Esercitazione 2

Modelli di PL

- Problemi con valori assoluto
- Problemi di pianificazione multi-periodo

Si consideri il seguente problema

(P):
$$\min_{i=1}^{n} c_i \mid x_i \mid$$
$$Ax \ge b$$

dove $x = (x_1, x_2, ..., x_n), c_i \ge 0 \ \forall i = 1, ..., n.$

Oss. $|x_i|$ è il più piccolo numero z_i tale che $z_i \ge x_i$, $z_i \ge -x_i$.

$$\min \sum_{i=1}^{n} c_i z_i$$

(R):
$$Ax \ge b$$

 $z_i \ge x_i \quad i = 1,..., n$
 $z_i \ge -x_i \quad i = 1,..., n$

I problemi (P) e (R) non sono equivalenti, ma o sono entrambi inammissibili o ammettono lo stesso valore ottimo della funzione obiettivo.

Questo non è più vero se la condizione $c_i \ge 0$ non è soddisfatta.

Esempio

Si consideri il seguente problema

min
$$c^T x + d^T y$$

(P): $Ax + By \le b$
 $y_i = |x_i| \quad i = 1, ..., n$

dove B e d sono non negativi. Associando una variabile z_i al $|x_i|$ per ogni i = 1, ..., n, scriviamo il seguente problema

min
$$c^T x + d^T z$$

(R): $Ax + Bz \le b$
 $z_i \ge x_i$ $i = 1, ..., n$
 $z_i \ge -x_i$ $i = 1, ..., n$

I problemi (P) e (R) non sono equivalenti, ma se ammettono soluzione ottima, i valori ottimi della funzione obiettivo coincidono.

Infatti, supponiamo per assurdo che la soluzione ottima di (R), (x^*, z^*) , sia tale che $z_i^* = |x_i^*| + h_i$ con $h_i \ge 0$ per i = 1, ..., n, con almeno un $h_j > 0$. Il vettore (x^*, \underline{z}^*) , dove $\underline{z}_i^* = z_i^* - h$, è una soluzione ammissibile per (R) di costo inferiore a (x^*, z^*) . \longrightarrow ASSURDO!

Esercizio

Riformulare (P) come problema di programmazione lineare

(P):
$$\frac{\min 2x_1 + 3|x_2 - 10|}{|x_1 + 2| + |x_2| \le 5}$$

Effettuiamo un cambio di variabili

$$\widetilde{x}_1 = x_2 - 10$$

$$\widetilde{x}_2 = x_1 + 2$$

$$\widetilde{x}_3 = x_2$$

$$\min 2\widetilde{x}_2 - 4 + 3 | \widetilde{x}_1 |$$

$$|\widetilde{x}_2| + |\widetilde{x}_3| \le 5$$

$$\widetilde{x}_3 = \widetilde{x}_1 + 10$$

Esercizio

Essendo la matrice dei coefficienti B e il vettore dei costi d non negativi possiamo applicare la procedura precedente.

$$\min 2\widetilde{x}_1 - 4 + 3z_2$$

$$z_1 + z_3 \le 5$$

$$z_i \ge \widetilde{x}_i \quad i = 1, 2, 3$$

$$z_i \ge -\widetilde{x}_i \quad i = 1, 2, 3$$

$$\widetilde{x}_3 = \widetilde{x}_1 + 10$$

Uno stato vuole pianificare la propria capacità di produzione di energia elettrica dei prossimi 7 anni.

- d_t fabbisogno di energia nell' anno $t \in \{1, ..., T\}$.
- e_t energia disponibile nell' anno $t \in \{1, ..., T\}$ dagli impianti attuali.

Esistono due tipi di impianti per aumentare la produzione:

- carbone, costo fisso di installazione c_t per megawatt e durata 20 anni;
- nucleari, costo fisso di installazione n_t per megawatt e durata 15 anni.

Per ragioni di sicurezza la capacità degli impianti nucleari non deve superare ogni anno il 20% della capacità totale.

Preparare un Piano di Produzione dell'energia equivale a decidere la capacità produttiva degli impianti a carbone e di quelli nucleari in ogni anno $t \in \{1,...,T\}$.

Problema: determinare un piano di produzione tale che

- la domanda di energia d_t sia soddisfatta in ogni anno $t \in \{1,...,T\}$.
- siano rispettati i vincoli sulla durata degli impianti e di sicurezza.
- il costo complessivo di espansione della produzione sia minimo.

Variabili:

- x_t capacità da carbone <u>installata</u> all'inizio dell' anno t.
- y_t capacità da nucleare <u>installata</u> all'inizio dell' anno t.
- w_t capacità da carbone <u>disponibile</u> nell' anno t.
- z_t capacità da nucleare <u>disponibile</u> nell' anno t.

Funzione obiettivo

$$\min \sum_{t=1}^{T} (c_t x_t + n_t y_t)$$

Capacità da carbone e nucleare disponibile nell' anno t

$$w_t = \sum_{s=\max\{1,t-19\}}^{t} x_s$$
 $t = 1, \dots, T$

$$z_{t} = \sum_{s=\max\{1,t-14\}}^{t} y_{s} \quad t = 1,...,T$$

Capacità nucleare non superiore al 20% della capacità totale

$$\frac{z_t}{w_t + z_t + e_t} \le 0.2, \qquad t = 1, \dots, T$$

Copertura della domanda nel periodo t

$$w_t + z_t + e_t \ge d_t, \qquad t = 1, ..., T$$

Formulazione

$$\min \sum_{j=1}^{n} (c_t x_t + n_t y_t)$$

$$w_t - \sum_{s=\max\{1, t-19\}} x_s = 0 \quad t = 1, ..., T$$

$$z_t - \sum_{s=\max\{1, t-14\}} y_s = 0 \quad t = 1, ..., T$$

$$w_t + z_t \ge d_t + e_t \quad t = 1, ..., T$$

$$0.8z_t - 0.2w_t \le 0.2e_t \quad t = 1, ..., T$$

$$y_t, x_t, w_t, z_t \ge 0 \quad t = 1, ..., T$$