Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа Р3340

Лабораторная работа №8 ЭКСПЕРИМЕНТАЛЬНОЕ ПОСТРОЕНИЕ ОБЛАСТЕЙ УСТОЙЧИВОСТИ ЛИНЕЙНОЙ СИСТЕМЫ НА ПЛОСКОСТИ ДВУХ ПАРАМЕТРОВ

Вариант - 11

Выполнил		<u>М.Ш</u> цлия, и.о.)	(подпись)				
Проверил	(фам	илия, и.о.)	(подпись)				
""20.	_г. Сан	нкт-Петербург,	20 г.				
Работа выполнена	с оценкой						
Дата защиты "		20_r.					

Цель работы. Ознакомление с экспериментальными методами построения областей устойчивости линейных динамических систем и изучение влияния на устойчивость системы ее параметров

1. Собрать схему моделирования, установив значение постоянной времени

Рисунок 1- Схема моделирования

Рисунок 2- Графика неустойчивости САУ

Рисунок 3- Графика устойчивости САУ

Рисунок 4- Графика САУ на границе устойчивости

2. Построим экспериментальную границу устойчивости

T2	0.1	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
K	10.3	2.3	1.3	1	0.83	0.73	0.67	0.62	0.58	0.55	0.53

3. Теоретический расчет границы устойчивости с использованием критерия Гурвица.

Передаточная функция
$$W(s) = \frac{(3s+1)(T_2 s+1)s}{(3s+1)(T_2 s+1)s+k}$$

$$(3s+1)(T_2 s+1)s+k=0$$

 $\Leftrightarrow 3T_2 s^3 + (3+T_2)s^2 + s + k = 0$

Матрица Гурвицы
$$A = \begin{pmatrix} 3+T_2 & k \\ 3T_2 & 1 \end{pmatrix}$$

САУ устойчивость на границе когда

$$\Delta_A = (3 + T_2) - 3T_2 k = 0$$

$$\Rightarrow k = \frac{3 + T_2}{3T_2}$$

Рисунок 5- Графика границы устойчивости САУ

Вывод: При проектировании систем большое значение имеет определение областей устойчивости в плоскости реальных параметров, присущих системе. Система является устойчивой ,соответственно, множество значений параметров находится ниже границы устойчивости (при $K \leq \frac{3+T_2}{3T_2}$)