

بسمه تعالى دانشکده مهندسی برق و کامپیوتر تمرین سری دوم درس آمار و احتمال مهندسی

دانشگاه تهران

با حروف كلمه STATISTIC

الف) چند کلمه ۸ حرفی می توان نوشت؟ [پاسخ:
$$\frac{8!}{2!2!2!} + \frac{8!}{3!2!} + \frac{8!}{3!2!2!} + \frac{8!}{3!2!2!} + \frac{8!}{3!2!2!}$$
 ب) چند کلمه ۹ حرفی می توان نوشت که T ها کنار هم، ولی A و I کنار هم نباشند؟ [پاسخ: 600]

با حروف (a,b,c,d,e,f,g,h,i) با حروف -٢

الف) چند کلمه ۹ حرفی با حروف متمایز می توان نوشت که حرف d بلافاصله بعد از e آمده باشد (حروف متمایزند). [ياسخ: !8]

ب) در چه تعداد از کلمات ۶ حرفی، حرف f بعد از d و d بعد از e (نه لزوماً بلافاصله) می آید (فرض کنید حروف متمایزند). $\left[\frac{6!6!}{3!3!3!}\right]$ [پاسخ:

 $\left[\frac{9!}{2!}\right]$ به چند طریق می توان سه کلمه ۳ حرفی با حروف متمایز نوشت؟ [یاسخ:

کیسهای حاوی n توپ متمایز با شمارههای ۱ تا n است.

الف) k توپ را یک به یک از کیسه خارج کرده و با در نظر گرفتن ترتیب کنار هم قرار میدهیم $(k \leq n)$. احتمال آن که شماره $[\frac{1}{t}]$ توپهای بیرون آمده یک رشته مرتب (صعودی اکید) باشد، چهقدر است

ب) k توپ را به تصادف بیرون آورده و بزرگترین شماره را در نظر می گیریم. احتمال آن که این شماره برابر با m باشد را بیابید $\left[\frac{\binom{m-1}{k-1}}{\binom{n}{k}}\right]$ ($k \le m \le n$).

مردی ۷ هدیه متفاوت برای سه فرزندش خریده است. به چند حالت متفاوت میتواند هدایا را به فرزندانش بدهد اگر بخواهد: الف) هيچ محدوديتي در تقسيم هدايا نباشد. [ياسخ: 3⁷]

 $[3^7 - 3 \times 2^7 + 3]$ ب) هر فرزند حداقل یک هدیه داشته باشد. [پاسخ: 3

 $[\binom{7}{3}\binom{4}{5}]$ پاررگترین فرزند سه هدیه و بقیه هر کدام دو هدیه داشته باشند. [پاسخ:

- الف) در شکل روبرو اگر در هر مرحله مجاز باشیم یک گام به راست یا $\begin{bmatrix} \binom{7}{4} \end{bmatrix}$ یک گام به بالا برداریم به چند طریق می توان از A به B رسید؟ ب) بند (الف) را برای حالتی که ناگزیر باشیم حتماً از نقطهای که در $\begin{bmatrix} \binom{3}{1} \binom{4}{2} \end{bmatrix}$ شکل با دایره مشخص شده است بگذریم، تکرار کنید. $\begin{bmatrix} \binom{3}{1} \binom{4}{2} \end{bmatrix}$
- از ظرفی که ۵ مهره سفید و ۳ مهره قرمز دارد، هر مرتبه مهرهای به تصادف انتخاب و رنگ آن ملاحظه می شود. اگر مهره قرمز باشد به همراه دو مهره همرنگ دیگر و اگر سفید باشد به همراه ۳ مهره همرنگ دیگر به ظرف برگردانده می شود. احتمال آن که $[\frac{5}{8} \times \frac{3}{11} \times \frac{8}{15} \times \frac{5}{16} \times \frac{5}{10} \times \frac{5}{10} \times \frac{5}{13} \times \frac{8}{15})]$ در انتخاب پیاپی مهرهها رنگ چهار مهره اول به تناوب تغییر کند چهقدر است؟ [پاسخ: $(\frac{5}{10} \times \frac{5}{10} \times \frac{5}{10} \times \frac{5}{10} \times \frac{5}{10} \times \frac{5}{10})]$
- در ظرفی ۳ مهره سفید، ۴ مهره قرمز و ۵ مهره سبز داریم. از این ظرف شش مهره با هم بیرون می آوریم. مطلوبست احتمال آن که $\left[\frac{\binom{5}{2}\binom{4}{2}\binom{3}{2}+\binom{4}{3}\binom{5}{3}+\binom{5}{3}\binom{5}{3}+\binom{5}{3}\binom{3}{3}+\binom{4}{3}\binom{3}{3}}{(3)}}{\binom{12}{3}}\right]$ الف) در این نمونه ۶ تایی، مهرههای همرنگ مساوی باشند $\left[\frac{\binom{5}{4}\binom{4}{1}\binom{3}{1}+\binom{5}{2}\binom{4}{2}\binom{3}{2}\binom{2}{1}\binom{5}{3}\binom{4}{1}\binom{3}{2}}{\binom{12}{2}}$ ب) مهرهها از سه رنگ باشند و اکثریت با مهرههای سبز باشد
- آمار تصادفات جادهای به صورت 18% مرگبار، 52% جدی و 30% جزیی است. اگر تعداد تصادفات در یک روز 10 فقره گزارش شود، مطلوبست احتمال آن که:
 - $\left[\frac{10!}{2117!} \times 0.52^2 \times 0.18 \times 0.3^7\right]$ الف) ۲ تصادف جدى و ۱ تصادف مرگبار باشد.

