Linear Regression:

No.
$ \begin{array}{c ccccc} & & & & & \\ \hline Linear & Regression \\ \hline & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & & \\ \hline &$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \frac{(\sqrt{1}\sqrt{)^{-1}} - \frac{1}{5 \times 21753 - 329^{2}} - \frac{1}{529} - \frac{1}{529}}{5 \times 21753 - 329^{2}} - \frac{1}{529} - \frac{1}{529} - \frac{1}{529}}{5 \times 21753 - 329^{2}} - \frac{1}{529} - \frac{1}{529$
$\beta = (x^{7}x)^{-1}x^{7} = \frac{1}{524} = 1$
$\dot{Y} = \dot{X} = \begin{bmatrix} 1 & 60 & -47.98 \\ 1 & 70 & 2.92 \end{bmatrix} = \begin{bmatrix} 127.5 & \text{Student } 1 \\ 156.7 & \text{Student } 2 \\ 133.3 & \text{Student } 3 \end{bmatrix}$ $172 \qquad 162.5 & \text{Student } 4$ $165 \qquad 142.1 & \text{Student } 5$

Closed Form Without Normalization

Beta:

[-0.0862246	0.05340575	0.65803045	0.41731923	-0.01772481	0.30069864
1.02871152	0.48383363	0.26685697	0.04573456	0.31944742	1.14776959
0.29366213	0.41491543	0.85180482	-0.05950309	0.47235562	0.46198106
0.00497427	0.0205398	0.41310473	0.98508025	0.15573467	0.8618602
0.41974331	-0.06893699	0.33317496	0.27766637	-0.04184791 -	0.23599504
0.15020297	0.37745027	0.80256455	0.16053288	0.2744667	0.63461071
0.74135259	0.56079776	0.94058723	-0.0432542	0.80803615	0.93967722
0.12225161	-0.19933624	0.09398732	0.11412993	0.35479619	0.78582876
0.38900433	0.11804526	0.67618837	0.70377377	0.05526258	-0.24919095
0.87339793	-0.01381723	0.83138416	0.90569236	0.39980648	0.25235308
0.69692397	-0.00949757	0.17676599	0.45822485	0.02743899	1.16718165
0.04176352	1.01993881	0.56015024	-0.29761224	0.3177761	0.55781578
1.1376088	0.55190283	0.4099807	0.91987238	1.34076835	0.53297825
0.63648277	0.22140583	0.21469531	-0.00609269	0.82898663	0.46891532
-0.25571565	0.1972989	1.38639797	0.87219453	0.65782257	0.54983464
1.11698567	0.94267463	0.79030138	0.30055848	0.53288973	0.22873689
0.86702876	0.98591924	0.08132528	0.30834368	0.70121488]	

MSE: 4.39609786082

Batch Gradient Without Normalization

Beta:

[0.22766935	0.04926912	0.49075821	0.53316896	0.03312045	0.4291802
0.92704285	0.38053823	0.54931205	0.32240208	0.36203713	1.02347259
0.33157719	0.53755143	0.79293124	0.34421494	0.30348383	0.46472404
0.29458572	0.26602136	0.54775439	0.90914347	0.28603106	0.50597984
0.42788019	0.03880525	0.1978098	0.45151963	0.12783095	0.306327
0.27974695	0.23015537	0.44117103	0.27154554	0.38328989	0.3524848
0.50892727	0.43214341	0.83088654	0.26915302	0.6026654	0.88776574
0.10887242	0.1701851	0.11400057	0.23809648	0.40552648	0.69369281
0.44956139	0.32764342	0.66680446	0.37717538	0.05244999	-0.01382757
0.58671581	0.20255529	0.88555671	0.65250047	0.32283663	0.1529379
0.58433231	0.38708742	0.38569954	0.49123304	0.23010377	0.89345829
0.04454032	0.74480553	0.68698152	-0.11399285	0.52433376	0.57866989
0.78585681	0.34671584	0.4832255	0.6288695	0.95743216	0.64639908
0.79010401	0.15680372	0.19309826	0.29357565	0.63720365	0.33732385
-0.16104665	0.10673337	1.01468903	0.76834802	0.51525088	0.44584999
0.79544821	0.78357295	0.75251839	0.55825906	0.59423384	0.20030567
0.48726899	0.75329125	0.07284554	0.35503306	0.69429324]	

