

AN2752 应用笔记

STM8S 和 STM8A 入门

前言

通过描述围绕 STM8S 和 STM8A 8- 位微控制器器件建立应用所需的最小硬件和软件环境,本应用笔记对 STM8S 和 STM8A 数据手册中的信息作了补充。分为以下几章:

- 电源
- 模数转换器 (ADC)
- 时钟管理
- 复位控制和开发
- 调试工具支持
- STM8 软件工具链
- 设置 STM8 开发环境

本应用笔记还包含详细的对主要元件作了描述的参考设计原理图。除此之外,给出了一些硬件建议。

目录

2	2.1	NE-107-V-2	7
			-
		电源概述	. 7
	2.2	主工作电压	. 8
	2.3	上电 / 掉电复位 (POR/PDR)	8
3	模数:	转换器 (ADC)	10
	3.1	模拟电源	10
	3.2	模拟输入	10
4	时钟'	- 管理1	12
	4.1	时钟管理概述	12
	4.2	内部时钟	12
	4.3	外部时钟	12
5	复位	· 控制1	14
	5.1	复位管理概述	14
6	建议		16
	6.1	印刷电路板	16
	6.2	元件位置	16
	6.3	接地和供电(V _{SS} 、V _{DD})	16
	6.4	去耦	16
	6.5	其它信号	17
	6.6	不使用的 I/O 和特性	17
	6.7	用户选项	17
7	参考:	设计1	18
	7.1	元件参考	18
	7.2	原理图	19
8	STM	8 开发工具	20

	8.1	单线接	口模块 (SWIM)	20)
		8.1.1	SWIM 概述	20)
		8.1.2	SWIM 连接器引脚	20)
		8.1.3	硬件连接	21	1
	8.2	仿真器	STice	21	ĺ
		8.2.1	STice 概述	21	1
		8.2.2	STice 仿真配置	22	2
		8.2.3	在线编程和调试	23	3
9	STM	8 软件工	具链	25	5
	9.1	集成开	发环境	26	3
	9.2	编译器		26	3
	9.3	固件库		27	7
10	设置:	STM8	- -发环境	28	3
	10.1	安装工:	具	28	3
	10.2	使用工:	具	29)
		10.2.1	项目编辑	30)
		10.2.2	在线帮助	31	1
	10.3	运行演		32	2
		10.3.1	编译项目	32	2
		10.3.2	选择正确的调试工具		3
		10.3.3	连接硬件	34	1
		10.3.4	开始调试会话	35	5
		10.3.5	运行软件	36	3
		10.3.6	后续操作	37	7
11	文档和	和在线帮	助	38	3
12	修订	5史		39)
	10 1				

表格索引 AN2752

表格索引

	元件清单	
	SWIM 连接器引脚	
表 3.	文档修订历史	. 39
表 4.	中文文档修订历史	. 39

图片索引

图片索引

图 1.	电源	. 7
图 2.	外部电容	. 8
图 3.	V _{DD} /V _{SS} 对的典型布局	. 9
图 4.	模拟输入接口	10
图 5.	系统时钟分配内部时钟	12
图 6.	时钟源	13
图 7.	复位管理	14
图 8.	输出特性	15
图 9.	输入特性	15
图 10.	参考设计	19
图 11.	调试系统框图	20
图 12.	硬件连接	21
图 13.	连接说明	21
图 14.	STice 仿真配置	23
图 15.	在线编程和调试	24
图 16.	STM8 软件工具链	25
图 17.	STM8 固件库示例	
图 18.	STVD 开放示例工作区	
图 19.	STVD MCU 编辑模式	
图 20.	STM8 固件库在线帮助手册	
图 21.	STVD: 建立工程	32
图 22.	STVD: 选择调试工具	33
图 23.	连接调试工具到 STM8 评估板	34
图 24.	STVD: 开始调试会话	35
图 25.	STVD: 运行软件	36
图 26.	STM8 评估板	37

硬件要求汇总 AN2752

1 硬件要求汇总

为了围绕 STM8S 或者 STM8A 器件构建应用,应用板至少需要提供以下特性:

- 电源
- 时钟管理
- 复位管理
- 调试工具支持:单线接口模块 (SWIM) 连接器

AN2752 电源

2 电源

2.1 电源概述

该器件可以通过一个外部的 $3.0 \lor 20 \lor 20 \lor 20$ 包源供电。一个片上电源管理系统提供了到内核逻辑的 $1.8 \lor 20$ 数字电源,具有正常和低功耗两种工作模式。它也能够检测主要的外部电源 $(3.3 \lor 20)$ 和内部电源 $(1.8 \lor 20)$ 上面的电压跌落。该器件提供:

- 一对 V_{DD}/V_{SS} (3.3 V ± 0.3 V 到 5 V ± 0.5 V) 焊盘专门用于主稳压器镇流器晶体管供电。
- 两对 V_{DD_IO}/V_{SS_IO} (3.3 V ± 0.3 V 到 5 V ± 0.5 V) 专用焊盘,只用于 I/O 的供电。在 32 引脚封装上,只绑定了一对引脚。
- 注: 对于临近 V_{DD}/V_{SS} 的 V_{DDIO}/V_{SSIO},建议将两对连接到一起,同时只使用一个去耦电容。目 的是通过减少电源之间以及 V_{DD}/V_{DDIO} 和电容之间的连接线长度,以确保好的抗噪性能。
 - 一对专门用于模拟功能供电的 V_{DDA}/V_{SSA} (3.3 V ± 0.3 V 到 5 V ± 0.5 V) 焊盘。更多详细信息,请参见 第 3 节:模数转换器 (ADC) 第 10 页。

注: 电容必须尽可能靠近器件电源连接(特别是在 V_{DD} 有专用地平面的情况下)。 可选择在 OSCIN/OSCOUT 上放置一个晶体 / 谐振器。谐振器必须尽可能靠近 OSCIN 和 OSCOUT 引脚连接。负载电容地必须尽可能靠近 V_{SS} 连接。

电源 AN2752

2.2 主工作电压

STM8S 和 STM8A 器件采用 $0.13~\mu m$ 工艺制作。 STM8S 和 STM8A 内核以及 I/O 外设需要不同的电源供电。实际上, STM8S 和 STM8A 器件有一个标称目标输出为 1.8~V 的内部稳压器。

主调压器的稳定性是通过将外部电容 C_{EXT} 连接到 VCAP 引脚实现的。更多关于 VCAP 电容特性的信息,请参考 STM8S 或 STM8A 数据手册。要注意将电容的串联等效电感限制在 15 nH 以下。

图 2. 外部电容

2.3 上电/掉电复位 (POR/PDR)

对主调压器和低功耗调压器的输入供电由上电 / 掉电复位电路监控。监控电压范围为 0.7 V 到 2.7 V。

在上电过程中时, POR/PDR 保持器件处于复位,直到电源电压 (V_{DD} 和 V_{DDIO})达到它们指定的工作区域。

在开机时,应维持一个 0.7 V 以下的预定义复位。复位释放的上限在产品数据手册的电气特性一节中定义。

迟滞 (POR > PDR) 用以确保准确检测电压上升和下降。

当电源电压下降到 $V_{POR/PDR}$ 门限值(孤立和重复的事件)以下时, POR/PDR 也会产生一个复位。

AN2752 电源

建议

所有的引脚需要正确地连接到电源上。这些连接,包括焊盘、线和过孔,都应该有尽可能低的阻抗。典型情况下,这可通过使用粗的线宽做到,最好在多层印刷电路板 (PCB) 中使用专用供电层。

此外,每个供电电源对都应使用滤波陶瓷电容(100nF)和化学电容 (1..2 μ F) 去耦,它们与 STM8S 或 STM8A 器件并联。这些陶瓷电容应放置在 PCB 另一侧尽可能接近或低于适当引 脚的位置。其典型值为 10 nF 至 100 nF,但准确值取决于应用需要。图 3显示了这种 V_{DD}/V_{SS} 对的典型布局。

模数转换器 (ADC) AN2752

3 模数转换器(ADC)

3.1 模拟电源

ADC 单元具有一个独立的模拟电源参考电压,它与输入引脚 V_{DDA} 保持隔离,这样使得 ADC 有一个非常干净的电源。模拟供电电压范围与在 V_{DD} 引脚上的数字供电电压范围是一样的。一个独立的在 V_{SSA} 引脚上的模拟电源接地连接进一步增强了 ADC 的电源隔离。模拟电源电压和模拟电源接地连接一起,在 V_{REF+} 引脚上提供了用于 ADC 单元的单独外部模拟 参考电压。这在低电压输入时提供了更好的准确性,如下:

- V_{REF+}(正模拟参考电压输入): ADC 高 / 正参考电压应该在 [250 mV, V_{DDA}] 之间。更 多有关 V_{REF+} 值的信息,请参考 STM8S 或 STM8A 数据手册。在没有外部 V_{REF+} 引脚 的器件中(封装引脚少于等于 48),该输入与 V_{DDA} 连接。
- V_{REF}(负模拟参考电压输入): ADC 低 / 负参考电压应该高于 V_{SSA}。更多有关 V_{REF} 值的信息,请参考 STM8S 或 STM8A 数据手册。在没有外部 V_{REF} 引脚的器件中(封装引脚少于等于 48),该输入与 V_{SSA} 连接。

3.2 模拟输入

STM8S 和 STM8A 器件具有 16 个模拟输入通道,每个通道被 ADC 逐个转换,并且每个通道复用一个 I/O。

ADC 的模拟输入接口如图 4 所示。

图 4. 模拟输入接口

AN2752 模数转换器 (ADC)

公式 1:

$$C_{VIN} = C_{SAMP} + C_{EXT}$$

其中:

- C_{VIN} 是在 V_{IN} 路径上的总等效电容
- C_{SAMP} 是等效采样电容
- C_{EXT} 是 V_{IN} 到宏引脚路径上的总外部电容。它们包括寄生走线电容、焊盘和引脚电容以及外部电容。为了确保合适和精确的采样,必须满足下面的等式

公式 2:

$$(R_{SW} + R_{EXT}) \times (C_{SAMP} + C_{EXT}) < \left(\frac{3}{10}\right) \times T_{S}$$

其中:

- \bullet R_{SW} = 30 kOhm
- R_{EXT} 是 V_{IN} 路径上的总外部电阻。
- $C_{SAMP} = 3 pF$
- T_S = 0.5 µs (对于 2 MHz 输入时钟)

当设计 ADC 模拟输入接口时, Δ 式 2 中的 R_{EXT} 和 C_{EXT} 是明确的。

更多详细信息,请参考 STM8S 或 STM8A 数据手册和/或它们相应的参考手册 (RM0016)。

时钟管理 AN2752

4 时钟管理

4.1 时钟管理概述

STM8S 和 STM8A 器件提供了一个灵活的选择内核和外设 (ADC、存储器、数字外设)时钟的方式。器件具有内部和外部时钟源输入以及一个输出时钟 (CCO)。

4.2 内部时钟

RC 振荡器具有一个内部电容 (C) 和一个内部阶梯电阻 (R)。 STM8S 和 STM8A 器件具有两种类型的内部时钟: 一个频率为 16 MHz 的高速内部时钟 (HSI) 和一个频率为 128 kHz 的低速内部时钟 (LSI)。

复位之后, CPU 在内部 RC (HSI 时钟信号) 8 分频的频率下启动, 即 2 MHz。

4.3 外部时钟

STM8S 和 STM8A 器件可以连接到一个外部晶振或一个外部振荡器。

注: 当没有使用外部时钟时,OSCIN 和 OSCOUT 可以用作通用 I/Os。

图 6显示了外部时钟连接。

AN2752 时钟管理

负载电容 C_{L1} 和 C_{L2} 的值很大程度上取决于晶振类型和频率。用户可以参考晶振制造商的数据手册来选择电容。为实现最佳的振荡稳定性, C_{L1} 和 C_{L2} 一般具有相同的值。典型值的范围是从小于 20 pF 到 40 pF 之间 (cload:10 ... 20 pF)。还需要考虑到板子布局的寄生电容,一般在元件值上加上几 pF。

建议

在 PCB 布局上,所有的连接都应该尽可能短。任何额外信号,特别是那些可能干扰振荡器的信号,应该使用合适的屏蔽以使其与振荡器电路的 PCB 区域保持局部隔离。

复位控制 AN2752

5 复位控制

5.1 复位管理概述

复位单元是一个专用的 5 V 双向 I/O。它的输出缓冲器包括一个 40 k 的上拉电阻,驱动能力锁定为 IOl_{MIN} = 2 mA @ 0.4 V (3 V 到 5.5 V 范围)。输出缓冲器简化为 n 沟道 MOSFET (NMOS)。如果使用了 40 k 上拉电阻,该单元就不具有 5 V 的输出驱动能力。接收器包括一个干扰滤波器、这里输出缓冲器具有 20 μ s 的延迟。

有很多复位源,包括:

- 通过 NRST 引脚外部复位
- 上电复位 (POR) 和欠压复位 (BOR): 在上电期间,POR 保持器件处于复位,直到电源电压(V_{DD} 和 V_{DDIO})达到 BOR 开始工作的电压水平。
- 独立看门狗复位 (IWDG)
- 窗口看门狗复位 (WWDG)
- 软件复位:应用软件可以触发复位
- SWIM 复位: 一个连接到 SWIM 接口的外部器件可以请求 SWIM 模块生成微控制器复位。
- 非法操作代码复位:如果执行的代码不与任何操作代码或字节前值相符,就会生成一个 复位。
- 电磁敏感性 (EMS) 复位:如果关键寄存器被损坏或者过载,就会生成复位。

AN2752 复位控制

输出特性

- 内部输出缓冲器上≥ 20 ns 的脉冲持续时间保证了引脚上的有效脉冲。
- 在有效脉冲被识别后,可保证从 A 的下降沿开始,引脚上有一个至少 20 µs 的脉冲。

输入特性

- 所有持续时间小于 75 ns 的脉冲都被滤除
- 所有具有1/10比例的连续/突发尖峰都被滤除。这意味着当一个7.5 ns间隔出现在尖峰之间时 (比例 1/10), 长达 75 ns 的负尖峰必然被滤除。
- 所有持续时间大于 450 ns 的脉冲被识别为有效脉冲
- 在一个有效脉冲被识别后,确保产生一个至少 30 ns 的内部脉冲

建议 AN2752

6 建议

6.1 印刷电路板

由于技术原因,最好使用多层 PCB 的单独一层专用于接地(V_{SS}),另一层专用于 V_{DD} 供电,这样可达到良好的去耦和屏蔽效果。对于很多应用,由于经济要求不能使用此类板。在这种情况下,最重要的特性就是确保 V_{SS} 和电源有良好的结构。

6.2 元件位置

为了减少 PCB 上的交叉耦合, PCB 的初始布局必须对不同的电路的电磁干扰 (EMI) 贡献进行区分,即噪声、高电流电路、低电压电路和数字部分。

6.3 接地和供电(V_{SS}、V_{DD})

V_{SS} 应该分别单独在每个模块(噪声、低电平敏感和数字)单点接地,以汇集所有的接地回流。必须避免出现环,或使环有最小面积。供电应靠近地线实现,以最小化供电环的面积。这是因为供电环的行为类似天线,因此它是 EMI 的主要发送者和接收者。所有无元件的PCB 表面必须用额外的接地填充,以创造屏蔽 (尤其是使用单层 PCB 时)。

6.4 去耦

用于外部电源的标准去耦器是一个 100 μF 池电容。为了减少电流回路的面积,补充的 100 nF 电容必须放置在尽可能靠近芯片的 V_{SS}/V_{DD} 引脚。

通常情况下,对所有敏感或者噪声信号去耦提高了电磁兼容 (EMC)性能。

有两种类型的去耦器:

- 靠近元件的电容。必须要考虑所有电容在某一频率外的电感特性。如果可能,应该将逐渐减小的电容 (0.1、0.01、... μF) 并联。
- 电感。比如尽管铁氧体磁环经常被忽略,但它是不错的电感,因为它具有良好的 EMI 能量分布特性,并且没有 DC 电压损失 (当使用一个简单电阻时就不是这种情况)。

AN2752 建议

6.5 其它信号

当设计一个应用时,以下区域需要详细研究以提高 EMC 性能:

- 噪声信号 (时钟)
- 敏感信号 (高阻)

此外:

● 暂时性干扰会永久影响用于运行过程的信号,例如中断和握手选通信号(但不是 LED 指令)。

对于这些信号,使用 V_{SS} 周围接地跟踪可以提高 EMC 性能,正如更短的长度或无噪声和敏感跟踪(串扰影响)那样。

对于数字信号,两个逻辑状态必须达到可能的最佳电气边界。建议使用慢速施密特触发器以 消除寄生状态。

6.6 不使用的 I/O 和特性

微控制器都是为多种应用设计的,通常一个应用不会使用 100 % 的微控制器资源。

为了提高 EMC 性能,不使用的时钟、计数器、 I/O 都不应浮空,例如, I/O 应该设置为 0 或者 1(上拉或者下拉至不用的 I/O 引脚),并且不使用的功能应被"冻结"或禁用。

或者,不用的 I/O 可以编程为推挽 " 低 ",以使它们保持在一个指定的电平,但不使用外部元件。

6.7 用户选项

STM8S 和 STM8A 器件具有用户选项特性,可以用来重映射或启用 / 禁用一个自动复位或低速看门狗。详情请参见产品数据手册。

参考设计 AN2752

7 参考设计

7.1 元件参考

表 1. 元件清单

ID	元件名称	参考	数量	注释
1	微控制器	STM8S 和 STM8A	1	参考 STM8S 或 STM8A 数据手册的"引脚排列和引脚描述"和"封装特性"部分,以选择正确的封装。
2	按键	1	1	
3	电阻	10 kOhm	1	
4	电容	100 nF	5	陶瓷电容 (去耦电容)
5	电容	1 μF	1	(去耦电容)
6	电容	1 μF	1	主调压器稳定
7	电容	2040 pF	2	用于晶振
8	晶振	124 MHz	1	
9	SWIM 连接器	4 个引脚	1	

AN2752 参考设计

7.2 原理图

图 10. 参考设计

- 1. 如果 22 或 25 个引脚要求作为 GPIO, R1 和 R2 应该去除。
- 2. V_{DD} 必须在 STM8S 或 STM8A 微控制器允许的电源电压范围内。

STM8 开发工具 AN2752

8 STM8 开发工具

STM8S 和 STM8A 微控制器的开发工具包括 STice 仿真系统,由一个完整的软件工具包支持,包括 C 编译器、汇编器和高级语言调试集成开发环境支持。

8.1 单线接口模块 (SWIM)

8.1.1 SWIM 概述

在线调试模式或在线编程模式通过一个单线硬件接口管理,该接口基于开漏线,具有超快存储编程特性。除了与在线调试模块耦合, SWIM 也可以进行 RAM 和外设的非侵入式读 / 写操作。这使得在线调试器非常强大,接近全功能仿真器的性能。

SWIM 引脚可以用作标准 I/O (具有 8 mA 能力),如果用户想使用它调试,会存在一些限制。最安全的方式是用它提供一个 PCB 上的带选项。更多 SWIM 协议相关信息,请参考 STM8 SWIM 通信协议和调试模块用户手册 (UM0470)。

图 11. 调试系统框图

8.1.2 SWIM 连接器引脚

SWIM 连接器引脚包括表 2 中描述的 4 个引脚。

表 2. SWIM 连接器引脚

引脚号	引脚名称
Pin 1	V_{DD}
Pin 2	SWIM 引脚
Pin 3	V_{SS}
Pin 4	复位

AN2752 STM8 开发工具

8.1.3 硬件连接

图 12. 硬件连接

注意: 建议将 SWIM 头尽可能靠近 STM8S 或 STM8A 器件放置,因为这样会减小任何可能由长 PCB 走线带来的信号恶化。

8.2 仿真器 STice

8.2.1 STice 概述

STice 是一个模块化的高端仿真系统,它通过 USB 接口连接 PC 和应用板,而不是目标微控制器。

它由免费的 STM8 工具套件支持: IDE ST visual develop (STVD) 编程器、 ST visual programmer (STVP) 和 STM8 汇编器。更多详细信息,请参考 STM8 的 STice 仿真器。

STM8 开发工具 AN2752

仿真系统: STice

- 仿真盒
- 用于 USB、电源、触发器、分析器输入线

连接线

● 用于连接应用板的 60 引脚或 120 引脚电缆

连接适配器

● 连接到 STM8S 或 STM8A 微控制器对应封装引脚的线

适配器插座

● 用于连接适配器和 STM8S 或 STM8A 微控制器的特定封装插座

8.2.2 STice 仿真配置

在仿真配置中, STice 通过 USB 接口连接 PC 和应用板,而不是使用的目标微控制器。

- 连接线:柔性电缆 (60 引脚或 120 引脚,取决于目标微控制器),用于从 STice 到应用板传递信号。
- 连接适配器:将连接线连接到用户应用板上的目标微控制器封装。
- 适配器插座:焊接在应用板而不是微控制器上的插座,同时接收连接适配器。

STice 系统不包括上述附件。**为了确定支持的微控制器具体需要什么,参考** www.st.com 网站上的在线产品选择器。

AN2752 STM8 开发工具

8.2.3 在线编程和调试

在线调试 / 编程配置过程中,当应用运行在应用板上的微控制器上时, STice 允许在微控制器上对应用进行编程和调试。 STice 支持 SWIM 协议,这使得只用一个通用 I/O 就可以在线编程和调试微控制器。

在仿真和在线编程 / 调试配置中, STice 由运行在主 PC 上的 ST visual develop (STVD) 或 ST visual programmer (STVP) 集成开发环境驱动。这样提供了一个单独的简便易用的接口,可以对高级应用构建、调试和编程特性进行完全控制。

STM8 开发工具 AN2752

AN2752 STM8 软件工具链

9 STM8 软件工具链

为了在 STM8S 或 STM8A 器件上编写、编译和运行第一个软件,需要下列软件工具链的组件 (参见 8 16):

- 集成开发环境
- 编译器
- 固件库 (可选,用于方便启动)

图 16. STM8 软件工具链

STM8 软件工具链 AN2752

9.1 集成开发环境

集成开发环境 ST Visual Develop (STVD) 为全程控制应用开发 (从构建和调试应用代码到 微控制器编程)提供了简便易用且高效的环境。 STVD 是免费 ST 工具套件的一部分,该套件还包括 ST Visual Programmer(STVP) 编程接口和 ST Assembler Linker。

为了构建应用程序, STVD 为 ST 无缝集成了 C 和汇编语言工具链,包括 Cosmic 和 Raisonance C 语言编译器与 ST Assembler Linker。在调试时, STVD 提供了一个集成的仿真器 (软件),同时支持包括低成本 RLink 在线调试 / 编程器和高端 STice 仿真器等全套硬件工具。

为了对 STM8S 或 STM8A 器件进行应用编程,STVD 也提供了一个从微控制器存储器读取、写入和验证的接口。该接口基于 ST visual programmer (STVP),适合 STVP 支持的所有目标器件和编程工具。

免费的用于 STM8 的 ST 工具套件可以从意法半导体主页上获取 (参见 www.st.com)。

9.2 编译器

STM8S 和 STM8A 器件可以由一个包括在 ST 工具套件中的免费汇编工具链编程。

由于内核是为了支持高级语言而优化设计,因此建议使用 C 编译器!

STM8 的 C 编译器由第三方公司 Cosmic 和 Raisonance 提供。

从 www.cosmic-software.com 和 www.raisonance.com 上可以获取一个能够生成高达 16 Kbytes 代码的免费 C 编译器版本。

AN2752 STM8 软件工具链

9.3 固件库

对于每个 STM8 外设, STM8 固件库就是一整套源代码示例。它是按照严格的 ANSI-C 编 写,完全与 MISRA C 2004 兼容 (参见 8 17)。

所有的示例都配有用于 STVD 和 Cosmic C 编译器的工作区和项目定义文件,这使用户可以 轻松载入和编辑到开发环境中。

运行在意法半导体 STM8 评估板上的示例可以轻松地根据其它类型硬件进行移植。

更多关于 STM8 固件库的信息,请咨询意法半导体。

STM8 固件库示例 图 17.

设置 STM8 开发环境 AN2752

10 设置 STM8 开发环境

根据软件 (SW) 和硬件 (HW) 工具提供商的不同,STM8 开发环境设置看起来会有一些区别。 对于下列 SW 和 HW 工具的典型设置描述如下:

- 来自 Cosmic 公司的 STM8 C 编译器
- 来自意法半导体的 ST 工具套件和 STM8 固件库
- 来自 Raisonance 公司的 HW 调试接口 "Rlink"
- 意法半导体的 STM8 评估板

10.1 安装工具

所有软件工具都配有一个设置向导,用于在整个安装过程中引导用户。建议按照下列顺序安装工具:

- 1. C编译器
- 2. ST 工具套件
- 3. STM8 固件库

Rlink 不需要在 STM8 开发环境中安装任何专用软件,因为 ST 工具套件配有必需的驱动器。

注: R-link 驱动器必须按照以下位置单独启动: Start/Programs/STtoolset/Setup/Install Rlink driver.

AN2752 设置 STM8 开发环境

10.2 使用工具

一旦工具安装完成, ST visual develop (STVD) 集成开发环境就可以启动。

用户可以选择新建一个新项目的工作区或者打开一个已有的工作区。如果是第一次使用 STVD,建议从 STM8 固件库中打开一个已有的项目。

STM8 固件库包括几个用于每个外设的示例和一个工作区,工作区包括一个已经配置用于 STM8 评估板点阵显示的项目。它位于固件的子目录 \Project\Cosmic (参见图 18)。

图 18. STVD 开放示例工作区

设置 STM8 开发环境 AN2752

10.2.1 项目编辑

所有的项目源文件都可见,同时可以编辑 (参见图 19)。

图 19. STVD MCU 编辑模式

AN2752 设置 STM8 开发环境

10.2.2 在线帮助

在线帮助手册可以从固件安装目录里获得(参见820),该手册用来帮助用户理解 STM8 固件库的结构。

图 20. STM8 固件库在线帮助手册

设置 STM8 开发环境 AN2752

10.3 运行演示软件

为了在 STM8 评估板上运行演示软件,项目需要编译,同时需要在调试会话启动之前选择正确的 HW 工具。

10.3.1 编译项目

可以使用 "Build" 菜单中的 "Build" 功能对项目进行编译 (参见图 21)。

AN2752 设置 STM8 开发环境

10.3.2 选择正确的调试工具

在下面的示例中, Rlink 工具用于通过 SWIM 接口与 STM8 的板上调试模块通信。

Rlink 工具可以从 "Debug Instrument Settings" 对话框中的 "Debug Instrument Selection" 选择(参见图 22)。

图 22. STVD: 选择调试工具

设置 STM8 开发环境 AN2752

10.3.3 连接硬件

Rlink 工具可以通过一个标准的 USB 与 PC 连接。它还通过 USB 接口供电。

在控制器这一边,连接 STM8 评估板用的是 SWIM 接口电缆。 STM8 评估板由一个外部 5 V 电源供电 (参见 23)。

注意: 在 Rlink ICC/SWIM 适配器板上,必须设置 "SWIM" 跳线。 如果在应用中 SWIM 线没有上拉,则还要设置 "ADAPT" 跳线。 在任何情况下,都不要设置 "PW-5V" 和 "12MHz" 跳线。

AN2752 设置 STM8 开发环境

10.3.4 开始调试会话

可以通过 "Debug Start Debugging" 命令进入调试模式 (参见图 24)。

图 24. STVD: 开始调试会话

设置 STM8 开发环境 AN2752

10.3.5 运行软件

在进入调试模式后,可以通过菜单 "Debug Run" 菜单中的运行命令启动软件 (参见图 25)。

图 25. STVD: 运行软件

AN2752 设置 STM8 开发环境

STM8 评估板上的 LCD 显示屏表明成功完成调试会话 (参见图 26)。

图 26. STM8 评估板

10.3.6 后续操作

接着从上面描述的初始调试会话开始, STM8S 和 STM8A 器件的额外外设就可以逐个开始 运行。

STM8S 和 STM8A 器件的许多特性是由 STM8 评估板上的专用硬件支持。必要的软件驱动 (CAN 驱动、LIN 驱动、按钮、存储卡、蜂鸣器等)都包含在 STM8 固件库中。

文档和在线帮助 AN2752

11 文档和在线帮助

与工具使用相关的文档资源包括:

应用

- STM8S 数据手册:
 - STM8S207xx STM8S208xx
 - STM8S105xx
 - STM8S103K3 STM8S103F3 STM8S103F2
 - STM8S903K3 STM8S903F3
 - STM8S003K3 STM8S003F3
- STM8A 数据手册:
 - STM8AF52xx STM8AF6269/8x/Ax STM8AF51xx STM8AF6169/7x/8x/9x/Ax
 - STM8AF622x/4x STM8AF6266/68 STM8AF612x/4x STM8AF6166/68
- 如何对 STM8S 和 STM8A 的 Flash 编程存储器和数据 EEPROM 编程 (PM0051)
- STM8S 和 STM8A 微控制器系列参考手册 (RM0016)
- STM8 CPU 编程手册 (PM0044)

工具

- STM8 固件库和版本说明 (作为帮助文件包含详细的固件库描述)
- 用于 ST 微控制器数据简介的 STice 高级仿真系统
- STice 用户手册
- Cosmic C 编译器用户手册
- STM8/128-EVAL 评估板用户手册 (UM0482)
- ST visual develop 指导 (在 ST- 工具链中作为帮助文件)
- ST visual develop (STVD) 用户手册
- STM8 SWIM 通信协议和调试模块用户手册 (UM0470)

开发者可以利用 www.st.com 网站上的微控制器讨论区交流思想。这是寻找不同应用思路的最好的地方。除此之外,网站还有一个关于微控制器的 FAQ 技术资料,它提供了许多问题和解决方案。

AN2752 修订历史

12 修订历史

表 3. 文档修订历史

文 5. 文档房间加文			
日期	版本	变更	
2008年6月03日	1	初始版本	
2008年9月01日	2	STM8S207/208 替换成 STM8S20xxx <i>图 10: 参考设计第 19 页</i> 和 <i>图 12: 修改了第 21 页的 LQFP 80 引脚的引脚排列</i> ,以使其与 STM8S20xxx 数据手册中的引脚描述保持一致。 修改了 <i>图 7: 复位管理第 14 页</i>	
2009年4月01日	3	修改了第 2.2 节: 主工作电压第 8 页	
2011年8月5日	4	表 1: 通用工作条件: 替换了 图 10: 参考设计第 19 页: 更新了 C4 电容的电容值。	
由于本修改覆盖了 STM8A 器件,因此整篇文档中添加用 STM8S 和 STM8A 替换了 "Root part number 2"。		更新了 <i>第 2.2 节: 主工作电压</i> : 去掉了 <i>表 1: 通用工作条件</i> ,添加了一个 STM8S 和 STM8A 数据手册参考。 去掉了 5.2 节: 硬件复位植入。 表 1: 元件清单: 为 "ID"6 更新了 "Reference" 值。 去掉了 7.3 节: 引脚排列。	

表 4. 中文文档修订历史

日期	版本	变更
2015年9月9日	1	中文初始版本

重要通知 - 请仔细阅读

意法半导体公司及其子公司("ST")保留随时对 ST 产品和 / 或本文档进行变更、更正、增强、修改和改进的权利,恕不另行通知。买方在订货之前应获取关于 ST 产品的最新信息。 ST 产品的销售依照订单确认时的相关 ST 销售条款。

买方自行负责对 ST 产品的选择和使用, ST 概不承担与应用协助或买方产品设计相关的任何责任。

ST 不对任何知识产权进行任何明示或默示的授权或许可。

转售的 ST 产品如有不同于此处提供的信息的规定,将导致 ST 针对该产品授予的任何保证失效。

ST 和 ST 徽标是 ST 的商标。所有其他产品或服务名称均为其各自所有者的财产。

本文档中的信息取代本文档所有早期版本中提供的信息。

© 2015 STMicroelectronics - 保留所有权利 2015

