

H.264 Baseline/Main/High Profile Encoder on DM365/DM368

Overall Feature:

- eXpressDSP Digital Media (XDM1.0 IVIDENC1) interface compliant
- Validated on the DM36x EVM
- H.264 Baseline/Main/High Profile up to level 5.0 compliant
- Supports resolutions up to 4096x4096 in Platinum mode and 2048x2048 in Version 1.1 backward compatible mode.
- YUV420 semi-planer input format for the frames supported
- Supports input resolution being multiples
- **Progressive and Interlaced encoding** supported
- **CAVLC** and **CABAC** encoding supported
- **Unrestricted Motion Vectors (UMV)** supported
- Half Pel and Quarter Pel Interpolation for motion estimation supported
- Sequence scaling Matrix is supported
- Transform 8x8 and Transform 4x4 is supported
- Rate Control (CBR and VBR) supported
- **Insertion of Buffering Period and Picture Timing Supplemental Enhancement** Information (SEI) and Video Usability Information (VUI) supported
- Adaptive Intra Refresh (AIR)
- All 16x16, 8x8 and 4x4 Intra-Prediction Modes supported in I-Frame and **INTRA16x16 DC is supported in P-frames**
- Only single motion vector per macroblock
- Support for multiple slice with size specified in terms of Macroblock or Macroblock row

- Supports SVC-T up to four layers.
- Supports chain free P frames encoding.
- Supports Fixed slice size encoding feature.
- **Supports ARF (Adaptive Reference field)** and MRCRF (Most Recent Coded Reference field) encoding.
- **Supports Constrained VBR Rate control** (CVBR).
- Supports Fixed frame size Rate control.
- Supports configurable Scaling Matrix and VUI parameters encoding.
- **Supports Gradual Decoder Refresh(GDR)**
- Mega Pixels Support: Mega Pixel supports input video upto 4096x4096 pixels.
- Supports Adaptive Long-Term frame insertion

Smart features supported

- Region of Interest (ROI) supported
- Simple Two Pass supported

Support Low latency feature

- Can be configured to provide output at NAL granularity or after entire frame is encoded
- Supports encoded output in NAL stream or Bytes stream format

Not-supported features

- Error Resilience features such as ASO/FMO and redundant slices
- B frames and weighted prediction

description

H.264 (from ITU-T, also called as H.264/AVC) is a popular video coding algorithm enabling high quality multimedia services on a limited bandwidth network. H.264 standard defines several profiles and levels which specify restrictions on the bit stream and hence limits the capabilities needed to decode the bit streams. This project is developed using Code Composer Studio version 3.3.81.6 and using the code generation tools version 4.5.2.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

Performance measurement procedure

- Measured with program memory and I/O buffers in external memory, I/D cache enabled, ARM
 @297 MHz, DDR
 @ 270 MHz, Monta Vista Linux 5.0 for ID H264_ENC_01 and H264_ENC_03.
- Measured with program memory and I/O buffers in external memory, I/D cache enabled, ARM @ 432 MHz, DDR @ 340 MHz, Monta Vista Linux 5.0 for ID H264_ENV_02, H264_ENV_04, H264_ENV_05, H264_ENV_06 and H264_ENV_07
- Measured with program memory and I/O buffers in external memory, I/D cache enabled, ARM @ 486 MHz, DDR @ 360 MHz, Monta Vista Linux 5.0 for ID H264_ENV_08
- DM365 EVM with MV Linux is used to measure the performance numbers in this Data sheet.
- The process time is measured across algActivate/process/algDeactivate function call using *gettimeofday()* utility of linux.
- NFS File system is used as an environment in performance measurement.
- The performance numbers are measured at certain bit-rates. For larger bit-rates like more than 12mbps for 720p and more than 20mbps for 1080p, some degradation in performance numbers can be observed.

Summary of performance

This section describes performance of Standalone H.264 Encoder tested on DM365 EVM.

