

## **Machine Learning – I**

# Assumptions of Regression and Model Evaluation



# Agenda

- Assumptions of Linear Regression
- Tests for Assumptions of Linear Regression
- Model Evaluation Metrics
- Presence of Categorical Variables
- Interaction Effect



# Assumptions of Linear Regression



## Assumptions of linear regression

- The dependent variable must be numeric
- Linear relationship between dependent and independent variables
- Predictors must not show multicollinearity
- Independence of observations should exist (Absence of Autocorrelation)
- The error terms should be homoscedastic
- The error terms must follow normal distribution



#### Assumptions of linear regression



This file is meant for personal use by lokesh.jejappa@gmail.com only. Sharing or publishing the contents in part or full is liable for legal action.



# Tests for Assumptions of Linear Regression



#### Tests before model building

The dependent variable must be numeric

Predictors must not show multicollinearity



#### Is the dependent variable numeric?

Regression Analysis requires the target variable to be numeric in nature

 For example: returns, sales of a product, yield of a crop, risk in financial services

 In context with our example, we see that Premium is numeric

| Mileage | Premium (in dollars) |
|---------|----------------------|
| 15      | 392.5                |
| 14      | 46.2                 |
| 17      | 15.7                 |
| 7       | 422.2                |
| 10      | 119.4                |
| 7       | 170.9                |
| 20      | 56.9                 |
| 21      | 77.5                 |
| 18      | 214                  |
| 11      | 65.3                 |
| 7.9     | 250                  |
| 8.6     | 220                  |
| 12.3    | 217.5                |
| 17.1    | 140.88               |
| 19.4    | 97.25                |

This file is meant for personal use by lokesh.jejappa@gmail.com only. Sharing or publishing the contents in part or full is liable for legal action.

#### Q & A



#### **Question:**

If our target variable is: 0, 1, 1, 0, 0, where 0 indicates presence of a disease and 1 indicates absence.

Is it appropriate to use regression to find the whether the person has a disease?

#### **Q & A**



#### **Question:**

If our target variable is: 0, 1, 1, 0, 0, where 0 indicates presence of a disease and 1 indicates absence. Is it appropriate to use regression to find the whether the person has a disease?

#### **Answer:**

No. Because the target variable is a categorical variable. Thus, it is a classification problem.



#### Tests before model building

• The dependent variable must be numeric

Predictors must not show multicollinearity



## What is multicollinearity?

 Multicollinearity arises when the independent variables have high correlation among each other

 Multicollinearity may be introduced if there exists empirical relationship among variables such as income = expenditure + saving

In presence of it, the best fit line obtained from OLS method is no more "best"

• Also, the confidence interval obtained for  $\beta$ 's is wider since the SE( $\beta$ ) becomes large

#### Multicollinearity detection



Determinant of correlation mat

Condition Number (CN)

Is there multicollinearity present?

Correlation matrix

Which variables are involved in multicollinearity?

Variance Inflation Number (VIF

## Is there multicollinearity?



## Determinant of the correlation matrix:

Let D be the determinant of correlation matrix. Then 0 < D < 1

| D=0 | High multicollinearity |
|-----|------------------------|
| D=1 | No multicollinearity   |

#### **Condition Number (CN):**

| CN > 1000       | Severe multicollinearity   |
|-----------------|----------------------------|
| 100 < CN < 1000 | Moderate multicollinearity |
| 100 < CN        | No multicollinearity       |

## Which variables are involved in multicollinearity?

#### **Correlation matrix:**

If the off-diagonal values tend to ±1 then it indicates high correlation between the variable pair. However this inspection is not enough



# Which variables are involved in multicollinearity?

#### **Variance Inflation Factor (VIF):**

$$VIF = rac{1}{1-R^2}$$

Where R<sup>2</sup> is obtained by regressing a predictor variable over all the other predictors in the model

| Value      | Interpretation       |
|------------|----------------------|
| VIF > 5    | High correlation     |
| 5 > VIF >1 | Moderate correlation |
| VIF = 1    | No correlation       |

This file is meant for personal use by lokesh.ieiappa@gmail.com only.

Sharing or publishing the contents in part or full is liable for legal action.



