On the Complexity of A/B Testing

Emilie Kaufmann, Olivier Cappé (Télécom ParisTech) and Aurélien Garivier (Institut de Mathématiques de Toulouse)

Conference On Learning Theory, Barcelona, June 14th, 2014

Motivation

Our goal

Improve performance:

- → fixed number of test users > smaller probability of error
- → fixed probability of error > fewer test users

Tools: sequential allocation and stopping

Best arm identification in two-armed bandits

2 Lower bounds on the complexities

The complexity of A/B Testing with Gaussian feedback

4 The complexity of A/B Testing with binary feedback

The model

A two-armed bandit model is

- a set $\nu = (\nu_1, \nu_2)$ of two probability distributions ('arms') with respective means μ_1 and μ_2
- $\blacksquare a^* = \operatorname{argmax}_a \mu_a$ is the (unknown) best am

To find the best arm, an agent interacts with the bandit model with

- a sampling rule $(A_t)_{t \in \mathbb{N}}$ where $A_t \in \{1,2\}$ is the arm chosen at time t (based on past observations) > a sample $Z_t \sim \nu_{A_t}$ is observed
- lacksquare a *stopping rule* au indicating when he stops sampling the arms
- **a** recommendation rule $\hat{a}_{\tau} \in \{1,2\}$ indicating which arm he thinks is best (at the end of the interaction)

In classical A/B Testing, the sampling rule A_t is uniform on $\{1,2\}$ and the stopping rule $\tau = t$ is fixed in advance.

Two possible goals

The agent's goal is to design a strategy $\mathcal{A} = ((A_t), \tau, \hat{a}_{\tau})$ satisfying

Fixed-budget setting	Fixed-confidence setting
au = t	$\mathbb{P}_{\nu}(\hat{a}_{\tau} \neq a^{\star}) \leq \delta$
$p_t(u) \coloneqq \mathbb{P}_{ u}(\hat{a}_t \neq a^*) \text{ as small}$ as possible	$\mathbb{E}_{ u}[au]$ as small as possible

An algorithm using uniform sampling is

Fixed-budget setting	Fixed-confidence setting
a classical test of	a sequential test of
$(\mu_1 > \mu_2)$ against $(\mu_1 < \mu_2)$	$(\mu_1 > \mu_2)$ against $(\mu_1 < \mu_2)$
based on t samples	with probability of error
	uniformly bounded by δ

[Siegmund 85]: sequential tests can save samples !

The complexities of best-arm identification

Let \mathcal{M} be a class of bandit models. An algorithm $\mathcal{A} = ((A_t), \tau, \hat{a}_{\tau})$ is...

Fixed-budget setting	Fixed-confidence setting
consistent on ${\mathcal M}$ if	δ -PAC on ${\mathcal M}$ if
$\forall \nu \in \mathcal{M}, p_t(\nu) = \mathbb{P}_{\nu}(\hat{a}_t \neq a^*) \xrightarrow[t \to \infty]{} 0$	$\forall \nu \in \mathcal{M}, \ \mathbb{P}_{\nu}(\hat{a}_{\tau} \neq a^*) \leq \delta$

From the literature

$$p_t(\nu) \simeq \exp\left(-\frac{t}{CH(\nu)}\right)$$

[Audibert et al. 10], [Bubeck et al. 11] [Bubeck et al. 13],...

$\mathbb{E}_{\nu}[\tau] \simeq C'H'(\nu)\log\frac{1}{s}$

[Mannor Tsitsilis 04], [Even-Dar et al. 06] [Kalanakrishnan et al.12],...

