$11a_{38} (K11a_{38})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 1.39701 \times 10^{52}u^{49} - 1.56890 \times 10^{52}u^{48} + \dots + 9.78680 \times 10^{53}b - 2.06404 \times 10^{53},$$

$$2.86648 \times 10^{52}u^{49} - 4.68399 \times 10^{52}u^{48} + \dots + 9.78680 \times 10^{53}a - 2.53995 \times 10^{54}, \ u^{50} - 2u^{49} + \dots - 80u + I_2^u = \langle -36u^5a^2 - 80u^4a^2 + 64u^3a^2 + 36u^5 - 7a^2u^2 + 80u^4 - 40a^2u - 64u^3 - 22a^2 - 276u^2 + 283b + 40u + 22,$$

$$2u^5a^2 + u^5a + \dots - a - 5, \ u^6 + u^5 - u^4 - 2u^3 + u + 1 \rangle$$

$$I_3^u = \langle -u^5 + 2u^3 + b - u, \ u^4 + 2u^3 - 3u^2 + a - 3u + 2, \ u^6 - 3u^4 + 2u^2 + 1 \rangle$$

$$I_1^v = \langle a, -2v^3 + 3v^2 + 4b - 8v + 3, \ 2v^4 - v^3 + 5v^2 + v + 1 \rangle$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 78 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{matrix} \text{I. } I_1^u = \\ \langle 1.40 \times 10^{52} u^{49} - 1.57 \times 10^{52} u^{48} + \dots + 9.79 \times 10^{53} b - 2.06 \times 10^{53}, \ 2.87 \times 10^{52} u^{49} - \\ 4.68 \times 10^{52} u^{48} + \dots + 9.79 \times 10^{53} a - 2.54 \times 10^{54}, \ u^{50} - 2u^{49} + \dots - 80u + 64 \rangle \end{matrix}$$

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.0292893u^{49} + 0.0478602u^{48} + \dots + 0.349631u + 2.59529 \\ -0.0142744u^{49} + 0.0160307u^{48} + \dots - 0.546290u + 0.210900 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.0506276u^{49} - 0.0564076u^{48} + \dots + 1.79590u - 3.09324 \\ -0.0101755u^{49} + 0.0132424u^{48} + \dots + 0.365267u + 1.43307 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.0251404u^{49} - 0.0341614u^{48} + \dots - 0.178601u - 0.734921 \\ 0.0178177u^{49} - 0.0204546u^{48} + \dots + 0.655163u + 0.0702679 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.0359682u^{49} - 0.0375079u^{48} + \dots + 0.971454u - 2.70728 \\ -0.0171934u^{49} + 0.0404449u^{48} + \dots + 1.08010u + 1.42517 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.0435637u^{49} + 0.0638909u^{48} + \dots + 0.196658u + 2.80619 \\ -0.0142744u^{49} + 0.0160307u^{48} + \dots - 0.546290u + 0.210900 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.0341694u^{49} + 0.0511276u^{48} + \dots + 0.560955u + 1.92903 \\ 0.00179875u^{49} + 0.0136197u^{48} + \dots + 1.53241u - 0.778251 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.0608849u^{49} + 0.0808601u^{48} + \dots - 0.638959u + 4.29539 \\ -0.0126196u^{49} + 0.0224728u^{48} + \dots + 0.518576u + 0.0714096 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.0608849u^{49} + 0.0808601u^{48} + \dots - 0.638959u + 4.29539 \\ -0.0126196u^{49} + 0.0824728u^{48} + \dots + 0.518576u + 0.0714096 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.0626913u^{49} + 0.0376218u^{48} + \cdots 2.19058u + 7.82840$

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{50} - 4u^{49} + \dots + 3u + 4$
c_2	$u^{50} + 24u^{49} + \dots - 255u + 16$
c_{3}, c_{7}	$u^{50} - 2u^{49} + \dots - 80u + 64$
c_5, c_8, c_9	$u^{50} + 2u^{49} + \dots + 76u + 17$
c_6, c_{10}	$u^{50} + 2u^{49} + \dots + 72u + 17$
c_{11}	$u^{50} - 20u^{49} + \dots - 4370u + 289$

