CS 581 – ADVANCED ARTIFICIAL INTELLIGENCE

TOPIC: PARAMETER ESTIMATION

<u>http://www.cs.iit.edu/~mbilgic</u>

PARAMETER ESTIMATION

- Imagine we have a thumbtack
- Flip it, and it comes as heads or tails

heads

tails

- $P(Heads) = \theta$, $P(Tails) = 1 \theta$
- Assume we flip it (a + b) times and it comes head a times. What is θ if
 - a = 4, b = 6
 - a = 42, b = 58
 - a = 407 b = 593
- Can you prove your answers?
- Can you associate a confidence score with your estimates?

WE WILL SEE TWO APPROACHES

- 1. Maximum likelihood estimation
- 2. Bayesian estimation

MAXIMUM LIKELIHOOD ESTIMATION

PROBABILITY OF DATA

- Experiment with thumbtack tosses
- o Data is H, T, H, H, T, T, T, H, T, T
 - 4 H, 6 T
- What is P(H, T, H, H, T, T, T, H, T, T)?
- o If P(H) = 0.3
 - $0.3 \times 0.7 \times 0.3 \times 0.3 \times 0.7 \times 0.7 \times 0.7 \times 0.3 \times 0.7 \times 0.7$
 - $0.3^4 \times 0.7^6$
 - \circ 9.53 \times 10⁻⁴

LikeGhood of D PROBABILITY OF DATA, GIVEN θ

$P(H); \boldsymbol{\theta}$	$ heta^4 imes (1- heta)^6$	P/D/9-)
0.0	$0^4 \times 1^6$	0.0
0.1	$0.1^4 \times 0.9^6$	0.53×10^{-4}
0.2	$0.2^4 \times 0.8^6$	4.19×10^{-4}
0.3	$0.3^4 \times 0.7^6$	9.53×10^{-4}
0.4	$0.4^4 \times 0.6^6$	11.94×10^{-4}
0.5	$0.5^4 \times 0.5^6$	9.77×10^{-4}
0.6	$0.6^4 \times 0.4^6$	5.31×10^{-4}
0.7	$0.7^4 \times 0.3^6$	1.75×10^{-4}
0.8	$0.8^4 \times 0.2^6$	0.26×10^{-4}
0.9	$0.9^4 \times 0.1^6$	0.01×10^{-4}
1.0	$1^4 \times 0^6$	0.0

Probability of Data, Given θ

$P(H); oldsymbol{ heta}$	$egin{array}{c} heta^4 \ imes (1- heta)^6 \end{array}$	
0.0	$0^4 \times 1^6$	0.0
0.1	$0.1^4 \times 0.9^6$	0.53×10^{-4}
0.2	$0.2^4 \times 0.8^6$	4.19×10^{-4}
0.3	$0.3^4 \times 0.7^6$	9.53×10^{-4}
0.4	$0.4^4 \times 0.6^6$	11.94×10^{-4}
0.5	$0.5^4 \times 0.5^6$	9.77×10^{-4}
0.6	$0.6^4 \times 0.4^6$	5.31×10^{-4}
0.7	$0.7^4 \times 0.3^6$	1.75×10^{-4}
0.8	$0.8^4 \times 0.2^6$	0.26×10^{-4}
0.9	$0.9^4 \times 0.1^6$	0.01×10^{-4}
1.0	$1^4 \times 0^6$	0.0

$P(DATA \mid \theta)$

- o Data is 4000 H, 6000 T
- What is $P(D \mid \theta)$ if P(H) is θ ?
 - $\theta^{4000} \times (1-\theta)^{6000}$
- \circ If $\theta = 0.4$
 - $0.4^{4000} \times 0.6^{6000} = 0$ (underflow!)

