Recall: The inverse of f is the reflection of f in the line y = x. Now consider the function $y = \sin x$. What would the inverse,

Definitions of Inverse Trigonometric Functions:

- 1. $y = \sin^{-1} x$ or $y = \arcsin x$ if and only if $\sin y = x$.
 - a. Domain: $-1 \le x \le 1$
 - b. Range: $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
- 2. $y = \cos^{-1} x$ or $y = \arccos x$ if and only if $\cos y = x$.
 - a. Domain: $-1 \le x \le 1$
 - b. Range: $0 \le y \le \pi$
- 3. $y = \tan^{-1} x$ or $y = \arctan x$ if and only if $\tan y = x$.
 - a. Domain: All real numbers or $-\infty < x < \infty$
 - b. Range: $-\frac{\pi}{2} < y < \frac{\pi}{2}$
- 4. $y = \cot^{-1} x$ or $y = arc \cot x$ if and only if $\cot y = x$.
 - a. Domain: All real numbers or $-\infty < x < \infty$
 - b. Range: $0 < y < \pi$
- 5. $y = \csc^{-1} x$ or $y = arc \csc x$ if and only if $\csc y = x$.
 - a. Domain: $x \le -1$ or $x \ge 1$
 - b. Range: $-\frac{\pi}{2} \le y < 0$ or $0 < y \le \frac{\pi}{2}$
- 6. $y = \sec^{-1} x$ or $y = arc \sec x$ if and only if $\sec y = x$.
 - a. Domain: $x \le -1$ or $x \ge 1$
 - b. Range: $0 \le y < \frac{\pi}{2}$ or $\frac{\pi}{2} < y \le \pi$

Inverse Properties:

1. If
$$-1 \le x \le 1$$
 and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$, then

a.
$$\sin(\arcsin x) = x$$

b.
$$\arcsin(\sin y) = y$$

2. If
$$-1 \le x \le 1$$
 and $0 \le y \le \pi$, then

a.
$$\cos(\arccos x) = x$$

b.
$$arccos(cos y) = y$$

3. If
$$-\infty < x < \infty$$
 and $-\frac{\pi}{2} < y < \frac{\pi}{2}$, then

a.
$$tan(arctan x) = x$$

b.
$$\arctan(\tan y) = y$$

4. If
$$-\infty < x < \infty$$
 and $0 < y < \pi$, then

a.
$$\cot(arc\cot x) = x$$

b.
$$arc \cot(\cot y) = y$$

5. If
$$x \le -1$$
 or $x \ge 1$ and $-\frac{\pi}{2} \le y < 0$ or $0 < y \le \frac{\pi}{2}$, then

a.
$$\csc(arc\csc x) = x$$

b.
$$arc \csc(\csc y) = y$$

6. If
$$x \le -1$$
 or $x \ge 1$ and $0 \le y < \frac{\pi}{2}$ or $\frac{\pi}{2} < y \le \pi$, then

a.
$$\sec(arc\sec x) = x$$

b.
$$arc \sec(\sec y) = y$$

Ex: Find the exact value without a calculator: $arc \cot(-\sqrt{3})$

Ex: Write the expression in algebraic form: sec(arctan(4x))

We have seen in an earlier section that the derivative of $f(x) = \ln x$ is $f'(x) = \frac{1}{x}$, that is, the derivative of a transcendental function turns out to be an algebraic function. You will now see that the derivatives of the inverse trigonometric functions also are algebraic functions.

Ex: Find the exact value without a calculator:

$$arc \cot(-\sqrt{3}) = y = \frac{5\pi}{6}$$

$$D:(-\infty,\infty)$$
 $R:(0,\pi)$

Ex: Write the expression in algebraic form: $\sec(\arctan(4x)) = \sec(y) = (16x^2 + 1)$

arctan (4x) = y

Derivatives of Inverse Trigonometric Functions: Let *u* be a differentiable function of x.

1.
$$\frac{d}{dx}[\arcsin u] = \frac{u'}{\sqrt{1 - u^2}}$$

1.
$$\frac{d}{dx}[\arcsin u] = \frac{u'}{\sqrt{1 - u^2}}$$
 2.
$$\frac{d}{dx}[\arccos u] = -\frac{u'}{\sqrt{1 - u^2}}$$

3.
$$\frac{d}{dx} \left[\arctan u \right] = \frac{u'}{1 + u^2}$$

3.
$$\frac{d}{dx}\left[\arctan u\right] = \frac{u'}{1+u^2}$$
 4.
$$\frac{d}{dx}\left[\arctan u\right] = -\frac{u'}{1+u^2}$$

5.
$$\frac{d}{dx} \left[arc \sec u \right] = \frac{u'}{|u|\sqrt{u^2 - 1}}$$

5.
$$\frac{d}{dx}[arc \sec u] = \frac{u'}{|u|\sqrt{u^2 - 1}}$$
 6. $\frac{d}{dx}[arc \csc u] = -\frac{u'}{|u|\sqrt{u^2 - 1}}$

Notice that the derivatives of arcos u, arccot u, and arccsc u are the negatives of the derivatives of $\arcsin u$, $\arctan u$, and $\arcsec u$, respectively.

For a list of all of the basic differentiation rules, go to page 371.

Ex: Find the derivative of the function: $y = 2x \arccos x - 2\sqrt{1 - x^2}$

Ex: Find an equation of the tangent line to the graph of $y = \arctan \frac{x}{2}$ at the point $\left(2, \frac{\pi}{4}\right)$.

Derivatives of Inverse Trigonometric Functions: Let u be a differentiable function of x.

$$\frac{d}{dx}\left[\arcsin u\right] = \frac{u'}{\sqrt{1 - u^2}} \qquad \frac{d}{dx}\left[\arccos u\right] = -\frac{u'}{\sqrt{1 - u^2}}$$

$$\frac{d}{dx}\left[\arctan u\right] = \frac{u'}{1 + u^2} \qquad \frac{d}{dx}\left[\arctan u\right] = -\frac{u'}{1 + u^2}$$
3.
$$\frac{d}{dx}\left[\arctan u\right] = \frac{u'}{1 + u^2} \qquad \frac{d}{dx}\left[\arctan u\right] = -\frac{u'}{1 + u^2}$$

$$\frac{d}{dx} \left[\operatorname{arc} \sec u \right] = \frac{u'}{|u|\sqrt{u^2 - 1}} \qquad \frac{d}{dx} \left[\operatorname{arc} \csc u \right] = -\frac{u'}{|u|\sqrt{u^2 - 1}}$$

$$g'(x) = \frac{1}{f'(g(x))}$$
derivative of inverse function derivative of evaluation derivative inverse
$$f(x) = \sin x \qquad f'(x) = \cos x$$

$$g(x) = \sin^{-1} x$$

$$\frac{d}{dx} \left[\sin^{-1} x \right] = \frac{1}{\cos \left[\sin^{-1} x \right]} = \frac{1}{\sqrt{1-x^2}}$$

$$\cos(\sin^{-1}x) = \cos y = \sqrt{1-x^2}$$

$$y = \sin^{-1}x$$

$$\sin y = x$$

$$\sqrt{1-x^2}$$

Ex: Find the derivative of the function:

$$y = 2x \arccos x - 2\sqrt{1 - x^2}$$

$$y = 2x \cdot \arccos x - 2\left(1 - x^2\right)^{1/2}$$

$$y' = 2 \cdot \arctan \cos x + 2x \cdot - \frac{1}{\sqrt{1 - x^2}} - \frac{1}{\sqrt{1 - x^2}} \left(1 - x^2\right)^{1/2} \left(-2x\right)$$

$$y' = 2 \cdot \arctan \cos x - \frac{2x}{\sqrt{1 - x^2}} + \frac{2x}{\sqrt{1 - x^2}}$$

$$y' = 2 \cdot \arctan \cos x$$

Ex: Find an equation of the tangent line to the graph of

$$y = \arctan \frac{x}{2} \text{ at the point} \left(2, \frac{\pi}{4}\right).$$

$$m = y' = \frac{1}{1 + \left(\frac{x}{4}\right)^2} \cdot \frac{1}{2} = \frac{1}{2\left(1 + \frac{x^2}{4}\right)}.$$

$$Q = x = 2 \quad m = \frac{1}{4}$$

$$y - \frac{\pi}{4} = \frac{1}{4}(x - 2)$$

Ex: Find any relative extrema of the function $h(x) = \arcsin x - 2\arctan x$.

Ex: Use implicit differentiation to find an equation of the tangent line to the graph of the equation $\arcsin x + \arcsin y = \frac{\pi}{2}$ at the point $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.

Ex: Find any relative extrema of the function

$$h(x) = \arcsin x - 2\arctan x$$

$$h_1(x) = \frac{1}{\sqrt{1-x_2}} - \frac{1}{1+x_2}$$

$$0 = \frac{1}{\sqrt{1-x_2}} - \frac{1}{1+x_2}$$

$$\frac{1+x_{2}}{5} \times \sqrt{\frac{1-x_{3}}{1}}$$

$$\left(5\sqrt{1-x_{9}}\right)_{5}=\left(1+x_{5}\right)_{5}$$

$$A - Ax_3 = 1 + 5x_3 + x_4$$

 $A(1-x_3) = 1 + 5x_3 + x_4$

$$0 = x^4 + 6x^2 - 3$$

$$\chi^2 = \frac{-6 \pm \sqrt{6^2 - 4(1)(-3)}}{2(1)}$$

$$(-1,-0.681)$$
 $(-0.681,0.681)$ $(0.681,1)$
 $\times = 0 \rightarrow < 0$ $\times = 0.7 \rightarrow > 0$
 $(-1,-0.681)$ $(-0.681,0.681)$ $(-0.681,1)$

Relative Max: (-0.681, 0.447)

Relative Min: (0.681, -0.447)

Ex: Use implicit differentiation to find an equation of the tangent

$$\arcsin x + \arcsin y = \frac{\pi}{2}$$
 line to the graph of the equation

$$\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$$

$$\frac{d}{dx} \left[\operatorname{arcsin} x + \operatorname{arcsin} y \right] = \frac{d}{dx} \left[\frac{\pi}{2} \right]$$

$$\frac{1}{\sqrt{1-x^2}} + \frac{1}{\sqrt{1-y^2}} \frac{dy}{dx} = 0$$

$$\frac{1}{\sqrt{1-y^2}} \frac{dy}{dx} = \frac{-1}{\sqrt{1-x^2}}$$

$$M = \frac{dy}{dx} = -\frac{\sqrt{1-y^2}}{\sqrt{1-x^2}}$$

$$M = -\frac{\sqrt{1-\left(\frac{3}{12}\right)^2}}{\sqrt{1-\left(\frac{3}{12}\right)^2}} = -$$

$$y - \frac{\sqrt{a}}{a} = -1\left(x - \frac{\sqrt{a}}{a}\right)$$