Digital Electronics and Microprocessors

Class 1

CHHAYADEVI BHAMARE

Scope and Objective of the course:

The course aims at introducing the fundamentals of Digital Electronics and Microprocessor Architecture and programming (8086).

Text Books:

T1: Ronald J. Tocci, Neal S. Widmer and Gregory L. Moss, Digital Systems: Principles and Applications, Pearson Education Pvt. Limited.

T2: Barry B. Brey, The Intel Microprocessors: Architecture, Programming and Interfacing, Pearson Education Pvt. Limited.

Reference Books:

R1: M.Morris Mano, Michael D.Ciletti: Digital Design, Pearson Education

R2: Douglas V. Hall, Microprocessors and Interfacing, Tata Mc-Graw Hill

Evaluation Scheme

Component	Туре	Weightage	Duration
Test1	СВ	40	1 hr
Test2	СВ	40	1 hr
Regular Labs/Lab exam/Online		100	2 hrs/1 hr/1hr
Compree	CB/OB	120	3 hrs

Fundamentals Of Digital Electronics

- Number Systems
- Boolean algebra and logic gates
- Combinational Logic Circuits and their applications
- □ Sequential circuits and their applications
- Complex digital circuits(Arithmetic circuits Memory Devices etc)
- □ Integrated Circuit Logic Families
- ☐ Finally microprocessor as a complex programmable digital circuits

Fundamentals of Microprocessors

- □ Introduction to microprocessor
- □ Microprocessor Architecture (8086)
- □ Addressing modes of 8086
- Instruction set (Data movement, arithmetic, program control)
- □ Programming of the microprocessor
- □ Interfacing(Memory, Basic I/O interfacing)
- □ Design Example

Number Systems and Codes (T1:-Chapt2)

- □ A <u>number system</u> is a set of <u>numbers</u> together with one or more <u>operations</u> (e.g. add, subtract).
- □ Before digital computers, the only known number system is the *decimal number system*
 - It has a total of ten digits: $\{0,1,2,\ldots,9\}$
- □ Decimal, Binary, Octal and Hexadecimal Numbers

Weighted(positional) Number System

- \square A number **D** consists of *n* digits and each digit has a *position*.
- □Every digit *position* is associated with a *fixed weight*.
- \square If the weight associated with the *i*th. position is w_i , then the value of **D** is given by:

$$D = d_{n-1} w_{n-1} + d_{n-2} w_{n-2} + \dots + d_1 w_1 + d_0 w_0$$

□Also called *positional number system*

Example

- □The Decimal number system is a weighted number system.
- \square For Integer decimal numbers, the weight of the rightmost digit (at position 0) is 1, the weight of position 1 digit is 10, that of position 2 digit is 100, position 3 is 1000, etc.

The Radix (Base)

- A digit d_i , has a weight which is a power of some constant value called **radix** (r) or **base** such that $w_i = r^i$.
- \square A number system of radix r, has r allowed digits $\{0, 1, \dots (r-1)\}$
- □ The leftmost digit has the highest weight and called **Most Significant Digit (MSD)**
- □ The rightmost digit has the lowest weight and called **Least** Significant Digit (LSD)

Example

- □Decimal Number System
- \square Radix (base) = 10

$$\square w_i = r^i$$
, so

$$\mathbf{w}_0 = 10^0 = 1$$
,

$$\mathbf{w}_1 = 10^1 = 10$$

$$\mathbf{w}_{n} = \mathbf{r}^{n}$$

□Only 10 allowed digits {0,1,2,3,4,5,6,7,8,9}

Position	3	2	1	0
	1000	100	10	1
Weight	$=10^{3}$	$=10^{2}$	= 10 ¹	= 10°

Fractions (Radix point)

- □ A number D has *n* integral digits and *m* fractional digits
- Digits to the left of the radix point (*integral digits*) have *positive* position indices, while digits to the right of the radix point (*fractional digits*) have *negative* position indices
- The *weight* for a digit position *i* is given by $\mathbf{w}_i = \mathbf{r}^i$

Example

$$\Box$$
For D = 57.6528

- n=2
- $\blacksquare m = 4$
- r = 10 (decimal number)
- □The weighted representation for D is:

$$i = -4$$
 $d_i r^i = 8 \times 10^{-4}$
 $i = -3$ $d_i r^i = 2 \times 10^{-3}$
 $i = -2$ $d_i r^i = 5 \times 10^{-2}$
 $i = -1$ $d_i r^i = 6 \times 10^{-1}$
 $i = 0$ $d_i r^i = 7 \times 10^0$
 $i = 1$ $d_i r^i = 5 \times 10^1$

$$D = 5x10^{1} + 2x10^{0} + 9x10^{-1} + 4x10^{-2} + 6x10^{-3}$$

Binary Number System (base-2)

- \bullet r = 2
- Two allowed digits {0,1}
- A Binary Digit is referred to as bit
- Examples: 1100111, 01, 0001, 11110
- The left most bit is called the *Most Significant Bit (MSB)*
- The rightmost bit is called the *Least Significant Bit (LSB)*

Binary to Decimal Conversion

□ The decimal equivalent of a binary number can be found by expanding the number into a power series:

Example

- □ Convert binary to decimal by summing the positions that contain a 1.
- \Box 1 0 0 1 0 1

$$2^{5} + 2^{4} + 2^{3} + 2^{2} + 2^{1} + 2^{0} = 32 + 4 + 1 = 37_{10}$$

Question:

What is the decimal equivalent of $(110.11)_2$?

