Louis Meunier

Analysis 2 MATH255

Course Outline:

Based on Lectures from Winter, 2024 by Prof. Dmitry Jackobson.

Contents

1	Introduction		
	1.1	Metric Spaces	2
2	Poi	nt-Set Topology	6
	2.1	Definitions	6
	2.2	Basis	8
	2.3	Subspaces	9
	2.4	Continuous Functions	10
	2.5	Product Spaces	11
	2.6	Metrizability	13
	2.7	Compactness, Connectedness	14
	2.8	Path Components, Connected Components	19
		2.8.1 Cantor Staircase Function	20
3	L^p Spaces		20
	3.1	Review of ℓ^p Norms	20
	3.2	ℓ^p Norms, Hölder-Minkowski Inequalities	21

1 Introduction

1.1 Metric Spaces

\hookrightarrow **Definition** 1.1: Metric Space

A set X is a *metric space* with distance d if

- 1. (symmetric) $d(x, y) = d(y, x) \ge 0$
- 2. $d(x,y) = 0 \iff x = y$
- 3. (triangle inequality) $d(x,y) + d(y,z) \ge d(x,z)$

Remark 1.1. If 1., 3. are satisfied but not 2., d can be called a "pseudo-distance".

→ Definition 1.2: Open Metric Space

Let (X,d) be a metric space. A subset $A\subseteq X$ is open $\iff \forall\,x\in A, \exists r=r(x)>0$ s.t. $B(x,r(x))\subseteq A$.

\hookrightarrow **<u>Definition</u>** 1.3: Normed Space

Let X be a vector space over \mathbb{R} . The norm on X, denoted $||x|| \in \mathbb{R}$, is a function that satisfies

- 1. $||x|| \ge 0$
- 2. $||x|| = 0 \iff x = 0$
- 3. $||c \cdot x|| = |c| \cdot ||x||$
- 4. $||x + y|| \le ||x|| + ||y||$

If X is a normed vector space over \mathbb{R} , we can define a distance d on X by d(x,y) = ||x - y||.

\hookrightarrow Proposition 1.1

If X is a normed vector space over \mathbb{R} , a distance d on X by d(x,y) = ||x-y|| makes (X,d) a metric space.

<u>Proof.</u> 1. $d(x,y) = ||x - y|| \ge 0$

- 2. $d(x,y) = 0 \iff ||x-y|| = 0 \iff x-y=0 \iff x=y$
- 3. $d(x,y) + d(y,z) = ||x-y|| + ||y-z|| \ge ||(x-y) + (y-z)|| = ||x-z|| := d(x,z)$

\circledast Example 1.1: L^p distance in \mathbb{R}^n

Let $\overline{x} \in \mathbb{R}^n$, $x = (x_1, x_2, \dots, x_n)$. The L^p norm is defined

$$||x||_p := (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{\frac{1}{p}}.$$

In the case p=2, n=2, we simply have the standard Euclidean distance over \mathbb{R}^2 .

<u>Unit Balls:</u> consider when $||x||_p \leq 1$, over \mathbb{R}^2 .

- $p = 1 : |x_1| + |x_2| \le 1$; this forms a "diamond ball" in the plane.
- $p = 2 : \sqrt{|x_1|^2 + |x_2|^2} \le 1$; this forms a circle of radius 1. Clearly, this surrounds a larger area than in p = 2.

A natural question that follows is what happens as $p \to \infty$? Assuming $|x_1| \ge |x_2|$:

$$||x||_{p} = (|x_{1}|^{p} + |x_{2}|^{p})^{\frac{1}{p}}$$

$$= \left[|x_{1}|^{p} \left(1 + \left|\frac{x_{2}}{x_{1}}\right|^{p}\right)\right]^{\frac{1}{p}}$$

$$= |x_{1}| \left(1 + \left|\frac{x_{2}}{x_{1}}\right|^{p}\right)^{\frac{1}{p}}$$

If $|x_1| > |x_2|$, this goes to $|x_1|$. If they are instead equal, then $||x||_p = |x_1| \cdot 2^{\frac{1}{p}} \to |x_1| \cdot 1$ as well. Hence, $\lim_{p \to \infty} ||x||_p = \max\{|x_1|, |x_2|\}$. Thus, the unit ball will approach $\max\{|x_1|, |x_2|\} \le 1$, that is, the unit square.

\hookrightarrow **Proposition** 1.2

Let $x \in \mathbb{R}^n$. Then, $||x||_p \to \max\{|x_1|, \dots, |x_n|\}$ as $p \to \infty$.

Remark 1.2. This is an extension of the previous example to arbitrary real space; the proof follows nearly identically.

→ Definition 1.4: Convex Set

Let X be a normed space, and take $x, y \in X$. The line segment from x to y is the set

$$\{t \cdot x + (1-t) \cdot y : 0 \le t \le 1\}.$$

Let $A \subseteq X$. A is *convex* $\iff \forall x, y \in A$, we have that

$$(t \cdot x + (1-t) \cdot y) \in A \,\forall \, 0 \le t \le 1.$$

Remark 1.3. Think of this as saying "a set is convex iff every point on a line segment connected any two points is in the set".

Figure 1: Regions of \mathbb{R}^2 where $||x||_p \leq 1$ for various values of p.

Figure 2: Convex (left) versus not convex (right) sets.

\hookrightarrow **Definition** 1.5: ℓ_p

The space ℓ_p of sequences is defined as

$$\{x = (x_1, x_2, \dots, x_n, \dots) : \sum_{n=1}^{\infty} |x_n|^p < +\infty\} *.$$

Then, * defines the ℓ^p norm on the space of sequences; that is, $||x||_p := (\sum_{n=1}^{\infty} |x_n|^p)^{\frac{1}{p}}$.

\circledast Example 1.2: ℓ_p , $x_n = \frac{1}{n}$

. Let $x_n = \frac{1}{n}$. For which p is $x \in \ell_p$? We have, raising the norm to the power of p for ease:

$$||x||_p^p = |x_1|^p + |x_2|^p + \dots + |x_n|^p + \dots$$

= $1^p + \left(\frac{1}{2}\right)^p + \dots < \infty \iff p > 1.$

In the case that p = 1, this becomes a harmonic sum, which diverges.

\circledast Example 1.3: L^p space of functions

Let f(x) be a continuous function. We define the norm of f over an interval [a,b]

$$||f||_p = \left[\int_a^b |f(x)|^p dx\right]^{\frac{1}{p}}.$$

Remark 1.4. Triangle inequality for $||x||_p$ or $||f||_p$ is called Minkowski inequality; $||x||_p + ||y||_p \ge ||x + y||_p$. This will be discussed further.

