Lecture 1 - Notation, functions and limits

Theodore Landsman

Georgetown University

August 15th - 2022

Today's Agenda

- ► Introductions
- ► Math Camp Logistics and schedule
- ► Notations, functions and limits!

Ovid/About Me

Schedule

	Monday 15th	Tuesday 16th	Wednesday 17th	Thursday 18th	Friday 19th
9:30 - 12:00	Oops!	Review Problem	Lecture 3	Lecture 4	Lecture 5
		Sets + Lecture 2			
12:00 - 12:10	Break	Break	Break	Break	Break
12:10 - 1:00	Lecture 1	In-class Problem	In-class Problem	In-class Problem	Q and A with Prof
		Set	Set	Set	Klasnja
1:00 - 2:00	Lecture 1	Lunch Break	Lunch Break	Lunch Break	Lunch Break
2:00 - 2:30	Break	Review Problem	Review Problem	Review Problem	Q and A with
		Sets	Sets	Sets	Henry and Theo
					about Graduate
					Student Life
2:30 - 3:30	Computational bootcamp Software installation and Best Practices	Computational bootcamp R	Computational bootcamp	Computational bootcamp Stata	Computational bootcamp Latex/Overleaf

Week's Agenda

- ► Lecture 1: Notation, functions and limits
- ► Lecture 2: Linear Algebra
- ► Lecture 3: Calculus 1 Derivatives
- ► Lecture 4: Calculus 2 Integrals and multivariate calculus
- ► Lecture 5: Probability

Goals of Math Camp

Do not worry - we do not expect you to master multivariate calculus!

- ► Familiarity
- Recognition
- ► Confidence

Agenda

Variables and measurements

 ${\sf Algebra}$

Functions

Series, sequences, and limits

Variables and measurements

Algebra

Functions

Series, sequences, and limits

Variables and constants

Theory: A set of statements that involve concepts. The statements comprise assumptions, propositions, corollaries, and hypothesis.

Concepts must be measured so we use...

- ► Variable: A concept or measure¹ that takes different values in a given set.
- Constant: A concept or measure that has a single value for a given set.

Sets and sample spaces

A set is a collection of elements.

Common sets: Natural numbers (\mathbb{N}), Integers (\mathbb{Z}), Rational numbers (\mathbb{Q}), Real Numbers (\mathbb{R}), etc.

A set can be:

- ▶ Finite or infinite: \mathbb{Z} is infinite, but all the integers from 1 to 10 is finite.
- ► Countable or uncountable: a countable set is one whose each of its element can be associated with a natural number (or an integer).
- Bounded or unbounded: A bounded set has finite size (but may have infinite elements).

Some important sets that we are going to use as political scientists:

- ▶ **Solution set:** a set that contains all solutions for an equation
- ► Sample space: a set that contains all values that a variable can take.

Unions and intersections

Much as sets contain elements, they also can contain, and be contained by, other sets.

Notation:

- ightharpoonup A \subset B: "A is a **proper subset** of B" implies that set B contains all the elements in A, plus at least one more
- ▶ A ⊆ B: "A is a **subset** of B". In this case, it allows A and B to be the same.

Intersection: $A \cap B$. The set of elements common to two sets.

Union: A \cup B. The set that contains all elements in both sets.

Mutually exclusive sets: the intersection is the empty set.

Levels of measurement

Differences of kind: In some theories all we require of our concepts is that they distinguish one type from another.

▶ **Nominal**: No mathematical relationship. For example: Occupation (Grad Student, Researcher, Oncologist, Lawyer).

Differences of degree: At other times we are interested in differences in degree (whether one case *has more*, *is stronger*, etc.).

- ▶ Ordinal: There is a mathematical relationship (<, ≤, >, ≥, etc). For example, ideological scales (far left, moderate left, moderate, moderate right, far right).
- ▶ Cardinal/Interval: This requires that the distance between values be constant over the range of values. For example, some surveys ask you for your age (in years).
- ▶ **Ratio:** a cardinal variable that has a meaningful zero value. For example, Polity index goes from -10 to 10 in intervals of 1.

