(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-220262

(43)公開日 平成10年(1998) 8月18日

(51) Int.Cl. ⁶		識別記号		FΙ					
F 0 2 D	29/02	3 4 1		FO.	2 D	29/02		341	
	17/02					17/02		v	
								R	
	29/00				;	29/00		H	
	41/02	330				41/02		330C	
			審査請求	未請求	請求	項の数2	OL	(全 15 頁)	最終頁に続く
(21)出願番号		特願平9-27026		(71)	上頭人	000003	207		
						トヨタ	自動車	朱式会社	
(22)出顧日		平成9年(1997)2月10日 愛知県豊田市トヨタ町							ė
	•			(72) §	発明者	河野	克己		
						爱知県	豊田市	トヨタ町1番	也 トヨタ自動
						車株式	会社内		
				(72) 3	色明者	井上	孝志		
						愛知県	費田市	トヨタ町1番却	色 トヨタ自動
						車株式	会社内		
				(72) ₹	ぞ明者	杉村	敏夫		
						愛知県	豊田市)	トヨタ町1番地	也 トヨタ自動
						車株式	会社内		
				(74) f	人野分	弁理士	遠山	勉	
									最終頁に続く

(54) 【発明の名称】 車両の減速制御方法と制御装置

(57)【要約】

【課題】 下り坂において勾配に最適な車両のエンジンブレーキ力を得ることができるようにする。

【解決手段】 多気筒エンジンと有段自動変速機を備えた車両の減速走行時に、現在の実際の車両の実加速度と、現在の車速に対応する基準加速度を求め、これらに基いて燃料カットを行う気筒の数と自動変速機の変速段の位置を組み合わせる。レベル1では変速段が4thで4気筒(全気筒)とも燃料カットされ、レベル2では変速段が3rdで4気筒が燃料カットされ、レベル4では変速段が3rdで4気筒が燃料カットされ、レベル5では変速段が2ndで2気筒が燃料カットされ、レベル5では変速段が2ndで3気筒が燃料カットされ、レベル6では変速段が2ndで3気筒が燃料カットされ、レベル6では変速段が2ndで4気筒が燃料カットされ。燃料カットの気筒数を変えるとファイヤリングトルクの大きさが相違し、同一変速段であっても車両の減速度は相違する。

レベル	変速ギヤ段	フューエルカット気筒数
L 1	4 t h	4(全気筒)
L 2	3 r d	3 .
L 3	3 r d	4 (全氣筒)
L 4	2 n d	2
L 5	2 n d	3
L 6	2 n d	4 (全気筒)

10

【特許請求の範囲】

【請求項1】 多気筒の内燃機関の出力回転速度を有段の変速機で減速する車両の減速制御方法において、車両の減速走行時に、フューエルカットを行う気筒数と、変速機による変速段の位置変更とを組み合わせて、所望の減速度を得ることを特徴とする車両の減速制御方法。

【請求項2】 多気筒の内燃機関の出力回転速度を有段の変速機で減速する車両の減速制御装置において、

車両が減速走行をしていることを検出する減速走行検出 手段と

減速走行時の車両の基準加速度を決定する基準加速度決 定手段と、

減速走行時の車両の実際の加速度を検出する実加速度検 出手段と、

前記基準加速度決定手段により決定された基準加速度と 前記実加速度検出手段により検出された実際の加速度と を比較し、その比較結果に基づきフューエルカットを行 う内燃機関の気筒数と変速機の変速段の位置を決定する 減速レベル決定手段と、

前記減速レベル決定手段の決定に基いて各気筒へのフュ 20 ーエルカットの有無を実行せしめる燃料供給制御手段 と、

前記減速レベル決定手段の決定に基いて変速機の変速段 の位置変更を実行せしめる変速段制御手段と、

を備えたことを特徴とする車両の減速制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、多気筒の内燃機関の出力回転速度を有段の変速機で減速する車両の減速制御方法と制御装置に関するものである。

[0002]

【従来の技術】車両の自動変速機は一般に、アクセル操作量もしくはスロットル弁開度と車速とに基いて変速比を有段あるいは無段で変化させるようになっている。しかしながら、従来の変速比が有段である自動変速機においては、アクセル操作量もしくはスロットル弁開度が零の場合でも車速に応じてアップシフトするようになっているため、下り坂でアクセルペダルを離した場合でも充分なエンジンブレーキ力が得られずに車速が増加すると、アップシフトしてエンジンブレーキ力が更に低下するという問題があった。

[0003] との対策として、アクセルをOFFしている時の実際の車速を判定車速と比較し、実際の車速が判定車速を越えている時には、自動変速機の変速比を大きくするように変速ギヤ段をダウンシフトさせてエンジンブレーキ力を増大させる技術が、例えば特開平5-162570号公報等に開示されている。

[0004]

【発明が解決しようとする課題】しかしながら、前述の 変速ギヤ段をダウンシフトさせる自動変速機において は、変速ギヤ段を1段下げると大きくエンジンブレーキ 力が変化してしまうため、路面勾配に対して最適なエン ジンブレーキ力を得ることが難しかった。

[0005] 例えば、4段の変速ギヤ段を有する車両用自動変速機の場合には、3rdと2ndではギヤ比が5割程度異なるように設定されているのが一般的であり、単純計算では3rdから2ndに1段ダウンシフトするとエンジンブレーキ力は5割も増大する。このため、路面勾配によっては、3rdではエンジンブレーキ力が不足するが、2ndでは大き過ぎるということが起こり得る。このような場合には、ドライバーが違和感を感じないように考慮して、変速ギヤ段を3rdに保持することも行われる。

[0006] 本発明はとのような従来の技術の問題点に 鑑みてなされたものであり、本発明が解決しようとする 課題は、多気筒の内燃機関において変速段の変更とフュ ーエルカットを行う気筒数とを組み合わせることによ り、減速度を細かく制御可能にし、路面勾配に応じた最 適なエンジンブレーキ力が得られるようにすることにあ る。

