1 Let $q \ge 2$ be a prime number. Recall the equivalence relation on \mathbb{Z} defined as follows: for $m, n \in \mathbb{Z}$, we write $m \sim n$ if $q \mid (m-n)$. For $n \in \mathbb{Z}$, denote by C(n) the equivalence class of n. Let $\mathbb{Z}/q\mathbb{Z}$ denote the set of equivalence classes. Define addition and multiplication on $\mathbb{Z}/q\mathbb{Z}$ as follows:

$$C(n) + C(m) = C(n+m)$$
 and $C(n) \cdot C(m) = C(nm)$.

- a. Prove that addition and multiplication are well defined, that is, the result is independent of the representatives chosen from the equivalence classes.
- b. Verify that with these operations $\mathbb{Z}/q\mathbb{Z}$ is a field.
- c. Show that there is no order relation on $\mathbb{Z}/q\mathbb{Z}$ that makes it an ordered field.

Solution a. Let $a, a' \in C(n)$ and $b, b' \in C(m)$.

We wish to show that $a+b \sim a'+b'$. By definition, we have a-a'=qc for $c \in \mathbb{Z}$ and b-b'=qd for $d \in \mathbb{Z}$. Adding the equalities yields a+b-(a'+b')=q(c+d). Since the integers are closed under addition, $c+d \in \mathbb{Z}$, so by definition, $a+b \sim (a'+b')$.

We now wish to show that $a \cdot b \sim a' \cdot b'$. Once again, by definition, $a - a' = qc \implies a = a' + qc$ and $b - b' = qd \implies b = b' + qd$. Then

$$ab - a'b' = (a' + qc)(b' + qd) - a'b' = a'b' + a'qd + b'qc + q^2cd - a'b' = q(a'd + b'c + qcd).$$

 $a'd + b'c + qcd \in \mathbb{Z}$, so by definition, $ab \sim a'b'$ as desired.

- b. Let $l, m, n \in \mathbb{Z}$.
 - (A1) C(n) + C(m) = C(n+m). $n+m \in \mathbb{Z}$ since \mathbb{Z} is closed under addition. So, $\mathbb{Z}/q\mathbb{Z}$ is also closed under addition.
 - (A2) C(n) + C(m) = C(n+m) = C(m+n) = C(m) + C(n)
 - (A3) C(n) + [C(m) + C(l)] = C(n) + C(m+l) = C(n+(m+l)) = C((n+m)+l) = C(n+m) + C(l) = [C(n) + C(m)] + C(l)
 - (A4) 0 = C(0) is the identity: C(n) + 0 = C(n) + C(0) = C(n+0) = C(n).
 - (A5) Given C(n), its inverse is -C(n) = C(-n). C(n) C(n) = C(n) + C(-n) = C(n-n) = C(0) = 0.
 - (M1) $C(n) \cdot C(m) = C(nm)$. $nm \in \mathbb{Z}$ since \mathbb{Z} is closed under multiplication. So, $\mathbb{Z}/q\mathbb{Z}$ is also closed under multiplication.
 - (M2) $C(n) \cdot C(m) = C(nm) = C(mn) = C(m) \cdot C(n)$.
 - (M3) $C(n) \cdot [C(m) \cdot C(l)] = C(n) \cdot C(ml) = C(n(ml)) = C((nm)l) = C(nm) \cdot C(l) = [C(n) \cdot C(m)] \cdot C(l)$.
 - (M4) 1 = C(1) is an identity. $C(n) \cdot 1 = C(n1) = C(n)$.
 - (M5) An inverse for any element C(n) of $\mathbb{Z}/q\mathbb{Z}$ can be found using the Euclidean algorithm since q and n must be coprime.
 - (D) $C(n) \cdot [C(m) + C(l)] = C(n) \cdot C(m+l) = C(n(m+l)) = C(nm+nl) = C(nm) + C(nl) = C(n) \cdot C(m) + C(n) \cdot C(l)$

Thus all the axioms hold, so $\mathbb{Z}/q\mathbb{Z}$ is a field.

c. Suppose we have an order relation < on $\mathbb{Z}/q\mathbb{Z}$ that makes it an ordered field. Note that $q \sim 0$, so C(q) = C(0).

