

Descriptive Statistics Mean, Median, Mode, Variance, Standa rd Deviation Measure of central Tendency Related to Summarizing the Data Measure of Dispersion Histogram, pdf, cdf, **Probability**, Permutation & Gaussian's Distribution Combination Log Normal Distribution **Transformation & Standardization**

Q-Q Plot

Bernoulli Distribution

Binomial Distribution

Pareto or Power Law Distribution

Standard Normal Distribution

Inferential Statistics Z Test By Python t Test Annova Test or F test Chi Square Test P value **Hypothesis Testing** Confidence Interval

Science of Collection, organizing and analyzing Data.

Used f

Used for **BETTER DECESSION MAKING**

What is Data?

Facts or Process of Information that can be measured.

Ex: Ages of Student of Class **30, 25, 20,28,20 (Data)**

Types of Statistics?

1. Descriptive Stats

It consists of organizing and summarizing of Data

2. Influential Stats

Technique where in we use the **DATA**, that we have measured to form **CONCLUSION**

Example of Descriptive stats

Class room of Math Students: 20 No.

Marks of 1st Semester

84,85,89,90,75,55, 84,85,89,90,75,55 84,85,89,90,75,55,35,40

What is the Average Marks of Students of class room?

Example of Influential stats

Are the Average marks of the students of Maths classroom similar to the marks of Math Class in college?

POPULATION & SAMPLE

METHOD OF SAMPLING TECHNIQUES

1. Simple Random Mostly used; Ex. Exit Pole opinion of Election Population (N) is split into 2. Stratified Sampling **Non Overlapping Groups (Strata)** Example: a. Gender (Male/ Female) b. Survey Based on Specific age group Pick up every nth (specific number) 3. Systematic Sampling individual from population 4. Convenient Sampling ■Survey from specific domains ■Related to specific Topic

Variable Measurement Scale Categorical Data 1. Nominal Ex: Gender- Male/Female, Flower's Type: Lilly, Rose Order of Data Matters, value 2. Ordinal doesn't ,matter. Ex: In case of Marks & Ranks of students, we can analyze performance through Ranks (Order) only Order & Value matter, Natural 3. Interval Zero not exist Ex. Interval of Temperature (70-80F; 80-90F) or Distance like 10-20km Quantitative scale, true zero 4. Ratio exist, equal interval between point. Ex. Length, Area

Frequency Distribution

Ex: Flowers- Rose, Lilly, Rose, Rose, Vinca, Jaismine, Vinca, Lilly, Lilly

Flowers	Frequency	Cumulative Frequency
Rose	3	3
Vinca	2	5
Lilly	4	9
Jaismine	1	10

Value is Discrete Variables

Histogram: Data Should be continuous Variable

Note: In above Histogram, we have selected **4** bins

MEASURE OF CENTRAL TENDENCY

Refer to the measure used to determine the central of distribution of data

Arithmetic **MEAN** for Population(N) and Sample(n)

Arithmetic **MODE** for Population(N) and Sample(n)

Arithmetic **MEDIAN** for Population(N) and Sample(n)

Median work well with **OUTLIER**

Arithmetic **MEAN** for Population(N) = Calculate Average only

Arithmetic **MEDIAN** for Population(N) and Sample(n)= Select Central or middle element of data

Arithmetic **MODE** for Population(N) and Sample(n)= Select most frequent Element of data

MEASURE OF CENTRAL TENDENCY

Example of Data: MODE

Suppose we have data with some missing elements

Type of Flower	Petal Length
Rose	
Vinca	
Lilly	
Rose	
Vinca	
Rose	
?	
?	

Missing elements: can be determined with modes

Arithmetic **MODE** for Population(N) and Sample(n)= Select most frequent Element of data

Mode will work with Categorical Variable

MEASURE OF CENTRAL TENDENCY

Example of MEAN

Suppose we have data (Quantitative variable) with some missing elements

Name of Student	Age
MISRI	30
KATHA	15
SHIVANI	35
ABHISHEK	35
KARTIK	3
NEHA	30
ISHAN	3

MEAN WILL WORK
BETTER TO
CALCULATE

MEASURE OF DISPERSION [SPREAD]

PERCENTILE & QUARTILE

Use to find Outliers or Odd numbers in Data

PERCENTILE is the value, below which a certain percentage of observation lie.

Ex: Data Set

Q1 . = What is the Percentile Ranking of 10?

Percentile value of 10 = No. of value below 10×100 n (sample size)

Percentile value of
$$10 = \frac{16}{20} \times 100 = 80\%$$

PERCENTILE & QUARTILE

Ex: Data Set

Q 2 . = What value exist at Percentile Ranking of 25%? (Reverse of Question 1)

Value = $\frac{\text{Percentile}}{100} \times (n+1)$

Solution: Value = $\underline{25}x (20+1) = 5.25$ (This is INDEX value) 100

Index value → Index value 5.25 comes between 5 & 6 index →

Will take Average of Index value of 5 & 6

In this case: Index value of 5 & 6 is 5,5: Average of 5+5/2=5

FIVE NUMBER SUMMARY

FIVE NUMBER SUMMARY

How to Remove Outliers from following Data Set?

Answer:

We need to define LOWER FENCE & HIGHER FENCE

Lower Fence: Below the lower fence all number will be treated as Outliers

Lower Fence= Q1-1.5 (IQR)

Upper Fence: Above the Upper/Higher fence all number will be treated as Outliers

Upper Fence= Q3+1.5 (IQR)

Where:

IQR: Inter Quartile Range

IQR: Q3-Q1

Q1: 25 Percentile

Q3: 75 Percentile

FIVE NUMBER SUMMARY: REMOVAL OF OUTLIERS

FIVE NUMBER SUMMARY: REMOVAL OF OUTLIERS

FIVE NUMBER SUMMARY: CONCLUSION

Solution: From above solutions, now we can figure out following points

Note: In above diagram, Mi, Mx and Md is used for illustrative purpose only .

INTERVIEW QUESTION: WHAT IS THE USE OF BOX PLOT?

Box Plot: It is used for the determination of Outlier.

: It gives u the visualization way, where the outlier is actually presents

INTERVIEW QUESTION: How BOX PLOT uses for the removal of Outlier?

With the help of Five Number Summary, like <u>Minimum</u>, Q1, <u>Median</u>, Q3 and <u>maximum</u>, we can identify <u>Upper fence and lower Fence</u> of Data Set and then with the help of Box Plot, we can remove Outliers