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{50} - 24y^{49} + \dots + 255y + 16$
c_2	$y^{50} + 8y^{49} + \dots + 29791y + 256$
c_{3}, c_{7}	$y^{50} - 24y^{49} + \dots - 19712y + 4096$
c_5, c_8, c_9	$y^{50} + 52y^{49} + \dots - 846y + 289$
c_6, c_{10}	$y^{50} + 20y^{49} + \dots + 4370y + 289$
c_{11}	$y^{50} + 28y^{49} + \dots - 180694y + 83521$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.907272 + 0.392918I		
a = -0.420194 + 0.002697I	-0.744870 + 0.584560I	0.202019 - 0.958990I
b = -0.699224 - 0.714437I		
u = 0.907272 - 0.392918I		
a = -0.420194 - 0.002697I	-0.744870 - 0.584560I	0.202019 + 0.958990I
b = -0.699224 + 0.714437I		
u = -0.936602 + 0.118293I		
a = -0.318743 - 0.218959I	-0.08204 - 3.21276I	0.42949 + 6.66311I
b = -0.620116 - 0.388367I		
u = -0.936602 - 0.118293I		
a = -0.318743 + 0.218959I	-0.08204 + 3.21276I	0.42949 - 6.66311I
b = -0.620116 + 0.388367I		
u = -0.473630 + 0.961275I		
a = 0.323168 - 0.723326I	-5.28661 - 1.41187I	-2.51524 + 3.36613I
b = 0.711410 + 0.630048I		
u = -0.473630 - 0.961275I		
a = 0.323168 + 0.723326I	-5.28661 + 1.41187I	-2.51524 - 3.36613I
b = 0.711410 - 0.630048I		
u = 0.449533 + 0.975399I		
a = -0.509462 + 0.216523I	-0.28876 - 5.04770I	1.29595 + 6.45390I
b = -0.517652 - 1.021650I		
u = 0.449533 - 0.975399I		
a = -0.509462 - 0.216523I	-0.28876 + 5.04770I	1.29595 - 6.45390I
b = -0.517652 + 1.021650I		
u = 0.815974 + 0.347535I		
a = 1.49469 + 2.72833I	-1.11120 + 2.63706I	2.56560 - 6.52941I
b = 0.468151 - 0.953658I		
u = 0.815974 - 0.347535I		
a = 1.49469 - 2.72833I	-1.11120 - 2.63706I	2.56560 + 6.52941I
b = 0.468151 + 0.953658I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.697235 + 0.535365I		
a = 0.315606 + 0.602693I	-9.12170 + 4.13349I	-4.37982 - 7.84583I
b = 0.954432 - 0.777792I		
u = 0.697235 - 0.535365I		
a = 0.315606 - 0.602693I	-9.12170 - 4.13349I	-4.37982 + 7.84583I
b = 0.954432 + 0.777792I		
u = 0.953458 + 0.598229I		
a = 0.949740 - 0.081078I	-8.29977 + 0.42603I	-4.99238 - 0.29759I
b = -0.813160 - 0.543764I		
u = 0.953458 - 0.598229I		
a = 0.949740 + 0.081078I	-8.29977 - 0.42603I	-4.99238 + 0.29759I
b = -0.813160 + 0.543764I		
u = -0.024298 + 0.854586I		
a = -0.679350 - 0.293209I	0.969303 + 1.022450I	4.86262 - 1.22345I
b = -0.329331 + 0.976215I		
u = -0.024298 - 0.854586I		
a = -0.679350 + 0.293209I	0.969303 - 1.022450I	4.86262 + 1.22345I
b = -0.329331 - 0.976215I		
u = 0.232434 + 1.128490I		
a = 0.171601 - 0.671528I	-4.19193 - 3.67253I	-1.22751 + 2.31471I
b = 0.613539 + 0.992173I		
u = 0.232434 - 1.128490I		
a = 0.171601 + 0.671528I	-4.19193 + 3.67253I	-1.22751 - 2.31471I
b = 0.613539 - 0.992173I		
u = -1.083130 + 0.424102I		
a = -0.51370 + 2.44482I	-6.75514 - 5.91277I	-2.21392 + 5.18403I
b = -0.653200 - 1.057010I		
u = -1.083130 - 0.424102I		
a = -0.51370 - 2.44482I	-6.75514 + 5.91277I	-2.21392 - 5.18403I
b = -0.653200 + 1.057010I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.643203 + 1.007070I		
a = 0.426141 + 0.701622I	-7.77183 - 3.25304I	-5.27621 + 1.64998I
b = 0.850297 - 0.462719I		
u = 0.643203 - 1.007070I		
a = 0.426141 - 0.701622I	-7.77183 + 3.25304I	-5.27621 - 1.64998I
b = 0.850297 + 0.462719I		
u = -1.089060 + 0.646090I		
