Influence functions and functional derivatives

Anders Munch

May 11, 2021

Outline

Setting

Motivation

Functional derivatives

Canonical gradient / efficient influence function

Summary of main results

Next step - constructing estimators

Disclaimer about the note

► The note is work in progress, and we have not used it before — you are very welcome to comment on weird/unclear passages.

Disclaimer about the note

- ► The note is work in progress, and we have not used it before you are very welcome to comment on weird/unclear passages.
- You should see it as a service some exact mathematical statements are collected there if you care about it, but the important part is the intuition which we talk about today.

Disclaimer about the note

- ► The note is work in progress, and we have not used it before you are very welcome to comment on weird/unclear passages.
- You should see it as a service some exact mathematical statements are collected there if you care about it, but the important part is the intuition which we talk about today.
- Do NOT write like this in your report!

A statistical problem

We call a collection of probability measures $\mathcal P$ together with a functional $\Psi\colon \mathcal P\to \mathbb R$ a statistical problem.

A statistical problem

We call a collection of probability measures \mathcal{P} together with a functional $\Psi \colon \mathcal{P} \to \mathbb{R}$ a statistical problem.

Example (Average treatment effect)

We are given n iid. sample of $O \sim P$, with $P \in \mathcal{P}$ and where O = (X, A, Y), with $X \in \mathbb{R}^d$, $A \in \{0, 1\}$, and $Y \in \{0, 1\}$. We want to estimate the average treatment effect

$$\mathbb{E}_{\mathbf{P}}\left[f(1,X)-f(0,X)\right],$$

with $f(a,x) := \mathbb{E}_{P}[Y \mid A = a, X = x]$. The target parameter is

$$\Psi(\mathbf{P}) = \mathbb{E}_{\mathbf{P}} \left[f_{\mathbf{P}}(1, X) - f_{\mathbf{P}}(0, X) \right].$$

A statistical problem

We call a collection of probability measures \mathcal{P} together with a functional $\Psi \colon \mathcal{P} \to \mathbb{R}$ a statistical problem.

Example (Average treatment effect)

We are given n iid. sample of $O \sim P$, with $P \in \mathcal{P}$ and where O = (X, A, Y), with $X \in \mathbb{R}^d$, $A \in \{0, 1\}$, and $Y \in \{0, 1\}$. We want to estimate the average treatment effect

$$\mathbb{E}_{\mathbf{P}}\left[f(1,X)-f(0,X)\right],$$

with $f(a,x) := \mathbb{E}_{P}[Y \mid A = a, X = x]$. The target parameter is

$$\Psi(\mathbf{P}) = \mathbb{E}_{\mathbf{P}} \left[f_{\mathbf{P}}(1, X) - f_{\mathbf{P}}(0, X) \right].$$

Target parameter Low-dimensional, scientifically meaningful.

Target parameter Low-dimensional, scientifically meaningful.

Nuisance parameters Needed to express the target parameter.

Target parameter Low-dimensional, scientifically meaningful.

Nuisance parameters Needed to express the target parameter.

Example (ATE)

The ATE can be written as $\Psi(P) = P[\varphi_1] = P[\varphi_2] = P[\varphi_3]$, for

$$\varphi_1(o; f) := f(1, x) - f(0, x),
\varphi_2(o; \pi) := \frac{ay}{\pi(x)} - \frac{(1 - a)y}{1 - \pi(x)},
\varphi_3(o; f, \pi) := \varphi_1(o; f) + \varphi_2(o; \pi) - \frac{af(1, x)}{\pi(x)} + \frac{(1 - a)f(0, x)}{1 - \pi(x)},$$

with $f(a, x) := \mathbb{E}_{P}[Y \mid A = a, X = x], \ \pi(x) := P(A = 1 \mid X = x).$

 $\mathrm{P}[arphi]$ means

$$P[\varphi] = \mathbb{E}_{P}[\varphi(O)] = \int \varphi(o) dP(o).$$

Infinite-dimensional nuisance parameters

A parametric setting means that \mathcal{P} is finite-dimensional. We are interested in *nonparametric* or *semiparametric* settings which mean that \mathcal{P} is infinite-dimensional.

