Approximation, interpolation, optimisation

Regragui Mohammed

ING1 2014

Sources disponibles sur http://ing1.nemunai.re/ ou ing1@nemunai.re

Table des matières

1	$\mathbf{A}\mathbf{p}\mathbf{p}$	pproximations		
	1.1	Introduction	2	
	1.2	Approximation dans un espace métrique	2	
	1.3	Approximation uniforme	3	
		1.3.1 Polynôme de Chibyshev	3	
	1.4	Méthode des moindres carrés	10	
	1.5	Interpolation	12	
		1.5.1 Polynôme d'interpolation de Lagrange	12	
		1.5.2 Polynôme d'interpolation de Newton	13	
	1.6	Dérivation numérique	16	
		1.6.1 Dérivée d'un polynôme par division synthétique	17	
	1.7	Intégration numérique	20	
		1.7.1 Méthode générale	21	
		1.7.2 Quelques exemples de méthodes composées	21	

Chapitre 1

Approximations

1.1 Introduction

Le but de ce chapitre est de donner les premières notions de la théorie de l'approximation permettant d'aborder la résolution de problèmes tels que :

- soit f(x) continue sur [a;b], déterminer dans l'espace des polynôme de degré n celui rend : $|f(x) P_n(x)|$ le plus petit possible;
- déterminer les coefficients a_k qui minimisent la valeur $\int_a^b (f(x)) \cdot \sum_{k=0}^{n^2} a_k \cdot \varphi_k^2 \cdot \varphi_k^2 \cdot \omega(x) dx$ où $\omega(x)$ est le poid.
- Soit f continue et (n+1) points $X_0, X_1, ..., X_n$: $\exists ? P_n(x)/P_n(X_i) = f(X_i) \quad \forall i = 0..n$ $P_n(x)$ est le polynôme d'interpolation de f(x).

1.2 Approximation dans un espace métrique

(E,d) est un espace métrique : il existe une distance d :

$$d: E_x E \longmapsto \mathbb{R}_+$$

$$(f,\Phi) \longmapsto d(f,\Phi)$$

- (i) $d(f, \Phi) = 0 \Rightarrow f = \Phi$
- (ii) $d(f, \Phi) = d(\Phi, f)$
- (iii) $d(f, \Phi) \le d(f, \psi) + d(\psi, \Phi) \quad \forall f, \Phi, \psi \in E$

Problème Soit (E,d) un espace métrique : $F \subset E$ (sous espace-vectoriel de E).

Déterminer $\Phi^* \in F/d(f,\Phi^*) = Mind(f,\Phi)$ $\Phi \in F$. S'il existe, cet élément Φ^* sera appelé meilleur approximation (ou sens de la distance d) de $f \in E$.

Définition E est un espace vectoriel normé s'il existe une norme ||f(f)||, $\forall f \in E$.

 $d(f, \Phi) = ||f - \Phi||$ distance sur E.

On suppose que $dim(E) < +\infty$

$$||f - \Phi^*|| = Min(||f - \Phi||) \qquad \Phi \in F$$

1.3 Approximation uniforme

Soit $E = \mathcal{C}([a, b] \in \mathbb{R}) = f$ continue $[a, b] \to \mathbb{R}$. E est normée ||f|| = Max|f(x)| $a \le x \le b$

$$d(f,\Phi) = ||f - \Phi|| = Max|f(x) - \Phi(x)|$$

Soit \mathbb{C}_n un sous espace vectoriel de E, de dimension n. La meilleur approximation uniforme $\Phi^* \in \mathcal{E}_n$ de $f \in E$ est donc la fonction définie par :

$$f - \Phi^* = Min(Max|f(x) - \Phi(x)|) \qquad \Phi \in \mathcal{E}_n$$

Soit $\varphi_1, \varphi_2, ..., \varphi_n$ une vase de \mathcal{E}_n :

$$\Phi^* = \sum_{i=1}^n a_i^* . \varphi_i$$

$$||f - \Phi^*|| = Min(Max|f(x) - \Phi(x)|)$$
 $\Phi \in \mathcal{E}, a \le x \le b$

1.3.1 Polynôme de Chibyshev

Les polynômes sont définis pour :

$$T_2 = 2X \cdot T_1(x) - T(x) = 2x^2 - 1$$

$$T_3 = 2x \cdot T_2(x) - T_1(x) = 2x(2x^2 - 1) - x = 4x^3 - 3x$$

$$T_4(x) = 8^4 - 8x^2 + 1$$

Propriétés

(i)
$$T_n(x) = cos(n.\theta)$$
 $-1 \le x \le 1$ où $x = cos(\theta) \Leftrightarrow \theta = cos(x)$ $0 \le \theta \le \pi$

(ii) Le coefficient dominant de $T_n(x)$ est $a_n = 2^{n-1}$, $T_n(x) = 2^{n-1}.X^n...$

(iii) $T_0, T_1, T_2, ..., T_n$ est un ensemble de polynômes orthogonaux sur [-1, 1] relativement à la fonction poids $\omega(x) = \frac{1}{\sqrt{1-X^2}}$

$$\langle T_n, T_m \rangle = \int_{-1}^1 \frac{T_n(x).T_m(x)}{\sqrt{1-X^2}} dx = 0 \quad \forall n \neq m \qquad pp. \text{ scalaire}$$

(iv) $T_n(x) = +1; -1; +1; -1; ...$ Pour $X = 1, \cos(\frac{\pi}{n}), \cos(\frac{2\pi}{n}), \cos(\frac{k\pi}{n})$

Théorème Dans l'ensemble des polynômes de degré n ayant le coefficient de tête égal à 1, c'est $T_n^* = \frac{T_n}{2^{n-1}}$ qui réalise la meilleure approximation uniforme de la fonction nulle sur [-1;1].

$$||T_n^*|| = \max |T_n^*(x)| = \frac{1}{2^{n-1}} \qquad -1 \le x \le 1$$

$$\mathcal{P}_n = \text{polynôme}: X^n + a_{n-1}.X^{n-1} + ... + a_0$$

Démonstration On veut montrer que $||T_n^*|| = Min||R_n||$ $R_n \in P_n$. Supposons le contraire : $\exists R_n \in P_n$ tel que $||R_n|| < ||T_n^*|| = \frac{1}{2^{n-1}}, T_n^* - R_n = P_{n-1}$ polynôme de degré $\leq n-1$.

$$X_0 = 1 P_{n-1}(1) = T_n^*(1) - R_n(1) = \frac{1}{2^{n-1}} - R_n(1) > 0$$

$$X_1 = \cos(\frac{\pi}{n}) P_{n-1}(X_1) = T_n^*(X_1) - R_n(X_1) = \frac{-1}{2^{n-1}} - R_n(X_1) < 0$$

$$X_2 = \cos(\frac{2\pi}{n}) P_{n-1}(X_2) = T_n^*(X_2) - R_n(X_2) = \frac{1}{2^{n-1}} - R_n(X_2) > 0$$

:

$$X_n = cos(\pi) = -1$$
 $P_{n-1}(X_n) = T_n^*(X_n) - R_n(X_n) = \frac{1}{2^{n-1}} - R_n(X_n) \le 0$

Les (n+1) points $X_0=1,...,X_n$ pour lesquels T_n^* prend les valeurs $\frac{1}{2^{n-1}};\frac{1}{2^{n-1}};...$ Donc $P_{n-1}(x)$ possède au moins n racines dans [-1,1]. Ceci n'est pas possible car le degré $P_{n-1}\leq n-1$.

Donc $||T_n^*|| = Min||R_n|| \quad R_n \in P_n$.

Théorème Si $P_n \in \mathbb{P}_n$ = polynôme de degré $\leq n$ est tel que la fonction erreur $\epsilon_n = f - P_n$ atteint les valeurs extrêmes alternées M; -M; M; ... à $M = ||\epsilon_n||$ en au moins n+2 points $X_1, X_2, ..., X_{n+2} \in [a,b]$ alors P_n est le polynôme qui réalise la meilleure approximation de f sur $[a,b](P_n = P_n^*)$

Démonstration (Par l'absurde)

Supposons $\exists q_n \in \mathbb{P}_n/||f-q_n|| < ||f-P_n|| = ||\epsilon_n|| = M, Max|f(x)-q_n(x)| < M \Leftrightarrow -M < f(x)-q_n(x) < M \quad a \le x \le b \quad \forall x \in [a,b]$

$$r_n = q_n - p_n \text{degr\'e de } r_n \leq n$$

$$r_n = f - P_n + q_n - f = \epsilon_n + q_n - f$$

$$r_n(x_1) = \epsilon_n(x_1) + q_n(x_1) - f(x_1) = M + q_n(x_1) - f(x_1) > 0$$

$$r_n(x_2) = \epsilon_n(x_2) + q_n(x_2) - f(x_2) = M + q_n(x_2) - f(x_2) < 0$$

 $r_n(x_{n+2}) = \epsilon_n(x_{n+2}) + q_n(x_{n+2}) - f(x_{n+2}) = M + q_n(x_{n+2}) - f(x_{n+2}) > 0$

 $r_n(x)$ change au moins (n-1) fois de signe dans [a,b] en raison de l'aternance de $\epsilon_n \Rightarrow r_n$ possède au moins (n+1) racines ce qui est impossible.

Exercice 1 Polynôme de Chebyshev

$$\begin{cases} T_{n+1}(x) &= 2x.T_n(x) - T_{n-1}(x) \\ T_0(x) &= 1, T_1(x) = x \end{cases}$$

- 1. Montrer que $T_n(x) = cos(\theta) \quad |x| \le 1 \quad \theta = arccos(x)$
- 2. Montere que le coefficient dominant de T_n est $a_n = 2^{n-1}$
- 3. Montrer que $T_n(x) = \frac{1}{2}((x+\sqrt{x^2-1})^n + (x-\sqrt{x^2-1})^n) \forall x \in \mathbb{R}$
- 4. Montrer que $\int_{-1}^{1} \frac{T_n(x).T_m(x)}{\sqrt{1-x^2}} dx = 0 \quad \forall n \neq m$
- 1. Par récurence sur n:

$$\begin{cases} n = 0 & T_0(x) = \cos(0) = 1 \\ n = 1 & T_1(x) = x = \cos(\theta) \end{cases}$$

Hypothèse Supposons que $T_k(x) = cos(k\theta)$

$$T_{n+1}(x) = 2x \cdot T_n(x) - T_{n-1}(x) = 2 \cdot \cos(\theta) \cdot \cos(n\theta) - \cos(n-1)\theta$$
$$= 2 \cdot \cos(\theta) \cdot \cos(n\theta) - (\cos(n\theta) \cdot \cos(\theta) + \sin(\theta) \cdot \sin(n\theta))$$
$$= \cos(\theta) \cdot \cos(n\theta) - \sin(\theta) \cdot \sin(n\theta) = \cos(n+1)\theta$$

2.

$$\begin{cases} T_{n+1}(x) &= 2x.T_n(x) - T_{n-1}(x) \\ T_0(x) &= 1, T_1(x) = x \end{cases}$$

Supposons que le coefficient dominant de T_n est $a_n = 2^{n-1}$

$$T_{n+1}(x) = 2x \cdot T(x) - T_{n-1}(x) = 2x \cdot (2^{n-1} \cdot X^n + R_{n-1}(x)) - T_{n-1}(x)$$

$$\Rightarrow a_{n+1} = 2 \cdot 2^{n-1} = 2^n$$

3.

$$T_{n+1} = 2x.T_n - T_{n-1}$$

$$T_{n+1} - 2x.T_n + T_{n-1} = 0 (\text{\'equation r\'ecurente})(*)$$

L'équation caractéristique : $r^2 - 2xr + 1 = 0$

2 solutions particulières de l'équation (*) : r_1^n et r_2^n . En effet $r_1^{n+1}-2x.r_1^n+r_1^{n-1}=r_1^{n-1}(r_1^{n-1}-2x.r_1+1)=0$, de même pour

La solution générale de (*) est $T_n = \alpha . r_1^n + \beta . r_2^n$ où α et β sont déterminées par les conditions initiales.

4.

$$T_{n+1}(x) = 2 \times T_n(x) - T_{n-1}(x)$$

$$T_n(x) = \cos(n.\theta) \qquad \theta = \arccos(x) \Leftrightarrow$$

$$X = \cos(\theta) \Rightarrow dx = -\sin(\theta)d\theta$$

$$\int_{-1}^{1} \frac{T_n(x)T_m(x)}{\sqrt{1-x^2}} dx = \int_{\pi}^{0} \frac{\cos(n\theta) \cdot \cos(m\theta)}{|\sin(\theta)|} (-\sin(\theta)d\theta) = \int_{0}^{\pi} \cos(n\theta) \cos(m\theta) d\theta$$
$$\int_{0}^{\pi} \cos(n\theta) \cdot \cos(m\theta) d\theta = \frac{1}{2} \int_{0}^{\pi} (\cos(n+m)\theta + \cos(n-m)\theta) d\theta$$
$$= \frac{1}{2} \left[\frac{\sin(n+m)\theta}{n+m} + \frac{\sin(n-m)\theta}{n-m} \right] = 0$$

5.

$$T_n(x) = 0$$
 $|x| \le 1$
 $\Leftrightarrow \cos(n\theta) = 0 \Leftrightarrow n.\Theta = \frac{\pi}{2} + k\pi \Leftrightarrow \theta_k = \frac{\pi}{2n} + \frac{k\pi}{n}$

Les racines de $T_n(x)$ soit :

$$X_k = \cos(\frac{\pi}{2n} + \frac{k\pi}{n}) \qquad k = 0, 1 \quad n = 1$$

Exercice 2 Polynôme de Legendre

On considère les polynômes :

$$\begin{cases} P_0(x) &= 1 \\ P_n(x) &= \frac{1}{2^{n!}} \frac{d^n}{dx^n} ((x^2 - 1)^n) \quad \forall n \ge 1 \end{cases}$$

Les polynômes vérifient la relation $P_n(x) = \frac{2n-1}{n} \times P_{n-1}(x) - \frac{n-1}{n} P_n(x) \quad \forall n \geq 2.$

- 1. Montrer que $\int_{-1}^{1} x^k P_n(x) dx = 0 \quad \forall k = 0, 1, ..., n-1$.
- 2. En déduire la relation d'orthogonalité : $\int_{-1}^{1} P_n(x) \cdot P_m(x) dx = 0 \quad \forall n \neq m$.
- 3. Montrer que le coefficient dominant de $P_n(x)$ est : $a_n = \frac{(2.n)!}{2^n(n!)^2}$
- 4. Montrer que $||P_n|| = \sqrt{\frac{2}{2n-1}}$ (Rappel : $||P_n|| = \sqrt{\int_{-1}^1 P_n^2(x) dx}$)

1.

$$\frac{1}{2^{n}n!} \int_{-1}^{1} x^{k} \frac{d^{n}}{dx^{n}} \left(\left(x^{2} - 1 \right)^{n} \right) dx \left\{ \begin{array}{l} u^{1} & = \frac{d^{n}}{dx^{n}} \left(\left(x^{2} - 1 \right)^{n} \right) \\ v & = x^{k} \end{array} \right. \left(\left(x^{2} - 1 \right)^{n} \right) \\
= \frac{1}{2^{n}n!} \left(\left[x^{k} \frac{d^{n-1}}{dx^{n-1}} \left(\left(x^{2} - 1 \right)^{n} \right) \right]_{-1}^{1} \right) - k \int_{-1}^{1} x^{k-1} \frac{d^{n-1}}{dx^{n-1}} \left(\left(x^{2} - 1 \right)^{n} \right) \\
= \frac{-k}{2^{n}n!} \int_{-1}^{1} x^{k-1} \frac{d^{n-1}}{dx^{n-1}} \left(\left(x^{2} - 1 \right)^{n} \right) dx$$

