AMATH 250 — LECTURE 1

 $Instructor:\ Zoran\ Miskovic$ $Bartosz\ Antczak$ May 2, 2017

Introduction 1.1

What are differential equations? An informal definition is: a differential equation (DE) is an equation that relates an unknown function to its own derivative(s).

DEs are the language of science and engineering. Fundamental laws are expressed as DEs.

Example 1.1.1. Classical mechanics

$$v(t) = \frac{dx}{dt} \tag{1.1}$$

$$a(t) = \frac{dv}{dt} = \frac{d^2x}{dt^2} \tag{1.2}$$

$$v(t) = \frac{dx}{dt}$$

$$a(t) = \frac{dv}{dt} = \frac{d^2x}{dt^2}$$

$$\implies F(x) = m\frac{d^2x}{dt^2}$$
(1.1)
(1.2)

Example 1.1.2. Lotka-Volterra equation

Let x(t) = number of prey. Let y(t) = number of predators.

$$\frac{dx}{dt} = \alpha x - \beta xy \tag{1.4}$$

$$\frac{dx}{dt} = \alpha x - \beta xy \tag{1.4}$$

$$\frac{dy}{dt} = \delta xy - \gamma y \tag{1.5}$$