Machine Learning: Caso de Uso

Como a Zillow Transforma Dados em Valor de Mercado

Fernando Gomes Cruz

Agenda

- Aprendizado de máquina
- Tipos Comuns de Aprendizado
- Aprendizado Supervisionado
- Caso de Uso: Zillow
- Solução: Neural Zestimate
- Exemplo
- Conclusões

O Que é Machine Learning?

É a ciência de ensinar computadores a aprender com dados para:

- Identificar padrões complexos.
- Fazer previsões precisas.
- Automatizar decisões.

Em vez de programar regras, nós "treinamos" um modelo.

Machine Learning

Uma Ideia Antiga, uma Revolução Recente

1950s: Conceitos nascem com Alan Turing e Arthur Samuel, que criou um jogo de damas que aprendia a jogar.

2010: A "tempestade perfeita" de Big Data e Poder Computacional (GPUs) torna o ML acessível e escalável.

Hoje: É a tecnologia por trás de carros autônomos, assistentes virtuais e modelos de negócio inteiros.

Tipos Comuns de Aprendizado

Aprendizado Supervisionado

Prever um resultado com base em exemplos passados (dados rotulados).

Aprendizado Não Supervisionado

Encontrar estruturas e grupos ocultos nos dados (ex: segmentação de clientes).

Aprendizado Semi-Supervisionado

Uma mistura dos dois, útil quando rotular dados é caro.

Aprendizado por Reforço

Aprender por tentativa e erro, com um sistema de recompensas (ex: treinar um robô ou um IA para jogos).

Aprendizado Supervisionado

Aprendendo com o Gabarito

O algoritmo aprende uma relação entre **Atributos (Features)** e um **Rótulo (Label)**.

- Atributos: As características de entrada (ex: área do imóvel, nº de quartos, localização).
- Rótulo: A resposta que queremos prever (ex: o preço final de venda).

Objetivo: Dado um novo conjunto de atributos, prever o rótulo com precisão.

Caso de Uso

- Quem: Gigante de tecnologia imobiliária dos EUA.
- Missão: Trazer transparência e acesso ao mercado imobiliário.
- **Desafio Central:** Como estimar o valor de mais de 100 milhões de imóveis de forma rápida, precisa e automática?

A Solução: Neural Zestimate

É um modelo de Deep Learning Supervisionado que responde à pergunta:

"Quanto vale esta casa?"

- Modelo: Rede Neural que processa uma quantidade massiva de dados.
- **Precisão:** Erro mediano de ~7.5% para casas fora do mercado. Uma melhoria de mais de 15% sobre modelos antigos.
- Impacto: É a ferramenta que atrai milhões de usuários e alimenta todo o ecossistema da Zillow.

Ingredientes do Modelo Supervisionado

O que a Zillow usa como **Atributos (Features)** para treinar seu modelo?

Dados do Imóvel: Área, nº de quartos/banheiros, ano de construção, etc.

Dados Públicos: Impostos, registros de propriedade.

Transações Históricas: Preços de venda de casas similares na mesma região.

Fatores Geográficos: Dados de localização em múltiplas escalas (bairro, cidade, estado).

Fatores Temporais: Sazonalidade do mercado, tendências de valorização ao longo do tempo.

O Rótulo (Label) é sempre o preço de venda real de uma transação concluída.

Exemplo

Aplicação de modelos de aprendizado supervisionado no dataset California Housing Dataset do scikit-learn.

Dados relativos ao censo de 1990.

https://github.com/neocrz/housing-price-predictor

Previsor de Preços de Imóveis e Comparador de Modelos

	ue m	Jueios	
Selecione o Modelo:			
Gradient Boosting			~
Renda Média (x\$10k USD)		Idade do Imóvel (anos)	
8,5	\$	15	\$
Média de Cômodos		Média de Dormitórios	
7	\$	1,1	\$
População (do setor)		Ocupação Média (moradores)	
950	\$	2,6	\$
_atitude		Longitude	
34,05	\$	-118,4	\$
Pr	ever Pre	ço Provável	
	\$469,	086.05	

Previsor de Preços de Imóveis e Comparador

de Modelos Selecione o Modelo: Random Forest Renda Média (x\$10k USD) Idade do Imóvel (anos) 4,2 25 Média de Cômodos Média de Dormitórios 5,5 1,05 População (do setor) Ocupação Média (moradores) 1400 3,1 Longitude Latitude 38,5 -121,5 Prever Preço Provável \$150,643.00

Conclusão

O Aprendizado Supervisionado é uma das ferramentas mais poderosas para transformar dados brutos em decisões estratégicas e valor de negócio tangível.

O caso da Zillow mostra que, com o problema certo e os dados corretos, um modelo de ML pode se tornar o coração de uma empresa multibilionária.