\circledast Example 1.4: Distances between sets in \mathbb{R}^2

Let A, B be bounded, closed, "nice" sets in \mathbb{R}^2 . We define

$$d(A, B) := Area(A \triangle B),$$

where

$$A\triangle B:(A\setminus B)\cup (B\setminus A)=(A\cup B)\setminus (A\cap B).$$

It can be shown that this is a "valid" distance.

Remark 1.5. \triangle denotes the "symmetric difference" of two sets.

\circledast Example 1.5: p-adic distance

Let p be a prime number. Let $x=\frac{a}{b}\in\mathbb{Q}$, and write $x=p^k\cdot\left(\frac{c}{d}\right)$, where c,d are not divisible by p. Then, the p-adic norm is defined $||x||_p:=p^{-k}$. It can be shown that this is a norm.

Suppose
$$p=2, x=28=4\cdot 7=2^2\cdot 7$$
. Then, $||28||_2=2^{-2}=\frac{1}{4}$; similarly, $||1024||_2=||2^{10}||_2=2^{-10}$.

More generally, we have that $||2^k||_2 = 2^{-k}$; coversely, $||2^{-k}|| = 2^k$. That is, the closer to 0, the larger the distance, and vice versa, contrary to our notion of Euclidean distance.

\hookrightarrow Proposition 1.3

 $||x||_p$ as defined above is a well-defined norm over \mathbb{Q} .

Proof.

2 Point-Set Topology

2.1 Definitions

→ **Definition** 2.1: Topological space

A set X is a topological space if we have a collection of subsets τ of X called *open sets* s.t.

- 1. $\varnothing \in \tau, X \in \tau$
- 2. Consider $\{A_{\alpha}\}_{{\alpha}\in I}$ where A_{α} an open set for any α ; then, $\bigcup_{{\alpha}\in I}A_{\alpha}\in \tau$, that is, it is also an open set.
- 3. If J is a finite set, and A_{β} open for all $\beta \in J$, then $\bigcap_{\beta \in J} A_{\beta} \in \tau$ is also open.

In other words, 2.: arbitrary unions of open sets are open, and 3.: finite intersections of open sets are open.

\hookrightarrow **Definition 2.2: Closed sets**

Closed sets are complements of open sets; hence, axioms for closed sets follow appropriately;

- 1.* X, \emptyset closed;
- 2.* B_{α} closed $\forall \alpha \in I \implies \bigcap_{\alpha \in I} B_{\alpha}$ closed.
- 3.* B_{β} closed $\forall \beta \in J$, J finite, then $\bigcup_{\beta \in J} B_{\beta}$ also closed.

← Lecture 01; Last Updated: Thu Jan 11 08:35:34 EST 2024

→ Definition 2.3: Equivalence of Metrics

Suppose we have a metric space X with two distances d_1, d_2 ; will these necessarily admit the same topology?

A sufficient condition is that, if $\forall x \neq y \in X$, $\exists 1 < C < +\infty$ s.t.

$$\frac{1}{C} < \frac{d_1(x,y)}{d_2(x,y)} < C.$$

That is, the distances are equivalent, up to multiplication by a constant.

Indeed, this condition gives that $d_2 < Cd_1$ and $d_2 > \frac{d_1}{C}$; this gives

$$B_{d_1}(x, \frac{r}{c}) \subseteq B_{d_2}(x, r) \subseteq B_{d_1}(x, C \cdot r).$$

Hence, d_1, d_2 define the same open/closed sets on X thus admitting the same topologies. We write $d_1 \approx d_2$.

Remark 2.1. If $d_1 \approx d_2$ and $d_2 \approx d_3$, then also $d_1 \approx d_3$. Moreover, clearly, $d_1 \approx d_1$ and $d_1 \approx d_2 \implies d_2 \approx d_1$, hence this is a well-defined equivalence relation.

Hence, its enough to show that $\forall 1 , we have <math>||x||_p \asymp ||x||_\infty$ to show that any $||x||_q$ norm are equivalent for all q on \mathbb{R}^n .

→ Definition 2.4: Interior, Boundary of a Topological Set

Let X be a topological space, $A \subseteq X$ and let $x \in X$. We have the following possibilities

1. $\exists U$ -open : $x \in U \subseteq A$. In this case, we say $x \in \text{the } interior \text{ of } A$, denoted

$$x \in Int(A)$$
.

2. $\exists V$ -open : $x \in V \subseteq X \setminus A = A^C$. In this case, we write

$$x \in \operatorname{Int}(X^C)$$
.

3. $\forall U$ -open : $x \in U$, $U \cap A \neq \emptyset$ AND $U \cap A^C \neq \emptyset$. In this case, we say x is in the boundary of A, and denote

$$x \in \partial A$$
.

\hookrightarrow **Definition 2.5: Closure**

 $x \in \operatorname{Int}(A)$ or $x \in \partial A$ (that is, $x \in \operatorname{Int}(A) \cup \partial A$) \iff every open set U that contains x intersects A. Such points are called *limit points* of A. The set of all limits points of A is called the *closure* of A, denoted A.

Remark 2.2. We have that

$$\operatorname{Int}(A) \subseteq A \subseteq \overline{A} = \operatorname{Int}(A) \cup \partial A.$$

\hookrightarrow Proposition 2.1: Properties of Int(A)

 $\operatorname{Int}(A)$ is *open*, and it is the largest open set contained in A. It is the union of all U-open s.t. $U \subseteq A$. Moreover, we have that

$$\operatorname{Int}(\operatorname{Int}(A))=\operatorname{Int}(A).$$

\hookrightarrow Proposition 2.2: Properties of \overline{A}

 \overline{A} is closed; \overline{A} is the smallest closed set that contains A, that is, $\overline{A} = \bigcap B$ where B closed and $A \subseteq B$. We have too that

$$\overline{(\overline{A})} = \overline{A}.$$

¹"Requires" proof.

\hookrightarrow Proposition 2.3

- 1. A is open \iff A = Int(A)
- 2. A is closed $\iff A = \overline{A}$

2.2 Basis

→ **Definition** 2.6: Basis for a Toplogy

Let τ be a topology on X. Let $\mathcal{B} \subseteq \tau$ be a collection of open sets in X such that every open set is a union of open sets in \mathcal{B} .

*** Example 2.1: Example Basis**

 $X = \mathbb{R}$, and $\mathcal{B} = \{\text{all open intervals } (a, b) : -\infty < a < b < +\infty\}.$

\hookrightarrow Proposition 2.4

Let \mathcal{B} be a collection of open sets in X. Then, \mathcal{B} is a basis \iff

- 1. $\forall x \in X, \exists U$ -open $\in \mathcal{B}$ s.t. $x \in U$.
- 2. If $U_1 \in \mathcal{B}$ and $U_2 \in \mathcal{B}$, and $x \in U_1 \cap U_2$, then $\exists U_3 \in \mathcal{B}$ s.t. $x \in U_3 \subseteq U_1 \cap U_2$.

