Approximate Nearest neighbor problem amidst box obstacles in \mathbb{R}^d

October 11, 2024

Input

- B: the set of n disjoint axis-aligned boxes in \mathbb{R}^d
- $S(=\{s_1,\ldots,s_k\})$: the set of k sites in \mathbb{R}^d
- Query point $q \in \mathbb{R}^d$
- Approximation factor ε

Output

• Return one of s_i such that $d(q, s_i) \leq (1 + \varepsilon) \cdot d(q, s_{i^*})$ where $i^* = \arg \min_i d(q, s_i)$ and d(x, y) is the Euclidean geodesic distance from x to y.

Sketch of the algorithm

- 1. For any (d-2)-face of the boxes, generate Steiner points in the following way.
 - Without loss of generality, suppose that a (d-2)-face is represented as $\Pi_{i=1}^{d-2}[a_{ki}, b_{ki}] \times a_{k(d-1)} \times a_{kd}$.
 - The interval is defined as $\varepsilon' = \frac{r_{\min}}{(2d+1)^{\frac{3}{2}}} \varepsilon$ where r_{\min} is the distance of the closest pair on $B \cup S \cup \{q\}$.
 - Then, we place Steiner points on each point in $\prod_{i=1}^{d-2} \{a_{ki} + m_{bi} + j\varepsilon' \mid j = 0, 1, ..., \lfloor \frac{b_{ki} a_{ki}}{\varepsilon} \rfloor \} \times \{a_{k(d-1)}\} \times \{a_{kd}\}$, where the *i*-th margin m_{bi} is defined as $\{(b_{ki} a_{ki}) \lfloor \frac{b_{ki} a_{ki}}{\varepsilon'} \rfloor \cdot \varepsilon' \}/2$.
- 2. Construct the visibility graph $G = (V_{\varepsilon}, E_{\varepsilon})$ with respect to B where V_{ε} is the union of $S \cup \{q\}$ and the Steiner points generated in 1.
- 3. Find s_i that minimizes $d_G(q, s_i)$ by running Dijkstra algorithm on $G = (V_{\varepsilon}, E_{\varepsilon})$.

Correctness of the algorithm

We show that $d_G(q, s_i) \leq (1 + \varepsilon)d(q, s_i)$ for any $s_i \in S$. Let $\pi = p_1 \dots p_m(p_1 = q)$ and $p_m = s_i$ be the shortest Euclidean geodesic path from q to s_i .

- 1. For any 1 < l < m, p_k is on a d-2-dimensional face of an obstacle. If p_l is on the interior of a (d-1)-dimensional face, $|p_{l-1}p_l| + |p_lp_{l+1}|$ can be reduced by moving p_l on the face.
- 2. For any 1 < l < m, there exists a Steiner point p'_i contained in $Q_l := \prod_{i=1}^d [p_{ki} \frac{\varepsilon'}{2}, p_{li} + \frac{\varepsilon'}{2}]$ where p_{li} is the *i*-th coordinate of p_l .
- 3. For $1 \le l < m$, the maximum distance from Q_l to Q_{l+1} is not more than $|p_{l-1}p_l| + \frac{\varepsilon}{2d+1} \cdot r_{\min}$.
- 4. Suppose that π hits the box b_1 and b_2 in B concecutively. Let $p_{l_1} \in \pi$ be the first point hitting b_1 and $p_{l_2} \in \pi$ be the first point hitting b_2 . Then the number of segments of π between p_{l_1} and p_{l_2} is at most 2d + 1 since the number of (d 1)-dimensional faces of a box is 2d and each face contain at most one segment of π .
- 5. Therefore, $d_G(p_{l_1}, p_{l_2}) \leq \sum_{i=l_1}^{l_2-1} |p_i' p_{i+1}'| \leq d(p_{l_1}, p_{l_2}) + \varepsilon \cdot r_{\min} \leq (1+\varepsilon) \cdot d(p_{l_1}, p_{l_2}).$

Complexity of the algorithm

Let denote $C:=(\frac{l_{\max}}{r_{\min}})^d$ where l_{\max} is the longest side of the boxes in B. Then, the number of Steiner points is $O(\frac{d^{1.5d-1}}{\varepsilon^{d-2}}n)$ and the number of edges in the visibility graph is $O(\frac{d^{3d-2}}{\varepsilon^{2(d-2)}}n^2)$. So, we can construct the visibility graph in $O(\frac{d^{3d-2}}{\varepsilon^{2(d-2)}}n^3)$ time since we can determine that a segment intersects with B in O(n) time and the Dijkstra from the query point spends $O(\frac{d^{3d-2}}{\varepsilon^{2(d-2)}}n^2\log n)$ time.