

Dive into Deep Learning

A study group by dair.ai

Hello! 👋

- Hi, I am Elvis
- Educator
- Research Scientist
- Founded dair.ai
- Find me <u>@omarsar0</u>

dair.ai

@dair_ai

Slack group

<u>GitHub</u>

Agenda

- About the study group
- Introduction to Deep Learning
- Q&A

About "Dive into Deep Learning" study group

- What it is?
 - A study group to encourage **open discussion** and **participation**
- Who is it for?
 - Anyone interested to learn about machine learning and deep learning principles
- What you will get out of it?
 - Learn the deep learning principles and get hands-on experience

Things to know

- We will cover the <u>d2l.ai</u> online book.
- The online book has over 17 chapters
 - ~17 sessions done biweekly?
- Live discussions, code walkthroughs, overviews
- Certificate of Completion
- More info in the <u>GitHub repo</u>

Prerequisites

- Basics in:
 - Linear Algebra and Calculus
 - Probability and Statistics
 - All of Statistics
 - Python Programming
 - Learn Python
 - Codecademy
 - Data Mining and Text Mining

GitHub and Google Colab

- Setup a GitHub account
- Create a <u>Google Colab Account</u> (access to a free GPU)
- Submit code via Colab or GitHub notebook

Other important information

- Sessions are being recorded
- Use the official <u>discussion forum</u> for other questions
- Please take a look at assignment 1 <u>here</u> (due 1 week from today)
- Certificate of Completion
 - Complete at least 80% of the exercises/assignments
- Code of conduct

Content Structure

Introduction to Deep Learning

Deep Learning

- Neural networks were considered outmoded tools
- Nowadays deep learning is driving rapid progress

Reinforcement Learning

Natural Language Processing

Computer Vision

Statistical Modeling

Automatic Speech Recognition

Recent Advancements using Deep Learning

- Self-driving cars
- Draft email assistant
- Agents that play Go (beat world champion)
- Smart reply (e.g., automate customer service)
- Movie making
- Diagnosing diseases
- Physical simulators (Astrophysics)
- DNA sequencing (Biology)

dair.ai Introduction to Deep Learning (2020)

Why Machine Learning?

- You start developing with first principles
- Design business logic for your application
 - Spells out which actions to take for every possible scenario
 - Before seeing a user transaction
- If you can program solutions that work 100% of the time
 - You don't need machine learning
- When should we use machine learning?

When do you need Machine Learning?

- When solving a problem requires the need to adapt the program
- ML techniques aim to *learn from experience* and improve performance on a

task using observational data

66

Machine learning is the study of powerful techniques that can learn from experience

A Motivating Example

- A program that responds to the word "Alexa" or "Siri" or "Okay, Google"
- Imagine your job was to write a program to map the raw audio snippets
 - amplitude of sounds waves to predictions {yes, no}
- Can you build this from first principle?
- What makes this a hard problem?
- Would ML help?

Other Motivating Examples

- A detector that emits large value (-/+) if cat or dog, respectively
- Real-time transcriber
- A translator of languages

Training Process

From shallow models to deep models

- In the bygone days, we *manually-engineered features*
- With deep learning features are learned automatically
- Deep learning provides a unified set of tools for tackling diverse problems that in the past required domain-specific preprocessing

Key Components

Regardless of the ML problem we have the following:

Data

Data is a collection of examples numerically represented as features

"The children are very excited!"

Challenges with Data

- Fixed length is a convenient property of data but it's not always present
- Data mined from the internet varies in length and needs standardization
 - E.g., Images need to be cropped to standard sizes
- Text data is typically of varied length (e.g., Amazon reviews)
- Deep learning models handle varying-length data better
- With more data we can theoretically train more powerful models
- Groups of people can easily be *unrepresented* with data
- Data can also **reflect societal prejudices** (e.g., automated screening resumes)

Models

- Machine learning models are statistical models that can be estimated from data
- Deep learning models apply many transformations to the data through deep layers

Objective functions

- Objective functions measure how good or bad the model is at the task
 - Typically lower is better
 - It is sometime referred to as a *loss function* or *cost function*
- Loss function defined w.r.t to the model's parameters
 - The aim is to find the best parameters to *minimize the loss* given training data
- Training error vs. test error
 - Check for generalization and overfitting

Optimization algorithms

- The algorithm used to search for the best possible parameters that minimize the loss function
- In deep learning these algorithms are typically based on gradient descent
 - Batch gradient descent, SGD, mini-batch

Sebastian Ruder <u>An overview of gradient</u> <u>descent optimization algorithms</u> (2016)

Momentum

Adagrad

Adam

AMSGrad

Adam

Kinds of ML

Supervised ML

 Regression | Classification | Tagging | Search and ranking | Recommender systems | Sequence learning

Unsupervised ML

 Clustering | PCA | Representation learning | Probabilistic graphical models | GANs

Interacting with Environment

- From predictive models to intelligent agent taking actions in environment
- Reinforcement learning (generalization of previous)

Roots

- Predictive capabilities has been desired for centuries
 - Bernoulli/Gaussian distribution used in *natural sciences*
- **Estimation** used in the middle ages for obtaining average foot length
- With more data availability, statistics took off
 - Linear Discriminant Analysis (dimensionality reduction)
- Theory of Computation and Information Theory both influenced ML
- Neuroscience and Psychology also influenced ML development

Deep learning involves alternating linear and non-linear transformations combined with backpropagation for adjusting parameters on the entire network at once

Road to Deep Learning

- OF
- mxnet

- Big data and cheaper computation
- Memory efficiency via nonlinearities (squashing)
- Some key ideas:
 - Dropout | Attention mechanism | Memory networks | GANs | distributed
 training | Simulation in RL through parallelized computation
- Let's not forget the importance of deep learning frameworks
 - Caffe | Torch | Theano | TensorFlow | Apache MxNet | PyTorch | Jax | ...

Success stories

- Intelligent digital assistants
- Object recognition
- Intelligent game-playing agents
- Self-driving cars
- Robotics, logistics, computational biology, particle physics, astronomy,...
- ML is becoming a ubiquitous tool for engineers and scientists
- Usability of Al systems in the real world becomes important
- Beginning to discuss/address fairness, racial, gender, age bias

Agent playing Breakout

What's next?

- Session 2: Preliminaries
 - Probability, random variables, Bayes' theorem, expectation and variance
 - I will provide extra readings and additional exercises to practise
 - Presentation + Code walkthrough
- I will announce next date/time on our GitHub repo and our Slack group

A&Q