Syntaks og semantik

Lektion 7

6 marts 2007

Fra sidst

CFG

PDA

Lukningsegenskaber

Lukningsegenskaber Pushdown-automater Kontekstfrie grammatikker

> $G = (V, \Sigma, R, S)$, hvor delene er Definition 2.2: En kontekstfri grammatik (CFG) er en 4-tupel

CFG

PDA

Lukningsegenskaber

V : en endelig mængde af variable

② Σ : en endelig mængde af terminaler, med $V \cap \Sigma = \emptyset$

 $\begin{tabular}{ll} @ $R:V\to \mathcal{P}\big((V\cup\Sigma)^*\big): produktioner / regler \\ @ $S\in V: startvariablen \end{tabular}$

– produktioner skrives $A \rightarrow w$ i stedet for $w \in R(A)$

• Hvis $u, v, w \in (V \cup \Sigma)^*$ er ord og $A \to w$ er en produktion, siges uAv at frembringe uwv: $uAv \Rightarrow uwv$.

• Hvis $u, v \in (V \cup \Sigma)^*$ er ord, siges u at derivere $v: u \stackrel{*}{\Rightarrow} v$, således at $u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow ... \Rightarrow u_k \Rightarrow v$. hvis u = v (!) eller der findes en følge u_1, u_2, \ldots, u_k af ord

Sproget som G genererer er $\llbracket G \rrbracket = \{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w \}.$

en derivation $S \Rightarrow w_1 \Rightarrow w_2 \Rightarrow ... \Rightarrow w_k \Rightarrow w$, hvor alle $W_i \in (V \cup \Sigma)^*$. – dvs. et ord $w \in \Sigma^*$ genereres af G hvis og kun hvis der findes

CFG PDA

Lukningsegenskaber

3/14

Eksempel: Opgave 2.6 d (ca.)

 $S \rightarrow A \# T \# A$ $extcolor{b}{T}
ightarrow a extcolor{b}{T} a extcolor{b}{T} b \mid \#A\#$ $A \rightarrow aA \mid bA \mid \varepsilon \mid A\#A$

Genererer sproget

 $\{x_1 \# x_2 \# \dots \# x_k \mid k \geq 5, \text{alle } x_i \in \{a, b\}^*,$ og $x_i = x_j^R$ for to indices $i \neq j$ }

2/14

CFG

PDA

Definition 2.13: En pushdown-automat (PDA) er en 6-tupe

 $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$, hvor delene er

Σ : input-alfabetet Q: en endelig mængde af tilstande

П : stack-alfabetet

 $oldsymbol{\delta}: Q imes \Sigma_{\varepsilon} imes \Gamma_{\varepsilon} o \mathcal{P}(Q imes \Gamma_{\varepsilon})$: transitionsfunktionen

q₀ ∈ Q : starttilstanden

 $oldsymbol{\circ} F \subseteq Q$: mængden af accepttilstande

săledes at $w = w_1 w_2 \dots w_m$ og $w_1, w_2, \ldots, w_m \in \Sigma_{\varepsilon}, r_0, r_1, \ldots, r_m \in Q \text{ og } s_0, s_1, \ldots, s_m \in \Gamma^*$ M siges at acceptere et ord $w \in \Sigma^*$ hvis der findes $m \in \mathbb{N}$ og

② for alle $i=0,1,\ldots,m-1$ findes $a,b\in\Gamma_{\varepsilon}$ og $t\in\Gamma^*$ som opfylder $s_i = at$, $s_{i+1} = bt$ og $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$, og

 $r_m \in F$.

5/14

Lukningsegenskaber

CFG

PDA

 $\varepsilon, \varepsilon o \$$

Genkender sproget

 $\{w \in \{a, b\}^* \mid \text{antallet af } a \text{ i } w = \text{antallet af } b \text{ i } w\}$

 $b, a \rightarrow \varepsilon$ $b, \varepsilon \to b$ $a, b \rightarrow \varepsilon$

At læse strengen abba:

CFG der genererer det Definition: Et sprog siges at være kontekstfrit hvis der findes en

findes en PDA der genkender det Sætning 2.20: Et sprog er kontekstfrit hvis og kun hvis der

Bevis lige om lidt

CFG PDA Lukningsegenskaber

Bevis: (Opgave 2.8) Lad A_1 og A_2 være kontekstfrie sprog over Sætning: Klassen af kontekstfrie sprog er lukket under ∪, ∘ og *.

et fælles alfabet Σ.

