Apr 6 1
bull last week - lor the Poisson Process
hull: last week -> for the Poisson Process Notes Pii (+) = \((Pi-1,i(+) - Pii (+)) \)
I his week: . We conclude thap S
-> liniting probabilities of CTTC
This week: We conclude Chap 3 -> liniting probabilities of CTITC -> Applications
· HW solutions for Pom 1-3 to be poled foday
Next week (lost class): Notebook session + review for the final exam.
the linal exam.

· Like in discrete how, we're now interested in the long term behaviour of the MC. In particular, finding, if it exists

Pi = lim Pi, (t), independent of i.

· Rul: if lim Pig(t) exists, then lim Pig(t)=0

let's plug this in the Kolmogorov Dachwards eq.

 $C = \underbrace{\leq q_{ih} P_{i}}_{t \to t \infty} - \underbrace{\int_{t}^{t} P_{i}}_{t \to t \infty}$ $P_{ij}(t)$ $P_{ij}(t)$ $P_{ij}(t)$

(Sqik) Pj = Vi Pj

Es gik = vi, which is something

We already know

(cf. last week)

so we haven't gained any new info.
on the limiting behaviour.

> For the forward eq: Pig(t) Pig(t) So (5) = \(\frac{\x}{k\pm} \) | \(\frac{\x}{k\pm} \) (\le P :) and besides Interpretation of (+x)

Overall flor at which the

CTTIC le aves j

Proba to be in j (long-term)

rate to leave

j when the process is at j RHS: \S qhiPh \rightarrow oreral) flux at which the CTMC enters is rate at which the CTTC enters j stark-y from R Cc: At equilibrium (Pij = 0, Vij), the overall flux of entrace into a state equals

ex: Stationary distribution for 2-state CTTC (Next or B-D process (if it exists) time). Find the intensity making for the Poisson process.