Mentor Graphics DDR Memory So Easy, A Caveman Can Do It

Steve McKinney

Technical Marketing Engr. Steven_McKinney@mentor.com

© Mentor Graphics Corp., 2005, Reuse by written permission only. All rights reserved.

araphas arabas

AgendaDDR Memory design

- 1. DDR/DDR2 Technology Overview
- 2. DDR/DDR2 Challenges and Layout Guidelines
- 3. Introduction to DDR3
- 4. Wrap up

Memory Trends

*Courtesy of Hynix Semiconductor

DDR Overview

Double Data Rate (DDR) Memory

 Data is "clocked" in on both the rising and falling edge of the synchronous strobe signal

Source-synchronous interface

- Clock (Strobe) is routed along the same path as the data
- Data/Strobe signals are bi-directional
- Each data group has a corresponding
 strobe to minimize skew (data groups are
 4, 8, or 16 bits wide) and optimize timing

DDR Technology

- DDR Operating Speeds
 - DDR200 (100 MHz clock)
 - DDR266 (133 MHz clock)
 - DDR333 (166.67 MHz clock)
 - DDR400 (200 MHz clock)

DDR Bandwidth

- Improved bandwidth over Single Data Rate (SDR) memory
 - Same clock speed gives 2X the bandwidth

M	Memory Bandwidth (Single Channel)						
SDR - SDRAM		DDR - SDRAM					
PC100	PC133	DDR200	DDR266	DDR333	DDR400		
800 MB/s	1.1 GB/s	1.6 GB/s	2.1 GB/s	2.7 GB/s	3.2 GB/s		

DDR Termination

Termination

- Requires series termination
 - Series terminator on DIMMs
 - Series terminator on your PCB
- Pull-up termation to Vtt

DDR DIMM Technology

- **DIMMS come in many configurations**
 - x4, x8, x16 SDRAM devices
 - **1 or 2 Physical Memory Banks**
 - Registered or Unbuffered Address/CMD signals
 - Non-parity (x64 bits) or ECC (x72 bits)
- Tend to have the same routing even if from different vendors
 - Many manufacturers share DIMM layout data

DDR Unbuffered DIMMs

Address signals - Unbuffered

— Data/Strobe

— Address/Control

DDR Registered DIMMs

Address signals - Registered

— Data/Strobe

— Address/Control

DDR Electrical Characteristics

- DDR uses SSTL_2 buffer technology
 - 2.5V technology
 - Class I drivers for point to point connection – Half drive strength
 - Class II drivers for multi-drop connection – Full drive strength

- Some important voltages to remember
 - Vref = 1.25V
 - Used for setting up timing thresholds (Vih and Vil)
 - Must be kept stable
 - **■** Vih = 1.56V Nominal
 - Vref + 0.31 Logic high threshold
 - **■** Vil = 0.97V Nominal
 - Vref 0.31 Logic low threshold

- Flight time measurements into a JEDEC test load
 - 30 pF to Ground
 - 50 ohm pull-up to Vref (nominally 1.25V)
- Some important timing parameters needed for timing equations
- Setup time parameters
 - Tck = Clock cycle time
 - Tipw = DQ and DM pulse width
 - Tdipw = Address Control pulse width
 - Tdqsh/l = DQS high/low pulse width
 - Tds = DQ and DM setup time to DQS
 - Tdqsq = DQS setup skew from associated DQ/DM signals
 - Tdss = Falling edge DQS to CLK setup time
 - Tis = Address/CMD setup time to CLK

- Hold time parameters
 - Tck = Clock cycle time
 - Tipw = DQ and DM pulse width
 - Tdipw = Address Control pulse width
 - Tdqsh/l = DQS high/low pulse width
 - Tdh = DQ and DM hold time to DQS
 - Tdqhq = DQS hold skew between associated DQ/DM signals
 - Tdsh = Falling edge DQS hold time from CLK
 - Tih = Address/CMD hold time to CLK

VpullUp 1,25V

50.0 ohms

30.0 pF

testload.dgs

DDR Impedance Characteristics

- Recommended impedance of 60 ohms
 - Best to simulate with different impedance values to determine the best solution

DDR2 Technology

- DDR2 Operating Speeds
 - DDR2-400 (200 MHz clock)
 - DDR2-533 (266 MHz clock)
 - DDR2-667 (333 MHz clock)
 - DDR2-800 (400 MHz clock)
- Source-Synchronous interface like original DDR

DDR2 Bandwidth

- Not necessarily improved bandwidth over DDR
 - Original DDR2 has higher latency than DDR reducing effective bandwidth.
 - New lower latency DDR2 memory modules are improving this gap

