

Schletter, Inc.		30° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 30°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, P_g =	30.00 psf	
Sloped Roof Snow Load, P _s =	16.49 psf	(ASCE 7-10, Eq. 7.4-1)
I _s =	1.00	
$C_s =$	0.73	
C _e =	0.90	
$C_t =$	1.20	

2.3 Wind Loads

Design Wind Speed, V =	160 mph	Exposure Category = C
Heiaht <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 40.19$ psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.150	
Cf+ BOTTOM	=	1.150 1.850 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel
Cf- TOP, OUTER PURLIN	=	-2.600	testing done by Ruscheweyh Consult. Coefficients are located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.000 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.100	

2.4 Seismic Loads

S _s =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a =	0.07	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.0W + 0.5S 0.9D + 1.0W M 1.54D + 1.3E + 0.2S R 0.56D + 1.3E R 1.54D + 1.25E + 0.2S O 0.56D + 1.25E O

1.2D + 1.6S + 0.5W

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

....

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W M 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	<u>Location</u>	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>266.96</u>	<u>6994.15</u>	k
Compressive Load =	<u>3110.08</u>	4995.82	k
Lateral Load =	<u>293.97</u>	4281.29	k
Moment (Weak Axis) =	<u>0.56</u>	<u>0.19</u>	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 189808.4 in-lbs Resisting Force Required = 2654.66 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4424.44 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding Force = 988.38 lbs Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 2470.95 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 988.38 lbs Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

Bearing Pressure

 $\frac{\text{Ballast Width}}{35 \text{ in}} = \frac{35 \text{ in}}{36 \text{ in}} = \frac{37 \text{ in}}{38 \text{ in}} = \frac{38 \text{ in}}{7766 \text{ lbs}} = \frac{7992 \text{ lbs}}{7992 \text{ lbs}} = \frac{8208 \text{ lbs}}{7992 \text{ lbs}} = \frac{7992 \text{$

ASD LC		1.0D ·	+ 1.0S		1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W					
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
FA	878 lbs	878 lbs	878 lbs	878 lbs	1282 lbs	1282 lbs	1282 lbs	1282 lbs	1525 lbs	1525 lbs	1525 lbs	1525 lbs	-116 lbs	-116 lbs	-116 lbs	-116 lbs
FB	844 lbs	844 lbs	844 lbs	844 lbs	2157 lbs	2157 lbs	2157 lbs	2157 lbs	2159 lbs	2159 lbs	2159 lbs	2159 lbs	-3223 lbs	-3223 lbs	-3223 lbs	-3223 lbs
F _V	97 lbs	97 lbs	97 lbs	97 lbs	1767 lbs	1767 lbs	1767 lbs	1767 lbs	1388 lbs	1388 lbs	1388 lbs	1388 lbs	-1977 lbs	-1977 lbs	-1977 lbs	-1977 lbs
P _{total}	9281 lbs	9497 lbs	9713 lbs	9929 lbs	10999 lbs	11215 lbs	11431 lbs	11647 lbs	11244 lbs	11460 lbs	11676 lbs	11892 lbs	1197 lbs	1326 lbs	1456 lbs	1586 lbs
M	2343 lbs-ft	2343 lbs-ft	2343 lbs-ft	2343 lbs-ft	3167 lbs-ft	3167 lbs-ft	3167 lbs-ft	3167 lbs-ft	3879 lbs-ft	3879 lbs-ft	3879 lbs-ft	3879 lbs-ft	5809 lbs-ft	5809 lbs-ft	5809 lbs-ft	5809 lbs-ft
е	0.25 ft	0.25 ft	0.24 ft	0.24 ft	0.29 ft	0.28 ft	0.28 ft	0.27 ft	0.35 ft	0.34 ft	0.33 ft	0.33 ft	4.85 ft	4.38 ft	3.99 ft	3.66 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft							
f _{min}	233.1 psf	232.7 psf	232.3 psf	231.9 psf	270.6 psf	269.1 psf	267.7 psf	266.4 psf	267.3 psf	265.9 psf	264.6 psf	263.4 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	301.0 psf	298.7 psf	296.5 psf	294.4 psf	362.3 psf	358.3 psf	354.5 psf	350.9 psf	379.7 psf	375.2 psf	370.9 psf	366.9 psf	247.8 psf	186.7 psf	159.9 psf	145.5 psf

Maximum Bearing Pressure = 380 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Seismic Design

Overturning Check

 $M_O = 1651.4 \text{ ft-lbs}$

Resisting Force Required = 1132.38 lbs S.F. = 1.67

Weight Required = 1887.29 lbs Minimum Width = 35 in in Weight Provided = 7559.64 lbs A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		35 in			35 in			35 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	276 lbs	462 lbs	137 lbs	622 lbs	1451 lbs	516 lbs	129 lbs	135 lbs	-9 lbs		
F _V	165 lbs	161 lbs	168 lbs	122 lbs	119 lbs	129 lbs	166 lbs	162 lbs	167 lbs		
P _{total}	9635 lbs	9820 lbs	9496 lbs	9531 lbs	10360 lbs	9425 lbs	2866 lbs	2872 lbs	2728 lbs		
M	629 lbs-ft	616 lbs-ft	637 lbs-ft	468 lbs-ft	465 lbs-ft	492 lbs-ft	629 lbs-ft	615 lbs-ft	631 lbs-ft		
е	0.07 ft	0.06 ft	0.07 ft	0.05 ft	0.04 ft	0.05 ft	0.22 ft	0.21 ft	0.23 ft		
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft		
f _{min}	240.0 psf	246.1 psf	235.5 psf	246.5 psf	270.6 psf	242.1 psf	45.3 psf	46.2 psf	41.1 psf		
f _{max}	314.4 psf	319.0 psf	310.9 psf	301.9 psf	325.6 psf	300.3 psf	119.7 psf	119.0 psf	115.9 psf		

Maximum Bearing Pressure = 326 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 36in wide x 18in tall ballast foundation and fiber reinforcing with (3) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

<u>Front Strut</u> Maximum Axial Load = M12 Bolt Capacity =	2.392 k 12.808 k	Rear Strut Maximum Axial Load = 4.714 k M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>32%</u>	Utilization = 64%
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	2.888 k 12.808 k 7.421 k <u>39%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)
	A 9	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 60.93 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 1.219 in Max Drift, Δ_{MAX} = 0.527 in $0.527 \le 1.219$, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 75 \text{ in} \\ \mathsf{J} = & 0.432 \\ & 207.485 \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))]} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= 75 \\ \mathsf{J} &= 0.432 \\ &= 131.948 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= 1701.56 \\ \varphi \mathsf{F_L} &= \varphi \mathsf{b}[\mathsf{Bc-1.6Dc*} \sqrt{(\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))}] \\ \varphi \mathsf{F_L} &= 29.6 \end{split}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 28.7 \text{ ksi}$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\varphi F_L = \varphi b [Bbr-mDbr^*h/t]$$

$$\varphi F_L = 43.2 \text{ ksi}$$

3.4.18
$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0
$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: 3.4.14

$$L_b = 104.56 \text{ in}$$
 $J = 1.08$
 179.85

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$
$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc - 1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 29.0 \text{ ksi}$$

Weak Axis:

$$L_b = 104.56$$
 $J = 1.08$
 190.335

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\begin{split} \phi F_L &= \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}] \\ \phi F_I &= 28.9 \end{split}$$

3.4.16

$$b/t = 16.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F Cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = \varphi b[Bt-Dt^* \sqrt{(Rb/t)}]$$

31.1 ksi

 $\phi F_L =$

16.2

36.9

0.65

77.3

43.2 ksi

33.3 ksi

2.219 in⁴

1.409 in³

3.904 k-ft

Sy=

 $M_{max}Wk =$

40 mm

mDbr

40

Bbr -

 $\frac{\theta_y}{2}$ 1.3Fcy

3.4.18

 h/t = 7.4
 h/t = 16.2

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$
 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$

 S1 = 35.2
 S1 = 36.9

 m = 0.68
 m = 0.65

 C₀ = 41.067
 C₀ = 40

 Cc = 43.717
 Cc = 40

 $S2 = \frac{k_1 Bbr}{mDbr}$
 $S2 = \frac{k_1 Bbr}{mDbr}$

 S2 = 73.8
 S2 = 77.3

 $\phi F_L = 1.3 \phi y F c y$
 $\phi F_L = 1.3 \phi y F c y$
 $\phi F_L = 43.2 \text{ ksi}$
 $\phi F_L = 43.2 \text{ ksi}$
 $\phi F_L = 29.0 \text{ ksi}$
 $\phi F_L = 33.3 \text{ ksi}$
 $\phi F_L = 29.0 \text{ ksi}$
 $\phi F_L = 33.3 \text{ ksi}$
 $\phi F_L = 33.717 \text{ mm}$
 $\phi F_L = 33.3 \text{ ksi}$
 $\phi F_L = 43.2 \text{ mm}^4$
 $\phi F_L = 33.3 \text{ ksi}$
 $\phi F_L = 43.717 \text{ mm}$
 $\phi F_L = 33.3 \text{ ksi}$
 $\phi F_L = 33.717 \text{ mm}$
 $\phi F_L = 33.3 \text{ ksi}$
 $\phi F_L = 33.717 \text{ mm}$
 $\phi F_L = 33.3 \text{ ksi}$
 $\phi F_L = 33.717 \text{ mm}$
 $\phi F_L = 33.717 \text{ mm}$

Compression

 $M_{max}St =$

Sx =

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\varphi F_L =$ 33.3 ksi

1.375 in³

3.323 k-ft

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
A = 1215.13 mm²
1.88 in²

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ & 38.7028 \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*}\sqrt{((\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))]} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 24.8 \\ \mathsf{J} &= & 0.942 \\ & & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi \mathsf{b}[\mathsf{Bc-1.6Dc}^* \sqrt{(\mathsf{LbSc})/(\mathsf{Cb}^* \sqrt{(\mathsf{lyJ})/2}))}] \\ \varphi \mathsf{F_L} &= & 31.4 \end{split}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

27.5 mm

0.621 in³

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

 $Sy = 0.621 \text{ in}^3$

 $M_{max}Wk = 1.460 \text{ k-ft}$

y = Sx =

 $M_{max}St = 1.460 \text{ k-ft}$

SCHLETTER

Compression

3.4.7 $\lambda = 0.57371$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.87952$ $\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$ $\varphi F_L = 28.0279 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

28.2 ksi

0.0

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 98.03 in 98.03 0.942 0.942 J = J = 152.985 152.985 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.4 ksi $\varphi F_1 =$ 29.4

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$\underline{\text{Compression}}$

3.4.7

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

S2 = 32.70
$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$S1 = \left(\frac{\sigma_b}{Dt} \right)$$

$$S1 = 6.87$$

 $S2 = 131.3$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\varphi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 6.29 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:

3.4.14

$$L_b = 78.35 \text{ in}$$

$$J = 0.942$$

122.273

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{16Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$$

$$\phi F_L = 29.8 \text{ ksi}$$

Weak Axis:

$$L_b = 78.35$$

$$(P_{x} \theta_{y})_{F_{x}}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.8$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 1.6Dp$$
 46.7

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

S2 = 141.0 ϕF_L = 1.17 $\phi y F_C y$ ϕF_L = 38.9 ksi **3.4.16.1** N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$by = 279836 \text{ mm}^4$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

 $\phi F_L = 43.2 \text{ ksi}$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max} W k = 1.460 \text{ k-ft}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.8125 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.83375 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 8.88278 \text{ ksi} \end{array}$$

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\varphi F_L = \varphi c[Bp-1.6Dp^*b/t]$$

 $\varphi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\varphi F_L = \varphi c[Bp-1.6Dp^*b/t]$
 $\varphi F_L = 28.2 \text{ ksi}$

3.4.10

Rb/t =

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

: Schletter, Inc.: HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	, i
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-46.866	-46.866	0	0
2	M14	Υ	-46.866	-46.866	0	0
3	M15	Υ	-46.866	-46.866	0	0
4	M16	Υ	-46 866	-46 866	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-151.652	-151.652	0	0
2	M14	V	-151.652	-151.652	0	0
3	M15	V	-243.962	-243.962	0	0
4	M16	V	-243.962	-243.962	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	342.866	342.866	0	0
2	M14	V	263.743	263.743	0	0
3	M15	V	145.059	145.059	0	0
4	M16	y	145.059	145.059	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Z	7.874	7.874	0	0
2	M14	Ζ	7.874	7.874	0	0
3	M15	Ζ	7.874	7.874	0	0
4	M16	Ζ	7.874	7.874	0	0
5	M13	Ζ	0	0	0	0
6	M14	Ζ	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:___

