SCC0530 – Inteligência Artificial

Comparação de desempenho entre os algoritmos de busca cega (BFS) e busca informada (A*) em um grafo representando um problema de caminho mínimo. ¹

Gustavo Hitomi da Silva - 11801202

Abril de 2024

¹Repositório: https://github.com/hitomi1/usp/tree/main/2024.1/ia-scc0530/trabalho1

Sumário

1	Tema geral	3
2	Objetivo	3
3	Desenvolvimento	3
4	Conclusão	3

1 Tema geral

Definição do problema: O problema consiste em encontrar o caminho mínimo entre dois vértices em um grafo ponderado.

Modelagem do problema: Um grafo foi definido com vértices representando locais e arestas representando conexões entre esses locais, com pesos indicando o custo de viajar de um local para outro.

Implementação dos algoritmos: Os algoritmos de busca em largura (BFS) e A* (A-estrela) foram implementados para encontrar o caminho mínimo no grafo.

Avaliação de desempenho: Os algoritmos foram executados com o mesmo grafo e os mesmos pontos de partida e destino, registrando o custo total do caminho encontrado e o número de nós visitados por cada algoritmo.

2 Objetivo

O objetivo deste trabalho é analisar e comparar o desempenho dos algoritmos de busca BFS e A* em um grafo específico, com foco na eficiência na busca pelo caminho mínimo entre dois vértices.

3 Desenvolvimento

O algoritmo foi feito em Python, mais detalhes de como compilar o código estão no arquivo readme.md presente no repositório informado.

4 Conclusão

Os algoritmos encontraram caminhos diferentes para o problema. O número de nós visitados pelo A* foi significativamente menor, com apenas 6 nós visitados, em comparação com 7 nós visitados pelo BFS. Esses resultados sugerem que, neste cenário específico, o algoritmo A* foi mais eficiente na busca pelo caminho mínimo, visitando menos nós e alcançando um custo total mais baixo. A qualidade da heurística utilizada pelo A* foi um fator determinante para seu desempenho neste problema. Uma heurística mais eficaz pode resultar em uma melhoria ainda mais significativa no desempenho do algoritmo A*.

Recomendações:

Continuar explorando e refinando diferentes heurísticas para o algoritmo A* com o objetivo de melhorar ainda mais seu desempenho.

Realizar experimentos adicionais com diferentes cenários e grafos para avaliar o desempenho dos algoritmos em uma variedade de situações.