明細書

電気機械フィルタ

技術分野

- [0001] 本発明は、電気機械フィルタにかかり、特に、信号線路となる電極、磁界発生部、 およびそれらを可動とする機構を備える電気機械フィルタに関する。 背景技術
- [0002] 無線端末などの情報通信機器の普及が進む中、通信に使用される周波数は、携 帯電話等の数百MHzから無線LAN等の数GHz帯と広帯域化が加速している。現 在は、各種通信方式に対応した端末を独立使用している状況であるが、将来的には 、一つの無線端末で各種通信方式に対応した端末の実現が望まれている。
- [0003] 一方、無線端末の小型化が進む中、端末の筐体内に内蔵されるフィルタなどの受動部品の小型化が望まれている。近年、特に、無線通信でよく用いられているLCなどによる電気的共振を利用したフィルタは、共振器サイズが電気長に依存するため、フィルタの小型化が難しいという問題があり、新たな信号選択の原理が模索されている。
- [0004] その中で、磁性体を用いたGHz帯素子の開発が活発になってきている。数百MHzから数GHz帯以上の高周波帯をターゲットにした受動素子に磁性体を用いる試みは、高周波伝送線路フィルタにまで及んでいる。その利点として、Fe等の磁性金属材料を用いれば、温度特性や飽和磁化の点で優れており、ICへの集積化にも適することが挙げられる。最近では、磁性金属の導入による波長短縮効果の増大が報告されており、素子の小型化への期待がふくらんでいる。
- [0005] 磁性体を用いたフィルタとして、例えば、非特許文献1がある。この非特許文献1では、GaAs基板上にFeを含む強磁性体膜のマイクロストリップ線路を形成したFe/GaAs基板ハイブリッドマイクロストリップ線路を構成し、強磁性共鳴現象を利用して10GHz帯のバンドストップフィルタを実現している。このバンドストップフィルタの強磁性共鳴周波数fは、式1の様に表される。γはジャイロ磁気定数(1.105×10⁵g[A⁻¹m·s⁻¹]、g:ランデ因子)、Hは異方性磁界(A/m)、Iは飽和磁界(T)、Hは直流バイ

アス磁界である。

[0006] 単結晶Fe膜の結晶磁気異方性定数K₁〜48kl/m³と飽和磁化I₂〜2.15Tから、異方性磁界H₁は、式2となる。遷移金属Feでは、g〜2であるから、外部直流バイアス磁界Hがゼロの場合の強磁性共鳴周波数は、約9.85GHzとなる。

Hの大きさを変えることで、強磁性共鳴周波数を変調でき、チューナブルフィルタを 実現できる。

- [0007] また、強磁性共鳴周波数の値には、直流バイアス磁界Hの大きさだけでなく、ベクトルにも依存する。式1は、ストリップ線路電流による高周波磁界と直流バイアス磁界による磁気モーメントが直交した場合の表式であり、高周波磁界と磁気モーメントが同一方向となった場合は、強磁性共鳴は起こらない。直流バイアス磁界Hのベクトルにも着目する必要がある。
- [0008] 非特許文献1:E.Schloemann et al.: J. Appl. Phys., 63, 3140 (1998).

発明の開示

発明が解決しようとする課題

- [0009] しかしながら、現在のところ、非特許文献1にみられるフィルタは、一旦磁性体の磁化容易軸が、高周波磁界と直交する様に材料を堆積すると、その後直流バイアス磁界Hの大きさや方向を変えることができず、チューナブルフィルタを実現することはできないという問題がある。実験上では、大掛かりな磁界印加装置を用いて磁性体の磁化方向や大きさを制御し、チューナブルフィルタリング効果を実現しているが、勿論その様な機構は携帯端末のような小型装置へは適用できない。また、磁界印加用コイルを用いれば電流を流すこととなり、消費電力が大きくなるため、この面でも携帯端末への適用が不適である。このような状況からみても、この非特許文献1の技術は、携帯端末へ適用可能なチューナブルフィルタの実現が難しいという問題がある。
- [0010] 本発明は、前記実情に鑑みてなされたものであり、小型で消費電力が小さく、通過 帯域(バンドパス周波数)または遮断帯域(バンドストップ周波数)を変調可能なチュー ナブルフィルタを提供することを目的とする。

即ち、本発明では、信号線路となる電極、磁界発生部、およびそれらを可動とする機構とを備え、所定の周波数の信号のみを選択して出力することができるとともに、

所定の周波数を変調可能とすることを可能とする電気機械フィルタを提供することを 目的とする。

課題を解決するための手段

[0011] 上記目的を達成するため、本発明では、信号線路に流れる電流による高周波磁界と交差する直流バイアス磁界とを相対的にベクトル変調することにより、強磁性共鳴 周波数を変調する。

すなわち、本発明の電気機械フィルタは、信号線路となる電極と、この電極に相対 向するように配置された駆動電極と、これらの電極間に生起される電界によって相対 的にベクトル変位可能に形成された磁界発生部と、前記これらの電極のいずれかー 方あるいは前記磁界発生部のいずれかが可動であり、前記信号線路を流れる信号 のうち、所定の周波数の信号のみを選択して出力することができるとともに、所定の周 波数を変調可能としたものである。

- [0012] この構成により、第1及び第2の電極、磁界発生部のいずれかの変位により、信号 線路を構成する電極を貫く前記磁界発生部より生ずる磁界を可変とすることで、従来 実現困難であった強磁性共鳴周波数の変調を行うことができ、電気的操作のみによ って、通過帯域あるいは遮断帯域を変調することができる。
- [0013] この構成によって、信号フィルタリングのチューナブル機能を有するフィルタを実現する。
- [0014] 本発明における電極や磁界発生部を機械的に変位可能に駆動する技術は、ME MS (Micro Electro Mechanical Systems) 技術により形成される梁と、梁あるいはこの 梁に設けられた電極と、電気機械効果をもつ回路部と、磁界発生部とで実現される。
- [0015] 本発明の電気機械フィルタは、信号線路となる導体と、前記導体を貫く磁界を発生 する磁界発生部と、前記導体と前記磁界発生部の相対位置を変位させることによっ て、前記信号線路を貫く磁界を変化させる駆動電極とを備える。

この構成により、駆動電極による静電力などを変化させることにより、導体あるいは 駆動電極あるいは磁界発生部を変位させることにより、信号線路を貫く磁界を変化さ せることができ、強磁性共鳴周波数を容易に調整することができる。

[0016] また本発明の電気機械フィルタは、前記導体が、前記駆動電極と対向して配置さ

れ、前記駆動電極との間での静電力により相対的に変位可能な電極であるものを含む。

この構成により、信号線路を両持ち梁とするなどの方法により、容易に変位可能であり、駆動電極に与える電位を調整するのみで強磁性共鳴周波数を容易に調整する ことができ、変調可能な電気機械フィルタを形成することができる。

[0017] また本発明の電気機械フィルタは、前記磁界発生部が、変位可能に形成された磁 性体を含む。

この構成により、磁界の方向を容易に変化させることができ、従って変調可能な電 気機械フィルタを形成することができる。また、磁界発生部が可動であれば、信号線 路を固定にすることができ、基板表面に所望の厚さの信号線路を形成することができ ることになり、製造が容易で、耐久性の高い電気機械フィルタを形成することが可能と なる。また、信号伝送線路そのものは固定であるため、より信頼性の高いものとなる。

[0018] また本発明の電気機械フィルタは、前記磁性体が、前記駆動電極の静電力によって変位される。

この構成により、駆動電極の電位を変化させるのみで容易に磁性体を変位させることができ、磁界変化を容易に実現することができるため、変調可能な電気機械フィルタを形成することができる。

- [0019] また本発明の電気機械フィルタは、前記駆動電極が、可動であるものを含む。 この構成により、設計の自由度を高めることができる。駆動電極が可動であれば、 信号線路を固定にすることができ、信号線路との相互作用で変位された駆動電極に よってさらに磁界発生部を変位させることもできる。
- [0020] また本発明の電気機械フィルタは、基板表面に形成され、電位を可変に構成された駆動電極と、前記駆動電極上に、所定の間隔を隔てて相対向して配置され、信号線路を構成する導体パターンと、前記信号線路と交差する磁界成分をもつように着磁された磁性体膜パターンを備えた磁界発生部とを備え、前記駆動電極の電位を変化させることにより、前記信号線路を変位させ、前記信号線路上での前記磁性体膜パターンによる磁界を変化させることにより、磁性共鳴周波数を変化させるようにしている。

この構成により、駆動電極の電位を変化させることにより、容易に信号線路を変位させることが出来、その結果信号線路が受ける磁界を容易に変化させることができ、変調可能な電気機械フィルタを形成することができる。

[0021] また本発明の電気機械フィルタは、前記駆動電極を、半導体基板表面を覆う絶縁 膜上に形成された導体パターンで構成し、前記信号線路が、前記駆動電極と対向す るように配設された両持ち梁を構成している。

