AD-A112 943

ERTEC WESTERN INC LONG BEACH CA
NX SITING INVESTIGATION. WATER RESOURCES PROGRAM. TECHNICAL SUM-ETC(U)
NOV 81

UNCLASSIFIED

E-TR-52-IIB AD-A112 943 $\lim_{\stackrel{A_1}{\leftarrow},\stackrel{A_2}{\leftarrow},\stackrel{A_3}{\leftarrow}}$

A 294

P	HOTOGRAPH THIS SHEET
DTIC ACCESSION NUMBER	E-TR-52-ILB DOCUMENT IDENTIFICATION
	tory distribution STATEMENT
ACCESSION FOR NTIS GRA&I DTIC TAB UNANNOUNCED JUSTIFICATION	VEE U A 1885
BY DISTRIBUTION / AVAILABILITY CODES DIST AVAIL AND/OR SPECIAL	DATE ACCESSIONED
DISTRIBUTION STAMP	DSIC COPY MSPECT 3
	DATE RECEIVED IN DTIC
	THIS SHEET AND RETURN TO DTIC-DDA-2

DTIC FORM 70A

DOCUMENT PROCESSING SHEET

MX SITING INVESTIGATION WATER RESOURCES PROGRAM

TECHNICAL SUMMARY REPORT

VOLUME IIB

Prepared for:

U.S. Department of the Air Force Ballistic Missile Office Norton Air Force Base, California 92409

Prepared by:

Ertec Western, Inc. 3777 Long Beach Boulevard Long Beach, California 90807

30 November 1981

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)	. ~
REPORT DO MENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.	
E-TR-52-II3	
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
MX siting Investigation, Water Resources Program,	FINAL
Water resources program	6. PERFORMING ORG. REPORT NUMBER
Technical Summary Report, Vol III	E-TR-52-IB B. CONTRACT OR GRANT NUMBER(*)
, author(s)	CONTINUE OR GARN. NUMBERGY
e j ^{er} en e	F04704-80-C-0006
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
Ertec Western Inc. Gormerly Fugro National)	AREA & WORK UNIT NUMBERS
PO. BOX 7765	64312 F -
Long Beach Ca 90807	12. REPORT DATE
U.S. Department of the Air Force Space and Missile Systems organization	30 NOV 81
	13. NUMBER OF PAGES
Norton AFB (99409 (SAMSO) 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	18. SECURITY CLASS. (of this report)
	unclassif =d
	15a DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	!
Distribution Unlimited	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different free	m Report)
Distribution Unlimited	*
Distribution Unlimited	
18. SUPPLEMENTARY NOTES	e 1/6 i magni de la capital de
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
Surface Water, Ground Water, V	alley-Fill Aquifer,
Carbonate Agrifer, Spring,	lus & 11. Water Table
Hydrology Water Appropriation	ms. Stream Water R. H.
Carbonate Aquifer, Spring, Hydrology, Water Appropriation Witer Use Water Disality 20. ABSTRACT (Consinue on regerse aide II no cooseary and identity by bjock number)	7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
20. ABSTRACT (Continue on reverse side if necessary and identify by slock number)	G . a . america of M. X
20. ABSTRACT (Continue on reverse aids il nocessary and identity by spock member) Raints of hydrologic attended in 3 deployment ration, and hydracle and the pergrapased. Man and hydricing and interpretation of the Man pergrapased in specificary and interpretation of the Man pergrapased. More of the	atha
and the proposed Man and anxilian B	enotina Bata At
in Gyote spenia Velley, Norgala and	sea O do D
"itch shows that growth water in arei	lable for Endutin
I received in the Mx mosest. Most of the	when within the

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

TABLE OF CONTENTS

		Pag
INTR	ODUCTION	. 1
VALL	EY DESCRIPTIONS	. 4

2.1	Antelope Valley	. 4
	2.1.1 General Physiography and Hydrology	
	2.1.2 MX Water Requirements	. 6
	2.1.3 Water-Supply Limitations	. 6
	2.1.4 Water-Supply Alternatives	. 8
	2.1.5 Impacts of Development	. 9
2.2	Big Sand Springs Valley	. 11
	2.2.1 General Physiography and Hydrology	. 11
	2.2.2 MX Water Requirements	
	2.2.3 Water-Supply Limitations	. 13
	2.2.4 Water-Supply Alternatives	16
	2.2.5 Impacts of Development	17
2.3	Big Smoky Valley	. 19
	2.3.1 General Physiography and Hydrology	19
	2.3.2 MX Water Requirements	
	2.3.3 Water-Supply Limitations	
	2.3.4 Water-Supply Alternatives	24
	2.3.5 Impacts of Development	25
2.4	Butte Valley	. 27
4.4		
	2.4.1 General Physiography and Hydrology 2.4.2 MX Water Requirements	
	2.4.4 Water-Supply Alternatives	
	2.4.5 Impacts of Development	, 32
2.5	Cave Valley	
	2.5.1 General Physiography and Hydrology	
	2.5.2 MX Water Requirements	. 36
	2.5.3 Water-Supply Limitations	36
	2.5.4 Water-Supply Alternatives	. 39
	2.5.5 Impacts of Development	. 40
2.6	Coal Valley	42
	2.6.1 General Physiography and Hydrology	
	2.6.2 MX Water Requirements	43
	2.6.3 Water-Supply Limitations	. 44
	2.6.4 Water-Supply Alternatives	. 46
	2.6.5 Impacts of Development	

		Page
2.7	Delamar Valley	49
	2.7.1 General Physiography and Hydrology	49
	2.7.2 MX Water Requirements	51
	2.7.3 Water-Supply Limitations	51
	2.7.4 Water-Supply Alternatives	53
	2.7.5 Impacts of Development	55
2.8	Dry Lake Valley	56
	2.8.1 General Physiography and Hydrology	56
•	2.8.2 MX Water Requirements	58
	2.8.3 Water-Supply Limitations	58
	2.8.4 Water-Supply Alternatives	61
	2.8.5 Impacts of Development	62
2.9	Dugway Valley	65
	2.9.1 General Physiography and Hydrology	65
	2.9.2 MX Water Requirements	67
	2.9.3 Water-Supply Limitations	67
	2.9.4 Water-Supply Alternatives	72
	2.9.5 Impacts of Development	73
2.10	Fish Springs Flat Valley	75
	2.10.1 General Physiography and Hydrology	75
	2.10.2 MX Water Requirements	77
	2.10.3 Water-Supply Limitations	78
	2.10.4 Water-Supply Alternatives	81
	2.10.5 Impacts of Development	83
2.11	Garden Valley	85
	2.11.1 General Physiography and Hydrology	85
	2.11.2 MX Water Requirements	86
	2.11.3 Water-Supply Limitations	87
	2.11.4 Water-Supply Alternatives	89
	2.11.5 Impacts of Development	90
2.12	Hamlin Valley	92
	2.12.1 General Physiography and Hydrology	92
	2.12.2 MX Water Requirements	94
	2.12.3 Water-Supply Limitations	94
	2.12.4 Water-Supply Alternatives	98
	2.12.5 Impacts of Development	100
2.13	Hot Creek Valley	102
2.13	2.13.1 General Physiography and Hydrology	102
	2.13.1 General Physiography and hydrology 2.13.2 MX Water Requirements	103
	2.13.3 Water-Supply Limitations	104
	2.13.4 Water-Supply Alternatives	107
	2.13.5 Impacts of Development	108

		Page
2.14	Jakes Valley	110 110 111 112 114 115
2.15	Kobeh Valley	117 117 118 119 121 122
2.16	Lake Valley	124 124 126 126 128 129
2.17	Little Smoky Valley	131 131 134 134 136 137
2.18	Long Valley	139 139 141 141 143 145
2.19	Monitor Valley	147 147 149 150 152 153
2.20	Muleshoe Valley	155 155 157 157 159 160

			Page
2.21	Newark 2.21.1	Valley	162 162
	2.21.2	MX Water Requirements	163
	2.21.3	Water-Supply Limitations	163
	2.21.4	Water-Supply Alternatives	165
	2.21.5	Impacts of Development	166
2.22		Valley	168
	2.22.1	General Physiography and Hydrology	168
	2.22.2	MX Water Requirements	169
	2.22.3	Water-Supply Limitations	169
	2.22.4	Water-Supply Alternatives	172
	2.22.5	Impacts of Development	173
2.23	Penoye	r Valley	174
	2.23.1	General Physiography and Hydrology	174
	2.23.2	MX Water Requirements	175
	2.23.3	Water-Supply Limitations	176
	2.23.4	Water-Supply Alternatives	177
	2.23.5	Impacts of Development	179
2.24	Pine V	alley	180
	2.24.1	General Physiography and Hydrology	180
	2.24.2	MX Water Requirements	183
	2.24.3	Water-Supply Limitations	183
	2.24.4	Water-Supply Alternatives	185
	2.24.5	Impacts of Development	186
2.25	Railro	ad Valley	188
	2.25.1	General Physiography and Hydrology	188
	2.25.2	MX Water Requirements	191
	2.25.3	Water-Supply Limitations	192
	2.25.4	Water-Supply Alternatives	195
	2.25.5	Impacts of Development	196
2 26	Ralsto	n Valley	198
2.20	2.26.1	General Physiography and Hydrology	198
	2.26.2	MX Water Requirements	199
	2.26.3	Water-Supply Limitations	199
	2.26.4	Water-Supply Alternatives	201
	2.26.5	Impacts of Development	202
2.27	Revei 1	le Valley	204
	2.27.1	General Physiography and Hydrology	204
	2.27.2	MX Water Requirements	206
	2.27.3	Water-Supply Limitations	206
	2.27.4	Water-Supply Alternatives	209
		Impacts of Development	210

		Page
2.28	Sevier Desert	211 211 213 214 216 218
2.29	Snake Valley	220 220 221 221 225 226
2.30	Spring Valley	228 228 230 230 233 234
2.31	Steptoe Valley	236 236 238 238 240 242
2.32	Stone Cabin Valley	243 243 245 245 247 249
2.33	Tule Valley	250 250 252 252 255 256
2.34	Wah Wah Valley	258 258 260 260 264 265

	Page
2.35 Whirlwind Valley	266 266 267 267 269 270
2.36 White River Valley	272 272 274 274 277 278
REFERENCES CITED	280
TABLES	
Table Number	
2.9.1 Sample Locations in Dugway Valley That Exceed Water-Quality Criteria	71
2.10.1 Sample Locations in Fish Springs Flat That Exceed Water-Quality Criteria	82
Water-Quality Criteria	217
Exceed Water-Quality Criteria	263
APPENDICES	
Al Well and Spring Numbering System	Volume IIA
Cl Well and Water Level Data	Volume
El Water Quality Criteria	IIB

			Page
		APPENDIX A	
A1-0	WELL	AND SPRING NUMBERING SYSTEM	
	A1-1 A1-2	Well and Spring Numbering System-Nevada Well and Spring Numbering System-Utah	A-1 A-3
		APPENDIX B	
B1-0	POTEN	TIOMETRIC LEVEL MAPS	
	B1-1	Potentiometric Levels, Antelope Valley, Nevada	A-5
	B1-2	Potentiometric Levels, Big Sand Springs Valley, Nevada	A-6
	B1-3	Potentiometric Levels, Big Smoky Valley, Nevada	A-7
	B1-4	Potentiometric Levels, Butte Valley, Nevada	A-8
	B1-5	Potentiometric Levels, Cave Valley, Nevada .	A-0 A-9
	B1-6	Potentiometric Levels, Cave Valley, Nevada .	A-10
	B1-7	Potentiometric Levels, Delamar Valley,	
	B1-8	Nevada	A-11
	B1-9	Nevada	A-12
	B1-10		A-13
	B1-11	Utah	A-14
	B1-12	Nevada	A-15
	B1-12	Nevada-Utah	A-16
	B1-13	Potentiometric Levels, Hot Creek Valley, Nevada	A-17
	B1-14	Potentiometric Levels, Jakes Valley,	- 40
	B1-15	Nevada	A-18
	B1-16	Nevada	A-19
		Nevada	A-20
	B1-17	Potentiometric Levels, Little Smoky, Nevada	A-21
	B1-18		A-22
	B1-19		A-23
		ITEVOUG	M-43

			Page
		APPENDIX B	
	B1-20	Potentiometric Levels, Muleshoe Valley, Nevada	A-24
	B1-21	Potentiometric Levels, Newark Valley, Nevada	A-25
	B1-22	Potentiometric Levels, Pahroc Valley, Nevada	A-26
	B1-23	Potentiometric Levels, Penoyer Valley, Nevada	A-27
	B1-24	Potentiometric Levels, Pine Valley, Utah	A-28
		Potentiometric Levels, Railroad Valley	A-29
	B1-25b	(North), Nevada	A-2:
	01 100	(South), Nevada	A-30
	B1-26	Potentiometric Levels, Ralston Valley,	
	B1-27	Nevada	A-3]
	D1-27	Nevada	A-32
	B1-28	Potentiometric Levels, Sevier Desert, Utah	A-33
	B1-29	Potentiometric Levels, Snake Valley,	H-33
		Nevada-Utah	A-34
	B1-30	Potentiometric Levels, Spring Valley, Nevada	A-3
	B1-31	Potentiometric Levels, Steptoe Valley,	M-3.
		Nevada	A-3
	B1-32	Potentiometric Levels, Stone Cabin Valley, Nevada	A-3
	B1-33	Potentiometric Levels, Tule Valley, Utah	A-38
	B1-34	Potentiometric Levels, Wah Wah Valley,	
		Utah	A-39
	B1-35	Potentiometric Levels, Whirlwind Valley,	.
	B1-36	Utah	A-40
	D1 30	Nevada	A-4
		APPENDIX C	
C1-0	WELL A	ND WATER LEVEL DATA	
	C1-1 1	Well and Water Level Data, Antelope Valley,	
	C1-2 1	Nevada	B-1
	V. L.	Valley, Nevada	B-2
	C1-3	Well and Water Level Data, Big Smoky	
		Valley, Nevada	B-3

viii

		<u>Page</u>
	APPENDIX C	
C1-4	Well and Water Level Data, Butte Valley, Nevada	B-4
C1-5	Well and Water Level Data, Cave Valley, Nevada	B-5
C1-6	Well and Water Level Data, Coal Valley, Nevada	B-6
C1-7	Well and Water Level Data, Delamar Valley, Nevada	B-7
C1-8	Well and Water Level Data, Dry Lake Valley, Nevada	B-8
C1-9	Well and Water Level Data, Dugway Valley, Utah	B-9
C1-10	Well and Water Level Data, Fish Springs Flat, Utah	B-10
C1-11	Well and Water Level Data, Garden Valley, Nevada	B-11
C1-12	Well and Water Level Data, Hamlin Valley, Nevada-Utah	B-12
C1-13	Well and Water Level Data, Hot Creek Valley, Nevada	B-13
C1-14	Well and Water Level Data, Jakes Valley, Nevada	B-14
C1-15	Well and Water Level Data, Kobeh Valley, Nevada	B-15
C1-16	Well and Water Level Data, Lake Valley, Nevada	B-17
C1-17	Well and Water Level Data, Little Smoky, Nevada	B-20
C1-18	Well and Water Level Data, Long Valley, Nevada	B-21
C1-19	Well and Water Level Data, Monitor Valley, Nevada	B-22
C1-20	Well and Water Level Data, Muleshoe Valley, Nevada	B-23
C1-21	Well and Water Level Data, Newark Valley, Nevada	B-24
C1-22	Well and Water Level Data, Pahroc Valley, Nevada	B-25
C1-23	Well and Water Level Data, Penoyer Valley, Nevada	B-26
C1-24	Well and Water Level Data, Pine Valley, Utah	B-27
C1-25	Well and Water Level Data, Railroad Valley, Nevada	B-28
C1-26	Well and Water Level Data, Ralston Valley, Nevada	B-31

			Page
		APPENDIX C	
	C1-27	Well and Water Level Data, Reveille Valley, Nevada	B-32
	C1-28	Well and Water Level Data, Sevier Desert,	5-52
	C1-29	Utah	B-33
	C1-29	Well and Water Level Data, Snake Valley, Nevada-Utah	B-35
	C1-30	Well and Water Level Data, Spring Valley,	
	C1-31	Nevada	B-39
	C1-32	Valley, Nevada	B-42
	C1-33	Valley, Nevada	B-43
	C1-34	Well and Water Level Data, Wah Wah	B-44
	C1-35	Valley, Utah	B-45
	C1-36	Valley, Utah	B-46
	C1-36	Well and Water Level Data, White River Valley, Nevada	B-47
		APPENDIX D	
D1-0	DISCHA	ARGE MEASUREMENTS	
	D1-1	Discharge Measurements, Antelope Valley, Nevada	B-50
	D1-2	Discharge Measurements, Big Sand Springs	
	D1-3	Valley, Nevada	B-51
	D1-4	Nevada	B-52
	וע –4	Nevada	B-53
	D1-5	Discharge Measurements, Cave Valley, Nevada	B-54
	D1-6	Discharge Measurements, Coal Valley,	
	D1-7	Nevada	B-55
		Nevada	B-56
	D1-8	Discharge Measurements, Dry Lake Valley, Nevada	B-57
	D1-9	Discharge Measurements, Dugway Valley,	
	D1-10	Utah	B-58
		Flat, Utah	B-59

		Page
	APPENDIX D	
D1-11	Discharge Measurements, Garden Valley, Nevada	B-60
D1-12	Discharge Measurements, Hamlin Valley,	
D1-13	Nevada-Utah	B-61
D1-14	Valley, Nevada	B-62
D1-15	Nevada	B-63
D1-16	Nevada	B-64
D1-17	Nevada	B-65
D1-18	Nevada	B-66
D1-19	Nevada	B-67
D1-19	Nevada	B-68
	Discharge Measurements, Muleshoe Valley, Nevada	B-69
D1-21	Discharge Measurements, Newark Valley, Nevada	B-70
D1-22	Discharge Measurements, Pahroc Valley, Nevada	B-71
D1-23	Discharge Measurements, Penoyer Valley, Nevada	B-72
D1-24	Discharge Measurements, Pine Valley, Utah	B-73
D1-25	Discharge Measurements, Railroad Valley, Nevada	B-74
D1-26	Discharge Measurements, Ralston Valley, Nevada	B-75
D1-27	Discharge Measurements, Reveille Valley, Nevada	B-76
D1-28	Discharge Measurements, Sevier Desert, Utah	B-77
D1-29	Discharge Measurements, Snake Valley,	
D1-30	Nevada-Utah	B-78
D1-31	Nevada	B-79
D1-32	Nevada	B-80
D1-33	Valley, Nevada	B-81
	Utah	B-82

			Page
		APPENDIX D	
	D1-34 D1-35	Discharge Measurements, Wah Wah Valley, Utah Discharge Measurements, Whirlwind Valley, Utah	B-83 B-84
	D1-36	Discharge Measurements, White River Valley, Nevada	B-85
		APPENDIX E	
E1-0	WATER	QUALITY CRITERIA	
	E1-1 E1-2 E1-3	Water Quality Criteria For Mixing Concrete Nevada Drinking Water Standards Utah Drinking Water Standards	B-86 B-87 B-88
		APPENDIX F	
F1-0	SELECT	CED WATER QUALITY DATA	
	F1-1	Selected Water Quality Data, Antelope Valley, Nevada	B-89
	F1-2	Selected Water Quality Data, Big Sand Springs Valley, Nevada	B-90
	F1-3	Selected Water Quality Data, Big Smoky Valley, Nevada	B-91
	F1-4	Selected Water Quality Data, Butte Valley, Nevada	B-92
	F1-5	Selected Water Quality Data, Cave Valley, Nevada	B-93
	F1-6	Selected Water Quality Data, Coal Valley, Nevada	B-94
	F1-7	Selected Water Quality Data, Delamar Valley, Nevada	B-95
	F1-8	Selected Water Quality Data, Dry Lake Valley, Nevada	B-96
	F1-9	Selected Water Quality Data, Dugway Valley, Utah	B-97
	F1-10	Selected Water Quality Data, Fish Springs Flat, Utah	B-98
	F1-11	Selected Water Quality Data, Garden Valley, Nevada	B-99
	F1-12	Selected Water Quality Data, Hamlin Valley, Nevada-Utah	B-100

		Page
	APPENDIX F	
F1-13	Selected Water Quality Data, Hot Creek Valley, Nevada	B-101
F1-14	Selected Water Quality Data, Jakes Valley, Nevada	B-104
F1-15	Selected Water Quality Data, Kobeh Valley, Nevada	B-105
F1-16	Selected Water Quality Data, Lake Valley, Nevada	B-106
F1-17	Selected Water Quality Data, Little Smoky, Nevada	B-107
F1-18	Selected Water Quality Data, Long Valley,	B-108
F1-19	Nevada	
F1-20	Valley, Nevada	B-109
F1-21	Valley, Nevada	B-110
F1-23	Valley, Nevada	B-111
F1-24	Valley, Nevada Selected Water Quality Data, Pine	B-112
F1-25	Valley, Utah	B~113
F1-26	Valley, Nevada	B-114
F1-27	Valley, Nevada	B-117
F1-28	Valley, Nevada	B-118
F1-29	Desert, Utah	B-119
F1-30	Valley, Nevada-Utah	B-122
F1-31	Valley, Nevada	B-124
F1-32	Valley, Nevada	B-125
F1-33	Capin Valley, Nevada	B-126
F1-34	Valley, Utah Data, Tule Selected Water Quality Data, Wah Wah	B-127
	Valley, Utah	B-128
F1-35	Selected Water Quality Data, Whirlwind Valley, Utah	B-129
F1-36	Selected Water Quality Data, White River Valley, Nevada	B-130

		Page
	APPENDIX G	
G1-0	GLOSSARY	B-131

APPENDIX C1 WELL AND WATER LEVEL DATA

			WATER LEVEL MEASUREMENTS			RENTS	REMARKS	DATA SOURCE				
	. TOUNSHIP . RANGE-SECTION	ORME. REFF	PEAR			ELEV	MO/YEAR	DEPTH-BEL SURFACE (FT)		ELEV (FT)		
1	1 19N/51E-33CB 2 13N/50E-273D	U.S.AIR FORCE	1980 1980	20 Z	Z	6180	3/1991 3/1981			4505	OBSERVATION WELL	ERTEC ERTEC
	3 194/50E-2901 4 191/50E-2802 5 181/51E-109	MOT SPR.RANCH	1949	3.5 40	12 12 6	6340 6340 6230	4/1964 9/1980 4/1964		>	6335 6340 6053	FLOWING WELL	ROBINSON ET AL 67 ERTEC BO/NVSEO ROBINSON ET AL 67
1	6 19N/51E-18CCC 7 18N/51E-223C	BARTHOLOMAE FLORIO	1950	670 135	6	6160 6230	9/1980 9/1980	6 0		6170	FLOWING WELL	ERTEC BO/NVSEO ERTEC BO/NVSEO
J	8 18N/51e-303CA 9 18N/51E-303AB 0 13N/51E-34DCB	SARTIOLOMAE Macsa	1943	733 134	13	6190 6190 6330	9/1980 9/1980 9/1980	F			FLOWING WELL FLOWING WELL	ERTEC BO/NVSEO ERTEC BO/NVSEO ERTEC BO/NVSEO
1	1 17N/49E- 9DD 2 17N/50E-25AA	SAMCHOLOMAE	1964 1951	315 60	6	8400 6270	1/1940	40 16		8360 6254		ROBINSON ET AL 67 ROBINSON ET AL 67
1.	3 17N/50E-27DA 4 17N/51E-20DD 5 17N/51E-2288	U.S.AIR FORCE J.S.AIR FORCE	1950 1980 1951	200 203 116		6420 6350 6350	3/1981 3/1981 9/1960	106 95 90			OBSERVATION WELL OBSERVATION WELL	ERTEC ERTEC ERTEC BO/NVSEQ
1	6 17N/51E-27CC 7 17N/51E-319D	THREE C WILL CERUTTI WELL	1942	272 18	6	6400	9/1980 9/1980	155 16		6245		ERTEC BO/NVSEO ERTEC BO/NVSEO
11	8 17%/52E- 7CA 9 17%/52E-1789 0 16%/50E-1700	ANTELOPE PINE	1942	351 26 255	14	6570 6920 6510	9/1980 7/1949 9/1980	24		6253 6896 6341		ERTEC 80/NVSEO ROBINSON ET AL 47 ERTEC 80/NVSEO
2	1 16N/5GE-27CA 2 16N/5GE-27ADC	J.S.AIR FORCE	1950	500	2	6435 6540	3/1981 9/1980	114 206		6321 6334	OBSERVATION WELL	ERTEC ERTEC BO/MYSEO
Ž	3 164/51E- 70A1 4 164/51E- 70A2 5 15H/50E- 2CC	SARTHOLOMAE Barthclomae U.S.AIR FORCE	1963	30 105 200	12	6325 6325 6460	3/1964 9/1980 3/1981	28 28 124		6297	OBSERVATION WELL	ROBINSON ET AL 67 ERTEC BO/NVSEO ERTEC
	6 15N/5DE- 404	9191-1- 19NGE	. , , ,	252	16	6450	9/1980	132			INGIG. WELL	ERTEC BO/NVSEO

WELL AND WATER LEVEL DATA ANTELOPE VALLEY, NEVADA

30 NOV 81

d	WELL DESCRIPT	ION				MANUAL LICE	da da juni	EMENTS	REMARKS	DATA SOURCE
ID. TOWNSHIP NO. RANGE-SECTION	WELL	YEAR DRILLED			LAND ELEV (FT)	Mastrens :	riching aber di Alichace (2002)	(FT)		
1 10W/53E-28DD	U.S.AIR FORCE	1980	200	2	6055	3.534.87			DRY OBS. WELL	ERTEC
2 9M/53E- 8ACD	BLA	1966	680	8	5991	6 . 1423	430	5361		NY STATE ENG 79
3 8N/52E- 1801	NRC	1968	6500	20	5863	P NO S	490	5373	INTVL TESTED-2050"	ERTEC BO/NVSEO
4 8M/52E-158C1	MRC		6011	20	59109	247 708	556	5354	INTVL TESTED-645"	DINWIDDIE ET AL 71
5 8M/52E-25DA	BLM	1966	1 30		5876	A/1966			DRY	NV STATE ENG 79
6 8N/53E-16AC	NRC	1969	6036		5862	1/1964	474	5388	INTUL TESTED-720"	DINUIDDIE ET AL 71
7 8M/53E-16AC2	BLM/ROGERS	1935	29		5560	6/1980		5560		ERTEC BC/NVSEO
8 8N/53E-29DA1	U.S.AIR FORCE	1981	649		5811	3/1981	471		OBSERVATION WELL	ERTEC
9 8M/53E-29DA2	U.S.AIR FORCE	1981	573		5811	5.41981	468		TEST WELL	ERTEC
10 84/535-3368	MRC		7500		5795	2081	488	5507		ERTEC /NVSEO

WELL AND WATER LEVEL DATA BIG SAND SPRINGS VALLEY, NEVADA

30 NOV 8

		■ELL DESCRIPTIO	N				MATER L	EVEL MEASUR	FMF NTS	REMARKS	DATA SOURCE

	TOWNSHIP	JELL	YEAR				MO/YEAR	DEPTH-BELO	M EFEA		
١٠٠.	RANGE-SECTION	Daner	DRILLED	(FT)	ID (IN)	ELEV (F7)		SURFACE	(FT)		
i						• • • •			****		
1	7N/42E-31AD	BERTOLING RANCH		93	14	6100	6/1948		6083		RUSH ET AL 70
3	84/37E-1331 84/37E-1352	CLOVERDALE RANCHO HOMAR BLACKBYCLO		42 36	14	5630 5630	/1950 /1950	25 15	5655 5665		RUSH ET AL 70 Rush et al 70
,	94/42E-16 1	CESVERDAGE WAREN	1740	100	6	5940	1/1940	38	5802		THORDARSON ET AL 71
3	5N/42E-16 2		1940	126	18	5845	3/1940		5801		THORDARSON ET AL 71
6	34/42E-16	PEAVINE RANCH	1949	5.5	5	6400	4/1949	35	6345		THORDARSON ET AL 71
7	5×/43:-150					6475	/1917	40		PRE-1917 MEAS.	THORDARSON ET AL 71
a	2N/43E-21A			90		9550	9/1913	8.5	6135		THORDARSON ET AL 71
10	9N/43E-23A 7N/40E-27C3	HALTON	1964	100	14	6580 5115	/1917 /1964	35 96	5019	PRE-1917 MEAS.	THORDARSON ET AL 71 USGS 79
liĭ	7N/4CE-27DC	HALTON	1964	300	12	5115	9/1968	86	5029		RUSH ET AL 70
12	7N/40E-23AD	IK RANCH	1764	550	14	5130	/1964	100	5030		U\$65 79
13	7N/43E-28C5	TANNER	1964	300	14	5140	/1964	97	5043		U\$65 79
14	74/40E-30A	STEPHENS	1949	133	6	5160	/1949	78	5102		USGS 79
15	7N/40E-359	4698	1955	420		5100	3/1958	90	5010 4998		THORDARSON ET AL 71
17	7N/435-35CCC 7N/42i-15	34CKY V.WATER CO PEAVINE RANCH	1947	1420	9	5088 5600	9/1968 3/1949	90 180	5420		USGS 79 Thordarson et al 71
13	7N/4ZE-17C7	SAN ANTONIO RANC		34	14	5400	/1949		5388		RUSH ET AL 70
19	7N/42E-18 10 7N/42E-18 #	SAN ANTONIO PAYC		100	14	5400	6/1949	'F		FLOWING WELL	USGS 79
20	7N/42E+19 *	SAN ANTONIO RANC	1949	36	14	5400	5/1949	F	> 5400	FLOWING WELL	ROBINSON ET AL 67
21	74/425-1500	SAN ANTONIO HANC		30	14	5330	9/1979	. 15	5365		ERTEC 79/NVSEO
22	7N/42E-33AA 6N/402-12CB	SAN ANTONIO RANC	1949	240 415	16	5617 5075	/1949	180 97	5437		USGS 79 Thordarson et al 71
23	6N/40E-120A	MC LAUSHLIN	1961	282	16	5090	2/1962	97 91	4978		THORDARSON ET AL 71
25	5N/43E-13AA1	MC LAUGHLIN	1965	490	14	5080	8/1965	78	5002		RUSH ET AL 70
25	64/43E-13AA2	ICHE 199. DIST.	1762	387	16	5030	3/1962	80	5000		THORDARSON ET AL 71
27	6N/40E-13ADC	JACKSON	1753	350	12	5070	5/1979	85	4985		ERTEC 79/NVSEO
28	5N/40E-13ADD					5070	9/1979	92	4975		ERTEC 79/NVSEO
29 30	5M/4C1-24AA 6N/4C1-34C23	JACKSON	1963	350	12	5060 5000	4/1979	87 178	4973		ERTEC 79/NVSEO ERTEC 79/NVSEO
31	6N/40E-34CBD			40		5000	4/1979	1/8	4022	DRY WELL	ERTEC 79/NVSEO
32	6N/40E-34CD					4990	4/1979	171	4819	VA	ERTEC 79/NVSEO
33	54/635-3403					4290	4/1979		4821		ERTEC 79/NVSEO
34	64/40E-36C					4339	4/1979	96	4903		ERTEC 79/NVSEO
35	64/41E- 73AC1	JACKSON	1962	200	16	5110	11/1962		5034		THORDARSON ET AL 71
36	64/416- 73AC2 68/412- 73AA	JACKSON	1751	350	12	5110	2/1963		5018		RUSH ET AL 70
33	64/41E-16CCA	MC LAUSHLIN Baidge	1950	230	16	5105 5102	8/1979 5/1979	91 134	5014 4968		ERTEC 79/NVSEO ERTEC 79/NVSEO
39	9N/41E-12CA1	3 AND EPSON	1903	463	12	5030	11/1943	92	4988		THORDARSON ET AL 71
40	64/41 =- 1 : 0 51	SANDERSON	19:2	101	15	50.80	10/1962	78	5002		THORDARSON ET AL 71
41	64/41E-18C22	IONE IRP. FIST.	1962	200	16	5076	9/1968	83	4993		US65 79
+2	600 54743E- 600				5	5006	8/1968	280	5726		USGS 79
43	54740E- 334 54740E- 330					4980	4/1979 4/1979	172 186	4808 4817		ERTEC 79/MVSEO ERTEC 79/MVSEO
4.5	34743E- 3041					4775	4/1979	153	4922		ERTEC 77/NVSEO
45	54/425- 3CA2			1 * 5		4975	4/1979			DRY WELL	ERTEC 79/NVSEO
47	34/40E- 3C±					4970	4/1979	170	4809		ERTEC 79/NVSEO
4.8	5M/40E- 3CC					4972	4/1979	156	4816		EPTEC 79/NVSEO
49 50	5N/40E- 4D					5000	4/1979	204	4796	5.5H	ERTEC 79/NVSEO
51	5N/40E-10B 5N/40E-33DC	MANE		32 700	6	4955 4882	4/1979 /1913	90	4792	DRY WELL	ERTEC 79/NVSEO RUSH ET AL 70
śż	SH/41E- ZAAB	ANACONDA CO.		. 00	•	5380	8/1979	70	4172	DEPTH >500°	ERTEC 79/NVSEO
53	5M/41E- 5801	MIDWAY STATION		135	48	5002	3/1949		4872	DUG WELL	RUSH ET AL 70
54	5M/41E- 5B02	R.O. RANCH	1964	180	10	5002	12/1964	125	4877	-	RUSH ET AL 7D
55	5N/41E- 64	*****		135		5020	9/1913	124	4896		THORDARSON ET AL 71
56	4N/41E-16DB 4N/41E-30DB	RODGERS Montezuma		98 47	10	4858	9/1968 /1913	55	4803	VEAR ARTI : \$5-4870	USGS 79
36	3M/40E- 2C	747124478		47		4830 4815	12/1960		4787	YEAR ORILLED-1870	USGS 79 THORDARSON ET AL 71
59	3M/40E- 2DC	MILLERS RESTAREA	1948	280	6	4817	/1968	50	4767		US65 79
60	3M/40E- 20CC	MILLER			•	4816	8/1979	40	4776		ERTEC 79/NVSEO
61	3N/40E-1198	MILLER		61	63	4815	8/1979	42		DUG MEFF	ERTEC 79/NVSEO
62	3N/41E-10C8	#ATU . ***	1949	210		5000	8/1913	202	4798		RUSH ET AL 70
63	3M/41E-21CD 3M/41E-26 1	MAIN LINE LAMBERTUCCI	1949	310 179		5070 5200	10/1963	240 20	4830 5180		USGS 79 Robinson Etal 67
45	3M/41E-26 2	LAMBERTUCCI		312		5200	10/1983	20	5191		ROBINSON ETAL 67
66	3M/41E-28	JOHN CASEY	1949	310	6	3100	11/1949	240	4860		THORDARSON ET AL 71
67	3N/42E- 4	LAMBERTUCCI	1949	330	15	5800	8/1949	140	5660		ROBINSON ET AL 67
68	3M/42E- 9			179		5600	/1963	42	5558		NV STATE ENG 79
69	3M/42E-11	LAMBERTUCCI	1949	35		5970	7/1949	13	5957		THORDARSON ET AL 71
70 71	3M/42E-21 3M/42E-32	LAMBERTUCCI	1963 1963	312 179	8	3639	11/1963	.,	5630		THORDARSON ET AL 71
72	1N/41E-260	GOTTSCHALK	1703	400	8	3550 4834	10/1963	20 61	5530 4773	PRE-1917 MEASHT.	THORDARSON ET AL 71 THORDARSON ETAL 71
73	1N/42E-33DAD			160	u	4912	8/1979	137	4775	THE TEST MERSING	ERTEC 79/NVSEO
74	1M/42E-34C	KLONDIKE		160	70	4940	1/1967	138	4802	DUG WELL	RUSH 68
75	15/41E- 4C	USGS NO. 3	1965	72	2	4810	1/1967	46	4764		RUSH 68
76	15/41E-18A	USGS NO. 2	1965	72	\$	4802	1/1967	48	4754		RUSH 68
l ''	15/42E-10AA	DODGE CONSTR. CO	טלעוי	310	6	4990	10/1962	197	4793		THORDARSON ET AL 71

WELL AND WATER LEVEL DATA BIG SMOKY VALLEY, NEVADA

30 NOV 81

		WELL DESCRIPTI	0 N				WATER L	EVEL MEASURE	MENTS	REMARKS	DATA SOURCE
ID.	TOWNSHIP	WELL	YEAR	WELL	CASING	LAND	MO/YEAR	DEPTH-BELOW	ELEV		
	RANGE-SECTION	OWNER	DRILLED	DEPTH	10	ELEV		SURFACE			
.,				(FT)		(FT)		(FT)	(FT)		
1	26M/62E-22A1	STRATTON RANCH				6400	8/1967	15	6385		GLANCY 68
	25N/62E-1781	PARIS				6351	11/1980	9	6342		ERTEC BO/NVSEO
	24M/60E+3381	BLN	1960	420		6700	8/1966			DRY	GLANCY 68
	24N/61E-14C1	PARIS			6	6300	11/1980	24	6276		ERTEC BO/NVSEO
•	23N/60E-22BC	9LM			6	6275	11/1980	55	6220		ERTEC BO/NVSEO
	23N/61E- 701	PARIS		40	ě	6260	11/1980		6233		ERTEC BO/NVSEO
	23N/61E-13	PARIS		10		7615		10	7605		GLANCY 68
	23N/61E-31CDG			13		6251	11/1980		6240		ERTEC 80/NVSEO
· .	22N/60E-26A1	PARIS			Ã	6180	11/1980		6114		ERTEC BO/NVSEO
	22N/61E- 6C	PARIS		185	Ř	4190	6/1958		6151		GLANCY 68
	22N/61E-15	PARIS		36		7700	6/1958		7668		GLANCY 68
	22N/61E-21BC	74443			36	7000	11/1980		6991		ERTEC BO/MVSEO
	22M/61E-33	PARIS		12		6800	7/1958		6790		GLANCY 68
	21N/61E- 6C1	PARIS			6	6190	11/1980		6119		ERTEC BO/NVSEO
	21N/61E- 888C	U.S.AIR FORCE	1980	150		6200	3/1981			OBSERVATION WELL	ERTEC
	21N/61E-15DC	U.S.AIR FORCE	1980	200		6163	3/1981			OBSERVATION JELL	ERTEC
	21N/61E-30BCD	U.S.AIR FORCE	1980	200		6250	3/1981			OBSERVATION WELL	ERTEC
	21N/61E-32C	U.S.AIR FORCE	1980	200		6210	3/1981	78		OBSERVATION WELL	ERTEC
	21N/62E- 98C	TREMBLY	1700	434		7000	6/1978		6829		NY STATE ENG 79
	20N/61E- 6D1	UNALDE	1966	7.7	.,	6300	11/1980		6148		ERTEC BO/NVSEO
	20N/61E-13DD	GULF OIL	1965	105	ž	6250	11/1980		6184		ERTEC BO/NVSEO
	20M/62E-32BC	U.S.AIR FORCE	1980	200		6315	3/1981			OBSERVATION WELL	ERTEC
			. 700	200	6	7000	11/1980		6954		ERTEC BO/NVSEO
	19M/61E-26DAD	MILLERS RANCH	1966	270		4950	8/1967		6752		GLANCY 68
_ Z4	19M/61E-30B1	BLH	1700	270		9420	5/179/	170	0172		

WELL AND WATER LEVEL DATA BUTTE VALLEY, NEVADA

30 NOV 81

					WATER L	EVEL MEASUR	MENTS	REMARKS	DATA SOURCE		
	TOWNSHIP RANGE-SECTION	WELL JUNER	YEAR DRILLED	WELL DEPTH (FT)		LAND ELEV (FT)	MO/YEAR	DEPTH-BELOW SURFACE (FT)	(FT)		
١,	10M/63E-25AAB	URRUTIA		20		6620	3/1980	20	6600	GW ELEV/DEPTH EST.	ERTEC 80/NVSEO
2	9N/64E- 68DD	PARKER STA.				6530	3/1980	, F 3	6530	FLOWING WELL	ERTEC BO/NVSEO
1 3	9M/64E-18AA	U.S.AIR FORCE	1979	101	2	6430	12/1980			DRY OBS.WELL	ERTEC 80
1	9M/64E-2DAD	U.S.AIR FORCE	1980	200		6345	11/1980			WELL COLLAPSED	ERTEC 80
İ	9N/64E-27BDC	BLM		315	-	6400	3/1980	239	6161		ERTEC BO/WYSED
1 7	8M/64E- 4ABD	55				6235	3/1980		6094		ERTEC BO/NVSEO
,	8M/64E-15BCB	HARRIS	1968	375		6159	3/1980		5879		ERTEC BO/NVSEO
Íá	8N/64E-30CD8	URRUTIA	.,			6080	3/1980		5758		ERTEC BO/NVSEO
lä	7N/63E-14AB	U.S.AIR FORCE	1950	462	10	4009	10/1980	229		TEST WELL	ERTEC 80
10		U.S.AIR FORCE	1980	458		6010	10/1980			OBSERVATION WELL	ERTEC 80
11		BLM	1943	385	•	6020	3/1980		5787		ERTEC BO/WYSEO
12		GULF OIL	1743	265		4000	3/1980		3785		FOTEC BO/NVSEO

WELL AND WATER LEVEL DATA CAVE VALLEY, NEVADA

30 NOV 81

B-6

E-TR-52-II

l			WELL DESCRIPT	I ON			WATER L	EVEL MEASURE	HENTS	REMARKS	DATA SOURCE	
		TOWNSHIP RANGE-SECTION	WELL Odner	YEAR DRILLED			LAND ELEV (FT)	MO/YEAR	DEPTH-BELOW SURFACE (FT)	ELEV (FT)		
ſ	1	3N/59E-108D	U.S.AIR FORCE	1980	1835	10	5560	4/1981	803	4757	CASED 0-118*	ERTEC
ı	Ž	3N/57E-12AA	U.S.AIR FORCE	1950	200	Ž	5080	11/1980			DRY OBS. WELL	ERTEC 80
ı	3	3N/59E-27AD	U.S.AIR FORCE	1980	200	2	5040	11/1980			DRY OBS.WELL	ERTEC BO
ı	4	24/576~228			250		5025	/1915			DRY	CARPENTER 15
ı	5	1N/60E-33CC	U.S.AIR FORCE	1979	200	2	4960	1/1980			DRY OBS.WELL	ERTEL 80
ı	6	15/59E-27CA	U.S.AIR FORCE	1979	200		5110	1/1980			DRY OBS.WELL	ERTEC BG
l	7	15/59E~33CC	U.S.AIR FORCE	1979	200		5240	1/1980			DRY OSS. WELL	ERTEC BO
ı	8	15/598-34001	U.S.AIP FORCE	1930	1445	2	5125	6/1981	862	4263	OBSERVATION WELL	ERTEC
ı	,	15/576-34682	U.S.AIR FORCE	1981	1315	10	5120	5/1981	845	4275	TEST WELL	ERTEC
ı	10	25/596-1233	3LM		188	8	5600	5/1980	108	5492		ERTEC BO/NVSEO
ı	11	25/60E- 5CD	PANACA FARMS	1965	172		5300	11/1965		5289		NV STATE ENG 79

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

WELL AND WATER LEVEL DATA COAL VALLEY, NEVADA

30 NOV 81

B-7

E-TR-52-Ⅱ

	WELL DESCRIPT	ION				WATER LEVEL MEASUREMENTS			REMARKS	DATA SOURCE
ID. TOWNSHIP NO. RANGE-SECTION	WELL	YEAR DRILLED	WELL DEPTH (FT)	CASING ID (IN)	LAND ELEV (FT)	MO/YEAR	DEPTH-BELOW SURFACE (FT)	ELEV (FT)		
1 45/63E-23DD 2 45/63E-24CD 3 65/63E-12ADA1 4 65/63E-12ADA2 5 75/64E-12DO 6 75/64E-19	HARRISON U.S.AIR FORCE U.S.AIR FORCE STEWART GULF OIL CO.	1967 1980 1980 1964 1966	61 360 1195 981 90 265	2 8 6	4835 4860 4710 4710 5800 4750	11/1966 7/1967 5/1980 4/1981 5/1980 /1966	471 867 38 225		DRY DRY/UMCASED TEST WELL OBSERVATION WELL	NV STATE ENG 79 NV STATE ENG 79 ERTEC 80 ERTEC ERTEC 80/MVSE0 NV STATE ENG 79

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

WELL AND WATER LEVEL DATA DELAMAR VALLEY, NEVADA

30 NOV 81

		WELL DESCRIPTI	ON				MATER L	EVEL MEASURE	RENTS	REMARKS	DATA SOURCE	
	TOWNSHIP RANGE-SECTION	MELL OWNER	YEAR DRILLED		CASING ID (IN)	LAND ELEV (FT)	MO/YEAR	DEPTH-BELOW Surface (FT)	ELEV (FT)			
1 2 3	3N/63E-27CA 3N/64E-20BAC 3N/65E-21DBA	U.S.AIR FORCE BLM DELMUE	1980 1960 1962	2395 380 51	10 6	5390 5067 5451	2/1981 /1960 /1962	851 317 45	4539 4750 5406	CARB.TEST WELL	ERTEC EAKIN 63 USGS 79	
5	2N/65E= 5B1 1N/64E=24A1 1N/65E= 2AAC	LYTLE & OTHERS	1959	376 515 12	5 48	5075 4700 5660	1/1959	398 10	4302 3450	DRY DUG WELL	EAKIN 63 EAKIN 63 EAKIN 63	
7	35/64E-12AC1 35/64E-12AC2	U.S.AIR FORCE U.S.AIR FORCE	1980 1930	1305 1012	10	4645	2/1981 2/1981	383 395	4262	OBSERVATION WELL TEST WELL	ERTEC ERTEC	

WELL AND WATER LEVEL DATA DRY LAKE VALLEY, NEVADA

30 NOV 81

R.Q

E-TR-52-II

	WELL DESCRIPT	I ON			MATER L	EVEL MEASURE	ENTS	REMARKS	DATA SQUECE	
ID. TOWNSHIP MO. RANGE-SECTION	WELL OWNER	DRILLED VEAR			LAND ELEV (FT)	MO/YEAR	DEPTH-BELOW SURFACE (FT)	ELEV (FT)		
1 (C- 9-11)16ADD	U.S.ARMY	1954	200	10	4338	9/1954	30	4308		STEPHENS ET AL 78
2 (C- 9-11)19ACC	U.S.AIR FORCE	1979	200	Ž	4340	3/1981	31	4309	OBSERVATION WELL	ERTEC
3 (C~ 9-11)32DDA	BLM	1952	202	8	4480	6/1952	170	4310		STEPHENS ET AL 78
4 (C- 9-12)25CBA	SHELL OIL CO.	1969	307	8	4458	10/1969	160	4298		UTAH STATE ENG 79
5 (C-10- 9) 8CCC	BLM	1957	130		4407	/1957	60	4327		STEPHENS ET AL 78
4 (C-10-10) 200C	FENN. BROS.	1973	375	16	4430	8/1975	109	4321		STEPHENS ET AL 78
7 (C-10-10)23CAD	U.S.AIR FORCE	1979	180	Ž	4514	3/1981			DRY OBS-WELL	ENTEC
B (C-10-10)31888	SLM	1935	551	ã	4524	3/1935	190	4334		STEPHENS ET AL 78
9 (C-11-10)1988	U.S.AIR FORCE	1980	178	ž	4775	7/1980			DRY OBS.WELL	ERTEC 80
10 (C-11-11)12ABA	81.9	1949	306	6	4602	3/1965	274	4328		STEPHENS ET AL 78
11 (C-11-11)12480	BLM	1949	306	ě	4602	11/1949	270	4332		UTAN STATE ENG 79
12 ((-12-10) 1100		1040	403	• • •	4040	7/4040			AAW / TERT UEL	Chief an

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

WELL AND WATER LEVEL DATA DUGWAY VALLEY, UTAH

30 NOV 81

	*************	WELL DESCRIPT	ION				EVEL MEASURE		REMARKS	DATA SOURCE	
	TOWNSHIP RANGE-SECTION	WELL CHNER	YEAR DRILLED			LAND ELEV (FT)		DEPTH-BELOW SURFACE (FT)			
1	(C-11-12) 4CC	U.S.AIR FORCE	1980	160	2	4471	2/1981	139	4332	OBSERVATION WELL	ERTEC
	(C-11-12) 4CCD	BLA	1935	538		4471	5/1976	154	4317		SOLKE ET AL 78
3	(C-11-12)1588A	BLM	1962	330		4580	10/1962	255	4325		BOLKE ET AL 78
	(C-11-13) 1ACB	U.S.AIR FORCE	1979	150		4330	3/1981	10		OBSERVATION WELL	ERTEC
	(C-11-14)23DCC	FISH & WLDLF.	1964	35		4330	11/1979	20	4310		ERTEC 79/UTSEO
6	(C-12-12) 7BCD	SMITH	1956	210		4600	7/1956	183	4417		UTAN STATE ENG 79
	(C-12-12)31CBC			• • • •	-	4550	11/1979	370		DEPTH/GW ELEV-EST.	ERTEC 79/UTSEO
	(C-12-12)31CCA					4565	4/1977	227	4338		BOLKE ET AL 78
	(C-12-12)31CCB	BLA	1946	232	6	4540	2/1946	203	4337		BOLKE ET AL 78
	(C-12-13) 12CAA	BLA	1956	210		4510	7/1956	183	4327		BOLKE ET AL 78
	(C-12-13)1400B	U.S.AIR FORCE	1979	200		4410	3/1981	76		DESERVATION WELL	ERTEC
	(C-12-13)15DCC	U.S.AIR FORCE	1979	150		4344	3/1981	12		OBSERVATION WELL	ERTEC
	(C-12-14)23BCC	BLA	*		•	4345	8/1976	10	4335		BOLKE ET AL 78
	(C-13-12) SCBD		1961	615	5	4756	3/1962	427		USES	BOLKE ET AL 78
	(C-13-13)10CDA	U.S.AIR FORCE	1979	200		4433	3/1981	105		OBSERVATION WELL	ERTEC
	(C-13-13)14DBC	U.S.AIR FORCE	1979	200		4530	3/1981			DRY OBS.WELL	ERTEC
	(C-13-13)18CBA	U.S.AIR FORCE	1979	200		4420	2/1981	78	4342	OBSERVATION WELL	ERTEC
	(C-13-14)25DA	U.S.AIR FORCE	1980	200		4465	3/1981	109		OBSERVATION WELL	ERTEC
	(C-14-12) 4CBC	BLM	1935	509		4811	3/1935	370	4441		BOLKE ET AL 78
	(C-14-13) 7DAA	U.S.AIR FORCE	1979	200		4596	3/1981			DRY OBS.WELL	ERTEC
	(C-14-13) 9CBA	BLM	1966	266		4623	4/1966	226	4397		BOLKE ET AL 78

WELL AND WATER LEVEL DATA FISH SPRINGS FLAT VALLEY, UTAH

30 NOV 81

B-11

E-TR-52-II

		JELL DESCRIPT	10%			WATER LEVEL MEASUREMENTS			REMARKS	DATA SOURCE	
	TOWNSHIP RANGE-SECTION	SAMES	YEAR DRILLED		CASING ID (IN)	LAND ELEV (FT)	MO/YEAR	DEPTH-BELOW SURFACE (FT)	ELEV (FT)		
l,	5N/39E-31CA	U.S.AIR FORCE	1979	200	2	5520	11/1980	111	5409	OBSERVATION WELL	ERTEC_80
lż	5N/59E-32D	PARIS			_	5350	5/1980	59	5291		ERTEC BO/NVSEO
3	44/53E-2208	U.S.AIR FORCE	1979	100	2	5500	3/1981	153		OBSERVATION WELL	ERTEC
1	4M/58E-23D				10	5350	5/1980	16	5334		ERTEC 80/4VSEO
j	4N/58E-3308	U.S.AIR FORCE	1980	200		5550	11/1980			DRY OBS.WELL	ERTEC 80
هٔ	4N/55E-36A1	BLM		• • •	10	5230	5/1980		5204		ERTEC BO/NVSEO
1 7	4M/59E- 40	WADSWERTH		200		5300	5/1980		5291		ERTEC BO/NYSEO
l à	4N/59E- 88	JADSWORTH		50	12	5 3 0 0	5/1980	10	5290		ERTEC BO/NVSEO
ģ	4N/59E- 881	WADSWORTH			_	5300	5/1980	12	5288		ERTEC BO/NVSEO
10	4N/57E-30DC	U.S.AIR FORCE	1979	100	2	5275	3/1981	65	5210	OBSERVATION WELL	ERTEC
l ii	3N/57E-16C	UHALDE	1960	92	16	6200	5/1980	19	61 81		ERTEC 80/NVSEC
12	3N/58E- 1AD	U.S.AIR FORCE	1979	100	ž	5210	3/1981	8.8		OBSERVATION WELL	ERTEC
13	3N/58E-1591	UHALDE	1960	260	6	5310	5/1980	221	5089		ERTEC BO/NVSEO
14	3N/59E~1898	U.S.AIR FORCE	1979	200	2	5230	3/1981	153	5077	OBSERVATION WELL	ERTEC
15	2N/57E-22BA1	U.S.AIP FORCE	1980	1099	2	5583	4/1981	430	5153	OBSERVATION WELL	ERTEC
16	2N/57E-22BA2	U.S.AIR FORCE	1930	1065	10	5575	4/1981	420	5155	TEST WELL	ERTEC
17	2N/58E- 3AA	U.S.AIR FORCE	1979	200	2	5200	3/1981	140	5060	OBSERVATION WELL	ERTEC
18	2N/53E-14C	CIVA CORP.				5150	5/1980	114	5036		ERTEC BO/NVSEG
19	1N/57E-20	COLD CK. MINE				6200	5/1980	188	6012		ERTEC 80/NVSEO
50	18/57E- 3A1	UHALDE	1944	620	6	5540	6/1980	489	5051		ERTEC BO/NVSEO

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

WELL AND WATER LEVEL DATA GARDEN VALLEY, NEVADA

30 NOV 81

TABLE C1:11

#ELL DESCRIPTION								EVEL MEASURE	MENTS	A EMARKS	DATA SOURCE
	TOUNSHIP	WELL	YEAR		CASING		MO/YEAR	DEPTH-BELOW	ELEV		
NO.	PANGE-SECTION	DWNER	DRILLED	DEPTH (FT)	(IN)	ELEV (FT)		SURFACE (FT)	(FT)		
1	(c-21-19)310ca	DEARDEN	1946	402	16	5225	7/1951	42	5183		HOOD ET AL 65
	(C-22-19) 65AC	DEARDEN	1950	167	16	5250	11/1950	49	5201		HOOD ET AL 65
	(C-22-19) 6BCA	SCHELL RANCH		111	_	5213	9/1979	37	5176		ERTEC 79/UTSEO
	(C-22-19)31CB (C-22-20) 1AAC	U.S.AIR FORCE ANDERSON	1980 1944	200	2	5560 5270	3/1981 5/1944	187 60	5373 5210	OBSERVATION JELL	ERTEC Utan State eng 79
	(C-22-20) 1AAD	SMITH	1948	137	6	5270	6/1948	63	5207		UTAN STATE ENG 79
7	(C-22-2C) 1DAA	LEE	1939	115	5	5270	7/1939	75	5195		UTAH STATE ENG 79
8	(C-22-2C)2400	U.S.AIR FORCE	1979	101	2	5560	3/1981			DPY OBS. WELL	ERTEC
9	(C-23-19) 7CD	U.S.ATP FORCE	1979	101	. 2	5490	3/1981	•=		DRY OBS.WELL	ERTEC
	(C-23-19) 8D (C-23-19) 9CP9	CAPPENTER PANCH DEARDEN	1976 1931	270	16	5400 5405	5/1976 11/1936	3 15	5397	OBSERVATION WELL	UTAN STATE ENG 79 HOOD ET AL 65
	(C-23-19)10CB	U.S.AIR FORCE	1979	100	ž	5485	3/1981	69		COSERVATION WELL	ERTEC
	(C-23-19)1000	U.S.AIR FORCE	1980	200	ž	5590	3/1961	163		DESERVATION WELL	ERTEC
	(C-23-19)13AAB	3LM	1935	540	5	5930		476	5454		HOOD ET AL 65
	(C-23-19)20BCA	SAIVAC		40	6	5410	11/1950	15	5395		HOOD ET AL 65
	(C-23-19)20803 (C-23-19)2008C	DAVIES		300		5410 5415	8/1979	18 16	5391 5398		ERTEC 79/UTSEO
	(C-23-19)22B	U.S.AIR FORCE	1979	50	2	5405	3/1981	48		OBSERVATION WELL	ERTEC
19	(C-23-19)24DCC	LEE	1939	472	5	5780	6/1939	455	5325		UTAN STATE ENG 79
	(C-23-19)28CB	U.S.AIR FORCE	1979	100	2	5450	3/1981	40		OBSERVATION WELL	ERTEC
	(C-24-19) 3DA	U.S.AIP FORCE	1980	500	2	5570	3/1981	126		OBSERVATION WELL	ERTEC
	(C-24-19) 3DBA (C-24-19) 4AA	U.S.AIR FORCE	1959 1979	172 100	6	5558 5530	10/1958 3/1981	136 82	5420	OBSERVATION WELL	HOOD ET AL 65 ERTEC
	(C-30-19)21EAB	STW	17/7	215	12	6325	3/1761	170	6155	ORZEKANITON METE	HOOD ET AL 65
	(C-32-19)21ABA1	•••		3.5		6740	11/1962	17	6723		HOOD ET AL 65
	(C-32-19)21ABA2			61		6740	11/1962	58	6682		HOOD ET AL 65
	(C-32-19)220CB	HULET	1963	407	9	6640	12/1964	335	6305		HOOD ET AL 65
	(C-32-19)25AAA (C-32-19)27ACC			130		6565 665 D	9/1972			DRY	HOOD ET AL 65
	144/676-24300			430 70		5650	8/1979	415 32	6235 5618		UTAH STATE ENG 79 ERTEC 79/NVSEO
31	14N/67E-24DA9			200		5600	8/1979	12	5587		ERTEC 79/NVSEO
	14N/70E-31C	SZYDLCWSKI	1950	65	5	5620	10/1950	25	5595		HOOD ET AL 65
	13N/69E-11ABC	COFFMAN	1974	105		6400	4/1974	85	6315		NV STATE ENG 79
	13N/67E-11CBC 13N/70E- 3D	SPIGGS Baker Panch	1957 1950	29 470	72 24	6550 5350	4/1958 6/1950	25	6525	FLOWING WELL	HOOD ET AL 65 Hood et al 65
	13N/70E- 4CDC	34458 44464	1730	300	8	5300	5/1979	28	5272	ACCRING MECE	ERTEC 79/NVSEO
	13N/70E- 40	BELANDER	1951	153	12	5300	5/1952	44	5256		HOOD ET AL 65
	13N/735- 98D	FOREST SERVICE	1953	8.5	6	5350	7/1953	18	5332		HOOD ET AL 65
	13N/70E- 9800	SONDER		90		5300	8/1979	16	5284		ERTEC 79/NVSEO
	13N/70E- 9C 13N/70E- 9CA	HESSELGISSER Cramer	1952 1951	84 82	6	5300 5300	7/1952		5249		HOOD ET AL 65
	13N/70E-10ABA	BAKEP RANCH	1951	1746	15	5200	8/1979	28 151	5272 5048		NV STATE ENG 79 ERTEC 79/NVSEO
	13N/70E-10CAD	MT. WHEELER RANCH		313	20	5250	8/1979			FLOWING WELL	ERTEC 79/NVSEO
	13N/70E-14CCA	SMITH	1949	415		5200	3/1979	F >		FLOWING WELL	ERTEC 79/NVSEO
	13N/70E-16C	GRESORY	1953	154	5	5435	5/1953	39	5396		HOOD ET AL 65
	13N/73E-16CC 13N/73E-16DB	*C HENRY Spith	1974 1949	107	9	5470	3/1974	53	5417		NV STATE ENG 79
	13N/70E-35ABC	BLY STATE HAY.	1947	159	5	5330	12/1947	50 100	5310 5230		NV STATE ENG 79 Hood et al 65
	13N/71=-19ECD	STA STAIL ANT.	1947	135	6	5160	10/1947	25	5135		HOOD ET AL 65
53	12N/70E-13AC	U.S.AIP FORCE	1780	200	Ş	5543	3/1981		,,,,	DRY COS. WELL	EATEC
	11N/73E-35AG	U.S.AIP FORCE	1979	101	ž	5595	3/1981	70		OBSERVATION WELL	ERTEC
	11N/70E-3538	U.S.AIP FORCE	1930	500	2	5690	3/1981	143	5537	OBSERVATION WELL	ERTEC
	11N/73E-3630 1CN/70E-11D	J.S.AIR FORCE	1779	101	. 2	5520	3/1981	67		OBSERVATION WELL	ERTEC
	104/706-110	COVINGTON	1953	100	16 15	5490 5470	7/1953 7/1953	9 14	5481 5456		HOOD ET AL 65 Hood et al 65
	104/706-250	YCUNG	1953	70	16	5525	8/1953	'7	5518		HESS ET AL 78
57	9N/69E-32DA	U.S.AIR FORCE		500	2	5910	3/1991	••		DRY OBS. WELL	ERTEC
58	94/73E-14CAB					5620	7/1979	27	5593		ERTEC 79/NVSED
59	9N/7GE-340CD 9N/71E- 6A	LEE & DEARDEN	1947	217	8	5690	8/1979	110	5500		ERTEC 79/NYSEO
51	9.54/701-33AL	J.S.419 #390E	1979	101	2	5720 5650	7/1979 7/1980	199 75	5521 5575		ERTEC 79/MVSEO ERTEC 80
62	3N/69E- 93A	J.S.AIR FORCE	1279	100	ź	5760	3/1981		2213	DRY OBS. WELL	ERTEC
53	3N/09E-1590D	DEAFDEN	• • •	110	5	5750	7/1979	75	5675		ERTEC 79/HVSEO
64	3N/69E-35DC1	U.S.AIR FORCE	1980	522	2	5834	2/1981	174	5660	OBSERVATION WELL	ERTEC
0.5	3N/67E-35DC2	J.S.AIS FORCE	1930	490	10	5716	2/1981	156	5660	TEST WELL	ERTEC
	34/676-36444	3 F.A.	1930	480	10	5916	3/1979	145	5671		ERTEC 79/NVSEO
66	SN/7DE- SABA	L ♥	1747	164	5	5673	7/1979	38	5582		ERTEC 79/4VSEO

WELL AND WATER LEVEL DATA HAMLIN VALLEY, UTAH

30 NOV 81

		WELL DESCRIPTI					WATER L	EVEL MEASURE	MENTS	REMARKS	DATA SOURCE
	TOWNSHIP RANGE-SECTION	WELL	YEAR DRILLED	WELL	CASING ID	LAND	MO/YEAR	DEPTH-BELOW SURFACE (FT)	ELEV (FT)		
	10N/51E-140AA 10N/51E-34DC 9N/51E-22AAB 9N/51E-340DB 9N/51E-34DCB 8N/50E-33BA 8N/51E-18CC 8N/51E-34C	NRC NRC NRC VALIANT FARMS NRC NRC	1929 1967 1967 1967 1967 1968 1967	915 350 4206 5306 180 598 590	8 20 6 20 20	6190 6545 6110 5789 5759 5533 5763	7/1980 6/1967 7/1967 4/1967 12/1967 12/1948 7/1980 3/1969	475 551 360 215 150 330	6070 5559 5429 5544 5383 5433 5433	FLOWING WELL 720' INTRVL.TESTED	ERTEC 80/MVSEO DINWIDDIE ET AL 71 DINWIDDIE ET AL 71 DINWIDDIE ET AL 71 DINWIDDIE ET AL 71 USES 79 ERTEC 80/MVSEO DINWIDDIE ET AL 71
10 11 12 13 14	8N/51E-34CAC 7N/51E-4DC 7N/51E-10AD1 7N/51E-10AD2 6N/50E-108B 6N/50E-11BCC 6N/50E-17CDC	VALIANT FARMS U.S.AIR FORCE U.S.AIR FORCE U.S.AIR FORCE OBVT. MIMING CO VALIANT FARMS	1948 1980 1980 1980 1964	155 200 480 480 261	10	5492 5490 5603 5626 5640 5553 6150	11/1948 3/1981 9/1980 9/1980 7/1980 10/1965 7/1942	110 129 238 255 243 183 130	5365	OESERVATION WELL USAF TEST WELL OBSERVATION WELL	RUSH ET AL 66 ERTEC BO ERTEC BO ERTEC BO/MYSEO RUSH ET AL 66 NV STATE ENG 79
16 17 18 19 20 21	6N/50E-27AC1 6N/50E-27AC2 6N/50E-35A 6N/51E-17BD 6N/51E-22BA8 5N/50E-18D	U.S.AIR FORCE U.S.AIR FORCE VALIANT FARMS U.S.AIR FORCE STATE OF NY U.S.AIR FORCE	1980 1980 1942 1980 1960 1960	505 455 205 197 238 202	10 2 6 2 10	5522 5508 5327 5305 5250 5270	9/1980 9/1980 7/1980 3/1981 7/1980 3/1981	291 301 169 79 45 114	5231 5207 5158 5226 5205	TEST WELL OBSERVATION WELL OBSERVATION WELL OBSERVATION WELL	ERTEC 80 ERTEC 80 ERTEC 80/NVSE0 ERTEC ERTEC 80/NVSE0 ERTEC
22 23 24 25 26 27	5N/51E- 7BC 5N/51E- 7BDB 5N/51E-11CDC 5N/51E-19BA 4N/50E- 9BD 4N/51E-13ACC	AIR FORCE-NRC AIR FORCE-NRC U.S.AIR FORCE THIN SPR. RANCH	1980 1980 1973 1980 1970	223 200 195	Ž	5220 5220 5170 5187 5460 5125	7/1980 7/1980 10/1965 11/1973 3/1981 7/1980		5151 5144 5145 5138 5125		ERTEC BO/NYSEO ERTEC BO/NYSEO USGS 79 NY STATE ENG 79 ERTEC ERTEC BO/NYSEO
28 29 30 31 32	4N/51E-138D 4N/51E-13D 4N/51E-13DA	THIN SPR. RANCH FALLINI THIN SPR. PANCH U.S.AIR FORCE U.S.AIR FORCE	1970 1959	130 300 80 200 200	6 8 12 2	5130 5120 5125 5210 5240	7/1970 /1959 10/1967 3/1981 3/1981		5127 5117 5116 5155	UNUSED	NV STATE ENG 79 ROBINSON ET AL 67 NV STATE ENG 79 ERTEC ERTEC

WELL AND WATER LEVEL DATA HOT CREEK VALLEY, NEVADA

30 NOV 81

E-TR-52-II B-14

	WELL DESCRIPT	TON			WATER LEVEL MEASUREMENTS			REMARKS	DATA SOURCE	
ID. TOWNSHIP NO. RANGE-SECTION	WELL OWNER	YEAR Dailled		CASING ID (IN)	LAND ELEV (FT)	MO/YEAR	DEPTH-BELOW SURFACE (FT)	ELEV (FT)		
1 19N/60E-21CB 2 18N/60E-10DB		1050	190 30	6	7080 6790	11/1980 11/1980	163 18	6917 6772 6580		ERTEC BO/NVSEO ERTEC BO/NVSEO NV STATE ENG 79

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

WELL AND WATER LEVEL DATA JAKES VALLEY, NEVADA

30 NOV 81

l	***********	WELL DESCRIPTION					MATER L	EVEL MEAS	UREMENTS	REMARKS	DATA SOURCE
ID.	TOWNSHIP	WELL	YEAR	WELL	CASING		MO/YEAR	DEPTH-BE	LOW ELEV		
NO.	RANGE-SECTION	OWNER	DRILLED		10	ELEV		SURFACI	E		
				(FT)	(IN)	(FT)		(FT)	(FT)		
1	22N/49E- 4BA01				6	4540	10/1980	7	6533		ERTEC BO/NVSEO
2	224/518-3088	ROBERTS CK. RANG	1958	350	13	6475	10/1980	115	6360		ERTEC BO/NVSEO
3	21H/48E-10CA	ETCHEGARY	1947	20	6	6600	10/1947	10	6590		ROBINSON ET AL 67
4	21m/48E-15AAA				6	6486	10/1980	7	6479		ERTEC 80/NVSEO
5	21N/49E-16CC	SANTE FE RANCH	1945	60	6	6235	10/1980	43	6192		ERTEC BO/WVSED
	21N/50E-17B	BLM	1974	124		6232	4/1974	50	6182		NV STATE ENG 79
	21H/51E- ZA	SLM	1970	580	8	6320	4/1970	228	6092		NV STATE ENG 79
	20N/49E- 9CD	ETCHEGARY	1951	250		6150	9/1951	6	6144		ROBINSON ET AL 67
	20N/49E- 9CDB	BARTINE RANCH		23		6154	10/1980	.0	6154		ERTEC BO/NVSEO
	20M/49E- 9D	DAMELE	1953	85	12	6160	8/1953	15	6145		RUSH ET AL 64
	20M/49E-23CA				6	6140	10/1980		6128		ERTEC BO/WYSEO
	20M/49E-24AAD				6	6115	10/1960		6107		ERTEC BO/NVSEO
	20M/49E-30BDA	U.S.AIR FORCE	1960	150	Z	6210		_		VANDALIZED OBS.WELL	
	20N/50E-21AC				•	6090	9/1980			FLOWING WELL	ERTEC 80/NVSEO ERTEC 80/NVSEO
	20N/51E- 7AC		1980	200	6 2	6140	10/1980 2/1981	11 41	6129		
	20N/51E-12CA	U.S.AIR FORCE NAY RANCH	1780	90	10	4019	9/1980	18	4001	OBSERVATION WELL	ERTEC BO/NVSEO
	20M/52E-1780A 20M/52E-17CBD	HAY RANCH		25	6	6010	9/1980		6003		ERTEC BO/NVSEO
	20N/52E-18ABA	HAY RANCH		٤,	12	6018	9/1980	,	6011		ERTEC BOTHVSEO
	20N/52E-20A	HAY RANCH	1951	120		6010	5/1951	16	5994		ROBINSON ET AL 67
	20N/52E-2008A		1771	120	10	6080	9/1980			FLOWING WELL	ERTEC BO/NVSEO
	20N/52E-20088	HAY RANCH				6080	9/1980		6070	TOUR SECE	ERTEC BO/NVSEO
	19N/47E-15C88	741 84848			16	6300	10/1980		6210		ERTEC BO/NVSEO
	19N/47E-16CD					6315	10/1980	76	6239		ERTEC BO/NVSEO
	19N/47E-22ABB					6275	10/1980	66	6209		ERTEC 80/NVSEO
	19N/47E-22888				12	6284	10/1980	8.8	6196		ERTEC BO/NVSEO
	19N/47E-22CC				6	6270	10/1980		6212		ERTEC BO/NVSEO
28	19N/47E-23ABB				16	6260	10/1980	44	6214		ERTEC BO/NVSEO
	19M/47E-28DB	U.S.AIR FORCE	1980	150	2	6275	2/1981	64	6211	OBSERVATION WELL	ERTEC
30	19M/47E-31AAD				6	6309	10/1980	99	6210		ERTEC BOINVSEO
31	19N/47E-35AB	DRY CR. RANCH	1958	102	8	6260	10/1980	50	6210		ERTEC BO/NVSEO
32	19N/48E-12AB	FARR	1959	90	6	6183	10/1980	9	6174		ERTEC BO/NVSEO
33	19N/45E-21DB					6250	10/1980	52	6198		ERTEC 80/NVSEQ
	19N/49E- 4ABB				14		10/1980	1	6151		ERTEC 80/NVSEO
35	19N/49E- 5DAA	DRY CR. RANCH	1951	280	12	6133	10/1980	2	6153		ERTEC BO/NVSEO
	19N/49E- 6DAD				50	6164	10/1960	4	6160		ERTEC 80/NVSEO
	19N/49E- 8000				14	6160	10/1980	. 3	6157		ERTEC BO/NVSEO
	19N/49E-18CA		1959	90	. 6	6200	10/1980	27	6173		ERTEC BO/NYSEO
	19H/49E-29CC				16	6340	10/1980	176	6164		ERTEC BO/NYSEO
	19N/49E-30AAA	FARR	1959	223		6278	13/1980	107	6171		ETTEC BO/NYSEO
	194/49E-3080	******				6345	10/1980	169	6176		ERTEC BO/NYSEO
	194/50E-168CC	BARTINE RANCH		315		6100	9/1980			FLOWING WELL	ERTEC BO/NVSEO
	19M/50E-17ADD		4040	304		6100	9/1980			FLOWING WELL	ERTEC BO/NVSEO
	19N/50E-24AA	U.S.AIR FORCE	1980 1967	201		6085	3/1981	34		OBSERVATION WELL	ERTEC BO/NVSEO
	194/50E-30DB	EUREKA RANCH	1707			6280	9/1980		6154 6217		ERTEC BOJNVSEO
	184/48E- 7ACB	GRIPES PANCH				6370			6860		ERTEC BOJAVSEO
. •	18W/48E-23BA				•	6920	10/1980	90	9200		EMIEC GOLMANGO

WELL AND WATER LEVEL DATA KOBEH VALLEY, NEVADA PAGE 1 OF 2

30 NOV 81

B-16

E-TR-52-II

ID. TOWNSHIP
NO. RANGE-SECTION
48 18N/5DE- 5DA

WELL DESCRIPTION

WATER LEVEL MEASUREMENTS REMARKS

DATA SOURCE

WELL

YEAR

DRILLED DEPTH ID

LEV

(FT) (IN) (FT)

U.S.AIR FORCE

1980

201

2 6320

3/1981

121

6199

OBSERVATION WELL

ERTEC

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

WELL AND WATER LEVEL DATA KOBEH VALLEY, NEVADA PAGE 2 OF 2

30 NOV 81

		WELL DESCRIPTI						EVEL MEASURE			DATA SOURCE
ID.	TOWNSHIP RANGE-SECTION	WELL Owner	YEAR DRILLED	WELL	CASING	LAND		DEPTH-BELOW SURFACE (FT)			
1	10N/65E-13CB	WITTS	1966	130	10	6217	11/1966	110	6107		NV STATE ENG 79
2	10H/65E-36D	GEYSER RCH.		165	10	5970	7/1963	26	5944	CAVE IN a 28'	RUSH ET AL 63
3	10N/65E-36DA	GEYSER RCH.	1965	843		5940	10/1965		5930		NV STATE ENG 79
	10N/66E- 9A	BLM, HECKERTHORN		228		6050	7/1963		5872		RUSH ET AL 63
	13#/66E-17A	BLM, TWISSELMAN		125	6	6010	7/1963	99	5911		RUSH ET AL 63
	10N/66E-50CA	U.S.AIR FORCE	1980	160		5990				DESTROYED	ERTEC BO
	10N/66E-31A			46		5935	7/1963		5902		RUSH ET AL 63
8		WITTS	1967	490			5/1967		5922		NV STATE ENG 79
	10M/66E-318B	GEYSER RCH.	1966	468		5970	5/1966		5910		NV STATE ENG 79
	10N/66E-348B	WITTS	1966	155	8	6030	11/1966		5920		NV STATE ENG 79
	10#/66E-34CD	U.S.AIR FORCE	1979	101	2	5960	3/1981			DRY OBS.WELL	ERTEC
	10N/66E-340C	U.S.AIR FORCE	1980	500		6100	3/1981			DRY OBS.WELL	ERTEC
13		GEYSER RCH.		165		5940	7/1963			CAVE IN 9 40.	RUSH ET AL 63
14	9N/65E- 1A2	GEYSER RCH.	1967	128 597	16	5940 5990	7/1963			UNUSED	RUSH ET AL 63 NV STATE ENG 79
15 16	9N/65E- 1BA 9N/65E- 1BD2	WITTS GEVSER RANCH	1961	55		5980	1/1967		5965 5945		NV STATE ENG 79
17	9N/65E-13B	NY HWY. DEPT.	1962	57		5980	7/1963		5964		RUSH ET AL 63
18	9N/65E-138A	TWISSELMAN	1950	65		5950	6/1950			FLOWING 12GPM	NV STATE ENG 79
19	9M/65E-138D	TWISSELMAN	1950	52		5950	6/1950			FLOWING 65PGM	NV STATE ENG 79
50	9#/65E-13CC	WITTS	1967	330		5940	6/1967			FLOWING 1006PM	NV STATE ENG 79
21	9W/45E-238D		1967	297	10	6060	7/1967		5875		NV STATE ENG 79
žż	9N/65E-25CB	WITTS	1967	635	16	3940	8/1967		5932		NV STATE ENG 79
53	9N/65E-26AA2	GEYSER RCH.	1972	100	. 5	5960	9/1972		5950		NY STATE ENG 79
24	9N/65E-35AC	WITTS	1965	580	-	5960	6/1965		5918		NV STATE ENG 79
25	9N/66E- 4A	BLA		53	6	5930	7/1963		5893		RUSH ET AL 63
26	9N/66E-23BD	GEYSER RCH.	1967	297		6100	7/1967		5915		NV STATE ENG 79
27	9N/66E-34A	BLA		103		6000	7/1963		5912		RUSH ET AL 63
28	8N/65E- 2AC	MENDENHALL	1960	150		5950	5/1960		5915		NV STATE ENG 79
29	8H/65E- 2D			130		5950	7/1963			UNUSED	RUSH ET AL 63
30	8M/65E-10CC	GEYSER RCH.	1965	383	8	6185	7/1965		5955	•	NV STATE ENG 79
31	8N/65E-12D	BLM		45	Ĭ.	5918	7/1963		5894		RUSH ET AL 63
32	8N/65E-13	MEV. HWY. DEPT.	1957	57	8	5920	8/1957	6	5914		NV STATE ENG 79
33	8N/65E-33D	BLM, MILK RCH.	1945	325	6	6220	8/1963	297	5923		RUSH ET AL 63
34	8M/65E~33DA	WITTS	1965	390	10	6200	12/1965	120	6080		NV STATE ENG 79
35	8M/65E-35AD	GEYSER RCH.	1968	500	10	5950	1/1968	55	5895		NV STATE ENG 79
36	8N/66E-10BC	GEYSER RCH.	1968	217	8	5961	6/1968	74	5887		NV STATE ENG 79
37	8N/66E-11AD	U.S.AIR FORCE	1980	500	2	6110	3/1981	••		DRY OBS.WELL	ERTEC
38	8N/66E-11BC	U.S.AIR FORCE	1979	101	2	6040	3/1981			DRY OBS.WELL	ERTEC
39	8N/66E-270	BLR		56		5925	7/1963		5883		RUSH ET AL 63
40	BM/66E-36CB	U.S.AIR FORCE	1979	101		5935	11/1979			OBSERVATION WELL	ERTEC 80
41	7N/65E- 9 1	GEYSER RCH.	1966	220		6220	1/1967		6073		NV STATE ENG 79
42	7N/65E- 9 2	GEYSER RCH.	1969	410		6220	6/1969		5908		NV STATE ENG 79
43		GEYSER RCH.	1967	550		6056	6/1967		5909		NV STATE ENG 79
44	7N/65E-140	GEN. CONST.	1959	300		5980	7/1959		5940		NV STATE ENG 79
45		BLR		229		6360	8/1963		6145		RUSH ET AL 63
44		WITTS	1966	264		6316	6/1966		6116		NV STATE ENG 79
• /	7M/65E-23A	GEYSER RCH.	1967	276	8	5938	12/1967	75	5863		NV STATE ENG 79

WELL AND WATER LEVEL DATA LAKE VALLEY, NEVADA PAGE 1 OF 3

30 NOV 81

	WELL DESCRIPTI	ON				MATER L	EVEL MEASURE	ME NT S	REMARKS	DATA SOURCE
D. TOWNSHIP O. RANGE-SECTION	WELL OWNER	YEAR DRILLED	WELL	CASING ID		MO/YEAR	DEPTH-BELOW SURFACE	ELEV		
			(FT)	(IN)	(FT)		(FT)	(FT)		
48 7M/45E-23D	BLM		30	6	6020	8/1963	26	5994		RUSH ET AL 63
49 7M/65E-35		1968	250	10	6320	1/1968	90	6230		NV STATE ENG 79
50 7M/66E- 6C	BL#	1942	71	6	5921	8/1963	28	5893		RUSH ET AL 63
31 7N/66E-16DC	U.S.AIR FORCE	1979	101	2	5920	3/1981	17		OBSERVATION WELL	ERTEC
32 7N/66E-3300	GEYSER RCH.	1968	232	10	5932	7/1968	59	5873		NV STATE ENG 79
33 7N/66E-36C	BLM		126	6	5980	7/1963	109	5871		RUSH ET AL 63
54 7M/67E- 688	F & M LAND CO.	1955	872	10	6090	2/1955	16	6074	PLUGGED	RUSH ET AL 63
55 7N/67E-20C			180	6	6040	7/1963	168	5872		RUSH ET AL 63
6 7N/67E-21A	SLF		307	6	6160	7/1963	292	5868		RUSH ET AL 63
7 7N/67E-27CA	JORDAN	1965	505	12	6254	10/1965	192	6062		NV STATE ENG 79
8 6M/65E-14DA		1967	152	8	6153	3/1967	100	6053		NV STATE ENG 79
9 6H/65E-25AA	U.S.AIR FORCE	1980	200	ž	6040	3/1981	••	****	DRY OBS.WELL	ERTEC
0 6N/66E- 8BA	BLM	1945	95		5931	8/1963	52	5879		RUSH ET AL 63
1 6M/66E-108D	WISEMAN	1976	500		5935	8/1976	86	5849		NV STATE ENG 79
2 6N/66E-19B	BLM		233	8	5955	8/1963	96	5859		RUSH ET AL 63
3 6M/66E-19CB	GEN. CONST.	1959	240	ā	5990	6/1959	90	59C0		NV STATE ENG 79
- 6M/66E-22BA	SUNDEREN	1942	410		5960	6/1962	101	5859		RUSH ET AL 63
5 4M/66E-22BD	SARWOOD	1962	450		5955	6/1962	103	5852		RUSH ET AL 63
4 6H/66E-27BA	GEYSER RCH.	1972	180		5955	8/1972	120	5835		NV STATE ENG 79
7 6M/66E-278D	WRIGHT	1964	541		5955	11/1964	102	5853		NV STATE ENG 79
8 6N/66E-27DD	GARWOOD	1967	476		5965	1/1967	109	5856		NV STATE ENG 79
9 64/666-2986	LARSON	1967	450		5963	3/1967	116	5847		NV STATE ENG 79
0 6M/66E-2988	LARSON	1966	621	16	5960	1/1966	118	5842		NV STATE ENG 79
1 6M/66E-30AA	GEYSER ACH.	1971	242		5965	11/1971	135	5830		NV STATE ENG 79
2 6N/46E-30AB	LARSON	1964	420		5980	12/1964	126	5854		NV STATE ENG 79
3 6M/66E-300C	GEYSER ACH.	1969	320		6030	8/1969	205	5825		NV STATE ENG 79
4 6M/66E-32BC	FRY	1959	175	a	6032	4/1959	145	5887		NV STATE ENG 79
5 4M/66E-34DA	SUNDGREN	1966	500		3970	1/1966	107			
6 6M/66E-35D	SLM	1700	161	' ' ' '	5990	7/1963	130	5863		NV STATE ENG 79
7 6N/67E- 58	267	1966	324		6040		194	5860		RUSH ET AL 63
8 6M/67E-18C1	BLM	1954	275	12	6080	1/1966		5846		NV STATE ENG 79
'9 6N/68E- 9C	ATLANTA CO.	1934	385		7186	7/1963	208	5872		RUSH ET AL 63
10 SM/66E- JAD	GERLACH	1966	500		5962	6/1955	22 107	7164		NV STATE ENG 79
1 SN/66E-14AC						1/1966	. • .	5855		NV STATE ENG 79
	SLM	1955	225		5985	4/1955	145	5840		H/ STATE ENG 79
32 5N/66E-14BD	BLM	1955	146	•	5980	7/1963	138	5842		RUSH ET AL 63
3 SH/66E-35	DODGE CONST. CO		300	. 6	5940	3/1953	500	5740		NV STATE ENG 79
4 5N/67E-35BC1	MMS. & SONS	1966	25		6800	12/1966	3	6797		NV STATE ENG 79
15 5N/67E-35ac2	WMS. & SONS	1966	30	12	6800	12/1966	_7	6793		NV STATE ENG 79
16 5N/68E- 6C	COTTING		35		6640	9/1963	34	6606		RUSH ET AL 63
17 4M/66E- 2A	3LM	1937	301		5900	3/1953	195	5705		RUSH 64
BB 4N/66E- 2CC	BLM	1937	260	7		10/1937	230	5730		NV STATE ENG 79
9 4N/66E-14D	81#	1958	303		5360	7/1958	165	5695		NV STATE ENG 79
90 4M/66E-35AC			144		5775	7/1963	123	5652		RUSH 64
91 3N/66E- 2DD	9LH	1937	140		5730	11/1937	90	5640		NV STATE ENG 79
92 3M/66E- 3AC	WELLS CARGO INC		303		5900	10/1953	210	5690		NV STATE ENG 79
93 3N/66E-23D		1937	87		5676	10/1963	42	5634		RUSM 64
94 3M/67E- 4BC	BLM	1958	382	6	6000	1/1958	340	5660		RUSH 64

WELL AND WATER LEVEL DATA LAKE VALLEY, NEVADA PAGE 2 OF 3

30 NOV 81

		WELL CERCRIPT	ON				MATER LE	EVEL MEASURE	MENTS	REMARKS	DATA SOURCE
	TOWNSHIP RANGE-SECTION	MELL OWNER	YEAR DRILLED	WELL DEPTH (FT)	ID	LAND ELEV (FT)	MO/YEAR	DEPTH-BELOW SURFACE (FT)	ELEV (FT)		-
95	3M/67E- SAD	BLM	1944	382		5975	12/1966	352	5623		NV STATE ENG 79
96	3M/67E-79BA	U.S.AIR FORCE	1980	200	2	5775	3/1981	147	5628	OBSERVATION WELL	ERTEC
97	2N/66E-13CA	U.S.AIR FORCE	1980	200	2	5920	3/1981			DRY OBS.WELL	ERTEC
78	2N/67E-14AA	U.S.AIR FORCE	1979	100	2	5720	3/1981			DAY OBS.WELL	ERTEC
99	2N/67E-16C	HOLLINGER	1948	52	6	5400	/1948	22	5578		NV STATE ENG 79
100	2M/67E-1601		1963	48	6	5574	10/1963			DRY	RUSH 64
101	2M/67E-188C	U.S.AIR FORCE	1979	100	ž	5800	3/1981			DRY OBS.WELL	ERTEC
102	2M/67E-24BA	BINGHAM	1972	190	14	5700	7/1972			PAY	NV STATE ENG 79
103	2N/67E-27A	KANVIE	1976	89		5535	7/1976	38	5497	•	NV STATE ENG 79
104	2H/67E-27AA	TIEMLE	1971	500	10	5533	1/1971	24	5509		NV STATE ENG 79
105	2#/67E-35CB	U.S.AIR FORCE	1980	150	• •	5510	3/1981	56		OBSERVATION WELL	ERTEC
104	2N/68E- 7BD	U.S.AIR FORCE	1980	203	2	5890	3/1981			DRY OBS.WELL	ERTEC
107	2N/68E-27AD	BLM	1937	40	Ā	3980	12/1937	16	5964	J 0031022	RUSH 64
108	1N/67E- 888	U.S.AIR FORCE	1980	200	5	5920	3/1981			DRY CBS.WELL	ERTEC
109	1N/67E-15A	PIOCHE MINES	1938	563	•	5760	1/1938	368	5392		RUSH 64

WELL AND WATER LEVEL DATA LAKE VALLEY, NEVADA PAGE 3 OF 3

30 NOV 81

B-2Q

		WELL DESCRIPTION	N				WATER L	EVEL MEASURE	MENTS	REMARKS	DATA SOURCE
	TOWNSHIP RANGE-SECTION		YEAR DRILLED			LAND ELEV (FT)	MO/YEAR	DEPTH-BELOW SURFACE (FT)	ELEV (FT)		
١,	17N/53E-29BCD	BARTHOLOMAE				6192	3/1980	156	6036		ERTEC BO/NVSEO
	17M/54E- 8BD	BLM	1966	322	6	6200	9/1966		5907		NV STATE ENG 79
	17N/54E-21AB	HULL	1965	210		6005	7/1977		5915		MARION 80
	174/54E-21BB	TODO	1965	285		6020	5/1976	95	5925		MARION 80
	17N/54E-21CB	TODD	1977	260		5990	3/1977	74	5916		MARION EO
	17N/54E-21DB	HULL	1970	252		5985	7/1977	65	5920		PARION 80
	17N/54E-22ABA		•	•		5980	3/1980		5926		ERTEC BO/NVSEO
	17N/54E-29CAB	SARTHOLOMAE	1960	61	48	5987	3/1980	53	5934		ERTEC BO/NVSEO
	17M/54E-3180	U.S.AIR FORCE	1980	160	2	6078	3/1981	91	5987	OBSERVATION WELL	ERTEC
	16M/53E-10DCB	BARTHOLOMAE		539		6034	3/1980		6028		ERTEC BO/NVSEO
	16N/53E-30BDB	BARTHOLOMAE	1942	186		6119	3/1980		6041		ERTEC 8C/NVSEO
	16N/53E-32CC	U.S.AIR FORCE	1980	170		6177	3/1981			OBSERVATION WELL	ERTEC
	16N/54E-15BAC			85		6017	3/1980			DRY WELL	ERTEC BO/NVSEO
	16N/54E-208AC	BARTHOLOMAE	1956	125		6023	/1956		5946		RUSH ET AL 66
	15M/52E-13BAD	BARTHOLOMAE	1942	376		6400	3/1980		6054		ERTEC 80/NVSEO
	15N/52E-35CDA		· · -	500		6435	/1963	400	6035		RUSH ET AL 66
	15M/53E-23ACD	BARTHOLOMAE		350		6140	/1965		5954		RUSH ET AL 66
	15N/53E-28ABC	BARTHOLOMAE	1956	242		6180	/1956	220	5960		RUSH ET AL 66
	15N/53E-32DBD	KINCAID	1953	242		6231	3/1980		6010		ERTEC BO/NVSEO
	154/54E- 60CB	FISH CREEK RANCH		164		6100	3/1980		5939		ERTEC BO/NVSEO
	15N/54E-11ADD			45		6360	3/1980		6350		ERTEC BO/NVSEO
	15N/54E-18BD	U.S.AIR FORCE	1980	160		6160	1/1981		- 300	DRY OBS.WELL	ERTEC
	14N/51E-24CAA				-	6995	3/1980		6985		ERTEC BO/NVSEO
	11N/53E- 6CDR			900		6535	3/1980		6033		ERTEC BO/NVSEO

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

WELL AND WATER LEVEL DATA LITTLE SMOKY VALLEY, NEVADA

30 NOV 81

B-21

		WELL DESCRIPT	10N				WATER L	EVEL MEASURE	PENTS	REMARKS	DATA SOURCE
	TOWNSHIP RANGE-SECTION	WELL OWNER	YEAR DRILLED	DEPTH		ELEV	MO/YEAR	DEPTH-BELOW SURFACE			
				(FT)	(IN)	(FT)		(FT)	(FT)		
1	24M/59E~ 1DC	U.S.AIR FORCE	1980	150	2	6290	3/1981	103	6187	OBSERVATION WELL	ERTEC
2	23N/57E-24A	BLM		270	6	6640	11/1980	234	6405		ERTEC BO/NVSEO
3	23H/58E~27A	U.S.AIR FORCE	1980	150	2	6200	3/1981	107	6093	OBSERVATION WELL	ERTEC
4	23N/58E~34AD				6	6125	11/1980	58	6066		ERTEC 80/NVSEO
5	23M/59E- 6C	U.S.AIR FORCE	1980	150	ž	6225	3/1981	72	6153	OBSERVATION WELL	ERTEC
6	23H/59E-16C	U.S.AIR FORCE	1980	150	2	6225	3/1981	62	6163	OBSERVATION WELL	ERTEC
7	22M/57E-35A	AMSELCO				6475	/1979	700	5775		AMSELCO MINE CO 80
8	22M/58E-21AD	GOICOECHEA		125	4	6090	11/1980	40	6049		ERTEC 80/NVSEO
9	22N/58E-340	U.S.AIR FORCE	1980	150	2	6090	3/1981	50	6040	OBSERVATION WELL	ERTEC
10	22M/59E-108D	ELIA		123	6	6160	11/1980	23	6136		ERTEC 80/NVSEO
11	22N/59E-28B	ELIA		71	á	6125	11/1980	64	6060		ERTEC BO/NVSEO
12	21H/58E- 7C	GOICDECHEA		13	-	6290	10/1957	11	6279		EAKIN 61
	21N/58E-10D	ETCHEGARY		120	6	6070	11/1980	48	6022		ERTEC 80/NVSEO
14	21N/58E-21A	U.S.AIR FORCE	1980	150	Ž	6075	3/1981	57	6018	OBSERVATION WELL	ERTEC
	21H/58E-32C1	ETCHEGARY			ā	6090	11/1980	73	6016		ERTEC BO/NVSEO
16	21 N/58E-32C2	ETCHEGARY		105		6090		86	6004		EAKIN 61
17	21N/58E-35BA	ELIA		79	6	6060	11/1980	68	5991		ERTEC BO/NVSEO
18	21M/59E-180A	ELIA			6	6100	11/1990	89	6010		ERTEC BO/NVSEO
19	21N/59E-31D	ELIA		201	6	6225	11/1980	170	6055		EAKIN 61
20	20N/58E- 8C1	GOICOECHEA		114		6100	1/1948	91	6008	DUG WELL	EAKIN 61
21	20N/58E- 8C2	8LM	1952	170	6	6100	10/1957	90	6009		EAKIN 61
22	20M/58E- 8C3	BLM	1953	225	8	6100	2/1961	90	6009		EAKIN 61
23	20N/58E-14A	GOICGECHEA		135	8	6090	11/1980	116	5973		ERTEC 80/NVSEO
24	20M/58E-20D	8L#	1964	233	6	6175	11/1980	166	6009		ERTEC 80/NVSEO
25	20N/59E-29CB	BLM	1964	323		6250	1/1964	270	5980		NV STATE ENG 79
26	19M/58E- 3AD	BLM	1964	344	8	6300	4/1964	262	6038		NV STATE ENG 79

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

WELL AND WATER LEVEL DATA LONG VALLEY, NEVADA

30 NOV 81

B-22

WELL DESCRIPTION	N				MATER LE	VEL MEASURE	MENTS	REMARKS	BATA SOURCE
ID. TOWNSHIP WELL NO. RANGE-SECTION OWNER	YEAR DRILLED	DEPTH	19	ELEV	MO/YEAR	DEPTH-BELOW SURFACE			•
		(FT)	(IN)	(FT)		(FT)	(FT)		
1 18N/47E- 5C DAMELE		115	6	6299	3/1948	81	6218		RUSH ET AL 64
2 18N/47E-20A			6	6317	10/1980	90	6227		ERTEC BO/NVSEO
3 17N/47E- 8A			6	6380	10/1980	77	6303		ERTEC 80/NVSEO
4 16N/47E- 4D			ă	6450	10/1980	60	6390		ERTEC BO/NVSEO
5 16M/47E-35ABA AIRPORT			6	6515	10/1980	98	6417		ERTEC BO/NVSEO
6 16M/48E- 8BA			•	6850	1071760	108	6742		NV STATE ENG 70
7 15N/47E- BADA MONITOR RANCH		740				170			
		210		6720	4/1964		6550		ROBINSON ET AL 67
8 15N/48E-30CAD MONITOR RANCH	1959	350	12	6692	/1959	10	6682		ROBINSON ET AL 67
9 13m/47e-23cc				7000	9/1968	12	6988		NV STATE ENG 79
13 13N/47E-29C PINE CREEK RANCI	•		8	6790	10/1980	3	6787		ERTEC BO/NVSEO
11 12H/47E- 7AA			Ă	6788	10/1980	Š	6783		ERTEC BO/NVSEO
12 12M/47E-1988 PINE CREEK RANCI	4		•	6798	10/1980	ī	6794		ERTEC BO/NVSEO
13 11N/40E- 4AC	•			6840	10/1980	21	6819		ERTEC BO/NVSEO
			,						
14 11N/46E-15AAA PINE CREEK RANCI			6	6839	10/1980	6	6833		ERTEC 8C/NVSEO
15 10n/46E-12A PINE CREEK HANCI	1 1947	93	12	6888	10/1980	4	6884		ERTEC 80/NVSEO
16 10N/46E-12D2 WARDLAW	1947	94	12	6892	10/1980	10	6882		ERTEC BO/NVSEO
17 9M/47E-16BA BARLEY CK.RNCH.			12	7220	10/1980	16	7204.		ERTEC BO/NVSEO

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

WELL AND WATER LEVEL DATA MONITOR VALLEY, NEVADA

E-TR-52-II B-23

l		WELL DESCRIPT	ION				WATER L	EVEL MEASURE	MENTS	REMARKS	DATA SOURCE
	ID. TOWNSHIP NO. RANGE-SECTION	GRAEK Graek	YEAR DRILLED			LAND ELEV (FT)	MO/YEAR	DEPTH-BELOW SURFACE (FT)	ELEV (FT)		
	1 SN/64E-11CBC 2 SN/65E-34BC 3 4N/64E- 7BC1 4 4N/64E- 7BC2	WILLIAMS U.S.AIR FORCE U.S.AIR FORCE	1972 1981 1981	222 28 1253 1215	5 14 2 10	5680 6600 5540 5540	6/1981 5/1972 9/1981 9/1981	10 264 268		ORY OBSERVATION WELL TEST WELL	ERTEC /NVSEO MV STATE ENG 79 ERTEC ERTEC

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

WELL AND WATER LEVEL DATA MULESHOE VALLEY, NEVADA

30 NOV 81

		WELL DESCRIPTION						EVEL MEAS			DATA SOURCE
٥,	TOWNSHIP	WELL	YEAR	WELL	CASING	LAND		DEPTH-BE	LOW ELEV		
٥.	RANGE-SECTION	OWNER	DAILLED	(FT)	(IN)			SURFACI (FT)	L (FT)		
,	23M/55E- 3CC	al #	1966	350	6	7000	9/1966	330	6670		NV STATE ENG 79
2	23N/55E-248C				16	5890	11/1980	7	5883		ERTEC BO/HVSEO
	23M/56E-360	WARM SPRS. RANCH			6	5880	11/1980			FLOWING	ERTEC 80/HVSEO
	23M/56E-36DD	WARM SPRS. RANCH	1951	300	. 8		11/1980			FLOW. <16PM	ERTEC 80/NVSEO
	22N/55E-27BD				36	5880	11/1980		5871		ERTEC BO/NVSEO
	22N/55E-34C			10		5870	8/1960		5861		EAKIN 60
	22N/56E-10CAA 21N/55E- 301	U.S.AIR FORCE Hooper	1981	150	2	5880 5850	3/1981 11/1980		3833 5845	OBSERVATION WELL	ERTEC ERTEC 80/NVSEO
	21N/55E-10CCB	HOOPER		26	3	5930	11/1980		5911		ENTEC BO/NVSEO
	21N/55E-22C1	BLM		18	42		4/1948		5872		EAKIN 60
	20N/55E-1001	BLM		22	36	5871	12/1959	ě	5862		EAKIN 60
	20M/55E-34DA					5875	11/1980	16	5859		ERTEC BO/NVSEO
	20N/55E-340C				6	5900	11/1980	24	5876		ERTEC 80/NVSEO
	20N/57E-20D				6	6075	11/1980		5983		ERTEC BO/NVSEO
	20N/57E-28CBB	U-S-AIR FORCE	1981	150	. 2	6080	3/1981			OBSERVATION WELL	ERTEC
	19N/55E-15888				16	5880	11/1980		5840		ERTEC 80/NVSEO
	19N/55E-16AD 19N/55E-22AC	HARPER	1955	235	6 16	5879 5880	11/1980 7/1955		5850 5866		ERTEC 80/NVSEO NV STATE ENG 79
	19N/55E-22BAA	HARPER	1933	237	16	5878	11/1980		5864		ERTEC BO/NVSEO
	19N/55E-22BC	HARPER	1965	204	16	5881	12/1965		5860		NV STATE ENG 79
	19N/55E-22CBB		,		16	5869	11/1980		5821		ERTEC BO/NVSEO
	19N/55E-22CBC					5867	11/1980		5860		ERTEC BO/NVSEO
	19N/55E-27B	BOATURIGHT	1966	160	16	5900	2/1966		5875		NV STATE ENG 79
	19N/55E-29CC	BOATURIGHT	1966	250	16	6200	8/1966		6178		NV STATE ENG 79
	19M/55E-34AB		1972			5895	2/1972		5852		NV STATE ENG 79
	19N/55E-34BC1	CAFFGA	1965	163	16	5910	10/1965		5869		NV STATE ENG 79
	19N/55E-34BC2	CAFFGA	1966	254	16	5910	12/1966		5850		NV STATE ENG 79
	19N/56E-25DAB	U.S.AIR FORCE	1981	200	2	6040	3/1981			OBSERVATION WELL	ERTEC
	19N/56E-30AC 19N/56E-30D1	BLM		35	48	5895 5895	11/1980		5861 5862		ERTEC BO/NVSEO NV STATE ENG 79
	19N/57E- 5AC	01.7		,,	*8	6020	11/1980		3002 5992		ENTEC BO/NVSEO
	19N/57E-11B				10	6450	11/1980		6206		ERTEC BO/NVSEO
	19N/57E-19BC			112		5993	11/1980		5885		ERTEC BO/NVSEO
6	18N/55E- 8D8	INDUST.CONST. CO	1962	147	10	6015	11/1980	107	5908		ERTEC BO/NVSEO
	18N/555- 9BBC				16	5962	11/1980		5899		ERTEC 80/NVSEO
	18N/55E- 9BCC		1979	250		5960	11/1980		58 98		ERTEC 80/NVSEO
	18N/55E- 9CB	BOATURIGHT	1964	204	17	5940	5/1964		5885		NV STATE ENG 79
	18N/55E-11D	BOATWRIGHT	1964	240	14	5940	4/1964		5895		NV STATE ENG 79
	18M/55E-14CD 18M/55E-16BBB	BOATWRIGHT U.S.AIR FORCE	1966 1981	100		5960 5937	11/1980 3/1981		5896	OBSERVATION WELL	ERTEC 80/NVSEO ERTEC
	18N/55E-17DC	CAFFGA	1965	163		5955	11/1965		5889		NV STATE ENG 79
	18N/55E-19BDD				,,,	4100	11/1980		5937		ERTEC BO/NVSEO
	18N/55E-21DAB				3	5942	11/1980		5897		ERTEC BO/NVSEO
4	18M/55E-21DAD				3	5942	11/1980	45	5897		ERTEC 80/NVSEO
	18N/55E-21DD	CHAPMAN	1966	250		5945	12/1966		5898		NV STATE ENG 79
	18N/55E-23888				- 6	5921	11/1980		5864		ERTEC BO/NVSEO
	18N/55E-31CAB	U.S.GOVERNMENT		43		5945	11/1980		5908 5893		ERTEC BO/NVSEO
	18N/56E- 2BA 18N/56E-21D			41		6035	3/1957		5873 6575		ERTEC BO/NVSEO NV STATE ENG 79
	134/566-334			25		6560	8/1957		6552		NV STATE ENG 79
	134/57E-158			14		6450	8/1957		6470		NV STATE ENG 79
	17N/54E- 2D	WV HWY. DEPT.		75		5980	3/1980		5937		ERTEC BO/NVSEO
	17N/54E- 200	BAPTHOLOMAE	1951	76		5960	3/1980		5918		ERTEC BO/MVSEO
4	17N/55E- 4BC	_		_	6	5960	11/1980		5900		ERTEC BO/NVSEO
	174/55E- 68	YRASABA		70		5945	11/1980		5904		ERTEC BO/NVSEO
	17N/55E- 9CCC	U.S.AIR FORCE	1951	150		6040	3/1981			OBSERVATION WELL	ERTEC
	174/558-1848	ADDLEMAN	1980	227	16	5950	9/1980		5906		ERTEC BO/NVSEO
	17N/55E-18ACC 17N/55E-18AD	HROKEM CINCH RAF	1971	305		5978	3/1980			PUMP TEST	ERTEC BO/NVSEO
	17N/55E-18800	ADDLEMAN ADDLEMAN	19/1	209		5950	3/1980		5898 5903		ERTEC BO/NVSEO ERTEC BO/NVSEO
	174/55E-1800	ADDLEPAN	1967	193			3/1980		5901		ERTEC BOJNVSEO
	17N/552-27D		1797	40		6331	3/1980		6294		ERTEC BO/NVSEO
	17N/57E-32DE			-0	3	6650	11/1980		6170		ERTEC BO/4VSEO
	17N/57E-360C						11/1980		7259		

WELL AND WATER LEVEL DATA NEWARK VALLEY, NEVADA

30 NOV 81

B-25

E-TR-52-II

		WELL DESCRIPT	I O M				WATER LI	EVEL MEASURE	RENTS	REMARKS	DATA SOURCE
	TOWNSHIP RANGE-SECTION	WELL OWNER	YEAR DRILLED		CASING ID (IN)	LAND ELEV (FT)	MO/YEAR	DEPTH-BELOW SURFACE (FT)	ELEV (FT)		
1	35/61E-3488				12	4713	6/1980			W.L.>500*	ERTEC BO/NVSEO
ż	45/61E- 1AA					4520	6/1980	500	4020	WATER DPTH EST.	ERTEC BO/NVSEO
3	45/61E- 9AC	SEVENTY CORP.	1965	300		4460	10/1965			DRY/UNCASED	NV STATE ENG 79
	45/61E-1508			•••	6	4375	2/1977	670	3705	SEALED & 50°	USGS 79
Š	45/61E-22CA	STEWART	1963	310	•	4300	12/1963		• • • • •	DRY/UNCASED	NV STATE ENG 79
á	45/61E-23AD	STEWART	1963	160		4470	12/1963			DRY/UNCASED	NV STATE ENG 79
7	45/61E-28CAC	NAGEL	1948	1314		4230	9/1968	595	3635		NV STATE ENG 79
á	45/62E- 700		1,00	104		4640	6/1980			DRY	ERTEC BO/NVSEO
- 7	45/628- 9002	SEVENTY CORP.	1965	410	-	4900	10/1965			DRY/UNCASED	NV STATE ENG 79
10		SEVENTY CORP.	1965	240		4920	10/1965			DRY/UNCASED	NV STATE ENG 79
,,,		CHAMBERLAIN	1967	25	10	4410	6/1980			DRY	ERTEC BO/NVSEO
12		SCHWARTZ	1967	30		4425	6/1980			DRY	ERTEC BO/NVSEO

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

WELL AND WATER LEVEL DATA PAHROC VALLEY, NEVADA

30 NOV 81

		WELL DE	SCRIPT	ION				MATER L	EVEL MEASURE	MENTS	REMARKS	DATA SOURCE
	TOWNSHIP RANGE-SECTION	WELL OWNER		Y EAR DRILLED	WELL DEPTH (FT)	CASING ID (IN)	LAND ELEV (FT)	HO/YEAR	DEPTH-BELOW SURFACE (FT)	ELEV (FT)		
,	15/55E-1800	U.S.AIR	FORCE	1979	188	2	5250	12/1980			DRY OBS.WELL	ERTEC 80
2	15/55E-22ABD					-	5050	6/1980	286	4762		ERTEC BO/MVSEO
3	15/56E-288D	U.S.AIR	FORCE	1979	192	2	5401	12/1980			DRY OBS.WELL	ERTEC 80
4	28/55E-10CC	U.S.AIR	FORCE	1980	200	Ž	4900	3/1981	170	4730	OBSERVATION WELL	ERTEC
5	23/55E-20ABB				• • •	_	4956	6/1980	250	4706		ERTEC BO/NVSEO
6	25/55E-24CD	U.S.AIR	FORCE	1979	160	2	4785	3/1981	54	4731	OBSERVATION WELL	ERTEC
7	2\$/56E- 5CA	U-S-AIR	FORCE	1980	200	Ž	4750	3/1981	124	4626	OBSERVATION WELL	ENTEC
8	28/56E-10AB					6	4730	6/1980	96	4634		ERTEC 80/NVSEO
9	23/56E-32AD	U.S.AIR	FORCE	1979	200	2	4860	3/1981	129	4731	ORSERVATION WELL	FRTSC

WELL AND WATER LEVEL DATA PENOYER VALLEY, NEVADA

30 NOV 81

R-27

	WELL DESCRIPTS	ON				WATER L	EVEL MEASURE	MENTS	REMARKS	DATA SOURCE
ID. TOWNSHIP NO. RANGE-SECTION	WELL OWNER	YEAR DRILLED	WELL DEPTH (FT)		LAND ELEV (FT)	RO/YEAR	DEPTH-BELOW SURFACE (FT)	ELEV (FT)		
1 (0-25-16)18800	DEARDEN	1924	340	8	5085	/1955	300	4785		STEPHENS 76
2 (C-26-14)19880	HOODS	1928	394		5205	11/1979	340	4864		ERTEC 79/UTSEO
3 (C-26-17)10AA1	U.S.AIR FORCE	1980	1157	2	5220	4/1981	434		OBSERVATION WELL	ERTEC
4 (C-26-17)10AA2	U.S.AIR FORCE	1980	951	10	5220	4/1981	437		TEST WELL	ERTEC
5 (C-26-17)17DAC	ANDERSON	1944	801	6	5355	/1955	717	4638		STEPHENS 76
6 (C-28-16)29CBB	PUFFER	1972	140	6	6245	12/1972	50	6195		UTAH STATE ENG 79
7 (C-28-17) 1CAA	PHELPS DODGE CO		510		5500	12/1979			DAY METT	UTAH STATE ENG 79
8 (C-28-17)11CCA	PHELPS DODGE CO	R 1978	1305	12	5680	6/1978	365	5315		UTAH STATE ENG 79
9 (C-28-17)2200A	PHELPS DODGE CO	R 1978	2006		5780	8/1978	375	5405		UTAH STATE ENG 79
10 (C-30-17)27AAA	BLM	1936	668		4550	/1934			DRY WELL	STEPHENS 74

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE·MX

WELL AND WATER LEVEL DATA PINE VALLEY, UTAH

30 NOV 81

		WELL DESCRIPTIO					WATER L	EVEL MEASURE	MENTS	REMARKS	DATA SOURCE
	TOWNSHIP RANGE-SECTION	WELL OWNER	YEAR Drilled	WELL	CASING ID	LAND	MO/YEAR	DEPTH-BELOW SURFACE			
				(FT)	(IN)	(FT)		(FT)	(FT)		
1	16N/57E-20DA	SHELL OIL CO.	1956	350	6	7500	5/1967	215	7285		VAN DENBURGH ETAL
2	15N/55E-21	BUR. INDIAN AFF.	1951	271		6300	9/1957			DRY WELL	VAN DENBURGH ETAL
3	15N/56E-2589	U.S.AIP FORCE	1980	203	2	5950	3/1981	127	5823	OBSERVATION WELL	ERTEC
4	15N/57E-17DCD	3LM	1944	221	6	6098	10/1971	208	5880		VAN DENBURGH ETAL
5	15N/57E-329A	MARTIN	1969	280	16	6040	6/1969	171	5869		. VAN DENBURGH ETAL
6	14N/55E-12808	3LM	1956	400	6	5930	9/1957			DRY WELL	VAN DENBURGH ETAL
7	14N/56E-199CB			226	6	5820	4/1972	205	5615		VAN DENBURGH ETAL
8	13N/55.5E-16PA	U.S.AIP FORCE	1980	199	2	5630	3/1981	122	5508	OBSERVATION WELL	ERTEC
9	13N/56E-19DCB			85	5	5575		81	5494		VAN DENBURGH ETAL
10	13N/56E-29CEA		1971	103	6	5600	10/1971	27	5573		VAN DENBURGH ETAL
11	12N/55.5E-19BA	96"	1958	289	6	5672	10/1971	506	5466		VAN DENGURGH ETAL
12	12N/56E-34C9A	CCPPER SHEEP CO.	1959	505	14	5200	10/1959	7	5193		VAN DENBURGH ETAL
13	12N/57E- 99CP	8LM	1943	356	6	5500	10/1971	272	5228		VAN DENBURGH ETAL
14	11N/55E-21	HALSTEAD		17		6680	11/1956	10	6670		VAN DENBURGH ETAL
15	11N/56E- 2ADC	HALSTEAD	1959	250	14	5095	10/1971	39	5056		VAN DENBURGH ETAL
16	13N/57E- 9CD	PEM	1942	354	6	5072	4/1972	172	4900	STOCK	VAN DENBURGH ETAL
17	11N/57E-2690	U.S.AIR FORCE	1980	199	2	5060	3/1981			DAY OBS. WEL.	ERTEC
18	10N/56E- 3AA	U.S.AIR FORCE	1980	200	2	5180	3/1981			DRY OBS. WELL	ERTEC
19	10N/56E-34CC	U.S.AIR FORCE	1980	199	2	4990	3/1981	153	4837	OBSERVATION WELL	ERTEC
20	10N/57E-12DDA	MCLARTY	1966	401	16	5050	10/1971	178	4872		VAN DENBURGH ETAL
21	10N/57E-13CBA	BAILEY	1967	370	16	4990	9/1967	160	4530		VAN DENBURGH ETAL
22	10N/57E-14AAA	FARMER	1966	\$26	16	4990	4/1972	146	4844		VAN DENGURGH ETAL
23	10N/57E-15AAA	BALL	1968	500	16	4945	10/1971	83	4862		VAN DENBURGH ETAL
24	10N/57E-15ADD	WILSON	1970	251	16	4940	4/1970	80	4860		VAN DENBURGH ETAL
	10N/57E-23			305		4950	8/1959	155	4795		NV STATE ENG 79
26	10N/S7E-23AAA	BRIDGES	1966	358	16	4953	10/1971	157	4803		VAN DENBURGH ETAL
27	10N/57E+27AAA	WATSON	1969	500	16	4900	10/1971	70	4830		VAN DENPURGH ETAL
28	10n/57E-300	CAMPSELL		15	4 9	4530	9/1953	12	4818		VAN DENBURGH ETAL
29	10N/57E-323AB	CAMPBELL		348	6	4827	8/1967	F >	4827	FLOW. 250-350GPM	VAN DENBURGH ETAL
30	10n/53E-17ad1	U.S.AIR FORCE	1980	600	10	5126	4/1981	279	4847	TEST WELL	ERTEC
31	1GN/58E-173D2	U.S.AIR FORCE	1960	600	2	5128	4/1981	278	4850	OBERVATION WELL	ERTEC
3 Z	9N/56E-149DA	SHARP	1964	101		4779	10/1971	1	4778		VAN DENBURGH ETAL
33		U.S.AIR FORCE	1980	198	2	4870	3/1981	110	4760	OBSERVATION WELL	ERTEC
34	9m/56E-34CAC	FISH & WLDLF.	1934	700	5	4730	6/1968	F >	4730	FLCW. 90GPM	VAN DENBURGH ETAL
35		FISH & WLDLF.	1935	550	6	4732	7/1969	F >	4732	FLOW. 36GPM	VAN DENBURGH ETAL
36		WHITSETT	1754	500	14	4930	10/1971	131	4799		VAN DENBURGH ETAL
37		STIS	1954	92		4867	10/1971	70	4797		VAN DENBURGH ETAL
58				52		4807	11/1956	8	4799		NV STATE ENG 79
39		F.A.A.	1963	141	4	4902	10/1971	10	4792		VAN DENBURGH ETAL
40		DILLARD	1964	550	16	4880	/1965	100	4780		VAN DENBURGH ETAL
41		SHAPP		219	É	4760	10/1971			FLOW. 0.2GPM	VAN DENBURGH ETAL
42		SHELL OIL CO.	1956	50		4750	1/1956	4	4746		VAN DENBURGH ETAL
43		N. AM. RES. CORP		79	6	4759	4/1972	3	4756		VAN DENBURGH ETAL
44		SHELL DIL CO.	1953	60	6	4753	12/1953	15	4735		VAN DENGURGH ETAL
45		SHELL DIL CO.	1953	200	ŧ.	4753	12/1953	2	4751		VAN DENBURGH ETAL
46				5.50	6	4755	3/1972	F >	4755	FLOWING WELL	VAN DENBURGH ETAL
47	9N/58E-183CA				6	4838	10/1971	53	4785		VAN DENBURGH ETAL

WELL AND WATER LEVEL DATA RAILROAD VALLEY, NEVADA PAGE 1 OF 3

30 NOV 81

		WELL DESCRIPT					WATER L	EVEL MEASU	REM	ENTS	REMARKS	PATA SOURCE
ID.	TOWNSHIP RANGE-SECTION	WELL Gwner	YEAR DRILLED	WELL	CASING ID (IN)		MO/YEAR	DEPTH-BEL SURFACE (FT)		ELEV (FT)		
48	8N/56E- ZCBA	FISH & WLDLF.	1934	430	6	4732	2/1980	F			FLOW. 906PM	ERTEC BO/NVSEO
49	8N/56E- 2DAC	FISH & WLDLF.	1912	1204		4734	2/1980	F			FLOW. 2506PM	ERTEC 80/4VSEO
50	8N/56E- 3ACB	FISH & WLDLF.	1934	550		4731	2/1980	F			FLOW. 1006PM	ERTEC BO/NVSEO
51	8N/56E-268AD	USGS	1971	8	4	4709	10/1971	7		4702		VAN DENBURGH ETAL 74
52	8N/57E- 4A	FISH & WLDLF.	1935	635	6	4738	5/1935				FLOW.WELL/110-125GP#	VAN DENBURGH ETAL 74
53	8N/57E- 7CA	SUTHERLAND	1971	55		4727	10/1971	2		4725		VAN DENBURGH ETAL 74
54	8N/57E-14A	HANKS	1951	185	14	4740	8/1951				FLOW.WELL/600GPM	VAN DENBURGH ETAL 74
5.5	8N/57E-140		4000			4760					FLOWING WELL	NV STATE ENG 79
56	8N/57E-22CDC	SHELL OIL CO.	1955	43	6	4730	10/1971	3		4727		VAN DENBURGH ETAL 74
57	8N/57E-27DDA	HANKS	1951	550	٠	4757	7/1951	12		4745		VAN DENBURGH ETAL 74
58	7N/55E- BCA	U.S.AIP FORCE	1980	201	2	4860	3/1981	93			OBSERVATION WELL	ERTEC
59	7N/55E-28CA	SHELL OIL CO.	1955	46	٥	4727	5/1955	<u> </u>			FLOW.WELL/20GPM	VAN DENBURGH ETAL 74
60	7N/56E- 100	FISH & WLDLF.	1912	770		4709	2/1934	F			FLOW.WELL/1.5GPM	VAN DENBURGH ETAL 74
	7N/36E- 3CCB1 7N/56E+ 3CCB2	FISH & WLDLF.	1912	795 29		4707 4707	/1934				FLOWING WELL	VAN DENBURGH ETAL 74
62 63	7N/57E- 5CAA	5 kg 1 1 0 2 1 6 0	1961	85		4711	7/1969	. 5		4702 4701		VAN DENBURGH ETAL 74
64	7N/57E-1108	SHELL DIL CO. U.S.AIR FORCE	1980	118	5 2	4940	11/1961 3/1981	10	•	4/01	584 654 USL	VAN DENBURGH ETAL 74 ERTEC
65	7N/57E-21AA	3LM	1969	150	6	4759	5/1969	1		4758	DRY 095. WELL	VAN DENBURGH ETAL 74
66	6N/54E-23808	U.S.AIR FORCE	1980	200	ž	4760	3/1981	29			OBSERVATION WELL	ERTEC
67	6N/55E- 5ACC	FISH & WLDLF.	1913	745	6	4712	2/1980				FLOW. 350GPM EST.	ENTEC BO/NVSEO
53	5N/56E-14A8	F134 : 4000F.	1713	749	0	4730	271760				FLOWING WELL	NV STATE ENG 79
69	5N/55E-14DCD	SHARP	1962	285	8	4760	5/1962	- 1			FLOW. WELL/100GPM	VAN DENBURGH ETAL 74
70	6N/55E-18DBD	3L#	1950	131	5	4735	10/1971	· ·			FLOWING	VAN DENBURGH ETAL 74
71	6N/56E-27ACB	SHARP	1962	99		4768	10/1971				FLCW.WELL/100GPM	VAN DENBURGH ETAL 74
72	6N/56E-27800	3.1.4.1.	.,,,	100	•	4760	3/1972	,			FLOW. WELL/40-50GPM	NV STATE ENG 79
73	6N/56E-36CA	J.S.AIR FORCE	1980	150	2	5100	9/1980		•		DRY OBS. WELL	ERTEC 80
74	5N/57E+ 6DDA	GULF CIL CO.	1967	150	6	4780	11/1967	22		4758	0 0031 WEEL	VAN DENBURGH ETAL 74
75	5N/54E-24DCB	CASEY	1951	100	5	4823	10/1971	55		.768		VAN DENBURGH ETAL 74
76	5N/54E-26DC	U.S.AIR FORCE	1790	200	ž	4835	3/1991	71			OBSERVATION WELL	ERTEC
77	5N/54E-34DAB	CASEY	1948	110	- 5	4948	11/1967	82		6766	VD3C-17X110W VCCC	VAN DENBURGH ETAL 74
78	5N/55E-15CD		1960	70	•	4783	/1960	19		4764		VAN DENBURGH ETAL 74
79	5N/55E-27CBP	31350N	1964	250	18	4794	5/1964	31		4763		VAN DENBURGH ETAL 76
80	5N/55E-27CBC	31750N	1965	245	13	4795	5/1965	31		4764		VAN DENBURGH ETAL 74
81	5N/55E-28D88	COLLINS	1954	217	16	4799	2/1964	3.8		4761		VAN DENGURGH ETAL 74
82	5N/55E-3395C	SIESON	1965	249	18	4805	4/1965	33		4772		VAN DENBURGH ETAL 74
83	54/55E-330DD	G1850N	1965	396	18	4820	5/1965	55		4765		VAN DENBURGH ETAL 74
84	5N/55E-34AEA	SHARP	1951	75	6	4797	10/1971	30		4767		VAN DENBURGH ETAL 74
85	5N/55E-34CDD	SIESON	1965	299	15	4810	10/1971	57		4743		VAN DENBURGH ETAL 74
56	5N/55E-34000	SHARP	1965	395	1.5	4820	10/1965	69		4751		VAN DEMBURGH ETAL 74
87	54/55E-35300	SHARP	1965	320	16	4815	10/1955	55		4760		VAN DENPURGH ETAL 74
88	5N/55E-35CDD	SHARP	1964	320	16	4971	3/1964	76		4795		VAN DENBURGH ETAL 74
89	54/55E-360AD1	SHARP	1951	105	9	4887	5/1951	50		4837		VAN DENBURGH ETAL 74
90	5N/55E-360AD2	SHARP	1965	179	16	4887	10/1971	61		4826		VAN DENBURGH ETAL 74
91	5N/56E-21A5	J.S.AIR FORCE	1990	201		4760	3/1981	194	4	4766	OBSERVATION WELL	ERTEC
92	44/54E-180C	CASEY	1745	150		4911	11/1967	137		4774		VAN DENBURGH ETAL 74
93	4N/55E-19DA	SHARP	1951	255	6	5000	10/1971	214		4786		VAN DENBURGH ETAL 74
94	4N/55E-243A	U.S.AIP FORCE	1983	200	2	4960	3/1951	166		4794	DESERVATION WELL	ERTEC

WELL AND WATER LEVEL DATA RAILROAD VALLEY, NEVADA PAGE 2 OF 3

30 NOV 81

		WELL DESCRIPT	ÖN				WATER L	VEL MEASURE	MENTS	REMARKS	DATA SOURCE
	TOWNSHIP RANGE-SECTION	WELL OWNER	YEAR DRILLED	DEPTH	CASING	ELEV	MO/YEAR	DEPTH-BELOW SURFACE	_		
				(FT)	(IN)	(FT)		(FT)	(FT)		
95	3M/52E- 2DA1	U.S.AIR FORCE	1980	484	10	5006	4/1981	230	4776	TEST WELL	ERTEC
96	3M/52E- 2DA2	U.S.AIR FORCE	1980	495	2	5008	4/1981	233	4774	CESERVATION WELL	ERTEC
97	3M/53E-18BC	U.S.AIR FORCE	1980	200	2	4990	3/1981			DRY OBS. WELL	ERTEC
98	3M/53E-20DA			161		4965	2/1980			DRY WELL	ERTEC BO/NVSEO
99	3N/53E-35BAC	FALLINI		204	6	4942	3/1972	165	4777		VAN DENBURGH ETAL 74
100	3N/54E- 5BC	SHARP	1948	325	6	5040	11/1948	265	4775		VAN DENBURGH ETAL 74
101	2M/53E- 9BC	U.S.AIR FORCE	1950	200	2	4925	3/1981	164	4761	OBSERVATION WELL	ERTEC
102	2N/53E-23CBC	FALLINI	1962	180	6	4892	3/1972	113	4779		VAN DENBURGH ETAL 74
103	2N/53E-270A	U.S.AIR FORCE	1980	200	Ž	4565	1/1981			DRY OBS.WELL	ERTEC
104	2N/53E-35AA	U.S.AIR FORCE	1980	200	2	4990	3/1981	193	4797	OBSERVATION WELL	ERTEC
105	2.5N/52E-35AC	U.S.AIR FORCE	1980	200	ž	4970	3/1981			DRY OBS. WELL	ERTEC
106		U.S.AIR FORCE	1980	200	ž	4950	3/1981	119	4831	OBSERVATION WELL	ERTEC
107	1N/53E- 3DAC	FALLINI		120	4	4851	3/1972	69	4782		VAN DENBURGH ETAL 74
108	1N/53E- 7ADC	FALLINI		136	6	4880	3/1972	78	4802		VAN DENBURGH ETAL 74
109		FALLINI	1948	200	6	4970	3/1972	172	4798		VAN DENBURGH ETAL 74
110		FALLINI	1951	272	5	5045	11/1951	205	4840		VAN DENBURGH ETAL 74
111		NV DEPT. HWYS.	1952	292	ā	5050	5/1957	225	4825		VAN DENBURGH ETAL 74
112		FALLINI	1959	370		5930	10/1959	335	5595		VAN DENBURGH ETAL 74
113		FALLINI	1950	465	6	5205	3/1972	415	4790		VAN DENBURGH ETAL 74

WELL AND WATER LEVEL DATA RAILROAD VALLEY, NEVADA PAGE 3 OF 3

33 NOV 81

	******	WELL DESCRIPT					WATER L	EVEL MEASURE	MENTS	REMARKS	DATA SOURCE
ID.	TOWNSHIP RANGE-SECTION	WELL OWNER	Y EAR DRILLED	WELL	CASING ID		MO/YEAR	DEPTH-BELOW SURFACE (FT)	ELEV (FT)		
1		ARCULARIUS		260		6630	9/1980	1 65	6465		ERTEC BO/NVSEO
2	7H/44E-29D		1959	203		6600	10/1959	92		STOCK WELL	THORDARSON ETAL 71
] 3	7M/44E-36CAA	ARCULARIUS	1948	240		6175	10/1946	182	5993		THORDARSON ETAL 71
4	7M/45E- SAD	PAAMAN		250		6385	9/1980	114	6271		ERTEC BO/NYSEO
5	7N/45E-19BD				6	6245	9/1980	197	6048		ERTEC BO/NVSEO
6	6M/43E-22DCD	ARCULARIUS	1950	320		6030	2/1950	227	5803		THORDARSON ETAL 71
7	6M/44E-14D	PARMAN		560	8	6050	11/1948	192	5858		THORDARSON ETAL 71
8	6N/44E-23D88				6	6027	9/1980			DRY 8 195"	ERTEC BO/NVSEO
9	5N/44E- 78DA	ARCULARIUS				5880	9/1980	72	5808		ERTEC BO/NVSEO
10	58/44E-1098	PARMAN			6	5905	9/1980	102	5803		ERTEC 80/NVSEO
11	5M/44E-16BC	U.S.AIR FORCE	1980	151	2	5885	3/1981	80	5805	OBSERVATION WELL	ERTEC
12	5M/44E-32BCC			18		5795	12/1960	12	5783		THORDARSON ETAL 71
13	4M/43E-1600A				6	6000	9/1980	389	5611		ERTEC BO/NVSEO
14	4M/44E- 58BA			18	3	5769	9/1980	12	5757		ERTEC 80/NVSEO
15	4M/44E- 8AB1	TONOPAH	1943	63	12	5745	6/1962	12	5733		THORDARSON ETAL 71
16	4M/44E- BAB2	TONOPAN	1943	60	14	5740	6/1962	9	5731		THORDARSON ETAL 71 .
17	4M/44E- 8AB3	TONOPAH	1913	60	14	5735			5727		THORDARSON ETAL 71
18	4M/44E- 8BA	TONOPAH	1943	65	14	5735	6/1962	ě	5726		EAKIN 62
19	4M/44E- 8CC1	TONOPAH		38		5710	5/1948	À	5702		THORDARSON ETAL 71
20	4M/44E- BCC2	TONOPAH		38	Ă	5710	9/1980	ě	5701		ERTEC BO/NVSEO
21	4M/44E-15CB	U.S.AIR FORCE	1980	140	ž	5930	3/1981			DRY OBS.WELL	ERTEC
22	4M/44E-18AD1	TONOPAH			_	5490	9/1980	11	5679		ERTEC BO/NVSEO
23	4M/44E-18AD2	TONOPAN		47	12	5690	5/1948	11	5679		THORDARSON ETAL 71
24	4M/44E-19AA	TONOPAH		55		5650		8	5642		THORDARSON ETAL 71
25	4M/44E-19ARB	TONOPAH			12	5450	9/1980	10	5640		ERTEC BO/NVSEO
26	38/436-360	NYE CO.			12	5425	9/1980	480	4945		ERTEC BO/NVSEO
27	3M/44E- 68A	U.S.AIR FORCE	1980	191		5575	3/1981		4,4,	DRY OBS.WELL	ERTEC
28		CORNELL	1947	540		5480	3/1947	480	5000	V	THORDARSON ETAL 71
29		W & D HUNT	,,,,,	,,,,	10	5375	9/1980	378		STOCK WELL	ERTEC BO/NVSEO
30				264		3380	77 1760	376	4771	DRY	THORDARSON ETAL 71
31		ARCHI ARTHR		325		3260	9/1980	280	4980	VA 1	ERTEC BO/NVSEO
, ,,	< m/ 478-6166	ARCULARIUS		363		3440	7/1780	£ 0 V	4740		EKIEL OU/MYSEU

WELL AND WATER LEVEL DATA RALSTON VALLEY, UTAH

30 NOV 81

B-32

E-TR-52-II

۱			WELL DESCRIPT	ON				WATER L	EVEL MEASURE	HENTS	REMARKS	DATA SOURCE
l		TOWNSHIP RANGE-SECTION	WELL OWNER	PE AR DE LL ED	WELL DEPTH (FT)	CASING ID (IN)	LAND ELEV (FT)	MO/YEAR	DEPTH-BELOW SURFACE (FT)	ELEV (FT)		
	1 2 3 4 5	4N/50E-20CAD 4N/50E-229C 4N/51E-2PCAC 3N/50E-13CA1 3N/50E-13CA2 3N/51E-18CDA	FALLINI U.S.AIR FORCE FALLINI U.S.AIR FORCE U.S.AIR FORCE FALLINI	1980 1980 1951 1981 1981 1948	201 137 702 680 320	6 2 5 2 10	5440 5290 5264 5350 5485 5450	7/1980 1/1981 /1951 2/1981 2/1981 7/1980	134 95 317 317	5169 5033	OBSERVATION WELL STOCK USE OBSERVATION WELL TEST WELL	ERTEC 80/NVSEO ERTEC NV STATE ENG 79 ERTEC ERTEC ERTEC 80/NVSEO
l	7	2M/50E-34C	STOCK	,,,,,	720	6	6350	10/1965	12		STOCK USE	ROBINSON ET AL 67

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

WELL AND WATER LEVEL DATA REVEILLE VALLEY, NEVADA

30 NOV 81

- ABLE C1-27

		WELL DESCRIPTI						EVEL MEASU		REMARKS	DATA SOURCE
I D.	TOWNSHIP RANGE-SECTION	JELL		HELL	CASING ID	LAND		DEPTH-BELO SURFACE (FT)			
	(C- 9- 9)348D	U.S.AIR FORCE	1980	200	2	4550	3/1981			DRY OBS.WELL	ERTEC
	(C-10- 9) 480A	BLM	1935	555		4525	3/1980		4335	DA. 003.0000	ERTEC 80/UTSED
	(C-10- 9)21ACC	SHARR	1964	127		4427	3/1980		4374		ERTEC BO/UTSEO
	(C-11- 8) 7CDC	34844	1704	215		4550	6/1962		4472		UTAN STATE ENG 7
	(C-11- 8)1808C	MC KEAN	1962	200	11	4553	3/1980	66	4487		ERTEC BO/UTSEO
	(C-11- 8)208CC	BENNION	1962	200		4549	5/1963		4510		MOWER ET AL 64
	(C-11- 8)218C	U.S.AIR FORCE		200		4660	3/1981			OBSERVATION WELL	
	(C-11- 8)28CPC	0.2. WIN PORCE	1750	200	•	4587	/1965	48	4539	CASESANITON BELL	UTAN STATE ENG 7
	(C-11- 8)33CCC	BENNION	1952	376		4591	5/1963	33	4558		USAS 79
			1957	450		4530					
	(C-11- 9) 1BCA	BENNION					3/1980		4450		ERTEC 80/UTSEO
	(C-11- 9) 1CDB	9 ENN ION	1952	443		4528	5/1963	72	4456		MOWER ET AL 64
	(C-11- 9)12CAA	BENNION	1962		11	4547	3/1976	78	4469		USGS 79
	(C-12- 6) 15BAC	SLH	1948	335		5110	3/1980		4904		ERTEC BOJUTSEO
	(C-12- 6)26AA		1980	500		5035	3/1981	48		OBSERVATION WELL	ERTEC
	(C-12- 7) 38CB	SLA	1948	270		4897	8/1948	235	4662		MOMER ET AL 64
	(C-12- 7) BCA	U.S.AIR FORCE	1980	500		4815	3/1981	76		OBSERVATION WELL	ERTEC
	(C-12- 8) 48AC	PETERSON	1960	250		4593	3/1980	34	4559		ERTEC BO/UTSEO
	(C-12- 8) 4DAD	PETERSON	1959	220		4593	12/1959	60	4533		MOMER ET AL 64
	(C-12- 8) 988A	PETERSON	1959	272		4588	3/1980	28	4560		ERTEC BO/UTSEO
	(C-12- 8) 90BA	PETERSON	1958	390		4585	3/1980	53	4562		ERTEC 80/UTSEO
21	(C-12- 8)268C	U.S.AIR FORCE	1980	160		4645	3/1961	50	4595	OBSERVATION WELL	ERTEC
22	(C-12- 8)28AAC	BLM	1935	245	6	4588	3/1980	20	4568		ERTEC 80/UTSEO
53	(C-13- 6) 9BC	U.S.AIR FORCE	1980	150	2	4805	3/1981	150	4655	OBSERVATION WELL	ERTEC
24	(C-13- 6)128CB					4890	3/1960	194	4696		ERTEC BO/UTSED
25	(C-13- 6)20AC	U.S.AIR FORCE	1980	151	2	4725	3/1981	64	4661	OBSERVATION WELL	ERTEC
26	(C-13- 6)26BAC	8LM	1935	175	6	4753	3/1979	70	4683		US65 79
27	(C-13- 6)34BC	U.S.AIR FORCE	1980	160	2	4720	3/1981	59	4661	OBSERVATION WELL	ERTEC
28	(C-13- 6)35AD	U.S.AIR FORCE	1980	202	2	4760	3/1981	58		OBSERVATION WELL	ERTEC
29	(C-13- 7) 9CBC	BL#		210	6	4638	3/1980	39	4599		ERTEC BO/UTSEO
30	(C-13- 7)12DB	U.S.AIR FORCE	1980	160	Ž	4725	3/1981	69	6656	OBSERVATION WELL	ERTEC
31	(C-13- 8)148C	U.S.AIR FORCE	1980	160		4595	3/1981	3		OBSERVATION WELL	ERTEC
	(C-14- 5)35CDC	NELSON	1959	305		4788	3/1979	104	4684		uses 79
	(C-14- 6) 9BAB	CHRISTENSEN	1955	185		4728	10/1963	7.8	4650		HOWER ET AL 64
	(C-14- 6) 90DA	CHRISTENSEN	1944	143		4709	10/1963	57	4652		MOWER ET AL 64
	(C-14- 6) 21CCC	LYMAN	1937	185		4719	10/1963	68	4651		HOWER ET AL 64
	(C-14- 7) 1CAB	CITAN	1731	150		4651	3/1980	20	4631		ERTEC BO/UTSEO
	(C-14- 8)25CCC	8L#	1957	340		4575	3/1978	ž v		FLOWING WELL	US68 79
	(C-14- 9) 19DAA	V677	1737	200		4735	1/1980	180	4555		EPTEC 80/UTSEO
	(C-14- 9)2780	U.S.AIR FORCE	1980	160		4440					ERTEC
						4790	3/1981	103		OBSERVATION WELL	
	(0-15- 5) 1008	GREATHOUSE	1951	296			3/1980	114	4676	****	ERTEC 80/UTSEO
	(C-15- 5)10CD	U.S.AIR FORCE	1980	500			3/1980	103		OBSERVATION WELL	ERTEC 80
	(C-15- 5)1388C	LYNNDYL IRR.CO.		310		4780	3/1980	110	4670		ERTEC BOJUTSEO
	(C-15- 5)26BAA	DMAD IRR.CO.		860		4688	3/1979		4671		US68 79
	(C-15- 5)2900A	BLM	1949	132			3/1980		4670		ERTEC 80/UTSEO
	(C-15- 6)19CAC		1956	235		4671	3/1980		4629		ERTEC BOJUTSED
	(C-15- 4)298D	U.S.AIR FORCE		120		4730	5/1980			OBSERVATION WELL	ERTEC BO
4.7	(C-15- 6)31CCC	HOLMAN	1954	195	,	4626	3/1979	0	4626		USGS 79

