Chapitre 5: Dérivation (1)

Compétence : Rappel 2nd : Déterminer une équation de droite

Exercice 1 : Déterminer une équation de droite

Déterminer l'équation de la droite (AB)

a. A(7;0) et B(0;7)

 $x_A \neq x_B$ (et $y_A \neq y_B$) ainsi (AB) a une équation de la forme y = mx + p.

On cherche d'abord le coefficient directeur m:

$$m = \frac{y_B - y_A}{x_B - x_A} = \frac{7 - 0}{0 - 7} = \frac{7}{-7} = -1$$

Donc (AB): y = -x + p.

On cherche ensuite l'ordonnée à l'origine p:

$$A(7; 0) \in (AB)$$
 ainsi $y_A = -x_A + p$

$$-x_A + p = y_A$$

$$-7 + p = 0$$

$$p = 7$$

Conclusion : (AB) a pour équation : y = -x + 7.

Remarque: Sans aucun calcul, on aurait pu trouver l'ordonnée à l'origine grâce au point B(0;7)

b. A(8;3) et B(8;-3)

 $x_A = x_B = 8$ donc (AB) a pour équation x = 8. La droite est donc parallèle à l'axe des ordonnées (verticale).

c.
$$A(-7; -3)$$
 et $B(12; -3)$

 $y_A = y_B = -3$ donc (AB) a pour équation y = -3. La droite est donc parallèle à l'axe des abscisses (horizontale).

d.
$$A(-2; -8)$$
 et $B(6; 16)$

 $x_A \neq x_B$ (et $y_A \neq y_B$) donc (AB) a une équation de la forme y = mx + p

On cherche d'abord le coefficient directeur m:

$$m = \frac{y_B - y_A}{x_B - x_A} = \frac{16 + 8}{6 + 2} = \frac{24}{8} = 3$$

Ainsi (AB): y = 3x + p

On cherche ensuite l'ordonnée à l'origine p:

$$B(6\,;16)\in(AB)$$
, donc $y_B=3x_B+p$ $16=18+p$ $18+p=16$ $p=-2$

On conclut en donnant l'équation de la droite (AB) : y = 3x - 2.

e.
$$A(-2;0)$$
 et $B(0;2)$

 $x_A \neq x_B$ (et $y_A \neq y_B$) donc (AB) a une équation de la forme y = mx + p

On cherche d'abord le coefficient directeur m:

$$m = \frac{y_B - y_A}{x_B - x_A} = \frac{2 - 0}{0 + 2} = 1$$

Ainsi (AB): y = x + p

On cherche ensuite l'ordonnée à l'origine p:

$$B(0;2) \in (AB)$$
, donc $y_B = x_B + p$
 $2 = 0 + p$
 $p = 2$

On conclut en donnant l'équation de la droite (AB): y = x + 2.

f.
$$A(3; 1)$$
et $B(-12; -2)$

 $x_A
eq x_B$ (et $y_A
eq y_B$) donc (AB) a une équation de la forme y = mx + p

On cherche d'abord le coefficient directeur m:

$$m = \frac{y_B - y_A}{x_B - x_A} = \frac{-2 - 1}{-12 - 3} = \frac{-3}{-15} = \frac{1}{5}$$

Ainsi (AB): $y = \frac{1}{5}x + p$

On cherche ensuite l'ordonnée à l'origine p:

$$A(3\,;1)\in(AB)$$
, donc $y_A=rac{1}{5}+p$ $1=rac{3}{5}+p$ $rac{3}{5}+p=1$ $p=rac{5}{5}-rac{3}{5}$ $p=rac{2}{5}$

On conclut en donnant l'équation de la droite $(AB): y = \frac{3}{5}x + \frac{2}{5}$.

g.
$$A(1;-2)$$
 et $B\left(-\frac{1}{2};-5\right)$

 $x_A \neq x_B$ (et $y_A \neq y_B$) donc (AB) a une équation de la forme y = mx + p

