四川大学计算机学院、软件学院

实验报告

学号: 2022141460176 姓名: 杨一舟 专业: 计算机科学与技术 第 13 周

课程 名称	计算机网络	实验课时	2
实验 项目	RIP、OSPF 路由协议分析	实验时间	2024. 12. 5
实验 目的	模拟在一个局域网中的网关路由器上配置 NAT 的过程,了解和掌握 NAT 的概念和配置方法		
实验 环境	Windows 11 、 Cisco Packet Tracer 8.2.1		
	一一立公环培塔建		

一、实验环境搭建

实 验

内容第法、程

序、步 骤 和 方法) 1、放置 3 台 1841 型号的路由器, 2 台 2950-24 型号的交换机以及 4 台主机到工作区,路由器之间要用交叉线,其他设备之间要用直通线,连接完成后如图所示:

注意:在后续步骤中将端口设置为"启用"后连接线才会变为绿色三角

2、逐项配置各主机及路由器每个接口的 IP 地址、子网掩码和网关,同时保证各端口状态为"开启",所示截图以 PC2 与 Router0 为例,具体内容如下所示:

设备	接口	IP 地址	子网掩码	默认网关
PC0	Fa0	192. 168. 1. 2	255. 255. 255. 0	192. 168. 1. 1
PC1	Fa0	192. 168. 1. 3	255. 255. 255. 0	192. 168. 1. 1
PC2	Fa0	192. 168. 4. 2	255. 255. 255. 0	192. 168. 4. 1
PC3	Fa0	192. 168. 4. 3	255. 255. 255. 0	192. 168. 4. 1
RO	Fa0/0	192. 168. 1. 1	255. 255. 255. 0	/
KO	Fa0/1	192. 168. 2. 1	255. 255. 255. 0	/
R1	Fa0/0	192. 168. 2. 2	255. 255. 255. 0	/
K1	Fa0/1	192. 168. 3. 1	255. 255. 255. 0	/
R2	Fa0/0	192. 168. 3. 2	255. 255. 255. 0	/
KΔ	Fa0/1	192. 168. 4. 1	255. 255. 255. 0	/

此处可以使用命令行进行配置也可以使用 GUI 进行配置,注意所配置的项目应为 RIP 的对应端口

配置完成后在 PC0 端进行对 PC1 的连通测试以及 PC0 对 PC2 的连通测试,发现 PC0 能够与 PC1 进行通信,但不能与 PC2 进行通信。

```
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 192.168.1.3
Pinging 192.168.1.3 with 32 bytes of data:
Reply from 192.168.1.3: bytes=32 time<1ms TTL=128
Ping statistics for 192.168.1.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\>ping 192.168.4.2
Pinging 192.168.4.2 with 32 bytes of data:
Reply from 192.168.1.1: Destination host unreachable.
Request timed out.
Reply from 192.168.1.1: Destination host unreachable.
Reply from 192.168.1.1: Destination host unreachable.
```

二、动态路由 RIP 配置

1、点击 Router O 图标,进入配置页面。然后选择 CLI 面板,切换到全局配置模式,通过以下指令配置 RIP,也可通过 GUI 中 ADD network 来添加,以 Router 1 为例:

Router(config) #router rip
Router(config-router) #network 192.168.1.0
Router(config-router) #network 192.168.2.0

分别配置 Router0, Router1, Router2 的 RIP 动态路由,具体内容如下表所示:

路由器	RIP 动态路由
Router0	192. 168. 1. 0, 192. 168. 2. 0
Router1	192. 168. 2. 0, 192. 168. 3. 0
Router2	192. 168. 3. 0, 192. 168. 4. 0

2、配置完成后在 PCO 用 ping 命令再次检测与 PC2 及 PC3 的连通性,发现连通成功。

```
C:\>ping 192.168.4.2
Pinging 192.168.4.2 with 32 bytes of data:
Reply from 192.168.4.2: bytes=32 time<1ms TTL=128
Ping statistics for 192.168.4.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
C:\>ping 192.168.4.3
Pinging 192.168.4.3 with 32 bytes of data:
Reply from 192.168.4.3: bytes=32 time<1ms TTL=128
Ping statistics for 192.168.4.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
```

三、OSPF 路由协议配置

1、与RIP相同,点击路由器的图标,进入其配置页面。然后选择CLI面板对每个Router配置OSPF路由协议,使用以下命令在命令行中对其进行配置,以Router2的截图为例:

Router>enable

Router#

Router#config terminal

Enter configuration commands, one per line. End with CNTL/Z.

Router (config) #router ospf 1

Router(config-router) #network 192.168.2.0 255.255.255.0 area 0

Router(config-router) #network 192.168.3.0 255.255.255.0 area 0

Router (config-router) #exit

Router (config) #

分别配置 Router0, Router1, Router2 的 OSPF 路由协议, 具体内容如下表所示:

路由器	OSPF 动态路由
Router0	192. 168. 1. 0, 255. 255. 255. 0, area0
Routero	192. 168. 2. 0, 255. 255. 255. 0, area0
Router1	192. 168. 2. 0, 255. 255. 255. 0, area0
Router 1	192. 168. 3. 0, 255. 255. 255. 0, area0
Router2	192. 168. 3. 0, 255. 255. 255. 0, area0
Router2	192. 168. 4. 0, 255. 255. 255. 0, area0

2、完成后在 PC0 用 ping 命令再次检测与 PC2 及 PC3 的连通性,发现连通成功。

```
C:\>ping 192.168.4.2
Pinging 192.168.4.2 with 32 bytes of data:
Reply from 192.168.4.2: bytes=32 time<1ms TTL=128
Ping statistics for 192.168.4.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
C:\>ping 192.168.4.3
Pinging 192.168.4.3 with 32 bytes of data:
Reply from 192.168.4.3: bytes=32 time<1ms TTL=128
Ping statistics for 192.168.4.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
```

实验过程记录如上述所示

对 PC2 通信情况的解释:

数据 记录 和计 算

在未配置 RIP 或 OSPF 的情况下,路由器只启用了直连网络接口的路由功能,这意味着它只知道如何处理来自直接相连网络的数据包。而 PCO 与 PC1 位于处于同一子网,能够之间进行通信。

当配置了 RIP 或 OSPF 之后,路由器开始根据这些动态路由协议学习网络中的其他可用路径。即使 PCO 和 PC2 位于不同子网,只要网络中存在一条有效的路径,路由器就能利用新学到的路由信息成功地将数据包从 PCO 转发给 PC2,从而实现两者的通信。

结 论 (结 果) 在本次路由协议分析实验中,我们深入研究了 RIP(Routing Information Protocol)和 OSPF (Open Shortest Path First)两种不同的动态路由协议。通过实际配置与测试,我们观察到 RIP 是一种较为简单的距离向量路由协议,相比之下,OSPF 作为一种链路状态路由协议,展现出更复杂的机制。在小型、静态网络环境中,便捷的 RIP 可以提供足够的路由功能;但在大型、复杂或拓扑频繁变化的网络里,OSPF 凭借更快的收敛时间、更好的稳定性和更高的资源利用率,成为更为理想的选择。

小结	念及其适用场景的重要性。通过实际	实验后,我深刻体会到不同路由协议背后的设计理操作和对比测试,我不仅巩固了理论知识,还增强衡的理解。面对真实的网络环境,理论知识必须结用。
指导 老师 议	成绩评定:	指导教师签名: