LECTURE 5

SUMMARY

1. Multiagent systems	1
2. MAS characteristics ([2], Chapter 2)	
3. A dynamic MAS	

1. Multiagent systems

- a multiagent system (MAS) is one that consists of a number of agents, which interact with one another
- a MAS distributes computational resources and capabilities across a network of interconnected agents
- a MAS is **decentralized**
- in the most general case, agents will be acting on behalf of users with different goals and motivation. To successfully interact, they will require the ability to
 - o cooperate
 - o coordinate
 - o negotiate

with each other, much as people do.

- can support distributed collaborative problem solving by agent collections that dynamically organize themselves.
- support a modular, extensible approach to design of complex information systems.
- important issues in MAS
 - o inter-agent communication
 - of knowledge, intentions, beliefs
 - o inter-agent collaboration
 - through negotiation among self-interested rational agents
 - o coordination and control
 - o **trust** in MAS
 - how autonomous agents decide to interact, cooperate, and rely on one another
 - trust mechanisms, management, and modeling

• collaboration vs cooperation

- o collaboration
 - agents are working together
 - creation of temporary relationships between different agents that allow each member to achieve their own goals
- o cooperation
 - agents are working together to achieve a common goal
 - in MAS cooperation, agents share a common goal, which is evaluated through a global utility function
 - planning

- inter-agent **cooperation** can be achieved through:
 - grouping
 - communication
 - sharing tasks and resources
 - planning
 - ...

• MAS organizations

- o MAS organizations are defined by an assembly of classes of agents characterized by their assigned roles and a set of abstract relationships among the roles.
 - acquaintance
 - subordination
 - conflict
 -
- possible approaches for MAS organizations
 - o horizontal modular
 - different functional components are separated from one another a technique adopted for SE
 - horizontal design
 - architectures:
 - Prodigy, 1991
 - o planning, learning
 - ICARUS
 - o 1998, cognitive architecture
 - o evolution of original architecture
 - hierarchical
 - vertical
 - o ant colonies
 - simple rules of interaction
 - MAS, RL
 - o immune systems
 - evolution
 - 0 ...
- MAS Organizational paradigms
 - o modeling complex systems
 - o hierarchies, coalitions, teams, congregations, societies, markets, etc
- MOISE organizational model for MAS
 - o http://moise.sourceforge.net/
 - o MOISE Framework
 - Organization-Oriented Programming of MAS
- Agent roles
 - o Role-based design in MAS
 - Role Oriented Programming (entities roles activities)

The two key problems in a MAS

- **agent design** (the micro perspective)
 - How do we build agents that are capable of **independent**, autonomous action in order to successfully carry out the tasks that we delegate to them?

- **society design** (the macro perspective)
 - How do we build agents that are capable of **interacting** (cooperating, coordinating, negotiating) in order to successfully carry out the tasks that we delegate to them?

Some views of the MAS field

- agents as a paradigm for software engineering/DAI
- agents as tools for understanding human (natural) societies
 - o MAS provide tools for simulating societies, which may help shed some light on various kind of social processes.
 - o E.g.
 - simulation of biological and natural systems
 - simulation of natural disasters (meteorology)
 - ecological models
 - socio-ecological systems
 - ecosystems management

Advantages of a MAS

- 1. It is decentralized and does not suffer from the "single point of failure problem" associated with centralized systems.
- 2. MAS model problems in terms of autonomous interacting component agents, which is proving to be a more natural way of representing various tasks, such as:
 - task allocation, team planning, user preferences, open environments, a.s.o
- 3. Provides solutions in situations where data sources and expertise are spatially and/or temporally distributed.
 - classical view
 - o data are distributed
 - another view
 - o data are not spatially distributed
 - o multiple agents are used for increasing performance
- 4. Increases system performance
 - computational efficiency
 - robustness
 - maintainability
 - flexibility

International Conference on Autonomous Agents and Multiagent Systems (AAMAS)

- planning, multiagent RL, algorithmic game theory, multiagent path finding, social networks, knowledge representation and reasoning, a.s.o
- AAMAS 2023

2. MAS characteristics ([2], Chapter 2)

- a MAS environment will have to provide a computational infrastructure for **interactions** between agents
 - o protocols for agents to communicate and interact
 - o **communication** protocols
 - enable agents to **exchange** and **understand** messages
 - e.g., the following types of messages can be exchanged:
 - *propose* a course of action
 - accept a course of action
 - reject a course of action
 -
 - o **interaction** protocols
 - enable agents to have **conversations**
- characteristics of MAS environments
 - o provides an infrastructure specifying *communication* and *interaction* protocols
 - o contain agents that are autonomous and distributed
 - agents may be self-interested or cooperative
- agent communications
 - o fundamentally, an agent is an active object with the ability to
 - reason
 - perceive
 - act
 - o assumptions
 - an agent has
 - an explicitly represented **knowledge**
 - mechanisms for operating on or drawing inferences from its knowledge
 - an agent has the ability to communicate
 - part perception
 - o the receiving of messages
 - part_action
 - o the sending of messages

Coordination

- agents communicate in order to achieve better the goals of themselves and of the society/system in which they exist
- **coordination** is a property of a system of agents performing some activity in a shared environment
- **cooperation** is <u>coordination</u> between *non-antagonistic* agents
- **negotiation** is coordination among *competitive* or *self-interested* agents

A taxonomy of coordination [2, Section 2.2]

Communication options in MAS ([3])

A. blackboard systems

- shared memory
- data repository
- the agents do not interact directly, but indirectly, through the blackboard

- information in the blackboard
 - o data
 - o current **state** of the problem
 - o next **subproblems** to be solved
 - o requests of **help**
 - o curremt task of each agent
 - o intermediate results
- advanced blackboard systems
 - o moderator/dispatcher agents
 - the agents are registered in the blackboard
 - the dispatcher agent notifies the agents about changes in the blackboard
 - agents do not need to continuously check the blackboard
- positive aspects
 - o flexible mechanism that allows communication/cooperation
 - n blackboards
- negative aspects

- centralised structure
- o everyone must read/write from/on the blackboard
- o single point of failure

B. direct message passing

- agent communication languages
- FIPA-ACL
 - 0 1997
 - o developed by FIPA
 - o implemented in JADE framework
 - o communication protocols
 - o components of a FIPA-ACL message

o FIPA-ACL performatives (e.g., inform)

- **KQML** (Knowledge Query and Manipulation Language)
 - 0 1994
 - o an agent communication and coordination language
 - o a protocol for exchanging information and knowledge
 - between agents and application programs

- Lisp-like performatives
- Knowledge Interchange Format (KIF)
 - o a logic language
 - standard used to describe things within expert systems, agents, etc.
 - o declarative semantics
 - o means for representing and encoding knowledge
 - o a prefix version of first-order logic
 - with extensions to handle nonmonotonic reasoning

3. A dynamic MAS

- assumptions
 - \triangleright a dynamic MAS consisting of $n \ge 2$ agents;
 - **deterministic** environment;
 - > the **non-cooperative** case where each agent pursues its own objectives;
 - \triangleright the system starts at time 0, moving discretely forward to time T, or until the state satisfies some termination condition;
 - > the agents evaluate their outcomes based on the final state
- o formally, a dynamic MAS is a tuple $\langle S, A, h, U \rangle$, where
 - $S=\Pi_i S^i$ the joint state space
 - $\mathcal{A}=\Pi_i A^i$ the joint action space
 - $h: S \times A \to S$ the transition function between states
 - $U=<U^1, \ldots, U^n>$ the vector of utility functions of respective agents $U^i: S^i \to \Re$
- o at each time t, agents observe the state $s_t \in S$
 - s_t consists of local states of each individual agent $s_t = \langle s_t^1, \dots, s_t^n \rangle$, $s_t^i \in S^i$
 - then, the agents choose their action $a_t^i \in A^i$, producing the joint action $a_t = \langle a_t^1, \dots, a_t^n \rangle \in \mathcal{A}$
 - the states evolves accordingly to $s_{t+1}=h(s_t, a_t)$, where $s_t^i=h^i(s_t^i, a_t^i)$
- the agent i's improvement in utility at time t is defined as the **reward** r_t^i , $r_t^i = U^i(s_t^i) U^i(s_{t-1}^i)$

$$\Rightarrow r_t^1 + r_t^2 + ... + r_t^i = U^i (s_T^i) - U^i (s_0^i).$$

$$\Rightarrow c_T^1 + c_T^2 + ... + c_T^i = U^i (s_T^i) - U^i (s_0^i).$$

maximizing the utility of an agent's final state is equivalent to maximizing the sum of received rewards (similarity with the agent goal in RL).

Bibliography

- [1] Weiss, G. (Ed.): Multiagent Systems: *A Modern Approach to Distributed Artificial Intelligence*, MIT Press, 1999 (available at www.cs.ubbcluj.ro/~gabis/weiss/Weiss.zip) [Ch. 2]
- [2] Russell, J.S, Norvig, P., *Artificial Intelligence A Modern Approach*, Prentice- Hall, Inc., New Jersey, 1995 (available at www.cs.ubbcluj.ro/~gabis/weiss) [Ch. 2, Ch. 6]
- [3] https://www.slideshare.net/ToniMorenoURV/lecture-5-agent-communication