## Tests after model building

Linear relationship between dependent and independent variables

 Independence of observations should exist (i.e. Absence of Autocorrelation)

The error terms should be homoscedastic

The error terms must follow normal distribution



## Tests after model building

• Linear relationship between dependent and independent variables

 Independence of observations should exist (i.e. Absence of Autocorrelation)

The error terms should be homoscedastic

The error terms must follow normal distribution



## Assumption of linearity

An assumption of linear regression is that it should be linear in the parameter

 The independent variables must have a linear relationship with the dependent variable

The residuals and the fitted values should be independent





An assumption of linear regression is that it should be linear in the parameter

#### Linear Relationship

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2^2 + \epsilon$$

$$y = \beta_0 - \beta_1 \log(x_1) + \beta_2 x_2 + \varepsilon$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 - \beta_3 x_1 x_2 + \epsilon$$

#### Nonlinear Relationship

$$y = \beta_0 - e^{\beta 1 x 1} + \epsilon$$

$$y = \beta_0 x_1 / \beta_1 x_1 + \epsilon$$

$$y = \beta_0 + x_1^{\beta 1}.x_2^{\beta 2} + \epsilon$$



#### Existence of linear relationship

 The independent variables must have a linear relationship with the dependent variable

This can be checked plotting a scatter plot of residuals vs predictors

 A scatter plot depicting no pattern indicates that the variable has a linear relationship with the response variable



#### Existence of linear relationship

In context with our data, we see a random pattern in all the three plots. Hence, we may say that, the predictors are linearly related with the response variable.



This file is meant for personal use by lokesh.jejappa@gmail.com only. Sharing or publishing the contents in part or full is liable for legal action.



## Existence of linear relationship

The plot of residuals against the fitted tells the presence of linear relationship

 For linear relationship, the points must be at random, i.e., it should not exhibit much distinctive pattern, no non-linear trends or changes in variability





## Tests after model building

Linear relationship between dependent and independent variables

 Independence of observations should exist (i.e. Absence of Autocorrelation)

The error terms should be homoscedastic

The error terms must follow normal distribution



#### Assumption of autocorrelation

- Assumption of autocorrelation is violated when residuals are correlated within themselves, i.e. they are serially correlated
- Autocorrelation does not impact the regression coefficients but the associated standard errors are reduced
- This reduction in standard error leads to a reduction in associated p-value
- It incorrectly concludes that a predictor is statistically significant



#### Causes of autocorrelation

- Some important variables are not considered in the data
- If the relationship between the target and predictor variables is non-linear and is incorrectly considered linear
- Presence of carry over effect

Example: The additional expenses from the budget for last month are carried over in creating the budget for next month

#### **Durbin - Watson Test**



- To test whether the error terms are autocorrelated, we Durbin-Watson test
- We test whether autocorrelation is present or not
- The hypothesis is given by:

H<sub>o</sub>:The error terms are not autocorrelated

against

H₁:The error terms are autocorrelated

Failing to reject H<sub>0</sub>, will imply that the error terms are autocorrelated





#### **Durbin - Watson test**

The test statistic is given by

$$d = \frac{\sum \hat{e}_t - \hat{e}_{t-1}}{\sum \hat{e}_t^2} \quad \text{Residual of t$^{\text{th}}$ observation} \\ \text{d} \in [0,4]$$

| Value     | Interpretation           |
|-----------|--------------------------|
| 0 < d <2  | Positive autocorrelation |
| d = 2     | No autocorrelation       |
| 2 < d < 4 | Negative autocorrelation |

This file is meant for personal use by lokesh jejappa@gmail.com only.



## Tests after model building

Linear relationship between dependent and independent variables

 Independence of observations should exist (i.e. Absence of Autocorrelation)

• The error terms should be homoscedastic

The error terms must follow normal distribution



#### Homoscedasticity assumption



- Variance of the residual is assumed to be independent of the explanatory variables
- Heteroscedasticity: non-constant variance of residuals
- It happens due to the presence of extreme values







- Funnel type shape is seen in the graph
- Hence we can say that there is a presence of "Heteroscedasticity"



#### Homoscedasticity



- There is no visible funnel or bow type pattern in the plot
- We can see presence of "Homoscedasticity"





 The plot of residuals against the fitted values tells whether the error terms have equal variance

 It should look random, i.e., it should not exhibit much distinctive pattern, no non-linear trends or changes in variability