Agenda

Variables and measurements

Algebra

Functions

Series, sequences, and limits

Basic properties of arithmetic

For variables that stand for real numbers or integers, these properties will always hold:

- Associative properties:
 - (a+b)+c = a+(b+c)
 - $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- ► Commutative properties:
 - $\bullet \quad a+b=b+a$
 - $a \cdot b = b \cdot a$
- Distributive properties:
 - $\bullet \ a \cdot (b+c) = ab + ac$
- ► Identity properties:
 - a + 0 = a
 - $a \cdot 1 = a$
- Inverse properties (for real numbers not integers):
 - (-a) + a = 0
 - $a^{-1} \cdot a = 1$

Order of operations and special products

Order of operations - PEMDAS:

- Parentheses ()
- ightharpoonup Exponents (x)
- ► Multiplication (·)
- ► Division (÷)
- ► Addition (+)
- ► Subtraction (−)

Special products

- 1. $(a+b)^2 = a^2 + 2ab + b^2$
- 2. $(a-b)^2 = a^2 2ab + b^2$
- 3. $(x+a)(x+b) = x^2 + (a+b)x + ab$
- 4. $(a+b)(a-b) = a^2 b^2$
- 5. $(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+ac+bc)$
- 6. $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$

Steps:

- Isolate the variable you are looking for
- Combine like terms
- Factor and cancel
- Operate on both sides of the equation
- Check your answer

For quadratic equations:

- ► Try to create the following general form: $ax^2 + bx + c = 0$
- ► Then, the solutions will be given by:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{1}$$

Example

Suppose:

$$x^2 + 8x + 6 = 0$$

Example

Suppose:

$$x^2 + 8x + 6 = 0$$

Option 1: using the quadratic solution formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

In this case, a = 1, b = 8 and c = 6:

$$x = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 6}}{2}$$
$$x = -4 \pm \sqrt{\frac{64 - 24}{4}}$$

$$x = -4 \pm \sqrt{\frac{40}{4}}$$

$$x = -4 \pm \sqrt{10}$$

Solution: $x_1 = -4 + \sqrt{10}$ and $x_2 = -4 - \sqrt{10}$

Example

Suppose:

$$x^2 + 8x + 6 = 0$$

Option 2: use the special products and isolate x:

$$x^2 + 8x + 6 = 0$$

$$x^2 + 8x = -6$$

(+16 in both sides)

$$x^2 + 8x + 16 = 10$$

$$x^2 + 2 \cdot 4 \cdot x + 4^2 = 10$$

$$(x+4)^2 = 10$$

$$(x+4) = \pm \sqrt{10}$$

$$x = -4 \pm \sqrt{10}$$

Solution: $x_1 = -4 + \sqrt{10}$ and $x_2 = -4 - \sqrt{10}$

Inequalities

All pairs of real numbers have exactly one of the following relations: x = y, x > y, or x < y.

Functions

Solving inequalities is similar to solving equations but there are a few extra properties:

- Adding any number to each side of these relations will not change them; this includes inequalities.
- Multiplication:
 - If a is positive and x > y, then ax > ay.
 - If a is negative and x > y, then ax < ay.
- Division:
 - If a is positive and x > y, then $\frac{x}{a} > \frac{y}{a}$.
 - If a is negative and x > y, then $\frac{x}{a} < \frac{y}{a}$.

Exponent, logarithms and root rules

Exponent rules

- $x^a \cdot x^b = x^{a+b}$
- $\rightarrow x^a \cdot z^a = (xz)^a$
- $(x^a)^b = x^{ab}$

Logarithm rules

Functions

- $\log(x_1 \cdot x_2) = \log(x_1) + \log(x_2)$ for $x_1, x_2 > 0$
- ► $log(\frac{x_1}{x_2}) = log(x_1) log(x_2)$ for $x_1, x_2 > 0$
- $\log(x^b) = b \cdot ln(x)$ for x > 0

Exponent, logarithms and root rules

Root rules

- $\sqrt{x} = x^{\frac{1}{2}}$

Look at M&S page 70 for all the ways you cannot simplify roots!

Agenda

Variables and measurements

Algebra

Functions

Series, sequences, and limits

Functions and its characteristics

Functions provide a specific description of the association or relationship between two (or among several) concepts (in theoretical work) or variables (in empirical work).

- ► Functions assign one element of the range to an element of the domain (one x is assigned to one y)
- ▶ Noted as $f(x): A \rightarrow B$ or "f maps A into B"
- ▶ A is the *domain*, or set of possible *x* values.
- ▶ B is the *codomain*, or set of possibly *y* values.
- Once A has gone through the function, the resulting values constitute the range or image of the function.