From a proposition proved in class, we have $1>0 \implies C(1)>C(0)$. Then by adding the inequality to itself q times, we have $C(1)+C(1)+\cdots+C(1)=C(q)>C(0)$. But C(q)=C(0), which is a contradiction. Hence, there is no order relation such that $\mathbb{Z}/q\mathbb{Z}$ is an ordered field.

2 Define two internal laws of composition on $R = \mathbb{R} \times \mathbb{R}$ as follows:

$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$$

 $(a_1, a_2) \cdot (b_1, b_2) = (a_1b_1 - a_2b_2, a_1b_2 + a_2b_1).$

- a. Show that with these operations \mathbb{R} is a field.
- b. Show that there is no order relation on R that makes R an ordered field.

Solution a. Let $(a_1, a_2), (b_1, b_2), (c_1, c_2) \in R$. This proof will make heavy use of the fact that \mathbb{R} is a field.

- (A1) $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$. $a_1, b_1, a_2, b_2 \in \mathbb{R}$, so the sum of the tuples is in R.
- (A2) $(a_1, a_2) = (b_1, b_2) = (a_1 + b_1, a_2 + b_2) = (b_1 + a_1, b_2, a_2) = (b_1, b_2) + (a_1 + a_2)$
- (A3) $(a_1, a_2) + [(b_1, b_2), (c_1, c_2)] = (a_1, a_2) + (b_1 + c_1, b_2 + c_2) = (a_1 + (b_1 + c_1), a_2 + (b_2 + c_2)) = ((a_1 + b_1) + c_1, (a_2 + b_2) + c_2) = (a_1 + b_1, a_2 + b_2) + (c_1, c_2) = [(a_1, a_2) + (b_1, b_2)] + (c_1, c_2)$
- (A4) 0 = (0,0) is the identity of the field.
- (A5) $-(a_1, a_2) = (-a_1, -a_2)$ is the inverse of an element in the field.
- (M1) $(a_1, a_2) \cdot (b_1, b_2) = (a_1b_1 a_2b_2, a_1b_2 + a_2b_1)$. $a_1, b_1, a_2, b_2 \in \mathbb{R}$, so the field is closed under the defined multiplication.
- $(M2) (a_1, a_2) \cdot (b_1, b_2) = (a_1b_1 a_2b_2, a_1b_2 + a_2b_1) = (b_1a_1 b_2a_2, b_2a_1 + b_1a_2) = (b_1, b_2) \cdot (a_1, a_2).$

$$\begin{aligned} (\text{M3}) \ \ &(a_1,a_2) \cdot [(b_1,b_2) \cdot (c_1,c_2)] = (a_1,a_2) \cdot (b_1c_1 - b_2c_2,b_1c_2 + b_2c_1) \\ &= (a_1(b_1c_1 - b_2c_2) - a_2(b_1c_2 + b_2c_1), a_1(b_1c_2 + b_2c_1) + a_2(b_1c_1 - b_2c_2)) \\ &= ((a_1b_1 - a_2b_2)c_1 - (a_1b_2 + a_2b_1)c_2, (a_1b_1 - a_2b_2)c_2 + (a_1b_2 - a_2b_2)c_2) \\ &= (a_1b_1 - a_2b_2, a_1b_2 + a_2b_1) \cdot (c_1, c_2) \\ &= [(a_1,a_2) \cdot (b_1,b_2)] \cdot (c_1,c_2) \end{aligned}$$

- (M4) (1,0) is the multiplicative identity of the field.
- (M5) $\left(\frac{a}{\sqrt{a^2+b^2}}, -\frac{b}{\sqrt{a^2+b^2}}\right)$ is the multiplicative inverse of an element of the field.