Table 1. Configuration Table

	CONFIGURATION	ID
Version 2.0 Platinum mode	H.264 High profile levels up to 5.0, UMV – ON, PRC – OFF,T8x8Inter – OFF and T8x8Intra – OFF, SM – ON, CABAC – ON, encoderPreset – XDM_HIGH_QUALITY, IntraPeriod-30, InputContentType-Progressive	H264_ENC_02
Version 2.0 Platinum mode	H.264 High profile levels up to 5.0, UMV – ON, PRC – OFF,T8x8Inter – OFF and T8x8Intra – OFF, SM – ON, CABAC – ON, encoderPreset – XDM_HIGH_QUALITY, IntraPeriod-30, InputContentType-Progressive With Different Feature Set (Refer Table 7)	H264_ENC_04
Version 1.1 backward compatible mode	H.264 High profile levels up to 5.0, UMV – ON, PRC – ON, T8x8Inter – OFF and T8x8Intra – ON, SM – ON, CABAC – ON, encoderPreset = XDM_USER_DEFINED, encQuality – 0, IntraPeriod-30, InputContentType-Progressive	H264_ENC_01
Version 1.1 backward compatible mode	H.264 High profile levels up to 5.0, UMV – OFF, PRC – ON, T8x8Inter – OFF and T8x8Intra – ON, SM – ON, CABAC – ON, encoderPreset = XDM_USER_DEFINED, encQuality – 0, IntraPeriod-30, InputContentType-Progressive With Different Feature Set (Refer 6)	H264_ENC_03
Version 2.0 Platinum mode	H.264 High profile levels up to 5.0, UMV – ON, PRC – OFF,T8x8Inter – OFF and T8x8Intra – OFF, SM – ON, CABAC – ON, encoderPreset – XDM_HIGH_QUALITY, IntraPeriod-30, InputContentType-InterlaceVideo	H264_ENC_05
Version 1.1 backward compatible mode	H.264 High profile levels up to 5.0, UMV – ON, PRC – ON, T8x8Inter – OFF and T8x8Intra – ON, SM – ON, CABAC – ON, encoderPreset =	H264_ENC_06

	XDM_USER_DEFINED, encQuality - 0, IntraPeriod-30 , InputContentType-InterlaceVideo	
Version 2.0 Platinum mode	H.264 High profile levels up to 5.0, UMV – ON, PRC – OFF,T8x8Inter – OFF and T8x8Intra – OFF, CABAC – ON, encoderPreset – XDM_HIGH_QUALITY, IntraPeriod-30, InputContentType- Progressive MegaPixel mode	H264_ENC_07
Version 2.0 Platinum mode	H.264 High profile levels up to 5.0,T8x8Inter – ON and T8x8Intra – ON, SM – ON, CABAC – ON, encoderPreset – XDM_HIGH_SPEED, IntraPeriod-30, InputContentType-Progressive	H264_ENC_08

Table 2. Cycles Information for H264_ENC_01

		PERFOR	MANCE STATIS	STICS FOR H	264_ENC_01 S	ETTINGS	
			AVERAGE			PEAK	
INPUT NAME	RESOLUTI ON	ARM 926 MHZ	ENCODE FRAME MHZ	FPS	ARM 926 MHZ	ENCODE FRAME MHZ	FPS
satonement_p1920x 1056_24fps_420pl_ 60fr.yuv	1920x105 6, 8mbps	0.18	17.32	17.32	0.19	23.50	12.76
parkrun_p1280x720 _30fps_420pl_300fr. _yuv	720p, 4mbps	0.15	8.16	36.78	0.17	9.99	30.02
shields_p720x480_2 5fps_420pl_252fr.yu v	D1, 2mbps	0.16	3.329	90.39	0.18	3.95	77.64
foreman_i640x480_ 30fps_420pl_300fr .yuv	VGA , 3mbps	0.34	3.49	85.99	2.42	14.73	20.36
akiyo_p352x288_30 fps_420pl_300fr.yuv	CIF, 512kbps	0.14	1.13	265.51	0.19	1.38	216.64