a = 0.400714 + 0.040363I	-3.37785 - 4.34752I	-0.97473 + 2.40737I
b = -0.874960 + 0.339779I		
u = -1.089060 - 0.646090I		
a = 0.400714 - 0.040363I	-3.37785 + 4.34752I	-0.97473 - 2.40737I
b = -0.874960 - 0.339779I		
u = -0.538092 + 1.149580I		
a = 0.144817 + 0.630742I	-5.83333 + 8.80963I	-2.37769 - 6.43347I
b = 0.646329 - 1.107890I		
u = -0.538092 - 1.149580I		
a = 0.144817 - 0.630742I	-5.83333 - 8.80963I	-2.37769 + 6.43347I
b = 0.646329 + 1.107890I		
u = -1.174390 + 0.484424I		
a = 0.96122 - 1.70050I	4.31618 - 5.59634I	6.06047 + 4.87396I
b = 0.536868 + 1.111540I		
u = -1.174390 - 0.484424I		
a = 0.96122 + 1.70050I	4.31618 + 5.59634I	6.06047 - 4.87396I
b = 0.536868 - 1.111540I		
u = -1.266720 + 0.096929I		
a = -0.02752 + 1.80946I	6.04456 + 2.16278I	8.79757 - 2.89733I
b = 0.280639 - 1.152600I		
u = -1.266720 - 0.096929I		
a = -0.02752 - 1.80946I	6.04456 - 2.16278I	8.79757 + 2.89733I
b = 0.280639 + 1.152600I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.595443 + 0.355867I		
a = 0.228768 + 0.590040I	-8.47083 + 2.48602I	-1.45090 + 5.51453I
b = 0.871755 - 0.998829I		
u = -0.595443 - 0.355867I		
a = 0.228768 - 0.590040I	-8.47083 - 2.48602I	-1.45090 - 5.51453I
b = 0.871755 + 0.998829I		
u = 1.264420 + 0.377230I		
a = -0.33373 - 1.58630I	5.10728 + 3.38490I	7.93360 - 3.33034I
b = 0.170537 + 1.148410I		
u = 1.264420 - 0.377230I		
a = -0.33373 + 1.58630I	5.10728 - 3.38490I	7.93360 + 3.33034I
b = 0.170537 - 1.148410I		
u = 1.117610 + 0.748018I		
a = 0.293611 - 0.238740I	-6.21564 + 9.65095I	0 5.84415I
b = -1.007530 - 0.362892I		
u = 1.117610 - 0.748018I		
a = 0.293611 + 0.238740I	-6.21564 - 9.65095I	0. + 5.84415I
b = -1.007530 + 0.362892I		
u = 1.175850 + 0.667191I		
a = 1.12100 + 1.42946I	1.99477 + 11.04250I	0 8.76647I
b = 0.621576 - 1.109980I		
u = 1.175850 - 0.667191I		
a = 1.12100 - 1.42946I	1.99477 - 11.04250I	0. + 8.76647I
b = 0.621576 + 1.109980I		
u = -0.399787 + 0.467256I		
a = -1.67834 - 1.67643I	-1.97039 + 0.78230I	-5.45253 + 2.09256I
b = 0.114999 - 0.542444I		
u = -0.399787 - 0.467256I		
a = -1.67834 + 1.67643I	-1.97039 - 0.78230I	-5.45253 - 2.09256I
b = 0.114999 + 0.542444I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.27251 + 0.63129I		
a = -0.67000 - 1.80811I	-0.91239 + 9.84583I	0
b = -0.616422 + 1.164310I		
u = 1.27251 - 0.63129I		
a = -0.67000 + 1.80811I	-0.91239 - 9.84583I	0
b = -0.616422 - 1.164310I		
u = -1.22350 + 0.76980I		
a = -0.88939 + 1.67143I	-3.6196 - 15.6826I	0
b = -0.662987 - 1.206930I		
u = -1.22350 - 0.76980I		
a = -0.88939 - 1.67143I	-3.6196 + 15.6826I	0
b = -0.662987 + 1.206930I		
u = 0.257076 + 0.420882I		
a = -0.990050 - 0.003127I	0.426067 + 1.178950I	4.63590 - 6.06198I
b = -0.223361 + 0.753004I		
u = 0.257076 - 0.420882I		
a = -0.990050 + 0.003127I	0.426067 - 1.178950I	4.63590 + 6.06198I
b = -0.223361 - 0.753004I		
u = 1.51280 + 0.01490I		
a = 0.22721 - 1.58372I	2.35249 + 4.91231I	0
b = -0.435520 + 0.951672I		
u = 1.51280 - 0.01490I		
a = 0.22721 + 1.58372I	2.35249 - 4.91231I	0
b = -0.435520 - 0.951672I		
u = -1.49474 + 0.29701I		
a = 0.409690 - 1.327970I	1.85024 - 1.51739I	0
b = -0.387075 + 0.830148I		
u = -1.49474 - 0.29701I		
a = 0.409690 + 1.327970I	1.85024 + 1.51739I	0
b = -0.387075 - 0.830148I		

 $\text{II. } I_2^u = \langle -36u^5a^2 + 36u^5 + \cdots - 22a^2 + 22, \ 2u^5a^2 + u^5a + \cdots - a - 5, \ u^6 + u^5 - u^4 - 2u^3 + u + 1 \rangle$

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.127208a^{2}u^{5} - 0.127208u^{5} + \dots + 0.0777385a^{2} - 0.0777385 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.127208a^{2}u^{5} + 0.127208u^{5} + \dots + a + 2.07774 \\ -0.127208a^{2}u^{5} + 0.127208u^{5} + \dots - 0.0777385a^{2} + 0.0777385 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.127208a^{2}u^{5} + 0.127208u^{5} + \dots - 0.0777385a^{2} + 0.0777385 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.127208a^{2}u^{5} - 0.127208u^{5} + \dots + a - 0.0777385 \\ 0.127208a^{2}u^{5} - 0.127208u^{5} + \dots + a - 0.0777385a^{2} - 0.0777385 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.127208a^{2}u^{5} - 0.127208u^{5} + \dots + a - 0.0777385a^{2} - 0.0777385 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{2} - 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{5} - u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^4 + 4u^2 + 4u 2$

Crossings	u-Polynomials at each crossing
c_1, c_4	$(u^6 - u^5 - u^4 + 2u^3 - u + 1)^3$
c_2	$(u^6 + 3u^5 + 5u^4 + 4u^3 + 2u^2 + u + 1)^3$
c_3, c_7	$(u^6 + u^5 - u^4 - 2u^3 + u + 1)^3$
c_5, c_6, c_8 c_9, c_{10}	$u^{18} + 6u^{16} + \dots - u + 1$
c_{11}	$u^{18} - 12u^{17} + \dots - 3u + 1$

