Data Mining

Lecture 11 Mining Structure from Graphs

http://www.informatik.uni-hamburg.de/WTM/

Overview

- Case Based Reasoning
 - Spectral Clustering
 - Clustering Graphs
 - SCAN
 - Semantic Networks
 - Bayesian Belief Networks
 - Hidden Markov Models
 - Webgraph: Google

Case Based Reasoning

- Remember k-nearest neighbours:
 - Task is to classify a new data point x_n
 - Find the k nearest points $\{x_{k'}\}$ with their class labels $\{y_{k'}\}$
 - Assign class y_n based on the majority vote of $\{y_{k'}\}$
- i.e. use existing data $\{x_{k'}, y_{k'}\}$ ("past experience") directly for future decisions
- k=1: decide as in one precedence case

CBR – A way to solve complex problems

- By remembering how we solved a similar case in the past
- This is Case Based Reasoning (CBR)
 - memory-based problem-solving
 - re-using past experiences
- Experts often find it easier to relate to past cases than to formulate rules about reasoning

CBR - Problems we solve this way

- Medicine
 - doctor remembers previous patients
 - especially for rare combinations of symptoms
- Law
 - law depends on precedence
 - case histories are consulted
- Management
 - decisions are often based on past rulings
- Financial
 - performance is predicted by past results
- Robotics
 - Robot soccer imitate good moves

CBR – Overview

 CBR provides an automated method for storing experience and reusing it to make decisions in the future

CBR Prerequisites

- Expertise is embodied in a library of past cases (experiences)
- Each case typically contains
 - a description of the problem
 - goals, and subgoals that arise in reasoning
 - successful attempts at achieving those goals
 - → to propose solutions to new problems
 - failed attempts
 - → to warn of possible failure

CBR Process

- Basic algorithm to solve a current problem:
 - Match the problem's features against the cases in the case base, and retrieve similar cases.
 - If multiple solutions are found then resolve any ambiguities.
 - Reuse retrieved cases to propose a solution and test for success.
 - Revise the solution, if necessary.
 - Retain the current problem as part of a new case, i.e.
 - its defining features,
 - goals & subgoals,
 - successful & failed attempts,
 - its final solution.

CBR Evaluation

- What does the CBR process depend on?
 - Appropriate methods for indexing cases using their key attributes
 - Efficient mechanisms for retrieving cases given a set of index values
 - Existing cases a smaller case-base can be compensated for by more creativity in retrieval and revision
 - Good presentation of the information to the user

What are good CBR Applications?

- Failure prediction
 - ultrasonic non-destructive testing for Dutch railways
 - water in oil wells for Schlumberger
- Failure analysis
 - Mercedes cars for DaimlerChrysler
 - semiconductors at National Semiconductor
- Maintenance scheduling
 - Boeing 737 engines
 - TGV trains for SNCF
- Planning
 - mission planning for US navy
 - route planning for DaimlerChrysler cars

CBR in Business

Norwegian CBR consultant Verdande started in the oil business

CBR as Presented by "Verdande Technology"

- "Based on the principle that similar problems have similar solutions, CBR .. analyzes data patterns in real-time, using past events to proactively predict future problems."
- "harvests multiple, heterogeneous data types to index and search for those past experiences and provides organizations with the information they need"
- "transforms big data into actionable insight"
- "offering a realistic assessment as to whether a similar scenario is likely to occur in the future"
- "can help reduce drilling NPT" (non-productive time) by:
 - "Identify problem precursors.
 - Interpret and resolve the drilling situation.
 - Retrieve relevant solutions and lessons learned."