Log Probability of Data, Given θ

- Experiment with thumbtack tosses
- o Data is H, T, H, H, T, T, T, H, T, T
 - 4 H, 6 T
- What is ln(P(H, T, H, H, T, T, T, H, T, T))?
- If P(H) = 0.3
 - $\ln(0.3^4 \times 0.7^6)$
 - $4 * \ln(0.3) + 6 * \ln(0.7)$
 - -6.956

LogProbability of Data, Given θ

D(II). 0	$4 \times ln(\theta) + 6 \times ln(1-\theta)$	PDA
$P(H); \boldsymbol{\theta}$	4 × th(0) + 0 × th(1 0)	$\mathcal{L}(\mathcal{I}) \cap (\mathcal{I}(\mathcal{I}))$
0.0	$4 \times ln(0) + 6 \times ln(1)$	-∞
0.1	$4 \times ln(0.1) + 6 \times ln(0.9)$	-9.84
0.2	$4 \times ln(0.2) + 6 \times ln(0.8)$	-7.78
0.3	$4 \times ln(0.3) + 6 \times ln(0.7)$	-6.96
0.4	$4 \times ln(0.4) + 6 \times ln(0.6)$	$\boxed{-6.73}$
0.5	$4 \times ln(0.5) + 6 \times ln(0.5)$	-6.93
0.6	$4 \times ln(0.6) + 6 \times ln(0.4)$	-7.54
0.7	$4 \times ln(0.7) + 6 \times ln(0.3)$	-8.65
0.8	$4 \times ln(0.8) + 6 \times ln(0.2)$	-10.55
0.9	$4 \times ln(0.9) + 6 \times ln(0.1)$	-14.24
1.0	$4 \times ln(1) + 6 \times ln(0)$	$-\infty$

LogProbability of Data, Given θ

$P(H); \boldsymbol{\theta}$	$4 imes ln(heta) + 6 \ imes ln(1- heta)$	
0.0	$4 \times ln(0) + 6$ $\times ln(1)$	-∞
0.1	$4 \times ln(0.1) + 6$ $\times ln(0.9)$	-9.84
0.2	$4 \times ln(0.2) + 6$ $\times ln(0.8)$	-7.78
0.3	$4 \times ln(0.3) + 6$ $\times ln(0.7)$	-6.96
0.4	$4 \times ln(0.4) + 6$ $\times ln(0.6)$	-6.73
0.5	$4 \times ln(0.5) + 6$ $\times ln(0.5)$	-6.93
0.6	$4 \times ln(0.6) + 6$ $\times ln(0.4)$	-7.54
0.7	$4 \times ln(0.7) + 6$ $\times ln(0.3)$	-8.65
0.8	$4 \times ln(0.8) + 6$ $\times ln(0.2)$	-10.55
0.9	$4 \times ln(0.9) + 6$ $\times ln(0.1)$	-14.24
1.0	$4 \times ln(1) + 6$ $\times ln(0)$	-∞

$P(DATA \mid \theta)$

- o Data is 4000 H, 6000 T
- What is $P(D \mid \theta)$ if P(H) is θ ?
 - $\theta^{4000} \times (1-\theta)^{6000}$
- \circ If $\theta = 0.4$
 - $0.4^{4000} \times 0.6^{6000} = 0$ (underflow!)
- $\circ \log(P(D \mid \theta))$
 - $4000 \times \ln(0.4) + 6000 \times \ln(0.6) = -6730.12$

$Log(P(4000H, 6000T | \theta))$

LIKELIHOOD/LOG-LIKELIHOOD

- Number of heads = a, number of tails = b
- Likelihood: $L(\theta:\mathcal{D}) = \theta^a (1-\theta)^b$
- Log-likelihood: $l(\theta:\mathcal{D}) = a \log(\theta) + b \log(1 \theta)$
- Note that θ that maximizes likelihood $L(\theta; \mathcal{D})$ is the same θ that maximizes the log-likelihood $l(\theta; \mathcal{D})$
 - For non-negative x and y, $x \ge y \iff \log(x) \ge \log(y)$
- How to find θ that maximizes the log-likelihood?
 - Take derivate of $l(\theta; \mathcal{D})$ w.r.t. θ and set it to zero

BAYESIAN ESTIMATION

BAYESIAN ESTIMATION

- MLE gives the same estimate of $\theta = 0.4$, if we have 4 H and 6 T, as well as 4M H and 6M T
- In Bayesian estimation, rather than a single θ ,
 - We assume a prior belief about θ : $p(\theta)$, and we estimate
 - The posterior distribution over θ : $p(\theta \mid \mathcal{D})$
 - The probability distribution for the next toss: $P(d_{m+1} | \mathcal{D})$

