Manipulação de Dados - Exercícios

Gustavo J. V. Meira Filho

Table of contents

```
5
Exercício 1: Explorando Dados de Reatores
Exercício 2: Único Reator Possível
                                                                                  7
Exercício 3: Feature Engineering
                                                                                  8
                                                                                  9
Exercício 4: Melhor Custo Benefício
                                                                                 10
Exercício 5: Agregação
Exercício 6: Merging
                                                                                 11
Exercício 7: COrrelacionando as Variáveis dos Equipamentos
                                                                                 13
# Nativas Python
import sys
import os
# Dados Tabulares
import pandas as pd
import numpy as np
# Visualização
import plotly.graph_objects as go
import plotly.express as px
import plotly.figure_factory as ff
import plotly.io as pio
from graphmodex import plotlymodex
import matplotlib.pyplot as plt
import seaborn as sns
equipamentos = pd.DataFrame({
    'tipo': [
        # Reatores
        'Batela', 'Contínuo', 'PFR', 'CSTR',
        'Batela Alimentado', 'Contínuo de Leito Fixo',
        'Contínuo de Leito Fluidizado', 'Semi-Batela',
        # Separação
        'Destilador de Prato', 'Coluna de Absorção', 'Filtro Prensa',
        'Filtro Rotativo a Vácuo', 'Secador Spray Dryer',
        # Transporte e bombeamento
```

```
'Bomba Centrífuga', 'Compressor de Ar',
        'Trocador de Calor de Placas',
        'Trocador de Calor Casco e Tubo', 'Válvula de Controle',
        'Misturador de Hélice',
        'Torre de Resfriamento', 'Tanque de Armazenamento',
        'Torre de Extração Líquido-Líquido'
    ],
    'volume': [
       500, 1200, 800, 950, np.nan, 1500, 2000, 700, # reatores
       np.nan, 850, np.nan, np.nan, 1200,
                                                      # separação
       150, np.nan, 300, 500, np.nan, 400, 2000, 5000, 900
       # transporte e utilidades
    ],
    'conversao': [
       85, 92, 88, 80, 90, 95, 97, np.nan, # reatores
       np.nan, np.nan, np.nan, np.nan, np.nan,
                                                # separação
       np.nan, np.nan, np.nan, np.nan,
       np.nan, np.nan, np.nan # transporte
    ],
    'temperatura': [
       60, 70, 75, 65, 68, 80, 78, 70,
                                              # reatores
       120, 45, 25, 35, 180,
                                              # separação
       25, 40, 90, 150, 25, 60, 35, 30, 40 # transporte
    ],
    'custo_usd_1000': [
       50, 80, 120, 100, 90, 150, 180, 70,
                                             # reatores
       250, 200, 60, 90, 300,
                                               # separação
       30, 70, 120, 200, 20, 50, 180, 220, 250 # transporte
    ],
    'op': [
        'reacao', 'reacao', 'reacao', 'reacao',
        'reacao', 'reacao', 'reacao',
        'separacao', 'separacao', 'separacao', 'separacao',
        'transporte', 'transporte', 'troca termica', 'troca termica',
        'controle', 'mistura', 'utilidades', 'armazenamento', 'separacao'
    ]
})
equipamentos.to_csv(r'../data/equipamentos.csv', index=False)
catalisadores = pd.DataFrame({
    'tipo': ['PFR', 'CSTR', 'Contínuo de Leito Fixo',
            'Contínuo de Leito Fluidizado',],
    'catalisador': ['Ni/Al2O3', 'Pt/SiO2', 'Zeólita Y', 'Fe-Cr',],
    'aplicacao': ['Hidrogenação', 'Oxidação', 'Craqueamento',
                  'Reforma a vapor'],
    'custo_usd_1000_por_L': [
```

```
0.35, # Ni/Al203 - catalisador de hidrogenação (barato)
1.20, # Pt/Si02 - nobre, alto custo
0.80, # Zeólita Y - usado em craqueamento catalítico
0.50, # Fe-Cr - moderado, comum em reformadores
]
})
catalisadores.to_csv(r'../data/catalisadores.csv', index=False)
```

Exercício 1: Explorando Dados de Reatores

Você recebeu uma base de dados chamada reatores.csv, contendo informações sobre diferentes tipos de reatores utilizados em processos químicos. Essa base possui as seguintes colunas:

Coluna	Descrição
tipo	Tipo de reator (Batela, Contínuo, PFR, etc.)
volume	Volume operacional do reator (em L)
conversao	Conversão média do reagente (em %)
temperatura	Temperatura média de operação (°C)

Utilize o pandas para analisar os dados.

