Chapitre 1 : Groupes

I Généralités

A) Définition

Un groupe est un couple (G,*) constitué d'un ensemble G et d'une loi de composition interne * sur G de sorte que :

- (1) * est associative
- (2) Il y a dans G un élément neutre pour *.
- (3) Tout élément de G admet un symétrique pour la loi *.

C'est-à-dire:

- (1) $\forall x, y, z \in G, (x * y) * z = x * (y * z)$
- (2) $\forall x \in G, x * e = e * x = x$
- (3) $\forall x \in G, \exists y \in G, x * y = y * x = e$

Remarque:

Si (G,*) est un groupe, il y a unicité du neutre (déjà vu en cas plus général).

Si de plus * est commutative, on dit que (G,*) est un groupe commutatif.

B) Exemples

- (N,+) n'est pas un groupe.
- $(\mathbb{Z},+)$ est un groupe.
- (\mathbb{Z}_{1},\times) n'est pas un groupe.
- (Q,x) n'est pas un groupe, mais (Q*,x) en est un.
- Créons un groupe à trois éléments $G = \{a, b, c\}$

Loi \vee définie par la table de Pythagore donnant $x \vee y$:

$x^{\setminus y}$	a	b	С
a	a	b	С
b	b	c	a
c	c	a	b

On pose a comme élément neutre, et on choisit $b \nabla c = c \nabla b = a$

C) Règles de calcul

1) En notation « bizarre »

Soit *G* un ensemble muni d'une loi * formant un groupe.

• Il y a dans G un et un seul élément neutre :

L'existence est déjà donnée par la définition d'un groupe.

Supposons que e, e' sont deux neutres.

Alors e = e * e' = e' (première égalité : e' est neutre ; deuxième : e est neutre) On peut donc parler du neutre du groupe (G,*).

- Tout élément x de G admet un et un seul symétrique par * :
- L'existence est toujours donnée par la définition d'un groupe.

Supposons que x', x'' sont deux symétriques de x.

Alors
$$x' = x' * e = x' * (x * x'') = (x' * x) * x'' = e * x'' = x''$$

On note dans ce sous paragraphe \bar{x} le symétrique de x.

• Pour tout $x \in G, \overline{\overline{x}} = x$:

$$\overline{x} * x = x * \overline{x} = e$$

Donc x est symétrique de \bar{x} .

• Pour tous $x, y \in G, x * y = \overline{y} * \overline{x}$:

$$(x*y)*(\bar{y}*\bar{x}) = x*[y*(\bar{y}*\bar{x})] = x*[(y*\bar{y})*\bar{x}] = x*[e*\bar{x}] = x*\bar{x} = e$$

Et
$$(\bar{y} * \bar{x}) * (x * y) = [(\bar{y} * \bar{x}) * x] * y = [\bar{y} * (\bar{x} * x)] * y = [\bar{y} * e] * y = \bar{y} * y = e$$

Donc $x * y = \overline{y} * \overline{x}$

• Remarque:

On a, pour tout $x, y, z \in G, (x * y) * z = x * (y * z)$.

On peut donc le noter sans ambiguïté x * y * z

• « Résolution d'équations » :

Pour tous $x, y, z \in G$:

(1)
$$x * y = z \Leftrightarrow x = z * \overline{y}$$

(2)
$$y * x = z \Leftrightarrow x = \overline{y} * z$$

Démonstration du (1):

Si
$$x * y = z$$
, alors $(x * y) * \overline{y} = z * \overline{y}$.

Or,
$$(x * y) * \bar{y} = x * (y * \bar{y}) = x * e = x$$
. Donc $x = z * \bar{y}$

Si
$$x = z * \overline{y}$$
, alors $x * y = (z * \overline{y}) * y = z * (\overline{y} * \overline{y}) = z * e = z$

La démonstration est la même pour (2)...

Régularité

Pour tous $x, y, z \in G$, on a:

(1)
$$x*z = y*z \Rightarrow x = y$$

(2)
$$z * x = z * y \Rightarrow x = y$$

(Les autres implications sont vraies aussi mais évidentes)

Démonstration de (1):

Si
$$x*z = y*z$$
, alors $(x*z)*\bar{z} = (y*z)*\bar{z}$

Soit
$$x*(z*\overline{z}) = y*(z*\overline{z})$$
, donc $x*e = y*e$ c'est-à-dire $x = y$

La démonstration est encore la même pour (2).

Conséquence : dans une table de Pythagore d'un groupe fini (G,*), on ne voit jamais deux fois le même élément dans une même rangée (ligne ou colonne) :

Si
$$x_1 * y_1 = z$$
 et $x_1 * y_2 = z/x_2 * y_1 = z$, alors $x_1 * y_1 = x_1 * y_2/x_1 * y_1 = x_2 * y_1$, soit $y_1 = y_2/x_1 = x_2$.

• Itéré d'un élément :

Soit $x \in G$. On note (dans ce sous paragraphe seulement):

$$x * x = x$2$$
, $(x * x) * x = x * x * x = x3

Plus rigoureusement:

On définit, pour tout $n \in \mathbb{N}$, x n par récurrence en posant :

$$-x$0 = e$$

$$-\forall n \in \mathbb{N}, x\$(n+1) = (x\$n)*x$$

Alors il est facile (mais pénible à écrire) d'établir que, pour tout $n, p \in \mathbb{N}$,

$$x\$(n+p) = (x\$n)*(x\$p)$$
 et $(x\$n)\$p = x\$(n\times p)$

• Itéré « un nombre négatif de fois » :

Soit
$$x \in G$$
, $n \in \mathbb{N}$.

On pose
$$x\$(-n) = \bar{x}\$n$$

Alors
$$x\$(-n) = \overline{x\$n}$$

Les règles précédentes se généralisent à Z.

2) En notation « multiplicative » (réécriture)

Dans le groupe (G,\times) avec les notations suivantes :

- Le neutre 1_G appelé aussi élément unité
- Le symétrique de $x \in G$ est noté x^{-1} , appelé aussi inverse de x.
- L'itéré n fois est noté x^n .
- Le symbole \times est souvent omis : $x \times y$ est noté aussi xy.

