Gostou da Aula? - Desenvolvimento de uma aplicação para dispositivos móveis que permite ao aluno Unifieo avaliar as aulas ministradas por seus professores diariamente

Alex Felipe Vieira

Monografia de Iniciação Científica apresentada ao Centro Universitário Unifieo

Curso: Ciência da Computação

Orientador: Prof. Me. Rodrigo Bossini Tavares Moreira

Osasco, junho de 2016

Gostou da Aula? - Desenvolvimento de uma aplicação para dispositivos móveis que permite ao aluno Unifieo avaliar as aulas ministradas por seus professores diariamente

Esta versão da monografia contém as correções e alterações sugeridas pelos professores avaliadores após a apresentação do trabalho, realizada em 15/06/2016. Uma cópia da versão original está disponível no Núcleo de Comissões do Centro Universitário UNIFIEO.

Professores Avaliadores:

- Prof. Me. Rodrigo Bossini Tavares Moreira (orientador) UNIFIEO
- $\bullet\,$ Prof. Dr. Nome Completo Instituição
- Prof. Dr. Nome Completo Instituição

Agradecimentos

Você pode fazer agradecimentos aqui, se quiser. Se não quiser, basta comentar a página.

Resumo

VIEIRA, A. F., BOSSINI, R. Gostou da Aula? - Desenvolvimento de uma aplicação para dispositivos móveis que permite ao aluno Unifieo avaliar as aulas ministradas por seus professores diariamente. Monografia de Iniciação Científica - Centro Universitário UNIFIEO, Osasco, 2016.

A qualidade do processo de ensino e aprendizagem depende, entre outras coisas, de interação constante entre mestre e aprendiz. Alguns detalhes podem fazer com que, muitas vezes, essa interação não ocorra. Após assistir a uma aula, a avaliação de um aluno sobre ela pode ser boa ou ruim. Embora seja importante que o aluno expresse essa opinião, a fim de que o professor possa melhorar os pontos em que possivelmente falhou, ele pode simplesmente deixar de fazê-lo por diferentes razões. Por exemplo, o aluno pode sentir-se desconfortável caso sinta necessidade de falar sobre pontos negativos que identificou. Independente de ser positiva ou negativa, pode ser que o aluno tenha uma observação muito relevante mas deixe de emiti-la no momento da aula para não a interromper, e depois ela acabe caindo no esquecimento. O professor, por sua vez, ao ministrar uma aula, embora o conteúdo seja essencialmente o mesmo, pode personalizar a forma da oferta dependendo do perfil da turma, o que evidentemente depende de ele conhecê-la, o que pode acontecer mais facilmente caso o aluno tenha meios para emitir suas opiniões sem necessariamente ser identificado. O aplicativo Gostou da Aula? visa oferecer ao aluno um meio para avaliação das aulas que acabou de assistir. Trata-se de um aplicativo para dispositivos móveis com Android que oferece um questionário pré-definido que o aluno usará para avaliar diferentes aspectos das aulas. O professor, por sua vez, poderá visualizar as avaliações realizadas, obtendo uma visão geral sobre aspectos positivos e negativos para cada aula que ministra. Evidentemente, as avaliações serão sempre anônimas e o professor não poderá associar qualquer avaliação ao aluno que a tenha realizado.

Palavras-chave: Avaliação de ensino, Dispositivos Móveis, Ensino/Aprendizagem.

Abstract

VIEIRA, A. F., BOSSINI, R. Gostou da Aula? - Development of a mobile application that allows Unifieo students to evaluate the classes given by their teachers daily. Undergraduate research thesis - Centro Universitário UNIFIEO, Osasco, 2016.

