Prácticas de Aprendizaje Automático

Algunas ideas sobre cómo elaborar un informe académico-científico

Pablo Mesejo y Salvador García

Universidad de Granada

Departamento de Ciencias de la Computación e Inteligencia Artificial

Consideración Previa

- No hay una única manera de elaborar una memoria/informe
 - Ciertas asignaturas o temáticas pueden requerir distintos matices o estructuras particulares
- En AA entregaréis solamente un Notebook (es decir, no hace falta entregar memoria independiente en PDF), pero los principios generales incluidos en esta guía son igualmente válidos y aplicables.

Idea clave

- Un informe o memoria debe cumplir un objetivo fundamental:
 - Explicar
 - qué se ha hecho,
 - cómo se ha hecho lo que se ha hecho,
 - por qué se ha hecho así (motivación),
 - qué resultados se han obtenido, y
 - qué <u>conclusiones</u> podemos obtener a partir de los mismos
- Por tanto, un informe debe ser claro, conciso y bien estructurado.
 - si no hay informe/discusión → es como no entregar nada!

Estructura (prácticas)

- Portada (o, en el caso de un Notebook, cabecera)
 - Incluyendo, con claridad, título y autor
- Índice
 - que permita comprender la estructura general de los contenidos y localizarlos con facilidad
- Una sección/capítulo claramente diferenciado por cada ejercicio solicitado en el enunciado
 - De lo contrario, puede resultar difícil comprender qué ejercicio se está resolviendo en cada momento.

Estructura (prácticas)

La clave es que quede claro qué se ha hecho, cómo, por qué, qué resultados se han obtenido, y qué conclusiones podemos obtener a partir de los mismos

Nota1: Esta guía presenta una serie de indicaciones generales y, en esencia, también sería aplicable a la memoria de un TFG/TFM.

Nota2: Lo importante es que los contenidos se presenten de modo claro y bien organizado → No es necesario seguir siempre al pie de la letra la estructura que se presenta a continuación!

- Portada
 - incluyendo título y autor(es)
- Índice
 - que permita comprender la estructura general de los contenidos y localizarlos con facilidad

1. Introducción

 En donde se describe el problema a resolver (¿qué queremos hacer?), la motivación (¿por qué es relevante hacerlo?), y los objetivos (¿qué objetivos concretos vamos a abordar de cara a resolver el problema?).

2. Fundamentos teóricos

- En donde se presentan los conceptos necesarios para comprender el trabajo.
- No se trata de repetir mecánicamente lo que se indica en teoría, ni lo comentado en prácticas. Sino en demostrar que se comprenden los conceptos fundamentales.

Estado del Arte

 En donde se presenta qué se ha hecho en el campo con anterioridad, y cuáles son los mejores métodos en la actualidad.

4. <mark>Métodos</mark>

- Descripción detallada de los métodos empleados y/o propuestos
- Como una subsección o una sección autónoma podrían incluirse "Detalles técnicos y de Implementación" y/o un apartado de "Planificación".

5. Experimentos

- Se presentan los datos empleados, el protocolo de validación experimental, las métricas empleadas, los experimentos realizados, los resultados obtenidos, y la discusión de los mismos.
- Dependiendo del tipo de trabajo, la descripción y análisis de los datos empleados pueden incluirse p.ej. en la sección anterior (que podría llamarse "Materiales y Métodos"; dentro de la subsección de materiales)

6. Conclusiones

- Sección que presenta, de modo breve y a modo de resumen, las principales conclusiones del trabajo realizado.
- También suele incluir los trabajos futuros. Es decir, cuáles son las líneas más prometedoras para continuar con este trabajo, así como posibles propuestas de mejora.

7. <mark>Bibliografía</mark>

- Contiene todas las referencias manejadas por el estudiante a la hora de realizar el trabajo.
- Nos permite ir del texto a la referencia bibliográfica concreta.

8. Anexos

 En caso de que sean necesarios. Sirven para incluir ciertos detalles que se consideren importantes, pero que no se quieran incluir en el cuerpo del documento para no hacerlo innecesariamente largo.

