Elektrotechnika

I. Alapok

1.1. Alapfogalmak

1. Villamos töltés

- alaptulajdonsága az atomot felépítő részecskéknek →
 az elektron negatív, a proton pozitív töltésű (azonos nagyságú!)
- azonos előjelű töltések taszítják, a különbözők vonzzák egymást
- jele: Q mértékegysége: C (coulomb)

2. Villamos feszültség

- töltés különbség okozza
- Egységnyi töltés szétválasztásakor végzett munka
- jele: U mértékegysége: V (volt)

U = W / Q

3. Villamos áram

- Töltéssel rendelkező részecskék rendezett mozgása (elektronok, vagy ionok)
- feszültség hatására jön létre

Áramerősség

- az áram nagyságát mutatja meg
- időegység alatt átáramló töltésmennyiség
- jele: I (i) mértékegysége: A (amper)

$I = \Delta Q / \Delta t$

4. Feszültség, áram típusok

- egyen feszültség/áram (DC,) \rightarrow a feszültség/áram iránya és nagysága állandó !
- váltakozó feszültség/áram (AC, \sim) \rightarrow a feszültség/áram iránya és nagysága változik !

1.2. Alapfogalmak

5. Villamos ellenállás

- egy anyag / alkatrész azon tulajdonsága, hogy mennyire korlátozza a töltéshordozók mozgását (így az áramot)
- jele: R mértékegysége: Ω (ohm)

I – hossz (kis L!) A – keresztmetszet

ρ – fajlagos ellenállás (anyagfüggő !)

6. Villamos vezetőképesség

- egy anyag azon tulajdonsága, hogy mennyire jól vezeti az áramot
- jele: G mértékegysége: S (siemens) G = 1 / R

7. Rajzjelek

néhány alap alkatrész

Feszültség generátor (állandó feszültséget ad)

áram generátor (állandó áramot ad)

 $R = \rho^* I / A$

izzó

ellenállás (fix ellenállása van)

dióda

I FD

vezeték

1.3. Alapfogalmak

8. Anyagok csoportosítása

Fajlagos ellenállásuk alapján az anyagok a következő csoportokba sorolhatók:

- vezetők (ρ < 0,001 Ω m), jól vezetik az áramot pl. fémek, grafit, folyadékok
- félvezetők (0,001 Ω m < ρ < 10 9 Ω m), gyengén vezetnek

pl. szilícium, germánium, szelén, ...

- szigetelők (10 9 Ω m < ρ), gyakorlatilag nem vezetnek

(nagyon nagyon pici áram folyhat azért!)

pl. műanyagok, gumi, porcelán, üveg, gázok, olaj

minta feladat

Számítsd ki a rézvezeték ellenállását és vezetőképességét, ha!

- $\Omega = 0.0175 \,\mu\Omega \,\mathrm{m} \,(\mathrm{vagy} \,\Omega \,\mathrm{mm}^2 \,/\,\mathrm{m})$
- I = 600m (hossz)
- d = 0,6mm (átmérő)

Megoldás:

```
sugár → r = d / 2 = 0,6mm / 2 = 0,3mm

keresztmetszet → A = r^2 * \pi = (0,3mm)^2 * 3,14 = 0,282743 \text{ mm}^2

Ellenállás → R = \rho * I / A

R = (0,0175 \ \Omega \text{mm}^2 / m) * 600m / 0,282743mm^2

R = 37,136 \ \Omega

Vezetőképesség → G = 1 / R

G= 1 / 37,136 \ \Omega = 0,026928 \ S = 26,928 \ mS
```

1.4. Villamos áramkör

Egyszerű villamos áramkör

- feszültségforrás + vezetékek + fogyasztó

Áram irány

- hagyományosan a pozitívtól negatív pólus felé a fogyasztók esetén, generátor esetén fordítva (technikai áram irány)
- a valóságban pont fordítva! (az elektronok mozognak)

Ug U R

Vezeték

- a rövid összekötő vezeték ellenállását elhanyagoljuk !
- a valóságban egy pici ellenállása van
- hosszú vezeték ellenállása viszont már jelentős lehet !!

→ értéke számításnál 0

1.5. Ellenállás (alkatrész)

Ellenállás, mint alkatrész alapvető feladata: az áram korlátozása

<u>Típusai</u>

1. fix értékű

2. változtatható értékű → potméter, trimmer potméter

3. speciális

- fotoellenállás (ellenállása a megvilágítás hatására változik)

- termisztor (NTC, PTC ellenállás) értéke erősen hőmérséklet függő

NTC – hőmérséklet növelésekor csökken az ellenállása,

PTC – hőmérséklet növelésekor nő az ellenállása

Fontosabb paraméterei

- ellenállása (névleges érték), pl. 1,5kΩ
- tűrése (hány százalékkal térhet el tényleges értéke a névlegestől)
- terhelhetősége, mennyi az a maximális teljesítmény amit károsodás nélkül elvisel

1.6. Soros, párhuzamos kapcsolás

Soros kapcsolás

Az alkatrészek egymás melletti kivezetései összekötve, az áram csak egy úton folyhat rajtuk keresztül → az alkatrészek árama azonos! (Az összeköttetést jelző pontot nem szokás ilyenkor használni)

Párhuzamos kapcsolás

- az alkatrészek mindkét kivezetése össze van kötve közvetlenül! (vezetékkel)
- az alkatrészek feszültsége azonos!

1. Feladat

Számítsd ki az alumíniumvezeték ellenállását, ha!

- ρ alu = 0,028 μΩm (vagy Ωmm² / m)
- I = 100m (hossz)
- d = 2mm (átmérő)

2. Feladat

Számítsd ki a rézvezeték ellenállását, ha!

- hossza 10m
- átmérője 0,4mm
- $\rho réz = 0.0175 \,\mu\Omega m \,(vagy \,\Omega mm^2 / m)$

3. Feladat

Számítsd ki a rézvezeték hosszát, ha!

- átmérője 0,8mm
- vezetőképessége 5mS
- $\rho réz = 0.0175 \,\mu\Omega m \,(vagy \,\Omega mm^2 / m)$

1. Feladat, megoldás

alumíniumvezeték ellenállása, ha

- $\rho_{alu} = 0.028 \,\mu\Omega \text{m} \text{ (vagy } \Omega \text{mm}^2 \text{/m)}$
- I = 100m (hossz)
- d = 2mm (átmérő)

R =
$$\rho$$
* I / A
A = r^2 * π és r = d / 2
A = $(1\text{mm})^2$ *3,14 = 3,14mm²

 $R = 0.028 \,\mu\Omega m * 100 m / 3.14 mm^2$

 $R = 0.028* 10^{-6} \Omega m * 100 m / (3.14* 10^{-6} m^2) = 0.89 \Omega$

2. Feladat, megoldás

rézvezeték ellenállása, ha

- hossza 10m
- átmérője 0,4mm
- ρ réz = 0,0175 $\mu\Omega$ m (vagy Ω mm² / m)

$$A = r^2 * \pi = (0.2 \text{mm})^2 * 3.14 = 0.125 \text{ mm}^2$$

 $R = 0.0175 \,\mu\Omega m * 10m / 0.125mm^2$

 $R = 0.0175* 10^{-6} \Omega m * 10 m / (0.125* 10^{-6} m^2)$

 $R = 1.4 \Omega$

3. Feladat, megoldás

rézvezeték hossza, ha

- átmérője 0,8mm
- vezetőképessége 5mS
- $\rho rez = 0.0175 \,\mu\Omega m \,(vagy \,\Omega mm^2 / m)$

$$A = r^2 * \pi = (0.4 \text{mm})^2 * 3.14 = 0.5 \text{ mm}^2$$

$$R = 1 / G = 1 / 5mS = 200 \Omega$$

 $I = R * A / \rho = 200 \Omega * 0.5*10^{-6} \text{ m}^2 / 0.0175* 10^{-6} \Omega \text{m} = 5714 \text{ m}$

1.8. Eredő ellenállás számítása

Eredő ellenállás

Több ellenállás helyettesíthető egy darab megfelelő értékű ellenállással → eredő ellenállás (Re)

Soros kapcsolás esetén

Az ellenállások összeadódnak

$$Re = R_1 + R_2 + R_3 + ...$$

 $R_{e} = R_{1} + R_{2} + R_{3} = 2 k\Omega + 1 k\Omega + 0.6 k\Omega$

1.9. Eredő ellenállás számítása

Párhuzamos kapcsolás esetén

A vezetőképességek adódnak össze!

$$G_e = G_1 + G_2 + G_3 + ...$$

$$Ge = 1/R_1 + 1/R_2 + 1/R_3 + ...$$

$$Re = 1/Ge$$

Két ellenállás esetén egyszerűbben → replusz (x) művelettel: $R_e = R_1 \times R_2 = R_1 * R_2 / (R_1 + R_2)$

Re

1,667 Ω

$$Re = 1/Ge = 1/0.0S = 1.007 \Omega$$

Re = R₁ x R₂ =
R₁*R₂ / (R₁+R₂) =
$$3*6$$
 / (3+6) = 2 Ω

Számítsd ki az eredő ellenállásokat

1. feladat

2. feladat

1. Feladat, megoldás

Sorosak \rightarrow Re = R1 + R2 + R3 + R4 = 2 k Ω + 3 k Ω + 200 k Ω + 15 k Ω = 220 k Ω

