Abstract Algebra by Pinter, Chapter 22

Amir Taaki

Abstract

Chapter 22 on Factoring Into Primes

${\bf Contents}$

1	A. I	Properties of the Relation "a" divides "b"	2
	1.1	Q1	2
	1.2	Q2	2
	1.3	Q3	2
	1.4	Q4	2
	1.5	Q5	3
	1.6	Q6	3
	1.7	Q7	3
	1.8	Q8	3
	1.9	Q9	3
2			3
	2.1		4
	2.2		4
	2.3	v	4
	2.4	·	5
	2.5	Q5	5
	2.6	Q6	5
	2.7	Q7	5
9	СТ	Duon antics of Deletively Duine Interior	c
3		Toportion of residence of removed the	6
	3.1 3.2		6
	3.3		6
	3.4		6
	3.5		6
	3.6	Q6	6
4	D. I	Further Properties of gcd's and Relatively Prime Integers	7
_	4.1	Q1	7
	4.2	$\widetilde{\mathrm{Q2}}$	7
	4.3	·	7
	4.4	$\widetilde{\mathrm{Q4}}$	7
	4.5	Q5	7
	4.6	·	8
			_
5	\mathbf{E} . A	A Property of the gcd	8
	5.1	Q1	8
	5.2	Q2	8
	5.3	Q3	9
_			_
6			9
	6.1	·	9
	6.2		9
	6.3		0
	6.4	Q4	.0

	6.5	Q_5																			 					 		10
	6.6	Q6																			 					 		10
	6.7	Q7																			 					 		11
	6.8	Q8																			 					 		11
	6.9	Q9																			 							11
7	G. 3																											11
	7.1	Q1																			 					 		11
	7.2	Q2																			 							12
	7.3	Q3																			 					 		12
	7.4	Q4																			 					 		12
	7.5	Q_5																			 					 		13
	7.6	Q6																			 					 		13
	7.7	Q7																			 					 		14
	7.8	Q8																			 							14
8	н. ′	The	or o		4	+ h	 101	m		٦	 4	·••	 ٠,	~ * ~	7	7												14
O																												
		Q1																										
	8.2	Q2																			 							15
	8.3	Q3																			 					 		15
	8.4	O4																			 					 		16

1 A. Properties of the Relation "a" divides "b"

1.1 Q1

If a|b and b|c, then a|c.

$$a|b \implies b = ka$$

 $b|c \implies c = lb$

$$c = l(ka) = (kl)a \implies a|c$$

1.2 Q2

 $a|b \ i\!f\!f \ a|(-b) \ i\!f\!f \ (-a)|b.$

$$b = ka \iff -b = (-k)a \iff b = (-k)(-a)$$

$$a|b \iff a|(-b) \iff (-a)|b$$

1.3 Q3

 $\begin{aligned} &1|a\ and\ (-1)|a.\\ &a=1\cdot a=(-1)\cdot (-a)\ \text{thus}\ 1|a\ \text{and}\ (-1)|a \end{aligned}$

1.4 Q4

a|0.

$$0 = 0a \cdot a|0$$

1.5 Q5

If c|a and c|b, then c|(ax+by) for all $x,y \in \mathbb{Z}$. c|a and $c|b \implies a = kc$ and b = lc

$$ax + by = kcx + lcy = c(kx + ly)$$

 $\implies c|(ax + by)$

1.6 Q6

If a > 0 and b > 0 and a|b, then $a \le b$.

Let b = ka

 $k \neq 0$ because 0a = 0 = b but b > 0

If k < 0 then -k > 0 or $-k \ge 1 \implies 1 \le -ka = -b$ which is a contradiction since b > 0.

Thus k > 0

$$0 < k$$
$$1 \le k$$
$$a \le ka = b$$

1.7 Q7

 $a|b \text{ iff } ac|bc, \text{ when } c \neq 0.$

 $bc = kac \implies b = ka$ by the cancellation property.

1.8 Q8

If a|b and c|d, then ac|bd.

$$b = ka$$
 $d = lc$

$$bd = (ka)(lc) = (kl)ac$$

1.9 Q9

Let p be a prime. If $p|a^n$ for some n > 0, then p|a.

$$a^n=(p_1\cdots p_r)(p_1\cdots p_r)(p_1\cdots p_r)$$

$$p|a^n \implies a^n = kp$$

Since a^n factors uniquely $\implies p|a$

2 B. Properties of the gcd

Prove the following, for any integers a, b, and c. For each of these problems, you will need only the definition of the gcd.

2.1 Q1

If a > 0 and a|b, then gcd(a, b) = a.

$$b = ka$$

Let $t = \gcd(a, b)$ then

$$t = ax + by$$
$$= ax + (ka)y$$
$$= a(x + ky)$$

$$gcd(a, b) = a$$

a is the gcd because it is the biggest divisor in a.

2.2 Q2

gcd(a, 0) = a, if a > 0.

$$a|a \text{ and } a|0 \implies \gcd(a,0) = a$$

2.3 Q3

 $\gcd(a,b) = \gcd(a,b+xa) \ \text{for any} \ x \in \mathbb{Z} \ .$ Let $t = \gcd(a,b)$

$$t = ka + lb$$

a = wu b + xa = vu from gcd(a, b + xa)

$$b + xa = b + x(wu) = vu$$
$$b = u(v - xw)$$

but

$$t = ka + lb$$

$$= k(wu) + lu(v - xw)$$

$$= u(kw + l(v - xw))$$

therefore it follows u|t

Since $gcd(a, b + xa) = \bar{k}a + \bar{l}(b + xa) = \bar{k}(tr) + \bar{l}(ts + x(tr))$

Therefore t is also the gcd of a and bx + a.

$$gcd(a, b) = gcd(a, b + xa) \qquad \forall x \in \mathbb{Z}$$

2.4 Q4

Let p be a prime. Then gcd(a, p) = 1 or p. (Explain.)

a is a composite of primes.

That is $a = p_1 \cdots p_r$

If a = pk for some k, then

- 1. p|p and p|a.
- 2. for any integer u, since p is prime, u does not divide p.

Thus according to the definition gcd(a, p) = p

Otherwise gcd(a, p) = 1 because p is indivisible and does not divide a.

2.5 Q5

Suppose every common divisor of a and b is a common divisor of c and d, and vice versa. Then gcd(a,b) = gcd(c,d).

$$\gcd(a,b) > \gcd(c,d)$$

$$\implies p_1 \cdots p_i p_i \cdots p_r > p_1 \cdots p_i$$

where $p_1 \cdots p_i$ are the prime common factors of $\gcd(a,b)$ and $\gcd(c,d)$ or $\gcd(\gcd(a,b),\gcd(c,d))$.

Then this implies that a and b have common factors $p_j\cdots p_r$ which are not in c and d.

Hence gcd(a, b) = gcd(c, d).

2.6 Q6

If gcd(ab, c) = 1, then gcd(a, c) = 1 and gcd(b, c) = 1.

Let $ab=(p_1\cdots p_r)(q_1\cdots q_s)$

$$\gcd(ab,c)=1 \implies \forall p_i,q_j \qquad p_i \not| c,q_j \not| c$$

$$\forall p_i | c \implies \gcd(a, c) = 1$$

Likewise for b.

2.7 Q7

Let gcd(a, b) = c. Write a = ca' and b = cb'. Then gcd(a', b') = 1.

