Université Paris Cité - LIPADE

Algorithmic Complexity Introduction

Jean-Guy Mailly (jean-guy.mailly@u-paris.fr)

2022

Infos sur l'UE

- Jean-Guy Mailly : jean-guy.mailly@u-paris.fr Bureau 814 I
- ▶ 15h de cours : lundi, 10h15–11h45, Curie A
- ► 15h de TD : lundi, 12h45–14h15, Cuneo D (RSA/DCI) vendredi, 10h30–12h00, Vieussens D (IAD/VMI)
- Modalités de contrôle de connaissances :
 - ► Un contrôle continu vers la mi-semestre
 - ► Un examen en fin de semestre
 - ▶ Note finale : $\max(EX, \frac{EX + CC}{2})$
- ▶ Moodle: Cours IFFAX020 Complexité Algorithmique

https://moodle.u-paris.fr/course/view.php?id=5486

Aims

Algorithmic Complexity

Measure the hardness of a problem w.r.t. the efficiency of algorithms to solve it

- ▶ Time
- ► Space

Goal of the Course

- Bases of complexity theory
- Main complexity classes (time and space)
- Complexity of usual problems
- Being able to determine the complexity of a problem

Resources

When solving a problem, two kinds of resources are used

- ▶ time
 - number of seconds
 - number of steps for the computation
- space
 - number of bytes used to execute the program
 - number of variables used to represent and solve the problem

Complexity Theory

- Classification of problems w.r.t. the resources required to solve them
 - ► The more we need time and/or space, the harder it is
- ► Comparison of problems (depending on the class they belong)
- Solving problems by translating them into other problems (with the same complexity)

Outline

Mappings and Asymptotic Bounds

Problems and Languages

Graph Theory

Non-Directed Graphs

Directed Graphs

Logic

Mappings and Asymptotic Bounds

Integer mappings

We use mappings $f: \mathbb{N} \to \mathbb{N}$ to represent the time (or space) used to solve a problem

- ▶ Intuition: If the problem entry has size n, f(n) steps are required to compute the result
- ▶ If needed, we use the closest integer value (e.g. log(n) means $\lceil log(n) \rceil$)

Mappings and Asymptotic Bounds

Integer mappings

We use mappings $f: \mathbb{N} \to \mathbb{N}$ to represent the time (or space) used to solve a problem

- ▶ Intuition: If the problem entry has size n, f(n) steps are required to compute the result
- ▶ If needed, we use the closest integer value (e.g. log(n) means $\lceil log(n) \rceil$)

Asymptotic bounds – \mathcal{O} notation

Given a mapping f, $\mathcal{O}(f(n))$ is the set of mappings g s.t. $\exists n_o, c$,

$$\forall n \geq n_0, g(n) \leq c \times f(n)$$

▶ Intuition: When *n* is large enough, *g* is smaller than *f* modulo some constant *c*

Example

▶ We suppose that we have an algorithm which solves a graphs problem in $g(n) = 4 \times n^2 + 3 \times n + 2$ steps, when n is the size of the graph (i.e. number of vertices)

Example

- We suppose that we have an algorithm which solves a graphs problem in g(n) = 4 × n² + 3 × n + 2 steps, when n is the size of the graph (i.e. number of vertices)
- ▶ When n becomes large enough, $g(n) \le 5 \times f(n) = 5 \times n^2$, so $g(n) \in \mathcal{O}(n^2)$

Example

- We suppose that we have an algorithm which solves a graphs problem in g(n) = 4 × n² + 3 × n + 2 steps, when n is the size of the graph (i.e. number of vertices)
- ▶ When n becomes large enough, $g(n) \le 5 \times f(n) = 5 \times n^2$, so $g(n) \in \mathcal{O}(n^2)$

On Usual O Families

From Slow to Fast Increase

C is an arbitrary constant, and log is any logarithmic function

Family of Functions	Name
$\mathcal{O}(1)$	Constant
$\mathcal{O}(\log(n))$	Logarithmic
$\mathcal{O}((\log(n))^c)$	Polylogarithmic
$\mathcal{O}(n)$	Linear
$\mathcal{O}(n\log(n))$	Linearithmic
$\mathcal{O}(n^2)$	Quadratic
$\mathcal{O}(n^{C})$	Polynomial
$\mathcal{O}(C^n)$	Exponential
$\mathcal{O}(n!)$	Factorial

On the Sum of Functions

If
$$f(n) = g(n) + h(n)$$
, $\mathcal{O}(f(n)) = \max(\mathcal{O}(g(n), \mathcal{O}(h(n)))$

$$\triangleright \mathcal{O}(1) = \{g \mid \exists n_0, c, \forall n \geq n_0, g(n) \leq c \times 1\}$$

- ▶ $\mathcal{O}(1) = \{g \mid \exists n_0, c, \forall n \geq n_0, g(n) \leq c \times 1\}$
- $\triangleright \mathcal{O}(\log(n)) = \{g \mid \exists n_0, c, \forall n \geq n_0, g(n) \leq c \times \log(n)\}$

- ▶ $\mathcal{O}(1) = \{g \mid \exists n_0, c, \forall n \geq n_0, g(n) \leq c \times 1\}$
- $\triangleright \mathcal{O}(\log(n)) = \{g \mid \exists n_0, c, \forall n \geq n_0, g(n) \leq c \times \log(n)\}$
- **.**..

- ▶ $\mathcal{O}(1) = \{g \mid \exists n_0, c, \forall n \geq n_0, g(n) \leq c \times 1\}$
- $\triangleright \mathcal{O}(\log(n)) = \{g \mid \exists n_0, c, \forall n \geq n_0, g(n) \leq c \times \log(n) \}$
- **.**..
- $\triangleright \mathcal{O}(n!) = \{g \mid \exists n_0, c, \forall n \geq n_0, g(n) \leq c \times n!\}$

Outline

Mappings and Asymptotic Bounds

Problems and Languages

Graph Theory

Non-Directed Graphs

Directed Graphs

Logic

Different Kinds of Problems (1/2)

Decision Problem, Function Problem

A decision problem over a set of input data E is a mapping from any element in E to a value in $\{false, true\}$ ($\simeq \{0,1\} \simeq \{NO,YES\}$). A function problem over a set of input data E is a mapping from any element in E to a single outcome.

Solving an Equation

Decision Problem Does the equation f(x) = y have a solution? Function Problem Give a solution of the equation f(x) = y

Different Kinds of Problems (2/2)

Enumeration Problem, Optimization Problem

Given a function problem \mathcal{P} ,

The *enumeration problem* ENUM- \mathcal{P} over E is a mapping from any element $e_i \in E$ to the set of all outcome of \mathcal{P} over e_i .

The *optimization problem* OPT- \mathcal{P} over E is a mapping from any element in E to a single outcome which minimizes a given criterion.

Solving an Equation

Enumeration Problem Give all the solutions of the equation f(x) = yOptimization Problem Give a minimal solution of the equation f(x) = y

Languages

Definition

- ▶ Set of symbols Σ called *vocabulary* or *alphabet*.
- ▶ A *word* w is a sequence of symbols $w_1 w_2 ... w_k$, with $w_i \in \Sigma$ for all i.
- $\triangleright \Sigma^* = \{ w_1 w_2 \dots w_k \mid w_i \in \Sigma, k \in \mathbb{N} \}$
- ▶ a language $\mathcal L$ is any subset of Σ^* , the complement of $\mathcal L$ is $\bar{\mathcal L} = \Sigma^* \setminus \mathcal L$

- ▶ For any language \mathcal{L} , $\mathcal{P}(\mathcal{L})$ is the decision problem:
 - Given $x \in \Sigma^*$, does x belong to \mathcal{L} ?
- ▶ For any decision problem P, L(P) is the language:
 - $\{x \in \text{instances of } P \mid x \text{ is a positive instance of } P\}$

Outline

Mappings and Asymptotic Bounds

Problems and Languages

Graph Theory Non-Directed Graphs Directed Graphs

Logic

Non-Directed Graphs

Definition

A non-directed graph is a pair $G = \langle N, E \rangle$ where N is the set of nodes and $E \subseteq pairs(N)$ is the set of edges, with $pairs(N) = \{\{x_i, x_j\} \mid x_i, x_j \in N\}$

Non-Directed Graphs

Definition

A non-directed graph is a pair $G = \langle N, E \rangle$ where N is the set of nodes and $E \subseteq pairs(N)$ is the set of edges, with $pairs(N) = \{\{x_i, x_j\} \mid x_i, x_j \in N\}$

$$G = \langle N, E \rangle$$
, with $N = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7\}$ and $E = \{\{x_1, x_2\}, \{x_2, x_3\}, \{x_3, x_4\}, \{x_4, x_5\}, \{x_5, x_6\}, \{x_6, x_7\}, \{x_7, x_5\}\}$

Definition

A subgraph in a non-directed graph $G = \langle N, E \rangle$ is a pair $G' = \langle N', E' \rangle$, with $N' \subseteq N$ and $E' \subseteq pairs(N') \cap E$. If $E' = pairs(N') \cap E$, we say that G' is the subgraph of G induced by N'

Definition

A subgraph in a non-directed graph $G = \langle N, E \rangle$ is a pair $G' = \langle N', E' \rangle$, with $N' \subseteq N$ and $E' \subseteq pairs(N') \cap E$. If $E' = pairs(N') \cap E$, we say that G' is the subgraph of G induced by N'

 $G' = \langle \{x_1, x_2, x_3\}, \{\{x_1, x_2\}\} \rangle$ is a subgraph of G

Definition

A subgraph in a non-directed graph $G = \langle N, E \rangle$ is a pair $G' = \langle N', E' \rangle$, with $N' \subseteq N$ and $E' \subseteq pairs(N') \cap E$. If $E' = pairs(N') \cap E$, we say that G' is the subgraph of G induced by N'

 $G' = \langle \{x_1, x_2, x_3\}, \{\{x_1, x_2\}\} \rangle$ is a subgraph of G

Definition

A subgraph in a non-directed graph $G = \langle N, E \rangle$ is a pair $G' = \langle N', E' \rangle$, with $N' \subseteq N$ and $E' \subseteq pairs(N') \cap E$. If $E' = pairs(N') \cap E$, we say that G' is the subgraph of G induced by N'

 $G' = \langle \{x_1, x_2, x_3\}, \{\{x_1, x_2\}\} \rangle$ is a subgraph of G $G' = \langle \{x_1, x_2, x_3\}, \{\{x_1, x_2\}, \{x_2, x_3\}\} \rangle$ is the subgraph of G induced by $\{x_1, x_2, x_3\}$

Definition

A subgraph in a non-directed graph $G = \langle N, E \rangle$ is a pair $G' = \langle N', E' \rangle$, with $N' \subseteq N$ and $E' \subseteq pairs(N') \cap E$. If $E' = pairs(N') \cap E$, we say that G' is the subgraph of G induced by N'

 $G' = \langle \{x_1, x_2, x_3\}, \{\{x_1, x_2\}\} \rangle$ is a subgraph of G $G' = \langle \{x_1, x_2, x_3\}, \{\{x_1, x_2\}, \{x_2, x_3\}\} \rangle$ is the subgraph of G induced by $\{x_1, x_2, x_3\}$

Definition

A chain in a non-directed graph $G = \langle N, E \rangle$ is a vector of nodes (n_1, \ldots, n_k) such that $\forall 0 \le i < k, \{n_i, n_{i+1}\} \in E$.