Example 2.2

Consider $X=\mathbb{R}$. Requirement 1. follows from taking $U=(x-\varepsilon,x+\varepsilon)$ for any $\varepsilon>0$. For 2., suppose $x\in(a,b)\cap(c,d)=:U_1\cap U_2$. Let $U_3=(\max\{a,c\},\min\{b,d\})$; then, we have that $U_3\subseteq U_1\cap U_2$, while clearly $x\in U_3$.

\hookrightarrow **Proposition 2.5**

In a metric space, a basis for a topology is a collection of open balls,

$$\{B(x,r): x \in X, r > 0\} = \{\{y \in X: d(x,y) < r\}: x \in X, r > 0\}.$$

Proof. We prove via proposition 2.4. Property 1. holds clearly; $x \in B(x, \varepsilon)$ -open $\subseteq \mathcal{B}$.

For property 2., let $x \in B(y_1, r_1) \cap B(y_2, r_2)$, that is, $d(x, y_1) < r_1$ and $d(x, y_2) < r_2$. Let

$$\delta := \min\{r_1 - d(x, y_1), r_2 - d(x, y_2)\}.$$

We claim that $B(x, \delta) \subseteq U_1 \cap U_2$.

Let $z \in B(x, \delta)$. Then,

$$d(z, y_1) \stackrel{\triangle \neq}{\leq} d(z, x) + d(x, y_1) < \delta + d(x, y_1) \le r_1 - d(x, y_1) + d(x, y_1) = r_1,$$

hence, as $d(z,y_1) < r_1 \implies z \in B(y_1,r_1) = U_1$. Replacing each occurrence of y_1,r_1 with y_2,r_2 respectively gives identically that $z \in B(y_2,r_2) = U_2$. Hence, we have that $B(x,\delta) \subseteq U_1 \cap U_2$ and 2. holds.

2.3 Subspaces

\hookrightarrow **Definition 2.7**

Let X be a topological space and let $Y \subseteq X$. We define the subspace topology on Y:

1. Open sets in $Y = \{Y \cap \text{ open sets in } X\}$

→ Proposition 2.6: Consequences of Subspace Topologies

Suppose \mathcal{B} is a basis for a topology in X. Then, $\{U \cap Y : U \in \mathcal{B}\}$ forms a basis for the subspace $Y \subseteq X$.

Suppose X a metric space. Then, Y is also a metric space, with the same distance.

\hookrightarrow Proposition 2.7

Let $Y \subseteq X$ - a metric space. Then, the metric space topology for (Y, d) is the same as the subspace topology.

Proof. (Sketch) A basis for the open sets in X can be written $\bigcup_{\alpha \in I} B(x_{\alpha}, r_{\alpha})$; hence

$$Y \cap (\bigcup_{\alpha \in I} B(x_{\alpha}, r_{\alpha})) = \bigcup_{\alpha \in I} (Y \cap B(x_{\alpha}, r_{\alpha}))$$

is an open set topology for Y.

\hookrightarrow Lemma 2.1

Let $A \subseteq X$ -open, $B \subseteq A$; B-open in subspace topology for $A \iff B$ -open in X.

\hookrightarrow Lemma 2.2

Let $Y\subseteq X,$ $A\subseteq Y.$ Then, \overline{A} in $Y=Y\cap \overline{A}$ in X. We can denote this

$$\overline{A}_Y = \overline{A}_X \cap Y.$$

2.4 Continuous Functions

→ Definition 2.8: Continuous Function

Let X, Y be topological spaces. Let $f: X \to Y$. f is continuous $\iff \forall$ open $V \in Y$, $f^{-1}(V)$ -open in X.

\hookrightarrow Proposition 2.8

This definition is consistent with the normal ε - δ definition on the real line.

<u>Proof.</u> Let $f: \mathbb{R} \to \mathbb{R}$, continuous; that is, $\forall \varepsilon > 0$, $\forall x \in \mathbb{R} \exists \delta > 0$ s.t. $|x_1 - x| < \delta$, then $|f(x_1) - f(x)| < \varepsilon$.

Let $V \subseteq \mathbb{R}$ open. Let $y \in V$. Then, $\exists \varepsilon : (y - \varepsilon, y + \varepsilon) \subseteq V$. Let y = f(x), hence $y \in f^{-1}(V)$. Now, if $d(x, x_1) < \delta$, we have that $d(f(x_1), f(x)) < \varepsilon$ (by continuity of f), hence $f(x_1) \in (y - \varepsilon, y + \varepsilon) \subseteq V$; moreover, $(x - \delta, x + \delta) \subseteq f - 1(V)$, thus $f^{-1}(V)$ is open as required.

The inverse of this proof follows identically.

← Lecture 02; Last Updated: Thu Jan 11 08:52:09 EST 2024

\hookrightarrow Proposition 2.9

Suppose \mathcal{B} forms a basis of topology for Y. Then, $f: X \to Y$ is continuous if $f^{-1}(U)$ open $\forall U \in \mathcal{B}$.

<u>Proof.</u> If U-open set in Y, then $\exists I$ -index set and a collection of open sets $\{A_{\alpha}\}_{{\alpha}\in I}, A_{\alpha}\in \mathcal{B}$, s.t. $U=\bigcup_{{\alpha}\in I}A_{\alpha}$. Then, we have

$$f^{-1}(U) = f^{-1}(\cup_{\alpha \in I}(A_{\alpha})) = \cup_{\alpha \in I} \underbrace{f^{-1}(A_{\alpha})}_{}$$

Hence, if each $f^{-1}(A_{\alpha})$ open, then $\bigcup_{\alpha \in I} f^{-1}(A_{\alpha})$ open; hence it suffices to check if $f^{-1}(U) \, \forall \, U$ -open in V is open to see if f continuous.

→ **Theorem** 2.1: Continuity of Composition

If $f: X \to Y$ continuous and $g: Y \to Z$ continuous, then $g \circ f$ continuous as well.

Proof. Let U-open in Z. Then

$$(g \circ f)^{-1}(U) = \underbrace{f^{-1}(\underline{g^{-1}(U)})}_{\text{open in } Y}$$

§2.4

\hookrightarrow Proposition 2.10

If $f: X \to Y$ continuous and $A \subseteq X$, A has subspace topology, then $f|_A: A \to Y$ is also continuous.²

Proof. Let U-open in Y. Then

$$(f|_A)^{-1}(U) = \underbrace{f^{-1}(U)}_{\text{open}} \cap \underbrace{A}_{\text{open}}$$

By the definition of subspace topology, this is an open set and hence $f|_A$ is continuous.

