Rapid, interactive visualization of tabular multi-omics data with OmicLoupe

NBIS omics integration course Jakob Willforss, 9th October 2020

What I do

Proteomics for biomarker discovery

Improved methods for interpretation of omics

The plan for this hour

1. Lecture

2. Demonstration / hands-on

Focus: Integrative study proteomics/transcriptomics

Article | Published: 14 May 2020

Proteomics of SARS-CoV-2-infected host cells reveals therapy targets

Nature **583**, 469–472(2020) Cite this article

RESEARCH ARTICLE

SARS-CoV-2 productively infects human gut enterocytes

Science 03 Jul 2020: Vol. 369, Issue 6499, pp. 50-54 DOI: 10.1126/science.abc1669

My Ph.D. projects before OmicLoupe

Seasons

Seasons + validation

My Ph.D. projects before OmicLoupe

Works OK, but:

- Repeated work
- Slow to explore many settings
- Tricky to swiftly inspect details in figures
- Tricky to compare between figures

With OmicLoupe

Seasons

Timepoints

Ouality

Statistics

Overlaps

Seasons + validation

Design philosophy:

Minimal time & effort in → Maximal output & insight out

Outliers, batch effects, technical trends, biological trends

What trends are present in each dataset?

What trends are shared <u>across</u> datasets?

What is OmicLoupe?

R Shiny + Plot.ly software for rapid, interactive omics-exploration

Tool for **understanding** your single-omics data

Tool for understanding **shared trends** across comparisons/datasets/omics

Reproducible, publication quality visualizations

Can be provided to **end-users** to further explore their data

Modular, can easily be extended (maybe with ideas from you!)

What does it do?

Data generation

Data processing

Statistical analysis

Overlaps

Custom

Sample-level visualizations

Interactive Qstatistical visualizations

Overlap analysis

Single-feature inspections

Further custom visualizations

Comparing trends - Use cases

One omic – Multiple comparisons

One dataset – Multiple methods

One study – Multiple repeated samplings

Multiomics ─ Today's focus

Visualizing a multi-omics study with OmicLoupe

Resource

Proteogenomic Characterization of Endometrial Carcinoma

Graphical Abstract

Authors

Yongchao Dou, Emily A. Kawaler, Daniel Cui Zhou, ..., Tao Liu, David Fenyö, the Clinical Proteomic Tumor Analysis Consortium

Correspondence

karin.rodland@pnnl.gov (K.D.R.), Iding@wustl.edu (L.D.), bing.zhang@bcm.edu (B.Z.), tao.liu@pnnl.gov (T.L.), david@fenyolab.org (D.F.)

In Brief

Proteogenomic analyses of prospectively collected endometrial carcinomas provide insights into the role of underlying molecular pathways and the immune landscape that drive disease.

Quality control (some examples)

PCA Density Boxplot

(Had to remove the figures as they will be used in a publication, sorry)

Statistical comparisons

Volcano MA P-value histogram

Highlight in figure, see distribution across plots (volcano, MA, p-value histogram)

High versus low severity tumours (cnvhigh vs cnvlow) In proteomics and transcriptomics

The workflow

Expression table(s):

RNA-seq, proteomics, metabolomics, microarray ...

NormalyzerDE:

https://github.com/ComputationalProteomics/NormalyzerDE Limma, DESeq2 ... (any other statistical tool)

OmicLoupe explorations

Sample input

Data matrix/matrices

(expression data and feature annotations)

Design matrix/matrices

(sample names and conditions)

Statistical values for each contrast

P-values, FDR, log2 fold and average expression

If multiple data matrices: One column with shared IDs

Sample input: Design- and data matrix

One column matching data matrix samples Columns with sample-conditions

Design matrix

Data matrix

	7111101011							<u> </u>	, ,	•	<u> </u>	<u> </u>		
	Α	В	С	D	E	F	G	Н	I	J	K	L	M	N
1	protein_clean	class	Protein	pep_count	comp.logFC	comp.AveExpr	comp.P.Value	comp.adj.P.Val	lgillet_i160308_001	lgillet_i160308_003	lgillet_i160308_010	lgillet_i160308_002	lgillet_i160308_004	lgillet_i160308_011
2	spjA5YKK6jC	human	sp A5Y	3	0.073784318	11.3225318223	0.6786698897	0.90829599045	11.3053574142909	11.3448550103576	11.2067065648476	11.5676815760961	11.3386650815976	11.1719252863554
3	sp A6NDG6 P	human	sp A6N	2	0.006031125	11.8171520319	0.9768654934	0.99225626494	11.8928902180519	11.8594667265317	11.6900524644403	11.5955302341385	12.2099263677684	11.6550461806867
4	sp A6NHR9 S	human	sp A6N	3	0.956455969	10.1125441201	0.000635318	0.00292589446	9.72739285571531	9.80319264154475	9.65929969991161	NA	10.692847883279	10.6799875201249
5	sp A6NL28 TF	human	sp A6NP	3	0.345339762	12.8661147738	0.2327309507	0.54158389469	13.1678034694425	12.6076458632851	12.3048853451425	12.9169448583949	13.502020002742	12.6973891036369
6	spjA8MWD9jF	human	sp A8M	3	0.151960587	15.1225403267	0.4168190744	0.74842864064	15.0785821219339	15.0567513793221	15.004346598198	15.2741940213053	15.3958206314456	14.9255472078366
7	sp C8Z543 AF	yeast	sp C8Z9	15	NA	12.0375169527	NA	NA	11.4590027424857	12.0572472258314	12.5963008897086	NA	NA	NA
8	sp C8Z9Z9 AI	yeast	sp C8Z9	3	NA NA	11.1074554499	NA	NA	10.7191307214481	11.8940039341242	10.7092316941399	NA	NA	NA
9	sp C8ZDR4 H	yeast	sp C8ZP	3	NA NA	11.3154450479	NA	NA	11.1341650919135	11.8987098865356	10.9134601653582	NA	NA	NA
10	sp C8ZFZ7 BI	yeast	sp C8ZP	6	NA	12.546299468	NA	NA	12.6808536344715	12.4437430369664	12.5143017325099	NA	NA	NA
11	sp C8ZG13 PI	yeast	sp C8Z0	2	NA	11.005518271	NA	NA	11.1268408938074	10.9133287296018	10.9763851894952	NA	NA	NA
12	sp O00116 AE	human	sp O00?	7	0.387193082	12.0875631472	0.080954491	0.25186991899	12.145471397551	11.9120655377126	11.6243628834736	12.4594595073696	12.3452771616492	12.0387423955942
13	sp O00139 KI	human	sp 000?	2	0.009327052	10.9318839361	0.9665470883	0.99140348478	11.0812888908325	10.7680239980367	10.935146457096	10.7210844881852	NA	11.1538758462433
14	sp 000148 D>	human	sp 000?	ç	0.273229384	13.0972781038	0.1311679728	0.36223799977	13.0405681366035	12.8399973670675	13.0014247325095	13.2333602773008	13.3602269183308	13.1080911911772
15	sp 000148 D>	human	sp 0003	12	0.093832475	15.9851177832	0.5975302322	0.86227227463	16.0842424333428	15.9020245999128	15.8283376033529	16.2139081723778	15.9557395819064	15.9264543084892
16	sp O00148 D>	ambiguous	sp 000?	2	0.754974214	14.8001969308	0.0324117393	0.11512081996	14.3229700574638	14.138330851045	15.0333208270964	15.5114134323332	NA	14.9949494862226
17	sp O00151 PE	human	sp 000?	2	0.575279174	10.393404225	0.0773638338	0.24287252586	10.1431774462571	9.87562265895916	10.298493808076	11.1054870281953	9.9529521767828	10.9846922315613
18	sp O00154 B	human	sp O00?	5	0.078752393	12.220518744	0.7080232516	0.92004199982	12.0819792418602	12.1861080477041	12.2753403528755	12.4390542786356	11.8578922526316	12.4827382903155
19	splO00159IM	human	splO002	11	0.170384172	12.1034443887	0.3604086284	0.6959318992	11.961578981285	12.1242195565334	11.9689583696402	12.2560119707843	12.3666746037258	11.943222850094

Sample input: Statistical contrast(s)

If using multiple tables

Proteomics

	Α	В	С	D	E	F	G
	gene_symbol	accession	species_names	featureAvg	infected_2h-control_2h_PValue	infected_2h-control_2h_log2FoldChange	infected_2h-control_2h_AdjPVal
2	AFP	P02771	Homo sapiens OX=9606	11.031331403655	0.30969902158687	-0.307359232716664	0.99980939482126
3	FABP1	P07148	Homo sapiens OX=9606	10.954591559394	0.587573151279121	-0.209476148787799	0.99980939482126
1	VIL1	P09327	Homo sapiens OX=9606	10.698272236802	0.416645112976052	-0.191097088944636	0.99980939482126
5	KRT18	P05783	Homo sapiens OX=9606	11.2095110506113	0.633331356317085	-0.132690067072895	0.99980939482126
5		Q9P2E9	Homo sapiens OX=9606	10.4230791312684	0.459488934884819	-0.167897844503694	0.99980939482126
7	ANXA4	P09525	Homo sapiens OX=9606	10.6499881385456	0.82781011607852	-0.050223942845536	0.99980939482126
3	KRT8	P05787	Homo sapiens OX=9606	10.619917799405	0.844472953537969	-0.060373667476336	0.99980939482126
)	MUC13	Q9H3R2	Homo sapiens OX=9606	9.37852849994093	0.831812491341271	0.078448770880204	0.99980939482126
0	CDH17	Q12864	Homo sapiens OX=9606	9.86333520601928	0.518411935369265	-0.142734075113003	0.99980939482126
1	LGALS3	P17931	Homo sapiens OX=9606	10.2031600815392	0.489722341053065	-0.135236521146233	0.99980939482126
2	SERPINA1	P01009	Homo sapiens OX=9606	10.0902246911767	0.55887555105166	-0.136333152852051	0.99980939482126
3	IDH1	O75874	Homo sapiens OX=9606	9.87676816158489	0.184527739086192	-0.358249535050817	0.99980939482126
4	010-400	077010	11 OV 0000	10 4000100000000	0.445000070000014	0.475500000504700	0.000000004004004

One column need to be in common

	А	R	C	ט	E	F	
	idx	diff_med_24h.logFC	diff_med_24h.AveExpr	diff_med_24h.t	diff_med_24h.P.Value	diff_med_24h.adj.P.Va	
	AAAS	0.028183162940322	5.72297816146273	0.100490173895532	0.921125366636798	0.9917695300499	
	AACS	0.534149879708331	4.45269791483771	1.64919191277447	0.117377841874363	0.4509357956044	
1	AARS	0.199342676608586	4.98757470941001	0.481363034947611	0.636367796688444	0.9279204702562	
,	AASDHPPT	-0.247161129015488	4.83935965937663	-0.695725656217854	0.495959151345674	0.8313211270439	
j	ABCC1	-1.23553413477472	2.70011516424125	-1.65099903822641	0.117004717006166	0.4501955251607	
•	ABCD1	0.152322007640473	0.857479682917489	0.168071491533119	0.86850117891888	0.9917695300499	
}	ABCD3	-0.281670225429062	6.41489681550556	-1.32645373367621	0.202153780378643	0.5642399595980	
)	ABCE1	0.623063181229627	5.35006411905552	2.15407647213151	0.045802950961147	0.296402241764	
0	ABCF1	0.015813080864439	4.88613299788463	0.047478118279708	0.962682923075981	0.9917695300499	
1	ARCE2	_N 12N2266400702N1	2 650721//5/2507	™ 3330ENUU03NN0E3	N 7/12/170570N/2///6	N 00176053NN/00	

RNA-seq

Article | Published: 14 May 2020

Proteomics of SARS-CoV-2-infected host cells reveals therapy targets

Nature **583**, 469-472(2020) Cite this article

RESEARCH ARTICLE

SARS-CoV-2 productively infects human gut enterocytes

© Mart M. Lamers^{1,*}, © Joep Beumer^{2,*}, © Jelte van der Vaart^{2,*}, Kèvin Knoops³, Jens Puschhof², Tim I. Breugem¹, © Ra...

+ See all authors and affiliations

Science 03 Jul 2020: Vol. 369, Issue 6499, pp. 50-54 DOI: 10.1126/science abc1669 Transcriptomics (2 replicates)
24h 72h
Infected
Control
Medium type

Proteomics (3 replicates)

10h

24h

GITHUB: DEMO SERVER: TUTORIAL LINK: github.com/ComputationalProteomics/OmicLoupe http://130.239.81.217:3838/omicloupe

Infected

LINK: quantitativeproteomics.org/analysiscourse/omicloupe

> devtools::install github("ComputationalProteomics/OmicLoupe")

> OmicLoupe::runApp()

Subsequently, click/copy the link "http://127.0.0.1:XXXXX" and run in the web browser

Thank you for listening!!

Feel free to contact me for further queries!

jakob.willforss@immun.lth.se jakob@jakobwillforss.com