[0007]

【課題を解決するための手段】本発明は前記課題を解決するために、以下の手段を採用した。本発明は、多気筒の内燃機関の出力回転速度を有段の変速機で減速する車両の減速制御方法において、車両の減速走行時に、フューエルカットを行う気筒数と、変速機による変速段の位置変更とを組み合わせて、所望の減速度を得ることを特徴とする車両の減速制御方法である。

[0008] また、本発明は、多気筒の内燃機関の出力回転速度を有段の変速機で減速する車両の減速制御装置において、車両が減速走行をしていることを検出する減速走行検出手段と、減速走行時の車両の基準加速度を決定する基準加速度決定手段と、減速走行時の車両の実際の加速度を検出する実加速度検出手段と、前記基準加速度検出手段により検定された基準加速度と前記実加速度検出手段により検出された実際の加速度とを比較し、その比較結果に基づきフューエルカットを行う内燃機関の気筒数と変速機の変速段の位置を決定する減速レベル決定手段と、前記減速レベル決定手段の決定に基いて各気筒へのフューエルカットの有無を実行せしめる燃料供給制御手段と、前記減速レベル決定手段の決定に基いて変速機の変速段の位置変更を実行せしめる変速段制御手段と、確えたことを特徴とする車両の減速制御装置である。

【0009】 ことで、基準加速度をどのような値に設定するかについては種々の考え方があるが、例えば、車両に乗った乗員が違和感なく体感する経験的な数値を予め実験で求めておき、この数値を採用することも可能である

0 【0010】本発明の車両の減速制御装置では、減速走

行検出手段により車両が減速走行していることを検出 し、 基準加速度決定手段が減速走行時における基準加速 度を決定するとともに実加速度検出手段が減速走行時に おける車両の実際の加速度(以下、実加速度という)を 検出する。そして、減速レベル決定手段が前記基準加速 度と実加速度とを比較し、その比較結果に基いてフュー エルカットを行う内燃機関の気筒数と変速機の変速段の 位置を決定する。さらに、この減速レベル決定手段の決 定に基いて燃料供給制御手段が各気筒へのフューエルカ ットの有無を実行するとともに、変速段制御手段が変速 10 機の変速段の位置変更を実行する。

【0011】変速機の変速段が同じ位置にあっても、内 燃機関のいくつの気筒に対してフューエルカットを行う かによってファイヤリングトルクの大きさが相違し、と のファイヤリングトルクの大きさの相違がエンジンブレ ーキ力の大きさに相違を生じさせる。尚、実加速度と基 準加速度の偏差が大きくエンジンブレーキ力が不足する 度合いが大きい程エンジンブレーキ力が大きくなるよう に変速段とフューエルカット気筒数を制御する。

【0012】したがって、前述のようにフューエルカッ トを行う内燃機関の気筒数の制御と変速機の変速段の位 置制御とを組み合わせると、きめ細かい減速度を得るこ とができる。

[0013]

【発明の実施の形態】

[第1の実施の形態]以下、本発明の車両の減速制御装 置における第1の実施の形態を図1から図11の図面を 参照して説明する。尚、この第1の実施の形態は、本発 明の車両の減速制御装置を4気筒ガソリンエンジンと4 段の変速ギャ段の自動変速機を備えた車両に適用した態 30 様である。

【0014】図1において、エアクリーナ14から吸入 された空気は、エアフローメータ16、吸気通路18. スロットル弁20, バイパス通路22, サージタンク2 4を通り、ととで4つのインテークマニホールド26に 分かれてガソリンエンジン(内燃機関)10の4つの気 筒の各吸気弁28から各気筒の燃焼室12に吸入され る。この空気には、各インテールマニホルド26に設け られた燃料噴射弁30から噴射される燃料ガスが混合さ れるようになっている。

【0015】エアフローメータ16は吸入空気量を測定 するもので、その吸入空気量を表す信号をエンジン制御 用コンピュータ32に出力する。スロットル弁20はエ ンジン10に吸入される空気量を連続的に変化させるも ので、スロットル制御用コンピュータ35から供給され るスロット制御信号DTHに従ってスロット弁開度θが 制御されるようになっている。また、このスロットル弁 20にはスロットルポジションセンサ36が設けられ て、スロットル弁開度θを表すスロットル弁開度信号S hetaをエンジン制御用コンピュータ32、トランスミッシ 50 回転速度NEを表すエンジン回転速度信号SNEをエン

ョン制御用コンピュータ34、及びスロットル制御用コ ンピュータ35に出力する。

【0016】バイパス通路22はスロットル弁20と並 列に配設されており、このバイバス通路22にはアイド ル回転数制御弁38が設けられていて、エンジン制御用 コンピュータ32によってアイドル回転数制御弁38の 開度が制御されることにより、スロットル弁20をバイ バスして流れる空気量が調整されてアイドル時のエンジ ン回転数が制御される。

【0017】燃料噴射弁30も、エンジン制御用コンピ ュータ32によってその噴射タイミングや噴射量が制御 される。尚、前記エアフローメータ16の上流側には吸 入空気の温度を測定する吸気温センサ40が設けられ、 その吸気温を表す信号をエンジン制御用コンピュータ3 2に出力する。

【0018】エンジン10は、4つの気筒と、各気筒に 設けられた吸気弁28、排気弁42、ピストン44及び 点火プラグ46を備えて構成されている。点火プラグ4 6は、エンジン制御用コンピュータ32によって制御さ れるイグナイタ48からディストリビュータ50を介し て供給される高電圧によって点火火花を発生し、燃料室 12内の混合ガスを爆発させてピストン44を上下動さ せることによりクランク軸を回転させる。

