COMP 330/543: Relational Calculus

Luis Guzman

Sinan Kockara

Chris Jermaine

Rice University

Relational Calculus

Nothing more than a FOL predicate...

Embedded within a set constructor

Example: Bar-going People

LIKES (DRINKER, BEER)

FREQUENTS (DRINKER, BAR)

SERVES (BAR, BEER)

Query: Who goes to a bar?

Example: Bar-going People

LIKES (DRINKER, BEER)

FREQUENTS (DRINKER, BAR)

SERVES (BAR, BEER)

Query: Who goes to a bar?

 $\{f.DRINKER \mid FREQUENTS(f)\}$

Example: Bar-going People

FREQUENTS (DRINKER, BAR)

Query: Who goes to a bar?

 $\{f.DRINKER \mid FREQUENTS(f)\}$

FREQUENTS

DRINKER	BAR
Luis	Bar1
Luis	Bar2
Sinan	Bar2
Chris	Bar3

Output: {Luis, Sinan, Chris}

LIKES (DRINKER, BEER)

FREQUENTS (DRINKER, BAR)

SERVES (BAR, BEER)

Query: Who goes to a bar serving Pabst Blue Ribbon (PBR)?

LIKES (DRINKER, BEER)

FREQUENTS (DRINKER, BAR)

SERVES (BAR, BEER)

Query: Who goes to a bar serving Pabst Blue Ribbon (PBR)?

 $\{f.\mathsf{DRINKER} \mid \mathsf{FREQUENTS}(f) \land \exists (s)(\mathsf{SERVES}(s))\}$

 $\land s.\mathsf{BEER} = \text{``PBR''} \land s.\mathsf{BAR} = f.\mathsf{BAR})$

Relational Calculus: Syntax

Recall the syntax $\{t|P(t)\}$

- 1. Start with {}
- 2. and the "such that" bar,
- 3. Then add what you are looking for to the left of the |. This is a description of the tuples you want back
- 4. Then work on the right-hand side
- 5. Provide a predicate that evaluates to True over all the variables that appear on the left
- 6. If the predicate evaluates to True, that tuple will be included in the result set

LIKES (DRINKER, BEER)

FREQUENTS (DRINKER, BAR)

SERVES (BAR, BEER)

Query: Who has not gone to a bar serving Pabst Blue Ribbon (PBR)?

LIKES (DRINKER, BEER)

FREQUENTS (DRINKER, BAR)

SERVES (BAR, BEER)

Query: Who has not gone to a bar serving Pabst Blue Ribbon (PBR)?

 $\{f.\mathsf{DRINKER} \mid \mathsf{FREQUENTS}(f) \land \exists (s)(\mathsf{SERVES}(s))\}$

 \land not $(s.BEER = "PBR") \land s.BAR = f.BAR)$

LIKES (DRINKER, BEER)

FREQUENTS (DRINKER, BAR)

SERVES (BAR, BEER)

Query: Who has not gone to a bar serving Pabst Blue Ribbon (PBR)?

 $\{f.\mathsf{DRINKER} \mid \mathsf{FREQUENTS}(f) \land \exists (s)(\mathsf{SERVES}(s))\}$

 \land not $(s.\mathsf{BEER} = \mathsf{"PBR"}) \land s.\mathsf{BAR} = f.\mathsf{BAR})\}$

Wrong! This gives us "Who has gone to a bar that serves beers other than PBR".

 $\{f.\mathsf{DRINKER} \mid \mathsf{FREQUENTS}(f) \land \exists (s)(\mathsf{SERVES}(s))\}$

 \land not $(s.BEER = "PBR") \land s.BAR = f.BAR)$

FREQUENTS

DRINKER	BAR
Luis	Bar1
Luis	Bar2
Sinan	Bar2
Chris	Bar3

SERVES

BAR	BEER
Bar1	Modelo
Bar2	PBR
Bar2	Corona
Bar3	PBR

Output: {Luis, Sinan}

LIKES (DRINKER, BEER)

FREQUENTS (DRINKER, BAR)

SERVES (BAR, BEER)

Query: Who has not gone to a bar serving Pabst Blue Ribbon (PBR)?

