(Q3)

(a)

Proof. Since W is the set of solutions, then $\forall w \in W, \ w = \sum_{i=1}^k t_i x_i$. Let $S = \{\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_k\}$.

W represents every linear combination of the base vectors $\mathbf{x}_1 \dots \mathbf{x}_k$, so $W = \operatorname{span} S$.

(b)

Proof. For the sake of contradiction, assume that

$$\sum_{i=i}^{k} t_i x_i = \mathbf{0} \text{ and } \exists t_j : \ t_j \neq 0$$

If there is only one such t, then that t has to be zero. If there is more than one, then S no longer spans w. Thus, S has to be linearly independent.

(c) Since $\{\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_k\}$ is linearly independent and spans W is is a basis for W.