Load Combinations

	Description	S	P	S I	3	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	<u>Fa</u>
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Y		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Y		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	985.239	2	1332.539	2	.341	1	.001	1	0	1	0	1
2		min	-1155.489	3	-1810.425	3	-25.207	5	141	4	0	1	0	1
3	N7	max	.016	9	865.176	1	528	10	001	10	0	1	0	1
4		min	289	2	-96.181	5	-226.13	4	434	4	0	1	0	1
5	N15	max	.015	9	2392.372	2	0	3	0	3	0	1	0	1
6		min	-2.515	2	-205.351	3	-214.726	4	418	4	0	1	0	1
7	N16	max	2977.792	2	3842.94	2	0	11	0	2	0	1	0	1
8		min	-3293.298	3	-5380.118	3	-25.514	5	143	4	0	1	0	1
9	N23	max	.035	4	865.176	1	6.587	1	.013	1	0	1	0	1
10		min	289	2	-31.479	3	-220.269	5	426	4	0	1	0	1
11	N24	max	985.239	2	1332.539	2	027	10	0	10	0	1	0	1
12		min	-1155.489	3	-1810.425	3	-25.824	5	142	4	0	1	0	1
13	Totals:	max	4945.175	2	10584.388	2	0	3						
14		min	-5604.544	3	-9269.277	3	-734.425	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	51.113	4	418.647	2	-9.567	12	0	15	.138	4	0	4
2			min	2.402	10	-805.491	3	-127.89	1	011	3	.007	10	0	3
3		2	max	42.918	4	291.052	2	-8.117	12	0	15	.092	4	.478	3
4			min	2.402	10	-571.155	3	-97.125	1	011	3	002	10	246	2
5		3	max	37.019	1	163.456	2	-6.213	10	0	15	.058	5	.793	3
6			min	2.402	10	-336.82	3	-66.361	1	011	3	032	1	404	2
7		4	max	37.019	1	35.86	2	-2.273	10	0	15	.034	5	.946	3
8			min	2.402	10	-102.485	3	-43.018	4	011	3	067	1	473	2
9		5	max	37.019	1	131.85	3	1.667	10	0	15	.011	5	.936	3
10			min	2.402	10	-91.736	2	-33.696	4	011	3	081	1	454	2
11		6	max	37.019	1	366.185	3	25.933	1	0	15	006	12	.763	3
12			min	.549	15	-219.331	2	-29.499	5	011	3	074	1	346	2
13		7	max	37.019	1	600.521	3	56.698	1	0	15	003	10	.427	3
14			min	-7.276	5	-346.927	2	-27.293	5	011	3	045	1	149	2
15		8	max	37.019	1	834.856	3	87.463	1	0	15	.009	2	.136	2
16			min	-15.471	5	-474.523	2	-25.086	5	011	3	049	4	071	3
17		9	max	37.019	1	1069.191	3	118.227	1	0	15	.076	1	.51	2
18			min	-23.666	5	-602.119	2	-22.88	5	011	3	065	5	733	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]					
19		10	max	46.257	4	1303.526	3	96.485	9	.01	2	.169	1	.972	2
20			min	2.402	10	-729.714	2	-148.992	1	011	3	008	3	-1.556	3
21		11	max	38.062	4	602.119	2	-2.03	12	.011	3	.092	4	.51	2
22			min	2.402	10	-1069.191	3	-118.227	1	0	15	01	3	733	3
23		12	max	37.019	1	474.523	2	31	3	.011	3	.049	4	.136	2
24			min	2.402	10	-834.856	3	-87.463	1	0	15	011	3	071	3
25		13	max	37.019	1	346.927	2	1.864	3	.011	3	.023	5	.427	3
26			min	2.402	10	-600.521	3	-56.698	1	0	15	045	1	149	2
27		14	max	37.019	1	219.331	2	4.039	3	.011	3	0	15	.763	3
28			min	2,402	10	-366.185	3	-38.793	4	0	15	074	1	346	2
29		15	max	37.019	1	91.736	2	6.213	3	.011	3	003	12	.936	3
30			min	-3.632	5	-131.85	3	-30.706	5	0	15	081	1	454	2
31		16	max	37.019	1	102.485	3	35.596	1	.011	3	0	3	.946	3
32		'	min	-11.827	5	-35.86	2	-28.5	5	0	15	067	1	473	2
33		17	max	37.019	1	336.82	3	66.361	1	.011	3	.007	3	.793	3
34			min	-20.022	5	-163.456	2	-26.293	5	0	15	07	4	404	2
35		18	max	37.019	1	571.155	3	97.125	1	.011	3	.025	1	.478	3
36		10		-28.216	5	-291.052	2	-24.087	5	0	15	08	5	246	2
		10	min					127.89	1				1		
37		19	max	37.019	1	805.491	3		_	.011	3	.103		0	2
38	N 4 4	1	min	-36.411	5	-418.647	2	-21.881	5	0	15	096	5	0	3
39	M14	1	max	29.74	4	524.837	2	-10.032	12	.016	3_	.213	4	0	2
40			min	2.189	10	-683.757	3	-134.353	1	016	2	.009	10	0	3
41		2	max	27.25	1	397.241	2	-8.582	12	.016	3_	.15	4	.413	3
42			min	2.189	10	-504.369	3	-103.589	1	016	2	0	10	32	2
43		3	max	27.25	1	269.646	2	-6.856	10	.016	3	.094	5	.701	3
44			min	2.189	10	-324.98	3	-76.841	4	016	2	014	1	552	2
45		4	max	27.25	1	142.05	2	-2.916	10	.016	3	.054	5	.864	3
46			min	-1.299	5	-145.591	3	-67.519	4	016	2	054	1	695	2
47		5	max	27.25	1	33.797	3	1.024	10	.016	3	.016	5	.903	3
48			min	-9.493	5	507	9	-58.196	4	016	2	073	1	749	2
49		6	max	27.25	1	213.186	3	19.47	1	.016	3	005	12	.817	3
50			min	-17.688	5	-113.141	2	-52.164	5	016	2	07	1	715	2
51		7	max	27.25	1	392.575	3	50.235	1	.016	3	003	10	.607	3
52			min	-25.883	5	-240.737	2	-49.958	5	016	2	069	4	592	2
53		8	max	27.25	1	571.963	3	80.999	1	.016	3	.006	2	.272	3
54			min	-34.078	5	-368.333	2	-47.751	5	016	2	093	4	38	2
55		9	max	27.25	1	751.352	3	111.764	1	.016	3	.067	1	.003	9
56			min	-42.273	5	-495.929	2	-45.545	5	016	2	123	5	188	3
57		10	max	60.835	4	930.741	3	142.529	1	.016	2	.211	4	.308	2
58		'	min	2.189	10	-623.524	2	-104.414	14	016	3	008	3	772	3
59		11	max	52.64	4	495.929	2	-1.565	12	.016	2	.148	4	.003	9
60			min	2.189	10	-751.352	3	-111.764	1	016	3	01	3	188	3
61		12	max	44.446	4	368.333	2	.412	3	.016	2	.09	4	.272	3
62		14	min	2.189	10	-571.963	3	-80.999	1	016	3	011	3	38	2
63		13	max	36.251	4	240.737	2	2.586	3	.016	2	.05	5	.607	3
64		13	min	2.189	10	-392.575	3	-68.598	4	016	3	046	1	592	2
65		14		28.056		113.141	2	4.76	3	.016	2	.011	5	.817	3
		14	max		4						3	07	1	715	
66		4.5	min	2.189	10	-213.186	3	-59.276	4	016			_		2
67		15	max	27.25	1	.507	9	11.295	1	.016	2	002	12	.903	3
68		40	min	2.189	10	-33.797	3	-52.421	5	016	3	073	1	749	2
69		16	max	27.25	1	145.591	3	42.059	1	.016	2	.002	3	.864	3
70			min	2.189	10	-142.05	2	-50.215	5	016	3	074	4	695	2
71		17	max	27.25	1	324.98	3	72.824	1_	.016	2	.009	3	.701	3
72			min	-3.263	5	-269.646	2	-48.008	5	016	3	099	4	552	2
73		18	max	27.25	1	504.369	3	103.589	1_	.016	2	.047	1_	.413	3
74			min	-11.458	5	-397.241	2	-45.802	5	016	3	128	5	32	2
75		19	max	27.25	1	683.757	3	134.353	1	.016	2	.13	1_	0	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
76			min	-19.653	5	-524.837	2	-43.595	5	016	3	159	5	0	3
77	M15	1	max	69.279	5	741.519	2	-9.712	12	.017	2	.277	4	0	2
78			min	-28.227	1	-406.916	3	-134.415	1	013	3	.009	10	0	3
79		2	max	61.084	5	549.819	2	-8.263	12	.017	2	.2	4	.249	3
80			min	-28.227	1	-309.947	3	-106.258	4	013	3	0	10	448	2
81		3	max	52.889	5	358.119	2	-6.813	12	.017	2	.131	5	.43	3
82			min	-28.227	1	-212.977	3	-96.936	4	013	3	014	1	764	2
83		4	max	44.694	5	166.419	2	-3.077	10	.017	2	.077	5	.545	3
84			min	-28.227	1	-116.008	3	-87.614	4	013	3	054	1	946	2
85		5	max	36.5	5	044	15	.863	10	.017	2	.024	5	.592	3
86			min	-28.227	1	-25.281	2	-78.291	4	013	3	073	1	995	2
87		6	max	28.305	5	77.93	3	19.408	1	.017	2	005	12	.571	3
88			min	-28.227	1	-216.981	2	-72.206	5	013	3	07	1	911	2
89		7	max	20.11	5	174.899	3	50.172	1	.017	2	003	10	.483	3
90		<u> </u>	min	-28.227	1	-408.68	2	-70	5	013	3	088	4	693	2
91		8	max	11.915	5	271.869	3	80.937	1	.017	2	.006	2	.328	3
92			min	-28.227	1	-600.38	2	-67.793	5	013	3	126	4	343	2
93		9	max	3.72	5	368.838	3	111.702	1	.017	2	.067	1	.14	2
94		1 3	min	-28.227	1	-792.08	2	-65.587	5	013	3	17	5	0	15
95		10		-1.813	10	465.807	3	142.466	1	.013	3	.272	4	.757	2
96		10	max min	-28.227	1	-983.78	2	-116.702	4	017	2	007	3	184	3
97		11		-1.813	_	792.08		-1.885	12	.013	3	.195			2
98		11	max	-28.227	10	-368.838	3	-111.702	1	017	2	009	3	.14	15
99		12	min					119	3		3	.123		.328	
		12	max	-1.813	10	600.38	3			.013		01	4		3
100		12	min	-28.227	10	-271.869		-98.058	4	017	2		3	343	
101		13	max	-1.813	10	408.68	2	2.055	3	.013	3	.069	5	.483	3
102		4.4	min	-32.43	4	-174.899	3	-88.735	4	017	2	046	1	693	2
103		14	max	-1.813	10	216.981	2	4.23	3	.013	3	.016	5	.571	3
104		4.5	min	-40.625	4	-77.93	3	-79.413	4	017	2	07	1	911	2
105		15	max	-1.813	10	25.281	2	11.357	1	.013	3	002	12	.592	3
106		4.0	min	-48.82	4	.045	15	-72.467	5	017	2	073	1	995	2
107		16	max	-1.813	10	116.008	3	42.121	1	.013	3	.002	3	.545	3
108		47	min	-57.015	4	-166.419	2	-70.261	5	017	2	097	4	946	2
109		17	max	-1.813	10	212.977	3	72.886	1	.013	3	.008	3	.43	3
110		40	min	-65.209	4	-358.119	2	-68.055	5	017	2	136	4	764	2
111		18	max	-1.813	10	309.947	3	103.651	1	.013	3	.047	1	.249	3
112		40	min	-73.404	4	-549.819	2	-65.848	5	017	2	179	5	448	2
113		19	max	-1.813	10	406.916	3	134.415	1	.013	3	.13	1	0	2
114	1440		min	-81.599	4	-741.519	2	-63.642	5	017	2	224	5	0	3
115	M16	1	max	63.502	5	642.574	2	-8.583	12	.003	1	.192	4	0	2
116			mın		1	-312.804		-128.653		011	3	.008	10	0	3
117		2	max		5	450.875	2	-7.133	12	.003	1	.134	4	.184	3
118			min	-42.288	1	-215.835		-97.888	1	011	3	0	10	38	2
119		3	max		5	259.175	2	-5.683	12	.003	1	.089	5	.3	3
120		1	min	-42.288	1	-118.866	3	-68.818	4	011	3	03	1	626	2
121		4	max		5	67.475	2	-2.843	10	.003	1	.053	5	.349	3
122		-	min	-42.288	1	-21.897	3	-59.496	4	011	3	066	1	74	2
123		5	max	30.723	5	75.073	3	1.097	10	.003	1	.019	5	.33	3
124			min	-42.288	1	-124.225	2	-50.174	4	011	3	081	1	72	2
125		6	max		5	172.042	3	25.17	1	.003	1	005	12	.244	3
126		-	min		1	-315.925		-45.783	5	011	3	074	1	567	2
127		7	max		5	269.011	3	55.935	1	.003	1	004	10	.091	3
128			min	-42.288	1	-507.625		-43.576	5	011	3	056	4	281	2
129		8	max		5	365.98	3	86.699	1	.003	1	.007	2	.138	2
130			min	-42.288	1_	-699.325	2	-41.37	5	011	3	075	4	129	3
131		9	max		15	462.949	3	117.464	1	.003	1	.074	1	.69	2
132			min	-42.288	1	-891.025	2	-39.164	5	011	3	102	5	417	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	
133		10	max	-3.28	10	612.714	10	148.229	1	.011	3	.19	4	1.375	2
134			min	-42.288	1	-1082.725	2	-104.704	14	003	1	002	3	772	3
135		11	max	-2.795	15	891.025	2	-3.014	12	.011	3	.129	4	.69	2
136			min	-42.288	1	-462.949	3	-117.464	1	003	1	006	3	417	3
137		12	max	-3.28	10	699.325	2	-1.565	12	.011	3	.075	4	.138	2
138			min	-42.288	1	-365.98	3	-86.699	1	003	1	008	3	129	3
139		13	max	-3.28	10	507.625	2	.225	3	.011	3	.037	5	.091	3
140			min	-42.288	1	-269.011	3	-64.416	4	003	1	046	1	281	2
141		14	max	-3.28	10	315.925	2	2.399	3	.011	3	.003	5	.244	3
142			min	-42.288	1	-172.042	3	-55.094	4	003	1	074	1	567	2
143		15	max	-3.28	10	124.225	2	5.594	1	.011	3	003	12	.33	3
144			min	-47.777	4	-75.073	3	-46.961	5	003	1	081	1	72	2
145		16	max	-3.28	10	21.897	3	36.359	1	.011	3	001	12	.349	3
146			min	-55.972	4	-67.475	2	-44.755	5	003	1	078	4	74	2
147		17	max	-3.28	10	118.866	3	67.124	1	.011	3	.004	3	.3	3
148			min	-64.166	4	-259.175	2	-42.548	5	003	1	1	4	626	2
149		18	max	-3.28	10	215.835	3	97.888	1	.011	3	.027	1	.184	3
150			min	-72.361	4	-450.875	2	-40.342	5	003	1	122	5	38	2
151		19	max	-3.28	10	312.804	3	128.653	1	.011	3	.105	1	0	2
152			min	-80.556	4	-642.574	2	-38.136	5	003	1	149	5	0	5
153	M2	1		1103.186	2	2.063	4	.203	1	0	3	0	3	0	1
154	1712	•	min	-1581.815	3	.501	15	-18.472	4	0	4	0	2	0	1
155		2		1103.715	2	1.992	4	.203	1	0	3	0	1	0	15
156			min	-1581.418	3	.484	15	-18.933	4	0	4	007	4	0	4
157		3	1	1104.244	2	1.921	4	.203	1	0	3	0	1	0	15
158			min	-1581.021	3	.468	15	-19.394	4	0	4	014	4	001	4
159		4	+	1104.774	2	1.85	4	.203	1	0	3	0	1	0	15
160			min	-1580.624	3	.451	15	-19.855	4	0	4	021	4	002	4
161		5		1105.303	2	1.779	4	.203	1	0	3	0	1	0	15
162		J	min	-1580.227	3	.434	15	-20.317	4	0	4	028	4	003	4
163		6		1105.832	2	1.708	4	.203	1	0	3	0	1	0	15
164			min	-1579.83	3	.418	15	-20.778	4	0	4	035	4	003	4
165		7	+	1106.362	2	1.637	4	.203	1	0	3	0	1	0	15
166			min	-1579.433	3	.401	15	-21.239	4	0	4	043	4	004	4
167		8		1106.891	2	1.566	4	.203	1	0	3	0	1	004	15
168		0	min	-1579.036	3	.384	15	-21.7	4	0	4	05	4	005	4
169		9	max		2	1.495	4	.203	1	0	3	0	1	003	15
170		9	min	-1578.639	3	.367	15	-22.161	4	0	4	058	4	005	4
171		10	+	1107.949	2	1.424	4	.203	1	0	3	0	1	003	15
172		10	min	-1578.242	3	.346	12	-22.623	4	0	4	066	4	006	4
173		11		1108.479		1.352	4	.203	1	0	3	0	1	000 001	15
174		11	min		3	.318	12	-23.084	4	0	4	075	4	006	4
175		12		1109.008	2	1.281	4	.203	1	0	3	075 0	1	002	15
176		12		-1577.448	3	.29	12	-23.545			4	083	_	002	
		10	1					.203	1	0	3	063 0	1		4
177 178		13	min	1109.537 -1577.052	<u>2</u> 3	1.21 .262	4 12	-24.006	4	<u> </u>	4	091	4	002 007	1 <u>5</u>
		1.1		1110.067											
179		14			2	1.139	4	.203	1	0	3	0	1	002	15
180		4.5	min		3	.235	12	-24.467	4	0	4	1	4	007	4
181		15	1	1110.596	2	1.068	4	.203	1	0	3	.001	1	002	15
182		4.0	min	-1576.258	3	.207	12	-24.929	4	0	4	109	4	008	4
183		16		1111.125	2	.997	4	.203	1	0	3	.001	1	002	15
184		47	min		3	.179	12	-25.39	4	0	4	118	4	008	4
185		17		1111.654	2	.93	2	.203	1	0	3	.001	1	002	15
186		4.0	1	-1575.464	3	.152	12	-25.851	4	0	4	127	4	009	4
187		18		1112.184	2	.875	2	.203	1	0	3	.001	1	002	15
188		4 -	min		3	.124	12	-26.312	4	0	4	137	4	009	4
189		19	max	1112.713	2	.82	2	.203	1	0	3	.001	1	002	12