Estructura (ejemplo de TFG 1)

1.	Introducción	15
	1.1. Descripción del problema	15
	1.1.1. Definición y dificultades del problema	18
	1.2. Motivación	20
	I.3. Contexto	21
	I.4. Objetivos	22
$^{2}.$	Estado del arte	23
	 Localización automática de landmarks cefalométricos en fo- 	
	tografias	23
	 Localización automática de landmarks cefalométricos de in- 	
	terés odontológico en escáneres y rayos X	25
	 Localización automática de landmarks faciales no cefalomé- 	
	tricos en fotografías	27
_		
3.	Fundamentos teóricos y metodología	37
	3.1. Aprendizaje automático y visión por computador	37
	3.1.1. Aprendizaje automático	37
	 Aprendizaje supervisado y no supervisado 	37
	3.1.3. Problemas de regresión y clasificación	38
	3.1.4. Visión por Computador	39
	3.2. Aprendizaje por máxima pendiente	39
	3.2.1. Función de coste o pérdida	40
	3.2.2. Gradiente descendiente	41
	3.3. Deep Learning	42
	 3.3.1. Perceptron Multicapa o Redes Neuronales feed-forwa 	42
	3.3.2. Back-propagation	43
	3.3.3. Optimizadores y AMSGrad	44
	3.4. Redes Neuronales Convolucionales Profundas	45
	3.4.1. Convolución	46
	3.4.2. Pooling	47
	3.4.3. Batch normalization	48

14 ÍNDICE GENE	RAL
 Relación de las capas convolucionales y la profundidad 	
de la red	48
3.4.5. Ajuste fino o fine-tuning	48
3.5. Data augmentation y manipulación de imágenes 2D y modelos	
3D	49
3.5.1. Data augmentation	49
4. Datos y métricas	51
4.1. Conjuntos de datos del problema	51
4.1.1. Descripción	51
4.1.2. Limpieza de errores	53
4.1.3. Ejemplos 3D	55
4.2. Métricas del problema	56
5. Implementación	59
5.1. Diseño del software	59
5.2. Entorno de ejecución	62
6. Experimentos	63
 Separación de conjuntos y validación de los modelos 	63
6.2. Decisiones experimentales	63
6.2.1. Framework de ejecución	64
6.2.2. Elección del modelo base	66
6.2.3. Descripción de HyperFace-Resnet101	67
6.2.4. Optimizador elegido	71
6.2.5. Generación de las proyecciones 3D	72
6.2.6. Utilización del dataset original y el 3D	73
6.2.7. Determinación de hiperparámetros	74
6.2.8. Fine-tuning y preentrenamiento sobre AFLW	76
6.2.9. Online Data-Augmentation	76
6.3. Proceso de entrenamiento	77
6.3.1. Evaluación de los resultados de 5-fold CV	79
6.4. Dificultades encontradas durante la experimentación	79
6.5. Resultados	81
6.5.1. Combinación dataset original y modelos 3D	81
6.5.2. Impacto del optimizador elegido	83
6.5.3. Comparación de los resultados con el conjunto de test	84
6.5.4. Análisis del mejor modelo elegido	86 96
6.5.6. Problema de regresión	
b.s.o. Problema de clasificación	98
Conclusiones y trabajos futuros	99
Bibliografia	103

Estructura (ejemplo de TFG 2)

In	dice de figuras	Ш
Ìπ	dice de cuadros	ν
1.	Introducción	1
	1.1. Descripción del problema	1
	I.2. Motivación	4
	I.3. Objetivos	5
2 .	Fundamentos Teóricos	7
	2.1. Aprendizaje automático y aprendizaje profundo	7
	2.2. Redes Convolucionales Profundas	8
	2.2.1. Convolutional layer	9
	2.2.2. Pooling layer	10
	2.2.3. Fully-connected layer	10
	2.3. Técnicas de aumento de los datos	11
	2.4. Métodos clásicos	11
3.	Estado del Arte	15
	3.1. Clasificación de imágenes con deep learning	18
	3.2. Enfoques de IA para la determinación del sexo a partir de	
	imágenes óseas	18
4.	Planificación e Implementación	21
	4.1. Planificación	21
	4.2. Implementación y entorno de ejecución	22
5.	Datos	23
	5.1. Descripción de los datos	23
	5.2. Preprocesado de los datos	24
6.	Métodos Propuestos	27
	6.1. Deep learning	27

ii Í	NDICE GENERAL
 Técnicas Clásicas de Aprendizaje Automático 	y Visión por
Computador	30
7. Experimentos	33
7.1. Aumento de datos	
7.2. Protocolo de validación experimental	
7.3. Métricas	
7.4. Experimentación con deep learning	
7.5. Experimentación con Técnicas Clásicas de Ap	rendizaje Au-
tomático y Visión por Computador	
7.6. Comparativa Global con Experto Humano y E	stado del Arte 39
8. Conclusiones	41

