STOR 614 - Linear Programming, Spring 2019 Homework No. 3

Zhenghan Fang

May 22, 2019

Problem 1.

Proof.

1. If.

If a basis of x^* and a basis of y^* share m-1 elements, then the two bases also share n-m-1 nonbasic variables. Let $\{N(1), N(n-m-1)\}$ be the indices of the shared nonbasic variables. Then x^* and y^* share the following n-1 linearly independent active constraints

$$\begin{cases} Ax = b \\ x_{N(1)} = 0 \\ \vdots \\ x_{N(n-m-1)} = 0 \end{cases}$$

Therefore, x^* and y^* are adjacent.

2. Only if.

Lemma 1. Let X be a set of vectors. If there are n linearly independent vectors in X, and $x_i, \ldots, x_m \in X$ are linearly independent, then there exists a set of n linearly independent vectors in X that contains x_i, \ldots, x_m .

Let S be the set of active constraints shared by x^* and y^* . Let T be the set of m linearly independent constraints imposed by Ax = b. Then, $T \subseteq S$ and S contains n-1 linearly independent elements. By Lemma 1, there exists $P \subseteq S$, such that P has n-1 elements, the elements of P are linearly independent, and $T \subseteq P$. Moreover, there exists a set of n linearly independent active constraints for x^* , B_x , and a set of n linearly independent active constraints for y^* , B_y , such that $P \subseteq B_x$, $P \subseteq B_y$. Then the bases corresponding to B_x and B_y share m-1 elements.

Problem 2.

(a)

Proof. If the reduced cost of every nonbasic variable is positive, then the object function reaches its maximum if and only if all nonbasic variables are zero. x^* is the only solution that satisfies that all nonbasic variables are zero. Therefore, x^* is the unique optimal solution. \Box

(b)

Proof. Let
$$x_B = \begin{bmatrix} x_{B(1)} \\ \vdots \\ x_{B(m)} \end{bmatrix}$$
 be the vector of basic variables in x^* , and $x_N = \begin{bmatrix} x_{N(1)} \\ \vdots \\ x_{N(n-m)} \end{bmatrix}$ be

the vector of nonbasic variables in x^* . The constraints of the linear programming problem can be written as

$$\begin{bmatrix} \mathbf{I}_m & \mathbf{P} \end{bmatrix} \begin{bmatrix} x_B \\ x_N \end{bmatrix} = b$$

where $\mathbf{I}_m \in \mathbb{R}^{m \times m}$ is identity matrix, $\mathbf{P} \in \mathbb{R}^{m \times (n-m)}$, and $b \in \mathbb{R}^m$.

Suppose that $x_{N(k)}$ has a nonpositive reduced cost, c. Because x^* is nondegenerate, all $b_i > 0$. Then there exists a feasible solution x^{**} which satisfies

$$\begin{cases} x_{N(k)}^{**} > 0 \\ x_{N(i)}^{**} = 0 & i \neq k \end{cases}$$

The objective function $z(x^{**}) = K - cx^{**}_{N(k)} \ge K - cx^{*}_{N(k)} = z(x^{*})$, where $x^{*}_{N(k)} = 0$ and K is a constant. This contradicts with that x^{*} is the unique optimal solution.

Problem 3.

(a) Standard form.

$$\max z = 2x_1 + x_2$$

s.t
$$x_1 - x_2 + s_1 = 2,$$

$$x_1 + x_2 + s_2 = 6,$$

$$x_1, x_2, s_1, s_2 \ge 0$$

Simplex method. Boxed number indicate the pivot element.

z	x_1	x_2	s_1	s_2	rhs	Basic var	Ratio test
1	-2	-1	0	0	0	z = 0	
0	1	-1	1	0	2	$s_1 = 2$	2/1 = 2
0	1	1	0	1	6	$s_2 = 6$	6/1 = 6
1	0	-3	2	0	4	z=4	
0	1	-1	1	0	2	$x_1 = 2$	N/A
0	0	2	-1	1	4	$s_2 = 4$	4/2 = 2
1	0	0	1/2	3/2	10	z = 10	
0	1	0	1/2	1/2	4	$x_1 = 4$	
0	0	1	-1/2	1/2	2	$x_2 = 2$	

The BFS

$$(x_1, x_2, s_1, s_2) = (4, 2, 0, 0)$$

is optimal, and the optimal objective function value is z=10.

(b)

Figure 1: Optimization path of simplex method. Red numbers indicate the order of the BFS's reached in the simplex method.

Problem 4.

(a) False.

Proof. If the feasible solution is moved by a positive distance, then the right-hand-side of the pivot row is positive, then the z-value must be changed (increased). \Box

(b) True.

Proof. Let c be the reduced cost of the entering variable, p be the pivot element, and x^* be the leaving variable in one iteration. If the rules of simplex method are strictly followed, then c < 0, p > 0. Let d be the new reduced cost of x^* after that iteration, then d = -c/p > 0. Therefore, the new reduced cost of the leaving variable must be positive. Therefore, the leaving variable cannot reenter in the very next iteration.

(c) False. Counter example:

z	x_1	x_2	s_1	s_2	rhs	Basic var	Ratio test
1	-2	-8	0	0	0	z = 0	
0	1	2	1	0	2	$s_1 = 2$	2/1 = 2
0	0	1	0	1	6	$s_2 = 6$	N/A
1	0	-4	2	0	4	z=4	
0	1	2	1	0	2	$x_1 = 2$	2/2 = 1
0	0	1	0	1	6	$s_2 = 6$	6/1 = 6

Boxed number indicates pivot element. x_1 just entered in the first iteration but leaves in the next iteration.

(d) False. Counter example:

z	x_1	x_2	s_1	s_2	rhs	Basic var	Ratio test
1	2	0	0	0	4	z=4	
0	1	2	1	0	2	$s_1 = 2$	
0	1	1	0	1	6	$s_2 = 6$	

This tableau shows a nondegenerate optimal solution

$$(x_1, x_2, s_1, s_2) = (0, 0, 2, 6),$$

but there exists another optimal solution

$$(x_1, x_2, s_1, s_2) = (0, 1, 0, 5).$$