«Иерархическая кластеризация базы данных предварительно посчитанных сигналов для решения параметрической обратной задачи рассеяния света»

Автор — студент Мулюков А.Р.¹² Науч. Рук. — с.н.с., к.ф.-м. н. Юркин М.А. ¹²

¹ Новосибирский государственный университет,

² ИХКГ СО РАН, лаб.ЦиБ

План доклада

- 1. Общее описание обратной задачи
- 2. Новый алгорим
- 3. Реализация
- 4. Полученные результаты
- 5. Заключение

МНСК - Новосибирск 2020

Сканирующий проточный цитометр

О технологии:

- Позволяет измерять подробный сигнал от каждой клетки (индикатриса светорассеяния)
- Можно определять характеристики клеток (размер, показатель преломления, и т.д.)
- Потенциально быстрая диагностика различных заболеваний
- Измеряет ~100 клеток в минуту

МНСК - Новосибирск 2020

Обратная и прямая задачи

От случайной базы данных в \mathbb{R}^4 к \mathbb{R}^{61}

Поиск ближайшей и оценка точности

- Находим наименьшее расстояние d находим решение задачи (наиболее вероятные характеристики клетки)
- Все просмотренные расстояния d можно использовать для оценки точности решения

Модификация оригинального метода

Оригинальный метод:

- Сравниваем каждый теоретический элемент с измеренным
- Находим среди них элемент с наименьшим расстонием l_2
- Используем полученные расстояния для вычисления статистической оценки полученного решения.

Проблема:

• Скорость решения задачи зависит линейно от размера базы данных (а большой размер требуется для точного решения)

Предлагается ускорить перебор теоретических элементов. Для этого:

- Строим иерархическую структуру (дерево) из имеющихся элементов
- Отбрасываем часть точек целыми кластерами на основе одного сравнения
- Предполагаемое ускорение до $\log n$, где n размер базы данных. При этом ближайший элемент находится точно.

МНСК - Новосибирск 2020

Построение иерархической структуры (бинарное дерево)

Выбранная координата: $\underset{i}{\operatorname{argmax}} K_i$

max и min расстояния до кластера

Предварительные тесты

- 1. Тесты эффективности алгоритма с помощью Python:
- Сравнение количества необходимых сравнений и реальной скорости работы.
- Использовался код открытой библиотеки sklearn

Почему не использовать сразу код из Python?

- Он не сохраняет отброшенные расстояния
- Нет возможности гибко настраивать критерии отброса кластеров
- Он не оформлен в формате dll, для работы в LabView (в котором находятся существующие программы для обработки экспериментов)

Реализация: Код для LabView

- 2. Рабочий код ускорения для LabView
- Код на C++ (в Microsoft Visual Studio)
- Оформлен в виде Dynamic Link Library (DLL)
- Код встраивается как функции в среду LabView
- Отдельная функция для построения дерева и отдельная функция для его обхода
- Параметры для настройки глубины обхода дерева (для более точных статистических оценок)

Количество сравнений от размера базы данных

• Полученное количество сравнений имеет ускорение, аппроксимируемое функцией $\sqrt{\mathbf{x}}$

Реальная скорость работы

• Несмотря на некую зашумленность, результаты времени работы стабильны

Сравнение ускорения

- Реальное ускорение чуть ниже ожидаемого
- Возможно из-за проблем организации памяти

Оценка уровня ошибки

• Различия статистических оценок для оригинального алгоритма и модифицированного от уровня агресивности отброса кластера k. Используется: $kD_{\max} < R_{\text{new}}$.

Заключение

- Алгоритм помогает получить значительное ускорение работы классического метода решения задачи (примерно на порядок для текущей базы данных)
- Скорость обработки порядка 5 мс режим онлайн
- Ускорение растет в зависимости от размера базы данных
- Предположительно, на реальное ускорение в значительной степени влияет организация работы с памятью компьютера
- Ближайшая индикатриса совпадает и имеют небольшую погрешность в вычислении статистических оценок полученного решения (до 2.5% для оценки среднего, до 15% для оценки стандартного отклонения)
- Необходимо проработать вопрос выбора типа дерева, провести тестирование на разных базах данных (для разных задач).

«Иерархическая кластеризация базы данных предварительно посчитанных сигналов для решения параметрической обратной задачи рассеяния света»

Автор – студент Мулюков А.Р. 12 Науч. Рук. – с.н.с., к.ф.-м. н. Юркин М.А. 12 1 Новосибирский государственный университет, 2 ИХКГ СО РАН, лаб.ЦиБ

Спасибо за внимание.