Let gcd(a', b') = x

$$a = ca' = ckx$$

$$b = cb' = clx$$

$$gcd(a,b) = cx$$

but $gcd(a, b) = c \implies x = 1$

$$\div \gcd(a',b') = 1$$

3 C. Properties of Relatively Prime Integers

3.1 Q1

From theorem 3,

 $\gcd(a,b)=ra+sb$ for some integers r and s

But $a \perp b$, so gcd(a, b) = 1. That is,

$$ra + sb = 1$$

3.2 Q2

$$\gcd(a,c)=1 \implies a \perp c \implies a \nmid c$$

But $c \mid ab$ so ab = ch for some integer h. And gcd(a, c) = 1

$$\implies ka + lc = 1$$

$$\implies kab + lcb = b$$

However ab = ch, so

$$kch + lcb = b$$

$$c(kh+lb)=b$$

Thus $c \mid b$

3.3 Q3

$$d = pa = qc$$

$$\gcd(a,c) = 1 \implies ka + lc = 1$$

$$kad+lcd=d$$

$$ka(qc) + lc(pa) = d$$

$$ac(kq+lp)=d \\$$

$$ac \mid d$$

3.4 Q4

$$ka + lc = 1$$

$$kab+lcb=b$$

$$k(pd) + l(qd) = b$$

$$d(kp+lq)=b$$

$$d \mid b$$

3.5 Q5

$$d = ka + lb$$

$$a = dr$$
 $b = ds$

$$d=kdr+lds$$

$$=d(kr+ls)$$

$$kr + ls = 1 \implies \gcd(r, s) = 1$$

3.6 Q6

$$ka + lc = 1$$

$$hb + jc = 1$$

$$ka(hb + jc) + lc = 1$$

$$kh(ab) + (j+l)c = 1 \implies gcd(ab,c) = 1$$

4 D. Further Properties of gcd's and Relatively Prime Integers

4.1 Q1

$$b = ma = nc$$

$$ka + lc = d$$

$$b(ka + lc) = bd$$

$$bka + blc = bd$$

$$(nc)ka + (ma)lc = bd$$

$$nk \cdot ac + ml \cdot ac = bd$$

$$\Rightarrow ac \mid bd$$

4.2 Q2

$$b = mac = nad$$

$$kc + ld = 1$$

$$bkc + bld = b$$

$$(nad)kc + (mac)ld = b$$

$$acd(nk + ml) = b$$

4.3 Q3

From theorem 3,

$$J = \{ua + vb : u, v \in \mathbb{Z}\}$$

J is a principal ideal of \mathbb{Z} and $J = \langle d \rangle$.

Since $x \in J$, then x is a multiple of d and so $d \mid x$.

Likewise $d \mid x \implies x \in J$ and so x is a linear combination of a and b.

4.4 Q4

Let J be a linear combination of a and b.

$$t = \gcd(a, b)$$
 and $J = \langle t \rangle$

Thus t = ka + lb but $x \mid a$ and $x \mid b$ so $x \mid t$.

But $t \mid c$, so $c \in J$ and so c is a multiple of t (which is the biggest divisor of a and b).

$$t \leq c$$

 $c \mid c \implies c \mid a$ and $c \mid b$, and c is the greatest divisor of c. So $c = \gcd(a, b) = t$.

See also here

4.5 Q5

$$\forall n > 0$$
, if $\gcd(a, b) = 1$ then $\gcd(a, b^n) = 1$

gcd(a, b) = 1 means there is only the shared divisor of 1 between a and b.

That there is no u > 1 such that a = xu and b = yu.

Assume $gcd(a, b^k) = 1$, then there is no common divisor between a and b^k and also a and b. This means that a and b^{k+1} also share no prime factors, hence

$$\gcd(a, b^{k+1}) = 1$$

4.6 Q6

Suppose gcd(a,b) = 1 and c|ab. Then there exist integers r and s such that c = rs, r|a, s|b, and gcd(r,s) = 1.

$$a = p_1 \cdots p_n$$

$$b = q_1 \cdots q_m$$

Since gcd(a, b) = 1, a and b share no factors as their prime factors are unique and distinct.

$$c \mid ab \implies ab = kc$$

Since c divides ab, it consists of some number of factors of ab such that

$$c = (p_1 \cdots p_i)(q_1 \cdots q_i)$$

that divides ab.

Let $r = (p_1 \cdots p_i)$ and $s = (q_1 \cdots q_j)$.

Then c = rs, $r \mid a, s \mid b$ and gcd(r, s) = 1.

5 E. A Property of the gcd

5.1 Q1

Suppose a is odd and b is even, or vice versa. Then gcd(a,b) = gcd(a+b,a-b). a+b and a-b is odd.

t is a common divisor of a-b and a+b. Since they are both odd, then t is odd.

Sum of a + b and a - b is 2a, and difference is 2b.

Since a + b = tx and a - b = ty, then

$$(a + b) + (a - b) = tx + ty = t(x + y)$$

Likewise

$$(a+b) - (a-b) = t(x-y)$$

Since t is odd, $t \mid 2a \implies t \mid a$, and also $t \mid b$ thus if $t = \gcd(a + b, a - b)$, then

$$\gcd(a,b) = \gcd(a+b,a-b)$$

5.2 Q2

Suppose a and b are both odd. Then $2\gcd(a,b)=\gcd(a+b,a-b)$.

a and b are both odd.

a+b and a-b are thus even.

t is a common divisor of a + b and a - b. So t is even.

$$(a+b)+(a-b)=2a=t(x+y)$$

$$(a+b) - (a-b) = 2b = t(x-y)$$

That is 2|t and so $t = 2\gcd(a, b)$ but $t = \gcd(a + b, a - b)$

$$2\gcd(a,b)=\gcd(a+b,a-b)$$

5.3 Q3

If a and b are both even, explain why either of the two previous conclusions are possible.

$$a=2n \qquad b=2m$$

$$\gcd(a,b)=t=2x$$

$$a+b=2(n+m) \qquad a-b=2(n-m)$$

$$\gcd(a+b,a-b)=s=2y$$

$$2a = t(x+y) \qquad 2b = t(x-y)$$

a and b are even, so is t.

Thus either case is true: $t \mid a \text{ or } t \mid 2a$.

There isn't enough information to infer whether $t = \gcd(a, b)$ or $t = 2\gcd(a, b)$.

6 F. Least Common Multiples

6.1 Q1

Prove: The set of all the common multiples of a and b is an ideal of \mathbb{Z} .

$$I = \{n \cdot \operatorname{lcm}(a, b) : n \in \mathbb{Z}\}\$$

$$x,y \in I, x+y = i \cdot \operatorname{lcm}(a,b) + j \cdot \operatorname{lcm}(a,b) = (i+j) \cdot \operatorname{lcm}(a,b)$$

$$-x = -i \cdot \operatorname{lcm}(a,b) \in I$$

because if $a \mid c$ then $a \mid -c$

Lastly let $w \in \mathbb{Z}$

$$w \cdot x = (wi) \cdot \text{lcm}(a, b)$$

and since $wi \in \mathbb{Z}$, so $w \cdot x \in I$.

So I is an ideal of \mathbb{Z} .

6.2 Q2

Prove: Every pair of integers a and b has a least common multiple.

Every ideal of $\mathbb Z$ is principal.

That means there exists a generator

$$I = \{n \cdot \operatorname{lcm}(a, b) : n \in \mathbb{Z}\} = \langle t \rangle$$

which is a least value.

By the well ordering principle $t = 1 \cdot \text{lcm}(a, b) = \text{lcm}(a, b)$.

Since $x \mid xy$ for integers $x, y \in \mathbb{Z}$ where $x \neq 0$ and $y \neq 0$, then I must contain xy and is non-trivial.

6.3 Q3

Prove $a \cdot \text{lcm}(b, c) = \text{lcm}(ab, ac)$.

l = lcm(ab, ac)

then

$$l = abx = acy$$

for some integers x and y.

