Nome:	Nº de estudante:

Análise e Transformação de Dados

Exa	ime da Época Norma	al
14 de Junho de 2017		Duração: 2h15
Não é permitido o uso de meio Qualquer tentativa de fraude o	a duas folhas A4 de apontamentos os electrónicos (computador, etc. conduzirá à anulação da prova pa a: as respostas erradas subtraem 2), excepto calculadora básica. ra todos os intervenientes.
1. Considere um sinal periódico d	de tempo contínuo x(t), com a	frequência angular máxima de
$100\pirad/s$, cujas componentes	s não nulas da respetiva Série de F	Fourier complexa são:
$c_{-5} = 3j$,	$c_{-2} = -2j$, $c_2 = 2j$,	$c_5 = -3j$.
a) (5%) Quais as frequências (e	m Hz) presentes no sinal $x(t)$?	
□ 40π e 100π Hz	\Box 200π e 500π Hz	☐ 40 e 100 Hz
☐ 20 e 50 Hz	☐ 100 e 250 Hz	☐ Nenhuma das opções.
b) (5%) Analise, justificadamen	te, a paridade de $x(t)$.	
c) (5%) Determine a menor fre	equência de amostragem (em Hz)	, de valor inteiro, que garante a
reconstrução de x(t) sem alia	asing a partir do correspondente :	sinal amostrado $x[n]$.
	o do sinal discreto <i>x</i> [<i>n</i>], que resul	-
dada frequência de amostra	gem, sabendo que o seu período	fundamental é <i>N</i> = 13.

Nome:		Nº de estudante:			
2. Considere o sinal	de tempo dis	creto x[n] =	(2n 1)(u[n	+1] $u[n 6$]).
a) (5%) Determi	ne o sinal y[r] que resulta	da aplicação r	no sinal x[n] dur	na transformação linear
da variável in	dependente (dada por $a = 3$	B e <i>b</i> = -2 e clas	sifique a transfo	ormação.
b) (4%) Qual o v	valor da potêr	ncia média do	sinal $x[n]$?		
\square Px	= 0 W	\square $Px = 25$	W	Px = 175 W	$\square Px = \infty W$
c) (5%) Diga, ju	stificadament	te, qual a rela	ção entre os va	alores da energi	a dos sinais $x[n]$ e $y[n]$.
3. Considere que o r	າº de pacotes	que chegam	a um <i>router</i> ei	m cada instante	n é dado por $x[n]$ e que
o router os despa	cha de acordo	com y[n] = 0	0.5y[n-1]+0.5	8x[n-1] + 0.1n(h	(x-1)x[n-2]x[n-3].
a) (5%) Classific	que, justificad	damente, o s	sistema (<i>route</i>	r), para $k \neq 1$,	quanto à linearidade,
causalidade e	variância no	tempo.			
, , ,	•	•	ta a impulso (do sistema (<i>rou</i>	<i>ter</i>), <i>h</i> [<i>n</i>], considerando
k = 1 e cond	ições iniciais	nulas.			
c) (E0/) Conside	randa sandi:	años iniciais :	vulac a acca ac	nacotos recel	idos são oversases sas
, , ,	-	•	·	•	idos são expressos por
		j, quantos βά	acutes sau de	spacijauos pelo	router até ao instante
n= 3, inclusive		—	П		. ~
□ 260	□ 340	□ 460	□ 540		na das opções.

Nome:	№ de estudante:
Nome:	$\frac{z^{-4} + 4z^{-6}}{1 - 0.8z^{-1})(1 - (2 - 0.2k)z^{-1})}, k \in \Re.$
a) (6%) Determine os zeros e os pólos (em funç	\tilde{a} o de k) do sistema e para que intervalo de
valores de <i>k</i> o sistema é estável.	
h) /50/) Coord-oranda / O occasion and a decide de	
b) (5%) Considerando $k = 9$, para que valor tende a resposta à entrada $x[n] = 1.6u[n-2] + 2\delta[n-5]$	
resposed a chirada $x[n] = 1.0u[n-2] + 20[n-3]$	•
5. Considere que a Transformada de Fourier (FT) de un	
	$,\omega < -12\pi \lor \omega > 12\pi$
$X_{FT}(\omega) = \begin{cases} 0 \\ (\omega + 8\pi)(\omega - 8\pi) / \\ /(4\pi^2) \end{cases}$	$,-12\pi \leq \omega \leq 12\pi$
a) (4%) Sabendo que o valor da Transformada correspondente sinal amostrado, $x[n]$, para ω = frequência de amostragem (em Hz) considerada	$10\pi \ rad/s \ \acute{e} \ X_{DTFT}(10\pi) = 180$, qual o valor da
☐ 10 Hz ☐ 20 Hz	□ 20π Hz □ 40π Hz
b) (5%) Considerando uma frequência de amostr	ragem fs = 40Hz e que a frequência angular
fundamental do sinal $x[n]$ é $\Omega_0 = \frac{\pi}{20} rad$, det	ermine o valor da componente C₅ da Série de
Fourier trigonométrica de x[n]?	
-	
c) (5%) Considerando a situação da alínea b) e as	
que frequência(s) de corte especificaria par	
correspondentes às frequências inferiores ou ig	uais a ƒ = 2Hz?

Nome:	Nº de estudante:

- 6. Considere um sinal de tempo discreto não estacionário que resultou da amostragem de um sinal áudio de tempo contínuo a uma frequência de amostragem *fs*=4*KHz*. Pretende-se localizar temporalmente a ocorrência de duas notas musicais, o Ré (294*Hz*) e o Mi (330*Hz*).
 - a) (5%) Aplicando a DFT por janelas (STFT), qual das seguintes dimensões da janela temporal garante erro nulo na estimação das frequências correspondentes às duas notas musicais?
 - \square 1/14 s
- \square 1/10 s
- \square 1/6 s
- \square 1/5 s
- b) (6%) Aplicando a STFT ao sinal com janelas de dimensão temporal de 0.25s, diga como faria para obter uma resolução espectral de 2Hz.
- 7. (8%) Dado um sinal de tempo discreto, x[n], obtido com uma frequência de amostragem $f_s = 2KHz$,
- considere a decomposição de nível 3, apresentada na figura, resultante da aplicação da Transformada de Wavelet Discreta (DWT) com a wavelet da família Daubechies de ordem 9.

Efetue a caracterização tempofrequência do sinal x[n] a partir da reconstrução do sinal com base nos coeficientes $\mathbf{a_3}$ e $\mathbf{d_3}$, preenchendo a seguinte tabela:

n	0 – 499	500 -999	1000 – 1499	1500 -1999
A partir de d3 :	f ∈ [, [Hz, C =		f ∈ [, [Hz, C =	
A partir de a3 :	f = 0 Hz, C = f =Hz, C =	f =Hz, C =	f = Hz, C=	f = 0 Hz, C = f =Hz, C =

8. (7%) Considere uma imagem com 512x512 pixéis em que todos os pixéis são de cor branca excepto os que se encontram dentro duma zona retangular e centrada na imagem, com dimensões 256x128, de cor preta. Diga, justificadamente, como faria para optimizar a compressão da imagem usando a Transformada de Co-seno Discreta (DCT). Qual o número total de coeficientes considerados na abordagem seguida?

coeficientes considerados na abordagem seguida?			