- □ Two methods to convert decimal to binary:
 - Reverse process
 - Use repeated division

- □ Reverse process
 - Note that all positions must be accounted for

$$37_{10} = 2^5 + 0 + 0 + 2^2 + 0 + 2^0$$

$$1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1_2$$

- □ Repeated division steps:
 - Divide the decimal number by 2
 - Write the remainder after each division until a quotient of zero is obtained.
 - The first remainder is the LSB and the last is the MSB

□ Repeated division –
This flowchart
describes the process
and can be used to
convert from decimal
to any other number
system.

Example: Decimal \rightarrow Binary

```
53<sub>10</sub> => 53 / 2 = 26remainder 1 LSB

26 / 2 = 13remainder 0

13/ 2 = 6 remainder 1

6 / 2 = 3 remainder 0

3 / 2 = 1 remainder 1

1 / 2 = 0 remainder 1 MSB
```

Read from the bottom to the top

```
= 110101_2 (6 bits)
= 00110101_2 (8 bits)
```

 $0.81_{10} \rightarrow \text{binary???}$

$$0.81_{10} \Rightarrow 0.81 \times 2 = 1.62$$
 $0.62 \times 2 = 1.24$
 $0.24 \times 2 = 0.48$
 $0.48 \times 2 = 0.96$
 $0.96 \times 2 = 1.92$
 $0.92 \times 2 = 1.84$

= 0.110011_2 (approximately)

Hexadecimal Number System

- ☐ Most digital systems deal with groups of bits in even powers of 2.
- □ Hexadecimal uses groups of 4 bits.
- □ Base 16
 - 16 possible symbols
 - 0-9 and A-F
- □ Allows for convenient handling of long binary strings.

Hexadecimal Number to Decimal

□ Convert from hex to decimal by multiplying each hex digit by its positional weight.

Example:

$$163_{16} = 1 \times (16^{2}) + 6 \times (16^{1}) + 3 \times (16^{0})$$
$$= 1 \times 256 + 6 \times 16 + 3 \times 1$$
$$= 355_{10}$$

Decimal to Hexadecimal

- □ Convert from decimal to hex by using the repeated division method used for decimal to binary.
- □ Divide the decimal number by 16
- □ The first remainder is the LSB and the last is the MSB.

Refer Example 2.4 of text book

Hexadecimal to Binary

Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexadecimal	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
Binary	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

□ Example of hex to binary conversion:

$$9F2_{16} = 9$$
 F 2
 $1001 \ 1111 \ 0010 = 100111110010_2$

Binary to Hexadecimal

- □ Convert from binary to hex by grouping bits in four starting with the LSB.
- □ Each group is then converted to the hex equivalent
- □ Leading zeros can be added to the left of the MSB to fill out the last group.

Binary To Hexadecimal Example

Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexadecimal	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
Binary	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

□ Example of binary to hex conversion.

(Note the addition of leading zeroes)

$$1110100110_{2} = 0011 1010 0110$$

$$= 3 A 6$$

$$= 3A6_{16}$$

□ Counting in hex requires a reset and carry after reaching F.

Hexadecimal Number System

- □ Hexadecimal is useful for representing long strings of bits.
- □ Understanding the conversion process and memorizing the 4 bit patterns for each hexadecimal digit will prove valuable later.

Octal Number System (Work for you)

- □ Assignment1:- Octal to Decimal, Decimal to Octal, Octal to Binary, Binary to Octal
- □ Assignment2:- convert 724₈ to Decimal

Specific Examples

Question: What is the result of adding 1 to the largest digit of some number system?

- \square (9)₁₀ + 1 = (10)₁₀
- \Box $(7)_8 + 1 = (10)_8$
- \Box (1)₂ + 1 = (10)₂
- \Box (F)₁₆ + 1 = (10)₁₆

Conclusion: Adding 1 to the largest digit in any number system always has a result of (10) in that number system.

Examples

Question: What is the largest value representable using 3 integral digits?

Answer: The largest value results when all 3 positions are filled with the largest digit in the number system.

- For the decimal system, it is $(999)_{10}$
- **For** the octal system, it is $(777)_8$
- **For** the hex system, it is $(FFF)_{16}$
- **For** the binary system, it is $(111)_2$

Conversion Among Bases

□ The possibilities:

Quick Example

$$25_{10} = 11001_2 = 31_8 = 19_{16}$$

Base