

SEQUENCE LISTING

<110>	Lee, Jong Seob Kim, Yun Hee Choi, Eun kyung Yoo, So Yeon Ahn, Ji Hoon Choi, Yang Do														
<120>		Gene Controlling Flowering Time of Plants and Method for Manipulating Flowering Time of Plant Using the Same													
<130>	1012	1012679-000105													
		US 10/780,703 2004-02-19													
	KR 10 2003 10772 2003-02-20														
<160>	12	12													
<170>	Pate	PatentIn version 3.3													
<210><211><212><213>	1140														
<220><221><222><222><223>	(1).			gene	e										
<400> atg gc Met Al 1															48
gtc aa Val As															96
caa ga Gln Gl															144
gac at Asp Me 50	g gtc t Val	atg Met	ccc Pro	gga Gly	ttt Phe 55	aga Arg	ttc Phe	cat His	cct Pro	acc Thr 60	gaa Glu	gaa Glu	gaa Glu	ctc Leu	192
ata ga Ile Gl 65															240
gaa ct Glu Le															288

cct Pro	gct Ala	atg Met	gcg Ala 100	gcg Ala	ata Ile	gga Gly	gag Glu	aaa Lys 105	gag Glu	tgg Trp	tac Tyr	ttc Phe	tat Tyr 110	gtg Val	cca Pro	336
								gat Asp								384
tca Ser	gga Gly 130	Tyr	tgg Trp	aaa Lys	gcc Ala	acc Thr 135	gga Gly	gct Ala	gat Asp	agg Arg	atg Met 140	atc Ile	aga Arg	tcg Ser	gag Glu	432
								aaa Lys								480
								agt Ser								528
								tac Tyr 185								576
								gta Val								624
								aac Asn								672
								cac His								720
	_							aac Asn							_	768
								ggc Gly 265								816
								gct Ala								864
								aac Asn								912
								act Thr								960
								gat Asp								1008

caa act caa gcg gc Gln Thr Gln Ala Al 340	g tta gct atg a Leu Ala Met	aac atg att Asn Met Ile 345	cct gca gga Pro Ala Gly . 350	acg att 1056 Thr Ile							
cca aac aat gct tt Pro Asn Asn Ala Le 355	g tgg gat atg u Trp Asp Met 360	: Trp Asn Pro	ata gta cca Ile Val Pro 365	gat gga 1104 Asp Gly							
aac aga gat cac ta Asn Arg Asp His Ty 370			taa	1140							
<210> 2 <211> 379 <212> PRT <213> Arabidopsis thaliana											
<400> 2											
Met Ala Ile Val Se 1 5	r Ser Thr Thr	Ser Ile Ile 10	Pro Met Ser	Asn Gln 15							
Val Asn Asn Asn Gl 20	u Lys Gly Ile	e Glu Asp Asn 25	Asp His Arg 30	Gly Gly							
Gln Glu Ser His Va 35	l Gln Asn Glu 40	ı Asp Glu Ala	Asp Asp His 45	Asp His							
Asp Met Val Met Pr 50	o Gly Phe Arg 55	Phe His Pro	Thr Glu Glu 60	Glu Leu							
Ile Glu Phe Tyr Le	u Arg Arg Lys 70	Val Glu Gly 75	Lys Arg Phe	Asn Val 80							
Glu Leu Ile Thr Ph 85	-		Asp Pro Trp	Glu Leu 95							
Pro Ala Met Ala Al 100	a Ile Gly Glu	Lys Glu Trp 105	Tyr Phe Tyr 110	Val Pro							
Arg Asp Arg Lys Ty	r Arg Asn Gly 120		Asn Arg Val 125	Thr Thr							
Ser Gly Tyr Trp Ly	s Ala Thr Gly 135	Ala Asp Arg	Met Ile Arg 140	Ser Glu							
Thr Ser Arg Pro Ile	e Gly Leu Lys 150	Lys Thr Leu 155	Val Phe Tyr	Ser Gly 160							

