Álgebra Linear EAD - 2022 Prova 1 28-01-2022

Kaique Matias de Andrade Roberto Ana Luiza Tenório

28 de janeiro de 2022

Escolha até 7 dentre os 10 exercícios abaixo. NÃO resolva mais do que 7, pois só serão corrigidos os 7 primeiros.

Questão 1 (1,0 ponto). Calcule o determinante da matriz

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 0 & 2 & 0 & -1 \end{pmatrix}$$

Questão 2 (2,0 pontos). Seja

$$A = \begin{pmatrix} 1 & 2 & -5 \\ 4 & 2 & 3 \\ -1 & -8 & 28 \end{pmatrix}$$

- 1. (0,5 ponto) Resolva o sistema Ax = 0.
- 2. (0,5 ponto) É possível resolver este sistema usando o método de Cramer?
- 3. (1,0 ponto) Encontre uma base para o subespaço gerado pelas soluções do sistema Ax = 0.

Questão 3 (2,0 pontos). Seja

$$B = \begin{pmatrix} 1 & 2 & -5 \\ 1 & -1 & 3 \\ 1 & -1 & 0 \end{pmatrix}$$

- 1. (0,5 ponto) Resolva o sistema Bx = 0.
- 2. (0,5 ponto) É possível resolver este sistema usando o método de Cramer?
- 3. (1,0 ponto) Encontre uma base para o subespaço gerado pelas soluções do sistema Bx=0.

Questão 4 (1,5 ponto). Considere o conjunto

$$\mathcal{F}([0,1],\mathbb{R}): \{f: [0,1] \to \mathbb{R}\}$$

com as operações de soma e produto por escalar definidas para $f,g\in\mathcal{F}([0,1],\mathbb{R})$ e $\lambda\in\mathbb{R}$ pelas regras:

$$(f+g)(x) := f(x) + g(x) e(\lambda f)(x) := \lambda f(x).$$

Mostre que:

a - $(1, 0 \text{ ponto}) \mathcal{F}([0, 1], \mathbb{R})$ é um espaço vetorial;

b - $(0, 5 \text{ ponto}) \mathcal{F}([0, 1], \mathbb{R})$ não tem dimensão finita.

Questão 5 (1,0 ponto). Considere os conjuntos $X,Y\subseteq M_2(\mathbb{R})$ definidos por

$$X := \{ A \in M_2(\mathbb{R}) : \det A = 0 \} \text{ e } Y := \{ A \in M_2(\mathbb{R}) : \det A \neq 0 \}.$$

a - (0, 5 ponto) X é subespaço de $M_2(\mathbb{R})$?

b - (0,5 ponto) Y é subespaço de $M_2(\mathbb{R})$?

Questão 6 (3,5 ponto). Considere o conjunto $V, W \subseteq M_2(\mathbb{R})$ definidos por

$$V := \{ A \in M_2(\mathbb{R}) : A^t = A \} \in W := \{ A \in M_2(\mathbb{R}) : A^t = -A \}.$$

a - (0,5 ponto) Mostre que V e W são subespaços de $M_2(\mathbb{R})$.

b - (0, 5 ponto) Mostre que $M_2(\mathbb{R}) = V \oplus W$.

c - (1,5 ponto) Encontre uma base $B=B_1\cup B_2$ de $M_2(\mathbb{R})$ onde B_1 é base de V e B_2 é base de W. Escreva as matrizes ${}_BM_{can}$ e ${}_{can}M_B$.

d - (1, 0 ponto) Generalize os itens (a) e (b) para $M_n(\mathbb{R})$.

Questão 7 (1,5 ponto). Sejam $f_1, f_2, f_3, f_4 \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ definidas por

$$f_1(x) = x^2 + 1, f_2(x) = x - 1, f_3(x) = x + 1, f_4(x) = x^2 - 2x + 1.$$

a - (0, 5 ponto) As funções f_1, f_2, f_3, f_4 são linearmente independentes?

b - (0, 5 ponto) Encontre uma base para o subespaço $\langle f_1, f_2, f_3, f_4 \rangle$.

c - (0, 5 ponto) É verdade que $\langle f_1, f_2, f_3, f_4 \rangle$ é um subespaço de $\mathbb{R}_2[x]$?

Questão 8 (2,5 pontos). Seja $a \in \mathbb{R}$ e considere o conjunto $\mathbb{R}_n[a]$ definido por

$$\mathbb{R}_n[a] := \{ p(x) \in \mathbb{R}_n[x] : p(a) = 0 \}.$$

a - (0, 5 ponto) Mostre que $\mathbb{R}_n[a]$ é um subespaço de $\mathbb{R}_n[x]$.

b - (0, 5 ponto) Encontre uma base de $\mathbb{R}_3[a]$ (e consequentemente a dimensão de $\mathbb{R}_3[a]$).

c - (0, 5 ponto) Estenda a base encontrada para uma base B de $\mathbb{R}_3[x]$.

d - (0, 5 ponto) Considere $C \subseteq \mathbb{R}_3[x]$ definido por

$$C = \{1, x - 1, x^2 - 1, x^3 - 1\}.$$

Mostre que C é base de $C \subseteq \mathbb{R}_3[x]$.

e - (0,5 ponto) Encontre a matriz de mudança de base $_{C}M_{B}$.

Questão 9 (2,0 ponto). Seja $a \in \mathbb{R}$ e considere o conjunto $\mathbb{R}[x]$ definido por

$$\mathbb{R}[a] := \{ p(x) \in \mathbb{R}[x] : p(a) = 0 \}.$$

a - (0, 5 ponto) Mostre que $\mathbb{R}[a]$ é subespaço de $\mathbb{R}[x]$.

b - (1,5 ponto) A dimensão de $\mathbb{R}[a]$ é finita?

Questão 10 (1,0 ponto). Discuta e resolva os sistemas lineares em função do parâmetro $a \in \mathbb{R}$

$$\begin{cases} x + ay - z = 1 \\ x + y - az = 2 - a \\ ax + y - z = a \end{cases}$$