Estructura (ejemplo de TFG 3)

1.	Introducción	
	1.1. Definición del Problema	
	1.2. Motivación	1
	1.3. Objetivos	1
	1.4. Planificación del proyecto	1
2.	Fundamentos Teóricos	1
	2.1. Image Quality Assessment (IQA)	1
	2.2. Aprendizaje Automático y Profundo	2
	2.2.1. Aprendizaje Automático	2
	2.2.2. Aprendizaje Profundo	2
	2.2.3. Ensemble de modelos de Deep Learning	2
	2.3. Imágenes médicas y distorsiones	
3.	Estado del Arte	3
	3.1. Estado del arte de IQA	3
	3.2. Estado del arte de PCQA	3
	3.3. Estado del arte de IQA en imágenes médicas $\ \ldots \ \ldots \ \ldots$	3
4.	Materiales y Métodos	3'
	4.1. Materiales	3
	4.1.1. Conjunto de datos genéricos	3
	4.1.2. Conjunto de datos médicos	4
	4.2. Métodos	4
	4.2.1. Modelo NR 3D-QA	4
	4.2.2. Modelo VQA-PC	4
	4.3. Evaluación	4
	4.3.1. Etiquetado	4
	4.3.2. Métricas de similitud	4
5.	Implementación y Experimentos	5
	5.1. Diseño Experimental	5
	5.1.1. Protocolo de validación experimental	5
	5.2. Resultados	

2		ÍNDICE GENERA	L
		5.2.1. Experimentos NR3DQA	53
		5.2.2. Experimentos VQA-PC	55
		5.2.3. Experimentos finales	57
	5.3.	Discusión de resultados	60
6.	Cor	clusiones y Trabajos Futuros	63
7.	Bib	ografía 6	67

Estructura (ejemplo de TFG 4)