Deuxième intégration par partie

$$I = -\frac{k}{2^{n} n!} \int_{-1}^{1} x^{k-1} \frac{d^{n-1}}{dx^{n-1}} \left((x^{2} - 1)^{n} \right) dx$$

$$= -\frac{k}{2^{n} n!} \left(\left[X^{k-1} \frac{d^{n-2}}{dx^{n-2}} \left((x^{2} - 1)^{n} \right) \right]_{-1}^{1} \frac{d^{n-2}}{dx^{n-2}} \left((x^{2} - 1)^{n} \right) dx \right)$$

$$I = \frac{k(k-1)}{2^{n} n!} \int_{-1}^{1} x^{k-2} \frac{d^{n-2}}{dx^{n-2}} \left((x^{2} - 1)^{n} \right) dx$$

Après p intégration par parties, on obtient :

$$I = \frac{(-1)^p \cdot k(k-1)(k-2) \dots (k-p+1)}{2^n n!} \int_{-1}^1 x^{k-p} \frac{d^{n-p}}{dx^{n-p}} \left(\left(x^2 - 1 \right)^n \right) dx$$

Si p = k (k intégrations par partie) :

$$I = \frac{(-1)^k k!}{2^n n!} \int_{-1}^1 \frac{d^{n-k}}{dx^{n-k}} \left(\left(x^2 - 1 \right)^n \right) dx$$
$$= \frac{(-1)^k k!}{2^n n!} \left[\frac{d^{n-k-1}}{dx^{n-k-1}} \left(\left(x^2 - 1 \right)^n \right) \right]_{-1}^1 = 0$$

2.

$$\int_{-1}^{1} P_n(x) . P_m(x) dx = \sum_{k=0}^{n} a_k \int_{-1}^{1} x^k . P_m(x) = {}^{?} 0 \quad \forall n \neq m$$

Supposons que n < m $P_n(x) = \sum_{k=0}^n a_k.x^k$

$$\int_{-1}^{1} P_n(x) . P_m(x) dx = \sum_{k=0}^{n} a_k \int_{-1}^{1} x^k . P(x) dx = 0 \quad \text{car } k < m \text{(première partie)}$$

3

$$P_n(x) = \frac{(2n-1)}{n} x \cdot P_{n-1}(x) - \frac{(n-1)}{n} P_{n-2}(x) \quad \forall n \ge 2$$
$$= n \cdot x \cdot \deg(n) - n \cdot P_{n-2}(x)$$

 a_n est le coefficient dominant de $P_n(x)$.

$$a_{n} = \frac{(2n-1)}{n} a_{n-1} \quad a_{n-1} \text{ est le coefficient dominant de } P_{n-1}$$

$$\begin{cases} a_{n} &= \frac{(2n-1)}{n} a_{n-1} \\ a_{n-1} &= \frac{(2n-3)}{n-1} a_{n-2} \\ a_{n-2} &= \frac{(2n-5)}{n-2} a_{n-3} \\ \vdots \\ a_{2} &= \frac{3}{2} a_{1} \end{cases}$$

$$P_{1}(x) = \frac{1}{2} \frac{d}{dx} (x^{2} - 1) = \frac{1}{2} \times 2x = x$$

$$P_{1}(x) = x$$

$$a_{1} = 1$$

$$(2n-1)(2n-3) \quad 3.1 \quad (2n)! \quad (2n)!$$

$$a_n = \frac{(2n-1)(2n-3)\dots 3.1}{n!} = \frac{(2n)!}{n! \cdot 2.4.5\dots 2n} = \frac{(2n)!}{2^n (n!)^2}$$

4.

$$||P_n|| = \sqrt{\int_{-1}^1 P_n^2(x) dx} P_n(x) = a_n \cdot x^n + Q_{n-1}(x)$$

$$||P_n||^2 = \int_{-1}^1 P_n^2(x) dx$$

$$= a_n \int_{-1}^1 x^n \cdot P_n(x) + \int_{-1}^1 Q_{n-1}(x) \cdot P_n(x) dx$$

$$= a_n \int_{-1}^1 x^n \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1) dx$$

$$= \frac{a_n}{2^n n!} \int_{-1}^1 x^n \frac{d^n}{dx^n} (x^2 - 1) dx$$

En utilisant la première question avec k = 1:

$$\int_{-1}^{1} x^{n} \frac{d^{n}}{dx^{n}} \left((x^{2} - 1)^{n} \right) dx = (-1)^{n} n! \int_{-1}^{1} (x - 1)^{n} dx$$

$$||P_{n}||^{2} = \frac{a_{n}}{2nn!} (-1)^{n} n! \int_{-1}^{1} (x^{2} - 1)^{n} dx = \frac{a_{n} (-1)^{n}}{2^{n}} \int_{-1}^{1} (x^{2} - 1)^{n} dx$$
Soit $I_{n} = \int_{-1}^{1} (x^{2} - 1)^{n} dx$:
$$\begin{cases} v = (x^{2} - 1) & \rightarrow v' = n(x^{2} - 1)^{n-1} 2x \\ n' = 1 & \rightarrow n = x \end{cases}$$

$$I_{n} = \left[x(x^{2} - 1)^{n} \right]_{-1}^{1} - 2n \int_{-1}^{1} (x^{2} - 1)^{n-1} x^{2} dx$$

$$= -2n \int_{-1}^{1} (x^{2} - 1)^{n-1} x^{2} dx = -2n \int_{-1}^{1} (x^{2} - 1)^{n-1} (x^{2} - 1 + 1) dx$$

$$= -2n \int_{-1}^{1} (x^{2} - 1)^{n} dx - 2n \int_{-1}^{1} (x^{2} - 1)^{n-1} dx$$

$$(2n - 1)I_{n} = -2nI_{n-1} \Rightarrow I_{n} = \frac{-2n}{2n+1} I_{n-1}$$

$$\Rightarrow I_{n} = \frac{(-2)^{n} n! I_{0}}{(2n+1)(2n-1) \dots 3} = \frac{(-1)^{n} \cdot 2^{n+1} n!}{(2n+1)!} 2^{n} n!$$

$$||P_{n}||^{2} = \frac{(2n)! (-1)^{n}}{2^{n} (n!)^{2} 2^{n}} (-1)^{n} \frac{2^{2n+1} (n!)^{2}}{(2n+1)} = \frac{2}{2n+1}$$

$$\Rightarrow ||P_{n}|| = \sqrt{\frac{2}{2n+1}}$$

1.4 Méthode des moindres carrés

Soit E espace vectoriel sur \mathbb{R} .

$$(f,g) \in E \times E \longrightarrow \langle f,g \rangle \in \mathbb{R}$$

$$||f|| = \sqrt{\langle f,f \rangle}$$

Soit $F \subset E$ (sous-espace vectoriel) de dimension finie.