Two complexities

$$\kappa_{\mathsf{B}}(\nu) = \inf_{\mathcal{A} \text{ consistent}} \left(\limsup_{t \to \infty} -\frac{1}{t} \log p_t(\nu) \right)^{-1} \kappa_{\mathsf{C}}(\nu) = \inf_{\mathcal{A} \text{ } \delta - \mathsf{PAC}} \limsup_{\delta \to 0} \frac{\mathbb{E}_{\nu}[\tau]}{\log(1/\delta)}$$

for a probability of error $\leq \delta$, budget $t \simeq \kappa_B(\nu) \log \frac{1}{5}$

$$c_{\mathbf{C}}(\nu) = \inf_{\mathcal{A}} \inf_{\delta - \mathsf{PAC}} \limsup_{\delta \to 0} \frac{\mathbb{E}_{\nu}[\tau]}{\log(1/\delta)}$$

for a probability of error $\leq \delta$ $\mathbb{E}_{\nu}[\tau] \simeq \kappa_C(\nu) \log \frac{1}{\delta}$

Outline

- Best arm identification in two-armed bandits
- 2 Lower bounds on the complexities
- The complexity of A/B Testing with Gaussian feedback
- 4 The complexity of A/B Testing with binary feedback

Changes of distribution

New formulation for a change of distribution

Let ν and ν' be two bandit models. Let N_1 (resp. N_2) denote the total number of draws of arm 1 (resp. arm 2) by algorithm \mathcal{A}). For any $A \in \mathcal{F}_{\tau}$ such that $0 < \mathbb{P}_{\nu}(A) < 1$

$$\mathbb{E}_{\nu}[N_1]\mathsf{KL}(\nu_1,\nu_1') + \mathbb{E}_{\nu}[N_2]\mathsf{KL}(\nu_2,\nu_2') \geq d(\mathbb{P}_{\nu}(A),\mathbb{P}_{\nu'}(A)),$$

where
$$d(x,y) := x \log(x/y) + (1-x) \log((1-x)/(1-y))$$
.

General lower bounds

Theorem 1

Let \mathcal{M} be a class of two armed bandit models that are continuously parametrized by their means. Let $\nu = (\nu_1, \nu_2) \in \mathcal{M}$.

Fixed-budget setting	Fixed-confidence setting
any consistent algorithm satisfies	any δ -PAC algorithm satisfies
$ \limsup_{t\to\infty} -\frac{1}{t}\log p_t(\nu) \le K^*(\nu_1,\nu_2)$	$\mathbb{E}_{ u}[au] \geq \frac{1}{K_{*}(u_{1}, u_{2})}\log\left(\frac{1}{2\delta}\right)$
with $K^*(\nu_1, \nu_2)$ = $KL(\nu^*, \nu_1) = KL(\nu^*, \nu_2)$	with $K_*(\nu_1, \nu_2)$ = $KL(\nu_1, \nu_*) = KL(\nu_2, \nu_*)$
Thus, $\kappa_B(\nu) \ge \frac{1}{K^*(\nu_1,\nu_2)}$	Thus, $\kappa_C(\nu) \ge \frac{1}{K_*(\nu_1,\nu_2)}$

Best arm identification in two-armed bandits

2 Lower bounds on the complexities

The complexity of A/B Testing with Gaussian feedback

4 The complexity of A/B Testing with binary feedback

Fixed-budget setting

For fixed (known) values σ_1, σ_2 , we consider Gaussian bandit models

$$\mathcal{M} = \left\{ \nu = \left(\mathcal{N} \left(\mu_1, \sigma_1^2 \right), \mathcal{N} \left(\mu_2, \sigma_2^2 \right) \right) : \left(\mu_1, \mu_2 \right) \in \mathbb{R}^2, \mu_1 \neq \mu_2 \right\}$$

■ Theorem 1:

$$\kappa_B(\nu) \ge \frac{2(\sigma_1 + \sigma_2)^2}{(\mu_1 - \mu_2)^2}$$

■ A strategy allocating $t_1 = \left[\frac{\sigma_1}{\sigma_1 + \sigma_2} t\right]$ samples to arm 1 and $t_2 = t - t_1$ samples to arm 1, and recommending the empirical best satisfies

$$\liminf_{t\to\infty} -\frac{1}{t}\log p_t(\nu) \ge \frac{(\mu_1 - \mu_2)^2}{2(\sigma_1 + \sigma_2)^2}$$

