LOAN DOCUMENT

N NO	PHOTOGRAPH THIS SHEET LEVEL MRS IN MARSURES FOR DIGURSTRUMM O DOCUMENT IDENTIFICATION	ENVENTORY BUT LET WA
	DISTRIBUTION STATE Approved for Public P Distribution Unlim	lelease N
	DISTRIBUTION STATEMENT	L
NTIS CRAME DITC TRAC UNANNOUNCED JUSTIFICATION BY DISTRIBUTION/ AVAILABILITY CODES DISTRIBUTION AVAILABILITY AND/OR SPECIAL DISTRIBUTION STAMP	DATE AC	W I T H CESSIONED C A R E
	DATES	RETURNED
20001006		ERTIFIED NUMBER
biro	TOGRAPH THIS SHEET AND RETURN TO DTIC-FDAC	
DTIC FORM 70A	DOCUMENT DECORRENC SUFFE	S EDITIONS MAY BE USED UNITE.

LOAN DOCUMENT

HOPKINTON DAM MERRIMACK RIVER BASIN, NH

DESIGN LETTER REPORT HOPKINTON DAM

REMEDIAL MEASURES FOR DOWNSTREAM OUTLET WALL

JULY 1997

US Army Corps of Engineers New England District

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite

1204, Arlington, VA 22202-4302, and to the Office			
1. AGENCY USE ONLY (Leave blank	() 2. REPORT DATE	3. REPORT TYPE AND DATES	
	JULY 1997		TER REPORT
4. TITLE AND SUBTITLE		5. FUND	DING NUMBERS
DESIGN LETTER REPORT			
REMEDIAL MEASURES FOR D		LL	
HOPKINTON DAM, MERRIMA	CK RIVER BASIN, NH		
6. AUTHOR(S)			
REGINALD PRETTO			
CIVIL ENGINEER - USACE - N	AE		
		1	
			ORMING ORGANIZATION
US ARMY CORPS OF ENGINE		REPC	ORT NUMBER
NEW ENGLAND DISTRICT			*
GEOTECHNICAL ENGINEERIN	NG SECTION		
424 TRAPELO ROAD	A Company		
WALTHAM, MA 02254			
9. SPONSORING/MONITORING AG	ENCY NAME(S) AND ADDRESS(E	S) 10. SPOI	NSORING/MONITORING
	· · · · · · · · · · · · · · · · · · ·	AGE	NCY REPORT NUMBER
1			
1		1	
1			
11. SUPPLEMENTARY NOTES			
1			
12a. DISTRIBUTION AVAILABILITY	STATEMENT	12b. DIS	TRIBUTION CODE
DISTRIBUTION UNLIMITED			
		1	· ·
		1	
I		1	
1			
13. ABSTRACT (Maximum 200 words	y)		
The right side (east) outlet wall w		from the stilling basin has been	displaying consistent
movement since construction of the	ne dam. Measurements taken ha	we shown that the movement is	a combination of both
frost action and lateral loading du			
and conclusions drawn from those	measurements and a discussion	on of alternatives for correcting t	he problem
and conclusions drawn from those	i measarements, and a discussic	or anormatives for correcting t	provident.
l			
I			
I			
I			
l			
l			
1			
			115. NUMBER OF PAGES
14. SOBSECT LERMS		1,0,110	
Frost, Frost heave, Ground freezing, Hopkinton Dam, Lateral earth pressure, Merrimack River		118 16. PRICE CODE	
Basin, Retaining Walls, Tilt Plate	s, Wall Deformation		IO. FRICE CODE
<u> </u>	a aparter a	40 OFOURTY OF ACCUSE THE	20 LIMITATION OF
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
UF REPURI	OF THIS PAGE	J. ADDITION	
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	UL

TABLE OF CONTENTS

1. Summary1
2. Description and History of Project1
a. General1
b. Topography & Geology1
(1) General1
(2) Site Geology2
c. Embankment and Appurtenant Structures Description2
(1) Dam Embankment2
(2) Stilling Basin2
(3)Hoague-Sprague Dam3
(4) Outlet Portal for Forebay Conduit
(5) Outlet Channel for Conduits No. 1 & 23
(6) Spillway4
d. Foundation Conditions at Outlet Works4
e. Outlet Wall Problem4
f. Forebay Dike Erosion4
3. Reservoir Regulation Events5
a. General Reservoir Regulation5
b. Maximum Impoundments5
(1) 1987 Flood Event5
(2) June 1984 Flood5
(3) March 1990 Pool5
(4) August 1991 Pool6
4. Outlet Wall History and Monitoring6
a. Original Wall Design6
b. Investigations of Movement
(1) General 7

(2) Surveys	7
(3) Tilt Plates	7
(a) Data Collection	7
(b) Interpretation and Evaluation	8
5. Conclusions	10
a. Extent of Movement	10
b. Influence of Forebay Pool	11
c. Frost Effects	11
d. Structural Analysis	1
6. Discussion of Alternatives	12
a. General	12
b. Repair Alternatives	12
(1) Thermal Membrane	12
(2) Replacement of Impervious Fill	12
7. Recommendations	12
a. Soil Materials	13
(1) Impervious Fill Material	13
(2) Pervious Fill Material	13
(3) Stone Protection Materials	14
(4) Gravel Bedding	14
(5) 3/4" Crushed Stone Bedding for Drains	14
(6) Crushed Stone Material	15
b. Pipe Material	15
8. References	15
Appendix A Structural Analysis	
Appendix B Tilt Plate and Survey Data	
Appendix C CRREL Report	

LIST OF PLATES

Plate No.	<u>Title</u>
1	Project Location & Vicinity map
2	Hopkinton Dam General Plan
3	Outlet Works Plan and Section
4	Exploration & Instrumentation Plan
5	Hopkinton Outlet Wall - Engineering Log Profile A-A
6	Hopkinton Outlet Wall - Engineering Log Profile B-B
7	Hopkinton Outlet Wall - Profile - Right Side (East) Outlet Wall
8	Hopkinton Outlet Wall - Section C
9	Hopkinton Outlet Wall - Section D
10	Hopkinton Outlet Wall - Section E
11	Hopkinton Outlet Wall - Section F
12	Hopkinton Outlet Wall - Section G
13	Hopkinton Outlet Wall - Section H
14	Hopkinton Outlet Wall - Section I and Detail A
15	Surveyed and Horizontal Deflections
16	Tilt Plate and Survey Data-Plates 2 and 3
17	Tilt Plate and Survey Data- Plates 4 and 5
18	Tilt Plate and Survey Data- Plates 6 and 7
19	Tilt Plate and Survey Data- Plates 8 and 9
20	Tilt Plate and Survey Data- Plates 10 and 11
21	Tilt Plate and Survey Data- Plates 12 and 13
22	Tilt Plate Data: 1 & 15 and Survey Data: 1 & 14

LETTER REPORT Remedial Measures for Downstream Outlet Wall

1. Summary

The right side (east) outlet wall which separates the forebay pool from the stilling basin has been displaying consistent movement since construction of the dam. Measurements taken have shown that the movement is a combination of both frost action and lateral loading due to earth pressure. This report describes the types of measurements taken, the results and conclusions drawn from those measurements, and an analysis of alternatives for correcting the problem.

2. Description and History of Project

a. General

The Hopkinton Lake Project is part of one of the four reservoir projects that have been constructed in the Merrimack River Basin by the Corps of Engineers for flood control and other purposes.

Hopkinton Lake is located in the town of Hopkinton on the Contoocook River, approximately eighteen miles southwest from the confluence of the Contoocook and Merrimack Rivers at Penacook, New Hampshire (Plate 1). Construction of the project was started in November 1959 and completed in July 1963. An upstream permanent pool is kept at approximately El. 382 ft NGVD, stage 16 ft. The downstream forebay pool created by the Hoague-Sprague Dam, has an average spring and summer elevation near 380 ft NGVD and elevation 382 ft NGVD during the fall and winter. The Hopkinton Lake project was designed and built as part of the overall Hopkinton-Everett reservoir system.

b. Topography & Geology

(1) General

The Hopkinton Reservoir occupies low, flat, relatively wide areas in the pre-glacial Contoocook Valley which has been generally deeply filled with out wash deposits and till. The entire reservoir was occupied during the recessional phase of the last glaciation by connected pools or sluggish-current lakes impounded behind ice and debris barriers which caused temporary damming and diversion of the natural drainage. In the areas occupied by the transient pools, deposits of sand, silt and gravel occur. Till and till covered bedrock hills which rise above the lowlands form the perimeter of the reservoir. (Ref Periodic Inspection No. 1)

(2) Site Geology

The Contoocook River flows in a deep, narrow valley entrenched in glacial tills. The right abutment rises steeply from the river's edge, the left abutment is less steep and rises from a narrow flood plain which occupies the left side of the valley bottom. Bedrock is deeply buried at the site occurring throughout at depths of up to 90 feet. The overburden is generally till which is overlain on the abutments by a thin blanket of silt or fine sand and in the valley bottom by variable, thin deposits of recent alluvium, mostly sands and gravels. Occurring in and under the till are erratic deposits of laminated fine sand and clay, and stratified sands and gravels. The overburden at the dam site, both in the abutments and valley bottom consist mainly of till composed of gravelly, silty sand with cobbles and boulders. The till is characteristically variable, however clayey and gravelly phases are fairly common. All the till is very compact and relatively impervious. Within the limits of usual variability, the till in the abutments is generally homogeneous. In the valley bottom, however, where the till is overlain by superficial deposits of recent, river-washed silty sands and gravelly sands, numerous deposits of laminated silt and clay, stratified sands and laminated silt and clay intimately mixed with the till occur scattered within the main till mass. These deposits generally range from less than one foot to as much as eight feet in thickness but appear to have only limited horizontal continuity and are considered to be isolated lenses in the till.

c. Embankment and Appurtenant Structures Description

(1) Dam Embankment

The dam embankment is a rolled earth filled with rock fill slope protection. It is 790 feet long with a maximum height of 76 feet above stream bed. The top minimum elevation is 437.0 ft NGVD. The dam consists of a homogeneous section of impervious fill, with its slopes protected with a quarry-run type rock on gravel bedding. Embankment seepage is controlled by a vertical pervious fill gravel chimney drain located near the center of the embankment and connected to a horizontal downstream pervious blanket. The dam slopes are 1 on 2 and 1 on 2.5, with a 10-foot berm on the upstream slope at elevation 400, providing an access to the trash rack bars, and a downstream berm at elevation 384, providing an as access for maintenance to the stilling basin structure. A rock toe is provided downstream with gravel toe drains at both abutments. Foundation relief wells were provided at the downstream toe to control potential seepage and uplift development. The outlet works, located on a glacial till foundation on the left bank of the river, consists of an approach channel, gate tower, three conduits, stilling basins, an outlet channel, and a forebay pool.

(2) Stilling Basin.

The stilling basin for the two flood control conduits (No. 1 and No. 2) is partitioned by a concrete wall 85 feet long. Each conduit barrel discharges into a single U shaped concrete outlet,

whose invert at the conduit exit is EL. 365.5 ft NGVD. The invert of each outlet drops a height of 15.5 ft. in 50 ft. into the stilling basin to an elevation of 350.0 ft NGVD and at the same time merges into a single section (see plate 3). The end of the stilling basin is approximately 117 ft. from the exit of the conduits and at this point is a single U section whose inside width is approximately 66 feet with a sidewall on the right 35 feet above the floor of the stilling basin and on the left 22 feet above the floor. The stilling basin length is 65.0 feet The outside walls of the stilling basin are parallel to the centerline of the two floor control conduits. Two rows of concrete baffles and stepped end sill were provided. The elevation at top of the right side (east) concrete wall adjacent to the head water at Hoague-Sprague Dam, is 385.0 ft NGVD, 5 feet higher than the dam's flash boards. The top of the left side (west) wall of the stilling basin is elevation 377.0 ft NGVD.

(3) Effects of Hoague-Sprague Dam

The presence of the downstream Hoague-Sprague Corporation Dam, which has a normal operating pool elevation of 380.0 ft NGVD (winter pool el. 382 ft NGVD), introduces a hydrostatic loading condition in the design of the stilling basin. The right U-wall and T-wall adjacent to the pond have been designed as cantilevers off the base and loaded with the full hydrostatic pressure from the pond. Although drainage has been provided under the slab of the stilling basin, it has been neglected in the design due to the possibility of freezing or clogging of the weep holes with a resulting full hydrostatic head being applied to the underside of the base slab. The left wall has also been designed as a cantilever from the base but with hydrostatic pressure varying from full head at the base to zero at elevation 371 ft NGVD. Projections of the base slab were found to be necessary on each side of the stilling basin slab at the end section in order to maintain a balance of loads to keep the structure from floating under the full hydrostatic pressure.

(4) Outlet Portal for Forebay Conduit.

The forebay conduit (conduit No. 3) and outlet channel discharges into the downstream Hoague Sprague dam pool. The forebay outlet channel that is a 55-foot long U-shaped section. The wall which is adjacent to the stilling basin is extended 51 feet beyond the 55-foot long channel. The channel walls are reinforced concrete cantilever type walls with a common mat. The head wall is supported by the retaining walls on each side and the walls are butted against the head wall. The Hoague Sprague Dam located downstream of the dam is used to supply water to the nearby paper mill and hydropower unit. (See plate 4)

(5) Outlet Channel for Conduits No. 1 & 2

Below the stilling basin the outlet channel slopes up from elevation 353 ft NGVD, at a

rate of 3.0 feet in 100 feet to meet the existing river channel. The outlet channel bottom and side slopes are protected by quarry run type rock fill on gravel bedding.

(6) Spillway

The spillway is a concrete trapezoidal weir (ogee section) founded on bedrock and is located in Dike H-3. Weir crest elevation is El. 416 ft NGVD and the crest length is 300 feet.

d. Foundation Conditions at Outlet Works

The outlet structures were constructed along the left side of the valley bottom. As a result of the required elevation for the invert of the conduit, the conduits and the gate tower structures were founded on a zone of very compact gravelly silty sand (glacial till) at least 5 ft. thick. Below this zone are lenses, bands or strata of various soils interspersed in compact glacial till. It is indicated by available data that these interspersed zones are numerous in the foundation overburden for the conduit but that the soils in the zones are very compact. The foundation conditions for the gate tower were explored by three bore holes, FD-142, FD-145 and FD-155. At these locations, good continuous samples were obtained. Some zones of silt laminated with sandy silt and silty fine sand occur below the upper foundation zone of very compact till. The soils in these zones are compact and well consolidated. Data indicate that no significant sand zones exist in the upper 25 ft. of foundation overburden at the tower structure.

e. Right Side Outlet Wall Problem

The outlet retaining wall (T-wall and portions of the Stilling Basin U-wall) on the east side of the discharge channel is tilting outward into the outlet channel. Since 1967 movement of the wall has been realized. In May of 1973 two brass survey disks were installed on each monolith in order to monitor this movement. Tilt plates were installed in 1989 adjacent to the survey disk to further monitor the movements. Extensive movement has been recorded (see plates 15). The extent of this movement is discussed in the conclusion section of this report.

f. Forebay Dike Erosion

The downstream Forebay Pool is regulated by the Hoague-Sprague Dam. The pool is maintained at elevation 380 ft NGVD during the spring and summer months. In the fall flash boards are added in order to raise the pool two feet to elevation 382 ft NGVD. During the April 1987 event the rock slope protection in the forebay pool was eroded and deposited into the center of the discharge channel. The displaced rock was later placed back onto the slope using a backhoe.

3. Reservoir Regulation Events

a. General Reservoir Regulation

Hopkinton Lake is one of five flood control projects that have been constructed in the Merrimack River basin by the Corps. Located on the Contoocook River in the town of Hopkinton, New Hampshire. It is operated to reduce flooding in downstream communities and to maintain recreational activities. The recreation pool at elevation 380 ft NGVD contains 700 acre feet of storage. This pool is maintained at a depth of about 14 feet and creates a 220-acre permanent pool. The flood control storage amounts to 70,100 acre feet with the pool filled to spillway crest. Since being placed in operation in 1963, the maximum impoundment at Hopkinton Lake occurred in April 1987, when the project was filled to elevation 415.8 ft NGVD (95 Percent full), or 0.2 feet below spillway crest elevation, 416.0 ft NGVD.

b. Maximum Impoundments

(1) 1987 Flood Event

The embankment was subjected to its highest impoundment to date with a maximum water surface elevation of 415.8 ft NGVD, stage 49.8 feet (0.2 feet below the spillway crest), 95% full. The embankment performed satisfactorily during this impoundment. The dam was inspected at the time of the flood by an Emergency Response Team from Geotechnical Engineering Division (GED). Several small clear seeps were observed emerging along the base of the downstream left abutment above El. 384 ft NGVD. These seepage flows were attributed to ground water draining off the left abutment and not seepage through the dam embankment. No abnormal seepage conditions such as piping, boils from through seepage, or sinkholes were observed by the team or reported by the Project Manager.

(2) June 1984 Flood

During June 1984, the embankment was subjected to its second highest impoundment to date with a maximum water surface of 407.5 ft NGVD, stage 41.5 feet (8.5 feet below spill- way crest). The dam was inspected at the time of the flood by an Emergency Response Team from GED. No abnormal seepage conditions such as piping, boils, or sinkholes were observed then by the team or subsequently reported by the Project Manager.

(3) March 1990 Pool

During March 1990, the embankment was subjected to its highest impoundment since piezometers three through 11 were installed in 1987 and 1988. The maximum water surface

during this small event was at El. 397.2 ft NGVD, stage 31.2 (18.8 feet below the spillway crest).

(4) August 1991 Pool

During the August 1991 event, the embankment was subjected to an impoundment of 394.6 ft NGVD, Stage 28.6 ft (21.4 feet below spill way crest). The dam was inspected at the time of the flood by an Emergency Response Team from GED. No abnormal seepage conditions such as piping, boils, or sinkholes were observed then by the team or subsequently reported by the Project Manager. During this time the forebay pool was empty (9 July to 24 October) for maintenance which caused the water elevations in the piezometers and relief wells on the left side of the outlet channel to drop.

4. Outlet Wall History and Monitoring

a. Original Wall Design

The right side (east) outlet retaining wall is a reinforced concrete cantilever type T-wall with a seepage and shear key at the heel (see plates 5 thru 11). The top of the east wall is at elevation 385.0 ft NGVD. The total length of the wall is 114.75 feet and it is divided into six monoliths with expansion joints. Monoliths No. 2 through No. 6 have tilted toward the outlet channel. Maximum tilt was observed at the top of the monoliths. The monoliths retain an impervious fill embankment designed to retain the forebay pool for the Hoague-Sprague Dam. The cantilever walls are analyzed based on the assumption that the wall stems will yield and they will experience active earth pressure. The wall thickness-height ratio shows that the walls are relatively less rigid compared to other structures. The 3' x 6' shear key at the heel will be mobilized and it will resist the passive pressure provided by the bearing pressure of the subgrade foundation materials. The passive resistance of the backfill developed at the toe is not considered because the constant water flow in the stilling basin may erode the backfill. Impervious material for the dam and dikes was obtained from required excavations in glacial till for Canal No. 1. The excavated till was very compact, gravelly, silty and clayey sand with only occasional boulders.

The loading conditions considered for the analysis of the outlet channel east wall are as follows: The structure satisfies all stability criteria for overturning, sliding and foundation bearing pressure, except for loading case R3 which is normal condition with seismic. During, the seismic condition the foundation bearing pressure at the toe exceeds the allowable bearing pressure of 8 ksf for monoliths No.2 and No.6. The resultant does not fall within the middle third of the foundation base. For monolith No.6 the factor of safety against sliding during an earthquake is less than 1.3. The loading conditions considered for the analysis of the outlet structure are as follows:

Case R1 Usual Loading: Backfill in place to final elevation. Surcharge (not applicable). Lateral and uplift pressures due to water (normal operating pool elevation 382.0 ft NGVD for Hoague-Sprague Dam and tail water elevation 365.5 ft NGVD in stilling basin).

Case R2 Extreme Loading: Flood condition is not applicable since structure is located at the end of the downstream side of the dam.

Case R3 Earthquake Loading: Load Case R1 with induced lateral load added (Refer to EM 111.225.2: Retaining Walls for description of Earthquake Loading).

b. Investigations of Movement

(1) General

Initial instrumentation for monitoring wall movement consisted of scribe marks at adjoining ends of monoliths No.11 and No.12. The set of scribe marks has shown a maximum relative movement of approximately 3-15/16 inches. In May of 1973, a survey was performed to establish a baseline along the top of the wall which has been used for measuring lateral movement of each monolith periodically. The tilt plates were installed in November 1989 to measure the cumulative rotation of the top of the wall (see plate 4). Tilt plate readings were taken simultaneously with periodic surveys when possible to facilitate a comparison between rotation and lateral movement. (See plates 16 thru 22)

(2) Surveys

The baseline which was established in the May 1973 survey runs along the top of the wall from the east concrete abutment of Hoague-Sprague Dam to the outlet works (see plate 4). The baseline comprises of 14 brass survey disks set horizontally on the top of the wall adjacent to the tilt plates. Surveys have been performed which have recorded the horizontal and vertical movement of each disk.

- (3) Tilt Plates
 - (a) Data Collection

Seventeen tilt plates have been installed on the east and west stilling basin and outlet channel walls which are used to measure the movement of the wall. A Terra Tilt Meter, Model TT-2 is placed in the groves of the tilt plate in each of the four directions known as A+, A- (A axis), B+, and B- (B axis) and data is recorded for each direction. The A axis is perpendicular to the wall, and the B axis is parallel to the wall. The data read from the tilt meter is $2 \sin \theta$, where θ is the angle of deflection. The readings are then entered on a Lotus 1-2-3 spreadsheet and the deflection angle θ is calculated. A negative deflection angle of the A axis indicates the wall is

rotating toward the stilling basin/outlet channel; a positive deflection angle of the A axis indicates the wall is rotating away from the stilling basin/outlet channel. Rotation of the B axis indicates the wall is rotating side to side.

Temperature data is also collected which is then converted into freezing and thawing degree days; a degree day being the average of the daily maximum and minimum temperatures minus 32 degrees F. Negative numbers represent freezing degree days and positive numbers represent thawing degree days.

(b) Interpretation and Evaluation (i) Tilt Plates 1 & 15. (Plate 22)

Tilt Plates TP1 and TP15 are located on the east stilling basin U-wall. Plate 22 shows that the highest angle of deflection of TP1 occurred in March 1994 and for TP15 in January 1990 with rotations of -0.2636 and -0.2063 degrees respectively outward of the A axis, toward the stilling basin. The survey data shows the maximum horizontal movement at the top of the wall occurred in November 1994 and was close to 0.16 ft (1.92 in) for TP 1. Some of the horizontal movement and rotation noted occurred during December 1989/January 1990, the coldest month on record, with freezing degree days consistently near -17 (Max -31.5) for over a month. There is no survey data for TP 15. By May 1992 TP15 had rotated inward +0.0516 degrees; rotation then reversed back outwards towards the stilling basin to -0.0516 degrees. No rotation readings were taken during the 1990-91 and 1991-92 winters. TP1 had a maximum vertical movement in May 1994 of 0.068 ft (0.82 in) of heave.

(ii) Tilt Plates 2 & 3. (Plate 16)

TP2 and TP3 located on the east outlet retaining wall and both are on monolith No.6; TP2 is adjacent to the upstream construction joint and TP3 is adjacent to the downstream construction joint. Plate 16 shows TP2 and TP3 having maximum rotations of the A axis of -0.3037 and -0.3266 degrees respectively in January 1990. Rotation of the B axis was minimal as was the vertical movement. Horizontal movement at the top of the wall showed both moved 0.212 ft and 0.224 ft (2.5 inches and 2.9 inches). The maximum rotation and horizontal movement occurred during December 1989/January 1990. There was minimal rotation and movement, relative to December 1989, during the next two winters. Maximum vertical movements were 0.070 ft (0.84 in) and 0.066 ft (0.79 in) of heave respectively occurring in May 1994.

(iii)Tilt Plates 4 & 5. (Plate 17)

TP4 and TP5 are located on the east outlet retaining wall and both are on monolith No. 5; TP4 being on the upstream end and TP5 on the downstream end. Maximum rotation of the A

axis and maximum horizontal movement occurred in January 1990 (Plate 17). Maximum rotation of the A axis was -0.3266 degrees for both TP4 & 5 with corresponding horizontal movement of 0.216 and 0.203 ft (2.6 inches and 2.4 inches) outward toward the stilling basin. TP5's rotation of the A axis retreated back to -0.12 degrees by May 1990 and stayed there until April 1992, by March 1994 it moved outward to -0.3209 degrees. TP4's rotation of the A axis rotated back to near 0 degrees by April 1992 and then back to -0.1948 by March 1994. But TP4's rotation of the B axis gradually moved to near -0.0573 degrees while TP5's B axis rotation was near +0.0115. Maximum vertical movement was 0.067 ft (0.80 in) of heave for both TPs occurring in May 1994.

(iv)Tilt Plates 6 & 7. (Plate 18)

TP6 is located on the upstream end and TP7 is on the downstream end of monolith No. 4 of the east outlet retaining wall. Plate 18 shows maximum horizontal movement toward the outlet channel of TP6 and 7 was 0.21 ft and 0.197 ft (2.5 inches and 2.4 inches) respectively with -0.3266 degrees rotation of the A axis for both tilt plates in December 1989/January 1990. TP6 rotated back to near -0.1 degrees and TP7 rotated close to +0.0344 degrees by April 1992; by March 1994 TP6 reached -0.2521 degrees and TP7 was at -0.1776 degrees. As with TP4, TP7's B axis gradually rotated to -0.0745 degrees by April 1992 while TP6's B axis stayed near 0.0401 degrees. Maximum vertical movements were 0.040 ft (0.48 in) and 0.070 ft (0.84 in) of heave respectively.

(v) Tilt Plates 8 & 9. (Plate 19)

Data for TP8 and 9 is shown on Plate 19; TP8 is on the upstream side and TP9 is on the downstream side of monolith No. 3 on the east outlet retaining wall. Maximum horizontal movement and rotation of the A axis occurred during December 1989/January 1990 when the degree days were consistently freezing for over a month. Rotation of the A axis was maximum in January 1990 with -0.2979 and -0.2922 degrees for TP 8 & 9. Maximum horizontal movement was 0.183 ft (2.2 in) for TP8 and 0.201 ft (2.4 in) for TP9 in January 1990. Maximum vertical movement was 0.067 ft (0.80 in) of heave for both TP's occurring in May 1994.

(vi)Tilt Plates 10 & 11. (Plate 20)

Plate 20 shows the data for TP10, upstream, and TP11, downstream, both on monolith No. 2 on the east outlet retaining wall. Maximum horizontal movement was 0.221 ft in January 1990 and 0.200 ft in March 1996, for TP10 and 11 respectively, outward. Maximum rotation of the A axis for TP10 was -0.2349 degrees and for TP11 -0.2120 degrees. TP10's B axis gradually rotated to -0.0745 degrees, while TP11's B axis gradually rotated to 0.0630 degrees, both by

March 1996. Maximum vertical movements were 0.068 ft (0.82 in) and 0.060 ft (0.72 in) of heave respectively occurring in May 1994.

(vii)Tilt Plates 12 & 13. (Plate 21)

Data for tilt plates 12 and 13 are shown on Plate 21. TP12 and 13 did not respond as significantly to the December 1989/January 1990 winter temperatures as with the other tilt plates. Maximum horizontal movement of TP 12 occurred in January 1990 and was 0.063 ft (0.75 in) while TP13's maximum horizontal movement was 0.035 ft (0.42 in) both occurring in December 1989 and both moving horizontally toward the outlet channel. In December 1989/January 1990, both tilt plates' A axis rotated -0.0802 degrees. By April 1992, TP12's A axis had rotated to +0.0859 degrees inward; TP13 had also rotated toward the forebay pool to +0.0573 degrees. Both plates' B axis rotated to near +0.05 degrees in October 1990; TP12 then rotated back toward -0.0172 degrees and TP13 to near -0.0516 degrees by March 1996. Maximum vertical movements were 0.055 ft (0.66 in) and 0.052 ft (0.62 in) of heave respectively both occurring in May 1994.

(viii)Tilt Plates 14, 16 & 17.

TP16 is located on the east abutment of the Hoague-Sprague Dam adjacent to TP13, TP16 is located on the west stilling basin wall, and 17 is located on the west outlet retaining wall. Maximum horizontal movement of TP14 is 0.035 ft (0.42 in) which occurred in December 1989/January 1990; vertical movement over time has been minimal. Survey data for TP's 16 and 17 is not available. Maximum rotation of the A axis for TP14 is -0.0344 degrees outward and of the B axis is -0.0516 degrees; both occurring in October 1990. Maximum rotation of the A axis of TP16 and 17 was +0.0516 and +0.0458 away from the spillway respectively occurring in March 1995. Maximum rotation of the B axis was +0.0344 degrees in March 1995 for TP16 and +0.0401 degrees in August 1990 for TP17. These three tilt plates were not affected as adversely as TP 1-15 in December 1989/January 1990 possible because the backfill materials are very pervious and non frost susceptible.

5. Conclusions

a. Extent of Movement

Relative to their position on 15 May 1973, all of the monoliths, except for the first (No.1) upstream of the Hoague-Sprague dam abutment, have moved horizontally an average of almost 2-1/2 inches outward toward the stilling basin and outlet channel (see plate 15). During the fifth Periodic Inspection it was observed that monolith No. 2, upstream of the Hoague-Sprague dam abutment had tilted outward relative to monolith No. 1 by 3-15/16 inches at the top of the wall.

Relative movements from zero to 9/32 inch were also noted between other monoliths along the wall during Periodic Inspection No. 4. These monoliths have been steadily moving at a rate of about ½-inch every five years since monitoring was initiated in 1967.

b. Influence of Forebay Pool

It has been determined that the change in pool elevation between summer (elev. 380 ft NGVD) and winter (elev. 382 ft NGVD) has little effect on the outlet wall. The two foot change in pool elevation represents a negligible force acting on the wall.

c. Frost Effects

In December 1994 personnel from the Cold Region Research and Engineering Laboratory (CRREL) installed various instrumentation to monitor frost effects. The installed instrumentation includes 31 thermistor-type temperature sensors, one load cell, a vibrating wire inclinometer assembly and two linear motion potentiometers. As of 14 August 1996, maximum pressures in the load cell had reached 26 psi and total deflections of more than 3/4 inches have been measured along the wall. CRREL's inclinometer data suggest that the movement in the wall may be a combination of rotation about a point and deflection of the wall. The thermocouple data indicates that the limits of soil freezing behind the wall are as follows (see appendix C):

- -at the top of the clay layer (approx. elev. 383 ft NGVD) frost reaches at least 6' east of the inside of the wall.
- -at 8' down from the top of the wall (approx. elev. 377 ft NGVD) frost reaches between 2' and 4' east of the wall.
- -at 12' down from the top of the wall (approx. elev. 373 ft NGVD) frost reaches 1 foot east of the wall.

d. Structural Analysis

A complete structural analysis of the outlet wall was performed by the design division. The analysis takes into account that the wall is cracked and assumes uniform frost loading. It is not anticipated that any repairs will be required on the wall. Measured deflections caused by soil and frost loading generally compare to the expected theoretical deflections. See Appendix A for the structural report.

6. Discussion of Alternatives

a. General

The alternatives considered for this project were, the replacement of the special impervious material with a pervious fill and drainage, install a thermal membrane for insulation against freezing, and the do nothing alternative. It has been determined from monitoring that the do nothing alternate would be unacceptable. If movement continues at the current rate, the stem of the outlet wall can produce severe cracks and break. Current movement in the wall would require an alterative that would relieve frost pressures behind the outlet wall, prevent frost from reaching the existing soils behind the wall or both.

b. Repair Alternatives

(1) Thermal Membrane

This alternative considers the installation of a thermal membrane between the outlet wall and the existing special impervious soils. This membrane would, for the most part, prevent frost which crosses the wall from reaching the soil behind it. However, for extended periods of freezing weather, it is not reasonable to expect no frost to penetrate the membrane into the impervious soil region. In addition, water is always present behind the wall stem and ice lenses may still develop behind the wall. For this reason a thermal membrane by itself would not be sufficient protection against frost.

(2) Replacement of Impervious Fill

This alternative would require removal of the special impervious fill behind the outlet wall and placement of a pervious non-frost susceptible fill with a drainage system. This design would prevent frost loads from building up by allowing the water to drain freely. This would prevent the formation of ice lenses in the zone immediately behind the wall. However, if frost was to consume the entire pervious zone and reach the back side of the embankment section, frost loading could reoccur on the wall. The wall may also have frost loading problems if the drainage system were to freeze. However, based on the thermocouple data and further studies done by CRREL it is not likely that either one of these would occur.

7. Recommendations

The recommended action is the replacement of the impervious fill with a 4 foot wide pervious zone and drainage system (see plates 7 thru 14). Based on studies done by CRREL, this design would provide protection for up to a one hundred year event. Construction of this option would require coordination with the Hoague-Sprague Dam, as the forebay pool would have to be drained. Furthermore the design would require specific material specifications.

a. Soil Materials

In general, excavated materials will be reused if they meet the required specification. A description of the necessary materials follows.

(1) Impervious Fill Material

Materials excavated from the existing impervious fill area will be reused in the areas designated for impervious fill material. Impervious fill will consist of a well-graded, natural, unprocessed soil containing sand, and silt or clay sizes. Impervious fill materials should be reasonably well-graded within the following limits.

Sieve Size	Percent Passing
(U.S. Standard)	by Dry Weight
6-inch	100
3-inch	85-100
No. 4	60-95
No. 40	35-75
No. 200	20-50

(2) Pervious Fill Material

Pervious fill material will be furnished by the contractor in accordance with Section 520, Fine Aggregate, of the State of New Hampshire Department of Transportation's, Standard Specifications for Road and Bridge Construction. Pervious fill material should be a uniformly graded washed sand and conform to the following gradation:

Sieve Size	Percent Passing
(US Standard)	by Dry Weight
3/8"	100
No. 4	95-100
No. 16	45-80
No. 50	10-30
No. 100	2-10
No. 200	0-3

(3) Stone Protection Materials

The Contractor can reuse existing suitable stone protection materials. Stone protection material should be well graded between the maximum and minimum stone sizes. The maximum and minimum sizes should produce a material without "skip gradation" with stone sizes within the limits specified. The rock will be placed so that the entire finished surface of stone protection will be of uniform appearance.

(4) Gravel Bedding

Gravel bedding materials will be furnished by the contractor and will consist of sand, gravel or crushed stone composed of tough, durable particles. Gravel bedding will be in accordance with Section 304, Item No. 304.2, of the State of New Hampshire Department of Transportation's, Standard Specifications for Road and Bridge Construction. The materials should be graded within the limits specified below:

Sieve Size	Percent Passing
(U.S. Standard)	by Dry Weight
6-inch	100
No. 4	25-70
No. 200	0-12

(5) 3/4"Crushed Stone Bedding for Drains

Bedding shall be furnished by the contractor and in accordance with Section 703, Standard Stone Size #67, of the State of New Hampshire Department of Transportation's, Standard Specifications for Road and Bridge Construction. Bedding should conform to the following gradation:

Sieve Size	Percent Passing
(U.S. Standard)	by Dry Weight
1"	100
3/4"	90-100
3/8"	20-55
No. 4	0-10
No. 8	0-5

(6) Crushed Stone Material on Top of Dike

Crushed stone will be contractor furnished material composed of hard, durable, and sound particles. Crushed stone will be in accordance with Section 304, Item No. 304.5, of the State of New Hampshire Department of Transportation's, Standard Specifications for Road and Bridge Construction. The material should be well-graded within the following limits:

Percent Passing by Dry Weight
100
85-100
60-90
40-70
15-40
0-5

b. Pipe Material

8" Corrugated Polyethylene (PE) pipe will be used for the drainage system (see plate 14). Circumferential slots shall be cleanly cut so as not to restrict the inflow of water and uniformly spaced along the length and circumference of the tubing. Width of slots shall not exceed 1/8 inch or be less than 1/32 inch. Rows of slots shall be symmetrically spaced so that they are fully contained in quadrants of the pipe.

8. References

Reference is made to the following documents pertinent to the basic design and construction of the dam and its operational history:

- a. Design Memorandum No. V, Hopkinton- Everett Reservoir, Geology and Soils, Part B: Hopkinton Reservoir, February 1959.
- b. Design Memorandum No. VIII, Hopkinton- Everett Reservoir, Detailed Design for Spillway Weir, Outlet Works, and Miscellaneous Structures, February 1959.
- c. Periodic Inspection Report No. 4, Hopkinton Lake, April 1992.
- d. Master Water Control Manual, Merrimack River Basin, August 1977.
- e. Periodic Inspection Report No. 1, Hopkinton Lake, March 1973.

- f. Review of Structural Stability, Hopkinton Lake Dam. Hydraulic & Water Resources Engineers, Inc., October 1989.
- g. State of New Hampshire Department of Transportation, Standard Specification for Road and Bridge Construction, 1990

HOPKINTON-EVERETT LAKES NEW HAMPSHIRE

VICINITY MAP

Tilt Plate Data: Plate Nos. 2 & 3

Hopkinton Outlet Wall - Monolith #6

- Tilt plate 2, A Rot'n
- Tilt plate 2, B Rot'n
- Tilt plate 3, A Rot'n
- Tilt plate 3, B Rot'n

TYPICAL TILT PLATE

Tilt Plate Data: Plate Nos. 4 & 5

Hopkinton Outlet Wall - Monolith #5

- Tilt plate 4, A Rot'n
- Tilt plate 4, B Rot'n
- Tilt plate 5, A Rot'n
- = Tilt plate 5, B Rot'n

Tilt Plate Data: Plate Nos. 6 & 7

Hopkinton Outlet Wall - Monolith #4

- Tilt plate 6, A Rot'n
- → Tilt plate 6, B Rot'n
- ▲ Tilt plate 7, A Rot'n
- = Tilt plate 7, B Rot'n

DEPARTMENT OF THE ARMY NEW ENGLAND DIVISION CORPS OF ENGINEERS WALTHAM. MASSACHUSETTS MERRIMACK VALLEY FLOOD CONTROL RP HOPKINTON DAM MAV TILT PLATE AND SURVEY DATA CHECK BY 6 & 7 RP CONTOOCOOK RIVER NEW HAMPSHIRE DRAWN BY GEOTECH. ENG. DIV. SCALE: NO SCALE PLATE NO. DATE: **APRIL 1997** 18

Tilt Plate Data: Plate Nos. 8 & 9

Hopkinton Outlet Wall - Monolith #3

- Tilt plate 8, A Rot'n
- → Tilt plate 8, B Rot'n
- ▲ Tilt plate 9, A Rot'n
- = Tilt plate 9, B Rot'n

Tilt Plate Data: Plate Nos. 10 & 11

Hopkinton Outlet Wall - Monolith #2

- Tilt plate 10, A Rot'n
- → Tilt plate 10, B Rot'n
- ▲ Tilt plate 11, A Rot'n
- = Tilt plate 11, B Rot'n

Tilt plate 12, A Rot'n Tilt Plate Data: Plate Nos. 12 & 13 Tilt plate 12, B Rot'n Hopkinton Outlet Wall - Monolith #1 Tilt plate 13, A Rot'n = Tilt plate 13, B Rot'n 0.100 -0.000 Rotation (degrees) -0.100 Plate Dike Stilling -0.200 wall -0.300Stilling Basin 07/26/90 07/15/92 03/12/93 11/07/93 07/05/94 10/28/95 11/23/90 07/21/91 03/17/92 11/12/92 07/10/93 03/07/94 11/02/94 06/30/95 02/25/96 Date

Tilt Plate Data: Plate Nos. 1 & 15

Hopkinton Outlet Wall

- Tilt plate 1, A Rot'n
- ♦ Tilt plate 1, B Rot'n
- Tilt plate 15, A Rot'n
- = Tilt plate 15, B Rot'n

APPENDIX A -- STRUCTURAL ANALYSIS

HOPKINTON RETAINING WALL - STRUCTURAL ANALYSIS

PURPOSE AND SCOPE

Frost loads on the east outlet retaining walls were calculated from the measured deflections and the assumptions of limits of frost loading on the walls. Forces acting on representative wall sections were analyzed to determine the theoretical deflection of the walls due to frost and soil loadings. Analysis for overturning and bearing pressures was performed utilizing values of soil, wall and water pressures.

ASSUMPTIONS

CONCRETE

Compressive Strength of Concrete, $f_c = 3000 \text{ psi}$ Modulus of Elasticity of Concrete, $E_c = 3.12 \times 10^6 \text{ psi}$

STEEL

Yield Strength of Steel, $f_y = 60,000$ psi Development of reinforcement at base into stem of wall.

DEAD LOADS

Rock	135 P.C.F.
Impervious Fill	140 P.C.F.
Concrete	150 P.C.F.
Gravel	150 P.C.F.

PROCEDURE

Calculations were based on actual design information obtained from the existing retaining walls from project drawings and loadings, deflections and soil properties supplied by the Geotechnical Engineering Division.

Maximum and frost deflections of the east walls, as shown on Geotechnical Plate No. 2 - Outlet Wall Plan, were used to back calculate the frost force acting on the walls within the frost zone specified by Plates 3 to 6 - Earth Pressure Diagrams.

Active and pore pressures per unit length of the wall were determined in order to assess soil pressures on the walls. Moments due to active and pore pressures (Mact) were calculated for the full depth of each wall at 0.5 ft intervals. The theoretical moment capacity (Mu) was calculated based upon the available information about the concrete properties and the reinforcement size and location as obtained from the record drawings for the existing project. The moments due to the frost loadings (Mice) were determined from the previously calculated frost forces and their area of influence. Cracking moments (Mcr) were calculated for the walls

based on available geometric information of the existing wall sections. If the moment due to the frost loadings plus the moment due to the earth pressures on the wall were greater than the cracking moment, then it was assumed that the section of wall is cracked at that location. Allowable moment due to frost loadings (Mall ice) on the wall is the difference between the theoretical moment capacity and actual moment due to active soil and pore pressures on the wall. Deflections at each wall interval due to frost and earth pressure were calculated and summed for a total theoretical deflection of the wall due to those forces.

To check the stability of the retaining walls, overturning analyses were performed. Overturning analysis included the calculations of pressures exerting overturning moments on the walls. Horizontal overturning forces included the active soil (Pa) and the frost pressures (Pice). The vertical overturning pressures were caused by uplift forces (U1). For calculation of the resisting moments, the weight of the soil above the heel and the weight of the concrete were calculated. The resisting forces include the horizontal water pressure on the toe side of the walls (Pw1) and the vertical forces exerted by the weight of the walls (C1, 2, 3, 4) and rock, gravel and soil behind them (WS).

The vertical pressures as transmitted to the soil by the base slab of the retaining walls were determined for comparison to the ultimate bearing capacity of the soil. Bearing pressure left and right are the maximum and minimum pressures occurring at the toe and heel sections, respectively.

SUMMARY OF RESULTS

Frost loads for each wall were calculated from the measured deflections of the retaining walls. Theoretical deflections for full depth of the walls determined from the calculated values of frost load generally compare well to the observed values and are summarized as follows:

	Frost Load (plf)	Deflections due to Frost (inch)	Deflections due to Frost and Soil Pressure (inch)	Measured Deflections due to Frost (inch)	Measured Deflections due to Frost and Soil Pressure (inch)
Wall A	615	1.19	2.48	0.91-1.19	2.44-2.69
Wall B	620	1.10	2.20	0.78-0.97	2.20-2.65
Wall C	200	0.45	1.70	0.59	2.24
Stilling Basin Wall	620	0.81	1.65	0.68	1.74

The value of frost load calculated for Wall C was comparatively low. The calculated actual moment exceeded the ultimate moment at elevation 360.0 at Wall C. The steel reinforcement size and the quantities obtained from the project drawings for this section are presumed incorrect and would result in the values obtained.

Resisting moments exceed overturning moments with the following factors of safety with respect to overturning:

	Factor of Safety
Wall A	1.58
Wall B	1.55
Wall C	1.98

The usual minimum desirable value for the factor of safety with respect to overturning is 1.5 to 2.0.

The maximum and minimum bearing pressures for the toe and heel sections are as follows:

	q _{max} (ksf)	q _{min} (ksf)
Wall A	4.45	0.61
Wall B	4.94	0.02
Wall C	3.35	1.15

Sample calculations, spreadsheets and summaries of all work are attached.

NE) FOR	M	223
27	Sept	49	9

NEW ENGLAND DIVISION

CORPS OF ENGINEERS, U.S. ARMY

_ CHECKED BY -

SUBJECT HOPKINTON FACT RETRINIAGE WALL
COMPUTATION TACIONE CALCULATIONS

DATE 1/14/94

PAGE ___

WALL SEC B-B

COMPUTED BY N MA

ACTIVE + POLE PRESSURE = 809.3+ 1747.2= 2556.5 16/FT.
AT REST + PORE PRESSURE = 1233.6 + 1747.2= 2980.8 16/FT.

CORPS OF ENGINEERS, U.S. ARMY

PAGE Z

SUBJECT HOPKINTON FAST RETAINING WALL

COMPUTATION BACKUP CALCULATIONS

COMPUTED BY MAD

USE ACTIVE PRESSURE DUE TO MOJEMENT OF THE DALL

- CHLULATE MOMENT DIETO ACTUE PRESSURE + PORE PRESSURE - SECHENT WALL INTO O.S' INTERVALS
- ACTIVE + PURE PRESSURE = 2556,516/FT

$$W = \underbrace{ul}_{z} = \frac{2556.5(33.5)}{2}$$
= 42821.4

$$M_{\chi} = \frac{W k^3}{3\ell^2}$$

$$M_{c}$$
 33.5 = $(42821.4)(33.5 \times 12)^{3}$ = 5,738,067 16. in 5.7 × 106 16. in

CALCULATE THEORETICAL MOMENT CAPACITY OF THE WALL QUE'INTERNAL ASSUME DEVELOPMENT OF ±1101'0" AT BASE 5'5" /NTO STEM

CORPS OF ENGINEERS, U.S. ARMY

PAGE 3

SUBJECT HOPKINTON EAST RETAINING WALL

COMPUTATION CALCULATIONS

COMPUTED BY M.A.D.

DATE 1/14/94

MU = OMA

= 0.9 Asfy(d-a/2)

a= T = Asfy = 4.68(co) 9.176/2

NJ= 0.9(4,68×10)/69,25-9,17/2)

= (0A)18157 K.IN

= 16,341,321 16 in

= 16 X/06 16 in

CALCULATE CRACKING MONENT.

Ma = fa Ig

@ EL 350.5 1 2 2 3000 85

fc = 7.5 Fc = 411 psi

 $Ig = \frac{bh^3}{12} = \frac{12h^3}{12} = h^{\frac{3}{2}} (A.25)^{\frac{3}{2}} = 409345$

YE = DIST FROM CENTROID TO EXTREME TENSION FIRE OF UNCHACKED SECTION.

= 4/2 = 74.25/2 = 37.125

MCR = (411)(405345) = 4531,738 16. in

. 27 Sept 49

CORPS OF ENGINEERS, U.S. ARMY

PAGE 4

SUBJECT HOPKINTON EAST RETAINING WALL

COMPUTATION BACKUP CALCULATIONS

COMPUTED BY M. A.D.

__ CHECKED BY _

DATE 1/14/94

M(ICE) + M(ACTIVE EDETH PRESSUEE) > MCR

- THEN ASSUME SECTION IS CHACKED AT THAT FUNT
- IGNORE I SEE DUE TO CONTILEDER BERM & MERCHANDOF EXTENSIVE CLACKING

IF MILL + MACT 7 MCK USE ICH FOR I CEST

CALWIATE ICE

CALCULATE NEUTRAL AIDIS.

Ec= 57000 FE = 3.12x 100

n= 29x106 = 9.3

As,(n)=(3.12×9.3) - 29.0

As, (n) (1.56XP,3) - 14.5

LCCATIST OF C

70NE	ARGA	1 7	AY
COMPRESSION A	12c	6/2 C-71.25	662 201 - 2011 35
Asz	14.5		29c-2066.25 14.5c-946.13

C NEUTRAL ANIS E AY =0 ... 662+43.5c-3012.38

C= -6± 162-4AC -43,5+ 1(43,5)2-4(LX-30/2.33)

C= 19.073 C=-26,32 5 NOR C CENT 35 NEG. CORPS OF ENGINEERS , U.S. ARMY

PAGE_5

SUBJECT HOPKINTUN - EAST RETAINING YYALL

COMPUTATION BACKUP CALCULATIONS

COMPUTED BY M. A.D. CHECKED BY 28

DATE 1/14/94

CALCULATE ICE CRACKED MONEUT OF INCRTIA.

工

2046	ALEA	7	I	Dry 2
COMPRESSION ASI	228.9 29 14.5	9.54 -52.18 -46.18	6938.4 — —	78750.6 78759.8 30818.6
		1	Ice	= 1375L7 in4

CALCULATE ICE FORE. - ASSUME UNIFORM DISTRIBUTED WAD

CORPS OF ENGINEERS, U.S. ARMY

DAGE 6

SUBJECT HOPKING -EAST PETAIN ING WALL

COMPUTATION BACKUP CALCULATION:

COMPUTED BY M.A.D.

CHECKED BY

DATE 1/14/94

DEFL OF WALL DUE TO ILE LUMO

 $\frac{\text{MILE}}{\text{EI}} = \frac{3109920}{(3.12\times10^{4})(137567)} = 7.24\times10^{-6}$

ALEA = ((M/EI + M/EI @) /2) x 6"

MOMENT ALM = DIST FROM END - 3"

A = PREA M/E X MOMENT ARM.

REMAINING CALMINTIONS ALL ITERATIVE RECALCULATIONS OF MODE CALMINTIONS FOR EACH SECTION AT 6" SECTIONS Ice Load 613 plf
Ice Deflection 1.19 in
Total Deflection 2.48 in

Openits exceeding Mo

EL.	HEIGHT	1	WIDTH	Icr yt	Mor	Mact	Mu	Mall ice	Ice force	I	ΞI
	FI.	IN^4	in	IN^4	lb-in	lb-in	li-in	la-in	615		
350.5	0	409345	74.25	137552 37.13	4571737	5738064	16341321	10603257	3084840	137552	4.3E÷11
351.0	0.5	389017	73,00	132155 36.50	4380438	5484952	16025421	10540470	3014730	132155	4.1E+11
351.5	1.0	365773	71.75	126872 35.88	4231707	5239394	15709521	10470127	2944620	126872	4.0E+11
352.0	1.5	350403	70.50	121703 35.25	4085546	5001277	15393621	10392344	2874510	121703	3.8E+11
352.5	2.0	332093	69.25	116648 34.63	3941952	4770486	15077721	10307235	2804400	116648	3.6E-11
353.0	2.5	314432	65. 00	111706 34.00	3500928	4546907	14761821	10214914	2734290	111706	3.5E+11
353.5	3.0	297409	66.75	106877 33.38	1662472	4330425	14445921	10115496	2664180	106877	3.3E+11
354,0	3.5	281011	<i>6</i> 5.50	102161 32.75	3526596	4120925	14130021	10007076	2594070	102161	3.2E+11
354.5	4.0		64.25	97557 32.13	3393267	3918294	13814121	9895827	2523960	97557	3.0E+11
355.0	4,5	250047		93067 31.50	3262518	3722417	13498221	9775805	2453850	93067	2.9E+11
355.5	5.0	235457	61.75	58482 30.88	3134337	3533178	13182321	9649143	2383740	38688	2.8E+11
356.0	5,5	221445	60.50	84421 30.25	3008726	3350465	12965421	9515956	2313630	84421	2.6E+11
356.5	6.0	208001	59.25	62697 29.63	2895682	3174152	3961649	5787488	2243520	62697	2.0E÷11
357.0	6.5	195112	58.00	59693 29.00	2765208	3004155	8751049	5746895	2173410	59 693	1.9E-11
357.5	7.0	182767	56.75	56765 28.38	2647302	2840329	8540449	5700121	2103300	56765	1.8E+11
358.0		170954	55.50	53915 27.75	2531966	2682570	8329849	5647230	2033190	53915	1.7E+11
358.5		159681	54.25	51142 27.13	2419197	2530763	2119249	5583486	1963080	51142	1.6E+11
359.0	8.5	148877		48445 26.50	2308998	2384795		5523855	1892970	48445	1.5E+11
359.5		13 959 0	51.75	45825 25.88	2201367	2244550	769904 9	5453500	1822840	45825	1.4E+11
360.0	9.5	128788	50.50	43282 25.25	2095306	2109914		5377536	1752750	43282	1.4E+11
340.5	10.0	119459		34570 24.63	1993812	1980772		-	1682640	34570	1.1E+11
361.0	19.5	110592		32561 24.00	1893888	1857011		3973634	1612530	32561	1.0E+11
361.5	11.0	102175	46.75	30616 23.38	17°6532	1738515			1542420	30616	9.6E+10
		94196	45.50	28733 22.75		1625171			1472310	29733	9.0E+10
362.5			44.25	26913 22.13		1515863			1402200		8.4E-10
363.0	12.5	79507		25155 21.50	1519378	1413477			1332090		7.9E+10
363,5		72773	41.75	23460 20.88	1432797	1314500			1262903		7.3E÷10
Zá4.0		66430	40.50	21826 20.25	1348286	1221015					6.8E+10
354.5		60467	39.25	20255 19.63		1171709				20255	6.3E÷10
365.0		54872	38.00	18745 19.00		1046868					
365.5		49575	36.75	17297 18.38		956376					5.4E÷10
366.0		44739	35.50	15911 17.75		890120					5.0E+10
366.5		40177	34,25	14585 17.13		9:7985				14585	4.6E+10
367.0			33,00					3023389			4.2E+10
	17.0	J2006					3601795				3.8E+10
	17.5	28373						2805185			3.4E+10
368.5 369.0		25025									3.1E+10
	18.5 19.0	21952 19141									2.8E+10
370.0		16581									2.5E+10
370.5		14098						3 2325737			2.2E+10
371.0			25.23								1.05+10
	21.0	15161									9.9E+09
372.0											9.7E+09
372.0 372.5		14706 14261									9.5E+09
373.0											9.2E+09
373.5		13396	24.00							2878	
374.0										13396	
374.5		12978								12978	
		12568								12568	
375.0 075.5		12157	23.00 22.75							12167	
i (ded	60 - 6	.1770	ZZ:/2	10:5 11:05	425436	93732	1013559	919927	1 55903	11//5	3.7E+10

				and a second of the		V 60	1.52	** > 7 - > -		23.00	
1777.5	27 3	101.29	21.75	2249 10.88	JEERE7	41915	959559	017644	74773	10289	3.2E+10
379.0	27.5	7938									
			21.50	2184 10.75	777770	32967	946059	913691	59040	7938	3.1E+10
018.5	28.0	7596	21.25	2120 10.63	371154	25393	932559	907166	45203	9596	3.0E+10
379.0		. 7261	21.00	2057 10.50	362502	19078	9:9059	899930	33210	F261	2.9E+10
379.5	29.0	8934	20.75	1995 10.38	753722	13908	905559	891651	23063	8934	2.8E+10
380.0	29.5	3615	20.50	1934 10.25	345446	9768	892059	882291	14760	8615	
380.5	30.0	2704	20.25	1874 10.13	777074						
		-	200	10/4 10,13	55707 1	5544	878559	872015	8 303	5304	2.6E+10
381.0	30.5	8000	20.00	1815 10.00	328500	4121	265059	860938	3690	8000	2.5E+10
381.5	31 0	7704	19.75	1757 9.88	320631	2385	851559	849174	9 23	7704	2.4E+10
382.0	31.5	7415	19.50	1700 9.75	312566	1221	238059	836838	0		2.3E+10
332,5	32.0	7133	19.25	1645 9.63	304±02	515	824559				
							01+007	824044		7133	2.25+10
383.0	72.5	6859	19.00	1589 7.50	296742	153	811059	810908		6859	2.1E+10
333,5	33.0	6592	18.75	1535 9.38	233984	19	797559	797540		4592	2.1E+10
384.0	33.5	6332	18.50	1482 9.25	281330	0	784059	784059		6332	2.0E+10
384.5	34.0	6078	18.25	1430 9.13	273777		770550				
							770559	770559		6078	1.9E÷10
385.0	34.5	5832	18.00	1379 9.00	256322		757059	757059		5832	1.8E+10

.

		MOMENT								
7E13H7	1	(LE-IN)	HEIGHT	WIDTH	d	As	έy	ā	Мп	.*Li
		ACTIVE		in	in	in				
					•					
0	409345	5738064.	0	74.250	59,250	4.48	40	9.176	18157.02	16541321
		5484951.		73.000					17805.02	
		5239394.		71,750	55.750				:7455.02	
		5001277.	1,5	70.500	65. 500				17104.02	
		4770436.		69.250					15753.02	
2.5	314432	4546706.		42.000					16402.02	
3.0	297409	4330424.		66,750					15051.02	
3.5	781011	4120925.	5.5	65.5 00	60,500	4.65	£0	9.176	15700.02	14:30021
4.0	265228	3918274.	4,0	64,250	59,250	-,55	άÛ	9.176	15349.02	13814121
4,5	250047	3722416.	4,5	65.006					14998.02	
5.0	205457	3533178.	5.0	51.750					14647.02	
Ξ.Ξ	221445	3350454.		a0.500	55.500	4.68	60	9.176	14296.02	12866421.
5.0	2080.11	3174161.	±.ô	59.250			60	6.115	9957.368	3961649
6.5	195112	7004154.		58,000	55.000				9723.388	
7.0	182757	2840328.	7.0	56,750					9489.389	
7,5	170954	2682569.	7.5	55.500					9255.386	
2.0	159601	2530765.	8.0	54,230	51.25)	7.12	50	6.118	9021.388	8119249
		2384774.	8.5	57.000	50.000	3.12	60	6.115	8787.388	7908649
		2244549.	9.0	51.750	48.750	3.12	50	6.118	8553.388	7698049
9.5	126768	2109913,	5.5	50.500	47.500	3.12	60	6.118	8315.388	7487449
		1980772.		49.250	46,250	2.54	60	4.980	6668.994	5002095
		1857011.	10.5	48.000	45.000	2.54	60	4.980	6478.494	5830645
		1738515.	11.0	46.750	43.750	2.54	60	4.980	6287 .99 4	5659195
11.5	94196	1825170.	11.5	45.500	47.500	2.54	40	4.980	6097.494	5487745
12.0	86544	1514843.		44.250	41.250	2.54	- 60	4.980	5906.794	5316295
12.5		1413477.		43.000	40.000			4.980	5716 .49 4	5144845
13.0	72773			41.750	38.750			4.980	5525.994	4973395
13.5		1271014.		40.500	37,500			4.980	5035,494	4801 945
14.0	60467		14.0	39.250						4630495
14.5	54872	1046567.		38.000						4459045
15.0	49430	9 66376.0	15.0							4287595
15.5	44739	870119.8	15.5	JE.500	32.500					4116145
16.0				34.250						3944695
16.5		749855.7		33.000						3773245
17.0		685618.9		31.750						3601795
17.5		625159.6		30.500						3430345
18.0		5 68363.3		29.250						3258875
18.5		515115.3		28.000						3087445
19.0				24.750						2915995
19.5				25.500						2744545
20.0				25.250						1148559
20.5				25.000						1135059
21.0				24.750						1121559
21.5				24.500						1108059
22.0				24.250						1094559
22.5				24.000						1081059
23.0				23.750						1067559
23.5				23.500						1054059
24.0				23.250						1040559
	12167			23,000						1027059
25.0	11775	93 7 31.97	25.0	ZZ.750	17,750	1.00) 6(1.961	1126.176	1013559

27.5 9938 32967.40 27.5 21.500 18.500 1.00 60 1.761 1056.176 93463 28.0 9596 25393.29 23.0 21.250 18.250 1.00 60 1.961 1036.176 93255 28.5 9261 19078.35 28.5 21.000 18.000 1.00 60 1.961 1021.176 91905 29.0 8934 13908.12 29.0 20.750 17.750 1.00 60 1.961 1006.176 90555 29.5 8a15 9768.119 29.5 20.500 17.500 1.00 60 1.961 976.1764 87855 30.0 8304 6543.876 30.0 20.250 17.250 1.00 60 1.961 976.1764 87855 30.5 8000 4120.925 30.5 20.000 17.000 1.00 60 1.961 946.1764 85155 31.0 7704 2384.794 31.0 19.750 16.500 1.00 60 1.961 931.1764 83805 31.5
28.0 959e 25393,29 23.0 21.250 18.250 1.00 60 1.961 1036.175 93255 9261 19078.35 28.5 21.000 18.000 1.00 60 1.961 1021.176 91905 29.0 8932 13908.12 29.0 20.750 17.750 1.00 60 1.961 1006.176 90555 29.5 8a15 9768.119 29.5 20.500 17.500 1.00 60 1.961 991.1764 87855 30.0 8304 6543.876 30.0 20.250 17.250 1.00 60 1.961 976.1764 87855 30.5 8000 4120.925 30.5 20.000 17.000 1.00 60 1.961 961.1764 86505 31.0 7704 2384.794 31.0 19.750 16.750 1.00 60 1.961 946.1764 85155
28.5 9261 19078.35 28.5 21.000 18.000 1.00 60 1.961 1021.176 91905 29.0 8934 13908.12 29.0 20.750 17.750 1.00 60 1.961 1006.176 90555 29.5 8615 9768.119 29.5 20.500 17.500 1.00 60 1.961 991.1764 89205 30.0 8304 6543.876 30.0 20.250 17.250 1.00 60 1.961 976.1764 87855 30.5 8000 4120.925 30.5 20.000 17.000 1.00 60 1.961 961.1764 86505 31.0 7704 2384.794 31.0 19.750 16.750 1.00 60 1.961 946.1764 85155
28.5 9261 19078.35 28.5 21.000 18.000 1.00 60 1.961 1021.176 91905 29.0 8934 13908.12 29.0 20.750 17.750 1.00 60 1.961 1006.176 90555 29.5 8615 9768.119 29.5 20.500 17.500 1.00 60 1.961 991.1764 89205 30.0 8304 6543.876 30.0 20.250 17.250 1.00 60 1.961 976.1764 87855 30.5 8000 4120.925 30.5 20.000 17.000 1.00 60 1.961 946.1764 86505 31.0 7704 2384.794 31.0 19.750 16.750 1.00 60 1.961 946.1764 85155
29.0 5932 13908.12 29.0 20.750 17.750 1.00 60 1.961 1006.176 90555 29.5 8615 9768.119 29.5 20.500 17.500 1.00 60 1.961 991.1764 89205 30.0 8304 6543.876 30.0 20.250 17.250 1.00 60 1.961 976.1764 87855 30.5 8000 4120.925 30.5 20.000 17.000 1.00 60 1.961 961.1764 86505 31.0 7704 2384.794 31.0 19.750 16.750 1.00 60 1.961 946.1764 85155
29.5 8a15 9768.119 29.5 20.500 17.500 1.00 60 1.961 991.1764 89205 30.0 8304 6543.876 30.0 20.250 17.250 1.00 60 1.961 976.1764 87855 30.5 8000 4120.925 30.5 20.000 17.000 1.00 60 1.961 961.1764 86505 31.0 7704 2384.794 31.0 19.750 16.750 1.00 60 1.961 946.1764 85155
30.0 B304 6543.876 30.0 20.250 17.250 1.00 60 1.961 976.1764 87855 30.5 8000 4120.925 30.5 20.000 17.000 1.00 60 1.961 961.1764 86505 31.0 7704 2384.794 31.0 19.750 16.750 1.00 60 1.961 946.1764 85155
30.5 8000 4120.925 30.5 20.000 17.000 1.00 60 1.961 961.1764 86505 31.0 7704 2384.794 31.0 19.750 16.750 1.00 60 1.961 946.1764 85155
31.0 7704 2384.794 31.0 19.750 16.750 1.00 60 1.961 946.1764 85155
32.0 7133 515.1156 32.0 19.250 16.250 1.00 60 1.951 916.1764 82455
32.5 6859 152.6268 32.5 19.000 16.000 1.00 60 1.961 901.1764 81105
33.0 6592 19.07635 33.0 18.750 15.750 1.00 60 1.761 886,1764 79755
33.5 6332 0 33.5 18.500 15.500 1.00 60 1.961 871.1764 78405
74.4
34.0 6078 34.0 18.250 15.250 1.00 60 1.961 856.1764 77055
34.5 5832 34.5 1B.000 15.000 1.00 60 1.961 841.1764 75705

	Ξ.,	HEIGHT	WIDTH	d	Ic-	Αs	Trans	Αs	2	As2
		F T	in	in	1774					
			74.250							
~		0.5	73.000					98	12.87	14.47
	E1.5		71.750		126872				16,67	
	352.0		70.500					98	18.46	14.49
	52.5	2.0	69.250	66. 250	116648	5.12	29.	99	18,26	14.49
_	55.0	2.5	69.000	45.000	111706	3.12	28.			14.49
	23.5	5.0	56. 50	65.750	105577	3.12	26,			
	54.0	3.5	65.5 00	62.500	102151	3.12				14.49
	74.5		54,250	61.25)	97557	5.12	28.		17.41	14.49
	355.0	4.5	63.000						17.19	
	35E.5		61.750		38683				16.98	
			60.500		84421			78	16.75	14.49
		6.0			62697			78	14.24	
	357.0		58,000					98	14.06	
		7.0	56.750	53.750	56765	3.12	28.	98	13.88	
			55.500	52.500	53915	3.12	25.	78	13.69	
			54,250	51.250	51142	3.12	28.	. 98	13.5 0	
			53.000					. 78	13.31	
	359.5	9.0	51.750					98	13.12	
	360.0	9.5	50.500	47,500	43282	3.12	28.	. 98	12.92	
	JoQ.5	10.0	49.250	46.250	34570	2.54	23	.59	11.68	
			48.000		325ai	2.54	23	. 59	11.48	
			46.750		30616	2.54	23,	.59	11.30	
			45.500						11.11	
			44,250						10.92	
			43.000						10.73	
			41.750						10.53	
			40.500						10.34	
			39.250						10.13	
		14.5							9. <i>9</i> 3	
			36.730						9.72	
			35.500		15911					
		16.0							9.29	
•			33.000		13320			. 59	9.07	
	187.5			28.750		2.54		. 57		
	768.0		30.500	27.500				.59		
÷	368.5		29,250	26.250		2.54		.59		
	769.0		28.000					. 59		
•	369.5							. 59		
	570.0		25.500					.59		
	570.5			22.250				. 29		
ä	371.0		25.000					. 29		
	371.5		24,750			1.00		. 29		
	372.0		24.500	21.500				. 29		
	372.5		24.250			1.00		.29		
	573.0		24.000			1.00		. 29		
	173.5		23.750			1.00		. 29		
	374.0		23.500	20.500		1.00		. 29		
	174.5		23.250			1.00		. 29		
	575.0	24.5	23.000	20.000	2588	1.00	9	. 29	4.84	

	7 5 =		,		0540			
			22.750		2518		9.29	
			22.500		2450		9,29	
			22.250	19.250	2382	1.00	9.29	4.74
				19.000	2315	1.00	9.29	4.70
	77.5	27.0	21.750	18.750	2249	1.00	9.29	4.67
	78.0	27.5	21.500	18.500	2194	1.00	9.29	4.63
	78.5	28.0	21.250	18.250	2120		9.29	4.60
			21.000		2057		9.29	
				17.750	1995		9.29	
				17.500	1934		9.29	
			20.250		1874		9.29	
				17.000	1815			
•							9.29	
				16.750	1757		9.29	
				15.500	1700		9.29	
<u>K</u>				16.250	1645	1.00	9.29	4.30
-	33.0	32.5	19.000	16.000	1580	1.00	9.29	4.26
	83.5	35.0	12.750	15.750	1535	1.00	9.29	4.22
	184,0	33.5	18.500	15.500	1482	1.00	9.29	4.19
	94.5	34.0	18.250	15.250	1430		9.29	
				15.000		1.00	9.29	

27 Sept 49 CORPS OF ENGINEERS, U.S. ARMY SUBJECT HOPKINTON EAST UNL B

COMPUTATION BACK UP CALCULATIONS

COMPUTED BY MAD. CHECKED BY

_ DATE __

WALL B SEC C-C.

CORPS OF ENGINEERS, U.S. ARMY

PAGE 8

SUBJECT HOPKINTON FAST UML B

COMPUTATION BACKUP CALCULATIONS

COMPUTED BY M.A.D.

CHECKED BY

DATE 1/14/94

CALCULATE MOHER DIE TO ALTIVE DESSURE + PORT PRESSURE $W = \frac{UQ}{2} = \frac{2320.9(31)}{2} = 35974.4$

@ x= 31

 $M@31' = (35974.4)(312)^3 = 4,460,825 16.in$

CALCULATE THEORETICAL MOMENT CAPACITY OF THE WALL @ .5' INKR. CHECK @ EL 353.0

$$A = A_5 f_{11} = \frac{3.74(10)}{85(3)} = 7.33$$

$$M_{0} = 8.9(3.74)(60)/(5-7.3\%)$$

$$= 12386.88$$

NED	FOR	M	223
27 5	Sept	49	9

NEW ENGLAND DIVISION

CORPS OF ENGINEERS, U.S. ARMY

PAGE 9.

SUBJECT HOPKINTON EAST RETAINING WALL G

COMPUTATION BACKUP CALCULATIONS

COMPUTED BY MAD

CALCOLATE CRACKING MONENT.

YE DIST FROM CENTROID TO EXTREME TRUSH FICER OF UNCLECKED SECTION. = 4/2 : 68/2 : 34

IF MACTIVE + MILE > MGR

THEN ASSUME FILLY CHACKED SECTION I = ICE

CALCULATE ICE

CALCULATE HENTER AXIS

As: 3.74 × 9.3 = 34.8

LUCATION OF C

ZONE	NEA	7	AY
COMPRESSION AS	12C 3A.8	42 C-65	34.86-226.8
Z Ay=0 6	C2+34.5C-		

27 Sept 49

PAGE ____

CORPS OF ENGINEERS, U.S. ARMY SUBJECT HOPKINTON FAST RATION NO WALL

COMPUTATION BACKUP CALCULATIONS

COMPUTED BY _____ CHECKED BY ___

CALWIATE ILL CRACKED MONEY OF INEETIN @ EL353

ZONE	AREA	X	エ	Ayz
Conpression Street	200.64 34.8	છે. 36 48,28	4674	14022

Ice= 99813129

CALWINE ICE FURCE

MOMENT AT BASE

US NG IGG FORE GROPLE

2756520 1b.in

Ice Load 620 plf Ice Deflection 1.10 in Total Deflection 2.20 in

Overload O points exceeding Mu

E 1	HETCHT	7	LITET!	T		14						
EL.	HEIGHT	I	WIDTH		yt	Mcr	Mact	Mu		Ice force	I	EI
	FT	IN^4	in	IN^4		lb-in	lb-in	lb-in	lb-in	620		
353.0	0.0	314432	49.00	99675.1	74.00	3800928	**/=7/7	1070077=	70775/0	075/500		-
353.5		297409		95528.2		3662472		12399335 12146615		2756520		3.1E+11
354.0		281011		91473.6		3526586		11893895				3.0E+11
354.5		265228		87511.3		3393267				2615160		2.9E+11
355.0		250047		83641.0		3262518		11641175 11388455		2544480		2.7E+11
355.5		235457		79862.7		3134337				2473800	83641	2.6E+11
356.0		221445		76176.0		3008726		11135735 10883015				2.5E+11
356.5		208001		72580.9		2885682				2332440	76176	2.4E+11
357.0		195112		69077.2		276520B		10630295			72581	2.3E+11
357.5		182767		65664.7		2647302		10377575 10124855		2191080	69077	2.2E+11
358.0		170954		62343.1		2531966				2120400	65665	2.1E+11
358.5		159661		59112.3		2419197		9872135. 9619415.	7237436	2049720	62343	1.9E÷11
359.0		148677		55972.1		2308998		9366695.	7133814	1979040	59112	1.8E+11
359.5		138590		52922.3		2201367		7300075. 9113975.	7024457	1908360	55972	1.7E+11
360.0		128788		49962.6		2013 6 7 20 96 306		8861255.	6909430 6788993	1837680	52922	1.7E+11
360.5		119459		34570.0		1993812		6002094.	4056669	1767000	49963	1, 6E+11
361.0		110592		32561.4		1593888		5830644.	4006772	1696320 1625640	34570	1.1E+11
361.5		102175		30615.8		1796532		5659194.	3951703		32561	1.0E+11
362.0		94196		28732.9		1701746		5487744.	3891575	1484280	30616 28733	9.6E+10
362.5		86644		26912.7		1609527		5316294.	3826500			9.0E+10 8.4E+10
363.0		79507		25155.0		1519878		5144844.	3756591	1342920		
363.5		72773		23459.5		1432797		4973394.	3681960		23460	7.9E+10
364.0		66430		21826.2		1348286		4801944.	3602719		21826	7.3E+10 6.8E+10
364.5		60467		20254.9		1266342		4630494.	3518981	1139250	20255	6.3E+10
365.0	12.0	54872		18745.3		1186968		4459044.	3430858	1075080	18745	5.9E+10
365.5	12.5	49633		17297.2		1110162		4287594.	3338464	1012770	17297	5.4E+10
366.0	13.0	44739		15910.5		1035926		4116144.	3241909	952320	15911	5.0E+10
366.5	13.5	40177		14584.9		964257		3944694.	3141307	893730	14585	4.6E+10
367.0	14.0	35937		13320.1		895158		3773244.	3036770	837000	13320	4.2E+10
367.5	14.5	32006		12115.9		828627		3601794.	2928411	782130	12116	3.8E+10
368.0	15.0	28373		10972.0		784656		3430344.	2816341	729120	10972	3.4E-10
368.5	15.5	25025		9888.26		703272		3258894.	2700674	677970	7888	3.1E+10
369.0	15.0	21952	28.00	8864.15	14.00	644448		3087444.	2581521	628680		2.8E+10
369.5	16.5	19141	26,75	7899.42	13.38	588192		2915994.				2.5E+10
370.0	17.0	16581	25.50	6993.72	12.75	534506		2744544.				2.2E+10
370.5	17.5	16098	25.25	3262.51	12,63	524076		1148558.				1.0E+10
371.0	18.0	15625	25.00	3183.58	12.50	513 75 0	329337	1135058.				9.9E+09
371.5	18.5	15161	24.75	3105.65	12.38	503526	292780	1121558.			3106	9.7E+09
372.0	19.0	14706	24.50	3028.73	12.25	493406		1108058.			3029	
372.5	19.5	14261	24.25	2952.82	12.13	483387		1094558.			2953	9.2E+09
373.0		13824	24.00	2877.92	12.00	473472	199521	1081058.			2878	9.0E+09
	20.5	13396	23.75	2804.02	11.88	463659	173532	1067558.			13396	4.2E+10
374.0	21.0	12978	23.50	2731.12	11.75	453950		1054058.			12978	4.1E+10
374.5	21.5	12568	23.25	2659.22	11.63	444342		1040558.			12568	3.9E+10
375.0		12167	23.00	2588.3 3	11.50	434838		1027058.			12167	3.8E+10
375.5		11775	22.75	2518.44	11.38	425436		1013558.			11775	3.7E+10
376.0		11391		2449.55		416138		1000058,	923308		11391	3.4E+10
	23.5			2381.66		406941		986558.8			11015	3.4E+10
	24.0			2314.77		3978 48		973058.8			10648	3.3E+10
	24.5			2248.87		389857		959558.8			10289	3.2E+10
ף כדד	25.0	9939	91 SA	2101 07	* N 75	מדכמייע	75770	074AF0 0			0070	Z 4ET4V

3,0,5	2á.5	9934	20.75 1995.23	10.38	353922	106 60 9 05358.8	871897	23230	8934	2.8E+10
180.0			20.50 1934.50		345446	9594 8 92056.8	882435	14880		2.7E÷10
350.E			20.25 1874.37		337071					
						6427 8 78588.8	872132	23 70		2.6E+10
321.0	28.)	3000	20.00 1815.42		329800	40 47 8 65058.8	861011	3720	8000	2.5E+10
381.5			19.75 1757.46		320631	2342 851558.8	849217	9 30	7704	2.45+10
382.0	29.0	7415	19.50 1700.48	9.75	312566	1199 838058.3	834860	0	7415	2.3E+10
392.5	29.5	7133	19.25 1644.50	9.63	304602	506 824558.8	824053		7133	2.2E+10
383.0	30.0	6859	19.00 1589.49	9.50	296742	150 811058.8	810909		6859	2.1E+10
383.5	30 .5	6592	18.75 1535.47	9.38	288784	19 797558.8	797540		6592	2.1E+10
384.)	31.0	6332	18.50 1482.43	9.25	281330	0 784058.8	784059		6332	2.0E÷10
384.5	31.5	6078	18.25 1430.37	9.13	273777	770558.8	770559		6078	1.9E+10
J85.0	32.0	5832	18.00 1379.29	9.00	266328	7 570 58. 9	75705 9		5832	1.8E+10

p. s

WALL B SE	C. C-C	114114110 771.2									
			MOMENT	HEIGHT	HTGIW	d	As	fy	a	Mn	oM n
EL.	HEIGHT	Io	(LB-IN)	ft	in	in	in			k-in	lb-in
	FT	IN^4	ACTIVE		4	411	¥112	W21	111	F. 111	10-111
		,									
353.0	0.0	314432	4465767	0.0	68.000	45,000	3.74	60	7.341	13777	12399335
353.5	0.5	297409	4253148	0.5	66.750						12146615
354.0	1.0	281011	4047387	1.0	65.500	62.500	3.74				11893895
354.5	1.5	265228	3848372	1.5	54.25 0	61.250	3.74				11641175
355.0	2.0	250047	3655990	2.0	63.000	60.000	3.74				
355.5	2.5	235457	3470129	2.5	61.750	58.750	3.74				11388455
356.0	3.0	221445	3290676	3.0							11135735
356.5	3.5	208001	3117519	3.5	60.500	57.500	3.74				10883015
357.0	4.0	195112	2950545		59.250	56.250	3.74				10630295
357.5	4.5	182767	2789643	4.0	58.000	55.000	3.74				10377575
358.0	5.0	170954		4.5	56.750	53.750	3.74				10124855
358.5	5.5		2634699	5.0	55.500	52.500	3.74				9872135
357.0		159661	2485602	5.5	54.250	51.250	3.74				9619415
359.5	6.0	148877	2342238	5.0	53.000	50.000	3.74				9366695
	6.5	138590	2204496	6.5	51.750	48.750	3.74				9113975
360.0	7.0	129788	2072262	7.0	50.500	47.500	3.74		7.341		8861255
360.5	7.5	119459	1945425	7.5	49. 250	46.250	2.54		4.980	6669	6002095
361.0		. 110592	1823873	8.0	48.000	45.000	2.54	60	4.980	6478	5830645
361.5	8.5	102175	1707491	8.5	46.750		2.54		4.980	6288	5659195
362.0	7.0	94196	1596170	9.0	45.500	42.500	2.54	60	4.980	6097	5487745
362.5	7.5	86644	1489794	9.5	44.250	41.250	2.54	60	4.980	5907	5316295
363.0	10.0	79507	1388254	10.0	43.000	40.000	2.54	60	4.980	5716	5144845
363.5	10.5	72773	1291435	10.5	41.750	38.750	2.54	60	4.980	5526	4973395
364.0	11.0	66430	1199226	11.0	40.500	37.500	2.54	60	4.980		
364.5	11.5	60467	1111514	11.5	39.250	36.250	2.54	60	4.980	5145	4630495
365.0	12.0	54872	1028186	12.0	38.000	35.000	2.54		4.980		4459045
365.5	12.5	49 633	949131	12.5	36.750	33.750	2.54	60	4.980		4287595
366.0	13.0	44739	874236	13.0	35.500	32.500	2.54		4.980		4116145
366.5	13.5	40177	803388	13.5	34.250	31.250	2.54		4.980		3944695
367.0	14.0	35937	736475	14.0	33,000	30,000	2.54		4.980		
367.5	14.5	32006	673384	14.5	31.750	28.750	2.54		4.980		3601795
368.0	15.0	28373	614004	15.0	30.500	27.500	2.54		4.980		3430345
368.5	15.5	25025	558221	15.5	29.250	25.250					3258895
369.0	16.0	21952	505923	16.0	29.000		2.54		4.980		3087445
369.5	16.5	19141	456999	16.5	26.750	23.750	2.54		4.980		
370.0	17.0	16581	411334	17.0	25.500	22.500	2.54		4.980		
370.5	17.5	16098	368818	17.5	25.250	22.250	1.00		1.961		
371.0	18.0	15625	329337	18.0	25.000	22.000	1.00		1.961		1135059
371.5	18.5	15161	292780	18.5	24.750	21.750	1.00		1.961		
372.0	19.0	14706	259 033	19.0	24.500	21.500	1.00		1.961		1108059
372.5	19.5	14261	227984	19.5	24.250	21.250	1.00		1.961		
373.0	20.0	13824	199521	20.0	24,000	21.000	1.00		1.961		1081059
373.5	20.5	13396	173532	20.5	23.750	20.750	1.00		1.961		
374.0	21.0	12978	149903	21.0	23.500	20.500	1.00		1.961		
374.5	21.5	12568	128523	21.5	23.250	20.250	1.00		1.961		
375.0	22.0	12167	109279	22.0	23.000	20.230	1.00				
375.5	22.5	11775	92059	22.5	22.750	19.750	1.00		1.961		
376.0	23.0	11391	76750	23.0	22.500				1.961	7	
376.5	23.5	11015	63240	23.5		19.500	1.00		1.961		1000059
377.0	24.0	10648	51417		22.250	19.250	1.00		1.961		
377.5	24.5	10289		24.0	22.000	19.000	1.00		1.961		973059
377.3 378.0	24.5 25.0	10287 9938	41167	24.5	21.750	18.750	1.00		1.961		959559
378.5	25.5	7708 9596	32379	25.0	21.500	18.500	1.00		1.961	1051	946 0 5 9
370 A	20.0 24.0	97070 9924	24 940 10770	25.5	21,250	18.250			1.961	1036	9 32559
	· - · ·			-92 74	71 000	10 000	2 00	LA	1.021	1001	040000

38 0, 5	27.5	8 304	5427	27.5	20.250	17.250	1.00	60 1.961	976	87 8559
381.0	28.0	8000	4047	28.0	20,000	17.000	1.00	60 1.961	961	865059
381.5	28.5	7704	2342	28.5	19.750	16.750	1.00	60 1.961	946	85 1559
382.0	29.0	7415	1199	29.0	19.500	16.500	1.00	60 1.961	931	838059
382.5	29.5	7133	506	29.5	19.250	16.250	1.00	60 1.961	916	824559
383.0	30.0	6859	150	30.0	19.000	16.000	1.00	50 1.961	901	811059
383.5	30.5	6592	19	30.5	18.750	15.750	1.00	60 1.961	886	797559
384.0	31.0	6332	0	31.0	18.500	15.500	1.00	60 1.961	871	784059
384.5	31.5	6078	-19	31.5	18.250	15.250	1.00	60 1.961	856	770559
385.0	32.0	5932	-150	32.0	18.000	15.000	1.00	60 1.961	841	757059

	1.	HEIGHT	HTGIW	d	Icr	As	Trans Ay	С
		FT	in	in	IN^4			
	353.0	0.0	68.000	65.000	99675.16	3.74	34.74034	16.72
	353.5	0.5	66.750	63,750	95528.21	3.74	34.74034	16.53
	354.0	1.0	65.500		91473.65		34.74034	
	354.5	1.5	64.250		87511.32		34.74034	
	355.0	2.0	63.000		83641.06		34.74034	
,	355.5	2.5	61.750		79862.70		34.74034	
	356.0	3.0	60.500		76176.06		34.74034	
	356.5	3.5	59.250		72580.98		34.74034	
	357.0	4.0	58.000		69077.26		34.74034	
•	357.5	4.5	56.750		65664.73		34.74034	
	358.0	5.0	55.500		62343.17		34.74034	
	358.5	5.5	54.250		59112.39		34.74034	
	359.0	6.0	53.000		55972.19		34.74034	
	359.5	6.5	51.750		52922.34		34.74034	
	360.0	7.0			49962.61		34.74034	
	360.5	7.5	49.250		34570.08		23.59370	
	361.0	8.0			32561.48		23.59370	
	361.5	8.5			30615.82		23.59370	
	362.0	9.0			28732.96		23.59370	
	362.5	9.5	44.250		26712.74		23.59370	
	363.0				25155.01		23.59370	
	363.5	10.5	41.750		23459.58		23.59370	
	364.0	11.0	40.500		21826.29		23.59370	
	364.5	11.5	39.250		20254.94			
	365.0	12.0	38.000		18745.34		23.59370	
	365.5	12.5	36.750		17297.29		23.59370	
	366.0	13.0	35.500		15910.56		23.59370	
	366.5	13.5	34.250		14584.92		23.59370 23.59370	
	367.0	14.0	33.000		13320.14		23.59370	
	367.5	14.5	31.750		12115.96		23.59370	
	368.0	15.0	30.500		10972.09		23.59370	
	368.5	15.5			9888.263		23.59370	
	369.0	16.0	28.000		8864.150			
	369.5		26.750		7899.424		23.59370 23.59370	8.14
	370.0		25.500		6993.727			
	370.5				3262.518		23.59370	
	371.0				3183.583		9.288862	
			24.750		3105.457		9.288862	
	372.0	19.0			3028.739		9.288862	
	372.5	19.5			2952.827		9.288862	
	373.0	20.0			2877.921		9.288862 9.288862	
ñ	373.5	20.5			2804.020		9.288862	
ij	374.0	21.0			2731.122			
	374.5				2659.228		9.288862 9.288862	
	375.0	22.0	23.000		2588.336			
**	375.5	22.5			2518.445		9.288862	
	376.0	23.0	22.500				9.288862	
	376.5	23.5			2449.555		9.288862	
	377.0		22.250		2381.663		9.288862	
		24.0	22.000		2314.770		9.288862	
	377.5	24.5	21.750	18.750	2248.873	1.00	9.288862	4.67

				. 8.	
				194	
378.0	25.0	21.500	18.500 2183.973	1.00 9.288862	4.63
378.5	25.5	21.250	18.250 2120.067	1.00 9.288862	4.60
379.0	26.0	21.000	18.000 2057.155	1.00 9.288862	4.56
379.5	26.5	20.750	17.750 1995.236	1.00 9.288862	4.52
380.0	27.0	20.500	17.500 1934.308	1.00 9.288862	4.49
380.5	27.5	20.250	17.250 1874.371	1.00 9.238862	4.45
381.0	28.0	20,000	17.000 1815.423	1.00 9.288862	4.41
381.5	28.5	19.750	16.750 1757.462		4.38
382.0	29.0	19.500	16.500 1700.489	1.00 9.288862	4.34
382.5	29.5	19.250	16.250 1644.500	1.00 9.288862	4.30
383.0	30.0	19.000	16.000 1589.496		4.25
383.5	30.5	18.750	15.750 1535.474	1.00 9.288862	4.22
384.0	31.0	18.500	15.500 1482.433	1.00 9.288862	4.19
384.5	31.5	18.250	15.250 1430.373	1.00 9.288862	4.15
385.0	32.0	18.000	15.000 1379.291	1.00 9.288862	4.11

٠.

27 Sept 49

CORPS OF ENGINEERS, U.S. ARMY

SUBJECT HOPKINTON EAST DALL C

COMPUTATION BACK UP CALL LATIONS

COMPUTED BY M.D. CHECKED BY DATE 1/19/94

CALCULATE MOMENT DUE TO PUTIDE + PORE PRESSURES

W= W8/2: (1714.8) 24/= 20577.6 16

 $M = \frac{41}{32^3}$ $M_{\odot} 25' = \frac{20577.6(24 \times 12)^3}{3(24 \times 12)^2} = 1975449 16.1n$

27 Sept 49

CORPS OF ENGINEERS, U.S. ARMY

PAGE 12

SUBJECT HODKINTON EASTWALL C

COMPUTATION BACKUP CALCULATIONS

COMPUTED BY H.D.

___ CHECKED BY _

DATE 1/15/94

CALCULATE THEORETICAL MOMENT CAPACITY AT EL 360.0

CALCULATE CHACKING MOMENT

CALWUTTE ICK

LOCATION OF C

$$\frac{20NE}{\text{Confession}}$$
 $\frac{12c}{4.5}$
 $\frac{6c^2}{9.3}$
 $\frac{6c^2}{6.3}$
 $\frac{6c^2}{4.3}$
 $\frac{6c^2}{4.3}$
 $\frac{6c^2}{4.3}$

CORPS OF ENGINEERS, U.S. ARMY

PAGE 13

27 Sept 49

SUBJECT HOPKINTON FAST WALL C

COMPUTATION BACKUP CALCULATIONS

COMPUTED BY M, A.D

CHECKED BY

ZONE	pres	7-	エ	AUZ
COM PRESSION	94.08	3.92 39.60	481.9	1445.7 14628

Tax = 16556 in4

CALCULATE ICE FORE

Ice Load 200 plf
Ice Deflection 0.45 in
Total Deflection 1.70 in

Overload i points exceeding Mu

EL.	HEISHT	I	WIDTH	Icr	λŗ	Mor	Mact	Mu	Wall ico	Ice force	I	ΕΙ
i= k= 1	FT	IN^4	in	INA4		lb-in	nacc lb-in	lb-in	lb-in	200	i	Z.i
	• •	•	•17	*** *		20 211	10 111	12 111	10 111	200		
360.0	0.0	128788	50.50	16538.1	25.25	2096306	1975450	2512058.	536609	570000	16538	5.2E+10
360.5	0.5	119459		15630.2			1854538	2444558.	590020	547200		4,9E+10
361.0	1.0	110592	48.00	14748.7	24.00	1893888	1738664	2377058.	638395	524400	14749	4.6E+10
361.5	1.5	102175	46.75	13893.6	23.38	1796532	1627720	2309558.	681839	501600	13894	4.3E+10
362.0	2.0	94196	45.50	13064.8	22.75	1701746	1521599	2242058.	720460	478800	13045	4.1E÷10
362.5	2.5	86644	44.25	12262.2	22.13	1609527	1420194	2174558.	754365	456000	12262	3.8E+10
363.0	3.0	7 9507		11485.8		1519878	1323397	2107058.	783662	433200	11486	3.6E+10
363.5	3.5	72 773	41.75	15716.1	20,88	1432797	1231101	3135462.	1904361	410700	15716	4.9E÷10
364.0	4.0	6 6430	40.50	14641.5	20,25	1348286	1143200	3030162.	1886962	388800	14642	4.6E+10
364.5	4.5	60467	39.25	13606.5	19.63	1266342	1059588	2924662.	1865277	367500	13607	4.2E+10
365.0	5.0	54872		12611.1		1186968		2819562.	1839411	346800	12611	3.9E+10
365.5	5.5	49633		11655.1		1110162		2714262.	1809473	326700	11655	3.6E+10
366 . 0	6.0	44739		10738.3		1035926		2608962.	1775570	307200	10738	3.4E+10
366.5	6.5	40177		9860.69		964257		2503662.	1737808	288300	9861	3.1E÷10
367.0	7.0	35937		9022.11		895158		2378362.	1696 29 5	270000	9022	2.8E+10
367.5	7,5	32006		8222.45		62 8627		2293062.	1651138	252300	8222	2.6E+10
368.)	8.0	2837 3		7461.59		764666	595318	2187762.	1602444	235200	7462	2.3E+10
368.5	3.5	25025		6739.36		703272		2082462.	1550321	218700	6739	2.1E+10
369.0	9.0	21952		6055.63		6444 4 8		1977162.	1494875	202800	6056	1.9E+10
369.5	7.5	19141		5410.23		588192		1871862.	1436214	187500	5410	1.7E+10
370.0	10.0	16591		4802.97		534506		1766562.	1374445	172800	4803	1.5E÷10
370.5	10.5	16098		3262.51		524076		1148558.	7 96971	158700		5.0E+10
371.0	11.0	15625		3183.58		513750		1135058.		145200		4.9E÷10
371.5	11.5	15161		3105.65		503526		1121558.		132300	15161	
372.0	12.0	14706		3028.73		493406		1108058.		120000	14706	4.6E+10
372.5	12.5	14261		2952.82		483387		1074558.	877226	108300	14261	4.5E +10
373.0	13.0	13824		2877.92		473472		1081058.	890859	9 7200	13824	
373.5	13.5	13396		2804.02		463659		1067558.	902134	86700	13396	4.2E+10
374.0	14.0	12978		2751.12		453950		1054058.		76800	12978	4.1E+10
374.5	14.5	12568		2659.22		444342		1040558.	918040	67500	12568	3.9E+10
375.0	15.0 15.5	12167		2588.33		434838		1027058.		58800		3.8E+10
375.5		11775		2518.44		425436		1013558.			11775	3.7E+10
376.0	16.0	11391		2449.55		416138		1000058.			11391	3.6E+10
376.5				2381.66		406941		986558.8				3.4E+10
377.0 377.5				2314.77		397848		973058.8				3.3E+10
378.0				2248.87 2183.97		388857		959558.8				3.2E+10
378.5						379970		946058.8				3.1E+10
379.0				2120.06 2057.15		371184		932558.8				3.0E+10
379.5		8934		1995.23		362502		919058.8				2.9E+10
380.0				1934.30		353922		905558.8				2.8E+10
380.5						345446		892058.8				2.7E+10
381.0		8000		1874.37 1815.42		337071		878558.8				2.6E+10
381.5		7704		1757.46		328800		865058.8			8000	
382.0		7415		1700.48		320631		851558.8			7704	
382.5		7133		1644.50		312566		838058.8				2.3E÷10
383.0		7133 6859		1589.49		304602		824558.8				2.2E+10
383.5		6592		1535.47		296742		811058.8				2.1E+10
384.0	24.0	6332		1482.43		288984		797558.8				2.1E+10
384.5		6078		1430.37		261330 273777		784058.8				2.0E+10
397.8 308.0		9076 5970		1770.07	9.10	2/3/7/ 2-437P		770553.8				1.9E±10
,	•						-, 2.	1 1 2 2 2 1 mg W4	7 37 71 17		-21	1 Salaman (f f)

VALL C	SEC.D-D										
			MOMENT	HEIGHT	HTGIW	d	As	fy	ā	Mn	eMn
	HEIGHT	ĬĢ	(FB-IM)	ft	in	in	in	ksi	in	k-in	lb-in
	FT	IN^4	ACTIVE								
360.0	0.0	128788	1975450	0.0	50.500	47.500	1.00	60	1.961	2791.176	2512058.
360.5	0.5	119459	1854538	0.5	49.250	46.250	1.00			2716.176	
361.0	1.0	110592	1738664	1.0	48.000	45.000	1.00			2641.176	
361.5	1.5	102175	1627720	1.5	46.750	43.750	1.00			2566.176	
362.0	2.0	94196	1521599	2.0	45.500	42.500	1.00			2491.176	
362.5	2.5	86644	1420194	2.5	44.250	41.250	1.00			2416.176	
363.0	3.0	79507	1323397	3.0	43.000	40.000	1.00			2341.176	
363.5	3.5	72773	1231101	3.5	41.750	38.750	1.56			3483.847	
364.0	4.0	66430	1143200	4.0	40.500	37.500	1.56			3366.847	
364.5	4.5	60467	1059586	4.5	39.250	36.250	1.56			3249.847	
365.0	5.0	54872	980151	5.0	38,000	35.000	1.56			3132.847	
365.5	5.5	49633	904789	5.5	36.750	33.750	1.56			3015.847	
366.0	6.0	44739	833393	6.0	35.500	32.500	1.56			2898.847	
366.5	6.5	40177	765855	6.5	34.250	31.250	1.56			2781.847	
367.0	7.0	35937	702068	7.0	33.000	30.000	1.56			2564.847	
367.5	7.5	32006	641925	7.5	31.750	28.750	1.56			2547.847	
368.0	8.0	28373	585318	8.0	30.500	27.500	1.56			2430.847	
369.5	8.5	25 025	532142	8.5	29.250	26.250	1.56			2313.847	
369.0	9.0	21952	482287	9.0	28.000	25.000	1.56			2196.847	
369.5	9.5	19141	435649	9.5	26.750	23.750	1.56			2079.847	
370.0	10.0	16581	392118	10.0	25.500	22.500	1.56			1962.847	
370.5	10.5	16098	351588	10.5	25.250	22.250	1.00			1276.176	
371.0	11.0	15625	313951	11.0	25.000	22.000	1.00			1261.176	
371.5	11.5	15161	279102	11.5	24.750	21.750	1.00			1246.176	
372.0	12.0	14706	246931	12.0	24.500	21.500	1.00			1231.176	
372.5	12.5	14261	217333	12.5	24.250	21.250	1.00			1216.176	
373.0	13.0	13824	1 9 0200	13.0	24.000	21,000	1.00			1201.176	
373.5	13.5	13396	165425	13.5	23.750	20.750	1.00			1186.176	
374.0	14.0	12978	142900	14.0	23.500	20.500	1.00			1171.176	
374.5	14.5	12568	122519	14.5	23.250	20.250	1.00			1156.176	
375.0	15.0	12167	104174	15.0	23.000	20.000	1.00			1141.176	
375.5	15.5	11775	87758	15.5	22.750	19.750	1.00	60	1.961	1126.176	1013558.
376.0	16.0	11391	73165	16.0	22.500	19.500	1.00	60	1.961	1111.176	1000053.
376.5	16.5	11015	60286	16.5	22.250	19.250	1.00	60	1.961	1096.176	784558.8
377.0	17.0	10648	49015	17.0	22.000	19.000	1.00	60	1.961	1081.176	973058.8
377.5	17.5	10289	39244	17.5	21.750	18.750	1.00	60	1.961	1066.176	9 59558.8
378.0	18.0	9938	30866	18.0	21.500	13.500	1.00	60	1.961	1051.176	946058.8
378.5	18.5	9596	23775	18.5	21.250	18.250	1.00	60	1.961	1036.176	932558.8
379.0	19.0	9261	17863	19.0	21.000	18.000	1.00	60	1.961	1021.176	919058.8
379.5	. 19.5	8934	13022	19.5	20.750	17.750	1.00			1006.176	
380.0	20.0	8615	9146	20.0	20.500	17.500	1.00	60	1.961	991.1764	892058.8
380.5	20.5	8304	6127	20.5	20.250	17.250	1.00				878558.8
381.0	21.0	8000	3858	21.0	20.000	17.000	1,00				865058.8
381.5	21.5	7704	2233	21.5	19.750	16.750	1.00	60	1.961	946.1764	851558.8
382.0	22.0	7415	1143	22.0	19.500	16.500	1.00	60	1.951	931.1764	838058.8
382.5	22.5	7133	482	22.5	19.250	16.250	1.00	60	1.961	916.1764	824558.8
383.0	23.0	6859	143	23.0	19.000	16,000	1.00	60	1.961	901.1764	811058.8
38 3.5	23.5	6592	18	23.5	18.750	15.750	1.00	60	1.961	886.1764	797558.8
384.0	24.0	6332	0	24.0	18.500	15.500	1.00				784058.8
384.5	24.5	6078	-18	. 24.5	18.250	15.250	1.00				770558.8
365.0	25.0	5832	-143	25.0	18.000	15.000	1.00	6 0	1.961	841.1764	757058.8

HOPKINTON EAST RETAINING WALL HALL C. - SEC. D-D

11	LL UI	OCC D D						٠
	EL.	HEIGHT FT	WIDTH in	d in	Icr IN^4	As	Trans Ay	С
	360.0	0.0	50.500	47.500	16538.15	1.00	9.288862	7.84
	360.5	0.5	49.250		15630.27		9.288862	7.72
					14748.78			7.61
	361.0	1.0	48.000					7.49
	361.5		46.750		13893.63			7.37
	362.0		45.500		13064.80			
	362.5		44.250		12262.23		9.288862	7.25
	363.0		43.000		11485.89			7.13
	363.5		41.750		15716.12			8.54
	364.0		40.500		14641.59			8.39
	364.5	4.5	39.250		13606.65			8.23
	365.0	5.0	38.000		12611.19			8.07
	365.5	5.5	36.750		11655.11			7.90
	366.0	6.0	35.500		10738.32		14.49062	7.73
	366.5	6.5	34.250		9860.695			7.56
	367.0	7.0	33.000		9022.116			7.39
	367.5	7.5	31.750		8222.459			7.21
	368.0	8.0	30.500		7461.590			7.03
	368.5	8.5	29.250		6739.366		14.49062	6.85
	369.0	9.0	28.000		6055.634		14.49062	
	369.5	9.5	26.750		5410.231		14.49062	
	370.0	10.0	25.500		4802.979		14.49062	
	370.5	10.5	25.250		3262.518		9.288862	
	371.0	11.0	25.000		3183.583		9.288862	
	371.5	11.5	24.750		3105.657		9.288862	
	372.0	12.0	24.500		3028.739		9.288862	
	372.5	12.5	24.250		2952.827		9.288862	
	373.0	13.0	24,000		2877.921		9.288862	
	373.5	13.5	23.750		2804.020		9.288862	
	374.0	14.0	23.500		2731.122		9.288862	
	374.5	14.5	23.250		2659.228		9.288862	
	375.0	15.0	23,000		2588.336		9.288862	
	375.5	15.5	22.750		2518.445		9.288862	
	376.0	16.0	22.500		2449.555		9.288862	4.77
	376.5	16.5	22.250		2381.663		9.288862	4.74
	377.0	17.0	22.000		2314.770		9.288862	4.70
	377.5	17.5	21.750		2248.873		9.288862	4.67
	378.0	18.0	21.500		2183.973		9.288862	4.63
	378.5	18.5	21.250		2120.067		9.288852	4.60
	379.0	19.0	21.000		2057.155		9.288862	4.56
	379.5	19.5	20.750		1995.236		9.288862	4.52
	380.0	20.0	20.500		1934.308		9.288862	
	380.5	20.5	20.250		0 1874.371		9.288862	
	381.0	21.0	20.000		0 1815.423		0 9.288862	
	381.5		19.750		0 1757.462		0 9.288862	
	382.0	22.0	19.500		0 1700.489		0 9.288862	
	382.5		19.250		0 1644.500		0 9.288862	
	383.0	23.0	19.000		0 1589.496		0 9.288862	
	383.5		18.750		1535.474		0 9.288862	
	394.0	24.0	18.500		1482.433		0 9.288862	
	384.5	24.5	18.250		1430.373		9.288862	
	385.0	25.0	18.000	15.000	0 1379.291	1.0	0 9.288862	4.11

27 Sept 49

CORPS OF ENGINEERS. U.S. ARMY

PAGE 13

SUBJECT HOPKINTON EAST RETONNOUPLL

COMPUTATION BACKUP CALCULATIONS STILLING RASIN WALL

COMPUTED BY HAD CHECKED BY

1121184

WALL - STILLING BASIN.

ACTURE PRESSURE - POLE PRESSURE

CORPS OF ENGINEERS, U.S. ARMY

PAGE 14

SUBJECT HOPKINTON EAST RETAINING WALL

COMPUTATION BACKUP CALCULATIONS STILLING BASIN WALL

COMPUTED BY MAD CHECKED BY DATE 1/2/194

CALCULATE THEORETICAL MONENT CAPACITY

$$M_0 = 0 \, m_n = 0.5 \, A_5 f_3(0 - 9/2)$$
 $a = A_5 f_4 = \frac{5.66(0)}{.85120} = \frac{5.66(0)}{.85120}$
 $4 \, m_n = 0.9(5.66) (67.301 - 11.098)$
 $M_0 = 18875715 \, 16. \, in$
 $= 18.8 \times 10^6 \, 16. \, in$

CALCULATE CRACKING MIMENT NER

Mer fee Is
$$f_c = 7.5 +$$

PAGE 15

27 Sept 49

CORPS OF ENGINEERS, U.S. ARMY

SUBJECT HOPKNION EAST PETAINING LIAL

COMPUTATION BACKUP CALCULATIONS STILLING BASIN

COMPUTED BY M.A.D _ CHECKED BY __

CALCULATE ICK

EC= 57000 TEC = 3.12 / 106

n: 9.28

As: 3.12 x 9.28 = 28.91 As: 2.54 x 9.29 = 23.59

LOCATION OF C

ZONE	ALEA	17	AY
COMPRESSIND ALI ASZ	12c 28.51 23.59	C-70 C-64	28.71c - 2023.7 23.59c - 1509.71

602-52.5-3533.46

C= 20.3

CALCULATE ICE

ZUNE	ALEA	Y	I	I AT
COMPRESSION	243.4	10.15	8365	25075.7
As,	28.9	49.7		71385.6
Asz	23.6	43.7	_	45068 7
	*			H9895

Ice = 149895 in

CALCULATE ICE FORCE

MOMENT AT EASE WY3C3 - 350 + 42)