#### Homoscedasticity

The statistical test to test for the homoskedasticity of the errors are

- Goldfeld Quandt test
- Breusch Pagan test



#### Goldfeld-Quandt test

• For presence of a constant variance of error terms, i.e. to test

H<sub>0</sub>: The errors terms are homoskedastic

against

H<sub>1</sub>: The errors terms are heteroskedastic

Decision rule: Reject H<sub>0</sub>, if the p-value associated with test statistic is less than α (level of significance), which implies that there is heteroskedastic, i.e. the error terms have do not equal variance



#### Breusch Pagan test

• For presence of a constant variance of error terms, i.e. to test

H<sub>0</sub>: The errors terms are homoskedastic

#### against

H<sub>1</sub>: The errors terms are heteroskedastic

• Decision rule: Reject  $H_0$ , if the p-value associated with test statistic is less than  $\alpha$  (level of significance), which implies that there is heteroskedastic, i.e. the error terms have do not equal variance



# Tests after model building

Linear relationship between dependent and independent variables

 Independence of observations should exist (i.e. Absence of Autocorrelation)

The error terms should be homoscedastic

The error terms must follow normal distribution



## Normality test

Parametric statistical methods assume that the underlying data has a normal distribution

 Normality tests are used to determine if a data set is well-modeled by a normal distribution



## Normality testing techniques

Quantile-Quantile Plot

- Jarque-Bera (JB) Test
- Shapiro-Wilk Test



# Quantile-Quantile Plot (QQ plot)

Used to determine whether two datasets follow the same distribution.

The quantiles of two datasets are plotted against each other

A reference line is plotted at 45<sup>0</sup>

If the points lie on the reference line we conclude they follow the same distribution

#### Normal QQ plot





- The x axis has points from a theoretically calculated normal distribution
- They are compared with sample data on the y axis
- If the sample data has a normal distribution the points lie on the reference line

#### Normal QQ plot





- The x axis has points from a theoretically calculated normal distribution
- They are compared with sample data on the y axis
- If the sample data has a normal distribution the points lie on the reference line

#### JB test



 To test whether the data follows normal distribution, we test whether the skewness and kurtosis of the data are same as that of the normal distribution, i.e. to test

$$H_0$$
: Skewness (S) = 0 and Kurtosis (K) = 0

against

$$H_1$$
: Skewness (S)  $\neq$  0 and Kurtosis (K)  $\neq$  0

Failing to reject H<sub>0</sub>, implies that the data does not follow normal distribution

$$JB = \frac{n}{6} \left( S^2 + \frac{1}{4} (K - 3)^2 \right)$$
This file is meant for personal use by lokesh jejappa@gmail.gom only.

Sharing or publishing the contents in part or full is liable for legal action.

#### JB test



The test statistics for n observations is given by

$$JB = rac{n}{6} \left( S^2 + rac{1}{4} (K-3)^2 
ight)$$
Sample skewness

 The test statistics asymptotically follows chi squared distribution with 2 degrees of freedom (χ<sup>2</sup><sub>2</sub>)



## Shapiro-Wilk test

To test whether the data follows normal distribution, i.e. to test

H₀: The data is normally distributed

against

H₁: The data is not normally distributed

Failing to reject H<sub>0</sub>, implies that the data does not follow normal distribution





The test statistic is given by

$$W = rac{{{{(\sum_{i=1}^{n} {a_i x_i})}^2}}}{{\sum_{i=1}^{n} {{(x_i - \overline{x})}^2}}}$$

n●= sample size

a<sub>i</sub> = values computed from n samples (of size n each) from normal distribution based on their means, covariance matrix

 $x_i = i^{th}$  ordered sample values

 $\bar{x}$  =sample mean



# Model Evaluation Metrics



#### Model evaluation metrics

The model evaluation metrics are

- R<sup>2</sup>
- Adjusted R<sup>2</sup>
- The F test for overall significance





- The R<sup>2</sup> value gives the percentage of variation in the response variable explained by the predictor variables
- If the values of  $R^2$  = 0.87, it implies that 87% of variation in the response variable is explained by the predictor variables

$$R^2 = \frac{\text{Explained variation}}{\text{Total variation}} = \frac{\text{SSR}}{\text{SST}}$$



