## **ANSWER KEY (AIPMT-2010)**

| Ques. | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ans   | 3   | 2   | 4   | 2   | 3   | 2   | 4   | 1   | 3   | 4   | 2   | 1   | 3   | 2   | 4   | 4   | 1   | 1   | 2   | 4   |
| Ques. | 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 40  |
| Ans   | 2   | 1   | 2   | 2   | 4   | 3   | 1   | 3   | 3   | 1   | 2   | 3   | 2   | 3   | 3   | 1   | 1   | 2   | 4   | 1   |
| Ques. | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 50  | 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 60  |
| Ans   | 3   | 4   | 3   | 2   | 4   | 4   | 3   | 2   | 4   | 3   | 2   | 2   | 2   | 1   | 2   | 1   | 1   | 4   | 3   | 2   |
| Ques. | 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 70  | 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  |
| Ans   | 4   | 4   | 3   | 1   | 1   | 4   | 2   | 1   | 1   | 4   | 1   | 2   | 4   | 1   | 4   | 4   | 3   | 3   | 4   | 2   |
| Ques. | 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 90  | 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 100 |
| Ans   | 4   | 2   | 1   | 4   | 3   | 3   | 3   | 1   | 2   | 2   | 1   | 2   | 2   | 2   | 1   | 3   | 1   | 2   | 3   | 2   |
| Ques. | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
| Ans   | 2   | 1   | 1   | 1   | 2   | 1   | 3   | 3   | 2   | 4   | 2   | 3   | 4   | 2   | 2   | 2   | 2   | 4   | 3   | 4   |
| Ques. | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 |
| Ans   | 4   | 1   | 2   | 1   | 4   | 4   | 1   | 3   | 2   | 4   | 4   | 3   | 1   | 1   | 4   | 3   | 1   | 1   | 4   | 2   |
| Ques. | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 |
| Ans   | 4   | 2   | 2   | 3   | 4   | 4   | 4   | 4   | 1   | 1   | 4   | 1   | 2   | 2   | 3   | 2   | 1   | 3   | 3   | 3   |
| Ques. | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 |
| Ans   | 4   | 4   | 1   | 1   | 3   | 4   | 2   | 3   | 2   | 1   | 1   | 1   | 3   | 2   | 1   | 4   | 4   | 1   | 4   | 1   |
| Ques. | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 |
| Ans   | 1   | 1   | 4   | 3   | 3   | 2   | 4   | 2   | 4   | 2   | 2   | 1   | 1   | 3   | 1   | 4   | 4   | 2   | 2   | 2   |

## **HINTS & SOLUTIONS**



Here f = mg and  $N = m\alpha$  but  $f \le \mu N$ 

So  $mg \le \mu m\alpha \implies \alpha \ge \frac{g}{\mu}$ 

**Sol.2** 
$$\frac{\text{BE}}{\text{nucleon}} = \frac{0.042 \times 931}{7} = 5.6 \text{ MeV}$$

**Sol.3** By conservation of angular momentum

$$I_t \omega_i = (I_t + I_b)\omega_f \implies \omega_f = \left(\frac{I_t}{I_t + I_b}\right)\omega_i$$

loss in kinetic energy =  $\frac{1}{2} I_t \omega_i^2 - \frac{1}{2} (I_t + I_b) (\omega_f^2)$ 

$$= \frac{1}{2} \left( \frac{I_b I_t}{I_b + I_t} \right) \omega_i^2$$

**Sol.4** Electric and magnetic field vectors are perpendicular to each other in electromagnetic wave.

**Sol.5** 
$$x = a sin^2 \omega t = \frac{a}{2} (1 - cos^2 \omega t)$$

Sol.6 Speed of satellite 
$$V = \sqrt{\frac{GM}{r}}$$
  

$$\Rightarrow \frac{V_B}{V_A} = \sqrt{\frac{r_A}{r_B}} = \sqrt{\frac{4R}{R}} = 2$$

$$\Rightarrow$$
 V<sub>B</sub> = (3V)(2) = 6V

**Sol.7** 
$$qvB = qE \implies v = \frac{E}{R}$$

but 
$$\frac{1}{2} \text{ mv}^2 = qV$$
 so  $\frac{q}{m} = \frac{v^2}{2V} = \frac{E^2}{2VB^2}$ 

**Sol.8** Let two balls meet at depth h from platform

So 
$$h = \frac{1}{2} g(18)^2 = v(12) + \frac{1}{2} g(12)^2$$
  
 $\Rightarrow v = 75 \text{ ms}^{-1}$ 

**Sol.9** For TIR 
$$45 \ge \theta_C \implies \sin 45 \ge \sin \theta_C$$

$$\Rightarrow \qquad \frac{1}{\sqrt{2}} \ge \frac{1}{\mu} \quad \Rightarrow \ \mu \ge \sqrt{2}$$

**Sol.10** 
$$T = 2\pi \sqrt{\frac{M}{k}}$$
,  $T' = 2\pi \sqrt{\frac{2M}{k}} = \sqrt{2}T$ 

Sol.11 
$$\frac{Q}{t} = \frac{kA(T_1 - T_2)}{\ell}$$
$$k\left(\frac{A}{t}\right)(T_1 - T_2)$$

$$\frac{Q'}{t} = \frac{k(\frac{A}{4})(T_1 - T_2)}{4\ell} = \frac{1}{16} \frac{kA(T_1 - T_2)}{\ell}$$

$$\Rightarrow Q' = \frac{Q}{16}$$

Sol.12  $(m) \longrightarrow 2$  (2m)  $(m) \longrightarrow v_1$   $(2m) \longrightarrow v_2$ 

Initial condition Final condition

By conservation of linear momentum : 
$$2m = mv_1 + 2mv_2$$
  $\Rightarrow v_1 + 2v_2 = 2$ 

by definition of e : 
$$e = \frac{1}{2} = \frac{v_2 - v_1}{2 - 0}$$

$$\Rightarrow$$
  $\mathbf{v}_2 - \mathbf{v}_1 = 1$   $\Rightarrow$   $\mathbf{v}_1 = 0$  and  $\mathbf{v}_2 = 1 \text{ms}^{-1}$ 

Sol.13 Wave velocity =  $n\lambda = \omega A$  $\Rightarrow \lambda = \frac{\omega A}{n} = \frac{\omega A}{\underline{\omega}} = 2\pi A$ 

Sol.14 
$$\overrightarrow{v} = \overrightarrow{u} + \overrightarrow{at} = (3\hat{i} + 4\hat{j}) + (0.4\hat{i} + 0.3\hat{j}) (10)$$
  
=  $7\hat{i} + 7\hat{j}$ 

So speed = 
$$|\overrightarrow{v}| = 7\sqrt{2} \text{ ms}^{-1}$$

**Sol.15** Power = Fv =  $v \left(\frac{m}{t}\right) v = v^2 (\rho A v)$ =  $\rho A v^3 = (100)(2)^3 = 800 \text{ W}$ 

**Sol.16** B = 
$$\frac{\mu_0 I}{2R} = \frac{\mu_0}{2R} \left(\frac{q}{t}\right) = \frac{\mu_0 q f}{2R}$$

Sol.18 
$$x = \frac{1}{t+5}$$
  $\Rightarrow v = \frac{dx}{dt} = -\frac{1}{(t+5)^2}$   
Acceleration,  $a = \frac{dv}{dt} = \frac{2}{(t+5)^3}$   
 $\Rightarrow a \propto (\text{velocity})^{3/2}$ 

Sol.19 
$$\phi = (B)(\pi r^2) \Rightarrow e = \frac{d\phi}{dt} = (B)(2\pi r) \left(\frac{dr}{dt}\right)$$
  
=  $(0.025)(2\pi)(2 \times 10^{-2})(10^{-3}) = \pi \mu V$ 

**Sol.20** 
$$N = N_0 e^{-\lambda t} \Rightarrow \frac{N_0}{e} = N_0 e^{-\lambda(5)} \Rightarrow \lambda = \frac{1}{5}$$
  
Now  $\frac{N_0}{2} = N_0 e^{-\lambda(t)} \Rightarrow t = \frac{1}{\lambda} \ln 2 = 5 \ln 2$ 

**Sol.21** Net external force on system is zero.

Sol.22 
$$\overrightarrow{V}_{cm} = zero$$

$$\overrightarrow{M}$$

$$V_{P} = -\frac{GM}{a/2} - \frac{GM}{a} = -\frac{3GM}{a}$$

**Sol.24**  $R = k\ell_1$  and  $R + X = k\ell_2$ 

Sol.25 The frequency of the piano string may be 508 or 516 Hz.