Teaching and learning process quality depends, among other things, on constant interaction between teacher and student. Often, some details may cause that interaction not to occur. After attending a class, the opinion of a student about it may be good or bad. Although it is important that the student expresses it so the teacher may improve some aspects, s/he may simply not do it for different reasons. For example, the student may feel unconfortable in case his/her opinion includes negative points about the class. Either being positive or negative, it may be that the student has an opinion that is extremely relevant but does not emit it during the class so as not to interrupt it and after that it is simply forgotten. The teacher, in turn, while in a class, although its content is mostly the same, may customize the way the class is taught depending on the students profile, which evidently depending on how well s/he knows it, which may happen more easily if the students have means to emit their opinions without necessarily being identified. The Gostou da Aula? application aims on offering students means for evaluating the classes just attended. It is a mobile app for Android devices that offers a predefined questionnaire that students will use to evaluate different aspects of the class. The teacher will be able to visualize the evaluations done so far, obtaining an overview about positive and negative aspects for each class under his or her responsibility. Of course, evaluations will always be anonymous and teachers will not be able to associate any evaluation to the student who made it.

Keywords: Education Evaluation, Mobile Devices, Teaching/Learning.

Sumário

Li	ista de Figuras i						
Li	sta d	le Tabe	$_{ m clas}$	xi			
1	Intr	Introdução					
	1.1	Justific	cativa	. 1			
	1.2	Objeti	vos	. 1			
		1.2.1	Objetivo Geral	. 1			
		1.2.2	Objetivos Específicos	. 2			
	1.3	Contri	buições	. 2			
	1.4	Organi	ização do Trabalho	. 2			
2	Con	ceitos	e Tecnologia	3			
	2.1	Concei	tos	. 3			
		2.1.1	Modelagem de Dados Conceitual	. 3			
		2.1.2	Modelagem de Dados Relacional	. 3			
	2.2	Tecnol	ogia empregada	. 3			
		2.2.1	JDK - Java Development Kit	. 3			
		2.2.2	Maven	. 4			
		2.2.3	Gerenciamento de dependência	. 4			
		2.2.4	Deploy	. 4			
		2.2.5	Modularização de projeto	. 5			
		2.2.6	Testes com TDD	. 6			
		2.2.7	Spring framework	. 7			
		2.2.8	Injecão de dependência	. 7			
		2.2.9	Inversão de controle	. 7			
		2.2.10	Beans do Spring	. 7			
		2.2.11	controle de transações	. 8			
		2.2.12	openshift	. 8			
3	Pro	jeto Te	ècnico	9			
4	Rel	ação co	om disciplinas do curso de Ciência da Computação do UNIFIEO	11			
5	Con	clusõe	5	13			

viii SUMÁRIO

6	Trabalhos Futuros	15
A	Dicionário de Dados	17
Re	eferências Bibliográficas	19

Lista de Figuras

2.1	Estrutura do	projeto parent		6
-----	--------------	----------------	--	---

Lista de Tabelas

Introdução

A qualidade do processo de ensino e aprendizagem depende, entre outras coisas, de interação constante entre mestre e aprendiz. Alguns detalhes podem fazer com que, muitas vezes, essa interação não ocorra. Por exemplo, após assistir a uma aula, a avaliação de um aluno sobre ela pode ser boa ou ruim. Embora seja importante que o aluno expresse essa opinião, a fim de que o professor possa melhorar os pontos em que possivelmente falhou, ele pode simplesmente deixar de fazê-lo por diferentes razões. Além disso, o aluno pode sentir-se desconfortável caso sinta necessidade de falar sobre pontos negativos que identificou. Pode ser também que ele tenha uma opinião muito relevante mas deixe de emiti-la no momento da aula para não a interromper, e depois ela acabe caindo no esquecimento. O professor, por sua vez, ao ministrar uma aula, embora o conteúdo seja essencialmente o mesmo, pode personalizar a forma da oferta dependendo do perfil da turma, o que evidentemente depende de ele conhecê-la, o que pode acontecer mais facilmente caso o aluno tenha meios para emitir suas opiniões sem necessariamente ser identificado. O aplicativo Gostou da Aula? visa oferecer ao aluno avaliar as aulas que acabou de assistir. Trata-se de um aplicativo para dispositivos móveis com Android que oferece um questionário pré-definido que o aluno usará para avaliar diferentes aspectos das aulas. O professor, por sua vez, poderá visualizar as avaliações realizadas, obtendo uma visão geral sobre aspectos positivos e negativos para cada aula que ministra. Evidentemente, as avaliações serão sempre anônimas e o professor não poderá associar qualquer avaliação ao aluno que a tenha realizado.

1.1 Justificativa

O desenvolvimento deste projeto implica em uso de tecnologias atuais no mercado, como aquelas relacionadas a aplicações para dispositivos móveis e computação na nuvem, essenciais aos egressos do curso de Ciência da Computação. Além disso, a documentação servirá como material didático a ser consultado por futuros alunos também interessados na tecnologia utilizada. Além disso, o projeto pode ter aplicabilidade real dentro do Centro Universitário FIEO e, a médio e longo prazo, auxiliar a geração de relatórios que evidenciam a situação atual da relação entre a instituição e seus alunos.

1.2 Objetivos

Nesta seção destacamos o objetivo geral do trabalho, o qual a seguir é descrito mais detalhadamente, decomposto em objetivos específicos.

1.2.1 Objetivo Geral

O objetivo geral é desenvolver um aplicativo para dispositivos móveis com Android que permite ao aluno Unifieo avaliar a aula que acabou de assistir.

2 Introdução 1.4

1.2.2 Objetivos Específicos

• Desenvolver uma aplicação para Android com dois perfis diferentes. O perfil aluno permite ao aluno avaliar a aula que acabou de assistir. O perfil professor permite ao professor verificar as avaliações que suas aulas receberam.

• Desenvolver uma aplicação hospedada em um serviço de computação na nuvem, a qual será responsável pelo armazenamento dos questionários e dados de avaliações realizadas utilizando o aplicativo móvel.

1.3 Contribuições

As principais contribuições deste trabalho são as seguintes:

- Disponibilização de uma aplicação para dispositivos móveis com Android que permite a avaliação de aulas assistidas por alunos do Unifieo.
- Levantamento de indicadores que revelam aspectos fundamentais para a elaboração de questionários úteis e de acordo com princípios básicos de ética.

1.4 Organização do Trabalho

No Capítulo 2, apresentamos os principais conceitos envolvidos na elaboração deste projeto, bem como os componentes tecnológicos utilizados. No Capítulo 3 descrevemos detalhadamente o desenvolvimento técnico do projeto. A descrição fornecida permite ao leitor interessado reproduzir inteiramente o desenvolvimento realizado. No Capítulo 4 o autor indica as principais disciplinas que cursou em Ciência da Computação no Unifieo e discute sobre a importância de cada uma para a elaboração desse trabalho. No Capítulo 5 apresentamos nossas principais conclusões após o término do desenvolvimento do projeto e no Capítulo 6 apresentamos sugestões de trabalhos que podem ser elaborados a partir deste.

Conceitos e Tecnologia

Neste capítulo abordamos os principais conceitos envolvidos durante o desenvolvimento do projeto proposto. Além disso, um conjunto amplo de tecnologias utilizadas atualmente no mercado foi empregado, o qual também é descrito.

2.1 Conceitos

Esta seção é dedicada a descrições detalhadas independentes de implementação ou tecnologia sobre os principais conceitos envolvidos durante a elaboração do projeto.

2.1.1 Modelagem de Dados Conceitual

O desenvolvimento de um sistema computacional que utiliza armazenamento de dados em meio persistente pode ocorrer de diversas formas. Uma possível abordagem, muito utilizada no mercado atualmente, consiste na elaboração de uma descrição sobre os dados com os quais a aplicação irá trabalhar. Essa descrição pode ser textual ou gráfica e ela é elaborada de forma independente de qualquer tecnologia. Em geral, ela é conhecida como modelo conceitual. A modelagem conceitual realizada neste trabalho é descrita no Capítulo 3.

2.1.2 Modelagem de Dados Relacional

Uma vez obtida a descrição conceitual dos dados, a sua implementação pode ser realizada de diferentes formas. Entre as mais utilizadas no mercado atual está a modelagem relacional, que consiste no uso de tabelas para o armazemamento dos dados, além de diferentes restrições, como chaves primárias e estrangeiras.

