

Aula 11 – Morfologia matemática I

Prof. João Fernando Mari

joaofmari.github.io

joaof.mari@ufv.br

Roteiro

- Morfologia matemática
- Operações básicas com conjuntos
- Erosão
- Dilatação
- Dualidade
- Morfologia matemática em níveis de cinza

MORFOLOGIA MATEMÁTICA

Morfologia matemática

- A linguagem da morfologia matemática é a teoria dos conjuntos
 - Os objetos em uma imagem são representados como conjuntos
 - O conjunto de todos os pixels brancos (ou pretos, dependendo da convenção) em uma imagem binária é uma representação completa da imagem
- Em imagens binárias esses conjuntos estão em Z²
 - Cada elemento do conjunto é um vetor bidimensional
 - Cada dimensão corresponde às coordenadas (x, y) de um pixel branco da imagem
- As imagens em níveis de cinza podem ser representadas como conjuntos em Z³
 - Dois componentes de cada elemento referem-se às coordenadas do pixel
 - O terceiro corresponde ao seu valor discreto de intensidade

Representação de imagem binária como conjuntos

$$C_{0} = \{ (1, 1), (1, 2), (1, 3), (2, 2), (2, 3) \}$$

$$C_{1} = \{ (1, 5), (1, 6), (1, 7), (2, 7), (3, 6), (3, 7) \}$$

$$C_{2} = \{ (5, 5) \}$$

$$C_{3} = \{ (5, 1), (5, 2), (6, 1), (6, 2) \}$$

$$C_{I} = \bigcup_{i=0}^{N-1} C_{i}, \quad para \ N \ objetos$$

Imagem de intensidade como conjuntos

$$C_0 = \{ (1, 1, 1), (1, 2, 2), (1, 3, 1), (2, 2, 2), (2, 3, 3) \}$$
 $C_1 = \{ (1, 5, 5), (1, 6, 7), (1, 7, 5), (2, 7, 6), (3, 6, 4), (3, 7, 7) \}$
 $C_2 = \{ (5, 5, 3) \}$
 $C_3 = \{ (5, 1, 1), (5, 2, 2), (6, 1, 1), (6, 2, 3) \}$

$$C_I = \bigcup_{i=0}^{N-1} C_i$$
, para N objetos

OPERAÇÕES BÁSICAS COM CONJUNTOS

Operações básicas com conjuntos

- Seja A um conjunto de pares ordenados de números reais
 - Se $a=(a_1, a_2)$ for um elemento de A, temos:
 - $a \in A$ (a é elemento de A)
 - Se a não for um elemento de A:
 - $a \notin A$ (a não é elemento de A)
 - Se um conjunto não contém elementos:
 - Conjunto vazio Ø
- Um conjunto é especificado pelo conteúdo de duas chaves
 - Ex.: $C = \{w | w = -d, d \in D\}$
 - C é o conjunto dos elementos, w, tal que w é formado multiplicando cada um dos elementos do conjunto D por -1
- Uma forma de utilizar conjuntos em processamento de imagens é:
 - Considerar os elementos do conjunto como as coordenadas dos pixels (pares ordenados de números inteiros)
 - Cada conjunto representa regiões (objetos) na imagem

Operações básicas com conjuntos

- Se cada elemento de um conjunto A também é elemento de um conjunto B, então...
 - A é subconjunto de B
 - $-A\subseteq B$

- A união dos conjuntos A e B é:
 - O conjunto dos elementos que pertencem ou ao conjunto
 A, ou ao B ou a ambos
 - $-C = A \cup B$

- A intersecção de dois conjuntos A e B é:
 - O conjunto de elementos que pertencem a ambos os conjuntos
 - $-D = A \cap B$

