Respostas da lista: Recursividade

Aluno: Nathan Martins

- 1. Explique o comportamento das seguintes funções e mostre, através de teste de mesa, os seus resultados.
 - a. Função f4

- i. Explicação: essa função imprime o número informado e uma contagem de forma decrescente a partir dele, depois imprime "FIM", e finalmente imprime números crescentes até chegar ao número informado.
- ii. Teste de Mesa para entrada: 2

#	instrução	n	stdout
14	f4(2)	2	
4	if (n == 0){	2	
7	printf("%d ", n);	2	2
8	f4(n-1);	2	
4	if (n == 0){	1	
7	printf("%d ", n);	1	1
8	f4(n-1);	1	
4	if (n == 0){	0	
5	printf(" FIM ");	0	FIM
11	}	0	
9	printf("%d ", n);	1	1
9	printf("%d ", n);	2	2
15	return 0;		

iii. Teste de Mesa para entrada: 3

#	instrução	n	stdout
14	f4(3);	3	
4	if (n == 0)	3	
7	printf("%d ", n);	3	3
8	f4(n-1);	3	\$3
4	if (n == 0)	2	
7	printf("%d ", n);	2	2
8	f4(n-1);	2	
4	if (n == 0)	1	
7	printf("%d ", n);	1	1
8	f4(n-1);	1	
4	if (n == 0)	0	
5	printf(" FIM ");	0	FIM
11	return	0	
9	printf("%d ", n);	1	1
9	printf("%d ", n);	2	2
9	printf("%d ", n);	3	3
15	return 0	0	

b. Função f2

i. Explicação: Imprime o número informado duas vezes de forma decrescente até zero, ao chegar no zero imprime "ZERO"

ii. Teste de Mesa para entrada: 3

#	instrução	n	stdout
14	f2(3);	3	
4	if (n == 0)	3	
7	printf("%d ", n);	3	3
8	printf("%d ", n);	3	3
9	f2(n-1);	3	
4	if (n == 0)	2	
7	printf("%d ", n);	2	2
8	printf("%d ", n);	2	2
9	f2(n-1);	2	
4	if (n == 0)	1	
7	printf("%d ", n);	1	1
8	printf("%d ", n);	1	1
9	f2(n-1);	1	
4	if (n == 0)	0	12.
5	printf("Zero");	0	Zero
11	return;	0	
15	returm 0;		

iii. Teste de Mesa para entrada: 5

#	instrução	n	stdout
14	f2(5);	5	
4	if (n == 0)	5	
7	printf("%d ", n);	5	5
8	printf("%d ", n);	5	5
9	f2(n-1);	5	
4	if (n == 0)	4	
7	printf("%d ", n);	4	4
8	printf("%d ", n);	4	4
9	f2(n-1);	4	
4	if (n == 0)	3	
7	printf("%d ", n);	3	3
8	printf("%d ", n);	3	3
9	f2(n-1);	3	
4	if (n == 0)	2	
7	printf("%d ", n);	2	2
8	printf("%d ", n);	2	2
9	f2(n-1);	2	
4	if (n == 0)	1	
7	printf("%d ", n);	1	1
8	printf("%d ", n);	1	1
9	f2(n-1);	1	
4	if (n == 0)	0	
5	printf("Zero");	0	Zero
11	return;	0	
15	return 0;		

- 2. Explique o comportamento das sequências abaixo, estabeleça a relação de recorrência e implemente uma função recursiva na linguagem C que recebe a posição do elemento na série e retorne o seu valor.
 - a. $S = \{2, 4, 8, 16, 32, \dots \}$
 - i. Sequência que multiplica o valor anterior por 2, ou seja leva o valor anterior ao quadrado.
 - b. $S = \{3, 6, 9, 12, 15, 18, \dots \}$
 - i. Sequência que cresce em intervalos de três.
 - c. $S = \{1, 4, 8, 16, 32, ...\}$

i. Não entendi a sequencia