On cherche d'abord le coefficient directeur m:

$$m = \frac{y_B - y_A}{x_B - x_A} = \frac{-5 + 2}{-\frac{1}{2} - 1} = \frac{-3}{-\frac{3}{2}} = 3 \times \frac{2}{3} = 2$$

Ainsi
$$(AB)$$
: $y = 2x + p$

On cherche ensuite l'ordonnée à l'origine p:

$$A(1\,;-2)\in(AB)$$
, donc $y_A=2x_A+p$ $2x_A+p=y_A$ $2 imes 1+p=-2$ $p=-4$

On conclut en donnant l'équation de la droite (AB): y = 2x - 4.

h.
$$A(0; \sqrt{5}-2)$$
 et $B(4; \sqrt{5}+2)$

 $x_A \neq x_B$ (et $y_A \neq y_B$) donc (AB) a une équation de la forme y = mx + p

On cherche d'abord le coefficient directeur m:

$$m = \frac{y_B - y_A}{x_B - x_A} = \frac{\sqrt{5} + 2 - (\sqrt{5} - 2)}{4 - 0} = \frac{\sqrt{5} + 2 - \sqrt{5} + 2}{4} = \frac{4}{4} = 1$$

Ainsi
$$(AB)$$
: $y = x + p$

On cherche ensuite l'ordonnée à l'origine p :

$$A(\mathbf{0}\,;\sqrt{5}-2)\,\in(AB)$$
, donc $y_A=x_A+p$ $\sqrt{5}-2=\mathbf{0}+p$ $p=\sqrt{5}-2$

On conclut en donnant l'équation de la droite (AB): $y = x + \sqrt{5} - 2$.

Exercice 2 : Associer une fonction affine à une droite

Déterminer une équation de chaque droite représentée cicontre.

$$D_1: y=3x-1$$

$$D_2: x=2$$

$$D_3: y = -2x - 1$$

$$D_4:y=-x$$

$$D_5: y = \frac{1}{2}x - \frac{1}{2}$$

$$D_6: y = -2x + 3$$

$$D_7: y = 2$$

Compétence : Représenter dans un repère orthonormé des droites

Exercice 3: Représenter dans un repère orthonormé des droites

Représenter dans un repère orthonormé $(0; \vec{i}, \vec{j})$ les droites suivantes :

a.
$$(d_1): y = 2$$

b.
$$(d_2): x = -1$$

c.
$$(d_3): y = -2x$$

d.
$$(d_4): y = x - 3$$

e.
$$(a_5): y = 2x - 1$$

1.
$$(a_6): y = -x - 2$$

g.
$$(d_7): y = \frac{1}{2}x + 2$$

h.
$$(d_8): y = -\frac{5}{8}x - 3$$

e.
$$(d_4): y = x - 3$$

e. $(d_5): y = 2x - 1$
f. $(d_6): y = -x - 2$
g. $(d_7): y = \frac{1}{2}x + 2$
h. $(d_8): y = -\frac{5}{8}x - 3$
i. $(d_9): y = \frac{2}{3}x - \frac{1}{2}$

Compétence: Taux d'accroissement et nombre dérivé

Exercice 4: Taux d'accroissement et nombre dérivé

Le taux d'accroissement d'une fonction f, dérivable en 2 est tel que $\frac{f(2+h)-f(2)}{h}=4+h$, avec $h\neq 0$.

Calculer f'(2).

Quand h tend vers 0, on obtient f'(2) = 4.

Exercice 5 : Taux d'accroissement et nombre dérivé

Le taux d'accroissement d'une fonction f, dérivable en 1 est tel que $\frac{f(1+h)-f(1)}{h} = \frac{3h+2}{(1+h)^2}$, avec $h \neq 0$ et $1+h \neq 0$. Calculer f'(1).

Quand h tend vers 0, on obtient $f'(2) = \frac{2}{1^2} = 2$.