#### Adjusted R-squared

- Adjusted R<sup>2</sup> gives the percentage of variation explained by independent variables that actually affect the dependent variable
- If the values of  $R^2$  = 0.87, it implies that 87% of variation in the response variable is explained by the predictor variables

$$R_{adj}^2 = 1 - rac{(1-R^2)(n-1)}{n-k-1}$$

#### F test



- To check the significance of the regression model we use the F test
- It is similar to ANOVA for regression
- The test hypothesis is given by

$$H_0: \beta_1 = \beta_2 = \beta_3 = \beta_1 = 0$$

for at least one of the i values

$$H_1: \beta_i > 0$$
 or  $\beta_i < 0$ 

Failing to reject H<sub>n</sub>, implies that the model is not significant





The test statistics is given by

$$Fstat = rac{ ext{(SST-SSE)/k}}{ ext{SSE/(n-k-1)}}$$
 $n = ext{sample size}$ 
 $k = ext{number of predictor variables}$ 

• Decision rule: Reject  $H_0$ , if  $F_0 > F_{(k,n-k-1),\alpha}$  or if the p-value is less than the  $\alpha$  (level of significance)



# Presence of categorical variable



## Linear regression of categorical variable

The regression method fails in presence of categorical variable

Thus we need to convert the categorical variable to numeric variable

In order to so, we use N - 1 dummy encoding



## N-1 dummy encoding

Dummy variables are binary variables used to represent categorical data

 For a categorical variable that can take k values k-1 dummy variables need to be created

 Dummy variable is assigned 1 if it takes a particular value else it is assigned 0



## Dummy variable example

Consider a variable, Gender, used to represent the gender of a citizen during the census

Gender: Male, Female

Since Gender takes 2 values it can be represented with 1 dummy variable D<sub>1</sub> as:

| Value  | D <sub>1</sub> |
|--------|----------------|
| Male   | 0              |
| Female | 1              |



#### Data

Let us consider a categorical variable Manufacturer in the data and find out how it behaves.

| Mileage | Manufacturer | Premium (in dollars) |
|---------|--------------|----------------------|
| 15      | Ford         | 392.5                |
| 14      | Honda        | 46.2                 |
| 17      | Tata         | 15.7                 |
| 7       | Ford         | 422.2                |
| 10      | Ford         | 119.4                |
| 7       | Tata         | 170.9                |
| 20      | Tata         | 56.9                 |
| 21      | Honda        | 77.5                 |
| 18      | Honda        | 214                  |
| 11      | Tata         | 65.3                 |
| 7.9     | Ford         | 250                  |
| 8.6     | Tata         | 220                  |
| 12.3    | Tata         | 217.5                |
| 17.1    | Ford         | 140.88               |
| 19.4    | Honda        | 97.25                |

This file is meant for personal use by lokesh.jejappa@gmail.com only. Sharing or publishing the contents in part or full is liable for legal action.





- In context with our example, the categorical variable Manufacturer takes values Ford, Honda and Tata
- Since Manufacturer takes 3 values, two dummy variables Mfr\_Honda and Mfr\_Tata are created

| Value Mfr_Honda |   | Mfr_Tata |
|-----------------|---|----------|
| Ford            | 0 | 0        |
| Honda           | 1 | 0        |
| Tata            | 0 | 1        |

This file is meant for personal use by lokesh.jejappa@gmail.com only. Sharing or publishing the contents in part or full is liable for legal action.



# Model with categorical variable

#### Now our model is

Premium = 
$$\beta_0 + \beta_1$$
 Mileage +  $\beta_2$  Mfr\_Honda +  $\beta_3$  Mfr\_Tata +  $\epsilon$ 

| Parameter      | Description                                                     |
|----------------|-----------------------------------------------------------------|
| β <sub>0</sub> | Premium value where the best fit line cuts the Y-axis (Premium) |
| β1             | Regression coefficient of the variable Mileage                  |
| $\beta_2$      | Regression coefficient of the dummy variable Mfr_Honda          |
| $\beta_3$      | Regression coefficient of the dummy variable Mfr_Tata           |



# Linear regression model (dummy variable)

Based on the data, the  $\beta$  parameters are:

$$\beta_0 = 368.93, \, \beta_1 = -9.117,$$

$$\beta_2 = -95.174$$
 and  $\beta_3 = -129.216$ 

Thus the model is

$$Y = 368.93 - 9.117 x_1 - 95.174 x_2 - 129.216 x_3$$

| Mileage | Manufacturer | Premium (in dollars) |
|---------|--------------|----------------------|
| 15      | Ford         | 392.5                |
| 14      | Honda        | 46.2                 |
| 17      | Tata         | 15.7                 |
| 7       | Ford         | 422.2                |
| 10      | Ford         | 119.4                |
| 7       | Tata         | 170.9                |
| 20      | Tata         | 56.9                 |
| 21      | Honda        | 77.5                 |
| 18      | Honda        | 214                  |
| 11      | Tata         | 65.3                 |
| 7.9     | Ford         | 250                  |
| 8.6     | Tata         | 220                  |
| 12.3    | Tata         | 217.5                |
| 17.1    | Ford         | 140.88               |
| 19.4    | Honda        | 97.25                |

That is,

Premium = 368.93 - 9.117 Mileage - 95.174 Mfr\_Honda - 129.216 Mfr\_Tata



# Regression line (dummy variable)

#### The regression line:

Premium = 
$$\beta_0 + \beta_1$$
 Mileage +  $\beta_2$  Mfr\_Honda +  $\beta_3$  Mfr\_Tata +  $\epsilon$ 

If the manufacturer is Honda, the regression line becomes:

Premium = 
$$\beta_0 + \beta_1$$
 Mileage +  $\beta_2$  Mfr\_Honda +  $\beta_3$  Mfr\_Tata  
=  $\beta_0 + \beta_1$  Mileage +  $\beta_2$  (1)+  $\beta_3$  (0)  
=  $\beta_0 + \beta_1$  Mileage +  $\beta_2 + 0$   
=  $(\beta_0 + \beta_2)$ +  $\beta_1$  Mileage

| Value | Mfr_Honda | Mfr_Tata |
|-------|-----------|----------|
| Ford  | 0         | 0        |
| Honda | 1         | 0        |
| Tata  | 0         | 1        |

Note the change in the intercept value.



## Regression line (dummy variable)

#### The regression line:

Premium = 
$$\beta_0$$
 +  $\beta_1$  Mileage +  $\beta_2$  Mfr\_Honda +  $\beta_3$  Mfr\_Tata +  $\epsilon$ 

| Value | Mfr_Honda | Mfr_Tata |
|-------|-----------|----------|
| Ford  | 0         | 0        |
| Honda | 1         | 0        |
| Tata  | 0         | 1        |

For manufacturer = Ford,

Premium =  $\beta_0 + \beta_1$ Mileage

Actual intercept

For manufacturer = Honda,

Premium =  $(\beta_0 + \beta_2) + \beta_1$  Mileage Premium =  $(\beta_0 + \beta_3) + \beta_1$  Mileage

Change in intercept

Change in intercept

For manufacturer = Tata,

This file is meant for personal use by lokesh.jejappa@gmail.com only. Sharing or publishing the contents in part or full is liable for legal action.



# Interaction Effect

#### Interaction effect



#### Sentiment







Salt water











Sweet water











Lemon water















Lemonade







file is meant for personal use by lokesh.jejappa@gmail.com only. Sharing or publishing the contents in part or full is liable for legal action.





 An interaction effect occurs when the effect of one variable depends on another variable. This combined effect may or may not improve the performance of the model

Note: It does not imply that the predictor variables are collinear

Example: Salary of an employee increases with experience, but this may vary based whether the person has completed additional courses like MBA



#### Interaction Effect

- In context with our example, we shall consider the interaction effect of variables
   Engine Capacity and Mileage
- We obtained Int\_EC\_Mil by taking the product of Mileage and Engine\_Capacity
- Let us check whether the interaction term is adding value to our model

| Mileage | Engine_Capacity | Int_EC_Mil | Age | Premium (in dollars) |
|---------|-----------------|------------|-----|----------------------|
| 15      | 1.8             | 27         | 2   | 392.5                |
| 14      | 1.2             | 16.8       | 10  | 46.2                 |
| 17      | 1.2             | 20.4       | 8   | 15.7                 |
| 7       | 1.8             | 12.6       | 3   | 422.2                |
| 10      | 1.6             | 16         | 4   | 119.4                |
| 7       | 1.4             | 9.8        | 3   | 170.9                |
| 20      | 1.2             | 24         | 7   | 56.9                 |
| 21      | 1.6             | 33.6       | 6   | 77.5                 |
| 18      | 1.2             | 21.6       | 2   | 214                  |
| 11      | 1.6             | 17.6       | 5   | 65.3                 |
| 7.9     | 1.4             | 11.06      | 3   | 250                  |
| 8.6     | 1.6             | 13.76      | 3   | 220                  |
| 12.3    | 1.2             | 14.76      | 2   | 217.5                |
| 17.1    | 1.6             | 27.36      | 1   | 140.88               |
| 19.4    | 1.2             | 23.28      | 6   | 97.25                |

This file is meant for personal use by lokesh.jejappa@gmail.com only. Sharing or publishing the contents in part or full is liable for legal action.





