Documento base

Pablo Álvarez Arnedo

2026-02-11

Tabla de contenidos

1	Introducción 3							
	1.1	Objetivo del trabajo	3					
	1.2	Estructura del trabajo	4					
2	Dat	Datos longitudinales 6						
	2.1	Datos con medidas repetidas	6					
	2.2	Conceptos básicos de la regresión lineal simple	8					
	2.3	¿Por qué no se puede usar la estadística clásica?	LC					
			LC					
3	Mod	delos mixtos	.7					
	3.1	Comparación de modelos con efectos fijos, aleatorios y mixtos	١7					
			18					
		v .	19					
		-	20					
	3.2		22					
	3.3	· ,						
		·	26					
	3.4	0 1 1	27					
		,	28					
	3.5	v a a	29					
4	Análisis exploratorio de la base de datos 30							
	4.1	Análisis exploratorio inicial	30					
	4.2	*	33					
	4.3	Evolución de la felicidad a lo largo del tiempo	39					
	4.4		17					
5	Con	strucción del modelo 5	6					
	5.1	Análisis exploratorio y selección inicial de variables	57					
		· · · · · · · · · · · · · · · · · · ·	57					
			58					
			58					
	5.2		30					
	5.3							
	-		31					
		·						

D,	foron	ociac		17			
	7.2	Limita	ciones y posibles mejoras	96			
	7.1			94			
7		nclusiones y mejoras futuras 94					
	0.3	repos:	itorio de GitHub	12			
	6.2		9	90 92			
	6.2	00		90			
		6.1.2	*	39			
		6.1.1		38			
	6.1	6.1.1	9 1	38 38			
6	-		<i>y</i>				
c	۸ ۱۰		China mana la mandalia atto de la Caliaida d	38			
		5.5.5	Predicción del Happiness Score para 2025	35			
		5.5.4	Conclusión del modelo GLMM	34			
		5.5.3	Outliers y estructura de los residuos	34			
		5.5.2		34			
		5.5.1		34			
	5.5	Desarr		77			
		5.4.6	•	75			
		5.4.5		75			
		5.4.4	·	74			
		5.4.3		74			
		5.4.2		74			
	0.1	5.4.1	· /	74			
	5.4			56			
		5.3.2	2 (54			
		5.3.2	Estrategia bottom-up (forward selection)	32			

1 Introducción

En las últimas décadas, numerosos gobiernos e instituciones internacionales han comenzado a incorporar indicadores de bienestar subjetivo en sus sistemas estadísticos, reconociendo que las métricas tradicionales como el Producto Interior Bruto (PIB) no bastan por sí solas para evaluar el progreso de una sociedad. En este contexto, surge el World Happiness Report, una iniciativa impulsada por las Naciones Unidas que, desde 2012, proporciona una evaluación anual del nivel de felicidad de los países a partir de encuestas globales y datos objetivos relacionados con factores económicos, sociales y políticos.

Este creciente interés por medir y comprender la felicidad plantea nuevos retos analíticos. A diferencia de otros indicadores, la felicidad presenta una fuerte variabilidad interindividual e intertemporal, lo que exige metodologías estadísticas capaces de capturar tanto las diferencias entre países como las trayectorias temporales dentro de cada uno. En este sentido, el uso de modelos longitudinales y estructuras jerárquicas se revela como un enfoque adecuado para estudiar el fenómeno de forma rigurosa y con capacidad predictiva.

Los datos longitudinales han desempeñado un papel fundamental en el análisis de fenómenos que evolucionan en el tiempo. Su uso se remonta al siglo XIX, en contextos como los estudios de crecimiento infantil o los registros médicos hospitalarios, aunque fue a lo largo del siglo XX cuando se consolidaron como una herramienta estadística esencial en disciplinas como la epidemiología, la psicología o las ciencias sociales. A diferencia de los datos transversales, los datos longitudinales permiten observar cómo cambian las unidades de análisis (individuos, países, instituciones) a lo largo del tiempo, lo que posibilita inferencias más precisas sobre causalidad, trayectorias de evolución y efectos individuales persistentes. Este tipo de datos conlleva también desafíos particulares, como la dependencia entre medidas repetidas, la gestión de datos faltantes o la necesidad de modelos que integren múltiples niveles de variación. El presente trabajo se sitúa en esta tradición, aplicando técnicas modernas de modelado a una base de datos compleja y rica en dimensiones temporales y jerárquicas.

1.1 Objetivo del trabajo

El objetivo principal de este Trabajo de Fin de Grado es estudiar y aplicar técnicas estadísticas avanzadas adecuadas para el análisis de datos longitudinales, con especial atención a los modelos mixtos, tanto lineales como generalizados. A través de un caso práctico concreto —la evolución del bienestar subjetivo a nivel mundial— se busca ilustrar cómo estas herramientas

permiten modelar estructuras jerárquicas, capturar dinámicas temporales y realizar inferencias sólidas en contextos donde las observaciones están organizadas en múltiples niveles. Aunque el análisis se centra en los datos del World Happiness Report, enriquecidos con variables políticas, el enfoque metodológico es aplicable a una amplia gama de situaciones en las que los datos presentan una estructura longitudinal o multinivel. Además, se desarrolla una herramienta interactiva que facilita la visualización, modelización y predicción de este tipo de fenómenos, fomentando así el análisis reproducible y accesible.

De forma más específica, el trabajo plantea integrar y limpiar diversas fuentes de datos sobre felicidad, condiciones socioeconómicas y contexto político; aplicar técnicas de análisis exploratorio para identificar patrones regionales y temporales en la evolución del bienestar; ajustar modelos mixtos que respeten la estructura jerárquica de los datos (países, regiones, años); y evaluar el ajuste y la validez de dichos modelos utilizando criterios estadísticos adecuados. Una aportación clave del proyecto es el desarrollo de una aplicación interactiva con Shiny —una librería del lenguaje de programación R (R Core Team 2024a)— que permite replicar los análisis, explorar distintas configuraciones de modelos y generar predicciones del Happiness Score de forma accesible, reproducible y visualmente intuitiva. Esta herramienta no solo facilita la comprensión de los resultados, sino que también democratiza el uso de técnicas estadísticas avanzadas para un público más amplio (Chang et al. 2024).

El trabajo adopta una perspectiva cuantitativa, basada en el uso de técnicas estadísticas robustas para modelar datos longitudinales. Se parte de una base de datos principal (World Happiness Report 2015–2024), a la que se añaden variables políticas obtenidas de fuentes como Freedom in the World y Democracy Data. A nivel metodológico, el análisis se estructura en tres niveles: una exploración inicial de los datos, que incluye limpieza, imputación de valores perdidos, análisis de outliers y visualizaciones; el ajuste de modelos estadísticos, utilizando modelos lineales múltiples, modelos lineales mixtos (LMM) y modelos lineales generalizados mixtos (GLMM), con efectos aleatorios por país y, en algunos casos, por región; y, finalmente, la construcción de una herramienta interactiva, mediante Shiny, que encapsula todo el proceso de análisis, desde la exploración hasta la predicción y validación automática de los modelos.

Este enfoque permite capturar tanto las diferencias estructurales entre países como las dinámicas temporales internas, y facilita una interpretación integrada de los resultados.

1.2 Estructura del trabajo

El contenido del trabajo se organiza en siete capítulos, que se resumen a continuación:

• Capítulo 2 – Datos longitudinales y motivación del análisis: se introduce el concepto de datos longitudinales, sus características específicas, y se justifica la necesidad de utilizar modelos mixtos en lugar de técnicas clásicas de regresión.

- Capítulo 3 Modelos estadísticos para datos longitudinales: se presenta el marco teórico
 de los modelos lineales mixtos (LMM) y modelos lineales generalizados mixtos (GLMM),
 incluyendo su formulación, métodos de estimación, validación y predicción.
- Capítulo 4 Análisis exploratorio y enriquecimiento de datos: se describen las tareas
 de limpieza, integración y análisis preliminar de los datos del World Happiness Report,
 complementados con variables políticas. Se generan visualizaciones y se realiza un modelo
 de regresión múltiple como aproximación inicial.
- Capítulo 5 Construcción de modelos predictivos: se aplica una estrategia combinada top-down y bottom-up para ajustar modelos mixtos que expliquen el Happiness Score, evaluando distintas combinaciones de variables y efectos. Se identifican modelos válidos, se analizan sus coeficientes, y se realiza una predicción para el año 2025.
- Capítulo 6 Aplicación Shiny para modelización interactiva: se describe en detalle la
 aplicación interactiva desarrollada con Shiny, que permite realizar el análisis completo
 (exploración, modelización, validación, predicción) desde una interfaz accesible y
 personalizable.
- Capítulo 7 Conclusiones y mejoras futuras: se realiza una valoración crítica del trabajo, se identifican las principales aportaciones metodológicas y prácticas, y se proponen posibles líneas de mejora y extensión para trabajos futuros.

Desde una perspectiva académica, el trabajo constituye una aplicación práctica y completa del análisis de datos longitudinales, integrando técnicas de modelización, visualización, validación y desarrollo de productos reproducibles. Permite consolidar conocimientos adquiridos durante el Grado en Ciencia e Ingeniería de Datos, en especial en estadística, ciencia de datos aplicada y desarrollo en R.

Desde el punto de vista social, el trabajo aborda una problemática de alto interés público: el bienestar global. Al ofrecer una herramienta interactiva para explorar los determinantes de la felicidad en distintos contextos temporales y geográficos, el proyecto puede resultar útil para investigadores, educadores, periodistas o responsables de políticas públicas interesados en promover el bienestar en sus comunidades.

2 Datos longitudinales

2.1 Datos con medidas repetidas

Los datos longitudinales son aquellos que obtenemos al realizar distintas medidas a un mismo individuo (personas, regiones, células, etc.). Dichas medidas se pueden observar repetidamente a lo largo del tiempo (análisis temporal), como el salario anual de diferentes personas a lo largo de varios años; del espacio (análisis espacial), por ejemplo, al medir la contaminación del aire de distintas ciudades en un mismo día; o a lo largo del espacio y tiempo (análisis espacio-temporal), como puede ser la monitorización de la expansión de una enfermedad en distintas regiones a lo largo del tiempo. Como lo más frecuente es encontrar medidas repetidas en el tiempo, consideraremos ese caso sin pérdida de generalidad, ya que todo lo expuesto se puede aplicar a los otros dos casos. Por esto, a los datos longitudinales también se les conoce como medidas repetidas.

Tal y como se expone en Curso de datos longitudinales (Subirana 2020), los datos longitudinales combinan características de las series temporales y los estudios de corte transversal, lo que exige técnicas específicas de análisis que tengan en cuenta la dependencia entre observaciones repetidas de la misma unidad. De forma similar, tanto Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models (Faraway 2006) como Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R (Roback y Legler 2021) destacan la necesidad de modelos con estructuras jerárquicas que puedan captar tanto la variación entre unidades como dentro de ellas.

El análisis de este tipo de medidas nos permite detectar cambios o tendencias temporales en nuestras variables, lo cual nos puede llevar a observar patrones que nos sería difícil descubrir usando otro tipo de técnicas. Es común usar este tipo de datos en estudios donde se busca evaluar cómo evolucionan ciertas características o mediciones bajo distintas condiciones o tratamientos. En el ámbito biosanitario, los datos longitudinales son fundamentales para investigar la progresión de enfermedades, la efectividad de tratamientos y el impacto de intervenciones médicas. En este capítulo, exploraremos las características clave de los datos longitudinales y profundizaremos en las razones por las que los métodos clásicos, como la regresión lineal simple, fallan al aplicarse a este tipo de datos.

Como ya hemos mencionado anteriormente, una de las características que definen a los datos longitudinales es que tenemos medidas repetidas del mismo sujeto a través de diferentes observaciones. No obstante, dichas observaciones no están organizadas de cualquier manera, sino que están agrupadas por unidades (e.g., pacientes, regiones). Todo ello significa que cada

unidad tiene varias observaciones en diferentes momentos temporales, haciendo que los datos longitudinales adopten una estructura jerárquica.

Esta estructura nos lleva a asumir una de las claves en todo este proceso, la dependencia entre las observaciones, la cual nos indica que las mediciones dentro de la misma unidad tienden a estar correlacionadas. También tenemos que destacar las distintas variables que definen a dichos datos, que suelen clasificarse según diferentes propiedades. Como la mayoría de medidas se realizan en distintos instantes de tiempo, es normal que su valor varíe a lo largo del tiempo, permitiendo considerarlas como variables tiempo-dependientes, lo que significa que sus cambios pueden estar relacionados con el tiempo y pueden ser modeladas para entender tendencias o patrones; pero también hay que tener en cuenta que hay otras variables que cambian igual en el tiempo para todos los sujetos (como el régimen político del país) que no consideraremos tiempo-dependientes y otras que directamente son constantes como el sexo.

El análisis de datos longitudinales se centra en aprovechar las medidas repetidas para abordar preguntas específicas que no pueden ser respondidas adecuadamente con otros tipos de datos. Uno de los principales objetivos del análisis de estos datos es observar la evolución de una variable a lo largo del tiempo, lo cual nos permitiría poder detectar si los cambios de las variables siguen ciertos patrones o fluctuaciones que tendríamos que tener en cuenta en el análisis. Esta identificación de patrones nos puede aportar información y conocimientos clave, ya que nos ayuda a formular ciertas hipótesis que nos orientan hacia una visión concreta. Otra parte importante reside en comparar si la evolución de una variable a lo largo del tiempo es igual para distintas partes de la población, y ver si existen factores que regulan la evolución de dicha variable, en cuyo caso deberíamos estudiar cómo dichos factores interactúan con el tiempo.

Los datos longitudinales tienen aplicaciones en una gran diversidad de áreas, ya que el estudio de medidas a lo largo del tiempo está presente en diferentes ámbitos científicos. Por ejemplo, los datos longitudinales tienen una gran importancia en el ámbito biosanitario, como puede ser en estudios donde hay medidas repetidas de presión arterial en un grupo de pacientes durante un tratamiento que nos permiten monitorear la salud de los pacientes para poder evaluar la efectividad del tratamiento e identificar posibles efectos secundarios. Además, este tipo de datos también tiene su relevancia en otras áreas como la educación; por ejemplo, la evaluación de los puntajes de un estudiante a lo largo de varios exámenes anuales podría identificar áreas de mejora por parte del alumnado o algunas estrategias pedagógicas que se puedan implementar en la docencia. Otra de las áreas en la que los datos longitudinales juegan un papel clave es la alimentación mediante el estudio de diferentes dietas a diferentes grupos de la población a lo largo del tiempo a través de medidas tales como la actividad física, peso corporal, nivel de colesterol, etc. y cómo estas rutinas aportan ciertos beneficios o riesgos a la salud de los individuos. En otros ámbitos como en el marketing también nos encontramos con casos en los que se utilizan datos longitudinales, como son encuestas de opinión realizadas periódicamente a las mismas personas que pueden ser de gran utilidad a la hora de evaluar posibles campañas de concienciación, o simplemente estudiar el comportamiento y la opinión de la población. Además, los datos longitudinales juegan un papel clave en el estudio de aspectos

sociales, políticos y demográficos. Un ejemplo es el análisis de la felicidad y bienestar de los países a lo largo del tiempo, lo que permite identificar cómo factores como el crecimiento económico, la percepción de la corrupción, el acceso a servicios de salud y la cohesión social influyen en el bienestar de la población. Estos estudios pueden ser fundamentales para que los gobiernos diseñen políticas públicas que promuevan un mayor nivel de calidad de vida y bienestar social. También, en el ámbito demográfico, los datos longitudinales pueden ayudar a analizar la evolución de indicadores clave como la esperanza de vida, la migración o el desarrollo humano en diferentes regiones del mundo, proporcionando información valiosa para la toma de decisiones a nivel global.

A pesar de su gran utilidad, los datos longitudinales presentan varias complicaciones adicionales. En primer lugar, aunque las mediciones suelen realizarse en intervalos de tiempo predefinidos, no siempre disponemos de todas las observaciones esperadas debido a la presencia de valores faltantes. Esto puede ocurrir por razones como la ausencia de un paciente en una consulta médica, la falta de respuesta en una encuesta periódica o errores en la recolección de datos. Además, en muchos estudios, los individuos no necesariamente son medidos en los mismos instantes de tiempo, por lo que no siempre tenemos el mismo número de mediciones repetidas por individuo, lo que lleva a una estructura desigual en los datos que debe ser abordada con técnicas adecuadas. Estas dificultades pueden generar desafíos en el modelado y en la comparación de trayectorias individuales, por lo que es fundamental aplicar estrategias estadísticas como imputación de valores faltantes, modelado con efectos aleatorios o técnicas específicas para datos desbalanceados. Según Isaac Subirana en su Curso de datos longitudinales (Subirana 2020), los modelos lineales mixtos proporcionan una herramienta útil para abordar estos problemas, permitiendo modelar la estructura de correlación y manejar la heterogeneidad de las observaciones. Esto se puede apreciar en la Figura 2.1, donde tenemos por un lado intervalos regulares, irregulares y con datos faltantes:

Como podemos apreciar en la Figura 2.1, tenemos por un lado intervalos regulares en los que las mediciones se toman a intervalos de tiempo predefinidos, intervalos regulares con valores ausentes en los que se han perdido algunas mediciones a lo largo del tiempo, y, por último, intervalos irregulares en los que las mediciones no siguen una periodicidad fija. Estas complicaciones pueden suponer un problema, y es importante tenerlas en cuenta.

2.2 Conceptos básicos de la regresión lineal simple

La **regresión lineal simple** es un método estadístico utilizado para modelar la relación entre una **variable dependiente** Y (respuesta) y una **variable independiente** X (predictora) mediante una ecuación lineal. El modelo se define matemáticamente de la siguiente manera:

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

donde:

Figura 2.1: Ejemplo de medidas repetidas en diferentes estructuras temporales.

- Y_i representa la variable dependiente (respuesta).
- X_i es la variable independiente (predictora).
- β_0 es el **intercepto**, que indica el valor esperado de Y cuando X=0.
- β_1 es la **pendiente**, que mide el cambio esperado en Y por cada unidad de cambio en X
- ε_i representa el **término de error**, que captura la variabilidad no explicada por el modelo.

Para que la regresión lineal simple sea válida y produzca estimaciones confiables, deben cumplirse ciertos **supuestos** fundamentales:

- 1. **Linealidad:** La relación entre la variable independiente X y la dependiente Y debe ser lineal. Esto significa que un cambio en X se traduce en un cambio proporcional en Y.
- 2. Independencia: Las observaciones deben ser independientes entre sí. Es decir, los valores de Y no deben estar correlacionados con otras observaciones.
- 3. Normalidad de los errores: Se asume que los errores ϵ_i siguen una distribución normal con media cero $(\varepsilon_i \sim N(0, \sigma^2))$. Esto es especialmente importante para hacer inferencias estadísticas sobre los coeficientes β_0 y β_1 .
- 4. **Homocedasticidad:** La varianza de los errores debe ser constante para todos los valores de X. Es decir, la dispersión de los valores de Y en torno a la línea de regresión debe ser

uniforme.

Cuando se satisfacen los supuestos del modelo, la regresión lineal simple permite obtener estimaciones consistentes y no sesgadas de los parámetros que describen la relación entre las variables. Además, esta técnica posibilita realizar análisis inferenciales, como contrastes de hipótesis o construcción de intervalos de confianza, para evaluar la significación estadística del efecto de la variable independiente sobre la dependiente.

2.3 ¿Por qué no se puede usar la estadística clásica?

La estadística clásica (e.g., regresión lineal simple) parte de la suposición fundamental de que todas las observaciones son independientes entre sí. Sin embargo, en datos longitudinales, esta independencia no se cumple debido a la correlación entre mediciones repetidas de la misma unidad a lo largo del tiempo. Los longitudinales presentan características específicas que requieren enfoques estadísticos más avanzados.

Uno de los principales desafíos, ya mencionado anteriormente, es la dependencia entre observaciones, ya que los datos recogidos de un mismo individuo suelen estar correlacionados, lo que genera un patrón estructurado que no es capturado por modelos clásicos. Esta correlación también afecta a la estructura de los errores, ya que las mediciones repetidas pueden estar influenciadas por factores externos o por variables no observadas, lo que genera una relación entre los errores que los modelos tradicionales no pueden modelar correctamente. Además, la variabilidad entre individuos es un aspecto clave en datos longitudinales, ya que no todos los sujetos presentan la misma evolución en el tiempo. Los modelos clásicos suelen asumir una varianza homogénea, lo que no es adecuado en este contexto, ya que no permite capturar diferencias individuales ni estructuras de correlación complejas.

Todos estos factores hacen que el uso de modelos estadísticos convencionales, como la regresión lineal simple, no sea adecuado para el análisis de datos longitudinales. En su lugar, es necesario recurrir a enfoques específicos, como los modelos lineales mixtos, que permiten modelar tanto los efectos fijos como los efectos aleatorios para capturar adecuadamente la variabilidad y dependencia inherente a estos datos. La mejor manera de comprender estas limitaciones es a través de un ejemplo práctico.

2.3.1 Ejemplo conceptual

Para ilustrar las limitaciones de la estadística clásica en el análisis de datos longitudinales, vamos a considerar un conjunto de datos sobre ingresos anuales (en euros) de 10 personas medidos a lo largo de varios años. Vamos a utilizar un modelo regresión lineal simple para modelar los ingresos en función del tiempo, ignorando la correlación entre mediciones.

En este ejemplo, la variable **dependiente** Y es el **ingreso anual** de cada persona; mientras que la variable **independiente** X es el **año**, representando el tiempo.

El objetivo del modelo es analizar si existe una tendencia en la evolución de los ingresos y, en caso afirmativo, estimar la relación entre el año y el nivel de ingresos de los individuos. Sin embargo, al aplicar un modelo de regresión lineal simple, ignoraremos la dependencia entre las observaciones de cada persona, lo que resultará en una estimación sesgada y poco fiable.

Figura 2.2: Evolución de los ingresos anuales de 10 personas a lo largo del tiempo.

La Figura 2.2 muestra la evolución de los ingresos anuales para diferentes personas a lo largo del tiempo, en el que cada línea representa a una persona. En este caso, todas las observaciones fueron tomadas en intervalos regulares (por años), lo que se corresponde con la estructura de medidas repetidas regulares descrita en la Figura 2.1. No obstante, se puede observar que algunos individuos presentan datos faltantes en ciertos años, lo que da lugar a una estructura con medidas regulares pero incompletas.

