Introduction to Audio Content Analysis

Module 7.5: Musical Key Recognition

alexander lerch

introduction overview

corresponding textbook section

Section 7.5

■ lecture content

- definition of musical key
- pitch chroma feature
- standard approach for key recognition

learning objectives

- explain the defining properties of a musical key
- implement a simple pitch chroma feature extractor
- describe and discuss a simple automatic key recognition system

corresponding textbook section

Section 7.5

■ lecture content

- definition of musical key
- pitch chroma feature
- standard approach for key recognition

learning objectives

- explain the defining properties of a musical key
- implement a simple pitch chroma feature extractor
- describe and discuss a simple automatic key recognition system

- tonic: first scale degree
 - most "important" pitch class
- **mode**: set of diatonic pitch relationships
 - Major: 2, 2, 1, 2, 2, 2, 1
 - Minor: 2, 1, 2, 2, 1, 2, 2

- key:
 - defined by tonic (root note) and mode
 - defines a set of pitch classes constructing both pitch and harmonic content
- modulation (local key changes): common in various styles, uncommon in others
- key signature: indicates current key with accidentals (score notation

- key:
 - defined by tonic (root note) and mode
 - defines a set of pitch classes constructing both pitch and harmonic content
- modulation (local key changes): common in various styles, uncommon in others
- key signature: indicates current key with accidentals (score notation)

- key:
 - defined by tonic (root note) and mode
 - defines a set of pitch classes constructing both pitch and harmonic content
- modulation (local key changes): common in various styles, uncommon in others
- key signature: indicates current key with accidentals (score notation)

musical pitch key: circle of fifths

Georgia Center for Music Tech Technology

- pitch class distribution
- 12-dimensional vector
- no octave information
 - robust representation
 - no differentiation between unison and octave
- **(**(

15

t/s

20

10

1 divide spectral representation into semi-tone bands

2 compute mean per band

$$\mu(j,n) = \frac{1}{k_{\mathrm{u}}(j) - k_{\mathrm{l}}(j) + 1} \sum_{k=k_{\mathrm{l}}(j)}^{k_{\mathrm{u}}(j)} |X(k,n)|$$

3 sum/mean every 12th band

$$\nu(j\%12, n) = \sum_{o=o_l}^{o_u} \mu(j, n),$$

$$\nu(n) = [\nu(0, n), \nu(1, n), \nu(2, n), \dots, \nu(10, n), \nu(11, n)]^{\mathrm{T}}$$

- 1 divide spectral representation into semi-tone bands
- 2 compute mean per band

$$\mu(j,n) = \frac{1}{k_{\mathrm{u}}(j) - k_{\mathrm{l}}(j) + 1} \sum_{k=k_{\mathrm{l}}(j)}^{k_{\mathrm{u}}(j)} |X(k,n)|$$

3 sum/mean every 12th band

$$\nu(j\%12, n) = \sum_{o=o_l}^{o_u} \mu(j, n),$$

$$\nu(n) = [\nu(0, n), \nu(1, n), \nu(2, n), \dots, \nu(10, n), \nu(11, n)]^{\mathrm{T}}$$

- 1 divide spectral representation into semi-tone bands
- 2 compute mean per band

$$\mu(j,n) = \frac{1}{k_{\mathrm{u}}(j) - k_{\mathrm{l}}(j) + 1} \sum_{k=k_{\mathrm{l}}(j)}^{k_{\mathrm{u}}(j)} |X(k,n)|$$

3 sum/mean every 12th band

$$\nu(j\%12, n) = \sum_{o=o_l}^{o_u} \mu(j, n),$$

$$\nu(n) = [\nu(0, n), \nu(1, n), \nu(2, n), \dots, \nu(10, n), \nu(11, n)]^{\mathrm{T}}$$

computation: simple variants

Georgia Center for Music Tech Tech College of Person

- weighted mean of bins (window function)
- tonalness preprocessing (local maxima etc)
- sum of filterbank output energies
- CQT:
 - sum of bins/peaks
- beat-synchronous chroma

computation: simple variants

Georgia Center for Music Tech Technology

- weighted mean of bins (window function)
- tonalness preprocessing (local maxima etc)
- sum of filterbank output energies
- CQT:
 - sum of bins/peaks
- beat-synchronous chroma

computation: simple variants

Georgia Center for Music Tech Technology

- weighted mean of bins (window function)
- tonalness preprocessing (local maxima etc)
- sum of filterbank output energies
- CQT:
 - sum of bins/peaks
- beat-synchronous chroma

computation: simple variants

Georgia Center for Music Tech Technology

- weighted mean of bins (window function)
- tonalness preprocessing (local maxima etc)
- sum of filterbank output energies
- CQT:
 - sum of bins/peaks
- beat-synchronous chroma

pitch chroma normalization

■ pitch chroma as *distribution*:

$$\sum_{k=0}^{11} \nu(k,n) = 1$$

■ pitch chroma as *vector*:

$$\sqrt{\sum_{k=0}^{11} \nu(k, n)^2} = 1$$

- other options:
 - e.g., short-term energy normalization (CENS)

pitch chroma normalization

■ pitch chroma as *distribution*:

$$\sum_{k=0}^{11} \nu(k,n) = 1$$

■ pitch chroma as *vector*:

$$\sqrt{\sum_{k=0}^{11} \nu(k, n)^2} = 1$$

- other options:
 - e.g., short-term energy normalization (CENS)

pitch chroma normalization

Georgia Center for Music Tech Technology

■ pitch chroma as *distribution*:

$$\sum_{k=0}^{11} \nu(k,n) = 1$$

■ pitch chroma as *vector*:

$$\sqrt{\sum_{k=0}^{11}\nu(k,n)^2}=1$$

- other options:
 - e.g., short-term energy normalization (CENS)

pitch chroma problem 1: amplitude distortion

Georgia Center for Music Tech Technology

- every pitch contains not only fundamental but higher harmonics
 - ⇒ de-emphasize higher frequencies
 - \Rightarrow build amplitude model
 - ⇒ use multi-pitch detection system

problem 1: amplitude distortion

Georgia Center for Music Tech Technology

College of Design

- every pitch contains not only fundamental but higher harmonics
 - ⇒ de-emphasize higher frequencies
 - \Rightarrow build amplitude model
 - ⇒ use multi-pitch detection system

pitch chroma problem 2: frequency distortion

Georgia Center for Music Technology

■ higher harmonics are not "in-tune"

Harmonic	$ \Delta C(f, f_T) $
$f = f_0$	0
$f=2\cdot f_0$	0
$f=3\cdot f_0$	1.955
$f = 4 \cdot f_0$	0
$f = 5 \cdot f_0$	13.6863
$f = 6 \cdot f_0$	1.955
$f = 7 \cdot f_0$	31.1741
$\mu_{ \Delta C }$	6.9672

key detection introduction

assumption:

- pitch class distribution is prototypical for key
 - tonic/root note is tonal center
 - tonal and harmonic relations define importance and occurrence of individual pitch classes
 - different root notes result in simple shift of distribution

- **1** define reference distribution for specific keys
- extract average pitch chroma from audio
- 3 compute distance between template and extracted chroma

Tech 🛚 Technology

kev detection

processing steps of simple key detection

- define reference distribution for specific keys
- 2 extract average pitch chroma from audio

key detection processing steps of simple key detection

Georgia Center for Music Tech Technology

- **1** define reference distribution for specific keys
- extract average pitch chroma from audio
- 3 compute distance between template and extracted chroma

Georgia Center for Music Tech Technology

- Orthogonal ν_0 : root note is most salient component, other components negligible
 - same distance to all keys

key detection key templates

- Orthogonal ν_0 : root note is most salient component, other components negligible
 - same distance to all keys
 - no major/minor distinction
- Diatonic ν_d: all key-inherent pitches weighted equally
 linear increasing key dist
- Probe tone Ratings ν_p :
 derived from perceptual tonal similarity
- Extracted Key Profiles ν_t: derived from real-world data

key detection key templates

- Orthogonal ν_0 : root note is most salient component, other components negligible
 - same distance to all keys
 - no major/minor distinction
- Diatonic ν_d : all key-inherent pitches weighted equally
 - linear increasing key dist
- Probe tone Ratings v_p: derived from perceptual tonal similarity
- Extracted Key Profiles ν_t : derived from real-world data

key detection key templates

- Orthogonal ν_0 : root note is most salient component, other components negligible
 - same distance to all keys
 - no major/minor distinction
- Diatonic ν_d: all key-inherent pitches weighted equally
 - linear increasing key dist
- Probe tone Ratings ν_p : derived from perceptual tonal similarity
- Extracted Key Profiles ν_t : derived from real-world data

Georgia Center for Music Tech Technology

- Orthogonal ν_0 : root note is most salient component, other components negligible
 - same distance to all keys
 - no major/minor distinction
- Diatonic ν_d: all key-inherent pitches weighted equally
 - linear increasing key dist
- Probe tone Ratings ν_p : derived from perceptual tonal similarity
- Extracted Key Profiles ν_t : derived from real-world data

- tonalness weight:
 estimate the tonality/noisiness and weight instantaneous pitch chroma
- multiple estimations: split piece into regions and estimate key through majority
- real-time key detection: estimate in sliding window

key detection

- tonalness weight:
 estimate the tonality/noisiness and weight instantaneous pitch chroma
- multiple estimations: split piece into regions and estimate key through majority
- real-time key detection: estimate in sliding window

- tonalness weight:
 estimate the tonality/noisiness and weight instantaneous pitch chroma
- multiple estimations: split piece into regions and estimate key through majority
- real-time key detection: estimate in sliding window

key detection results & typical errors

Georgia Center for Music Tech Technology

- typical errors: related keys
 - Dominant
 - Subdominant
 - Relative
 - Major/Minor

graph from¹

¹A. Lerch, "Ein Ansatz zur automatischen Erkennung der Tonart in Musikdateien," in *Proceedings of the VDT International Audio Convention* (23. Tonmeistertagung), Leipzig, Nov. 2004.

musical key

- set of pitch classes constructing pitched content
- defined by tonic (important center) and mode (scale)

pitch chroma

- reduced 12-dimensional octave-independent pitch representation
- relatively robust against timbre variation

automatic key recognition

- standard approach is template-based
- extracted average pitch chroma is compared with predefined template
- inverse distance measure indicates key likelihoods