Posterior: $p(\theta \mid \mathcal{D})$

$$p(\theta \mid \mathcal{D}) = \frac{p(\theta)P(\mathcal{D} \mid \theta)}{P(\mathcal{D})}$$

 $P(\mathcal{D})$ does not depend on θ . Hence, it can be treated as a constant from the perspective of θ .

$$p(\theta \mid \mathcal{D}) \propto p(\theta)P(\mathcal{D} \mid \theta)$$

Next, assume each data point is independent given θ : $d_i \perp d_j \mid \theta$

$$P(\mathcal{D}|\theta) = P(d_1|\theta)P(d_2|\theta)P(d_3|\theta)\cdots P(d_m|\theta) = \prod_{i=1}^{m} P(d_i \mid \theta)$$

Hence, the posterior becomes

$$p(\theta \mid \mathcal{D}) \propto p(\theta) \prod_{i=1}^{m} P(d_i \mid \theta)$$

17

PREDICTION: $P(d_{m+1} \mid \mathcal{D})$

$$P(d_{m+1}|D) = \int_{0}^{1} P(d_{m+1}|\theta, \mathcal{D})p(\theta|\mathcal{D})d\theta$$

Assuming $d_i \perp d_i \mid \theta$:

$$P(d_{m+1}|D) = \int_{0}^{1} P(d_{m+1}|\theta)p(\theta|\mathcal{D})d\theta$$

Using the posterior equation from the previous slide:

$$P(d_{m+1}|D) \propto \int_{0}^{1} P(d_{m+1}|\theta)p(\theta) \prod_{i=1}^{m} P(d_{i} \mid \theta) d\theta$$

UNIFORM PRIOR

- Assume a Heads and b Tails
- Assume a uniform prior over θ . That is, $p(\theta) = 1$
- What is $P(d_{m+1} = Heads \mid \mathcal{D})$?
 - (a+1)/(a+b+2)
- What is $p(\theta \mid \mathcal{D})$?
 - Beta(a+1, b+1)

BETA DISTRIBUTION

- θ ~ Beta(α,β) if $p(\theta) = \gamma \theta^{\alpha-1} (1-\theta)^{\beta-1}$ where γ is a normalizing constant
- Mean: $\alpha/(\alpha+\beta)$
- Mode: $(\alpha-1)/(\alpha+\beta-2)$
- Note that the mode is closer to the mean when α and β are large
- Read more at
 - https://en.wikipedia.org/wiki/Beta_distribution

BETA DISTRIBUTION

CS 581 - Advanced Artificial Intelligence - Illinois Institute of Technology

BETA DISTRIBUTION

- o What is $P(d_{M+1}=True \mid d_1,...,d_M)$ if the prior is Beta(α,β)?
 - $P(X[M+1]=True \mid D) = (\alpha + \alpha) / (\alpha + b + \alpha + \beta)$
- What is the posterior, $P(\theta \mid D)$, if the prior is Beta (α, β) ?
 - $P(\theta \mid D) = Beta(\alpha + \alpha, b + \beta)$
- \circ α and β work like pseudo-counts for the positive and negative cases respectively
- What values to choose for α and β ?
 - It depends on our belief and the strength of our belief

DIRICHLET PRIORS

 Generalizes the Beta distribution for multinomials

$$\theta \sim Dirichlet(\alpha_1, ..., \alpha_K) \text{ if } P(\theta) \propto \prod_{k=1}^K \theta_k^{\alpha_k - 1}$$

- What is $P(d_{M+1}=v_i|D)$ if the prior is Dirichlet?
 - $P(d_{M+1}=v_i \mid D) = (n_i+\alpha_i) / (\mid D\mid +\alpha)$ where n_i is the number of times the i^{th} case appears in D and $\alpha=\alpha_1+\alpha_2+\ldots+\alpha_K$
- What is the posterior, $P(\theta \mid D)$, if the prior is Dirichlet?
 - $P(\theta \mid D) = Dirichlet(n_1 + \alpha_1, n_2 + \alpha_2, ..., n_K + \alpha_K)$