Yuan Ren

PhD Student, University of California, Merced yren5@ucmerced.edu +1 (209) 600 - 5315 eowynren.github.io

EDUCATION

PhD Student, Electrical Engineering & Computer Science

Sep. 2019 - Now

University of California, Merced, CA

Research Area: Interaction & Input on Wearable Devices, Haptics Feedback

Master of Science, Computer Science

Jan. 2015 - Dec. 2016

University of Southern California, Los Angeles, CA

Courses: Algorithm Design, Operating System, Web Technology, Intro to Artificial Intelligence, Database System Bachelor of Engineering, Software Engineering Sep. 2010 - Jul. 2014

Beijing Jiao Tong University, Beijing, China

Courses: Data Structure, Operating System, Distributed Systems, Software Testing, Java EE Web Development

INTERNSHIP

Google: Software Engineering Intern

May. 2022 - Aug. 2022

- Designed and implemented a prototype that enable bidirectional translation experience on AR glasses and its companion phone for a 1:1 conversation scenario
- Conducted a pilot study to evaluate the prototype with Google Translate conversation mode as the baseline.

PUBLICATION

- [1] Yuan Ren, Ahmed Sabbir Arif. 2021. Stepper, Swipe, Tilt, Force: Comparative Evaluation of Four Number Pickers for Smartwatches. In Proc. ACM Hum.-Comput. Interact. 5, ISS, Article 500 (November 2021), 21 pages. (Honorable Mention Award)
- [2] Tafadzwa Joseph Dube, Yuan Ren, Hannah Limerick, I. Scott MacKenzie, Ahmed Sabbir Arif. 2022. Push, Tap, Dwell, and Pinch: Evaluation of Four Mid-Air Selection Methods Augmented with Ultrasonic Haptic Feedback. In Proceedings of the 2022 ACM Interactive Surfaces and Spaces Conference (ISS 2022). ACM, New York, NY, USA, to appear.

RESEARCH PROJECTS

Stepper, Gesture, Tilt, Force: Comparative Evaluation of Four Number Pickers for Smartwatches

Mar. 2019 - Mar. 2020

- Presented three new methods for picking numbers on smartwatches by performing directional swipes, twisting the wrist, and varying contact force on the screen. - Conducted comparative user studies evaluate three new methods with native Apple picker.

Push, Tap, Dwell, and Pinch: Evaluation of Four Mid-Air Methods Augmented with Ultrasonic Haptic Feedback Sep. 2020 - Oct. 2021

- Compared four mid-air target selection methods (Push, Tap, Dwell, Pinch) with two types of ultrasonic haptic feedback (Select, Hover & Select) in a Fitts' law experiment.
- Proposed several design recommendations of selection methods based on design priorities (top, moderate, low) and the availability of haptic feedback

ForceSlider: Force Sensitive Keyboard for Smartwatches (onging) April. 2020 - May 2022

- Proposed layered miniature keyboard leveraging force to input non-dictionary word.
- Enabled word-level, character-level and hybrid input methods to support richer input experience.

AWARDS & SCHOLARSHIPS

Summer EECS Bobcat Fellowship at UC Merced

2020

SKILLS

Programming Language: Java, Python, JavaScript, C Web Technologies: Spring, Django, React, Redux, Node.js