CSCE 411: Design and Analysis of Algorithms

Lecture: Optimization and Linear Programming

Date: April 22 Nate Veldt, updated by Samson Zhou

Course Logistics

- \bullet CLRS Chapter 29 and 35
- Last homework due Friday

1 Linear programming

A linear program is a mathematical optimization problem with

- A linear objective function
- Linear constraints

We will use x_i to denote variables—unknowns that we need to find to make the objective function as large as possible, and such that the constraints hold.

Examples

Warm-up problem (from CLRS). As a politician seeking approval ratings, you would like the support of 50 urban voters, 100 suburban voters, 25 rural voters. For each \$1 spent advertising one of the following policies, the resulting effects are:

Policy	Urban	Suburban	Rural
Zombie apocalypse	-2	+5	-3
Shark with lasers	+8	+2	-5
Flying cars roads	0	0	+10
Dolphins voting	+10	0	-2

Minimize the amount spent to achieve the desired voter support. How can we write this as an algorithmic or mathematic problem?

Create	•	11
Create	waria	വമഭ

- \bullet Let ____ be the money spent on ads for preparing for a zombie apocalypse
- \bullet Let ____ be the money spent on ads for sharks with lasers
- \bullet Let ____ be the money spent on ads for roads for flying cars
- \bullet Let ____ be the money spent on ads for allowing dolphins to vote

Then the objective of the problem is:

The constraints of the problem are:

Another example problem. The students of **CSCE 411** are managing their semester project portfolios, which involve three types of projects:

- Project A: Basic Algorithms.
- Project B: Graph Algorithms.
- **Project C:** Complexity.

Each project type earns a different amount of grade contribution points and consumes a mix of three limited resources: Self-Study Time, Computation Credits, and Team Collaboration Hours.

Project Type	Grade Points	Time (hours)	Credits (units)	Collab Hours
A	10	5	3	2
В	12	6	2	4
C	8	4	4	3

The semester budget for a student is:

- Maximum 60 hours of Self-Study Time.
- Maximum 30 Computation Credits.
- Maximum 36 Collaboration Hours.

Additionally, the professor requires that at least 2 projects from each type be completed for a balanced learning experience. Given the budget and these constraints, devise a project plan to maximize the grade.

Write a linear program for this problem.

2 Types of Linear Programs

т.		1		
Linear	programs	have	many	variations:

Inteal programs have many variations.	
• The objective function can be a maximization or a min	imization problem
• The constraints can be equality or inequalities	
• Often times, the variables will be greater than or equal	to zero
If a particular solution \overline{x} satisfies all of the constraints, we call i	t a .
Otherwise, we call it an are feasible is called the	The set of solutions that
Actually, we can perform different conversions to	
• Turn a maximization problem into a minimization prob	olem
• Turn an equality constraint into inequality constraints	
• Turn an inequality constraint into an equality constrain	at
• Turn an unconstrained variable into positive variables	
- Tall all allocabilities valuable into positive valuables	

3 Solving a Linear Program

Important Fact: A linear program can be solved in polynomial time, e.g., the ellipsoid algorithm. There are other practical implementations, e.g., the simplex algorithm, that can run in exponential-time in the worst case.

Consider the linear program:

Minimize: $x_1 + x_2$

Subject to: $4x_1 - x_2 \le 8$

 $2x_1 + x_2 \le 10$

 $5x_1 - 2x_2 \le -2$

 $x_1, x_2 \ge 0$ (Non-negativity)

Intuition: The optimal solution must occur at a _____ of the feasible region.

4 Duality

 ${\bf Question}$ 1. Consider the linear program:

Maximize:
$$x_1 + 2x_2 + 3x_3 + 4x_4$$

Subject to:
$$10x_1 \le 10$$

$$x_2 \le 200$$

$$5x_1 + 10x_2 + 15x_3 + 20x_4 \le 15$$

$$x_1, x_2, x_3, x_4 \ge 0$$
 (Non-negativity)

What can we say about the optimal value?

- **A** 1
- **B** 3
- C 10
- **D** 15
- **E** 200
- The limit does not exist

Consider the linear program:

Maximize:
$$3x_1 + x_2 + 4x_3$$

Subject to: $x_1 + x_2 + 3x_3 \le 30$
 $2x_1 + 2x_2 + 5x_3 \le 24$
 $4x_1 + x_2 + x_3 \le 36$
 $x_1, x_2, x_3 \ge 0$ (Non-negativity)

What can we say about the optimal value?

What if we take the original constraints and add the first two constraints?

The primal solution must be at most _____

Can we find a linear combination of the equations that exactly matches the objective? Create variables:

- Let ____ be the ____
- Let ____ be the ____
- Let ____ be the ____

What should be the objective?

The	of a linear program is an associated optimization prob-	
lem where	and,	
providing bounds on the		
In general, for a primal LP		

the corresponding dual LP is

Theorem 4.1 (Weak duality). Let the primal linear program be a minimization problem and its dual be a maximization problem. If x is a feasible solution to the primal and y is a feasible solution to the dual, then

$$c^{\top}x \ge b^{\top}y.$$

Theorem 4.2 (Strong Duality). If the primal linear program has an optimal solution over a feasible region \mathcal{P} and satisfies the necessary regularity conditions (e.g., feasibility), then the dual also has an optimal solution over the feasible region \mathcal{D} , and the optimal values of the primal and dual objectives are equal. That is,

$$\min_{x \in \mathcal{P}} c^{\top} x = \max_{y \in \mathcal{D}} b^{\top} y.$$