PHY 316M

Marc Matvienko

November 2, 2017

1 Capacitors

$$C = |\frac{Q}{V}|$$

2 Current

Is the flow of charge in on direction. Current:

$$I = \frac{\Delta Q}{\Delta t} = \frac{\delta Q}{\delta t}$$

Current Density (current per unit area): $J = \frac{I}{A}$ $n = \text{charge carriere density}, q = \text{charge per carrier}, v_d = \text{drift velocity This can}$ give us, $J = nqv_d$

2.1 Ohm's Law

Usually we see Ohm's law in different forms, i.e. for a particular chunk. Consinder some block with volume $A \cdot l$, some source of energy(battery) forces current thorugh by applying an electric field.

For a uniform electric field: $V = E \cdot l$

$$J = \frac{I}{A}$$
$$= \sigma E$$
$$= \sigma \frac{V}{I}$$

$$\frac{V}{I} = \frac{1}{\sigma} \frac{l}{A} = \rho \frac{l}{A} = R = \text{resistance}$$

 $\left[\begin{array}{c} V \\ \overline{I} \end{array} = R \right]$ Resistance is not resistivity (opisiton of current flow of a particular material $[\rho]$) Ohmic material is a material that has a constant slope on Voltage to Current graph. Most common materials like copper behave like this.

Example The resistivity of nichrome wire (heaters, toasters) is $1.5 \times 10^{-6} \Omega m$. If a household voltage of 115V is applied acros a 0.2mm radius write, 1.0m long, what current flows?

$$R=\rho\frac{l}{A}=\rho\frac{l}{\pi r^2}=\frac{1.5\times 10^{-6}\Omega m\cdot 1.0m}{(\pi(2\times 10^{-4}m)^2))}=11.9\Omega$$

2.2 Model for electric conduction

- electron unergo many rapid ocllision when E=0
- when $E \neq 0$, the electrons accelrate between collisions
- $F = ma = qE \Longrightarrow a = \frac{qE}{m}$
- $v = v_0 + at = v_0 + \frac{qE}{m}t$

Let $\tau =$ average collision time = $R \cdot C$ the $v_d = v_{avg} = < v_0 > + \frac{qE}{m}\tau$ so, $J = nqv_d = nq = \frac{qE}{m}\tau = \sigma E$ so conductivity $\sigma = \frac{nq^2\tau}{m}$

Called the Drude model or free electron mode

$$\sigma = \frac{nq^2\tau}{m}$$

$$\frac{1}{\sigma} = \rho$$

Example Assume for copper that each atom donates one free electron. What is the average time between collision for electrons in copper.? Given:

- Density= $8.98 \frac{g}{cm^3}$
- Atomic Weight = $63.54 \frac{g}{mole}$
- $\rho = 1.7 \times 10^{-8} \Omega \cdot m$

$$\tau = \frac{m}{nq^2\rho} = \frac{9.14 \times 10^{-31} kg}{(8.5 \times 10^2 2)(1.6 \times 10^{-19})^2 1.7 \times 10^{-8} \Omega m} = 2.5 \times 10^{-14} s$$

2.3 Temerature Dependence of resistivity

- resistivities tabulated for 20 °celsius
- for metals, ρ is higher and T is higher
- $\alpha = \text{linear temprature coefficient}$
- over some range, $\rho = \rho_0(1 + \alpha(T T_0))$

As T increases, the scattering time decreases due to collisions with vibrating atoms

At higher temperatures the ρ to temperature graph is linear. But at the beginning there is residual resistivity due to impurities.

Semiconductors The number of carriers decreases as the temperature decreases, this means that all the electrons are sticking to their atoms.

3 Resistors in Series and Parallel

Circuit symbol:
$$---$$

3.1 Resistors in series

For resistors in series the resistivities add

$$R_{tot} = R_1 + R_2 + \dots$$

$$R_{tot} = \frac{V}{I} = \frac{V_1}{I_1} + \frac{V_2}{I_2} = R_1 + R_2$$

The current (I) is the same everywhere too. Resistors don't add in parallel. Capacitors do.

$$V = V_1 + V_2$$

The voltage divider

$$V_1 = I \cdot R_1 = \frac{V}{R_1 + R_2} \cdot R_1$$

3.2 Resistors in parallel

For resisitors in parallel halve the resistance if two exact resistors are put in parallel

- In parallel have the same voltage across each element
- In parallel also the current divides among branches

$$I = I_1 + I_2 = \frac{V}{R_1} + \frac{V}{R_2} \Longrightarrow R_{tot} = \frac{V}{I} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}}$$

Superconductors Electrons pair up and when electron jumps to the lattice another electrons pulls it right back.

3.3 Resistors Disipate Energy

Electrons undergo collisions, and give up energy as heat. A steady release of current (I) causes a steady realease of energy.

$$\Delta U = \Delta Q V$$

Better to discess the rate, which is really known as:

Power =
$$P = \frac{\Delta U}{\Delta t} = \frac{\Delta U}{\Delta t}V = IV$$

$$P = IV = I^2 R = \frac{V^2}{R}$$

This power is also known as Joule heating.