CBR – Summary

- CBR does not require an explicit domain model
 - elicitation becomes a task of gathering case histories
- Implementation is reduced to identifying significant features that describe a case
 - easier than creating an explicit model
- CBR systems "learn" by acquiring new knowledge as cases
 - makes maintenance easy
- CBR retrieves entire cases, including context information that may not be asked for
 - may dig out unexpected problem features and solutions

Overview

- Case Based Reasoning
- Spectral Clustering
 - Clustering Graphs
 - SCAN
 - Semantic Networks
 - Bayesian Belief Networks
 - Hidden Markov Models
 - Webgraph: Google

Ng, Jordan, Weiss. On Spectral Clustering: Analysis and an algorithm. NIPS, 2001

Ng, Jordan, Weiss. On Spectral Clustering: Analysis and an algorithm. NIPS, 2001

- Idea: Information about the distances between any two data points will be needed
 - ightarrow similarity (affinity) matrix $A \in R^{nxn}$ where n = number of data points
 - Affinities A_{ij} large if data points i and j nearby
 - $A_{ij} \approx 0$ if i and j far apart (in different clusters)
 - $A_{ij} = A_{ji}$ i.e. A is symmetric
 - → Eigenvectors orthogonal (for unequal eigenvalues)

- Uses spectrum (eigenvalues) of affinity matrix $A \in \mathbb{R}^{n \times n}$ (n = number of data points)
- Mapping to R^k reduces dimensionality $(k = number \ of \ clusters; \ k << n)$
- It will turn out: mapped to R^k , data will form tight clusters at 90° to each other w.r.t. origin
- Ng, Jordan, Weiss (2001) model one of many variations

- Given a set of points $S = \{s_1, ..., s_n\} \in R^l$
- Aim: compute direct k—way partitioning
 - (NOT: generate two clusters, then recurse to generate more)
 - k—way partitioning experimentally proven better

- Form the affinity matrix $A \in R^{nxn}$
- Define $A_{ij}=e^{-||s_i-s_j||^2/2\sigma^2}$ if i
 eq j else $A_{ii}=0$
 - Scaling parameter σ chosen by user
 - Actual data values get lost only proximities count!
- Only for normalisation, define D a diagonal matrix whose (i,i) element is the sum of A's row i
 - D_{ii} is large for elements i that have many large A_{ij} (i.e. many neighbours)

- Form the matrix $L = D^{-1/2}AD^{-1/2}$
- Find $x_1, x_2, ..., x_k$, the k eigenvectors of L that belong to the largest eigenvalues
 - these eigenvectors show to directions of largest,
 2nd-largest, ... covariance
- These form the columns of the new matrix X
 - Note: dimension reduces from nxn to nxk

- For normalisation, from X form the matrix $Y \in R^{nxk}$
 - Renormalize each of X's rows (it has n rows) to have unit length

$$Y_{ij} = X_{ij} / (\sum_{j} X_{ij}^{2})^{2}$$

- Treat each row of Y as a point in R^k
 - all points will lie on a unit circle around the origin
 - they will form clusters at 90° to each other

- Cluster into k clusters, e.g. via k-means
- Final cluster assignment
 - Assign point S_i to cluster j
 iff row i of Y was assigned to cluster j

Spectral Clustering *k*=2 rows of Y

Results

Spectral Clustering: Choice of σ

$$A_{ij} = e^{-(s_i - s_j)^2 / 2\sigma^2}$$
 $i \neq j$ $A_{ii} = 0$

"closer" vertices get larger weight

- search over σ
 - pick the value that after clustering Y's rows –
 gives the tightest (smallest distortion) clusters

Overview

- Case Based Reasoning
- Spectral Clustering
- Clustering Graphs
 - SCAN
 - Semantic Networks
 - Bayesian Belief Networks
 - Hidden Markov Models
 - Webgraph: Google

Clustering Graphs and Network Data

- Applications
 - Bipartite graphs, e.g.:
 - customers and products,
 - authors and conferences, ...
 - Web search engines, e.g.:
 - click-through graphs, webgraph, ...
 - Social networks, friendship/coauthor graphs
- Similarity measures
 - Geodesic distances
 - SimRank distance
- Graph clustering methods
 - Minimum cuts: FastModularity (Clauset, Newman & Moore, 2004)
 - Density-based clustering: SCAN (Xu et al., KDD'2007)

Similarity Measures: Geodesic Distances (1)

- Geodesic distance: distance along curved spaces
- May be approximated by adding many short straight segments, using the Euclidean distance for each of these

Geodesic Distances (2)

