Trabalhando com Coleções de Dados no R Vetores, Matrizes, Listas, Factors e Dataframes

Já vimos como trabalhar com diversos tipos de variáveis, characters, numeric, logical. Na maioria das vezes trabalhamos com apenas um valor.

Mas na análise de dados é necessário trabalhar com conjuntos de vários valores, que podemos cahamr de coleções. Essas coleções podem ser organizadas em estruturas diferentes que são os Vetores, Matrizes, Listas, Factors e Dataframes.

Nesta aula vamos estudar a fundo cada uma dessas estruturas.

A coleção de dados mais simples é o vetor que possui a caracteristica de ser uma sequencia unidemnsional de dados veja a seguinte figura

Nesta figura vemos que se trata de uma **tabela**, podemos observar que esta tabela possui **10 Linhas** e **3 Colunas**

- Cada linha é um vetor com 3 elementos e
- Cada coluna é um vetor com 10 elemntos

Colunas

	Colulias		
Linhas	L1-C1	L 1 - C2	L 1 - C3
	L2-C1	L 2 - C2	L2-C3
	L3-C1	L3-C2	L3-C3
	L4-C1	L4-C2	L4-C3
	L5-C1	L 5 - C2	L5-C3
	L6-C1	L6-C2	L6-C3
	L7-C1	L7-C2	L7-C3
	L8-C1	L8-C2	L8-C3
	L9-C1	L 9 - C2	L9-C3
	L 10 - C1	L 10 - C2	L 10 - C3

Portando podemos tirar das linhas os seguintes vetores

L2-C1	L 2 - C2	L2-C3
L3-C1	L3-C2	L3-C3
L4-C1	L4-C2	L4-C3
L5-C1	L5-C2	L5-C3
L6-C1	L6-C2	L6-C3
L7-C1	L7-C2	L7-C3
L8-C1	L8-C2	L8-C3
L9-C1	L9-C2	L9-C3
L 10 - C1	L 10 - C2	L 10 - C3

E das colunas saem os seguintes vetores

Colunas
L1-C1
L2-C1
L3-C1
L4-C1
L5-C1
L6-C1
L7-C1
L8-C1
L9-C1
L 10 - C1

E das colunas saem os seguintes vetores

	L 1 - C2
L2-C2	_
L3-C2	_
L4-C2	_
L5-C2	_
L6-C2	_
L7-C2	_
L8-C2	-
L9-C2	_
L 10 - C2	_

E das colunas saem os seguintes vetores

	L1-C3
L2-C3	_
L3-C3	_
L4-C3	_
L5-C3	_
L6-C3	_
L7-C3	_
L8-C3	_
L9-C3	_
L 10 - C3	_

Criação de vetores

O elemento mais básico em R é o vetor. Veremos agora como criá-los e acessar seus elementos (ou seja, subconjuntos). Aqui estão três maneiras de criar o mesmo vetor arbitrário:

Criar um vetor manualmente

```
In [3]: c(10,11,12,13,14,15,16,17,18,19,20,21) # create a vector manually
```

 $10 \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15 \cdot 16 \cdot 17 \cdot 18 \cdot 19 \cdot 20 \cdot 21$

Criar um vetor usando o operador:

```
In [6]: 10:21
```

 $10 \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15 \cdot 16 \cdot 17 \cdot 18 \cdot 19 \cdot 20 \cdot 21$

Criar um vetor com a função seq() usando "by"

10 · 20

```
In [7]: seq(from=10, to=21, by=1)

10 · 11 · 12 · 13 · 14 · 15 · 16 · 17 · 18 · 19 · 20 · 21

In [8]: seq(from=10, to=21, by=3)

10 · 13 · 16 · 19

In [9]: seq(from=10, to=21, by=10)
```

Criar um vetor com a função seq() usando "len" (comprimento - length)

10 · 21

Atribuindo um vetor a uma varaível x

```
In [13]: x <- 10:21 x
```

 $10 \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15 \cdot 16 \cdot 17 \cdot 18 \cdot 19 \cdot 20 \cdot 21$

Operações com vetores, normalmente trabalhando com cada um dos elementos

```
In [14]:
           x+2
                                                          # somar 2 a cada um dos elementos de x
              12 \cdot 13 \cdot 14 \cdot 15 \cdot 16 \cdot 17 \cdot 18 \cdot 19 \cdot 20 \cdot 21 \cdot 22 \cdot 23
In [15]:
           x*2
                                                          # multiplicando cada um dos elementos de `x`
           Χ
              20 \cdot 22 \cdot 24 \cdot 26 \cdot 28 \cdot 30 \cdot 32 \cdot 34 \cdot 36 \cdot 38 \cdot 40 \cdot 42
              10 \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15 \cdot 16 \cdot 17 \cdot 18 \cdot 19 \cdot 20 \cdot 21
In [16]:
           x^2
                                                          #elevando ao quadrado cada elemento de `x`
           Χ
              100 • 121 • 144 • 169 • 196 • 225 • 256 • 289 • 324 • 361 • 400 • 441
              10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21
```

```
In [17]: | sqrt(x)
                                                  # raiz quadrada de cada elemento de `x`
          X
```

 $3.16227766016838 \cdot 3.3166247903554 \cdot 3.46410161513775 \cdot$

 $3.60555127546399 \cdot 3.74165738677394 \cdot 3.87298334620742 \cdot 4 \cdot$

4.12310562561766 · 4.24264068711928 · 4.35889894354067 ·

4.47213595499958 • 4.58257569495584

 $10 \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15 \cdot 16 \cdot 17 \cdot 18 \cdot 19 \cdot 20 \cdot 21$

```
In [18]: log(x) # log cada elemento de `x`
x
```

```
2.30258509299405 · 2.39789527279837 · 2.484906649788 ·
```

 $10 \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15 \cdot 16 \cdot 17 \cdot 18 \cdot 19 \cdot 20 \cdot 21$

Tipos de vetores

```
In [19]: x \leftarrow c(0.5, 0.6)
                                                           # numeric
              0.5 \cdot 0.6
In [20]: | x <- c(TRUE, FALSE)
                                                           # logical
           X
              TRUE · FALSE
In [21]: | x <- c(T, F)
                                                           # logical
           X
              TRUE · FALSE
In [22]: x <- c("a", "b", "c")
                                                          # character
              'a' ⋅ 'b' ⋅ 'c'
In [23]: | x <- 9:29
                                                           # integer
           X
               9 \cdot 10 \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15 \cdot 16 \cdot 17 \cdot 18 \cdot 19 \cdot 20 \cdot 21 \cdot 22 \cdot 23 \cdot
```

 $24 \cdot 25 \cdot 26 \cdot 27 \cdot 28 \cdot 29$

```
In [24]: x <- vector("numeric", length = 10) # usando a função `vector()` para incializar veto
res.
x</pre>
```

0. 0. 0. 0. 0. 0. 0. 0. 0

A Função typeof()

Se você precisar saber qual o typ de dados de um vetor use a função `typeof()'. Vamos ver como ela funciona, primeiro vamos criar três vetores, y1, y2 e y3

```
In [29]: y1 <- c(1.7, "a") # character
y2 <- c(TRUE, 2) # numeric
y3 <- c("a", TRUE) # character
```

In [30]:	typeof(y1)	# função para checar qualquer vetor ou variável
	'character'	
In [31]:	typeof(y2)	# função para checar qualquer vetor ou variável
	'double'	
In [34]:	typeof(y3)	# função para checar qualquer vetor ou variável
	'character'	

Você também pode usar a função `class()

In [38]:	class(y1)	# função para checar qualquer vetor ou variável
	'character'	
In [39]:	class(y2)	# função para checar qualquer vetor ou variável
	'numeric'	
In [40]:	class(y3)	# função para checar qualquer vetor ou variável
	'character'	

Convertendo os tipo de um vetor

x <- c("a", "b", "c","1") atribui valore a x as.numeric(x) converte x como numeric as.logical(x) converte x como logical as.complex(x) converte x como character

```
In [41]: x <- c("a", "b", "c","1") x
```

<NA> · <NA> · <NA> · 1

```
In [44]: as.character(x)
x
```

```
In [46]: as.character(1:10)
```

'1' • '2' • '3' • '4' • '5' • '6' • '7' • '8' • '9' • '10'

In [47]: x

In [48]: x[1] # acessa o primeiro elemneto do vetor x

'a'

In [49]: x[2] # acessa o segundo elemneto do vetor x

'b'

In [50]: x[3] # acessa o terceiro elemneto do vetor x

'c'

In [51]: x[4]# acessa o quarto elemneto do vetor x

'1'

Funções para sumarizar dados

Temos várias funções para sumarizar os dados de um vetor que são:

- length(vector)
- sum(vector)
- mean(vector)
- max(vector)
- min(vector)
- median(vector)
- summary(vector)

In [52]: x<-1:21

```
In [53]: length(x) # retorna a quantidade de elementos (comprimento)
```

In [54]: sum(x) # retorna a soma dos elementos

```
In [55]: max(x) # retorna o máximo dos elementos
```

```
In [56]: min(x) # retorna o mínimo dos elementos
```

```
In [57]: mean(x) # retorna a média dos elementos
```

```
In [58]: median(x) # retorna a mediana dos elementos
```

In [59]: summary(x) # retorna um sumário dos elementos

Min. 1st Qu. Median Mean 3rd Qu. Max. 1 6 11 11 16 21

Exemplo

Imagine que você fez uma compra e deseja armazenar na memória dado sobre esta compra a primeira cosia a fazer é a atribuição:

```
In [61]: ShampooMarca <- 'Lavebem'
    ShampooPreco <- 20.0
    ShampooQtde <- 2.0
    ShampooTotal <- ShampooPreco*ShampooQtde</pre>
```

É interessante guardar todos estes dados em um vetor, assim podemos consultar tudo em um só lugar

```
In [62]: Shampoo <- c(ShampooMarca,ShampooPreco,ShampooQtde,ShampooTotal)
    Shampoo</pre>
```

```
'Lavebem' · '20' · '2' · '40'
```


E se você precisar trabalhar com vários vetores?

Os vetores podem ser organizados em linhas ou colunas para formar uma estrutura semelhante a uma matriz (um retângulo de dados).

Podemos combiná-los usando as funções cbind ou rbind que se traduzem em ligar os vetores juntos como colunas ou linhas, respectivamente.

Podemos atribuir as colunas ou linhas combinadas a um novo objeto:

```
health_data <- cbind (id, genero, idade, sangue) health_data
```

- Quando o R leu esses códigos primeiro executa a função cbind para ligar vetores juntos em seguida, ele atribui o resultado a um novo objeto health_data
- Pense em "cbind" como uma abreviação de 'vinculação de coluna', isto é, combinando os objetos como colunas

In [68]:

health_data <- cbind(id, genero, idade, sangue)
health_data</pre>

A matrix: 6×4 of type chr

id	genero	idade	sangue
N198	1	30	0.4
N805	0	60	0.2
N333	1	26	0.6
N117	1	75	0.2
N195	0	19	0.8
N298	1	60	0.1

Agora pense em rbind como um encurtamento de 'vinculação de linha', ou seja, combinar os objetos como linhas health_data_rbind <-rbind (id, genero, idade, sangue) health_data_rbind

In [69]:

health_data_rbind <-rbind (id, genero, idade, sangue) health_data_rbind

A matrix: 4×6 of type chr

id	N198	N805	N333	N117	N195	N298
genero	1	0	1	1	0	1
idade	30	60	26	75	19	60
sangue	0.4	0.2	0.6	0.2	0.8	0.1

- Combinar os vetores dessa maneira fornece uma matriz de informações.
- A classe de um objeto pode ser encontrada usando a função class.
- Observe que se tentarmos isso em um vetor, a classe depende do tipo de componentes, por exemplo, temos "numeric" para um vetor de números e "character" para um vetor de nomes.
- Da mesma forma que um vetor, as entradas de uma matriz devem ser da mesma classe, portanto, mais uma vez, vemos que os números foram alterados para ficarem entre aspas, pois agora são tratados como texto.

Portanto agora nossos dados de compras podem ser tratados de uma forma diferente

```
In [72]: items <- c(1,2,3,4,5,6)
    ItemNome <-c('Shampoo','Sabonete','Pasta','Escova','Fio Dental','Água')
    ItemPreco <-c(20.5,5.5,3.52,7.34,5.23,5.02)
    ItemQtde <- c(2,3,4,1,1,3)
    ItemTotal <- ItemPreco*ItemQtde</pre>
```

```
In [73]: ItemNome
              'Shampoo' · 'Sabonete' · 'Pasta' · 'Escova' · 'Fio Dental' · 'Água'
In [74]:
          ItemPreco
              20.5 \cdot 5.5 \cdot 3.52 \cdot 7.34 \cdot 5.23 \cdot 5.02
In [75]: | ItemQtde
              2 \cdot 3 \cdot 4 \cdot 1 \cdot 1 \cdot 3
In [76]:
           ItemTotal
```

41 • 16.5 • 14.08 • 7.34 • 5.23 • 15.06

Agora podemos juntar tudo com cbind

In [77]: Compra <-cbind(ItemNome,ItemPreco,ItemQtde,ItemTotal)</pre>

In [78]: Compra

A matrix: 6×4 of type chr

ItemNome	ItemPreco	ItemQtde	ItemTotal
Shampoo	20.5	2	41
Sabonete	5.5	3	16.5
Pasta	3.52	4	14.08
Escova	7.34	1	7.34
Fio Dental	5.23	1	5.23
Água	5.02	3	15.06

Agora também podemos juntar tudo com rbind

In [79]: Compra_rbind <-rbind(ItemNome,ItemPreco,ItemQtde,ItemTotal)
In [80]: Compra_rbind</pre>

A matrix: 4×6 of type chr

ItemNome	Shampoo	Sabonete	Pasta	Escova	Fio Dental	Água
ItemPreco	20.5	5.5	3.52	7.34	5.23	5.02
ItemQtde	2	3	4	1	1	3
ItemTotal	41	16.5	14.08	7.34	5.23	15.06

Matrizes

Matrizes são vetores com um atributo de dimensão.

O atributo de dimensão é em si um vetor inteiro de comprimento 2 (número de linhas, número de colunas)

```
In [81]: m <- matrix(nrow = 2, ncol = 3) # cria uma `NA` matriz bde 2x3</pre>
```

In [82]: m

print m

A matrix: 2×3 of type IgI

NA NA NA NA NA In [83]: dim(m) # check dimensiões

2 · 3

In [84]: attributes(m) # check dimension

 $$\dim = 2 \cdot 3$

Matrizes também podem ser criadas diretamente de vetores, adicionando um atributo de dimensão.

In [85]: m <- 1:10 # cria um vetor `m`
m

1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10

In [86]: $dim(m) \leftarrow c(5, 2)$

transforma vctor `m` em uma matriz de 2x5

In [87]:

m

A matrix: 5×2 of type int $\frac{1}{2}$ $\frac{6}{7}$ $\frac{3}{3}$ $\frac{8}{4}$ $\frac{4}{9}$

Matrizes pode () e rbind ().	em ser criadas por l	ligação de coluna	a ou ligação de l	inha com as fu	nções c

```
In [88]: x <- 1:3  # cria um vetor `x`  # cria um vector `y`
```

In [89]: cbind(x, y)

combina vetor `x` e `y` por colunas

matrix: 3×2 of type int

In [90]: rbind(x, y)

combina vetor `x` e `y` por linha

A matrix: 2×3 of type int

x 1 2 3 y 10 11 12

Listas

As listas são um tipo especial de vetor que pode conter elementos de diferentes classes.

As listas são um tipo de dados muito importante em R e você deve conhecê-las bem.

Listas, em combinação com as várias funções de "aplicar" discutidas posteriormente, formam uma combinação poderosa. As listas podem ser criadas explicitamente usando a função list (), que recebe um número arbitrário de argumentos.

Em geral, você usa duas operações de indexação diferentes em listas:

- Colchetes simples para retornar uma lista de elementos selecionados ([])
- Colchetes duplos para retornar um único elemento ([[]])

3. TRUE

4. 75. 5

In [92]: x[1] # colchetes simples

1. 1 · 2 · 3 · 4 · 5

In [93]: | x[[1]] # colchetes duplos

1 · 2 · 3 · 4 · 5

```
In [94]:
         typeof(x[2]) # verifique o tipo do objeto usando []
         'list'
In [95]:
         typeof(x[[4]]) # verifique o tipo do objeto usando [[]]
         x[[4]]
         'double'
In [96]: x[c(2,3,4)] # Lista do primeiro e segundo vetores
                   'a' ⋅ 'b' ⋅ 'c'
              2. TRUE
              3.7
```

Também podem ver no código a	os criar uma lista substitui seguir:	indo um objeto vazio e	existente, como você p

```
In [97]: x <- vector("list", length = 3) # cria uma lista vazia de um comprimento pré-especificad
o
x</pre>
```

- 1. NULL
- 2. NULL
- 3. NULL

```
In [98]: | x[1]<- 10 # atribui o valor 10 ao primeiro elemnto da lista
          X
               1. 10
              2. NULL
               3. NULL
In [99]: | x[2]<- 'segundo' # atribui o valor 'segundo' ao segundo elemnto da lista
          X
               1. 10
              2. 'segundo'
               3. NULL
In [100]: x[3]<- TRUE # atribui o valor TRUE ao terceiro elemento da lista
               1. 10
              2. 'segundo'
               3. TRUE
```

```
In [101]: nome <- c ("a", "b", "c", "d") # cria um objeto como uma variável `nome`
```

In [102]: idade <- c (18, 19, 20, 21) # cria um objeto como uma variável `idade`

In [103]: gênero <- c (1, 0, 0, 1) # cria um objeto como uma variável `gênero`

In [104]: x [[1]] <- nome # adiciona / substitui objeto à lista `x`

In [105]: x [[2]] <- idade # adiciona / substitui objeto à lista `x`

In [106]: x [[3]] <- genero # adiciona / substitui objeto à lista `x`</pre>

In [107]: x # imprimir o resultado final

- 1. 'a' · 'b' · 'c' · 'd'
- 2. 18 · 19 · 20 · 21
- 3. 1 · 0 · 1 · 1 · 0 · 1

Fatores (Factors)

Os fatores são usados para representar dados categóricos e podem ser desordenados ou ordenados.

Pode-se pensar em um fator como um vetor de inteiros em que cada inteiro tem um rótulo.

Fatores são importantes na modelagem estatística e são tratados especialmente por funções de modelagem como lm() e glm().

Usar fatores com rótulos é melhor do que usar números inteiros porque os fatores são autodescritivos.

Ter uma variável com os valores "Masculino" e "Feminino" é melhor do que uma variável com os valores 1 e 2.

Objetos fatoriais podem ser criados com a função factor().

```
In [108]: x <- factor(c("yes","no","yes","no")) # cria objetos factor
x</pre>
```

yes · no · yes · no

► Levels:

```
In [109]: table(x)  # tabela of `x`

x
    no yes
    2 2
```

In [110]: unclass(x)-1 # veja a representação subjacente do fat

1 · 0 · 1 · 0

In [111]: attr(x,"levels") # veja a representação subjacente do fator

'no' · 'yes'

Data Frames (Frames de dados)

Um Data Frame é uma tabela ou uma estrutura semelhante a uma matriz bidimensional em que cada coluna contém valores de uma variável e cada linha contém um conjunto de valores de cada coluna.

A seguir estão as características de um Data Frame.

- Os nomes das colunas não devem estar vazios.
- Os nomes das linhas devem ser exclusivos.
- Os dados armazenados em um quadro de dados podem ser numéricos, fator ou tipo de caractere.
- Cada coluna deve conter o mesmo número de itens de dados.

A data.frame: 5 × 5

id	name	salary	start_date	dept	
<int></int>	<chr></chr>	<dbl></dbl>	<date></date>	<chr></chr>	
1	Julian	623.30	2022-01-01	DS	
2	Vanessa	515.20	2022-09-23	DS	
3	Jeffry	611.00	2022-11-15	ВА	
4	Angel	729.00	2022-05-11	DA	
5	Nikki	843.25	2022-03-27	DS	

A data.frame: 5×5

id	name	salary	start_date	dept
<int></int>	<chr></chr>	<dbl></dbl>	<date></date>	<chr></chr>
6	Ardifo	578.0	2022-05-21	Actuaries
7	Irene	722.5	2022-07-30	Actuaries
8	Kefas	632.8	2022-06-17	CA
9	Sherly	632.8	2022-07-30	DE
10	Bakti	NA	2018-09-03	Lecturer

In [114]:

df3 <- rbind(df1,df2)
df3</pre>

Combinando os dois data frames

A data.frame: 10 × 5

, caacan	raine, 10	_		
id	name	salary	start_date	dept
<int></int>	<chr></chr>	<dbl></dbl>	<date></date>	<chr></chr>
1	Julian	623.30	2022-01-01	DS
2	Vanessa	515.20	2022-09-23	DS
3	Jeffry	611.00	2022-11-15	BA
4	Angel	729.00	2022-05-11	DA
5	Nikki	843.25	2022-03-27	DS
6	Ardifo	578.00	2022-05-21	Actuaries
7	Irene	722.50	2022-07-30	Actuaries
8	Kefas	632.80	2022-06-17	CA
9	Sherly	632.80	2022-07-30	DE
10	Bakti	NA	2018-09-03	Lecturer

In [115]:

head(df3)

print as prieiras seis linhas

A data.frame: 6 × 5

	id	name	salary	start_date	dept
	<int></int>	<chr></chr>	<dbl></dbl>	<date></date>	<chr></chr>
1	1	Julian	623.30	2022-01-01	DS
2	2	Vanessa	515.20	2022-09-23	DS
3	3	Jeffry	611.00	2022-11-15	ВА
4	4	Angel	729.00	2022-05-11	DA
5	5	Nikki	843.25	2022-03-27	DS
6	6	Ardifo	578.00	2022-05-21	Actuaries

In [116]:

head(df3,4)

print as prieiras quatro linhas

A data.frame: 4×5

	id	name	salary	start_date	dept
	<int></int>	<chr></chr>	<dbl></dbl>	<date></date>	<chr></chr>
1	1	Julian	623.3	2022-01-01	DS
2	2	Vanessa	515.2	2022-09-23	DS
3	3	Jeffry	611.0	2022-11-15	ВА
4	4	Angel	729.0	2022-05-11	DA

In [117]: class(df3) # o typo do data frame

'data.frame'

.

Estrutura do data frame

In [118]:

str(df3)

In [119]: dim(df3) # Dimensões do data frame

10 · 5

Os dataframes geralmente são criados pela leitura em um conjunto de dados usando read.table() ou read.csv().

No entanto, os dataframes também podem ser criados explicitamente com a função dataframe() ou podem ser obtidos de outros tipos de objetos, como listas.

Extração

R fornece muitas maneiras de subconjunto e extrair elementos de vetores e outros objetos.

O básico é bastante simples, mas não prestar atenção à "personalidade" de cada mecanismo de extração pode causar muita dor de cabeça. Para começar, a extração é feita com o operador [].

O operador pode pegar vetores de vários tipos.

In [120]:

mtcars

A data.frame: 32×11

A data.ii aiile. 32 ^ 11	mpg	cyl	disp	hp	drat	wt	qsec	VS	am	gear	carb
	<dbl></dbl>										
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4
Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4
Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1
Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1
Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	2
AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	2
Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4
Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2
Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1
Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	2
Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2
Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.50	0	1	5	4
Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.50	0	1	5	6

Maserati Bora	1150 mpg	<mark>ê</mark> yl	<u> 301</u> 0	AB 5	ara t	¾ ₹70	14 60	₽s	1 m	5 gear	e arb
Volvo 142E	2 161>	⁴ dbl>	1 2819	1 081>	∳dbl>	₹ ₫₿₽	₹8 69	¹ dbl>	² dbl>	⁴ dbl>	² dbl>

In [121]: mtcars [1,5] # extrai o elemento da 1º linha e 5º coluna.

3.9

In [122]: mtcars [1: 5,] # extrai as primeiras seis linhas de mtcars

A data.frame: 5 × 11

	mpg	cyl	disp	hp	drat	wt	qsec	VS	am	gear	carb
	<dbl></dbl>										
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2

In [124]: mtcars [, 1: 2] # extrai as primeiras duas colunas de mtcars

A data.frame: 32×2

A data.ii aiiie. 52 ^ 2	mpg	cyl
	<dbl></dbl>	<dbl></dbl>
Mazda RX4	21.0	6
Mazda RX4 Wag	21.0	6
Datsun 710	22.8	4
Hornet 4 Drive	21.4	6
Hornet Sportabout	18.7	8
Valiant	18.1	6
Duster 360	14.3	8
Merc 240D	24.4	4
Merc 230	22.8	4
Merc 280	19.2	6
Merc 280C	17.8	6
Merc 450SE	16.4	8
Merc 450SL	17.3	8
Merc 450SLC	15.2	8
Cadillac Fleetwood	10.4	8
Lincoln Continental	10.4	8
Chrysler Imperial	14.7	8
Fiat 128	32.4	4
Honda Civic	30.4	4
Toyota Corolla	33.9	4
Toyota Corona	21.5	4
Dodge Challenger	15.5	8
AMC Javelin	15.2	8
Camaro Z28	13.3	8
Pontiac Firebird	19.2	8
Fiat X1-9	27.3	4
Porsche 914-2	26.0	4
Lotus Europa	30.4	4
Ford Pantera L	15.8	8
Ferrari Dino	19.7	6

