Bewijzen Proefwerk Juni

Aron Martens

March 2025

1 Bepaalde integraal p.16

Stel dat f een positieve, continue functie is in [a,b]. We zoeken de oppervlakte van het gebied tussen f en de x-as.

- 1. Verdeel [a, b] in n intervallen met breedte $\Delta x = \frac{b-a}{n}$.
- 2. Bereken in elk interval het minimum m_i en maximum M_i . Aangezien f continu is, zijn deze altijd te vinden. (Stelling van Weierstrass).
- 3. Bereken de ondersom en de bovensom:

$$s_n = \sum_{i=1}^n m_i \cdot \Delta x$$
 en $S_n = \sum_{i=1}^n M_i \cdot \Delta x$

4. We definiëren de bepaalde integraal als

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} S_n = \int_a^b f(x) \, dx$$

1.1 Opmerking Riemannsom p.16

Bernhard Rimemann toonde aan dat je het minimum of maximum niet nodig hebt. Een willekeurige functiewaarde $f(x_i)$ volstaat.

Bewijs.

$$m_{i} \leq f(x_{i}) \leq M_{i}$$

$$\downarrow \downarrow$$

$$m_{i} \cdot \Delta x \leq f(x_{i}) \cdot \Delta x \leq M_{i} \cdot \Delta x$$

$$\downarrow \downarrow$$

$$\sum_{i=1}^{n} m_{i} \cdot \Delta x \leq \sum_{i=1}^{n} f(x_{i}) \cdot \Delta x \leq \sum_{i=1}^{n} M_{i} \cdot \Delta x$$

$$\downarrow \downarrow$$

$$s_{n} \leq \sum_{i=1}^{n} f(x_{i}) \cdot \Delta x \leq S_{n}$$

Omdat $\lim_{n\to\infty} s_n = \lim_{n\to\infty} S_n = \int_a^b f(x) \, dx$, volgt uit de insluitstelling dat

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \cdot \Delta x = \int_{a}^{b} f(x) dx$$

2 Integraal van $x^0 = 1$ p.19

$$\int_{a}^{b} x^{0} dx = \lim_{n \to \infty} \frac{b - a}{n} \cdot \sum_{i=1}^{n} 1$$

$$= \lim_{n \to \infty} n \cdot n$$

$$= b - a$$

3 Integraal van x

We verdelen [a, b] in n deelintervallen met breedte $Deltax = \frac{b-a}{n}$. Als x_i nemen we de linkergrens van elk interval.

INTERVAL	x_i	$f\left(x_{i}\right)=x_{i}$
$[a, a + \Delta x]$	a	a
$[a + \Delta x, a + 2\Delta x]$	$a + \Delta x$	$a + \Delta x$
$[a+2\Delta x, a+3\Delta x]$	$a + 2\Delta x$	$a + 2\Delta x$
	• • •	• • •
$[a + (n-1)\Delta x, b]$	$a + (n-1) \Delta x$	$a + (n-1) \Delta x$

$$\int_{a}^{b} x \, dx = \lim_{n \to \infty} \frac{b - a}{n} \cdot [a + (a + \Delta x) + (a + 2\Delta x) + \dots + (a + (n - 1)\Delta x)]$$

$$= \lim_{n \to \infty} \frac{b - a}{n} \cdot \frac{n \cdot (a + a + (n - 1)\Delta x)}{2} \qquad \left(s = \frac{u_1 + u_n}{2} \cdot n\right)$$

$$= \lim_{\Delta x \to 0} \frac{(b - a) \cdot (a + b - \Delta x)}{2}$$

$$= \frac{b^2 - a^2}{2}$$

4 Integraal van x^2

4.1 Over het interval [0, b] met b > 0

We verdelen [0, b] in n deelintervallen met breedte $\Delta x = \frac{b}{n}$. Als x_i nemen we de rechtergrens van elk interval.

INTERVAL	x_i	$f\left(x_{i}\right)=x_{i}^{2}$
$[0, \Delta x]$	Δx	$1\left(\Delta x\right)^2$
$[\Delta x, 2\Delta x]$	$2\Delta x$	$4\left(\Delta x\right)^2$
$[2\Delta x, 3\Delta x]$	$3\Delta x$	$9\left(\Delta x\right)^2$
$[(n-1)\Delta x,b]$	$n\Delta x = b$	$n^2 \left(\Delta x\right)^2$

$$\int_0^b x^2 dx = \lim_{n \to \infty} \frac{b}{n} \left(\left(1 + 4 + 9 + \dots + n^2 \right) \cdot (\Delta x)^2 \right)$$

$$= \lim_{n \to \infty} \frac{b}{n} \frac{n \cdot (n+1) (2n+1)}{6} \cdot \frac{b^2}{n^2}$$

$$= \frac{b^3}{6} \lim_{n \to \infty}$$

5 Oppervlakte van een cirkel p.119

Stelling. De oppervlakte van een cirkel met straal r is πr^2

Bewijs. De vergelijking van een cirkel is

$$x^2 + y^2 = r^2.$$

Dan is de vergelijking in het eerste kwadrant:

$$y = \sqrt{r^2 - x^2}.$$

De oppervlakte is dus

$$A = 4 \cdot \int_0^r \sqrt{r^2 - x^2} \, dx$$

Stel $x = r \sin t$ en $t \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$, dan is $dx = r \cos t \, dt$.

$$\sqrt{r^2 - x^2} \, dx = \sqrt{r^2 - r^2 \sin^2 t} \, dx = r \sqrt{\cos^2 t} \cdot r \cos t \, dt = r^2 \cos^2 t \, dt.$$

Als x = 0, dan is $r \sin t = 0$ of t = 0.

Als x = r, dan is $r \sin t = r$ of $t = \frac{\pi}{2}$.

Dus

$$A = 4 \cdot \int_0^r \sqrt{r^2 - x^2} \, dx = 4r^2 \int_0^{\frac{\pi}{2}} \cos^2 t \, dt = 4r^2 \int_0^{\frac{\pi}{2}} \frac{1 + \cos 2t}{2} \, dt = 2r^2 \left[t + \frac{\sin 2t}{2} \right]_0^{\frac{\pi}{2}}$$
$$= 2r^2 \cdot \frac{\pi}{2} = \pi r^2.$$

6 Oppervlakte van een cirkelsegment p.121

Stelling. De oppervlakte van een cirkelsegment met straal r en middelpuntshoek ϑ is $\frac{r^2}{2}\left(\vartheta-\sin\vartheta\right)$.

Bewijs. De vergelijking van een cirkel is

$$x^2 + y^2 = r^2.$$

Dan is de vergelijking in het eerste kwadrant:

$$y = \sqrt{r^2 - x^2}.$$

De oppervlakte is:

$$A = 2 \cdot \int_{a}^{r} \sqrt{r^2 - x^2} \, dx$$

Stel $x = r \cos t$ en $t \in [0, \pi]$, dan is $dx = -r \sin t \, dt$. Dan is

$$\sqrt{r^2 - x^2} \, dx = \sqrt{r^2 - r^2 \cos^2 t} \, dx = r \sqrt{\sin^2 t} \, (-r \sin t) \, dt = -r^2 \sin^2 t \, dt.$$

Als x = a, dan is $r \cos t = a$ of $t = \operatorname{bgcos} \frac{a}{r} = \frac{\vartheta}{2}$.

Als x = r, dan is $r \cos t = r$ of t = 0.

Dus

$$\begin{split} A &= 2 \cdot \int_a^r \sqrt{r^2 - x^2} \, dx = -2r^2 \int_{\frac{\vartheta}{2}}^0 \sin^2 t \, dt = -2r^2 \int_{\frac{\vartheta}{2}}^0 \frac{1 - \cos 2t}{2} \, dt = -r^2 \left[t - \frac{\sin 2t}{2} \right]_{\frac{\vartheta}{2}}^0 \\ &= -r^2 \left(-\frac{\vartheta}{2} + \frac{\sin \vartheta}{2} \right) = \frac{r^2}{2} \left(\vartheta - \sin \vartheta \right). \end{split}$$

7 Oppervlakte van een cirkelsector p.122

Stelling. De oppervlakte van een cirkelsector met straal r en middelpuntshoek ϑ is $\frac{r^2\vartheta}{2}$.

Bewijs. Met een hoek van 2π is de oppervlakte de hele cirkel dus πr^2 . Dan is de oppervlakte van de cirkelsector met hoek ϑ gelijk aan $\pi r^2 \cdot \frac{\vartheta}{2\pi} = \frac{r^2\vartheta}{2}$.

8 Volume omwentelingslichamen p.134

Stel dat f een continue functie is in [a,b]. We zoeken het volume V van het omwentelingslichaam van f tussen a en b.

