Quantum chaos meets quantum channels

October 8, 2024

4 1 José Alfredo

5 1.1 Model

⁶ The spin chain we are interested in studying first is that studied by Mirkin and Wisniacki in Ref. [1]:

$$H = \sum_{i=1}^{L} (h_x \sigma_i^x + h_z \sigma_i^z) - \sum_{i=1}^{L-1} J_z \sigma_i^z \sigma_{i+1}^z.$$
 eq:H:wisniacki:ising:chain

8 1.2 Mean level spacing ratio

 $_{9}$ The level spacing ratio \tilde{r}_{n} is defined as:

$$\tilde{r}_n = \frac{\min(s_n, s_{n-1})}{\max(s_n, s_{n-1})},$$
eq:level:spacing:ratio
(2)

where $s_n = E_{n+1} - E_n$. The mean level spacing ratio $\langle \tilde{r}_n \rangle$ is known to attain the value $\langle \tilde{r}_n \rangle \approx 0.5207$ when the level spacing distribution P(s) is Wigner-Dyson and $\langle \tilde{r}_n \rangle \approx 0.386$ when it is Poisson.

13 1.3 Spectral form factor

15

¹⁴ The spectral form factor K(t) is defined as:

$$K(t) = \frac{1}{2^L} \left\langle \left| \operatorname{Tr} U(t) \right|^2 \right\rangle = \frac{1}{2^L} \left\langle \sum_{i,j} e^{i(E_i - E_j)t} \right\rangle, \tag{3}$$

where $\langle \cdot \rangle$ denotes the ensemble-average over statistically-similar systems.

17 1.4 Chaometer's quantum channel

18 The reduced dyanmics of the chaometer is described by the quantum channel:

$$\mathcal{E}(\rho) = \operatorname{Tr}_{E}\left(e^{-iHt}\rho \otimes \left|\psi_{0}^{(E)}\right\rangle \left\langle \psi_{0}^{(E)}\right| e^{iHt}\right),$$
 eq:chaometer:channel

where H is that of eq. (28), $|\psi_0^{(E)}\rangle$ the initial state of all spins except the chaometer, and ρ the initial state of the chaometer.

The chaometer's quantum channel \mathcal{E} , in general, is divisible into:

- 1. A unitary operation rotating the Bloch's sphere.
- 2. A quantum channel that deforms the Bloch's sphere and translates its origin.
- 25 Both operations do not commute.

Figure 1: Mean level spacing ratio $\langle \tilde{r}_n \rangle$ [c.f. eq. (2)] of the Ising chain with Hamiltonian (28) as a function of ratios h_z/h_x and J/h_x . We assume $J_z = J \, \forall \, k$.

Figure 2: Spectral form factor (SFF) [c.f. (3)] in regular region: $h_z/h_x = 2.5$ and $J/h_x = 1$. (a) Whole spectrum. (b) Even-parity subspace spectrum.

Figure 3: Spectral form factor (SFF) [c.f. (3)] in chaotic region: $h_z/h_x = 0.5$ and $J/h_x = 1$. (a) Whole spectrum. (b) Even-parity subspace spectrum.

26 1.5 Purity of the chaometer

²⁷ Averaged purity \mathcal{P} is defined in Ref. [1] as:

$$\overline{\mathcal{P}} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{1}{T} \int_{0}^{T} \operatorname{Tr} \left[\rho_{i}^{2}(t) \right] \right)$$
 eq:avg:purity (5)

29 where:

28

31

32

34

35

• $\rho_i(t)$: chaometer's density matrix.

• N: number of different random initial states of the whole chain. N = 50 in Mirkin and Wisniacki [1].

• T: maximum time. T = 50 in Mirkin and Wisniacki [1].

Also, the normalized averaged purity is defined as

$$\overline{P}_{Norm} = \frac{\overline{P} - \min(\overline{P})}{\max(\overline{P}) - \min(\overline{P})},$$
 eq:avg:norm:purity (6)

where $\max(\overline{P})$ and $\min(\overline{P})$ are the minimum and maximum value obtained when sweeping the parameter range $(h_z$ in their case).

In Fig. 4 we plot one realization of the dynamics of purity of the chaometer. We compare in Fig. 5 our results and those of Mirkin and Wisniacki [1].

