MATH 2431

All-in-one Summary

CHEN, Yixiang

Based on MATH2431 lectured by BAO, Zhigang in 23-24Spring

1 Events and their Probabilities

- Sample Space: Given an experiment, the sample space Ω is the set of all outcomes ω .
- Event: A subset of Ω .
- **Field**: Any collection \mathcal{F} of subsets of Ω is called a field if it satisfies the following properties:
 - **–** \emptyset ∈ \mathcal{F} and Ω ∈ \mathcal{F} .
 - If $A \in \mathcal{F}$, then $A^{\mathcal{C}} \in \mathcal{F}$, i.e. \mathcal{F} is closed under complement.
 - **–** If $A, B ∈ \mathcal{F}$, then $A ∪ B ∈ \mathcal{F}$, i.e. \mathcal{F} is closed under finite union.
- σ -Field: Any collection \mathcal{F} of events in Ω is called a σ -field if it satisfies the following properties:
 - **–** \emptyset ⊂ \mathcal{F} and Ω ⊂ \mathcal{F} .
 - If $A \subset \mathcal{F}$, then $A^{\complement} \subset \mathcal{F}$.
 - If $A_1, A_2, \ldots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$, i.e. \mathcal{F} is closed under countable union.
- **Probability Measure**: Given a measurable space (Ω, \mathcal{F}) , a probability on (Ω, \mathcal{F}) is a function $\mathbb{P}: \mathcal{F} \to [0, 1]$, satisfying:
 - $-\mathbb{P}(\emptyset) = 0$ and $\mathbb{P}(\Omega) = 1$.
 - If $A_1, A_2, \ldots \in \mathcal{F}$ are disjoint, then $\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathbb{P}\left(A_i\right)$.
- Inclusion-Exclusion Formula: If $A, B \in \mathcal{F}$, then $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$.
- General Measure: Given (Ω, \mathcal{F}) , a measure is a set function $\mu : \mathcal{F} \to [0, \infty]$, such that
 - $\mu(\emptyset) = 0.$
 - it satisfies countable additivity.
- Set Limit: Given $A_1, A_2, \ldots \in \mathcal{F}$, $\limsup_{n \to \infty} A_n = \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} A_n = \{\omega \in \Omega : \omega \in A_n \text{ for infinitely many } n\}$ and $\liminf_{n \to \infty} = \bigcup_{n=1}^{\infty} \bigcap_{n=m}^{\infty} A_n = \{\omega \in \Omega : \omega \in A_n \text{ for all but finitely many } n\}$.

- Set Convergence: (A_n) converges if $\limsup_{n\to\infty} A_n = \liminf_{n\to\infty} A_n$.
- Continuity of Probability Measure: Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and (A_n) in \mathcal{F} such that $\lim_{n\to\infty} A_n = A$, then $\lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}(A)$.
- Conditional Probability: If $\mathbb{P}(B) > 0$, then the conditional probability that A occurs given that B has occurred is $\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$.
- Law of Total Probability: Let B_1, \ldots, B_n be a partition of Ω . Suppose that $\mathbb{P}(B_i) > 0$ for all i. Then, $\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(A \mid B_i) \mathbb{P}(B_i)$.
- Independence: Let $A, B \in \mathcal{F}$. We say A is independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$. Let $\bigcup_{i \in I} \{A_i\} \subset \mathcal{F}$, where I is not necessarily countable. $\bigcup_{i \in I} \{A_i\}$ is called mutually independent if $\mathbb{P}\left(\bigcap_{j \in J} A_j\right) = \prod_{j \in J} \mathbb{P}\left(A_j\right)$, for every $J \subset I$ and pairwise independent if $\mathbb{P}\left(A_{i_1} \cap A_{i_2}\right) = \mathbb{P}\left(A_{i_1}\right)\mathbb{P}\left(A_{i_2}\right)$, for every $\{i_1, i_2\} \subset I$.
- $A \coprod B \iff A \coprod B^{\mathbb{C}}$.
- If $\{A, B, C\}$ is independent, then $A \coprod (B \cup C)$ and $A \coprod (B \cap C)$.
- Lemma: If $(\mathcal{F}_i)_{i \in I}$ is a system of σ -algebra on Ω , then $\bigcap_{i \in I} \mathcal{F}_i$ is a σ -field.
- Generated σ -Field: Let $A \subset 2^{\Omega}$. The σ -field generated by A is $\sigma(A) = \bigcap_{\mathcal{G} \in X} \mathcal{G}$, where $X = \{\mathcal{G} : \mathcal{G} \text{ is a } \sigma\text{-field such that } A \subset \mathcal{G}\}$.
- **Product Space**: Given $(\Omega_1, \mathcal{F}_1, \mathbb{P}_1)$ and $(\Omega_2, \mathcal{F}_2, \mathbb{P}_2)$, $(\Omega, \mathcal{F}, \mathbb{P})$ is a product space if
 - $\Omega = \Omega_1 \times \Omega_2.$
 - $\mathcal{F} = \sigma (\mathcal{F}_1 \times \mathcal{F}_2)$.
 - $\mathbb{P} = \mathbb{P}_1 \otimes \mathbb{P}_2.$

