Appunti di Elementi di Analisi Complessa

Marco Vergamini

Indice

1	Intr	roduzione	3
2	Fun	zioni olomorfe in una variabile	4
	2.1	Notazioni e prerequisiti	4
	2.2	Risultati preliminari	6
	2.3	Teoremi di Hurwitz	13
	2.4	La sfera di Riemann	14
	2.5	Il disco unitario	18
	2.6	Dinamica del disco e del semipiano superiore	21
	2.7	Germi e prolungamenti analitici	25
	2.8	Teorema di uniformizzazione di Riemann	29
	2.9	Teorema di Runge	31

1 Introduzione

Questi appunti sono basati sul corso Elementi di Analisi Complessa tenuto dal professor Marco Abate nel secondo semestre dell'anno accademico 2019/2020. Sono dati per buoni (si vedano i prerequisiti del corso) analisi in più variabili, topologia, concetto di gruppo fondamentale e le basi di analisi complessa in più variabili, che si vedono nei corsi Analisi 2 e Geometria 2. Verranno omesse o soltanto hintate le dimostrazioni più semplici, ma si consiglia comunque di provare a svolgerle per conto proprio. Ogni tanto sarà commesso qualche abuso di notazione, facendo comunque in modo che il significato sia reso chiaro dal contesto. Inoltre, la notazione verrà alleggerita man mano, per evitare inutili ripetizioni e appesantimenti nella lettura. Si ricorda anche che questi appunti sono scritti non sempre subito dopo le lezioni, non sempre con appunti completi, ecc.... Spesso saranno rivisti, verranno aggiunte cose che mancavano perché c'era poco tempo (o voglia...), potrebbero mancare argomenti più o meno marginali... insomma, non è un libro di testo per il corso, ma vuole essere un valido supporto per aiutare gli studenti che seguono il corso. Spero di essere riuscito in questo intento.

2 Funzioni olomorfe in una variabile

2.1 Notazioni e prerequisiti

Notazioni: $z = x + iy \in \mathbb{C}$ indica un numero complesso, $\bar{z} = x - iy$ il suo complesso coniugato. Con il termine dominio si intende un aperto connesso. $\mathcal{O}(\Omega) = \{f: \Omega \longrightarrow \mathbb{C} | f \text{ è olomorfa} \}$. $\operatorname{Hol}(\Omega_1, \Omega_2) = \{f: \Omega_1 \longrightarrow \Omega_2 | f \text{ è olomorfa} \}$. $\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right), \frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$. $dz = dx + i dy, d\bar{z} = dx - i dy, dz \left(\frac{\partial}{\partial z} \right) = 1, dz \left(\frac{\partial}{\partial \bar{z}} \right) = 0$.

Daremo ora una definizione di funzione olomorfa basata su quattro definizioni, l'equivalenza delle quali è un prerequisito del corso e dovrebbe essere quindi nota agli studenti.

Definizione 2.1.1. Sia $\Omega \subseteq \mathbb{C}$ un aperto, $f : \Omega \in \mathbb{C}$ si dice olomorfa se vale una delle seguenti condizioni equivalenti:

- (i) $f \in \mathbb{C}$ -differenziabile, cioè per ogni $a \in \Omega$ esiste $f'(a) = \lim_{z \to a} = \frac{f(z) f(a)}{z a}$; (ii) $f \in analitica$, cioè per ogni $a \in \Omega$ esiste $U \subseteq \Omega$ aperto e intorno di a e
- (ii) f è analitica, cioè per ogni $a \in \Omega$ esiste $U \subseteq \Omega$ aperto e intorno di a e $\{c_n\} \subset \mathbb{C}$ t.c. per ogni $z \in U$ $f(z) = \sum_{n=0}^{+\infty} c_n (z-a)^n$;
- (iii) f è olomorfa, cioè f è continua, $\partial f/\partial x$ e $\partial f/\partial y$ esistono su Ω e $\frac{\partial f}{\partial x}+i\frac{\partial f}{\partial y}\equiv 0$ (equazione di Cauchy-Riemann). Si noti che la condizione è $\frac{\partial f}{\partial \bar{z}}\equiv 0$, da cui si ricava $\frac{\partial f}{\partial z}=f'$;
- (iv) f è continua e per ogni rettangolo (o disco) chiuso $D \subseteq \Omega$ si ha $\int_{\partial D} f \, dz = 0$ (teorema di Cauchy-Goursat+Morera).

La seguente proposizione è anch'essa un risultato che dovrebbe essere noto agli studenti che seguono il corso.

Proposizione 2.1.2. Sia $\{c_n\} \in \mathbb{C}$. Allora:

- (i) esiste $R \in [0, +\infty]$ t.c. $\sum_{n=0}^{+\infty} c_n z^n$ converge per |z| < R e diverge per |z| > R. R è detto raggio di convergenza. La convergenza +è uniforme su $\Delta_r = \{|z| \le r\}, r < R$. $\limsup_{n \longrightarrow +\infty} |c_n|^{1/n} = \frac{1}{R}$;
- (ii) $\sum_{n=0}^{+\infty} nc_n z^{n-1}$ ha lo stesso raggio di convergenza;
- (iii) se $f(z) = \sum_{n=0}^{+\infty} c_n (z-a)^n$ allora $f'(z) = \sum_{n=0}^{+\infty} n c_n (z-a)^{n-1}$;

(iv) se $f \in \mathcal{O}(\Omega)$ e $a \in \Omega$, allora $f(z) = \sum_{n=0}^{+\infty} \frac{1}{n!} f^{(n)}(a) (z-a)^n$. Questa formula è valida nel più grande disco aperto centrato in a e contenuto in Ω , cioè di raggio minore o uguale di $d(a, \partial \Omega)$.

Teorema 2.1.3. (Formula di Cauchy) Sia Ω aperto, $f \in \mathcal{O}(\Omega), D \subseteq \Omega$ disco/rettangolo chiuso. Per ogni $a \in D, f(a) = \frac{1}{2\pi i} \int_{\partial D} \frac{\zeta}{\zeta - a} \, \mathrm{d}\zeta$. Si ha che $f^{(n)}(a) = \frac{n!}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{(\zeta - a)^{n+1}} \, \mathrm{d}\zeta$.

Corollario 2.1.4. (Disuguaglianze di Cauchy) $f \in \mathcal{O}(\Omega), D = D(a,r) \subseteq \Omega$ disco di centro $a \in \Omega$ e raggio r > 0. Sia $M = \max_{\zeta \in \partial D} |f(\zeta)|$. Allora per ogni $n \geq 1, |f^{(n)}(a)| \leq \frac{n!}{r^n} M$.

Corollario 2.1.5. (Teorema di Liouville) Sia $f \in \mathcal{O}(\mathbb{C})$ limitata. Allora f è costante.

Dimostrazione. Le disuguaglianze di Cauchy danno, per ogni
$$r>0, |f'(a)|\leq \frac{M}{r}$$
 dove $M=\sup_{z\in\mathbb{C}}|f(z)|<+\infty\Rightarrow f'\equiv 0.$

Teorema 2.1.6. (Principio di identità o del prolungamento analitico) $\Omega \subseteq \mathbb{C}$ dominio, $f,g \in \mathcal{O}(\Omega)$. Se $\{z \in \Omega | f(z) = g(z)\}$ ha un punto di accumulazione in Ω , allora $f \equiv g$.

Corollario 2.1.7. $\Omega \subseteq \mathbb{C}$ dominio, $f \in \mathcal{O}(\Omega)$ non identicamente nulla, allora $\{z \in \Omega | f(z) = 0\}$ è discreto in Ω .

Teorema 2.1.8. (Principio del massimo) $\Omega \subseteq \mathbb{C}$ dominio, $f \in \mathcal{O}(\Omega)$. Allora:

- (i) se U è aperto e $U \subset\subset \Omega$ (si legge "U relativamente compatto in Ω " e si intende $\overline{U} \subset \Omega$ e \overline{U} compatto) allora $\sup_{z \in U} |f(z)| \leq \sup_{z \in \partial D} |f(z)|$. Inoltre, se |f| ha un massimo locale in U, allora f è costante in Ω ;
- (ii) la stessa affermazione vale per $\Re \mathfrak{e} f$ e $\Im \mathfrak{m} f$;
- (iii) se Ω è limitato poniamo $M=\sup_{x\in\partial D}\limsup_{z\to x}|f(z)|\in [0,+\infty]$. Allora per ogni $z\in\Omega$ $|f(z)|\leq M$ con uguaglianza in un punto se e solo se f è costante.

Esempio 2.1.9. Controesempio per vedere che serve Ω limitato per il punto (iii) del teorema 2.1.8: $\Omega = \{z \in \mathbb{C} | \Re \mathfrak{e} z > 0\}, f(z) = e^z. f \in \mathcal{O}(\mathbb{C}) \subset \mathcal{O}(\Omega).$ $z \in \partial \Omega \Rightarrow z = iy \Rightarrow |f(iy)| = |e^{iy}| = 1$, ma f è illimitata in Ω . Per correggere questa cosa si aggiunge il punto all'infinito.

Teorema 2.1.10. (Applicazione aperta) $f \in \mathcal{O}(\Omega)$ non costante $\Rightarrow f$ è un'applicazione aperta.

Siano X, Y spazi topologici e indichiamo con $C^0(X, Y)$ le funzioni continue da X in Y.

La topologia della convergenza puntuale è la restrizione a $C^0(X,Y) \subset Y^X = \{f: X \longrightarrow Y\}$ della topologia prodotto. Una prebase è data da $\mathcal{F}(x,U) = \{f \in C^0(X,Y) | f(x) \in U\}$ dove $x \in X$ e $U \subseteq Y$ è un aperto.

Esercizio 2.1.11. $f_n \longrightarrow f \in C^0(X,Y)$ per questa topologia se e solo se $f_n(x) \longrightarrow f(x)$ per ogni $x \in X$.

La topologia compatta-aperta ha invece come prebase $\mathcal{F}(K,U) = \{f \in C^0(X,Y) | f(K) \subseteq U\}$ dove U è preso come sopra e $K \subseteq X$ è un compatto.

Proposizione 2.1.12.

- (i) La topologia compatta-aperta è più fine della topologia della convergenza puntuale;
- (ii) Y Hausdorff \Rightarrow topologia compatta aperta Hausdorff.

Dimostrazione. (i) Ovvia (il singoletto è un compatto).

(ii) Prendiamo $f \not\equiv g$ continue, allora esiste $x_0 \in X$ t.c. $f(x_0) \not\equiv g(x_0)$, per cui, dato che Y è Hausdorff, esistono $U, V \subset Y$ aperti disgiunti con $f(x_0) \in U, g(x_0) \in V \Rightarrow f \in \mathcal{F}(x_0, U), g \in \mathcal{F}(x_0, V), \mathcal{F}(x_0, U) \cap \mathcal{F}(x_0, V) = \emptyset$.

Teorema 2.1.13. (Ascoli-Arzelà) Siano X, Y spazi metrici con X localmente compatto, allora $\mathcal{F} \subseteq C^0(X,Y)$ è relativamente compatta rispetto alla topologia compatta-aperta se e solo se:

- (i) per ogni $x \in X \{f(x)|f \in \mathcal{F}\} \subset\subset Y;$
- (ii) \mathcal{F} è equicontinua.

La topologia compatta-aperta viene detta anche topologia della convergenza uniforme sui compatti: $\{f_n\} \subset C^0(X, \mathbb{R}^N)$. Se $K \subseteq X$ definiamo $\|f\|_K = \sup_{z \in K} \|f(z)\|$. $f_n \longrightarrow f$ uniformemente sui compatti se per ogni $K \subset X$ compatto e per ogni $\varepsilon > 0$ esiste n_0 t.c. $n \ge n_0 \Rightarrow \|f_n - f\|_K < \varepsilon$.

Esercizio 2.1.14. $f_n \longrightarrow f$ uniformemente sui compatti se e solo se $f_n \longrightarrow f$ nella topologia compatta-aperta.

2.2 Risultati preliminari

Vediamo ora alcuni risultati e definizioni preliminari, da considerarsi comunque come prerequisiti per altri risultati più interessanti che vedremo più avanti nel corso.

Teorema 2.2.1. (Weierstrass) Sia $\{f_n\} \subset \mathcal{O}(\Omega)$ t.c. $f_n \longrightarrow f \in C^0(\Omega, \mathcal{C})$ uniformemente sui compatti. Allora:

- (i) $f \in \mathcal{O}(\Omega)$:
- (ii) $f'_n \longrightarrow f'$ uniformemente sui compatti.

 $\begin{array}{ll} \textit{Dimostrazione.} & \text{(i) Sia } a \in \Omega, \ 0 < r < d(a,\partial\Omega) \ \text{t.c.} \ D = D(a,r) \subset \subset \Omega. \\ f_n(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f_n(\zeta)}{\zeta - z} \, \mathrm{d}\zeta \ \text{per ogni} \ z \in D(a,\rho) \ \text{per ogni} \ 0 < \rho < r. \ \text{Allora} \\ \frac{1}{|\zeta - z|} \leq \frac{1}{r - \rho} \ \text{per ogni} \ z \in D(a,\rho), \zeta \in \partial D. \ \text{Per ogni} \ z \in D(a,\rho), f(z) = \\ \lim_{n \longrightarrow +\infty} \frac{1}{2\pi i} \int_{\partial D} \frac{f_n(\zeta)}{\zeta - z} \, \mathrm{d}\zeta. \ \text{Adesso, per uniforme convergenza e uniforme} \\ \lim_{n \longrightarrow +\infty} \frac{1}{2\pi i} \int_{\partial D} \frac{f_n(\zeta)}{\zeta - z} \, \mathrm{d}\zeta. \ \text{Adesso, per uniforme convergenza} \ \text{euniforme} \\ \lim_{n \longrightarrow +\infty} \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta, \\ \lim_{n \longrightarrow +\infty} \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta. \ \text{Adesso, per uniforme convergenza} \ \text{euniforme} \\ \lim_{n \longrightarrow +\infty} \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta. \ \text{Adesso, per uniforme} \\ \lim_{n \longrightarrow +\infty} \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta. \ \text{Adesso, per uniforme} \\ \lim_{n \longrightarrow +\infty} \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta. \ \text{Adesso, per uniforme} \\ \lim_{n \longrightarrow +\infty} \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta. \ \text{Adesso, per uniforme} \\ \lim_{n \longrightarrow +\infty} \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta. \ \text{Adesso, per uniforme} \\ \lim_{n \longrightarrow +\infty} \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta. \ \text{Adesso, per uniforme} \\ \lim_{n \longrightarrow +\infty} \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta. \ \text{Adesso, per uniforme} \\ \lim_{n \longrightarrow +\infty} \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta. \ \text{Adesso, per uniforme} \\ \lim_{n \longrightarrow +\infty} \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta. \ \text{Adesso, per uniforme} \\ \lim_{n \longrightarrow +\infty} \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta. \ \text{Adesso, per uniforme} \\ \lim_{n \longrightarrow +\infty} \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta. \ \text{Adesso, per uniforme} \\ \lim_{n \longrightarrow +\infty} \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta. \ \text{Adesso, per uniforme} \\ \lim_{n \longrightarrow +\infty} \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta. \ \text{Adesso, per uniforme}$

limitatezza si può portare il limite dentro, perciò $f(z)=\frac{1}{2\pi i}\int_{\partial D}\frac{f(\zeta)}{\zeta-z}\,\mathrm{d}\zeta,$ ma questo, per il teorema di Cauchy-Goursat+Morera, implica $f\in\mathcal{O}(\Omega)$. (ii) $f_n'(z)=\frac{1}{2\pi i}\int_{\partial D}\frac{f_n'(\zeta)}{(\zeta-z)^2}\,\mathrm{d}\zeta \longrightarrow \frac{1}{2\pi i}\int_{\partial D}\frac{f(\zeta)}{\zeta-z}\,\mathrm{d}\zeta = f'(z). \quad f_n'\longrightarrow f'$ uniformemente sui dischi e ogni compatto è coperto da un numero finito di dischi $\Rightarrow f_n'\longrightarrow f'$ uniformemente sui compatti.

Teorema 2.2.2. (Montel) $\Omega \subseteq \mathbb{C}$ aperto, $\mathcal{F} \subseteq \mathcal{O}(\Omega)$ t.c. per ogni $K \subset\subset C$ compatto esiste $M_K > 0$ t.c. $||f||_K \leq M_K$ per ogni $f \in \mathcal{F}$ (si diche che \mathcal{F} è uniformemente limitata sui compatti). Allora \mathcal{F} è relativamente compatta in $\mathcal{O}(\Omega)$.

Dimostrazione. Basta vedere che ogni successione $\{f_n\}\subseteq \mathcal{F}$ ha una sottosuccessione convergente (segue dal fatto che, nelle ipotesi del teorema di Montel, la topologia compatta aperta è metrizzabile).

Dati $a \in \Omega, 0 < r < d(a, \partial\Omega), f \in \mathcal{O}(\Omega)$, sia $c_n(f) = \frac{f^{(n)}(a)}{n!}$, allora $f(z) = \sum_{n=0}^{+\infty} c_n(f)(z-a)^n$ in $\overline{D(a,r)}$. Inoltre, se $||f||_{\overline{C(a,r)}} < M$, allora per le disugua-

 $\sum_{n=0}^{+\infty} c_n(f)(z-a)^n \text{ in } \overline{D(a,r)}. \text{ Inoltre, se } ||f||_{\overline{D(a,r)}} \leq M, \text{ allora per le disugua-}$

glianze di Cauchy $|c_n(f)| \leq \frac{M}{r^n}$ per ogni $n \geq 0$. Sia $\{f_n\} \subseteq \mathcal{F}$. Per ipotesi, esiste M t.c. $||f_n||_{\overline{D(a,r)}} \leq M$ per ogni $n \Rightarrow |c_0(f_n)| \leq M$ per ogni $n \Rightarrow$ esiste una sottosuccessione $c_0(f_{n_j^{(0)}})$ che tende a $c_0 \in \mathbb{C}$. Per induzione, da $\{f_{n_j^{(k-1)}}\}$ possiamo estrarre una sottosuccessione $\{f_{n_j^{(k)}}\}$ t.c. $c_k(f_{n_j^{(k)}}) \longrightarrow c_k \in \mathbb{C}$. Consideriamo $\{f_{n_j^{(j)}}\}$, allora $c_k(f_{n_j^{(j)}}) \longrightarrow c_k \in \mathbb{C}$ per ogni k. Sia $f_{\nu_j} = f_{n_j^{(j)}}$. Poniamo $D_a = \{f_{n_j^{(j)}}\}$

$$\overline{D(a,r/2)}$$
e sia $z \in D_a$. Vogliamo $f_{\nu_j} \longrightarrow f(z) = \sum_{n=0}^{+\infty} c_n (z-a)^n$ in D_a . Basta ve-

dere che f_{ν_j} è di Cauchy uniformemente in D_a . $|f_{\nu_h}(z) - f_{\nu_k}(z)| \leq \sum_{n=0}^{+\infty} |c_n(f_{\nu_h}) - f_{\nu_h}(z)| \leq \sum_{n=0}^{+\infty} |c_n(f_{\nu_h})$

$$c_n(f_{\nu_k})||z-a|^n = \sum_{n=0}^N |c_n(f_{\nu_n}) - c_n(f_{\nu_k})||z-a|^n + \sum_{n>N} |c_n(f_{\nu_h}) - c_n(f_{\nu_k})||z-a|^n.$$
 Sappiamo che $|c_n(f_{\nu_k})|| \leq \frac{M}{r^n}$ e $z \in D_a \Rightarrow |z-a| \leq \frac{r}{2}$. Allora $\sum_{n>N} |c_n(f_{\nu_h}) - c_n(f_{\nu_k})||z-a|^n \leq c_n(f_{\nu_k})||z-a|^n \leq \sum_{n>N} \frac{2M}{r^n} \left(\frac{r}{2}\right)^n = \frac{M}{2^{N-1}}.$
$$\sum_{n=0}^{+\infty} |c_n(f_{\nu_h}) - c_n(f_{\nu_k})||z-a|^n \leq \sum_{n=0}^{+\infty} |c_n(f_{\nu_h}) - c_n(f_{\nu_k})||(\frac{r}{2})^n.$$
 Dato $\varepsilon > 0$, scegliamo $N > 1$ t.c.
$$\frac{M}{2^{N-1}} < \varepsilon/2$$
 e n_0 t.c. per ogni $h, k \geq n_0, |c_n(f_{\nu_h}) - c_n(f_{\nu_k})| \left(\frac{r}{2}\right)^n < \frac{\varepsilon}{2(N+1)}$ (possiamo farlo, una volta fissato N , perché gli n tra $0 \in N$ sono in numero finito e le successioni $c_n(f_{\nu_j})$ convergono, dunque si sceglie un indice per ogni successione e si prende come n_0 il massimo di questi indici). Mettendo insieme le disuguaglianze si ha che per ogni $\varepsilon > 0$ esiste n_0 t.c. per ogni $h, k \geq n_0$ e per ogni $z \in D_a, |f_{\nu_k}(z) - f_{\nu_k}(z)| < \varepsilon$, dunque la sottosuccessione f_{ν_j} è di Cauchy e converge uniformemente su D_a . Deve convergere a f perché, per il teorema di Weierstrass, le derivate convergono al valore della derivata limite, e questo ci dice che i coefficienti della serie della funzione limite sono proprio quelli di f . Ω è a base numerabile, dunque possiamo estrarre un sottoricoprimento numerabile da $\{D_a|a \in \Omega\}$. Sia dunque $\{a_j\} \subseteq \Omega$ t.c. $\bigcup_j D_{a_j} = \Omega$. Per quanto dimostrato finora, possiamo estrarre da $\{f_n\}$ una sottosuccessione $\{f_{n_j^{(0)}}\}$ convergente uniformemente in $D_{a_0} \cup \cdots \cup D_{a_k}$. Prendiamo $\{f_{n_j^{(0)}}\}$ che converge uniformemente in ogni D_{a_k} . Adesso, ogni compatto è coperto da un numero finito di D_{a_k} , quindi (scegliendo per ogni ε il massimo degli indici t.c. le cose che vogliamo valgono in quei D_{a_k}) $\{f_{n_j^{(j)}}\}$ converge uniformemente sui compatti.

Teorema 2.2.3. (Vitali) $\Omega \subseteq \mathbb{C}$ dominio, $A \subseteq \Omega$ con almeno un punto di accumulazione in Ω . Sia $\{f_n\} \subset \mathcal{O}(\Omega)$ uniformemente limitata sui compatti. Supponiamo che, per ogni $a \in A$, $\{f_n(a)\}$ converge (cioe f_n converge puntualmente). Allora esiste $f \in \mathcal{O}(\Omega)$ t.c. $f_n \longrightarrow f$ uniformemente sui compatti di Ω .

Dimostrazione. Facciamola per assurdo. Supponiamo che esistono $K \subset \subset \Omega$, $\{n_k\}, \{m_k\} \subset \mathbb{N}, \{z_k\} \subset K, \delta > 0 \text{ t.c. } |f_{n_k}(z_k) - f_{m_k}(z_k)| \geq \delta$. A meno di sottosuccessioni, $z_k \longrightarrow z_0 \in K$. Per il teorema di Montel, a meno di sottosuccessioni $f_{n_k} \longrightarrow g_1 \in \Omega$ e $f_{m_k} \longrightarrow g_2 \in \Omega$ con $|g_1(z_0) - g_2(z_0)| \geq \delta$ (passando al limite). Per ipotesi, $g_1(a) = g_2(a)$ per ogni $a \in A$. Per il principio di identità, $g_1 \equiv g_2$, assurdo.

Teorema 2.2.4. (Sviluppo di Laurent) Siano $0 \le r_1 < r_2 \le +\infty, A(r_1, r_2) := \{z \in \mathbb{C} | r_1 < |z| < r_2\}$. Sia $f \in \mathcal{O}(A(r_1, r_2))$, allora $f(z) = \sum_{n=-\infty}^{+\infty} c_n z^n$ e converge uniformemente e assolutamente sui compatti di $A(r_1, r_2)$. In particolare, se $\Omega \subseteq \mathbb{C}$ aperto, $a \in \Omega$ e $f \in \mathcal{O}(\Omega \setminus \{a\}), f(z) = \sum_{n=-\infty}^{+\infty} c_n (z-a)^n$ in $\{0 < |z-a| < r\} \subset \Omega$.

Corollario 2.2.5. (Teorema di estensione di Riemann) $f \in \mathcal{O}(\Omega \setminus \{a\})$ si estende olomorficamente ad $a \Leftrightarrow \lim_{z \to a} (z - a) f(z) = 0$.

Dimostrazione. Per lo sviluppo di Laurent,
$$(z-a)f(z) = \sum_{n=-\infty}^{+\infty} c_n(z-a)^{n+1} \longrightarrow 0 \Leftrightarrow c_n = 0$$
 per ogni $n \leq -1$.

Teorema 2.2.6.

- (i) $f \in \text{Hol}(\Omega, \Omega_1)$ biettiva $\Rightarrow f^{-1}$ è olomorfa e f' non si annulla mai;
- (ii) $f \in \mathcal{O}(\Omega)$ t.c. $f'(z_0) \neq 0 \Rightarrow f$ è iniettiva vicino a z_0 .

Dimostrazione. (i) Per il teorema dell'applicazione aperta, f è aperta $\Rightarrow f$ omeomorfismo. $g = f^{-1}$. Sia $w_0 \in \Omega_1$ t.c. $f'(g(w_0)) \neq 0$. Allora

$$\frac{g(w) - g(w_0)}{w - w_0} = \frac{1}{\frac{w - w_0}{g(w) - g(w_0)}} = \frac{1}{\frac{f(g(w)) - f(g(w_0))}{g(w) - g(w_0)}} = \frac{1}{f'(g(w_0))}.$$

Quindi g è olomorfa in $\Omega_1 \setminus f(\{f'=0\})$. Per il corollario 2.1.7 $\{f'=0\}$ è discreto in Ω . f omeomorfismo $\Rightarrow f(\{f'=0\})$ discreto in Ω_1 . Ma g è continua (quindi localmente limitata) in Ω_1 , dunque per il teorema di estensione di Riemann $g \in \mathcal{O}(\Omega_1)$. $(f' \circ g)g' \equiv 1$ su $\Omega_1 \setminus f(\{f'=0\}) \Rightarrow$ vale su $\Omega_1 \Rightarrow f' \circ g \neq 0$ sempre.

(ii) Possiamo supporre $z_0 = 0$. $f(z) = \sum_{\substack{n=0 \ +\infty}}^{+\infty} c_n z^n$. Per ipotesi, $c_1 \neq 0$.

$$f(z) - f(w) = c_1(z - w) + (z - w) \sum_{n=2}^{+\infty} c_n \sum_{k=1}^{n} w^{k-1} z^{n-k}.$$

$$|f(z) - f(w)| \ge |c_1||z - w| - |z - w| \sum_{n=2}^{+\infty} |c_n| \sum_{k=1}^{n} |w|^{k-1} |z|^{n-k}.$$

Prendiamo $z, w \in D(0, r)$, allora

$$|c_1||z-w|-|z-w|\sum_{n=2}^{+\infty}|c_n|\sum_{k=1}^n|w|^{k-1}|z|^{n-k}\ge$$

$$\geq |c_1||z-w|-|z-w|\sum_{n=2}^{+\infty}|c_n|nr^{n-1}=(|c_1|-\sum_{n=2}^{+\infty}|c_n|nr^{n-1})|z-w|. \text{ Scegliamo } r \text{ t.c. } \sum_{n=2}^{+\infty}|c_n|nr^{n-1}\leq \frac{|c_1|}{2}, \text{ allora } (|c_1|-\sum_{n=2}^{+\infty}|c_n|nr^{n-1})|z-w|\geq \frac{|c_1|}{2}|z-w|. \text{ Dato che } c_1\neq 0, \text{ si ha quindi (concatenando le disuguaglianze)}$$
 che $z\neq w\Rightarrow |f(z)-f(w)|\geq \frac{|c_1|}{2}|z-w|>0 \Rightarrow f(z)\neq f(w).$

Definizione 2.2.7. Se $f: \Omega_1 \longrightarrow \Omega_2$ è olomorfa e biettiva (quindi con inversa olomorfa per il teorema 2.2.6) si chiama BIOLOMORFISMO.

Definizione 2.2.8. $f:\Omega_1\longrightarrow\mathbb{C}$ è un BIOLOMORFISMO LOCALE se ogni $a\in\Omega_1$ ha un intorno $U\ni a$ t.c. $f|_U:U\longrightarrow f(U)$ è un biolomorfismo.

Per il teorema 2.2.6, f è un biolomorfismo locale se e solo se f' non si annulla mai.

Definizione 2.2.9. Sia $f(z) = \sum_{n=-\infty}^{+\infty} c_n (z-a)^n$ in $D^* = D(a,r) \setminus \{a\}$. $ord_a(f) := \inf\{n \in \mathbb{Z} | c_n \neq 0\}$ è detto ordine di f in a. $ord_a(f) \geq 0 \Leftrightarrow f$ è olomorfa in a. Se $0 > ord_a(f) > -\infty$ diremo che a è un polo di f. Se $ord_a(f) = -\infty$ a è una singolarità essenziale.

Teorema 2.2.10. (Casorati-Weierstrass) Se a è una singolarità essenziale, $f(D^*)$ è denso in $\mathbb C$.

Definizione 2.2.11. $c_{-1} =: res_f(a)$ è detto residuo di f in a.

Osservazione 2.2.12. $\gamma(t) = a + \rho e^{2\pi i t}, 0 < \rho < r$.

$$\frac{1}{2\pi i} \int_{\gamma} f \, dz = \frac{1}{2\pi i} \sum_{n=-\infty}^{+\infty} c_n \int_{\gamma} (z-a)^n \, dz =$$

$$\frac{1}{2\pi i} \sum_{n=-\infty}^{+\infty} c_n \int_0^1 \rho^n e^{2\pi i n t} \rho 2\pi i e^{2\pi i t} \, dt = \sum_{n=-\infty}^{+\infty} c_n \rho^{n+1} \int_0^1 e^{2\pi i (n+1)t} \, dt = c_{-1}.$$

Proposizione 2.2.13. $\Omega \subseteq \mathbb{C}$ aperto, $E \subset \Omega$ discreto e chiuso in Ω , $D \subset \mathbb{C}$ Ω disco chiuso t.c. $E \cap \partial D = \emptyset$, $f \in \mathcal{O}(\Omega \setminus E)$. Allora $\frac{1}{2\pi i} \int_{\partial D} f \, \mathrm{d}z = \sum_{a \in D \cap E} res_f(a)$.

Dimostrazione. Traccia: si dimostra che $E \cap D$ è finito e si applica una versione leggermente più forte del teorema di Cauchy-Goursat+Morera, prendendo per ogni punto di E un dischetto tutto contenuto in D che lo isoli dagli altri e considerando la regione D meno quei dischetti. Il bordo di questa regione è considerato il bordo di D meno il bordo dei dischetti. Questo bordo, a meno di aggiungere dei tratti lineari che uniscono una circonferenza all'altra (che quindi verranno percorsi in entrambi i sensi nell'integrale e non daranno contributo), è percorribile con un solo cammino omotopo al cammino costante in $\Omega \setminus E$, il cui integrale fa 0 per la versione forte del teorema di C-G+M, dunque l'integrale sul bordo di D meno l'integrale sul bordo dei dischetti (occhio al verso di percorrenza di uno e degli altri!) deve essere uguale a 0. Per l'osservazione 2.2.12 si ha la tesi.

