arxiv מחט בערימת דאטה - פרוייקט

Meirav Caspi, meirav.caspi@mail.huji.ac.il, meirav.caspi Ory Asida, Ory.Asida@mail.huji.ac.il, oryx Ella Zeldes, Ella.Erez@mail.huji.ac.il, ellaerez

הצגת הבעיה

נרצה לנתח את המאמרים מהאתר arxiv.org. נתמקד במאמרים מתחום מדעי המחשב. נשתמש בטכניקות arxiv.org ע"מ למצוא אבחנות מעניינות בנוגע למאמרים. data analysis

דאטה

שילבנו בין מספר מקורות מידע:

- דאטה שהורדנו דרך הסקריפט המתואר פה

 https://github.com/mattbierbaum/arxiv-public-datasets : https://github.com/mattbierbaum/arxiv-public-datasets : https://github.com/mattbierbaum/arxiv-public-datasets : arxiv- מ-2.2GB מספר הרשומות בו 1638306: גודלו: 1638.3, פורמט in parxiv : מקריפט מאפשר בנוסף הורדת דאטה של references ודאטה מסודר של המחברים. עם זאת, כיוון שזה כרוך בהשקעה כספית (כי נדרשת הורדת ה-pdf דרך pdf), החלטנו במקום להשתמש בדאטה חלקי חינמי (מפורט בסעיף הבא). ראוי לציין שויתור זה עלה בדיוק של הדברים (כיוון שלמשל לא יכולנו לבדוק בכל מאמר מי הארגון שפרסם אותו, לא יכולנו לבצע אנליזות של מיקום גיאוגרפי ועוד).
 - דאטה של references ומחברים עד מרץ 2019. נלקח מהאתר references ומחברים עד מרץ 2019. נלקח מהאתר https://github.com/mattbierbaum/arxiv-public-datasets/releases כוללים רק מאמרים שב-arxiv, כך שזה מאוד חלקי. הדאטה מחולק לשלושה קבצים:
 - 725MB :מטה-דאטה
 - רפרנסים: מיפוי ממאמר למאמרים אותו הוא מצטט. 131M B
 - מחברים בפורמט אחיד: 193MB.

0704.0188 submitter Tanva Elliott Tanya M Elliott and John F Wheater authors title Biased random walks on combs minor changes in technical definitions comments journal-ref J. Phys. A: Math. Theor. 40 (2007) 8265-8288. 10.1088/1751-8113/40/29/005 doi Oxford University Preprint OUTP-07-04P report-no [cond-mat.other] categories versions [v1, v2] abstract md5 02cdb09ad37f70e671889ed99f1de3b0

מספר הרשומות הסופי לאחר איחדו: 1506500 דוגמא לרשומה:

תוצאות

קטגוריות

השתלטות תחום מדעי המחשב על תחומים אחרים:

כל מאמר בדאטה המקורי מסווג לקטגוריה אחת או יותר לפי התחומים בהם המאמר נוגע. מדעי המחשב הוא אחת הקטגוריות. סביר להניח שעם השנים, תחום מדעי המחשב נהיה רלוונטי לתחומים נוספים, שעם הזמן קיבלו נדבך יותר חישובי (כדוגמת ביולוגיה). בנוסף, עם החדירה של מקורות big data כמעט לכל עולם תוכן, נצפה שכלים וטכניקות חישוביות יהיו חלק מארסנל הכלים של חוקרים מעולמות תוכן מגוונים.

ע"מ לבחון את ההשערה, בחרנו להשתמש בדיאגרמת ון כאשר הדאטה מפולח ברזולוציה שנתית (כלומר - עבור כל שנה לקחנו את המאמרים שהתפרסמו באותה השנה, ויצרנו דיאגרמת ון). נרצה לראות את האינטרקציה שבין העיגול שמייצג את מדעי המחשב לבין שאר העיגולים (מתמטיקה, ביולוגיה חישובית, וכו'), כפונקציה של הזמן. ע"מ לא להעמיס, בחרנו להתמקד בקטגוריות שבהן ראינו דינמיקה באינטראקציה מול מדעי המחשב. הדיאגרמה של 2019 לדוגמא:

ניתן לצפות בכל השנים בצורה דינמית פה- https://imgflip.com/gif/3rsscm

מתוך מספר שיטות ויזואליזציה שונות בחרנו בדיאגמת ון כיוון שאנחנו רוצים לבחון את מידת החפיפה בין התחומים, וקל מאוד אינטואיטיבית לראות זאת באמצעות התבוננות בעיגולים, בנפח, ובחיתוך ביניהם. הוספת מימד הזמן באמצעות אנימציה מקלה על הבחנה בטרנדים.

הבחנות:

- ניתן לראות כי בתחילת הדרך הקטגוריה העיקרית היא מתמטיקה, ויש מעט מאוד ממדעי המחשב. ככל שעובר הזמן תחום מדעי המחשב הולך וגדל בנפחו גם מבחינת כמות המאמרים וגם באופן יחסי בפרקציה שלו מתוך כל התחומים.
- נשים לב שהפלטפורמה של arxiv היתה מוכוונת יותר למתמטיקה ופיזיקה ופחות למדעי המחשב באופן כללי, בתחילת דרכה. לכן, ייתכן שהנתונים לא באמת מצביעים על עליית תחום מדעי המחשב באופן כללי, אלא רק על עלייתה בתוך Arxiv. אם היינו בוחנים דאטה מפלטפורמות נוספות כדוגמת Google אלא רק על עלייתה בתוך Scholar.
- תחום הסטטיסטיקה שמוכל ממש בתחום המתמטי בשנים הראשונות (1995-2004) הופך לתחום עצמאי עם השנים ולאחר מכן מגדיל את חפיפתו עם מדעי המחשב עד לכדי הכלה מלאה בשנת 2019. electrical החפיפה של מדעי המחשב עם תחומים נוספים הולכת וגדלה גם עבור מתמטיקה וכן quantitative finance-ing and systems science.

מעניין שדווקא עם ביולוגיה חישובית, תחום מאוד קרוב למדעי המחשב, החפיפה לא מאוד גדולה והתחום לרוב אינו בחפיפה עם אף תחום. זה אמנם domain מאוד ספציפי, אך נצפה שבעתיד הקרוב יהיו מאמרים משותפים עם התרחבות השימוש בטכניקות מעולם ה-machine learning גם בתחום הביולוגיה החישובית.

קהילות בתוך תחום מדעי המחשב:

מצד אחד, התבוננות על הדאטה ברזולוציה של תחומים (למשל: מדעי המחשב) היא גסה מידי, אך מצד שני התבוננות ברזולוציה של תתי תחומים (למשל: ראייה ממוחשבת) יכולה להעמיס עלינו. מעניין לזהות בצורה אוטומטית communities בתוך תחום מדעי המחשב. למשל, היינו מצפים שראייה ממוחשבת ועיבוד שפה טבעית ישתייכו לאותו ה-community, כיוון שמדובר בתחומים עם טכניקות דומות (מאז שלמידה עמוקה הפכה לכלי סטנדרטי לפתרון בעיות בשני התחומים הללו).

ע"מ לזהות את ה-communities, יצרנו גרף עם 40 קודקודים (אחד עבור כל תת תחום של מדעי המחשב). בין כל זוג קודקודים יש צלע הממושקלת לפי מספר המאמרים שמשתייכים לשתי הקטגוריות ביחד. גודל כל קודקוד תלוי בדרגת הקודקוד. שימוש באלגוריתם הmodularity של gephi זיהה ארבע קהילות. כל קודקוד צבוע לפי הקהילה אליה הוא משתייך.

נשים לב לקהילה הכתומה - קל לראות שהיא מכילה לרוב קטגוריות הקשורות ללמידה, כדוגמת cs.AI (artificial intelligence), cs.LG (machine learning), cs.CL (computation and language), cs.CV (computer vision and pattern recognition)

קל להבחין גם שהקהילה הירוקה מכילה לרוב תתי קטגוריות הקשורות לסביבות מרובות סוכנים, כדוגמת cs.MA (multiagent systems), cs.GT (computer science and game theory), cs.DC (Distributed, Parallel, and Cluster Computing)

הקהילה הירוקה מכילה בין השאר נושאים יותר חברתיים, כדוגמת cs.HC (human-computer interaction), cs.CY (computers and society), cs.SI (social and information networks)

הקהילה הסגולה מכילה נושאים יותר בסיסיים במדעי המחשב, כדוגמת cs.LO (logic in computer science), cs.PL (programming languages), cs.DB (databases), cs.DS (data structures and algorithms)

טרנדים בתחום מדעי המחשב:

בכל שנה מספר שונה של מאמרים מוגש לכל תת תחום של מדעי המחשב. נרצה לבחון האם קיים טרנד במידת הפופולריות של תתי תחומים מסוימים. למשל, נצפה לראות עלייה ברורה בתתי תחומים הקשורים ללמידה, כדוגמת ראייה ממוחשבת - אשר ראה פריצת דרך משמעותית ב-2012 עם הצלחתה של הלמידה העמוקה.

בגרף הבא מוצג החלק היחסי שכל תת תחום במדעי המחשב תופס מנפח המאמרים שהוגשו באותה השנה. הגרף ממויין כך שבתחתית נמצא התחום שתופס את החלק היחסי הגדול ביותר בשנה האחרונה (ב-legend המיון הפוך). ניתן לראות כיצד בשנים האחרונות עלה משמעותית החלק היחסי של מספר תחומים: ,computer vision and pattern recognition, computer and language

ציטוטים

(בדאטה הנתון לנו הציטוטים הם רק של מאמרים הנמצאים במאגר של arxiv, לכן הדאטה הוא חלקי).

<u>אפקט הזמן על מספר הציטוטים</u>

בסעיף הזה בחרנו להתמקד בתחום מדעי המחשב (כ-201k רשומות). כאשר בוחנים את מספר הציטוטים למאמר לפי השנה בה הוא הוגש מקבלים היסטוגרמה שבמבט ראשון נראית מפתיעה. היינו מצפים שככל שמאמר ישן יותר הוא יקבל יותר ציטוטים, כיוון שזמן החשיפה שלו ארוך יותר ויש יותר סיכוי שיצוטט.

המגמה שאנו רואים ניתנת להסבר ע"י מספר גורמים:

- סביר להניח שמאמר יצוטט בשנים עוקבות אחדות בלבד לאחר שפורסם, אלא אם כן הוא מאמר
 - מפתח מאוד מרכזי או sleeping beauty. לכן, העלייה בכמות הציטוטים לא . תהיה ליניארית אלא תגיע ל-plateau.
 - מרצור מספר המאמרים שמפורסמים ב-arxiv גדל מדי שנה (רואים בקו הכתום). לכן, הגיוני שהדאטה החלקי שלנו שמראה ציטוטים אך ורק בתוך arxiv יראה מספרים קטנים יותר בשנים מוקדמות יותר. בשילוב עם הסעיף הקודם, נניח שמאמרים נוטים לצטט רק מאמרים שישנים מהם בלכל היותר n שנים. כיוון שב-n השנים הראשונות של arxiv היו פחות מאמרים לעומת שנים עוקבות, זה אומר שהרף העליון של מספר הציטוטים

שמאמר יכול לקבל (בתוך Arxiv) נמוך יותר מזה של מאמר חדש יותר. לכן, גם פה, דאטה ממקורות נוספים כדוגמת Google Scholar יכול לשפוך אור על העניין.

נשים לב שהדאטה בגרף של מספר הציטוטים הוא עד מרץ 2019, ולכן מספר הציטוטים בשנים 2019 ו-2018 קטן לעומת שנים קודמות (ונצפה שבעוד מספר שנים המספר יהיה גדול יותר מהשנים הקודמות בדיוק בגלל מה שהסברנו).

מציאת מאמרים חשובים

המבנה הגרפי המושרה ע"י ציטוטים יכול להוות מקור אינפורמציה מועיל למציאת מאמרים חשובים, בדומה למבנה המושרה על עמודי אינטרנט ע"י לינקים. גם ב-Arxiv, בדומה לאינטרנט, כל אחד יכול להעלות מאמר. כלומר - אין מנגנון רשמי המאפשר להבחין בין מאמרים טובים למאמרים לא טובים. בהינתן שמאמר טוב מצטט מאמר אחר, ניתן להניח שגם המאמר המצוטט הוא טוב. זוהי בדיוק הנחת העבודה (הרקורסיבית) של אלגוריתם ה-PageRank, אותו בחרנו להפעיל על מאמרים השייכים לאחד מתתי התחומים של למידה חישובית (כ-80k רשומות): Robotics, Computation and language, Information retrieval, Computer vision and pattern recognition, Sound.

לפני שנבחן את התוצאות, עלינו לתת את הדעת על אחד ההבדלים המהותיים בין גרף המאמרים לבין גרף עמודי האינטרנט: מאמר יכול לצטט אך ורק מאמרים שקדמו לו בציר הזמן. ב-setting כזה, טבעי שתהיה קורלציה שלילית בין השנה בו פורסם מאמר לבין הדירוג שלו. ואכן, חישבנו את קורלציית spearman בין ציר

¹ A 'Sleeping Beauty in Science' is a publication that goes unnoticed ('sleeps') for a long time and then, almost suddenly, attracts a lot of attention ('is awakened by a prince'). (as defined by Anthony F. J. van Raan. Sleeping Beauties Cited in Patents: Is there also a Dormitory of Inventions?)

הזמן לבין הדירוג, וקיבלנו קורלציה שלילית של 0.447- עם ערך p-value אפסי 1 (קיבלנו 0 מוחלט, אבל כמובן שזה מוגבל בדיוק הנומרי של המחשב).

ע״מ להתמודד עם ה-bias הזה בדאטה, בחרנו לנרמל את הדירוג $^{\epsilon}$ ביחס לחלון של 1000 המאמרים הצמודים

 $R_i(p) = rac{p_i - \mu_i(p)}{\sigma_i(p)}$ מפחיתים את הממוצע של המאמר מבחינת ציר הזמן לפי הנוסחה ומחקף. (נשים לב שלמאמרים בקצה הדאטה מבחינת זמן אין הדירוגים המקוריים בחלון ומחלקים בסטיית התקן. (נשים לב שלמאמרים בקצה הדאטה מבחינת זמן אין חלון מלא של 1000 מאמרים שהם במרכזו, ולכן נרמלנו אותם לפי החלון שהתאפשר.) לאחר נירמול הדירוגים, הקורלציה התמתנה באופן משמעותי ל-0.191-. אמנם הבעייה לא נפתרה לחלוטין, אך מצבנו הוטב.

כעת, נראה אנקדוטלית כי הדירוג המנורמל מביא תוצאות איכותיות: המאמר השביעי בדירוגו המנורמל הוא הכן מאמר. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding מאמר זה אכן מהווה אבן דרך משמעותי בעולם ה-NLP, והרבה מהפיתוחים העדכניים מבוססים עליו. כיוון שמאמר זה הוא חדש יחסית (סוף 2018), הדירוג הלא מנורמל שלו הרבה פחות טוב - 1467.

דרך נוספת שתראה לנו שהדירוג המנורמל הוא אכן מועיל היא לחשב את הקורלציה בינו לבין מדד אחר שקשור לאיכותו של מאמר (לפחות כך הוא נתפס בעולם המדעי) - מספר הציטוטים שמאמר מקבל. ואכן, אנו מקבלים קורלציית spearman של -0.681 (עם p-value של 0 עד כדי מגבלת הדיוק הנומרי).

דירוג מחברים:

כנראה שיש קורלציה בין חשיבות מאמר (מסעיף הקודם) לבין חשיבות של המחבר של המאמר. עם זאת, זה לא מספר את התמונה השלמה, שכן כל מחבר יכול לכתוב מספר מאמרים. לכן, נרצה לדרג בין כלל המחברים. לשם כך, נייצר גרף מכוון בו יש קודקוד עבור כל מחבר, וקיימת צלע מכוונת מכל מחבר שציטט מחבר אחר ממשוקלת לפי מספר הציטוטים. נשים לב שבגרף הזה אין את בעיית ציר הזמן שהייתה לנו בגרף של המאמרים, ולכן נפעיל PageRank רגיל. נתמקד בתחום של למידה חישובית, כדי להקל על זמן הריצה וניתוח הנתונים (כ-60k מחברים).

לאחר הפעלת האלגוריתם ובחינה ידנית של המחברים עם הדירוג הגבוה ביותר, הבחנו במספר מחברים בעלי חשיבות גבוהה בעולם הלמידה החישובית, ביניהם:

- י קיבלו לאחרונה (Yoshua Bengio (rank = 1), Yann Lecun (rank = 30), Hinton Geoffrey (rank = 57): קיבלו לאחרונה את פרס טיורינג בשל תרומתם.
- ג Ian Goodfellow (rank = 9): תרם תרומה משמעותית למודלי ה-GAN (ואכן קיימים הרבה מאמרים בנושא, שנשענים על עבודתו).

² We used the two-sided p-value for a hypothesis test whose null hypothesis is that two sets of data are uncorrelated, as implemented by scipy.stats.

³ Hao Liao, Manuel Sebastian Mariani, Mat'u's Medo, Yi-Cheng Zhang, and Ming-Yang Zhou. Ranking in evolving complex networks. Arxiv.org 4/2017

sleeping beauties

על מנת למצוא sleeping beauties בחרנו מאמרים עם לפחות 5 ציטוטים ועם פער של לפחות 9 שנים ללא אף ציטוט (נזכיר שוב שהדאטה מאוד חלקי ושבשנים מוקדמות יותר כמעט ולא היו ציטוטים פנימיים ב-arxiv, ציטוט (נזכיר שוב שהדאטה מאוד חלקי ושבשנים מוקדמות יותר כמעט ולא היה קשה לנו לדעת מה באמת לכן לא נפעיל סף גבוה מדי על מספר הציטוטים). קיבלנו מספר מאמרים, אך היה קשה לנו לדעת מה באמת חשוב. לכן, הצלבנו את המידע של ה-sleeping beauties עם הדירוג שקיבלנו בסעיף קודם ע"י הפעלת (לשם כך הגבלנו את עצמנו ל-sleeping beauties מעולם הלמידה החישובית). המאמר עם הדירוג המנורמל הטוב ביותר (249, כאשר נמוך יותר == טוב יותר) הוא

The information bottleneck method (Naftali Tishby)

ואכן, מהיכרות בסיסית עם עולם הלמידה החישובית, אנחנו יודעים שקונספט ה-information bottleneck צבר מהיכרות בסיסית עם עולם הלמידה החישובית, אנחנו יודעים שקונספט ה-sleeping beauty הנ"ל קיבל דירוג טוב.

מכשולים ומחשבות לעתיד

לצערנו, מספר כיווני מחשבה שניסינו לא הביאו לתובנות מעניינות. עבור חלקם, ייתכן שבהינתן דאטה יותר שלם הם כן היו משתלמים:

- השוואה בין אקדמיה לחברות, למשל איזה טרנדים מאפיינים כל אחד.
- בחלק ניכר מהדאטה לא מצויינים גופי המחקר שפרסמו את המחקר.
- בחלק בו כן מצויינים הגופים, הדאטה הוא unstructured. ניסיונות בסיסיים של מציאת מחרוזות כדוגמת "univ", וכן שמות של חברות מובילות כגון "google" הניב תוצאות רועשות ולא מעניינות.
 - שימוש ב-scraping ממקורות מידע נוספים ע"מ להשיג את שמות המוסדות בצורה מהימנה (למשל Google Scholar), ומימוש מיפוי משם מוסד ל"חברה"/"אקדמיה" (מציאת מחרוזות יותר אינדיקטיביות / מימוש מסווג) היה מייצר עבורנו דאטא איכותי יותר, שייתכן שהיה מניב תוצאות מעניינות.
- מיפינו אבסטרקטים ל-dense vectors באמצעות המודל en_core_web_sm של שממפה טקסט לוקטורים קונטקסטואליים. לאחר מכן חישבנו צברים באמצעות k-means. עקב הכמות הגדולה של המאמרים, לא הצלחנו למצוא היגיון מעניין בצברים. יכול להיות מעניין לאמן מודל פשוט (למשל מסווג ליניארי / nearest neighbours) שבהינתן וקטור של מאמר, חוזה לאיזה קטגוריות יש לשייך אותו. ניתן יהיה לשכלל את האלגוריתם ולהוסיף לו עוד features, למשל אוסף הקטגוריות של המאמרים אותם הוא מצטט.
- שימוש בגרף שיתופי פעולה של מחברים (קודקוד עבור כל מחבר, וצלע בין שני מחברים במידה ועשו מאמר ביחד) לחישוב betweenness centrality וזיהוי מחברים חשובים בתחום. לצערנו לא הספקנו, כיוון שהרצה של האלגוריתם לוקחת הרבה זמן.
- בחינת דפוסי התנהגות של מחברים בהקשר של כנסים, למשל: יצירת גרף בו יש קודקוד עבור כל כנס, וצלע במידה ומחבר הגיש מאמר לשני הכנסים. דבר זה יוכל לסייע לנו למצוא איזה כנסים דומים אחד לשני, ולמצוא צברים (למשל: כנסים בנושא ראייה ממוחשבת). המכשול שניצב בפננו היה חוסר מבניות בדאטא, כלומר שם הכנס אליו מאמר הגיע הופיע בתוך שדה חופשי comments שלעתים הכיל מידע אחר לגמרי.

⁴ https://spacy.io/models/en#en core web sm

- רצינו לבחון האם מחברים שכותבים מאמרים עם אותם האנשים נבדלים ממחברים שחוברים לאנשים שונים כל פעם (למשל: באיכות המאמרים). לשם כך, הסתכלנו על גרף שיתופי הפעולה בין מחברים, ועבור כל מחבר בחנו את המרחק בין כל המחברים איתם עבד (כאשר מנתקים אותו מהגרף אחרת המרחק שנקבל יהיה לכל היותר 2). נתקלנו בקושי חישובי, שכן זה היה מאוד איטי.
 - באופן כללי, מכשול עיקרי היה זמן, הדאטה היה גדול מאוד גם עבור תת תחום ספציפי, וזמן הריצה היה גדול עבור הרבה דברים שרצינו לעשות.

מחשבות נוספות לעתיד ועוד דברים שפשוט לא הספקנו לעשות:

- אנליזה של שיתופי הפעולה בין אוניברסיטאות. לשם כך, אנו צריכים את ה-PDF. ניתן לבחון גם האם למרחק גאוגרפי יש השפעה על השת״פ.
 - במידה והיה לנו את המוסדות, היה מעניין לראות האם מוסדות נוטים לצטט את עצמם.
- בחלק בו ניסינו לאתר sleeping beauties החלטנו על מספר ספים. עם זאת, כנראה בכל תחום נכון לבחור בספים שונים (למשל: בתחום שהוא מאוד חם עם הרבה מאמרים מדי שנה, כנראה מספיק פער של מספר מועט של שנים ע"מ להיחשב ל-sleeping beauty). יהיה מעניין לחשוב איך אפשר לייצר אלגוריתם אוטומטי שעושה אדפטציה לספים בהתאם לדינמיות של כל תחום.
 - בהינתן קבוצת מאמרים, ניתן להמליץ על מאמרים אחרים שכדאי לקרוא ע"מ להבין טוב יותר את קבוצת הקלט (בעוד ש-PageRank נותן דירוג למאמרים, הוא עושה זאת מנקודת מבט גלובאלית). מימשנו אלגוריתם פשוט שעושה את זה, אבל מפאת חוסר היכולת לבצע אוולואציה, אין ביכולתנו להעריך את טיבו. מדובר באלגוריתם שמטייל בגרף הציטוטים ומחפש מאמרים שניתן להגיע אליהם מתוך כל המאמרים בקלט. הדירוג הוא פונקציה של המרחק של מאמר מכלל המאמרים בקלט. ניתן גם להשפיע על הדירוג ע"י התחשבות בציון ה-PageRank. דוגמא לפלט האלגוריתם ניתן למצוא בנספחים.

נספחים

מנורמל: ממויינים לפי sleeping beauties

id	authors	title	month	year	pr_index	normalized_pr_index
physics/0004057	Naftali Tishby (Hebrew University and NEC Rese	The information bottleneck method	04	2000	765.0	249.0
cmp-lg/9709008	Jay J. Jiang (University of Waterloo), David W	Semantic Similarity Based on Corpus Statistics	09	1997	1326.0	773.0
cmp-lg/9511007	Philip Resnik	Using Information Content to Evaluate Semantic	11	1995	3633.0	3679.0
cs/0609058	Ralf Steinberger, Bruno Pouliquen, Anna Widige	The JRC-Acquis: A multilingual aligned paralle	09	2006	1867.0	5556.0
cs/0211004	Nicola Leone, Gerald Pfeifer, Wolfgang Faber,	The DLV System for Knowledge Representation an	11	2002	2021.0	6024.0
cs/9908014	David H. Wolpert and Kagan Tumer	An Introduction to Collective Intelligence	08	1999	6290.0	6977.0
cs/0311031	J. Gerard Wolff	Towards an Intelligent Database System Founded	11	2003	6364.0	8880.0

:עשרת מאמרים עם ה-PageRank המנורמל הכי גבוה

normalized_pr	pr	title	authors	id
27.480684	0.010409	Adam: A Method for Stochastic Optimization	Diederik P. Kingma and Jimmy Ba	1412.6980
27.281768	0.025293	Improving neural networks by preventing co-ada	Geoffrey E. Hinton, Nitish Srivastava, Alex Kr	1207.0580
26.445150	0.007320	A Machine Learning Perspective on Predictive C	Byron Knoll, Nando de Freitas	1108.3298
26.046207	0.003005	Multi-Label Prediction via Compressed Sensing	Daniel Hsu, Sham M. Kakade, John Langford, Ton	0902.1284
25.778525	0.016077	Very Deep Convolutional Networks for Large-Sca	Karen Simonyan, Andrew Zisserman	1409.1556
24.031351	0.002976	Deep Residual Learning for Image Recognition	Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun	1512.03385
23.573560	0.000051	BERT: Pre-training of Deep Bidirectional Trans	Jacob Devlin, Ming-Wei Chang, Kenton Lee, and	1810.04805
23.523644	0.001701	TensorFlow: Large-Scale Machine Learning on He	Mart\'in Abadi, Ashish Agarwal, Paul Barham, E	1603.04467
22.707429	0.000607	MobileNets: Efficient Convolutional Neural Net	Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitr	1704.04861
22.685950	0.000773	Wasserstein GAN	Martin Arjovsky, Soumith Chintala, L\'eon Bottou	1701.07875

עשרת המחברים עם ה-PageRank הכי גבוה בעולם הלמידה החישובית:

- bengio yoshua -
- kingma diederik p -

- simonyan karen
 - ba jimmy -
- zisserman andrew
 - cho kyunghyun
 - vinyals oriol -
- szegedy christian
 - sutskever ilya -
 - goodfellow ian -

דוגמא לפלט של אלגוריתם ההמלצה שלנו (בקלט - שני מאמרים שדגמנו עם המילה CNN (מושג מעולם הראייה הממוחשבת), בפלט - מאמרים שאנו יודעים שהם אכן איכותיים ורלוונטיים):

Input:

- CNN Architectures for Large-Scale Audio Classification
- SC-DCNN: Highly-Scalable Deep Convolutional Neural Network using Stochastic Computing

Result recommendations:

- 1. Very Deep Convolutional Networks for Large-Scale Image Recognition
- 2. Deep Residual Learning for Image Recognition
- 3. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift