Радиотехническая работа 24 Безынерционные линейные цепи Выполнил Жданов Елисей Б01-205

1 Оборудование:

Макетная плата

Набор резисторов различных номиналов

Электронный осциллограф на печатной плате

Электронный генератор сигналов на печатной плате

2 Задание

2.1 Делитель напряжения

(а) Делитель напряжения

2.1.1 Теория

В схеме делителя напряжения на рис. 16 напряжение E идеального источника делится на части U_1 , U_2 ($U_1 + U_2 = E$), падающие на резисторах R_1 , R_2 .

Делитель - это распространенное схемное решение для преобразования источника питания E в источник опорного напряжения с требуемым эквивалентным напряжением $E^* = E \frac{R_2}{R_1 + R_2}$ и внутренним сопротивлением $R^* = \frac{R_1 R_2}{R_1 + R_2} = R_1 \| R_2$, равным параллельному соединению сопротивлений R_1 , R_2 .

Делитель естественным образом возникает, когда источник во внутренним сопротивлением R_1 подключается к нагрузке R_2 , рис. 16 . Это сопровождается потерей уровня сигнала источника, выражаемой коэффициентом передачи $K = \frac{u}{e} = \frac{R_2}{R_1 + R_2}$.

2.1.2 Выполнение

1. Соберем заданную схему на макетной плате. Подключим центральный узел схемы к измерительной ноге платы - генератора.

Для схемы были выбраны резисторы R_1 = 3 кОм, а R_2 = 12 кОм(из пропорции $\frac{E-E^*}{R_1} = \frac{E^*}{R_2}$).

Теоретически выбранное значение напряжения $E^* = 2$ В, практически же $E^* = 2.056$ В. Различие действительно мало с учетом погрешности сопротивлений подобранных резисторов. Подаваемое значение напряжения питания E = 10 В.

(b) Эквивалентный источник

Внутреннее сопротивление определим по методу двух нагрузок: измерим напряжение холостого хода на выходе делителя $U_{oc}=E^*=2.056\,\mathrm{B}$ и напряжение $U_l=0.9473\,\mathrm{B}$ на дополнительно подключенном резисторе нагрузки $R_{l^*}=2\,\mathrm{кOm}$, см рисунок 16b. Внутреннее сопротивление R^* оценим из пропориции

$$\frac{E^* - U_l}{R^*} = \frac{U_l}{R_l}$$

Итого R^* = 2.34 кОм. Теоретическое значение же равно R^* = 2.4 кОм, что тоже довольно близко.

(c) Подключение источника к нагрузке

2. Подадим а вход делителя синусоидальное напряжение =1.02 В от лабораторного источника. На основании эффективного значения напряжения u=200.5 мВ, рассчитаю коэффициент передачи $K=\frac{u}{e}=0.1966$, что почти равно теоретическому значению $K=\frac{u}{e}=0.2$.

2.1.3 Вывод

Проведенные эксперименты подтверждают полученные теоретические выкладки. Разница между получаемыми теоретическими и практическими величинами почти постоянна и составляет около 2-3%, что позволяет определить её как точность маркировки номиналов резисторов.

2.2 Параллельный сумматор

2.2.1 Теория

(а) Параллельный сумматор

Схема на рисунке реализует параллельный сумматор, выход U которого является взвешенной суммой входных напряжений E_1 и E_2 с коэффициентами α и β

$$U = \alpha E_1 + \beta E_2$$

Приравняв к нулю напряжение E_2 (короткое замыкание на выходе) легко увидеть что α - это коэффициент передачи делителя напряжения на резисторах R_1 и $(R\|R_2)$: $\alpha = \frac{R\|R_2}{R_1 + R\|R_2}$. Аналогично, $\beta = \frac{R\|R_1}{R_2 + R\|R_1}$. 15 Замена левого и правого источников напряжения эквивалентными источниками тока приводит к эквивалентной схеме на рис. 17 b

(b) Его эквивалентная схема

Из схемы становится ясно, что

$$\frac{\alpha}{\beta} = \frac{R_2}{R_1}; \quad \alpha + \beta = \frac{1}{1 + \frac{R_1 || R_2}{R}},$$

а сопротивление эквивалентного источника составляет $R^* = R_1 \| R \| R_2$.

