Keeping the DODAG consistent

Ranks

 As we have seen, nodes must choose a rank that is greater than the rank of its parent(s)

- This is also true if a node needs (or wants) to find a new parent, for example when:
 - New nodes appear
 - Old nodes disappear
 - Signal strength changes
- However, a node is only allowed to choose a parent with a lower rank than its own current rank
 - Should avoid that a node becomes the child of one of its children (→ loop)

Repairing the DODAG

- Loop avoidance is a big issue, especially in lossy wireless networks
- Despite ranks, loops can still happen if DIO or DAO messages are lost
- If a problem has been detected, the DODAG must be repaired. Two ways:
 - Local repair: done by individual nodes
 - Global repair: done by the root node
- There are several mechanisms in RPL to detect problems. Details differ between implementation.
- Same for repairs: different implementations possible. Some implementations might not support global repair.

Detecting routing problem

- RFC 6553 defines IPv6 header options for RPL that contain additional information to detect routing problems
- Direction flag: indicates the expected direction (up or down) of a data packet
 - 1. Sender sets the direction flag
 - If an up-packets is forwarded from a node A to a node B with higher rank, a problem is detected by B (same for downpackets forwarded to lower ranks)
 - 3. Node B initiates a local repair

Local repair

- A node might trigger a local repair if it detects a routing problem, e.g.
 - has lost its parent
 - received a packet with a wrong direction flag
 - •
- To do a local repair, the node
 - detaches itself (and its children) from the DODAG by advertising a rank of INFINITE_RANK (255) ("route poisoning")
 - 2. sends DIS messages to find a new parent
 - 3. select a new parent

Global repair

- Version numbers: When the root advertises a DODAG with the DIO message, it also includes a version number
- The root can decide to increase the version number and advertise a new version of the DODAG ("global repair")
 - During the repair process, two version of a DODAG temporarily exist
 - A node that joins a DODAG with version X ignores lower versions
 - When a node receives a message with higher version, it can move to that new version
 - -> choose new parent and new rank

Trickle Timer in RPL

DIO messages

- DIO messages are sent when
 - a new DODAG is constructed (already discussed)
 - a node requests them by a DIS message (already discussed)
 - periodically
- "Unnecessary" DIO messages are avoided by a Trickle timer (RFC 6206)

Trickle Timer

- Trickle algorithm running on each node:
 - T_{min} : minimum duration of the timer
 - T_{max} : maximum duration of the timer
 - *T*: current duration used by the timer
 - c: number of good messages received by the node
 - k: some threshold for c

Trickle Timer (2)

- 1. Start with $T := T_{min}$ and c:=0
- 2. Timer is set to a duration t randomly picked from [T/2,T]
- 3. When t expires and c<k: Send DIO message
- 4. When *T* expires:
 - $T \coloneqq 2 \cdot T$ (up to T_{max})
 - Go back to step 2

 T_{min} : minimum duration of the timer

 T_{max} : maximum duration of the timer

T: current duration used by the timer

c: number of good messages received by the node

k: some threshold for c

- c is increased by 1 for every "good" message
 - Good messages: DIO that does not announce a change in the parents, ranks, etc.
- c is reset to 0 and T is reset to T_{min} for "bad" messages:
 - Bad messages: DIO that announces a change, a data packet with wrong direction flag, new DODAG version, etc.

Trickle Timer Example with k=1

- \rightarrow Good messages indicate a stable network without problems or changes
- \rightarrow T is increased
- → Nodes send DIO messages less frequently

Routing Attacks

Selective-Forwarding Attacks

- Attack executed by "malicious" nodes
 - Nodes hacked by the attacker
 - Nodes of the attacker that join the network
- Selective Forwarding attack = Malicious node does not forward all packets
- Most simple form: Malicious node A does not forward packet to victim node V
 - → Victim node cannot communicate anymore
- Doesn't sound too dangerous, right?
 - Easy to detect
 - Nodes can choose a different path if multiple routes available
- Some interesting variations ...

Selective-Forwarding: Examples

- Do not forward ACK messages of applications
 Consequence: Retransmissions. Very bad in resource constraint networks like 802.15.4!
- Delay packet forwarding or forward on the wrong path Consequence: Creates confused routing information
- Only forward RPL messages and drop all other messages
 Consequence: RPL thinks everything is fine

Selective-Forwarding: Defense

- Difficult to defend against a malicious node inside the network
- Defense
 - Use encryption, so that attacker cannot see what is inside the message (no selective forwarding possible)
 - Measure network quality on application level: if application traffic is lost → notify RPL

Sinkhole Attacks

- A malicious node advertises an artificial very good routing path
 - → attracts traffic from nearby nodes, creating a "sinkhole"
- Implementation in RPL: announce very low rank, so that other nodes selects you as parent
 - Will disturb the network, but the DODAG corrects itself after a while (because nodes will choose other parents if link quality is too bad)
 - Defense: use encryption inside PAN

HELLO Flooding

- Attacker node sends a message ("HELLO") with strong signal power
 - → Other nodes will think it is a neighbor node
 - → But when sending traffic, the attacker node is out of range
- In RPL, DIO messages can be used for that
 - Again, the network is disturbed but will correct itself after a while
 - Defense: use encryption inside PAN

Wormhole attack

- Attacker creates a fast network connection between two far points of the 802.15.4 network, for example by using WiFi
 - → Will become a preferred path for many nodes
- Attacker can
 - Study traffic (eavesdropping)
 - Modify packets
 - Selectively drop packets
 - •

DODAG Version Attack

- Malicious node sends DIO messages with fake new version
 - → Nodes will join it and even advertise it in their DIO messages!
- Loops possible because the fake DODAG did not start from the root node

Conclusion

- Routing attacks try to disturb the network by manipulating routing of traffic
- Many attacks can be prevented by using encryption
 - Some not, for example packet-dropping in the Wormhole attack!