 $\{f.\mathsf{DRINKER} \mid \mathsf{FREQUENTS}(f) \land \mathsf{not} \ \exists (s)(\mathsf{SERVES}(s))\}$

 $\land s.BEER = "PBR" \land s.BAR = f.BAR)$

LIKES (DRINKER, BEER)

FREQUENTS (DRINKER, BAR)

SERVES (BAR, BEER)

Query: Who has not gone to a bar serving Pabst Blue Ribbon (PBR)?

 $\{f.\mathsf{DRINKER} \mid \mathsf{FREQUENTS}(f) \land \mathsf{not} \exists (s)(\mathsf{SERVES}(s))\}$

 $\land s.\mathsf{BEER} = \text{``PBR''} \land s.\mathsf{BAR} = f.\mathsf{BAR})$

Wrong! This gives us "Who has gone to a bar that does not serve PBR"

 $\{f. DRINKER \mid FREQUENTS(f) \land not \exists (s)(SERVES(s)) \}$

 $\land s.\mathsf{BEER} = \text{``PBR''} \land s.\mathsf{BAR} = f.\mathsf{BAR})$

FREQUENTS

DRINKER	BAR
Luis	Bar1
Luis	Bar2
Sinan	Bar2
Chris	Bar3

SERVES

BAR	BEER
Bar1	Modelo
Bar2	PBR
Bar2	Corona
Bar3	PBR

Output: {Luis}

LIKES (DRINKER, BEER)
FREQUENTS (DRINKER, BAR)
SERVES (BAR, BEER)

Query: Who has not gone to a bar serving Pabst Blue Ribbon (PBR)? We need to introduce a second variable f_2

 $\{f.\mathsf{DRINKER} \mid \mathsf{FREQ}(f) \land \mathsf{not} \exists (f_2, s)(\mathsf{FREQ}(f_2) \land \mathsf{SERVES}(s) \land s.\mathsf{BEER} = \text{``PBR''} \land f_2.\mathsf{BAR} = s.\mathsf{BAR} \land f.\mathsf{DRINKER} = f_2.\mathsf{DRINKER})\}$

• Why do we need both f and f_2 here?

LIKES (DRINKER, BEER)
FREQUENTS (DRINKER, BAR)
SERVES (BAR, BEER)

Query: Who has not gone to a bar serving Pabst Blue Ribbon (PBR)? The same result can be achieved using Universal quantification $\{f.\mathsf{DRINKER} \mid \mathsf{FREQUENTS}(f) \land \forall (f_2)(\mathsf{FREQUENTS}(f_2) \land f.\mathsf{DRINKER} = f_2.\mathsf{DRINKER} \to \mathsf{not} \exists (s)(\mathsf{SERVES}(s))$

 $\land s.BEER = "PBR" \land s.BAR = f_2.BAR))$

• Note: we invariably have a " \rightarrow " within a \forall quantifier. Why?

 $\{f. DRINKER \mid FREQUENTS(f) \land \forall (f_2)(FREQUENTS(f_2)) \land f. DRINKER = f_2. DRINKER \rightarrow \text{ not } \exists (s)(SERVES(s)) \}$

 $\land s.BEER = "PBR" \land s.BAR = f_2.BAR))$

FREQUENTS

DRINKER	BAR
Luis	Bar1
Luis	Bar2
Sinan	Bar2
Chris	Bar3

SERVES

BAR	BEER
Bar1	Modelo
Bar2	PBR
Bar2	Corona
Bar3	PBR

Output: {}

 $\{f. DRINKER \mid FREQUENTS(f) \land \forall (f_2) (FREQUENTS(f_2)) \}$

 $\land f.\mathsf{DRINKER} = f_2.\mathsf{DRINKER} \to \mathsf{not} \ \exists (s)(\mathsf{SERVES}(s))$

 $\land s.BEER = "PBR" \land s.BAR = f_2.BAR))$

FREQUENTS

DRINKER	BAR
Luis	Bar1
Luis	Bar3
Sinan	Bar2
Chris	Bar3

SERVES

BAR	BEER
Bar1	Modelo
Bar2	PBR
Bar2	Corona
Bar3	Blue Moon

Output: {Luis, Chris}

Example: People Who Like to Drink

LIKES (DRINKER, BEER)

FREQUENTS (DRINKER, BAR)

SERVES (BAR, BEER)

Query: Who goes to a bar that serves a beer they like?

