Hoàng Xuân Sính



# TABLE DE MATIÈRES

| Introduction                                       | 4  |
|----------------------------------------------------|----|
| Summary                                            | 7  |
| I. ⊗-catégories et ⊗-foncteurs                     | 13 |
| 1. ⊗-catégories                                    | 13 |
| 2. Contraintes pour une loi ⊗                      | 15 |
| 3. Compatibilités entre contraintes                | 17 |
| 4. ⊗-foncteurs                                     | 17 |
| 5. ⊗-équivalences                                  | 17 |
| II. Gr-catégories et Pic-catégories                | 18 |
| 1. Gr-catégories                                   | 18 |
| 2. Pic-catégories                                  | 20 |
| III. Pic-enveloppe d'une ⊗-catégorie               | 22 |
| 1. Le problème de rendre des objets "objets unité" | 22 |
| 2. Le problème d'inverses des objets               | 22 |
| 3. Applications                                    | 23 |
| Appendice                                          | 24 |
| Bibliographie                                      | 25 |

#### INTRODUCTION

Ce travail se compose de trois chapitres. Le premier ressemble un certain nombre de définitions et résultats nécessaires pour les chapitres qui suivent sur les catégories munis d'une loi  $\otimes$  qu'on peut trouver dans [2], [6], [11], [14], [15], la terminologie employée dans ce chapitre étant de Neantro Saavedra Rivano [14]. Une  $\otimes$ -catégorie est une catégorie munie d'une loi  $\otimes$ . Une  $\otimes$ -catégorie associative est une  $\otimes$ -catégorie munie d'un isomorphisme de trifoncteurs appelé constrainte d'associativité

$$a_{X,Y,Z}: X \otimes (Y \otimes Z) \xrightarrow{\sim} (X \otimes Y) \otimes Z, \quad X$$

vérifiant un condition dite *l'axiome du pentagone*. Une ⊗-catégorie *commutative* est une ⊗-catégorie munie d'un isomorphisme de bifoncteurs appelé *contrainte de commutativité* 

$$c_{XY}: X \otimes Y \xrightarrow{\sim} Y \otimes X$$

vérifiant la relation

$$c_{Y,X} \circ c_{X,Y} = Id_{X \otimes Y}$$

Une contrainte de commutativité est *stricte* si  $c_{X,X} = Id_{X\otimes}$  pour tout X. Enfin une  $\otimes$ -catégorie est dite *unifier* s'il [] un objet 1 et des isomorphismes fonctoriels

$$g_X: X \xrightarrow{\sim} \underline{1} \otimes X$$

$$d_X: X \xrightarrow{\sim} X \otimes 1$$

tels que

$$g_1 = d_1$$

le triple (1, g, d) constitue une *contrainte d'unité*.

Une  $\otimes$ -catégorie AC (resp. AU) est une  $\otimes$ -catégorie associative et commutative (resp. associative et unifère) vérifiant une contrainte condition de compatibilité. Une  $\otimes$ -catégorie ACU est une  $\otimes$ -catégorie AC et AU.

Un  $\otimes$ -foncteur d'une  $\otimes$ -category  $\mathscr C$  dans une  $\otimes$ -catégorie  $\mathscr C'$  est un couple  $(F,\check F)$  où F est un foncteur de  $\mathscr C \longrightarrow c\,C'$  et  $\check F$  un isomorphisme de bifoncteurs

$$\check{F}_{X,Y}: FX \otimes FY \longrightarrow F(X \otimes Y) \quad X, Y \in Ob(\mathscr{C})$$

Un ⊗-foncteur associatif (resp. commutatif, unifère) est un ⊗-foncteur d'une ⊗-catégorie associative (resp. commutative, unifère) dans une ⊗-catégorie associative (resp. commutative, unifère) vérifiant une condition dite condition de compatibilité avec les contraintes d'associativité (resp. de commutativité, d'unité). Un ⊗-foncteur AC est un ⊗-foncteur associatif et commutatif, un ⊗-foncteur ACU est ⊗-foncteur associatif, commutatif et unifère.

Pour deux  $\otimes$ -foncteurs  $(F, \check{F})$ ,  $(G, \check{G})$  d'une  $\otimes$ -catégorie  $\mathscr{C}$  dans une  $\otimes$ -catégorie  $\mathscr{C}'$ , un  $\otimes$ -morphism de  $(F, \check{F})$  dans  $(G, \check{G})$  est un morphisme fonctoriel  $X: F \longrightarrow G$  rendant commutatif le carré

Le deuxième chapitre est réservé à l'étude des Gr-catégories et des Pic-catégories. Une Gr-catégorie est une  $\otimes$ -catégorie AU, dont tous les objets sont inversibles, et dont la catégorie sous-jacente est une groupoïde (i.e. toutes les flèches sont des isomorphismes). Une Gr-catégorie ressemble donc a un groupe. On tire de cette définition que si  $\mathscr P$  est une Gr-catégorie, l'ensemble  $\pi_0(\mathscr P)$  des classes à isomorphisme près d'objets de  $\mathscr P$ , muni de la loi de composition à droite par l'opération  $\otimes$ , est un groupe ; le groupe  $\operatorname{Aut}(\underline{1}) = \pi_1(\mathscr P)$  est un groupe commutatif ; et pour tout  $X \in Ob(\mathscr P)$ 

$$\gamma_X : u \mapsto u \otimes Id_X = \operatorname{Aut}(\underline{1}) \xrightarrow{\sim} \operatorname{Aut}(X)$$

$$\delta_X : u \mapsto Id_X \otimes u = \operatorname{Aut}(\underline{1}) \xrightarrow{\sim} \operatorname{Aut}(X)$$