Théorème Une condition nécessaire et suffisante pour que $\phi^* \in F$ soit une meilleure approximation de $f \in E$ et que $\langle f.\phi^*, \phi \rangle = 0 \quad \forall \phi \in F$

Démonstration

Condition nécessaire Soit $\phi^* \in F$ la meilleure approximation de $f \in E$, supposons $\exists \phi_1 \in F$ tel que $\langle f - \phi^*, \phi_1 \rangle = \alpha \neq 0$. Soit $\phi_2 = \phi^* + \beta.\phi_1$ avec $\beta = \frac{\alpha}{\|\phi_1\|^2}$

$$\begin{split} ||f - \phi_2||^2 &= < f - \phi_2, f - \phi_2 > \\ &= < f - \phi^* - \beta.\phi_1, f - \phi^* - \beta.\phi_1 > \\ &= ||f - \phi^*||^2 - 2\beta < f - \phi^*, \phi_1 > + \beta^2 ||\phi_1||^2 \\ &= ||f - \phi^*||^2 - 2\beta\alpha + \beta^2 ||\phi_1||^2 \\ &= ||f - \phi^*||^2 - 2\frac{\alpha^2}{||\phi_1||} + \frac{\alpha^2}{||\phi_1||^2} \\ &= ||f - \phi^*||^2 - \frac{\alpha^2}{||\phi_1||^2} \\ &= ||f - \phi^*||^2 - \frac{\alpha^2}{||\phi_1||^2} \\ &= ||f - \phi_2|| < ||f - \phi^*|| \cos \alpha + \beta^2 \cos \alpha + \beta$$

Condition suffisante Supposons que $< f - \phi^*, \phi >= 0 \quad \forall \phi \in F$. Soit $\phi_1 \in F$ tel que $< f - \phi_1, \phi >= 0 \quad \forall \phi \in F$.

$$\begin{split} ||f - \phi||^2 &= < f - \phi, f - \phi > \\ &= < (f - \phi_1) - (\phi - \phi_1), (f - \phi_1) - (\phi - \phi_1) > \\ &= ||f - \phi_1||^2 - 2 < f - \phi_1, \phi - \phi_1 > + ||\phi - \phi_1||^2 \\ &= ||f - \phi_1||^2 + ||\phi - \phi_1||^2 \quad \forall \phi \in F \\ &\Rightarrow ||f - \phi_1|| \le ||f - \phi|| \quad \forall \phi \in F \\ &\Rightarrow ||f - \phi_1|| = \min ||f - \phi|| \Longrightarrow \phi_1 = \phi^* \end{split}$$

Remarque Cette condition montre que l'élément ϕ^* représente la projection orthogonale de f sur F. ϕ^* est unique

Construction de ϕ^*

Soit $\varphi_1, \varphi_2, \dots, \varphi_n$ une base de F.

$$\varphi^* = \sum_{k=1}^n a_k^* \cdot \varphi_k$$

La condition d'orthogonalisation $< f - \varphi^*, \varphi_j >= 0 \quad \forall j = 1 \dots n$

$$\left\langle f - \sum_{k=1}^{n} a_{k}^{*}.\varphi_{k}, \varphi_{j} \right\rangle = 0 \quad \forall j = 1 \dots n$$

$$\langle f, \varphi_{j} \rangle - \sum_{k=1}^{n} a_{k=1}^{*} \langle \varphi_{k}, \varphi_{j} \rangle = 0 \quad \forall j = 1 \dots n$$

$$(S) \begin{cases} \sum_{k=1}^{n} \langle \varphi_{k}, \varphi_{j} \rangle a_{k}^{*} = \langle f, \varphi_{j} \rangle \\ \forall j = 1 \dots n \end{cases}$$

C'est un système linéaire à n équations et n inconnues.

Remarque Si la base $\varphi_1, \varphi_2, \dots, \varphi_n$ est orthonormée, la matrice du système sera diagonale.

La matrice du système (S) est la matrice de Gram:

$$G_{kj} = \langle \varphi_k, \varphi_j \rangle \forall k = 1 \dots n, j = 1 \dots n$$

(a) Cas continu

Soit ω une fonction poids, position telle que $\int_a^b f(x)\omega(x)dx$ existe $\forall f \in E = \mathcal{C}([a,b])$.

 $< f,g> = \int_a^b f(x)g(x)\omega(x)dx$ produit scalaire sur E. $F=\epsilon$ sous-espace vectoriel de dimension n.

$$(S) \Leftrightarrow \begin{cases} \sum_{k=1}^{n} a_k^* \int_a^b \varphi_k(x) \omega(x) dx = \int_a^b f(x) \varphi_j(x) dx \\ \forall j = 1 \dots n \end{cases}$$

La matrice de Gram : $G_{kj} = \int_a^b \varphi_k(x).\varphi_j(x)\omega(x)dx$

(b) Cas discret

Le produit scalaire discret : $< f, g >= \sum_{i=0}^{N} f(x_i) g(x_i) \omega(x_i)$. f est donnée aux points $x_i (i=0\dots N)$

$$||f|| = \sqrt{\sum_{i=0}^{N} f(x_i)\omega(x_i)}$$

$$(S) \Leftrightarrow \begin{cases} \sum_{k=1}^{n} a_k^* \sum_{i=0}^{N} \varphi_k(x_i) \cdot \varphi_j(x_i) \omega(x_i) = \sum_{i=0}^{N} f(x_i) \varphi_j(x_i) \omega(x_i) \\ \forall j = 1 \dots n \text{ La matrice } G_{kj} = \sum_{i=0}^{N} \varphi_k(x_i) \cdot \varphi_j(x_i) \omega(x_i) \end{cases}$$

1.5 Interpolation

Soit f(x) une fonction continue sur [a, b].

f(x) est connue en (n+1) points $x_i \in [a,b](i=1\dots n+1)$.

Chercher une fonction φ d'un type choisi à l'avance qui interpole f(x) sur [a,b], c'est déterminer φ tel que $\varphi(x_i)$ $\forall i=1\ldots n+1$.

En général, on cherche φ dans l'espace des polynômes.

1.5.1 Polynôme d'interpolation de Lagrange

Soit $P_n(x) = \sum_{i=1}^{n+1} L_i(x) f(x_i)$ où les fonctions L_i sont des polynômes de degré au plus n, telles que $L_i(x_j) = \delta_{ij}$.

$$L_{i}(x_{j}) = 0 \Rightarrow L_{i}(x) = C(x-x_{1})(x-x_{2})\dots(x-x_{i-1})(x-x_{i+1})\dots(x-x_{n+1}) \qquad \forall j \neq i$$

$$L_{i}(x_{i}) = 1 \Rightarrow C = [(x_{i} - x_{1})\dots(x - x_{i-1})(x - x_{i+1})\dots(x - x_{n+1})]$$

$$L_{i}(x) = \prod_{j=1}^{n+1} \frac{x - x_{j}}{x_{i} - x_{j}} \text{ La base de Lagrange}$$

$$P_n(x) = \sum_{i=1}^{n+1} L_i(x) f(x_i) = \sum_{i=1}^{n+1} \prod_{j=1}^{n+1} \frac{x - x_j}{x_i - x_j} f(x_i)$$
 Le polynôme de Lagrange

$$P_n(x_k) = \sum_{i=1}^{n+1} L_i(x_k) f(x_i)$$
$$P_n(x_k) = f(x_k) \quad \forall k = 1 \dots n+1$$

Exemple Soit f continue telle que : $\begin{array}{c|cccc} x_i & 0 & 1 & 3 & 4 \\ \hline f(x_i) & 1 & 3 & 2 & 5 \end{array}$

Construire le polynôme d'interpolation $P_z(x)$ de f(x).

$$P_z(x) = \frac{(x-1)(x-3)(x-4)}{(-1)(-3)(-4)}.1 + \frac{x(x-3)(x-4)}{1(1-3)(1-4)}.3 + \frac{x(x-1)(x-4)}{3(3-1)(3-4)}.2 + \frac{x(x-1)(x-3)}{4(4-1)(4-3)}.5$$

$$P_z(x) = \frac{x^3}{2} - \frac{14}{6}x^2 + \frac{13}{3}x + 1$$

Pour vérifier que l'on a pas fait d'erreur de calcul, on véfifie que $P_z(x_i) = f(x_i)$

Remarque L'erreur d'interpolation $\varepsilon(x) = f(x) - P_n(x)$. Si $f \in C^{n+1}[a,b]$ (f est dérivable n+1 fois avec ses dérivées continues).

$$\exists \eta_x \in [a, b] / \varepsilon(x) = \prod_{i=1}^{n+1} (x - x_i) \frac{f^{(n+1)}(\eta_x)}{(n+1)!}$$

1.5.2 Polynôme d'interpolation de Newton

Différence divisées Soit f une fonction donnée en n+1 points $x_1, x_2, \ldots, x_{n+1}$ ($x_i \neq x_i \ i \neq j$).