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC \	/-y Mome	LC	z-z Mome	. LC
190			min	-1574.67	3	.096	12	-26.774	4	0	4	146	4	009	4
191	M3	1	max	897.74	2	8.905	4	.956	4	0	10	0	1	.009	4
192			min	-1021.088	3	2.106	15	.014	10	0	4	016	4	.002	12
193		2	max	897.569	2	8.036	4	1.561	4	0	10	0	1	.005	2
194			min	-1021.215	3	1.901	15	.014	10	0	4	015	4	0	12
195		3	max	897.399	2	7.167	4	2.167	4	0	10	0	1	.002	2
196			min	-1021.343	3	1.697	15	.014	10	0	4	014	4	001	3
197		4	max	897.229	2	6.298	4	2.772	4	0	10	0	1	0	2
198			min	-1021.471	3	1.493	15	.014	10	0	4	013	5	003	3
199		5	max	897.058	2	5.43	4	3.377	4	0	10	0	1	0	15
200			min	-1021.599	3	1.289	15	.014	10	0	4	012	5	004	6
201		6	max	896.888	2	4.561	4	3.982	4	0	10	0	1	001	15
202			min	-1021.726	3	1.084	15	.014	10	0	4	01	5	007	6
203		7	max	896.717	2	3.692	4	4.587	4	0	10	0	1	002	15
204			min	-1021.854	3	.88	15	.014	10	0	4	008	5	009	6
205		8	max	896.547	2	2.823	4	5.192	4	0	10	0	1	002	15
206			min	-1021.982	3	.676	15	.014	10	0	4	006	5	01	6
207		9	max	896.377	2	1.954	4	5.797	4	0	10	0	1	003	15
208			min	-1022.11	3	.472	15	.014	10	0	4	003	5	011	6
209		10	max	896.206	2	1.085	4	6.402	4	0	10	0	1	003	15
210			min	-1022.237	3	.263	12	.014	10	0	4	0	5	012	6
211		11	max		2	.327	2	7.007	4	0	10	.003	4	003	15
212			min	-1022.365	3	138	3	.014	10	0	4	0	10	012	6
213		12	max	895.866	2	141	15	7.612	4	0	10	.007	4	003	15
214		<u> </u>	min	-1022.493	3	654	6	.014	10	0	4	0	10	012	6
215		13	max	895.695	2	345	15	8.217	4	0	10	.01	4	003	15
216		1	min	-1022.621	3	-1.523	6	.014	10	0	4	0	10	012	6
217		14	max		2	55	15	8.822	4	0	10	.014	4	002	15
218			min	-1022.748	3	-2.392	6	.014	10	0	4	0	10	011	6
219		15	max	895.355	2	754	15	9.427	4	0	10	.019	4	002	15
220		'0	min	-1022.876	3	-3.26	6	.014	10	0	4	0	10	009	6
221		16	max		2	958	15	10.032	4	0	10	.023	4	002	15
222		''	min	-1023.004	3	-4.129	6	.014	10	0	4	0	10	008	6
223		17	max	895.014	2	-1.162	15	10.638	4	0	10	.028	4	001	15
224		1''	min	-1023.132	3	-4.998	6	.014	10	0	4	0	10	006	6
225		18	max	894.844	2	-1.367	15	11.243	4	0	10	.033	4	<u>.000</u>	15
226		10	min	-1023.26	3	-5.867	6	.014	10	0	4	0	10	003	6
227		19	max	894.673	2	-1.571	15	11.848	4	0	10	.039	4	0	1
228		15	min	-1023.387	3	-6.736	6	.014	10	0	4	0	10	0	1
229	M4	1	max	862 11	1	0.730	1	535	10	0	1	.031	4	0	1
230	IVIT			-97.612		0		-223.778	4	0	1	0	10	0	1
231		2		862.28	1	0	1	535	10	0	1	.005	4	0	1
232			min	-97.532	5	0	1	-223.925		0	1	0	10	0	1
233		3		862.451	1	0	1	535	10	0	1	0	12	0	1
234			min	-97.453	5	0	1	-224.073	4	0	1	02	4	0	1
235		4		862.621	1	0	1	535	10	0	1	<u>02</u>	10	0	1
236			min	-97.373	5	0	1	-224.22	4	0	1	046	4	0	1
237		5		862.791	1	0	1	535	10	0	1	0	10	0	1
238		-	min	-97.294	5	0	1	-224.368		0	1	072	4	0	1
239		6	max		<u> </u>	0	1	535	10	0	1	072 0	10	0	1
240		U	min	-97.214	5	0	1	-224.516		0	1	098	4	0	1
241		7		863.132	<u> </u>	0	1	535	10	0	1	<u>096</u> 0	10	0	1
241			min		5	0	1	-224.663		0	1	123	4	0	1
		8		863.302	<u> </u>		1	535	10		1	<u>123</u> 0	10		1
243 244		0				0	1	535	4	0	1		4	0 0	1
244		9	min	-97.055 863.473	<u>5</u> 1	0	1	535	10	0	1	149 0	10	0	1
		9	max				1				1				1
246			min	-96.976	5	0		-224.959	4	0		17 <u>5</u>	4	0	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		Axial[lb]	_LC_	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome		z-z Mome	_LC_
247		10	max	863.643	1	0	1	535	10	0	1	0	10	0	1
248			min	-96.896	5	0	1	-225.106	4	0	1	201	4	0	1
249		11	max	863.813	1	0	1	535	10	0	1	0	10	0	1
250			min	-96.817	5	0	1	-225.254	4	0	1	227	4	0	1
251		12	max		1	0	1	535	10	0	1	0	10	0	1
252			min	-96.737	5	0	1	-225.401	4	0	1	253	4	0	1
253		13		864.154	1	0	1	535	10	0	1	0	10	0	1
254			min	-96.658	5	0	1	-225.549	4	0	1	279	4	0	1
255		14	max		1	0	1	535	10	0	1	0	10	0	1
256		17	min	-96.578	5	0	1	-225.697	4	0	1	304	4	0	1
257		15				0	1	535	10	0	1	0	10	0	1
		15	max		1										
258		40	min		5	0	1	-225.844	4	0	1	33	4	0	1
259		16	max		1	0	1	535	10	0	_1_	0	10	0	1
260			min	-96.419	5	0	1	-225.992	4	0	1_	356	4	0	1
261		17	max		1_	0	1	535	10	0	_1_	0	10	0	1
262			min	-96.34	5	0	1	-226.14	4	0	_1_	382	4	0	1
263		18	max	865.006	1	0	1	535	10	0	_1_	0	10	0	1
264			min	-96.26	5	0	1	-226.287	4	0	1	408	4	0	1
265		19	max	865.176	1	0	1	535	10	0	1	001	10	0	1
266			min	-96.181	5	0	1	-226.435	4	0	1	434	4	0	1
267	M6	1		3177.061	2	2.29	2	0	1	0	1	0	4	0	1
268			min		3	.228	12	-18.673	4	0	5	0	1	0	1
269		2	+	3177.59	2	2.235	2	0	1	0	1	0	1	0	12
270			min		3	.201	12	-19.134	4	0	5	007	4	0	2
271		3		3178.119	2	2.179	2	0	1	0	1	0	1	0	12
272		-	min	-4712.723	3	.166	3	-19.595	4	0	5	014	4	002	2
273		4		3178.649	_	2.124	2	0	1	0	1	0	1	0	12
		4										_			
274		-	min		3	.125	3	-20.056	4	0	5	021	4	002	2
275		5		3179.178	2	2.069	2	0	1	0	1_	0	1	0	3
276			min		3	.083	3	-20.518	4	0	5	028	4	003	2
277		6		3179.707	2	2.013	2	0	1	0	_1_	0	1	0	3
278			min		3	.042	3	-20.979	4	0	5	036	4	004	2
279		7	max	3180.237	2	1.958	2	0	1	0	_1_	0	1_	0	3
280			min	-4711.135	3	0	3	-21.44	4	0	5	043	4	005	2
281		8	max	3180.766	2	1.903	2	0	1	0	_1_	0	1_	0	3
282			min	-4710.738	3	041	3	-21.901	4	0	5	051	4	005	2
283		9	max	3181.295	2	1.847	2	0	1	0	1	0	1	0	3
284			min	-4710.341	3	083	3	-22.362	4	0	5	059	4	006	2
285		10	max	3181.824	2	1.792	2	0	1	0	1	0	1	0	3
286			min		3	124	3	-22.824	4	0	5	067	4	007	2
287		11	max	3182.354	2	1.737	2	0	1	0	1	0	1	0	3
288			min	-4709.547	3	166	3	-23.285	4	0	5	075	4	007	2
289		12	1	3182.883	2	1.681	2	0	1	0	1	0	1	0	3
290		12		-4709.15	3	207	3	-23.746	4	0	5	084	4	008	2
291		13		3183.412	2	1.626	2	0	1	0	1	0	1	0	3
292		13		-4708.753	3	249	3	-24.207	4	0	5	092	4	008	2
293		11		3183.942	_		2	0	1		<u> </u>	092	1	0	3
		14		-4708.356	2	1.571		-		0					
294		4.5			3	29	3	-24.669	4	0	5	101	4	009	2
295		15		3184.471	2	1.515	2	0	1	0	1_	0	1	0	3
296		4.0	min		3	332	3	-25.13	4	0	5	11	4	01	2
297		16	max		2	1.46	2	0	1	0	1	0	1	0	3
298			1	-4707.562	3	373	3	-25.591	4	0	5	119	4	01	2
299		17	max	3185.529	2	1.405	2	0	1	0	_1_	0	1_	0	3
300			min	-4707.165	3	415	3	-26.052	4	0	5	128	4	011	2
301		18	max	3186.059	2	1.349	2	0	1	0	1	0	1	0	3
302				-4706.768		456	3	-26.513	4	0	5	138	4	011	2
303		19		3186.588		1.294	2	0	1	0	1	0	1	0	3
									<u> </u>		_				

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:____

304				4700074		y Shear[lb]		z Shear[lb]		_				z-z Mome	LC
00-			min	-4706.371	3	498	3	-26.975	4	0	5_	147	4	012	2
	M7	_1_	_	2731.012	2	8.894	6	.621	4	0	1	0	1	.012	2
306			min	-2886.101	3_	2.089	15	0	1	0	4_	016	4	0	3
307		2		2730.842	2	8.025	6	1.226	4	0	1	0	1	.008	2
308			min	-2886.229	3	1.885	15	0	1	0	4_	015	4	003	3
309		3_		2730.672	2	7.156	6	1.831	4	0	1	0	1	.005	2
310			min	-2886.357	3	1.681	15	0	1	0	4_	015	4	005	3
311		_4_		2730.501	2	6.287	6	2.436	4	0	_1_	0	1	.002	2
312			min	-2886.485	3	1.476	15	0	1	0	4	014	4	006	3
313		_5_		2730.331	2	5.418	6	3.042	4	0	1	0	1	0	2
314			min	-2886.612	3	1.272	15	0	1	0	4_	012	4	007	3
315		6	_	2730.161	2	4.549	6	3.647	4	0	1	0	1	002	15
316			min	-2886.74	3_	1.068	15	0	1	0	4_	011	4	008	3
317		7	max	2729.99	2	3.68	6	4.252	4	0	1_	0	1	002	15
318			min	-2886.868	3_	.864	15	0	1	0	4_	009	4	009	3
319		8	max	2729.82	2	2.812	6	4.857	4	0	_1_	0	1_	002	15
320			min	-2886.996	3_	.66	15	0	1_	0	4_	007	5	01	4
321		9	max	2729.65	2	2.043	2	5.462	4	0	1_	0	1_	003	15
322			min	-2887.123	3	.323	12	0	1	0	4	004	5	011	4
323		10			2	1.366	2	6.067	4	0	1	0	1	003	15
324			min	-2887.251	3	095	3	0	1	0	4	002	5	012	4
325		11_		2729.309	2	.689	2	6.672	4	0	1	.001	4	003	15
326			min	-2887.379	3_	602	3	0	1	0	4_	0	1	012	4
327		12		2729.139	2	.012	2	7.277	4	0	_1_	.005	4	003	15
328			min	-2887.507	3	-1.11	3	0	1	0	4	0	1	012	4
329		13	max	2728.968	2	362	15	7.882	4	0	_1_	.008	4	003	15
330			min	-2887.634	3	-1.618	3	0	1	0	4	0	1	012	4
331		14	max	2728.798	2	566	15	8.487	4	0	_1_	.012	4	003	15
332			min	-2887.762	3	-2.402	4	0	1	0	4	0	1	011	4
333		15	max	2728.627	2	77	15	9.092	4	0	_1_	.016	4	002	15
334			min	-2887.89	3	-3.271	4	0	1	0	4	0	1	009	4
335		16	max	2728.457	2	974	15	9.697	4	0	1_	.021	4	002	15
336			min	-2888.018	3	-4.14	4	0	1	0	4	0	1	008	4
337		17	max	2728.287	2	-1.179	15	10.302	4	0	_1_	.025	4	001	15
338			min	-2888.145	3	-5.008	4	0	1	0	4	0	1	006	4
339		18	max	2728.116	2	-1.383	15	10.907	4	0	1_	.03	4	0	15
340			min	-2888.273	3	-5.877	4	0	1	0	4	0	1	003	4
341		19	max	2727.946	2	-1.587	15	11.513	4	0	1	.036	4	0	1
342			min	-2888.401	3	-6.746	4	0	1	0	4	0	1	0	1
343 I	M8	1	max	2389.306	2	0	1	0	1	0	1_	.029	4	0	1
344			min	-207.651	3	0	1	-214.692	4	0	1	0	1	0	1
345		2	max	2389.477	2	0	1	0	1	0	1_	.004	5	0	1
346			min	-207.523	3	0	1	-214.84	4	0	1	0	1	0	1
347		3	max	2389.647	2	0	1	0	1	0	1	0	1	0	1
348			min	-207.395	3	0	1	-214.987	4	0	1	021	4	0	1
349		4	max	2389.817	2	0	1	0	1	0	1	0	1	0	1
350				-207.267	3	0	1	-215.135	4	0	1	045	4	0	1
351		5		2389.988	2	0	1	0	1	0	1	0	1	0	1
352				-207.14	3	0	1	-215.283	4	0	1	07	4	0	1
353		6		2390.158	2	0	1	0	1	0	1	0	1	0	1
354				-207.012		0	1	-215.43	4	0	1	095	4	0	1
355		7		2390.328		0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	-215.578	4	0	1	12	4	0	1
357		8		2390.499		0	1	0	1	0	1	0	1	0	1
358			min		3	0	1	-215.726	4	0	1	144	4	0	1
359		9		2390.669		0	1	0	1	0	1	0	1	0	1
360				-206.629		0	1	-215.873	4	0	1	169	4	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>. LC</u>
361		10	max	2390.839	2	0	1	0	1	0	1	0	1	0	1
362			min	-206.501	3	0	1	-216.021	4	0	1	194	4	0	1
363		11	max	2391.01	2	0	1	0	1	0	1	0	1	0	1
364			min	-206.373	3	0	1	-216.169	4	0	1	219	4	0	1
365		12	max	2391.18	2	0	1	0	1	0	1	0	1	0	1
366			min	-206.245	3	0	1	-216.316	4	0	1	244	4	0	1
367		13	max	2391.35	2	0	1	0	1	0	1	0	1	0	1
368			min	-206.118	3	0	1	-216.464	4	0	1	268	4	0	1
369		14	max	2391.521	2	0	1	0	1	0	1	0	1	0	1
370			min	-205.99	3	0	1	-216.611	4	0	1	293	4	0	1
371		15	max	2391.691	2	0	1	0	1	0	1	0	1	0	1
372			min	-205.862	3	0	1	-216.759	4	0	1	318	4	0	1
373		16	max	2391.861	2	0	1	0	1	0	1	0	1	0	1
374			min	-205.734	3	0	1	-216.907	4	0	1	343	4	0	1
375		17	max	2392.032	2	0	1	0	1	0	1	0	1	0	1
376			min	-205.607	3	0	1	-217.054	4	0	1	368	4	0	1
377		18	max	2392.202	2	0	1	0	1	0	1	0	1	0	1
378			min	-205.479	3	0	1	-217.202	4	0	1	393	4	0	1
379		19	max	2392.372	2	0	1	0	1	0	1	0	1	0	1
380			min	-205.351	3	0	1	-217.35	4	0	1	418	4	0	1
381	M10	1		1103.186	2	1.989	6	013	10	0	1	0	4	0	1
382			min	-1581.815	3	.451	15	-18.602	4	0	5	0	3	0	1
383		2	max	1103.715	2	1.918	6	013	10	0	1	0	10	0	15
384			min		3	.434	15	-19.063	4	0	5	007	4	0	6
385		3	max	1104.244	2	1.847	6	013	10	0	1	0	10	0	15
386			min	-1581.021	3	.418	15	-19.524	4	0	5	014	4	001	6
387		4		1104.774	2	1.776	6	013	10	0	1	0	10	0	15
388			min	-1580.624	3	.401	15		4	0	5	021	4	002	6
389		5		1105.303	2	1.705	6	013	10	0	1	0	10	0	15
390			min	-1580.227	3	.384	15	-20.447	4	0	5	028	4	003	6
391		6		1105.832	2	1.634	6	013	10	0	1	0	10	0	15
392			min	-1579.83	3	.368	15	-20.908	4	0	5	035	4	003	6
393		7		1106.362	2	1.563	6	013	10	0	1	0	10	0	15
394		-	min		3	.351	15	-21.369	4	0	5	043	4	004	6
395		8		1106.891	2	1.492	6	013	10	0	1	0	10	0	15
396			min	-1579.036	3	.334	15	-21.831	4	0	5	051	4	004	6
397		9	max		2	1.421	6	013	10	0	1	0	10	001	15
398			min	-1578.639	3	.318	15	-22.292	4	0	5	059	4	005	6
399		10		1107.949	2	1.35	6	013	10	0	1	0	10	001	15
400			min	-1578.242	3	.301	15	-22.753	4	0	5	067	4	005	6
401		11		1108.479		1.279	6		10	0	1	0	10	001	15
402			min		3	.284	15	-23.214	4	0	5	075	4	006	6
403		12		1109.008	2	1.208	6	013	10	0	1	0	10	001	15
404				-1577.448	3	.268	15		4	0	5	083	4	006	6
405		13		1109.537	2	1.152	2	013	10	0	1	0	10	002	15
406			min		3	.251	15	-24.137	4	0	5	092	4	007	6
407		14		1110.067	2	1.096	2	013	10	0	1	0	10	002	15
408			min		3	.234	15	-24.598	4	0	5	101	4	007	6
409		15		1110.596	2	1.041	2	013	10	0	1	0	10	002	15
410			min	-1576.258	3	.207	12	-25.059	4	0	5	11	4	007	6
411		16		1111.125	2	.986	2	013	10	0	1	0	10	002	15
412			min		3	.179	12	-25.52	4	0	5	119	4	008	6
413		17		1111.654	2	.93	2	013	10	0	1	0	10	002	15
414		- 17		-1575.464	3	.152	12	-25.981	4	0	5	128	4	002	6
415		18		1112.184	2	.875	2	013	10	0	1	0	10	002	15
416		10	min		3	.124	12	-26.443	4	0	5	137	4	002	6
417		10		1112.713		.82	2	013	10	0	1	0	10	002	15
417		נו	IIIax	1112.113		.02		013	ΙU	U		U	IU	002	LΙΌ

