

ط**راحی کامپایلر** ساری سوم تمرین سری سوم

١

برای تعیین وضعیت Symbol Table و Scope Stack در هنگام اجرای خطوط ۷ و ۱۱، باید جریان اجرای برنامه را مدل کنیم. در اینجا فرض میکنیم اجرای برنامه از خط ۱ شروع میشود.

ابتدا، یک جدول نمادها Table Symbol و یک پشته محدوده Stack Scope ایجاد میکنیم.

Symbol Table:

Scope	l Type		Name	ı
-				-
l A	integer	1	i	١
A	integer	1	j	
A	procedure	1	В	
l B	real	1	a	
l B	procedure	1	C	
l C	integer	1	k	
l C	real	1	b	
A	procedure	1	D	
l D	integer	-	1	
l D	procedure	1	E	
l E	l real	1	d	ı

Scope Stack: Global, A

حالت اجرا: ۱. خط ۷: برای اجرای این خط، ابتدا باید متغیرهای مورد نیاز و محدوده آنها در جدول نمادها و پشته محدوده چک شود. بررسی نشان می دهد که متغیر a در محدوده a و متغیر a در محدوده a و متغیر a در محدوده کو د دارند. بنابراین، اجرای این خط بدون مشکل ادامه می یابد. Scope Stack: Global, a, a, a

- Scope 'C': 'k', 'c' - Scope 'B': 'a', 'b'

- Scope 'A': 'i', 'j'

۲. خط ۱۱: برای اجرای این خط، نیاز به تغییر مقدار متغیر I در محدوده D است. به ترتیب، باید متغیرها و محدودهها در جدول نمادها و پشته محدوده چک شوند. متغیرهای i و j در محدوده i و متغیر i در محدوده i و متغیر i در محدوده i و متغیرهای این خط بدون مشکل ادامه می یابد.

بنابراین، وضعیت Symbol Table و Scope Stack بعد از اجرای خطوط ۷ و ۱۱ به شرح زیر است:

Symbol Table:

	Scope	1	Туре	1	Name
-					
	Α	-	integer	1	i
1	A		integer		jΙ
1	Α	pr	ocedure		В
	В		real		a
	В	pr	ocedure		Cl
1	C		integer		k
	C		real		ъ
	A	pr	ocedure		DΙ
1	D		integer		1
1	D	pr	ocedure		Εl
	E	1	real	-	d

۲

در قطعه کد زیر، چهار خطا رخ میدهد:

- ۱. خطا ۱: خطا در خط ۸ نوع خطا: خطای دسترسی به متغیر در این خط، متغیر j در محدوده j تعریف شده است، اما در دستوسی به متغیر j در محدوده j تعریف شده است. بنابراین، دسترسی به متغیر j از محدوده نادرست است. یک خطای dynamic است.
- ۲. خطا ۲: خطا در خط ۱۰ نوع خطا: تکرار نام متغیر در خط ۱۰، متغیر 1 به عنوان ورودی تابع C تعریف شده است، اما در خط ۱۰ نیز متغیری با نام 1 تعریف شده است. این تکرار نام متغیر باعث ایجاد خطای تعریف متغیر می شود. یک خطای static است.
- ۳. خطا ۳: خطا در خط ۱۳ نوع خطا: خطای دسترسی به آرایه در خط ۱۳، متغیر j به عنوان اندیس آرایه a استفاده شده است، اما متغیر j هنوز مقداردهی نشده است. این باعث ایجاد خطای دسترسی به آرایه می شود. یک خطای static است ولی اگر آن را یک runtime check در نظر بگیریم، dynamic خواهد بود
- ۴. خطا ۴: خطا در خط ۱۴ نوع خطا: خطای تقسیم بر صفر در خط ۱۴، دستور ۳/i =: k وجود دارد. اما مقدار متغیر i برابر با صفر است. بنابراین، تقسیم بر صفر انجام می شود که باعث خطای dynamie است.

٣

برای گرامر زیر:

- 1. $S \rightarrow G x$
- 2. $S \rightarrow y G z$
- 3. $S \rightarrow H z$
- 4. $S \rightarrow y H x$
- 5. $G \rightarrow w$
- 6. $H \rightarrow w$

۱. جدول :LR

۲. جدول :LALR

-+·	s I	+ H	1	G		* \$ I	Z	W	1	у	x	-+
 -	I	3		1		 		S5	1	S2		l 0
-+· 	I					R1	R1	R1	1		R1	1
	I		1	4		 	 					1 2
 	 	+	1			R3	R3	R3	1		R3	3
-+·	I					 			1		•	4
	I		1			R5	R5	R5			R5	-+ 5
	 	·		r		 	S7	S5	1		.	-+ 6
-+·	I					R2		R2		 	R2	- + 7

۴

۱. یک گرامر SLR نیست اگر یک conflict از نوع reduce/shift یا reduce/reduce در حین ساختن parsing table داشته باشیم.

State 5: A -> B.y State 9: B -> yB.x

در ۵ state اگر lookahead ما x' 'باشد، امکان shift به استیت ۹ ایجاد میشود یا reduce با توجه به A -> B. این منجر به کمنا conflict است چون follow(B) شامل x' 'است و این وضعیت را مبهم میسازد.

```
follow(S) = \{\$\}
                                                                                                                           ٠٢.
follow(A) = \{\$\}
follow(B) = \{y,x\}
state 2 ( A \rightarrow xx.)
                                                                                                                           .٣
LA: follow(A) = \{\$\}
state 4 (B -> x.)
LA: follow(B) = \{y, x\}
state 6 ( A -> B.y)
LA: follow(A) = \{\$\}
state 7 (B \rightarrow yBx.)
LA: follow(B) = \{x, y\}
 ۴. باید بررسی کنیم که آیا ادغام حالت ها با core یکسان منجر به parsing table در parsing table گرامر مربوطه می شود یا خیر.
                                                                                                       استیت های ۴ و ۷:
                                                                                                هر دو B -> x core دارند.
lookahead 4 = \{x,y\}
lookahead 7 = \{x,y\}
                                                                         هیچ confliet ای در عملیات ادغام وجود ندارد.
پس گرامر LALR است.
```

در استیت ۳ یک conlict داریم اگر x بتواند باعث shift به استیت ۴ بشود و reduce کند B -> x کند

اگر y بتواند هم باعث shift به استیت ۷ شود و هم reduce کند shift

conflict از نوع reduce/shift داریم که باعث به وحود آمدن ابهام در parsing table میشوند. بنابراین ، گرامر ما LR نیست

۵

- 1. عمليات jp به يک مقصد نامشخص انجام ميشود. در linked list مبدا و Lable مربوطه قرار داده ميشود.
 - tmt .۲ تبدیل شده است و مقصد ۲۳ مشخص میشود.
 - ٣. عمليات jp مقصد مشخصي ندارند بنابراين بايد در linked list هم مبدا و ليبل مربوطه را قرار دهيم.
- ۴. عملیات jp مقصد مشخصی ندارد و در linked list مربوط به L۵ که از پیش موجود است. ۳ به مبداها اضافه میشود.
 - ۵. stmt تبدیل شده است و مقصد L۱ مشخص میشود.
 - ۶. stmt تبدیل شده است و مقصد ۱۵ مشخص میشود.
 - p . ۷ به ۲۳ با مقصد مشخص ۱ طبق linked list انجام میشود
 - A. به La با مقصد مشخص ۵ طبق linked list انجام شده است.
- ۹. . ۸ در جدول jp مقصد مشخص ندارد و در linked list مربوط به L۲ که از قبل مشخص است، ۸ به مبداها اضافه میشود.
 - stmt۴ .۱۰ تبدیل شده و در linked list مقصد L۴ را مشخص میکنیم.
 - ip . ۱۱ به L۴ با مقصد مشخص طبق linked list انجام شده به جدول اضافه میشود.
 - انجام شده و به جدول اضافه میشود. p به p با مقصد مشخص p طبق p انجام شده و به جدول اضافه میشود.
 - stmt۵ .۱۳ تبدیل میشود و مقصد L۲ مشخص شده است و در linked list و جدول آپدیت می شود.

در اجرا از خط ۰ به خط ۵ جامپ میکنیم و stmt۳ اجرا میشود. با خواندن خط ۶ به خط ۱ جامپ می کنیم و بنابراین stmt۱ اجرا میشود. به خط ۲ میرویم و به خط ۱۲ جامپ میکنیم. stmt۵ اجرا شده و در نهایت برنامه پایان می یابد.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
2 (jp, ?, .) 3 (jp, 5,) 4 (jp, 5,) 5 (jp, 5,) 6 (jp, 5, ,) 7 (jp, 5, ,) 9 (jp, 4, ,) 10 (jp, 9, ,)	

;	PBD3 + (18,5)	10 15 5
l	Strut 1	T (13) 1 1 /
2	(, UP. 12)	[2 (22/74)
3	(01,5)	
4	Start 2	(3)
5	Stmt3	[[4]
6	(j), 1, ,)	/LA /9/-
A	(18,5,1)	
8	UP, 12, ,)	
9	(, ,t, g)	
70	(p, q, 1)	
17	GP, 4, 1)	
R	Stat 5	

CS Scanned with CamScanner