2.2.2 Выполнение

1. Выберем компоненты сумматора по заданным весовым коэффициентам $\alpha=0.4$, $\beta=0.2$. Резистор R_1 возьмем номиналом 1.8 кОм. Резистор R_2 определить из соотношения $\frac{R_2}{R_1}=\frac{\alpha}{\beta}=2$, то бишь 3.6 кОм. Наконец, номинал резистора R из соотношения

$$\alpha + \beta = 0.6 = \frac{1}{1 + \frac{R_1 || R_2}{R}}$$

составит 1.8 кОм.

2. Соберем схему сумматора на макетной плате. Подадим синусоидальное напряжение с заданной амплитудой 2 В на вход E_1 и постоянное напряжение +5 В на вход E_2 . На осциллографе уровень постоянной и амплитуду переменной составляющих в суммарном сигнале составит $U_- = 1.12$ В и $U_- = 0.765$ В соответственно. Тогда коэффициенты $\alpha = 0.3825$ и $\beta = 0.224$.

Для реализации метода двух нагрузок подключу схему к постоянному току, и присоединю к узлам схемы резистор номиналом 2 кОм. Значение $U_l=3.7$ В при напряжении $E_2=5$ В, а значит $R^*=700$ Ом, что довольно близко к теоретическому значению $R^*=720$ Ом.

2.2.3 Вывод

Больше всего от теоретического значения отличается значение α (порядка 10%), что объяснимо неточностью номинала резистора и прочими неучтенными факторами. Зато остальные значение отличаются от теоретических меньше чем на 5%, что является хорошим совпадением.

2.3 Н-параметры

2.3.1 Теория

Рис. 18. Т-образная схема

1. Для схемы на рисунке приведены формулы для H-параметров.

$$\begin{pmatrix} U_1 \\ I_2 \end{pmatrix} = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix} \begin{pmatrix} I_1 \\ U_2 \end{pmatrix} = \begin{pmatrix} R_1 + R_3 || R_2 & \frac{R_3}{R_3 + R_2} \\ \frac{R_3}{R_3 + R_2} & \frac{1}{R_3 + R_2} \end{pmatrix} \begin{pmatrix} I_1 \\ U_2 \end{pmatrix}.$$

Для выбранных значений номиналов резисторов, напряжений и токов значения параметров

$$\begin{pmatrix} h_{11} = 2200 \text{ Om} & h_{12} = 0.6 \\ h_{21} = 0.6 & h_{22} = 0.2 \cdot 10^{-3} \text{ Cm} \end{pmatrix}$$

2.3.2 Выполнение

2. В программе Місто-Сар по схеме выше с коротким замыканием на выходе ($U_2=0$) и источником тока I_1 на входе измерим $U_1=2.2$ В, $I_2=600$ мкА и вычислим $h_{11}=\frac{U_1}{I_1}=2200$ Ом, $h_{21}=\frac{I_2}{I_1}=0.6$.

По второй схеме с холостым входом на входе и источником напряжения U_2 на выходе измерим U_1 , I_2 и вычислим $h_{12}=\frac{U_1}{U_2}=0.6$, $h_{22}=\frac{I_2}{U_2}=0.2\cdot 10^{-3}$ См. Показатели тождественны теории.

2.3.3 Вывод

Теоретическая модель верна

2.4 Звезда и треугольник

2.4.1 Теория

1. Для схемы на рисунке приведены формулы для *X*-параметров.

$$\begin{pmatrix} U_1 \\ U_2 \end{pmatrix} = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} \begin{pmatrix} I_1 \\ I_2 \end{pmatrix} = \begin{pmatrix} R_1 + R_3 & R_3 \\ R_3 & R_2 + R_3 \end{pmatrix} \begin{pmatrix} I_1 \\ I_2 \end{pmatrix}.$$

Рис. 18. Т-образная схема

Для выбранных значений резисторов, напряжений и токов значения параметров

$$\begin{pmatrix} X_{11} = 4 \text{ kOm} & X_{12} = 3 \text{ kOm} \\ X_{21} = 3 \text{ kOm} & X_{22} = 5 \text{ kOm} \end{pmatrix}$$

2.4.2 Выполнение

2.

Открыть файл храг.cir. Пересчитать параметры представленной там звезды в параметры треугольника:

$$R_{13} = R_1 + R_3 + \frac{R_1 R_3}{R_2} = 5.5 \text{ kOm}, \quad R_{12} = R_1 + R_2 + \frac{R_1 R_2}{R_3} = \frac{11}{3} \text{ kOm}, \quad R_{23} = R_2 + R_3 + \frac{R_2 R_3}{R_1} = 11 \text{ kOm}.$$

В программе Micro-Cap установим вычисленные значения резисторов в схемы с треугольниками.

По левой схеме $I_2=0$ измерим напряжения $U_1=4$ В, $U_2=3$ В и вычислим $X_{11}=\frac{U_1}{I_1}=4$ кОм, $X_{21}=\frac{U_2}{I_1}=3$ кОм. По правой с $I_1=0$ измерим $U_1=3$ В, $U_2=5$ В и вычислим $X_{12}=\frac{U_1}{I_2}=3$ кОм, $X_{22}=\frac{U_2}{I_2}=5$ кОм.

2.4.3 Вывод

Теоретические значения совпали с моделированием, значит, теория верна.

2.5 Лестничные структуры

2.5.1 Теория

Рис. 19. Лестничная структура

Передаточная матрица блока лестничной структуры с резисторами $R_1=1$ и $R_2=\alpha$ легко вычисляется

$$\begin{pmatrix} U_2 \\ I_2 \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} U_1 \\ I_1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -\frac{1}{\alpha} & \frac{1+\alpha}{\alpha} \end{pmatrix} \begin{pmatrix} U_1 \\ I_1 \end{pmatrix}.$$

Подстановка значений A-параметров в

$$A_{11} + \frac{A_{12}}{w} = A_{21}w + A_{22} = \gamma$$

дает уравнение $w^2-w-\alpha=0$ для характеристического сопротивления и значение $\gamma=\frac{w-1}{w}$ для коэффициента передачи напряжения/тока при характеристической нагрузке. Положительное значение характеристического сопротивления составляет

$$w = \frac{1 + \sqrt{1 + 4\alpha}}{2}.$$

Имеется ряд значений α , при которых характеристическое сопротивление вычисляется без радикала

$$\left(\alpha=2, w=2, \gamma=\frac{1}{2}\right), \quad \left(\alpha=6, w=3, \gamma=\frac{2}{3}\right), \quad \left(\alpha=12, w=4, \gamma=\frac{3}{4}\right).$$

2.5.2 Выполнение

1. Рассмотрим в Місто-сар четырехзвенную лестничную схему с $\alpha=2, \gamma=\frac{1}{2}$, нагруженную на характеристическое сопротивление w=2 кОм. На схеме приведены результаты моделировани напряжений и токов.

Согласно матрице, $\frac{U_1}{U_2} = 2 = \frac{I_1}{I_2}$, что видно на моделировании. В дальнейшем, все результаты также будут сходиться с теоретическим расчетом, который, из очевидности, будет опушен.

2. Повторим это исследование при $\alpha = 6$, $\gamma = \frac{2}{3}$, установив на схеме номиналы четырех вертикальных резисторов $R_{2j} = 6$ кОм и нагрузки w = 3 кОм.

3. Проделаем это для $\alpha=12$, $\gamma=\frac{3}{4}$ ($R_{2j}=12$ кОм, w=4 кОм) и для $\alpha=1$, $\gamma=\frac{\sqrt{5}-1}{\sqrt{5}-1}=0.38$ ($R_{2j}=1$, $w=\frac{1+\sqrt{5}}{2}=1.618$ кОм).

4. Из предыдущих схем следует вполне обоснованная реализация делителя напряжения, который в зависимости от подаваемого на ножки вертикальных резисторов напряжения U, будет выдавать на ноге входа напряжение V, причем оно будет логично зависеть от суперпозиции токов, протекающих через резисторы.

Рассмотрим схему 4-разрядного цифро-аналогового преобразователя (ЦАП), который преобразует двоичный позиционный код (X_3, X_2, X_1, X_0) в пропорциональное напряжение

OUT =
$$X_3 2^3 + X_2 2^2 + X_1 2^1 + X_0$$
.

Снимем зависимость напряжения OUT от двоичного кода (X_3, X_2, X_1, X_0) , изменяя его в диапазоне от (0,0,0,0) = 0 до (1,1,1,1) = 15.

Очевидно, что напряжение на выходе будет равно десятичной записи двоичного кода на ключах, т.е. прямая пропорциональность y=x.

Теоретические выкладки полностью подтвердились на моделировании.

Примеры преобразования приведены ниже

3 Вывод

Результаты моделирования, как и ожидается, тождественны теории, в то время как замеры на макетной плате незначительно от нее отличаются. Все это позволяет сказать, что использованные методы расчета и анализа безинерционных линейных цепей дают хорошие результаты в области применимости.