Thm: Suppose K/F is a field extension and $\alpha \in K$ is algebraic over F, and that I have degree n. Then $CF(\alpha):FJ=n$ and $\{1/\alpha,\alpha^2,...,\alpha^{n-1}\}$ is an F-basis for $F(\alpha)$.

Pf: First, deg $f_{q}=n \Rightarrow \{l_{1}x, x^{2},..., x^{n-1}\}$ is f-lin.ind. $\Rightarrow (F(a): F) \geq n$.

Next, V= [ao+a, a+aza2+...+an-12n-1; a; EF]
is closed under;

i) Subtraction

ii) Multiplication, by the dyirran algorithm. Suppose 9,192k FCxJ, degen.

· It deg g, «deg gz « n then g, (a) gz/«) EV. V

• It deg g, + deg $g_z \ge n$ then write $g_1g_z = p(x)f_x(x) + r(x)$, where $r(x) \ge 0$ Then $g_1(x)g_2(x) = p(x)f_x(x) + r(x)$ $= r(x) \in V$.

· laking inverses: Suppose $g(x) \in F(x) \setminus \{0\}$, deg $g \in N$.

Write $I = \{n\} \setminus \{p\} \setminus \{x\} + \{x\} \setminus \{x\} \setminus$ that deguen. Then $i=u(x)g(x) \Rightarrow u(x)=g(x)^{-1}$ (and $u(x)\in V$). Therefore, Y is a field which contons , and $CY:FJ \leq N \Rightarrow Y=F(x)$ and CF(x):FJ=N. MSand box: la) what is Fz(vz)? Notwal to Hunk of My as the smallest extension of Fz where x2-2 has a roof. Q1) To x2-2 isoca over Fz? Yes, because it is a degree Z poly.

In roots. $P(x) = x^2 - 2$ So $F_{S}(x^2) = F_{S}(x^2)/(x^2 - 2)$ $F_{S}(x^2) = F_{S}(x^2)$ and $F_{S}(x^2) : F_{S} = 2$.

b) what is #7 (12)?

Be curcful: x2-2=(x-3)(x+3), 80 "5" EFF7, and F7(5)=F7.

Thm (Kroneuker++): Suppose F is a Field, FEFCX]
is iired, of degree n, and & is a root of f in some
extension of F. Then:

i) F(x) = F(x)/(f)

ii) The map $g \in (f) \mapsto g(x)$ from $F(x)/(f) \rightarrow F(x)$ is

on isoverphism, and

iii) { [| x | x², ..., x^-1 } is an F-busis for F(x).

Similarly: If F is a field, h6F(x) is irred, degh=n

then (FCx)(h): F)=n and

[[x,x2,...,x~] is on f-boss for F(x)/m).