## A short introduction to Turbo Coding

Introduction to Graphical Models and Inference for Communications  ${\bf UC3M}$ 

March 3, 2018

uc3m

## Today

- Turbo Codes
- Encoder structure
- Interleaver
- Decoding
- Introduction to Lab. project 2

#### Turbo Codes

- High-performance forward error correction (FEC) codes developed around 1990-91 (but first published in 1993).
- First practical known codes to closely approach the channel capacity.
- 3G/4G mobile communications (e.g. in UMTS and LTE) and in (deep space) satellite communications.

#### Econder structure

• Two convolutional codes in parallel with some kind of interleaving in between.



Figure: Turbo code encoder structure

• The frames can be terminated - i.e. the encoders are forced to a known state after the information block. The termination tail is then appended to the encoded information and used in the decoder.

## 3GPP RSC code



Figure: Rate-1/2 RSC Convolutional Code

## 3GPP RSC Turbo code



#### Interleaver

- Let L denote the length of the encoded sequence (we have to add the termination bits).
- The interleaver design is a key factor which determines the good performance of a turbo code.
- The input sequence to each of the two component RSC codes look "almost" independent.
- We need  $L \to \infty$  to approximate channel capacity.

#### Row-Column interleaver

- Simplest interleaver. Data is written row-wise and read column-wise.
- Let K, T be positive integers such that KT = L.

$$\begin{bmatrix} m_1 & m_2 & m_3 & \dots & m_T \\ m_{T+1} & m_{T+2} & m_{T+3} & \dots & m_{2T} \\ m_{2T+1} & m_{2T+2} & m_{2T+3} & \dots & m_{3T} \\ \dots & \dots & \dots & \dots & \dots \\ m_{KT+1} & m_{KT+2} & m_{KT+3} & \dots & m_L \end{bmatrix}$$

- The input sequence to the encoder 1 is  $m_1, m_2, m_3, \ldots, m_L$ .
- The input sequence to the encoder 2 is  $m_1, m_{T+1}, m_{2T+1}, \ldots, m_L$ .

#### Helical interleaver

• Data is written row-wise and read data diagonal-wise.

```
 \begin{bmatrix} m_1 & m_2 & m_3 & \dots & m_T \\ m_{T+1} & m_{T+2} & m_{T+3} & \dots & m_{2T} \\ m_{2T+1} & m_{2T+2} & m_{2T+3} & \dots & m_{3T} \\ \dots & \dots & \dots & \dots & \dots \\ m_{KT+1} & m_{KT+2} & m_{KT+3} & \dots & m_L \end{bmatrix}
```

- The input sequence to the encoder 1 is  $m_1, m_2, m_3, \ldots, m_L$ .
- The input sequence to the encoder 2 is  $m_1, m_{T+2}, m_{2T+3}, \ldots$

There exists a large set of interleaver designs proposed to date (even-odd, smile, pseudo-random, ....)

#### 3GPP Interleaver

- $\mathbf{m} = m_0, \dots, m_{L-1}$  is the input sequence to encoder 1.
- $\mathbf{m} = m'_0, \dots, m'_{L-1}$  is the input sequence to encoder 2.

$$m'_i = m_{\pi(i)}, \qquad \pi(i) = (f_1 i + f_2 i^2) \mod L,$$

where the parameters  $f_1$  and  $f_2$  depend<sup>1</sup> on the block size L.

 $<sup>^1\</sup>mathrm{Specification}$ : Group Radio Access Network, Evolved Universal Terrestrial Radio Access, Multiplexing and Channel Coding (Release 8), TS 36.212 v8.3.0, May 2007

## $p_{\mathbf{X}|\mathbf{v}}(m)$ factor graph

Without interlever  $\rightarrow$  very short cycles!



# $p_{\mathbf{X}|\mathbf{y}}(m)$ factor graph



The FG still have cycles, but they are very long if  $L \to \infty$  and the interleaver is properly designed.

## $p_{\mathbf{x}|\mathbf{y}}(m)$ factor graph



BP can be applied directly over the factor graph. However, the resulting algorithm is very complex (lots of state messages computed per iteration)

## Sequential schedule (I)

We consider one chain at a time. First, BP is run over the chain corresponding to code 1 and uniform priors.

 $g_1'$   $t_1'$   $g_2'$   $t_2'$   $g_3'$   $t_3'$   $g_4'$   $t_4'$   $g_5'$   $t_5'$   $g_6'$   $t_6'$   $g_7'$   $t_7'$   $g_8'$ 



### Sequential schedule (II)

Then, BP is run over the second chain using the priors estimated in the previous step.



## Sequential schedule (III)

BP is run over the first chain using the priors estimated in the previous step.

$$g_1'$$
  $t_1'$   $g_2'$   $t_2'$   $g_3'$   $t_3'$   $g_4'$   $t_4'$   $g_5'$   $t_5'$   $g_6'$   $t_6'$   $g_7'$   $t_7'$   $g_8'$ 



We iterate until convergence. Tipically no more than 10-15 iterations.