WELL AND WATER LEVEL DATA SEVIER DESERT , UTAH PAGE 1 OF 2

30 NOV 81

		WELL DESCRIPTI						EVEL MEASU				DATA SOURCE
ID.	TOWNSHIP RANGE-SECTION		YEAR	WELL DEPTH	CASING	LAND		DEPTH-BELO SURFACE (FT)				
	(C-15- 7)178AD	ELARIA LAKELAND DYLP. DAVIS ROBERTS DAVIS		235	2	4588	3/1979			4584		USGS 79
	(C-15- 7)180CC	LAKELAND DYLP.			2	4576	3/1980		>	4576	FLOWING WELL	ERTEC 80/UTSEO
	(C-15- 7)218CC	DAVIS			2		3/1978	4		4576		US6S 79
	(C-15- 7)31CDD	ROBERTS		176	2	4577	3/1979	5		4572		USGS 79 USGS 79
52	(C-15- 7)33BAC	DAVIS	1953	325	2	4582	3/1979	F	>	4582	FLOWING WELL	U365 79
53	(C-15- 8)230BA	REID	1926	100	2	4565	3/1979	4		4561		USGS 79
54	(C-15- B)25AAA	LAW	1936	285	2	4571	3/1979	F	>	4571	FLOWING WELL	US65 79
55	(C-15- B)34ADD	REID	1925	160	2	4572	3/1979	5		4567		us4s 79
56	(C-16- 3)18CAA	DMAD IRR.CO.	1961	940	20	4672	3/1979	22		4650		US65 79
57	(C-16- 3)19CB0	DMAD IRR.CO.	1966	225	6	4671	3/1979	29		4642	FLOWING WELL	USGS 79
58	(C-16- 6) 7DBC	HOLMAN	1928	104		4620	3/1979	1		4619		US65 79
59	(C-16- 7) 1DCD	HOLMAN	1929	132	Ž	4615	3/1979	F	>	4615	FLOWING WELL	US65 79
60	(C-16- 7) 3AAA	SHIELDS	1916	225		4590	3/1976	F	>	4590	FLOWING WELL	US65 79
61	(C-16- 7) 4ABB	HINKLEY	1920	324	2	4584	3/1979	F	>	4584	FLOWING WELL	USGS 79
62	(C-16- 7) 6CBC	MOCDY	1917	180	2	4581	11/1974	8		4573		USGS 79
63	(C-16- 7) SABB	JENSON	1914	_	2	4589	3/1979	10		4579		USGS 79 USGS 79
44	(C-16- 7)108AD		1961	919	16	4595	3/1979		>	4595	FLOWING WELL	US65 79
65	(C-16- 7) 10CDC		1949	380		4604	3/1979			4400		USGS 79
66	(C-16- 7)12CED		1951	582		4605	3/1979		>		FLOWING WELL	
67	(C-16- 7)120CD	BLACK		180			3/1979			4604		USGS 79
68	(C-16- 7)13CCC		1953	284		4616	3/1978			4615		US65 79
	(C-16- 7)16DDA		1945	413			3/1978			4601		USGS 79
	(C-16- 7)2888C		1944	170			3/1978			4588		USGS 79
	(C-16- 7)35ACA		1918	170		4641	3/1979			4605		US65 79
	(C-16- 8) 2CDD	JENSEN		,,,	ž	4578	3/1979			4569		USGS 79
	(C-16- 8) 8DDD	81.00			ž	4573	3/1978			4565		US65 79
	(C-16- 8)120DD	PECK	1962	954		4587	3/1979			4570		US65 79
	(C-16- 8)15DDD	SHEPHERD	1924	190		4583	3/1979			4567		USGS 79
	(C-16- 8)18DAA	SLM	1764	.,,	ž	4569	3/1979			4560		USGS 79
	(C-16- 8)19000	BLP		128		4567	3/1979			4555		USGS 79
	(C-16- 8)218C8		1942	996		4578	3/1979			4566		USGS 79
	(C-16- 8)21000	ELLSWORTH	1742	125		4575	3/1976			4564		USGS 79
	(C-16- 8)228AD	DONE	1952	150		4577	3/1979			4562		US6S 79
	(C-16- 8)24BAA	GRONNING	1954	194		4588	3/1979			4575		USGS 79
	(C-16- 8)268CB			96		4582	3/1979					
		YOUNG	1944							4564		USGS 79
0.5	(C-16- 8)26BDB	GLDM.HRVST IRA.	C 1737	844	16	4591	3/1972	30		4561		U\$65 79

WELL AND WATER LEVEL DATA SEVIER DESERT, UTAH PAGE 2 OF 2

30 NOV 81

		JELL DESCRIPTIO					MATER L	EVEL MEASUR	EMENTS	REMARKS	DATA SOURCE
ID.	TOWNSHIP RANGE-SECTION	WELL	YEAR DRILLED	WELL	CASING IP (IN)		MO/YEAR	DEPTH-BELO SURFACE (FT)	W ELEV		
1	(C-11-15)300CB	3LM	1935	112		4370	8/1942	31		CASING B" & 6"	HOOD ET AL 65
2	(C-11-16) 6CBC4	DELMONT TRIM	1934	90		4346	10/1964			FLOW 1GPM EST.	HOOD ET AL 65
3	(c-11-16) 6cc	CHRISTENSEN		20	48		11/1954	20	4330	STOCK	HOOD ET AL 65
4	(C-11-16)2400	U.S.AIR FORCE	1979	201	2	4345	7/1980	24	4321	OBSERVATION WELL	ERTEC 80
5	(C-11-16)36CDA	U.S.AIR FORCE	1980	150	2	4414	3/1981	2		OBSERVATION WELL	ERTEC
	(C-11-17) 18DC	DROUGHT RLF.ASOC		221	4	4330	10/1964	5	4325		HOOD ET AL 65
	(c-11-17) 2c	CALLAG WATER CO.		555	4	4420	/1934	5		DOM & STOCK	HDOD ET AL 65
8	(c-11+17)21cb	U.S.AIR FORCE	1980	500	2	4800	3/1981	180	4620	OBSERVATION WELL	ERTEC
	(C-12-16)16BB	U.S.AIR FORCE	1780	150	2	4524	3/1981			DRY OBS. WELL	ERTEC
	(C-12-17) 1AC	U.S.AIR FCRCE	1950	160	2	4635	3/1981			DRY OBS. WELI	ERTEC
11	(C-12-17)34ADD			175	6	4560	8/1946	80		DOM & STOCK	HOOD ET AL 65
	(C-12-17)34BBD			550		4600	8/1977	172	4428		UTAH STATE ENG 79
13	(C-12-17)3408A	O'BRIEN	1946	175	6	4560	8/1946	78	4482		UTAH STATE ENG 79
	(C-12-17)35CAD	U.S.AIR FORCE	1979	100	2	4575	3/1981	92		OBSERVATION WELL	ERTEC
	(C-13~16) 6CCC	3LM	1962	252	6	4660	10/1962	210	4450		HOOD ET AL 65
	(C-13-17) 109	U.S.AIR FORCE	1979	100	2	4630	3/1981			DRY OBS. WELL	ERTEC
17	(C-13-18)13ACC			129		4680	12/1955	15	4665		UTAH STATE ENG 79
18	(C-13-18)13BCC			218		4720	5/1957	62	4658		UTAH STATE ENG 79
19	(C-13~18)13CAD	1000 PEAKS RNCHS	1973	505	16	4720	7/1973	6		TEST WELL	UTAH STATE ENG 79
20	(C-13-18)13D	HOWELLS		400	2	4650	10/1944	F	> 4680	FLOWING WELL	HOOD ET AL 65
21	(C-13~18)14384	U.S.AIR FORCE	1979	101	2	4540	3/1981			DRY OBS. WELL	ERTEC
22	(C-13-18)14CCD					4720	8/1979	54	4666		ERTEC 79/UTSEO
23	(C-13-18)14DDB	SMITH	1957	145		4720	5/1957	41	4679		UTAH STATE ENG 79
24	(C-13-18)14DDC	PARKER	1933	75		4720	11/1954	18	4702		HOOD ET AL 65
25	(C-13-18)22ACC			82		4770	8/1979		4759		ERTEC 79/UTSEO
25	·(C-13~18)22CAA			127		4770	3/1953	?8	4742		UTAH STATE ENG 79
27	(C-13-19)22CBB			44		4800	3/1953	. 5	4785		UTAH STATE ENG 79
25	(C-13-13)23AAB1	NIELSON		300		4700	11/1938	17		CASING 3" & 2"	HOOD ET AL 65
27	(C-13-18)23AAB2	NIELSON	1933	30	10	4700	10/1964	8	4692	DOM & STOCK	HOOD ET AL 65
30	(C-13-18)25DD	U.S.AIR FORCE	1980	200	2		3/1981	99		OBSERVATION WELL	ERTEC
31	(C-13-18)27ADB			103		4720	8/1951	2	4718		UTAM STATE ENG 79
32	(C-13-18)27CCC	NEWBOLD	1964	540		4780				ABND.TEST WELL	UTAH STATE ENG 79
33	(C-13-18)27CDD	HILL	1958	107		4730	9/1958		4718		UTAH STATE ENG 79
	(C-13-13)27DCC	DJCEKBN	1953	40	3		9/1963		4718		UTAM STATE ENG 79
35	(C-13-18)29000	PARTOUN SCHOOL		3 5	Z	4820		31	4789		HOOD ET AL 65
30	(C-13-18)28DA	VE . BOLD	1959	120	12	4780	/1964	31	4749	IRRIGATION	HOOD ET AL 65
37	(c-13-18)28DCC			104		4780	9/1958	8	4772		UTAH STATE ENG 79
	(C-13-13)33ecD	TINTIC SCH.DIST.	1953	6.3	5	4800	9/1953		4767		UTAH STATE ENG 79
39	(C-138)33CCC			30		4800	6/1959	7	4793		UTAH STATE ENG 79
	(C-13-19)33DCC	POHRBACH	1950	153	12		10/1964	12		DOM/STOCK/IR9.	HOOD ET AL 65
41	(C-13-18)34ACC			107		4730	8/1979	7	4723		ERTEC 79/UTSEO
	(C-13-18)346CC			112		4745	8/1979		4734		ERTEC 79/UTSEO
43	(C-13-19)34CCC			147		4744	8/1979	1	4743		ERTEC 79/UTSEO
	(C-13-18)34CDD			300		4730	8/1979		4717		ERTEC 79/UTSED
45	(c-13-18)34DCC	FINK	1971	300	8	4733	2/1971	F	> 4730	FLOW./IRRIGATION	LTAN STATE ENG 79
	(C-13-18)35C	HALE		140	6	4730	10/1949		> 4730	FLOWING WELL	HOOD ET AL 65
47	(C-14-15) 3CD1	HALE	1935	125	3	4750	7/1938	F	> 4750	FLOWING	UTAH STATE ENG 79

WELL AND WATER LEVEL DATA SNAKE VALLEY, UTAH PAGE 1 OF 4

30 NOV 81

		WELL DESCRIPT	ION				WATER L	EVEL MEASU	REMEN	T S	REMARKS	DATA SOURCE
ID.	TOWNSHIP RANGE-SECTION	`WELL OWNER	YEAR DRILLED	WELL			HO/YEAR	DEPTH-BEL		.Ev		
NO.	KANGE-SECITOR	UNNER	DRILLED	(FT)	(IN)			SURFACE (FT)		7)		
	(0-14-18) 3002	HALE	1938	165		4750	7/1938				FLOWING	UTAH STATE ENG 79
	(C-14-18) 3CDA	HALE	1961	165		4750	1/1961	F			FLOW./IRRIGATION	UTAH STATE ENG 79
	(C-14-18) 3CD8	HALE	1961	165		4750	1/1961	F			FLOW./IRRIGATION	UTAH' STATE ENG 79
	(C-14-18) 3DCC	HALE	1938	130		4750	10/1944	F			FLOWING 146PM	HOOD ET AL 65
	(C-14-18) 300C1	HALE	1948	120		4739	5/1948	F			FLOWING	UTAH STATE ENG 79
	(C-14-18) 3DDC2	HALE	1948	120		4739	5/1948				FLOWING	UTAH STATE ENG 79
	(C-14-18) 3DDC3	HALE	1945	140		4739	8/1948	F			FLOWING	UTAH STATE ENG 79
	(C-14-18) 3DDC4	HALE	1948	120		4739	9/1948	F			FLOWING	UTAH STATE ENG 79
	(C-14-18) 3DDC7	HALE	1948	120		4740	10/1949	, F			FLOW./DOM & IRRIG.	
	(C-14-18) 4AC4	LEWIS	1975	96		4780	3/1975	50			DOMESTIC	UTAN STATE ENG 79
	(C-14-18) 4ADC	ANDERSON	1955	118		4755	6/1965	. 2		53		UTAH STATE ENG 79
	(C-14-18) 48DB			70		4780	7/1952	13	4.7	67		UTAH STATE ENG 79
	(C-14-18) 4088	FABER	1948	70		4780	11/1950	13	47	67	CASING 10" & 6"	HOOD ET AL 65
	(C-14-18) 4DCC	ADAM	1954	205		4785	3/1954				FLOWING	UTAH STATE ENG 79
	(C-14-18) 5C			70		4820	.	60		60		HOOD ET AL 65
	(C-14-18) 5CCC			85		4830	8/1979	56		74		ERTEC 79/UTSEO
	(C-14-18) BACC			105		4795	7/1959			84		UTAH STATE ENG 79
	(0-14-18) 8000	WEIGHT	1954	67	10	4818	4/1954	55		.62		UTAH STATE ENG 79
	(C-14-18) 9CBC			64		4790	6/1953	. 8		85		UTAH STATE ENG 79
	(C-14-18)17AAA			101		4795	12/1974	18		77		UTAH STATE ENG 79
	(C-14-18)17ACC		4030	72		4818	6/1953	18		00		UTAH STATE ENG 79
	(C-14-18)13DCD	U.S.AIR FORCE	1979	101		4860	3/1981	78			OBSERVATION WELL	ERTEC
	(C-14-18)26DC	U.S.AIR FORCE	1980	500		4960	3/1981	168			OBSERVATION WELL	ERTEC
	(C-14-18)27AA	U.S.AIR FORCE	1979	101	2	4840	3/1981	56	47	84	OBSERVATION WELL	ERTEC
	(C-15-18)11CDB	BLY	1962	485	_	5160	/1962	**			DRY	UTAH STATE ENG 79
	(C-15-19)118C	U.S.AIR FORCE	1979 1979	101		4960	3/1981	89			OBSERVATION WELL	ERTEC
	15-15-19)1280	J.S.AIR FORCE	1979	101	2	4865	3/1981	51			OBSERVATION WELL	ERTEC
	(C-16-18) 3BAC		40.00	100		5010	3/1958			73		UTAH STATE ENG 79
	(C-16-18)108A (C-16-15)26C8A	U.S.AIR FORCE	1980 1979	200		4960	3/1981	165			OBSERVATION WELL	ERTEC
	(C-16-19) 4ADD1	J.S.AIR FORCE	1977	101		4880	3/1981	41			OBSERVATION WELL	ERTEC
	(C-16-19) 488D	SINGLETON U.S.AIR FORCE	1979			4940	9/1940	30		10		HOOD ET AL 65
	(C-16-19)17DB			101	2	5000	3/1981	72			OBSERVATION WELL	ERTEC
	(C-16-19)29CA	U.S.AIR FORCE	1980	150			3/1981	155			OBSERVATION WELL	ERTEC
	(C-17-18) 1DA	U.S.AIP FORCE	1930	500		4975	3/1981	82	40	93	OBSERVATION WELL	ERTEC
	(C-17-18)26AB	U.S.AIR FORCE	1980 1979	160	Ş	5015	3/1981				DRY OBS. WELL	ERTEC
	(C-17-19) 4ADD	U.S.AIR FORCE ELDRIDGE	1979	101		4865	3/1981	39			OBSERVATION WELL	ERTEC
	(C-17-19) 480	J.S.AIR FORCE	1979	760 101		4880	2/1978	43		37		USGS 79
	(C-17-19) SCC				Z	4910	3/1981	75			OBSERVATION VELL	ERTEC
	(C-17-19) 30ACC	U.S.AIR FORCE	1979 1980	100		5050	3/1981	49			OBSERVATION WELL	ERTEC
		U.S.AIR FORCE		500	Ş	5120	3/1981	121			OBSERVATION WELL	ERTEC
	(C-18-18)10AAD	U.S.AIR FORCE	1979	51		4920	3/1981	50			OBSERVATION WELL	ERTEC
	(C-18-18)31AD9	U.S.AIR FORCE	1979	100	Z	4970	3/1981	72			OBSERVATION WELL	ERTEC
	(C-15-18)32CDC		4070	100	_	5061	1/1980			10		ERTEC 80/UTSE0
	(C-18-19)20ABD	U.S.AIR FORCE	1979	100			3/1981				OBSERVATION WELL	ERTEC
	(C-18-19)20DAD1	RCBINSON		100		4955	2/1978				DOM & STOCK	USGS 79
	(C-18-19)200001	ROBINSON	1925	90		4965	2/1978				DOM & STOCK	US65 79
94	(C-18-19)230002	HILL	1956	560	16	4965	10/1957	F	> 49	165	FLOWING/STOCK	H000 ET AL 65

WELL AND WATER LEVEL DATA SNAKE VALLEY, UTAH PAGE 2 OF 4

30 NOV 81

١		WELL DESCRIPTION						EVEL MEASU			DATA SOURCE
	TOWNSHIP	dELL	YEAR					DEPTH-BEL			
NO.	RANGE-SECTION	OWNER	DRILLED		ID	ELEV		SURFACE			
i				(FT)	(IN)	(FT)		(FT)	(FT)		
95	(C-18-19)21CBC					4950	8/1979	24	4926		ERTEC 79/UTSEO
	(C-18-19)21CCC	HILL	1967	600	16	4970	4/1967	Ī		FLOWING/STOCK	UTAH STATE ENG 79
	(C-18-19)29ACC	PARKER	1951	130	16	4930	12/1951	28	4902		UTAH STATE ENG 79
98	(C-18-19)288CC			600	16	4970	2/1978	19	4951		USGS 79
99	(C-19-18) SAB	U.S.AIR FORCE	1980	500	2	5100	3/1981			DRY OBS. WELL	ERTEC
100	(C-19-19)14ACD			77		4925	7/1961	11	4914		UTAH STATE ENG 79
101	(C-19-19)14ADC	ADAM	1966	99	16	4925	3/1966	13	4912	IRRIGATION	UTAH STATE ENG 79
102	(C-19-19)14DCC			59		4930	4/1966	18	4912		UTAH STATE ENG 79
103	(C-19-19)14DCD			65		4930	8/1957	12	4918		UTAH STATE ENG 79
104	(C-19-19)23ACD	CARLSON	1964	98	16	4935	5/1964	15	4920	IRRIGATION	UTAM STATE ENG 79
105	(C-19-19)2380C			110		4930	10/1965	13	4917		UTAH STATE ENG 79
106	(C-19-19)230CD	FLANDERS	1956	80	16	4940	6/1956	14	4926		UTAN STATE ENG 79
107	(C-19-19)23D08	FLANDERS	1961	155	16	4950	3/1961	14	4936	IRRIGATION	UTAH STATE ENG 79
108	(C-19-19)26ABA					4948	/1978	17	4931		USGS 79
109	(C-19-19)2689A	AARONIC COOP.	1979	200		4945	3/1978	12	4933		UTAH STATE ENG 79
110	(C-19-19)2680D			112	16	4950	4/1977	12	4938		USGS 79
111	(C-19-19)29ABD			65		4969	4/1967	15	4954		UTAM STATE ENG 79
112	(C-19-19)31CC	U.S.AIR FORCE	1979	101	2	5060	3/1981	F	> 5060	FLOWING/OBS.WELL	ERTEC
113	(C-19-19)34ABA	SOUNDER	1976	118		4955	8/1979	15	4940	IRRIGATION	ERTEC 79/UTSEO
114	(C-19-19)34ABD					4955	8/1979	14	4941		ERTEC 79/UTSEO
115	(C-19-19)34ADB	GOUNDER	1960	110	14	4960	2/1960	8	4952	IRRIGATION	UTAH STATE ENG 79
116	(C-19-19)34ADD	GOUNDER	1945	406	6	4960	10/1945	7	4953		UTAH STATE ENG 79
117	(C-19-19)34DAA					4965	8/1979	15	4950		ERTEC 79/UTSEO
118	(C-19-19)34DAC	GOUNDER	1960	52	14	4970	3/1960	6	4964	IRRIGATION	UTAN STATE ENG 79
119	(C-19-19)3400B					4970	8/1979	15	4955		ERTEC 79/UTSEO '
120	(C-19-19)34DDD					4970	8/1979	15	4955		ERTEC 79/UTSEO
121	(C-19-19)35ACC			40		4970	12/1957	16	4954		UTAN STATE ENG 79
122	(C-19-19)35ACD	WEIGHT	1955	70	16	4970	5/1958	19	4951	ABANDONED	UTAH STATE ENG 79
123	(C-19-19)35abb	WSIGHT	1955	45		4970	8/1955	9	4961		UTAH STATE ENG ?9
124	(C-19-19)35CAC			110		4960	8/1979	50	4960		ERTEC 79/UTSEO
125	(C-19-19)35CAD	WEIGHT	1959	100	16		3/1959	8	4962		UTAN STATE ENG 79
126	(C-19-19)35CDC	AARONIC CORP.	1977	72	14	4975	11/1977	25	4950	STOCK	UTAN STATE ENG 79
127	' (C-19-19)35CDD					4980	8/1979	17	4963		ERTEC 79/UTSEO
128	(C-17-17)35DBC	ESKDALE CC.	1955	4.5	6	4975	7/1955	50	4955		UTAN STATE ENG 79
129	(C-19-19)35DCB	ESKDALE CC.	1956	49	6	4975	8/1956	21	4954		UTAN STATE ENG 79
130	(C-19-19)350CC	VAN RY	1961	74	16	4950	5/1961	8	4972	IRRIGATION	UTAH STATE ENG 79
131	(C-19-19)35DCD1	VAN RY	1764	140	16	4980	11/1964	21	4959	IRRIGATION	UTAH STATE ENG 79
132	(C-19-19)35DCD2	ESKDALE DVLP.CO.			12	4975	2/1965	11	4964	DOMESTIC	HOOD ET AL 65
133	(C-19-19)360a	U.S.AIR FORCE	1979	100	2	5050	3/1981	79	4971	OBSERVATION WELL	ERTEC
	(C-2G-17) PC	U.S.DIV.GRAZING		739		5490	10/1941	585	4905		UTAM STATE ENG 79
	(C-20-18)21BA	U.S.AIR FORCE	1950	165			3/1981	152	4968	OBSERVATION WELL	ERTEC
136	(C-20-18)219C	U.S.AIR FORCE	1979	100	2	5120	3/1981			DRY OBS. WELL	ERTEC
	(C-20-18)32AAB	U.S.AIR FORCE	1979	100		5015	3/1981	37		OBSERVATION WELL	ERTEC
138	(C-20-19) 1962	J.S.DIV.GRAZING	1939	375	5	4990	7/1939	35	4958		JTAH STATE ENG 79
	(C-2G-19) 18CC	364			4	4990	5/1951	F	> 4990	FLOW 1GPM EST.	HOOD ET AL 65
	(c-2G-19) 6acc	BELLANDER	1915	200	3	5090	10/1945	F	> 5080	FLOWING WELL	HOOD ET AL 65
141	(0-20-19) 6080			150		5000	8/1946	F	> 5060	FLOWING WELL	UTAN STATE ENG 79

WELL AND WATER LEVEL DATA SNAKE VALLEY, UTAH PAGE 3 OF 4

30 NOV 81

 		WELL DESCRIPTE						EVEL REASI				DATA SOURCE
ı	TOWNSHIP	MELL	YEAR	WELL	CASING			DEPTH-BEI				
NO.	RANGE-SECTION	CHNER	DRILLED		10	ELEV		SURFACI	E			
Į.				(FT)	(IN)	(FT)		(FT)		(FT)		,
۱,,,	(C-20-19) 60CC	SORENSEN	1946	280	8	5042	9/1946			5042	FLOWING	UTAN STATE ENG 79
	(C-20-19) 7AAB	QUATE	1932	569		5035	11/1948	Ė	•	5035	FLOWING	HOOD ET AL 45
	(C-20-19) 7880	SORENSON	1915	280	•	5070	11/1954	į.	5	5070	FLOW./CAS.6"8 3"	HOOD ET AL 65
	(C-20-19) 78CB	SORENSON	1946	281	16	5083	8/1946	F	•	5080	FLOWING	UTAH STATE ENG 79
	(C-20-19) 7C	U.S.DIV.GRAZING		5 75	5	5078	2/1939	<u>.</u>	-		DRY	UTAH STATE ENG 79
	(C-20-19)12AA	U.S.AIR FORCE	1980	150	ž	5040	3/1981	16		5024	OBSERVATION WELL	ERTEC
	(C-20-19)148AD	BUNKER	1971	102	20	5000	3/1971	25			IRRIGATION	UTAN STATE ENG 79
149	(C-20-19)1488C	BUNKER	1952	100	16	5000	4/1952	12		4988		UTAH STATE ENG 79
	(C-20-19)1480A					5004	8/1979	23		4981		ERTEC 79/UTSEO
151	(C-20-19)1588D					5005	8/1979	21		4984		ERTEC 79/UTSEO
152	(C-20-19)158CC		1977	132	13	5010	/1977	23		4987	DOMESTIC	UTAN STATE ENG 79
153	(C-20-19)15808	GOODMAN	1930	52	6	5005	10/1950	19		4986		UTAH STATE ENG 79
154	(C-20-19)15CAA	SCHUMACHER	1945	56	24	5005	10/1950	13		4992		UTAH STATE ENG 79
	(C-20-19)15CBA	AARONIC CORP.	1940	60	6	5010	12/1960	18			DOMESTIC	UTAN STATE ENG 79
156	(C-20-19)15CCC			75		5025	5/1952	20		5005		UTAH STATE ENG 79
	(C-20-19)168DC	SCHUMAKER	1928	40		5025	9/1942	15		5010		HOOD ET AL 65
	(C-20-19)190CD	SHELL OIL	1956	100	7		2/1978	47		5039		US6S 79
	(C-20-19)21AAB			67		5020	5/1975				DRY	UTAN STATE ENG 79
	(C-20-19)21ACC	LATHROP	1956	68	20	5025	2/1978	32		4993		USGS 79
	(C-20-19)21B			66		5039		20			IRRIGATION WELL	HOOD ET AL 65
	(C-20-19)21BCC	AARONIC ORDER	1975	64		5030	5/1975	28			IRRIGATION	UTAH STATE ENG 79
	(C-20-19)30ABD			100		5100	5/1956	36		5064		UTAH STATE ENG 79
	(C-20-20) 108B					5098	8/1979	34		50 64		ERTEC 79/UTSEO
	(C-20-20)12A			300		5098	11/1971	19		5079		UTAH STATE ENG 74
	(C-21-17) 80CC1	U.S.DIV.GRAZING	1435	316	۰	5070	7/1935	224		4846		UTAH STATE ENG 79
	(C-21-18)10CDD (C-21-18)12CCD	8LM	4000	66		5035 5050		65		4970		HOOD ET AL 45
	(C-21-18)17ADD	BLM	1958 1958	205	6	5040		105			STOCK	HOOD ET AL 65
	(C-21-18)17b8	U.S.AIR FORCE	1979	166	į	5040	3/1981	52 77			STOCK	HOOD ET AL 65
	(C-21-18)200AB	U.S.AIR FORCE	1980	100		5250	3/1981			4763	OBSERVATION WELL DRY OBS. WELL	ERTEC ERTEC
	(C-21-19)16CCB	U.S.AIR FORCE	1979	100		3125	3/1981	90			OBSERVATION WELL	ERTEC
	(C-21-19)21AD	U.S.AIR FORCE	1979	100		5120	3/1981			,,,,	DRY OBS. WELL	ERTEC
	(C-21-19)31ACD	DEARDEN	1951	400		5200	7/1951	42		5158		UTAH STATE ENG 79
	(c-21-19)31b	DEARDEN	1944	80		5210		30			DOM & STOCK	HOOD ET AL 65
	(C-21-19)31DDC	ROWLEY	1957	651		5215	10/1957			5154		UTAN STATE ENG 79
	(C-22-16)188	U.S.DIV.GRAZING		550		5250		•			DRY	UTAN STATE ENG 79
	(C-22-16)198	BLM		680		5305					DRY	HOOD ET AL 45
	(C-22-16)20			100		5340					DRY	HOOD ET AL 65
180	(C-24-18)208CC	DAVIES	1950	360		5777	/1950				DRY	HOOD ET AL 65
181	(C-24-15)27A	314		500		5870					DRY	HOOD ET AL 65
182	(c-24-18)29B	BLM		936		5850					DRY	HOOD ET AL 65
183	19N/69E-15C	ELDRIDGE	1953	28	6	7180	7/1953	10		7170		HOOD ET AL 65
184	15N/70E-25DDB	U.S.AIR FORCE	1979	100	į	5080	3/1981	14		5066	OBSERVATION WELL	ERTEC
	14N/70E- EDCD	U.S.AIR FORCE	1979	100	ž	5500	3/1981	60			OBSERVATION WELL	ERTEC
	14N/70E-20	ROBISON	1974	100		5420	3/1974	53		5367		NV STATE ENG 79
	14N/70E-27AD	BLM	1951	130		5240	7/1951	86		5154		HOOD ET AL 65
188	11N/62E- 488	HILL	1957	640	16	4970	/1957	F	>	4970	FLOWING WELL	HOOD ET AL 65

WELL AND WATER LEVEL DATA SNAKE VALLEY, UTAH PAGE 4 OF 4

30 NOV 81

2 23M/65E-10D1	DATA SOURCE
1 24M/66E-31CB	
2 33W/65E-10DT	
3 23W/05E-14C1	NV STATE ENG 79
\$ 23M/66E-79A1 HEMROID 23 36 6480 8/1949 20 6380 6464 62 23M/66E-31A1 HEMROID 30 6 6400 8/1949 20 6380 6380 6380 7/1946 F > 6380 6380 8/1949 17 6363 62 23M/66E-31A2 HEMROID 1945 49 8 6380 8/1949 16 6354 6354 63554	RUSH ET AL 65
\$ 23W/66E-19A1 NEMOID 000 6 6300 6 6400 8/1949 20 6380 6 23W/66E-31A2 NEMOID 000 6 6380 8/1949 17 6363 8/1949 17 6363 8/1949 18 6380 8/1949 18 6380 8/1949 19 6 6380 8/1949 1	RUSH ET AL 65
6 23W/66E-31AA1 HEMROID 1945 49 8 6380 7/1944 F > 6380 FLOWING SOGPM 7 23W/66E-31B2 ANDERSON 1923 1240 9 8 6380 8/1949 16 6354 10 23W/66E-31B2 ANDERSON 1923 1240 9 8 6370 8/1949 F > 6370 FLOWING SGPM 10 23W/66E-31B2 ANDERSON 1923 1040 16 6370 6/1953 26 6344 11 21W/66E- 48B 20UTRE 6 6070 7/1944 21 6089 125 5645 13 22W/67E-8B1 2 80 5780 4/1960 182 598 14 20W/67E-28B1 2 80 5780 4/1960 182 598 14 20W/67E-28B1 2 80W/67E-28B1 13 20W/67E-28B1 13 20W/67E-13BH ROSISON 1972 815 16 5820 9/1992 30 5570 17 19W/66E-11B1 ROSISON 1972 815 16 5820 9/1992 30 5570 17 19W/66E-1BB BATES 1953 08 6 5800 7/1993 20 5580 13 18W/66E-1B BATES 1953 08 6 5800 7/1993 20 5580 13 18W/66E-1B BATES 1953 08 6 5800 7/1993 20 5580 13 18W/66E-1BB 14 18 18 18 18 18 18 18 18 18 18 18 18 18	RUSH ET AL 65
7 23M/66E-31A2 HEMPOID 1945 49 8 6380 8/1949 17 6363 8 23M/66E-31B2 ANDERSON 1023 1240 9 6370 8/1949 F > 8370 FLOWING 5GPM 9 23M/66E-31B2 ANDERSON 1023 1240 9 6370 8/1949 F > 8370 FLOWING 5GPM 10 23M/66E-31B2 ANDERSON 1023 1240 9 6370 8/1949 F > 8370 FLOWING 5GPM 11 21M/66E-4B1 20UTRE 6 6077 6/1953 26 6344 11 21M/66E-4B1 20UTRE 6 6077 6/1950 125 5645 13 23M/67E-3B1 EURIDGE 1966 205 16 5770 6/1980 125 5645 13 23M/67E-3B1 EURIDGE 1966 280 5780 4/1960 182 5598 14 20M/67E-2590 5720 6/1980 144 5576 15 20M/67E-26A2 ELDRIDGE 1330 4 5700 6/1980 100 5600 16 20M/67E-26A2 ELDRIDGE 123 20 5700 7/1964 121 5579 17 19M/66E-11B1 ROSISON 400 5700 4/1960 41 5659 18 19M/66E-14A8 ARRESON 1972 815 16 5620 7/1972 50 5370 19 19M/67E-13AA WITTS 53 8 5630 6/1980 49 5581 20 18M/66E-13A WITTS 53 8 5630 6/1980 49 5581 21 18M/66E-25A2 ROBISON 1948 98 6 5600 1/1992 31 5655 22 18M/66E-25A2 ROBISON 1950 190 6 5600 1/1992 31 5655 22 18M/66E-25A2 ROBISON 1950 190 6 5600 1/1992 31 5655 23 18M/66E-25A2 ROBISON 1950 190 6 5600 1/1990 49 5571 24 18M/67E-1C1 BATES 5380 5/1990 43 5572 25 18M/68E-31A1 ELDRIDGE 1947 465 6 5580 6/1990 F > 5570 FLOWING 1/1990 1/	RUSH ET AL 65
8 23M/66E-3183	RUSH ET AL 65
0 23M/66E-3162	RUSH ET AL 65
10 23W/66E-31C1	RUSH ET AL 65
11 2 18/466E- 481	RUSH ET AL 65
12 20M/66E-13AB ELDRIDGE 1966 205 576 6/1980 125 5485 13 23M/67E-38D	NV STATE ENG 79
13 20m/67E - 80T	RUSH ET AL 65
14 20m/a7E-2590 15 20m/a7E-26A2 15 20m/a7E-26A2 16 LDRIDGE 12 3 20 5700 7/1960 124 5570 17 19m/a6E-11ab Rosison 1972 815 16 5620 7/1970 41 5659 18 19m/a6E-14AB AGRISON 1972 815 16 5620 7/1970 40 5581 20 18m/a6E-13AA HITTS 53 8 5630 6/1980 49 5581 20 18m/a6E-13AA HITTS 53 8 5630 6/1980 49 5581 21 18m/a6E-25A1 8CBISON 1942 60 56A6 10/1962 31 5655 22 18m/a6E-25A1 RCBISON 1950 190 6 5600 1/1/1968 60 5540 23 18m/a6E-25A2 ROBISON 1950 190 6 5600 1/1/1968 60 5540 23 18m/a6E-31A1 ELDRIDGE 1947 465 6 5580 1/1960 59 5511 24 18m/a6E-31A1 ELDRIDGE 1947 465 6 5580 1/1960 5 5537 26 18m/a6E-31A2 ELDRIDGE 20 5 5580 8/1960 F 5570 FLOWING 27 17m/a7E-83C YELLAND 28 17m/a7E-83C YELLAND 29 17m/a7E-83C YELLAND 29 17m/a7E-83C YELLAND 29 17m/a7E-83C YELLAND 30 17m/a8E-6A1 BLM/ELDRIDGE 31 38 5500 8/1980 F 5570 FLOWING 20 17m/a6E-6A1 BLM/ELDRIDGE 31 38 5570 8/1980 F 5570 FLOWING 20 17m/a6E-6A1 BLM/ELDRIDGE 31 38 5570 8/1980 F 5570 FLOWING 20 17m/a6E-6A1 BLM/ELDRIDGE 31 38 5570 8/1980 F 5570 FLOWING 20 17m/a6E-6A1 BLM/ELDRIDGE 31 38 5570 8/1980 F 5570 FLOWING 20 17m/a6E-6A1 BLM/ELDRIDGE 31 38 5570 8/1980 F 5570 FLOWING 21 17m/a6E-6A1 BLM/ELDRIDGE 31 38 5570 8/1980 F 5570 FLOWING 21 17m/a6E-6A1 BLM/ELDRIDGE 31 38 5570 8/1980 S 5532 23 18m/a6E-3A2 RCGERS BROS. 1950 31 6 5570 11/1964 28 5572 31 18m/a6E-2AA BLM 1964 260 5 5950 12/1964 230 5720 31 18m/a6E-13A1 RCGERS BROS. 1950 317 6 5580 6/1980 3 5577 31 18m/a6E-13A1 CHACHAS 16 48 3580 6/1980 3 5577 31 18m/a6E-13A1 CHACHAS 16 48 3580 6/1980 3 5577 31 18m/a6E-46A1 BLM/ELLAND 16 38 5805 6/1980 3 5577 31 18m/a6E-46A1 BLM/ELLAND 16 38 5805 6/1980 3 5577 31 18m/a6E-46A1 BLM/ELLAND 1970 160 6 5590 2/1970 F 5590 FLOWING	ERTEC BO/NVSEO
15 20N/67E-26A1	RUSH ET AL 65
16 20m/67E-26AZ	ERTEC 80/NVSEO
17 19W/66E-118B1 R0SISON	RUSH ET AL 65
18 19W/66E-14AB AGESON 1972 815 16 5620 9/1972 50 5370 19 19W/67E-13AA WITTS 53 8 5630 6/1980 49 5581 20 18N/66E-13B 94TES 1953 68 6 5600 7/1953 20 5380 21 18N/66E-25A1 RCBISON 1942 60 5686 10/1962 31 5655 22 18N/66E-25A2 ROBISON 1950 190 6 5600 7/1990 26 5574 24 18N/67E-1C1 BATES 38 5570 7/1960 49 5511 25 18N/68E-31A1 ELDRIDGE 1947 465 5 5580 3/1961 58 5522 26 18N/68E-31A2 ELDRIDGE 80 5 5380 3/1961 58 5522 26 18N/68E-31A2 ELDRIDGE 80 5 5380 3/1961 58 5522 27 17N/67E-28A1 3LM,RCGEPS 1935 29 38 5500 6/1980 F > 5570 FLOWING 717N/68E-6A1 3LM,RCGEPS 1935 29 38 5500 6/1980 F > 5570 FLOWING 72 17N/67E-38CB 1947 465 69 5570 8/1990 49 5570 FLOWING 72 17N/67E-38CB 1947 465 69 5600 7/1990 26 5570 FLOWING 72 17N/67E-38CB 1947 465 69 5570 8/1990 F > 5570 FLOWING 72 17N/67E-38CB 1947 465 69 5600 7/1990 F > 5570 FLOWING 72 17N/67E-38CB 1947 465 69 5600 FLOWING 74 17N/68E-6A1 3LM,RCGEPS 1935 29 38 5500 6/1980 F > 5600 FLOWING 74 17N/68E-6A1 3LM/ELDRIDGE 31 38 5570 8/1999 24 5546 74 17N/68E-6A1 3LM/ELDRIDGE 1935 31 38 5570 8/1999 24 5546 74 17N/68E-6A1 3LM/ELDRIDGE 1935 31 38 5570 8/1999 24 5546 74 17N/68E-6A1 3LM/ELDRIDGE 1935 31 38 5570 8/1999 24 5546 74 17N/68E-6A1 3LM/ELDRIDGE 1935 31 38 5570 8/1999 25 5500 5770 74 17N/68E-6A1 3LM/ELDRIDGE 1935 31 38 5570 8/1999 25 5500 5770 74 17N/68E-6A1 3LM/ELDRIDGE 1935 31 38 5570 8/1999 3 5577 NO CASING 16 16N/67E-3A1 80GERS 16 48 3580 6/1980 3 5577 18 18 18 18 18 18 18 18 18 18 18 18 18	RUSH ET AL 65
10 19N/67E-13AA WITTS	RUSH ET AL 65
20 18N/66E- 18 9ATES 1953 68 6 5600 7/1963 20 5580 21 18N/66E- 28A1 18N/66E- 28A1 1962 00 5686 10/1962 31 5655 22 18N/66E-25A1 RCBISON 1948 98 6 5600 7/1960 26 5574 24 18N/67E- 161 8ATES 38 5570 7/1960 26 5574 24 18N/67E- 161 8ATES 38 5570 7/1960 26 5574 24 18N/67E- 161 8ATES 38 5570 7/1960 59 5511 25 18N/68E- 31A2 ELDRIDGE 1947 465 6 5580 3/1961 58 5522 24 18N/68E- 31A2 ELDRIDGE 80 5 5580 3/1961 58 5522 24 18N/68E- 31A2 ELDRIDGE 80 5 5580 3/1961 58 5522 24 18N/68E- 31A2 ELDRIDGE 80 5 5580 3/1961 58 5522 24 18N/67E- 83C YELLAND 5570 6/1980 F > 5570 FLOWING 80 17N/67E- 83C YELLAND 5570 6/1980 F > 5570 FLOWING 80 17N/67E- 83C YELLAND 5570 6/1980 F > 5570 FLOWING 80 17N/67E- 30A1 3LM/RCGEPS 1935 29 39 5560 6/1980 F > 5500 FLOWING 80 17N/68E- 6A1 3LM/RCGEPS 1935 29 39 5560 6/1980 F > 5600 FLOWING 80 17N/68E- 6A1 3LM/ELDRIDGE 31 38 5570 8/1949 24 5540 31 17N/68E- 6A1 3LM/ELDRIDGE 1935 31 38 5570 8/1949 24 5540 31 17N/68E- 6A1 3LM/ELDRIDGE 1935 31 38 5500 7/1964 28 5532 33 16N/66E-26A 3LM 1964 260 5 5950 12/1964 250 5720 31 16N/66E-26A 3LM 1964 260 5 5950 12/1964 250 5720 31 16N/67E- 3A1 80GERS 16 48 5580 8/1980 4 5576 35 1600 37 16N/67E- 3A2 RCGERS 9ROS. 1950 317 6 5580 6/1980 4 5576 35 1600 37 16N/67E- 3A1 CHACHAS 16 48 5580 6/1980 3 5577 35 5600 37 16N/67E-13A1 CHACHAS 16 48 5580 6/1980 3 5577 35 5600 37 16N/67E-13A1 CHACHAS 16 48 5580 6/1980 3 5577 35 5600 37 16N/67E-13A1 CHACHAS 16 48 5580 6/1980 3 5577 35 5600 37 16N/67E-13A1 CHACHAS 16 48 5580 6/1980 10 5620 37 16N/67E-13A1 CHACHAS 16 48 5580 6/1980 3 5577 35 5600 37 16N/67E-13A1 CHACHAS 16 48 5580 6/1980 10 5620 37 16N/67E-13A1 CHACHAS 16 48 5580 6/1980 10 5620 37 16N/67E-16A1 3LM/FELLAND 16 5580 6/1980 10 5620 37 16N/67E-16A1 3LM/FELLAND 16 5580 6/1980 10 5620 37 16N/67E-16A1 3LM/FELLAND 17 160 6 5590 2/1970 F > 5590 FLOWING 37 16N/67E-602 3LM	NV STATE ENG 79
21 18h/66E-25A1 RCBISON 1948 98 6 5600 11/1948 60 5540 22 18h/66E-25A2 ROBISON 1948 98 6 5600 11/1948 60 5540 22 18h/66E-25A2 ROBISON 1950 190 6 5600 7/1950 26 5574 24 18h/67E-1C1 BATES 38 38 5570 7/1964 59 5511 25 18h/68E-31A1 ELDRIDGE 1947 465 6 5580 3/1961 58 5522 27 17h/67E-32C 27 17h/6	ERTEC BO/NVSEO
22 18M/46E-25A1 RCBISON 1948 98 6 5800 17/1948 40 5540 23 18M/46E-25A2 ROBISON 1950 190 6 5600 7/1950 26 5574 24 18M/67E-1C1 BATES 38 5570 7/1964 59 5511 25 18M/48E-31A1 ELDRIDGE 1947 465 6 5580 3/1961 58 5522 26 18M/48E-31A2 ELDRIDGE 80 5 5580 3/1961 58 5522 27 17M/67E-3BC YELLAND 5070 6/1980 F > 5570 FLOWING 28 17M/67E-3BCB YELLAND 5570 6/1980 F > 5570 FLOWING 29 17M/67E-3BCB PETERSON 1972 100 5690 8/1972 F > 5600 FLOWING 29 17M/68E-6A1 BLM/ELDRIDGE 31 38 5570 8/1949 24 5546 31 17M/48E-6DA1 ROBINSON 1951 500 16 5570 1/1964 28 5532 31 17M/48E-6DA1 BLM/ELDRIDGE 1935 31 38 5560 7/1964 28 5532 33 16M/66E-26A BLM 1964 200 5 7500 1/1964 28 5532 33 16M/66E-26A BLM 1964 200 5 7500 1/1964 28 5532 34 16M/67E-3A1 BLM/ELDRIDGE 1935 31 38 5560 7/1964 28 5532 35 16M/67E-3A1 ROGERS 1955 16 5580 8/1949 3 5577 NO CASING 36 16M/67E-3A1 ROGERS 1950 1970 317 6 5580 8/1949 3 5577 NO CASING 37 16M/67E-11AB LAMM 1973 150 9 5650 5/1960 3 5577 38 16M/67E-13A1 CMACMAS 16 48 5580 6/1980 1 5620 37 16M/67E-13A1 CMACMAS 16 48 5580 6/1980 1 5620 39 16M/67E-2701 BLM/FELLAND 16 38 5800 6/1980 1 5620 39 16M/67E-2701 BLM/FELLAND 1970 160 6 5590 2/1970 F > 5590 FLOWING	RUSH ET AL 65
23 18N/66E-25A2 ROSISON 1950 190 6 5600 771990 26 5576 24 18N/67E-1C1 BATES 38 5570 771906 59 5511 25 18N/68E-31A1 ELDRIDGE 1947 465 6 5580 3/1961 58 5522 26 18N/68E-31A2 ELDRIDGE 80 5 5580 3/1969 45 5533 27 17N/67E-83C YELLAND 5570 6/1980 F > 5570 FLOWING 28 17N/67E-28A1 3LM,RGGEPS 1935 29 38 5500 6/1980 F > 5570 FLOWING 29 17N/67E-38CA PETERSON 1972 100 5690 8/1992 F > 5690 FLOWING 20 17N/68E-6A1 BLM/ELDRIDGE 31 38 5570 8/1949 24 5546 30 17N/68E-6A1 BLM/ELDRIDGE 31 38 5570 8/1949 24 5546 31 17N/68E-6A1 BLM/ELDRIDGE 1935 31 38 5570 8/1949 24 5546 32 17N/68E-6A1 BLM/ELDRIDGE 1935 31 38 5570 8/1949 24 5546 32 17N/68E-6A1 BLM/ELDRIDGE 1935 31 38 5570 8/1949 24 5546 33 16N/66E-26A BLM 1964 260 5 5950 12/1964 28 5532 33 16N/66E-26A BLM 1964 260 5 5950 12/1964 28 5532 34 16N/67E-3A1 ROGERS 1950 317 6 5580 6/1980 3 5777 35 16N/67E-3A2 RGGERS BROS. 1950 317 6 5580 6/1980 4 5576 36 16N/67E-1A81 LAWM 1973 150 9 5635 5/1973 35 5600 37 16N/67E-1A81 CHACHAS 16 48 3580 6/1980 3 5577 38 16N/67E-1A81 CHACHAS 16 48 3580 6/1980 10 5620 37 16N/67E-1A81 CHACHAS 16 48 3580 6/1980 10 5620 39 16N/67E-1A81 CHACHAS 1970 160 6 5590 2/1970 F 5 5590 FLOWING	RUSH ET AL 65
24 18M/67E-1C1 BATES	RUSH ET AL 65
25 18M/68E-31A1 ELDRIDGE 1947 465 5 5880 3/1961 58 5522 26 18M/68E-31A2 ELDRIDGE 80 5 5880 3/1961 58 5522 26 18M/68E-31A2 ELDRIDGE 80 5 5880 3/1961 6 5 535 27 17M/67E-83C YELLAND 5570 6/1980 F > 5570 FLOWING 8 7 7 17M/67E-83C YELLAND 5570 6/1980 F > 5570 FLOWING 8 7 17M/67E-83C PETERSON 1972 100 5690 8/1972 F > 5690 FLOWING 8 17M/68E-6A1 8LM/ELDRIDGE 31 38 5570 8/1949 24 5346 31 17M/68E-6A1 8LM/ELDRIDGE 1935 31 38 5570 8/1949 24 5346 31 17M/68E-6A1 8LM/ELDRIDGE 1935 31 38 5500 7/1964 28 5532 31 17M/68E-6A1 8LM/ELDRIDGE 1935 31 38 5560 7/1964 28 5532 31 17M/68E-7A1 8LM/ELDRIDGE 1935 31 38 5560 7/1964 28 5532 33 16M/66E-26A 8LM 1964 200 5 5950 12/1964 250 5720 31 17M/68E-7A1 80GERS 16 5580 8/1980 3 5777 NO CASING 15 16M/67E-3A1 ROGERS 16 5580 8/1980 4 5576 31 16M/67E-13AB LAMM 1973 150 9 5653 5/1973 35 5600 37 16M/67E-13A1 CMACMAS 16 48 5580 6/1980 3 5577 38 16M/67E-13A1 CMACMAS 16 48 5580 6/1980 3 5577 38 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 3 5577 38 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 3 5577 38 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 39 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 39 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 39 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 39 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 39 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 39 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 5630 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 5630 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 5630 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 5630 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 5630 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 563	RUSH ET AL 65
25 18M/68E-31A1 ELDRIDGE 1947 465 5 5880 3/1961 58 5522 26 18M/68E-31A2 ELDRIDGE 80 5 5880 3/1961 58 5522 26 18M/68E-31A2 ELDRIDGE 80 5 5880 3/1961 6 5 535 27 17M/67E-83C YELLAND 5570 6/1980 F > 5570 FLOWING 8 7 7 17M/67E-83C YELLAND 5570 6/1980 F > 5570 FLOWING 8 7 17M/67E-83C PETERSON 1972 100 5690 8/1972 F > 5690 FLOWING 8 17M/68E-6A1 8LM/ELDRIDGE 31 38 5570 8/1949 24 5346 31 17M/68E-6A1 8LM/ELDRIDGE 1935 31 38 5570 8/1949 24 5346 31 17M/68E-6A1 8LM/ELDRIDGE 1935 31 38 5500 7/1964 28 5532 31 17M/68E-6A1 8LM/ELDRIDGE 1935 31 38 5560 7/1964 28 5532 31 17M/68E-7A1 8LM/ELDRIDGE 1935 31 38 5560 7/1964 28 5532 33 16M/66E-26A 8LM 1964 200 5 5950 12/1964 250 5720 31 17M/68E-7A1 80GERS 16 5580 8/1980 3 5777 NO CASING 15 16M/67E-3A1 ROGERS 16 5580 8/1980 4 5576 31 16M/67E-13AB LAMM 1973 150 9 5653 5/1973 35 5600 37 16M/67E-13A1 CMACMAS 16 48 5580 6/1980 3 5577 38 16M/67E-13A1 CMACMAS 16 48 5580 6/1980 3 5577 38 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 3 5577 38 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 3 5577 38 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 39 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 39 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 39 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 39 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 39 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 39 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 5580 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 5630 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 5630 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 5630 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 5630 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 5630 6/1980 10 5620 30 16M/67E-12A1 CMACMAS 16 48 563	RUSH ET AL 65
27 17M/67E-83C YELLAND	NV STATE ENG 79
28 17M/67E-28A1 3LM/RCGEPS 1935 29 38 5560 6/1980 F > 5560 FLOWING 29 17M/67E-30CB PETERSON 1972 100 560 8/1972 F > 5690 FLOWING 30 17N/68E- 6A1 BLM/ELDRIDGE 31 38 3570 8/1949 24 5546 31 17N/68E- 6A1 ROBINSON 1951 500 16 5570 11/1964 29 5541 32 17N/69E- 7A1 BLM/ELDRIDGE 1935 31 38 5560 7/1964 28 5552 33 150M/66E-26A BLM 1964 260 5 5950 12/1964 230 5720 4 160M/67E- 3A1 ROGERS 16 5580 17/1964 230 5720 4 160M/67E- 3A2 RCGERS 9ROS 1950 317 6 5580 6/1980 4 5576 4 160M/67E-11AB LAMM 1973 150 9 5635 5/1973 35 5600 37 160M/67E-11AB LAMM 1973 150 9 5635 5/1980 3 5577 38 160M/67E-13A1 CHACHAS 16 48 3580 5/1980 3 5577 38 160M/67E-12A1 CHACHAS 16 48 3580 5/1980 3 5577 38 160M/67E-12A1 CHACHAS 16 48 3580 5/1980 10 5620 39 160M/67E-2701 3LM/YELLAND 16 38 3630 6/1980 10 5620 39 160M/67E-60E 3LM 1970 160 6 5590 2/1970 F > 5590 FLOWING	RUSH ET AL 65
29 17M/47E-30CB PETERSON 1972 100 \$600 81072 F > \$600 FLQUING 30 17N/68E- 6A1 BLM/ELDAIDGE 31 38 3570 8/1949 24 5346 31 17N/68E- 6A1 ROBINSON 1951 500 16 5570 11/1964 29 5541 32 17N/68E- 7A1 BLM/ELDAIDGE 1935 31 38 5550 7/1996 28 5532 33 16M/66E-26A 8LN 1966 26O 5 5950 12/1964 28 5532 34 16h/67E- 3A1 ROGERS 16 5580 8/1949 3 5577 NO CASING 35 16h/67E- 3A2 ROGERS 9ROS. 1950 317 6 5580 8/1949 3 5577 NO CASING 36 16h/67E-13AB LAMM 1973 150 9 5635 5/1973 35 5600 37 16h/67E-13A1 CHACHAS 16 48 5580 6/1980 3 5577 38 16h/67E-13A1 CHACHAS 16 48 5580 6/1980 3 5577 38 16h/67E-27D1 3LM/YELLAND 16 38 5630 6/1980 10 5620 39 16N/67E-27D1 3LM/YELLAND 160 6 5590 2/1970 F > 5590 FLOWING	ERTEC BO/NVSEO
29 17M/67E-30CB	ERTEC BO/NVSEO
30 17N/68E- 6A1 BLM/ELDRIDGE 31 38 5570 8/1949 24 5546 31 17N/68E- 6D1 ROBINSON 1951 500 16 5570 11/1964 28 5532 32 17N/63E- 7A1 BLM/ELDRIDGE 1935 31 33 5560 7/1964 28 5532 33 16N/66E-26A BLM 1964 260 5 5950 12/1964 28 5532 33 16N/67E- 3A2 RGERS BROS. 1950 317 6 5580 8/1949 3 5577 NO CASING 35 16N/67E- 3A2 RGERS BROS. 1950 317 6 5580 6/1980 4 5576 36 16N/67E-11AB LAMM 1973 150 9 5635 5/1973 35 5600 37 16N/67E-13A1 CHACHAS 16 48 5580 6/1980 3 5577 38 16N/67E-13A1 CHACHAS 16 48 5580 6/1980 3 5577 38 16N/67E-2701 BLM/FELLAND 16 38 3630 6/1980 10 5620 38 16N/67E-46DE 3LM 1970 160 6 5590 2/1970 F > 5590 FLOWING	NV STATE ENG 79
31 17N/68E- 601 ROBINSON 1951 500 16 5570 11/1964 29 5541 32 17N/68E- 7A1 BLM/ELDRIDGE 1935 31 33 5560 7/1964 28 5532 33 16N/66E-26A 8LM 1964 260 5 5950 12/1964 230 5720 34 16N/67E- 3A1 ROGERS 16 5580 9/1949 3 5577 NO CASING 35 16N/67E- 3A2 RCGERS 9ROS. 1950 317 6 5580 6/1980 4 5576 36 16N/67E-11AB LAMM 1973 150 9 5635 5/1973 35 5600 37 16N/67E-13A1 CHACMAS 16 48 5580 6/1980 3 5577 38 16N/67E-2701 BLM/YELLAND 16 38 5630 6/1980 10 5620 39 16N/67E-4DE 3LM 1970 160 6 5590 2/1970 F > 5590 FLOWING	RUSH ET AL 65
32 17N/69E- 7A1 BLM/ELDRIDGE 1935 31 35 5560 7/1964 28 5532 33 16N/66E-26A 8LM 1964 260 6 5950 12/1964 230 5720 34 16N/67E- 3A1 ROGERS 16 5580 8/1949 3 5577 NO CASING 35 16N/67E- 3A2 ROGERS 9ROS. 1950 317 6 5580 6/1980 4 5576 36 16N/67E-11AB LAMM 1973 150 9 5635 5/1973 35 5600 37 16N/67E-13A1 CHACHAS 16 48 5580 6/1980 3 5577 38 16N/67E-16A1 CHACHAS 16 48 5580 6/1980 3 5577 38 16N/67E-27D1 3LM/YELLAND 16 38 3630 6/1980 10 5620 39 16N/67E-4D2 3LM 1970 160 6 5590 2/1970 F 5590 FLOWING	NV STATE ENG 79
33 16N/66E-26A BLM 1964 260 6 5950 12/1964 230 5720 36 16N/67E- 3A1 ROGERS 16 5580 8/1969 3 5577 NO CASING 35 16N/67E- 3A2 ROGERS BROS. 1950 317 6 5580 6/1980 4 5576 36 16N/67E-11AB LAMM 1973 150 9 5635 5/1973 35 5600 37 16N/67E-13A1 CMACMAS 16 48 5580 6/1980 3 5577 38 16N/67E-2701 BLM/YELLAND 16 38 5630 6/1980 10 5620 39 16N/67E-4DE BLM 1970 160 6 5590 2/1970 F > 5590 FLOWING	RUSH ET AL 65
34 16h/67E- 3A1 ROGERS 16 5580 9/1949 3 5577 NO CASING 35 16h/67E- 3A2 RCGERS 9ROS. 1950 317 6 3580 6/1980 4 5576 36 16h/67E-11AB LAMM 1973 150 9 5635 5/1973 35 5600 37 16h/67E-13A1 CHACHAS 16 48 5580 6/1980 3 5577 38 16h/67E-2701 BLMYELLAND 16 38 5630 6/1980 10 5620 39 16h/67E-4DE BLM 1970 160 6 5590 2/1970 F > 5590 FLOWING	NV STATE ENG 79
35 16M/67E- 3AZ RGERS 9ROS. 1950 317 6 5580 6/1980 4 5576 36 16M/67E-11AB LAMM 1973 150 9 5635 5/1973 35 5600 37 16M/67E-12A1 CHACHAS 16 48 3580 5/1980 3 5577 38 16M/67E-2701 3LM/YELLAND 16 38 3630 6/1980 10 5620 39 16M/67E-40B 3LM 1970 160 6 5590 2/1970 F 5590 FLOWING	RUSH ET AL 79
36 16N/67E-11AB LAMM 1973 150 9 5635 5/1973 35 5600 37 16N/67E-16A1 CMACHAS 16 48 5580 6/1980 3 5577 38 16N/67E-27D1 BLWYYELLAND 16 38 5630 6/1980 10 5620 39 16N/67E-4DE BLW 1970 160 6 5590 2/1970 F > 5590 FLOWING	ERTEC BO/NYSEO
37 16M/67E-18A1 CHACHAS 16 48 5580 3/1980 3 5577 38 16M/67E-27D1 BLMYYELLAND 16 38 3630 6/1980 10 5620 39 16M/67E-4DB BLM 1970 160 6 5590 2/1970 F > 5590 FLOWING	NV STATE ENG 79
38 16N/67E-27D1	ERTEC BO/HVSEO
39 16N/67E-4DE BLM 1970 160 6 5390 2/1970 F > 5590 FLOWING	ERTEC BO/NVSEO
	NV STATE ENG 79
	RUSH ET AL 65
	ERTEC
	ERTEC BO/NVSEO
	ERTEC BO/NVSEO
	ERTEC
	ERTEC BO/NVSEO
	ERTEC
	RUSH ET AL 65

WELL AND WATER LEVEL DATA SPRING VALLEY, NEVADA PAGE 1 OF 3

30 NOV 81

DATA SOURCE	REMARKS	EMENTS	VEL MEASUR	WATER LE				0 N	WELL DESCRIPTIO	
		W ELEV	DEPTH-BELO SURFACE (FT)	MO/YEAR		CASING ID (IN)	WELL	YEAR ORILLED	WELL	TOWNSHIP RANGE-SECTION
ERTEC 80/NVSEO		5822	338	6/1980	6160	10	452	5 1968	DEPT OF HIGHWAYS	14N/66E-34CD
RUSH ET AL 65	FLOWING 182GPM	> 5800		11/1944	5900	8	340		EXPERIMENTAL FAR	14N/67E- 701
RUSH ET AL 65		5768	12	4/1960	5780	14	600			14N/67E-15C1
NV STATE ENG 79		5699	250	6/1977	5949		294	1977	CLARK MINING	14N/67E-15DB
NV STATE ENG 79		5740	30	9/1970	5770	14	200	1970	SPACE METALS	14M/67E-16DD
NV STATE ENG 79		5717	33	5/1968	5750		154		COMSTOCK SIX PLA	14N/67E-21DC
NV STATE ENG 79		5756	64	8/1969	5820		238	1969	FRANDSEN	14N/67E-22CC
NV STATE ENG 79		5720	140	2/1974	5860		193		S.P. VALLEY GOLD	14N/67E-27BC
RUSH ET AL 65		6475	15	10/1955	6490	6	45	1955	BUZZ PIERCE	13N/66E- 5A1
ERTEC 80	DRY CBS.WELL			11/1980	6000	2	140	1980	U.S.AIR FORCE	13N/66E-13CC
RUSH ET AL 65		5890	60	1/1951	5950	6	120	1951	SLH	13N/66E-25A1
ERTEC BO/NVSEO	USES OBSV.WELL		14	6/1980	5780		45	1936	SHALLOW	13N/67E- 8A1
RUSH ET AL 65		5877	73	11/1964	5950	16	5 0 0	1948	ROBISON	13N/67E-15D1
RUSH ET AL 65		5840	60	8/1949	5900	6	300		ROBINSON	13N/67E-15D2
ERTEC	OBSERVATION WELL		94	3/1981	6030	2	160	1950	U.S.AIR FORCE	13N/67E-15DC
NV STATE ENG 79		5853	72	7/1971	5925	•	272	1972	HARBECKE	13N/67E-16DC
RUSH ET AL 65		5722	53	4/1960	5775		120		3LM	13N/67E-17D1
RUSH ET AL 63		5700	70	4/1960	5770	_				13N/67E-22A1
NV STATE ENG 79		5800	60	2/1972	5860		300	1972	RASMASEN	13N/67E-22AD
NV STATE ENG 79		5794	58	1/1968	5852	10	550	1965	HARBECKE	13N/67E-22BA
RUSH ET AL 65		5805	25	3/1949	5830	•	63	1949	YELLAND	13N/67E-22D1
ERTEC 80/NVSEO		5780	65	6/1980	5845	. 6	100	1972	SHALLOW	13N/67E-26BB
NY STATE ENG 79		5790	28 48	12/1964	5818	14	3.30	1964	LARSON	13N/67E-2680
NV STATE ENG 79		3802	23	6/1967	58 50		300	1967	ELDRIDGE	13N/67E-26DC
RUSH ET AL 65 ERTEC 80/NVSED		5765 5769		4/1960 6/1980	5788 5775			1949	DCYLE	13N/67E-31D2 13N/67E-33D1
	FLOWING SGPM		6 F :	7/1964	5780	10	456	1747	•	
RUSH ET AL 65 NV STATE ENG 79	AFORTAR JOHN	3766	14	7/1966		3	915	1966	LARSON	13N/67E-34A1 13N/67E-34AA
RUSH ET AL 65	FLOWING SOGPM			8/1949	5800	,	713	1 700		13N/67E-35C1
RUSH ET AL 65	FLOWING SGPM			7/1964	5830		396		9L# 9L#	13N/67E-35D1
NV STATE ENG 79	LEGATING 3454	5801	564	9/1966	6365		631	1966	9LM	12N/66E-21CD
NV STATE ENG 79		5390	590	1/1967	5980	•	650	1967	314	124/66E-26
ENTEC SO/NVSEO	FLOWING 36GPM			6/1980	5800		0,0	1701	36h	12N/67E- 2A
ERTEC 80/NVSEO	FLOWING SOGPM			6/1980	5800		407	1935	3LM	12N/675- 2A1
RUSH ET AL 65	FLOWING 16PM			3/1950	5800		194	1949	FISH AND GAME	12N/67E- 2A2
RUSH ET AL 65	FLOWING <1GPM			3/1950	5800	' 8	750	1935	BLM	12N/67E- 2A3
RUSH ET AL 65	FLOWING 45GPM			3/1950	5800	6	283		3LM	12N/67E- 244
RUSH ET AL 65	FLOWING 40GPM			3/1950	5800		194	1949	FISH & GAME	12N/67E- 2A5
RUSH ET AL 65	USSS OBSV. WELL		8	8/1953	5770	60	30	1935		12N/67E- 381
RUSH ET AL 65	••••	5730	20		5750	39	45	1935		12N/67E- 8A1
RUSH ET AL 65		5788	12	3/1949	5800	36	21		YELTON	12N/67E-1141
RUSH ET AL 65		5794		3/1949	5800	24	10		YELTON	12N/67E-11A2
ERTEC 80/NVSEO		5889	31	6/1980	5920	13	196	1976	BRANSFORD	12N/67E-12CA
RUSH ET AL 65		5906	14	9/1949	5920	ě	300		KIPKESY	12N/67=-12D1
RUSH ET AL 65		5906	14	9/1969	5920		21		KIRKEBY	12N/67E-12DZ
NV STATE ENG 79		5890	50	7/1959	5940		155	1959	KISKEBA	12N/67E-12D3
			ě			6				

WELL AND WATER LEVEL DATA SPRING VALLEY, NEVADA PAGE 2 OF 3

30 NOV 81

				WATER LEVEL HEASUREMENTS			NTS	REMARKS	DATA SOURCE			
	TOWNSHIP RANGE-SECTION	WELL OWNER	YEAR DRILLED	WELL	CASING		MO/YEAR	DEPTH-BELD SURFACE (FT)		LEV FT)		
	12M/67E-13B1	KIRKEBY	1959	220	6	5820	7/1959		> 5	820	FLOWING SPEPM	NV STATE ENG 79
	12m/67=-13DD	SWALLCW	1970	220	16	5890	6/1980		5	846		ERTEC BO/NVSEO
97	12N/67E-2481	KIRKEBY		155		5840	7/1959	•	> 5	640	FLOWING 796PM	RUSH ET AL 65
98	12N/67E-24CD	SWALLOW		300		58 50	6/1980		5	824		ERTEC 80/NVSEO
99		SWALLOW	1960			5780	6/1980	19	5	761		ERTEC BO/WYSEO
100	12N/67E-27B1	KIRKEBY	1955	30		5751	10/1955	13	5	738		NV STATE ENG 79
101	12N/67E-31DD	RHODES	1964	456	16	5755	4/1964	15	5	740		MV STATE ENG 79
102	11N/66E- 1AB	RHODES	1964		16	5780	6/1980	F	> 5	780	FLOWING <16PM	ERTEC BO/NVSEO
103	11N/66E-15CA	U.S.AIR FORCE	1980	200	2	6000	3/1981				DRY OBS.WELL	ERTEC
104	11N/66E-23AB	U.S.AIR FORCE	1979	101	2	5830	3/1981	47	5	783	OBSERVATION WELL	ERTEC
105	11N/66E-24A1	••••		28	42	5770	6/1980			751		ERTEC SO/NVSEO
104	11H/66E-24D			28		5765	6/1980	19		746		ERTEC BO/NVSEO
107	11N/66E-350B	HECKETHORNE	1959	240	6	5784	6/1980				FLOW. 2.56PM/ABND.	ERTEC BO/NVSEO
	11M/67E- 18C	SWALLOW SPOS		54		5790	6/1980				FLOWING SEPH	ERTEC BO/NVSEO
109	11N/67E- 1C1	SWALLOW BROS.	1935	353		5820	6/1980				FLOWING	ERTEC BO/NYSEO
	11N/67E-13B1	BLM	1935	15		5800	10/1935			793		RUSH ET AL 45
	11N/67E-130C	SWALLOW	1964	450		5780	9/1964			770		NV STATE ENG 79
	11N/68E-190C	U.S.AIR FORCE	1980	200		5950	3/1981				OBSERVATION WELL	ERTEC
	11N/68E-29BA	C.M. REDUC. CO.		353		6110	11/1973			860	***************************************	RUSH ET AL 65
	11N/68E-31C1	BLM-SWALLOW	1935	80		5870	7/1964			799		RUSH ET AL 65
	10m/67E- 7BA	U.S.AIR FORCE	1980	200		5820	3/1981				OBSERVATION WELL	ERTEC
	10N/675-16A1	BLM	1945	54		5840	27 1 7 0 1	45			DUG WELL	NV STATE ENG 79
	10N/67E-22AA	U.S.AIR FORCE	1979	100		5880	3/1981				OBSERVATION WELL	ERTEC
	10N/67E-2688	U.S.AIR FORCE	1980	200		5900	3/1981				OBSEPTATION WELL	ERTEC
	10M/68E-29CC	OISTALK FORCE	1980	200	•	5930	6/1980			773		ERTEC BO/MYSEO
	10m/68E-31CD	U.S.AIR FORCE	1950	150	2	5900	3/1981				OBSERVATION WELL	ERTEC
121		GEYSER ACH	1965	468		6500	5/1963			440	ABSEKANITON MEFF	NV STATE ENG 79
122		U.S.AIR FORCE	1979	101		5930	3/1981		•	0	DRY OBS.WELL	ERTEC
123	9M/68E-30AB1	U.S.AIR FORCE	1980	710		5999	9/1980			•••		
124	9M/68E-30AB2	U.S.AIR FORCE									TEST WELL	ERTEC 80
125		D.S.AIR PURCE	1980	710		5991	9/1980				OBSERVATION WELL	ERTEC 80
143	8N/68E-158D			495		6180	6/1980	408	5	772		ERTEC BO/NVSEO

WELL AND WATER LEVEL DATA SPRING VALLEY, NEVADA PAGE 3 OF 3

30 NOV 81

		WELL DESCRIPTI	ON				WATER L	EVEL MEASURE	MENTS	REMARKS	DATA SOURCE
	TOWNSHIP RANGE-SECTION	GAMES	YEAR DRILLED	WELL	CASING ID (IN)		MO/YEAR	DEPTH-BELOW SURFACE (FT)	ELEV (FT)		
	15H/64E- 7A	SORENSON	1946	200	16	4510	7/1965	38	6472		EAKIN ET AL 67
	15M/44E- BCC	CUMPINGS		24		6520	8/1918	19	6501		EAKIN ET AL 67
3	15N/64E-17BA	THREE C RANCH	1961	203	20	6560	6/1980	6	6554		ERTEC BC/NVSEO
4	15#/64E-178A1	THREE C RANCH	1906	120	20	6560	6/1980	6	6554		ERTEC BO/NVSEO
5	154/64E-17C	C.B.LAND & CA.C	0		20	6550	7/1965	15	6535		EAKIN ET AL 67
	15M/44E-18BA	U.S.AIR FORCE	1980	190	2	6610	3/1931	66	6546	OBSERVATION WELL	ERTEC
7	15H/64E-21CBC	ARGUS MILL				6560	6/1980	11	6549		ERTEC BO/NVSEO
	15H/44E-28DCD					6560	6/1980	11	6549		ERTEC BO/NVSEO
,	15N/64E-34C1	CUMMINGS		17		6565	7/1965	14	6551	DUG WELL	EAKIN ET AL 67
10	15M/64E-34C2	ROBINSON	1964	38	6	6580	7/1965	13	6567		EAKIN ET AL 67
11	158/648-3408	U.S.AIR FORCE	1980	150	2	6640	3/1981	76	6564	OBSERVATION JELL	ERTEC
12	15M/64E-35A	U.S.AIR FORCE	1980	200	Z	6740	3/1981	158		OBSERVATION WELL	ERTEC
13	14H/63E-36BAC				6	7040	6/1980	35	7005	WARD CHARCL OVERS	ERTEC BO/NVSEO
14	14N/64E- 6AA	U.S.AIR FORCE	1980	200	2	6690	3/1981	135	6555	OSSERVATION JELL	ERTEC
15	14H/64E-14AA	U.S.AIR FORCE	1980	200	2	6760	3/1981	159		OBSERVATION WELL	ERTEC
16	14M/64E-158B	U.S.AIR FORCE	1980	150	2	6630	3/1981	51		OBSERVATION WELL	ERTEC
17	14H/64E-19DA	U.S.AIR FORCE	1980	200	2	6720	3/1981	86		OBSERVATION WELL	ERTEC
18	14M/64E-36A	3LH	1954	284	6	6840	7/1965	145	6695		EAKIN ET AL 67
19	14N/65E-29BCC	BLM	1964	505	6	7040	6/1980	423	6617		ERTEC BO/NVSEO
50	13N/64E- 1CC	U.S.AIR FORCE	1980	200	2	6860	3/1981			DRY OSS.WELL	ERTEC
21	13M/64E- 2000					6820	6/1980	34	6786		EPTEC BO/NVSEO
22	13M/64E- 6BA	U.S.AIR FORCE	1980	200	2	6800	3/1981	27	6773	OBSERVATION WELL	ERTEC
23	13M/64E- 9D	BLM	1956	216	6	6757	7/1965	148	6609		EAKIN ET AL 67
24	134/646-150	96#		202	6	6780	5/1977	176	6604		US65 79
25	13N/64E-22CB		1943	202	6	6788	7/1905	142	6646		EAKIN ET AL 67
26	12M/63E-128A1	U.S.AIR FORCE	1980	2447	6	7360	1/1981	427	6933	CARB. TEST WELL	ERTEC
27	12N/64E- 500A					6914	6/1980	72	6542		ERTEC SO

