Семинар 28 (26.04.2023)

Краткое содержание

Обсудили инвариантные подпространства. На примере линейного оператора из домашнего задания показали, как для линейного оператора над $\mathbb R$ отыскивать двумерное инвариантное подпространство над $\mathbb R$, отвечающее комплексному собственному значению.

Дальше доказали, что если характеристический многочлен линейного оператора разлагается на линейные множители, то существует базис исходного пространства, в котором матрица линейного оператора имеет верхнетреугольный вид.

Дальше сформулировали теорему о жордановой нормальной форме.

Новая тема: сопряжённые линейные отображения, сопряжённые линейные операторы, самосопряжённые линейные операторы в евклидовых пространствах. Обсудили, что если A — матрица линейного отображения в паре ортонормированных базисов ($\mathfrak{e},\mathfrak{f}$), то матрицей сопряжённого линейного отображения в паре базисов ($\mathfrak{f},\mathfrak{e}$) будет A^T . Аналогично, если A — матрица линейного оператора в каком-то ортонормированном базисе, то матрицей сопряжённого линейного оператора в том же базисе будет A^T . В частности, линейный оператор самосопряжён тогда и только тогда, когда его матрица в ортонормированном базисе симметрична.

Дальше сформулировали основную теорему о самосопряжённых линейных операторах:

Пусть φ — самосопряжённый линейный оператор в евклидовом пространстве $\mathbb E$. Тогда:

- 1) существует ортонормированный базис в \mathbb{E} , состоящий из собственных векторов оператора φ (в частности, φ диагонализуем над \mathbb{R});
- 2) собственные подпространства оператора φ , отвечающие различным собственным значениям, попарно ортогональны.

Разобрали пример с самосопряжённым оператором, заданным в некотором ортонормированном базисе матрицей $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$: нашли ортонормированный базис, в котором матрица этого оператора диагональна.

 \bigcirc

Домашнее задание к семинару 29. Дедлайн 10.05.2023

Номера с пометкой Π даны по задачнику Проскурякова, с пометкой K – Кострикина, с пометкой KK – Ким-Крицкова.

- Π1519
- 2. K40.14 (характеристические числа матрицы это корни её характеристического многочлена, то есть собственные значения)
- 3. Докажите, что операция перехода к сопряжённому линейному отображению в евклидовых пространствах обладает свойствами из номера K44.1(a,6,r,d) (в пункте (г) игнорировать черту над λ).
- 4. Пусть $\varphi \colon \mathbb{E} \to \mathbb{E}'$ линейное отображение евклидовых пространств. Докажите, что

$$\operatorname{Ker} \varphi^* = (\operatorname{Im} \varphi)^{\perp}$$
 и $\operatorname{Im} \varphi^* = (\operatorname{Ker} \varphi)^{\perp}$.

- 5. K44.4 (здесь речь именно о сопряжённом операторе, а не отображении!) + указать геометрический смысл сопряжённого оператора
- 6. II1585
- 7. П1586