

QUIZ

IV SEMESTER (CSE / AI / CYBER / IT) ENGINEERING MATHEMATICS IV (MAT_2226)

Max Marks: 10 Date: 05-02-2024 Duration: 30 minutes Time: 12.00-12.30 PM

05-02-202-1	Tille: Inio-12
Student's Name	RUTVIK AVINASH BARBHAI
Branch (Section)	COMPUTER SCIENCE ENGINEERING
Registration Number	225805222

10/10

Sl.No	1	2	3	4	5	6	.7	8	9	10
Option	6)	c)	19	a)	c)	6)	c)	c)	8)	xe-2

Sl.No	· MCQ	Marks
1.	Three numbers are chosen from 1 to 20. The probability that they are not consecutive is a) $\frac{186}{190}$ b) $\frac{187}{190}$ c) $\frac{170}{190}$ d) $\frac{189}{190}$	1
2.	The chances that doctor A will diagnose a disease X correctly is 60%. The chances that a patient will die by his treatment after correct diagnosis is 40% and the chance of death by wrong diagnosis is 70%. A patient of doctor A, who had disease X. died. What is the chance that his disease was diagnosed correctly?	
	a) $\frac{8}{23}$ b) $\frac{6}{18}$ c) $\frac{6}{13}$ d) $\frac{8}{13}$	
3.	When $E(X)=3$ find $E(5X+4)=$	1
4.	A fair dice is thrown. Let A denotes the event 'getting even number' and B denotes the event 'getting multiple of 3'. Then choose the correct option (a. $P(A \cap B) = P(A)P(B)$ b. $P(A \cap B) < P(A)P(B)$ c. $P(A \cap B) > P(A)P(B)$	1
	d. $P(A) = P(B)$.	
5.	Let E and F be two events with P (E \cup F) = 0.6, P(E) = 0.3, P(F) = 0.4. Then P (E \cap F ^C)+P(E ^C \cap F) equals a) 0.3 b) 0.4 c) 0.5 d) 0.6	1
6.	A box contains 7 non-defective and 3 defective bulbs. Two bulbs are chosen at random	1
	from the box. The probability that at least one bulb is defective is	
	a) 8/11 by 8/15 c) 8/17 d) 8/19	mile.

7.	Var(4X+8) is	1
	a). 12 Var(X) · b). 4 Var (X)+8 (c) · 16 Var(X) d). 16 Var (X)+8	
8.	Let a pair of dice be thrown and the random variable X be the sum of the numbers that appear on the two dice. Find the mean or expectation of X.	1
	a). 5 b). 6 Le). 7 d).8	
9.	Find the variance of the number obtained on a throw of an unbiased die. a). 33/12 b). 35/12 c). 37/12 d). 39/12	1
10.	If $F(x) = 1 - e^{-x} - xe^{-x}$ then $f(X)$ is	1

Formula:

Addition rule: If A and B are two events of an experiment having sample space S, then $P(A \cup B) = P(A) + P(B) - P(A \cap B).$

The conditional probability of an event B, given that the event A already taken place is

$$P(B/A) = \frac{P(A \cap B)}{P(A)}, P(A) > 0.$$

Baye's Theorem:

Let $B_1, B_2, ...B_k$ are the partitions of S with $P(B_i) \neq 0, i = 1, 2, ...k$ and A be any event of S, then

$$P(B_i/A) = \frac{P(A/B_i)P(B_i)}{\sum_{i=1}^{k} P(A/B_i)P(B_i)}.$$

The multiplicative rule of probability: $P(A \cap B) = \begin{cases} P(A)P(B|A), & if P(A) \neq 0 \\ P(B)P(A|B), & if P(B) \neq 0 \end{cases}$ If $P(A \cap B) = P(A)P(B)$, then A and B are independent

Continuous Random Variable: A random variable X is said to be continuous if it can take all possible values between certain limits, here the range space of X is infinite. Therefore the probability distribution function named for such random variable is Probability density function (PDF), which is defined as the pdf of X is a function f(x) satisfying the following properties i), $f(x) \ge 0$

ii)
$$\int_{-\infty}^{\infty} f(x) dx = 1$$

iii)
$$\Pr\{a \le X \le b\} = \int_a^b f(x) dx$$
 for any a, b such that $-\infty < a < b < \infty$.
Note: 1. If X is a continuous random variable with pdf $f(x)$, then

$$P(a < X < b) = P(a \le X < b) = P(a < X \le b) = P(a \le X \le b) = \int_a^b f(x) dx$$
.
2. $P(X = a) = 0$, if X is a continuous random variable.

Cumulative distribution function: Let X be random variable (discrete or continuous), we define F to be the cumulative distribution function of a random variable X given by $F(x) = \Pr\{X \le x\}$. Case i) If X is discrete random variable then

$$F(t) = \Pr\{X \le t\} = P(x_1) + P(x_2) + \dots + P(t)$$

Case ii) If x is a continuous random variable then $F(x) = \Pr\{X \le x\} = \int_{-\infty}^{x} f(x) dx$.

Mathematical Expectation: If X is a discrete random variable with pmf p(x), then the expectation of X is given by $E(X) = \sum_{x} xp(x)$, provided the series is absolutely convergent.

If X is continuous with pdf f(x), then the expectation of X is given by $E(X) = \int x f(x) dx$, provided $\int |x| f(x) dx < \infty.$

Variance of X is given by $V(X) = E(X - E(X))^2 = E(X^2) - (E(X))^2$.