M	Memory Bandwidth (Single Channel)						
DDR		DDR2					
DDR333	DDR400	DDR2- 400	DDR2- 533	DDR2- 667	DDR2- 800		
2.7 GB/s	3.2 GB/s	3.2 GB/s	4.266 GB/s	5.33 GB/s	6.4 GB/s		

DDR2 On Die Termination

- ODT On Die Termination
 - Built into the controller and SDRAM
 - Offers multiple termination
 values for different configurations
 - 50 Ohm, 75 Ohm, 150 Ohm
 - Turns on or off depending on Read/Write cycle

* Courtesy of Micron

DDR2 On Die Termination

- How ODT works Example of a 2 module system
 - Write operation
 - ODT off at Controller
 - DIMM receiving data has ODT of 150 Ohms
 - DIMM not receiving data has ODT of 75 Ohms
 - Read operation
 - ODT off at driving DIMM
 - ODT 150 Ohms at Controller
 - DIMM not driving has ODT of 75 Ohms

* Courtesy of Micron

DDR2 DIMM Technology

- Same as DDR, DIMMs come in many configurations
 - x4, x8, x16 SDRAM devices
 - 1, 2 or 4 Rank (or Bank) DIMMs
 - Registered or Unbuffered Address/CMD signals
 - Non-ECC (x64 bits) or ECC (x72 bits)
 - Parity or no Parity for Address signals
 - Stacked or un-Stacked components
- DIMM layout is controlled by JEDEC
 - Many manufacturers shared responsibility of creating the DIMM layout data

DDR2 Unbuffered DIMMs

Data/Strobe

ODT control

— Address/Control

DDR2 Registered DIMMs

— Data/Strobe

ODT Control

– Address/Control

DDR2 Electrical Characteristics

- DDR2 uses SSTL18 buffer technology
 - 1.8V technology
 - Class I drivers for point to point connection – Half drive strength
 - Class II drivers for multi-drop connection – Full drive strength

- Some important voltages to remember
 - $\mathbf{Vref} = 900 \, \mathbf{mV}$
 - Used for setting up switching thresholds (Vih and Vil)
 - Vih/Vil AC Thresholds
 - = Vref +/- 250 mV for DDR2-400 & 533
 - = Vref +/- 200 mV for DDR2-667 & 800
 - Vih/Vil DC Thresholds
 - =Vref +/- 125 mV for all DDR2

- Flight time measurements into a JEDEC test load
 - 25 ohm pull-up to Vtt (nominally 900 mV)
- Some important timing parameters needed for timing equations

Setup time parameters

- Tck = Clock cycle time
- Tipw = DQ and DM pulse width
- Tdipw = Address Control pulse width
- Tdqsh/l = DQS high/low pulse width
- Tds = DQ and DM setup time to DQS
- Tdqsq = DQS setup skew from associated DQ/DM signals
- Tdss = Falling edge DQS to CLK setup time
- Tis = Address/CMD setup time to CLK

Hold time parameters

- Tck = Clock cycle time
- Tipw = DQ and DM pulse width
- Tdipw = Address Control pulse width
- Tdqsh/l = DQS high/low pulse width
- Tdh = DQ and DM hold time to DQS
- Tdqhq = DQS hold skew between associated DQ/DM signals
- Tdsh = Falling edge DQS hold time from CLK
- Tih = Address/CMD hold time to CLK

- Signal derating required to meet setup and hold times
 - Find nominal slew rate

Hold

Setup

 If any of the signal falls to the right of the nominal slew rate in the switching region, signal must be derated

Hold

 If any of the signal falls to the left of the nominal slew rate in the switching region, signal must be derated

- Setup slew rate measurement
 - Rising Edge
 - Last crossing of Vref + DC Guard-band to first crossing of Vih-ac
 - Falling Edge
 - Last crossing of Vref DC Guard-band to first crossing of Vil-ac
- Hold slew rate measurement
 - Rising Edge
 - First crossing of Vil-dc to the first crossing of Vref AC Guard-band
 - Falling Edge
 - First crossing of Vih-dc to the first crossing of Vref + AC Guard-band

 Derate or Prorate setup and hold times based on slew rate information

Table 45 — Derating values for DDR2-400, DDR2-533.

