2.6.

E' is the set of limit points of E.

Proposition: E' is dosed.

Pf: The rase where $E' = \emptyset$ is trivial. Assume $-E' \neq \phi$.

Let L be the set of limit points of E'.

 $\forall x \in L$, $\exists y \in E'$ s.t. $(d(x,y) \in \frac{\varepsilon}{2} \cdot \forall \varepsilon > 0)$

Since $y \in \underline{F}'$, $\exists x \in \underline{F}$ st. $(d(y, z) \in \frac{\varepsilon}{2}, \forall \varepsilon > 0)$ and $x \neq x$

By triangle inequality, $d(x,z) \leq d(x,y) + d(y,z)$

 $\mathcal{A}(\chi,\mathcal{Z}) \leq \frac{\xi}{2} + \frac{\xi}{2} = \xi \quad \forall \; \varepsilon > 0$

 $\Rightarrow \chi_{\epsilon} E'$

Since this is true $\forall x \in L$, we have $L \subseteq E' \Rightarrow E'$ is closed. \square .

Proposition 2: E and E have the same limit points

Denote F as the set of limit points of . E

Since E=EUE', we know that at least f = K. We down E'EF.

It suffices to show that every limit point of $E=E\cup E'$ is contained in E'

¥ x ∈ F, I y ∈ E, sit 0 < d(x,y) ∠ ε. If y ∈ E', then by the same arguments

as those in the pf of the previous proposition, we get $X \in E'$. If $y \in E \setminus E'$

then we immediately have $x \in E'$

 \Rightarrow F = E' \Box

Proposition 3: E and E' does not necessarily have the same limit points. $E = \{\frac{1}{n} : n \in \mathbb{N} \} \text{ has limit point } \{0\} \text{. Limit points of } \{0\} \text{ is } \emptyset \text{.}$

(a)
$$B_n = \bigcup_{i=1}^n A_i$$
. Proposition: $B_n = \bigcup_{i=1}^n \overline{A_i}$

Pf; We induct on MEN. The case N=1 is trival.

Base case: n=2. Obviously $\overline{A}_1 \subseteq \overline{A_1 \cup A_2}$, $\overline{A}_2 \subseteq \overline{A_1 \cup A_2}$

For the other direction of inclusion, it suffices to show that

If $x \notin \overline{A_1 \cup A_2}$, then $x \notin \overline{A_1 \cup A_2}$. $x \notin \overline{A_1 \cup A_2} => \exists r > 0 \text{ s.t. } B(x) \cap (A_1 \cup A_2) = \emptyset$

 \Rightarrow $\exists r > 0$ s.t. $B_{r>0}(x) \cap A_1 = \emptyset$ and $B_{cx} \cap A_2 = \emptyset$.

 $\Rightarrow \chi \notin \overline{A_1} \text{ and } \chi \notin \overline{A_2} \Rightarrow \chi \notin \overline{A_1} \cup \overline{A_2} \Rightarrow \overline{A_1} \cup \overline{A_2} \subseteq \overline{A_1} \cup \overline{A_2}$

Hence $\overline{B}_2 = \bigcup_{i=1}^2 \overline{A}_i$ is true. The rest follows by induction.

$$\Rightarrow \ \widetilde{\beta}_n = \bigcup_{i=1}^n \overline{A_i}$$

(b) $B_n = \bigcup_{i=1}^{\infty} A_i$. Proposition, $\overline{B}_n \supset \bigcup_{i=1}^{\infty} \overline{A_i}$.

It is still true that $\bigcup_{i=1}^{\infty} A_i \supset \bigcup_{i=1}^{\infty} \overline{A_i}$. Pf: $\forall x \in \bigcup_{i=1}^{\infty} \overline{A_i}$, $\exists A_j \ni x$.

Since $\overline{A_i} \subset \bigcup_{i=1}^{\infty} \overline{A_i}$, we get $\chi \in \bigcup_{i=1}^{\infty} \overline{A_i}$, hence the inclusion

But the reverse inclusion may not be true. Consider $A_i = \{\frac{1}{i}\}$

 $\overline{A_i} = A_i = \{\frac{1}{i}\} \qquad \overline{B_n} = \{\frac{1}{n}, n \in \mathbb{N}\} = 0 \cup \{\frac{1}{n}, n \in \mathbb{N}\} = 0 \cup (\bigcup_{i=1}^{\infty} \overline{A_i})$

but $0 \notin \bigcup_{i=1}^{\infty} \overline{A_i} = > \overline{B_n} \notin \bigcup_{i=1}^{\infty} \overline{A_i}$

2.9

(a) Proposition: E is open.

Pb: By definition, $\forall x \in E^* \exists B(x) \subset E$.

Since B(x) is open, I y \(B(x) \) such that IB(y) \(B(x) \)

$$\Rightarrow$$
 Byc E \Rightarrow YEE \circ YeB(x) \Rightarrow B(x) c E \circ

Hence E is open.

(b) Proposition: E is open if and only if E = E

 \mathbb{P}_{\cdot} : (\Rightarrow)

The inclusion E°CE is trivial.

Eisopen, so YXEE] B(X) CE. > X CE° >> ECE°

Hence E°= E

 (\Leftarrow)

In (a) we have shown that E° is open. E= E° => E is open

2.12.