So a is a factor of l

$$l = am$$
$$am = abx = acy$$

thus

$$m = lcm(b, c)$$

$$a \cdot \operatorname{lcm}(b,c) = \operatorname{lcm}(ab,ac)$$

6.4 Q4

If $a = a_1c$ and $b = b_1c$ where $c = \gcd(a, b)$, then $\operatorname{lcm}(a, b) = a_1b_1c$.

$$lcm(a, b) = lcm(a_1c, b_1c) = c \cdot lcm(a_1, b_1)$$

But gcd(a,b) = c and $gcd(a_1c,b_1c) = c$ so $gcd(a_1,b_1) = 1$. Since there is no q such that both $q \mid a_1$ and $q \mid b_1$, then

$$\begin{split} \operatorname{lcm}(a,b) &= ax = by \\ &= a_1 cx = b_1 cy \\ &= cm \\ m &= a_1 x = b_1 y \end{split}$$

We know that $gcd(a_1, b_1) = 1$, which means a_1 and b_1 contain unique prime factors. That is that $x = b_1$ and $y = a_1$.

$$lcm(a,b) = a_1b_1c$$

6.5 Q5

Prove lcm(a, ab) = ab

$$lcm(a, ab) = a \cdot lcm(1, b)$$
$$= ab$$

6.6 Q6

If gcd(a, b) = 1 then lcm(a, b) = ab.

From 4,

$$a=a_1\gcd(a,b) \hspace{1cm} =a_1\cdot 1=a_1$$

and also $b = b_1$, so

$$\begin{split} \operatorname{lcm}(a,b) &= a_1 b_1 c \\ &= ab \cdot \operatorname{gcd}(a,b) \\ &= ab \end{split}$$

6.7 Q7

If lcm(a, b) = ab then gcd(a, b) = 1.

$$\begin{split} \operatorname{lcm}(a_1c,b_1c) &= c \cdot \operatorname{lcm}(a_1,b_1) \\ ab &= c \cdot \operatorname{lcm}(a_1,b_1) \\ (a_1c)(b_1c) &= c \cdot \operatorname{lcm}(a_1,b_1) \\ a_1b_1c &= \operatorname{lcm}(a_1,b_1) \end{split}$$

But $\gcd(a_1,b_1)=1 \implies \operatorname{lcm}(a_1,b_1)=a_1b_1$ so

$$a_1b_1c = a_1b_1$$

$$c = 1$$

$$\gcd(a, b) = 1$$

6.8 Q8

Let gcd(a, b) = c. Then lcm(a, b) = ab/c.

$$lcm(a, b) = lcm(a_1c, b_1c)$$
$$= c \cdot lcm(a_1, b_1)$$

but $gcd(a, b) = gcd(a_1c, b_1c) = c \implies gcd(a_1, b_1) = 1$ so $lcm(a_1, b_1) = a_1b_1$.

$$\begin{split} \operatorname{lcm}(a,b) &= c \cdot \operatorname{lcm}(a_1,b_1) \\ &= c a_1 b_1 \\ &= (a_1 c)(b_1 c)/c \\ &= a b/c \end{split}$$

6.9 Q9

Let gcd(a, b) = c and lcm(a, b) = d. Then cd = ab.

$$\operatorname{lcm}(a,b) = d = ab/c$$
$$cd = ab$$

7 G. Ideals in \mathbb{Z}

7.1 Q1

 $\langle n \rangle$ is a prime ideal iff n is a prime number.

Prime ideal:

if $ab \in J$ then $a \in J$ or $b \in J$.

Let $J = \langle n \rangle$ be a prime ideal in \mathbb{Z} .

Then $J = \{nx : x \in \mathbb{Z}\}$

Let $y \in J$, then y = nx and $n \in J$.

Let $J = \langle n = uv \rangle$ where n is non-prime.

Then $uv \in J$ but $u \notin J$ and $v \notin J$, so n must be prime.

7.2 Q2

Every prime ideal of is a maximal ideal.

 $\langle p \rangle \subseteq \langle a \rangle$ so $p \in \langle a \rangle$ but $\langle p \rangle \neq \langle a \rangle \implies p \neq a$ and so $p = a \cdot n$ for some $n \in \mathbb{Z}$.

