第14章 代数系统

计算机工程与科学学院 封卫兵

第14章 代数系统

14.1 二元运算及其性质

14.2 代数系统

14.3 几个典型的代数系统

14.1 二元运算及其性质

14.1.1 二元运算与一元运算的定义

二元运算定义及其实例

一元运算定义及其实例

运算的表示

14.1.2 二元运算的性质

交换律、结合律、幂等律、分配律、吸收律

特异元素: 单位元、零元、可逆元

消去律

数的发展历史

	+	_	×	•	1/x	x^2	\sqrt{x}
N	~	X	~	X	X	~	×
Z	/	~	~	X	X	/	X
Q	V	~	~		1	V	×
R	V	/	1	~	~		X
C	~	~		1	/	\	~

注:除法和倒数中均不含0.

运算的定义

定义14.1 设 S 为集合, 函数 $f: S \times S \to S$ 称为 S 上的二元运算, 简称为二元运算. 也称 S 对 f 封闭.

定义14.2 设 S 为集合, 函数 $f: S \to S$ 称为 S 上的一元运算, 简称为一元运算. 也称 S 对 f 封闭.

例: 前表中打 ✓ 的都是二元或一元运算, 打 🗙 的都不是运算.

二元运算的实例

例:设 $M_n(\mathbf{R})$ 表示所有n阶 $(n \ge 2)$ 实矩阵的集合,即

$$M_{n}(\mathbf{R}) = \left\{ \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \middle| a_{ij} \in \mathbf{R}, i, j = 1, 2, \dots, n \right\}$$

矩阵加法和乘法都是 $M_n(\mathbf{R})$ 上的二元运算? \checkmark

二元运算的实例 (续)

- 2) 幂集 *P(S)* 上的二元运算:

3) S^S 为 S 上的所有函数的集合, S^S 的合成运算。? \checkmark

一元运算的实例

例:

- 1) Z, Q和 R上求相反数的运算;
- 2) 非零有理数集Q*, 非零实数集 R*上求倒数运算;
- 3) 复数集合 C 上求共轭复数的运算;
- 4) 幂集 P(S) 上,全集为 S,求绝对补运算 \sim ;
- 5) A 为 S 上所有双射函数的集合, $A \subseteq S^S$,求反函数;
- 6) 在 $M_n(\mathbf{R})$ $(n \ge 2)$ 上求转置矩阵.

运算的表示

算符: ○, *, ·, ⊕, ⊗ 等符号表示二元或一元运算.

对二元运算。,如果x与y运算得到z,记做x。y=z;

对一元运算。, x 的运算结果记作。x;

表示二元或一元运算的方法:公式、运算表.

注: 在同一个问题中不同的运算使用不同的算符.

公式表示

例:设R为实数集合,

如下定义 R 上的二元

运算 *:

 $\forall x, y \in \mathbb{R}, x * y = x.$

那么

$$3 * 4 = 3$$

$$0.5 * (-3) = 0.5$$
.

运算表 (表示有穷集上的一元和二元运算)

二元运算的运算表

0	a_1	a_2		a_n
a_1	$a_1 \circ a_1$	$a_1 \circ a_2$	•••	$a_1 \circ a_n$
a_2	$a_2 \circ a_1$	$a_2 \circ a_2$	•••	$a_2 \circ a_n$
•				
•		• • •		
a_n	$a_n \circ a_1$	$a_n \circ a_2$	•••	$a_n \circ a_n$

一元运算的 运算表

	$\circ a_i$
a_1	$\circ a_1$
a_2	$\circ a_2$
•	•
•	•
a_n	$\circ a_n$

运算表的实例

例: $A = P(\{a,b\})$, \oplus , ~ 分别为对称差和绝对补运算 ($\{a,b\}$ 为全集)

⊕的运算表

~的运算表

\oplus	Ø	<i>{a}</i>	<i>{b}</i>	<i>{a,b}</i>
Ø	Ø	<i>{a}</i>	<i>{b}</i>	$\{a,b\}$
<i>{a}</i>	<i>{a}</i>	Ø	<i>{a.b}</i>	<i>{b}</i>
<i>{b}</i>	$\{b\}$	$\{a,b\}$	Ø	<i>{a}</i>
{ <i>a</i> , <i>b</i> }	{ <i>a</i> , <i>b</i> }	<i>{b}</i>	<i>{a}</i>	Ø

X	~X
Ø	{ <i>a</i> , <i>b</i> }
{ <i>a</i> }	<i>{b}</i>
$\{b\}$	<i>{a}</i>
$\{a,b\}$	Ø

运算表的实例 (续)

例: $Z_5 = \{0, 1, 2, 3, 4\}, \oplus, \otimes$ 分别为模 5 加法与乘法.