- \cup : Lad $G_1 = (V_1, \Sigma, R_1, S_1), G_2 = (V_2, \Sigma, R_2, S_2)$ være CFGs med $\llbracket G_1 \rrbracket = A_1$ og $\llbracket G_2 \rrbracket = A_2$. Konstruér en ny CFG $G = (V, \Sigma, R, S) \text{ ved } V = V_1 \cup V_2 \cup \{S\} \text{ og}$ $R=R_1\cup R_2\cup \{S
 ightarrow S_1\mid S_2\}.$ Da er $[\![G]\!]=A_1\cup A_2$
- o: Lad $M_1=(Q_1,\Sigma,\Gamma_1,\delta_1,q_1,F_1),\,M_2=(Q_2,\Sigma,\Gamma_2,\delta_2,q_2,F_2)$ $\delta = \delta_1 \cup \delta_2 \cup \{(q_f, \varepsilon, \varepsilon) \rightarrow (q_2, \varepsilon) \mid q_f \in F_1\}$. Da en ved $Q = Q_1 \cup Q_2$, $\Gamma = \Gamma_1 \cup \Gamma_2$ og $\Gamma_1 \cap \Gamma_2 = \emptyset$. Konstruér en ny PDA $M = (Q, \Sigma, \Gamma, \delta, q_1, F_2)$ være PDAs med $\llbracket M_1 \rrbracket = A_1$ og $\llbracket M_2 \rrbracket = A_2$. Antag at $\llbracket M \rrbracket = A_1 \circ A_2.$
- *: Lad $G_1 = (V_1, \Sigma, R_1, S_1)$ være en CFG med $\llbracket G_1 \rrbracket = A_1$ og $R = \{S \to \varepsilon \mid SS \mid S_1\}$. Da er $\llbracket G \rrbracket = A_1^*$. Konstruér en ny CFG $G = (V, \Sigma, R, S)$ ved $V = V_1 \cup \{S\}$

6/14

8/14

CFG ⇒ PDA $PDA \Rightarrow CFG$

Kontekstfrie grammatikker og pushdown-automater

Ethvert kontekstfrit sprog genkendes af en PDA Ethvert sprog genkendt af en PDA er kontekstfrit

CFG ⇒ PDA PDA ⇒ CFG 9/14

sprog. Da findes en PDA P med $\llbracket P \rrbracket = A$. Lemma 2.21: Lad Σ være et alfabet og $A \subseteq \Sigma^*$ et kontekstfrit

Bevis: Lad $G = (V, \Sigma, R, S)$ være en CFG med $\llbracket G \rrbracket = A$. forsøger at finde en derivation for s i G: Idéen er at PDAen, givet en inputstreng s, nondeterministisk

- Push S på stacken
- Hvis topsymbolet på stacken er en variabel A: Pop A og der ikke er nogen produktion $A \rightarrow w i R$.) push højresiden w af en produktion $A \rightarrow w$ i R. (Dø hvis
- Hvis topsymbolet på stacken er en terminal a: Sammenlign ikke er ens, dø med næste inputsymbol. Hvis de er ens, pop a. Hvis de
- Gentag step 2 og 3 indtil stacken er tom.

CFG ⇒ PDA $PDA \Rightarrow CFG$

sprog. Da findes en PDA $P \text{ med } \llbracket P \rrbracket = A$. Lemma 2.21: Lad Σ være et alfabet og $A\subseteq \Sigma^*$ et kontekstfrit

Bevis: Lad $G = (V, \Sigma, R, S)$ være en CFG med $\llbracket G \rrbracket = A$. Vi konstruerer først en "generaliseret PDA"

Lad symboler. Lad $Q = \{q_s, q_\ell, q_f\}, F = \{q_a\} \text{ og } \Gamma = V \cup \Sigma \cup \{\$\}.$ $P = (Q, \Sigma, \Gamma, \delta, q_s, F)$, der kan pushe strenge i stedet for bare

$$\delta(q_s,\varepsilon,\varepsilon) = \{(q_\ell,S\$)\}$$

$$\delta(q_\ell,\varepsilon,A) = \{(q_\ell,w) \mid w \in R(A)\} \text{ for alle } A \in V$$

$$\delta(q_\ell,a,a) = \{(q_\ell,\varepsilon)\} \text{ for alle } a \in \Sigma$$

$$\delta(q_\ell,\varepsilon,\$) = \{(q_a,\varepsilon)\}$$

 $\delta(q, a, b) = \emptyset$ for alle andre (q_a) $\varepsilon, A \rightarrow W$ $a, a \rightarrow \varepsilon$