Graph examples

In which of these graphs can we observe a function?

Figure: c)

Graph examples

In which of these graphs can we observe a function?

Figure: c)

Function composition and the inverse function

We can chain multiple functions using function composition.

- ▶ This is written either as $g \circ f(x)$ or g(f(x)).
- ▶ It is read as "g composed with f"
- ▶ Generally, $g \circ f(x) \neq f \circ g(x)$

Example: Suppose f(x) = 2x and $g(x) = x^3$

- $ightharpoonup g \circ f(x) = (2x)^3 = 8x^3$
- $f \circ g(x) = 2(x^3) = 2x^3$

The *inverse function* is the function that when composed with the original function returns the identity function: $f^{-1}(x) \circ f(x) = x$

How to find it? Just exchange y(f(x)) by x and isolate the "new" y.

Examples of functions of one variable - linear equation

- ► This is the classic linear equation y = a + bx or y = mx + n
- ▶ a and b are constants and x is the variable.
- ▶ a is the intercept and b is the slope of the line, or the amount that y changes given a one-unit increase in x.

Figure: y=2+x

Examples of functions of one variable - Quadratic function

- This is the classical quadratic function: $f(x) = ax^2 + bx + c$ or $f(x) = \alpha + \beta_1 x + \beta_2 x^2$
- ▶ If we set a > 0 ($\beta_2 > 0$) we get a curve shaped like an U (a convex parabola).
- ▶ If we set a < 0 ($\beta_2 < 0$) we get a curve shaped like an inverse U (a concave parabola).

Figure:
$$y = -2x^2 + 8x + 6$$

Exponent, logarithms and roots - Graphs

Exponential function

Logarithmic funtion

Root function

Agenda

Variables and measurements

Algebra

Functions

Series, sequences, and limits

Sequences and series

A sequence is an ordered list of numbers

- ► A sequence can be infinite, such as 1,2,3,4...
- ► Or a sequence can be finite, such as 5,10,15,20,25

A series is the sum of a sequence.

- ► Typically noted as $\sum_{i=1}^{N} x_i$ which means add the terms in the sequence beginning at x_1 and stopping at x_n .
- ▶ For an infinite sequence, $N = \infty$

Limits

Limits help us describe the behavior of a sequence, series, or function as it approaches a given value.

- ► A sequence/series/function *converges* if it has a finit limit.
- A sequence/series/function *diverges* if it has no limit or the limit is $\pm \infty$

The limit of a sequence is the number L such that as we approach infinity, x_i gets arbitrarily close to L. Noted as: $\lim_{i\to\infty} x_i = L$

Example of the limit of a sequence:

- ▶ The limit of the sequence $\{i\}_{i=1}^{\infty}$ does not have an "endpoint" and approaches infinity, so it diverges.
- ► The limit of the sequence $\{\frac{3}{10^i}\}_{i=1}^{\infty}$ approaches zero as $i \to \infty$, so it converges.

Limits

The limit of a series is similar, but you are not looking for an "endpoint". In this case, you are looking for the sum of all elements in an infinite sequence. For example:

- ▶ $\lim_{n\to\infty} \sum_{i=1}^n i = \infty$ So, this series is divergent.
- ▶ $\lim_{n\to\infty}\sum_{i=1}^n \frac{1}{2^i}$. This series converges. Where?

For a function y=f(x), the limit is the value of y that the function tend towards as small steps are taken towards a value x=c

If you are looking at a piecewise function, remember that you can approach \boldsymbol{c} from above or below - the limits may differ!

Limits

Example: Estimate the value of the following limits: $\lim_{x\to 0^-} f(x)$ and $\lim_{x\to 0^+} f(x)$ for the following function:

$$f(x) = \begin{cases} x+1 & x \le 0 \\ x^2 & x > 0 \end{cases}$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} x + 1 = 1$$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x^2 = 0$$

Math Camp Exercises - Day 1

- 1. M&S pag 26, Exercises 1.a), 1.c), 1.e) and 1.g)
- 2. M&S pag 27, Exercise 5.
- 3. M&S pag 41 42, Exercises 1, 2, 3, 5, 7, 8, 9, 15, 16, 17, 19, 22, 25, 26, 28, 29, 31
- 4. M&S pag 78-79, Exercises 2, 3, 4, 7, 8, 9, 16, 17.
- 5. M&S pag 99, Exercise 5.