$$\kappa_B(\nu) = \frac{2(\sigma_1 + \sigma_2)^2}{(\mu_1 - \mu_2)^2}$$

Fixed-confidence setting: Algorithm

The α -Elimination algorithm with exploration rate $\beta(t, \delta)$

- ⇒ chooses A_t in order to keep a proportion $N_1(t)/t \simeq \alpha$ i.e. $A_t = 2$ if and only if $\lceil \alpha t \rceil = \lceil \alpha(t+1) \rceil$
- → if $\hat{\mu}_a(t)$ is the empirical mean of rewards obtained from a up to time t, $\sigma_t^2(\alpha) = \sigma_1^2/[\alpha t] + \sigma_2^2/(t [\alpha t])$,

$$\tau = \inf \left\{ t \in \mathbb{N} : |\hat{\mu}_1(t) - \hat{\mu}_2(t)| > \sqrt{2\sigma_t^2(\alpha)\beta(t,\delta)} \right\}$$

Fixed-confidence setting: Results

From Theorem 1:

$$\mathbb{E}_{\nu}[\tau] \ge \frac{2(\sigma_1 + \sigma_2)^2}{(\mu_1 - \mu_2)^2} \log\left(\frac{1}{2\delta}\right)$$

■ $\frac{\sigma_1}{\sigma_1 + \sigma_2}$ -Elimination with $\beta(t, \delta) = \log \frac{t}{\delta} + 2 \log \log(6t)$ is δ -PAC and

$$\forall \epsilon > 0, \quad \mathbb{E}_{\nu}[\tau] \leq (1+\epsilon) \frac{2(\sigma_1 + \sigma_2)^2}{(\mu_1 - \mu_2)^2} \log\left(\frac{1}{2\delta}\right) + \underset{\delta \to 0}{o_{\epsilon}} \left(\log\frac{1}{\delta}\right)$$

$$\kappa_C(\nu) = \frac{2(\sigma_1 + \sigma_2)^2}{(\mu_1 - \mu_2)^2}$$

Gaussian distributions: Conclusions

For any two fixed values of σ_1 and σ_2 ,

$$\kappa_B(\nu) = \kappa_C(\nu) = \frac{2(\sigma_1 + \sigma_2)^2}{(\mu_1 - \mu_2)^2}$$

If the variances are equal, $\sigma_1 = \sigma_2 = \sigma$,

$$\kappa_B(\nu) = \kappa_C(\nu) = \frac{8\sigma^2}{(\mu_1 - \mu_2)^2}$$

- **uniform sampling** is optimal only when $\sigma_1 = \sigma_2$
- 1/2-Elimination is δ -PAC for a smaller exploration rate $\beta(t,\delta) \simeq \log(\log(t)/\delta)$

Best arm identification in two-armed bandits

- 2 Lower bounds on the complexities
- The complexity of A/B Testing with Gaussian feedback

The complexity of A/B Testing with binary feedback

Lower bounds for Bernoulli bandit models

$$\mathcal{M} = \{ \nu = (\mathcal{B}(\mu_1), \mathcal{B}(\mu_2)) : (\mu_1, \mu_2) \in]0; 1[^2, \mu_1 \neq \mu_2 \},$$

shorthand: $K(\mu, \mu') = KL(\mathcal{B}(\mu), \mathcal{B}(\mu'))$.

Fixed-budget setting	Fixed-confidence setting	
any consistent algorithm satisfies	any δ -PAC algorithm satisfies	
$\limsup_{t\to\infty} -\frac{1}{t}\log p_t(\nu) \le K^*(\mu_1,\mu_2)$	$\mathbb{E}_{ u}[au] \geq \frac{1}{K_*(\mu_1, \mu_2)} \log\left(\frac{1}{2\delta}\right)$	
(Chernoff information)		

$$\mathsf{K}^*(\mu_1, \mu_2) > \mathsf{K}_*(\mu_1, \mu_2)$$

Algorithms using uniform sampling

	For any consistent	For any δ -PAC
algorithm	$p_t(\nu) \gtrsim e^{-K^*(\mu_1,\mu_2)t}$	$rac{\mathbb{E}_{ u}[au]}{\log(1/\delta)}\gtrsimrac{1}{K_{*}(\mu_{1},\mu_{2})}$
algorithm using uniform sampling	$p_t(u) \gtrsim e^{-rac{K(\overline{\mu},\mu_1) + K(\overline{\mu},\mu_2)}{2}t}$ with $\overline{\mu} = f(\mu_1,\mu_2)$	$\frac{\mathbb{E}_{\nu}[\tau]}{\log(1/\delta)} \gtrsim \frac{2}{K(\mu_{1}, \mu) + K(\mu_{2}, \underline{\mu})}$ with $\underline{\mu} = \frac{\mu_{1} + \mu_{2}}{2}$

Remark: Quantities in the same column appear to be close from one another

⇒ Binary rewards: uniform sampling close to optimal

ロト (個) (種) (種) 種) 種 の(で

Algorithms using uniform sampling

	For any consistent	For any δ -PAC
algorithm	$p_t(\nu) \simeq e^{-K^*(\mu_1,\mu_2)t}$	$rac{\mathbb{E}_{ u}[au]}{\log(1/\delta)} \gtrsim rac{1}{K_{\star}(\mu_1,\mu_2)}$
algorithm using uniform sampling	$p_t(u) \simeq e^{-rac{K(\overline{\mu},\mu_1) + K(\overline{\mu},\mu_2)}{2}t}$ with $\overline{\mu} = f(\mu_1,\mu_2)$	$\frac{\mathbb{E}_{\nu}[\tau]}{\log(1/\delta)} \gtrsim \frac{2}{K(\mu_{1},\underline{\mu}) + K(\mu_{2},\underline{\mu})}$ with $\underline{\mu} = \frac{\overline{\mu}_{1} + \mu_{2}}{2}$

Remark: Quantities in the same column appear to be close from one another

⇒ Binary rewards: uniform sampling close to optimal

Fixed-budget setting

We show that

$$\kappa_B(\nu) = \frac{1}{\mathsf{K}^*(\mu_1, \mu_2)}$$

(matching algorithm not implementable in practice)

The algorithm using uniform sampling and recommending the empirical best arm is preferable (and very close to optimal)

Fixed-confidence setting

 δ -PAC algorithms using uniform sampling satisfy

$$\frac{\mathbb{E}_{\nu}[\tau]}{\log(1/\delta)} \geq \frac{1}{I_*(\nu)} \quad \text{with} \quad I_*(\nu) = \frac{\mathsf{K}\left(\mu_1, \frac{\mu_1 + \mu_2}{2}\right) + \mathsf{K}\left(\mu_2, \frac{\mu_1 + \mu_2}{2}\right)}{2}.$$

The algorithm using uniform sampling and

$$\tau = \inf \left\{ t \in 2\mathbb{N}^* : |\hat{\mu}_1(t) - \hat{\mu}_2(t)| > \log \frac{\log(t) + 1}{\delta} \right\}$$

is δ -PAC but not optimal: $\frac{\mathbb{E}[\tau]}{\log(1/\delta)} \simeq \frac{2}{(\mu_1 - \mu_2)^2} > \frac{1}{I_*(\nu)}$.

A better stopping rule NOT based on the difference of empirical means

$$\tau = \inf \left\{ t \in 2\mathbb{N}^* : tI_*(\hat{\mu}_1(t), \hat{\mu}_2(t)) > \log \frac{\log(t) + 1}{\delta} \right\}$$

Bernoulli distributions: Conclusion

Regarding the complexities:

$$\blacksquare \kappa_B(\nu) = \frac{1}{\mathsf{K}^*(\mu_1, \mu_2)}$$

$$\kappa_C(\nu) \ge \frac{1}{\mathsf{K}_*(\mu_1, \mu_2)} > \frac{1}{\mathsf{K}^*(\mu_1, \mu_2)}$$

Thus

$$\kappa_C(\nu) > \kappa_B(\nu)$$

Regarding the algorithms

- There is not much to gain by departing from uniform sampling
- In the fixed-confidence setting, a sequential test based on the difference of the empirical means is no longer optimal

Conclusion

- the complexities $\kappa_B(\nu)$ and $\kappa_C(\nu)$ are not always equal (and feature some different informational quantities)
- for Bernoulli distributions and Gaussian with similar variances, strategies using uniform sampling are (almost) optimal
- strategies using random stopping do not necessarily lead to a saving in terms of the number of sample used

Coming soon:

■ Generalization to *m* best arms identification among *K* arms