On attache ainsi à une Gr-catégorie  $\mathscr{P}$ , des groupes  $\pi_0(\mathscr{P})$ ,  $\pi_1(\mathscr{P})$  où  $\pi_1(\mathscr{P})$  est commutatif. On peut définir au plus, une action de  $\pi_0(\mathscr{P})$  dans  $\pi_1(\mathscr{P})$  de la façon suivante : si  $s \in \pi_0(\mathscr{P})$  est représenté par  $X \in \mathrm{Ob}(\mathscr{P})$ , et  $u \in \pi_1(\mathscr{P})$  on pose

$$s u = \delta_X^{-1} \gamma_X(u)$$

 $\pi_1(\mathcal{P})$  en devient en  $\pi_0(\mathcal{P})$ -module à gauche.

Soient M un groupe, N un M-module (abélien à gauche). Un préépinglage de type (M,N) pour une Gr-catégorie  $\mathscr P$  est un couple  $\varepsilon=(\varepsilon_0,\varepsilon_1)$  d'isomorphismes

$$\varepsilon_0: M \xrightarrow{\sim} \pi_0(\mathscr{P}), \quad \varepsilon_1: N \xrightarrow{\sim} \pi_1(\mathscr{P})$$

compatibles avec les actions de M sur N,  $\pi_0(\mathcal{P})$  sur  $\pi_1(\mathcal{P})$ . Une Gr-catégorie préépinglage de type (M,N) est une Gr-catégorie munie d'une préépinglage. Enfin, un morphisme de Gr-catégorie préépinglees de type  $(M,N): (\mathcal{P},\varepsilon) \longrightarrow (\mathcal{P}',\varepsilon')$  est un  $\otimes$ -foncteur associatif tel que les triangles

soient commutatifs. On en déduit que tout tel morphisme est une  $\otimes$ -équivalence, donc l'ensemble des classes d'équivalence de Gr-catégories préépingleés de type (M,N)

#### **SUMMARY**

The purpose of these notes is to study the Gr-categories and give some applications of them. Below is a brief description of the organisation of the work.

Chapter I gives some definitions and results, which are used continually in the sequel, on  $\otimes$ -categories one can find in [2], [6], [11], [14], [15], the terminology employed in this chapter being of Neantro Saavedra Rivano [14]. A  $\otimes$ -category is a category  $\mathscr C$  together with a  $law \otimes$ , i.e. a covariant bifunctor

$$\otimes\!:\mathscr{C}\times\mathscr{C}\longrightarrow\mathscr{C}$$

$$(X,Y) \mapsto X \otimes Y$$

An associativity constraint for a  $\otimes$ -category  $\mathscr C$  is an isomorphism of bifunctors

$$a_{X,Y,Z}: X \otimes (Y \otimes Z) \xrightarrow{\sim} (X \otimes Y) \otimes Z, \quad X,Y,Z \in Ob(\mathscr{C})$$

satisfying the pentagon axiom, i.e. all the pentagonal diagrams

[]

are commutative. A  $\otimes$ -category together with an associativity constraint is called a  $\otimes$ -associativity category.

A commutativity constraint for a  $\otimes$ -category  $\mathscr C$  is an isomorphism of bifunctors

$$c_{X,Y}: X \otimes Y \xrightarrow{\sim} Y \otimes X, \quad X, Y \in Ob(\mathscr{C})$$

verifying the relation

$$c_{Y,X} \circ c_{X,Y} = Id_{X \otimes Y}$$

The commutativity constraint c is said to be *strict* if  $c_{X,X} = Id_{X\otimes}$  for all  $X \in Ob(\mathscr{C})$ . A  $\otimes$ -category together with a commutativity constraint is a  $\otimes$ -commutative category. A  $\otimes$ -commutative category is *strict* if its commutativity constraint is strict.

An unity constraint for a  $\otimes$ -category  $\mathscr C$  is a triple  $(\underline{1}, g, d)$  where  $\underline{1}$  is an object of  $\mathscr C$ , g and d natural isomorphisms

$$g_X: X \xrightarrow{\sim} \underline{1} \otimes X, \quad d_X: X \xrightarrow{\sim} X \otimes \underline{1}, \quad X \in Ob(\mathscr{C})$$

such that  $g_1 = d_1$ . A  $\otimes$ -category together with an unity constraint is a  $\otimes$ -unifer category.

A  $\otimes$ -category  $\mathscr C$  together with an associativity constraint a and a commutaivity constraint c is a  $\otimes$ -AC category if the hexagonal axiom is fulfilled, i.e. all the hexagonal diagram commutes

[]

A  $\otimes$ -category  $\mathscr{C}$  together with a associativity constraint a and an unity contraint  $(\underline{1}, g, d)$  is a  $\otimes$ -AU category if all the following triangles commute

П

A  $\otimes$ -ACU category is a  $\otimes$ -AC and AU category. An object X of a  $\otimes$ -ACU category  $\mathscr C$  is invertible if there are two objects  $X', X'' \in Ob(\mathscr C)$  such that  $X' \otimes X \simeq X \otimes X'' \simeq \underline{1}$ .