Definition

A chain in a non-directed graph $G = \langle N, E \rangle$ is a vector of nodes (n_1, \ldots, n_k) such that $\forall 0 \le i < k, \{n_i, n_{i+1}\} \in E$.

 (x_3, x_4, x_5, x_6) and (x_3, x_4, x_5, x_7) are chains of G

Definition

A chain in a non-directed graph $G = \langle N, E \rangle$ is a vector of nodes (n_1, \ldots, n_k) such that $\forall 0 \le i < k, \{n_i, n_{i+1}\} \in E$.

 (x_3, x_4, x_5, x_6) and (x_3, x_4, x_5, x_7) are chains of G

Definition

A chain in a non-directed graph $G = \langle N, E \rangle$ is a vector of nodes (n_1, \ldots, n_k) such that $\forall 0 \le i < k, \{n_i, n_{i+1}\} \in E$.

 (x_3, x_4, x_5, x_6) and (x_3, x_4, x_5, x_7) are chains of G

Definition

A chain in a non-directed graph $G = \langle N, E \rangle$ is a vector of nodes (n_1, \ldots, n_k) such that $\forall 0 \le i < k, \{n_i, n_{i+1}\} \in E$.

 (x_3, x_4, x_5, x_6) and (x_3, x_4, x_5, x_7) are chains of $G(x_1, x_6)$ is not a chain of G

Definition

A chain in a non-directed graph $G = \langle N, E \rangle$ is a vector of nodes (n_1, \ldots, n_k) such that $\forall 0 \le i < k, \{n_i, n_{i+1}\} \in E$.

 (x_3, x_4, x_5, x_6) and (x_3, x_4, x_5, x_7) are chains of $G(x_1, x_6)$ is not a chain of G

Clique

Definition

A clique in a non-directed graph $G = \langle N, E \rangle$ is subgraph $G' = \langle N', E' \rangle$, with $N' \subseteq N$ and $E' \subseteq pairs(N') \cap E$, such that $\forall x_i, x_i \in N', x_i \neq x_j, \{x_i, x_j\} \in E'$

Clique

Definition

A clique in a non-directed graph $G = \langle N, E \rangle$ is subgraph $G' = \langle N', E' \rangle$, with $N' \subseteq N$ and $E' \subseteq pairs(N') \cap E$, such that $\forall x_i, x_j \in N', x_i \neq x_j, \{x_i, x_j\} \in E'$

 $\langle \{x_5, x_6, x_7\}, \{\{x_5, x_6\}, \{x_6, x_7\}, \{x_7, x_5\}, \} \rangle$ is a clique in G

Clique

Definition

A clique in a non-directed graph $G = \langle N, E \rangle$ is subgraph $G' = \langle N', E' \rangle$, with $N' \subseteq N$ and $E' \subseteq pairs(N') \cap E$, such that $\forall x_i, x_j \in N', x_i \neq x_j, \{x_i, x_j\} \in E'$

 $\langle \{x_5, x_6, x_7\}, \{\{x_5, x_6\}, \{x_6, x_7\}, \{x_7, x_5\}, \} \rangle$ is a clique in G

Definition

A cycle in a non-directed graph $G = \langle N, E \rangle$ is a chain (n_1, \dots, n_k) such that $n_1 = n_k$. The length of the cycle is k - 1

Definition

A cycle in a non-directed graph $G = \langle N, E \rangle$ is a chain (n_1, \dots, n_k) such that $n_1 = n_k$. The length of the cycle is k - 1

 (x_5, x_6, x_7, x_5) is a cycle of length 3 in G

Definition

A cycle in a non-directed graph $G = \langle N, E \rangle$ is a chain (n_1, \dots, n_k) such that $n_1 = n_k$. The length of the cycle is k - 1

 (x_5, x_6, x_7, x_5) is a cycle of length 3 in G

Directed Graphs

Definition

A directed graph is a pair $G = \langle N, E \rangle$ where N is the set of nodes and $E \subseteq N \times N$ is the set of edges

Directed Graphs

Definition

A directed graph is a pair $G = \langle N, E \rangle$ where N is the set of nodes and $E \subseteq N \times N$ is the set of edges

$$G = \langle N, E \rangle$$
, with $N = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7\}$ and $E = \{(x_1, x_2), (x_2, x_3), (x_3, x_4), (x_4, x_3), (x_4, x_5), (x_5, x_6), (x_6, x_7), (x_7, x_5)\}$

Definition

A subgraph in a directed graph $G = \langle N, E \rangle$ is a pair $G' = \langle N', E' \rangle$, with $N' \subseteq N$ and $E' \subseteq (N' \times N') \cap E$. If $E' = (N' \times N') \cap E$, we say that G' is the subgraph of G induced by N'

Definition

A subgraph in a directed graph $G = \langle N, E \rangle$ is a pair $G' = \langle N', E' \rangle$, with $N' \subseteq N$ and $E' \subseteq (N' \times N') \cap E$. If $E' = (N' \times N') \cap E$, we say that G' is the subgraph of G induced by N'

 $G' = \langle \{x_1, x_2, x_3\}, \{(x_1, x_2)\} \rangle$ is a subgraph of G

Definition

A subgraph in a directed graph $G = \langle N, E \rangle$ is a pair $G' = \langle N', E' \rangle$, with $N' \subseteq N$ and $E' \subseteq (N' \times N') \cap E$. If $E' = (N' \times N') \cap E$, we say that G' is the subgraph of G induced by N'