⊕的运算表

\oplus	0	1	2	3	4	
0	0	1	2	3	4	
1	1	2		4	0	
2	2	3	4	0	1	
3	3	4	0	1	2	
4	4	0	1	2	3	

⊗的运算表

\otimes	0	1	2	3	4	
0	0	0	0	0	0	
1	0	1	2	3	4	
2	0	2	4	1	3	
3	0	3	1	4	2	
4	0	4	3	2	1	

定义14.3 设。为S上的二元运算,

1) 如果对于任意的 $x, y \in S$ 有

$$x \circ y = y \circ x$$

则称运算在 S 上满足交换律;

注: 运算表是对称的.

2) 如果对于任意的 $x, y, z \in S$ 有

$$(x \circ y) \circ z = x \circ (y \circ z),$$

则称运算在 S 上满足结合律;

注:运算表无特征的.

3) 如果对于任意的 $x \in S$ 有

$$x \circ x = x$$

则称运算在 S 上满足幂等律.

注: 运算表对角线元素

与表头相同.

例:下列集合上的二元运算的性质:

		_/ \		
集合	运算	交换律	结合律	幂等律
Z, Q, R	普通加法+	有	有	无
	普通乘法×	有	有	无
$M_n(\mathbf{R})$	矩阵加法+	有	有	无
	矩阵乘法×	无	有	无
P(B)	并〇	有	有	有
	交○	有	有	有
	相对补一	无	无	无
	对称差⊕	有	有	无
A^A	函数复合。	无	有	无

定义14.4 设。和 * 为 S 上两个不同的二元运算,

1) 如果对于任意的 $x, y, z \in S$ 有

$$(x * y) \circ z = (x \circ z) * (y \circ z)$$
 右分配律

$$z \circ (x * y) = (z \circ x) * (z \circ y)$$
 左分配律

则称。运算对*运算满足分配律.

2) 如果。和 * 都可交换, 并且对于任意的 $x, y \in S$ 有

$$x \circ (x * y) = x \qquad \qquad x * (x \circ y) = x$$

则称。和*运算满足吸收律.

例:下列集合上的二元运算的性质:

集合	运算	分配律	吸收律
Z,Q,R	普通加法 + 与乘法 ×	× 对 + 可分配	
		+ 对×不分配	无
$M_n(\mathbf{R})$	矩阵加法 + 与乘法 ×	× 对 + 可分配	_
		+ 对×不分配	无
P(B)	并し与交へ	∪对○可分配	=
		○对∪可分配	有
	交○与对称差⊕	○对⊕可分配	
		⊕ 对 ∩ 不分配	无

二元运算的特异元素 (单位元)

定义14.5 设。为 S 上的二元运算,如果存在 e_l (或 e_r) $\in S$,使得对任意 $x \in S$ 都有

$$e_l \circ x = x \qquad (\vec{\boxtimes} x \circ e_r = x),$$

则称 e_l (或 e_r) 是 S 中关于。运算的左单位元 (或右单位元). 若 $e \in S$ 关于。运算既是左单位元又是右单位元,则称 e 为 S 上关于。运算的单位元,单位元也叫做幺元.

注: 1) 在运算表中左(右)单位元所在行(列)的元素与上(前)表头相同;

2) 若一侧有多个单位元,则另一侧就没有单位元.

单位元的唯一性定理

定理14.1 设。为 S 上的二元运算, e_l 和 e_r 分别为 S 中关于运算的 左和右单位元,则 $e_l = e_r = e$ 为 S 上关于。运算的唯一的单位元.

证明:

$$e_l = e_l \circ e_r = e_{r}$$

所以 $e_l = e_r$, 将这个单位元记作 e.

假设 e' 也是 S 中的单位元,则有

$$e' = e \circ e' = e$$
.

唯一性得证.

二元运算的特异元素 (零元)

定义14.6 设。为 S 上的二元运算,如果存在 $\theta_l(\vec{u}\theta_r) \in S$,使得对任意 $x \in S$ 都有

$$\theta_l \circ x = \theta_l \ (\overrightarrow{\mathfrak{Q}} x \circ \theta_r = \theta_r),$$

则称 θ_l (或 θ_r) 是 S 中关于。运算的左零元 (或右零元). 若 $\theta \in S$ 关于。运算既是左零元又是右零元,则称 θ 为 S 上 关于。运算的零元.

注: 1) 在运算表中左(右)零元所在行(列)的元素与前(上)表头相同;

2) 若一侧有多个零元,则另一侧就没有零元.

零元的唯一性定理

定理 设。为 S 上的二元运算, θ_l 和 θ_r 分别为 S 中关于运算的

左和右零元,则 $\theta_l = \theta_r = \theta$ 为 S 上关于。运算的唯一的零元.

证明:

$$\theta_l = \theta_l \circ \theta_r = \theta_{r,r}$$

所以 $\theta_l = \theta_r$, 将这个零元记作 θ .

假设 θ' 也是 S 中的零元,则有

$$\theta' = \theta \circ \theta' = \theta$$
.

唯一性得证.

注: 当|S|≥2, 单位元与零元

是不同的;

|S| = 1时,这个元素既

是单位元也是零元.

二元运算的特异元素 (逆元)

定义14.7 令 e 为 S 中关于运算。的单位元. 对于 $x \in S$, 如果

存在 y_l (或 y_r) $\in S$ 使得

$$y_l \circ x = e \quad (\overrightarrow{\mathfrak{Q}} x \circ y_r = e) \quad ,$$

则称 y_l (或 y_r) 是 x 的左逆元 (或右逆元).

关于。运算, 若 $y \in S$ 既是x 的左逆元又是x 的右逆元,

则称y为x的逆元.如果x的逆元存在,就称x是可逆的.

注: 在运算表中单位元对应的前表头元素与上表头元素互为左、右逆元.

逆元的唯一性定理

定理14.2 设。为 S 上可结合的二元运算, e 为该运算的单位元,对于 $x \in S$,如果存在左逆元 y_l 和右逆元 y_r ,则有 $y_l = y_r = y$,且 y 是 x 的唯一的逆元.

证明: 由 $y_l \circ x = e$ 和 $x \circ y_r = e$, 得

$$y_l = y_l \circ e = y_l \circ (x \circ y_r) = (y_l \circ x) \circ y_r = e \circ y_r = y_r$$

令 $y_l = y_r = y$,则y是x的逆元.

假若 $y' \in S$ 也是 x 的逆元,则

$$y' = y' \circ e = y' \circ (x \circ y) = (y' \circ x) \circ y = e \circ y = y$$

所以y是x唯一的逆元.

注:对于可结合的二元运算,可逆元素 x 只有唯一的逆元,记为 x^{-1} .

例:

集合	运算	単	位元	零元	逆元
Z,Q,R	普通加法+		0	无	x 的逆元 -x
	普通乘法×		1	0	x 的逆元 $x^{-1}(x \neq 0)$
$M_n(\mathbf{R})$	矩阵加法+		θ	无	X逆元 $-X$
	矩阵乘法×		E	θ	X 的逆元 $X^{-1}(X$ 可逆)
P(B)	并し		Ø	В	∅的逆元为∅
	交介		В	Ø	B 的逆元为 B
	对称差⊕		Ø	无	X的逆元为 X

其中 θ 和 E 分别表示 n 阶全 0 矩阵和单位矩阵.

消去律

定义14.6 设。为集合 S 上二元运算,如果对于任意元素

 $x, y, z \in S, x \neq \theta$, 都有

$$x \circ y = x \circ z \Rightarrow y = z$$

$$y \circ x = z \circ x \Longrightarrow y = z$$

成立,则称。运算满足消去律.

例:1)普通加法和乘法满足消去律?

- 2) 矩阵加法满足消去律 ?
- 3) 矩阵乘法满足消去律 ? 🗙
- 4)集合的并和交运算满足消去律? 🗙

例:设。运算为Q上的二元运算,

$$\forall x, y \in \mathbf{Q}, \quad x \circ y = x + y + 2xy,$$

- 1) 判断。运算是否满足交换律和结合律,并说明理由.
- 解: 1)。运算可交换. 任取 $x, y \in \mathbb{Q}$,

$$x \circ y = x + y + 2xy = y + x + 2yx = y \circ x,$$

。运算可结合,任取 $x, y, z \in \mathbb{Q}$,

$$(x \circ y) \circ z = (x + y + 2xy) + z + 2(x + y + 2xy)z$$

$$= x + y + z + 2xy + 2xz + 2yz + 4xyz$$

$$x \circ (y \circ z) = x + (y + z + 2yz) + 2x(y + z + 2yz)$$

$$= x + y + z + 2xy + 2xz + 2yz + 4xyz$$

例: (续)设。运算为Q上的二元运算,

$$\forall x, y \in \mathbb{Q}, \quad x \circ y = x + y + 2xy,$$

2) 求出。运算的单位元、零元和所有可逆元素的逆元.

解: 2) 设。运算的右单位元为 e_r ,则对于任意 x 有 x 。 $e_r = x$ 成立,即

$$x + e_r + 2xe_r = x \Rightarrow e_r = 0 \in \mathbb{Q}$$
,

由于。运算可交换,同理可证:左单位元 $e_l = 0 \in \mathbb{Q}$,

所以0是单位元(幺元).

例: (续)设。运算为Q上的二元运算,

$$\forall x, y \in \mathbb{Q}, \quad x \circ y = x + y + 2xy,$$

2) 求出。运算的单位元、零元和所有可逆元素的逆元.

解: 2) 设。运算的右零元为 θ_r ,则对于任意 x 有 x 。 $\theta_r = \theta_r$ 成立,即

$$x + \theta_r + 2x\theta_r = \theta_r \Rightarrow \theta_r = -1/2 \in Q$$

由于。运算可交换,同理可证: 左零元 $\theta_l = -1/2 \in \mathbb{Q}$,

所以-1/2 是零元.

例: (续)设。运算为Q上的二元运算,

$$\forall x, y \in \mathbb{Q}, \quad x \circ y = x + y + 2xy,$$

2) 求出。运算的单位元、零元和所有可逆元素的逆元.

解: 2) 给定 x, 设 x 的右逆元为 y_r , 则有 $x \circ y_r = 0$ 成立,即

$$x + y_r + 2xy_r = 0 \Rightarrow y_r = -\frac{x}{1+2x} \in Q \quad (x \neq -1/2)$$

是 $x(x \neq -1/2)$ 的右逆元,由于。运算可交换,

同理可证: 左逆元
$$y_l = -\frac{x}{1+2x}$$
, 由于。运算可结合, $x^{-1} = -\frac{x}{1+2x}$.

例: 下面是三个运算表

1) 说明哪些运算是可交换的、可结合的、幂等的.

*	a	b	c
a	c	a	b
b	-a	b	c
c	b	C	a

0	a	b	c
a	a	a	a
b	b	b	b
c	c	C	c

	a	b	c
a	a	b	c
b	b	c	c
c	c	C	c

解: *: 交换律、结合律;

。: 结合律、幂等律;

•: 交换律、结合律.

例: 下面是三个运算表

2) 求出每个运算的单位元、零元、所有可逆元素的逆元.

*	a	b	c
a	c	a	b
b	-a	b	c
c	b	C	a

0	a	b	c
a	a	a	а
b	b	b	b
c	C	\boldsymbol{c}	\boldsymbol{c}

•	a	b	c
a	a	b	c
b	b	c	c
c	c	C	c

解: *: 单位元: b、零元: 无、 $a^{-1}=c$, $b^{-1}=b$, $c^{-1}=a$;

。: 单位元: 无、零元: 无、没有逆元;

•: 单位元: a 、零元: c 、 $a^{-1}=a$, 其它元素无逆 .

例: 设集合 $A = \{a, b, c, d\}$ 上的。运算如表所示。

- 1) 说明运算是否可结合,为什么?
- 2) 求出。运算的单位元与零元.

解: 1) 不满足结合律.

$$(b \circ b) \circ c = c$$
, $b \circ (b \circ c) = d$

2) 单位元 a, 零元 d

		/		
o	a	b	c	d
a	a	b	c	d
b	b	a	d	d
c	c	d	a	d
d	d	d	d	d

例: 设集合 $A = \{a, b, c\}$,构造 A 上的二元运算 * 使得 a*b=c, c*b=b, 且 * 运算是幂等的、可交换的,给出关于 * 运算的一个运算表,说明它是否可结合,为什么?

解:运算表如下:

*	a	b	c
a	a	c	x
b	c	b	b
c	x	b	c

其中x可以为a,b,或c

运算不可结合: (a*b)*b=b, a*(b*b)=c

作业

- **14.1**
- **14.3**

研讨题

• 集合 $A = \{ n \mid n \text{ 是与5互质的自然数} \}$,则加法和乘法哪个是 A 上的二元运算,为什么?

• 在实数集R上定义二元运算 * 为: $a, b \in R, a * b = a \mid b \mid$,问该二元运算是否满足交换律、结合律和幂等律.

求出上述二元运算*的左单位元、右单位元、左零元和右零元, 若单位元存在则求出逆元。