Using ICE FORCE 620,66

(620)(19)(363-350+ 1/2)(12) = 318 8600 16 in

Ice Load 620 plf 0.81 in Ice Deflection Total Deflection 1.65 in

Overload

O points exceeding Mu

EL. H	EIGHT	I	WIDTH	Icr	yt	Mor	Mact	Mu	Mall ice	Ice force	I	EI
N.G.V.	FT	IN^4	in	IN^4	in	lb-in	lb-in	lb-in	lb-in	620		
350.0	0	389017	73.00	150105	36.50	4380438	5313670	18875838	13562168	3180600	150105	4.7E+11
350.5	0.5	373248	72.00	145205	36.00	4261248	5082574	18570198	13487524	3109920	145205	4.5E+11
351.0	1.0	357911	71.00	140391	35.50	4143702	4858471	18264558	13406087	3039240	140391	4.4E+11
351.5	1.5	343000	70.00	135664	35.00	4027800	4640961	17958918	13317957	2968560	135664	4.2E+11
352.0	2.0	328509	69.00	131022	34.50	3913542	4430041	17653278	13223237	2897880	131022	4.1E+11
352.5	2.5	314432	68.00	126467	34.00	3800928	4225610	17347638	13122027	2827200	126467	3.9E+11
353.0	3.0	300763	57.00	121997	33.50	3 689958	4027568	17041998	13014430	2756520	121997	3.8E+11
353.5	3.5	287496	66.00	117613	33.00	3580632	3835812	16736358	12900546	2685840	117613	3.7E+11
354.0	4,0	274625	65. 00	113314		3472950	3650241	16430718	12780476	2615160	113314	3.5E+11
354.5	4.5	262144	64. 00	109101		3366912			12654324	2544460	109101	3.4E+11
355.0	5.0	250047	63.00	104973		3262518			12522188	2473800	104973	3.3E+11
355.5	5.5	238328	62.00	100930		3159768			12384172		100930	3.2E+11
354.0	6.0	226981	61.00		30.50	3058662			12240376	2332440	96971	3.0E+11
356.5	6.5	216000	60.00		30.00	29592 00			120 9 0902			2.1E+11
357.0	7.0	205379	59.00		29.50	2961382			11935852		64649	2.0E+11
357.5	7.5	195112	58.00		29.00	2765208			11775326			1.9E+11
358.0	8.0	185193	57.00		28.50	2670678			11609426	2049720	597 02	1.9E+11
358.5	8.5	175616	56.00		28.00	2577792			11438253		57305	1.8E+11
359.0	9.0	166375	55.00		27.50	2486550			11261910		54959	1.7E+11
359.5	9.5	157464	54.00		27.00	2396952			11080496		52664	1.6E+11
360.0 360.5	10.0	148877	53.00 52.00		26.50 26.00	2308998			10894114		50420	1.6E+11
361.0	11.0	140608 132651	51.00		25.50	2222688 2138022			10702865 10506851		48227	1.5E+11
361.5	11.5	125000	50.00		25.00	2055000			10306851		46085 43993	1.4E+11 1.4E+11
362.0	12.0	117649	49.00		24.50	1973622			10308172		41952	1.3E+11
362.5	12.5	110592	48.00		24.00	1893888		6452899			35539	1.1E+11
363.0	13.0	103823	47,00		23.50	1815798	1252033				33827	1.1E+11
363.5	13.5	97336	46.00		23.00	1739352	1164714				32160	1.0E+11
364.0	14.0	71125	45.00		22.50	1664550	1081553				30537	9.5E+10
364.5	14.5	85184	44,00		22.00	1591392	1002447				28958	9.0E+10
365.0	15.0	79507	43.00		21.50	1519878	927295				27423	8.6E+10
365.5	15.5	74088	42.00		21.00	1450008	855998				25933	8.1E+10
366.0	16.0	68921	41.00	24486	20.50	1381782	788452			952320	24486	7.6E+10
366.5	16.5	64000	40.00	23083	20.00	1315200	724556	5230339	4505783	893730	23083	7.2E+10
367.0		59319	39.00	21723	19.50	1250262	664209	5077519	4413311	837000	21723	6.8E+10
367.5		54672			19.00			4924699	4317391	782130	20408	6.4E÷10
368.0	18.0	50653			18.50				7 4218124		19135	6.0E+10
368.5		46656			18.00							2.9E+10
369.0	19.0	42875			17.50							2.7E+10
369.5		39304			17.00							2.5E+10
370.0	20.0	35937			7 16.50							2.4E+10
370.5		32768			7 16.00							1.0E+11
371.0		29791			2 15.50							9.3E+10
371.5		27000			5 15.00							8.4E+10
372.0 372.5		24399			3 14. 50						Q.	7.6E+10
373.0		21952 19683			14.00						21952	
373.5		17576			1 13.50 5 13.00						19683	
374.0			25.00		12.50						17576 15625	
374.5		13824			7 12.00							
375.0			23.00		11.50							3.8E+10
375.5			77.75		. 11,00 7 11 32							3.0E-10

-/0:0	_1 . 4	14420	24:44	1000 11:10	↑ V⊃7 †1	47.000	Ovtút.	w#/000	114000	11010	or Havin
377.0	27.0	1(:48	22.00	1507 11.00	397848	46372	5 96541	350170	93000	10648	3.3E÷10
377.5	27.5	1018 9	21.75	1465 10.88	388857	37128	588441	551313	75330	10289	3,28+10
378.0	28.0	9938	21.50	1423 10.75	379970	29202	580341	551139	59520		3.1E+10
378.5	28.5	9596	21.25	1382 10.63	371184	22493	572241	549748	45570		3.0E+10
379.0	29.0	9261	21.00	1342 10.50	362502	16899	564141	547242	33480		2.9E+10
379.5	29.5	8934	20.75	1303 10.38	353922	12320	556041	543722	23250		2.8E+10
380.0	30.0	8615	20.50	1263 10.25	345446	8652	547941	539289	14880		2.7E+10
380.5	30.5	8304	20.25	1225,10.13	337071	5796	539841	534045	8370		2.6E+10
381.0	31.0	8000	20.00	1187 10.00	328800	3650	531741	528091	3720	8000	2.5E+10
381.5	31.5	7704	19.75	1150 9.88	320631	2112	523641	521529	930	7704	2.4E+10
382.0	32.0	7415	19.50	1113 9.75	312566	1082	515541	514460	0		2.3E+10
382.5	32.5	7133	. 19. 25	1077 9.63	304602	456	507441	504985			2.2E+10
383.0	33.0	68 57	19.00	1042 9.50	295742	135	499341	499206		6859	2.1E+10
383.5	33.5	6592	18.75	1007 9.38	288784	17	491241	491224			2.1E+10
384.0	34.0	6332	18.50	973 9.25	281330	0	483141	483141		6332	2.0E+10
384.5	34.5	6078	18.25	940 9.13	273777		475041	475041			1.9E+10
385.0	35.0	5832	18.00	907 9.00	266328		466941	466941		5832	1.8E+10

.

HOPKINTON EAST RETAINING WALL STILLING BASIN WALL

SHILLING	BHSIN	WALL									
			MOMENT								
EL. H	EIGHT	Ig	(LB-IN)	HEIGHT	WIDTH	d	As	fy	a	Mn	Mu
N.G.V.D	FT	IN^4	ACTIVE	ft	in	in	in	ksi	in	k-in	1b-in
350.0	0	389017	5313670	0	73,000	67.307	5 44	40	11 000	20973.15	10075070
350.5	0.5	373248	5082574								
				0.5		66.307	5.66			20633.55	
351.0	1.0	357911	4858471	1.0		65.307	5.66			20293.95	
351.5	1.5	3 4 3000	4640961	1.5	70.000	64.307	5.66	60	11.098	19954.35	17958918
352.0	2.0	328509	4430041	2.0	69.000	63.307	5.66	60	11.098	19614.75	17653278
352.5	2.5	314432	4225610	2.5	68.000	62.307	5.66			19275,15	
353.0	3.0	300763	4027568	3.0	67,000	61.307	5.66			18935.55	
353.5	3.5	287496	3835812	3.5		60.307	5.66			18595.95	
354.0	4.0	274625	3650241								
				4.0		59.307	5.56			18256.35	
354.5	4.5	262144	3470754	4.5		58.307	5.66			17916.75	
355.0	5.0	250047	3297249	5.0	63.000	57.307	5.66	60	11.098	17577.15	15819438
355.5	5,5	238328	3129626	5.5	62,000	56.307	5.66	60	11.098	17237.55	15513798
356.0	6.0	226981	2967781	6.0	61.000	55.307	5.66	60	11.098	16897.95	15208158
356.5	6.5	216000	2811615	6.5	60.000		5.66			16558.35	
357.0	7.0	205379	2661026	7.0		53.307	5.66			16218.75	
357.5	7.5	195112	2515912	7.5		52.307	5.66				
358.0										15879.15	
	8.0	185193	2376172	8.0		51.307	5.66			15539.55	
358.5	8.5	175616	2241704	8.5		50.307	5.66	60	11.098	15199.95	13679958
359.0	7.0	166375	2112408	9.0	55.000	49.307	5.66	60	11.098	14860.35	13374318
359.5	9.5	157464	1998182	9.5	54.000	48.307	5.66	60	11.098	14520.75	13068678
360.0	10.0	148877	1868923	10.0	53,000	47.307	5.66			14181.15	
360.5	10.5	140608	1754532	10.5		46.307	5.66			13841.55	
361.0	11.0	132651	1644907	11.0		45.307	5.66			13501.95	
361.5	11.5	125000	1539945	11.5		44.307	5.66			13162.35	
362.0	12.0	117649	1439547								
362.5				12.0		43.307	5.66			12822.75	
	12.5	110592	1343610	12.5		45.000	2.83			7169.888	6452899
363.0	13.0	103823	1252033	13.0		44.000	2.83			7000.088	
363.5	13.5	97336	1164714	13.5		43.000	2.83	60	5.549	6830.288	6147259
364.0	14.0	91125	1081553	14.0	45.000	42.000	2.83	60	5.549	6660.488	5994439
364.5	14.5	85184	1002447	14.5	44.000	41.000	2.83	60	5.549	6490.688	5841519
365.0	15.0	79507	927296	15.0	43,000	40.000	2.93			6320.888	5688799
365.5	15.5	74088	855998			39.000				6151.088	
366.0	16.0	68921	788452							5981.288	
366.5	16.5	64000	724556								
						37.000				5811.488	
367.0	17.0	59319	664209							5641.688	
367.5	17.5	54672	607309			35.000	2.83			5471.898	
368.0	18.0	50653	5 537 5 5	18.0		34.000	2.83			5302.088	
368.5	18.5	466 56	503446	18.5	36.000	33.000	1.27	60	2.490	2419.723	2177751
369.0	19.0	42875	456280	19.0	35.000	32.000	1.27	60	2.490	2343.523	2109171
369.5	19.5	39304	412156	19.5	34,000	31.000	1.27			2267.323	
370.0	20.0	35937	3709 73			30.000	1.27			2191.123	
370.5	20.5	32768	332628			29.000	1.27			2114.923	
371.0	21.0	29791	297021	21.0			1.27				
371.5						28.000				2038.723	-
	21.5	27000	264051	21.5		27.000	1.27			1962.523	
372.0	22.0	24389	233615	22.0		26.000	1.27	60	2.490	1886.323	1697691
372.5	22.5	21952	205613			25,000	0.60	60	1.176	878.8235	790941
373.0	23.0	19683	179943	23.0	27.000	24.000	0.50	60	1.176	842.8235	
373.5	23.5	17576	156504	23.5		23.000	0.60			806.8235	
374.0	24.0	15625	135194			22.000	0.60			770.8235	
374.5	24.5	13824	115912			21.000					
375.0	25.0	12167	98557				0.60			734.8235	
						20,000	0.60			698.8235	
375.5	25.5	11775	83025	25.5		19.750	0.60			689.8235	
376.0	26.0	11391	69219	26.0		19.500				680.8235	
77/ 5	A(E	*101=	FTATE	o: ∈	55 FE?	10 0EA	A 7A	/ ^	4 4 77 2	/7: name	100000

								- •		
378.0	28.0	9938	29202		28.0	21.500 18.500	0.60	60	1.176 644.8235	580341
378.5	28.5	9596	22493		28.5	21.250 18.250	0.60	50	1.175 635.8235	572241
379.0	29.0	9261	16899		29.0	21,000 18,000	0.60	60	1.176 626.8235	564141
379.5	29.5	8934	12320		29.5	20.750 17.750	0.60	60	1.176 617.8235	556041
380.0	30.0	8615	8652		30.0	20.500 17.500	0.60	60	1.176 608.8235	547941
380.5	30.5	8304	5796		30.5	20.250 17.250	0.60	60	1.176 599.8235	539641
381.0	31.0	8000	3650		31.0	20.000 17.000	0.60	60	1.176 590.8235	531741
381.5	31.5	7704	2112		31.5	19.750 16.750	0.60	60	1.176 581.8235	523641
382.0	32.0	7415	1082	£	32.0	19.500 16.500	0.60	60	1.176 572.8235	515541
382.5	32.5	7133	456		32.5	19.250 16.250	0.60	60	1.176 563.8235	507441
383.0	33.0	6859	135		33.0	19.000 16.000	0.60	50	1.176 554.8235	499341
383.5	33.5	6592	17		33.5	18.750 15.750	0.60	60	1.176 545.8235	491241
384.0	34.0	6332	0		34.0	18.500 15.500	0.60	60	1.176 536.8235	483141
384.5	34.5	6078			34.5	18.250 15.250	0.60	60	1.176 527.8235	475041
385.0	35.0	5832			35.0	18.000 15.000	0.50	60	1.176 518.8235	466941

			WIDTH 6		Asi	Trans A	C	As2	Trans As2
		r:	in in	TiA .+					
	350.0	0	73.000 70.000	0 150105	3.12	28.98	20.30	2.54	23.59
	350.5	0.5	72.000 69.00	0 145205	3.12	28.98			
		1.0	71,000 68.000			28.98		2.54	
		. 1.5	70.000 67.00						
£		2.0	69.000 66.00			28.98		2.54	
	352.5		68.000 65.00			28.98			
		3.0	67.000 64.00			28.98		2.54	
n.	353.5		66.000 63.00			28.98			
			65.000 62.00 64.000 61.00						
			63.000 60.00						
			62.000 59.00						
			61.000 58.00						
			60.000 57.00			28.98			
		7.0	59.000 56.00			28.98			
	357.5	7.5	58.000 55.00			28.98			
	358.0	8.0	57.000 54.00	0 59702	3.12	28.98	17.27	2.54	23.59
		8.5	56.000 53.00			28.98			
		9.0	55.000 52.00						
		9.5	54.000 51.00						
		10.0			3.12				
		10.5							
	361.0 361.5		51.000 48.00 50.000 47.00		3.12				23.59 23.59
	362.0		49.000 46.00						23.59
	362.5		48.000 45.00					4.07	20.07
	363.0		47.000 44.00						
	363.5		46.000 43.00						
	364.0	14.0	45.000 42.00	0 30537			11.55		
			44.000 41.00						
			43.000 40.00			26.29			
			42.000 39.00		2.83				
	366.0								
	367.0		40.000 37.00 39.000 38.00			26.29		,	
	367.5		38.000 35.00		2.93		10.56		
	369.0		37,000 34.00						
	368.5		36.000 33.00				7.13		
	369.0		35.000 32.00				7.01		
	369.5		34.000 31.00				6.89		
•	370.0		33.000 30.00				6.76		
•	370.5	20.5	32.000 29.00	00 7069			6.63		
	371.0		31.000 28.00						
~	371.5		30.000 27.00						
4	372.0		29.000 26.00						
	372.5		28.000 25.00						
	373.0 373.5		27.000 24.00 26.000 23.00		0.60				
	374.0		25.000 23.00						
	374.5		24.000 21.00						
	375.0		23.000 20.00						
	375.5		22.750 19.75						
	376.0		22.500 19.50						
	376.5		22.250 19.23						
	377.0	27.0	22,000 19,00	00 1507	0.60				

79.0	29.0	21.000 18.000	1342	0.50	5.57	5.65					•			
79.5	29.5	20.750 17.750	1303	0.60	5,57	3.62					ter services		Ţ	
20.0	30.0	20.500 17.500	1263	0.60	5.57	3.59							Ç.	
20.5	30.5	20.250 17.250	1225	0.60	5.57	3.57	,4-							
81.0	31.0	20.000 17.000	1187	0.60	5.57	3.54								-
51.5	31.5	19.750 16.750	1150	0.60	5.57	3.51								
		19.500 16.500	1113	0.50	5.57	3.48								
92.5	32.5	19.250 16.250	1077	0.60	5.57	3.45								
33.0	33.0	19.000 16.000	1042	0.60	5.57	3.42								
83.5	33.5	18.750 15.750	1007	0.60	5.57	3.39								
84.0	34.0	18.500 15.500	973	0.60	5.57	3.36					,			
84.5	34.5	18.250 15.250	940	0.60	5.57	3.33								
35.0	35.0	18.000 15.000	907	0.60	5.57	3.30								

	NE) F	OF	M	223
•	27	Se	рt	49	9

NEW ENGLAND DIVISION

CORPS OF ENGINEERS, U.S. ARMY

PAGE _

SUBJECT HOPKINTON EAT WALL

COMPUTATION OUERTURNING COMPUTED BY MAD

ANALY315

CHECKED BY -

DATE 1/20/54

ACTIVE SOIL PRESSURE

CENTROID OF ALFA. WALL A

EL 346

A. A.	1/2(50.6)2) 1/2(21.1)(1) (36) 5.6) (35)(21.1) (34)(25)1/2	A 3-2,17 10,5 1821.6 738.5	प् ३८. ८७ ३५.३३ १८ १७, ५	49 1179.7 370.9 32788.8 12923.8
A5	(346)/2	14752.5	11.67	17214.7
		17355.3		219424,9

T: 12.6'

PAGE 2

CORPS OF ENGINEERS, U.S. ARMY

HOPKING TON EAST WALL SUBJECT _

OUER TURNING ANACYSIS

MAD COMPUTED BY __

__ CHECKED BY __

6.91

16.275

A, (3.28×A.5×1/2) = 31.98 A, (2.12×19.5) = 91.43 A, (.701×10×1/2) - 7.61 81.0 3.61

PAGE 3

·27 Sept 49

SUBJECT HOPKINTON EAST WORLD U.S. ARMY

COMPUTATION CURE TUEN NIC A-22-4315

COMPUTED BY MA, D. CHECKED BY _

FORCE FROM WATER

T= 12.21

SPUFT WALL A.

$$A_1 = \frac{1}{2}(1166.9 + 1579.0)(30) = 41188.5
7 = \frac{30}{3}(\frac{2(1579.0)}{166.9 + 1579.0} = 15.7$$

$$A_2$$
 = $\frac{1}{2}(20829 + 2190.9)(3) = (410.7) = 202109.7$
 $V = \frac{3(2(2190.9) + 2082.9)}{3(2082.5 + 2150.9)} + 20 = 31.52$

EA 47599,7

ZAY 850844

Y= 17.87

UT OF SOIL ASKING FULL WIDTH 20,28 135 2 20.20 150 20,28 305 140 -Cope 12(3,28)(111) 8988018

TABLE OF FORCES FOR RETAINING WALL DESIGN

PROJECT:

HOPKINTON EAST RETAINING WALL

DESCRIPTION: WALL A

LOCATION: HOPKINTON DAM, NH

DATE:

SIZE OF BASE: 33 FEET

		ALL UNITS	IN KIPS A	ND/OR FEE	Т	
NO.	HORIZ. RESIS	HORIZ. OVER	VERT. RESIS	VERT. OVER	MOMENT ARM	RESULTANT MOMENT
C1 C2 C3 C4 WS Pa U1 Pw1 Pice	9.91	52.2 11.4	12.15 4.08 20.25 4.73 89.88	47.6	12.1 11.52 15 31.5 23.55 12.21 17.87 5.7 26.5	147.0150 47.0016 303.7500 148.9950 2116.6740 -637.3620 -850.6120 56.4870 -302.1000 0.0000 0.0000
	SUM OF HORIZ	-53.69	SUM OF VERT	83.49	SUM OF MOMENTS	1029.85
ICE	LOAD IN P	SF		600		
	OF MOMENT	S OVERTUR	NING	1790.07		

SUM OF MOMENTS RESISTING 2819.92

FACTOR OF SAFETY AGAINST OVERTURNING LOCATION OF THE RESULTANT	1.58 12.33
ECCENTRICITY: BEARING PRESSURE LEFT (KSF):	4.17
BEARING PRESSURE RIGHT (KSF):	4.45 0.61

27 Sept 49 CORPS OF ENGINEERS, U.S. ARMY SUBJECT HOPMNTON EAST JAN COMPUTATION DIERTIEN INC ANDALYSIS CHECKED BY

CENTROID OF ACEN JACL SAL PRESSURE

EL 349.0

		\triangle	Q	AY
A	1/2(50,6)(2) 1/2(21.1)(1)	32.17	33.67	1083.2
A_2	1/2 (21.1)	10.5	32.33	339.5
M3	33(50.6)	1667.8	16.5	27551.7
Au	32(21.1)	675.2	16.0	10303.2
A5	1/2(32)(773.3)	12386.8	10.67	132103.1
Pu	12(1727.3)(33)	28500.5) (313 505,5
	•	43269.0		495386.2

Y= 11.21

CONCRETE

PAGE __

27 Sept 49

CORPS OF ENGINEERS, U.S. ARMY

SUBJECT HOPEINTON EAST JALL

COMPUTATION OUTER TURNING ANALYSIS WALLS

COMPUTED BY M. A.D.

CHECKED BY ___

DATE 1/21/93

UPLIFF PRESSURE WALL B

$$A_1 \frac{1}{2} (873, C + 1310.4) (2C.C7) = 29.123 }{7} A7 = 414.138$$

$$A_2 = \frac{2C.C7(2(1310.4) + 873.C)}{3(873.C + 1310.4)} = 14.22$$

$$A_2 = \frac{1}{2}(1840.8 + 1959.4)(3) = 5700$$

$$\overline{Y} = \frac{3(2(1959.4) + 1840.8)}{3(200.8 + 1959.4)} + 20.01 = 78.18 = 100640$$

ZAY 574778

TABLE OF FORCES FOR RETAINING WALL DESIGN

PROJECT:

HOPKINTON EAST RETAINING WALL

DESCRIPTION: WALL B

LOCATION:

HOPKINTON DAM, NH

DATE:

SIZE OF BASE:

29.67 FEET

ALL UNITS IN KIPS AND/OR FEET

NO.	HORIZ. RESIS	HORIZ. OVER	VERT. RESIS	VERT. OVER	MOMENT ARM	RESULTANT MOMENT
C1 C2 C3 C4 WS Pa U1 Pw1 Pice	6.11	43.3 11.4	4.08 9.93 16 4.5 73.8	34.8	10.93 11.38 13.3 28.17 20.75 11.21 16.5 4.67 23.5	44.5944 113.0034 212.8000 126.7650 1531.3500 -485.3930 -574.2000 28.5337 -267.9000 0.0000
1	SUM OF HORIZ	-48.59	SUM OF VERT	73.51	SUM OF MOMENTS	729.55

ICE LUAD IN PSF	600	
SUM OF MOMENTS OVERTURNING SUM OF MOMENTS RESISTING	1327.49 2057.05	
FACTOR OF SAFETY AGAINST OVERT LOCATION OF THE RESULTANT ECCENTRICITY: BEARING PRESSURE LEFT (KSF): BEARING PRESSURE RIGHT (KSF):	URNING	1.55 9.92 4.91 4.94 0.02

CORPS OF ENGINEERS, U.S. ARMY

SUBJECT HOPKINTON EAST WALL

COMPUTATION OUERTURALING MARLYSIS

COMPUTED BY M. A. D. CHECKED BY _

DATE 1/21/93

14664

234233.9

WALL C

A, /2 (50.6)(2) Az /2 (21.1)(1) A3 26 (50.6) A4 25 (21.1) A5 /2 (25) 604.5 To /2 (1301.6)(26)

8.67

26362,8

16920.8

Y = 8.9'

CONCLETE

A, A ₂ A ₃	(2.125) 1/2(1.67) 1/2(1.416)	16) (6)

17,67

$$C_1 = (27.10)(.15)$$

 $C_2 \cdot (31.7)(.15)$
 $C_3 \cdot (22)(4)(.15)$
 $C_4 \cdot (10)(3)(.15)$

PAGE _

CORPS OF ENGINEERS, U.S. ARMY

SUBJECT HOPENTON EAST WALL

COMPUTATION OUTSTURY ING MUALISIS WALL

COMPUTED BY M. A. D CHECKED BY

UPLIFT PRESSURE WALL

$$A_{1} = \frac{1}{4} \left(\frac{436.8 + 850.1}{2(850.1) + 436.5} \right)$$

$$\frac{14155.9}{3(436.8 + 850.1)}$$

$$12.18$$

$$A_2$$
 $\frac{1}{2}(1404.0 + 1551.3)(3) = 2432.95}{3(2(1551.3)+1404.)}$ 1.52 6759.9

$$ZA$$
 18588.9 ZA_{Y} 179 144.L $Y = 9.6$ $F = 18.6$ $Y = 9.6$

TABLE OF FORCES FOR RETAINING WALL DESIGN

PROJECT:

HOPKINTON EAST RETAINING WALL

DESCRIPTION: WALL C

LOCATION:

HOPKINTON DAM, NH

DATE:

SIZE OF BASE: 25 FEET

ALL UNITS IN KIPS AND/OR FEET

NO.	HORIZ. RESIS	HORIZ. OVER	VERT. RESIS	VERT. OVER	MOMENT ARM	RESULTANT MOMENT
C1 C2 C3 C4 WS Pa U1 Pw1 Pice	1.53	26.4 11.4	4.08 -4.8 13.2 4.5 48	18.4	9.42 9.6 11 23.5 17.67 8.9 9.6 2.33 16.5	38.4336 46.0800 145.2000 105.7500 848.1600 -234.9600 -176.6400 3.5649 -188.1000 0.0000
1	SUM OF HORIZ	-36.27	SUM OF VERT	56.18	SUM OF MOMENTS	587.49

ICE	LO	ΔD	TN	PSF

600

SUM	OF	MOMENTS	OVERTURNING
C1 154	A	A A PRODUCTION AND ADDRESS OF	

599.70

SUM	OF	MOMENTS	RESISTING	

1187.19

FACTOR OF SAFETY AGAINST OVERTURNING LOCATION OF THE RESULTANT	1.98 10.46
ECCENTRICITY: BEARING PRESSURE LEFT (KSF):	2.04
BEARING PRESSURE RIGHT (KSF):	3.35 1.15

APPENDIX B -- TILT PLATE AND SURVEY DATA

Terra Tilt Field Data Sheet
Project: Hopkinton Dam - Outlet Channel East Wall
Plate No: 1
Initial Date: Nov. 30, 1989

Ao rdg A180 rdg	***	Bo rdg B180 rdg	Ao	Ao A180	A avg	A cum.	A cum. Bo B180	B180	B avg.	B cum.	A Rot'n	Bavg. B cum. A Rot'n B Rot'n
ω	282	-0.0433	-0.0060	-0.0019	-0.0021	0.0000	0.0141	-0.0217	0.0179	0.000	0.0000	0.000
	20		-0.0101	0.0022	-0.0062	-0.0041	0.0141	-0.0219	0.0180	0.0001		
	ႜႜႜ		-0.0104	0.0028	-0.0066	-0.0045	0.0144	-0.0218	0.0181	0.0002	·	
	ထ္ထ		-0.0078	0.0004	-0.0041	-0.0020	0.0144	-0.0217	0.0181	0.0002	•	
	ဖ		-0.0080	-0.0015	-0.0033	-0.0012	0.0133	-0.0226	0.0180	0.0001		
	മ		-0.0081	-0.0010	-0.0036	-0.0015	0.0134	-0.0225	0.0180	0.0001	·	
			-0.0090	-0.0001	-0.0045	-0.0024	0.0133	-0.0222	0.0178	-0.0001	·	
			-0.0081	0.0006	-0.0044	-0.0023	0.0141	-0.0216	0.0179	0.0000		
		-0.0440	-0.0082	-0.0010	-0.0036	-0.0015	0.0131	-0.0220	0.0176	-0.0003		
		-0.0437	-0.0079	-0.0020	-0.0030	-0.0009	0.0122	-0.0219	0.0171	-0.0008	·	
		-0.0417	-0.0075	-0.0007	-0.0034	-0.0013	0.0129	-0.0209	0.0169	-0.0010	·	
		-0.0403	-0.0106	0.0028	-0.0067	-0.0046	0.0124	-0.0202	0.0163	-0.0016	·	
		-0.0400	-0.0092	0.0014	-0.0053	-0.0032	0.0123	-0.0200	0.0162	-0.0017	·	
		-0.0405	-0.0092	0.0007	-0.0050	-0.0029	0.0119	-0.0203	0.0161	-0.0018		
0.0017 0.0233		-0.0412	-0.0099	0.0009	-0.0054	-0.0033	0.0117	-0.0206	0.0162	-0.0017	•	
J Data Sheet Hopkinton Dam - Outlet Channel East Wal		Wall										
Nov. 30, 1989												