$$\begin{aligned} \text{(D)} \ \ (a_1,a_2)\cdot [(b_1,b_2)+(c_1,c_2)] &= (a_1,a_2)\cdot (b_1+c_1,b_2+c_2) \\ &= (a_1(b_1+c_1)-a_2(b_2+c_2),a_1(b_2+c_2)+a_2(b_1+c_1)) \\ &= (a_1b_1-a_2b_2+a_1c_1-a_2c_2,a_1b_2+a_2b_1+a_1c_2+a_2c_1) \\ &= (a_1b_1-a_2b_2,a_1b_2+a_2b_1)+(a_1c_1-a_2c_2,a_1c_2+a_2c_1) \\ &= (a_1,a_2)\cdot (b_1,b_2)+(a_1,a_2)\cdot (c_1,c_2) \end{aligned}$$

Thus, R is a field with these operations.

b. Suppose there is an order relation < on R such that it becomes an ordered field. Then we must have $1 > 0 \implies (1,0) > (0,0) \implies (-1,0) < (0,0)$. The multiplicative inverse of (0,1) is (0,-1), which is also its additive inverse. Then we have either (0,1) < 0 < (0,-1) or (0,-1) < 0 < (0,1). In both cases, we have a contradiction, because according to a proposition we proved, $0 < (0,1) \implies 0 < (0,1)^{-1}$. But (0,1) and its additive inverse have different signs, so no matter what order relation we impose on R, it will never be an ordered field.

3 Show that if a sequence $\{a_n\}_{n\in\mathbb{N}}$ of real numbers converges to a, then the sequence $\{|a_n|\}_{n\in\mathbb{N}}$ converges to |a|. Show (via an example) that the converse is not true.

Solution We first prove a lemma: $|x| - |y| \le |x - y|$. From the triangle inequality, we have

$$|x - y + y| \le |x - y| + |y|$$

 $|x| \le |x - y| + |y|$
 $|x - y| \ge |x| - |y|$

Then consider |x| - |y|. If $|x| - |y| \ge 0$, then $|x| - |y| = |x| - |y| \le |x - y|$. Otherwise, $|x| - |y| = |y| - |x| \le |y - x| = |x - y|$. Thus, in either case, $|x| - |y| \le |x - y|$.

We now apply the lemma to the problem.

Let $\epsilon > 0$. We wish to find $N \in \mathbb{N}$ such that $||a| - |a_n|| < \epsilon$ for all n > N.

Since $\{a_n\}$ converges to a, we can find $N_0 \in \mathbb{N}$ such that for all $n \geq N_0$, we have $|a - a_n| < \epsilon$. By our lemma, we have

$$||a| - |a_n|| \le |a - a_n| < \epsilon.$$

Thus, if we take $N = N_0$, then for all n > N, we have $||a| - |a_n|| < \epsilon$ for all $\epsilon > 0$. Hence, $\{|a_n|\}_{n \in \mathbb{N}}$ converges to |a|.

The converse to the statement is that if the sequence $\{|a_n|\}_{n\in\mathbb{N}}$ converges to |a|, then $\{a_n\}_{n\in\mathbb{N}}$ converges to a. A simple counterexample is the sequence $\{a_n\}_{n\in\mathbb{N}}$ where $a_n=(-1)^n$. $\{|a_n|\}_{n\in\mathbb{N}}$ converges to 1, but $\{a_n\}_{n\in\mathbb{N}}$ does not converge.

4 Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of rational numbers defined as follows:

$$a_1 = 1$$
 and $a_{n+1} = a_n + \frac{1}{3^n}$ for all $n \ge 1$.

Show that the sequence $\{a_n\}_{n\in\mathbb{N}}$ converges and find its limit.

Solution We will prove by induction that $a_n = \frac{1}{3^0} + \frac{1}{3^1} + \frac{1}{3^2} + \frac{1}{3^3} + \cdots + \frac{1}{3^{n-1}}$ for $n \ge 1$.