A  $\otimes$ -functor from a  $\otimes$ -category  $\mathscr{C}$  to a  $\otimes$ -category  $\mathscr{C}'$  is a pair  $(F, \check{F})$  where F is a functor  $\mathscr{C} \longrightarrow cC'$  and  $\check{F}$  an isomorphism of bifunctors

$$\check{F}_{X,Y}: FX \otimes FY \longrightarrow F(X \otimes Y) \quad X,Y \in Ob(\mathscr{C})$$

A  $\otimes$ -functor  $(F, \check{F})$  from a  $\otimes$ -associative category  $\mathscr{C}$  to a  $\otimes$ -associative category  $\mathscr{C}'$  is associative if the following diagram commutes:

[]

where a is the associativity constraint of  $\mathscr C$  and a' of  $\mathscr C'$ .

A  $\otimes$ -functor  $(F, \check{F})$  from a  $\otimes$ -commutative category  $\mathscr{C}$  to a  $\otimes$ -commutative category  $\mathscr{C}'$  is *commutative* if the following diagram commutes :

[]

c and c' being the commutativity constraints of  $\mathscr C$  and  $\mathscr C'$  respectively.

A  $\otimes$ -functor  $(F,\check{F})$  from a  $\otimes$ -category  $\mathscr{C}$  with an unity constraint  $(\underline{1},g,d)$  to a  $\otimes$ -category  $\mathscr{C}'$  with an unity constraint  $(\underline{1}',g',d')$  is a  $\otimes$ -unifer functor if there exists an isomorphism  $\hat{F}:\underline{1}'\xrightarrow{\sim} F\underline{1}$  such that the following diagrams commute:

It follows from the definition that the isomorphism  $\hat{F}: \underline{1}' \xrightarrow{\sim} F\underline{1}$ , it it exists, is unique.

A  $\otimes$ -AC functor is an  $\otimes$ -associative and commutative functor.

A  $\otimes$ -ACU functor is a  $\otimes$ -associative, commutative and unifer functor.

Let  $(F, \check{F})$  and  $(G, \check{G})$  be  $\otimes$ -functors from a  $\otimes$ -category  $\mathscr{C}$  to a  $\otimes$ -category  $\mathscr{C}'$ . A  $\otimes$ -morphism from the  $\otimes$ -functor  $(F, \check{F})$  to the  $\otimes$ -functor  $(G, \check{G})$  is a morphism of functors  $\lambda : F \longrightarrow G$  such that the following diagram commutes

Chapter II is a study of Gr-categories and Pic-categories. A Gr-category is a  $\otimes$ -AU category, the objects of which are all invertible, and the base category a groupoid (i.e. all arrows are isomorphisms). Thus a Gr-category is like a group. We obtain from this definition that if  $\mathscr P$  is a Gr-category, the set  $\pi_0(\mathscr P)$  of the classes up to isomorphism of objects of  $\mathscr P$ , together with the operation induced by the law  $\otimes$  of  $\mathscr P$ , is a group; the group  $\operatorname{Aut}(\underline{1}) = \pi_1(\mathscr P)$  is a commutative group; and for all  $X \in Ob(\mathscr P)$ 

$$\gamma_X : u \mapsto u \otimes Id_X = \operatorname{Aut}(1) \xrightarrow{\sim} \operatorname{Aut}(X)$$

$$\delta_X : u \mapsto Id_X \otimes u = \operatorname{Aut}(\underline{1}) \xrightarrow{\sim} \operatorname{Aut}(X)$$

We attribute thus to a Gr-category  $\mathscr{P}$  two groups  $\pi_0(\mathscr{P})$  and  $\pi_1(\mathscr{P})$  where  $\pi_1(\mathscr{P})$  is commutative. Furthermore we can define an action of  $\pi_0(\mathscr{P})$  on  $\pi_1(\mathscr{P})$  by the formula

$$s u = \delta_X^{-1} \gamma_X(u)$$

for  $s \in \pi_0(\mathscr{P})$  represents d by X and  $u \in \pi_1(\mathscr{P})$ . The commutative group  $\pi_1(\mathscr{P})$  together with this action is a left  $\pi_0(\mathscr{P})$ -module.

Let M be a group, N a left M-module. A preepinglage of type (M,N) for a Gr-category  $\mathscr{P}$  is a pair  $\varepsilon = (\varepsilon_0, \varepsilon_1)$  of isomorphisms

$$\varepsilon_0: M \xrightarrow{\sim} \pi_0(\mathcal{P}), \quad \varepsilon_1: N \xrightarrow{\sim} \pi_1(\mathcal{P})$$

compatible wit the action of M on N,  $\pi_0(\mathcal{P})$  on  $\pi_1(\mathcal{P})$ . A Gr-category preeplingled of type (M,N) is a Gr-category  $\mathcal{P}$  together with preepinglage. Finally, an arrow of Gr-categories preepingled of type (M,N)  $(\mathcal{P},\varepsilon) \longrightarrow (\mathcal{P}',\varepsilon')$  is a  $\otimes$ -associative functor such that the following triangles commute:

It follows from this definition that a such arrow is a  $\otimes$ -equivalence. Thus the set of the equivalence classes of Gr-categories preepingled of type (M, N) is equal to the set of connected components of the category of Gr-categories preepingled of type (M, N).