WELL AND WATER LEVEL DATA STEPTOE VALLEY, NEVADA

30 NOV 81

		WELL DESCRIPT	ION				WATER LEVEL MEASUREMENTS			REMARKS	DATA SOURCE
	TOWNSHIP RANGE-SECTION	WELL OWNER	YEAR DRILLED	WELL DEPTH (FT)		LAND ELEV (FT)	MO/YEAR	DEPTH-BELOW SURFACE (FT)	ELEV (FT)		
1	5M/48E- 8CC	U.S.AIR FORCE	1980	200	2	5900	3/1981	66	5834	OBSERVATION WELL	L ERTEC
2	4M/47E-12BC	U.S.AIR FORCE	1980	200	2	5875	3/1981	9 2	5783	DESERVATION WELL	L ERTEC
3	4N/48E-14BB	U.S.AIR FORCE	1980	200	2	5700	3/1981	152	5548	OBSERVATION WELL	ERTEC
	4M/49E-32AC	JOHN CASEY		380	6	5850	9/1980	321	5529		ERTEC BO/WVSEO
5	39/46E-10C				8	5800	6/1962	29	5771		EAKIN 62
6	3H/48E-29C				16	5550	9/1980	99	5451		ERTEC BO/NVSEO
7	3N/48E-32B	JOHN CASEY		150	6	5540	9/1980	109	5431		ERTEC BO/NVSEO
8	2N/47E-13DC	U.S.AIR FORCE	1980	200		5495	2/1981	86		DESERVATION WELL	
9	14/46E- 4AD	U.S.AIR FORCE	1980	201		5400	3/1981	147		OBSERVATION MELI	
10	18/44E- 9AC	JOHN CASEY		184	6	5385	6/1962	128	5257		EAKIN 62
11	1M/46E-25C				ě	5365	9/1980	111	5254		ERTEC BO/NVSEO
12	1M/46E-31CD		1959	117	Ă	5295	2/1963	78	5217		THORDARSON ETAL 71
13	1M/46E-31D	JOHN CASEY		117	Ă	5290	3/1954	90	5200		EAKIN 62
14	1M/47E-30AB	JOHN CASEY		• • • •	14	3400	9/1980	102	5298		ERTEC BO/NVSEO

WELL AND WATER LEVEL DATA STONE CABIN VALLEY, NEVADA

30 NOV 81

R4/

~	TO	E 2	77

		WELL DESCRIPT	: 0N				WATER L	EVEL MEASURE	MENTS	REMARKS	DATA SOURCE
	TOWNSHIP RANGE-SECTION	SHE B	YEAR Drilled		CASING ID (IN)	LAND ELEV (FT)	MO/YEAR	DEPTH-BELOW SURFACE (FT)	ELEV (FT)		
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	(C-13-15) 23CCB (C-13-15) 33COD (C-15-14) 22ODD (C-15-15) 30AC (C-15-5-15) 33DA (C-16-14) 15AC (C-16-14) 348CD (C-17-14) 9ACD (C-17-14) 9ACD (C-17-15) 17CAI (C-17-15) 17CAI (C-17-15) 19DDD (C-17-15) 25CBB (C-17-15) 26CB (C-17-15) 36CA (C-17-15) 36CA (C-17-16) 18B (C-17-16) 18B	RAMLINGS U.S.AIR FORCE	1935 1972 1972 1979 1979 1979 1979 1979 1980 1980 1980 1979 1953 1979 1979	578 2000 3000 1855 92 2000 2000 2000 4099 3111 1900 2011 1500	6 10 6 2 2 2 6 2 2 2 6 2 2 2 2 6 2 2 2 2 2	4890 4805 4545 4532 4499 4790 4506 4479 4450 4479 4450 4453 4455 4455 4456	2/1935 6/1972 3/1972 3/1981 3/1981 3/1981 3/1981 3/1981 4/1981 4/1981 4/1981 4/1981 3/1981 3/1981 3/1981 3/1981	520 27 148 145 78 146 146 146 7 7 78 47 53 5	4370 4773 4397 4377 4419 4644 4644 4428 4426 4428 4426 4428 4426 4428 4426 4428	OBSERVATION WELL DRY OBS-WELL OBSERVATION WELL OBSERVATION WELL OBSERVATION WELL OBSERVATION WELL OBSERVATION WELL OPSERVATION WELL OPSERVATION WELL DRY OBS.WELL DRY OBS.WELL DRY OBS.WELL DRY OBS.WELL	STEPMENS 77 UTAM STATE ENG 79 STEPMENS 77 ENTEC
20 21 22 23 24 25 26 27	(C-18-14)308CA (C-19-15)10DD (C-18-15)13DC (C-13-15)25EA (C-18-15)36CDC (C-19-15)118D (C-20-14)6DD7 (C-20-14)6DD2 (C-22-14)16BA (C-23-14)1AAA	U.S.AIR FORCE U.S.AIR FORCE U.S.AIR FORCE U.S.AIR FORCE U.S.AIR FORCE U.S.AIR FORCE COO4	1980 1979 1976 1976 1979 1980 1980 1985 1935	200 160 200 200 624 624 515 402	2 2 2 10 2 5	4500 4430 4445 4455 4525 4480 4508 4511 4780 4990	3/1981 3/1981 4/1976 4/1976 3/1981 3/1981 4/1981 4/1981 4/1976 5/1935	80 13 17 31 105 34 86 86 320	4417 4428 4424 4420 4446 4422	OBSERVATION WELL OBSERVATION WELL OBSERVATION WELL OBSERVATION WELL TEST WELL OBSERVATION WELL DRY WELL	ENTEC ENTEC STEPHENS 77 STEPHENS 77 ENTEC ENTEC ENTEC ENTEC ENTEC STEPHENS 77 STEPHENS 77

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

WELL AND WATER LEVEL DATA TULE VALLEY, UTAH

30 NOV 81

		WELL DESCRIPTI	0 N				WATER LEVEL MEASUREMENTS			REMARKS	DATA SOURCE
	. TOWNSHIP . RANGE-SECTION	WELL OWNER	YEAR DRILLED	WELL DEPTH (FT)	CASING ID (IN)	LAND ELEV (FT)	MO/YEAR	DEPTH-BELO SURFACE (FT)	ELEV (FT)		
	1 (C-23-14)278C8 2 (C-24-13)34CC5 3 (C-24-14) 7CAC 4 (C-26-14)25AB 5 (C-27-14)27ABD1 6 (C-27-14)28DD1 7 (C-27-14)28DD2 8 (C-28-14)10CCA	BLM U.S.AIR FORCE BLM U.S.AIR FORCE U.S.AIR FORCE	1941 1934 1936 1950 1951 1980 1980	445 294 656 1135 500 1350 1379	9 6 10 2	5160 4645 5300 4760 5020 5080 5334	5/1941 10/1972 3/1934 12/1980 9/1951 4/1981 4/1981		4524 4510	ORY WELL TELESCOPING WELL DRY WELL OBSCRYATION WELL DRY WELL TEST WELL OBSERVATION WELL	STEPHENS 74 STEPHENS 74 STEPHENS 74 ERTEC 80 STEPHENS 76 ERTEC UTAN STATE ENG 79
1	7 (C-28-14)11A9B1 O (C-28-14)26B0 1 (C-28-15) ZCBB	EARTH SCIENCES EARTH SCIENCES BLM	1973 1974 1932	1475 757 12	16 16	5190 5420 5660	9/1973 4/1974 10/1972	672 535	4518 4885	FLOWING	STEPHENS 74 UTAH STATE ENG 79 STEPHENS 74

WELL AND WATER LEVEL DATA WAH WAH VALLEY, UTAH

30 NOV 81

	WELL DESCRIPT	ON				WATER LEVEL MEASUREMENTS			REMARKS	DATA SOURCE
ID. TOWNSHIP NO. RANGE-SECTION	dELL DWNER	PEAR	WELL	CASING ID (IN)		MD/YEAR	DEPTH-BELOW SURFACE (FT)	ELEV (FT)		
1 (0-15- 9) 9080	U.S.AIR FORCE	1780	151	2	4598	3/1981	50		DESERVATION WELL	ERTEC
2 (C-15- 9)27DAC	J.S.AIR FORCE	1950	200	2	4650	3/1981			OBSERVATION WELL	ERTEC
3 (C-15-1C) 1ADC	BLM	1948	701	4	4710	11/1968	131	4577		USGS 79
4 (C-15-13)33ACA	5 L M	1765	225	6	5140	7/1966	140	5000		UTAH STATE ENG 79
5 (C-15-12)19AD1	U.S.AIR FORCE	1950	1220	2	5280	12/1980	797		OBSERVATION WELL	ERTEC 80
6 (C-15-12)19AD2	J.S.AIR FORCE	1980	1033	10	5250	12/1980			TEST WELL	ERTEC BO
7 (C-16- 9)19ACB	U.S.AIR FORCE	1979	180	2	4" 14	3/1981	176	4568	OBSERVATION WELL	ERTEC
3 (C-16- 7)290CC	9 L M	1748	151	5	4610	6/1948	70	4540		MOWER ET AL 64
9 (C-16- 9)31CC	U.S.AIR FORCE	1979	202	2	4550	3/1981	118	4532	OBSERVATION WELL	ERTEC
10 (C-16-1C) 1ADD	J.S.AIP FORCE	1979	202	2	4838	1/1980			DRY OBS.WELL	ERTEC 80
11 (C-17- 9) 5ADA	U AIR FORCE	1989	155	2	4565	3/1981	23	4542	OBSERVATION WELL	ERTEC
12 (0-17- 9) 700	J.S.AIR FORCE	1979	150	2	4560	3/1981	20	4540	OBSERVATION WELL	ERTEC
13 (C-17- 9)33AA	U.S.AIR FORCE	1980	160	Ž	4555	3/1981	24	4531	OBSERVATION WELL	ERTEC
14 (C-17-10)148AC			204		4649	3/1980	118	4531		ERTEC BOJUTSED
15 (0-17-10)14389	3∟4	1743	204	Ď	4650	11/1963	117	4533		HOWER ET AL 64
15 (C-17-10) 28ADD	U.S.AIR FORCE	1979	200		4668	3/1981	147		OBSERVATION WELL	ERTEC
17 (C-17-10)290BC	U.S.AIR FORCE	1979	200	ž	4719	3/1981			DRY OBS.WELL	ERTEC
13 (0-19-13)2008	U.S.AIR FORCE	1980	200	5	4685	3/1981	172	4513	OBSERVATION WELL	ERTEC
19 (C-18-1G)26EDA	CLYDE	1951	280	- 8	4575	5/1951	43	4532		MOMER ET AL 64
20 (C-15-11) 508a	31.4	1935	565		4900	9/1935	250	4650		MOWER ET AL 64
21 (0-19-10) 6300	J.S.AIR FORCE	1993	205	,	4745	3/1981			DRY OBS.WELL	ERTEC
22 (C-19-1C) 7A3C			523	-	4492	3/1979	189	4503		USGS 79
23 (C-12-11)28EAD			524		4690	10/1951		4473		POWER ET AL 64
24 (0-19-12)25000			,.,		6680	11/1979		4686		USGS 79
25 (0-19-12)27090	U.S.AIR FCRCE	1979	200	,	4731	3/1981		****	DRY OBS.WELL	ERTEC
25 (C-19-12)30ARB	314	1936	560		5220	2/1936	••		DRY WELL	POWER ET AL 64
27 (C-19-12)366C4	J.S.AIR FORCE	1979	200		4605	3/1981		4:28	OBSERVATION WELL	ERTEC
23 (C-20-12)1740C	J.S.419 F3PCE	1979	200		4660	1/1981		-463	DRY CBS.WELL	ERTEC
25 (0-20-12)17400	3.3.4.4 13/62	1974	200	•	*000	:/1701			V-1 083.4666	64166

WELL AND WATER LEVEL DATA WHIRLWIND VALLEY, UTAH

30 NOV 81

		WELL DESCRIPT	I OM				WATER L	EVEL MEASURE	MENTS	REMARKS	DATA SOURCE
	TOWNSHIP RANGE-SECTION	VELL OWNER	YEAR DRILLED		CASING	LAND	MO/YEAR	DEPTH-BELOW SURFACE	ELEV		
••		*****	*******	(FT)	(IN)	(FT)		(FT)	(FT)		
	14H/61E- 9C	BLA	1938	365		6300	/1938	350	5950		US65 79
2	14N/62E-31B	BLM	1938	185		5870	7/1947			DRY'	USGS 79
	13m/6QE-26DA	GARDNER	1978	107		6100	7/1978	12	6088		MV STATE ENG 79
	13 n/ 62E-32DA	U.S.AIR PORCE	1980	200	2	5705	3/1981	159		OBSERVATION WELL	ERTEC
	12m/60E-11A	MUNSON		20		4100	12/1947	16	6084		US65 79
	12M/61E-12D	BERINSON	1947	70	48	5618	10/1947	61	5557		US68 79
	12N/61E-13A	DENNIS	1947	72	48	5616	11/1947	62	5554		US63 79
	12N/61E-13D	PETERSON	1919	184		5594	12/1947	58	5536		US63 79
	12M/61E-34A					5550	/1947	58	5492		USG\$ 79
	12M/62E- 5D		1948	1300		5600	3/1948	60	5540		US63 79
	12N/62E-17D			_		5590	/1947	57	5533		US65 79
	12N/62E-20B	CARTER	1948	60		3560	3/1948	31	5529		US68 79
	1 SN/4 SE-50C	CARTER	1948	31	72		3/1948	31	5534		US65 79
	12N/62E-20D	CARTER	1947	34	48	5554	7/1947	28	5526		US65 79
	12H/62E-28BB	WHIPPLE	1963	207		5576	1/1964	40	5536		NV STATE ENG 79
	12N/62E-2988	MC KENZIE	1977	500	16	5560	2/1977	30	5530		NV STATE ENG 79
	12H/62E-29C8B	GUBLER		112		3553	7/1947	56	5527		US65 79
	12M/62E-30AB	GARDNER	1974	196	16	3560	4/1974	42	5518		NV STATE ENG 79
	12N/62E-30B	PEACOCK BROS.	1947		6	3558	9/1947	37	5521		US65 79
	12H/62E-30C	PEACOCK BROS.		50		\$530	9/1947	21	5509		USGS 79
	12N/62E-31AA	GARDNER	1948	116	16	3520	5/1948	10	5510		NV STATE ENG 79
	12M/62E-33A	REID	1947	4.8		3594	11/1947	40	5554		USGS 79
	12N/62E-33D	WEBB	1975	114		\$531	6/1975	18	5513		NV STATE ENG 79
	11N/61E- 4CAA	BLM	1965	90		3580	7/1979	21	5559		ERTEC 79/NVSEO
	11M/61E-16D	CARTER BROS.	1948	82		3470	7/1979		5466		ERTEC 79/HVSEO
	11N/61E-25B					3440	7/1979	15	5425		ERTEC 79/NVSEO
	11N/61E-27ABA					3440	7/1979	12	5428		ERTEC 79/NVSEO
	11M/61E-32BBD	CARTER BROS.	1947	48		3431	7/1979	43	5388		ERTEC 79/HVSEO
	11H/61E-35D		1945	171		3417	7/1979	15	5402		ERTEC 79/NVSEO
	11N/62E- 4B	GUBLER	1952	200	16	3531	4/1952	55	5509		U\$65 79
	11N/62E- 48BC			55		3531	8/1979	22	5509		ERTEC 79/NVSEO
	11N/62E- 50			30		3520	3/1948	3	5517		USGS 79
	11N/62E- 6A			10		3503	7/1947	5	5498		USGS 79
	11M/62E- 6DDC	*****	40/3			3490	7/1979		5488		ERTEC 79/NVSEO
	11N/62E- 78	GUOLER	1947	4.4		3480	9/1947	18	5462		US65 79
	11M/62E-17CC	FAWCETT	1948	15	60	3460	7/1979	7	5453		ERTEC 79/NVSEO
	11H/62E-19C	*****	4074			3442	1/1948	.7	5435		USGS 79
	11N/62E-20AD	GARDNER	1976	100	10	5500	7/1979	40	5460		ERTEC 79/NVSEO
	11N/62E-20BBC					3455	8/1979	. 6	5449		ERTEC 79/NVSEO
	11M/62E-28A					5639	7/1979	43	5596		ERTEC 79/NVSEO
	11N/62E-28AAB		4045	10		5650	8/1979	7	3643		ERTEC 79/NVSEO
	11M/62E-33D	GUBLER	1948	128		5661	10/1948	7	3654		US65 79
	10N/60E- 1CC	U.S.AIR FORCE	1980	197	2	5490	3/1981	182	5 308	OBSERVATION WELL	ERTEC
	10N/60E-13C 10N/60E-24ACD					5390	2/1948	45	5345		USGS 79 ERTEC 79/NVSED
						5477	7/1979	17	5460		
	104/60E-248C8 104/60E-33ACD	BLM				5374	2/1948	41	5333		USGS 79

WELL AND WATER LEVEL DATA WHITE RIVER VALLEY, NEVADA PAGE 1 OF 3

30 NOV 81

TABLE C1:36

		WELL DESCRIPT	[ON				WATER LEVEL MEASUREMENTS			REMARKS	DATA SOURCE
	TOWNSHIP RANGE-SECTION	JELL OWNER	YEAR ORILLED	HELL	CASING ID		MQ/YEAR	DEPTH-BELOW SURFACE (FT)	ELEV (FT)		
	10N/60E-33DA	U.S.AIR FORCE	1980	200	2		3/1981	129		OBSERVATION WELL	ERTEC
	10M/60E-369					5356	7/1979	50	5306		ERTEC 79/NYSED
	10M/60E-36C					5356	7/1979	42	5314		ERTEC 79/NVSEQ
	10N/61E- 5DDC					5413	7/1979	31	5382		ERTEC 79/NVSEO
	10N/61E- 7AAB					5400	7/1979	96	5304		ERTEC 79/NVSEO
	10N/615- 788B					5431	7/1979	113	5318		ERTEC 79/NVSEO
	10N/61E-11DC	MUNROE		127		5376	10/1947	4	5372		USGS 79
55	10N/61E-13CD	U.S.AIR FORCE	1979	51	2	5400	7/1980	41		OBSERVATION WELL	ERTEC 80
	10N/61E-20A					5366	7/1979	22	5344		ERTEC 79/HVSEO
57	10N/61E-21ABB					5370	7/1979	22	5348		ERTEC 79/NVSEO
	10N/61E-26B	CARTER BROS.				5344	10/1947	9	5335		USGS 79
59	10N/61E-34A	ELDRIDGE				5334	10/1947	4	5330		US65 79
	10N/62E-17AAD					5762	7/1979	259	5503		ERTEC 79/NVSEO
61	10N/62E-19ADD					5630	7/1979	149	5481		ERTEC 79/NVSEO
62	9N/59E-36CAB					6160	8/1979	33	6127		ERTEC 79/NVSEO
63	9N/60E- 1A			50		5346	7/1979	40	5306		ERTEC 79/NVSEQ
64	9N/60E-15D					5505	7/1979	195	5310		ERTEC 79/NVSEO
65	9N/61E- 7BCC			4.3		5341	7/1979		5310		ERTEC 79/NVSEQ
66	9N/61E-16C					5508	7/1979	24	5284		ERTEC 79/NVSEO
67	8m/59E- 3C			100		6560	5/1967	85	6575		USG\$ 79
68	5N/60E-21A					5490	7/1979	500	4990		ERTEC 79/NVSEG
69	8N/60E-24D	3LM	1966	80	Ē	5261	7/1979	35	5226		ERTEC 79/NVSEG
70	3N/60E-27DA					5340	7/1979	117	5223		ERTEC 79/NVSEO
71	8N/6QE-28A			142		5480	2/1948	114	5366		US65 79
72	5N/61E-19CCC					5 261	8/1979	0	5261		ERTEC 79/NVSEO
73	8N/61E-27CD			490		5258	8/1979	40	5218		ERTEC 79/NVSEO
74	8N/61E-27DCC	U.S.AIR FORCE	1979	1300	5	5255	2/1981	40		OBSERVATION WELL	ERTEC
75	8N/61E-33ADD	GULF OIL .	1968	72		5250	7/1979	35	5215		ERTEC 79/NVSED
76	8M/62E-17CD	GULF OIL	1965	210		5420	7/1979		5285		ERTEC 79/NVSEO
77	8N/6ZE-19BA	HARDEN	1766	416		5340	7/1979	91	5249		ERTEC 79/NVSEO
78	3N/62E-28AD	U.S.AIR FORCE	1780	200	2	5530	12/1980			DRY DBS. WELL	ERTEC 80
79	8N/62E-30CCB			101		5276	7/1979		5211		ERTEC 79/NVSEO
80	8M/62E-30CD	U.S.AIR FOPCE	1979	101	2	5272	3/1981	65		OBSERVATION WELL	ERTEC
81	7N/O1E- 4DAC					5240	7/1979	38	5202		ERTEC 79/NVSEO
82	7N/61E- 7DD	SENUNG	1970	100		5245	7/1979		5232		ERTEC 79/NVSEO
83	7N/61E-19BD	U.S.AIR FORCE	1979	101	2	5240	3/1981	49		OBSERVATION WELL	ERTEC
84	7N/61E-36CCD	444	1975	79	6	5180	7/1979		5161		ERTEC 79/4VSED
85	7N/61E-36DD	SILVER	1970	100		5200	5/1970	9	5191		NV STATE ENG 79
86	6N/6GE-19CA	U.S.AIR FORCE	1980	210	2	5360	12/1950			DRY OBS. WELL	ERTEC 80
57	6N/6DE-20AD	9LM	1965	160	9	5270	7/1979	90	5180		ERTEC 79/NVSEO
88	6M/60E-21A					5240	7/1979		5151		ERTEC 79/HVSEO
89	6M/61E- 6BB	HOWARD	1967	456	15	5220	7/1979		5181		ERTEC 79/NVSEO
90		FISH & GAME	1766	400		5215	7/1979		5210		ERTEC 79/NVSEO
91	6N/61E-27AA	U.S.AIR FORCE	1979	101	2	5200	3/1981	71		OBSERVATION WELL	ERTEC
72	5N/61E-27DD	KIRCH	1970	250	•	5200	6/1970		5102		NV STATE ENG 79
93	445E-32BA	FOREWASTER	1947	50		5145	3/1979		5127		ERTEC 79/NVSEO
94	6M/61E-33D	SULF OIL	1963	200	5	5203	8/1979	100	5103		ERTEC 79/NVSEG

WELL AND WATER LEVEL DATA WHITE RIVER VALLEY, NEVADA PAGE 2 OF 3

30 NOV 81

B-49

E-TR-52-Ⅱ

		WELL DESCRIPTION	N				WATER LEVEL MEASUREMENTS			REMARKS	DATA SOURCE	
	TOWNSHIP RANGE-SECTION	WELL OWNER	YEAR DRILLED		CASING ID (IN)	LAND ELEV (FY)	MO/YEAR	DEPTH-BELOW SURFACE (FT)	ELEV (FT)			
95	6N/62E- 7CD	GULF OIL	1968	117	6	5279	6/1979	25	5254		ERTEC 79/NVSEO	
94	6M/62E-31AD	MAX RIGGS CO.	1971	250	10	5430	7/1979	145	5285		ERTEC 79/NVSEO	
97	5N/60E- 3AB	U.S.AIR FORCE	1980	200	2	5165	3/1981	48	5117	OBSERVATION WELL	ERTEC	
98		CRSTL.SPRS.DVLP		125	14	5150	7/1979	58	5092		ERTEC 79/NVSEO	
99		WHIPPLE	1961	100	10	5100	7/1979	ŠÕ	5080		ERTEC 79/NVSEO	
100		STEWART	1949	403	. •	5130	7/1979	70		CASING 12" & 8"	ERTEC 79/NVSEO	
101	4M/60E-13AD	U.S.AIR FORCE	1980	165	,	5210	3/1981			DRY OBS. WELL	ERTEC	
102					•	5094	/1963	84	5010		USGS 79	

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMG/AFRCE-MX

WELL AND WATER LEVEL DATA WHITE RIVER VALLEY, NEVADA PAGE 3 OF 3

30 NOV 81

APPENDIX D1
DISCHARGE MEASUREMENTS

	TOWNSHIP RANGE-SECTION	SOURCE	STATION	MO/YEAR Measured	DISCHARGE (GPM)	LAND ELEV (FT)	REMARKS	DATA SOURCE
1	18N/50E-28D S	57	HOT SPRING WASH	4/1964	100	6340		ROBINSON ET AL 67
2	18H/50E-28D2 S	SP	KLOBE SPRING	9/1980	5.0	4455		ERTEC 80
3	17N/49E-14CAD	ST		9/1980	990	7400		ERTEC 80
4	17N/49E~34BB	5.0	BALD MT. SPRING	9/1980	2.0	8020		ERTEC 80
5	17M/50E~30	ST	ALLISON CR.	4/1964	450	6800		ROBINSON ET AL 67
6	17N/50E~31	SP	SULLIVAN SPRING	4/1964	0.0	6840	NO FLOW	ROBINSON ET AL 67
7	16N/5GE~25	57	NINE MILE CK.	5/1964	670	6395		ROBINSON ET AL 67
8	16N/50E~26	ST	ANTELOPE WASH	5/1964	0.0	6395	NO FLOW	ROBINSON ET AL 67
9	15N/49E-10DC	SP	RYE GRASS SPR.	9/1980	1.0	7250	DISCHARGE <16PM	ERTEC BO
10	15M/49E~24	ST	COPENHAGEN CYN.	5/1964	900	7200		ROBINSON ET AL 67
11	15N/50E~24AB	SP	WATER CYN. SPR.	9/1980	3.0	7600	DISCHARGE EST.	ERTEC 80
12	14N/50E-15AC	5 <i>P</i>		9/1980	8.0	7280		ERTEC 80

DISCHARGE MEASUREMENTS, ANTELOPE VALLEY, NEVADA

30 NOV 81

TABLE D1-1

	TOWNSHIP RANGE-SECTION	SOURCE	STATION Name	MO/YEAR MEASURED	DISCHARGE (GPM)	LAMB ELEV (FT)	REMARKS	DATA SOURCE
1	118/55E-30C	SP	PORTUGESE SP.					
			LAKINGS2E PL*	3/1980	2.0	6880	DISCHARGE 2-36PM	ERTEC BO
Z	10M/52E-23AA	SP	SQUAN WELLS SP.	3/1980	3.0			
	10H/54E-25BA					4960		ERTEC BO
,		\$P	MARTIN SP.	3/19 8 Q	2.0	7320	DISCHARGE 2-3GPM	
4	9N/52E-12BAA	3 P						ERTEC 80
-	7 MF J 6 6 - 1 6 8 A A	37	NEEDLES SP.	5/1680	2.0	4500	A 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	

DISCHARGE MEASUREMENTS, BIG SAND SPRINGS VALLEY, NEVADA

30 NOV 81

E-TR-62-11

	TOWNSHIP RANGE-SECTION	SOURCE	STATION NAME	MO/TEAR MEASURED	DISCHARGE (GPM)	ELEV (FT)	REMARKS	DATA SOURCE
	9M/42E-19B	ST	PEAVINE CREEK	8/1979	130	6320		ERTEC 79
	9W/42E-30A	ST	PEAVINE CREEK	/1968	1900	6240	AVE.MEASUREMENT	RUSH ET AL 70
	8H/39E-13B	SP	CLOVERBALE SPR.	7/1967	1.0	5700		RUSH ET AL 70
	2M/39E-13D	SP	JACKSON SPR.	7/1967	1.0	6040	DISCHARGE <16PM	RUSH ET AL 70
	2M/40E-1088A	SP	MILLOW SPRINGS	8/1979	1.0	6020	DISCHARGE EST.	ERTEC 79
•	2M/40E-19C	5.0	CHUCKAR SPR.	9/1967	1.0	6400	DISCHARGE <16P#	RUSH ET AL 70
1	15/40E-25C	SP		1/1967	25	4350	DISCHARGE <256PR	RUSH 68
1	15/41E-26A	SP	ALKALI SPRIM 6	1/1967	40	4870		RUSH 68

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

DISCHARGE MEASUREMENTS, BIG SMOKY VALLEY, NEVADA

30 NOV 81

	TOWNSHIP RANGE-SECTION	SOURCE	STATION NAME	MO/YEAR MEASURED	PISCHARGE (GPM)	LAND ELEV (FT)	REMARKS	BATA SOURCE
1	26M/62E-15C1	50	STRATTON SPR.	8/1947	250	6520		GLANCY 68
2	26H/62E-22DB	\$1		11/1980	100	6420		ERTEC BO
3	26M/62E-3301	50	OWERS SPRING	8/1967	75	4400	DISCHARGE 50-1006PM	
4	26N/62E-34AB	SP		11/1960	4.0	6420		ERTEC BO
5	25N/62E-21	\$T	PARIS CREEK	10/1945	790	4800		GLANCY 68
ă	22N/40E-20CC	ŠP		11/1980	1.0	6900		ERTEC 80
7	21M/62E-29D	SP		11/1980	23	7250		ERTEC BO
	20H/40E-3301	SP	THIRTY-MILE SPA.	8/1947	45	660Q	DISCHARGE 4C-506PM	GLANCY 68
	20M/60E-34C	SP	30-MILE RANCH SPRING	11/1980	10.0	4900	DISCHARGE EST.	ERTEC BO
10	19N/61E-35CC	SP	ROCK SPRING	11/1980	0.0	7480	NO FLOW	ERTEC 80
11	19N/62E- 9C1	\$P	GULCH SPRING	8/1947	15	6800	DISCHARGE 10-206PF	GLANCY 68
12	19N/62E-308	\$7		1/1947	45	7200		GLANCY AB
	100/424-3261			0/1047	26	7400	ATTEMANCE /3550M	SI AMEY AS

DISCHARGE MEASUREMENTS, BUTTE VALLEY, NEVADA

30 NOV 81

D. TOWNSHIP G. RANGE-SECTION	SOURCE	STATION Name	MO/YEAR MEASURED	DISCHARGE (GPM)	ELEV (FT)	REMARKS	BATA SOURCE
1 98/64E-168AB 2 78/64E-33BCA	5P 5P	CAVE VALLEY SPR. SIDEMILL SPRIME	3/1980 3/1980	1000 1.0	6500 6400	DISCHARGE EST. DISCHARGE <16PR	ERTEC BO
1 44/478-18488	•	MARCE CRATME	1	4 4	4400	~	*****

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

DISCHARGE MEASUREMENTS, CAVE VALLEY, NEVADA

30 NOV 81

E-TR-52-II

B-55.

IS. TOWNSHIP STATION NO. RANGE-SECTION SOURCE HARE

DATA SOURCE

1 18/41E-29CA

SP OCEANA SPRING

4/1980

3.0

4000

ERTEC 80

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

DISCHARGE MEASUREMENTS, **COAL VALLEY, NEVADA**

30 NOV 81

ID. HO.	RANGE-SECTION	SOURCE	STATION NAME	MG/YEAR MEASURED	DISCHARGE (GPR)	LAMB ELEV (FT)	REMARKS	DATA SOURCE
1	38/62E-25AB	39	PANROC SPRING	5/1980	4.0	5500		ERTEC 80
2	58/62E-3480	SP	TUIN SPRINGS	5/1980	20	6300		ERTEC 80
3	38/444- 20	30	GRASSY SPRING	5/1980	7.0	4100		ERTEC 80
- A	79/448-2400		INDOA COSTMA	644000		4330	*** ******	*****

DISCHARGE MEASUREMENTS, DELAMAR VALLEY, NEVADA

30 NOV 81

	TOWNSHIP RANGE-SECTION	SOURCE	STATION NAME	MO/YEAR MEASURED	DISCHARGE (GPM)	LAND ELEV (FT)	REMARKS	DATA SOURCE
1	3M/65E-31CC	SP		8/1979	3.0	5100		ERTEC 79
2	2M/63E-13CBA	5.0	COVOTE SPRING	8/1979	1.0	5340		ERTEC 79
3	2\$/63E-22BC	ŠP	UHEATGRASS SPR.	5/1980	2.0	5400	•	ERTEC 80
4	45/64E-248A	SP	SEVEN OAK SPR.	5/1980	0.5	5730		ERTEC 80
	44/44E-25RB		255 EACY 188	5/1980	1 0	4100	ATTCHARGE /1000	SOTEC SO

DISCHARGE MEASUREMENTS, DRY LAKE VALLEY, NEVADA

30 NOV 81

P.58

E-TR-52-II

ID. TOWNSHIP
NO. RANGE-SECTION
SOURCE

1 (C-10-11)27CBD
2 (C-12-10)3588A
SP
KAME SPRING
11/1979
STEPHENS ET AL 78
EATEC 79

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

DISCHARGE MEASUREMENTS, DUGWAY VALLEY, UTAH

30 NOV 81

	TOWNSHIP RANGE-SECTION	SOURCE	STATION Name	MO/YEAR MEASURED	DISCHARGE (GPM)	LAND ELEV (FT)	REMARKS	DATA SOURCE
1	(C-11-14) 3DBD	SP	NORTH SPRING	8/1976	3100	4303		BOLKE ET AL 78
2	(C-11-14)11BCB	SP	DEADMAN SPRING	11/1979	5.0	4310	DISCHARGE EST.	ERTEC 79
3	(C-11-14)11CDB	SP	WALTER SPRING	7/1976	150	4308		BOLKE ET AL 78
4	(C-11-14)23ACA	SP	HOUSE SPRING	7/1976	850	4315		BOLKE ET AL 78
5	(C-11-14)23DBD	5.0	THOMAS SPRING	7/1976	2400	4315		BOLKE ET AL 78
6	(C-11-14)2300C	SP	MIDDLE SPRING	8/1976	5400	4315		BOLKE ET AL 78
7	(C-11-14)26AAA	SP	LOST SPAING	7/1976	1100	4310		BOLKE ET AL 78
8	(C-11-14)26ADD	SP	SOUTH SPRING	7/1976	3600	4310		BOLKE ET AL 78
9	(C-11-14)26DAA	5.7	PERCY SPRING	7/1976	1700	4315		BOLKE ET AL 78
10	(C-12-12)10CBC	SP	WILDHORSE SPRING	8/1976	1.0	5300	DISCHARGE <16PM	BOLKE ET AL 78

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

DISCHARGE MEASUREMENTS, FISH SPRINGS FLAT VALLEY, UTAH

30 NOV 81

	TOUNSHIP RANGE-SECTION	SOURCE	STATION Name	MO/YEAR Measured	DISCHARGE (GPM)	LAND ELEV (FT)	REMARKS	DATA SOURCE
1	3M/56E-23A	\$1	PINE CREEK	6/1980	750	6900	A	
2	3M/56E~32A	81	COTTONWOOD CK				DISCHARGE EST.	ERTEC 80
				6/1980	1000	7000	DISCHARGE EST.	ERTEC 80
,	3N/56E-33C	87	COTTONWOOD CK	6/1980	8 50	6800	DISCHARGE EST.	
4	3M/57E-16C	37	CHERRY CREEK	6/1980				ERTEC BO
e e	3H/57E-160	••	CHERRY CREEK		1000	6200	DISCHARGE EST.	ERTEC 80
,				6/1980	3.0	6150	DISCHARGE EST.	ERTEC 80
6	2M/56E~23B	38	BARTON SP.	6/1980				
,	2M/59E-17A	••			1.0	6400	DISCHARGE <16PM	ERTEC 80
			WATER GAP	6/1980	40	5100	DISCHARGE EST.	ERTEC 80
8	1M/57E~20	3.0	GOLD CREEK SPA.	A/1980	12	4800	ATTCHARCE TOO	24166 60

DISCHARGE MEASUREMENTS, GARDEN VALLEY, NEVADA

30 NOV 81

	TOWNSHIP RANGE-SECTION	SOURCE	STATION Name	MO/YEAR Measured	DISCHARGE (GPM)	LAND ELEV (FT)	REMARKS	DATA SOURCE
1	(C-22-19) 3388	SP		8/1979	15	5435	DISCHARGE EST.	ERTEC 79
2	(C-22-20) 18	57		7/1979	5000	5300		ERTEC 79
3	(C-24-20) 1DBA	SP	NEEDLE POINT SPR.	7/1979	5.0	5455		ERTEC 79
4	(C-30-20)26D	SP	LOG CABIN SPRING	8/1979	1.0	7045	DISCHARGE <1GPM	ERTEC 79
5	(C-32-18)15CAA	SP	SPANISH GORGE SPR.	8/1979	12	6640		ERTEC 79
6	(C-32-20)24DAC	SP	CANYON SPRING	8/1979	31	7150		ERTEC 79
7	15N/68E-36CA	SP	WILLOW PATCH SPR.	8/1979	1.0			ERTEC 79
8	13N/69E-10DD	SP		9/1966	1900	6450		HESS ET AL 78
9	13N/69E-13DCB	ST	LEHMAN CREEK	8/1979	3400	6400		ERTEC 79
10	13N/67E-14860	SP	ROLAND SPRING	8/1979	2800	6400		ERTEC 79
	17N/70E-10	ST		8/1979	1800	5250		ERTEC 79
12	12N/70E-12C	\$7	SNAKE CREEK	7/1979	3000	5520		ERTEC 79
13	12N/70E-18DAA	\$1	SNAKE CREEK	7/1979	2400	6480		ERTEC 79
14	11N/69E-25ABA	SP	SOUTH SPRING	8/1979	11	7600		ERTEC 79
	10M/70E-33BAD	SP	BIG SPRING	8/1979	4200			ERTEC 79
16	SM/70E-11DAA	SP	HERMITAGE SPRING	8/1979	100	6500		ERTEC 79

DISCHARGE MEASUREMENTS HAMLIN VALLEY, UTAH

30 NOV 81

	TOWNSHIP RANGE-SECTION	SOURCE	STATION NAME	MO/YEAR MEASURED		LAND	REMARKS	DATA SOURCE
						(FT)		
1	10N/51E-368A8 '	\$7	MOORES STA. RES.	7/1980	8.0	6080	HAROLD LK OUTLET	ERTEC 80
2	9M/5GE- 2A	SP	6-MILE SPRING-W.	5/1967	50	8300		THORDARSON ET AL 71
3	9N/50E- ZAA	92	6-MILE SPRING-E.	5/1967	38	8300		THORDARSON ET AL 71
4	9N/50E-278D	ST	6-MILE CANYON-S.	12/1966	1.0	7050		THORDARSON ET AL 71
5	9N/51E- 5D	SP	MOREY CANYON	3/1967	5.0	7200		THORDARSON ET AL 71
6	9N/51E- 8BA	SP	SO. CYN. SPRING	3/1967	7.0	7360		THORDARSON ET AL 71
7	9N/51E-32CCC	5.2	HOBBLE CYN. SPR.	7/1980	9.0	6760		ERTEC 80
8	BN/49E-21CDC	SP	UPPER WARM SPRING	3/1967	35	6100		THORDARSON ET AL 71
9	BM/49E-228DC	SP	COLD SPRING	4/1967	10.0	6106		THORDARSON ET AL 71
10	8N/49E-25AB	SP		8/1967	2.0	5900		THORDARSON ET AL 71
11	8N/49E-25BA	SP	OLD DUGAN HOT SPR.	9/1967	500	5950		FIERO ET AL 68
12	8M/49E-36BA	SP	ARRASTA SPRING-NW	5/1967	5.0	7200		THORDARSON ET AL 71
13	8M/49E-368D	SP	ARRASTA SPRING-SE	5/1967	15	7200		THORDARSON ET AL 71
14	BM/SOE- SAA	50	BULLWHACKER SPR.	4/1967	1.0	7050	DISCHARGE EST.	THORDARSON ET AL 71
15	8N/50E-12CDD	ST	6-PILE CYN-S.	7/1980	510	6320		ERTEC BO
16	8N/50E-29DDA	5.	HOT CK.RANCH SPR.		760			RUSH ET AL 66
17	8N/50E-338AB	ST	HOT CREEK	7/1980	340	5640	SUBIRRIG.DITCH	ERTEC 80
15	8M/50E-3388A	SP	COLD SPRING RANCH	7/1980	4.0	5650		ERTEC 80
19	7N/50E-19DCC	SP	KEYSTONE SPRING	7/1980	37	6400		ERTEC BO
20	7N/50E-24CD8	SP	BLUE JAY SPR.	7/1980	1.0	5370	DISCHARGE EST.	ERTEC 80
21	7M/52E-19DAD	SP	RATTLESNAKE SPR.	7/1980	1.0	6010	DISCHARGE EST.	ERTEC 80
22	7N/52E-31880	50	ICEBERG SPRING	7/1980	2.0	5900	DISCHARGE EST.	ERTEC 80
23	7N/52E-318C	SP	ICEBERG SPRING	5/1967	6.0	6200		THORDARSON ET AL 71
24	6N/49E-13BAD	SP	WILLOW SPRING	7/1960	15	7200		ERTEC 80
25	6N/49.5E-14CCD	SP	MULESHOE SPRING	7/1980	47	6960	DISCHARGE EST.	ERTEC 80
26	6N/49.5E-23AC	SP	CAVE SPRING	7/1980	1.0	6915	DISCHARGE EST.	ERTEC 80
27	5N/49E-13BCA	SP	DEAN SPRING	8/1967	1.0	6900		THORDARSON ET AL 71
28	4N/50E-198A	SP	OVER-THE-HILL SPR.	7/1980	1.0	5850	DISCHARGE EST.	ERTEC 80
29	4M/50E-20CC	SP	WARM SPRINGS		680	5500		RUSH ET AL 66
30	4M/50E-20CCB	SP	WARM SPR.TUNNEL	7/1980	79	5540		ERTEC 80

DISCHARGE MEASUREMENTS, HOT CREEK VALLEY, NEVADA

30 NOV 81

	TOWNSHIP RANGE-SECTION	SOURCE	STATION NAME	MC/YEAR MEASURED	DISCHARGE (GPM)	LAND ELEV (FT)	REMARKS	DATA SOURCE
1	18M/59E-10DC	SP	SAMMY SPRING	11/1980	4-0	6680		ERTEC 80
2	18N/59E-11CB	SP	WILLOW SPRING	11/1980	1.0	6710	DISCHARGE <1GPM	ERTEC 80
3	18M/61E-11AD	SP	TANK SPRING	11/1980	0.0	8040	DRY	ERTEC 80
4	18N/61E-11CD	SP		11/1980	0.0	7880	DRY	ERTEC 80
5	17M/58E-11CD	SP		11/1980	0.0	6840	DISCHARGE=SEEP	ERTEC 80
6	17N/58E-15AC	SP	ROUND SPRING	11/1980	0.0	6980	DISCHARGE-SEEP	ERTEC 80
7	17N/58E-21BAC	SP	SAND SPRING	11/1980	0.0	7560	DISCHARGE <1GPM	ERTEC 80
	14M/59E- 1AA	SP	MUD SPRIME	11/1980	0.0	7230	DISCHARGE «16PM	ERTEC AD

DISCHARGE MEASUREMENTS, JAKES VALILEY, NEVADA

30 NOV 81

	TOWNSHIP RANGE-SECTION	SOURCE	STATION Name	MO/YEAR MEASURED		ELEV	REMARKS	D' . SOURCE
						(FT)		
1	23M/49E-23DBD	SP	JACK SPRING	10/1980	0.0	7020	DISCHARGE-SEEP	ERTEC 80
	22M/49E-21BAB	SP		10/1980	1.0	6435	DISCHARGE <1GPH	ERTEC 80
3	22M/49E-27	ST	COILS CREEK	5/1964	3600	6348	DISCHARGE EST.	RUSH ET AL 64
	22N/49E-31	ST	SNOW WATER CYN.	5/1964	1100	6400	DISCHARGE EST.	RUSH ET AL 64
5	22N/5QE-12BA	ST	ROBERTS CREEK	10/1980	390	6800		ERTEC 80
	21N/48E-11	ST	FERGUSON CK.	5/1964	1800	6400	DISCHARGE EST.	ROBINSON ET AL 67
7	20m/47E-14DCC	SP	ACKERMAN RANCH SPR	10/1980	1.0	6800	DISCHARGE <16PM	ERTEC 80
	20N/47E-23ABC	ST	ACKERMAN CYN.	10/1980	16	6720		ERTEC 80
9	20#/47E-25	57	ACKERMAN CYN.	5/1964	520	6450	DISCHARGE EST.	ROBINSON ET AL 67
10	20M/49E-23	\$7	COILS CK. TRIB.	5/1964	450	6125	DISCHARGE EST.	ROBINSON ET AL 67
11	20N/50E-13A	SP	LONE MTM. SPR.	10/1980	0.0	6110	DISCHARGE=SEEP	ERTEC BO
12	20M/51E- 6CCC	SP	MUD SPRING	10/1980	0.0	6140	DISCHARGE=SEEP	ERTEC BO
13	20M/51E-22	ST	SLQUGH CK.	.5/1964	670	6240	DISCHARGE EST.	ROBINSON ET AL 67
14	20M/52E-20ACC	SP		9/1980	12	6070		ERTEC BO
15	20m/52E-26	ST	SLOUGH CK.	5/1964	1100	5975	DISCHARGE EST.	ROBINSON ET AL 67
16	19N/46E- 2DAA	ST	DRY CREEK	10/1980	37	7300		ERTEC 80
17	19N/49E-20	ST	WILLOW CK.	5/1964	450	6260	DISCHARGE EST.	ROBINSON ET AL 67
15	19N/5GE- 5AA	SP	HOT SPRING	9/1980	2.0	6100	DISCHARGE EST.	ERTEC 80
19	19N/5QE-188A	58	WARM SPRINGS	9/1980	0.0	6140	DISCHARGE = SEEP	ERTEC 80
20	19N/51E- 5	ST	SLOUGH CK.	5/1964	850	6060	DISCHARGE EST.	RUSH ET AL 64
21	19N/51E- 7	ST	DAGGETT CREEK	5/1964	670	6060	DISCHARGE EST.	ROBINSON ET AL 67
22	19N/51E-30	\$7	ANTELOPE WASH	4/1964	0.0	6120	NO FLOW	ROSINSON ET AL 67
23	18M/48E- 1AAD	SP	JACKRABBIT SPR.	10/1980	0.0	6600	DRY	ERTEC 80
24	18M/49E-12BAD	SP		9/1980	0.0	6600	DRY	ERTEC BO

DISCHARGE MEASUREMENTS, KOBEH VALLEY, NEVADA

30 NOV 81

ID. TOWNSHIP NO. RANGE-SECTION	SOURCE	STATION NAME	MO/YEAR Measured	DISCHARGE (GPM)	ELEV (FT)	REMARKS	DATA SOURCE
1 10M/65E-19D1	SP	N.CREEK SPRING	8/1963	770	7800		RUSH ET AL 63
2 10H/65E-29C1	SP	LTL.N.CREEK SPR.	8/1963	40	7800		RUSH ET AL 63
3 9N/65E- 4C1	SP	GEYSER SPRING	9/1963	200	7120	DI3.200-2256PM AVE.	RUSH ET AL 63
4 9N/65E-30D	SP	PATTERSON SPRING	8/1963	10.0	7800		RUSH ET AL 63
5 6N/65E-23B	SP	BURNT CORRAL SPR.	8/1963	1.0	6720		RUSH ET AL 63
6 6N/68E-11C1	SP	COLE RANCH SPR.	8/1963	25	8120		RUSH ET AL 63
7 SN/66E~ 6D	SP	PONEY SPRING	8/1963	10.0	6162		RUSH ET AL 63
				4.4.4			******

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

DISCHARGE MEASUREMENTS, LAKE VALLEY, NEVADA

30 NOV 81

8-66

ID. TOWNSHIP NO. RANGE-SECTION	SOURCE	STATION MANE	MO/YEAR MEASURED	DISCHARGE (GPM)	LAMP ELEV REM (FT)	MARKS	DATA SOURCE
1 16H/53E- 88	SP	FISH CREEK SPRINGS	9/1965	4000	6040		HESS ET AL 78
2 16H/53E- 88	SP	FISH CREEK SPRINGS	11/1965	2400	6040		RUSH ET AL 66
3 16H/53E-12ABD	ST	FISH CREEK	3/1980	680	6010		ERTEC 80
4 15M/54E-11ACB	SP	POGUES STA.SPR.	3/1980	0.3	635G		ERTEC 80
5 14H/51E-22C	SP	PINE SPRING		450	7400		RUSH ET AL 66
6 14M/51E-23CCA	SP	PINE SPRING	3/1980	180	7200		ERTEC BO
7 448/646-844	t.	CHOUDALL OCH COO		90	7340		BUCH ET AL AA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

DISCHARGE MEASUREMENTS, LITTLE SMOKY VALLEY, NEVADA

30 NOV 81

E-TR-52-II

HO.	TOWNSHIP RANGE-SECTION	SOURCE	STATION	MC/YEAR MEASURED	DISCHARGE (GPM)	LAND ELEV (FT)	REMARKS	BATA SOURCE
	23N/58E-36B	SP	LONG V. SLOUGH	11/1980	80	6120	DISCHARGE EST.	ERTEC 80
2	23M/58E-36C	SP	LONG V.SLOUGH	11/1980	300	6110	DISCHARGE EST.	ERTEC 80
3	19m/59E-31AC	SP	NORTH SPRING	11/1980	2.0	6820	DISCHARGE EST.	ERTEC 80

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

DISCHARGE MEASUREMENTS, LONG VALLEY, NEVADA

30 NOV 81

	TOWNSHIP		STATION	MG/YEAR	DISCHARGE	LAND		
NO.	RANGE-SECTION	SOURCE	NAME	REASURED	(GPM)	ELEV (FT)	REMARKS	DATA SOURCE
1	17N/48E-13BA	SP		10/1980	0.0	8000	DRY	ERTEC 80
2	17H/48E-21AC	SP		10/1980	10.0	7050	DISCHARGE EST.	ERTEC 80
3	15N/46E- 2C	SP	DEER SPRING	10/1980	0.0	7200	DISCHARGF#SEEP	ERTEC 80
4	15N/46E- 3C	SP	SAMS SPRING	10/1980	0.0	7440	DISCHARGE=SEEP	ERTEC 80
5	15N/46E-20DB	ST	CORRAL CYN.	10/1980	4.0	7800		ERTEC 80
6	15M/46E-21CC	\$1	CORRAL CYN.	10/1980	7.0	7600		ERTEC 80
7	15M/46E-23BD	ST		10/1980	32	7200		ERTEC 80
8	15M/46E-27AD	SP		10/1980	15	7600	DISCHARGE EST.	ERTEC BO
	15N/46E-28AA	ST		10/1980	15	7450	DISCHARGE EST.	ERTEC 80
	15N/47E-14	ST	STONEBERGER CK.	4/1964	670	6575	DISCHARGE EST.	ROBINSON ET AL 67
11	15N/47E-25	ST	WILLOW CK.	4/1964	220	6650	DISCHARGE EST.	ROBINSON ET AL 67
	15N/47E-29CB	SP	MUD SPRING	10/1980	1.0	7100		ERTEC 80
13	15N/47E-35DD	57		10/1980	400	6640		ERTEC 80
	15H/48E-29	\$T		5/1964	450	6750	DISCHARGE EST.	ROBINSON ET AL 67
15	14N/46E-13AD	\$1	IKES CYN.	10/1980	92	7520		ERTEC 80
	14M/47E- 2	ST	STONE CK. TRIB.	4/1964	900	6650	DISCHARGE EST.	ROBINSON ET AL 67
17	14N/47E-22	\$ T	STONE CK. TRIB.	4/1964	900	6700	DISCHARGE EST.	ROBINSON ET AL 67
	14M/47E-22DC	\$7		10/1980	650	6700		ERTEC 80
	13M/47E- 5DA	SP	BOX SPRING	10/1980	0.0	6775	DISCHARGE-SEEP	ERTEC BO
	12H/47E-32	ST	MOSBUITO CK.	4/1964	900	6850	DISCHARGE EST.	ROBINSON ET AL 67
	12N/47E-32AC	\$1	MOSQUITO CK.	10/1980	800	6850		ERTEC 80
	11N/45E-13A9D	ST	PINE CK.	10/1980	500	7500		ERTEC 80
	11N/46E-16	ST	PINE CK.	5/1964	900	6880	DISCHARGE EST.	ROBINSON ET AL 67
	11W/46E-18DDB	\$7	PINE CREEK	10/1980	500	7200		ERTEC 80
	11H/47E- 4DB	ST	MOSQUITO CK.	10/1980	250	7000		ERTEC 80
	10N/46E-28	ST	CORCORAN CYN.	4/1964	90	7200	DISCHARGE EST.	ROBINSON ET AL 67
	10N/46E-28BC	ST	CORCORAN CYN.	10/1980	270	7250		ERTEC 80
25	10N/46E-35	ST	MEADOW CK.	4/1964	9.0	6950	DISCHARGE EST.	ROBINSON ET AL 67
29	9H/46E- 9	ST	MEADOW CK.	4/1964	180	7150	DISCHARGE EST.	ROBINSON ET AL 67
30	9N/47E-16	ST	BARLEY CK.	4/1964	900	7160	DISCHARGE EST.	ROBINSON ET AL 67
31	9N/47E-16AB	\$T	BARLEY CK.	10/1980	560	7240		ERTEC 80
32	9W/47E-32DB	SP		10/1980	5.0	7400		ERTEC 80
33	8M/46E- 1A	SP		10/1980	0.0	7240	DISCHARGE=SEEP	ERTEC 80

DISCHARGE MEASUREMENTS, MONITOR VALLEY, NEVADA

30 NOV 81

	TOWNSHIP RANGE-SECTION	SOURCE	STATION NAME	MO/YEAR MEASURED	DISCHARGE (GPM)	LAND ELEV (FT)	REMARKS		DATA SOURCE
1	7N/64E-25DCC	SP		5/1980	1.0	6400	DISCHARGE <	16PM	ERTEC 80
2	54/64E- 7000	SP	BIG MUD SPRING	5/1980	6.0	6380			ERTEC BO
3	5M/63E-10CAB	SP	HORSE CORRAL SPR.	5/1980	8.0	6360			ERTEC 80
4	5H/65E-15BBA	SP	NORTH MUD SPR.	5/1980	2.0	6400	DISCHARGE E	ST.	ERTEC 80
5	5M/45E-21ABB	SP		5/1980	3.0	6240	DISCHARGE 2	-36P#	ERTEC 80
6	5N/65E-32ADB	SP	MALLOY SPRING	5/1980	82				ERTEC BO
7	4M/65E- 4CCB	SP	LITTLE FIELD SPR.	5/1980	10.0	6150	DISCHARGE E	ST.	ERTEC BO
	AM/ASE-29CCD	10	BATLEY CORTES	5/1980	2.0	4350	DISCHARGE 2		FRISC AD

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

DISCHARGE MEASUREMENTS, MULESHOE VALLEY, NEVADA

30 NOV 81

	TOWNSHIP RANGE-SECTION	SOURCE	STATION NAME	MO/YEAR MEASURED	DISCHARGE (GP#)	ELEV (FT)	REMARKS	DATA SOURCE
1	23H/55E~26B	SP	COLD SPRING	11/1980	580	6200		ERTEC 80
2	23H/56E-36BBC	ST	WARR SPR. POND	11/1980	1800	5880	DISCHARGE EST.	ERTEC BO
3	22M/56E-16AA	SP		11/1980	0.0	5880	NO FLOW	ERTEC 80
4	22M/56E-21CC	ŚP		11/1980	15	5878		ERTEC BO
5	21H/SGE- SACE	SP		11/1980	10.0	5870		ERTEC 80
	21M/56E- 98E	ST	DEADMAN CK.	11/1980	300	6040		ERTEC 80
7	21M/56E-16CD	ST		11/1980	150	6040		ERTEC 80
	20N/56E-2688	SP	BARREL SPRING	11/1980	1.0	5929	DISCHARGE <1GPM	ERTEC BO
	20N/57E- 6A	SP	BECK SPRING	11/1980	20	6720	DISCHARGE EST.	ERTEC BO
10		\$ <i>P</i>	SULPHUR SPRING	11/1980	1.0	6400		ERTEC 80
	A (44.44				*****

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

DISCHARGE MEASUREMENTS, NEWARK VALLEY, NEVADA

30 NOV 81

E-TR-52-II B-71

ID. TOWNSHIP
NO. RANGE-SECTION SOURCE STATION NAME NAME SPRING 5/1980 O.O DAY SOURCE

1 55/41E-240CC SP SIXMILE SPRING 5/1980 O.O DAY ERTEC 80

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

DISCHARGE MEASUREMENTS, PAHROC VALLEY, NEVADA

30 NOV 81

ID. TOWNSHIP NO. RANGE-SECTION	SOURCE	HOITATE BRAM	MO/YEAR MEASURED	DISCHARGE (GPM)	LAND ELEV (FT)	REMARKS	DATA SOURCE
1 24/556-19000	SP	QUINN CYN. SPR.	6/1980	55	6800		ERTEC 80
2 1H/56E- 9DAA	SP	MC CUTCHEN SPRING	6/1980	1.2	5800		ERTEC BO
3 15/56E-12ADB	SP	WILD HORSE SPRING	6/1980	12	6200		ERTEC BO
4 25/54E-16CAC	SP		6/1980	0.5	6080	DISCHARGE EST.	ERTEC 80
5 25/55E-26DDA	SP	SAND SPRING	6/1980	0.0	4775	DRY	ERTEC BO
6 25/57E-166B	SP		6/1980	0.0	5950	DRY	ERTEC 80
7 25/57E-22ACC	SP		6/1980	3.0	6400		ERTEC 80
8 25/57E-22DAB	SP		6/1980	0.0	6400	DRY	ERTEC 80
0 10/676-10000		2228 2887MC	4/1000	1.0	4000	ATTCHANCE BOT	ERTEC RO

DISCHARGE MEASUREMENTS, PENOYER VALLEY, NEVADA

30 NOV 81

ID.	TOWNSHIP		STATION	MC/YEAR	DISCHARGE	LAND		
NO.	RANGE-SECTION	SOURCE	NAME	MEASURED	(GPM)	ELEV	REMARKS	DATA SOURCE
						(FT)		
1	(C-26-15)16ADD	SP		11/1973	0.0	6405	SEEP	STEPHENS 76
2	(C-26-18)22CBB	SP	PINE SPRING	11/1973	0.2	6570		STEPHENS 76
3	(C-26-19) 3ABC	SP	MOUNTAIN HOME SPRING	11/1973	0.5	7150	DISCHARGE EST.	STEPHENS 76
4	(C-27-18)27bBA	SP	POTCH-IM-PO SPRING	11/1973	20	6340	DISCHARGE EST.	STEPHENS 76
5	(C~27~18)35CCB	SP	WILLOW SPRING	11/1973	3.0	6260		STEPHENS 76
6	(C-28-16)27CCC	SP	PINE GROVE SPRING	11/1973	15	6700	DISCHARGE EST.	STEPHENS 76
7	(C-28-16)27DDD	SP		/1955	5.0	7080	DISCHARGE EST.	STEPHENS 76
3	(C-28-18)16CDB	SP	VANCE SPRING	11/1973	60	6675	DISCHARGE EST.	STEPHENS 76
9	(C-28-18)270DA	SP	BUCKHORN SPRING	/1955	10.0	6670	DISCHARGE EST.	STEPHENS 76
10	(C-28-18)32ADA1S	SP		11/1973	3.0	6920	DISCHARGE EST.	STEPHENS 76
1.	(C-28-18)32ADA2S	SP		11/1973	3.0	6920	DISCHARGE EST.	STEPHENS 76
12	(C-28-18)32CCA	5 <i>P</i>		11/1973	7.0	7150	DISCHARGE EST.	STEPHENS 76
13	(C-28-18)32DAD	\$P		11/1973	7.0	7000	DISCHARGE EST.	STEPHENS 76
14	(C-28-18)3388D1S	SP		11/1973	3.0	6845	DISCHARGE EST.	STEPHENS 76
15	(C-28-18)338802\$	SP		11/1973	3.0	6835	DISCHARGE EST.	STEPHENS 76
16	(C-29-16)14088	SP		10/1972	0.0	7730	SEASONAL	STEPHENS 76
17	(C-29-16)16DBD	SP	WATER HOLLOW SPR.	11/1979	18	7320		ERTEC 79
18	(C-29-18)140DD	ST	INDIAN CREEK	11/1973	56	4780	DISCHARGE EST.	STEPHENS 76
19	(C-29-18)16CCC	SP		11/1973	56	7860	DISCHARGE EST.	STEPHENS 76
20	(C-30-17)190DC	27	SHEEP CREEK	11/1979	4.0	6900		ERTEC 79

MX SITING .NVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

DISCHARGE MEASUREMENTS, PINE VALLEY, UTAH

30 NOV 81

	TOWNSHIP RANGE-SECTION	SOURCE	STATION NAME	MO/YEAR MEASURED	DISCHARGE (GPR)	LAMO ELEV (FT)	REMARKS	DATA SOURCE
1	15m/55E-328A	SP	NV.GOVERNORS SPR.	4/1972	0.0	6350	DRY	VAN DENBUREN ETAL 74
2	15W/57E-33CDB	SP	GREEN SPRING	11/1970	100		DISCH.>100GPM/EST.	VAN DENBURGH ETAL 74
	14M/56E-14DDC	SP	BIG BULL SPRING	11/1970	400	5880		VAN DENBURGH ETAL 74
	14M/56E-25BDC	SP	BULL CREEK SPR.		230	5800		VAN DENBURGH ETAL 74
	14#/57E-22AA4	SP	BINCH SPRING	11/1970	8.0	6520	DISCH.5-10GPM/EST.	VAN DENBURGH ETAL 74
	13m/55E- 9mpc	SP	YOUNG FLORID SPRING	11/1970	0.3	6240		VAN DENBURGH ETAL 74
	13N/56E-32BAC	SP	DIG WARM SPRING		5800	5405	AVE.DISCH.(1967~72)	VAN DENBURGH ETAL 74
	13.5N/55E-29DDD	SP	DIG LOUIE SPRING	11/1970	1.0	6270		VAN DENBURGH ETAL 74
	12N/55E- PAAA	SP	MC CLURE SPRING		1.0	6310	DISCHARGE EST.	VAN DENBURGH ETAL 74
	12N/S6E- 5AC	SP	LITTLE WARM SPRING	3/1972	500	5590		VAN DENBURGH ETAL 74
	12N/56E- 5CBD	SP		10/1971	50	5460	DISCHARGE EST.	VAN DENBURGH ETAL 74
	12N/56E-10CCD	SP		10/1971	1.0	5580	DISCHARGE EST.	VAN DENBURGH ETAL 74
	11M/55E-34DBC	SP	IKE SPRING	11/1970	1.0	6600		VAN DENBURGH ETAL 74
	11N/56E-30DAA	SP	BRADSHAW SPRING		3.0	6050	DISCH.1-5GPM/EST.	VAN DENBURGH ETAL 74
	11N/56E-31BCA	SP	INDIAN SPRING	8/1967	1.0	6160	DISCHARGE EST.	VAN DENBURGH ETAL 74
	11N/56E-31CCD	SP	LEOMAN SPRING		3.0	6300	DISCH.1-SGPM/EST.	VAN DENBURGH ETAL 74
	11N/58E-15ACA	SP	SHOW(CRYSTAL) SPR.		3.0	6380	DISCH.1-5GPM/EST.	VAN DENBURGH ETAL 74
	11M/58E-3288C	SP	PASTRONI SPRING	10/1971	300	5360	DISCHARGE EST.	VAN DENBURGH ETAL 74
	10H/58E- 8ADB	ST	CURRANT CREEK	2/1980	3200	5200		ERTEC BO
	10N/58E- 98C	SP		10/1971	200		DISCHARGE EST.	VAN DENBURGH ETAL 74
21	9N/57E- 5CCD	ST		2/1980	1500	4800	DISCHARGE EST.	ERTEC 80
22	8M/55E-14BCB	SP	HAY CORRAL SPR.	3/1972	450	4770		VAN DENBURGH ETAL 74
23	8H/55E-15AAA	SP	NORTH SPRING		170	4805	AVE.DISCH.(1967-72)	VAN DENGURGH ETAL 74
24	8M/55E-15ACD	SP	BIG SPRING	2/1980	370	4820		ERTEC 80
25	8M/55E-15ADD	SP	REYNOLDS SPRING		330	4770	AVE "" CH. (1967-72)	VAN DEHBURGH ETAL 74
26	8N/57E-11AA	SP	TOM SPRING	11/1966	250	4750	DISCH. EST.	HESS ET AL 78
27	8N/57E-11DD8	SP	BLUE EAGLE SPRING	3/1972	1900	4765		VAN DENBURGH ETAL 74
28	8M/57E-14AC	SP	KATE SPRING	1/1935	14	4755	DISCHARGE EST.	VAN DENBURGH ETAL 74
29	8N/57E-27DAC	SP	BUTTERFIELD SPRING	11/1966	200	4750	DISCHARGE EST.	HESS ET AL 78
30 31	7M/55E-16DB	SP SP	CHIMMEY HAT SPRING	2/1980	12	4820		ERTEC 80 VAN DENBURGH ETAL 74
	7N/57E-28ACB		BULLWHACKER SPRING	2/1934	10.0	4760	DISCHARGE EST.	
32 33	7W/57E-28C8D	SP	THORN SPRING	10/1971	75	4750	DISCHARGE 50-100GPM	VAN DENBURGH ETAL 74 VAN DENBURGH ETAL 74
34	6N/34E-11AA	SP	STORM SPRING	10/1971	5.0	4805	DISCHARGE EST.	
35	6N/54E-11DC	SP	COYOTE HOLE SPR.	8/1967	2.0	4840	DISCHARGE EST.	VAN DENBURGH ETAL 74
36	6M/54E-23BD S 6M/56E-24BDC	SP ST	ABEL SPRING	2/1980	350	4810	DISCHARGE EST.	ERTEC 80
37	6N/57E- 18	SP	TROY CANYON	2/1980	. 55	4870		ERTEC 80 VAN DENSURGH ETAL 74
38			HTLLAU COSTNC	11/1970	1.0	6000		
39	6M/57E- 5BAA 3M/52E- 3D	SP St	WILLOW SPRING	2/1934 3/19 8 0	30	4750 5100		VAN DENBURGH ETAL 74 ERTEC 80
40	3N/55E-27DB	5 I		11/1970	1500 5.0	7000	DISCHARGE EST.	VAN DENBURGH ETAL 74
41	1N/52E-22CB	SP	PYRAMID SPRING	8/1967	0.2		DISCHARGE EST.	VAN DENBURGH ETAL 74
42	28/51E-17A	SP	SUMMER SPRING	8/170/		5820 6700		VAN DENBURGH ETAL 74
43	25/51E-17A	3P SP			3.0		DISCHARGE EST.	
+3	43/312-41VA	37	CEDAR SPRING	8/1967	3.0	6540	DISCHARGE EST.	VAN DENBURGH ETAL 74

DISCHARGE MEASUREMENTS, RAILROAD VALLEY, NEVADA

30 NOV 81

E-TR-52-II

	TOWNSHIP RANGE-SECTION	SOURCE	STATION Name	MC/YEAR MEASURED	DISCHARGE (GPR)	LAND ELEV (FT)	REMARKS	DATA SOURCE
1	8N/44E-25AD	SP	KELLER SPR.	9/1980	1.0	6900	DISCHARGE <16PM	ERTEC 80
2	8N/45E-34CD	ST	HUNTS CYN. CR.	10/1980	50	6550	DISCHARGE EST.	ERTEC 80
3	7N/43E-13DDA	SP	MUD SPRING	9/1980	0.0	7160	DRY	ERTEC 80
- Ā	7N/43E-25BCA	SP	BAXTER SPRING	9/1980	12	6860		ERTEC 80
5	7N/44E-14CBD	5.9	SPANISH SPR.	9/1980	0.0	6570	DISCHARGE-SEEP	EPTEC 80
		1.	4-20-00-00-0					

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

DISCHARGE MEASUREMENTS RALSTON VALLEY, NEVADA

30 NOV 81

B-76.

