4 Porównanie dokładności obliczania wielomianu optymalnego w zależności od bazy

Porównania dla bazy ortogonalnej oraz bazd $1, x, x^2, ...$ Dane dla funkcji są identyczne jak powyżej.

4.1 Dla funkcji x listy 7 zadania 8

Stopień wielomianu optymalnego, a różnice w wielkości δ .

Stopień wielomianu optymalnego	Błąd względny między odle- głościami	Bląd bezwzględny względem bazd ortogonalnej
1	6.4666425426268547838e-15	2.3202703019193659142e-14
2	5.95172782585917659048e-16	2.15697453512714472894e-15
3	2.04710922692419305946e-16	1.1984356827452159378e-15
4	2.79033659242658438338e-15	3.0958144686251811424e-14
5	1.98817690961897511337e-17	8.34205522111729474868e-15
6	3.79439519379464424651e-14	6.98951427161064421676e-10
7	4.2628897304417041039e-10	6.03108786328256835312e+17

4.2 Dla funkcji z treści zadania

Stopień wielomianu optymalnego	Błąd względny między odle- głościami	Bląd bezwzględny względem bazd ortogonalnej
1	1.09788175458366138448e-17	1.0043946532488746388e-14
2	2.24519152123430642707e-19	1.49576263819501271238e-14
3	6.83002204604422398114e-19	4.60670739616362159977e-14
4	9.53692096978725386549e-19	1.195567356801952628e-13
5	6.35853736869512373674e-20	1.13393915307046848304e-14
6	4.85905744148349728884e-19	8.67019965614943267926e-14
7	7.37562624218113827034e-19	1.43160425656499147172e-13
8	1.24392645927077572376e-22	2.83282256435087719304e+09

4 Analiza wyników

4.1 Stopień wielomianu optymalnego

Im zadana delta jest mniejsza tym stopień wielomianu jest większy, wynika to z tego iż im mniejszy błąd chcemy otrzymać tym dokładniejsza musi być aproksymacja. Na podstawie przykładu dla funkcji z⁵ można też wywnioskować, iż dla wystarczająco malej delty stopień wielomianu optymalnego będzie równy liczbie punktów minus jeden, wtedy otrzymany wielomian optymalny jest też wielomianem interpolacyjnym dla zadanego zbioru.

4.2 Rozmieszczenie punktów

Istotny wpływ ma też odległość między zadanymi punktami, ponieważ im odległość między nimi jest bliższa tym większe prawdopodobieństwo, że wartość funkcji w tych punktach będzie do siebie zbliżona. Dla zbiorów, które składają się z mniejszych podzbiorów oscylujących wokół jednego punktu jest wyższe prawdopodobieństwo, że błędy dla wielomianów optymalnych zadanego stopnia będą niższe niż dla zbioru punktów równoodległych - własność tą można zaobserwować na przykładzie dla funkcji $x^{zzin(x)}$. Istnieją przypadki dla, których to stwierdzenie nie jest spełnione, dla powyższego przykładu z sin(x), skorzystano z okresowości sinusa, dłatego funkcja miała zbliżone wartości w równoodległych punktach stąd wartość delty znacząco się różniła od punktów różnoodległych na tym samym przedziałe.

Literatura

- [1] D. Kincaid, W. Cheney: Analiza numeryczna, WNT, 2005,
- [2] G. Dahlquist, A. Bjorck: Numerical Methods in Scientific Computing, Vol.I, SIAM, 2008..
- [3] M. Dryja, J. i M. Jankowscy: Przegląd metod i algorytmów numerycznych cz. 2, WNT, 1988.