AIL 722: Assignment 2 Report

Anamitra Singha IIT Delhi

October 2024

Contents

1	Intr	oduction	2
2	Mo	del-Based Methods	2
	2.1	Policy Iteration	2
		2.1.1 Algorithm and Mathematical Explanation	2
		2.1.2 Implementation	2
		2.1.3 Visualization	3
	2.2	Value Iteration	3
		2.2.1 Algorithm and Mathematical Explanation	3
		2.2.2 Implementation	
		2.2.3 Visualization	4
3	Mo	del-Free Methods	4
	3.1	SARSA and Q-Learning	4
		3.1.1 Algorithm and Mathematical Explanation	4
		3.1.2 Implementation	5
		3.1.3 Results and Visualizations	5
	3.2	Evaluation and Analysis	7
4	Lar	ge-and-Continuous State-Space Environments	8
	4.1		8
		4.1.1 Algorithm and Neural Network Architecture	8
		4.1.2 Results and Visualization	9

1 Introduction

This report presents the implementation of several reinforcement learning algorithms, applied to environments such as *TreasureHunt-v1*, *Taxi-v3*, *LunarLander-v2*, and *TreasureHunt-v2*. The report will cover the theoretical background, implementation details, and the performance of these algorithms, followed by visualizations and observations.

2 Model-Based Methods

2.1 Policy Iteration

2.1.1 Algorithm and Mathematical Explanation

Policy Iteration alternates between policy evaluation and policy improvement. The goal is to find the optimal policy π^* by improving a policy π iteratively.

The Bellman equation for policy evaluation:

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s, a) \left[R(s, a, s') + \gamma V^{\pi}(s') \right]$$

where:

• $V^{\pi}(s)$: Value function for policy π

• P(s'|s,a): Transition probability

• R(s, a, s'): Reward function

• γ : Discount factor

2.1.2 Implementation

The Policy Iteration algorithm was implemented using Python. The environment used is *TreasureHunt-v1*, which consists of 400 states.

2.1.3 Visualization

Figure 1: Policy Visualization on the *TreasureHunt-v1* Grid (Arrows represent actions in each state).

Figure 2: Trajectory Visualization of Policy Iteration (GIF)

2.2 Value Iteration

2.2.1 Algorithm and Mathematical Explanation

Value Iteration is based on iteratively updating the value function using the Bellman optimality equation:

$$V(s) = \max_{a} \sum_{s'} P(s'|s, a) \left[R(s, a, s') + \gamma V(s') \right]$$

2.2.2 Implementation

The Value Iteration algorithm was implemented, and it was applied to the *TreasureHunt-v1* environment.

2.2.3 Visualization

Figure 3: Value Function Visualization on *TreasureHunt-v1*.

3 Model-Free Methods

3.1 SARSA and Q-Learning

3.1.1 Algorithm and Mathematical Explanation

SARSA is an on-policy algorithm that updates the Q-values as:

$$Q(s, a) \leftarrow Q(s, a) + \alpha \left[r + \gamma Q(s', a') - Q(s, a) \right]$$

Q-Learning is an off-policy algorithm that updates the Q-values using:

$$Q(s, a) \leftarrow Q(s, a) + \alpha \left[r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right]$$

Where:

• α : Learning rate

• γ : Discount factor

• r: Reward

3.1.2 Implementation

Both SARSA and Q-Learning were implemented for TreasureHunt-v1 and Taxi-v3. For TreasureHunt-v1, the learning rate $\alpha=0.3$, discount factor $\gamma=0.95$, and $\epsilon=0.4$. For Taxi-v3, $\alpha=0.05$ and a decaying ϵ was used.

3.1.3 Results and Visualizations

Figure 4: Reward vs Episodes for SARSA (TreasureHunt-v1).

Figure 5: Reward vs Episodes for Q-Learning (Treasure Hunt-v1).

Figure 6: Epsilon vs Episodes for SARSA (Taxi-v3).

Figure 7: Epsilon vs Episodes for Q-Learning (Taxi-v3).

3.2 Evaluation and Analysis

For *TreasureHunt-v1* the time taken for convergence and the number of episodes were recorded, as shown in Table

Table 1: Comparison of SARSA and Q-Learning Convergence

Algorithm	Episodes for Convergence	CPU Time (s)
SARSA	13000	12
Q-Learning	10000	6

For Taxi-v3, the time taken for convergence and the number of episodes were recorded, as shown in Table

Table 2: Comparison of SARSA and Q-Learning Convergence

Algorithm	Episodes for Convergence	CPU Time (s)
SARSA	10000	10
Q-Learning	10000	6

4 Large-and-Continuous State-Space Environments

4.1 LunarLander-v2

4.1.1 Algorithm and Neural Network Architecture

The Q-network used consists of four fully connected layers. The architecture is as follows:

- Input layer: The input state has a size of state_size.
- Hidden layer 1: Fully connected layer with 32 units, followed by a ReLU activation:

$$fc1(x) = ReLU(\mathbf{W_1}x + \mathbf{b_1})$$
 where $\mathbf{W_1} \in \mathbb{R}^{32 \times state_size}$

• Hidden layer 2: Fully connected layer with 64 units, followed by a ReLU activation:

$$fc2(x) = ReLU(\mathbf{W_2}x + \mathbf{b_2})$$
 where $\mathbf{W_2} \in \mathbb{R}^{64 \times 32}$

• Hidden layer 3: Fully connected layer with 64 units, followed by a ReLU activation:

$$fc3(x) = ReLU(\mathbf{W_3}x + \mathbf{b_3})$$
 where $\mathbf{W_3} \in \mathbb{R}^{64 \times 64}$

• Output layer: Fully connected layer with action_size outputs, representing Q-values for each action:

$$fc4(x) = \mathbf{W_4}x + \mathbf{b_4}$$
 where $\mathbf{W_4} \in \mathbb{R}^{\text{action.size} \times 64}$

Each layer uses the ReLU activation function except for the output layer, which outputs the raw Q-values for the given state-action pairs.

4.1.2 Results and Visualization

Figure 8: Reward Curve for LunarLander-v2.