MATH 173 PROBLEM SET 3

Stepan (Styopa) Zharkov

April 20, 2022

Problem 1.Show that the only solution $u \in \mathcal{D}'(\mathbb{R})$ of u' = 0 is u = c, where c is a constant function.

Solution. As the hint suggests, u'=0 means by definition $u(\phi)=0$ for any $\phi\in C_c^\infty(\mathbb{R})$. For any $\psi\in C_c^\infty(\mathbb{R})$, let $\phi_0\in C_c^\infty(\mathbb{R})$ be a bump function such that $\int_{\mathbb{R}}\phi_0(x)dx=1$. Let $\hat{\psi}=\psi-\phi_0\int_{\mathbb{R}}\psi(x)dx$. We see that

$$\int_{\mathbb{R}} \hat{\psi}(x) dx = \int_{\mathbb{R}} \psi(x) dx - \int_{R} \psi(x) dx \cdot \int_{\mathbb{R}} \phi_0(x) dx = \int_{\mathbb{R}} \psi(x) dx - \int_{\mathbb{R}} \psi(x) dx = 0.$$

So, we can let

$$\phi(x) = \int_{-\infty}^{x} \hat{\psi}(x) dx.$$

We see $\hat{\psi}$ has compact support and is in $C_c^{\infty}(\mathbb{R})$ (since it is the sum of two compact support functions). Since $\int_{\mathbb{R}} \hat{\psi}(x) dx = 0$, we know ϕ must have compact support as well and be in $C_c^{\infty}(\mathbb{R})$. Now, let $c = u(\phi_0)$. We see that by linearity of u,

$$u(\psi) = u(\hat{\psi}) + u(\phi_0) \cdot \int_{\mathbb{R}} \psi(x) dx = u(\phi') + c \int_{\mathbb{R}} \psi(x) dx = 0 + c \int_{\mathbb{R}} \psi(x) dx = c \int_{\mathbb{R}} \psi(x) dx,$$

which is exactly what we wanted to prove.

Problem 2.Let $f \in \mathcal{D}'(\mathbb{R})$, define a solution $u \in \mathcal{D}'(\mathbb{R}^2)$ such that $u_t + cu_x = 0$ and u(t, x) = f(x - ct) in the sense of distributions.

Solution. First, let us define f(x-ct) in a way that aligns with the case that f is a nice function. We see that if f were nice, then

$$f(x - ct)(\phi) = \int_{\mathbb{R}^2} f(x - ct)\phi(t, x)dxdt$$
$$= \int_{\mathbb{R}^2} f(z)\phi(s, z + cs)dzds$$
$$= \int_{\mathbb{R}^2} f(z)\phi(s, z + cs)dsdz$$
$$= \int_{z \in \mathbb{R}} f(z) \int_{s \in \mathbb{R}} \phi(s, z + cs)dsdz$$
$$= f\left(\int_{s \in \mathbb{R}} \phi(s, z + cs)ds\right).$$

So, we see that $f(x-ct)(\phi)=f(\Phi)$ where $\Phi=\int_{\mathbb{R}}\phi(s,z+cs)ds$. Note that $\Phi\in C_c^\infty(\mathbb{R})$ because the integral of a smooth function is smooth and ϕ is compactly supported. So, we can define u=f(x-ct).

Now, we must show that u satisfies the PDE. This is done by simply writing out our definition and using the linearity of f. More precisely,

$$(u_t + cu_x)(\phi) = -f\left(\int_s \phi_t(s, z + cs)ds\right) - cf\left(\int_s \phi_x(s, z + cs)ds\right)$$

$$= -f\left(\int_s \left[\phi_t(s, z + cs) + s\phi_x(s, z + cs)\right]ds\right)$$

$$= -f\left(\int_s \partial_s \phi(s, z + cs)ds\right)$$

$$= -f(0)$$

$$= 0.$$

Note that we used the fundamental theorem of calculus, that ϕ has compact support, and that f is linear in the above computation.

Thus, u = f(x - ct) by definition and u solves the PDE in the sense of distribution, as we wanted to show.

Problem 3. TODO

Solution.

(a) This part follows directly from what we have done in class. We can factor

$$u_{xx} - u_{xt} - 6u_{tt} = (\partial_x - 3\partial_t)(\partial_t + 2\partial_t)u,$$

◁

so the general C^2 solution is

$$u(x,t) = g(2x-t) + f(3x+t)$$

for some C^2 functions f, g.

(b) This problem is similar to problem 2, but here we should apply a trick instead of mindlessly taking derivatives. We will split up $(\partial_x - 3\partial_t)(\partial_t + 2\partial_t)$ and apply them to the parts of u in different orders. More precisely, we see that

$$(\partial_x - 3\partial_t)(\partial_t + 2\partial_t)u = (\partial_x - 3\partial_t)(\partial_t + 2\partial_t)(g(2x - t) + f(3x + t))$$

= $(\partial_t + 2\partial_t)(\partial_x - 3\partial_t)f(3x + t) + (\partial_x - 3\partial_t)(\partial_t + 2\partial_t)g(2x - t).$

By a similar derivation to that in problem 2, we can define

$$f(3x+t)(\phi) = f\left(\frac{1}{3}\int_{s}\phi(s,(z-s)/3)ds\right)$$

and

$$g(2x-t)(\phi) = g\left(\frac{1}{2}\int_{s}\phi(s,(z+s)/2)ds\right)$$

Now, we see that

$$(\partial_t + 2\partial_t)(\partial_x - 3\partial_t)f(3x + t)(\phi) = (\partial_t + 2\partial_t)(\partial_x - 3\partial_t)f\left(\frac{1}{3}\int_s \phi(s, (z - s)/3)ds\right)$$

$$= -(\partial_t + 2\partial_t)f\left(\int_s \left[\frac{1}{3}\phi_x(s, (z - s)/3) - \phi_t(s, (z - s)/3)\right]ds\right)$$

$$= -(\partial_t + 2\partial_t)f\left(\int_s \partial_s \phi(s, (z - s)/3)ds\right)$$

$$= -(\partial_t + 2\partial_t)f(0)$$

$$= -(\partial_t + 2\partial_t)f(0)$$

$$= -(\partial_t + 2\partial_t)0$$

$$= 0.$$

where we used the fundamental theorem of calculus along with the fact that ϕ must have compact support.

Similarly,

$$\begin{split} (\partial_x - 3\partial_t)(\partial_t + 2\partial_t)g(2x - t)(\phi) &= (\partial_x - 3\partial_t)(\partial_t + 2\partial_t)g\left(\frac{1}{2}\int_s \phi(s,(z+s)/2)ds\right) \\ &= -(\partial_t - 3\partial_t)g\left(\int_s \left[\frac{1}{2}\phi_x(s,(z+s)/2) + \phi_t(s,(z-s)/2)\right]ds\right) \\ &= -(\partial_t - 3\partial_t)g\left(\int_s \partial_s \phi(s,(z+s)/2)ds\right) \\ &= -(\partial_t + 2\partial_t)f(0) \\ &= -(\partial_t + 2\partial_t)0 \\ &= 0, \end{split}$$

where, again, we used the fundamental theorem of calculus along with the fact that ϕ must have compact support.

From this, we can conclude that

$$u_{xx} - u_{xt} - 6u_{tt} = (\partial_t + 2\partial_t)(\partial_x - 3\partial_t)f(3x + t) + (\partial_x - 3\partial_t)(\partial_t + 2\partial_t)g(2x - t) = 0 + 0 = 0.$$

So v + w does indeed solve the PDE in part (a).

Problem 4. TODO

Solution. This problem can be solved using the standard method for second order hyperbolic PDEs of two variables with constant coefficients that we saw in class.

First, we can factor

$$u_{xx} + 3u_{xy} - 4u_{yy} = (\partial_x - \partial_y)(\partial_x + 4\partial_y)u.$$

So, as we know, the general solution has the form

$$u(t, x) = f(4x - y) + g(x + y).$$

Now, we just need to use the initial conditions to find the specific f and g. We see that

$$f(3x) + g(2x) = \sin x$$

and that

$$4f'(3x) + g'(2x) = 0.$$

Taking the derivative of the former gives us that

$$3f'(3x) + 2g'(2x) = \cos x.$$

Now, we have a system of linear equations, so we can solve to see that

$$3f'(3x) = -\frac{3}{5}\cos x$$
 and $g'(2x) = \frac{8}{5}\cos x$.

Since $f(3x) + g(2x) = \sin x$, the constant during integration must be the same, so we can assume it to vanish and

$$f(x) = -\frac{3}{5}\sin(x/3)$$
 and $g(x) = \frac{8}{5}\sin(x/2)$.

Plugging this back in, we see that

$$u(x,t) = -\frac{3}{5}\sin\left(\frac{4x-y}{3}\right) + \frac{8}{5}\sin\left(\frac{x+y}{2}\right),\,$$

which is the solution we were after.

Problem 5. TODO

Solution. We assume $t \ge 0$, as always. First, lets' consider the case c = 0. Then, we have $u_{tt} = 0$, so $u_t(x,t)$ is constant along the line $\{(t,x_0)\}$ for any x_0 . So, u(t,x) has is a line of constant slope along any $\{(t,x_0)\}$. The starting point and the slope are defined by the initial conditions, so we see that

$$u(t,x) = \phi(x) + t\psi(x).$$

This vanishes when $\phi(0) + t\psi = 0$. Since ϕ, ψ are positive, ϕ must be 0, so $|x| \ge 1$. Any point where $|x| \ge 1$ works.

We can also check that u is linear (and thus C^{∞}) everywhere except for the places where of ϕ and ψ are not C^{∞} . In other words u is C^{∞} when $x \neq -1, 0, 1$.

Now, let's look at the nonzero case. We know from the notes that the solution is

$$u(t,x) = \frac{1}{2}(\phi(x+ct) + \phi(x-ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(\sigma)d\sigma.$$

Notice that we can assume c>0 because c<0 would also flip the integral, leading to the same solution.

We see that ϕ , ψ are non-negative, so this vanishes only when $\phi(x-ct)=0$, $\phi(x+c)=0$, and $\psi=0$ on the interval (x-ct,x+ct). For the analysis of when u vanishes, we will only consider c=1. Instead of writing out the cases, consider the following picture of where this is true:

TODO: image

We see that u is C^{∞} everywhere but the discontinuities of ϕ, ψ . In other words, u is C^{∞} when $x + ct \neq -1, 0$, or 1.

Problem 6. TODO

Solution. As the hint suggests, consider $v(x_0, x_n, t) = u(x_0, x_n, t) - u(x_0, -x_n, t)$. Notice that

$$v_{tt} - c^2 \Delta_x v = u_{tt}(x_0, x_n, t) - u_{tt}(x_0, -x_n, t) - c^2 \Delta_x u(x_0, x_n, t) + c^2 \Delta_x u(x_0, -x_n, t) = f(x_0, x_n, t) - f(x_0, -x_n, t) = 0.$$

We also see that

$$v(x, x_n, 0) = u(x_0, x_n, 0) - u(x_0, -x_n, 0) = \phi(x_0, x_n) - \phi(x_0, -x_n)$$

and

$$v_t(x, x_n, 0) = u_t(x_0, x_n, 0) - u_t(x_0, -x_n, 0) = \psi(x_0, x_n) - \psi(x_0, -x_n).$$

So, v solves the equation $v_{tt} - c^2 \Delta_x v = 0$ with 0 initial conditions. By the uniqueness in the notes, we know that the only solution to this is v = 0. Thus, we see that $u(x_0, x_n, t) - u(x_0, -x_n, t) = v(x_0, x_n, t) = 0$, so

$$u(x_0, x_n, t) = u(x_0, -x_n, t),$$

and u is even with respect to x_n , exactly as we wanted.

Problem 7. TODO

Solution.

(a) For this problem, we will show that the derivative of E is never positive. Let $\Omega(t)$ be the region where $|x-x_0| < R_0 - c_t$. We see that the product rule gives us that

$$E'(t) = \partial_t \int_{\Omega(t)} (u_t^2 + c(x)^2 |\nabla u|^2 + q(x)u^2) dx$$

$$= \int_{\Omega(t)} \partial_t (u_t^2 + c(x)^2 |\nabla u|^2 + q(x)u^2) dx + (-c_2) \int_{\partial\Omega(t)} (u_t^2 + c(x)^2 |\nabla u|^2 + q(x)u^2) dS(x).$$

Applying integration by parts, as we did in class, we see that

$$\int_{\Omega(t)} \partial_t (u_t^2 + c(x)^2 |\nabla u|^2 + q(x)u^2) dx = \int_{\Omega(t)} (u_{tt} - \nabla \cdot (c(x)^2 \nabla u) + q(x)u) u_t dx + \int_{\partial \Omega(t)} u_t c(x)^2 \nabla_x u \cdot \hat{n} dS(x)$$

$$= 0 + \int_{\partial \Omega(t)} u_t c(x)^2 \nabla_x u \cdot \hat{n} dS(x)$$

where we used that u is a solution to our PDE in the last step. Now, we can start bounding this value. We see that

$$\begin{split} \int_{\Omega(t)} \partial_t (u_t^2 + c(x)^2 |\nabla u|^2 + q(x)u^2) dx &= \int_{\partial \Omega(t)} u_t c(x)^2 \nabla_x u \cdot \hat{n} dS(x) \\ &\leq \int_{\partial \Omega(t)} |u_t| c(x)^2 |\nabla_x u| |\hat{n}| dS(x) \\ &= \int_{\partial \Omega(t)} |u_t| c(x)^2 |\nabla_x u| dS(x) \\ &\leq c_2 \int_{\partial \Omega(t)} |u_t| |c(x)| |\nabla_x u| dS(x). \end{split}$$

In the last step, we used that $c(x) \leq c_2$. Now, note that for non-negative real numbers a, b, we have

$$ab \le 2ab \le a^2 + b^2$$
.