Exercice 6 : Taux d'accroissement et nombre dérivé

Soit f la fonction définie sur \mathbb{R} par f(x) = 3x + 2 et h un réel non nul.

1. Calculer f(4)

$$f(4) = 3 \times 4 + 2 = 12 + 2 = 14$$

2. Vérifier que f(4 + h) = 14 + 3h

$$f(4+h) = 3 \times (4+h) + 2 = 12 + 3h + 2 = 14 + 3h$$

3. Montrer que le taux d'accroissement de f entre 4 et 4+h est égal à 3

Pour $h \neq 0$,

$$\frac{f(4+h)-f(4)}{h}=\frac{14+3h-14}{h}=\frac{3h}{h}=3$$
 En déduire que f est dérivable en 4 et déterminer $f'(4)$.
$$\lim_{h\to 0}\frac{f(4+h)-f(4)}{h}=\lim_{h\to 0}3=3=f'(4)$$

$$\lim_{h \to 0} \frac{f(4+h) - f(4)}{h} = \lim_{h \to 0} 3 = 3 = f'(4)$$

Donc f est dérivable en 4 et f'(4) = 3.

Exercice 7: Taux d'accroissement et nombre dérivé

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 + 1$ et h un réel non nul.

1. Calculer f(-2) et f(-2+h).

$$f(-2) = (-2)^2 + 1 = 4 + 1 = 5$$
 $f(-2+h) = (-2+h)^2 + 1 = 4 - 4h + h^2 + 1 = h^2 - 4h + 5$

2. Vérifier que le taux d'accroissement de f entre -2 et -2 + h est égal à -4 + h

Pour $h \neq 0$,

$$\frac{f(-2+h)-f(-2)}{h} = \frac{h^2-4h+5-5}{h} = \frac{h^2-4h}{h} = h-4$$
3. En déduire que f est dérivable en -2 et déterminer $f'(-2)$.
$$\lim_{h\to 0} \frac{f(-2+h)-f(-2)}{h} = \lim_{h\to 0} 3h-4 = -4 = f'(-2)$$
Donc f est dérivable en -2 et $f'(-2) = -4$

$$\lim_{h \to 0} \frac{f(-2+h) - f(-2)}{h} = \lim_{h \to 0} 3h - 4 = -4 = f'(-2)$$

Donc f est dérivable en -2 et f'(-2) = -

Exercice 8 : Taux d'accroissement et nombre dérivé

Prouver l'existence du nombre dérivé au point a de la fonction f indiquée, puis calculer sa valeur.

a)
$$f(x) = \frac{1}{x} \text{ et } a = -1$$

$$f(-1) = \frac{1}{-1} = -1$$

$$f(-1+h) = \frac{1}{-1+h}$$

$$f(-1+h) - f(-1) = \frac{1}{-1+h} - (-1) = \frac{1}{-1+h} + 1 = \frac{1}{-1+h} + \frac{-1+h}{-1+h} = \frac{1-1+h}{-1+h} = \frac{h}{-1+h}$$
Pour $h \neq 0$,
$$\frac{f(-1+h) - f(-1)}{h} = \frac{h}{-1+h} = \frac{1}{-1+h}$$

$$\lim_{h \to 0} \frac{f(-1+h) - f(-1)}{h} = \lim_{h \to 0} \frac{1}{-1+h} = -1 = f'(-1)$$

Donc f est dérivable en -1 et f'(-1) = -1.

b)
$$f(x) = -x^2 + 2x$$
 et $a = 3$

$$\begin{aligned} & f(3) = -9 + 6 = -3 \\ & f(3+h) = -(3+h)^2 + 2(3+h) = -\left(9 + 6h + h^2\right) + 6 + 2h = -9 - 6h - h^2 + 6 + 2h = -h^2 - 4h - 3 \\ & f(3+h) - f(3) = -h^2 - 4h - 3 - (-3) = -h^2 - 4h = h(-h-4) \\ & \text{Pour } h \neq 0, \\ & \frac{f(3+h) - f(3)}{h} = \frac{h(-h-4)}{h} = -h - 4 \\ & \lim_{h \to 0} \frac{f(3+h) - f(3)}{h} = \lim_{h \to 0} -h - 4 = -4 = f'(3) \end{aligned}$$

Donc f est dérivable en 3 et f'(3) = -4.

c)
$$f(x) = x - \frac{1}{x}$$
 et $a = 1$
 $f(1) = 1 - 1 = 0$

$$f(1) = 1 - 1 = 0$$

$$f(1+h) = 1 + h - \frac{1}{1+h} = \frac{(1+h)^2 - 1}{1+h} = \frac{1+2h+h^2 - 1}{1+h} = \frac{2h+h^2}{1+h}$$

$$f(1+h) - f(1) = \frac{2h+h^2}{1+h} - 0 = \frac{2h+h^2}{1+h} = \frac{h(2+h)}{1+h}$$
Pour $h \neq 0$,
$$\frac{f(1+h) - f(1)}{h} = \frac{\frac{h(2+h)}{1+h}}{h} = \frac{2+h}{1+h}$$

$$\lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{2+h}{1+h} = 2 = f'(1)$$

Donc f est dérivable en 1 et f'(1) = 2.

d)
$$f(x) = x^2 - 5x + 3$$
 et $a = 2$

$$f'(2) = -1$$

e) $f(x) = \frac{1}{x-1}$ et $a = -1$

$$f'(-1) = -\frac{1}{4}$$

f)
$$f(x) = x^3 - 3x$$
 et $a \in \mathbb{R}$

$$f(a) = a^3 - 3a$$

$$f(a+h) = (a+h)^3 - 3(a+h) = (a+h)((a+h)^2 - 3) = (a+h)(a^2 + 2ah + h^2 - 3)$$
$$= a^3 + 2a^2h + ah^2 - 3a + a^2h + 2ah^2 + h^3 - 3h = a^3 + 3a^2h + 3ah^2 + h^3 - 3a - 3h$$

ΟU

$$f(a+h) = (a+h)^3 - 3(a+h) = (a+h)(a+h)^2 - 3a - 3h = (a+h)(a^2 + 2ah + h^2) - 3a - 3h$$
$$= a^3 + 2a^2h + ah^2 + a^2h + 2ah^2 + h^3 - 3a - 3h = a^3 + 3a^2h + 3ah^2 + h^3 - 3a - 3h$$

$$f(a+h) - f(a) = a^3 + 3a^2h + 3ah^2 + h^3 - 3a - 3h - (a^3 - 3a) = 3a^2h + 3ah^2 + h^3 - 3h$$

= $h(3a^2 + 3ah + h^2 - 3)$

Pour $h \neq 0$,

$$\frac{f(a+h)-f(a)}{h} = \frac{h(3a^2+3ah+h^2-3)}{h} = 3a^2+3ah+h^2-3$$

$$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = \lim_{h\to 0} 3a^2 + 3ah + h^2 - 3 = 3a^2 - 3 = f'(a)$$

Donc f est dérivable en a et $f'(a) = 3a^2 - 3$.

g)
$$f(x) = x^3 + 1$$
 et $a = 2$

$$f'(2) = 12$$

h)
$$f(x) = (x-3)^3$$
 et $a = 0$

$$f'(0) = 27$$

i)
$$f(x) = \frac{3}{x} \text{ et } a \in \mathbb{R}$$

$$f'(a) = -\frac{3}{a^2}$$

Compétence: Tangentes

Pour les exercices suivants de cette compétence f est une fonction définie sur \mathbb{R} , f' sa fonction dérivée et C_f la courbe représentative de f dans un repère.

Exercice 9 : Coefficient directeur et nombre dérivé

Soit f dérivable en 0 et en 3 telle que : f'(0) = -4 et f'(3) = 2.

Soit T_A la tangente à C_f au point A d'abscisse 0 et T_B la tangente à C_f au point B d'abscisse A.

