

Zadanie 2 (1pkt)

Opisz graf w formie macierzy incydencji.

MAC	IERZ IN	CYDENC	JI:		num	nery wie	rzchołk	ów		numery	krawędz	i							
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0
2	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	1
3	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	1
5	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
8	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0
9	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
12	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	1	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
4	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1	0	0	0	0
6	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0
7	1	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	1
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0
9	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0
10	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
12	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1

	38	39	40	41	42	43
0	0	0	0	0		0
1	0	0	0	0	0	0
2	0	0	0	0	0	0 0 0 0 0 0 0 0 0 0
3	0	0	0	0	0	0
2 3 4	0	0	0	0	0 0 0	0
5	0	0	0	0 0 0 0 0 0	0	0
5 6 7	0	0	0	0	0	0
7	0	0	0	0	0 0	0
8 9 10 11 12	0	1	0	0	0	0
9	1	0	1	1	0	0
10	0	0	1	0	1	0
11	0	1	0	0	1	1
12	0	0	0	1	0	1

Zadanie 3 (3pkt)

Czy ten graf jest hamiltonowski/pół-hamiltonowski? Jeśli tak to podaj ścieżkę/cykl Hamiltona.

cykl Hamiltona: 0->1->2->3->4->7->6->12->11->10->9->8->5->0 Ten graf jest hamiltonowski (także pół-hamiltonowski)

Zadanie 4 (3pkt)

Czy ten graf jest eulerowski/pół-eulerowski? Jeśli tak to podaj ścieżkę/cykl Eulera.

Graf nie jest eulerowski ani pół eulerowski, ponieważ jest więcej niż 2 wierzchołki o nieparzystym stopniu (np. 10, 12, 1, 4 - według numeracji od 0, gdzie sąsiedzi wierzchołka 0 to wiersz 1, wierzchołka 1 to wiersz 2 itd...)

Pokoloruj graf wierzchołkowo oraz krawędziowo. pokolorowany wierzchołkowo:

pokolorowany krawędziowo:

Podaj liczbę chromatyczną oraz indeks chromatyczny dla grafu.

liczba chromatyczna tego grafu to 6 indeks chromatyczny tego grafu to 10

Zadanie 7 (1pkt)

Wyznacz minimalne drzewo rozpinające dla analizowanego grafu.

Przyjąłem, że każda krawędź ma wagę 1. Przykładowe minimalne drzewo rozpinające to: 0->1->2->3->4->7->6->12->11->10->9->8->5

Jeśli tak, to ile ścian można w nim wyznaczyć? Proszę to wykazać na rysunku

zbioru {0,1,5,8,9}

Zadanie 8 (2pkt)

graf nie jest grafem planarnym, ponieważ zawiera podgraf K5 (tworzą go wierzchołki 0,1,5,8,9 wraz z odpowiednimi ich krawędziami - odpowiednie w sensie nie liczymy krawędzi np łączącą 2 wierzchołek bo go nie ma w powyższymz biorze wierzchołków, a np krawędź łączącą wierzchołek 0 z 1 już tak, bo 0 i 1 należą do

Przeanalizuj powyższy algorytm: jakie problemy rozwiązuje, konkretne przykłady wykorzystania, z jakich metod korzysta się obecnie do rozwiązywania tych problemów (4pkt)

Algorytm Dijkstry rozwiązuje problem najkrótszych ścieżek z danego wierzchołka.

(czyli np od wierzchołka 1 znajdzie najkrótszą ścieżkę do wierzchołka 2 i każdego innego wierzchołka w grafie) Innymi słowy: Algorytm charakteryzuje się tym, że szuka od konkretnego wierzchołka ścieżki o najmniejszej sumie wag do każdego wierzchołka w grafie.

Przykład wykorzystania: Wyszukiwanie najkrótszej trasy na google maps (wierzchołki to skrzyżowania, a długości tras od jednego skrzyżowania do drugiego to wagi krawędzi) Wykorzystuje się go też przy sieciach komputerowych np przy protokole OSPF

Obecnie lepszym algorytmem od algortymu Dijkstry jest algorytm A* (znanym obecnie także jako najlepszy algorytm wyszukiwania najkrótszych ścieżek)

- Można go opisać w następujących 5 krokach:
- 1. Ścieżka startuje w wierzchołku źródłowym. Długość drogi wynosi 0. 2. Oznaczamy odległości pomiędzy wierzchołkami - g, oraz odległości bezpośrednio między wierzchołkiem docelowym, a wszystkimi pozostałymi - h.
- 3. Wybieramy jako następny wierzchołek grafu ten, któryw najmniejszym stopni powiększy długość naszej drogi, suma g + h. 4. Sprawdzamy czy suma, którejś z dróg nie jest mniejsza od naszej trasy. Jeśli tak przechodzimy do ostatniego wierzchołka tej ścieżki. 5. Powtarzamy krok 3, aż do momentu dotarciu do wierzchołka docelowego.