Lab3

B06901190 陳昱仁, B06505021 楊欣哲, B06505011 傅敬倫

User Manual

- 1.連接喇叭與麥克風至FPGA,接入麥克風孔及喇叭孔
- 2.按下Key[3]初始化

3.錄音階段:

- a.按下 Key[0]可以開始錄音
- b.如果中途要暫時停止錄音再按一次 Key[0],要繼續錄音再按一下 Key[0]
- c.要全部停止錄音,可直接按 Key[2]
- d.如果錄超過32秒,就不會再錄了

4.播放階段:

- a.按下 Key[0]可以開始播放
- b.如果中途要暫時停止播放再按一次 Key[0],要繼續播放再按一次 Key[0]
- c.要全部停止播放,可直接按 Key[2]
- d.如果播超過32秒,就不會再播了

加減速規則:

- sw[4]:決定加速還是減速
- sw[3:0]:決定加減速的倍率,最小可從 1/8 到 8 倍

一. 實驗目的

以 FPGA 實作錄音機,錄音機可以錄音,播放,暫停,停止以及加減速播放

二. 實驗架構

本次實驗的 top module 為 top.sv,I2C 是為了初始 WM8731,DSP 是處理音訊 進來要 sample 的地方,record 則是把音訊放進 SRAM 中,player 則是從 SRAM 中把音訊播出。

三. 實驗方法

A. I2C protocol

為了初始化 WM8731 我們必須想辦法丟資料給此晶片,而溝通方式便是用 I2C protocol,使用 SDA 和 SCL 兩個 port 來管理,如下圖。

SCL=1, SDA 必須是 valid data (green)。 SCL=0, SDA 設定 transfered bit (blue)。 每次傳輸會以 8 bits 為單位傳輸,傳輸完給 acknowledge bit(0)。 當不

需要使用 I2C protocol, 就將 SDA 以及 SCL 設為 1。 為了初始化,總共有7個 register 需要初始化。

Reset	0011_0100_000_1111_0_0000_0000
Analogue Audio Path Control	0011_0100_000_0100_0_0001_0101
Digital Audio Path Control	0011_0100_000_0101_0_0000_0000
Power Down Control	0011_0100_000_0110_0_0000_0000
Digital Audio Interface Format	0011_0100_000_0111_0_0100_0010
Sampling Control	0011_0100_000_1000_0_0001_1001
Active Control	0011_0100_000_1001_0_0000_0001

B. WM8731

當初始完 WM8731, DACLRC 表示使用者將處理後的音訊送進數位類 比轉 換器, 而 ADCLRC 則代表使用者由類比數位轉換器接收音訊。我們將 BCLK 設定為 12MHZ, 作為 module 的 main clock, 然後 sample rate 設定為 32kHz (ADCLK or DACLK)。在一個 sample clock 中, 0表示左擊道 1表示 右擊道, 因為左擊道和右擊道錄音擊音相同,我們只需要取一邊就好,資 料紀錄長度 我們設定為 16bits, 把音效晶片出來的資料傳入 SRAM 當中。

C. ALTPLL

Qsys 可以跑出 ALTPLL 的 module,用來產生需要的 clock。 我們將 WM873 會產生的 clock 包括 12MHz 的 BLCK,32kHz 的 LRC_CLK,作 為 我們主要的 clock 訊號,另外 ALTPLL 的 50MHz 可以產生 12MHz 和 100kHz ,其中 12MHz 給 AUD_XCK,100kHZ 給 I2C 可以初始化 WM8731。

D. Recorder

由於左右聲道音訊資料相同,為提高儲存時間長度我們只取左聲道的訊號,其FSM如下圖所示。在每個 ADCLRCK cycle 中,我們將 16bit 的 input serial 訊 號(以 BCLK 速度傳送)轉為 parallel 訊號。要注意的是在

ADCLRCK 跳之後會 有 1 個 BCLK 的 cycle,要記得跳一個 cycle 再寫入。 當寫入時,資料會在 WAIT 狀態等 16bit 都送到後再由 WRITE 進行寫入作業,並把 SRAM address 依序增加。

另外,當機器在除了 record 之外的模式,要把 SRAM_DQ 設為 high impedence 以避免與 read data 衝突,同時 write enable 訊號也要變為 disable 。

最後,當 SRAM address 讀到 1048575 時,代表 SRAM 到達儲存極限,故會強制結束錄音,進入 STOP 狀態。

E. Player

讀取 SRAM 資料,再透過 I2S 傳到 WM8731,並轉換為類比訊號由喇叭播放。在播放時也是每次讀取 16bit 再一個個 address 進行播放,而播放時還是 只取左聲道進行播放。若要快進時,只需要跳過幾個 address 進行讀取即可,如若想要 4 倍速播放,每次 address 只要從加 1 變加 4 即可。

至於慢速播放,如要 1/2 倍速播放,只需將 data hold 住 2 個 cycle 再輸出即可。

若要更精確結果,可以再做 linear interpolation,但其須經過大量乘除法,耗費硬體資源,故替代方案是算出 cycle 中的平均 step = (b-a)/n ,再加回原本的資料點 s 來避免過多運算。或者也可以將兩個資料以固定比 例相加(如 a*0.25+b*0.75),這比例可以 binary floating point 表示,避免運用除法。

四. 架設方式

如下圖所示,需額外接喇叭及麥克風到 FPGA, mic in 及 line in 孔,以及控制 SW 來做加減速以及慢速內插化。

五. BONUS

1.七段顯示器

我們有使用七段顯示器來顯示 state,一方面可以拿來 debug,另一方面拿來當 BONUS,使用者可知道現在在哪一個 state,方便操作。

2.LED

如上圖式紅框處,我們在撥放時,他會根據錄進去的音量,LED會示意 大小聲的變化,由圖片左至右代表小到大,當很大聲時,LED幾乎全亮, 當很小聲時,LED只會亮左半部。

六. 問題發現及解決方法

1.I2C

一開始在用 Qsys 生成 PII 時撞了很多次牆,因為和 lab2 有一點不一樣,所以再生成 clock 時弄了很久,後來生成完 clock 後板子也不會動,一直以為是 PLL 沒有用好,我們跑去跟別組直接借 PLL,但板子還是沒動,後來發現是 I2C 沒有寫好,所以整個 WM8731 根本沒初始化,最後改好 I2C 後終於可以順利撥放!

2.雜音問題

解決好 I2C 問題後,放出來的聲音仍然有雜音,我們花了很多時間做了各種嘗試,覺得應該是 recorder 出的問題,最後我們嘗試一錄好一個值就直接做 output,不會等到下次有新的值再同步的丟出去,解決了一點雜音問題。

但改善 recorder,仍然會在 SLOW 模式下,進行一次內插時會有雜音,零次內插以及快速撥放都不會有雜音,我們卡在這邊很久,後來我們想到聲音的 16 bits 是 signed 有正負號的,在一次內插運算下,我們把所有運算都加上 signed,解決了雜音問題。如下圖。

if(i_inte)

 $\label{low_count} \verb|dac_nxt=$signed(pre_data)+($signed(i_sram_data)-$signed(pre_data))*\\$signed(slow_count+1)/$signed(i_speed+1);$