Marathon Data Analysis

Hindrek Teder, Dmitri Timašjov, Ragnar Vent Tuesday, May 26, 2015

Configuration

Libraries used in the project:

```
library(dplyr)
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:stats':
##
##
       filter
##
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(rpart)
library(rpart.plot)
library(fpc)
library(ggplot2)
library(pheatmap)
library(scales)
```

Preprocessing

Data: SEB 17th Tartu Rattamaraton

The data was received from the official Club Tartu Maraton home page (https://tartumaraton.ee/en/results/) and included official results of SEB 17th Tartu Rattamaraton (89/40 km). The analysis of this project are based on the longer distance of the marathon (89 km). For the record, this pipeline can be used to analyse other Tartu maraton events.

```
## $ name
                   : Factor w/ 3049 levels "Aagver Maris",..: 314 2385 1349 1997 151 2296 2831 2531 258
## $ country
                  : Factor w/ 27 levels "Harju", "Hiina",..: 10 10 22 22 23 15 26 22 16 22 ...
## $ split.1
                  : Factor w/ 1424 levels "0:20:24", "0:20:27", ...: 2 1 5 9 6 9 8 6 7 3 ...
                  : Factor w/ 1500 levels "0:37:50","0:37:55",...: 2 4 4 3 5 5 4 5 4 1 ...
## $ split.2
## $ split.3
                  : Factor w/ 1717 levels "1:00:16", "1:00:17", ...: 2 3 8 7 8 5 8 5 4 2 ....
                 : Factor w/ 2212 levels "1:25:17","1:25:18",..: 1 2 8 6 7 6 5 9 4 1 ...
## $ split.4
                 : Factor w/ 2266 levels "1:53:02","1:53:03",..: 3 1 9 4 8 4 5 9 8 2 ...
## $ split.5
                  : Factor w/ 1994 levels "2:11:02", "2:11:03", ...: 1 2 5 5 6 5 7 6 7 3 ...
## $ split.6
## $ time
                   : Factor w/ 2388 levels "2:29:11","2:29:12",..: 1 2 3 3 3 3 4 5 5 6 ...
                  : Factor w/ 21 levels "M17", "M20", "M21", ...: 3 3 6 4 3 3 2 4 3 2 ...
## $ age.group
## $ place2
                   : int 1 2 1 1 3 4 1 2 5 2 ...
## $ particip.time: int 2 3 16 7 16 4 9 15 9 7 ...
```

Features of the data:

```
• place - overall ranking
```

- L.place female ranking
- s.nr starting number
- name name of the competitor
- country county of resident for Estonian, country of resident for foreigner
- split.1 time in Matu (12.3 km)
- $\bullet~$ split.2 time in Ande (22.9 km)
- split.3 time in Puka (36.5 km)
- split.4 time in Astuvere (50.6 km)
- split.5 time in Palu (66.3 km)
- split.6 time in Hellenurme (77.2 km)
- time finishing time (89.0 km)
- age.group groups by gender and age
- place2 age.group ranking
- particip.time who many times have participated before (including this time)

Functions

For easier comparison we converted split and time strings to the base unit of a second.

```
#Function to convert time string to seconds
charToSec = function(x){
  if(!is.na(x)){
    incr = c(3600, 60, 1)
    vals = sapply(strsplit(as.character(x),":"), FUN=function(y){as.numeric(y)})
    return(sum(incr*vals))
}else{
    return(NA)
}
```

```
#Convert timestamps to seconds
for(i in 1:6){
  data[, paste("split.",i,sep="")]=sapply(data[,paste("split.",i,sep="")], FUN=function(x){charToSec(x)}
data[, "time"]=sapply(data[, "time"], FUN=function(x){charToSec(x)})
```

Imputation

The raw data have in total of 3065 objects and only 8 of them were incomplete. As this is less than 0.3 percentange from the whole there is no need for the data imputation.

```
#Data imputation (currently we just leave rows with missing data out)
data = data[rowSums(is.na(data[,paste("split.",1:6,sep="")]))==0,]
```