Geodesic distance (A, B):
 length (i.e., # of edges) of the shortest path between A and B (if not connected, defined as infinite)

- Eccentricity of v, eccen(v): The largest geodesic distance between v and any other vertex u ∈ V − {v}.
 - E.g.,eccen(a) = eccen(b) = 2;eccen(c) = eccen(d) = eccen(e) = 3
- A peripheral vertex is a vertex that achieves the diameter.
 - E.g., Vertices c, d, and e are peripheral vertices

Geodesic Distances (3)

Radius of graph G:
 The minimum eccentricity of all vertices,
 i.e., the distance between the
 "most central point" and the "farthest border"

- $r = \min_{v \in V} eccen(v)$
- **E.g.**, radius (g) = 2
- Diameter of graph G: The maximum eccentricity of all vertices, i.e., the largest distance between any pair of vertices in G
 - $d = \max_{v \in V} eccen(v)$
 - **E.g.**, diameter (g) = 3

SimRank (1)

- SimRank: structural-context similarity
 - based on similarity of its neighbors:
 Similar objects are referenced by similar objects

- In a directed graph G = (V,E),
 - individual in-neighborhood of v: I(v) = {u | (u, v) ∈ E}
 - individual out-neighborhood of v: $O(v) = \{w \mid (v, w) \in E\}$

SimRank (2) – Similarity by Fix Point Iteration

- Similarity in SimRank: $s(u,v) = \frac{C}{|I(u)| \cdot |I(v)|} \sum_{x \in I(u)} \sum_{y \in I(v)} s(x,y)$
 - Problem: recursive formula
- Solution: Iteration to a fixed point:
 - Initialization:

$$s_0(u, v) = \begin{cases} 0 & \text{if } u \neq v \\ 1 & \text{if } u = v \end{cases}$$

• Then we can compute s_{t+1} from s_t based on the definition:

$$S_{t+1}(u,v) = \frac{C}{|I(u)| \cdot |I(v)|} \sum_{x \in I(u)} \sum_{y \in I(v)} S_t(x,y)$$

• Typical parameters: decay factor *C*=0.8, number of iterations *T*=5.

SimRank (3) – Similarity by Random Walk

- Similarities can be assessed by randomly traversing links
 - start the walks at the nodes in question
 - random walker has a given probability (not) to continue the walk
 - short tours more likely than long tours
- Highly similar nodes can be identified by:
 - small expected distance,
 - small expected meeting distance for a pair of tours,
 - high expected meeting probability.

Graph Clustering: Sparsest Cut (1)

Undirected graph G = (V,E). The **cut set** of a cut is the set of edges $\{(u, v) \in E \mid u \in S, v \in T\}$ where nodes u and v are in the two partitions S and T Sparsest cut C2

- **Size** of the cut: # of edges in the cut set
- Min-cut (e.g., C₁) minimum cut C1 is not a good partition
- A better measure: **Sparsity**

$$\Phi = \frac{\text{the size of the cut}}{\min\{|S|, |T|\}}$$

Graph Clustering: Sparsest Cut (2)

- A cut is sparsest if its sparsity is not greater than that of any other cut
- **Ex.** Cut C2 = ({a, b, c, d, e, f, I}, {g, h, i, j, k}) is the sparsest cut
- For k clusters, the modularity of a clustering assesses the quality of the clustering
- The modularity of a clustering of a graph is the difference between the fraction of all edges within individual clusters (this should be large) and the fraction of all edges between different clusters (this should be small)
- The optimal clustering of graphs maximizes the modularity

Graph Clustering: Challenges of Finding Good Cuts

- High computational cost
 - Many graph cut problems are computationally expensive
 - The sparsest cut problem is NP-hard
 - Need to tradeoff between efficiency/scalability and quality
- Sophisticated graphs
 - May involve weights and/or cycles
- Large graphs with many vertices
 - The similarity matrix contains as many non-zero entries as there are vertices in the graph
- Sparsity
 - A large graph is often sparse, meaning each vertex on average connects to only a small number of other vertices
 - A similarity matrix from a large sparse graph will also be sparse