Criar subseções para os seguintes itens: linguagem SQL e álgebra relacional (é só para descrever o que é, sem mostrar código) orientação a objetos Mapeamento Objeto Relacional Web Services Dispositivos Móveis e aplicações

2.2 Tecnologia empregada

Aqui teremos uma subseção para cada item de tecnologia utilizado, cada API, cada linguagem etc. Conforme você descreve cada item, vá citando eles e adicionando à bibliografia (arquivo bibliografia.bib). Siga o exemplo do JDK abaixo. Para cada item basta escrever 3 ou 4 linhas.

2.2.1 JDK - Java Development Kit

O desenvolvimento de aplicações usando a linguagem Java requer o uso do conhecido JDK - Java Development Kit Oracle (2015), o qual pode ser obtido gratuitamente a partir do link

disponibilizado na bibliografia. Ele engloba, entre outras coisas, uma implementação da linguagem Java, um compilador, um ambiente de interpretação conhecido como máquina virtual Java etc.

2.2.2 Maven

A aplicação foi baseada na estrutura de um projeto maven. O maven é uma biblioteca capaz de gerenciar projetos Java, com a finalidade de fazer o build (construção) do projeto resolvendo os problemas de: gerenciamento de dependência, deploy, modularização de projeto, testes e controle de versão do projeto. O Maven permite o build do projeto utilizando o Project Object Model (POM). O POM é um arquivo XML que descreve todas as informaçõees que o projeto Maven possui, como por exemplo, lista de dependências, configurações de plugins, profiles entre outras iformações que o projeto possa ter. A partir do pom.xml, podemos configurar todas as propriedades para indicar como o Maven se comportará.

2.2.3 Gerenciamento de dependência

Durante o desenvolvimento da aplicação, utilizamos outras APIs para resolver determinados problemas, como por exemplo, o Spring, Hibernate, Jackson entre outros. Todas as essas APIs são arquivos .jar que precisam ser baixadas e adicionadas ao projeto, porém, quando fazemos isso manualmente, nem sempre é uma terá simples e tende apresentar problemas, como por exemplo o Hibernate que, além de precisar das bibliotecas próprias, precisa da API da JPA. O Maven resolve todos esses problemas simplesmente adicionando a dependência por meio da tag <denpendency>:

```
1 < properties >
2
    //outras propriedades
3
    <hibernate.version>4.3.11.Final</hibernate.version>
4 properties>
5
6 <dependencies>
7
    //outras dependências
8
    <dependency>
9
        <groupId>org.hibernate
10
        <artifactId>hibernate-core</artifactId>
        <version>${hibernate.version}
11
12
    </dependency>
13 <dependencies>
```