Crossings	Riley Polynomials at each crossing
$c_1, c_3, c_4 \\ c_7$	$(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)^3$
c_2	$(y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)^3$
c_5, c_6, c_8 c_9, c_{10}	$y^{18} + 12y^{17} + \dots + 3y + 1$
c_{11}	$y^{18} - 12y^{17} + \dots + 15y + 1$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.002190 + 0.295542I		
a = -0.158981 + 0.210049I	1.89061 + 0.92430I	3.71672 - 0.79423I
b = 0.700352 + 0.245687I		
u = 1.002190 + 0.295542I		
a = -1.28821 - 1.33402I	1.89061 + 0.92430I	3.71672 - 0.79423I
b = -0.461864 + 1.032610I		
u = 1.002190 + 0.295542I		
a = -0.09163 + 2.11799I	1.89061 + 0.92430I	3.71672 - 0.79423I
b = -0.238488 - 1.278300I		
u = 1.002190 - 0.295542I		
a = -0.158981 - 0.210049I	1.89061 - 0.92430I	3.71672 + 0.79423I
b = 0.700352 - 0.245687I		
u = 1.002190 - 0.295542I		
a = -1.28821 + 1.33402I	1.89061 - 0.92430I	3.71672 + 0.79423I
b = -0.461864 - 1.032610I		
u = 1.002190 - 0.295542I		
a = -0.09163 - 2.11799I	1.89061 - 0.92430I	3.71672 + 0.79423I
b = -0.238488 + 1.278300I		
u = -0.428243 + 0.664531I		
a = -1.404780 + 0.070635I	-1.89061 + 0.92430I	-3.71672 - 0.79423I
b = -0.414097 - 0.427367I		
u = -0.428243 + 0.664531I		
a = 0.19096 - 1.40605I	-1.89061 + 0.92430I	-3.71672 - 0.79423I
b = 0.339178 - 0.790848I		
u = -0.428243 + 0.664531I		
a = 2.53589 - 1.57875I	-1.89061 + 0.92430I	-3.71672 - 0.79423I
b = 0.074919 + 1.218220I		
u = -0.428243 - 0.664531I		
a = -1.404780 - 0.070635I	-1.89061 - 0.92430I	-3.71672 + 0.79423I
b = -0.414097 + 0.427367I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.428243 - 0.664531I		
a = 0.19096 + 1.40605I	-1.89061 - 0.92430I	-3.71672 + 0.79423I
b = 0.339178 + 0.790848I		
u = -0.428243 - 0.664531I		
a = 2.53589 + 1.57875I	-1.89061 - 0.92430I	-3.71672 + 0.79423I
b = 0.074919 - 1.218220I		
u = -1.073950 + 0.558752I		
a = -1.16030 + 0.89772I	-5.69302I	0. + 5.51057I
b = -0.624190 - 0.955200I		
u = -1.073950 + 0.558752I		
a = 0.008039 - 0.301999I	-5.69302I	0. + 5.51057I
b = 0.798654 - 0.441445I		
u = -1.073950 + 0.558752I		
a = 0.36901 - 1.71323I	-5.69302I	0. + 5.51057I
b = -0.174464 + 1.396650I		
u = -1.073950 - 0.558752I		
a = -1.16030 - 0.89772I	5.69302I	0 5.51057I
b = -0.624190 + 0.955200I		
u = -1.073950 - 0.558752I		
a = 0.008039 + 0.301999I	5.69302I	0 5.51057I
b = 0.798654 + 0.441445I		
u = -1.073950 - 0.558752I		
a = 0.36901 + 1.71323I	5.69302I	0 5.51057I
b = -0.174464 - 1.396650I		

III. $I_3^u = \langle -u^5 + 2u^3 + b - u, \ u^4 + 2u^3 - 3u^2 + a - 3u + 2, \ u^6 - 3u^4 + 2u^2 + 1 \rangle$

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{4} - 2u^{3} + 3u^{2} + 3u - 2 \\ u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{5} + u^{4} - 4u^{3} - 3u^{2} + 4u + 2 \\ 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{5} - u^{4} - 4u^{3} + 3u^{2} + 4u - 1 \\ u^{5} - 2u^{3} - u^{2} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ -u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{5} - u^{4} - 4u^{3} + 3u^{2} + 4u - 2 \\ u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{5} + 2u^{3} - u \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^4 + 8u^2$

