Санкт-Петербургский политехнический университет Петра Великого Физико-механический институт Высшая школа прикладной математики и вычислительной физики

Лабораторная работа

по дисциплине «Анализ данных с интервальной неопределенностью» на тему «Обработка постоянной. Применение меры совместности к анализу данных»

Выполнил			
студент гр. 5040102/10201	Гусаров Д.А.	/	/
Руководитель			
доцент, к.фм.н.	Баженов А.Н.	/	/

Санкт-Петербург

Постановка задачи

Проводится исследование из области солнечной энергетики.

Калибровка датчика ФП2 производится по эталону ФП1. Зависимость между квантовыми эффективностями датчиков предполагается постоянной для каждой пары наборов измерений

$$QE_1 = \frac{X_1}{X_2} \cdot QE_2 \tag{1}$$

 QE_1 , QE_2 — эталонная эффективность эталонного и исследуемого датчика, X_1 , X_2 , или $\{x_{1i}\}_{i=1}^{200}$, $\{x_{2i}\}_{i=1}^{200}$ — измеренные мощности. Данные датчиков находятся в файлах "Канал 1_700nm_0.03.csv" и "Канал 2_700nm_0.03.csv".

Требуется определить параметры постоянной величины на основе двух выборок $\{x_{1i}\}_{i=1}^{200}, \{x_{2i}\}_{i=1}^{200}$, в частности коэффициент калибровки

$$R_{12} = \frac{X_1}{X_2} \tag{2}$$

при помощи линейной регрессии, интервальных данных и коэффициента Жаккара.

Теория

Один из распространенных способов получения интервальных результатов в первичных измерениях — это «обинтерваливание» точечных значений, когда к точечному базовому значению x_{1i} , которое считывается по показаниям измерительного прибора прибавляется интервал погрешности ε

$$X_{1i} = x_{1i} + [-\varepsilon, +\varepsilon] \tag{3}$$

В конкретных измерениях $\varepsilon=10^{-4} {\rm MB}.$ Согласно терминологии интервального анализа, рассматриваемая выборка — это вектор интервалов, или интервальный вектор $X_1=\{X_{1i}\}_{i=1}^{200}$

Построение интервалов будет происходить следующим образом:

Вначале построим линейную регрессию по известному методу наименьших квадратов в виде $L_1(n) = A_1 \cdot n + B_1$, где n – номер измерения; $L_1(n)$ – прямая, аппроксимирующая экспериментальные измерения $\{x_{1i}\}_{i=1}^{200}$. Отклонение можно вычислить как

$$\varepsilon_{1n} = |x_{1n} - L_1(n)| \tag{4}$$

Если отдельные интервалы не заключают в себе линейную регрессию, к отклонение ε_{1n} стоит растянуть, домножить на величину w_n , минимально возможную, для того, чтобы интервал коснулся линии регрессии.

Интервальные данные представляются в виде:

$$X_{1n} = x_{1n} + \left[-\tilde{\varepsilon}_n, +\tilde{\varepsilon}_n \right] \tag{5}$$

или кратко X_1 — множество всех интервальных данных, построенных по измерениям датчика $\Phi\Pi 1,\ ilde{\varepsilon}_n = w_n \cdot \varepsilon, w_n \geq 1.$

Чтобы сделать интервальную величину более константной и в дальнейшем оценить совместность двух выборок экспериментальных измерений, следует вычесть из интервальных данных линейную зависимость (фактически из концов интервала), получим:

$$X_1' \leftarrow X_1 - A_1 \cdot n \tag{6}$$

Для базовых значений x_{2i} выполняются аналогичные вычисления. Находится линейная зависимость $L_2(n) = A_2 \cdot n + B_2$, интервалы X_{2i} по формуле (5) и обработанные интервалы X_2' по формуле (6) с соответствующими индексами.