E-TR-52-II

	SOURCE	STATION NAME	MO/YEAR MEASURED	DISCHARGE (GPM)	LAND ELEV (FT)	REMARKS	DATA SOURCE
3M/50E- 4AA		BLACK SP	12/1967	2.0	5900		THORDARSON ETAL 71
	5 P	RADUIM SP		0.0	6900		THOROARSON ETAL 71
	SP		7/1980	7.0	5440	MILL SEEP	ERTEC 80
3.5N/50E-3308	SP	SLACK SPRING	7/1980	3.0	5925	DISCHARGE EST.	ERTEC 80
2M/50E-21CAC	SP	COTTONWOOD CYN. SPR.	7/1980	7.0	6480	DISCHARGE EST.	ERTEC 80
2M/50E-22DA	SP	CRYSTAL SPRING	8/1967	30	4080		MIFFLIM 68
2M/50E-23CBB	SP	REVEILLE MILL	7/1980	4.0	6060		ERTEC 80
2M/50E-28AA	SP	ROSE SPRING	8/1967	5.0	4300		MIFFLIN 68
2M/50E-28ACC	SP	REVEILLE MILL SPR.	8/1967	10.0	6400		MIFFLIN 68
THISQE- 4AAO	3.7	EDEN CREEK	7/1980	100	6440		ERTEC 80
13/50E-14AA	SP	GEORGES WATER	7/1980	84	6900		ERTEC 80
	2N/50E-21CAC 2N/50E-22DA 2N/50E-23CBB 2N/50E-28AA 2N/50E-28ACC 1N/50E-4AAO	RANGE-SECTION SOURCE 3N/50E- 4AA 3N/50E- 7AAC SP 3N/51E-18CDA S SP 3.5N/50E-21CAC SP 2N/50E-22CA SP 2N/50E-22AA SP 2N/50E-28AA SP 2N/50E-28AA SP 2N/50E-28AA SP 2N/50E-28AA SP 2N/50E-4AAA ST	RAMEE-SECTION SOURCE NAME	NAME	### ### ### ### ### ### #### #### #### ####	RAMEE-SECTION SQURCE NAME HEASURED COMMITTEE	RAMGE-SECTION SOURCE NAME NEASURED (GPH) ELEV REMARKS

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

DISCHARGE MEASUREMENTS REVEILLE VALLEY, NEVADA

30 NOV 81

	TOWNSHIP RANGE-SECTION	SOURCE	STATION NAME	MQ/YEAR MEASURED	DISCHARGE (GPM)	LAND ELEV (FT)	REMARKS	DATA SOURCE
1	(C- 9- 7)28BC	SP		3/1965	1.0	5700	DISCHARGE EST.	STEPHENS ET AL 78
2	(C- 9- 7)28CAC	SP		5/1976	5.0	5770	DISCHARGE EST.	STEPHENS ET AL 78
3	(c- 9- 7)31088	5 P		7/1964	0.2	6310	DISCHARGE EST.	STEPHENS ET AL 78
4	(C- 9- 5)1508C	SP	WINTER SPRINGS-W	12/1965	3.0	6000	2 SPRS.COMBINED	STEPHENS ET AL 78
5	(C-10- 7) BCAC	5 P	CHERRY SPRINGS-W	7/1964	1.0	6490	DISCHARGE EST.	STEPHENS ET AL 78
6	(C-1G- 7) BCAD	SP	CHERRY SPRINGS-E	7/1964	40	6460	DISCHARGE EST.	STEPHENS ET AL 78
7	(C-10- 7)17A	SP		8/1964	0.5	6400	DISCHARGE EST.	STEPHENS ET AL 78
	(C-10- 7)178A8	SP		7/1964	8.0	4555	DISCHARGE EST.	STEPHENS ET AL 78
9	(C-10- 8) 208A	ŠP		7/1964	100	6900	DISCHARGE EST.	STEPHENS ET AL 78
10	(C-10- 8) 3ABA	SP	INDIAN SPRINGS-E	9/1965	2000	6680	2 SPRS.COMBINED/EST.	
11	(C-10- 8) 3ABB	SP	INDIAN SPRINGS-W	5/1965	2000	6580	Z SPRS.COMBINED/EST.	
12	(C-10- 8) 4ABB	SP		7/1964	35	6050	DISCHARGE EST.	STEPHENS ET AL 78
13	(C-10- 8) 508A	SP	COYOTE SPRINGS-N	/1955	250	5740	DISCHARGE EST.	STEPHENS ET AL 78

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

DISCHARGE MEASUREMENTS, SEVIER DESERT, UTAH

30 NOV 81

	TOWNSHIP		STATION	MO/YEAR	DISCHARGE	LAND		
NO.	RANGE-SECTION	SOURCE	NAME	FEASURES	(GPH)	ELEV	REMARKS	DATA SOURCE
						(FT)	•	***************************************
1	(C-12-18) 9DB	ST	GRANITE CREEK	8/1979	450	6800		ERTEC 79
2	(C-12-18)28CB	ST		8/1979	970	6600		ERTEC 79
3	(C-13-19)12AB	ST	WOODS CREEK	8/1979	650	6600		ERTEC 79
4	(C-14-18)22BD	SP		8/1979	10.0	4770	DISCHARGE EST.	
	(C-15-19)31BC	SP	WARM SPRINGS	11/1964				ERTEC 79
	(C-15-19)31CB	ST	WARM CREEK		3600	5300	DISCHARGE EST.	HOOD ET AL 65
				8/1979	6200	5 300		ERTEC 79
	(C-16-18)16DAD	SP	FOCTE RES. SPRINGS	10/1964	1300	4825	DISCHARGE EST.	HOOD ET AL 65
	(C-16-18)22A	SP	BISHOP SPRING	/1911	2000	4850	STOCK & IRRIG.	SNYDER 43
9	(C-16-18)22CAB	SP	TWIN SPRING	10/1964	1800	4812	DISCHARGE EST.	HESS ET AL 78
10	(C-16-18)27A	50	TWIN SPRING	/1911	0.0	4839	STCK & IRRIG/FLOW.	SNYDER 63
11	(C-16-19) 28AA	SP	COLD SPRING		0.0	4855	4. CV 0 TWEITEL COM.	
	(5-17-19)21	SP	KELL SPRINGS	****				HOOD ET AL 65
	(0-18-16)31			/1964	120	4910	DISCHARGE EST.	HOOD ET AL 65
		SP	CONGER SPRING		1.0	6760	DISCHARGE EST.	HOOD ET AL 65
	(C-18-18) BA	SP		10/1964	2.0	4853	DISCHARGE EST.	HOOD ET AL 65
	(C-18-18)16ABB S	SP	KNOLL SPRINGS	10/1964	3.0	4870	DISCHARGE EST.	HOOD ET AL 65
16	(C-18-20)36	ST	HENDRYS CREEK	8/1979	380	5350		ERTEC 79
17	(c-22-19) 9	SP	BURBANK SPRING	, , , ,	0.0	5400	FLOWING	HOOD ET AL 65
18	17H/70E- 9A	ST	SHITH CREEK	8/1979	850	8000	CONTUG	MOUD ET AL DO

DISCHARGE MEASUREMENTS SNAKE VALLEY, UTAH

30 NOV 81

ID.	TOWNSHIP		STATION	MO/YEAR	DISCHARGE	LAND		
NO.	RANGE-SECTION	SOURCE	NAME	MEASURED	(GPM)	ELEV	REMARKS	DATA SOURCE
						(FT)		
,	22N/66E-32	ST	SEIGEL CREEK	7/1964	890	6200		RUSH ET AL 65
2	21N/65E-23	ST	NORTH CREEK	7/1964	1000	7000		RUSH ET AL 65
3	20N/46E- 7	57	MUNCY CREEK	7/1964	1900	7000		RUSH ET AL 65
	20N/66E-30C	ŠŤ	KALAMAZOO CR.	6/1980	1800	6800		ERTEC BO
5	18M/66E-10	ST	BASSETT CREEK	1/1980	1400	6200		USGS 80
	17N/66E- 3AB	\$1	MC COY CREEK	6/1980	8500	7000		ERTEC 80
	17N/66E-15AC	SŤ	TAFT CREEK	6/1980	5800	7200		ERTEC BO
	17N/67E-25CA	SP	SO. MULICK SPR.	•••••	200	5600	DISCHARGE EST.	MIFFLIN 68
ě	16M/66E-34BA	ŠŤ	CLEAVE CREEK	6/1980	12000	6240		U\$65 80
	15N/66E-21AC	SP	BASTAIN SPRING	6/1980	1700	6640	DISCHARGE EST.	ERTEC 80
	13M/65E-17CB	ŠŤ	PINE CREEK	6/1980	2600	6880		ERTEC 80
	13N/68E-32DB	ŠŤ	WILLIAMS CREEK	6/1980	4400	7220	DISCHARGE EST.	ERTEC 80
	11N/67E- 1A	S P	SHOESHONE SPR.	4/1960	2.0	5780	***************************************	RUSH ET AL 65
	11N/67E- 18C S	92	SHOESHONE SPR.	6/1980	6.0	5775		ERTEC BO
	11N/47E- 1CD	SP	SHOESHOME SPR.		300	5800	DISCHANGE EST.	MIFFLIN 68
	11M/67E-12DA	SP	MINENA SPRING	6/1980	300	6160	DISCHARGE EST.	ERTEC 80
	11H/68E- 4C	SP	WALLOW SPRING	4/1980	62000	6400	DISCHARGE EST.	ERTEC 80
	118/486- 504			6/1980	340	4080	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	FOTEC BO

DISCHARGE MEASUREMENTS, SPRING VALLEY, NEVADA

30 NOV 81

ID.	TOWNSHIP		STATION	MO/YEAR	DISCHARGE	LAND		
NO.	RANGE-SECTION	SOURCE	NAME	MEASURED	(GPM)	ELEV	REMARKS	DATA SOURCE
					• •••	(FT)		DATA SOURCE
	158/436-14000							
•	15M/64E- 50MC	SP	LOURY SPRING	6/1980	8.0	7640		ERTEC 80
	150/44E-1240A	SP		6/1980	3.0	6480	DISCHARGE 2-56PA	ERTEC BO
		\$7	STEPTOE CK.	6/1980	1 3000	7020		ERTEC 80
	15H/64E-14CAA	ST	STEPTOE CK	6/1980	16000	6800		ERTEC 80
	15N/64E-178AA	57	STEPTOE CK.	6/1980	3000	6560	DISCHARGE EST.	ERTEC 80
	15M/64E-2881	SP	COMINS LK. SPRS.	9/1965	160	6550		EAKIN ET AL 47
	15M/64E-29A	SP	COMINS LK. SPRS.	9/1965	160	6550		EAKIN ET AL 67
	15H/65E- 5C	ST	N.FORK STEPTOE CK.	9/1965	2400	7200		EAKIN ET AL 67
	15H/45E-10880	SP	CAVE SPRING	6/1980	100	7600	DISCHARGE EST.	ERTEC BO
	14M/63E- 3DAA	ST		6/1980	20	7600		ERTEC BO
	14H/63E-35A	SP	WILLOW CK. SPRS.	9/1965	630	7360	DISCHARGE EST.	EAKIN ET AL 67
	14N/43E-36AAB	ST	WILLOW CREEK	6/1980	500	6900	DISCHARGE EST.	ERTEC 80
	13M/63E-14D	SP	CABIN SPRING	9/1965	4.5	7320		EAKIN ET AL 67
	13M/63E-14DAD	ST		6/1980	12	7200	DISCHARGE EST.	ERTEC BO
	13M/65E-10BAB	SP	ROSEBUD SPRING	6/1980	16	7560		ERTEC BO
	12M/63E- 18	SP	WHITE ROCK SPR.	9/1945	1.5	7600		EAKIN ET AL 67
	12M/63E- 2D	SP	WHITE ROCK SPR.	9/1965	1.5	7800		EAKIN ET AL 67
	12M/63E-12A	SP	WHITE ROCK SPR.	9/1965	1.5	7400		
	12N/63E-120BA	SP		4/1980	1.0	7300	DISCHARGE <16PM	EAKIN ET AL 67 ERTEC BO
20	12N/63E-358AB	SP	JONES SPRING	6/1980	1.0	7400	DISCHARGE EST.	
21	12N/65E-11C	SP	COLD SPRING	9/1945	4.5	8500	ELEV. EST.	ERTEC BO
22	12M/65E-17DBC	ŠP	HORSECAMP SPRING	4/1980	1.0	7600		EARIN ET AL 67
	12N/65E-218	SP	HORSE CORRALS	9/1965	32	8000	DISCHARGE <1 GPM	ERTEC BO
24	12N/65E-27A	SP	UPPER CAT.CAMP SPR.	9/1965	4.5		ELEV. EST.	EAKIN ET AL 67
	118/63E- 4ABA	S.P	HOLE-IN-BANK SPRING	6/1980		8200	ELEV. EST.	EAKIN ET AL 67
	11N/64E- 7900	SP	Bunk Shifted	6/1980	4.0	7880		ERTEC 80
27	11N/64E-120CA	SP	LOWER SPRING		1.0	7190	DISCHARGE <1GPM	ERTEC BO
		35	PRMEN SLET ur	4/1980	3.0	7320		ERTEC 80

DISCHARGE MEASUREMENTS, STEPTOE VALLEY, NEVADA

30 NOV 81

	TOWNSHIP RANGE-SECTION	SOURCE	STATION Name	MO/YEAR MEASURED	PISCHARGE (GPM)	LAND ELEV (FT)	REMARKS	DATA	SOURCE
1	6M/47E-25D	SP	WARM SPRING	9/1980	10.0	6230	DISCHARGE EST.	ERTE	C 80
2	5N/46E-28CD	ŠP	WARM SPRING	9/1980	4.0	6500	DISCHARGE EST.	ERTE	C 80
3	5N/47E-13BC	SP	POINT OF ROCK	9/1980	5.0	6040		ERTE	c 80
4	54/47E-26C	SP	SIDEHILL SPRING	9/1980	10.0	• • • •	DISCHARGE EST.		
5	4H/46E-35BB	SP	MUD SPRING	9/1980	24	4050		ERTE	
6	4N/47E-10AA	SP	FOUR MILE	9/1980	2.0	6100	DISCHARGE EST.		
Ž	4M/48E- 8DD	ST		9/1980	280	5800		ERTE	
	28/478-4446			0/1080	177	6400			

DISCHARGE MEASUREMENTS, STONE CABIN, NEVADA

30 NOV 81

	TOWNSHIP RANGE-SECTION	source	STATION NAME	MO/YEAR MEA SURED	DISCHARGE (GPM)	ELEV (FT)	REMARKS	DATA SOURCE
	(C-15-13)19ABA	SP	TUCK SPRING	8/1979	0.3	6050		ERTEC 79
2	(C-16-13)33ABB	SP	SINDAD SPRINGS	8/1979	7.0	7890		ERTEC 79
3	(C-16-15)13BAB1	SP	COYOTE SPRING	1/1976	100	4421	DISCHARGE EST.	STEPHENS 77
4	(C-17-13) 48AA	SP	WILDHORSE SPRING	8/1979	0.1	7350		ERTEC 79
5	(C-17-16)28DBD	SP	SKUNK SPRING	11/1979	0.2	5510		ERTEC 79
6	(C-19-14) SABC	SP	PAINTER SPRING	8/1979	15	3520		ERTEC 79

DISCHARGE MEASUREMENTS, TULE VALLEY, UTAH

30 NOV 81

ID.	TOWNSHIP		STATION	MO/YEAR	DISCHARGE	LAND		
HO.	RANGE-SECTION	SOURCE	MARE	MEASURED	(GPH)	ELEV	REMARKS	DATA SOURCE
						(FT)		
1	(C-27-13) 4080	SP	COOK SPRINGS		3.0	5780	DISCH.EST./DRY:10-72	STEPHENS 74
2	(C-27-15) 1CCC	SP	WAN WAN SPRINGS	10/1972	0.5	5450	DISCHARGE EST.	STEPHENS 74
3	(C-27-15) 200A	SP	MAN WAN SPRINGS	10/1972	0.0	5440	SEEP	STEPHENS 74
4	(C-27-15)11AAB	SP	WAN WAN SPRINGS	10/1972	5.0	5540	DISCHARGE EST.	STEPHENS 74
5	(C-27-15)11AAD	SP	WAN WAN SPRINGS	10/1972	10.0	5540	DISCHARGE EST.	STEPHENS 74
6	(C-27-15)11ABA	SP	WAN WAN SPRINGS	10/1972	450	5640	DISCHARGE EST.	STEPHENS 74
7	(C-27-15)120BC	59	WAN WAN SPRINGS	10/1972	10.0	5470	DISCHARGE EST.	STEPHENS 74
	(C-27-15)128CD	57	WAN WAN SPRINGS	10/1972	20	5450	DISCHARGE EST.	STEPHENS 74
9	(C-28-13)18ADB	SP	ANTELOPE SPRING	8/1963	5.0	5530	DISCHARGE EST.	STEPHENS 74
10	(C-28-15)10ABB	SP	KILN SPRING	10/1972	5.0	5850	DISCHARGE EST.	STEPHENS 74
11	(C-28-15) 25CCC	SP		4/1973	10.0	6040	DISCHARGE EST.	STEPHENS 74
12	(C-29-15) 20AD	50	WILLOW SPRING	4/1973	775	4150	RICCHARGE EST.	STERNENS 74

DISCHARGE MEASUREMENTS, WAH WAH VALLEY, UTAH

30 NOV 81

ID. TOWNSHIP MO. RANGE-SECTION	SOURCE	STATION NAME	MO/YEAR MEASURED	DISCHARGE (GPM)	LAND ELEV (FT)	REMARKS	DATA SOURCE
1 (C-14-13)23A0 2 (C-14-13)34A0	SP	SWAZEY SPRING ANTELOPE SPRING	11/1979	30 360	6200	DISCHARGE 50-100GPR	ERTEC 79

DISCHARGE MEASUREMENTS WHIRLWIND VALLEY, UTAH

30 NOV 81

ID.	TOWNSHIP		STATION	MO/YEAR	DISCHARGE	LAND		
ĦO.	RANGE-SECTION	SOURCE	NAME	MEASURED	(GPM)	ELEV (FT)	REMARKS	DATA SOURCE
1	12N/61E- ZAC	SP	PRESTON BIG SPR.	11/1966	3900	5750		HESS ET AL 78
2	12N/61E-12BC	SP.	COLD SPRING	11/1966	780	5660		HESS ET AL 78
3	12N/61E-12D S	5.2	WICHOLAS SPRING	11/1966	1100	5630		HESS ET AL 78
4	12N/61E-12DC	SP	ARNOLDSON SPRING	11/1966	1400	5630		HESS ET AL 78
5	11M/62E- 1AA	ŠP	LUND SPRING	6/1966	2800	6800		HESS ET AL 78
6	11N/62E-33AC	92		8/1979	16	5600		ERTEC 79
7	10N/62E- 4AA	5.7	SIX WILE SPRINGS	11/1966	180	5650		HESS ET AL 78
8	9N/61E-13C	S.P	HARDY SPRINGS	11/1966	200	5350	DISCHARGE EST.	HESS ET AL 78
9	9N/61E-32D	SP	MORMON SPRING	11/1966	1900	5300		HESS ET AL 78
10	9N/62E-19AC	SP	EMIGRANT SPRINGS	7/1975	1400	5450		HESS ET AL 78
11	8N/63E-19ADA	SP	SHINGLE SPRING	8/1979	2.0	6565	DISCHARGE EST.	ERTEC 79
12	7N/62E-28AD	SP	BUTTERFIELD SPRINGS	11/1966	1100	5250		HESS ET AL 78
13	7N/62E-33BC	SP	FLAG SPRINGS	7/1975	1100	5250		HESS ET AL 78
14	64/59E-18DA	SP	FOREST HOME SPRING	11/1966	430	6210	DISCHARGE EST.	HESS ET AL 78
15	6N/60E-25B	SP	MOON RIVER SPRING	8/1979	700	5250		ERTEC 79
4.4	AM/41 == 1804		MAY PARKY PROTECT	8 / 4 0 4 0	4000	5330		WEER PT 41 30

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
8MO/AFRCE-MX

DISCHARGE MEASUREMENTS, WHITE RIVER VALLEY, NEVADA

30 NOV 81

TABLE D1-36

APPENDIX E1
WATER QUALITY CRITERIA

CONSTITUENT		mg/l
Total Dissolved Solids	<	2000
Suspended Solids	<	2000
Iron	<	20
Sodium Sulphide	<	100
Sodium-Potassium Carbonates and Bicarbonates	<	1000
Sodium Chloride	<	20,000
Sodium Sulphate	<	10,000
Magnesium Sulphate	<	40,000
Magnesium Chloride	<	40,000

Reference: Portland Cement Association (1966)

NOTE: Waters with HCO $_3$ concentrations of 550 mg/l are listed as suitable for concrete manufacture, No upper limit was established by Portland Cement Association research (Mr. Frank Randall — Portland Cement Assoc. (1981) Per. Comm.).

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

QUALITY CRITERIA FOR MIXING WATER FOR CONCRETE

30 NOV 81

TABLE EH

PRIMARY STANDARDS MAXIMUM CONTAMINANT LEVELS FOR INORGANIC CHEMICALS

CONTAMINANT	<u>LEVEL, mg/l</u>
ARSENIC	0.05
BARIUM	1.
CADMIUM	0.010
CHROMIUM	0.05
LEAD	0.05
MERCURY	0.002
NITRATE (AS N)	10.
SELENIUM	0.01
SILVER	0.05
FLUORIDE	TEMPERATURE DEPENDENT — IDENTICAL TO U.S. ENVIRONMENTAL PROTECTION AGENCY (1976)

SECONDARY STANDARDS CONTAMINANT LEVELS FOR INORGANIC CHEMICALS

CONTAMINANT	LEVEL, mg/l *	MAXIMUM LEVEL, mg/I * *
CHLORIDE	250	400
COLOR	15 COLOR UNITS	_
COPPER	1.	-
FOAMING AGENTS	0.5	_
IRON	0.3	0.6
MAGNESIUM	125	150
MANGANESE	0.05	0.1
ODOR	3 THRESHOLD ODOR NUMBER	-
рН	6.5 - 8.5	_
SULFATE	250	500
TDS (Total Residue dried at 103 - 105° C)	500	1000
ZINC	5.	_

- These chemical substances should not be present in a public water supply in excess of the listed levels where, in the judgement of the health authority, other more suitable supplies are or can be made available. Such alternate supplies must be economically feesible, available under law in sufficient quantities and of a significantly higher quality.
- •• These chemical substances shall not be present in a public water supply in excess of the listed levels.

Reference: Nevada State Division of Health, 1977.

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

NEVADA DRINKING WATER STANDARDS

30 NOV 81

APPENDIX E1-2

PRIMARY STANDARDS MAXIMUM CONTAMINANT LEVELS FOR INORGANIC CHEMICALS

CONTAMINANT	LEVEL, mg/l
ARSENIC	0.05
BARIUM	1.0
CADMIUM	0.01
CHROMIUM	0.05
LEAD	0.05
MERCURY	0.002
NITRATE (AS N)	10.0
SELENIUM	0.01
SILVER	0.05
SULFATE	500
TDS	
FLUORIDE	2000 ¹ 1.6 ²

SECONDARY STANDARDS MAXIMUM CONTAMINANT LEVELS FOR INORGANIC CHEMICALS

CONTAMINANT	LEVEL, mg/I
CHLORIDE	250
COLOR	15 COLOR UNITS
COPPER	1.
CORROSIVITY	NUN-CORROSIVE
FOAMING AGENTS	0.5
IRON	0.3
MANGANESE	0.05
ODOR	3 THRESHOLD ODOR NUMBER
pΗ	6.5 - 8.5 pH UNITS
ZINC	5.

- If T D S is greater than 1000 mg/l, "the supplier shall show (to the Utah State Bureau of Environmental Health) that no better water is available. The (state) shall not allow the use of an inferior source of water if a better source of water (i.e. lower in T D S) is available".
- Recommended fluoride levels vary with annual average daily maximum air temperature.
 As this average has not been calculated for each valley, the lower limit set by the U.S. Environmantal Protection Agency (1976) has been used.

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

Reference: Utah State Division of Environmental Health, 1980.

UTAH DRINKING WATER STANDARDS

30 NOV 81

APPENDIX E1-3

APPENDIX F1 SELECTED WATER QUALITY DATA

72 71 29 23 21
71
29 23 21
23
21
11
;;
22
ET AL 67
ET AL 67
ET AL 67
ET AL 67
*

MOTE: SAMPLES FOR WATER QUALITY ANALYSIS COLLECTED BY ERTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN M6/L EXCEPT AS NOTED BELOW. DISSOLVED SOLIDS FOR ERTEC SAMPLES DETERMINED BY RESIDUE -OM- EVAPORATION AT 180 DEGREE C. NEVADA LOCATIONS BASED ON MT. DIABLO BASELIME. UTAN LOCATIONS BASED ON SALT LAKE BASELIME AND MERIDIAN. SPECIFIC CONDUCTANCE REPORTED IN MICROMHOS/CM AT 25 DEGREES C.

THE FOLLOWING CONSTITUENTS ARE REPORTED IN MICROGRAMS/LITER: BORON IRON MANGANESE

FOOT *1 NITRATE REPORTED AS N
NOTES:*2 NITRATE REPORTED AS NO3
*3 NITRITE + HITRATE REPORTED AS N
*4 DISSOLVED SOLIDS BY SUN OF DETERMINED CONSTITUENTS
*5 NA+K AS NA
*6 MC03*C03 AS HC03
NO * NOT DETECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA ANTELOPE VALLEY, NEVADA

30 NOV 81

	TOWNSHIP RANGE-SECT	SRCE	. MO YE	STATION NAME	•		TEMP DEG C	SP.			ISS. OLIDS	\$1L10			MAGNESIUM (MG)	SODIUM (NA)
	10N/52E-23AA	5.0	5-80		HELLS SP	_	10.0	600	7.	5			14	66	23	29
	8N/52E- 1902	WE	8-68			•	56.0	773			587		7 3	. 6	.2	200
•	BN/52E- 1803	w.E	8-68				36.0	1020			707		14 3	.4	-4	200
7	8N/52E-15BC2	46	5-65				30.0	494			452			.6	1.4	120
	\$N/52E-15BC3	¥ E	10-65				53.0	420	7.	5	278		19 4	. 4	. 6	94
1	8N/52E-158C4	WE	10-68				33.0	434			293		36 4	. 8	. 6	94
•	8N/53E-16AC1	JE.	1-69				22.0	315		2	266		31	19	. 6	46
	3N/53E-16AC3	WE	1-59				38.0	373		5	263		14 3	.7	.1	87 27
ä	8N/53E-29DA2	WE	5-81		EST WELL		19.0	245		ō	166			21	1.2	27
10	8N/53E-29DA2	WE	5-81		EST WELL		18.0	228	7.	0	97			22	1.8	27
11	8N/53E-33CC	u.E	5-31				16.0	235	8.	8	172		26 1	.7	ND	56
	POTASSIUM CARB			CHLORÍDE (CL)	SULFATE (SO4)	FLUORIDE (F)	NITRA (N)		BORON (B)		MANGA (MN)		EMARKS		REF	ERENCE
1	1.0	0	254	30	78	.3		.1				•	ì		ERTEC	80
ż	5.8	ă	396	21	35	12		.7	370	820			2			DIE ET AL
•	1.6	ě	554	25	37	18		. 4	510	270		25 *	2		DINNIC	DIE ET AL
Ĭ	2.2	Ó	245	10.0	39	6.4		. 5	370	4300		80 *	Ž		DINUI	DIE ET AL
Š	2.0	ă	201	12	24	5.2		NO	150	55		6.0			DINUT	DIE ET AL
6	2.2	ă	214	14	24	5.8		ND	210	75		15				DIE ET AL
Ť	5.4	ŏ	135	8.8	29	1.0		. 6	240	360		30 +	2		DINUI	DIE ET AL
À	1.4	33	116	8.3	24	1.4		2.2	130	550		12 •	2		DINUIC	DIE ET AL
ĕ	4.6	70	113	4.8	18	•6		. 9		50		20 +			ERTEC	
10	4.7	ă	119	5.8	16	. 5		. 8	200	30		ND .			ERTEC	
11	3.5	7	111	4.8	18	ź		.7		350		20 *			ERTEC	

NOTE: SAMPLES FOR WATER QUALITY ANALYSIS COLLECTED BY ERTEC EXCEPT WHERE NOTID. ALL ANALYSIS REPORTED IN MG/L EXCEPT AS NOTED BELOW.
DISSOLVED SOLIDS FOR ERTEC SAMPLES DETERNINED BY RESIDUE -ON- EVAPORATION AT 180 DEGREE C.
NEVADA LOCATIONS BASED ON MT. DIABLO BASELINE. UTAM LOCATIONS BASED ON SALT LAKE BASELINE AND MERIDIAM.
SPECIFIC CONDUCTANCE REPORTED IN MICROMMOS/CM AT 25 DEGREES C.

THE FOLLOWING CONSTITUENTS ARE REPORTED IN MICROGRAMS/LITER: BORON IRON MANGANESE

FOOT +1 NITRATE REPORTED AS N
MOTES:-2 MITRATE REPORTED AS NOS
-3 MITRITE + NITRATE REPORTED AS N
+4 DISSOLVED SOLLDS BY SUM OF DETERMINED CONSTITUENTS
+5 NA+K AS NA
+6 MCO3+CO3 AS MCO3
ND = NOT DETECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA **BIG SAND SPRINGS VALLEY, NEVADA**

30 NOV 81

78.	TOWNSHIP			STATION		TEN	P SP.			188.	BILICA	CALCIUM	MAGNESIUM	\$00 I UR
	RANGE-SECT	SRCE	HO YR			DEG				0L108	(\$102)	(CA)	(M6)	(MA)
,	9M/42E-30A	12	7-69	PEAVINE	CREEK		27	10 7.	, 9	••		53	5.0	17
2	9N/43E- 5CD	WE	8-68				46		2			50	14	16
3	9N/43E- 5CD	WE	8-68				40					50	14	16
	9N/43E- 5CB	WE	8-68				46				••	50	14	16
5	9M/43E- 988	46	8-68				42			••		40	14	17
6	9M/43E- 988B	₩Ē	8-79			17				••	32	40	13	12
7	7N/4GE-35CCC	w E	9-68				_	8.		••		25	3.0	70
	7M/42E-17C7	#E	8-68				49					33	5.0	47
9	6M/40E-13DAC	M.E	8-79				.0 3				43	26	50	45
10	3M/40E- 3DC	-E	10-68				39			542	92	.11	Ne	63
11	3M/4OE- SDCC	VE	8-79		MELL		.0 26				81	9.9		64
12	2H/39E- 2A	WE	6-67				100					4.2	1.3	250 370
13	2N/39E-11C	WE	7-69				180				37	1.0	40 13	40
15	2M/4QE-1QBBA 1M/37E-14B	SP	8-79 7-69		SPRINGS	24	220				37	4.0	ND	430
16	1N/3/E-14B	. WE	7-69				540		-			4.0	**	• 30
17	1N/38E- 3C	VE	7-69				2600					7.0	15	4000
18	1N/38E- 6B	WE	7-69				450					48	2.0	910
19	1M/39E- 78D	WE	7-69				180					9.0	5.0	370
20	1M/41E-26A	WE	10-13									17	9.0	130
21	1M/42E-34C	VE	1-67				.0 45					16	5.6	78
22	15/41E- 4C	WE	1-67		. 3	13			_		••			
23	15/41E-26A	SP	1-67				.0 18		.1	••		44	5.6	350
24	15/41E-26ACD	SP	3-79		OT SPRING						55	50	3.0	32
25	35/42E-118	WE	1-67			15			-				••	
	POTASSIUM CARBO	B						BORON						
NO.			HCG3)		S04) (F)			(8)		MANGAI	JESE Rema	RKS	REF	ERENCE
		V.									-			
1	.0	0	107	6.0	20						+5			1 ET AL 70
2	.0	0	172	7.0	65						*5			ET AL 70
3	•0	0	172	7.0	65						•5			ET AL 70
5	.0	0	172	7.0 9.0	65 60						+5			1 ET AL 70
3	3.2	ŏ	145 126	45	65	ND					•1			1 ET AL 70 EC 79
,		ö	128	37	47	70	.1				•5			
l 'á	.0	ă	132	15	74						•3			4 ET AL 70 4 ET AL 70
	1.1	ŏ	151	12	42	.9	.1				•1			EC 79
10	12	ŏ	145	11	28	1.6	1.1	70			92,0	4		ET AL 70
11	ii	ŏ	136	12	34	1.8	1.4				61	•		c 79
1 12	ò	22	416	81	72		::				#5			ET AL 70
13	.0	215	141	150	107						+5			ET AL 70
14	22	0	211	38	85	. 8	ND							EC 79
15	.0	ŏ	136	490	144			••			+5			ET AL 70
16														ET AL 70
17	.0	391	1490	7830	187						+5			ET AL 70
18	.0	0	59	660	1130						+5			1 ET AL 70
19	•0	19	416	210	163						•5		RUSI	1 ET AL 70
20	.0		212	44	120						+5		RUSI	1 48
21	.0		166	24	61		••				+5		RUSI	
55													RUSI	
23	.0	0	348	68	492						+5		RUSI	
24	21	0	317	55	494	8.2	ND							EC 79
25													RUSI	4 48

NOTE: SAMPLES FOR WATER BUALITY ANALYSIS COLLECTED BY ERTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN MG/L EXCEPT AS NOTED BELOW.
DISSOLVED SOLIDS FOR ERTEC SAMPLES DETERMINED BY RESIDUE -ON- EVAPORATION AT 180 DEGREE C.
NEVADA LOCATIONS BASED ON MT. DIABLO BASELINE. WITAN LOCATIONS BASED ON SALT LAKE BASELINE AND MERIDIAN.
SPECIFIC CONDUCTANCE REPORTED IN MICROPHOS/CM AT 25 DEGREES C.

THE FOLLOWING COMSTITUENTS ARE REPORTED IN MICROGRAMS/LITER: BORON IRON MANGANESE

FOOT +1 NITRATE REPORTED AS N
NOTES: -2 NITRATE REPORTED AS NO3
+3 NITRATE + NITRATE REPORTED AS N
+4 DISSOLVED SOLIDS BY SUM OF DETERMINED CONSTITUENTS
+5 NA+K AS NA
+6 MC03+C03 AS NCC03
ND = NOT DETECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE **BMO/AFRCE-MX**

SELECTED WATER QUALITY DATA BIG SMOKY VALLEY, NEVADA

30 NOV 81

	TOWNSHIP RANGE-SECT	SRC	E MO Y	STATIO! R MAME	N		75# P DEG C	SP.			ISS. OLIDS	SILICA (SIOZ)	CALCIUP (CA)	MAGNESIUM (MG)	SOBIUM (MA)
	27m/62E-33C1	SP	8-6					360	8.	. 2			44	21	3.0
	26N/62E-15C1	SP	8-6		ON SPR.		14.0	350	6.	.0			40	19	7.4
	26#/6ZE-2ZA1	W£	8-6					350	8.				44	18	8.0
		ST						290							
	264142E-34A8	SP	11-8				2.0	350	7.		241	7.5	65	11	4.1
	264: 438-35	\$7	10-6				10.0	20C	8.				27	10.0	87
7		HE	8-6		ILE WELL		12.0	410	6.				51	18	12
	25M/62E-21	ST	10-6		CREEK		10.0	569	9.				21	23	12
	24M/61E-14C1	VE	9-6				13.0	534	8.				37	29	32
	23H/61E- 701	36			MELL		8.0	373	8.				25	50	37
	220/616- 601	314	8-6				9.3	298	5.		**		28	18	15
	224/626-2101	SP					10.3	4 20	7.				50	4.4	55
	21m/61E- 6C1 21m/62E-29D	3E 92	9-6 11-8					629	8.				45	28	53
	20M/60E-33D1	3P 5P					5.0	31 C 23 G			203	8.5	45	9.1	3.0
	20W/60E-34C	3 P			-MILE SP E RANCH		7.0	200	7. 8.			38	26 26	5.1 4.1	16 11
	19M/62E-30B1	57				25 K T M.G	18.3	340	7.		166	36	37	7.9	24
	19N/62E-33D	92					8.2	370			224	36	37	7.9	16
	POTASSIUM CAR			CHLORIDE (CL)	SULFATE (SO4)	FLUGRIDE (F)	NITRA (N)		BGROM (B)		FANÇA:	NESE Pema	ek \$	9E F	ERENCE
1	.5	0	222	4.9	13							+5		GLA	NCY 68
2	.0	G	208	6.5	14							45		SLA	NCY 63
3	•0	2	555	4.2	9							+5			NCT 68
4															EC 80
5	- 6	9	266	3.0	7	•1		. 1		96		#D +1			EC 80
6	٠,٥	٥	126	4.8	19							•5			MCY 48
7	•0	<u>o</u>	240	7.9	20	~-						+5			HCY 68
8	-0	7	158	5.4	24							+5			NCY 65
9	-0	0	159	58	64	•-						+5			NCT 68
10 11	•0	9	201	11	28	••						•5			NCY 48
	•0	0	154	11	35							•5			HCY 68
12	-0	0	210	16 140	24 47							•5			MCY 68
14	.0 1.0	ŭ	122 174	4.5	11							+5			ACY 68
15	1.0	٥	124	6.9	11	.1		-6		30		ND 41			EC 80
16	2.5	Ü	115	6.0	:							45			HCY 68
17	•0	ŏ	178	12	19	.1		.8		74		ND +1			EC 80
16	3.6	ă	168	9.5	17	.1		.7		73		12 +1			NCY 68 EC 80
	3.0	•		7.0				• *		"		16 41		ERT:	EL 90

NOTE: SAMPLES FOR WATER QUALITY ANALYSIS COLLECTED BY ERTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN MG/L EXCEPT AS NOTED BELOW.
DISSOLVED SOLIDS FOR ERTEC SAMPLES DETERMINED BY RESIDUE "ON" EVAPORATION AT 180 DEGREE C.
NEVADA LOCATIONS BASED ON MT. DIABLO BASELINE. UTAN LOCATIONS BASED ON SALT LAKE BASELINE AND MERIDIAN.
SPECIFIC COMBUCTANCE REPORTED IN MICROPMOS/CM AT 25 DEGREES C.

THE FOLLOWING CONSTITUENTS ARE REPORTED IN MICROGRAMS/LITER: BCRON IRON MANGANESE

FOOT +1 NITRATE REPORTED AS N
NOTES:-2 NITRATE REPORTED AS MOS
-3 NITRITE + NITRATE REPORTED AS N
+4 DISSOLVED SOLIDS BY SUM OF DETERMINED CONSTITUENTS
+5 NA+K AS NA
+6 MCO3+COS AS HCOS
NO + MOT DETECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA BUTTE VALLEY, NEVADA

30 NOV 81

IO. TOWNSHIP

	10003017			314129	•							316164	CACCION	MAGNESEUM	202101
NO.	RANGE-SECT	2.6	CE #0 Y	R NAME			DEG C	COND	'	PH \$	CLIDS	(\$102)	(CA)	(HE)	(NA)
1	10N/63E-25		E 3-8	O URRUTI	A WELL		4.0	510	7.	. 2			51	12	10
Ż	9H/64E-16		P 3-8		ALLEY SPI	١.	12.0	180		. 3		2.1	16	4.0	5.1
l i	8M/64E- 4		E 3-8		DING WEL			4100		. 5		1.3	24	6.7	7.5
1 .	8M/64E-15		E 3-8			•	10.0	4 68		. 3		1.1	49	13	6.2
ا ا	7N/63E-14		E 10-9		EST WELL		11.0				263	49	34	żő	13
يَا	7N/63E-14		£ 10-8		EST JELL		11.0			• •	249	50	35	50	13
٠,	7N/63E-14		E 10-8		EST WELL		11.0				254	49	34	50	13
ية ا	7N/63E-14		E 10-5		EST WELL		11.0				263	49	34	20	13
l š	7N/63E-14		E 10-8		EST WELL		11.0								
l 1ó	7M/64E-33		P 8-7		LL SPRIN	6	17.0		7.	. 6	740		31		11
l ii	4N/63E-19		P 3-7			~	16.0			.ŏ	840		25	••	11
	POTASSIUM (K)	CARBONATE (COB)	BICARB. (HCO3)		SULFATE (504)	FLUORIDE (F)	NITRA (N)		8080N (8)		MANGANI (NN)	ESE REMAI	RKS	REF	ERENCE
1	4.0	0		14	20	. 2	2	- 4				•1		ERT	EC 80
2	.6	0	80	3.2		•0	4	. 4				+1		ERT	EC 80
3	1.4	0	120	8.9	4	.1		-4				41		ERT	EC 80
4	.9	0	200	2.5		.0	1	. 2				+1		ERT	EC 80
5	4.6	0		15	19	.1	1	. 3				+1		ERT	EC 80
6	4.7			15	19	.1	1	. 3				+1		ERT	EC 80
7	4.6		196	14	19	. 1	1	. 4		ND	11	0.0 +1		ERT	EC 80
8	4.6		197	15	19	1.0	1	. 3				+1		ERT	EC BO
9			-							60					EC 80
10	.9	0		11	. 11			. 3	**			+1,+	6	ÖLM	90
11	1.2	5	250	16	15	••	1	• 2				+1,+	•	BLM	50

TEMP

.2216

SILICA CALCIUM MAGNESZUM SODIUM

NOTE: SAMPLES FOR WATER QUALITY ANALYSIS COLLECTED BY ERTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN MG/L EXCEPT AS MOTED BELOW.
DISSOLVED SOLIDS FOR ERTEC SAMPLES DETERMINED BY RESIDUE -ON- EVAPORATION AT 180 DEGREE C.
NEVADA LOCATIONS BASED ON MT. DIABLO BASELINE. UTAN LOCATIONS BASED ON SALT LAKE BASELINE AND MERIDIAN.
SPECIFIC COMDUCTANCE REPORTED IN MICROMHOS/CM AT 25 DEGREES C.

THE FOLLOWING CONSTITUENTS ARE REPORTED IN MICROGRAMS/LITER: BORON IRON MANGANESE

STATION

FOOT *1 NITRATE REPORTED AS N
NOTES: *2 NITRATE REPORTED AS NOS
*3 NITRITE * NITRATE REPORTED AS N
*4 DISSOLVED SOLIDS BY SUM OF DETERMINED CONSTITUENTS
*5 NA*K AS NA
*6 MCO3*CO3 AS HCO3
ND = NOT DETECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA CAVE VALLEY, NEVADA

30 NOV 81

	TOWNSHIP RANGE-SECT	SRCE	30 YR	STATION Name	TEMP Deg c	SP. Cond	PH	DISS. SOLIDS	(SICS)	CALCIUM (CA)	MAGNESTUM (MG)	SODIUM (NA)
1	3M/59E-108D1	WE	9-80	USAF TEST WELL	23.0	443	8.1	256	24	64	15	6.0
2	3N/59E-108D1	d E	12-90	USAF TEST WELL	23.0	430	7.7	253	35	38	18	18
3	1N/61E-29CA	SP	6-5C	OCEANA SPRING	12.0	500	6.7		24	82	9.1	23
4	15/59E-34CB2	dE	5-41	USAF TEST WELL		348	7.4	232	62	17	4.5	49
5	15/59E-34CB2	4 E	5-81	USAF TEST JELL		290	7.8	258	52	16	3.5	5 2
6	15/57E-34CB2	4 5	0-91	USAF TEST WELL		300	8.0	270	36	16	3.6	47
7	15/59E-34CB2	₫ E	6-81	USAF TEST JELL		300	7.9	272	55	16	3.7	47
	•											

	POTASSIUM (K)	CARBONATE (CO3)	BICARB. (HCO3)	(CL)	SULFATE (SQ4)	FLUORIDE (F)	NITRATE (N)	BORON (B)		MANGANESE (MN)	REMARKS	REFERENCE
1	1.9	1	255	7.3	18	.4	1.2				•2	ERTEC 80
2	4.0	0	221	5.0	20	.5	N D		••			ERTEC 80
3	2.0	Đ	303	14	26	.2	6.2				•2	ERTEC 80
4	5.9	•-	159	9.0	24	.3	. 8	200	30	MD	*2	ERTEC
5	5.9		134	9.0	25		3.6	10.0	15	ND	•ž	ERTEC
6	6.3		136	11	26	.4	3.8	100	40	ND	• 2	ERTEC
7	6.3	~-	136	11	26	.4	3.9	100	20	ND	*2	ERTEC

NOTE: SAMPLES FOR WATER QUALITY ANALYSIS COLLECTED BY ERTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN RG/L EXCEPT AS NOTED BELOW.
DISSOLVED SOLIDS FOR ERTEC SAMPLES DETERTINED BY RESIDUE -ON- EVAPORATION AT 180 DEGREE C.
NEVADA LOCATIONS 3ASED ON MT. DIABLO BASELINE. UTAN LOCATIONS BASED ON SALT LAKE BASELINE AND HERIDIAM.
SPECIFIC CONDUCTANCE REPORTED IN MICROMMOS/CM AT 25 DEGREES C.

THE FOLLOWING CONSTITUENTS ARE REPORTED IN MICROGRAMS/LITER: BORON IRON MANGANESE

FOOT +1 MITRATE REPORTED AS M
MOTES: +2 MITRATE REPORTED AS MO3
+3 MITRITE + MITRATE REPORTED AS M
+4 DISSOLVED SOLLOS BY SUM OF DETERMINED CONSTITUENTS
+5 MA+K AS MA
+6 MC03+C03 AS MC03
MO = MOT DETECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA COAL VALLEY, NEVADA

30 NOV 81

	TOWNSHIP RANGE-SECT	SRCE	PO YR	STATION Name	TEMP DEG C	SP.	PH	DISS. SOLIDS	SILICA (STO2)	CALCIUM (CA)	MAGNESIUM (MG)	SODIUM (NA)
١,	35/62E-25A8	SP	5-80	PANROC SPRING	15.0	190	7.0		23	28	7-6	13
Ιż	55/62E-34BD	S.P	5-80	THIN SPRINGS	13.0	365	7.9		63	33	84	20
1 3	55/64E- 2C	SP	5-80	GRASSY SPRING	11.0	650	7.2	••	48	67	15	36
نا	65/63E-1240A1	WE	5-80	USAF TEST WELL	26.0	285		213	31	21	5.2	42

10. NO.	POTASSIUM (K)	CARBONATE (CO3)	BICARB. (MCO3)	CHLORIDE	SULFATE (SO4)	FLUGRIDE (F)	MITRATE (N)	BORON (8)	IRON (FE)	MANGANESE (MN)	REMARKS	REFERENCE
1	5.0	0	151	12	12	.2	.6	NO	ND	ND	+1	ERTEC 80
2	2.1	Ü	4,5%	11	20	.1	. 6				-1	ERTEC BO
3	.5	٥		36	56	.2	3.5				•1	ERTEC 80
4	5 7	٠.,			2.5							

NOTE: SAMPLES FOR WATEN IT ANALYSIS COLLECTED BY ENTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN NG/L EXCEPT AS NOTED BELOW.
DISSOLVED SOLICE TO AN EXTEN SAMPLES DETERMINED BY RESIDUE FON- EVAPORATION AT 180 DEGREE C.
NEVADA LOTTE SAMPLE SAMPLE IN MICHOMHOS/CM AT 25 DEGREES C.
SPECIFIC COMPUTED WAS DRIVED IN MICHOMHOS/CM AT 25 DEGREES C.

THE FOLLOWISK to TAY LEMTS ARE REPORTED IN MICROGRAMS/LITER: 90800 MANGANESE

- FOOT -1 NITYATE REMOREST AS N
 NOTES: *2 NITYACE VEPOPT) AS NOS

 *3 NITHITE + NITWATE REFORTED AS N

 *4 DISSOLVED SOLIDS BY SUM OF DETERMINED CONSTITUENTS

 *5 NA*K AS *4

 *6 NCO3FCOZ AS NCO3

 ND = NOT EZYCCTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA DELAMAR VALLEY, NEVADA

30 NOV 81

	TOWNSHIP RANGE-SECT	SRCE	MO YR	STATION NAME	•			SP.	,		ISS. OLIDS	SILICA (SIGS)	CALCIUM (CA)	MAGNESIUM (MG)	SODIUM (NA)
1	3N/63E-27CA	WE	12-50	USAF TI	EST WELL		27.0	650	7.	. 3	366	24	76	30	18
2	3M/65E-21DBA	WE	-15	BRISTO	WELL					-		49	76	33	37
3	3M/65E-31CC	SP	8-79				24.0	470	6.	. 8		43	40	10.0	37 21
4	2N/63E-13CBA	58	8-79	COVOTE	SPRING		20.0	550	6.	. 8		79	82	13	49
5	25/63E-22BC	SP.	5-80	MMEATG	RASS SPR.		13.0	415	7.	.0					
6	25/64E- 8808	5.0	8-79				26.0	443	6.	. 9		44	83	10.0	53
7	38/63E- 5CB	SP	5-80	LITTLE	BOULDER	SPR.	13.0	250	6.	. 8		19	28	7.9	12
8	35/64E-12AC2	₩E	4-80	USAF TI	EST WELL		24.0	480	7.	. 9	292	1.4	20	10	76
9	45/64E-24BA	SP	5-80	SEVEN	DAK SPR.		8.0	815	7.	. 6					
	POTASSIUM CARBO		HC 0 33	((L)	(\$34)	FLUOPIDE (F)	(N)	•	ORON (B)		MANGANE (MN)	SE REMA	rks		ERENCE
1	6.5)	404	5.0	20	.6		10							EC 80
2	•0	0	187	110	71			12				+2,+	5		EN 63
3	2.5	9	214	17	21	.2		4				+1			EC 79
4	7.6	0	282	25	25	.5		ID	••						EC 79
5		0	351	••				-	••						EC 80
6	7.1	2	320	30	54	.4	1.					+1			EC 79
7	3.0	Ō	137	9.0	15	.1		2				+1			EC 90
8	5.2	1	215	21	44		6.			1 90		+1,-	4		EC 80
9	••	0	303				•	-						ERTI	EC 90

NOTE: SAMPLES FOR WATER QUALITY AVALYSIS COLLECTED BY EPTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN MG/L EXCEPT AS NOTED BELOW.
DISSQLVED SOLIDS FOR ERTEC SAMPLES DETERMINED BY PESIDUE -ON- EVAPORATION AT 180 DEGREE C.
NEVADA LOCATIONS PASSO 20 MT. DIABLO BASELINE. UTAN LOCATIONS BASED ON SALT LAKE BASELINE AND MERIDIAN.
SPECIFIC COMBUCTANCE REPORTED IN MICROPMOS/CM AT 25 DEGREES C.

THE FOLLOWING CONSTITUENTS ARE REPORTED IN MICROPAMS/LITER:
BORCH IRDH MANGANESE

FOOT +1 NITPATE REPORTED AS N.

**STRATE REPORTED AS N.C3

**STRATE ** NITRATE REPORTED AS N

**4 DISSOLVED SOLIDS EV SUM OF DETERMINED CONSTITUENTS

**5 NA*K AS NA

**6 HC33*C03 AS ACC33

**NO = NOT DETECTED

Ertec

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA DRY LAKE-VALLEY, NEVADA

30 NOV 81

	TOWNSHIP			STATEC			1:40	SP.			188.	SILICA	CALCIUM	MAGNESIUM	SOBIUM
NO.	PANGE-SECT	SPC	E MO YE	NAME		(DEG C	COND	P	• sc	LIDS	(2105)	(CA)	(MG)	(NA)
1	(C- 9-10)2100°	9 5	9+54				13.5	2120	5.1	1	1290	13	13	12	450
2	(C- 9-11)32DDA	a E	12-65				19.5	16200	7.1	5	9500	28	410	150	2800
3	(C-10- 9) 8ccc	wit	12-54				15.5	1550	7.0	•	890	38	100	37	160
4	(C-1G-10) 2DCC	¥ 5	9-74				15.0	2050	7.7	7	1130	38	87	38	250
. 5	(C-10-10)23CA	₹ £	7-64	N.TASLE	MT.PES.		21.5	874	7.8	3	530	50	33	10.0	140
ه	(C-1C-10)31549	w E	12-65				24.5	6230	7.4	•	3400	45	110	34	1100
7	(C-11-10) SAPE	<u>:</u> د	7-64	E.DJE+4	Y RESER	VCI9	23.5	749	7.6	5	525	33	36	10.0	120
8	(C-11-10)34DCD	₩ €	9-64					3370	7.4	•	1910	30	310	61	290
ç	46451(11-11-3)	# 5	12-54					9030	8.2	?	5280	28	180	53	1700
10	(C-12-1G)358AA	SP	11-79	KANE SE	PINS		16.0	1900	7.1	1		27	230	72	320
i i															
10-	POTASSTUR CARRO	MATE	917400		-		#1 T#	478	B080M	7.00M	MAMEA	4545			
	POTASSIUM CARBON		81CA 98. (HCO3)		SULFATE (SO4)	fligride (F)	MITR (N)	ATE	BORGM (B)		MANGA!	NESE Remi	RKS	REF	ERENCE
	(K) (C03)				(\$04)	(F)	(H)	.7			(MN)		IRKS		ERENCE Ens et al 78
	21 270		(HCO3) 664 251	((L)	(\$04) 161 158	(F) 2+2	(H)		(8)	(FE)	(MN)	REMA 10.0 +2 220 +2	IRKS	STEPH	
	21 270 10.0		(HC03) 664 251 196	290	(\$04) 161 158 82	(F) 2.2 2.0	(N)	.7	1100	(FE)	(MN)	REM/ 10.0 +2 220 +2 10.0 +2	IRKS	STEPH STEPH	ENS ET AL 78
	21 270 10.0 24		(HCO3) 664 251 196 205	(CL) 290 5500 360 490	(\$04) 161 158 82 92	2.2 2.0 .5	(H)	.7 3.6 3.3 3.1	1100 1100 150 210	1400 9400 160 160	(MN)	REMA 10.0 +2 220 +2	IRKS	STEPH STEPH STEPH STEPH	ENS ET AL 78 ENS ET AL 78 ENS ET AL 78 ENS ET AL 78
	21 270 10.0 24 29	0000	664 251 196 205 365	290 5500 360 490	(\$04) 161 158 82 92 19	2.2 2.0 .5 .5	(N)	.7 3.6 3.3 3.1	1100 1100 150 210 310	1400 9400 160 160 170	(MN)	REMA 10.0 +2 220 +2 10.0 +2 10.0 +3 ND +2	RKS	STEPH STEPH STEPH STEPH STEPH	ENS ET AL 78 ENS ET AL 78 ENS ET AL 78 ENS ET AL 78 ENS ET AL 78
	21 270 10.0 24 29 110	00000	664 251 196 205 365 200	290 5500 360 490 99	(\$04) 161 158 82 92 19	2+2 2+0 +5 +5 +3 2+1	(N)	.7 3.6 3.3 3.1	1100 1100 150 210 310 1100	1400 9400 160 160 170 610	(PN)	REMA 10.0 +2 220 +2 10.0 +2 10.0 +3 ND +2 50 +2	ARKS	STEPH STEPH STEPH STEPH STEPH STEPH	ENS ET AL 78 ENS ET AL 78
	21 270 10.0 24 29 110	000000	(HCO3) 664 251 196 205 365 200 194	290 5500 360 490 99 1900	(\$04) 161 158 82 92 19 61 173	2+2 2+0 +5 +5 +3 2+1	(N)	.7 3.6 3.3 3.1 1.9 8.2	1100 1100 150 210 310 1100 460	1400 9400 160 160 170	(PN)	REMA 10.0 +2 220 +2 10.0 +2 10.0 +3 ND +2	ARKS	STEPH STEPH STEPH STEPH STEPH STEPH STEPH	ENS ET AL 78 ENS ET AL 78
	21 270 10.0 24 29 110 11 8.3	0000000	664 251 196 205 365 200 194 126	290 5500 360 490 1900 43	(\$04) 161 158 82 92 19 61 173 160	2+2 2+0 +5 +5 +3 2+1 +8	(N)	.7 3.6 3.3 3.1 1.9 8.2 .3	1100 1100 150 210 310 1100 460 250	1400 9400 160 160 170 610	(PN)	REMA 10.0 +2 220 +2 10.0 +2 10.0 +3 ND +2 50 +2 40 +2 +2	IRKS	STEPH STEPH STEPH STEPH STEPH STEPH STEPH	ENS ET AL 78 EMS ET AL 78
	21 270 10.0 24 29 110	000000	(HCO3) 664 251 196 205 365 200 194	290 5500 360 490 99 1900	(\$04) 161 158 82 92 19 61 173 160	2+2 2+0 +5 +3 2+1 +8 1+1 2+7	(N)	.7 3.6 3.3 3.1 1.9 8.2	1100 1100 150 210 310 1100 460	1400 9400 160 160 170 610 440	(PN)	REMA 10.0 +2 220 +2 10.0 +2 10.0 +3 NB +2 50 +2 40 +2	RKS	STEPH STEPH STEPH STEPH STEPH STEPH STEPH	EMS ET AL 78 EMS ET AL 78 EMS ET AL 78 EMS ET AL 76 EMS ET AL 76 EMS ET AL 78 EMS ET AL 78 EMS ET AL 78 EMS ET AL 78

NOTE: SAMPLES FOR WATER QUALITY ANALYSIS COLLECTED BY ERTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN MG/L EXCEPT AS NOTED BELOW.
DISSOLVED SOLIDS FOR ERTEC SAMPLES DETERMINED BY RESIDUE -ON- EVAPORATION AT 180 REGREE C.
NEWADA LOCATIONS 3ASED ON MT. DIABLO BASELIVE. UTAN LOCATIONS BASED ON SALT LAKE BASELINE AND MERIDIAN.
SPECIFIC CONDUCTANCE REPORTED IN MICROMMOSYCM AT 25 DEGREES C.

THE FOLLDWING CONSTITUENTS ARE PEPORTED IN MICROGRAMS/LITER:
BORON IRON MANGANESE

FOOT *1 MITRATE REPORTED AS N
MOTES:*2 NITRATE REPORTED AS NO3
*5 MITRATE * MITRATE REPORTED AS N
*6 DISSOLVED SOLIDS BY SUM OF DETERMINED CONSTITUENTS
*5 MA+K AS NA
*6 MC03+C03 AS MC03
NO = NOT DETECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA DUGWAY VALLEY, UTAH

30 NOV 81

	TOWNSHIP RANGE-SECT	ŞRC	E MO YR	STATION	1		TEMP DEG C	SP. COND	•		ISS. GLIDS	SIL1(CIUM A)	MAGNESIUM (MG)	SODIUM (NA)
	(C-10-14)33C	SP	7-67				60.5				22900		33	740	220	7100
	(C-10-14)33CDC	SP	8-76		HOT SPR	ING	56.0		7.		22400		3	740	220	7600
	(C-11-14) 308D	SP	8-76				23.5	5000	7.				20	120	69	800
	(C-11-14)118CB	59	11-79		SPRING		9.5	3100	7.				3	43	120	610
	(C-11-14)23ACA	SP	3-56				24.0	3070	7.				-		••	
	(C-11-14)23080	SP	3-56				25.0	3160	?.				•-			
	(C-11-14)23DDC1		3-56				22.0	3100	7.		1910		•	100	54	
	(C-11-14) 2300C1		8-76				27.0	3120			1910		9	100	54	480
	(C-11-14)26AAA	SP	3-56				25.5	3160	₹.				-			
	(C-11-14)26ADD	SP	11-79			****	26.0	2600	?.		4700		20	48	89	360 870
	(C-12-12)10CBC1	S SP	8-76 9-56		PSE SPR	ING	22.0	8400 4600	?.		4780		31	690	170	870
	(0-12-14)230661		8-76				20.0		8.		6130		21	300	120	1700
	(C-13-12) 5CB0	2 2 E	6-77				16.5	2890	7.	-	1740		. 2	130	20	410
	(0-14-12) 4080	WE	4-77				23.0	4050		-	2370		52	110	72	650
	POTASSIUM CARBO			CHLORIDE (CL)	SULFATE (534)	FLLORIDE (F)	NITRA (N)	TE	80#0N (8)		MANGAN (MN)		EMARKS		REFE	RENCE
1	15	3	175	12000	1560	4.0			2600							E ET AL
2		0	187	12000	1500	1.8		.1	3100	40		80 *	3			E ET AL
3	53	כ	297	1200	400	1.1		. 1	930	20		ND +				E ET AL
4	39	0	285	1100	506	. \$. 1				*	1		ERTE	
5		j	31.6						••							E ET AL
6		0	321							••						E ET AL
7			315										_			E ET AL
			311	670	390			.1	860	50		0.0 +	3			E ET AL
8		Ģ	320										_			E ET AL
9				250	435	.7		• 2							ERTE	C 79 E ET AL
10	29	0	783						490	120		100 •	τ .		70LK	
9 10 11	29 19		227	2500	390	2.9		.9								
10 11 12	29 19		227 570	2500 1100	3 5 0			ND				•			BOLK	E ET AL
9 10 11 12 13	29 19 130	3	227 570 493	2500 1100 3100	340 540			ND ND	1500	60		240	3		90LK	E ET AL
10 11 12	29 19 130 5.1		227 570	2500 1100	3 5 0			ND				•	3		90LK	E ET AL

NOTE: SAMPLES FOR MATER QUALITY PARLYSIS COLLECTED BY EPTEC EXCEPT WHERE MOTED. ALL ANALYSIS REPORTED IN MG/L EXCEPT AS MOTED BELOW.
DISSOLVED SOLIDS FOR ERTIC CAMPLED DETERMINED BY RESIDUE FONF EVAPORATION AT 180 DEGREE C.
NEVADA LOCATIONS PASED ON MT. DIABLO BASELINE. UTAN LOCATIONS BASED ON SALT LAKE BASELINE AND MERIDIAN.
DPECIFIC COMDUCTANCE PERCHICAL OF MICAPMOSYCM AT 25 DEGREES C.

THE FOLLNAMESECTION OF TRANSPORT OF THE
FOOT *1 NITRATE PEPCATED AS N
NOTES:*2 NITRATE REPORTED AS NOS
*3 NITRATE + NITRATE REPORTED AS N
*4 DISSOLVED SOLIDS EY SUM OF DETERMINED CONSTITUENTS
*5 NA*K AS NA
*6 NCC3**CC3 AS HCO3
NO = NOT DETECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA FISH SPRINGS FLAT VALLEY, UTAH

30 NOV 81

	TOWNSHIP RANGE-SECT	S#6	E MO Y	STATIO R NAME	N		TEMP DEG C	SP.	,		ISS. DLIDS	\$1L1 (SIO		LCIUM (A)	MAGNESIUM (MG)	SODIUM (NA)
1	3M/56E-23A						13.0	305	7.	. 4	181		16	48	17	7.3
1 2	3M/56E-32A	\$1	7 6-8	O COTTON	MOOD CK		13.0	205	8	.0	156		22	42	5.7	11
3	3M/57E-16C	\$1	6-8	O CHERRY	CREEK		13.0	375		.0	275		30	56	24	15
4	3M/57E-16D	\$1					11.0	430	6.	. 7	••		32	67	24	17
5	3N/58E-15B	1 9	E 6-8	C			8.0	365	7.	. 1			32	34	30	10.0
[6	2N/56E-23B	\$1	6-6	C BAFTON	SP.		21.0	530	7.	. 1				••		
,	2N/57E-228	A2 W1	E 11-8	USAF T	EST WELL		20.0			••	225		30	38	9.8	24
	2N/58E-14C	M.	E 6-8	o ·			••	430	7.	. 4	•-		14	44	10.0	22
] 9	2M/59E-17A	\$1	P 6-8	C WATER	GAP		19.0	445	8.	. 6	234		28	40	25	15
10	1M/57E-20	51	P 6-8	O GOLD C	REEK SPR		12.5	660	7.	.0			23	100	17	30
11	15/57E- 3A	1 41	E 6-5	a				305	8.	. 0			23	11	3.4	30
ID.		ARBONATE CO3)	BICARB. (HCO3)	(CL)	SULFATE (504)	FLUORIDE (F)	NITRA (N)		30RON (9)		MANGAI (MN)		EMARKS		REF	ERENCE
,	1.0	J	223	2.8	11	.6		.0				•	1		ERTEC	80
12	1.2	0	156	4.1	13	.7		.0				•	1		ERTEC	80
] 3	2.6	0	272	5.6	18	. 3		. 4				•	1		ERTEC	80
1 4	3.4	0	327	10.0	21	.3		. 0				1	1		ERTEC	80
5	4.1	Ċ	249	6.1	15	. 3	1	. 4				1	1		ERTEC	80
ه ا												••			ERTEC	80
,	1.7		180	10	24	. 3		.1		20		20 4	1		ERTEC	80
1 8	2.0	b	205	9.5	28	.1		. 7				•	1		ERTEC	
Įį	2.6	ž	273	7.1	21	. 3		. 2				•	1		ERTEC	
10		Ó	386	15	5.5	. 7		. 4				:	1		ERTEC	
11		ō	205	9.5	21	. 9		.1,				•	1		ERTEC	

NOTE: SAMPLES FOR WATER SUALITY ANALYSIS COLLECTED BY ERTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN MG/L EXCEPT AS NOTED BELOW.
DISSOLVED SOLIDS FOR ERTEC SAMPLES DETERMINED BY RESIDUE FON- EVAPORATION AT 180 DEGREE C.
NEVADA LOCATIONS BASED ON MT. OIABLO BASELINE. UTAN LOCATIONS BASED ON SALT LAKE BASELINE AND MERIDIAN.
SPECIFIC CONDUCTANCE REPORTED IN MICROMHOSYCH AT 25 DEGREES C.