1.	Intr	oducción	1
	1.1.	Descripción del problema	1
	1.2.	Motivación	4
	1.3.	Objetivos	5
	1.4.	Estructura de la memoria	5
			_
2.		damentos teóricos	7
	2.1.	Machine learning y deep learning	7
	2.2.	Redes neuronales	8
		2.2.1. Capa totalmente conectada	10
		2.2.2. Capa Convolucional	11
		2.2.3. Capa de Pooling	12
		2.2.4. Dropout	13
	2.3.	Neural Architecture Search	13
		2.3.1. Espacio de búsqueda	14
		2.3.2. Estrategia de búsqueda	17
		2.3.3. Estrategia de estimación del rendimiento	22
		2.3.3. Estrategia de estimación del rendimiento	22
		2.3.3. Estrategia de estimación del rendimiento	22
3.	Esta		22 25
3.	Est:	ado del arte	
3.	3.1.	ado del arte Resumen estado del arte	25
3.	3.1.	ado del arte Resumen estado del arte Evolución de NAS	25 25
3.	3.1.	ado del arte Resumen estado del arte Evolución de NAS 3.2.1. Aproximaciones evolutivas	25 25 25
3.	3.1.	ado del arte Resumen estado del arte Evolución de NAS 3.2.1. Aproximaciones evolutivas 3.2.2. Aprendizaje por refuerzo	25 25 25 25 25 28
3.	3.1.	ado del arte Resumen estado del arte Evolución de NAS 3.2.1. Aproximaciones evolutivas 3.2.2. Aprendizaje por refuerzo. 3.2.3. Enfoque jerárquico	25 25 25 25 28 29
3.	3.1.	ado del arte Resumen estado del arte Evolución de NAS 3.2.1. Aproximaciones evolutivas 3.2.2. Aprendizaje por refuerzo 3.2.3. Enfoque jerárquico 3.2.4. Optimización bayesiana	25 25 25 25 28 29 30
3.	3.1.	ado del arte Resumen estado del arte Evolución de NAS 3.2.1. Aproximaciones evolutivas 3.2.2. Aprendizaje por refuerzo 3.2.3. Enfoque jerárquico 3.2.4. Optimización bayesiana	25 25 25 25 28 29
3.	3.1. 3.2.	ado del arte Resumen estado del arte Evolución de NAS 3.2.1. Aproximaciones evolutivas 3.2.2. Aprendizaje por refuerzo 3.2.3. Enfoque jerárquico 3.2.4. Optimización bayesiana 3.2.5. NAS en la actualidad	25 25 25 25 28 29 30
	3.1. 3.2.	ado del arte Resumen estado del arte Evolución de NAS 3.2.1. Aproximaciones evolutivas 3.2.2. Aprendizaje por refuerzo 3.2.3. Enfoque jerárquico 3.2.4. Optimización bayesiana 3.2.5. NAS en la actualidad teriales y métodos	25 25 25 25 28 29 30
	3.1. 3.2. Mat	Ado del arte Resumen estado del arte Evolución de NAS 3.2.1. Aproximaciones evolutivas 3.2.2. Aprendizaje por refuerzo 3.2.3. Enfoque jerárquico 3.2.4. Optimización bayesiana 3.2.5. NAS en la actualidad teriales y métodos Datos del problema	25 25 25 25 28 29 30 30
	Mat 4.1. 4.2.	Ado del arte Resumen estado del arte Evolución de NAS 3.2.1. Aproximaciones evolutivas 3.2.2. Aprendizaje por refuerzo. 3.2.3. Enfoque jerárquico 3.2.4. Optimización bayesiana 3.2.5. NAS en la actualidad teriales y métodos Datos del problema Métricas	25 25 25 25 28 29 30 30 31 31 35
	Mai 4.1. 4.2. 4.3.	ado del arte Resumen estado del arte Evolución de NAS 3.2.1. Aproximaciones evolutivas 3.2.2. Aprendizaje por refuerzo 3.2.3. Enfoque jerárquico 3.2.4. Optimización bayesiana 3.2.5. NAS en la actualidad teriales y métodos Datos del problema Métricas Función de pérdida	25 25 25 28 29 30 30 31 31 35 38
	Mat 4.1. 4.2. 4.3. 4.4.	ado del arte Resumen estado del arte Evolución de NAS 3.2.1. Aproximaciones evolutivas 3.2.2. Aprendizaje por refuerzo 3.2.3. Enfoque jerárquico 3.2.4. Optimización bayesiana 3.2.5. NAS en la actualidad teriales y métodos Datos del problema Métricas Función de pérdida Red diseñada por experto	25 25 25 25 28 29 30 30 31 31 35

ii .	ÍNE	OICE	GEN	ÆR.	ΑI
4.6. Optimización bayesiana: Auto-Keras 4.7. Algoritmo Evolutivo: Auto CNN					
5. Planificación e Implementación					47
5.1. Planificación					47
5.2. Implementación					48
5.3. Lenguaje y entorno					5(
6. Experimentación					51
6.1. Red diseñada por experto					58
6.2. ENAS					53
6.3. Auto-Keras					56
6.4. Auto CNN					58
6.5. Discusión					59
7. Conclusiones y Trabajos Futuros					63
Dirli					OH

Estructura (ejemplo de TFG 5)

1.	Intr	oducción	21
	1.1.	Descripción del problema	21
	1.2.	Motivación	24
		Objetivos	2ℓ
	1.4.	Planificación del proyecto	27
2 .	Fun	damentos teóricos	31
	2.1.	Aprendizaje automático y aprendizaje profundo	31
		2.1.1. Fundamentos	31
		2.1.2. Redes neuronales convolucionales	32
		2.1.3. Aprendizaje multivista	3ℓ
	2.2.	Explicabilidad en redes neuronales convolucionales	40
		2.2.1. Explicaciones basadas en eliminación	40
		2.2.2. Explicaciones basadas en gradientes	42
		2.2.3. Explicaciones basadas en propagación	43
	2.3.	Tipos de representación de datos 3D	45
		2.3.1. Datos en bruto	45
		2.3.2. Sólidos	47
		2.3.3. Superficies	48
		2.3.4. Estructuras de alto nivel	48
		2.3.5. Múltiples vistas	49
3.	Esta	ado del arte	51
	3.1.	Representaciones de datos 3D	51
		3.1.1. Representaciones basadas en proyecciones 3D	51
	3.2.	Explicabilidad en representaciones de datos 3D	53
		3.2.1. Vóxeles	53
		3.2.2. Mallas 3D	54
		3.2.3. Nubes de Puntos	54
		3.2.4. Múltiples vistas	54
	3.3.	Estimación de la edad	55
		 3.3.1. Estimación de la edad a partir de la sínfisis púbica 	5€

