Problem 1. Let X_1, \ldots, X_n be independent random variables from the uniform distribution on the interval $[0, \theta]$, where $\theta > 0$ is an unknown parameter.

- 1. Find the expected value and variance of the estimator $\hat{\theta} = 2\bar{X}$.
- 2. Find the expected value of the estimator $\tilde{\theta} = X_{(n)}$, ($X_{(n)}$ is the largest observation).
- 3. Find an unbiased estimator of the form $\check{\theta} = cX_{(n)}$ and calculate its variance.
- 4. Compare the mean square error of $\hat{\theta}$ and $\check{\theta}$.
- 5. Which of these estimators would you recommend and why?
- 6. Is one of the discussed estimators the maximum likelihood estimator? Justify your answer mathematically.

Solution. We know that the expected value of a uniform random variable on $[0, \theta]$ is $\theta/2$ (Why?). Thus $\mathbb{E}\hat{\theta} = \theta$, i.e. $\hat{\theta}$ is an unbiased estimator of θ .

In order to find the expected value of the maximum of uniform random variables, let us first compute its density. To this end, note that for $u \in [0, \theta]$ the cdf is given by

$$F_{\tilde{\theta}}(u) = \mathbb{P}(\max_{1 \le i \le n} U_i \le u) = \mathbb{P}(U_1 \le u, ..., U_n \le u) = \mathbb{P}(Y_1 \le u)^n = (u/\theta)^n.$$

Taking the derivative with respect to u we obtain the density

$$f(u) = nu^{n-1}/\theta^n, \ u \in [0, \theta].$$

The expected value is thus

$$\mathbb{E}\,\tilde{\theta} = \int_0^\theta nu^n/\theta^n \ du = \frac{n}{n+1} \frac{\theta^{n+1}}{\theta^n} = \frac{n}{n+1}\theta.$$

Consequently, by taking $\check{\theta} = \frac{n+1}{n}\theta$ we obtain an unbiased estimator of θ .

To get the variance of this estimator, let us first compute the variance of the maximum of all observations

$$\operatorname{Var} \tilde{\theta} = \int_0^\theta n u^{n+1} / \theta^n \ du - \frac{n^2}{(n+1)^2} \theta^2$$

$$= \theta^2 \left(\frac{n}{n+2} - \frac{n^2}{(n+1)^2} \right)$$

$$= \theta^2 \frac{n(n+1)^2 - n^2(n+2)}{(n+2)(n+1)^2}$$

$$= \theta^2 \frac{2n^2 + n - 2n^2}{(n+2)(n+1)^2}$$

$$= \theta^2 \frac{n}{(n+2)(n+1)^2}.$$

Thus the variance of $\check{\theta}$ is $\theta^2/(n(n+2))$.

The variance of $\hat{\theta}$ is $4\mathbb{V}ar(U_1)/n = 4\theta^2/(12n) = \theta^2/(3n)$.

We arrive to the conclusion that $\check{\theta}$ is an essentially better estimator than $\bar{\theta}$. It can be even argued that $\tilde{\theta}$ is a better (although biased) estimator than $\bar{\theta}$ (How?).

Let $\mathbf{1}_{[0,\theta]}(x)$ denote an indicator function of the interval $[0,\theta]$, i.e. it is one if x is in the interval and zero otherwise. The likelihood function for $\theta > 0$ and $x_i > 0$ is given by

$$l(\theta) = \mathbf{1}_{[0,\theta]}(x_1) \cdots \mathbf{1}_{[0,\theta]}(x_n)$$

= $\mathbf{1}_{[0,\theta]}(\max x_i)$
= $\mathbf{1}_{[\max x_i,\infty)}(\theta)$.

It is clear that this function although discontinuous attains maximum at $\tilde{\theta} = \max x_i$, thus $\tilde{\theta}$ is the MLE.