Infinite-dimensional nuisance parameters

A parametric setting means that \mathcal{P} is finite-dimensional. We are interested in *nonparametric* or *semiparametric* settings which mean that \mathcal{P} is infinite-dimensional.

Having our data set and scientific question in mind, why would it be of interest to use infinite-dimensional nuisance parameters?

Infinite-dimensional nuisance parameters

A parametric setting means that \mathcal{P} is finite-dimensional. We are interested in *nonparametric* or *semiparametric* settings which mean that \mathcal{P} is infinite-dimensional.

Having our data set and scientific question in mind, why would it be of interest to use infinite-dimensional nuisance parameters?

Trying to control for confounding \implies nice to have:

- ► flexible model
- many covariates

 $\mathcal P$ consist all probability measures with continuous Lebesgue-density (this is an infinite-dimensional space). We want to estimate $F(x) = \mathrm P(X \le x)$ for unknown $\mathrm P \in \mathcal P$.

 ${\mathcal P}$ consist all probability measures with continuous Lebesgue-density (this is an infinite-dimensional space). We want to estimate $F(x)=\mathrm{P}(X\leq x)$ for unknown $\mathrm{P}\in{\mathcal P}.$ Our target parameter is then $\theta=\Psi(\mathrm{P})=F_{\mathrm{P}}(x)$ which we can express as

$$\Psi(P) = \Psi_0(f) := \int_{-\infty}^x f(z) dz$$
, for $P = f \cdot \lambda$,

because of our assumption about ${\cal P}.$

 ${\mathcal P}$ consist all probability measures with continuous Lebesgue-density (this is an infinite-dimensional space). We want to estimate $F(x)=\mathrm{P}(X\leq x)$ for unknown $\mathrm{P}\in{\mathcal P}.$ Our target parameter is then $\theta=\Psi(\mathrm{P})=F_{\mathrm{P}}(x)$ which we can express as

$$\Psi(P) = \Psi_0(f) := \int_{-\infty}^x f(z) dz$$
, for $P = f \cdot \lambda$,

because of our assumption about \mathcal{P} . We want to use **machine** learning (!) for this problem, so use a kernel estimator, i.e.,

$$\hat{f}_n(x) = \hat{\mathbb{P}}_n[k_h(X,x)] = \frac{1}{n} \sum_{i=1}^n k_h(X_i,x),$$

where k_h is, e.g, $k_h(x,y) = \frac{1}{h}k\left(\frac{x-y}{h}\right)$, with k the density for the standard Gaussian distribution, and the bandwidth h is chosen using cross-validation.

 $\mathcal P$ consist all probability measures with continuous Lebesgue-density (this is an infinite-dimensional space). We want to estimate $F(x) = \mathrm{P}(X \le x)$ for unknown $\mathrm{P} \in \mathcal P$. Our target parameter is then $\theta = \Psi(\mathrm{P}) = F_{\mathrm{P}}(x)$ which we can express as

$$\Psi(P) = \Psi_0(f) := \int_{-\infty}^x f(z) dz$$
, for $P = f \cdot \lambda$,

because of our assumption about \mathcal{P} . We want to use **machine** learning (!) for this problem, so use a kernel estimator, i.e.,

$$\hat{f}_n(x) = \hat{\mathbb{P}}_n[k_h(X,x)] = \frac{1}{n} \sum_{i=1}^n k_h(X_i,x),$$

where k_h is, e.g, $k_h(x,y) = \frac{1}{h}k\left(\frac{x-y}{h}\right)$, with k the density for the standard Gaussian distribution, and the bandwidth h is chosen using cross-validation. We then obtain the target estimator $\hat{\theta}_n = \Psi_0(\hat{f}_n)$.

How does this work in practice?

