CARLINGFORD HIGH SCHOOL

DEPARTMENT OF MATHEMATICS

Year 12

Mathematics Extension 2

Assessment Task 1

2020

Time allowed: 1 hour 40 minutes	

Teacher: Ms Strilakos

Instructions:

All questions should be attempted.

Student Number: _____

- Show ALL necessary working.
- Marks may not be awarded for careless or badly arranged work.
- Only board-approved calculators may be used.

PROOF	Q1	Q2	Q3	Q4	Q5	Q6		r in service constitution of the service of the ser	TOTAL
	/3	14	/5	/5	/4	/4			/25
COMPLEX NUMBERS	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	
	/4	/4	/4	/4	/5	/6	/8	/11	/46
							TOTAL		/71

Q.1 Consider the statement

For any integers a and b, $a+b \ge 15$ implies that $a \ge 8$ or $b \ge 8$,

- (i) State the contrapositive of this statement
- (ii) Hence prove this statement is true for the contrapositive of the statement.

[1+2=3]

- Q.2 (i) Let $x \in \mathbb{Z}$. Prove by contradiction that if 5x 7 is odd, then x is even.
 - (ii) Hence prove directly that if 5x 7 is odd, then 9x + 2 is even.

[2+2=4]

Q.3 Let $x \in Z$. (i) Prove that if 3|x, then $3|x^2$.

(ii) Prove that if $3 \nmid x$, then $3 \mid (x^2 - 1)$, using cases.

[2+3=5]

Q.4 If T(0)=6 and $T_n=4T_{n-1}+2^n$ for $n\geq 1$, use Induction to prove that $T_n=7\cdot 4^n-2^n$ [5]

Q.5 Use a calculus method to prove that if $x \in R$, x > 0, then $x^4 + x^{-4} \ge 2$.

[4]

Q.6 The diagram below shows two right angled triangles.

The left one has sides a, b and c where c is the length of the hypotenuse.

The triangle on the right has sides of length a+1, b+1 and c+1, where c+1 is the length of the hypotenuse. Show that a, b and c cannot all be integers.

Q.7 Prove by contradiction, the proposition that:

For each real number x, if 0 < x < 1, then

$$\frac{1}{x(1-x)} \ge 4$$

[4]

- Q.8 (i) Show that $\frac{a}{b} + \frac{b}{a} \ge 2$ using the AM/GM inequality.
 - (ii) Hence show that, for a, b and c all positive reals, that

$$a^3 + b^3 + c^3 \ge a^2b + b^2c + c^2a$$

[2+2=4]

- Q.9 (i) Find the square roots of -8 6i.
 - (ii) Hence or otherwise, solve the equation $2x^2 + (1+i)x + (1+i) = 0$

[4]

Q.10 A straight line L and a circle C are to be drawn on a standard Argand diagram. The equation of L is $\arg z = \frac{\pi}{3}$.

The centre of $\mathcal C$ lies on L and its radius is 3 units. The line with equation $Im\ z=0$ is tangent to $\mathcal C.$

- (i) Sketch L and C on the same diagram.
- (ii) Determine an equation for C, giving the answer in the form $|z-\alpha|=k$, where α and k are constants.

The point that represents the complex number z_0 lies on \mathcal{C} .

(iii) Determine the maximum value of $\arg z_0$, fully justifying the answer.

- Q.11 (i) Express the solution in Cartesian form for the set of complex numbers described simultaneously below, using z=x+iy. $Im\big(2z-\bar{z}(1+i)\big)=0 \ \text{and} \ Re\big(2z-\bar{z}(1+i)\big)<4,\ z\in\mathcal{C},$
 - (ii) Hence sketch the solution in the complex plane, labelling relevant points.

[4+1=5]

- Q.12 Given the complex number $z^4 = -9i$,
- (i) Determine the four fourth roots of z^4 , giving answers in the form $re^{i\theta}$, where r>0 and $0\leq \theta < 2\pi$.
- (ii) Plot the points represented by these roots on an Argand diagram and join them in order of increasing argument, labelled as A, B, C and D.

The midpoints of the sides of the quadrilateral ABCD represent the four fourth roots of another complex number w.

- (iii) Find the complex root w_1 of w, which represents the midpoint of the side AD, stating it in $re^{i\theta}$ form.
- (iv) Hence find w in Cartesian form.

[2+1+2+1=6]

Q.13 Euler's formula states that for any real number θ ,

$$e^{i\theta} = \cos\theta + i\sin\theta$$

- (i) Using Euler's formula, express $e^{-i\theta}$ in terms of $\sin\theta$ and $\cos\theta$, and hence find expressions for $\sin\theta$ and $\cos\theta$ in terms of the complex exponential.
- (ii) Using your results for part (i), express $sin^3\theta cos^2\theta$ in the form

$$a \sin \theta + b \sin 3\theta + c \sin 5\theta$$
.

You may find the expansion of the Binomial Theorem helpful to use for this.

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + \binom{n}{n-1}ab^{n-1} + b^n.$$

(iii) Hence, find the solutions of $\sin 5\theta - \sin 3\theta = 0$ in the interval $0 \le \theta < \pi$. Give your answers in exact form.

[2+2+4=8]

Q.14 (i) If
$$z = \cos \theta + i \sin \theta$$
, show that $1 + z = 2 \cos \frac{\theta}{2} (\cos \frac{\theta}{2} + i \sin \frac{\theta}{2})$.

(ii) z_1 , z_2 are complex numbers such that $|z_1|=|z_2|=1$. If z_1 , z_2 have arguments α,β respectively, where $-\pi<\alpha<\pi$ and $-\pi<\beta<\pi$,

show that
$$\frac{z_1+z_1z_2}{z_1+1}$$
 has modulus $\frac{\cos\frac{\beta}{2}}{\cos\frac{\alpha}{2}}$ and argument $\frac{\alpha+\beta}{2}$.

(iii) Given $|z_1|=|z_2|=1$ and $\frac{z_1+z_1z_2}{z_1+1}=2i$, find z_1 and z_2 in the form x+iy.

[1+2+8=11]