Base step:

 $a_1 = 1 = \frac{1}{30}$, so the base step holds.

Inductive step:

Suppose $a_n = \frac{1}{3^0} + \frac{1}{3^1} + \frac{1}{3^2} + \frac{1}{3^3} + \cdots + \frac{1}{3^{n-1}}$. Then we wish to show that $a_{n+1} = \frac{1}{3^0} + \frac{1}{3^1} + \frac{1}{3^2} + \frac{1}{3^3} + \cdots + \frac{1}{3^{n-1}} + \frac{1}{3^n}$. By the definition of the given sequence,

$$a_{n+1} = a_n + \frac{1}{3^n} = \left(\frac{1}{3^0} + \frac{1}{3^1} + \frac{1}{3^2} + \frac{1}{3^3} + \dots + \frac{1}{3^{n-1}}\right) + \frac{1}{3^n}$$
$$= \frac{1}{3^0} + \frac{1}{3^1} + \frac{1}{3^2} + \frac{1}{3^3} + \dots + \frac{1}{3^{n-1}} + \frac{1}{3^n}$$

Thus, the inductive step holds.

Taking both steps and invoking the principle of mathematical induction, we can conclude that $\forall n \geq 1$, $a_n = \frac{1}{3^0} + \frac{1}{3^1} + \frac{1}{3^2} + \frac{1}{3^3} + \cdots + \frac{1}{3^{n-1}}$.

Notice that

$$\frac{1}{3}a_n = \frac{1}{3^1} + \frac{1}{3^2} + \frac{1}{3^3} + \dots + \frac{1}{3^{n-1}} + \frac{1}{3^n} = a_n - \frac{1}{3^0} + \frac{1}{3^n}$$
$$\frac{2}{3}a_n = 1 - \frac{1}{3^n}$$
$$a_n = \frac{1 - \frac{1}{3^n}}{\frac{2}{3}} = \frac{3 - \frac{1}{3^{n-1}}}{2}$$

We now wish to show that $\{a_n\}_{n\in\mathbb{N}}$ converges to $\frac{3}{2}$. If the limit exists, then for any $\epsilon>0$, we can find $N\in\mathbb{N}$ such that for all $n\geq N$, $\left|\frac{3-\frac{1}{3^n-1}}{2}-\frac{3}{2}\right|<\epsilon$. Let $N=\max\{1-\log_3\epsilon,1\}$.

If $\epsilon < 1$, then for all $n \ge N = 1 - \log_3 \epsilon \implies \frac{1}{3^{n-1}} \le \epsilon$, we have

$$\left| \frac{3 - \frac{1}{3^{n-1}}}{2} - \frac{3}{2} \right| = \left| \frac{1}{3^{n-1}} \right| = \left| \frac{1}{2(3^{n-1})} \right| < \left| \frac{1}{3^{n-1}} \right| \le \epsilon$$

Thus, by definition, $\{a_n\}_{n\in\mathbb{N}}$ converges to $\frac{3}{2}$.

- **5** Let $\{a_n\}_{n\geq 1}$ and $\{b_n\}_{n\geq 1}$ be two sequences of real numbers such that $\{a_n\}_{n\geq 1}$ is bounded and $\{b_n\}_{n\geq 1}$ converges to 0. Show that the sequence $\{a_nb_n\}_{n\geq 1}$ converges to 0.
- Solution Since $\{a_n\}_{n\geq 1}$ is bounded, then there exist real numbers a and A such that $a\leq a_n\leq A\leq |A|$ for all $n\geq 1$. If we multiply the inequality by -1, we get $-A\leq -a_n\leq -a\leq |a|$. If $|A|\geq |a|$ then $a_n\leq |A|$ and $-a_n\leq |A|\Longrightarrow |a_n|\leq |A|$. Otherwise, we can apply the same argument but with |A| and |a| switched, and end up with $|a_n|\leq |a|$. Thus, $a_n\leq \max\{|A|,|a|\}$. Let $M=\max\{|A|,|a|\}$. Since both |A| and |a| are non-negative, M=|M|. Then we have two cases:

M=0:

We have $|a_n| \le 0 \implies a_n = 0$ for all $n \ge 1$. Thus, $a_n b_n = 0$ for all $n \ge 1$. Then the sequence $\{a_n b_n\}_{n \ge 1}$ obviously converges to 0.