Maserati Bora	150 mpg	<mark>ê</mark> yl
Volvo 142E	2 dıЫ>	⁴ dbl>

```
In [125]: mtcars [, 'mpg'] # extrair coluna específica
```

```
21 · 21 · 22.8 · 21.4 · 18.7 · 18.1 · 14.3 · 24.4 · 22.8 · 19.2 · 17.8 ·
```

 $16.4 \cdot 17.3 \cdot 15.2 \cdot 10.4 \cdot 10.4 \cdot 14.7 \cdot 32.4 \cdot 30.4 \cdot 33.9 \cdot 21.5 \cdot 15.5 \cdot$

 $15.2 \cdot 13.3 \cdot 19.2 \cdot 27.3 \cdot 26 \cdot 30.4 \cdot 15.8 \cdot 19.7 \cdot 15 \cdot 21.4$

In [126]: mtcars\$hp # extract Coluna específica

110 · 110 · 93 · 110 · 175 · 105 · 245 · 62 · 95 · 123 · 123 · 180 ·

180 • 180 • 205 • 215 • 230 • 66 • 52 • 65 • 97 • 150 • 150 • 245 •

 $175 \cdot 66 \cdot 91 \cdot 113 \cdot 264 \cdot 175 \cdot 335 \cdot 109$

In [127]: mtcars ['Mazda RX4',] # extrair linha específica

A data.frame: 1 × 11

	mpg	cyl	disp	hp	drat	wt	qsec	VS	am	gear	carb
	<dbl></dbl>										
Mazda RX4	21	6	160	110	3.9	2.62	16.46	0	1	4	4

In [128]:

subset(mtcars, select = mpg) # extract / subset Coluna específica

A data. II allie. 32 ^ 1	mpg
	<dbl></dbl>
Mazda RX4	21.0
Mazda RX4 Wag	21.0
Datsun 710	22.8
Hornet 4 Drive	21.4
Hornet Sportabout	18.7
Valiant	18.1
Duster 360	14.3
Merc 240D	24.4
Merc 230	22.8
Merc 280	19.2
Merc 280C	17.8
Merc 450SE	16.4
Merc 450SL	17.3
Merc 450SLC	15.2
Cadillac Fleetwood	10.4
Lincoln Continental	10.4
Chrysler Imperial	14.7
Fiat 128	32.4
Honda Civic	30.4
Toyota Corolla	33.9
Toyota Corona	21.5
Dodge Challenger	15.5
AMC Javelin	15.2
Camaro Z28	13.3
Pontiac Firebird	19.2
Fiat X1-9	27.3
Porsche 914-2	26.0
Lotus Europa	30.4
Ford Pantera L	15.8
Ferrari Dino	19.7

Maserati Bora	1150
Volvo 142E	2 db1>

In [129]:

subset(mtcars, select = 1) # extract / subset Coluna específica

A data. II allie. 32 ^ 1	mpg
	<dbl></dbl>
Mazda RX4	21.0
Mazda RX4 Wag	21.0
Datsun 710	22.8
Hornet 4 Drive	21.4
Hornet Sportabout	18.7
Valiant	18.1
Duster 360	14.3
Merc 240D	24.4
Merc 230	22.8
Merc 280	19.2
Merc 280C	17.8
Merc 450SE	16.4
Merc 450SL	17.3
Merc 450SLC	15.2
Cadillac Fleetwood	10.4
Lincoln Continental	10.4
Chrysler Imperial	14.7
Fiat 128	32.4
Honda Civic	30.4
Toyota Corolla	33.9
Toyota Corona	21.5
Dodge Challenger	15.5
AMC Javelin	15.2
Camaro Z28	13.3
Pontiac Firebird	19.2
Fiat X1-9	27.3
Porsche 914-2	26.0
Lotus Europa	30.4
Ford Pantera L	15.8
Ferrari Dino	19.7

Maserati Bora	1150
Volvo 142E	2 db1>

In [130]:

subset(mtcars, select = c(1,2,3)) # extrair / subconjunto da primeira e segunda coluna

	mpg	cyl	disp
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
Mazda RX4	21.0	6	160.0
Mazda RX4 Wag	21.0	6	160.0
Datsun 710	22.8	4	108.0
Hornet 4 Drive	21.4	6	258.0
Hornet Sportabout	18.7	8	360.0
Valiant	18.1	6	225.0
Duster 360	14.3	8	360.0
Merc 240D	24.4	4	146.7
Merc 230	22.8	4	140.8
Merc 280	19.2	6	167.6
Merc 280C	17.8	6	167.6
Merc 450SE	16.4	8	275.8
Merc 450SL	17.3	8	275.8
Merc 450SLC	15.2	8	275.8
Cadillac Fleetwood	10.4	8	472.0
Lincoln Continental	10.4	8	460.0
Chrysler Imperial	14.7	8	440.0
Fiat 128	32.4	4	78.7
Honda Civic	30.4	4	75.7
Toyota Corolla	33.9	4	71.1
Toyota Corona	21.5	4	120.1
Dodge Challenger	15.5	8	318.0
AMC Javelin	15.2	8	304.0
Camaro Z28	13.3	8	350.0
Pontiac Firebird	19.2	8	400.0
Fiat X1-9	27.3	4	79.0
Porsche 914-2	26.0	4	120.3
Lotus Europa	30.4	4	95.1
Ford Pantera L	15.8	8	351.0
Ferrari Dino	19.7	6	145.0

Maserati Bora	150 mpg	⁸ yI	3010
Volvo 142E	2 db1>	⁴ dbl>	1 2819

In [131]: subset(mtcars, select = c(1: 5)) # extract / subset Colunas específicas

	mpg	cyl	disp	hp	drat
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
Mazda RX4	21.0	6	160.0	110	3.90
Mazda RX4 Wag	21.0	6	160.0	110	3.90
Datsun 710	22.8	4	108.0	93	3.85
Hornet 4 Drive	21.4	6	258.0	110	3.08
Hornet Sportabout	18.7	8	360.0	175	3.15
Valiant	18.1	6	225.0	105	2.76
Duster 360	14.3	8	360.0	245	3.21
Merc 240D	24.4	4	146.7	62	3.69
Merc 230	22.8	4	140.8	95	3.92
Merc 280	19.2	6	167.6	123	3.92
Merc 280C	17.8	6	167.6	123	3.92
Merc 450SE	16.4	8	275.8	180	3.07
Merc 450SL	17.3	8	275.8	180	3.07
Merc 450SLC	15.2	8	275.8	180	3.07
Cadillac Fleetwood	10.4	8	472.0	205	2.93
Lincoln Continental	10.4	8	460.0	215	3.00
Chrysler Imperial	14.7	8	440.0	230	3.23
Fiat 128	32.4	4	78.7	66	4.08
Honda Civic	30.4	4	75.7	52	4.93
Toyota Corolla	33.9	4	71.1	65	4.22
Toyota Corona	21.5	4	120.1	97	3.70
Dodge Challenger	15.5	8	318.0	150	2.76
AMC Javelin	15.2	8	304.0	150	3.15
Camaro Z28	13.3	8	350.0	245	3.73
Pontiac Firebird	19.2	8	400.0	175	3.08
Fiat X1-9	27.3	4	79.0	66	4.08
Porsche 914-2	26.0	4	120.3	91	4.43
Lotus Europa	30.4	4	95.1	113	3.77
Ford Pantera L	15.8	8	351.0	264	4.22
Ferrari Dino	19.7	6	145.0	175	3.62

Maserati Bora	150 mpg	⁸ yI	<u> 301,0</u>	A3 5	drat
Volvo 142E	2 461>	⁴ dbl>	1 2619	1 081>	 4dbl>

```
In [132]: min(mtcars$mpg) # encontre o mínimo de milhas/galão (US)
```

In [134]: max(mtcars\$mpg) # encontre o máximo de milhas / galão (EUA)

```
In [135]: mean(mtcars$mpg, na.rm = TRUE) # encontre a média de milhas / galão (EUA)
```

In [136]: var(mtcars\$mpg, na.rm = TRUE) # encontre a variancia de milhas / galão (EUA)

```
In [137]: summary(mtcars$mpg, na.rm = TRUE) # encontre o desvio padrão Milhas / galão (EUA)
```

Min. 1st Qu. Median Mean 3rd Qu. Max. 10.40 15.43 19.20 20.09 22.80 33.90

Adicionar variáveis a um data. frame pode ser feito atribuindo novos vetores.
O o importante do data.frame é que ele aceita quase todos os tipos de vetores, ou seja, inteiros, numéricos, lógicos, fatores e caracteres.