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
418			min	-1574.67	3	.096	12	-26.904	4	0	5	147	4	009	6
419	M11	1	max	897.74	2	8.849	6	.843	4	0	1	0	10	.009	6
420			min	-1021.088	3	2.068	15	178	1	0	4	016	4	.002	15
421		2	max	897.569	2	7.98	6	1.449	4	0	1	0	10	.005	2
422			min	-1021.215	3	1.863	15	178	1	0	4	015	4	0	12
423		3	max	897.399	2	7.111	6	2.054	4	0	1	0	10	.002	2
424			min	-1021.343	3	1.659	15	178	1	0	4	014	4	001	3
425		4	max	897.229	2	6.242	6	2.659	4	0	1	0	10	0	2
426			min	-1021.471	3	1.455	15	178	1	0	4	013	4	003	3
427		5	max	897.058	2	5.373	6	3.264	4	0	1	0	10	001	15
428			min	-1021.599	3	1.251	15	178	1	0	4	012	4	005	4
429		6	max	896.888	2	4.505	6	3.869	4	0	1	0	10	002	15
430			min	-1021.726	3	1.046	15	178	1	0	4	01	4	007	4
431		7	max	896.717	2	3.636	6	4.474	4	0	1	0	10	002	15
432			min	-1021.854	3	.842	15	178	1	0	4	008	4	009	4
433		8	max	896.547	2	2.767	6	5.079	4	0	1	0	10	003	15
434			min	-1021.982	3	.638	15	178	1	0	4	006	4	01	4
435		9	max	896.377	2	1.898	6	5.684	4	0	1	0	10	003	15
436			min	-1022.11	3	.434	15	178	1	0	4	003	4	012	4
437		10	max	896.206	2	1.029	6	6.289	4	0	1	0	10	003	15
438			min	-1022.237	3	.229	15	178	1	0	4	0	1	012	4
439		11	max	896.036	2	.327	2	6.894	4	0	1	.003	5	003	15
440			min	-1022.365	3	138	3	178	1	0	4	0	1	012	4
441		12	max	895.866	2	179	15	7.499	4	0	1	.006	5	003	15
442			min	-1022.493	3	71	4	178	1	0	4	001	1	012	4
443		13	max	895.695	2	383	15	8.104	4	0	1	.01	5	003	15
444			min	-1022.621	3	-1.579	4	178	1	0	4	001	1	012	4
445		14	max	895.525	2	588	15	8.709	4	0	1	.014	5	003	15
446			min	-1022.748	3	-2.448	4	178	1	0	4	001	1	011	4
447		15	max	895.355	2	792	15	9.314	4	0	1	.018	5	002	15
448			min	-1022.876	3	-3.317	4	178	1	0	4	001	1	01	4
449		16	max	895.184	2	996	15	9.92	4	0	1	.022	5	002	15
450			min	-1023.004	3	-4.185	4	178	1	0	4	001	1	008	4
451		17	max	895.014	2	-1.2	15	10.525	4	0	1	.027	5	001	15
452			min	-1023.132	3	-5.054	4	178	1	0	4	001	1	006	4
453		18	max	894.844	2	-1.405	15	11.13	4	0	1	.032	5	0	15
454			min	-1023.26	3	-5.923	4	178	1	0	4	002	1	003	4
455		19	max	894.673	2	-1.609	15	11.735	4	0	1	.038	5	0	1
456			min	-1023.387	3	-6.792	4	178	1	0	4	002	1	0	1
457	M12	1	max	862.11	1	0	1	6.745	1	0	1	.03	5	0	1
458			min	-33.779	3	0	1	-219.481	4	0	1	001	1	0	1
459		2	max	862.28	1	0	1	6.745	1	0	1	.005	5	0	1
460			min	-33.651	3	0	1	-219.629	4	0	1	0	1	0	1
461		3	max	862.451	1	0	1	6.745	1	0	1	0	1	0	1
462			min	-33.523	3	0	1	-219.776	4	0	1	02	4	0	1
463		4	max	862.621	1	0	1	6.745	1	0	1	.001	1	0	1
464			min	-33.396	3	0	1	-219.924	4	0	1	046	4	0	1
465		5	max	862.791	1	0	1	6.745	1	0	1	.002	1	0	1
466			min	-33.268	3	0	1	-220.072	4	0	1	071	4	0	1
467		6	max		1	0	1	6.745	1	0	1	.003	1	0	1
468			min	-33.14	3	0	1	-220.219	4	0	1	096	4	0	1
469		7		863.132	1	0	1	6.745	1	0	1	.003	1	0	1
470			min	-33.012	3	0	1	-220.367	4	0	1	121	4	0	1
471		8		863.302	1	0	1	6.745	1	0	1	.004	1	0	1
472			min	-32.884	3	0	1	-220.515	4	0	1	147	4	0	1
473		9	max		1	0	1	6.745	1	0	1	.005	1	0	1
474			min	-32.757	3	0	1	-220.662	4	0	1	172	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:____

475	Member	Sec 10	may	Axial[lb]			LC 1		LC 1	Torque[k-ft]	LC 1			_	LC 1
476		10	max	863.643 -32.629	<u>1</u> 3	0	1	6.745 -220.81	4	0	1	.006 197	4	0	1
477		11	max	863.813	<u> </u>	0	1	6.745	1	0	+	.006	1	0	1
478			min	-32.501	3	0	1	-220.958	4	0	1	223	4	0	1
479		12	max	863.984	<u> </u>	0	1	6.745	1	0	1	.007	1	0	1
480		12	min	-32.373	3	0	1	-221.105	4	0	1	248	4	0	1
481		13	max	864.154	<u> </u>	0	1	6.745	1	0	1	.008	1	0	1
482		13	min	-32.246	3	0	1	-221.253	4	0	1	273	4	0	1
483		14	max		<u> </u>	0	1	6.745	1	0	+	.009	1	0	1
484		14		-32.118	3	0	1	-221.4	4	0	1	299	4	0	1
485		15	min max	864.495	<u> </u>	0	1	6.745	1	0	1	.01	1	0	1
486		13	min	-31.99	3	0	1	-221.548	4	0	1	324	4	0	1
487		16		864.665	<u> </u>	0	1	6.745	1	0	+	.01	1	0	1
		10	max	-31.862	3	0	1	-221.696	4	0	1	35	4	0	1
488		17	min			-	1		1	-	1	.011	1	_	1
489		17	max	864.835	1	0	1	6.745	4	0	1		4	0	1
490		10	min	-31.735	3	0		-221.843		_	•	375	1	_	
491		18	max	865.006	1	0	1	6.745	11	0	1	.012		0	1
492		40	min	-31.607	3	0	1_	-221.991	4	0	1_	401	4	0	1
493		19	max		1	0	1_	6.745	1	0	1	.013	1	0	1
494	N 1 4	4	min	-31.479	3	0	1	-222.139	4	0	1_	426	4	0	1_
495	<u>M1</u>	1	max	127.894	1_	805.375	3	36.368	5	0	2	.103	1	0	15
496			min	-21.881	5_	-417.806	2	-36.975	1_	0	3	096	5	011	3
497		2	max	128.737	_1_	804.28	3	37.828	5	0	2	.08	1	.25	2
498			min	-21.487	5	-419.265	2	-36.975	1_	0	3	073	5	51	3
499		3	max	660.743	3	580.087	2	21.22	5	0	3_	.057	1_	.499	2
500			min	-395.961	2	-649.32	3	-36.843	1	0	2	049	5	993	3
501		4	max		3	578.628	2	22.681	5	0	3	.034	1_	.14	2
502			min	-395.118	2	-650.414	3	-36.843	1	0	2	035	5	59	3
503		5	max		3	577.169	2	24.141	5	0	3	.011	1	005	15
504			min	-394.276	2	-651.509	3	-36.843	1	0	2	021	5	219	2
505		6	max	662.638	3_	575.71	2	25.601	5	0	3_	0	10	.219	3
506			min	-393.434	2	-652.603	3	-36.843	1	0	2	012	1	577	2
507		7	max	663.27	3	574.251	2	27.061	5	0	3	.011	5	.624	3
508			min	-392.591	2	-653.697	3	-36.843	1	0	2	034	1	933	2
509		8	max	663.902	3_	572.792	2	28.521	5	0	3	.028	5	1.03	3
510			min	-391.749	2	-654.792	3	-36.843	1	0	2	057	1	-1.289	2
511		9	max	680.165	3_	53.174	2	49.488	5	0	9	.039	1_	1.195	3
512			min	-338.38	2	.436	15	-64.123	1	0	3	106	5	-1.468	2
513		10	max	680.796	3	51.715	2	50.948	5	0	9	0	10	1.174	3
514			min	-337.538	2	01	5	-64.123	1	0	3	075	4	-1.501	2
515		11	max	681.428	3	50.256	2	52.409	5	0	9	003	10	1.152	3
516				-336.695	2	-1.858	4	-64.123	1	0	3	052	4	-1.532	2
517		12		697.163	3	448.536	3	127.752	5	0	2	.057	1	1.015	3
518				-283.078	2	-688.095	2	-35.9	1	0	3	215	5	-1.362	2
519		13		697.795	3	447.441	3	129.212	5	0	2	.034	1	.737	3
520			min	-282.236	2	-689.554	2	-35.9	1	0	3	135	5	935	2
521		14	max	698.427	3	446.347	3	130.672	5	0	2	.012	1	.46	3
522				-281.393	2	-691.013	2	-35.9	1	0	3	055	5	507	2
523		15		699.059	3	445.253	3	132.132	5	0	2	.027	5	.183	3
524				-280.551	2	-692.472	2	-35.9	1	0	3	01	1	086	1
525		16		699.691	3	444.158	3	133.592	5	0	2	.109	5	.353	2
526				-279.709	2	-693.931	2	-35.9	1	0	3	033	1	093	3
527		17		700.322	3	443.064	3	135.053	5	0	2	.193	5	.784	2
528				-278.866	2	-695.39	2	-35.9	1	0	3	055	1	368	3
529		18	max		5	644.783	2	-3.28	10	0	5	.193	5	.398	2
530				-129.492	1	-311.881	3	-81.992	4	0	2	079	1	183	3
531		19	max		5	643.324	2	-3.28	10	0	5	.149	5	.011	3
										-					

Schletter, Inc. HCV

Job Number : Model Name : Standard PVMax Racking System Dec 1, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	. LC	z-z Mome	. LC
532			min	-128.649	1	-312.975	3	-80.532	4	0	2	105	1	003	1
533	<u>M5</u>	1	max	297.975	1	2607.042	3	69.24	5	0	1	0	1	.022	3
534			min	6.961	12	-1456.254	2	0	1	0	4	185	4	0	15
535		2	max	298.818	1	2605.948	3	70.7	5	0	1	0	1	.924	2
536			min	7.382	12	-1457.713	2	0	1	0	4	142	4	-1.596	3
537		3	max	1927.206	3	1403.632	2	55.678	4	0	4	0	1	1.798	2
538			min	-1160.048	2	-1747.273	3	0	1	0	1	098	4	-3.165	3
539		4	max	1927.838	3	1402.173	2	57.138	4	0	4	0	1	.928	2
540			min	-1159.206	2	-1748.367	3	0	1	0	1	063	4	-2.08	3
541		5	max		3	1400.714	2	58.598	4	0	4	0	1	.082	1
542			min	-1158.363	2	-1749.462	3	0	1	0	1	027	4	995	3
543		6	max	1929.102	3	1399.255	2	60.058	4	0	4	.01	4	.091	3
544			min	-1157.521	2	-1750.556	3	0	1	0	1	0	1	811	2
545		7	max	1929.733	3	1397.796	2	61.518	4	0	4	.048	4	1.178	3
546			min	-1156.679	2	-1751.65	3	0	1	0	1	0	1	-1.679	2
547		8	max	1930.365	3	1396.337	2	62.979	4	0	4	.086	4	2.265	3
548			min	-1155.836	2	-1752.745	3	0	1	0	1	0	1	-2.546	2
549		9	max	1938.874	3	183.764	2	169.534	4	0	1	0	1	2.613	3
550			min	-1028.487	2	.437	15	0	1	0	1	168	4	-2.929	2
551		10	max	1939.506	3	182.304	2	170.994	4	0	1	0	1	2.52	3
552			min	-1027.644	2	003	15	0	1	0	1	063	4	-3.043	2
553		11	max	1940.138	3	180.845	2	172.455	4	0	1	.044	4	2.426	3
554			min	-1026.802	2	-1.75	6	0	1	0	1	0	1	-3.156	2
555		12	max	1949.703	3	1131.189	3	177.559	4	0	1	0	1	2.116	3
556			min	-899.949	2	-1759.697	2	0	1	0	4	303	4	-2.819	2
557		13	max	1950.334	3	1130.094	3	179.019	4	0	1	0	1	1.414	3
558			min	-899.107	2	-1761.156	2	0	1	0	4	192	4	-1.727	2
559		14	max	1950.966	3	1129	3	180.479	4	0	1	0	1	.713	3
560			min	-898.264	2	-1762.615	2	0	1	0	4	081	4	633	2
561		15	max	1951.598	3	1127.906	3	181.939	4	0	1	.032	4	.461	2
562			min	-897.422	2	-1764.074	2	0	1	0	4	0	1	002	12
563		16	max	1952.23	3	1126.811	3	183.399	4	0	1	.145	4	1.556	2
564			min	-896.579	2	-1765.534	2	0	1	0	4	0	1	687	3
565		17	max	1952.861	3	1125.717	3	184.859	4	0	1	.259	4	2.653	2
566			min	-895.737	2	-1766.993	2	0	1	0	4	0	1	-1.386	3
567		18	max	-9.348	12	2169.2	2	0	1	0	4	.291	4	1.349	2
568			min	-297.307	1	-1119.03	3	-15.641	5	0	1	0	1	716	3
569		19	max	-8.926	12	2167.741	2	0	1	0	4	.283	4	.006	1
570			min	-296.465	1	-1120.124	3	-14.181	5	0	1	0	1	021	3
571	M9	1	max	127.894	1	805.375	3	51.25	4	0	3	007	10	0	15
572			min	9.566	12	-417.806	2	2.401	10	0	4	138	4	011	3
573		2	max		1	804.28	3	52.71	4	0	3	005	10	.25	2
574			min	9.987	12	-419.265		2.401	10	0	4	106	4	51	3
575		3	max		3	580.087	2	36.843	1	0	2	004	10	.499	2
576			min	-395.961	2	-649.32	3	2.389	10	0	3	073	4	993	3
577		4	max	661.375	3	578.628	2	37.964	4	0	2	002	10	.14	2
578			min		2	-650.414	3	2.389	10	0	3	05	4	59	3
579		5	max	662.006	3	577.169	2	39.424	4	0	2	0	10	005	15
580			min	-394.276	2	-651.509	3	2.389	10	0	3	025	4	219	2
581		6		662.638	3	575.71	2	40.885	4	0	2	.012	1	.219	3
582			min	-393.434	2	-652.603	3	2.389	10	0	3	004	5	577	2
583		7		663.27	3	574.251	2	42.345	4	0	2	.034	1	.624	3
584			min		2	-653.697	3	2.389	10	0	3	.002	10	933	2
585		8	max		3	572.792	2	43.805	4	0	2	.057	1	1.03	3
586		Ĭ	min	-391.749	2	-654.792	3	2.389	10	0	3	.004	10	-1.289	2
587		9	max		3	53.174	2	75.322	4	0	3	003	10	1.195	3
588			min		2	.454	15	4.58	10	0	9	122	4	-1.468	2
										_	_				

