The Importance of Being Calibrated: A Study on Probability Calibration and Interval Estimation for Binary Classification

Elisa Terzini, Sezer Mezgil, Sandro Khizanishvili

Statistical Learning
Sapienza University of Rome
Sep 2025

Introduction & Motivation: Can We Trust a Model's Confidence?

Accuracy is Not Enough: Discrimination vs. Calibration

Calibration Methods: Platt, Isotonic, and VennAbers

Our Dataset & Experimental Setup

Credit Risk Data Preparation

Results on Credit Risk Data: Accuracy vs. Calibration

Simulated Data Generation

Results on Simulated Data

Probability Intervals

Conclusion & Key Takeaways

Introduction & Motivation: Can We Trust a Model's Confidence?

Question:

A model predicts a 20% chance of positive class. What does this actually mean?

For a **well-calibrated model**, over many predictions, a model that gives a 20% probability score should be correct **approximately** 20% of the time for similar predictions

But:

Most powerful modern algorithms (e.g., SVM, GBM, Random Forests, Logistic Regression ..) are naturally "scoring classifiers". They excel at discrimination (ranking instances) but are often **poorly calibrated**.

Predicted Probability $P(Y = 1 X = x)$	True Outcome	Observed Frequency
0.2	0	1/5 = 0.2
0.2	0	1/5 = 0.2
0.2	1	1/5 = 0.2
0.2	0	1/5 = 0.2
0.2	0	1/5 = 0.2

Introduction & Motivation: Can We Trust a Model's Confidence?

Accuracy is Not Enough: Discrimination vs. Calibration

Calibration Methods: Platt, Isotonic, and VennAbers

Our Dataset & Experimental Setup

Credit Risk Data Preparation

Results on Credit Risk Data: Accuracy vs. Calibration

Simulated Data Generation

Results on Simulated Data

Probability Intervals: Bootstrap vs. Venn-Abers

Conclusion & Key Takeaways

Accuracy is Not Enough: Discrimination vs. Calibration

Discrimination vs Calibration:

Two models that are equally accurate (70% correct) show different levels of confidence in their predictions. **Model A** uses *well-calibrated* probabilities while **Model B** only uses extreme probabilities.

Formal Definition:

A random variable P taking values in [0,1] is **well-calibrated** for a random variable Y taking values in $\{0,1\}$ if

$$\mathbb{E}(Y \mid P) \approx P$$

P is the prediction made by a probabilistic predictor for **Y**

Introduction & Motivation: Can We Trust a Model's Confidence?

Accuracy is Not Enough: Discrimination vs. Calibration

Calibration Methods: Platt, Isotonic, and VennAbers

Our Dataset & Experimental Setup

Credit Risk Data Preparation

Results on Credit Risk Data: Accuracy vs. Calibration

Simulated Data Generation

Results on Simulated Data

Probability Intervals

Conclusion & Key Takeaways

Calibration Methods: Platt's method

• Platt's method uses sigmoid:

$$g(s) \coloneqq \frac{1}{1 + \exp(As + B)}$$

Where A<0 and B are parameters that are determined via MLE.

- **Pros:** Simple, fast, less prone to overfitting on small datasets.
- **Cons** Makes a strong assumption that the distortion in scores follows a sigmoid shape.

Calibration Methods: Isotonic Regression

- A non-parametric approach that fits a flexible, stepwise function to the model's scores.
- Fit an isotonic regression model (a.k.a. a non-decreasing step function) to the pairs $(s(x_i), y_i)$ using PAVA
- **Pros:** Highly flexible. Can learn any non-decreasing calibration pattern. Often more accurate than Platt when we have enough data.
- **Cons** Prone to overfitting on small datasets. Requires more data to reliably learn the function.

Calibration Methods: Inductive Venn-Abers predictors (IVAPs)

- IVAPs are a specific class of **Venn predictors** that utilize **isotonic regression** to calibrate probabilistic predictions.
- Output: Unlike traditional probabilistic predictors that issue a single probability, IVAPs produce multi-probabilistic predictions $[p_0, p_1]$.
- Theoretical Validity: Either p_0 or p_1 is guaranteed to be **perfectly** calibrated under the i.i.d. assumption.

Algorithm:

- 1. Divide the training set of size 1 into two subsets, the **proper training** set of size m and the calibration set of size k, so that l = m + k.
- 2. Train the scoring algorithm on the proper training set
- 3. Find the scores s_1, \ldots, s_k of the calibration objects x_1, \ldots, x_k .
- 4. When a new test object x arrives, compute its score s. Fit isotonic regression to $(s_1, y_1), \ldots, (s_k, y_k), (s, 0)$ obtaining a function f_0 . Fit isotonic regression to $(s_1, y_1), \ldots, (s_k, y_k), (s, 1)$ obtaining a function f_1 . The multiprobability prediction for the label y of x is the pair $(p_0, p_1) := (f_0 \dot{s}\dot{l}', f_1 \dot{s}\dot{l}')$.

Using *log loss* correspondingminimax probabilistic prediction *p* is:

$$p = \frac{p_1}{1 - p_0 + p_1}$$

Calibration Methods: Cross VennAbers predictors (CVAPs)

• A CVAP is just a combination of K IVAPs, where K is the parameter of the algorithm.

Algorithm:

- 1. Split the training set T into K folds T_1, \ldots, T_k
- 2. for $k \in \{1, ..., K\}$ $(p_0^k, p_1^k) \coloneqq \text{IVAP}(\mathsf{T} \setminus T_k, T_k, x)$
- 3. return $\frac{GM(p_1)}{GM(1-p_0)+GM(p_1)}$

Introduction & Motivation: Can We Trust a Model's Confidence?

Accuracy is Not Enough: Discrimination vs. Calibration

Calibration Methods: Platt, Isotonic, and VennAbers

Our Dataset & Experimental Setup

Credit Risk Data Preparation

Results on Credit Risk Data: Accuracy vs. Calibration

Simulated Data Generation

Results on Simulated Data

Probability Intervals

Conclusion & Key Takeaways

Our Dataset & Experimental Setup

Data

Credit Risk Data

- Source <u>Kaggle</u>
- **Objective**: Binary classification task to predict customer default (Default vs. No Default).
- **Size** 32,461 instances
- **Features** 11 features (e.g., income, loan amount, credit history)
- Class Balance 78% No Default (0); 22% Default (1)

Simulated Data

- Source Beta distribution
- Objective: To study calibration in an idealized setting with known ground truth, we simulated 'model scores' from two distinct Beta distributions
- Size 1,000 / 10,000 / 50,000
- ClassBalance 5%, 10%, 20%, 30%, 40%, 50%

Model	Calibration Methods Applied	Interval Estimation	Discrimination Evaluation Metrics	Calibration Evaluation Metrics
Logistic Regression	Platt's Method Isotonic Regression	 Venn-Abers 500 samples Bootstrap (2.5%, 975%) 	ROC AUC KS statistics	Log Loss Brier Score ECE (Expected Calibration
XGBoost	Venn-Abers	• Venn-Abers	• Log Loss	Error)

Introduction & Motivation: Can We Trust a Model's Confidence?

Accuracy is Not Enough: Discrimination vs. Calibration

Calibration Methods: Platt, Isotonic, and VennAbers

Our Dataset & Experimental Setup

Credit Risk Data Preparation

Results on Credit Risk Data: Accuracy vs. Calibration

Simulated Data Generation

Results on Simulated Data

Probability Intervals

Conclusion & Key Takeaways

Credit Risk Data Preparation

- 1. **EDA:** Before any data preprocessing we explored our dataset.
- 2. Dataset Split The dataset was first divided into three sets: training, validation, and test.
- **3.** Outlier Capping: We capped outlier values in the features to reduce their impact on model performance.
- **4. Missing Value Imputation**: Missing values in the dataset were handled by applying appropriate imputation methods to ensure data completeness.
- 5. Target Encoding for Categorical Features

 Categorical features were encoded using target
 encoding, where the mean of the target variable for
 each category was used to represent the categorical
 feature.

Credit Risk Data Preparation (Feature Selection)

- Correlation Analysis We calculated the correlations between features and identified highly correlated ones. Features with high correlation were dropped based on their relevance and interpretability.
- 2. Stability Check with PSI To ensure feature stability, we used Population Stability Index (PSI) to compare feature distributions across the training and validation sets. This helped us identify features that might cause data drift or instability.

- Correlation exclusion: 'person_age',
 'loan_int_rate'
- 2. PSI exclusion: All features are stable!

Introduction & Motivation: Can We Trust a Model's Confidence?

Accuracy is Not Enough: Discrimination vs. Calibration

Calibration Methods: Platt, Isotonic, and VennAbers

Our Dataset & Experimental Setup

Credit Risk Data Preparation

Results on Credit Risk Data: Accuracy vs. Calibration

Simulated Data Generation

Results on Simulated Data

Probability Intervals

Conclusion & Key Takeaways

Results on Credit Risk Data: Accuracy

Logistic Regression

XGBoost

Results on Credit Risk Data: Calibration (Logistic Regression)

Valid/ CalibSet							
	ECE Log Loss Brier Score						
Raw	0.017	0.345	0.106				
Platt	0.016	0.344	0.105				
Isotonic	0	0.337	0.104				
IVAP	0.005	0.339	0.104				
CVAP	0.012	0.343	0.105				
Bootstrap	0.009	0.341	0.105				

	Test Set						
	ECE Log Loss Brier Scor						
Raw	0.022	0.357	0.109				
Platt	0.02	0.357	0.109				
Isotonic	0.015	0.385	0.109				
IVAP	0.0 16	0.356	0.109				
CVAP	0.013	0.354	0.108				
Bootstrap	0.013	0.359	0.108				

Results on Credit Risk Data: CalibrationXGBoost)

Riskiness

Valid/ CalibSet							
	ECE Log Loss Brier Score						
Raw	0.015	0.194	0.053				
Platt	0.023	0.198	0.053				
Isotonic	0	0.183	0.052				
IVAP	0.004	0.186	0.052				
CVAP	0.019	0.172	0.048				

	Test Set					
	ECE Log Loss Brier Sco					
Raw	0.013	0.203	0.056			
Platt	0.0 18	0.207	0.057			
Isotonic	0.010	0.267	0.056			
IVAP	0.010	0.201	0.056			
CVAP	0.008	0.1990	0.056			

Introduction & Motivation: Can We Trust a Model's Confidence?

Accuracy is Not Enough: Discrimination vs. Calibration

Calibration Methods: Platt, Isotonic, and VennAbers

Our Dataset & Experimental Setup

Credit Risk Data Preparation

Results on Credit Risk Data: Accuracy vs. Calibration

Simulated Data Generation

Results on Simulated Data

Probability Intervals

Conclusion & Key Takeaways

Simulated Data Generation

Data Generation Process

For Class 0:

- 70% of samples: $Beta(\alpha = 2, \beta = 8)$ (Accurate, low-confidence predictions)
- 30% of samples: $Beta(\alpha = 7, \beta = 3)$ (Overconfident errors)

For Class 1:

- 70% of samples: $Beta(\alpha = 8, \beta = 2)$ (Accurate, high-confidence predictions).
- 30% of samples: $Beta(\alpha = 3, \beta = 7)$ (Underconfident errors)

Simulation Scenarios

- Dataset Size:1,000 / 10,000 / 50,000;
- Class Imbalance5%, 10%, 20%, 30%, 40%, 50% positive class prevalence

This resulted in a grid of **3** x **6** = **1** a istinct simulation scenarios, allowing us to draw strong conclusions about the performance and reliability of **Platt Scaling, Isotonic Regression** and **Venn-Abers** under a wide range of conditions.

