Theory of Statistical Learning Part II

Damien Garreau

Université Côte d'Azur

2021

Outline

Linear predictors
 Linear classification
 Linear regression
 Ridge regression
 Polynomial regression
 Logistic regression

2. Tree classifiers Partition rules

3. Boosting

1. Linear predictors

1.1. Linear classification

Linear functions

- $ightharpoonup \mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \mathbb{R}$
- ► thus $x_i = (x_{i,1}, x_{i,2}, \dots, x_{i,d})^{\top}$
- we consider no bias term (otherwise affine):

$$\{h: x \mapsto w^{\top}x, w \in \mathbb{R}^d\}.$$

▶ **Reminder:** given two vectors $u, v \in \mathbb{R}^d$,

$$\langle u, v \rangle = u^{\top} v = \sum_{j=1}^{d} u_i v_i.$$

- **b** binary classification: 0-1 loss, $\mathcal{Y} = \{-1, +1\}$
- ▶ **Important:** compose h with $\phi : \mathbb{R} \to \mathcal{Y}$ (typically the sign)

Halfspaces

thus our function class is

$$\mathcal{H} = \{ x \mapsto \operatorname{sign}(w^{\top} x), w \in \mathbb{R}^d \}.$$

- ▶ it is possible to show that $VC(\mathcal{H}) = d + 1$
- **Consequence:** \mathcal{H} is PAC learnable with sample complexity

$$\Omega\left(rac{d+\log(1/\delta)}{arepsilon}
ight)$$
 .

- ▶ Important assumption: data is linearly separable
- ▶ that is, there is a $w^* \in \mathbb{R}^d$ such that

$$y_i = \operatorname{sign}(\langle w^*, x_i \rangle) \quad \forall 1 \leq i \leq n.$$

Linear programming

► Empirical risk minimization: recall that we are looking for w such that

$$\hat{\mathcal{R}}_{\mathcal{S}}(w) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{y_i \neq \operatorname{sign}(w^{\top} x_i)}$$

is minimal

- Question: how to solve this?
- we want $y_i = \operatorname{sign}(w^\top x_i)$ for all $1 \le i \le n$
- equivalent formulation: $y_i \langle w, x_i \rangle > 0$
- \blacktriangleright we know that there is a vector that satisfies this condition (w^*)
- let us set $\gamma = \min_i \{ y_i \langle w^*, x_i \rangle \}$ and $\overline{w} = w^* / \gamma$
- we have shown that there is a vector such that $y_i\langle \overline{w}, x_i \rangle \geq 1$ for any $1 \leq i \leq n$ (and it is an ERM)

Linear programming, ctd.

▶ define the matrix $A \in \mathbb{R}^{n \times d}$ such that

$$A_{i,j} = y_i x_{i,j}$$
.

- ▶ Intuition: observations × labels
- ightharpoonup remember that we have the ± 1 label convention
- ightharpoonup define $v = (1, \dots, 1)^{\top} \in \mathbb{R}^n$
- ▶ then we can rewrite the above problem as

maximize
$$\langle u, w \rangle$$
 subject to $Aw \leq v$,

with u = 0 for instance

- we call this sort of problems linear programs¹
- solvers readily available, e.g., scipy.optimize.linprog if you use Python

¹Boyd, Vandenberghe, Convex optimization, Cambridge University Press, 2004

The perceptron

- ► another possibility: the *perceptron*²
- ▶ **Idea:** iterative algorithm that constructs $w^{(1)}, w^{(2)}, \dots, w^{(T)}$
- update rule: at each step, find i that is misclassified and set

$$w^{(t+1)} = w^{(t)} + y_i x_i$$
.

- **Question:** why does it work?
- pushes w in the right direction:

$$y_i \langle w^{(t+1)}, x_i \rangle = y_i \langle w^{(t)} + y_i x_i, x_i \rangle = y_i \langle w^{(t)}, x_i \rangle + ||x_i||^2$$

remember, we want $y_i \langle w, x_i \rangle > 0$ for all i

²Rosenblatt, *The perceptron, a perceiving and recognizing automaton*, tech report, 1957

Exercise

Exercise: Of course, one does not have to use the squared loss. Instead, we may prefer to use

$$\ell(y,y') = |y-y'| .$$

1. show that, for any $a \in \mathbb{R}$,

$$|c| = \min_{a \geq 0} a$$
 subject to $c \leq a$ and $c \geq -a$.

