Title

Basic Problem Possible

Solutions Project

Dimensional Analysis Collimation Turbulence Analysis

Code Instabilities

Run Parameters Example Data Analysis of Results

Protostellar Outflow-Driven Turbulence A Numerical Look

M. Gorelick C. Matzner

University of Toronto, Dept Astronomy/Astrophysics

AST425 Presentations, 2009

Outline

Michael Gorelick

Outline

Motivati

Basic Problem Possible Solutions Project

Theor

Dimensional Analysis Collimation Turbulence Analysis

Numerics

Code Instabilities

Run Parameters Example Data Analysis of

Results

Motivation

The Problem with Molecular Clouds Possible Solutions Project

2 Theory

Dimensional Analysis Collimation Turbulence Analysis

3 Numerics

Code Instabilities

4 Results

Run Parameters Example Data Analysis of Results

5 Conclusion

Numerics

Code Instabilities

Results

Run Parameters Example Data Analysis of Results

Conclusion

Problem With Molecular Clouds

Star Formation Rates

- Using classical theory, $SFR_{ff}=1.0$
 - We observe $SFR_{ff} pprox 10^{-1.7}$. [Krumholz and Tan, 2007]
 - Solar system needs a relatively sparse cloud for current stability.

Cloud Stability

- Should collapse within t_{ff}
- Clouds are very diffuse
 - Far more mass is lost than converted to stars

Title

Motivatio

Basic Problem

Possible Solutions Project

heory

Dimensional Analysis Collimation Turbulence Analysis

Numeric

Code Instabilities

Instabiliti

Run Parameters Example Data Analysis of

Conclusion

Problem With Molecular Clouds

Star Formation Rates

- Using classical theory, $SFR_{ff} = 1.0$
 - We observe $SFR_{ff} \approx 10^{-1.7}$. [Krumholz and Tan, 2007]
 - Solar system needs a relatively sparse cloud for current stability.

Cloud Stability

- Should collapse within t_{ff}
- Clouds are very diffuse
 - Far more mass is lost than converted to stars

Title

Motivation

Basic

Problem

Possible

Solutions

Project

Theor

Dimensional Analysis Collimation Turbulence Analysis

Numerics

Code Instabilities

Instabiliti

Run Parameters Example

Example Data Analysis of Results

Conclusio

Correlabi

Possible Solutions

Intrinsic Turbulence?

Decays quickly [Stone et al., 1998, Low, 1999]

Supernovae?

- Too infrequent
- Requires mature stars

HII Regions?

- Falls short for dense/compact clouds
- Requires O/B type stars

• Protostellar Outflows?

- Outflows seem to be wherever protostars are
- Happen often, early, and more energy than HII
- Good agreement to observation & past work [Nakamura and Li, 2007, McKee and Ostriker, 2007]

Title

Motivation

Basic

Problem

Possible

Solutions

Project

Theor

Dimensional Analysis Collimation Turbulence Analysis

Numerics

Code Instabilities

Instabiliti

Run Parameters Example

Example Data Analysis of Results

Conclusio

- Intrinsic Turbulence?
 - Decays quickly [Stone et al., 1998, Low, 1999]
- Supernovae?
 - Too infrequent
 - Requires mature stars
- HII Regions?
 - Falls short for dense/compact clouds
 - Requires O/B type stars
- Protostellar Outflows?
 - Outflows seem to be wherever protostars are
 - Happen often, early, and more energy than HII
 - Good agreement to observation & past work [Nakamura and Li, 2007, McKee and Ostriker, 2007]

Basic

Problem

Possible Solutions

Project

Dimensional Analysis Turbulence Analysis

Code Instabilities

Run Parameters

Example Data Analysis of Results

- Intrinsic Turbulence?
 - Decays quickly [Stone et al., 1998, Low, 1999]
- Supernovae?
 - Too infrequent.
- HII Regions?
- Protostellar Outflows?