Product Spaces 2.5

→ Definition 2.9: Finite Product Spaces

Let X_1, \ldots, X_n be topological spaces. We define

$$(X_1 \times X_2 \times \cdots \times X_n),$$

and aim to define a *product topology*; a basis of which consists of cylinder sets.

→ Definition 2.10: Cylinder Set

A *cylinder set* has the form

$$A_1 \times A_2 \times \cdots \times A_n$$

where each A_j -open in X_j .

*** Example 2.3**

Given an open interval $(a_1, b_1), (a_2, b_2) \subset \mathbb{R}$, the set $(a_1, b_1) \times (a_2, b_2) \subset \mathbb{R}^2$ is a basis for the topology on \mathbb{R}^2 .

→ Definition 2.11: Projection

Let $X_1 \times X_2 \times \cdots \times X_n =: X$. The projection $\pi_i : X \to X_i$ maps $(x_1, \dots, x_n) \to x_i \in X_i$.

Remark 2.3. One can show π_j continuous.

→ **Definition 2.12: Coordinate Function**

²We denote $f|_A$ as the restriction of the domain of f to A.

Given a function $f: Y \to X_1 \times \cdots \times X_n = (x_1(y), x_2(y), \dots, x_n(y))$. The coordinate function is

$$f_j = \pi_j \circ f; \quad f_j = x_j(y).$$

\hookrightarrow Proposition 2.11

 $f: Y \to X = X_1 \times \cdots \times X_n$ continuous $\iff f_j: Y \to X_j$ continuous.

<u>Proof.</u> Its enough to show that $\forall U \in \mathcal{B}$ -basis for X-product space, $f^{-1}(U)$ -open in Y. Take $U = A_1 \times \cdots A_n$ -open. Then, we claim that

$$f^{-1}(U) = f^{-1}(A_1 \times \dots \times A_n) = f_1^{-1}(A_1) \cap f_2^{-1}(A_2) \cap \dots \cap f_n^{-1}(A_n). \quad \star$$

If this holds, then as each f_i continuous (being a composition of continuous functions) and each A_i open in X_i , then each $f_i^{-1}(A_i)$ open in Y and hence \star , being the finite intersection of open sets in Y, is itself open in Y.

® Example 2.4: Fourier Transform: Motivation for Infinite Product Toplogies

Let $f \in C([0, 2\pi])$ is real-valued. We write the *n*th Fourier coefficients

$$\hat{f}(n) = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-inx} dx$$

$$= \frac{1}{2\pi} \int_0^{2\pi} f(x)\cos(nx) dx - i\frac{1}{2\pi} \int_0^{2\pi} f(x)\sin(nx) dx.$$

And the Fourier transform of f as the infinite product

$$f(x) \mapsto (\dots, \hat{f}(-n), \hat{f}(-n+1), \dots, \hat{f}(-1), \hat{f}(0), \hat{f}(1), \dots, \hat{f}(n), \dots) \in \prod_{n \in \mathbb{Z}} (\mathbb{C})_n.$$

Hence, this is an (countably, as indexed by integers) infinite product space.

Now, let $f: \mathbb{R} \to \mathbb{R}$. Suppose $f(x) \to 0$ "fast enough" as $|x| \to \infty$ and f continuous. Then, we can define the Fourier coefficients

$$\hat{f}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)e^{-itx} dx,$$

where $t \in \mathbb{R}$. We then have the transform

$$f \mapsto \{\hat{f}(t)\}_{t \in \mathbb{R}}.$$

In this case, our index set is \mathbb{R} is (uncountably) infinite.

§2.5

\hookrightarrow <u>Definition</u> 2.13: Product Topology/Cylinder Sets for ∞ Products

Let $X = \prod_{\alpha \in I} X_{\alpha}$. Then, a basis for X is given by cylinder sets of the form $A = \prod_{\alpha \in I} A_{\alpha}$ where A_{α} -open in X_{α} , AND $A_{\alpha} = X_{\alpha}$ except for finitely many indices α .

That is, there exists a finite set $J=(\alpha_1,\ldots,\alpha_k)\subseteq I$, such that we can write $A=\prod_{\alpha\in J}A_\alpha\times\prod_{\alpha\notin J}X_\alpha$ (where A_α open in X_α).

\hookrightarrow **Proposition 2.12**

Given $f: Y \to \prod_{\alpha \in I} X_{\alpha} = X$, then (taking $f_{\alpha} = \pi_{\alpha} \circ f$ as before) we have that f is continuous in $X \iff f_{\alpha}: Y \to X_{\alpha}$ continuous in $X_{\alpha} \forall \alpha \in I$.

Remark 2.4. Extension of proposition 2.11 to infinite product space.

<u>Proof.</u> Write $U = \prod_{\alpha \in J} A_{\alpha} \times \prod_{\alpha \notin J} X_{\alpha}$. Then,

$$f^{-1}(U) = \bigcap_{\alpha \in J} f_{\alpha}^{-1}(A_{\alpha})$$

which is open in Y, hence f continuous.

Remark 2.5. The intersection of the entire spaces give no restriction.

← Lecture 03; Last Updated: Fri Jan 19 11:49:27 EST 2024

2.6 Metrizability

\hookrightarrow **Proposition 2.13**

Different metrics can define the same topology.

Example 2.5

- 1. Different ℓ_p metrics in \mathbb{R}^n (PSET 1)
- 2. Let (X, d) be a metric space. Then,

$$\tilde{d}(x,y) := \frac{d(x,y)}{d(x,y)+1}$$

is also a metric (the first two axioms are trivial), and defines the same topology. Note, moreover, that $\tilde{d}(x,y) \leq 1 \, \forall \, x,y$; this distance is bounded, and can often be more convenient to work with in particular contexts.

\hookrightarrow Question 2.1

Suppose (X_k, d_k) are metric spaces $\forall k \geq 1$. Then, we can define the product topology τ on

$$X := \prod_{k=1}^{\infty} X_k.$$

Does the product topology τ come from a metric? That is, is τ *metrizable*?

Remark 2.6. There do indeed exist examples of non-metrizable topological spaces; this question is indeed well-founded.

Answer. Let $\underline{x} = (x_1, x_2, \dots, x_n, \dots), \underline{y} = (y_1, y_2, \dots, y_n, \dots) \in \prod_{k=1}^{\infty}$ (where $x_i, y_i \in X_i$) be infinite sequences of elements. Then, for each metric space \overline{X}_k take the metric

$$\tilde{d}_k(x_k, y_k) = \frac{d_k(x_k, y_k)}{1 + d_k(x_k, y_k)}$$

(as in the example above). Then, we define

$$D(\underline{x},\underline{y}) = \sum_{k=1}^{\infty} \frac{\tilde{d}_k(x_k, y_k)}{2^k},$$

noting that $D(\underline{x},\underline{y}) \leq \sum_{k=1}^{\infty} \frac{1}{2^k} = 1$ (by our construction, "normalizing" each metric), hence this is a valid, *converging* metric (which wouldn't otherwise be guaranteed if we didn't normalize the metrics). It remains to show whether this metric omits the same topology as τ .

2.7 Compactness, Connectedness

$\hookrightarrow \underline{\textbf{Definition}}$ 2.14: Compact

A set A in a topological space is said to be *compact* if every cover has a finite subcover. That is, if

$$A\subseteq\bigcup_{\alpha\in I}U_{\alpha}-\mathrm{open},$$

then $\exists \{\alpha_1, \dots, \alpha_n \in I\}$ such that $A \subseteq \bigcup_{i=1}^n U_{\alpha_i}$.

$\hookrightarrow \underline{\text{Proposition}} \ 2.14$

A closed interval [a, b] is compact.

<u>Proof.</u> If a = b, this is clear. Suppose a < b, and let $[a, b] \subseteq \bigcup_{i \in I} U_i =: \mathcal{U}$ be an arbitrary cover. Then, we proceed in the following steps:

1. **Claim:** Given $x \in [a, b], x \neq b, \exists y \in [a, b]$ s.t. [x, y] has a finite subcover.

³This proof is adapted from that of Theorem 27.1 in Munkre's Topology, an identical theorem but applied to more general ordered topologies.

Let $x \in [a, b]$, $x \neq b$. Then, $\exists U_{\alpha} \in \mathcal{U} : x \in U_{\alpha}$. Since U_{α} open, and $x \neq b$, we further have that $\exists c \in [a, b]$ s.t. $[x, c) \subseteq U_{\alpha}$.

Now, let $y \in (x, c)$; then, the interval $[x, y] \subseteq [x, c) \subseteq U_{\alpha}$, that is, [x, y] has a finite subcover.

- 2. Define $C := \{y \in [a, b] : y > a, [a, y] \text{ has a finite subcover}\}$. We note that
 - $C \neq \emptyset$; taking x = a in Step 1. above, we have that $\exists y \in [a, b]$ such that [a, y] has a finite step cover, so this $y \in C$.
 - C bounded; by construction, $\forall y \in C, a < y \leq c$.

Thus, we can validly define $c := \sup C$, noting that $a < c \le b$. Ultimately, we wish to prove that c = b, completing the proof that [a, b] has a finite subcover.

3. Claim: $c \in C$.

Let $U_{\beta} \in \mathcal{U} : c \in U_{\beta}$. Then, by the openness of U_{β} , $\exists d \in [a, b]$ s.t. $(d, c] \subseteq U_{\beta}$.

Supposing $c \notin C$, then $\exists z \in C$ such that $z \in (d, c)$; if one did not exist, then this would imply that d was a smaller upper bound that c, a contradiction. Thus, $[z, c] \subseteq (d, c] \subseteq U_{\beta}$.

Moreover, we have that, given $z \in C$, [a, z] has a finite subcover; call it $U_z \subseteq \mathcal{U}$. This gives, then:

$$[a,c] = [a,z] \cup [z,c] \subseteq U_z \cup U_\beta.$$

But this is a finite subcover of [a, c], contradicting the fact that $c \notin C$. We conclude, then, that $c \in C$ after all.

4. **Claim:** c = b.

Suppose not; then, since we have $c \le b$, then assume c < b. Then, applying Step 1. with x = c (which we can do, by our assumption of $c \ne b$!), then we have that $\exists y > c$ s.t. [c, y] has a finite subcover, call this $U_y \subseteq \mathcal{U}$.

Moreover, we had $c \in C$, hence [a, c] has a finite subcover, call this $U_c \subseteq \mathcal{U}$.

Then, this gives us that

$$[a,y] = [a,c] \cup [c,y] \subseteq U_c \cup U_y,$$

that is, [a, y] has a finite subcover, and so $y \in C$. But recall that y > c; hence, this a contradiction to c being the least upper bound of C. We conclude that c = b, and thus [a, b] has a finite subcover, and is thus compact.

Remark 2.7. A similar proof shows that [a, b] is connected; we cannot cover it by two disjoint open sets.

$\hookrightarrow \underline{\text{Theorem}}$ 2.2: On Compactness

Let $A \subseteq \mathbb{R}^n$. Then, A compact $\iff A$ closed and bounded.

$\hookrightarrow \underline{ \frac{Proposition}{2.15}}$

If X, Y are compact topological spaces, then $X \times Y$ is compact.

Remark 2.8. By induction, if X_1, \ldots, X_n compact, so is $\prod_{i=1}^n X_i$.

\hookrightarrow Proposition 2.16

A closed subset of a compact topological space is compact in the subspace topology.

Proof. (Of theorem 2.2)

(\iff) If $A \subseteq \mathbb{R}^n$ closed and bounded, then $A \subseteq [-R, +R]^n$ for some R > 0 (it is contained in some "n-cube"). Then, we have that [-R, R] is compact, by proposition 2.14, proposition 2.15, and proposition 2.16, A itself compact.

(\Longrightarrow) Suppose $A\subseteq\mathbb{R}^n$ is compact. Then, $\bigcup_{x\in A}B(x,\varepsilon)$ for some $\varepsilon>0$ is an open cover of A. As A compact, there must exist a finite subcover of this cover, $A\subseteq\bigcup_{i=1}^NB(x_i,r_i)$. Let $R:=\max_{i=1}^N(||x_i||+r_i)$. Then, $A\subseteq\overline{B(0,R)}$, that is, A is bounded.

Now, suppose x is a limit point of A. Then, any neighborhood of x contains a point in A, so $\forall r > 0$, $B(x,r) \cap A \neq \emptyset$, and so $\overline{B}(x,r)$ also contains a point of A for any r > 0.

Now, suppose $x \notin A$ (looking for a contradiction). Then,

$$U := \bigcup_{r>0} U_r := \bigcup_{r>0} (\mathbb{R}^n \setminus \overline{B(x,r)}) = \mathbb{R}^n \setminus \{x\}$$

is an open cover for the set A. A being compact implies that U has an finite subcover such that $A \subset U_{r_1} \cup U_{r_2} \cup \cdots \cup U_{r_N}$. Let $r_0 = \min_{i=1}^N r_i$. Then, $A \subseteq U_{r_0}$, and $A \cap B(x, r_0) = \emptyset$; but this is a contradiction to the definition of a limit point, hence any limit point x is contained in A and A is thus closed by definition.

\hookrightarrow **Proposition 2.17**

Compact \implies sequentially compact; that is, every sequence in a compact set has a convergent subsequence.

 $\hookrightarrow \textit{Lecture 04; Last Updated: Wed Jan 24 21:27:59 EST 2024}$

→ Definition 2.15: Connected

A topological space X is *not connected* if $X = U \cup V$ for two open, nonempty, disjoint sets U, V.