Les règles précédentes donnent :

•
$$(x^{-1})^{-1} = x$$

•
$$(xy)^{-1} = y^{-1}x^{-1}$$

•
$$xy = z \Leftrightarrow x = zy^{-1}$$

$$yx = z \iff x = y^{-1}z$$

•
$$xz = yz \Rightarrow x = y$$

$$zx = zy \Rightarrow x = y$$

$$\bullet \quad x^0 = 1_G$$

$$x^1 = x$$

$$\forall n \in \mathbb{N}, x^{(n+1)} = x^n x$$

$$\forall n \in \mathbb{N}, x^{-n} = (x^{-1})^n = (x^n)^{-1}$$

$$\forall n, p \in \mathbb{Z}, x^n x^p = x^{(n+p)}$$

$$(x^n)^p = x^{n \times p}$$

3) En notation « additive » (réservée aux groupes commutatifs)

Dans le groupe (G,+), avec les notations suivantes :

- Le neutre 0_G est appelé l'élément nul de G
- Le symétrique de $x \in G$ est noté -x, appelé aussi opposé de x.
- L'itéré *n* fois est noté *n.x* ou *nx*.
- On suppose de plus que le groupe (G,+) est commutatif, c'est-à-dire :

$$\forall x,y \in G, x+y=y+x$$

Les règles donnent alors :

$$\bullet \quad -(-x) = x$$

- -(x+y) = (-y) + (-x) = (-x) + (-y)
- $(y+x=)x+y=z \Leftrightarrow x=z+(-y)$; z+(-y) est noté aussi z-y
- $x + z = y + z \Rightarrow x = y$
- $\bullet \quad 0.x = 0_G$

$$1.x = x$$

 $\forall n \in \mathbb{N}, (n+1).x = n.x + x$

 $\forall n \in \mathbb{N}, (-n).x = n.(-x) = -(n.x), \text{ noté aussi } -n.x$

 $\forall n, p \in \mathbb{Z}, n.x + p.x = (n+p).x$

 $p.(n.x) = (p \times n)x$

D) Autres exemples de groupe

- Rappels :

Groupes de nombres :

$$(C,+),(R,+),(Q,+),(Z,+),(C^*,\times),(R^*,\times),(Q^*,\times)$$

- Groupes de permutation :

Soit \widehat{E} un ensemble non vide quelconque. On note $\mathfrak{S}(E)$ l'ensemble des permutations sur E (ensemble des bijections de E dans E). Alors \circ constitue une loi de composition interne sur $\mathfrak{S}(E)$, et $(\mathfrak{S}(E), \circ)$ est un groupe, appelé groupe des permutations de E. Ce groupe est non commutatif dès que E a au moins trois éléments.

Démonstration:

- On peut composer deux bijections de *E* dans *E*, et on obtient une bijection de *E* dans *E*.
- La loi est associative :

$$\forall f, g, h \in \mathfrak{S}(E), f \circ (g \circ h) = (f \circ g) \circ h$$

(Démontré dans un cas plus général et pas seulement pour les bijections)

- Neutre : $\mathrm{Id}_{E} \in \mathfrak{S}(E)$
- Tout $f \in \mathfrak{S}(E)$ a un symétrique pour \circ , à savoir f^{-1} .

Donc ($\mathfrak{S}(E)$, \circ) est un groupe.

Montrons que, pour un ensemble E de plus de trois éléments, $(\mathfrak{S}(E),\circ)$ n'est pas commutatif :

Soient a, b, c trois éléments de E distincts.

Soient $f, g: E \to E$ définies ainsi :

$$\begin{cases} f(a) = b \\ f(b) = a \\ \forall x \in E \setminus \{a, b\}, f(x) = x \end{cases} \begin{cases} g(b) = c \\ g(c) = b \\ \forall x \in E \setminus \{b, c\}, g(x) = x \end{cases}$$

Alors f et g sont dans $\mathfrak{S}(E)$, puisque ce sont des applications de E dans E et inversibles d'inverse elles-mêmes (elles sont involutives).

Et on a alors $f \circ g \neq g \circ f$:

$$(f \circ g)(a) = f(g(a)) = f(a) = b$$

$$(g \circ f)(a) = g(f(a)) = g(b) = c$$

Exemples:

- On note \mathfrak{S}_n le groupe $(\mathfrak{S}(E), \circ)$ lorsque $E = \{1, 2, 3, ..., n\}$. Ainsi, \mathfrak{S}_n est un groupe fini de cardinal n!.
- Table de Pythagore de \mathfrak{S}_2 :

$$\mathfrak{S}_2 = \{ \mathrm{Id}, \tau \}, \, \mathrm{où} :$$

$$\operatorname{Id}: \{1,2\} \to \{1,2\}$$

 $\tau: \{1,2\} \rightarrow \{1,2\}$ définie par $\tau(1) = 2$; $\tau(2) = 1$

Tableau donnant $x \circ y$:

$$\begin{array}{c|cccc}
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
 & & & & & \\
\hline
 & & & &$$

• Table de Pythagore de 😂 :

$$\mathfrak{S}_3 = \{ \mathrm{Id}_E, \tau_{1,2}, \tau_{2,3}, \tau_{3,1}, s, s' \}, \text{ où } :$$

Id:
$$\{1,2,3\} \to \{1,2,3\}$$

 $\tau_{a,b}: \{1,2,3\} \rightarrow \{1,2,3\} \text{ défini par } \tau_{a,b}(a) = b \text{ ; } \tau_{a,b}(b) = a \text{ ; } \tau_{a,b}(x) = x \text{ sinon.}$

$$s: \{1,2,3\} \rightarrow \{1,2,3\}$$
 définie par $s(1) = 2$; $s(2) = 3$; $s(3) = 1$

$$s': \{1,2,3\} \rightarrow \{1,2,3\}$$
 définie par $s'(1) = 3$; $s'(2) = 1$; $s'(3) = 2$.

Tableau donnant $x \circ y$:

-
$$(\mathfrak{F}(A,G),\otimes)$$
, où :

A est quelconque, et (G,\times) est un groupe, avec :

 \otimes défini par :

$$\forall f, g \in \mathfrak{F}(A,G), f \otimes g : A \to G$$
$$x \mapsto f(x) * g(x)$$

E) Classes d'équivalence modulo *n*.

Soit $n \in \mathbb{N}, n \ge 2$.

On définit sur \mathbb{Z} la relation \equiv par :

Pour tous $x, y \in \mathbb{Z}$, $x \equiv y \Leftrightarrow y - x \in n\mathbb{Z}$

Cette relation s'appelle la relation de congruence modulo n.

On note plutôt $x \equiv y \mod n$ ou encore $x \equiv y [n]$

Cette relation est une relation d'équivalence :

- (1) $\forall x \in \mathbb{Z}, x \equiv x \text{ puisque } x x = 0 \in n\mathbb{Z}$
- (2) Pour tous $x, y \in \mathbb{Z}$, si x = y alors $y x \in n\mathbb{Z}$ donc $x y \in n\mathbb{Z}$ soit y = x
- (3) Soient $x, y, z \in \mathbb{Z}$. Si x = y et y = z, alors y x s'écrit y x = nk où $k \in \mathbb{Z}$, et z y s'écrit z y = nk' où $k \in \mathbb{Z}$. Donc $z x = (z y) + (y x) = n(k + k) \in n\mathbb{Z}$. Donc x = z.