Title

Motivation

Basic

Problem

Possible

Solutions

Project

Theor

Dimensional Analysis Collimation Turbulence Analysis

Numerics

Code Instabilities

Instabiliti

Run Parameters

Example Data Analysis of Results

Conclusi

- Intrinsic Turbulence?
 - Decays quickly [Stone et al., 1998, Low, 1999]
- Supernovae?
 - Too infrequent.
 - Requires mature stars
- HII Regions?
 - Falls short for dense/compact clouds.
 - Requires O/B type stars
- Protostellar Outflows?
 - Outflows seem to be wherever protostars are
 - Happen often, early, and more energy than HII
 - Good agreement to observation & past work [Nakamura and Li, 2007, McKee and Ostriker, 2007]

Basic

Problem Possible

Solutions

Project

Dimensional Turbulence Analysis

Code Instabilities

Run Parameters Example

Data Analysis of Results

- Intrinsic Turbulence?
 - Decays quickly [Stone et al., 1998, Low, 1999]
- Supernovae?
 - Too infrequent.
 - Requires mature stars
- HII Regions?
 - Falls short for dense/compact clouds.
- Protostellar Outflows?

Basic

Problem Possible

Solutions

Project

Dimensional Analysis Turbulence Analysis

Code Instabilities

Run Parameters Example Data

Analysis of Results

- Intrinsic Turbulence?
 - Decays quickly [Stone et al., 1998, Low, 1999]
- Supernovae?
 - Too infrequent.
 - Requires mature stars
- HII Regions?
 - Falls short for dense/compact clouds.
 - Requires O/B type stars.
- Protostellar Outflows?

Basic

Problem Possible

Solutions

Project

Dimensional Turbulence Analysis

Code Instabilities

Run Parameters

Example Data Analysis of Results

- Intrinsic Turbulence?
 - Decays quickly [Stone et al., 1998, Low, 1999]
- Supernovae?
 - Too infrequent.
 - Requires mature stars
- HII Regions?
 - Falls short for dense/compact clouds.
 - Requires O/B type stars.
- Protostellar Outflows?

Basic Problem

Possible Solutions

Project

Dimensional Analysis Collimation Turbulence Analysis

Code Instabilities

Run Parameters Example Data

Analysis of Results

- Intrinsic Turbulence?
 - Decays quickly [Stone et al., 1998, Low, 1999]
- Supernovae?
 - Too infrequent.
 - Requires mature stars
- HII Regions?
 - Falls short for dense/compact clouds.
 - Requires O/B type stars.
- Protostellar Outflows?
 - Outflows seem to be wherever protostars are
 - Happen often, early, and more energy than HII
 - Good agreement to observation & past work [Nakamura and Li, 2007, McKee and Ostriker, 2007]

Outline

Basic Problem Possible Solutions

Project

.

Dimensional Analysis Collimation Turbulence Analysis

Numerics

Code Instabilities

Results

Run Parameters Example Data Analysis of Results

Conclusion

Project Scope

- Implement model for supersonic protostellar-outflow driven turbulence by Matzner [2007]
- Verify some of the model's claims:
 - Collimation results in stronger turbulent line-widths
 - Characteristic lengths and times are increased in the collimated regime
 - Velocity dispersion displays features at the characteristic scales
 - Energy spectrum follows Burger turbulence [Kida, 1979]

Title

Motivation

Basic Problem Possible Solutions

Solution Project

Theory

Dimensional Analysis Collimation

Collimation Turbulence Analysis

Vumerics

Code

Instabilities

Run Parameters Example Data Analysis of

Conclusion

Defenses

Dimensional Analysis

[Matzner, 2007]

• Fundamental quantities: $\mathcal{I}\left[\frac{kg \cdot m}{s}\right]$, $\mathcal{S}\left[\frac{\#}{s \cdot m^3}\right]$, $\rho_0\left[\frac{kg}{m^3}\right]$.

$$\begin{split} \textit{m} &= \left(\frac{\rho_0^4 \mathcal{I}^2}{\mathcal{S}^2}\right)^{1/7}, \, \ell_{\textit{merge}} = \left(\frac{\mathcal{I}}{\rho_0 \mathcal{S}}\right)^{1/7}, \, t_{\textit{merge}} = \left(\frac{\rho_0^3}{\mathcal{I}^3 \mathcal{S}^4}\right)^{1/7} \\ \textit{v}_{\textit{merge}} &= \frac{\ell_{\textit{merge}}}{t_{\textit{merge}}} = \left(\frac{\mathcal{I}^4 \mathcal{S}^3}{\rho_0^4}\right)^{1/7} \end{split}$$

NGC1333

$$\mathcal{I} = 10^{39.6} g \ cm \ s^{-1}, \ \mathcal{S} = 10^{-67.2} cm^{-3} \ s^{-1}, \ \rho_0 = 10^{-19.6} g \ cm^{-3}$$

 $\Rightarrow \ell_{merge} = 0.38 pc, \ t = 0.34 Myr, \ m = 19 M_{\odot}, \ \ell/t = 1.1 km \ s^{-1}$

Results

Collimation

 Physical outflows are not spherical.

$$\hat{\mathcal{I}}(\phi) = \mathcal{I}P(\phi)
P(\phi) = \mathcal{X}(\theta_0) \cdot \frac{1}{1 + \theta_0^2 - \cos(\phi)^2}$$

[Matzner and McKee, 1999]

Turbulence Analysis

- Velocity Dispersion: $\sigma(\ell_{merge})^2 = \lambda^2 \frac{SL}{\rho_0} \ell_{merge}$.
 - λ = Coupling Coefficient
- Enhancement Factor: $\varepsilon = \left. \frac{\sigma_{\theta_0 \neq \infty}^2(\ell_{\textit{merge}})}{\sigma_{\theta=\infty}^2(\ell_{\textit{merge}})} \right|_{t \gg t}$
 - Ratio of effective pressures from collimated and un-collimated.
- Energy Spectrum: $E(k) = A \frac{SI}{cc} k^{-2}$

Note:

$$\frac{\mathcal{SI}}{\rho_0} \sim \frac{\# \cdot m}{s^2}$$

Numeric

Code Instabilities

matabine

Run Parameters Example Data Analysis of Results

Conclusion

The Code

- 2nd order rTVD (Relaxing Total Variation Diminishing) (based on Pen et al., 2003)
 - Solves evolution of conserved quantities
 - Pure Hydrodynamics
 - Strict Isothermal (No $\gamma=1+\epsilon$ tricks!)
 - Restrict motion to .95dx per dt
- The Grid
 - 400³ cells (Thanks to MPI/openMP)
 - Simulation units

•
$$dx = c_s = \rho_0 = 1$$

Periodic Boundry

Results

Run Parameters Example Data Analysis of Results

Conclusion

Fixing Instabilities

- Set the freezing speed to be constant throughout the grid
 - Limits the flux through cell boundaries [Jin and Xin, 1995]
- Injected mass along with momentum

•
$$P(|\phi|) \cdot \frac{3\mathcal{I}}{4\pi r_{ini}^3 v_{max}} \cdot dx$$

- Avoids unnaturally large velocities in low density regions
- Scale momentum/density by $\frac{M_{\rm tot}}{M_{\rm tot}+dM}$ to keep density constant

litie

Motivation

Basic Problem Possible Solutions Project

Theor

Dimensional Analysis Collimation Turbulence Analysis

Numerics

Code Instabilities

Instabilitie

Run Parameters

Example Data Analysis of Results

Conclus

Run Parameters

Run #	\mathcal{I}	S	θ_0	I_{merge}	V _{char}	t _{merge}	L _{box}
I	20000	$1.5625 \cdot 10^{-5}$	∞	8 <i>d</i> x	2.5 <i>c</i> ₅	$8\sqrt{\frac{c_s}{dx}}$	400 <i>d</i> x
Ш	20000	$1.5625 \cdot 10^{-5}$	0.5	8dx	2.5 <i>c₅</i>	$8\sqrt{\frac{c_s}{dx}}$	400 <i>d</i> x
III	20000	$1.5625 \cdot 10^{-5}$	0.05	8 <i>d</i> x	2.5 <i>cs</i>	$8\sqrt{\frac{c_s}{dx}}$	400 <i>d</i> x
IV	16000	$1.25 \cdot 10^{-5}$	∞	10 <i>dx</i>	2.0 <i>c</i> _s	$10\sqrt{\frac{c_s}{dx}}$	400 <i>d</i> x
V	16000	$1.25 \cdot 10^{-5}$	0.5	10 <i>dx</i>	2.0 <i>c</i> _s	$10\sqrt{\frac{c_s}{dx}}$	400 <i>d</i> x
VI	20000	$1.5625 \cdot 10^{-5}$	∞	8 <i>dx</i>	2.5 <i>c₅</i>	$8\sqrt{\frac{c_s}{dx}}$	200 <i>d</i> x

Chose parameters to vary: $\frac{\ell_{merge}}{L_{box}}$, $\frac{v_{char}}{\sigma_{turb}}$, $\frac{\ell_{merge}}{r_{inj}}$

Title

Outline

Motivatio

Basic Problem Possible Solutions

Project

I neory

Dimensional Analysis Collimation Turbulence Analysis

Numerics

Code Instabilities

mstabilit

Run

Parameters Example

Data
Analysis of

Results

Collimated Density

Title

Outline

Motivatio

Basic Problem Possible

Solutions Project

I heory

Dimensional Analysis Collimation Turbulence Analysis

Code

Instabilities

Instabiliti

Run

Parameters Example Data

Analysis of Results

Conclusion

Collimated Density

Title

Outille

Mativatio

Basic Problem Possible Solutions

Project

I heor

Dimensional Analysis Collimation Turbulence Analysis

lumerics

Code Instabilities

Instabiliti

Run

Parameters Example

Data Analysis of

Results

Conclusion

Collimated Density

Title

Outille

Basic Problem Possible Solutions Project

Theor

Dimensional Analysis Collimation Turbulence Analysis

Numerics

Code Instabilities

Instabiliti

Run Parameters Example Data

Data Analysis of Results

Conclusio

Velocity Density

Basic Problem Possible

Solutions

Project

Dimensional Analysis Collimation Turbulence Analysis

Code Instabilities

Run Parameters Example Data

Analysis of Results

Coupling Coefficient

Run	θ_0	t _{merge}	λ^2
I	∞	$8\sqrt{\frac{c_s}{dx}}$	0.49
II	0.5	$8\sqrt{\frac{c_s}{dx}}$	0.64
III	0.05	$8\sqrt{\frac{c_s}{dx}}$	0.84
IV	∞	$10\sqrt{\frac{c_s}{dx}}$	0.54
V	0.5	$10\sqrt{\frac{c_s}{dx}}$	0.81
VI	∞	$8\sqrt{\frac{c_s}{dx}}$	0.48

- Collimated runs injects more momenta into the medium
 - Coupling coefficient seems to follow:

•
$$\lambda_{col}^2 \approx \mathcal{F}(\mathcal{I}, \mathcal{S}, \rho_0) \cdot \ln\left(\frac{1-\theta_0}{\theta_0}\right) + \lambda_{sph}^2$$
 with $\mathcal{F}(\mathcal{I}, \mathcal{S}, \rho_0) = \begin{cases} 0.11; \ \textit{Runs I/II/III} \\ 0.25; \ \textit{Runs IV/V} \end{cases}$

Code Instabilities

Run **Parameters** Example Data

Analysis of Results

Enhancement Parameter

Run	θ_0	V _{merge}	ε
II	II 0.5 2.5 <i>c_s</i>		1.71
III	0.05	2.5 <i>c_s</i>	2.94
V	0.5	2.0 <i>c</i> _s	2.25

- As expected, $\varepsilon > 1$
- Enhancement clearly dependent on merging velocity and collimation

Basic Possible Solutions Project

10

102

101

100

10-1

10-2

 10^{-3}

 $log_{n}[k]$

Dimensional Analysis Turbulence Analysis

Code Instabilities

Run Parameters Example Data

Analysis of Results

Energy Spectrum

• $k > \ell_{merge}^{-1}$ shows the cascading of the momentum to lower scales

- Follows $E \sim k^{-\beta}$ with $\beta \sim 4$ instead of $\beta = 2$ for $k > \ell_{merge}^{-1}$
 - Also seen by others [Carroll et al., 2009]
 - Explainable by shock waves sweeping up small-scale eddies

 $k \leq \ell_{merge}^{-1}$ shows turbulence effecting global dynamics

 Expected since grid is saturated with outflows!

