Definition 1. In einem U_2 Schaltkreis gibt es nur Gatter der Form $(x^a \oplus y^b)^c$, diese sind Basisfunktionen auf dem AND (\land) Operator. Durch die Regeln von DeMorgan¹ kann man diese jedoch auch mit dem $OR(\lor)$ Operator erzeugen.

Definition 2. *Größenkomplexität ist die minimale Anzahl an Gatter, die man für die Synthese eines Schaltkreises braucht.*

Lemma 1. Gegeben ist ein beliebiger U_2 Schaltkreis β . Für diesen gibt es einen Schaltkreis β' zur AND, OR-Basis, der höchstens die zweifache Größenkomplexität hat wie β . In β' werden nun auch keine internen NOT-Gatter mehr verwendet. Für jeden Eingang von β wird auch sein Inverses bereit gestellt.

Corrolar 1. Sei C(f) die Größenkomplexität zur Basis U_2 . Sei C'(f) die Größenkomplexität zur AND, OR-Basis mit zusätzlichen invertierten Eingängen, d.h. die minimal notwendige Anzahl Gatter um damit die Funktion f zu realisieren. Dann ist $C'(f) \leq 2 \cdot C(f)$.

$$\forall \beta (\in U_2) \exists \beta' (\in AND/OR) : C'(\beta') \leq 2 \cdot C(\beta)$$

Man hat die Gatter der Form $(x^a \oplus y^b)^c$, bei denen \oplus die Operation (\land) darstellt, wie schon beschrieben ist es mit dem (\lor) genauso und die Variablen $a,b,c \in \{0,1\}$ geben an, ob das Inverse oder die Projektion des Ein- oder Ausgangs benutzt werden soll. Man definiert bei x^1 das Inverse und bei x^0 die Projektion. Als Operator benutzt man (\land) , so kann man folgende Tabelle mit Hilfe der Regeln von DeMorgan erstellen.

a	b	c = 0	c = 0 DeMorgan	c = 1	c = 0 DeMorgan
0	0	$(x^0 \wedge y^0)^0$	$(x^1 \vee y^1)^1$	$(x^0 \wedge y^0)^1$	$(x^1 \vee y^1)^0$
0	1	$(x^0 \wedge y^1)^0$	$(x^1 \vee y^0)^1$	$(x^0 \wedge y^1)^1$	$(x^0 \vee y^1)^0$
1	0	$(x^1 \wedge y^0)^0$	$(x^0 \vee y^1)^1$	$(x^1 \wedge y^0)^1$	$(x^1 \vee y^0)^0$
1	1	$(x^1 \wedge y^1)^0$	$(x^0 \vee y^0)^1$	$(x^1 \wedge y^1)^1$	$(x^0 \vee y^0)^0$

Mit dieser Tabelle baut man einen beliebigen U_2 Schaltkreis um, sodass er das Lemma erfüllt. Man erstellt für jedes Gatter $z=(x^a\oplus y^b)^c$ zwei neue Gatter z_0, z_1 wobei $z_0=(x^a\oplus y^b)^0$ und $z_1=(x^a\oplus y^b)^1$ repräsentieren. Somit hat man für jedes Gatter die Projektion und das Inverse im neuen Schaltkreis. Diesen Schritt führt man für jedes Gatter und die Eingänge durch. Der neue Schaltkreis β' hat nun die doppelte Größenkomplexität wie der alte β Schaltkreis, weil man die Anzahl der Gatter verdoppelt hat. Jedoch kann man die Größenkomplexität noch etwas verringern, indem man die für den Ausgang irrelevanten Gatter entfernt. Somit gilt $C(\beta') \leq 2 \cdot C(\beta)$.

Nun folgt ein Beispiel:

Wir nehmen uns die Funktion: $x_{out} = (x_1 \oplus (\overline{x_2} \oplus (x_3 \wedge \overline{x_4})))^2$ und stellen dafür den entsprechenden U_2 Schaltkreis auf, dieser hat eine Größenkomplexität von 7.

Bemerkung: Die "Kreise" sind keine eigenständigen NOT-Gatter, weil im U_2 keine existieren, sondern gehören intern zum Gatter.

 $^{{}^{1}\}overline{a \wedge b} = \overline{a} \vee \overline{b}$

 $^{^2 \}oplus = (a \wedge \overline{b}) or(\overline{a} \wedge b)$ (XOR)

Nun stellen wir in unserem neuen Schaltkreis für jedes Gatter die Projektion und sein Inverses bereit. Der neue Schaltkreis hat eine Größenkomplexit von 14 also $7 \cdot 2 = 14$ somit erfüllt er das Lemma.

Am Ende entfernen wir noch die für den Ausgang irrelevanten Gatter erreichen das unser Schaltkreis sogar kleiner als 14 geworden ist, nämlich 11.