Added features

```
#Add gender
data$gender <- 0
data[is.na(data[,"L.place"]),]$gender <- "male"</pre>
data[!is.na(data[,"L.place"]),]$gender <- "female"</pre>
#Add unisex agegroup
data$age.group2 <- as.numeric(substr(data$age.group, 2, 3))</pre>
#Add nationality
countries <- levels(data$country)</pre>
counties <- countries[c(1,3,4,7,8,11,12,14,15,16,18,22,23,24,26,27)]
data$nationality <- 0
data[is.element(data$country, counties),]$nationality <- "Estonia"</pre>
data[!is.element(data$country, counties),]$nationality <- "foreign"</pre>
#Add county
data$county <- data$country</pre>
levels(data$county) <- c(levels(data$county), "other")</pre>
data$county[!is.element(data$country, counties)] <- "other"</pre>
```

```
#Split final times into 10 groups
data$timeCategory <- ntile(data$time, 10)

#Split start numbers into 10 groups
data$sNrCategory <- ntile(data$s.nr, 5)

#Split number of participations into 10 groups
data$participTimeCategory <- ntile(data$particip.time, 5)

#Split final place into 10 groups
data$placeCategory <- ntile(data$place, 10)</pre>
```

```
#Combine all Estonian participants
data$countryCategory <- data$country
levels(data$countryCategory) <- c(levels(data$countryCategory), "Eesti")
data[data$country %in% c(
   "Harju", "Hiiumaa", "Ida-Viru", "Jõgeva", "Järvamaa", "Lääne-Viru", "Läänemaa",
   "Pärnu", "Rapla", "Saaremaa", "Tallinn", "Tartu", "Valga", "Viljandi", "Võru", "Põlva"), "countryCate,</pre>
```

```
#Combine age categories
data$ageCategory <- data$age.group2
levels(data$ageCategory) <- c(levels(data$ageCategory), c("17-21", "35-45", "50-60", "65+"))
data[data$age.group2 %in% c("17", "20", "21"), "ageCategory"] <- "17-21"
data[data$age.group2 %in% c("35", "40", "45"), "ageCategory"] <- "35-45"
data[data$age.group2 %in% c("50", "55", "60"), "ageCategory"] <- "50-60"
data[data$age.group2 %in% c("65", "70", "75"), "ageCategory"] <- "65+"
```

Fix preprocessed data

```
#Write out preprocessed data
write.table(data, "data/processedData.txt", sep="\t", row.names=F)

#Write out split distances
dist = data.frame(0.0, 12.3, 22.9, 36.5, 50.6, 66.3, 77.2, 89.0)
splitNames <- c("Start", "Matu", "Ande", "Puka", "Astuvere", "Palu", "Hellenurme", "Finish")
colnames(dist) <- splitNames
write.table(dist, "data/distances.txt", sep="\t", row.names=F)

#Calculate and write out distances between splits
splits = c(0)
for(i in 2:8){
    splits <- c(splits, dist[i] - dist[i-1])
}
splits <- as.data.frame(splits)
colnames(splits) <- splitNames
write.table(splits, "data/splits.txt", sep="\t", row.names=F)</pre>
```

Additional data: dist

This data combines three different data sets:

- SEB 17th Tartu Rattamaraton
- Road Administration (http://www.mnt.ee/kaugus/m/)

\$ population : num 153648 9709 153312 32275 31688 ...

\$ participants: num 434 6 40 43 44 103 35 54 88 56 ...

\$ distance : num 186 305 130 53 103 123 249 49 174 157 ...

• Municipality portal (http://portaal.ell.ee/)

```
#Distance and population data
distance <- c(186,305,130,53,103,123,249,49,174,157,328,186,0,86,78,71)
participants <- c(434,6,40,43,44,103,35,54,88,56,36,755,605,114,67,71)
population <- c(153648,9709,153312,32275,31688,61099,25513,29169,85539,34989,34485,434339,148673,31790,dist <- data.frame(counties, population, distance, participants)

## 'data.frame': 16 obs. of 4 variables:
## 'data.frame': 16 obs. of 4 variables:
## $ counties : Factor w/ 16 levels "Harju", "Hiiumaa",..: 1 2 3 4 5 6 7 8 9 10 ...
```

Features of the data:

- counties county name
- population population of the county
- distance county seat distance from Tartu
- participants total number of participants from the county

${\bf Additional\ data:\ winning Results By Year}$

The data includes winning times of 7 SEB Tartu Rattamaraton competitions.

```
#Read in data
history = read.table("data/winningResultsByYear.txt", header=T)
str(history)
```

```
## 'data.frame': 7 obs. of 2 variables:
## $ Year: int 2008 2009 2010 2011 2012 2013 2014
## $ Time: Factor w/ 7 levels "2:29:11","2:30:47",..: 6 4 7 2 5 3 1
```