#### Now our model is

Premium =  $\beta_0$  +  $\beta_1$  Mileage +  $\beta_2$  Engine\_Capacity +  $\beta_3$ Age +  $\beta_4$  Int EC Mil +  $\epsilon$ 

| Parameter                                                              | arameter Description |  |
|------------------------------------------------------------------------|----------------------|--|
|                                                                        | 2 000.1.p.1.0.1.     |  |
| $eta_0$ Premium value where the best fit line cuts the Y-axis (Premium |                      |  |
| β <sub>1</sub> Regression coefficient of the variable Mileage          |                      |  |
| β <sub>2</sub> Regression coefficient of the variable Engine_Capacity  |                      |  |
| β <sub>3</sub> Regression coefficient of the variable Age              |                      |  |
| β <sub>4</sub> Regression coefficient of the variable Int_EC_Mil       |                      |  |

| Mileage   | Engine_Capacity | Int_EC_Mil | Age | Premium (in dollars) |
|-----------|-----------------|------------|-----|----------------------|
| 15        | 1.8             | 27         | 2   | 392.5                |
| 14        | 1.2             | 16.8       | 10  | 46.2                 |
| 17        | 1.2             | 20.4       | 8   | 15.7                 |
| 7         | 1.8             | 12.6       | 3   | 422.2                |
| 10        | 1.6             | 16         | 4   | 119.4                |
| 7         | 1.4             | 9.8        | 3   | 170.9                |
| 20        | 1.2             | 24         | 7   | 56.9                 |
| 21        | 1.6             | 33.6       | 6   | 77.5                 |
| 18        | 1.2             | 21.6       | 2   | 214                  |
| 11        | 1.6             | 17.6       | 5   | 65.3                 |
| 7.9       | 1.4             | 11.06      | 3   | 250                  |
| 8.6       | 1.6             | 13.76      | 3   | 220                  |
| 12.3      | 1.2             | 14.76      | 2   | 217.5                |
| 17.1      | 1.6             | 27.36      | 1   | 140.88               |
| ail.com 6 | nlv. 1.2        | 23.28      | 6   | 97.25                |

This file is meant for personal use by lokesh.jejappa@gmail.cofe.only. 1.2 23.28 6 97.25



Premium (in dollars)

# Linear regression model (interaction effect)

Based on the data, the  $\beta$  parameters are:

$$\beta_0 = -502.011$$
,  $\beta_1 = 40.306$ ,  $\beta_2 = 568.723$ ,

$$\beta_3 = -25.781$$
 and  $\beta_4 = -30.547$ 

Thus the model is

$$Y = 502.011 + 40.306 x_{1} + 68.723 x_{2}$$
$$-25.781x_{3} - 30.547 x_{4}$$

That is,

| 392.5  | 2  | 27    | 1.8 | 15   |
|--------|----|-------|-----|------|
| 46.2   | 10 | 16.8  | 1.2 | 14   |
| 15.7   | 8  | 20.4  | 1.2 | 17   |
| 422.2  | 3  | 12.6  | 1.8 | 7    |
| 119.4  | 4  | 16    | 1.6 | 10   |
| 170.9  | 3  | 9.8   | 1.4 | 7    |
| 56.9   | 7  | 24    | 1.2 | 20   |
| 77.5   | 6  | 33.6  | 1.6 | 21   |
| 214    | 2  | 21.6  | 1.2 | 18   |
| 65.3   | 5  | 17.6  | 1.6 | 11   |
| 250    | 3  | 11.06 | 1.4 | 7.9  |
| 220    | 3  | 13.76 | 1.6 | 8.6  |
| 217.5  | 2  | 14.76 | 1.2 | 12.3 |
| 140.88 | 1  | 27.36 | 1.6 | 17.1 |
| 97.25  | 6  | 23.28 | 1.2 | 19.4 |

Engine Capacity Int EC Mil Age

Mileage



## Thank You

This file is meant for personal use by lokesh.jejappa@gmail.com only. Sharing or publishing the contents in part or full is liable for legal action.