UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE Departamento de Análises Clínicas e Toxicológicas

TOXICOCINÉTICA

Biotransformação de Toxicantes

Profa Aline Schwarz

Fases da Intoxicação

O que é a biotransformação?

É o conjunto de reações catalisadas por **enzimas**, formando um produto quase sempre **mais** hidrossolúvel, e melhor excretado.

Apresenta duas fases:

Distribuição das enzimas biotransformadoras pelo organismo:

- fígado;
- pulmões;
- > trato gastrointestinal;
- > pele;
- > olhos.

Principais vias de exposição do organismo aos xenobióticos

Fatores que afetam a biotransformação

Relacionados ao organismo:

- raça, espécie, sexo, idade;
- > estado nutricional;
- estado patológico

Relacionados ao toxicante:

- ➤indução ex: fenobarbital e inseticidas organoclorados.
- ➤ inibição ex: chumbo e dissulfiram.

Fígado + homogeneização + centrifugação 105.000 g

Precipitado com fragmentos do R.E. = microssomas

Sobrenadante: enzimas citosólicas

Muitas enzimas estão no R.E.L. nos hepatócitos, e portanto são chamadas de enzimas microssômicas ou microssomais.

Biotransformação - Fase I

Sistemas enzimáticos da fase I (microssômicas)

- ✓ reações pré-sintéticas;
- ✓ introdução de grupos funcionais polares (-OH, -NH₂, -SH, -COOH);
- ✓ pequeno aumento de hidrossolubilidade.
 - citocromo p450;
 - > amina-oxidases;
 - epóxido hidrolases;
 - > esterases e amidases;
 - > oxidação ou redução de álcoois, aldeídos e cetonas.

Sistema enzimático citocromo p450 Reações de oxidação

Hidroxilação alifática

-produto mais hidrossolúvel-produto menos tóxico

anfetamina

fenilpropanolamina

Hidroxilação aromática

- -produto mais hidrossolúvel-produto menos tóxico

Desalquilação ou desmetilação (-N, -O, -S)

clorpromazina

sulfóxido de clorpromazina

Dessulfuração - produto mais hidrossolúvel - produto MAIS tóxico

$$C_2H_5O$$
 C_2H_5O
 C_2H_5O

paration

paraoxon

Desalogenação

-produto mais hidrossolúvel-produto menos tóxico

DDT diclorodifeniltricloroetano

DDD diclorodifenildicloroetano

Epoxidação

-produto mais hidrossolúvel-produto MAIS tóxico

Aflatoxina B1

Aflatoxina B1 8,9 epóxido

Reações de redução

Azorredução

-produto mais hidrossolúvel-produto menos tóxico

$$H_2N$$
 $N = N$ SO_2NH_2 prontosil NH_2

$$H_2N$$
 \longrightarrow NH_2 $+$ H_2N \longrightarrow SO_2NH_2 NH_2

1,2,4 triaminobenzeno

sulfanilamida

Nitrorredução

nitrobenzeno

anilina

Desalogenação redutiva

$$C-Cl_4 \longrightarrow C-Cl_3$$

-produto mais hidrossolúvel

-produto menos tóxico

Fase I – amina-oxidase

Amina-oxidase

- ✓ Oxidam aminas 1^{árias}, 2^{árias} e 3^{árias}
- ✓ A FAD é o cofator empregado.

mescalina

3,4,5 trimetoxi fenil acetaldeído

Fase I – epóxido-hidrolase

Epóxido-hidrolase

- > Sistema enzimático de extrema importância.
- > Os epóxidos são originados das reações de hidroxilação de hidrocarbonetos aromáticos por enzimas do sistema cit p450.

Fase I – esterases e amidases

Esterases e amidases

> Promovem a hidrólise de ésteres e amidas.

procainamida

ácido p-aminobenzóico

dietilaminaetilamina

Fase I — óxido-redução de álcoois, aldeídos e cetonas

Óxido-redução de álcoois, aldeídos e cetonas

Empregam o NAD e NADH como principais co-fatores.