In [141]: mtcars\$newvar1 <- mtcars\$mpg - mtcars\$qsec</pre>

In [142]: mtcars\$newvar2 <- mtcars\$newvar1 > 0

```
In [143]: mtcars$newvar3 <- ifelse(mtcars$newvar2, "good", "bad")</pre>
```

In [145]: mtcars

A uata.ii aiiie.	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb	newvar1	newvar2	newvar3	newvar4
	<dbl></dbl>	<lg ></lg >	<chr></chr>	<fct></fct>											
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4	4.54	TRUE	good	level1
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4	3.98	TRUE	good	level1
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1	4.19	TRUE	good	level1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1	1.96	TRUE	good	level1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2	1.68	TRUE	good	level1
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1	-2.12	FALSE	bad	level1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4	-1.54	FALSE	bad	level1
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2	4.40	TRUE	good	level1
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2	-0.10	FALSE	bad	level1
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4	0.90	TRUE	good	level1
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4	-1.10	FALSE	bad	level1
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3	-1.00	FALSE	bad	level1
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3	-0.30	FALSE	bad	level1
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3	-2.80	FALSE	bad	level1
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4	-7.58	FALSE	bad	level1
Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4	-7.42	FALSE	bad	level1
Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4	-2.72	FALSE	bad	level1
Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1	12.93	TRUE	good	level2
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2	11.88	TRUE	good	level2
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1	14.00	TRUE	good	level2
Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1	1.49	TRUE	good	level1

Dodge	ny:g	gyl	dis9 .0	hB O	dṛat	9 /520	189 7	Ŋs	a m	gear	<u>o</u> arb	newyvar1	р <u>е</u> ууудаг2	pgwvar3	реуумаг4
Challenger	≺dbl≻	≺dbl≻	≺dbl≻	≺dbl≻	≺dbl≻	≺dbl≻	≺dbl≻	≺dbl≻	≺dbl≻	≺dbl≻	≺dbl≻	≺dbl≻	≺lgl≻	- <chr>-</chr>	≺fct>
AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	2	-2.10	FALSE	bad	level1
Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4	-2.11	FALSE	bad	level1
Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2	2.15	TRUE	good	level1
Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1	8.40	TRUE	good	level1
Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	2	9.30	TRUE	good	level1
Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2	13.50	TRUE	good	level2
Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.50	0	1	5	4	1.30	TRUE	good	level1
Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.50	0	1	5	6	4.20	TRUE	good	level1
Maserati Bora	15.0	8	301.0	335	3.54	3.570	14.60	0	1	5	8	0.40	TRUE	good	level1
Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	2	2.80	TRUE	good	level1

IMPORTAÇÃO

INTRODUÇÃO

Nesta seção, vamos introduzir os principais pacotes para importar dados para o R. Mostraremos como importar dados de arquivos de texto e de planilhas do excel.

Antes de começarmos, vale a pena tocarmos num ponto importante. As funções de importação do tidyverse carregam os dados em tibbles, que diferem da classe data.frames usual em dois pontos importantes:

imprime os dados na tela de maneira muito mais organizada, resumida e legível; e permite a utilização de list-columns.

Se você não estiver familiarizado com o conceito de list-columns, não se preocupe. Trataremos melhor do assunto no tópico sobre funcionais.

IMPORTANDO ARQUIVOS DE TEXTO

Para importar arquivos de texto para R, como .txt ou .csv, utilizaremos o pacote readr.

Como exemplo, utilizaremos uma base de filmes do IMDB, gravada em diversos formatos. Os arquivos podem ser encontrados neste <u>link (https://github.com/curso-r/site-v2/tree/master/content/material/importacao/data)</u>.

```
In [146]:
          library(readr)
           imdb csv <- read csv(file = "https://raw.githubusercontent.com/curso-r/site-v2/master/co</pre>
           ntent/material/importacao/data/imdb.csv")
           imdb_txt <- read_delim(file = "https://raw.githubusercontent.com/curso-r/site-v2/master/</pre>
           content/material/importacao/data/imdb.txt", delim = " ")
          Parsed with column specification:
          cols(
            titulo = col character(),
             ano = col double(),
             diretor = col_character(),
             duracao = col double(),
             cor = col character(),
             generos = col character(),
             pais = col character(),
             classificacao = col character(),
             orcamento = col double(),
             receita = col double(),
             nota imdb = col double(),
             likes facebook = col double(),
             ator 1 = col character(),
             ator 2 = col character(),
             ator 3 = col character()
          Parsed with column specification:
          cols(
            titulo = col character(),
             ano = col double(),
             diretor = col character(),
             duracao = col double(),
             cor = col character(),
             generos = col character(),
```

pais = col character(),

orcamento = col double()

classificacao = col character(),

```
receita = col_double(),
nota_imdb = col_double(),
likes_facebook = col_double(),
ator_1 = col_character(),
ator_2 = col_character(),
ator_3 = col_character()
```

```
In [147]: dim(imdb_csv)
```

3807 · 15

In [148]: imdb_txt

A spec_tbl_df: 3807×15

titulo	ano	diretor	duracao	cor	generos	pais	classificacao
<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
Avatar	2009	James Cameron	178	Color	Action Adventure Fantasy Sci-Fi	USA	A partir de 13 anos
Pirates of the Caribbean: At World's End	2007	Gore Verbinski	169	Color	Action Adventure Fantasy	USA	A partir de 13 anos
The Dark Knight Rises	2012	Christopher Nolan	164	Color	Action Thriller	USA	A partir de 13 anos
John Carter	2012	Andrew Stanton	132	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Spider-Man 3	2007	Sam Raimi	156	Color	Action Adventure Romance	USA	A partir de 13 anos
Tangled	2010	Nathan Greno	100	Color	Adventure Animation Comedy Family Fantasy Musical Romance	USA	Livre
Avengers: Age of Ultron	2015	Joss Whedon	141	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Batman v Superman: Dawn of Justice	2016	Zack Snyder	183	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Superman Returns	2006	Bryan Singer	169	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Pirates of the Caribbean: Dead Man's Chest	2006	Gore Verbinski	151	Color	Action Adventure Fantasy	USA	A partir de 13 anos
The Lone Ranger	2013	Gore Verbinski	150	Color	Action Adventure Western	USA	A partir de 13 anos
Man of Steel	2013	Zack Snyder	143	Color	Action Adventure Fantasy Sci-Fi	USA	A partir de 13 anos
The Chronicles of Narnia: Prince Caspian	2008	Andrew Adamson	150	Color	Action Adventure Family Fantasy	USA	Livre

titulo	ano	diretor	duracao	cor	generos	pais	classificacao
<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
The Avengers	2012	Joss Whedon	173	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Pirates of the Caribbean: On Stranger Tides	2011	Rob Marshall	136	Color	Action Adventure Fantasy	USA	A partir de 13 anos
Men in Black 3	2012	Barry Sonnenfeld	106	Color	Action Adventure Comedy Family Fantasy Sci-Fi	USA	A partir de 13 anos
The Amazing Spider-Man	2012	Marc Webb	153	Color	Action Adventure Fantasy	USA	A partir de 13 anos
Robin Hood	2010	Ridley Scott	156	Color	Action Adventure Drama History	USA	A partir de 13 anos
The Hobbit: The Desolation of Smaug	2013	Peter Jackson	186	Color	Adventure Fantasy	USA	A partir de 13 anos
The Golden Compass	2007	Chris Weitz	113	Color	Adventure Family Fantasy	USA	A partir de 13 anos
Titanic	1997	James Cameron	194	Color	Drama Romance	USA	A partir de 13 anos
Captain America: Civil War	2016	Anthony Russo	147	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Battleship	2012	Peter Berg	131	Color	Action Adventure Sci-Fi Thriller	USA	A partir de 13 anos
Jurassic World	2015	Colin Trevorrow	124	Color	Action Adventure Sci-Fi Thriller	USA	A partir de 13 anos
Spider-Man 2	2004	Sam Raimi	135	Color	Action Adventure Fantasy Romance	USA	A partir de 13 anos
Iron Man 3	2013	Shane Black	195	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Alice in Wonderland	2010	Tim Burton	108	Color	Adventure Family Fantasy	USA	Livre
Monsters University	2013	Dan Scanlon	104	Color	Adventure Animation Comedy Family Fantasy	USA	Outros
Transformers: Revenge of the Fallen	2009	Michael Bay	150	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos

titulo	ano	diretor	duracao	cor	generos	pais	classificacao
<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
Transformers: Age of Extinction	2014	Michael Bay	165	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
The Exploding Girl	2009	Bradley Rust Gray	79	Color	Drama	USA	Outros
The Legend of God's Gun	2007	Mike Bruce	78	Color	Western	USA	A partir de 18 anos
Mutual Appreciation	2005	Andrew Bujalski	109	Black and White	Comedy	USA	A partir de 18 anos
Her Cry: La Llorona Investigation	2013	Damir Catic	89	Color	Horror	USA	Outros
Clerks	1994	Kevin Smith	102	Black and White	Comedy	USA	A partir de 18 anos
Pink Narcissus	1971	James Bidgood	65	Color	Drama Fantasy	USA	Outros :
Funny Ha Ha	2002	Andrew Bujalski	85	Color	Comedy Drama	USA	Outros
Sabotage	2014	David Ayer	109	Color	Action Crime Drama Thriller	USA	A partir de 18 anos
Manito	2002	Eric Eason	79	Color	Drama Family	USA	Outros
Slacker	1991	Richard Linklater	100	Black and White	Comedy Drama	USA	A partir de 18 anos
Dutch Kills	2015	Joseph Mazzella	90	Color	Crime Drama Thriller	USA	Outros :
Dry Spell	2013	Travis Legge	90	Color	Comedy Romance	USA	Outros :
Flywheel	2003	Alex Kendrick	120	Color	Drama	USA	Outros :
Exeter	2015	Marcus Nispel	91	Color	Horror Mystery Thriller	USA	A partir de 18 anos
The Ridges	2011	Brandon Landers	143	NA	Drama Horror Thriller	USA	Outros

titulo	ano	diretor	duracao	cor	generos	pais	classificacao
<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
The Puffy Chair	2005	Jay Duplass	85	Color	Comedy Drama Romance	USA	A partir de 18 anos
Breaking Upwards	2009	Daryl Wein	88	Color	Romance	USA	Outros
All Superheroes Must Die	2011	Jason Trost	78	Color	Sci-Fi Thriller	USA	Outros
Pink Flamingos	1972	John Waters	108	Color	Comedy Crime Horror	USA	A partir de 18 anos
On the Downlow	2004	Tadeo Garcia	84	Color	Drama	USA	Outros
Sanctuary; Quite a Conundrum	2012	Thomas L. Phillips	82	Color	Comedy Horror Thriller	USA	Outros
Bang	1995	Ash Baron- Cohen	98	Color	Crime Drama	USA	Outros
Primer	2004	Shane Carruth	77	Color	Drama Sci-Fi Thriller	USA	A partir de 13 anos
El Mariachi	1992	Robert Rodriguez	81	Color	Action Crime Drama Romance Thriller	USA	A partir de 18 anos
The Mongol King	2005	Anthony Vallone	84	Color	Crime Drama	USA	A partir de 13 anos
Newlyweds	2011	Edward Burns	95	Color	Comedy Drama	USA	Outros
The Following	NA	NA	43	Color	Crime Drama Mystery Thriller	USA	Outros
A Plague So Pleasant	2013	Benjamin Roberds	76	Color	Drama Horror Thriller	USA	Outros
Shanghai Calling	2012	Daniel Hsia	100	Color	Comedy Drama Romance	USA	A partir de 13 anos
My Date with Drew	2004	Jon Gunn	90	Color	Documentary	USA	Livre

Repare que o argumento file= representa o caminho até o arquivo. Se o arquivo a ser lido não estiver no diretório de trabalho da sua sessão, você precisa especificar o caminho até o arquivo. O argumento delim= indica qual caracter separa cada coluna no arquivo de texto.

Para a maioria das funções read_, existe uma respectiva função write_.

Essas funções servem para salvar bases em um formato específico de arquivo.

Além do nome do arquivo a ser criado, você também precisa passar o objeto que será gravado. Repare nos exemplos abaixo que você precisa especificar a extensão do arquivo corretamente.

```
In [150]: write_csv(x = mtcars, path = "data\\mtcars.csv")
    write_delim(x = mtcars, delim = " ", path = "data\\mtcars.txt")
```

Também é possível salvar objetos, como data.frames em um tipo especial de arquivos, o .rds. A vantagem dessa extensão é guardar a estrutura dos dados salvos, como a classe das colunas de um data.frame. Além disso, é uma boa alternativa para lidar com grandes bancos de dados, já que arquivos .rds serão bem mais compactos do que arquivos Excel.

```
In [151]: imdb_rds <- read_rds(path = "imdb.rds")
   write_rds(mtcars, path = "mtcars.rds")</pre>
```

IMPORTANDO ARQUIVOS DO EXCEL

O pacote readxl contém funções para ler dados de arquivos do Excel, como .xls e xlsx.

```
In [152]: df <- readxl::read_xls(path = "imdb.xls")
    plot(df$receita)</pre>
```


In [153]: readxl::read_xlsx(path = "imdb.xlsx")

A tibble: 3807 × 15

titulo	ano	diretor	duracao	cor	generos	pais	classificacao
<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
Avatar	2009	James Cameron	178	Color	Action Adventure Fantasy Sci-Fi	USA	A partir de 13 anos
Pirates of the Caribbean: At World's End	2007	Gore Verbinski	169	Color	Action Adventure Fantasy	USA	A partir de 13 anos
The Dark Knight Rises	2012	Christopher Nolan	164	Color	Action Thriller	USA	A partir de 13 anos
John Carter	2012	Andrew Stanton	132	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Spider-Man 3	2007	Sam Raimi	156	Color	Action Adventure Romance	USA	A partir de 13 anos
Tangled	2010	Nathan Greno	100	Color	Adventure Animation Comedy Family Fantasy Musical Romance	USA	Livre
Avengers: Age of Ultron	2015	Joss Whedon	141	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Batman v Superman: Dawn of Justice	2016	Zack Snyder	183	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Superman Returns	2006	Bryan Singer	169	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Pirates of the Caribbean: Dead Man's Chest	2006	Gore Verbinski	151	Color	Action Adventure Fantasy	USA	A partir de 13 anos
The Lone Ranger	2013	Gore Verbinski	150	Color	Action Adventure Western	USA	A partir de 13 anos
Man of Steel	2013	Zack Snyder	143	Color	Action Adventure Fantasy Sci-Fi	USA	A partir de 13 anos
The Chronicles of Narnia: Prince Caspian	2008	Andrew Adamson	150	Color	Action Adventure Family Fantasy	USA	Livre

titulo	ano	diretor	duracao	cor	generos	pais	classificacao
<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
The Avengers	2012	Joss Whedon	173	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Pirates of the Caribbean: On Stranger Tides	2011	Rob Marshall	136	Color	Action Adventure Fantasy	USA	A partir de 13 anos
Men in Black 3	2012	Barry Sonnenfeld	106	Color	Action Adventure Comedy Family Fantasy Sci-Fi	USA	A partir de 13 anos
The Amazing Spider-Man	2012	Marc Webb	153	Color	Action Adventure Fantasy	USA	A partir de 13 anos
Robin Hood	2010	Ridley Scott	156	Color	Action Adventure Drama History	USA	A partir de 13 anos
The Hobbit: The Desolation of Smaug	2013	Peter Jackson	186	Color	Adventure Fantasy	USA	A partir de 13 anos
The Golden Compass	2007	Chris Weitz	113	Color	Adventure Family Fantasy	USA	A partir de 13 anos
Titanic	1997	James Cameron	194	Color	Drama Romance	USA	A partir de 13 anos
Captain America: Civil War	2016	Anthony Russo	147	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Battleship	2012	Peter Berg	131	Color	Action Adventure Sci-Fi Thriller	USA	A partir de 13 anos
Jurassic World	2015	Colin Trevorrow	124	Color	Action Adventure Sci-Fi Thriller	USA	A partir de 13 anos
Spider-Man 2	2004	Sam Raimi	135	Color	Action Adventure Fantasy Romance	USA	A partir de 13 anos
Iron Man 3	2013	Shane Black	195	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Alice in Wonderland	2010	Tim Burton	108	Color	Adventure Family Fantasy	USA	Livre
Monsters University	2013	Dan Scanlon	104	Color	Adventure Animation Comedy Family Fantasy	USA	Outros
Transformers: Revenge of the Fallen	2009	Michael Bay	150	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos

titulo	ano	diretor	duracao	cor	generos	pais	classificacao
<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
Transformers: Age of Extinction	2014	Michael Bay	165	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
The Exploding Girl	2009	Bradley Rust Gray	79	Color	Drama	USA	Outros
The Legend of God's Gun	2007	Mike Bruce	78	Color	Western	USA	A partir de 18 anos
Mutual Appreciation	2005	Andrew Bujalski	109	Black and White	Comedy	USA	A partir de 18 anos
Her Cry: La Llorona Investigation	2013	Damir Catic	89	Color	Horror	USA	Outros
Clerks	1994	Kevin Smith	102	Black and White	Comedy	USA	A partir de 18 anos
Pink Narcissus	1971	James Bidgood	65	Color	Drama Fantasy	USA	Outros :
Funny Ha Ha	2002	Andrew Bujalski	85	Color	Comedy Drama	USA	Outros
Sabotage	2014	David Ayer	109	Color	Action Crime Drama Thriller	USA	A partir de 18 anos
Manito	2002	Eric Eason	79	Color	Drama Family	USA	Outros
Slacker	1991	Richard Linklater	100	Black and White	Comedy Drama	USA	A partir de 18 anos
Dutch Kills	2015	Joseph Mazzella	90	Color	Crime Drama Thriller	USA	Outros :
Dry Spell	2013	Travis Legge	90	Color	Comedy Romance	USA	Outros :
Flywheel	2003	Alex Kendrick	120	Color	Drama	USA	Outros :
Exeter	2015	Marcus Nispel	91	Color	Horror Mystery Thriller	USA	A partir de 18 anos
The Ridges	2011	Brandon Landers	143	NA	Drama Horror Thriller	USA	Outros

titulo	ano	diretor	duracao	cor	generos	pais	classificacao
<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
The Puffy Chair	2005	Jay Duplass	85	Color	Comedy Drama Romance	USA	A partir de 18 anos
Breaking Upwards	2009	Daryl Wein	88	Color	Romance	USA	Outros
All Superheroes Must Die	2011	Jason Trost	78	Color	Sci-Fi Thriller	USA	Outros
Pink Flamingos	1972	John Waters	108	Color	Comedy Crime Horror	USA	A partir de 18 anos
On the Downlow	2004	Tadeo Garcia	84	Color	Drama	USA	Outros
Sanctuary; Quite a Conundrum	2012	Thomas L. Phillips	82	Color	Comedy Horror Thriller	USA	Outros
Bang	1995	Ash Baron- Cohen	98	Color	Crime Drama	USA	Outros
Primer	2004	Shane Carruth	77	Color	Drama Sci-Fi Thriller	USA	A partir de 13 anos
El Mariachi	1992	Robert Rodriguez	81	Color	Action Crime Drama Romance Thriller	USA	A partir de 18 anos
The Mongol King	2005	Anthony Vallone	84	Color	Crime Drama	USA	A partir de 13 anos
Newlyweds	2011	Edward Burns	95	Color	Comedy Drama	USA	Outros
The Following	NA	NA	43	Color	Crime Drama Mystery Thriller	USA	Outros
A Plague So Pleasant	2013	Benjamin Roberds	76	Color	Drama Horror Thriller	USA	Outros
Shanghai Calling	2012	Daniel Hsia	100	Color	Comedy Drama Romance	USA	A partir de 13 anos
My Date with Drew	2004	Jon Gunn	90	Color	Documentary	USA	Livre

A funçao read_excel() auto detecta a extensão do arquivo.

In [154]: readxl::read_excel(path = "imdb.xls")

A tibble: 3807 × 15

titulo	ano	diretor	duracao	cor	generos	pais	classificacao
<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
Avatar	2009	James Cameron	178	Color	Action Adventure Fantasy Sci-Fi	USA	A partir de 13 anos
Pirates of the Caribbean: At World's End	2007	Gore Verbinski	169	Color	Action Adventure Fantasy	USA	A partir de 13 anos
The Dark Knight Rises	2012	Christopher Nolan	164	Color	Action Thriller	USA	A partir de 13 anos
John Carter	2012	Andrew Stanton	132	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Spider-Man 3	2007	Sam Raimi	156	Color	Action Adventure Romance	USA	A partir de 13 anos
Tangled	2010	Nathan Greno	100	Color	Adventure Animation Comedy Family Fantasy Musical Romance	USA	Livre
Avengers: Age of Ultron	2015	Joss Whedon	141	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Batman v Superman: Dawn of Justice	2016	Zack Snyder	183	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Superman Returns	2006	Bryan Singer	169	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Pirates of the Caribbean: Dead Man's Chest	2006	Gore Verbinski	151	Color	Action Adventure Fantasy	USA	A partir de 13 anos
The Lone Ranger	2013	Gore Verbinski	150	Color	Action Adventure Western	USA	A partir de 13 anos
Man of Steel	2013	Zack Snyder	143	Color	Action Adventure Fantasy Sci-Fi	USA	A partir de 13 anos
The Chronicles of Narnia: Prince Caspian	2008	Andrew Adamson	150	Color	Action Adventure Family Fantasy	USA	Livre

titulo	ano	diretor	duracao	cor	generos	pais	classificacao
<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
The Avengers	2012	Joss Whedon	173	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Pirates of the Caribbean: On Stranger Tides	2011	Rob Marshall	136	Color	Action Adventure Fantasy	USA	A partir de 13 anos
Men in Black 3	2012	Barry Sonnenfeld	106	Color	Action Adventure Comedy Family Fantasy Sci-Fi	USA	A partir de 13 anos
The Amazing Spider-Man	2012	Marc Webb	153	Color	Action Adventure Fantasy	USA	A partir de 13 anos
Robin Hood	2010	Ridley Scott	156	Color	Action Adventure Drama History	USA	A partir de 13 anos
The Hobbit: The Desolation of Smaug	2013	Peter Jackson	186	Color	Adventure Fantasy	USA	A partir de 13 anos
The Golden Compass	2007	Chris Weitz	113	Color	Adventure Family Fantasy	USA	A partir de 13 anos
Titanic	1997	James Cameron	194	Color	Drama Romance	USA	A partir de 13 anos
Captain America: Civil War	2016	Anthony Russo	147	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Battleship	2012	Peter Berg	131	Color	Action Adventure Sci-Fi Thriller	USA	A partir de 13 anos
Jurassic World	2015	Colin Trevorrow	124	Color	Action Adventure Sci-Fi Thriller	USA	A partir de 13 anos
Spider-Man 2	2004	Sam Raimi	135	Color	Action Adventure Fantasy Romance	USA	A partir de 13 anos
Iron Man 3	2013	Shane Black	195	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Alice in Wonderland	2010	Tim Burton	108	Color	Adventure Family Fantasy	USA	Livre
Monsters University	2013	Dan Scanlon	104	Color	Adventure Animation Comedy Family Fantasy	USA	Outros
Transformers: Revenge of the Fallen	2009	Michael Bay	150	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos

titulo	ano	diretor	duracao	cor	generos	pais	classificacao
<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
Transformers: Age of Extinction	2014	Michael Bay	165	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
The Exploding Girl	2009	Bradley Rust Gray	79	Color	Drama	USA	Outros
The Legend of God's Gun	2007	Mike Bruce	78	Color	Western	USA	A partir de 18 anos
Mutual Appreciation	2005	Andrew Bujalski	109	Black and White	Comedy	USA	A partir de 18 anos
Her Cry: La Llorona Investigation	2013	Damir Catic	89	Color	Horror	USA	Outros
Clerks	1994	Kevin Smith	102	Black and White	Comedy	USA	A partir de 18 anos
Pink Narcissus	1971	James Bidgood	65	Color	Drama Fantasy	USA	Outros :
Funny Ha Ha	2002	Andrew Bujalski	85	Color	Comedy Drama	USA	Outros
Sabotage	2014	David Ayer	109	Color	Action Crime Drama Thriller	USA	A partir de 18 anos
Manito	2002	Eric Eason	79	Color	Drama Family	USA	Outros :
Slacker	1991	Richard Linklater	100	Black and White	Comedy Drama	USA	A partir de 18 anos
Dutch Kills	2015	Joseph Mazzella	90	Color	Crime Drama Thriller	USA	Outros :
Dry Spell	2013	Travis Legge	90	Color	Comedy Romance	USA	Outros :
Flywheel	2003	Alex Kendrick	120	Color	Drama	USA	Outros :
Exeter	2015	Marcus Nispel	91	Color	Horror Mystery Thriller	USA	A partir de 18 anos
The Ridges	2011	Brandon Landers	143	NA	Drama Horror Thriller	USA	Outros