Features of data:

- Year year of the competition
- Time best finish time

Descriptive Statistics

```
#Read in data
data <- read.table("data/processedData.txt", header=T)</pre>
```

Statistical analysis

t-test

Determine if two sets of data are significantly different from each other.

```
t.test(data$time~data$gender)
```

Time by gender

```
##
## Welch Two Sample t-test
##
## data: data$time by data$gender
```

```
## t = 11.772, df = 222.39, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 2019.255 2831.273
## sample estimates:
## mean in group female mean in group male
## 15882.71 13457.45

ggplot(data, aes(x = gender, y = time, fill = gender)) +
    geom_boxplot() +
    labs(title = "Time by gender", y = "time (sec)")</pre>
```


Result: finishing time is significantly different between genders.

```
t.test(data$time~data$nationality)
```

Time by nationality

```
##
## Welch Two Sample t-test
##
## data: data$time by data$nationality
## t = 9.0438, df = 818.08, p-value < 2.2e-16</pre>
```

```
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 740.1566 1150.5074
## sample estimates:
## mean in group Estonia mean in group foreign
## 13775.76 12830.43

ggplot(data, aes(x = nationality, y = time, fill = nationality)) +
    geom_boxplot() +
    labs(title = "Time by nationality", y = "time (sec)")
```


Result: finishing time is significantly different between Estonians and foreigners.

ANOVA

Determine if two or more sets of data are significantly different from each other.

```
summary(aov(data$time~data$age.group2))
```

Time by age group

Df Sum Sq Mean Sq F value Pr(>F)

```
## data$age.group2  1 7.769e+07 77694805  13.07 0.000304 ***
## Residuals  3053 1.814e+10 5942932
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## 2 observations deleted due to missingness

ggplot(data, aes(x = factor(age.group2), y = time, fill = gender)) +
    geom_boxplot() +
    labs(title = "Time by age group", x = "age group", y = "time (sec)")
```


Result: finishing time is significantly different between age groups.

```
summary(aov(data$time~data$country))
```

Time by country

```
## Df Sum Sq Mean Sq F value Pr(>F)
## data$country 26 7.043e+08 27090028 4.683 5.29e-14 ***
## Residuals 3027 1.751e+10 5785309
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## 3 observations deleted due to missingness
```

```
ggplot(data, aes(x = factor(countryCategory), y = time, fill = countryCategory)) +
  geom_boxplot() +
  labs(title = "Time by country", x = "country", y = "time (sec)", fill = "countries") +
  theme(axis.text.x = element_text(angle = 45))
```


Result: finishing time is significantly different between countries.

```
summary(aov(data$time~data$county))
```

Time by county

```
## Df Sum Sq Mean Sq F value Pr(>F)
## data$county 16 5.416e+08 33847049 5.819 1.11e-12 ***
## Residuals 3040 1.768e+10 5816460
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

ggplot(data, aes(x = county, y = as.POSIXct(time, tz = "GMT", origin = "2014-09-21"), fill = county)) +
    geom_boxplot() +
    labs(title = "Time by counties", x = "County", y = "Time") +
    theme_bw() +
    theme(panel.grid.major.x=element_blank(),
```

```
plot.title = element_text(lineheight=.8, face="bold", vjust=1),
    axis.text.x=element_text(angle=45, vjust = 0.7),
    legend.position="none") +
scale_y_datetime(breaks=date_breaks("30 min"), labels=date_format("%H:%M"))
```


Result: finishing time is significantly different between counties.

Chi-square test

Determine whether there is a significant difference between the expected frequencies and the observed frequencies in one or more categories.

Some of the age groups have to be combined to fulfil the assumption of Chi-square test - frequency of every group need to be at least 5.

chisq.test(ctbl)

```
##
## Pearson's Chi-squared test
##
## data: ctbl
## X-squared = 10.31, df = 5, p-value = 0.0669

ggplot(data, aes(x = factor(age.group2), fill = gender)) +
    geom_bar(position = "dodge") +
    labs(title = "Cyclists per age group", x = "age group")
```



```
barplot(ctbl, col = c("red","blue"), legend = T,
    main = "Cyclists per age group (merged)",
    xlab = "Age group",
    ylab = "Count")
```

Cyclists per age group (merged)

Result: no significant difference in frequency distribution of age groups between genders.