Operações básicas com conjuntos

- A reflexão de um conjunto B, \hat{B}, \acute{e} :
 - $\hat{B} = \{w | w = -b, para \ b \in B\}$
 - Se B é o conjunto de pixels que representa um objeto,
 - \widehat{B} é conjunto de pixels em B cujas coordenadas (x, y) foram substituídas pro (-x, -y).
- A translação de um conjunto B no ponto (z₁, z₂), (B)_z, é:
 - $(B)_z = \{c | c = b + z, para \ b \in B\}$
 - Se B é o conjunto de pixels que representa um objeto,
 - $(B)_z$ é o conjunto de pixels em B cujas coordenadas (x, y) foram substituídas por $(x+z_1, y+z_2)$

Elementos estruturantes

- Elemento estruturante (EE)
 - Conjuntos pequenos ou sub-imagens usados para examinar uma imagem buscando propriedades de interesse.

0	1	0
1	1	1
0	1	0

1	1	-
1	1	-
1	1	-
		-

1	
1	
1	
1	
1	

			1			
		1	1	1		
	1	1	1	1	1	
1	1	1	1	1	1	1
	1	1	1	1	1	
		1	1	1		
			1			

1	1	1
0	0	1
0	1	0

0	1	0
1	1	1
0	1	0*

- O * indica o centro do elemento estruturante.
- Quando omitido, o centro do EE corresponde ao centro da matriz

EROSÃO

- **Erosão** e **dilatação** são operações fundamentais da morfologia matemática.
 - Muitos dos algoritmos morfológicos são derivados dessas duas operações.
- A erosão de um conjunto A por um EE B é:
 - $A \ominus B = \{z | (B)_z \subseteq A\}$
 - A erosão de A por B é o conjunto de todos z de forma que B transladado por z está contido em A.

- Uma definição alternativa para o mesmo caso:
 - Dizer que B esta contido em A equivale a dizer que B não tem elementos comuns com o fundo.
 - $A \ominus B = \{z | (B)_z \cap A^c = \emptyset\}$

	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	1	1	1	0	0
1	0	0	1	1	1	1	1	1	0	0
	0	0	1	1	1	1	1	1	0	0
1	0	0	1	1	1	1	1	1	0	0
	0	0	1	1	1	1	1	1	0	0
	0	0	1	1	1	1	1	1	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0

• $A \ominus B = \{z | (B)_z \subseteq A\}$

1 1 1 1 1 1 1 1 1
1 1 1
4 4 4
_

В

0	0	0	1	1	1	1	0	
0	0	0	1	1	1	1	0	
0	0	0	1	1	1	1	0	
0	0	0	1	1	1	1	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	1	2	3	4	5	6	7				
0	0	0	0	0	0	0	0	0			1	
1	0	1	1	1	1	1	1	0			1	
2	0	1	1	1	1	1	1	0				
3	0	1	1	1	1	1	1	0			1	
4	0	1	1	1	1	1	1	0			1	
5	0	1	1	1	1	1	1	0				
6	0	1	1	1	1	1	1	0			1	
7	0	0	0	0	0	0	0	0				
\	/			A	4						В	

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

	0	1	2	3	4	5	6	7					
0	0	0	0	0	0	0	0	0				1	
1	0	1	1	1	1	1	1	0				1	
2	0	1	1	1	1	1	1	0					
3	0	1	1	1	1	1	1	0				1	
4	0	1	1	1	1	1	1	0				1	
5	0	1	1	1	1	1	1	0					
6	0	1	1	1	1	1	1	0				1	
7	0	0	0	0	0	0	0	0					
\	A										В		