Note:

- 1. Encode frame MHz depicts the cumulative the load on ARM926 and ARM968 separately.
- 2. Impact of SVC-T on performance number is negligible
- 3. They are measured in presence of linux without any system traffic . CE overhead is also excluded.
- 4. All numbers are collected (both average and peak) at frame-level processing for first 300 frames.
- These performance numbers measured on DM36x platform with ARM @297 MHz, DDR @ 270, for other DM36x variants like ARM @432 MHz, DDR @ 340, these numbers will vary linearly based on DDR frequency ratio
- 6. The version of the code used to collect these numbers have the following features included:
 - i. Interrupt mode of operation one interrupt signal processing overhead per frame.
 - ii. Resetting of vIMCOP and loading of code into ARM968 DTCM once per Process call.

Table 3. Cycles Information for H264_ENC_02

	PERFORMANCE STATISTICS FOR H264_ENC_02 SETTINGS								
INPUT NAME			AVERAGE			PEAK			
	RESOLUTI ON	ARM 926 MHZ	ENCODE FRAME MHZ	FPS	ARM 926 MHZ	ENCODE FRAME MHZ	FPS		
tractor_p1920x1 080_30fps_420pl _493fr.yuv	1920x108 0, 8mbps	0.30	12.8	32.88	0.9	14.69	27.6		
parkrun_p1280x720 _30fps_420pl_300fr. _yuv	720p, 4mbps	0.23	5.7	72.46	0.69	6.8	57.59		
xena_p640x480_30fps _420pl_443fr.yuv	VGA, 3mbps	0.21	2.02	193.34	0.29	2.91	132.35		

Note:

- 1. The priority of all the ROI specified are kept same.
- 2. Impact of SVC-T on performance number is negligible
- 3. ROI_TYPE is kept as BACKGROUND_OBJECT for all the region.
- 4. These performance numbers measured on DM36x platform with ARM @432 MHz, DDR @ 340, for other DM36x variants like ARM @297 MHz, DDR @ 270, these numbers will vary linearly based on DDR frequency ratio

Table 4. Cycles Information for H264_ENC_03

		PER	FORMANCE STATISTICS FOR H264_ENC_03 SETTINGS (1,2,3)							
INPUT				AVERAGE		PEAK				
NAME	RESO LUTIO N	FEATURES ENABLED	ARM 926 MHZ	ENCODE FRAME MHZ	FPS	ARM 926 MHZ	ENCODE FRAME MHZ	FPS		
parkrun_p1 280x720_3 0fps_420pl _300fr.yuv	720p, 4mbp s	ROI = 0 Slices = 0	0.14	8.29	36.15	0.18	10.79	27.80		
parkrun_p1 280x720_3 0fps_420pl _300fr.yuv	720p, 4mbp s	ROI = 5 Slices = 0	0.15	8.63	34.75	0.18	11.10	27.02		
parkrun_p1 280x720_3 0fps_420pl _300fr.yuv	720p, 4mbp s	ROI = 0 Slices = 15	0.14	8.49	35.32	0.17	10.72	27.99		

Note:

- 1. The priority of all the ROI specified are kept same.
- 2. ROI_TYPE is kept as BACKGROUND_OBJECT for all the region.