この構成により、加工性が良好で、容易に信号線路が受ける磁界を容易に変化させることができ、変調可能な電気機械フィルタを形成することができる。

[0022] また本発明の電気機械フィルタは、前記信号線路が、前記駆動電極と平行に配置 されるとともに、前記磁性体膜パターンが、前記信号線路を流れる信号と直交する方 向に磁場を形成する。

この構成により、磁界変化を最大限に大きく共鳴周波数の変化として取り出すことができ変調可能な電気機械フィルタを形成することができる。

[0023] また本発明の電気機械フィルタは、前記磁性体膜パターンが、前記信号線路を挟むように配置された第1及び第2の磁性体膜パターンを含む。

この構成により、磁性体を水平ニ方向で変位可能とし、変調をより高精度に制御可能とすることができる。

[0024] また本発明の電気機械フィルタは、基板表面に形成された磁性体膜パターンからなる磁界発生部と、前記磁性体膜パターン上に、所定の間隔を隔てて相対向して変位可能に配置され、信号線路を構成する導体パターンと、前記信号線路に近接して配置された駆動電極とを備え、前記磁性体膜パターンは、前記信号線路と交差する磁界成分をもつように着磁され、前記駆動電極の電位を変化させることにより、前記信号線路を変位させ、前記信号線路上での前記磁性体膜パターンによる磁界を変化させることにより、磁性共鳴周波数を変化させるようにしている。

この構成により、薄膜プロセスにより容易に、微細かつ信頼性の高い、変調可能な電気機械フィルタを形成することが可能となる。

[0025] また本発明の電気機械フィルタは、前記磁性体パターンは、半導体基板表面を覆 う絶縁膜上に形成されており、前記信号線路は、前記磁性体パターンと対向するよう に配設された両持ち梁を構成している。

この構成により、信号線路の変位により、半導体基板と接触するような場合があって も、短絡を防止することができる。

[0026] また本発明の電気機械フィルタは、前記信号線路が、前記駆動電極と平行に配置 されるとともに、前記磁性体膜パターンは、前記導体パターンを流れる信号と直交す る方向に磁場を形成するものを含む。

この構成により、信号線路と磁界が直交する方向にあるため、より高感度となり、高精度の変調が可能となる。

[0027] また本発明の電気機械フィルタは、前記駆動電極は、前記信号線路を挟むように 配置された第1及び第2の導体膜パターンを含む。

この構成により、磁性体を水平二方向で変位可能とし、変調をより高精度に制御可能とすることができる。

[0028] また本発明の電気機械フィルタは、基板表面に、空間的に変位可能に形成された 磁性体膜パターンからなる磁界発生部と、前記磁性体膜パターンに対して、所定の 間隔を隔てて相対向するように前記基板に固定配置され、信号線路を構成する導体 パターンと、前記磁界発生部に近接して配置され、前記磁界発生部を変位可能な駆動電極とを備え、前記磁性体膜パターンは、前記信号線路と交差する磁界成分をも つように着磁され、前記駆動電極の電位を変化させることにより、前記信号線路を変 位させ、前記信号線路上での前記磁性体膜パターンによる磁界を変化させることに より、磁性共鳴周波数を変化させるようにしたものを含む。

この構成により、信号線路が固定であるため、基板表面に所望の厚さの信号線路を 形成することができることになり、製造が容易で、耐久性の高い電気機械フィルタを形 成することが可能となる。また、より信頼性の高いものとなる。

[0029] また本発明の電気機械フィルタは、前記信号線路が、前記磁性体パターン上で所定の間隔を隔てて相対向するように形成されたものを含む。

この構成により、強磁性体の形成が容易となる。強磁性体材料の形成を、より下層 の工程で実現することができるため、強磁性体の成膜に際して、生じ易い電極材料 等の劣化を防止することができる。 [0030] また本発明の電気機械フィルタは、基板表面に形成され、電位を可変に構成された第1及び第2の駆動電極と、前記第1の駆動電極に、所定の間隔を隔てて相対向して配置され、信号線路を構成する導体パターンと、前記信号線路と交差する磁界成分をもつように着磁された磁性体膜パターンを備えた磁界発生部とを備え、前記第1の駆動電極の電位を変化させることにより、前記信号線路を変位させるとともに、前記第2の駆動電極の電位を変化させることにより、前記磁性体パターンを変位させ、前記信号線路上での前記磁性体膜パターンによる磁界を変化させることにより、磁性共鳴周波数を変化させるようにしたものを含む

この構成により、第1及び第2の駆動電極によりそれぞれ磁界および信号線路の位置を変化させることができるため、より高精度の変調が可能となる。

- [0031] また本発明の電気機械フィルタは、信号線路となる第1の導体と、前記第1の導体を貫く磁界を発生する磁界発生部と、前記第1の導体と前記磁界発生部の相対位置を変位させることによって、前記信号線路を貫く磁界を変化させる駆動電極と、前記第1の導体を流れる高周波電流による磁界と前記磁界発生部の磁界との共鳴によって誘起される誘起起電力を伝送する信号線路となる第2の導体とを含むものを含む。この構成により、第1の導体に信号が入力されると、磁界発生部の周りに高周波電流による高周波磁界を発生する。この高周波磁界により、磁界発生部にスピンの歳差運動が励起される(キッテルモード)。このモードのつくる磁界により、第1の導体に誘導起電力が生じる。そしてこの磁界発生部の強磁性共鳴周波数の信号が入力されたときのみ、強磁性共鳴現象が起こり、磁界発生部のスピンの歳差運動の角度が最大となり、誘導起電力の大きさが最大となる。このようにして、第2の導体が誘導起電力により信号を出力することになり、強磁性共鳴周波数によって決まるある特定の周波数の信号のみ第2の導体に伝搬することができる。
- [0032] また本発明の電気機械フィルタは、前記第1の導体と前記第2の導体とが直交するように配置されている。

この構成により、互いの信号の干渉をなくし、ノイズのない信号出力を実現することができる。

[0033] また本発明の電気機械フィルタは、前記第1の導体と前記第2の導体は所定の間

隔を隔てて平行に配置されている。

これにより、小型化をはかることができる。

- [0034] また本発明の電気機械フィルタは、複数の前記電気機械フィルタを配列して接続し、チューナブルバンドパスフィルタ機能を実現するものを含む。
- [0035] また本発明の電気機械フィルタは、複数の前記電気機械フィルタを配列して接続し、チューナブルバンドストップフィルタ機能を実現するものを含む。
 発明の効果
- [0036] 以上説明したように、本発明によれば、信号線路となる電極、磁界発生部、および それらを可動とする機構を備えることで、所定の周波数の信号のみを選択して通過あ るいは遮断するように出力することができるとともに、所定の周波数を変調可能とする ことができる。

図面の簡単な説明

[0037] [図1](a)本発明実施の形態1における電気機械フィルタの構成を示す斜視図、(b) 本発明実施の形態1における電気機械フィルタの構成を示す断面図、

[図2]本発明実施の形態1における電気機械フィルタのチューナブルフィルタリング特性を示す図であり、(a)はバンドストップ特性を示す図、(b)はバンドパス特性を示す図

[図3](a)図1の電気機械フィルタの変形例を示す斜視図、(b)図1の電気機械フィルタの変形例を示す断面図

[図4]二つの磁性体102によって形成される直流バイアス磁界Hの発生パターンのシミュレーション結果を示す図

[図5]x=0 μ mの位置におけるz方向の各位置に対する直流バイアス磁界Hの強さを示す図

[図6]図4のz= 110μ mの位置における、x方向の各位置に対する直流バイアス磁界H の強さを示す図

[図7]本発明の実施の形態1における電気機械フィルタの製造工程を段階的に説明する断面図

[図8]本発明の実施の形態1における電気機械フィルタの製造工程を段階的に説明

する断面図

[図9](a)本発明の実施の形態2における電気機械フィルタの構成を示す斜視図、(b)本発明実施の形態2における電気機械フィルタの構成を示す断面図、

[図10](a)本発明の実施の形態3における電気機械フィルタの構成を示す斜視図、(

b) 本発明実施の形態3における電気機械フィルタの構成を示す断面図

[図11]磁性体が移動した場合の直流バイアス磁界と固定電極の相対位置を示す図

[図12](a)本発明の実施の形態4における電気機械フィルタの構成を示す斜視図、(

b) 本発明実施の形態4における電気機械フィルタの構成を示す断面図

[図13]磁性体と可動電極が移動した場合の直流バイアス磁界と可動電極の相対位置を示す図

「図14]本発明の実施の形態5における電気機械フィルタの構成を示す斜視図、

[図15]本発明実施の形態5における電気機械フィルタの変形例の構成を示す斜視図符号の説明

[0038] 100、100a、400、500、600、700、800 電気機械フィルタ

- 101 可動電極
- 102 磁性体
- 103、110 駆動電極
- 104 ポスト
- 105、108 スペーサ
- 106 絶縁膜
- 107 基板
- 109 ステム
- 111、112 固定電極

発明を実施するための最良の形態

[0039] 以下、本発明の各実施の形態について、図面を参照して詳細に説明する。 (実施の形態1)

図1(a)および(b)は、本発明の実施の形態1における電気機械フィルタの構成を示す斜視図および断面図である。

この電気機械フィルタ100は、信号線路に対し、この信号線路を貫く磁界を発生する磁界発生部を配し、静電力によって、この信号線路と磁界発生部の相対位置を変位させ、前記信号線路を貫く磁界を変化させ、信号線路に流れる電流による高周波磁界と交差する直流バイアス磁界とを相対的にベクトル変調することにより、強磁性共鳴周波数を変調することにより、強磁性共振周波数を変調可能にし、前記可動電極101を流れる信号のうち特定周波数の信号を吸収させることにより、バンドストップフィルタを構成したものである。

[0040] この電気機械フィルタ100では、図1(a)に示すように、表面に酸化シリコン膜と窒化シリコンの2層膜からなる絶縁膜106が形成されたガリウム砒素(GaAs)基板107上に、突出するように2つのポスト104が配設され、このポスト104間に架橋され、両持ち梁を構成する可動電極101と、可動電極101に信号を入力する信号入力ポートIN、可動電極101から信号を外部に出力する信号出力ポートOUTとが設けられている。

可動電極101の下方には、この可動電極101と相対向するように駆動電極103が 設けられており、可動電極101と駆動電極103との間の電位差により生ずる静電力 により、可動電極101が下方へ変位可能に構成されている。

- [0041] 可動電極101に直流バイアス磁界Hを印加するように、可動電極101から所定の 距離だけ離間した位置に磁性体102が設けられている。この磁性体102は、可動電 極101に所望の直流バイアス磁界Hを印加するため、可動電極101の変位範囲と相 対的に最適化された位置に設けるため、スペーサ105を介して前記GaAs基板107 上に設けられている。
- [0042] 次に、この電気機械フィルタ100におけるチューナブルフィルタリングの仕組みについて説明する。

図1(b)は、本発明実施の形態1における電気機械フィルタの構成を示す断面図である。信号入力ポートINより入力された信号は、可動電極101に伝搬し、信号出力ポートOUTへ出力される。この場合、磁性体102がつくる直流バイアス磁界H中に可動電極が位置するため、強磁性共鳴現象による信号のフィルタリングがおき、強磁性共鳴周波数によって決まるある特定の周波数の信号のみ信号出力ポートOUTへ伝

搬することができる。ここでは強磁性共鳴周波数の信号が吸収され、この強磁性共鳴 周波数を除く周波数の信号が伝送される。

[0043] 本発明電気機械フィルタでは、この信号フィルタリングの機能に加え、チューナブル機能を付加する。フィルタを通過可能な信号の周波数を変調可能とするためには、強磁性共鳴周波数fを可変とする必要があり、そのためには、強磁性共鳴周波数fを示す次式1中の直流バイアス磁界Hを可変とすれば良い。

[0044] $f_r = \frac{\gamma}{2\pi} \{ (H + H_a)(H + H_a + I_s/\mu_0) \}^{1/2} \qquad \cdots \quad (\vec{x} \ 1)$

$$H_a = 2K_1/I_s$$
 ... (式2)
= 44.7 kA/m(≈ 5600e)

- [0045] 図1(b)に示す様に、磁性体102からは直流バイアス磁界Hが放射線状に発生しており、この電気機械フィルタでは、その直流バイアス磁界H中を信号線路である可動電極101が移動できる様になっている。可動電極101の移動方向をV1で示す。この様な仕組みにすることにより、可動電極を貫く直流バイアス磁界のベクトルや大きさを可変とすることができ、強磁性共鳴周波数を変化させることが可能となる。
- [0046] 図2(a)および(b)は、本実施の形態1における電気機械フィルタのチューナブルフィルタリング特性を示す図である。本図には本発明電気機械フィルタの適用例として、バンドパスフィルタ特性と、バンドストップフィルタ特性を示したが、本発明電気機械フィルタを直列に接続することにより、図の様なバンドパスフィルタを実現することも可能である。フィルタリングの中心周波数fに対し、低周波数側f、、高周波数側f。へと周波数を変調可能にすることができる。
- [0047] この場合、フィルタ特性の中心周波数やチューナブルレンジは、可動電極101の変位範囲における直流バイアス磁界Hに依存するため、磁性体102の初期状態は重要である。磁性体膜の堆積条件によってきまる磁化容易軸や、磁性体102堆積後に外部磁場を印加して行う着磁方向は、磁性体102から可動電極101方向にする必要がある。また、可動電極101が、所望とする直流バイアス磁界H中を変位するため、可動電極101と磁性体102との距離や高さ等の相対位置、可動電極101と駆動電

極103との距離、所望の直流バイアス磁界Hを発生するための磁性体102の厚さや 幅等の形状は、要求するチューナブルフィルタ特性に応じて最適化する必要がある

- [0048] このように、電気機械フィルタ100によれば、所定の周波数の信号のみを選択して、 出力することができ、且つ所定の周波数を変調可能とする。
- [0049] 図3(a)および(b)は、本発明の実施の形態1における電気機械フィルタの変形例を示す斜視図および断面図である。

前記実施の形態1の電気機械フィルタの変形例である電気機械フィルタ100aでは、図3(a)に示すように、前記実施の形態1に示した電気機械フィルタ100においては、一つの磁性体102で直流バイアス磁界Hを発生させているのに対し、二つの磁性体を、可動電極101を挟む形で対向に位置することにより、電気機械フィルタ100とは異なる直流バイアス磁界Hを形成する。

- [0050] 図3(b)にからあきらかなように、直流バイアス磁界Hが、可動電極101を横断する 様に発生していることが分かる。この場合、二つの磁性体102とも同一方向に磁化す る様に、磁化容易軸の制御と着磁が必要となる。
- [0051] 図4は、二つの磁性体102によって形成される直流バイアス磁界Hの発生パターンのシミュレーション結果である。xは基板面に対して水平方向、zは基板面に対して垂直方向を示す。例として、直径100 μ m、長さ100 μ mの二つの磁性体102を、50 μ m の間隔を空けて配置した場合を示す。長さ方向は、x方向である。二つの磁性体102 の磁化Mの方向は、x方向に対して同一方向となっており、それぞれの磁性体102から発生する磁力線が結合し、直流バイアス磁界Hのパターンを形成している。曲線は磁力線を、色の濃淡は直流バイアス磁界Hの強さを表わしており、磁力線の密度が濃く色が明るい部分ほど直流バイアス磁界Hが強い部分である。
- [0052] 図5に、x=0μmの位置におけるz方向の各位置に対する直流バイアス磁界Hの強さを示す。 z=100μmの初期位置から数十μm下方へ移動した場合、直流バイアス磁界Hの強さが数1000e変化することが分かる。例えば、z方向下方へ20μm以下の変位量で直流バイアス磁界Hを1000e変化させることが可能である。
- [0053] この様な直流バイアス磁界Hの中を可動電極101が移動した場合の強磁性共鳴周

波数f および共鳴周波数のチューニングレンジを計算する。強磁性共鳴周波数f は前記式1の様に表される。 γ はジャイロ磁気定数 $(1.105\times10^5 \mathrm{g[A^{-1}m\cdot s^{-1}]},\mathrm{g:}$ ランデ因子)、H は異方性磁界(A/m)、I は飽和磁界(T)、H は直流バイアス磁界である。磁性体102に強磁性体である単結晶Fe膜を用いた場合、結晶磁気異方性定数 K_1 ~48k I/m^3 と飽和磁化I~2.15Tから、異方性磁界I4は、前記式2となる。遷移金属I5では、I6~I7である。

