Quesito 4 – Sistema di misura della posizione angolare ξ_i

Descrizione del sistema:

Si analizza un sistema di acquisizione dati per misurare la **posizione angolare** ξ_i (in gradi) di meccanismi biella-manovella. Ogni linea di sensing è composta da:

- Sensore angolare S_i
- ullet Primo blocco di condizionamento c_i : offset Y_1 , guadagno k_1
- ullet Secondo blocco di condizionamento c_0 : offset Y_0 , guadagno k_0
- ullet Multiplexer (MUX): accetta segnali in ingresso nel range $[0,3]\,\mathrm{V}$
- ADC: intervallo di ingresso $[-9,9]\,\mathrm{V}$, risoluzione B=6 bit

1. Sensibilità del sensore

Il sensore è lineare, con:

- Range angolare: $\xi_i \in [180^\circ, 360^\circ]$
- Range di uscita: $V_S \in [-90, 90]\,\mathrm{mV}$

La sensibilità S è definita come:

$$S = \frac{\Delta V_S}{\Delta \xi} = \frac{90 - (-90)}{360 - 180} = \frac{180 \,\mathrm{mV}}{180^{\circ}} = 1 \,\mathrm{mV/^{\circ}}$$

Risultato:

La sensibilità del sensore è 1 mV/°.

2. Valori ottimali di k_1 e Y_1

Obiettivo: adattare l'intervallo $[-90,90]\,\mathrm{mV} = [-0,\!09,0,\!09]\,\mathrm{V}$ all'intervallo $[0,3]\,\mathrm{V}$ accettato dal MUX.

Trasformazione affine:

$$V_1 = k_1 \cdot V_S + Y_1$$

Condizioni:

$$egin{cases} V_S = -0.09
ightarrow V_1 = 0 \ V_S = +0.09
ightarrow V_1 = 3 \end{cases}$$

Sistema:

$$\left\{ egin{aligned} 0 &= k_1 \cdot (-0.09) + Y_1 \ 3 &= k_1 \cdot 0.09 + Y_1 \end{aligned}
ight.$$

Dalla prima equazione:

$$Y_1 = 0.09 \cdot k_1$$

Sostituendo nella seconda:

$$3 = 0.09k_1 + 0.09k_1 = 0.18k_1 \Rightarrow k_1 = rac{3}{0.18} = 16.67$$
 $Y_1 = 0.09 \cdot 16.67 = 1.5 \, \mathrm{V}$

Risultato:

$$k_1 = 16,67, Y_1 = 1,5 \,\mathrm{V}$$

3. Valori ottimali di k_0 e Y_0

Obiettivo: adattare l'intervallo [0,3] V (uscita di c_i) all'intervallo di ingresso dell'ADC [-9,9] V

Trasformazione:

$$V_0 = k_0 \cdot V_1 + Y_0$$

Condizioni:

$$\begin{cases} V_1 = 0 o V_0 = -9 \ V_1 = 3 o V_0 = +9 \end{cases}$$

Sistema:

 $\begin{cases} -9 = k_0 \cdot 0 + Y_0 \cdot Rightarrow Y_0 = -9 \cdot +9 = k_0 \cdot 3 + (-9) \cdot Rightarrow k_0 = \frac{18}{3} = 6$

Risultato:

$$k_0 = 6$$
, $Y_0 = -9 \, \mathrm{V}$

4. Risoluzione del sensore

Risoluzione dell'ADC:

$$\Delta V_{ ext{ADC}} = rac{ ext{Intervallo}}{2^B} = rac{18 ext{ V}}{64} = 0.28125 ext{ V}$$

Risoluzione angolare equivalente:

Dato che:

• Intervallo angolare: 180°

• Intervallo ADC: 64 livelli

$$\Delta \xi = \frac{180^{\circ}}{64} = 2,8125^{\circ}$$

Risultato:

Risoluzione angolare del sistema: 2,81°

5. Numero di bit necessario per una risoluzione < 1°

Vogliamo:

$$rac{180^{\circ}}{2^B} < 1^{\circ} \Rightarrow 2^B > 180 \Rightarrow B > \log_2(180) pprox 7,49 \Rightarrow B \geq 8$$

Risultato:

Servono almeno 8 bit per ottenere una risoluzione angolare < 1°.

6. Formula per ottenere ξ_i da V_0

Catena diretta:

$$V_0 = k_0 \cdot (k_1 \cdot V_S + Y_1) + Y_0$$

Invertiamo per ottenere ξ_i , sapendo che:

$$V_S = ext{sensibilità} \cdot (\xi_i - 180^\circ) \Rightarrow V_S = 0.001 \cdot (\xi_i - 180)$$

Componiamo:

1. Inversione:

$$V_S = rac{1}{k_1} \left(rac{V_0 - Y_0}{k_0} - Y_1
ight)$$

2. Poi:

$$\xi_i = rac{V_S}{0,001} + 180$$

Sostituendo:

$$\xi_i = rac{1}{0,001} \cdot \left[rac{1}{k_1} \left(rac{V_0 - Y_0}{k_0} - Y_1
ight)
ight] + 180$$

Risultato (formula finale):

$$\xi_i = \left(rac{1}{0,001 \cdot k_1}
ight) \cdot \left(rac{V_0 - Y_0}{k_0} - Y_1
ight) + 180$$

7. Frequenza minima di campionamento R_S dell'ADC

Dato:

- 3 linee di ingresso
- Il MUX passa da una linea all'altra ogni 20 ms
- Servono almeno 10 campioni per ciascuna scansione

Durata di una scansione completa:

$$3 \cdot 20 \text{ ms} = 60 \text{ ms} \Rightarrow \text{Servono } 3 \cdot 10 = 30 \text{ campioni in } 60 \text{ ms}$$

Frequenza di campionamento:

$$R_S = rac{30}{0,06} = 500 \, \mathrm{S/s}$$

Risultato:

Frequenza minima di campionamento dell'ADC: 500 S/s