Day1 データの集合の形

技術部データ基盤チーム 財津大夏 / GMO PEPABO inc. 2022.07.12 データエンジニアリング研修 基礎編 Day1

GMO NIT

自己紹介

技術部 データ基盤チーム データサイエンティスト

財津 大夏

Hiroka Zaitsu

2012年 入社

- ペパボのデータ基盤「Bigfoot」*1の開発/運用
- Bigfoot を使ったデータ分析/活用
- Twitter: @HirokaZaitsu

#データ基盤 #DataOps #MLOps #Python #SQL #統計学 #機械学習 #スバル #Fallout

*1: GMOペパボのサービスと研究開発を支えるデータ基盤の裏側

カリキュラム目標と概要

- ・ Day1: 扱いやすいデータの集合の形を理解できる
 - データを構造化するための知識の導入
- Day2: 初歩的な SQL を使ってデータベースからデータを参照できる
 - データを参照するために必要な基礎的な知識の導入
- Day3: 複数テーブルのデータを組み合わせて参照できる
 - リレーショナルデータベースからデータを参照するための知識の導入
- Day4: データを要約・可視化して情報や知識を取り出すことができる
 - データを実際の施策や判断に利用するために必要な知識の導入
- ➡ 各日のハンズオンを通して手を動かしながら知識の解釈を高める

データとは?

データとは

- データ コ インフォメーション
 - データは「インフォメーションの原材料」
 - インフォメーションは「コンテキストを持ったデータ」

DAMA International (2018) 「データマネジメント知識体系ガイド 第二版」 日経BP社より引用

date-id-name-num0-num1-num2-num3

2021-07-15-0123456789-test0-12-34-567-890

2021-07-15-9876543210-test1-98-76-543-210

date-id-name-num0-num1-num2-num3
2021-07-15-0123456789-test0-12-34-567-890
2021-07-15-9876543210-test1-98-76-543-210

date,id,name,num0,num1,num2,num3 2021-07-15,0123456789,test0,12,34,567,890 2021-07-15,9876543210,test1,98,76,543,210

Day1 データの集合の形

データからインフォメーションを抽出する手段

- ・ 手段1: インフォメーションになりうるデータを作る
- ・ 手段2: 既存のデータをインフォメーションに変換する

手段1: インフォメーションになりうるデータを作る

- そもそもデータを集めるのはなぜか?
 - 何かを知りたいから
 - 適切な理解は適切なデータ作成から
- データを作るにはナレッジ(ドメイン知識)が必要
 - 目的に沿ったデータを作ることが大事
 - システムだけでなく人もデータを作る
 - スプレッドシート
 - Notion etc…
- → 扱いやすいデータの形を知っておく必要がある

手段2: 既存のデータをインフォメーションに変換する

- 誰もが分かる表現に加工する
 - 例)0~6 で曜日を表現している
- 別のデータとつなぎ合わせる
 - 例)ユーザー情報 * 注文情報
- メタデータ(データを説明するデータ)を追加する
 - 例)5W1H
- ➡ データを扱う方法を知っておく必要がある

表形式のデータの集合の構造化

行と列(1)

- 表形式のデータの集合は、行と列から構成される
 - ・ 横方向が行
 - ・ 縦方向が列

	列				
	サイズ	身丈 (cm)	身幅 (cm)	肩幅 (cm)	袖丈 (cm)
行	S	65	49	42	19
	М	69	52	46	20
	L	73	55	50	22

	日付	曜日	勤務条件	休暇申	請内容	警告	就業時間	打刻訂正理由	休憩	実働時間
	6/1	水	FLX				05時47分 ~ 17時22分		1:00	8:13
	6/2	木	FLX				09時43分 ~ 18時03分		1:00	7:20
	6/3	金	FLX				06時16分 ~ 18時39分		1:00	9:24

行と列(2)

- 同じデータの集合を構造化する方法は数多くある
 - 例)人に対して処置 a, b を施した際の結果を表す Table 1, 2
- 行と列は表の外観を表す言葉なので 構造化する方法によって表すものが変わる
 - 例)Table 1 の行は処置, Table 2 の行は人
- → 構造化する方法によって意味が変わる表を 機械的に読み取ることは困難

	treatmenta	treatmentb
John Smith	_	2
Jane Doe	16	11
Mary Johnson	3	1

Table 1: Typical presentation dataset.