MSE: 4.37759592671

Stochastic Gradient Without Normalization

Beta:

[-0.01185402	0.05502465	0.59066682	0.51656768	0.3127531	0.42484285
0.77140998	0.6116552	0.58555048	0.0437524	0.51680984	0.99282054
0.52586939	0.46452354	0.81679006	-0.02168758	0.49846207	0.52072191
0.14213335	0.36819207	0.25994595	0.70263936	0.24072741	0.55881525
0.54218245	0.35382061	0.48651257	0.49048785	0.11264291	0.17736387
0.18872542	0.18502001	0.46833438	0.10578863	0.42944319	0.41399556
0.43193366	0.4281315	0.81539793	0.17171139	0.76674725	0.8820437
0.44211809	0.09868028	0.36049616	0.1160615	0.44482727	0.72706628
0.46053535	0.06682069	0.74305567	0.44836829	0.14009563	-0.01874977
0.72614565	-0.01069598	0.69121445	0.63311067	0.24875391	0.14697651
0.55263444	0.02686585	0.34318297	0.60920143	0.44055768	1.10250063
0.07929965	0.92723962	0.65397616	0.11989741	0.46731019	0.67822534
0.92499347	0.36428803	0.29838152	0.72442646	0.96082815	0.50163245
0.43303453	0.16550037	0.18995654	0.30379008	0.47154151	0.47277384
0.12451971	0.48115684	0.79064542	0.77181377	0.48166054	0.55451245
0.53549879	0.64948011	0.79964462	0.28620202	0.56009697	0.26445081
0.79842373	0.56042837	0.35628587	0.15468497	0.6152241]	

MSE: 4.55321973906

Closed Form With Normalization

Beta:

[2.27729720e+01	1.53267685e-01	1.85400036e-01	1.20001101e-01
	-5.02894960e-03	8.91855522e-02	2.85477509e-01	1.40249729e-01
	7.58001703e-02	1.29653087e-02	9.40114997e-02	3.31501951e-01
	8.48405150e-02	1.19998020e-01	2.42101087e-01	-1.70904428e-02
	1.37119556e-01	1.35350218e-01	1.41619004e-03	5.96423043e-03
	1.15830867e-01	2.84837752e-01	4.40248244e-02	2.49185633e-01
	1.20285952e-01	-1.97966211e-02	9.78939759e-02	8.05403060e-02
	-1.21241111e-02	-6.77059821e-02	4.42940642e-02	1.07814670e-01
	2.27982170e-01	4.72154203e-02	7.98729034e-02	1.82957097e-01
	2.10609705e-01	1.62079663e-01	2.74455584e-01	-1.24456123e-02
	2.32346197e-01	2.68821067e-01	3.49745502e-02	-5.73174263e-02
	2.74558199e-02	3.22366923e-02	1.03219840e-01	2.23792899e-01
	1.12445398e-01	3.34223468e-02	1.96611852e-01	2.04171370e-01
	1.61259528e-02	-7.12316220e-02	2.51757075e-01	-3.88735810e-03
	2.31055679e-01	2.65481860e-01	1.14239087e-01	7.19519080e-02
	2.03225977e-01	-2.77922653e-03	5.10043840e-02	1.31478537e-01
	7.74623329e-03	3.36781203e-01	1.19518825e-02	2.98145298e-01
	1.64253970e-01	-8.57326109e-02	9.04810592e-02	1.57878654e-01

3.30578812e-01	1.58142457e-01	1.17519641e-01	2.66603450e-01
3.90619100e-01	1.54573813e-01	1.82230684e-01	6.25165215e-02
6.11873098e-02	-1.74345404e-03	2.34361003e-01	1.35158424e-01
-7.34879378e-02	5.72871764e-02	4.02966409e-01	2.50642329e-01
1.87572968e-01	1.57855445e-01	3.18225717e-01	2.66144412e-01
2.29911686e-01	8.53225833e-02	1.56706806e-01	6.57087894e-02
2.52781623e-01	2.90068806e-01	2.33284776e-02	9.01229905e-02
2.03998476e-01]			