3. Each slice ends at row boundary whenever multiple slices are enabled.

Table 5. Cycles Information for H264_ENC_04

		PI	ERFORMANC	E STATISTICS	H264_ENC_0	04 SETTINGS ((1,2,3)	
INPUT				AVERAGE		PEAK		
NAME	RESO LUTIO N	FEATURES ENABLED	ARM 926 MHZ	ENCODE FRAME MHZ	FPS	ARM 926 MHZ	ENCODE FRAME MHZ	FPS
tractor_ p1920x10 80_30fps _420pl_4 93fr.yuv	1920x 1080, 8mbp s	ROI = 0 Slices = 0	0.29	12.83	32.88	0.92	14.69	27.64
tractor_ p1920x10 80_30fps _420pl_4 93fr.yuv	1920x 1080, 8mbp s	ROI = 5 Slices = 0	0.55	12.8	32.26	0.85	14.7	27.76
tractor_ p1920x10 80_30fps _420pl_4 93fr.yuv	1920x 1080, 8mbp s	ROI = 0 Slices = 15	0.15	13.09	32.58	0.83	15.22	26.89
tractor_p19 20x1080_3 0fps_420pl _493fr.yuv	1920x 1080, 8mbp s	1200 bytes per slice	0.40	16.4	26.33	1.04	23.57	18.32
tractor_p19 20x1080_3 0fps_420pl _493fr.yuv	1920x 1080, 8mbp s	800 bytes per slice	0.42	18.02	23.96	1.06	25.81	16.7
parkrun_p1 280x720_3 0fps_420pl _300fr.yuv	720p, 4mbp s	1200 bytes per slice	0.30	7.3	59.07	0.36	15.5	27.7
parkrun_p1 280x720_3 0fps_420pl _300fr.yuv	720p, 4mbp s	800 bytes per slice	0.30	7.99	54.00	0.35	16.25	26.57

Note:

- 1. The priority of all the ROI specified are kept same.
- 2. ROI_TYPE is kept as BACKGROUND_OBJECT for all the region
- **3.** Each slice ends at row boundary whenever multiple slices are enabled.

Table 6. Cycles Information for H264_ENC_05

	PERFORMANCE STATISTICS FOR H264_ENC_05 SETTINGS							
INPUT NAME RESOLI ON		AVERAGE			PEAK			
	RESOLUTI ON	ARM 926 MHZ	ENCODE FRAME MHZ	FPS	ARM 926 MHZ	ENCODE FRAME MHZ	FPS	
Parkjoy_i1920x1 080_30fps_420pl _493fr.yuv	1920x108 0, 8mbps	0.50	12.90	32.05	0.74	14.4	28.49	
jcube_i720x480_30f ps_420pl_260fr.yuv	720x480, 2mbps	0.48	2.5	148.45	0.62	3.21	112.5	

Table 7. Cycles Information for H264_ENC_06

	PERFORMANCE STATISTICS FOR H264_ENC_06 SETTINGS							
INPUT NAME		AVERAGE			PEAK			
	RESOLUTI ON	ARM 926 MHZ	ENCODE FRAME MHZ	FPS	ARM 926 MHZ	ENCODE FRAME MHZ	FPS	
Parkjoy_i1920x1 080_30fps_420pl _493fr.yuv	1920x108 0, 8mbps	0.39	18.08	23.89	1.73	20.06	20.9	
jcube_i720x480_30f ps_420pl_260fr.yuv	720x480, 2mbps	0.35	3.6	119.3	2.1	6.2	69.23	

Table 8. Cycles Information for H264_ENC_07

	PERFORMANCE STATISTICS FOR H264_ENC_07 SETTINGS								
INPUT NAME		AVERAGE			PEAK				
	RESOLUTI ON	ARM 926 MHZ	ENCODE FRAME MHZ	FPS	ARM 926 MHZ	ENCODE FRAME MHZ	FPS		
ParkJoy_p2592x1 944_25fps_420p1 _60fr.yuv	2592x194 4 (5MP) 10mbps	0.22	33.11	12.96	0.87	39.16	10.79		
CrowdRun_p3840x2 748_25fps_420pl_6 0fr.yuv	3840x274 8 (10MP) 10mbps	0.41	68.28	6.29	1.25	81.27	5.24		

Note: 3480x2748 resolution (10MP) performance no. are measured at 3480x1368 resolutions because of EVM DDR footprint constraint and are up-scaled accordingly.