Introduction & Motivation: Can We Trust a Model's Confidence?

Accuracy is Not Enough: Discrimination vs. Calibration

Calibration Methods: Platt, Isotonic, and VennAbers

Our Dataset & Experimental Setup

Credit Risk Data Preparation

Results on Credit Risk Data: Accuracy vs. Calibration

Simulated Data Generation

Results on Simulated Data

Probability Intervals

Conclusion & Key Takeaways

Results on Simulated Data

	ECE					
	Size = 1,000					
	RW	PS	ISO	IVAP		
5%	0.309	0.015	0.015	0.015		
10%	0.302	0.042	0.050	0.048		
20%	0.232	0.052	0.035	0.052		
30%	0.140	0.037	0.032	0.025		
40%	0.083	0.059	0.070	0.066		
50%	0.090	0.067	0.073	0.050		

	Log Loss					
	Size = 1,000					
	RW	PS	ISO	IVAP		
5%	0.599	0.175	0.279	0.176		
10%	0.609	0.275	0.283	0.281		
20%	0.566	0.398	0.401	0.405		
30%	0.573	0.497	0.720	0.495		
40%	0.555	0.533	0.637	0.529		
50%	0.581	0.566	0.563	0.562		

	ECE				
	Si	ze = 10,0	000		
	RW	PS	ISO	IVAP	
5%	0.312	0.008	0.008	0.008	
10%	0.277	0.013	0.011	0.009	
20%	0.218	0.021	0.013	0.015	
30%	0.143	0.021	0.024	0.023	
40%	0.075	0.016	0.012	0.011	
50%	0.063	0.031	0.020	0.019	

	Log Loss					
	Size = 10,000					
	RW	PS	ISO	IVAP		
5%	0.562	0.176	0.176	0.176		
10%	0.561	0.274	0.274	0.274		
20%	0.560	0.395	0.395	0.395		
30%	0.551	0.478	0.490	0.479		
40%	0.574	0.547	0.549	0.549		
50%	0.568	0.558	0.555	0.555		

ECE				
	Si	ze = 50,0	000	
	RW	PS	ISO	IVAP
5%	0.314	0.005	0.004	0.004
10%	0.277	0.014	0.006	0.006
20%	0.207	0.014	0.008	0.008
30%	0.139	0.017	0.011	0.012
40%	0.073	0.026	0.013	0.012
50%	0.053	0.015	0.012	0.012

Log Loss					
	Size = 50,000				
	RW	PS	ISO	IVAP	
5%	0.564	0.172	0.173	0.171	
10%	0.554	0.268	0.267	0.267	
20%	0.557	0.406	0.405	0.405	
30%	0.558	0.489	0.493	0.488	
40%	0.559	0.535	0.537	0.533	
50%	0.559	0.550	0.552	0.550	

Results on Simulated Data

Brier Score				
Size = 1,000				
	RW	PS	ISO	IVAP
5%	0.190	0.043	0.043	0.043
10%	0.206	0.079	0.082	0.081
20%	0.190	0.124	0.125	0.126
30%	0.194	0.165	0.166	0.164
40%	0.188	0.178	0.177	0.177
50%	0.199	0.193	0.193	0.192

	Brier Score				
Size = 10,000					
	RW	PS	ISO	IVAP	
5%	0.191	0.044	0.044	0.045	
10%	0.190	0.078	0.079	0.079	
20%	0.190	0.124	0.125	0.125	
30%	0.184	0.157	0.157	0.157	
40%	0.195	0.184	0.185	0.185	
50%	0.192	0.189	0.187	0.187	

Brier Score				
Size = 50,000				
	RW	PS	ISO	IVAP
5%	0.191	0.044	0.044	0.044
10%	0.187	0.077	0.077	0.077
20%	0.188	0.128	0.128	0.128
30%	0.189	0.161	0.161	0.161
40%	0.189	0.179	0.179	0.179
50%	0.188	0.185	0.185	0.185

Overall Performance

- Platt's ScalingECE-4/18; Log Loss 9/18; Brier Score-13/18
- Isotonic Regression ECE-12/18 Log Loss-6/18; Brier Score-11/18
- Inductive VennAbers ECE-12/18 Log Loss-13/18 Brier Score-13/18

Introduction & Motivation: Can We Trust a Model's Confidence?

