Page 1 of 2

Nome e Cognome:		□LUN □M Data:	MER GIO 7
Filtro n questa esercitazione dovete dimensionare, con resistenza R e un condensatore C (filtro "a un por passa-alto e dovete ovviamente verificarne le caratisinusoidale.	struire e caratterizz lo"). Potete sceglie teristiche facendo u	ere liberamer uso di una fo	nte tra passa-basso rma d'onda alternat
1. Stabilite se volete realizzare un passa-basso o attesa $f_{T,att}$ sulla base dei resistori e condensatori Si consiglia di: (i) scegliere frequenze di taglio Hz, nel caso di passa-basso e passa-alto; (ii) in resistenza interna del generatore; (iii) usare l'os disturbati dall'eventuale offset residuo del gene	i disponibili; disegr dell'ordine di alcum piegare valori di a scilloscopio con acceratore (salvo se div	nate lo schem ne centinaia R "abbastanz coppiamento	na del circuito. o poche migliaia di za" più grandi della o AC per non essere
Espressione $\operatorname{di} f_T$: $f_T =$	Schema circuitale:		Tipologia filtro: passa-basso passa-alto
$egin{array}{c ccccccccccccccccccccccccccccccccccc$			
2. Determinate <u>attraverso una misura con l'oscilla</u> guadagno del filtro vale $\frac{1}{2}$. Stabilite di con Misurate gli sfasamenti $\Delta \varphi_T$ e $\Delta \varphi_{I/2}$ alle due fre si tratta di misure "condizionate". Commentate	iseguenza il valore equenze. Determina	della frequate le incerte	enza di taglio f_T . ezze ricordando che
f_T [] $\Delta φ_T$ [$π$ rad]	$f_{1/2}$ []		$\Delta \varphi_{1/2} [\pi \text{ rad}]$
Commenti:			
3. Misurate ora le ampiezze V_{inj} e V_{outj} (vanno b esplorare un vasto intervallo di frequenze, fir registrando più di una dozzina di punti. Siete	no a 4 decadi, usa	ndo spaziatu	are non regolari e

corrispondenti (magari <u>non per tutti</u> i punti, possibilmente accoppiando il canale dell'oscilloscopio in DC per le eventuali misure di sfasamento a "bassa" frequenza). Page 1 of 2

	$\overline{}$
/	7
(/
\	. ,

j	f _j []	V _{inj} []	V _{outj} []	$\Delta \phi_{\rm j} [\pi \ {\rm rad}]$
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				

- 4. Per alcuni valori di frequenza, date anche un'occhiata al segnale rappresentato nella visualizzazione X-Y dell'oscilloscopio (si attiva con un pulsante o ruotando la manopola della base dei tempi, a seconda del modello). Date una breve spiegazione di cosa si osserva scrivendola da qualche parte (per esempio, dietro al foglio del grafico).
- 5. Graficate il guadagno (o attenuazione) $A_{\rm j} = V_{\it outj}/V_{\it inj}$ in funzione di $f_{\rm j}$ (scegliendo la rappresentazione più "efficace") e fate un best-fit dei dati secondo la funzione modello da scrivere nel riquadro qui sotto, decidendo se considerare, o meno, la resistenza interna r del generatore. Verificate "a occhio", cioè osservando il grafico, che A(f) abbia l'andamento previsto nella regione di transizione, cioè per f maggiore, o minore, di f_T (per il caso rispettivamente di passabasso, o passa-alto). Riportate tutti i commenti (accordo con le attese, eventuali discrepanze, risultati del best-fit e <u>tutte</u> le informazioni necessarie sul foglio del grafico.

Funzione modello usata per il best-fit:	Andamento atteso		
A(f) =	(pendenza nella regione di transizione	(pendenza nella regione di transizione) :	
	$A \sim $ [dB/decade	[:	

6. <u>Alternative e facoltative</u>: in alternativa al grafico di sopra (o in aggiunta, se avete tempo), potete realizzare il diagramma di Bode del filtro costruito, individuando graficamente la corner frequency f_C ed eseguendo un best-fit lineare per i soli dati che seguono tale andamento. Inoltre, potete anche graficare lo sfasamento $\Delta \varphi_i$ in funzione di f_i e farne un best-fit secondo l'opportuna funzione modello. Al solito, commenti, risultati, informazioni rilevanti vanno scritti sul foglio del, o dei, grafici.

Page 2 of 2