# クラスタ分析

基本的な考え方と階層的方法

村田 昇

# 講義概要

- ・ 第1日: クラスタ分析の考え方と階層的方法
- 第2日: 非階層的方法と分析の評価

# クラスタ分析の考え方

#### クラスタ分析

· cluster analysis

個体の間に隠れている集まり=クラスタを個体間の"距離"にもとづいて発見する方法

- 個体間の類似度・距離 (非類似度) を定義:
  - 同じクラスタに属する個体どうしは似通った性質
  - 異なるクラスタに属する個体どうしは異なる性質
- さらなるデータ解析やデータの可視化に利用
- 教師なし学習の代表的な手法の一つ

### クラスタ分析の考え方

- 階層的方法:
  - データ点およびクラスタの間に 距離 を定義
  - 距離に基づいてグループ化:
    - \* 近いものから順にクラスタを 凝集
    - \* 近いものが同じクラスタに残るように 分割
- 非階層的方法:
  - クラスタの数を事前に指定
  - クラスタの **集まりの良さ** を評価する損失関数を定義
  - 損失関数を最小化するようにクラスタを形成

#### 事例

- 総務省統計局より取得した都道府県別の社会生活統計指標の一部
  - 総務省 https://www.e-stat.go.jp/SG1/estat/List.do?bid=000001083999&cycode=0
  - $\ddot{\tau}$   $\varphi$  https://noboru-murata.github.io/multivariate-analysis/data/japan\_social.csv
    - \* Pref: 都道府県名
    - \* Forest: 森林面積割合(%) 2014年

- \* Agri: 就業者 1 人当たり農業産出額 (販売農家) (万円) 2014 年
- \* Ratio: 全国総人口に占める人口割合 (%) 2015 年
- \* Land: 土地生産性 (耕地面積 1 ヘクタール当たり) (万円) 2014 年
- \* Goods: 商業年間商品販売額 [卸売業+小売業] (事業所当たり) (百万円) 2013 年

# • データの内容

| Forest    | Aari F | Ratio I | Land ( | Goods |        |
|-----------|--------|---------|--------|-------|--------|
| Hokkaido  | 67.9   | 1150.6  | 4.23   | 96.8  | 283.3  |
| Aomori    | 63.8   | 444.7   | 1.03   | 186.0 | 183.0  |
| Iwate     | 74.9   | 334.3   | 1.01   | 155.2 | 179.4  |
| Miyagi    | 55.9   | 299.9   | 1.84   | 125.3 | 365.9  |
| Akita     | 70.5   | 268.7   | 0.81   | 98.5  | 153.3  |
| Yamagata  | 68.7   | 396.3   | 0.88   | 174.1 | 157.5  |
| Fukushima | 67.9   | 236.4   | 1.51   | 127.1 | 184.5  |
| Ibaraki   | 31.0   | 479.0   | 2.30   | 249.1 | 204.9  |
| Tochigi   | 53.2   | 402.6   | 1.55   | 199.6 | 204.3  |
| Gumma     | 63.8   | 530.6   | 1.55   | 321.6 | 270.0  |
| Saitama   | 31.9   | 324.7   | 5.72   | 247.0 | 244.7  |
| Chiba     | 30.4   | 565.5   | 4.90   | 326.1 | 219.7  |
| Tokyo     | 34.8   | 268.5   | 10.63  | 404.7 | 1062.6 |
| Kanagawa  | 38.8   | 322.8   | 7.18   | 396.4 | 246.1  |
| Niigata   | 63.5   | 308.6   | 1.81   | 141.9 | 205.5  |
| Toyama    | 56.6   | 276.1   | 0.84   | 98.5  | 192.4  |
| Ishikawa  | 66.0   | 271.3   | 0.91   | 112.0 | 222.9  |
| Fukui     | 73.9   | 216.1   | 0.62   | 98.5  | 167.3  |
| Yamanashi | 77.8   | 287.4   | 0.66   | 325.3 | 156.2  |
| Nagano    | 75.5   | 280.0   | 1.65   | 211.3 | 194.4  |
| Gifu      | 79.0   | 283.7   | 1.60   | 192.1 | 167.9  |
| Shizuoka  | 63.1   | 375.8   | 2.91   | 314.5 | 211.4  |
| Aichi     | 42.2   | 472.3   | 5.89   | 388.9 | 446.9  |
| Mie       | 64.3   | 310.6   | 1.43   | 174.3 | 170.1  |
| Shiga     | 50.5   | 222.8   | 1.11   | 104.9 | 170.7  |
| Kyoto     | 74.2   | 267.8   | 2.05   | 212.5 | 196.7  |
| 0saka     | 30.1   | 216.3   | 6.96   | 238.8 | 451.2  |
| Hyogo     | 66.7   | 261.2   | 4.35   | 197.7 | 212.5  |
| Nara      | 76.8   | 207.0   | 1.07   | 182.7 | 147.0  |
| Wakayama  | 76.4   | 251.1   | 0.76   | 278.4 | 136.4  |
| Tottori   | 73.3   | 249.9   | 0.45   | 187.6 | 162.2  |
| Shimane   | 77.5   | 214.1   | 0.55   | 140.8 | 141.1  |
| Okayama   | 68.0   | 254.8   | 1.51   | 184.9 | 207.8  |
| Hiroshima | 71.8   | 286.2   | 2.24   | 192.2 | 304.6  |
| Yamaguchi | 71.6   | 216.9   | 1.11   | 125.8 | 158.9  |
| Tokushima | 75.2   | 315.4   | 0.59   | 313.5 | 134.5  |
| Kagawa    | 46.4   | 249.5   | 0.77   | 242.9 | 232.9  |
| Ehime     | 70.3   | 288.5   | 1.09   | 231.6 | 179.4  |
| Kochi     | 83.3   | 354.2   | 0.57   | 339.9 | 137.9  |
| Fukuoka   | 44.5   | 381.0   | 4.01   | 255.6 | 295.7  |
| Saga      | 45.2   | 468.7   | 0.66   | 230.3 | 137.9  |
| Nagasaki  | 58.4   | 428.9   | 1.08   | 296.0 | 154.0  |
| Kumamoto  | 60.4   | 456.6   | 1.41   | 285.5 | 172.5  |
| 0ita      | 70.7   | 360.1   | 0.92   | 222.8 | 148.3  |
| Miyazaki  | 75.8   | 739.1   | 0.87   | 487.7 | 170.6  |
| Kagoshima | 63.4   | 736.5   | 1.30   | 351.2 | 169.4  |
| 0kinawa   | 46.1   | 452.4   | 1.13   | 232.8 | 145.4  |



図 1: データの散布図



図 2: 主成分得点の散布図



図 3: 散布図上のクラスタ構造 (クラスタ分析の概念図)

# 階層的方法

# 凝集的手続き

- 1. データ・クラスタ間の距離を定義する
  - データ点とデータ点の距離
  - クラスタとクラスタの距離
- 2. データ点およびクラスタ間の距離を求める
- 3. 最も近い2つを統合し新たなクラスタを形成する
  - データ点とデータ点
  - データ点とクラスタ
  - クラスタとクラスタ
- 4. クラスタ数が1つになるまで2-3の手続きを繰り返す

# 事例

• 社会生活統計指標の一部 (関東) での例

# データ間の距離

### データ間の距離

• データ: 変数の値を成分としてもつベクトル

$$\boldsymbol{x}_i = (x_{i1}, \dots, x_{ip})^\mathsf{T}, \boldsymbol{x}_j = (x_{j1}, \dots, x_{jp})^\mathsf{T} \in \mathbb{R}^p$$



図 4: 凝集的クラスタリング



図 5: クラスタリングの手続き (その 1)



図 6: クラスタリングの手続き (その 2)



図 7: クラスタリングの手続き (その 3)



図 8: クラスタリングの手続き (その 4)



図 9: クラスタリングの手続き (その 5)



図 10: クラスタリングの手続き (その 6)



図 11: デンドログラムによるクラスタ構造の表示

- 距離:  $d(\mathbf{x}_i, \mathbf{x}_i)$
- 代表的なデータ間の距離:
  - ユークリッド距離 (Euclidean distance)
  - マンハッタン距離 (Manhattan distance)
  - ミンコフスキー距離 (Minkowski distance)

#### ユークリッド距離

- 最も一般的な距離
- 各成分の差の 2 乗和の平方根 (2 ノルム)

$$d(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{(x_{i1} - x_{j1})^2 + \dots + (x_{ip} - x_{jp})^2}$$