 $G' = \langle \{x_1, x_2, x_3\}, \{(x_1, x_2)\} \rangle$ is a subgraph of G

Definition

A subgraph in a directed graph $G = \langle N, E \rangle$ is a pair $G' = \langle N', E' \rangle$, with $N' \subseteq N$ and $E' \subseteq (N' \times N') \cap E$. If $E' = (N' \times N') \cap E$, we say that G' is the subgraph of G induced by N'

 $G' = \langle \{x_1, x_2, x_3\}, \{(x_1, x_2)\} \rangle$ is a subgraph of G $G' = \langle \{x_1, x_2, x_3\}, \{(x_1, x_2), (x_2, x_3)\} \rangle$ is the subgraph of G induced by $\{x_1, x_2, x_3\}$

Definition

A subgraph in a directed graph $G = \langle N, E \rangle$ is a pair $G' = \langle N', E' \rangle$, with $N' \subseteq N$ and $E' \subseteq (N' \times N') \cap E$. If $E' = (N' \times N') \cap E$, we say that G' is the subgraph of G induced by N'

 $G' = \langle \{x_1, x_2, x_3\}, \{(x_1, x_2)\} \rangle$ is a subgraph of G $G' = \langle \{x_1, x_2, x_3\}, \{(x_1, x_2), (x_2, x_3)\} \rangle$ is the subgraph of G induced by $\{x_1, x_2, x_3\}$

Definition

A path in a directed graph $G = \langle N, E \rangle$ is a vector of nodes (n_1, \dots, n_k) such that $\forall 0 \le i < k, (n_i, n_{i+1}) \in E$.

Definition

A path in a directed graph $G = \langle N, E \rangle$ is a vector of nodes (n_1, \dots, n_k) such that $\forall 0 \le i < k, (n_i, n_{i+1}) \in E$.

 (x_3, x_4, x_5, x_6) is a path of G, but (x_3, x_4, x_5, x_7) is not

Definition

A path in a directed graph $G = \langle N, E \rangle$ is a vector of nodes (n_1, \dots, n_k) such that $\forall 0 \le i < k, (n_i, n_{i+1}) \in E$.

 (x_3, x_4, x_5, x_6) is a path of G, but (x_3, x_4, x_5, x_7) is not

Definition

A path in a directed graph $G = \langle N, E \rangle$ is a vector of nodes (n_1, \dots, n_k) such that $\forall 0 \le i < k$, $(n_i, n_{i+1}) \in E$.

 (x_3, x_4, x_5, x_6) is a path of G, but (x_3, x_4, x_5, x_7) is not

Definition

A path in a directed graph $G = \langle N, E \rangle$ is a vector of nodes (n_1, \dots, n_k) such that $\forall 0 \le i < k$, $(n_i, n_{i+1}) \in E$.

 (x_3, x_4, x_5, x_6) is a path of G, but (x_3, x_4, x_5, x_7) is not (x_1, x_6) is not a path of G

Definition

A path in a directed graph $G = \langle N, E \rangle$ is a vector of nodes (n_1, \dots, n_k) such that $\forall 0 \le i < k, (n_i, n_{i+1}) \in E$.

 (x_3, x_4, x_5, x_6) is a path of G, but (x_3, x_4, x_5, x_7) is not (x_1, x_6) is not a path of G

Definition

A clique in a directed graph $G = \langle N, E \rangle$ is subgraph $G' = \langle N', E' \rangle$, with $N' \subseteq N$ and $E' \subseteq (N' \times N') \cap E$, such that $\forall x_i, x_j \in N', x_i \neq x_j$, $(x_i, x_j) \in E'$

Definition

A clique in a directed graph $G = \langle N, E \rangle$ is subgraph $G' = \langle N', E' \rangle$, with $N' \subseteq N$ and $E' \subseteq (N' \times N') \cap E$, such that $\forall x_i, x_j \in N', x_i \neq x_j$, $(x_i, x_j) \in E'$

 $\langle \{x_5, x_6, x_7\}, \{(x_5, x_6), (x_6, x_7), (x_7, x_5)\} \rangle$ is not a clique in G

Definition

A clique in a directed graph $G = \langle N, E \rangle$ is subgraph $G' = \langle N', E' \rangle$, with $N' \subseteq N$ and $E' \subseteq (N' \times N') \cap E$, such that $\forall x_i, x_j \in N', x_i \neq x_j$, $(x_i, x_j) \in E'$

 $\langle \{x_5, x_6, x_7\}, \{(x_5, x_6), (x_6, x_7), (x_7, x_5)\} \rangle$ is not a clique in G

Definition

A clique in a directed graph $G = \langle N, E \rangle$ is subgraph $G' = \langle N', E' \rangle$, with $N' \subseteq N$ and $E' \subseteq (N' \times N') \cap E$, such that $\forall x_i, x_j \in N', x_i \neq x_j$, $(x_i, x_j) \in E'$

 $\langle \{x_5, x_6, x_7\}, \{(x_5, x_6), (x_6, x_7), (x_7, x_5)\} \rangle$ is not a clique in $G \langle \{x_3, x_4\}, \{(x_3, x_4), (x_4, x_3)\} \rangle$ is a clique in G

Definition

A clique in a directed graph $G = \langle N, E \rangle$ is subgraph $G' = \langle N', E' \rangle$, with $N' \subseteq N$ and $E' \subseteq (N' \times N') \cap E$, such that $\forall x_i, x_j \in N', x_i \neq x_j$, $(x_i, x_j) \in E'$

 $\langle \{x_5, x_6, x_7\}, \{(x_5, x_6), (x_6, x_7), (x_7, x_5)\} \rangle$ is not a clique in $G \langle \{x_3, x_4\}, \{(x_3, x_4), (x_4, x_3)\} \rangle$ is a clique in G

Definition

A cycle in a directed graph $G = \langle N, E \rangle$ is a path (n_1, \dots, n_k) such that $n_1 = n_k$. The length of the cycle is k - 1