2 Random Variables and their Distributions

- Random Variable: A random variable is a function $X : \Omega \to \mathbb{R}$ with the property that $X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{F}$, for all intervals $B \subset \mathbb{R}$. In this case, X is \mathcal{F} -measurable.
- Borel Set: A set is a Borel Set if it can be formed from open sets through the operations of countable union, countable intersection and relative complement.
- Borel σ -Field of \mathbb{R} : Any σ -field that is a collection of Borel sets in called a Borel σ -field, i.e. σ -field $\mathcal{B}(\mathbb{R})$ generated by all open sets in \mathbb{R} .
- $(\Omega, \mathcal{F}, \mathbb{P}) \xrightarrow{X} (\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathbb{Q})$, where $\mathbb{Q} : \mathcal{B}(\mathbb{R}) \to [0, 1]$ is indeed a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and $\mathbb{Q} = \mathbb{P} \circ X^{-1}$.
- **Distribution Function**: $F_X(x) = \mathbb{P} \circ X^{-1} ((-\infty, x])$.

- Lemma: A cumulative distribution function has the following properties:
 - $\lim_{x\to-\infty} F(x) = 0$ and $\lim_{x\to+\infty} F(x) = 1$.
 - If x < y, then $F(x) \le F(y)$.
 - *F* is right-continuous.
- Discrete Random Variable: X is discrete if it takes values in some countable subset $\{x_1, x_2, \ldots\}$ of \mathbb{R} .
- **Probability Mass Function**: $f : \mathbb{R} \to [0,1]$, where $f(x) = \mathbb{P} \circ X^{-1}(\{x\})$ and the cumulative distribution function is given by $F(x) = \sum_{u \le x} f(u)$. Hence, $f(x) = F(x) F(x^{-})$.
- Continuous Random Variable: X is continuous if its distribution function F(x) can be written as $F(x) = \int_{-\infty}^{x} f(u) du$, for every $x \in \mathbb{R}$, for some integrable function $f : \mathbb{R} \to [0, 1]$.
- Random Vector in \mathbb{R}^2 : $\vec{X} = (X_1, X_2) : \Omega \to \mathbb{R}^2$ is a random vector if $\vec{X}^{-1}(D) = \{\omega : \Omega : \vec{X}(\omega) = (X_1(\omega), X_2(\omega) \in D\} \in \mathcal{F}$, for every $D \in \mathcal{B}(\mathbb{R}^2)$, i.e. $(\Omega, \mathcal{F}) \xrightarrow{\vec{X}} (\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2))$. Equivalently, $\vec{X} = (X_1, X_2) : \Omega \to \mathbb{R}^2$ is a random vector if both $X_1, X_2 : \Omega \to \mathbb{R}$ are random variables. $(\Omega, \mathcal{F}, \mathbb{P}) \xrightarrow{\vec{X} = (X_1, X_2)} (\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2), \mathbb{P} \circ \vec{X}^{-1})$.
- **Jointly Distribution Function**: $F_{X_1,X_2}(x_1,x_2) = \mathbb{P} \circ \vec{X}^{-1}((-\infty,x_1] \times (-\infty,x_2])$.
- Lemma: The jointly distribution funcion has the following properties:
 - $\lim_{x,y\to-\infty} F_{X,Y}(x,y) = 0$ and $\lim_{x,y\to+\infty} F_{X,Y}(x,y) = 1$.
 - If $x_1 \le x_2$ and $y_1 \le y_2$, then $F_{X,Y}(x_1, y_1) \le F_{X,Y}(x_2, y_2)$.
 - Continuity from above.
- Marginal Distribution: $F_X(x) = \mathbb{P} \circ X^{-1} ((-\infty, x]) = \lim_{y \to +\infty} F_{X,Y}(x, y)$.
- **Jointly Discrete Random Variables**: $X, Y : \Omega \to \mathbb{R}$ are jointly discrete if (X, Y) takes values in some countable subset of \mathbb{R}^2 only. The jointly probability mass function $f : \mathbb{R}^2 \to [0, 1]$ is given by $f_{X,Y}(x,y) = \mathbb{P} \circ (X,Y)^{-1} (\{x,y\})$. And hence $F_{X,Y}(x,y) = \sum_{u \le x,v \le y} f_{X,Y}(u,v)$.
- **Jointly Continuous Random Variables**: $X,Y:\Omega\to\mathbb{R}$ are jointly continuous if $F_{X,Y}(x,y)=\int_{-\infty}^x \int_{-\infty}^y f_{X,Y}(u,v)\mathrm{d}v\mathrm{d}u$, for every $x,y\in\mathbb{R}$, for some integrable function $f:\mathbb{R}^2\to[0,+\infty]$ called a jointly probability density function, which is not a probability measure. More generally, $\mathbb{P}\circ(X,Y)^{-1}(B)=\iint_B f_{X,Y}(u,v)\mathrm{d}v\mathrm{d}u$.