【0019】吸気弁28及び排気弁42は、クランク軸 の回転に同期して回転駆動されるカムシャフトにより開 閉されるようになっており、エンジン制御用コンピュー タ32によって制御される図示しない可変バルブタイミ ング機構により、カムシャフトとクランク軸との回転位 相が変更されて開閉タイミングが調整されるようになっ ている。

【0020】そして、各気筒の燃料室12内で燃焼した 排気ガスは、各気筒の排気弁42からそれぞれエキゾー ストマニホルド54を経た後にエキゾーストパイプ55 で1つにまとめられ、排気通路56、触媒装置58を経 て大気に排出される。

【0021】尚、図1において、インテークマニホール ド26からエキゾーストマニホルド54までの経路は、 1気筒分を図示しており、3気筒分は省略している。エ ンジン10にはエンジン冷却水温を測定する水温センサ 40 60が設けられており、そのエンジン冷却水温を表す信 号をエンジン制御用コンピュータ32に出力するように なっている。

【0022】エキゾーストバイブ55には排気ガス中の 酸素濃度を検出する酸素センサ62が設けられており、 その酸素濃度を表す信号をエンジン制御用コンピュータ 32に出力する。

【0023】また、ディストリビュータ50にはクラン ク軸の回転に同期してパルスを発生する回転角センサ5 1が設けられており、そのパルス信号すなわちエンジン ジン制御用コンピュータ32及びトランスミッション制 御用コンピュータ34に出力する。

【0024】前記エンジン制御用コンピュータ32.トランスミッション制御用コンピュータ34.スロットル制御用コンピュータ35は、何れもCPU、RAM、ROM、入出力インターフェース回路、A/Dコンパータ等を備えて構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行なうものである。

【0025】トランスミッション制御用コンピュータ3 10 4には、前記信号の他、バターンセレクトスイッチ70から選択バターンを表すパターン信号SP、ブレーキランプスイッチ72からブレーキが踏み込み操作されたことを表すブレーキ信号SB、オーバードライブスイッチ74から4thの変速ギヤ段(O/Dギヤ段)までの変速許可を表すO/D信号SO、アクセル操作量センサ76からアクセルペダルの操作量Acを表すアクセル操作量信号SAc、アイドルスイッチ86からアイドル状態(ON)であることを表すアイドル信号SIがそれぞれ供給されるようになっている。尚、アクセル操作量信号SAc及びアイドル信号SIはエンジン制御用コンピュータ32及びスロットル制御用コンピュータ35にも供給される。

[0026]前記パターンセレクトスイッチ70は、下り坂で自動的にエンジンブレーキを増大させる自動エンジンブレーキパターンを少なくとも有するとともに、動力性能を重視した変速マップによって自動変速機78の変速制御を行うパワーパターン、燃費を重視した変速マップによって変速制御を行うエコノミーパターンなど、予め定められた複数の走行パターンの中から運転者が好 30 みの走行パターンを選択操作するものである。

[0027] 自動変速機78は、例えば図2に示すようにトルクコンパータ110,第1変速機112,及び第2変速機114を備えて構成されている。トルクコンパータ110のポンプ翼車は前記エンジン10のクランク軸118に連結されており、タービン翼車は入力軸120を介して第1変速機112のキャリヤ122に連結されている。

【0028】第1変速機112は、サンギヤ124.リングギヤ126,及びキャリヤ122に回転可能に配設 40されてサンギヤ124、リングギヤ126と噛み合わされているプラネタリギヤ128からなる遊星歯車装置を含んで構成されており、サンギヤ124とキャリヤ122との間にはクラッチC。及び一方向クラッチF。が並列に設けられ、サンギヤ124とハウジング130との間にはブレーキB。が設けられている。

【0029】尚、サンギヤ124とキャリヤ122との間には一方向クラッチF。が設けられているため、エンジン10側から動力伝達が行われる状態ではクラッチC。を開放しても一方向クラッチF。によってクラッチC。

を係合制御した場合と同様な作用が得られる。

【0030】第2変速機114は、サンギャ132、一対のリングギャ134、136、キャリヤ138に回転可能に配設されてサンギャ132、リングギャ134と 階み合わされているプラネタリギヤ140、及びキャリヤ142に回転可能に配設されてサンギヤ132、リングギヤ136と噛み合わされているプラネタリギヤ144とからなる複合型の遊星歯車装置を含んで構成されており、リングギヤ136と前記第1変速機112のリングギヤ126との間にはクラッチC、が設けられ、サンギヤ132とリングギヤ126との間にはクラッチC、が設けられ、サンギヤ132とリングギヤ136との間にはクラッチC、が設けられ、サンギヤ132とハウジング130との間にはブレーキB、と、直列に配設された一方向クラッチF、及びブレーキB、とが並列に設けられ、キャリヤ138とハウジング130との間にはブレーキB、及び一方向クラッチF、が並列に設けられている。

6

[0031]また、リングギヤ134及びキャリヤ142は出力軸146に一体的の連結されており、その出力軸146は差動歯車装置等を介して駆動輪に連結されている。

【0032】前記クラッチC。~C、及びブレーキB。~B、(以下、特に区別しない場合にはクラッチC、ブレーキBという)は、多板式のクラッチやバンドブレーキなど油圧アクチュエータによって係合制御される油圧式摩擦係合装置であり、その油圧アクチュエータには、油圧制御回路150から作動油が供給されるようになっている。

【0033】油圧制御回路150は多数の切換バルブ等を備えており、トランスミッション制御用コンピュータ34からの信号に従ってソレノイドS1、S2、及びS3の励磁、非励磁がそれぞれ切り換えられることにより、油圧回路が切り換えられて前記クラッチC及びブレーキBが選択的に係合制御され、図3に示されているように前進4段のうちのいずれかの変速ギヤ段が成立させられる。

