Cutting Intervals

Problem

You are given N intervals. An interval can be represented by two positive integers L_i and R_i the interval starts at L_i and ends at R_i , represented as $[L_i, R_i]$. Intervals may not be unique, so there might be multiple intervals with both equal L_i and equal R_i .

You are allowed to perform a maximum of \mathbb{C} cuts. A cut at X will cut all intervals [L, R] for which L < X and X < R. Cutting an interval at X is defined as splitting the interval into two intervals -[L, X] and [X, R]. Note that cuts can only be performed at integer points. Also, cutting at an endpoint of an interval (X = L or X = R) has no effect and does not split the interval.

You need to find the maximum number of intervals that can be obtained through a maximum of C cuts.

Input

The first line of the input contains the number of test cases, **T**. **T** test cases follow.

Each test case starts with a line containing two integers, N and C, denoting the number of intervals and the maximum number of cuts you can perform respectively. N lines follow. The *i*-th line contains two integers L_i and R_i , describing the *i*-th interval.

Output

For each test case, output one line containing Case #x: y, where x is the test case number (starting from 1) and y is the maximum number of intervals that can be obtained through at most C cuts, as described above.

Limits

Memory limit: 1 GB. $1 < \mathbf{T} < 100$.

Test Set 1

Time limit: 20 seconds. 1 < N < 500. $1 < \mathbf{C} < 10^5$. $1 < \mathbf{L_i} < \mathbf{R_i} < 10^4$ for all *i*.

Test Set 2

Time limit: 40 seconds.

 $1 < N < 10^5$. $1 < \mathbf{C} < 10^{18}$. $1 \leq \mathbf{L_i} < \mathbf{R_i} \leq 10^{13}$ for all i.

Sample

Sample Input	Sample Output
1 3 3 1 3 2 4 1 4	Case #1: 7

In the provided sample, cuts should be performed at 2 and 3 to get the maximum number of intervals.

After the first cut at 2, the intervals would be $\{[1,2],[2,3],[2,4],[1,2],[2,4]\}$. After the second cut at 3, the intervals would be $\{[1,2],[2,3],[2,3],[2,3],[3,4],[1,2],[2,3],[3,4]\}$. It can be seen that no interval can be cut further, so the answer is 7.