

Peter Goldsborough

May 31, 2016

TensorFlow is

► An open source deep learning library

- ► An open source deep learning library
- ► Released by Google in November 2015

- An open source deep learning library
- Released by Google in November 2015
- Especially suited to:

- An open source deep learning library
- ► Released by Google in November 2015
- ► Especially suited to:
 - "Large-scale machine learning on
 - heterogenous distributed systems"

Contents

- 1. Computational Paradigms
- 2. Execution Model
- 3. Back-Propagation in TensorFlow
- 4. Visualization Tools
- 5. Use Cases
- 6. Walkthrough

$\hat{y} = \tanh(\mathbf{x}^{\top}\mathbf{w} + b)$

Computational Graphs

1. Operations

 $\hat{y} = \tanh(\mathbf{x}^{\top}\mathbf{w} + b)$

- 1. Operations
- 2. Tensors

 $\hat{y} = \tanh(\mathbf{x}^{\top}\mathbf{w} + b)$

- 1. Operations
- 2. Tensors
- 3. Variables

 $\hat{y} = \tanh(\mathbf{x}^{\top}\mathbf{w} + b)$

- 1. Operations
- 2. Tensors
- 3. Variables
- 4. Sessions

client

Actors

1. Client

Actors

1. Client 2. Master

- 1. Client Master
- Workers

- 1. Client 2. Master
 - 3. Workers
- Devices

- 1. Client 2. Master
 - 3. Workers
- Devices

- 1. Client 2. Master
- 3. Workers
- 4. Devices

Symbol to Number Differentiation

Symbol to Number Differentiation

Symbol to Number Differentiation

Symbol to Symbol Differentiation

Visualization Tools

- Deep Neural Networks have the tendency of being . . . deep
- Easy to drown in the complexity of an architecture
- > 36,000 nodes for Google's *Inception* model

 $Source: \ http://googleresearch.blogspot.de/2016/03/train-your-own-image-classifier-with.html \\$

Visualization Tools

TensorBoard to the Rescue

Use Cases

- ► Smart email replies in Google *Inbox*
- Emails mapped to "thought vectors"
- LSTMs synthesize valid replies

 $Source: \ http://googleresearch.blogspot.de/2015/11/computer-respond-to-this-email.html \\$

Use Cases of TensorFlow

- Google DeepMind now using TensorFlow
- Already for AlphaGo
- According to a DeepMind SWE reasons are:
 - ▶ Integration with Google Cloud Platform,
 - Python,
 - Support for TPUs,
 - Ability to run on many GPUs.

Source: https://deepmind.com/css/images/opengraph/alphago-logo.png

Walkthrough

Thank You