【0034】図3におけるソレノイドの欄の「○」印は 励磁を意味し、クラッチ及びブレーキの欄の「○」印は 係合を意味する。シフトポジションの「D」、「S」、 「L」は運転席のシフトレバーの操作レンジであり、

「D」レンジは1stm64th(O/D)までの4段で変速ギャ段制御が行なわれ、「S」レンジは1stm63rdまでの3段で変速ギャ段制御が行なわれ、

「L」レンジでは1 s t 及び2 n dの2段で変速ギヤ段 制御が行なわれる。

【0035】変速比(入力軸120の回転速度/出力軸146の回転速度)は、1stで最も大きく2nd,3rd,4thとなるに従って小さくなり、3rdの変速比は1.0である。

【0036】また、「D」レンジでは、3rd及び4t 50 hでエンジンブレーキが作用し、1st及び2ndでは

一方向クラッチF₁, F₁の作用によりエンジンブレーキ が効かないが、括弧書きで示されている(1st),

(2nd)では、それぞれソレノイドS3が励磁される ことによりプレーキB₁, B₁が係合させられてエンジン ブレーキが作用するようになる。「S」レンジの2nd 及び「L」レンジの1st及び2ndでもエンジンブレ ーキが作用するようになっている。

【0037】尚、図示は省略するが、シフトレバーが 「R」レンジへ操作されると、油圧制御回路150のマ ニュアルシフトバルブが切り換えられて後進変速ギヤ段 10 が成立させられる。

【0038】かかる自動変速機78には、一対の回転速 度センサ80及び82が配設されている。回転速度セン サ80は入力軸120すなわちトルクコンバータ110 のタービン翼車の回転速度Nrを検出するもので、回転 速度センサ82は出力軸146の回転速度N。を検出す るものであり、それぞれの回転速度N_T, N_oを表す回転 速度信号SN, SN。をトランスミッション制御用コン ピュータ34に出力する。

ルスタートスイッチ84が配設されており、シフトレバ 一操作によって切り換えられるマニュアルシフトバルブ の位置から前記「D」、「S」、「L」、「R」等のシ フトレンジを検出して、そのシフトレンジを表すシフト レンジ信号SRをトランスミッション制御用コンピュー タ34に出力する。

【0040】尚、前記制御用コンピュータ32,34, 35間では必要な情報が授受されるようになっており、 前記スロットル弁開度信号S B やエンジン回転速度信号 SNE、アクセル操作量信号SAcは、少なくともいず れかの制御用コンピュータ32、34または35に供給 されるようになっておればよい。また、例えば、ステア リングホイールの操舵角、路面の勾配、排気温度など、 自動車の運転状態を表す他の種々の信号を取り込んで、 エンジン制御や自動変速機78の変速制御、スロットル 制御に利用することも可能である。

【0041】そして、前記エンジン制御用コンピュータ 32は、前記吸入空気量やスロットル弁開度 θ , エンジ ン回転速度NE、エンジン10の冷却水温度、吸入空気 温度,排気通路56内の酸素濃度,アクセル操作量Ac 40 などに応じて、例えば必要なエンジン出力を確保しつつ 燃費や有害排出ガスを低減するように予め定められたデ ータマップや演算式などに基いて、前記燃料噴射弁30 による燃料ガスの噴射量や噴射タイミング、イグナイタ 48による点火時期、アイドル回転数制御弁38による アイドル回転数、及び可変バルブタイミング機構による 吸排気弁28,42の開閉タイミングなどを制御する。 【0042】トランスミッション制御用コンピュータ3 4は、スロットル弁開度 θ 、エンジン回転速度NE、バ ターン信号SPが表す選択パターン、ブレーキ信号SB 50 が表すブレーキ操作の有無、O/D信号SOが表すO/ D変速段への変速の可否, アクセル操作量A c, 自動変 速機78の出力軸回転速度N。などに基いて、ソレノィ ドS1、S2及びS3の励磁、非励磁をそれぞれ切り換 えることにより自動変速機78の変速ギヤ段を切換制御 する。

【0043】とのトランスミッション制御用コンピュー タ34は、トルクコンバータ110のロックアップクラ ッチについても、油圧制御回路150に設けられた図示 しないソレノイドをデューティ制御することにより、完 全係合かスリップ状態か開放かを切り換えるようになっ

【0044】また、スロットル制御用コンピュータ35 は、基本的にアクセル操作量Acに基いてスロットル制 御信号DTHを出力し、スロットル弁20のスロットル 弁開度θをアクセル操作量Acに応じて制御するように なっている。

【0045】また、前記エンジン制御用コンピュータ3 2及びトランスミッション制御用コンピュータ34は、 【0039】また、油圧制御回路150にはニュートラ 20 パターンセレクトスイッチ70により自動エンジンブレ ーキパターンが選択されている場合に、下り坂で路面勾 配に応じた最適なエンジンブレーキ力を得ることができ るように、エンジンブレーキ力を自動的に制御するよう になっている。

> 【0046】エンジンブレーキ力の制御は、自動変速機 78における変速ギヤ段の制御と、エンジン10の各気 筒に対するフューエルカットの制御との組み合わせによ って実現される。以下、エンジンブレーキ力の制御につ いて図4から図11を参照して説明する。

【0047】初めに、自動変速機78の変速ギヤ段の制 御(AT制御)について図4と図5のフローチャートを 参照して説明する。まず、図4において、ステップ20 1で変速ギヤ段制御に必要な種々のバラメータ (車速信 号やアイドルスイッチ信号等) がトランスミッション制 御用コンピュータ34に入力される。

【0048】次に、ステップ202でシフトレンジが 「D(ドライブ)」であるか否かを判定し、ステップ2 03で走行パターンが「自動エンジンブレーキパター ン」であるか否かを判定し、ステップ204でアイドル スイッチ86がONか否かを判定し、ステップ205で 現在の車速Vがエンジンブレーキ制御が必要とされる車 速領域(V,以上V,未満)にあるか否かを判定する。

【0049】上記Dレンジは、図3に示されているよう にlst, 2nd, 3rd, 4thの計4つの変速ギヤ 段で変速制御を行う場合である。そして、上記ステップ 202~205のうち1つでもNOの場合には、ステッ プ206においてフラグF1を「O」としフラグF2を 「0」として、ステップ207に進み通常の変速ギヤ段 の制御を実行する。一方、上記ステップ202~205 の判定が全てYESの場合には、エンジンブレーキ力を

制御するステップ208以下を実行する。

【0050】尚、全ての走行パターンで自動エンジンプ レーキ制御を実行する場合には、ステップ202やステ ップ203を省略することができる。

【0051】ステップ207の通常の変速ギヤ段の制御 は、シフトレバーの操作レンジがDレンジの場合には、 基本的にはアクセル操作量Ac(%),及び車速V(k m/h)に基いて、図7の変速マップに従って自動変速 機78の変速ギヤ段を切り換えるもので、例えば現在の 変速ギヤ段が3 r d でアクセル操作量A c が約40%の 10 場合には、図7に一点鎖線で示されているように「3→ 4 」変速線からシフトアップ車速 V u を求めるとともに 「2←3」変速線からシフトダウン車速 V d を求め、実 際の車速Vとそれ等のシフトアップ車速Vu.シフトダ ウン車速Vdとを比較して変速するか否かを判定し、そ の判定結果に応じてソレノイドS1及びS2の励磁、非 励磁をそれぞれ切り換えることにより、自動変速機78 の変速ギヤ段を切換制御するようになっている。

【0052】シフトレバーの操作レンジがSレンジの場 合には4 t hへの変速が禁止され、Lレンジの場合には 20 3rd及び4thへの変速が禁止される。尚、ソレノイ ドS3は、図3に示すように、エンジンブレーキが必要 なSレンジの2nd及びLレンジにおいて励磁される。

【0053】前記変速マップはパターンセレクトスイッ チ70によって選択できる複数の走行バターンに応じて 複数種類のものがトランスミッション制御用コンピュー タ32のROMに予め記憶されている。

【0054】ステップ208では、エンジンブレーキレ ベルの判定処理を行う。エンジンブレーキレベルの判定 処理について図5のフローチャートを参照して説明す る。まず、現在の車速に対応する基準加速度Abを図8 に示すマップを参照して補間法等により算出する(ステ ップ2081)。とこで基準加速度Abはドライバーが 自然な減速度として通常体感する加速度(減速度)であ り、この実施の形態においては、平坦路面においてアイ ドルスイッチ86がONで変速ギヤ段が4thの情行走 行時の加速度 (減速度) を基準加速度Abとしている。 尚、図8に示すマップは、予め車速と当該車速における 基準加速度Abを測定して作成されたものであり、トラ ンスミッション制御用コンピュータ34のROMに格納 40 されている。

【0055】次に、現在の実際の車両の加速度(以下、 実加速度という) Amを算出する (ステップ208 2)。実加速度Amは所定時間における車速の変化量と して算出される。

【0056】次に、実加速度Amと基準加速度Abとの 加速度差△Aを算出する(ステップ2083)。 この加 速度差AAが大きいほど下り勾配が大きいことになる。 そこで、加速度差△Aが大きいほど大きなエンジンブレ 〜キ力が得られるように、加速度差△Aの大きさからエ 50 プ213に進んでレベル3か否かを判定する。レベル3

ンジンブレーキレベル(以下、単にレベルという)をス テップ2084以下で決定する。

【0057】との実施の形態では、加速度差△Aに5つ のしきい値 k 2, k 3, k 4, k 5, k 6 を設定し、エンジ ンブレーキレベルを6段階に分けている。ステップ20 84において、ステップ2083で算出された加速度差 △Aがしきい値k6 以上か否かが判定され、加速度差△ Aがしきい値k6以上であると判定された場合にはレベ ル6(L6)と判定する。

【0058】加速度差△Aがしきい値k6よりも小さい と判定された場合には、しきい値k5 以上か否かが判定 され(ステップ2085)、しきい値k5以上と判定さ れた場合にはレベル5(L5)と判定する。

【0059】加速度差△Aがしきい値k5 よりも小さい と判定された場合には、しきい値 k 4 以上か否かが判定 され(ステップ2086)、しきい値k4 以上と判定さ れた場合にはレベル4(L4)と判定する。

【0060】加速度差△Aがしきい値k4 よりも小さい と判定された場合には、しきい値k3 以上か否かが判定 され(ステップ2087)、しきい値k3以上と判定さ れた場合にはレベル3(L3)と判定する。

【0061】加速度差△Aがしきい値k3 よりも小さい と判定された場合には、しきい値k2 以上か否かが判定 され (ステップ2088)、しきい値k2 以上と判定さ れた場合にはレベル2(L2)と判定し、しきい値k2 よりも小さいと判定された場合にはレベル1(L1)と 判定する。

【0062】尚、図9に示すように、各しきい値k2, k3, k4, k5, k6 には、ON値(knon)とOFF値 (k no FF) を設けてヒステリシスを持たせており、頻繁 なレベル変化がないようにしている。

【0063】とのようにしてレベル判定処理を行った 後、図4のステップ209へ進みエンジンブレーキレベ ルがレベル1か否かを判定する。レベル1であると判定 された場合には、ステップ206に進んでフラグF1を 「0」としフラグF2を「0」として、さらにステップ 207に進み通常の変速ギヤ段の制御が行われる。

