Validating survival models Young Researcher Day

Anders Munch

November 25, 2021

Risk prediction model and full data

For a fixed time horizon $t \in \mathbb{R}_+$ we have

 $X \in \mathbb{R}^p$ Static covariates measured at baseline (t=0)

 $T \in \mathbb{R}_+$ Time of event

 $r(t \mid X) \in [0,1]$ Risk prediction at time t given baseline covariates

 $Y(t) \in \{0,1\}$ Event status at time $t,\ Y(t) := \mathbb{1}\{T \leq t\}$

Risk prediction model and censored data

For a fixed time horizon $t \in \mathbb{R}_+$ we have

 $X \in \mathbb{R}^p$ Static covariates measured at baseline (t=0)

 $\tilde{\mathcal{T}} \in \mathbb{R}_+$ Observation time ($\tilde{\mathcal{T}} := \mathcal{T} \wedge \mathcal{C}$)

 $\Delta \in \{0,1\}$ Event indicator $(\Delta := \mathbb{1}\{\tilde{T} = T\})$

 $r(t \mid X) \in [0,1]$ Risk prediction at time t given baseline covariates

 $Y(t) \in \{0,1\}$ Is unobserved for som subjects

The Brier score

Given a (non-random) risk-prediction model $r: \mathbb{R}_+ \times \mathbb{R}^p \to [0,1]$ we want to evaluate the performance of r at a fixed time horizon $t \in \mathbb{R}_+$. For this we use the Brier score

$$\mathbb{E}\left[\left\{Y(t)-r(t\mid X)\right\}^2\right],\quad \text{with}\quad Y(t):=\mathbb{1}\left\{T\leq t\right\}.$$

Inverse probability of censoring weights (IPCW)

Let $(X, T) \sim Q$ and $(X, \tilde{T}, \Delta) \sim P$. When $T \perp C \mid X$ the Brier score is identifiable from the observed data¹:

$$\mathbb{E}_{Q}\left[\left\{Y(t)-r(t\mid X)\right\}^{2}\right]=\mathbb{E}_{P}\left[W(t)\left\{Y(t)-r(t\mid X)\right\}^{2}\right],$$

with

$$W(t) = \frac{\mathbb{1}(\tilde{T} > t)}{G(t \mid X)} + \frac{\mathbb{1}(\tilde{T} \leq t)\Delta}{G(\tilde{T} \mid X)},$$

and where $G(s \mid x) = P(C > s \mid X = x)$.

 $[\]frac{1}{N}$ Note that $W(t)\{Y(t) - r(t \mid X)\}^2$ is a function of the observed data, as Y(t) is observed whenever W(t) is non-zero.

Visualizing the re-weighting

$$\mathbb{E}_{Q} \left[\left\{ Y(t) - r(t \mid X) \right\}^{2} \right] = \mathbb{E}_{P} \left[W(t) \left\{ Y(t) - r(t \mid X) \right\}^{2} \right]$$

Visualizing the re-weighting

$$\mathbb{E}_{Q} \left[\left\{ Y(t) - r(t \mid X) \right\}^{2} \right] = \mathbb{E}_{P} \left[W(t) \left\{ Y(t) - r(t \mid X) \right\}^{2} \right]$$

Visualizing the re-weighting

$$\mathbb{E}_{Q}\left[\left\{Y(t) - r(t \mid X)\right\}^{2}\right] = \mathbb{E}_{P}\left[W(t)\left\{Y(t) - r(t \mid X)\right\}^{2}\right]$$

Non-parametric estimation

By estimating the censoring distribution G we obtain the IPCW estimator

$$\widehat{W}_i(t) = \frac{\mathbb{1}(\widetilde{T}_i > t)}{\widehat{G}(t \mid X_i)} + \frac{\mathbb{1}(\widetilde{T}_i \leq t)\Delta_i}{\widehat{G}(\widetilde{T}_i \mid X_i)}, \quad \widehat{\theta}_n^t = \widehat{\mathbb{P}}_n[\widehat{W}_i(t) \left\{ Y_i(t) - r(t \mid X_i) \right\}^2]$$

Inference and efficiency under non-parametric assumptions

- Existing methods use Kaplan-Meier or Cox models to estimate the censoring distribution.
- \circ Non-parametric, data-adaptive estimation of the censoring distribution + inference \to one-step estimators / DML / TMLE.

Data-adaptive selection of the estimator \hat{G}

Use some kind of cross-validation to select the best \hat{G} from a collection of candidates.

Non-parametric estimation

By estimating the censoring distribution G we obtain the IPCW estimator

$$\widehat{W}_i(t) = \frac{\mathbb{1}(\widetilde{T}_i > t)}{\widehat{G}(t \mid X_i)} + \frac{\mathbb{1}(\widetilde{T}_i \leq t)\Delta_i}{\widehat{G}(\widetilde{T}_i \mid X_i)}, \quad \widehat{\theta}_n^t = \widehat{\mathbb{P}}_n[\widehat{W}_i(t) \left\{ Y_i(t) - r(t \mid X_i) \right\}^2]$$

Inference and efficiency under non-parametric assumptions

- Existing methods use Kaplan-Meier or Cox models to estimate the censoring distribution.
- Non-parametric, data-adaptive estimation of the censoring distribution + inference → one-step estimators / DML / TMLE.

Data-adaptive selection of the estimator \hat{G}

Use some kind of cross-validation to select the best \hat{G} from a collection of candidates. Is it obvious how to do this?

Brier score!

Brier score!

Brier score!

Brier score! ... infinite regress ...

Cross validation for survival models – the likelihood?

Many common estimators of a survival function will be a discrete measure \rightarrow the likelihood will (a.s.) be 0 on any hold-out data sample.

Cross validation for survival models – the likelihood?

Many common estimators of a survival function will be a discrete measure \rightarrow the likelihood will (a.s.) be 0 on any hold-out data sample.

Summary

How should we do cross validation for general survival models when the test and train data are censored?

- Which other loss functions are sensible to use instead?
- How can these (and the risk of an estimator) be approximated with observed data?

Questions, comments, suggestions?

Thank you for listening!