AI25BTECH11023 - Pratik R

QUESTION

Let **P** and **Q** be 3×3 matrices $\mathbf{P} \neq \mathbf{Q}$. If $\mathbf{P}^3 = \mathbf{Q}^3$ and $\mathbf{P}^2\mathbf{Q} = \mathbf{Q}^2\mathbf{P}$ then determinant of $(\mathbf{P}^2 + \mathbf{Q}^2)$ is equal to

Solution:

Given

$$\mathbf{P} \neq \mathbf{Q} \tag{0.1}$$

$$\mathbf{P}^3 = \mathbf{Q}^3 \tag{0.2}$$

$$\mathbf{P}^2\mathbf{O} = \mathbf{O}^2\mathbf{P} \tag{0.3}$$

let us solve for $(\mathbf{P}^2 + \mathbf{Q}^2)(\mathbf{P} - \mathbf{Q})$

$$(\mathbf{P}^2 + \mathbf{Q}^2)(\mathbf{P} - \mathbf{Q}) = \mathbf{P}^3 - \mathbf{P}^2\mathbf{Q} + \mathbf{Q}^2\mathbf{P} - \mathbf{Q}^3$$
 (0.4)

from equation (0.2) and (0.3)

$$(\mathbf{P}^2 + \mathbf{Q}^2)(\mathbf{P} - \mathbf{Q}) = \mathbf{0}$$
 (0.5)

Let us assume $det(\mathbf{P}^2 + \mathbf{Q}^2) \neq 0$

then $(\mathbf{P}^2 + \mathbf{Q}^2)$ is invertible and hence $(\mathbf{P}^2 + \mathbf{Q}^2)^{-1}$ exists

$$\therefore \mathbf{P} - \mathbf{Q} = \mathbf{0} \tag{0.6}$$

$$\implies \mathbf{P} = \mathbf{Q} \tag{0.7}$$

which contradicts equation (0.1)

Hence

$$\det(\mathbf{P}^2 + \mathbf{Q}^2) = 0 \tag{0.8}$$

1