Two Approaches for Graph Clustering

- 1. Using generic clustering methods for high-dimensional data
 - Extract a similarity matrix $A \in \mathbb{R}^{n \times n}$ from a graph using a similarity measure (n = number of nodes)
 - e.g. similarity = 1 if nodes connected, else 0
 - Discover clusters on the similarity matrix by a generic clustering method, e.g. spectral clustering
 - → approximate optimal graph cut solutions
- 2. Methods specifically designed for clustering graphs
 - Search the graph to find well-connected components as clusters
 - Ex. SCAN: Structural Clustering Algorithm for Networks [Xu, Yuruk, Feng, Schweiger, KDD'07]

Overview

- Case Based Reasoning
- Spectral Clustering
- Clustering Graphs
 - SCAN
- Semantic Networks
- Bayesian Belief Networks
- Hidden Markov Models
- Webgraph: Google

SCAN: Density-Based Clustering of Networks

- How many clusters?
- What size should they be?
- What is the best partitioning?
- Should some points be segregated?

Application

- Given: information of who associates with whom
- Identify clusters of individuals with common interests or special relationships (families, cliques, terrorist cells) ...

A Social Network Model

Characteristics:

- Individuals in a tight social group, or clique, know many of the same people, regardless of the size of the group
- Individuals who are hubs know many people in different groups but belong to no single group. E.g., politicians bridge multiple groups
- Individuals who are outliers reside at the margins of society.
 E.g., hermits know few people and belong to no group
- The neighborhood of a vertex
 - Define Γ(v) as the immediate neighborhood of a vertex
 (i.e. the set of people that an individual knows)

Structure Similarity

 The desired characteristics tend to be captured by a measure we call Structural Similarity

$$\sigma(v,w) = \frac{|\Gamma(v) \cap \Gamma(w)|}{\sqrt{|\Gamma(v)| \cdot |\Gamma(w)|}}$$

- 0 ≤ σ ≤ 1
- Structural similarity is large for members of a clique and small for hubs and outliers

Structural Connectivity

- ε -neighborhood: $N_{\varepsilon}(v) = \{ w \in \Gamma(v) \mid \sigma(v, w) \ge \varepsilon \}$
- Vertex is a core: $CORE_{\varepsilon,\mu}(v) \Leftrightarrow |N_{\varepsilon}(v)| \geq \mu$ μ integer we will let structures grow starting from the core
- Direct structure reachable:

$$DirREACH_{\varepsilon,\mu}(v,w) \Leftrightarrow CORE_{\varepsilon,\mu}(v) \land w \in N_{\varepsilon}(v)$$

- Structure reachable: $REACH_{\varepsilon,\mu}(v,w)$ transitive closure of direct structure reachability
- Structure connected:

$$CONNECT_{\varepsilon,u}(v,w) \iff \exists u \in V : REACH_{\varepsilon,u}(u,v) \land REACH_{\varepsilon,u}(u,w)$$

Structure-Connected Clusters

- Define a structure-connected cluster C:
 - Connectivity: $\forall v, w \in C : CONNECT_{\varepsilon,u}(v,w)$
 - Maximality: $\forall v, w \in V : v \in C \land REACH_{\varepsilon,u}(v,w) \Rightarrow w \in C$

Hubs:

- Not belong to any cluster
- Bridge to many clusters

Outliers:

- Not belong to any cluster
- Connect to less clusters

neighbours that vertex is core

$$\mu = 2$$
 $\varepsilon = 0.7$
required
similarity

d by yFiles

d by yFiles

d by yFiles

ed by yFiles

Summary Clustering Graphs

- Directed and undirected graphs
- Distances, affinities and structure similarities
- Clustering
 - Spectral clustering
 - sparsest cut
 - SCAN

Overview

- Case Based Reasoning
- Spectral Clustering
- Clustering Graphs
 - SCAN
- Semantic Networks
 - Bayesian Belief Networks
 - Hidden Markov Models
 - Webgraph: Google

Semantic Networks

Graphical representation of concepts and relations:

- labeled nodes (vertices) = concepts
- directed labeled links (edges) = binary relations
- Where is the semantics?
 - Are there any types of nodes and types of links that are valid in general, independent of a particular domain?
 - Is there any structuring rule which is valid in general, independent of a particular domain?
 - Are there generally valid inference procedures to derive knowledge which is not explicitly stated?