 $M \neq 0$:

Let $\epsilon > 0$. We wish to find that $N \in \mathbb{N}$ such that $|a_n b_n - 0| = |a_n b_n| < \epsilon$ for all $n \ge N$. Since $\{b_n\}_{n \ge 1}$ converges to 0, we can find $N_b \in \mathbb{N}$ such that if $n \ge N_b$, then $|b_n - 0| = |b_n| < \frac{\epsilon}{M}$. Thus,

$$|a_n b_n| = |a_n||b_n| \le |M||b_n| < M\frac{\epsilon}{M} = \epsilon.$$

If we let $N = N_b$, then we have shown that for an arbitrary $\epsilon > 0$, we have $|a_n b_n - 0| < \epsilon$ for all $n \ge N$. Thus, $\{a_n b_n\}_{n \ge 1}$ converges to 0.

In all cases, $\{a_nb_n\}_{n\geq 1}$ converges to 0 as desired.

6 Let $\{a_n\}_{n\geq 1}$, $\{b_n\}_{n\geq 1}$, and $\{c_n\}_{n\geq 1}$ be three convergent sequences of real numbers such that

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n \quad \text{and} \quad a_n \le b_n \le c_n \text{ for all } n \ge 1.$$

Show that $\lim_{n\to\infty} b_n = \lim_{n\to\infty} a_n$.

Solution We will first prove a lemma: $|x| < y \iff -y < x < y$ for some y > 0. We will prove the \implies direction first.

Let |x| < y. Then there are two cases:

x > 0:

If $x \ge 0$, then x = |x|. Thus, |x| = x < y.

x < 0:

If x < 0, then |x| = -x. So, $|x| = -x < y \implies -y < x$.

Combining the inequalities, we have $|x| < y \implies -y < x < y$. We now prove the \iff direction.

Let -y < x < y. Once again, we break this into two cases.

 $x \ge 0$:

Then |x| = x. So, -y < |x| < y.

x < 0:

Then x < 0 < -x = |x|. Thus, -y < x < |x| < y.

In both cases, |x| < y, as desired.

Let $L = \lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n$. Then for some $\epsilon > 0$, we can find $N \in \mathbb{N}$ such that for all $n \geq N$,

$$|a_n - L| < \epsilon \implies -\epsilon < a_n - L < \epsilon \implies L - \epsilon < a_n < L + \epsilon$$

$$|c_n - L| < \epsilon \implies -\epsilon < c_n - L < \epsilon \implies L - \epsilon < c_n < L + \epsilon$$

Then,

$$L - \epsilon < a_n \le b_n \le c_n < L + \epsilon$$

$$L - \epsilon < b_n < L + \epsilon$$

$$-\epsilon < b_n - L < \epsilon$$

$$|b_n - L| < \epsilon$$

Thus, given an arbitrary $\epsilon > 0$, we can find $N \in \mathbb{N}$ such that for all $n \geq N$, $|b_n - L| < \epsilon$. Therefore, $\{b_n\}_{n \geq 1}$ converges to L, so by definition, $\lim_{n \to \infty} b_n = L = \lim_{n \to \infty} a_n$.

