Codility_

Candidate Report: trainingHDQ2V2-ATU

Check out Codility training tasks

Test Name:

Summary Timeline

Tasks Details

1. TapeEquilibrium Task Score Correctness Performance Minimize the value |(A[0] + ... + A[P-1]) - (A[P] + ... + A[N-1])|. 61% 57%

Task description

A non-empty array A consisting of N integers is given. Array A represents numbers on a tape.

Any integer P, such that 0 < P < N, splits this tape into two non-empty parts: A[0], A[1], ..., A[P - 1] and A[P], A[P + 1], ..., A[N - 1].

The difference between the two parts is the value of: |(A[0] + A[1] + ... + A[P-1]) - (A[P] + A[P+1] + ... + A[N-1])|

In other words, it is the absolute difference between the sum of the first part and the sum of the second part.

For example, consider array A such that:

- A[0] = 3
- A[1] = 1
- A[2] = 2
- A[3] = 4
- A[3] = 4 A[4] = 3

We can split this tape in four places:

- P = 1, difference = |3 10| = 7
- P = 2, difference = |4 9| = 5
- P = 3, difference = |6 7| = 1
- P = 4, difference = |10 3| = 7

Write a function:

int solution(int A[], int N);

Solution

Programming language used: C

Total time used: 46 minutes

Effective time used: 46 minutes

Notes: not defined yet

Task timeline

Code: 08:10:23 UTC, c, final,

show code in pop-up

07:24:52 08:10:23

score: 61

// you can write to stdout for debugging purposes, e.g.
// printf("this is a debug message\n");

#define the_abs(x) (x<0? -(x): x)

int solution(int A[], int N) {
 // write your code in C99 (gcc 6.2.0)
 int diff = 0, cnt = 0, tail_cnt = N-1;
 for (int i=0; i<N; i++){</pre>

2020/11/30

that, given a non-empty array A of N integers, returns the minimal difference that can be achieved.

For example, given:

A[0] = 3

A[1] = 1

A[2] = 2A[3] = 4

A[4] = 3

the function should return 1, as explained above.

Write an efficient algorithm for the following assumptions:

- N is an integer within the range [2..100,000];
- each element of array A is an integer within the range [-1,000..1,000].

Copyright 2009–2020 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

Test results - Codility

```
//printf( "%d<%d\n", the_abs(diff+A[cnt]), the_abs</pre>
10
              if ( the_abs(diff+A[cnt]) <= the_abs(diff-A[tail_c</pre>
11
12
                  diff += A[cnt++];
              else
13
14
                  diff -= A[tail_cnt--];
15
         }
16
         return the_abs(diff);
17
18
     }
```

Analysis summary

The following issues have been detected: wrong answers.

For example, for the input [-1000, 1000] the solution returned a wrong answer (got 0 expected 2000).

Analysis 2

pa	nd all Example tests	S
•	example example test	✓ OK
ра	nd all Correctness tes	sts
V	double two elements	x WRONG ANSWER got 0 expected 2000
1.	0.001 s WRONG ANSWER, got 0 expect	ed 2000
2.	0.001 s OK	
3.	0.001 s OK	
•	simple_positive simple test with positive numbers, length = 5	√ OK
>	simple_negative simple test with negative numbers, length = 5	√ OK
>	simple_boundary only one element on one of the sides	✓ OK
•	small_random random small, length = 100	x WRONG ANSWER got 269 expected 39
	0.001 s WRONG ANSWER, got 269 expe	ected 39
•	small_range range sequence, length = ~1,000	✓ OK
•	small small elements	X WRONG ANSWER got 0 expected 20
1.	0.001 s WRONG ANSWER, got 0 expect	ed 20
ра	nd all Performance te	sts
	$medium_random1 \\ random medium, numbers from 0 to 100, \\ length = \sim 10,000 \\$	√ OK
•	medium_random2 random medium, numbers from -1,000 to 50, length = ~10,000	√ OK
	large_ones large sequence, numbers from -1 to 1,	x WRONG ANSWER got 228 expected 0
•	length = ~100,000	
1.	length = ~100,000 0.004 s WRONG ANSWER, got 228 expe	ected 0

•	large_random random large, length = ~100,000	X WRONG ANSWER got 202635 expected 1	
1.	0.004 s WRONG ANSWER, got 202635	s WRONG ANSWER, got 202635 expected 1	
2.	0.004 s WRONG ANSWER, got 34394 expected 2		
•	large_sequence large sequence, length = ~100,000	✓ OK	
•	large_extreme large test with maximal and minimal values, length = ~100,000	✓ OK	

The PDF version of this report that may be downloaded on top of this site may contain sensitive data including personal information. For security purposes, we recommend you remove it from your system once reviewed.