Definition

A cycle in a directed graph $G = \langle N, E \rangle$ is a path (n_1, \dots, n_k) such that $n_1 = n_k$. The length of the cycle is k - 1

 (x_3, x_4, x_3) is a cycle of length 2 in G (x_5, x_6, x_7, x_5) is a cycle of length 3 in G

Definition

A cycle in a directed graph $G = \langle N, E \rangle$ is a path (n_1, \dots, n_k) such that $n_1 = n_k$. The length of the cycle is k - 1

 (x_3, x_4, x_3) is a cycle of length 2 in G (x_5, x_6, x_7, x_5) is a cycle of length 3 in G

Definition

A cycle in a directed graph $G = \langle N, E \rangle$ is a path (n_1, \dots, n_k) such that $n_1 = n_k$. The length of the cycle is k - 1

 (x_3, x_4, x_3) is a cycle of length 2 in G (x_5, x_6, x_7, x_5) is a cycle of length 3 in G

Definition

A cycle in a directed graph $G = \langle N, E \rangle$ is a path (n_1, \dots, n_k) such that $n_1 = n_k$. The length of the cycle is k - 1

 (x_3, x_4, x_3) is a cycle of length 2 in G (x_5, x_6, x_7, x_5) is a cycle of length 3 in G (x_2, x_3, x_4, x_3) is not a cycle of G

Definition

A cycle in a directed graph $G = \langle N, E \rangle$ is a path (n_1, \dots, n_k) such that $n_1 = n_k$. The length of the cycle is k - 1

 (x_3, x_4, x_3) is a cycle of length 2 in G (x_5, x_6, x_7, x_5) is a cycle of length 3 in G (x_2, x_3, x_4, x_3) is not a cycle of G

Outline

Mappings and Asymptotic Bounds

Problems and Languages

Graph Theory

Non-Directed Graphs

Directed Graphs

Logic

Propositional Logic

Definition

Propositional logic is a mathematical formalism which studies **propositions**, i.e. logical objects which can be **true** or **false**. A propositional formula is the combinations of propositions with **connectives**

Propositional Logic

Definition

Propositional logic is a mathematical formalism which studies **propositions**, i.e. logical objects which can be **true** or **false**. A propositional formula is the combinations of propositions with **connectives**

Examples of propositions:

- ▶ it's raining
- it's sunny
- ► I need an umbrella
- I need sunscreen

Propositional Logic

Definition

Propositional logic is a mathematical formalism which studies **propositions**, i.e. logical objects which can be **true** or **false**. A propositional formula is the combinations of propositions with **connectives**

Examples of propositions:

- ▶ it's raining
- it's sunny
- ► I need an umbrella
- ► I need sunscreen

Propositions are usually represented by *Boolean variables*, i.e. mathematical objects which can be assigned a value from a binary set $\mathbb{B}=\{0,1\}$ (sometimes written $\{\textit{False},\textit{True}\}$ or $\{\bot,\top\}$)

Let $V = \{x_1, \dots, x_n\}$ be a set of Boolean variables atom $\forall x_i \in V$, x_i is a (well-formed) formula negation if φ is a formula, then $\neg \varphi$ is a formula conjunction if φ_1 and φ_2 are formulas, then $\varphi_1 \wedge \varphi_2$ is a formula

Let $V = \{x_1, \dots, x_n\}$ be a set of Boolean variables atom $\forall x_i \in V$, x_i is a (well-formed) formula negation if φ is a formula, then $\neg \varphi$ is a formula conjunction if φ_1 and φ_2 are formulas, then $\varphi_1 \land \varphi_2$ is a formula disjunction if φ_1 and φ_2 are formulas, then $\varphi_1 \lor \varphi_2$ is a formula

Let $V = \{x_1, \dots, x_n\}$ be a set of Boolean variables atom $\forall x_i \in V$, x_i is a (well-formed) formula negation if φ is a formula, then $\neg \varphi$ is a formula conjunction if φ_1 and φ_2 are formulas, then $\varphi_1 \land \varphi_2$ is a formula disjunction if φ_1 and φ_2 are formulas, then $\varphi_1 \lor \varphi_2$ is a formula implication if φ_1 and φ_2 are formulas, then $\varphi_1 \Rightarrow \varphi_2$ is a formula

Let $V = \{x_1, \dots, x_n\}$ be a set of Boolean variables atom $\forall x_i \in V$, x_i is a (well-formed) formula negation if φ is a formula, then $\neg \varphi$ is a formula conjunction if φ_1 and φ_2 are formulas, then $\varphi_1 \land \varphi_2$ is a formula disjunction if φ_1 and φ_2 are formulas, then $\varphi_1 \lor \varphi_2$ is a formula implication if φ_1 and φ_2 are formulas, then $\varphi_1 \Rightarrow \varphi_2$ is a formula equivalence if φ_1 and φ_2 are formulas, then $\varphi_1 \Leftrightarrow \varphi_2$ is a formula

Let $V = \{x_1, \dots, x_n\}$ be a set of Boolean variables atom $\forall x_i \in V$, x_i is a (well-formed) formula negation if φ is a formula, then $\neg \varphi$ is a formula conjunction if φ_1 and φ_2 are formulas, then $\varphi_1 \land \varphi_2$ is a formula disjunction if φ_1 and φ_2 are formulas, then $\varphi_1 \lor \varphi_2$ is a formula implication if φ_1 and φ_2 are formulas, then $\varphi_1 \Rightarrow \varphi_2$ is a formula equivalence if φ_1 and φ_2 are formulas, then $\varphi_1 \Leftrightarrow \varphi_2$ is a formula We use parentheses to simplify the reading and clarify priorities

