

Shuvayan Brahmachary

Bangalore/India | +91 93953 10075 b.shuvayan@gmail.com

github | in linkedin

SUMMARY

Results-driven data scientist with 6+ years post-PhD across **India**, **Japan**, **Germany** in AI, scientific ML (differentiable physics, reduced-order modeling, CFD, time-series forecasting, optimization). Led research interns and collaborated with **JAXA**, **KAIST**, **NVIDIA**, **ISRO**. **15 journal papers** (3 featured) and **16 conference papers** on AI/ML/CFD/optimization; focus on turning models into measurable business impact (rNPV projections across use-cases).

EDUCATION

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI, IITG

2013-2019

Ph.D in Fluids and Thermal Engineering, Mechanical Engineering

• Finite Volume/Immersed Boundary Methods for Compressible Flows: Development and Applications

GAUHATI UNIVERSITY, GIMT

2008-2012

B.E. IN MECHANICAL ENGINEERING

• 2nd position in the merit list of the Gauhati University

PROGRAMMING LANGUAGES Python | C | MATLAB

ML LIBRARIES PyTorch | PhiFlow | NVIDIA Modulus | DeepXDE | TensorFlow

DL STACK Differentiable physics | ANN | CNN | Fourier Neural Operator (FNO) | DeepONet

LLM/NLP STACK ChatGPT-3.5-turbo-16k | Llama-3.1-70B | LangChain **Unsupervised ML** K-means | Hierarchical clustering | DBSCAN | PCA

SUPERVISED ML Multiple Linear Regression | Logistic Regression | Random Forest **PYTHON/DATA STACK** Jupyter | Matplotlib | NumPy | pandas | scikit-learn | seaborn

MODELING Finite Volume | Finite Difference

OPERATING SYSTEMS Linux | macOS | Windows

OPEN-SOURCE OPTIMIZATION TOOLS NSGA (KANGAL) | SAEA (MDOLab)

EXPERIENCE

SCIML RESEARCHER, SHELL PLC

Sept. 2023 - Present / India

- AI-Agents assisted robust framework for end-to-end multi-physics fluid simulations using OpenFoam. Framework utilises RAG and state-of-the-art reasoning models such as GPT-4o, DeepSeek-R1, Llama-4-Scout-17B, O3, etc. Projected impact: **\$14 million USD** rNPV.
- ML-based molecular discovery framework with multiple conflicting objectives. Projected impact: **\$19 million USD** rNPV.
- Machine learning-based shape optimisation framework for Catalytic Partial Oxidation Reactor design. Projected impact: **\$8.5 million USD** rNPV.
- Machine learning-based framework for novel gas-liquid contactor design for efficient CO_2 capture using amine-based solvents. Projected impact: **\$9 million USD** rNPV.
- Spatio temporal prediction of full wave inversion (FWI) process to map earth's subsurface properties using Fourier Neural Operators (FNO). Paper accept for publication in EAGE HPC workshop 2025. Projected impact: **\$50 million USD** rNPV.
- Hierarchical Physics informed neural network as fast proxy for steady state prediction of temperature profile inside MCHE, potentially impacting upto **\$5 million**/LNG train
- DeepONet-based neural operator for time series forecast of auto cool down sequence of an MCHE for fault detection. Projected impact: **\$19.5 million USD** rNPV.
- LLM based agentic AI framework (LEO) for complex single and multi-objective optimisation problems.
- Article on "On Scientific Foundation Models: Rigorous Definitions, Key Applications, and a Survey", as project lead. Presently under review.
- · Language model based evolutionary optimisation (LEO) published in Neurocomputing Journal. (link)

Hierarchical clustering for semantically similar images in hardhat dataset based on ResNet 50 encodings.

RESEARCH SCIENTIST, TECHNICAL UNIVERSITY OF MUNICH

Jan. 2022 - Sept. 2023 / Germany

- Built a differentiable-physics ML framework for spatio-temporal flowfield prediction (incompressible flows). (link)
- Delivered 5 lectures (IN2298) on advanced deep learning for physical simulations (optimization, convergence, differentiable physics). (link)
- · Co-organized a seminar and mentored Master's students (Deep Learning in Physics). (link)

RESEARCH SCIENTIST, KYUSHU UNIVERSITY

Sept. 2019 - Sept. 2021 / Japan

- Developed surrogate assisted evolutionary algorithm (SAEA) pipelines for aerodynamic shape optimization of high-speed vehicles. (link)
- Developed a ROM-assisted NN for scramjet intake & combustor flowfields; Additional collaborations with JAXA and KAIST. (link) (link)
- · Led a team of research interns at Kyushu University with successful publiction in Journal (link)

PHD SCHOLAR, IITG

Jan. 2013 - June. 2019 / India

- Developed an inhouse immersed boundary based finite volume (IB-FV) solver for high-speed compressible flows. The overarching aim of the thesis was to develop, validate and apply the IB-FV solver for aerodynamic shape optimisation in collaboration with ISRO. (link)
- Collaborated to University of Rennes to optimise an nozzle configuration for minimum radial velocity which was later experimentally examined. (link)

SUBJECT MATTER EXPERT, NANOBIZ PVT. LTD.

Jan. 2019-Apr. 2019 / India

• Led a team while working as a subject matter expert to deliver the project titled "Technology landscape on artificial intelligence in the field of computational fluid dynamics" for Diamler, India

ASSISTANT PROJECT ENGINEER

Sept. 2012- Dec. 2012 / India

• Worked as an asisstant project engineer for 3D design of a shock tube for its inhouse fabrication and setup at IITG

TRAINING AND CERTIFICATIONS

- · Machine Learning in Production by deeplearning.ai (website)
- Generative AI with Large Language Models by deeplearning.ai (website)
- Data Driven Engineering (DDE), Isaac Newton Institute for Mathematical Science, Workshops 2023 (website)
- Institute for Computational and Mathematical Engineering (ICME), Stanford University, Summer Workshops 2021
 Fundamentals of Data Science: Machine learning, Deep learning, High Performance Computing (website)
- Large Language Model Agents by UC Berkeley (ongoing) (website)
- · Langchain for LLM application development (website)
- R & D valuation and basic economics for technology by Shell, Plc

SELECTED PUBLICATIONS

- Brahmachary, S., Thuerey, N.,"Unsteady Cylinder Wakes from Arbitrary Bodies with Differentiable Physics-Assisted Neural Network" (Physical Review E, 2024) Link
- Brahmachary, S., Bhagyarajan, A., and Ogawa, H.,"Fast Estimation of Internal Flowfields in Scramjet Intakes via Reduced-Order Modeling and Machine Learning" (Physics of Fluids, 2021, Selected as featured article) Link
- Brahmachary, S., Joshi, S., Panda, A., Konerapalli, K., Sagotra, A., Patel, H., Sharma, A., Jagtap, A., Kalyanaraman, K. "Large Language Model-Based Evolutionary Optimizer: Reasoning with Elitism" (**Neurocomputing**, 2024) Link

OTHERS _

- Invites talks at Paral-Intelligence seminar series, Worcester Polytechnic Institute WPI, Karlsruhe Institute of technology (KIT, Germany) and Space Transportation Systems Engineering Laboratory, Kyushu University (STSEL, Japan)
- Blogs on topics "When Kolmogorov-Arnold network meet PiNNs: Good, Bad and the Ugly Link", "Differentiable Physics for Unsteady Fluid Dynamics Link", "Principal component analysis in aerodynamic shape optimisation Link"
- · Life member: Society for Shock Wave Research (SSWR) and Member of the Soft Computing Research Society (SCRS)