Avaliação através da moda, média ou mediana

Uma nova abordagem

Luiz Fernando Palin Droubi

Norberto Hochheim

Willian Zonato

28/11/2018

 $\mu = log(1), \ \sigma = log(e)$

Regressão Linear Revisão

Origem

The word "regression" is an allusion to the famous comment of Sir Francis Galton in the late 1800s regarding "regression toward the mean." This referred to the fact that tall parents tend to have children who are less tall closer to the mean – with a similar statement for short parents. The predictor variable here might be, say, the father's height F, with the response variable being, say, the son's height S. Galton was saying that E(S|F) < F.

Origem

The word "regression" is an allusion to the famous comment of Sir Francis Galton in the late 1800s regarding "regression toward the mean." This referred to the fact that tall parents tend to have children who are less tall closer to the mean – with a similar statement for short parents. The predictor variable here might be, say, the father's height F, with the response variable being, say, the son's height S. Galton was saying that E(S|F) < F.

Definição precisa

$$m_{Y;X}(t) = \mathbb{E}(Y|X=t)$$

Origem

The word "regression" is an allusion to the famous comment of Sir Francis Galton in the late 1800s regarding "regression toward the mean." This referred to the fact that tall parents tend to have children who are less tall closer to the mean – with a similar statement for short parents. The predictor variable here might be, say, the father's height F, with the response variable being, say, the son's height S. Galton was saying that E(S|F) < F.

Definição precisa

$$m_{Y;X}(t) = \mathbb{E}(Y|X=t)$$

Notação

$$\mu(t)=eta_0+eta_1t_1+\ldots+eta_pt_p$$
 $\epsilon=Y-\mu(X)$ $Y=eta_0+eta_1t_1+\ldots+eta_pt_p+\epsilon$

Notação

$$\mu(t)=eta_0+eta_1t_1+\ldots+eta_pt_p$$
 $\epsilon=Y-\mu(X)$ $Y=eta_0+eta_1t_1+\ldots+eta_pt_p+\epsilon$

Notação

$$\mu(t)=eta_0+eta_1t_1+\ldots+eta_pt_p$$
 $\epsilon=Y-\mu(X)$ $Y=eta_0+eta_1t_1+\ldots+eta_pt_p+\epsilon$

O problema da retransformação

Notação

$$\mu(t)=eta_0+eta_1t_1+\ldots+eta_pt_p$$
 $\epsilon=Y-\mu(X)$ $Y=eta_0+eta_1t_1+\ldots+eta_pt_p+\epsilon$

O problema da retransformação

• Sem transformação, temos:

$$\mathbb{E}[Y|X] = \mathbb{E}[\alpha + X\beta] + \mathbb{E}[\epsilon] = \alpha + X\beta$$

Notação

$$\mu(t)=eta_0+eta_1t_1+\ldots+eta_pt_p$$
 $\epsilon=Y-\mu(X)$ $Y=eta_0+eta_1t_1+\ldots+eta_pt_p+\epsilon$

O problema da retransformação

• Sem transformação, temos:

$$\mathbb{E}[Y|X] = \mathbb{E}[\alpha + X\beta] + \mathbb{E}[\epsilon] = \alpha + X\beta$$

• Com transformação:

$$\ln(Y) = lpha + Xeta + \epsilon \Leftrightarrow$$
 $Y = \exp(lpha + Xeta) \exp(\epsilon) \Leftrightarrow$ $\mathbb{E}[Y|X] = \mathbb{E}[\exp(lpha + Xeta)] \mathbb{E}[\exp(\epsilon)|X] \Leftrightarrow$ $\mathbb{E}[Y|X] = \exp(lpha + Xeta) \mathbb{E}[\exp(\epsilon)|X]$

O problema da retransformação

A desigualdade de Jensen

O problema da retransformação

A desigualdade de Jensen

$$arphi\left(\mathbb{E}[X]
ight)\leq\mathbb{E}\left[arphi(X)
ight].$$

O problema da retransformação

A desigualdade de Jensen

Se $\varphi(X)$ é convexa:

$$arphi\left(\mathbb{E}[X]
ight)\leq\mathbb{E}\left[arphi(X)
ight].$$

• $f(x) = x^2$ é convexa, pois f''(x) = 2 > 0 $\forall x \in \mathbb{R}$

O problema da retransformação

A desigualdade de Jensen

$$arphi\left(\mathbb{E}[X]
ight)\leq\mathbb{E}\left[arphi(X)
ight].$$

- $f(x) = x^2$ é convexa, pois f''(x) = 2 > 0 $\forall x \in \mathbb{R}$
- $f(x) = \mathrm{e}^x$ é convexa, pois $f''(x) = \mathrm{e}^x > 0$ $\forall x \in \mathbb{R}$

O problema da retransformação

A desigualdade de Jensen

$$\varphi\left(\mathbb{E}[X]\right) \leq \mathbb{E}\left[\varphi(X)\right]$$
.

- $f(x) = x^2$ é convexa, pois f''(x) = 2 > 0 $\forall x \in \mathbb{R}$
- $f(x) = \mathrm{e}^x$ é convexa, pois $f''(x) = \mathrm{e}^x > 0$ $\forall x \in \mathbb{R}$
- $\mathbb{E}[\exp(\epsilon)|X] > \exp(\mathbb{E}[\epsilon])$

O problema da retransformação

A desigualdade de Jensen

$$\varphi\left(\mathbb{E}[X]\right) \leq \mathbb{E}\left[\varphi(X)\right]$$
.

- $f(x) = x^2$ é convexa, pois f''(x) = 2 > 0 $\forall x \in \mathbb{R}$
- $f(x) = e^x$ é convexa, pois $f''(x) = e^x > 0$ $\forall x \in \mathbb{R}$
- $ullet \ \mathbb{E}[\exp(\epsilon)|X] > \exp(\mathbb{E}[\epsilon])$
- $\mathbb{E}[\exp(\epsilon)|X] > 1$

O problema da retransformação

A desigualdade de Jensen

Se $\varphi(X)$ é convexa:

$$arphi\left(\mathbb{E}[X]
ight)\leq\mathbb{E}\left[arphi(X)
ight].$$

- $f(x) = x^2$ é convexa, pois f''(x) = 2 > 0 $\forall x \in \mathbb{R}$
- $f(x) = e^x$ é convexa, pois $f''(x) = e^x > 0$ $\forall x \in \mathbb{R}$
- $ullet \ \mathbb{E}[\exp(\epsilon)|X] > \exp(\mathbb{E}[\epsilon])$
- $\mathbb{E}[\exp(\epsilon)|X| > 1$

Isto explica o fator multiplicativo "introduzido" na equação de regressão.

 $\mu(t)$ minimiza MSPE

 $\mu(t)$ minimiza MSPE

Prova

$\mu(t)$ minimiza MSPE

Prova

1. c constante.

$$egin{aligned} \mathbb{E}[(W-c)^2] &= E[W^2-2cW+c^2] = E(W^2)-2cE[W]+c^2 \ & rac{d\mathbb{E}[(W-c)^2]}{dc} = 0
ightarrow 2E[W]+2c = 0 \ &\Leftrightarrow c = E[W] \end{aligned}$$

$\mu(t)$ minimiza MSPE

Prova

1. c constante.

$$egin{aligned} \mathbb{E}[(W-c)^2] &= E[W^2-2cW+c^2] = E(W^2)-2cE[W]+c^2 \ & rac{d\mathbb{E}[(W-c)^2]}{dc} = 0
ightarrow 2E[W]+2c = 0 \ &\Leftrightarrow c = E[W] \end{aligned}$$

1.
$$c = f(X)$$

$$MSPE = \mathbb{E}[(Y-f(X))^2] = \mathbb{E}[\mathbb{E}[(Y-f(X))^2|X]]$$

$\mu(t)$ minimiza MSPE

Prova

1. c constante.