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	680.796	3	51.715	2	76.782	4	0	3	0	1	1.174	3
590			min	-337.538	2	.014	15	4.58	10	0	9	075	4	-1.501	2
591		11	max	681.428	3	50.256	2	78.242	4	0	3	.04	1	1.152	3
592			min	-336.695	2	-1.73	6	4.58	10	0	9	036	5	-1.532	2
593		12	max	697.163	3	448.536	3	143.162	4	0	3	004	10	1.015	3
594			min	-283.078	2	-688.095	2	2.765	10	0	2	239	4	-1.362	2
595		13	max	697.795	3	447.441	3	144.622	4	0	3	003	10	.737	3
596			min	-282.236	2	-689.554	2	2.765	10	0	2	15	4	935	2
597		14	max	698.427	3	446.347	3	146.083	4	0	3	0	10	.46	3
598			min	-281.393	2	-691.013	2	2.765	10	0	2	06	4	507	2
599		15	max	699.059	3	445.253	3	147.543	4	0	3	.031	4	.183	3
600			min	-280.551	2	-692.472	2	2.765	10	0	2	0	10	086	1
601		16	max	699.691	3	444.158	3	149.003	4	0	3	.123	4	.353	2
602			min	-279.709	2	-693.931	2	2.765	10	0	2	.003	10	093	3
603		17	max	700.322	3	443.064	3	150.463	4	0	3	.216	4	.784	2
604			min	-278.866	2	-695.39	2	2.765	10	0	2	.004	10	368	3
605		18	max	-9.005	12	644.783	2	42.33	1	0	2	.226	4	.398	2
606			min	-129.492	1	-311.881	3	-65.142	5	0	3	.006	10	183	3
607		19	max	-8.583	12	643.324	2	42.33	1	0	2	.192	4	.011	3
608			min	-128.649	1	-312.975	3	-63.682	5	0	3	.008	10	003	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	Ō	1	.235	2	.013	3	1.624e-2	2	NC	1	NC	1
2			min	548	4	082	3	008	2	-5.663e-3	3	NC	1	NC	1
3		2	max	0	1	.198	2	.015	3	1.686e-2	2	NC	4	NC	1
4			min	548	4	.005	15	007	5	-4.991e-3	3	1407.677	3	NC	1
5		3	max	0	1	.171	2	.018	3	1.748e-2	2	NC	4	NC	2
6			min	548	4	.004	15	009	5	-4.32e-3	3	767.878	3	7775.076	1
7		4	max	0	1	.172	3	.026	1	1.809e-2	2	NC	4	NC	2
8			min	548	4	.004	15	008	5	-3.649e-3	3	589.878	3	5427.248	1
9		5	max	0	1	.196	3	.029	1	1.871e-2	2	NC	4	NC	2
10			min	548	4	.004	15	006	10	-2.977e-3	3	540.423	3	4848.071	1
11		6	max	0	1	.187	2	.029	3	1.932e-2	2	NC	4	NC	2
12			min	548	4	.004	15	007	10	-2.306e-3	3	564.876	3	5334.57	1
13		7	max	0	1	.222	2	.032	3	1.994e-2	2	NC	2	NC	2
14			min	548	4	.004	15	01	2	-1.634e-3	3	667.077	3	7600.032	1
15		8	max	0	1	.264	2	.034	3	2.055e-2	2	NC	4	NC	1
16			min	548	4	.005	15	017	2	-9.63e-4	3	890.97	3	6997.863	3
17		9	max	0	1	.299	2	.035	3	2.117e-2	2	NC	4	NC	1
18			min	548	4	.006	15	023	2	-2.916e-4	3	1303.209	3	6647.928	3
19		10	max	0	1	.315	2	.036	3	2.179e-2	2	NC	4	NC	1
20			min	548	4	.006	15	025	2	3.798e-4	3	1659.353	3	6547.475	3
21		11	max	0	10	.299	2	.035	3	2.117e-2	2	NC	4	NC	1
22			min	548	4	.006	15	023	2	-2.916e-4	3	1303.209	3	6647.928	3
23		12	max	0	10	.264	2	.034	3	2.055e-2	2	NC	4	NC	1
24			min	548	4	.005	15	017	2	-9.63e-4	3	890.97	3	6997.863	3
25		13	max	0	10	.222	2	.032	3	1.994e-2	2	NC	2	NC	2
26			min	548	4	.004	15	01	2	-1.634e-3	3	667.077	3	7600.032	1
27		14	max	0	10	.187	2	.029	3	1.932e-2	2	NC	4	NC	2
28			min	548	4	.003	15	007	10	-2.306e-3	3	564.876	3	5334.57	1
29		15	max	0	10	.196	3	.029	1	1.871e-2	2	NC	4	NC	2
30			min	548	4	.003	15	006	10	-2.977e-3	3	540.423	3	4848.071	1
31		16	max	0	10	.172	3	.026	1	1.809e-2	2	NC	4	NC	2
32			min	548	4	.003	15	005	10	-3.649e-3	3	589.878	3	5427.248	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r LC		LC		
33		17	max	0	10	.171	2	.019	14 1.748e-2 2	NC	4	NC	2
34			min	548	4	.003	15	004	10 -4.32e-3 3	767.878	3	7722.324	4
35		18	max	0	10	.198	2	.015	3 1.686e-2 2	NC	4	NC	1
36			min	548	4	.003	15	006	2 -4.991e-3 3	1407.677	3	NC	1
37		19	max	0	10	.235	2	.013	3 1.624e-2 2	NC	1	NC	1
38		1	min	548	4	082	3	008	2 -5.663e-3 3	NC	1	NC	1
39	M14	1	max	0	1	.511	3	.011	3 8.711e-3 2	NC	1	NC	1
40	IVIIT	1	min	415	4	687	2	007	2 -7.483e-3 3	NC	1	NC	1
41		2		413	1		3	.012	3 9.702e-3 2	NC	5	NC	1
			max			.664							_
42			min	<u>415</u>	4	838	2	011	5 -8.444e-3 3	976.217	3	NC NC	1
43		3	max	0	1	.803	3	.015	3 1.069e-2 2	NC Transition	5	NC	1
44			min	415	4	976	2	015	5 -9.406e-3 3	513.842	3	8931.4	5
45		4	max	0	1	.915	3	.02	1 1.168e-2 2	NC	5	NC	2
46			min	415	4	-1.094	2	011	5 -1.037e-2 3	368.469	2	6836.74	1
47		5	max	0	1	.994	3	.024	1 1.267e-2 2	NC	5	NC	2
48			min	415	4	-1.186	2	005	10 -1.133e-2 3	300.838	2	5806.964	1
49		6	max	0	1	1.039	3	.025	3 1.367e-2 2	NC	5	NC	2
50			min	415	4	-1.249	2	007	10 -1.229e-2 3	267.026	2	6181.164	1
51		7	max	0	1	1.053	3	.028	3 1.466e-2 2	NC	15	NC	2
52			min	415	4	-1.285	2	009	2 -1.325e-2 3	250.916	2		14
53		8		415 0	1	1.044	3	.03	3 1.565e-2 2	NC	15	NC	1
		0	max										
54			min	<u>415</u>	4	-1.299	2	015	2 -1.421e-2 3	245.296	2	7545.728	4
55		9	max	0	1	1.026	3	.031	3 1.664e-2 2	NC	15	NC	1
56			min	415	4	-1.298	2	021	2 -1.517e-2 3	245.528	2	7552.448	3
57		10	max	0	1	1.015	3	.031	3 1.763e-2 2	NC	15	NC	1
58			min	415	4	-1.295	2	023	2 -1.613e-2 3	246.888	2	7415.953	3
59		11	max	0	10	1.026	3	.031	3 1.664e-2 2	NC	15	NC	1
60			min	415	4	-1.298	2	021	2 -1.517e-2 3	245.528	2	7552.448	3
61		12	max	0	10	1.044	3	.03	3 1.565e-2 2	NC	15	NC	1
62		-	min	415	4	-1.299	2	015	2 -1.421e-2 3	245.296	2	8020.151	3
63		13	max	0	10	1.053	3	.028	3 1.466e-2 2	NC	15	NC	2
64		10	min	415	4	-1.285	2	01	5 -1.325e-2 3	250.916	2	8587.519	1
65		14			10	1.039	3	.025		NC	5	NC	2
		14	max	0									
66		4.5	min	415	4	-1.249	2	007	10 -1.229e-2 3	267.026	2	6181.164	1
67		15	max	0	10	.994	3	.024	1 1.267e-2 2	NC	5_	NC	2
68			min	415	4	-1.186	2	005	10 -1.133e-2 3	300.838	2	5806.964	1
69		16	max	0	10	.915	3	.021	14 1.168e-2 2		5	NC	2
70			min	415	4	-1.094	2	004	10 -1.037e-2 3	368.469	2	6836.74	1
71		17	max	0	10	.803	3	.022	4 1.069e-2 2	NC	5	NC	1
72			min	415	4	976	2	004	10 -9.406e-3 3	513.842	3	6616.698	4
73		18	max		10	.664	3	.015	4 9.702e-3 2		5	NC	1
74			min	415	4	838	2	006	2 -8.444e-3 3		3	9466.264	
75		19	max	0	10	.511	3	.011	3 8.711e-3 2	NC	1	NC	1
76		10	min	415	4	687	2	007	2 -7.483e-3 3	NC	1	NC	1
77	M15	1	max	0	10	.521	3	.01	3 6.445e-3 3	NC	1	NC	1
78	IVITO	1				685					1		1
			min	342	4		2	007	_ 0.0000 0 _	NC NC		NC NC	
79		2	max	0	10	<u>.645</u>	3	.012	3 7.259e-3 3		5	NC Tools	1_
80			min	342	4	861	2	017	5 -1.013e-2 2	853.079	2	7821.396	5
81		3	max	0	10	.758	3	.014	3 8.072e-3 3	NC	5_	NC	1_
82			min	342	4	-1.02	2	022	5 -1.117e-2 2	447.851	2	6246.21	5
83		4	max	0	10	.856	3	.021	1 8.885e-3 3	NC	5	NC	2
84			min	342	4	-1.151	2	017	5 -1.222e-2 2		2	6776.355	
85		5	max	0	10	.933	3	.025	1 9.698e-3 3		5	NC	2
86		Ť	min	342	4	-1.245	2	006	5 -1.326e-2 2	267.97	2	5748.576	1
87		6	max	0	10	.987	3	.023	3 1.051e-2 3		5	NC	2
88		U		342	4	-1.302	2	006	10 -1.43e-2 2	243.249	2	6099.596	
		7	min										
89		7	max	0	10	1.02	3	.026	3 1.132e-2 3	NC	15	NC	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
90			min	342	4	-1.324	2	008	2 -1.535e-2	2	234.7	2	6815.016	
91		8	max	0	10	1.035	3	.028	3 1.214e-2	3	NC	<u>15</u>	NC	1
92			min	342	4	-1.321	2	<u>014</u>	2 -1.639e-2	2	236.049	2	5962.359	
93		9	max	0	10	1.037	3	.029	3 1.295e-2	3	NC 040,004	<u>15</u>	NC	1
94		10	min	342	1	-1.304 1.035	3	<u>019</u> .029	2 -1.743e-2	2	242.284 NC	<u>2</u> 5	8035.387	1
96		10	max	0 342	4	-1.294	2	029 022	3 1.376e-2 2 -1.847e-2	2	246.486	2	NC 8042.794	
97		11	min max	342 0	1	1.037	3	.022	3 1.295e-2	3	NC	15	NC	1
98			min	342	4	-1.304	2	019	2 -1.743e-2	2	242.284	2	8177.61	3
99		12	max	0	1	1.035	3	.028	3 1.214e-2	3	NC	15	NC	1
100		12	min	342	4	-1.321	2	02	5 -1.639e-2	2	236.049	2	7639.825	
101		13	max	0	1	1.02	3	.026	3 1.132e-2	3	NC	15	NC	2
102			min	342	4	-1.324	2	014	5 -1.535e-2	2	234.7	2	8405.302	1
103		14	max	0	1	.987	3	.023	3 1.051e-2	3	NC	5	NC	2
104			min	342	4	-1.302	2	006	10 -1.43e-2	2	243.249	2	6099.596	1
105		15	max	0	1	.933	3	.025	1 9.698e-3	3	NC	5	NC	2
106			min	342	4	-1.245	2	005	10 -1.326e-2	2	267.97	2	5748.576	1
107		16	max	0	1	.856	3	.027	4 8.885e-3	3	NC	5	NC	2
108			min	342	4	-1.151	2	004	10 -1.222e-2	2	322.419	2	5348.732	4
109		17	max	0	1	.758	3	.029	4 8.072e-3	3	NC	5	NC	1
110			min	342	4	-1.02	2	004	10 -1.117e-2	2	447.851	2	5006.548	4
111		18	max	0	1	.645	3	.02	4 7.259e-3	3	NC	5	NC	1
112			min	342	4	861	2	005	2 -1.013e-2	2	853.079	2	6994.466	4
113		19	max	0	1	.521	3	.01	3 6.445e-3	3	NC	_1_	NC	1
114			min	342	4	685	2	007	2 -9.089e-3	2	NC	1_	NC	1
115	M16	1	max	0	10	.209	2	.009	3 1.266e-2	3	NC	1_	NC	1
116			min	11	4	187	3	006	2 -1.369e-2	2	NC	_1_	NC	1
117		2	max	0	10	.139	2	.011	3 1.331e-2	3	NC	4	NC NC	1
118			min	11	4	165	3	012	5 -1.379e-2	2	2155.102	2	NC NC	1
119		3	max	0	10	.085	1	.018	1 1.397e-2	3	NC	4_	NC 7700 404	2
120		1	min	11	4	15	3	016	5 -1.388e-2	2	1199.044	2	7723.404	
121 122		4	max	0	10	.065	3	.027	1 1.462e-2 5 -1.398e-2	3	NC 955.067	4	NC FOEO DOA	2
123		5	min	11 0	10	146 .064	1	014 .03	1 1.528e-2	3	955.067 NC	4	5352.834 NC	2
124		5	max	11	4	155	3	007	5 -1.408e-2	2	930.902	2	4738.999	1
125		6	min max	0	10	.082	1	.028	1 1.593e-2	3	930.902 NC	3	NC	2
126		1	min	11	4	177	3	005	10 -1.417e-2	2	1086.291	2	5138.659	
127		7	max	0	10	.116	1	.023	3 1.659e-2	3	NC	4	NC	2
128		T .	min	11	4	207	3	007	10 -1.427e-2	2	1599.874	2	7088.876	
129		8	max	0	10	.17	2	.024	3 1.724e-2	3	NC	1	NC	1
130			min		4	241	3	012	2 -1.437e-2					
131		9	max	0	10	.219	2	.025	3 1.79e-2	3	NC	2	NC	1
132			min	11	4	27	3	017	2 -1.447e-2	2	1812.436	3	9463.408	3
133		10	max	0	1	.241	2	.025	3 1.855e-2	3	NC	4	NC	1
134			min	11	4	283	3	02	2 -1.456e-2	2	1572.618	3	9379.695	3
135		11	max	0	1	.219	2	.025	3 1.79e-2	3	NC	2	NC	1
136			min	11	4	27	3	017	2 -1.447e-2	2	1812.436	3	9463.408	3
137		12	max	0	1	.17	2	.024	3 1.724e-2	3	NC	1	NC	1
138			min	11	4	241	3	012	2 -1.437e-2	2	2779.581	3	9821.759	3
139		13	max	0	1	.116	1	.023	3 1.659e-2	3	NC	4	NC	2
140			min	11	4	207	3	007	10 -1.427e-2	2	1599.874	2	7088.876	
141		14	max	0	1	.082	1	.028	1 1.593e-2	3	NC	3	NC	2
142			min	11	4	177	3	005	10 -1.417e-2	2	1086.291	2	5138.659	1
143		15	max	0	1	.064	1	.03	1 1.528e-2	3	NC	4	NC	2
144			min	11	4	155	3	003	10 -1.408e-2	2	930.902	2	4738.999	
145		16	max	0	1	.065	1	.027	1 1.462e-2	3	NC	4	NC	2
146			min	11	4	146	3	003	10 -1.398e-2	2	955.067	2	5352.834	1

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:____

147		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
149	147		17	max	0	1	.085	1	.025	4	1.397e-2	3	NC	4	NC	2
150	148			min	11	4	15	3	003	10	-1.388e-2	2	1199.044	2	5808.415	4
151	149		18	max	0	1	.139	2	.016	4	1.331e-2	3	NC	4	NC	1
151	150			min	11	4	165	3	003	2	-1.379e-2	2	2155.102	2	8644.992	4
1522	151		19	max	0	1	.209	2	.009	3		3	NC	1	NC	1
153 M2				min		4		3						1		1
154		M2	1			2				1		5		1		1
1556																
1566			2													
157										_						
158			3									•				
159			3									1				
160			1									<u> </u>				
161			4									-				•
162												_		•		
163			5													
164												•				
165			6							1		_5_		_1_		1
166				min	008	3		3		4		1_		1_		4
167	165		7	max	.006	2	.003	2	.003	1	1.89e-3	5	NC	1	NC	1
168	166			min	008	3	015	3	274	4	-7.318e-5	1	NC	1	282.637	4
168	167		8	max	.005	2	.002	2	.002	1	1.903e-3	5	NC	1	NC	1
169	168			min	007	3	014	3	237	4		1	NC	1	326,633	4
170			9	max			0		.002	1		5		1		1
171														1		4
172			10					_				_		1		
173			10													
174			11											•		
175												-				
176			12									•		•		
177			12							_						
178			12							_		_				-
179			13									4		_		
180			- 4 4									1_		•		4
181			14													1
182												_		•		
183			15													_
184 min 002 3 005 3 024 4 -2.84e-5 1 NC 1 3244.264 4 185 17 max 0 2 0 15 0 1 2.034e-3 4 NC 1 NC 1 186 min 001 3 003 3 012 4 -2.342e-5 1 NC 1 6656.953 4 187 18 max 0 2 0 15 0 1 2.049e-3 4 NC 1 NC 1 188 min 0 3 002 6 004 4 -1.845e-5 1 NC 1 NC 1 189 19 max 0 1 0 1 2.044e-3 4 NC 1 NC 1 190 min 0 1 0 1 2.044e-3 4 NC				min			00 <u>6</u>		04	4		1_		1_		4
185 17 max 0 2 0 15 0 1 2.034e-3 4 NC 1 NC 1 186 min 001 3 003 3 012 4 -2.342e-5 1 NC 1 6656.953 4 187 18 max 0 2 0 15 0 1 2.049e-3 4 NC 1 NC 1 188 min 0 3 002 6 004 4 -1.845e-5 1 NC 1 NC 1 189 19 max 0 1 0 1 0 1 2.064e-3 4 NC 1 NC 1 190 min 0 1 0 1 0 1 2.064e-3 4 NC 1 NC 1 190 min 0 1 0 1 0 1 1.087e-5 1			16							1		4_		<u>1</u>		1
186 min 001 3 003 3 012 4 -2.342e-5 1 NC 1 6656.953 4 187 18 max 0 2 0 15 0 1 2.049e-3 4 NC 1 NC 1 188 min 0 3 002 6 004 4 -1.845e-5 1 NC 1 NC 1 189 19 max 0 1 0 1 2.064e-3 4 NC 1 NC 1 190 min 0 1 0 1 -1.347e-5 1 NC 1 NC 1 191 M3 1 max 0 1 0 1 2.77e-6 1 NC 1 NC 1 192 min 0 1 0 1 2.77e-6 1 NC 1 NC 1	184			min	002	3	005	3	024	4	-2.84e-5	1	NC	1_	3244.264	4
187 18 max 0 2 0 15 0 1 2.049e-3 4 NC 1 NC 1 188 min 0 3002 6004 4 -1.845e-5 1 NC 1 NC 1 189 19 max 0 1 0 1 0 1 2.064e-3 4 NC 1 NC 1 190 min 0 1 0 1 -1.347e-5 1 NC 1 NC 1 191 M3 1 max 0 1 0 1 0.1 -1.347e-5 1 NC 1 NC 1 192 min 0 1 0 1 0 1 -4.465e-4 1 NC 1 NC 1 193 2 max 0 3 0 15 .011 4 5.841e-5 4 NC 1 NC 1 194 min 0 2003 6 0 1 1.158e-6 10 NC 1 9206.523 4 1 195 3 max .001 3001 15 .021 4 5.633e-4 4 NC 1 NC 1 NC 1 196 min 0 2006 6 0 1 2.166e-6 10 NC 1 NC 1 NC 1 198	185		17	max	0	2	0	15	0	1	2.034e-3	4	NC	1	NC	1
187 18 max 0 2 0 15 0 1 2.049e-3 4 NC 1 NC 1 188 min 0 3 002 6 004 4 -1.845e-5 1 NC 1 NC 1 189 19 max 0 1 0 1 2.064e-3 4 NC 1 NC 1 190 min 0 1 0 1 2.064e-3 4 NC 1 NC 1 190 min 0 1 0 1 2.064e-3 4 NC 1 NC 1 191 M3 1 max 0 1 0 1 2.77e-6 1 NC 1 NC 1 192 min 0 1 0 1 -4.465e-4 4 NC 1 NC 1 NC 1 NC <t< td=""><td>186</td><td></td><td></td><td>min</td><td>001</td><td>3</td><td>003</td><td>3</td><td>012</td><td>4</td><td>-2.342e-5</td><td>1</td><td>NC</td><td>1</td><td>6656.953</td><td>4</td></t<>	186			min	001	3	003	3	012	4	-2.342e-5	1	NC	1	6656.953	4
188 min 0 3 002 6 004 4 -1.845e-5 1 NC 1 NC 1 189 19 max 0 1 0 1 0 1 2.064e-3 4 NC 1 NC 1 190 min 0 1 0 1 0 1 -1.347e-5 1 NC 1 NC 1 191 M3 1 max 0 1 0 1 2.77e-6 1 NC 1 NC 1 192 min 0 1 0 1 -4.465e-4 4 NC 1 NC 1 193 2 max 0 3 0 15 .011 4 5.841e-5 4 NC 1 NC 1 194 min 0 2 003 6 0 1 1.158e-6 10 NC	187		18		0	2	0	15	0	1	2.049e-3	4	NC	1		
189 19 max 0 1 0 1 2.064e-3 4 NC 1 NC 1 190 min 0 1 0 1 0 1 -1.347e-5 1 NC 1 NC 1 191 M3 1 max 0 1 0 1 2.77e-6 1 NC 1 NC 1 192 min 0 1 0 1 -4.465e-4 4 NC 1 NC 1 193 2 max 0 3 0 15 .011 4 5.841e-5 4 NC 1 NC 1 194 min 0 2 003 6 0 1 1.158e-6 10 NC 1 NC 1 195 3 max .001 3 001 15 .021 4 5.633e-4 4 NC 1					0	3	002		004	4		1		1		1
190 min 0 1 0 1 -1.347e-5 1 NC 1 NC 1 191 M3 1 max 0 1 0 1 2.77e-6 1 NC 1 NC 1 192 min 0 1 0 1 -4.465e-4 4 NC 1 NC 1 193 2 max 0 3 0 15 .011 4 5.841e-5 4 NC 1 NC 1 194 min 0 2 003 6 0 1 1.158e-6 10 NC 1 9206.523 4 195 3 max .001 3 001 15 .021 4 5.633e-4 4 NC 1 NC 1 196 min 0 2 006 6 0 1 2.166e-6 10 NC 1			19													
191 M3 1 max 0 1 0 1 2.77e-6 1 NC 1 NC 1 192 min 0 1 0 1 -4.465e-4 4 NC 1 NC 1 193 2 max 0 3 0 15 .011 4 5.841e-5 4 NC 1 NC 1 194 min 0 2 003 6 0 1 1.158e-6 10 NC 1 9206.523 4 195 3 max .001 3 001 15 .021 4 5.633e-4 4 NC 1 NC 1 196 min 0 2 006 6 0 1 2.166e-6 10 NC 1 4787.804 4 197 4 max .002 3 002 15 .031 4 1.068e-3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							-									
192 min 0 1 0 1 0 1 -4.465e-4 4 NC 1 NC 1 193 2 max 0 3 0 15 .011 4 5.841e-5 4 NC 1 NC 1 194 min 0 2 003 6 0 1 1.158e-6 10 NC 1 9206.523 4 195 3 max .001 3 001 15 .021 4 5.633e-4 4 NC 1 NC 1 196 min 0 2 006 6 0 1 2.166e-6 10 NC 1 4787.804 4 197 4 max .002 3 002 15 .031 4 1.068e-3 4 NC 1 NC 1 198 min 001 2 009 6 0 </td <td></td> <td>M3</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td>		M3	1							-		•				
193 2 max 0 3 0 15 .011 4 5.841e-5 4 NC 1 NC 1 194 min 0 2 003 6 0 1 1.158e-6 10 NC 1 9206.523 4 195 3 max .001 3 001 15 .021 4 5.633e-4 4 NC 1 NC 1 196 min 0 2 006 6 0 1 2.166e-6 10 NC 1 4787.804 4 197 4 max .002 3 002 15 .031 4 1.068e-3 4 NC 1 NC 1 198 min 001 2 009 6 0 1 3.175e-6 10 NC 1 NC 1 199 5 max .002 3 003		1410				_		-								_
194 min 0 2 003 6 0 1 1.158e-6 10 NC 1 9206.523 4 195 3 max .001 3 001 15 .021 4 5.633e-4 4 NC 1 NC 1 196 min 0 2 006 6 0 1 2.166e-6 10 NC 1 4787.804 4 197 4 max .002 3 002 15 .031 4 1.068e-3 4 NC 1 NC 1 198 min 001 2 009 6 0 1 3.175e-6 10 NC 1 3319.786 4 199 5 max .002 3 003 15 .039 4 1.573e-3 4 NC 1 NC 1 200 min 002 2 012 6			2							-				•		
195 3 max .001 3 001 15 .021 4 5.633e-4 4 NC 1 NC 1 196 min 0 2 006 6 0 1 2.166e-6 10 NC 1 4787.804 4 197 4 max .002 3 002 15 .031 4 1.068e-3 4 NC 1 NC 1 198 min 001 2 009 6 0 1 3.175e-6 10 NC 1 3319.786 4 199 5 max .002 3 003 15 .039 4 1.573e-3 4 NC 1 NC 1 200 min 002 2 012 6 0 1 4.183e-6 10 8550.158 6 2588.355 4 201 6 max .003 3																
196 min 0 2 006 6 0 1 2.166e-6 10 NC 1 4787.804 4 197 4 max .002 3 002 15 .031 4 1.068e-3 4 NC 1 NC 1 198 min 001 2 009 6 0 1 3.175e-6 10 NC 1 3319.786 4 199 5 max .002 3 003 15 .039 4 1.573e-3 4 NC 1 NC 1 200 min 002 2 012 6 0 1 4.183e-6 10 8550.158 6 2588.355 4 201 6 max .003 3 003 15 .047 4 2.078e-3 4 NC 2 NC 1 202 min 002 2 015			2											_		
197 4 max .002 3 002 15 .031 4 1.068e-3 4 NC 1 NC 1 198 min 001 2 009 6 0 1 3.175e-6 10 NC 1 3319.786 4 199 5 max .002 3 003 15 .039 4 1.573e-3 4 NC 1 NC 1 200 min 002 2 012 6 0 1 4.183e-6 10 8550.158 6 2588.355 4 201 6 max .003 3 003 15 .047 4 2.078e-3 4 NC 2 NC 1 202 min 002 2 015 6 0 1 5.191e-6 10 6926.451 6 2150.382 4			3								3.033e-4					
198 min 001 2 009 6 0 1 3.175e-6 10 NC 1 3319.786 4 199 5 max .002 3 003 15 .039 4 1.573e-3 4 NC 1 NC 1 200 min 002 2 012 6 0 1 4.183e-6 10 8550.158 6 2588.355 4 201 6 max .003 3 003 15 .047 4 2.078e-3 4 NC 2 NC 1 202 min 002 2 015 6 0 1 5.191e-6 10 6926.451 6 2150.382 4			A													
199 5 max .002 3 003 15 .039 4 1.573e-3 4 NC 1 NC 1 200 min 002 2 012 6 0 1 4.183e-6 10 8550.158 6 2588.355 4 201 6 max .003 3 003 15 .047 4 2.078e-3 4 NC 2 NC 1 202 min 002 2 015 6 0 1 5.191e-6 10 6926.451 6 2150.382 4			4													
200 min 002 2 012 6 0 1 4.183e-6 10 8550.158 6 2588.355 4 201 6 max .003 3 003 15 .047 4 2.078e-3 4 NC 2 NC 1 202 min 002 2 015 6 0 1 5.191e-6 10 6926.451 6 2150.382 4			-											•		4
201 6 max .003 3003 15 .047 4 2.078e-3 4 NC 2 NC 1 202 min002 2015 6 0 1 5.191e-6 10 6926.451 6 2150.382 4			5							-						1
202 min002 2015 6 0 1 5.191e-6 10 6926.451 6 2150.382 4																
			6						.047	4	2.078e-3					
203 7 max .003 3 004 15 .055 4 2.583e-3 4 NC 5 NC 1				min			015			1		10				4
	203		7	max	.003	3	<u>004</u>	15	.055	4	2.583e-3	4	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
204			min	003	2	017	6	0	1	6.199e-6		5948.632	<u>6</u>	1857.869	
205		8	max	.004	3	004	15	.062	4	3.088e-3	4	NC	5	NC 1017 101	1
206			min	003	2	019	6	0	1	7.207e-6		5345.531	6	1647.121	4
207		9	max	.004	3	004	15	.068	4	3.593e-3	4	NC	5	NC 4.400.00	1
208		40	min	004	2	02	6	0	3	8.215e-6	10	4989.515	6	1486.06	4
209		10	max	.005	3	005	15	.075	4	4.098e-3	4	NC	5	NC 40FC CO4	1
210		11	min	004	3	021 005	6	0	3	9.224e-6		4818.693 NC	6	1356.684 NC	
211			max	.006	2		15	.081		4.603e-3 1.023e-5	4	4807.942	<u>5</u>		1
212		12	min	005	3	021	6	0	12		10	NC		1248.081 NC	1
213 214		12	max	.006 005	2	004 02	15	<u>.088</u>	12	5.108e-3 1.124e-5	<u>4</u> 10	4959.276	<u>5</u>	1153.281	4
215		13	min	.005	3	02 004	15	.095	4	5.613e-3	4	NC	5	NC	1
216		13	max	006	2	004 019	6	<u>.095</u>	10	1.225e-5		5303.858	6	1067.704	
217		14		.007	3	019 004	15	.103	4	6.117e-3	4	NC	5	NC	1
218		14	max min	006	2	004 017	6	103 0	10	1.326e-5	10	5918.101	6	988.34	4
219		15	max	.008	3	003	15	.111	4	6.622e-3	4	NC	3	NC	1
220		13	min	007	2	003 014	6	0	10	1.426e-5	10	6971.159	6	913.288	4
221		16	max	.008	3	002	15	.121	4	7.127e-3	4	NC	1	NC	1
222		10	min	007	2	011	6	0	10	1.527e-5		8872.553	6	841.452	4
223		17	max	.009	3	001	15	.132	4	7.632e-3	4	NC	1	NC	1
224		17	min	008	2	008	6	0	10	1.628e-5	10	NC	1	772.334	4
225		18	max	.009	3	0	15	.144	4	8.137e-3	4	NC	1	NC	1
226		10	min	008	2	005	3	0	10	1.729e-5	10	NC	1	705.858	4
227		19	max	.01	3	0	5	.158	4	8.642e-3	4	NC	1	NC	1
228		13	min	009	2	002	3	0	10	1.83e-5	10	NC	1	642.219	4
229	M4	1	max	.002	1	.002	2	0	10	5.219e-4	4	NC	1	NC	2
230			min	0	5	01	3	158	4	6.641e-6	10	NC	1	156.697	4
231		2	max	.002	1	.008	2	0	10	5.219e-4	4	NC	1	NC	2
232			min	0	5	01	3	146	4	6.641e-6	10	NC	1	170.223	4
233		3	max	.002	1	.008	2	0	10	5.219e-4	4	NC	1	NC	2
234			min	0	5	009	3	133	4	6.641e-6	10	NC	1	186.331	4
235		4	max	.002	1	.007	2	0	10	5.219e-4	4	NC	1	NC	2
236			min	0	5	009	3	121	4	6.641e-6	10	NC	1	205.687	4
237		5	max	.002	1	.007	2	0	10	5.219e-4	4	NC	1	NC	2
238			min	0	5	008	3	108	4	6.641e-6	10	NC	1	229.202	4
239		6	max	.001	1	.006	2	0	10	5.219e-4	4	NC	1	NC	2
240			min	0	5	007	3	096	4	6.641e-6	10	NC	1	258.135	4
241		7	max	.001	1	.006	2	0	10	5.219e-4	4	NC	1	NC	1
242			min	0	5	007	3	084	4	6.641e-6	10	NC	1	294.276	4
243		8	max	.001	1	.005	2	0	10	5.219e-4	4	NC	1	NC	1
244			min	0	5	006	3	073	4	6.641e-6	10	NC	1	340.232	4
245		9	max	.001	1	.005	2	0	10	5.219e-4	4	NC	1	NC	1
246			min	0	5	006	3	062	4	6.641e-6	10	NC	1	399.93	4
247		10	max	.001	1	.004	2	0	10	5.219e-4	4	NC	1	NC	1
248			min	0	5	005	3	052	4	6.641e-6	10	NC	1	479.509	4
249		11	max	0	1	.004	2	0	10	5.219e-4	4_	NC	_1_	NC	1
250			min	0	5	005	3	042	4	6.641e-6	10	NC	1_	589.005	4
251		12	max	0	1	.003	2	0	10		4	NC	<u>1</u>	NC	1
252			min	0	5	004	3	033	4	6.641e-6	10	NC	1_	745.779	4
253		13	max	0	1	.003	2	0	10	5.219e-4	4	NC	1_	NC	1
254			min	0	5	003	3	025	4	6.641e-6	10	NC	1_	982.048	4
255		14	max	0	1	.002	2	0	10	5.219e-4	4	NC	1	NC	1
256			min	0	5	003	3	018	4	6.641e-6	10	NC	1_	1363.331	4
257		15	max	0	1	.002	2	0	10	5.219e-4	4_	NC	1_	NC	1
258			min	0	5	002	3	012	4	6.641e-6	10	NC	1_	2040.617	4
259		16	max	0	1	.001	2	0	10	5.219e-4	4	NC	1_	NC	1
260			min	0	5	002	3	007	4	6.641e-6	10	NC	1_	3431.116	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
261		17	max	0	1	0	2	0	10	5.219e-4	4	NC	1	NC	1
262			min	0	5	001	3	004	4	6.641e-6	10	NC	1	7080.809	4
263		18	max	0	1	0	2	0	10	5.219e-4	4	NC	_1_	NC	1
264			min	0	5	0	3	001	4	6.641e-6	10	NC	1_	NC	1
265		19	max	0	1	0	1	0	1	5.219e-4	_4_	NC	1_	NC	1
266			min	0	1	0	1	0	1	6.641e-6	10	NC	1_	NC	1
267	<u>M6</u>	1_	max	.024	2	.038	2	0	1	1.876e-3	_4_	NC	3	NC	1
268			min	035	3	0 <u>55</u>	3	522	4	0	_1_	2018.888	2	148.517	4
269		2	max	.022	2	.035	2	0	1	1.889e-3	4	NC	3	NC_	1
270			min	033	3	052	3	<u>48</u>	4	0	_1_	2216.834	2	161.572	4
271		3	max	.021	2	.032	2	0	1	1.902e-3	4	NC	3_	NC 477.050	1
272			min	031	3	049	3	438	4	0	1_	2455.741	2	177.052	4
273		4	max	.02	2	.028	2	0	1	1.914e-3	4	NC 0747.007	3	NC 405.50	1
274		_	min	029	3	046	3	396	4	0	1_	2747.227	2	195.59	4
275		5	max	.018	3	.025	3	0 355	1 4	1.927e-3	<u>4</u> 1	NC	2	NC 218.043	4
276 277		6	min	027 .017	2	043 .022	2	_ 355 _ 0	1	0 1.94e-3	4	3107.477 NC	3	NC	1
278		6	max	025	3	022 04	3	316	4	0	1	3559.591	2	245.597	4
279		7	min	.025 .016	2	.019	2	<u>316</u> 0	1	1.953e-3	4	NC	1	NC	1
280			max	023	3	037	3	277	4	0	1	4137.464	2	279.936	4
281		8	max	.023 .014	2	.016	2	<u>211</u> 0	1	1.965e-3	4	NC	1	NC	1
282		0	min	021	3	033	3	24	4	0	1	4892.489	2	323.511	4
283		9	max	.013	2	.013	2	0	1	1.978e-3	4	NC	1	NC	1
284			min	02	3	03	3	204	4	0	1	5905.703	2	380.006	4
285		10	max	.012	2	.011	2	<u>.204</u>	1	1.991e-3	4	NC	1	NC	1
286		10	min	018	3	027	3	17	4	0	1	7311.122	2	455.173	4
287		11	max	.011	2	.008	2	0	1	2.004e-3	4	NC	1	NC	1
288			min	016	3	024	3	139	4	0	1	9343.876	2	558.407	4
289		12	max	.009	2	.006	2	0	1	2.017e-3	4	NC	1	NC	1
290			min	014	3	021	3	11	4	0	1	NC	1	705.932	4
291		13	max	.008	2	.004	2	0	1	2.029e-3	4	NC	1	NC	1
292			min	012	3	018	3	084	4	0	1	NC	1	927.796	4
293		14	max	.007	2	.003	2	0	1	2.042e-3	4	NC	1	NC	1
294			min	01	3	015	3	06	4	0	1	NC	1	1284.975	4
295		15	max	.005	2	.002	2	0	1	2.055e-3	4	NC	1	NC	1
296			min	008	3	012	3	04	4	0	1	NC	1	1917.581	4
297		16	max	.004	2	0	2	0	1	2.068e-3	4	NC	<u>1</u>	NC	1
298			min	006	3	009	3	024	4	0	1_	NC	1_	3211.23	4
299		17	max	.003	2	0	2	0	1	2.08e-3	4	NC	1_	NC	1
300			min	004	3	006	3	012	4	0	1_	NC	1_	6586.156	4
301		18	max	.001	2	00	2	0	1	2.093e-3		NC	_1_	NC	1
302			min	002	3	003	3	004	4	0	_1_	NC	1_	NC	1
303		19	max	0	1	0	1	0	1	2.106e-3	4	NC	1_	NC	1
304			min	0	1	0	1	0	1	0	_1_	NC	1_	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1_	NC	1_	NC	1
306			min	0	1	0	1	0	1	-4.563e-4	4_	NC	1_	NC	1
307		2	max	.002	3	0	15	.011	4	3.451e-5	4_	NC NC	1	NC	1
308			min	001	2	004	3	0	1	0	_1_	NC	1_	9021.181	4
309		3	max	.003	3	001	15	.022	4	5.253e-4	4	NC NC	1_	NC 4004 acc	1
310		4	min	003	2	008	3	0	1	0	1_1	NC NC	1_	4691.266	
311		4	max	.005	3	002	15	.031	4	1.016e-3	4	NC NC	1_1	NC	1
312		-	min	004	2	011	3	0	1	1 5070 2	1_1	NC NC	1_1	3253.77	4
313		5	max	.006	3	003	15	.04	4	1.507e-3	4	NC 7004 222	1	NC	1
314		6	min	006	2	014	3	0	1	1 0000 2	1_4	7981.222	3	2538.52	4
315		6	max	.008	3	004 017	15	.048 0	1	1.998e-3 0	<u>4</u> 1	NC 6738.4	<u>1</u> 3	NC 2111.207	4
316		7	min	007 .009	3	017 004	15	.056	4	2.488e-3	4	NC	2	NC	1
JII			max	.009	_⊥ ວ	004	10	.000	4	Z. 4 000-3	_+_	INC		INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio			
318			min	009	2	019	3	0	1	0	1_	5914.787	4	1826.789	
319		8	max	.011	3	005	15	.063	4	2.979e-3	4	NC	2	NC	1
320			min	01	2	021	3	0	1	0	1_	5317.266	4_	1622.844	4
321		9	max	.013	3	005	15	.069	4	3.47e-3	4	NC	5	NC	1
322		40	min	012	2	022	3	0	1	0	<u>1</u>	4964.804	4_	1467.921	4
323		10	max	.014	3	005	15	.076	4	3.961e-3	4	NC 1700 101	5	NC	1
324		4.4	min	013	2	023	3	0	1	0		4796.184	4_	1344.338	4
325		11	max	.016	3	005	15	.082	4	4.451e-3	4_	NC 4700 004	5_	NC 1011 000	1
326		40	min	015	2	023	3	0	1	0	1_	4786.624	4_	1241.333	
327		12	max	.017	3	005	15	.088	4	4.942e-3	4_	NC 1000 001	5_	NC	1
328		40	min	016	2	022	3	0	1	0	1_	4938.281	4_	1151.969	
329		13	max	.019	3	005	15	.095	4	5.433e-3	4	NC FOOO OOO	5_	NC 4074 CO	1
330		144	min	018	2	021	3	0	1	0	1	5282.299	4_	1071.62	4
331		14	max	.02	3	004	15	.102	4	5.924e-3	4	NC 5004.075	2	NC 007.475	1
332		4.5	min	019	2	02	3	0	1	0	1_	5894.875	4_	997.175	4
333		15	max	.022	3	004	15	.11	4	6.414e-3	4	NC COAA FOO	1_	NC OOC FOO	1
334		4.0	min	021	2	018	3	0	1	0	1_1	6944.598	4	926.593	4
335		16	max	.024	3	003	15	.118	4	6.905e-3	4	NC	1_	NC 050,000	1
336		47	min	022	2	015	3	0	1	7 200 - 0	1_1	8839.546	4_	858.638	4
337		17	max	.025	3	002	15	.128	4	7.396e-3	4	NC NC	1	NC 702 C07	1
338		40	min	024	2	013	3	0	1	7 007 0	1_1	NC NC	_	792.687	4
339		18	max	.027	3	001	15	.14	4	7.887e-3	4	NC NC	1	NC 700 F04	1
340		40	min	025	2	<u>01</u>	3	0	1	0 270 2	1_1	NC NC	1_	728.581	4
341		19	max	.028	3	0	10	.153	4	8.378e-3	4	NC NC	1_1	NC CCC 40C	1
342	MO	1	min	027	2	007	3	0	1	0 3.538e-4	1_1	NC NC	1_	666.486	4
343	<u>M8</u>	1	max	.006	2	.026	2	0	1		4	NC NC	1	NC 400 040	1
344		2	min	0	2	029	3	1 <u>53</u>	1	0	1_1	NC NC	<u>1</u> 1	162.618 NC	4
345			max	.005	3	.025	3	0	4	3.538e-4	<u>4</u> 1	NC NC	1		1
346		3	min	0		027		14	1	3.538e-4		NC NC	1	176.677 NC	1
347		3	max	.005 0	3	.023 026	3	0 128	4	0.5566-4	<u>4</u> 1	NC NC	1	193.417	4
349		4	min	.005	2	.022	2	120 0	1	3.538e-4	4	NC NC	1	NC	1
350		4	max	.005	3	024	3	116	4	0.0000-4	1	NC NC	1	213.533	4
351		5	max	.004	2	024 .02	2	<u>116</u> 0	1	3.538e-4	4	NC NC	1	NC	1
352		5	min	.004	3	023	3	104	4	0	1	NC	1	237.969	4
353		6	max	.004	2	.019	2	- <u>104</u> 0	1	3.538e-4	4	NC	1	NC	1
354		-	min	0	3	021	3	093	4	0	1	NC	1	268.035	4
355		7	max	.004	2	.017	2	093	1	3.538e-4	4	NC	1	NC	1
356			min	0	3	019	3	081	4	0.0006-4	1	NC	1	305.59	4
357		8	max	.003	2	.016	2	0	1	3.538e-4	4	NC	1	NC	1
358			min		3	018	3	07	4	0	1	NC	1	353.344	4
359		9	max	.003	2	.014	2	0	1	3.538e-4	4	NC	1	NC	1
360			min	0	3	016	3	06	4	0.0000 4	1	NC	1	415.377	4
361		10	max	.003	2	.013	2	0	1	3.538e-4	4	NC	1	NC	1
362		1.0	min	0	3	014	3	05	4	0.0000 4	1	NC	1	498.069	4
363		11	max	.003	2	.012	2	0	1	3.538e-4	4	NC	1	NC	1
364			min	0	3	013	3	041	4	0	1	NC	1	611.85	4
365		12	max	.002	2	.01	2	0	1	3.538e-4	4	NC	1	NC	1
366		12	min	0	3	011	3	032	4	0	1	NC	1	774.762	4
367		13	max	.002	2	.009	2	0	1	3.538e-4	4	NC	1	NC	1
368		'	min	0	3	01	3	024	4	0	1	NC	1	1020.286	4
369		14	max	.002	2	.007	2	0	1	3.538e-4	4	NC	1	NC	1
370			min	0	3	008	3	018	4	0.0000 4	1	NC	1	1416.515	_
371		15	max	.001	2	.006	2	0	1	3.538e-4	4	NC	1	NC	1
372		1.0	min	0	3	006	3	012	4	0	1	NC	1	2120.374	4
373		16	max	0	2	.004	2	0	1	3.538e-4	4	NC	1	NC	1
374		1.0	min	0	3	005	3	007	4	0.0000 4	1	NC	1	3565.488	4
U, T			1111111			.000		.001		.		110		J000.700	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:____