 $q \xrightarrow{a,b \to s_n} q_1 \xrightarrow{\varepsilon,\varepsilon \to s_{n-1}}$ transition $q^{\frac{a,b \to s_1 s_2 \dots s_n}{r}}$ r med (nye tilstande og) en følge Lav til sidst P om til en "almindelig" PDA ved at erstatte enhver $\rightarrow q_2 \longrightarrow \ldots \longrightarrow q_{n-1} \xrightarrow{\varepsilon, \varepsilon \to s_1} r.$

PDA ⇒ CFG

11/14

CFG ⇒ PDA

findes en CFG G over Σ med $\llbracket G \rrbracket = \llbracket P \rrbracket$. Lemma 2.27: Lad Σ være et alfabet og P en PDA over Σ . Da

Bevis: Lad $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$. Vi konstruerer $G = (V, \Sigma, R, S)$:

- Sørg for at P kun har én accepttilstand qa og at stacken tømmes før P går i qa.
- **2** Lad $V = \{A_{pq} \mid p, q \in Q\}$, og sørg for at A_{pq} deriverer præcist de strenge som bringer P fra p med tom stack til q med tom stack.
- Lad $S = A_{q_0q_a}$. Voilà!

12/14

10/14

 $\mathsf{CFG} \Rightarrow \mathsf{PDA}$ $\mathsf{PDA} \Rightarrow \mathsf{CFG}$

Lemma 2.27: Lad Σ være et alfabet og P en PDA over Σ. Da findes en CFG G over Σ med $\llbracket G \rrbracket = \llbracket P \rrbracket$.

Bevis: Lad $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$. Vi konstruerer $G = (V, \Sigma, R, S)$:

- Sørg for at P kun har én acceptilstand q_a og at stacken tømmes før P går i q_a.
- Nyt stacksymbol \$. Tre nye tilstande: q_s , q_e og q_a . Nye transitioner: $q_s \xrightarrow{\varepsilon,\varepsilon \to \$} q_0$, $q \xrightarrow{\varepsilon,\varepsilon \to \varepsilon} q_e$ for alle $q \in F$, $q_e \xrightarrow{\varepsilon,a \to \varepsilon} q_e$ for alle $a \in \Sigma$, og $q_e \xrightarrow{\varepsilon,\$ \to \varepsilon} q_a$.

Sørg for at enhver transition enten pusher eller popper.

- Erstat enhver transition $q \xrightarrow{a,b \to c} r \text{ med}$ $q \xrightarrow{a,b \to \varepsilon} q_1 \xrightarrow{\varepsilon,\varepsilon \to c} r$
- Erstat enhver transition $q \xrightarrow{a,\varepsilon \to \varepsilon} r$ med $q \xrightarrow{a,\varepsilon \to x} q_1 \xrightarrow{\varepsilon,x \to \varepsilon} r$ for et eller andet symbol $x \in \Gamma$.

13/14PDA \Rightarrow OFG

CFG ⇒ PDA

Lemma 2.27: Lad Σ være et alfabet og P en PDA over Σ . Da findes en CFG G over Σ med $\llbracket G \rrbracket = \llbracket P \rrbracket$.

Bevis: Lad $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$. Vi konstruerer $G = (V, \Sigma, R, S)$:

- Lad $V = \{A_{pq} \mid p, q \in Q\}$, og sørg for at A_{pq} deriverer præcist de strenge som bringer P fra p med tom stack til q med tom stack.
- Lav en produktion $A_{pp} \rightarrow \varepsilon$ for alle $p \in Q$ (terminering)
- Lav en produktion $A_{pq} o A_{pr} A_{rq}$ for alle $p, q, r \in Q$ (rekursion)
- For alle $p,q,r,s\in Q$: Hvis $p\xrightarrow{a,\varepsilon\to t} r$ og $s\xrightarrow{b,t\to\varepsilon} q$ for nogle $a,b\in \Sigma_\varepsilon$ og et $t\in \Gamma$: Lav en produktion $A_{pq}\to aA_{rs}b$. (produktion)
- der skal argumenteres for at dette giver det rigtige resultat!