As frequency  $\propto \sqrt{\text{Tension}}$  so answer will be 508 Hz.

$$\overrightarrow{f} \qquad \overrightarrow{d} \Rightarrow \overrightarrow{f} = \overrightarrow{d} + \overrightarrow{e}$$

Sol.27 Let required resistance be R then  $(R + R_g)I_g = V \implies (R + 100) (30 \times 10^{-3}) = 30$  $\implies R = 900\Omega$ 

**Sol.28** Here friction force provides centripetal force so  $f = m\omega^2 r$  but  $f \le \mu mg$ 

So 
$$m\omega^2 r \le \mu mg \implies r \le \frac{\mu g}{\omega^2}$$

**Sol.30** 
$$E_n = -13.6 \left( \frac{Z^2}{n^2} \right) = (-13.6) \left( \frac{4}{4} \right) = -13.6 \text{ eV}$$

Sol.31 
$$\left[\frac{1}{2} \in_0 E^2\right] = [\text{Energy Density}]$$
  
=  $\frac{ML^2T^{-2}}{L^3} = ML^{-1}T^{-2}$ 

Sol.32 
$$m = ZIt = Z\left(\frac{P}{V}\right)t$$
  
=  $(0.367 \times 10^{-6})\left(\frac{100 \times 10^{3}}{125}\right)(60)$ 

=  $17.61 \times 10^{-3}$  kg Sol.33 Let distance of man from the floor be (10 +

x)m. As centre of mass of system remains at 10m above the floor. So  $50(x) = 0.5(10) \implies x = 0.1 \text{ m}$ 

So 
$$50(x) = 0.5(10) \implies x = 0.1 \text{ m}$$
  
 $\implies$  distance of the man above the floor = 10 + 0.1

= 10.1 m

Sol.34 
$$\frac{1}{2}$$
 mv<sup>2</sup> =  $\frac{(Ze)(2e)}{4\pi \in_0 d_{min.}}$  then  $d_{min.} \propto \frac{1}{m}$ 

**Sol.35** 
$$f' = f \& Intensity \propto Area so I' = I - \frac{I}{4} = \frac{3I}{4}$$

**Sol.36**  $\Delta Q = \Delta U + \Delta W$  In adiabatic process  $\Delta Q = 0$ 

**Sol.37** Total radiant energy per unit area

$$=\frac{\sigma(4\pi r^2)T^4}{4\pi R^2}=\frac{\sigma r^2T^4}{R^2}$$

**Sol.38** 
$$V_3 = 220 \text{ volt}, I = \frac{220}{100} = 2.2 \text{A}$$

**Sol.39** 
$$\eta = \frac{V_S I_S}{V_P I_P} = 0.8 \Rightarrow I_P = \frac{(440)(20)}{(0.8)(200)} = 5A$$

**Sol.40** 
$$\frac{\text{Power of S}_2}{\text{Power of S}_1} = \frac{n_2 \left(\frac{\text{hc}}{\lambda_2}\right)}{n_1 \left(\frac{\text{hc}}{\lambda_1}\right)} = \frac{n_2 \lambda_1}{n_1 \lambda_2} = 1$$

**Sol.41** Voltage gain = 
$$\beta \left( \frac{R_{out}}{R_{in}} \right)$$

$$\Rightarrow \beta = \frac{50 \times 100}{200} = 25$$

Power gain =  $\beta$ (Voltage gain)

$$=(25)(50)=1250$$

Sol.42 
$$T = 2\pi \sqrt{\frac{I}{MB_H}}$$
,  $T' = 2\pi \sqrt{\frac{I}{M(B_H - B)}}$   
 $\Rightarrow T' = 2T = 4s$ 

Sol.43 
$$q \bullet d \longrightarrow q$$

$$F = \frac{(ne)^2}{4\pi \in_0 d^2} \Rightarrow n = \sqrt{\frac{4\pi \in_0 Fd^2}{e^2}}$$

Sol.44 hv = 
$$\phi_0$$
 + eV<sub>0</sub> where hv =  $\frac{12400}{2000}$  = 6.2 eV  
 $\Rightarrow$  V<sub>0</sub> = 6.2 - 5.01 = 1.19  $\approx$  1.20 V

**Sol.45** Here  $\stackrel{\rightarrow}{E} \perp$  Area Vector

**Sol.46** 
$$\frac{1}{2} \left( \frac{C_1}{n_1} \right) (4V)^2 = \frac{1}{2} (n_2 C_2) \Rightarrow C_2 = \frac{16C_1}{n_1 n_2}$$