Basic Relations in Semantic Networks

Concepts and Individuals

Nodes of a Semantic Network describe concepts and individuals.

A concept denotes a **set of objects**.

An individual denotes a **single object**.

specifies that C₁ is a subset of C₂ C_1 IS-A C_2

o INSTANCE C specifies that o is a member of C

A node may represent both, an individual and a concept. Example:

Max likes a Porsche.

Max bought a Porsche at the car dealer.

Inferences in Semantic Networks

Special Semantics for Special Relations

Special relations may support special inferences.

Examples:

```
Above(a, b) \land Above(b, c) \Rightarrow Above(a, c)
Left(a, b) \Rightarrow Right(b, a)
Has-part(a, b) \land Has-Part(b, c) \Rightarrow Has-Part(a, c)
```


- The rules for inferences may change from domain to domain, hence they must be explicitly stated.
 - ⇒ "axiomatizing a domain"
- Spatial reasoning, temporal reasoning are disciplines dealing with axiomatizations of spatial, part-of- and temporal relationships.

N-ary Relations in Semantic Networks

- Semantic Networks allow the representation of binary relations.
- Any N-ary relation can be represented by multiple binary relations
- Example:

Between(Left, Middle, Right)

Attribute-Object-Value Triplets

In knowledge representation- and programming languages, a Semantic Network can be represented by a set of triplets:

The accident example:

```
(is-a traffic-accident accident)
(instance traffic-accident-4711 traffic-accident)
(driver traffic-accident-4711 Max-Meier)
(location traffic-accident-4711 Siemersplatz)
(date traffic-accident-4711 13.2.12)
(vehicle traffic-accident-4711 HH-PK-479)
```

Matching Relational Structures

 Semantic Networks applications often involve matching one network against another

Example:

What services are required?

What are the matching rules?

Semantic Network (SN) Queries

- A SN query is a description of desired query responses in terms of a SN using an extended concept language.
- Typical concept language extensions:

x individual variable

X concept variable

{a, b, c} set of individuals

< 2012 predicate over a concrete domain individual

Matching rules:

A query Q matches a database D, if there is an *injective* mapping of all nodes and links in Q to nodes and links in D such that the corresponding nodes and links are compatible.

Object Classification by Relational Matching

- INSTANCE and ISA inheritance must be exploited for matching
- Class decriptions must be given in terms of sufficient conditions
- → graphs are classified by query matching

Semantic Networks – Summary

- Complex problems can be expressed by graphs
- Intuitive graphical knowledge representation
- Classification and information retrieval done by query matching
- Semantics of relations is well-defined for ISA and INSTANCE, but not clearly defined in general
- Need for domain-specific inference rules ("axiomatizing")
- Relations between relations cannot be expressed
- Generally, useful services require additional formalisms such as rule-based inferences and new techniques from machine learning and automatic access, tagging, retrieval, pattern matching

Overview

- Case Based Reasoning
- Spectral Clustering
- Clustering Graphs
 - SCAN
- Semantic Networks
- Bayesian Belief Networks
 - Hidden Markov Models
 - Webgraph: Google

Probabilistic Graphical Models

- Modelling of observations and their relationships
- Until now: semantic networks
- Reasoning over properties inherited from other instance(s)
 - is-a, has-a relationships

But how certain are we about the resulting statements?

