#### **Software Configuration Management**

- The process of identifying, organizing & controlling changes to the software during development and maintenance.
- SCM is support activity that makes technical & managerial activities are more effective.
- SCM operate throughout the software life cycle.
- A methodology to control & manage a software development project.

#### • Purpose of SCM:

➤ Established and maintain the integrity of quality of work products.



#### • MOM (Minutes of meeting):

- Project deliverables
- Project artifacts
- Work products
- Work items
- Project records / Outputs

#### Why we need SCM?

- To manage multiple people have to work on software that changing.
- ❖ Project delivered in several releases (Builds).
- Software must run on different machines & Operating systems.

#### • Problems resulting from poor SCM:

- Can't roll back to the previous system.
- One change over write another
- Which code changes belongs to which version?

## • Using SCM:-

- Multiple project can be managed
- View different things in one place
- Rollback changes
- ❖ KPA in SEI CMMI level 2

#### Major activities:

- Configuration planning & setup
- Configuration identification
- Configuration baseline
- Configuration management
- Configuration release control
- Configuration Audit
- Control of customer properly

#### SCM:- How it is accomplished?

- Using version control tool ex. WinSCP, git,gitLab
- What are the Configuration items identified for current project?
- Test plan, Requirements, Design specifications, Test scenarios, test cases & code.

- What are the Non-Configuration items identified for current project?
- MOM's, Status report, summary report, mails etc;

## **SQA(Software Quality Assurance) & SQC(Software Quality Control)**

# • SQA(Process & Audits):

- Process oriented
- Preventing problem
- > Continuous improvement
- Audits

## • SQC(Testing & reporting):

- Product oriented
- > Detecting problems
- > Final check point before delivery.

| Criteria      | SQA                        | SQC                       |
|---------------|----------------------------|---------------------------|
| 1. Definition | SQA is a set of            | SQC is a set of           |
|               | definition for             | activities for ensuring   |
|               | ensuring quality in        | in software product.      |
|               | software engineering       |                           |
|               | process.                   |                           |
| 2. Focus      | Process oriented           | Product oriented          |
| 3. Problems   | Preventing                 | Detecting                 |
| 4. Scope      | Relates to all             | Relates to specific       |
|               | products that will         | product                   |
|               | ever be created by         |                           |
|               | process.                   |                           |
| 5. Activities | <ul><li>Process</li></ul>  | <ul><li>Reviews</li></ul> |
|               | definition and             | <ul><li>Testing</li></ul> |
|               | implementation             |                           |
|               | <ul><li>Audits</li></ul>   |                           |
|               | <ul><li>Training</li></ul> |                           |
| 6. Example    | Verification               | Validation                |

- ❖ Verification: Checks whether we are building the right system
- ❖ Validation: Checks whether we are building the system right

#### • Verification Strategies:

- > Requirement review
- Design review
- Code walkthrough
- Code review

## • Validation strategies:

- Unit level testing
- Integration level testing
- > System level testing
- Alpha testing
- User acceptance testing
- Beta testing

#### • Verification Strategies:

### \* Requirement review:-

- The study & discussion of the computer system requirements to ensure they meet stated user needs & are feasible.
- Deliverable: Review statement of requirements (Approved SRS)

## Design review:

- The study & discussion of the computer system design to ensure it will support the system requirements.
- Deliverable: Approved high level design & low level design includes DB, UI & UML diagrams.

#### **\*** Code Walkthrough:

- Informal analysis of the program source code to find defects & verifying coding techniques.
- Deliverable: Software ready for initial testing by the developer.

#### **❖** Code Review:

- Formal analysis of the program source code to find defect as defined by meeting system design specification.
- Deliverable: Software ready for testing by the testing team.

#### **Validation strategies**

## • Unit level testing

- Testing of single program, modules, or unit of code.
- Deliverable: Software unit ready for testing with other system components.

## • Integration level

- o Testing of related programs testing, modules, or unit of code.
- o Deliverable: System is ready for testing

#### System level testing

 Testing of entire computer system across all modules, this kinds of testing can be include functional & structural testing.  Deliverable: Tested computer system based on what was specified to be developed.

#### Alpha Testing

- Testing of the whole computer system before rolling out to the UAT.
- o Deliverable: Stable application

#### • User acceptance Testing

- Testing of computer system to make sure it will work in the system regardless of what the system requirements indicate.
- o Deliverable: Tested and accepted system based on the user.

#### • Installation Testing

- Install and uninstall application using various operating system and bowser.
- Deliverable: Approved .exe

#### Beta Testing

- Testing of the application after the installation at the client place.
- Deliverable: Successfully installed and running the application

# Verification & Validation



## **Software Test Engineer Roles and Responsibilities:**

- Understanding the requirement and functional specifications of the application.
- Identifying required test scenarios for project.
- Designing and preparing test case to validate application.
- Execute test cases to validate application.
- Log test result (How many test cases are pass or fails).
- Defect reporting and defect tracking.
- Retest fixed defect of previous build.
- Performed various types of testing assigned by **Test Lead** (Functionality, Usability, User Interface, Compatibility).
- Reports to Test Lead about status of assigned tasks:
  - Daily status report
  - Daily defect report
  - Weekly status report
  - Retesting report
  - Other assigned tasks
- Participated in regular team meeting by lead and manager.
- Creating automation scripts for regression testing.
- Provides enhancement of project based on end user perspective.
- Provides the recommendation on whether or not the application or system is ready for production.

#### **Senior Software Test Engineer Roles and Responsibilities:**

- Same as Software Test Engineer
- He is participated in review of test scenarios, test cases, and defects.
- Some time involved in preparation of test plan.
- Whenever the test lead on vacation, he will lead the team.

## **Testing Terminology:**

- o PMP: Project Management plan
- o BRS: Business requirement specifications
- SRS: Software requirement specifications
- o FRS: Functional requirement specifications
- HLD: High level design
- o LLD: Low level design
- LOC: Lines of code
- o TP: Test Plan
- CR: Change request
- o MOM's; Minutes of Meeting
- UI: User Interface
- TS: Test Scenarios
- o TC: Test cases
- DSR: Daily status report
- o DDR: Daily defect report
- WSR: Weekly status report
- o RTM: Requirement Traceability Matrices
- STE: Software Test Engineer
- SSTE: Senior Software Test Engineer
- o TL: Test Lead
- TM: Test Manager
- o BA: Business Analyst

o PM: Project Manager

o SCM: Software Configuration management

o SQA: Software Quality Assurance

o SQC: Software Quality Control

o OID: Organizational Innovation & deployment

o ECP: Equivalent Class Partition

o BVA: Boundary Value Analysis