If this does not hold, *X* is said to be *connected*.

A set $A \subseteq X$ is not connected if A is not connected in the subspace topology $\iff A = \subseteq U \cup V$, for U, V-open in $X, (U \cap A) \neq \emptyset, (V \cap A) \neq \emptyset$ and $U \cap V = \emptyset$.

\hookrightarrow Theorem 2.3

Let X be a connected topological space. Let $f: X \to Y$ be a continuous. Then, f(X) is also connected.

Proof. Suppose, seeking a contradiction, that X is connected, but f(X) is not. Then, we can write $f(X) \subseteq Y$ as $\overline{f(X)} \subseteq U \cup V$, such that U, V open in Y and $U \cap V = \emptyset$. Then,

$$(U \cap f(X)) \cap (V \cap f(X)) = \varnothing.$$

We also have that

$$X \subseteq \underbrace{f^{-1}(U)}_{\text{open in } X, \neq \varnothing} \cup \underbrace{f^{-1}(V)}_{\text{open in } X, \neq \varnothing}.$$

 $f^{-1}(U) \cap f^{-1}(V) = \emptyset$ (that is, they are disjoint) by our assumption; this is a contradiction to the connectedness of X, as we are able to write it as a subset of two disjoint open sets. Hence, f(X) is indeed connected.

\hookrightarrow Lemma 2.3

Any interval $(a, b), [a, b], [a, b), \ldots, \subseteq \mathbb{R}$ is connected.

Proof.

→ Theorem 2.4: "Intermediate Value Theorem"

Suppose X is connected and $f: X \to \mathbb{R}$ is a continuous function. Then, f takes intermediate values.

More precisely, let a = f(x), b = f(y) for $x, y \in X$. Assume a < b. Then, $\forall a < c < b, \exists z \in X$ s.t. f(z) = c.

<u>Proof.</u> Suppose, seeking a contradiction, that $\exists c : a < c < b \text{ s.t. } c \notin f(X)$ (that is, there exists an intermediate value that is "not reached" by the function).

Let $U=(-\infty,c)$ and $V=(c,+\infty)$; note that these are disjoint open sets. Then, we have that

$$X = f^{-1}(U) \cup f^{-1}(V),$$

by our assumption of $c \notin f(X)$. But this gives that X is not connected, as the union of two open (by continuity), disjoint, nonempty $(f(x) = a \in U \implies x \in f^{-1}(U), \text{ and } f(y) = b \in V \implies y \in f^{-1}(V))$ sets, a contradiction.

\hookrightarrow Theorem 2.5

Suppose X is compact, Y-topological space, $f: X \to Y$ is a continuous function. Then, f(X) is also compact.

Proof. Let $\{U_{\alpha}\}_{{\alpha}\in I}$ be an open cover of $f(X)\subseteq Y$, that is,

$$f(X) \subseteq \bigcup_{\alpha \in I} U_{\alpha} \implies X \subseteq f^{-1}(\bigcup_{\alpha \in I} U_{\alpha}) = \bigcup_{\alpha \in I} f^{-1}(U_{\alpha}) =: \bigcup_{\alpha \in I} V_{\alpha} - \text{open}.$$

Then, this is an open cover of X; X is compact, thus there exists a finite subcover, that is, indices $\{\alpha_1, \ldots, \alpha_n\} \subseteq I$ such that $X = \bigcup_{i=1}^n V_{\alpha_i}$. Thus,

$$f(X) \subseteq \bigcup_{i=1}^{n} U_{\alpha_i},$$

which is a finite subcover of f(X). Thus, f(X) is compact.

Remark 2.9. Recall the "extreme value theorem": let $f:[a,b] \to \mathbb{R}$ a continuous function; then, a minimum and maximum is obtained for f(x) on this interval for values in this interval.

\hookrightarrow Theorem 2.6

Let X compact, and $f: X \to \mathbb{R}$ a continuous function. Then,

$$\max_{x \in X} f(x)$$
 and $\min_{x \in X} f(x)$

are both attained.

<u>Proof.</u> $f(X) \subseteq \mathbb{R}$ is compact by theorem 2.5, and so by theorem 2.2, f(X) is closed and bounded. Let, then, $m = \inf f(X)$ and $M = \sup f(X)$; these necessarily exist, since f(X) is bounded. Both m and M are limit points of f(X). But f(X) is closed, and hence contains all of its limit points, and thus $m \in f(X)$ and $M \in f(X)$, and thus $\exists y_m : f(y_m) = m$ and $y_M : f(y_M) = M$.

→ **Definition 2.16: Path Connected**

A set $A \subseteq X$ is called *path connected* if $\forall x, y \in A, \exists f : [a, b] \to X$, continuous, s.t. f(a) = x, f(b) = y and $f([a, b]) \subseteq A$.

The set $\{f(t): a \leq t \leq b\}$ is called a *path* from x to y.

\hookrightarrow Theorem 2.7: Path connected \implies connected

If $A \subseteq X$ is path connected, then A is connected.

<u>Proof.</u> Suppose, seeking a contradiction, that A is path connected, but not connected. Then, we can write $A \subseteq U \cup V$, for open, disjoint, nonempty subsets $U, V \subseteq X$.

Let $x \in U \cap A$ and $y \in V \cap A$. Then, $\exists f : [a,b] \to A$ s.t. f(a) = x, f(b) = y, and $f([a,b]) \subseteq A$, by the path connectedness of A. Then,

$$[a,b]\subseteq f^{-1}(A)\subseteq \underbrace{f^{-1}(U\cap A)}_{\mathrm{open}}\cup \underbrace{f^{-1}(V\cap A)}_{\mathrm{open}}=:\underbrace{U_1}_{a\in}\cup \underbrace{U_2}_{b\in},$$

that is, [a, b] is contained in a union of open, nonempty, disjoint sets, contradicting [a, b] the connectedness of [a, b] by lemma 2.3. Thus, A is connected.

Remark 2.10. A counterexample to the opposite side of the implication is the Topologist's sine curve, the set

$$\{(x, \sin\left(\frac{1}{x}\right)) : x \in (0,1]\} \cup \{0\} \times [-1,1].$$

This set is connected in \mathbb{R}^2 , but is not path connected.

\hookrightarrow **Proposition 2.18**

For open sets in \mathbb{R}^n , path connected \iff connected.

← Lecture 05; Last Updated: Thu Jan 18 09:50:46 EST 2024

2.8 Path Components, Connected Components

Remark 2.11. Remark that if a metric space X is not connected, then we can write $X = U \cup V$ where U, V are open, nonempty and disjoint. It follows, then, that $U = V^C$ (and vice versa) and hence U, V are both open and closed.

→ Definition 2.17: Connected Component

A connected component of $x \in X$ is the largest connected subset of X that contains x.

*** Example 2.6**

Let $X = (0,1) \cup (1,2)$. Here, we have two connected components, (0,1) and (1,2)

® Example 2.7: Middle Thirds Cantor Set

Let $C_0 := [0,1]$, and given C_n , define $C_{n+1} := \frac{1}{3} (C_n \cup (2+C_n))$ for $n \ge 0$. C_∞ is totally disconnected.

→ **Definition** 2.18: Path Component

A path component P(x) of $x \in X$ is the largest path connected subset of X that contains x.

\hookrightarrow Proposition 2.19

 $P(x) = \{x \in X : \exists \text{ conintuous path } \gamma : [0,1] \to X : \gamma(0) = x, \gamma(1) = y\}.$

Remark 2.12. Where we "start" a path does not matter. We write $x \sim y$ if $\exists \gamma$ from x to y; this is an equivalence relation on the elements of X.

Remark 2.13. The choice of [0,1] here is arbitrary; any closed interval is homeomorphic.

\hookrightarrow Lemma 2.4

If $P(x) \cap P(y) \neq \emptyset$, then P(x) = P(y).

<u>Proof.</u> $P(x) \cap P(y) \neq \emptyset \implies \exists z : x \sim z \land y \sim z \implies x \sim y.$

\hookrightarrow Lemma 2.5

If $A \subseteq X$ is connected, then \overline{A} is also connected.

\hookrightarrow Lemma 2.6

Suppose $A \subseteq X$ is both open and closed. Then, if $C \subseteq X$ is connected and $C \cap A \neq \emptyset$, then $C \subseteq A$.

<u>Proof.</u> If A is both open and closed, then $C \cap A$ is both open and closed in C. If $C \cap A^C \neq \emptyset$, then this is also open and closed in C. Hence, we can write $C = (C \cap A) \cup (C \cap A^C)$, that is, a disjoint union of two nonempty open sets, contradicting the connectedness of C. Hence, $C \cap A^C = \emptyset$, and so $C \subseteq A$.

\hookrightarrow Proposition 2.20

Let $\{C_{\alpha}\}_{{\alpha}\in I}$ be a collection of nonempty connected subspaces of X s.t. $\forall \alpha, \beta \in I, C_{\alpha} \cap C_{\beta} \neq \emptyset$. Then, $\bigcup_{\alpha \in I} C_{\alpha}$ is connected.

\hookrightarrow Proposition 2.21

Suppose each $x \in X$ has a path-connected neighborhood. Then, the path components in X are the same as the connected components in X.

2.8.1 Cantor Staircase Function

→ **Definition** 2.19: An Explicit Definition

Let
$$x \in C$$
 : $x = 0.a_1a_2a_3\dots$ (base 3), ie $a_j = \begin{cases} 0 \\ 2 \end{cases}$. Define

$$f(x) = \begin{cases} \sum \frac{a_j/2}{2^j} & x \in C \\ \text{extend by continuity} & x \notin C. \end{cases}$$

That is, if $x \notin C$, set $f(y) = \sup_{x \in C, x < y} f(x) = \inf_{x \in C, x > y} f(x)$.

\hookrightarrow **Definition** 2.20: Complement Definition

To construct the complement of the Cantor set, begin with [0,1] and at a step n, we remove 2^n open intervals from this interval. f(x) will be constant on each of these intervals with values $\frac{k}{2^n}$ where k odd and $0 < k < 2^n$. Extend by continuity to all $x \in C$.

Remark 2.14. Wikipedia's explanation of this is far better than whatever this definition is trying to say.

← Lecture 06; Last Updated: Tue Jan 23 11:03:35 EST 2024

${f 3}$ L^p ${f Spaces}$

3.1 Review of ℓ^p Norms

Remark 3.1. Recall that for $1 \le p \le +\infty$, we define for $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ the norm

$$||x||_p = (|x_1|^p + \dots + |x_n|^p)^{\frac{1}{p}}, \quad ||x||_{\infty} = \max_{i=1}^n |x_i|.$$

Similarly, for infinite vector spaces, we had, for $x = (x_1, \ldots, x_n, \ldots)$, the norm

$$||x||_p = \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}}, \quad ||x||_{\infty} = \sup_{i \ge 1} |x_i|.$$

Here, we define

$$\ell_p := \{x = (x_1, \dots, x_n) : ||x||_p < +\infty\}.$$

3.2 ℓ^p Norms, Hölder-Minkowski Inequalities

→ **Definition** 3.1: Hölder Conjugates

For $1 \le p, q \le +\infty$, we say that p, q are said to be Hölder conjugates if

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Remark 3.2. We refer to this simply as "conjugates" throughout as no other concept of conjugate numbers will be discussed.

Further, we take by convention $\frac{1}{\infty} = 0$.

→ **Proposition** 3.1: Hölder's Inequality

Let $x=(x_1,\ldots,x_n),y=(y_1,\ldots,y_n)\in\mathbb{R}^n$. Suppose $p,q:1\leq p,q\leq +\infty$ are conjugate. Then,

$$\langle x, y \rangle_{\mathbb{R}^n} := \left| \sum_{i=1}^n x_i y_i \right| \le ||x||_p \cdot ||y||_q$$

Example 3.1

For the case p = 1 or ∞ (functionally, the same case):

$\hookrightarrow \underline{Lemma} \ 3.1$

Let p, q be conjugates, and $x, y \ge 0$. Then,

$$xy \le \frac{x^p}{p} + \frac{y^q}{q}.$$

Remark 3.3. If the inequality holds, then, for some t > 0, let $\tilde{x} = t^{\frac{1}{p}} \cdot x$, $\tilde{y} = t^{\frac{1}{q}}y$. Substituting x for \tilde{x} and y for \tilde{y} , we have

LHS:
$$\tilde{x}\tilde{y} = t^{\frac{1}{p}}x \cdot t^{\frac{1}{q}}y = t^{\frac{1}{p} + \frac{1}{q}} \cdot xy = xy$$

RHS: $\cdots = t(\frac{x^p}{p} + \frac{y^q}{q}.)$

That is, we have

$$t \cdot xy \le t \left(\frac{x^p}{p} + \frac{y^q}{q} \right),$$

hence, the inequality is preserved under multiplication by a positive scalar; moreover, the original inequality holds iff this "scaled" version holds. Hence, choosing t such that $\tilde{y}=1$ (let $t=\left(\frac{1}{y}\right)^q$), it suffices to prove the lemma for y=1.