Esto permite mostrar cómo los ingresos varían entre individuos y años, observando que los datos son heterogéneos y varían significativamente entre individuos. Sin embargo, dentro de cada individuo, los ingresos en un año determinado tienden a ser similares a los del año anterior y el siguiente, lo que sugiere una correlación temporal en las mediciones. Además, se observa en general una tendencia creciente, aunque heterogénea y no necesariamente monótona, en la evolución de los ingresos, lo que refuerza la idea de una estructura dependiente en el tiempo. Esta dependencia entre observaciones dentro de cada individuo es una característica fundamental de los datos longitudinales, ya que implica que el valor de la variable en un

momento dado está influenciado por valores previos del mismo individuo; algo que viola los supuestos clásicos de independencia entre observaciones.

Visto esto, modelaremos la relación entre los ingresos y el tiempo utilizando una regresión lineal simple, ignorando la dependencia entre observaciones, para mostrar las consecuencias de no cumplir las hipótesis requeridas. La Figura 2.3 muestra el ajuste de la regresión lineal simple aplicada a los datos.

Figura 2.3: Ajuste del modelo de regresión lineal simple ignorando estructura longitudinal.

La Figura 2.3 muestra cómo la regresión lineal simple aplicada a estos datos genera una representación distorsionada, ignorando por completo la correlación de los datos longitudinales; dando lugar a un mal ajuste y a resultados estadísticos inapropiados que demuestran por qué no debemos utilizar estadística clásica para este tipo de datos. No obstante, vamos a analizar la adecuación y diagnóstico del modelo para ver en detalle los motivos por los que las técnicas de estadística clásica no son las correctas para trabajar con datos longitudinales.

Al utilizar un modelo de regresión lineal simple estamos asumiendo que la variabilidad entre individuos se puede representar con un único coeficiente, ignorando por completo la dependencia entre observaciones. Para evaluar la adecuación del modelo, nos fijamos en una medida de bondad de ajuste como el coficiente de determinación, R². El R² obtenido (0.217) es muy bajo, indicando que el modelo explica muy poca variabilidad en los datos (21%) y que, por tanto, no nos sirve para analizar datos longitudinales ya que no captura adecuadamente la relación entre las variables.

Para realizar el diagnóstico del modelo haremos un análisis de los residuos. Recordemos que dicho análisis se basa en 4 partes fundamentales: la normalidad de los residuos, que estos tengan media cero, la no correlación de las observaciones y la homocedasticidad.

Figura 2.4: Gráfica de los residuos del modelo.

Primero de todo, vamos a analizar el supuesto de **media cero** de los residuos. Su hipótesis de asunción es la siguiente:

 $\begin{cases} H_0: \text{Los residuos tienen una media esperada de 0.} \\ H_1: \text{Los residuos no tienen una media esperada de 0.} \end{cases}$

Si calculamos la media de los residuos del modelo, comprobamos que la media es $\mathbf{0}$, pero esta no es una forma correcta de anlizar la media cero ya que esto no significa que la suposición de media cero se cumpla en todas partes del rango de los valores ajustados. Para hacer un correcto análisis, nos vamos a fijar en la primera gráfica de la Figura 2.4: Residuals vs Fitted. Teóricamente, los residuos del modelo deben tener media cero, lo que implica que, en promedio, se sitúan centrados en la línea horizontal y=0. Además, si se cumple el supuesto de homocedasticidad, estos residuos deberían presentar una dispersión aproximadamente constante a lo largo del rango de valores de la variable independiente. Viendo la gráfica, podemos observar que los errores no tienen media cero ya que para los valores ajustados más

altos se alejan mucho de la recta y = 0; por lo que esta es otra muestra más de que el modelo no es correcto para este tipo de datos.

Lo segundo que vamos a analizar es la **no correlación** entre los errores, la cual se puede analizar en la primera gráfica. Si nos fijamos en la gráfica Residuals vs Fitted, se observa un patrón curvilíneo a medida que aumenta el valor de los datos ajustados, por lo que se podría concluir que los errores están correlacionados. No obstante, para una verificación numérica haremos un test de Durbin-Watson para comprobar la no correlación. El test de Durbin-Watson verifica si los residuos están correlacionados en el tiempo. Sus hipótesis son las siguientes:

 $\begin{cases} H_0: \text{No hay autocorrelación entre los residuos.} \\ H_1: \text{Existe autocorrelación entre los residuos.} \end{cases}$

En efecto, haciendo el test de Durbin-Watson vemos como el p-valor (<0.001) es extremadamente bajo y nos permite concluir que podemos rechazar la hipótesis nula. Por tanto, podemos asumir que la correlación entre los errores no es 0; otro motivo más para ver que este modelo no funciona bien con datos longitudinales.

La tercera parte que vamos a analizar es la **normalidad** de los residuos. Para ello, nos fijamos en la gráfica superior derecha (Normal Q-Q) de la Figura 2.4, en la cual vemos que, aunque la mayoría de los puntos se alinean con la línea teórica, no son pocas las desviaciones que hay en los extremos; lo que sugiere que los residuos no son perfectamente normales. De hecho, también puede ser el caso paradigmático de normalidad heterocedástica, en la que la varianza depende de la media. Para salir de dudas, podemos aplicar un test de Jarque Bera. El test de Jarque Bera comprueba si los residuos siguen una distribución normal evaluando su asimetría y curtosis. Sus hipótesis son las siguientes:

 $\begin{cases} H_0: \text{Los residuos siguen una distribución normal.} \\ H_1: \text{Los residuos no siguen una distribución normal.} \end{cases}$

A través de este test, el p-valor (0.024) nos permite concluir que podemos rechazar la hipótesis nula y que, por tanto, los residuos no tienen normalidad.

Por último, analizaremos la **homocedasticidad** de los errores. Para ello, nos fijaremos en la primera (Residuals vs Fitted) y en la tercera gráfica (Scale-Location). A través de la gráfica Residuals vs Fitted, vemos como los residuos no tienen una varianza constante, sino que a medida que aumenta el valor de los valores ajustados aumenta su dispersión; por lo que no tienen homocedasticidad, sino heterocedasticidad. Mirando la gráfica Scale-Location, podemos observar una tendencia creciente por parte de los residuos que nos permite ver cómo no tienen varianza constante. Para confirmarlo, haremos un test de Breusch-Pagan. El test de Breusch-Pagan evalúa si los residuos presentan heterocedasticidad; es decir, si su varianza no es constante. Sus hipótesis son las siguientes:

 $\begin{cases} H_0: \text{Los residuos tienen varianza constante (homocedasticidad).} \\ H_1: \text{Los residuos no tienen varianza constante (heterocedasticidad).} \end{cases}$

De nuevo, vemos cómo el p-valor (<0.001) es extremadamente pequeño, lo que nos permite rechazar la hipótesis nula y, por lo tanto, concluir que los residuos no tienen varianza constante.

A través de este análisis, hemos podido comprobar que no podemos usar modelos de estadística clásica, tal y como la regresión lineal simple, para trabajar con datos longitudinales.

Una visión más acertada sería utilizar un modelo que se ajuste a cada individuo, como se hace en la Figura 2.5.

Figura 2.5: Ajuste de un modelo lineal individualizado para cada sujeto.

En esta Figura 2.5, podemos observar que cada individuo tiene un comportamiento único en cuanto a la evolución de sus ingresos a lo largo del tiempo. Los interceptos y las pendientes varían considerablemente entre las personas, lo que evidencia que un único modelo no puede capturar adecuadamente la relación entre el tiempo y los ingresos para todos los individuos. Este resultado destaca la heterogeneidad presente en los datos y la necesidad de utilizar modelos que consideren esta variabilidad. Al ajustar un modelo por cada individuo, capturamos mejor las características específicas de cada sujeto, pero esta estrategia presenta limitaciones: aunque mejora la representación de la variabilidad entre individuos, no permite hacer inferencias generales sobre la población; además de que en escenarios con un gran número de individuos, esta aproximación no es práctica. Por ello, los **modelos mixtos**,

que se explicarán en el siguiente capítulo, emergen como una solución adecuada, ya que combinan los llamados efectos fijos y aleatorios para capturar tanto las tendencias generales de la población como las diferencias específicas entre individuos. Esta aproximación ofrece un equilibrio entre flexibilidad y generalización, respetando las características únicas de los datos longitudinales.

3 Modelos mixtos

En este capítulo, exploraremos los Modelos Lineales Mixtos (LMM), los Modelos Lineales Generalizados (GLM) y los Modelos Lineales Generalizados Mixtos (GLMM), tres enfoques estadísticos fundamentales para el análisis de datos longitudinales. Veremos cómo los LMM permiten modelar la variabilidad entre individuos mediante la inclusión de efectos aleatorios y fijos, lo que facilita el estudio de la correlación entre observaciones repetidas. A continuación, introduciremos los GLM, que extienden la regresión lineal para manejar variables respuesta que no siguen una distribución normal, utilizando funciones de enlace y distribuciones pertenecientes a la familia exponencial. Finalmente, presentaremos los GLMM, que combinan las fortalezas de los modelos mixtos y los GLM para analizar datos longitudinales no gaussianos incorporando tanto efectos aleatorios como funciones de enlace apropiadas. A lo largo del capítulo, revisaremos sus formulaciones matemáticas, sus hipótesis clave y cómo validarlas en la práctica.

3.1 Comparación de modelos con efectos fijos, aleatorios y mixtos

Para ilustrar estos modelos, comenzaremos con un ejemplo aplicado al conjunto de datos Orthodont del paquete nlme de R (Pinheiro, Bates, y Team 2024), donde analizaremos la evolución de la distancia entre los dientes (distance) en función de la edad (age) en diferentes sujetos. Sus variables principales son:

- distance: distancia entre los dientes (variable respuesta).
- age: edad del niño (variable predictora principal).
- Subject: identificador del niño (variable de agrupación para efectos aleatorios).

En las siguientes secciones, compararemos tres enfoques distintos:

- Modelo con sólo **efectos fijos**: Se asume que todos los sujetos siguen la misma relación.
- Modelo mixto con intercepto aleatorio: Este modelo incluye un intercepto específico
 para cada individuo, permitiendo que cada sujeto tenga su propio valor inicial. Sin
 embargo, la pendiente que describe la evolución temporal se asume constante entre
 individuos. Aquí ya incorporamos efectos aleatorios, por lo que hablamos de un modelo
 lineal mixto.

• Modelo mixto con **intercepto y pendiente aleatoria**: Es un modelo que incluye tanto efectos fijos como efectos aleatorios. Los efectos fijos representan patrones globales comunes a toda la población, mientras que los efectos aleatorios permiten modelar la variabilidad individual. En este contexto, pueden introducirse interceptos aleatorios, pendientes aleatorias o ambos, dependiendo de la estructura de los datos y de la hipótesis que se quiera contrastar. Este enfoque resulta especialmente útil en datos longitudinales, donde las observaciones están agrupadas por individuo y existe una dependencia natural entre ellas.

3.1.1 Modelo con efectos fijos

El primer modelo que consideramos es una regresión lineal simple, en la que asumimos que la distancia interdental (distance) varía en función de la edad (age), pero asumimos que todas las observaciones son independientes e ignoramos la estructura jerárquica del estudio (mediciones repetidas por individuo). La ecuación del modelo es:

$$distance_i = \beta_0 + \beta_1 age_i + \epsilon_i$$

Aquí, $distance_i$ es la distancia interdental de la observación i, donde i va desde 1 hasta n, con n siendo el tamaño total de la muestra; β_0 es el intercepto común a todos los sujetos, β_1 es la pendiente (cómo cambia la distancia con la edad), y ϵ_i es el error aleatorio.

Figura 3.1: Modelo con efectos fijos: Regresión Lineal Simple.

Este modelo de la Figura 3.1 considera únicamente la edad (age) como predictor de la distancia (distance) y no tiene en cuenta que los datos son mediciones repetidas de los mismos individuos, lo que puede llevar a errores de estimación debido a la correlación entre observaciones de un mismo sujeto. Como podemos comprobar a través de este ejemplo, si se ignora la estructura jerárquica, podríamos obtener estimaciones erróneas de la variabilidad en la población, obteniendo un coficiente de determinación R² muy bajo (**0.256**).

3.1.2 Modelo con intercepto aleatorio

Ahora ajustamos un modelo con efectos aleatorios, en el que permitimos que cada niño tenga su propio intercepto aleatorio (u_i) , capturando la variabilidad entre individuos. La ecuación del modelo es:

$$distance_{ij} = \beta_0 + u_i + \beta_1 age_{ij} + \epsilon_{ij}$$

donde:

- $distance_{ij}$ representa la distancia observada para el niño i en su j-ésima medición.
- age_{ij} es la edad correspondiente a esa misma observación.
- β_0 es el intercepto poblacional, común a todos los individuos.
- u_i es el efecto aleatorio del sujeto i, que permite que cada niño tenga un punto de partida (intercepto) diferente.
- β_1 es la pendiente común, que modela el cambio medio de la distancia con respecto a la edad.
- ϵ_{ij} es el error aleatorio, que representa la variabilidad residual no explicada por el modelo.

El subíndice i recorre los individuos (niños), mientras que j recorre las diferentes observaciones para cada individuo. De esta forma, $j=1,\ldots,n_i$, siendo n_i el número de mediciones realizadas para el niño i.

Como podemos apreciar en la Figura 3.2, ahora tenemos un término indica que cada individuo (Subject) tiene su propio intercepto aleatorio; permitiendo que la relación entre la distancia y la edad varíe entre individuos en lugar de asumir un único intercepto fijo para todos. Esto significa que algunos sujetos pueden tener valores iniciales más altos o más bajos de distance sin que eso afecte la tendencia general de la población. La diferencia crucial de los efectos aleatorios la podemos apreciar en la variabilidad del modelo, ya que tenemos una varianza del intercepto por sujeto de 4.472 y una varianza residual de 2.049, lo que significa que cada sujeto tiene un punto de partida diferente en distance, pero que todavía hay una parte de la variabilidad del modelo que no se explica por los efectos fijos ni por las diferencias entre sujetos.

Este modelo incorpora un intercepto aleatorio específico para cada niño, lo que permite capturar la variabilidad individual no explicada por la edad.

Figura 3.2: Modelo con efectos aleatorios a través de intercepto aleatorio.

3.1.3 Modelo mixto

Finalmente, ajustamos un Modelo Lineal Mixto (LMM) en el que consideramos tanto efectos fijos como aleatorios. Permitimos que cada niño tenga su propio intercepto (u_i) y pendiente (v_i) aleatorios, permitiendo que la relación entre edad y distancia interdental varíe entre individuos. La ecuación del modelo es:

$$distance_{ij} = \beta_0 + u_i + (\beta_1 + v_i)age_{ij} + \epsilon_{ij}$$

Aquí u_i es el intercepto específico de cada sujeto, y v_i permite que la pendiente también varíe por individuo.

Ahora no solo permitimos un intercepto aleatorio, sino que también permitimos que la pendiente (efecto de la edad) varíe entre sujetos; es decir, en este modelo cada sujeto puede tener una tasa de crecimiento diferente en la distancia dental a lo largo del tiempo. Observando el modelo de la Figura 3.3, vemos que no sólo los interceptos cambian, sino que las pendientes son ligeramente distintas. Además, hemos reducido la varianza residual a 1.716, y ahora contamos con una varianza del intercepto por sujeto de 5.417 y una variación de la pendiente entre sujetos de 0.051. Este tipo de modelos es más realista cuando hay variabilidad individual en la evolución de la variable respuesta.

Figura 3.3: Modelo Lineal Mixto (LMM con efectos fijos y aleatorios).

Este modelo es más flexible, ya que permite que tanto el intercepto como la pendiente de la relación entre edad y distancia varíen entre individuos. Este último modelo generaliza la idea que vimos en el capítulo anterior, donde ajustábamos una regresión por individuo (Figura 2.5). En aquel caso, teníamos una pendiente e intercepto diferentes por persona, pero ajustados de forma separada. Los modelos mixtos permiten hacer esto mismo, pero de forma conjunta y eficiente, combinando la información de todos los individuos para obtener estimaciones más robustas, sin necesidad de ajustar un modelo por separado para cada uno.

Si comparamos los 3 modelos, podemos observar que el modelo con solo **efectos fijos** asume una única relación entre edad y distancia interdental, ignorando la variabilidad entre individuos. El modelo con **intercepto aleatorio** permite que cada sujeto tenga su propio intercepto, pero mantiene una pendiente común para todos. El **modelo mixto (LMM) final** es el más completo, permitiendo que tanto el intercepto como la pendiente varíen entre individuos. Esto demuestra la importancia de los Modelos Lineales Mixtos en el análisis de datos longitudinales, ya que incorporan tanto la variabilidad individual como la estructura jerárquica de los datos.

Antes de introducir formalmente los Modelos Lineales Mixtos (LMM), conviene recordar que, en el ejemplo anterior, analizamos cómo una variable dependiente (la distancia interdental) se explicaba a partir de una única variable independiente (la edad). Sin embargo, tanto en la regresión lineal clásica como en los modelos lineales mixtos, es posible incorporar múltiples variables explicativas que ayuden a modelar mejor la respuesta. A continuación, veremos cómo

los LMM permiten esta flexibilidad, además de captar la variabilidad entre individuos mediante efectos aleatorios.

3.2 Modelos Lineales Mixtos (LMM)

Los Modelos Lineales Mixtos (LMM) son métodos estadísticos que permiten analizar datos longitudinales cuando la variable respuesta sigue una distribución normal. Uno de sus aspectos más característicos, según Francisco Hernández-Barrera en su libro Modelos mixtos con R (Hernández-Barrera 2024), es que asumen una relación directa entre el vector de observaciones y las covariables. Esta técnica resulta especialmente eficaz en el ámbito de las distribuciones normales, ya que permite introducir efectos aleatorios y especificar la estructura de correlación entre observaciones repetidas del mismo sujeto. Además, es robusta frente a la presencia de datos faltantes, lo que la convierte en una herramienta muy flexible. Una de sus principales ventajas es que permite modelar tanto la variabilidad entre individuos (a través de efectos aleatorios) como la correlación interna de sus observaciones. Los LMM nos permiten incluir covariables tanto a nivel individual como grupal, respetando la dependencia entre observaciones dentro de una misma unidad experimental.

Según Julian Faraway en Extending the Linear Model with R (Faraway 2006), un efecto fijo es una constante desconocida que intentamos estimar a partir de los datos, mientras que un efecto aleatorio es una variable aleatoria que refleja variación individual no explicada por covariables. Esta distinción es fundamental para interpretar correctamente los modelos. Otra de sus ventajas es su capacidad para generalizar a estructuras de datos complejas, lo que hace especialmente recomendable su uso en estudios longitudinales. No obstante, conviene tener en cuenta que el número de efectos aleatorios que se pueden incluir está limitado: no pueden superar el número de observaciones por individuo, una restricción importante a la hora de ajustar modelos reales. En resumen, los LMM permiten modelar simultáneamente los efectos comunes a toda la población (efectos fijos) y la variabilidad individual (efectos aleatorios), proporcionando estimaciones más precisas y respetando la estructura de dependencia de los datos longitudinales.

La ecuación para este tipo de modelos, en los que y_{ij} representa la observación j-ésima del individuo i:

$$y_{ij} = \beta_0 + \sum_{k=1}^{K} \beta_k x_{ijk} + u_{0i} + \sum_{k=1}^{K} u_{ki} x_{ijk} + e_{ij}$$

- i = 1, ..., N: indica el individuo o sujeto.
- $j=1,\ldots,n_i$:
indica la observación o medición número j del individu
o i. Cada sujeto puede tener un número diferente de observaciones.
- k = 1, ..., K: indica las variables explicativas o predictores incluidos en el modelo. Por tanto, K es el número total de variables independientes.

- β_0 y β_k son los efectos fijos (intercepto y pendientes comunes a todos los individuos). En conjunto, modelan el efecto promedio de los predictores sobre la respuesta.
- u_{0i} y u_{ki} son los efectos aleatorios (variaciones individuales del intercepto y/o de las pendientes), los cuales se asumen que siguen una distribución normal de media cero. Cada individuo i puede tener una pendiente propia para cada predictor x_{ijk} , lo que permite capturar variaciones individuales en la relación entre predictores y respuesta.
- x_{ijk} son las variables explicativas.
- e_{ij} es el término de error residual, que recoge la variación no explicada por el modelo.

En la práctica, este modelo se especifica en R mediante la función lmer() del paquete lme4 (Bates et al. 2015).

Una vez formulado el modelo, necesitamos estimar los parámetros, contando con los dos principales métodos de estimación en modelos mixtos como bien se explica en Modelos mixtos $con\ R$ (Hernández-Barrera 2024). El primero es el método de Máxima verosimilitud (ML), que utiliza la función de verosimilitud completa del modelo. Estima tanto los efectos fijos como las varianzas de los efectos aleatorios, y es útil para comparar modelos con diferentes efectos fijos. El otro método es el de máxima verosimilitud restringida (REML), que estima solo las varianzas de los efectos aleatorios, ajustando los grados de libertad para evitar el sesgo en la estimación de la varianza. Es el método preferido para comparar modelos con la misma estructura de efectos fijos pero distinta estructura de efectos aleatorios.

Cuando ya se ha ajustado el modelo, el siguiente paso es seleccionar la estructura más adecuada de efectos fijos y aleatorios. La selección del modelo es especialmente importante en el análisis de datos longitudinales, ya que la inclusión o exclusión de ciertos efectos puede afectar notablemente la calidad del ajuste y la interpretación. En la práctica, se recomienda seguir una estrategia jerárquica, comenzando por un modelo completo que incluya todas las variables candidatas como efectos fijos, así como una estructura lo más completa posible de efectos aleatorios. Para comparar modelos con distinta estructura de efectos fijos, debe utilizarse el método de máxima verosimilitud (ML), ya que la función de verosimilitud completa incorpora estos efectos y permite su comparación directa. Una vez seleccionada la mejor combinación de predictores fijos, se recomienda ajustar el modelo final con máxima verosimilitud restringida (REML), que proporciona estimaciones más precisas de los componentes de varianza (efectos aleatorios).

Además de comparar modelos mediante ML o REML, es habitual emplear criterios de información como el AIC (Akaike Information Criterion) o el BIC (Bayesian Information Criterion). Ambos equilibran el ajuste del modelo con su complejidad, penalizando la inclusión de demasiados parámetros. En particular, el BIC tiende a ser más conservador que el AIC al penalizar más los modelos complejos.

