Advanced Solvers for Numerical PDEs

Homework 1 N. Yavich Term 5 2022

Consider a function of two variables in the unit disk, Ω ,

$$u(x,y) = \ln(0.1 + x^2 + y^2)$$

In FEniCS, generate an unstructured triangular grid.

Solve the following boundary value problem,

$$-\Delta u = f \text{ in } \Omega,$$

 $u = u_0 \text{ on } \Gamma.$

- Use five grids with different resolution, from roughly 100 to 1'000'000 vertices.
- Use Lagrange finite elements of the 1st and 2nd order.
- Study the error of the solution and its gradient,

$$||u - u_h||^2 = \int_{\Omega} (u(x, y) - u_h(x, y)^2 dx dy$$

$$\|\nabla u - \nabla u_h\|^2 = \int_{\Omega} (\nabla u(x, y) - \nabla u_h(x, y)^2 dx dy$$

• Record solution time.

Make a table:

Trialle & More.						
Grid	P1 Element	P1 Element	P1 Element	P2 Element	P2 Element	P2 Element
resolution						
	$ u-u_h $	$\ \nabla u - \nabla u_h\ $	CPU time	$\ u-u_h\ $	$\ \nabla u - \nabla u_h\ $	CPU time

For one of the grids, plot exact solution, u, numerical solution, u_h , solution error distribution, $u - u_h$, gradient error distribution, $|\nabla u - \nabla u_h|$. Comment the results. What would you suggest to improve modeling accuracy?