- [0054] 可動電極101がz=100 μ mの初期位置にある場合は、外部直流バイアス磁界Hがゼロであるため、強磁性共鳴周波数は約9.85GHzとなる。次に共鳴周波数をチューニングするために、可動電極101と駆動電極103との間に電圧を印加し、静電力により可動電極101を下方へ移動させる。可動電極101が約20 μ m変位しz=80 μ mに位置した場合、直流バイアス磁界Hが100Oeとなり、共振周波数は約10.72GHzとなる。つまり、約20 μ mの可動電極101の変位量で、約1GHzのチューニングレンジを実現することができる。
- [0055] 更には、z=100 μ mの初期位置から数十 μ m移動した位置において、直流バイアス 磁界Hの強さが数100Oe変化することから、約10GHzの大きなチューニングレンジを 実現することも可能である。
- [0056] なお、可動電極101の移動量に対して線型的な共鳴周波数の変化を得たい場合には、位置と直流バイアス磁界Hの関係が線型にある領域を用いれば良い。また、位置に対してチューニングが急峻過ぎる場合には、位置と直流バイアス磁界Hの関係がなだらかな領域を用いればよい。この場合、共鳴周波数の制御性を良くすることができる。
- [0057] 以上の様に、直流バイアス磁界Hの大きさを変えることで、強磁性共鳴周波数を変調でき、チューナブルフィルタを実現することが可能となる。
- [0058] なお、図3(b)は一例であるが、磁性体の数や位置を変えることにより、様々な直流バイアス磁界Hの形成が可能である。例えば、図4のz=110 μ mの位置におけるx方向の各位置に対する直流バイアス磁界Hの強さを図6に示す。位置に対する直流バイアス磁界Hの大きさの振る舞いは図5と大きく異なり、可動電極101をx方向へ駆動させれば強磁性共鳴周波数および共鳴周波数のチューニングレンジが違うデバイスも

実現可能である。(この具体的な実施例は、実施の形態2に示す。)

- [0059] 以上の様に、可動電極101を貫く直流バイアス磁界Hのベクトルや大きさ制御し、 フィルタの中心周波数および中心周波数のチューナブルレンジを制御することが可 能となる。
- [0060] なお、可動電極101のサイズは、二つの磁性体102の間に侵入できるよう幅を50 μ m以下である45 μ m程度、低電圧で大きな変位量が得られるようバネ力を下げるため に、厚みを0.7 μ m、長さを500 μ mと高アスペクト比にすることが可能である。ただし、可動電極101は磁性体102の上方のみで変位しても良いため、必ずしもそれに限ったサイズではない。
- [0061] また、駆動方法は、静電力駆動に限らず、可動電極101と駆動電極103との間隔に依存しない圧電力駆動、ローレンツ力駆動などを用いることが可能である。また、可動電極101を所定の位置に固定する機構を備えることも可能であり、その機構の駆動方法として、静電力駆動、圧電力駆動、ローレンツ力駆動などを用いることが可能である。
- [0062] なお、本実施の形態の電気機械フィルタ100aにおいて、前記実施の形態1に示す電気機械フィルタ100と同様の構成については同名称および同符号を付して説明は省略する。
- [0063] 次に、前記実施の形態1に示した電気機械フィルタ100aの製造方法について説明する。
 - 図7(a)〜(i)は、本発明の実施の形態1における電気機械フィルタの製造工程を 段階的に説明する断面図である。
- [0064] 先ず、図7(a)に示すように、例えば、GaAs基板などの基板107上に酸化シリコン膜と窒化シリコン膜の2層膜からなる絶縁膜106を形成する。更に、その上にスペーサ105となるスペーサ材料としての酸化シリコン膜105aをスパッタにより形成する。
- [0065] 次いで、図7(b)に示すように、酸化シリコン膜105aをドライエッチングにより成形するため、フォトリングラフィによりパターンニングしたフォトレジスト301を形成する。
- [0066] そして、このフォトレジスト301をマスクとして、スペーサ材料としての酸化シリコン膜 105aをドライエッチングし、フォトレジスト301をアッシングにより除去する。このように

フォトレジスト301を除去した後の基板107上の酸化シリコン膜105aは、図7(c)に示すように、スペーサ105となる。

- [0067] 次いで、磁性体102の形成を行う。
 - 図7(d)に示すように、スペーサ105および絶縁膜106上に、Fe、Co、Niなどの磁性薄膜102aをスパッタにより堆積し、その上にフォトリングラフィにより磁性体パターンを形成するためのフォトレジスト302を形成する。
- [0068] 次いで、この磁性薄膜102aをドライエッチングして、フォトレジスト302をアッシング により除去し、図7(e)に示すように、スペーサ105上の磁性体102部分を形成する。
- [0069] 次いで、駆動電極103の形成を行う。
 図7(f)に示すように、磁性体102および絶縁膜106の形成された基板表面全体に、Alなどの金属薄膜103aをスパッタにより堆積し、その上にフォトリングラフィにより駆動電極パターンにパターニングされたフォトレジスト303を形成する。
- [0070] 次いで、金属薄膜103aをドライエッチングして、フォトレジスト303をアッシングにより除去し、図7(g)に示すように、スペーサ105上の磁性体102部分を形成する。
- [0071] 最後に、可動電極101の形成を行う。
 図7(h)に示すように、磁性体102および駆動電極103、絶縁膜106上に、犠牲層パターンにパターニングされたフォトレジスト304形成する。次に、Alなどの金属薄膜101aをスパッタにより堆積し、その上にフォトリングラフィにより可動電極パターンにパターニングされたフォトレジスト305を形成する。
- [0072] 次いで、金属薄膜101aをドライエッチングして、フォトレジスト304をアッシングにより除去し、図7(i)に示すように、中空構造の可動電極101部分を形成する。 なお、信号線路となる可動電極101を伝搬する高周波信号が基板107に伝搬して大きな損失を生じるおそれがないことが保障される場合には、絶縁膜106はなくても良い。
- [0073] また、本発明電気機械フィルタを並列または直列に接続した多段フィルタ構成にすることが可能である。
- [0074] また、磁界発生部として、磁性体102の代わりにコイルを形成し、同様の直流バイア ス磁界Hを発生することができ、MEMS技術による可変インダクタを用いて、直流バ

イアス磁界Hを可変、もしくは交流バイアス磁界とすることも可能である。

- [0075] また、本実施の形態1では、駆動電極103が一つとし、信号線路を構成する可動電極101を垂直一方向可動としたが、駆動電極103を複数とし、可動電極101の移動方向V1を複数方向としても良い。
- [0076] (実施の形態2)

図9(a)および(b)は、本発明の実施の形態2における電気機械フィルタの構成を示す斜視図および断面図である。

本実施の形態では、上述したように、駆動電極103を複数とし、可動電極101の移動 方向V1を複数方向としたもので、磁性体は、可動電極101の真下に位置するように 基板表面に形成したものである。すなわち、信号線路を構成する可動電極101を挟 むように両側に駆動電極103を形成し、この信号線路の真下に磁性体102を配し、 磁界が基板に垂直な方向に印加されるようにしたものである。

- [0077] この電気機械フィルタ400では、図9(a)に示すように、表面に絶縁膜106が形成された基板107上に、ポスト104間に架橋された可動電極101と、可動電極101に信号を入力する信号入力ポートIN、可動電極101から信号を外部に出力する信号出力ポートOUTとが設けられている。
- [0078] 可動電極101の両側には、可動電極101を挟む形で駆動電極103が設けられており、可動電極101と駆動電極103との間の電位差により生ずる静電力により、可動電極101が水平二方向V1へ動く様になっている。駆動電極103は、可動電極101に所望の駆動力を与えるため、可動電極101と相対的に最適化された位置に設けるため、スペーサ108を介して基板107上に設けられている。
- [0079] 可動電極101の下方には、可動電極101に直流バイアス磁界Hを印加する磁性体 102が設けられている。
- [0080] 実施の形態1における電気機械フィルタ100、電気機械フィルタ100aでは、直流バイアス磁界Hは水平方向から、可動電極101の移動方向は垂直方向であったのに対し、本実施の形態2における電気機械フィルタ400では、直流バイアス磁界Hは垂直方向から、可動電極101の移動方向は水平方向となっている。

この様に、実施の形態1における電気機械フィルタ100、電気機械フィルタ100aの

構造や製造方法では実現困難である直流バイアス磁界Hの形状と、その中を移動する可動電極101の移動方向や移動範囲を、構造を変えることにより実現している。

[0081] 次に、この電気機械フィルタ400におけるチューナブルフィルタリングの仕組みについて説明する。

図9(b)は、本発明実施の形態2における電気機械フィルタの構成を示す断面図である。この例ではカーボンナノチューブを用いている。信号入力ポートINより入力された信号は、可動電極101に伝搬し、信号出力ポートOUTへ出力される。この場合、磁性体102がつくる直流バイアス磁界H中に可動電極が位置するため、強磁性共鳴現象による信号のフィルタリングがおき、強磁性共鳴周波数によって決まるある特定の周波数の信号のみ信号出力ポートOUTへ伝搬することができる。