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

DILATAÇÃO

Dilatação

• A dilatação de um conjunto A por um EE B é:

$$- A \oplus B = \{ z | (\hat{B})_z \cap A \neq \emptyset \}$$

- Primeiramente, realiza-se a reflexão de B em torno de sua origem.
 - A dilatação de A por B é o conjunto de todos os deslocamentos z, de forma que B̂
 (reflexão de B) e A se sobreponham em pelo menos um elemento.
- Uma definição alternativa para o mesmo caso:

$$- A \oplus B = \{z | [(\hat{B})_z \cap A] \subseteq A\}$$

 $\bullet \quad A \oplus B = \{z | (\widehat{B})_z \cap A \neq \emptyset\}$

1 1 1
1 1 1

В

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

• $A \oplus B = \{z | (\widehat{B})_z \cap A \neq \emptyset\}$

1	1	1
1	1	1
1	1	1

В

0	0	0	0		0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	1	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	0	0
0	0		1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

 $\bullet \quad A \oplus B = \{z | (\widehat{B})_z \cap A \neq \emptyset\}$

1	1	1
1	1	1
1	1	1

В

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	1	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	0	0
0	0	1	1	1	1	1		0	
0	0	1	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

• $A \oplus B = \{z | (\widehat{B})_z \cap A \neq \emptyset\}$

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

• $A \oplus B = \{z | (\widehat{B})_z \cap A \neq \emptyset\}$

	0	1	2	3	4	5	6	7		
0	0	0	0	0	0	0	0	0	1	
1	0	0	0	0	0	0	0	0	1	
2	0	0	1	1	1	1	0	0		
3	0	0	1	1	1	1	0	0	1	
4	0	0	1	1	1	1	0	0	1	
5	0	0	1	1	1	1	0	0		
6	0	0	0	0	0	0	0	0	1	
7	0	0	0	0	0	0	0	0		
\	/			A	4		В			

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

• $A \oplus B = \{z | (\widehat{B})_z \cap A \neq \emptyset\}$

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

DUALIDADE

Dualidade

- A dilatação e a erosão são operações duais:
 - $(A \ominus B) = A^c \oplus \widehat{B}$
 - $(A \oplus B) = A^c \ominus \widehat{B}$
 - A **erosão** de A por B é o complemento da dilatação de Ac por \widehat{B}
 - $-\;$ A **dilatação** de A por B é o complemento da erosão de Ac por \widehat{B}
 - Quando o EE é simétrico pode-se obter a dilatação por meio da erosão do fundo da imagem.
 - Assim como, obter a erosão por meio da dilatação do fundo da imagem

MORFOLOGIA MATEMÁTICA EM NÍVEIS DE CINZA

Morfologia matemática em níveis de cinza

- Morfologia matemática em níveis de cinza usando decomposição por limiarização:
 - 1. Decompor a imagem de intensidade f(x, y) por limiarização em todos os possíveis níveis de cinza.
 - Cada limiarização irá gerar uma imagem binária
 - 2. Aplicar a operação morfológica sobre cada imagem binária
 - 3. Reconstruir a imagem de saída g(x, y) "empilhando" as imagens binárias processadas.

Morfologia matemática em níveis de cinza

Bibliografia

- MARQUES FILHO, O.; VIEIRA NETO, H. Processamento digital de imagens. Brasport, 1999.
 - Disponível para download no site do autor (Exclusivo para uso pessoal)
 - http://dainf.ct.utfpr.edu.br/~hvieir/pub.html
- GONZALEZ, R.C.; WOODS, R.E.; **Processamento Digital de Imagens.** 3ª edição. Editora Pearson, 2009.
- J. E. R. Queiroz, H. M. Gomes. Introdução ao Processamento Digital de Imagens. RITA. v. 13, 2006.
 - http://www.dsc.ufcg.edu.br/~hmg/disciplinas/graduacao/vc-2016.2/Rita-Tutorial-PDI.pdf

Bibliografia

- Aldo von Wangenheim. Morfologia Matemática
 - http://www.inf.ufsc.br/~visao/morfologia.pdf
- James Facon. A Morfologia Matemática e suas Aplicações em Processamento de Imagens.
 Minicurso WVC 2011
 - http://www.ppgia.pucpr.br/~facon/Books/2011WVCMinicurso2Morfo.pdf

FIM