If we consider the cohomology group  $H^3(M,N)$  of the group M with coefficients N (in the sense of the group cohomology [12]) we obtain a canonical bijection between the set  $H^3(M,N)$  and the set of the equivalence classes of Gr-categories preepingled of type (M,N).

A Pic-category is a Gr-category together with a commutativity constraint which is compatible with its associativity constraint, i.e. the hexagon axiom is satisfied. Thus a Pic-category is like a commutative group. We verify immediately that a necessary condition for the existence of a Pic-category structure on a Gr-category is that  $\pi_0(\mathcal{P})$  must be commutative and act trivially on  $\pi_1(\mathcal{P})$ . A Pic-category is *strict* if its commutativity constraint is strict.

Let M, N be abelian groups. A preepinglage of type (M, N) for a Pic-category  $\mathscr{P}$  is a pair  $\varepsilon = (\varepsilon_0, \varepsilon_1)$  of isomorphisms

$$\varepsilon_0: M \xrightarrow{\sim} \pi_0(\mathscr{P}), \quad \varepsilon_1: N \xrightarrow{\sim} \pi_1(\mathscr{P})$$

A Pic-category *preepingled* of type (M, N) is a Pic-category together with a preepinglage. We define the *arrow* of such objects in the same way as for Gr-categories.

For next propositions, let us consider two complexes of free abelian groups

[]

where

[]

so that  $L_{\bullet}(M)$  is a truncated resolution of M. One obtains a canonical bijection between the set of the equivalence classes of Pic-categories preepingled of type (M,N) and the set  $H^2(Hom('L_{\bullet}(M),N))$ . The exactitude of the complex L(M) gives us e triviality of the classification of Pic-categories preepingled of type (M,N) which are strict, i.e. all Pic-categories preepingled of type (M,N) which are strict, are equivalent.

Finally chapter III gives us the construction of the solution of two universal problems: problem of making objects "unity objects" and problem of reversing objects.

Let  $\mathscr{A}$  be a  $\otimes$ -AC category,  $\mathscr{A}'$  another  $\otimes$ -AC category whose base category is a groupoid, and  $(T, \check{T}): \mathscr{A}' \longrightarrow \mathscr{A}$  a  $\otimes$ -AC functors. We try to make the objects TA' of

 $\mathcal{A}, A' \in Ob(\mathcal{A}')$ , "unity object", i.e. we try to get:

- 1°) A  $\otimes$ -ACU category  $\mathscr{P}$
- 2°) A  $\otimes$ -AC functor  $(D, \check{D}): \mathscr{A} \longrightarrow \mathscr{P}$
- 3°) A ⊗-isomorphism

$$\lambda: (\check{D}) \circ (T, \check{T}) \xrightarrow{\sim} (I_{\varnothing}, \check{I}_{\varnothing})$$

where  $(I_{\mathscr{P}}, \check{I}_{\mathscr{P}})$  is the  $\otimes$ -constant functors  $\underline{1}_{\mathscr{P}}$  from  $\mathscr{A}'$  to  $\mathscr{P}$ . The triple  $(\mathscr{P}, (D, \check{D}), \lambda)$  must be universal for triples  $(\mathscr{Q}, (E, \check{E}), \mu)$  satisfying  $1^{\circ}, 2^{\circ}, 3^{\circ}$ .

For the description of the triple  $(\mathcal{P}, (D, \check{D}), \lambda)$ , we introduce a quotient category of a  $\otimes$ -AC category as follows:

Let  $\mathscr{A}$  be a  $\otimes$ -AC category, Y a multiplicative subset of  $\mathscr{A}$  (that means a subset of the set of all endomorphisms of  $\mathscr{A}$  such that  $Id_X \in Y$  for all  $X \in Ob(\mathscr{A})$  and the tensor product of two arrows of Y belongs to Y). The  $\otimes$ -AC category quotient  $A^Y$  of  $\mathscr{A}$  with respect to Y is the solution of the universal problem

$$(K, \check{K}): \mathscr{A} \longrightarrow \mathscr{B}, \quad K(u) = Id \text{ for all } u \in Y$$

where *B* is a  $\otimes$ -AC category and  $(K, \check{K})$  a  $\otimes$ -AC functor.

Now let us give an idea of the construction of the triple

Let  $\mathscr C$  be a  $\otimes$ -ACU category, Z an arbitrary object of  $\mathscr C$  different from the unity object 1, S the functor from  $\mathscr C$  to  $\mathscr C$  defined by

$$X \mapsto X \otimes Z$$
.

The *suspension category* of the  $\otimes$ -ACU category  $\mathscr C$  defined by the object Z is the triple  $(\mathscr P,i,p)$  which solves the universal problem for triples  $(\mathscr Q,j,q)$  where  $\mathscr Q$  is a category, j a functor from  $\mathscr C$  to  $\mathscr Q$ , and q an equivalence of categories from  $\mathscr Q$  to  $\mathscr Q$ , so that the following diagram commutes

[]

up to natural isomorphism. In the case where  $\mathscr{C}$  is the homotopy category of pointed topological spaces Htp\_together with the smash []

Let  $\mathscr{C}'$  be the  $\otimes$ -stable subcategory of  $\mathscr{C}$  generated by Z and  $\mathscr{P}$  the  $\otimes$ -category of fractions of  $\mathscr{C}$  with respect to  $(\mathscr{C}',(F,Id))$  where  $F:\mathscr{C}'\longrightarrow\mathscr{C}$  is the inclusion functor. One

obtains a functor  $G: \mathscr{P} \longrightarrow \mathscr{P}$  from the suspension category to the  $\otimes$ -category of fractions of  $\mathscr{P}$ . If G is not faithful, that is the case of the homotopy category of pointed topological spaces  $\operatorname{\underline{Htp}}$  together with the smash  $\wedge$  and the 1-sphere  $S^1$ ; then it is impossible to construct in  $\mathscr{P}$  a  $\overline{\text{law}} \otimes \text{such}$  that  $\mathscr{P}$  together with this law is a  $\otimes$ -ACU category, iZ invertible in  $\mathscr{P}$ , and i embedded in a pair (i,i) which is a  $\otimes$ -ACU functor from  $\mathscr{C}$  to  $\mathscr{P}$ .

# § I. — ⊗-CATÉGORIES ET ⊗-FONCTEURS

# 1. ⊗-catégories

#### 1. Définition des ⊗-catégories

Définition (1). — Soit & une catégorie; un foncteur &  $\times$  &  $\longrightarrow$  & est appelé une  $\otimes$ -structure sur &, ou encore une loi  $\otimes$  sur &. Une  $\otimes$ -catégorie est une catégorie & munie d'une  $\otimes$ -structure qu'on note  $\otimes_{\mathscr{C}}$ , ou simplement  $\otimes$ , si aucune confusion n'est possible; a des objets X, Y de &, on associe donc un objet  $X \otimes Y$  de & appelé produit tensoriel des objets X et Y, qui dépend fonctoriellement de (X,Y), i.e. à des flèches  $f:X \longrightarrow X'$ ,  $g:Y \longrightarrow Y'$  de &, on a une flèche  $f \otimes g: X \otimes Y \longrightarrow X' \otimes Y'$  de & appelé produit tensoriel des flèches f et g, vérifiant les relations  $\operatorname{Id}_X \otimes \operatorname{Id}_Y = \operatorname{Id}_{X \otimes Y'} f' f \otimes g' g = (f' \otimes g')(f \otimes g)$  au cas où f, f' et g, g' sont composables.

Définition (2). — Soit X un objet d'une  $\otimes$ -catégorie  $\mathscr{C}$ . On dit que X est régulier si les foncteurs, définis pour les applications

$$Y \mapsto Y \otimes X$$
,  $f: Y \longrightarrow Z \mapsto f \otimes \operatorname{Id}_X: Y \otimes X \longrightarrow Z \otimes X$ 

et

$$Y \mapsto X \otimes Y, \quad f: Y \longrightarrow Z \mapsto \operatorname{Id}_X \otimes f: X \otimes Y \longrightarrow X \otimes Z$$

de  $\mathscr C$  dans  $\mathscr C$  sont des équivalences de catégories. On vérifie aisément que si X est régulier et si  $X' \simeq X$  i.e. X' est isomorphique a X, alors X' est aussi régulier.

#### 2. Exemples des ⊗-catégories

1) Soit  $\mathscr{C}$  une catégorie dans laquelle le produit des couples d'objets existe. Pour tout couple (X,Y), choisissons un produit  $(X\times Y,p_X,p_Y)$ . On définit alors une  $\otimes$ -structure sur  $\mathscr{C}$  en posant pour des objets X,Y

$$X \otimes Y = X \times Y$$

pour des flèches  $f: X \longrightarrow X'$ ,  $g: Y \longrightarrow Y'$ ,

$$f \otimes g = f \times g$$
.

On vérifie sans difficulté que, dans cette ⊗-catégorie, les objets réguliers sont les objets finaux.

- 2) Soit 𝒞 la catégorie Mod(A) des modules sur un anneau commutatif unitaire A. Le produit tensoriel de A-modules définit une loi ⊗ sur 𝒞. Ici les objets réguliers sont les A-modules projectifs de rang 1 [4].
- 3) Soit  $(X, x_0)$  un espace topologique pointé. On définit une catégorie  $\mathscr C$  de la façon suivante: les objets de  $\mathscr C$  sont les lacets de X localisés en  $x_0$ ; si  $w_1$ ,  $w_2$  sont des lacets,  $Hom_{\mathscr C}(w_1, w_2)$  est l'ensemble d'homotopies  $w_1 \longrightarrow w_2$  modulo la relation d'homotopie. La composition des lacets définit une  $\otimes$ -structure sur  $\mathscr C$ . Dans cette  $\otimes$ -catégorie tous les objets sont réguliers.
- 4) Soient  $\mathscr C$  une catégorie additive,  $\mathscr E$  une catégorie cofibré sur  $\mathscr C$  [10]. Pour tout objet A de  $\mathscr C$ , la fibre de  $\mathscr E$  en A est notée  $\mathscr E(A)$ . L'homomorphisme [] dans  $\mathscr C$  donne naissance à un foncteur

$$\mathcal{E}(A) \times \mathcal{E}(A) \longrightarrow \mathcal{E}(A)$$

qui fait de  $\mathscr{E}(A)$  une  $\otimes$ -catégorie.

