第五章

方程求根的迭代法

——二分法

—— 不动点迭代及其加速

内容提要

- ■非线性方程求解基本概念
- ■二分法
- 不动点迭代法及其加速
- ■牛顿法、弦截法

非线性方程基本概念

基本概念

$$f(x) = 0$$

$$x \in R$$
, $f(x) \in C[a,b]$

- 若 f(x) 是一次多项式,则称为线性方程;否则称为非线性方程
- 代数方程: $f(x) = a_0 + a_1 x + ... + a_n x^n$

n=1, 2, 3, 4 时有相应的求根公式, $n \ge 5$ 时不存在求根公式

- 非线性方程可能有(无穷)多个解 , 一般要强调 求解区间
- 非线性方程一般没有直接解法,通常用迭代法求数值解

二分法 (对分法)

- ■基本思想、数学原理、计算过程
- 收敛性分析

二分法(对分法)

• 基本思想

将<mark>有根区间</mark>对分,并找出根所在的小区间,然后再对该小区间对分,依次类推,直到有根区间的长度足够小为止。

数学原理:介值定理

设 f(x) 在 [a,b] 上连续,且 f(a) f(b) < 0,则由介值定理可得,在 (a,b) 内至少存在一点 ξ 使得 $f(\xi)$ = 0

• 适用范围

求有根区间内的 单重实根 或 奇重实根 , 即 f(a) f(b) < 0

用二分法求根,通常先给出 f(x) 草图以确定有根区间

二分法(对分法)

算法:(二分法)

(1) 计算f(a), f(b), 若f(a), f(b) > 0, 则算法失效,停止计算

$$(2) \diamondsuit x = \frac{a+b}{2} , 计算 f(x)$$

- (3) 若 $|f(x)| < \varepsilon$ 或 $|b-a| < \varepsilon$, 停止计算 , 输出近似解 x
- (4) 若 $f(a) \cdot f(x) < 0$, 则令 b = x; 否则令 a = x
- (5) 返回第2步
- 优点:简单易用,总是收敛
- 缺点:收敛慢,不能求复根和偶数重根,一次只能求一个根
- 总结:一般用来计算解的一个粗糙估计

误差分析

记 $a_1 = a, b_1 = b,$ 第 k 步的有根区间为 $[a_k, b_k]$

$$|x_k - x_*| = \left| \frac{b_k + a_k}{2} - x_* \right| \le \frac{b_k - a_k}{2} = \frac{b_{k-1} - a_{k-1}}{4} = \dots = \frac{b_1 - a_1}{2^k}$$

$$|x_k - x_*| \le \frac{b - a}{2^k} \to 0 \ (k \to \infty)$$

结论:二分法总是收敛的!(条件:函数满足介值定理)

不动点迭代

- ■基本思想
- 迭代格式
- 收敛性分析(全局收敛与局部收敛)

不动点迭代基本思想

构造 f(x) = 0 的一个等价方程:

$$x = \varphi(x)$$

$$f(x) = 0$$
 等价变换
$$x = \varphi(x)$$

$$f(x)$$
 的零点
$$\varphi(x)$$
 的不动点

不动点迭代格式

 \bullet 任取一个迭代初始值 x_0 , 计算

$$x_{k+1} = \varphi(x_k)$$
 $k = 0, 1, 2, ...$

得到一个迭代序列: x_0 , x_1 , x_2 , ..., x_n , ...

几何含义:求曲线 $y = \varphi(x)$ 与直线 y = x 的交点。

收敛性分析

设
$$\varphi(x)$$
 连续,若 $\left\{x_k^{}\right\}_{k=0}^{\infty}$ 收敛,即 $\lim_{k\to\infty}x_k^{}=x_*$,则

$$\lim_{k\to\infty} x_{k+1} = \lim_{k\to\infty} \varphi(x_k) = \varphi\left(\lim_{k\to\infty} x_k\right)$$

$$x_* = \varphi(x_*) \quad \text{in} \quad f(x_*) = 0$$

$$f(x_*) = 0$$

性质:若 $\lim_{k\to\infty} x_k = x_*$,则不动点迭代收敛 ,且

 x_* 就是 f(x)=0 的解;否则迭代法<mark>发散</mark>。

解的存在唯一性

定理:设 $\varphi(x) \in C[a,b]$ 且满足

- (1) 对任意的 $x \in [a,b]$ 有 $\varphi(x) \in [a,b]$
- (2) 存在常数 0 < L < 1 , 使得任意的 $x, y \in [a,b]$ 有

$$|\varphi(x)-\varphi(y)| \leq L|x-y|$$

则 $\varphi(x)$ 在 [a,b] 上存在唯一的不动点 x_*

不动点迭代的收敛性判断

定理:设 $\varphi(x) \in C[a,b]$ 且满足

- (1) 对任意的 $x \in [a,b]$ 有 $\varphi(x) \in [a,b]$
- (2) 存在常数 0 < L < 1 , 使得任意的 $x, y \in [a,b]$ 有

$$|\varphi(x)-\varphi(y)| \leq L|x-y|$$

则对任意初始值 $x_0 \in [a,b]$,不动点迭代 $x_{k+1} = \varphi(x_k)$ 收敛 ,且

$$|x_k - x_*| \le \frac{L}{1 - L} |x_k - x_{k-1}| \le \frac{L^k}{1 - L} |x_1 - x_0|$$

注:一般来说,L越小,收敛越快!