	John Smith	Jane Doe	Mary Johnson
treatmenta	_	16	3
treatmentb	2	11	1

Table 2: The same data as in Table 1 but structured differently.

データの意味に着目する

- データの集合は「値」を集めたもの
- どの値も1つの「変数」と1つの「観測」に属する
 - ・ 変数とは、色々な値を取りうるデータの入れ物
 - 観測とは、事象を観察し測定すること
- 例)3つの変数と値
 - ・ 「人」: 取りうる値は John Smith, Jane Doe, Mary Johnson
 - 「処置」: 取りうる値は a, b
 - ・ 「結果」: 取りうる値は -, 1, 2, 3, 11, 16
- ➡ 意味と構造(行と列)を一致させることができないか?

tidy data

- 次のように整理すると意味と構造を一致させられる
 - 1 つの観測が 1 つの行に対応する
 - 1 つの変数が 1 つの列に対応する
 - 1 つの観測の単位の類型が 1 つの表に対応する
- ➡ 統計学の「tidy*1 data」
- ➡ データベースの「正規形」「テーブル」

person	treatment	result
John Smith	a	-
Jane Doe	\mathbf{a}	16
Mary Johnson	\mathbf{a}	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

tidy data と messy data*1 で観測を検索する

- ・ 例)Jane Doe の処置 a の結果を参照する
 - tidy data
 - 各変数を列方向に探して観測を特定できる
 - 異なる変数を参照するには列を変更すれば済む
 - 変数(列)の数にも制限がない
 - messy data
 - 行と列をそれぞれ探す必要がある
 - 異なる変数を参照するには行列の変更が必要
 - 行と列の意味は変わりうる

person	treatment	result
John Smith	a	-
Jane Doe	a	16
Mary Johnson	\mathbf{a}	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

	treatmenta	treatmentb
John Smith	_	2
Jane Doe	16	11
Mary Johnson	3	1

データとビューの分離

- 「tidy data が便利なのは分かったけど、人間が読みづらいんですが…?」
- ・ 人間が読みやすいビュー(集計表)は tidy data から作成する
 - 例)ピボットテーブル
- ・ 集計表から tidy data には戻せないのでデータとビューは分離する

地域	商品名	商品数	商品単価
東日本	Α	14	¥1,000
東日本	В	15	¥1,100
西日本	Α	11	¥1,000
西日本	В	21	¥900
東日本	С	16	¥800
西日本	С	18	¥1,200
東日本	D	11	¥900
東日本	A	10	¥900
東日本	В	9	¥1,300
西日本	A	12	¥1,000
西日本	В	15	¥1,000

地域	商品名	SUM of 商品数	AVERAGE of 商品 単価
■ 東日本	Α	24	¥950
	В	24	¥1,200
	С	16	¥800
	D	11	¥900
東日本 Total		75	¥1,000
■ 西日本	Α	23	¥1,000
	В	36	¥950
	С	18	¥1,200
西日本 Total		77	¥1,020
Grand Total		152	¥1,009

画像は Google Workspace ラーニングセンター https://support.google.com/a/users/answer/9308944?hl=ja よりピボットテーブルの例を改変

失敗談

失敗談

- 「Slack じゃなくて情報がストックされる P/R コメントで書いてもらえばいいかな~」
 - ・ 後からコメントを見て人数を数え上げる必要がある
 - ・ 「福岡の人は何人いるんだっけ...」
 - BigQuery の権限の申請に使うためにお名前とご所属とメールアドレスをひたすらコピペ

他の例を見てみる

- 整然データとは何か | Colorless Green Ideas をみんなで見てみましょう
 - https://id.fnshr.info/2017/01/09/tidy-data-intro/
- minne のデータベースのテーブルをみんなで見てみましょう
- ・ Notion のドキュメントの構造化
 - データベース機能を適切に活用する
 - 変数ごとに Sort や Filter できる

まとめ

- データからインフォメーションを抽出するために構造化する
- データの集合は tidy data にして構造化する
 - 1 つの観測が 1 つの行に対応する
 - 1 つの変数が 1 つの列に対応する
 - 1 つの観測の単位の類型が 1 つの表に対応する
- 意味と構造を一致させることで機械的に扱いやすくなる
- データとビューは分離する

明日の準備

• BigQuery の権限が付いているか確認します

ここには画面キャプチャがありました 公開資料からは削除しています