Donc \equiv est réflexive (1), symétrique (2) et symétrique (3), c'est donc une relation d'équivalence.

Cette relation est compatible avec + :

Pour tout $x, x', y, y' \in \mathbb{Z}$:

Si $x \equiv x', y \equiv y'$, alors:

 $x-x' \in n\mathbb{Z}$, $y-y' \in n\mathbb{Z}$ donc $x-x'+y-y' \in n\mathbb{Z}$ soit $(x'+y')-(x+y) \in n\mathbb{Z}$, c'est-à-dire $x+y \equiv x'+y'$.

Pour tout $x \in \mathbb{Z}$, on appelle classe d'équivalence modulo n, et on note \dot{x} , l'ensemble des éléments de \mathbb{Z} congrus à x modulo n. (Attention, la notation n'indique pas qu'on travaille modulo n). On a alors l'équivalence :

$$\forall x, y \in \mathbb{Z}, (\dot{x} = \dot{y} \iff x \equiv y [n]).$$

En effet:

Soient $x, y \in \mathbb{Z}$

Si $\dot{x} = \dot{y}$. Déjà, $x \in \dot{x}$ (car = est réflexive), c'est à dire $x \in \dot{y}$, donc x = y [n].

Si $x \equiv y [n]$. Soit $z \in \dot{x}$. Alors $z \equiv x [n]$. Donc $z \equiv y [n]$ (car $\equiv \underset{n}{\text{est}}$ transitive).

Donc $z \in \dot{y}$. Donc $\dot{x} \subset \dot{y}$. De même, $\dot{y} \subset \dot{x}$. Donc $\dot{x} = \dot{y}$.

D'où l'équivalence, pour tous $x, y \in \mathbb{Z}$.

On note $\mathbb{Z}/n\mathbb{Z}$ l'ensemble des classes d'équivalences modulo n.

Ainsi, $\mathbb{Z}/n\mathbb{Z} = \{\dot{a}, a \in \mathbb{Z}\}.$

Proposition, définition:

 $\mathbb{Z}/n\mathbb{Z}$ est fini, et de cardinal n.

Pour tous $x, y \in \mathbb{Z}$, on pose $\dot{x} \oplus \dot{y} = \overline{x + y}$.

Alors \oplus définit une loi de composition interne sur $\mathbb{Z}_n/n\mathbb{Z}_n$, et $(\mathbb{Z}_n/n\mathbb{Z}_n, \oplus)$ est un groupe commutatif.

Démonstration:

• Soit $x \in \mathbb{Z}$.

Alors il existe $a \in [0, n-1]$ tel que $\dot{x} = \dot{a}$, c'est-à-dire tel que $x \equiv a [n]$.

En effet

En prenant a = x - nk, où $k = \left[\frac{x}{n}\right]$, on a alors:

 $k \le \frac{x}{n} < k+1$, donc $nk \le x < nk+n$, soit $0 \le x-nk < n$, c'est-à-dire $0 \le a \le n-1$, d'où l'existence.

Donc $\forall x \in \mathbb{Z}, \exists a \in [0, n-1], \dot{x} = \dot{a}$

Donc $\mathbb{Z}_n/n\mathbb{Z}_n$ contient au plus n éléments, à savoir les $\dot{a}, a \in [0, n-1]$. On doit donc maintenant montrer que tous ces éléments sont distincts.

Soient $x, y \in [0, n-1]$, supposons que $\dot{x} = \dot{y}$, c'est-à-dire que $x \equiv y$ [n].

Il existe donc $k \in \mathbb{Z}$, tel que y - x = nk.

Alors y = x + nk. On a:

 $0 \le x \le n-1$. Donc $nk \le y \le nk + n - 1 < n(k+1)$

Donc $k \le \frac{y}{n} < k + 1$

Donc $k = \left\lfloor \frac{y}{n} \right\rfloor$. Or, $0 \le y \le n-1$. Donc $0 \le \frac{y}{n} \le 1 - \frac{1}{n} < 1$

Donc $k = \left[\frac{y}{n}\right] = 0$. Donc y = x + nk = x.

Donc $\forall x, y \in [0, n-1], \dot{x} = \dot{y} \Rightarrow x = y$

Soit, par contraposée : $\forall x, y \in [0, n-1], x \neq y \Rightarrow \dot{x} \neq \dot{y}$.

Donc $\mathbb{Z}/n\mathbb{Z}$ contient au moins n éléments, à savoir les $\dot{a}, a \in [0, n-1]$

Donc $\mathbb{Z}_n/n\mathbb{Z}_n$ est fini, de cardinal n.

• Montrons déjà que la loi \oplus est bien définie, c'est-à-dire que pour tous $x, y \in \mathbb{Z}$, $\overline{x+y}$ ne dépend que de x+y, et non pas de x et de y:

Si x' est tel que $\dot{x}' = \dot{x}$, et y' tel que $\dot{y}' = \dot{y}$, alors x' = x et y' = y, soit x' + y' = x + y

donc
$$\frac{\cdot}{x+y} = \frac{\cdot}{x'+y'}$$
.

Déjà, \oplus est évidemment une loi de composition interne sur $\mathbb{Z}/n\mathbb{Z}$

 \oplus est associative : en effet, pour tous $x, y, z \in \mathbb{Z}$, on a :

$$(\dot{x} \oplus \dot{y}) \oplus \dot{z} = \overline{x + y} \oplus \dot{z} = \overline{(x + y) + z} = \overline{x + (y + z)} = \dot{x} \oplus \overline{y + z} = \dot{x} \oplus (\dot{y} \oplus \dot{z})$$

Pour tout $x \in \mathbb{Z}$, on a:

$$\dot{x} \oplus \dot{0} = \overline{x+0} = \dot{x} = \overline{0+x} = \dot{0} \oplus \dot{x}$$

Donc $\mathbb{Z}/n\mathbb{Z}$ admet un élément neutre pour \oplus , à savoir $\dot{0}$.

Soit $x \in \mathbb{Z}$, posons y = -x (ainsi, $y \in \mathbb{Z}$). On a alors:

$$\dot{x} \oplus \dot{y} = \overline{x + y} = \overline{x + (-x)} = \dot{0} = \overline{(-x) + x} = \overline{y + x} = \dot{y} \oplus \dot{x}$$

Donc tout élément de $\mathbb{Z}_n/n\mathbb{Z}_n$ admet un symétrique pour \oplus .