THE FOLLOWING CONSTITUENTS ARE PERCATED IN MICROGRAMS/LITTER:

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA **GARDEN VALLEY, NEVADA**

30 NOV 81

	OWNSHIP ANGE-SECT	SRCE	MO YR	STATION NAME		TEMP Deg c	SP.	PH	DISS. SOLIDS	SILICA (SIO2)	CALCIUM (A3)	MAGNESIUM (MG)	MUIGO2 (AM)
	C-22-19) 68CA	¥E	8-79	BOSWELL		13.0		6.8	134	18	79	3.0	15
	C-22-19)32ADA	SP	8-79	CLAY SPR		14.0		7.6	. 88	12	69	37	11
	C-23-19) 9 C-23-19)2008C	SP WE	11-54 8-79	BURBANK		14.0		7.4	419	40	81	32	14 35
	C-24-20) 1084	SP	7-79	DAVIES R	OINT SPR.	14.0		7.6 8.0	124 237	44	51 29	31 16	17
	C-28-19)368CC	SP	8-79	RYAN SPR		16.0		7.7	373	39	83	7.2	27
	C-30-20) 260	92	8-79	LOG CAST		20.0			373	59	43	5.1	21
	C-32-18) 15CAA	SP	8-79		GCRGE SPR.	10.0				52	79	17	23
9 (C-32-19)22DCB	W E	8-79			12.0	250		168	34	35	6.4	13
	C-32-20) 240AC	S P	8-79	CANYON S		18.0			246	17	35	7.8	11
	5N/68E-36CA	SP	8-79		ATCH SPR.	12.0		7.1	291	17	93	23	42
	3N/69E-13DCB	\$ 7	8-79	LEHMAN C		10.0		8.0	249	4.8	3.9	. 9	1.4
	3N/69E-14BBD	S.P	9-79	POLAND SI		9.0		7.4	89	7.0	22	2.5	5.4 4.4
	3N/70E~ 4CDC 3N/70E~ 98DD	4E	8-79 8-79	GONDER W		13.0		6.5 7,2	252 257	15 13	20 23	3.1 3.3	13
	3N/70E-10ABA	WE	7-79		OWER WELL)	14.0		8,3	96	27	19	2.0	10.0
	3N/70E-10CAD S	SP	8-79		NCH SPRING	13.0		7.6		16	16	1.4	7.0
	3N/70E-14CCA	d E	8-79	30000	31	15.0		5.2	118	20	18	1.9	10
	3N/70E-13880	12	7-79	SAKER CR	EEK	13.0	44	7.2	392	7.0	6.7	1.1	1.8
20 1	2N/70E-15CCB	SP	8-79	SPRING C	REEK SPRING	13.0	345	7.6	441	7.8	55	6.2	6.0
21 1	2N/70E-17BAA	5 T	7-79	SNAKE CR	EEK	14.0		7.9	56	15	21	2.1	3.4
	1N/69E-25ABA	SP	8-79	SOUTH SP		11.0		7.4	345	4.0	48	30	2.4
	ON/7DE-33BAD	5 P	11-64	915 SPRI		15.0		7.8	216		47	50	6.0
	9N/7JE-34D	WE	11-44	MILLERS	CROSSING		202	8.1			41	14	20
	3N/69E-1598D	4E	9-80	USAF TES		18.0	2	8.1 7.8	266	26	38 32	16 18	25
	8N/69E-35DC2 5N/7GE-11DAA	4 E	8-79	HERMITAG		16.0		,	373	55	80	11	27
D. P	COSS (COS)		CCARB. C		ULFATE FLUO SC4) (F)	RIDE NITR			RON MANGAI FE) (MN)	NESE REPAR	K S	REF	RENCE
1	1.5	2	399	12	21	.1	3.6			+1,+4		ERTEC	79
2	2.1	Ü	219	2.5	8	.1	. 2			41,+4		ERTEC	
3	.0	**	222	8.C	157		.7			+2,+5			T AL 65
4	3.6	9	260	44	56	• 6	- 6			*1,*4		ERTEC	
5	3.4	3	150	22	27	•3	2.3			+1,+4		ERTEC	
6	. 6	2	267	32	21	•1	ND			+4		ERTEC	
7	2.3	ž	146 290	29 38	11	•1	!			+1,+4		ERTEC ERTEC	
	1.6	0	146	35 11	16	. 2	1.1			1,-4		ERTEC	
8							1 4						
9	2.4	0			10		1.4					ERTEC	79
9	2.4 1.8	0	141	15	10 28	.2	1.4			+1,+4		ERTEC ERTEC	
9 10 11	2.4		141	15	10	. 2	.1			+1,+4			79
9 10 11 12 13	2.4 1.8 .5	5	141 340 24 92	15 56 •5 4•0	10 28 5 5	. 2 . 2 ND . 1	1.0			+1,+4 +1,+4 +1,+4		ERTEC ERTEC ERTEC	79 79 79
9 10 11 12 13	2.4 1.8 .5 .3 .9	0	141 340 24 52 87	15 56 -5 4-0 13	10 28 5	.2 .2 ND .1	1.0 .1 .1			+1,+4 +1,+4 +1,+4		ERTEC ERTEC ERTEC ERTEC	79 79 79 79
9 10 11 12 13 14	2.4 1.8 .5 .3 .9 .6 1.2	0000	141 340 24 92 87 68	15 56 4.5 4.0 13	10 28 5 5 155	.2 .2 ND .1 1.9	1.0 .1 .1 .3			+1,+4 +1,+4 +1,+4 +1,+4		ERTEC ERTEC ERTEC ERTEC ERTEC	79 79 79 79 79
9 10 11 12 13 14 15	2.4 1.8 .5 .3 .9 .6 1.2	0	141 340 24 92 87 68 75	15 56 4.5 4.5 13 30 3.0	10 28 5 5 155 6 18	.2 .2 NO .1 1.9 .1	1.0 .1 .1 .3 .2			01,04 01,04 01,04 01,04 01,04		ERTEC ERTEC ERTEC ERTEC ERTEC ERTEC	79 79 79 79 79 79
9 10 11 12 13 14 15 16	2.4 1.8 .5 .9 .6 1.2 .8	5000000	141 343 24 92 87 68 75 73	15 56 4.0 13 3.0 4.0	10 28 5 5 155 6 18 No	.2 NO .1 1.9 .1	1.0 .1 .1 .3 .2			01,04 01,04 01,04 01,04 01,04 01,04		ERTEC ERTEC ERTEC ERTEC ERTEC ERTEC ERTEC	79 79 79 79 79 79 79
9 10 11 12 13 14 15 16 17	1.8 .5 .3 .9 1.2 .8 .7	50000000	141 340 24 92 87 68 75 73	15 56 -5 4-0 13 3-0 4-0 2-3	10 28 5 5 155 6 18 NO 35	.2 .2 NO .1 1.9 .1	1.0 .1 .1 .3 .2 .3			01,04 01,04 01,04 01,04 01,04 01,04		ERTEC ERTEC ERTEC ERTEC ERTEC ERTEC ERTEC	79 79 79 79 79 79 79
9 10 11 12 13 14 15 16 17 18	2.6 1.8 .5 .3 .9 .6 1.2 .8 .7	000000000000000000000000000000000000000	141 342 97 65 73 98	15 56 •5 4.0 13 3.0 4.0 2.3	10 28 5 5 155 6 18 89 35 24	.2 .2 ND .1 1.9 .1	.1 1.0 .1 .1 .3 .2 .3 .2			01,04 01,04 01,04 01,04 01,04 01,04 01,04		ERTEC ERTEC ERTEC ERTEC ERTEC ERTEC ERTEC ERTEC	79 79 79 79 79 79 79 79 79
9 10 11 12 13 14 15 16 17 18 17	2.4 1.8 .5 .3 .9 .6 1.2 .8 .7 .9	000000000000000000000000000000000000000	141 342 242 57 68 73 73 73 74	15 56 •5 4.0 13 70 3.0 4.0 2.3 •5	10 28 5 5 155 6 18 NO 35	.2 NO .1 1.9 .1 .1	11.0 -1 -1 -3 -2 -3 -2 -1 -7			01,04 01,04 01,04 01,04 01,04 01,04		ERTEC ERTEC ERTEC ERTEC ERTEC ERTEC ERTEC ERTEC ERTEC	79 79 79 79 79 79 79 79 79
9 10 11 12 13 14 15 16 17 18 19 20	2.6 1.8 .5 .3 .9 .6 1.2 .8 .7	000000000000000000000000000000000000000	141 342 97 65 73 98	15 56 •5 4.0 13 3.0 4.0 2.3	10 28 5 5 155 6 18 No 35 24	.2 .2 ND .1 1.9 .1	.1 1.0 .1 .1 .3 .2 .3 .2			01,04 01,04 01,04 01,04 01,04 01,04 01,04 01,04 01,04		ERTEC ERTEC ERTEC ERTEC ERTEC ERTEC ERTEC ERTEC	79 79 79 79 79 79 79 79 79
9 10 11 12 13 14 15 16 17 18 17 18 17 18 17 22 21 22	2.4 1.8 .5 .3 .9 .6 1.2 .8 .7 .9	000000000000000000000000000000000000000	1410 1440 1404 1407 1407 1407 1407 1407	15 56 •5 13 10 3 • 0 4 • 0 2 • 3 • 5 6 • 0	10 28 5 5 155 6 18 NO 35 24	.2 .2 ND .1 1.9 .1	11.0 -1 -1 -3 -2 -3 -2 -1 -1			01,04 01,04 01,04 01,04 01,04 01,04 01,04 01,04 01,04		ERTEC ERTEC ERTEC ERTEC ERTEC ERTEC ERTEC ERTEC ERTEC ERTEC ERTEC	79 79 79 79 79 79 79 79 79
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	2.4 1.8 .3 .3 .6 1.2 .8 .7 .9 .6 1.0 .5 .5 .5	0.0000000000000000000000000000000000000	1410427 853084 9032 21353084 9032	15 56 -5 13 30 3-0 2-1 -5 6-0 3-0	10 28 5 5 155 6 18 80 35 24 9	. 2 . 2 . NO . 1 1 1 9 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1	11.0 -1 -1 -3 -2 -3 -2 -1 -7 -4 ND 1.0 2-2			01,04 01,04 01,04 01,04 01,04 01,04 01,04 01,04 01,04 01,04		ERTEC HOOD MOOD	79 79 79 79 79 79 79 79 79 79 79 17 81 AL 65
9 10 11 12 13 14 15 16 17 18 19 22 22 23 24 25	2.6 1.8 .5 .9 .6 1.2 .8 .7 .9 .4 1.0	000000000000000000000000000000000000000	14429E65308480322	15 56 57 57 57 57 57 57 57 57 57 57 57 57 57	10 28 5 5 155 6 18 80 35 24 9 9 5 8	.2 .2 .1 .1 .1 .1 .1 .1 .1 .1 .1	11.0 -1 -1 -3 -2 -3 -2 -1 -7 -4 ND 1.0 2.2			01,04 01,04 01,04 01,04 01,04 01,04 01,04 01,04 01,04 01,04 01,04		ERTECCERTECCERTECCERTECCERTECCERTECCERTECCERTECCERTECCERTECCERTECCERTECCERTECCERTECCERTCCCERTCCCERTCCCERTCCCERTCCCERTCCCERTCCCERTCCCMOOOD	79 79 79 79 79 79 79 79 79 79 79 ET AL 65 ET AL 65
9 10 11 12 13 14 15 16 17 18 19 22 12 23 24	2.4 1.8 .3 .3 .6 1.2 .8 .7 .9 .6 1.0 .5 .5 .5	0.0000000000000000000000000000000000000	1410427 853084 9032 21353084 9032	15 56 1.5 1.0 1.0 2.1 6.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	10 28 5 5 155 6 18 85 35 24 9 9 5 8	. 2 . 2 . NO . 1 1 1 9 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1	11.0 -1 -1 -3 -2 -3 -2 -1 -7 -4 ND 1.0 2-2			01,04 01,04 01,04 01,04 01,04 01,04 01,04 01,04 01,04 01,04		ERTEC HOOD MOOD	79 79 79 79 79 79 79 79 79 79 79 79 8 AL 65 88 80

NOTE: SAMPLES FOR JATER QUALITY ANALYSIS COLLICTED BY ERTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN MG/L EXCEPT AS NOTED BELOW.
DISSOLVED SOLIDS FOR ERTEC SAMPLES DEFAMINED BY RESIDUE FOR EVAPORATION AT 180 DEGREE C.
NEVADA LOCATIONS BESED ON YI. DIABLO BASELINE. UPAN LOCATIONS BASED ON SALT LAKE BASELINE AND MERIDIAN.
SPECIFIC CONDUCTANCE REPORTED IN MICOMMOS/CM AT 25 DEGREES C.

FOOT *1 NITRATE FEMORTSD AS N NOTES:*2 NITRATE HEPORTED AS NOS *3 NITRITE * VITRATE PEPORTED AS N *4 DISSOLVED SOLIDS BY SUM OF DETERMINED CONSTITUENTS *5 MA*K AS NA *6 HCO3*COJ AS HCO3 NO = NOT DETECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA HAMLIN VALLEY, UTAH

30 NOV 81

	TOWNSHIP RANGE-SECT	SRCE	MO YR	STATION NAME	TEMP DEG C	SP.	PH	DISS. SOLIDS	SILICA (SIO2)	CALCIUM (CA)	MAGNESIUM (MG)	SODIUM (NA)
1	10N/51E-34DCC	¥€	6-67	UCE-17	32.0	330	6.2	250	3 9	15	1.7	68
2	10N/51E-34DCC	a E	6-67	UCE-17		568	8.0	425	16	11	. 6	130
3	10N/51E-34DCC	w E	6-67	UCE-17		398	6.5	333	6.7	7.4	. 6	94
4	10N/51E-34DCC	₩E	6-67	UCE-17		854	7.5	641	13	23	1.9	180
5	10N/51E-34DCC	WE	6-67	UCE-17		405	8.1	335	69	4.0	12	31
6	10N/51E-36BAB	2 6	7-90	MOCRES STA. PES.	20.0	340	7.9	196	45	31	9.5	21
7	9N/51L- 88A	SP	3-67	SO. CYN. SPRING	12.0	5 6 C	7.6	165	25			7.3
8	9N/51E-22AA9	WE	7-67	HTH-1	33.0	567	8.4	402	68	12	.4	110
9		⊌£	8-67	HTH-1	33.0	482	8.7	324	42	4.7	2.0	110
10	9N/51E-22AAB	₩£	8-67	H T H = 1	24.5	218	7.7	172	25	8.7	. 6	39
11		A S	1-68	UC E-20	34.0	791	7.6	470	50	5.8	.1	140
12		SP	7-67	UPPER WARP SPRING	35.0	192	7.6	148	46	4.7	.1	38
13		S P	8-65		33.5	462	8.0	152		18	26	52
14		ŞP	5-77	OLD DUGAN NOT SPR.	36.0	699	7.7	444	32	70	5.5	6.0
15		5 T	7-80	6-MILE CYN-S.	21.0	320	7.8	204	30	39	9.0	
16		5 T	8-65	HOT CREEK CYN.	34.5	718	8.2	140		13	26	
17		5 P	7-67	HOT CK.PANCH SPR.	67.0	1010	8.1	721	. 2	33	9.5	
1 8		5 >	9-73	HOT CK.RANCH SPR.	63.0	1101	6.0	823	140	51	15	
17		w E	8-67			1020	7.9	666	64	••	••	
20		- 6	9-63			994	8.2	645			••	
21		ST	7-80	HOT CREEK	21.0	1110	8.5					
22		50	7-20	COLD SPRING RANCH	15.0	980	6.8			•-		-
23		ME	6-57		33.5	1300	8.4		54	4.2	1.0	330
24		WE	6-57	UCE-18	46.0	3250	8.5	2150	55	2.2	.2	890
25		WÊ	6-57	UCE-13	40.5	1510	8.4	950	58	8.2	1.2	390
26		WE	6-67	UCE-18		347C	8.6	2250	46	5.0	.4	950
27		₩E	6-57	UCE-18	48.0	3300	8.6	2190	58	1.2	. 6	80
25		a €	6-67	UCE-18	41.5	3230	7.8	2180	66	3.0	. 8	580
29		₩ É	6-57	UCE-13	53.5	3300	8.5	2170	50	1.8	• 2	882
30		₽E	6-67	UCE-18	46.0	3250	8.5	2150	5 5	2.2	. 2	893
31		₩ĕ	6-57	UCE-18	54.5	3550	8.5	2180	52	2.6	. 2	880
32		4.6	6-67	UCE-18	33.5	1300	8.4	852	54	4.2	1.0	330
33		₩ E	6-67	uCE-18	37.0	2070	8.4	1340	60	6.6	1.4	540
34		¥ E	6-67		33.5	130C	8.4	852	54	4.2	1.0	330
35		SP	7-30	HOEBLE SPR.AGUDT.	21.0	285	7.7					
30		46	3-69	HTH-5	28.0	314	7.5	301	59	29	3.5	33
37		ME	7~80	SIX MILE WELL	18.0	345	7.1	250	62	44	6.8	17
38		¥€	9-30	SIX MILE WELL	17.0	363	7.4	233	52	•	9.6	15
39		SP	7-80	KEYSTONE SPRING	17.0	545	7.3	320	16	• -	35	10.0
40		3 P	9-60	KEYSTONE SPRING	17.0	540	7.3	320	9.4	56	37	10.0
4.1		SP	10-65	BLUE JAY SPRING		2540	6.5	1740		35	54	567
42		#E	6-8C		19.0	87>	, .	621	72	46	26	120
43		₩E	9-50	USAF TEST WELL	19.0	280		223		5.5	4.7	34
44		≠ E	10-50	USAF TEST WELL	18.0	292	7.	195	15.00	43	3.8	53
45		₩£	10-80	USAF TEST WELL	19.0	280	4.5	204	72	19	3.6	33
4.5		W E	10-20	USAF TEST WELL	19.0	28C	1.5	207		18	4.9	250
47		SP	7-80	RATTLESNAY: SPR.	17.0	218	•••				••	
48		\$ P	7-80	ICEBERG SPRING	12.0	225	6.1			•-		
49	64/47c-179AD	SP	7-80	-ILLOW SPOING	14.5	472	6.4	299	37	72	13	27

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA HOT CREEK VALLEY, NEVADA PAGE 1 OF 3

30 NOV 81

	POTASSIUM (c)	CARBONATE (COS)	SICAPS.		SULFATE (SC=)	FLUGRIDE (F)	NITRATE (4)	90804 (3)		MANGANESE (MN)	REMARKS	REFERENCE
1 1	4.2	J	173	14	19	1.1	2.9		220	90	* 2	DINWIDDIE ET AL 71
Ιż				15	100	5.8		••	30	60	*Ž	DINWIDDIE ET AL 71
Ī	4.2	3	195	15	44	. 4			20	20	• 2	DINWIDDIE ET AL 71
	7.2	3	213	13	252	7	2.4		70	330	•2	DINWIDDIE ET AL 71
5	10.3	າ	222	10.0	44	. 4	3.0		30	270	• 2	DINWIDDIE ET AL 71
ه	4.7	າ	165	9.3	21	. 4	ND					ERTEC 80
7	1.0)	137	2.6	20	. 3	1.0	40			+2	THORDARSON ET AL 71
3	1.2	5	247	20	34	2.6	ND	1.9	290			DINWIDDIE ET AL 71
,	2.7	1	225	15	36	5.2	ND	1400	1100	20		DINWIDDIE ET AL 71
10	3.9	0	115	4.4		. 9	.1	100	420		• 2	DINWIDDIE ET AL 71
11			112	93		26	N D		140	30		DINWIDDIE ET AL 79
12		٦		7.0				100	10.0		± 2	GARSIDE ET AL 79
13				22							+5	RUSH ET AL 66
14	6.3	0		19		1.0		330	10.0			GARSIDE ET AL 79
15	1.8			7.2		• 3		••				ERTEC 80
16		7		33		**					+ 5	RUSH ET AL 66
17)		17		2.3		520	40		*2	GARSIDE ET AL 79
18			5 4 5	42		9,0			40			GARSIDE ET AL 79
19	1 1 4	3	470	41	198	5.0	2	390			• 2	usgs 79
50		-										uses 79
21				••								ERTEC BO
22												ERTEC 30
23				67		17	• .	13	300			GARSIDE ET AL 79
24				74		57						DINWIDDIE ET AL 71
25	7.0	15	793	4.4		19		2300	470			DINWIDDIE ET AL 71
26			2050	• 0		63		2300	100		+2	DINWIDDIE ET AL 71
27		67	1900	71		63		2400	240			DINWIDDIE ET AL 71
28				76		39		3000	4 30		*2	DINWIDDIE ET AL 71
29			1977	71		63		3200	370			DINWIDDIE ET AL 71
3 0				7.4				2900	750		*2	DINWIDDIE ET AL 71
31			1902	\$1		4.7		3000	90			DINWIDDIE ET AL 71
32			3,3	57		17		.20	330		* Z	DINWIDDIE ET AL 71
33				4 2		27		1100	920			DINWIDDLE ET AL 71
34				57		17			••		*1	DINWIDDIE ET AL 71
35								••				ERTEC SG
36			1:3	· •		• •			11000		+2	DINWIDDIE ET AL 71
37				7.5							•1	ERTEC TO
3 9				3.3					100		•1	ERTEC SO
39				12.0				••			- 1	ERTEC 30
4.3			270	10.0					58			ERTEC 50
41				150							*4, *5	PUSH ET AL 66
42			375	32		345			3100			ERTEC 90
+ 3				7.3					600		•1	ERTEC 90
44				13		• • •			•-		•1	ERTEC SO
4.5				9.2		• •			••		*1	ERTEC 90
40				5 2							•1	ERTEC 50
4.7			128					••				EPTEC 90
4 5									••			ERTIC TO
••	1.3	5	274	1 3	46	. :						ERTEC 30

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

SELECTED WATER QUALITY DATA HOT CREEK VALLEY, NEVADA PAGE 2 OF 3

30 NOV 81

	TOWNSHIP RANGE-SECT	S #	CE MO 1	STATIO	•		TEMP DEG C	SP.				SILICA (\$102)	CALCIUM (CA)	MAGNESIUM (MG)	SODIUM (NA)
50					DE SPRIN		17.0	428		. 9			**		
51	6N/50E-10E						23.0	670		. 2	314	29	52	25	16
52					EST WELL		20.0				284	28	41	18	20
53					EST WELL		50.0			•-	239	27	41	18	50
54					SPRING		16.0	600		.0	396	50	31	. 19	70
55	6N/51E-15/							363				**	19	4.0	59 57
56					AY MAINT	. S T A .	21.0	375		. 2	259	64	18 34	3.7	25
57	5N/51E- 76				ASE CAMP		17.0	342 386		.7	226 269	45 58	21	11 4.6	55
58							14.0	350 570		. 2	707	20		•••))
59 60					I MECE		60.5	1270		. 6	••		55	36	210
					PP. TUNNE		43.5	1900		. i	874	54	72	23	210
61					- 4. 10271	.	20.0	320		. 6				.,	
3							17.2	487		: 4	••		30	5.4	74
ID.		ARSONATE	BICARS.	CHEOPIDE	SULFATE (SO4)	FLUORIDE (F)	NITRA (N)		9080N (B)		MANGANES (MN)	R E PA	RKS	REF	EFENCE
50														ERTEC	50
51	2.6	G	156	14	107		1	. 5				•1		ERTEC	
5 2	2.4		170	5.7	55	.2		.7	••			- +1		ERTEC	
53			171	9.6	67	. 2	!	.7				- +1		ERTEC	
54	7.4	0	99	:4	5 8)		••	600		19		ERTEC	
5 5		2	1:4	12	24							- +5			ET AL 66
55	4.5	^	175	12	23	. 9		. 9				+1		ERTEC	
57			154	6.8	3.0			. 3				+1		ERTEC	
53		3	212	10.0	2.2	1.1	1	. 4				+1		ERTEC	
59							•							ERTEC	
60		0	712	2.2	3 4							- •5			ET AL 66
61		0	748	3 9	111	1.5						-		EPTEC	
62						••						·-		ERTEC	
63		J	243	15	3.5		•	•-				+5		RUSH	ET AL 66

THE SAMPLES FOR WATER QUALITY ANALYSIS COLLECTED BY EFFEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN MG/L EXCEPT AS NOTED BELOW.

DISSOLVED SOLIDS FOR EFFEC SAMPLES DIFFERINCE BY RESIDUE FOR FROM THE 18C DEGREE C.

NEVALA LICATIONS RESED DA VI. DIANLO FAILLIVE. UTAN LOCATIONS BASED ON SALT LAKE BASELINE AND MERIDIAN.

SPECIFIC CONDUCTANCE MERORITED IN MICROPHOSYCH AT 25 DEGREES C.

THE FOLLDWING CONSTITUENTS ARE PEPORTED IN MICROGRAMS/LITER: BORCH IPON MANGAMESE

FOOT +1 NITRAT: PERDRICO AS N NOTES: 2 NITRATE REPORTED AS NOS +2 NITRATE + NITRATE PERORTED AS N +4 DISSOLVED SOLIDS BY SUM OF DETERMINED CONSTITUENTS +5 NA+K AS NA +6 NCC3+COZ AS NCO3 NO = NOT DETECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA HOT CREEK VALLEY, NEVADA PAGE 3 OF 3

30 NOV 81

	TOWNSHIP RANGE-SECT	SRCE MO YR	STATION Name	TEMP SP. Deg C cond	PH SOLIDS	SILICA CALCIUM (SIO2) (CA)	MAGNESIUM SODIUM (MG) (MA)
2	18N/59E-10DC 18N/59E-11CB 17N/58E-21BA	SP 11-80 SP 11-80 SP 11-80	WILLOW SPRING	10.0 325 11.0 375 6.5 600	7.7 230 7.8 7.5 681	46 36 11 55	6.1 14
			CHLORIDE SULFATE FLUOR	RIDE HITRATE BOR		NESE Remarks	REFERENCE
1 2 3	4.5 1.7	0 144 0 283	14 12 9.8 58			+1 +1	ERTEC 80 ERTEC 80 ERTEC 80
HOTE	DISSOLVED SC MEVADA LOCAS	PLIDS FOR ERTEC Tions based on M	NALYSIS COLLECTED BY I SAMPLES DETERMINED BY T. DIABLO BASELINE. U' ED IN MICROMHOS/CM AT	RESIDUE -CN- EVAP TAH LOCATIONS BASE	ORATION AT 180	DEGREE C.	MG/L EXCEPT AS NOTED BELOW. DIAN.

THE FOLLOWING CONSTITUENTS ARE REPORTED IN MICROGRAMS/LITER: BORON IRON MANGANESE

FOOT *1 MITRATE REPORTED AS N
NOTES: *2 MITRATE REPORTED AS NO3
*3 MITRATE * MITRATE REPORTED AS N
*4 DISSOLVED SOLLDS BY SUM OF DETERMINED CONSTITUENTS
*5 MA*K AS NA
*6 MC03*C03 AS MC03
NO = NOT DETECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA JAKES VALLEY, NEVADA

30 NOV 81

ID.	TOWNSHIP			STATIO	N		TEMP	SP.		0	155. 5	ILICA	CALCIUM	MAGNESIUM	SODIUM
NO.	RANGE-SECT	SR	CE MO YE	NAME			DEC C	CONE	•			\$105)	(CA)	(MG)	(NA)
1	22M/48E-36A	31	5-64	•				186	7.	8			16	4.4	17
2	22M/49E-27D	\$1	r 5-64	COILS	CREEK			280	8.	. 2			26	6.3	23
3	22N/50E-128A	5	7 10-80	ROBERT	S CREEK		2.0	460	7.	.2	289	19	59	24	13
4	20N/47E-14DCC	21	10-80	ACKERM	AN RANCH	SPR	7.0	250	7.	4	228	67	18	4.8	26
5	20N/52E-20DBA	₩1	E 9-80)			16.0	475	57.	9	363	15	55	31	27
6	19N/47E-31AAB	₩(10-60)			7.0	565	5 6.	8		••			
7	19N/49E- 4CCC	¥	E 10-80	3			7.0	280	3 6.	4	200	51	29	3.8	27
8	198/50E- SAAD	wi	9-80)			43.0	525	7.	3	354	27	51	24	39
9	19N/50E-16BCC	W	9-80)			16.5	250			258	59	2.4	2.2	60
10	18H/48E- SDAA	₩.	E 10-80	3			10.0	215	5 6.	6	179	54	13	1.9	36
	POTASSIUM CARI			CHLORIDE (CL)	SULFATE (SG4)	FLUORIDE (F)	NITRA (N)	TE	BORON (B)		MANGANES (MN)	E REMA	.RKS	REF	ERENCE
1		9	80	6.0								_		RUS	H ET AL 64
2		0	132	10.0								-		RUS	H ET AL 64
3	1.0	0	304	9.8				.1		500	10.	0 +1		ERT	EC 80
4	8.2	٥	104	14	20	.1		.7		200	10.	0 +1		ERT	EC 80
5	3.4	0	340	16	. 24	.7	•	. 6				- +1		ERT	EC 80
6												-			EC 80
7	4.4	0	136	11	13	ND	. 1	. 3		300	2	0 +1			EC 80
8	12	ō	344	9.5		1.1		ND				-			EC 80
ġ	11	ō	160	6.8		1.3		.1				- +1			EC 50
10	4.8	ŏ	116	10.0		. 3		. 2				- •1			EC 80

NOTE: SAMPLES FOR WATER QUALITY ANALYSIS COLLECTED BY ERTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN MG/L EXCEPT AS NOTED BELOW.
DISSOLVED SOLIDS FOR ERTEC SAMPLES DETERMINED BY RESIDUE -ON- EVAPORATION AT 180 DEGREE C.
NEVADA LOCATIONS 3ASED ON MT. DIABLO BASELINE. UTAN LOCATIONS BASED ON SALT LAKE 9ASELINE AND MERIDIAN.
SPECIFIC CONDUCTANCE REPORTED IN MICROPMOS/CM AT 25 DEGREES C.

THE FOLLOWING CONSTITUENTS ARE REPORTED IN MICROGRAMS/LITER: BORON IRON MANGAMESE

FOOT *1 NITRATE REPORTED AS N
**STES:*2 NITRATE REPORTED AS NO3
**S NITRATE REPORTED AS NO
**A DISSOLVED SOLLDS BY SUM OF DETERMINED CONSTITUENTS
**5 NA*K AS NA
**6 MCO3*CO3 AS MCC3
**NO **NOT DETECTED
**NOT DETECTED

Ertec

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA KOBEH VALLEY, NEVADA

30 NOV 81

	TOWNSHIP RANGE-SEC	T, \$	RCE M	YR	NAME	4		TEMP Deg C	SP.			ISS. OLIDS	SILICA (SIO2)		MAGNESIUM (MG)	SDDIUM (NA)
1 2	10N/66E-3 9H/65E-			1-63 1-63	GEYSER	SPRING		15.0	322 181			203 115	27 13		5.7 3.4	7.4 3.0
3	3M/66E-	500	WE 10	-63					374	7				42	9.0	••
ID.	POTASSIUM	CARBONAT	E BICAR		HLORIDE	SULFATE (SC4)	FLUORIDE (F)	NITRAT		BORON (8)		MANGA!		ARKS		ERENCE
		100,,		, ,	,	(304)	(,,	`"'		,	1167		**	****	467	ETENCE
1	1.9		3 18	9	9.6	6	ND.	1.	. 2	N D			+2		RUS	H ET AL 63
2	1.0		10		3.0	Š			6	ND			+2			H ET AL 63
3		-	- 12	9	30			•							RUS	H 64
NOTE:	SAMPLES	FOR WATER	QUALIT	Y AN	ALYSIS (OLLECTE	BY ERTE	CEXCE	-T WH	ERE NO	TED. A	LL ANAI	LYSIS RE	PORTED IN	MG/L EXCEPT	AS NOTED BELOW
	DISSOLVE	D SOLIDS	FOR ERI	EC S	AMPLES D	ETERMINE	D BY RES	IDUE -C	N- E	VAPORA	TION A	T 180 (DEGREE C			
	NEVADA L	OCATIONS :	BASED C	N MT	. DIABLO	BASELI	E. UTAH I	LOCATIO	NS B	ASED O	N SALT	LAKE !	BASELINE	AND MERID	IAN.	
	SPECIFIC	CONDUCTA	NCE REF	CRTE	D IN MIC	ROMHOS/	R AT 25 1	DEGREES			_	_				

THE FOLLYWING CONSTITUENTS ARE REPORTED IN MICROGRAMS/LITER: BORON IRON MANGANESE

FOOT *1 MITRATE REPORTED AS N
MOTES:*2 MITRATE REPORTED AS NO3
*3 MITRITE * HITRATE REPORTED AS N
*4 DISSOLVED SOLIDS BY SUM OF DETERMINED CONSTITUENTS
*5 NA*K AS NA
*6 MCO3*CO3 AS HCO3
ND = MOT DETECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA LAKE VALLEY, NEVADA

30 NOV 81

	TOWNSHIP RANGE-SECT	5=	CE #0 1	STATIC R NAME	٧		TEMP Deg c	SP.	, ,		ISS. OLIDS	SILICA (SIO2)	CALCIUM (CA)	MAGNESIUM (YG)	SODIUM (NA)
,	17N/54E-16	a 4	a 13-6	55			13.9	409	7.	9			28	24	31
Z	164/535- 8	9 5			REEK SPR	ING	17.2	664	. 8.	. 2			28	29	38
3	16N/53E- 9	C AE S	9 3-	O FISH C	K SP9 PO	N D	17.0	550	7.	6		ND	60	32	26
4	164/53E- 9	c s	P 2-6	5			17.8	462	. 8.	2			37	29	36
5	16N/53e-12	AED S	7 3-9	13 FISH C	REEK		3.5	833		3	••	ND	5 8	51	55
٥	154/545- 6	OCB #	£ 10-6	5			13.9	254	7.	6	••		30	4.6	16
7	15N/5+E-11	AC3 S	P 3-1	2 POSUES	STA. SPR.		7.5	2100	7.	4	••	ND	260	16	61
6	144/516-23	CC4 3	P 3-	S BAIG C	PRING		6.5	250		1		ND	25	5.9	15
	POTASSIUM ((K)	TARBONATE	BICARB.	CHLORIDE	SULFATE (SC4)	FLUORIDE (F)	NITRA (N)	TE	BORON (B)		MANGAI (MN)	NESE REMAR	KS		ERENCE
•	.0	2	219	7.0	42							+5		Rusi	4 66
Ż	.0	ō	267	11	37			••				+5			1 66
3	6.1	ŏ	385	8.4	. 37	.5		. 3				++			EC 80
4	.0	ō	273	8.6	51							+5			4 66
5	9.7	ō	547	17	72	.6		ND				+1			C 80
6	.0	ā	126	6.6				••				+5			1 66
7	3.1	2	465	31	1050	.4		. 2				+1			EC 80
8	2.5	0	146	9.9		.1		ND				•1			EC 80

NOTE: SAMPLES FOR WATER QUALITY ANALYSIS COLLECTED BY ERTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN RG/L EXCEPT AS NOTED BELOW.
DISSOUVED SOLIDS FOR ERTEC SAMPLES DETERMINED BY RESIDUE -ON- EVAPORATION AT 180 DEGREE C.
NEVADA LOCATIONS PASED BY MT. DIAPLD DASILINE. UTAN LOCATIONS BASED ON SALT LAKE BASELINE AND MERIDIAN.
SPECIFIC CONDUCTANCE REPORTED IN MICROPHOSYCM AT 25 DEGREES C.

THE FOLLOWING CONSTITUENTS ARE REPORTED IN MICROGRAMS/LITER: BORGN IRON MANGANESE

FOOT *1 MITRATE REPGRT'D AS N NOTES: *2 MITRATE PEPCRTED AS NO3 *3 MITRATE * MITRATE REPORTED AS N *4 DISSOLVED SCLIDS BY SUM OF DETERMINED CONSTITUENTS *5 NA*K AS NA *6 MCC3*CO3 AS MCO3 NO * NCT DETECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA LITTLE SMOKY VALLEY, NEVADA

30 NOV 81

	TOWNSHIP RANGE-SEC	r \$1	1CE NO Y	STATIO	N		TEMP DEG C	SP.	•		ISS. OLIDS	\$ILI (\$10		LCIUM CA)	MAGNESIUM (MG)	SODIUM (NA)
3	23N/58E-30 23N/58E-30 22N/58E-30 21N/59E-30 21N/59E-30	50 S	iP 11-8 iP 11-8 iE 11-8 iE 11-6 iE 11-8	O LONG V	. SLOUGH .SLOUGH ES SHEEP	ug.	18.0 4.0 8.0 12.0	360 425 7500 3700 1050	8.2 7.6 8.5	2 5	212 309 5800 3200 861	9	12 10 67	30 47 43 340	17 22 130 190	11 15 1600 200
	20N/59E-2		Æ 11-8		ES SHEEP	*****	13.0	310			180		12 13	95 24	50 11	21 17
	POTASSIUM (K)	CARBONATE (CO3)	BICARB.	CHLORIDE	SULFATE (SO4)	FLUORIDE (f)	NITRAT		90RON (\$)		MANGA!		EM ARK S		* E F T	RENCE
1	3.0	21		10.0	40	3		. 2		ND		ND 4	1		ERTE	C 80
2	4.0	C		14	48	.4		10							ERTE	C 80
3	250	Ç		1200	1956	1.1		.1		300		31 *				C 80
•	4.7	0	92	1000	557	.3		.1		ND		15 4				C 80
	3.4	•		200	30	•\$		6				4				C 90
6	2.5	C	144	9.2	14	.3	1.	. 8		94		ND .	1		ERTE	C 80

NOTE: SAMPLES FOR WATER QUALITY ANALYSIS COLLECTED BY ERTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN MG/L EXCEPT AS NOTED BELOW.
DISSOLVED SOLIDS FOR ERTEC SAMPLES DETERMINED BY RESIDUE -ON- EVAPORATION AT 180 DEGREE C.
MEVADA LOCATIONS BASED ON MT. DIABLO BASELINE. UTAM LOCATIONS BASED ON SALT LAKE BASELINE AND MERIDIAM.
SPECIFIC COMBUCTANCE REPORTED IN MICROPHOSYCM AT 25 DEGREES C.

THE FOLLOWING CONSTITUENTS ARE REPORTED IN MICROGRAMS/LITER: BORON IRON MANGAMESE

FOOT *1 MITRATE REPORTED AS N
NOTES: *2 MITRATE REPORTED AS NO3
*3 MITRATE REPORTED AS NO3
*4 DISSOLVED SOLIDS BY SUP OF DETERMINED CONSTITUENTS
*5 NA*K AS NA
*6 MCO3*CO3 AS MCO3
ND = NOT DETECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA LONG VALLEY, NEVADA

30 NOV 81

A

	TOWNSHIP RANGE-SECT	SACE	PO YR	STATION NAME	1		TEMP Deg c	SP.	,		ISS. OLIDS	91L (51		CALCIUM (CA)	MAGNESIUM (%G)	SODIUM (AA)
1 1	18N/47E- 5CD	WE	10-90				11.0	660	7.	. 9	295		45	44	11	32
	18N/472-20AD	3.6	4-64				22.0	579	7.					62	12	34
	17N/48E-21AC	ŠP	10-80				9.0	215		. 8	17		44	27	4.0	14
. 4	16N/47E- 400	WE	4-64	POTTS 9	ANCH WEL	.L	16.0	460	7.	. 6				50	8.8	31
	15N/40E-2008	S.T	10-20	CORRAL			.0	215	6.	. 4	••					
	154/45E-27AD	\$ 6	10-80	• • • • • • • •			6.0	105	5.	9						
7	15N/40E-28AA	ST	10-80				1.0	155	6.	. 3						
	15N/47E- BADA	WE	10-50	#ONITO	RANCH .	IELL	11.0	380	7.	. 1	328		42	61	13	27
j	15N/47E-29CB	SP	10-30	MUD SP			7.0	265	6.	. 1					**	
	15N/47E-3500	ST	10-90				14.0	520	8.	. 2	390		29	54	13	54
	14N/46E-13AD	SŤ	10-80	IKES CY	/ N _		7.0	290	8.	4						
12	13N/47E-29C	a E	4-64	PINE CA	EEK RANG	: H	12.0	1470	8.	. 7				4.8	39	200
	12N/47E-1988	dE	10-30		EEK RANG		9.0	1200	6.	. 6	100C		66	130	16	190
14	12M/47E-32AC	ST	10-80	MOSQUIT	O CK.	-	2.0	105	7.	. 1						
	11N/46E-15AAA	4E	10-80		EEK RANG	H	7.0	300		. 5	207		38	36	4.8	27
	11N/46E-18DDB	ST	10-50	PINE C			4.0	45	6.	9	••				••	
17	10N/45E-12A	₩E	10-60	PINE C	EEK PANO	Н	5.0	230	7.	. 9	140		63	22	2.8	21
	1CN/461-289C	ST	10-80	CORCOR			4.0	195	7.	. 8	143		23	11	1.2	33
19		JE	10-30	SARLEY	CK.RNCH.	JELL	2.0	170	5.	9	133		34	21	2.5	12
Za	9N/47E-1688	WE	10-50				2.0	170	5.	, 9	••				••	
ID.	POTASSIUM CAREO			HLOWIDE	SULFATE (SC4)	FLUOPIDE (F)	NITRA (%)		ORON B)	IRON (FE)	MANGAN (MN)		REMAR	K S	4 EF	ERENCE
	6.2	3	1.90	15	56	.5		. 5		24		3.0	• 1		ERT	EC 80
Ž		ă	160	43	9.8										Rus	H 64
1 3	3.4	ā	128	6.0	10	.2		.1	••	ND		ND	•1		ERT	EC 80
4		ō	182	15	55	••									RUS	H 64
Ś	••								~-						ERT	EC 80
6															ERT	EC 80
7						••										EC 80
	4.9	3	247	16	50	. 2	1	1.4		100		8.0	• 1		ERT	EC 80
9															ERT	EC 20
10	17	2	239	16	59	2.3		.1		300		6.0	*1		ERT	EC 80
11															ERT	EC 80
1 i		2.0	212	110	340										RUS	H 64
13	24	3	490	190	200	ND		. 2		300		. 2	+1		ERT	EC 90
14															ERT	EC 90
15	-8	0	200	3.C	3	.1		ND		200		17			ERT	EC 80
15	••														ERT	EC 50
17	5.5	3	131	4.9	6	.1		. 3		ND		7.0			ERT	EC 40
13	1.2	•	99	5.4	16	. ?		. 3		300		21	• 1		ERT	EC 80
19	.5.3	3	108	3.0	5	50		ND		100		130			ERT	EC 80
20	***														ERT	£C #0

NOTE: SAMPLES FOR MATER QUALITY ANALYSIS COLLECTED BY ERTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN MG/L EXCEPT AS NOTED BELOW.
DISSOLVED SCLIDS FOR ERTEC SAMPLES DETERMINED BY PESIDUR FONF EVAPORATION AT 160 DEGREE C.
MEVADA LOCATIONS PASED ON MT. DIAPLO BASELINE. UTAM LOCATIONS PASED ON SALT LAKE BASELINE AND MERIDIAN.
SPECIFIC COMODITANCE REPORTED IN MICOPHNOS/CH AT 25 DEGREES C.

THE FOLLOWING CONSTITUENTS ARE REPORTED IN MICROGRAMS/LITER: BORCH IRON MANGANES:

FOOT +1 NITPATE REPORTED AS NI NOTES: 2 NITPATE REPORTED AS NOT +3 NITRITE + NITPATE REPORTED AS N +4 DISSOLVED SOLIDS BY SUM OF DETERMINED CONSTITUENTS +5 NA+K AS NA +5 MCDI-COI AS NCOS NO # HOT DETECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA MONITOR VALLEY, NEVADA

30 NOV 81

	TJ=NSHIP RANGE-SEC	т	sac	E ₩C ¥₹	STATIO	4		TEMP Deg c	SP.						ALCIUM (ca)	MAGN!		SODIUM (NA)
1	58/64E-	7000	SP	5-50	: E13 *U	SPRING		14.5	330	8	.0				53		17	17
2	SN/65E-1	CCAP	53	5-50	HORSE	CORRAL SI		12.0	465	7	. 4				60		16	26
ī	5N/655-3		5,2	5-6	MALLOY	SPRING		11.5	540		. 9			74	53		11	180
1 .			45									1961			10.0			38
5	48/64:-		40								••	1121			13		••	75
	POTASSIUP (K)	CARBONA (EDI)			CHLOPIDE (CL)	SULFATE (SC4)	FLUGRIDE (F)	NITRA (N)	TE	90#0N (8)		MANGANE (MN)		REMARK	5		REF1	RENCE
1	1.2		2	154	£7	43	.3	1	.0					•1			ERTEC	90
,	. 4		- 3	365	13	27	.2		.3								ERTEC	
- 7	3.9		ΰ	259	29	17			. 6								ERTEC	
1	5.4		3		53	17	• • •								w PIEZO			
			۲,		23						80						ERTEC	
,	5.7		j		49	13					50	4	10	DEEP P	IEZOMET	ER	ERTEC	

MOTE: SAMPLES FOR WATER STALLTY ANALYSIS COLLECTED BY EPTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN MG/L EXCEPT AS NOTED BELOW.
DISSOURCE SOLIDS FOR ERTEC SAMPLES DETERMINED BY RESIDUE -ON- EVAPORATION AT 180 DEGREE C.
NEVADA LOCATIONS RASED ON "T. DIRBLO PASELINE, UTAN LOCATIONS BASED ON SALT LAKE BASELINE AND MERIDIAN.
SPECIFIC CONDUCTANCE REPORTED IN MICROMHOSYCM AT 25 DEGREES C.

THE FOLLOWING CONSTITUENTS ARE REPORTED IN MICROGRAMS/LITER:

FOOT +8 NITHATE REPORTED AS N NOTES:+2 NITHATE REPORTED AS NOS +3 NITHITE + WITHATE REPORTED AS N +4 DISSOLVED SOLIDS BY SUM OF DETERMINED CONSTITUENTS +5 NA+X AS NA +5 NIC34-COI AS HOUS ND # NOT DETECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA MULESHOE VALLEY, NEVADA

30 NOV 81

TABLE #1-23

	TOWNSHIP RANGE-SECT	SPCE	43 44	STATION NAME	TEMP Deg c	SP. COND	PH	DISS. SOLIDS	SILICA (SIO2)	CALCIUM (CA)	MAGNESIUM (MG)	SOPIUM (NA)
1	23N/55E-26B	çə	11-20	COLD SPRING	9.0	320	8.4	192	10	36	11	10
	23N/56E-1809	ďΕ	11-50		11.0	340	8.2	197	15	25	13	24
	23N/50E-360DC	3.7	11-93	MAPH SPR. POND	9.0	450	5.0	323	16	56	23	18
	22N/56E-21CC	3 P	11-30		6.3	39C	8.2				•••	
	21N/55E- 95D	3.7	11-30	DEADMAN CK.	6.3	270	8.4				••	
	21N/56E-16CD	5.7	11-50		2.0	270	8.5	208	7.1	45	8.5	7.7
	2 CN/ 55 = - 2683	SP	11-3C	PARREL SPAING	6.0	400	8.3					
	20N/57E- 6A	S a	11-50	SECK SPRING	7.0	410	8.1	263	9.3	59	6.7	18
	19N/54E-36DC	ST	11-00		7.0	320	8.4	122				
	17N/55E-32A	9.5	12-80		2.0	610	7.6	291	11	50	14	20
11		45	11-:0	CAY "TN. SELL	9.0	500	5.3	305	12	33	33	29
12	18N/55E- 23A	•€	11-90		9.0	375	7.7	263	50	44	6.8	19
	13N/55E-15CCA	S P	11-90	SULPHUR SEPING	5.0	5 5 C	8.2	372	25	59	17	28
14	18N/57E-15AC	ŠP	11-50		7.5	560	7.5					
	174/55E-18ACC	4.5	3 = 3.3		13.0	5 5 5	7.7	572	42	63	38	35

ID.	POTASSIUM (K)	CARBONATE (CC3)	BICARB. (HCC3)	CHLORIDE (CL)	SULFATE (SC4)	FLUORIDE (F)	NITRATE (N)	9089N (9)		MANGANESE (MN)	REMARKS	REFERENCE
1	.9	0	170	0.0	11	NO	1.1		86	14	•1	ERTEC 80
2	2.4	ò	196	14	16	, 2	3.9		64	80	*1	ERTEC 90
3	5.9	Ō	292	7.0	35	. 5	.1		87	N D	+1	ERTEC BO
Ĭ.												ERTEC BO
5												ERTEC 80
Á	1.0	3	199	6.0	7	. 2	. 6		86	N D	*1	ERTEC 80
ž	••											ERTEC 50
8	1.5	o	216	14	15	.1	.4		94	NO	•1	ERTEC 80
ě	•••											ERTEC 80
10	1.7	٥	218	15	36	.2	. 3		100	NO	•1	ERTEC 80
11	7.1	ŏ	222	28	36	. 7	ND		87	10.0		ERTEC 80
12	2.7	ă	144	15	30	. 1	5.1		100	ND		ERTEC BO
13	4.5	ă	240	32	50		1.0	••	77		•1	ERTEC 50
14								• •		•••	- •	ERTEC 50
15	9.0	0	195	47	164	.5	3.2				*1	ERTEC 80

NOTE: SAMPLES FOR WATE? QUALITY ANALYSIS COLLECTED BY ERTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN MG/L EXCEPT AS NOTED BELOW. DISSOLVED SOLIDS FOR ERTEC SAMPLES DETERMINED BY PESSIOUS MOVE EXAPORATION AT 180 DEGREE C. NEVADA LOCATIONS BASED ON MT. DIAGLO BASELIME. UTAN LOCATIONS BASED ON SALT LAKE BASELIME AND MERIDIAM. SPECIFIC CONDUCTANCE REPORTED IN MICROPHOS/CM AT 25 DEGREES C.

THE FOLLOWING CONSTITUENTS ARE REPORTED IN MICROGRAPS/LITER:
SORCH IRON MANGANESE

FOOT +1 NITRATE REPORTED AS N
MOTES:+2 NITRATE REPORTED AS NO3
=3 NITRITE + NITRATE REPORTED AS N
=4 OISSOLVED SOLIDS BY SUM OF DETERMINED CONSTITUENTS
+5 NA+K AS NA
+6 MCO3+CO3 AS MCO3
NO = NCT DETECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA **NEWARK VALLEY, NEVADA**

30 NOV 81

	TOWNSHIP RANGE-SECT	SRCE	MO YR	STATIO Name	N		TEMP Deg c	SP.	P		185.	SILICA (SDIS)	CALCIUM (CA)	MAGNESIUM (MG)	SODIUM (NA)
١ ١	2N/55E-19CDD	SP	6-30		CYN. SPR		10.0	260				49	33	5.8	24
	14/56E- 9DAA	SP	6-80		CHEN SPR	ING	13.0	625				50	64	12	79
3	18/55E-22ABD	₩E	6-80	SMITH	dell.		22.0	285	7.	3		69	24	7.3	27
	13/56E-12ADB	SP	6-80	WILD H	ORSE SPR	ING	11.5	480	6.	5		17	78	24	10
5	25/55E-2600A	SP	10-71	SAND S	PRING		30.0	609	8.0	0		•-	36	22	67
1 6	2\$/57E-28008	SP	6-80	SEEP S	PRING		14.0	690	6.	6		50	95	26	48
Į 7	35/53E- 7000	WE	10-71				19.5	477	8.	2			33	4.0	60
1 8	3\$/55E-29	WE	6-62				15.5	371	7.	7	298	83	42	2.8	60 30 17
9	3\$/56E-170CD	d€	10-71				17.0	416	8	4			44	17	17
10	35/57E-10AAB	5 P	6-80	PENOYE	R SPRING		15.0	238	6.	9		44	33	5.8	40
	POTASSIUM CAPEO		ICA93. (SULFATE (SC4)	FLUORIDE (F)	NITRA (N)		90RON (8)		MANGAN (MN)	ESE REMA	RKS	REF	ERENCE
,	5.6	3	139	18	24	. 6		. 5				+1		ERTEC	80
2	6.9	õ	288	48	72	1.0		. 3				+1		ERTEC	
1 3	6.2	ō	134	9.5	17	. 5		. 4				•2		ERTEC	
۱ 4	1.9	ò	307	6.7	44	. 2		. 7				+1		ERTEC	
5	•0	ō	357	5.0	25			••				•5			ENBURGH ETAL 74
۱ ،	4.0	ò	405	2.5	40	. 6		. 3				+2		ERTEC	
,	.0	Ŏ	132	24	76			••				•5			ENBURGH ETAL 74
8	11	ă	159	8.8	41	. 6		. 3	.0			+2,*	4		ENBURGH ETAL 74
9	.0	4	202	6.0	34							+5			HBURGH ETAL 74
10	3.4	ò	151	20	25	. 5	3	. 5				+1		ERTEC	

NOTE: SAMPLES FOR WATE? QUALITY ANALYSIS COLLECTED BY ERTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN MG/L EXCEPT AS MOTED BELOW. DISSOLVED SOLIDS FOR ERTEC SAMPLES DETERMINED BY PESIDUE -ON- EVAPORATION AT 180 DEGREE C. NEVADA LOCATIONS 385D ON MY. DIAQLO BASELINE. UTAN LOCATIONS BASED ON SALT LAKE GASELIME AND MERIDIAN. SPECIFIC CONDUCTANCE REPORTED IN MICROMMOS/CM AT 25 DEGREES C.

THE FOLLOAING COSTITUENTS ARE REPORTED IN MICROPANS/LITER:

DOPON NORI NORI NECROS

- FOOT +1 NITHATS REPORTED AS N NOTES: -2 NITHATE REPORTED AS NOS +3 NITHITS + NITHATE REPORTED AS N +4 DISSOLVED SOLLOS EY SUM OF DETERMINED CONSTITUENTS +5 NA+K AS NA +6 MCJ3+COZ AS MCC3 ND = NOT DETECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA PENOYER VALLEY, NEVADA

30 NOV 81

NU.	TOWNSHIP RANGE-SECT	SRC	E RO YR	STATION NAME	l		TEMP DEG C	SP. COND			ISS. OLIOS	\$1L1CA (\$102)	CALCIUM (CA)	MAGNESIUM (MG)	SODIUM (NA)
1	(C-25-16)18800	VE	9-62	GUYMAN	WELL		16.0	344	7.	. 6	204	31	24	12	27
2	(C-25-17)33DAB	WE	2-74	DESERT	EXPMTL.	RANGE	12.0	278			208	54	16	6.7	30
3	(C-25-17)33DAE	WE	11-79	DESERT	EXPMIL.	RANGE	14.0	170	8.	. 3		4.6	16	40	25
4	(C-26-17)10AA1	VE	6-60	USAF TE	ST WELL	-	23.0	330			236	60	21	4.9	36
5	(C-26-18)22CBE	\$ P	11-73	PINE SP	RING			897			559	64	110	28	41
6	(C-26-19) 3ABC	\$ P	11-79	MOUNTAI	N HOME	SPRING	9.0		7.	. 1		13	82	200	36
	(C-27-18)2708A		11-79	POTCH-I	M-PO SP	RING	9.0		7.	. 8		12	39	56	14
8	(C-27-18)35CCE	32	11-73	MILLOW	SPRING		11.5	1100	8.	. 2	641	48	100	41	61
	(C-28-16)26CCC				MINE		10.0	221	7,	. 5	1 30	11	59	4.4	8.4
10	(C-28-16)27CCC	\$ P	11-73	PINE GR	OVE SPR	ING	11.0	569	7	. 6	326	15	93	12	12
	(C-28-18)16CDE		11-73	VANCE S	PRING		14.0	545	8.	. 2	330	42	67	14	19
	(0-28-18)27004				N SPRIN		11.0	504	8.	. 4	325	36	51	4.7	55
	(C-29-16)16000				IOLLOW S	PR.	9.0	89	7.	. 3	94	13	16	18	8.0
	(C-29-18)14000						6.0	404	. 8.	. 4	377	40	75	15	34
15	(C-30-17)19000	\$7	11-79	SHEEP C	REEK		14.0		7,	. 6		37	69	64	20
19. NO.				CHLORIDE (CL)	SULFATE (SG4)	FLUORI (F)	PE NITE (N)	ATE	SORON (B)		MANGAI (MN)		ARK\$	REF	ERENCE
1	3.3	. 0	124	30	19			4.6	80			+2		STE	PHENS 76
2	6.1	0	138	5.9	13		- 5		120	180		+3,	*4	STE	PHENS 76
3	4.0	0	131	24	13		. 8	1.3		••		•3		ERT	EC 79
4	7.2	0	120	20	18			1.1				+1		ERT	EC BQ
5	5.3	0	334	110	37		.2	. 3	120	100		ND +3,	•4	STE	PHENS 76
6	5.0	0	342	73	211		٠2	. 4	••	••		+1			EC 79
7	5.0	0	259	34	. 11			1.9				+1			EC 79
8	1.0	0	257	180	81		.3	. 2	130	10.0		Nr +3,		STE	PHENS 76
9	1.0	0	108	14	9		.1	.1	30			ND +3,		STE	PHENS 76
10	1.3	0	329	18	11		•5	.1	50	10.0		ND #3,			PHENS 76
11	5.5	0	210	54	20			1.7	70	10.0	1	10.0 •3,			PHENS 76
12	5.3	8	535	34	15		-3	. 8	70	10.0		ND ±3,	-4		PHENS 76
13	5.0	.0	54	19	4		.1	.6				+1			EC 79
14	1.2	10	291	36	21		.3	ND	100	ND		180 -3,	•4		PHENS 76
15	5.0		224	34	17		• 5	-1				+1		ERT	EC 79

NOTE: SAMPLES FOR WATER QUALITY ANALYSIS COLLECTED BY ERTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN MG/L EXCEPT AS NOTED BELOW.
DISSOLVED SOLIDS FOR ERTEC SAMPLES DETERMINED BY RESIDUE -ON- EVAPORATION AT 180 DEGREE C.
NEVADA LOCATIONS BASED ON MT. DIABLO BASELINE. UTAM LOCATIONS BASED ON SALT LAKE BASELINE AND MERIDIAN.
SPECIFIC CONDUCTANCE REPORTED IN MICROMNOS/CM AT 25 DEGREES C.

THE FOLLOWING CONSTITUENTS ARE REPORTED IN MICROGRAMS/LITER: BORON IRON MANGANESE

FGOT *1 NITRATE REPORTED AS N
NOTES: *2 NITRATE REPORTED AS NO3
*3 NITRITE * NITRATE REPORTED AS N
*4 DISSOLVED SOLIDS BY SUM OF DETERMINED CONSTITUENTS
*5 NA*K AS NA
*6 MCO3*CO3 AS NCO3
NO = NOT DETECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA PINE VALLEY, UTAH

30 NOV 81

	TOWNSHIP RANGE-SECT	SRCE	PO YR	STATION NAME	TEMP DEG C	SP.	PH	DISS. SOLIDS	SILICA (SIOZ)	CALCIUM (CA)	MAGNESIUM (MG)	SOBIUM (NA)
1	15N/57E-33C08	SP	11-70	GREEN SPRING	17.0	488					,	
	14N/56E-14DDC	SP	11-70	BIG BULL SPRING	11.0	365				36	17	14
3	14N/57E-22AAA	SP	11-70	BIRCH SPRING	8.0	574				62	21	26
4	13N/55E- 9BDC	5.0	11-70	YOUNG FLORIO SPRING	13.0	344						
5	13N/562-323AC	5 P	6-67	BIG WARM SPRING	33.0	587	8.0	358		62	22	28
6	13.5N/55E-29DDD	SP	9-68	SIG LCUIE SPRING	14.0	464	7.7	355	95	56	11	23
7	12N/56E- 5AC	SP	10-71	LITTLE WARM SPR.		704	8.0		••	39	25	83
	12n/56E- 5CaD	SP	10-71		13.5	551	8.0			31	27	43
	12N/56E-13CCD	5.0	10-71			462	5.3			55	1.0	76
	12N/57E- 93CB	₫E	4-72	BULL CK #5	15.0	326	8.0			26	9.0	29
	11N/S6E-318CA	58	9-57	INDIAN SPAING	18.0	368	7.6	299		37	5.8	3.6
	11N/58E-32Bac	SP	13-71	PASTRONI SPRING	13.0	432	7.9			36	5.5	20
	11N/59E- 58A	ST	11-70	LITTLE CURRANT CK.	4.0	376				50	16	8.0
	11N/59E-158A	ST	4-69		9.5	550	7.9			25	12	12
	11N/59E-16BA	d E	7-68		11.0		8.0	359		51	_13	37
	10N/55E- 9AC	SP	9-68	IKE SPRING	15.0	405	7.7	270		4.6	2.5	34
	10N/57E-15ADD	4E	4-72		15.0	484	8.0			38	18	43
	10N/57a-32888	ΝE	8-67		16.0	429 799	7.7	566		36	15	31 32
	10N/53E- 98C 1DN/58E-17BD1	SP	10-71		13.0		8.0 7.5	387	30	84 80	41 32	14
21		#E	10-30	USAF TEST JELL	11.0	660 620	7.7	382	22	73	39	13
22	9N/56E-1/8DA	36	11-90	USAF TEST WELL Trapp spring well	11.0	611	8.5	302			25	46
23	94/37E~ 6DAB	AE.	10-71	TRAPP SPRING MELL	12.0	772	8.2	••		45	26	92
26	9N/57E-20CAB	WE.	2-67	GRAVEL RIDGE	13.5	501	7.7	387	83	31	25	43
25	9N/57E-34ADD	WE	4-72	ASSACT SINIS	,,,,,	50100	7.2			680	45	11000
26	9N/57E-35AAC	w.e	10-71		••	616	8.3			44	22	49
27	9N/57E-35BAD3	νĒ	3-72		15.0	411	8.1			33	18	28
28	9N/57E-35BAD4	WE	11-55				6.8	24300		2000	63	7200
29	8N/55E-15AAA	SP	11-65	NOPTH SPRING	35.0	694						
30	8N/55E-15ACD	SP	3-80	DIG SPRING	36.0	440	7.2	410	3.0	61	22	50
31	3N/56E- 2CBA	¥Ε	7-20	NEW WELL 44	14.0	310	7.6		7.3	14	15	40
32	3N/56E- 3ACB	₩ 8	10-71	NEW WELL #3	14.0	371	5.6			16	7.0	55
33	3N/56E-263AD	46	10-71			6680	9.0			6.0	1.0	1400
34	8N/57E- 7CA	₩Ē	10-71		**	699	9.0			2.0	NO	150
35	3N/57E-11009	5 9	3-80	PLUE EAGLE SPRING	29.0	628	7.0		2.7	43	25	32
36	38/57=-22000	WE	10-71			5 3 C	9.3			25	33	37
37	8N/57E+27AAC	4€	3-54				7.0			25	11	160
38	7N/55E-16DB	5 %	3-8C	CHIMNEY HAT SPRING	63.0	825	7.0		5.0	66	15	72
37	7N/55E-23CA	46	10-55		60.0		8.3			12	5.0	190
40	7N/S6E- 2DAS	₩E	11-54		109.0		9.0			7.0	6.0	1 90
41	7N/57E-23C@D	SP	13-71	THORN SPRING		636	7.8			57	33	35
+2	5N/54E-11AA	SP	10-71	STORM SPRING	36.5	1200					•-	
4.3	6N/54E-11DC	SP	8-67	COYOTE HOLE SPR.	45.0	1070					**	••
44	6N/54E-2390 S	SP	9-65	ABEL SPRING	46.0	1100	7.5	696	27	100	56	130
45	6N/SOE- SACC	4 €	3-50	OLD WELL #7	17.0	230			74	13	13	4.9
40	5N/56E-130AD	٩٤	16-71	NYALA JELL	13.5	374	8.5			53	10.0	41
47	5N/56E-249DC	5.7	10-71	FROY CANYON	11.0	362	7.9			36	15	16
48	6N/56=-27ACB	4 8	16-71 11-70		13.5	402	8.2			40 73	22 19	9.0 19
49	6N/57E- 13	3 P	11-70		11.5	525				73	1 4	1.5

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

SELECTED WATER QUALITY DATA RAILROAD VALLEY, NEVADA PAGE 1 OF 3

30 NOV 81

ID. NO.	POTASSIUM (K)	CARBONATE (CO3)	BICARB. (HCO3)		SULFATE (SC4)	FLUORIDE (F)	NITRATE (N)	BORON (B)		MANGANESE (MN)	REMARKS	REFERENCE
1		0						**				VAN DENBURGH ETAL 74
2		Ó	194	6.0	22				••			VAN DENBURGH ETAL 74
3	.0	0	272	24	38		••		••		*5	VAN DENBURGH ETAL 74
4		**						••				VAN DENBURGH ETAL 74
5	6.5	0	321	8.6	47	-6	ND					VAN DENBURGH ETAL 74
6	6.0	0	245	18	24	.3	1.1	••	20		• 2	VAN DENBUREN ETAL 74
7	.0	0	368	10.0	62				••		•5	VAN DENBURGH ETAL 74
8	.0	ō	272	8.0	48				••		+5	VAN DEMBURGH ETAL 74
9	-0	õ	196	18	34		••					VAN DENBURGH ETAL 74
10	0	0	148	12	5.5						+5	VAN DENBURGH ETAL 74
11	7.9	0	160	53	2.0		8.3	•-			• 2	VAN DENBURGH ETAL 74
12	•0	0	230	. 11	19				•-		+5	VAN DENBURGH ETAL 74
13	.0	0	235	4.0				•-			*5	VAN DENBURGH ETAL 74
14	.0	0	106	6.0	14					••	•5	VAN DENBURGH ETAL 74
16	0	ŭ	232 177	14	36	-:	18				*2.*5	VAN DENBURGH ETAL 74
17	2.0	ď	252	18 11	26	.3	8.7				+2	VAN DENBURGH ETAL 74
18	3.9	9	193	15	40 38						+5	VAN DENBURGH ETAL 74
19	3.7	. 9	489	10.0	38		4.2				+2	VAN DENBURGH ETAL 74
20	1.4	119	363	11	38						+5 +1	VAN DENBURGH ETAL 74
21	2.0	115	366	10.0	36	.1	2.2	••				ERTEC 80
25	1.0	''7	262	16	68	::	2.1				•5	ERTEC BO
23	:0	á	356	18	90						•5	VAN DENBURGH ETAL 74 Van Denburgh etal 74
24	6.7	9	215	25	64	•••		180	20		-	
25	.0	ă	51	17000	1800		1.6	180	20	ND		VAN DEMBURGN ETAL 74 Van demburgn etal 74
26	.ŏ	ŏ	223	17000	30						•5	VAN DENBURGH ETAL 74 Van Denburgh etal 74
27	.ŏ	š	231	7.0	21			••			•5	VAN DENBURGH ETAL 74
28		3	29	14000	1380					••	45	VAN DENBURGH ETAL 74
29	::			14000	1,500				••	•••	-,	VAN DENBURGH ETAL 74
30	10	0	381	5.9	63	1.1	ND	400	40	ND	+4	ERTEC SO
31	8.5	ŏ	171	10.0	25	.7	1.0	700			*1	ERTEC BO
32		š	173	10.0	20		1.0				45	VAN DENBURGH ETAL 74
33	.0	30	527	1700	76			••	••		+5	VAN DENBURGH ETAL 76
34	.0	23	262	19	5.8			••			• 5	VAN DENBURGH ETAL 74
35	5.8	Ď	410	9.9	37	. 9	1.0				•1	ERTEC 80
36	. 3	ō	303	11	16						• 5	VAN DENBURGH ETAL 74
37	.0	ō	439	16	77				••		45	VAN DEMBURGH ETAL 74
38	15	ō	434		47	1.7	.1				41	ERTEC 80
39		0	410	16	99						*5	VAN DENBURGH ETAL 74
40	.0	43	293	68	50						+5	VAN DENBURGH ETAL 74
41	.0	0	375	14	25						+5	VAN DENBURGH ETAL 74
42				17			••					VAN DENBURGH ETAL 74
43		••		9.8		••			•-			VAN DEMBURGH ETAL 74
44	22	0	673	15	51	2.7	. 2		20	NO	•2	VAN DENBURGH ETAL 74
45	5.8	າ	175	5.5	25	2.3	. 2	290	20		•1	ERTEC BO
46		5	155	8.0	40						•5	VAN DEMBURGM ETAL 74
47	.0	o	190	5.0	5.5				••		•5	VAN DENBURGH ETRL 74
4.8	.0	ວ	237	3.0	11				••		• 5	VAN DENBURGH ETAL 74
49	.0	າ	:00	6.0	43						• 5	VAN DENBURGH ETAL 74

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA RAILROAD VALLEY, NEVADA PAGE 2 OF 3

30 NOV 81

	TOWNSHIP RANGE - SECT	SPCE	E MO YR	STATION	ı		TEMP Deg C	SP. COND	PH	DIS:		LICA LICA	CALCIUM (CA)	MAGNESIUM (MG)	SOBIUM (AA)
50	SN/55E-3288D	JE.	10-71				16.0	426	9.0			••	44	5.0	35
51		₫E	10-71				15.5	256	7.7				25	9.0	52
52		₩E	10-71				10.0	454	8.0				44	22	18
53		ST	11-70	HOCPER	CREEK		8.0	371					48	15	8.0
54	4N/55E-19DA 4N/55E-25D	WE	10-71					289	8.0				27	3.0	130
55 56		ST	11-70 9-80				9.5	508					62	18	21
57		4 E	9-30		ST WELL		21.5				33	65	39	8.1	85
5a		ST	3-50		. 21 4677		21.8	1110	8.9		37	66	39	9.4	86
59		w E	9-48				14.0	565	7.4		10	86	6.0	.8	120
60		3.6	3-72					787	8.6				6.3	ND	160
61	3N/55E-27DB	SP	11-70	9041 41			7.0	277	•••				•••		
62		ME	10-71	SUNRIS	WELL		19.0	556	8.3				31	3.0	69
63		SP	8-67				14.5	427	7.5		75	34	62	1.8	26
64		SP	8-67	PYPAMIC	SPRING		20.0	415	7.9		67	23	43	4.9	40
65	1N/53E- 3DAC	WE	10-71		DE WELL		••	831	8.1				45	4.0	130
66	1N/53E- 7ADC	≽ E	3-80				14.0	138C	10.0			93	2.3	.1	700
67	1N/53E-278BA	₫ Ĉ	3-72	LAST ST	AND WELL		20.5	722	8.2	!	••	ND	11	ND	150
48		غ⊌	9-65		wELL		17.0	273	7.8	١ ;	207		17	1.8	39
69		SP	7-93				90.3	157	6.0	1	61	45	17	3.7	16
70	15/53E-2380A	a E	3-72				21.0	335	3.1				14	1.0	65
71	25/51E-21DA	SP	3-67	CEDAR S	POING		25.0	533	7.7	' !	70		62	5.9	47
	POTASSIUM CARBO			CHLORIDE (CL)	SULFATE (504)	FLUORIDE (F)	NITRA (N)		BORO4 (8)	IRON MA	ING AN ESE IN)	REMA	RKS	REF	ERENCE
50	.0	0	133	30	52				••			*5		V4W 5	ENBURGH ETAL 74
51		ō	147	5.0	18										ENDURGH ETAL 74
52		ā	242	9.0	28										ENBURGH ETAL 74
53	.0	0	215	5.0	15							45			ENBURGH ETAL 74
54		0	128	9.0	21							+5		VAN D	ENBURGH ETAL 74
55		3	2 - 2	9.0	62							•5		VAN D	EMBURGH ETAL 74
56			269	38	51	. 5	1	.1				-1		ERTEC	80
57			272	38	52	.8	1	.1				•1		ERTEC	
5.5		4.9	615											ERTEC	
59		0	207	20	59	12		. 3		40	10.0				ENBURGH ETAL 74
63		7	261	22	.0										EMBURGH ETAL 74
61	••										••				EMBURGH ETAL 74
62		0	219	19	71							*5			ENBURGH ETAL 74
63))	216	11	27			. 8	120	20	10.0				ENBURGH ETAL 74
			204	9.9	31 97			-4	120	40		. 5			ENBURGH ETAL 74
64		•										*5		VAN D	ENBURGH ETAL 74
65	. C	0	273	61			•	•				- 4			
65 56	. C 5. 7	5 7 8	293	39C	475	3.5		. 5		ND		•1		ERTEC	50
65 66 67	5.7 • 0	5 7 E	293 283	39C 2C	475 87	5.5 ND		ND				*5		VAN D	50 Enburgh etal 74
65 66 67 68	5.7 .0 5.0	5 T &	293 281 148	39C 2C 7.2	475 87 7	5.5 ND 1.4				500	10.0	*5		VAN D	80 ENBURGH ETAL 74 ENBURGH ETAL 74
65 66 67 68 69	. C 5.7 . 2 5.0 1.4	5 T 8 0 0	293 283 145 92	39C 2C 7.2 6.3	475 87 7 11	5.5 ND 1.4		ND .3		500	10.0	•5		VAN D VAN D ERTEC	SO ENBURGH ETAL 74 ENBURGH ETAL 74 80
65 66 67 68	. C 5.7 . 2 5.0 1.4	5 T &	293 281 148	39C 2C 7.2	475 87 7	5.5 ND 1.4		ND . 3		500	10.0	•5		VAN D VAN D ERTEC VAN D	80 ENBURGH ETAL 74 ENBURGH ETAL 74

NOTE: SAMPLES FOR "ATER JUALITY ANALYSIS COLLECTED BY ERTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN MG/L EXCEPT AS NOTED BELOW.
DISSOLVED SOLIDS FOR ERTEC SAMPLES DETERMINED BY RESIDUE "ON" EVAPORATION AT 180 DEGREE C.
NEVADA LOCATIONS BASED CN "AT. DIABLO EASELINE. UTAN LOCATIONS BASED ON SALT LAKE BASELINE AND MERIDIAN.
SPECIFIC CONDUCTANCE REPORTED IN MICROMHOS/CM AT 25 DEGREES C.

THE FOLLOWING CONSTITUENTS ARE REPORTED IN MICHOGRAMS/LITER: BORON IRON MANGANESE

FOOT *1 NITRATE REPORTED AS N
NOTES:*2 NITRATE REPORTED AS NOT
*3 NITRITE * VITRATE REPORTED AS N
*4 LISSOLVED SOLIDS BY SUM OF DETERMINED CONSTITUENTS
*5 NA*K AS NA
*6 MCG3*CC2 AS NCC3
NO = NCT DITECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA RAILROAD VALLEY, NEVADA PAGE 3 OF 3

30 NOV 81

	TOWNSHIP RANGE-SECT	SACE	MO YR	STATION NAME			TEMP DEG C	SP. COND	,		[5 5 . DL IDS	(SICA)	CALCIUM (CA)	MAGNESIUM (MG)	SODIUM (NA)
1	7M/43E-25BCA	SP	9-80	BAXTER	SPRING		13.0	415	7.	4	299	23	42	27	15
2	7M/44E-36C1	WE							-	•		57	39	5.4	35
3	5N/45E-21CB	SP	9-80	ANTELOP	E SPRING	i	16.0	155	7.	. 5	183	61	4.8	3.6	28
4	4M/44E- BAB2	₩E	-73	WELL #1	1				8.	. 2	268		38	4.0	31
5	4H/44E- 8AB3	WE	-73	WELL #1	2				8.	.1	270		40	4.0	32
•	4N/44E- 8BA	uE		WELL #7					-	••		60	43	2.4	
	POTASSIUM CAR (K) (CO			CHLORIDE	SULFATE (SO4)	FLUORIDE (F)	HITRAT		DOROM (B)	IROM (FE)	RANGA (RN)	MESE REMA	RKS	REF	ERENCE
1	2.3	0	216	8.9	56	. 5		. Z		23		8.0 -1			C 80
2	5.8		154	14	37	.1	₹.		••			• 2			H 62
3	7.3	0	8.8	11	18	. 5		. 3		36		7.0 •1			C 80
Ă	8.0	ŏ	137	14	39	.5		ió		170		ND +2			
š	8.0	14	98	14	38			12		NO		ND -2			.UTIL. 80
Ã	7.4		137	13	34	.;		11		79					.UTIL. 80
•	7.4			13	34	• 3	1	1 1				+2		EAR	N 62

NOTE: SAMPLES FOR WATER QUALITY ANALYSIS COLLECTED BY ERTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN M6/L EXCEPT AS NOTED BELOW. DISSOLVED SOLIDS FOR ERTEC SAMPLES DETERMINED BY RESIDUE -ON- EVAPORATION AT 180 DEGREE C. NEVAPA LOCATIONS BASED ON MT. DIABLO BASELINE. UTAN LOCATIONS BASED ON SALT LAKE BASELINE AND MERIDIAN. SPECIFIC CONDUCTANCE REPORTED IN MICROPMOS/CM AT 25 DEGREES C.