But p is prime and since $\langle p \rangle \subseteq \langle a \rangle$, then a < p, but $a \nmid p$ and $\gcd(a, p) = 1$.

 $p \in \langle a \rangle \implies p = a \cdot n$ for some $n \in \mathbb{Z}$ but $\gcd(a, p) = 1 \implies n = p$, therefore a = 1 and so $\langle a \rangle = \mathbb{Z}$. Thus every prime ideal $\langle p \rangle$ of \mathbb{Z} is a maximal ideal.

7.3 Q3

For every prime number p, \mathbb{Z}_p is a field.

Prime ideal:

if $ab \in J$ then $a \in J$ or $b \in J$.

Definition of a field: a commutative ring with unity where every nonzero element is invertible.

Every field is an integral domain.

Definition of an integral domain: a commutative ring with unity having the cancellation property. That is $ab = ac \implies b = c$.

From the end of chapter 19 on quotient rings, we have J is a maximal ideal of A (proven above).

 $A = \mathbb{Z}$ is a commutative ring with unity so the coset J + 1 is the unity of A/J since (J + 1)(J + a) = J + a.

Now finally to prove A/J is a field we must show for every a, there exists x such that

$$(J+a)(J+x) = J+1$$

$$K = \{xa + j : x \in A, j \in J\}$$

K is an ideal, $a \in K$ because a = 1a + 0 and $\forall j \in J, j \in K$ because j = 0a + j.

K is an ideal and contains J, but also $a \notin J$ and $a \in K$ so K is bigger than J.

But J is maximal so K = A.

Therefore $1 \in K$ so 1 = xa + j for some $x \in A$ and $j \in J$, that is $1 - xa = j \in J$.

$$J + 1 = J + xa = (J + x)(J + a)$$

So J + x is the multiplicative inverse of J + a.

Thus A/J is a field.

7.4 Q4

If c = lcm(a, b), then $\langle a \rangle \cap \langle b \rangle = \langle c \rangle$.

$$c = lcm(a, b)$$

 $\langle c \rangle = \{ n \cdot c : n \in \mathbb{Z} \}$ therefore $\langle c \rangle$ contains all the multiples of a and b.

 $\langle a \rangle$ is all the multiples of a, $\langle b \rangle$ contains all the multiples of b, and $\langle a \rangle \cap \langle b \rangle$ are all the multiples of a and b.

Any $x \in \langle a \rangle \cap \langle b \rangle$ is both in $\langle a \rangle$ and $\langle b \rangle$ and so is a multiple of both a and b. Therefore $x \in \langle c \rangle$.

$$\langle a \rangle \cap \langle b \rangle = \langle c \rangle$$

7.5 Q5

Let ϕ be a homomorphism such that

$$\phi: \mathbb{Z} \to A$$

And let J be the ideal of ϕ .

Every ideal of \mathbb{Z} is principal. By the well ordering principle pick the least value $n \in J$, and let m be any element of J. By the division algorithm m = nq + r where $0 \le r < n$. Since $n \in J$ and $m \in J$, then $r = m - nq \in J$. So either r = 0 or r > 0. But n is the least value in J, so r = 0. So m = nq.

$$J = \langle n \rangle$$

$$\mathbb{Z}_n = \mathbb{Z}/\langle n \rangle$$

Since the ideal of ϕ is $\langle n \rangle$, so

$$A \cong \mathbb{Z}/\langle n \rangle$$

Every homomorphic image of $\mathbb Z$ is isomorphic to $\mathbb Z_n$ for some n.

7.6 Q6

Let G be a group and let $a, b \in G$. Then $S = \{n \in \mathbb{Z} : ab^n = b^n a\}$ is an ideal of \mathbb{Z} .