1. Déterminer le coefficient directeur de la tangente T_A .

Le coefficient directeur de la tangente à \mathcal{C}_f au point d'abscisse 0 est le nombre dérivé f'(0)=-4.

2. Déterminer le coefficient directeur de la tangente T_R .

Le coefficient directeur de la tangente à \mathcal{C}_f au point d'abscisse 3 est le nombre dérivé f'(3)=2.

Exercice 10 : Coefficient directeur et nombre dérivé

Soit f dérivable sur \mathbb{R} .

La droite (AB) est tangente à C_f au point A d'abscisse -2.

1. Déterminer le coefficient directeur de la droite (AB).

On lit sur le graphique m=-3.

2. En déduire le nombre dérivé de f en -2.

Le nombre dérivé de f en -2 est le coefficient directeur de la tangente à C_f au point d'abscisse -2 (c'est la droite (AB)).

Ainsi f'(-2) = -3.

Exercice 11 : Coefficient directeur et nombre dérivé

Soit g dérivable sur \mathbb{R} .

Les droites T et T' sont tangentes à \mathcal{C}_g aux points A et B d'abscisses respectives 1 et 0. Déterminer les nombres dérivés de g en 1 et 0.

$$f'(1) = 2$$
 et $f'(0) = -1$

Il suffit de lire des coefficients directeurs.

Exercice 12 : Coefficient directeur et nombre dérivé

On donne le tableau ci-contre :

x_A	-5	-1	2	4
$f(x_A)$	138	10	19	75
$f'(x_A)$	-52	-12	18	38

1. Donner le coefficient directeur de la tangente à la courbe C_f au point d'abscisse x_A .

Le coefficient directeur de la tangente à la courbe C_f au point d'abscisse x_A est $f'(x_A)$ selon la valeur de x_A

2. Donner les coordonnées du point de tangence.

Les coordonnées du point de tangence sont $(x_A; f(x_A))$ selon la valeur de x_A .

Exercice 13 : Nombre dérivé et tangente

Soit une fonction f. Les droites T_1 , T_2 et T_3 sont les tangentes à C_f , respectivement aux points A, B et D. Le point E(0;3) est un point de T_3 .

1. Déterminer :

f(-2): f(-1) et f(1)

f(-2) = -1	f(-1)=0	f(1) = -1

$$f(-2) = -1 \qquad f(-1) = 0 \qquad f(1) = -1$$
b) $f'(-2)$; $f'(-1)$ et $f'(1)$.
$$f'(-2) = 0 \qquad f'(-1) = \frac{3}{2} \qquad f'(1) = -4$$
2. Vérifier qu'une équation de T_2 est : $y = \frac{3}{2}x + \frac{3}{2}$.

2. Vérifier qu'une équation de T_2 est $y = \frac{3}{2}x + \frac{3}{2}$

$$T_2: y = f'(a)(x-a) + f(a)$$

$$y = f'(-1)(x+1) + f(-1)$$

$$y = \frac{3}{2}(x+1) + 0$$

$$y = \frac{3}{2}x + \frac{3}{2}$$

3. Déterminer une équation des tangentes T_1 et T_3 .

T_1 est une droite parallèle à l'axes des abscisses et		
passant par le points $A(-2; = 1)$.		
Ainsi $T \cdot v = -1$		

Ainsi
$$T_1 : y = -1$$
.

$$T_3: y = f'(1)(x-a) + f(1)$$

$$y = f'(1)(x-1) + f(1)$$

$$y = -4(x-1) - 1$$

$$y = -4x + 4 - 1$$

$$y = -4x + 3$$
 (se lit aussi par lecture graphique)

Exercice 14 : Nombre dérivé et tangente

La fonction suivante est dérivable sur son domaine de définition. Par lecture graphique, donner la pente de chacune des tangentes tracées, puis donner une équation de chacune de ces tangentes.

$$T_A: y = 6 \ (m_A = 0)$$

$$T_B: y = -3x + 5 \ (m_B = -3)$$

$$T_C: y = -\frac{2}{3}x (m_C = -\frac{2}{3})$$

$$T_D: y = 4x + p$$

Or
$$D(5;1) \in T_D$$
 donc $1 = 20 + p$ donc $p = -19$.