Listing 2.1: Adicionando o hibernate para a o projeto usando o pom.xml

2.2.4 Deploy

Todas as vezes que terminamos uma funcionalidade ou até mesmo finalizamos a aplicação, precisamos distribuir essa aplicação para uso, ou seja, publicá-la ou, tecnicamente falando, fazer o deploy. Em muito dos casos, fazer o deploy da aplicação nem sempre é uma tarefa trivial, pois é necessário se preoculpar com ambientes diferentes, por exemplo, em ambiente de desenvolvimento, nós podemos utilizar um banco de dados de teste, podemos utilizar qualquer versão do JDK entre outras tarefas que não impactam o cliente, porém em um ambiente de produção precisamos evitar o máximo possível de bugs, ou seja, tomar cuidado com qual tipo de configuração a nossa aplicação está utilizando. Cuidar manualmente desse tipo de rotina permite um risco maior de falhas causando problemas que poderiam ser evitados, como por exemplo, utilizar um usuário e senha de banco de dados que não existe no servidor externo, e é justamente por esses motivos que podemos utilizar os profiles do Maven que são capazes de criar diferentes perfis para cada tipo de ambiente por meio da tag profile> segue um exemplo de uma configuração para ambiente de desenvolvimento e para ambiente de produção:

```
rac{1}{2} < 	ext{profiles} > rac{1}{2}
```

```
3
       ofile>
4
         <id>Development</id>
5
         <activation>
6
            <activeByDefault>true</activeByDefault>
7
8
          properties>
9
            /*podemos adicionar todas as
10
            propriedades\ para\ ambiente\ de\ desenvolvimento*/
11
          12
       </ profile >
13
14
       <profile>
15
         <id>openshift</id>
16
          <activation>
17
            <a ctiveByDefault>false</activeByDefault>
18
          </activation>
19
          properties>
20
            /* podemos adicionar todas as
21
            propriedades \quad para \quad o \quad ambiente \quad de
22
            produção, nesse caso o openshift */
23
          </properties>
24
          <bul>< b u i l d >
25
            <finalName>gostoudaaula</finalName>
26
27
            <plugins>
28
29
                 <artifactId>maven-war-plugin</artifactId>
30
                 <version >2.1.1</version >
31
                 <configuration>
                   <output Directory > webapps </ output Directory >
32
                   <\!\!\mathrm{warName}\!\!>\!\!\mathrm{ROOT}\!\!<\!/\!\!\mathrm{warName}\!\!>
33
34
                 </configuration>
35
              </plugin>
36
            </plugins>
37
          </build>
38
       </ profile >
39
     </profiles>
```

Listing 2.2: Criando profiles para ambiente de desenvolvimento e ambiente de produção no pom.xml Além de configurar diferentes perfis da aplicação, o Maven também executa uma rotina em que verifica se todo o projeto está funcionando da maneira correta, por exemplo, verifica se todas as bibliotecas e APIs que foram descritas no pom.xml estão funcionando corretamente, faz todos os testes que foram realizados no projeto para garantir se todos funcioram e também gera os arquivos de deploy, ou seja, arquivos .jar para aplicações Java e arquivos .war para aplicações Java Web.

2.2.5 Modularização de projeto

O desenvolvimento da aplicação foi baseado em módulos, isso significa que existe mais de um projeto que resolve um problema em específico, por exemplo, existe o projeto gostoudaaula-core que possui todas as classes modelos da aplicação, o projeto gostoudaaula-db que possui todas as classes que cuidam da lógica de banco de dados e o projeto gostoudaaula-web que é a aplicação web em si. Podemos fazer uso desse tipo de arquitetura por meio dos módulos do Maven. Para criarmos módulos no Maven precisamos primeiro criar um projeto do Maven que chamando de parent, esse projeto será o projeto principal da aplicação, ou seja, iremos incluir todos os demais projetos dentro dele. Na aplicação foi criado o projeto gostoudaaula-parent. A figure 2.1 demonstra a estrutura do projeto parent:

Para adicionar módulos para esse projeto, precisaremos criar novos projetos Maven dentro desse projeto e então precisamos incluir o nome desses na tag <module>:

6

Figura 2.1: Estrutura do projeto parent

```
2
       <module>
3
         gostoudaaula-core
4
       </module>
5
       <module>
6
         gostoudaaula-web
7
       </module>
8
       <module>
9
         gostoudaaula-db
       </module>
10
11
     </modules>
```

Listing 2.3: Exemplo para associar os projetos como módulos no pom.xml

Nesse exemplo estamos indicando que os projetos citados serão os módulos do projeto parent, porém ainda precisamos especificar aos módulos quem será o parent, então adicionamos a tag <parent> no pom.xml:

Listing 2.4: Exemplo de como informar qual é o parent do modulo no pom.xml

2.2.6 Testes com TDD

O desenvolvimento das funcionalidades da aplicação, foi baseado na prática do TDD (Test Driven Development) que tem a finalidade de fazer com que o desenvolvedor crie primeiro o cenário de teste e então desenvolva a funcionalidade, por exemplo, suponhamos que precisamos criar uma funcionalidade que precise cadastrar um aluno no banco de dados, quando utilizamos o TDD criamos um método responsável por testar essa funcionalidade que a aplicação precisa, para implementar esses testes utilizamos o framework JUnit que fornece anotações específicas para realizar testes no Java. Esse método precisa ser escrito de uma forma bem explícita sobre o que está sendo testado, para esse caso poderíamos escrever o seguinte método:

```
1
2 @Test
3 public void deveCadastrarUmAluno(){
4 //implementação que precisa ser testada
5 }
```