Lys Ala Pro Lys Gly Thr Arg Thr Ser Trp Ile Met Asn Glu Tyr Arg 170 165 Leu Pro His His Glu Thr Glu Lys Tyr Gln Lys Ala Glu Ile Ser Leu 185 Cys Arg Val Tyr Lys Arg Pro Gly Val Glu Asp His Pro Ser Val Pro 200 Arg Ser Leu Ser Thr Arg His His Asn His Asn Ser Ser Thr Ser Ser 215 Arg Leu Ala Leu Arg Gln Gln His His Ser Ser Ser Ser Asn His Ser Asp Asn Asn Leu Asn Asn Asn Asn Ile Asn Asn Leu Glu Lys Leu Ser Thr Glu Tyr Ser Gly Asp Gly Ser Thr Thr Thr Thr Thr Thr Asn Ser Asn Ser Asp Val Thr Ile Ala Leu Ala Asn Gln Asn Ile Tyr 280 Arg Pro Met Pro Tyr Asp Thr Ser Asn Asn Thr Leu Ile Val Ser Thr 295 Arg Asn His Gln Asp Asp Glu Thr Ala Ile Val Asp Asp Leu Gln 310 315 Arg Leu Val Asn Tyr Gln Ile Ser Asp Gly Ala Thr Thr Leu Met Pro 325 330 Gln Thr Gln Ala Ala Leu Ala Met Asn Met Ile Pro Ala Gly Thr Ile 345 Pro Asn Asn Ala Leu Trp Asp Met Trp Asn Pro Ile Val Pro Asp Gly 360 Asn Arg Asp His Tyr Thr Asn Ile Pro Phe Lys 370 375 <210> 3 <211> 2606 <212> DNA <213> Arabidopsis thaliana

<220>
<221> gene
<222> (1)..(2606)
<223> genomic DNA of LOV1 gene

<400> 3 atggcaattg tatcctccac aacaagcatc attcccatga gtaaccaagt caacaataac 60 gaaaaaggta tagaagacaa tgatcataga ggcggccaag agagtcatgt ccaaaatgaa 120 gatgaagctg atgatcatga tcatgacatg gtcatgcccg gatttagatt ccatcctacc 180 qaagaagaac tcatagagtt ttaccttcgc cgaaaagttg aaggcaaacg ctttaatgta 240 qaactcatca ctttcctcga tctttatcgc tatgatcctt gggaacttcc tggtaaatat 300 360 acattcacat aaacacacat aaatcatctc aaactatttg gaaatcttaa tttctattca tatgttaaga totttottot otottatoac titotototo tatttotttt titttaacot 420 atatatgtac ctacctcctt atgaagtatt actatgtcga tcgttaacaa ttctcaatat 480 ctttaaacgc ttctccctct ttagtttctt tcttaaatta acctaattaa acaacctaca 540 tatatatcat aagatataca aatatgtgta tgttttcata attagcttat gtatgtttaa 600 tcatagatat atgtatatgc agctatggcg gcgataggag agaaagagtg gtacttctat 660 720 gtgccaagag atcggaaata tagaaatgga gatagaccga accgagtaac gacttcagga 780 tattggaaag ccaccggagc tgataggatg atcagatcgg agacttctcg gcctatcgga 840 ttaaagaaaa ccctagtttt ctactctggt aaagccccta aaggcactcg tactagttgg 900 atcatgaacg agtatcgtct tccgcaccat gaaaccgaga agtaccaaaa ggtataaatt 960 tgaggccttt aaaattgaaa ttaatcccta gacagtttga attttttctt ttttgactag 1020 ttttatttat ttattttgga attgattcga taagatcaaa aatacttgtg aatggactaa 1080 atgtcaggcg gcgtttgcgc ttaaatccag aaaaatgttc atgtcatatg cgtgaactct 1140 ttaaattgct agacatggcc catatgttat agtagaatac attaatagat agatgcatac 1200 acatatatat aaacacacaa gtatcacact cgacattcat ataccttaat tctgcagaga 1260 catagttagt ttttcttaca atttatgaca tgaatgttcc tgctcttcct cacattaatt 1320 catgtcttct atttaagtta cccaacattt tttgaaataa tttggcatat atgaattata 1380 ccaacatatt tatatgcgaa catttaaaat ctatacgaat gataacggtt tatggagtag 1440 accgaaaaaa tattatgtat acggaaaatg acaatggata gataaataca ttttttgggc 1500 tctttcgact tatatgtcgt caccatttga aaccataaat ttataaaatt ttctatgtat 1560

