۶.۲ جلسهی نوزدهم

برای یک تئوریِ فاقد مدل متناهی در یک زبان شمارا، مفهوم مرتبه ی مُرلی را تعریف کردیم. مثال ۱۸۹: در زبان $L=\{E_1,E_7\}$ تئوری T را در نظر بگیرید که می گوید

- ست. است و هر کلاس آن نامتناهی است. E_1
- ست که E_1 به طور نامتناهی را تظریف میکند (یعنی هر کلاس E_1 به طور نامتناهی را تظریف میکند (یعنی هر کلاس E_1 اجتماعی از نامتناهی کلاس E_2 است)، و هر کلاس آن نامتناهی است.

 $\mathrm{RM}(x=x)=\mathbf{T}$ کامل، دارای حذف سور و ω جازم است و T کامل، دارای دارای دارای حذف اسور و ω

مثال ۱۹۰: به طور مشابه در زبان $L = \{E_1, E_7, E_7\}$ میتوان یک تئوری از روابط همارزی نوشت که در آن RM(x=x) = \$

مثال ۱۹۱۱: زبانِ E_i زبانِ E_i و تئوریِ E_i را در آن در نظر بگیرید که طبق آن هر E_i یک رابطه ی همارزی است با نامتناهی کلاس و هر کلاس آن نامتناهی است و E_{i+1} تظریفی است از $\{\phi(\bar x,\bar b_{\tau})\}_{\tau\in\omega}$ با تئوری یاددشده E_i با جازم نیست. ادعا میکنیم که در این تئوری، فرمولهای E_i به شکل درختی E_i انشعابی، چنان موجودند که هر E_i ناسازگار است و برای هر E_i به شکل درختی E_i انسازگار است و برای هر E_i به شکل درختی E_i انسازگار است و برای هر E_i در درختی E_i انسازگار است و برای هر E_i در درختی E_i انسازگار است و برای هر به شکل درختی E_i انسازگار است و برای هر به شکل درختی E_i انسازگار است و برای هر به شکل درختی E_i انسازگار است و برای هر به شریم می درختی است ساخته شده از زیرمجموعه های داریم E_i به طوری که در ریشه ی آن مجموعه ی E_i قرار می گیرند، و بدین ترتیب روی E_i شاخه های E_i به باید.

درخت یادشده را به صورت زیر میسازیم:

توجه کنید که بنا به وجود درخت بالا، تعداد تایپها روی یک مجموعه ی شمارا (پارامترهای درخت) برابر با x^{\aleph} است. پس تؤری بالا، ω پایدار نیست. در جلسات بعد نشان خواهیم داد که ω پایداری

معادل با کاملاً متعالی بودن، یعنی داشتن مرتبه ی مرلیِ اردینالی است. پس در تئوری بالا فرمولِ x=x دارای مرتبه ی مرلی x=x

ادعای ۱۹۲: اگر یک تئوریِ T فرمولهای $\phi(\bar{x}, \bar{b}_{\tau})$ در درختی ω انشعابی به سان بالا قرار بگیرند، در این تئوری، مرتبه ی مرلی فرمول نشسته در بالای درخت، بینهایت است.

 α انبات. توجه کنید که در یک درخت این چنین، اگر مرتبه ی فرمول نشسته در بالا از اردینال بیشتریامساوی بیشتریامساوی باشد، آنگاه از $\alpha+1$ نیز بیشتریامساوی است؛ زیرا تصویر درخت در هر فرمول رست. حال توجه کنید که مرتبه ی مرُلی فرمول ϕ_0 از هر ω بیشتر است. ω

توجه ۱۹۳۰: وجود درخت دوشاخه شونده نیز وجود درخت ω انشعابی را نتیجه می دهد؛ زیرا از میان درخت دو شاخه شونده با حذف برخی شاخهها می شود درخت Υ شاخه شونده و بدین ترتیب Υ شاخه شونده درآورد، و بنا به فشردگی به درختی ω انشعابی رسید.

در جلسهی بعد ثابت خواهیم کرد که

گزاره ۱۹۴: تئوری T یک تئوری ω پایدار است اگروتنهااگر کاملاً متعالی باشد.

لم ۱۹۵ (ویژگیهای مرتبهی مُرلی):

- $.\phi(M) \neq \emptyset$ اگروتنهااگر RM $(\phi) \geq \bullet$
- اگروتنهااگر $\phi(M)$ نامتناهی باشد. $\mathrm{RM}(\phi) \geq 1$
 - اگر

$$\mathfrak{M}\models \forall \bar{x} \quad (\phi(\bar{x},\bar{m})\rightarrow \psi(\bar{x},\bar{b}))$$

 $RM(\psi) \ge RM(\phi)$ آنگاه

 $.RM(\phi \lor \psi) = \max\{RM(\phi), RM(\psi)\} \bullet$

 α اثبات، تنها مورد آخر را ثابت میکنیم، و برای آن ثابت میکنیم که برای هر اردینال

 $\mathrm{RM}(\phi \vee \psi) \geq \alpha \Leftrightarrow \max\{\mathrm{RM}(\phi),\mathrm{RM}(\psi)\} \geq \alpha.$

 $\mathrm{RM}(\phi\vee\psi)\geq \alpha+1$ اثبات گفته ی بالا برای $\alpha=0$ و اردینالهای حدی، آسان است. فرض کنیم $\alpha=0$ و اردینالهای حدی، آسان است. فرمولهای $\gamma_i\subseteq\phi\vee\psi$ چنان موجودند که $\gamma_i\subseteq\phi$. داریم

$$(\phi \vee \gamma_i) \wedge (\psi \vee \gamma_i) \equiv \gamma_i.$$

بنا به فرض استقراء، از آنجا که $\mathrm{RM}(\gamma_i) \geq \alpha$ داریم

 $\max\{\mathrm{RM}(\phi\vee\gamma_i),\mathrm{RM}(\psi\vee\gamma_i)\}\geq\alpha.$

پس برای هر i یا α یا $\mathrm{RM}(\phi \vee \gamma_i) \geq \alpha$ یا $\mathrm{RM}(\phi \vee \gamma_i) \geq \alpha$ یکی از دو مورد ذکر شده برای i امتناهی i رخ می دهد؛ بی کاسته شدن از کلیت فرض کنیم α کنیم α برای نامتناهی α از این نتیجه می شود که α α α