Assignment 11

AI1110: Probability and Random Variables

Indian Institute of Technology, Hyderabad

Chittepu Rutheesh Reddy cs21btech11014

Q23 [Papoulis Textbook Exercise 8]: The random variable x has a Poisson distribution with mean θ . Show that the ML estimate of θ is \bar{x} . **Solution:** The joint P.D.F of RVs when $\mathbf{x}_i = x_i$, i $\in (1, n)$ is given by

$$f(X,\theta) = e^{-n\theta} \prod_{i=1}^{n} \frac{\theta^{x_i}}{x_i!}$$
 (1)

$$f(X,\theta) = e^{-n\theta} \Pi \frac{\theta^{x_i}}{x_i!}$$

$$f(X,\theta) = e^{-n\theta} \frac{\theta^{n\bar{x}}}{\Pi x_i!}$$
(2)

At ML estimate of θ , $f(X, \theta)$ is maximum,

$$\frac{df(X,\theta)}{d\theta} = -nf(X,\theta) + \frac{n\bar{x}}{\theta}f(X,\theta) \quad (3)$$

When
$$\frac{df(X,\theta)}{d\theta} = 0$$
 (4)

$$-n + \frac{n\bar{x}}{\theta} = 0 \tag{5}$$

$$\therefore \theta = \bar{x} \tag{6}$$