Crossings	u-Polynomials at each crossing
c_1	$(u^3 + u^2 - 1)^2$
c_2	$(u^3 + u^2 + 2u + 1)^2$
c_3, c_7	$u^6 - 3u^4 + 2u^2 + 1$
C4	$(u^3 - u^2 + 1)^2$
c_5, c_6, c_8 c_9, c_{10}	$(u^2+1)^3$
c_{11}	$(u-1)^6$

Crossings	Riley Polynomials at each crossing
c_1, c_4	$(y^3 - y^2 + 2y - 1)^2$
c_2	$(y^3 + 3y^2 + 2y - 1)^2$
c_{3}, c_{7}	$(y^3 - 3y^2 + 2y + 1)^2$
c_5, c_6, c_8 c_9, c_{10}	$(y+1)^6$
c_{11}	$(y-1)^6$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.307140 + 0.215080I		
a = 0.35722 - 1.72238I	3.02413 + 2.82812I	3.50976 - 2.97945I
b = 1.000000I		
u = 1.307140 - 0.215080I		
a = 0.35722 + 1.72238I	3.02413 - 2.82812I	3.50976 + 2.97945I
b = -1.000000I		
u = -1.307140 + 0.215080I		
a = 0.72238 - 1.35722I	3.02413 - 2.82812I	3.50976 + 2.97945I
b = 1.000000I		
u = -1.307140 - 0.215080I		
a = 0.72238 + 1.35722I	3.02413 + 2.82812I	3.50976 - 2.97945I
b = -1.000000I		
u = 0.569840I		
a = -3.07960 + 2.07960I	-1.11345	-3.01950
b = 1.000000I		
u = -0.569840I		
a = -3.07960 - 2.07960I	-1.11345	-3.01950
b = -1.000000I		

IV.
$$I_1^v = \langle a, -2v^3 + 3v^2 + 4b - 8v + 3, 2v^4 - v^3 + 5v^2 + v + 1 \rangle$$

$$a_{3} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{2}v^{3} - \frac{3}{4}v^{2} + 2v - \frac{3}{4} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{3}v^{3} - \frac{5}{4}v^{2} + \frac{7}{2}v + \frac{1}{4} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{3}{2}v^{3} + \frac{5}{4}v^{2} - \frac{7}{2}v + \frac{3}{4} \\ v^{2} - \frac{1}{2}v + \frac{5}{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{3}{2}v^{3} + \frac{1}{4}v^{2} - 3v - \frac{7}{4} \\ -2v^{3} + v^{2} - 5v - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{2}v^{3} - \frac{3}{4}v^{2} + 2v - \frac{3}{4} \\ \frac{1}{2}v^{3} - \frac{3}{4}v^{2} + 2v - \frac{3}{4} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{3}{2}v^{3} - \frac{1}{4}v^{2} + 3v + \frac{7}{4} \\ 2v^{3} - v^{2} + 5v + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{3}{2}v^{3} - \frac{1}{4}v^{2} + 4v + \frac{7}{4} \\ 2v^{3} - v^{2} + 5v + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{3}{2}v^{3} - \frac{1}{4}v^{2} + 4v + \frac{7}{4} \\ 2v^{3} - v^{2} + 5v + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-6v^3 + 4v^2 12v 2$

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^4$
c_2, c_4	$(u+1)^4$
c_3, c_7	u^4
<i>C</i> ₅	$u^4 + u^3 + 3u^2 + 2u + 1$
c_6	$u^4 + u^3 + u^2 + 1$
c_8, c_9, c_{11}	$u^4 - u^3 + 3u^2 - 2u + 1$
c_{10}	$u^4 - u^3 + u^2 + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^4$
c_3, c_7	y^4
c_5, c_8, c_9 c_{11}	$y^4 + 5y^3 + 7y^2 + 2y + 1$
c_6,c_{10}	$y^4 + y^3 + 3y^2 + 2y + 1$