40 1.6 Purity of Choi-Jamiołkowski matrix

We investigate the purity of Choi-Jamiołkowski matrix of quantum channel $\mathcal{E}(t)$ of the chaometer [c.f. eq. (4)] in Fig. 6.

To compute the Choi-Jamiołkowski matrix $\mathcal{D}(t)$ of the chaometer's quantum channel in eq. (4) we use the definition $(\mathcal{E}\otimes\mathbb{1})[|\phi^+\rangle\langle\phi^+|]$, with $|\phi^+\rangle=1/\sqrt{2}(|0,0\rangle+|1,1\rangle)$ is the maximally entangled state between two spins, and obtain

 $\mathcal{D}(t) = \frac{1}{2} \sum_{i,j,p,q} \langle j, \psi_{0E} | U^{\dagger}(t) (|p\rangle\langle q| \otimes \mathbb{1}_{E}) U(t) | i, \psi_{0E} \rangle |q, i\rangle\langle p, j|.$ eq:choi:chaometer

Figure 4: Dynamics of chaometer's purity of a single realization with the same initial state of the environment of the first chaometer's quantum channel of the videos.

fig:purity:one:realization

Figure 5: Averaged \overline{P} and averaged normalized purities \overline{P}_{Norm} [c.f. eqs. (5) and (6).] for N=50 random initial states of the chaometer for each quantum channel showed in the videos. JA: Tendría más sentido sacar la pureza del canal. Lo pienso Taken and modified from Ref. [1].

Figure 6: Purity of Choi-Jamiołkowski matrix in (a) regular ($h_z = 2.5$) and (b) chaotic ($h_z = 0.5$) for the three random initial states showed in the video.

fig:choi:purity

Figure 7: Dynamics of purity of the Choi-Jamiołkowski matrix for various lengths Legoththe spin spainics

Let us write $\mathcal{E}(\rho)$ in computational basis. From eq. (4) we write

49

56

57

60

68

75

$$\mathcal{E}(\rho) = \sum_{k,l} e^{-i(E_k - E_l)t} \langle E_k | (\rho \otimes |\psi_E\rangle \langle \psi_E |) | E_l \rangle \operatorname{Tr}_E (|E_k\rangle \langle E_l |)$$
(8)

$$= \sum_{k,l,p,p',\vec{q},\vec{q'}} e^{-i(E_k - E_l)t} \langle E_k | (\rho \otimes |\psi_E \rangle \langle \psi_E|) | E_l \rangle \operatorname{Tr}_E (|p,\vec{q}\rangle \langle p,\vec{q}|E_k) \langle E_l | p',\vec{q'}\rangle \langle p',\vec{q'}|), \tag{9}$$

where \vec{q} and \vec{q}' are indices of elements of the basis of the environment,

$$= \sum_{p,p',\vec{q}} \langle p, \vec{q} | U(t)(\rho \otimes |\psi_E\rangle \langle \psi_E|) U^{\dagger}(t) | p', \vec{q} \rangle | p \rangle \langle p'|$$

$$= \sum_{p,p',\vec{q}} \langle p | \operatorname{Tr}_E[U(t)(\rho \otimes |\psi_E\rangle \langle \psi_E|) U^{\dagger}(t)] | p' \rangle | p \rangle \langle p'|.$$
(10)
eq:chaometer:channel:2

To compute the Choi-Jamiołkowski matrix $\mathcal{D}(t)$ of the chaometer's quantum channel in eq. (4) we use the definition $(\mathcal{E} \otimes 1)[|\phi^+\rangle\langle\phi^+|]$, with $|\phi^+\rangle = 1/\sqrt{2}(|0,0\rangle + |1,1\rangle)$ is the maximally entangled state between two spins, and eq. (11) to obtain

$$\mathcal{D}(t) = \frac{1}{2} \sum_{i,j,p,p',\vec{q}} \langle p, \vec{q} | U(t)(|i,\psi_E\rangle\langle j,\psi_E|) U^{\dagger}(t) | p', \vec{q} \rangle | p, i \rangle\langle p', j|$$
(12)
$$= \frac{1}{2} \sum_{i,j,p,p'} \langle j,\psi_{0E} | U^{\dagger}(t)(|p'\rangle\langle p| \otimes \mathbb{1}_{E}) U(t) | i,\psi_{0E} \rangle | p, i \rangle\langle p', j|,$$
(13)

where we have only reordered the factors and used the resolution of identity over \mathcal{H}_E .