MSE: 4.40454594906

Batch Gradient With Normalization

Beta:

	J.Ca.			
[2.26314370e+01	1.56472069e-01	1.66211092e-01	1.22311607e-01
	-1.23730807e-03	9.27912698e-02	3.00889509e-01	1.71530166e-01
	9.65016213e-02	1.24019695e-02	9.73546485e-02	3.44150847e-01
	7.37193551e-02	1.34926956e-01	2.50479685e-01	4.44237824e-03
	1.29705174e-01	1.33816710e-01	-1.20262171e-03	1.27782110e-02
	1.09214197e-01	2.77963281e-01	5.85014678e-02	2.59493309e-01
	1.23482024e-01	-1.01901790e-02	9.61310754e-02	7.91369297e-02
	1.78208772e-02	-4.02205054e-02	2.57410489e-02	1.20550801e-01
	2.45588378e-01	4.94254324e-02	8.84012432e-02	1.87802672e-01
	1.91767489e-01	1.66042065e-01	2.77006607e-01	-1.13363276e-02
	2.35250747e-01	2.58430264e-01	1.21489249e-02	-3.35672386e-02
	3.08828976e-02	2.93577082e-02	1.08348343e-01	2.19164328e-01
	1.02330247e-01	2.51918396e-02	2.01546865e-01	2.05967393e-01
	2.44029928e-02	-6.19076257e-02	2.48507437e-01	9.27691703e-03
	2.46905873e-01	2.85875947e-01	1.29394746e-01	8.75080646e-02
	2.10823417e-01	2.02666978e-02	4.14111150e-02	1.29141830e-01
	1.91198779e-02	3.62870196e-01	2.24001342e-02	3.12990830e-01
	1.77761813e-01	-7.39828048e-02	8.21730110e-02	1.77154451e-01
	3.36492024e-01	1.74811868e-01	1.08921172e-01	2.63607960e-01
	4.09818557e-01	1.57795545e-01	1.97303661e-01	5.37669575e-02
	5.21850983e-02	3.58247178e-03	2.52169011e-01	1.53033209e-01
	-6.76204718e-02	7.82286698e-02	3.92781597e-01	2.44867492e-01
	1.91773252e-01	1.60529496e-01	3.19988309e-01	2.60654717e-01
	2.34634115e-01	8.75464460e-02	1.55468524e-01	7.99155768e-02
	2.63419427e-01	2.73817631e-01	3.71941936e-02	9.15361359e-02
	1.99412688e-01]			

MSE: 4.35965874223

Stochastic Gradient With Normalization

Beta:

	4.07004440.04	4.00007007 04	4.45500070 04
[2.26355654e+01	1.67994448e-01	1.66007867e-01	1.15506373e-01
-4.92549005e-03	8.47808070e-02	2.88997721e-01	1.60296291e-01
9.15977394e-02	2.58892409e-02	1.09694277e-01	3.45871525e-01
8.68438408e-02	1.40420749e-01	2.38082692e-01	-8.04233387e-04
1.40324029e-01	1.37910026e-01	2.14854946e-02	1.99968512e-02
1.16408187e-01	2.90037213e-01	7.62915221e-02	2.49970230e-01
1.11734009e-01	-1.52193845e-02	1.03093756e-01	9.98040109e-02
2.15743666e-02	-4.00074942e-02	3.23151751e-02	1.20785461e-01
2.27624002e-01	2.92833953e-02	9.41565155e-02	2.01272895e-01
2.04297445e-01	1.70770785e-01	2.84032205e-01	-9.14514482e-03
2.41035240e-01	2.65684584e-01	2.79125120e-02	-5.51663617e-02
4.50753662e-02	2.75059553e-02	9.19485262e-02	2.23173183e-01
1.07987631e-01	6.82650987e-02	1.97947076e-01	1.95971691e-01
3.71991739e-02	-5.33601320e-02	2.50406040e-01	-2.80571896e-03
2.33427493e-01	2.80246295e-01	1.24864923e-01	6.52156543e-02
2.03020326e-01	3.69006429e-03	4.10700125e-02	1.35701587e-01
3.80019248e-02	3.70744769e-01	2.60547509e-02	3.01661475e-01
1.68269267e-01	-8.11566132e-02	9.02707702e-02	1.69281382e-01
3.52828067e-01	1.65284950e-01	1.03858647e-01	2.71194237e-01
4.01866382e-01	1.43872869e-01	1.79486330e-01	6.53913236e-02
6.86866415e-02	-6.30923490e-06	2.41026136e-01	1.53596458e-01
-6.39901983e-02	5.76930803e-02	4.09508578e-01	2.34961381e-01
1.86717336e-01	1.77487273e-01	3.22373537e-01	2.67346795e-01
2.44475587e-01	8.76909995e-02	1.51501960e-01	8.94086333e-02
2.65467442e-01	2.85651782e-01	3.26714489e-02	9.48052948e-02
1.95383968e-01]			
_			