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -0.130534 + 0.427872I		
a = 0	-8.43568 + 3.16396I	-1.51454 - 5.24252I
b = -0.851808 + 0.911292I		
v = -0.130534 - 0.427872I		
a = 0	-8.43568 - 3.16396I	-1.51454 + 5.24252I
b = -0.851808 - 0.911292I		
v = 0.38053 + 1.53420I		
a = 0	-1.43393 - 1.41510I	0.38954 + 3.92814I
b = 0.351808 + 0.720342I		
v = 0.38053 - 1.53420I		
a = 0	-1.43393 + 1.41510I	0.38954 - 3.92814I
b = 0.351808 - 0.720342I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^4(u^3+u^2-1)^2(u^6-u^5-u^4+2u^3-u+1)^3$ $\cdot (u^{50}-4u^{49}+\cdots+3u+4)$
c_2	$(u+1)^4(u^3+u^2+2u+1)^2(u^6+3u^5+5u^4+4u^3+2u^2+u+1)^3$ $\cdot (u^{50}+24u^{49}+\cdots-255u+16)$
c_3, c_7	$u^{4}(u^{6} - 3u^{4} + 2u^{2} + 1)(u^{6} + u^{5} - u^{4} - 2u^{3} + u + 1)^{3}$ $\cdot (u^{50} - 2u^{49} + \dots - 80u + 64)$
c_4	$(u+1)^4(u^3-u^2+1)^2(u^6-u^5-u^4+2u^3-u+1)^3$ $\cdot (u^{50}-4u^{49}+\cdots+3u+4)$
c_5	$((u^{2}+1)^{3})(u^{4}+u^{3}+3u^{2}+2u+1)(u^{18}+6u^{16}+\cdots-u+1)$ $\cdot (u^{50}+2u^{49}+\cdots+76u+17)$
c_6	$((u^{2}+1)^{3})(u^{4}+u^{3}+u^{2}+1)(u^{18}+6u^{16}+\cdots-u+1)$ $\cdot (u^{50}+2u^{49}+\cdots+72u+17)$
c_{8}, c_{9}	$((u^{2}+1)^{3})(u^{4}-u^{3}+3u^{2}-2u+1)(u^{18}+6u^{16}+\cdots-u+1)$ $\cdot (u^{50}+2u^{49}+\cdots+76u+17)$
c_{10}	$((u^{2}+1)^{3})(u^{4}-u^{3}+u^{2}+1)(u^{18}+6u^{16}+\cdots-u+1)$ $\cdot (u^{50}+2u^{49}+\cdots+72u+17)$
c_{11}	$((u-1)^6)(u^4 - u^3 + 3u^2 - 2u + 1)(u^{18} - 12u^{17} + \dots - 3u + 1)$ $\cdot (u^{50} - 20u^{49} + \dots - 4370u + 289)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$(y-1)^4(y^3-y^2+2y-1)^2(y^6-3y^5+5y^4-4y^3+2y^2-y+1)^3$ $\cdot (y^{50}-24y^{49}+\cdots+255y+16)$
c_2	$(y-1)^4(y^3+3y^2+2y-1)^2(y^6+y^5+5y^4+6y^2+3y+1)^3$ $\cdot (y^{50}+8y^{49}+\cdots+29791y+256)$
c_3, c_7	$y^{4}(y^{3} - 3y^{2} + 2y + 1)^{2}(y^{6} - 3y^{5} + 5y^{4} - 4y^{3} + 2y^{2} - y + 1)^{3}$ $\cdot (y^{50} - 24y^{49} + \dots - 19712y + 4096)$
c_5,c_8,c_9	$((y+1)^6)(y^4+5y^3+\cdots+2y+1)(y^{18}+12y^{17}+\cdots+3y+1)$ $\cdot (y^{50}+52y^{49}+\cdots-846y+289)$
c_6, c_{10}	$((y+1)^6)(y^4+y^3+3y^2+2y+1)(y^{18}+12y^{17}+\cdots+3y+1)$ $\cdot (y^{50}+20y^{49}+\cdots+4370y+289)$
c_{11}	$((y-1)^6)(y^4 + 5y^3 + \dots + 2y + 1)(y^{18} - 12y^{17} + \dots + 15y + 1)$ $\cdot (y^{50} + 28y^{49} + \dots - 180694y + 83521)$