BIOMOLECULES

- Biomolecules are the most essential organic molecules, and the building blocks of all the living organisms.
- They range from small molecules such as primary and secondary metabolites, vitamins and hormones to large macromolecules like proteins, nucleic acids, carbohydrates, lipids (Figure 1).

Carbohydrates

- Carbohydrates (saccharides) are the most abundant organic molecules in nature.
- They have a wide range of functions, including:
 - Providing a significant fraction of the dietary calories for most organisms.
 - Acting as a storage form of energy in the body .
 - > Serving as cell membrane components that mediate some forms of intercellular communication.
 - ➤ Serve as a structural component of many organisms including the cell walls of bacteria, and the fibrous cellulose of plants .

➤ The general formula for many of the simpler carbohydrates is $(CH_2O)_n$, where $n \ge 3$, hence the name "hydrate of carbon."

Classification of Carbohydrates

- Carbohydrates are classified according to number of sugar units as:
 - Monosaccharides: 1 sugar unit.
 - Disaccharides: 2 sugar units.
 - ➤ Oligosaccharides: 3-9 sugar units.
 - Polysaccharides: 10 or more sugar units.

Monosaccharides

- Monosaccharides (simple sugars) can be classified according to the number of carbon atoms they contain.
- Examples of some monosaccharides commonly found in humans are:

Generic names	<u>Examples</u>
3 Carbons: trioses	Glyceraldehyde
4 Carbons: tetroses	Erythrose
5 Carbons: pentoses	Ribose
6 Carbons: hexoses	Glucose
7 Carbons: heptoses	Sedoheptulose
9 Carbons: nonoses	Neuraminic acid

- They can also be classified by the type of carbonyl group they contain.
- Carbohydrates with an aldehyde as their carbonyl group are called "aldoses" (glucose, galactose, mannose), whereas those with a keto as their carbonyl group are called "ketoses" (fructose).

Isomers

- Compounds that have the same chemical formula but have different structures are called isomers.
- For example, fructose, glucose, mannose, and galactose are all isomers of each other, having the same chemical formula, C₆H₁₂O₆.

Epimers

- Carbohydrate isomers that differ in configuration around only one specific carbon atom (with the exception of the carbonyl carbon) are defined as epimers of each other.
- Glucose and galactose are C-4 epimers because their structures differ only in the position of the—OH group at carbon 4.
- Glucose and mannose are C-2 epimers.

Enantiomers

- A special type of isomerism is found in the pairs of structures that are mirror images of each other.
- These mirror images are called enantiomers, and the two members of the pair are designated as a D- and an L-sugar.
- The vast majority of the sugars in humans are D-sugars.
- In the **D** isomeric form, the **OH** group on the asymmetric carbon (a carbon linked to four different atoms or groups) farthest from the carbonyl carbon is on the right, whereas in the L-isomer, it is on the left.

Cyclization of Monosaccharides

- Less than 1% of each of the monosaccharides with five or more carbons exists in the open chain (a cyclic) Fischer projection formula in solution.
- Rather, they are predominantly found in a ring (cyclic) Haworth projection formula.
- In which the aldehyde (or keto) group has reacted with an alcohol group
 on the same sugar, making the carbonyl carbon (C1 for an aldose, C2
 for a ketose) a symmetric.
- This asymmetric carbon is referred to as the anomeric carbon.

Anomers

- Creation of an anomeric carbon, generates a new pair of isomers, the α and β configurations of the sugar (α -D-glucopyranose and β -D-glucopyranose), that are anomers of each other.
- The cyclic α and β anomers of a sugar in solution spontaneously (but slowly) form an **equilibrium mixture**, a process known as **mutarotation.**
- The α and β forms are not mirror images , and they are referred to as diastereomers.

Reducing Sugars

- If the hydroxyl group on the anomeric carbon of a cyclized sugar is not linked to another compound by a glycosidic bond, the ring can open.
- The sugar can act as a reducing agent and is termed a reducing sugar.
- Such sugars can react with chromogenic a gents (Benedict reagent)
 causing the reagent to be reduced and colored, with the aldehyde group
 of the a cyclic sugar becoming oxidized.
- All monosaccharides but not all disaccharides, are reducing sugars.
- Glucose can have its terminal hydroxyl group oxidized to a carboxyl group, forming glucuronic acid, or its anomeric carbon oxidized forming gluconic acid, or both oxidized forming glucaric acid.

Glucose Oxidation

Disaccharides

- A disaccharide (also called a double sugar) is the sugar formed when two monosaccharides (simple sugars) are joined by glycosidic linkage.
- The oxide linkage is formed after the loss of the water molecule and then the two monosaccharides are formed by that linkage.
- Like monosaccharides, disaccharides are soluble in water.
- Three common examples are sucrose, lactose, and maltose.

Sucrose (table sugar)

- The most common disaccharide is sucrose which gives D- glucose and
 D- fructose on hydrolysis.
- Both the monosaccharides i.e. glucose and fructose are connected through the glycosidic linkage between alpha glucose and second carbon beta fructose.
- Sucrose is a non-reducing sugar as both the reducing groups of glucose and fructose are involved in the glycosidic bond formation.

Maltose (Malt sugar)

- Maltose is also one of the disaccharides which have two α -D-glucose units which are connected by the first carbon of the glucose and linked to the fourth carbon of another glucose unit.
- In the solution, a free aldehyde can be produced at the first carbon of the second glucose of the solution and it is a reducing sugar as it shows reducing properties.

Maltose $(\alpha-D-Glucopyranosyl-(1 \rightarrow 4)-\alpha-D-glucopyranose$

Lactose (Milk sugar)

- Commonly it is called milk sugar as this disaccharide is found in milk.
- It is made up of β -D-galactose and α -D-glucose. The bond is between the first carbon of galactose and the fourth carbon of glucose.
- This is also a reducing sugar.

Lactose $(\beta\text{-D-Galactopyranosyl-}(1\rightarrow 4)\text{-}\alpha\text{-D-glucopyranose}$

Some More Types of Disaccharides

Trehalose

- It is made up of 2 molecules of glucose which are linked differently.
- This can be found in fungi, plants, and insects.

Lactulose

- It is formed from galactose and fructose.
- It is helpful for the treatment of constipation and liver diseases.

Cellobiose

- It is also made up of two glucose molecules which are also arranged differently.
- These can be seen bacteriology which is a form of chemical analysis.

Chitobiose

- It comprises two glucosamine molecules which are linked.
- It is seen in some bacteria, exoskeletons of insects and is also found in fish, octopus, and squid.