3 Discrete Random Variable

Assume X, Y are discrete random variables.

- Independence of Randon Variables: $X,Y:\Omega\to\mathbb{R}$ are independent if $\mathbb{P}(X\in E,Y\in F)=\mathbb{P}(X\in E)\mathbb{P}(Y\in F)$, for every $E,F\in\mathcal{B}(\mathbb{R})$. Equivalently, $X\amalg Y$ if $F_{X,Y}(x,y)=F_X(x)F_Y(y)$, for every $x,y\in\mathbb{R}$. Or equivalently, $X\amalg Y$ if $f_{X,Y}(x,y)=f_X(x)f_Y(y)$, for every $x,y\in\mathbb{R}$. Let $X_1,\ldots,X_n:\Omega\to\mathbb{R}$ be random variables. They are mutually independent if any of the following is true:
 - $-\mathbb{P}\circ (X_1,\ldots,X_n)^{-1}(A_1\times\cdots\times A_n)=\prod_{i=1}^n\mathbb{P}\circ X_i^{-1}(A_i),$ for every $A_i\in\mathcal{B}(\mathbb{R}).$
 - $F_{X_1,\ldots,X_n} = \prod_i F_{X_i}.$
 - $f_{X_1,...,X_n} = \prod_i f_{X_i},$

The independence of events is a special case of the independence of random variables, i.e. $A \coprod B \iff \mathbf{1}_A \coprod \mathbf{1}_B$. Also, $X \coprod Y \iff X^{-1}(E) \coprod Y^{-1}(F)$, for every $E, F \in \mathcal{B}(\mathbb{R})$.

- σ -Field generated by Random Variable: $\sigma(X) = \{X^{-1}(E) : E \in \mathcal{B}(\mathbb{R})\} \subset \mathcal{F}$.
- Independence of two σ -Fields: Let $\mathcal{H}, \mathcal{G} \subset \mathcal{F}$ be two σ -fields. $\mathcal{H} \coprod \mathcal{G}$ if $A \coprod B$ for every $A \in \mathcal{H}$ and every $B \in \mathcal{G}$.
- Theorem: If $X \coprod Y$ and $g, h : \mathbb{R} \to \mathbb{R}$ such that g(X) and h(Y) are still random variables, then $g(X) \coprod h(Y)$.
- Expectation: The expectation $\mathbb{E}X$ is defined as $\mathbb{E}X = \sum_i x_i f_X(x_i) = \sum_{x: f_X(x) > 0} x f_X(x)$, if the above sum is absolutely convergent.
- Lemma: If $g : \mathbb{R} \to \mathbb{R}$ such that g(X) is still a random variable, then $\sum y f_Y(y) = \mathbb{E}g(X) = \sum_x g(x) f_X(x)$. If $X, Y : \Omega \to \mathbb{R}$ are two jointly discrete random variables and $g : \mathbb{R}^2 \to \mathbb{R}$ such that g(X,Y) is still a random variable, then $\mathbb{E}g(X,Y) = \sum_{x,y} g(x,y) f_{X,Y}(x,y)$.
- Moments and Central Moments: $\mathbb{E}X^k$ and $\mathbb{E}(X \mathbb{E}X)^k$.
- Properties of $\mathbb{E}(\cdot)$:
 - If x > 0, then $\mathbb{E}X > 0$.
 - If $a, b \in \mathbb{R}$, $\mathbb{E}(aX + bY) = a\mathbb{E}X + b\mathbb{E}Y$.
- **Uncorrelated Relation**: *X* and *Y* are uncorrelated if $\mathbb{E}XY = \mathbb{E}X\mathbb{E}Y$.
- Properties of Variance:
 - $\operatorname{Var}(aX + b) = a^2 \operatorname{Var}(X)$.
 - Var(X + Y) = Var(X) + Var(Y), if X, Y are uncorrelated.
- Covariance: $Cov(X, Y) = \mathbb{E}((X \mathbb{E}X)(Y \mathbb{E}Y)) = \mathbb{E}XY \mathbb{E}X\mathbb{E}Y$. In general, Var(X + Y) = Var X + Var Y + 2Cov(X, Y). More generally, $Var(\sum_i X_i) = \sum_i Var X_i + 2\sum_{i < j} Cov(X_i, X_j)$.

- Conditional Distribution: The conditional distribution of Y given X = x is given by $\mathbb{P}(Y \in \cdot \mid X = x)$: $\mathcal{B}(\mathbb{R}) \to [0,1]$. The conditional distribution function of Y given X = x is given by $F_{Y|X}(\cdot \mid x) = \mathbb{P}(Y \leq \cdot \mid X = x)$: $\mathbb{R} \to [0,1]$. The conditional mass function is given by $f_{Y|X}(\cdot \mid x) = \mathbb{P}(Y = \cdot \mid X = x)$. We define the above only when $\mathbb{P}(X = x) > 0$.
- Conditional Expectation given an Event: The conditional expectation of Y given X = x is given by $\mathbb{E}(Y \mid X = x) = \sum_{y} y f_{Y|X}(y \mid x) = \psi(x)$, which is a function of x.
- Conditional Expectation given a Random Variable: The conditional expectation of Y given X is given by $\mathbb{E}(Y \mid X) = \psi(X)$, which is a random variable and is a function of X.
- Law of Total Expectation: Let $\psi(X) = \mathbb{E}(Y \mid X)$. Then, $\mathbb{E}\psi(X) = \sum_{x} \psi(x) f_X(x) = \sum_{x} \mathbb{E}(Y \mid X = x) \mathbb{P}(X = x) = \mathbb{E}Y$.
- Theorem: Let $\psi(X) = \mathbb{E}(Y \mid X)$. Then, $\mathbb{E}(\psi(X)g(X)) = \mathbb{E}(Yg(X))$.
- Sum of Random Variable: Assume $X \coprod Y$ and X, Y have joint probability mass function $f_{X,Y}(x, y)$. Then, $f_{X+Y}(z) = \sum_{x} f_X(x) f_Y(z-x) = (f_X * f_Y)(z)$.

4 Continuous Random Variables

Assume that *X*, *Y* are two continuous random variables.

- **Independence**: X, Y are independent if any of the following is true:
 - $-\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)$, for every $A, B \in \mathcal{B}(\mathbb{R})$.
 - $F_{X,Y}(x, y) = F_X(x)F_Y(y)$, for every $x, y \in \mathbb{R}$.
 - $f_{X,Y}(x, y) = f_X(x) f_Y(y)$, for every $x, y \in \mathbb{R}$.
- Expectation: $\mathbb{E}X = \int x f_X(x) dx$, only when $\int |x| f_X(x) dx$ converges.
- Tail Sum Formula: If $X \ge 0$ has distribution function $F_X(x)$, then $\mathbb{E}X = \int_0^{+\infty} (1 F_X(x)) dx$.
- Inverse Transform Sampling: $Y = G^{-1}(U)$ has the distribution function G(x).
- Conditional Distribution: The conditional distribution of Y given X = x is given by $\mathbb{P}(Y \le y \mid X = x) = \int_{-\infty}^{y} \frac{f_{X,Y}(x,v)}{f_{X}(x)} dv$. More generally, $\mathbb{P}(Y \in A \mid X = x) = \int_{A} \frac{f_{X,Y}(x,v)}{f_{X}(x)} dv$. Hence, the conditional probability density function is given by $f_{Y|X}(y \mid x) = \frac{f_{X,Y}(x,y)}{f_{X}(x)}$. They are defined only when $f_{X}(x) > 0$.
- Conditional Expectation:
 - Given an event X = x, $\mathbb{E}(Y \mid X = x) = \int_{-\infty}^{\infty} y f_{Y|X}(y \mid x) dy = \psi(x)$.
 - Given a random variable X, $\mathbb{E}(Y \mid X) = \psi(X)$.
- Law of Total Expectation: $\mathbb{E}Y = \mathbb{E}(\psi(x))$ and $\mathbb{E}(Y(g(x))) = \mathbb{E}(\psi(x)g(x))$.