- [0082] 本発明電気機械フィルタでは、この信号フィルタリングの機能に加え、チューナブル機能を付加する。フィルタを通過可能な信号の周波数を変調可能とするためには、強磁性共鳴周波数fを可変とする必要があり、そのためには、強磁性共鳴周波数fを示す式1中の直流バイアス磁界Hを可変とすれば良い。
- [0083] 図9(b)に示す様に、磁性体102からは直流バイアス磁界Hが放射線状に発生して おり、本発明電気機械フィルタでは、その直流バイアス磁界H中を信号線路である可 動電極101が移動できる様になっている。可動電極101の移動方向をV1で示す。 この様な仕組みにすることにより、可動電極を貫く直流バイアス磁界のベクトルや大 きさを可変とすることができ、強磁性共鳴周波数を変化させることが可能となる。
- [0084] この場合、フィルタ特性の中心周波数やチューナブルレンジは、可動電極101の変位範囲における直流バイアス磁界Hの大きさや、ベクトル依存するため、磁性体102の堆積条件による磁化容易軸や、磁性体102堆積後の外部磁場による着磁方向は、磁性体102から可動電極101にむかう方向にする必要がある。また、可動電極101が、所望とする直流バイアス磁界H中を移動するため、可動電極101と磁性体102との距離や高さ等の相対位置、可動電極101と駆動電極103との距離、所望の直流バイアス磁界Hを発生するための磁性体102の厚さや幅等の形状は、要求するチューナブルフィルタ特性に応じて最適化する必要がある。
- [0085] このように、電気機械フィルタ400によれば、所定の周波数の信号のみを選択して、

出力することができ、且つ所定の周波数を変調可能とすることを可能とする。

電気機械フィルタ400の製造方法に関しては、実施の形態1における電気機械フィルタ100、電気機械フィルタ100aの製造方法において、磁性薄膜102aをAlなどの金属薄膜103aに、金属薄膜103aをFe、Co、Niなどの磁性薄膜102に置き換えるだけで、製造と製造方法の共通化が可能である。

- [0086] なお、本発明電気機械フィルタを並列または直列に接続した多段フィルタ構成にすることが可能である。
- [0087] また、磁界発生部として、磁性体102の代わりにコイルを形成し、同様の直流バイアス磁界Hを発生することができ、MEMS技術による可変インダクタを用いて、直流バイアス磁界Hを可変、もしくは交流バイアス磁界とすることも可能である。
- [0088] また、本実施の形態2では、駆動電極103が二つとし、可動電極101を水平二方向可動としたが、駆動電極103をどちらか片方一つとし、可動電極101の移動方向V1をどちらか一方方向としても良い。
- [0089] また、本実施の形態2では、駆動電極103が二つとし、可動電極101を水平二方向 可動としたが、駆動電極103を複数とし、可動電極101の移動方向V1を複数方向と しても良い。
- [0090] また、カーボンナノチューブを用いることにより、加工性が良好で高精度で微細な梁の形成が容易となる。
- [0091] (実施の形態3)

図10(a)および(b)は、本発明の実施の形態3における電気機械フィルタの構成を示す斜視図および断面図である。

図10(a)に示す電気機械フィルタ500では、表面に絶縁膜106が形成された基板107上に、ポスト104間に架橋された固定電極111と、固定電極111に信号を入力する信号入力ポートIN、固定電極111から信号を外部に出力する信号出力ポートOUTとが設けられている。

[0092] 固定電極111の下方には、固定電極111に直流バイアス磁界Hを印加する磁性体 102が設けられている。磁性体102は、ステム109上に設けられている。磁性体102 の両側下方には、磁性体102を動かす駆動電極110が設けられており、磁性体102

と駆動電極110との間の電位差により生ずる静電力により、磁性体102回転二方向 へ動く様になっている。

- [0093] 実施の形態1や実施の形態2における電気機械フィルタ100、電気機械フィルタ10 0a、電気機械フィルタ400では、直流バイアス磁界Hは固定で、可動電極101が可動であったのに対し、本実施の形態3における電気機械フィルタ500では、直流バイアス磁界Hが可動で、可動電極101を固定電極111としている。いずれの場合にもブリッジ状をなすように形成しているが、固定電極111の方は、変動を避けるために梁(ビーム)の厚さを厚く形成することができ、また耐久性、信頼性を向上することも可能である。この様に、実施の形態1や実施の形態2における電気機械フィルタ100、電気機械フィルタ100a、電気機械フィルタ400の構造や製造方法では実現困難である直流バイアス磁界Hの形状と、その中に位置する信号線路である固定電極111の相対位置を、構造を変えることにより実現している。
- [0094] また、前記実施の形態3では、固定電極をブリッジ状に形成したが、固定電極を基板表面に形成した導体パターンで構成し、この上に絶縁性材料からなるステム109を形成し、図10(a)および(b)に示したのと同様にステム109を支点として可動の磁性体パターンを形成してもよい。
- [0095] さらにまた、ステム109の少なくとも外壁が絶縁性材料で構成されている場合は、ステムに自己整合的に固定電極を形成することにより、フォトリングラフィ工程の低減をはかるとともに、磁性体パターンに近接して駆動電極(固定電極)を配することができ、静電力を高めるとともに占有面積の低減を図ることができる。
- [0096] 次に、この電気機械フィルタ500におけるチューナブルフィルタリングの仕組みについて説明する。

図10(b)は、本発明実施の形態3における電気機械フィルタの構成を示す断面図である。カーボンナノチューブを用いた電気機械フィルタの構成を示す縦断面図である。信号入力ポートINより入力された信号は、固定電極111に伝搬し、信号出力ポートOUTへ出力される。この場合、磁性体102がつくる直流バイアス磁界H中に可動電極が位置するため、強磁性共鳴現象による信号のフィルタリングがおき、強磁性共鳴周波数によって決まるある特定の周波数の信号のみ信号出力ポートOUTへ伝

搬することができる。

[0100]

ある。

- [0097] 本発明電気機械フィルタでは、この信号フィルタリングの機能に加え、チューナブル機能を付加する。フィルタを通過可能な信号の周波数を変調可能とするためには、強磁性共鳴周波数fを可変とする必要があり、そのためには、強磁性共鳴周波数fを示す式1中の直流バイアス磁界Hを可変とすれば良い。
- [0098] 図10(b)に示す様に、磁性体102からは直流バイアス磁界Hが放射線状に発生している。本発明電気機械フィルタでは、磁性体102が可動であるため、その直流バイアス磁界Hと信号線路である固定電極111の相対位置を可変としている。磁性体102の移動方向をV2で示す。
- [0099] 図11は、磁性体102が移動した場合の直流バイアス磁界Hと固定電極111の相対 位置を示す図である。固定電極111を貫く直流バイアス磁界Hのベクトル(方向や大 きさ)が変化していることが分かる。

この様な仕組みにすることにより、固定電極を貫く直流バイアス磁界の方向や大きさ

- を可変とすることができ、強磁性共鳴周波数を変化させることが可能となる。 この場合、フィルタ特性の中心周波数やチューナブルレンジは、磁性体102の変位 範囲における直流バイアス磁界Hの大きさや、方向に依存するため、磁性体102の 堆積条件による磁化容易軸や、磁性体102堆積後の外部磁場による着磁方向は、 磁性体102から固定電極111方向にする必要がある。また、固定電極111が、所望 とする直流バイアス磁界H中を移動するため、固定電極111と磁性体102との距離 や高さ等の相対位置、所望の直流バイアス磁界Hを発生するための磁性体102の厚 さや幅等の形状は、要求するチューナブルフィルタ特性に応じて最適化する必要が
- [0101] このように、電気機械フィルタ500によれば、所定の周波数の信号のみを選択して、 出力することができ、且つ所定の周波数を変調可能とすることを可能とする。
- [0102] なお、本発明電気機械フィルタを並列または直列に接続した多段フィルタ構成にすることが可能である。

また、本実施の形態においても、磁界発生部として磁性体102の代わりにコイルを 形成し、同様の直流バイアス磁界Hを発生することができ、MEMS技術による可変イ ンダクタを用いて、直流バイアス磁界Hを可変、もしくは交流バイアス磁界とすることも 可能である。

[0103] また、本実施の形態3では、駆動電極110が二つとし、磁性体102を回転二方向可動としたが、駆動電極110をどちらか片方一つとし、磁性体102の移動方向V2をどちらか一方方向としても良い。

また、本実施の形態3では、駆動電極110が二つとし、磁性体102を回転二方向可動としたが、駆動電極110を複数とし、磁性体の移動方向V2を複数方向としても良い。

[0104] (実施の形態4)

図12(a)および(b)は、本発明の実施の形態4における電気機械フィルタの構成を示す斜視図および断面図である。

- [0105] 図12(a)に示す電気機械フィルタ600では、前記実施の形態3の構造において磁性体102を更に静電力で水平ニ方向に駆動する駆動電極110を付加し、磁性体102を回転ニ方向と水平ニ方向とで変位可能とし、変調をより自由度高く高精度に制御可能としたものである。
- [0106] すなわち、表面に絶縁膜106が形成された基板107上に、ポスト104間に架橋された可動電極101と、この可動電極101に信号を入力する信号入力ポートIN、可動電極101から信号を外部に出力する信号出力ポートOUTとが設けられている。