How does this work in practice?

Consider a general problem (\mathcal{P}, Ψ) for which we can write $\Psi(P) = \Psi_0(P, \nu) = P[\varphi(O, \nu)]$.

Consider a general problem (\mathcal{P}, Ψ) for which we can write $\Psi(P) = \Psi_0(P, \nu) = P[\varphi(O, \nu)]$. We have

$$\begin{split} \sqrt{n} \left(\hat{\theta}_n - \theta \right) &= \sqrt{n} \left(\Psi_0(\hat{\mathbb{P}}_n, \hat{\nu}_n) - \Psi_0(\mathbf{P}, \nu) \right) \\ &= \sqrt{n} \left(\hat{\mathbb{P}}_n[\varphi(O, \hat{\nu}_n)] - \mathbf{P}[\varphi(O, \nu)] \right) \\ &= \sqrt{n} \left(\hat{\mathbb{P}}_n[\varphi(O, \hat{\nu}_n)] \pm \mathbf{P}[\varphi(O, \hat{\nu}_n)] - \mathbf{P}[\varphi(O, \nu)] \right) \\ &= \mathbb{G}_n[\varphi(O, \hat{\nu}_n)] + \sqrt{n} \left\{ \Psi_0(\mathbf{P}, \hat{\nu}_n) - \Psi_0(\mathbf{P}, \nu) \right\}, \end{split}$$

with $\mathbb{G}_n := \sqrt{n}(\hat{\mathbb{P}}_n - \mathrm{P})$ the empirical process.

Consider a general problem (\mathcal{P}, Ψ) for which we can write $\Psi(P) = \Psi_0(P, \nu) = P[\varphi(O, \nu)]$. We have

$$\begin{split} \sqrt{n} \left(\hat{\theta}_n - \theta \right) &= \sqrt{n} \left(\Psi_0(\hat{\mathbb{P}}_n, \hat{\nu}_n) - \Psi_0(\mathbf{P}, \nu) \right) \\ &= \sqrt{n} \left(\hat{\mathbb{P}}_n[\varphi(O, \hat{\nu}_n)] - \mathbf{P}[\varphi(O, \nu)] \right) \\ &= \sqrt{n} \left(\hat{\mathbb{P}}_n[\varphi(O, \hat{\nu}_n)] \pm \mathbf{P}[\varphi(O, \hat{\nu}_n)] - \mathbf{P}[\varphi(O, \nu)] \right) \\ &= \mathbb{G}_n[\varphi(O, \hat{\nu}_n)] + \sqrt{n} \left\{ \Psi_0(\mathbf{P}, \hat{\nu}_n) - \Psi_0(\mathbf{P}, \nu) \right\}, \end{split}$$

with $\mathbb{G}_n := \sqrt{n}(\hat{\mathbb{P}}_n - \mathrm{P})$ the empirical process.

 $\mathbb{G}_n[arphi(O,\hat{
u}_n)]$ determines the (main) variance

Consider a general problem (\mathcal{P}, Ψ) for which we can write $\Psi(P) = \Psi_0(P, \nu) = P[\varphi(O, \nu)]$. We have

$$\begin{split} \sqrt{n} \left(\hat{\theta}_n - \theta \right) &= \sqrt{n} \left(\Psi_0(\hat{\mathbb{P}}_n, \hat{\nu}_n) - \Psi_0(\mathbf{P}, \nu) \right) \\ &= \sqrt{n} \left(\hat{\mathbb{P}}_n[\varphi(O, \hat{\nu}_n)] - \mathbf{P}[\varphi(O, \nu)] \right) \\ &= \sqrt{n} \left(\hat{\mathbb{P}}_n[\varphi(O, \hat{\nu}_n)] \pm \mathbf{P}[\varphi(O, \hat{\nu}_n)] - \mathbf{P}[\varphi(O, \nu)] \right) \\ &= \mathbb{G}_n[\varphi(O, \hat{\nu}_n)] + \sqrt{n} \left\{ \Psi_0(\mathbf{P}, \hat{\nu}_n) - \Psi_0(\mathbf{P}, \nu) \right\}, \end{split}$$

with $\mathbb{G}_n := \sqrt{n}(\hat{\mathbb{P}}_n - \mathrm{P})$ the empirical process.