2. Feladat, megoldás

Párhuzamosak \rightarrow 1/Re = 1/R₁ + 1/R₂ + 1/R₃ = 0,25mS + 0,05mS + 0,2mS = 0,5 mS Re = 1/(0,5mS) = 2 k Ω

3. Feladat, megoldás

Párhuzamosak!!

replusz (x) művelettel:

 $R_{e} = R_{1} \times R_{2} = R_{1}*R_{2} / (R_{1}+R_{2}) = 4*6 / (4+6) = 24 / 10 = 2,4 k\Omega$

1.11. Vegyes kapcsolás

Több alkatrész van, és sorosan és párhuzamosan is vannak kapcsolva → több lépésben lehet áttekinthetően kiszámolni az eredő ellenállást → kiválasztunk két megfelelő ellenállást, amelyek egyértelműen sorosan vagy párhuzamosan vannak, majd az eredőjükkel helyettesítjük őket → a kapcsolás egyszerűsödik → kezdjük elölről, megint választunk két megfelelő ellenállást ...

1.12. Vegyes kapcsolás

minta feladat 1.

1.13. Vegyes kapcsolás

minta feladat 2.

1.14. Vegyes kapcsolás

minta feladat 3.

Számítsd ki az eredő ellenállásokat

1. feladat

Számítsd ki az eredő ellenállásokat

3. feladat

Számítsd ki az eredő ellenállásokat

5. feladat

Megoldások

1. feladat

$$Re = (R2 + R3 + R4) \times R1 = 0.9 \text{ k}\Omega$$

2. feladat

$$Re = ((R2 \times R3) + R4) \times R1 = 20 \text{ k}\Omega$$

3. feladat

$$Re = (R1 \times R2) \times (R3 + R4) = 0.6k\Omega$$

4. feladat

$$Re = ((R2 \times R3) \times R4) + R1 = 48 \text{ k}\Omega$$

5. feladat

Re =R1 + R2 (+ rövidzár !) = 7 k Ω R3 R4 és R5 ellenállásokkal egy rövidzár van párhuzamosan !

6. feladat

Re = ((R2 x R3) x R1) x R4 = 0,6 k Ω Mind a négy párhuzamos !

1.16. Az ellenállás hőmérséklet függése

Villamos ellenállás

- az anyagok ellenállása függ a hőmérséklettől !
- a 20 °C-on mérhető ellenállás az alap, kiszámítása

$R_0 = \rho * I / A$

I – hossz (kis L!)

A - keresztmetszet

ρ – fajlagos ellenállás

Hőmérséklet függés

$$\Delta R = R_0 * \alpha * \Delta T$$

ΔR – ellenállás változás

R₀ – 20 °C-os ellenállás

ΔT – hőmérséklet változás

α – hőfoktényező (anyagfüggő!)

Ellenállás egy adott hőmérsékleten

$$R_T = R_0 + \Delta R = R_0 * (1 + \alpha * \Delta T)$$

<u>hőfoktényező (α)</u>

lehet:

- pozitív → hideg vezető anyagok (PTC), magasabb hőmérsékleten rosszabbul vezetnek
 pl. fémek, fém ötvözetek
- negatív → meleg vezető anyagok (NTC), magasabb hőmérsékleten jobban vezetnek
 pl. félvezetők, folyadékok

1.17. Az ellenállás hőmérséklet függése

minta feladat

Egy rézvezeték 20 $^{\circ}$ C-os ellenállása 100 Ω Mennyi lesz az ellenállása ha felmelegszik 50 $^{\circ}$ C-ra ?

$$\begin{array}{l} R_{_{0}} = 100 \; \Omega \\ \Delta T = 50 - 20 = 30 \; ^{0}C \\ \alpha_{r\'{e}z} = 0{,}0038 \;\; 1/^{0}C \\ \\ & \text{ellen\'all\'as v\'altoz\'as} \\ & \Delta R = R_{_{0}} \; ^{*}\alpha \; ^{*}\Delta T = 100 \; \Omega \; ^{*}0{,}0038 \;\; 1/^{0}C \; ^{*}30 \; ^{0}C = 11{,}4 \; \Omega \\ \\ & \text{ellen\'all\'as } \; 50 \; ^{0}C\text{-on} \\ & R_{_{50}} = R_{_{0}} \; ^{+}\Delta R = 100 \; \Omega \; ^{+}11{,}4 \; \Omega = \; 111{,}4 \; \Omega \end{array}$$

1.18. Ismétlő kérdések, feladatok

1. Számítsd ki az eredő ellenállást!

- 2. Számítsd ki a rézvezeték ellenállását, ha!
 - hossza 10m
 - átmérője 0,4mm
 - fajlagos ellenállása

$$\rightarrow$$
 ρ réz = 0,0175 Ω mm² / m

3. Villamos áram, áramerősség fogalma, definíciója, jele, mértékegysége ?