【0064】ステップ209においてエンジンプレーキ レベルがレベル1でないと判定された場合には、ステッ プ210に進んでレベル2か否かを判定する。レベル2 であると判定された場合には、ステップ211に進んで フラグF 1を「1」としフラグF 2を「0」として、さ らにステップ212に進み、自動変速機78の変速ギヤ 段の4thへの変速を禁止する。4thへの変速禁止 は、図7の変速マップにおいて4th領域であると判断 された場合であっても変速ギヤ段を3rdに維持するこ とによって達成される。

【0065】ステップ210においてエンジンブレーキ レベルがレベル2でないと判定された場合には、ステッ

であると判定された場合には、ステップ214に進んで フラグF1を「O」としフラグF2を「O」として、さ らにステップ212に進み、自動変速機78の変速ギヤ 段の4thへの変速を禁止する。

【0066】ステップ213においてエンジンブレーキ. レベルがレベル3でないと判定された場合には、ステッ プ215に進んでレベル4か否かを判定する。レベル4 であると判定された場合には、ステップ216に進んで フラグF1を「0」としフラグF2を「1」として、さ らにステップ217に進み、自動変速機78の変速ギヤ 10 段の4th及び3rdへの変速を禁止する。4th及び 3 r dへの変速禁止は、図7の変速マップにおいて4 t h及び3rd領域であると判断された場合であっても変 速ギヤ段を2ndに維持することによって達成される。

【0067】ステップ215においてエンジンブレーキ レベルがレベル4でないと判定された場合には、ステッ プ218に進んでレベル5か否かを判定する。レベル5 であると判定された場合には、ステップ219に進んで フラグF1を「1」としフラグF2を「0」として、さ らにステップ217に進み、自動変速機78の変速ギヤ 20 段の4th及び3rdへの変速を禁止する。

【0068】ステップ218においてエンジンブレーキ レベルがレベル5でないと判定された場合には、ステッ プ220に進んでフラグF1を「0」としフラグF2を 「0」として、さらにステップ217に進み、自動変速 機78の変速ギヤ段の4th及び3rdへの変速を禁止 する。

【0069】ステップ212及びステップ217の次に はステップ221に進み、現在の変速ギヤ段が2ndで あるか否かが判定され、2ndであると判定されるとス テップ222でソレノイドS3が励磁される。これによ り、図3のDレンジの欄に示す(2nd)が達成され、 変速ギヤ段が2 n d の場合でもエンジンブレーキを効か せることができる。以上が自動変速機78の変速ギヤ段 の制御である。

【0070】次に、エンジン10の各気筒に対するフュ ーエルカットの制御について図6の燃料噴射制御(EF [制御]のフローチャートを参照して説明する。まず、 図6において、ステップ301で燃料噴射制御に必要な 種々のパラメータ(エンジン回転速度や吸入空気量等) がエンジン制御用コンピュータ32に入力される。

【0071】次に、エンジン回転速度NEと吸入空気量 Qから1気筒当たりに必要な燃料噴射量TAUを演算す る(ステップ302)。燃料噴射量TAUは数1により 演算される。

[0072]

【数1】TAU=k×Q/NE×FAF×kh 尚、との数1において、k,FAF,khは補正係数で

カット領域か否かが判定される。即ち、アイドルスイッ チ86がONで、且つ、エンジン回転速度NEがフュー エルカット回転速度NEcよりも大きいか否かが判定さ れる。この両条件が満たされているときにはフューエル カット領域であり、両条件が満たされていないときには フューエルカット領域ではない。

【0074】フューエルカット領域ではないと判定され た場合にはステップ304に進み、ステップ302で演 算された燃料噴射量TAUを全気筒についての燃料噴射 量TAUi(i=1, 2, 3, 4)として採用する。そ の結果、第1気筒から第4気筒の全ての気筒に対してス テップ302で演算された燃料噴射量TAUの燃料が噴 射されることとなる。

【0075】一方、ステップ303においてフューエル カット領域であると判定された場合には、ステップ30 5に進みフラグF1が「1」か否かが判定される。フラ グF1が「1」であると判定された場合にはステップ3 06に進み、第1気筒についての燃料噴射量TAU1に はステップ302で演算された燃料噴射量TAUを採用 し、第2気筒から第4気筒の3つの気筒についての燃料 噴射量TAU2, TAU3, TAU4には「O」を採用す る。その結果、第1気筒にはステップ302で演算され た燃料噴射量TAUの燃料が供給され、第2気筒と第3 気筒と第4気筒にはフューエルカットされて燃料が供給 されないこととなる。

【0076】ステップ305においてフラグF1が 「1」でないと判定された場合には、ステップ307に 進んでフラグF2が「1」か否かが判定される。フラグ F2が「1」であると判定された場合にはステップ30 8に進み、第1気筒及び第2気筒についての燃料噴射量 TAU1、TAU2にはステップ302で演算された燃料 噴射量TAUを採用し、第3気筒と第4気筒の2つの気 筒についての燃料噴射量TAU3、TAU4には「0」を 採用する。その結果、第1気筒と第2気筒にはステップ 302で演算された燃料噴射量TAUの燃料が供給さ れ、第3気筒と第4気筒にはフューエルカットされて燃 料が供給されないこととなる。

【0077】ステップ307においてフラグF2が 「1」でない判定された場合には、燃料噴射量TAUを

0にし(ステップ309)、これを全気筒についての燃 料噴射量TAUi(i=1, 2, 3, 4)として採用す る(ステップ304)。その結果、第1気筒から第4気 筒の全ての気筒に対してフューエルカットされ燃料が供 給されないこととなる。

【0078】以上のように変速ギヤ段の制御とフューエ ルカットの制御を行ったときの各レベルにおける変速ギ ヤ段とフューエルカット気筒数との対応関係をまとめる と図10に示すようになる。

【0079】即ち、レベル1(L1)では変速ギヤ段が 【0073】次に、ステップ303に進んでフューエル 50 4thとなり且つ4つの気筒(全気筒)がフューエルカ

され変速ギヤ段が3 r dとなり且つ3つの気筒がフュー

の変速ギヤ段ではフューエルカット気筒数を2段階に分け(L2,L3)、2ndの変速ギヤ段ではフューエルカット気筒数を3段階に分けている(L4,L5,L6)。これは次の理由による。

14

エルカットされ、レベル3 (L3)では4thへの変速が禁止され変速ギヤ段が3rdとなり且つ4つの気筒 (全気筒)がフューエルカットされ、レベル4 (L4)では4th及び3rdへの変速が禁止され変速ギヤ段が2ndとなり且つ2つの気筒がフューエルカットされ、レベル5 (L5)では4th及び3rdへの変速が禁止され変速ギヤ段が2ndとなり且つ3つの気筒がフューエルカットされ、レベル6 (L6)では4th及び3rdへの変速が禁止され変速ギヤ段が2ndとなり且つ4つの気筒(全気筒)がフューエルカットされる。

(0086) フューエルカットを行わない場合、4thと3rdの車両減速度の差よりも、2ndと3rdの車両減速度の差の方が大きい。また、3rdにおいてフューエルカットの有無による車両減速度に与える影響よりも、2ndにおいてフューエルカットの有無による車両減速度への影響の方が大きい。このことから、高速ギヤ段のときよりも低速ギヤ段のときの方をフューエルカット気筒数による場合分けを多くした方が、各レベル間の車両減速度差を小さくすることができ、その結果、レベル変更時にドライバーが感じる違和感を低減することができるのである。

【0080】ところで、自動変速機78の変速ギヤ段が同じ位置にあっても、フューエルカットを行う気筒数によってファイヤリングトルクの大きさが相違し、このファイヤリングトルクの大きさの相違がエンジンブレーキカの大きさに相違を生じさせる。

【0087】尚、この第1の実施の形態においては、トランスミッション制御用コンピュータ34による一連の信号処理のうち前記ステップ204を実行する部分とアイドルスイッチ86を含んで減速走行検出手段が構成され、前記ステップ2081を実行する部分により基準加速度決定手段が構成され、前記ステップ2082を実行する部分により実加速度検出手段が構成されている。

【0081】その結果、変速ギヤ段が同じ3rdであってもエンジンブレーキ力は大小2段階となり、変速ギヤ段が同じ2ndであってもエンジンブレーキ力は大中小3段階となり、合計ではエンジンブレーキ力は6段階になる。

【0088】また、この第1の実施の形態においては、トランスミッション制御用コンピュータ34による一連の信号処理のうち前記ステップ206,207,2083~2088,210~217を実行する部分により減速レベル決定手段が構成されている。

【0082】図11は、との実施の形態において、ある一定車速の下で各レベルに対する車両減速度を測定した測定結果の一例を示したものであり、車両減速度は明らかに6段階に制御されることがわかる。尚、図中破線は従来のエンジンブレーキ力制御における車両減速度を示しており、全気筒に対してフューエルカットを行い変速ギヤ段の変更のみでエンジンブレーキ力を制御する場合を示している。との従来の制御方法では車両減速度は3段階である。

【0089】さらに、との第1の実施の形態においては、エンジン制御用コンピュータ32による一連の信号処理のうちステップ301~309を実行する部分により燃料供給制御手段が構成されている。

【0083】したがって、この実施の形態のようにエンジンブレーキ力を制御すると、従来よりもエンジンブレーキ力をきめ細かく制御することができ、路面勾配に対して最適なエンジンブレーキ力を得ることができる。

【0090】また、との第1の実施の形態においては、トランスミッション制御用コンピュータ34による一連の信号処理のうち前記ステップ207,212,217によって制御される油圧制御回路150により変速段制御手段が構成されている。

【0084】 このようにエンジンブレーキ力の制御を実行すると、勾配が大きな下り坂では加速度差 \triangle Aが大きいため、例えばレベル5(L5)が選択され比較的に大きなエンジンブレーキ力が得られる。この作用により車両の加速度は低減され、その結果、加速度差 \triangle Aは減少するが、しきい値k Soff を下まわらなければレベル5に維持される。そして、勾配の変化などにより加速度差 \triangle Aがしきい値k Soff よりも小さくなるとレベル4(L4)に移行し、エンジンブレーキ力は減少する。この逆に、加速度差 \triangle Aがk Soff 以上になるとレベル6(L6)に移行し、エンジンブレーキ力はさらに大きくな

【0091】 [他の実施の形態] 前述の実施の形態では、図4におけるステップ212で4thへの変速を禁止しステップ217で4th及び3rdへの変速を禁止している。このため、例えば、エンジンブレーキレベルがレベル2或いはレベル3と判定されてステップ212で4thへの変速を禁止し3rdでエンジンブレーキを作用させた場合でも、車速の低下に伴い変速ギヤ段が2ndとなって、変速ギヤ段とフューエルカット気筒数との対応関係が図10の関係から外れる場合もある。したがって、エンジンブレーキレベルにおける変速ギヤ段とフューエルカット気筒数との対応関係をより正確に制御したい場合には、ステップ212において変速ギヤ段を3rdにホールドし、ステップ217において2ndにホールドするように変更してもよい。変速ギヤ段の3r

【0085】尚、この実施の形態では、高速ギヤ段のときよりも低速ギヤ段のときの方をフューエルカット気筒数による場合分けを多くしている。具体的には、3rd 50

dホールドは、自動変速機78のソレノイドS2を励磁 しソレノイドS1及びS3を非励磁とすることにより達 成され、2ndホールドはソレノイドS1, S2及びS 3の全てを励磁することにより達成することができる。