Por último, es esencial validar el modelo ajustado. Esto se realiza evaluando las asunciones sobre los residuos del modelo, tal como se hace en la regresión clásica. En concreto, un gráfico

de residuos estandarizados vs valores predichos que debe mostrar una nube de puntos sin estructura aparente, lo que indica homocedasticidad; y en el QQ-plot, que permite evaluar la normalidad de los residuos, los puntos deben seguir aproximadamente la diagonal si queremos asumir normalidad. Aunque algunos enfoques clásicos para validar modelos mixtos utilizan los Empirical Bayes Estimates (EBEs) para evaluar la distribución de los efectos aleatorios, en este trabajo optamos por emplear el paquete DHARMa (Hartig 2024), que ofrece una validación más robusta y sistemática de los supuestos del modelo mediante simulaciones de residuos. A diferencia de los EBEs, que pueden inducir sesgos al tratarse de estimaciones condicionadas, DHARMa genera residuos simulados que son independientes de la estructura del modelo ajustado, permitiendo detectar de forma más fiable problemas como falta de normalidad, heterocedasticidad o dependencia estructural. Este enfoque resulta especialmente adecuado cuando se trabaja con estructuras de datos complejas y múltiples niveles jerárquicos, como ocurre en nuestro análisis de datos longitudinales.

3.3 Modelos Lineales Generalizados (GLM)

En la sección anterior trabajamos con modelos lineales mixtos (LMM), los cuales asumen, entre otras condiciones, que la variable respuesta sigue una distribución normal, que la relación entre los predictores y la respuesta es lineal y que los residuos presentan varianza constante. Sin embargo, en muchas situaciones reales estas asunciones no se cumplen. Por ejemplo, puede que la variable de interés sea binaria, cuente sucesos, o esté sesgada de forma que no pueda modelarse adecuadamente con una distribución normal. Ante este tipo de limitaciones, resulta necesario generalizar el modelo para poder adaptarlo a distribuciones más flexibles y relaciones no lineales entre predictores y respuesta. Para ello, antes de retomar los modelos mixtos, introduciremos los Modelos Lineales Generalizados (GLM), que permiten modelar variables respuesta que pertenecen a distintas familias de distribuciones, manteniendo una estructura lineal en los predictores transformados mediante funciones de enlace adecuadas. Esta extensión será fundamental para, posteriormente, desarrollar modelos mixtos aún más generales y aplicables a una mayor variedad de contextos.

Los Modelos Lineales Generalizados son una generalización de los modelos lineales para una variable respuesta perteneciente a la familia exponencial, en la que tenemos una función de enlace que describe como la media de la variable respuesta y la combinación lineal de variables explicativas están relacionadas. Los GLM son una clase de modelos más amplia que tienen formas parecidas para sus varianzas, verosimilitudes y MLEs; generalizando la regresión lineal múltiple (Roback y Legler 2021).

La familia exponencial tiene esta forma:

$$f(y \mid \theta, \phi) = \exp\left[\frac{y\theta - b(\theta)}{a(\phi)} + c(y, \phi)\right].$$

En esta ecuación, θ es el **parámetro canónico** y representa la posición; mientras que ϕ es el **parámetro de dispersión** y representa la escala. De la misma forma, a, b y c representan

diferentes miembros de la familia exponencial. En función del parámetro de dispersión, podemos distinguir entre familias exponenciales de un parámetro, y familias exponenciales de dos parámetros.

Como familias exponenciales de un parámetro, tenemos las distribuciones de Poisson y la Binomial. Vamos a demostrar que la distribución de Poisson es, en efecto, una familia exponencial de un parámetro.

Para ello, aplicando propiedades logarítmicas, podemos definir la distribución de Poisson como:

$$P(Y=y) = e^{-\lambda} e^{y \log \lambda} e^{-\log(y!)} = e^{y \log \lambda - \lambda - \log(y!)}$$

Si comparamos esta función de masa de probabilidad con la finción de probabilidad general para familias con un único parámetro, podemos ver que:

$$\begin{aligned} a(y) &= y \\ b(\theta) &= \log(\lambda) \\ c(\theta) &= -\lambda \\ d(y) &= -\log(y!) \end{aligned}$$

La función $b(\theta)$ es lo que denominamos **enlace canónico**, una función que nos permite modelar como una función lineal de variables explicativas.

Como familias exponenciales de dos parámetros, tenemos la distribución Gamma y la Normal. De forma parecida a la anterior, podemos demostrar que la distribución Normal es una familia exponencial de dos parámetros.

Podemos definir la función de densidad de una distribución Normal como:

$$f(y|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

Si separamos términos y los escribimos como términos logarítmicos, tenemos que:

$$f(y|\mu,\sigma^2) = \exp\left(y\cdot\frac{\mu}{\sigma^2} - \frac{y^2}{2\sigma^2} + \left(-\frac{\mu^2}{2\sigma^2} - \frac{1}{2}\log(2\pi\sigma^2)\right)\right)$$

Si comparamos esta función de densidad con la forma general de la familia exponencial, podemos ver que:

$$\begin{split} a(y) &= y \\ b(\mu,\sigma^2) &= \frac{\mu}{\sigma^2} \\ c(\mu,\sigma^2) &= -\frac{\mu^2}{2\sigma^2} - \frac{1}{2}\log(2\pi\sigma^2) \\ d(y,\sigma^2) &= -\frac{y^2}{2\sigma^2} \end{split}$$

Por lo tanto, demostramos que la distribución normal también pertenece a la familia exponencial, pero con una peculiaridad respecto a la distribución de Poisson: es una familia exponencial de dos parámetros, la media μ y la varianza σ^2 . En este caso, el término $b(\mu, \sigma^2)$ es el **enlace canónico** que conecta las variables explicativas con el modelo.

En concreto, para los casos en los que la respuesta no es normal, la ecuación del modelo es la siguiente:

$$g\left(E(y_{ij}\mid x_{ijk},\beta_{0i},\ldots,\beta_{Ki})\right) = \beta_{0i} + \sum_{k=1}^{K} \beta_{ki} x_{ijk}$$

Donde g es la función enlace y, pese a que puede parecerse mucho a la función para modelos LMM, tienen algunas diferencias, como que en el primer miembro tenemos el enlace del valor esperado en vez de la variable respuesta, y en el segundo miembro no se cuenta con los errores; por lo que no existe una matriz de correlaciones de los residuos. De esta forma, ya hemos **generalizado** nuestro modelo para manejar variables respuesta que no siguen una distribución normal. A través de esta generalización, somos capaces de escribir la función de masa o densidad de probabilidad de distintas distribuciones para poder modelar el enlace canónico como función lineal de las variables predictoras.

Una vez formulado el modelo GLM, los parámetros se estiman mediante el método de Máxima Verosimilitud (MLE), que consiste en encontrar los valores de los coeficientes que maximizan la probabilidad de observar los datos reales. Como veremos más adelante, utilizaremos modelos GLM con funciones como glm() (R Core Team 2024b) donde se emplea por defecto el método de máxima verosimilitud (MLE) como técnica de estimación. Este método se implementa mediante el algoritmo Iteratively Reweighted Least Squares (IRLS), que permite encontrar los parámetros óptimos ajustando iterativamente los pesos de las observaciones según su varianza esperada. Esta estrategia resulta adecuada para las distribuciones empleadas (como la binomial o la gamma) y permite un ajuste robusto en contextos donde no se cumple la normalidad de los residuos.

En cuanto a la validación, se analizan medidas como la devianza (comparable a la suma de cuadrados en modelos lineales) o el AIC para comparar modelos. También es importante evaluar la distribución de la variable respuesta y el ajuste del modelo a través de gráficos de residuos.

3.3.1 Ejemplo práctico

Supongamos que queremos modelar el número de llamadas que recibe un centro de emergencias por hora (llamadas), en función del número de operadores de guardia (operadores). Este tipo de datos es típico de una distribución Poisson; por lo que analizar estos datos mediante una regresión lineal tradicional no sería apropiado, ya que esta podría predecir valores negativos o no respetar la varianza esperada para este tipo de datos.

En este modelo, estamos modelando el logaritmo del número esperado de llamadas como una función lineal del número de operadores. Tras ajustar el modelo a una muestra simulada de 100 observaciones, obtenemos la siguiente expresión para el número esperado de llamadas por hora:

$$\mathbb{E}[\text{llamadas}] = \exp(0.658 + 0.258 \cdot \text{operadores})$$

La interpretación de los coeficientes es en términos del logaritmo de la tasa: por cada operador adicional, el número esperado de llamadas se multiplica por **1.294**; es decir, aumenta un 29.4%.

3.4 Modelos Lineales Generalizados Mixtos (GLMM)

Cuando trabajamos con datos longitudinales cuya variable respuesta no sigue una distribución normal, los Modelos Lineales Mixtos (LMM) dejan de ser apropiados. En estos casos, extendemos los modelos hacia los Modelos Lineales Generalizados Mixtos (GLMM), los cuales combinan la flexibilidad de los GLM con la estructura de efectos aleatorios de los LMM. Un GLMM permite modelar variables respuesta que pertenecen a la familia exponencial (binomial, Poisson, Gamma...), y la correlación entre observaciones repetidas para el mismo individuo mediante efectos aleatorios.

La ecuación general de un GLMM (McCulloch, Searle, y Neuhaus 2008) es:

$$g\left(\mathbb{E}(y_{ij} \mid \mathbf{b}_i)\right) = \mathbf{x}_{ij}^{\top} \boldsymbol{\beta} + \mathbf{z}_{ij}^{\top} \mathbf{b}_i$$

Donde:

- y_{ij} es la respuesta del individuo i en la ocasión j.
- \mathbf{x}_{ij} es el vector de covariables con efectos fijos.
- β es el vector de coeficientes fijos.
- \mathbf{z}_{ij} es el vector de covariables con efectos aleatorios.
- \mathbf{b}_i es el vector de efectos aleatorios del individuo i, que se asume que sigue una distribución normal multivariante $\mathbf{b}_i \sim \mathcal{N}(0, \mathbf{D})$.
- $g(\cdot)$ es la función de enlace, que conecta la media condicional de la respuesta con la combinación lineal de predictores.

Dependiendo de la naturaleza de y_{ij} , usaremos distintos enlaces. Para datos binarios: enlace logit y distribución binomial; para datos de conteo: enlace log y distribución de Poisson; y para tiempos o proporciones: enlaces adaptados como log-log, logit, etc. Si la variable respuesta es binaria (por ejemplo, éxito/fracaso), se usa un **modelo logístico mixto**:

$$\operatorname{logit}(p_{ij}) = \beta_0 + \beta_1 x_{ij} + b_i$$

Donde:

- $logit(p) = log(\frac{p}{1-p})$
- $\bullet \quad p_{ij} = \mathbb{P}(y_{ij} = 1 \mid b_i)$
- $b_i \sim \mathcal{N}(0, \sigma_b^2)$ es un efecto aleatorio por sujeto.

Esto permite modelar probabilidades condicionales considerando la variabilidad entre individuos.

3.4.1 Ejemplo práctico

Supongamos que queremos modelar si un estudiante aprueba un examen (aprobado = 0/1) en función de las horas de estudio (horas) y si el estudiante forma parte de un grupo diferente (grupo). Como los estudiantes tienen múltiples exámenes, añadimos un efecto aleatorio por estudiante.

En este modelo GLMM (glmer) (Bates et al. 2015) estamos modelando la probabilidad de aprobar un examen en función de dos variables explicativas: horas (número de horas de estudio) y grupo (grupo educativo (A o B), con A como categoría de referencia). Además, incluimos un efecto aleatorio de intercepto por estudiante, lo cual es adecuado porque cada estudiante tiene múltiples observaciones (exámenes), y esperamos que haya variabilidad entre ellos.

El intercepto aleatorio por estudiante tiene una desviación estándar de **0.948**, lo que indica que hay una variación importante en la propensión a aprobar entre estudiantes, incluso tras controlar por las horas de estudio y el grupo; lo que justifica el uso de un GLMM en lugar de un GLM clásico. Este problema justifica cómo un GLMM puede capturar variabilidad individual (entre estudiantes) y a la vez evaluar el efecto de factores fijos. El uso del modelo mixto es crucial: si ignoramos el efecto aleatorio por estudiante, estaríamos asumiendo que todos los estudiantes tienen la misma propensión a aprobar, lo cual claramente no es el caso según la varianza estimada.

Los GLMM tienen múltiples ventajas respecto a otros modelos, ya que permiten ajustar modelos a variables respuesta no continuas, incorporan variabilidad entre individuos mediante efectos aleatorios, se adaptan bien a datos longitudinales y jerárquicos, y permiten hacer inferencia poblacional y considerar la dependencia temporal. Por tanto, los GLMM constituyen una herramienta esencial para el análisis de datos longitudinales cuando la respuesta no es normal, ya que preservan la estructura de dependencia de los datos sin violar los supuestos del modelo.

La estimación de los parámetros en modelos GLMM es más compleja que en GLM o LMM, debido a que la función de verosimilitud no tiene una forma analítica cerrada. Por ello, se utilizan técnicas de aproximación numérica como la aproximación de Laplace, que integra los efectos aleatorios y aproxima la verosimilitud, la cuadratura Gauss-Hermite adaptativa, que

mejora la precisión en presencia de muchos efectos aleatorios, o Penalized Quasi-Likelihood (PQL), en versiones simplificadas. Estas aproximaciones permiten realizar inferencia sobre los efectos fijos y estimar la variabilidad entre sujetos. Además, los GLMM pueden presentar problemas de convergencia, especialmente con estructuras complejas o tamaños muestrales pequeños. Es importante validar el modelo revisando los residuos, la bondad de ajuste (AIC, BIC), y la significación de los efectos aleatorios, por ejemplo, mediante test de razón de verosimilitudes anidados o comparaciones de modelos.

En la práctica, se utilizará la función glmmTMB (M et al. 2025) para ajustar modelos GLMM. Esta elección se debe a que glmmTMB ofrece una mayor flexibilidad que otras alternativas como glmer, permitiendo especificar una amplia variedad de distribuciones (incluidas binomial, Poisson, Gamma o beta), enlaces personalizados y estructuras de dispersión. Además, presenta una mayor robustez computacional, lo que resulta especialmente útil en contextos con estructuras complejas de efectos aleatorios. Esta versatilidad lo convierte en una herramienta adecuada para los distintos tipos de variables respuesta que pueden encontrarse en el análisis de datos longitudinales.

3.5 Validación del modelo y predicciones

Una vez ajustado un modelo mixto, es esencial validar que se adapta adecuadamente a los datos y que cumple los supuestos necesarios antes de realizar predicciones o extraer conclusiones. En modelos LMM, esto se hace principalmente mediante el análisis de residuos (residuos vs ajustados, QQ-plot, trayectorias individuales) y puede complementarse con el paquete DHARMa, que genera residuos simulados sobre los que aplicar tests de uniformidad, dispersión y detección de atípicos. En modelos GLMM, aunque el principio es similar, la validación debe adaptarse al tipo de variable respuesta, utilizando residuos devianza o de Pearson, medidas como el AIC para comparar modelos, y comprobaciones adicionales como la convergencia del ajuste o la significación de los efectos aleatorios mediante tests de razón de verosimilitudes. Validar el modelo permiten concluir si el modelo es adecuado para los datos; garantizando que sus predicciones sean fiables y que las inferencias son robustas.

Una vez validado el modelo, se puede utilizar para hacer predicciones. En el caso de un modelo mixto bien ajustado, estas predicciones permiten estimar, por ejemplo, el valor esperado de una variable en un nuevo tiempo o bajo determinadas condiciones, considerando tanto la tendencia general como las diferencias individuales. Este uso de los modelos validados convierte a los LMM y GLMM en herramientas muy potentes para generar estimaciones robustas, hacer proyecciones futuras o evaluar distintos escenarios hipotéticos.

4 Análisis exploratorio de la base de datos

Como se ha señalado en la introducción, el resto del trabajo se centra en el desarrollo práctico de un ejemplo de análisis de datos longitudinales, con el fin de ilustrar de forma aplicada las técnicas estadísticas descritas en los capítulos anteriores. En este capítulo, en concreto, se presenta la base de datos principal utilizada, junto con las fuentes complementarias, y se lleva a cabo un análisis exploratorio en profundidad. Este análisis preliminar resulta esencial para comprender la estructura de los datos, identificar posibles patrones, detectar valores atípicos o faltantes, y orientar las decisiones de modelización que se abordarán en los capítulos siguientes.

4.1 Análisis exploratorio inicial

El conjunto de datos World Happiness 2015-2024 recopila información sobre la felicidad percibida en diferentes países a lo largo de los años. Esta base de datos proviene de los informes anuales de felicidad publicados por la Red de Soluciones para el Desarrollo Sostenible de la ONU, los cuales se basan en encuestas realizadas a nivel mundial. La base tiene una buena cobertura temporal, ya que abarca datos de 2015 a 2024 y permite analizar tendencias a lo largo del tiempo, pero también geográfica, dado que incluye información de diferentes países y regiones del mundo. Es ampliamente utilizada en estudios de bienestar, calidad de vida y políticas públicas, y contiene métricas económicas y sociales que permiten un análisis estadístico y comparativo. Cada fila representa un país en un año determinado y contiene variables socioeconómicas y de bienestar que pueden influir en la percepción de felicidad de su población. Estas variables son:

- Country: Nombre del país.
- Region: Continente o agrupación geográfica del país.
- Happiness Score: Puntuación de felicidad promedio en el país (escala de 0 a 10).
- GDP per capita: Producto Interno Bruto per cápita ajustado por poder adquisitivo.
- Social Support: Medida de apoyo social basado en la percepción de las personas sobre la ayuda que pueden recibir de familiares y amigos.
- Healthy Life Expectancy: Esperanza de vida saludable en años.

- Freedom to Make Life Choices: Libertad para tomar decisiones personales, según encuestas de percepción.
- Generosity: Nivel de generosidad en la sociedad, basado en donaciones y ayuda a otros.
- Perceptions of Corruption: Nivel de percepción de corrupción en el gobierno y los negocios.

Figura 4.1: Distribución de las variables con rango entre 0 y 1 de la base de datos World Happiness.

Tanto la Figura 4.1 como Figura 4.2 nos muestran la distribución de las diferentes variables, en la que se aprecian que tampoco hay valores atípicos. Explorando opciones para enriquecer la base de datos y, potencialmente, poder construir un modelo más informativo, se han estudiado diversas alternativas y se ha decidido integrar información de dos fuentes externas que aportan indicadores políticos y de libertades civiles en los países. Estas bases de datos nos permitirán explorar hasta qué punto la democracia, los derechos políticos y las libertades influyen en la percepción de felicidad de las sociedades.

La primera base de datos que hemos considerado es "Freedom in the World" (Freedom House 2024), un informe anual de la organización Freedom House, que evalúa el estado de las libertades políticas y civiles en el mundo. Cada país es clasificado en función de indicadores de democracia, libertades individuales y derechos políticos. El motivo por el que hemos elegido esta base de datos es porque los estudios en ciencias sociales han mostrado que la percepción de felicidad no solo está ligada a factores económicos, sino también a la capacidad de los ciudadanos para expresarse libremente, participar en la política y vivir sin restricciones autoritarias. Por ejemplo, (Inglehart et al. 2008) señalan que los valores postmaterialistas y la democracia están positivamente correlacionados con mayores niveles de bienestar subjetivo. De manera similar, (Helliwell et al. 2023) destacan que el soporte institucional y la libertad individual son determinantes clave del Happiness Score en el World Happiness Report.

Figura 4.2: Distribución de las variables de la base de datos World Happiness.

Incorporar estos datos nos permitirá ver si existe una correlación entre los niveles de libertad y la felicidad percibida en cada país. Como esta base de datos cuenta con una gran cantidad de variables, hemos elegido las siguientes variables de interés:

- Country/Territory: Identificación del país o territorio.
- Region: Indica la zona geográfica del país, similar al regional_indicator de la base de datos original.
- c/T: Diferencia entre países y territorios, aunque este concepto puede ser delicado según el anólisis
- Edition: Año del reporte, fundamental para el análisis longitudinal.
- Status: Clasificación del país en cuanto a su libertad: Libre (F), Parcialmente Libre (PF) o No Libre (NF).
- PR rating (Political Rights): Puntuación de 1 a 7 sobre derechos políticos.
- CL rating (Civil Liberties): Puntuación de 1 a 7 sobre libertades civiles.

La otra base de datos que hemos elegido para nuestro análisis es "Democracy Data", una base de datos que proviene del proyecto TidyTuesday y está basado en estudios académicos sobre democracia y regímenes políticos. Clasifica los países según su sistema de gobierno y proporciona información detallada sobre su historia política. Una de las características que tiene esta base de datos es que incluye información hasta 2020, por lo que tenemos que considerar que, si vamos a trabajar con ella, tendremos las características completas de las observaciones en un período reducido. Dado que la felicidad no solo depende de factores económicos, sino también de la estabilidad política y la gobernanza, estas variables pueden ayudarnos a explicar por qué algunos países presentan niveles bajos de felicidad a pesar de tener una economía sólida. Al igual que en el caso anterior, como esta base de datos contiene más de 40 variables, hemos decidido quedarnos con aquellas que consideramos que mejor se

adaptan a nuestro análisis. Estas variables son:

- country_name: Nombre del país.
- year: Año de observación.
- regime_category: Clasificación del sistema de gobierno (democracia parlamentaria, autocracia civil, dictadura militar, monarquía, etc.).
- is_monarchy: Indica si el país es una monarquía.
- is_democracy: Indica si el país es una democracia.
- is_presidential: Indica si el sistema es presidencialista.
- is_colony: Identifica si el país sigue siendo una colonia.
- is_communist: Indica si el país sigue un régimen comunista.
- spatial_democracy: Evalúa el nivel de democracia en los países vecinos.
- has_full_suffrage: Indica si hay sufragio universal.
- electoral_category: Tipo de elecciones (no democráticas, de partido único, multipartidistas no democráticas o democráticas).
- spatial_electoral: Evalúa la calidad electoral de los países vecinos.
- has_free_and_fair_election: Indica si las elecciones son libres y justas.
- has_alternation: Indica si existe alternancia en el poder.

Agregando estas bases de datos consideramos que se puede abarcar de forma bastante completa los diferentes factores que afectan a la percepción de la felicidad. Esto nos permitirá realizar un análisis más profundo y responder preguntas sobre la relación entre política, democracia y bienestar subjetivo en distintos países. Para combinar adecuadamente estas fuentes, las variables clave utilizadas para relacionarlas fueron el país o región y el año, lo que asegura la coherencia temporal y geográfica en el análisis.

4.2 Análisis de las bases de datos complementarias

Al trabajar con datos longitudinales a nivel país, surge una cuestión clave: ¿en qué medida las características políticas de cada país se mantienen estables o experimentan cambios relevantes a lo largo del tiempo? En este estudio, incorporamos información de las bases de datos Freedom in the World y Democracy Data, que permiten capturar distintos aspectos del contexto político de los países, como el tipo de régimen, la alternancia en el poder o la existencia de elecciones libres.