atatatgata ttatgatgta tgcataagac agctaaaaca acagggttga cataattatc	1620								
tatgtgtatg tattgcacat tcacttgtac taataaaact aaaattacgc aattaaatat	1680								
ataaaaaata ataaatataa tcatcttaat tatatttgca ttgttacgtc atatgatagt	1740								
actctaaatt tcttctaaac gtgctatctt tttttgctaa tgctaacttt acatagtttg	1800								
tgaatcttct ttcaaaacca tatcttcgat aaatgatatt tttcatagat attgttagtc	1860								
tatatttgat aatttgatat atgtatcaag tctctaatca atgtgctcat gtataattat	1920								
aggotgaaat atcattgtgc cgagtgtaca aaaggocagg agtagaagat catccatcgg	1980								
taccacgttc tctctccaca agacatcata accataactc atcgacatca tcccgtttag	2040								
ccttaagaca acaacaacac cattcatcct cctctaatca ttccgacaac aaccttaaca	2100								
acaacaacaa catcaacaat ctcgagaagc tctccaccga atattccggc gacggcagca	2160								
caacaacaac gaccacaaac agtaactctg acgttaccat tgctctagcc aatcaaaaca	2220								
tatatcgtcc aatgccttac gacacaagca acaacacatt gatagtctct acgagaaatc	2280								
atcaagacga tgatgaaact gccattgttg acgatcttca aagactagtt aactaccaaa	2340								
tatcagatgg aggtaacatc aatcaccaat actttcaaat tgctcaacag tttcatcata	2400								
ctcaacaaca aaatgctaac gcaaacgcat tacaattggt ggctgcggcg actacagcga	2460								
caacgctaat gcctcaaact caagcggcgt tagctatgaa catgattcct gcaggaacga	2520								
ttccaaacaa tgctttgtgg gatatgtgga atccaatagt accagatgga aacagagatc	2580								
actatactaa tattcctttt aagtaa	2606								
<210> 4 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Sense primer of LOV1 <400> 4 aatagatctg gtacgcgaca tccatattga aa 32									
<210> 5 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Antisense primer of LOV1									
<400> 5 aatagatete atgggaatga tgettgttgt g	31								

```
<210> 6
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
      Sense primer of FLC
<223>
<400> 6
                                                                     27
cccgttaact gaacccaaac ctgagga
<210> 7
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense primer of FLC
<400> 7
                                                                     24
ccactagtcg cccttatcag cgga
<210> 8
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
      Sense primer of AGL20
<223>
<400> 8
                                                                     27
cccgttaaca tggtgagggg caaaact
<210> 9
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense primer of AGL20
<400> 9
cccgttaact cactttcttg aagaacaagg
                                                                     30
<210> 10
<211> 155
<212> PRT
<213> Petunia x hybrida
<400> 10
Met Glu Asn Tyr Gln His Phe Asp Cys Ser Asp Ser Asn Leu Pro Pro
```