Example: People Who Like to Drink

LIKES (DRINKER, BEER)
FREQUENTS (DRINKER, BAR)
SERVES (BAR, BEER)

Query: Who goes to a bar that serves a beer they like?

```
\{f.\mathsf{DRINKER} \mid \mathsf{FREQUENTS}(f) \land \exists (s,l)(\mathsf{SERVES}(s) \land \mathsf{LIKES}(l) \land s.\mathsf{BEER} = l.\mathsf{BEER} \land s.\mathsf{BAR} = f.\mathsf{BAR} \land l.\mathsf{DRINKER} = f.\mathsf{DRINKER})\}
```

• Why are we not referring to any relation more than once?

Example: Super Cool Bars

LIKES (DRINKER, BEER)

FREQUENTS (DRINKER, BAR)

SERVES (BAR, BEER)

Query: Which bars serve all of the beers that Luis likes?

Example: Super Cool Bars

LIKES (DRINKER, BEER)

FREQUENTS (DRINKER, BAR)

SERVES (BAR, BEER)

Query: Which bars serve all of the beers that Luis likes?

 $\{s.\text{BAR} \mid \text{SERVES}(s) \land \forall (l) (\text{if } l \text{ is from LIKES and corresponds to "Luis", then the bar serves it)} \}$

Example: Super Cool Bars

LIKES (DRINKER, BEER)

FREQUENTS (DRINKER, BAR)

SERVES (BAR, BEER)

Query: Which bars serve all of the beers that Luis likes?

 $\{s.\text{BAR} \mid \text{SERVES}(s) \land \forall (l)(\text{LIKES}(l) \land l.\text{DRINKER} = \text{``Luis''}\}$

 $\rightarrow \exists (s_2)(\text{SERVES}(s_2) \land s_2.\text{BAR} = s.\text{BAR} \land s_2.\text{BEER} = l.\text{BEER}))$

Example: People Who Avoid Bad Bars

LIKES (DRINKER, BEER)

FREQUENTS (DRINKER, BAR)

SERVES (BAR, BEER)

Query: Which people only go to bars that serve a beer they like?

Example: People Who Avoid Bad Bars

LIKES (DRINKER, BEER)

FREQUENTS (DRINKER, BAR)

SERVES (BAR, BEER)

Query: Which people only go to bars that serve a beer they like? $\{f.\mathsf{DRINKER} \mid \mathsf{FREQUENTS}(f) \land \forall (f_2) (\mathsf{if}\ f_2 \mathsf{tells} \mathsf{us} \mathsf{a} \mathsf{bar} \mathsf{that} f.\mathsf{DRINKER} \mathsf{goes} \mathsf{to} \mathsf{then} \mathsf{that} \mathsf{bar} \mathsf{needs} \mathsf{to} \mathsf{serve} \mathsf{a} \mathsf{beer} \mathsf{that} f.\mathsf{DRINKER} \mathsf{likes})\}$

Example: People Who Avoid Bad Bars

LIKES (DRINKER, BEER)

FREQUENTS (DRINKER, BAR)

SERVES (BAR, BEER)

Query: Which people only go to bars that serve a beer they like?

 $\{f.\mathsf{DRINKER} \mid \mathsf{FREQUENTS}(f) \land \forall (f_2)(\mathsf{FREQUENTS}(f_2) \\ \land f.\mathsf{DRINKER} = f_2.\mathsf{DRINKER} \rightarrow \exists (s,l)(\mathsf{SERVES}(s) \land \mathsf{LIKES}(l) \\ \land s.\mathsf{BAR} = f_2.\mathsf{BAR} \land l.\mathsf{BEER} = s.\mathsf{BEER} \\ \land l.\mathsf{DRINKER} = f_2.\mathsf{DRINKER})\}$

Questions?

Questions?

FREQUENTS

DRINKER	BAR
Luis	Bar1
Luis	Bar3
Sinan	Bar2
Chris	Bar3