We compute the purity of $\mathcal{D}(t)$. From eq. (7) it is straightforward to obtain

$$\operatorname{Tr}\left[\mathcal{D}^{2}(t)\right] = \frac{1}{4} \sum_{i,j,p,q} \left| \langle i, \psi_{0E} | U^{\dagger}(t) \left(|p\rangle\langle q| \otimes \mathbb{1}_{E} \right) U(t) |j, \psi_{0E}\rangle \right|^{2}.$$
(14)

Moreover, reordering this expression an interesting interpretation of the purity of the Choi-Jamiołkowski matrix is revealed. Let us conveniently rewrite eq. (14) as

63
$$\operatorname{Tr}\left[\mathcal{D}^{2}(t)\right] = \langle \psi_{0E} | \operatorname{Tr}_{S} \left\{ U^{\dagger}(t) \sum_{p,q} \left[\left(\frac{|p\rangle\langle q|}{\sqrt{2}} \otimes \mathbb{1}_{E} \right) U(t) \left(\frac{\mathbb{1}_{S}}{2} \otimes |\psi_{0E}\rangle\langle \psi_{0E}| \right) U^{\dagger}(t) \left(\frac{|q\rangle\langle p|}{\sqrt{2}} \otimes \mathbb{1}_{E} \right) \right] U(t) \right\} |\psi_{0E}\rangle.$$
(15)

- First, a forward evolution $\rho(t) = U(t)\rho_0 U^{\dagger}(t)$ occurs, with $\rho_0 = \left(\frac{\mathbb{I}_S}{2} \otimes |\psi_{0E}\rangle\langle\psi_{0E}|\right)$.
- Second, backwards evolution of $\rho(t)$ is followed, $\tilde{\rho}_0 = U^{\dagger}(t) \sum_{p,q} \left[\left(\frac{|p\rangle\langle q|}{\sqrt{2}} \otimes \mathbb{1}_E \right) \rho(t) \left(\frac{|q\rangle\langle p|}{\sqrt{2}} \otimes \mathbb{1}_E \right) \right] U(t)$, where before evolving backwards with $U^{\dagger}(t)$ a completely depolarizing quantum channel acts over the system.
 - Finally, $\text{Tr}[\mathcal{D}^2(t)]$ is the probability of finding the environment in its initial state.

JA: esta es una especie de echo de Loschmidt!!! Cálculos en el apéndice A In other words, the purity of $\mathcal{D}(t)$ represents the probability that the environment remains in its initial state after the following process: First, the system and environment are initialized in a product state, with the system in a maximally mixed state. Next, the combined system evolves. Then, a completely depolarizing channel is applied to the system. Finally, the system and environment undergo reverse evolution.

The Loschmidt echo is defined as

$$M(t) = \left| \langle \psi_0 | e^{-iH_2 t/\hbar} e^{-iH_1 t/\hbar} | \psi_0 \rangle \right|^2$$
 eq:loschmidt:echo (16)

Figure 8: Most negative eigenvalue $\tilde{\lambda}$ of map $\Lambda(t,s)/2$, with s=0.1 [c.f. eggant 17] and (18) i- "jami-"

Figure 9: Burst of the Bloch sphere at t = 0.5 s.

fig:burst

eq:Lambda

76 **1.7** Non complete-positiveness of $\Lambda(t,s)$

77 Any quantum channel $\mathcal{E}(t)$ can composed as

 $\mathcal{E}(t) = \Lambda(t, s) \circ \mathcal{E}(s, 0),$ (17)

78 nonetheless, $\Lambda(t,s)$ is not in general completely positive. A way to quantify how far is $\Lambda(t,s)$ from being

completely positive is through λ : eq:lambda:tilde $\tilde{\lambda} = |\min(0, \lambda_{\text{smallest}})|,$ 81

$$\lambda = |\min(0, \lambda_{\text{smallest}})|, \tag{18}$$

where $\lambda_{\text{smallest}}$ is the smallest eigenvalue of $\Lambda^R(t,s)/2$. We have added the factor 1/2 just so $\text{Tr}[\Lambda^R(t,s)/2] = 1$. Let us fix s = 0.1 and investigate the complete positiviness of $\Lambda(t, s)$, see Fig. 8.

Figure 10: Purity of the Choi-Jamiołkowski matrix of chaometer's quantum channel and another channel from a Hamiltonian taken from the GOE ensemble.

fig:choi:purity:spin:chain:vs:goe

Figure 11: JA: La pureza de la matriz de Choi de una matriz U de COE se comporta así variando el número de espines L desde 3 hasta 9. Parece que para L muy grande el límite asintótico tiende a 0.25, Se podrá probar analíticamente?

Figure 12: JA: $\text{Tr}[\mathcal{D}_{\infty}^2]$ vs L. Creo que se podría conseguir un mejor ajusto teniendo estadística para cada punto.

- 84 1.8 Purity of Choi-Jamiołkowski matrix
- 85 2 Charles
- 86 3 Miguel
- 87 4 Viko
- 88 A Choi

app:choi

$$\operatorname{Tr} \left[\mathcal{D}^{2}(t) \right] = \frac{1}{4} \left(\sum_{i,j,p} \left| \langle i, \psi_{0E} | U^{\dagger}(t) \left(| p \rangle \langle p | \otimes \mathbb{1}_{E} \right) U(t) | j, \psi_{0E} \rangle \right|^{2} + \sum_{i,j,p \neq q} \left| \langle i, \psi_{0E} | U^{\dagger}(t) \left(| p \rangle \langle q | \otimes \mathbb{1}_{E} \right) U(t) | j, \psi_{0E} \rangle \right|^{2} \right)$$

$$= \frac{1}{4} \left(\sum_{i,j} \left| \langle i, \psi_{0E} | U^{\dagger}(t) \left(\mathbb{1}_{S} \otimes \mathbb{1}_{E} \right) U(t) | j, \psi_{0E} \rangle \right|^{2}$$

$$= 2 \sum_{i,j} \operatorname{Re} \left(\langle i, \psi_{0E} | U^{\dagger}(t) \left(| 0 \rangle \langle 0 | \otimes \mathbb{1}_{E} \right) U(t) | j, \psi_{0E} \rangle \langle j, \psi_{0E} | U^{\dagger}(t) \left(| 1 \rangle \langle 1 | \otimes \mathbb{1}_{E} \right) U(t) | i, \psi_{0E} \rangle \right)$$

$$= 2 \sum_{i,j,p \neq q} \left| \langle i, \psi_{0E} | U^{\dagger}(t) \left(| p \rangle \langle q | \otimes \mathbb{1}_{E} \right) U(t) | j, \psi_{0E} \rangle \langle j, \psi_{0E} | U^{\dagger}(t) \left(| 1 \rangle \langle 1 | \otimes \mathbb{1}_{E} \right) U(t) | i, \psi_{0E} \rangle \right)$$

$$= 2 \sum_{i,j,p \neq q} \left| \langle i, \psi_{0E} | U^{\dagger}(t) \left(| p \rangle \langle q | \otimes \mathbb{1}_{E} \right) U(t) | j, \psi_{0E} \rangle \right|^{2} \right)$$

$$= 2 \sum_{i,j,p \neq q} \left| \langle i, \psi_{0E} | U^{\dagger}(t) \left(| p \rangle \langle q | \otimes \mathbb{1}_{E} \right) U(t) | j, \psi_{0E} \rangle \right|^{2} \right)$$

$$= 2 \sum_{i,j,p \neq q} \left| \langle i, \psi_{0E} | U^{\dagger}(t) \left(| p \rangle \langle q | \otimes \mathbb{1}_{E} \right) U(t) | j, \psi_{0E} \rangle \right|^{2} \right)$$

$$= 2 \sum_{i,j,p \neq q} \left| \langle i, \psi_{0E} | U^{\dagger}(t) \left(| p \rangle \langle q | \otimes \mathbb{1}_{E} \right) U(t) | j, \psi_{0E} \rangle \left\langle j, \psi_{0E} | U^{\dagger}(t) \left(| 1 \rangle \langle 1 | \otimes \mathbb{1}_{E} \right) U(t) | i, \psi_{0E} \rangle \right)$$

