Continuity of Functions

Preregs RA-10, FD-02

In RA-10 we quantified continuity of functions via sequences, the idea being that as x_n get closer to some x_0 , $f(x_n)$ should get closer to $f(x_0)$ for f to be continuous.

Here, to define continuity, we impose what appears to be a stronger condition. We start with the value $f(x_0)$ and require that given any $\epsilon > 0$, there must exist some $\delta > 0$ such that whenever x is within δ of x_0 , f(x) is within ϵ of $f(x_0)$.

In other words, in the sequential definition, we started on the x-axis ("as x_n get closer to $x_0 cdots$ ") and made conclusions about the y-axis ("... $f(x_n)$ get closer to $f(x_0)$ ").

However, in this " $\epsilon - \delta$ " definition, we *start* on the y-axis ("given an ϵ -neighborhood around $f(x_0)$...") and impose a condition on the x-axis ("... whenever x is within δ of x_0 , f(x) lands within that neighborhood").

On first glance, the second definition looks stronger. f(x) has no choice BUT to land within ϵ of $f(x_0)$ on the entire interval $(x_0 - \delta, x_0 + \delta)$. The first definition asks $f(x_n)$ to get ϵ -close to $f(x_0)$ only after a certain N. Let's formalise and see if this is true.

Definition 1. $f: \Omega \to \mathbb{R}$ with $\Omega \subseteq \mathbb{R}$ is continuous at x_0 if for every $\epsilon > 0$, there is some $\delta > 0$ such that $x \in (x_0 - \delta, x_0 + \delta) \implies f(x) \in (f(x_0) - \epsilon, f(x_0) + \epsilon)$

That is, you can get f(x) as close to $f(x_0)$ as you want if x is sufficiently close to x_0 .

We haven't yet justified the fact that both these definitions are for f to be continuous at a fixed point. We must show they are equivalent.

Theorem 1. A function f is continuous at x_0 if and only if it is sequentially continuous at x_0

Proof. (\rightarrow) We want to show continuous implies sequentially continuous. i.e, we're given for every ϵ some δ has the property that

$$|x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon$$

and we want to show whenever $x_n \to x_0$ then $f(x_n) \to f(x_0)$.

Let $\epsilon_0 > 0$ be given and choose δ_0 by definition of continuity of f at x_0 . Suppose $x_n \to x_0$. By definition of convergence, there is some N such that

$$n \ge N \implies |x_n - x_0| < \delta_0$$

But δ_0 was chosen such that

$$|x_n - x_0| < \delta_0 \implies |f(x_n) - f(x_0)| < \epsilon_0$$

Therefore whenever $n \geq N$, $|f(x_n) - f(x_0)| < \epsilon_0$. By definition of convergence, $f(x_n) \to f(x_0)$

 (\leftarrow) Now we want to show sequentially continuous implies continuous. This is not straightforward, and instead we'll show the contrapositive – that if f is not continuous then it is not sequentially continuous.

Suppose f is not continuous. Recall that f is continuous only when for every ϵ , there is some δ with a certain property. For f to not be continuous, there must be some ϵ_0 such that every δ fails to have that property. In all, we're given that there is some ϵ_0 , such that for every δ , there is some x_δ such that

$$x_{\delta} \in (x_0 - \delta, x_0 + \delta)$$

but

$$f(x_{\delta}) \notin (f(x_0) - \epsilon_0, f(x_0) + \epsilon_0)$$

And we want to show f is not sequentially continuous – that there is some sequence $x_n \to x_0$ but $f(x_n) \not\to f(x_0)$

Now this is straightforward. Knowing ϵ_0 and that the property fails for every δ , take $\delta_n = \frac{1}{n}$. Then, there is some $x_n := x_{\delta_n}$ such that

$$x_n \in (x_0 - \frac{1}{n}, x_0 + \frac{1}{n})$$

but

$$|f(x_n) - f(x_0)| \ge \epsilon_0$$

This x_n is our required sequence. Clearly, $x_n \to x_0$ (since every subsequent term lies in smaller and smaller intervals around x_0) but $f(x_n) \not\to f(x_0)$ (since $f(x_n)$ fail to get closer to $f(x_0)$ than ϵ_0).

Thus f is not sequentially continuous.

Continuity and sequential continuity are the same thing! Finally, we make the following definition

Definition 2. A function $f: \Omega \to \mathbb{R}$ is *continuous* if it is *continuous* at every point of Ω

Where we generalise from continuity at a point to continuity on a set.

Exercise 1. Show that f(x) = x is continuous.

Recall from FD-02 the various definitions of limits. Comparing to the definition of continuity at a point, we can clearly see that the following definition of continuity is equivalent to both our above definitions.

Definition 3. A function $f: \Omega \to \mathbb{R}$ with $x_0 \in \Omega \subseteq \mathbb{R}$ is continuous at x_0 if

$$\lim_{x \to x_0} f(x) = L$$

Answers to Exercises

The following are brief solutions or hints. You are encouraged to review the exercises before checking the answers.

Answer 1. Let x_n be a sequence converging to an arbitrary x_0 , i.e $x_n \to x_0$. But $f(x_n) = x_n$ and $f(x_0) = x_0$, so $f(x_n) \to f(x_0)$.

Aliter. Let $\epsilon > 0$ be given. Take $\delta = \epsilon$ and suppose $|x - x_0| < \delta$. Then,

$$|f(x) - f(x_0)| = |x - x_0|$$

$$< \delta$$

$$= \epsilon$$

Thus f is continuous.