Enfin, \oplus est commutative : pour tous $x, y \in \mathbb{Z}$, on a :

$$\dot{x} \oplus \dot{y} = \frac{\dot{x} + \dot{y}}{x + y} = \frac{\dot{y} \oplus \dot{x}}{y + x} = \dot{y} \oplus \dot{x}$$

Donc $(\mathbb{Z}_1/n\mathbb{Z}_1, \oplus)$ est bien un groupe commutatif. (on notera plutôt + pour \oplus)

II Sous-groupes (notation multiplicative)

A) Définition

Soit (G,\times) un groupe.

Soit H une partie de G.

On dit que H constitue un sous-groupe de (G,\times) lorsque :

- (1) $1_G \in H$
- (2) H est stable par \times : $\forall x, y \in H, x \times y \in H$
- (3) H est stable par passage à l'inverse : $\forall x \in H, x^{-1} \in H$

Proposition:

Si H est un sous-groupe de (G,\times) , alors \times constitue une loi de composition interne sur H, et (H,\times) est un groupe.

- Déjà, \times est bien une loi de composition interne sur H d'après (2)
- L'associativité n'est pas perdue par restriction.
- Neutre : c'est 1_G qui est dans H d'après (1)
- Existence d'un inverse pour tout x de H d'après (3).

B) Exemples

- \mathbb{R}^* est un sous-groupe de (\mathbb{C}^*,\times) , \mathbb{Q}^* de (\mathbb{R}^*,\times) (et aussi de (\mathbb{C}^*,\times)), $\{2^n,n\in\mathbb{Z}\}$, $\{-1,1\}$, \mathbb{Q}^*_+ sont des sous-groupes de (\mathbb{Q}^*,\times)

U est un sous-groupe de (\mathbb{C}^*,\times) $(\mathbb{U} = \{z \in \mathbb{C}, |z| = 1\})$

 U_n est un sous-groupe de (U,\times) $(U_n = \{z \in \mathbb{C}, z^n = 1\})$

- Des sous-groupes de (C,+) sont : \mathbb{Z} , \mathbb{Q} , \mathbb{R} , $\{0\} \cup \{z \in \mathbb{C}^*, \operatorname{Arg}(z) = \alpha \ [\pi]\}$

(Le dernier est une droite du plan complexe passant par O)

- Pour $n \in \mathbb{N}$, $n\mathbb{Z}$ est un sous-groupe de \mathbb{Z} .
- Si (G,\times) est un groupe, alors $\{l_G\}$ et G sont des sous-groupes de G (les autres sous-groupes sont appelés les sous-groupes propres de G)
- $\{\mathrm{Id}, s, s'\}$ est un sous-groupe (commutatif) de $\mathfrak{S}_3 = \{\mathrm{Id}_E, \tau_{1,2}, \tau_{2,3}, \tau_{3,1}, s, s'\}$ qui n'est pas commutatif.

Soit $n \in \mathbb{N}^*$, A une partie de $\{1, 2, ..., n\}$ non vide.

Soit $H = \{ \sigma \in \mathfrak{S}_n, \sigma(A) \subset A \}$, c'est-à-dire que H est l'ensemble des permutations qui laissent stable A (remarque : si $\sigma \in \mathfrak{S}_n$, comme σ est bijective, $\sigma(A)$ a le même cardinal que A, donc $\sigma(A) \subset A \Leftrightarrow \sigma(A) = A$)

Alors H est un sous-groupe de (\mathfrak{S}_n, \circ) :

- Id∈ *H*
- H est stable par \circ : si $\sigma(A) \subset A$, $\sigma'(A) \subset A$, alors $\sigma \circ \sigma'(A) \subset A$
- H est stable par passage au symétrique : si $\sigma(A) \subset A$, alors $\sigma^{-1}(A) \subset A$ En effet :

Supposons que $\sigma(A) \subset A$. Alors $\sigma(A) = A$

Soit $x \in A$. Donc $x \in \sigma(A)$.

Il existe donc y dans A tel que $x = \sigma(y)$, avec $y \in A$

Donc $\sigma^{-1}(x) = y$, donc $\sigma^{-1}(x) \in A$

D'où l'inclusion $\sigma^{-1}(A) \subset A$ (et même l'égalité puisque σ^{-1} est bijective)

- Des sous-groupes de $(\mathfrak{F}(\mathbb{R},\mathbb{R}),+)$:
- L'ensemble des fonctions polynomiales
- $\{\lambda f, \lambda \in \mathbb{R}\}$ où f est un élément fixé de $\mathfrak{F}(\mathbb{R}, \mathbb{R})$.
- $\{f \in \mathfrak{F}(\mathbb{R}, \mathbb{R}), f(0) = 0\}$
- $C^n(\mathbb{R}, \mathbb{R})$ où $n \in \mathbb{N}$, $D^n(\mathbb{R}, \mathbb{R})$ où $n \in \mathbb{N}$
- Ensemble des fonctions *T*-périodiques (à *T* fixé)
- Ensemble des fonctions k-lipschitzienne (à k fixé)

- Ensemble des fonctions uniformément continues
- Ensemble des fonctions paires, impaires...
- Sous-groupes de $\mathbb{Z}_1/n\mathbb{Z}_1$:

Pour n = 6:

$$\{\dot{0}\},\{\dot{0},\dot{1},\dot{2},\dot{3},\dot{4},\dot{5}\},\underbrace{\{\dot{0},\dot{2},\dot{4}\},\{\dot{0},\dot{3}\}}_{\text{sous-groupes propres}}$$

İ engendre $\mathbb{Z}/6\mathbb{Z}$, 5 aussi.

 $\dot{2}$ et $\dot{4}$ engendrent $\{\dot{0},\dot{2},\dot{4}\}$.

 $\dot{3}$ engendre $\{\dot{0},\dot{3}\}$.

On dit que 1 est un élément d'ordre 6, 2 et 4 d'ordre 3, 3 d'ordre 2.

C) Les sous-groupes de $(\mathbb{Z},+)$.

Déjà, les $n\mathbb{Z}$, où $n \in \mathbb{N}$, sont des sous-groupes de \mathbb{Z} .

Y en a-t-il d'autres?

Soit G un sous-groupe de \mathbb{Z} autre que $\{0\}$.

Il contient donc un élément non nul de \mathbb{Z} , et son opposé (l'un d'eux étant alors dans \mathbb{N}^*). Donc l'ensemble $G \cap \mathbb{N}^*$ est non vide et est une partie de \mathbb{N} . il admet donc un plus petit élément, disons $n \ge 1$. Alors $G = n\mathbb{Z}$.