Table 9. Cycles Information for H264_ENC_08

	PERFORMANCE STATISTICS FOR H264_ENC_08 SETTINGS								
			AVERAGE			PEAK			
INPUT NAME	RESOLUTI ON	ARM 926 MHZ	ENCODE FRAME MHZ	FPS	ARM 926 MHZ	ENCODE FRAME MHZ	FPS		
tractor_p1920x1 080_30fps_420pl _493fr.yuv	1920x108 0, 8mbps	0.19	12.42	34.77	0.9	14.78	29.22		
parkrun_p1280x720 _30fps_420pl_300fr. yuv	720p, 4mbps	0.20	5.77	74.8	1.72	8.57	50.4		
Intersection_720x 480_420p.yuv	720x480, 2mbps	0.20	2.50	172.57	1.54	4.27	101.25		
Croasswalk_p640x480 _30fps_420pl_450fr.yu v	VGA, 1.5mbps	0.20	2.19	197.58	1.57	3.97	108.74		
Foreman_352x288_30 0frames.yuv	CIF, 512kbps	0.19	0.99	436.39	1.47	2.37	182.14		

Memory Statistics

		MEMORY STATISTICS in bytes						
COFIGURATION ID	PROGRAM		DAT	A MEMORY				
COFIGURATION ID	MEMORY	CONSTANT	HEAP (E	Bytes)	STACK (Bytes)	TOTAL		
(B _y	(Bytes)	(Bytes)	PERSISTENT	SCRATCH	STACK (Byles)			
H264_ENC_001 H264_ENC_002 H264_ENC_003 H264_ENC_004	494220	2372	14200392	73992	12288	14783264		

¹All these memory requirements are for ARM926 encoder library(including DMA library). They do not include any memory requirements from test application side. Stack, heap and code requirements for test-application are extra. Constant memory size requirements include code memory of ARM968 since it forms a constant table on ARM926 before transfer. ² The constant size is the sum of .cinit, .bss, and .const sections used by H.264 encoder library.

Table 10. **Internal Data Memory Split-up**

	DATA MEMORY – VICP AND HDVICP					
CONFIGURATION ID	ARM968 ITCM (BYTES)	ARM968 DTCM (BYTES)	HDVICP BUFFERS (BYTES)	VICP (BYTES)		
H264_ENC_001 H264_ENC_002	49152	32768	ALL	65535(2048x2048))		

Below is the details of codecs usage of memory via CMEM. Height' and 'Width' used in equations are the parameter specified at the creation time. The memory requirement calculation is theoretical worst case for a particular resolution.

Table 11. DM365 H264 Encoder usage of Memory via CMEM

BUFFER	YUV420P
Input Buffer	6291456 (for 2048x2048) (InputWidth * InputHeight * 1.5)
Output Buffer	3145728 (for 2048x2048) (worst case: InputBuffer/2)
MEMTAB	SIZE In Bytes
Memtab 0	1808

Memtab 1	5272
Memtab 2	5272
Memtab 3	20480
Memtab 4	2048
Memtab 5	13584384*
Memtab 6	896
Memtab 7	52616
Memtab 8	52616
Memtab 9	67072
Memtab 10	131072
Memtab 11	262144
Memtab 12	640
Memtab 13	49152
Memtab 14	38912
Memtab 9 Memtab 10 Memtab 11 Memtab 12 Memtab 13	131072 262144 640 49152

Notes:

- Memtab 5 size will be twice of those mentioned above for SVC-T
- When Adaptive Long Term frame feature is enabled Memtab5 size will become 20376576
- The above memtab sizes are measured for maxHeight = 2048 and maxWidth=2048.