Syntax of Propositional Logic

Let $V = \{x_1, \dots, x_n\}$ be a set of Boolean variables atom $\forall x_i \in V, x_i$ is a (well-formed) formula negation if φ is a formula, then $\neg \varphi$ is a formula conjunction if φ_1 and φ_2 are formulas, then $\varphi_1 \land \varphi_2$ is a formula disjunction if φ_1 and φ_2 are formulas, then $\varphi_1 \lor \varphi_2$ is a formula implication if φ_1 and φ_2 are formulas, then $\varphi_1 \Rightarrow \varphi_2$ is a formula equivalence if φ_1 and φ_2 are formulas, then $\varphi_1 \Leftrightarrow \varphi_2$ is a formula We use parentheses to simplify the reading and clarify priorities

Formulas

- $\rightarrow X_1, \neg X_1, \neg \neg X_1$
- $ightharpoonup X_1 \wedge X_2, X_1 \vee X_2$
- $ightharpoonup x_1 \wedge (x_3 \vee (x_4 \Rightarrow x_1))$
- $\triangleright \varphi \wedge \psi$

Not Formulas

- $\rightarrow X_1 \neg, \neg X_1 \neg$
- $ightharpoonup x_1 \land$, $\lor x_1$
- $ightharpoonup x_1 \Rightarrow (\vee x_2)$
- $\rightarrow \wedge \psi$


```
atom if \varphi = x_i, then \omega(\varphi) = \omega(x_i)
negation if \varphi = \neg \varphi_1, then \omega(\varphi) = 1 - \omega(\varphi_1)
conjunction if \varphi = \varphi_1 \land \varphi_2, then \omega(\varphi) = \min(\omega(\varphi_1), \omega(\varphi_2))
```



```
atom if \varphi = x_i, then \omega(\varphi) = \omega(x_i)
negation if \varphi = \neg \varphi_1, then \omega(\varphi) = 1 - \omega(\varphi_1)
conjunction if \varphi = \varphi_1 \land \varphi_2, then \omega(\varphi) = \min(\omega(\varphi_1), \omega(\varphi_2))
disjunction if \varphi = \varphi_1 \lor \varphi_2, then \omega(\varphi) = \max(\omega(\varphi_1), \omega(\varphi_2))
```



```
atom if \varphi = x_i, then \omega(\varphi) = \omega(x_i)
negation if \varphi = \neg \varphi_1, then \omega(\varphi) = 1 - \omega(\varphi_1)
conjunction if \varphi = \varphi_1 \land \varphi_2, then \omega(\varphi) = \min(\omega(\varphi_1), \omega(\varphi_2))
disjunction if \varphi = \varphi_1 \lor \varphi_2, then \omega(\varphi) = \max(\omega(\varphi_1), \omega(\varphi_2))
implication if \varphi = \varphi_1 \Rightarrow \varphi_2, then \omega(\varphi) = \omega(\neg \varphi_1 \lor \varphi_2)
```



```
atom if \varphi = x_i, then \omega(\varphi) = \omega(x_i)
negation if \varphi = \neg \varphi_1, then \omega(\varphi) = 1 - \omega(\varphi_1)
conjunction if \varphi = \varphi_1 \land \varphi_2, then \omega(\varphi) = \min(\omega(\varphi_1), \omega(\varphi_2))
disjunction if \varphi = \varphi_1 \lor \varphi_2, then \omega(\varphi) = \max(\omega(\varphi_1), \omega(\varphi_2))
implication if \varphi = \varphi_1 \Rightarrow \varphi_2, then \omega(\varphi) = \omega(\neg \varphi_1 \lor \varphi_2)
equivalence if \varphi = \varphi_1 \Leftrightarrow \varphi_2, then \omega(\varphi) = \omega((\varphi_1 \Rightarrow \varphi_2) \land (\varphi_2 \Rightarrow \varphi_1))
```

Semantics of Propositional Logic Example of Interpretation

$$V = \{x_1, x_2, x_3, x_4\}, \, \omega(x_1) = \omega(x_4) = 0, \omega(x_2) = \omega(x_3) = 1$$

•
$$\omega(\neg x_1) = 1 - \omega(x_1) = 1$$
, $\omega(\neg x_2) = 1 - \omega(x_2) = 0$

Example of Interpretation

$$V = \{x_1, x_2, x_3, x_4\}, \, \omega(x_1) = \omega(x_4) = 0, \omega(x_2) = \omega(x_3) = 1$$

•
$$\omega(\neg x_1) = 1 - \omega(x_1) = 1$$
, $\omega(\neg x_2) = 1 - \omega(x_2) = 0$

Intuitively:

the negation takes the opposite of the original value

Example of Interpretation

$$V = \{x_1, x_2, x_3, x_4\}, \, \omega(x_1) = \omega(x_4) = 0, \, \omega(x_2) = \omega(x_3) = 1$$

$$\bullet$$
 $\omega(\neg x_1) = 1 - \omega(x_1) = 1, \ \omega(\neg x_2) = 1 - \omega(x_2) = 0$

•
$$\omega(x_1 \wedge x_2) = \min(\omega(x_1), \omega(x_2)) = \min(0, 1) = 0$$

Intuitively:

the negation takes the opposite of the original value

Example of Interpretation

$$V = \{x_1, x_2, x_3, x_4\}, \, \omega(x_1) = \omega(x_4) = 0, \omega(x_2) = \omega(x_3) = 1$$

$$\bullet$$
 $\omega(\neg x_1) = 1 - \omega(x_1) = 1, \, \omega(\neg x_2) = 1 - \omega(x_2) = 0$