7 Prove that

$$\lim_{n \to \infty} \sqrt{4n^2 + n} - 2n = \frac{1}{4}.$$

Solution Let $\epsilon > 0$. We wish to find $N \in \mathbb{N}$ such that whenever $n \ge N$, we have $\left| \sqrt{4n^2 + n} - 2n - \frac{1}{4} \right| < \epsilon$. Let $N = \frac{1}{\epsilon}$. Then if $n \ge N = \frac{1}{\epsilon} \implies \epsilon \ge \frac{1}{n}$, we have

$$\left| \sqrt{4n^2 + n} - 2n - \frac{1}{4} \right| = \left| \frac{4n^2 + n - 4n^2 - n - \frac{1}{16}}{\sqrt{4n^2 + n} + 2n + \frac{1}{4}} \right| = \left| \frac{1}{16\sqrt{4n^2 + n} + 32n + 4} \right|$$

$$\leq \left| \frac{1}{16\sqrt{4n^2}} \right|$$

$$< \left| \frac{1}{n} \right| \leq \epsilon$$

Thus, by definition, $\lim_{n\to\infty} \sqrt{4n^2+n} - 2n = \frac{1}{4}$.

- **8** Let $\{a_n\}_{n\geq 1}$ be a convergent sequence of real numbers.
 - a. Show that if for all but finitely many a_n we have $a_n \ge a$, then $\lim_{n\to\infty} a_n \ge a$.
 - b. Show that if for all but finitely many a_n we have $a_n \leq b$, then $\lim_{n \to \infty} a_n \leq b$.
 - c. Conclude that if all but finitely many a_n belong to the interval [a, b], then $\lim_{n\to\infty} a_n \in [a, b]$.
- **Solution** a. Let A be the set of the values of i such that $a_i < a$. Since A has finitely many elements, we can find its largest value. Let $N_1 = \max A$. Then if $n \ge N_1$, we have $a_n \ge a$. Let $\lim_{n\to\infty} a_n = L$. Since the limit exists, then for any $\epsilon > 0$, we can find $N_2 \in \mathbb{N}$ such that if $n \ge N_2$, we have $|a_n L| < \epsilon$. Let $N = \max\{N_1, N_2\}$. Suppose $L < a \implies a L > 0$. Let $\epsilon = a L$. If $n \ge N$, then by the lemma proved in problem (6), we have

$$|a_n - L| < \epsilon \implies a \le a_n < L + \epsilon = L + a - L = a$$

We have a contradiction, since a cannot be less than itself. Thus, we must have $L \geq a$.

b. The argument is similar to the above, but with a and b switched, as well as some inequality signs. The difference is the assumption: Suppose $L > b \implies L - b > 0$. Then let $\epsilon = L - b$. If $n \ge N = \max\{N_1, N_2\}$, then by the lemma in problem (6), we have

$$|a_n - L| < \epsilon \implies -\epsilon + L = b - L + L = b < a_n < b$$

Once again, we have a contradiction as b cannot be less than itself. Thus, we must have $L \leq b$.

- c. Taking parts (a) and (b) together, we have that if all but finitely many a_n belong to the interval $[a,b] \iff a \leq a_n \leq b$, then $a \leq \lim_{n \to \infty} a_n \leq b \iff \lim_{n \to \infty} a_n \in [a,b]$.
- **9** Let $\{a_n\}_{n\geq 1}$ be a convergent sequence of real numbers and let $a\in\mathbb{R}$ such that $\lim_{n\to\infty}a_n>a$. Show that there exists $n_0\in\mathbb{N}$ such that $a_n>a$ for all $n\geq n_0$.

Solution Let $\lim_{n\to\infty} a_n = L > a$. As the limit exists, then for any $\epsilon > 0$, we can find $n_0 \in \mathbb{N}$ such that $|a_n - L| < \epsilon$ whenever $n \ge n_0$. Let $\epsilon = |L - a| = L - a$. Then for all $n \ge n_0$, we have by the lemma proved in problem (6) that

$$|a_n - L| < \epsilon \implies -\epsilon < a_n - L \implies L - \epsilon = L - L + a = a < a_n$$

as desired.