Нильпотентные и разрешимые алгебры Ли

Виногродский Серафим

8 марта 2022 г.

Содержание

1	Введение			
	1.1	Основные понятия	2	

1 Введение

1.1 Основные понятия

Рассмотрим для начала определение алгебры Ли, основные связанные с ней понятия.

Определение 1.1. Векторное пространство L над полем F, дополненное операцией $L \times L \to L$, которая обозначается $(x,y) \mapsto [xy]$ и называется скобкой Ли или коммутатором x и y, называется алгеброй Ли над полем F, если выполнен следующий ряд аксиом:

- (L1) Скобка Ли билинейна.
- (L2) [xx] = 0 для любого $x \in L$.
- (L3) Для скобки Ли выполнено тождество Якоби, т.е.

$$[x[yz]] + [y[zx]] + [z[xy]] = 0 \quad (x, y, z \in L).$$

Теорема 1.1. Операция коммутировая антикоммутативна, т.е.

$$[xy] = -[yx] \quad \forall x,y \in L.$$

Доказательство. Рассмотрим два произвольных $x,y\in L$. Тогда по аксиоме (L2) имеем [x+y,x+y]=0 и одновременно по аксиоме (L1)

$$[x + y, x + y] = [xx] + [xy] + [yx] + [yy]$$
$$= [xy] + [yx].$$

Получаем, что [xy]+[yx]=0, откуда и следует, что [xy]=-[yx].

Определение 1.2. Изоморфизмом двух алгебр Ли L, L' называется такой изоморфизм векторных пространств $\phi: L \to L',$ что

$$\phi([xy]) = [\phi(x)\phi(y)] \quad \forall x, y \in L.$$

Определение 1.3. Две алгебры Ли L,L' называются изоморфными, если существует изоморфизм алгебр Ли $\phi:L\to L'$.

Определение 1.4. Подпространство K алгебры Ли L называется подалгеброй алгебры L, если $\forall x, y \in K \quad [xy] \in K$.

Нетрудно показать, что K вместе с наследованными операциями удовлетворяет всем аксиомам из определения алгебры Ли.