MSE: 4.3888817496

For each version of the linear model, Beta and MSE are not the same. The reason is that for the same dataset there are lots of possible beta to construct a good linear model, the beta doesn't have to be the same. And different algorithms result in different Betas, so that the difference between real y and predicted y are slightly different in these algorithms, resulting in different MSE.

After applying the z score normalization, we saw that the beta changed totally. And from the result we can see that the MSE decrease really slightly, compared to non-normalized data.

Code Explanation:

compute_mse():

I just used the formula to compute each difference between predict_y and real_y, sqaure them and add together.

getBeta():

this is straight forward, just plug in the formula and return $(X^T*X)^-1$ * (X^T*Y)

getBetaBatchGradient():

I set up a infinite loop and update beta using the formula in each iteration. I implemented a helper function derivative() to make the formula looks more clean.

In each iteration I calculated the previous cost and current cost after updating beta, if calculate the increase in cost. If the increase is less than 1 I will stop the iteration and return the beta.

getBetaStochasticGradient():

I set up a infinite loop and update beta using the formula in each iteration. What's different from batch gradient was that in each loop, each sample xi will update the beta, so it updates more constantly.

In each iteration I calculated the previous cost and current cost after updating beta, if calculate the increase in cost. If the increase is less than 1 I will stop the iteration and return the beta.

applyZScore(): use the formula directly

Logistic Regression:

Logistic Regression a) $l = \frac{2}{2} \text{ Yi XiB} - \log(1 + o \text{XiB})$	
$\beta = \begin{pmatrix} \beta_{0} \\ \beta_{1} \\ \beta_{2} \end{pmatrix} = \begin{pmatrix} \gamma_{0} \\ \gamma_{1} \\ \gamma_{2} \\ \gamma_{2} \end{pmatrix} = \begin{pmatrix} \gamma_{0} \\ \gamma_{1} \\ \gamma_{2} \\ \gamma_{3} \\ \gamma_{4} \end{pmatrix} = \begin{pmatrix} \gamma_{0} \\ \gamma_{1} \\ \gamma_{2} \\ \gamma_{3} \\ \gamma_{4} \\ \gamma_{5} \end{pmatrix} = \begin{pmatrix} \gamma_{0} \\ \gamma_{1} \\ \gamma_{2} \\ \gamma_{3} \\ \gamma_{4} \\ \gamma_{5} $	
b) $\frac{\partial L(\beta)}{\beta_{10}} = \sum_{i=0}^{2} X_{i0} \left(Y_{i} - \frac{\exp(\beta^{T}X_{i})}{1 + \exp(\beta^{T}X_{i})} \right)$ $\frac{\partial L(\beta)}{\beta_{11}} = \sum_{i=0}^{2} X_{i1} \left(Y_{i} - \frac{\exp(\beta^{T}X_{i})}{1 + \exp(\beta^{T}X_{i})} \right)$ $\frac{\partial L(\beta)}{\beta_{11}} = \sum_{i=0}^{2} X_{i1} \left(Y_{i} - \frac{\exp(\beta^{T}X_{i})}{1 + \exp(\beta^{T}X_{i})} \right)$	
$\frac{\partial L(\mathcal{B})}{\mathcal{B}_{12}} = \sum_{i=0}^{2} X_{i2} \left(Y_i - \frac{\exp(\beta^T X_i)}{1 + \exp(\beta^T X_i)} \right)$	
After expansion, $L = [23. \pm 1373, \pm 305\beta, -109](1+\beta, \pm 60\beta, \pm 155\beta_2) \cdot (1+\beta, \pm 75\beta, \pm 170\beta_2)$	
	*

