

Enhanced Precision in Anomaly Detection

An Optimized k-Means Clustering Approach

• Huining Huang

Introduction

Anomaly Detection: Methods & Applications

Why It Matters:

• Identifies errors, fraud, and new patterns in data.

Key Methodologies:

- 1. Statistical Methods: Spot deviations using statistical models.
- 2. Machine Learning-Based Methods: Supervised and unsupervised learning for complex data.
- 3. Proximity-Based Methods: Use distance metrics like DBSCAN for outlier detection.

Applications Across Domains:

• Finance, Industry, Cybersecurity.

Considerations:

Balance between method complexity and data attributes.

Sources: [11-16]

Literature Review

Clustering-Based Anomaly Detection: Overview & Methods

Significance in Sectors:

· Cybersecurity, Healthcare, Finance

Primary Clustering Methods:

Density-Based: DBSCAN
 Distribution-Based: GMMs
 Centroid-Based: K-means

Connectivity-Based: Hierarchical Clustering

Method Highlights:

• DBSCAN: Detects sparse points in dense regions [1].

• GMMs: Labels anomalies based on probabilistic distributions [2].

• K-means: Outliers far from centroids [3].

Hierarchical: Small, detached cluster points [4].

Sources: [1-4]

Clustering-Based Anomaly Detection: Analysis & Future

Comparative Analysis:

- Density vs. Distribution: Flexibility vs. Probabilistic Models [1][2].
- Centroid vs. Connectivity: Scalability vs. Detailed Structuring [3][4].

Challenges & Practical Applications:

- Scalability and Parameter Sensitivity.
- Interpretability in Complex Models [2][4].
- Utilized in Fraud Detection, Network Security [5][7].

Research Gaps & Future Directions:

- Real-time data stream integration and interpretability [10].
- Deep learning precision, e.g., Reverse Distillation [9].

Sources: [1-10]

K-means Based Anomaly Detection Algorithm: Overview

Anomaly Score:

• Anomaly score A(x) defined by distance to cluster center, standard deviation, and density factor.

$$A(x) = rac{D(x,C_i)}{\sigma(C_i) + \epsilon} imes
ho(C_i)$$

Algorithm Steps:

- 1. Data Preprocessing: Standardization and imputation.
- 2. **Determine Optimal Clusters** k: Elbow method/silhouette score.
- 3. Centroid Initialization: Advanced methods (e.g., k-means++).
- 4. Clustering Execution: Using distance metric M.
- 5. Compute Cluster Properties: Standard deviation $\sigma(C_i)$ and density factor $\rho(C_i)$.

Algorithm continues on next slide...

K-means Based Anomaly Detection: Execution & Post-Processing

Algorithm Steps Continued:

- 6. **Anomaly Set Initiation:** Initialize an empty set for anomalies.
- 7. Anomaly Scoring & Detection:
 - Assign points to nearest cluster.
 - · Calculate anomaly score.
 - Establish dynamic threshold T.
 - Append outliers to anomaly set A.
 - 8. Post-Processing: Domain-specific filters or secondary model application.

Threshold Strategy:

• Dynamic threshold $T = \alpha \times \operatorname{median}\{A(D)\}$ or percentile-based.

Post-Processing:

• Enhances detection precision by mitigating false positives.

Final Output:

Refined set of anomalies A based on defined criteria.

End of Algorithm Presentation

Algorithmic Implementation and Cluster Analysis

Anomaly Detection Methodology

K-Means Anomaly Detection Framework

- Initial clustering with SAS Enterprise Miner
- Transition to Python for enhanced anomaly detection
- · Anomaly score based on distance to centroid, cluster density, and deviation
- · Dynamic thresholding to identify outliers
- 76 anomalies detected from the dataset

$$A(x) = rac{D(x,C_i)}{\sigma(C_i) + \epsilon} imes
ho(C_i)$$
 , where $D(x,C_i)$

Insights from Anomaly Visualization

- Dimensionality reduction using PCA for visualization
- · Histogram of anomaly scores with threshold line
- Scatter plot: normal data vs. anomalies
- Anomaly distribution table by cluster
- Higher anomaly rates suggest potential subgroups

Cluster ID	Anomaly Count	Total Count	Anomaly Rate
1	49	141	34.75%
2	22	174	12.64%
3	5	191	2.62%

Analysis of Anomalies in the Boston Housing Dataset

Attribute Contributions:

- High NOX levels in anomalies.
- Unusual PTRATIO and RM indicating rarity.
- Anomalies with lower TAX rates.

• Practical Implications:

- Anomalies with higher MEDV values.
- Varied CRIM rates among anomalies.

• Algorithm Limitations:

- Sensitivity to attribute extremes.
- Potential for false identifications.

• Future Research:

- o Importance of contextual analysis.
- Need for integrated valuation approaches.

References/Questions

- Citing relevant literature and studies referenced in the paper.
- Open floor for questions and further discussion.