- 2. use the previous question to show that ERM with the absolute value loss function is equivalent to minimizing the linear function $\sum_{i=1}^{n} s_i$, where the s_i satisfy linear constraints
- 3. write it in matrix form, that is, find $A \in \mathbb{R}^{2n \times (n+d)}$, $v \in \mathbb{R}^{d+n}$, and $b \in \mathbb{R}^{2n}$ such that the LP can be written

minimize
$$c^{\top}v$$
 subject to $Av \leq b$.

1.2. Linear regression

Least squares

▶ regression ⇒ squared-loss function

$$\ell(y,y')=(y-y')^2.$$

still looking at linear functions:

$$\mathcal{H} = \{h : x \mapsto \langle w, x \rangle \text{ s.t. } w \in \mathbb{R}^d\}.$$

empirical risk in this context:

$$\hat{\mathcal{R}}_{S}(h) = \frac{1}{n} \sum_{i=1}^{n} (w^{\top} x_{i} - y_{i})^{2} = F(w).$$

- also called mean squared error
- ▶ empirical risk minimization: we want to minimize $w \mapsto F(w)$ with respect to $w \in \mathbb{R}^d$
- F is a convex, smooth function

Least squares, ctd.

▶ let us compute the gradient of *F*:

$$\frac{\partial F}{\partial w_j}(w) = \frac{1}{n} \sum_{i=1}^n \frac{\partial}{\partial w_j} (w^\top x_i - y_i)^2$$
$$= \frac{1}{n} \sum_{i=1}^n 2 \frac{\partial}{\partial w_j} w^\top x_i (w^\top x_i - y_i)$$
$$\frac{\partial F}{\partial w_j}(w) = \frac{2}{n} \sum_{i=1}^n (w^\top x_i - y_i) x_{i,j}.$$

Least squares, ctd.

we can rewrite it, define

$$A = \sum_{i=1}^n x_i x_i^{ op}$$
 and $b = \sum_{i=1}^n y_i x_i$,

then solving $\nabla F(w) = 0$ is equivalent to

$$Aw = b$$
.

▶ if *A* is invertible, straightforward:

$$\hat{w} = A^{-1}b$$

what happens when A is not invertible?

Singular value decomposition

▶ since *A* is symmetric, it has an eigendecomposition

$$A = VDV^{\top}$$
,

with $D \in \mathbb{R}^d$ diagonal and V orthonormal

▶ define *D*⁺ such that

$$D_{i,i}^{+} = 0$$
 if $D_{i,i} = 0$ and $D_{i,i}^{+} = \frac{1}{D_{i,i}}$ otherwise.

- ightharpoonup define $A^+ = VD^+V^\top$
- ▶ then we set

$$\hat{w} = A^+ b$$
.

Singular value decomposition, ctd.

- why did we do that?
- \triangleright let v_i denote the *i*th column of V, then

$$A\hat{w} = AA^+b$$
 (definition of \hat{w})
 $= VDV^\top VD^+V^\top b$ (definition of A^+)
 $= VDD^+V^\top b$ (V is orthonormal)
 $A\hat{w} = \sum_{i:D_{i,i}\neq 0} v_i v_i^\top b$.