Listing 2.5: Exemplo de um caso de teste utilizando o JUnit

E então montamos o cenário para que esse teste seja realizado, como por exemplo, chamar todas as classes necessárias para executar o teste. A ideia em implementar o TDD, consiste na intenção de gerar uma pilha de testes que serão executados constantemente, para garantir que a aplicação está sempre funcionando conforme o esperado, mesmo que implemetemos novas funcionalidades,

por exemplo, se precisarmos adicionar mais uma rotina nova para cadastrar um aluno, executamos novamente o teste que fizemos e verificamos se ainda funciona como o esperado.

2.2.7 Spring framework

O Spring framework é um conjunto de módulos (projetos) em que tem a finalidade de resolver diversos problemas que são comuns em uma aplicação web, na aplicação foi utilizado para resolver as questões de controle de transações e injenção de dependência.

2.2.8 Injecão de dependência

Durante o desenvolvimento da aplicação, foi utilizado uma grande quantidade de bibliotecas e APIs, porém, em Java, ou em qualquer tipo de aplicação orientada a objetos, sempre que queremos utilizar uma classe, precisamos fazer uma instância, no caso de APIs, além de fazer uma instância, na maioria das vezes, precisamos realizar certas configurações para que funcione de acordo com a nossa necessidade. O Spring framework fornece para nós um recurso conhecido como injeção de dependência, que consiste em atribuir uma instância a um objeto automaticamente. Quando queremos que um objeto seja injetado, utilizamos a anotação @Inject, que indica que o objeto será injetado:

```
1
2 @Inject
3 private Aluno aluno;
```

2.2.9 Inversão de controle

A injeção de dependência atribuirá as instâncias necessárias para os objetos que estão anotados com @Inject, porém, para que o Spring consiga injetar esses objetos, precisamos ensinar o Spring a criar essas instâncias. Quando ensinamos o Spring a criar instâncias, podemos configurar como a instância será criada e então o Spring passa a gerenciar todas as classes que estão anotadas com @Inject, fazendo com que o programador não precise mais se preocupar em instânciar esses objetos, essa abordagem de fazer com que o framework instancie os objetos é chamada de Inversão de Controle (IoC).

2.2.10 Beans do Spring

Quando ensinamos o Spring a instanciar uma classe, essa classe se tornará um *Bean* do Spring. Os Beans do Spring são todas as classes gerenciadas pelo ele, ou seja, serão todas as classes que o Spring saberá criar as instâncias. Para transformarmos uma interface ou classe em um bean, basta adicionar uma tag
 bean> no arquivo XML de configuração do spring:

```
1 < beans xmlns="http://www.springframework.org/schema/beans"
    xmlns: xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns: context="http://
        www.springframework.org/schema/context"
    xsi:schemaLocation = "http://www.springframework.org/schema/beans"
3
      http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
4
      http://www.springframework.org/schema/context
5
      http://www.springframework.org/schema/context/spring-context-3.0.xsd">
6
7
    <bean id="entityManagerFactory"</pre>
8
9
       class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
10
11
    <bean id="jpaTransactionManager" class="org.springframework.orm.jpa.</pre>
        JpaTransactionManager">
      cproperty name="entityManagerFactory" ref="entityManagerFactory" />
12
13
    </bean>
14
    //para adicionar mais beans, adicione mais tags <bean> e ensine como a classe
15
```

8

```
16 precisa ser instanciada
17
18 </beans>
```

2.2.11 controle de transações

Para conectar a aplicação com o banco de dados, foi utilizada a especificação JPA (Java Persistence API) que estabalece uma comunição com o banco de dados criando transações. Porém, todas as vezes que estamos utilizando uma transação precisamos saber o momento em que ela precisa ser iniciada e o momento em ela precisa aplicar as ações de commit/rollback e por fechá-las. Perceba que essa ações podem ser um pouco repitivas como também perigosas para a nossa aplicação, como por exemplo, interagir com o banco por meio de uma transação e não realizar o commit, ou então, simplesmente não fechar a conexão. Devido a esses detalhes, utilizamos o Spring para fazer a injeção de dependência das classes que são responsáveis em lidar com as transações, ou seja, o Spring gerencia todas as transações da aplicação, garantindo que todas essas rotinas sejam feitas corretamente sem o desenvolvedor precisar se preocupar.

2.2.12 openshift

O openshift é uma plataforma como um serviço, também conhecido por PaaS (Platform-as-a-Service), da Red Hat que permite o os desenvolvedores a criar um host e fazer o deploy da aplicação em um ambiente na nuvem.

Projeto Técnico

Esse é o capítulo mais importante do trabalho. É onde o desenvolvimento da aplicação é detalhado. Quem lê esse capítulo deve ser capaz de seguir os passos aqui descritos e implementar a aplicação que você fez novamente. Coloque o máximo de detalhes que conseguir sobre cada parte desenvolvida. Um bom começo pode ser parecido com o texto a seguir:

A aplicação Gostou da Aula? teve seu desenvolvimento iniciado pela modelagem conceitual dos dados. Após análise detalhada, obtivemos um Diagrama Entidade Relacionamento, o qual é exibido pela Figura citar figura aqui. Coloque um caption bastante completo sobre a figura.

A seguir, detalhe a implementação de cada entidade e relacionamento no modelo relacional. Depois vamos falar das outras coisas.

10 PROJETO TÉCNICO 3.0

Relação com disciplinas do curso de Ciência da Computação do UNIFIEO

Aqui você vai citar cada disciplina que cursou e dizer qual a relação que ela teve com o desenvolvimento desse projeto.

Conclusões

Aqui vamos colocar algumas conclusões. Vamos pensar nelas lá no fim do semestre, quando o projeto já estiver quase pronto. Provavelmente vamos falar das observações do prof. Fernando sobre as questões e ética aqui, sobre o quanto foram importantes para a elaboração do questionário.

14 CONCLUSÕES 5.0

Trabalhos Futuros

Aqui vamos colocar sugestões de trabalhos futuros.

Apêndice A

Dicionário de Dados

Aqui vamos colocar o dicionário de dados.

Referências Bibliográficas

- Bates e Sierra (2005) Bert Bates e Kathy Sierra. *Use a Cabeça! Java*. Altabooks Editora, 2° ed. Citado na pág.
- **Deitel e Deitel (2010)** Paul Deitel e Harvey Deitel. *Java Como Programar*. Pearson Education, 8° ed. Citado na pág.
- **Deitel** et al. (2012a) Paul Deitel, Harvey Deitel, Abbey Deitel e Michael Morgano. Android For Programmers An App Driven Approach. Pearson Education, 1° ed. Citado na pág.
- **Deitel** et al. (2012b) Paul Deitel, Harvey Deitel, Abbey Deitel e Michael Morgano. Android Para Programadores Uma Abordagem baseada em aplicativos. Bookman, 1º ed. Citado na pág.
- Google (2015) Google. Android developers. http://developer.android.com/index.html, Maio 2015. Último acesso em 05/05/2015. Citado na pág.
- **Lecheta (2013)** Ricardo Lecheta. Google Android Aprenda a criar aplicações para dispositivos móveis com o Android SDK. Novatec, 3º ed. Citado na pág.
- Oracle (2015) Oracle. Java se downloads | oracle technology network | oracle. http://www.oracle.com/technetwork/pt/java/javase/downloads/index.html, 2015. Último acesso em 05/01/2016. Citado na pág. 3
- Sanderson (2012) Daniel Sanderson. Programming Google App Engine. O'Reilly Media, 2° ed. Citado na pág.