Importing the libraries

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
```

For a model the two basic functions can be fit and predict.

- There will also be an init method which can take some parameters as defined in scikit learn
- n_clusters, random_state, max_iter

In [2]:

```
class Kmeans custom:
    # Object initialization
    def init (self, n clusters=8, max iter=300, random state=42):
        self.n clusters = n_clusters
        self.max iter = max iter
        self.random state = random state
        # Attributes
        self.labels = None
        self.cluster centers = None
        self.inertia = None
    # Applying random centroid selection method
    def random centroid initialization(self, X):
        # Fixing the seed of random numbers to initialize pseudo random number gener
        np.random.RandomState(seed=self.random state)
        len rows = X.shape[0]
        random idx = np.random.permutation(len rows)
        centroids = X[random idx[:self.n clusters]]
        return centroids
    # Calculating the euclidean distance between the centroid and each data point
    def calculate distance each point(self, X, centroids):
        distance = np.zeros((X.shape[0], self.n clusters))
        for k in range(self.n clusters):
            # Here for calculating euclidean distance I have used norm
            # distance between a and b
            # np.linalg.norm(a - b, axis=1)
            eucl dist = np.linalg.norm(X - centroids[k, :], axis=1)
            distance[:, k] = np.square(eucl dist)
        return distance
    # Finding the closest clusters by comparing the euclidean distances
    def closest cluster(self, distances):
        return np.argmin(distances, axis=1)
    # Calculating the centroids for clusters
    def calculate cluster centers (self, X, labels):
        centroids = np.zeros((self.n clusters, X.shape[1]))
        for k in range(self.n clusters):
            centroids[k, :] = np.mean(X[labels == k, :], axis=0)
        return centroids
   Calculating the sum of squared distances of samples to their closest cluster cer
    weighted by the sample weights if provided.
    def calculate inertia (self, X, labels, centroids):
        distance = np.zeros(X.shape[0])
        for k in range(self.n clusters):
            distance[labels == k] = np.linalg.norm(X[labels == k] - centroids[k], ax
        return np.sum(np.square(distance))
    # fit method takes in dependent variable
    def fit(self, X):
        # First initialize n clusters centroids in the data randomly
        self.cluster centers = self.random centroid initialization(X)
```

Loading dataset from sklearn

```
In [3]:
```

```
from sklearn import datasets
iris = datasets.load_iris()
```

Reading the dataset into dataframe

```
In [4]:
```

```
train_df = pd.DataFrame(iris.data, columns=iris.feature_names)
```

```
In [5]:
```

```
train_df.head()
```

Out[5]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

In [6]:

```
train_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 4 columns):
    Column
                        Non-Null Count
                                        Dtype
 0
     sepal length (cm) 150 non-null
                                        float64
 1
     sepal width (cm)
                        150 non-null
                                        float64
 2
     petal length (cm) 150 non-null
                                        float64
     petal width (cm)
                        150 non-null
                                        float64
dtypes: float64(4)
memory usage: 4.8 KB
```

In [7]:

```
train_df.describe()
```

Out[7]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333
std	0.828066	0.435866	1.765298	0.762238
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Plotting the histogram

In [8]:

```
train_df.hist()
plt.show()
```


Plot the correlation matrix between features

In [9]:

sns.heatmap(train_df.corr(), annot=True)
plt.show()

In [10]:

X = train_df.values

Determining the values for K using the elbow method

In [11]:

```
# Implementing the elbow method
class ElbowMethod:
    def init (self):
        self.inertias = list()
    def calculate inertia(self):
        for k in range(1, 10):
            km = Kmeans_custom(n_clusters=k, max_iter=100, random_state=42)
            km.fit(X)
            self.inertias.append(km.inertia )
    def plot elbow curve(self):
        plt.figure(figsize=(16, 12))
        plt.plot(range(1, 10), self.inertias, 'bx-', color='red')
        plt.title('The elbow method')
        plt.xlabel('Number of clusters')
        plt.ylabel('Centers Squared Sum')
        plt.show()
```

In [12]:

```
em = ElbowMethod()
em.calculate_inertia()
```

Plotting the elbow curve

In [13]:

```
em.plot_elbow_curve()
```


• From the plot we can say that minimum number of clusters should be 3

Training with the kmeans clustering model

```
In [14]:
```

```
km = Kmeans_custom(n_clusters=3, max_iter=100, random_state=42)
km.fit(X)
```

Plotting the kmeans clusters

In [18]:

```
plt.figure(figsize=(16,12))
# scatter plot for label 0 cluster 1
plt.scatter(
    X[km.labels_ == 0, 0],
    X[km.labels_ == 0, 1],
    s = 100,
    c = 'blue',
    label = "Cluster 1"
)
# scatter plot for label 1 cluster 2
plt.scatter(
    X[km.labels_ == 1, 0],
    X[km.labels_ == 1, 1],
    s = 100,
    c = 'red',
    label = "Cluster 2"
)
# scatter plot for label 2 cluster 3
plt.scatter(
    X[km.labels_ == 2, 0],
    X[km.labels_ == 2, 1],
    s = 100,
    c = 'green',
    label = "Cluster 3"
)
# Plotting the centroids of the clusters
plt.scatter(km.cluster centers [:, 0], km.cluster centers [:,1],
            s = 200, c = 'black', label = 'Centroids')
plt.legend()
plt.show()
```


In []: