Outline

- Motivation
- Categorical Embedding from Scratch
- Examples of Popular Embeddings
 - Rossmann Cat Embedding
 - Word2Vec
 - BERT
- Summary

Motivation

 In short, embeddings maps categorical variables into vectors

But how do we create such table?

In short, embeddings maps categorical variables into vectors

We need to set up a classification problem.

In short, embeddings maps categorical variables into vectors

We need to set up a classification problem. Always!

In short, embeddings maps categorical variables into vectors

Embeddings are created using a supervised env

In short, embeddings maps categorical variables into vectors

But can be used for unsupervised problems!

Embedding for Categorical Encoding from Scratch

Price
500k
600k
900k
1200k

	Area(m2)	Price
	61	500k
	72	600k
	83	900k
	91	1200k
	•••	•••

rooms	Area(m2)	Price
4	61	500k
5	72	600k
6	83	900k
7	91	1200k
•••	•••	

Nbhd	rooms	Area(m2)	Price
Tender	4	61	500k
Civic	5	72	600k
FinDistr	6	83	900k
Soma	7	91	1200k
•••	•••	•••	•••

Nbhd	rooms	Area(m2)	Price
Tender	4	61	500k
Civic	5	72	600k
FinDistr	6	83	900k
Soma	7	91	1200k

	Nbhd	rooms	Area(m2)	Price
/	Tender	4	61	500k
	Civic	5	72	600k
	FinDistr	6	83	900k
\setminus	Soma	7	91	1200k
`	, i.	•••	•••	•••

Inputs need to be numeric

Nbhd	rooms	Area(m2)	Price
0	4	61	500k
1	5	72	600k
2	6	83	900k
3	7	91	1200k

However, there's no proximity relationship

Nbhd	rooms	Area(m2)	Price
0	4	61	500k
1	5	72	600k
2	6	83	900k
3	7	91	1200k

Nbhd	rooms	Area(m2)	Price
Tender	4	61	500k
Civic	5	72	600k
FinDistr	6	83	900k
Soma	7	91	1200k
•••	•••	•••	•••

Another solution – One-Hot Encoding

Nbhd	rooms	Area(m2)	Price
Tender	4	61	500k
Civic	5	72	600k
FinDistr	6	83	900k
Soma	7	91	1200k
•••	•••	•••	

Tenderl	Civic	FinDistr	Soma
1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

Another solution – One-Hot Encoding

Tenderl	Civic	FinDistr	Soma	rooms	Area)	Price
1	0	0	0	4	61	500k
0	1	0	0	5	72	600k
0	0	1	0	6	83	900k
0	0	0	1	7	91	1200k

- However, it creates very sparse matrices
 - Unable to correlate similar categories

Tenderl	Civic	FinDistr	Soma	rooms	Area)	Price
1	0	0	0	4	61	500k
0	1	0	0	5	72	600k
0	0	1	0	6	83	900k
0	0	0	1	7	91	1200k

- However, it creates very sparse matrices
 - Unable to correlate similar categories

Tenderl	Civic	FinDistr	Soma	rooms	Area)	Price
1	0	0	0	4	61	500k
0	1	0	0	5	72	600k
0	0	1	0	6	83	900k
0	0	0	1	7	91	1200k

HAVE YOU EVER BEEN TO SF?

Nbhd	rooms	Area(m2)	Price
Tender	4	61	500k
Civic	5	72	600k
FinDistr	6	83	900k
Soma	7	91	1200k
	•••	•••	

Solution: Embeddings

Nbhd	rooms	Area(m2)	Price
Tender	4	61	500k
Civic	5	72	600k
FinDistr	6	83	900k
Soma	7	91	1200k
•••	•••	•••	

- Solution: Embeddings
 - First step: replace values by their indexes

Nbhd	rooms	Area(m2)	Price
Tender	4	61	500k
Civic	5	72	600k
FinDistr	6	83	900k
Soma	7	91	1200k
	•••	•••	

- Solution: Embeddings
 - First step: replace values by their indexes

Nbhd	rooms	Area(m2)	Price
0	4	61	500k
1	5	72	600k
2	6	83	900k
3	7	91	1200k
	•••	•••	

Solution: Embeddings

Use an embedding layer instead of feeding directly

Nbhd	rooms	Area(m2)	Price
0	4	61	500k
1	5	72	600k
2	6	83	900k
3	7	91	1200k
	•••	•••	

Solution: Embeddings

• Let's take a closer look...

