s}{\partial t_2} & \dots & \frac{\partial g_s}{\partial t_r} \end{pmatrix}$$

(по строкам матрицы записаны градиенты (да, в 14 билете градиенты были записаны по столбцам, но так Айз давал на той лекции)).

Разрешим теперь m уравнений относительно m неизвестных.

Теорема. Пусть

- 1. $F_1(x,y), \ldots, F_m(x,y)$ непрерывно дифференцируемы в окрестности точки $(x^{(0)},y^{(0)})$ (здесь верхние индексы, чтобы не путать с координатами)
- 2. $F_j(x^{(0)}, y^{(0)}) = 0 \quad \forall j = 1, \dots, m$
- 3. $\det \frac{D(F_1, \dots, F_m)}{D(y_1, \dots, y_m)}|_{(x^{(0)}, y^{(0)})} \neq 0$

Тогда существует окрестность $U_{\delta}(x^{(0)}) \times U_{\epsilon}(y^{(0)})$ и набор дифференцируемых функций $f_1(x_1, \dots, x_n), \dots, f_m(x_1, \dots, x_m),$ таких что в этой окрестности

$$\{F_j(x,y) = 0\}_{j=1}^m \Leftrightarrow \{y_j = f_j(x)\}_{j=1}^m$$

при этом $f_j(x^{(0)}) = y_j^{(0)}$. Более того,

$$\frac{D(f_1,\ldots,f_m)}{D(x_1,\ldots,x_n)}\Big|_{x^{(0)}} = -\left(\frac{D(F_1,\ldots,F_m)}{D(y_1,\ldots,y_m)}\right)^{-1}\Big|_{(x^{(0)},y^{(0)})} \cdot \frac{D(F_1,\ldots,F_m)}{D(x_1,\ldots,x_n)}\Big|_{x^{(0)}}$$

Задача: Запишем матрицу

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 3 \end{pmatrix}$$

Видим, что линейно независимы первый и второй столбец, и первый и третьей. Значит координатой может быть z или y. Обратите внимание, если матрица производных по x и y невырождена, то подходит как координата z.

17 Дайте определение касательного вектора к подмножеству $X \subseteq \mathbb{R}^n$ в точке $A \in X$. Как устроено множество всех касательных векторов к гладкому подмногообразию в фиксированной точке?

Определение. Пусть $x^{(0)} \in X \subseteq \mathbb{R}^n$. Построим какую-нибудь кривую, которая целиком лежит в X и проходит через $x^{(0)}$. Пусть эта кривая задаётся параметрически $x_i = \psi_i(s), s \in (-\epsilon, \epsilon)$, и $(\psi_1(s), \dots, \psi_n(s)) \in X \ \forall s \in (-\epsilon, \epsilon)$, и

 $(\psi_1(0), \dots, \psi_n(0)) = x^{(0)}$. Тогда вектор $(\frac{d\psi_1}{ds}(0), \dots, \frac{d\psi_n}{ds}(0))$ называется *касательным* к X в точке $x^{(0)}$ (если такой вектор определён, конечно).

Замечание. Касательных векторов может быть бесконечно много, т. к. бесконечно много таких кривых.

Пусть X теперь — гладкое k-мерное многообразие и $x_i = \phi_i(t_1, \dots, t_k)$ — гладкие координаты в окрестности точки $x^{(0)} = \Phi(t^{(0)})$. Тогда множество касательных векторов в точке $x^{(0)}$ образует k-мерное векторное пространство (обозначается $T_{x^{(0)}}X$), линейно порождённое следующими векторами

$$\left(\frac{\partial \phi_1}{\partial t_1}(t^{(0)}), \dots, \frac{\partial \phi_n}{\partial t_1}(t^{(0)})\right) \\
\vdots \\
\left(\frac{\partial \phi_1}{\partial t_k}(t^{(0)}), \dots, \frac{\partial \phi_n}{\partial t_k}(t^{(0)})\right)$$

Замечание. Эти векторы задают аффинное пространство, чтобы получить геометрическое касательное пространство, нужно сдвинуть $T_{x^{(0)}}X$ в точку $x^{(0)}$.

18 Допустим, что все точки множества $X \subset \mathbb{R}^n$ удовлетворяют уравнению f(x) = 0. Докажите, что в любой точке $x^{(0)} \in X$ любой касательный вектор к X перпендикулярен градиенту $\operatorname{grad} f(x^{(0)})$. Опишите касательное пространство к k-мерному подмногообразию \mathbb{R}^n , заданному системой неявных уравнений (без доказательства).

Имеем $\forall x \in X \ f(x) = 0$. Тогда для любой кривой $\{x_i = \phi_i(s)\} \subset X$ имеем $f(\phi_1(s), \dots, \phi_n(s)) = 0$. продифференцируем это по s, получаем

$$\frac{\partial f}{\partial x_1}\cdot\frac{f\phi_1}{ds}+\ldots+\frac{\partial f}{\partial x_n}\cdot\frac{f\phi_n}{ds}=0$$
 < grad $f(x^{(0)})$, касательный вектор к X в точке $x^{(0)}>=0$

Из того, что скалярное произведении равно нулю, следует, что градиент f перпендикулярен касательному вектору к множеству X.

Касательное пространство — ортогональное дополнение к линейной комбинации градиентов неявных уравнений.

19 Необходимое и достаточное условия локального экстремума для функции нескольких переменных (без доказательства).

Определение. Точка $x^{(0)}$ функции f называется cmauuonapnoŭ, когда $\frac{\partial f}{\partial x_i}(x^{(0)})=0 \quad \forall x \in [1;n].$

Необходимое условие:

Теорема. Если $f(x^{(0)})$ - локальный экстремум, то $x^{(0)}$ — стационарная.

Определение. Матрицей Гессе называется симметричная квадратичная форма

$$\begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & & & \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

Определение. *Положительно определённой* квадратичной формой называется такая, что все угловые миноры положительны.

Определение. *Отрицательно определённой* квадратичной формой называется такая, что все угловые миноры отрицательны.

Теорема. Теперь, пусть дана дважды дифференцируемая функция $f(x_1, ..., x_n)$, пусть $x^{(0)}$ — стационарная точка. Тогда:

- Если матрица Гессе положительна определена, то $x^{(0)}$ локальный минимум.
- Если матрица Гессе отрицательна определена, то $x^{(0)}$ локальный максимум.
- Если матрица Гессе имеет и положительные и отрицательные миноры, но при этом не вырождена, то $x^{(0)}$ не локальный экстремум.
- ullet В остальных случаях $x^{(0)}$ может как являться локальным экстремумом, так u не являться.

20 Дайте определение точки условного минимума

Определение. Точка $x^{(0)}$ называется *строгим условным минимумом* функции f подмножества $X \subset \mathbb{R}^n$, если $\forall x \in X \quad f(x) > f(x^{(0)})$.

Определение. Точка $x^{(0)}$ называется *условным локальным минимумом* функции f подмножества $X \subset \mathbb{R}^n$, если существует окрестность $U(x^{(0)})$, такая что $\forall x \in U(x^{(0)}) \cap X \quad f(x) > f(x^{(0)})$.

3амечание. Далее будем считать, что такое множество задаётся набором уравнений вида $\phi(x) = 0$.

21 Сформулируйте теорему о множителях Лагранжа. Объясните идею доказательства в случае, если подмножество $X \subset \mathbb{R}^n$ является гладким многообразием.

Пусть у нас есть задача вида

$$\begin{cases} f(x) \to \text{extr} \\ \phi_1(x) = 0 \\ \vdots \\ \phi_m(x) = 0 \\ x \in \mathbb{R}^n \\ m < n \end{cases}$$

Определение. Функцией Лагранжа называется

$$L(x,\lambda) = f(x) - \sum_{i=1}^{m} \lambda_i g_i(x)$$
$$x \in \mathbb{R}^n$$
$$\lambda \in \mathbb{R}^m$$

 λ называют *множителями* Лагранжа.

Теорема. Пусть $x^{(0)}$ — точка условного локального экстремума в задаче выше, и пусть в окрестности точки $x^{(0)}$ X — гладкое многообразие. Тогда существуют такие $\lambda^{(0)}$, что точка $(x^{(0)},\lambda^{(0)})=(x_1^{(0)},\dots,x_n^{(0)},\lambda_1^{(0)},\dots,\lambda_m^{(0)})\in\mathbb{R}^{m+n}$ является стационарной для $L(x,\lambda)$.

То есть

$$\frac{\partial L}{\partial x_i}(x^{(0)}, \lambda^{(0)}) = 0 \quad \forall i \in [1; n]$$

$$\frac{\partial L}{\partial \lambda_i}(x^{(0)}, \lambda^{(0)}) = 0 \quad \forall i \in [1; m]$$

Второе в силу линейности по λ эквивалентно $g_i(x^{(0)}) = 0$, что означает, что $x^{(0)} \in X$. Посмотрим теперь на первое

$$\frac{\partial L}{\partial x_j} = \frac{\partial}{\partial x_j} (f(x) - \sum_{i=1}^m \lambda_i g_i(x)) = \frac{\partial f}{\partial x_j} - \sum_{i=1}^m \lambda_i \frac{\partial g_i}{\partial x_j} = 0$$

$$\begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix} - \lambda_1 \begin{pmatrix} \frac{\partial g_1}{\partial x_1} \\ \vdots \\ \frac{\partial g_1}{\partial x_n} \end{pmatrix} - \dots - \lambda_m \begin{pmatrix} \frac{\partial g_m}{\partial x_1} \\ \vdots \\ \frac{\partial g_m}{\partial x_n} \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

Это значит, что

$$\operatorname{grad} f = \sum_{i=1}^{m} \lambda_i \operatorname{grad} g_i$$

Так как, все наши переходы были равносильными, нам осталось доказать, что найдутся такие λ , то есть, что grad f является линейной комбинацией grad g_i в данной точке.

Поскольку X гладкая в точке $x^{(0)}$, будем предполагать, что X удовлетворяет условию теоремы о неявном отображении, то есть градиенты $\operatorname{grad} g_i$ линейно независимы. Без ограничения общности будем считать $x^{(0)} \in X \subset \mathbb{R}^n$ — точка условного локального минимума. Тогда, если возьмём какую-нибудь кривую $\{x_i = \phi(t)\} \subseteq X$, такую, что $\phi_i(0) = x_i^{(0)}$, то на ней это также будет точка локального минимума, запишем касательный вектор

$$u = \left(\frac{d\phi_1}{dt}(0), \dots, \frac{d\phi_n}{dt}(0)\right) \in T_{x^{(0)}}X$$

Функция $\alpha(t) = f(\phi_1(t), \dots, \phi_n(t))$ имеет в t=0 локальный минимум. По теореме Ферма $\frac{d\alpha}{dt}(0) = 0$. А это

$$\frac{\partial f}{\partial x_1}(x^{(0)}) \cdot \frac{d\phi_1}{dt}(0) + \ldots + \frac{\partial f}{\partial x_n}(x^{(0)}) \cdot \frac{d\phi_n}{dt}(0) = \langle \operatorname{grad} f(x^0), u \rangle = 0$$

Таким образом, градиент целевой функции в точки экстремума перпендикулярен любому касательному вектору $u \in T_{x^{(0)}}X$, то есть $\operatorname{grad} f(x^{(0)}) \perp T_{x^{(0)}}X$. А это значит, что этот градиент лежит в ортогональном дополнении

$$\operatorname{grad} f(x^{(0)}) \in (T_{x^{(0)}}X)^{\perp} = < \operatorname{grad} g_1(x^{(0)}), \dots, \operatorname{grad} g_m(x^{(0)}) >$$

А раз $\operatorname{grad} f(x^{(0)})$ лежит в линейной оболочке $\operatorname{grad} g_i(x^{(0)})$, то он является их линейной комбинацией.