Definition

We define a **complex number** to be of the form a + bi where $i = \sqrt{-1}$.

We define the **magnitude** of z = a + bi as $|z| = \sqrt{a^2 + b^2}$.

We define $\Re(z) = a$ and $\Im(z) = b$ for z = a + bi. Note that $\Im(z)$ only considers the coefficient of the imaginary part!

We define the **complex conjugate** of z as \overline{z} such that $z\overline{z} = |z|^2$. This implies if z = a + bi then $\overline{z} = a - bi$.

We define the **polar form** of z = a + bi as $(|z|, \theta)$ where $z = |z|(\cos \theta + i \sin \theta)$.

We define the **argument** of $z = (r, \theta)$ as θ .

We define **radians** as a measure of an angle such that π radians is equivalent to 180° .

We define the **roots of unity** as the n numbers $\omega_1, \omega_2 \cdots \omega_{n-1}, 1$ such that $\omega^n = 1$. Additionally, $\omega_1 = (1, \frac{2\pi}{n}), \omega_2 = (1, 2\frac{2\pi}{n})$, and so on.

We define **hyperbolic** cosine as $\cosh x = \frac{e^x + e^{-x}}{2}$ and $\sinh x = \frac{e^x - e^{-x}}{2}$. Thus $\tanh = \frac{\sinh}{\cosh}$.

Formulas

For $z = (r, \theta)$ in polar form, $\Re(z) = r \cos \theta$ and $\Im(z) = r \sin \theta$.

The Triangle Inequality states that $|z| + |w| \ge |z + w|$, with equality if and only if their argument is the same.

For $z_1=(r_1,\theta_1), z_2=(r_2,\theta_2),$ we have $z_1z_2=(r_1r_2,\theta_1\theta_2).$ Magnitudes multiply and angles add.

De Moivre's Theorem states that $(r, \theta)^n = (r^n, n\theta)$. This is true for rational n.

Euler's Identity states $e^{ix} = \cos x + i \sin x$.

This implies that $\cos x = \frac{e^{ix} + e^{-ix}}{2}$ and $i \sin x = \frac{e^{ix} - e^{-ix}}{2}$.

We have $\cosh^2 x - \sinh^2 x = 1$, $\cosh 2x = \cosh^2 x + \sinh^2 x$, $\sinh 2x = 2 \sinh x \cosh x$.

Techniques

Coefficient matching is very important! If we are given a + bi = c + di, we are given two pieces of information: a = c and b = d.

The roots of unity filter just relies on the fact that $\omega + \omega^2 + ... + \omega^{n-1} + 1 = 0$ for the *nth* roots of unity. This can be used to find roots of polynomials or factor polynomials, and to find certain combinatorial sums.