# マンハッタン距離

- 後述するミンコフスキー距離の q = 1 の場合
- 格子状に引かれた路に沿って移動するときの距離

$$d(\mathbf{x}_i, \mathbf{x}_j) = |x_{i1} - x_{j1}| + \dots + |x_{ip} - x_{jp}|$$

#### ミンコフスキー距離

- ユークリッド距離を q 乗に一般化した距離
- 各成分の差の q 乗和の q 乗根 (q ノルム)

$$d(\mathbf{x}_i, \mathbf{x}_j) = \left\{ |x_{i1} - x_{j1}|^q + \dots + |x_{ip} - x_{jp}|^q \right\}^{1/q}$$

### その他の距離

- 類似度や乖離度などデータ間に自然に定義されるものを用いることは可能
  - 語句の共起(同一文書に現れる頻度・確率)
  - 会社間の取引量 (売上高などで正規化が必要)
- 擬似的な距離でもアルゴリズムは動く

### 演習

#### R: 関数 dist()

• データフレームを用いた基本的な計算方法

```
### 距離の計算,返値は dist class (特殊なベクトル)
dst <- dist(x, method = "euclidean", diag = FALSE, upper = FALSE)
## x: データフレーム
## method: 距離 (標準はユークリッド距離,他は"manhattan","minkowski"など)
## diag: 対角成分を持たせるか
## upper: 上三角成分を持たせるか (標準は下三角成分のみ)
### 距離行列全体の表示
dst # または print(dst)
### 特定の成分の取得
```

```
as.matrix(dst)[i, j]
## i,j: 行・列の指定 (数値ベクトル, データフレームの行名)
```

### R: 関数 cluster::daisy()

- cluster: クラスタ分析用のパッケージ
- 関数 dist() とほぼ同様

```
### パッケージの読み込み (標準で含まれているので install は不要)
library(cluster) # require(cluster)
### 距離の計算, 返値は dissimilarity class (dist とほぼ互換)
dsy <- daisy(x, metric = "euclidean", stand = FALSE)
## x: データフレーム
## metric: 距離 (標準はユークリッド距離, 他は"manhattan"など)
## stand: 正規化 (平均と絶対偏差の平均による) の有無

### 距離行列全体の表示
dsy # または print(dsy)
### 特定の成分の取得
as.matrix(dsy)[i, j]
## i,j: 行・列の指定 (数値ベクトル, データフレームの行名)
```

#### 練習問題

• 都道府県別の社会生活統計指標を用いて以下を確認しなさい

```
### データの読み込み
JS.data <- read.csv(file="data/japan_social.csv", row.names=1)
```

- 正規化せずにユークリッド距離とマンハッタン距離の計算を行いなさい
- 正規化して上記と同様の計算を行いなさい
- 関東の都県同士の距離を表示しなさい (daisy による正規化を用いなさい)
- 大阪と四国の間の距離を表示しなさい
- ユークリッド距離とマンハッタン距離の散布図を描き比較しなさい

# クラスタ間の距離

### クラスタ間の距離

• クラスタ: いくつかのデータ点からなる集合

$$C_a = \{x_i | i \in \Lambda_a\}, \quad C_b = \{x_i | j \in \Lambda_b\}$$

- 2 つのクラスタ間の距離:  $D(C_a, C_b)$ 
  - データ点の距離から陽に定義する方法
  - クラスタの統合にもとづき再帰的に定義する方法
- 代表的なクラスタ間の距離
  - 最短距離法 (単連結法; single linkage method)
  - 最長距離法 (完全連結法; complete linkage method)
  - 群平均法 (average linkage method)

#### 最短距離法

• 最も近い対象間の距離を用いる方法:

$$D(C_a, C_b) = \min_{\mathbf{x}_i \in C_a, \mathbf{x}_i \in C_b} d(\mathbf{x}_i, \mathbf{x}_j)$$

• 統合前後のクラスタ間の関係:

$$D(C_a + C_b, C_c) = \min \{D(C_a, C_c), D(C_b, C_c)\}$$

#### 最長距離法

• 最も遠い対象間の距離を用いる方法:

$$D(C_a, C_b) = \max_{\mathbf{x}_i \in C_a, \ \mathbf{x}_i \in C_b} d(\mathbf{x}_i, \mathbf{x}_j)$$