On appelle différence divisée d'ordre $0,1,2,\dots,n$ de f les expressions suivantes :

\mathbf{Ordre}	Notation	Définition
0	$f[x_i]$	$f(x_i)$
1	$f[x_i, x_j]$	$\frac{f[x_i] - f[x_j]}{x_i - x_j} \ i \neq j$
2	$f[x_i, x_j, x_k]$	$\frac{f[x_i] - f[x_j]}{x_i - x_j} i \neq j$ $\frac{f[x_i, x_j] - f[x_j, x_k]}{x_i - x_k} i \neq j \neq k$
÷	<u>:</u>	<u>:</u>
n	$f[x_1,\ldots,x_{n+1}]$	$\frac{f[x_1,,x_n] - f[x_2,,x_{n+1}]}{x_1 - x_{n+1}}$

Polynôme de Newton

$$f[x, x_1] = \frac{f(x) - f(x_1)}{x - x_1} \Rightarrow f(x) = f(x_1) + (x - x_1) \cdot f[x, x_1]$$

$$f[x, x_1, x_2] = \frac{f[x, x_1] - f[x_1, x_2]}{x - x_2} \Rightarrow f[x, x_1] = f[x_1, x_2] + (x - x_2) \cdot f[x, x_1, x_2]$$

$$f(x) = f(x_1) + (x - x_1) \cdot f[x_1, x_2] + (x - x_1)(x - x_2) \cdot f[x, x_1, x_2]$$

$$P_1(x) = f(x_1) + (x - x_1) \cdot f[x_1, x_2]$$

$$P_1(x_1) = f(x_1)$$

$$P_1(x_2) = f(x_1) + (x_2 - x_1) \cdot \frac{f(x_1) - f(x_2)}{x_1 - x_2} = f(x_1) - f(x_1) + f(x_2) = f(x_2)$$

Donc $P_1(x)$ interpole la fonction f aux points x_1 et x_2 . En réitérant le procédé, on obtient :

$$f(x) = f(x_1) + (x - x_1) \cdot f[x_1, x_2] + (x - x_1)(x - x_2) f[x_1, x_2, x_3] + \dots + (x - x_1) \cdot \dots (x - x_n) \cdot f[x_1, \dots, x_{n+1}]$$

$$+ \prod_{i=1}^{n+1} (x - x_i) \cdot f[x_i, x_1, \dots, x_{n+1}]$$
 l'erreur

 $P_n(x)$ est le polynôme d'interpolation de Newton de f(x) aux (n+1) points x_i $(i=1\ldots n+1)$.

$$\varepsilon(x) = \prod_{i=1}^{n+1} (x - x_i) \cdot f[x, x_1, \dots, x_{n+1}]$$

Algorithme de Newton

$$P_0(x) = f(x_1)$$

Pour m = 0, ..., n - 1:

$$P_{m+1}(x) = P_m(x) + (x - x_1) \dots (x - x_{m-1}) \cdot f[x_1, \dots, x_{m+1}]$$

Exercice 3 Sur [-1,1] on considère la fonction $f(x) = X^3 - X^2$

- 1. Décomposer f(x) dans la base de Chebyshev.
- 2. En déduire $P_2^*(x)$ polynôme de meilleur approximation de degré 2 de f(x). Donner l'erreur d'approximation $||f P^*||$

$$||f|| = \max|f(x)| \qquad -1 \le x \le 1$$

$$f(x) = a_0.T_0(x) + a_1.T_1(x) + a_2.T_2(x) + a_3.T_3(x)$$

$$\begin{cases} T_0(x) = 1 \\ T_1(x) = x \\ T_2(x) = 2x^2 - 1 \\ T_3(x) = 4x^3 - 3x \end{cases}$$

$$a_0 + a_1x + a_2(2x^2 - 1) + a_3(4x^3 - 3x)$$

$$a_0 + a_1x + 2a_2x^2 - a_2 + 4a_3 + 4a_3x^3 - 3a_3x$$

$$a_0 - a_2 + (a_1 - 3a_3)x + 2a_2x^2 + 4a_3 + 4a_3x^3$$

$$\Rightarrow \begin{cases} a_0 - a_2 = 0 \\ a_1 - 3a_3 = 0 \\ 2a_1 = -1 \\ 4a_3 = 1 \end{cases} \Rightarrow \begin{cases} a_0 = -\frac{1}{2} \\ a_2 = -\frac{1}{2} \text{ et } a_1 = \frac{3}{4} \end{cases}$$

Donc
$$f(x) = -\frac{1}{2}T_0(x) + \frac{3}{4}T_5(x) - \frac{1}{2}T_2(x) + \frac{1}{4}T_3(x)$$

$$\epsilon = f(x) - P_2(x) = \frac{1}{4} = T_3(x)$$

$$M = ||\epsilon|| = \max|\epsilon(x)| = \frac{1}{4}$$

$$\begin{cases} T_3(x) = \cos(3\theta) \\ \theta = \arccos(x) \end{cases}$$

Théorème Si la fonction erreur $\epsilon(x)$ atteint la veuleur extrême alternée M et -M en au moins (n+2) points, alors $P_n(x) = P_n^*(x)$.

$$\epsilon(x) = \frac{1}{4}T_3(x) = \frac{1}{4}\cos(3\theta)$$
 $\theta = \arccos(x)$

Les $x_k = \cos \frac{k\pi}{n}$ n = 3.

$$k = 0 \quad x_0 = 1 \qquad \varepsilon(x_0) = \frac{1}{4} = M$$

$$k = 1 \quad x_1 = \cos\frac{\pi}{3} \quad \varepsilon(x_1) = -\frac{1}{4}$$

$$k = 2 \quad x_2 = \cos\frac{2\pi}{3} \quad \varepsilon(x_2) = \frac{1}{4}$$

$$k = 3 \quad x_3 = \cos\pi \quad \varepsilon(x) = -\frac{1}{4}$$

$$\Rightarrow \begin{cases} x_0 = 1 \\ x_1 = \cos\frac{\pi}{3} = \frac{1}{2} \\ x_2 = \cos\frac{2\pi}{3} = -\frac{1}{2} \\ x_3 = \cos\pi = -1 \end{cases}$$

$$\Rightarrow P_2(x) = P_2^*(x)$$

Donc:

$$P_2^*(x) = -\frac{1}{2}T_0(x) + \frac{3}{4}T_1(x) - \frac{1}{2}T_2(x)$$

$$= -4 + \frac{3}{4}x - \frac{1}{4}(2x^3 - 1)$$

$$= -\frac{1}{2} + \frac{3}{4}X - x^2 + \frac{1}{2}$$

$$= \frac{3}{4}x = \frac{3}{4}x - x^2$$

Exercice 4 Soit f(x) une fonction continue donnée aux points x_i (i = 1, 2, 3, 4). f(0) = -5, f(1) = 17, f(2) = 115, f(4) = 143 En utilisant le polynôme d'interpolation de Lagrange, interpoler f(2).

$$f(0) = -5, f(1) = 17, f(2) = 115. f(4) = 143$$

$$P_n(x) = \sum_{i=1}^{n+1} f(x_i)$$

$$L_i(x) = \prod_{j=1}^{n+1} \left(\frac{x - x_i}{x_i - x_j}\right)$$

Interpolons f(2):

$$L_1(2) = \frac{(2-1)(2-3)(2-4)}{(-1)(-3)(-4)} = \frac{-2}{12} = \frac{-1}{6}$$

$$L_2(2) = \frac{(2-0)(2-3)(2-4)}{1(-2)(-3)} = \frac{4}{6} = \frac{2}{3}$$

$$L_3(2) = \frac{2(2-1)(2-4)}{3(3-1)(3-4)} = \frac{-4}{-6} = \frac{2}{3}$$

$$L_4(2) = \frac{2(2-1)(2-3)}{4(3)(1)} = \frac{-2}{12} = \frac{-1}{6}$$

La valeur interpolée est : $f(2) \simeq P_3(2) = -\frac{1}{6}(-5) + \frac{2}{3}(17) + \frac{2}{3}(115) - \frac{1}{6}(143) \simeq 65$

