Last name		
First name		

LARSON—MATH 556–HOMEWORK WORKSHEET 09 Posets!

- 1. (**Divisibility poset**). Let $X = \{2, 3, ... 20\}$ and define the divisibility relation "|": For $x, y \in X$, x|y (that is, x divides y, or y is divisible by x)) if there is an integer k such that kx = y. We showed that P = (X, ||) is a poset.
 - Find a largest antichain in P.
 - Find a minimal chain decomposition in P.
 - Prove that your antichain is indeed maximal and your chain decomposition is indeed minimal.
- 2. Let $X = \{x_1, x_2, \dots, x_{101}\}$ be a sequence of 101 positive integers. Argue that X contains either an 11-term increasing subsequence or an 11-term decreasing subsequence. (**Hint:** Define an appropriate poset).
- 3. Let

$$A = \begin{pmatrix} 7/12 & 0 & 5/12 \\ 1/6 & 1/2 & 1/3 \\ 1/4 & 1/2 & 1/4 \end{pmatrix}$$

Use Birkhoff's algorithm to show that A is a convex combination of permutation matrices. (So for each iteration, you'll need to define a bipartite graph G_i , find a perfect matching M_i , a corresponding permutation matrix P_i and number m_i . If you get a 0 matrix after k iterations, you will have $A = m_1 P_1 + \dots + m_k P_k$ and $m_1 + \dots + m_k = 1$.

Birkhoff's Algorithm (from class notes)

Let A_1 be a non-negative square matrix with constant (non-zero) row and column sums.

- 1. Let G_i be the associated bipartite graph (whose points represent the rows and columns of A_i and where ρ_j is adjacent to c_k if $(A_i)_{j,k}$ is non-zero).
- 2. Let M_i be a perfect matching in G_i .
- 3. Each line of M_i corresponds to an entry in A_i , each in a different row and different column. Let m_i be the minimum of these entries.
- 4. Let P_i be the permutation matrix with 1 entries in the coordinates corresponding to M_i .
- 5. Let $A_{i+1} = A_i m_i P_i$.
- 6. If A_{i+1} is non-zero, repeat.
- 7. Else, if A_{i+1} is the zero matrix, then $A_i = m_1 P_1 + m_2 P_2 + \dots + m_{i-1} P_{i-1}$.