375	Member	Sec 17	max	x [in]	LC 2	y [in] .003	LC 2	z [in]	LC 1	x Rotate [r 3.538e-4	LC 4	(n) L/y Ratio	LC 1	(n) L/z Ratio	LC 1
376		17	min	0	3	003	3	003	4	0.0000-4	1	NC	1	7358.754	4
377		18	max	0	2	.003	2	<u>.003</u>	1	3.538e-4	4	NC	1	NC	1
378		1.0	min	0	3	002	3	001	4	0.0000 +	1	NC	1	NC	1
379		19	max	0	1	0	1	0	1	3.538e-4	4	NC	1	NC	1
380		15	min	0	1	0	1	0	1	0.0000 4	1	NC	1	NC	1
381	M10	1	max	.008	2	.013	2	0	10	1.864e-3	4	NC	1	NC	1
382	IVITO		min	012	3	019	3	52	4	5.701e-6		6097.475	2	149.063	4
383		2	max	.008	2	.011	2	0	10	1.876e-3	4	NC	1	NC	1
384			min	011	3	018	3	478	4	5.426e-6	10	7039.053	2	162.167	4
385		3	max	.007	2	.009	2	0	10	1.887e-3	4	NC	1	NC	1
386		T -	min	01	3	018	3	436	4	5.151e-6		8305.773	2	177.706	4
387		4	max	.007	2	.008	2	<u>.0</u>	10	1.899e-3	4	NC	1	NC	1
388		+-	min	01	3	017	3	395	4	4.876e-6	10	NC	1	196.314	4
389		5	max	.006	2	.006	2	<u>.555</u>	10	1.91e-3	4	NC	1	NC	1
390		+	min	009	3	016	3	354	4	4.601e-6	10	NC	1	218.852	4
391		6	max	.006	2	.005	2	0	10	1.922e-3	4	NC	1	NC	1
392		1	min	008	3	016	3	314	4	4.325e-6	10	NC	1	246.513	4
393		7	max	.006	2	.003	2	0	10	1.933e-3	4	NC	1	NC	1
394		+ '	min	008	3	015	3	276	4	4.05e-6	10	NC	1	280.985	4
395		8	max	.005	2	.002	2	0	10	1.945e-3	4	NC	1	NC	1
396		10	min	007	3	014	3	239	4	3.775e-6	10	NC	1	324.73	4
397		9	max	.005	2	0	2	239	10	1.957e-3	4	NC	1	NC	1
398		9	min	007	3	013	3	203	4	3.5e-6	10	NC NC	1	381.45	4
399		10	max	.004	2	<u>013</u> 0	2	<u>203</u> 0	10	1.968e-3	4	NC	1	NC	1
400		10	min	006	3	012	3	17	4	3.225e-6	10	NC NC	1	456.92	4
401		11		.004	2	012 001	2	0	10	1.98e-3	4	NC	1	NC	1
402		+ ' '	max	00 4	3	001 011	3	138	4	2.95e-6	10	NC NC	1	560.578	4
		12	min	.003	2		2	136 0		2.95e-6 1.991e-3	4	NC NC	1	NC	1
403		12	max		3	002	3		10			NC NC	1		
404 405		13	min	005 .003	2	01 002	15	<u>109</u> 0	4	2.674e-6 2.003e-3	<u>10</u> 4	NC NC	1	708.723 NC	1
406		13	max	004	3	002	3	083	10	2.399e-6	10	NC	1	931.546	4
407		14	min	.002	2	009 002	15	<u>063</u> 0	10	2.015e-3	4	NC NC	1	NC	1
407		14	max min	002	3	002 008	3	06	4	2.015e-3 2.124e-6	10	NC NC	1	1290.33	4
409		15		.002	2	008 002	15		10		4	NC NC	1	NC	1
410		15	max min	002	3	002	3	0 04	4	2.026e-3 1.849e-6	10	NC NC	1	1925.929	4
411		16	max	.003	2	000 001	15	- <u>04</u> 0	10	2.038e-3	4	NC	1	NC	1
412		10		002	3	001	4	024	4	1.574e-6	10	NC NC	1	3226.171	4
		17	min	<u>002</u> 0	2	005 0	15	<u>024</u> 0		2.049e-3	4	NC NC	1	NC	1
413 414		17	max	001	3	004	4	012	10	1.299e-6	10	NC NC	1	6620.407	4
415		10	min max	•	2	004 0	15	<u>012</u> 0	4	2.061e-3		NC NC	1	NC	4
416		10	min	0	3	002	4	004	4	1.023e-6	10	NC	1	NC	1
417		19		0	1	<u>002</u> 0	1	004	1	2.072e-3		NC	1	NC	1
		19	max	0	1	0	1	0	1		4	NC NC	1		1
418	N/11	1	min		1		1		1	7.483e-7	10	NC NC	1	NC NC	
419 420	<u>M11</u>		max min	0	1	<u> </u>	1	<u> </u>	1	-1.5e-7 -4.483e-4	<u>10</u> 4	NC NC	1	NC NC	1
421		2		0	3	0	15	.011	4	5.067e-5	5	NC NC	1	NC NC	1
422		+-	max min	0	2	003	4	0		-1.511e-5	1	NC NC	1	9169.433	
423		3		.001	3	003 002	15	.021	4	5.459e-4	4	NC NC	1	NC	
		- 3	max								4		1		1
424		1	min	002	2	006	15	<u> </u>		-2.745e-5	1	NC NC	_	4769.557	4
425		4	max	.002	3	002			4	1.043e-3	4	NC NC	1	NC	1
426		-	min	001		009	4	0	10	-3.979e-5	1_		1_1	3308.26	4
427		5	max	.002	3	003	15	.039	4	1.54e-3	4	NC	1_4	NC 2590.6	1
428		6	min	002	2	013	15	0	10	-5.213e-5	1_1	8241.171	4	2580.6	4
429		6	max	.003	3	004	15	.047	4	2.037e-3	4	NC	2	NC	1
430		7	min	002	2	016	4	0	10	-6.447e-5	1	6697.707	4	2145.288	
431		7	max	.003	3	004	15	.055	4	2.534e-3	4	NC	5	NC	1