Osservazione 2.2.14. $\gamma:[0,1]\longrightarrow\mathbb{C}$ chiusa $(\gamma(0)=\gamma(1)),\ a\not\in\gamma([0,1]).$ $p_s: \mathbb{C} \longrightarrow \mathbb{C} \setminus \{a\}, \ p_a(z) = a + e^z$ è un rivestimento.

$$[0,1] \xrightarrow{\tilde{\gamma}} \mathbb{C} \setminus \{a\}$$

Sia $\tilde{\gamma}$ un sollevamento di γ rispetto a $p_a, p_a(\tilde{\gamma}(1)) = \gamma(1) = \gamma(0) = p_a(\tilde{\gamma}(0)) \iff$ $e^{\tilde{\gamma}(1)} = e^{\tilde{\gamma}(0)} \iff \tilde{\gamma}(1) - \tilde{\gamma}(0) \in 2\pi i \mathbb{Z}.$

Definizione 2.2.15. L'INDICE DI AVVOLGIMENTO γ RISPETTO AD a (winding number in inglese) è dato dall'osservazione 2.2.14: $n(\gamma, a) := \frac{1}{2\pi i} (\tilde{\gamma}(1) - \tilde{\gamma}(0)) \in$ \mathbb{Z} .

Teorema 2.2.16.

- (i) $n(\gamma, a)$ dipende solo da a e da γ e non dal sollevamento scelto;
- (ii) $n(\gamma, a) \in \mathbb{Z}$;
- (iii) $n(\gamma, a) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z a} dz;$
- (iv) $a \mapsto n(\gamma, a)$ è costante sulle componente connesse di $\mathbb{C} \setminus \gamma([0, 1])$. In particolare $n(\gamma, a) = 0$ sulla componente connessa illimitata di $\mathbb{C} \setminus \gamma([0, 1]);$ (v) $\gamma(t) = a_0 + re^{2\pi i t} \Rightarrow n(a, \gamma) = 1$ per ogni $a \in D(a_0, r);$
- (vi) γ_1 e γ_2 chiuse con $\gamma_1(0) = \gamma_2(0) = p_0$ omotope (tramite omotopia che fissa il punto base p_0) e $a \not\in \gamma_1([0,1]) \cup \gamma_2([0,1])$, se l'omotopia è in $\mathbb{C} \setminus \{a\}$ allora $n(\gamma_1, a) = n(\gamma_2, a)$.

Teorema 2.2.17. (Teorema dei residui) $\Omega \subseteq \mathbb{C}$ aperto, $E \subset \Omega$ discreto e chiuso in Ω , γ curva chiusa in $\Omega \setminus E$ omotopa a una costante in Ω . Allora per ogni $f \in \mathcal{O}(\Omega \setminus E) \ \frac{1}{2\pi i} \int_{\gamma} f \, \mathrm{d}z = \sum_{a \in E} res_f(a) \cdot n(\gamma, a).$

Definizione 2.2.18. $\Omega \subseteq \mathbb{C}$, f è meromorfa in Ω se esiste $E \subset \Omega$ discreto e chiuso in Ω t.c. $f \in \mathcal{O}(\Omega \setminus E)$ e nessun punto di E è una singolarità essenziale. Scriveremo che $f \in \mathcal{M}(\Omega)$.

Proposizione 2.2.19.

- (i) $f \in \mathcal{O}(\Omega \setminus E)$ è meromorfa \iff localmente è quoziente di due funzioni
- (ii) $f \in \mathcal{O}(\Omega \setminus E)$ è meromorfa \iff per ogni $a \in E$ o |f| è limitato vicino ad $a \circ \lim_{z \to a} |f(z)| = +\infty.$

(i) (\Rightarrow) Se $a \in \Omega \setminus E$ banalmente $f = \frac{f}{1}$ vicino ad a.

Se
$$a \in E$$
, $f(z) = \sum_{n \ge n_0} c_n (z - a)^n = (z - a)^{n_0} (c_{n_0} + h(z))$, h olomorfa

vicino ad
$$a$$
. Se $n_0 < 0$, $f(z) = \frac{c_{n_0} + h(z)}{(z-a)^{-n_0}}$.
(\Leftarrow) Se $f(z) = \frac{h_1(z)}{h_2(z)} = \frac{\sum_{n \geq n_1} b_n (z-a)^n}{\sum_{m \geq n_2} c_m (z-a)^m} = (z-a)^{n_1-n_2} k(z), k$ olomorfa vicino ad a .

(ii) Per Casorati-Weierstrass, $a \in E$ è singolarità essenziale $\iff \lim_{z \longrightarrow a} |f(z)|$ non esiste. Per lo stesso motivo, è un polo $\iff \lim_{z \longrightarrow a} |f(z)| = +\infty$.

Teorema 2.2.20. (Principio dell'argomento) $\Omega \subseteq \mathbb{C}, f \in \mathcal{M}(\Omega)$. $Z_f := \{\text{zeri di } f\}, P_f := \{\text{poli di } f\}$. γ curva chiusa in $\Omega \setminus (Z_f \cup P_f)$ omotopa a una

costante in Ω . Allora $\sum_{a \in Z_f \cup P_f} n(\gamma, a) \cdot ord_a(f) = \frac{1}{2\pi i} \int_{\gamma} \frac{f'}{f} dz$.

Dimostrazione. $ord_a(f) = res_{f'/f}(a)$. Infatti $f(z) = (z-a)^m h(z)$ con $m = ord_a(f)$, $h(a) \neq 0$ e h olomorfa. $f'(z) = m(z-a)^{m-1}h(z) + (z-a)^m h'(z)$. Allora $\frac{f'}{f} = \frac{m}{z-a} + \frac{h'(z)}{h(z)} e \frac{h'}{h}$ è olomorfa $\Rightarrow res_{f'/f}(a) = m = ord_a(f)$. La tesi segue allora dal teorema dei residui.

Proposizione 2.2.21. (Versione semplice del teorema di Rouché) $\Omega \subseteq \mathbb{C}$, $f,g\in\mathcal{O}(\Omega),\,D$ disco con $\overline{D}\subset\Omega$. Supponiamo che |f-g|<|g| su ∂D (questo implica anche che non si annullano mai su ∂D). Allora $f \in g$ hanno lo stesso numero di zeri (contati con molteplicità) su D.

Dimostrazione. Per $t \in [0,1]$ poniamo $f_t = g + t(f-g)$ $(f_0 = g, f_1 = f)$. Se $z \in \partial D$, $0 < |g(z)| - |f(z) - g(z)| \le |g(z)| - t|f(z) - g(z)| \le |f_t(z)|$. Sia $a_t = \sum_{a \in \overline{D}} ord_a(f_t) =$ numero di zeri di f_t in \overline{D} . Non ci sono poli, dun-

que $a_t \in \mathbb{N}$, quindi per il principio dell'argomento $a_t = \frac{1}{2\pi i} \int_{\partial D} \frac{f_t'}{f_t} dz = \frac{1}{2\pi i} \int_{\partial D} \frac{g' + t(f' - g')}{g + t(f - g)} dz$, che dipende con continuità da $t \Rightarrow a_t$ è costante (è a valori in \mathbb{N}) $\Rightarrow a_0 = a_1$ come voluto.

Corollario 2.2.22. (Teorema di Ritt) Sia $h \in \mathcal{O}(\mathbb{D})$ ($\mathbb{D} := \{|z| < 1\}$) t.c. $h(\mathbb{D}) \subset\subset \mathbb{D}$. Allora h ha un punto fisso.

Dimostrazione. Esiste 0 < r < 1 t.c. |h(z)| < r per ogni $z \in \mathbb{D}$. Sia $\mathbb{D}_r := \{|z| < r\}$. Su $\partial \mathbb{D}_r$, |z - (z - h(z))| = |h(z)| < r = |z|. Per il teorema di Rouché su g(z) = z, f(z) = z - h(z), $g \in f$ hanno lo stesso numero di zeri in \mathbb{D} , ma g ha un unico zero $\Rightarrow f = \mathrm{id}_{\mathbb{D}} - h$ ha un unico zero $z_0 \Rightarrow h(z_0) = z_0$.

2.3 Teoremi di Hurwitz

Vediamo ora qualche risultato interessante.

Teorema 2.3.1. (Primo teorema di Hurwitz) $\Omega \subseteq \mathbb{C}$ aperto, $\{f_n\} \subset \mathcal{O}(\Omega)$ convergente a $f \in \mathcal{O}(\Omega)$ uniformemente sui compatti. Supponiamo che f non sia costante sulle componenti connesse di Ω . Allora per ogni $z_0 \in \Omega$ esistono $n_1 = n_1(z_0) \in \mathbb{N}$ e $z_n \in \Omega$ per ogni $n \geq n_1$ t.c. $f_n(z_n) = f(z_0)$ e $\lim_{n \longrightarrow +\infty} z_n = z_0$. Senza la tesi sul limite di z_n , si può dire che per ogni $w = f(z_0) \in f(\Omega)$ esiste $n_1 = n_1(w)$ t.c. $w \in f_n(\Omega)$ per ogni $n \geq n_1$.

Dimostrazione. Vogliamo applicare Rocuhé a f_n-w e f-w, $w=f(z_0)$ in dischetti centrati in z_0 di raggio arbitrariamente piccolo. f non costante sulle componenti connesse $\Rightarrow f^{-1}(w)$ è discreto \Rightarrow esiste $\delta>0$ t.c. $0<|z-z_0|\leq\delta\Rightarrow z\in\Omega$ e $f(z)\neq w$. Se $D=D(z_0,\delta)$ allora $\overline{D}\cap f^{-1}(w)=\{z_0\}$. Per ogni k>0, $\gamma_k=\partial D(z_0,\delta/k)$. Poniamo $\delta_k=\min\{|f(\zeta)-w|\mid \zeta\in\gamma_k\}>0$. Esiste $n_k\geq 1$ t.c. per ogni $n\geq n_k\max_{\zeta\in\gamma_k}|f_n(\zeta)-f(\zeta)|<\frac{\delta_k}{2}$ (f_n converge a f uniformemente sui compatti). Possiamo supporre $n_1< n_2< n_3<\dots$ Fissato $k\geq 1$, se $n\geq n_k$ e $\zeta\in\gamma_k$, $|(f_n(\zeta)-w)-(f(\zeta)-w)|=|f_n(\zeta)-f(\zeta)|<\frac{\delta_k}{2}<\delta_k\leq |f(\zeta)-w|$. Per il teorema di Rocuhé applicato a f_n-w e f-w in $\overline{D(z_0,\delta/k)}$, per ogni $n\geq n_k$ f_n-w ha almeno uno zero in $D(z_0,\delta_k)$ \Rightarrow esiste $z_n\in D(z_0,\delta/k)$ t.c. $f_n(z_n)=w$. $z_n\longrightarrow z_0$ per $n\longrightarrow +\infty$.

Corollario 2.3.2. (Secondo teorema di Hurwitz) $\Omega \subseteq \mathbb{C}$ dominio, $\{f_n\} \subset \mathcal{O}(\Omega)$ t.c. $f_n \longrightarrow f \in \mathcal{O}(\Omega)$. Supponiamo che le f_n non si annullino mai (o, in generale, esiste $w_0 \in \mathbb{C}$ t.c. $w_0 \notin f_n(\Omega)$ per ogni n), allora o $f \equiv 0$ o f non si annulla mai (in generale, o $f \equiv w_0$ o $w_0 \notin f(\Omega)$).

Dimostrazione. Per assurdo, $w_0 \in f(\Omega)$. Allora o f è costante $(f \equiv w_0)$ oppure, per il primo teorema di Hurwitz, $w_0 \in f_n(\Omega)$ per ogni n >> 1, assurdo.

Corollario 2.3.3. (Terzo teorema di Hurwitz) $\Omega \subseteq \mathbb{C}$ dominio, $\{f_n\} \subset \mathcal{O}(\Omega)$ t.c. $f_n \longrightarrow f \in \mathcal{O}(\Omega)$. Supponiamo che le f_n siano iniettive. Allora f è costante o iniettiva.

Dimostrazione. Per assurdo, sia f né costante né iniettiva. Allora esistono $z_1 \neq 0$ z_2 t.c. $f(z_1) = f(z_2)$. Poniamo $h_n(z) = f_n(z) - f_n(z_2)$ e $h(z) = f(z) - f(z_2)$. $h_n \longrightarrow h$ e le h_n non si annullano mai in $\Omega \setminus \{z_2\}$ (perché le f_n sono iniettive). Dato che per ipotesi f non è costante, pure h non è costante, dunque per il secondo teorema di Hurwitz non si annulla mai in $\Omega \setminus \{z_2\}$, ma $h(z_1) = 0$, assurdo.

2.4La sfera di Riemann

Definizione 2.4.1. La sfera di Riemann è l'insieme $\hat{\mathbb{C}} = \overline{\mathbb{C}} = \mathbb{C}_{\infty} = \mathbb{C} \cup \mathbb{C}$ $\{\infty\}=\mathbb{P}^1(\mathbb{C})$ (l'ultimo è la retta proiettiva complessa). Per noi sarà $\hat{\mathbb{C}}=$ $\mathbb{C} \cup \{\infty\}$ con la seguente topologia: ristretta a \mathbb{C} è la topologia usuale, mentre gli intorni aperti di ∞ sono della forma $(\mathbb{C} \setminus K) \cup \{\infty\}$ con $K \subset\subset \mathbb{C}$ compatto.

Siano $U_0 = \mathbb{C}, U_1 = \mathbb{C}^* \cup \{\infty\}$ (si noti che U_1 è un intorno aperto di ∞). Sia $\varphi_1:U_1\longrightarrow\mathbb{C}$ definita come

$$\varphi_1(w) = \begin{cases} 1/w & \text{se } w \neq \infty \\ 0 & \text{se } w = \infty. \end{cases}$$

 φ_1 è un omeomorfismo fra U_1 e
 $\mathbb C.$ Sia $\varphi_0:U_0\longrightarrow \mathbb C,$ $\varphi_0(z)=z$ (l'identità); è un omeomorfismo fra $U_0 \in \mathbb{C}$.

 $U_0 \cap U_1 = \mathbb{C}^*, \ \varphi_1(U_0 \cap U_1) = \mathbb{C}^* = \varphi_0(U_0 \cap U_1).$

$$\varphi_0 \circ \varphi_1^{-1}, \varphi_1 \circ \varphi_0^{-1} : \mathbb{C}^* \longrightarrow \mathbb{C}^*, \ (\varphi_0 \circ \varphi_1^{-1})(w) = \frac{1}{w}, (\varphi_1 \circ \varphi_0^{-1})(z) = \frac{1}{z} \text{ sono olomorfe.}$$

 φ_0 e φ_1 si chiamano *carte*. Una funzione definita a valori in $\hat{\mathbb{C}}$ è olomorfa se lo è letta tramite carte. Vediamo nello specifico cosa significa.

Sia $\Omega \subseteq \hat{\mathbb{C}}$ aperto, $f: \Omega \longrightarrow \mathbb{C}$ continua; quando è olomorfa? Risposta:

- (i) $f|_{\Omega \cap \mathbb{C}}$ è olomorfa in senso classico (notiamo che $\Omega \cap \mathbb{C} = \Omega \setminus \{\infty\}$); (ii) $f \circ \varphi_1^{-1} : \varphi_1(\Omega) \longrightarrow \mathbb{C}$ è olomorfa vicino a $0 = \varphi_1(\infty)$.

$$(f \circ \varphi_1^{-1})(w) = f\left(\frac{1}{w}\right).$$

Esempio 2.4.2. $f(z) = \sum_{n=0}^{+\infty} c_n z^n$. Quando è olomorfa in ∞ ? Se e solo se $f\left(\frac{1}{w}\right)$ è olomorfa in 0. $f\left(\frac{1}{w}\right) = \sum_{n=0}^{+\infty} c_n w^{-n}$ è olomorfa in 0 \iff $c_n = 0$ per ogni n > 0.

