

(a) Beryllium fluoride, BeF₂

(b) Boron trifluoride, BF₃

(c) Methane, CH₄

FIGURE 21 Ball-and-stick models show the shapes of (a) AB₂, (b) AB₃, and (c) AB₄ molecules according to VSEPR theory.

on opposite sides of the beryllium atom, 180° apart. Thus, all three atoms lie on a straight line. The molecule is linear.

If we represent the central atom in a molecule by the letter A and we represent the atoms bonded to the central atom by the letter B, then according to VSEPR theory, BeF₂ is an example of an AB₂ molecule, which is linear. Can you determine what an AB₃ molecule looks like? The three A—B bonds stay farthest apart by pointing to the corners of an equilateral triangle, giving 120° angles between the bonds. This trigonal-planar geometry is shown in **Figure 21b** for the AB₃ molecule boron trifluoride, BF₃.

The central atoms in AB₄ molecules follow the octet rule by sharing four electron pairs with B atoms. The distance between electron pairs is maximized if each A—B bond points to one of four corners of a tetrahedron. This geometry is shown in **Figure 21c** for the AB₄ molecule methane, CH₄. The same figure shows that in a tetrahedral molecule, each of the bond angles formed by the A atom and any two of the B atoms is equal to 109.5°.

The shapes of various molecules are summarized in **Table 5.** B can represent a single type of atom, a group of identical atoms, or a group of different atoms on the same molecule. The shape of the molecule will still be based on the forms given in the table. However, different sizes of B groups distort the bond angles, making some bond angles larger or smaller than those given in the table.

SAMPLE PROBLEM E

Use VSEPR theory to predict the molecular geometry of boron trichloride, BCl₃.

SOLUTION

First write the Lewis structure for BCl₃. Boron is in Group 13 and has three valence electrons.

В

Chlorine is in Group 17, so each chlorine atom has seven valence electrons.

:Ċl:

The total number of available valence electrons is therefore $24e^-$ ($3e^-$ from boron and $21e^-$ from chlorine). The following Lewis structure uses all $24e^-$.

:Cl:B:Cl:

This molecule is an exception to the octet rule because in this case B forms only three bonds. Boron trichloride is an AB_3 type of molecule. Therefore, according to VSEPR theory, it should have trigonal-planar geometry.