14	INDICE GENERAL
T. W. L.	01
4. Métodos propuestos	61
4.1. Arquitectura CfS-CNN	
4.1.1. View Saliency Layer	
4.1.2. Saliency Pooling Layer	
4.2. Proceso de explicabilidad	
 Adaptación de las arquitecturas de red 	
4.4. Adaptación del proceso de explicabilidad.	
4.4.1. GradfR	
4.4.2. Integrated Gradients	
4.4.3. SmoothGrad	
 Detalles técnicos de la implementación 	74
5. Experimentación	77
5.1. Conjunto de datos	
5.2. Proceso de entrenamiento y validación de .	
puestos	
5.2.1. Métricas de calidad	
5.2.2. Hiperparámetros	
5.2.3. Evolución del entrenamiento y valid	
delos propuestos	
5.3. Resultados	
5.3.1. Resultados sin dividir el conjunto po	r rangos etarios . 82
 5.3.2. Resultados divididos en niños/adulto 	
5.3.3. Resultados divididos en rangos de To	odd 84
5.3.4. Análisis de resultados	86
5.4. Proceso de explicabilidad	89
5.4.1. Mapas de relevancia 2D	89
5.4.2. Análisis de resultados	96
5.4.3. Comparación entre GradfR y GradC	AM 97
5.4.4. Mapas de relevancia 3D	98
6. Conclusiones	105
6.1. Trabajos futuros	107
Bibliografía	116

Estructura (ejemplo de TFG 6)

1.	Intr	oducción	- 1
	1.1.	Descripción del Problema	2
	1.2.	Motivación	7
	1.3.	Objetivos	9
	1.4.	Estructura del Documento	9
$^{2}.$		nificación	11
		Metodología de Trabajo	11
		Flujo de Trabajo	11
		Planificación Temporal	13
	2.4.	Planificación Económica	15
3.		damentos Teóricos	17
	3.1.	Razonamiento con Restricciones	17
		3.1.1. Problema de Satisfacción de Restricciones	17
		3.1.2. Problema de Optimización de Restricciones	18
		3.1.3. Resolución de Problemas con Restricciones	18
		Planificación Automática	19
	3.3.	Búsqueda Heurística	22
4.		todos y Tecnologías	25
	4.1.	Entorno para el Desarrollo de Videojuegos y Agentes Inteli-	
		gentes	28
		4.1.1. GVGAI	2ϵ
		Modelado y Resolución de Problemas de Razonamiento con	
		Restricciones	26
		4.2.1. MiniZinc	27
	4.3.	Modelado y Resolución de Problemas de Planificación Au-	
		tomática	30
		4.3.1. Planning Domain Definition Language	30
		4.3.2. Planificadores	34
	4.4.	Algoritmos de Búsqueda Heurística	34
		4.4.1. Búsqueda Offline	34

ÍNDICE GENERAL	ii
	37 44
5. Diseño e implementación	19
5.1. Diseño	49
	49
5.1.2. Agente Inteligente	51
5.2. Implementación	55
5.2.1. Videojuego en VGDL	56
5.2.2. Agente Inteligente	62
6. Experimentación	71
	75
6.1.1. Módulo MiniZinc	75
6.1.2. Módulo PDDL	76
6.1.3. Módulo Heurístico	77
6.2. Estudio Cuantitativo	80
6.2.1. Módulos MiniZinc y PDDL	81
6.2.2. Módulo Heurístico	83
6.3. Estudio Comparativo de los algoritmos de Búsqueda Heurística	89
6.3.1. Comparación entre los Algoritmos en Tiempo Real	89
6.3.2. Análisis Comparativo General	90
6.4. Comparación con otras técnicas	92
6.4.1. Monte Carlo Tree Search	93
6.4.2. Aprendizaje por Refuerzo	95
7. Conclusiones y Trabajos Futuros	98
Bibliografia 10)4

Cuestiones a evitar

- Introducir resultados (tablas, figuras) y no comentarlos.
 - Resultados sin discutir y analizar → es como no presentar resultados.
- Introducir texto de modo innecesario.
 - Evitar "andarse por las ramas" y meter párrafos "por rellenar".
 - Si se hace una pregunta en el enunciado, intentar responderla directamente y con claridad.
- Afirmaciones sin justificación empírica o teórica.
 - Cuando afirmamos algo es porque o
 - a) los resultados de nuestros experimentos (evidencia empírica) o
 - b) la **literatura científica** existente
 - nos permiten afirmarlo.

