

ESP32-C3 E301 Triple Mode Wifi Module Datasheet

Version	Issue date	Changes	Remark
0.1	2022/6/8	Initial Version	

IMPORTANT

This document contains important information and should not be disclosed to third parties without prior written consent of amazipoint technology Ltd.

Address: 2F,No. 113, Zhongyang Rd., Xindian Dist., New Taipei City, Taiwan(R.O.C) www.amazipoint.com

Signature:

Author:	Reviewed by:	Approved by:	Remarks:
Martin Ho			

ESP32-C3 E301 Wifi Module Datasheet

1. Introduction

E301 Wifi module is small and low power consumption triple mode(STA, AP, STA+AP) Wifi module with following features:

- 802.11 b/g/n (HT20 mode for 802.11n)
- 3.3V single power supply
- Low power consumption
- Small size 16*24*3.2 mm

This module can be configured as stamp type or Dip type / internal or external antenna to fit versatile applications.

2. Pin out/Dimension/Operation Modes

1	GPIO2		12	SPICS0	
2	GPIO1		13	GPIO10	
3	CHIP_EN	Power on reset	14	GPIO15	
4	GPIO6		15	GND	Power ground
5	GPIO7		16	GPIO18	
6	GPIO0		17	GPIO8	
7	GPIO19		18	GPIO9	
8	3.3V IN	Power in	19	GPIO4	
9	GPIO26		20	GPIO5	
10	GPIO17		21	RXD	UART RXD
11	GPIO3		22	TXD	UART TXD

Dimension: 16*24*3.2 mm

Vcc: 3.3V typical.

UART

TXD: UART tx signal ◆ RXD : UART rx signal ♦ baud rate : 115200 bps

8 data bit, No parity and 1 stop bit

3. Technical Specifications

VCC	3.0~3.6V
Average Working current	90mA
Peak Working current	350mA
Working temperature	-40 ~ +80 deg. C
Tx power	
11	b 21 dBm
11	g 19 dBm
11	n 18.5 dBm
Receiver sensitivity	
11	-88 dBm
11	-76 dBm
11	-71 dBm
Operation Mode	
	Station
	SoftAP
	Station + SoftAP
Security Mode	WPA/WPA2
Encryption	WEP/AES/TKIP
GPIO max in/out current	40mA source, 28mA sink typ.

Table 16: Current Consumption Depending on RF Modes

Work mode	Description		Peak (mA)	
Active (RF working)	TX	802.11b, 1 Mbps, @21 dBm	335	
		802.11g, 54 Mbps, @19 dBm	285	
		802.11n, HT20, MCS7, @18.5 dBm	276	
		802.11n, HT40, MCS7, @18.5 dBm	278	
	DV	802.11b/g/n, HT20	84	
	RX	802.11n, HT40	87	

Work mode	Description		Тур	Unit
Modem-sleep ^{1, 2}	160 MHz ³	All peripheral clocks disabled	23	mA
		All peripheral clocks enabled ⁴	28	mA
	80 MHz ³	All peripheral clocks disabled	17	mA
		All peripheral clocks enabled ⁴	22	mA
Light-sleep	_		130	μΑ
Deep-sleep	RTC timer + RTC memory		5	μΑ
Power off	CHIP_PU is set to low level, the chip is powered off		1	μΑ

The current consumption figures in Modem-sleep mode are for cases where the CPU is powered on and the cache idle.

4. Detailed dimension:

Detailed dimension is as following:

5. Application Notes about GPIO

² When Wi-Fi is enabled, the chip switches between Active and Modem-sleep modes. Therefore, current consumption changes accordingly.

³ In Modem-sleep mode, the CPU frequency changes automatically. The frequency depends on the CPU load and the peripherals used.

In practice, the power consumption might be different depending on which peripherals are enabled.

Because the states of follwoing GPIOs are used module boot up configuration. They should be kept in associated state during module power on :

GPIO	State
GPIO9	High: Normal boot, Low: Flash programming
GPIO8	High