CS 6363.004 Algorithms: Programming Project

Siddhant Sahu

April 1, 2018

1 Finding Maximum Profit

1.1 Recurrence

We define m(i, w) to be the maximum profit that can be generated using the first i items and w units of gold, where i and w are both non-negative integers. Clearly, the jeweler can't make any profit with 0 items. So, m(0, w) = 0. When the jeweler is unable to meet the minimum quantity $(k < n_i)$ according to the contract, a fine $\min(c_i, f_i \cdot (n_i - k))$ is levied. The recurrence for finding maximum profit is:

$$m(i, w) = \begin{cases} \max(m(i - 1, w - k \cdot w_i) + k \cdot p_i - \min(c_i, f_i \cdot (n_i - k))) & \text{if } 0 \le k < n_i \\ \max(m(i - 1, w - k \cdot w_i) + k \cdot p_i) & \text{if } n_i \le k \le x_i \end{cases}$$

where k represents the quantity (i.e. number of copies) of item i.

$$0 \le k \le min\left(x_i, \left\lfloor \frac{w}{w_i} \right\rfloor\right)$$

1.2 Proof of correctness

Feasibility Proof by induction on i. We claim that there exists a solution for m(i, w).

Basis Step: Let i = 0. We can not make any profit with 0 items. Thus, m(0, w) = 0, which is correct. This establishes the basis step.

Inductive Step: For any (i, w) and $0 \le k \le \min\left(x_i, \left\lfloor \frac{w}{w_i} \right\rfloor\right)$, we have two cases as mentioned in the recursion. In both cases, we compute $m(i-1, w-k \cdot w_i)$. Since, i-1 < i, by induction hypothesis, $m(i-1, w-k \cdot w_i)$ is feasible. This completes the inductive step and therefore, the feasibility proof.

Optimality Let Opt(i, w) be an optimal solution for the problem by using the first i items and w units of gold. We claim that $m(i, w) \ge Opt(i, w)$. Proof by induction on i.

Basis Step: Let i = 0. We can not make any profit with 0 items. Thus, m(0, w) = 0 = Opt(0, w), which is correct.

Inductive Step: Consider i > 0 and $0 \le k \le min\left(x_i, \left|\frac{w}{w_i}\right|\right)$. We have two cases here.

• Case 1: $0 \le k < n_i$, i.e. the jeweler has to pay a fine. Suppose Opt(i, w) selects k' quantities of item i. Thus, $Opt(i, w) = Opt(i - 1, w - k' \cdot w_i) + k' \cdot p_i - \min(c_i, f_i \cdot (n_i - k'))$

$$m(i, w) = \max_{0 \le k \le \min(x_i, \lfloor \frac{w}{w_i} \rfloor)} (m(i - 1, w - k \cdot w_i) + k \cdot p_i - \min(c_i, f_i \cdot (n_i - k)))$$

$$\ge m(i - 1, w - k' \cdot w_i) + k' \cdot p_i - \min(c_i, f_i \cdot (n_i - k'))$$

$$\ge Opt(i - 1, w - k' \cdot w_i) + k' \cdot p_i - \min(c_i, f_i \cdot (n_i - k'))$$

$$\ge Opt(i, w)$$

Since i-1 < i, $m(i-1, w-k' \cdot w_i) \ge Opt(i-1, w-k' \cdot w_i)$ by induction hypothesis.

• Case 2: $n_i \le k \le x_i$. Proof is almost the same as case 1, without the fines.

This completes the proof for optimality.

1.3 Pseudocode

The input to MAX-PROFIT-CALCULATOR is the total units of gold available W and a list of items items with attributes w, p, n, x, f and c. Attribute naming convention is consistent with the problem description.

```
Max-Profit-Calculator (W, items)
    N = items.length
    let m[0...N, 0...W] be a new table
 3
    for w = 0 to W
 4
         m[0, w] = 0
 5
    for i = 1 to N
 6
         for w = 1 to W
 7
              m[i, w] = -\infty
 8
               quantity = \min(items[i].x, |w/items[i].w|)
 9
              for k = 0 to quantity
                   q = m[i-1, w-k \cdot items[i], w] + k \cdot items[i], p
10
11
                   if k < items[i]. n
                         q = q - \min(items[i].c, items[i].f \cdot (items[i].n - k))
12
                   if q > m[i, w]
13
14
                        m[i,w] = q
15
    return m
```

Maximum profit is m[N, W]. A quick inspection tells us the running time is O(kNW), where k is the maximum value in x[1..n]. If k = N, running time is $O(N^2W)$.

2 Counting Number of Solutions

2.1 Recurrence

We define c(i, w) to be the number of solutions that generate the maximum profit m(i, w). With 0 items, the solution set is empty. With one item, there is exactly one solution. Thus, the recurrence is:

$$c(i, w) = \begin{cases} \sum_{k \in \operatorname{argmax} m(i, w)} c(i - 1, w - k \cdot w_i) & \text{if } i \ge 2\\ 1 & \text{if } i = 1\\ 0 & \text{if } i = 0 \end{cases}$$

2.2 Proof of Correctness

Feasibility Proof by induction on i. We claim that there exists a solution for c(i, w).

Basis Step: For i = 0, there are no solutions. Thus, c(i, w) = 0 and for i = 1, there is exactly one solution: c(i, w) = 1. The base case is established.

Inductive Step: For $i \geq 2$, $c(i, w) = \sum_{k \in \operatorname{argmax} m(i, w)} c(i - 1, w - k \cdot w_i)$. The right-hand side is a smaller subproblem as i - 1 < i. Therefore, by inductive hypothesis, c(i, w) is feasible.

Optimality This proof assumes that m(i, w) is optimal, which has been proven above. Let Opt(i, w) count the number of solutions to m(i, w). We claim that c(i, w) = Opt(i, w). We will prove this by induction on i. Basis Step: For i = 0, there are no solutions. Thus c(0, w) = Opt(0, w) = 0. And, for i = 1, there is exactly one solution. c(1, w) = Opt(1, w) = 1. This establishes the basis step.

Inductive Step: For $i \geq 2$, suppose there are l distinct values of k, i.e., $k_1, \dots k_l$ which yield m(i, w). Thus, $Opt(i, w) = \sum_{k=k_1}^{k_l} Opt(i-1, w-k \cdot w_i)$. By induction hypothesis, it follows:

$$c(i, w) = \sum_{k=k_1}^{k_l} c(i - 1, w - k \cdot w_i) = \sum_{k=k_1}^{k_l} Opt(i - 1, w - k \cdot w_i) = Opt(i, w)$$

Hence, c(i, w) is optimal.

2.3 Pseudocode

The input to COUNT-SOLUTIONS is m, the table returned from MAX-PROFIT-CALCULATOR, W and a list of items.

```
Count-Solutions(m, W, items)
 1 \quad N = items. length
    let c[0...N, 0...W] be a new table
 3
    for w = 0 to W
         c[0, w] = 0
 4
    for w = 0 to W
 5
6
         c[1, w] = 1
7
    for i = 2 to N
8
         for w = 1 to W
9
               quantity = \min(items[i].x, |w/items[i].w|)
10
              for k = 0 to quantity
                    q = m[i-1, w-k \cdot items[i], w] + k \cdot items[i], p
11
12
                    if k < items[i]. n
13
                         q = q - \min(items[i].c, items[i].f \cdot (items[i].n - k))
14
                   if q == m[i, w]
15
                         c[i, w] = c[i, w] + c[i - 1, w - k \cdot items[i], w]
16 return c
```

Total number of solutions to the problem is c[N, W]. The running time is same as MAX-PROFIT-CALCULATOR, i.e. O(kNW) or $O(N^2W)$ if k=N.