		No.	_
<u>∂</u> L	$\frac{(\beta)}{\partial \beta_{\text{in}}} = -\sum_{i=0}^{z} X_{ij} X_{in} P(X_{i} \beta) (1-P(X_{i} \beta))$ $= -\sum_{i=0}^{z} X_{ij} X_{in} \frac{\exp(\beta T_{X_{i}})}{[1+\exp(\beta T_{X_{i}})]^{2}}$)	
Hess	Sian Matrix = Let \underline{A} denote $\frac{\exp(\beta^T X_i)}{[H^{exp}(\beta^T X_i)]^2}$		
	- = Xio Xio A - = = = = = = = = = = = = = = = = = =		_
	$-\sum X_{i1}X_{i0}A - \sum X_{i1}X_{i1}A - \sum X_{i1}X_{i1}A - \sum X_{i2}X_{i0}A - \sum X_{i2}X_{i1}A - \sum X_{i2}X_{i2}A$		

In the codes, I just followed the formula, for the gradients I calculated directly, and for the Hessian Matrix I used a double for loop and update each of the item in the $3 \star 3$ matrix, one by one.

Decision Tree:

	No.
	DATE
Decision Tree	
	ants
teature A: when for handicapped - into feature B: when for nater project -c	ost-sharing
Feature C: whe for budget-resolution	adoption.
Into(0) = I(20,10) = 1.0	
	0-2
Into $A(D) = \frac{2}{5}L(6.2) + \frac{1}{2}L(8.4) = 0$	975
Into $A(D) = \frac{4}{20}I(6.2) + \frac{12}{20}I(8.4) = 0$ Into $B(D) = \frac{12}{20}I(6.4) + \frac{12}{20}I(6.4) = 0.0$ Into $C(D) = \frac{12}{20}I(9.2) + \frac{9}{20}I(8.1) = 0.0$	603
Gain (A) = 1-0.875=0.125	
Gain(B) = -097 = 0.029) is largest.
Gain(c) = 1-0.603 = 0.397 Gain(c)	is jorgese.
Lute for budget-resolution-	adoption
The state of the s	·[D]
ntoA(L1) = 7/(6,1)+1/(3,1)=0.369 IntoA(R1)= ntoB(L1) = 7/(3,1)+7/(6,1)=0369 IntoB(R1)=	= \frac{1}{9}(7,1) + \frac{1}{9}(1,0) = 0.217 -\frac{1}{9}(5,1) + \frac{2}{9}(3,0) = 0.195
IntoA(L1) = IntoB(L1) IntoA(R so split with A or B So sp	1) 7 Into B(P1) lit with B
20 710 000 710 0	

\$ python3 DecisionTree.py house-votes-84.data 0

Fold-1: 0.9310344827586207

Fold-2: 0.9080459770114943

Fold-3: 0.9655172413793104

Fold-4: 0.8850574712643678

Fold-5: 0.9310344827586207

5-CV Accuracy = 0.9241379310344827

\$ python3 DecisionTree.py house-votes-84.data 1

Fold-1: 0.9195402298850575

Fold-2: 0.9195402298850575

Fold-3: 0.9540229885057471

Fold-4: 0.8850574712643678

Fold-5: 0.9310344827586207

5-CV Accuracy = 0.9218390804597701

\$ python3 DecisionTree.py tic-tac-toe.data 0

Fold-1: 0.875

Fold-2: 0.83333333333333334

Fold-3: 0.833333333333333334

Fold-4: 0.8167539267015707

Fold-5: 0.8272251308900523

5-CV Accuracy = 0.837129144851658

\$ python3 DecisionTree.py tic-tac-toe.data 1

Fold-1: 0.8802083333333334

Fold-2: 0.822916666666666

Fold-3: 0.81770833333333334

Fold-4: 0.837696335078534

Fold-5: 0.837696335078534

5-CV Accuracy = 0.8392452006980804

For the house-vote dataset I would choose information gain method, since the accuracy is slightly higher. On the other hand, for the tic-tac-toe dataset I would choose gain ratio method, since this method produce better accuracy.