Proposition: $K = \{0\} \cup \{\frac{1}{n}, n \in \mathbb{N}\}$ is compact.

Pf. For any open cover $\{O_{\lambda}: \lambda \in A\}$, $\exists j \in A \text{ s.t. } 0 \in O_{j}$. $\exists r > 0 \text{ s.t. } B_{r}(0) \subset O_{j}$. By and invede an property $\Rightarrow \exists m \in \mathbb{N}$. Such that m < r, so O_{j} covers at least $\{o\} \cup \{m, n \neq m\}$. Rest of the elements $\{m, n = 1, 2, ..., m - 1\} = S$ is a finite set, so $\forall i \in S$, pick an O_{i} such that $i \in O_{i}$, hence the collection $\{O_{i}, i \in S\}$ is a finite cover for S. $\Rightarrow O_{j} \cup \{O_{i}, i \in S\}$ is a finite subcover for K.

Os'
0 \alpha \quad \quad

2.19.

(a). Proposition:

A, B are disjoint closed sets in metric space $X \implies A$ and B are departed.

$$A = \overline{A}$$
. $A \cup B = \emptyset \Rightarrow \overline{A} \cup B = \emptyset$

$$B = \overline{B}$$
 $A \cup B = \phi \Rightarrow A \cup B = \phi$

Herre A and B on seperated.

2.22 Prop. R' contains a countable subset dense in R' i.e. R' is seperable. We claim the set of points with rational coordinates $Q = \{(a_1,...,a_k): a_i \in Q \ \forall i = 1,...,k \}$ is countable.

homina: cartesian product of finitely many countable sets is countable.

Pf: We first show N×N is countable.

By a diagonal emmeration:
$$(2i+j)(i+j+1) + j$$

which is a bijection between N×N and N.

3 9

For any two countable sets, there exist bijections $f\colon A\to \mathcal{N}$, $g\colon B\to \mathcal{N}$, hence $h: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{A} \times \mathbb{B}$ defined by $h: (m,n) \longmapsto (fun), g(n))$ is disection. So AXB is countable. It follows by induction that AIX...X An is countable if each of A.,..., Ar is countable

Q is countable, so by our lemma Q is countable.

We claim that Q' is dense in R'. We know Q is dense in R For any $x = \{a_1, ..., a_k\} \in \mathbb{R}^k$, there exists $y = \{q_1, ..., q_k\} \in \mathbb{Q}^k$ such that $|t_i - a_i| < \frac{r}{k} \forall r > 0$, $\forall i = 1, ..., k$. So we have:

$$|x-y| = \left(\sum_{i=1}^{k} |q_{i-a_i}|\right)^{\frac{1}{2}} < (r^2)^{\frac{1}{2}} = r \quad \forall r > 0$$

 $\Rightarrow \mathbb{Q}^k$ is deuge in \mathbb{R}^k

Proposition: Every open set in IR is the union of an at most countable collection of disjoint segments.

Pf: Let O be any open set in R. We first show that O is the union of a collection of disjoint segments.

 $x \in O$. Let $a_x = \inf \{ a \in \mathbb{R} : (a,x) \in O \}$, $b_x = \sup \{ b \in \mathbb{R} : (x,b) \in O \}$ If $\{ a \in \mathbb{R} : (a,x) \in O \}$ is unbounded below, than $a_x = -\infty$. Similarly for $b_x = \infty$.

We claim that $I_x = (a_x, b_x)$ is the maximal segment containing x in a sense that only segment I contains x is a subset of I_x .

It should be noted that $ax \notin O$ because otherwise there exists a smaller element in O that is also in $\{a \in \mathbb{R} : (a,x) \in O\}$, controdicting ax being infimum. Similarly, $bx \notin O$

For $x,y\in O$, $I_{x}\cap I_{y}\neq \emptyset \Rightarrow I_{x}\cup I_{y}$ is an open interval containing x $\Rightarrow I_{x}\cup I_{y}\subset I_{x} \Rightarrow I_{x}\subseteq I_{y}$. Similarly it can be shown that $I_{y}\subseteq I_{x}$ Hence $I_{x}\cap I_{y}\neq \emptyset \Rightarrow I_{x}=I_{y}$.

Consider the set $\{I_x:x\in O\}$. Remains shape adapticates, we arrive at a collection of disjoint segments $\{F_\alpha\}$. It is obvious that $UF_\alpha \ge O$. To see that $UF_\alpha \subseteq O$, simply notice that any $F_\alpha \in \{F_\alpha\}$ is an open interval and the definition of that open interval implies $F_\alpha \in O$. We wonchase that $O = UF_\alpha$.

We now show {Fa} is at most countable. Suppose {Fa} is an uncountable collection of disjoint segments.

Any segment is just an open interval. (a,b) where $a \neq b$. Since $a,b \in \mathbb{R}$ and \mathbb{Q} is dense in \mathbb{R} , $\exists \ q \in \mathbb{Q}$ set. a < q < b. If (a,b) and (c,d) are disjoint, then $q \in (a,b) \Rightarrow q \notin (c,d)$, hence any F_{α} can be identified uniquely with some rational number q_{α} .

 \Rightarrow { $\{q_{\alpha}\}\ is\ uncountable\ .$ But { $\{q_{\alpha}\}\subset \mathbb{Q}\ ,\ so\ \mathbb{Q}\ is\ un\ countable\ .$ Contradiction