Switching a livello data link

Liceo G.B. Brocchi - Bassano del Grappa (VI) Liceo Scientifico - opzione scienze applicate Giovanni Mazzocchin

Repeater, hub, switch, router

network layer	router
data link layer	switch, bridge
physical layer	repeater, hub

- **Repeater**: dispositivo analogico che si occupa di amplificare i segnali. Non ha alcuna comprensione della struttura dei frame
- **Hub**: ha un certo numero di linee di input. Quando riceve un frame su una linea, lo inoltra su tutte le altre linee. Non ha alcuna comprensione della struttura dei frame

Switch (aka bridge)

- Gli switch operano a livello data link, quindi esaminano gli indirizzi MAC contenuti nei frame
- Sono dispositivi con diverse porte di input e diverse porte di output
- Quando uno switch riceve un frame su una porta di input, deve stabilire su quale porta di output inoltrarlo
- Uno switch, per effettuare le proprie operazioni, si basa sugli indirizzi MAC contenuti nei frame
- Ogni switch di una LAN deve costruire ed aggiornare una forwarding table

Switch – forwarding table

Switch – forwarding table

switch 1 table		
dest	port	
Α	0	
В	2	
C	2	
D	3	
Е	1	
F	2	
G	3	
Н	2	

ogni switch costruisce e aggiorna una tabella del genere

ma come fa a costruirla?

Backward learning algorithm

switch 1 table dest port

inizialmente, lo switch non sa niente (la tabella è vuota), per cui applica il **flooding**: quando riceve un frame, lo inoltra su tutte le porte, eccetto quella su cui il frame è arrivato

lo switch analizza i source address contenuti nei frame per determinare da quale porta è raggiungibile un determinato host

Backward learning algorithm

switch	1 table
dest	port
F	2

se **switch** 1 riceve un frame proveniente da **host F** sulla **porta 2**, i frame successivi indirizzati a host F che passeranno per switch 1 verranno inoltrati sulla porta 2

Backward learning algorithm

switch 1 table	
dest	port
F	2
G	3

se **switch** 1 riceve un frame proveniente da **host G** sulla **porta** 3, i frame successivi indirizzati a host G che passeranno per switch 1 verranno inoltrati sulla porta 3

e così via...

un solo link tra le due LAN, e se si guasta?

2 link, ma c'è un problema: ricordate che inizialmente le tabelle sono vuote, quindi gli switch applicano il flooding

A trasmette il frame F_0 con destinatario D

S1 lo riceve e lo inoltra sulle porte 2 e 3 (anche sulla 1)

S2 li riceve e li inoltra sulle porte 2 e 3 (anche sulle porte 0 e 1)

S1 li riceve e li inoltra sulle porte 2 e 3-> loop infinito

Spanning tree

gli switch evitano i loop costruendo uno **spanning tree** della topologia della rete

uno **spanning tree** di questo grafo sarà un albero contenente gli stessi nodi, ma senza cicli

Spanning tree

esempio:

gli archi evidenziati individuano uno spaning tree del grafo