- 1. Verdeel [a, b] in n intervallen met breedte $\Delta x = \frac{b-a}{n}$.
- 2. Kies in elk interval een willekeurige c_i . We bouwen een rechthoekje met breedte Δx en hoogte $|f(c_i)|$.
- 3. We wentelen dit om de x-as en krijgen een cilinder met volume $\Delta x \cdot \pi \cdot (f(c_i))^2$.
- 4. De som van alle cilinders is

$$V_n = \sum_{i=1}^{n} \Delta x \cdot \pi \cdot (f(c_i))^2.$$

5. De limiet hiervan is het gevraagde volume

$$V = \lim_{n \to +\infty} \sum_{i=1}^{n} \Delta x \cdot \pi \cdot (f(c_i))^{2}.$$

6. Omdat f continu is, is πf^2 ook continu. Door de definitie van bepaalde integralen is het volume gelijk aan

$$V = \pi \int_{a}^{b} \left(f\left(c_{i}\right) \right)^{2} dx$$

9 Volume van een cilinder p.137

Stelling. Het volume van een cilinder met hoogte h en straal r is $\pi r^2 h$.

Bewijs. \ll Figuur P. 137 \gg

De cilinder is gevormd door y = r te wentelen om de x-as. Het volume is dus

$$V = \pi \int_0^h r^2 dx = \pi r^2 [x]_0^h = \pi r^2 h.$$

10 Volume van een kegel p.137

Stelling. Het volume van een kegel met hoogte h en straal r is $\frac{1}{3}\pi r^2 h$.

Bewijs. \ll Figuur P. 137 \gg

De kegel is gevormd door $y = \frac{r}{h}x$ te wentelen om de x-as. Het volume is dus

$$V = \pi \int_0^h \frac{r^2}{h^2} x^2 dx = \pi \frac{r^2}{h^2} \left[\frac{x^3}{3} \right]_0^h = \frac{1}{3} \pi r^2 h.$$

11 Volume van een afgeknotte kegel p.138

Stelling. Het volume van een afgeknotte kegel met hoogte h en stralen a en b is $\frac{\pi h}{3} \cdot \left(b^2 + ab + a^2\right)$.

Bewijs. \ll Figuur p. 138 \gg

De afgeknotte kegel is gevormd door de rechte door (0,a) en (h,b) om de x-as te wentelen.

Deze rechte heeft als vergelijking $y-a=\frac{b-a}{h-0}\cdot(x-0)\iff y=\frac{b-a}{h}x+a.$ Het volume is dus

$$V = \pi \int_0^h \left(\frac{b-a}{h}x + a\right)^2 dx.$$
 Stel $t = \frac{b-a}{h}x + a$
Dan $dt = \frac{b-a}{h}dx$

Voor
$$x = 0$$
 is $t = a$.

Voor
$$x = h$$
 is $t = b$.

$$\begin{split} &= \frac{h}{b-a} \cdot \pi \int_{a}^{b} \left(\frac{b-a}{h} x + a \right)^{2} \frac{b-a}{h} dx \\ &= \frac{\pi h}{b-a} \int_{a}^{b} t^{2} dt \\ &= \frac{\pi h}{b-a} \cdot \left[\frac{t^{3}}{3} \right]_{a}^{b} \\ &= \frac{\pi h}{b-a} \cdot \frac{b^{3}-a^{3}}{3} \qquad \qquad \left(b^{3} - a^{3} = (b-a)(b^{2} + ab + a^{2}) \right) \\ &= \frac{\pi h}{3} \cdot \left(b^{2} + ab + a^{2} \right) \end{split}$$

12 Volume van een bol p.139

Stelling. Het volume van en bol met straal r is $\frac{4\pi r^3}{3}$

Bewijs. \ll Figuur p. 139 \gg

De bol is gevormd door $y = \sqrt{r^2 - x^2}$ te wentelen om de x-as. Het volume is dus

$$V = \pi \int_{-r}^{r} (r^2 - x^2) dx$$

$$= \pi \int_{-r}^{r} r^2 dx - \pi \int_{-r}^{r} x^2 dx$$

$$= \pi r^2 \left[x \right]_{-r}^{r} - \pi \left[\frac{x^3}{3} \right]_{-r}^{r}$$

$$= \pi r^2 \cdot 2r - \frac{2\pi r^3}{3}$$

$$= \frac{4\pi r^3}{3}.$$