Ainsi
$$T_D: y = 4x - 19$$
 ($m_D = 4$)

Exercice 15: Coefficient directeur et nombre dérivé

- 1. On donne pour tout réel x, f'(x) = -6x + 11
 - a) Calculer f'(0) et f'(3).

$$f'(0) = 11$$
 $f'(3) = -6 \times 3 + 11 = -18 + 11 = -7$

b) En déduire les coefficients directeurs respectifs des tangentes à C_f au point A d'abscisse 0 et au point B d'abscisse 3.

$$m_{T_A} = 11 \qquad m_{T_B} = -7$$

- 2. On donne pour tout réel x, f'(x) = 9 + 7x
 - a) Calculer f'(-11) et f'(8).

$$f'(-11) = 9 + 7 \times (-11) = 9 - 77 = -68$$
 $f'(8) = 9 + 7 \times 8 = 9 + 56 = 65$

b) En déduire les coefficients directeurs respectifs des tangentes à C_f au point A d'abscisse -11 et au point B d'abscisse 8.

$$m_{T_A} = -68 \qquad m_{T_B} = 65$$

Exercice 16: Equation de tangentes

1. Déterminer une équation de la tangente au point A(-1;2) à C_f sachant que f'(-1)=3.

$$T_A: y = f'(-1)(x+1) + f(-1)$$

$$y = 3(x+1) + 2$$

$$y = 3x + 3 + 2$$

$$y = 3x + 5$$

2. Déterminer une équation de la tangente T au point A(1;3) à C_f sachant que le coefficient directeur de T est 4.

$$T_A: y = f'(1)(x-1) + f(1)$$

$$y = 4(x+1) + 3$$

$$y = 4x + 4 + 3$$

$$y = 4x + 7$$

Exercice 17 : Nombre dérivé et tangente

- 1. Le point A(1;7) appartient à C_f et on donne f'(1)=5. Placer le point A, puis tracer la tangente à C_f en A.
- 2. Le point B(2;7) appartient à C_f et on donne f'(2) = -2. Placer le point B, puis tracer la tangente à C_f en B.

Exercice 18: Equation de tangentes

Donner une équation de la tangente au point A de \mathcal{C}_f d'abscisse x_A . (On pourra s'aider de l'exercice 8)

- 1. $f(x) = x^2 5x + 3$ et f'(x) = 2x 5 en $x_A = 2$
- $f(2) = 2^2 5 \times 2 + 3 = 4 10 + 3 = -3$
- $f'(2) = 2 \times 2 5 = -1$
- $T_A: y = f'(2)(x-2) + f(2)$
 - y = -(x-2) 3
 - y = -x + 2 3
 - y = -x 1
- 2. $f(x) = \frac{1}{x} \operatorname{et} f'(x) = -\frac{1}{x^2} \operatorname{en} x_A = -1$ $f(-1) = \frac{1}{-1} = -1$ $f'(-1) = -\frac{1}{(-1)^2} = -1$

- $T_A: y = f'(-1)(x+1) + f(-1)$
 - y = -(x+1) 1
 - y = -x 1 1
 - y = -x 2
- 3. $f(x) = x^3 + 1$ et $f'(x) = 3x^2$ en $x_A = 2$
- $f(2) = 2^3 + 1 = 9$
- $f'(2) = 3 \times 2^2 = 12$
- $T_A: y = f'(2)(x-2) + f(2)$
 - y = 12(x-2) + 9
 - y = 12x 24 + 9
 - y=12x-15

Exercice supplémentaire : Nombre dérivée et coefficient directeur

Les fonctions suivantes sont dérivables en x = 1. Lire f'(1).

d)