S is an ideal of $\mathbb Z$ if it satisfies the following conditions:

- 1. (S, +) is a subgroup of $(\mathbb{Z}, +)$
- 2. For every $r \in \mathbb{Z}$ and every $x \in S$, the product rx is in S

Prove S is closed under addition for $x, y \in S$:

$$ab^{x+y} = ab^xb^y = b^xab^y$$
$$= b^xb^ya$$
$$= b^{x+y}a$$

Prove that for any $x \in S$, that $-x \in S$:

$$ab^{n} = b^{n}a$$
$$b^{-n}ab^{n} = a$$
$$b^{-n}a = ab^{-n}$$

Lastly prove that for any $r \in \mathbb{Z}$ and every $x \in S$, the product $rx \in S$.

Observe firstly that $ab^n = b^n a$ and then note that $ab^{nx} = a \underbrace{b^n b^n \cdots b^n}_{x \text{ times}}$. But $b^n = a^{-1} b^n a$.

$$ab^{nx} = a\underbrace{(a^{-1}b^n a)}_{b^n}b^n \cdots b^n$$

$$= (b^n a)b^n \cdots b^n$$

$$= (b^n a)(a^{-1}b^n a) \cdots b^n$$

$$= b^n (b^n a) \cdots b^n$$

$$= b^{nx}a$$

And so S is an ideal of \mathbb{Z} .

7.7 Q7

Let G be a group, H a subgroup of G, and $a \in G$. Then

$$S = \{ n \in \mathbb{Z} : a^n \in H \}$$

is an ideal of \mathbb{Z} .

Let $x, y \in S$, then $a^{x+y} = a^x a^y \in H$ since H is a group. Also $a^x \in H \implies a^{-x} \in H$.

Finally for any $z \in \mathbb{Z}$, $a^{xz} = \underbrace{(a^x)(a^x)\cdots(a^x)}_{z \text{ times}} \in H$.

So $S = \{n \in \mathbb{Z} : a^n \in H\}$ is an ideal of \mathbb{Z} .

7.8 Q8

Prove if gcd(a, b) = d, then $\langle a \rangle + \langle b \rangle = \langle d \rangle$.

Let there be homomorphisms from \mathbb{Z} onto $\langle a \rangle$ and $\langle b \rangle$ defined by

$$\phi(x) = \bar{x}$$

Then $\langle a \rangle \cong \mathbb{Z}/J$ and $\langle b \rangle \cong \mathbb{Z}/K$.

Then $\langle a \rangle + \langle b \rangle = J + K$

$$J+K=\{x+y:x\in J,y\in K\}$$

All ideals of \mathbb{Z} are principal so there exists a generator t such that $J + K = \langle t \rangle$.

But t = x + y for some $x \in J$ and $y \in K$. And x = ka where $k \in \mathbb{Z}$ and y = lb where $l \in \mathbb{Z}$. Thus t = ka + lb.

Since gcd(a, b) = d and $\langle t \rangle = J + K$ is the set of linear combinations of a and b, we know from theorem 3, that $\langle t \rangle$ is an ideal and the gcd(a, b).

Thus $J + K = \langle d \rangle$ and so

$$\langle a \rangle + \langle b \rangle = \langle d \rangle$$

where $d = \gcd(a, b)$.

8 H. The gcd and the lcm as Operations on $\mathbb Z$

For any two integers a and b, let $a \star b = \gcd(a,b)$ and $a \circ b = \operatorname{lcm}(a,b)$. Prove the following properties of these operations:

8.1 Q1

 \star and \circ are associative.

First we prove $(a \star b) \star c = a \star (b \star c)$ or that gcd(gcd(a,b),c) = gcd(a,gcd(b,c))

$$\gcd(a,b) \implies a = a_1r, b = b_1r$$

$$\gcd(a,b) = r$$

$$\gcd(\gcd(a,b),c) = \gcd(r,c) \implies r = r_1u, c = c_1u$$

$$\gcd(\gcd(a,b),c) = u$$

Now note that $b = b_1 r = b_1 r_1 u$ so

$$\gcd(b,c) = \gcd(b_1r_1u,c_1u) = u$$

and

$$gcd(a, gcd(b, c)) = gcd(a_1r_1u, u) = u$$

so

$$(a \star b) \star c = a \star (b \star c)$$

Secondly we prove $(a \circ b) \circ c = a \circ (b \circ c)$ or that $\operatorname{lcm}(\operatorname{lcm}(a, b), c) = \operatorname{lcm}(a, \operatorname{lcm}(b, c))$