Osservazione 2.4.3. $f: \hat{\mathbb{C}} \longrightarrow \mathbb{C}$ è olomorfa se e solo se è costante. Infatti, $\hat{\mathbb{C}}$ compatto $\Rightarrow f(\hat{\mathbb{C}})$ compatto, cioè chiuso e limitato in $\mathbb{C} \Rightarrow |f|$ ha max in $x_0 \in \hat{\mathbb{C}}$. Se $z_0 \in \mathbb{C}$, allora per il teorema di Liouville 2.1.5 $f|_{\mathbb{C}}$ è costante $\Rightarrow f$ costante. Se $z_0 = \infty$, f(1/w) ha massimo in 0, dunque ragionando come prima

Sia $\Omega \subseteq \mathbb{C}$ aperto, $f: \Omega \longrightarrow \hat{\mathbb{C}}$ continua; quando è olomorfa? Risposta:

- (i) f è olomorfa in $\Omega \setminus f^{-1}(\infty)$ in senso classico; (ii) se $f(z_0) = \infty$, $\varphi_1 \circ f = \frac{1}{f}$ è olomorfa vicino a z_0 .

Esempio 2.4.4. $f(z) = \sum_{n=0}^{+\infty} c_n z^n$ è a valori in $\hat{\mathbb{C}}$ se 0 è un polo (ci interessa il caso in cui ∞ sia effettivamente nell'immagine, altrimenti è una comune funzione olomorfa a valori in \mathbb{C}), cioè consideriamo $f(0) = \infty$. Supponiamo allora $f(z) = \sum_{n=1}^{+\infty} c_n z^n = z^{-k} \sum_{n=1}^{+\infty} c_n z^{n+k} = z^{-k} h(z), \ h(0) = c_{-k} \neq 0, \ h \text{ olo-}$ morfa. $\frac{1}{f}(z) = \frac{z^k}{h(z)}$ è olomorfa in 0. Viceversa, se f è olomorfa, $\frac{1}{f}$ è olomorfa in $0 \Rightarrow \frac{1}{f}(z) = z^k \sum_{n=0}^{+\infty} c_n z^n$, $c_0 \neq 0, k \geq 1$ (la condizion $k \geq 1$ segue dal fatto che siamo nell'ipotesi $f(0) = \infty \Rightarrow (1/f)(0) = 0$). Allora $\frac{1}{f}(z) = z^k h(z) \Rightarrow$ $f(z)=z^{-k}\frac{1}{h(z)}$ e quindi ha un polo in 0.

Corollario 2.4.5. $\Omega \subseteq \mathbb{C}, f: \Omega \longrightarrow \hat{\mathbb{C}}$ è olomorfa se e solo se è meromorfa. Possiamo ora dare una definizione generale.

Definizione 2.4.6. $f: \hat{\mathbb{C}} \longrightarrow \hat{\mathbb{C}}$ continua è olomorfa se e solo se $f\left(\frac{1}{m}\right)$ è olomorfa vicino a 0 e $\frac{1}{f}$ è olomorfa vicino a $f^{-1}(\infty)$ (e ovviamente dev'essere normalmente olomorfa in tutti gli altri punti).

Se $f(\infty) = \infty$, la condizione è che $\frac{1}{f(1/w)}$ sia olomorfa in 0.

Esempio 2.4.7. $p(z) = a_0 + a_1 z + \dots + a_d z^d, a_d \neq 0$ (un polinomio). $p(\infty) = \infty$. È olomorfo in ∞ ? Sì: $\frac{1}{p(1/z)} = \frac{1}{a_0 + a_1 z^{-1} + \dots + a_d z^{-d}} = \frac{1}{z^{-d}(a_0 z^d + \dots + a_d)} = \frac{z^d}{a_d + \dots + a_0 z^d}$ è olomorfo in 0. $\frac{1}{p(1/z)}$ ha uno zero di ordine d in $0 \iff p$ ha un polo di ordine di -d in ∞ (vedremo più avanti come è definito $\operatorname{ord}_f(\infty)$).

Proposizione 2.4.8. $f \in \text{Hol}(\hat{\mathbb{C}}, \hat{\mathbb{C}}) \iff f = \frac{P}{Q} \text{ con } P, Q \in \mathbb{C}[z] \text{ senza fattori comuni, cioè } f$ è una funzione razionale.

Dimostrazione. (
 (
 Sappiamo che $\mathbb{C}[z]\subset \operatorname{Hol}(\hat{\mathbb{C}},\hat{\mathbb{C}})$ e quozienti di funzioni olomorfe sono olomorfi.

 $(\Rightarrow) \text{ Sia } f: \hat{\mathbb{C}} \longrightarrow \hat{\mathbb{C}} \text{ olomorfa non costante. } Z_f = f^{-1}(0) \text{ è chiuso e discreto in } \hat{\mathbb{C}} \text{ che è compatto, dunque è finito, perciò } Z_f \cap \mathbb{C} = \{z_1, \dots, z_k\} \subset \mathbb{C}.$ Analogamente $P_f = f^{-1}(\infty) = Z_{1/f}, \ P_f \cap \mathbb{C} = \{w_1, \dots, w_h\} \subset \mathbb{C}.$ Sia $g(z) = \frac{(z-w_1)\cdots(z-w_h)}{(z-z_1)\cdots(z-z_k)} f(z), \ g \in \text{Hol}(\hat{\mathbb{C}},\hat{\mathbb{C}}) \text{ (gli zeri e i poli compaiono con molteplicità nei prodotti al numeratore e al denominatore). In questo modo <math>g$ non ha né zeri né poli in $\mathbb{C}.$ Se $g(\infty) \in \mathbb{C}, \ g \in \text{Hol}(\hat{\mathbb{C}},\mathbb{C}) \Rightarrow g \text{ costante,}$ diciamo $g \equiv c \Rightarrow f(z) = c\frac{(z-z_1)\cdots(z-z_k)}{(z-w_1)\cdots(z-w_h)}, \text{ come voluto. Se } g(\infty) = \infty \Rightarrow \frac{1}{g}(\infty) = 0 \in \mathbb{C} \Rightarrow \frac{1}{g} \in \text{Hol}(\hat{\mathbb{C}},\mathbb{C}) \Rightarrow \frac{1}{g} \text{ costante e si conclude come sopra.}$

Definizione 2.4.9. Sia $f=\frac{P}{Q}\in \operatorname{Hol}(\hat{\mathbb{C}},\hat{\mathbb{C}})$. Il grado di f è $\deg f=\max\{\deg P,\deg Q\}$.

La definizione dell'ordine di zeri e poli in $\mathbb C$ ce l'abbiamo.

$$f(\infty) = \lim_{w \to 0} \frac{P(1/w)}{Q(1/w)} = \lim_{w \to 0} \frac{a_m \left(\frac{1}{w}\right)^m + \dots + a_0}{b_n \left(\frac{1}{w}\right)^n + \dots + b_0} = \lim_{w \to 0} w^{n-m} \frac{a_m + \dots + a_0 w^m}{b_n + \dots + b_0 w^n} = \begin{cases} 0 & \text{se } n > m \\ \frac{a_m}{b_n} & \text{se } n = m \\ \infty & \text{se } n < m. \end{cases}$$

Definiamo allora $ord_f(\infty)$) = $n - m = \deg Q - \deg P$.

Definizione 2.4.10. Siano $f \in \operatorname{Hol}(\hat{\mathbb{C}}, \hat{\mathbb{C}}), z_0 \in \hat{\mathbb{C}}$. La MOLTEPLICITÀ DI f IN z_0 è $\delta_f(z_0)$ definita come segue: se $f(z_0) = w_0 \in \mathbb{C}, z_0$ è uno zero di $f - w_0$ e poniamo $\delta_f(z_0) = \operatorname{ord}_{f-w_0}(z_0)$; se $f(z_0) = \infty, z_0$ è un polo di f e poniamo $\delta_f(z_0) = -\operatorname{ord}_f(z_0)$. Si ha che $\delta_f(z_0) \in \mathbb{N}$.

Proposizione 2.4.11. Sia $f \in \text{Hol}(\hat{\mathbb{C}}, \hat{\mathbb{C}})$ non costante. Allora per ogni $q \in \hat{\mathbb{C}}$ $\sum_{f(p)=q} \delta_f(p) = \deg f.$

Dimostrazione. Sia
$$f = \frac{P}{Q}$$
. Se $q = 0$, $\sum_{f(p)=0} \delta_f(p) = \sum_{\substack{f(p)=0 \ p \in \mathbb{C}}} \delta_f(p) + c \cdot \delta_f(\infty)$

dove c=1 se $f(\infty)=0$ e c=0 altrimenti. Si noti che per il teorema fondamentale dell'algebra $\sum_{\substack{f(p)=0\\p\in\mathbb{C}}} \delta_f(p) = \deg P$. Per com'è definito $c,\ c\cdot\delta_f(\infty) =$

$$\max\{0, \deg Q - \deg P\}$$
. Allora $\sum_{f(p)=0} \delta_f(p) = \deg P + \max\{0, \deg Q - \deg P\} = 0$

$$\max \{0, \deg Q - \deg P\}. \text{ Allora } \sum_{f(p)=0} \delta_f(p) = \deg P + \max \{0, \deg Q - \deg P\} = \max \{\deg P, \deg Q\} = \deg f. \text{ Se } q = \infty, \sum_{f(p)=\infty} \delta_f(p) = \sum_{\substack{f(p)=\infty \\ p \in \mathbb{C}}} \delta_f(p) + c \cdot \delta_f(\infty)$$

dove stavolta c=1 se $f(\infty)=\infty$ e c=0 altrimenti. Dunque in questo caso la sommatoria vale, per il teorema fondamentale dell'algebra, $\deg Q$, mentre $c \cdot \delta_f(\infty) = \max\{0, \deg P - \deg Q\}$, per cui $\sum_{f(p)=\infty} \delta_f(p) = \deg Q + \sum_{f(p)=\infty} \delta_f(p)$

$$\max\{0, \deg P - \deg Q\} = \max\{\deg Q, \deg P\} = \deg f. \text{ Se } q \in \mathbb{C}^*, \sum_{f(p)=q} \delta_f(p) = 0$$

$$\sum_{f(p)=q} ord_{f-q}(p) = \sum_{f(p)-q} ord_{f-q}(p) = \deg(f-q). \ f(z) - q = \frac{P(z) - qQ(z)}{Q(z)}.$$

$$\deg\left(P-qQ\right) \begin{cases} = \max\left\{\deg P, \deg Q\right\} & \text{se soo diversi} \\ \leq \max\left\{\deg P, \deg Q\right\} & \text{se sono uguali} \end{cases}$$

$$\Rightarrow \deg(f-q) = \deg f.$$

Corollario 2.4.12. Siano $f \in \text{Hol}(\hat{\mathbb{C}}, \hat{\mathbb{C}})$ non costante, $w_0 \in \hat{\mathbb{C}}$. Allora $1 \leq 1$ $card(f^{-1}(w_0)) \le \deg f$.

Dimostrazione. ≥ 1 : se $w_0 \neq \infty$, $f(z) = w_0 \iff f(z) - w_0 = 0 \iff$ $P(z) - w_0 Q(z) = 0$ e per il teorema fondamentale dell'algebra esiste z che soddisfa; se $w_0 = \infty$, si considera 1/f.

$$card(f^{-1}(w_0)) \le \sum_{f(p)=w_0} \delta_f(p) = \deg f.$$

Osservazione 2.4.13. $\delta_f(p) > 1 \Rightarrow f'(p) = 0 \lor \left(\frac{1}{f}\right)'(p) = 0$. Infatti, senza perdita di generalità p=0 e f(p)=0, allora se $\delta_f(p)=k>1$ si ha che $f(z)=z^kh(z)$ con h olomorfa e $h(0)\neq 0 \Rightarrow f'(z)=[kz^{k-1}h(z)+z^kh'(z)].$ Ricordando che k > 1, si ha che f'(0) = 0.

Corollario 2.4.14. $f \in \operatorname{Aut}(\hat{\mathbb{C}}) \iff \deg f = 1 \iff f(z) = \frac{az+b}{cz+d} \operatorname{con}$ ad - bc = 1.

Dimostrazione. (\Leftarrow) Ogni $f \in \operatorname{Hol}(\hat{\mathbb{C}}, \hat{\mathbb{C}})$ è suriettiva per quanto appena dimostrato. Se deg f = 1, allora f è iniettiva, quindi biettiva, per cui per il teorema $2.2.6 \ f \in \operatorname{Aut}(\hat{\mathbb{C}})$.

 (\Rightarrow) f automorfismo \Rightarrow f iniettiva $\Rightarrow \sum_{f(p)=w_0} \delta_f(p)$ contiene un unico addento

con molteplicità uno (da cui la tesi). Infatti, da f non costante si ha che f' ha un insieme di zeri discreto C_f e (1/f)' ha un insieme di zeri discreto $C_{1/f}$. Allora basta prendere $z_0 \notin C_f \cup C_{1/f}$ per ottenere, dall'osservazione precedente, che $\delta_f(z_0) = 1$.

Il secondo se e solo se è un banale esercizio lasciato al lettore. \Box

Osservazione 2.4.15. Siccome numeratore e denominatore sono definiti a meno di una costante moltiplicativa, possiamo suppore ad - bc = 1.

Esercizio 2.4.16. Aut $(\hat{\mathbb{C}})$ è isomorfo a $SL(2,\mathbb{C})/_{\{\pm I_2\}}$.

Corollario 2.4.17. $f \in Aut(\mathbb{C}) \iff f(z) = az + b, a, b \in \mathbb{C}, a \neq 0.$

 $Dimostrazione. \ (\Leftarrow) Ovvia.$

(⇒) $f \in \text{Aut}(\mathbb{C}) \Rightarrow f$ è iniettiva, dunque per Casorati-Weierstrass ∞ è un polo di $f \Rightarrow f$ si estende a un automorfismo di $\hat{\mathbb{C}}$ con $f(\infty) = \infty \Rightarrow f(z) = \frac{a}{d}z + \frac{b}{d}$. \square

2.5 Il disco unitario

Come abbiamo già visto, il disco unitario (aperto) è definito come $\mathbb{D}=\{z\in\mathbb{C}\mid |z|<1\}.$

Lemma 2.5.1. (Lemma di Schwarz) Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$ t.c. f(0) = 0. Allora per ogni $z \in \mathbb{D}$ $|f(z)| \le |z|$ e $|f'(0)| \le 1$; inoltre, se vale l'uguale nella prima per $z \ne 0$ oppure nella seconda allora $f(z) = e^{i\theta}z$, $\theta \in \mathbb{R}$, cioè f è una rotazione.

 $\begin{array}{l} \textit{Dimostrazione.} \ f(0) = 0 \Rightarrow \text{possiamo costruire} \ g \in \text{Hol}(\mathbb{D},\mathbb{C}) \ \text{con} \ g(z) = \frac{f(z)}{z} \\ \text{estendendola per continuità in 0 a} \ g(0) = f'(0). \ \text{Fissiamo } 0 < r < 1. \ \text{Per ogni} \\ |z| \leq r, \ \text{per il principio del massimo} \ |g(z)| \leq \max_{|w| = r} |g(w)| = \max_{|w| = r} \frac{|f(w)|}{r} \leq \frac{1}{r}. \\ \text{Mandando} \ r \ \text{a 1 otteniamo che per ogni} \ z \in \mathbb{D} \ \text{si ha} \ |g(z)| \leq 1, \ \text{da cui} \ |f(z)| \leq |z| \\ \text{e} \ |f'(0)| \leq 1. \end{array}$

Se vale uno dei due uguali sopra, allora esiste $z_0 \in \mathbb{D}$ t.c. $|g(z_0)| = 1$, per cui sempre per il principio del massimo g è costantemente uguale a un valore di modulo 1, cioè $g(z) = e^{i\theta}$ con $\theta \in \mathbb{R}$ da cui $f(z) = e^{i\theta}z$.

Corollario 2.5.2. Se $f \in \operatorname{Aut}(\mathbb{D})$ è t.c. f(0) = 0, allora $f(z) = e^{i\theta}z$.

Dimostrazione. $f^{-1} \in \operatorname{Aut}(\mathbb{D})$. $(f^{-1})'(0) = \frac{1}{f'(0)}$. Per il lemma di Schwarz, $|f'(0)| \leq 1$ e $|(f^{-1})'(0)| \leq 1 \Rightarrow |f'(0)| = 1$, da cui la tesi sempre per il lemma di Schwarz.

Lemma 2.5.3. Sia G un gruppo che agisce fedelmente su uno spazio X, cioè per ogni $g \in G$ è data una biezione $\gamma_g : X \longrightarrow X$ t.c. $\gamma_e = \text{id e } \gamma_{g_1} \circ \gamma_{g_2} = \gamma_{g_1g_2}$, inoltre $\gamma_{g_1} = \gamma_{g_2} \iff g_1 = g_2$. Sia G_{x_0} il gruppo di isotropia di $x_0 \in X$, cioè $G_{x_0} = \{g \in G \mid \gamma_g(x_0) = x_0\}$. Supponiamo che per ogni $x \in X$ esiste $g_x \in G$ t.c. $\gamma_{g_x}(x) = x_0$ e sia $\Gamma = \{g_x \mid x \in X\}$. Allora G è generato da Γ e G_{x_0} , cioè ogni $g \in G$ è della forma $g = hg_x$ con $x \in X$ e $h \in G_{x_0}$.

 $\begin{array}{l} \textit{Dimostrazione.} \text{ Sia } g \in G \text{ e } x = \gamma_g(x_0). \text{ Allora } (\gamma_{g_x} \circ \gamma_g)(x_0) = x_0 \Rightarrow \gamma_{g_x} \circ \gamma_g = \\ \gamma_{g_xg} = \gamma_h \text{ con } h \in G_{x_0} \Rightarrow g_xg = h \Rightarrow g = g_x^{-1}h. \text{ Partendo da } g^{-1} \text{ avremmo ottenuto } g^{-1} = g_x^{-1}h \Rightarrow g = h^{-1}g_x \text{ con } h \in G_{x_0}. \end{array}$

Proposizione 2.5.4. $f \in \text{Aut}(\mathbb{D}) \iff \text{esistono } \theta \in \mathbb{R} \text{ e } a \in \mathbb{D} \text{ t.c. } f(z) = e^{i\theta} \frac{z-a}{1-\bar{a}z}$.

 $Dimostrazione. \ (\Leftarrow) \ 1 - \left|\frac{z-a}{1-\bar{a}z}\right|^2 = \frac{(1-|a|^2)(1-|z|^2)}{|1-\bar{a}z|^2}. \ \operatorname{Se} \ a,z \in \mathbb{D}, \ f(z) \in \mathbb{D}.$

Se $a \in \mathbb{D}, z \in \partial \mathbb{D}, f(z) \in \partial \mathbb{D}$. L'inversa è $f^{-1}(z) = e^{-i\theta} \frac{z + ae^{i\theta}}{z + \bar{a}e^{-i\theta}z}$ ed è della stessa forma. Si noti che f(a) = 0.

(\Rightarrow) Scriviamo per semplicità $f_{a,\theta}=e^{i\theta}\frac{z-a}{1-\bar{a}z}$. Vediamo Aut($\mathbb D$) come gruppo che agisce su $\mathbb D$. Aut($\mathbb D$) $_0$ è, per il corollario del lemma di Schwarz, $\{f_{0,\theta}\mid\theta\in\mathbb R\}$. $\Gamma=\{f_{a,0}\mid a\in\mathbb D\}\ (f_{a,0}(a)=0)$. Per il lemma 2.5.3, Aut($\mathbb D$) è generato da Aut($\mathbb D$) e Γ , cioè ogni $\gamma\in\mathrm{Aut}(\mathbb D)$ è della forma $\gamma=f_{0,\theta}\circ f_{a,0}=f_{a,\theta}$. \square

Corollario 2.5.5. Aut(\mathbb{D}) agisce in modo transitivo su \mathbb{D} , cioè per ogni $z_0, z_1 \in \mathbb{D}$ esiste $\gamma \in \operatorname{Aut}(\mathbb{D})$ t.c. $\gamma(z_0) = z_1$.

Dimostrazione. $\gamma = f_{z_1,0}^{-1} \circ f_{z_0,0}$.

Osservazione 2.5.6. Dati $z_0, z_1, w_0, w_1 \in \mathbb{D}$ $(z_0 \neq z_1, w_0 \neq w_1)$, in generale non esiste $\gamma \in \operatorname{Aut}(\mathbb{D})$ t.c. $\gamma(z_0) = w_0$ e $\gamma(z_1) = w_1$. Infatti, se poniamo $z_0 = w_0 = 0, z_1, w_1 \neq 0$, abbiamo che $\gamma(0) = 0 \Rightarrow \gamma(z) = e^{i\theta}z \Rightarrow |\gamma(z_1)| = |z_1|$, per cui se $|w_1| \neq |z_1|$ non è possibile trovare un siffatto γ .

Esercizio 2.5.7. Per ogni $\sigma_0, \sigma_1, \tau_0, \tau_1 \in \partial \mathbb{D}$ con $\sigma_0 \neq \sigma_1, \tau_0 \neq \tau_1$ esiste $\gamma \in \operatorname{Aut}(\mathbb{D})$ t.c. $\gamma(\sigma_0) = \tau_0$ e $\gamma(\sigma_1) = \tau_1$.

Lemma 2.5.8. (Lemma di Schwarz-Pick) Sia $f \in \text{Hol}(\mathbb{D},\mathbb{D})$. Allora per ogni $z,w\in\mathbb{D}\left|\frac{f(z)-f(w)}{1-\overline{f(w)}f(z)}\right|\leq \left|\frac{z-w}{1-\overline{w}z}\right|$ e per ogni $z\in\mathbb{D}$ $\frac{|f'(z)|}{1-|f(z)|^2}\leq \frac{1}{1-|z|^2}$. Inoltre se vale l'uguale nella prima per z_0,w_0 con $z_0\neq w_0$ o nella seconda per z_0 allora $f\in \text{Aut}(\mathbb{D})$ e vale l'uguale sempre.

Dimostrazione. Fissiamo $w \in \mathbb{D}$ e $\gamma_1(z) = \frac{z+w}{1+\bar{w}z}, \gamma_2(z) = \frac{z-f(w)}{1-\overline{f(w)}z}.$ $\gamma_1,\gamma_2 \in \operatorname{Aut}(\mathbb{D}).$ $\gamma_1(0) = w, \gamma_2(f(w)) = 0.$ $\gamma_1^{-1}(z) = \frac{z-w}{1-\bar{w}z}.$ Per il lemma di Schwarz applicato a $\gamma_2 \circ f \circ \gamma_1$ abbiamo che per ogni $z \in \mathbb{D}$ $|(\gamma_2 \circ f \circ \gamma_1)(z)| \leq z \Rightarrow |(\gamma_2 \circ f)(z)| \leq \gamma_1^{-1}(z)|$ che è la prima disuguaglianza. Abbiamo poi $|(\gamma_2 \circ f \circ \gamma_1)'(0)| \leq 1 \Rightarrow |\gamma_2'(f(w))f'(w)\gamma_1'(0)| \leq 1.$ $\gamma_1'(z) = \frac{1+\bar{w}z-\bar{w}(z+w)}{(1+\bar{w}z)^2} \Rightarrow \gamma_1'(0) = 1-|w|^2.$ $\gamma_2'(z) = \frac{1-\overline{f(w)}z-\overline{f(w)}(z-f(w))}{(1-\overline{f(w)}z)^2} \Rightarrow \gamma_2'(f(w)) = \frac{1}{1-|f(w)|^2}.$ Sostituendo si ottiene la seconda disuguaglianza con w al posto di z. La seconda parte del lemma di Schwarz ci dà in automatico la seconda parte di questo lemma (l'affermazione sui casi di uguaglianza).

Dal lemma di Schwarz-Pick abbiamo che la quantità $\left|\frac{z-w}{1-\bar{w}z}\right|$ è contratta dalle $f\in \operatorname{Hol}(\mathbb{D},\mathbb{D})$. Vediamo adesso una distanza costruita a partire da questa quantità.

Definizione 2.5.9. La distanza di Poincaré su \mathbb{D} è $\omega : \mathbb{D} \times \mathbb{D} \longrightarrow [0, +\infty)$ data da $\omega(z, w) = \frac{1}{2} \log \frac{1 + \left| \frac{z - w}{1 - \bar{w}z} \right|}{1 - \left| \frac{z - w}{1 - \bar{w}z} \right|} = \operatorname{arctanh} \left| \frac{z - w}{1 - \bar{w}z} \right|.$

Corollario 2.5.10. $f \in \text{Hol}(\mathbb{D}, \mathbb{D}), z, w \in \mathbb{D} \Rightarrow \omega(f(z), f(w)) \leq \omega(z, w)$ con l'uguale per z_0, w_0 con $z_0 \neq w_0$ se e solo se c'è l'uguale sempre e $f \in \text{Aut}(\mathbb{D})$.

Dimostrazione. arctanht è strettamente crescente. La tesi segue allora dal lemma di Schwarz-Pick.

Esercizio 2.5.11. ω è una distanza (completa).

Soluzione L'unica cosa un po' complicata è la disuguaglianza triangolare. Hint: $\mu(z,w) = \left| \frac{z-w}{1-\bar{w}z} \right|$ è una distanza. Per dimostrare che $\mu(z_1,z_2) \leq \mu(z_1,z_0) + \mu(z_0,z_2)$ si applica $\gamma \in \operatorname{Aut}(\mathbb{D})$ (gli automorfismi del disco sono isometrie per μ) t.c. $\gamma(z_1) = 0$ e a quel punto è facile dimostrare quello che va dimostrato. Adesso si nota che $\omega(z_1,z_2) = \operatorname{arctanh}(\mu(z_1,z_2)) \leq \operatorname{arctanh}(\mu(z_1,z_0)) + \operatorname{arctanh}(\mu(z_1,z_2))$.

Esercizio 2.5.12. Una geodetica per ω è una curva $\sigma : \mathbb{R} \longrightarrow \mathbb{D}$ t.c. $\omega(\sigma(t_1), \sigma(t_2)) = |t_1 - t_2|$. Dimostrare che i raggi $t \longmapsto \tanh(t) \frac{z_0}{|z_0|}$ sono geodetiche.

Corollario 2.5.13. Per ogni $z_1, z_2 \in \mathbb{D}$ esoste una geodetica che collega z_1 con z_2 .

Per definizione, gli automorfismi mandano geodetiche in geodetiche.

Esercizio 2.5.14. Sia $\gamma \in \operatorname{Aut}(\mathbb{D})$ e σ una geodetica passante per 0 (σ è un diametro), allora $\gamma \circ \sigma$ è un arco di circonferenza ortogonale al bordo del disco.

Definizione 2.5.15. La palla di Poincaré è $B_{\omega}(z_0,r) = \{z \in \mathbb{D} \mid \omega(z,z_0) < r\} = \{z \in \mathbb{D} \mid \left| \frac{z-z_0}{1-\bar{z_0}z} \right| < \tanh r\}$. Geometricamente è un disco euclideo con centro $\tilde{z}_0 = \frac{1-(\tanh r)^2}{1-(\tanh r)^2|z_0|^2}z_0$ e raggio $\rho = \frac{\tanh r(1-|z_0|^2)}{1-(\tanh r)^2|z_0|^2} < 1-|\tilde{z}_0|$. $\overline{B_{\omega}(z_0,r)} \subset \subset \mathbb{D} \Rightarrow \omega$ è completa (le palle chiuse sono compatte).

2.6 Dinamica del disco e del semipiano superiore

Vogliamo adesso cercare di studiare qual è la "dinamica" delle funzioni olomorfe. Lo faremo nei casi del disco e del semipiano superiore.

Proposizione 2.6.1. Sia $\gamma \in \operatorname{Aut}(\mathbb{D}), \gamma \neq \operatorname{id}_{\mathbb{D}}$. Allora o

- (i) γ ha un unico punto fisso in $\mathbb D$ (si parla in questo caso di automorfismo ellittico) o
- (ii) γ non ha punti fissi in \mathbb{D} e ha un unico punto fisso in $\partial \mathbb{D}$ (parabolico) o
- (iii) γ non ha punti fissi in \mathbb{D} e ha due punti fissi distinti in $\partial \mathbb{D}$ (iperbolico).

 $\begin{array}{lll} \textit{Dimostrazione.} & \gamma(z_0) = z_0 \iff e^{i\theta}(z_0 - a) = (1 - \bar{a}z_0)z_0 \iff \bar{a}z_0^2 + (e^{i\theta} - 1)z_0 - e^{i\theta}a = 0, \text{ equazione di secondo grado con radici } z_1, z_2 \text{ (può essere che } z_1 = z_2) \text{ t.c.} & z_1 \cdot z_2 = -e^{i\theta}\frac{a}{\bar{a}} \in \partial \mathbb{D} \Rightarrow |z_1||z_2| = 1. \text{ Se } z_1 \neq z_2, \text{ o } z_1 \in \mathbb{D} \\ \text{e } z_2 \in \mathbb{C} \setminus \{\overline{\mathbb{D}}\} \text{ (caso ellittico) e } z_1, z_2 \in \partial \mathbb{D} \text{ (caso iperbolico)}. \text{ Se } z_1 = z_2, \\ |z_1| = |z_2| = 1 \text{ (caso iperbolico)}. \end{array}$

Osservazione 2.6.2. Se $f \in \operatorname{Hol}(\mathbb{D}, \mathbb{D})$ è t.c. $f(z_1) = z_1$ e $f(z_2) = z_2$ con $z_1, z_2 \in \mathbb{D}, z_1 \neq z_2$, allora $f = \operatorname{id}_{\mathbb{D}}$. Infatti, possiamo supporre $z_1 = 0 \Rightarrow f(0) = 0$ e $f(z_2) = z_2$, quindi siamo nel caso del lemma di Schwarza in cui vale l'uguaglianza, per cui $f(z) = e^{i\theta}z$, ma $f(z_2) = z_2 \Rightarrow e^{i\theta} = 1$.

Esempio 2.6.3. Esempio di automorfismo ellittico: la rotazione intorno a 0 $\gamma_{0,\theta}(z) = e^{i\theta}z$. Più in generale, se $a \in \mathbb{D}$, $\gamma_{a,0}(z) = \frac{z-a}{1-\bar{a}z}$, allora $\gamma_{a,0}^{-1} \circ \gamma_{0,\theta} \circ \gamma_{a,0}$ è ellittico con punto fisso a. Queste sono dette rotazioni non euclidee e caratterizzano tutti gli automorfismi ellittici (lo si può vedere coniugando opportunamente con $\gamma_{a,0}$ o $\gamma_{a,0}^{-1}$).

Definizione 2.6.4. Il semipiano superiore è $\mathbb{H}^+ = \{w \in \mathbb{C} \mid \Im mw > 0\}$. La trasformata di Cayley è $\Psi : \mathbb{D} \longrightarrow \mathbb{H}^+$ t.c. $\Psi(z) = i \frac{1+z}{1-z}$.

Notiamo che possiamo vedere $\mathbb{H}^+ \subset \hat{\mathbb{C}}$ e in questo caso $\partial \mathbb{H}^+ = \mathbb{R} \cup \{\infty\}$. $\Psi^{-1}(w) = \frac{w-i}{w+i}$. $\Psi(0) = 1, \Psi(1) = \infty$.

$$\mathfrak{Im}\Psi(z)=\mathfrak{Im}\left(i\frac{1+z}{1-z}\right)=\mathfrak{Re}\left(\frac{1+z}{1-z}\right)=\frac{1}{|1-z|^2}\mathfrak{Re}((1+z)(1-\bar{z}))=\frac{1-|z|^2}{|1-z|^2}$$
 che è $>0\iff z\in\mathbb{D}$ e $=0\iff z\in\partial\mathbb{D}\setminus\{1\}.$

 Ψ è un biolomorfismo fra \mathbb{D} e \mathbb{H}^+ che si estende continua a $\partial \mathbb{D} \longrightarrow \partial \mathbb{H}^+$. Se abbiamo $f: \mathbb{D} \longrightarrow \mathbb{D}$, abbiamo anche $F = \Psi \circ f \circ \Psi^{-1} : \mathbb{H}^+ \longrightarrow \mathbb{H}^+$ e viceversa.

Corollario 2.6.5. $\gamma \in \operatorname{Aut}(\mathbb{H}^+) \iff \gamma(w) = \frac{aw+b}{cw+s} \text{ con } ad-bc = 1 \text{ e}$ $a,b,c,d \in \mathbb{R}$. Si ha allora che $\operatorname{Aut}(\mathbb{H}^+) \cong SL(2,\mathbb{R})/\{\pm I_2\} = PSL(2,\mathbb{R})$ (questo è detto gruppo speciale lineare proiettivo).

 $\begin{array}{ll} \textit{Dimostrazione.} \ \gamma \in \operatorname{Aut}(\mathbb{H}^+) \iff \Psi^{-1} \circ \gamma \circ \Psi \in \operatorname{Aut}(\mathbb{D}) \iff (\Psi^{-1} \circ \gamma \circ \Psi)(z) = e^{i\theta} \frac{z-a}{1-\bar{a}z}. \ \ \text{Ponendo} \ \Psi(z) = w, \ \text{l'uguaglianza sopra equivale a} \\ \gamma(w) = \Psi\left(e^{i\theta} \frac{z-a}{1-\bar{a}z}\right) = \Psi\left(e^{i\theta} \frac{\Psi^{-1}(w)-a}{1-\bar{a}\Psi^{-1}(w)}\right). \ \ \text{Facendo il conto si trova l'enunciato.} \end{array}$

Esercizio 2.6.6.
$$\gamma \in \text{Aut}(\mathbb{H}^+)$$
 è t.c. $\gamma(i) = i \iff \gamma(w) = \frac{w \cos \theta - \sin \theta}{w \sin \theta + \cos \theta}$

Esempio 2.6.7. Sia $\gamma \in \operatorname{Aut}(\mathbb{H}^+)$, $\gamma(\infty) = \infty \iff \gamma(w) = \alpha w + \beta$ con $\alpha, \beta \in \mathbb{R}, \alpha > 0$. Se lo vogliamo parabolico non deve avere altri punti fissi in \mathbb{C} e questo è possibile se e solo se $\alpha w + \beta = w$ non ha altre soluzioni $\iff \alpha = 1, \beta \neq 0$, cioè $\gamma(w) = w + \beta$. È una traslazione di \mathbb{H}^+ parallela al suo bordo.

Esercizio 2.6.8. Sia $\tau \in \partial \mathbb{D}$. Dimostrare che tutti gli automorfismi γ parabolici di \mathbb{D} con $\gamma(\tau) = \tau$ sono della forma $\gamma(z) = \sigma_0 \frac{z + z_0}{1 + \bar{z}_0 z}$ con $z_0 = \frac{ic}{2 - ic} \tau$ e $\sigma_0 = \frac{2 - ic}{2 + ic}$ con $c \in \mathbb{R}$. Hint: a meno di una rotazione, $\tau = 1$.

Esempio 2.6.9. $\gamma \in \operatorname{Aut}(\mathbb{H}^+)$ è iperbolico con $\gamma(\infty) = \infty$ e $\gamma(0) = 0 \iff \gamma(w) = \alpha w \text{ con } \alpha > 0$.

Passiamo ora alla DINAMICA DI FUNZIONI ITERATE. Abbiamo uno spazio generico X e una funzione $f: X \longrightarrow X$. Le sue *iterate* sono $f^2 = f \circ f$ e, induttivamente, $f^{k+1} = f \circ f^{k-1}$. Vogliamo capire il comportamento asintotico

di $\{f^k\}$ (in relazione alla struttura presente su X), per esempio, capire cosa succede all' $orbita\ O^+(x)=\{f^k(x)\}\ {\rm con}\ x\in X.$

Esempio 2.6.10. $\gamma(w) = \alpha w \Rightarrow \gamma^2(w) = \alpha(\alpha w) = \alpha^2 w \Rightarrow \gamma^k(w) = \alpha^k w$. Quindi: se $0 < \alpha < 1$, $\gamma^k(w) \longrightarrow 0$ per $k \longrightarrow +\infty \Rightarrow \gamma^k \longrightarrow 0$ (costante) uniformemente sui compatti; se $\alpha > 1$, $\gamma^k(w) \longrightarrow \infty$ per $k \longrightarrow +\infty \Rightarrow \gamma^k \longrightarrow \infty$ (costante) uniformemente sui compatti.

Esempio 2.6.11. $\gamma(w) = w + \beta \Rightarrow \gamma^k(w) = w + k\beta \Rightarrow \gamma^k(w) \longrightarrow \infty$ per $k \longrightarrow +\infty \Rightarrow \gamma^k \longrightarrow \infty$ (costante) uniformemente sui compatti.

Osservazione 2.6.12.

$$X \xrightarrow{f} X$$

$$\Psi \uparrow \cong \cong \uparrow \Psi$$

$$Y \xrightarrow{F} Y$$

 Ψ bigezione (omeomorfismo/biolomorfismo/eccetera), $F = \Psi^{-1} \circ f \circ \Psi$, cioè F è coniugata a f. Allora $f^k = \Psi^{-1} \circ f^k \circ \Psi$, cioè F^k è coniugata a f^k per ogni k. In particolare, la "dinamica di F" è "uguale" alla "dinamica di f".

Corollario 2.6.13. Sia $\gamma \in \operatorname{Aut}(\mathbb{D})$ parabolico o iperbolico, allora γ^k converge uniformemente sui compatti a una funzione costantemente uguale a un punto fisso di γ sul bordo.

Dimostrazione. A meno di coniugio possiamo supporre $Fix(\gamma) = \{1\}$ nel caso parabolico e $\{1,-1\}$ nel caso iperbolico. Coniughiamo con Ψ e usiamo gli esempi.

Sia $\gamma \in \operatorname{Aut}(\mathbb{D})$ ellittico, a meno di coniugio $\gamma(0) = 0 \Rightarrow \gamma(z) = e^{2\pi i \theta} z \Rightarrow \gamma^k(z) = e^{2k\pi i \theta} z$. Se $\theta \in \mathbb{Q}$, esiste k_0 t.c. $k_0 \theta \in \mathbb{Z} \Rightarrow \gamma^{k_0}(z) \equiv z \iff \gamma^{k_0} = \operatorname{id}_{\mathbb{D}}$.

Esercizio 2.6.14. Se $\theta \notin \mathbb{Q}$, $\gamma^k(z) \neq z$ per ogni $z \neq 0$ e $k \in \mathbb{N}^*$, da cui si ha anche che $\gamma^k(z) \neq \gamma^h(z)$ per ogni $z \neq 0$ e $h \neq k$.

Esercizio 2.6.15. Se $\theta \notin \mathbb{Q}$, $\{\gamma^k(z_0) \mid k \in \mathbb{N}\}$ è densa nella circonferenza $\{|z| = |z_0|\}$.

Vogliamo adesso studiare la dinamica di una $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$ qualunque.

Definizione 2.6.16. Sia $f \in \text{Hol}(\Omega, \Omega)$, un punto limite di $\{f^k\}$ è $g \in \text{Hol}(\Omega, \mathbb{C})$ t.c. è il limite di una sottosuccessione $\{f^{k_{\nu}}\}$, cioè $f^{k_{\nu}} \longrightarrow g$.

Lemma 2.6.17. Sia $\Omega \subseteq \mathbb{C}$ dominio, $f \in \text{Hol}(\Omega, \Omega)$. Se id_{Ω} è un punto limite di $\{f^k\}$, allora $f \in \text{Aut}(\Omega)$.

Dimostrazione. $f^{k_{\nu}} \longrightarrow \mathrm{id}_{\Omega} \Rightarrow f$ è iniettiva (se $z_1 \neq z_2$ sono t.c. $f(z_1) = f(z_2)$, allora $f^{k_{\nu}}(z_1) = f^{k_{\nu}}(z_2)$, ma la prima tende a z_1 e la seconda a z_2 , che sono diversi, assurdo). Se $z_0 \in \Omega$, $z_0 = \mathrm{id}_{\Omega}(z_0)$. Per il primo teorema di Hurwitz, $\mathrm{id}_{\Omega}(z_0) \in f^{k_{\nu}}(\Omega)$ per $\nu \gg 1$, ma $f^{k_{\nu}}(\Omega) \subseteq f(\Omega) \Rightarrow f$ è suriettiva.

Proposizione 2.6.18. Sia $\Omega \subset\subset \mathbb{C}$ un dominio limitato, $f\in \operatorname{Hol}(\Omega,\Omega)$. Sia $h\in \operatorname{Hol}(\Omega,\mathbb{C})$ un punto limite di $\{f^k\}$ (che esiste per il teorema di Montel). Allora o

- (i) $h \equiv c \in \overline{\Omega}$ oppure
- (ii) $h \in Aut(\Omega)$ e in questo caso $f \in Aut(\Omega)$.

Dimostrazione. Sia $h=\lim_{\nu\longrightarrow +\infty}f^{k_{\nu}}$. Poniamo $m_{\nu}=k_{\nu+1}-k_{\nu}$. Possiamo supporre $m_{\nu}\longrightarrow +\infty$. Per Montel, a meno di una sottosuccessione possiamo supporre $f^{m_{\nu}}\xrightarrow{\nu\longrightarrow +\infty}g\in \operatorname{Hol}(\Omega,\mathbb{C})$. Se h è costante abbiamo finito. Se h non è costante, per il teorema dell'applicazione aperta h è aperta $\Rightarrow h(\Omega)$ è aperto e per il primo teorema di Hurwitz è contenuto in Ω . Se $z\in \Omega$, $g(h(z))=\lim_{\nu\longrightarrow +\infty}f^{m_{\nu}}(f^{k_{\nu}}(z))=\lim_{\nu\longrightarrow +\infty}f^{k_{\nu+1}}(z)=h(z)\Rightarrow g|_{h(\Omega)}=\operatorname{id}_{\Omega},$ ma per il principio di identità questo ci dà $g\equiv\operatorname{id}_{\Omega}$, dunque per il lemma 2.6.17 abbiamo che $f\in\operatorname{Aut}(\Omega)$. A meno di sottosuccessioni è facile vedere che $f^{-k_{\nu}}=(f^{-1})^{k_{\nu}}$ converge a h^{-1} .

Proposizione 2.6.19. Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D}), \ f(z_0) = z_0, z_0 \in \mathbb{D}, \ f \notin \text{Aut}(\mathbb{D}).$ Allora $f^k \longrightarrow z_0$ (costante) uniformemente sui compatti.

Dimostrazione. A meno di coniugio possiamo supporre $z_0=0$. Per il lemma di Schwarz, |f(z)|<|z| per ogni $z\in\mathbb{D}\setminus\{0\}$. Fissiamo 0< r<1. In $\overline{\mathbb{D}}_r, \left|\frac{f(z)}{z}\right|$ ha un massimo $\lambda_r<1$. Per ogni $z\in\overline{\mathbb{D}}_r, |f(z)|\leq \lambda_r|z|\Rightarrow |f^2(z)|\leq \lambda_r|f(z)|\leq \lambda_r^2|z|\Rightarrow |f^k(z)|\leq \lambda_r^k|z|\leq \lambda_r^kr\longrightarrow 0$ per $k\longrightarrow +\infty\Rightarrow f^k\longrightarrow 0$ (costante) uniformemente sui compatti.

Definizione 2.6.20. Chiamiamo *orociclo* di centro $\tau \in \partial \mathbb{D}$ e raggio R > 0 l'insieme $E(\tau, R) = \left\{ z \in \mathbb{D} \left| \frac{|\tau - z|^2}{1 - |z|^2} < R \right. \right\}$. Geometricamente, è un disco di raggio $\frac{R}{R+1}$ tangente a $\partial \mathbb{D}$ in τ .

Esercizio 2.6.21.
$$E(\tau,R) = \left\{z \in \mathbb{D} \ \middle| \ \lim_{w \longrightarrow \tau} [\omega(z,w) - \omega(0,w)] < \frac{1}{2} \log R \right\}.$$

Lemma 2.6.22. (Lemma di Wolff) Sia $f \in \operatorname{Hol}(\mathbb{D}, \mathbb{D})$ senza punti fissi. Allora esiste un unico $\tau \in \partial \mathbb{D}$ t.c. per ogni $z \in \mathbb{D}$ $\frac{|\tau - f(z)|^2}{1 - |f(z)|^2} \leq \frac{|\tau - z|^2}{1 - |z|^2}$ (*). In altre parole, per ogni R > 0 $f(E(\tau, R)) \subseteq E(\tau, R)$.

Dimostrazione. Unicità: se ce ne fossero due, τ e τ_1 , prendiamo un orociclo centrato in τ e uno centrato in τ_1 tangenti, allora il punto di tangenza verrebbe mandato in sé e sarebbe dunque un punto fisso in \mathbb{D} , assurdo.

Esistenza: prendiamo $\{r_{\nu}\}\subset (0,1)$ t.c. $r_{\nu}\nearrow 1^{-}$ e poniamo $f_{\nu}=r_{\nu}f\Rightarrow f_{\nu}(\mathbb{D})\subseteq \mathbb{D}_{r_{\nu}}\subset\subset \mathbb{D}$, allora per il teorema di Ritt esiste $w_{\nu}\in\mathbb{D}$ t.c. $f_{\nu}(w_{\nu})=w_{\nu}$. A meno di sottosuccessioni, possiamo suppore $w_{\nu}\longrightarrow\in\overline{\mathbb{D}}$. Se $\tau\in\mathbb{D}$, $f(\tau)=\lim_{\nu\longrightarrow +\infty}f_{\nu}(w_{\nu})=\lim_{\nu\longrightarrow +\infty}w_{\nu}=\tau$, assurdo $\Rightarrow \tau\in\partial\mathbb{D}$. Per Schwarz-

$$\begin{array}{ll} w_{\nu}. & \text{A meno di sottosuccessioni, possiamo suppore } w_{\nu} \longrightarrow \in \mathbb{D}. \text{ Se } \tau \in \mathbb{D}, \\ f(\tau) = \lim_{\nu \longrightarrow +\infty} f_{\nu}(w_{\nu}) = \lim_{\nu \longrightarrow +\infty} w_{\nu} = \tau, \text{ assurdo} \Rightarrow \tau \in \partial \mathbb{D}. \text{ Per Schwarz-} \\ \text{Pick, } \left| \frac{f_{\nu}(z) - w_{\nu}}{1 - \bar{w}_{\nu} f_{\nu}(z)} \right|^{2} \leq \left| \frac{z - w_{\nu}}{1 - \bar{w}_{\nu} z} \right|^{2} \Rightarrow 1 - \left| \frac{f_{\nu}(z) - w_{\nu}}{1 - \bar{w}_{\nu} f_{\nu}(z)} \right|^{2} \geq 1 - \left| \frac{z - w_{\nu}}{1 - \bar{w}_{\nu} z} \right|^{2} \Rightarrow \\ \frac{|1 - \bar{w}_{\nu} f_{\nu}(z)|^{2}}{1 - |f_{\nu}(z)|^{2}} \leq \frac{|1 - \bar{w}_{\nu} z|^{2}}{1 - |z|^{2}}. \text{ Mandando } \nu \longrightarrow +\infty \text{ otteniamo } \frac{|1 - \bar{\tau} f(z)|^{2}}{1 - |f(z)|^{2}} \leq \\ \frac{|1 - \bar{\tau} z|^{2}}{1 - |z|^{2}} \text{ che moltiplicando per } \tau \text{ } (\tau \bar{\tau} = 1) \text{ dà la tesi.} \end{array}$$

Esercizio 2.6.23. Si ha l'uguaglianza in (\star) nel lemma di Wolff $\iff f$ è un automorfismo parabolico con punto fisso $\tau \iff$ vale l'uguaglianza in (\star) per ogni $z \in \mathbb{D}$.

Teorema 2.6.24. (Wolff-Denjoy) Sia $f \in \text{Hol}(\mathbb{D})$ senza punti fissi in \mathbb{D} . Allora esiste un unico $\tau \in \partial \mathbb{D}$ t.c. $f^k \longrightarrow \tau$ (costante) uniformemente sui compatti.

Dimostrazione. Se $f \in \operatorname{Aut}(\mathbb{D})$ parabolico o iperbolico l'abbiamo già visto. Supponiamo $f \notin \operatorname{Aut}(\mathbb{D})$. Per Montel, $\{f^k\}$ è relativamente compatta in $\operatorname{Hol}(\mathbb{D},\mathbb{C})$. Useremo il seguente risultato di topologia che viene lasciato come esercizio.

Esercizio 2.6.25. Sia X spazio topologico di Hausdorff. Sia $\{x_k\} \subset X$ con $\overline{\{x_k\}}$ compatta in X. Supponiamo che esista un unico $\bar{x} \in X$ t.c. ogni sottosuccessione convergente di $\{x_k\}$ converge a \bar{x} . Allora $x_k \longrightarrow \bar{x}$.

Sia $\tau \in \partial \mathbb{D}$ dato dal lemma di Wolff. Sia $h = \lim_{\nu \to +\infty} f^{k_{\nu}}$ un punto limite di $\{f^k\}$ (che esiste per Montel). Per la proposizione 2.6.18, $h \equiv \sigma \in \overline{\mathbb{D}}$. Se $\sigma \in \mathbb{D}$, $f(\sigma) = \lim_{\nu \to +\infty} f(f^{k_{\nu}}(\sigma)) = \lim_{\nu \to +\infty} f^{k_{\nu}}(f(\sigma)) = \sigma$, assurdo. Quindi $h \equiv \sigma \in \partial \mathbb{D}$. Vogliamo $\sigma = \tau$. Per il lemma di Wolff $f^{k_{\nu}}(E(\tau, R)) \subseteq E(\tau, R)$ per ogni $R > 0 \Rightarrow \{\sigma\} = h(E(\tau, R)) \subseteq \overline{E(\tau, R)} \cap \partial \mathbb{D} = \{\tau\} \Rightarrow \sigma = \tau$. Si conclude allora per l'esercizio 2.6.25.

2.7 Germi e prolungamenti analitici

Definizione 2.7.1. Sia $\gamma:[0,1]\longrightarrow\mathbb{C}$ un cammino continuo. Se esistono $0=t_0< t_1<\cdots< t_r=1$, intorni $U_0,\ldots,U_j,\ldots,U_r$ di $\gamma(t_j)$ e $f_j:U_j\longrightarrow\mathbb{C}$ olomorfe t.c. $f_j|_{U_j\cap U_{j+1}}\equiv f_{j+1}|_{U_j\cap U_{j+1}}$ diremo che f_0 si prolunga olomorficamente lungo γ .

Esempio 2.7.2. $\gamma(t) = e^{2\pi i t}, \gamma(0) = \gamma(1) = 1.$ $z = |z|e^{2\pi i \theta}, \theta \in \mathbb{R}.$ $U_0 = D(1, 1/2), f_0 : U_0 : \longrightarrow \mathbb{C}, f_0(z) = z^{1/2} = |z|^{1/2}e^{2\pi i (\theta/2)} \ (\theta \in (-\pi, \pi)).$ $f_0 \in \mathbb{C}$

 $\mathcal{O}(U_0)$. È possibile prolungare olomorficamente f_0 lungo γ con $f(\gamma(t))=e^{2\pi i(t/2)}\Rightarrow f(\gamma(1))=e^{2\pi i/2}=e^{\pi i}=-1.$ $f(\gamma(0))=1.$

Definizione 2.7.3. Sia $a \in \mathbb{C}$ e consideriamo le coppie (U, f) dove $U \subseteq \mathbb{C}$ è un intorno aperto di a e $f \in \mathcal{O}(U)$. Definiamo la seguente relazione di equivalenza: $(U, f) \sim (V, g)$ se esiste $W \subseteq U \cap V$ intorno aperto di a t.c. $f|_{W} = g|_{W}$.

 $\mathcal{O}_a := \{(U,f)\}_{\sim}$ è detta spiga dei germi di funzioni olomorfe in a.

 $\underline{f_a} \in \mathcal{O}_a$ si dice germe di funzione olomorfa. $(\overline{U},f) \in \underline{f_a}$ si dice rappresentante di $\underline{f_a}$.

 $\mathcal{O}:=igcup_{a\in\mathbb{C}}\mathcal{O}_a$ si dice fascio dei germi di funzioni olomorfe.

Dato $\Omega \subseteq \mathbb{C}$ aperto, definiamo anche $\mathcal{O}_{\Omega} := \bigcup_{a \in \Omega} \mathcal{O}_a$.

Esercizio 2.7.4. \sim appena definita è una relazione di equivalenza.

Esercizio 2.7.5. \mathcal{O}_a è una \mathbb{C} -algebra $(\underline{f_a} + \underline{g}_a$ è il germe rappresentato da $(U \cap V, (f+g)|_{U \cap V})$ dove $(U,f) \in \underline{f_a}$ e $(V,g) \in \underline{g_a}$).

Osservazione 2.7.6. Possiamo definire per ogni $k \geq 0$ $\underline{f_a}^{(k)}(a) \in \mathbb{C}$ ponendo $f_a^{(k)}(a) = f^{(k)}(a)$ con $(U, f) \in f_a$.

Definizione 2.7.7. Definiamo p come la proiezione

$$p: \mathcal{O} \longrightarrow \mathbb{C}$$
$$f_z \longmapsto z$$

Vale che $p(\mathcal{O}_a) = \{a\}$. Vogliamo rendere p "quasi" un rivestimento (vedremo che, per i soliti esempio stupidi, non può essere un rivestimento).

Vogliamo definire una topologia su \mathcal{O} . Definiamo un sistema fondamentale di intorni.

Definizione 2.7.8. Gli intorni del sistema fondamentale sono i seguenti: dati $U \subseteq \mathbb{C}$ aperto, $f \in \mathcal{O}(U)$ l'intorno associato è $N(U, f) = \{\underline{f_z} \mid z \in U, (U, f) \in f_z\}$.

Esercizio 2.7.9. Esiste un'unica topologia su \mathcal{O} t.c. $\{N(U, f)\}$ siano un sistema fondamentale di intorni.

Osservazione 2.7.10. $p|_{N(U,f)}:N(U,f)\longrightarrow U$ è una bigezione.

Proposizione 2.7.11. \mathcal{O} è uno spazio di Hausdorff.

 $\begin{array}{ll} \textit{Dimostrazione.} \;\; \text{Siano} \;\; \underline{f_a} \;\; \underline{/g_b}. \;\; \text{Se} \;\; a \neq b, \;\; \text{esistono} \;\; (U,f) \in \underline{f_a}, (V,g) \in \underline{g_b} \;\; \text{con} \\ U \cap V = \varnothing \Rightarrow N(U,f) \cap N(V,g) = \varnothing. \;\; \text{Se} \;\; a = b, \;\; \text{siano} \;\; (U,f) \in \underline{f_a}, (V,g) \in \underline{g_a}, \\ D \subset U \cap V \;\; \text{disco aperto di centro} \;\; a. \;\; \text{Vogliamo} \;\; N(D,f) \cap N(D,g) = \varnothing. \;\; \text{Per} \\ \text{assurdo, sia} \;\; \underline{h_z} \in N(D,f) \cap N(D,g) \Rightarrow z \in D \;\; \text{e} \;\; \underline{h_z} = \underline{f_z} \;\; \text{e} \;\; \underline{h_z} = \underline{g_z} \Rightarrow \underline{f_z} = \underline{g_z} \\ \Rightarrow \;\; \text{esiste un aperto} \;\; W \subseteq D \;\; \text{intorno di} \;\; z \;\; \text{t.c.} \;\; f_{|_W} = g_{|_W} \;\; \text{e per il principio di} \\ \text{identità si avrebbe} \;\; f \equiv g \;\; \text{su} \;\; D \Rightarrow \underline{f_a} = \underline{g_a}, \;\; \text{assurdo.} \end{array} \quad \Box$

Proposizione 2.7.12. $p: \mathcal{O} \longrightarrow \mathbb{C}$ è continua, aperta e omeomorfismo locale.

 $\begin{array}{l} \textit{Dimostrazione.} \ \ \text{Sia} \ V \subseteq \mathbb{C}, \ p^{-1}(V) = \bigcup \{N(W,f) \mid W \subseteq V \ \text{aperto}, f \in \mathcal{O}(W)\} \\ \text{è aperto.} \ \ p(N(U,f)) = U \Rightarrow p \ \text{è aperta.} \ \ p_{|_{N(U,f)}} \ \text{è invertibile:} \ \ p^{-1}(z) = \underline{f_z} \Rightarrow p_{|_{N(U,f)}} \ \text{è un omeomorfismo} \Rightarrow p \ \text{è un omeomorfismo locale.} \end{array}$

Definizione 2.7.13. Una sezione di \mathcal{O} su un $\Omega \subset \mathbb{C}$ aperto è una $\underline{f}: \Omega \longrightarrow \mathcal{O}$ continua t.c. $p \circ f = \mathrm{id}_{\Omega}$, cioè $f(z) \in \mathcal{O}_z$ per ogni $z \in \Omega$.

Esercizio 2.7.14. L'insieme delle sezioni di \mathcal{O} su Ω è in corrispondenza biunivoca con lo spazio $\mathcal{O}(\Omega)$ delle funzioni olomorfe su Ω .

Definizione 2.7.15. Siano $a \in \mathbb{C}, \underline{f_a} \in \mathcal{O}_a$. Sia $\gamma : [0,1] \longrightarrow \mathbb{C}$ una curva continua con $\gamma(0) = a$. Un prolungamento analitico di $\underline{f_a}$ lungo γ è un sollevamento $\tilde{\gamma} : [0,1] \longrightarrow \mathcal{O}$ di γ (cioè $p \circ \tilde{\gamma} = \gamma$) t.c. $\tilde{\gamma}(0) = \overline{f_a}$.

Osservazione 2.7.16. p non è un rivestimento perché non tutte le curve possono essere sollevate. Vediamo un esempio.

Esempio 2.7.17. $a=1, \underline{f_a}=(\mathbb{C}^*,1/z), \gamma(t)=1-t.$ Non esiste alcun sollevamento di γ che parte da $\underline{f_a}$.

Definizione 2.7.18. Sia d : $\mathcal{O} \longrightarrow \mathcal{O}$ così definita: dato $\underline{f_a} \in \mathcal{O}_a$, d $\underline{f_a}$ è il germe in a rappresentato dalla derivata di un rappresentante di $\underline{f_a}$, cioè se $(U,f) \in \underline{f_a}$, d $\underline{f_a}$ è rappresentato da (U,f').

Lemma 2.7.19. Sia $D \subseteq \mathbb{C}$ un disco aperto. Allora ogni $f \in \mathcal{O}(D)$ ha una primitiva in D, e due primitive differiscono per una costante additiva.

Dimostrazione. Se $a \in D$ è il centro, $f(z) = \sum_{n=0}^{+\infty} c_n (z-a)^n$. Una primitiva è

data da $F(z) = \sum_{n=0}^{+\infty} c_n (z-a)^n$. È chiaro che due primitive differiscono per una costante additiva.

Proposizione 2.7.20. d : $\mathcal{O} \longrightarrow \mathcal{O}$ è un rivestimento.

Dimostrazione. Dati $\underline{f_a} \in \mathcal{O}_a$, $(U, f) \in \underline{f_a}$, $D \subseteq U$ un disco centrato in a, poniamo $\mathcal{D} = N(D, f)$, intorno aperto di $\underline{f_a}$. Sia F una primitiva di f su D che esiste per il lemma 2.7.19, per ogni $c \in \mathbb{C}$ poniamo $\mathcal{D}_c = N(D, F + c)$. Vogliamo dimostrare che:

- (i) $d^{-1}(\mathcal{D}) = \bigcup \mathcal{D}_c;$
- (ii) $d_{|_{\mathcal{D}_c}}: \mathcal{D}_c \xrightarrow{c \in \mathbb{C}} \mathcal{D}$ è un omeomorfismo;
- (iii) $c_1 \neq c_2 \Rightarrow \mathcal{D}_{c_1} \cap \mathbb{D}_{c_2} \varnothing$.
- (i), (ii), (iii) ⇒ d è un rivestimento. Procediamo con la dimostrazione.
 - (i) Sia $z \in D$ e $\underline{f_z} \in \mathcal{D}$. Sia $\underline{g_z} \in \mathcal{O}_z$ t.c. $\mathrm{d}\underline{g_z} = \underline{f_z} \Rightarrow$ esiste $(W,g) \in \underline{g_z}$ t.c. g' = f; possiamo supporre che $W \subseteq \overline{D}$, il disco, quindi sempre per il lemma 2.7.19 esiste $c \in \mathbb{C}$ t.c. $g|_W = F|_W + c \Rightarrow \underline{g_z} \in \mathcal{D}_c$. È banale vedere che $g_z \in \mathcal{D}_c \Rightarrow \mathrm{d}g_z \in \mathcal{D}$.
- (ii) È ovvio che $d(\mathcal{D}_c) = \mathcal{D}$ (per definizione di de \mathcal{D}_c). Questo più il punto (i) ci danno che dè continua e aperta: infatti, gli insiemi della forma \mathcal{D} formano un sistema fondamentale di intorni e la loro preimmagine, unione di aperti, è aperta; anche gli insiemi \mathcal{D}_c sono un sistema fondamentale di intorni (ogni funzione olomorfa è la primitiva della sua derivata) e la loro immagine, come abbiamo visto, è un aperto. $d_{|\mathcal{D}_c}: \mathcal{D}_c \longrightarrow \mathcal{D}$ è, come visto sopra, suriettiva, ma anche iniettiva perché $\mathcal{D}_c = \bigcup_{z \in D} \mathcal{D}_c \cap \mathcal{O}_z, \mathcal{D} =$

 $\bigcup_{z \in D} \mathcal{D} \cap \mathcal{O}_z, \text{ ma per ogni } z \in D, \mathcal{D}_c \cap \mathcal{O}_z \text{ e } \mathcal{D} \cap \mathcal{O}_z \text{ contengono un unico germe } \\ \text{e d}(\mathcal{O}_z) \subseteq \mathcal{O}_z, \text{ da cui appunto segue l'iniettività } (z \neq z' \Rightarrow \mathcal{O}_z \cap \mathcal{O}_{z'} = \varnothing).$

(iii) Se $\underline{F_z} \in \mathcal{D}_{c_1} \cap \mathcal{D}_{c_2} \Rightarrow \underline{F_z}$ è rappresentanto sia da $(D, F + c_1)$ che da $(D, \overline{F} + c_2) \Rightarrow F + c_1 \equiv \overline{F} + c_2$ vicino a $z \Rightarrow c_1 = c_2$.

Teorema 2.7.21. Sia $\Omega \subseteq \mathbb{C}$ un aperto semplicemente connesso. Allora ogni $f \in \mathcal{O}(\Omega)$ ammette una primitiva.

Dimostrazione. Sia $\varphi: \Omega \longrightarrow \mathcal{O}$ la sezione corrispondente a f. Sia Φ un sollevamento di φ , cioè $d \circ \Phi = \varphi$ (che esiste per la teoria generali dei rivestimenti).

Anche Φ è una sezione di \mathcal{O} : infatti, siccome $p \circ d = p$, $p \circ \Phi = p \circ d \circ \Phi = p \circ \varphi = \mathrm{id}_{\Omega} \Rightarrow \mathrm{la}\ F \in \mathcal{O}(\Omega)$ associata a Φ è una primitiva di f.

Concludiamo il paragrafo definendo logaritmo e radice n-esima su insiemi semplicemente connessi.

Corollario 2.7.22. Sia $\Omega \subseteq \mathbb{C}$ aperto semplicemente connesso, $f \in \text{Hol}(\Omega, \mathbb{C}^*)$. Allora esiste $g \in \mathcal{O}(\Omega)$ t.c. $f = \exp(g)$. Inoltre g è unica a meno di costanti additive della forma $2k\pi i$ con $k \in \mathbb{Z}$.

Dimostrazione. Sia g_0 una primitiva di f'/f. $\frac{\mathrm{d}}{\mathrm{d}z}(fe^{-g_0}) = f'e^{-g_0} + f(-e^{-g_0}g'_0) = f'e^{-g_0} + f(-e^{-g_0}f'/f) = e^{-g_0}(f'-f') = 0 \Rightarrow f \cdot e^{-g_0} = \text{costante diversa da zero} = e^{c_0} \Rightarrow f \equiv e^{c_0+g_0}$. Per l'unicità a meno di costanti additive, $\exp(g_1) = \exp(g_2) \Rightarrow \exp(g_1-g_2) \equiv 1 \Rightarrow g_1-g_2$ è continua a valori in $2\pi i\mathbb{Z}$ discreto $\Rightarrow g_1-g_2 = 2k\pi i$ con $k \in \mathbb{Z}$ costante.

Corollario 2.7.23. Sia $\Omega \subseteq \mathbb{C}$ aperto semplicemente connesso, $f \in \text{Hol}(\Omega, \mathbb{C}^*)$, $n \in \mathbb{Z}^*$. Allora esiste $h \in \mathcal{O}(\Omega)$ t.c. $f = h^n$. Inoltre h è unica a meno di costanti moltiplicative della forma $e^{2\pi i k/n}$ con $k \in \mathbb{Z}$.

Dimostrazione. Sia $g \in \mathcal{O}(\Omega)$ t.c. $f = \exp(g)$, allora $h = \exp(g/n)$ soddisfa le condizioni richieste. Poi, $h_1^n = h_2^n \iff (h_1/h_2)^n \equiv 1 \Rightarrow h_1 = e^{2\pi i k/n} h_2$ con $k \in \mathbb{Z}$ costante.

2.8 Teorema di uniformizzazione di Riemann

Lo scopo di questo paragrafo è mostrare che quasi tutti i domini semplicemente connessi di $\mathbb C$ sono biolomorfi al disco. Il teorema di uniformizzazione di Riemann, di cui riporteremo solo l'enunciato, caratterizza i biolomorfismi delle superfici di Riemann, in particolare caratterizza completamente i biolomorfismi di quelle semplicemente connesse.

Lemma 2.8.1. Sia $\Omega \subset \mathbb{D}$ dominio limitato con $\Omega \neq \mathbb{D}$ e $0 \in \Omega$. Allora esiste f t.c. $f(0) = 0, f'(0) \in \mathbb{R}, f'(0) > 0, \Omega \subseteq f(\mathbb{C})$ e, se Ω_f è la componente connessa di $f^{-1}(\Omega)$ contentente $0, f_{|\Omega_f}: \Omega_f \longrightarrow \Omega$ è un rivestimento. Inoltre, $d_1 = \inf_{z \notin \Omega_f} |z| > \inf_{z \notin \Omega} |z| = d$.

Dimostrazione. Sia $a \in \mathbb{D} \setminus \Omega$, $b \in \mathbb{D}$ t.c. $b^2 = -a$. Siano $\varphi, \psi \in \operatorname{Aut}(\mathbb{D})$, $\varphi(z) = \frac{z+a}{1+\bar{a}z}, \psi(z) = \frac{z+b}{1+\bar{b}z}$. Poniamo $f \in \operatorname{Hol}(\mathbb{D}, \mathbb{D})$ t.c. $f(z) = \frac{\bar{b}}{|b|}\varphi(\psi(z)^2)$. $f(\mathbb{D}) = \mathbb{D}, f(0) = 0$. $f'(0) = 2|b|\frac{1-|b|^2}{1-|a|^2} > 0$. Siccome $w \longmapsto w^2$ è un rivestimento di $\mathbb{D}^* = \mathbb{D} \setminus \{0\}$ e $\varphi^{-1}(\Omega) \subseteq \mathbb{D}^*$, f è un rivestimento da Ω_f a Ω . Se $d_1 = 1$ abbiamo finito in quanto $d \leq |a| < 1$. Se invece $d_1 < 1$, esiste $z_1 \in \partial \Omega_f \cap \mathbb{D}$ con $|z_1| = d_1 \Rightarrow f(z_1) \not\in \Omega \Rightarrow |f(z_1)| \geq d$. Allora per il lemma di Schwarz abbiamo $d \leq |f(z_1)| < |z_1| = d_1$.

Teorema 2.8.2. (Osgood, Koebe) Sia $\Omega \subset\subset \mathbb{C}$ un dominio limitato, $z_0 \in \Omega$. Allora esiste un unico rivestimento olomorfo $f_0 : \mathbb{D} \longrightarrow \Omega$ t.c. $f_0(0) = z_0$ e $f'_0(0) \in \mathbb{R}, f'(0) > 0$.

Dimostrazione. Possiamo supporre $z_0=0\in\Omega$ e $\Omega\subset\mathbb{D}$. Sia $\mathcal{F}\subset\operatorname{Hol}(\mathbb{D},\mathbb{D})$ t.c. $\mathcal{F}=\{f\in\operatorname{Hol}(\mathbb{D},\mathbb{D})\mid f(0)=0,f'(0)\in\mathbb{R},f'(0)>0;\Omega\subseteq f(\mathbb{D});\text{ se }\Omega_f$ è la componente connessa di $f^{-1}(\Omega)$ contenente 0 allora $f_{\mid_{\Omega_f}}:\Omega_f\longrightarrow\Omega$ è un rivestimento $\}$. Se esiste $f_0\in\mathcal{F}$ con $\Omega_{f_0}=\mathbb{D}$ ci resta da dimostrare solo l'unicità. Poniamo per ogni $f\in\mathcal{F}$ $d_f=\inf_{z\notin\Omega_f}|z|=\min_{z\in\partial\Omega_f}|z|\leq 1$. Abbiamo $d_f=1\iff\Omega_f=\mathbb{D}$. Dobbiamo trovare $f_0\in\mathcal{F}$ con $d_{f_0}=1$. Sia $d=\sup_{f\in\mathcal{F}}d_f\leq 1$. Sia $\{f_n\}\subset\mathcal{F}$ t.c. $d_{f_n}\longrightarrow d$. Per il teorema di Montel possiamo supporre che $f_n\longrightarrow f_0\in\operatorname{Hol}(\mathbb{D},\mathbb{C})$ con immaggine in $\overline{\mathbb{D}}$. Vogliamo $f_0\in\mathcal{F}$. Chiaramente $f_0(0)=0,f_0'(0)\in\mathbb{R},f'(0)\geq 0$.

- 1. f_0 non è costante e f'(0) > 0: sia r > 0 t.c. $\mathbb{D}_r \subset\subset \Omega$. Siccome $f_n: \Omega_{f_n} \longrightarrow \Omega$ è un rivestimento e $0 \in \Omega_{f_n}$, esiste un unico $h_n: \mathbb{D}_r \longrightarrow \Omega_{f_n}$ olomorfa t.c. $f_n \circ h_n = \mathrm{id}_{\mathbb{D}_r}$ e $h_r(0) = 0$. Sempre per il teorema di Montel, a meno di sottosuccessioni possiamo supporre $h_n \longrightarrow h_0 \in \mathrm{Hol}(\mathbb{D}_r, \overline{\mathbb{D}})$ t.c. $f_0 \circ h_0 = \mathrm{id}_{\mathbb{D}_r}$. Dunque h_0 è iniettiva, quindi per il teorema dell'applicazione aperta è aperta, perciò $h_0(\mathbb{D}_r) \subseteq \mathbb{D}$, e f_0 non è costante, dunque per il primo teorema di Hurwitz $f_0(\mathbb{D}) \subseteq \mathbb{D}$. $1 = \mathrm{id}'_{\mathbb{D}_r}(0) = (f_0 \circ h_0)'(0) = f'_0(h_0(0)) \cdot h'_0(0) = f'_0(0) \cdot h'_0(0) \Rightarrow f'_0(0) \neq 0 \Rightarrow f'_0(0) > 0$.
- 2. $f_0(\Omega_{f_0}) = \Omega$ dove Ω_{f_0} è la componente connessa di $f_0^{-1}(\Omega)$ contenente 0. Sia infatti $z_0 \in \Omega$ e sia γ una curva in Ω da 0 a z_0 . Ricopriamo γ con dischi $D_0 = \mathbb{D}_r, D_1, \ldots, D_k$ con $D_j \cap D_{j+1} \neq \emptyset$ e $z_0 \in D_k$. Sia $h_{n,0}$ l'inversa di f_n su D_0 t.c. $h_{n,0} = 0$. Per ogni j sia $h_{n,j}$ l'inversa di f_n su D_j che coincide con $h_{n,j-1}$ su $D_{j-1} \cap D_j$. Per Montel, a meno di sottosuccessioni $h_{n,0} \longrightarrow h_{0,0} \in \operatorname{Hol}(D_0,\mathbb{D})$. Per il teorema di Vitali, $h_{n,1} \longrightarrow h_{0,1} \in \operatorname{Hol}(D_1,\mathbb{D})$ e, per induzione, $h_{n,k} \longrightarrow h_{0,k} \in \operatorname{Hol}(D_k,\mathbb{D})$ con $f_0 \circ h_{0,k} = \operatorname{id}_{D_k} \Rightarrow f_0(h_{0,k}(z_0)) = z_0 \Rightarrow z_0 \in f_0(\mathbb{D})$. In realtà $h_{0,k}(z_0) \in \Omega_{f_0}$ perché è immagine della curva ottenuta con $h_{0,j} \circ \gamma$ che parte da 0 e quindi è contenuta nella componente connessa di Ω contenete 0.
- 3. $f_0:\Omega_{f_0}\longrightarrow\Omega$ è un rivestimento.

Per l'unicità, si veda l'esercizio 2.8.3.

Esercizio 2.8.3. Se $f_1, f_2 : \mathbb{D} \longrightarrow \Omega$ sono rivestimenti con $f_1(0) = f_1(0)$ e $f'_1(0), f'_2(0) > 0$, allora $f_1 \equiv f_2$. Hint: dato che sono rivestimenti, si sfruttano h e h^{-1} date dal seguente diagramma commutativo:

Teorema 2.8.4. (Riemann) Se $\Omega \subset \mathbb{C}$ è un dominio semplicemente connesso con $\Omega \neq \mathbb{C}$, allora Ω è biolomorfo a \mathbb{D} .

Dimostrazione. In settimana.

Per il teorema di Liouville abbiamo che $\mathbb C$ non è biolomorfo a $\mathbb D$. Dato che $\widehat{\mathbb C}$ è compatta, abbiamo che non è biolomorfa né a $\mathbb D$ né a $\mathbb C$.

Teorema 2.8.5. (Uniformizzazione di Riemann) Se X è una superficie di Riemann semplicemente connessa, allora X è biolomorfo a $\widehat{\mathbb{C}}$, \mathbb{C} o \mathbb{D} . Più in generale, se X è una superficie di Riemann qualsiasi e $\pi: \widetilde{X} \longrightarrow X$ è un rivestimento universale, allora \widetilde{X} è una superficie di Riemann e

- (i) se \widetilde{X} è biolomorfo a $\widehat{\mathbb{C}}$, allora anche X è biolomorfo a $\widehat{\mathbb{C}}$ (caso ellittico);
- (ii) se \widetilde{X} è biolomorfo a \mathbb{C} , allora X è biolomorfo a \mathbb{C} , \mathbb{C}^* , oppure un toro $T_{\tau} = \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z})$ con $\mathfrak{Im}\tau > 0$ (caso parabolico);
- (iii) in tutti gli altri casi \widetilde{X} è biolomorfo a $\mathbb D$ (caso iperbolico).

Quindi, se $\Omega \subset\subset \mathbb{C}$ è limitato e semplicemente connesso, abbiamo per il teorema di Riemann che esiste $f:\mathbb{D}\longrightarrow\Omega$ biolomorfismo. Domanda: possiamo estendere f a un omeomorfismo da $\overline{\mathbb{D}}$ a $\overline{\Omega}$?

Teorema 2.8.6. (Carathéodory) Un biolomorfismo $\mathbb{D} \longrightarrow \Omega$ si estende continuo da $\overline{\mathbb{D}}$ a $\overline{\Omega}$ se e solo se $\partial\Omega$ è localmente connesso.

Corollario 2.8.7. Si estende a un omeomorfismo se e solo se $\partial\Omega$ è una curva di Jordan (cioè immagine omeomorfa di S^1).

Esiste una condizione su $\partial\Omega$ diversa che è equivalente all'estendibilità di f^{-1} : $\Omega \longrightarrow \mathbb{D}$ al bordo.

2.9 Teorema di Runge

Lemma 2.9.1. Sia $K \subset\subset \mathbb{C}$ compatto, $V\supset K$ un intorno aperto. Allora esiste $g\in C^{\infty}(\mathbb{C})$ t.c. $g|_{K}=1$ e $supp(g)\subset V$ $(\Rightarrow g|_{\mathbb{C}\backslash V}\equiv 0)$ [ricordiamo che $supp(g)=\overline{\{z\in\mathbb{C}\mid g(z)\neq 0\}}$].

 $\begin{array}{l} \textit{Dimostrazione.} \ \text{Sia} \ h: \mathbb{R} \longrightarrow \mathbb{R} \ \text{data da} \ h(t) = \begin{cases} 0 & \text{se} \ t \leq 0 \\ e^{-1/t} & \text{se} \ t > 0 \end{cases}, \ h \in C^{\infty}(\mathbb{R}). \\ \text{Sia} \ \eta: \mathbb{C} \longrightarrow \mathbb{C} \ \text{data da} \ \eta(z) = \frac{h(1-|z|^2)}{h(1-|z|^2)+h(|z|^2-1/4)}. \ \eta \in C^{\infty}(\mathbb{C}), \eta(\mathbb{C}) = \\ [0,1]. \ \eta|_{D(0,1/2)} \equiv 1 \ \text{e} \ \eta|_{\mathbb{C}\backslash\mathbb{D}} \equiv 0. \ \text{Dato} \ p \in K, \ \text{sia} \ r_p > 0 \ \text{t.c.} \ D(p,2r_p) \subset V. \ \text{Allora, per compattezza di} \ K, \ \text{esistono} \ p_1, \dots, p_k \in K \ \text{t.c.} \ K \subset \bigcup_{i=1}^k D(p_j, r_{p_j}/2) \subset K. \end{cases}$

$$\bigcup_{j=1}^k D(p_j,2r_{p_j}) \subset V. \text{ Poniamo } W = \bigcup_{j=1}^k D(p_j,r_{p_j}). \text{ Sia } g_j : \mathbb{C} \longrightarrow \mathbb{R}, \ g_j = \begin{cases} \eta\left(\frac{z-p_j}{r_{p_j}}\right) & \text{se } z \in D(p_j,2r_{p_j}) \\ 0 & \text{se } z \in \mathbb{C} \setminus \overline{D(p_j,r_{p_j})} \end{cases}, \text{ che è ben definita per come è definita } \eta. \\ g_j \in C^\infty(\mathbb{C}). \text{ Sia } g : \mathbb{C} \longrightarrow \mathbb{R}, \ g(z) = 1 - \prod_{j=1}^k (1-g_j(z)). \ g \in C^\infty(\mathbb{C}). \text{ Se } z \in K, \text{ esiste } j \text{ t.c. } z \in D(p_j,r_{p_j}/2) \Rightarrow g_j(z) = 1 \Rightarrow g(z) = 1. \text{ Se } z \notin \overline{W}, \\ z \notin \overline{D(p_j,r_{p_j})} \text{ per ogni } j = 1,\ldots,k \Rightarrow g_j(z) = 0 \text{ per ogni } j \Rightarrow g(z) = 0 \Rightarrow \sup p(g) \subseteq \overline{W} \subset V.$$