5) Soient M un groupe, N un M-module abélien à gauche. On construit une catégorie  $\mathscr{C}$  dont les objets sont les éléments de M, les morphismes sont des automorphismes. Pour  $S \in M$ , on définit

$$Aut_{\mathscr{C}}(S) = \{S\} \times N$$

La composition des flèches dans  $\mathscr C$  provient de l'addition dans N. On définit sur  $\mathscr C$  une loi  $\otimes$  de la façon suivante: si  $S_1$ ,  $S_2 \in M$ , on pose

$$S_1 \otimes S_2 = S_1 S_2;$$

Si  $(S_1, u_1)$ ,  $(S_2, u_2)$  sont des morphismes  $(u_1, u_2 \in N)$ , on pose

$$(S_1, u_1) \otimes (S_2, u_2) = (S_1 S_2, u_1 + S_1 u_2).$$

Ici tous les objets de la  $\otimes$ -catégorie  $\mathscr C$  sont réguliers en vertu du fait que M est un groupe et l'ensemble des flèches de  $\mathscr C$  muni de la loi  $\otimes$  est aussi un groupe, à savoir le produit semi-direct M.N.

Dans le cas où N est un M-module abélien à droite, on définit la loi  $\otimes$  dans  $\mathscr C$  par

$$S_1 \otimes S_2 = S_1 S_2$$

$$(S_1, u_1) \otimes (S_2, u_2) = (S_1 S_2, u_1 S_2 + u_2).$$

# 2. Contraintes pour une loi ⊗

#### 1. Contraintes d'associativité

Définition (1). — Soit  $\mathscr C$  une  $\otimes$ -catégorie. Une contrainte d'associativité pour  $\mathscr C$  est un isomorphisme fonctoriel a

$$a_{X,Y,Z}: X \otimes (Y \otimes Z) \xrightarrow{\sim} (X \otimes Y) \otimes Z$$

tel que pour des objets X, Y, Z, T de C le diagramme suivant soit commutatif (axiome du pentagone)

[]

Définition (2). — On appelle ⊗-catégorie associative une ⊗-catégorie munie d'une contrainte d'associativité.

Définition (3). — Deux contraintes d'associativité a et a' d'une  $\otimes$ -catégorie  $\mathscr C$  sont dites cohomologues s'il existe un automorphisme fontoriel  $\varphi$  du foncteur  $\otimes : \mathscr C \times \mathscr C \longrightarrow \mathscr C$  tel que le diagramme suivant soit commutatif

pour des objets X, Y, Z de  $\mathscr{C}$ .

#### 2. Contraintes de commutativité

Définition (6). — Soit & une &-catégorie. Une contrainte de commutativité pour & est un isomorphisme fonctoriel c

$$c_{XY}: X \otimes Y \xrightarrow{\sim} Y \otimes X$$

tel qu'on ait

$$c_{X,Y} \circ c_{Y,X} = \mathrm{Id}_{Y \otimes X}$$

Une ⊗-catégorie munie d'une contrainte de commutativité est appelé une ⊗-catégorie commutative.

Définition (7). — Deux contraintes de commutativité c et c' d'une  $\otimes$ -catégorie  $\mathscr C$  sont dites cohomologues s'il existe une automorphisme fonctoriel  $\varphi$  du foncteurs  $\otimes : \mathscr C \times \mathscr C \longrightarrow \mathscr C$  tel que le diagramme suivante soit commutatif

[]

Définition (8). — Si  $\mathscr{C}$  est une  $\otimes$ -catégorie munie d'une contrainte de commutativité c, X un objet de  $\mathscr{C}$ , on appelé symétrie canonique de  $X \otimes X$  l'automorphisme

$$c_X = c_{X|X} : X \otimes X \xrightarrow{\sim} X \otimes X.$$

On dit que la contrainte de commutativité c est stricte si les symétries canoniques sont des identités; & est alors appelé une &-catégorie strictement commutative.

Exemple. — Dans l'exemple 5) de (§1,  $n^{\circ}2$ ), on vérifie aussitôt qu'il existe des contraintes de commutativité si te seulement si M est commutatif et opère trivialement sur N. Se donner une contrainte de commutativité c revient dans ce cas à se donner une fonction antisymétrique  $k: M^2 \longrightarrow N$ , la relation entre k et c étant

$$c_{S_1,S_2} = (S_1S_2, k(S_1, S_2)).$$

Ici le groupe des contraintes de commutativité, sous-groupe du groupe des automorphismes du foncteurs  $(S_1, S_2) \mapsto S_1 S_2$ , est isomorphe canoniquement au groupe  $\operatorname{Aut}^2(M, N)$  des fonctions antisymétriques  $M^2 \longrightarrow N$ . Quand on écrit la commutativité de diagramme

| [] Il en résulte que le groupe des classes de cohomologie de contraintes de commutativité |
|-------------------------------------------------------------------------------------------|
| dans ce cas s'identifie à []                                                              |
| 3. Contraintes d'unité                                                                    |
| 3. Compatibilités entre contraintes                                                       |

- 1. Associativité et commutativité
  - 2. Associativité et unité
  - 3. Commutativité et unité
  - 4. Associativité, commutativité et unité
  - 5. Objets invertibles
- 4. ⊗-foncteurs
- 1. Définition de ⊗-foncteurs
  - 2. Compatibilités avec des contraintes
- 5. ⊗-équivalences
- 1. Définition de ⊗-équivalences
  - 2. Transport de structure

# § II. — Gr-CATÉGORIES ET Pic-CATÉGORIES

## 1. Gr-catégories

#### 1. Définition des Gr-catégories

Définition 1. — Une Gr-catégorie  $\mathscr{P}$  est une  $\otimes$ -catégorie AU (Chap I,  $\S$  3,  $n^{\circ}$ 2, Déf 5) dont tous les objets sont inversibles (Chap I,  $\S$  3,  $n^{\circ}$ 5, Déf 9), et dont la catégorie sous-jacente est un groupoïde, i.e. tous les flèches sont des isomorphismes. Il résulte de la définition que tous les objets de  $\mathscr{P}$  sont réguliers (Chap I,  $\S$  3,  $n^{\circ}$ 5, Déf 18).

