1 Mechanics and fluids:

- 1a) Consider a road with friction coefficient μ . A car of mass m reaches a curve of radius R. What is the maximum safe velocity v with which the car stays in the curve? (3 points)
 - 1b) After the curve, the car continues its linear motion and bumps into a wall with velocity v. The scattering lasts a time Δt and the car bounces back with velocity -v/2. What is the impulse and the average force that is exerted on the car? (3 points)
 - 1c) Explain how you would measure the height of a building using a barometer (2 points)
 - 1d) Consider a solid sphere. When floating in water a certain volume V is submerged. When floating in oil, a volume V/2 is submerged. Calculate the mass of the sphere. (2 points) Input: ρ_{water} , ρ_{oil}

2 Thermodynamics

- 2) Consider 10 moles of an ideal gas that perform the following cycle of transformations: A->B (isothermal), B->C (isochoric), C->D (isobaric) and D->A (adiabatic).
- 2a) Draw the cycle in the PV plane (1 point)
- 2b) Calculate the change of internal energy in all the 4 transformations (4 points) Inputs: Cv, R, PA, VA, TC, VB
- 2c) Calculate the variation of entropy associated to the spontaneous transformation of water into a mass m of ice at T_1 when the surrounding ambient, with which the water is in thermal contact, is at a warmer temperature T_2 . Is this possible and why? (3 points) Input: water latent heat L_f

3 Electromagnetism

- 3a) Consider two positive charges Q and 2Q as in the figure. Calculate the electric potential at point P (3 points)
- 3b) Consider a different scenario where there is an electric field along the \hat{x} axis with non-constant intensity E=E₀x. What is the potential difference between two points A and B along the \hat{x} axis separated by a distance L? (3 points)
- 3c) Consider a negative charge that moves from A to B. What is the change on its potential energy?

 What must be the charge velocity in A so that it stops and bounces back precisely in B?

 (3 points)
- 4 Modern physics: Describe the Compton effect (3 points)