THE FOLLOWING CONSTITUENTS ARE REPORTED IN MICROGRAMS/LITER:

FOOT *1 NITRATE REPORTED AS N
NOTES:*2 NITRATE REPORTED AS NOS
*3 NITRITE * NITRATE REPORTED AS N
*4 DISSOLVED SOLIDS BY SUM OF DETERMINED CONSTITUENTS
*5 MA*K AS NA
*6 NCO3*CO3 AS HCO3
ND * NOT DETECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA RALSTON VALLEY, NEVADA

30 NOV 81

	TOWNSHIP RANGE-SECT	SRCE	#0 Y	STATION NAME	•			SP. COND	,			LICA	CALCIUM (A3)	MAGNESIUM (MG)	RUIGO2 (AM)
1	4N/51E-29CA	0 46	7-90	JOES WI	LL		22.0	458	7.	7	••				
2	3N/50E-13CA	2 48	4-8	USAF TS	ST WELL		17.5	340	7.	.7	245	51	33	5.8	26
3	3N/51E-19CD	AS SP	7+30	UNKN S	PRING		23.0	217	7.	9	127	41	5.1	.4	37
	3.5N/50E-33	09 SP	7-80	BLACK S	CVIPA		23.0	46C	5.	2	237	18	2.4	1,2	84
5	2N/5DE-23CB	6 52	7-6	REVEIL	E PILL		27.3	227	Ž.	2	159	41	4.7	. 9	36
. 5	1N/50E- 4AA	72 0	7-50	COEN C	FEEK		21.0	150	7.	6	120	44	13	2.8	14
ID.	POTASSIUM CA	REDNATE 9	ICARS.	CHLOCIDE	SULFATE	FLLORIDE	NITRAT	E	90 PON	IRON	MANGANESE				
NO.	(K) (C	(15)	4001)	(CF)	(\$24)	(F)	(N)		(8)	(FE)	CHNI	BEMAR	K S	4646	PENCE
1						**	_	-						ERTEC	90
2	6.0		146	12	31	• 2	4.	2		N D	N.D.	•1		ERTEC	
3	•3	0	104	5.4	11	. 3		3				•1		ERTEC	50
	•6	ō	175	12	36	• 7		0						ERTEC	60
Ś	. 3	á	104	5.1	11	• 2		3				•1		ERTEC	
6	2.5	•	79	4.2	10	• 7		10						ERTEC	80

NOTE: SAMPLES FOR WATER QUALITY ANALYSIS COLLECTED BY ERTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN MG/L EXCEPT AS NOTED BELOW. GISSCLVED SOLIDS FOR EFFEC SAMPLES OFFEMINED BY RESIDUE FOR EVAPORATION AT 180 DEGREE C. NEVADA LOCATIONS FASED ON MT. DIABLO BASELINE. UTAN LOCATIONS BASED ON SALT LAKE BASELINE AND MERIDIAN. SPECIFIC CONDUCTANCE PERDATED IN MICROMADOS/CM AT 25 DEGREES C.

THE FOLLOWING CONSTITUENTS ARE REPORTED IN MICROGRAMS/LITER:

FOOT *1 NITRATE PEPCATED AS N NOTES:*2 NITRATE REPORTED AS NOT *3 NITRITE * NITRATE REPORTED AS N *4 DISSOLVED SCLIDS BY SU* OF DETERMINED CONSTITUENTS *5 NA*K AS NA *6 NCO3*CO3 AS NCO3 NO * NCT DETECTED

Ertec The Earth Richnology Corporation

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA REVEILLE VALLEY, NEVADA

30 NOV 81

B-119

	TOWNSHIP RANGE-SECT	SRCE	MC YR	STATION NAME	TEMP DEG C	SP. COND	PH	DISS. SOLIDS	SILICA (SIO2)	CALCIUM	MAGNESIUM (MG)	MUIGOZ (AN)
1	(C- 9- 7)358	SP	7-64		19.0	421	7.6	264	14	50	8.0	28
2	(C- 9- 8)150BC	S P	3-65	WINTER SPRINGS-W	.0	352	7.4	352	12	52	9.1	55
	(C- 9- 8)18ADB	SP	2-73	SIMPSON SPRINGS-N		1100	7.4	606	15	85	16	120
	(C- 9- 5)18ADC	SP	2-73			1200	7.4	674	13	90	18	140
5	(C-10- 7) 5C	5 P	8-64		18.5	492	7.9	286	8.4	40	16	43
6		S P	7-64	CHERRY SPRINGS-W		664	7.6	379	13	60	25	44
7		SP	7-54	CHERRY SPRINGS-E	10.3	566	7.8	318	11	55	22	33
	(C-10- 7)17A	SP	8-64		15.0	588	7.9	345	16	61	13	44
		SP	7-64			746	7.4	428	16	69	27	53
	(C-10- 8) 20BA	5 P	7-64		9.5	698	7.6	409	16	70	27	44
	(C-10- 8) 3ABB	SP	9-65	INDIAN SPRINGS-W	16.0	492	8.4	246	5.6	36	19	33
	(C-10- 8) 4ABB	SP.	7-64		10.5	732	7.7	426	13	77	28	44
	(C-10- 9)21ACC	₩E	8-71		4.0.0	1360	8.2		37	82	36	140
	(C-12- 8) 989A	WE	5-63		18.0	964	7.2	5 30	41	68	27	80
	(C-12- 9) 398C	SP	7-64			3220	7.4	1810	16	530	110	270
	(C-13- 5)24ACB	WE	4-74			736	7.6		59	52	36	350
17	(C-13- 6)129CB	4E	3-80 3-80	***************************************		3790			37	99	65	
19		HE		CHRISTIANSEN WINDFIL	10.0		7.1		55	120	30	
	(C-13- 7) 9CBC	el E	3-50	DESERT MOUNTAIN	16.0	920 973	7.8	432	:5	23	22	110 33
	(C-14- 5)35CDC	36	7-73 9-61		15.0	3520	7.5		14	110	35	33
	(C-14- 5)35DAA	46	7-52		16.0	3320	7.4					••
	(C-14- 5)36CCC	WE.	3-59		•••	2430	7.5	1430	32	130	94	250
	(C-14- 6) 78AB	#E	3-83		12.5	3100	7.4	1430	38	150	53	270
	(C-14- 6) 7DDA	#E	3-30		12.5	3500	7.4		38	140	22	
	(C-14- 7)20CCC	øE	4-63		17.0	234C	7.0	1330	23	82	51	320
	(C-14- 8)1000B	SP	3-79	SAKER HOT SPRING			7	3982	. 6	210	150	580
	(C-14- 6)25CCC	WE	4-63	SANER HO! SPEZING	15.0	2100	6.8	1200	17	54	36	320
	(C-15- 4) 10CAD	WE	8-63		.,	105C	9.2	704	16	84	33	75
	(C-15- 5) 200C	wE	6-68		15.3	143C	8.0	, , , ,		110	61	76
	(C-15- 5)1480A	WE	3-60		.,	556	7.6	439	19	65	24	45
	(C-15- 5)223C2	iÈ	3-80			675	7.8	737	15	37	23	
	(C-15- 5)270CC	ű.E	10-59		21.0	357	7.5		17	19	19	38
34	(C-15- 5)29DDA	dE	3-80			720	7.6		24	37	26	
35	(C-15- 5)330CB	46	8-52		22.0	513	7.5	308	26	31	20	42
3 6	(C-15- 6) 4AAB	a č	10-75	DELTA WELL #1				2262	36	170	21	440
37	(C-15- 6)19CAC	4 5	2-61		15.0	762	7.8	445	29	30	2.5	95
38	(C-15- 7)13CAA	48	3-30		16.0	125C	7.5		23	37	5.0	
39	(C-15- 7)33acD	4 E	6-42		15.0	513	7.4	300	23	15	7.5	76
40	(C-15- 7)36639	de	2-61		16.0	524	8.2	330	38	30	13	62
41		# E	3-63		14.0	1590	7.4	919	22	12	5.4	320
	(C-15- 8)2333A	4 É	7-61		13.0	1410	8.4	803	24	6.4	5.8	280
	(C-15- 3)27CCC	4 6	3-63		12.0	275	7.7	521	19	8.0	1.9	150
44		H٤	5-61		17.0	1290	7.7	849	40	100	45	89
45		# E	7-77		16.5	1400		••				••
	(C-16- 4)30DDB	W E	3-63		13.0	1350	7.5	802	18	110	46	99
	(C-16- 5)13CAA	4 E	7-51		50.0	349	7.7	209	29	32	14	5.5
	(C-16- 5)17030	# 5	10-40		20.0	322	7.5	202	24	24	18	19
4.7	(C-16- 5)19CBD	₩Ē	0-61		20.0	325	7.9	208	25	26	18	19

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

SELECTED WATER QUALITY DATA SEVIER DESERT, UTAH PAGE 1 OF 3

30 NOV 81

	POTASSIUM (K)	CARBONATE (CO3)	BICARB. (HCO3)	CHLORIDE	SULFATE (SC4)	FLUORIDE (F)	NITRATE (N)	BORON (B)		MANGANESE (MN)	REMARKS	REFERENCE
1	2.9	9	129	33	17	.1	.3	60	110	10.0	* 2	STEPHENS ET AL 78
2	1.1	9	205	67	26	-4	2.1	70	ND	20	*ż	STEPHENS ET AL 78
3	2.3	9	309	130	34	. 4	. 2		30	ND	+3,+4	STEPHENS ET AL 78
4	2.0	o o	334	200	44	.3	. 5		30	ND	+3,+4	STEPHENS ET AL 78
5	1.1	3	212	54	14	.2	.1	80	80	20	• ?	STEPHENS ET AL 78
6	4.3	9	304	60	26	. 4	. 3	80	90	10.0	+2	STEPHENS ET AL 78
7	. 9	a	256	47	22	ND	1.0	20	80	10.0	• 2	STEPHENS ET AL 78
8	-6	0	256	58	19	• 2	1.1	60	820	90	• 2	STEPHENS ET AL 78
9	1.2	0	330	75	28	-4	.1	70	70	30	*5	STEPHENS ET AL 78
10	.7	9	345	5.5	25	. 3	.2	70	120	50	+2	STEPHENS ET AL 78
11		8	192	40	19		. 2				* Ž	STEPHENS ET AL 78
12	1.2	э	360	54	39	.3	. 2	60	110	20	• 2	STEPHENS ET AL 78
13	5.0	1	185	290	71	.3	3.0	200	200	ND	*2	STEPHENS ET AL 78
14	.0)	194	180	36		.7	80			+2,+5	NOWER ET AL 64
15	4.3	0	193	920	152	.1	1.1	190			42,44	STEPHENS ET AL 78
16	18	2	194	120	57	.6	10				+1	BLM 80
17		0	160	46C	275	1.1	•0				*1	ERTEC SO
18		0	140	650	537	1.0	1.5				*1	ERTEC 80
19	14	0	140	120	44	. ?	. 8				•1	ERTEC BO
20	1.8	Ó	201	110	130		46				*Ž	USGS 79
21				210							-	HOWER ET AL 64
22	••											MOWER ET AL 64
23		9	245	560	250		2.3				+2,+4,+5	NOWER ET AL 64
24		Ċ	260	460	356	1.7					•••	ERTEC BO
25		5	240	66C	335	1.5	.0				*1	ERTEC BO
26	.0	0	> 0	540	268						*2,*4,*5	MONER ET AL 64
27	160	ND	127	470	764	2.7					+1	BL# 80
28	•0	3	6.5	45C	283		2.7				*2,*4,*5	MOWER ET AL 64
29	5.3	2	222	150	108	. 9	. 9	100	790		*2,*4	MOWER ET AL 64
30		0	196	330	76							USGS 79
31	5.0	1	225	65	8.5	- 5	.7	140	50	ND	+2,+4	HOWER ET AL 64
32		0	140	65	37	• 3	ND					ERTEC 80
33	•0	9	177	2.5	24		ND				+5	US\$\$ 79
34		9	120	65	40	• 2	. 1				•1	ERTEC 50
35	2.3	9	152	52	56	• 3	3.1	70	ND		+2,+4	HOWER ET AL 64
36	.1	9	150	870	402	1.2	. 2				•1	9LM 80
37	.0)	202	113	62		. 3				*5	MOWER ET AL 64
38		0	120	160	206	1.2					•	ERTEC BO
39	.0	0	125	59	5.5		ND				*4,*5	MOWER ET AL 64
40	.0	3	153	58	55		- 4		ND		*2,*4,*5	MOWER ET AL 64
41	.0	3	144	290	199		1.2				+2,+4,+5	MOWER ET AL 64
42	.0	6	166	250	149		. 7		ND		+2,+4,+5	MOWER ET AL 64
43	.0	C	217	100	100		. 3				+2,+4,+5	MOWER ET AL 64
44		0	212	230	129		8.9		ND		+2,+4	MOWER ET AL 64
45		0									-	HOWER ET AL 64
46	.0	ō	279	170	159		56				+2,+4,+5	MOWER ET AL 64
47	.0	Ś	179	20	10			260	ND		*2, *5	MOWER ET AL 64
4.5	1.5	ō	154	24	13	.2			.0		*2,*4	MOVER ET AL 64
49	1.7	Ó	153	24	13	• 5		80	ND		+2,+4	MOHER ET AL 64

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

SELECTED WATER QUALITY DATA SEVIER DESERT, UTAH PAGE 2 OF 3

30 NOV 81

	TOUNSHIP RANGE-SECT	SPCE	MO YR	STATION NAME			EG C	SP.	PH	DISS. SOLIDS	SILICA (SIO2)	CALCIUM (A3)	MAGHESIUM (GF)	SODIUM (NA)
5.3	(C-16- 5)19CBD	WE	7-51				20.0	322	7.7					
	(C-16- 5)19CBD	Ē	5-62				19.5	33C	7.4	195	24	24	17	19
	(C-16- 6)348AD	a E	9-62					329	7.2	196	29	22	15	19
	(C-16- 7) 2CBC	WE	4-55				13.0	495	8.0	299	25	24	18	55
	(C-16- 7) 4A89	JE	4-55				12.0	464	8.0	279	22	16	11	62
	(C-16- 7)1JB40	₩E.	11-01				19.0	442	8.0	256	24	19	9.2	59
	(C-16- 7)102AD	* E	11-62				19.0	434	7.5	265	23	17	6.3	65
	(C-16- 7)1089a	WE	11-:2					420	7.6	242	13	23	9.7	51
	(C-16- 7)13CAD	**	4-55					438	7.5	254	25	28	20	31
	(C-16- 7)13CDC	w£	4-57				12.0	404	7.8	225	8.3	22	14	40
60	(C-16- 7)23DAD	4.5	4-55				21.0	524	7.8	492	32	11	5.4	150
61	(C-16- 7)243CA	4 E	6-62				23.0	439	7.9	269	27	16	8.0	67
52	(C-16- 7)3389A	at	2-52				17.0	594	7.8	348	22	8.4	4.4	110
	(C-16- 8)12DDD	# E	6-52				27.0	501	7.9	363	35	11	1.9	120
	(C-16- 8)15DCD	# 5	6-59					••	8.5	422	7.8	ND	20	14
	(C-16- 8)213CB	₩Ē.	12-47	TOPAZ C	IAD METT		24.0	252C	••	1480	41	28 35	11	510 610
66	(C-16- 5)21038	45	11-57				29.0	3110	3.0	1760	41	35	13	810
	POTASSIUM CARSON		ICARB.				NITRA' (N)	TE 9		(RON MANGAI (FE) (MN)	HESE REMA	RKS	REF	ERENCE
50		٥	155	22				-		••			MOWER	ET AL 64
51	.0	õ	155	22	11			. 1			+2,4	4		ET AL 64
52	. o	ā	168	17	7	.3		. 3	••		+2/4			ET AL 64
53		ā	132	58	54									
54		_						. 1			+2,+			ET AL 44
55		o	132	52	51			.1		••	+2,4	4	MOWER	ET AL 64
	.0	0	137	52 42	51 41	••	:	1			+2,4	4 5	MOWER MOWER	ET AL 64 ET AL 64
56			137	52 42 39	51 41 41	.5	:	. 5		••	02,0 04,0	4 5 4,+5	MOWER MOWER MOWER	ET AL 64 ET AL 64 ET AL 64
57	.0	0	137 142 125	52 42 39 46	51 41 41 38	••	:	. 5 . 4	.1	••	#2,# #4,# #2,#	4 5 4,+5 4,+5	MOWER MOWER MOWER MOWER	ET AL 64 ET AL 64 ET AL 64 ET AL 64
57 58	•0	0	137 142 125 132	52 42 39 46 45	51 41 41 38 44	.5	1	5	.1	••	+2,4 +4,4 +2,4 +2,4	4 5 4,•5 4,•5	MOWER MOWER MOWER MOWER	ET AL 64 ET AL 64 ET AL 64 ET AL 64 ET AL 64
57 58 59	•0	0	137 142 125 132 119	52 42 39 46 43	51 41 41 38 44 37	.5	1	5 4 0	.1	••	+2,4 +2,4 +2,4 +2,4	4 5 4,•5 4,•5 4,•5 4,•5	ROWER ROWER ROWER ROWER ROWER ROWER	ET AL 64 ET AL 64 ET AL 64 ET AL 64 ET AL 64 ET AL 66
57 58 59 60	.0	0	137 142 125 132 119 192	52 42 39 46 45 44 110	51 41 41 38 44 37 82	.5	1	5 4 0 8 2	.1		+2,4 +2,4 +2,4 +2,4 +2,4	4 5 4,•5 4,•5 4,•5 4,•5	RDWOM RBWOM RBWOM RBWOM RBWOM RBWOW RBWOW RBWOW RBWOW RBWOW RBWOW	ET AL 64 ET AL 64 ET AL 64 ET AL 64 ET AL 64 ET AL 64
57 58 59 60 61	.0	0000000	137 142 125 132 119 192 149	52 42 39 46 45 44 110 40	51 41 41 38 44 37 82 38	.5	1.	.1 .5 .4 .0 .8	.1	 	#2,4 #4,6 #2,6 #2,6 #2,6 #2,6 #2,6	4 5 4,*5 4,*5 4,*5 4,*5	MOWER	ET AL 64 ET AL 64 ET AL 64 ET AL 64 ET AL 64 ET AL 64 ET AL 64
57 58 59 60 61 62	.0	00000000	137 142 125 132 119 192 149 165	52 42 39 46 43 44 110 40	51 41 41 38 44 37 82 38 51	.5	1	5 .4 .0 .8 .2	.1		#2,4 #4,6 #2,6 #2,6 #2,6 #2,6 #2,6	4 5 4,05 4,05 4,05 4,05 4	MOWER	ET AL 64 ET AL 66 ET AL 64 ET AL 64 ET AL 64 ET AL 64 ET AL 64 ET AL 64
57 58 59 60 61 62 63	.0 .0 .0 .0	000000000	137 142 125 132 119 192 149 165 210	52 42 39 46 43 44 110 40 66 57	51 41 41 38 44 37 82 38 51 39	.5	1	5 .4 .0 .8 .2	.1		#2,4 #2,4 #2,4 #2,4 #2,4 #2,4 #2,4	4 5 4, • 5 4, • 5 4, • 5 4 5 4, • 5 5	MOWER MOWER MOWER MOWER MOWER MOWER MOWER MOWER MOWER	ET AL 64 ET AL 64
57 58 59 60 61 62 63	.0 .0 .0 .0 .0	0000000004	137 142 125 132 119 192 149 165 210 228	52 42 39 46 43 44 110 40 66 57	51 41 41 38 44 37 82 38 51 39	.5	1	5 .4 .0 .8 .2 .10	.1		e2,e e2,e e2,e e2,e e2,e e2,e e2,e e2,e	4 5 4,05 4,05 4,05 4,05 4 5 4,05 5 4,05	MOWER MOWER MOWER MOWER MOWER MOWER MOWER MOWER MOWER MOWER	ET AL 66 ET AL 66
57 58 59 60 61 62 63	.0 .0 .0 .0	000000000	137 142 125 132 119 192 149 165 210	52 42 39 46 43 44 110 40 66 57	51 41 41 38 44 37 82 38 51 39	.5	1	5 .4 .0 .8 .2	.1		#2,4 #2,4 #2,4 #2,4 #2,4 #2,4 #2,4	4,05 4,05 4,05 4,05 4,05 4,05 4,05	POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER	ET AL 64 ET AL 64

NOTE: SAMPLES FOR WATER QUALITY ANALYSIS COLLECTED BY ERTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN MG/L EXCEPT AS NOTED BELOW.
DISSOLVED SOLIDS FOR ERTEC SAMPLES DETERMINED BY RESIDUE -ON- EVAPORATION AT 180 DEGREE C.
NEVADA LOCATIONS 24SED ON MT. DIABLO BASELINE. UTAM LOCATIONS BASED ON SALT LAKE BASELINE AND MERIDIAM.
SPECIFIC CONDUCTANCE REPORTED IN MICROPHOSYCM AT 25 DEGREES C.

THE FOLLOWING CONSTITUENTS APE REPORTED IN MICACGRAMS/LITER: 309CM IRON "ANGANESE

FOOT -1 VITRATE REPORTED AS N
NOTES; -2 NITRATE REPORTED AS NOS
-3 NITRITE + VITRATE REPORTED AS N
+4 DISSOLVED SOLIDS BY SUM OF DETERMINED CONSTITUENTS
-5 NA+K AS NA
+6 MC03-C03 AS MC03
ND = NOT DETECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA SEVIER DESERT, UTAH PAGE 3 OF 3

30 NOV 81

	TOWNSHIP RANGE-SECT	ZACE	PO Y#	STATION Name	TEMP DEG C	SP.	PH	DISS. SOLIDS	SILICA (SIOZ)	CALCIUM (CA)	MAGNESIUM (MG)	SOPIUM (NA)
	(C-12-17)34BBD		7-79		45.0				• •	-		
	(C-12-17)3408A	ME	7-79	HOWELL RANCH	13.0 15.0	580 1150	7.9	402	36	47 74	29	77 120
	(C-12-18) 908	\$7	8-79	GRANITE CREEK	14.0	62	7.8 7.7	709 44	25		.41	
	(C-12-18)11BAA	\$1	8-79	COTTONWOOD CREEK	15.5	220			12	7.7	1.5	4,1
	(C-13-18)13ACC	WE	7-79	COLLONGOOD CREEK	17.0	150	8.7	505	22 26	25 15	5.3	17
i		WE	10-49	PARTOUN SCH.WELL	17.0	897	7.6	115 541	20	48	4.0	10.0 110
	(C-13-18) 28CDD	¥E.	7-79	PAN: UUN SCH. BECL	25.0	420	6.3	201	43	22	23 19	45
	(C-13-18)28DA	WE	12-64	FREDS WELL	27.0	339	7.7	248	• • • • • • • • • • • • • • • • • • • •	62	22	28
	(C-13-18)3GAB	SP	8-79	LIME SPRING	14.0	320	7.0	318	19	39	13	27
	(C-13-18)35C	WE	10-49	NATHAN HALE WELL	14.0	489	7.8	308	17	35	6.6	27
	(C-14-18) 3CDC	WE	7-79	NATHAN HALE RANCH	14.0	390	6.2	301	35	32	50	42
	(C-14-18) 4808	WE	7-79	441114 1146 AMAGA	13.0	540	7.7	413	23	55	30	37
	(C-14-18) 4CDD	WE	7-79		20.0	310	8.5	198	18	26	12	25
	(C-14-18)17AAA	WE	7-79	HOWELL RANCH	13.0	145	8.2	204	21	33	9.2	20
	(C-14-18)2280	SP	7-79	HOTEL ANNUA	13.0	960	7.5	765	47	88	47	110
	(C-15-17) 8BAA	WE	-52		1310		'::	1960	7.	84	8.0	580
	(C-15-19)318C	SP	7-79	WARM SPRINGS	26.0	520	8.1	251	29	51	18	29
	(C-16-18)22CAB	SP	8-79	TWIN SPRING	20.0	520	6.8	436	21	61	30	60
19		W.E	7-72	101/1 01/11/10	16.0	428	7.3	236	16	33	14	34
	(C-17-19) 4ADD	WE	7-73		16.0	428	7.3	228		34	1,9	
	(C-17-19) 4ADD	VĒ	7-74		15.5	425		•••		,-	117	••
	(C-17-19) 4ADD	WE	7-75		17.0	375					•	
	(C-17-19) 4ADD	WE	7-74		13.0	460	7.4	261	15	39	15	37
	(C-17-19) 4ADD	WE	9-78		16.0	450	,					
	(C-17-19) 4ADD	WE	7-79		17.0	460	8.0	250				
	(C-18-18)16ABB	SP	10-64		19.0	688	7.6	412		63	28	57
	(C-18-18)16CAA	SP	8-79	KNOLL SPRINGS SOUTH	18.0	470	7.4	779	25	59	27	49
	(C-18-19)29DDD2	WE	10-57	J.D.HILL WELL	23.0	327		186		źá	9.0	28
29	(C-19-19)34ABD	WE	7-79		16.0	24C	8.1	188	22	29	7,2	20
30	(C-19-19)35CDD	WE	7-79		11.0	370		306	31	49	22	23
31	(C-20-19) 6BCC	WE	11-64		13.0	359	7.4			38	14	17
32	(C-20-19) 6CBC	WE	8-79		15.0	260	8.1	203	16	37	15	13
33	(C-20-19) 7880	WE	11-54	SORENSON WELL		330	7.4	196		36	13	14
34	(C-20-19)148	w.e	11-27	QUATE WELL				240		47	19	16
35	(C-20-19)15BBD	¥ E	8-79		16.0	320	7.7	254	23	51	13	25
36	(C-20-19)21ADD	W÷	8-79		13.0	335	7.7	233	17	36	13	21
37	(C-20-19)30ABC	WE	7-79		14.0	290	6.8	218	27	46	8.8	12
38	(C-21-17) BDCB	ΨĒ	8-79		14.0	430	7.4	437	30	35	33	ŠÕ
39	(C-21-18)17ADD	WE	8-79	8-MILE WELL	14.0	770	7.1	490	1.2	40	50	34
	17N/70E- 9A	ST	8-79	SMITH CREEK	13.0	160	7.6	131	12	31	4.2	4.7
	15H/70E- 1	\$T	8-79	HENDRYS CREEK	15.5	250	7.8	187	17	35	6.3	4.7
42	11m/62E- 48B	₩E	7-79	GONDER RANCH	10.5	300		292	34	43	17	30

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

SELECTED WATER QUALITY DATA SNAKE VALLEY, NEVADA PAGE 1 OF 2

30 NOV 81

ķ.

	POTASSIUM (K)	CARBONATE (CO3)	SICARS.		SULFATE (SC4)	FLLOPIDE (F)	MITRATE (N)	SORON (B)		MANSANESE (MN)	REMARKS	REFERENCE
1	4.3	9	1 a 3	75	50	. 5	.5				*1/*4	ERTEC 79
2		0		250	111	. 2	6.4				*1/*4	ERTEC 79
3		0		1.5	6	.1	.1				+1/+4	ERTEC 79
4	1.2	9		11	9	. 5	ND				+4	ERTEC 70
5		,		3.0	12		.1				*1,*4	ERTEC 79
5	.0		254	110	70	1.2	ND	500			45	HOOD ET AL 65
7		0		12	21	. 5	.6				•1	ERTEC 79
8	•0		23	49	36			550			+5	HOOD ET AL 65
9	1.9	2	141	52	64	.7	ND				*4	ERTEC 79
10			58	20	250	.6	. 4	30			•2	HOOD ET AL 65
11	3.5	3	233	21	28	. 4	. 3				41,44	ERTEC 79
12	2.9	0	272	65	42	.2	. 5				41/44	ERTEC 79
1 5	1.7	C	165	17	17	.1	. 8				*1.*4	ERTEC 79
14	1.3	9	112	42	19	ND					+1/+4	ERTEC 79
15	13	3	335	100	191	1.5					+6	ERTEC 79
16			212	29C	589						+5	HOOD ET AL 65
17	3.7	a	133	24	26	. 5	. 2				*1.*4	ERTEC 79
13		j	297	50	5 9		. 6				*1.*4	ERTEC 79
19	1.7	Š		27	13						*4	USGS 79
20		ō		25	13						*6	USGS 79
21												USGS 79
22												US63 79
23		2	213	27	13	. 2		70	10.0	NO.	*4	USGS 79
24											- •	USSS 79
25											•4	USGS 79
26		0	217	52	58				**		*2,*5	HOOD ET AL 65
27		ő		230	247						+1/+6	ERTEC 79
28				13	10				••		*2,*5	HOOD ET AL 65
		3		32	19	.1	. 6		••		*1,*6	ERTEC 79
30		5		31	28				•			ERTEC 79
31		á		31	16	• • • • • • • • • • • • • • • • • • • •	• 1		••		•5	HOOD ET AL 65
32		3		21	16	. 1	1.0		•••		•	ERTEC 79
33				17	16	• 1					+2,+5	HOOD ET AL 65
34				15	15	•••	,				+2,+5	HOOD ET AL 63
35		,		31	14		• •					ERTEC 79
36					32						*1,*4	ERTEC 79
37		ō		20		. 2					*1,*4	
		:		22	16	.•1					+1++4	ERTEC 79
38		ā		65	:16				••		*1/*4	ERTEC 79
39		يَ	156	19	170	1.6					*1.*4	ERTEC 79
40		3		3.0	14						*4	ERTEC 79
41		3		3.5	3						*4	ERTEC 79
42	2.2	1	120	25	4 C	. 2	. 1	••			-1,-4	ERTEC 79

MOTE: SAMPLES FOR WATER QUALITY ANALYSIS COLLECTED BY ERTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN MG/L EXCEPT AS NOTED BELOW. DISSOLVED SOLIDS, FOR ERTEC SAMPLES DETERPINED BY RESIDUE -ON- EVAPORATION AT 180 DEGREE C. NEVADA LOCATIONS 39550 ON MT. DIABLO BASELINE. UTAN LOCATIONS BASED ON SALT LAKE BASELINE AND MERIDIAN. SPECIFIC CONDUCTANCE REPORTED IN MICROPHOS/CM AT 25 DEGREES C.

THE FOLLOWING CONSTITUENTS ARE REPORTED IN NICROGRAMS/LITER: BORON IRON MANGANESE

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA SNAKE VALLEY, NEVADA PAGE 2 OF 2

30 NOV 81

	TOWNSHIP RANGE-SECT	SRCE	#O YR	STATION NAME		TEMP DES C	SF.	PH	DISS. SOLIDS	\$1LIC# (\$102)	CALCIUM (CA)	MAGNESIUM (NG)	SODIUM (NA)
1	23N/60E-31A1	Wê	6-50			32.0	309				24	7.4	34
	19N/67E-13AA	JΕ	6-3C			12.0	460	7.5	268	34	39	17	35
	18N/66E-25A1	4 E	6-50			12.0	112				10.0	3.6	12
	18N/67E- 1C1	w E	7-64 6-80	4C COY CRE		12.0	975	8.1		3.0	47 2.1	26 1.7	120 2.3
	17N/66E- 3AB	5 T	6-90	TAFT CREEK	: K	6.0	••	7.5	3	5.0	2.0	7.7	1.0
	16N/65E-13A1	SP	7-66	1871 4.554		13.0	287	7.8			38	7.8	15
ð	16N/66E-343A	ST	0-20	CLEAVE CRE	EK	12.0		9.0	35	8.0	12	3.2	1.7
	16N/67E- 3A2	a E	6-23			16.0	575	7.3	285	20	56 58	27 30	20 110
	16N/67E-270	36	7-64 6-80	GASTAIN SPE		16.0 11.0	911	8.0 8.2	147	8.0	53	7.0	3.7
	15N/65E-21AC 15N/68E- 8B	SP	7-64	- WO INTA SE	4140	12.0	626	8.0			65	33	21
	148/656-2441	a è	7-54			12.0	499	7.8			4.8	26	22
	14N/67E-1600	34	6-30			13.0		9.2	236	5.2	26	10	43
	13N/67E-15D1	₩E	6-20			19.0	161				17	3.3	14
	13N/67E-13D	WE	7-44			12.0 14.0	395 750	8.2 3.5			39 61	22 14	12 82
	13N/67E-33D 13N/67E-35D1	dê dê	7-64 7-54			23.0	158	3.3	••		18	1.0	16
	134/636-1709	ST	5-30	PINE CFEEK		10.0		7.6	14	9.0	4.6	2.6	2.5
	13N/68E-32DE	5 T	5-90	WILLIAMS C	SEEK	6.5		7.6	9	10.0	3.2	1.7	2.0
	12N/67E- ZA	#€	6-30			33.0		3.0	71	22	20	2.7	9.2
	11N/66E-350B	# Ē	6-30			12.0		8.3 9.2	160 144	15 11	30 47	21 10	7.8 3.5
	114/67E- 18C	3# <2	05-6 03-3	WALLOW SPR	T N.S	11.0		3.2	137	5.0	48	8.8	1.4
25	9N/57E-27A1	SP	7-54	#4665# 3. A.		21.0	236	7,7	,	7	24	6.3	18
26	94/634-30481	#E	9-80	USAF TEST 1	FLL	15.0			193	57	24	15	9.6
27	9N/63E-3CA61	∉E	9-50	USAF TEST	4ELL	15.0		••	193	57	24	15	9.6
10.	POTASSIUM CARBO	MATE B	TCARR. (MI SOTAL SUL		UDSTAF MITS		GRON I	ROM MANGA	MECE			
40.			HC03)						(FE) (MN)	REMA	RKS		RENCE
1	••	0	141	16	22								
5	2.9	-	200		56							RUSI	ET AL 65
3		0		13		•3	.7			+1		ERT	C 80
		Ö	63	5.0	3		.7	••		+1		ERT	C BO
4		Ö	63	5.0 85	148		<u>.7</u>		••	•1		ERT(Rusi Rusi	C 80 FET AL 45 FET AL 45
5	.4	Ö	63	5.0 85 2.8	3	•1	.7 ND	••	••	•1 		ERT(Rusi Rusi Ertí	C 80 F ET AL 45 F ET AL 45 FC 80
		0	63 264	5.0 85 2.8 1.0 ND	148		<u>.7</u>		••	•1 		ERT(RUS) RUS) ERT(ERT)	C 80 FET AL 45 FET AL 45
5 6 7 8	 -6 -4	0	172	5.0 85 2.8 1.0 ND 4.7	3 148 2	.1 .2 	.7 ND .1	••		+1		ERTI RUSI RUSI ERTI ERTI RUSI ERTI	E & & O F & ET AL & 5 F & ET AL & 5 F & B O F & B O F & ET AL & 5 F & & G O
5 6 7 8 9	.6 .4 .4 1.5	0	63 264 172 360	5.0 85 2.8 1.0 ND 4.7 .9	12	.1 .2 	.7 ND .1		00 00 00 00 00 00	+1		ERT(RUS) RUS ERT(ERT) ERT(ERT(E & & O F & ET AL & 5 F & ET AL & 5 F & B O F & ET AL & 5 F & B O F & B O F & B O
5 6 7 8 9	.4 .4 .4 1.3	00110100	63 264 172 360 521	5.0 85 2.8 1.0 ND 4.7 .9 14 ND -	148 2 12 6	.1 .2 ND	.7 ND .1			+1		EÑT! RUS! RUS! ERT! RUS! ERT! RUS!	C 80 F ET AL 65 I ET AL 65 IC 80 IC 80 I ET AL 65 IC 80 I ET AL 65
5 6 7 8 9 10 11	.6 .4 .4 1.5	00 10 00	172 360 521	5.0 85 2.8 1.0 ND 4.7 .9 14 ND . 23	148 2 12 6 36 5	.1 .2 .2 .2 .2 .2	.7 ND .1		00 00 00 00 00 00	+1		EÑT RUSI RUSI ERTI RUSI ERTI RUSI ERTI	C 80 45 AL 45 1 ET AL 45
5 6 7 8 9	.4 1.5	00110100	63 264 172 360 521	5.0 85 2.8 1.0 ND 4.7 .9 14 ND -	148 2 12 6	.1 .2 ND	.7 ND .1 ND .1			+1		EÑT! RUS! ERT! ERT! RUS! ERT! RUS!	EC 80 FET AL 65 IC 80 IC 80 I ET AL 65 IC 80 I ET AL 65 IC 80 I ET AL 65
5 6 7 8 9 10 11 12 13 14	14 14 14 14 113 15 15 15 17 17 18	00 00 00 00	360 321 360 321 360 321	5.0 85 2.8 1.0 ND 4.7 14 ND 23 2.2 23 19 25	3 148 2 12 6 36 5 26 63 46	.1 .2 ND .2	.7 ND .1 ND .1			*1		BĀTI RUS BRTI BRTI BRTI BRTI BRSI BRUS BRUS	C 80 45 AL 45 1 ET AL 45
5 6 7 8 9 10 11 12 13 14 15	 2	00 00 00 00 0	360 3264 360 321 346 220 176 84	5.0 85 2.8 1.0 ND 4.7 9 14 ND 23 2.2 23 19 25 7.0	3 148 2 12 6 36 5 26 63 46 7		.7 ND .1 .1			+1		EÑTI RUSI ERTI ERTI ERTI ERTI RUSI ERUSI ERUSI	C 80 AL 45 I ET AL 45 IC 80 IC
5 6 7 8 9 10 11 12 13 14 15 16	 .4 .4 1.5 .5 2.6	00 00 00 00	63 264 172 360 321 346 220 176 84 204	5.0 85 2.8 1.0 ND 4.7 14 ND 23 2.2 23 2.2 25 7.0 8.C	3 148 2 12 6 36 5 26 63 63 67 34	.1 .2 ND .2 ND	.7 		00 00 00 00 00 00 00 00 00 00 00 00 00	*1		ERTY RUSI RUSI ERTI RUSI ERTI RUSI ERTI RUSI ERTI RUSI	: C 80 ET AL 45 ET
5 6 7 8 9 10 11 12 13 14 15 16 17	 ,4 ,4 ,4 1.3 2.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	63 264 172 360 521 346 220 176 84 239	5.0 85 2.8 1.0 ND 4.7 9 14 ND - 23 2.2 23 19 25 7.0 8.0	148 148 2 12 6 36 5 26 63 66 7 34 52		.7 ND .1 ND .1 .3			+1		ENTI RUSI RUSI ERTI RUSI ERTI RUSI ERTI RUSI RUSI RUSI RUSI RUSI RUSI RUSI RUS	: C 80 1 ET AL 65
5 6 7 8 9 10 11 12 13 14 15 16 17 18	2.6	00 00 00 00	63 264 172 360 321 346 220 176 84 204	5.0 85 2.8 1.0 ND 4.7 9 14 ND - 23 2.2 23 25 7.0 8.0 8.0 8.5	148 2 12 4 36 5 26 63 46 7 35 25	.1 .2 .2 .2 .2 .2 .4	.7 		00 00 00 00 00 00 00 00 00 00 00 00 00	*1		E TI RUSI RUSI ERTI RUSI ERTI RUSI ERTI RUSI RUSI RUSI RUSI RUSI RUSI RUSI RUS	: C 80 1 ET AL 45 1 ET AL 45 1 ET AL 65
5 6 7 8 9 10 11 12 13 14 15 16 17	2.6	000000000000000000000000000000000000000	63 264 172 360 521 346 220 176 84 204 239 88	5.0 85 2.8 1.0 ND 4.7 9 14 ND - 23 2.2 23 19 25 7.0 8.0 8.0 3.5 1.8	148 148 2 12 6 36 5 26 63 66 7 34 52	1 . 2 . 2	.7 ND .1 ND .1 .3			*1		ENTI RUSI RUSI ERTI RUSI ERTI RUSI ERTI RUSI RUSI RUSI RUSI RUSI RUSI RUSI	: C 80 1 ET AL 65
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	2.6 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	360 521 360 521 346 220 176 84 204 239 85	5.0 85 2.8 1.0 ND 4.7 9 14 ND - 23 2.2 23 19 25 7.0 8.0 8.0 8.0 3.5 1.8	36 36 36 36 36 36 36 36 36 36 36 36 36 3	.1 .2 .8 .2 .7 .7 .7 .7 .7	.7 					ENTI RUSI RUSI ERTI RUSI ERTI RUSI ERTI RUSI RUSI ERTI RUSI RUSI RUSI ERTI ERTI ERTI	: C 80 1 ET AL 65
5 6 7 8 9 10 11 12 13 14 15 17 18 19 0 21 22	2.6 	000000000000000000000000000000000000000	363 264 	5.0 65 2.8 1.0 ND 4.7 9 14 ND . 23 23 19 25 7.0 8.0 80 3.5 1.8 1.2 2.6 5.4	148 2 12 6 36 55 26 63 66 7 34 52 52 6 26 63 64 7	.1 .2	.7 					ENTI RUSI RUSI ERTI RUSI ERTI RUSI ERTI RUSI ERTI ERTI ERTI ERTI ERTI ERTI	: C 80 : ET AL 65 : ET
5 6 7 8 9 10 11 12 13 14 15 17 18 19 02 12 23	2.6 	000000000000000000000000000000000000000	63 264 	5.0 85 2.8 1.0 ND 4.7 9 14 NB - 23 2.2 23 19 25 7.0 8.0 3.5 1.8 1.8 1.2 2.6 5.4	36 36 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 37 37 37 37 37 37 37 37 37 37 37 37	.1 .2 .2 .2 .3 .5 	.7 					ENTI RUSI RUSI ERTI RUSI ERTI RUSI RUSI RUSI RUSI RUSI RUSI RUSI RUS	: C 80 : ET AL 65 : ET AL 65 : ET AL 65 : C 80 : ET AL 65 : C 80 : ET AL 65 :
5 6 7 8 9 101 123 145 15 17 18 19 22 22 22 22 22 24	 	000000000000000000000000000000000000000	363 264 	5.0 85 2.8 1.0 ND 4.7 9 14 ND 23 23 19 25 7.0 8.0 3.5 1.8 1.2 2.6 3.4 1.5	36 36 52 63 66 73 66 73 67 73 67 74 75 75 75 75 75 75 75 75 75 75 75 75 75	.1 .2	.7 					ENTI RUSI RUSI ERTI RUSI ERTI RUSI ERTI RUSI ERTI RUSI ERTI ERTI ERTI ERTI ERTI	: C 80 : ET AL 65 : ET
5 6 7 8 9 10 11 12 13 14 15 17 18 19 02 12 23	2.6 	000000000000000000000000000000000000000	63 264 	5.0 85 2.8 1.0 ND 4.7 9 14 NB - 23 2.2 23 19 25 7.0 8.0 3.5 1.8 1.8 1.2 2.6 5.4	36 36 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 37 37 37 37 37 37 37 37 37 37 37 37	.1 .2 .2 .2 .3 .3 	.7 					ENTI RUSI RUSI ERTI RUSI ERTI RUSI ERTI RUSI ERTI ERTI ERTI ERTI ERTI ERTI ERTI ERT	: C 80 : ET AL 65 : ET AL 65 : ET AL 65 : C 80 : ET AL 65 : C 80 : ET AL 65 :

NOTE: SAMPLES FOR WATER QUALITY ANALYSIS COLLECTED BY ERFEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN MG/L EXCEPT AS NOTED BELOW. DISSOUVED SOLIDS FOR ERTEC SAMPLES DETERMINED BY RESIDUE MONE EVAPORATION AT 180 DEGREE C. NEVADA LOCATIONS BASED ON MT. DIABLO BASELINE. UTAN LOCATIONS BASED ON SALT LAKE BASELINE AND MERIDIAN. SPECIFIC CONDUCTANCE REPORTED IN MICROPHOSYCM AT 25 DEGREES C.

THE FOLLOWING CONSTITUENTS ARE REPORTED IN MICROGRAMS/LITER: BORON IRON MANGANESE

FOCT *1 MITRATE REPORTED AS N
NOTES:*2 MITRATE REPORTED AS NOS

*3 NITPITE * NITPATE REPORTED AS N

*4 DISSOLVED SOLIDS BY SUM OF DETERMINED COMSTITUENTS

*5 MA*K AS NA

*6 MCJ3*COS AS MCCJ3

NO = NGT OETECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE **BMO/AFRCE-MX**

SELECTED WATER QUALITY DATA SPRING VALLEY, NEVADA

30 NOV 81

À

	TOWNSHIP RANGE-SECT	SACE	PO YR	STATION NAME		T E MI D E G		Pi	DISS. M SOLID		CALCIUM (CA)	MAGNESIUR (MG)	SODIUR (MA)
	16N/63E-15DAC	¥Ε	6-80	ELY CITY	WELL	14					34 49	23 18	.11
	16N/63E-20A 16N/63E-29A9A	9.2 9.2	4-63 6-80	MURRY SPA	TNG	14.					36	23	3.5 4.0
	154/63E-16000	SP	6-80	LOWRY SPR		10.	.0 460	7.	2 -	- 11	91	5.1	8.1
	15H/64E- 508C	SP	6-30			11,					43	20	14
	15N/65E-13BDD 15N/65E-10D1	9.2 5.7	6-50 10-65	CAVE SPRI	NG		.C 420				48 32	23 18	7.1 11
	14N/63E-35A	SP	9-65	WILLOW CK	. SPRS.	12					25	14	7.8
		\$ T	5-79	WILLOW CA		12				7	28		.5
	14N/64E- 90	₩E	0-80			10.					37	22	7.9
	14N/64E-36A	WE	7-65			16					31	50	8.7
	13n/63E- 8 13n/63E-10a	5 P 5 P	5-79 5-79	MAHOGANY Martin Sp		13. 11		•••			5.4		3.0 1.4
	13N/64E- 2008	ME.	6-30		. K 1 M G	10				•	42	17	13
	13N/64E- 9D	₩Ē	7-65			16					39	28	5.5
	13N/64E-22C	w E	6-8C			10.					35	19	110
	13N/64E-22CBC	W.E	6-30	HORSECAMP		15					35	28	8.4
	13N/55E-10BAB 12N/53E- 1D1	5 P	6-30 10-65	ROSELUD S	PRING	7. 11					59 48	19 5.8	9.0 12
	12N/63E- 2	SP	5-79	S. WHITE R	CCK SPR.	12				6	32		1.3
1	12N/63E-123A	SP	1-81	JONES SPR		11.	.0 495			2 26	62	14	16
	12N/63E-358AB	SP	5-79	JONES SPA	ING	11.		•••			28		4.7
	12N/64E-29DCD	SP	6-80			10					49	8.3	10.0
	12m/65E-17D 12m/65E-17Dec	9 2 9 2	5-79 6-80	HORSECAMP			.0 .5 500				27 85	12	2.2 12
	11N/63E- 2	5.0	5-79	BULLWACKE			.0				32		5.1
7	11N/63E- 4A9A	SP	6-80		ANK SPRING						43	11	14
	11N/64E-12DCA	SP	6-50	LOWER SPE		16					53	13	9.9
29	11N/65E- 7	2.0	5-79	CATTLE CA	PP SPR.	10	.0	7,	6 30	3	25		1.8
	POTASSIUM CARBO	-		MI GRYRE SI	SEATE SELO								
			HC03) (CL) (S	(4) (7)	(N)		BORON (B)	IRON MAN	SAM ese) Remi	AKS	REFE	RENCE
1	2.5	• •	#C03) (7.6			.7	(8)			AKS	ERTE	c 10
ż	2.5	0	нса3) (204 232	7.6 1.3	14 9	.1 .2) 2:3	100	(FE) (MI	+1 +2	AKS	ER TE EAKI	C 90 N ET AL 6
ž	2.5 .7 .7	0 0	204 232 238	7.6 1.3 3.5	14 9	.1 .2 .1	, 2.5 .6	100	(fg) (mi	+1 +2 +1	AKS	ERTE EAKI ERTE	C 90 N ET AL 67 C 80
3	2.5 .7 .7	0 0	204 232 228 276	7.6 1.3 3.5 8.8	14 9 9 9	.1 .2 .1 .3	.7 2.5 .6 1.2	100	(FE) (MI	+1 +2	AKS	ERTE EAKI ERTE ERTE	C 90 N ET AL 61 C 80 C 80
3 4 5	2.5 .7 .7	0 0	#C03) { 204 232 228 296 235	7.6 1.3 3.5	14 9	.1 .2 .1 .3	.7 2.5 .6 1.2	100	(FE) (RM.	+1 +2 +1 +1	AKS	ERTE EAKI ERTE	C 90 N ET AL 61 C 80 C 80 C 80
234547	2.5 .7 .7 .8 1.7 1.0	000000000000000000000000000000000000000	#C03) (204 232 228 296 235 252 175	7.6 1.3 3.5 8.8 12	14 9 21 14 12 28	.1 .2 .1 .3 .1	.7 2.5 .6 1.2 1.3	100	(FE) (MM.	01 02 01 01 01 05	AKS	ERTE EAKI ERTE ERTE ERTE EAKI	C 30 N ET AL 61 C 80 C 80 C 80 C 80 N ET AL 61
2345478	2.5 .7 .7 .8 1.7 1.0	0 0 0 0 0 0 0	#CG3} (204 232 228 296 235 235 2175 143	7.6 1.3 3.5 8.8 12 12 4.8 4.6	14 9 9 21 14 12 28 15	.1 .2 .1 .3 .1	.7 2.5 .6 1.2 1.3	100	(FE) (MM.	o1 o2 o1 o1 o1 o1 o5 o5	irks	ERTE ERTE ERTE ERTE ERTE ERKI	C 90 N ET AL 6: C 80 C 80 C 80 C 80 N ET AL 6: N ET AL 6:
23454789	2.5 .7 .7 .8 1.7 1.0 .0	0 0 0 0 0 0 0	204 232 228 296 235 252 175 143 230	7.6 1.3 3.5 8.8 12 12 4.8 4.6 3.5	14 9 9 21 14 12 28 15 2	-1 -2 -1 -2	.7 2.5 .6 1.2 1.3	100	(FE) (MM.	PEM/	AKS	EARTE EARTE EARTE EARTE EARTE EARTE EARTE	C 90 N ET AL 61 C 80 C 80 C 80 C 80 N ET AL 61 N ET AL 61
234547890	2.5 .7 .7 .8 1.7 1.0 .0 .0 2.4	0 0 0 0 0 0 0	#C03) (204 232 228 296 235 252 175 143 230 216	7-6 1.3 3.5 8.8 12 12 4.8 4.6 3.5	14 9 9 21 14 12 28 15 21	.1 .2 .1 .3 .1	.7 2.5 .6 1.2 1.3	100	(FE) (MM.	o1 o2 o1 o1 o1 o1 o5 o5	AK\$	ERTE EAKI ERTE ERTE ERTE EAKI ERKI ERTE	C 80 N ET AL 6: C 80 C 80 C 80 ET AL 6: C 79 C 80
2345478901	2.5 .7 .7 .8 1.7 1.0 .0	***************************************	#C03} { 204 232 228 296 235 252 175 143 230 216 110	7.6 1.3 3.5 8.8 12 12 4.8 4.6 3.5	14 9 9 21 14 12 28 15 2	(N)	.7 2.5 .6 1.2 1.3 .3	100	(PE) (RM.	REM/ e1 e2 e1 e1 e1 e5 ND e1 e5	AKS	ERTE EAKI ERTE ERTE ERTE EAKI ERTE ERTE ERTE ERTE	C 90 N ET AL 62 C 80 C 80 C 80 C 80 C 80 C 80 M ET AL 62 C 79 C 80 M ET AL 62 C 79 C 80 C 8
234547890123	2.5 .7 .7 .8 1.7 1.0 .0 2.4 1.9 .0 2.8	* *************************************	#C03} (204 232 228 296 235 252 175 143 230 216 174 110 280	7.6 7.6 7.3 3.5 8.8 12 12 4.8 4.6 3.9 14 11 5.0 4.2	04) (P) 14 9 9 21 14 12 28 15 2 10 3	(H)	.7 2.5 1.2 1.3 .3 .3 .1 2.8	100	(PE) (AN.	e1 e2 e1 e1 e1 e5 e5 HD e1 e5 HD e1	rks	ERTE EAKI ERTE ERTE ERTE ERKI ERTE EAKI ERTE EAKI ERTE	C 90 N ET AL 61 C 80 C 80 C 80 N ET AL 61 C 79 C 80 N ET AL 61 C 79 C 79 C 79
2345678901234	2-5 -7 -7 -8 1-7 1-0 -0 2-4 1-9 -0 2-8 1-6	***************************************	#C03} (204 232 228 296 235 252 175 143 230 216 174 110 280 168	7.6 1.3 3.5 8.8 12 12 4.8 6.6 3.9 11 5.0 4.2 27	04) (F) 14 9 9 21 14 12 28 15 2 10 10 3 40	(#)	.7 2.5 -6 1.2 1.3 -3 -1 2.8 -6 -6 -7	100	(PE) (AM.	o1 o2 o1 o1 o1 o5 o5 o5 o5 NO o1 o5 NO o1 o1	neks	ERTE ERKI ERTE ERTE ERKI ERKI ERTE ERTE ERTE ERTE	C 80 N ET AL 6: C 80 C 80 C 80 C 80 C 80 N ET AL 6: C 79 N ET AL 6: C 79 C 79 C 79
23454789012345	2-5 -7 -7 -8 1-7 1-0 -0 2-4 1-9 -0 2-8 1-6 6-4	***************************************	#C03 } C 204 232 228 296 235 252 175 143 230 216 110 280 148 228	7.6 1.3 3.5 8.8 12 12 4.8 4.6 3.5 14 11 5.0 4.2 27	04) (F) 14 9 9 21 14 12 28 15 2 12 20 10 3 40 22	(#)	.7 2.5 .6 1.2 1.3 .3 .1 2.8	100	(PE) (AN.	REM/ 01 02 01 01 05 05 05 NO 01 01 05 NO 01 NO 01 01	RKS	ERTE ERTE ERTE ERTE ERTE ERTE ERTE ERTE	C 80 N ET AL 61 C 80 C 80 C 80 N ET AL 61 C 79 C 80 N ET AL 61 C 79 C 79 C 79 C 79 C 79
234547890123454	2-5 -7 -7 -8 1-7 1-0 -0 2-4 1-9 -0 2-8 1-6 6-4	***************************************	#C03} (204 232 228 296 235 252 175 143 230 216 174 110 280 168	7.6 1.3 3.5 8.8 12 12 4.8 6.6 3.9 11 5.0 4.2 27	04) (F) 14 9 9 21 14 12 28 15 2 10 10 3 40	(N)	.7 2.5 .6 1.2 1.3 .3 .3 .1 2.8	100	(PE) (AM.	REM/ 01 02 01 01 05 05 05 NO 01 01 05 NO 01 05	irks	ERTE ERKI ERTE ERTE ERKI ERKI ERTE ERTE ERTE ERTE	C 80 N ET AL 6: C 80 C 80 C 80 C 80 N ET AL 6: C 79 N ET AL 6: C 79 C 80 C 80 C 80 C 80
23456789012345678	2-5 -7 -7 -8 1-7 1-0 -0 2-4 1-9 -0 2-8 1-6 6-4 10-0	000000000000000000000000000000000000000	204 232 228 296 235 275 252 175 143 230 161 170 280 162 344 212 256	7.6 1.3 3.5 8.8 12 12 4.6 3.5 14 11 5.0 4.2 27 70.0 31 8.8	04) (F) 14 9 9 21 14 12 28 15 2 12 20 10 3 40 22 64 16 26	(H) .1 .2 .1 .3 .1 .23 .1 .24 .8 .2 .4	.7 2.5 1.2 1.3 .3 .3 .1 2.8 .7 6.6	100		e1 e2 e1 e1 e1 e5 ND e1 e5 ND e1 e5 ND e1 e5 e5 e5 e7 e1	irks	ENTE ENTE ENTE ENTE ENTE ENTE ENTE ENTE	C 80 AL 6: C 79 C 79 C 80 AL 6: C 80 C 8
234567890123456789	2.5 .7 .7 .8 1.7 1.0 .0 .0 2.4 1.9 2.8 1.6 6.4 .0	***************************************	204 232 228 296 235 252 175 143 230 216 230 216 230 24 24 24 24 24 24 24 24 24 24 24 24 24	7.6 1.3 3.5 8.8 12 12 4.6 4.6 3.9 14 11 5.0 4.2 27 10.0 3.8	04) (F) 14 9 7 21 14 12 28 15 22 10 30 40 22 64 16 26	(H) .1 .2 .1 .3 .1 .2 .3 .1 .2 .2 .4 .8 .2 .4	.7 2.5 .6 1.2 1.3 .3 .1 2.8 .7 4.6	100	(PD) (MM.	01 02 01 01 01 01 05 05 ND 01 ND 01 ND 01 05 01 01 01 01 01 01 01 01	irks	ERTE ERTE ERTE ERTE ERTE ERTE ERTE ERTE	C 80 AL 62 C 80 C 80 AL 62 AL 62 C 80 AL 62 C 79 C 80 AL 62 AL 62 C 80 AL 62 AL 62 C 80 AL 64
2345478901234547890	2.5 .7 .7 .8 1.0 .0 2.4 1.9 .0 2.8 1.4 6.4 .0 13.0	000000000000000000000000000000000000000	204 232 228 2296 235 252 175 143 230 216 170 280 216 110 280 228 242 256 183	7.6 1.3 3.5 8.8 12 12 4.8 4.6 3.5 14 11 5.0 4.2 27 10.0 31 8.8 11 4.2	04) (F) 14 9 9 21 14 12 28 15 2 20 10 3 40 22 64 16 26 25 10	(N)	.7 2.5 .6 1.2 1.3 .3 .1 2.8 .6 .7 4.6	100	(ft) (mi	01 02 01 01 01 01 05 ND 01 05 ND 01 05 ND 01 01 05 ND 01 01 05 ND 01	irks	EATE EATE EATE EATE EATE EATE EAKI EATE EAKI EATE EAKE EATE EATE EATE EATE EATE EATE	C 90 AL 67 C 80 C 80 C 80 M ET AL 67 C 79 C 80 C 80 M ET AL 67 C 79 C 80 M ET AL 67 C 79 C 80 M ET AL 67 C 80 C 80 AL 67 C 79 AL 67 C 79 C 79 C 80 AL 67 C 79 AL 67 C 79 AL 67 C 79 C 79 AL 67 C 79 C 79 AL 67 C 79 C
23454789012345478901	2.5 .7 .7 .8 1.7 1.0 .0 2.4 1.9 .0 2.8 1.6 6.4 .0 13.0	000000000000000000000000000000000000000	204 232 228 296 235 275 230 216 174 1174 1174 1174 1188 2280 2168 2256 1183 1283 1283	7.6 1.3 3.5 8.8 12 12 4.8 4.6 3.5 16 11 5.0 4.2 27 10.0 31 8.8 11 4.2 4.4	04) (F) 14 9 9 21 14 12 28 15 22 10 3 40 22 64 16 26 25 10	(H) .1 .2 .1 .3 .1 .2 .3 .1 .2 .2 .4 .8 .2 .4	.7 2.5 .6 1.2 1.3 .3 .1 2.8 .7 6.6 .7	100	(PD) (MM.	e1 e2 e1 e1 e1 e1 e5 e5 NO e1	irks	EATE EATE EATE EATE EATE EATE EATE EATE	C 80 N ET AL 67 C 80 C 80 C 80 N ET AL 67 C 79 C 79 C 80 N ET AL 67 C 80 N ET AL 67 C 80 C 8
234547890123454789012	2.5 .7 .7 .8 1.0 .0 2.4 1.9 .0 2.8 1.4 6.4 .0 10.0	000000000000000000000000000000000000000	204 232 228 2296 235 252 175 143 230 216 170 280 216 110 280 228 242 256 183	7.6 1.3 3.5 8.8 12 12 4.8 4.6 3.5 14 11 5.0 4.2 27 10.0 3.8 11 4.2 4.4 17 8.8	04) (F) 14 9 9 21 14 12 28 15 2 20 10 3 40 22 64 16 26 25 10	(N) .1 .2 .3 .1 .3 .1 .23 .48 .2 .4	.7 2.5 .6 1.2 1.3 .3 .1 2.8 .6 .7 4.6 .7 2.1	100	(/E) (MM	01 02 01 01 01 01 05 ND 01 05 ND 01 05 ND 01 01 05 ND 01 01 05 ND 01	irks	EATE EATE EATE EATE EATE EATE EAKI EATE EAKI EATE EAKE EATE EATE EATE EATE EATE EATE	C 90 AL 67 C 80 C 80 AL 67 AL 67 C 79 C 80 AL 67 C 80 AL 67 C 79 C 80 AL 67 C
2345478901234547890123	2.5 .7 .7 .8 1.7 1.0 .0 2.4 1.9 .0 2.8 1.6 6.4 .0 13.0	000000000000000000000000000000000000000	204 204 228 228 295 252 175 252 174 143 230 143 228 344 110 228 344 128 344 128 344 128 344 228 344 228 344 228 344 228 344 228 348 348 348 348 348 348 348 348 348 34	7.6 1.3 3.5 8.8 12 12 4.8 4.6 3.5 16 11 5.0 4.2 27 10.0 31 8.8 11 4.2 4.4	04) (F) 14 9 21 14 12 28 15 22 20 10 3 40 22 64 25 10 50 27	.1 .2 .3 .3	.7 2.5 .6 1.2 1.3 .3 .1 2.8 .7 6.6 .7	100	(/E) (MM	01 02 01 01 01 01 05 05 ND 01 05 ND 01 05 05 ND 01 05 05 ND 01 05 07	RKS	EATE EATE EATE EATE EATE EATE EATE EATE	C 80 NET AL 62 C 80 C 80 NET AL 62 C 80 NET AL 62 C 79 C 80 NET AL 62 C 79 C 80 NET AL 62 C 80 C 8
234547890123454789012345	2-5 -7 -7 -8 1.0 -0 2.4 1.9 -0 2.8 1.6 6.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	000000000000000000000000000000000000000	204 232 228 276 235 252 175 230 216 176 1176 1176 1280 148 248 248 248 248 248 256 183 180 223 180 223 236 236 237 230 246 247 258 258 258 258 258 258 258 258 258 258	7.6 1.3 7.6 1.3 7.5 8.8 12 12 4.8 4.6 3.5 14 11 5.0 0 31 8.8 11 4.2 2.7 10.0 31 8.8 11 4.2 4.4 17 8.6 8.8 7.9 14	04) (F) 14 9 9 21 14 12 28 15 12 20 10 3 40 22 64 16 26 25 10 50 27 12 13 18	.1 .2 .3 .1 .3	.7 2.5	100	(/E) (MM	01 02 01 01 01 05 05 05 05 01 05 01 05 01 05 01 05 01	irks	EATE EATE EATE EATE EATE EATE EATE EATE	C 80 AL 67 C 80 C 8
2345678901234567890123456	2.5 .7 .7 .8 1.7 1.0 .0 2.4 1.9 2.8 1.6 6.4 .0 1.0 1.3 .5 .0 1.3 .5 .0 1.3	000000000000000000000000000000000000000	204 204 232 228 228 235 252 275 175 143 236 170 280 168 228 242 253 242 253 242 253 242 253 242 253 242 253 253 254 255 275 275 275 275 275 275 275 275 275	7.6 1.3 3.5 8.8 12 12 4.8 4.6 3.9 14 11 5.0 4.2 7 70.0 3.8 11 4.2 4.4 17 8.6 8.8 7.9 19.7	04) (F) 14 9 7 11 14 12 28 15 22 10 30 40 22 64 16 25 19 27 11 18 34	.1 .2 .1 .3	.7 2.5 .6 1.3 1.3 1.3 2.8 .6 .6 .6 .6 .7 1.3 4.6 .6 .7 1.3	100	(/E) (MM	01 02 01 01 01 01 05 05 ND 01 05 ND 01 05 07	irks	EATE EATE EATE EATE EATE EATE EATE EATE	C 80 AL 62 C 80 C 8
234547890123454789012345	2-5 -7 -7 -8 1.0 -0 2.4 1.9 -0 2.8 1.6 6.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	000000000000000000000000000000000000000	204 232 228 276 235 252 175 230 216 176 1176 1176 1280 148 248 248 248 248 248 256 183 180 223 180 223 236 236 237 230 246 247 258 258 258 258 258 258 258 258 258 258	7.6 1.3 7.6 1.3 7.5 8.8 12 12 4.8 4.6 3.5 14 11 5.0 0 31 8.8 11 4.2 2.7 10.0 31 8.8 11 4.2 4.4 17 8.6 8.8 7.9 14	04) (F) 14 9 9 21 14 12 28 15 12 20 10 3 40 22 64 16 26 25 10 50 27 12 13 18	.1 .2 .3 .1 .3	.7 2.5	100	(/E) (MM	01 02 01 01 01 05 05 05 05 01 05 01 05 01 05 01 05 01	RKS	EATE EATE EATE EATE EATE EATE EATE EATE	C 90 AL 67 C 80 C 80 C 80 AL 67 C 79 C 80 AL 67 C 79 C 80 AL 67 C 80 AL 67 C 79 C 80 AL 67 C 80

NOTE; SAMPLES FOR MATER QUALITY ANALYSIS COLLECTED BY ERTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN MG/L EXCEPT AS NOTED BELOW. DISSOLVED SOLIDS FOR ERTEC SAMPLES DETERMINED BY RESIDUE -ON- EVAPORATION AT 180 DEGREE C. NEVADA LOCATIONS BASED ON MT. DIABLO BASELINE. UTAN LOCATIONS BASED ON SALT LAKE BASELINE AND MERIDIAN. SPECIFIC CONDUCTANCE REPORTED IN MICROMNOS/CM AT 25 DEGREES C.

THE FOLLOWING CONSTITUENTS ARE REPORTED IN MICROGRAMS/LITER: BORON IRON MANGANESE

FOOT *1 NITRATE REPORTED AS N
NOTES:=2 NITRATE REPORTED AS NO3
*3 NITRITE * NITPATE REPORTED AS N
*4 DISSOLVED SOLIDS BY SUM OF DETERMINED CONSTITUENTS
*5 NA*K AS NA
*6 NCO3*CO3 AS NCO3
ND = NOT DETECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA STEPTOE VALLEY, NEVADA

30 NOV 81

	TOWNSHIP RANGE-SECT	SAC	E MC YR	STATION NAME			EMP EG C	SP. COND	PH			ICA (2)	CALCIUM (CA)	MAGNESIUM (MG)	SOD IUM (NA)
1	5N/-5E-28CD	3 P	9-30	WARM 50	PINS		27.0	295	10.0		184	69	.5	. 2	63
2	5N/47E-139C	\$ 2	3-3C	POINT O	F ROCK		20.0	690	8.1						
3	5N/47c-26C	5 P	9-80	SIDEHIL	L SPPING		19.0	230	6.8		197	69	24	5.2	25
4	4N/46E-3508	š P	9-30	AND 265	ING		13.0	470	7.3		364	67	21	15	73
5	4N/47E-13AA	S P	:-:3	FOUR MI	ĹE		21.5	280	6.8						
٥	44/43E-17	3 P											23	2.1	36
7	2N/47E-14AC	50	7-57				29.0	1560	7.8		945	25			280
8	2N/47=-14AC	• SP	7-5C				21.0	1250			986	25	43	26	250
9	1N/47E-33A5	46	;-17		ANCH		18.0	320			274	72	23	2.7	48
	POTASSIUM CAR			CHLORIDE	SULFATE (SO4)	FLUORIDE (F)	NITE (N)	ATE	BORON (B)	IRON (FE)	MANGANESE (MN)	REMA	AKS	REF	ERENCE
1	5.5	0	134	10.0	15	.5		.5		15	ND	+1		EAT	EC 80
2															EC 80
3	5.5	0	130	10	15	.5		. 5		20	ND	•1			EC 80
4	8.0	ŏ	224	24	50	.7		.6		200		•1			EC 80
•												•			EC 50
	7.8	0	130	13	19	.5		2.4	ND			+2			IN 62
7	27		702	36	222	6.2		.7	610			• 2			IN 62
À	30	0	733	4.2	242	6.1		Nb		800	300				EC 80
ì	7.0	ŏ	146	18	37	1.0		1.4		600	10.0				EC 80

NOTE: SAMPLES FOR WATER QUALITY ANALYSIS COLLECTED BY ERTEC EXCEPT UMERE NOTED. ALL ANALYSIS REPORTED IN MG/L EXCEPT AS MOTED BELOW.
OISSOLVED SOLIDS FOR ERTEC SAMPLES DETERMINED BY RESIDUE -ON- EVAPORATION AT 180 DEGREE C.
NEVADA LOCATIONS 9ASED ON PT. DIABLO MASELINE. UTAN LOCATIONS BASED ON SALT LAKE BASELINE AND MERIDIAN.
SPECIFIC CONDUCTANCE REPORTED IN MICROPMOS/CM AT 25 DEGREES C.