 $[\frac{10!}{(7)} \times 0.52^2 \times 0.18 \times 0.37}]$ ب) $[0.52] \times 0.52^2 \times 0.18 \times 0.37]$ برا تصادف جدی و ۱ تصادف مرگبار باشد به شرط آن که بدانیم ۷ تصادف جزیی بوده است. $[0.52] \times 0.37 \times 0.73]$ ب) حداکثر ۱ تصادف مرگبار و حداقل ۸ تصادف جزیی باشد. $[0.52] \times 0.38 \times 0.52^2 \times 0.38 \times 0.52^2 \times 0.38 \times 0.52 \times 0.38 \times 0.38 \times 0.52 \times 0.38 \times$

جعبهای شامل ۷ مهره متمایز است. مهرههای این جعبه را به تصادف در بین ۴ جعبه تقسیم می کنیم. الف) احتمال آن که هیچ جعبهای خالی نماند چهقدر است؟ [پاسخ: $\frac{4^{-2} \times 3^{7} + 6 \times 2^{7} + 6}{4^{7}}$] ب) اگر فرض کنیم مهرهها مشابه هستند چه تغییری در احتمال فوق حاصل می شود؟ [پاسخ: $\frac{\binom{6}{0}}{\binom{10}{0}}$]

- دو جعبه A و B هر یک محتوی n توپ هستند که از 1 تا n شماره گذاری شدهاند. از هر جعبه به صورت کاملاً تصادفی ℓ توپ ℓ توپ A و جعبه به ℓ و B هر یک محتوی ℓ توپ هستند که از ℓ توپ خارجشده از جعبهها، دقیقاً ℓ جفت توپ همشماره باشند چهقدر است؟ ℓ خارج می کنیم. احتمال آن که از این ℓ توپ خارجشده از جعبهها، دقیقاً ℓ خارج می کنیم. احتمال آن که از این ℓ توپ خارجشده از جعبهها، دقیقاً ℓ خارج می کنیم. احتمال آن که از این ℓ توپ خارجشده از ℓ توپ خارجشده از ℓ توپ خارجشده از ℓ توپ عبد احتمال آن که از این ℓ توپ خارجشده از ℓ تا ℓ توپ خارجشده از ℓ تا ℓ توپ خارجشده از ℓ تا ℓ
- 1۱- یک سازنده سوزن ادعا می کند که تنها سه درصد از محصولاتش معیوبند. یک نمونه تصادفی شامل ۲۴ سوزن را انتخاب کرده و دریافتهایم که دو عدد از آنها معیوب است. آیا بر مبنای این مشاهدات رد ادعای این سازنده منصفانه است؟ [پاسخ: خیر]
- A جعبه ی A شامل ۱۰۰۰ لامپ است که احتمال خرابی هر یک از آنها 0.2 میباشد. در جعبه ی B نیز A نیز A نیز وجود دارد که این لامپها نیز با احتمال A خراب هستند.
 - الف) احتمال آن که تعداد لامپهای خراب در جعبه ی A بیشتر از ۲۰۰ باشد را به صورت دقیق و تقریبی پیدا کنید. $[G\left(\frac{800.5}{\sqrt{160}}\right) G\left(\frac{0.5}{\sqrt{160}}\right)]$ (تقریبی) (0.4811) (تقریبی) ردقیق) الف
- ب) اگر بدانیم تعداد لامپهای خراب در جعبه ی B بیش از ۱۰ است، احتمال آن که تعداد لامپهای خراب از ۲۵ بیشتر نباشد را نیز بهطور دقیق و تقریبی پیدا کنید. [پاسخ: (دقیق) 0.2071 (تقریبی) 0.2083
- فرض کنید احتمال تولد یک فرد در هر روزِ سال برابرِ روزهای دیگر سال و برابر $\frac{1}{365}$ باشد (از سالهای کبیسه صرفنظر کنید). تولد هر فرد را نیز مستقل از تولد افراد دیگر فرض کنید. اگر شما عضو یک گروه n نفره باشید، حداقلِ مقدارِ n را به گونه ای بیابید که احتمال یکسان شدن تولد شما با تولد حداقل سه نفر دیگر، از $\frac{1}{2}$ بیشتر شود. [پاسخ: (دقیق) n > 975 (تقریبی) n > 976

$G(x) = \frac{1}{\sqrt{1-x^2}} \int_0^x e^{-\frac{y^2}{2}} dy,$	$G(x) \approx 1 - \frac{1}{1 + \frac{1}{1 +$
$G(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-x^2} dy,$	$G(x) \sim 1 - \frac{1}{\sqrt{2\pi}} \frac{1}{0.661x + 0.339\sqrt{x^2 + 5.51}}, x > 0$

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	
0.00	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586	
0.10	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535	
0.20	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409	
0.30	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173	
0.40	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793	
0.50	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240	
0.60	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490	
0.70	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524	
0.80	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327	
0.90	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891	
1.00	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214	
1.10	0.86433	0.86650	0.86864	0.87076	0.87286	0.87493	0.87698	0.87900	0.88100	0.88298	
1.20	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147	
1.30	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774	
1.40	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189	
1.50	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408	
1.60	0.94520	0.94630	0.94738	0.94845	0.94950	0.95053	0.95154	0.95254	0.95352	0.95449	
1.70	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.96327	
1.80	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062	
1.90	0.97128	0.97193	0.97257	0.97320	0.97381	0.97441	0.97500	0.97558	0.97615	0.97670	
2.00	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169	
2.10	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574	
2.20	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899	
2.30	0.98928	0.98956	0.98983	0.99010	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158	
2.40	0.99180	0.99202	0.99224	0.99245	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361	
2.50	0.99379	0.99396	0.99413	0.99430	0.99446	0.99461	0.99477	0.99492	0.99506	0.99520	
2.60	0.99534	0.99547	0.99560	0.99573	0.99585	0.99598	0.99609	0.99621	0.99632	0.99643	
2.70	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.99720	0.99728	0.99736	
2.80	0.99744	0.99752	0.99760	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807	
2.90	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861	
3.00	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.99900	
3.10	0.99903	0.99906	0.99910	0.99913	0.99916	0.99918	0.99921	0.99924	0.99926	0.99929	
3.20	0.99931	0.99934	0.99936	0.99938	0.99940	0.99942	0.99944	0.99946	0.99948	0.99950	
3.30	0.99952	0.99953	0.99955	0.99957	0.99958	0.99960	0.99961	0.99962	0.99964	0.99965	
3.40	0.99966	0.99968	0.99969	0.99970	0.99971	0.99972	0.99973	0.99974	0.99975	0.99976	
3.50	0.99977	0.99978	0.99978	0.99979	0.99980	0.99981	0.99981	0.99982	0.99983	0.99983	
3.60	0.99984	0.99985	0.99985	0.99986	0.99986	0.99987	0.99987	0.99988	0.99988	0.99989	
3.70	0.99989	0.99990	0.99990	0.99990	0.99991	0.99991	0.99992	0.99992	0.99992	0.99992	
3.80	0.99993	0.99993	0.99993	0.99994	0.99994	0.99994	0.99994	0.99995	0.99995	0.99995	
3.90	0.99995	0.99995	0.99996	0.99996	0.99996	0.99996	0.99996	0.99996	0.99997	0.99997	