- 1. Leitura dos dados: Importe a biblioteca pandas e leia o arquivo reatores.csv em um DataFrame chamado reatores.
- 2. Exploração inicial:
 - Quantas linhas e colunas há na base?
 - Alguma coluna possui valores ausentes?
 - Qual a média do volume dos reatores?
- 3. Filtragem de dados: Encontre os seguintes reatores:
 - Reatores com temperatura abaixo de 70°C e volume acima de 400 L.

```
equipamentos = pd.read_csv(r'../data/equipamentos.csv')
catalisadores = pd.read_csv(r'../data/catalisadores.csv')
reatores = equipamentos[equipamentos['op'] == 'reacao'].copy()
```

```
reatores.query('temperatura < 70 and volume > 400')
```

	tipo	volume	conversao	temperatura	$custo_usd_1000$	op
0	Batela	500.0	85.0	60	50	reacao
3	CSTR	950.0	80.0	65	100	reacao

```
reatores[
    (reatores['temperatura'] < 70)
    & (reatores['volume'] > 400)
]
```

	tipo	volume	conversao	temperatura	custo_usd_1000	op
0	Batela	500.0	85.0	60	50	reacao
3	CSTR	950.0	80.0	65	100	reacao

Exercício 2: Único Reator Possível

A empresa AIChE está tentando selecionar um reator específico para um novo processo químico. Infelizmente não há muitas opções disponíveis, e eles precisam encontrar o reator que atenda a todos os seguintes critérios: - Volume abaixo $1400~\rm L$ (não temos um espaço muito grande para colocar ele); - Conversão maior que 90% (precisamos do lucro maximizado); - Temperatura de operação igual ou abaixo de $70~\rm ^{\circ}C$ (o material não aguenta mais do que isso).

Qual reator devemos selecionar?

```
reatores[
    (
          (reatores['temperatura'] <= 70)
          & (reatores['volume'] < 1400)
    )
          & (reatores['conversao'] > 90)
]
```

	tipo	volume	conversao	temperatura	custo_usd_1000	op
1	Contínuo	1200.0	92.0	70	80	reacao

Exercício 3: Feature Engineering

Algumas informações pré-processadas possuem mais valor do que variáveis cruas! Crie uma nova coluna chamada rendimento, que é definida como o produto da conversão (em decimal) pela temperatura de operação (°C):

$$\label{eq:Rendimento} \text{Rendimento} = \frac{100*\text{Conversão}~(\%)}{\text{Temperatura}~(^{\circ}\text{C})}$$

Exclua do seu df qualquer reator que não possua um valor de rendimento atribuído.

```
reatores['rendimento'] = (reatores['conversao'] / 100) * reatores['temperatura']
reatores = reatores.dropna(subset=['rendimento'])
reatores[['tipo', 'conversao', 'temperatura', 'rendimento']]
```

	tipo	conversao	temperatura	rendimento
0	Batela	85.0	60	51.00
1	Contínuo	92.0	70	64.40
2	PFR	88.0	75	66.00
3	CSTR	80.0	65	52.00
4	Batela Alimentado	90.0	68	61.20
5	Contínuo de Leito Fixo	95.0	80	76.00
6	Contínuo de Leito Fluidizado	97.0	78	75.66

Exercício 4: Melhor Custo Benefício

Olhando só para a conversão e para o custo, qual reator apresenta o melhor custo-benefício?

```
reatores.sort_values(
    by=['conversao', 'custo_usd_1000'],
    ascending=[False, True]
)[
    ['tipo', 'conversao', 'custo_usd_1000']
]
```

	tipo	conversao	custo_usd_1000
6	Contínuo de Leito Fluidizado	97.0	180
5	Contínuo de Leito Fixo	95.0	150
1	Contínuo	92.0	80
4	Batela Alimentado	90.0	90
2	PFR	88.0	120
0	Batela	85.0	50
3	CSTR	80.0	100

```
reatores.sort_values(
    by=['custo_usd_1000', 'conversao'],
    ascending=[True, False]
)[
    ['tipo', 'conversao', 'custo_usd_1000']
]
```

	tipo	conversao	custo_usd_1000
0	Batela	85.0	50
1	Contínuo	92.0	80
4	Batela Alimentado	90.0	90
3	CSTR	80.0	100
2	PFR	88.0	120
5	Contínuo de Leito Fixo	95.0	150
6	Contínuo de Leito Fluidizado	97.0	180

Exercício 5: Agregação

Quantas opções de cada equipamento nós temos para avaliar e considerar durante a construção de uma planta industrial? Utilize o DataFrame equipamentos para responder essa pergunta. Lembre-se que a coluna op indica a operação do equipamento (Reação, Separação, Transporte, etc).

Também veja qual é o custo médio (em milhares de USD) para cada tipo de equipamento.

Se precisarmos de um equipamento de cada tipo, qual seria o custo total estimado?

	op	custo_usd_1000
op		
armazenamento	1	220.000000
controle	1	20.000000
mistura	1	50.000000
reacao	8	105.000000
separacao	6	191.666667
transporte	2	50.000000
troca termica	2	160.000000
utilidades	1	180.000000

```
print(f'quantidade de equipamentos = {len(info_media_equipamentos)}')
print(f'custo total estimado = U$ {
    1000* info_media_equipamentos["custo_usd_1000"].sum():.2f
}')
```

```
quantidade de equipamentos = 8 custo total estimado = U$ 976666.67
```

Exercício 6: Merging

A empresa AIChE está planejando construir uma nova planta industrial e precisa combinar informações de diferentes fontes de dados. Você recebeu dois DataFrames: reatores e catalisadores. O DataFrame reatores contém informações sobre diferentes tipos de reatores, enquanto o DataFrame catalisadores possui dados sobre catalisadores utilizados em processos químicos. Ambos os DataFrames possuem uma coluna em comum chamada tipo, que indica o tipo de reator ou catalisador.

Una as duas bases de dados e trabalhe somente com os reatores que possuem catalisadores associados. Crie uma coluna que indique o custo total do reator mais o catalisador (em milhares de USD), considerando o volume do reator. depois, encontre o reator + catalisador com o menor custo total!

```
reatores_catalisadores = pd.merge(
    reatores, catalisadores, on='tipo', how='inner'
)
reatores_catalisadores[[
    'conversao', 'custo_usd_1000',
    'catalisador', 'aplicacao', 'custo_usd_1000_por_L'
]]
```

	conversao	custo_usd_1000	catalisador	aplicacao	custo_usd_1000_por_L
0	88.0	120	Ni/Al2O3	Hidrogenação	0.35
1	80.0	100	Pt/SiO2	Oxidação	1.20
2	95.0	150	Zeólita Y	Craqueamento	0.80
3	97.0	180	Fe-Cr	Reforma a vapor	0.50

```
reatores_catalisadores['custo_total_usd_1000'] = (
    reatores_catalisadores['custo_usd_1000'] +
    reatores_catalisadores['custo_usd_1000_por_L'] *
    reatores_catalisadores['volume']
)
reatores_catalisadores[[
    'tipo', 'catalisador', 'custo_total_usd_1000', 'conversao',
    'custo_usd_1000', 'custo_usd_1000_por_L', 'volume'
]].sort_values(by='custo_total_usd_1000')[[
    'tipo', 'catalisador', 'custo_total_usd_1000', 'conversao',
]]
```

	tipo	catalisador	custo_total_usd_1000	conversao
0	PFR	Ni/Al2O3	400.0	88.0
3	Contínuo de Leito Fluidizado	Fe-Cr	1180.0	97.0

	tipo	catalisador	custo_total_usd_1000	conversao
1	CSTR	Pt/SiO2	1240.0	80.0
2	Contínuo de Leito Fixo	Zeólita Y	1350.0	95.0

Exercício 7: COrrelacionando as Variáveis dos Equipamentos

Utilize a biblioteca seaborn para criar um heatmap que mostre a correlação entre as variáveis numéricas do DataFrame reatores e equipamentos (não reatores). Quais variáveis parecem estar mais correlacionadas entre si?

```
sns.heatmap(reatores[
    ['custo_usd_1000', 'temperatura', 'volume', 'conversao']
].corr(), annot=True);
```



```
sns.heatmap(equipamentos.query("op != 'reacao'")[
    ['custo_usd_1000', 'temperatura', 'volume']
].corr(), annot=True);
```