Exercice 5 Soit $f \in C^{n+1}[a,b]$, $P_n(x)$ son polynôme d'interpolation de f(x) aux points $x_i \in [a,b]$ (i=1...n+1)

$$\varepsilon(x) = f(x) - P_n(x)$$
 erreur d'interpolation

Montrer qu'il existe $\eta_x \in [a, b]$ tel que $\varepsilon(x) = \prod_{i=1}^{n+1} (x - x_i) \frac{f(\eta_x)}{(n+1)!}$

Rappel Théorème de Rolle

f continue, dérivable sur [a,b]. Si f(a)=f(b) alors $\exists C\in]a,b]$ tel que f'(c)=0.

$$\varepsilon(x_i) = 0 \operatorname{car} P_n(x_i) = f(x_i)$$

$$\varepsilon(x) = \prod_{i=1}^{n+1} (x - x_i) A_x$$
 $x.f(x_i)$ $x \neq x_i$ A_x quantité inconnue

Soit la fonction $\varphi(y) = f(y) - P_n(y) - \prod_{i=1}^{n+1} (y - x_i) A_x \quad \forall y \in [a, b]$

$$\begin{cases} \varphi(x_i) = 0 & \forall i = 1 \dots n + 1 \\ \varphi(x) = 0 & \end{cases}$$

 φ admet (n+2) racines. $\varphi \in C^{n+1}$ car $f \in C^{n+1}$.

On applique le théorème de Rolle φ' admet au moins (n+1) racines.

On applique le théorème de Rolle φ'' admet au moins n racines.

On applique le théorème de Rolle $\varphi^{(3)}$ admet au moins n-1 racines.

:

On applique le théorème de Rolle $\varphi^(p)$ admet au moins (n+1)-p racines. Si $p=n+1\Rightarrow \varphi^{(n+1)}$ admet au moins 1 racine $\eta_x \quad \varphi^{(n+1)}(\eta_x)=0$ or :

$$\varphi^{(n+1)}(y) = f^{(n+1)}(y) - 0 - (n+1)!A_x$$

$$\varphi^{(n+1)}(\eta_x) = 0 \Rightarrow f^{(n+1)}(\eta_x) - (n+1)!A_x = 0 \Rightarrow A_x = \frac{f^{(n+1)}(\eta_x)}{(n+1)!}$$

Donc:

$$\varepsilon(x) = \prod_{i=1}^{n+1} (x - x_i) \frac{f^{(n+1)(\eta_x)}}{(n+1)!}$$
$$f[x_1, \dots, x_{n+1}] = \frac{f[x_1, \dots, x_n] - f[x_2, \dots, x_{n+1}]}{x_1 - x_{n+1}}$$

1.6 Dérivation numérique

Lorsqu'une fonction f(x) dont on veut calculer les dérivées siccessives f'(x), f''(x), ... est données par les valeurs $f(x_i)$, on procède de la manière suivante :

- (i) $f(x) \simeq g(x)$ (polynôme d'interpolation).
- (ii) $f^{(k)}(x) \simeq g^{(k)} \simeq g^{(k)}(x)$

1.6.1 Dérivée d'un polynôme par division synthétique

$$f(x) \simeq P_n(x) = \sum_{j=0}^{n} a_j . x^j$$

Soit à calculer :

$$f^{(k)}(x=t)$$
 dérivée d'ordre k

$$f^{(k)} \simeq P_n^{(k)}(x) = \sum_{j=k}^n j(j-1)\dots(j-k+1)a_j.x^{j-k}$$

Il suffit alors de calculer $P_n^{(k)}(x=t)$.

$$P_n(x)|x-t$$
 (division par)x-t

$$P_n(x) = (x-t)Q_{n-1}(x) + R_n$$
 $Q_{n-1}(x) = b_{n-1}X^{n+1} + \dots + b + 0$

$$\begin{cases}
b_{n-1} = a_n \\
b_{j-1} = t \cdot b_j + a_j & j = n - 1, \dots, 1
\end{cases}$$

Exemple

$$P_4(x) = 2x^4 - 5x^3 + x^2 - 7x + 6 \qquad t = 2$$

On peut poursuivre le processus :

$$R_0 = a_n = 2 = Q_0$$

$$\left. \begin{array}{l} P_4(x) = (x-2).Q_3(x) - 12 \\ Q_3(x) = (x-2).Q_2(x) + 1 \\ Q_2(x) = (x-2).Q_1(x) + 19 \\ Q_1(x) = (x-2).Q_0(x) + 11 \end{array} \right\} P_4(x) = -12 + (x-2) + 19(x-2)^2 + 11(x-2) + 2(x-2)^4$$

Ainsi les R_k sont les coefficients du développement de $P_n(x)$ en puissance de (x-t) (t=2).

D'une manière générale :

$$P_n(x) = \sum_{l=0}^{n} R_e(x-t)^{n-l}$$

Em dérivant k fois :

$$P_n^{(k)}(x) = \sum_{l=0}^{n-k} (n-l) \dots (n-l-k+1) R_e(x-t)^{n-l-k}$$
$$x = t \Rightarrow P_n^{(k)}(t) = k! R_{n-k}$$
$$f^{(k)}(t) \simeq k! R_{n-k}$$

Exercice 6 f(x) continue, donnée aux points : f(-2) = 69, f(2) = 17, f(3) = 24, f(5) = -22

- 1. Construire le tableau des différences divisées.
- 2. En déduire le polynôme d'interpolation de Newton.
- 3. En utilisant l'algorithme de division synthétique, interpoler f(4) et donner les approximations des dérivées f'(4), f''(4), f'''(4).

Pour calculer les machins de ce tableau :

$$f[x_i; x_j] = \frac{f[x_i] - f[x_j]}{x_j - x_i} = \frac{f(x_i) - f(x_j)}{x_i - x_j}$$
$$f[-2, 2, 3] = \frac{f[2, 3] - f[-2, 2]}{5}$$

2. Le polynôme d'interpolation de Newton

$$P_3(x) = f[-2] + (x+2)f[-2, 2] + (x+2)(x-2)f[-2, 2, 3] + (x+2)(x-2)(x-3)f[-2, 2, 3, 5]$$

On remplace ensuite les coefficients :

$$P_3(x) = 69 - 13(x+2) + 4(x+2)(x-2) - 2(x+2)(x-2)(x-3)$$

On développe tout pour avoir le polynôme dans sa forme canonique (utile pour la question suivante) :

$$P_3(x) = -2x^3 + 10x^2 - 5x + 3$$

On peut vérifier que ce polynôme interpole bien les points donnés de f.

3. Algorithme de division synthétique Pour $Q_1,0:4$ (coeff) * -2 (valeur précédente sur la ligne) + 2 (valeur au dessus) = -6

$$P_3(x) = 15 - 21(x - 4) - 14(x - 4)^2 - 2(x - 4)^3$$

$$f(4) \simeq P_3(4) = 15$$

$$f^{(k)}(t) \simeq k!_{n-k}$$

$$f'(4) \simeq 1!R_2 = -21$$

$$f''(4) \simeq 2!R_1 = -28$$

$$f'''(4) \simeq 3!R_0 = -12$$

Exercice 7 Soit f(x) continue, donnée aux points f(-2) = 32, f(-1) = 26, f(0) = 30, f(1) = 28

- 1. Construire le tableau des différences divisées.
- 2. En déduire le polynôme d'interpolation de Newton.
- 3. En utilisant l'algorithme de division synthétique, interpoler f(2) et donner les approximations des dérivées f'(2), f''(2), f'''(2).