<u>Proof.</u> If x = 0 or y = 0, then the entire LHS becomes 0 and we are done; assume x, y > 0; by the previous remark, assume wlog y = 1. Then, we have

$$x \cdot y \le \frac{x^p}{p} + \frac{y^q}{q} \iff x \cdot 1 \le \frac{x^p}{p} + \frac{1}{q}$$
$$\iff \frac{x^p}{p} - x + \frac{1}{q} =: f(x) \ge 0.$$

Taking the derivative, we have

$$f'(x) = \frac{p x^{p-1}}{p} - 1 = x^{p-1} - 1$$

$$p > 1 \implies p - 1 > 0 \implies \begin{cases} f'(x) > 0 & \forall x > 1 \\ f'(x) = 0 & x = 0 \\ f'(x) < 0 & \forall 0 < x < 1 \end{cases}$$

Hence, x=1 is a local minimum of the function, and thus $f(x) \ge f(1) \, \forall \, 0 < x \le 1$. But $f(1) = \frac{1^p}{p} - 1 + \frac{1}{q} = 1 - 1 = 0$, hence $f(x) \ge 0 \, \forall \, x \ge 0$, as desired, and the inequality holds.

Proof. Assume $||x||_p = ||y||_q = 1$. Then,

$$\left|\sum_{i=1}^{n} x_{i} y_{i}\right| \leq \sum_{i=1}^{n} \left|x_{i} y_{i}\right| \qquad (by \ triangle \ inequality)$$

$$\leq \sum_{i=1}^{n} \left|\frac{x_{i}^{p}}{p} + \frac{y_{i}^{q}}{q}\right| \qquad (by \ lemma \ 3.1)$$

$$= \frac{1}{p} \left(\sum_{i=1}^{n} \left|x_{i}\right|^{p}\right) + \frac{1}{q} \left(\sum_{i=1}^{n} \left|y_{i}\right|^{q}\right)$$

$$= \frac{1}{p} ||x||_{p}^{p} + \frac{1}{q} ||y||_{q}^{q} \qquad (by \ staring)$$

$$= \frac{1}{p} \cdot 1^{p} + \frac{1}{q} \cdot 1^{1} = \frac{1}{p} + \frac{1}{q} = 1 \qquad (by \ assumption)$$

$$= ||x||_{p} \cdot ||y||_{q},$$

and the proposition holds, in the special case $||x||_p = ||y||_q = 1$.

If
$$||x||_p = 0$$
 or $||y||_q = 0$, then $x_1 = \cdots = x_n = 0$ or $y_1 = \cdots = y_n = 0$, resp., then we'd have $(||x||_p = 0 \text{ case})$

$$0 \cdot y_1 + \dots + 0 \cdot y_n < 0,$$

which clearly holds.

Assume, then, $||x||_p > 0$, $||y||_q > 0$. Let $\tilde{x} := \frac{x}{||x||_p}$, $\tilde{y} := \frac{y}{||y||_q}$. Then,

$$||\tilde{x}||_p^p = \frac{\left(\sum_{i=1}^n |x_i|^p\right)}{||x||_p^p} = \frac{||x||_p^p}{||x||_p^p} = 1 \implies ||\tilde{x}||_p = 1.$$

The same case holds for \tilde{y} , hence $||\tilde{y}||_q = 1$; that is, we have "rescaled" both vectors. Hence, we can use the case we proved above for when the norms were identically 1 on \tilde{x}, \tilde{y} . We have:

$$\left| \sum_{i=1}^{n} \tilde{x}_{i} \tilde{y}_{i} \right| \leq 1$$

But by definition of \tilde{x} , \tilde{y} , we have

$$\left| \sum_{i=1}^{n} \tilde{x}_{i} \tilde{y}_{i} \right| = \left| \frac{1}{||x||_{p} ||y||_{q}} \sum_{i=1}^{n} x_{i} y_{i} \right| \le 1 \implies \left| \sum_{i=1}^{n} x_{i} y_{i} \right| \le ||x||_{p} \cdot ||y||_{q},$$

and the proof is complete.

→ Proposition 3.2: Minkowski Inequality

Let $1 \leq p \leq \infty$, $x, y \in \mathbb{R}^n$. Then,

$$||x+y||_p \le ||x||_p + ||y||_p.$$

Remark 3.4. This is just the triangle inequality for ℓ_p norms.

Proof. The cases $p=1,\infty$ are left as an exercise.

Assume 1 . Then,

$$||x+y||_{p}^{p} = \sum_{j=1}^{n} |x_{j} + y_{j}|^{p} = \sum_{j=1}^{n} |x_{j} + y_{j}| |x_{j} + y_{j}|^{p-1}$$

$$\leq \sum_{j=1}^{\infty} (|x_{j}| + |y_{j}|) \cdot |x_{j} + y_{j}|^{p-1}$$

$$= \sum_{j=1}^{n} |x_{j}| \cdot |x_{j} + y_{j}|^{p-1} + \sum_{j=1}^{n} |y_{j}| \cdot |x_{j} + y_{j}|^{p-1} \quad \circledast$$

Let $\vec{u} = (|x_1|, \dots, |x_n|)$ and $\vec{v} = (|x_1 + y_1|^{p-1}, \dots, |x_n + y_n|^{p-1})$, then, $A = \vec{u} \cdot \vec{v} = \langle \vec{u}, \vec{v} \rangle_{\mathbb{R}^n}$. We have

$$||\vec{u}||_{p} = \left(\sum_{i=1}^{n} (|x_{i}|^{p})\right)^{\frac{1}{p}} = ||x||_{p}$$

$$||\vec{v}||_{q} = \left(\sum_{i=1}^{n} (|x_{i} + y_{i}|^{p-1})^{q}\right)^{\frac{1}{q}}$$

$$= \left[\sum_{i=1}^{n} (|x_{i} + y_{i}|^{p-1})^{\frac{p}{p-1}}\right]^{\frac{p-1}{p}}$$

$$= \left[\sum_{i=1}^{n} |x_{i} + y_{i}|^{p}\right]^{\frac{p-1}{p}}$$

$$= ||x + y||_{p}^{p-1}$$

where the second-to-last line follows from p, q being conjugate, hence $q = \frac{p}{p-1}$. Thus, by Hölder's Inequality, we have that

$$A = \langle \vec{u}, \vec{v} \rangle \le ||u||_p \cdot ||v||_q = ||x||_p \cdot ||x + y||_p^{p-1}.$$

By a similar construction, we can show that

$$B \le ||y||_p \cdot ||x + y||_p^{p-1}.$$

Thus, returning to our original inequality in ⊛, we have

$$||x+y||_p^p \le A + B$$

$$\le ||x||_p \cdot ||x+y||_p^{p-1} + ||y||_p \cdot ||x+y||_p^{p-1}$$

$$\implies ||x+y||_p \le ||x||_p + ||y||_p,$$

and the proof is complete.

 $\hookrightarrow Lecture~07; Last~Updated:~Thu~Jan~25~09:51:40~EST~2024$