Note that t = lcm(a, lcm(b, c)) then $a \mid t$ and $\text{lcm}(b, c) \mid t$. And r = lcm(b, c) then $b \mid r$ and $c \mid r$, but also $r \mid t \implies b \mid t$ and $c \mid t$.

Therefore $a \mid t, b \mid t$ and $c \mid t$.

Likewise through the same method we can conclude $lcm(lcm(a,b),c) \mid lcm(a,lcm(b,c))$ and so they are equal.

That is given they are the *least* multiple of a, b, c and so should divide the other value which is also a multiple of a, b and c.

From this we conclude they are equal.

We can also use the fact that

$$\begin{split} & \operatorname{lcm}(a,\operatorname{lcm}(b,c)) = \operatorname{lcm}(a,1^{\max(b_1,c_1)} \cdot 2^{\max(b_2,c_2)} \cdot 3^{\max(b_3,c_3)} \cdot 5^{\max(b_4,c_4)} \cdot 7^{\max(b_5,c_5)} \cdots) \\ & = 1^{\max(a_1,b_1,c_1)} \cdot 2^{\max(a_2,b_2,c_2)} \cdot 3^{\max(a_3,b_3,c_3)} \cdot 5^{\max(a^4,b^4,c^4)} \cdot 7^{\max(a^5,b^5,c^5)} \cdots \end{split}$$

since the max operation is associative.

8.2 Q2

There is an identity element for \circ , but not for \star (on the set of positive integers).

Let there be an identity element e for \star , then $\gcd(a,e)=a \implies a \mid e$ but also $\gcd(n \cdot a,e)=n \cdot a \implies n \cdot a \mid e$. So every number divides e, and it contains every prime number an infinite number of times as its factor.

Thus there is no identity for $a \star b = \gcd(a, b)$.

For the lcm note that

$$a \circ b = \operatorname{lcm}(a, b) = ab/\gcd(a, b)$$

For the identity operation

$$ae/\gcd(a,e) = \operatorname{lcm}(a,e) = a$$

$$ae = a\gcd(a,e)$$

$$e = \gcd(a,e)$$

So e divides all natural numbers

$$e = 1$$

8.3 Q3

Which integers have inverses with respect to \circ ?

Only 1 has an inverse because

$$\operatorname{lcm}(a,b) = 1$$

$$\operatorname{gcd}(a,b) = ab/\operatorname{lcm}(a,b) = ab$$

that is

$$\begin{aligned} a &= a_1(ab) \\ &= a_1((a_1ab)b) \\ &= a_1a_1\cdots b\cdot b \end{aligned}$$

$$\implies a,b=1$$

8.4 Q4

 $Prove:\ a\star(b\circ c)=(a\star b)\circ(a\star c).$

$$\begin{aligned} a \star (b \circ c) &= \gcd(a, \operatorname{lcm}(b, c)) \\ (a \star b) \circ (a \star c) &= \operatorname{lcm}(\gcd(a, b), \gcd(a, c)) \end{aligned}$$

Let $a = a_1 f g$, $b = b_1 f x$, and $c = c_1 g x$.

$$\begin{split} \gcd(a,bc/\gcd(b,c)) &= \gcd(a,bc/x) \\ &= \gcd(a_1fg,b_1fxc_1gx/x) \\ &= fg \end{split}$$

$$\begin{split} \operatorname{lcm}(\gcd(a,b), \gcd(a,c)) &= \gcd(a,b) \cdot \gcd(a,c)/\gcd(\gcd(a,b), \gcd(a,c)) \\ &= fg/\gcd(f,g) = fg \end{split}$$