不动点迭代的收敛性判断

推论:若 $\varphi(x) \in C^1[a,b]$, 对任意 $x \in [a,b]$ 有 $\varphi(x) \in [a,b]$

且对任意 $x \in [a, b]$ 有

$$|\boldsymbol{\varphi}'(\boldsymbol{x})| \leq L < 1$$

则上述定理中的结论成立。

以上两个结论中的 收敛性与初始值的选取无关!

举例

例: 求 $f(x) = x^3 - x - 1 = 0$ 在区间 [1, 2] 中的根

(2)
$$\varphi(x) = x^3 - 1$$
 $0 \le \varphi(x) \le 7$ $(x \in [1, 2])$ $\varphi'(x) = 3x^2$ $|\varphi'(x)| > 1$

demo_5_1.m

不动点迭代的局部收敛

定义:设 x_* 是 $\varphi(x)$ 的不动点,若存在 x_* 的某个 δ -邻域

$$U_{\delta}(x_*) = [x_* - \delta, x_* + \delta]$$
,对任意 $x_0 \in U_{\delta}(x_*)$,不动点迭代

$$x_{k+1} = \varphi(x_k)$$

产生的点列都收敛到 x_* ,则称该迭代<mark>局部收敛。</mark>

定理:设 x_* 是 $\varphi(x)$ 的不动点,若 $\varphi'(x)$ 在 x_* 的某个邻域内连续,且

$$|\varphi'(x_*)| \leq 1$$

则不动点迭代 $x_{k+1} = \varphi(x_k)$ 局部收敛

收敛速度

定义: 设迭代 $x_{k+1} = \varphi(x_k)$ 收敛到 $\varphi(x)$ 的不动点 x_* ,

记
$$e_k = x_k - x_*$$
, 若

$$\lim_{k\to\infty}\frac{|e_{k+1}|}{|e_k|^p}=C$$

其中常数 C > 0 ,则称该迭代为 p 阶收敛。

- (1) 当 p = 1 且 0 < C < 1 时称为线性收敛
- (2) 当 p=2 时称为二次收敛,或平方收敛
- (3) 当 p > 1 或 p = 1且 C = 0 时称为超线性收敛
- 若 $0<|\varphi'(x_*)|<1$,则不动点迭代 $x_{k+1}=\varphi(x_k)$ 局部线性收敛

基本收敛定理

定理:设 x_* 是 $\varphi(x)$ 的不动点,若 $\varphi^{(p)}(x)$ 在 x_* 的某邻域内连续,且

$$\varphi'(x_*) = \varphi''(x_*) = \dots = \varphi^{(p-1)}(x_*) = 0,$$

 $\varphi^{(p)}(x_*) \neq 0$

则迭代 $x_{k+1} = \varphi(x_k)$ 是 p 阶局部收敛的。且有

$$\lim_{k \to \infty} \frac{x_{k+1} - x_*}{(x_k - x_*)^p} = \frac{\varphi^{(p)}(x_*)}{p!}$$

举例

例:求
$$f(x) = x^2 - 3 = 0$$
的正根 $x_* = \sqrt{3}$

demo_5_2.m

(1)
$$\varphi(x) = x^2 - 3 + x$$
 $\varphi'(x_*) = 2\sqrt{3} + 1 > 1$

(2)
$$\varphi(x) = x - \frac{x^2 - 3}{4}$$
 $\varphi'(x_*) = 1 - \frac{\sqrt{3}}{2} \approx 0.134 < 1$

(3)
$$\varphi(x) = \frac{1}{2} \left(x + \frac{3}{x} \right)$$
 $\varphi'(x_*) = 0$ $\varphi''(x_*) = \frac{2}{\sqrt{3}} \neq 0$

• 一般来说, $|\varphi'(x_*)|$ 越小,收敛越快!

不动点迭代的加速

■ Aitken 加速技巧

Aitken 加速

$$x_{1} = \varphi(x_{0}) \implies x_{1} - x_{*} = \varphi(x_{0}) - \varphi(x_{*}) = \varphi'(\xi_{1})(x_{0} - x_{*})$$

$$x_{2} = \varphi(x_{1}) \implies x_{2} - x_{*} = \varphi(x_{1}) - \varphi(x_{*}) = \varphi'(\xi_{2})(x_{1} - x_{*})$$

若 $\varphi'(x)$ 变化不大,则可假定: $\varphi'(\xi_1) \approx \varphi'(\xi_2)$

$$\frac{x_1 - x_*}{x_2 - x_*} \approx \frac{x_0 - x_*}{x_1 - x_*}$$

$$x_* \approx x_0 - \frac{(x_1 - x_0)^2}{x_2 - 2x_1 + x_0} = y_1$$

Aitken 加速

$$y_{k+1} = x_k - \frac{(x_{k+1} - x_k)^2}{x_{k+2} - 2x_{k+1} + x_k}$$

收敛性:
$$\lim_{k\to\infty}\frac{y_{k+1}-x_*}{x_k-x_*}=0 \longrightarrow y_k$$
 收敛较快