Problem 2. Suppose that $X_1, X_2, ..., X_n$ is a random sample from the shifted exponential distribution with probability density function

$$f(x|\theta,\mu) = \frac{1}{\theta}e^{-(x-\mu)/\theta}, \qquad \mu < x < \infty,$$

where $\theta > 0$ and $-\infty < \mu < \infty$. Both θ and μ are unknown, and n > 1. The sample range W is defined as $W = X_{(n)} - X_{(1)}$, where $X_{(n)} = \max_i X_i$ and $X_{(1)} = \min_i X_i$.

1. Show that the joint probability density function of $X_{(1)}$ and W is given by

$$f_{X_{(1)},W}(x,w) = n(n-1)\theta^{-2}e^{-n(x-\mu)/\theta}e^{-w/\theta}(1-e^{-w/\theta})^{n-2},$$

for $x > \mu$ and w > 0.

- 2. Obtain the marginal density function of W and compute the cumulative distribution function of W.
- 3. Show that W/θ is a pivotal quantity for θ . Explain how this result may be used to construct a confidence interval for θ at the confidence level $100(1-\alpha)\%$, $\alpha \in (0,1)$.
- 4. Consider a sample of 10 values 5.9, 7.5, 12.7, 6.3, 5.7, 18.5, 6.0, 27.3, 6.8, 12.4 and evaluate the 95% confidence interval for θ as discussed above.

Solution. Note that for arbitrary jointly continuous r.v.'s X and Y, if

$$G(x,y) = P(X > x, Y < y),$$

then their joint density is given by

$$g(x,y) = -\frac{\partial^2 G}{\partial x \partial w}(x,y).$$

One can notice that for $X = X_{(1)}$, $Y = X_{(n)}$, and for x < y we have

$$G(x, w) = P(x < X_1 < w)^n = \left(\int_x^w f(u) \, du\right)^n,$$

where f is the density of X_i 's. Thus

$$g(x,w) = n(n-1) \left(\int_x^w f(u) du \right)^{n-2} f(x) f(w).$$

This gives joint density of $X_{(1)}$ and $X_{(n)}$ in the shifted exponential case

$$g(x,y) = n(n-1)e^{n\mu/\theta}e^{-(x+y)/\theta} \left(e^{-x/\theta} - e^{-y/\theta}\right)^{n-2}.$$

The transformation theorem for h(x,y) = (y-x,x) leads straightforward to

$$f(x,w) = n(n-1)\theta^{-2}e^{-n(x-\mu)/\theta}e^{-w/\theta}(1-e^{-w/\theta})^{n-2}.$$

We have

$$f_W(w) = n(n-1)\theta^{-2}e^{-w/\theta}(1 - e^{-w/\theta})^{n-2} \int_{\mu}^{\infty} e^{-n(x-\mu)/\theta} dx.$$

By putting $v = (x - \mu)$ so that dv = dx, we have

$$f_W(w) = n(n-1)\theta^{-2}e^{-w/\theta}(1 - e^{-w/\theta})^{n-2} \int_{\mu}^{\infty} e^{-nv/\theta} dx$$
$$= n(n-1)\theta^{-2}e^{-w/\theta}(1 - e^{-w/\theta})^{n-2} \left[-\frac{\theta}{n}e^{-nv/\theta} \right]_{v=0}^{\infty}$$
$$= \frac{(n-1)}{\theta}e^{-w/\theta}(1 - e^{-w/\theta})^{n-2}.$$

Next, $P(W \leq w) = \int_0^w \frac{(n-1)}{\theta} e^{-y/\theta} (1 - e^{-y/\theta})^{n-2} dy = \left[(1 - e^{-y/\theta})^{n-1} \right]_0^w = (1 - e^{w/\theta})^{n-1}$, for $0 < w < \infty$. Let $Z = \frac{W}{\theta}$. Then $F_Z(z) = P(Z \leq z) = P(W \leq z\theta) = (1 - e^{-z})^{n-1}$, $0 < z < \infty$. Since Z is a random variable depending on the sample and θ whose distribution does not depend on θ . Hence Z is a pivotal quantity.