 $\mathbb{G}_n[\varphi(O,\hat{\nu}_n)]$ determines the (main) variance $\Psi_0(P,\hat{\nu}_n) - \Psi_0(P,\nu)$ is bias!

Assume we could make a Taylor expansion of $\nu \mapsto \Psi_0(P, \nu)$, so that

$$\Psi_0(\mathrm{P},\hat{\nu}_n) - \Psi_0(\mathrm{P},\nu) = \mathrm{D}_{\nu} \Psi_0[\hat{\nu}_n - \nu] + \mathcal{O}_{\mathrm{P}}(\|\hat{\nu}_n - \nu\|_{\mathcal{V}}^2).$$

Assume we could make a Taylor expansion of $\nu \mapsto \Psi_0(P, \nu)$, so that

$$\Psi_{0}(P, \hat{\nu}_{n}) - \Psi_{0}(P, \nu) = D_{\nu}\Psi_{0}[\hat{\nu}_{n} - \nu] + \mathcal{O}_{P}(\|\hat{\nu}_{n} - \nu\|_{\mathcal{V}}^{2}).$$

$$\sqrt{n}\left(\hat{\theta}_n - \theta\right) = \mathbb{G}_n[\varphi(O, \hat{\nu}_n)] \tag{1}$$

$$+ D_{\nu} \Psi_0 \left[\sqrt{n} (\hat{\nu}_n - \nu) \right] \tag{2}$$

$$+ \mathcal{O}_{\mathbf{P}}(\sqrt{n}\|\hat{\nu}_n - \nu\|_{\mathcal{V}}^2). \tag{3}$$

Assume we could make a Taylor expansion of $\nu\mapsto \Psi_0(P,\nu)$, so that

$$\Psi_{0}(P, \hat{\nu}_{n}) - \Psi_{0}(P, \nu) = D_{\nu}\Psi_{0}[\hat{\nu}_{n} - \nu] + \mathcal{O}_{P}(\|\hat{\nu}_{n} - \nu\|_{\mathcal{V}}^{2}).$$

The decomposition then becomes

$$\sqrt{n}\left(\hat{\theta}_n - \theta\right) = \mathbb{G}_n[\varphi(O, \hat{\nu}_n)] \tag{1}$$

$$+ D_{\nu} \Psi_0 \left[\sqrt{n} (\hat{\nu}_n - \nu) \right] \tag{2}$$

$$+ \mathcal{O}_{\mathbf{P}}(\sqrt{n}\|\hat{\nu}_n - \nu\|_{\mathcal{V}}^2). \tag{3}$$

(1) can be handled by empirical process theory or sample splitting

Assume we could make a Taylor expansion of $\nu\mapsto \Psi_0(P,\nu)$, so that

$$\Psi_{0}(P, \hat{\nu}_{n}) - \Psi_{0}(P, \nu) = D_{\nu}\Psi_{0}[\hat{\nu}_{n} - \nu] + \mathcal{O}_{P}(\|\hat{\nu}_{n} - \nu\|_{\mathcal{V}}^{2}).$$

$$\sqrt{n}\left(\hat{\theta}_n - \theta\right) = \mathbb{G}_n[\varphi(O, \hat{\nu}_n)] \tag{1}$$

$$+ D_{\nu} \Psi_0 \left[\sqrt{n} (\hat{\nu}_n - \nu) \right] \tag{2}$$

$$+ \mathcal{O}_{\mathbf{P}}(\sqrt{n}\|\hat{\nu}_n - \nu\|_{\mathcal{V}}^2). \tag{3}$$

- (1) can be handled by empirical process theory or sample splitting
- (2) is our focus! \rightarrow make sense of this