$$egin{aligned} \mathbb{E}[(W-c)^2] &= E[W^2-2cW+c^2] = E(W^2)-2cE[W]+c^2 \ & rac{d\mathbb{E}[(W-c)^2]}{dc} = 0
ightarrow 2E[W]+2c = 0 \ & \Leftrightarrow c = E[W] \end{aligned}$$

1.
$$c = f(X)$$

$$MSPE = \mathbb{E}[(Y-f(X))^2] = \mathbb{E}[\mathbb{E}[(Y-f(X))^2|X]]$$

A função f(X) que minimiza $\mathbb{E}[(Y - f(X))^2]$, por analogia ao item anterior, é a função E(Y|X), ou seja, a média, *i.e.* $\mu(t)$. Então, a expectativa total $\mathbb{E}[\mathbb{E}[(Y - f(X))^2|X]]$, também é minimizada com este valor.

Definição e propriedades

Definição

Uma variável aleatória X tem distribuição lognormal se seu logaritmo Y = log(X) tem distribuição normal.

$$f(x;\mu,\sigma) = rac{1}{x\sigma\sqrt{2\pi}} \mathrm{exp}igg[-rac{(\ln(x)-\mu)^2}{2\sigma^2}igg]$$

em que:

- μ é a mediana
- $\sigma > 0$ é o desvio-padrão

Estimação dos parâmetros da distribuição

$$ar{x}^* = \expigg(rac{1}{n}\sum_{i=1}^n \ln(x_i)igg) = \left(\prod_{i=1}^n x_i
ight)^rac{1}{n}$$

Estimação dos parâmetros da distribuição

$$ar{x}^* = \expigg(rac{1}{n}\sum_{i=1}^n \ln(x_i)igg) = \left(\prod_{i=1}^n x_i
ight)^rac{1}{n}$$

$$s^* = \exp \left\{ \left[rac{1}{n-1} \sum_{i=1}^n \left[\ln \Bigl(rac{x_i}{ar{x}^*} \Bigr)
ight]^2
ight]^{rac{1}{2}}
ight\}$$

Estimação dos parâmetros da distribuição

$$ar{x}^* = \expigg(rac{1}{n}\sum_{i=1}^n \ln(x_i)igg) = \left(\prod_{i=1}^n x_i
ight)^rac{1}{n}$$

$$s^* = \exp \left\{ \left[rac{1}{n-1} \sum_{i=1}^n \left[\ln \Bigl(rac{x_i}{ar{x}^*} \Bigr)
ight]^2
ight]^{rac{1}{2}}
ight\}$$

Valores comuns de s^*

$$1,4 \leq s^* \leq 3$$

Estimação dos parâmetros da distribuição

$$ar{x}^* = \expigg(rac{1}{n}\sum_{i=1}^n \ln(x_i)igg) = \left(\prod_{i=1}^n x_i
ight)^rac{1}{n}$$

$$s^* = \exp \left\{ \left[rac{1}{n-1} \sum_{i=1}^n \left[\ln \Bigl(rac{x_i}{ar{x}^*} \Bigr)
ight]^2
ight]^{rac{1}{2}}
ight\}$$

Valores comuns de s^*

$$1,4 \leq s^* \leq 3$$

Valores extremos de s*

$$1,1 \leq s^* \leq 33$$

Efeito de σ na forma da distribuição

Estimativas

Estimativas

• O valor esperado (**média**) de *X* é:

$$E(X) = E(exp(Y)) = exp(E(Y) + 0, 5\sigma^2)$$
 $E(x) = exp(\mu + 0, 5\sigma^2)$

Estimativas

• O valor esperado (**média**) de *X* é:

$$E(X) = E(exp(Y)) = exp(E(Y) + 0, 5\sigma^2)$$
 $E(x) = exp(\mu + 0, 5\sigma^2)$

• O valor da mediana é:

$$u = exp(\mu)$$

Estimativas

• O valor esperado (**média**) de *X* é:

$$E(X) = E(exp(Y)) = exp(E(Y) + 0, 5\sigma^2)$$
 $E(x) = exp(\mu + 0, 5\sigma^2)$

• O valor da mediana é:

$$u = exp(\mu)$$

• O valor da **moda** é:

$$M_o = exp(\mu - \sigma^2)$$

Estimativas

• O valor esperado (**média**) de *X* é:

$$E(X) = E(exp(Y)) = exp(E(Y) + 0, 5\sigma^2)$$
 $E(x) = exp(\mu + 0, 5\sigma^2)$

• O valor da mediana é:

$$u = exp(\mu)$$

• O valor da moda é:

$$M_o = exp(\mu - \sigma^2)$$

Qual delas é a "melhor"?

Estimativas

• O valor esperado (**média**) de *X* é:

$$E(X) = E(exp(Y)) = exp(E(Y) + 0, 5\sigma^2)$$
 $E(x) = exp(\mu + 0, 5\sigma^2)$

• O valor da mediana é:

$$u = exp(\mu)$$

• O valor da moda é:

$$M_o = exp(\mu - \sigma^2)$$

Qual delas é a "melhor"?

ALERTA: Cuidado com a heteroscedasticidade - $\sigma \neq$ cte

Variação das Medidas de Tendência Central em função do desvio-padrão $\mu^* = 1.000.000$

SIMULAÇÕES

Comparação dos diversos modelos gerados, com diferentes erro-padrão

	Dependent variable:						
	log(y)	log(y1)	log(y2)	log(y3)	log(y4)		
	(1)	(2)	(3)	(4)	(5)		
X	0,125***	0,125***	0,126***	0,126***	0,130***		
	(0,0003)	(0,001)	(0,001)	(0,002)	(0,003)		
Constant	0,001	0,005	-0,083	-0,031	-0,304		
	(0,017)	(0,044)	(0,075)	(0,136)	(0,205)		
Observations	200	200	200	200	200		
\mathbb{R}^2	0,999	0,994	0,982	0,942	0,885		
Adjusted R ²	0,999	0,994	0,982	0,942	0,885		
Residual Std. Error (df = 198)	0,095	0,242	0,417	0,757	1,138		
Note: *p<0,1; **p<0,05; ***p<0,01							

16/33

 \hat{Y} VS. σ^*

 $\overline{RMSE}(\sigma^*)$

 $\overline{RMSE}(\sigma^*)$

EXEMPLO

Com dados reais de mercado

Florianópolis - Centro (2015)

Histograma da Variável Dependente

Estatísticas do Modelo

Statistical models

	Model 1
(Intercept)	13.564 [13.112; 14.016]*
area_total	0.001 [0.001; 0.002]*
quartos	0.164 [0.094; 0.233]*
suites	0.061 [-0.005; 0.127]
garagens	0.209 [0.143; 0.274]*
log(dist_b_mar)	-0.141 [-0.194; -0.087]*
I(padrao^-1)	-0.563 [-0.769; -0.357]*
R2	0.956
Adj. R2	0.950
Num. obs.	48
RMSE	0.136

^{* 0} outside the confidence interval

RMSPE (Root Mean Squared Prediction Error)

RMSPE (Root Mean Squared Prediction Error)

 $\mathrm{RMSPE}_{\mu} = R\$203.939{,}11$

RMSPE (Root Mean Squared Prediction Error)

 ${\rm RMSPE}_{\mu} = R\$203.939{,}11$

 $\mathrm{RMSPE}_{\nu} = R\$204.006,\!84$

RMSPE (Root Mean Squared Prediction Error)

 ${\rm RMSPE}_{\mu} = R\$203.939{,}11$

 $\mathrm{RMSPE}_{\nu} = R\$204.006,\!84$

 $RMSPE_{Mo} = R$205.537,36$

Impacto do erro-padrão da regressão na estimativa

Estimativa / Erro-Padrão	0,136	0,25	0,5	0,75
Moda	944.013,56	903.396,57	748.942,06	547.937,72
Dif. em relação à Mediana	-1,84%	-6,06%	-22,12%	-43,02%
Mediana	961.660,64	961.660,64	961.660,64	961.660,64
Média	970.607,51	992.187,03	1.089.704,27	1.273.993,36
Dif. em relação à Mediana	+0,93%	+3,17%	+13,31%	+32,48%

CONCLUSÃO

Variação das Medidas de Tendência Central em função do desvio-padrão μ^* = 1.000.000

ESTIMADORES

Sejam X e Y duas amostras de alturas de homens (X) e mulheres (Y). Assuma, por simplicidade que $\sigma_X = \sigma_Y = \sigma$ e que a médias das populações sejam iguais a μ_X e μ_Y .

Sejam X e Y duas amostras de alturas de homens (X) e mulheres (Y). Assuma, por simplicidade que $\sigma_X = \sigma_Y = \sigma$ e que a médias das populações sejam iguais a μ_X e μ_Y .

Suponha que, baseado nas amostras disponíveis, se pretenda estimar a altura de um homem qualquer na população.

Sejam X e Y duas amostras de alturas de homens (X) e mulheres (Y). Assuma, por simplicidade que $\sigma_X = \sigma_Y = \sigma$ e que a médias das populações sejam iguais a μ_X e μ_Y .

Suponha que, baseado nas amostras disponíveis, se pretenda estimar a altura de um homem qualquer na população.

A escolha natural seria: $T_1 = \bar{X}$

Sejam X e Y duas amostras de alturas de homens (X) e mulheres (Y). Assuma, por simplicidade que $\sigma_X = \sigma_Y = \sigma$ e que a médias das populações sejam iguais a μ_X e μ_Y .

Suponha que, baseado nas amostras disponíveis, se pretenda estimar a altura de um homem qualquer na população.

A escolha natural seria: $T_1 = \bar{X}$

Porém, se a amostragem for pequena, poderíamos utilizar: $T_2 = \frac{\bar{X} + \bar{Y}}{2}$

Sejam X e Y duas amostras de alturas de homens (X) e mulheres (Y). Assuma, por simplicidade que $\sigma_X = \sigma_Y = \sigma$ e que a médias das populações sejam iguais a μ_X e μ_Y .

Suponha que, baseado nas amostras disponíveis, se pretenda estimar a altura de um homem qualquer na população.

A escolha natural seria: $T_1 = \bar{X}$

Porém, se a amostragem for pequena, poderíamos utilizar: $T_2 = \frac{\bar{X} + \bar{Y}}{2}$

Embora se saiba que T_2 é um estimador viesado (mulheres são, em média, menores), temos:

Sejam X e Y duas amostras de alturas de homens (X) e mulheres (Y). Assuma, por simplicidade que $\sigma_X = \sigma_Y = \sigma$ e que a médias das populações sejam iguais a μ_X e μ_Y .

Suponha que, baseado nas amostras disponíveis, se pretenda estimar a altura de um homem qualquer na população.

A escolha natural seria: $T_1 = \bar{X}$

Porém, se a amostragem for pequena, poderíamos utilizar: $T_2 = \frac{\bar{X} + \bar{Y}}{2}$

Embora se saiba que T_2 é um estimador viesado (mulheres são, em média, menores), temos:

- Viés de T_1 : B $(T_1) = 0$
- Viés de T_2 : $B(T_2) = (0, 5\mu_1 + 0, 5\mu_2) \mu_1$
- Variância de T_1 : $Var(T_1) = \sigma^2/n$
- Variância de T_2 : $\operatorname{Var}^(T_2) = \operatorname{Var}(0, 5\bar{X} + 0, 5\bar{Y}) = 0, 5^2\operatorname{Var}(\bar{X}) + 0, 5^2\operatorname{Var}(\bar{Y}) = \sigma^2/2n$

Sejam X e Y duas amostras de alturas de homens (X) e mulheres (Y). Assuma, por simplicidade que $\sigma_X = \sigma_Y = \sigma$ e que a médias das populações sejam iguais a μ_X e μ_Y .

