PARTIEL

Lundi 6 novembre 2017 - Durée : 1h45

Exercice 1 (Question de cours):

- 1. Rappeler la définition d'une extraction. Démontrer que pour toute extraction φ , on a pour tout $n \geq 0$, $\varphi(n) \geq n$.
 - Correction : Une extraction est une application $\varphi: \mathbb{N} \to \mathbb{N}$ strictement croissante. La propriété demandée se montre par récurrence : $\varphi(0) \in \mathbb{N}$ par définition et donc $\varphi(0) \geq 0$. Supposons que pour un certain $n \geq 0$, $\varphi(n) \geq n$. Alors $\varphi(n+1) > \varphi(n)$ car φ est strictement croissante. Donc $\varphi(n+1) > n$ et donc $\varphi(n+1) \geq n+1$. D'où la propriété par récurrence.
- 2. Soit (u_n) une suite réelle dont on suppose qu'elle converge vers $l \in \mathbb{R}$ et φ une extraction. Que pouvez-vous dire quant à la convergence de la suite extraite $(u_{\varphi(n)})$ pour $n \to \infty$?

Correction: La suite extraite $(u_{\varphi(n)})$ converge aussi vers l.

3. Démontrez l'assertion précédente.

Correction: Soit $\varepsilon > 0$. Comme $u_n \xrightarrow[n \to \infty]{} l$, il existe $n_0 \ge 1$ tel que pour tout $n \ge n_0$, $|u_n - l| < \varepsilon$. Pour un tel $n \ge n_0$, on a $\varphi(n) \ge n \ge n_0$ et donc $|u_{\varphi(n)} - l| < \varepsilon$. Donc $(u_{\varphi(n)})$ converge vers l quand $n \to \infty$.

Exercice 2 : Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue sur \mathbb{R} vérifiant l'équation fonctionnelle suivante :

$$\forall x \in \mathbb{R}, \ f(x) = f\left(\frac{1+x}{2}\right).$$

Soit $x \in \mathbb{R}$ fixé et soit (u_n) la suite définie par $u_0 = x$ et par $u_{n+1} = \frac{1+u_n}{2}$, pour $n \ge 0$.

- 1. Quelle propriété simple est vérifiée par la suite $(f(u_n))$?

 Correction: Pour tout $n \geq 0$, on a $f(u_n) = f\left(\frac{1+u_n}{2}\right) = f(u_{n+1})$, par définition de la suite (u_n) . Donc la suite $(f(u_n))$ est constante, égale à $f(u_0) = f(x)$.
- 2. On étudie maintenant la suite (u_n) . On suppose pour commencer que $x \geq 1$.
 - (a) Montrer que pour tout $n \geq 0$, $u_n \geq 1$. Correction: On prouve cette propriété par récurrence: on a $u_0 = x \geq 1$. Supposons la propriété vraie au rang n. Alors $u_{n+1} = \frac{1+u_n}{2} \geq \frac{1+1}{2} = 1$ et donc $u_n \geq 1$ pour tout $n \geq 0$, par récurrence.
 - (b) Montrer que la suite (u_n) converge vers un réel que l'on déterminera. Correction : Montrons que la suite (u_n) est décroissante. Pour $n \geq 0$, $u_{n+1} - u_n = \frac{1+u_n}{2} - u_n = \frac{1-u_n}{2} \leq 0$, d'après la question précédente. Donc (u_n) est décroissante. Ainsi la suite (u_n) est décroissante et minorée par 1, elle converge donc vers $l \geq 1$. Par continuité de l'application $x \mapsto \frac{1+x}{2}$, il vient par passage à la limite dans l'égalité $u_{n+1} = \frac{1+u_n}{2}$, $l = \frac{1+l}{2}$ et donc l = 1. Ainsi (u_n) converge vers 1.

- 3. Dans le cas où x < 1, justifier de façon semblable la convergence de la suite (u_n) . On se contentera dans cette question de donner les principaux arguments de la démonstration sans refaire de preuve détaillée.
 - Correction: Dans ce cas, on prouve de façon semblable que pour tout $n \ge 0$, $u_n \le 1$ et que la suite (u_n) est croissante. Etant croissante et majorée, elle converge vers $l' \le 1$ vérifiant $l' = \frac{1+l'}{2}$, i.e. l' = 1.
- 4. Déduire des questions précédentes que f est une fonction constante. Correction : On a pour tout $n \geq 0$, $f(u_n) = f(x)$ et $u_n \xrightarrow[n \to \infty]{} 1$, donc par passage à la limite dans l'égalité précédente (possible car f est continue), il vient f(1) = f(x). Ceci étant vrai pour tout $x \in \mathbb{R}$, la fonction f est constante.

Exercice 3 : Soit (u_n) la suite définie par

$$u_n = (-1)^n n^2 \sin\left(\pi\sqrt{n^2 + 1}\right), \ n \ge 0.$$

1. Pour tout $x \in \mathbb{R}$, $n \ge 0$, exprimer $\sin(x - n\pi)$ en fonction de $\sin(x)$. En déduire que pour $n \ge 0$, $u_n = n^2 \sin\left(\frac{\pi}{n + \sqrt{n^2 + 1}}\right)$.

Correction: Pour tout $n \geq 0, x \in \mathbb{R}$, $\sin(x - n\pi) = (-1)^n \sin(x)$ (la fonction sin est 2π -périodique et π -antipériodique). Ainsi,

$$u_n = n^2 \sin\left(\pi \left(\sqrt{n^2 + 1} - n\right)\right) = n^2 \sin\left(\pi \left(\frac{\left(\sqrt{n^2 + 1} - n\right)\left(\sqrt{n^2 + 1} + n\right)}{\sqrt{n^2 + 1} + n}\right)\right),$$

= $n^2 \sin\left(\frac{\pi \left(n^2 + 1 - n^2\right)}{n + \sqrt{n^2 + 1}}\right) = n^2 \sin\left(\frac{\pi}{n + \sqrt{n^2 + 1}}\right).$

2. Donner un équivalent simple de u_n pour $n \to \infty$. Correction: Posons $v_n = \frac{\pi}{n + \sqrt{n^2 + 1}}$. Comme $v_n \xrightarrow[n \to \infty]{} 0$, on a, par développement limité de sin en 0,

$$u_n = n^2 (v_n + o(v_n)) = n^2 \left(\frac{\pi}{n + \sqrt{n^2 + 1}} + o\left(\frac{\pi}{n + \sqrt{n^2 + 1}} \right) \right),$$

= $n \left(\frac{\pi}{1 + \sqrt{1 + n^{-2}}} + o\left(\frac{\pi}{1 + \sqrt{1 + n^{-2}}} \right) \right).$

Donc $u_n \sim_{n\to\infty} \frac{n\pi}{1+\sqrt{1+n^{-2}}} \sim_{n\to\infty} \frac{n\pi}{2}$.

3. Soit pour n > 0, $v_n = \left(1 - \frac{2}{n}\right)^{u_n}$. Etudier la convergence de la suite (v_n) et préciser sa limite, si elle existe.

Correction : On a, par développement limite de $u\mapsto \ln(1-u)$ au voisinage de u=0,

$$v_n = \exp\left(u_n \ln\left(1 - \frac{2}{n}\right)\right) = \exp\left(\left(\frac{n\pi}{2} + o(n)\right)\left(-\frac{2}{n} + o\left(\frac{1}{n}\right)\right)\right),$$
$$= \exp\left(\left(\frac{\pi}{2} + o(1)\right)(-2 + o(1))\right).$$

En particulier, par continuité de exp, (v_n) est convergente de limite $\lim_{n\to\infty} v_n = e^{-\pi}$.

Exercice 4: Dans cet exercice, les questions 2., 3. et 4. sont indépendantes. Soit f une fonction de [0,1] à valeurs dans [0,1]. On se pose la question de savoir si f admet un point fixe sur [0,1], c'est-à-dire un réel $l \in [0,1]$ tel que f(l) = l.

1. Soit

$$A = \{x \in [0, 1], \ x \le f(x)\}. \tag{1}$$

Montrer que A admet une borne supérieure, notée l.

Correction : A est une partie non vide (car f est à valeurs dans [0,1], donc en particulier $0 \le f(0)$ et donc $0 \in A$) et majorée par 1. Donc A admet une borne supérieure sup A = l.

- 2. On suppose dans cette question que f est croissante.
 - (a) Montrer que f(l) est un majorant de A. En déduire que $l \leq f(l)$. Correction: En particulier, l est un majorant de A et donc pour tout $x \in A$, $x \leq l$. Par croissance de f, on a $f(x) \leq f(l)$ et par définition de A, on a, pour $x \in A$, $x \leq f(x) \leq f(l)$. Donc f(l) est un majorant de A. l étant le plus petit des majorants de A, on a $l \leq f(l)$.
 - (b) Montrer que $f(l) \in A$. Correction: On a $l \leq f(l)$ et donc en appliquant de nouveau la croissance de f, on obtient $f(l) \leq f(f(l))$, ce qui est exactement dire que $f(l) \in A$.
 - (c) Conclure que f(l) = l. Correction: Comme l est un majorant de A et $f(l) \in A$, on a $f(l) \le l$ et donc f(l) = l.
 - (d) Le point fixe de f est-il nécessairement unique? Correction: Non. f(x) = x est croissante sur [0,1] et admet une infinité de points fixes.
- 3. On suppose dans cette question que f est décroissante.
 - (a) Montrer que, s'il existe, le point fixe de f est unique. Correction: Soit $l_1 \leq l_2$ deux points fixes de f dans [0,1]. Comme $l_1 \leq l_2$, on a $f(l_1) \geq f(l_2)$, par décroissance de f. Comme ce sont deux points fixes, $l_1 \geq l_2$ et donc $l_1 = l_2$.
 - (b) Est-il vrai que f admet toujours un point fixe dans ce cas? Correction: Le résultat est faux dans ce cas. Contre-exemple: $f:[0,1] \to [0,1]$ définie par f(x) = 1 pour $x \in [0,1[$ et f(1) = 0 est une fonction décroissante qui n'admet pas de point fixe.
- 4. On suppose dans cette question que f est continue sur [0,1]. On souhaite montrer que f a au moins un point fixe sur [0,1]. Soit A l'ensemble défini en (1) et l sa borne supérieure.
 - (a) Montrer que $l \leq f(l)$ (on pourra utiliser, en justifiant son existence, une suite (t_n) d'éléments de A qui converge vers l). Que pouvez-vous conclure si l = 1?

Correction: L'existence de la suite (t_n) vient de la caractérisation séquentielle de la borne supérieure. Comme pour tout $n \geq 0$, $t_n \in A$ donc $t_n \leq f(t_n)$, il vient $l \leq f(l)$ par continuité de f. Si maintenant l = 1, on a $1 \leq f(1) \leq 1$ et donc 1 est un point fixe de f.

- (b) On suppose maintenant l < 1. Montrer que pour tout $x \in]l, 1[, f(x) < x$. Correction: Si ce n'était pas le cas, il existerait un $x \in]l, 1[$ tel que $x \leq f(x)$, ce qui contredit le fait que l est un majorant de A.
- (c) En déduire que $f(l) \leq l$. Conclure. Correction: C'est en particulier vrai pour $x_n = l + \frac{1}{n}$, pour n suffisamment grand. Cette suite converge vers l par valeurs supérieures et en passant à la limite dans l'inégalité $f(x_n) < x_n$ (par continuité de f), il vient $f(l) \leq l$ et donc f(l) = l.

Fin de l'épreuve.