Logaritmická funkcia

Logaritmickou funkciou so základom a sa nazýva funkcia inverzná k exponenciálnej funkcii $f: y = a^x$, kde $a \in (0; \infty) - \{1\}$.

- ak teda exponenciálna funkcia $f: y = a^x$ obsahuje usporiadané dvojice [x; y], funkcia, ktorá je k nej inverzná, teda $f^{-1}: x = a^y$, má predpis $y = \log_a x$ a obsahuje usporiadané dvojice [x; y]
- grafom logaritmickej funkcie je logaritmická krivka (je súmerná s exponenciálnou krivkou súmerná podľa osi y=x)
- logaritmické krivky podľa základu rozdeľujeme na:

$$a \in (0; 1)$$

$$D(f) = (0; \infty)$$

$$H(f) = R$$

klesajúca, prostá, neohraničená, bez extrémov, ani párna ani nepárna

$$a \in (1; \infty)$$
 $D(f) = (0; \infty)$
 $H(f) = R$
rastúca, prostá,
neohraničená, bez extrémov,
ani párna ani nepárna

- **logaritmus čísla** x **pri základe** a je také číslo y, pre ktoré platí $a^y = x$, teda hodnota logaritmu je vlastne exponent, ktorým musíme umocniť základ, aby sme dostali argument logaritmu

Pr. Urči hodnotu log₃ 81

$$\log_3 81 = y$$

$$3^y = 81$$

$$3^y = 3^4$$

$$y = 4$$

$$\log_3 81 = 4$$

logaritmus môže mať teda za základ ľubovoľné kladné číslo okrem jednotky; špeciálne označenie majú *dekadický logaritmus* (= so základom 10), označujeme ho log x (teda desiatku tam nepíšeme), a *prirodzený logaritmus* (= so základom e = Eulerovo číslo***), označujeme ho ln x

Vlastnosti logaritmov

Pre všetky kladné reálne čísla a rôzne od jednotky a pre všetky kladné reálne čísla r, s platí:

A.
$$\log_a a = 1$$

B.
$$\log_a 1 = 0$$

C.
$$r = a^{\log_a r}$$

D.
$$\log_a(r.s) = \log_a r + \log_a s$$

E.
$$\log_a \left(\frac{r}{s}\right) = \log_a r - \log_a s$$

F.
$$\log_a r^s = s \cdot \log_a r$$

Odôvodnenie:

- tvrdenia A.; B.; C. priamo vyplývajú z definície logaritmu
- tvrdenie D.
 - z definície logaritmu vyplýva:

$$r = a^{\log_a r}$$

$$s = a^{\log_a s}$$

$$r.s = a^{\log_a(r.s)}$$

• aplikovaním a) a b) dostaneme:

$$r.s = a^{\log_a r}.a^{\log_a s}$$

• a z vlastností mocnín môžeme povedať:

$$a^{\log_a r}$$
, $a^{\log_a s} = a^{\log_a r + \log_a s}$

- teda $r.s = a^{\log_a r + \log_a s}$
- spojením predchádzajúceho výsledku a c) dostaneme:

$$a^{\log_a(r.s)} = a^{\log_a r + \log_a s}$$
 teda $\log_a(r.s) = \log_a r + \log_a s$

- tvrdenie E. dokazujeme obdobne
- tvrdenie F. vyplýva priamo z tvrdenia D.

$$\log_a r^s = \log_a \left(\underbrace{r.r.r....r}_{s} \right) = \underbrace{\log_a r + \log_a r + \dots + \log_a r}_{s} = s.\log_a r$$

Logaritmické rovnice a ich riešenie

Logaritmické rovnice sú také, ktoré obsahujú neznámu v argumente logaritmickej funkcie.

Riešenie logaritmických rovníc:

1) základné rovnice – v tvare $\log_a x = y$ riešime priamo na základe definície logaritmu, teda $a^y = x$

Pr. Rieš rovnicu:

$$\log_9 x = 0.5$$
 \rightarrow $x = 9^{0.5}$ \rightarrow $x = 3$

2) logaritmické rovnice, ktoré na základe vlastností logaritmov (A. – F.) upravíme na tvar $\log_a v_1(x) = \log_a v_2(x)$ (= rovnica, ktorej obe strany tvoria logaritmy s rovnakým základom, ktoré v argumentoch obsahujú výrazy s premennou x)

Pr. Rieš rovnicu:

$$\log(x-1) + \log(x+1) = 3\log 2 + \log(x-2)$$
$$\log[(x-1)(x+1)] = \log 2^3 + \log(x-2)$$
$$\log(x^2-1) = \log[8(x-2)]$$
$$x^2 - 1 = 8x - 16$$
$$x^2 - 8x + 15 = 0$$

• kvadratickú rovnicu riešime pomocou diskriminantu, v tomto prípade dostaneme korene $x = \{3; 5\}$, ktoré sú obidva riešením rovnice.

*Keďže odlogaritmovanie nie je ekvivalentná úprava je treba vykonať skúšku správnosti a na základe toho, že logaritmus je definovaný len na množine kladných čísel, je užitočné si hneď na začiatku definovať podmienky pre argumenty jednotlivých logaritmov, ktoré sa v rovnici nachádzajú.

3) logaritmické rovnice riešené substitúciou (najčastejšie prejdú na kvadratickú rovnicu) *Pr.* Rieš rovnicu:

$$\log x + \frac{1}{\log x} = 2 / \log x$$

$$(\log x)^2 + 1 = 2\log x$$

$$(\log x)^2 - 2\log x + 1 = 0 \quad subst. \quad \log x = y$$

$$y^2 - 2y + 1 = 0$$

- pomocou diskriminantu (alebo aj len od oka, lebo toto je mocnina dvojčlena) vychádza jeden koreň y = 1
- treba vrátiť substitúciu a dopočítať

$$\log x = 1 \rightarrow x = 10$$

*V tomto príklade treba dať pozor nielen na argument logaritmu, ale aj na neznámu v menovateli.

4) logaritmicko-exponenciálne rovnice riešené logaritmovaním a substitúciou (podľa potreby:-))

Pr. Rieš rovnicu:

$$x^{\log_2 x + 2} = 8$$
 (logaritmujeme)
 $\log_2 x^{\log_2 x + 2} = \log_2 8$ (log₂ 8 = 3)
(log₂ x + 2) log₂ x = 3
(log₂ x)² + 2 log₂ x - 3 = 0

• substituujeme a pokračujeme v počítaní ako v prípade 3)

*Keď logaritmujeme, volíme "vhodný" logaritmus podľa zadania rovnice s ktorou pracujeme.

***Eulerovo číslo $e \doteq 2,718$ je iracionálne číslo, môže byť zadefinované viacerými spôsobmi, najčastejšie

• ako súčet nekonečného radu:

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}$$

• ako limita postupnosti:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Okrem toho, že je používané ako základ prirodzeného logaritmu, má mnoho "dobrých vlastností" využívaných v iných častiach matematiky (napr. diferenciálny a integrálny počet). V niektorej literatúre sa môžeme stretnúť aj s jeho pomenovaním "Napierova konštanta" – John Napier sa považuje za objaviteľa logaritmu)