**Sol.48** Net force on loop is zero.

**Sol.50** 
$$Y = (A + B).C$$

**Sol.51** Given 
$$-\frac{-d[N_2O_5]}{dt} = 6.25 \times 10^{-3} \text{ mol L}^{-1} \text{ s}^{-1}$$

For the reaction

$$N_2O_5 \rightarrow 2NO_2 + \frac{1}{2}O_2$$

$$\frac{-d[N_2O_5]}{dt} = \frac{1}{2} \frac{d[NO_2]}{dt} = \frac{2d[O_2]}{dt}$$

$$\therefore \frac{d[NO_2]}{dt} = -\frac{2d[N_2O_5]}{dt} = 1.25 \times 10^{-2} \text{mol L}^{-1} \text{ s}^{-1}$$

$$\therefore \frac{d[O_2]}{dt} = -\frac{1}{2} \frac{d[N_2 O_5]}{dt}$$
= 3.125 10<sup>-3</sup> mol L<sup>-1</sup> s<sup>-1</sup>

**Sol.58** At 25 C pH + pOH = 14

$$\therefore \quad \text{pOH} = 2$$

$$\therefore$$
 [OH] =  $10^{-2}$  M

Now Let solulity of Ba(OH)<sub>2</sub> be S

$$Ba(OH)_2 \rightarrow Ba^{+2} + 2OH^{-2}$$

$$[OH^-] = 2s = 10^{-2}$$

[Solubility of Ba(OH)<sub>2</sub>] 
$$S = \frac{10^{-2}}{2} = 5 \times 10^{-3} \text{ mol/L}$$

Now Ksp for Ba(OH)<sub>2</sub> = 
$$4s^3$$

$$= 4 \times (5 \times 10^{-3})^3 = 5 \times 10^{-7} \,\mathrm{M}^3$$

**Sol.62** For acidic buffer solution

$$[H^{+}] = \frac{\text{Ka}[\text{CH}_{3}\text{COOH}]}{[\text{CH}_{3}\text{COO}^{-}]}$$

$$= \frac{1.8 \times 10^{-5} \times 0.10}{0.20} = 9 \times 10^{-6} \text{ M}$$

**Sol.65** 
$$2Ag^{+} + Cu \rightarrow 2Ag + Cu^{2+}$$
  
  $n = 2$ 

$$\Delta G = - nFE_{cell}$$

$$\Delta G = -2 \times 96500 \times 0.46 \text{ Joul}$$

$$\Delta G = -88.78 \text{ kJ} \simeq -89 \text{ kJ}$$

**Sol.70** According to raoults law

 $P_s = PX_A$  ( $X_A =$  mole fraction of solvent) and on addition of water the mole fraction of

water in the solution increases therefore vapour pressure increases.

**Sol.80** Molarity (M) = 
$$\frac{\text{wt}}{\text{mol.wt.}} \frac{1000}{\text{vol(ml)}}$$

$$=\frac{25.3}{106}\times\frac{1000}{250}$$

= 
$$.955 \text{ mol/L of Na}_2 \text{ CO}_3$$

and 
$$Na_2CO_3 \rightarrow 2Na^+ + CO_3^{-2}$$

therefore 
$$[Na^+] = 2 \times 0.955 = 1.910 \text{ M}$$

$$[CO_3^{-2}] = 0.955 \text{ M}$$

Sol.81 For acidic buffer solution

$$pH = pKa + log \frac{[Salt]}{[Acid]}$$

Given 
$$[B^-] = [HB]$$

and 
$$K_b$$
 for  $B^- = 10^{-10}$ 

So 
$$K_a = 10^{-4}$$
 for HB

$$pH = pka = 4$$

**Sol.84** For order of A:

By run I & IV

[B] remain same but

[A] increases 4 times and rate of reaction also

becomes 4 times

: order w.r.t. A is 1

for order of B

By Run III & III

[A] remains same but

[B] becomes 2 times and rate of reaction

becomes 4 times

: order w.r.t. B is 2

 $\therefore$  rate =  $K[A]^1 [B]^2$ 

**Sol.88**  $\Delta S = \Sigma S_P - \Sigma S_R$ 

$$\Delta S = 50 - \left(\frac{1}{2} \times 60 + \frac{3}{2} \times 40\right)$$

$$\Delta S = -40 \quad JK^{-1} \ mol^{-1}$$

$$\Delta G = \Delta H - T \Delta S$$

at Equilibrium  $\Delta G = 0$ 

$$T = \frac{\Delta H}{\Delta S} = \frac{-30 \times 10^3}{-40}$$

$$T = 750 \text{ K}$$

Sol.97 For BCC

$$r^+ + r^- = \frac{\sqrt{3}a}{2}$$

$$\therefore \qquad r^+ + r^- = \frac{\sqrt{3} \times 387}{2} \text{ pm}$$

$$= 335.14 \text{ pm} \approx 335 \text{ pm}$$