Putting this into practice: many circuits can be analyzed with just Ohm's Law and Resistance.

- What is the total power delivered?
- What is the power dissipated in each R?

$$P_{\text{dissapated in } 3\Omega} = \frac{V_3^2}{R} = \frac{(6V)^2}{3\Omega} = 12W$$

3.4 Direct Current Circuits

Real battery is an ideal $\mathscr{E}\mathrm{MF}$ plus intended resistance

Batteries are a source of voltage ———

Source of voltage = "electromotive force" = $\mathscr{E}MF = \mathscr{E}$

$$V = \mathscr{E} - Ir$$

[&]quot;Open-circuit voltage", where I=0

Analysis of circuits Any circuit can be analyzed with Kirchhoffs Rules:

- Junction Rule, algebraic sum of currents into a junction = sum of currents $\Sigma i_{in} = \Sigma i_{out}$
- Loop Rule, algebraic sum of voltages around any closed loop is zero. Where voltage rises are positive (- to +) and votlage drops are negative (+ to -)

For resistors the current directino determines voltage drop(negative)

Example

- What is the current in the 6Ω resisitor?
- Is it flowing up or down?

- (I) Junction at A: $i_1 = i_2 + i_3$
- (II) Loop A: $12V i_1(4\Omega) i_3(6\Omega) = 0$
- (III) Loop B: $I_3(6\Omega) i_2(2\Omega) + 12V = 0$ $i_3 = \frac{-12V}{22\Omega} = -\frac{6}{11}A$

2 other techniques:

- i) same, except use ficticious "loop currents"
- ii) Source suppressing can look at effects of sources seperately

Next: Circuits with Capacitors will see time-depedent behavior Before "transient phenomena", look at *Steady-state*: "after a long time". The capacitor starts acting like the current is 0.

4 Magnetism

We saw:

$$F = qv \frac{\mu_0 I}{2\pi r} = 0$$

for \vec{v} tangent to circle. where $\mu_0 = 4\pi \times 10^{-7} \frac{Ns^2}{C^2}$ Rewrite this as

$$\boxed{\vec{F} = q\vec{v} \times \vec{B}}$$

where $B = \frac{\mu_0 I}{2\pi r}$ magentic field due to a long wire where direction of \vec{B} is tangent to circle.

If also electric force, combination of electric and magnetic force is called "Lorentz Force" $\,$

$$\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}$$

 $\vec{F} = q\vec{v} \times \vec{B}$

- Like \vec{E}, \vec{F} opposite for +q, -q
- Depends on $\vec{v}: \vec{F} = 0$ for $\vec{v} = 0$
- Depends on angle : $|\vec{F}| = |q|vBsin\Theta$ notice $\vec{F} = 0$ for $\vec{v} \parallel \vec{B}$

Magnetic field does no work because the magnetic force is perpendular to displacement.

So \vec{B} changes direction of \vec{v} but not its magnitude $(KE = \frac{1}{2}mv^2)$ Unit of B = $\frac{Ns}{Cm}$ = tesla = T also gauss = $G = 10^{-4}T$

4.1 Evaluating Cross Products

- 1. Get general equation by expaning determinant $\begin{vmatrix} i & j & k \\ v_x & v_y & v_z \\ B_x & B_y & B_z \end{vmatrix} = \vec{v} \times \vec{B} = i(v_y B_z v_z B_y) j(v_x B_z v_z B_x) + k(v_x B_y v_y B_x)$
- 2. Just multiply out. know that $i \times j = k$ and that $j \times i = -k$
- 5. Magnetic field does no work

4.2 Two ways to Find \vec{B}

- 1. Ampere's Law: for high symmetry
- 2. Biot Savart Law

In general we will only look at: center of arcs and circles, or due to straight segments, or on axis of loop.

4.2.1 \vec{B} at the center of a circle

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{I d\vec{s} \times \hat{r}}{r^2}$$

$$B = \int dB = \int \frac{\mu_0 I}{4\pi r^2} ds = \frac{\mu_0 I}{2R}$$

Since r = R, the integral is constant and is easy to integrate with respect to s.

Also: for a fraction f of a circle $\vec{B} = fB_{\rm full\ circle}$

4.2.2 \vec{B} near a finite straight wire

$$\begin{split} d\vec{B} &= \frac{\mu_0 I}{4\pi} \frac{d\vec{s} \times \hat{r}}{r^2} \\ &= \frac{\mu_0 I}{4\pi} \frac{dssin\theta}{r^2} \end{split}$$

- 1. $sin\theta = sin\theta' = cos\phi$
- 2. $cos\phi = \frac{R}{r} \rightarrow r \frac{R}{cos\phi}$
- 3. $tan\phi = \frac{s}{R} \rightarrow s = R \cdot tan\phi \rightarrow \frac{R}{cos^2\phi d\phi}$

$$B = \int dB$$

$$= \int \frac{\mu_0 I \frac{R}{\cos^2 \phi} d\phi \cos\phi}{4\pi (\frac{R}{\cos \phi})^2}$$

$$= \frac{\mu_0 I}{4\pi R} \int_{-\phi_1}^{+\phi^2} \cos\phi d\phi$$

$$= \frac{\mu_0 I}{4\pi R} \sin\phi |_{-\phi_1}^{+\phi^2}$$

$$= \frac{\mu_0 I}{4\pi R} [\sin\phi_2 + \sin\phi_1]$$

4.2.3 B field due to a square loop of side a

$$\frac{B_{loop}}{2\sqrt{2}\mu_0 I}$$

$$\frac{2\sqrt{2}\mu_0 I}{\pi a}$$

4.2.4 B on axis of loop

Off axis compnents cancel around circle. ϕ is the angle at the bottom right of triangle formed by circle and axis

$$r=\sqrt{x^2+R^2}$$
 Using pythagorean theorem $sin\phi=\frac{R}{\sqrt{x^2+R^2}}$ So we can define $sin\phi$

We only have to integrate along the x compnents

$$dB_x = dBsin\phi$$

$$= \frac{\mu_0 I ds}{4\pi r^2} sin\phi$$

We can say that $\int ds = 2\pi R$ since the radius is constant

$$B = \int \frac{\mu_0 I}{4\pi r^2} \sin\phi \, ds$$

$$= \frac{\mu_0 IR}{4\pi (x^2 + R^2)^{3/2}} \int \, ds$$

$$= \frac{\mu_0 IR^2}{2(x^2 + R^2)^{3/2}}$$

Also, consider yourself very close to the field, x>>R $\frac{1}{x^3}$ dipole field

4.3 Motion in a uniform B

$$|\vec{F}| = |q\vec{v} \times \vec{B}| = qvB$$

 \vec{F} is \perp to \vec{v} centripetal with accelerations $a_r = \frac{v^2}{r}$ We saw that

$$B_{\text{long wire}} = \frac{\mu_0 I}{2\pi r}$$

$$B_{\text{solonoid}} = \mu_0 n I$$

$$B_{\text{loop center}} = \frac{\mu_0 I}{2R}$$

angular velocity $\omega = ?$

$$r = \frac{mv}{qB}$$

Example: Mass Spectrometer Note: Electrons travel in a semi-circle in a spectrometer Electrons are accelarated through potential of 10^3V ("a 1 keV electron"). They enter a region of uniform $B = 10^{-2}T$. What is the distance they are displaced?

 $x = 2r = 2\frac{mv}{qB}$

Know m, q, B need to find v

$$\begin{split} \Delta KE &= \Delta PE \to \frac{1}{2} m v^2 = eV_0 = \sqrt{\frac{2eV}{m}} \\ x &= 2\frac{m}{eB} \sqrt{\frac{2eV_0}{m}} = \frac{2}{B} \sqrt{\frac{2mV_0}{e}} = \frac{2}{(10^{-2}T)} \sqrt{\frac{2(9.11 \times 10^{-31})(10^3V)}{(1.6 \times 10^{-19}C)}} \end{split}$$

In practice however, we are given v,B,x to get $(\frac{q}{m})$

Example: Velocity Selector region of crossed $\vec{E} + \vec{B}$ All we have to consider is qE -vs- qvB if qE = qvB then $v = \frac{E}{B}$

4.4 Force on a current

Consider positive charge travelling along x axis with v_0 with a $-\vec{B}\hat{y}$

$$F_{\text{on wire}} = q\vec{v} \times \vec{B}$$

$$= \frac{1}{n}\vec{j} \times \vec{B}$$

$$F_{\text{on wire}} = (\# \text{ charges})F_{\text{on 1 charge}}$$

$$= (nAl)\frac{1}{n}\hat{\vec{j}} \times \hat{\vec{B}}$$

$$= lA\vec{j} \times \vec{B}$$

$$= l\vec{l} \times \vec{B}$$

Example Net force on a current loop in a uniform \vec{B} is **zero**. This is true for any loop.

Example A current I flows from the origin to (x, y, z) = (1m, 1m, 0) and then straight to (2m, 0, 0). In a uniform field of $\vec{B} = 5T\hat{i}$

$$\vec{F}_1 = (10N)(-\hat{j} + \hat{i})$$

$$\vec{F}_2 = (10N)(-\hat{j} - \hat{i})$$

$$\vec{F} = (20N) - \hat{i}$$

Example Force on a wire segment due to a large \parallel wire

$$B = \frac{\mu_0 I}{2\pi r}$$

$$\vec{F} = I_2 \vec{l} \times \frac{\mu_0 I_1}{2\pi r}$$

$$= I_2 \times \frac{l\mu_0 I_1}{2\pi r}$$

$$\frac{\text{force}}{\text{length}} = \frac{\mu_0 I_1 I_2}{2\pi r}$$

Definition: Magnetic Moment

Dipole moment $(\mu = IA)$ due to a magnetic loop.