

Fig. 1. The upper-left figure is the original dynamic programming setup. The five remaining figures show a possible progression of our coarse-to-fine dynamic programming algorithm. The optimal path (shown in bold lines) in the final figure in the lower-right must also be the optimal path in the original trellis.

$$C^k(S,T) = \min_{\{(s,t): s \in S, t \in T, (s,t) \in \mathcal{E}\}} C(s,t)$$

$$(S_0^k, \dots, S_N^k) = \arg\min_{\{(S_0, \dots, S_N) \in \pi(\mathcal{G}^k)\}} C^k(S_0, \dots, S_N)$$

where $P(S_n^k)$ is any partition of S_n^k . Note that (S_0^k, \ldots, S_N^k) defined above can be computed through DP.

Proposition. If $|S| < \infty$ let

$$k^* = \min\{k : |S_n^k| = 1, n = 0, \dots, N\}$$

and let
$$S_n^{k^*} = \{s_n^{k^*}\}, n = 0, ..., N$$
. Then,

$$C(s_0^{k^*}, \dots, s_N^{k^*}) = \min_{\{(s_0, \dots, s_N) \in \pi(\mathcal{G})\}} C(s_0, \dots, s_N)$$

Proof. Since $|S| < \infty$ only a finite number of iterations are possible before S^k is composed entirely of singleton sets so k^* is well-defined.

Let $(s_0, ..., s_N) \in \pi(\mathcal{G})$. Then, there exist $S_n \in \mathcal{S}^{k^*}$, n = 0, ..., N such that $s_n \in S_n$ since \mathcal{S}^{k^*} partitions \mathcal{S} . Also, note that $(s_n, s_{n+1}) \in \mathcal{E}$ for n = 0, ..., N-1 implies $(S_n, S_{n+1}) \in \mathcal{E}^{k^*}$ and $(S_0, ..., S_N) \in \pi(\mathcal{G}^{k^*})$. Then,

$$C(s_0, \ldots, s_N) \ge C^{k^*}(S_0, \ldots, S_N) \ge$$

 $C^{k^*}(S_0^{k^*}, \ldots, S_N^{k^*}) = C(s_0^{k^*}, \ldots, s_N^{k^*}).$

It is worth noting that one can substitute a *lower bound*, $\tilde{C}^k(S,T)$, for the true minimum arc cost, $C^k(S,T)$, between two superstates without affecting the correctness of the