Cuestiones a evitar

Sobre introducir texto de modo innecesario.

interesante discutir, ligeramente puesto que no es parte del ámbito de estudio de este proyecto, algunas de las ideas tomadas para la obtención de los materiales. Para la muestra AM la muestra suele estar limitada al uso de fotografías, la razón detrás de esto es por la facilidad de su obtención. Es muy común poder disponer de una variedad de fotografías relativas a una persona desaparecida, pero en cambio es muy improbable contar con un modelo 3D de la cabeza para su uso.

VS

La muestra AM suele estar limitada al uso de fotografías. Es común disponer de una gran variedad de fotografías relativas a una persona desaparecida. En cambio, es improbable contar con un modelo 3D de su cabeza.

- Fondo y forma son ambos importantes
 - Emplead LaTeX:

https://www.overleaf.com/learn/latex/Tutorialshttps://latex-tutorial.com/tutorials/

- Numerad tablas y figuras, e incluid pies de tabla/figura explicativas. Referenciad también en el texto las tablas y figuras.
- Las figuras discutidas en la memoria deben ser generadas y mostradas por el código.

- Evitad memorias/informes esquemáticos.
 - Se deben discutir y analizar los resultados obtenidos (tanto a nivel cualitativo como cuantitativo).
 - No vale decir "Podemos ver el resultado durante la ejecución del programa"
 - MUY IMPORTANTE: incluir información que ponga en valor el trabajo realizado:
 - ventajas e inconvenientes de los métodos empleados,
 - problemas encontrados a la hora de realizar la práctica,
 - experimentos fallidos realizados,
 - motivos que nos llevan a usar unos valores para los parámetros en lugar de otros, etc.

- Ejemplo: si se plantease un ejercicio sobre el Perceptrón (PLA)
 - describid brevemente qué es PLA, cómo funciona, y qué pros y contras tiene.
 - si pedimos una tabla, poned esa tabla literalmente. Si pedimos porcentajes de error en clasificación, hay que ponerlos, etc.
 - introducid figuras con ajustes para visualizar resultados y analizarlos, u otros tipos de visualización que ayuden a entender qué se está haciendo (curvas de entrenamiento, por ejemplo).
 - acordaos de emplear las métricas de rendimiento pertinentes (y estas dependen de la tarea a resolver; p.ej. no son las mismas para clasificación y regresión), así como utilizad la terminología con criterio (métrica ≠ función de pérdida).

- Las figuras y tablas deben verse correctamente
 - Una figura o tabla que no se ve no cumple su función. Es como si no estuviera...
 - Limitad el número de decimales en las tablas (2 o 3 suelen ser suficiente)
 aumenta la legibilidad de los resultados
 - Se recomienda encarecidamente explicar conceptos, resultados y métodos de modo visual → Una imagen vale más que mil palabras!
- Integrad las fórmulas y ecuaciones en el propio documento (y numerarlas)
 - No pegarlas/incrustarlas como una imagen o puro texto en medio del párrafo!

Figura 1.5: En el caso de $\sigma = 1$, el tamaño de la máscara es 7, y al ser tan pocos puntos no se aprecia del todo bien la forma de la laplaciana. En el caso de la derecha, con una máscara de tamaño 19, va se aprecia bien la forma de sombrero mejicano invertido.

Esta imagen tiene pie de imagen (caption), está numerada y es muy clara

Esta imagen no tiene pie de imagen (caption), no está numerada y la resolución de la misma es mejorable

Nota: si las figuras no son creación vuestra, debéis indicar la fuente original en la caption.

 Guiad/ayudad al lector lo máximo posible, facilitándole el trabajo.

Las preguntas que nos debemos hacer son:

Si nosotros no hubiésemos escrito esta memoria, al leerla, ¿comprenderíamos el trabajo desarrollado? ¿Seríamos capaces de valorar el trabajo realizado y los conocimientos de quien lo ha hecho?

Prácticas de Aprendizaje Automático

Algunas ideas sobre cómo elaborar un informe académico-científico

Pablo Mesejo y Salvador García

Universidad de Granada

Departamento de Ciencias de la Computación e Inteligencia Artificial