			tIS, tIH De	rating Values	for DDR2-40	0, DDR2-533			
			CI	K,CK Differer	ntial Slew Ra	te			
		2.0 \	//ns	1.5 V/ns		1.0 V/ns			
		∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tIH	Units	Notes
Com- mand/Ad- dress Slew rate (V/ns)	4.0	+187	+94	+217	+124	+247	+154	ps	1
	3.5	+179	+89	+209	+119	+239	+149	ps	1
	3.0	+167	+83	+197	+113	+227	+143	ps	1
	2.5	+150	+75	+180	+105	+210	+135	ps	1
	2.0	+125	+45	+155	+75	+185	+105	ps	1
	1.5	+83	+21	+113	+51	+143	+81	ps	1
	1.0	0	0	+30	+30	+60	60	ps	1
	0.9	-11	-14	+19	+16	+49	+46	ps	1
	0.8	-25	-31	+5	-1	+35	+29	ps	1
	0.7	-43	-54	-13	-24	+17	+6	ps	1
	0.6	-67	-83	-37	-53	-7	-23	ps	1
	0.5	-110	-125	-80	-95	-50	-65	ps	1
	0.4	-175	-188	-145	-158	-115	-128	ps	1
	0.3	-285	-292	-255	-262	-225	-232	ps	1
	0.25	-350	-375	-320	-345	-290	-315	ps	1
	0.2	-525	-500	-495	-470	-465	-440	ps	1
	0.15	-800	-708	-770	-678	-740	-648	ps	1
	0.1	-1450	-1125	-1420	-1095	-1390	-1065	ps	1

- Why Derating?
 - Consider the area under the curve Charge Model concept

DDR2 Impedance Characteristics

- Recommended impedance of 50 ohms
 - 10 ohms lower than DDR
 - Simulate with different impedance values to determine the best solution

AgendaDDR Memory design

- 1. DDR/DDR2 Technology Overview
- 2. DDR/DDR2 Challenges and Layout Guidelines
- 3. Introduction to DDR3
- 4. Wrap up

DDR/DDR2 Design Challenges Reflections and Skew

Reflections seen on signal edges

Skew between DQ bits consuming timing budget

DDR/DDR2 Design Challenges Address timing

 Very little timing budget for Address/Control signals under heavily loaded conditions

DDR/DDR2 Design Challenges Crosstalk

- Crosstalk on Strobe Signals
 - Often seen as "glitches" on the strobe edges
 - Can cause double clocking

DDR/DDR2 Design Challenges Power Plane Stability

- Vref and VDD Stability
 - SSO can cause fluctuations in
 Vref due to inadequate decoupling
 - Causes the Vref level to shift which changes the Vih and Vil switching thresholds

DDR Design Guidelines

- What results are important
 - We need to constrain 4 critical lengths
 - 1. Net length from the controller to the 1st DIMM slot
 - 2. Net length between DIMM slots
 - **3.** Net length from last slot to the Termination
 - 4. All DQS/DQ groups should be length matched to minimize skew within the group and across the channel

DDR Design Guidelines

What results are important

- #1 This length is typically between 2" and 6" but dependant on the controller used and how many DIMMs are supported in a channel
- Keep the series terminator as close as possible to the controller - typically within 1"
 - This length counts as part of the overall constraint for length #1

DDR Design Guidelines

- What results are important
 - #2 This length is typically between 400 mils to 1.2"
 - Wider = Better airflow = Improved Thermals
 - But too wide can produce poor signal quality (SI)

- What results are important
 - #3 This length does not have to be as tightly constrained as the other lengths since it only goes to a termination
 - No timing importance here
 - Typical constraint is from 500 mils to 2"

- What results are important
 - #4 This constraint is very critical.
 - A data group (DQ) has an associated strobe (DQS);
 - This group should be length matched to each other with minimum skew
 - Typical constraints are about 50 mils within the group
 - Try to spread this out across the channel
 - +/- 25 mils for length #1
 - +/- 15 mils for length #2
 - +/- 15 mils for length #3
 - Helps to minimize skew between the DIMMs

- Spacing Recommendations
 - Varies depending on stackup
 - Typically rules of thumb say 3H spacing
 - For a 6 mil dielectric this would be 18 mils

For signals coupled closely to reference planes, often

1.5H can be used

- Terminations
 - Use discrete components for DQS lines
 - R-packs typically have poor isolation
 - Causes Crosstalk problems on strobes

What results are important

- We need to constrain 4 critical lengths
 - 1. Net length from the controller to the 1st DIMM slot
 - 2. Net length between DIMM slots
 - 3. Net length from last slot to the pull-up termination (only Address/Command)
 - 4. All DQS/DQ groups should be length matched to minimize skew within the group and across the channel

- What results are important
- #1 This length from the controller to the first DIMM is typically between 1.9" and 4.5"
- #2 The length
 between the DIMMs
 is typically around
 425 mils

- What results are important
 - #3 The length from the last DIMM to the pullup resistors is typically 200 mils to 550 mils
 - Only applies to the Address and Command nets –
 Data nets use ODT
 - No timing importance here

What results are important

- #4 This constraint is very critical.
- A data group (DQ) has an associated strobe (DQS);
- This group should be length matched to each other with minimum skew
- Typical constraints are about 50 mils within the group
 - Try to spread this out across the channel
 - +/- 30 mils for length #1
 - +/- 20 mils for length #2
 - Overall skew between byte lanes should be +/- 500 mils
 - Skew between address nets should be +/- 200 mils

- Spacing Recommendations
 - Varies depending on stackup
 - Typically rules of thumb say 3H spacing
 - For a 5 mil dielectric this would be 15 mils
 - For signals coupled closely to reference planes, often 1.5H can be used or ~8 mils

AgendaDDR Memory design

- 1. DDR/DDR2 Technology Overview
- 2. DDR/DDR2 Challenges and Layout Guidelines
- 3. Introduction to DDR3
- 4. Wrap up

DDR Feature Comparison

	DDR	DDR2	DDR3
Data Rate	200 - 400 Mbps	400 – 800 Mbps	800 – 1600 Mbps
System support	4 slots – 8 loads	2 slots – 4 loads	2 slots - 4 loads 1600 Mbps = 1 slot
Signaling Technology	SSTL_2	SSTL_18	SSTL_15
DQS signals	Bi-directional single ended	Bi-directional single or differential	Bi-directional differential
ODT	No	Yes	Yes
Signal leveling	No	No	Yes

DDR Market Trends

2007 2008 2009 2010 DDR 14% 3% 1% 2% DDR2 83% 78% 64% 33% DDR3 3% 19% 34% 60%

DDR3 Market Trends

- Main growth in the 512 Mb and 1Gb memory modules
 - Early adopters starting with 256 Mb modules

DDR3 Performance

- DDR3 has a peak transfer rate of 1600 MT/s
 - 800 MHz clocks
 - Provides a 2X bandwidth increase over DDR2
 - Maximum bus bandwidth of 12,800 MT/s
- 4 operating speeds for DDR3
 - **800 MT/s**
 - 1067 MT/s
 - 1333 MT/s
 - **1600 MT/s**

Lower Power

- Supply voltage reduced from 1.8V to 1.5V
 - **30% reduction in power supply voltage**
- Higher impedance driver requires less current
 - Driver impedance of 34 ohms vs. 18 ohms in DDR2

DDR3 Architecture

- 800 MT/s 1333 MT/s will support 2 DIMM slots
 - Margins will be tight for 1333 MT/s on Read operations
- 1600 MT/s only supports1 DIMM slot
 - Can not achieve reliable data transfer with 2 slots

Fly-by Architecture

- Address, Control, and Clocks use Fly-by architecture vs.
 branch architecture for routing
 - Daisy-chain topology for these signals
- Provides improved signal quality
 - Reduces number of stubs and their length
- Requires write leveling to optimize timing
 - Fly-by creates too much skew between clock and strobe

Write Leveling

- Write leveling adjusts the DQS to CK relationship by the controller
 - Uses a simple feedback provided by the DRAM
- Memory controller has an adjustable delay setting on DQS
 - Used to align the rising edge of DQS with the clock at the DRAM pin
- DRAM asynchronously feeds back CK sampled with the rising edge of DQS
- The controller repeatedly delays DQS until a transition from 0 to 1 is detected and determines DQS delay

Termination

- On-Die Termination used for Data/Strobes
 - Dynamic and controllable as in DDR2
- Address, Command, and Control signals no longer require pull-up terminations on PCB
 - Termination is on DIMM module
 - 39 ohm pull-up termination

Lead-in vs. Loaded routing

- Neck down traces on DIMM modules to compensate for capacitive loads $Zo = \sqrt{\frac{L}{C}}$ Increases impedance on traces
 - Increases impedance on traces
 - **55 ohms on PCB and 60 ohms on module**

AgendaDDR Memory design

- 1. DDR/DDR2 Technology Overview
- 2. DDR/DDR2 Challenges and Layout Guidelines
- 3. Introduction to DDR3
- 4. Wrap up

Summary

- DDR and DDR2 designs
 - Data/Strobe signals tend to be easier to route for SI
 - **■** Want to minimize skew in the byte lanes
 - Address/Control signals have most SI problems
 - **■** Due to loading conditions and branch topologies
 - Signal always worst at the first DIMM module

DDR3

- No real layout guidelines available yet since the technology is still being developed
 - Expect heavy adoption in 2009

Additional Technology Design kits

- USB
- DDR
- DDR2
- PCI/PCI-X
- SATA
- PCI Express
- FibreChannel
- SAS
- Embedded DDR
- HyperTransport
- HDMI

HyperLynx Design Kits

http://www.mentor.com/hyperlynx/customer/examples/

Acknowledgments

- Special thanks to Micron for providing a majority of the DDR3 content and DDR2 routing guidelines
 - Reference their DDR3 Advantages presentation
 - www.micron.com
- Samsung Electronics
 - Providing feature comparison and topology and impedance information for DDR3
 - www.samsung.com