Numerics

Code Instabilities

Run
Parameters
Example
Data
Analysis of
Results

Conclusion

Conclusion

Current

- Most predictions from Matzner [2007] have been valid
- We have shown characteristics of supersonic outflow-driven turbulence
- Preliminary connection between spherical and collimated

Soon

Now that there are no more instabilities.....

- More runs to determine $\mathcal{F}(\mathcal{I}, \mathcal{S}, \rho_0)$ more accurately
- Better characterize the $\beta \sim$ 4 relation in energy spectrum
- Thorough analysis of possible numerical error

Protostellar Outflow-Driven Turbulence

Michael Gorelick

Basic Problem Possible Solutions

Project

Dimensional Analysis Turbulence Analysis

Code

Instabilities

Run Parameters Example Data Analysis of Results

References

References

- Jonathan J Carroll, Adam Frank, Eric G Blackman, Andrew J Cunningham, and Alice C Quillen. Outflow-driven turbulence in molecular clouds. The Astrophysical Journal, 695:1376, Apr 2009. doi: 10.1088/0004-637X/695/2/1376. URL http://adsabs.harvard.edu/cgi-bin/nph-data_ query?bibcode=2009ApJ...695.1376C&link_type=ABSTRACT.
- S Jin and Z Xin. The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Communications on Pure and Applied Mathematics. Jan 1995. URL http://www3.interscience.wiley.com/journal/113401027/abstract.
- S Kida, Asymptotic properties of burgers turbulence. Journal of Fluid Mechanics, 93:337, Jul 1979. doi: 10.1017/S0022112079001932. URL http://adsabs.harvard.edu/cgi-bin/ nph-data_query?bibcode=1979JFM....93..337K&link_type=ABSTRACT.
- Mark R Krumholz and Jonathan C Tan. Slow star formation in dense gas: Evidence and implications. The Astrophysical Journal, 654:304, Jan 2007. doi: 10.1086/509101. URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007ApJ...654..304K&link_type= ABSTRACT. (c) 2007: The American Astronomical Society.
- Mordecai-Mark Mac Low. The energy dissipation rate of supersonic, magnetohydrodynamic turbulence in molecular clouds. The Astrophysical Journal, 524:169. Oct 1999, doi: 10.1086/307784. URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1999ApJ. ..524..169M&link type=ABSTRACT.
- Christopher D Matzner. Protostellar outflow-driven turbulence. arXiv. astro-ph. Jan 2007. URL http://arxiv.org/abs/astro-ph/0701022v1. 15 pages, 3 figures, submitted to ApJ.
- hydromagnetic protostellar winds. arXiv. astro-ph. Sep 1999. URL
- Christopher D Matzner and Christopher F McKee. Bipolar molecular outflows driven by http://arxiv.org/abs/astro-ph/9909479v1. 4 pages, 1 figure, submitted to ApJL.
- Christopher F McKee and Eve C Ostriker. Theory of star formation. Annual Review of Astronomy & Astrophysics, 45:565, Sep 2007, doi: 10.1146/annurev.astro.45.051806.110602, URL http://adsabs.harvard.edu/cgi-bin/nph-data guery?bibcode=2007ARA%2526A..45..565M&link type=ABSTRACT.
- Fumitaka Nakamura and Zhi-Yun Li. Protostellar turbulence in cluster forming regions of molecular clouds. Triggered Star Formation in a Turbulent ISM, 237:306, Jan 2007, doi: 10.1017/S1743921307001640. URL http://adsabs.harvard.edu/cgi-bin/nph-data_query? bibcode=2007IAUS..237..306N&link_type=ABSTRACT.
- Ue-Li Pen, Phil Arras, and ShingKwong Wong. A free, fast, simple, and efficient total variation diminishing magnetohydrodynamic code. The Astrophysical Journal Supplement Series, 149: 447 Dec 2003 doi: 10.1086/378771 URL http://adsahs.harvard.edu/cgi-hin/nph-data