Accuracy is Not Enough: Discrimination vs. Calibration

Calibration Methods: Platt, Isotonic, and VennAbers

Our Dataset & Experimental Setup

Credit Risk Data Preparation

Results on Credit Risk Data: Accuracy vs. Calibration

Simulated Data Generation

Results on Simulated Data

Probability Intervals

Conclusion & Key Takeaways

Probability Intervals

Model	Method	Average Interval Width	
XGBoost	IVAP	0.0067	
XGBoost	CVAP (Mean)	0.0069	
Logistic Reg	IVAP	0.0080	
Logistic Reg	CVAP (Mean)	0.0081	
XGBoost	CVAP (Min, Max)	0.0333	
Logistic Reg	CVAP (Min, Max)	0.0514	
Logistic Reg (Bootstrap)	(2.5%, 97.5%)	0.0627	

Introduction & Motivation: Can We Trust a Model's Confidence?

Accuracy is Not Enough: Discrimination vs. Calibration

Calibration Methods: Platt, Isotonic, and VennAbers

Our Dataset & Experimental Setup

Credit Risk Data Preparation

Results on Credit Risk Data: Accuracy vs. Calibration

Simulated Data Generation

Results on Simulated Data

Probability Intervals

Conclusion & Key Takeaways

Conclusion & Key Takeaways

- 1. Calibration is a Crucial, Separate Property from Accuracya model can be highly accurate yet poorly calibrated, making its probability scores misleading and untrustworthy for real-world risk assessment. Explicitly measuring and improving calibration is essential for any application relying on probabilistic predictions.
- 2. The Best Calibration Method is ContextDependent:
 - Platt Scaling: A good, fast default for simple models like Logistic Regression.
 - Isotonic Regression: Powerful but can overfit on small datasets. Excellent for larger, well-behaved datasets.
 - Venn-Abers Predictors: Provide robust, distribution-free calibration guarantees and are highly competitive, especially on complex models like XGBoost. They offer a unique advantage: inherently valid probability intervals.
- 3. For Precise Uncertainty Quantification, Venn-Abers is Superior:Our results demonstrate that Venn-Abers predictors (IVAP and CVAP mean) generate prediction intervals that are significantly tighter than traditional bootstrap methods, while maintaining validity. This makes them ideal for applications requiring precise uncertainty estimates.

Introduction & Motivation: Can We Trust a Model's Confidence?

Accuracy is Not Enough: Discrimination vs. Calibration

Calibration Methods: Platt, Isotonic, and VennAbers

Our Dataset & Experimental Setup

Credit Risk Data Preparation

Results on Credit Risk Data: Accuracy vs. Calibration

Simulated Data Generation

Results on Simulated Data

Probability Intervals

Conclusion & Key Takeaways

- Dataset https://www.kaggle.com/datasets/laotse/credit-risk-dataset
- Vovk, Vladimir, Ivan Petej. "Venn-Abers predictors". Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence (2014) (arxiv version https://arxiv.org/pdf/1211.0025)
- Vovk, Vladimir, Ivan Petej and Valentina Fedorova. "Large-scale probabilistic predictors with and without guarantees of validity." Advances in Neural Information Processing Systems 28 (20 15) (arxiv version https://arxiv.org/pdf/1511.00213)
- Model Calibration, Explained- https://towardsdatascience.com/model-calibration-explained-a-visual-guide-with-code-examples-for-beginners-55f368bafe72/
- Venn-Abers implementation https://github.com/ip200/venn-abers

Thank you for the attention!