В различных областях анализа данных используют различные меры сходства множеств, иными словами, коэффициенты сходства. В данной работе используется мультимера Жаккакра, то есть ее модификация для интервальных данных:

$$JK = \frac{wid(\cap y_i)}{wid(\cup y_i)} \tag{7}$$

Мера Жаккара $-1 \le JK \le 1$ численно характеризует меру совместности интервальных данных. В качестве y_i рассматриваются интервальные данные объединенной выборки $X' = \{X_1', RX_2'\}$. JK — число, получаемое в результате деления пересечения интервалов на их объединение. Заметим, что если при подборе калибровочного множителя R получается JK > 0, то выборка совместна (имеет положительную меру совместности). Поиск оптимального R_{opt} можно представить так:

$$R_{opt} = arg\left\{\max_{R} JK(X')\right\} \tag{8}$$

 R_{opt} — это аргумент, у которого реализуется данный функционал, максимальная оценка коэффициента калибровки R_{12} из формулы (2). Внешнюю оценку для R_{opt} можно найти разными способами, проще всего путем деления интервалов двух выборок $R=\frac{X_1}{X_2}$, в результате чего получим интервал внешней оценки $[\underline{R},\overline{R}]$ — такой интервал, в котором можно найти R_{opt} , перебирая R с некоторым шагом и вычисляя функционал (8). Интервал, в пределах которого наблюдается JK>0 является внутренней оценкой коэффициента R_{opt} .

Результаты

Программный код написан на языке программирования Python с использованием библиотек MatPlotLib, NumPy и Sklearn.

На рис.1 представлены экспериментальные данные, измеренные двумя датчиками, на рис.2 и рис.3 – те же данные, но в другом масштабе. На рис. 4 и 5 показаны построенные согласно описанной выше теории интервальные данные и линейная регрессия с коэффициентами

$$A_1 \approx 5.0867 \cdot 10^{-5}, B_1 \approx 0.04928, A_2 \approx 5.3844 \cdot 10^{-5}, B_2 \approx 0.0529.$$

Рис. 1. Две выборки экспериментальных данных, измеренным датчиками

1. Измеренные данные:

Рис. 2. Данные, измеренные датчиком ФП1

Рис. 3. Данные, измеренные датчиком ФП2

2. Интервальные данные:

Рис. 4. Интервальные данные первой выборки и линейная регрессия

Рис. 5. Интервальные данные второй выборки и линейная регрессия

На рис. 6 визуализирован пример совместных выборок X_1' , RX_2' , что выполняется при R, обеспечивающим JK>0.

Рис. 6. Обработанные интервальные данные совместной выборки при R, обеспечивающем совместность выборок

3. Мультимера Жаккара:

На рис. 7 показана зависимость коэффициента Жаккара от коэффициента калибровки R. Согласно внешней оценке оптимальное значение R_{opt} осуществлялся в диапазоне $\left[\underline{R},\overline{R}\right]\approx [0.92457,0.95941]$. Как интервал можно представить $R_{12}\approx [0.92927,0.93275]$. В нашем эксперименте, максимум коэффициента Жаккара имеет значение 0.026.

Это связано с наличием различных погрешностей, которые на практике невозможно устранить, но несмотря на их присутствие, поведение коэффициента Жаккара позволило найти оптимальный калибробочный коэффициент $R_{opt} \approx 0.93101$.

Таким образом, можно сказать, что область, где $JK(R_{12}) \geq 0$ является оценкой искомой величины R_{12} .

Рис. 7. Значения коэффициента Жаккара от коэффициента калибровки

4. Нахождение мод выборок.

Для исходных интервальных данных (до вычитания тренда):

Рис. 8. Мода выборки 1

Рис. 9. Мода выборки 2

Для данных, полученных после вычитания дрейфовой компоненты:

Рис. 10. Мода выборки 1

Рис. 11. Мода выборки 2

Ссылка на GitHub с реализацией

https://github.com/dimerf99/interval_analysis/tree/main/lab_1

Файлы данных:

Канал 1_700nm_0.03.csv

Канал 2_700nm_0.03.csv

Коэффициенты линейной регрессии

№ выборки	A_i	B_i
1	5.0867e-05	0.0492885
2	5.3843e-05	0.0529391