可動電極101の下方には、可動電極101に直流バイアス磁界Hを印加する磁性体102が設けられている。磁性体102は、ステム109上に設けられている。磁性体102の両側下方には、磁性体102を動かす駆動電極110が設けられており、磁性体102と駆動電極110との間の電位差により生ずる静電力により、磁性体102回転二方向へ動く様になっている。

[0107] 一方、固定電極111の両側には、駆動電極110を挟む形で駆動電極103が設けられており、可動電極110と駆動電極103との間の電位差により生ずる静電力により、可動電極110が水平二方向へ動く様になっている。駆動電極103は、可動電極101に所望の駆動力を与えるため、可動電極110と相対的に最適化された位置に設けるため、スペーサ108を介して基板107上に設けられている。

- [0108] このように、実施の形態1や実施の形態2、および実施の形態3における電気機械フィルタ100、電気機械フィルタ100a、電気機械フィルタ400、電気機械フィルタ500では、直流バイアス磁界H、もしくは信号線路となる可動電極101および固定電極111どちらか一方が可動であったのに対し、本実施の形態4における電気機械フィルタ600では、直流バイアス磁界H、可動電極101とも可動としている。この様に、実施の形態1や実施の形態2、および実施の形態3における電気機械フィルタ100、電気機械フィルタ100a、電気機械フィルタ400、電気機械フィルタ500の構造や製造方法では実現困難である直流バイアス磁界Hの形状と、その中に位置する信号線路である可動電極101、磁性体102の相対位置を、構造を変えることにより実現している
- [0109] 次に、この電気機械フィルタ600におけるチューナブルフィルタリングの仕組みについて説明する。

図12(b)は、本発明実施の形態4における電気機械フィルタの構成を示す断面図である。カーボンナノチューブを用いた電気機械フィルタの構成を示す縦断面図である。信号入力ポートINより入力された信号は、可動電極101に伝搬し、信号出力ポートOUTへ出力される。この場合、磁性体102がつくる直流バイアス磁界H中に可動電極が位置するため、強磁性共鳴現象による信号のフィルタリングがおき、強磁性共鳴周波数によってある周波数の信号が吸収され、残る特定の周波数の信号のみ信号出力ポートOUTへ伝搬することができる。

- [0110] 本発明電気機械フィルタでは、この信号フィルタリングの機能に加え、チューナブル機能を付加する。フィルタを通過可能な信号の周波数を変調可能とするためには、強磁性共鳴周波数fを可変とする必要があり、そのためには、強磁性共鳴周波数fを示す式1中の直流バイアス磁界Hを可変とすれば良い。
- [0111] 図12(b)に示す様に、磁性体102からは直流バイアス磁界Hが放射線状に発生している。本発明電気機械フィルタでは、磁性体102が可動であるため、その直流バイアス磁界Hと信号線路である可動電極101の相対位置を可変としている。磁性体102の移動方向をV2で示す。

また、本発明電気機械フィルタでは、その直流バイアス磁界H中を信号線路である

可動電極101が同時に移動できる様になっている。可動電極101の移動方向をV1で示す。

[0112] 10は、磁性体102と可動電極101が移動した場合の直流バイアス磁界Hと可動電極101の相対位置を示す図である。図13と図12(b)との比較から、可動電極101を貫く直流バイアス磁界Hのベクトルや大きさが変わっていることが分かる。

この様な仕組みにすることにより、固定電極を貫く直流バイアス磁界のベクトルや大きさを可変とすることができ、強磁性共鳴周波数を変化させることが可能となる。

[0113] この場合、フィルタ特性の中心周波数やチューナブルレンジは、磁性体102や可動電極101の変位範囲における直流バイアス磁界Hの大きさや、ベクトル依存するため、磁性体102の堆積条件による磁化容易軸や、磁性体102堆積後の外部磁場による着磁方向は、磁性体102から可動電極101方向にする必要がある。また、可動電極101が、所望とする直流バイアス磁界H中を移動するため、可動電極101と磁性体102との距離や高さ等の相対位置、所望の直流バイアス磁界Hを発生するための磁性体102の厚さや幅等の形状は、要求するチューナブルフィルタ特性に応じて最適化する必要がある。

このように、電気機械フィルタ600によれば、所定の周波数の信号のみを選択して、 出力することができ、1.つ所定の周波数を変調可能とすることを可能とする。

[0114] なお、本発明電気機械フィルタを並列または直列に接続した多段フィルタ構成にすることが可能である。

また、磁界発生部として、磁性体102の代わりにコイルを形成し、同様の直流バイアス磁界Hを発生することができ、MEMS技術による可変インダクタを用いて、直流バイアス磁界Hを可変、もしくは交流バイアス磁界とすることも可能である。

- [0115] また、本実施の形態4では、駆動電極110が二つとし、磁性体102を回転二方向可動としたが、駆動電極110をどちらか片方一つとし、磁性体102の移動方向V2をどちらか一方方向としても良い。
- [0116] また、本実施の形態4では、駆動電極103二つとし、可動電極101を水平二方向可動としたが、駆動電極103をどちらか片方一つとし、可動電極101の移動方向V1をどちらか一方方向としても良い。

[0117] また、本実施の形態4では、駆動電極110が二つとし、磁性体102を回転二方向可動としたが、駆動電極110を複数とし、磁性体の移動方向V2を複数方向としても良い。

また、本実施の形態4では、駆動電極103が二つとし、可動電極101を水平二方向 可動としたが、駆動電極103を複数とし、可動電極101の移動方向V1を複数方向と しても良い。

[0118] (実施の形態5)

図14は、本発明の実施の形態5における電気機械フィルタの構成を示す斜視図である。

以上の実施の形態では、1本の信号線路を伝搬する信号を強磁性共鳴により特定 周波数のものだけストップし、出力するものについて説明したが、本実施の形態では 、入力信号の誘導起電力により、信号の変調を実現するものである。

すなわち、信号線路としての固定電極111の周りに高周波電流による高周波磁界を生成し、この高周波磁界によって磁性体102中に励起されるスピンの歳差運動を励起し、強磁性共鳴現象により、磁性体102中の歳差運動の角度が最大となるのを利用し、これらの信号線路の磁界と、磁性体102のスピンの歳差運動による磁界を受けることのできる領域に出力用の信号線路となる固定電極112を配置し、共鳴によって生じる、誘導起電力が所定の大きさ以上のときのみ、信号が、信号出力ポートOUTへ伝搬することができるようにしたもので、これによりバンドパスフィルタを形成する。

[0119] 図14に示す電気機械フィルタ700では、表面に絶縁膜106が形成された基板107上に、固定電極111と、信号を入力する信号入力ポートINが設けられている。固定電極111の上方には、磁性体102が設けられており、磁性体102は、ステム109上に設けられている。磁性体102の両側下方には、磁性体102を変位させるための駆動電極110が設けられており、磁性体102と駆動電極110との間の電位差により生ずる静電力により、磁性体102回転二方向へ動く様になっている。磁性体102の上方には、ポスト104間に架橋された固定電極112と、固定電極112から信号を外部に出力する信号出力ポートOUTとが設けられている。磁性体102を固定電極111、112で挟む形で構成されており、固定電極112は、固定電極111と直交する様に配

置されている。

[0120] 次に、この電気機械フィルタ700におけるチューナブルフィルタリングの仕組みについて説明する。

カーボンナノチューブを用いた電気機械フィルタの構成を示す縦断面図である。信号入力ポートINより入力された信号は、固定電極111に伝搬し、固定電極111の周りに高周波電流による高周波磁界を発生する。この高周波磁界により、磁性体102中にスピンの歳差運動が励起される(キッテルモード)。このモードのつくる磁界により、固定電極112に誘導起電力が生じる。磁性体102の強磁性共鳴周波数の信号が入力されたときのみ、強磁性共鳴現象が起こり、磁性体102中の歳差運動の角度が最大となり、誘導起電力の大きさも最大となる。よって、信号のフィルタリングがおき、強磁性共鳴周波数によって決まるある特定の周波数の信号のみ信号出力ポートOUTへ伝搬することができる。

[0121] 本発明電気機械フィルタでは、この信号フィルタリングの機能に加え、チューナブル機能を付加する。フィルタを通過可能な信号の周波数を変調可能とするためには、強磁性共鳴周波数fを可変とする必要があり、そのためには、強磁性共鳴周波数fを示す式1中の直流バイアス磁界Hを可変とすれば良い。

磁性体102からは直流バイアス磁界Hが放射線状に発生している。本発明電気機械フィルタでは、磁性体102が可動であるため、その直流バイアス磁界Hと信号線路である固定電極111の相対位置を可変としている。磁性体102の移動方向をV2で示す。

[0122] この様な仕組みにすることにより、固定電極を貫く直流バイアス磁界のベクトルや大きさを可変とすることができ、強磁性共鳴周波数を変化させることが可能となる。

この場合、フィルタ特性の中心周波数やチューナブルレンジは、磁性体102の変位 範囲における直流バイアス磁界Hの大きさや、方向に依存するため、磁性体102の 堆積条件による磁化容易軸や、磁性体102堆積後の外部磁場による着磁方向は、 磁性体102から固定電極111に向かう方向にする必要がある。また、固定電極111 が、所望とする直流バイアス磁界H中を移動するため、固定電極111と磁性体102と の距離や高さ等の相対位置、所望の直流バイアス磁界Hを発生するための磁性体1 02の厚さや幅等の形状は、要求するチューナブルフィルタ特性に応じて最適化する必要がある。

- [0123] このように、本実施の形態の電気機械フィルタ700によれば、所定の周波数の信号 のみを選択して、出力することができ、且つ所定の周波数を変調可能とすることを可 能とする。
- [0124] なお、本実施の形態では、磁性体102に対し軸方向の回転を実現するようにしたが 、ステムを基板表面に垂直に形成した細いポール状にし、このポールを支点として全 方向に回転可能に形成することも可能である。

この場合、磁性体102はポールを中心とする円形パターンであるのが望ましい。 さらにまた、駆動電極としての固定電極についても、ポールの周りに多数個配列し 、各固定電極の電位を制御することにより磁性体102の回動を制御することも可能で ある。

[0125] また、電気機械フィルタ700では、固定電極111に入力される信号がつくる磁界により、直接的に誘導起電力が固定電極112に励起されることを防ぐため、固定電極111と固定電極112を直交する様に配置したが、固定電極111と固定電極112を、相関が起こらない間隔を隔てて平行に配置した電気機械フィルタも可能である。

12は、本発明の実施の形態5における電気機械フィルタの変形例の構成を示す斜視図である。

- [0126] 12)に示す電気機械フィルタ800では、表面に絶縁膜106が形成された基板107上に、固定電極111と、信号を入力する信号入力ポートINが設けられている。固定電極111の上方には、磁性体102が設けられており、磁性体102は、シリコンなどで形成されたステム109上に設けられている。磁性体102の両側下方には、磁性体102を動かす駆動電極110が設けられており、磁性体102と駆動電極110との間の電位差により生ずる静電力により、磁性体102回転二方向へ動く様になっている。固定電極112は、磁性体102の下方で、固定電極111と固定電極111から生ずる磁界の影響を受けない程度の間隔を空けて平行に配置されている。固定電極112からは、信号を外部に出力する信号出力ポートOUTが設けられている。
- [0127] 次に、この電気機械フィルタ800におけるチューナブルフィルタリングの仕組みにつ

いて説明する。

カーボンナノチューブを用いた電気機械フィルタの構成を示す縦断面図である。信号入力ポートINより入力された信号は、固定電極111に伝搬し、固定電極111の周りに高周波電流による高周波磁界を発生する。この高周波磁界により、磁性体102中にスピンの歳差運動が励起される(キッテルモード)。すると、スピン波が固定電極111側から固定電極112側へと伝搬し、固定電極112側では、このモードのつくる磁界により、固定電極112に誘導起電力が生じる。磁性体102の強磁性共鳴周波数の信号が入力されたときのみ、強磁性共鳴現象が起こり、磁性体102中の歳差運動の角度が最大となり、誘導起電力の大きさも最大となる。よって、信号のフィルタリングがおき、強磁性共鳴周波数によって決まるある特定の周波数の信号のみ信号出力ポートOUTへ伝搬することができる。

[0128] 本発明電気機械フィルタでは、この信号フィルタリングの機能に加え、チューナブル機能を付加する。フィルタを通過可能な信号の周波数を変調可能とするためには、強磁性共鳴周波数fを可変とする必要があり、そのためには、強磁性共鳴周波数fを示す式1中の直流バイアス磁界Hを可変とすれば良い。

磁性体102からは直流バイアス磁界Hが放射線状に発生している。本発明電気機械フィルタでは、磁性体102が可動であるため、その直流バイアス磁界Hと信号線路である固定電極111の相対位置を可変としている。磁性体102の移動方向をV2で示す。

[0129] この様な仕組みにすることにより、固定電極を貫く直流バイアス磁界のベクトルや大きさを可変とすることができ、強磁性共鳴周波数を変化させることが可能となる。

この場合、フィルタ特性の中心周波数やチューナブルレンジは、磁性体102の変位 範囲における直流バイアス磁界Hの大きさや、ベクトル依存するため、磁性体102の 堆積条件による磁化容易軸や、磁性体102堆積後の外部磁場による着磁方向は、 磁性体102から固定電極111方向にする必要がある。また、固定電極111が、所望 とする直流バイアス磁界H中を移動するため、固定電極111と磁性体102との距離 や高さ等の相対位置、所望の直流バイアス磁界Hを発生するための磁性体102の厚 さや幅等の形状は、要求するチューナブルフィルタ特性に応じて最適化する必要が ある。

[0130] このように、電気機械フィルタ800によれば、所定の周波数の信号のみを選択して、 出力することができ、且つ所定の周波数を変調可能とすることを可能とする。

なお、本発明電気機械フィルタを並列または直列に接続した多段フィルタ構成にすることが可能である。

また、磁界発生部として磁性体102の代わりにコイルを形成し、同様の直流バイアス磁界Hを発生することができ、MEMS技術による可変インダクタを用いて、直流バイアス磁界Hを可変、もしくは交流バイアス磁界とすることも可能である。

また、本実施の形態5では、駆動電極110が二つとし、磁性体102を回転二方向可動としたが、駆動電極110をどちらか片方一つとし、磁性体102の移動方向V2をどちらか一方方向としても良い。

- [0131] また、本実施の形態5では、駆動電極110が二つとし、磁性体102を回転二方向可動としたが、駆動電極110を複数とし、磁性体の移動方向V2を複数方向としても良い。
- [0132] なお、以上説明してきたように、本発明の電気機械フィルタは、小型でかつ消費電力の少ない変調可能な電気機械フィルタを提供することができるもので、ディスクリート素子として有効であることはいうまでもないが、他の回路素子とともに集積化可能であり、伝送損失が少なく小型で信頼性の高いフィルタを備えた半導体集積回路装置を提供することも可能である。
- [0133] また、前記各実施の形態では基板表面に梁を形成し、可動電極を形成する例について説明したが、いずれにおいても、基板に所望の断面形状のトレンチを形成し、このトレンチ上に梁を残しこれを可動部とするなどの構成も可能である。このような構成は、シリコンの異方性エッチングを用いて形成するなどにより容易に実現可能である
- [0134] さらにまた、前記各実施の形態では、シリコン基板のみならず、GaAsなどの化合物 半導体基板など、使用する基板に適合するように電極材料あるいは磁性膜材料を選 択すればよく、他の回路素子との集積化は極めて容易である。また、基板表面を覆う 絶縁膜106およびスペーサとなる絶縁膜については、酸化シリコン膜、窒化シリコン

膜あるいはこれらの積層膜でもよい。

また、カーボンナノチューブについても各実施の形態で適用可能である。

産業上の利用可能性

[0135] 本発明に係る電気機械フィルタは、磁性体、もしくは信号線路となる電極を可動と することにより、電極を貫く直流バイアス磁界の方向や大きさを可変にすることができ 、強磁性共鳴周波数を可変にすることによりチューナブル機能を備える電気機械フィ ルタとして有用である。

請求の範囲

[1] 信号線路となる導体と、

前記導体を貫く磁界を発生する磁界発生部と、

前記導体と前記磁界発生部との相対位置を変位させることによって、前記信号線路を貫く磁界を変化させる駆動電極とを備える電気機械フィルタ。

- [2] 請求項1記載の電気機械フィルタであって、
 - 前記導体は、前記駆動電極と対向して配置され、前記駆動電極との間で生起される静電力により相対的に変位可能な電極である電気機械フィルタ。
- [3] 請求項1または2に記載の電気機械フィルタであって、 前記磁界発生部は、変位可能に形成された磁性体を含む電気機械フィルタ。
- [4] 請求項3に記載の電気機械フィルタであって、 前記磁性体は、前記駆動電極の静電力によって変位される電気機械フィルタ。
- [5] 請求項1乃至4のいずれかに記載の電気機械フィルタであって、 前記駆動電極は、可動である電気機械フィルタ。
- [6] 請求項2に記載の電気機械フィルタであって、

基板表面に形成され、電位を可変に構成された駆動電極と、

前記駆動電極上に、所定の間隔を隔てて相対向して配置され、信号線路を構成する導体パターンと、

前記信号線路と交差する磁界成分をもつように着磁された磁性体膜パターンを備えた磁界発生部とを備え、

前記駆動電極の電位を変化させることにより、前記信号線路を変位させ、前記信号線路上での前記磁性体膜パターンによる磁界を変化させることにより、磁性共鳴周波数を変化させるようにした電気機械フィルタ。