Proposition 1. — Soient  $\mathscr{P}$ ,  $\mathscr{P}'$  des Gr-catégories et  $(F, \check{F}): \mathscr{P} \longrightarrow \mathscr{P}'$  un  $\otimes$ -foncteur associatif. Alors  $(F, \check{F})$  est unifère.

Démonstration. On a aussitôt la proposition en remarquant que F(1) est régulier, 1 étant l'objet unité de  $\mathcal{P}$ , et en appliquant la proposition 8 du (Chap I,  $\S$  4,  $n^2$ ).

Proposition 2. — Soient  $\mathscr{P}$  une Gr-catégorie,  $\mathscr{P}'$  une  $\otimes$ -catégorie AU, 1 et 1' les objets unités de  $\mathscr{P}$  et  $\mathscr{P}'$  respectivement. Soit  $(F,\check{F}):\mathscr{P}\longrightarrow\mathscr{P}'$  une  $\otimes$ -équivalence telle qu'on ait  $F:1\simeq 1'$ . Alors  $\mathscr{P}'$  est une Gr-catégorie.

Démonstration. D'abord toutes les flèches de  $\mathscr{P}'$  sont des isomorphismes en vertu du fait que toutes les flèches de  $\mathscr{P}$  sont des isomorphismes et F est une équivalence.

Montrons maintenant que tous les objets de  $\mathscr{P}'$  sont inversibles. Soit Y un objet de  $\mathscr{P}'$ . Puisque F est une équivalence, il existe  $X \in \mathrm{Ob}(\mathscr{P})$  tel que  $Y \simeq FX$ ,  $\mathscr{P}$  est une Gr-

catégorie, ses objets sont donc inversibles, pour conséquent il existe  $X' \in \mathrm{Ob}(\mathscr{P})$  tel que  $X' \otimes X \simeq X \otimes X' \simeq 1$  (Chap I, § 3, n° 5, Cor de la Prop 17). Vous avons

[]

Ce qui preuve bien que *Y* est inversible.

#### 2. Premières invariants d'une Gr-catégories

Définition 2. — Soit P une Gr-catégorie. Nous poserons par le suite:

 $\pi_0(\mathcal{P}) = ensemble des classes à isomorphisme près d'objets de <math>\mathcal{P}$ ,

$$\pi_1(\mathcal{P}) = \operatorname{Aut}(1)$$
.

 $\pi_0(\mathcal{P})$  muni de la loi de composition, qu'on note multiplicativement, induite par l'opération  $\otimes$ , est un groupe, l'élément unite 1 étant la classe des objets isomorphes à 1. Ainsi, on revient d'attacher à une Gr-catégorie  $\mathcal{P}$ , des groupes  $\pi_0(\mathcal{P})$ ,  $\pi_1(\mathcal{P})$ , où  $\pi_1(\mathcal{P})$  est commutatif (Chap I, S2, n°3, Prop 7). La loi de composition de  $\pi_1(\mathcal{P})$  est noté [] additivement.

Exemple. Soit G un groupoïde, et posons  $\mathscr{P}=(G)$ . Alors  $\mathscr{P}$  est de façon naturelle une Gr-catégorie, la loi  $\otimes$  étant donnée par la composition des foncteurs. On pourrait appeler  $\pi_0(\mathscr{P})$  le groupe des automorphismes extérieures de G, et  $\pi_1(\mathscr{P})$  le centre de G.

On a les propositions suivantes pour une Gr-catégorie  $\mathcal{P}$ .

Proposition 3. — Les homomorphismes  $\gamma_X$  et  $\delta_X$  définis dans (Chap I, §2, n°3, Prop. 8) sont des isomorphismes.

Démonstration. Résultat immédiat de ce que X est régulier.

Proposition 4. — Soit  $\mathcal Q$  une composante connexe de  $\mathcal P$ . Les applications

$$\operatorname{Aut}(1) \longrightarrow \operatorname{Aut}(\operatorname{Id}_{\mathcal{Q}})$$

$$u \mapsto (\gamma_X u)_{X \in \mathrm{Ob}(\mathcal{Q})}$$

et

$$(1) \qquad \qquad \operatorname{Aut}(\operatorname{Id}_{\mathscr{Q}})$$

$$u \mapsto (\delta_X u)_{X \in \mathrm{Ob}(\mathcal{Q})}$$

sont des isomorphismes.

Démonstration. []

#### 3. Structure des Gr-catégories

Définition 3. — Soient  $\mathscr{P}$  une Gr-catégorie, (a,(1,g,d)) la contrainte AU de  $\mathscr{P}$ ,  $\pi_0(\mathscr{P})$  et  $\pi_1(\mathscr{P})$  les groupes attachés a  $\mathscr{P}$  dans  $(n^\circ 2, D\acute{e}f. 2)$ . On construit une catégorie dont les objets sont les éléments de  $\pi_0(\mathscr{P})$ , les morphismes sont des automorphismes. On pose pour chaque  $s \in \pi_0(\mathscr{P})$ 

$$\operatorname{Aut}(s) = \{s\} \times \pi_1(\mathscr{P})$$

la composition des flèches étant l'addition de  $\pi_1(\mathcal{P})$ . Pour chaque classe  $s = clX \in \pi_0(\mathcal{P})$ , on choisit une représentant noté  $X_s$ ; et pour chaque  $X \in s$ , on choisit une isomorphisme  $i_X : X_s \xrightarrow{\sim} X$ , tel que

$$i_{X_{\varsigma}} = \operatorname{Id}_{X_{\varsigma}}$$
.

[]

Définition 6. — Soit M un groupe, N un M-module abélien à gauche. Un préépinglage de type (M,N) pour une Gr-catégorie  $\mathscr P$  est une couple  $\varepsilon=(\varepsilon_0,\varepsilon_1)$  d'isomorphismes

$$\varepsilon_0: M \xrightarrow{\sim} \pi_0(\mathscr{P}), \quad \varepsilon_1: N \xrightarrow{\sim} \pi_1(\mathscr{P})$$

compatibles avec les actions de M sur N et de  $\pi_0(\mathcal{P})$  []

## 2. Pic-catégories

## 1. Définition des Pic-catégories

Définition 1. — Une Pic-catégorie est une Gr-catégorie munie d'une contrainte de commutativité compatible avec sa contrainte d'associativité. Une Pic-catégorie est dite stricte si sa contrainte de commutativité est stricte (Chap I,  $\S 2$ ,  $n^{\circ} 2$ , Déf. 8).

Exemples.

[]

## 2. Structure des Pic-catégories

Définition 2. — Soient M, N des groupes abéliens. Un préépinglage de type (M,N) pour une Pic-catégorie  $\mathcal P$  est un couple  $\varepsilon=(\varepsilon_0,\varepsilon_1)$  d'isomorphismes

$$\varepsilon_0: M \xrightarrow{\sim} \pi_0(\mathcal{P}), \quad \varepsilon_1: N \xrightarrow{\sim} \pi_1(\mathcal{P}).$$

Une Pic-catégorie préépinglé de type (M,N) est une Pic-catégorie munie d'un préépinglage. []

# § III. — Pic-ENVELOPPE D'UNE ⊗-CATÉGORIE ACU

\_\_\_\_\_

Dans ce chapitre nous nous occuperons de deux problèmes universels, celui de rendre des objets "objets unité" et celui d'inversion des objets.

# 1. Le problème de rendre des objets "objets unité"

Pour pouvoir résoudre le problème, occupons-nous de problème suivant.

1. Le problème de rendre des endomorphismes des identité

Proposition 1. — Soient  $\mathcal A$  une catégorie,  $\varphi$  une partie de  $\mathrm{Fl}(A)$ 

Démonstration. Soient A, B des objets de

2. Le problème de rendre des objets "objets unité"

Tout d'abord, introduisons un ⊗-foncteur

# 2. Le problème d'inverses des objets

1. Construction de la ⊗-catégorie des fractions d'une ⊗-catégorie ACU

Dans tout ce n°, ℃ est une ⊗-catégorie munie d'une constrainte

2. Pic-enveloppe d'une ⊗-catégorie ACU

# 3. Applications

# 1. Groupe de Grothendieck et groupe de Whitehead

R étant un anneau constante, on rappelle les définitions suivantes [1].

# 2. Catégorie de suspension

Soient & une ⊗-catégorie ACU,

# **APPENDICE**

-\_\_\_\_

Nous donnons un résumé de quelques résultats sur les Gr-catégories, faisant l'objet d'un travail détaillé

#### **BIBLIOGRAPHIE**

- [1] BASS, H *K-theory and stable algebra*. Publ. maths de L'IHES, n°22
- [2] BÉNABOU, J Thèse, Paris 1966
- [3] BOURBAKI, N Théorie des ensembles
- [4] Algèbre commutative
- [5] Algèbre multilinéaire
- [6] DELIGNE, P Champs de Picard strictement commutatifs, SGA 4 XVIII
- [7] EILENBERG, S ET KELLY, G M *Closed category*, Proceedings of the conference on categorical algebra (421.561). Springer Verlag 1965
- [8] FREYD, P Stable homotopy, Proceedings of the conferece on categorical agebra (121.176). Springer Verlag 1965
- [9] GROTHENDIECK, A Biextensions de faisceaux de groupes, SGA 7, VII
- [10] Catégories cofibrées additives et complexe cotangent relatif, Lecture notes in mathematics n°79. Springer Verlag 1968
- [11] MACLANE, S Categorical algebra, Bull. Amer. Mat. Soc. 71 (1965)
- [12] Homology, Springer Verlag 1967
- [13] MITCHELL, B Theory of categories, Academic Press 1965
- [14] NEANTRO SAAVEDRA RIVANO Thèse, Paris (1970?)

- [15] Catégories tannakiennes, Lecture notes in mathematics n°265. Springer Verlag 1972
- [16] Spanier, E- Algebraic topology, McGraw-Hill, 1966