Suponha que, baseado nas amostras disponíveis, se pretenda estimar a altura de um homem qualquer na população.

A escolha natural seria: $T_1 = \bar{X}$

Porém, se a amostragem for pequena, poderíamos utilizar: $T_2 = \frac{\bar{X} + \bar{Y}}{2}$

Embora se saiba que T_2 é um estimador viesado (mulheres são, em média, menores), temos:

- Viés de T_1 : B $(T_1) = 0$
- Viés de T_2 : $B(T_2) = (0, 5\mu_1 + 0, 5\mu_2) \mu_1$
- Variância de T_1 : Var $(T_1) = \sigma^2/n$
- Variância de T_2 : $Var^{(T_2)} = Var(0, 5\bar{X} + 0, 5\bar{Y}) = 0, 5^2 Var(\bar{X}) + 0, 5^2 Var(\bar{Y}) = \sigma^2/2n$

Como $MSE(\theta) = Var(\theta) + B^2(\theta)$:

•
$$MSE(T_1) = \sigma^2/n + 0^2 = \sigma^2/n$$

$$ullet ext{MSE}(T_2) = \sigma^2/2n + \left[(0,5\mu_1+0,5\mu_2) - \mu_1
ight]^2 = \sigma^2/2n + \left(rac{\mu_2-\mu_1}{2}
ight)^2$$

• $MSE(T_1) = \sigma^2/n + 0^2 = \sigma^2/n$

$$ullet ext{MSE}(T_2) = \sigma^2/2n + \left[(0,5\mu_1+0,5\mu_2) - \mu_1
ight]^2 = \sigma^2/2n + \left(rac{\mu_2-\mu_1}{2}
ight)^2$$

- $MSE(T_1) = \sigma^2/n + 0^2 = \sigma^2/n$
- $ullet ext{MSE}(T_2) = \sigma^2/2n + \left[(0,5\mu_1+0,5\mu_2) \mu_1
 ight]^2 = \sigma^2/2n + \left(rac{\mu_2-\mu_1}{2}
 ight)^2$

Portanto, T_1 somente será um melhor estimador que T_2 se:

$$\left(rac{\mu_2-\mu_1}{2}
ight)^2>rac{\sigma^2}{2n}$$

- $MSE(T_1) = \sigma^2/n + 0^2 = \sigma^2/n$
- $ullet ext{MSE}(T_2) = \sigma^2/2n + \left[(0,5\mu_1+0,5\mu_2) \mu_1
 ight]^2 = \sigma^2/2n + \left(rac{\mu_2-\mu_1}{2}
 ight)^2$

Portanto, T_1 somente será um melhor estimador que T_2 se:

$$\left(rac{\mu_2-\mu_1}{2}
ight)^2>rac{\sigma^2}{2n}$$

Analogamente

•
$$MSE(T_1) = \sigma^2/n + 0^2 = \sigma^2/n$$

$$ullet ext{MSE}(T_2) = \sigma^2/2n + \left[(0,5\mu_1+0,5\mu_2) - \mu_1
ight]^2 = \sigma^2/2n + \left(rac{\mu_2-\mu_1}{2}
ight)^2$$

Portanto, T_1 somente será um melhor estimador que T_2 se:

$$\left(rac{\mu_2-\mu_1}{2}
ight)^2>rac{\sigma^2}{2n}$$

Analogamente

 $\bullet \ \operatorname{Var}(\nu) = \operatorname{Var}[\exp(W)]$

•
$$MSE(T_1) = \sigma^2/n + 0^2 = \sigma^2/n$$

$$ullet ext{MSE}(T_2) = \sigma^2/2n + \left[(0,5\mu_1+0,5\mu_2) - \mu_1
ight]^2 = \sigma^2/2n + \left(rac{\mu_2-\mu_1}{2}
ight)^2$$