- Make inference under uncertainty
- Stochastics helps us with that
- Probabilistic Graphical Model can be directed or undirected

Bayes Theorem

Two stochastic events, H and D:

$$P(H,D) = P(D | H) \cdot P(H)$$

$$= P(H | D) \cdot P(D)$$

$$P(H \mid D) = \frac{P(D \mid H) \cdot P(H)}{P(D)}$$

Bayesian Belief Network

- also known as Bayesian network, probabilistic network
- Components:
 - (1) A directed acyclic graph (called a structure)
 models causal influence relationships
 represents dependencies among the variables
 allows class conditional independencies between subsets of variables
 - (2) A set of *conditional probability tables* (CPTs) gives a specification of joint probability distribution

- Nodes: random variables
- Links: dependency
- X and Y are the parents of Z, and Y is the parent of P
- No dependency between Z and P
- Has no loops/cycles

"Conditional Independence"

S and H are both influenced by W

If S is observed to be true, it is more likely that W is true,

Superman causes accident

Hulk causes accident

If W is known (true or false), then S and H are independent
 → S and H are conditionally independent given W

"Explaining away"

- D and W are independent
- both increase the likelihood of H to be true

- If H is observed, it is more likely that D or/and W are true
- If also D is observed to be true, then likelihood of W being true reduces again → it is "explained away"

A Bayesian Network and Some of Its CPTs

CPT: Conditional Probability Tables

Fire	Smoke	P(S F)
True	True	.9
False	True	.1

Fire	Tampering	Alarm	P(A F,T)
True	True	True	.5
True	False	True	.99
False	True	True	.85
False	False	True	.0001

CPT shows the conditional probability for each possible combination of its parents

A Bayesian Network and Some of Its CPTs

has O(26) combinations P(S,F,T,A,L,R)

product rule

= P(T) P(S,F,A,L,R|T)

F and S are independent of T

= P(T) P(S,F,T) P(A,L,R|S,F,T)

product rule

= P(T) P(F) P(S|F) P(A,L,R|F,T)

L and R are conditionally independent of F and T g

independent of F and T given A = P(T) P(F) P(S|F) P(A|F,T) P(L,R|A,F,T)

L and R are independent given A

= P(T) P(F) P(S|F) P(A|F,T) P(L|A) P(R|A)has $O(2^2)$ combinations only

Types of Reasoning in Bayesian Networks

Diagnostic

 From symptoms to causes, e.g., doctor infers diseases from symptoms. Reasoning occurs in opposite direction to network arcs.

Predictive

 Reasoning from new information about causes to new beliefs about effects, follows the directions of the networks arcs.

Inter-causal (explaining away)

Mutual causes of a common effect. Initially, causes may be independent. But if a common effect is observed and we learn that one cause is true, then the other is less likely – it has been "explained away".

Combined

 Simultaneous use of diagnostic and predictive reasoning

How Are Bayesian Networks Constructed?

- Subjective construction: Identification of (direct) causal structure
 - People are quite good at identifying direct causes from a given set of variables & whether the set contains all relevant direct causes
 - Markovian assumption: Each variable becomes independent of its noneffects once its direct causes are known
 - E.g., S ← F → A ← T, path S → A is blocked once we know F → A
 - HMM (Hidden Markov Model): often used to model dynamic systems whose states are not observable, yet their outputs are
- Synthesis from other specifications
 - E.g., from a formal system design: block diagrams & info flow
- Learning from data
 - E.g., from medical records or student admission record
 - Learn parameters given its structure or learn both structure and params
 - Maximum likelihood principle: favors Bayesian networks that maximize the probability of observing the given data set

Training Bayesian Networks

- Scenario 1: Given the network structure and all variables observable:
 - → compute only the CPT entries
- Scenario 2: Network structure known, some variables hidden:
 - → gradient descent (greedy hill-climbing) method, i.e., search for a solution along the steepest descent of a criterion function
 - Weights are initialized to random probability values
 - At each iteration, it moves towards what appears to be the best solution at the moment
 - Weights are updated at each iteration & converge to local optimum
- Scenario 3: Network structure unknown, all variables observable:
 - → search through the model space to *reconstruct network topology*
- Scenario 4: Unknown structure, all hidden variables:
 - → no good algorithms known for this purpose
 - [D. Heckerman. <u>A Tutorial on Learning with Bayesian Networks</u>. In *Learning in Graphical Models*, M. Jordan, ed. MIT Press, 1999]

Bayesian Cars

Coue et al., 2005. Bayesian Occupancy Filtering for Multi-Target Tracking: an Automotive Application.