2. Le polynôme d'interpolation de Newton

$$P_3(x) = f[-2] + (x+2)f[-2, -1] + (x+2)(x+1)f[-2, -1, 0] + (x+2)(x+1)(x)f[-2, -1, 0]$$

On remplace ensuite les coefficients :

$$P_3(x) = -32 - 58(x+2) - 27(x+2)(x+1) - 8(x+2)(x+1)(x)$$

On développe tout pour avoir le polynôme dans sa forme canonique (utile pour la question suivante) :

$$P_3(x) = 8x^3 - 3x^2 - 7x + 30$$

On peut vérifier que ce polynôme interpole bien les points donnés de f.

$$P_3(x) = 68 + 77(x - 2) + 45(x - 2)^2 + 8(x - 2)^3$$

$$f(2) \simeq P_3(2) = 68$$

$$f^{(k)}(t) \simeq k!_{n-k}$$

$$f'(2) \simeq 1!R_2 = 77$$

$$f''(2) \simeq 2!R_1 = 90$$

$$f'''(2) \simeq 3!R_0 = 48$$

1.7 Intégration numérique

On se propose d'étudier quelques méthodes numériques permettant d'approcher $\int_a^b f(x)dx$. De telles méthodes s'imposent en particulier lorsque la primitive F(x) de f(x) n'est pas connue, ou dans le cas où f(x) n'est donnée que par points.

Par exemple pour : $\int_a^b e^{-x^2} dx \simeq \sum_{i=0}^n \omega_i f(x_i)$

1.7.1 Méthode générale

$$I = \int_a^b f(x)p(x)dx$$
 $p(x)$: fonction poids, > 0

L'idée est d'utiliser les valeurs de f aux points $x_i \in [a, b]$ $i = 0 \dots n$.

$$\int_{a}^{b} f(x)p(x)dx = \sum_{i=0}^{a} \omega_{i}.f(x_{i}) + E \quad E \text{ l'erreur}$$

Les coefficients ω_i sont déterminés de telle sorte que E soit nulle lorsque f(x) appartient à une certaine classe de fonctions (les polynômes de degré $\leq N$).

$$f(x) = \phi(x) + E(x)$$

$$\phi(x_i) = f(x_i) \quad i = 0 \dots n$$

$$\int_a^b f(x)p(x)dx = \int_a^b \phi(x)p(x)dx + \int_a^b E(x)p(x)dx$$

$$\phi(x) = \sum_{j=0}^n L_j(x)f(x_j) \quad \text{Lagrange}$$

$$\int_a^b f(x)p(x)dx = \int_a^b \sum_{j=0}^n L_j(x)f(x_j)p(x)dx + \int_a^b E(x)p(x)dx$$

$$= \sum_{j=0}^n \left(\int_a^b L_j(x)p(x)dx\right)f(x_j) + \int_a^b E(x)p(x)dx$$

$$\int_a^b f(x)p(x)dx = \sum_{j=0}^n \omega_j f(x_j) + E$$

$$\text{avec } \omega_j = \int_a^b L_j(x_j)p(x_j)dx \text{ et } E = \int_a^b E(x)p(x)dx$$

1.7.2 Quelques exemples de méthodes composées

$$[\alpha, \beta]$$
 $I = \int_{\alpha}^{\beta} f(x)dx$

La méthode consiste à décomposer $[\alpha, \beta]$ en k intervalles $[\alpha_i, \alpha_{i+1}]$ $i=0,1,\ldots k$ et ensuite à approcher chaque $\int_{\alpha_i}^{\alpha_{i+1}} f(x) dx$ en remplaçant f(x) par son polynôme d'interpolation.

Exemple 1 $t_i \in [\alpha_i, \alpha_{i+1}]$

$$f(x) \simeq P_0(x) = f(t_i) \quad \forall x \in [\alpha_i, \alpha_{i+1}]$$

$$\int_{\alpha_i}^{\alpha_{i+1}} f(x) dx \simeq (\alpha_{i+1} - \alpha_i) f(t_i)$$

$$\int_{\alpha}^{\beta} f(x) dx \simeq \sum_{i=0}^{k-1} (\alpha_{i+1} - \alpha_i) f(t_i) \quad \text{Somme de Riemann}$$

Exemple 2 Sur $[\alpha_i, \alpha_{i+1}]$ on interpole f(x) par $P_1(x)$ polynôme de degré 1 qui interpole f(x) aux points α_i et $\alpha i + 1$.

$$\int_{\alpha}^{\alpha_{i+1}} f(x)dx \simeq \int_{\alpha}^{\alpha_{i+1}} P_1(x)dx = \int_{\alpha}^{\alpha_{i+1}} \left[\left(\frac{x - \alpha_{i+1}}{\alpha_i - \alpha_{i+1}} \right) f(\alpha_i) + \frac{x - \alpha_{i+1}}{\alpha_i - \alpha_{i+1}} f(\alpha_{i+1}) \right]$$

$$\int_{\alpha}^{\alpha_{i+1}} f(x)dx \simeq \frac{f(\alpha_i)}{\alpha_i - \alpha_{i+1}} \left[\frac{(x - \alpha_{i+1})^2}{2} \right]_{\alpha_i}^{\alpha_{i+1}} + \frac{f(\alpha_{i+1})}{\alpha_{i+1} - \alpha_i}$$

$$\int_{\alpha}^{\alpha_{i+1}} f(x)dx \simeq \frac{(\alpha_{i+1}) - \alpha_i}{2} \left(f(\alpha_i) + f(\alpha_{i+1}) \right)$$

$$\int_{\alpha}^{\beta} f(x)dx = \sum_{i=0}^{k-1} \int_{\alpha_i}^{\alpha_{i+1}} f(x)dx \simeq \sum_{i=0}^{k-1} \frac{(\alpha_{i+1} - \alpha_i)}{2} \left(f(\alpha_i) + f(\alpha_{i+1}) \right)$$

$$\int_{\alpha}^{\beta} f(x)dx \simeq \sum_{i=0}^{k-1} \frac{\alpha_{i+1} - \alpha_i}{2} \left(f(\alpha_i) + f(\alpha_{i+1}) \right)$$

Définition Soit la méthode d'intrégration $\int_{\alpha}^{\beta} f(x)p(x)dx \simeq \sum_{i=0}^{k}$. Nous dirons que la méthode d'intrégration est d'ordre N si elle est exacte pout tout polynôme de degré 'N, c'est-à-dire : $E(f) = \int_{\alpha}^{\beta} f(x)p(x)dx - \sum_{i=0}^{k} \alpha_{i}f(x_{i}) = \sum_{i=0}^{k} \alpha_{i}f(x_{i})$ $\forall f$ un polynôme d'N.

Soit $U_+ = \max(u, 0)$. Pour t fixé, $K_N(t) = E(x \mapsto (x-t)_t^N)$ N: ordre de la méthode s'appelle le noyau de Péano de la méthode d'intégration. avec la convention $(x-t)_t^0 = 1$ $x \ge t$ = 0 x < t.