Assume we could make a Taylor expansion of $\nu\mapsto \Psi_0(P,\nu)$, so that

$$\Psi_{0}(P, \hat{\nu}_{n}) - \Psi_{0}(P, \nu) = D_{\nu}\Psi_{0}[\hat{\nu}_{n} - \nu] + \mathcal{O}_{P}(\|\hat{\nu}_{n} - \nu\|_{\mathcal{V}}^{2}).$$

$$\sqrt{n}\left(\hat{\theta}_n - \theta\right) = \mathbb{G}_n[\varphi(O, \hat{\nu}_n)] \tag{1}$$

$$+ D_{\nu} \Psi_0 \left[\sqrt{n} (\hat{\nu}_n - \nu) \right] \tag{2}$$

$$+ \mathcal{O}_{\mathbf{P}}(\sqrt{n}\|\hat{\nu}_n - \nu\|_{\mathcal{V}}^2). \tag{3}$$

- (1) can be handled by empirical process theory or sample splitting
- (2) is our focus! \rightarrow make sense of this
- (3) is specific to the functional Ψ , but importantly the rate $\sqrt{n}\|\hat{\nu}_n \nu\|_{\mathcal{V}} = \mathcal{O}_{\mathrm{P}}(n^{-1/4})$ is sufficient; whether this holds then depends on the specific nuisance estimator.

Assume we could make a Taylor expansion of $\nu\mapsto \Psi_0(P,\nu)$, so that

$$\Psi_{0}(P, \hat{\nu}_{n}) - \Psi_{0}(P, \nu) = D_{\nu}\Psi_{0}[\hat{\nu}_{n} - \nu] + \mathcal{O}_{P}(\|\hat{\nu}_{n} - \nu\|_{\mathcal{V}}^{2}).$$

$$\sqrt{n}\left(\hat{\theta}_n - \theta\right) = \mathbb{G}_n[\varphi(O, \hat{\nu}_n)] \tag{1}$$

$$+ D_{\nu} \Psi_0 \left[\sqrt{n} (\hat{\nu}_n - \nu) \right] \tag{2}$$

$$+ \mathcal{O}_{\mathbf{P}}(\sqrt{n}\|\hat{\nu}_n - \nu\|_{\mathcal{V}}^2). \tag{3}$$

- (1) can be handled by empirical process theory or sample splitting
- (2) is our focus! \rightarrow make sense of this
- (3) is specific to the functional Ψ , but importantly the rate $\sqrt{n}\|\hat{\nu}_n \nu\|_{\mathcal{V}} = \mathcal{O}_{\mathrm{P}}(n^{-1/4})$ is sufficient; whether this holds then depends on the specific nuisance estimator.

Defining a functional derivative

What is a derivative?

Defining a functional derivative

What is a derivative?

A linear approximation $\dot{\Psi}_x$ to the map Ψ at $x \in \mathcal{M}$, i.e.,

$$\left\|\Psi(x+\varepsilon_nh_n)-\Psi(x)-\dot{\Psi}_x(\varepsilon_nh_n)\right\|=\mathcal{O}(\varepsilon_n),$$

when $\varepsilon_n \to 0$.

Defining a functional derivative

What is a derivative?

A linear approximation $\dot{\Psi}_{x}$ to the map Ψ at $x\in\mathcal{M}$, i.e.,

$$\left\|\Psi(x+\varepsilon_nh_n)-\Psi(x)-\dot{\Psi}_x(\varepsilon_nh_n)\right\|=\mathcal{O}(\varepsilon_n),$$

when $\varepsilon_n \to 0$.

This expression also makes sense for functionals (or operators) $\Psi.$

Defining a functional derivative

What is a derivative?

A linear approximation $\dot{\Psi}_{x}$ to the map Ψ at $x\in\mathcal{M}$, i.e.,

$$\left\|\Psi(x+\varepsilon_nh_n)-\Psi(x)-\dot{\Psi}_x(\varepsilon_nh_n)\right\|=\mathcal{O}(\varepsilon_n),$$

when $\varepsilon_n \to 0$.

This expression also makes sense for functionals (or operators) Ψ .

For which h_n should this hold? Along "lines", "paths", or "uniformly" (h_n fixed, converging, or bounded)?

Defining a functional derivative

What is a derivative?

A linear approximation $\dot{\Psi}_{x}$ to the map Ψ at $x\in\mathcal{M}$, i.e.,

$$\left\|\Psi(x+\varepsilon_nh_n)-\Psi(x)-\dot{\Psi}_x(\varepsilon_nh_n)\right\|=\mathcal{O}(\varepsilon_n),$$

when $\varepsilon_n \to 0$.

This expression also makes sense for functionals (or operators) Ψ .

- For which h_n should this hold? Along "lines", "paths", or "uniformly" (h_n fixed, converging, or bounded)?
- ▶ Which norm on M should we use?

Defining a functional derivative

What is a derivative?

A linear approximation $\dot{\Psi}_{x}$ to the map Ψ at $x\in\mathcal{M}$, i.e.,

$$\left\|\Psi(x+\varepsilon_nh_n)-\Psi(x)-\dot{\Psi}_x(\varepsilon_nh_n)\right\|=\mathcal{O}(\varepsilon_n),$$

when $\varepsilon_n \to 0$.

This expression also makes sense for functionals (or operators) Ψ .

- For which h_n should this hold? Along "lines", "paths", or "uniformly" (h_n fixed, converging, or bounded)?
- ▶ Which norm on M should we use?
- ightharpoonup In which space should we represent \mathcal{P} ?

Pathwise Hadamard differentiability

Think of the gradient of a function defined on a manifold (surface).

Pathwise Hadamard differentiability

Think of the gradient of a function defined on a manifold (surface).

Pathwise Hadamard differentiability

Think of the gradient of a function defined on a manifold (surface).

Canonical gradient

Definition (Canonical gradient)

Let (\mathcal{P}, Ψ) be a statistical problem, with $\mathcal{P} \subset \mathcal{M}_{\mu}$, and $\dot{\mathcal{P}}_{P}$ the tangent space of \mathcal{P} at $P \in \mathcal{P}$. If $\Psi \colon \mathcal{P} \to \mathbb{R}$ is Hadamard differentiable at P tangential to $\dot{\mathcal{P}}_{P}$, we refer to the Hadamard derivative $\dot{\Psi}_{P}$ as the canonical gradient of the statistical problem.

Canonical gradient

Definition (Canonical gradient)

Let (\mathcal{P}, Ψ) be a statistical problem, with $\mathcal{P} \subset \mathcal{M}_{\mu}$, and $\dot{\mathcal{P}}_{P}$ the tangent space of \mathcal{P} at $P \in \mathcal{P}$. If $\Psi \colon \mathcal{P} \to \mathbb{R}$ is Hadamard differentiable at P tangential to $\dot{\mathcal{P}}_{P}$, we refer to the Hadamard derivative $\dot{\Psi}_{P}$ as the canonical gradient of the statistical problem.

Characterizing property

With $\Gamma_P := \overline{\operatorname{span}}\{\dot{\ell}_0\} \subset \mathcal{L}_P^2$, where $\dot{\ell}_0 = \partial_0 \log(p_\varepsilon)$ is the score function of the sub-model P_ε , there exists a unique element $\varphi_P \in \Gamma_P$ such that

$$\partial_0 \Psi(P_{\varepsilon}) = \langle \varphi_P, \dot{\ell}_0 \rangle_P$$

holds for any differentiable submodel $\mathrm{P}_{arepsilon}$ with score function $\dot{\ell}_{0}.$

Canonical gradient for the ATE

Example (ATE)

When we make no assumptions about $\mathcal{P}_{\text{\tiny T}}$, the canonical gradient for the ATE problem

$$\varphi_{P}(o; f, \pi) := f(1, x) - f(0, x) + \frac{ay}{\pi(x)} - \frac{(1-a)y}{1-\pi(x)} - \frac{af(1, x)}{\pi(x)} + \frac{(1-a)f(0, x)}{1-\pi(x)} - \Psi(P)$$

Canonical gradient for the ATE

Example (ATE)

When we make no assumptions about \mathcal{P} , the canonical gradient for the ATE problem

$$\varphi_{P}(o; f, \pi) := f(1, x) - f(0, x) + \frac{ay}{\pi(x)} - \frac{(1-a)y}{1-\pi(x)} - \frac{af(1, x)}{\pi(x)} + \frac{(1-a)f(0, x)}{1-\pi(x)} - \Psi(P)$$

One way to show this is to first show that the tangent space Γ_P is the full subset $\mathbb{H}_0 \subset \mathcal{L}_P^2$ of zero-mean functions, and then show that $\partial_0 \Psi(P_\varepsilon) = \langle \varphi_P, \dot{\ell}_0 \rangle_P$ for all P_ε (see for instance Kennedy [2016]).

Neyman orthogonality

Theorem (Neyman orthogonality)

If $\Psi(P) = \Psi_0(P, \nu) = P[\varphi(O, \nu(P))]$ and $\varphi(\cdot, \nu) - P[\varphi(O, \nu)]$ is the canonical gradient of (\mathcal{P}, Ψ) then $D_{\nu}\Psi_0 = 0$.

Neyman orthogonality

Theorem (Neyman orthogonality)

If $\Psi(P) = \Psi_0(P, \nu) = P[\varphi(O, \nu(P))]$ and $\varphi(\cdot, \nu) - P[\varphi(O, \nu)]$ is the canonical gradient of (\mathcal{P}, Ψ) then $D_{\nu}\Psi_0 = 0$.

Debiasing

The first order bias, coming from $\Psi_0(P, \hat{\nu}_n) - \Psi_0(P, \nu)$, is removed.

Efficiency

Efficiency

Definition (RAL estimators)

An estimator $\hat{\theta}_n$ of the parameter $\theta = \Psi(P)$ under the model \mathcal{P} , is called asymptotically linear with influence function $\mathrm{IF}(\cdot,P) \in \mathcal{L}^2_P$, if $\mathrm{P}[\mathrm{IF}(\mathcal{O},P)] = 0$ for all $\mathrm{P} \in \mathcal{P}$, and

$$\hat{\theta}_n - \theta = \hat{\mathbb{P}}_n[\mathrm{IF}(O, P)] + \mathcal{O}_P(n^{-1/2}).$$

Efficiency

Definition (RAL estimators)

An estimator $\hat{\theta}_n$ of the parameter $\theta = \Psi(P)$ under the model \mathcal{P} , is called asymptotically linear with influence function $\mathrm{IF}(\cdot,P) \in \mathcal{L}^2_P$, if $\mathrm{P}[\mathrm{IF}(\mathcal{O},P)] = 0$ for all $\mathrm{P} \in \mathcal{P}$, and

$$\hat{\theta}_n - \theta = \hat{\mathbb{P}}_n[\mathrm{IF}(O, P)] + \mathcal{O}_P(n^{-1/2}).$$

Theorem (Efficient influence function)

The RAL estimator with lowest possible asymptotic variance has the canonical gradient as its influence function.

Find a parametrization $\Psi(P) = P[\varphi(O, \nu)]$ such that φ is the (canonical) gradient.

Find a parametrization $\Psi(P) = P[\varphi(O, \nu)]$ such that φ is the (canonical) gradient. Then by Neyman orthogonality and assumptions we can write

$$\sqrt{n} \left(\hat{\theta}_n - \theta \right) = \mathbb{G}_n[\varphi(O, \hat{\nu}_n)]
+ D_{\nu} \Psi_0 \left[\sqrt{n} (\hat{\nu}_n - \nu) \right] = 0
+ \mathcal{O}_P(\sqrt{n} ||\hat{\nu}_n - \nu||_{\mathcal{V}}^2)$$

Find a parametrization $\Psi(P) = P[\varphi(O, \nu)]$ such that φ is the (canonical) gradient. Then by Neyman orthogonality and assumptions we can write

$$\sqrt{n} \left(\hat{\theta}_n - \theta \right) = \mathbb{G}_n[\varphi(O, \hat{\nu}_n)] = \mathbb{G}_n[\varphi(O, \nu)]
+ D_{\nu} \Psi_0 \left[\sqrt{n} (\hat{\nu}_n - \nu) \right] = 0
+ \mathcal{O}_P(\sqrt{n} || \hat{\nu}_n - \nu||_{\mathcal{V}}^2) = \mathcal{O}_P(1)$$

Find a parametrization $\Psi(P) = P[\varphi(O, \nu)]$ such that φ is the (canonical) gradient. Then by Neyman orthogonality and assumptions we can write

$$\sqrt{n} \left(\hat{\theta}_n - \theta \right) = \mathbb{G}_n[\varphi(O, \hat{\nu}_n)] = \mathbb{G}_n[\varphi(O, \nu)]
+ D_{\nu} \Psi_0 \left[\sqrt{n} (\hat{\nu}_n - \nu) \right] = 0
+ \mathcal{O}_P(\sqrt{n} || \hat{\nu}_n - \nu ||_{\mathcal{V}}^2) = \mathcal{O}_P(1)
= \mathbb{G}_n[\varphi(O, \nu)] + \mathcal{O}_P(1).$$

Find a parametrization $\Psi(P)=P[\varphi(O,\nu)]$ such that φ is the (canonical) gradient. Then by Neyman orthogonality and assumptions we can write

$$\sqrt{n} \left(\hat{\theta}_n - \theta \right) = \mathbb{G}_n[\varphi(O, \hat{\nu}_n)] = \mathbb{G}_n[\varphi(O, \nu)]
+ D_{\nu} \Psi_0 \left[\sqrt{n} (\hat{\nu}_n - \nu) \right] = 0
+ \mathcal{O}_P(\sqrt{n} || \hat{\nu}_n - \nu ||_{\mathcal{V}}^2) = \mathcal{O}_P(1)
= \mathbb{G}_n[\varphi(O, \nu)] + \mathcal{O}_P(1).$$

Hence $\hat{\theta}_n$ is a RAL estimator, and if $\varphi - P[\varphi]$ is the canonical gradient it will be asymptotically efficient.

Find a parametrization $\Psi(P)=P[\varphi(O,\nu)]$ such that φ is the (canonical) gradient. Then by Neyman orthogonality and assumptions we can write

$$\sqrt{n} \left(\hat{\theta}_n - \theta \right) = \mathbb{G}_n[\varphi(O, \hat{\nu}_n)] = \mathbb{G}_n[\varphi(O, \nu)]
+ D_{\nu} \Psi_0 \left[\sqrt{n} (\hat{\nu}_n - \nu) \right] = 0
+ \mathcal{O}_P(\sqrt{n} || \hat{\nu}_n - \nu ||_{\mathcal{V}}^2) = \mathcal{O}_P(1)
= \mathbb{G}_n[\varphi(O, \nu)] + \mathcal{O}_P(1).$$

Hence $\hat{\theta}_n$ is a RAL estimator, and if $\varphi - P[\varphi]$ is the canonical gradient it will be asymptotically efficient.

This is the approach taken in Chernozhukov et al. [2018]. See also Example 4.1 of the note.

Constructing estimators 2: TMLE

References

- V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W. Newey, and J. Robins. Double/debiased machine learning for treatment and structural parameters, 2018.
- E. H. Kennedy. Semiparametric theory and empirical processes in causal inference. In *Statistical causal inferences and their applications in public health research*, pages 141–167. Springer, 2016.