Portanto, T_1 somente será um melhor estimador que T_2 se:

$$\left(rac{\mu_2-\mu_1}{2}
ight)^2>rac{\sigma^2}{2n}$$

Analogamente

- $Var(\nu) = Var[exp(W)]$
- $ullet \ \mathrm{B}(
 u) =
 u \mu = rac{\mu}{\exp(\sigma^2/2)} \mu$

•
$$MSE(T_1) = \sigma^2/n + 0^2 = \sigma^2/n$$

$$ullet ext{MSE}(T_2) = \sigma^2/2n + \left[(0,5\mu_1+0,5\mu_2) - \mu_1
ight]^2 = \sigma^2/2n + \left(rac{\mu_2-\mu_1}{2}
ight)^2$$

Portanto, T_1 somente será um melhor estimador que T_2 se:

$$\left(rac{\mu_2-\mu_1}{2}
ight)^2>rac{\sigma^2}{2n}$$

Analogamente

- $Var(\nu) = Var[exp(W)]$
- $\bullet \ \ \mathrm{B}(\nu) = \nu \mu = \frac{\mu}{\exp(\sigma^2/2)} \mu$
- $ullet ext{Var}(\mu) = ext{Var}[\exp(W + \sigma^2/2)] = ext{Var}[\exp(W).\exp(\sigma^2/2)]$
 - $\circ \ \operatorname{Var}(\mu) = \exp(\sigma^2) \operatorname{Var}(\nu) \qquad (\operatorname{Var}(c.\,U) = c^2 \operatorname{Var}(U))$

•
$$MSE(T_1) = \sigma^2/n + 0^2 = \sigma^2/n$$

$$ullet ext{MSE}(T_2) = \sigma^2/2n + \left[(0,5\mu_1+0,5\mu_2) - \mu_1
ight]^2 = \sigma^2/2n + \left(rac{\mu_2-\mu_1}{2}
ight)^2$$

Portanto, T_1 somente será um melhor estimador que T_2 se:

$$\left(rac{\mu_2-\mu_1}{2}
ight)^2>rac{\sigma^2}{2n}$$

Analogamente

• $Var(\nu) = Var[exp(W)]$

$$\bullet \ \ \mathrm{B}(\nu) = \nu - \mu = \tfrac{\mu}{\exp(\sigma^2/2)} - \mu$$

 $ullet ext{Var}(\mu) = ext{Var}[\exp(W+\sigma^2/2)] = ext{Var}[\exp(W).\exp(\sigma^2/2)]$

$$\circ \ \operatorname{Var}(\mu) = \exp(\sigma^2) \operatorname{Var}(\nu) \qquad (\operatorname{Var}(c.\,U) = c^2 \operatorname{Var}(U))$$

• $B(\mu) = 0$

•
$$MSE(T_1) = \sigma^2/n + 0^2 = \sigma^2/n$$

$$ullet ext{MSE}(T_2) = \sigma^2/2n + \left[(0,5\mu_1+0,5\mu_2) - \mu_1
ight]^2 = \sigma^2/2n + \left(rac{\mu_2-\mu_1}{2}
ight)^2$$

Portanto, T_1 somente será um melhor estimador que T_2 se:

$$\left(rac{\mu_2-\mu_1}{2}
ight)^2>rac{\sigma^2}{2n}$$

Analogamente

• $Var(\nu) = Var[exp(W)]$

$$\bullet \ \ \mathrm{B}(\nu) = \nu - \mu = \tfrac{\mu}{\exp(\sigma^2/2)} - \mu$$

 $ullet ext{Var}(\mu) = ext{Var}[\exp(W + \sigma^2/2)] = ext{Var}[\exp(W).\exp(\sigma^2/2)]$

$$\circ \ \operatorname{Var}(\mu) = \exp(\sigma^2) \operatorname{Var}(\nu) \qquad (\operatorname{Var}(c.\,U) = c^2 \operatorname{Var}(U))$$

• $B(\mu) = 0$

Então:

•
$$MSE(T_1) = \sigma^2/n + 0^2 = \sigma^2/n$$

$$ullet ext{MSE}(T_2) = \sigma^2/2n + \left[(0,5\mu_1+0,5\mu_2) - \mu_1
ight]^2 = \sigma^2/2n + \left(rac{\mu_2-\mu_1}{2}
ight)^2$$

Portanto, T_1 somente será um melhor estimador que T_2 se:

$$\left(rac{\mu_2-\mu_1}{2}
ight)^2>rac{\sigma^2}{2n}$$

Analogamente

• $Var(\nu) = Var[exp(W)]$

$$\bullet \ \ \mathrm{B}(\nu) = \nu - \mu = \tfrac{\mu}{\exp(\sigma^2/2)} - \mu$$

 $ullet ext{Var}(\mu) = ext{Var}[\exp(W + \sigma^2/2)] = ext{Var}[\exp(W).\exp(\sigma^2/2)]$

$$\circ \operatorname{Var}(\mu) = \exp(\sigma^2)\operatorname{Var}(
u) \qquad (\operatorname{Var}(c.U) = c^2\operatorname{Var}(U))$$

• $B(\mu) = 0$

Então:

$$ext{MSE}(
u) = ext{Var}(
u) + ext{B}^2(
u) = ext{Var}(
u) + \left(rac{\mu}{\exp(\sigma^2/2)} - \mu
ight)^2$$

•
$$MSE(T_1) = \sigma^2/n + 0^2 = \sigma^2/n$$

$$ullet ext{MSE}(T_2) = \sigma^2/2n + \left[(0,5\mu_1+0,5\mu_2) - \mu_1
ight]^2 = \sigma^2/2n + \left(rac{\mu_2-\mu_1}{2}
ight)^2$$

Portanto, T_1 somente será um melhor estimador que T_2 se:

$$\left(rac{\mu_2-\mu_1}{2}
ight)^2>rac{\sigma^2}{2n}$$

Analogamente

- $Var(\nu) = Var[exp(W)]$
- $\bullet \ \ \mathrm{B}(\nu) = \nu \mu = \frac{\mu}{\exp(\sigma^2/2)} \mu$
- $ullet ext{Var}(\mu) = ext{Var}[\exp(W + \sigma^2/2)] = ext{Var}[\exp(W).\exp(\sigma^2/2)]$

$$\circ \operatorname{Var}(\mu) = \exp(\sigma^2)\operatorname{Var}(
u) \qquad (\operatorname{Var}(c.U) = c^2\operatorname{Var}(U))$$

• $B(\mu) = 0$

Então:

$$ext{MSE}(
u) = ext{Var}(
u) + ext{B}^2(
u) = ext{Var}(
u) + \left(rac{\mu}{\exp(\sigma^2/2)} - \mu
ight)^2$$

$$ext{MSE}(\mu) = ext{Var}(\mu) + ext{B}^2(\mu) = \exp(\sigma^2) ext{Var}(
u)$$

$$ext{MSE}(
u) = ext{Var}(
u) + ext{B}^2(
u) = ext{Var}(
u) + \left(rac{\mu}{\exp(\sigma^2/2)} - \mu
ight)^2$$

$$ext{MSE}(\mu) = ext{Var}(\mu) + ext{B}^2(\mu) = \exp(\sigma^2) ext{Var}(
u)$$

$$ext{MSE}(
u) = ext{Var}(
u) + ext{B}^2(
u) = ext{Var}(
u) + \left(rac{\mu}{\exp(\sigma^2/2)} - \mu
ight)^2$$

$$ext{MSE}(\mu) = ext{Var}(\mu) + ext{B}^2(\mu) = \exp(\sigma^2) ext{Var}(
u)$$

Logo, μ é um estimador melhor que ν se:

$$ext{Var}(
u) + \left(rac{\mu}{\exp(\sigma^2/2)} - \mu
ight)^2 > \exp(\sigma^2) ext{Var}(
u)$$

$$ext{Var}(
u) > rac{\left(rac{\mu}{\exp(\sigma^2/2)} - \mu
ight)^2}{1 - \exp(\sigma^2)}$$