Model Name

Schletter, Inc.HCV

110 V

: Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC				LC
432			min	003	2	018	4	0	10		1_	5767.297	4	1854.941	4
433		8	max	.004	3	005	15	.062	4	3.031e-3	4_	NC	5_	NC	1
434			min	003	2	02	4	0	10	-8.916e-5	1	5193.825	4	1646.125	4
435		9	max	.004	3	005	15	.068	4	3.528e-3	4	NC	5	NC	1
436			min	004	2	022	4	0	1	-1.015e-4	1	4856.689	4	1486.882	4
437		10	max	.005	3	006	15	.075	4	4.025e-3	4	NC	5	NC	1
438			min	004	2	022	4	0	1	-1.138e-4	1	4697.553	4	1359.262	4
439		11	max	.006	3	006	15	.081	4	4.522e-3	4	NC	5	NC	1
440			min	005	2	022	4	0	1	-1.262e-4	1	4693.095	4	1252.364	4
441		12	max	.006	3	005	15	.088	4	5.019e-3	4	NC	5	NC	1
442			min	005	2	022	4	0	1	-1.385e-4	1	4846.068	4	1159.201	4
443		13	max	.007	3	005	15	.095	4	5.516e-3	4	NC	5	NC	1
444			min	006	2	021	4	001	1	-1.509e-4	1	5187.517	4	1075.155	4
445		14	max	.007	3	005	15	.102	4	6.013e-3	4	NC	5	NC	1
446			min	006	2	019	4	001	1	-1.632e-4	1	5792.689	4	997.17	4
447		15	max	.008	3	004	15	.11	4	6.511e-3	4	NC	3	NC	1
448			min	007	2	016	4	002	1	-1.755e-4	1	6827.668	4	923.29	4
449		16	max	.008	3	003	15	.119	4	7.008e-3	4	NC	1	NC	1
450			min	007	2	013	4	002	1	-1.879e-4	1	8694.172	4	852.374	4
451		17	max	.009	3	003	15	.13	4	7.505e-3	4	NC	1	NC	1
452			min	008	2	009	4	003	1	-2.002e-4	1	NC	1	783.89	4
453		18	max	.009	3	002	15	.142	4	8.002e-3	4	NC	1	NC	1
454			min	008	2	005	4	004	1	-2.126e-4	1	NC	1	717.75	4
455		19	max	.01	3	0	10	.155	4	8.499e-3	4	NC	1	NC	1
456			min	009	2	002	3	005	1	-2.249e-4	1	NC	1	654.153	4
457	M12	1	max	.002	1	.009	2	.005	1	4.786e-4	5	NC	1	NC	2
458			min	0	3	01	3	155	4	-8.861e-5	1	NC	1	159.609	4
459		2	max	.002	1	.008	2	.004	1	4.786e-4	5	NC	1	NC	2
460			min	0	3	01	3	143	4	-8.861e-5	1	NC	1	173.391	4
461		3	max	.002	1	.008	2	.004	1	4.786e-4	5	NC	1	NC	2
462			min	0	3	009	3	131	4	-8.861e-5	1	NC	1	189.803	4
463		4	max	.002	1	.007	2	.003	1	4.786e-4	5	NC	1	NC	2
464			min	0	3	009	3	118	4	-8.861e-5	1	NC	1	209.524	4
465		5	max	.002	1	.007	2	.003	1	4.786e-4	5	NC	1	NC	2
466			min	0	3	008	3	106	4	-8.861e-5	1	NC	1	233.483	4
467		6	max	.001	1	.006	2	.003	1	4.786e-4	5	NC	1	NC	2
468			min	0	3	007	3	094	4	-8.861e-5	1	NC	1	262.962	4
469		7	max	.001	1	.006	2	.002	1	4.786e-4	5	NC	1	NC	1
470			min	0	3	007	3	083	4	-8.861e-5	1	NC	1	299.784	4
471		8	max	.001	1	.005	2	.002	1	4.786e-4	5	NC	1	NC	1
472			min	0	3	006	3	072	4	-8.861e-5	1	NC	1	346.606	4
473		9	max	.001	1	.005	2	.002	1	4.786e-4	5	NC	1	NC	1
474			min	0	3	006	3	061	4	-8.861e-5	1	NC	1	407.43	4
475		10	max	.001	1	.004	2	.001	1	4.786e-4	5	NC	1	NC	1
476		10	min	0	3	005	3	051	4	-8.861e-5	1	NC	1	488.508	4
477		11	max	0	1	.004	2	.001	1	4.786e-4	5	NC	1	NC	1
478		+ ' '	min	0	3	005	3	041	4	-8.861e-5	1	NC	1	600.069	4
479		12	max	0	1	.003	2	0	1	4.786e-4	5	NC	1	NC	1
480		14	min	0	3	004	3	033	4	-8.861e-5	1	NC	1	759.799	4
481		13	max	0	1	.003	2	_ 033 _	1	4.786e-4	5	NC	1	NC	1
482		13	min	0	3	003	3	025	4	-8.861e-5	1	NC	1	1000.523	_
483		14	max	0	1	.002	2	<u>025</u> 0	1	4.786e-4	5	NC	1	NC	1
484		14	min	0	3	003	3	018		-8.861e-5	1	NC NC	1		1
		15			1				4		F	NC NC	•	1388.999	
485		15	max	0	3	.002	2	0	1	4.786e-4	5_1		<u>1</u> 1	NC	1
486		10	min	0		002	3	012	4	-8.861e-5	1_	NC NC	_	2079.066	
487		16	max	0	1	.001	2	0	1	4.786e-4	5	NC NC	1	NC	1
488			min	0	3	002	3	007	4	-8.861e-5	1_	NC	1_	3495.817	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio	LC		LC
489		17	max	0	1	0	2	0	1	4.786e-4	5	NC	1_	NC	1
490			min	0	3	001	3	003	4	-8.861e-5	1	NC	1_	7214.458	4
491		18	max	0	1	0	2	0	1	4.786e-4	5	NC	1_	NC	1
492			min	0	3	0	3	001	4	-8.861e-5	1	NC	1_	NC	1
493		19	max	0	1	0	1	0	1	4.786e-4	5	NC	_1_	NC	1
494			min	0	1	0	1	0	1	-8.861e-5	1	NC	1_	NC	1
495	M1	1	max	.013	3	.235	2	.548	4	4.632e-3	2	NC	_1_	NC	1
496			min	008	2	082	3	0	10	-1.324e-2	3	NC	1_	NC	1
497		2	max	.013	3	.113	2	.533	4	5.159e-3	4	NC	5	NC	1
498			min	008	2	038	3	003	1	-6.575e-3	3	1115.775	2	NC	1
499		3	max	.013	3	.02	3	.516	4	9.568e-3	4	NC	5	NC	1
500			min	008	2	015	2	005	1	-9.283e-5	3	542.263	2	7380.199	5
501		4	max	.012	3	.103	3	.499	4	8.175e-3	4	NC	5_	NC	1
502			min	008	2	156	2	004	1	-3.557e-3	3	346.948	2	5431.805	5
503		5	max	.012	3	.202	3	.48	4	6.807e-3	2	NC	15	NC	1
504			min	008	2	3	2	003	1	-7.022e-3	3	253.211	2	4446.406	5
505		6	max	.012	3	.306	3	.461	4	1.02e-2	2	9661.374	15	NC	1
506			min	008	2	439	2	001	1	-1.049e-2	3	201.159	2	3829.621	5
507		7	max	.012	3	.405	3	.442	4	1.359e-2	2	8191.852	15	NC	1
508			min	008	2	561	2	0	3	-1.395e-2	3	170.234	2	3362.128	4
509		8	max	.011	3	.486	3	.423	4	1.699e-2	2	7319.24	15	NC	1
510			min	007	2	658	2	0	10	-1.742e-2	3	151.862	2	2977.899	4
511		9	max	.011	3	.538	3	.403	4	1.894e-2	2	6861.043	15	NC	1
512			min	007	2	719	2	0	1	-1.809e-2	3	142.261	2	2685.413	4
513		10	max	.011	3	.558	3	.381	4	1.992e-2	2	6720.479	15	NC	1
514			min	007	2	739	2	0	10	-1.689e-2	3	139.461	2	2565.545	4
515		11	max	.011	3	.545	3	.357	4	2.09e-2	2		15	NC	1
516			min	007	2	718	2	0	10	-1.57e-2	3	142.811	2	2560.39	4
517		12	max	.01	3	.5	3	.331	4	1.991e-2	2	7317.827	15	NC	1
518			min	007	2	655	2	0	1	-1.387e-2	3	153.44	2	2658.554	4
519		13	max	.01	3	.427	3	.299	4	1.596e-2	2	8189.132	15	NC	1
520			min	007	2	553	2	0	1	-1.11e-2	3	173.89	2	3081.607	4
521		14	max	.01	3	.333	3	.264	4	1.201e-2	2	9656.478	15	NC	1
522			min	007	2	426	2	0	12	-8.323e-3	3	208.698	2	4089.563	4
523		15	max	.009	3	.227	3	.228	4	8.061e-3	2	NC	15	NC	1
524			min	007	2	285	2	0	10	-5.549e-3	3	268.239	2	6534.521	4
525		16	max	.009	3	.116	3	.192	4	6.956e-3	4	NC	5	NC	1
526			min	007	2	142	2	0	10	-2.775e-3	3	377.568	2	NC	1
527		17	max	.009	3	.007	3	.159	4	8.073e-3	4	NC	5	NC	1
528			min	006	2	008	2	0	10	-1.261e-6	3	609.076	2	NC	1
529		18	max	.009	3	.106	2	.132	4	4.389e-3	4	NC	5	NC	1
530			min	006	2	093	3	0	10	-1.377e-3	3	1282.443	2	NC	1
531		19	max	.009	3	.209	2	.11	4	8.715e-3	2	NC	1	NC	1
532			min	006	2	187	3	0	1	-2.828e-3	3	NC	1	NC	1
533	M5	1	max	.036	3	.315	2	.548	4	0	1	NC	1	NC	1
534			min	025	2	.006	15	0	1	-1.682e-5	4	NC	1	NC	1
535		2	max	.036	3	.15	2	.537	4	4.89e-3	4	NC	5	NC	1
536			min	025	2	.003	15	0	1	0	1	832.258	2	NC	1
537		3	max	.036	3	.056	3	.521	4	9.679e-3	4	NC	5	NC	1
538			min	025	2	041	2	0	1	0	1	385.482	2	6065.934	4
539		4	max	.035	3	.182	3	.503	4	7.885e-3	4	NC	15	NC	1
540			min	025	2	277	2	0	1	0	1	231.418	2	4769.726	4
541		5	max	.034	3	.365	3	.483	4	6.091e-3	4	8521.585	15	NC	1
542			min	024	2	538	2	0	1	0	1	160.269		4157.199	4
543		6	max	.033	3	.576	3	.462	4	4.298e-3	4	6501.564	15	NC	1
544			min	024	2	801	2	0	1	0	1	122.403	2	3766.562	4
545		7	max	.032	3	.784	3	.441	4	2.504e-3	4		15	NC	1
				_		_		_					_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio I			LC
546			min	024	2	-1.041	2	0	1	0	1_		2	3417.031	4
547		8	max	.032	3	.96	3	.422	4	7.108e-4	4		15	NC	1
548			min	023	2	-1.235	2	0	1	0	1_		2	3026.838	
549		9	max	.031	3	1.073	3	.403	4	0	1_		15	NC	1
550		40	min	023	2	-1.359	2	0	1	-1.081e-5	5		2	2674.075	4
551		10	max	.03 022	3	1.114	2	.381 0	4	0 1 0440 F	1		1 <u>5</u>	NC 2590.672	4
552		11	min	.022	3	<u>-1.402</u> 1.085	3	.356	4	-1.044e-5	<u>5</u> 1		<u>2</u> 15	NC	1
553 554			max	022	2	-1.36	2	<u>.336</u>	1	-1.007e-5	5		2	2603.16	4
555		12	max	.022	3	.989	3	.332	4	5.658e-4	4		<u>-</u> 15	NC	1
556		12	min	022	2	-1.231	2	0	1	0	1		2	2605.125	_
557		13	max	.028	3	.834	3	.301	4	1.995e-3	4		15	NC	1
558		1.0	min	021	2	-1.024	2	0	1	0	1		2	2989.097	4
559		14	max	.027	3	.64	3	.264	4	3.424e-3	4		<u>-</u> -	NC	1
560			min	021	2	769	2	0	1	0	1		2	4121.728	4
561		15	max	.026	3	.427	3	.225	4	4.852e-3	4		15	NC	1
562			min	02	2	497	2	0	1	0	1		2	7531.772	4
563		16	max	.026	3	.213	3	.187	4	6.281e-3	4	NC ·	15	NC	1
564			min	02	2	238	2	0	1	0	1	273.031	2	NC	1
565		17	max	.025	3	.018	3	.153	4	7.71e-3	4		5	NC	1
566			min	02	2	021	2	0	1	0	1		2	NC	1
567		18	max	.025	3	.129	2	.127	4	3.897e-3	4		5	NC	1
568			min	02	2	142	3	0	1	0	1_	1078.35	3	NC	1
569		19	max	.025	3	.241	2	11	4	0	_1_	NC	1_	NC	1
570			min	02	2	283	3	0	1	-9.872e-6	4_	110	1_	NC	1
571	<u>M9</u>	1	max	.013	3	.235	2	.548	4	1.324e-2	3		1_	NC	1
572			min	008	2	082	3	0	1	-4.632e-3	2		1_	NC NC	1
573		2	max	.013	3	.113	2	.535	4	6.575e-3	3_		5	NC NC	1
574			min	008	2	038	3	0	10	-2.275e-3	2		2	NC NC	1
575 576		3	max	.013	3	.02	2	<u>.52</u> 0	10	9.635e-3 -2.614e-5	4		5	NC 6611 633	4
576 577		4	min	008 .012	3	<u>015</u> .103	3	.502	4	7.653e-3	<u>10</u> 5		<u>2</u> 5	6611.622 NC	1
578		4	max	008	2	156	2	<u>.502</u>	10	-3.414e-3	2	346.948	2	5029.373	
579		5	max	.012	3	.202	3	.482	4	7.022e-3	3		_ 15	NC	1
580			min	008	2	3	2	0	10	-6.807e-3	2		2	4247.034	4
581		6	max	.012	3	.306	3	.462	4	1.049e-2	3		15	NC	1
582		T .	min	008	2	439	2	0	10	-1.02e-2	2		2	3752.955	_
583		7	max	.012	3	.405	3	.442	4	1.395e-2	3		<u>-</u> 15	NC	1
584			min	008	2	561	2	0	1	-1.359e-2	2			3363.112	4
585		8	max	.011	3	.486	3	.422	4	1.742e-2	3		<u>-</u> 15	NC	1
586			min		2	658	2	0		-1.699e-2		151.862		2995.428	4
587		9	max	.011	3	.538	3	.403	4	1.809e-2	3		15	NC	1
588			min	007	2	719	2	0	10	-1.894e-2	2		2	2678.202	4
589		10	max	.011	3	.558	3	.381	4	1.689e-2	3	6687.073	15	NC	1
590			min	007	2	739	2	0	1	-1.992e-2	2	139.461	2	2566.343	4
591		11	max	.011	3	.545	3	.357	4	1.57e-2	3		<u> 15</u>	NC	1
592			min	007	2	718	2	0	1	-2.09e-2	2		2	2568.095	4
593		12	max	.01	3	.5	3	.331	4	1.387e-2	3		15	NC	1
594			min	007	2	655	2	0	10	-1.991e-2	2		2	2644.352	4
595		13	max	.01	3	.427	3	.299	4	1.11e-2	3_		<u> 15</u>	NC	1
596			min	007	2	<u>553</u>	2	0	10	-1.596e-2	2		2	3076.821	4
597		14	max	.01	3	.333	3	.263	4	8.323e-3	3		<u>15</u>	NC	1
598		-	min	007	2	426	2	001	1	-1.201e-2	2			4168.234	5
599		15	max	.009	3	.227	3	.226	4	5.549e-3	3_		15	NC 0044 404	1
600		40	min	007	2	285	2	003	1 1	-8.061e-3	2		2	6941.184	
601		16	max	.009	3	.116	3	.189	4	6.326e-3	5		5	NC NC	1
602			min	007	2	142	2	004	1	-4.111e-3	2	377.568	2	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.009	3	.007	3	.156	4	7.891e-3	4	NC	5	NC	1
604			min	006	2	008	2	005	1	-3.161e-4	1	609.076	2	NC	1
605		18	max	.009	3	.106	2	.129	4	3.909e-3	5	NC	5	NC	1
606			min	006	2	093	3	003	1	-4.365e-3	2	1282.443	2	NC	1
607		19	max	.009	3	.209	2	.11	4	2.828e-3	3	NC	1	NC	1
608			min	006	2	187	3	0	10	-8.715e-3	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{\text{ed},Na}$ $\Psi_{\text{p},Na}$

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)								
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)				
4.00	0.50	1.00	2500	7.87				

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	2/(NVC) / NVCO) I ed, v I C, v I II, v v by (OCO. D.4.1, D.O.Z. NO) & Eq. D Z 1)						
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:			_		

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	1/5		
Project:	Standard PVMax - Worst Case, 32-40 Inch Width				
Address:					
Phone:					
E-mail:					

1.Project information

Customer company: Customer contact name: Customer e-mail:

Comment:

Project description:

Location:

Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 32-	40 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 32	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2732.0	1650.0	0.0	1650.0
2	2732.0	1650.0	0.0	1650.0
Sum	5464.0	3300.0	0.0	3300.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5464 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5} \text{ (Eq. D-7)}$

Kc	λ	ť _c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_I)$	$_{ m Nc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ec}$	I,N $\Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ec,N}$	$\mathscr{V}_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408.24	324.00	1.000	1.000	1.00	1.000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	$f_{ extit{short-term}}$	K _{sat}	τ _{k,cr} (psi)	
1035	1.00	1.00	1035	_
$N_{a0} = \tau_{k,cr} \pi d_{a}$	hef (Eq. D-16f)			
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	<i>N</i> _{a0} (lb)	
1035	0.50	6.000	9755	_
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ	$Y_{g,Na} \Psi_{ec,Na} \Psi_{p,Na} N$	ao (Sec. D.4.1 & Eq.	D-16b)

A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)	
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093	

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 32-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	da (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc/Avco) Yec, v Ye	$_{ed,V} arPsi_{c,V} arPsi_{h,V} arV_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\mathscr{\Psi}_{ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
576.00	648.00	1.000	0.928	1.000	1.000	15593	0.70	9001

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	13.66	18939		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
737.64	839.68	1.000	1.000	1.000	18939	0.70	23292

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\textit{Cpg}} = \phi \min |\textit{KcpNag}\;;\; \textit{KcpNcbg}| = \phi \min |\textit{Kcp}(\textit{A}_\textit{Na} / \textit{A}_\textit{Na0}) \, \Psi_{\textit{ed},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, N_{\textit{a0}}\;;\; \textit{Kcp}(\textit{A}_\textit{Nc} / \textit{A}_\textit{Nco}) \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, N_{\textit{b}}|\; (\text{Eq. D-30b})$

, ,,,	1 1 3 7 1		(3,	r, , , , , , , ,	, ,		
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2732	6071	0.45	Pass
Concrete breakout	5464	10231	0.53	Pass
Adhesive	5464	8093	0.68	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1650	3156	0.52	Pass (Governs)
T Concrete breakout x+	3300	9001	0.37	Pass

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 32-40 Inch Width				
Address:					
Phone:					
E-mail:					

Concrete breako	ut y- 1650	23292	2 0.0	07	Pass	
Pryout	3300	20601	0.1	16	Pass	
					-	
Interaction check	$N_{ua}/\phi N_n$	$V_{ua}/\phi V_n$	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.68	0.52	119.8 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.