Suites arithmétiques et géométriques

Mathématiques - Première spécialité

1. Suites arithmétiques

a. Définition

$$\forall n \in \mathbb{N}, u_{n+1} = u_n + r$$

 $\forall n \in \mathbb{N}, u_n = u_p + (n-p) \times r$, pour tout $p \in \mathbb{N}$
Cas particulier: $\forall n \in \mathbb{N}, u_n = u_0 + nr$

b. Somme des termes consécutifs

On considère $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r et de premier terme u_0 .

$$S_n = u_0 + u_1 + u_2 + \dots + u_n = \frac{(n+1)(u_0 + u_n)}{2}$$

c. Variations

On considère (u_n) une suite arithmétique de raison r.

- Si r > 1 alors (u_n) est strictement croissante
- Si r = 0 alors (u_n) est constante
- Si r < 0 alors (u_n) est strictement décroissante

2. Suites géométriques

a. Définition

$$\forall n \in \mathbb{N}, u_{n+1} = q \times u_n$$

 $\forall n \in \mathbb{N}, u_n = u_p \times q^{n-p}, \text{ pour tout } p \in \mathbb{N}$
Cas particulier: $\forall n \in \mathbb{N}, u_n = u_0 \times q^n$

b. Somme des termes consécutifs

On considère $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q et de premier terme u_0 .

$$S_n = u_0 + u_1 + u_2 + \dots + u_n = u_0 \times \frac{1 - q^{n+1}}{1 - q}$$

c. Variations

On considère $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q>0 et de premier terme u_0 .

Si $u_0 > 0$:

- Si 0 < q < 1 alors (u_n) est strictement décroissante
- Si q > 1 alors (u_n) est strictement croissante
- Si q = 1 alors (u_n) est constante égale à u_0

Si $u_0 < 0$:

- $\bullet \quad \text{Si } 0 < q < 1 \text{ alors } (u_n) \text{ est strictement croissante} \\$
- Si q > 1 alors (u_n) est strictement décroissante
- Si q = 1 alors (u_n) est constante égale à u_0

Si $u_0 = 0$ alors (u_n) est constante nulle.