Biotransformação – Fase II

Sistemas enzimáticos da fase II (citosólicas)

- ✓ Fase sintética;
- ✓ considerável aumento da hidrossolubilidade do toxicante.
 - > glucuronil transferases (UDP-GA) são microssômicas;
 - sulfotransferases (PAPS);
 - > metiltransferases (SAM);
 - ➤ N-acetiltransferases;
 - conjugação com aminoácidos;
 - > glutationa-S-transferases (conjugação mercaptúrica);
 - rodanase.

Citosólicas e microssômicas

Fase II – glicuronil transferases

Glicuronil transferases – UDP-GA

- Conjugação do substrato ao ácido glicurônico.
- > Substratos: compostos alcoólicos, grupos carboxila, grupos nitrogenados e sulfurados (-O, -N, -S).
- Excreção renal e fecal.

Fase II – glicuronil transferases

UDP-glicuroniltransferases

não possuem este sistema de enzimas.

Fase II – sulfotransferases (PAPS)

Sulfotransferases-PAPS

- Conjugação do substrato ao sulfato inorgânico.
- ➤ Substratos: hidroxilas alcoólicas ou fenólicas (grupos sulfurados e nitrogenados afinidade baixa).
- Excreção renal.

Fase II – sulfotransferases (PAPS)

hidroxi-acetanilida

não possuem este sistema de enzimas.

Fase II – metiltransferases (SAM)

Metiltransferases - SAM

- Doação de metila do cofator **S-adenosina-metionina** ao substrato.
- > Substratos: hidroxilas alcoólicas ou fenólicas, aminas, grupos com sulfidrilas e N-heterosídeo.
- > Aumenta a lipossolubilidade.
- Exemplos de metiltransferases: fenol-O-metiltransferase (POMT) e catecol-O-metiltransferase (COMT).

Fase II – metiltransferases (SAM)

Fase II – N-acetiltransferases

N-acetiltransferases

- > Conjugação do substrato ao cofator acetil-coenzima A.
- > Substratos: aminas aromáticas e alifáticas.
- > Sistema enzimático muito importante: quase todas as aminas aromáticas são carcinogênicas.

> Transfere **grupo etila** aos compostos: **aumenta** lipossolubilidade.

Fase II – N-acetiltransferases

Ácido p-aminosalicílico

não possuem este sistema enzimático.

Fase II – conjugação com aminoácidos

Conjugação de aminoácidos

Conjugação de toxicantes ácidos (-COOH) com o grupo **amina** de aminoácidos (glicina ou glutamina).

$$R - COOH + H_2N - CH_2 - COOH \longrightarrow R - C - NH - CH_2 - COOH + H_2O$$
glicina
$$amida$$

$$O$$
 + H_2N - CH_2 - $COOH$ O + H_2O O + O

Fase II – conjugação mercaptúrica

Glutationa S-transferase

- ➤ Cofator glutationa = glicina + cisteína + ácido glutâmico;
- > Substrato: toxicantes lipossolúveis com carbono eletrofílico.

Ex: organoclorados ciclodienos (heptaclor, aldrin)

Fase II – rodanase

Rodanase

- > A rodanase é uma enzima mitocondrial;
- Conjugação do cianeto com tiossulfato livre endógeno;
- > Ação restrita porque as fontes de tiossulfato são pequenas;
- Em intoxicações tiossulfato exógeno deve ser administrado;
- Não há gasto de energia;

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE Departamento de Análises Clínicas e Toxicológicas

Obrigada!

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE Departamento de Análises Clínicas e Toxicológicas

Referências

KLAASSEN, C.D. Casarett and Doull's Toxicology: The Basic Science of Poisons. 5th ed. New York: Ed. McGraw-Hill, 1996.