En effet:

Déjà, une récurrence rapide montre que $\forall k \in \mathbb{N}, kn \in G$, puis comme G est stable par passage à l'inverse, $\forall k \in \mathbb{Z}, kn \in G$, donc $n\mathbb{Z} \subset G$

L'autre inclusion maintenant :

Soit $x \in G$. La division euclidienne de x par n donne :

$$x = nq + r$$
, où $q \in \mathbb{Z}$, et $r \in [0, n-1]$.

Donc
$$r = x - nq = \underbrace{x}_{\in G} + \underbrace{(-nq)}_{\in G}$$
.

Donc $r \in G$. Comme n est le plus petit élément de $G \cap \mathbb{N}^*$, on a nécessairement r = 0 (car r < n)

Donc $x \in n\mathbb{Z}$

Ainsi, les sous-groupes de \mathbb{Z} sont exactement les $n\mathbb{Z}$, où $n \in \mathbb{N}$.

D) Une caractérisation condensée des sous-groupes

Proposition:

Soit (G,\times) un groupe, H une partie de G.

Alors H est un sous-groupe de $(G,\times) \Leftrightarrow \begin{cases} 1_G \in H \\ \forall x,y \in H, xy^{-1} \in H \end{cases}$

Démonstration:

La première implication est évidente. Pour l'autre :

Supposons que
$$\begin{cases} 1_G \in H \\ \forall x, y \in H, xy^{-1} \in H \end{cases}$$

Alors déjà $1_G \in H$...

En prenant $x = 1_G$, Alors, pour tout $y \in H$, $y^{-1} \in H$.

Pour tout $x, y \in H$, $y^{-1} \in H$, donc $x(y^{-1})^{-1} \in H$ c'est-à-dire $xy \in H$

E) Intersections de sous-groupes

Théorème:

Soit (G,\times) un groupe.

Alors toute intersection de sous-groupes de G est un sous-groupe de G.

Démonstration :

Soit $(H_i)_{i \in I}$ une famille de sous-groupes de G indexée par I. Notons $H = \bigcap_{i \in I} H_i$

Déjà, $1_G \in H$, puisque $\forall i \in I, 1_G \in H_i$.

Soient $x, y \in H$. Alors, pour tout $i \in I$, $x \in H_i$, $y \in H_i$ donc $xy^{-1} \in H_i$.

Donc $xy^{-1} \in H$.

Donc H est un sous-groupe de (G,\times) .

F) Sous-groupe engendré par une partie

Soit (G,\times) un groupe.

Soit A une partie de G.

On appelle sous-groupe engendré par A le plus petit sous-groupe de G contenant A.

Il y en a bien un, puisque déjà G contient A. Donc l'ensemble ε des sous-groupes de G contenant A n'est pas vide.

Considérons alors $\bigcap_{H \in \mathcal{E}} H$. C'est un sous-groupe de G, il contient A et est contenu dans tout sous-groupe de G contenant A.

On note alors
$$\langle A \rangle = \bigcap_{H \in \mathcal{C}} H$$

Cas particulier:

Un sous-groupe engendré par un singleton $\{a\}$ est noté $\langle a \rangle$, et on parle du sous-groupe engendré par l'élément a.

Exemples:

- Dans Z/6Z :

$$\langle \dot{2} \rangle = \{ \dot{0}, \dot{2}, \dot{4} \}$$

$$\langle \dot{3} \rangle = \{ \dot{0}, \dot{3} \}$$

 $\langle \dot{5} \rangle = \mathbb{Z}/6\mathbb{Z}$ (on dit que $\dot{5}$ est un générateur de $\mathbb{Z}/6\mathbb{Z}$)

 $\langle \{2,3\} \rangle = \mathbb{Z}/6\mathbb{Z}$ ($\{2,3\}$ est une partie génératrice de $\mathbb{Z}/6\mathbb{Z}$)

- Dans
$$(\mathbb{R},+)$$
 : $\langle 2\pi \rangle = 2\pi \mathbb{Z}$,

- Dans
$$\mathfrak{S}_3 = \{ \mathrm{Id}_E, \tau_{1,2}, \tau_{2,3}, \tau_{3,1}, s, s' \}$$
:

$$\left\langle s\right\rangle = \left\{\mathrm{Id}, s, s'\right\} \; ; \; \left\langle s'\right\rangle = \left\{\mathrm{Id}, s, s'\right\} \; ; \; \left\langle \tau_{1,2}\right\rangle = \left\{\mathrm{Id}, \tau_{1,2}\right\} \; ; \; \left\langle s, \tau_{a,b}\right\rangle = \mathfrak{S}_{3}$$

G) Groupe monogène

Définition:

Soit (G,\times) un groupe.

On dit que G est monogène lorsqu'il admet un générateur, c'est-à-dire lorsqu'il existe $a \in G$ tel que $\langle a \rangle = G$, c'est-à-dire : $\exists a \in G, \langle a \rangle = G$

Remarque:

$$\langle a \rangle = \{ a^k, k \in \mathbb{Z} \}$$

En effet:

- Soit H un sous-groupe de G contenant a. Alors, comme H est stable par \times et passage à l'inverse, une récurrence évidente montre qu'alors H contient $\{a^k, k \in \mathbb{Z}\}$.
 - L'ensemble $\{a^k, k \in \mathbb{Z}\}$ est effectivement un sous-groupe de G contenant a: Il contient $1_G = a^0$.

Il est stable par \times , puisque pour tous $x, y \in \{a^k, k \in \mathbb{Z}\}$, x s'écrit $x = a^k$, y s'écrit $y = a^{k'}$ (où $k, k' \in \mathbb{Z}$) et $xy = a^k a^{k'} = a^{k+k'} \in \{a^k, k \in \mathbb{Z}\}$

Il est stable par passage à l'inverse puisque pour tout $x \in \{a^k, k \in \mathbb{Z}\}$, x s'écrit $x = a^k$ où $k \in \mathbb{Z}$, et $x^{-1} = (a^k)^{-1} = a^{-k} \in \{a^k, k \in \mathbb{Z}\}$.

C'est donc un sous-groupe de G, et enfin il contient a puisque $a = a^1$.

Donc $\{a^k, k \in \mathbb{Z}\}$ est un sous-groupe de G qui contient a, et c'est le plus petit.

Remarque:

Plus généralement, $\langle A \rangle$ est l'ensemble des produits de puissances d'éléments de A.

Définition:

Un groupe G est dit cyclique lorsqu'il est monogène et fini.