Nbhd	rooms	Area(m2)	Price
0	4	61	500k
1	5	72	600k
2	6	83	900k
3	7	91	1200k
•••	•••	•••	•••

Solution: Embeddings

- At first, they look like a densely connected network
- The embedding dimension (# of hidden layers) is chosen manually

Nbhd	rooms	Area(m2)	Price
0	4	61	500k
1	5	72	600k
2	6	83	900k
3	7	91	1200k
•••	•••	•••	•••

Solution: Embeddings

Categories mapped into vectors using embedding weights

Nbhd	rooms	Area(m2)	Price
0	4	61	500k
1	5	72	600k
2	6	83	900k
3	7	91	1200k
•••	•••	•••	•••

Embeddings

Solution: Embeddings

Weights become analog to a lookup table

Nbhd	rooms	Area(m2)	Price
0	4	61	500k
1	5	72	600k
2	6	83	900k
3	7	91	1200k

Embeddings

- Solution: Embeddings
 - Weights become analog to a lookup table

Examples of Popular Embeddings

- kaggle.com/c/rossmann-store-sales
- Input: 8 columns + engineered ones (ex: Store, State, DayOfWeek, Date, Customers, Open, Promo, StateHoliday, SchoolHoliday)
- Output: Sales

- kaggle.com/c/rossmann-store-sales
- Input: 8 columns + engineered ones (ex: Store, State, DayOfWeek, Date, Customers, Open, Promo, StateHoliday, SchoolHoliday)
- Output: Sales
- Embedding of State (t-SNE projection)

- kaggle.com/c/rossmann-store-sales
- Input: 8 columns + engineered ones (ex: Store, State, DayOfWeek, Date, Customers, Open, Promo, StateHoliday, SchoolHoliday)
- Output: Sales
- Embedding of State

- kaggle.com/c/rossmann-store-sales
- Input: 8 columns + engineered ones (ex: Store, State, DayOfWeek, Date, Customers, Open, Promo, StateHoliday, SchoolHoliday)
- Output: Sales
- Embedding of State

- kaggle.com/c/rossmann-store-sales
- Input: 8 columns + engineered ones (ex: Store, State, DayOfWeek, Date, Customers, Open, Promo, StateHoliday, SchoolHoliday)
- Output: Sales
- Embedding of State

- kaggle.com/c/rossmann-store-sales
- Input: 8 columns + engineered ones (ex: Store, State, DayOfWeek, Date, Customers, Open, Promo, StateHoliday, SchoolHoliday)
- Output: Sales
- Embedding of State: Predicts the map of Germany!

Word2Vec

- Input: Wikipedia corpus
- Dimension: 200
- Output (CBoW): The model predicts the current word from a window of surrounding context words
- Output (CSG): The model uses the current word to predict the surrounding window of context words

Word2Vec

- Input: Wikipedia corpus
- Dimension: 200
- Output (CBoW): The model predicts the current word from a window of surrounding context words
- Output (CSG): The model uses the current word to predict the surrounding window of context words

Word2Vec

- Input: Wikipedia corpus
- Dimension: 200
- Output (CBoW): The model predicts the current word from a window of surrounding context words
- Output (CSG): The model uses the current word to predict the surrounding window of context words

BERT

• Input: Wikipedia corpus

Output: Masked words

BERT

- Input: Wikipedia + BookCorpus
- Output: Masked words

BERT uses a simple approach for this: We mask out 15% of the words in the input, run the entire sequence through a deep bidirectional Transformer encoder, and then predict only the masked words. For example:

```
Input: the man went to the [MASK1] . he bought a [MASK2] of milk.
Labels: [MASK1] = store; [MASK2] = gallon
```

Applications

- Encoding Categorical Variables
- Recommendation Systems
- Mapping words into vectors

Summary

- We use embedding to map categorical variables into a vector
- It overcomes the limitations of one-hot encoding
- The embedding layer is just a hidden layer
- The weights of the embedding serves as a lookup table

Implementing a simplistic example

Next Video