TDT4113

Oppgave 3: Krypto

Oversikt over oppgaven

- Implementere et sett av kryperingsalgoritmer som kontrolleres av en sender.
- Hver av disse tar en klartekst og en nøkkel, og "oversetter" teksten til en kryptert tekst (oversettelsen definert av nøkkelen)
- Mottaker har en algoritme og tilhørende nøkkel, som brukes for å "oversette" tilbake til klartekst.
- Dere skal også lage en hacker som brute-force'er for å knekke krypteringen.

Substitution - ciphers

- Den enkleste type ciphers er "substitusjons-cipher". Her oversettes hvert symbol enkeltvis, for eksempel "A" blir "C", "B" blir "F" etc.
- For å kryptere med slike algoritmer trenger vi en tabell som definerer byttene:

```
    Klar-tekst:
    A
    B
    C
    D
    E
    F
    G
    H
    I
    J
    K
    L
    M
    N
    O
    P
    Q
    R
    S
    T
    U
    V
    W
    X
    Y
    Z

    Kodet tekst:
    C
    F
    I
    L
    O
    R
    U
    X
    A
    D
    G
    J
    M
    P
    S
    V
    Y
    B
    E
    H
    K
    N
    Q
    T
    W
    Z
```

- I stedet for å definere en tabell bruker vi gjerne en matematisk funksjon definert over heltallene 0, 1, 2, ... N-1, der N er antallet symboler i alfabetet. For eksempel er N = 26 om vi begrenser oss til symbolene "A", "B", ..., "Z".
 - Erstatt symbol med verdi i med symbolet med verdi foo(i) for en gitt funksjon foo(). Symbolene verdi-sette null-indeksert, så "A"=0, "B"=1, ...

Caesar-cipher

• For dette cipher'et er funksjonen for enkoding at bokstaven med verdi *i* blir oversatt til en verdi *i* + **m** mod *N*, der **m** er nøkkelen til krypteringen (merk at "mod *N*" er nødvendig for å sikre at alt er definert...).

	Caesar-cipher med nøkkel 2																									
Klar-tekst:	A	В	С	D	E	F	G	Н	Ι	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	\mathbf{Z}
Tall-verdi:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Kodet verdi:	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	0	1
Kodet tekst:	C	D	E	F	G	Η	I	J	K	L	M	N	O	P	Q	\mathbf{R}	\mathbf{S}	\mathbf{T}	U	V	W	X	Y	${f Z}$	A	В

• **Spørsmål:** Kan dere dekode meldingen "<u>UWEEGUU</u>" om dere vet at den er kodet med Caesar-cipher'et og nøkkel m = 2?

Dekryptering av Caesar-cipheret

- Teksten "<u>UWEEGUU</u>" kan rimelig enkelt dekrypteres "<u>SUCCESS</u>" til når vi vet at den er kryptert med m = 2. Gå "baklengs" i tabellen for denne nøkkelen.
- En mer effektiv måte å gjøre det på er å kryptere teksten "<u>UWEEGUU</u>" med nøkkel n = 24. Nå blir den dobbelt-krypterte teksten "<u>SUCCESS</u>". Dette virker for Caesar så lenge n + m mod N = 0; her: 24 + 2 mod 26 = 26 mod 26 = 0.

	Caesar cipher med nøkkel 24																									
Klar-tekst:	A	В	С	D	E	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	\mathbf{Z}
Tall-verdi:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Kodet verdi:	24	25	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Kodet tekst:	Y	${f Z}$	A	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}	\mathbf{G}	Η	I	\mathbf{J}	\mathbf{K}	${f L}$	\mathbf{M}	N	O	P	\mathbf{Q}	\mathbf{R}	\mathbf{S}	${f T}$	\mathbf{U}	\mathbf{V}	\mathbf{W}	X

Dekryptering er (implementasjonsteknisk) trivielt så lenge vi matcher nøklene
n og m.

Multiplikasjonscipher

- Caesar: Bytt bokstav med "verdi" i til en ny bokstav med verdi i + m mod N.
- Multiplikasjonscipheret bruker multiplikasjon, ikke addisjon: $i \longrightarrow i \bullet m \mod N$.

Multiplikasjons-cipher med nøkkel 3																										
Klar-tekst:	A	В	$\overline{\mathbf{C}}$	D	E	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	\mathbf{Z}
Tall-verdi:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Kodet verdi:	0	3	6	9	12	15	18	21	24	1	4	7	10	13	16	19	22	25	2	5	8	11	14	17	20	23
Kodet tekst:	A	D	\mathbf{G}	J	\mathbf{M}	P	\mathbf{S}	\mathbf{V}	Y	В	${f E}$	\mathbf{H}	\mathbf{K}	N	\mathbf{Q}	${f T}$	\mathbf{W}	${f Z}$	\mathbf{C}	${f F}$	Ι	${f L}$	O	\mathbf{R}	U	X
								N	Iulti	plika	asjon	s-cip	her n	ned r	ıøkke	el 2										
Klar-tekst:	A	В	C	D	E	F	G	M H	Iulti I	plika J	asjon K	s-cip L	her n M	ned r N	økke O	el 2 P	Q	R	S	T	U	V	W	X	Y	Z
Klar-tekst: Tall-verdi:	A 0	B 1	C 2	D 3	E 4	F 5	G 6		Iulti I 8	plika J 9	sjon K 10	s-cip L 11	her n M 12	ned r N 13	_		Q 16	R 17	S 18	T 19	U 20	V 21	W 22	X 23	Y 24	Z 25
		B 1	C 2	D 3	E 4 8	F 5	G 6		Ι	plika J 9	K	s-cip L 11 22	M	N	0	P	•	R 17 8		T 19	U 20 14	V 21 16		X 23 20	Y 24 22	

Dermed: Ikke alle nøkler *m* kan benyttes, må finnes en *n* slik at *m* • *n* mod *N* =
1. Funksjonen modular_inverse i hjelpe-koden kan være nyttig her.

Affine

- Dette er en kombo av multiplikasjon og addisjon: $i \longrightarrow i \bullet m_1 + m_2$
 - Først multiplikasjon
 - Deretter Caesar
- Pass på å gjøre operasjonene i motsatt rekkefølge ved de-krypteringen...
 - Først Caesar med nøkkel n₂ som er valgt så den matcher m₂.
 - ... deretter multiplikasjon med nøkkel n_1 som matcher m_1 .
- Her er altså nøkkelen m en tuple bestående av (m_1, m_2) , og tilsvarende for n.

"Unbreakable"

- Å bryte et cipher som alltid bytter en "A" med et fast symbol, "B" mer et annet fast symbol, etc., er ganske enkelt vha frekvenstabeller
- På 1700-tallet fant man derfor på et cipher som ikke har en fast substitusjons-tabell; denne ble ansett å være ubrytelig
- Nøkkel er et ord
- Kryptering av "HEMMELIGHET" med kodeord "PIZZA":

"Ub	"Ubrytelig" cipher med nøkkelord PIZZA														
Klar-tekst:	H	E	M	M	\mathbf{E}	L	I	G	H	E	\mathbf{T}				
Tall-verdi:	7	4	12	12	4	11	8	6	7	4	19				
Nøkkelord:	P	I	Z	\mathbf{Z}	A	P	I	\mathbf{Z}	Z	A	P				
Nøkkel-verdi:	15	8	25	2 5	0	15	8	25	25	0	15				
Kodet verdi:	22	12	11	11	4	0	16	5	6	4	8				
Kodet tekst:	W	M	\mathbf{L}	L	\mathbf{E}	A	\mathbf{Q}	\mathbf{F}	G	\mathbf{E}	I				

RSA

- Ulempen med cipherne så langt er:
 - ... at de er enkle å knekke
 - ... og at sender og mottaker må være enige om matchende nøkler
- RSA unngår dette. Mottaker oppgir krypterings-nøkkel han ønsker brukt; det å generere dekrypterings-nøkkel fra denne er komputasjonelt vanskelig.

RSA: Nøkler og basis-algoritme

- Nøklene defineres slik:
 - Generer to (tilfeldige) primtall, **p** og **q**. Se hjelpe-koden, funksjon **generate_random_prime**.
 - Definer $\mathbf{n} = p \bullet q$, $\mathbf{\phi} = (p-1) \bullet (q-1)$ og et tilfeldig tall \mathbf{e} , $2 < e < \phi$.
 - Til slutt definerer vi **d** slik at $d \cdot e \mod \phi = 1$, se i **modular_inverse** i hjelpe-koden.
 - Nå er (n, e) den offentlige nøkkelen for å kryptere, (n, d) den hemmelige nøkkelen mottaker bruker for å de-kryptere.
- Vi håndterer en melding bestående av ett (unsigned) heltall t slik:
 - Kryptering: $c = t^e \mod n$; i Python skriver vi c = pow(t, e, n).
 - Dekryptering: $t' = c^d \mod n$; her vil det så holde at t' = t.

RSA - Fra symboler til hel-tall

- (Vår versjon av) RSA-algoritmen tar **positive heltall** og krypterer disse.
- Input er en tekst-streng. —> Vi trenger en måte å "oversette" fra tekst til heltall
- · Algoritme:
 - 1. Del tekst-strengen opp i blokker
 - 2. For hver blokk:
 - 1. For hvert symbol i en blokk: Finn ASCII verdi i binærformat
 - 2. Slå sammen alle "binær-strengene" og finn desimaltall-verdien
- En tekst blir dermed "oversatt" til en liste heltall
- Se funksjonen **blocks_from_text** i hjelpe-koden for denne funksjonaliteten.
- Det er en tilsvarende text_from_blocks som kan brukes ved de-kryptering.

	E	Blokk	1	E	Blokk	2
Tekst:	Р	Υ	Т	Н	0	N
ASCII:	80	89	84	72	79	78
Binær:	01010000	01011001	01010100	01001000	0100111	101001110
Tall-verdi:	5	52657	48	4	73889)4

Eksempel:

- Input-tekst "Python", blokk-størrelse 3
- For Blokk 1:
 - "PYT" gir ASCII-verdiene 80, 89, 84
 - I binær-enkoding, og satt sammen, får vi 01010000101100101010100
 - Dette er 5265748 i desimal.
- For Blokk 2:
 - Tilsvarende skritt gir tall-representasjonen 4738894 for blokken "HON".
- Totalt vil "PYTHON" dermed bli listen [5265748, 4738894].

Hacker

- Denne karen får fatt på kryptert melding, og forsøker å brute-force de-krypteringen når vi antar at krypterings-algoritmen er kjent.
- Han vurderer en de-krypteringsnøkkel ved å se på ordene i sin "plain-text", og sammenligne med ordene i en ordliste (se filen english_words.txt som ligger på its)
- Hvis han får en full match er han ferdig, hvis ikke fortsetter han og viser til slutt beste resultat.
- Hackeren skal kunne knekke ALLE cipher'ene bortsett fra RSA.

• Eksempel:

- Har fanget cipher-meldingen "<u>UWEEGUU</u>" kodet med Caesar.
- Prøver med dekrypterings-nøkler 1, 2, 3, ... 25:
 - Nøkkel 1 gir "VXFFHVV", som ikke finnes i ordlisten og vi fortsetter ...
 - Nøkkel 2 gir "WYGGIWW", som ikke finnes i ordlisten og vi fortsetter ...
 - ...
 - Nøkkel 24 gir "SUCCESS" som finnes i ordlisten. Ettersom klartekst bare er ett ord er vi ferdige!

Ting å tenke på

• Cipher:

- Alle må kunne generere nøkkel-par, for eksempel n og m slik at $n + m \mod N = 0$ for Caesar-cipher
- Ethvert cipher må kunne gjøre "sin" operasjon med en gitt nøkkel. Merk at det er samme operasjon (men forskjellige nøkler) for kryptering og de-kryptering.
- Ethvert cipher må kunne fortelle "hacker'en" settet av mulige nøkler. For "Unbreakable" er dette alle ordene i **english_words.txt**, mens det for Caesar er alle heltall 1, 2, ..., N-1 etc.
- Alle cipher'ene har samme type funksjonalitet. —> Lag dem som sub-klasser av en generisk klasse **Cipher**, slik at et annet objekt som interagerer med et cipher ikke trenger vite *hvilket* det er. Denne abstraksjonen gjør programmet ditt "renere"...

Flere ting å tenke på...

- "Personer":
 - Det er tre aktører involvert: Sender, Mottaker, og Hacker.
 - Alle tre jobber mot et cipher.
 - Alle tre har en tekst de vil "oversette" (fra klartekst til ciphertekst eller motsatt).
 - Alle tre har en nøkkel, evt et sett av mulige nøkler som de vil bruke når de jobber mot cipheret
 - Siden det er delt funksjonalitet mellom personene uten at oppførselen deres er identisk er det igjen nyttig å tenke sub-klassing!

Tilbakemelding via referanse-grp

Vi tar veldig gjerne tilbakemeldinger. Bruk 5 min på dette sammen med referansegruppa nå, så får vi viderebrakt info fra dem.

Ett nytt oppslag er lagt ut på TDT4113 DATATEKN PROGR PROSJ HØST 2016:

Dette er et rimelig nytt kurs, så vi forelesere er veldig interessert i tilbakemeldinger fra dere, være seg kommentarer, ris & ros, tips, eller ideer til morsomme oppgaver. Hvis dere vil kontakte oss direkte er e-post adressen tdt4113@idi.ntnu.no. Hvis dere heller ønsker å gjøre det anonymt, så send beskjed via referanse-gruppas medlemmer (se eget innlegg med e-post for dem)

.... TDT4113-foreleserne