*	_				٥.	_	~	•	.		"	~				_
3 Rot'n	0.000	0.011	0.0115	0.0115	0.0172	0.0226	0.0286	0.022	0.0286	0.0401	0.0286	0.0458	0.0516	200	0.0401	0.0630
A Rot'n	0.000	-0.2693	-0.3037	-0.1776	-0.0286	-0.0057	-0.0286	-0.0229	-0.0286	-0.0115	-0.0115	-0.2636	0 1432	10.152	-0.1318	-0.1948
scum. A	0.0000	0.0002	0.0002	0.0002	0.0003	0.0004	0.0005	0.0004	0.0005	0.0007	0.0005	0.0008	0000	0.003	0.000.0	0.0011
avg. E	0.0087	0.0089	0.0089	0.0089	0.0000	0.0091	0.0092	0.0091	0.0092	0.0094	0.0092	0 0095	9000	0.0030	0.0094	0.0098
B180 E	-0.0124	-0.0128	-0.0126	-0.0127	-0.0137	-0.0136	-0.0137	-0.0128	-0.0138	-0.0143	-0.0132	-0.0135	0.0125	-0.0133	-0.0134	-0.0142
Bo	0.0049	0.0050	0.0052	0.0051	0.0043	0.0045	0.0047	0.0053	0.0045	0.0044	0.0052	0.0055	0.000	0.000	0.0053	0.0053
v cum.	0.0000	-0.0047	-0.0053	-0.0031	-0.0005	-0.0001	-0.0005	-0.0004	-0.0005	-0.0002	-0.0002	-0.0046	9000	-0.0025	-0.0023	-0.0034
A avg	0.0092	0.0045	0.0039	0.0061	0.0087	0.0091	0.0087	0.0088	0.0087	06000	06000	0.0046	0.00	0.006/	0.0069	0.0058
A180	-0.0130	-0.0084	-0.0076	-0.0098	-0.0134	-0.0140	-0.0132	-0.0126	-0.0133	-0.0139	-0.0130	0.000	0.00	-0.010/	-0.0110	-0.0102
Ao	0.0054	0.0005	0.0002	0.0023	0.0040	0.0041	0.0041	0.0050	0.0041	0.00	0.000	0.000	0.000	0.0027	0.0028	0.0013
B180 rdg	-0 0248	-0.0255	-0.0251	-0.0254	-0.0274	-0.0272	-0.0273	-0.0255	-0.0225	0.0285	0.0263	0.020	0.20.0	-0.0270	-0.0268	-0.0284
Bordg B1	0 0097	6600 0	0.0104	0.0101	0.0086	0.0089	0.003	0.000	0000	0000	0.000	2000	0.00	0.0111	0.0105	0.0106
\180 rdg	-0.0260	-0.0167	-0.0152	-0.0196	-0.0268	0.0280	0.0253	0.0257	0.025	0.0200	0.020	0.0260	0.01	-0.0214	-0.0220	-0.0204
Aordg A1	0.0107	0.00	9000	0.000	0,00	200.0	2000.0	0.002	0.00	0.0002	0.000	0.0100	0.0013	0.0053	0.0055	0.0026
Date		3- Jan-90	3- Jan-90	Mar-90	7-Apr-90	May 90	00-inay-	00-for-	9-001-90	0-Mpi-91	-Aug-91	0-Apr-92	3-Mar-94	-Nov-94	-Mar-95	25-Mar-96
Mo. Dy. Yr.	Initia	1 2 OO 03	10 90 51	00 00 00 00 00 00 00 00 00 00 00 00 00	4 27 90 2	7 00 77	#1 00 UC 0	8 8	8 5	5 6		76	4	11 10 94 10	3 30 95 30	96

1 of 9

Terra Tilt Field Data Sheet
Project: Hopkinton Dam - Outlet Channel East Wall
Plate No: 3
Initial Date: Nov. 30, 1989

Mo Dv Vr	Ap rda	A180 rda	Bo rda	B180 rda	Ao	A180	A avg	A cum.	Bo	B180	B avg.	B cum.	A Roťn	B Rot'n	
*****	Sp. 00	*	**********	**********	******	**********	***********	**********************************	*********	**********	*********	*********	*********	计数据设计数据设计 医医阴茎 医医肠性 医乳球状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状	
leitin	710.0-		ľ		-0.0089	0.0012	-0.0051	0.000	-0.0126	0.0049	-0.0088	0.0000	0.000	0.000	
1 3 90 03-120-90			į		-0.0140	0.0063	-0.0102	-0.0051	-0.0126	0.0046	-0.0086	0.0002	-0.2922	0.0115	
1 19 90 19-lan-			•		-0.0143	0.0070	-0.0107	-0.0056	-0.0125	0.0050	-0.0088	0.0000	-0.3209	0.000	
3 2 90 02-Mar-			•		-0.0123	0.0048	-0.0086	-0.0035	-0.0129	0.0050	-0.0090	-0.0002	-0.2005	-0.0115	
4 27 90 27-Apr-			Ċ		-0.0105	0.0013	-0.0059	-0.0008	-0.0137	0.0043	-0.0090	-0.0002	-0.0458	-0.0115	
5 14 90 14-Mav-			i		-0.0107	0.0014	-0.0061	-0.0010	-0.0136	0.0041	-0.0089	-0.0001	-0.0573	-0.0057	
8 20 90 20-Aug-			•		-0.0104	0.0015	-0.0060	-0.0009	-0.0129	0.0037	-0.0083	0.0005	-0.0516	0.0286	
10 29 90 29-0ct-			ľ		-0.0093	0.0020	-0.0057	-0.0006	-0.0120	0.0045	-0.0083	0.0005	-0.0344	0.0286	
			·	_	-0.0102	0.0013	-0.0058	-0.0007	-0.0130	0.0038	-0.0084	0.0004	-0.0401	0.0229	
8 7 91 07-Aug-			•		-0.0103	0.0006	-0.0055	-0.0004	-0.0134	0.0035	-0.0085	0.0003	-0.0229	0.0172	
_			ľ	_	-0.003	0.0014	-0.0054	-0.0003	-0.0126	0.0045	-0.0086	0.0002	-0.0172	0.0115	
3 28 94 28-Mar-			•		-0.0134	0.0056	-0.0095	-0.0044	-0.0123	0.0046	-0.0085	0.0003	-0.2521	0.0172	
11 10 94 10-Nov-			•		-0.0114	0.0036	-0.0075	-0.0024	-0.0127	0.0046	-0.0087	0.0001	-0.1375	0.0057	
3 30 95 30 Mar-			Ċ		-0.0112	0.0030	-0.0071	-0.0020	-0.0128	0.0044	-0.0086	0.0002	-0.1146	0.0115	
3 25 96 25-Mar-96	96 -0.0258	8 0.0086	-0.0266	0.0089	-0.0129	0.0043	-0.0086	-0.0035	-0.0133	0.0045	-0.0089	-0.0001	-0.2005	-0.0057	
Terra Tilt F	Ferra Tilt Field Data Sheet	*													
Project:	Hopkinton C	Hopkinton Dam - Outlet Channel East Wall	hannel East	Wall											
Plate No:	•	4	•												
		305 00													

Nov. 30, 1989 Initial Date:

B180 rdg Ao A180 A avg A cum.	B180 rdg Ao A180 A avg A cum.	Ao A180 A avg A cum.	A180 A avg A cum.	A avg A cum.	A cum.	****	Bo	*	B180	B avg.	B cum.	A Rot'n	B Rot'n
0.0030 -0.0086 -0.0069 -0.0091 0.0015 -0.0053	.0.0069 -0.0091 0.0015 -0.0053	-0.0091 0.0015 -0.0053	0.0015 -0.0053	-0.0053	_	0.000.0		-0.0043	-0.0035	-0.0004	0.0000	0.0000	0.000
0.0289 0.0131 -0.0089 -0.0071 -0.0145 0.0066 -0.0106 -0.0053	0.0071 -0.0145 0.0066 -0.0106	-0.0145 0.0066 -0.0106	0.0066 -0.0106	-0.0106	•	-0.0053	~	-0.0045	-0.0036	-0.0005	-0.0001	-0.3037	-0.0057
- 0.0145 -0.0082 -0.0066 -0.0147 0.0073 -0.0110	-0.0066 -0.0147 0.0073 -0.0110	0.0147 0.0073 -0.0110	0.0073 -0.0110	-0.0110	1	-0.005	7	-0.0041	-0.0033	-0.0004	0.0000	-0.3266	0.0000
0.0092 -0.0084 -0.0073 -0.0124 0.0046 -0.0085	-0.0073 -0.0124 0.0046 -0.0085	-0.0124 0.0046 -0.0085	0.0046 -0.0085 -	-0.0085	· ·	-0.003	2	-0.0042	-0.0037	-0.0003	0.0001	-0.1833	0.0057
- 0.000 - 0.00103 - 0.0086 -0.0108 0.0015 -0.0062	- 0.0086 -0.0108 0.0015 -0.0062	-0.0108 0.0015 -0.0062 -	- 0.0015 -0.0062 -	-0.0062	~	-0.00	6	-0.0052	-0.0043	-0.0005	-0.0001	-0.0516	-0.0057
0.00103 -0.00103 -0.0084 -0.0108 0.0016 -0.0062	- 0.0084 -0.0108 0.0016 -0.0062	- 0.0108 0.0016 -0.0062 -	- 0.0016 -0.0062 -	-0.0062	`	0.0	60	-0.0052	-0.0042	-0.0005	-0.0001	-0.0516	-0.0057
- 0.0013 -0.0013 -0.0059	-0.0076 -0.0105 0.0013 -0.0059	-0.0105 0.0013 -0.0059	- 0.0013 -0.0059	-0.0059	,	ģ	9000	-0.0056	-0.0038	-0.0009	-0.0005	-0.0344	-0.0286
0.0036 -0.0096 -0.0052 -0.0092 0.0018 -0.0055	- 0.0052 -0.0092 0.0018 -0.0055	-0.0092 0.0018 -0.0055 -	- 0.0018 -0.0055 -	-0.0055		Q	.0002	-0.0048	-0.0026	-0.0011	-0.0007	-0.0115	-0.0401
0.0074 -0.0112 -0.0072 -0.0102 0.0012	-0.0072 -0.0102 0.0012	-0.0102 0.0012 -	0.0012	7	-0.0057	'	0.0004	-0.0056	-0.0036	-0.0010	-0.0006	-0.0229	-0.0344
0.0009 -0.0126 -0.0074 -0.0104 0.0005	-0.0074 -0.0104 0.0005	-0.0104 0.0005	0.0005	7	-0.0055	•	0.0002	-0.0063	-0.0037	-0.0013	-0.0009	-0.0115	-0.0516
0.0013 -0.0013 -0.0054 -0.0093 0.0013 -1	-0.0054 -0.0093 0.0013	-0.0093 0.0013	0.0013	7	-0.0053		0.000.0	-0.0054	-0.0027	-0.0014	-0.0010	0.000	-0.0573
0.0048 -0.0125 0.0048	-0.0042 -0.0125 0.0048	-0.0125 0.0048	0.0048	7	-0.0087	•	0.0034	-0.0055	-0.0021	-0.0017	-0.0013	-0.1948	-0.0745
- 0.0008 - 0.0008 - 0.0008 - 0.0068	-0.0028 -0.0068	-0.0107 0.0028 -0.0068	0.0028 -0.0068	-0.0068	_	۲	0.0015	-0.0057	-0.0021	-0.0018	-0.0014	-0.0859	-0.0802
0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	- 8900 COOO 2000 TOO COO	2 0000 0000	8000 0 8000 0	89000	٦	Ç	0015	A000 0-	-0.0022	7000	0.0011	-0.0859	0.0630
0.0056 -0.0015 -0.0044 -0.010/	-0.0044 -0.0107 0.0020 -0.0000	-0.0107	0.0020	-0.0009	•	?	200	0000	2000	0.00	0.00	0.00	0000
- 0.0066 -0.0127 -0.0054 -0.0121 0.0033 -0.0077 -	0.0054 -0.0121 0.0033 -0.0077 -	0.0121 0.0033 -0.0077 -	0.0033 -0.0077 -	-0.0077	'	7	0.0024	-0.0064	-0.0027	-0.0018	-0.0015	-0.13/3	-0.000 8

2 of 9

Terra Tilt Field Data Sheet
Project: Hopkinton Dam - Outlet Channel East Wall
Plate No: 5
Initial Date: Nov. 30, 1989

Mo. Dy. Yr.	Date	Ao rdg	A180 rdg	Bo rdg	B180 rdg	Ao	A180	A avg	A cum.	Во	B180	B avg.	B cum.	A Roťn	B Rot'n	
=	Initial	-0.0593	0.0451	0.0248	-0.0399	-0.0297	0.0226	-0.0262	0.000	0.0124	-0.0200	0.0162	0.0000	0.0000	0.0000	
1 3 90	03-Jan-90	-0.0698	0.0551	0.0244	-0.0402	-0.0349	0.0276	-0.0313	-0.0051	0.0122	-0.0201	0.0162	0.0000	-0.2922	0.000	
1 19 90	19-Jan-90	-0.0705	0.0568	0.0248	-0.0393	-0.0353	0.0284	-0.0319	-0.0057	0.0124	-0.0197	0.0161	-0.0001	-0.3266	-0.0057	
3 2 90	02-Mar-90	-0.0667	0.0521	0.0245	-0.0403	-0.0334	0.0261	-0.0298	-0.0036	0.0123	-0.0202	0.0163	0.0001	-0.2063	0.0057	
4 27 90	27-Apr-90	-0.0652	0.0475	0.0230	-0.0418	-0.0326	0.0238	-0.0282	-0.0020	0.0115	-0.0209	0.0162	0.0000	-0.1146	0.000	
5 14 90	14-May-90	-0.0653	0.0480	0.0230	-0.0417	-0.0327	0.0240	-0.0284	-0.0022	0.0115	-0.0209	0.0162	0.000	-0.1261	0.000	
8 20 90	20-Aug-90	-0.0662	0.0487	0.0229	-0.0415	-0.0331	0.0244	-0.0288	-0.0026	0.0115	-0.0208	0.0162	0.000	-0.1490	0.000	
10 29 90	29-Oct-90	-0.0632	0.0496	0.0246	-0.0393	-0.0316	0.0248	-0.0282	-0.0020	0.0123	-0.0197	0.0160	-0.0002	-0.1146	-0.0115	
4 26 91	26-Apr-91	-0.0653	0.0484	0.0234	-0.0415	-0.0327	0.0242	-0.0285	-0.0023	0.0117	-0.0208	0.0163	0.0001	-0.1318	0.0057	
	07-Aug-91	-0.0658	0.0472	0.0229	-0.0427	-0.0329	0.0236	-0.0283	-0.0021	0.0115	-0.0214	0.0165	0.0003	-0.1203	0.0172	
4 20 92	20-Apr-92	-0.0635	0.0487	0.0248	-0.0408	-0.0318	0.0244	-0.0281	-0.0019	0.0124	-0.0204	0.0164	0.0002	-0.1089	0.0115	
3 28 94	28-Mar-94	-0.0710	0.0559	0.0240	-0.0400	-0.0355	0.0280	-0.0318	-0.0056	0.0120	-0.0200	0.0160	-0.0002	-0.3209	-0.0115	
11 10 94	10-Nov-94	-0.0670	0.0527	0.0241	-0.0400	-0.0335	0.0264	-0.0300	-0.0038	0.0121	-0.0200	0.0161	-0.0001	-0.2177	-0.0057	
3 30 95	30-Mar-95	-0.0671	0.0515	0.0234	-0.0403	-0.0336	0.0258	-0.0297	-0.0035	0.0117	-0.0202	0.0160	-0.0002	-0.2005	-0.0115	
3 25 96	25-Mar-96	-0.0698	0.0533	0.0228	-0.0404	-0.0349	0.0267	-0.0308	-0.0046	0.0114	-0.0202	0.0158	-0.0004	-0.2636	-0.0229	
⊢	Terra Tilt Field Data Sheet Project: Hopkinton Da	Data Sheet opkinton Day	d Data Sheet Hookinton Dam - Outlet Channel East Wal	annel East	Wall											

Hopkinton Dam - Outlet Channel 6

Nov. 30, 1989 Project: Plate No: Initial Date:

Mo. Dv. Yr.	Date	Ao rda	A180 rda	Bo rda	B180 rda	Ao	A180	A avo	A cum.	Bo	B180	B avg.	B cum.	A Rot'n	B Rot'n
**** ****	***********	**********	***********	*********	**********	*****	**********	**********	· · · · · · · · · · · · · · · · · · ·	*******	*****	*********	****	********	**********
_	Initial	-0.0515	0.0364	-0.0458	0.0308	-0.0258	0.0182	-0.0220	0.0000	-0.0229	0.0154	-0.0192	0.0000	0.000	0.0000
1 3 90	03-Jan-90	-0.0621	0.0461	-0.0459	0.0300	-0.0311	0.0231	-0.0271	-0.0051	-0.0230	0.0150	-0.0190	0.0002	-0.2922	0.0115
1 19 90	19-Jan-90	-0.0628	0.0478	-0.0450	0.0302	-0.0314	0.0239	-0.0277	-0.0057	-0.0225	0.0151	-0.0188	0.0004	-0.3266	0.0229
3 2 90	02-Mar-90	-0.0592	0.0433	-0.0456	0.0300	-0.0296	0.0217	-0.0257	-0.0037	-0.0228	0.0150	-0.0189	0.0003	-0.2120	0.0172
4 27 90	27-Apr-90	-0.0563	0.0372	-0.0480	0.0290	-0.0282	0.0186	-0.0234	-0.0014	-0.0240	0.0145	-0.0193	-0.0001	-0.0802	-0.0057
5 14 90	14-May-90	-0.0564	0.0378	-0.0479	0.0294	-0.0282	0.0189	-0.0236	-0.0016	-0.0240	0.0147	-0.0194	-0.0002	-0.0917	-0.0115
8 20 90	20-Aug-90	-0.0578	0.0384	-0.0482	0.0293	-0.0289	0.0192	-0.0241	-0.0021	-0.0241	0.0147	-0.0194	-0.0002	-0.1203	-0.0115
10 29 90	29-Oct-90	-0.0547	0.0398	-0.0461	0.0313	-0.0274	0.0199	-0.0237	-0.0017	-0.0231	0.0157	-0.0194	-0.0002	-0.0974	-0.0115
4 26 91	26-Apr-91	-0.0571	0.0391	-0.0478	0.0300	-0.0286	0.0196	-0.0241	-0.0021	-0.0239	0.0150	-0.0195	-0.0003	-0.1203	-0.0172
8 7 91	07-Aug-91	-0.0573	0.0375	-0.0492	0.0295	-0.0287	0.0188	-0.0238	-0.0018	-0.0246	0.0148	-0.0197	-0.0005	-0.1031	-0.0286
4 20 92	20-Apr-92	-0.0550	0.0389	-0.0468	0.0307	-0.0275	0.0195	-0.0235	-0.0015	-0.0234	0.0154	-0.0194	-0.0002	-0.0859	-0.0115
3 28 94	28-Mar-94	-0.0608	0.0448	-0.0456	0.0297	-0.0304	0.0224	-0.0264	-0.0044	-0.0228	0.0149	-0.0189	0.0003	-0.2521	0.0172
11 10 94	10-Nov-94	-0.0570	0.0410	-0.0450	0.0295	-0.0285	0.0205	-0.0245	-0.0025	-0.0225	0.0148	-0.0187	0.0005	-0.1432	0.0286
3 30 95	30-Mar-95	-0.0571	0.0398	-0.0458	0.0291	-0.0286	0.0199	-0.0243	-0.0023	-0.0229	0.0146	-0.0188	0.0004	-0.1318	0.0229
3 25 96	25-Mar-96	-0.0595	0.0418	-0.0457	0.0280	-0.0298	0.0209	-0.0254	-0.0034	-0.0229	0.0140	-0.0185	0.0007	-0.1948	0.0401

Terra Tilt Field Data Sheet
Project: Hopkinton Dam - Outlet Channel East Wall
Plate No: 7
Nov. 30, 1989

B Rot'n	0.0000	-0.0057	-0.0115	-0.0115	-0.0458	-0.0458	-0.0802	-0.0802	-0.0802	-0.0745	-0.0745	-0.0516	0000	0.0401	-0.0401	-0.0630						
***	0000	.2922	.3266	.2063	-0.0688	.0630	.0286	.0057	.0057	.0286	.0344	1776	0000	.0000	.0630	1031						
. A Rot'n	000																					
ш ;		Ċ	Ċ	Ċ	+ -0.0008	•	•				·	•		•		·						
B avg.	-0.0046	-0.0047	-0.0048	-0.0048	-0.0054	-0.005	-0.0060	-0.0060	-0.0060	-0.0058	-0.0059	0.005	9 6	-0.005	-0.005	-0.0057						
B180	0.0007	0.0006	0.0010	0.0008	0.0006	0.0006	0.0012	0.0022	0.0014	0.0008	0.0017	71000	0.00	0.0012	0.0007	0.0011						
		-0.0087	-0.0085	-0.0088	-0.0101	-0.0101	-0.0107	-0.0097	-0.0106	-0.0109	-0.0100	0000	0.000	-0.0094	-0.0099	-0.0102	100					
A cum. Bo	0.000	-0.0051	-0.0057	-0.0036	-0.0012	-0.0011	-0.0005	0.0001	0.0001	0.0005	9000	0.000	-0.0031	-0.0012	-0.0011	A 100 0-	9					
		0.0085	0.0079	0.0100	0.0124	0.0125	0.0131	0.0137	0.0137	0.0141	0.0142	0.00	0.0100	0.0124	0.0125	0.0118	5					
A180	3 -0.0173 0.013	-0.0124	-0.0115	-0.0139	-0.0171	-0.0171	-0.0177	-0.0173	-0.0181	-0.0190	0.0182	20.00	-0.0140	-0.0163	-0.0170	0.0162	-0.0102					
Ao	\$000 O	0.0036	0.0042	0.0061	0.0077	0.0078	0.0084	0.0100	0.0092	0 0092	0.000	0.00	0.0000	0.0085	0.0080	0.0072	0.0073					
B180 rdg	***************************************	0.00	0000	0.0015	0.0011	0.0012	0.0023	0.0044	0.0028	0.0016	2000	0.0034	0.002/	0.0024	0.0014	1000	0.0021		Vali			
Bo rdg E	0.0467	0.010	0.17	-0.0175	-0.000	-0.0201	-0.0214	10.0194	-0.0212	0.017	2.00	-0.0198	-0.0190	-0.0187	-0.0198	0000	-0.0203		annel East V		•	
A180 rdg	0.0045	0.0.0	0.0240	-0.0230	-0.0277	-0.0341	-0.0354	0.0345	0.0352	0.0380	0.000	-0.0363	-0.0290	-0.0326	0.0340	0.00	-0.0323		n - Outlet Ch		Nov. 30, 1989	
Ao rdg A	***********	0.0195	0.0092	0.0004	0.012	0.0156	0.0100	90.0	0.00	20.00	0.00	0.0202	0.0129	0.0169	0.0160	0.0.0	0.0145	Data Sheet	Hopkinton Dam - Outlet Channel East Wall	80		
Date	*	lai	03-Jan-90	19-Jan-90	02-Mai-90	2/-IQA-120	30 Aug 90	06-bnV-03	29-Oct-90	20-Mpl-91	16-8nW-70	20-Apr-92	28-Mar-94	10-Nov-94	Mor of	SO-INIAI-33	25-Mar-96	erra Tilt Field Data Sheet	Project: Ho		nitial Date:	
Mo. Dy. Yr.		initial 1 2 20 03	- 4 - 4 - 6 - 6 - 6	2000	2 2 90	200 77 7	8 8	20 00 00 00	5 6	5 6		82	3 28 94	76	20 05 6	25 00 0	3 25 96	Ţ	Pre	Pla	Init	

Mo. Dy. Yı	r. Date	Ao rdg	A180 rdg	Bo rdg	B180 rdg	Ao	A180	A avg	A cum.	Во	B180	B avg.	B cum. A	Rot'n	B Rot'n
*** ****	*** ********	* *****	************	***********				1700	0000	32000	1000	0.000	0000	0000	0000
	To:tic	0.0272	•	-0.0152	0.0002	0.0136	-0.0212	4/L0.0	0.000	-0.00.0	0.000	-0.00.0	0.000	000	0000
	ייין כט סב	0.0274		0.0150	8000	0.0087	-0.0166	0.0127	-0.0047	-0.0075	-0.0004	-0.0036	0.0003	-0.2693	0.0172
2	90 03-Jan-90	97100		5.0.0	0000	9000	0.0150	0.0123	0.0051	-0.0073	0000	-0.0037	0.0002	-0.2922	0.0115
1	90 19-Jan-90	0.0172		-0.0146	0.000	0.000	0.00	0.0120	1000	0.000	0000	0.0034	0000	-0 1432	0.0286
3	90 02-Mar-90	0.0218		-0.0146	-0.0012	0.0109	-0.0188	0.0149	-0.0023	-0.00.0	-0.000	0000	0000	0.044	0.000
7 27	00 27 Apr 00	0.0050		-0.0170	-0.0021	0.0125	-0.0219	0.0172	-0.0002	-0.0085	-0.0011	-0.003/	0.0002	-0.0	0.0113
1	06-104-17 06	0.0200		0 0 0 0	0.0010	0.0125	-0.0218	0.0172	-0.0002	-0.0085	-0.0010	-0.0038	0.0001	-0.0115	0.0057
t 14	90 14-May-90	0.0248		20.0	00.0	0.00	0.00	0.0172	2000	-0 0092	-0 000	-0.0045	-0.0006	-0.0115	-0.0344
8 20	90 20-Aug-90	0.0249		-0.0184	-0.0004	0.0123	-0.0210	2100	2000	1000		9000	2000		0.0404
10 20	29.004.90	0.0273		-0.0165	0.0018	0.0137	-0.0210	0.0174	0.000	-0.0083	0.000	-0.0040	-0.00	0.000	10.00
67 2	20-100-62	2000		0.0474	0.001	0.0131	-0.0219	0.0175	0.0001	-0.0086	-0.0006	-0.0040	-0.0001	0.0057	-0.0057
4 26	91 Z6-Apr-91	0.0201	•	-0.0	0.00	20.00	0.020	0.0181	0 0007	7900 0-	-0 0004	-0.0047	-0.0008	0.0401	-0.0458
8	91 07-Aug-91	0.0262		-0.0193	-0.0007	0.0131	-0.0230	0.00		0.000	4000	97000	7000	0.0344	-0.0401
4 20	92 20-Anr-92	7720.0		-0.0173	0.0010	0.0139	-0.0220	0.0180	0.000	-0.000	0.000	0.0010	-0.00.0	1000	0.00
2 6				0.0180	00000	0.0103	-0.0182	0.0143	-0.0031	-0.0090	0.0010	-0.0050	-0.00-	-0.1//0	-0.0030
2 78		0.0200		0.00	9 00 0	2000	0000	0.0464	0.0043	A0000	0.0013	-0.0054	-0.0015	-0.0745	-0.0859
11 10	94 10-Nov-94	0.0241	•	-0.0187	0.0025	0.0121	-0.0200	0.010	-0.0013	0.000	0.00	0.000	0.000	0.0630	-0.0745
3 30		0.0236		-0.0194	0.0014	0.0118	-0.0208	0.0163	-0.0011	-0.0097	0000	-0.0032	2.000	00000	0.000
3 25	96 25-Mar-96	0.0229	9 -0.0405	-0.0193	0.0015	0.0115	-0.0203	0.0159	-0.0015	-0.0097	0.0008	-0.0033	-0.00	-0.0039	70.007

4 of 9

TILT PLATE DATA

Terra Tilt Field Data Sheet
Project: Hopkinton Dam - Outlet Channel East Wall
Plate No: 9
Initial Date: Nov. 30, 1989

	mina Date			2											
Mo. Dy. Yr.	Date	Ao rdg	A180 rdg	Bo rdg	B180 rdg	Ao	A180	A avg	A cum.	Bo	B180	B avg.	B cum.	A Rot'n	B Rot'n
		-0.0265		0.0130	-0.0280	-0.0133	0.0056	-0.0095	0.0000	0.0065	-0.0140	0.0103	0.0000	0.0000	0.000
1 3 90	03-Jan-90	-0.0360		0.0128	-0.0283	-0.0180	0.0099	-0.0140	-0.0045	0.0064	-0.0142	0.0103	0.0000	-0.2578	0.0000
1 19 90	19-Jan-90	-0.0365		0.0132	-0.0277	-0.0183	0.0108	-0.0146	-0.0051	0.0066	-0.0139	0.0103	0.000	-0.2922	0.0000
3 2 90	02-Mar-90	-0.0331	_	0.0123	-0.0279	-0.0166	0.0085	-0.0126	-0.0031	0.0062	-0.0140	0.0101	-0.0002	-0.1776	-0.0115
4 27 90	27-Apr-90	-0.0296		0.0099	-0.0288	-0.0148	0.0053	-0.0101	-0.0006	0.0050	-0.0144	0.0097	-0.0006	-0.0344	-0.0344
5 14 90	14-Mav-90	-0.0297		0.0100	-0.0290	-0.0149	0.0054	-0.0102	-0.0007	0.0050	-0.0145	0.0098	-0.0005	-0.0401	-0.0286
8 20 90	20-Aug-90	-0.0296		0.0098	-0.0283	-0.0148	0.0055	-0.0102	-0.0007	0.0049	-0.0142	9600.0	-0.0007	-0.0401	-0.0401
10 29 90	29-Oct-90	-0.0270	_	0.0119	-0.0266	-0.0135	0.0061	-0.0098	-0.0003	0.0060	-0.0133	0.0097	-0.0006	-0.0172	-0.0344
4 26 91	26-Apr-91	-0.0289		0.0104	-0.0281	-0.0145	0.0054	-0.0100	-0.0005	0.0052	-0.0141	0.0097	-0.0006	-0.0286	-0.0344
8 7 91	07-Aug-91	-0.0298		0.0096	-0.0294	-0.0149	0.0048	-0.0099	-0.0004	0.0048	-0.0147	0.0098	-0.0005	-0.0229	-0.0286
4 20 92	20-Apr-92	-0.0280		0.0115	-0.0278	-0.0140	0.0058	-0.0099	-0.0004	0.0058	-0.0139	0.0099	-0.0004	-0.0229	-0.0229
3 28 94	28-Mar-94	-0.0350		0.0118	-0.0282	-0.0175	0.0094	-0.0135	-0.0040	0.0059	-0.0141	0.0100	-0.0003	-0.2292	-0.0172
11 10 94	10-Nov-94	-0.0316	Ū	0.0120	-0.0282	-0.0158	0.0079	-0.0119	-0.0024	0.0060	-0.0141	0.0101	-0.0002	-0.1375	-0.0115
3 30 95	30-Mar-95	-0.0325		0.0112	-0.0290	-0.0163	0.0074	-0.0119	-0.0024	0.0056	-0.0145	0.0101	-0.0002	-0.1375	-0.0115
3 25 96	25-Mar-96	-0.0338	0.0161	0.0111	-0.0291	-0.0169	0.0081	-0.0125	-0.0030	0.0056	-0.0146	0.0101	-0.0002	-0.1719	-0.0115
	Terra Tilt Field Data Sheet	Data Sheet			11-14										

Terra Tilt Field Data Sheet
Project: Hopkinton Dam - Outlet Channel East Wall
Plate No: 10
Initial Date: Nov. 30, 1989

Mo. Dy. Yr.	Date	Ao rdg	A180 rdg	Bo rdg	B180 rdg	Ao	A180	A avg	A cum.	Во	B180	Bavg.	B cum.	A Rot'n	3 Rot'n
****	************	******	***********	**********	******	***********	*****								
	laitia	-0.0484	0.0335	9690 0-	0.0543	-0.0242	0.0168	-0.0205	0.000	-0.0348	0.0272	-0.0310	0.0000	0.000	0.000
1 3 90	03- Ian-90	-0.0564	0.0406	-0.0701	0.0543	-0.0282	0.0203	-0.0243	-0.0038	-0.0351	0.0272	-0.0312	-0.0002	-0.2177	-0.0115
1 19 90	19- lan-90	-0.0565	0.0418	-0.0697	0.0548	-0.0283	0.0209	-0.0246	-0.0041	-0.0349	0.0274	-0.0312	-0.0002	-0.2349	-0.0115
800	02-Mar-90	-0.0531	0.0375	-0.0700	0.0543	-0.0266	0.0188	-0.0227	-0.0022	-0.0350	0.0272	-0.0311	-0.0001	-0.1261	-0.0057
4 27 90	27-Apr-90	-0.0531	0.0323	-0.0726	0.0533	-0.0256	0.0162	-0.0209	-0.0004	-0.0363	0.0267	-0.0315	-0.0005	-0.0229	-0.0286
5 14 90	14-May-90	0.0512	0.0326	-0.0727	0.0539	-0.0256	0.0163	-0.0210	-0.0005	-0.0364	0.0270	-0.0317	-0.0007	-0.0286	-0.0401
200	20A112-90	-0.0512	0.0331	-0.0736	0.0551	-0.0259	0.0166	-0.0213	-0.0008	-0.0368	0.0276	-0.0322	-0.0012	-0.0458	-0.0688
10 29 90	20-22-00	0.00	0.0346	-0.0714	0.0565	-0.0245	0.0173	-0.0209	-0.0004	-0.0357	0.0283	-0.0320	-0.0010	-0.0229	-0.0573
26 92	26-Apr-91	0.50	0.0330	-0.0731	0.0552	-0.0254	0.0165	-0.0210	-0.0005	-0.0366	0.0276	-0.0321	-0.0011	-0.0286	-0.0630
2 2	07-A-70	0.0506	0.0322	-0.0746	0.0546	-0.0258	0.0161	-0.0210	-0.0005	-0.0373	0.0273	-0.0323	-0.0013	-0.0286	-0.0745
4 20 92	20-Apr-92	0.050	0.0338	-0.0726	0.0561	-0.0251	0.0169	-0.0210	-0.0005	-0.0363	0.0281	-0.0322	-0.0012	-0.0286	-0.0688
20 27 2	28-Mar-94	0.0560	0.0000	-0 0720	0.0561	-0.0280	0.0201	-0.0241	-0.0036	-0.0360	0.0281	-0.0321	-0.0011	-0.2063	-0.0630
11 10 94	10-Nov-94	-0.0536	0.0388	-0.0725	0.0562	-0.0273	0.0194	-0.0234	-0.0029	-0.0363	0.0281	-0.0322	-0.0012	-0.1662	-0.0688
	30-Mar-95	0.0554	0.0380	-0 0730	0.0555	-0.0277	0.0190	-0.0234	-0.0029	-0.0365	0.0278	-0.0322	-0.0012	-0.1662	-0.0688
3 25 96	25-Mar-96	-0.0571	0.0394	-0.0735	0.0555	-0.0286	0.0197	-0.0242	-0.0037	-0.0368	0.0278	-0.0323	-0.0013	-0.2120	-0.0745

5 of 9

Terra Tilt Field Data Sheet
Project: Hopkinton Dam - Outlet Channel East Wall
Plate No: 11
Initial Date: Nov. 30, 1989

Mo. Dy. Yr.	Mo. Dy. Yr. Date	Ao rdg	A180 rdg	Bo rdg	B180 rdg	Ao	A180	A avg	A cum.	Bo	B180	B avg.	B cum.	A Roťn	B Rot'n	
	Initial	-0.0541		-0.0022	-0.0132	-0.0271	0.0195	-0.0233	0.0000	-0.0011	-0.0066	0.0028	0.0000	0.0000	0.0000	
1 3 90	0 03-Jan-90	-0.0605		-0.0031	-0.0125	-0.0303	0.0224	-0.0264	-0.0031	-0.0016	-0.0063	0.0024	-0.0004	-0.1776	-0.0229	
1 19 90	0 19-Jan-90	-0.0613		-0.0027	-0.0122	-0.0307	0.0233	-0.0270	-0.0037	-0.0014	-0.0061	0.0024	-0.0004	-0.2120	-0.0229	
3 2 90	02-Mar-90	-0.0589		-0.0025	-0.0135	-0.0295	0.0216	-0.0256	-0.0023	-0.0013	-0.0068	0.0028	0.000	-0.1318	0.000	
4 27 90	0 27-Apr-90	-0.0577		-0.0039	-0.0154	-0.0289	0.0193	-0.0241	-0.0008	-0.0020	-0.0077	0.0029	0.0001	-0.0458	0.0057	
5 14 90	0 14-May-90	-0.0577		-0.0037	-0.0152	-0.0289	0.0195	-0.0242	-0.0009	-0.0019	-0.0076	0.0029	0.0001	-0.0516	0.0057	
8 20 90	30-Mar-00	-0.0587		-0.0040	-0.0150	-0.0294	0.0199	-0.0247	-0.0014	-0.0020	-0.0075	0.0028	0.0000	-0.0802	0.0000	
10 29 90	3 29-Oct-90	-0.0556		-0.0019	-0.0130	-0.0278	0.0204	-0.0241	-0.0008	-0.0010	-0.0065	0.0028	0.0000	-0.0458	0.000	
4 26 91	1 26-Apr-91	-0.0580		-0.0038	-0.0142	-0.0290	0.0200	-0.0245	-0.0012	-0.0019	-0.0071	0.0026	-0.0002	-0.0688	-0.0115	
8 7 91	1 07-Aug-91	-0.0581		-0.0042	-0.0158	-0.0291	0.0191	-0.0241	-0.0008	-0.0021	-0.0079	0.0029	0.0001	-0.0458	0.0057	,
4 20 92	2 20-Apr-92	-0.0564		-0.0022	-0.0142	-0.0282	0.0199	-0.0241	-0.0008	-0.0011	-0.0071	0.0030	0.0002	-0.0458	0.0115	
3 28 94	1 28-Mar-94	-0.0602		-0.0010	-0.0145	-0.0301	0.0221	-0.0261	-0.0028	-0.0005	-0.0073	0.0034	0.0006	-0.1604	0.0344	
11 10 94	1 10-Nov-94	-0.0583		-0.0010	-0.0149	-0.0292	0.0210	-0.0251	-0.0018	-0.0005	-0.0075	0.0035	0.0007	-0.1031	0.0401	
3 30 95	5 30-Mar-95	-0.0590		-0.0015	-0.0160	-0.0295	0.0207	-0.0251	-0.0018	-0.0008	-0.0080	0.0036	0.0008	-0.1031	0.0458	
3 25 96	3 25-Mar-96	-0.0601	0.0426	-0.0012	-0.0165	-0.0301	0.0213	-0.0257	-0.0024	-0.0006	-0.0083	0.0039	0.0011	-0.1375	0.0630	
	Terra Tilt Field Data Sheet	Data Sheet														
	Project: H	lopkinton Da	Hopkinton Dam - Outlet Channel East Wall	annel East	Wall											
	Plate No:	12														
	Initial Date:		Nov 30 1989	_												

Nov. 30, 1989 Initial Date:

_	000	200	1115	0.000	0000	1229	7401)458)516	516	344	1286	1115	1172	1172	1172
B Rot'n	0	5	9.0-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	200	0.0	0.0-
A Rot'n	0	200.0	-0.0745	-0.0802	-0.0344	0.0229	0.0172	0.0344	0.0344	0.0401	0.0688	0.0802	0.0458	0.0630	0.0859	0.0802
B cum. /	0000	0.000	-0.0002	0.0000	0.000	0.0004	0.0007	0.0008	0.0009	0.0009	0.0006	0.0005	-0.0002	-0.0003	-0.0003	-0.0003
B avg.	90000	-0.000	-0.0008	-0.0006	-0.0006	-0.0002	0.0001	0.0002	0.0003	0.0003	0.000	-0.0001	-0.0008	-0.0009	-0.0009	-0.0009
B180	¥600 0	10000	-0.0033	-0.0033	-0.0033	-0.0048	-0.0051	-0.0051	-0.0041	-0.0049	-0.0051	-0.0041	-0.0034	-0.0032	-0.0035	-0.0036
Во	97000	0.00	-0.0049	-0.0045	-0.0045	-0.0051	-0.0049	-0.0046	-0.0035	-0.0043	-0.0051	-0.0043	-0.0050	-0.0050	-0.0052	-0.0053
A cum.	0000	0.000	-0.0013	-0.0014	-0.0006	0.0004	0.0003	9000.0	9000.0	0.0007	0.0012	0.0014	0.0008	0.0011	0.0015	0.0014
A avg	0000	0.0022	0.0009	0.0008	0.0016	0.0026	0.0025	0.0028	0.0028	0.0029	0.0034	0.0036	0.0030	0.0033	0.0037	0.0036
A180	09000	-0.0038	-0.0048	-0.0044	-0.0056	-0.0074	-0.0072	-0.0075	-0.0067	-0.0074	-0.0084	-0.0077	-0.0069	-0.0077	-0.0079	-0.0079
Ao	0 0000	-0.0010	-0.0031	-0.0029	-0.0024	-0.0023	-0.0022	-0.0020	-0.0012	-0.0016	-0.0016	-0.0005	-0.0010	-0.0011	-0.0005	-0.0008
B180 rdg	0000	-0.0008	-0.0065	-0.0066	-0.0066	-0.0096	-0.0102	-0.0102	-0.0081	-0.0097	-0.0102	-0.0082	-0.0067	-0.0064	-0.0070	-0.0071
Bo rdg B		-0.0082	-0.0098	-0.0089	-0.0090	-0.0101	-0.0098	-0.0091	-0.0069	-0.0086	-0.0101	-0.0085	-0.0100	-0.0099	-0.0103	-0.0106
\180 rdg	***************************************	-0.0118	-0.0095	-0.0088	-0.0111	-0.0147	-0.0144	-0.0149	-0.0133	-0.0148	-0.0168	-0.0153	-0.0138	-0.0153	-0.0157	-0.0157
Ao rdg A	***************************************	-0.0032	-0.0062	-0.0058	-0.0048	-0.0045	-0.0043	-0.0040	-0.0023	-0.0032	-0.0031	6000.0-	-0.0019	-0.0022	-0.0010	-0.0016
Date	***************************************	E	03-Jan-90	19-Jan-90	02-Mar-90	27-Apr-90	14-May-90	20-Aug-90	29-Oct-90	26-Apr-91	07-Aug-91	20-Apr-92	28-Mar-94	10-Nov-94	30-Mar-95	25-Mar-96
Mo. Dy. Yr.		2	1 3 90	1 19 90	3 2 90	4 27 90	5 14 90	8 20 90	10 29 90	56	8 7 91	20				

Terra Tilt Field Data Sheet
Project: Hopkinton Dam - Outlet Channel East Wall
Plate No: 13
Initial Date: Nov. 30, 1989

										i						
Mo. Dy. Yr. Date	Date	Ao rdg A	A180 rdg	Bordg	B180 rdg	Ao	A180	A avg	A avg A cum. Bo B180	Bo	B180	Bavg.	B cum.	A Rot'n B Rot'n	B Rot'n	
Initial		0.0219	-0.0431	0.0208	-0.0328	0.0110	-0.0216	0.0163	0.000	0.0104	-0.0164	0.0134	0.0000	0.0000	0.0000	
1 3 90 03	03-Jan-90	0.0198	-0.0416	0.0200	-0.0325	0.0099	-0.0208	0.0154	6000.0-	0.0100	-0.0163	0.0132	-0.0002	-0.0516	-0.0115	
1 19 90 15	3-Jan-90	0.0192	-0.0402	0.0205	-0.0322	9600.0	-0.0201	0.0149	-0.0014	0.0103	-0.0161	0.0132	-0.0002	-0.0802	-0.0115	
3 2 90 02	-Mar-90	0.0197	-0.0416	0.0206	-0.0330	0.0099	-0.0208	0.0154	-0.0009	0.0103	-0.0165	0.0134	0.0000	-0.0516	0.0000	
4 27 90 27	27-Apr-90	0.0197	-0.0451	0.0194	-0.0353	0.0099	-0.0226	0.0163	0.000	0.0097	-0.0177	0.0137	0.0003	0.0000	0.0172	
5 14 90 14.	-May-90	0.0196	-0.0444	0.0196	-0.0352	0.0098	-0.0222	0.0160	-0.0003	0.0098	-0.0176	0.0137	0.0003	-0.0172	0.0172	
8 20 90 20	-Aug-90	0.0198	-0.0448	0.0203	-0.0360	0.0099	-0.0224	0.0162	-0.0001	0.0102	-0.0180	0.0141	0.0007	-0.0057	0.0401	
06	1-Oct-90	0.0222	-0.0430	0.0225	-0.0339	0.0111	-0.0215	0.0163	0.000	0.0113	-0.0170	0.0142	0.0008	0.0000	0.0458	
4 26 91 26	3-Apr-91	0.0206	-0.0448	0.0202	-0.0351	0.0103	-0.0224	0.0164	0.0001	0.0101	-0.0176	0.0139	0.0005	0.0057	0.0286	
91	-Aug-91	0.0212	-0.0476	0.0181	-0.0351	0.0106	-0.0238	0.0172	0.0009	0.0091	-0.0176	0.0134	0.0000	0.0516	0.0000	
4 20 92 20	1-Apr-92	0.0231	-0.0458	0.0197	-0.0330	0.0116	-0.0229	0.0173	0.0010	0.0099	-0.0165	0.0132	-0.0002	0.0573	-0.0115	
3 28 94 28	-Mar-94	0.0219	-0.0442	0.0189	-0.0320	0.0110	-0.0221	0.0166	0.0003	0.0095	-0.0160	0.0128	-0.0006	0.0172	-0.0344	
11 10 94 10	-Nov-94	0.0234	-0.0454	0.0184	-0.0318	0.0117	-0.0227	0.0172	6000.0	0.0092	-0.0159	0.0126	-0.0008	0.0516	-0.0458	
3 30 95 30	-Mar-95	0.0230	-0.0462	0.0179	-0.0321	0.0115	-0.0231	0.0173	0.0010	0.0000	-0.0161	0.0126	-0.0008	0.0573	-0.0458	
3 25 96 25	-Mar-96	0.0227	-0.0463	0.0170	-0.0327	0.0114	-0.0232	0.0173	0.0010	0.0085	-0.0164	0.0125	-0.0009	0.0573	-0.0516	
•	i															
lerra	It Field	ata Sheet			0.5											
Project: Diata No	,	Hopkinton Dam - Outlet Channer East Wall	- Outlet Cng	anne! East v	Vall											
rate No.		<u>+</u>														

Nov. 30, 1989 Initial Date:

*	ō	5	2	5	9	5	1	9	_	9	9	2	0	7	7
B Rot'n	0.000	-0.011	-0.017	-0.0115	-0.028	-0.017	-0.040	-0.051	-0.040	-0.028	-0.051	-0.011	0.00	0.005	-0.005
A Rot'n	0.000	0.0115	0.0000	-0.0115	-0.0172	-0.0172	-0.0286	-0.0344	-0.0286	-0.0115	-0.0115	0.0172	0.000	0.000	0.0057
B cum. A	0.000	-0.0002	-0.0003	-0.0002	-0.0005	-0.0003	-0.0007	6000.0-	-0.0007	-0.0005	-0.0009	-0.0002	0.000	0.0001	-0.0001
Bavg.	0.0043	0.0041	0.0040	0.0041	0.0038	0.0040	0.0036	0.0034	0.0036	0.0038	0.0034	0.0041	0.0043	0.0044	0.0042
B180	-0.0081	-0.0081	-0.0077	-0.0081	-0.0087	-0.0088	-0.0085	-0.0072	-0.0083	-0.0089	-0.0076	-0.0082	-0.0085	-0.0088	-0.0088
Bo	0.0004	0.0001	0.0002	0.000	-0.0011	-0.0009	-0.0013	-0.0004	-0.0011	-0.0014	-0.0008	0.000	0.000	-0.0001	-0.0004
A cum.	0.0000	0.0002	0.000	-0.0002	-0.0003	-0.0003	-0.0005	-0.0006	-0.0005	-0.0002	-0.0002	0.0003	0.000	0.000	0.0001
A avg	-0.0278	-0.0276	-0.0278	-0.0280	-0.0281	-0.0281	-0.0283	-0.0284	-0.0283	-0.0280	-0.0280	-0.0275	-0.0278	-0.0278	-0.0277
A180	0.0239	0.0236	0.0240	0.0239	0.0232	0.0234	0.0235	0.0246	0.0237	0.0229	0.0238	0.0234	0.0237	0.0233	0.0233
Ao	-0.0316	-0.0316	-0.0315	-0.0320	-0.0330	-0.0328	-0.0330	-0.0321	-0.0329	-0.0331	-0.0322	-0.0316	-0.0319	-0.0323	-0.0321
3180 rdg	-0.0161	-0.0161	-0.0154	-0.0161	-0.0174	-0.0175	-0.0169	-0.0143	-0.0165	-0.0177	-0.0152	-0.0163	-0.0169	-0.0175	-0.0175
Bo rdg B	0.0007	0.0002	0.0004	0.000	-0.0021	-0.0018	-0.0026	-0.0008	-0.0021	-0.0028	-0.0016	0.000	0.000	-0.0002	-0.0007
4180 rdg	0.0477	0.0472	0.0479	0.0478	0.0464	0.0468	0.0469	0.0491	0.0474	0.0458	0.0476	0.0467	0.0474	0.0465	0.0466
Ao rdg A	-0.0631	-0.0632	-0.0629	-0.0640	-0.0659	-0.0656	-0.0659	-0.0641	-0.0657	-0.0662	-0.0643	-0.0632	-0.0637	-0.0645	-0.0642
Date	tial	03-Jan-90	19-Jan-90	02-Mar-90	27-Apr-90	14-May-90	20-Aug-90	29-Oct-90	26-Apr-91	07-Aug-91	20-Apr-92	28-Mar-94	10-Nov-94	30-Mar-95	25-Mar-96
Mo. Dy. Yr.	Ē	1 3 90	1 19 90	3 2 90	4 27 90	5 14 90	8 20 90	06	4 26 91	8 7 91	4 20 92	3 28 94	11 10 94	3 30 95	3 25 96

Terra Tilt Field Data Sheet
Project: Hopkinton Dam - Outlet Channel East Wall
Plate No: 15
Nov. 30, 1989

				,		•				ć	0	9		2,00	n,+00 a	
Mo. Dy. Yr.	Date	Ao rdg	A180 rdg	Bo rdg	B180 rdg	A0	A180	A avg	A cum.	DO	100	= avg.	D CUITI.	***********	.**********	
	Initial	-0 0750		-0.0112		-0.0375	0.0300	-0.0338	0.0000	-0.0056	-0.0023	-0.0017	0.0000	0.0000	0.0000	
1 3 90	03lan-90	-0.0823		-0.0115		-0.0412	0.0335	-0.0374	-0.0036	-0.0058	-0.0023	-0.0018	-0.0001	-0.2063	-0.0057	
1 19 90	19-Jan-90	-0.0815		-0.0110		-0.0408	0.0335	-0.0372	-0.0034	-0.0055	-0.0021	-0.0017	0.000	-0.1948	0.000	
3 2 90	02-Mar-90	-0.0782		-0.0112		-0.0391	0.0313	-0.0352	-0.0014	-0.0056	-0.0025	-0.0016	0.0001	-0.0802	0.0057	
4 27 90	27-Anr-90	-0.0784		-0.0131		-0.0392	0.0298	-0.0345	-0.0007	-0.0066	-0.0032	-0.0017	0.000	-0.0401	0.000	
5 14 90	14-May-90	-0.0781		-0.0127		-0.0391	0.0299	-0.0345	-0.0007	-0.0064	-0.0031	-0.0017	0.000	-0.0401	0.0000	
8 20 90	20-Aug-90	-0.0784		-0.0133		-0.0392	0.0299	-0.0346	-0.0008	-0.0067	-0.0029	-0.0019	-0.0002	-0.0458	-0.0115	
10 29 90	29-Oct-90	-0.0756	_	-0.0113		-0.0378	0.0304	-0.0341	-0.0003	-0.0057	-0.0021	-0.0018	-0.0001	-0.0172	-0.0057	
4 26 91	26-Apr-91	-0.0769		-0.0132		-0.0385	0.0297	-0.0341	-0.0003	-0.0066	-0.0025	-0.0021	-0.0004	-0.0172	-0.0229	
8 7 91	07-Aug-91	-0.0764		-0.0144		-0.0382	0.0284	-0.0333	0.0005	-0.0072	-0.0028	-0.0022	-0.0005	0.0286	-0.0286	
4 20 92	20-Apr-92	-0.0740		-0.0125		-0.0370	0.0288	-0.0329	0.0009	-0.0063	-0.0022	-0.0021	-0.0004	0.0516	-0.0229	
3 28 94	28-Mar-94	-0.0787		-0.0128		-0.0394	0.0317	-0.0356	-0.0018	-0.0064	-0.0017	-0.0024	-0.0007	-0.1031	-0.0401	
11 10 94	10-Nov-94	-0.0768		-0.0127		-0.0384	0.0306	-0.0345	-0.0007	-0.0064	-0.0015	-0.0025	-0.0008	-0.0401	-0.0458	
3 30 95	30-Mar-95	-0.0767	_	-0.0133		-0.0384	0.0302	-0.0343	-0.0005	-0.0067	-0.0018	-0.0025	-0.0008	-0.0286	-0.0458	
3 25 96	25-Mar-96	-0.0779	0.0606	-0.0146	-0.0041	-0.0390	0.0303	-0.0347	-0.0009	-0.0073	-0.0021	-0.0026	-0.0009	-0.0516	-0.0516	
	Terra Tilt Field Data Sheet	Data Sheet														

Hopkinton Dam - Outlet Channel East Wall 16 Project: Plate No: Initial Date:

Nov. 30, 1989

		_	~	_	_	_	_	C,	7	_	īC	~	æ	*			0
B Rot'n		0.000	-0.0057	0.000	0.000	-0.0057	0.000	-0.0172	-0.0057	0.0057	0.011	0.022	0.022	0.034	0.0347	2000	0.0200
A Rot'n		0.000	0.000	0.000	0.0115	0.0458	0.0458	0.0229	0.000	0.0229	-0.0057	0.0458	0.0516	0.0344	0.0516	0 0450	0.0400
3 cum. A		0.000	-0.0001	0.000	0.0000	-0.0001	0.000	-0.0003	-0.0001	0.0001	0.0002	0.0004	0.0004	9000.0	0.0006	3000	0.0003
B avg.		0.0068	0.0067	0.0068	0.0068	0.0067	0.0068	0.0065	0.0067	0.0069	0.0070	0.0072	0.0072	0.0074	0.0074	0.000	0.0073
B180		-0.0106	-0.0106	-0.0105	-0.0107	-0.0115	-0.0113	-0.0112	-0.0104	-0.0116	-0.0119	-0.0113	-0.0114	-0.0113	-0.0118	0.0447	-0.0117
Во		0.0029	0.0028	0.0030	0.0028	0.0018	0.0022	0.0018	0.0030	0.0021	0.0021	0.0030	0.0030	0.0034	0.0030	0000	0.0029
\ cum.		0.000.0	0.000	0.000	0.0002	0.0008	0.0008	0.0004	0.000	0.0004	-0.0001	0.0008	6000.0	90000	60000	0000	0.0008
A avg /		-0.0082	-0.0082	-0.0082	-0.0080	-0.0074	-0.0074	-0.0078	-0.0082	-0.0078	-0.0083	-0.0074	-0.0073	-0.0076	-0.0073		-0.0074
A180	******	0.0044	0.0043	0.0044	0.0040	0.0025	0.0027	0.0031	0.0044	0.0031	0.0034	0.0032	0.0031	0.0035	0.0027		0.0030
Ao	****	-0.0120	-0.0120	-0.0120	-0.0120	-0.0123	-0.0120	-0.0125	-0.0119	-0.0125	-0.0132	-0.0116	-0.0115	-0.0116	0 0110		-0.0117
3180 rdg	*****	-0.0211	-0.0211	-0.0210	-0.0214	-0.0230	-0.0226	-0.0224	-0.0207	-0.0232	-0.0237	-0.0226	-0.027	-0.0226	0.0235	0.00	-0.0233
Bo rdg B1	*****	0.0057	0.0056	0 0059	0.0056	0.0036	0.0043	0.0036	0.0059	0.0020	0.0041	0.000	9000	0.0067	0000	0000	0.0057
A180 rdg	************	0.0088	0.0086	0.0087	0.000	0.0050	0.0054	0.0062	0.008	0.000	0.00	0.000	0.000	0.000	2000	0.000	0.0060
Ao rdg A	*******	-0.0240	-0.0240	-0.039	-0.039	-0.0245	-0.039	0.0250	-0.0230	0.0250	0.02530	0.0204	10.05	0.023	0.0232	-0.0237	-0.0233
Date	*********		1- Jan-90	- lan-90	-Mar-90	22-Mar-90	00-14-V	Aug-90	06-50-	Apr 91	10.01	-Aug-91	Mor 04	Nov 94	16-A0NI-	-Mar-90	-Mar-96
Mo. Dy. Yr.	大大的女 化水水石 化水水子 化水中水水	Litin	1 3 90 03	1 19 90 16	3 2 90 02	4 27 90 27	5 14 90 14.	88	8 8	8 5	2 2 31 22	- 6	70	11 10 94 10	t 1	2 20 32 20	3 25 96 25

Terra Tilt Field Data Sheet
Project: Hopkinton Dam - Outlet Channel East Wall
Plate No: 17
Initial Date: Nov. 30, 1989

Rot'n	0.0000	0.0000	0.0000	0.0057	0.0286	0.0229	0.0401	0.0229	0.0344	0.0344	0.0229	0.0172	0.0115	0.0115	0.0172
A Rot'n B	0.0000	0.0115	0.0057	0.0115	0.0229	0.000.0	-0.0229	-0.0172	-0.0057	0.0057	0.0286	0.0401	0.0286	0.0458	0.0344
B cum. A	0.000	0.000.0	0.000.0	0.0001	0.0005	0.0004	0.0007	0.0004	0.0006	9000.0	0.0004	0.0003	0.0002	0.0002	0.0003
B avg.	0.0447	0.0447	0.0447	0.0448	0.0452	0.0451	0.0454	0.0451	0.0453	0.0453	0.0451	0.0450	0.0449	0.0449	0.0450
B180	-0.0485	-0.0485	-0.0485	-0.0487	-0.0500	-0.0497	-0.0500	-0.0488	-0.0499	-0.0501	-0.0493	-0.0491	-0.0491	-0.0493	-0.0494
Во	0.0408	0.0408	0.0409	0.0408	0.0403	0.0404	0.0407	0.0414	0.0407	0.0404	0.0409	0.0409	0.0407	0.0405	0.0405
4 cum.	0.000	0.0002	0.0001	0.0002	0.0004	0.0000	-0.0004	-0.0003	-0.0001	0.0001	0.0005	0.0007	0.0005	0.0008	9000.0
A avg	-0.0191	-0.0189	-0.0190	-0.0189	-0.0187	-0.0191	-0.0195	-0.0194	-0.0192	-0.0190	-0.0186	-0.0184	-0.0186	-0.0183	-0.0185
A180	0.0154	0.0152	0.0153	0.0150	0.0139	0.0145	0.0148	0.0158	0.0148	0.0142	0.0145	0.0143	0.0145	0.0139	0.0141
Ao	-0.0228	-0.0225	-0.0226	-0.0227	-0.0235	-0.0236	-0.0241	-0.0230	-0.0236	-0.0238	-0.0227	-0.0225	-0.0227	-0.0226	-0.0229
B180 rdg	-0.0970	-0.0970	-0.0970	-0.0974	-0.1000	-0.0993	-0.1000	-0.0975	-0.0997	-0.1002	-0.0985	-0.0982	-0.0981	-0.0985	-0.0988
Bordg B	0.0816	0.0816	0.0818	0.0816	0.0805	0.0808	0.0813	0.0827	0.0813	0.0807	0.0818	0.0817	0.0814	0.0810	0.0810
v180 rdg	0.0307	0.0304	0.0305	0.0299	0.0278	0.0290	0.0296	0.0316	0.0295	0.0283	0.0289	0.0286	0.029	0.0278	0.0282
Aordg A	-0.0456	-0.0450	-0.0452	-0.0453	-0.0470	-0.0471	-0.0481	-0.0460	-0.0472	-0.0475	-0.0453	-0.0449	-0.0454	-0.0451	-0.0457
Date		3-Jan-90	9-Jan-90	2-Mar-90	7-Apr-90	-Mav-90	0-Aug-90	9-Oct-90	6-Apr-91	7-Aug-91	0-Apr-92	8-Mar-94	-Nov-94	0-Mar-95	25-Mar-96
Mo. Dy. Yr.	Initis	1 3 90 0	1 19 90 1	3 2 90 0	4 27 90 2	5 14 90 14	8 20 90 20	10 29 90 2		7 91	4 20 92 20	3 28 94 28	11 10 94 10	3 30 95 30	3 25 96 28

9 of 9

Project: Hopkinton Dam - Outlet Channel East Wall Survey Data

Mar-97	
Date Printed:	
Sulvey Data	

	elev. chg	0000	0.007		0.014	-0.004	0.004	0.008	0.008	0.00	0.007	0.005	0.018	0.067	0.00	0.041	0.030			elev. chg	0.00	0.005	-0.003	0.010	0.002	0.007	0.007	0.007	0.008	0.015	0.006	0.022	0.068	0.040	0.035
	elev.	385 212	385.219		385.226	385.208	385,216	385,220	385.220	385.218	385.219	385.217	385 230	385 279	000.000	385.253	385.242	_			385,113	385.118	385.110	385.123	385.115	385.120	385.120	385.120	385.121	385.128	385.119	385,135	385.181	385,153	385.148
Plate No. 5	deltax	0000	0.010		0.010	0.000	0.020	0.070	0.095	0.117	0.203	0.123	0 100	101	0.0	0.160	0.190	Diate No 10		delta x	0.000				0.020			0.130						0.205	0.210
		Q	0.007	,	0.011	-0.007	0.003	0.007	0.007	0.005	0.005	0.003	0 0 0	790.0	200	0.042	0.026	-	_	elev. chg delta	0.000	0.002	-0.007	0.008	-0.008	900.0	0.010	0.010	900.0	600.0	0.008	0.020	0.067	0.036	0.031
			385.270		385.274	385.256	385.266	385,270	385.270	385.268	385,268	385,266	205 275	205.200	202.230	385,305	385.289			elev. e	385.090	385.092	385.083	385.098	385.082	385.096	385.100	385.100	385.096	385.099	385,098	385.110	385.157	385.126	385.121
Plate No. 4	delta x	0000	0.020		0.010	0.000	0.050	0.099	0.115	0.140	0.216	0.125	9 5	9 6	00.0	0.185	0.220	Dista No 9	riale vo. e	delta x	0.000	0.010	0.015	0.020	0.010	0.040	0.100	0.120	0.130	0.201	0.136	0.115	0.180	0.190	0.200
	elev. chg	0000	0.005		0.011	9000	0.001	0.005	0.005	0000	0000	0 003	9000	0.00	0.000	0.041	0.026			elev. chg	0	0.003	-0.003	600.0	-0.005	0.003	0.009	0.00	0.007	0.007	0.004	0.019	0.067	0.040	0.029
_	elev.	i	385.270		385.276	385.271	385,266	385.270	385.270	385 269	385 269	385 268	200.000	2007.200	565.55	385.306	385.291			elev.	385.091	385.094	385.088	385.100	385,086	385.094	385.100	385,100	385.098	385.098	385,095	385.110	385,158	385,131	385.120
Plate No. 3	delta x	0000	0.020		0.020	0.000	0.050	0.080	0.115	0.125	0 224	0 135	25.0	21.0	0.1.0	0.170	0.210	Dioto No o	Flate No. o	deltax	0000	0.000	0.010	0.010	-0.010	0.020	0.080	0.090	0.118	0.183	0.119	0 095	0.160	0.160	0.180
	elev. cha	0000	0.006		0.016	-0.004	0.004	0.010	0 0 0	1000	9000	9000	0.00	0.00	0.00	0.041	0.024			elev. cha	0000	0.00	-0.002	0.012	-0.004	900.0	0.007	0.007	0.007	0.011	0.006	0 002	0.070	0.043	0.032
2	elev	285 360	385.366		385.376	385.356	385.364	385 370	385 370	385 361	385 366	385 366	200.000	365.575	385.430	385.401	385.384			elev.	03	385,109	385.101	385.115	385,099	385,109	385.110	385.110	385,110	385.114	385 109	385 125	385 173	385.146	385.135
Plate No. 2	deltax	000	0.030		0.010	0.000	0.030	0100	0.115	0.125	0.212	0.4.12	0.130	0.112	0.160	0.205	0.220		Plate No. /	delta x	0000	0000	0.015	0000	-0.010	0.050	0.089	0.100	0 118	0 197	0 121	0.105	0.170	0 180	0.190
	elev. cha	0000	0.008		0.014	-0.002	0.003	0000	000	0000	200.0	00.0	0.000	410.0	0.068	0.041	0.020			elev cha	0000	0000	-0.007	0000	-0.013	000	-0001	0.00	0.001	0.00	000	0.00	0.00	0.040	0.023
	elev	554	385.359		385,365	385,349	385 354	385 360	385.350	305.333	200.000	205.330	200.007	385,365	385.419	385,392	385.371			olev	15	385 222	385 214	385 226	385 208	385 220	385 220	385 220	385 220	385 226	385 221	385 235	385 251	385 261	385.244
Plate No. 1	deltax	900	0.020		0.020	0.000	0000	0000	20.0	0000	0.000	0.0	0.100	0.0/8	0.130	0.160	0.130		Plate No. 6	deltax	0000	0000	0000		0.00	0.040	080	0.075	0.2.0	0.210	0.10		272	0.170	0.190
	Date	4E May 75	29-Jan-74	25-Jun-75	28-Apr-76	03-Nov-77	23-May-78	15-Nov-87	26. Apr. 89	60-140-03	17 100 00	02 May 00	US-May-90	23-Apr-91	23-May-94	09-Nov-94	15-Mar-96			Date	15-May 73	29- lan-74	25. lin-75	28-Anr-76	03-Nov-77	23-May-78	15-Nov-87	26-Anr-89	08-Dec-80	17- lan-90	O3-May-90	23 Apr 01	23 May 94	Do-Nov-94	15-Mar-96
	Wo. Dv. Yr.	E 45 73		6 25 75	4 28 76	11 3 77	5 23 78	45	4 26 89	g a	, ,	2 2	2	18 53 91	23	11 9 94	3 15 96			Mo. Dv. Yr.	5 15 73			2 8		3	15		α	7		73 93	3 8		3 15 96

elev. ch	_	100000								
	_~	feltax	elev.	elev. chg	delta x	elev.	elev. chg	deita x	elev.	elev. chg
=	0000	0.00	385.085	0.000	0000	385.083	0.000	0.000	385.070	0.000
	100	0.000	385.088	0.003	0.000	385.083	0.000	0.010	385.067	-0.003
. ~	90	0.011	385.083	-0.002	0.011	385.081	-0.002	0.027	385.063	-0.007
\sim	-	0.020	385,091	0.006	0.015	385.089	0.006	0.035	385.074	0.004
2	7	-0.010	385.079	-0.006	-0.030	385.079	-0.004	0.000	385.060	-0.010
2	. 10	0.020	385.076	-0.009	0.010	385.084	0.001	0.025	385.069	-0.001
19		0.020	385.090	0.005	0.00	385,090	0.007	0.020	385.070	0.00
5		0.010	385,090	0.005	0.010	385.090	0.007	0.020	385.070	0.000
60		0.025	385,089	0.004	0.028	385.085	0.002	0.035	385.070	0.000
8		0.063	385,089	0.004	0.015	385.087	0.004	0.021	385.068	-0.002
200		0.017	385.088	0.003	0.003	385.084	0.001	0.015	385.070	0.000
2		0 00	385,105	0.020	0.005	385.100	0.017	0.015	385.080	0.010
90		0.040	385.140	0.055	0.010	385,135	0.052	0.020	385.120	0.050
8		0 030	385.114	0.029	0.035	385,108	0.025	0.015	385,089	0.019
2	. ~	0.030	385.108	0.023	0.020	385,108	0.025	0.020	385.084	0.014

1 of 1

APPENDIX C -- CRREL REPORT

Deformation of a retaining wall by ground freezing

Lawrence S. Danyluk and Stephen A. Ketcham
US Army Cold Regions Research and Engineering Laboratory, Hanover, NH, USA

ABSTRACT: Field measurements were made of the horizontal movement of a large retaining wall in Hopkinton, NH, USA. The reinforced concrete retaining wall is part of an earthen dike on the downstream side of an earthfilled dam. The dike is used to separate an existing wood-cribbed dam and its associated forebay pool from the outlet channel of the earth dam. The wall, completed in 1963, is 71 m long and varies in height from 5.7 to 10.7 m. Previous surveys have indicated that outward displacements at the top of the wall occur during the winter and rebound partially during the spring. Observations of the wall show severe, permanent deformation. The owner of the dam—the US Army Engineer Division, New England—is concerned about the stability of the wall and plans on doing remedial work shortly. Prior to the 1995-96 winter season, the US Army Cold Regions Research and Engineering Laboratory installed various sensors on and behind the wall to continuously measure these displacements and to provide information for the repair strategy. The measurements indicate that the movement is frost related. Horizontal movement at the top of the wall of 20 mm, and increased earth pressure behind the wall of almost 200 kPa, were measured during the period of frost penetration. As the frost subsided in the spring, the earth pressure approached pre-winter values. Although the displacement at the top of the wall did rebound, it did not recover completely. This paper will present and discuss data recorded during the 1995-96 winter. These will include temperatures on the face of the wall, as well as the soil behind it, pressure between the wall and backfill material, lateral displacement at the top of the wall, and the angle of rotation along the face of the wall.

1 BACKGROUND

1.1 Site

The retaining wall is part of the Hopkinton-Everett reservoir system and is located in the town of Hopkinton, NH, on the Contoocook River, approximately 15 km west of Concord, NH. Construction of the project was started in November 1959 and completed in July 1963. The dam is rolled earth-fill with rockfill slope protection and is approximately 240 m long by 22 m high. Figure 1a shows the outlet works being separated by a concrete retaining wall (71 m long) and a rockfilled crib-type timber dam (100 m long) with the stilling basin on the west side of the dike and the forebay pool on the east. The forebay pool is used to supply water to a nearby paper mill. Figure 1b shows the difference in elevation of the stilling basin and forebay pool of approximately 10 m.

The site has an elevation of 118 m and a mean annual precipitation of 945 mm. The mean annual air temperature is 7.1°C. The mean annual air freezing index, and the 1-in-100-year index, are 14,800 h°C and 21 300 h°C respectively.

$1.2\ Retaining\ wall\ and\ fill\ material$

Figure 2 illustrates a section of the retaining wall. The wall is made of reinforced concrete and is 0.46 m thick at the top and increases to 1.98 m at its base. The wall sits on a keyed base that is 2 m thick. There are construction joints every 3.66 m vertically and expansion joints that separate the wall into monoliths every 6.1 m horizontally. The bulk of the soil behind the wall is specified on construction drawings to be a locally available "impervious fill." The soil placed within a meter of the wall is specified as a "special fill," indicating that it was compacted by hand-tamping only. Above these materials is a layer of gravel and a layer of rockfill. Inspection during this project revealed the surfaces depicted in Figure 2. While the forebay pool level is varied slightly throughout the year, the fill soil remains below the water table.

1.3 Wall movement

Between inspections in 1967 and 1972, it was found that the wall at the second monolith upstream of the

a. Outlet works, looking south.

b. Retaining wall, looking west.

Figure 1. Hopkinton Dam.

mm relative to the first monolith, which is prevented from large movements by its rigid connection to the abutment shown in Figure 1. Similar movements were noted in other monoliths. In 1972 a baseline survey was established using permanently mounted monuments. Since then, the top of the wall has displaced outward 60 mm (see Figure 3), averaging 2–3 mm each year. Surveys performed in winter and subsequent spring months revealed that the maximum annual displacement occurred during the winter, with a partial rebound during the spring. Observations and additional measurements indicated that these movements remains 1 from tilting or flavoral deformation of the wall

The owner of the dam had concerns that the base of the wall may be sliding or tilting and had several expioratory borings drilled. It was found that the soil under the footings was a very dense glacial till and that there was no indication of footing movement. It was concluded that the tilting was taking place within the wall itself. However, it was not known if the movement was frost related.

1.4 Instrumentation

During the full of 1994, the second monolith was in-

Figure 2. Typical section of retaining wall and instrumentation locations.

Figure 3. Horizontal displacement between the first and second monoliths.

files of its displacements. Of interest also were the temperatures of the air, wall, soil, and water, and the magnitude of the pressure causing the movement.

Figure 2. which depicts the second monolith section, illustrates the locations of the sensors: 30 thermistor-type temperature sensors were installed, 26 of these being placed in the upper 2.5 m of impervious fill immediately behind the wall (a silty clay with a dry density of 2066 kg/m³), and 4 being placed on the face of the wall. An additional thermistor was installed during October 1995 in the forebay pool at a depth of 1–2 m. Air temperature is recorded approximately 0.5 km from the wall, independently from this instrumentation.

Two linear motion potentiometers (LMP) were installed to monitor the horizontal movement at the top of the wall. Each LMP was anchored to the wall at one end and to a piezometer casing at the other. Since the LMPs measure the relative movement between their anchor points, movements of the piezometer casings—the reference points—are of concern. To provide a comparison of wall section movements, one LMP (LMP-North) was attached to the second monolith from the abutment and the other (LMP-South) was attached to the fourth monolith.

To establish profiles of the wall displacements, a vibrating-wire inclinometer assembly was installed on the face of the second monolith. The assembly contains three 1.95-m inclinometer sections, each with a sensor to independently measure rotation at its top relative to its bottom. The assembly is housed within a tube (seen as a vertical line in Figure 1b) that is connected to the wall at the ends of the sections. The des-

ignations "top," "middle," or "bottom" inclinometer identify their relative positions.

One vibrating-wire earth pressure cell was installed between the wall and the fill of the second monolith. It was placed approximately 0.5 m below the surface of the impervious fill. Care was taken during installation that there was firm contact between the soil and wall.

All sensors are connected to a solar-powered data recorder that is set to provide readings every 2 hours. Technical difficulties with this system delayed its start-up until March of 1995, while further difficulties have caused only minor interruptions.

2 INSTRUMENT MEASUREMENTS FOR THE 1995–96 WINTER SEASON

Measurements illustrating climatic data and wall and soil response histories from the 1995–96 winter season are presented in Figures 4 through 6. Figure 4 contains nine graphs (parts a—i) showing temperature, pressure, and deflection data for the period August 1995 to August 1996. The air and forebay pool water

temperatures are presented in Figures 4a and b, respectively, while data from the pressure cell is depicted in Figure 4c. Deflections at the top of the wall relative to the piezometer casings are shown in the LMP readings in Figures 4d and e. Deflections calculated from the inclinometer rotational measurements are shown in the remaining parts. Figures 4g-i contain deflections from the top, middle, and bottom inclinometers, respectively, while Figure 4f totals the three inclinometer deflections, providing a displacement measure for the top of the wall relative to the base of the bottom inclinometer. Zero values in the pressure cell, LMP, and inclinometer graphs correspond to the initial readings at the time of installation during the Fall of 1994; positive deflections in the LMP and inclinometer graphs correspond to outward movements of the wall.

Contours of temperature calculated from the in-soil thermistor measurements are shown in Figure 5, which has 11 graphs presenting soil temperatures at 2-week intervals from 6 December through 24 April. The contours are superimposed on a cross section showing the upper 4 m of the wall and the adjacent fill within 2–2.5 m of the wall.

A sequence of wall profiles is shown in the shaded region in Figure 6. The profiles were calculated from the inclinometer readings at weekly intervals from 6 December through 24 April. Figure 6 gives 21 pro-

1,

Figure 5. Temperature contours behind the second monolith.

files, either whole or in-part, depending upon their position in the sequence. Each profile comprises three line segments representing the sections of the inclinometer assembly—the bottom, middle, and top. The deflections indicated are those relative to the wall position on 6 December and to the base of the bottom inclinometer.

Figure 6. Retaining wall profile.

3 DISCUSSION

The winter of 1995-96 was warmer than usual at the site, having a freezing index of approximately 14,000 h°C, which is slightly below the mean. The air temperatures and forebay pool water temperatures indicated in Figures 4a and b further characterize the season, but also provide "driving" temperatures for heat transfer through the wall and the saturated fill behind the wall. Of particular interest are the number of thawing events revealed by the wintertime air temperature data and the lack of variation in the water temperature from the beginning of December to the end of March. The influx of new water into the forebay pool and its latent heat capacity appear to have kept the temperature at the sensor location just slightly above freezing. Visual observations further indicated that the forebay pool never froze during the winter.

The temperature contours in Figure 5 highlight the upper 2.5 m of the impervious fill in which the thermistors were placed behind the wall. A greater susceptibility to heat loss is evident in this corner area as the soil against the wall and immediately below the gravel is the first to freeze, reflecting losses through the narrow upper portion of the wall and upward through the gravel and rockfill layer. This is also the area that, later in the season, had the greatest frost penetration horizontally away from the wall, and the area in which the pressure cell was installed.

The pressure cell measurements shown in Figure 4c are relatively constant until early December when frost first penetrates into the soil behind the wall. The pressure generally increases with the progression of the freezing front to a maximum pressure of 170 kPa in early February relative to the early December value. Most of the peaks and valleys of the graph correspond to changes in the air temperature and associated freezing or thawing of the backfill. The highest peak occurs during an especially cold period in February, while the prominent valleys follow or coincide with midwinter thawing events. The complexity of the soilwall interaction is hinted at by the lack of similar peaks and valleys in the deflection histories (Figure 4d-e), which reveal that wall movements are less frequent and less dramatic than the variations of pressure at the location of the pressure cell. It is interesting to note that the pressure returns to pre-freezing values before the frost is totally out of the soil, but only after the thaw does the wall rebound.

The individual inclinometer graphs in Figure 4g-i show deflection histories with similar magnitudes and variations. Each reveals a seasonally induced permanent deflection by a comparison of the reading after thaw to the early December value. The top and bot-

tom inclinometer data indicate the largest permanent deflection—1 to 2 mm—while the middle inclinometer shows less than 1 mm deflection. In the total inclinometer graph of Figure 4f, a permanent total deflection of nearly 4 mm is indicated.

Deflections at the top of the wall from the LMPs (Figure 4d and e) indicate a maximum measured deflection of 20 mm for LMP-South relative to its early December value. This occurred in mid-January, when the total relative deflection of the inclinometers was 5-10 mm less in magnitude. The inclinometer maximum deflection occurred during late February, but was at this time nearly equal to the LMP-South deflection, again considering relative values. A reason for this difference is not apparent, although movement of the piezometer casing (the LMP-South anchor), or the complexity of the soil-wall interaction, may be causes. Permanent seasonal deflections indicated by the LMPs are similar to the magnitude shown by the inclinometer total-nearly 4 mm. However, fluctuations in the post-thaw readings obscure a distinct measure of this.

The wall profile sequence in Figure 6 illustrates the outward and retracting movements of the wall during the freezing season. While bending is evident in the profiles, the figure shows the week-by-week deformations to be predominantly rotational, especially following positive movements. This indicates that the wall deformations are associated more with tilting—at least relative to the base of the bottom inclinometer—than with flexure. The permanent deformation reflected in the final profile shows a "bulge" at

the base of the middle inclinometer. This is likely due to deformations around a construction joint located midway between the top and bottom of this inclinometer section. Indeed, visual inspections show a slight outward permanent deflection at the location of this joint.

4 CONCLUSION

Measurements taken during the 1995–96 winter indicate that the wall deflection is caused by ground freezing. While there have been no investigations to determine the existence of ice lenses during the winter season, the loading causing the deflection is apparently due to frost heaving pressures within the saturated silty clay behind the wall. When the soil freezes, there is an almost immediate increase in the pressure and deflection out of the wall. Wall deflections appear to be at their greatest when the frost is at its deepest point. As the soil thaws, the pressure decreases to pre-season values and the wall rebounds except for a permanent deflection of 3–4 mm. This agrees reasonably well with historical averages of 2–3 mm per year.

The indications that the deformation of the wall is more tilting than bending is of great interest to the owners of the wall, as they work to identify the structural behavior of the wall prior to initiating remedial work. The owners characterize the ratchetting deformations of the wall as serious, and are using the measurements described here to plan their remedial work appropriately.