Memtab 5 is calculated based on the resolution. Here is the formula

For interlace input sequence uHeight = (maxHeight + 31) & (~0x1F) + (PAD_VERT << 2) for progressive input sequence

uHeight = $(maxHeight + 15) & (\sim 0x0F) + (PAD_VERT << 1)$ $uWidth = (maxWidth + 63) & (\sim 0x3F) + (PAD_HORIZ << 1)$

uSize = (uHeight * uWidth * 3)

 $PAD_VERT = 26$ for encoderPreset = XDM_USER_DEFINED and encQuality -0PAD_VERT = 48 for encoderPreset = XDM_USER_DEFINED and encQuality - 2 and 3 PAD_HORIZ = 32 for encoderPreset = XDM_USER_DEFINED and encQuality - 0, 2 and 3

Example:

For QCIF maxHeight = 144, maxWidth = 176 PAD_VERT - 26 and PAD_HORIZ - 32 uSize = (240*196*3) = 141120

notes

- **HDVICP** and MJCP
- The entire HDVICP is a video resource and is used by the codec
- The codec uses MJCP memory as scratch buffers and hence poses restriction on the usage of MJCP concurrently.
- DMA configuration

Table 10. DMA Configuration for encoderPreset = $XDM_USER_DEFINED$, encQuality -0,

TC Q's	TC 0	TC 1	TC 2	TC 3	Total
Usage	Used by Codec	Used by Codec	Used by Codec	Reserved for system	-
Priority	1	1	2	0	-
EDMA channels	21	7	9	NA	37
PaRAM Entries	47	10	7	NA	64
QDMA channels	0	0	0	0	0/8

Table11. DMA Configuration for encoderPreset –XDM_HIGH_QUALITY

TC Q's	TC 0	TC 1	TC 2	TC 3	Total
Usage	Used by Codec	Used by Codec	Used by Codec	Reserved for system	-
Priority	1	1	2	0	-
EDMA channels	23	19	4	NA	46
PaRAM Entries	47	10	7	NA	64
QDMA channels	0	0	0	0	0/8

Table12. DMA Configuration for encoderPreset – XDM_HIGH_SPEED

TC Q's	TC 0	TC 1	TC 2	TC 3	Total
Usage	Used by Codec	Used by Codec	Used by Codec	Reserved for system	-
Priority	1	1	2	0	-

EDMA channels	18	22	6	NA	46
PaRAM Entries	28	38	33	NA	99
QDMA channels	0	0	0	0	0/8

- The HDVICP/MJCP/EDMA resources are acquired using a generic resource manager known as Framework component. Please refer user guide for details.
- Code Placement
- All the algorithm code are placed in external memory. The performance quoted is not sensitive to algorithm code placement.

references

- ISO/IEC 14496-10:2005 (E) Rec. Information technology Coding of audio-visual objects H.264
 (E) ITU-T Recommendation.
- H.264 Baseline/Main/High Profile Encoder User's Guide (literature number:).

glossary

Constants	Elements that go into .const memory section
Scratch	Memory space that can be reused across different instances of the algorithm
Shared	Sum of Constants and Scratch
Instance	Persistent-memory that contains persistent information - allocated for each instance of the algorithm

acronyms

Arbitrary Slice Order
Common Intermediate Format
Video Resolution for PAL(720x576) and NTSC(720x480)
Direct Memory Access
Decoded Picture Buffer
Evaluation Module
Flexible Macro-block Ordering
National Television System Committee
Phase Alternating Line
Peak Signal to Noise Ratio
Quarter Common Intermediate Format

QVGA Quarter Video Graphics Array

RS Redundant Slice

SEI Supplementary Enhancement Information
SQCIF Sub Quarter Common Intermediate Format

UMV Unrestricted Motion Vectors

VGA Video Graphics Array

vIMCOP Video and Imaging Co-processor

VUI Visual Usability Information

WVGA Wide Video Graphics Array (864x480)

XDM eXpressDSP Digital Media

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications Amplifiers Audio www.ti.com/audio amplifier.ti.com Data Converters Automotive www.ti.com/automotive dataconverter.ti.com **DLP® Products** Broadband www.ti.com/broadband www.dlp.com DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Military www.ti.com/military Optical Networking Logic logic.ti.com www.ti.com/opticalnetwork Power Mgmt Security power.ti.com www.ti.com/security Telephony Microcontrollers microcontroller.ti.com www.ti.com/telephony Video & Imaging www.ti-rfid.com www.ti.com/video RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless