

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1 1. (Currently amended) A method for bypassing use of a protocol
2 checksum during communications across a reliable network link, comprising:
3 configuring a communication system to bypass use of the checksum during
4 communications across the reliable network link;
5 receiving an outbound packet at a source to be transmitted to a destination
6 across the reliable network link;
7 determining whether the outbound packet is directed to a valid destination
8 that is eligible for checksum bypassing; and
9 if so, sending the outbound packet to the destination across the reliable
10 network link without computing the checksum for the outbound packet;
11 wherein neither the source nor the destination computes the checksum for
12 the outbound packet.

1 2. (Original) The method of claim 1, wherein configuring the
2 communication system to bypass the checksum involves informing a protocol stack
3 within the communication system that network interface hardware for the
4 communication system is capable of computing the checksum, so that the protocol
5 stack does not compute the checksum.

1 3. (Currently amended) The method of claim 1, further comprising:

2 determining whether the outbound packet is directed to a valid destination
3 that is eligible for checksum bypassing;
4 if the outbound packet is not directed to a valid destination,
5 computing the checksum for the outbound packet, and
6 inserting the checksum into the outbound packet.

1 4. (Original) The method of claim 3, wherein the checksum is computed
2 by a driver associated with network interface hardware for the communication
3 system.

1 5. (Original) The method of claim 1, further comprising:
2 receiving an inbound packet from a source across the reliable network
3 link; and
4 accepting the inbound packet without re-computing the checksum;
5 wherein re-computation of the checksum is required by the communication
6 protocol to verify that the inbound packet was received without errors.

1 6. (Original) The method of claim 5, wherein accepting the inbound packet
2 without re-computing the checksum involves:
3 communicating a default checksum value to a protocol stack within the
4 communication system;
5 wherein the default checksum value matches the default checksum value
6 contained within a checksum field of the inbound packet;
7 whereby the protocol stack will match the default checksum value with the
8 checksum field of the inbound packet and will consequently accept the inbound
9 packet.

1 7. (Original) The method of claim 6, wherein accepting the inbound packet
2 without re-computing the checksum additionally involves inserting the default
3 checksum value into the checksum field of the inbound packet.

1 8. (Original) The method of claim 1, wherein the communication protocol
2 includes one of:
3 Transmission Protocol (TCP);
4 Internet Protocol (IP); and
5 User Datagram Protocol (UDP).

1 9. (Currently amended) The method of claim 1, wherein the reliable
2 network link adheres to the Infiniband™ InifBand standard.

1 10. (Original) The method of claim 2,
2 wherein the checksum is a TCP checksum; and
3 wherein the protocol stack is an IP stack.

1 11. (Currently amended) A computer-readable storage medium storing
2 instructions that when executed by a computer cause the computer to perform a
3 method for bypassing use of a protocol checksum during communications across a
4 reliable network link, the method comprising:
5 configuring a communication system to bypass use of the checksum during
6 communications across the reliable network link;
7 receiving an outbound packet at a source to be transmitted to a destination
8 across the reliable network link;
9 determining whether the outbound packet is directed to a valid destination
10 that is eligible for checksum bypassing; and

11 if so, sending the outbound packet to the destination across the reliable
12 network link without computing the checksum for the outbound packet;
13 wherein neither the source nor the destination computes the checksum for
14 the outbound packet.

1 12. (Original) The computer-readable storage medium of claim 11,
2 wherein configuring the communication system to bypass the checksum involves
3 informing a protocol stack within the communication system that network interface
4 hardware for the communication system is capable of computing the checksum, so
5 that the protocol stack does not compute the checksum.

1 13. (Currently amended) The computer-readable storage medium of claim
2 11, wherein the method further comprises:
3 ~~determining whether the outbound packet is directed to a valid destination~~
4 ~~that is eligible for checksum bypassing;~~
5 if the outbound packet is not directed to a valid destination,
6 computing the checksum for the outbound packet, and
7 inserting the checksum into the outbound packet.

1 14. (Original) The computer-readable storage medium of claim 13,
2 wherein the checksum is computed by a driver associated with network interface
3 hardware for the communication system.

1 15. (Original) The computer-readable storage medium of claim 11,
2 wherein the method further comprises:
3 receiving an inbound packet from a source across the reliable network
4 link; and

5 accepting the inbound packet without re-computing the checksum;
6 wherein re-computation of the checksum is required by the communication
7 protocol to verify that the inbound packet was received without errors.

1 16. (Original) The computer-readable storage medium of claim 15,
2 wherein accepting the inbound packet without re-computing the checksum
3 involves:
4 communicating a default checksum value to a protocol stack within the
5 communication system;
6 wherein the default checksum value matches the default checksum value
7 contained within a checksum field of the inbound packet;
8 whereby the protocol stack will match the default checksum value with the
9 checksum field of the inbound packet and will consequently accept the inbound
10 packet.

1 17. (Original) The computer-readable storage medium of claim 16,
2 wherein accepting the inbound packet without re-computing the checksum
3 additionally involves inserting the default checksum value into the checksum field
4 of the inbound packet.

1 18. (Original) The computer-readable storage medium of claim 11,
2 wherein the communication protocol includes one of:
3 Transmission Protocol (TCP);
4 Internet Protocol (IP); and
5 User Datagram Protocol (UDP).

1 19. (Currently amended) The computer-readable storage medium of claim

2 | 11, wherein the reliable network link adheres to the Infiniband™ InfiBand
3 | standard.

1 20. (Original) The computer-readable storage medium of claim 12,
2 wherein the checksum is a TCP checksum; and
3 wherein the protocol stack is an IP stack.

1 21. (Currently amended) An apparatus that bypasses use of a protocol
2 checksum during communications across a reliable network link, comprising:
3 a configuration mechanism that selectively configures a communication
4 system to bypass use of the checksum during communications across the reliable
5 network link, wherein the configuration mechanism is configured to determine
6 whether the outbound packet is directed to a valid destination that is eligible for
7 checksum bypassing;
8 a receiving mechanism at a source that is configured to receive an
9 outbound packet to be transmitted to a destination across the reliable network link;
10 and
11 a sending mechanism that is configured to send the outbound packet to the
12 destination across the reliable network link without computing the checksum for
13 the outbound packet;
14 wherein neither the source nor the destination computes the checksum for
15 the outbound packet.

1 22. (Original) The apparatus of claim 21, wherein the configuration
2 mechanism informs a protocol stack within the communication system that
3 network interface hardware for the communication system is capable of computing
4 the checksum, so that the protocol stack does not compute the checksum.

1 23. (Currently amended) The apparatus of claim 21,
2 ~~wherein the configuration mechanism is configured to determine whether~~
3 ~~the outbound packet is directed to a valid destination that is eligible for checksum~~
4 ~~bypassing; and~~

5 wherein if the outbound packet is not directed to a valid destination, the
6 configuration mechanism is configured to,
7 compute the checksum for the outbound packet, and to
8 insert the checksum into the outbound packet.

1 24. (Original) The apparatus of claim 23, wherein the checksum is
2 computed by a driver associated with network interface hardware for the
3 communication system.

1 25. (Original) The apparatus of claim 21, wherein the receiving
2 mechanism is configured to:
3 receive an inbound packet from a source across the reliable network link;
4 and to
5 accept the inbound packet without re-computing the checksum;
6 wherein re-computation of the checksum is required by the communication
7 protocol to verify that the inbound packet was received without errors.

1 26. (Original) The apparatus of claim 25,
2 wherein the receiving mechanism is configured to communicate a default
3 checksum value to a protocol stack within the communication system; and
4 wherein the default checksum value matches the default checksum value
5 contained within a checksum field of the inbound packet;
6 whereby the protocol stack will match the default checksum value with the

7 checksum field of the inbound packet and will consequently accept the inbound
8 packet.

1 27. (Original) The apparatus of claim 26, wherein the receiving
2 mechanism is additionally configured to insert the default checksum value into the
3 checksum field of the inbound packet.

1 28. (Original) The apparatus of claim 21, wherein the communication
2 protocol includes one of:

3 Transmission Protocol (TCP);
4 Internet Protocol (IP); and
5 User Datagram Protocol (UDP).

1 29. (Currently amended) The apparatus of claim 21, wherein the reliable
2 network link adheres to the Infiniband™ InfiBand standard.

1 30. (Original) The apparatus of claim 22,
2 wherein the checksum is a TCP checksum; and
3 wherein the protocol stack is an IP stack.