QUESTIONS FROM COMPETITIVE EXAMS

3.1 Introduction

(MHT-CET 2001)

	(MHI-C.					
1.	An ideal gas is that which can	c) not be liquefied d) not be solidifier				
	a) be solidified b) be liquefied (MHT-CI					
	(MHT-CI	of substance from solid to liquid state at				
2.	Energy supplied to convert unit mass	y Suzzzz				
	melting point is called	b) evaporation				
	a) latent heat of fusion	d) latent heat of fission				
	c) solidification (MHT-Cl					
		21 2000)				
3.	Internal latent heat of ice is	b) less than latent heat				
	a) greater than latent heat	5)				
	c) equal to latent heat	d) equal to half that of latent heat				
	(MHT-CI					
4.	If the pressure of an ideal gas decreases	by 10% isothermally, then its volume will				
	a) decrease by 9%	b) increase by 10%				
	c) increase by 11.6%	d) increase by 9%				
5.	For an ideal gas, Cv/Cp is					
	a) < 1 b) > 1	c) = 1 d) ≥ 1				
6.	Internal latent heat is defined as					
	a) amount of heat needed to do work against external pressure					
	b) amount of heat needed to do to work against intermolecular force					
	c) amount of heat needed to increase the K.E. of the molecules					
	d) heat needed to change the state of a s					
	(MHT-CI	ET 2011)				
7.	When 1gm of water at 100°C is completely converted to steam at 100°C, it occup					
	L = 540 cal/gm and $J = 4.2 J/cal$	rgy of the molecules is (Atm. press. = 10^{5}				
	a) 2103 J b) 2310 J	*				
	,,	c) 210 J d) 375 J				
8.	(MH-CE	T 2015)				
	In the expression for Boyle's law, the pro	oduct 'PV' has dimensions of				
	7	c) energy n amentum				
9.	An ideal gas occupies a volume 'V'	ET 2020)				
	An ideal gas occupies a volume 'V' at a pressure 'P' and absolute temperature gas is given by expression An ideal gas occupies a volume 'V' at a pressure 'P' and absolute temperature gas is given by expression					
	gas is given by expression	the boltzmann's constant, then the dense				

(MHT-CET 2022)

- By what percentage should the pressure of a given mass of a gas be increased so as to 10. decrease its volume by 10% at a constant temperature?
 - a) 10.1%
- b) 11.1%
- c) 8.1%
- d) 9.1%

3.2 Behaviour of Gas

(MHT-CET 2002)

- PV/3 = RT, V represents volume of
 - a) any amount of gas

b) 2 moles of gas

c) 3 moles of gas

d) 4 moles of gas

3.3 Ideal and Real gases

(MHT-CET 2003)

- A gas which obeys all the assumptions of kinetic theory of gases at all conditions of 12. temperatures and pressures is called
 - a) ideal or perfect gas

b) real gas

c) diatomic gas

d) polyatomic gas

3.4 Mean Free Path

(MHT-CET 2005)

- 13. The mean free path is inversely proportional to
 - a) molecular diameter

- b) square of the molecular diameter
- c) square root of the molecular diameter d) fourth power of the molecular diameter (MHT-CET 2007)
- 14. The expression for mean free path (λ) of molecules is given by [where n is no of molecules per unit volume and d molecular diameter of the gas]
 - a) $\frac{\sqrt{2}}{\pi n d^2}$
- b) $\frac{1}{\pi \operatorname{nd}^2}$
- c) $\frac{1}{\sqrt{2}\pi \, \text{nd}^2}$ d) $\frac{1}{\sqrt{2}\pi \, \text{nd}}$

(MHT-CET 2009)

- 15. Mean free path of a gas molecule in a container depends upon
 - a) temperature of the gas molecule only
 - b) diameter of the gas molecule only
 - c) density of the gas molecule only
 - d) temperature, diameter and density of the gas molecule

3.5 Pressure of Ideal Gas

3.6 Root Mean Square (rms) Speed

3.7 Interpretation of Temperature in Kinetic Theory

(MHT-CET 2001)

- 16. Calculate the RMS velocity of molecules of a gas of which the ratio of two specific heats is 1.42 and velocity of sound in the gas is 500 m/s
 - a) 727 m/s
- b) 527 m/s
- c) 927 m/s
- d) 750 m/s

netic theory of gas	erature does the average f an electron accelerated ave their usual mossi-	- PHY-	I - 287		MHT-CET		
equal to K.E. of	f an electron accel	transla	tional K E	01			
All symbols ha	f an electron accelerated ave their usual meaning	from re	st through	or a molec	ule in a gas become		
2eVN	meaning	18.	0 1	potential d	ifference of v voits:		
a) 3R	b) $\frac{3R}{2eVN}$	77047	NeV		251.11		
SIC	ZeVN	c)	R	d)	2NeV		
a avart nr	(NATE OF	APPR 2012 1111					
Gases exert pro	essure on the walls of the volume	he conta	iner becau	oo the			
		b)	obey Boyle	se the gas	molecules		
c) possess mo	mentum						
A gas is compr	ressed isothermally. The	e r.m.s	collide with	n one anot	her		
		h)	doorner	its molecu	les		
c) first increas	ses and then decreases		decreases				
K.		CET 201	remains the	e same			
Assuming the	expression for the pre	201 201	0)		terans seems sometimes		
container, it ca	Assuming the expression for the pressure exerted by the gas on the walls of the container, it can be shown that pressure is						
a) $\left\lfloor \frac{1}{3} \right\rfloor$ kinet	ic energy per unit volur	ne of a	gas				
b) $\left[\frac{2}{3}\right]^{rd}$ kinet	ic energy per unit volur	ne of a	gas				
c) $\left[\frac{3}{4}\right]^{\text{th}}$ kinet	ic energy per unit volun	me of a g	gas	i 180			
d) $\frac{3}{2}$ × kinetic	energy per unit volume	e of a ga	S	5			
	(MHT-	CET 202	20)				
The r.m.s. velo	city of hydrogen molec	ules at	temperatur	e T is seve e T is	en times the r.m.s.		
(Molecular wei	velocity of nitrogen molecules at 300 K. This temperature T is (Molecular weights of hydrogen and nitrogen are 2 and 28 respectively)						
a) 1350 K	b) 1700 K	c)	1050 K	d)	2100 K		
And the second of the second	s of Freedom and	Law c	of Equipa	artition o	of Energy		
	(MHT-	CET 200	01)				
5 gm of air is h	eated from 273 K to 275	K. The	change in i	nternal en	ergy of air will be		
(C = 172 col/kg	g K and $J = 4.2 \text{ J/cal}$						
	k and) = 1.2 // /	c)	8.16 J	d) :	3.5 J		
a) 7.22 J	b) 5.22 J (МНТ-						
What is to			150.				
What is true fo	r 3 moles of a gas?			1023 ×			
a) $3(C_p - C_v) =$	R b) $\frac{(C_p - C_v)}{3} = R$	c)	$C_p - C_v = R$	d) ($C_p - 3 C_v = R$		
15	(MHT-	CET 200	14)				

(MHT-CET 2004)

A gas expands adiabatically at constant pressure such that its temperature T $\propto 1/\sqrt{V}$. 36.

The value of C_p/C_v of the gas is

a) 1.30

b) 1.50

c) 1.67

d) 2.00

(MH-CET 2016)

- For a gas $\frac{R}{C_v}$ = 0.4, where 'R' is the universal gas constant and 'C_v' is molar specific heat at constant volume. The gas is made up of molecules which are

b) monoatomic

c) non-rigid diatomic

d) polyatomic

(MH-CET 2017)

- For a rigid diatomic molecule, universal gas constant $R = nC_p$ where C_p is the molar specific heat at constant pressure and 'n' is a number. Hence n is equal to
- b) 0.4

- c) 0.2857 .
- d) 0.3557

(MH-CET 2018)

- The molar specific heats of an ideal gas at constant pressure and constant volume 47. are C_p and C_v respectively. If R is the universal gas constant and the ratio of C_p to C_v is γ , then $C_v =$
 - a) $\frac{1-\gamma}{1+\gamma}$
- b) $\frac{1+\gamma}{1-\gamma}$ c) $\frac{\gamma-1}{R}$ d) $\frac{R}{\gamma-1}$

(MHT-CET 2019)

- If ${}'C_p{}'$ and ${}'C_v{}'$ are molar specific heats of an ideal gas at constant pressure and volume 48. respectively and if γ' is ratio of two specific heats and 'R' is universal gas constant, then 'Cp' is equal to
 - a) $\frac{R\gamma}{\gamma-1}$
- b) $\frac{1+\gamma}{1-\gamma}$
- c) γ R
- d) $\frac{R}{v-1}$

(MHT-CET 2021)

- The molar specific heat at constant pressure of an ideal gas is $\left(\frac{7}{2}\right)$ R. The ratio of 49. specific heat at constant pressure to that at constant volume of the gas is

- b) $\frac{6}{5}$ c) $\frac{7}{5}$ d) $\frac{5}{7}$

(MHT-CET 2022)

- 50. If R is universal gas constant then the amount of heat needed to raise the temperature of 2 moles of an ideal monoatomic gas from 273 K to 373 K when no work is done is
 - a) 500 R
- b) 300 R
- c) 150 R
- d) 100 R

3.10 Absorption, Reflection and Transmission of Heat Radiation

(MHT-CET 2003)

- If a = 0.72, r = 0.24, then value of t is
 - a) 0.02
- b) 0.04
- c) 0.4
- d) 0.2

(MHT-CET 2005)

- 52. Coefficient of transmission and coefficient of reflection for a given body are 0.22 and 0.74 respectively. Then, at a given temperature, the coefficient of emission for the body IS
 - a) 0.4
- b) 0.04
- c) 0.96
- d) 0.22

3.13 Kirchhoff's law of heat radiation 3.14 Spectrum of a black body rac

1	ody radiation interme of ward and						
	(MHT CETTS						
	The wavelength of maximum open						
	The wavelength of maximum energy released during an atomic explosion we awain's constant = 2.93×10^{-10} m. The maximum temperature attained must be						
	2.93×10^{-10} m. The maximum energy released during an atomic explosion w (Wein's constant = 2.93×10^{-3} mK)						
	(Well's constant 2.55 × 10 ° mK)						
	a) $5.86 \times 10^7 \text{ K}$ b) 10^{-13} K c) 10^{-7} K						
	(MHT-CET 2005) d) 10 ⁷ K						
	A body cools from 100°C to 70°C in 8 minutes 16.1						
	A body cools from 100°C to 70°C in 8 minutes. If the room temperature is 15°C as from 70°C to 40°C is						
	from 70°C to 40°C is						
	a) 14 min b) 10 min c) 8 min d) 5 min						
	(MHT CET 2000) d) 5 min						
	SI unit of Wein's constant is						
	a) m K b) Cal/m^2 c) J/m^2 d) K/m						
	(MH-CET 201C)						
	A black rectangular surface of area 'A' emits energy 'E' per second at 27°C. If length a						
	1 rd						
	breadth are reduced to - of initial values and to						
	breadth are reduced to $\frac{1}{3}^{rd}$ of initial values and temperature is raised to 327°C, the second at 27°C. If length 327°C, the second at 27°C is length 32°C, the second at 27°C.						
	energy emitted per second becomes						
	4F 7F						
	a) $\frac{4E}{9}$ b) $\frac{7E}{9}$ c) $\frac{10E}{9}$ d) $\frac{16E}{9}$						
	, , , , , , , , , , , , , , , , , , , ,						
	(MHT-CET 2019)						
67. The original temperature of a black body is 727°C. The temperature to which							
	body must be raised so as to double the total radiant energy is						
	a) 2000°C b) 1454°C c) 1190°C d) 917°C						
	(MHT-CET 2020)						
	Three black discs 'x', 'y', 'z' have radii 1 m, 2 m and 3 m respectively. The waveleng						
	corresponding to maximum intensity are 200, 300 and 400 nm respective						
	The relation between emissive powers $'E_x'$, $'E_y'$ and $'E_z'$ is						
	a) $E_x > E_y > E_z$ b) $E_x < E_y < E_z$ c) $E_x = E_y = E_z$ d) $E_x < E_y > E_z$						
	(MHT-CET 2021)						
	The energy spectrum of a black body exhibits a maximum around a wavelength						
	The temperature of the black body is now changed such that the energy is maxim						
	temperature of the black body is now changed such that the chergy is maxim						
	around a wavelength $\frac{3\lambda}{4}$. The power radiated by the black body will now increase						
	4. The power radiated by the black body will now increase						
	a factor						
	a) $\frac{5}{3}$ b) $\frac{256}{81}$ c) $\frac{128}{27}$ d) $\frac{86}{9}$						
	3 81 27						
	(MHT-CET 2022)						
	The radiation energy density per unit wavelength at temperature T is maximum						
	a wavelength do. At temperature 2T, it will have a maximum at a wavelength						

c) $\frac{\lambda_0}{4}$

d) $4\lambda_0$

b) $\frac{\lambda_0}{\lambda_0}$

a) $2\lambda_0$