COEN 240 MACHINE LEARNING HOMEWROK THREE

NAME: BOSEN YANG STUDENT ID: 1589880

PROBLEM ONE

RECOGNITION ACCURACY RATE: 0.9262

11200011212011 7100010101 101121 010202											
THE CONFUSION MATRIX:											
[[957	0	0	4	1	10	4	3	1	0]	
[0	1110	5	2	0	2	3	2	11	0]	
[6	10	929	15	10	3	13	10	32	4]	
[4	1	16	923	1	24	2	10	20	9]	
[1	3	7	3	920	0	7	4	6	31]	
[9	2	3	35	10	777	15	7	30	4]	
[8	3	8	2	6	15	913	2	1	0]	
[1	7	23	7	6	1	0	949	2	32]	
[9	11	6	22	7	29	13	9	856	12]	
[9	8	1	9	21	7	0	20	6	928]]	

PROBLEM TWO:

RECOGNITION ACCURACY RATE: 0.9793

IHI	E CUN	NLO2T(JN MAI	KTX:						
[[968	1	1	0	2	1	3	1	1	2]
[0	1130	1	0	0	0	2	0	2	0]
[4	1	1010	2	1	0	2	4	8	0]
[0	0	0	988	1	2	0	6	3	10]
[1	0	3	0	967	0	3	1	1	6]
[3	2	0	9	1	859	10	2	5	1]
[2	2	1	1	2	1	949	0	0	0]
[1	10	8	1	1	0	0	993	1	13]
[4	0	1	5	6	2	2	4	939	11]
[2	2	0	2	6	2	1	4	0	990]]

PROBLEM THREE

PROBLEM 3a.
$$S_{k} = \frac{\partial E_{n}}{\partial a_{nk}} = \frac{\partial E_{n}}{\partial y_{nk}} \cdot \frac{\partial y_{nk}}{\partial a_{nk}}$$

$$= \frac{\partial \frac{1}{2} \sum_{t=1}^{k} (y_{nt} - t_{nt})^{2}}{\partial y_{nk}} \cdot \frac{\partial G(a_{nk})}{\partial a_{nk}}$$

$$= \frac{\partial \frac{1}{2} (y_{nk} - t_{nk})^{2}}{\partial y_{nk}} \cdot (G(a_{nk})(1 - G(a_{nk})))$$

$$= (y_{nk} - t_{nk}) \cdot y_{nk} \cdot (1 - y_{nk})$$

PROBLEM 3b.
$$S_{j} = \frac{\partial E_{n}}{\partial \alpha j} = \sum_{k} \frac{\partial E_{n}}{\partial \alpha k} \cdot \frac{\partial \alpha_{k}}{\partial \alpha_{j}}$$

$$= \sum_{k} \delta_{k} \cdot w_{kj} \cdot h'(\alpha_{j})$$

$$= h'(\alpha_{j}) \cdot \sum_{k} S_{k} \cdot w_{kj}$$

$$= (1 - h'(\alpha_{j})) \cdot \sum_{k} S_{k} \cdot w_{kj}$$

take the expression of çk into the final expression

ATTACHMENTS

```
PROBLEM ONE CODE
Created on Sun Jan 26 17:12:27 2020
@author: burson
import tensorflow as tf
import numpy as np
import time
from sklearn.linear model import LogisticRegression
from sklearn.metrics import confusion matrix
mnist = tf.keras.datasets.mnist
# DATASET ACQUISITION
(x traino, y train),(x testo, y test) = mnist.load data()
x_{train} = np.reshape(x_{traino},(60000,28*28))
x test = np.reshape(x testo,(10000,28*28))
x train, x test = x train / 255.0, x test / 255.0
# MODEL CREATION
logreg = LogisticRegression(solver='saga', multi class='multinomial', max iter = 100, verbose=2)
# DATA CHECKING
#import matplotlib.pyplot as plt
#plt.figure(figsize=(20,4))
#for index, (image, label) in enumerate(zip(x train[30:35], y train[30:35])):
\# plt.subplot(1, 5, index + 1)
# plt.imshow(np.reshape(image, (28,28)), cmap=plt.cm.gray)
# plt.title('Training: %i\n' % label, fontsize = 20)
# MODEL FITTING
logreg.fit(x train, y train)
# MODEL EVALUATION
time.sleep(0.2)
predictions = logreg.predict(x test).reshape(-1, 1)
y_test = y_test.reshape(-1, 1)
num test = x test.shape[0]
num match = np.count nonzero(np.equal(predictions, y test))
```

```
score = num match/num test
print("\n\nRECOGNITION ACCURACY RATE: %.4f" % (score))
print("THE CONFUSION MATRIX: ")
cm = confusion matrix(y test, predictions)
print(cm)
PROBLEM TWO CODE
Created on Sun Jan 26 17:41:40 2020
@author: Burson
import numpy as np
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense
from sklearn.metrics import confusion_matrix
mnist = tf.keras.datasets.mnist
# DATASET ACQUISITION
(x train, y train),(x test, y test) = mnist.load data()
x_{train} = x_{train.reshape}((60000, 28*28))
x_{test} = x_{test.reshape}((10000, 28*28))
x_train, x_test = x_train / 255.0, x_test / 255.0
# MODEL CREATION
model = Sequential()
model.add(Dense(512, activation="relu", input dim=28*28))
model.add(Dense(10, activation="softmax"))
model.summary()
# MODEL COMPILATION
model.compile(optimizer="adam",
       loss="sparse categorical crossentropy",
       metrics=["accuracy"])
# MODEL FITTING
model.fit(x train, y train, epochs=5, batch size=50, verbose=2)
```

```
test_loss, test_acc = model.evaluate(x_train, y_train)
print("\n\nTRAINING SET ACCURACY RATE: %.4f" % (test_acc))

# MODEL EVALUATION
predictions_mat = model.predict(x_test)
predictions = np.argmax(predictions_mat, axis=1)
num_test = x_test.shape[0]
num_match = np.count_nonzero(np.equal(predictions, y_test))
score = num_match/num_test
print("\n\nRECOGNITION ACCURACY RATE: %.4f" % (score))
print("THE CONFUSION MATRIX: ")
cm = confusion_matrix(y_test, predictions)
print(cm)
```