Rappels

- Transport parallèl : X est parallèle le long de α si $\nabla_{\alpha'} X \equiv 0$
- Étant donné $X_0 \in T_{\alpha(0)}S\exists !X$ définis sur α et parallèle
- Géodésique : α géodésique si $\nabla_{\alpha'}\alpha' = 0$ (α' est parallèle le long de α)
- Vitesse constante car parallèle implique longeur constante
- En cooddonnées

$$\alpha(r) = p(u(t), v(t))$$

$$u'' + (u' \quad v') \begin{pmatrix} \Gamma^u_{uu} & \Gamma^u_{uv} \\ \Gamma^u_{uv} & \Gamma^u_{uv} \end{pmatrix} \begin{pmatrix} u' \\ v' \end{pmatrix} = 0$$

$$v'' + (u' \quad v') \begin{pmatrix} \Gamma^v_{uu} & \Gamma^v_{uv} \\ \Gamma^v_{vu} & \Gamma^v_{vv} \end{pmatrix} \begin{pmatrix} u' \\ v' \end{pmatrix} = 0$$

Théorème de Clairaut : Si α est une géodésique sur une surface de révolution alors $\exists C$ constante t.q. pour tout point de α ,

$$r\cos\varphi = C \tag{**}$$

Où r est la distance à l'axe et φ est l'angle entre $\alpha'(t)$ et le parallèl par $\alpha(t)$. Inversement, tout courbe α à vitesse constante qui satisfait (**) et n'est pas parallèle est une géodésique.

FIGURE 1 – Surface de révolution

$$p(s\theta) = \begin{pmatrix} \cos\theta x(s) \\ \sin\theta x(s) \\ z(s) \end{pmatrix}$$

$$I_{s\theta} = \begin{pmatrix} 1 & 0 \\ 0 & x^2 \end{pmatrix}$$

Les seuls symbols de Chritoffel non-nuls sont

$$\Gamma_s^{\theta} = \frac{x'(s)}{x(s)}$$
 $\Gamma_{\theta\theta}^s = -x(s)x'(s)$

Les équations géodésiques sont

$$S'' + (-x(s)x'(s))\theta'^2 = 0$$
(1)

$$\theta'' + 2\frac{x'(s)}{x(s)}s'\theta' = 0 (2)$$

$$(2) \iff \frac{\theta''}{\theta'} = -2\frac{x'(s)}{x(s)}s' \implies \ln \theta' = -2\ln(x(s)) + C \implies \theta' = \frac{C}{x^2} \implies x^2\theta' = C$$

Si $\alpha(t) = p(s(t), \theta(t))$ est une géodésique, alors $x^2\theta' = c$. α à une vitesse constante

$$\cos \varphi = \frac{\alpha' \cdot p_{\theta}}{\sqrt{\alpha' \cdot \alpha'} \sqrt{p_{\theta} \cdot p_{\theta}}} = \frac{(s'p_{s} + \theta'p_{\theta}) \cdot p_{\theta}}{v \cdot x} - \frac{\theta'x}{v'}$$

$$\cos \varphi = \frac{\theta' x}{v} = \frac{c}{xv} x \cos \varphi = \frac{c}{v} = c'$$

Pour l'autre directions, supposons que α est à vitesse constante v est que $r\cos\varphi=c$

$$r\cos\varphi = x\left(\frac{\theta'x^2}{v\cdot x}\right) = \frac{theta'x^2}{v} = C \implies \theta'x^2 = Cv \implies textl'quation2estsatisfaite$$

Il ne reste qu'à montrer que (1) est satisfaite

$$v^2 = \alpha' \cdot \alpha' = s'^2 + x(s)^2 \theta'^2 \implies - = 2s's" + 2s(s)x'(s)s'\theta'^2 + x(s)^2(2\theta'\theta")$$

$$0 = s's'' + xx's'\theta'^{2} + x^{2}\theta'\left(-2\frac{x'}{x}s'\theta'\right) = s'(s'' - xx'\theta'^{2})$$

Si α n'est pas parallèle $s' \neq 0$ alors $s''xx'\theta'^2 = 0 \implies (1)$ est satisfaite fonc α est une géodésique \blacksquare Application :

$$r\cos\varphi = \mathrm{const}$$

Initiallement $\cos \varphi = 1$

$$\implies const = r_0 \forall t > 0r > r_0 car cos \varphi < 1$$

FIGURE 2 – Exemple d'application

Courbure géodésique & et courbures normales

 α paramétré par longeur d'arc sur une surface S

 $T = \alpha'$

. . .

(Il a effacé le tableau :()