With this fact, we see that

$$\int_{\Omega(t)} \partial_t (u_t^2 + c(x)^2 |\nabla u|^2 + q(x)u^2) dx \le c_2 \int_{\partial \Omega(t)} |u_t| |c(x)| |\nabla_x u| dS(x)
\le c_2 \int_{\partial \Omega(t)} (|u_t|^2 + |c(x)|^2 |\nabla u|^2) dS(x)
\le c_2 \int_{\partial \Omega(t)} (u_t^2 + c(x)^2 |\nabla u|^2) dS(x)
\le c_2 \int_{\partial \Omega(t)} (u_t^2 + c(x)^2 |\nabla u|^2 + qu^2) dS(x)$$

by the non-negativity of q. Now, plugging this back into the expression for E'(t), we see that

$$E'(t) = \int_{\Omega(t)} \partial_t (u_t^2 + c(x)^2 |\nabla u|^2 + q(x)u^2) dx - c_2 \int_{\partial\Omega(t)} (u_t^2 + c(x)^2 |\nabla u|^2 + q(x)u^2) dS(x)$$

$$\leq c_2 \int_{\partial\Omega(t)} (u_t^2 + c(x)^2 |\nabla u|^2 + q(x)u^2) dS(x) - c_2 \int_{\partial\Omega(t)} (u_t^2 + c(x)^2 |\nabla u|^2 + q(x)u^2) dS(x)$$

$$= 0$$

Thus, we can conclude that E(t) is non-increasing in t.

(b) For this problem, we will use part (a). We mimic the derivation in the notes.

Let (\hat{x}, \hat{t}) be a point such that $|\hat{x}| > R + c_2 \hat{t}$. Let $x_0 = \hat{x}$ and let $R_0 = |x_0| - R$. We see that for $|x - x_0| < R_0$, we have $u(x, 0) = \phi(x) = 0$. Also, $u_t(x, 0) = \psi(x) = 0$. So, this means that E(0) = 0 with the definition we had in part (a).

Since E(t) is non-increasing and non-negative, we know E(t) = 0 for any $t < R_0/c_2$. Since all the terms in E(t) are non-negative, and we know c(x) > 0, we see E(t) = 0 implies that $u_t^2 = 0$ and $|\nabla u|^2 = 0$ where $|x_0 - x| < R_0 - c_2 t$. Thus, $u_t = \nabla u = 0$ on $|x - x_0| < R_0 - c_2 t$. This means that in fact u = 0 on $|x - x_0| < R_0 - c_2 t$.

In a sense, we have shown that u is 0 on a triangle outside of the region $|x| \leq R + ct$. With our choice of x_0, R_0 , this triangle covers the original arbitrary point.

More precisely, we see that $\hat{t} < (|\hat{x}| - R)/c_2$ and $|\hat{x} - x_0| < R$, so we can conclude that $u(\hat{x}, \hat{t})$. Since (\hat{x}, \hat{t}) was arbitrary, we have shown what we wanted.

TODO: draw cone

(c) We have done this in class, but we can repeat the derivation. Let $t_0 < R_0/c_2$. Suppose u, u' are two solutions to the PDE in $[0, t_0] \times \mathbb{R}$. Note that the notation u' is not to be confused with a derivative of u. Consider v = u - u'. We see that

$$v_{tt} - \nabla \cdot (c^2 \nabla v) + qv = u_{tt} - \nabla \cdot (c^2 \nabla u) + qu - u'_{tt} + \nabla \cdot (c^2 \nabla u') - qu' = 0 - 0 = 0.$$

Moreover,

$$v(x,0) = u(x,0) - u'(x,0) = \phi(x) - \phi(x) = 0$$

and

$$v_t(x,0) = u_t(x,0) - u'_t(x,0) = \psi(x) - \psi(x) = 0.$$

So, we see that v satisfies the same equation with 0 initial conditions. If we define E as in part (a), but for v, we see that for any x_0 , the initial conditions give us

$$E(0) = 0.$$

Since E(t) is non-increasing and non-negative, we know that

$$E(t) = 0$$

for all $t \in [0, t_0]$. As in part (b), this means that v_x and v_t vanish where $|x - x_0| < R_0 - c_t$. So, v vanishes on this region as well. For any $(t, x) \in [0, t_0] \times \mathbb{R}$, we can select $x_0 = x$ and see that the point is in the region where v = 0. Thus, v = 0 on all of $[0, t_0] \times \mathbb{R}$.

So, we can conclude that u = u', and the solution is unique.