Checking HANK.

Evidence from size-persistence tradeoff.

Vlasov Alexander

NES

February 9, 2024

Outcomes of Kaplan et al. (2018) model

Kaplan et al. (2018) HANK model outcomes:

- Size-Persistence trade-off: Cumulative elasticity of aggregate consumption declines with the increase in autocorrelation of monetary shock in a nonlinear manner.
- Inflation-Output Tradeoff: the same Taylor rule shocks lead to the increased effects in Inflation-Output tradeoff.

Size-Persistence in RANK

Rate path:

$$r_t = \rho + e^{-\eta t} (r_0 - \rho).$$

NK policy

$$C_0 = \bar{C} \exp \left(-rac{1}{\gamma} \int_0^\infty \left(r_s -
ho
ight) ds
ight).$$

Size:

$$R_0 = \int_0^\infty (r_s - \rho) \ ds,$$

$$\frac{-d\log C_0}{dR_0} = \frac{1}{\gamma},$$

Picture of Size-Persistence trade-off

FIGURE 8. CUMULATIVE ELASTICITY OF AGGREGATE CONSUMPTION BY PERSISTENCE OF THE SHOCK

Figure: The difference between the New Keynesian models from Kaplan et al. (2018)

Size-Persistent tradeoff by Kaplan et al. (2018), formally

RANK:
$$\frac{d}{d\nu} \frac{-d \log C_0}{dR_0} = 0 \qquad (1)$$

TANK with
$$B^g$$
 adjustment:
$$\frac{d}{d\nu} \frac{-d \log C_0}{dR_0} = 0 \qquad (2)$$

TANK with T adjustment:
$$\frac{d}{d\nu} \frac{-d \log C_0}{dR_0} < 0$$
 (3)

$$HANK: \qquad \frac{d^2}{d\nu^2} \frac{-d \log C_0}{dR_0} < 0 \qquad (4)$$

Empirics Related to HANK

Microdata

 Holm et al. (2021) find inconsistent Evidence of HANK – the response is larger than generated by HANK.

MPC

• Estimation of MPC's^a by Gross et al. (2020): Increase of MPC is higher in 2008 than in 2011.

Heterogenity in Portfolios

Luetticke (2021) find a heterogeneity in household portfolio responses to MP shocks.

^aActually MPB, but they argue that it doesn't affect the results

Empirical approach:

Based on method of Hack et al. (2023).

I assume that the monetary policy rule is

$$(r-r^*)_{t+h} = \tilde{\phi}_t \mathbb{E} \left[\pi_{t+1} \mid \mathcal{I}_t \right] + \varepsilon_t.$$

 $\mathbb{E}_t \pi_{t+1}$ is the expectations of monetary authority about the inflation in quarter t+1.

I estimate the following State-Dependent LP-IV.

$$\begin{split} \left(r - r^*\right)_{t+h} &= \alpha^h + \beta^h \hat{\pi}_t + \gamma^h \hat{\pi}_t \left(\textit{Hawk}_t - \overline{\textit{Hawk}}\right) \\ &+ \delta^h \left(\textit{Hawk}_t - \overline{\textit{Hawk}}\right) + \zeta^h \textit{Z} + e^h_{t+h}, \end{split}$$

Empirical approach

$$\begin{split} \tilde{\phi}_{t+h} &= \bar{\phi} + \phi_t = \hat{\beta}^h + \hat{\gamma}^h \left(\textit{Hawk}_t - \overline{\textit{Hawk}} \right). \\ R_{0t} &= \frac{1}{H} \sum_{h=1}^H \tilde{\phi}_{t+h} = \mathbb{E}_h \tilde{\phi}_{t+h}. \\ \nu_t &= \mathbb{E}_h \left[\left(\phi_{t+h} - \bar{\phi} \right) \left(\phi_{t+h-1} - \bar{\phi} \right) \right] \end{split}$$

$$\log Consumption = \alpha_0 + \alpha_1 R_0 + \alpha_2 \nu + \beta_1 R_0 \nu \tag{5}$$

$$\log Consumption = \alpha_0' + \alpha_1' R_0 + \alpha_2' \nu + \beta_1' R_0 \nu + \beta_2' R_0 \nu^2$$
 (6)

Data

Monetary Shock identification:

• 1-year, 2-year, 5-year, 7-year, 10-year, 20-year, and 30-year Treasury rates

Size-Persistence Trade-off:

- Consumption as PCECC96 ^{1 7}
- Inflation as a change in PCEPILFE²
- Natural (neutral) rate of interest by Holston et al. (2017)³
- 2-year Treasury rate as the Short-term rate (r).

³Cubic spline interpolation to monthly values.

