Atom of Variable Mathed

$$\frac{dy}{dt^2} = \int_{-\infty}^{\infty} \frac{dx^2}{dx^2}$$

$$\frac{dy}{dx^2} = \int_{-\infty}^{\infty} \frac{dx^2}{dx^2}$$

$$\frac{d^{2}\left(X^{(2)}T(t)\right)}{dt^{2}} = \sqrt{2} \frac{d^{2}\left(X^{(2)}T(t)\right)}{dz^{2}}$$

$$X(x) \frac{d^{2}}{dt^{2}}T(t) = \sqrt{2} \frac{d^{2}\left(X^{(2)}T(t)\right)}{dz^{2}}$$

 $\chi(x) dx$

$$\frac{1}{T(t)} \frac{\int_{t}^{2} T(t)}{\int_{t}^{2} L} = -\omega^{2} - \omega$$

$$\int_{x(\alpha)}^{2} \frac{\int_{x(\alpha)}^{2} X(\alpha)}{\int_{x^{2}}^{2} L} = -\omega^{2}$$

$$\frac{\int_{A}^{2} T(t)}{\int_{A}^{2} t^{2}} = -\omega^{2} T(t)$$

$$\frac{\int_{A}^{2} T(t)}{\int_{A}^{2} t^{2}} = -\omega^{2} T(t) = 0$$

$$\frac{\int_{A}^{2} T(t)}{\int_{A}^{2} t^{2}} + \omega^{2} T(t) = 0$$

$$\frac{\int_{A^{2}}^{2} T(t)}{\int_{A^{2}}^{2} dt} = -\omega^{2} T(t)$$

x= L Y= 0

 $k = 2\pi \frac{1}{\lambda} =$

- N->2112

$$V_{max} = \frac{C}{V}$$

$$V = \frac{C}{V}$$

ว

MM x→
Mx→

$$U = \frac{\omega}{k} = \frac{\text{phose selocats of the soltents}}{1 \text{ one single wave}}$$

t la se

 $V_g = \text{velocits of envelope}$ $V_g = \frac{d}{d}$

 $\frac{\partial}{\partial k} = c$ $\frac{\partial}{\partial k} = c$