$$= 2 \sum_{i,j,p \neq q} \left| \langle i, \psi_{0E} | U^{\dagger}(t) \left(| p \rangle \langle q | \otimes \mathbb{1}_{E} \right) U(t) | j, \psi_{0E} \rangle \right|^{2} \right)$$

$$= 2 \sum_{i,j,p \neq q} \left| \langle i, \psi_{0E} | U^{\dagger}(t) \left(| p \rangle \langle q | \otimes \mathbb{1}_{E} \right) U(t) | j, \psi_{0E} \rangle \right|^{2} \right)$$

$$= 2 \sum_{i,j,p \neq q} \left| \langle i, \psi_{0E} | U^{\dagger}(t) \left(| p \rangle \langle q | \otimes \mathbb{1}_{E} \right) U(t) | j, \psi_{0E} \rangle \right|^{2} \right)$$

$$= 2 \sum_{i,j,p \neq q} \left| \langle i, \psi_{0E} | U^{\dagger}(t) \left(| p \rangle \langle q | \otimes \mathbb{1}_{E} \right) U(t) | j, \psi_{0E} \rangle \right|^{2} \right)$$

$$= 2 \sum_{i,j,p \neq q} \left| \langle i, \psi_{0E} | U^{\dagger}(t) \left(| p \rangle \langle q | \otimes \mathbb{1}_{E} \right) U(t) | j, \psi_{0E} \rangle \left\langle j, \psi_{0E} | U^{\dagger}(t) \left(| 1 \rangle \langle 1 | \otimes \mathbb{1}_{E} \right) U(t) | i, \psi_{0E} \rangle \right|^{2} \right)$$

$$= 2 \sum_{i,j,p \neq q} \left| \langle i, \psi_{0E} | U^{\dagger}(t) \left(| p \rangle \langle q | \otimes \mathbb{1}_{E} \right) U(t) | j, \psi_{0E} \rangle \left\langle j, \psi_{0E} | U^{\dagger}(t) \left(| 1 \rangle \langle 1 | \otimes \mathbb{1}_{E} \right) U(t) | i, \psi_{0E} \rangle \right|^{2} \right\rangle$$

$$= 2 \sum_{i,j,p \neq q} \left| \langle i, \psi_{0E} | U^{\dagger}(t) \left(| p \rangle \langle q | \otimes \mathbb{1}_{E} \right) U(t) | i, \psi_{0E} \rangle \left\langle j, \psi$$

- JA: trabajando en analytic_choi_check.nb eq. (15)
- regular: Segundo y tercer término aproximadamente cero para $t\gg 1$
- caótico: tercer término igual a cero para $t \gg 1$.

JA: numéricamente parece que podemos hacer esto:

$$\operatorname{Tr}\left[\mathcal{D}^{2}(t)\right] = \frac{1}{2} \left(1 - \sum_{i} \underbrace{\langle i, \psi_{0E} | U^{\dagger}(t) \big(|0\rangle\langle 0| \otimes \mathbb{1}_{E} \big) U(t) | i, \psi_{0E} \rangle}_{(1-r_{z}^{2})/4} \langle i, \psi_{0E} | U^{\dagger}(t) \big(|1\rangle\langle 1| \otimes \mathbb{1}_{E} \big) U(t) | i, \psi_{0E} \rangle} \right) \\
- 2 \langle 0, \psi_{0E} | U^{\dagger}(t) \big(|0\rangle\langle 0| \otimes \mathbb{1}_{E} \big) U(t) | 1, \psi_{0E} \rangle \langle 1, \psi_{0E} | U^{\dagger}(t) \big(|1\rangle\langle 1| \otimes \mathbb{1}_{E} \big) U(t) | 0, \psi_{0E} \rangle} \\
+ \sum_{i,j} \left| \langle i, \psi_{0E} | U^{\dagger}(t) \big(|0\rangle\langle 1| \otimes \mathbb{1}_{E} \big) U(t) | j, \psi_{0E} \rangle \right|^{2} \right)$$

$$= \frac{1}{2} \left(1 - \sum_{i} \underbrace{\langle i, \psi_{0E} | U^{\dagger}(t) \big(|0\rangle\langle 0| \otimes \mathbb{1}_{E} \big) U(t) | i, \psi_{0E} \rangle}_{(1-r_{z}^{2})/4} \langle i, \psi_{0E} | U^{\dagger}(t) \big(|1\rangle\langle 1| \otimes \mathbb{1}_{E} \big) U(t) | i, \psi_{0E} \rangle} \right)$$

$$+ 2 \left| \langle 0, \psi_{0E} | U^{\dagger}(t) \big(|0\rangle\langle 0| \otimes \mathbb{1}_{E} \big) U(t) | 1, \psi_{0E} \rangle \right|^{2} + \sum_{i,j} \left| \langle i, \psi_{0E} | U^{\dagger}(t) \big(|0\rangle\langle 1| \otimes \mathbb{1}_{E} \big) U(t) | j, \psi_{0E} \rangle \right|^{2} \right)$$

$$(24)$$

106 JA: notas

- para $t \gg 1$, $(1-r_z^2)/4 \approx 1/4$ en el régimen caótico $(r_z \approx 0)$
- para $t \gg 1$ el tercer término se hace approx 0 para el régimen caótico y distinto de 0 para regular. De hecho, todos los términos, excepto, el 1/2, son comparables a tiempos largos para el integrable
- a tiempos cortos el término que más contribuye es el término dentro la sumatoria del último término con índices i=0 y j=1

B Purity of Choi matrix

The quantum channel acting over the first (i = 1) spin is defined as:

eq:choi:chaometer:channel:2

$$\mathcal{E}(\rho) = \text{Tr}_E \left(U^{\dagger}(t) \rho \otimes |\psi_0\rangle \langle \psi_0| U(t) \right), \tag{25}$$

where $|\psi_0\rangle = \bigotimes_{i=2}^L |\phi_i\rangle$, with $|\phi_i\rangle$ a random state of a single particle, is the initial state of the environment. To compute the Choi-Jamiołkowski matrix $\mathcal{D}(t)$ of the quantum channel in eq. (25) we use the definition ($\mathcal{E} \otimes \mathbb{1}$)[$|\phi^+\rangle\langle\phi^+|$], with $|\phi^+\rangle = 1/\sqrt{2}(|0,0\rangle + |1,1\rangle)$ the maximally entangled state between two spins, and obtain

eq:choi:chaometer:2

$$\mathcal{D}(t) = \frac{1}{2} \sum_{i,j,p,q} \langle j, \psi_{0E} | U^{\dagger}(t) (|p\rangle\langle q| \otimes \mathbb{1}_{E}) U(t) | i, \psi_{0E} \rangle |q, i\rangle\langle p, j|.$$

$$(26)$$

120 After some algebraic step one may show that the purity of the Choi matrix is written as:

$$\operatorname{Tr}\left[\mathcal{D}^{2}(t)\right] = \operatorname{Tr}\left(\operatorname{Tr}_{S}\left[U(t)(\mathbb{1}_{S} \otimes |\psi_{0}\rangle\langle\psi_{0}|)U^{\dagger}(t)\right]^{2}\right). \tag{27}$$

I believe that when the quantum channel acts over a d-dimensional system, and $U(t) = e^{-iHt}$, with H a chaotic Hamiltonian (a matrix that can be taken from an appropriate RMT ensemble), the purity of the Choi matrix is equal to $1/d^2$ for $t \gg 1$ in the chaotic regime, and 1/d in the regular regime.

In particular, I would like to consider the spin chain Hamiltonian

$$H = \sum_{i=1}^{L} (h_x \sigma_i^x + h_z \sigma_i^z) - \sum_{i=1}^{L-1} J_z \sigma_i^z \sigma_{i+1}^z,$$
 eq:H:wisniacki:ising:chain (28)

for $h_x = j_i = 1$, $\forall i, h_z = 0.5$ (chaotic) and $h_z = 2.5$ (regular).

128 References

114

119

125

126

[1] Nicolás Mirkin and Diego Wisniacki. Quantum chaos, equilibration, and control in extremely short spin chains. *Phys. Rev. E*, 103:L020201, Feb 2021.