Sin embargo, nos encontramos con dos limitaciones importantes. En primer lugar, muchas de estas variables presentan una cobertura temporal limitada, con registros ausentes en varios años dentro del periodo 2015–2023. En segundo lugar, se trata de variables que tienden a ser bastante estables: en la mayoría de los países analizados no se observan cambios relevantes a lo largo del tiempo. Estas circunstancias dificultan su tratamiento como verdaderas variables longitudinales.

Por ello, optamos por incorporar estas variables como una "foto fija" del contexto político, extrayendo su valor más representativo del periodo estudiado. De esta forma, las utilizamos como covariables fijas en los modelos de felicidad, contribuyendo a enriquecer el análisis sin introducir sesgos derivados de valores faltantes o variaciones mínimas que podrían ser ruido.

No obstante, existen excepciones interesantes. Algunos países sí han experimentado cambios significativos en su sistema político, su forma de gobierno o su nivel de democracia. A continuación se representa gráficamente la evolución de dichas variables para estos casos específicos, con el objetivo de ilustrar de forma visual estos procesos de cambio.

Figura 4.3: Evolución temporal de las variables políticas binarias de la base de datos Democracy Data.

Estas figuras sobre la evolución de diferentes variables políticas muestran de forma clara y visual la evolución temporal de varios países que han experimentado cambios entre 2015 y 2020.

En cuanto a los cambios en la alternancia en el poder, los cuales podemos apreciar en la Figura 4.3, vemos cómo en Nicaragua y Venezuela esta variable refleja la falta de alternancia, mostrando la concentración del poder por parte de gobiernos autoritarios. Observando la variable democrática, vemos que países como Nicaragua y Hungría dejaron de considerarse

Figura 4.4: Evolución del cambio de régimen democrático en países desde 2015 a 2020.

Figura 4.5: Evolución del cambio de categoría electoral en países desde 2015 a 2020.

Figura 4.6: Análisis de los distintos cambios políticos en países de 2015 a 2020.

Estados democráticos una vez llegaron al poder figuras autoritarias como Daniel Ortega y Viktor Orbán. Por último, si nos fijamos en la variable sobre elecciones libres y justas, vemos que Bolivia presenta un cambio negativo en 2019 correspondiente a las acusaciones de fraude electoral; provocando una crisis política y la renuncia del aquel entonces presidente Evo Morales. Sin embargo, no todo son cambios negativos, ya que en la Figura 4.3 también podemos observar avances en países como Liberia que han mejorado sus instituciones democráticas gracias a la llegada al poder del exfutbolista George Weah en las elecciones de 2017; las cuales fueron históricas ya que supusieron la primera transición presidencial pacífica en el país desde 1944.

Si observamos los cambios en el tipo de régimen en la Figura 4.4, vemos como Hungría pasó de ser una democracia parlamentaria a una dictadura civil, resaltando el gobierno autoritario de Viktor Orbán y el deterioro de la institución democrática. Otro caso que podemos destacar es el de Venezuela, la cual sufre un retroceso democrático a partir de 2016; pasando de ser una democracia presidencial a una dictadura civil. Sin embargo, hay casos como Liberia que sucede todo lo contrario, destacando el avance en el proceso democrático y dejando de ser considerada una dictadura civil para ser considerada como una democracia presidencial.

Si observamos los cambios en el tipo de elecciones en la Figura 4.5, podemos ver que Venezuela presentó hasta 3 categorías distintas: pasó de elecciones democráticas a elecciones no democráticas multi-partido y luego a tener elecciones de un sólo partido, reflejando el colapso progresivo del sistema electoral bajo el régimen de Maduro. Otro ejemplo que se puede destacar es Turquía, que pasa de tener elecciones democráticas a no democráticas

multi-partido, en línea con el creciente autoritarismo del presidente Erdoğan.

Por último, en la Figura 4.6 nos muestra un único cambio en la forma de gobierno presidencial, y es porque China, que siempre fue considerada una dictadura de partido único, pasa a ser considerada presidencial; lo que sugiere posiblemente una reinterpretación metodológica. Además de los países ya mencionados anteriormente como Venezuela, Turquía o Nicaragua, los cuales han sufrido cambios en todas las variables políticas, cabe destacar el caso de Comoras, que también presenta múltiples cambios en estas variables. Estos cambios se deben a un período de inestabilidad política, en las que se aplicaron cambios en el sistema como la reforma constitucional de 2018 y las elecciones de 2019, que concentraron el poder y se limitaron la oposición.

Estas figuras refuerzan la idea de que varios países han experimentado retrocesos democráticos significativos, especialmente en torno a elecciones libres, alternancia y la clasificación del régimen. Además, evidencian que estos cambios no son simultáneos: mientras algunos países cambian en 2016, otros lo hacen en 2018 o 2020, lo cual permite contextualizar los cambios políticos con eventos históricos concretos en cada nación. Este tipo de análisis temporal no solo es útil para identificar patrones políticos, sino también para relacionar estos cambios con la percepción de felicidad de la población y evaluar si existe alguna asociación relevante.

Dado que uno de los objetivos principales de este análisis es estudiar la evolución de la felicidad y sus determinantes a lo largo del tiempo, necesitamos trabajar con una base de datos que tenga cobertura completa para el periodo 2015–2024. En este sentido, hemos optado por utilizar como base principal la combinación de las bases de datos World Happiness y Freedom in the World, ya que ofrecen una continuidad temporal adecuada y permiten aplicar técnicas de medidas repetidas para estudiar cómo varían las observaciones de un mismo país a lo largo de varios años.

Por su parte, la base de datos Democracy Data presenta una limitación temporal importante, al contener información solo hasta el año 2020. Además, muchas de sus variables muestran escasa variación a lo largo del tiempo, lo que refuerza la idea de que no se comportan como verdaderas variables longitudinales.

Por ello, en lugar de excluir completamente esta base, la integramos como complemento, utilizándola para construir una fotografía del contexto institucional y político de cada país. Esta fotografía nos resulta especialmente útil a la hora de interpretar fenómenos detectados en el análisis longitudinal, como caídas o aumentos abruptos en el nivel de felicidad. En esos casos, el tipo de régimen, la alternancia en el poder o la existencia de elecciones libres pueden aportar claves importantes para entender estos cambios.

Antes de comenzar con la visualización de la evolución del índice de felicidad, resulta pertinente detenernos brevemente en la base Freedom in the World, que hemos decidido conservar por su cobertura temporal completa y por ofrecer indicadores relevantes sobre libertades civiles y derechos políticos. Aunque sus variables presentan cierta estabilidad en muchos países, hemos identificado diferencias notables en algunos casos que pueden ser útiles para contextualizar cambios observados en la felicidad. Además, no se detectan valores atípicos preocupantes ni

problemas graves de calidad en la información, por lo que resulta razonable integrarla en el análisis longitudinal.

Una vez preparada la base de datos final, es posible explorar cómo ha evolucionado la variable objetivo —happiness_score— entre 2015 y 2024. Para ello, se recurre a herramientas visuales como mapas o gráficos de línea por región y país, que permiten detectar tanto patrones generales como fluctuaciones específicas en determinados territorios. Estas visualizaciones constituyen el primer acercamiento al análisis longitudinal y ofrecen pistas sobre posibles factores explicativos de los cambios observados.

4.3 Evolución de la felicidad a lo largo del tiempo

Con el objetivo de identificar patrones geográficos en los niveles de felicidad, se emplean mapas coropléticos que permiten visualizar espacialmente la distribución del happiness_score a lo largo del tiempo. Este enfoque facilita detectar agrupaciones regionales, contrastes entre países vecinos y posibles focos de evolución atípica. Al representar la información sobre el territorio, los mapas se convierten en una herramienta clave para complementar el análisis longitudinal y contextualizar las dinámicas regionales de la felicidad.

Figura 4.7: Representación de la puntuación global de felicidad en 2024.

El mapa de felicidad por país en 2024 de la Figura 4.7 muestra una clara heterogeneidad geográfica en la percepción del bienestar, capturada a través del Happiness Score. Se observan regiones del norte global, como Europa Occidental, América del Norte y Oceanía, con los niveles más altos de felicidad (colores amarillos y verde claro), mientras que regiones del sur global, especialmente África Subsahariana y algunas partes de Asia como Afganistán o India, presentan valores notablemente más bajos (colores azul oscuro o morado).

Países como Finlandia, Noruega y Nueva Zelanda destacan con las puntuaciones más altas, reflejando contextos estables y altos niveles de desarrollo económico y social. En contraste, países como Zimbabwe, Sudán del Sur o Afganistán presentan los niveles más bajos, lo cual es coherente con contextos de conflicto, pobreza o inestabilidad política.

Este mapa no solo permite identificar diferencias entre regiones, sino también subrayar patrones estructurales: América Latina, por ejemplo, muestra un nivel medio de felicidad, con cierta variabilidad entre países. Es especialmente útil para detectar casos anómalos, como países con puntuaciones bajas en regiones generalmente altas o viceversa.

En conjunto, la figura evidencia de forma visual el impacto que pueden tener factores estructurales como el desarrollo, la gobernanza o la estabilidad en la percepción subjetiva del bienestar de los ciudadanos a nivel global.

Además del análisis temporal por país, resulta de interés observar cómo varía la felicidad entre regiones, y cómo se distribuye internamente en cada una de ellas. Para ello, se emplean gráficos de violín, que permiten visualizar simultáneamente la dispersión, la mediana y la densidad de los valores de happiness_score en cada región. Esta representación facilita la comparación entre regiones y la detección de desigualdades internas que podrían pasar desapercibidas en un análisis puramente temporal.

Observando la distribución de la felicidad por región de la Figura 4.8, si nos fijamos en la mediana, que se muestra con un rombo negro en cada violín, vemos que hay regiones como Europa Occidental o Norte América y Australia que mantienen medianas altas y estables a lo largo del tiempo, mientras que el Sur de Asia y África Sub-Sahariana tienen medianas bajas, aunque relativamente estables.

En estos gráficos también se puede observar cierta bimodalidad, ya que algunas regiones, como Latino América y el Caribe o el Oriente Medio y África del Norte muestran dos modas (zonas más anchas del violín), lo que sugiere heterogeneidad interna: algunos países con altos niveles de felicidad conviven con otros con puntuaciones mucho más bajas. Asia del Sur presenta una distribución muy desigual en 2024, con un notable ensanchamiento en la parte inferior del gráfico, reflejando una baja felicidad en ciertos países (como Afganistán).

En general, la forma de las distribuciones se mantiene similar entre 2015 y 2024 en muchas regiones, pero algunas muestran mayor dispersión, sobre todo en el continente asiático, ya que Oriente Medio y Asia del Sur sufren una caída considerable en la felicidad. Regiones como Europa Occidental y Norte América y Australia presentan distribuciones compactas y

Figura 4.8: Distribución de la felicidad agrupada por región en los años 2015, 2020 y 2024.

felicidad más alta y estable, lo que refleja mayor consistencia en el bienestar subjetivo de sus poblaciones.

A continuación, analizamos la percepción de la corrupción, una variable que diversos estudios han señalado como influyente en la percepción de felicidad. En la siguiente figura se representa la distribución de esta variable mediante gráficos de violines, lo que nos permite observar sus diferencias entre regiones. Este tipo de representación facilita comparar no solo los valores centrales, sino también la dispersión y asimetría en cada grupo geográfico. Se observa que algunas regiones presentan niveles percibidos de corrupción notablemente más bajos, lo que podría estar asociado a mayores niveles de bienestar subjetivo.

El gráfico de violines de la Figura 4.9 permite observar la evolución de la percepción de corrupción en las distintas regiones a lo largo del tiempo, mostrando tanto la mediana como la distribución completa de los datos. Lo más destacable es la aparición de una clara bimodalidad en algunas regiones a partir de 2020 y especialmente en 2024, lo que sugiere una divergencia creciente entre países dentro de la misma región.

Europa Occidental mantiene una distribución relativamente estable a lo largo del tiempo, con una percepción de corrupción baja en general (valores altos), aunque en 2024 aparece una mayor dispersión que en 2015 y 2020. Sin embargo, en Europa Central y Oriental se observa un patrón inverso. En 2015 y 2020, la percepción es bastante alta (valores cercanos a 1), pero en 2024 se evidencia una caída brusca en la percepción positiva (valores muy bajos), lo que indica un empeoramiento de la percepción ciudadana sobre la corrupción en algunos países, como puede ser el caso de Hungría o Polonia.

Commonwealth of Independent States muestra una bimodalidad clara en 2024, mientras que en 2015 y 2020 predominaba un grupo más homogéneo. Esto sugiere que algunos países han experimentado mejoras o retrocesos significativos, diferenciándose del resto. América Latina y el Caribe también muestra un cambio claro: de una percepción moderadamente positiva en 2015 a una distribución más polarizada en 2020 y 2024, reflejando posiblemente tensiones políticas y escándalos de corrupción en países como Venezuela, Nicaragua o Bolivia.

En Asia del Este se observa una distribución muy compacta en 2015 y 2020, pero con una clara ruptura en 2024, lo que podría estar relacionado con dinámicas opuestas en países como China (control político férreo) frente a otros con gobiernos más abiertos. Por el contrario, regiones como Asia del Sur y África Sub-Sahariana muestran distribuciones bajas y más estables, aunque con una ligera mejora hacia 2024 en la percepción media.

Este análisis permite detectar no solo la evolución de la percepción media, sino también la heterogeneidad creciente dentro de regiones, y puede servir de base para cruzar estos patrones con los cambios políticos identificados previamente, evaluando si el deterioro institucional y la concentración del poder están efectivamente correlacionados con una mayor percepción de corrupción entre la ciudadanía.

Con el objetivo de comprender cómo ha cambiado la situación global en términos de bienestar subjetivo y factores asociados, analizamos a continuación la evolución promedio anual de

Figura 4.9: Distribución de la percepción de corrupción agrupada por región en los años 2015, 2020 y 2024.

las principales variables del informe de felicidad. Esta visualización nos permitirá detectar tendencias crecientes o decrecientes y posibles impactos globales, como crisis políticas, sanitarias o económicas.

Figura 4.10: Análisis temporal de las principales variables del informe de felicidad en comparación con Hungría, Turquía y Venezuela.

La evolución anual del promedio de variables de interés de la Figura 4.10 refleja tendencias globales relevantes, pero su comparación con países concretos permite matizar dichas dinámicas y comprender mejor cómo contextos políticos específicos afectan al bienestar percibido por la población. Para ello, hemos seleccionado una serie de países que destacan por haber experimentado eventos políticos significativos o cambios institucionales durante el periodo de estudio, como Venezuela, Turquía o Hungría. Estos casos permiten ilustrar cómo la evolución de las condiciones políticas puede influir en la trayectoria del bienestar subjetivo, aportando una dimensión interpretativa más rica al análisis global.

En primer lugar, Venezuela se desmarca de forma clara en varias variables. El PIB per cápita presenta una caída drástica desde 2017, situándose muy por debajo de la media global a partir de 2018, lo que refleja la aguda crisis económica que atraviesa el país. Esta caída va acompañada de un descenso en la libertad para tomar decisiones y en la felicidad percibida, lo que sugiere un deterioro generalizado del bienestar. Sin embargo, resulta llamativo el aumento

pronunciado en la generosidad a partir de 2021, superando incluso a la media global. Este fenómeno podría estar vinculado a la solidaridad comunitaria surgida ante la crisis prolongada, así como a cambios metodológicos en la forma en la que se capta esta variable en contextos de alta inestabilidad.

Por otro lado, Turquía muestra una tendencia decreciente en la libertad para tomar decisiones, especialmente desde 2018, coincidiendo con el fortalecimiento del poder ejecutivo bajo el liderazgo de Recep Tayyip Erdoğan. A pesar de mantener un PIB per cápita relativamente estable y una esperanza de vida en línea con la media global, la percepción de corrupción se mantiene sistemáticamente alta, lo cual refuerza la idea de un deterioro institucional progresivo. La felicidad percibida en Turquía permanece por debajo de la media, lo que puede reflejar un desencanto social persistente.

En el caso de Hungría, se observa una situación más ambivalente. Por un lado, variables como la esperanza de vida, el apoyo social y la felicidad percibida se mantienen por encima de la media global, lo que sugiere una cierta estabilidad material y comunitaria. No obstante, la libertad para tomar decisiones experimenta un estancamiento, y la percepción de corrupción es elevada, lo cual coincide con el proceso de retroceso democrático documentado en el país desde mediados de la década de 2010. Este contraste pone de manifiesto cómo un país puede mantener ciertos niveles de bienestar mientras erosiona sus instituciones democráticas.

Este análisis complementa el estudio previo de la evolución global. Ya habíamos observado que, en conjunto, variables como la libertad para tomar decisiones y la generosidad presentan una evolución creciente, posiblemente impulsada por procesos de recuperación post-pandemia o cambios culturales. También destacaba un pico atípico en el PIB per cápita en 2016, probablemente debido a valores extremos ocasionados por mala imputación en la recolecta de datos ya que hay muchos países en 2016 que presentan un PIB de 10, como es el caso de Ecuador: pasa de tener un PIB de 5.11 en 2015 a tener un PIB de 10 en 2016, para luego tener un PIB de 5.35 en 2017. También se observa una tendencia general de aumento en la felicidad percibida hasta 2022, seguida de un leve descenso. Por el contrario, la percepción de corrupción es más errática, con oscilaciones abruptas entre años, lo que refleja fuertes diferencias entre países.

La comparación entre países permite, por tanto, observar cómo procesos políticos específicos (autoritarismo, crisis económica, reformas institucionales) se reflejan en los indicadores de bienestar. Venezuela, Turquía y Hungría muestran trayectorias divergentes respecto a la media global, lo cual subraya la necesidad de un análisis desagregado para captar la complejidad del bienestar en contextos políticamente inestables o en transformación.

La Figura 4.11 muestra la evolución del Happiness Score por país entre los años 2015 y 2024, representando cada año en un panel independiente y añadiendo como referencia una línea roja discontinua que indica la media global de felicidad de ese año. Cada barra representa el valor de felicidad para un país concreto en un año determinado, y las barras están ordenadas de izquierda a derecha según la media de felicidad del país a lo largo del periodo completo (2015–2024). Es decir, los países más felices en promedio están situados a la izquierda en

Happiness Score por País (ordenado por media global) Línea roja discontinua = media global del año

Figura 4.11: Análisis temporal de la evolución temporal de la felicidad por país.

todos los años, manteniendo así un orden constante que facilita la comparación temporal. Esta visualización permite realizar un análisis comparativo tanto entre países como a lo largo del tiempo, aportando una perspectiva clara sobre la distribución del bienestar subjetivo a escala mundial.

Lo primero que llama la atención es la notable estabilidad de la media global a lo largo del periodo observado. La línea roja, que representa dicho promedio, se mantiene en un intervalo relativamente estrecho —aproximadamente entre 5.3 y 5.5 puntos—, lo que sugiere que, a nivel agregado, la percepción de felicidad mundial no ha sufrido cambios drásticos. Sin embargo, esta estabilidad global oculta dinámicas internas más complejas.

A medida que avanzan los años, especialmente a partir de 2020, se observa un aumento progresivo en la cantidad de países que se sitúan por debajo de la media global. Esta tendencia podría estar vinculada al impacto de la pandemia de COVID-19 y sus secuelas económicas, sanitarias y sociales, que afectaron de manera desigual a distintas regiones. Asimismo, podría reflejar procesos de deterioro democrático o inestabilidad política en determinados contextos, tal y como se ha explorado en análisis previos sobre variables institucionales.

La figura también pone de manifiesto la persistencia de fuertes desigualdades en la distribución del bienestar subjetivo. Mientras que un pequeño grupo de países — naciones del norte de Europa como Finlandia, Dinamarca, Islandia, Noruega y Suiza— se mantiene de forma consistente en la parte superior del ranking con puntuaciones muy por encima de la media, la

gran mayoría de países se concentra en la franja media o baja. Esta asimetría en la distribución revela que, si bien algunos países gozan de altos niveles de satisfacción vital sostenidos en el tiempo, muchos otros enfrentan barreras estructurales que dificultan mejorar su puntuación de felicidad; como Siria, Burundi o Afganistán.

Un fenómeno adicional que merece atención es el ligero descenso en los valores máximos del Happiness Score en los últimos años. En 2023 y 2024, incluso los países mejor posicionados parecen haber perdido algo de ventaja con respecto a años anteriores. Esta caída podría interpretarse como un efecto retardado de los acontecimientos globales recientes, o como una normalización tras niveles particularmente elevados en años previos.

En conjunto, la figura no solo reafirma que la media global se mantiene estable, sino que también evidencia un ensanchamiento de la brecha entre países y una posible tendencia al estancamiento o deterioro en la felicidad percibida a nivel nacional. La comparación interanual permite detectar trayectorias divergentes y resalta la necesidad de seguir analizando qué factores explican el desempeño diferencial de los países. Esta visualización resulta, por tanto, un complemento clave para comprender la evolución del bienestar en un contexto global marcado por desafíos económicos, políticos y sociales.

Tras analizar la evolución global de la felicidad a nivel de país, resulta interesante centrar la atención en contextos geográficos más acotados que, por su cercanía cultural, económica o política, puedan mostrar dinámicas particulares. En este sentido, se ha seleccionado un grupo de países europeos próximos a España —Portugal, Francia, Italia, Andorra, Suiza, Alemania y Reino Unido— para realizar un análisis comparativo más detallado de la evolución del bienestar subjetivo entre 2015 y 2024.

4.4 Evolución del Happiness Score en España

El objetivo de este bloque es doble: por un lado, examinar la trayectoria específica de España en cuanto a su Happiness Score a lo largo del tiempo; y por otro, contextualizar dicha evolución en relación con sus países vecinos. Además, se analizarán variables complementarias como el PIB per cápita, el apoyo social, la libertad en la toma de decisiones, y las puntuaciones de derechos políticos y libertades civiles, con el fin de identificar posibles factores explicativos de las tendencias observadas.

Este enfoque regional no solo permite evaluar si España sigue dinámicas similares o divergentes respecto a su entorno inmediato, sino que también contribuye a detectar patrones de bienestar y resiliencia en Europa Occidental. Dado el contexto de crisis sucesivas —económica, sanitaria y geopolítica— en el periodo analizado, comparar la evolución de estos países cercanos ofrece una perspectiva enriquecedora sobre el impacto de factores estructurales e institucionales en la percepción de felicidad de la ciudadanía.