• 統合前後のクラスタ間の関係:

$$D(C_a + C_b, C_c) = \max\{D(C_a, C_c), D(C_b, C_c)\}$$

#### 群平均法

• 全ての対象間の平均距離を用いる方法:

$$D(C_a, C_b) = \frac{1}{|C_a||C_b|} \sum_{x_i \in C_a, x_i \in C_b} d(x_i, x_j)$$

ただし  $|C_a|$ ,  $|C_b|$  はクラスタ内の要素の数を表す

• 統合前後のクラスタ間の関係:

$$D(C_a + C_b, C_c) = \frac{|C_a|D(C_a, C_c) + |C_b|D(C_b, C_c)}{|C_a| + |C_b|}$$

### 距離計算に関する注意

- データの性質に応じて距離は適宜使い分ける
  - データ間の距離の選択
  - クラスタ間の距離の選択
- 変数の正規化は必要に応じて行う
  - 物理的な意味合いを積極的に利用する場合はそのまま
  - 単位の取り方などによる分析の不確定性を避ける場合は平均 0, 分散 1 に正規化
- データの性質を鑑みて適切に前処理

# 演習

#### R: 関数 hclust()

• 距離行列を用いた階層的クラスタリング

```
hclst <- hclust(d, method = "complete")

## d: 距離行列

## method: 分析法 (標準は最長距離法, 他は"single", "average"など)

### 系統樹の表示 (一般的な plot のオプションが利用可能)
plot(hclst)

### クラスタの分割

cutree(tree = hclst, k = NULL, h = NULL)

## tree: hclust の結果を指定

## k: クラスタ数を指定して分割

## h: クラスタ町離を指定して分割

### クラスタの分割表示 (cutree とほぼ同様のオプション)
rect.hclust(tree = hclst, k = NULL, h = NULL)
```

#### 練習問題

- 都道府県別の社会生活統計指標を用いて以下の分析を行いなさい
  - 平均 0, 分散 1 に正規化したデータのユークリッド距離を用いて, 群平均法による階層的クラスタリングを行いなさい
  - クラスタ数を5つとして分割を行いなさい

#### R: 関数 cluster::agnes()

• cluster パッケージによる階層的クラスタリング

• 関数 cutree(), rect.hclust() も利用可能

# R: 関数 cluster::clusplot()

・2次元でのクラスタ表示

#### データセットの準備

- Web アンケート (都道府県別好きなおむすびの具)
  - 「ごはんを食べよう国民運動推進協議会」(平成 30 年解散) (閉鎖) http://www.gohan.gr.jp/result/09/anketo09.html

- データ https://noboru-murata.github.io/multivariate-analysis/data/omusubi.csv
- アンケート概要 (Q2 の結果を利用)

【応募期間】2009年1月4日~2009年2月28日 【応募方法】インターネット、携帯ウェブ

【内 容】

- Q1. おむすびを最近 1 週間に、何個食べましたか? そのうち市販のおむすびは何個でしたか?
- Q2. おむすびの具では何が一番好きですか? A. 梅 B. 鮭 C. 昆布 D. かつお E. 明太子 F. たらこ G. ツナ H. その他
- Q3. おむすびのことをあなたはなんと呼んでいますか?

A. おにぎり B. おむすび C. その他

- Q4. おむすびといえば、どういう形ですか?
  - A. 三角形 B. 丸形 C. 俵形 D. その他

#### 【回答者数】

男性 9,702 人 32.0% 女性 20,616 人 68.0% 総数 30,318 人 100.0%

#### 練習問題

• 上記のデータを用いて以下の分析を行いなさい

### データの読み込み

OM.data <- read.csv(file="data/omusubi.csv", row.names=1)</pre>

- Hellinger 距離を用いて距離行列を作成しなさい

p,q を確率ベクトルとして定義される確率分布の間の距離

$$d_{hel}(\pmb{p},\pmb{q}) = \frac{1}{\sqrt{2}} d_{euc}(\sqrt{\pmb{p}},\sqrt{\pmb{q}})$$

- 群平均法による階層的クラスタリングを行いなさい
- クラスタ数を定めて2次元でのクラスタ表示を作成しなさい

# 次週の予定

- ・ 第1日: クラスタ分析の考え方と階層的方法
- ・第2日: 非階層的方法と分析の評価