Théorème de Péano

On suppose que la méthode d'intégration d'intégration est d'ordre $N \geq 0$ et que $f \in \mathcal{C}^{N+1}[a,b]$ alors :

$$E(f) = \frac{1}{N!} \int_{a}^{b} K_{N}(t) f^{(N+1)}(t) dt$$

Conséquence

$$|E(f)| \le \frac{1}{N!} M_{N+1} \int_{a}^{b} K_N(t) f^{(N+1)}(t) dt$$

Corollaire Si de plus $K_N(t)$ garde un signe constant sur [a,b] alors $\exists \eta \in [a,b]$

$$E(f) = \frac{f^{(N+1)}(\eta)}{(N+1)!} E(x \mapsto x^{(N+1)})$$

Démonstration du corollaire

Rappel La deuxieme formule de la moyenne.

f(x), g(x) continue sur [a,b]. On suppose que g(x) garde un signe constant sur [a,b] alors $\exists \eta \in [a,b]$ tel que $\int_a^b f(x)g(x)dx = f(\eta)\int_a^b g(x)dx$

1^{re} formule

$$\exists c \in [a,b] / \int_{a}^{b} f(x)dx = (b-a)f(c)$$
$$E(f) = \frac{1}{N!} \int_{a}^{b} K_{N}(t)f(t)dt$$

D'après la deuxième formule de la moyenne :

$$\exists \eta \in [a, b]/E(f) = \frac{f^{(N+1)}(\eta)}{N!} \int_{a}^{b} K_{N}(t)dt \quad E(x \mapsto X^{N+1})$$

$$= \frac{(N+1)!}{N!} \int_{a}^{b} K_{N}(t)dt = \int_{a}^{b} K_{N}(t)dt = \frac{E(x \mapsto X^{N+1})}{N+1}$$

$$E(t) = \frac{f^{(N+1)}(\eta)}{N!} \int_{a}^{b} K_{N}(t)dt \quad \forall f \in \mathcal{C}^{N+1}$$

$$\Rightarrow E(t) = \frac{f^{(N+1)}(\eta)}{N!} \frac{E(x \mapsto X^{N+1})}{N+1} = \frac{f^{(N+1)}(\eta)}{(N+1)!} E(x \mapsto X^{N+1})$$

Exercice 8 Soit f(x) continue donnée aux points : f(0) = 1, f(2) = 5, f(3) = 10, f(4) = 15.

Interpoler f(1) par le polynôme d'interpolation de Lagrange.

$$P_3(x) = \sum_{i=0}^{3} L_i(x) f(x_i) = \sum_{i=0}^{3} \prod_{j\neq i}^{3} \frac{(x-x_j)}{(x_i-x_j)} f(x_i)$$
$$L_0(1) = \frac{(1-2)(1-3)(1-4)}{(-2)(-3)(-4)} = \frac{6}{14} = \frac{1}{4}$$

$$L_1(1) = \frac{(1-0)(1-3)(1-4)}{(2)(2-3)(2-4)} = \frac{6}{4} = \frac{3}{2}$$

$$L_2(1) = \frac{1(-1)(-3)}{3(1)(-1)} = -1$$

$$L_3(1) = \frac{(1)(-1)(-2)}{(4)(2)(1)} = \frac{1}{4}$$

Donc: $f(1) \simeq P_3(1) = \frac{1}{4}(1) + \frac{3}{2}(5) - 1 \times 10 + \frac{1}{4} \times 15 = \frac{3}{2}$

Exercice 9 On considère les méthode d'intégration :

$$\int_0^k f(x)dx \simeq h.f(\frac{h}{2}) \tag{1.1}$$

$$\int_{0}^{h} f(x)dx \simeq \frac{h.(f(i) + f(h))}{2}$$
 (1.2)

- 1. Déterminer l'ordre de chaque méthode.
- 2. Déterminer le noyau de Péano.
- 3. Étudier l'erreur d'intégration pour chaque méthode.

L'ordre de la méthode (1.1)

$$f(x) = 1 \qquad \int_0^h f(x)dx = \int_0^h dx = h$$
$$h.f(\frac{h}{2}) = h$$
$$\Rightarrow E(x \mapsto 1) = 0$$

$$f(x) = x \qquad \int_0^h f(x)dx = \int_0^h xdx = \left[\frac{x^2}{2}\right]_0^h = \frac{h^2}{2}$$
$$h(\frac{h}{2}) = \frac{h^2}{2}$$
$$\Rightarrow E(x \mapsto x) = 0$$

$$f(x) = x^2 \qquad \int_0^h x^2 dx = \left[\frac{x^3}{3}\right]_0^h = \frac{h^3}{3}$$
$$h.f(\frac{h}{12}) = h.\frac{h^2}{3} - \frac{h^3}{4} = \frac{h^3}{12} \neq 0$$

Donc, la première méthode est d'ordre 1 (exacte pour le polynôme d'ordre $\leq 1).$

L'ordre de la méthode (1.2)

$$f(x) = 1 \qquad \int_0^h 1 dx = h$$

$$h(\frac{f(0) + f(h)}{2}) = \frac{2h}{2} = h$$

$$\Rightarrow E(x \mapsto 1) = 0$$

$$f(x) = x \qquad \int_0^h x dx = \frac{h^2}{2}$$

$$h(\frac{f(0) + f(h)}{2}) = \frac{h^2}{2} = h$$

$$\Rightarrow E(x \mapsto x) = 0$$

$$f(x) = x^2 \qquad \int_0^h x^2 dx = \left[\frac{h^3}{3}\right]_0^h = \frac{h^3}{3}$$

$$h(\frac{f(0) + f(h)}{2})^2 = \frac{h^3}{2} = h$$

$$\Rightarrow E(x \mapsto x^2) = \frac{h^3}{3} - \frac{h^3}{2} = \frac{-h^3}{6} \neq 0$$

$$\Rightarrow N = 1$$

Noyau de Péano

$$K_1(t) = E(x \mapsto (x - t)_+)$$

$$\forall t \in [a, h] \quad K_1(t) = \int_0^h (x - t)_+ dx - h\left(\frac{h}{2} - t\right)_+$$

$$= \int_t^h (x - t) dx - h\left(\frac{h}{2} - t\right)_+$$

$$K_1(t) = \left[\frac{(x - t)^2}{2}\right] - h\left(\frac{h}{2} - t\right)_+$$

$$= \frac{(h - t)^2}{2} - h(\frac{h}{2} - t)_+$$

$$1^{\text{er}} cas : si \frac{h}{2} < t \le h$$

$$K_1(t) = \frac{(h - t)^2}{2}$$

 2^{e} cas : $0 \le t \le \frac{h}{2}$

$$K_1(t) = \frac{(h-t)^2}{2} - h\left(\frac{h}{2} - t\right)$$

$$K_1(t) = \frac{h^2 - 2ht + t^2}{2} - \frac{h^2}{2} + ht$$

$$K_1(t) = \frac{t^2}{2}$$

On trouve que $K_1(t) \leq 0 \forall t \in [a, h]$. D'après le corollaire de Péano :

$$\exists \eta \in [a, h]/E(f) = \frac{f''(\eta)}{2!} \frac{h^3}{12} = \frac{h}{24} f''(\eta)$$
$$|E(f)| \le c \frac{h^3}{24} \quad c = \max|f(x)|$$

Péano de la méthode (1.2)

$$K_1(t) = t (x \mapsto (x - t)_+)$$

$$= \int_0^h (x - t)_+ dx - \frac{h}{2} ((-f) + (h - t)_+)$$

$$K_1(t) = \int_t^h (x - t) dx - \frac{h}{2} (h - t) \quad \text{car } 0 \le t \le h$$

$$(-t)_+ = 0 \quad \text{car } 0 \le t \le h$$

$$K_1(t) = \left[\frac{(x-t)^2}{2}\right]_t^h - \frac{h}{2}(h-t)$$

$$= \frac{(h-t)^2}{2} - \frac{h}{2}(h-t) = \frac{h^2 - 2ht - t^2}{2} - \frac{h^2}{2} + \frac{ht}{2} = -ht + \frac{t^2}{2} + \frac{ht}{2} = -\frac{ht}{2} + \frac{t}{2} = \frac{t}{2}(t-h) \le 0 \quad \text{car } 0 \le t \le h$$

D'après le corollaire de Péano :

$$\exists \eta \in [a, h]/E(f) = \frac{f''(\eta)}{2!} E(x \mapsto x^2) = -\frac{h^3}{12} f(\eta)$$
$$|E(f)| \le c \frac{h^3}{12} \quad c = \max|f''(x)|$$

Exercice 10

$$\int_0^1 f(x)dx \simeq \frac{1}{4} \left(f(c) + 3f(\frac{2}{3}) \right)$$

- 1. Ordre
- 2. Noyau de Péano
- 3. Erreir d'intégration