THE FOLLOWING CONSTITUENTS ARE REPORTED IN MICROGRAMS/LITER: BORON IRON MANGANESE

FOOT *1 NITRATE REPORTED AS N
NOTES: *2 NITRATE REPORTED AS NO3
*3 NITRATE * HITRATE * PEPORTED AS N
*4 DISSOLVED SOLIDS BY SUM OF DETERMINED CONSTITUENTS
*5 NA*K AS NA
*6 NC33*C03 AS NC33
ND ** NOT DETECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA STONE CABIN VALLEY, NEVADA

30 NOV 81

	TOWNSHIP RANGE-SECT	SACE	MQ YR	STATIO	N		TEMP DEG C	SP. COMP			ISS. OLIDS	SIL		LCIUM CA)	MAGNESIUM (MG)	MUIGOZ (AM)
1	(C-15-13)19AEA	SP	8-79	TUCK S	PRING		17.0	1650		7.4			3.2	79	48	190
2	(C-15-14)2200D	₩E	8-79	WEST S	HAZEY		14.0			7.2	1620		36	17	100	3 50
3	(C-15-16)11A3D	WE	1-76	WELL 5	5			1270			716		24	33	35	160
4	(C-16-13)33ABB	SP	8-79	SINBAD	SPRINGS		13.0	690		7.3			11	58	21	4.6
5	(C-16-15)138A9	SP	9-74	STCYCS	SPRING		23.0	2400			1430		23	71	38	350
6	(C-16-15)26CAB	SP	3-79				25.0	1750		7.6			24	77	43	240
7	(C-16-15)348CD	WE	8-79	INDIAN	TRAIL W	ELL	15.0	3350		7.2			31	170	100	72
	(C-17-13) 48AA	SP	8-79	FILDHO	95E SPRI	NG	15.0	850		7.3			12	75	21	85
9	(C-17-15)10AA8	3 P	4-79	TULE S	PRING		27.0	2400		7.4	969		5.2	71	35	200
10	(C-17-15)10ACA	SP	8-79				28.0	1550		7.8			23	60	33	190
11	(C-17-15)15ABC	SP	2-79				28.0	1550		7.8			23	60	33	190
12	(C-17-15)17CA1	₽E	8-30	USAF T	EST WELL						1660		39	270	69	90
13	(C-17-15)17CA1	dė	9+50	USAF T	ST WELL						1665		39	270	69	90
14	(C-17-16)28D3D	SP	8-79	SKUNK	SPRING		29.0	2700		7.9			16	240	110	170
15	(C-19-14) SADC	SP	8-79	PAINTE	R SPRING	i	17.0	2300		7.9	**		17	72	15	98
16	(C-20-14) 6001	# E	8-80				20.0	1482		7.9	824		••	28	25	250
17	(C-20-14) 5001	46	8-50				19.0	1492		7.9	828		**	17	33	250
18	(C-22-14) 1C9A	4.5	1-76	I BEX a	ELL			1320			821		22	47	33	180
ID.	POTASSIUM CARB	ONATE 9	TCAPP. C	HLORIDE	SULFATE	FLUORIDE	WITRA	TE S	-0404	IRON	MANGA	NESE				
NO.	(K) (C03) (HCC3) ((L)	(\$04)	(F)	(N)		(8)	(FE)	(45)	A	EPARKS		# E F	ERENCE
i .		_				_		_								
1 1	3.0	0	140	390	. 83	.1		. 3	••			4				EC 79
Ş	20	9	236	930	186	. 6		•1	••				1			EC 79
3	9.0	9	132	240	130	• ?		. 2	310			•				PHENS 77
4	1.8	õ	200	6.1	26	1		•0				•				EC 79
	37	3	265	4 5 C	730	1.1		.1	610	30			3,04			PHENS 77
4 7	26)	2.2	37	19			.1		•-		•	•			EC 79
á	6.3	3	320	90	851	. 9		19				•	1			EC 79
9	1.2		323	110	39	• 5		ND	••							EC 79
10	21		520	280	530								1.04			5 79
11	20	.0	234	2 º C	314	1.3		. 3					1			EC 79
12	23	19	220	230	314	1.3		. 3				•				EC 79
13				100	350			. 2					1,44			EC EQ
13	11			100	910			-1					1,04			EC 90
	2.9	2	264	640	270	• ?		. 4				•	. 5			EC 79
15	2.8	2	280	130	36	. 5		40					_			EC 79
16	13	2	275	26C	112	1.5		. 5	••				1			EC 80
17 18	14	j	296	270	112	1.6		• 2					1			EC *0
'8	19	9	297	170	500	1.1		.5	340	ND		ND .	. 3		516	PHENS 77

NOTE: SAMPLES FOR WATER QUALITY ANALYSIS COLLECTED BY ERTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPOPTED IN MG/L EXCEPT AS NOTED BELOW.
DISSOLVED SOLIDS FOR ERTEC SAMPLES DETERMIND BY PESTOUS FOR EXAMPDRATION AT 18D DEGREE C.
NEVADA LOCATIONS SASED ON MT. DIABLO BASELINE. UTAN LOCATIONS BASED ON SALT LAKE BASELINE AND MERIDIAN.
SPECIFIC CORDUCTANCE REPORTED IN MICROPMOSYCM AT 25 DEGREES C. THE FOLLOWING CONSTITUENTS ARE REPORTED IN MICROGRAMS/LITER: BORON IRON MANSANESE

- FOOT +1 NITRATE PEPORTED AS N
 NOTES: *2 NITRATE PEPORTED AS NOT
 *3 NITRITE + NITRATE REPORTED AS N
 *4 DISSOLVED SOLIDS BY SUM OF DETERMINED CONSTITUENTS
 *5 NAME AS NA
 *6 NCO3+CO3 AS HCC3
 ND = NOT DETECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA TULE VALLEY, UTAH

30 NOV 81

2 (C-2-13) 29ACC	0. R	OWNSHIP Ange-sect	SÀCE	#0 YR	STATION NAME			TEMP Deg C	SP.	PH			(2013	CALCIUM (CA)	MAGNESIUM (NG)	SOD IU
3 (C-27-13) 9ABA WE 10-72 WINE DBAIN 15.0 402C 8.0 3240 24 650 190 10 5 (C-27-13) 9ABA S BP 10-72 WINE DBAIN 15.0 402C 8.0 3240 24 650 190 10 5 (C-27-13) 140C0 5P 9-63 MINE 15.0 402C 8.0 3240 24 650 190 10 5 (C-27-13) 140C0 5P 9-63 MINE 15.0 402C 8.0 3240 24 650 190 10 5 (C-27-13) 140C0 5P 9-63 MINE 15.0 402C 8.0 3240 24 650 190 10 5 (C-27-13) 140C0 5P 9-63 MINE 15.0 402C 8.0 3240 24 650 190 10 5 (C-27-14) 123CAA 8P 9-63 SQUAM 5PRING 16.0 11.0 8.0 1000 26 150 42 77 7 (C-27-14) 123CAA 8P 9-63 SQUAM 5PRING 15.0 14.0 8.0 1000 26 150 42 77 7 (C-27-14) 123CAA 8P 9-63 SQUAM 5PRING 16.0 11.0 8.0 1000 26 150 42 77 8 (C-27-14) 123CAA 8P 9-63 SQUAM 5PRING 15.0 14.0 70.0 7.8 342 30 46 19 48 90 (C-27-14) 123CAA 8P 150 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.	1 (c-24-13)34cca1	₩E	9-63					2730	7.2	!	1600	30	64	45	440
4 (C-27-13) 9ABB S SP 10-72 NINE DBAIN 15.0 4020 8.0 3240 24 650 190 10 5 (C-27-13) 1400 SP 9-63 NINE 13.0 2100 8.2 1650 17 220 81 8 8 6 (C-27-13) 1400 W 4-81 USAF TEST WELL 24.0 700 7.8 362 30 46 19 4 8 (C-27-14) 28001 W 4-81 USAF TEST WELL 25.0 710 7.5 357 34 48 20 49 (C-27-14) 28001 W 4-81 USAF TEST WELL 25.0 710 7.5 357 34 48 20 49 (C-27-14) 28001 W 4-81 USAF TEST WELL 25.0 715 7.6 359 32 30 46 19 4 6 (C-27-14) 28001 W 4-81 USAF TEST WELL 25.0 715 7.6 359 32 30 46 0 (C-27-14) 28001 W 4-81 USAF TEST WELL 25.0 705 7.9 340 35 48 20 4 (C-27-14) 28001 W 4-81 USAF TEST WELL 25.0 705 7.9 340 35 48 20 4 (C-27-14) 28001 W 4-81 USAF TEST WELL 25.0 705 7.9 340 35 48 20 4 (C-27-15) 11 ABA SP 9-62 AM WHA SPRINGS 19.5 624 7.9 340 13 67 29 2 3 (C-27-15) 11 ABA SP 9-62 AM WHA SPRINGS 19.5 624 7.9 340 13 67 29 2 3 (C-27-15) 11 ABA SP 9-62 AM WHA SPRINGS 19.5 624 7.9 340 13 67 29 2 3 (C-27-15) 11 ABA SP 9-62 AM WHA SPRINGS 17.0 410 7.6 113 32 47 1 1 4 (C-27-14) 13 ABB SP 8-63 AMTELORE SPRING 14.5 68 7.9 440 39 59 17 4 6 (C-28-14) 11 ABB W 6 0 7.3 AMTELORE SPRING 14.5 68 7.9 440 39 59 17 6 6 (C-28-14) 11 ABB W 6 0 7.3 AMTELORE SPRING 14.5 68 7.9 440 39 59 17 6 6 (C-28-14) 11 ABB W 6 0 7.3 AMTELORE SPRING 14.5 985 7.5 586 39 120 39 17 6 6 (C-28-15) 10 ABB SP 10-72 KILM SPRING 13.0 1940 7.7 1170 28 190 100 64 15 (C-29-13) 2040 SP 6-73 WILLDW SPRING 13.0 1940 7.7 1170 28 190 100 64 15 (C-29-13) 2040 SP 6-73 WILLDW SPRING 13.0 1940 7.7 1170 28 190 100 64 15 (C-29-13) 2040 SP 6-73 WILLDW SPRING 13.0 1940 7.7 1170 28 190 100 64 STEPMENS 7 10 C-29-13 2040 SP 6-73 WILLDW SPRING 13.0 1940 7.7 1170 28 190 100 64 STEPMENS 7 10 C-29-13 2040 SP 6-73 WILLDW SPRING 13.0 1940 7.7 1170 28 190 100 64 STEPMENS 7 10 C-29-13 2040 SP 6-73 WILLDW SPRING 13.0 190 100 AS 190 100 SP 7 100 SP	2 (C-26-13)22ACC	SP	9-63	CRYSTAL	SPRING			158	7.3		99	11	18	2.9	9.5
5 (C-27-13)140CD SP 9-03 RINE	3 (C-27-13) 9ABA	₩E	10-72				15.0	4020	8.0)	3240	24	650	190	10
6 (C-27-13)236AA SP 9-03 SQUAM SPRING 16.0 141C 8.0 1000 26 150 42 7 (C-27-14)28001 WE 4-81 USAF TEST WELL 24.0 700 7.8 362 30 46 19 4 8 (C-27-14)28001 WE 4-81 USAF TEST WELL 25.0 710 7.5 357 34 48 20 4 9 (C-27-14)28001 WE 4-81 USAF TEST WELL 25.0 715 7.4 389 32 53 21 4 0 (C-27-14)28001 WE 4-81 USAF TEST WELL 25.0 705 7.9 396 35 48 20 4 (C-27-14)28001 WE 4-81 USAF TEST WELL 25.0 705 7.9 396 35 48 20 4 (C-27-14)28001 WE 4-81 USAF TEST WELL 25.0 670 7.9 376 34 40 22 5 (C-27-15)11888 SP 9-62 WAN WAN SPRINGS 19.5 624 7.9 340 13 67 29 2 (C-27-15)11888 SP 9-62 WAN WAN SPRINGS 19.5 624 7.9 340 13 67 29 2 (C-27-15)11888 SP 9-62 WAN WAN SPRINGS 19.5 624 7.9 340 13 67 29 2 (C-27-15)11888 SP 9-62 WAN WAN SPRINGS 19.5 624 7.9 340 13 67 29 2 (C-27-15)11888 SP 9-63 WAN WAN SPRINGS 19.5 624 7.9 340 13 67 29 2 (C-27-15)11888 SP 9-63 WAN WAN SPRINGS 16.5 617 8.1 348 15 64 31 2 (C-27-15)12800 SP 10-72 WAN WAN SPRINGS 16.5 617 8.1 348 15 64 31 2 (C-28-14)118891 WE 9-73 4 (C-28-14)118891 WE 9-73 4 (C-28-14)118891 WE 9-73 4 (C-28-14)118891 WE 9-73 4 (C-28-15)12800 SP 10-72 KILN SPRING 14.0 983 7.5 586 39 120 39 37 (C-28-15)12800 SP 6-73 WILLOW SPRING 13.0 1960 7.7 1170 28 190 64 13 (C-27-15) 200 SP 6-73 WILLOW SPRING 13.0 1960 7.7 1170 28 190 64 13 (C-27-15) 200 SP 6-73 WILLOW SPRING 13.0 1960 7.7 1170 28 190 64 13 (C-27-15) 200 SP 6-73 WILLOW SPRING 13.0 1960 7.7 1170 28 190 64 13 (C-27-15) 200 SP 6-73 WILLOW SPRING 13.0 1960 7.7 1170 28 190 64 13 (C-27-15) 200 SP 6-73 WILLOW SPRING 13.0 1960 7.7 1170 28 190 64 13 (C-27-15) 200 SP 6-73 WILLOW SPRING 13.0 1960 7.7 1170 28 190 64 13 (C-27-15) 200 SP 6-73 WILLOW SPRING 13.0 1960 7.7 1170 28 190 64 13 (C-27-15) 200 SP 6-73 WILLOW SPRING 13.0 1960 7.7 1170 28 190 64 13 (C-27-15) 200 SP 6-73 WILLOW SPRING 13.0 1960 7.7 1170 28 190 64 13 (C-27-15) 200 SP 6-73 WILLOW SPRING 13.0 1960 7.7 1170 28 190 64 13 (C-27-15) 200 SP 6-73 WILLOW SPRING 13.0 1960 7.7 1170 28 190 64 13 (C-27-15) 200 SP 6-73 WILLOW SPRING 13.0 1960 7.7 1170 28 190 64 13 (C-27-15) 200 SP 6-73 WILLOW SPRING 13.0 1960 7.7			SP	10-72	MINE DR	AIN				8.0)				190	100
7 (C-27-14)25001 WE 4-81 USAF TEST WELL 24.0 700 7.8 362 30 46 19 4 9 (C-27-14)28001 WE 4-81 USAF TEST WELL 25.0 710 7.5 357 34 40 20 4 9 (C-27-14)28001 WE 4-81 USAF TEST WELL 25.0 715 7.4 3889 32 53 21 4 1 (C-27-14)28001 WE 4-81 USAF TEST WELL 25.0 705 7.9 396 35 48 20 4 1 (C-27-14)28001 WE 4-81 USAF TEST WELL 25.0 705 7.9 396 35 48 20 4 1 (C-27-14)28001 WE 4-81 USAF TEST WELL 25.0 870 7.7 376 34 40 22 5 2 (C-27-15)11ABA SP 9-62 WAN WAN SPRINGS 19.5 824 7.9 340 13 67 29 2 3 (C-27-15)11ABA SP 10-72 WAN WAN SPRINGS 19.5 824 7.9 340 13 67 29 2 3 (C-27-15)11ABA SP 10-72 WAN WAN SPRINGS 16.5 517 8.1 348 15 64 31 2 5 (C-28-13)1800 SP 10-72 WAN WAN SPRINGS 16.5 517 8.1 348 15 64 31 2 5 (C-28-13)1800 SP 10-72 WAN WAN SPRINGS 16.5 517 8.1 348 15 64 39 59 17 4 6 6 (C-28-13)1800 SP 10-72 WAN WAN SPRINGS 14.5 668 7.9 446 39 59 17 4 6 6 (C-28-15)10ABB SP 10-72 WAN WAN SPRINGS 14.5 668 7.9 446 39 59 17 4 6 6 (C-28-15)10ABB SP 10-72 WAN WAN SPRINGS 14.5 668 7.9 466 39 59 17 6 6 6 (C-28-15)10ABB SP 10-72 WAN WAN SPRING 14.0 985 7.5 586 39 120 39 39 (C-29-15)10ABB SP 10-72 WILL SPRING 13.0 1940 7.7 1170 28 190 190 20 20 20 20 20 (C-29-15) 20AD SP 6-73 WILL SPRING 13.0 1940 7.7 1170 28 190 190 10.0 6. **POTASSIUM CARBONATE BICARB. CHLOPIDE SULFATE FLLOPIDE MITRATE BORON IRON MANGANESE (FE) (MN) REMARKS REFERENCE 1 18 0 136 670 205 .4 4.9 190 270 MD *2 STEPMENS 7 14.0 350 8.1 322 9.6 100 10.0 6. **POTASSIUM CARBONATE BICARB. CHLOPIDE SULFATE FLLOPIDE MITRATE BORON IRON MANGANESE (FE) (MN) REMARKS REFERENCE 1 18 0 136 670 205 .4 4.9 190 270 MD *2 STEPMENS 7 14.0 350 MD *2 MD *2 MD *2 STEPMENS 7 14.0 350 MD *2 STEPMENS 7 14.0 MD *2 STEPMENS 7 14.0 MD *2 MD *2 MD *2 MD *2 MD *2 STEPMENS 7 14.0 MD *	5 (C-27-13)14DCD	SP	9-63	MINE			13.0	2100	8.2	!	1650	17	220	81	8
8 (C-27-14)28001 WE 4-81 USAF TEST WELL 25.0 710 7.5 357 34 48 20 4 9 (C-27-14)28001 WE 4-81 USAF TEST WELL 25.0 715 7.4 389 32 53 21 4 0 (C-27-14)28001 WE 4-81 USAF TEST WELL 25.0 705 7.9 396 35 48 20 4 1 (C-27-14)28001 WE 4-81 USAF TEST WELL 25.0 670 7.7 376 34 40 22 5 2 (C-27-15)11384 SP 9-62 WAN WAN SPRINGS 19.5 624 7.9 340 13 67 29 2 3 (C-27-15)11384 SP 9-62 WAN WAN SPRINGS 19.5 624 7.9 340 13 67 29 2 3 (C-27-15)11384 SP 10-72 WAN WAN SPRINGS 19.5 624 7.9 340 13 67 29 2 4 (C-27-15)12800 SP 10-72 WAN WAN SPRINGS 16.5 517 8.1 548 15 64 31 2 5 (C-28-15)12800 SP 10-72 WAN WAN SPRINGS 16.5 517 8.1 548 15 64 31 2 5 (C-28-15)12800 SP 5-63 ANTELOPE SPRING 14.5 668 7.9 446 39 59 17 4 6 (C-28-14)113801 WE 9-73			SP	9-63	SQUA# S	PRING		15.0		8.0)	1000	26	150	42	7
9 (C-27-14)28001 WE 4-81 USAF TEST WELL 25.0 715 7.4 389 32 53 21 4 4 1 (C-27-14)28001 WE 4-81 USAF TEST WELL 25.0 705 7.9 396 35 48 20 4 1 (C-27-14)28001 WE 4-81 USAF TEST WELL 25.0 870 7.7 376 34 40 22 5 2 (C-27-15)1148A SP 9-62 4AH WAH SPRINGS 19.5 624 7.9 340 13 67 29 2 3 (C-27-15)1148A SP 10-72 WAH WAH SPRINGS 17.0 410 7.6 13 32 47 1 4 (C-27-15)1148A SP 10-72 WAH WAH SPRINGS 17.0 410 7.6 13 32 47 1 5 (C-28-13)118AB SP 10-72 WAH WAH SPRINGS 16.5 517 8.1 348 15 64 31 2 5 (C-28-13)18AB SP 10-72 WAH WAH SPRINGS 16.5 517 8.1 348 15 64 31 2 5 (C-28-13)18AB SP 10-72 WAH WAH SPRINGS 16.5 517 8.3 355 58 21 6.4 8 6 (C-28-13)18AB SP 10-72 WAH WAH SPRINGS 16.5 517 8.3 355 58 21 6.4 8 6 (C-28-13)18AB SP 10-72 WAH WAH SPRINGS 16.5 517 8.3 355 58 21 6.4 8 6 (C-28-13)18AB SP 10-72 WAH WAH SPRINGS 16.5 517 8.3 355 58 21 6.4 8 6 (C-28-13)18AB SP 10-72 WAH WAH SPRINGS 16.5 517 8.3 355 58 21 6.4 8 6 (C-28-13)18AB SP 10-72 WAH WAH SPRINGS 16.5 517 8.3 355 58 21 6.4 8 6 (C-28-13)18AB SP 10-72 WAH WAH SPRINGS 16.5 517 8.3 355 58 21 6.4 8 8 6 (C-28-13)18AB SP 10-72 WAH WAH SPRINGS 16.5 517 8.3 355 58 21 6.4 8 8 6 (C-28-13)18AB SP 10-72 WAH WAH SPRINGS 16.5 517 8.3 355 58 21 6.4 8 8 6 (C-28-13)18AB SP 10-72 WAH WAH SPRINGS 16.5 517 8.3 355 58 21 6.4 8 8 6 (C-28-13)18AB SP 10-72 WAH WAH SPRINGS 16.5 517 8.3 355 58 21 6.4 8 8 6 (C-28-13)18AB SP 10-72 WAH WAH SPRINGS 17.0 7.5 586 39 120 39 39 39 120 39 39 39 120 39 39 39 120 39 39 39 120 39 39 39 12				4-81	USAF TE	ST WELL										4
0 (C-27-14)22001 WE 4-81 USAF TEST WELL 25.0 705 7.9 366 35 48 20 4 (C-27-15)1040 WE 4-81 USAF TEST WELL 25.0 670 7.7 376 34 40 22 5 (C-27-15)1140 SP 9-62 WAN WAN SPRINGS 19.5 624 7.9 340 13 67 29 2 (C-27-15)1140 SP 81 13-72 WAN WAN SPRINGS 19.5 624 7.9 340 13 67 29 2 (C-27-15)1140 SP 81 13-72 WAN WAN SPRINGS 17.0 410 7.6 13 3 2 47 1 4 (C-27-15)12800 SP 10-72 WAN WAN SPRINGS 16.5 617 8.1 348 15 64 31 2 5 (C-28-15)12800 SP 10-72 WAN WAN SPRINGS 16.5 617 8.1 348 15 64 31 2 5 (C-28-15)12800 SP 10-72 WAN WAN SPRINGS 16.5 617 8.1 348 15 64 31 2 6 (C-28-14)114081 WE 0-73 535 8.3 385 58 21 6.4 8 6 (C-28-14)114081 WE 0-73 535 8.3 385 58 21 6.4 8 6 (C-28-15)10408 SP 10-72 KIN SPRING 14.0 985 7.5 586 39 120 39 39 (C-28-15)10408 SP 10-72 KIN SPRING 14.0 985 7.5 586 39 120 39 39 (C-28-15)10408 SP 10-72 KIN SPRING 13.0 1940 7.4 4550 46 630 220 20 0 (C-29-15) 2040 SP 6-73 WILLOW SPRING 13.0 1940 7.7 1170 28 190 64 13 (C-29-16) 2000 SP 10-72 (CC) (SO4) (CC) (CC) (SO4) (CC) (SO4) (CC) (SO4) (CC) (CC) (SO4) (CC) (CC) (SO4) (CC) (CC) (CC) (CC) (SO4) (CC) (CC) (CC) (CC) (CC) (CC) (CC) (C																4
1 (C-27-14)28001 WE 4-81 USER TEST WELL 25.0 870 7.7 376 34 40 22 5 5			₩ĉ	4-81	USAF TE	ST WELL										4
2 (C-27-15)11ABA SP 9-62 AM WAN SPRINGS 19.5 624 7.0 340 13 67 20 2																4
3 (C-27-15)113188 SP 10-72 WAW WAY SPRINGS 17.0 410 7.6 13 32 47 1				4-91	USAF TE	ST WELL								4.0		5
4 (C-27-15)128CD SP 10-72 NAW AMM SPRINGS 16.5 517 8.1 348 15 64 31 2 5 (C-28-12)18ADB SP 8-63 ANTELOPE SPRING 14.5 668 7.9 446 39 59 17 4 6 (C-28-14)11ABB1 WE 9-73 535 8.3 385 58 21 6.4 8 6 (C-28-15)10ADB SP 8-63 ANTELOPE SPRING 14.5 668 7.9 446 39 59 17 4 6 (C-28-14)11ABB1 WE 2-74 24.5 514 7.8 65 65 (C-28-15)10ADB SP 10-72 KILN SPRING 14.0 985 7.5 586 39 120 39 3 9 (C-28-15)125CCC SP 6-73 #ILLJW SPRING 13.0 1940 7.7 1170 28 190 64 13 1 (C-29-16) 20ED SP 10-72 KILN SPRING 13.0 1940 7.7 1170 28 190 64 13 1 (C-29-16) 20ED SP 10-72 HILJW SPRING 13.0 1940 7.7 1170 28 190 64 13 1 (C-29-16) 20ED SP 10-72 HILJW SPRING 13.0 1940 7.7 1170 28 190 10.0 6. POTASSIUM CARBONATE BICARB. CHLOPIDE SULFATE FLUORIDE MITRATE 80RON IRON MANGANESE (K) (C03) (HC03) (CL) (S04) (F) (N) (B) (FE) (MM) REMARKS REFERENCE 1 18 0 36 670 205 4 4.9 190 210 ND *2 STEPMENS 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												340				2
\$ (C-28-13)18ADB \$P 8-63 ANTELOPE SPRING 14.5 668 7.9 4.6 39 59 17 6 6 (C-28-14)11ABB1 WE 9-73														32		1
6 (C-28-14)11ABB1																2
7 (C-29-14)11ABB1 WE 2-74			SP		ANTELOP	E SPRIN	G							59	17	4
6 (C-28-15)10ARR SP 10-72 KILN SPRING 14.0 985 7.5 586 39 120 39 39 (C-28-15)25CCC 5P 6-73 11LDW SPRING 11.5 7490 7.6 4550 46 630 220 20 0 (C-29-15) 2DAD SP 6-73 11LDW SPRING 13.0 1940 7.7 11170 28 190 64 13 1 (C-29-16) 2DCD SP 10-72 14.0 550 8.1 322 9.6 100 10.0 6. POTASSIUM CARRONATE BICARB. CHLOPIDE SULFATE FLLORIDE NITRATE BORON IRON MANGANESE (K) (CO3) (MCO3) (CL) (SO4) (F) (N) (B) (FE) (NN) REMARKS REFERENCE 1 18 0 136 670 205 .4 4.9 190 210 NO *2 STEPHENS 7 2 1.1 0 50 14 16 .3 1.0 30 160 NO *2.*4 STEPHENS 7 3 8.7 0 132 600 1600 1.1 -0 **0** **5** **6 USGS 79 **6 **6 USGS																8
9 (C-28-15)25CCC SP 6-73 11.5 7490 7.6 4550 46 630 20 20 (C-29-15) 2000 SP 6-73 11.0 SPRING 13.0 1940 7.7 1170 28 190 66 13 1 (C-29-16) 2000 SP 10-72 11.0 SPRING 13.0 1940 7.7 1170 28 190 66 13 14.0 550 8.1 322 9.6 100 10.0 6.																
0 (C-29-15) 2010 SP 6-73 WILLOW SPRING 13.0 1940 7.7 1170 28 190 64 13 1 (C-29-16) 2010 SP 10-72 WILLOW SPRING 13.0 1940 7.7 1170 28 190 64 13 1 (C-29-16) 2010 SP 10-72 WILLOW SPRING 144.0 550 8.1 322 9.6 100 10.0 6. POTASSIUM CARAGNATE BICARB. CHLOPIDE SULFATE FLLORIDE MITRATE BORON IRON MANGANESE (KX) (CO3) (HCO3) (CL) (SO4) (F) (N) (B) (FE) (MN) REMARKS REFERENCE 1 18 0 136 670 205 .4 4.9 190 210 N0 *2 STEPMENS 7 2 1.1 0 50 14 16 .3 1.0 30 160 N0 *2.*4 STEPMENS 7 3 8.7 0 132 600 1600 1.1 -0 **4** STEPMENS 7 4 8.7 0 132 600 1600 1.1 -0 200 20 20 *3**4 STEPMENS 7 5 5.6 0 140 420 288 .6 73 100 650 190 *2 STEPMENS 7 5 5.6 0 140 420 288 .6 73 100 50 N0 *2 STEPMENS 7 6 .6 .6 0 222 300 76 .5 11 120 120 N0 *2 STEPMENS 7 7 4.9 142 100 58 .4 .8 40 45 *1,*4 ERTEC 8 9 5.2 0 122 110 52 .4 .9 20 *1,*4 ERTEC 9 9 5.2 0 122 110 62 .4 .9 150 40 *1,*4 ERTEC 9 9 5.2 0 122 110 62 .4 .9 150 40 *1,*4 ERTEC 9 9 5.2 0 122 110 59 .4 1.0 ND ND ND NO *1,*4 ERTEC 9 1 5.0 0 87 110 61 .5 1.1 ND 30 *1,*4 ERTEC 9 1 5.0 0 87 110 61 .5 1.1 ND 30 *1,*4 ERTEC 9 1 5.0 0 316 37 14 .1 5.7 20 *2 STEPMENS 7 3 2.0 0 259 55 18 .1 1.8 *2 STEPMENS 7 5 3.4 0 144 120 37 .3 10.0 100 350 50 *2 STEPMENS 7 1 1 0 152 28 66 1.0 190 170 *3,*4 STEPMENS 1 5 3.4 0 144 120 37 .3 10.0 100 350 50 *2 STEPMENS 1 5 3.4 0 144 120 37 .3 10.0 100 350 50 *2 STEPMENS 1 5 3.4 0 144 120 37 .3 10.0 100 350 50 *2 STEPMENS 1 5 3.4 0 144 120 37 .3 10.0 100 350 50 *2 STEPMENS 1 5 3.4 0 144 120 37 .3 10.0 100 350 50 *2 STEPMENS 1 6 1.8 0 389 110 39 .2 2.8 120 20 10.0 *3,*4 STEPMENS 1 7 11 0 152 28 66 1.0 190 170 *3.4 STEPMENS 1 7 11 0 152 28 66 1.0 190 170 *3.4 STEPMENS 1 8 1.8 0 389 110 39 .2 2.8 120 20 300 300 *2.*4 STEPMENS 1 9 1.7 0 .35 300 230 *5.1 280 300 200 300 *2.*4 STEPMENS 1					KILW SP	RING										3
1															220	20
POTASSIUM CARGONATE BICARB. CHLOPIDE SULFATE FLUORIDE NITRATE (B) (F) (N) (B) (F) (N) (B) (F) (N) (F) (N) (B) (F) (N)					# ILLJW	SPRING							28			13
- (K) (CO3) (HCO3) (CL) (SO4) (F) (N) (B) (FE) (NM) REMARKS REFERENCE 1 18	1 (C-29+16) ZDCD	ŞΡ	10-72				14.0	550	5.1		322	9.6	100	10.0	6.
2 1.1 0 50 14 16 23 1.0 30 160 ND *Z.*4 \$TEPHENS 7 8.7 0 132 600 1600 1.1 .0 **4.**5.**6 USGS 79 15 6 8.7 0 132 600 1600 1.1 .0 200 20 20 *3.**4 \$TEPHENS 7 5 6 .6 0 140 420 288 .6 73 100 650 190 *2 \$TEPHENS 7 6 .6 0 232 306 76 .5 11 120 120 ND *2 \$TEPHENS 7 7 4.9 142 100 58 .4 .8 40 45 *1.*4 \$TEPHENS 7 8 5.1 0 125 100 59 .4 .9 20 *1.*4 \$TEPHENS 7 8 5.1 0 125 100 59 .4 .9 20 *1.*4 \$TEPHENS 7 8 5.1 0 107 110 59 .4 1.0 ND ND ND *1.*4 \$TEPTE 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8). P	OTASSIUM CARBON	ATE E	ICARB.	CHLORIDE	SULFATE	FLLORIDE	NITRA	TE	BORON	IRON	MANGANES	£			
3 8.7 0 132 600 1600 1.1 .0 200 20 20 *3,*4 STEPHENS 7 5 5.6 0 140 420 288 .6 73 100 650 190 *2 STEPHENS 7 5 5.6 0 140 420 288 .6 73 100 650 190 *2 STEPHENS 7 7 4.9 142 100 58 .4 .8 40 45 *1,*4 ERTEC 8 5.1 0 125 100 59 .4 .9 20 *1,*4 ERTEC 9 5.2 0 122 110 62 .4 .9 150 40 *1,*4 ERTEC 9 5.1 0 107 110 59 .4 1.0 ND ND ND NO *1,*4 ERTEC 1 5.0 0 87 110 61 .5 1.1 ND 30 *1,*4 ERTEC 1 5.0 0 87 110 61 .5 1.1 ND 30 *1,*4 ERTEC 1 5.0 0 87 110 61 .5 1.1 ND 30 *1,*4 ERTEC 1 5.0 0 16 .5 18 .1 1.8 *2 STEPHENS 7 6 1.4 0 318 38 15 .2 1.4 120 30 3,*4 STEPHENS 1 6 11 0 109 32 82 1.0 *1 1.8 *2 STEPHENS 7 1 1 0 109 32 82 1.0 *1 1.8 *3,*4 STEPHENS 1 1 1 0 169 32 82 1.0 *1 1.8 1.0 *1 1.8 *1 1														ARKS	1 EF	ERENCE
8.7	1	K) (CO3)	0	(HCQ3) 136	(CL) 670	(504)	(F) .4	(N)	9	190	(FE) 210	(MM)	* REM/	-	STE	PHENS 7
\$ 5.6	1 2	t8 1.1	0	136 50	(CL) 670 14	(504) 205 16	(F)	(N)	9	(B) 190 30	(FE) 210 160	(MM) N	REM/	•4	STE	PHENS 7 Phens 7
6	1 2 3	18 1.1 8.7	0 0	136 50 132	670 14 600	(504) 205 16 1600	(F) .4 .3 1.1	(N)	9	(8) 190 30	210 160	(MM) N N	REM/ 0 +2 0 +2,0	•4	STE STE USG	PHENS 7 PHENS 7 S 79
7 4.9 1.2 100 58 .4 .8 40 45 ***, *** ERTEC 8 5.1 0 125 100 59 .4 .9 20 ***, *** ERTEC 9 5.2 0 122 110 62 .4 .9 150 40 ***, *** ERTEC 0 5.1 0 107 110 59 .4 1.0 ND ND ND ***, *** ERTEC 1 5.0 0 87 110 61 .5 1.1 ND 30 ***, *** ERTEC 2 1.5 0 316 37 14 .1 5.7 20 *** STEPHENS 1 3 2.0 0 259 55 18 .1 1.8 *** STEPHENS 1 4 1.4 0 315 38 15 .2 1.4 120 30 *** STEPHENS 1 5 3.4 0 144 120 37 .3 10.0 100 350 50 *** STEPHENS 1 6 11 0 109 32 82 1.0 8 210 ***, *** STEPHENS 1 7 11 0 152 28 66 1.0 190 170 *** STEPHENS 1 7 11 0 152 28 66 1.0 190 170 *** STEPHENS 1 8 1.8 0 389 110 39 .2 2.8 120 20 10.0 **** STEPHENS 1 9 1.1 0 296 2100 710 1.3 .6 2300 200 300 **** STEPHENS 1 0 1.7 0 36 360 230 .5 .1 280 300 200 ****	1 2 3 4	18 1-1 8-7 8-7	0 0	136 50 132 132	670 14 600 600	(504) 205 16 1600 1600	.4 .3 1.1	(N)	.0	(B) 190 30 	210 160 20	(MN) N N 2	REM/ 0 +2,0 0 +2,0 - +4,0 0 +3,0	•4	STE STE USG STE	PHENS 7 PHENS 7 S 79 PHENS 7
8 5.1 0 125 100 59 .4 .9 20 +1,+4 ERTEC 9 5.2 0 122 110 62 .4 .9 150 40 +1,+4 ERTEC 9 5.1 0 107 110 59 .4 1.0 ND ND ND HD ND +1,+4 ERTEC 1 5.0 0 87 110 61 .5 1.1 ND 30 +1,+4 ERTEC 2 1.5 0 316 37 14 .1 5.7 20 2 STEPHENS 1 3 2.0 0 259 55 18 .1 1.8 2 STEPHENS 1 4 1.4 0 319 38 15 .2 1.4 120 30 3,+4 STEPHENS 1 5 3.4 0 144 120 37 .3 10.0 100 350 50 *2 STEPHENS 1 6 11 0 169 32 82 1.0 8 210 \$3,+4 STEPHENS 1 7 11 0 152 28 66 1.0 190 170 *5 STEPHENS 1 8 1.8 0 389 110 39 .2 2.8 120 20 10.0 *3,+4 STEPHENS 1 9 1.1 0 396 2100 710 1.3 .6 2300 200 300 *2,+4 STEPHENS 1 0 1.7 0 .35 380 230 .5 .1 280 300 200 350 *5,+4 STEPHENS 1	1 2 3 4 5	18 1.1 8.7 8.7 5.6	0 0 0	136 50 132 132 140	670 14 600 600 420	205 16 1600 1600 288	.4 .3 1.1 1.1	(N)	.9 .0 .0	190 30 200 100	210 160 20 450	(MN) N N 2 19	REM/ 0 +2,0 0 +2,0 - +4,0 0 +3,0	•4	STE STE USG STE STE	PHENS 7 PHENS 7 S 79 PHENS 7 PHENS 7
9 5-2 0 122 110 62 .4 .9 150 40 ****4 ERTEC 5-1 0 107 110 59 .4 1.0 ND ND ND ND **1,**4 ERTEC 1 5.0 0 87 110 61 .5 1.1 ND 30 **1,**4 ERTEC 2 1.5 0 316 37 14 .1 5.7 20 **2 STEPHENS 3 2.0 0 259 55 18 .1 1.8 **2 STEPHENS 4 1.4 0 318 38 15 .2 1.4 120 30 **3,**4 STEPHENS 5 3.4 0 144 120 37 .3 10.0 100 350 50 **2 STEPHENS 6 11 0 169 52 82 1.0 -8 210 **3,**4 STEPHENS 7 11 0 152 28 66 1.0 190 170 **3 STEPHENS 8 1.8 0 329 110 39 .2 2.8 120 20 10.0 3,**4 STEPHENS 9 1.1 0 7.5 20 710 710 1.3 .6 2300 200 300 **2,**4 STEPHENS 9 1.1 0 7.5 36 2100 710 1.3 .6 2300 200 300 **2,**4 STEPHENS 9 1.7 0 .36 380 230 .5 .1 280 300 200 300 **2,**4 STEPHENS 9 1.7 0 .36 380 230 .5 .1 280 300 200 300 **2,**4 STEPHENS 9 TEPHENS 9 1.7 0 .36 380 230 .5 .1 280 300 200 300 **2,**4 STEPHENS 9 TEPHENS	1 2 3 4 5 6	18 1.1 8.7 8.7 5.6	0 0 0 0 0	136 50 132 132 140 232	670 14 600 600 420 300	205 16 1600 1600 288 76	.4 .3 1.1 1.1 .6	(N)	.0 .0 .0 73	190 30 200 100 120	210 160 20 450 120	(MN) N 2 19 N	REM/ 0 +2 0 +2,0 - +4,0 0 +3,0 0 +2	•4 •5,•6 •4	STE STE USG STE STE STE	PHENS 7 PHENS 7 S 79 PHENS 7 PHENS 7 PHENS 7
0 5.1 0 107 110 59 .4 1.0 ND ND ND ND +1,+4 ERTEC 1 5.0 0 87 110 61 .5 1.1 ND 30 +1,+4 ERTEC 2 1.5 0 316 37 14 .1 5.7 20 +2 STEPMENS 3 2.0 0 259 65 18 .1 1.8 +2 STEPMENS 3 4 1.4 0 315 38 15 .2 1.4 120 30 *3,*4 STEPMENS 5 3.4 0 144 120 37 .3 10.0 100 350 50 *2 STEPMENS 5 6 11 0 169 32 82 1.0 **8 210 *5,*4 STEPMENS 5 7 11 0 152 28 66 1.0 **- 190 170 *5 STEPMENS 5 8 1.8 0 389 110 39 .2 2.8 120 20 10.0 *3,*4 STEPMENS 5 9 1.1 0 2.9 5 20 300 200 300 *2,*4 STEPMENS 5 1.1 0 2.9 5 20 300 *3,*4 STEPMENS 5 9 1.1 0 2.9 5 300 200 300 *3,*4 STEPMENS 5 0 1.7 0 .35 300 230 *5 *1 280 300 200 *5,*4	1 2 3 4 5 6 7	18 1-1 8-7 8-7 5-6 -6	00000	136 50 132 132 140 232 142	670 14 600 600 420 306 100	(504) 205 16 1600 1600 258 76 58	.4 .3 1.1 1.1 .6	(N)	.9 .0 .0 .73	190 30 200 100 120	210 160 20 450 120 40	(MN) N N 2 19	REM/ 0 +2 0 +2,4 0 +3,4 0 +2 0 +2 5 +1,4	•4 •5,•6 •4	STE STE USG STE STE STE	PHENS 7 PHENS 7 S 79 PHENS 7 PHENS 7 PHENS 7
1	1 2 3 4 5 6 7 8	18 1.1 8.7 8.7 5.6 .6 4.9 5.1	00000000	136 50 132 132 140 232 142 142	670 14 600 600 420 306 100	(\$04) 205 16 1600 1600 288 76 58	.4 .3 1.1 1.1 .6 .5	(N)	.9 .0 .0 .0 .73 11	190 30 200 100 120	210 160 20 450 120 40	(MN) N N 2 19 N 4 2	REM/ 0 +2 / 1 0 +2 / 1 0 +3 / 1 0 +2 0 +2 0 +2 / 1 / 1	•4 •5,•6 •4	STE STE USG STE STE STE ERT	PHENS 7 PHENS 7 S 79 PHENS 7 PHENS 7 PHENS 7 EC
2 1.5 0 316 37 14 .1 5.7 20 2 STEPHENS 1 3 2.0 0 259 55 18 .1 1.8 2 STEPHENS 1 4 1.4 0 318 38 15 .2 1.4 120 30 *** 5** *** *** 5** 5** 4 0 144 120 37 .3 10.0 100 350 50 *** 5** *** 5** *** 5** 5** 4 0 144 120 37 .3 10.0 100 350 50 *** *** 5** *** 5** *** 5** 5** 4 0 169 32 82 1.0 *** 8 210 *** 5** 5**	1 2 3 4 5 6 7 8 9	18 1.1 8.7 8.7 5.6 6 4.9 5.1	000000000000000000000000000000000000000	136 50 132 132 132 140 232 142 125 122	670 14 600 600 420 306 100 100	(504) 205 16 1600 1600 258 76 58 59 62	(F) .4 .3 1.1 1.1 .6 .5 .4	(N)	.9 .0 .0 .0 .73 11	190 30 200 100 120	210 160 20 450 120 40	(MN) N N 2 19 N 4	REM/ 0 +2 / 1 0 +2 / 1 0 +3 / 1 0 +2 / 1 0 +2 / 1 0 +1 / 1 0 +1 / 1	•4 •5,•6 •4 •4	STE STE USG STE STE ERT ERT ERT	PHENS 7 PHENS 7 S 79 PHENS 7 PHENS 7 PHENS 7 EC EC
3 2.0 0 259 55 18 .1 1.8 2 STEPMENS 1 1.4 1.4 1.5 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	1234567890	18 1.1 8.7 8.7 5.6 .6 4.9 5.1 5.2 5.1	0000001000	136 50 132 132 140 232 142 125 125 122	670 14 600 600 420 300 100 110	205 16 1600 1600 288 76 58 59 62	.4 .3 1.1 1.1 .6 .5 .4 .4	(N)	73 11 -8 -9	190 30 200 100 120	210 160 20 450 120 40 150 ND	(MN) N N 1 2 19 N 4 2 4 N	REM/ 0 +2 / 44 / 6 0 +3 / 7 0 +2 / 7 0 +2 / 7 0 +1 / 7 0 +1 / 7	•4 •5,•6 •4 •4	STE STE USG STE STE STE ERT ERT ERT	PHENS 7 PHENS 7 S 79 PHENS 7 PHENS 7 EC EC EC
4 1.4 0 318 38 15 .2 1.4 120 30 +3,+6 STEPHENS 5 3.4 0 144 120 37 .3 10.0 100 350 50 +2 STEPHENS 5 6 11 0 169 32 82 1.0 .8 210 +3,+6 STEPHENS 7 11 0 152 28 66 1.0 190 170 +3 STEPHENS 7 8 1.8 0 389 110 39 .2 2.8 120 20 10.0 +3,+4 STEPHENS 7 9 1.1 0 296 2100 710 1.3 .6 2300 200 300 +2,+6 STEPHENS 7 0 1.7 0 35 360 230 .5 .1 280 300 200 +3,+6 STEPHENS 7	12345678901	18 1.1 8.7 8.7 5.6 4.9 5.1 5.2 5.1	000000	136 50 132 132 140 232 142 125 125 127 87	670 14 600 600 420 300 100 110 110	205 16 1600 1600 288 76 58 59 62	.4 .3 1.1 1.1 .6 .5 .4 .4	(N)	.9 .0 .0 .0 73 11 .8 .9	190 30 200 100 120	(FE) 210 160 20 450 120 40 150 NB	(MN) N N 2 19 N 4 2 4 N 3	REM/ 0 +2 +4 1 0 +2 +4 1 0 +2 1 1 0 +1 1 0 +1 1 0 +1 1 0 +1 1	•4 •5,•6 •4 •4	STE: STE: USG STE STE: STE ERT ERT ERT ERT	PHENS 7 PHENS 7 S 79 PHENS 7 PHENS 7 EC EC EC
5 3.4 0 144 120 37 .3 10.0 100 350 50 *2 STEPMENS 1 6 11 0 109 32 82 1.08 210 *5,*4 STEPMENS 1 7 11 0 152 28 66 1.0 190 170 *3 STEPMENS 1 8 1.8 0 389 110 39 .2 2.8 120 20 10.0 *3,*4 STEPMENS 1 9 1.1 3 296 2100 710 1.3 .6 2300 200 300 *2,*4 STEPMENS 1 0 1.7 0 .35 360 230 .5 .1 280 300 200 *3,*4 STEPMENS 1	1234567890112	18 1.1 8.7 8.7 5.6 .6 4.9 5.1 5.2 5.1	0 0 0 0 0 0 0 0 0 0	136 50 132 132 132 140 232 142 125 125 127 87	670 14 600 600 420 306 100 110 110 110 37	205 16 1600 1600 288 76 58 59 62 59	.4 .3 1.1 1.1 .6 .5 .4 .4 .4	(N)	.9 .0 .0 73 11 .8 .9 .9	(B) 190 30 200 100 120 ND 20	(FE) 210 160 20 450 120 40 150 NB ND	(MN) NN NN 2 19 NN 4 2 4 NN 3	REM/ 0 +2 +4 1 0 +2 +2 1 0 +2 +2 1 0 +1 1 0 +1 +2	•4 •5,•6 •4 •4	STE STE USG STE STE ERT ERT ERT ERT STE	PHENS 79 PHENS 79 PHENS 7 PHENS 7 PHENS 7 EC EC EC EC PHENS 7
6 11 0 169 32 82 100 8 210 \$3.46 STERMENS 1 7 11 0 152 28 66 1.0 190 170 *3 STERMENS 1 8 1.8 0 389 110 39 .2 2.8 120 20 10.0 *3.46 STERMENS 1 9 1.1 0 796 2100 710 1.3 .6 2300 200 300 *2.44 STERMENS 1 0 1.7 0 .36 360 230 .5 .1 280 300 200 30.42.44 STERMENS 1	1234567890123	18 1.1 8.7 8.7 5.6 .6 4.9 5.1 5.2 5.1 5.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	136 50 132 132 140 232 142 125 125 127 87 316 259	670 14 600 600 420 300 100 110 110 110 55	205 16 1600 1600 258 76 58 59 62 59 61 14	.4 .3 1.1 1.1 .6 .5 .4 .4 .4	(N) 4	.9 .0 .0 .73 11 .8 .9 .9	(B) 190 30 200 100 120 ND 20	210 160 20 450 120 40 150 ND ND	(MN) N N 1 2 19 N 4 2 4 0 0 3	REM/ 0 +2 +4 10 0 +2 +2 10 0 +2 +2 +2 +2 +2	•4 •5,•6 •4 •4 •4 •4	STE STE USG STE STE ERT ERT STE ERT STE	PHENS 7 PHENS 7 PHENS 7 PHENS 7 PHENS 7 EC EC EC EC PHENS 7
7 11 0 152 28 66 1.0 190 170 45 STEPHENS 1 8 1.8 0 389 110 39 .2 2.8 120 20 10.0 *3,*4 STEPHENS 1 9 1.1 0 296 2100 710 1.3 .6 2300 200 300 *2,*4 STEPHENS 1 0 1.7 0 39 360 230 .5 .1 280 300 200 *3,*4 STEPHENS 1	12345678901121314	18 1.1 8.7 8.7 5.6 .6 4.9 5.1 5.2 5.1 5.2 5.1 5.2	000000000000000000000000000000000000000	136 50 132 132 132 140 232 142 125 127 87 316 259	670 14 600 600 420 306 100 110 110 110 37 55	(SO4) 205 16 1600 1600 288 76 58 59 62 59 61 14 18	.4 .3 1.1 1.1 1.6 .5 .4 .4 .4 .5	(N)	-9 -0 -0 73 11 -8 -9 -9 -9 -1-1 5-7	(B) 190 30 200 100 120 ND 20 120	210 160 20 450 120 40 150 ND ND	(MN) NN - 19 NN - 2 19 NN - 4 NN	REM/ 0 +2 -0	•4 •5,•6 •4 •4 •4 •4	STE USG STE USG STE STE STE ERT ERT ERT ERT STE STE	PHENS 7. PHE
8 1.8 0 329 170 39 .2 2.8 120 20 10.0 *3.*4 STEPHENS 1 9 1.1 3 796 2100 710 1.3 .6 2300 200 300 *2.*4 STEPHENS 1 0 1.7 0 .35 360 230 .5 .1 280 300 200 *3.*4 STEPHENS 1	12345678901123145	18 1.1 8.7 8.7 5.6 4.9 5.1 5.2 5.1 5.0 1.5 2.0	000000000000000000000000000000000000000	136 136 132 132 140 232 1425 1425 127 316 257 316	670 14 600 600 420 306 100 110 110 110 37 55 38	205 1600 1600 1600 288 76 58 59 62 59 61 18 15	.4 .3 1.1 1.1 .6 .5 .4 .4 .4 .6 .5	(N)	1.0 .0 73 11 .8 .9 1.0 1.1 5.7	(B) 190 30 200 100 120 ND 20 120	210 160 20 450 120 40 40 150 ND ND ND	(MN) K N 1 2 19 N 4 2 4 N 3 5	REM/ 0 + 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	•4 •5,•6 •4 •4 •4 •6	STE STE USG STE STE STE STE EAT EAT EAT STE STE STE STE STE STE STE STE STE ST	PHENS 7 PHENS 7 PHENS 7 PHENS 7 PHENS 7 EC EC EC EC PHENS 7 PHENS 7 PHENS 7 PHENS 7
9 1.1 3 796 2100 710 1.3 .6 2300 200 300 *2.*4 STEPHENS 1 0 1.7 0 39 360 230 .5 .1 280 300 200 *3.*4 STEPHENS 1	1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16	18 1.1 8.7 8.7 5.6 4.9 5.1 5.2 5.1 5.2 5.1 5.2	0000001000000000	136 50 132 140 232 142 125 125 127 87 316 259 319	670 14 600 600 420 300 100 110 110 110 37 55 38 120	205 16 1600 1600 288 59 62 59 61 14 18 15 37	(F) .4 .3 1.1 1.1 .6 .5 .4 .4 .4 .5 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	(N)	73 11 *5 *9 1.0 1.1 5.7 1.8	190 30 200 100 120 120 120 120 120 120	210 140 20 450 120 40 150 ND ND	(MM) N N - 2 19 N 4 2 4 N 3	REM/ 0 +2 +3 +2	•4 •5,•6 •4 •4 •4 •6	STE STE USG STE STE STE ENT ENT ENT ENT STE STE STE STE STE STE STE STE STE ST	PHENS 7 PHENS 7 S 79 PHENS 7 PHENS 7 PHENS 7 PHENS 7 PHENS 7 PHENS 7 PHENS 7 PHENS 7
0 1.7 0 39 360 250 .5 .1 280 300 200 -5.+4 STEPMENS 1	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	18 1 -1 8 -7 8 -7 5 -6 6 6 9 5 -1 5 -2 5 -1 5 -2 1 5 -2 1 1 1 1 1 1 1 1 1	00000010000000000	136 50 132 140 232 140 232 125 125 127 87 316 259 319 144 169	670 14 600 600 420 300 100 110 110 110 37 55 38 120 32 28	205 160 1600 288 76 58 59 62 59 61 14 18 18 37 82	(F) .4 .3 1.1 1.1 .6 .5 .4 .4 .4 .4 .5 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	(N)	.9 1.0 .0 .0 73 111 .8 .9 .9 .9 .9 .9 .9 .9	190 30 	210 160 20 450 120 40 150 ND ND 30 350	(MN) N N N N N N N N N N N N N N N N N N N	REM/ 0 +2 -43 -10 +2 -42 -42 -42 -42 -42 -42 -42 -42 -42 -4	*4 *5,*6 *4 *4 *4 *4 *4 *4 *4	STE STE USG STE STE STE STE ENT ENT ENT STE STE STE STE STE STE STE STE	PHENS 7 PHENS 7 PHENS 7 PHENS 7 PHENS 7 EC EC EC EC EC PHENS 7
	123456789901112314455161718	18 1.1 8.7 8.7 5.6 .6 4.9 5.1 5.2 5.1 5.2 5.1 1.5 2.0 1.4 3.4	000000100000000000	136 50 132 142 142 125 125 127 87 316 259 314 169 159	670 14 600 600 420 306 100 110 110 37 55 38 120 28 110	205 16 1600 288 76 58 59 62 59 61 14 18 15 37 82 66	(F) .4 .3 1.1 1.1 .6 .5 .4 .4 .4 .4 .4 .5 .1 .1 .2 .3 1.00	(N)	9 1 • 0 • 0 • 0 • 7 7 7 1 • 1 • 9 • 9 • 1 • 0 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1	190 30 200 100 120 120 20 20 20 210 120	210 160 20 450 120 40 150 ND ND ND 350 170 20	(MM) N N N N N 2 199 N 4 4 N 3 10.	REM/ 0 + 2 - 43 / 0 + 2 - 43 / 0 + 1 / 0 + 1 / 0 + 1 / 0 + 1 / 0 + 1 / 0 + 1 / 0 + 1 / 0 + 2 / 0 + 3 /	*4 *5,*6 *4 *4 *4 *4 *4	STE	PHENS 7 PHENS 7 PHENS 7 PHENS 7 PHENS 7 EC EC EC EC EC PHENS 7
	1 2 3 4 5 6 7 8 9 10 11 2 3 14 5 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	18 1 -1 8 -7 8 -7 5 -6 6 6 9 5 -1 5 -2 5 -1 5 -0 1 -5 2 -0 1 -5 2 -0 1 -5 2 -1 1 1 1 -4 1 -1 1 -1 1 -1 1 -1 1 -1	000000100000000000000000000000000000000	136 50 132 132 142 142 125 127 316 257 316 257 316 257 316 257 316 257	670 144 600 600 420 306 100 110 110 110 37 55 38 120 32 28 110	205 160 1600 288 76 588 59 61 14 18 15 37 82 66 39	(F) .4 .3 1.1 1.1 .6 .6 .4 .4 .6 .7 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	(N)	990 •0 •0 •73 •9 •9 •0 •1 •9 •0 •0 •0 •0 •0 •0 •0 •0 •0 •0	190 30 	210 140 20 450 120 40 150 150 150 150 150 150 20 200	(MM) N N N 19 219 42 20 33 10.	REM 0 *2 *2 *** 0 *2 *** 0 *2 ** 1 ** 0 *2 ** 1 ** 0 ** 1 ** 0 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3	*4 *4 *4 *4 *4 *4 *4 *4 *4 *4 *4 *4 *4	STE STE USG STE	PHENS 7 PHENS 7 PHENS 7 PHENS 7 PHENS 7 PHENS 7 EC EC EC EC EC PHENS 7

NOTE: SAMPLES FOR JATEP QUALITY ANALYSIS COLLECTED BY ERTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN MG/L EXCEPT AS MOTED BELOW.
DISSOLVED SOLIDS FOR ERTEC SAMPLES DETERMINED BY RESIDUE -ON- EVAPORATION AT 180 DEGREE C.
NEVADA LOCATIONS BASED ON MT. DIARLO, BASELIME, UTAH LOCATIONS BASED ON SALT LAKE BASELIME AND MERIDIAN.
SPECIFIC CONDUCTANCE REPORTED IN MICROMADS/CM AT 25 DEGREES C.

THE FOLLOWING CONSTITUENTS ARE REPORTED IN MICROGRAMS/LITER:

FOOT -1 NITRATE PEPCHTED AS N

**S NETHER HEROOFIED AS NO3

**S NETHER + NITRATE REPORTED AS N

**4 OISSOLVED SOLUTS BY SUM OF DETERMINED CONSTITUENTS

**5 NA* AS NA

**O HOCJS-COS AS HCO3

**NG = NOT DETERMINED TO THE SOLUTION OF THE SOL

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE **BMO/AFRCE-MX**

SELECTED WATER QUALITY DATA WAH WAH VALLEY, UTAH

30 NOV 81

	TOWNSHIP RANGE-SECT	r SR:		STATION NAME			EMP EG C	SP. COND	PH			ILICA SIO2)	CALCIUM (CA)	MAGNESIUM (MG)	SODIUM (NA)
2	(C-15-12); (C-16-13); (C-16-13);	STAD SI	11-79	SWAZEY			37.0 8.0 11.0	365 665	7.5	,	343	50 13 13	15 26 23	8.2 16 12	87 43 29
	POTASSIUM (K)	CARBONATE (CO3)	BICARB. (HCO3)			FLUORIDE (F)	NITRAT	re	BORON (9)	IRON (FE)	MANGANES (MN)	E REMAI	tks	*67	ERENCE
3	2.0 2.0	0	190 249 205	64 85 80	15 27 16	.1 .1 .0		6 .4 .9	==	:-		+1,+/ +1	•	ERT	EC 80 EC 79 EC 79

NOTE: SAMPLES FOR WATER QUALITY ANALYSIS COLLECTED BY ERTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN MG/L EXCEPT AS NOTED BELOW. DISSOLVED SOLIDS FOR ERTEC SAMPLES DETERMINED BY RESIDUE "ON" EVAPORATION AT 180 DEGREE C. NEWADA LOCATIONS BASED ON MT. DIABLO BASELINE. UTAN LOCATIONS BASED ON SALT LAKE BASELINE AND MERIDIAM. SPECIFIC CONDUCTANCE REPORTED IN MICROMNOS/CM AT 25 DEGREES C.

THE FOLLOWING CONSTITUENTS ARE REPORTED IN MICROGRAMS/LITER: BORON IRON MANGANESE

FOOT •1 NITRATE REPORTED AS NO NOTES:•2 NITRATE REPORTED AS NO3 •3 NITRATE • NITRATE REPORTED AS N •4 DISSOLVED SOLIDS BY SUM OF DETERMINED CONSTITUENTS •5 NA•K AS NA •6 MCO3+CO3 AS NCO3 ND • NOT DETECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA WHIRLWIND VALLEY, UTAH

30 NOV 81

	WMSHIP NGE-SECT	\$RCL	#0 YR	STATION NAME		T E M P D é G			DISS SOLI		A31.	CALCIUM (CA)	MAGNESIUM (MG)	SODIUM (NA)
	N/00E- 40	∌E	7-75	MIDWAY WE		13.			2 4	30		53	15	75
	N/62E-22A N/61E- 9DC	WÊ WE	7-75 7-75	PRESTON S BLACKJACK		16. 18.				50 15	12 61	56 43	19 5.0	5.0 76
	N/61E-34A	WE	7-75	364643464		14.				óó		75	34	74
	N/61E-34ADA	WE	8-79			16.				56	21	69	24	19
6 12	N/62:-32AAD N/61E-3288D	₩E	8-79 7-79			13. 21.				47 53	45 28	58 54	3 9 2 2	38 41
8 11	N/61E-32860	4 E	7-79			16.					47	130	44	150
9 11	N/62E- 4ABD	dE.	8-79			15.				31	24	61	32	14
10 11	N/625- BCAA	WE	8-79 8-79			12.				02	46	68	47 27	29
	N/62E+17CC N/62E-33AC	WE SP	8-79			13. 17.				98	40 15	48 62	52	10.0 5.8
	N/62E-33D	WE	8-79			18.		7.	į	79	14	63	23	5.7
	N/60E-24CB	WE	7-75			20.		8.	1 4	05	37	76	29	38
	N/61E-21ABB	4E	7-79 5-79			21.				12	63 37	44 70	19	21 41
	N/61E-23A6A N/62E-318BC	WE SP	3-79	DEE GEE S	PRING	15. 18.				57 50	21	42	44 24	10.0
	N/59E-36C	WE	7-75	WALLS STA		12.		7.	2 6	00		88	35	41
	N/61E-13C	5.0	8-79	HARDY SPR		15.				63	15	55	55	65
	N/61E-32D N/62E-19AC	S P S P	8-79 8-79	MORMON HO		36. 20.				48 75	29 13	61 59	19 24	26 5.6
	N/61E-27DC	3 F	7-75	RIORDAN W		23.				90		45	25	***
3 8	N/61E-27DCC	36	12-79	USAF TEST	WELL	-		-	•				11	68
4 8	N/615-27DCC	#E	12-79	USAF TEST							••	••		
	M/62E-14CAA M/63E-19ADA	S P S P	9-79 8-79	SILVER SP SHINGLE S		22. 16.				72 28	27 47	18 57	52 18	14 16
	N/61E-36CCA	J E	7-79	3414062 3		17.				28	86	36	35	13
	N/62E-28AD	SP	-44	BUTTERFIE		-			- 2	83	46	40	23	2.0
	N/59E-15DA	SP	7-79	FOREST HO		28.				99	15	62	29	9.5
	N/63E-253 N/61E-19DA	5 P	5-79 4-63	MOGN RIVE		33. 27.				12	26 28	53 60	21 24	22 24
	N/61E-1988	á E	7-75	FOREST MO		21.				90		42	24	23
	N/60E-24D	#E	7-75			14.				70	72	47	150	550
). (K	TASSIUM CARBO (CO3)		(CA98. C		C4) (F)	RIDE NIT		BORON (8)	IRON MA		REPAI	RKS	9870	RENCE
1 2	4.0	o O	252 249	65 9.0	57 18		2.5	180			*6		SATEM	
ŝ	9.0	'n	224	38	71	. 6	4.5	340			• 2,6		BATEM	
4	9.0	á	250	86	147								BATEM	
5	3.3	0	269	21	61	• 3	1.5				• 5		ERTEC	
5	I.6 4.7) O	393 264	9.4 1¢	56 53	:1	3.3				*2		ERTEC ERTEC	79
3	9.2	ž	239	93	221	. 3	2.1	••			• 2		ERTEC	
9	1.5	0	327	6.5	24	.1	3.9				+5		ERTEC	
0	3.9 5.0	0	420 278	18	79 28	٠,	1.4				•5		ERTEC	
2	1.1	3	332	4.0 3.6	22	•1	.8				• 5		ERTEC ERTEC	7.
3	1.2	ō	2880	3.0	24	• 2	.8				• 2		ERTEC	79
4	5.0	0	311	19	84	1.0	16	490			45.6		BATER	
5 6	5.5	0	193 366	16 33	43 142	.2	.5 ND				•2		ERTEC ERTEC	
7	1.5	š	244	7.5	25	:2	.8				• 2		ERTEC	79
3	9.0	0	272	9.4	107						• •		BATEM	IN 76
9	1.7	0	2 # 3 2 9 3	2.5	17 50	?	. 8 N D				• 5		ERTEC	
1	5.6 1.3	o	103	9.4 3.0	16	1.5	.9				• 2		ERTEC	
		Ō	219			~-	••				-6		BATEM	N 76
!2	14		214	5.5	28	1.3	1.2	700	1000		•1		ERTEC	
3			254	9.4	21	.3	1.1	500	3000		• 2		ERTEC ERTEC	
3		_	258	15	24	. 2	14	••	••		• 5		ERTEC	
	2.5	J				, ;	ND				-		ERTEC	
3 4 5 6 7	2.5 2.5 5.0	Š	273	4.0	11									
3 6 7	2.5 2.5 5.0		273 178	13	27				. 3		• 5		Mar Y	FT AL A
3 4 5 6 7 8	2.5 2.5 5.0 1.2	 3	273 178 312	13 6.3	27 19	.0	1.3		.3		•5		E 1 1	ET AL 4'
3 4 5	2.5 2.5 5.0 1.2 4.2		273 176 312 253	18 6.3 9.0	27	.0	1.3 ND				• 5		M Y E ERTEC EAKIN	ET AL 4 79 79
3 6 7 8	2.5 2.5 5.0 1.2	3 3	273 178 312	13 6.3	27 19 42	.0	1.3				•5		E ERTEC	ET AL 4 79 79 66 IN 76

NOTE: SAMPLES FOR WATER QUALITY ANALYSIS COLLECTED BY ERTEC EXCEPT WHERE NOTED. ALL ANALYSIS REPORTED IN MG/L EXCEPT AS MOTED BELOW.
DISSOLVED SOLIDS FOR ERTEC SAMPLES DETERMINED BY RESIDUE FOR EXAPORATION AT 180 DEGREE C.
NEWARA LOCATIONS RESED ON MIT DIRECT DIRECT WITHN LOCATIONS BASED ON SALT LAKE BASELINE AND MERIDIAN.
SPECIFIC CONDUCTANCE REPORTED IN MICROMMOS/CM AT 25 DEGREES C.

FOCT +1 NITHATE REPORTED AS N NOTES:-2 NITHATE REPORTED AS NOS +3 NITHITE + NITHATE REPORTED AS N +4 DISSOLVED SOLIDS BY SUM OF DETERMINED CONSTITUENTS +5 PLANK AS NA +0 NCCISCOI AS NCOS NO = NGT DETECTED

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SELECTED WATER QUALITY DATA WHITE RIVER VALLEY, NEVADA

30 NOV 81

APPENDIX G

GLOSSARY OF SELECTED HYDROGEOLOGIC TERMINOLOGY

GLOSSARY OF SELECTED HYDROGEOLOGIC TERMINOLOGY

AQUIFER - A body of rock that contains sufficient saturated, permeable material to yield significant quantities of ground water to wells and springs.

Confined Aquifer - An aquifer bounded above and below by impermeable bed(s) of distinctly lower permeabil-

ity than that of the aquifer itself.

- Deep Aquifer A consolidated rock aquifer, or carbonate aquifer when contained in limestone or dolomite rock, which occurs beneath the unconsolidated valley-fill sediments and in the mountain ranges. This aquifer is the conduit for any interbasin or regional-flow systems which exist. Flow is believed to be primarily through fracture and solution openings rather than intergranular.
- Perched Aquifer An aquifer separated from an underlying main body of ground water by an unsaturated zone.
- Intermediate Aquifer An intermediate aquifer is arbitrarily defined as an aquifer that occurs below 500 feet in the unconsolidated valley-fill sediments.
- Shallow Aquifer A shallow aquifer is arbitrarily defined as an aquifer that occurs in the upper 500 feet of unconsolidated valley-fill sediments.
- Unconfined Aquifer (Water-table aquifer) An aquifer that has a free water table which is not confined under pressure beneath relatively impermeable stratum.
- <u>ARTESIAN</u> An adjective referring to ground water confined under hydrostatic pressure.
- DRAWDOWN The distance by which the level of a reservoir is lowered by the withdrawal of water.
- EVAPOTRANSPIRATION The process by which ground water becomes atmospheric water either by evaporation from a surface or transpiration by plants. No effort is made to distinguish between the two.
- FLUVIAL Pertaining to, produced by, or formed by a river or stream.
- HYDRAULIC CONDUCTIVITY The rate of flow of water through a unit area of aquifer normal to a unit gradient. It is a measure of the ease with which a material transmits water.
- HYDROSTATIC PRESSURE The pressure exerted by the water at any given point in a body of water at rest. The hydrostatic pressure of ground water is generally due to the weight of water at higher levels in the zone of saturation.
- <u>LACUSTRINE</u> Pertaining to, produced by, or formed in a lake or lakes.

- PERENNIAL YIELD The amount of water that can be withdrawn on a continuous basis without causing an undesirable result. The term "undesirable result" is not defined, but may include intrusion of water of undesirable quality, reduction of head below an economic pumping level, or environmental effects such as destruction of marshy wildlife habitat or destruction of useful phreatophytes. Perennial yield must be less than the long-term average recharge, but other than that, generalizations cannot be made. Perennial yield cannot be computed until a management decision has been made on the definition of an undesirable result. Perennial yield in this report refers to state and federal estimates. These estimates are not accompanied by a quantification or definition of undesirable effects.
- PHREATOPHYTE A plant which takes water directly from the capillary fringe or water table. In the MX siting area, these are primarily greasewood, rabbitbrush, saltgrass, and pickleweed.
- POORLY SORTED Consisting of particles of many sizes mixed together in an unsystematic manner.
- POTENTIOMETRIC SURFACE An imaginary surface representing the total head of water in an aquifer. It is the level at which water will stand in a properly constructed well. Ground water always flows from higher to lower potential and perpendicular to contours on the potentiometric surface.
- SPECIFIC CAPACITY The rate of discharge of a water well per unit of drawdown, commonly expressed in gallons per minute per foot.
- SPECIFIC YIELD The volume of water which will drain from a saturated unit volume of an unconfined aquifer under the influence of gravity. Expressed as a ratio or percentage.
- STORAGE COEFFICIENT The amount of water added to or removed from storage per unit of surface area of a confined aquifer per unit of change in head normal to that surface. Expressed as a decimal ratio.
- STORATIVITY A generalized term for storage coefficient and/or specific yield.
- TRANSMISSIVITY The rate at which water is transmitted through a unit width of an aquifer under a unit gradient. It is a measure of the ability of an aquifer to transmit water. It is numerically equal to the hydraulic conductivity times the aquifer thickness.
- <u>WELL-SORTED</u> Consisting of particles all having approximately the same size.