CSE 483: Mobile Robotics

Lecture by: Prof. K. Madhava Krishna

Lecture # 04

Scribe: J. Krishna Murthy

Date: 19th August, 2016 (Friday)

Linearization of the Probabilistic Observation Model

In the previous lecture, we linearized the robot's (probabilistic) motion model using Taylor Expansion. We observed that the linearization resulted in an *estimate* of the robot's next state. We now refine this estimate by incorporating the measurement, after the control has been applied.

1 Linearizing the Measurement

A mobile robot typically uses sensors to measure its state at a given time instant. Let us denote this measurement by $\mathbf{z_t}$. Since it may not be feasible to measure all the variables that represent a robot's state, the dimensionality of $\mathbf{z_t}$ need not be equal to that of $\mathbf{X_t}$. Here, we assume that $\mathbf{z_t}$ is made up of two components - r_t , the distance to a known landmark at time t, and ψ_t , the angle made by the robot (the mean position of the robot) with the known landmark. We also refer to ψ_t as the bearing and to r_t as the range.

$$\mathbf{z_t} = \begin{bmatrix} r_t \\ \psi_t \end{bmatrix} \tag{1}$$

In the above discussion, $\mathbf{z_t}$ is the actual measurement reported by, say, a laser rangefinder. However, based on $\mathbf{X_{t+1}}$, the estimate of the robot's state at time t+1 that we obtained using a linearization of the motion model, we have an estimate of the measurement \hat{z}_{t+1} .

$$\hat{\mathbf{z}}_{t+1} = \begin{bmatrix} \hat{r}_{t+1} \\ \hat{\psi}_{t+1} \end{bmatrix} \tag{2}$$

Also, $\mathbf{z_{t+1}}$ is the actual measurement at time t+1 as measured by the laser rangefinder.

$$\mathbf{z_{t+1}} = \begin{bmatrix} r_{t+1} \\ \psi_{t+1} \end{bmatrix} \tag{3}$$

We further assume that the coordinates of the known landmark in the global frame are (m_x, m_y) . Then, $\hat{\mathbf{z}}_{t+1}$ is given by the following equation.

$$\hat{\mathbf{z}}_{t+1} = \begin{bmatrix} \sqrt{(m_x - \hat{\mu}_{x,t+1})^2 + (m_y - \hat{\mu}_{y,t+1})^2} \\ tan^{-1} \left(\frac{m_y - \hat{\mu}_{y,t+1}}{m_x - \hat{\mu}_{x,t+1}}\right) - \hat{\mu}_{\theta,t+1} \end{bmatrix}$$
(4)

Let $\mathbf{Q_{t+1}}$ be the covariance matrix associated with the measurement $\mathbf{z_{t+1}}$.

$$\mathbf{Q_{t+1}} = \begin{bmatrix} \sigma_{r^2} & 0\\ 0 & \sigma_{\psi^2} \end{bmatrix} \tag{5}$$

We can see from the above equations that the measurement model itself is not a linear one. Hence, we linearize it using Taylor expansion. Let $\mathbf{H_{t+1}}$ be the Jacobian of the measurement model with respect to the state estimate (resulting from the motion model) at time t+1.

$$\mathbf{H_{t+1}} = \frac{\partial \mathbf{\hat{z}_{t+1}}}{\partial \hat{\mu}_{t+1}} = \begin{bmatrix} \frac{\partial \hat{r}_{t+1}}{\partial \hat{\mu}_{x,t+1}} & \frac{\partial \hat{r}_{t+1}}{\partial \hat{\mu}_{y,t+1}} & \frac{\partial \hat{r}_{t+1}}{\partial \hat{\mu}_{\theta,t+1}} \\ \frac{\partial \hat{\psi}_{t+1}}{\partial \hat{\mu}_{x,t+1}} & \frac{\partial \hat{\psi}_{t+1}}{\partial \hat{\mu}_{y,t+1}} & \frac{\partial \hat{\psi}_{t+1}}{\partial \hat{\mu}_{\theta,t+1}} \end{bmatrix}$$
(6)

The following equations implement the Extended Kalman Filter, and are stated here only for quick reference. They will be dealt with in detail, in the next few lectures.

$$S_{t+1} = H_{t+1} \hat{\Sigma}_{t+1} H_{t+1}^{T} + Q_{t+1}$$
 (7)

$$\mathbf{K} = \hat{\mathbf{\Sigma}}_{t+1} \mathbf{H}_{t+1}^{\mathrm{T}} \mathbf{S}^{-1} \tag{8}$$

$$\mu_{t+1} = \hat{\mu}_{t+1} + K(z_{t+1} - \hat{z}_{t+1})$$
(9)

$$\Sigma_{t+1} = \hat{\Sigma}_{t+1} (I - KH_{t+1})$$
(10)