•
$$\omega(x_1 \wedge x_2) = \min(\omega(x_1), \omega(x_2)) = \min(0, 1) = 0$$

•
$$\omega(x_2 \wedge x_3) = \min(\omega(x_2), \omega(x_3)) = \min(1, 1) = 1$$

Intuitively:

the negation takes the opposite of the original value

Example of Interpretation

$$V = \{x_1, x_2, x_3, x_4\}, \, \omega(x_1) = \omega(x_4) = 0, \, \omega(x_2) = \omega(x_3) = 1$$

$$\bullet$$
 $\omega(\neg x_1) = 1 - \omega(x_1) = 1, \ \omega(\neg x_2) = 1 - \omega(x_2) = 0$

$$\bullet$$
 $\omega(x_1 \wedge x_2) = \min(\omega(x_1), \omega(x_2)) = \min(0, 1) = 0$

$$\omega(x_2 \wedge x_3) = \min(\omega(x_2), \omega(x_3)) = \min(1, 1) = 1$$

- the negation takes the opposite of the original value
- the conjunction is true iff both values are true

Example of Interpretation

$$V = \{x_1, x_2, x_3, x_4\}, \, \omega(x_1) = \omega(x_4) = 0, \omega(x_2) = \omega(x_3) = 1$$

$$\bullet$$
 $\omega(\neg x_1) = 1 - \omega(x_1) = 1, \ \omega(\neg x_2) = 1 - \omega(x_2) = 0$

$$\bullet$$
 $\omega(x_1 \wedge x_2) = \min(\omega(x_1), \omega(x_2)) = \min(0, 1) = 0$

$$\bullet$$
 $\omega(x_2 \wedge x_3) = \min(\omega(x_2), \omega(x_3)) = \min(1, 1) = 1$

$$\qquad \qquad \omega(x_1 \vee x_2) = \max(\omega(x_1), \omega(x_2)) = \max(0, 1) = 1$$

- the negation takes the opposite of the original value
- the conjunction is true iff both values are true

Example of Interpretation

$$V = \{x_1, x_2, x_3, x_4\}, \, \omega(x_1) = \omega(x_4) = 0, \, \omega(x_2) = \omega(x_3) = 1$$

•
$$\omega(\neg x_1) = 1 - \omega(x_1) = 1$$
, $\omega(\neg x_2) = 1 - \omega(x_2) = 0$

•
$$\omega(x_1 \wedge x_2) = \min(\omega(x_1), \omega(x_2)) = \min(0, 1) = 0$$

•
$$\omega(x_2 \wedge x_3) = \min(\omega(x_2), \omega(x_3)) = \min(1, 1) = 1$$

$$\bullet$$
 $\omega(x_1 \lor x_2) = \max(\omega(x_1), \omega(x_2)) = \max(0, 1) = 1$

•
$$\omega(x_1 \vee x_4) = \max(\omega(x_1), \omega(x_4)) = \max(0, 0) = 0$$

- the negation takes the opposite of the original value
- the conjunction is true iff both values are true

Semantics of Propositional Logic Example of Interpretation

$$V = \{x_1, x_2, x_3, x_4\}, \, \omega(x_1) = \omega(x_4) = 0, \, \omega(x_2) = \omega(x_3) = 1$$

$$\bullet$$
 $\omega(\neg x_1) = 1 - \omega(x_1) = 1, \ \omega(\neg x_2) = 1 - \omega(x_2) = 0$

$$\bullet$$
 $\omega(x_1 \wedge x_2) = \min(\omega(x_1), \omega(x_2)) = \min(0, 1) = 0$

$$\omega(x_2 \wedge x_3) = \min(\omega(x_2), \omega(x_3)) = \min(1, 1) = 1$$

$$\omega(x_1 \vee x_2) = \max(\omega(x_1), \omega(x_2)) = \max(0, 1) = 1$$

•
$$\omega(x_1 \vee x_4) = \max(\omega(x_1), \omega(x_4)) = \max(0, 0) = 0$$

- the negation takes the opposite of the original value
- the conjunction is true iff both values are true
- the disjunction is true iff at least one of the values is true

Sets of Atoms

An interpretation can be written as the set of atoms which are assigned 1

Sets of Atoms

- An interpretation can be written as the set of atoms which are assigned 1
- ► Example: $V = \{x_1, x_2, x_3\}$, $\omega(x_1) = 0$, $\omega(x_2) = \omega(x_3) = 1$ is equivalent to $\omega = \{x_2, x_3\}$

Sets of Atoms

- An interpretation can be written as the set of atoms which are assigned 1
- ► Example: $V = \{x_1, x_2, x_3\}$, $\omega(x_1) = 0$, $\omega(x_2) = \omega(x_3) = 1$ is equivalent to $\omega = \{x_2, x_3\}$

Vectors of Bits

An interpretation can be written as a vector of 0 and 1; the order has to be fixed (usually lexicographical order)

Sets of Atoms

- An interpretation can be written as the set of atoms which are assigned 1
- ► Example: $V = \{x_1, x_2, x_3\}$, $\omega(x_1) = 0$, $\omega(x_2) = \omega(x_3) = 1$ is equivalent to $\omega = \{x_2, x_3\}$

Vectors of Bits

- An interpretation can be written as a vector of 0 and 1; the order has to be fixed (usually lexicographical order)
- ► Example: $V = \{x_1, x_2, x_3\}$, $\omega(x_1) = 0$, $\omega(x_2) = \omega(x_3) = 1$ is equivalent to $\omega = 011$

Satisfaction of Formulas

- If $\omega(\varphi) = 1$, then ω is a **model** of φ . We also say that φ is satisfied by ω
- ▶ If $\omega(\varphi) = 0$, then ω is a counter-model of φ
- $ightharpoonup \mod(\varphi)$ is the set of models of φ
- ▶ If $mod(\varphi) = \emptyset$, then φ is inconsistent (or insatisfiable)
- ▶ If $mod(\varphi) \neq \emptyset$, then φ is **consistent** (or **satisfiable**)
- If $mod(\varphi)$ is the set of all possible interpretations, then φ is **valid**