• **Distribution of** g(X): Let Y = g(X) be a continuous random variable. $F_Y(y) = \int_{g^{-1}((-\infty,y])} f_X(x) dx$. Hence, $f_Y(y) = \frac{d}{dy} \int_{g^{-1}((-\infty,y])} f_X(x) dx$. If g(x) is strictly monotone and differentiable, $f_Y(y) = \int_{g^{-1}((-\infty,y])} f_X(x) dx$. Consider multivariable cases. Suppose (X,Y) otherwise. are jointly continuous with $f_{X,Y}$. U = g(X,Y), V = g(X,Y) are jointly continuous. Assume that X,Y can be uniquely solved from U,V, i.e. there exist unique functions a,b such that X = a(U,V), Y = b(U,V), and that the function g,h are differentiable and the Jacobian determinant does not equal to 0. Then,

$$f_{U,V}(u,v) = f_{X,Y}(x,y) \frac{1}{|\det(\mathbf{J}(x,y))|}$$

$$= \begin{cases} f_{X,Y}(a(u,v),b(u,v)) \frac{1}{|\det(\mathbf{J}(x,y))|}, & \text{if } (u,v) = (g(x,y),h(x,y)) \text{ for some } x,y \\ 0, & \text{otherwise,} \end{cases}$$

where

$$\mathbf{J}(x,y) = \begin{pmatrix} \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \\ \frac{\partial h}{\partial x} & \frac{\partial h}{\partial y} \end{pmatrix}.$$

• Sum of Continuous Random Variables: $F_{X+Y}(z) = \int \left(\int_{-\infty}^{z} f_{X,Y}(v-y,y) dv \right) dy$. Hence, $f_{X+Y}(z) = \int f_{X,Y}(z-y,y) dy = \int f_{X,Y}(x,z-x) dx$. If $X \coprod Y$, then $f_{X+Y}(z) = (f_X * f_Y)(z)$.

5 Generating Function

• Generating Function: For any sequence $\{a_n\}$, the generating function is given by

$$G_a(s) = \sum_{i=0}^{\infty} a_i s^i,$$

if it converges.

• **Probability Generating Function**: The probability generating function of a random variable *X* with nonnegative value is given by

$$G_X(s) = \mathbb{E}s^X = \sum_{i=0}^{\infty} f_X(i)s^i.$$

$$f_X(i) = \left. \frac{\mathrm{d}^i}{i! \mathrm{d}s^i} G_X(s) \right|_{s=0}$$

- Generally,

$$\mathbb{E}s^X = \int s^x \mathrm{d}F_X(x).$$

- Moment and Probability Generating Function: If X has probability generating function G_X , then
 - $\mathbb{E}X = \lim_{s \uparrow 1} G'(s) := G'(1),$
 - $E(X(X-1)\cdots(X-k+1)) = \lim_{s\uparrow 1} G^{(k)}(s) := G^{(k)}(1).$
- Sum of Independent Random Variables: If X and Y are independent,

$$G_{X+Y} = G_X \cdot G_Y$$
.

• Sum of Random Number of Random Variables: Assume that $\{X_i\}$ is i.i.d. random variables and $N \ge 0$ is a random variable independent of all X_i 's. Let $T = \sum_{i=1}^{N} X_i$. Then,

$$G_T = G_N \circ G_X$$
.

- The sum of a Poisson number of independent Bernoulli random variables is still Poisson.
- Joint Probability Generating Function: Suppose X_1, X_2 are nonnegative, integer-valued and jointly discrete random variables. Then, the jointly probability generating function is given by

$$G_{X_1,X_2}(s_1,s_2) = \mathbb{E} s_1^{X_1} s_2^{X_2} = \sum_i \sum_j s_1^i s_2^j f_{X_1,X_2}(i,j).$$

$$f_{X_1,X_2}(i,j) = \left. \frac{\partial^{i+j}}{i!j!\partial s_1^i \partial s_2^j} G_{X_1,X_2}(s_1,s_2) \right|_{(s_1,s_2)=(0,0)}.$$

- If X_1 and X_2 are independent, then

$$G_{X_1,X_2}(s_1,s_2) = G_{X_1}(s_1)G_{X_2}(s_2).$$

• Moment Generating Function:

$$M_X(t) = \mathbb{E}e^{tX} = \int e^{tx} dF_X(x).$$

$$\frac{\mathrm{d}^k}{\mathrm{d}t^k} \int e^{tx} \mathrm{d}F_X(x) \bigg|_{t=0} = \int x^k e^{tx} \mathrm{d}F_X(x) \bigg|_{t=0} = \mathbb{E}X^k.$$