【0092】前述の実施の形態は本発明を4気筒エンジンに適用した例であるが、本発明は6気筒エンジンや8気筒エンジン等の多気筒エンジンにも適用可能であり、その場合には車両減速度を更に細かく分けて制御可能となるので、より最適なエンジンブレーキ力を得ることができるようになる。また、前述の実施の形態では1stの変速ギヤ段のときのエンジンブレーキを使用していないが、1stのときもエンジンブレーキを使用し且つフューエルカットの制御と組み合わせることも可能である。

【0093】また、前述の実施の形態は本発明を4速の自動変速機に適用した例であるが、本発明は4速に限られるものではなく、例えば5速の自動変速機に適用することも可能である。

【0094】さらに、前述の実施の形態ではパターンセレクトスイッチでのにより自動エンジンブレーキパターンが選択された場合にエンジンブレーキ力を自動制御するようになっているが、パワーパターンなど他の走行パターンが選択された場合にエンジンブレーキ力を自動制御するようにしたり、走行パターンの種類に拘わらずエンジンブレーキカの自動制御が実行されるようにすることも可能である。エンジンブレーキ制御用のスイッチをパターンセレクトスイッチ70とは別に独立に設けることも勿論可能である。

【0095】また、前述の実施の形態ではエンジン制御用コンピュータ32,トランスミッション制御用コンピ 30ュータ34,及びスロットル制御用コンピュータ35が別体に構成されているが、これらを単一のコンピュータで構成するととも可能である。

[0096]

【発明の効果】以上説明したように、本発明の車両の減速制御方法によれば、車両の減速走行時に、フューエルカットを行う気筒数と、変速機による変速段の位置変更とを組み合わせることにより、所望の減速度を得ることができる。

【0097】また、本発明の車両の減速制御装置によれ 40 ば、車両が減速走行をしていることを検出する減速走行検出手段と、減速走行時の基準加速度を決定する基準加速度決定手段と、減速走行時の車両の実際の加速度を検出する実加速度検出手段と、前記基準加速度と実際の加速度とを比較しその比較結果に基づきフェーエルカットを行う内燃機関の気筒数と変速機の変速段の位置を決定

する減速レベル決定手段と、前記減速レベル決定手段の決定に基いて各気筒へのフューエルカットの有無を実行せしめる燃料供給制御手段と、前記減速レベル決定手段の決定に基いて変速機の変速段の位置変更を実行せしめる変速段制御手段と、を備えたことにより、内燃機関の各気筒への燃料供給制御と変速機の変速段の位置制御とを組み合わせて、車両の減速度をきめ細かく制御することができ、その結果、路面勾配に最適なエンジンブレーキ力を得ることができるという優れた効果が奏される。【図面の簡単な説明】

【図1】 本発明の第1の実施の形態における車両の減速制御装置を備えた内燃機関及び自動変速機等の概略構成を示す図である。

【図2】 図1に示す自動変速機の概略構成を示す図である。

【図3】 図2に示す自動変速機の変速ギヤ段とそれを成立させるためのソレノイドの励磁、クラッチ及びブレーキの係合作動を示す図である。

【図4】 図5及び図6とともに図1に示す減速制御装置の作動を説明するフローチャートである。

【図5】 図4及び図6とともに図1に示す減速制御装置の作動を説明するフローチャートである。

【図6】 図4及び図5とともに図1に示す減速制御装置の作動を説明するフローチャートである。

【図7】 図2に示す自動変速機の変速ギヤ段を切り換える変速マップの一例である。

【図8】 図5のステップ2081において基準加速度を決定するために用いられる基準加速度マップの一例である。

0 【図9】 図8に示す基準加速度マップのしきい値のヒステリシスを示す図である。

【図 I 0 】 図 4 から図 6 のフローチャートに従って車両の減速制御を実行した場合の各エンジンブレーキレベルにおける変速ギヤ段とフューエルカット気筒数との関係を示す図である。

【図11】 図4から図6のフローチャートに従って車両の減速制御を実行した場合の各エンジンブレーキレベルにおける車両減速度の測定結果の一例である。

【符号の説明】

- 10 ガソリンエンジン(内燃機関)
 - 32 エンジン制御用コンピュータ
 - 34 トランスミッション制御用コンピュータ
 - 35 スロットル制御用コンピュータ
 - 78 自動変速機
 - 86 アイドルスイッチ (減速走行検出手段)

【図1】

[図2]

【図10】

レベル	安速ギヤ段	フューエルカット気筒数
L 1	4th	4 (全気筒)
L 2	3 r d	3
L 3	3 r d	4 (全気筒)
L 4	2 n d	2
L 5	2 n d	3
L B	2 n d	4 (全気筒)

[図8]

車速V (km/h)	1	20	48	60	86	100	120	140
基準加速度Ab (m/s*)	0	-0, 17	-0, 34	-0, 50	-0, 54	-B, 77	-0. 90	-0, 99

[図3]

27		ソレノイド			クラッチ			ブレーキ			
ボシ	ジション	81	8 2	S 3	CO	CI	C 2	80	B 1	B 2	B 3
	1 at	0			0	0	[
	211	0	0		0	0				0	
	314		0		0	0	0			0	
0	4 th					0	0	0		0	
	(111)	0		0	0	0					٥
	(2 a4)	0	0	0	0	0			0	0	
	1 st	0			0	0					
5	2 n4	0	0	0	0	0			0	0	
ĺ	3 /4		0		0	0	0			0	
	I s1	0		0	0	0					0
L	214	0	0	0	0	0			0	0	

【図11】

【図9】

【図4】

【図5】

【図6】

フロントページの続き

 (51)Int.Cl.*
 識別記号
 FI

 F02D 41/12
 330
 F02D 41/12
 330J

 F16H 61/18
 F16H 61/18

 // F16H 59:48
 F16H 61/18

(72)発明者 松尾 賢治

愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内

			41	
		•		
			,	
			·	