Let us fix $\alpha \in (0,1)$. For $p \in [0,1]$ let z_1 be such that $P(Z \leq z_1) = p\alpha$ and z_2 be such that $P(Z \geq z_2) = (1-p)\alpha$, i.e. z_1 and z_2 are given by

$$(1 - e^{-z_1})^{n-1} = p\alpha,$$

 $(1 - e^{-z_2})^{n-1} = 1 - (1 - p)\alpha.$

From these

$$z_1 = -\ln\left(1 - (p\alpha)^{1/(n-1)}\right),$$

 $z_2 = -\ln\left(1 - (1 - (1 - p)\alpha)^{1/(n-1)}\right).$

Then the interval $[z_1, z_2]$, is such that $\int_{z_1}^{z_2} f_Z(z) dz = 1 - \alpha$ for $0 < \alpha < 1$. Then, given the range W = w, we have $z_1 \le \frac{w}{\theta} \le z_2$, and a $100(1 - \alpha)\%$ CI for θ is $[w/z_2, w/z_1]$. One natural choice of z_1 and z_2 is to take p = 1/2 so that

$$z_1 = -\ln\left(1 - (\alpha/2)^{1/(n-1)}\right),$$

$$z_2 = -\ln\left(1 - (1 - \alpha/2)^{1/(n-1)}\right).$$

For the particular data set and the confidence level 95% we have W=27.3-5.7=21.6 and

$$z_1 = -\ln\left(1 - (0.025)^{1/9}\right) \approx 1.09,$$

 $z_2 = -\ln\left(1 - (0.975)^{1/9}\right) \approx 5.88,$

resulting in the confidence interval $[21.6/5.88, 21.6/1.09] \approx [3.67, 19.82]$.

Problem 3. Suppose that we have data x_1, x_2, \ldots, x_n which are iid observations from a $N(\mu, 1)$ density where μ is unknown. Consider testing $H_0: \mu = 0$ vs. $H_1: \mu \neq 0$ using the test statistic $T = |\bar{x}|$.

- 1. Describe a testing procedure using a rejection region for the test statistic T.
- 2. Define the p-value for the proposed test.
- 3. Express the significance test procedure at level $\alpha = 0.05$ using the obtained p-value.
- 4. Find the power of this test as a function of μ .
- 5. Calculate the power of the test for n=25 and $\mu=-1,-0.5,-0.1,+0.1,+0.5,+1$ and sketch the graph of the power function. In your calculations, you may find useful that Φ (the cdf of the standard normal distribution) at points 3.04, 0.54, -1.46, -1.96, -2.46, -4.46, -6.96 takes approximately the values 1.00 0.71 0.07 0.02 0.01 0.00 0.00, respectively.
- 6. Define the notion of a uniformly most powerful test and argue that the test discussed above is not uniformly most powerful among all possible tests in the considered problem.
- 7. Write a relation from which by using tables or statistical software one could determine how large n would have to be in order for the power of the test to be equal to 0.95 for $\mu = +1$?

Solution. It is natural to reject H_0 if T is too big so we consider the rejection region $R_{\alpha} = [a, \infty)$ for some a > 0 to be determined from type 1 error given by

$$\mathbb{P}(T > a | \mu = 0) = \mathbb{P}(\bar{X} \le -a | \mu = 0) + \mathbb{P}(\bar{X} \ge a | \mu = 0)$$
$$= \Phi(-a\sqrt{n}) + 1 - \Phi(a\sqrt{n}) = 2\Phi(-a\sqrt{n})$$

and which is supposed to be at most α . Equalling it to α gives $a = -z_{\alpha/2}/\sqrt{n}$, where z_p stand for p-quantile of the standard normal distribution.

For the observed \bar{x} , the *p*-value is determined as $\hat{\alpha}$ such that $a = -z_{\hat{\alpha}/2}/\sqrt{n}$ being equal to $|\bar{x}|$. This is equivalent to $\hat{\alpha} = 2\Phi(-|\bar{x}|\sqrt{n})$.

The testing procedure can be equivalently defined using the p-value to reject H_0 if the p-value is smaller than the significance level α .

The power function of the test is given by the probability of rejecting H_0 , when H_1 is true, i.e. for $\mu \neq 0$ we have

$$P(\mu) = \mathbb{P}(T > a|\mu)$$

$$= \mathbb{P}(\bar{X} \le -a|\mu) + \mathbb{P}(\bar{X} \ge a|\mu)$$

$$= \Phi(z_{\alpha/2} - \mu\sqrt{n}) + 1 - \Phi(z_{1-\alpha/2} - \mu\sqrt{n}).$$

For $\alpha = 0.5$, $z_{\alpha/2} = -z_{1-\alpha/2} \approx -1.96$.

For n = 25, we have $P(\mu) = \Phi(5(-1.96 - \mu)) + 1 - \Phi(5(1.96 - \mu))$, which for the specified values of μ takes values 1.00, 0.71, 0.08, 0.05, 0.08, 0.71, 1.00. The graph of the power function is given below.

A test for the problem of testing $H_0: \theta \in \Theta_0$ vs. $H_1: \theta \in \Theta_1$ at significance level α is called most powerful if its power is larger at each $\theta \in \Theta_1$ from the power of any other test for the same problem and at the same significance.

The Neyman-Pearson lemma guarantees that the test which is based on the likelihood ratio is most powerful for the testing problem $H_0: \mu = 0$ vs. $H_1: \mu = \mu_1$, where μ_1 is a fixed non-zero real value. Let us consider $\mu_1 > 0$, then the likelihood ratio that is the basis for the Neyman-Pearson test for the problem is given by the rejection region

$$R_{\alpha} = \left\{ \mathbf{x}; \frac{l(\mu = 0)}{l(\mu_{1})} \right\}$$
$$= \left\{ \mathbf{x}; e^{-\mu_{1} \sum x_{i} + \mu_{1}^{2}/2} < k \right\}$$
$$= \left\{ \mathbf{x}; \bar{x} > \tilde{k}(\mu_{1}) \right\},$$

where $k(\mu_1)$ is determined from the equality

$$\mathbb{P}(\bar{X} \ge k(\mu_1)|\mu = 0) = \alpha,$$

from which it is clear that $k(\mu_1) = z_{1-\alpha}/\sqrt{n}$ which in fact does not depend on μ_1 given that the latter is positive. The power of this test for $\mu_1 > 0$ is given by

$$\tilde{P}(\mu_1) = \mathbb{P}(\bar{X} \ge z_{1-\alpha}/\sqrt{n})$$
$$= 1 - \Phi(z_{1-\alpha} - \mu_1\sqrt{n}).$$

For $\mu_1 > 0$ we have clearly (compare respective areas under the normal density curve)

$$\tilde{P}(\mu_1) \geq P(\mu_1),$$

which means that the test is not uniformly most powerful.

In order to determine a sample size for which the power reaches the level 95% the equality

$$\Phi(-1.96 - \sqrt{n}) + 1 - \Phi(1.96 - \sqrt{n}) = 0.95$$

would have to be solved for n. The graph of the power as a function of n is presented below

Problem 4. Suppose that household incomes in a certain country have a Pareto distribution with probability density function

$$f(x) = \frac{\theta v^{\theta}}{x^{\theta+1}}, \qquad v \le x < \infty ,$$

where $\theta > 0$ is unknown and v > 0 is known. Let x_1, x_2, \ldots, x_n denote the incomes for a random sample of n such households. We wish to test the null hypothesis $\theta = 1$ against the alternative that $\theta \neq 1$.

- 1. Derive an expression for $\hat{\theta}$, the MLE of θ .
- 2. Show that the generalised likelihood ratio test statistic, $\lambda(\mathbf{x})$, satisfies

$$\ln\{\lambda(\mathbf{x})\} = n - n\ln(\hat{\theta}) - \frac{n}{\hat{\theta}}.$$

3. Show that the test accepts the null hypothesis if

$$k_1 < \sum_{i=1}^n \ln(x_i) < k_2$$
,

and state how the values of k_1 and k_2 may be determined. Hint: Find the distribution of ln(X), where X has a Pareto distribution.

Solution. The likelihood function is

$$l(\theta) = \prod_{i=1}^{n} \left(\frac{\theta v^{\theta}}{x_i^{\theta+1}} \right) = \frac{\theta^n v^{n\theta}}{\left(\prod_{i=1}^{n} x_i \right)^{\theta+1}}$$

for $v \leq x < \infty$ and $\theta > 0$. Therefore $\ln l(\theta) = n \ln \theta + n\theta \ln v - (\theta + 1) \sum \ln(x_i)$. Differentiating we get the score function $S(\theta) = (n/\theta) + n \ln v - \sum \ln x_i$ and $I(\theta) = n/\theta^2 > 0$. The MLE $\hat{\theta}$ is found by $S(\hat{\theta}) = 0$, implying $(n/\hat{\theta}) = \sum \ln x_i - n \ln v = \sum \ln \left(\frac{x_i}{v}\right)$ so that $\hat{\theta} = n/\left[\sum_{i=1}^n (x_i/v)\right]$.

For the null hypothesis $\theta = 1$, the generalised likelihood ratio is $\lambda = L(1)/L(\hat{\theta})$ so that $\ln(\lambda(\mathbf{x})) = \ln l(1) - \ln l(\hat{\theta})$. Thus by direct algebra

$$\ln(\lambda(\mathbf{x})) = n \ln v - 2 \sum_{i=1}^{n} \ln(x_i) - n \ln(\hat{\theta}) - n\hat{\theta} \ln v + (\hat{\theta} + 1) \sum_{i=1}^{n} \ln(x_i)$$

$$= n \ln v + (\hat{\theta} - 1) \sum_{i=1}^{n} \ln(x_i) - n \ln(\hat{\theta}) - n\hat{\theta} \ln v$$

$$= -\frac{n}{\hat{\theta}} + n - n \ln(\hat{\theta})$$

$$= n \left(1 - \ln \hat{\theta} - \frac{1}{\hat{\theta}} \right).$$

Let $u=1/\hat{\theta}$. Then $\ln(\lambda(\mathbf{x}))=-n(u-1-\ln u)$ and $\frac{\mathrm{d}}{\mathrm{d}u}(\ln\lambda)=-n(1-\frac{1}{u})$. Clearly $\ln\lambda$ has a maximum at u=1. The null hypothesis $H_0: \theta=1$ will be rejected if $\lambda(\mathbf{x})\leq c$, for some c; i.e. if $u\leq k_1'$ or $u\geq k_2'$.

Reject H_0 if $\sum_{i=1}^n \ln(x_i) \le k_1$ or $\sum_{i=1}^n \ln(x_i) \ge k_2$, where $k_1 = n\{k'_1 = \ln v\}$ and $k_2 = n\{k'_2 = \ln v\}$. For a significance α , choose k_1, k_2 to satisfy

$$\mathbb{P}\left\{\sum_{i=1}^{n} \ln(x_i) \le k_1 \text{ or } \sum_{i=1}^{n} \ln(x_i) \ge k_2 | \theta = 1\right\} = \alpha.$$

The distribution of $\ln X$, where X has Pareto distribution is given by the density

$$h(y|\theta) = \theta v^{\theta} e^{-y\theta}, y > \ln v,$$

in which we recognize the exponential distribution with parameter θ shifted by $\ln v$. Consequently, $\sum_{i=1}^{n} \ln(X_i)$ has the gamma distribution with parameters n and θ shifted by $n \ln v$. Thus the null hypothesis is not rejected if

$$\gamma_{\alpha/2}(n,1) < \sum_{i=1}^{n} \ln(x_i) - n \ln v < \gamma_{1-\alpha/2}(n,1),$$

where $\gamma_p(n,1)$ is the p-quantile of gamma distribution with parameters n and 1.