La Figura 4.12, centrada exclusivamente en España, se observa una evolución relativamente estable del índice de felicidad, con pequeñas oscilaciones en torno a valores ligeramente

Figura 4.12: Evolución temporal de la felicidad en España.

superiores a 6.3. No obstante, destaca una caída en 2018 (mínimo del periodo), seguida de una recuperación progresiva que culmina en un pico en 2021, justo tras el primer año completo de pandemia. Este máximo puede parecer contraintuitivo, pero podría explicarse por un efecto de resiliencia colectiva o por cambios en la percepción subjetiva del bienestar ante la crisis sanitaria. Tras 2021, sin embargo, el índice inicia un leve descenso que se prolonga hasta 2024, lo que podría reflejar un efecto retardado de las consecuencias económicas, sociales y emocionales de la pandemia.

Figura 4.13: Evolución temporal de la felicidad en España y en países cercanos.

La Figura 4.13 contextualiza estos datos al mostrar la evolución del Happiness Score en países próximos a España: Francia, Portugal, Italia, Alemania, Reino Unido y Suiza. Una primera observación relevante es que España se sitúa de forma constante en un rango medio-bajo dentro

de este grupo, por encima únicamente de Portugal (hasta 2020) y, ocasionalmente, de Italia. Países como Suiza, Alemania y Reino Unido exhiben sistemáticamente puntuaciones más altas, lo cual podría estar vinculado a mayores niveles de riqueza, estabilidad institucional o servicios sociales más desarrollados.

En términos de trayectoria, destaca el descenso claro en los últimos años (especialmente a partir de 2022) en la mayoría de países analizados, incluyendo aquellos con niveles históricamente altos de felicidad como Suiza o Alemania. Este patrón sugiere la presencia de factores estructurales o globales (crisis energética, inflación, tensiones geopolíticas) que estarían afectando incluso a los países tradicionalmente más satisfechos. En contraste, países como Portugal e Italia muestran una tendencia más estable o incluso creciente hasta 2022, posiblemente como resultado de procesos de recuperación o mejora relativa en relación con sus propias trayectorias históricas.

Figura 4.14: Evolución del PIB en España y sus países cercanos.

Figura 4.15: Evolución del apoyo social en España y sus países cercanos.

Los gráficos presentados en las Figura 4.14, Figura 4.15 y Figura 4.16 permiten analizar la evolución de distintas dimensiones del bienestar y la calidad de vida en un conjunto de países europeos cercanos a España entre 2015 y 2024. En conjunto, nos ofrecen una perspectiva

Figura 4.16: Evolución de la libertad en la toma de decisiones en España y sus países cercanos.

comparativa regional que ayuda a contextualizar el caso español en relación con sus vecinos.

En la Figura 4.14, que muestra la evolución del PIB per cápita, se observa una fuerte caída generalizada en 2017, seguida por una recuperación progresiva desde 2018. Esta evolución puede estar relacionada con una recodificación de datos o un cambio metodológico en ese año, pero también con impactos económicos de alcance regional. En cualquier caso, destaca que Suiza mantiene sistemáticamente el mayor PIB per cápita, situándose por encima del resto del grupo. Le siguen Alemania y Reino Unido, con valores elevados y estables. España se encuentra en la parte baja del grupo, junto a Portugal e Italia, aunque todos ellos muestran una tendencia ascendente en los últimos años, lo que refleja una recuperación económica moderada.

En la Figura 4.15, relativo al apoyo social, se aprecia un comportamiento mucho más volátil. En 2018 hay una caída muy pronunciada en todos los países, especialmente en España, Italia y Portugal, lo cual podría reflejar una crisis de confianza institucional o una percepción negativa del entorno social. Sin embargo, en 2019 se produce un repunte, seguido de cierta estabilización con una tendencia ligeramente descendente en algunos países. Suiza y Reino Unido destacan por mantener niveles consistentemente altos de apoyo social, mientras que España mejora en los últimos años tras el fuerte descenso.

La Figura 4.16 muestra la evolución de la libertad para tomar decisiones, una dimensión vinculada a la percepción de autonomía personal. Aquí destaca el caso de Suiza, que parte de valores cercanos a 1 y los mantiene prácticamente inalterados. Alemania y Reino Unido también se sitúan en la parte superior, mientras que España parte de un nivel más bajo en 2015 y experimenta una caída hasta 2019, seguida de una recuperación constante a partir de ese momento. Por el contrario, Italia muestra una evolución ascendente sostenida, superando incluso a España en los últimos años. Esta variable presenta un patrón de mejora generalizada en la región, lo que puede reflejar avances en la percepción de libertad individual y gobernanza democrática.

En conjunto, estas figuras permiten extraer varias conclusiones. En primer lugar, España tiende a situarse en posiciones intermedias o bajas dentro del grupo de comparación, aunque

muestra señales de mejora especialmente en PIB y libertad individual. En segundo lugar, países como Suiza y Alemania destacan sistemáticamente por sus buenos resultados, lo que puede atribuirse a sus estructuras institucionales consolidadas y niveles de desarrollo económico. Finalmente, el análisis temporal revela momentos de tensión o crisis (como 2017–2018) seguidos de cierta recuperación, lo que sugiere una resiliencia estructural en la región. Esta comparativa refuerza la utilidad del análisis multinacional para entender mejor los factores que condicionan la evolución del bienestar en contextos políticamente estables pero económicamente diversos.

Aunque al inicio del capítulo ya indicamos que no se detectaron valores atípicos significativos tras el análisis inicial, conviene revisar brevemente algunas observaciones que, por su contexto o comportamiento, podrían considerarse casos especiales. Esta revisión no pretende identificar outliers estadísticos en sentido estricto, sino valorar si existen países cuya evolución difiere notablemente del patrón general y que, por tanto, merecen una atención particular en el análisis interpretativo posterior.

Figura 4.17: Análisis de la distribución de la puntuación de felicidad anual.

Si observamos la Figura 4.17, de 2015 a 2020 no vemos valores atípicos, pero en 2021 vemos un valor atípico de 2.52, en 2022 de 2.40, en 2023 de 1.86 y en 2024 de 1.72. Todos estos valores atípicos corresponden con Afganistán. Vamos a entrar en más detalle para ver cuál es la evolución de dicho país.

Si observamos la Figura 4.18 y Figura 4.19, Afganistán sufre una gran caída de la felicidad a partir de 2017 y si lo comparamos con países de su región es el que menos puntuación tiene por bastante diferencia. Esto puede haberse dado por diversos factores, como el constante estado

Figura 4.18: Evolución temporal de la felicidad en Afganistán.

Figura 4.19: Evolución temporal de la felicidad en Afganistán y en países cercanos.

de guerra y conflicto en el que se ha encontrado el país, la presencia de los talibanes y otros grupos armados que han aumentado la violencia y el temor en la población, la enorme tasa de pobreza, etc. Vamos a comparar la evolución de Afganistán con sus países vecinos para ver realmente qué puede estar afectando a tal bajada de la felicidad.

Observando la Figura 4.20, vemos que Afganistán presenta el PIB más bajo de la región durante todo el periodo, aunque la diferencia no es tan pronunciada respecto a sus vecinos. La evolución del PIB muestra una tendencia relativamente paralela, lo cual indica que la situación económica general no difiere radicalmente en términos de crecimiento.

Sin embargo, la Figura 4.21 muestra que el apoyo social sufre una caída drástica en Afganistán a partir de 2021, coincidiendo con el regreso de los talibanes al poder. A diferencia de los países vecinos, donde el apoyo se mantiene más estable, en Afganistán prácticamente desaparece, lo que podría explicar un deterioro importante en el bienestar subjetivo de su población.

En términos de libertad para tomar decisiones vitales, la Figura 4.22 muestra que Afganistán se sitúa consistentemente por debajo de la media regional. Este valor, que ya era bajo en años anteriores, cae aún más tras 2021, reflejando la pérdida de autonomía percibida por sus ciudadanos.

La Figura 4.23 muestra que la pérdida de libertad se ve reforzada por el deterioro de los derechos políticos, donde Afganistán muestra los valores más altos de privación dentro de la región. El país se convierte en un claro outlier en este aspecto a partir de 2021.

Figura 4.20: Evolución temporal del PIB en Afganistán y en países cercanos.

Figura 4.21: Evolución temporal del apoyo social en Afganistán y en países cercanos.

Figura 4.22: Evolución temporal de la libertad de los ciudadanos en Afganistán y en países cercanos.

Figura 4.23: Evolución temporal de la privación de derechos políticos en Afganistán y en países cercanos.

Figura 4.24: Evolución temporal de la privación de libertades civiles en Afganistán y en países cercanos.

Por último, observando la Figura 4.24, la privación de libertades civiles también coloca a Afganistán en una posición crítica frente a sus vecinos. Este conjunto de restricciones políticas y sociales contribuye directamente a su puntuación tan baja de felicidad, y subraya la necesidad de considerar el contexto institucional al interpretar estos datos.

En resumen, a lo largo de este capítulo se ha llevado a cabo un análisis exploratorio exhaustivo de la base de datos utilizada, prestando especial atención a la evolución temporal y la variabilidad geográfica del índice de felicidad, así como a su relación con diversos factores socioeconómicos y políticos. Mediante visualizaciones, resúmenes estadísticos y comparaciones entre países y regiones, hemos identificado patrones relevantes y desigualdades persistentes en la percepción del bienestar subjetivo. No obstante, todo lo realizado hasta ahora corresponde a una fase descriptiva del análisis. A partir del siguiente capítulo, daremos un paso más allá para intentar explicar el comportamiento del Happiness Score, construyendo modelos estadísticos que permitan identificar qué variables influyen de forma significativa en su evolución y cómo interactúan entre sí. Este enfoque nos permitirá extraer conclusiones más sólidas y generar conocimiento útil para comprender mejor los determinantes de la felicidad a nivel global.

5 Construcción del modelo

En este capítulo desarrollamos el proceso de construcción de un modelo estadístico para explicar y predecir la percepción de felicidad (Happiness Score) a lo largo del tiempo, utilizando los datos longitudinales disponibles para todos los países entre los años 2015 y 2024. Dado que el análisis de este trabajo se centra en la evolución de la felicidad en el tiempo, consideramos esencial aprovechar toda la información disponible, en lugar de limitar el estudio a una única foto fija (por ejemplo, el año 2024).

El propósito del capítulo es construir un modelo que sea estadísticamente sólido y, al mismo tiempo, interpretable desde el punto de vista de los determinantes sociales, económicos y políticos de la felicidad. Para ello, combinaremos técnicas de la estadística clásica (regresión lineal múltiple) con modelos diseñados específicamente para datos longitudinales, como los modelos lineales mixtos (LMM) y los modelos lineales generalizados mixtos (GLMM), que permiten capturar adecuadamente la estructura jerárquica de los datos y la dependencia entre observaciones repetidas.

El modelado clásico se abordará desde dos estrategias complementarias:

- **Top-down**: partimos de un modelo completo que incluye todas las variables relevantes, y vamos eliminando aquellas que no aportan información significativa o que generan problemas como multicolinealidad o sobreajuste.
- Bottom-up: comenzamos con un modelo simple con pocas variables y vamos añadiendo progresivamente nuevos predictores, evaluando si su inclusión mejora sustancialmente el ajuste del modelo.

Ambas estrategias nos permiten explorar distintas trayectorias de construcción del modelo y encontrar un equilibrio entre simplicidad, robustez y capacidad explicativa. Como veremos, en este caso ambas estrategias convergen en el mismo modelo final, el cual, sin embargo, no resulta válido tras el análisis diagnóstico.

En cambio, para los modelos mixtos (LMM y GLMM) seguimos un enfoque orientado a la validación empírica: partimos directamente de estructuras con efectos aleatorios y efectos fijos específicos, evaluando su adecuación con herramientas gráficas y pruebas estadísticas. En el caso del LMM se emplea una estructura con todas las variables como efectos fijos y year como efecto aleatorio por país, mientras que para el GLMM se exploran múltiples combinaciones hasta identificar un modelo válido con distribución Gamma y regional_indicator como efecto aleatorio.

Dado que trabajamos con datos que varían a lo largo del tiempo para cada país, es importante distinguir entre:

- Variables longitudinales: cambian con el tiempo (por ejemplo, gdp, support, freedom, generosity, life_exp, corruption).
- Variables fijas: son aquellas que no cambian a lo largo del tiempo dentro del periodo de análisis, o que se consideran características estructurales del país. Se utilizan como contexto porque aportan información relevante sobre el entorno político o geográfico en el que se sitúa cada observación. Por ejemplo, region indica la ubicación geográfica del país y puede influir en aspectos culturales, económicos o sociales. También forman parte de este grupo las variables institucionales que hemos incorporado desde otras bases de datos y que hemos replicado para todos los años: por ejemplo, is_democracy, regime_category, has_free_and_fair_election o has_alternation, que capturan características políticas del país (como su régimen democrático o nivel de alternancia política) que no cambian durante el periodo 2015–2024 y se usan como una "foto" fija del contexto institucional.

Además, es importante tener en cuenta la dependencia temporal entre observaciones del mismo país. Este aspecto será considerado al ajustar modelos mixtos con interceptos (y potencialmente pendientes) aleatorios por país.

En cuanto a la organización del capítulo, comenzaremos describiendo la estrategia general de modelado y los criterios de selección de variables en el caso de la regresión lineal múltiple. A continuación, se presentará el modelo clásico resultante y se evaluará su validez. Posteriormente, se abordarán los modelos lineales mixtos (LMM), detallando aquel que resultó válido y se utilizó para predecir la evolución del Happiness Score. Finalmente, se explorarán modelos generalizados mixtos (GLMM) con distribución Gamma, evaluando su adecuación para modelar esta variable continua positiva. El capítulo concluirá con una comparación crítica de los modelos ajustados y una reflexión sobre sus implicaciones prácticas.

5.1 Análisis exploratorio y selección inicial de variables

Aunque ya se analizó previamente la estructura de los datos, antes de ajustar cualquier modelo es útil revisar de nuevo las características más relevantes desde una perspectiva predictiva, identificando posibles problemas (como valores faltantes o outliers) y seleccionando las variables que podrían actuar como buenos predictores del happiness_score.

5.1.1 Estructura del dataset longitudinal

Nuestro conjunto de datos contiene observaciones anuales de múltiples países en el período 2015–2024. Para cada país y año, disponemos de una serie de variables socioeconómicas y

de percepción ciudadana. Las variables disponibles, descritas en el capítulo anterior, son: regional_indicator, gdp, support, life_exp, freedom, generosity, corruption, status, political_rights, civil_liberties, fair_election, regime_category, democracy, electoral_category, presidential, alternation y year.

Dado el enfoque longitudinal del estudio, empleamos country como unidad de agrupación para modelar efectos aleatorios específicos de cada país a lo largo del tiempo, permitiendo así capturar variaciones propias de cada trayectoria nacional. Por otro lado, la variable year se incluye como efecto fijo, ya que representa un factor temporal compartido por todos los países, aunque su tratamiento como efecto aleatorio se explora en los modelos mixtos más complejos; bajo la hipótesis de que los años representan una muestra de una población más amplia de momentos temporales posibles, y nos interesa capturar su variabilidad global.

5.1.2 Visualización y evolución temporal de las variables

Antes de proceder al ajuste del modelo, es útil examinar cómo evolucionan las principales variables explicativas a lo largo del tiempo. En la Figura 5.1 se muestran los gráficos de evolución de tres de las variables más relevantes: Happiness Score, Percepción de Corrupción y Generosidad. Estas variables han sido seleccionadas por su potencial impacto en el bienestar subjetivo y por su comportamiento representativo del conjunto de predictores considerados. El resto de variables presentan patrones temporales más estables o menos informativos visualmente.

Esta visualización permite identificar posibles tendencias globales y diferencias regionales o entre países, lo cual resulta clave para motivar la elección de modelos que incorporen estructura longitudinal y efectos aleatorios por país.

Observando la Figura 5.1, se aprecia que la generosidad (generosity) muestra un aumento moderado en los últimos años, mientras que la percepción de corrupción (corruption) presenta fluctuaciones abruptas asociadas a eventos políticos concretos como pudieron ser muchos de los escándalos que rodearon la pandemia durante 2020 y 2021. La puntuación de felicidad (happiness_score) se mantiene notablemente estable en el tiempo, lo que sugiere que los factores que determinan el bienestar subjetivo podrían tener efectos acumulativos o retardados. Este patrón también plantea la necesidad de utilizar modelos que capten las dinámicas específicas de cada país, ya que el promedio global puede enmascarar trayectorias divergentes a nivel nacional.

5.1.3 Matriz de correlaciones

Antes de ajustar ningún modelo, es útil examinar la correlación entre las variables explicativas y la variable objetivo happiness_score. Esto nos permitirá identificar posibles relaciones lineales, evaluar redundancias y tomar decisiones informadas sobre qué variables incluir inicialmente en el modelo.

Evolución temporal de variables clave (2015-2024)

Figura 5.1: Evolución de la media anual de las variables felicidad, generosidad y percepción de corrupción (2015-2024).

Figura 5.2: Matriz de correlaciones de las variables de nuestra base de datos.

Como se puede observar en la Figura 5.2, las correlaciones más fuertes con happiness_score corresponden a:

- support (0.75): el apoyo social es la variable que más se relaciona con la felicidad percibida.
- life_exp (0.67) y gdp (0.63): muestran relaciones importantes, lo que refleja la relevancia del bienestar económico y la salud.
- freedom (0.59) también presenta una relación moderada.

En cambio, variables como generosity (0.10) y corruption (0.07) muestran una relación muy débil con la felicidad, lo que hace cuestionable su relevancia explicativa. Las correlaciones entre predictores no son excesivamente altas (ninguna supera 0.8), por lo que, en principio, no se anticipan grandes problemas de multicolinealidad. Aun así, esto se verificará con el cálculo del Variance Inflation Factor (VIF). Este indicador mide cuánto se incrementa la varianza de los coeficientes estimados debido a la multicolinealidad. Un valor de VIF superior a 5 (o en algunos contextos, a 10) suele considerarse problemático, ya que sugiere que una variable está altamente correlacionada con otras del modelo, lo que puede afectar a la estabilidad e interpretación de los coeficientes. En este trabajo se utiliza para asegurar que las variables seleccionadas no presentan una correlación excesiva entre sí.

Este análisis justifica incluir support, life_exp, gdp y freedom en una primera versión del modelo, aunque se explorarán también modelos más parciales para comparar rendimiento y parsimonia. No obstante, estas correlaciones deben interpretarse con cautela, ya que se calculan sobre medidas repetidas para los mismos países a lo largo del tiempo, lo que puede inducir una aparente fuerza en la relación debido a la estructura longitudinal de los datos.

5.2 Criterios de selección del modelo

Al construir un modelo estadístico, es común que existan múltiples combinaciones posibles de predictores. Para elegir la especificación más adecuada, se utilizan criterios que balancean dos aspectos fundamentales: el ajuste al conjunto de datos (qué tan bien predice el modelo los datos observados), y la complejidad del modelo (cuántos parámetros se incluyen). Dos de los criterios más utilizados para este propósito son el Akaike Information Criterion (AIC) y el Bayesian Information Criterion (BIC).

AIC penaliza la complejidad del modelo y busca minimizar la pérdida de información. Se calcula como:

$$\mathrm{AIC} = -2 \cdot \log(\hat{L}) + 2k$$

donde \hat{L} es la verosimilitud máxima del modelo y k el número de parámetros.

BIC penaliza más fuertemente los modelos complejos (dependiendo del tamaño de muestra n):

$$\mathrm{BIC} = -2 \cdot \log(\hat{L}) + k \cdot \log(n)$$

Un AIC o BIC más bajo indica un mejor modelo, pero el AIC tiende a seleccionar modelos más complejos (es más permisivo); mientras que el BIC favorece modelos más parsimoniosos (penaliza más la complejidad). Ambos criterios se pueden usar para comparar modelos con los mismos datos y la misma variable respuesta.

5.3 Modelado clásico

Como punto de partida, construimos un modelo clásico de regresión lineal múltiple para explicar el happiness_score a partir de variables como gdp, life_exp, support, freedom, generosity y corruption. Para explorar la mejor combinación de predictores, aplicamos dos estrategias de selección de variables:

5.3.1 Estrategia top-down (backward elimination)

Usamos el criterio AIC y BIC para eliminar aquellas variables cuya eliminación mejora la simplicidad del modelo sin sacrificar capacidad predictiva. A continuación, se muestra la salida completa generada por R utilizando los criterios AIC y BIC, respectivamente:

```
Df Sum of Sq
                             RSS
                                     AIC
                          496.37 -1590.3
<none>
                    2.207 498.57 -1585.8
- generosity 1
corruption
                   10.559 506.93 -1561.3
                   35.828 532.19 -1489.6
- gdp
              1
- life_exp
                   73.315 569.68 -1389.3
- freedom
                   88.735 585.10 -1349.9
              1
                  132.429 628.80 -1243.7
- support
```

Df Sum of Sq

RSS

AIC

```
2.207 498.57 -1554.0
- generosity 1
<none>
                           496.37 -1553.3
                    10.559 506.93 -1529.5
- corruption
              1
                    35.828 532.19 -1457.8
- gdp
               1
- life exp
              1
                    73.315 569.68 -1357.5
- freedom
               1
                    88.735 585.10 -1318.1
- support
              1
                   132.429 628.80 -1212.0
Step: AIC=-1554.02
happiness_score ~ gdp + life_exp + support + freedom + corruption
             Df Sum of Sq
                              RSS
                                       AIC
                           498.57 -1554.0
<none>
- corruption
                    10.754 509.33 -1529.9
- gdp
              1
                    34.143 532.72 -1463.7
                    73.635 572.21 -1358.3
- life_exp
              1
- freedom
              1
                   106.041 604.61 -1277.1
              1
                   131.548 630.12 -1216.2
- support
```

En la selección según AIC, el modelo presenta un AIC final de -1590.3, donde no se excluye ninguna variable. Por su parte, el BIC penaliza más severamente los modelos complejos, favoreciendo modelos más parsimoniosos; en cuyo caso el modelo óptimo presenta un BIC de -1554, descartando generosity. Esta falta de concordancia entre ambos criterios muestra una inestabilidad que sugiere que el modelo ajustado no es lo suficientemente robusto frente a cambios en la penalización por complejidad. Esta sensibilidad es especialmente problemática en contextos con medidas repetidas, como es el caso de los datos longitudinales, y refuerza la necesidad de emplear enfoques más adecuados para esta estructura, como los modelos mixtos.

5.3.2 Estrategia bottom-up (forward selection)

También exploramos una estrategia bottom-up (selección hacia adelante), que parte de un modelo nulo y añade variables una a una en función de la mejora del AIC. Esta estrategia permite comprobar si existe alguna combinación alternativa de predictores que produzca un modelo competitivo o incluso mejor al obtenido por eliminación hacia atrás.

Step: AIC=-826.33

happiness_score ~ support

	Df	Sum of Sq	RSS	AIC
+ life_exp	1	179.860	659.31	-1179.89
+ freedom	1	165.587	673.59	-1148.32
+ gdp	1	116.925	722.25	-1045.50
+ generosity	1	15.313	823.86	-851.48
<none></none>			839.17	-826.33
+ corruption	1	0.023	839.15	-824.37

Step: AIC=-1179.89

happiness_score ~ support + life_exp

```
Df Sum of Sq RSS AIC
+ freedom 1 117.915 541.40 -1468.3
+ gdp 1 31.208 628.11 -1249.4
+ corruption 1 20.373 638.94 -1224.2
+ generosity 1 15.743 643.57 -1213.5
<none> 659.31 -1179.9
```

Step: AIC=-1468.33

happiness_score ~ support + life_exp + freedom

```
Df Sum of Sq RSS AIC
+ gdp 1 32.072 509.33 -1556.3
+ corruption 1 8.683 532.72 -1490.2
<none> 541.40 -1468.3
+ generosity 1 0.642 540.76 -1468.1
```

Step: AIC=-1556.34

happiness_score ~ support + life_exp + freedom + gdp

Df Sum of Sq RSS AIC + corruption 1 10.7540 498.57 -1585.8 + generosity 1 2.4018 506.93 -1561.3

```
<none> 509.33 -1556.3
```

```
Step: AIC=-1585.79
happiness_score ~ support + life_exp + freedom + gdp + corruption

Df Sum of Sq RSS AIC
+ generosity 1 2.2067 496.37 -1590.3
<none> 498.57 -1585.8

Step: AIC=-1590.33
happiness_score ~ support + life_exp + freedom + gdp + corruption + generosity
```

En este caso, el procedimiento fue incorporando progresivamente variables hasta alcanzar el modelo completo, es decir, con todos los predictores. Este resultado contrasta con el modelo obtenido por backward elimination, en el que algunas variables eran descartadas. Esta diferencia refleja que los criterios de selección pueden llevar a soluciones distintas según el punto de partida.

5.3.3 Diagnóstico y validación final del modelo

En base a los resultados anteriores, el modelo final que utilizaremos para el diagnóstico y validación es el siguiente:

$$happiness_score_{ij} = \beta_0 + \beta_1 \ gdp_{ij} + \beta_2 \ life_exp_{ij} + \beta_3 \ support_{ij} + \beta_4 \ freedom_{ij} + \beta_5 \ corruption_{ij} + \epsilon_{ij}.$$

Este modelo muestra un equilibrio adecuado entre capacidad predictiva y parsimonia. Como veremos en la siguiente sección, se procederá ahora a evaluar el ajuste del modelo, su interpretación y su validación diagnóstica. Una vez seleccionado el modelo, es fundamental verificar si cumple con las hipótesis necesarias para garantizar su validez estadística. Estas hipótesis incluyen:

- Normalidad de los residuos.
- Media cero de los residuos.
- Homoscedasticidad (varianza constante de los errores).
- Independencia de los errores.

Figura 5.3: Gráficas para la validación del modelo clásico.

5.3.3.1 Normalidad de los residuos

Se aplica el test de Jarque-Bera para evaluar si los residuos del modelo siguen una distribución normal. El resultado indica un p-valor muy bajo, lo que nos lleva a rechazar la hipótesis de normalidad.

El p-valor obtenido es extremadamente bajo (p-value = 2.195e-10), lo que indica que los residuos no siguen una distribución normal. Esto también se confirma visualmente en el gráfico Q-Q de la Figura 5.3, donde los residuos llega un momento en el que se desvían de la línea teórica.

5.3.3.2 Media cero

Calculamos la media de los residuos para verificar si se aproxima a cero, como requiere el modelo. En este caso, se cumple adecuadamente:

Si observamos la gráfica Residuals vs Fitted en la Figura 5.3, podríamos decir que los residuos están uniformemente dispersos alrededor del eje de abscisas, por lo que se cumple la condición de que los residuos tienen media cero.

5.3.3.3 Homoscedasticidad

Se aplica la prueba de Breusch-Pagan para comprobar si la varianza de los errores es constante. El resultado del test devuelve un p-valor bajo, lo que sugiere la existencia de heterocedasticidad.

El gráfico de residuos frente a los valores ajustados de la Figura 5.3 también muestra un patrón creciente, indicio visual de heterocedasticidad. El test devuelve un p-valor < 2.2e-16, por lo que rechazamos la hipótesis nula de homocedasticidad. Esto indica que hay heterocedasticidad en los residuos, es decir, su varianza no es constante.

5.3.3.4 No correlación de los errores

Mediante el test de Durbin-Watson, se verifica que no exista autocorrelación en los residuos. En este caso, el p-valor es suficientemente alto como para no rechazar la hipótesis nula, por lo que la independencia de los errores se mantiene.

Con un estadístico de Durbin-Watson de 1.4461 y un p-valor < 2.2e-16, se concluye que existe autocorrelación positiva entre los residuos.

5.3.3.5 Conclusión del diagnóstico

Estos incumplimientos sugieren que el modelo, aunque aparentemente ajustado, no es estadísticamente válido en un contexto longitudinal. Específicamente, ignora la dependencia entre observaciones del mismo país a lo largo del tiempo, lo que puede sesgar los resultados.

La inadecuación del modelo clásico justifica el uso de enfoques más robustos, capaces de incorporar la estructura jerárquica de los datos. En particular, los modelos lineales mixtos (LMM) permiten modelar efectos aleatorios por país, capturar la correlación intrínseca entre medidas repetidas y mejorar la validez estadística y la interpretación de los resultados. En la siguiente sección abordamos su aplicación utilizando la función lmer() del paquete lme4.

5.4 Modelos Lineales Mixtos (LMM)

En el análisis clásico mediante regresión lineal múltiple se asumía que las observaciones eran independientes entre sí. Sin embargo, en nuestro caso trabajamos con datos longitudinales, es decir, con observaciones repetidas a lo largo del tiempo para los mismos países. Esto introduce una dependencia entre observaciones dentro del mismo país que los modelos clásicos no pueden capturar adecuadamente.

Para abordar esta limitación recurrimos a los modelos lineales mixtos (LMM). Estos modelos permiten combinar efectos fijos, que capturan el efecto promedio de los predictores sobre

la variable respuesta en toda la población, y efectos aleatorios, que permiten modelar la variabilidad específica entre países, incorporando interceptos (y potencialmente pendientes) distintos para cada uno. De esta forma podemos capturar la estructura jerárquica de los datos, reconociendo que cada país puede tener un nivel base de felicidad distinto (intercepto propio), mientras que los efectos de las variables predictoras son comunes a todos los países. En nuestro modelo, se consideran efectos fijos aquellas variables explicativas cuyo efecto queremos estimar de forma generalizable para toda la población (en este caso, todos los países y años). Estas variables incluyen gdp, support, freedom, life_exp, corruption y las variables políticas (is democracy, regime category, etc.). Se introduce un efecto aleatorio por país (intercepto aleatorio), porque cada país tiene un nivel base distinto de felicidad no explicado por las variables fijas, hay dependencia entre observaciones del mismo país en distintos años, y no nos interesa estimar el efecto específico de cada país, sino tener en cuenta la variabilidad entre ellos. Además, se incorpora también year como efecto aleatorio, ya que se asume que la evolución temporal del Happiness Score no es idéntica en todos los países. Algunos pueden experimentar mejoras sostenidas a lo largo del tiempo, mientras que otros pueden mostrar estancamiento o incluso retrocesos. Permitir que la relación con el tiempo varíe entre países nos ayuda a modelar mejor esta heterogeneidad en las trayectorias temporales, respetando la estructura longitudinal de los datos. El modelo lineal mixto que vamos a plantear es el siguiente:

$$\begin{split} happinessscore_{ij} &= \beta_0 + \beta_1 \cdot regional indicator_{ij} + \beta_2 \cdot \text{gdp}_{ij} + \beta_3 \cdot \text{support}_{ij} + \beta_4 \cdot lifeexp_{ij} + \beta_5 \cdot \text{freedom}_{ij} \\ &+ \beta_6 \cdot \text{generosity}_{ij} + \beta_7 \cdot \text{corruption}_{ij} + \beta_8 \cdot \text{status}_{ij} + \beta_9 \cdot political rights_{ij} \\ &+ \beta_{10} \cdot civilliberties_{ij} + \beta_{11} \cdot fairelection_{ij} + \beta_{12} \cdot regime category_{ij} + \beta_{13} \cdot \text{democracy}_{ij} \\ &+ \beta_{14} \cdot electoral category_{ij} + \beta_{15} \cdot \text{presidential}_{ij} + \beta_{16} \cdot \text{alternation}_{ij} + \beta_{17} \cdot \text{year}_{ij} \\ &+ u_{0i} + u_{1i} \cdot \text{year}_{ij} + \varepsilon_{ij} \end{split}$$

donde:

- i representa el país y j el año,
- β_k son los coeficientes fijos asociados a cada variable explicativa,
- $u_{0i} \sim \mathcal{N}(0, \sigma_{u0}^2)$ es el intercepto aleatorio por país,
- $u_{1i} \sim \mathcal{N}(0, \sigma_{u1}^2)$ es el efecto aleatorio asociado al año dentro de cada país,
- $\varepsilon_{ii} \sim \mathcal{N}(0,\sigma^2)$ es el término de error residual.

Para seleccionar el mejor modelo, partimos del modelo mixto completo y generamos múltiples modelos candidatos con diferentes combinaciones de predictores. Iniciamos una búsqueda automática que identifica los modelos con mejor equilibrio entre ajuste y complejidad, evaluado mediante el AIC. Para comparar modelos con distintos efectos fijos, es necesario ajustar el modelo inicial utilizando máxima verosimilitud (ML) en lugar de REML, que solo es apropiado cuando la estructura de efectos fijos permanece constante. De esta manera, generamos una lista

de modelos candidatos ordenados por su AIC, de manera que si el primer modelo de la lista no resulta válido en nuestro futuro diagnóstico, pasamos al siguiente modelo de la lista; y así suvesivamente hasta que encontremos un LMM válido. A continuación, se muestra la salida del LMM:

```
happiness_score ~ civil_liberties + electoral_category + freedom + gdp + life_exp + political_rights + regime_category + regional_indicator + status + support + year + (1 + year | country)
```

```
Estimate Std. Error
(Intercept)
                                                         0.324164364 7.552933852
civil_liberties
                                                        -0.085706718 0.028206322
electoral_categoryno elections
                                                         0.316988344 0.569139562
electoral_categorynon-democratic multi-party elections -0.101173814 0.517014422
electoral_categorysingle-party elections
                                                        -0.129317136 0.577749162
freedom
                                                         1.105677827 0.096976533
gdp
                                                         0.004129873 0.005079433
life_exp
                                                         0.006873066 0.002001046
political_rights
                                                        -0.005281865 0.023568327
regime_categoryMilitary dictatorship
                                                        -0.484888243 0.181621420
regime_categoryMixed democratic
                                                        0.058916397 0.512188688
regime categoryParliamentary democracy
                                                         0.491964838 0.512982203
regime_categoryPresidential democracy
                                                        0.108316702 0.519870834
regime_categoryRoyal dictatorship
                                                        0.439323470 0.231154641
regional_indicatorCommonwealth of Independent States
                                                        0.025284819 0.139357843
regional_indicatorEast Asia
                                                        -0.197676926 0.176556838
regional_indicatorLatin America and Caribbean
                                                        0.240652851 0.164965613
regional_indicatorMiddle East and North Africa
                                                        -0.104757067 0.133162217
regional_indicatorNorth America and ANZ
                                                         0.688070128 0.273939730
regional_indicatorSouth Asia
                                                        -0.950068059 0.233030796
regional_indicatorSoutheast Asia
                                                        -0.311388279 0.176401551
regional_indicatorSub-Saharan Africa
                                                        -0.643376248 0.122628095
regional_indicatorWestern Europe
                                                         0.028827313 0.073907493
statusNF
                                                         0.150746827 0.101146917
                                                         0.101287923 0.063310348
statusPF
                                                         0.685181773 0.077924287
support
                                                         0.001860154 0.003774405
year
                                                           t value
(Intercept)
                                                         0.0429190
civil liberties
                                                        -3.0385642
electoral_categoryno elections
                                                         0.5569607
electoral_categorynon-democratic multi-party elections -0.1956886
```

electoral_categorysingle-party elections	-0.2238292
freedom	11.4014988
gdp	0.8130579
life_exp	3.4347361
political_rights	-0.2241086
regime_categoryMilitary dictatorship	-2.6697745
regime_categoryMixed democratic	0.1150287
regime_categoryParliamentary democracy	0.9590291
regime_categoryPresidential democracy	0.2083531
regime_categoryRoyal dictatorship	1.9005609
regional_indicatorCommonwealth of Independent States	0.1814381
regional_indicatorEast Asia	-1.1196220
regional_indicatorLatin America and Caribbean	1.4588062
regional_indicatorMiddle East and North Africa	-0.7866876
regional_indicatorNorth America and ANZ	2.5117573
regional_indicatorSouth Asia	-4.0770064
regional_indicatorSoutheast Asia	-1.7652242
regional_indicatorSub-Saharan Africa	-5.2465648
regional_indicatorWestern Europe	0.3900459
statusNF	1.4903749
statusPF	1.5998636
support	8.7929168
year	0.4928338

La salida del modelo mixto lineal seleccionado muestra un ajuste con un gran número de predictores fijos y un efecto aleatorio de intercepto y pendiente de año por país, lo que permite capturar variaciones estructurales tanto entre países como a lo largo del tiempo. En concreto, el modelo es el siguiente:

$$\begin{split} happinessscore_{ij} &= \beta_0 + \beta_1 \cdot civilliberties_{ij} + \beta_2 \cdot electoral category_{ij} + \beta_3 \cdot \text{freedom}_{ij} \\ &+ \beta_4 \cdot \text{gdp}_{ij} + \beta_5 \cdot lifeexp_{ij} + \beta_6 \cdot political rights_{ij} + \beta_7 \cdot regime category_{ij} \\ &+ \beta_8 \cdot regional indicator_{ij} + \beta_9 \cdot \text{status}_{ij} + \beta_{10} \cdot \text{support}_{ij} + \beta_{11} \cdot \text{year}_{ij} \\ &+ u_{0j} + u_{1j} \cdot \text{year}_{ij} + \epsilon_{ij} \end{split}$$

Entre los efectos fijos, se observa que freedom, life_exp y especialmente support tienen efectos positivos y estadísticamente significativos sobre el nivel de felicidad, lo que indica que mayores niveles de libertad percibida, esperanza de vida y apoyo social están fuertemente asociados con un mayor puntaje de felicidad. La variable civil_liberties muestra un efecto negativo significativo, lo que sugiere que una mayor ausencia de libertades civiles se relaciona con una menor felicidad. También destaca el indicador regional North America and ANZ, con un coeficiente positivo y significativo, lo que indica que esta región tiene niveles de felicidad superiores respecto a la categoría de referencia. Por el contrario, otras regiones como

South Asia o Sub-Saharan Africa presentan efectos negativos y significativos, evidenciando una menor felicidad media en esas áreas. Dentro de las variables políticas, el régimen de Military dictatorship tiene un efecto negativo relevante, mientras que el statusPF (partly free) tiene un efecto positivo aunque de menor magnitud. En cuanto a los efectos aleatorios, se observa una alta varianza en el intercepto entre países, lo que indica diferencias estructurales sustanciales en el nivel base de felicidad entre ellos, mientras que el efecto aleatorio del año presenta una correlación perfecta negativa con el intercepto (-1.00), lo que puede sugerir redundancia o colinealidad en las tendencias temporales entre países. Además, el modelo presenta advertencias de convergencia y posibles problemas de identificabilidad debido a un ratio elevado de autovalores, lo que sugiere la necesidad de estandarizar variables o revisar la multicolinealidad. A pesar de ello, el modelo explica adecuadamente la variabilidad de la felicidad teniendo en cuenta factores estructurales, económicos, sociales y políticos a lo largo de países y años.

Para evaluar la calidad del modelo, utilizaremos las siguientes medidas: el R² marginal, que representa la proporción de varianza explicada por los efectos fijos, y el R² condicional, que representa proporción de varianza explicada por todo el modelo (fijos + aleatorios).

La salida del cálculo del R² para el modelo mixto seleccionado indica que el modelo explica una parte considerable de la variabilidad del Happiness Score. En concreto, el R² marginal es de 0.702, lo que significa que aproximadamente el 70.2% de la varianza total en la felicidad se explica exclusivamente por los efectos fijos del modelo, es decir, por las variables observables incluidas como predictores (como freedom, support, life_exp, civil_liberties, indicadores políticos y regionales, entre otros). Por otro lado, el R² condicional asciende hasta 0.932, lo que implica que si además se consideran los efectos aleatorios —en este caso, las variaciones específicas de cada país y la interacción con el año— el modelo es capaz de explicar el 93.2% de la varianza total del Happiness Score. Esta gran diferencia entre el R² marginal y condicional revela que la heterogeneidad no explicada por los predictores fijos pero capturada por los efectos aleatorios, especialmente a nivel país y su evolución temporal, juega un papel clave en la explicación de la felicidad. En conjunto, estos resultados reflejan que el modelo tiene un poder explicativo muy alto, y que tanto las variables medidas como las estructuras latentes por país y año contribuyen significativamente a entender las diferencias en los niveles de felicidad.

Como en cualquier modelo estadístico, es esencial verificar que las suposiciones sobre los residuos se cumplen también en el contexto de modelos mixtos. En particular, se evaluó la normalidad de los residuos, la homocedasticidad (varianza constante de los errores), y la ausencia de patrones sistemáticos entre residuos y valores ajustados. Para ello, se utilizan gráficos diagnósticos similares a los del modelo clásico, pero adaptados a la estructura jerárquica de los datos.

Para validar los supuestos del modelo ajustado, se utiliza la función testResiduals() del paquete DHARMa(Hartig 2024). Esta función genera residuos simulados a partir del modelo ajustado mediante simulaciones paramétricas, y los compara con los residuos observados; evaluando de manera robusta tres aspectos fundamentales de los residuos. Primero, la

QQ plot residuals

Figura 5.4: QQ-plot de los residuos simulados del modelo mixto.

Figura 5.5: Dispersión de los residuos simulados frente a los valores predichos.

uniformidad, ya que verifica si los residuos simulados siguen una distribución uniforme, lo que sería esperable bajo un modelo bien especificado; basándose en el test de Kolmogorov–Smirnov. Segundo, la dispersión, evaluando si existe sobre o infra-dispersión en los residuos, comparando la variabilidad observada con la esperada. Y por último, los valores atípicos (outliers), porque detecta si hay un número de observaciones atípicas mayor al esperado bajo el modelo; utilizando una prueba binomial exacta para estimar la proporción de outliers.

\$uniformity

Asymptotic one-sample Kolmogorov-Smirnov test

data: simulationOutput\$scaledResiduals

D = 0.034426, p-value = 0.06889 alternative hypothesis: two-sided

\$dispersion

 $\ensuremath{\mathsf{DHARMa}}$ nonparametric dispersion test via sd of residuals fitted vs. simulated

data: simulationOutput

dispersion = 1.0593, p-value = 0.512
alternative hypothesis: two.sided

\$outliers

 $\ensuremath{\mathsf{DHARMa}}$ outlier test based on exact binomial test with approximate expectations

data: simulationOutput

outliers at both margin(s) = 17, observations = 1421, p-value = 0.09827 alternative hypothesis: true probability of success is not equal to 0.007968127 95 percent confidence interval:

0.006984144 0.019085672

sample estimates:

frequency of outliers (expected: 0.00796812749003984) 0.01196341

Figura 5.6: Resultados del test formal de uniformidad aplicado a los residuos simulados.

5.4.1 Normalidad

El gráfico QQ-plot de la Figura 5.4 muestra una alineación bastante ajustada de los residuos simulados con la línea teórica, lo que sugiere una distribución aproximadamente normal. Aunque se observan ligeras desviaciones en las colas, el test de Kolmogorov-Smirnov aplicado a los residuos proporciona un p-valor de 0.06889, lo que indica que no se puede rechazar la hipótesis nula de normalidad. Por tanto, los residuos no presentan desviaciones significativas con respecto a la normalidad y el modelo cumple satisfactoriamente con este supuesto.

5.4.2 Homocedasticidad

En el gráfico de residuos frente a valores ajustados de la Figura 5.5, la nube de puntos es dispersa y no se detecta un patrón claro de aumento o disminución de la varianza a lo largo del rango de valores predichos. El test de dispersión de DHARMa refuerza esta conclusión con un p-valor de 0.512, indicando que no existen evidencias significativas de heterocedasticidad. La varianza de los residuos puede considerarse homogénea, por lo que el modelo cumple también con el supuesto de homocedasticidad.

5.4.3 Outliers y estructura de los residuos

En cuanto a los outliers, el test binomial exacto estima una proporción del 1.2% de observaciones extremas (17 de 1421), que no difiere significativamente de la esperada por azar (p = 0.09827). Esto implica que la presencia de valores extremos no es problemática. Sin embargo, el gráfico de residuos simulados frente a predicciones de la Figura 5.6 revela ciertas desviaciones en los cuantiles (indicadas por las líneas rojas), y el test de cuantiles combinado resulta significativo, lo que sugiere que podrían existir ciertas estructuras residuales no completamente capturadas por el modelo, aunque no afectan gravemente al ajuste global.

5.4.4 Conclusión del diagnóstico

El diagnóstico general indica que el modelo cumple de forma razonable con los tres supuestos clave: normalidad, homocedasticidad y proporción esperada de outliers. Aunque existe una ligera desviación en los cuantiles residuales, los resultados no invalidan el modelo y se puede considerar estadísticamente robusto y fiable para la inferencia y la predicción del Happiness Score. Esta validación respalda la solidez del modelo ajustado y su utilidad para explicar las variaciones en la felicidad a partir de los factores seleccionados.

5.4.5 Interpretación de coeficientes

Los coeficientes estimados del modelo permiten identificar qué factores están asociados de forma significativa con el nivel de felicidad percibida en los países a lo largo del tiempo. Freedom (coef. = 1.11, p < 0.001) destaca como uno de los predictores más influyentes, indicando que, a igualdad del resto de variables, los países donde los ciudadanos sienten mayor libertad personal tienden a presentar niveles de felicidad considerablemente más altos. Del mismo modo, support (coef. = 0.69, p < 0.001) refleja una relación clara entre el respaldo social percibido y la felicidad: las personas que creen poder contar con otros en momentos difíciles tienden a valorar más positivamente su vida. También life_exp muestra una asociación positiva (coef. = 0.0069, p < 0.01), lo que sugiere que una mayor esperanza de vida suele ir acompañada de una mayor satisfacción general, probablemente porque refleja sistemas sanitarios y condiciones de vida más favorables.