Satisfaction, Consequence, Equivalence

We define some meta-language symbols for reasoning about interpretations and formulas:

- $\omega \models \varphi$ means that (the interpretation) ω satisfies (the formula) φ , *i.e.* $\omega \in \operatorname{mod}(\varphi)$
- ▶ $\varphi \vdash \psi$ means that (the formula) ψ is a consequence of (the formula) φ , formally defined as $mod(\varphi) \subseteq mod(\psi)$
- $\varphi \equiv \psi$ means that φ and ψ are equivalent, formally defined as $\varphi \vdash \psi$ and $\psi \vdash \varphi$ (which implies $\mathsf{mod}(\varphi) = \mathsf{mod}(\psi)$)

A formula is a **literal** iff it is an atom or the negation of an atom x_1 and $\neg x_1$ are literals; $x_1 \lor x_2$ is not a literal

- A formula is a **literal** iff it is an atom or the negation of an atom x_1 and $\neg x_1$ are literals; $x_1 \lor x_2$ is not a literal
- A formula is a **clause** iff it is a disjunction of literals $x_1 \lor x_2 \lor \neg x_3$ is a clause; $x_1 \lor (x_2 \land x_3)$ is not a clause

- A formula is a **literal** iff it is an atom or the negation of an atom x_1 and $\neg x_1$ are literals; $x_1 \lor x_2$ is not a literal
- A formula is a **clause** iff it is a disjunction of literals $x_1 \lor x_2 \lor \neg x_3$ is a clause; $x_1 \lor (x_2 \land x_3)$ is not a clause
- A formula is a **cube** iff it is a conjunction of literals $x_1 \wedge x_2 \wedge \neg x_3$ is a cube; $x_1 \wedge (x_2 \vee x_3)$ is not a cube

- A formula is a **literal** iff it is an atom or the negation of an atom x_1 and $\neg x_1$ are literals; $x_1 \lor x_2$ is not a literal
- A formula is a **clause** iff it is a disjunction of literals $x_1 \lor x_2 \lor \neg x_3$ is a clause; $x_1 \lor (x_2 \land x_3)$ is not a clause
- A formula is a **cube** iff it is a conjunction of literals $x_1 \wedge x_2 \wedge \neg x_3$ is a cube; $x_1 \wedge (x_2 \vee x_3)$ is not a cube

Conjunctive Normal Form

A formula is in Conjunctive Normal Form (CNF) iff it is a conjunction of clauses

- A formula is a **literal** iff it is an atom or the negation of an atom x_1 and $\neg x_1$ are literals; $x_1 \lor x_2$ is not a literal
- A formula is a **clause** iff it is a disjunction of literals $x_1 \lor x_2 \lor \neg x_3$ is a clause; $x_1 \lor (x_2 \land x_3)$ is not a clause
- A formula is a **cube** iff it is a conjunction of literals $x_1 \wedge x_2 \wedge \neg x_3$ is a cube; $x_1 \wedge (x_2 \vee x_3)$ is not a cube

Conjunctive Normal Form

A formula is in Conjunctive Normal Form (CNF) iff it is a conjunction of clauses

Disjunctive Normal Form

A formula is in Disjunctive Normal Form (DNF) iff it is a disjunction of cubes

Examples of CNF formulas

- $\blacktriangleright (x_1 \lor x_2) \land (x_3 \lor x_4)$
- $\blacktriangleright (x_1 \vee \neg x_2 \vee x_5) \wedge (x_3 \vee x_5)$

Examples of DNF formulas

- $\blacktriangleright (x_1 \land x_2) \lor (x_3 \land x_4)$
- $\blacktriangleright x_1 \lor (x_2 \land x_4) \lor (x_3 \land x_4 \land \neg x_5)$

- A clause is satisfied if at least one of its literals is satisfied
- A CNF formula is satisfied if all its clauses are satisfied

With
$$\omega(x_1) = \omega(x_2) = 1$$
 and $\omega(x_3) = \omega(x_4) = 0$

▶ $(x_1 \lor x_2) \land (x_3 \lor x_4)$ is not satisfied

- A clause is satisfied if at least one of its literals is satisfied
- A CNF formula is satisfied if all its clauses are satisfied

With
$$\omega(x_1) = \omega(x_2) = 1$$
 and $\omega(x_3) = \omega(x_4) = 0$

▶ $(x_1 \lor x_2) \land (x_3 \lor x_4)$ is not satisfied

With
$$\omega(x_1) = \omega(x_3) = 1$$
 and $\omega(x_2) = \omega(x_4) = 0$

► $(x_1 \lor x_2) \land (x_3 \lor x_4)$ is satisfied

- A cube is satisfied if all its literals are satisfied
- ► A DNF formula is satisfied if at least one of its cubes is satisfied

With
$$\omega(x_1) = \omega(x_3) = 1$$
 and $\omega(x_2) = \omega(x_4) = 0$

▶ $(x_1 \land x_2) \lor (x_3 \land x_4)$ is not satisfied

- A cube is satisfied if all its literals are satisfied
- A DNF formula is satisfied if at least one of its cubes is satisfied

With
$$\omega(x_1) = \omega(x_3) = 1$$
 and $\omega(x_2) = \omega(x_4) = 0$

► $(x_1 \land x_2) \lor (x_3 \land x_4)$ is not satisfied

With
$$\omega(x_1) = \omega(x_2) = 1$$
 and $\omega(x_3) = \omega(x_4) = 0$

 \blacktriangleright $(x_1 \land x_2) \lor (x_3 \land x_4)$ is satisfied