titulo	ano	diretor	duracao	cor	generos	pais	classificacad
<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
The Puffy Chair	2005	Jay Duplass	85	Color	Comedy Drama Romance	USA	A partir de 18 anos
Breaking Upwards	2009	Daryl Wein	88	Color	Romance	USA	Outros
All Superheroes Must Die	2011	Jason Trost	78	Color	Sci-Fi Thriller	USA	Outros
Pink Flamingos	1972	John Waters	108	Color	Comedy Crime Horror	USA	A partir de 18 anos
On the Downlow	2004	Tadeo Garcia	84	Color	Drama	USA	Outros
Sanctuary; Quite a Conundrum	2012	Thomas L. Phillips	82	Color	Comedy Horror Thriller	USA	Outros
Bang	1995	Ash Baron- Cohen	98	Color	Crime Drama	USA	Outros
Primer	2004	Shane Carruth	77	Color	Drama Sci-Fi Thriller	USA	A partir de 13 anos
El Mariachi	1992	Robert Rodriguez	81	Color	Action Crime Drama Romance Thriller	USA	A partir de 18 anos
The Mongol King	2005	Anthony Vallone	84	Color	Crime Drama	USA	A partir de 13 anos
Newlyweds	2011	Edward Burns	95	Color	Comedy Drama	USA	Outros
The Following	NA	NA	43	Color	Crime Drama Mystery Thriller	USA	Outros
A Plague So Pleasant	2013	Benjamin Roberds	76	Color	Drama Horror Thriller	USA	Outros
Shanghai Calling	2012	Daniel Hsia	100	Color	Comedy Drama Romance	USA	A partir de 13 anos
My Date with Drew	2004	Jon Gunn	90	Color	Documentary	USA	Livre

In [155]: readxl::read_excel(path = "imdb.xlsx")

A tibble: 3807 × 15

titulo	ano	diretor	duracao	cor	generos	pais	classificacao
<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
Avatar	2009	James Cameron	178	Color	Action Adventure Fantasy Sci-Fi	USA	A partir de 13 anos
Pirates of the Caribbean: At World's End	2007	Gore Verbinski	169	Color	Action Adventure Fantasy	USA	A partir de 13 anos
The Dark Knight Rises	2012	Christopher Nolan	164	Color	Action Thriller	USA	A partir de 13 anos
John Carter	2012	Andrew Stanton	132	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Spider-Man 3	2007	Sam Raimi	156	Color	Action Adventure Romance	USA	A partir de 13 anos
Tangled	2010	Nathan Greno	100	Color	Adventure Animation Comedy Family Fantasy Musical Romance	USA	Livre
Avengers: Age of Ultron	2015	Joss Whedon	141	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Batman v Superman: Dawn of Justice	2016	Zack Snyder	183	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Superman Returns	2006	Bryan Singer	169	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Pirates of the Caribbean: Dead Man's Chest	2006	Gore Verbinski	151	Color	Action Adventure Fantasy	USA	A partir de 13 anos
The Lone Ranger	2013	Gore Verbinski	150	Color	Action Adventure Western	USA	A partir de 13 anos
Man of Steel	2013	Zack Snyder	143	Color	Action Adventure Fantasy Sci-Fi	USA	A partir de 13 anos
The Chronicles of Narnia: Prince Caspian	2008	Andrew Adamson	150	Color	Action Adventure Family Fantasy	USA	Livre

titulo	ano	diretor	duracao	cor	generos	pais	classificacao
<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
The Avengers	2012	Joss Whedon	173	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Pirates of the Caribbean: On Stranger Tides	2011	Rob Marshall	136	Color	Action Adventure Fantasy	USA	A partir de 13 anos
Men in Black 3	2012	Barry Sonnenfeld	106	Color	Action Adventure Comedy Family Fantasy Sci-Fi	USA	A partir de 13 anos
The Amazing Spider-Man	2012	Marc Webb	153	Color	Action Adventure Fantasy	USA	A partir de 13 anos
Robin Hood	2010	Ridley Scott	156	Color	Action Adventure Drama History	USA	A partir de 13 anos
The Hobbit: The Desolation of Smaug	2013	Peter Jackson	186	Color	Adventure Fantasy	USA	A partir de 13 anos
The Golden Compass	2007	Chris Weitz	113	Color	Adventure Family Fantasy	USA	A partir de 13 anos
Titanic	1997	James Cameron	194	Color	Drama Romance	USA	A partir de 13 anos
Captain America: Civil War	2016	Anthony Russo	147	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Battleship	2012	Peter Berg	131	Color	Action Adventure Sci-Fi Thriller	USA	A partir de 13 anos
Jurassic World	2015	Colin Trevorrow	124	Color	Action Adventure Sci-Fi Thriller	USA	A partir de 13 anos
Spider-Man 2	2004	Sam Raimi	135	Color	Action Adventure Fantasy Romance	USA	A partir de 13 anos
Iron Man 3	2013	Shane Black	195	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
Alice in Wonderland	2010	Tim Burton	108	Color	Adventure Family Fantasy	USA	Livre
Monsters University	2013	Dan Scanlon	104	Color	Adventure Animation Comedy Family Fantasy	USA	Outros
Transformers: Revenge of the Fallen	2009	Michael Bay	150	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos

titulo	ano	diretor	duracao	cor	generos	pais	classificacao
<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
Transformers: Age of Extinction	2014	Michael Bay	165	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
The Exploding Girl	2009	Bradley Rust Gray	79	Color	Drama	USA	Outros
The Legend of God's Gun	2007	Mike Bruce	78	Color	Western	USA	A partir de 18 anos
Mutual Appreciation	2005	Andrew Bujalski	109	Black and White	Comedy	USA	A partir de 18 anos
Her Cry: La Llorona Investigation	2013	Damir Catic	89	Color	Horror	USA	Outros
Clerks	1994	Kevin Smith	102	Black and White	Comedy	USA	A partir de 18 anos
Pink Narcissus	1971	James Bidgood	65	Color	Drama Fantasy	USA	Outros :
Funny Ha Ha	2002	Andrew Bujalski	85	Color	Comedy Drama	USA	Outros
Sabotage	2014	David Ayer	109	Color	Action Crime Drama Thriller	USA	A partir de 18 anos
Manito	2002	Eric Eason	79	Color	Drama Family	USA	Outros :
Slacker	1991	Richard Linklater	100	Black and White	Comedy Drama	USA	A partir de 18 anos
Dutch Kills	2015	Joseph Mazzella	90	Color	Crime Drama Thriller	USA	Outros :
Dry Spell	2013	Travis Legge	90	Color	Comedy Romance	USA	Outros :
Flywheel	2003	Alex Kendrick	120	Color	Drama	USA	Outros :
Exeter	2015	Marcus Nispel	91	Color	Horror Mystery Thriller	USA	A partir de 18 anos
The Ridges	2011	Brandon Landers	143	NA	Drama Horror Thriller	USA	Outros

titulo	ano	diretor	duracao	cor	generos	pais	classificaca
<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
The Puffy Chair	2005	Jay Duplass	85	Color	Comedy Drama Romance	USA	A partir de 18 anos
Breaking Upwards	2009	Daryl Wein	88	Color	Romance	USA	Outros
All Superheroes Must Die	2011	Jason Trost	78	Color	Sci-Fi Thriller	USA	Outros
Pink Flamingos	1972	John Waters	108	Color	Comedy Crime Horror	USA	A partir de 18 anos
On the Downlow	2004	Tadeo Garcia	84	Color	Drama	USA	Outros
Sanctuary; Quite a Conundrum	2012	Thomas L. Phillips	82	Color	Comedy Horror Thriller	USA	Outros
Bang	1995	Ash Baron- Cohen	98	Color	Crime Drama	USA	Outros
Primer	2004	Shane Carruth	77	Color	Drama Sci-Fi Thriller	USA	A partir de 13 anos
El Mariachi	1992	Robert Rodriguez	81	Color	Action Crime Drama Romance Thriller	USA	A partir de 18 anos
The Mongol King	2005	Anthony Vallone	84	Color	Crime Drama	USA	A partir de 13 anos
Newlyweds	2011	Edward Burns	95	Color	Comedy Drama	USA	Outros
The Following	NA	NA	43	Color	Crime Drama Mystery Thriller	USA	Outros
A Plague So Pleasant	2013	Benjamin Roberds	76	Color	Drama Horror Thriller	USA	Outros
Shanghai Calling	2012	Daniel Hsia	100	Color	Comedy Drama Romance	USA	A partir de 13 anos
My Date with Drew	2004	Jon Gunn	90	Color	Documentary	USA	Livre