EECS 1010 01 Combinational Logic

黃稚存

Outline

- Introduction
 - Combinational Circuits
 - Analysis Procedure
 - Design Procedure
- Binary Adder-Subtractor
- Decimal Adder
- Binary Multiplier
- Magnitude Comparator
- Decoder and Encoder
- Multiplexer
- Three-State Gates

Objectives

- Know how to analyze a combinational logic circuit, given its logic diagram
- Understand the half-adder and full-adder
- Understand the overflow and underflow
- Understand the implementation of a binary adder, BCD adder, and binary multiplier
- Understand fundamental combinational logic circuits: decoder, encoder, priority encoder, multiplexer, and three-state gate

Introduction

- » Combinational Circuits
- » Analysis Procedure
- » Design Procedure

Logic Circuits for the Digital System

Combinational circuits

 Logic circuits whose outputs at any time are determined directly and only from the present input combination

- Sequential circuits (Chapter 5)
 - Circuits that employ memory elements + (combinational) logic gates
 - Outputs are determined from the present input combination as well as the state of the memory cells

Combinational Logic Circuits

- Memoryless: o=f(i)
 - Used for control, arithmetic, and data steering
- Combinational logic circuits are closed under acyclic composition
- Cyclic composition of two combinational logic circuits
 - The feedback variable can remember the history of the circuits
 - Sequential logic circuit

Analysis Procedure

- Analysis for an available logic diagram
 - Make sure the given circuit is combinational
 - No feedback path or memory element
 - Derive the corresponding Boolean functions
 - Derive the corresponding truth table
 - Verify and analyze the design
 - Logic simulation (waveforms)
 - Explain the function

Derivation of Boolean Functions (1/2)

- Label all gate outputs that are functions of the input variables only. Determine the functions.
- Label all gate outputs that are functions of the input variables and previously labeled gate outputs. And find the functions.
- Repeat previous step until all the primary outputs are obtained.

Derivation of Boolean Functions (2/2)

• Full adder example:

Derivation of Truth Table (1/2)

- For n input variables
 - List all the 2^n input combinations from 0 to $2^n 1$
 - Partition the circuit into small single-output blocks and label the output of each block
 - Obtain the truth table of the blocks depending on the input variables only
 - Proceed to obtain the truth tables for other blocks that depend on previously defined truth tables

Derivation of Truth Table (2/2)

Full Adder Example

			AB+13	CAH	Ats	the ABC	FZT	1 T3+T2
A	В	C	F ₂	F ' ₂	<i>T</i> ₁	T ₂	T ₃	<i>F</i> ₁
0	0	0	0	1	0	0	0	0
0	0	1	0	1	1	0	1	1
0	1	0	0	1	1	0	1	1
0	1	1	1	0	1	0	0	0
1	0	0	0	1	1	0	1	1
1	0	1	1	0	1	0	0	0
1	1	0	1	0	1	0	0	0
1	1	1	1	0	1	1	0	1

Design Procedure

- ① Specification
 - From the specifications, determine the inputs, outputs, and their symbols
- ② Formulation
 - Derive the truth tables (functions) from the relationship between the inputs and outputs
- 3 Optimization
 - Derive the simplified Boolean functions for each output function
- 4 Technology mapping
 - Derive the logic diagram based on the implementation technology
- 5 Verification
 - Verify the design

Code Conversion Example (1/3)

BCD-to-excess-3 code converter

- (1) Define the spec and IOs
- (2) Derive truth table
- 1 Spec
 - input (ABCD), output (wxyz) (MSB to LSB)
 - ABCD: 0000~1001 (0~9)
- 2 Formulation
 - wxyz = ABCD+0011

Input BCD				Output Excess-3 Code			
Α	В	c	D	w	x	y	z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	Х	X	Χ	X
1	0	1	1	X	X	X	X
1	1	0	0	X	X	X	X
1	1	0	1	X	X	X	X
1	1	1	0	X	X	X	X
1	1	1	1	X	X	X	X

Code Conversion Example (2/3)

- 3 Optimization:
 - Determine simplified **Boolean function**

•
$$z = D'$$
 $(C+D)'$
• $y = CD + C'D'$

- x = B'C + B'D + BC'D'
- w = A + BC + BD
- 7 ANDS, 30RS, 3 INV.

Lec04-1

EECS1010 01 CT 2020

→ multi-level, non-standard

•
$$z = D'$$

$$y = CD + (C + D)'$$

•
$$x = B'(C + D) + B(C + D)'$$

•
$$w = A + B(C + D)$$

Code Conversion Example (3/3)

4 Logic diagram

Binary Adder-Subtractor

Binary Half Adder (HA)

- O IOs
 - ◆ Input: x, y
 - Outputs: C (carry), S (sum)
- Truth table and functions

•
$$S = x'y + xy' = x \oplus y$$

- \bullet C = xy
- Logic diagram

x y'	C
x' y	S
<i>x</i>	C

x y	C S
0 0	0 0
0 1	0 1
1 0	0 1
1 1	1 0

Binary Full Adder (FA) (1/3)

O IOs

Input: x, y, z (carry from previous lower significant bit)

Outputs: C (carry), S (sum)

Truth table

x	y	Z	C S
0	0	0	0 0
0	0	1	0 1
0	1	0	0 1
0	1	1	1 0
1	0	0	0 1
1	0	1	1 0
1	1	0	1 0
1	1	1	1 1

$$C = \sum (3, 5, 6, 7)$$
$$= xy + yz + xz$$

	yz			y		
v	yz $0 0$	01	11	10		
x						
0						
ſ						
$x \mid 1$		1	1	1		
\overline{z}						

$$S = \sum (1, 2, 4, 7)$$

= $x'y'z + x'yz' + xy'z' + xyz = x \oplus y \oplus z$

Binary Full Adder (FA) (2/3)

2-level logic diagram

$$S = x'y'z + x'yz' + xy'z' + xyz = x \oplus y \oplus z$$
$$C = xy + yz + xz$$

Binary Full Adder (FA) (3/3)

- Full adder implemented with half adders
 - Two half adders and one OR gate

$$S = (x \oplus y) \oplus z$$

$$C = x'yz + xy'z + (xyz' + xyz)$$

$$= (x \oplus y)z + xy$$

Lec04-1

Binary (Ripple-Carry) Adder (1/2)

Produces arithmetic sum of two binary numbers

Binary (Ripple-Carry) Adder (2/2)

- The computation time of a ripple-carry adder grows linearly with word length n
 - T=O(n) due to carry chain

Carry Propagation

- For ripple carry adder
 - ♦ Longest propagation delay: $C_0 \rightarrow C_1 \rightarrow C_2 \rightarrow C_3 \rightarrow C_4$
 - 8 gate levels (for 4-bit adder)
 - 2n gate levels for the carry to propagate from input to output for an n-bit adder

Carry Lookahead Adder (CLA) (1/5)

- Reduce the carry propagation delay
 - Using faster gates
 - Parallel adders, e.g., the carry lookahead adder (CLA)
- Carry Lookahead Adder (CLA)
 - Carry propagate: $P_i = A_i \oplus B_i$
 - Carry generate: $G_i = A_i B_i$
 - Sum: $S_i = P_i \oplus C_i$
 - Carry: $C_{i+1} = G_i + P_i C_i$
 - $C_1 = G_0 + P_0 C_0 = A_0 \beta_0 + (A_0 \oplus \beta_0) C_0$
 - $C_2 = G_1 + P_1C_1 = G_1 + P_1(G_0 + P_0(G_0) = G_1 + P_1G_0 + P_1P_0(G_0) = G_1 + P_1G_0 + P_1G_$
 - $C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1 G_0 + P_2P_1 P_0 C_0$