• Characteristic Function:

$$\phi_X(t) = \mathbb{E}e^{itX} = \int e^{itx} dF_X(x).$$

$$\phi^{(k)}(0) = i^k \int x^k \mathrm{d}F_X(x).$$

- Taylor Expansion:

$$\phi_X(s) = \sum_{i=0}^k \frac{\mathbb{E}X^j}{j!} (is)^j + o\left(s^k\right).$$

- If $\phi^{(k)}(0)$ exists, then
 - * $\mathbb{E}|X|^k < \infty$, if k is even,
 - * $\mathbb{E} |X|^{k-1} < \infty$, if k is odd.
- If $\mathbb{E}|X|^k < \infty$, then $\phi^{(k)}(0)$ exists.
- If X and Y are independent, then

$$\phi_{X+Y} = \phi_X \cdot \phi_Y.$$

- X and Y are independent if and only if

$$\phi_{X,Y}(s,t) = \phi_X(s)\phi_Y(t).$$

- If $X \sim \text{Be}(p)$, then

$$\phi_X(t) = q + pe^{it}$$
.

- If $X \sim N(\mu, \sigma^2)$, then

$$\phi_X(t) = \exp\left(i\mu t - \frac{1}{2}\sigma^2 t^2\right).$$

- Cummulant Generating Function: $\log \phi_X(t)$.
- Inversion Theorem: If X is a continuous random variable with p.d.f. f and c.f. ϕ , then

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \phi(t) dt,$$

at every point x where f is differentiable.

More generally, let $\overline{F}(x) = \frac{1}{2} (F(x) + F(x^{-})).$

$$\overline{F}(b) - \overline{F}(a) = \lim_{N \to \infty} \int_{-N}^{-N} \frac{e^{-iat} - e^{-ibt}}{2\pi i t} \phi(t) dt.$$

6 Convergence of Random Variables

- Weak Convergence: Let $\{F_n\}$ be a sequence of distribution functions. F_n converges weakly to the distribution function F, denoted by $F_n \to F$, if $F_n(x) \to F(x)$ pointwise at each point x where F is continuous.
- Convergence in Distribution: Let $\{X_n\}$ be a family of random variables with distribution function $\{F_n\}$. X_n converges to X in distribution, denote by $X_n \xrightarrow{D} X$ if $F_n \to F$.

- Vague Convergence: Let $\{F_n\}$ be a sequence of distribution functions. If $F_n(x) \to G(x)$ at all continuities of G where G is not necessarily a distribution function, then F_n converges to G vaguely, denote by $F_n \stackrel{v}{\to} G$.
- Weak Law of Large Number: Let $\{X_n\}$ be i.i.d. random variables. Assume that $\mathbb{E}|X_1| < \infty$ and $\mathbb{E}X_1 = \mu$. Let $S_n = \sum_{i=1}^n X_i$. Then,

$$\frac{1}{n}S_n \xrightarrow{D} \mu.$$

• Central Limit Theorem: Let $\{X_n\}$ be i.i.d. random variables with $\mathbb{E}|X_i|^2 < \infty$. Let $\mathbb{E}X_1 = \mu$, $\operatorname{Var} X_1 = \sigma^2$ and $S_n = \sum_{i=1}^n X_i$. Then.

$$\frac{1}{\sigma}\sqrt{n}\left(\frac{1}{n}S_n - \mu\right) = \frac{S_n - n\mu}{\sqrt{n}\sigma} \xrightarrow{D} N(0, 1).$$

More generally, let $\{X_n\}$ be independent random variables with $\mathbb{E}X_i = 0$, $\text{Var }X_i = \sigma_i^2$, $\mathbb{E}|X_i|^3 < \infty$ such that

$$\frac{1}{\sigma^3(n)}\sum_{i=1}^n \mathbb{E}|X_i|^3 \to 0,$$

as $n \to \infty$, where $\sigma^2(n) = \sum_{i=1}^n \sigma_i^2$. Then,

$$\frac{S_n}{\sigma(n)} \xrightarrow{D} N(0,1).$$

Let $\{X_n\}$ be a sequence of random variables. Let $S_n = \sum_{i=1}^n X_i$.

• Almost Sure Convergence: X_n converges to X almost surely (a.s.), denote by $X_n \xrightarrow{\text{a.s.}} X$ if

$$\mathbb{P}\left(\left\{\omega\in\Omega:X_n(\omega)\to X(\omega)\text{ as }n\to\infty\right\}\right)=\mathbb{P}\left(\lim_{n\to\infty}X_n=X\right)=1.$$

• Convergence in r-th Mean: X_n converges to X in r-th mean, denote by $X_n \xrightarrow{r} X$ if

$$\mathbb{E}|X_n - X|^r \to 0 \iff \lim_{n \to \infty} \mathbb{E}|X_n - X|^r = 0,$$

where $r \ge 1$.

• Convergence in Probability: X_n converges to X in probability, denote by $X_n \stackrel{\mathbb{P}}{\to} X$ if for every $\varepsilon > 0$,

$$\mathbb{P}\left(\left\{\omega\in\Omega:\left|X_{n}(\omega)-X(\omega)\right|\geq\varepsilon\right\}\right)\to0\iff\lim_{n\to\infty}\mathbb{P}\left(\left|X_{n}-X\right|\geq\varepsilon\right)=0.$$

• Implications:

$$-\left(X_n \xrightarrow{\mathbb{P}} X\right) \Longrightarrow \left(X_n \xrightarrow{D} X\right).$$
$$-\left(X_n \xrightarrow{\text{a.s.}} X\right) \Longrightarrow \left(X_n \xrightarrow{\mathbb{P}} X\right).$$

$$-\left(X_n \xrightarrow{D} X\right) \Longrightarrow \left(X_n \xrightarrow{\mathbb{P}} X\right).$$

$$-\left(X_n \xrightarrow{r} X\right) \Rightarrow \left(X_n \xrightarrow{s} X\right)$$
, if $r \geq s \geq 1$.

- No other implications hold in general.
- Markov Inequality: Let X be any random variable. Let φ be any nonnegative increasing function on [0, ∞). Then,

$$\mathbb{P}\left(|X| \ge a\right) \le \frac{\mathbb{E}\phi\left(|X|\right)}{\phi(a)},$$

for every a > 0.

• Lyapunov's Inequality: Let Z be any random variable.

$$\left(\mathbb{E}\,|Z|^s\right)^{\frac{1}{s}} \leq \left(\mathbb{E}\,|Z|^r\right)^{\frac{1}{r}},\,$$

for every $r \ge s > 0$.

Let $A_n(\varepsilon) := \{\omega : |X_n(\omega) - X(\omega)| > \varepsilon\}$ and $B_m(\varepsilon) := \bigcup_{n=m}^{\infty} A_n(\varepsilon)$.

• **Theorem 1**: $X_n \xrightarrow{\text{a.s.}} X$ if and only if

$$\lim_{m\to\infty}\mathbb{P}\left(B_{m}\left(\varepsilon\right)\right)=\mathbb{P}\left(\bigcap_{m=1}^{\infty}B_{m}\left(\varepsilon\right)\right)=\mathbb{P}\left(\bigcap_{m=1}^{\infty}\bigcup_{n=m}^{\infty}A_{n}\left(\varepsilon\right)\right)=\mathbb{P}\left(\limsup_{n\to\infty}A_{n}(\varepsilon)\right)=\mathbb{P}\left(A_{n}\left(\varepsilon\right)\text{ i.o.}\right)=0,$$

for every $\varepsilon > 0$.

• Theorem 2: $X_n \xrightarrow{\text{a.s.}} X$ if

$$\sum_{n=1}^{\infty} \mathbb{P}\left(A_n\left(\varepsilon\right)\right) < \infty,$$

for every $\varepsilon > 0$.

- Note that

$$\sum_{n=1}^{\infty}\mathbb{P}\left(A_{n}\left(\varepsilon\right)\right)<\infty\text{ implies }\lim_{m\to\infty}\sum_{n=m}^{\infty}\mathbb{P}\left(A_{n}(\varepsilon)\right)=0.$$

- Parial Converse Statements:
 - If $X_n \xrightarrow{D} c$, where c is a constant, then $X_n \xrightarrow{\mathbb{P}} c$.
 - If $X_n \xrightarrow{\mathbb{P}} X$ and $\mathbb{P}(|X_n| \le k) = 1$ for all n uniformly with some constant k > 0, then $X_n \xrightarrow{r} X$, for every $r \ge 1$.
- L^2 -Weak Law of Large Number: Assume that $\{X_n\}$ is uncorrelated random variables with $\mathbb{E}X_i = \mu$ and $\text{Var } X_i \leq C$ for every i. Then,

$$\frac{S_n}{n} \xrightarrow{2} \mu$$
,

and consequently,

$$\frac{S_n}{n} \xrightarrow{\mathbb{P}} \mu$$
.

• Weak Law of Large Number for Triangular Array: Let $\{X_{n,j}\}_{j=1,...,n}$ be a triangular array of random variables. Let $S_n = \sum_{i=1}^n X_{n,i}$, $\mathbb{E}S_n = \mu_n$ and $\operatorname{Var}S_n = \sigma_n^2$. If

$$\frac{\sigma_n^2}{b_n^2} \to 0,$$

for some sequence $\{b_n\}$, then

$$\frac{S_n-\mu_n}{b_n}\stackrel{\mathbb{P}}{\to} 0.$$

7 Borel-Cantelli Lemma and 0-1 Law

Let $\{A_n\}$ be a sequence of events in (Ω, \mathcal{F}) . Let $\{X_n\}$ be a sequence of random variables. Let $S_n = \sum_{i=1}^n X_i$.

•

$$\limsup_{n\to\infty} A_n = \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} A_n = A_n \text{ i.o..}$$

• Borel-Cantelli Theorem: For any sequence of $\{A_n\}$ in \mathcal{F} ,

-
$$\mathbb{P}(A_n \text{ i.o.}) = 0 \text{ if } \sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty,$$

–
$$\mathbb{P}(A_n \text{ i.o.}) = 1 \text{ if } \sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty \text{ and } \{A_n\} \text{ is independent.}$$

* If $\{A_n\}$ is pairwise independent and $\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty$, then

$$\frac{\sum_{m=1}^{n} \mathbf{1}_{A_m}}{\sum_{m=1}^{n} \mathbb{P}(A_m)} \xrightarrow{\text{a.s.}} 1.$$

• Theorem: $X_n \xrightarrow{\mathbb{P}} X$ if and only if for every subsequence $X_{n(m)}$, there exists a further subsequence such that

$$X_{n(m_k)} \xrightarrow{\text{a.s.}} X.$$

• Strong Law of Large Number: Let $\{X_n\}$ be i.i.d. random variables with $\mathbb{E}X_i = \mu$ and $\mathbb{E}X_i^4 < \infty$ (which is not necessary), then

$$\frac{S_n}{n} \xrightarrow{\text{a.s.}} \mu.$$

• Tail Sum Formula:

$$\mathbb{E}\left|X\right| = \int_0^\infty \mathbb{P}\left(\left|X\right| > t\right) dt.$$

• Glivenko-Cantelli Theorem: Let $\{X_n\}$ be i.i.d. samples of X with distribution function F. Let

$$F_N(x) := \frac{1}{N} \sum_{i=1}^N \mathbf{1} (X_i \le x).$$

Then,

$$\sup_{x} |F_n(x) - F(x)| \xrightarrow{\text{a.s.}} 0.$$

- Borel 0-1 Law: Let $\{A_n\}$, not necessarily independent, be events in \mathcal{F} . Let $\mathcal{A} := \sigma(A_1, A_2, \ldots)$. Suppose that
 - $A \in \mathcal{A}$, i.e. A is a combination of A_i 's and $A_i^{\mathbb{C}}$'s,
 - A is independent of any finite collection of $\{A_n\}$.

Then,

$$\mathbb{P}(A) = 0 \text{ or } 1.$$

- Kolmogorov 0-1 Law: Let $\{X_n\}$ be independent random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. Let $\mathcal{H}_n := \sigma\{X_{n+1}, X_{n+2}, \ldots\} = \sigma\{\bigcup_{i=m+1}^{\infty} \sigma(X_i)\}$. Let $\mathcal{H}_{\infty} = \bigcap_{n=1}^{\infty} \mathcal{H}_n$, the tail σ -field. If $E \in \mathcal{H}_{\infty}$,
 - E is expressed in terms of $X_i^{-1}(B_i)$'s where $B_i \in \mathcal{B}(\mathbb{R})$, but is independent of any collection of $X_i^{-1}(B_i)$'s,
 - $\mathbb{P}(E) = 0 \text{ or } 1.$
- Tail Function: $Y: \Omega \to \mathbb{R} \cup [-\infty, \infty]$ is a tail function if it is \mathcal{H}_{∞} -measurble, i.e. it is a function of X_1, X_2, \ldots and is independent of any finite collection of X_i 's.
- Theorem: If Y is a tail function of independent random variable sequence $\{X_n\}$, then

$$\mathbb{P}\left(Y=k\right)=1,$$

for some $k \in [-\infty, \infty]$.

– Let $\{X_n\}$ be independent. Then,

$$\mathbb{P}\left(\lim_{n\to\infty}\frac{S_n}{n} \text{ exists}\right) = 0 \text{ or } 1.$$

- For any random power series, the radius of convergence equals to a constant almost surely.