Гомотетия.

- 1. Две окружности ω_1 и ω_2 касаются внешним образом в точке B. ω_1 и ω_2 касаются двух параллельных прямых l_1 и l_2 в точках A и C соответственно, при этом l_1 имеет общих точек с ω_2 , и l_2 не имеет общих точек с ω_1 . Докажите, что точки A, B и C коллинеарны.
- 2. Внутри квадрата ABCD выбрана произвольно точка M. Докажите, что центроиды (точки пересечения медиан) треугольников AMB, BMC, CMD, AMD являются вершинами некоторого квадрата.
- 3. Внутри выпуклого четырёхугольника ABCD выбрана произвольно точка M. Докажите, что центроиды (точки пересечения медиан) треугольников AMB, BMC, CMD, AMD являются вершинами некоторого параллелограмма.
- 4. Докажите, что внутри любого выпуклого многоугольника Φ можно расположить два непересекающихся многоугольника Φ_1 и Φ_2 , подобных Φ с коэффициентом $\frac{1}{2}$.
- 5. Точка A_1, B_1 и C_1 середины сторон BC, AC и AB треугольника ABC соответственно. Прямые a, b и c параллельны биссектрисам углов A, B и C треугольника ABC и проходят через точки A_1, B_1 и C_1 соответственно. Докажите, что a, b и c проходят через одну точку.
- 6. Докажите замечательное свойство трапеции.
- 7. На основаниях AB и CD трапеции ABCD построены внешним образом равносторонние треугольники ABL и CDK соответственно. Докажите, что KL проходит через точку пересечения AC и BD.
- 8. Внутри треугольника ABC отмечены точки A_1, B_1 и C_1 таким образом, что расстояния от точки A_1 и B_1 до AB равны, расстояния от точки A_1 и C_1 до AC равны, расстояния от точки B_1 и C_1 до BC равны. Докажите, что прямые AA_1, BB_1, CC_1 пересекаются в одной точке.
- 9. На сторонах AB, BC, CD, DE, EF, FA шестиугольника ABCDEF отмечены их середины P, Q, R, S, T, U. Известно, что $UP \parallel RS, PQ \parallel ST, QR \parallel TU$. Докажите, что AD, BE, CF пересекаются в одной точке.
- 10. Окружности α , β и γ , вписанные в углы A,B и C треугольника ABC соответственно, имеют одинаковые радиусы. Окружность δ касается α , β и γ внешним образом. Докажите, что центр δ лежит на прямой, соединяющей центры вписанной и описанной окружностей треугольника ABC.
- 11. Окружности S_1 , S_2 и S_2 , вписанные в углы A, B и C треугольника ABC соответственно, внешним образом касаются окружности S в точках A_1, B_1 и C_1 соответственно. Докажите, что прямые AA_1, BB_1 и CC_1 пересекаются в одной точке.
- 12. Из вершины угла AOD проведено два луча OB и OC внутри угла этого угла. Окружности ω_1 и ω_2 вписаны в равные углы AOB и COD соответственно (ω_1 и ω_2 не пересекаются). Докажите, что точка пересечения общих внутренних касательных к ω_1 и ω_2 лежит на биссектрисе угла AOD.
- 13. В данный полукруг впишите квадрат с помощью циркуля и линейки (две вершины квадрата лежат на полуокружности, ограничивающей данный полукруг, а две остальные вершины на диаметре этого полукруга).
- 14. Через центр O окружности Ω , описанной около треугольника ABC, проведена прямая, параллельная BC и пересекающая стороны AB и AC в точках B_1 и C_1 соответственно. Окружность ω проходит через точки B_1 и C_1 и касается Ω в точке K. Найдите угол между прямыми AK и BC. Найдите площадь треугольника ABC и радиус окружности Ω , если $B_1C_1=6$, AK=6, а расстояние между прямыми BC и B_1C_1 равно 1.
- 15. Пусть A и B две различные фиксированные точки окружности, C произвольная точка этой окружности, отличная от A и B, и MP перпендикуляр, опущенный из середины M хорды BC к хорде AC. Докажите, что прямые PM при любом выборе C проходят через некоторую общую точку T.
- 16. Две окружности внутренним образом касаются друг друга в точке A. Касательные к внутренней окружности пересекают внешнюю окружность в точках P и K. Найдите геометрическое место точек, образованное центром вписанной окружности треугольника APK по мере вращения касательной PK вокруг внутренней окружности.
- 17. Докажите, в любом треугольнике центроид M, ортоцентр H и центр описанной окружности O лежат на одной прямой, причём O лежит между M и H, и MH=2MO.