- ▶ in definitive, $A\hat{w}$ is the projection of b onto the span of v_i such that $D_{i,i} \neq 0$
- ▶ since the span of these v_i is the span of the x_i and b is in the linear span of the x_i , we have $A\hat{w} = b$

Recap

- What happens when we invoke sklearn.linear_model.LinearRegression with default parameters?
- ▶ fit_intercept is True → assumes that the data is not centered (our maths are not totally accurate)
- $lackbox{ normalize is False}
 ightarrow ext{we are responsible for the normalization of our data}$
- behind the scenes, calls scipy.linalg.lstsq when fitting, which itself calls LAPACK (Linear Algebra PACKage)³
- ► LAPACK is coded in Fortran90

³http://www.netlib.org/lapack/

1.3. Ridge regression

Ridge regression

same hypothesis class: linear functions

$$\mathcal{H} = \{ h : x \mapsto w^{\top} x, w \in \mathbb{R}^d \}$$

squared loss:

$$\ell(y,y')=(y-y')^2.$$

▶ **Idea:** regularization:

minimize
$$\left\{\frac{1}{n}\sum_{i=1}^{n}(y_i - w^{\top}x_i)^2 + \lambda \|w\|^2\right\}$$
,

with $\|u\|^2 = u_1^2 + \cdots + u_d^2$ and $\lambda > 0$ a regularization parameter

Exercise

Exercise: Let $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^d \times \mathbb{R}$ be n given training samples. For any $w \in \mathbb{R}^d$, set

$$F(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - w^{\top} x_i)^2 + \lambda \|w\|^2.$$

Notice that F is a convex smooth function and find its minimizer \hat{w} in closed-form. Recall that we defined

$$A = \sum_{i=1}^{n} x_i x_i^{\top}$$
 and $b = \sum_{i=1}^{n} y_i x_i$.

Recap

- ► What happens when we invoke sklearn.linear_model.Ridge with default settings?
- ▶ alpha = $1 \rightarrow \lambda = 1/n$ with our notation, barely any regularization if n large
- ▶ fit_intercept is True → does not consider centered data (so our analysis is not entirely accurate)
- ightharpoonup normalize is False ightharpoonup we decide whether we normalize our data
- Solver is auto → sklearn will decide how to solve the minimization problem depending on the size of the data: the solution could be not exact!
- ightharpoonup tol tolerance threshold on the residuals

1.4. Polynomial regression

Polynomial regression

- ► linear regression is a powerful tool, especially because we can transform the inputs
- **Example:** polynomial regression in \mathbb{R}
- ▶ inputs $x_1, \ldots, x_n \in \mathbb{R}$
- define the mapping $\phi(x) = (1, x, x^2, \dots, x^p)^{\top}$
- then

$$\langle w, \phi(x) \rangle = w_0 + w_1 x + w_2 x^2 + \cdots + w_p x^p,$$

and we can find the best coefficients by linear regression

ightharpoonup numpy.polyfit ightharpoonup very handy when we want to fit univariate data

1.5. Logistic regression

Logistic regression

- regression task, but the output is $\mathcal{Y} = [0, 1]$: we predict the probability of belonging to class 1
- hypothesis class:

$$\mathcal{H} = \{ x \mapsto \phi(\langle w, x \rangle), w \in \mathbb{R}^d \},\,$$

with ϕ the *logistic function* (aka *sigmoid* function)

$$\phi(z) = \frac{1}{1 + \mathrm{e}^{-z}} \,.$$

► logistic loss:

$$\ell(y,y') = \frac{-1}{2}(1+y)\log y' + \frac{1}{2}(1-y)\log(1-y').$$

Logistic function

Figure: the logistic function $\sigma: t \mapsto 1/(1+e^{-t})$.

Exercise

Exercise: show that empirical risk minimization with the logistic loss is equivalent to minimizing

$$F(w) = \sum_{i=1}^{n} \log(1 + \exp(-y_i \langle w, x_i \rangle)).$$

Is F a convex function of w? Compute the gradient of F with respect to w. Can you solve $\nabla F(w) = 0$?

Recap

- ► What happens when we call sklearn.linear_model.LogisticRegression?
- ▶ penalty is $\ell_2 \rightarrow$ there is regularization by default! (not much though, C=1)
- ▶ fit_intercept is True → again, our maths are not entirely accurate
- lackbox solver is liblinear ightarrow since there is no closed-form, a solver will be used
- ▶ liblinear uses coordinate descent
- will default soon to lbfgs (Limited-memory Broyden-Fletcher-Goldfarb-Shanno)
- do not worry too much about the solvers, just change if you see that it is not converging

2. Tree classifiers

2.1. Partition rules

Introduction

- ightharpoonup let $\mathcal{X}=\mathbb{R}^d$ and $\mathcal{Y}=\mathbb{R}$
- in this section, we consider partition-based classifiers:

$$\mathcal{H} = \left\{ h : x \mapsto \sum_{j=1}^{p} h_{j} \mathbb{1}_{x \in A_{j}} \right\},\,$$

where $a_i \in \mathbb{R}$ and A_1, \ldots, A_p form a partition of the space

that is,

$$A_1 \cup \cdots \cup A_p = \mathcal{X}$$
 and $A_i \cap A_j = \emptyset \forall i \neq j$.

- ightharpoonup the A_i s are often called *cells*
- \triangleright generally, for practical reasons the A_i s are rectangles

ERM for partition rules

- assume that the partition is fixed
- regression with squared loss, then the ERM rule gives

$$h_j = \frac{1}{|i \text{ s.t. } i \in A_j|} \sum_{i \in A_j} x_i,$$

that is the average of the observations on each cell

- ▶ classification ⇒ majority vote
- ▶ thus ERM \Leftrightarrow finding the best partition (for a fixed p)
- **Problem:** this is computationally very hard! p^n possibilities to compare
- even if we restrict ourselves to rectangles, intractable

Trees

- ightharpoonup one possible solution: start from ${\cal X}$ and split iteratively
- we obtain a tree-like structure
- another advantage in doing so: root the new data efficiently
- ▶ Question: how do we make the splits?
- **general answer:** take an heuristic that makes sense
- ightharpoonup each heuristic yields a different algorithm, completed with stopping criterion (do a split only if gain greater than γ)
- **Notation:** I current node, I_L (resp. I_R) left (resp. right) node after the split
- **Note:** we focus on classification $(\mathcal{Y} = \{0,1\})$

ID3⁵ and C4.5

Definition: Let S be a finite set of points. Then we define the *entropy* of S by

$$H(S) = \sum_{y \in \mathcal{Y}} -p(y) \log_2 p(y),$$

where p(y) is the proportion of elements of S classified as y.

- easy to see that H(S) = 0 means that S is perfectly classified $(0 \log 0 = 0)$
- ► C4.5 criterion:⁴ find direction and split that maximizes

$$H(I) - H(I_L) - H(I_R)$$
.

⁴Quinlan, C4.5: Programs for Machine Learning, 1993

⁵Quinlan, Induction of decision trees, Machine Learning, 1986

CART

▶ later supplanted by CART trees⁶

Definition: Let S be a finite set of points. We define the Ginimpurity by

$$G(S) = \sum_{y \in \mathcal{Y}} p(y)(1 - p(y)).$$

► CART trees: find direction and split that minimizes

$$G(I) - G(I_L) - G(I_R)$$
.

▶ for regression, variance reduction criterion

⁶Breiman et al., Classification and Regression Trees, 1984

When to stop?

- usually, many direction to try: CART reduces to a random subset of directions
- ▶ also possible to specify *T* a max height for the tree
- other strategy: grow the trees to the full extent, and then pruning

Recap

- ▶ What happens by default when we invoke the function sklearn.tree.DecisionTreeClassifier? let us look at least at the main options
- ightharpoonup criterion is set to Gini ightharpoonup we are using CART trees
- lacktriangle splitter is set to best ightarrow looking at the best split at each step
- ▶ max_depth is None → splitting until leaves are pure or contain less than min_samples_split
- min_samples_split = 2
- max_features is None → no max number of features, log could be a reasonable choice if we have many features
- ightharpoonup max_leaf_nodes: None ightarrow many leaves, we could also restrict this
- \blacktriangleright min_impurity_decrease $=0\rightarrow$ continues to split even if very small gain

3. Boosting

Introduction

- ▶ Idea: aggregate many weak classifiers together, then majority voting
- **Examples:** linear classifier, trees,...