Por otro lado, civil_liberties tiene un coeficiente negativo y significativo (coef. = -0.0857, p < 0.01), lo que indica que mayores restricciones en las libertades civiles están asociadas a menores niveles de felicidad. Entre las variables categóricas, destacan efectos significativos en varias categorías. Por ejemplo, los países clasificados bajo una dictadura militar presentan niveles significativamente menores de felicidad en comparación con la categoría base de régimen (coef. = -0.48, p < 0.01), lo cual concuerda con la intuición de que este tipo de regímenes tiende a restringir derechos y bienestar. También es llamativo el efecto negativo de Sub-Saharan Africa (coef. = -0.64, p < 0.001) y South Asia (coef. = -0.95, p < 0.001) en comparación con la región de referencia, lo que sugiere que, tras controlar por el resto de factores, vivir en estas regiones sigue asociado a menores niveles medios de felicidad, probablemente por desigualdades estructurales persistentes. En contraste, North America and ANZ presenta un coeficiente positivo y significativo (coef. = 0.69, p < 0.05), reflejando una tendencia sistemática a valores de felicidad más altos que el promedio global, incluso tras ajustar por factores económicos, sociales y políticos.

Aunque variables como el PIB per cápita (gdp) no resultaron estadísticamente significativas en este modelo ajustado (coef. = 0.0041, p 0.81), esto no implica que carezcan de importancia, sino que su efecto puede estar solapado o absorbido por otras variables más directamente relacionadas con el bienestar subjetivo, como el apoyo social o la percepción de libertad. En conjunto, el modelo permite interpretar que la felicidad no depende únicamente de condiciones materiales, sino que se ve fuertemente influida por factores relacionales y políticos, como la percepción de libertad, la confianza social, y las libertades civiles. Estos resultados respaldan un enfoque multidimensional para entender el bienestar, en el que el contexto democrático y el capital social resultan claves.

5.4.6 Predicción del Happiness Score para 2025

Usando el modelo mixto ajustado y extrapolando con los valores más recientes disponibles, se pueden obtener predicciones personalizadas por país. Esto permite construir un ranking

proyectado de felicidad para 2025.

Tabla 5.1: Comparación del ranking de felicidad en 2025 y 2024 (Top, España, Bottom)

		Ranking		Ranking	
País	Score 2025	2025	Score 2024	2024	Sección
Finland	7.754787	1	7.7407	1	Top 10
Denmark	7.605956	2	7.5827	2	Top 10
Iceland	7.523590	3	7.5251	3	Top 10
Netherlands	7.420702	4	7.3194	6	Top 10
Switzerland	7.413425	5	7.0602	9	Top 10
Norway	7.404728	6	7.3017	7	Top 10
Sweden	7.354201	7	7.3441	4	Top 10
Israel	7.257159	8	7.3411	5	Top 10
New Zealand	7.218312	9	7.0292	11	Top 10
Luxembourg	7.204100	10	7.1219	8	Top 10
Spain	6.415798	28	6.4209	35	España
Tanzania	3.579505	139	3.7806	125	Bot 10
Malawi	3.540040	140	3.4210	130	Bot 10
Lesotho	3.519870	141	3.1862	135	Bot 10
Botswana	3.498908	142	3.3834	131	Bot 10
Burundi	3.451707	143	NA	NA	Bot 10
Rwanda	3.421365	144	NA	NA	Bot 10
Zimbabwe	3.278723	145	3.3411	132	Bot 10
Central African	3.231135	146	NA	NA	Bot 10
Republic					
South Sudan	3.189009	147	NA	NA	Bot 10
Afghanistan	2.539557	148	1.7210	137	Bot 10

Lo primero que podemos observar en la Tabla 5.1 es que los países nórdicos continúan liderando el ranking global del Happiness Score estimado para 2025. Se observa que Finlandia encabeza el ranking con una predicción de 7.75 puntos, consolidando su posición como líder mundial en bienestar subjetivo. Le siguen Dinamarca (7.61), Islandia (7.52) y Países Bajos (7.42), todos muy cerca entre sí, lo que refleja una estabilidad en sus altos niveles de calidad de vida. El top 10 lo completan países con economías desarrolladas y estados de bienestar consolidados como Suiza, Noruega, Suecia, Israel Nueva Zelanda y Luxemburgo, todos con puntuaciones superiores a 7.2.

En el extremo opuesto del ranking, los países con los niveles más bajos de felicidad prevista son Afganistán, que ocupa el último puesto con un valor de 2.54, seguido por Sudán del Sur, República Centroafricana y Zimbabue. Estas naciones presentan conflictos persistentes, pobreza extrema o inestabilidad política. Todas las puntuaciones están por debajo de 3.6, lo

que refleja condiciones estructurales desfavorables que impactan fuertemente en el bienestar subjetivo.

Si nos fijamos en España, obtiene un Happiness Score previsto de 6.42, situándose en la posición 28. Esta puntuación refleja un nivel de felicidad moderadamente alto, por encima de la media global. Aunque no alcanza los niveles nórdicos, se encuentra en el tercio superior del ranking, lo que implica una posición destacada entre los países con mayor bienestar percibido. Aunque la puntuación de felicidad predicha para España en 2025 es la misma que para 2024, la posición en el ranking mejora: sube del puesto 35 al 28. Esto implica que otros países han bajado más que España, permitiendo su ascenso en el ranking a pesar de una leve caída en su puntuación. Es un buen ejemplo de cómo el ranking depende no solo del valor absoluto, sino también del contexto comparativo entre países.

A partir de los resultados obtenidos en este capítulo, se ha desarrollado una aplicación interactiva en Shiny que permite explorar de forma dinámica los modelos mixtos ajustados sobre los datos de felicidad. La aplicación está diseñada para que el usuario pueda seleccionar distintas combinaciones de variables fijas, así como elegir entre distintos niveles de complejidad del modelo (intercepto aleatorio, pendiente aleatoria, etc.), y visualizar tanto los coeficientes estimados como las métricas de calidad del modelo (AIC, R² marginal y condicional). Además, permite generar predicciones personalizadas por país y año, lo que convierte a la app en una herramienta potente para observar cómo se comporta el modelo bajo distintos escenarios. Esta implementación traslada al entorno interactivo todo el proceso de modelado descrito en este capítulo, permitiendo al usuario comprobar en tiempo real cómo influyen los distintos predictores sobre la felicidad y cómo se ajustan los modelos a las características longitudinales y jerárquicas de los datos. Dicha aplicación está descrita en el siguiente capítulo.

5.5 Desarrollo del Modelo Lineal Generalizado Mixto (GLMM)

En esta sección se explora una alternativa al modelo mixto clásico mediante un modelo lineal generalizado mixto (GLMM). Este tipo de modelos permite relajar el supuesto de normalidad de los residuos, especialmente útil cuando la variable dependiente presenta asimetría. Dado que el Happiness Score es una variable estrictamente positiva y su distribución es ligeramente asimétrica hacia la derecha, se ha optado por utilizar una distribución Gamma con enlace logarítmico.

El modelo ajustado incorpora efectos fijos para variables económicas, sociales y políticas, así como un efecto aleatorio de intercepto y pendiente por país agrupado por región. Esta estructura busca capturar no solo la variabilidad entre países, sino también diferencias estructurales asociadas al contexto regional de cada nación.

A diferencia del enfoque anterior basado en modelos lineales mixtos, en este caso se ha adoptado una estrategia de búsqueda automática de modelos válidos combinando variables candidatas en distintos subconjuntos. El principal motivo por el que no utilizamos el mismo modelo que

para LMM es que no encontramos ningún GLMM que fuese válido con year como efecto aleatorio; por lo que consideramos que utilizar regional_indicator también sería coherente para nuestro estudio. Para cada combinación se ha evaluado la validez del modelo ajustado aplicando los tests de DHARMa sobre los residuos simulados, exigiendo que se superen tres pruebas clave: uniformidad, homocedasticidad y ausencia de outliers.

La búsqueda sistemática ha identificado un modelo válido con dos predictores fijos: support (apoyo social percibido) y life_exp (esperanza de vida). En concreto, el modelo es el siguiente:

$$\mathrm{Happiness}_{ij} \sim \mathrm{Gamma}(\mu_{ij}, \theta)$$

$$\log(\mu_{ij}) = \beta_0 + \beta_1 \cdot \text{support}_{ij} + \beta_2 \cdot lifeexp_{ij} + u_{0i} + u_{1i} \cdot regional indicator_{ij}.$$

donde:

- μ_{ij} es la esperanza del nivel de felicidad del país i en el año j.
- $\beta_0, \beta_1, \beta_2$ son los efectos fijos.
- u_{0i}, u_{1i} son los efectos aleatorios asociados al país i, permitiendo interceptos y pendientes distintos según el país en función de regional_indicator.
- El término $\log(\mu_{ij})$ indica que se usa un link logarítmico, adecuado para una distribución Gamma.

A pesar de que se han explorado sistemáticamente cientos de combinaciones de predictores posibles para ajustar un modelo lineal generalizado mixto (GLMM) válido, ninguno de los modelos obtenidos ha devuelto un valor definido para el AIC: en todos los casos, esta métrica ha aparecido como NA (Not Available). El Akaike Information Criterion (AIC) es una medida muy utilizada para comparar modelos, ya que permite evaluar el equilibrio entre calidad de ajuste y complejidad del modelo. Un AIC más bajo indica, en principio, un modelo más parsimonioso y con mejor capacidad predictiva relativa. Sin embargo, para que este criterio pueda calcularse correctamente, es necesario que el modelo se haya ajustado mediante máxima verosimilitud (ML) y que todos los componentes del modelo —incluyendo los efectos fijos, los aleatorios y los parámetros de dispersión— sean estimados de forma numéricamente estable.

El hecho de que todos los modelos válidos encontrados tengan el AIC como NA sugiere que, aunque la simulación de residuos mediante el paquete DHARMa indica un ajuste aceptable, el proceso interno de optimización del modelo ha sido inestable o degenerado en ciertos aspectos. Algunas de las posibles causas de este problema son la singularidad en los efectos aleatorios, es decir, que las varianzas estimadas para algunos componentes sean exactamente cero o que haya correlaciones perfectas entre efectos; la colinealidad alta entre predictores fijos y/o aleatorios, lo que dificulta la identificación de los parámetros; la redundancia estructural en el modelo (por ejemplo, efectos aleatorios innecesarios o mal definidos); o ciertos problemas numéricos durante la optimización de la log-verosimilitud penalizada, que impiden calcular la función objetivo de forma precisa.

Es importante destacar que el hecho de que el AIC sea NA no implica necesariamente que el modelo sea inválido, sino que no se puede evaluar su calidad relativa frente a otros modelos

utilizando esta métrica. En este trabajo, para priorizar la validez estadística del modelo (basada en la uniformidad, homocedasticidad y ausencia de outliers en los residuos simulados), se ha optado por aceptar modelos con AIC NA, aunque se documenta esta limitación de forma explícita. En futuras investigaciones, una posible solución sería reducir la complejidad de la estructura aleatoria o limitar el número de predictores simultáneamente considerados, lo que podría estabilizar la estimación del modelo y permitir el cálculo correcto del AIC. A continuación, se muestra la salida del GLMM:

```
Family: Gamma (log)
Formula:
happiness_score ~ support + life_exp + (1 + regional_indicator |
                                                                      country)
Data: df_unificado
      AIC
                       logLik -2*log(L)
                BIC
                                         df.resid
       NA
                 NA
                           NA
                                     NA
                                             1362
Random effects:
Conditional model:
 Groups Name
                                                              Variance
 country (Intercept)
                                                              1.104e-02
         regional indicatorCommonwealth of Independent States 6.758e-04
         regional_indicatorEast Asia
                                                              7.271e-04
         regional_indicatorLatin America and Caribbean
                                                              2.663e-55
         regional_indicatorMiddle East and North Africa
                                                              4.610e-03
         regional_indicatorNorth America and ANZ
                                                              8.573e-03
         regional_indicatorSouth Asia
                                                              1.320e-01
         regional_indicatorSoutheast Asia
                                                              3.069e-05
         regional_indicatorSub-Saharan Africa
                                                              1.472e-02
         regional_indicatorWestern Europe
                                                              2.554e-03
 Std.Dev. Corr
 1.051e-01
 2.600e-02 -0.60
 2.696e-02 -0.98 0.73
 5.161e-28 -1.00 0.60 0.98
 6.790e-02 0.93 -0.83 -0.98 -0.93
 9.259e-02 1.00 -0.60 -0.98 -1.00 0.93
 3.633e-01 -1.00 0.60 0.98 1.00 -0.93 -1.00
 5.540e-03 -0.90 0.81 0.95 0.90 -0.98 -0.90 0.90
 1.213e-01 0.98 -0.44 -0.93 -0.98 0.85 0.98 -0.98 -0.81
 5.054e-02 0.72 0.13 -0.58 -0.72 0.42 0.72 -0.71 -0.39
```

Number of obs: 1421, groups: country, 148

Dispersion estimate for Gamma family (sigma^2): 0.00503

Conditional model:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.4210831
                       0.0389971
                                   36.44
                                          < 2e-16 ***
support
            0.2141082
                       0.0201328
                                   10.63
                                         < 2e-16 ***
life_exp
            0.0020772
                      0.0004669
                                    4.45 8.63e-06 ***
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

La salida del modelo generalizado mixto (GLMM) ajustado muestra un modelo con una estructura aleatoria por país que incluye la variación de la región (regional_indicator) dentro de cada país, lo que permite capturar diferencias contextuales regionales en el efecto de la felicidad. Este modelo ha sido ajustado utilizando una distribución Gamma con enlace logarítmico, lo que resulta apropiado dado que el Happiness Score es una variable continua y estrictamente positiva, con una ligera asimetría hacia la derecha.

Entre los efectos fijos, se observa que tanto support como life_exp tienen efectos positivos y altamente significativos sobre el nivel de felicidad (p < 0.001 en ambos casos). El coeficiente de support es de 0.2141, lo que implica que, manteniendo constantes el resto de variables, un incremento de una unidad en el nivel de apoyo social está asociado con un incremento multiplicativo de aproximadamente un 24% (exp(0.2141) = 1.24) en el valor esperado del Happiness Score. Este resultado refuerza la idea de que el respaldo social percibido tiene un fuerte vínculo con el bienestar subjetivo. Por su parte, el coeficiente de life_exp es de 0.00207, lo que significa que por cada año adicional de esperanza de vida, el Happiness Score se incrementa en torno a un 0.2%, lo cual refleja que las condiciones sanitarias y de longevidad están positivamente relacionadas con la percepción de felicidad.

En cuanto a los efectos aleatorios, se observa una importante varianza del intercepto entre países (0.01104), lo que indica que existen diferencias estructurales en el nivel base de felicidad que no son explicadas por las variables fijas incluidas. Además, se ha modelado la variabilidad del efecto de regional_indicator dentro de cada país, permitiendo que la influencia de la región sobre la felicidad varíe de forma diferenciada entre países. Este enfoque resulta útil para capturar las dinámicas regionales internas, aunque algunos de los componentes de esta estructura muestran varianzas cercanas a cero (como en el caso de Latin America and Caribbean) o correlaciones extremas entre efectos aleatorios (-1.00 o 1.00), lo que puede indicar problemas de colinealidad o redundancia estadística en determinadas regiones. Por ejemplo, las correlaciones perfectas observadas en South Asia o North America and ANZ podrían reflejar que, en esos contextos, los efectos de la región están perfectamente alineados con los del país, reduciendo la utilidad práctica de esa complejidad adicional en la estructura aleatoria.

Por último, el modelo presenta un estimador de dispersión (σ^2) de 0.00503, lo que indica una baja variabilidad residual después de ajustar el modelo, y sugiere un buen ajuste global del

modelo Gamma con enlace logarítmico. Esta baja dispersión es coherente con los resultados obtenidos en la validación previa, donde se confirmó que el modelo cumple con los supuestos de uniformidad, homocedasticidad y ausencia de outliers problemáticos mediante los tests del paquete DHARMa.

En conjunto, este modelo GLMM permite capturar de forma eficaz la relación entre felicidad y factores sociales y sanitarios, teniendo en cuenta también la variabilidad específica de cada país y región. Aunque su estructura aleatoria compleja aporta flexibilidad, los signos de redundancia en ciertas regiones invitan a considerar modelos más parsimoniosos en futuras investigaciones. Aun así, el modelo ajustado se muestra estadísticamente válido y útil para la predicción y explicación del Happiness Score en contextos internacionales.

Se ha calculado el R² marginal para el modelo GLMM, obteniendo un valor de **0.387**, lo que indica que los efectos fijos del modelo explican aproximadamente el 38.7% de la varianza del Happiness Score. Sin embargo, no ha sido posible calcular el R² condicional (que incluye la contribución de los efectos aleatorios) debido a que varios componentes de la estructura aleatoria presentan varianzas nulas o cercanas a cero, lo que genera problemas de identificabilidad y singularidad. Además, el modelo incluye pendientes aleatorias no reflejadas como efectos fijos, lo que impide una estimación fiable de la varianza total explicada. Este comportamiento es común en modelos GLMM con estructuras complejas o redundantes, y no compromete la validez del modelo en términos de significación y ajuste, pero limita la interpretación cuantitativa del componente aleatorio.

Al igual que hicimos antes, vamos a comprobar que este modelo es válido para poder hacer predicciones.

\$uniformity

Asymptotic one-sample Kolmogorov-Smirnov test

data: simulationOutput\$scaledResiduals

D = 0.034238, p-value = 0.07148 alternative hypothesis: two-sided

\$dispersion

DHARMa nonparametric dispersion test via sd of residuals fitted vs. simulated

data: simulationOutput

dispersion = 0.81883, p-value = 0.176
alternative hypothesis: two.sided

QQ plot residuals

Figura 5.7: QQ-plot de los residuos simulados del modelo mixto.

Figura 5.8: Dispersión de los residuos simulados frente a los valores predichos.

\$outliers

DHARMa outlier test based on exact binomial test with approximate expectations

```
data: simulationOutput
outliers at both margin(s) = 7, observations = 1421, p-value = 0.2325
alternative hypothesis: true probability of success is not equal to 0.007968127
95 percent confidence interval:
    0.001982776    0.010123174
sample estimates:
frequency of outliers (expected: 0.00796812749003984 )
```

0.004926108

Figura 5.9: Resultados del test formal de uniformidad aplicado a los residuos simulados.

5.5.1 Normalidad de residuos

El gráfico QQ-plot de residuos de la Figura 5.7 simulados muestra una alineación bastante razonable con la línea diagonal, sin grandes desviaciones sistemáticas. El test de Kolmogorov-Smirnov aplicado a los residuos simulados arroja un p-valor de 0.071, por encima del umbral convencional de 0.05. Esto indica que no se puede rechazar la hipótesis de uniformidad en la distribución de los residuos, cumpliendo así el supuesto análogo de normalidad en modelos GLMM.

5.5.2 Homocedasticidad

El test de dispersión de DHARMa compara la desviación estándar de los residuos ajustados frente a los simulados. Se obtiene un p-valor de 0.176, lo que indica que no hay evidencia significativa de heterocedasticidad. El gráfico de residuos frente a predicciones de la Figura 5.8 tampoco muestra patrones preocupantes de varianza creciente o decreciente. En este aspecto, el modelo cumple adecuadamente con el supuesto de homocedasticidad.

5.5.3 Outliers y estructura de los residuos

El test binomial detecta 7 outliers en un total de 1421 observaciones, lo que representa un 0.49%, inferior al valor esperado (0.8%). El p-valor = 0.2325 indica que la proporción observada de valores extremos no difiere significativamente de la que cabría esperar por azar. Por tanto, no hay indicios de que los outliers estén afectando de manera relevante el ajuste del modelo.

Aunque los test formales indican adecuación, el gráfico de residuos frente a valores ajustados de la Figura 5.9 muestra curvas de cuantiles que se desvían del comportamiento aleatorio esperado, lo que ha llevado a que el test combinado de cuantiles sea significativo. Esto sugiere la posible existencia de estructuras residuales no capturadas completamente por el modelo, probablemente relacionadas con interacciones o efectos omitidos. Sin embargo, la magnitud de estas desviaciones no parece invalidar el modelo ni afectar gravemente su interpretación.

5.5.4 Conclusión del modelo GLMM

El modelo GLMM con distribución Gamma y enlace logarítmico ha permitido ajustar el Happiness Score como una variable continua estrictamente positiva. A pesar de ciertos problemas menores de singularidad y de que no se puede calcular el R² condicional, los diagnósticos de residuos indican un ajuste razonable. Los supuestos clave (uniformidad, homocedasticidad, ausencia de outliers extremos) se cumplen, y el modelo se considera estadísticamente válido.

La interpretación de los efectos fijos confirma que tanto el apoyo social como la esperanza de vida son predictores positivos y significativos de la felicidad, lo cual es consistente con la teoría y con los resultados del modelo LMM. El modelo GLMM ofrece una alternativa robusta al LMM cuando se desea modelar directamente la variable de interés sin asumir distribución normal de los residuos, y proporciona evidencia complementaria sobre los factores clave que explican el bienestar subjetivo en el mundo.

5.5.5 Predicción del Happiness Score para 2025

Al igual que en el modelo lineal mixto, se utiliza el modelo GLMM validado para estimar el nivel de felicidad en cada país en el año 2025. Este modelo tiene en cuenta la estructura jerárquica de los datos (países agrupados con efectos aleatorios) y utiliza una distribución Gamma con enlace logarítmico, adecuada para modelar la variable de felicidad por ser estrictamente positiva y asimétrica.

Tabla 5.2: Comparación del ranking de felicidad en 2025 (LMM y GLMM) y 2024

	Score	Ranking	Score	Ranking			
	2025	2025	2025	2025	Score	Ranking	
País	(LMM)	(LMM)	(GLMM)	(GLMM)	2024	2024	Sección
Finland	7.754787	1	7.625442	1	7.7407	1	Top
Denmark	7.605956	2	7.537479	2	7.5827	2	10 Top 10
Iceland	7.523590	3	7.483858	3	7.5251	3	Top 10
Netherlands	7.420702	4	7.367901	6	7.3194	6	Top 10
Switzerland	7.413425	5	7.410418	5	7.0602	9	Top 10
Norway	7.404728	6	7.417576	4	7.3017	7	Top 10
Sweden	7.354201	7	7.306411	7	7.3441	4	Top 10
Israel	7.257159	8	7.229333	9	7.3411	5	Top 10
New Zealand	7.218312	9	7.232209	8	7.0292	11	Top 10
Luxembourg	7.204100	10	7.068516	13	7.1219	8	Top 10
Spain	6.415798	28	6.386658	31	6.4209	35	España
Tanzania	3.579505	139	3.575379	143	3.7806	125	Último 10

Tabla 5.2: Comparación del ranking de felicidad en 2025 (LMM y GLMM) y 2024

	Score	Ranking	Score	Ranking			
	2025	2025	2025	2025	Score	Ranking	
País	(LMM)	(LMM)	(GLMM)	(GLMM)	2024	2024	Sección
Malawi	3.540040	140	3.737572	139	3.4210	130	Últimos 10
Lesotho	3.519870	141	3.789881	138	3.1862	135	Últimos 10
Botswana	3.498908	142	3.653473	141	3.3834	131	Últimos 10
Burundi	3.451707	143	3.297589	146	NA	NA	Últimos 10
Rwanda	3.421365	144	3.417567	144	NA	NA	Últimos 10
Zimbabwe	3.278723	145	3.616604	142	3.3411	132	Últimos 10
Central African Republic	3.231135	146	3.228274	147	NA	NA	Últimos 10
South Sudan	3.189009	147	3.303808	145	NA	NA	Últimos 10
Afghanistan	2.539557	148	2.864293	148	1.7210	137	Últimos 10

Los resultados de la predicción de la Tabla 5.2 muestran que los países nórdicos continúan liderando el ranking de felicidad mundial: Finlandia encabeza la lista con una puntuación estimada de 7.63, seguida por Dinamarca (7.54), Islandia (7.48) y Noruega (7.42). Otros países del top 10 incluyen a Suiza, Países Bajos, Suecia, Nueva Zelanda, Israel y Australia, todos con puntuaciones por encima de 7.1. Esta concentración de países desarrollados con altos niveles de bienestar refleja el impacto consistente de factores como la cohesión social, el acceso a servicios de calidad y condiciones de vida estables.

En contraste, los países con las puntuaciones más bajas en felicidad predicha para 2025 son Afganistán (2.86), República Centroafricana (3.23), Burundi (3.30), Sudán del Sur (3.30), y Ruanda (3.42). Estas naciones se caracterizan por inestabilidad política, pobreza extrema, o conflictos prolongados, lo que probablemente reduce tanto el apoyo social como la esperanza de vida, las dos variables clave en el modelo.

En cuanto a España, se predice un Happiness Score de 6.39 para 2025, lo que la sitúa en la posición 31 del ranking mundial. Esta puntuación representa una ligera disminución respecto al valor observado en 2024 (6.42), pero supone una mejora en la clasificación, ya que sube del

puesto 35 al 31. Esta subida refleja que, aunque la puntuación de España apenas varía, otros países han experimentado mayores caídas, permitiendo que España ascienda en el ranking relativo. Es decir, su mejora no es tanto por avance propio como por retroceso ajeno.

Estos resultados subrayan que incluso un modelo con solo dos predictores —apoyo social y esperanza de vida— puede captar de forma significativa las diferencias estructurales en felicidad entre países. Además, las predicciones realizadas con este GLMM son consistentes con las tendencias observadas en informes previos y refuerzan la idea de que la percepción de apoyo social y la longevidad son factores clave del bienestar subjetivo a nivel global.

Si hacemos una comparación entre los modelos LMM y GLMM a través de sus predicciones para el ranking de felicidad de 2025, tal como se presenta en la Tabla 5.2, vemos resultados altamente coincidentes tanto en las posiciones superiores como en las posiciones inferiores del ranking. Ambos modelos coinciden en los tres primeros países (Finlandia, Dinamarca e Islandia), así como en los países menos felices (Tanzania, Malawi, Lesotho y Botswana), lo que indica una robustez general del enfoque mixto, independientemente de la familia de distribución asumida.

Sin embargo, para decidir qué modelo es mejor utilizaremos como criterio el coeficiente de determinación (R²), una medida habitual para evaluar la capacidad explicativa de los modelos. Como hemos visto antes, en el caso del modelo mixto lineal (LMM), el R² marginal —que refleja la varianza explicada exclusivamente por los efectos fijos— alcanza un valor de 0.702, mientras que el R² condicional, que incluye también los efectos aleatorios, asciende a 0.932. Por el contrario, el modelo mixto generalizado (GLMM) presenta únicamente un R² marginal de 0.387, sin poder estimarse el R² condicional debido a la ausencia de varianzas aleatorias accesibles en el modelo ajustado. Esta diferencia sustancial indica que el modelo LMM explica una proporción mucho mayor de la variabilidad observada en el Happiness Score, tanto desde una perspectiva fija como jerárquica. Por tanto, se concluye que el modelo LMM es notablemente superior al GLMM en términos de capacidad explicativa y ajuste general a los datos.

6 Aplicación Shiny para la modelización de la felicidad

Este capítulo está dedicado exclusivamente a la aplicación interactiva desarrollada con Shiny (Chang et al. 2024) como parte del Trabajo de Fin de Grado. La app permite explorar, modelizar y validar los determinantes de la felicidad a partir de datos longitudinales. Se ha diseñado como una herramienta accesible tanto para usuarios con formación técnica como para responsables de políticas públicas que deseen entender mejor la evolución del bienestar subjetivo en el mundo.

6.1 Estructura general de la aplicación

La aplicación tiene como finalidad visualizar la evolución temporal y espacial de variables relacionadas con la felicidad, ajustar modelos mixtos lineales (LMM) y generalizados (GLMM) de forma personalizada, validar automáticamente los modelos ajustados mediante tests estadísticos y gráficos, generar predicciones del Happiness Score para el año 2025, y permitir al usuario explorar diferentes combinaciones de variables y configuraciones de modelo. La interfaz de la aplicación está organizada en tres pestañas principales:

6.1.1 Pestaña "Información"

Incluye un resumen del funcionamiento de la app, instrucciones para el uso de cada pestaña, y un enlace al repositorio de GitHub donde se encuentra el código fuente. La interfaz de dicha pestaña la podemos encontrar en la Figura 6.1.

6.1.2 Pestaña "Descriptiva"

En esta sección, el usuario puede seleccionar hasta dos variables numéricas (por ejemplo, happiness_score, gdp, freedom, etc.), elegir una o varias regiones del mundo (por ejemplo, Western Europe, Sub-Saharan Africa...), filtrar por país (opcionalmente), y generar dos tipos de visualización: un gráfico de evolución temporal, en forma de líneas, con facetas por variable, y un mapa mundial tipo choropleth, para representar el valor de una variable en un año concreto.

Figura 6.1: Interfaz de la pestaña Información.

Esta pestaña permite una exploración visual inicial de los datos y es útil para identificar tendencias y contrastes regionales. La interfaz de la pestaña "Descriptiva" la encontramos en la Figura 6.2.

6.1.3 Pestaña "Análisis"

Es el núcleo funcional de la aplicación, donde se pueden construir y validar modelos estadísticos. Entre las distintas funcionalidades disponibles está la elección de efectos fijos y aleatorios (el usuario puede seleccionar libremente las variables que se incluirán como efectos fijos (por ejemplo, gdp, freedom, regime_category, etc.) y aleatorios (year, regional_indicator), el filtrado de regiones y países para construir el subconjunto de datos con el que se ajustará el modelo, la elección del tipo de modelo: LMM (Modelo lineal mixto) o GLMM (Modelo generalizado mixto). También se hace un ajuste del modelo, mostrando la fórmula resultante, el resumen estadístico (summary()) y las métricas de ajuste (AIC, R² marginal y condicional). Todo esto lo podemos observar en la Figura 6.3. Luego se realiza una validación del modelo, en la que se muestra la gráfica de residuos vs ajustados y QQ-Plot de residuos, y test de uniformidad, dispersión y outliers; lo cual podemos observar en la Figura 6.4. Después se produce un diagnóstico final automático, que indica si el modelo es válido para hacer predicciones y, en caso contrario, especifica en qué falla. Por último, esta pestaña incluye una visualización de predicciones, en la que muestra tres líneas para cada país seleccionado: observaciones reales, valores ajustados y predicción para el año 2025. Esta última parte la observamos en la Figura 6.5.

Figura 6.2: Interfaz de la pestaña Descriptiva.

Esta pestaña permite aplicar el conocimiento teórico sobre modelos mixtos en un entorno interactivo y comprensible, facilitando la evaluación de distintas configuraciones de modelo sin necesidad de codificar manualmente.

6.2 Integración con el análisis longitudinal

La aplicación no se centra únicamente en un análisis de tipo transversal, es decir, no analiza los datos considerando únicamente un año concreto o sin tener en cuenta la dimensión temporal. Por el contrario, está diseñada para trabajar con datos longitudinales, que recogen información de múltiples países a lo largo de varios años. Esto permite capturar la evolución temporal del bienestar y ajustar modelos estadísticos que consideren tanto las diferencias entre países como los cambios dentro de cada país a lo largo del tiempo. Para ello se parte de los datos del World Happiness Report (2015–2024), que han sido enriquecidos con variables políticas fijas extraídas de bases de datos como Freedom in the World y Democracy Data. Las variables políticas, que solo están disponibles para un período corto de años (hasta 2020), se han propagado a todos los años del período para permitir su uso como variables explicativas fijas. Esto permite ajustar modelos con componentes temporales (efecto year), regionales, y políticos, reflejando la estructura multinivel inherente a este tipo de datos.

Además de integrar información temporal y regional, la aplicación permite al usuario construir modelos estadísticos personalizados de forma intuitiva. En la pestaña "Análisis", el proceso comienza con la selección del tipo de modelo (LMM o GLMM) y la elección de

Figura 6.3: Selección de variables y métricas del modelo en la pestaña de análisis.

Figura 6.4: Validación del modelo ajustado en la pestaña de análisis.

Figura 6.5: Gráfico de predicciones por país y año en la pestaña de análisis.

variables que actuarán como efectos fijos, es decir, aquellas que se considera que tienen una influencia constante sobre el Happiness Score. Estas variables pueden incluir indicadores económicos (como gdp), sociales (support, freedom, life_exp, generosity, corruption) y políticos (status, political_rights, civil_liberties, fair_election, regime_category, democracy, electoral_category, presidential, alternation). También puede incluirse la variable year como predictor, si se desea modelar una tendencia temporal explícita.

Adicionalmente, el usuario puede seleccionar las variables de agrupación para introducir efectos aleatorios, siendo country obligatorio como nivel jerárquico, y opcionalmente year o incluso regional_indicator, si se desea capturar variaciones específicas por región del mundo. Por ejemplo, se puede construir un modelo con freedom y gdp como efectos fijos, y year como estructura de efectos aleatorios, lo que implica que se ajustará una pendiente temporal específica para cada país.

La interfaz guía al usuario paso a paso, mostrando en todo momento la fórmula del modelo ajustado, su resumen estadístico, las métricas de ajuste y los resultados de validación. Esta lógica interna —desde la elección de variables hasta la validación final— permite comprender cómo cada factor contribuye al modelo y cómo interactúan la dimensión temporal y espacial en el estudio de la felicidad.

6.3 Repositorio de GitHub

El desarrollo completo de esta aplicación, incluyendo los scripts de análisis, los datos procesados, y el archivo de la app Shiny, se encuentra disponible en un repositorio público de GitHub. Este repositorio cumple una doble función: facilita la reproducibilidad del trabajo y sirve como plataforma de difusión y colaboración. Cualquier usuario puede clonar el repositorio, probar la app localmente, revisar el código fuente o proponer mejoras. Además, se han incluido instrucciones detalladas para su ejecución, así como documentación sobre los paquetes utilizados y la estructura de carpetas. Este enfoque abierto y documentado refuerza

el valor académico y práctico del trabajo, y lo alinea con las buenas prácticas en ciencia de datos reproducible.

7 Conclusiones y mejoras futuras

Este capítulo recopila los principales logros del trabajo, analiza su evolución a lo largo de las diferentes fases, y plantea posibles líneas de mejora o extensión. El objetivo es evaluar el grado de cumplimiento de los objetivos iniciales y valorar críticamente los resultados obtenidos.

7.1 Resumen y aportaciones realizadas

El proyecto parte de un objetivo metodológico claro: explorar la aplicabilidad de los modelos lineales mixtos (LMM) y generalizados mixtos (GLMM) al análisis de datos longitudinales en un contexto real. Para ello, se ha escogido como caso de estudio la evolución del Happiness Score a lo largo del tiempo, integrando múltiples factores sociales, económicos y políticos. Esta metodología permite ilustrar el potencial de los modelos jerárquicos para capturar la variabilidad temporal y geográfica en fenómenos complejos.

Esta evolución refleja no solo una mejora progresiva del producto final, sino también un proceso de aprendizaje continuo: desde el manejo avanzado de modelos mixtos en R hasta la integración de estos modelos en una aplicación interactiva. En conjunto, el proyecto ha culminado en una herramienta robusta y funcional que permite explorar, modelizar y predecir la felicidad global de forma accesible y flexible.

A lo largo de este trabajo se ha desarrollado un sistema completo de análisis estadístico aplicado a datos longitudinales sobre felicidad mundial. El trabajo ha seguido una secuencia lógica y progresiva, estructurado en diversos capítulos. En el capítulo 2 se introdujo el concepto de datos longitudinales, señalando sus particularidades y las limitaciones de los enfoques estadísticos clásicos (como la regresión lineal simple o múltiple) cuando se trabaja con medidas repetidas en el tiempo. En el capítulo 3 se expusieron en profundidad los modelos adecuados para datos longitudinales: modelos lineales mixtos (LMM) y modelos lineales generalizados mixtos (GLMM). Se analizaron sus fundamentos matemáticos, componentes (efectos fijos y aleatorios), y métodos de estimación. En el capítulo 4 se realizó una limpieza, exploración y enriquecimiento de los datos del World Happiness Report, integrando fuentes externas (Freedom House, Democracy Data) para añadir contexto político. Se generaron visualizaciones geográficas y temporales, se detectaron valores atípicos, y se aplicó una regresión múltiple para explorar la relación entre felicidad y factores sociales, económicos y políticos. En el capítulo 5 se construyeron modelos mixtos de forma controlada, utilizando estrategias bottom-up y top-down para comparar estructuras de modelo y seleccionar la más adecuada. Se evaluó la

influencia de diferentes variables sobre la felicidad en función de la región o el país, y se calculó la capacidad predictiva de los modelos. Finalmente, en el capítulo 6 se diseñó y programó una aplicación interactiva en Shiny que permite realizar todo este proceso de forma visual, dinámica y sin necesidad de escribir código. La app permite explorar los datos, ajustar modelos, validarlos automáticamente, y generar predicciones. Esta app ha sido subida a GitHub como repositorio reproducible.

Este trabajo contribuye en varios frentes. Desde el punto de vista metodológico, demuestra cómo aplicar modelos mixtos y generalizados mixtos a un caso real con datos heterogéneos, respetando su estructura temporal y geográfica. Se abordan retos clave como la dependencia temporal, la multicolinealidad o la variabilidad intra/inter-país. El flujo completo —desde la limpieza hasta la predicción— está completamente implementado en R, y encapsulado en una interfaz accesible mediante Shiny.

Desde una perspectiva aplicada, el proyecto permite estudiar la evolución del bienestar en el mundo de forma flexible, con capacidad de personalizar hipótesis por país, región o bloque geopolítico. La incorporación de variables políticas fijas aporta un enfoque complementario para analizar cómo influyen los regímenes democráticos, las libertades o la alternancia política sobre la percepción de felicidad.

Desde el punto de vista formativo, el trabajo ha supuesto un aprendizaje práctico profundo en aspectos clave como la programación en R, el uso de librerías como lme4, glmmTMB o performance, el diseño de aplicaciones Shiny y el uso de plataformas de control de versiones como GitHub para compartir y documentar el código. La app desarrollada no solo representa un producto final, sino también una evidencia tangible del conocimiento adquirido.

Más allá del caso concreto analizado, las técnicas desarrolladas en este trabajo son fácilmente transferibles a otros conjuntos de datos longitudinales. Para ello, sería necesario realizar una limpieza preliminar de los datos, identificar qué variables presentan medidas repetidas, y plantear una estructura razonada del modelo, especificando qué covariables se consideran efectos fijos y qué factores se modelan como efectos aleatorios. En este contexto, la app desarrollada no solo representa un producto final funcional, sino también una evidencia tangible del conocimiento adquirido y una herramienta adaptable a nuevos problemas con estructuras similares.

La aplicación Shiny desarrollada constituye una pieza clave del trabajo al traducir los modelos teóricos y análisis estadísticos en una herramienta práctica e interactiva. No solo facilita la interpretación de los resultados, sino que ofrece un entorno potente para explorar hipótesis, validar modelos y generar predicciones. Este desarrollo demuestra el potencial de combinar el análisis estadístico avanzado con herramientas de visualización e interacción para abordar problemas complejos como el estudio de la felicidad global.

Entre sus principales ventajas destacan la accesibilidad, ya que no se requiere experiencia en R ni en estadística avanzada para usar la app; su flexibilidad que permite construir modelos a medida sin depender de plantillas predefinidas; la interactividad que, gracias a la interfaz dinámica, se permite ver al instante el impacto de diferentes configuraciones; la validación

automática que ofrece diagnósticos objetivos para asegurar que los modelos ajustados son válidos y fiables; y la predicción contextualizada, ya que las estimaciones para el año 2025 se realizan solo si el modelo es estadísticamente adecuado.

Además, la app refleja con fidelidad la estructura jerárquica de los datos y permite un análisis a múltiples niveles (tiempo, región, país), trabajando sobre datos longitudinales reales (2015–2024) enriquecidos con información política. Las variables políticas, aunque fijas (2020), se han propagado a todos los años para integrarse en el análisis como factores estructurales.

7.2 Limitaciones y posibles mejoras

Pese a los resultados obtenidos, el trabajo también presenta algunas limitaciones, ya que algunas variables políticas utilizadas como fijas (extraídas solo de 2020) podrían haber experimentado cambios no capturados a lo largo de los años. La aplicación no implementa selección automática de variables (por ejemplo, mediante AIC o BIC en un proceso stepwise), por lo que la construcción del modelo requiere criterio experto. El modelo predictivo se limita a una predicción puntual para 2025, sin intervalos de confianza ni análisis de sensibilidad. Los modelos implementados suponen una estructura lineal o lineal generalizada; no se han explorado modelos no lineales, de machine learning o de series temporales multivariantes.

Existen varias líneas de mejora que podrían implementarse en el futuro para ampliar el alcance del trabajo, como la incorporación de intervalos de predicción en las estimaciones de 2025, para reflejar la incertidumbre del modelo, la ampliación de fuentes de datos políticas y sociales a varios años, permitiendo usar dichas variables como longitudinales y no fijas, la implementación de un módulo de selección de variables automatizado dentro de la app, basado en AIC, BIC o validación cruzada, la inclusión de modelos más complejos como árboles de decisión longitudinales, modelos no paramétricos o redes neuronales recurrentes (RNN) para datos secuenciales, la exportación de resultados (tablas, gráficos, modelos ajustados) en formatos PDF o Excel desde la app o la adaptación de la app para su despliegue en la nube (por ejemplo, vía shinyapps.io), permitiendo su acceso público y reutilización educativa o institucional.

Este trabajo ha demostrado cómo aplicar técnicas estadísticas avanzadas a un problema complejo y socialmente relevante como el bienestar global. La combinación de modelos longitudinales, análisis político y una interfaz interactiva construida desde cero ha dado lugar a una herramienta útil, flexible y replicable. Además de sus aportaciones analíticas, el proyecto refleja una evolución formativa significativa en el manejo de herramientas estadísticas, programación y desarrollo de productos reproducibles.

Aunque existen líneas claras de mejora, los resultados obtenidos constituyen una base sólida para extender el trabajo en futuras investigaciones, proyectos de política pública o aplicaciones educativas. El análisis de la felicidad, más allá de su dimensión estadística, se revela aquí como un campo fértil para integrar ciencia de datos, reflexión social y compromiso con la calidad de vida global.

Referencias

- Bates, Douglas, Martin Mächler, Ben Bolker, y Steve Walker. 2015. «Fitting Linear Mixed-Effects Models Using lme4». *Journal of Statistical Software* 67 (1): 1-48. https://doi.org/10.18637/jss.v067.i01.
- Chang, Winston, Joe Cheng, JJ Allaire, Yihui Xie, y Jonathan McPherson. 2024. shiny: Web Application Framework for R. https://CRAN.R-project.org/package=shiny.
- Faraway, Julian J. 2006. Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models. Boca Raton, FL: Chapman & Hall/CRC.
- Freedom House. 2024. «Freedom in the World». https://freedomhouse.org/report/freedomworld.
- Hartig, Florian. 2024. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. https://CRAN.R-project.org/package=DHARMa.
- Helliwell, John F., Haifang Huang, Shun Wang, y Max Norton. 2023. «World Happiness Report 2023». Sustainable Development Solutions Network. https://worldhappiness.report/ed/2023/.
- Hernández-Barrera, Francisco. 2024. «Modelos mixtos con R». 2024. https://fhernanb.github.io/libro_modelos_mixtos/.
- Inglehart, Ronald, Roberto Foa, Christopher Peterson, y Christian Welzel. 2008. «Development, Freedom, and Rising Happiness: A Global Perspective (1981–2007)». *Perspectives on Psychological Science* 3 (4): 264-85. https://doi.org/10.1111/j.1745-6924.2008.00078.x.
- M, McGillycuddy, Warton D. I., Popovic G, y Bolker B. M. 2025. «Parsimoniously Fitting Large Multivariate Random Effects in glmmTMB». *Journal of Statistical Software* 112 (1): 1-19. https://doi.org/10.18637/jss.v112.i01.
- McCulloch, Charles E., Shayle R. Searle, y John M. Neuhaus. 2008. *Generalized, Linear, and Mixed Models*. 2nd ed. Hoboken, NJ: John Wiley & Sons.
- Pinheiro, Jose, Douglas Bates, y R Core Team. 2024. nlme: Linear and Nonlinear Mixed Effects Models. https://CRAN.R-project.org/package=nlme.
- R Core Team. 2024a. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
- ——. 2024b. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
- Roback, Paul, y Julie Legler. 2021. Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R. Chapman & Hall/CRC. https://bookdown.org/roback/bookdown-BeyondMLR/.
- Subirana, Isaac. 2020. «Curso de datos longitudinales». 2020. https://bookdown.org/isubirana/longitudinal_data_analyses/.