[7] 請求項2に記載の電気機械フィルタであって、

基板表面に形成された磁性体膜パターンからなる磁界発生部と、

前記磁性体膜パターン上に、所定の間隔を隔てて相対向して変位可能に配置され 、信号線路を構成する導体パターンと、

前記信号線路に近接して配置された駆動電極とを備え、

前記磁性体膜パターンは、前記信号線路と交差する磁界成分をもつように着磁され、

前記駆動電極の電位を変化させることにより、前記信号線路を変位させ、前記信号線路上での前記磁性体膜パターンによる磁界を変化させることにより、磁性共鳴周波数を変化させるようにした電気機械フィルタ。

- [8] 請求項6または7に記載の電気機械フィルタであって、 前記磁性体パターンは、半導体基板表面を覆う絶縁膜上に形成されており、 前記信号線路は、前記磁性体パターンと対向するように配設された両持ち梁を構 成している電気機械フィルタ。
- [9] 請求項6または7に記載の電気機械フィルタであって、 前記信号線路は、前記駆動電極と平行に配置されるとともに、 前記磁性体膜パターンは、前記導体パターンを流れる信号と直交する方向に磁場 を形成する電気機械フィルタ。
- [10] 請求項6乃至9のいずれかに記載の電気機械フィルタであって、 前記駆動電極は、前記信号線路を挟むように配置された第1及び第2の導体膜パ ターンを含む電気機械フィルタ。
- [11] 請求項4または5に記載の電気機械フィルタであって、 基板表面に、空間的に変位可能に形成された磁性体膜パターンからなる磁界発生 部と、

前記磁性体膜パターンに対して、所定の間隔を隔てて相対向するように前記基板に固定配置され、信号線路を構成する導体パターンと、

前記磁界発生部に近接して配置され、前記磁界発生部を変位可能な駆動電極とを備え、

前記磁性体膜パターンは、前記信号線路と交差する磁界成分をもつように着磁され、

前記駆動電極の電位を変化させることにより、前記信号線路を変位させ、

前記信号線路上での前記磁性体膜パターンによる磁界を変化させることにより、磁性共鳴周波数を変化させるようにした電気機械フィルタ。

[12] 請求項11に記載の電気機械フィルタであって、

前記磁性体パターンは、半導体基板表面に形成されたスペーサを介して形成された た梁状体を構成している電気機械フィルタ。

[13] 請求項12に記載の電気機械フィルタであって、

前記信号線路は、半導体基板表面に絶縁膜を介して形成された導体パターンである電気機械フィルタ。

[14] 請求項13に記載の電気機械フィルタであって、

前記信号線路は、前記磁性体パターン上で所定の間隔を隔てて相対向するように形成された電気機械フィルタ。

[15] 請求項1に記載の電気機械フィルタであって、

基板表面に形成され、電位を可変に構成された第1及び第2の駆動電極と、

前記第1の駆動電極に、所定の間隔を隔てて相対向して配置され、信号線路を構成する導体パターンと、

前記信号線路と交差する磁界成分をもつように着磁された磁性体膜パターンを備えた磁界発生部とを備え、

前記第1の駆動電極の電位を変化させることにより、前記信号線路を変位させるとと もに、

前記第2の駆動電極の電位を変化させることにより、前記磁性体パターンを変位させ、

前記信号線路上での前記磁性体膜パターンによる磁界を変化させることにより、磁性共鳴周波数を変化させるようにした電気機械フィルタ。

[16] 請求項1記載の電気機械フィルタであって、

信号線路となる第1の導体と、

前記第1の導体を貫く磁界を発生する磁界発生部と、

前記第1の導体と前記磁界発生部の相対位置を変位させることによって、前記信号 線路を貫く磁界を変化させる駆動電極と、

前記第1の導体を流れる高周波電流による磁界と前記磁界発生部の磁界との共鳴 によって誘起される誘起起電力を伝送する信号線路となる第2の導体とを含む電気 機械フィルタ。

- [17] 請求項16記載の電気機械フィルタであって、 前記第1の導体と前記第2の導体は直交するように配置されている電気機械フィル タ。
- [18] 請求項16記載の電気機械フィルタであって、 前記第1の導体と前記第2の導体は所定の間隔を隔てて平行に配置されている電 気機械フィルタ。
- [19] 請求項1乃至18のいずれかに記載の電気機械フィルタであって、 複数の前記電気機械フィルタを配列して接続し、チューナブルバンドパスフィルタ 機能を実現した電気機械フィルタ。
- [20] 請求項1乃至18のいずれかに記載の電気機械フィルタであって、 複数の前記電気機械フィルタを配列して接続し、チューナブルバンドストップフィル タ機能を実現した電気機械フィルタ。

WO 2005/050839 PCT/JP2004/017246

[図1]

(a)

(図2)

(b)

差替え用紙(規則26)

[図2]

(a)

バンドスパスフィルタ特性

(b)

バンドスストップフィルタ特性

[図3]

WO 2005/050839 PCT/JP2004/017246

[図4]

[図5]

[図6]

[図7]

[図8]

差替え用紙(規則26)

[図8]

[図9]

WO 2005/050839 PCT/JP2004/017246

[図10]

[図11]

WO 2005/050839 PCT/JP2004/017246

[図12]

[図13]

[図15]

<u>800</u>

WO 2005/050839

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/017246

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ H03H9/24, B81B3/00					
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEARCHED					
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ H03H9/24, B81B3/00					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922–1996 Toroku Jitsuyo Shinan Koho 1994–2004 Kokai Jitsuyo Shinan Koho 1971–2004 Jitsuyo Shinan Toroku Koho 1996–2004					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)					
C. DOCUMEN	ITS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.		
A	JP 2003-309449 A (Matsushita Industrial Co., Ltd.), 31 October, 2003 (31.10.03), Claim 1; Fig. 1 & WO 2003/069720 A1 & US		1-20		
А	JP 2-52514 A (Yokogawa Electi 22 February, 1990 (22.02.90), Claim 1; Fig. 5. (Family: none)	ric Corp.),	1-20		
А	JP 1-114111 A (Yokogawa Elect 02 May, 1989 (02.05.89), Claim 1; Fig. 5 (Family: none)	tric Corp.),	1-20		
Further do	ocuments are listed in the continuation of Box C.	See patent family annex.	1		
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family			
Date of the actual completion of the international search 09 February, 2005 (09.02.05)		Date of mailing of the international sea 01 March, 2005 (01	. 03 . 05)		
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer			
Facsimile No.		Telephone No.			

A. 発明の属する分野の分類(国際特許分類(IPC))					
Int. Cl. 7 H03H9/24、B81B3/00					
~ ====================================					
B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC))					
Int. Cl. 7 H03H9/24、B81B3/00					
最小限資料以外	トの資料で調査を行った分野に含まれるもの	•	,		
日本国	実用新案公報 1922-1996年				
	公開実用新案公報 1971-2004年				
日本国	登録実用新案公報 1994-2004年 実用新案登録公報 1996-2004年				
日本国	実用新案登録公報 1996-2004年				
国際調査で使用	用した電子データベース (データベースの名称、	調査に使用した用語)			
C. 関連する	ると認められる文献				
引用文献の			関連する		
カテゴリー*	引用文献名 及び一部の箇所が関連すると	ときは、その関連する箇所の表示	請求の範囲の番号		
Α	JP 2003-309449 A	(松下電器産業株式会社) 20	1-20		
	┃03.10.31、請求項1、第1㎏	☑、			
	& WO 2003/069720	A 1			
Ì	& US 2004/012495	1 A 1			
A .	JP 2-52514 A (横河電標		1 - 20		
22、請求項1、第5図(ファミリーなし)					
	·				
A	JP 1-114111 A (横河管		1-20		
	5.02、請求項1、第5図(ファミ	ミリーなし)			
	·				
□ C欄の続きにも文献が列挙されている。 □ パテントファミリーに関する別紙を参照。					
* 引用文献のカテゴリー の日の後に公表された文献					
	車のある文献ではなく、一般的技術水準を示す	「T」国際出願日又は優先日後に公表	された文献であって		
もの 出願と矛盾するものではなく、発明の原理又は理論					
「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの			Katataba 7 99 DH		
以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの					
│ 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの │ 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以					
文献 (理由を付す) 上の文献との、当業者にとって自明である組合せに					
「O」口頭による開示、使用、展示等に言及する文献よって進歩性がないと考えられるもの。					
「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献					
国際調査を完了した日 09.02.2005 国際調査報告の発送日 01.3.2005					
	09. 02. 2005	01.3	. 2005		
国際調査機関の名称及びあて先		特許庁審査官(権限のある職員)	5 J 9 2 7 4		
日本国特許庁(ISA/JP) 郵便番号100-8915		工藤一光	L		
東京都千代田区設が関三丁目4番3号 電話番号 03-3581			内線 3535		
	HE I I ALL BURKE DOWN 1 IN Y III A A				