Exemples

- $(\mathbb{Z},+)$ est monogène infini : $\mathbb{Z} = \{k.1, k \in \mathbb{Z}\} = \langle 1 \rangle$ (Attention, notation additive)

Tous les sous-groupes de \mathbb{Z} sont monogènes (infinis) : $n\mathbb{Z} = \{k.n, k \in \mathbb{Z}\} = \langle n \rangle$

- $(\mathbb{Z}/n\mathbb{Z},+)$ est cyclique, engendré par İ (qui n'est généralement pas le seul)
- (\mathbb{U}_n,\times) est aussi cyclique : $\mathbb{U}_n = \{\omega^k, k \in \mathbb{Z}\} = \langle \omega \rangle$ où $e^{\frac{2i\pi}{n}}$.

III Morphismes de groupes

(Morphisme est une apocope de homomorphisme)

A) Définition (en notation « bizarre »)

Soient (G,#) et (H,\blacktriangledown) deux groupes.

Un morphisme de (G,#) vers (H,\blacktriangledown) est une application $\varphi: G \to H$ telle que : $\forall x, y \in G, \varphi(x\#y) = \varphi(x)\blacktriangledown\varphi(y)$

Exemples:

• exp est un morphisme de $(\mathbb{R},+)$ vers (\mathbb{R}^*,\times)

- $x \mapsto \sqrt{x}$ de $(\mathbb{R}_{+}^{*},\times)$ vers (\mathbb{R}^{*},\times) (ou vers $(\mathbb{R}_{+}^{*},\times)$ aussi)
- $x \mapsto ax$ de $(\mathbb{R},+)$ vers $(\mathbb{R},+)$
- $\theta \mapsto e^{i\theta}$ de (\mathbb{R}^* ,+) vers (\mathbb{C}^* ,×)
- L'ensemble $S_C(\mathbb{N}, \mathbb{R})$ des suites réelles convergentes est un sous-groupe de $(\mathbb{R}^{\mathbb{N}}, +)$ et l'application $u \mapsto \lim(u)$ est un morphisme de $(S_C(\mathbb{N}, \mathbb{R}), +)$ vers $(\mathbb{R}, +)$.

B) Propriétés (notation multiplicative)

Proposition:

Soit φ un morphisme d'un groupe (G,\times) vers un groupe (H,\times) .

Alors:

- $\forall x, y \in G, \varphi(xy) = \varphi(x)\varphi(y)$
- $\bullet \varphi(1_G) = 1_H$
- $\bullet \ \forall x \in G, \varphi(x^{-1}) = (\varphi(x))^{-1}$
- $\forall x \in G, \forall n \in \mathbb{Z}, \varphi(x^n) = (\varphi(x))^n$

Démonstration :

- C'est la définition.

L'élément $a = \varphi(1_G)$ de H vérifie donc $a \times a = a$. Donc $a = a \times a^{-1} = 1_H$

• Soit $x \in G$. Alors $\varphi(x^{-1})\varphi(x) = \varphi(x^{-1}x) = \varphi(1_G) = 1_H$

De même, $\varphi(x)\varphi(x^{-1}) = 1_H$

Donc $\varphi(x^{-1}) = (\varphi(x))^{-1}$

• Soit $x \in G$. Montrons par récurrence que $\forall n \in \mathbb{N}, \varphi(x^n) = (\varphi(x))^n$:

Pour n = 0, $\varphi(x^0) = \varphi(1_G) = 1_H = (\varphi(x))^0$

Soit $n \in \mathbb{N}$, supposons que $\varphi(x^n) = (\varphi(x))^n$.

Alors $\varphi(x^{n+1}) = \varphi(x^n x) = \varphi(x^n)\varphi(x) = (\varphi(x))^n \varphi(x) = (\varphi(x))^{n+1}$

On passe aux n négatifs avec le point précédent.

C) Noyau et image d'un morphisme

Définition, proposition:

Soit φ un morphisme d'un groupe (G,\times) vers un groupe (H,\times) .

L'image de φ , notée Im φ , c'est $\varphi(G)$, c'est-à-dire $\{\varphi(x), x \in G\}$

Alors $\operatorname{Im} \varphi$ est un sous-groupe de H.

Démonstration :

- Im φ contient 1_H car $1_H = \varphi(1_G)$
- $\operatorname{Im} \varphi$ est stable par \times :

Soient $u, v \in \text{Im } \varphi$. Alors u s'écrit $\varphi(x)$ où $x \in G$, v s'écrit $\varphi(y)$ où $y \in G$.

Donc $u \times v = \varphi(x) \times \varphi(y) = \varphi(xy) \in \operatorname{Im} \varphi$

- Im φ est stable par passage à l'inverse :

Soit $u \in \text{Im } \varphi$. Alors u s'écrit $\varphi(x)$ où $x \in G$.

Et:
$$u^{-1} = (\varphi(x))^{-1} = \varphi(x^{-1}) \in \text{Im } \varphi$$

Définition:

Soit φ un morphisme d'un groupe (G,\times) vers un groupe (H,\times) .

Le noyau de φ , noté ker φ est par définition :

$$\ker \varphi = \{x \in G, \varphi(x) = 1_H\}$$

Proposition:

 $\ker \varphi$ est un sous-groupe de G.

Démonstration :

- $1_G \in \ker \varphi \operatorname{car} \varphi(1_G) = 1_H$.
- Pour tous $x, y \in \ker \varphi$, on a $\varphi(xy) = \varphi(x) \times \varphi(y) = 1_H \times 1_H = 1_H$ donc $xy \in \ker \varphi$.
- Pour tout $x \in \ker \varphi$, $\varphi(x^{-1}) = (\varphi(x))^{-1} = (1_H)^{-1} = 1_H$ donc $x^{-1} \in \ker \varphi$.

Théorème:

Soit φ un morphisme d'un groupe (G,\times) vers un groupe (H,\times) . Alors :

- (1) Pour tous $x, y \in G$, $\varphi(x) = \varphi(y) \Leftrightarrow xy^{-1} \in \ker \varphi$
- (2) φ est injective $\Leftrightarrow \ker \varphi = \{1_G\}$

Démonstration :

(1) On a les équivalences:

$$\varphi(x) = \varphi(y) \Leftrightarrow \varphi(x)(\varphi(y))^{-1} = 1_{H} \Leftrightarrow \varphi(x)\varphi(y^{-1}) = 1_{H} \Leftrightarrow \varphi(xy^{-1}) = 1_{H}$$
$$\Leftrightarrow xy^{-1} \in \ker \varphi$$

(2) Supposons φ injective :

Soit $x \in \ker \varphi$. Alors $\varphi(x) = 1_H = \varphi(1_G)$.

Donc, comme φ est injective, $x = 1_G$. Donc $\ker \varphi \subset \{1_G\}$

De plus, $\ker \varphi$ est un sous-groupe de G, donc $1_G \in \ker \varphi$, donc $\{1_G\} \subset \ker \varphi$.

D'où l'égalité.

Réciproquement, supposons que $\ker \varphi = \{1_G\}$:

Soient alors $x, y \in G$. Supposons que $\varphi(x) = \varphi(y)$.

Alors $xy^{-1} \in \ker \varphi$. Donc $xy^{-1} = 1_G$. Donc x = y.

Donc φ est injective.

Exemple:

L'application $\varphi: \mathbb{R} \to \mathbb{C}^*$ est un morphisme de $(\mathbb{R},+)$ vers (\mathbb{C}^*,\times) de noyau

 $2\pi\mathbb{Z}$, et d'image U

D) Composition

Proposition:

La composée, quand elle est définie, de deux morphismes de groupes est un morphisme de groupes.

Démonstration:

Soient $(G,*),(H,\#),(I,\blacktriangledown)$ trois groupes.

Soient $\varphi_{GH}: G \to H$ et $\varphi_{HI}: H \to I$ deux morphismes.

Alors $\varphi_{HI} \circ \varphi_{GH}$ est bien définie, et va de (G,*) dans (I, •).

Soient $x, y \in G$. On a:

$$\begin{aligned} \varphi_{HI} \circ \varphi_{GH}(x * y) &= \varphi_{HI}(\varphi_{GH}(x * y)) \\ &= \varphi_{HI}(\varphi_{GH}(x) \# \varphi_{GH}(y)) \\ &= \varphi_{HI}(\varphi_{GH}(x)) \blacktriangledown \varphi_{HI}(\varphi_{GH}(y)) \\ &= (\varphi_{HI} \circ \varphi_{GH}(x)) \blacktriangledown (\varphi_{HI} \circ \varphi_{GH}(y)) \end{aligned}$$

E) Isomorphisme

Proposition, définition:

Soit φ un morphisme bijectif de (G,\times) vers (H,\times) . Alors φ^{-1} est un morphisme (bijectif) de (H,\times) vers (G,\times) . On dit que φ est un isomorphisme.

Lorsqu'il existe un isomorphisme entre deux groupes, on dit que ces deux groupes sont isomorphes.

Démonstration :

Soit φ un morphisme bijectif de (G,\times) vers (H,\times) .

Soient $x, y \in H$.

Soient $u, v \in G$ tels que $\varphi(u) = x$, $\varphi(v) = y$. (C'est-à-dire $u = \varphi^{-1}(x)$, $v = \varphi^{-1}(y)$).

Alors
$$\varphi^{-1}(x \times y) = \varphi^{-1}(\varphi(u) \times \varphi(v)) = \varphi^{-1}(\varphi(uv)) = u \times v = \varphi^{-1}(x) \times \varphi^{-1}(y)$$

Donc φ^{-1} est un morphisme de (H,\times) vers (G,\times) .

Exemples:

• $(]-\frac{\pi}{2},\frac{\pi}{2}[,*)$ et $(\mathbb{R},+)$ sont isomorphes, où * est la loi définie par :

$$\forall x, y \in]-\frac{\pi}{2}, \frac{\pi}{2}[, \tan(x * y) = \tan x + \tan y]$$

C'est-à-dire $\forall x, y \in]-\frac{\pi}{2}, \frac{\pi}{2}[, x * y = Arctan(tan x + tan y)]$

(Ainsi, $\forall x, y \in]-\frac{\pi}{2}, \frac{\pi}{2}[, \varphi(x*y) = \varphi(x) + \varphi(y)]$, où $\varphi = \tan$, qui réalise bien une bijection de $]-\frac{\pi}{2}, \frac{\pi}{2}[$ dans $\mathbb{R})$

• $f: \mathbb{Z} \to U$ est un morphisme surjectif de $(\mathbb{Z},+)$ vers (U_n,\times) mais non $k \mapsto e^{\frac{2ik\pi}{n}}$

injectif. Son novau est $n\mathbb{Z}_i$:

Déjà, c'est un morphisme, puisque pour tous $x, y \in \mathbb{Z}$, on a :

$$f(x+y) = e^{\frac{2i(x+y)\pi}{n}} = e^{\frac{2ix\pi}{n}} e^{\frac{2iy\pi}{n}} = f(x)f(y)$$
.

f est surjective puisque tout élément $z \in \mathbb{U}_n$ s'écrit $e^{\frac{2ik\pi}{n}}$ où $k \in \mathbb{Z}$.

Mais f n'est pas injective : pour tout $x \in \mathbb{Z}$, on a les équivalences :

$$x \in \ker f \Leftrightarrow f(x) = 1 \Leftrightarrow \frac{2x\pi}{n} \in 2\pi \mathbb{Z} \Leftrightarrow \frac{x}{n} \in \mathbb{Z} \Leftrightarrow x \in n\mathbb{Z}$$

Donc le noyau de f est $n\mathbb{Z}$, donc f n'est pas injective.

 $\varphi: \mathbb{Z}_n / n\mathbb{Z}_n \to \mathbb{U}_n$ où k est tel que k = u par contre est bijectif. $u \mapsto e^{\frac{2ik\pi}{n}}$

Démonstration:

Déjà, il faut montrer que la définition de φ est cohérente, c'est-à-dire que $e^{\frac{2ik\pi}{n}}$ ne dépend que de \dot{k} et non pas de k.

Si deux éléments $k, k' \in \mathbb{Z}$ sont tels que $\dot{k} = \dot{k}'$, on a alors :

 $k-k' \in n\mathbb{Z}$. Donc $k-k' \in \ker f$. Donc f(k) = f(k') (on est en notation additive)

Donc $e^{\frac{2ik\pi}{n}} = e^{\frac{2ik'\pi}{n}}$.

C'est un morphisme:

Pour tous $u, u' \in \mathbb{Z} / n\mathbb{Z}$ s'écrivant $u = \dot{k}$ et $u' = \dot{k}'$ où $k, k' \in \mathbb{Z}$:

$$\varphi(u+u') = e^{\frac{2i(k+k')\pi}{n}} = e^{\frac{2ik\pi}{n}} e^{\frac{2ik\pi}{n}} = \varphi(u)\varphi(u').$$

 φ est surjective, puisque tout élément $z \in \mathbb{U}_n$ s'écrit $e^{\frac{2ik\pi}{n}}$ où $k \in \mathbb{Z}$.

 φ est aussi injective :

Soit $u \in \ker \varphi$. Alors u s'écrit \dot{k} où $k \in \mathbb{Z}$.

Alors $\varphi(u) = e^{\frac{2ik\pi}{n}} = 1$. Donc $k \in n\mathbb{Z}$. Donc $u = \dot{k} = \dot{0}$. Donc $\ker \varphi \subset \{\dot{0}\}$.

Comme $\ker \varphi$ est un sous-groupe de $n\mathbb{Z}$, on a aussi l'autre inclusion et donc l'égalité. Donc φ est injective.

Donc φ est bijective. Donc (\mathbb{U}_n,\times) et $(\mathbb{Z}/n\mathbb{Z},+)$ sont isomorphes.

Remarque:

La relation « être isomorphe à » est une relation d'équivalence sur l'ensemble des groupes :

- Elle est réflexive (l'identité est un isomorphisme d'un groupe G vers G)
- Elle est symétrique (si G est isomorphe à H, alors H est isomorphe à G)
- Elle est transitive (la composée de deux isomorphismes est un isomorphisme)

F) Vocabulaire (rappels)

- Un morphisme de G vers H est aussi appelé homomorphisme de G vers H.
- Un isomorphisme de G vers H est un morphisme bijectif de G vers H.
- Un endomorphisme de G est un morphisme de G vers G.
- Un automorphisme de G est un morphisme bijectif de G vers lui-même.

isomorphisme de G vers lui-même.

endomorphisme bijectif de G.

IV Ordre d'un élément d'un groupe

Soit (G,\times) un groupe.

Théorème, définition :

Soient $a \in G, n \in \mathbb{N}^*$. Alors les trois affirmations suivantes sont équivalentes :

- (1) $\langle a \rangle$ est fini et de cardinal n.
- (2) Il existe $k \in \mathbb{N}^*$ tel que $a^k = 1_G$, et *n* est le plus petit des ces entiers.
- (3) L'ensemble $\{k \in \mathbb{Z}, a^k = 1_G\}$ n'est pas réduit à $\{0\}$, c'est même $n\mathbb{Z}$.

Lorsque l'une des ces affirmations (et donc les trois) est vraie, on dit que a est un élément d'ordre fini de G, égal à n.

Démonstration:

Considérons $\varphi: \mathbb{Z} \to G$. Alors φ est un morphisme de $(\mathbb{Z},+)$ vers (G,\times) .

En effet, $\forall k, k' \in \mathbb{Z}, a^{k+k'} = a^k a^{k'}$.

On a:

$$\operatorname{Im} \varphi = \left\{ a^k, k \in \mathbb{Z} \right\} = \left\langle a \right\rangle$$

 $\ker \varphi$ est un sous groupe de $(\mathbb{Z},+)$ donc du type $m\mathbb{Z}$ où $m \in \mathbb{N}$.

- Si m = 0, $\ker \varphi = \{0\}$ donc φ est injective. Donc φ réalise une bijection de \mathbb{Z} sur $\operatorname{Im} \varphi = \langle a \rangle$. Donc $\langle a \rangle$ est infini.
- Si $m \ge 1$, $\langle a \rangle = \{a^0, a^1, ... a^{m-1}\}$. En effet:

Une première inclusion, $\{a^0, a^1, ... a^{m-1}\} \subset \langle a \rangle$ est déjà évidente.

Soit maintenant $b \in \langle a \rangle$.

Alors b s'écrit a^k où $k \in \mathbb{Z}$. La division euclidienne de k par $m \ (m \neq 0)$ donne : k = mq + r avec $r \in [0, m-1]$.

Donc $b = a^{mq+r} = \underbrace{(a^m)^q}_{\substack{=1_G \text{ car} \\ m \in m \in \mathbb{Z}-\ker \varphi}} a^r = a^r \in \{a^0, a^1, \dots a^{m-1}\}, \text{ d'où l'autre inclusion, et l'égalité.}$

De plus, $\operatorname{card}(\langle a \rangle) = m$: il n'existe pas i, j distincts dans [0, m-1] tels que $a^i = a^j$ car si par exemple $0 \le i < j \le m-1$, et si on avait $a^i = a^j$, on aurait $a^{i-j} = 1_G$ ce qui ne se peut pas car $0 < i - j \le m-1$ donc $j - i \notin m\mathbb{Z}$.

Avec cela, il est maintenant facile de montrer que $(1) \Rightarrow (2) \Rightarrow (1)$ et $(1) \Rightarrow (3) \Rightarrow (1)$: Supposons (1).

Alors, en gardant les notations précédentes, m = n.

Donc n est bien le plus petit des $k \in \mathbb{N}^*$ tels que $a^k = 1_G$, car $a^m = 1_G$ et $\forall k \in [1, m-1], a^k \neq 1_G$ (puisque $a^0 = 1_G$ et on a montré que les $a^k, k \in [0, m-1]$ sont distincts)

Et d'autre part l'ensemble des $k \in \mathbb{Z}$ tels que $a^k = 1_G$ est bien $n\mathbb{Z}$ (c'est ker φ)

Donc $(1) \Rightarrow (2)$ et $(1) \Rightarrow (3)$.

Supposons maintenant (3): On est alors dans la situation $m = n \ge 1$ (car ker $\varphi \ne \{0\}$)

Donc le sous-groupe engendré par a est de cardinal n.

De même, $(2) \Rightarrow (1)$.

Exemples:

Dans $(\mathbb{Z}/6\mathbb{Z},+)$:

 $\dot{2}$ est d'ordre 3 : $\langle \dot{2} \rangle = \{\dot{0}, \dot{2}, \dot{4}\}$ de cardinal 3

Autre justification: $3.\dot{2} = \dot{2} + \dot{2} + \dot{2} = \dot{0}$ et $1.\dot{2} = \dot{2} \neq \dot{0}$, $2.\dot{2} = \dot{4} \neq \dot{0}$

3 est d'ordre 2, 1 et 5 sont d'ordre 6, 0 est d'ordre 1.

Dans $(\mathbb{Z},+)$, 0 est d'ordre 1, tout les autres sont d'ordre infini.

Dans (\mathfrak{S}_{8},\circ) :

Notation (dans \mathfrak{S}_n): la permutation $1 \mapsto a_1 \dots$ est notée généralement $\begin{pmatrix} 1 & 2 & 3 & \cdots & 8 \\ a_1 & a_2 & a_3 & \cdots & a_8 \end{pmatrix}$.

Prenons par exemple $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 5 & 7 & 2 & 4 & 8 & 6 & 1 \end{pmatrix}$. Alors σ est d'ordre fini, car $\sigma \in \mathfrak{S}_8$ et \mathfrak{S}_8 est de cardinal fini (Donc au pire σ est d'ordre ce cardinal, à savoir 15)