Overview

- Case Based Reasoning
- Spectral Clustering
- Clustering Graphs
 - SCAN
- Semantic Networks
- Bayesian Belief Networks
- Hidden Markov Models
 - Webgraph: Google

Hidden Markov Models

- Sequential data modelling, i.e. time series
- Applications:
 - Gene prediction
 - Weather forcecasting
 - Automatic speech recognition
 - Gesture Recognition
 - EEG activity for sleep monitoring
- HMM packages in Matlab (free: Kevin Murphy's), R, Java

Hidden Markov Models

- Model λ:(A, B, π)
 - A: State-transition matrix
 - B: Symbol-emission matrix
 - π : initial state probability vector

- Only emissions are observable, but unknown which state produced them (so: states are *hidden*)
- State sequence can only be inferred from observed events
- Again: Markov assumption
- State structure typically drawn "unrolled" in time

Weather example

 Given the current weather condition, predict the next possible state (Markov assumption)

		Time <i>t</i> + 1			
	State	Sunny	Cloudy	Rainy	Snowing
Time t	Sunny	0.6	0.3	0.1	0.0
	Cloudy	0.2	0.4	0.3	0.1
	Rainy	0.1	0.2	0.5	0.2
	Snowing	0.0	0.3	0.2	0.5

Weather Example: Emissions

 Classification of weather conditions into {good, bad, variable} is only observable

		Weather			
		Sunny	Cloudy	Rainy	Snowy
Met condition	Good	0.5	0.3	0.2	0.0
	Variable	0.2	0.3	0.3	0.2
	Bad	0.1	0.2	0.3	0.4

Hidden Markov Models - Problems

- Decoding: Given the HMM and the observation sequence, what is the most probable state sequence?
 - Viterbi algorithm
- Evaluation: Given the HMM and the observation sequence, how probable is it that this HMM generated it?
 - Forward-backward algorithm
- Learning: Find the HMM parameters which best fit to the observation sequence (training data)
 - Baum-Welch algorithm

Undirected Graphical Models

- Markov Random Fields or Markov Network
- Originated from statistical physics
- Models correlations, not necessarily causality
 - Image segmentation: pixel correlation
- Definition of potentials of nodes and edges
- Moralization: every directed model can be transformed into an undirected model

Inference algorithms as for HMM still applicable

Probabilistic Graphical Models

Graphical models

Directed

(Bayesian belief nets)

Alarm network

State-space models

HMMs

Naïve Bayes classifier

PCA/ ICA

Undirected (Markov nets)

Markov Random Field

Boltzmann machine

Ising model

Max-ent model

Log-linear models

Overview

- Case Based Reasoning
- Spectral Clustering
- Clustering Graphs
 - SCAN
- Semantic Networks
- Bayesian Belief Networks
- Hidden Markov Models
- Webgraph: Google

Applications: Google (1)

Webgraph: web page = vertex, weblink = edge

A web page is important if many pages refer to it (vote)

Brin, Page, et al. (1998) The PageRank Citation Ranking: Bringing Order to the Web. Tech Rep Stanford Uni

Google (2)

Ranking Function for web page *u*:

$$R(u) = c \sum_{v \in B_u} \frac{R(v)}{N_v}$$

v: web page that links to u

B₁₁: backlinks

 $N_v = |F_v|$: # forward links from v

c: normalization factor

PageRanks form a probability distribution over web pages, so the sum of all web pages' PageRanks will be one

Google (3)

Problem: *Rank Sink*Some pages form a loop that accumulates rank to the infinity.

Solution: *Random Surfer*Jump to a random page based on some distribution *E*

$$R'(u) = c \sum_{v \in B_u} \frac{R'(v)}{N_v} + cE(u)$$
 rank source

Google (4)

Summary

- Case Based Reasoning associating cases from the past
- Clustering graphs
 - spectral clustering
 - sparsest cut
 - SCAN
- Semantic Networks graphical models for knowledge representation and classification
- Probabilistic reasoning Bayesian Belief Networks
- Time series Hidden Markov Models
- Google it`s algorithm is transparent