Vlasov Alexander (NES) Checking HANK. February 9, 2024 9 / 15

¹Real Personal Consumption Expenditures.

²Personal Consumption Expenditures Excluding Food and Energy (Chain-Type Price Index).

Results: Monetary Shock Identification I

Table: Monetary Shock Identification. First step

	Dependent variable:					
	DGS1	DGS5	DGS7	DGS10	DGS20	DGS30
	(1)	(2)	(3)	(4)	(5)	(6)
DGS2	0.727*** (0.071)	1.029*** (0.090)	0.921*** (0.110)	0.743*** (0.112)	0.316** (0.127)	0.202 (0.130)
Constant	-0.005*** (0.001)	-0.001 (0.002)	-0.0002 (0.002)	0.0002 (0.002)	-0.001 (0.003)	-0.001 (0.003)
Observations	382	382	382	382	382	382
R ²	0.634	0.766	0.666	0.583	0.327	0.206
Adjusted R ²	0.633	0.765	0.665	0.582	0.325	0.204
Res. Std. Error	0.028	0.035	0.043	0.044	0.049	0.051
Wald test	103.9***	129.9***	70.49***	43.71***	6.201**	2.406
Wu-Hausman	3.699*	0.002	0.259	0.847	9.345 ***	8.707**

This table reports first stage of Bu et al. (2021) monetary shock identification procedure for the FOMC announcement from 1994 to the most recent event 2021-04-28 (191 monetary events). OLS standard errors in the parenthesis. F-statistics on instrument insignificance is 44.030***. Wu-Hausman stands for Hausman specification test for the endogeneity of a instrument $\left(\Delta R_{2...}^{M}, -\Delta R_{2...}^{NM}\right)'$. *p<0.1; **p<0.05; ***p<0.01.

Results: Elasticity of consumprion

Table: Elasticity of consumption to $(r - r^*)$.

	Dependent variable: log Consumption		
	OLS	IV	
	(1)	(2)	
$(r-r^*)$	0.092***	0.197***	
	(800.0)	(0.013)	
Constant	9.095***	9.050***	
	(0.011)	(0.014)	
Observations	361	361	
R^2	0.255	-0.079	
Adjusted R ²	0.253	-0.082	
Residual Std. Error	0.207	0.249	
F Statistic	122.922***		
Weak instrument		508.1***	
Wu-Hausman		622.3***	

This table reports the results of estimation of consumption elasticity to the deviation of rate from its neutral (natural) value, $(r-r^*)$. Weak instrument stands for first stage F-statisitic, that indicate, whether the \hat{R} is a strong instrument. Wu-Hausman stands for Hausman specification test for the endogeneity of a instrument \hat{R} . *p<0.10; **p<0.05; **r*p<0.005.

Conclusions

So, should we believe in HANK?

The evidence above suggests that, we should. At least we have found that consumption behaviour in size-persistent tradeoff corresponds to the HANK model.

Place for your suggestions and comments!

If you have any other suggestions/comments please write avlasov@nes.ru

References I

- Bu, Chunya, John Rogers, and Wenbin Wu (2021) "A unified measure of Fed monetary policy shocks," *Journal of Monetary Economics*, 118, 331–349, https://doi.org/10.1016/j.jmoneco.2020.11.002.
- Gross, Tal, Matthew J. Notowidigdo, and Jialan Wang (2020) "The Marginal Propensity to Consume over the Business Cycle," *American Economic Journal: Macroeconomics*, 12 (2), 351–84, 10.1257/mac.20160287.
- Hack, Lukas, Klodiana Istrefi, and Matthias Meier (2023) "Identification of Systematic Monetary Policy," CEPR Discussion Paper 17999.
- Holm, Martin Blomhoff, Pascal Paul, and Andreas Tischbirek (2021) "The Transmission of Monetary Policy under the Microscope," *Journal of Political Economy*, 129 (10), 2861–2904, 10.1086/715416.

References II

- Holston, Kathryn, Thomas Laubach, and John C. Williams (2017) "Measuring the natural rate of interest: International trends and determinants," *Journal of International Economics*, 108, S59–S75, https://doi.org/10.1016/j.jinteco.2017.01.004, 39th Annual NBER International Seminar on Macroeconomics.
- Kaplan, Greg, Benjamin Moll, and Giovanni L. Violante (2018) "Monetary Policy According to HANK," *American Economic Review*, 108 (3), 697–743, 10.1257/aer.20160042.
- Luetticke, Ralph (2021) "Transmission of Monetary Policy with Heterogeneity in Household Portfolios," *American Economic Journal: Macroeconomics*, 13 (2), 1–25, 10.1257/mac.20190064.