Gly Phe Arg Phe His Pro Thr Asp Glu Glu Leu Ile Thr Tyr Tyr Leu 20 25 30

Leu Lys Lys Val Leu Asp Ser Asn Phe Thr Gly Arg Ala Ile Ala Glu 35 40 45

Val Asp Leu Asn Lys Cys Glu Pro Trp Glu Leu Pro Glu Lys Ala Lys 50 60

Met Gly Glu Lys Glu Trp Tyr Phe Phe Ser Leu Arg Asp Arg Lys Tyr 65 70 75 80

Pro Thr Gly Leu Arg Thr Asn Arg Ala Thr Glu Ala Gly Tyr Trp Lys
85 90 95

Ala Thr Gly Lys Asp Arg Glu Ile Tyr Ser Ser Lys Thr Ser Ala Leu 100 105 110

Val Gly Met Lys Lys Thr Leu Val Phe Tyr Arg Gly Arg Ala Pro Lys 115 120 125

Gly Glu Lys Ser Asn Trp Val Met His Glu Tyr Arg Leu Asp Gly Lys 130 135 140

Phe Ala Tyr His Tyr Ile Ser Arg Ser Ser Lys 145 150 155

<210> 11

<211> 161

<212> PRT

<213> Arabidopsis Thaliana

<400> 11

Met Asp Val Asp Val Phe Asn Gly Trp Gly Arg Pro Arg Phe Glu Asp 1 5 10 15

Glu Ser Leu Met Pro Pro Gly Phe Arg Phe His Pro Thr Asp Glu Glu 20 25 30

Leu Ile Thr Tyr Tyr Leu Leu Lys Lys Val Leu Asp Ser Asn Phe Ser 35 40 45

Cys Ala Ala Ile Ser Gln Val Asp Leu Asn Lys Ser Glu Pro Trp Glu 50 55 60

Leu Pro Glu Lys Ala Lys Met Gly Glu Lys Glu Trp Tyr Phe Phe Thr
Page 8

Leu Arg Asp Arg Lys Tyr Pro Thr Gly Leu Arg Thr Asn Arg Ala Thr 85 90 95

Glu Ala Gly Tyr Trp Lys Ala Thr Gly Lys Asp Arg Glu Ile Lys Ser 100 105 110

Ser Lys Thr Lys Ser Leu Leu Gly Met Lys Lys Thr Leu Val Phe Tyr 115 120 125

Lys Gly Arg Ala Pro Lys Gly Glu Lys Ser Cys Trp Val Met His Glu 130 135 140

Tyr Arg Leu Asp Gly Lys Phe Ser Tyr His Tyr Ile Ser Ser Ser Ala 145 150 155 160

Lys

65

<210> 12

<211> 158

<212> PRT

<213> Arabidopsis thaliana

<400> 12

Met Asp Ile Pro Tyr Tyr His Tyr Asp His Gly Gly Asp Ser Gln Tyr 1 5 10 15

Leu Pro Pro Gly Phe Arg Phe His Pro Thr Asp Glu Glu Leu Ile Thr 20 25 30

His Tyr Leu Leu Arg Lys Val Leu Asp Gly Cys Phe Ser Ser Arg Ala 35 40 45

Ile Ala Glu Val Asp Leu Asn Lys Cys Glu Pro Trp Gln Leu Pro Gly 50 60

Arg Ala Lys Met Gly Glu Lys Glu Trp Tyr Phe Phe Ser Leu Arg Asp 65 70 75 80

Arg Lys Tyr Pro Thr Gly Leu Arg Thr Asn Arg Ala Thr Glu Ala Gly

Tyr Trp Lys Ala Thr Gly Lys Asp Arg Glu Ile Phe Ser Ser Lys Thr

Cys Ala Leu Val Gly Met Lys Lys Thr Leu Val Phe Tyr Lys Gly Arg 115 120 125

Ala Pro Lys Gly Glu Lys Ser Asn Trp Val Met His Glu Tyr Arg Leu 130 135 140

Glu Gly Lys Phe Ser Tyr His Phe Ile Ser Arg Ser Ser Lys 145 150 155