МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО» НАВЧАЛЬНО-НАУКОВИЙ ІНСТИТУТ ПРИКЛАДНОГО СИСТЕМНОГО АНАЛІЗУ Кафедра штучного інтелекту

Звіт з виконання завдань комп'ютерного практикуму № 5 Кореляційно-регресійний аналіз у середовищі STATISTICA з кредитного модуля «Багатовимірний статистичний аналіз»

Звіт склав студент гр. КІ-01 Копцов В.О. Прийняла: Ірина Джигирей Мета роботи. Опанувати процедури покрокового дискримінантного аналізу, засвоїти поняття класу і дискримінантної функції, набути досвіду застосування дискримінантного аналізу для пошуку змінних, які дають змогу віднести аналізовані об'єкти до певної групи, інтерпретувати дискримінації. функції Опанувати можливості використання дискримінантного аналізу для класифікування спостережень, набути дискримінантного ДЛЯ досвіду проведення аналізу класифікування об'єктів.

Завдання. За даними індивідуального завдання (Додаток А) визначити приналежність об'єктів до одного з класів за допомогою дискримінантного аналізу. Розрахунки провести у середовищі STATISTICA.

Варіант №30

Хід виконання завдань практикуму

1.

Оскільки лямбда Уілкса близька до нуля, можна сказати, що якість моделі висока. В модель увійшли всі 4 змінні, що означає, що кожна змінна якимось чином впливає на клас об'єкту.

	Discriminant Function Analysis Summary (msa-cp05-v30) No. of vars in model: 4; Grouping: x5 (2 grps)						
	Wilks' Lambda: ,20387 approx. F (4,7)=6,8339 p< ,0145						
	Wilks' Partial F-remove p-value Toler. 1-Toler.						
N=12	Lambda	Lambda	(1,7)			(R-Sqr.)	
x1	0,217682	0,936553	0,47422	0,513223	0,013331	0,986669	
x2	0,513691	0,396875	10,63781	0,013834	0,040830	0,959170	
х3	0,600091	0,339733	13,60440	0,007773	0,022088	0,977912	
х4	0,258887	0,787491	1,88899	0,211701	0,012490	0,987510	

Для другої і третьої змінної лямбда Уілкса більша відносно першої і третьої. Високе значення лямбди Уілкса означає, що центроїди груп по цій змінній співпадають або по ній відсутні групові розходження. Це позначає, що "найбільше" на класифікацію вплинули перша і четверта змінні.

Відстані між групами (Квадратична відстань Махаланобіса)

	Squared Mahalanobis Distances (msa-cp05-v30)				
x5	G_1:0	G_2:1			
G_1:0	0,00000	13,38879			
G_2:1	13,38879	0,00000			

Класифікаційна матриця

<		Classification Matrix (msa-cp05-v30)				
п		Rows: Observed classifications				
ı		Columns: Predicted classifications				
1		Percent G_1:0 G_2:1				
1	Group	Correct	p=,41667	p=,58333		
1	G_1:0	100,0000	5	0		
1	G_2:1	100,0000	0	7		
	Total	100,0000	5	7		

Результати апостеріорної класифікації кожного об'єкту

	Classification of Cases (msa-cp05-v30)				
	Incorrect classifications are marked with *				
	Observed	1	2		
Case	Classif.	p=,41667	p=,58333		
1	G_2:1	_	G_1:0		
2 3 4 5 6 7 8	G_2:1	G_2:1	G_1:0		
3	G_2:1	G_2:1	G_1:0		
4	G_2:1	G_2:1	G_1:0		
5	G_2:1	G_2:1	G_1:0		
6	G_2:1	G_2:1	G_1:0		
7	G_2:1	G_2:1	G_1:0		
8	G_1:0	G_1:0	G_2:1		
9	G_1:0	G_1:0	G_2:1		
10	G_1:0	G_1:0	G_2:1		
11	G_1:0	G_1:0	G_2:1		
12	G_1:0	G_1:0	G_2:1		

Отримали 2 групи. До класу G_1 відносяться об'єкти зі значенням групувальної функції 0, тобто об'єкти під номерами 8-12. До класу G_2 відносяться об'єкти зі значенням групувальної функції 1, тобто об'єкти під номерами 1-7. По матриці видно, що результат співпадає з значеннями групувальної змінної.

Відстані до центрів класів.

	Squared Mahalanobis Distances from Group Centroids (msa-cp05-v30) Incorrect classifications are marked with *					
	Observed	G_1:0	G_2:1			
Case	Classif.	p=,41667	p=,58333			
1	G_2:1	29,01011	4,93636			
2	G_2:1	17,65618	5,63156			
3	G_2:1	6,18926	1,77928			
4	G_2:1	18,00398	4,25751			
5	G_2:1	7,97580	1,33038			
6	G_2:1	15,80374	1,53846			
7	G_2:1	26,82837	8,27237			
8	G_1:0	2,99163	26,68920			
9	G_1:0	1,81944	6,36729			
10	G_1:0	3,38111	13,61067			
11	G_1:0	2,64294	22,79307			
12	G_1:0	1,41897	9,73779			

Тут напівжирним виділено відстань об'єктів до "свого" класу. Одразу можна зрозуміти, що об'єкти 9, 3, 5, 12 знаходяться між двома класами оскільки недалеко від центрів як і "свого" так і "чужого" класу, а об'єкт 7, хоч і знаходиться відносно далеко від центру свого класу, але знаходиться на ще більшій відстані від центру G_1 .

Значення апостеріорних ймовірностей.

Posterior Probabilities (msa-cp05-v30)				
Incorrect classifications are marked with *				
Observed	G_1:0	G_2:1		
Classif.	p=,41667	p=,58333		
G_2:1	0,000004	0,999996		
G_2:1	0,001746	0,998254		
G_2:1	0,073002	0,926998		
G_2:1	0,000739	0,999261		
G_2:1	0,025107	0,974893		
G_2:1	0,000570	0,999430		
G_2:1	0,000067	0,999933		
G_1:0	0,999990	0,000010		
G_1:0	0,874072	0,125928		
G_1:0	0,991660	0,008340		
G_1:0	0,999941	0,000059		
G_1:0	0,978604	0,021396		
	Observed Classif. G_2:1 G_1:0 G_1:0 G_1:0 G_1:0	Observed G_1:0 p=,41667 G_2:1 0,000004 G_2:1 0,001746 G_2:1 0,0073002 G_2:1 0,000739 G_2:1 0,00570 G_2:1 0,000570 G_2:1 0,00067 G_1:0 0,999990 G_1:0 0,991660 G_1:0 0,999941	Observed	

Тут напівжирним виділено апостеріорну ймовірність, що об'єкт належить до "свого" класу.

Видно, що для 1-7 вірогідність більша для G_2 , для 8-12 для G_1 . Об'єкти помічені в попередньому абзаці 9, 3, 5, 12 мають незначно меншу ймовірність що вони належать "своєму" класу, але все одно дуже велику.

2. Класифікаційні функції

1	Classification Functions; grouping: x5 (msa-cp05-v30)				
	G_1:0	G_2:1			
Variable	p=,41667	p=,58333			
x1	-0,03684	-0,06371			
x2	-0,10624	0,09286			
x3	0,07657	-0,04519			
x4	0,38315	1,33056			
Constant	-4,22633	-5,41276			

$$\begin{split} Q_{k(G1)} &= - \ 0,03684x_1 - \ 0,10624x_2 + \ 0,07657x_3 - \ 0,38315x_4 - \ 4,22633 \\ Q_{k(G2)} &= - \ 0,06371x_1 + \ 0,09286x_2 - \ 0,04519x_3 + \ 1,33056x_4 - \ 5,41276 \\ \text{O6'ekt} \ 13 \end{split}$$

13	G_1:0	G_2:0
119,32	-4,3957488	-7,6018772
77,46	-8,2293504	7,1929356
157,06	12,0260842	-7,0975414
8,22	3,149493	10,9372032
	-4,22633	-5,41276
Qk	-1,675852	-1,9820398

Об'єкт складно однозначно віднести до одного з класів, але оскільки значення функції для G_1 більше за значення для G_2 . Можна віднести об'єкт до класу G_1 .

Об'єкт 14

G_1:0	G_2:0
-2,4992256	-4,3220864
-8,8221696	7,7110944
8,7320428	-5,1534676
3,356394	11,6557056
-4,22633	-5,41276
-3,4592884	4,478486
	-8,8221696 8,7320428 3,356394 -4,22633

Об'єкт однозначно відноситься до класу G_2 . Об'єкт 15

15	G_1:0	G_2:0
92,86	-3,4209624	-5,9161106
110,4	-11,728896	10,251744
188,38	14,4242566	-8,5128922
8,76	3,356394	11,6557056
	-4,22633	-5,41276
Qk	-1,5955378	2,0656868

Об'єкт однозначно відноситься до класу G_2 . Об'єкт 16

	16	G_1:0	G_2:0
	216,88	-7,9898592	-13,8174248
	117,6	-12,493824	10,920336
	330,94	25,3400758	-14,9551786
	14,16	5,425404	18,8407296
		-4,22633	-5,41276
Qk		6,0554666	-4,4242978

Об'єкт однозначно відноситься до класу G_1 .

Об'єкт 17

17	G_1:0	G_2:0
77,02	-2,8374168	-4,9069442
92,76	-9,8548224	8,6136936
393,04	30,0950728	-17,7614776
4,98	1,908087	6,6261888
	-4,22633	-5,41276
Qk	15,0845906	-12,8412994

Об'єкт однозначно відноситься до класу G_1 . Об'єкт 18

G_1:0	G_2:0
-5,4169536	-9,3679184
-15,3240576	13,3941264
11,5023454	-6,7884418
6,804744	23,6307456
-4,22633	-5,41276
-6,6602518	15,4557518
	-15,3240576 11,5023454 6,804744 -4,22633

Об'єкт однозначно відноситься до класу G_2 .

Висновки:

В процесі виконання комп'ютерного практикуму №5 я виконав розрахунки згідно індивідуального завдання і набув вмінь дискримінантного аналізу в Statistica. Було дуже зручно отримувати результати дискримінування за допомогою додатку. Присутньо багато зручних функцій, але чомусь в практикумі вибір куди віднести об'єкт ми робили не за допомогою Statistica, тому, наскільки я розумію, такої функції там немає, але якщо б вона була це ще більше в збільшила зручність додатку.