Additional plots

Speed between splits

```
splits <- read.table("data/splits.txt", header=T)

#Find speed based on given subset of data
findSpeeds = function(x, splits){
    speed = mean(splits[,1] / (x[,1]/3600))
    speeds = c(speed, speed)
    for(i in 2:length(splits)){
        speed = mean(splits[,i] / ((x[,i] - x[,i-1])/3600))
        speeds = c(speeds, speed, speed)
    }
    return(speeds)
}

#Calculate speeds for each subset
overallSpeeds = findSpeeds(data[,c(paste("split.",1:6,sep=""),"time")], splits[-1])
menSpeeds = findSpeeds(data[data[,"gender"]=="male",c(paste("split.",1:6,sep=""),"time")], splits[-1])
womenSpeeds = findSpeeds(data[data[,"gender"]=="female",c(paste("split.",1:6,sep=""),"time")], splits[-1])</pre>
```

Average speeds between splits

Average speeds between splits by gender

Average finish times per age group

```
#Average finish times per age group
meanClass = function(data, class){
  if(class=="Total"){
    res = mean(data[, "time"], na.rm=T)
  }else{
    res = mean(data[data[,"age.group"]==class, "time"], na.rm=T)
  }
  hours = floor(res / 3600)
  minutes = floor((res - (3600*hours))/60)
  return(paste(hours,":",minutes,sep=""))
}
tab = table(data$age.group)
x = c(paste(names(tab),"(",tab,")",sep=""), paste("Total(",sum(tab),")", sep=""))
y = as.POSIXct(sapply(c(names(tab), "Total"), FUN = function(x){meanClass(data, x)}), format="%H:%M")
xy=data.frame(x, y)
ggplot(xy, aes(x=xy$x, y=xy$y, width=0.5)) +
  geom_bar(stat="identity",
           fill=c(rep("deepskyblue",length(xy$y)-1), "chartreuse"))+
  geom_text(aes(label=substr(xy$y,13,16)), vjust=-1, size=4) +
```

Average finish times per age group

Age groups with counts

Distance vs participants per population

```
#Distance vs participants per population
cor(dist$distance, dist$participants/dist$population, use = "complete.obs", method = "kendall")

## [1] -0.3096261

ggplot(dist, aes(x = distance, y = participants/population, label = counties)) +
    geom_text() +
    labs(title = "Distance vs participants per population", x = "distance (km)")
```


Result: medium negative correlation between distance from Tartu and participants per population.

Winning time

```
ggplot(history, aes(x=Year, y=Time, group=1)) +
  geom_line(size=1, colour="green3") +
  geom_point(size=4, colour="blue") +
  ggtitle("History of winning times (1st place result) by year") +
  scale_x_continuous(breaks=c(2008:2014), labels=c(2008:2014))
```


Clustering

```
#Read in data
data = read.table("data/processedData.txt", header=T)
```

DBSCAN

A density-based clustering algorithm was used in this project. DBSCAN groups together points that are closely packed together (points with many nearby neighbors), marking as outliers points that lie alone in low-density regions (whose nearest neighbors are too far away). This principle fits with the project nature.

Currently we find people who were in the same pace group throughout the entire race (at least 2 people to make a pace group).

```
ds = dbscan(data[,c(paste("split.",1:6,sep=""), "time")], MinPts=2, eps=10)
#Order data by cluster
dsData = cbind(data, ds$cluster)
dsData = dsData[order(ds$cluster),]
#Show clusters
dsData[dsData[,"ds$cluster"] > 0, -c(1:3,5,13:24),][c(1,8,10)]
```

##		name		ds\$cluster
##	3	Maasikmets Alges		1
##	4	Pütsep Erki	9090	1
##	5	Austa Caspar	9090	1
##	6	Schultz Silver	9090	1
##	7	Vaidem Josten	9091	1
##	8	Tamkõrv Helmet	9092	1
##	12	Kriit Kalle	9093	1
##	13	Ottender Sten-Erik	9148	2
##	15	Loo Martin	9155	2
##	22	Valvas Vahur	9427	3
##	23	Oolo Kristjan	9428	3
##	24	Kiskonen Siim	9429	3
##	26	Kivistik Gert	9429	3
##	27	Manikas Domas	9430	3
##	29	Sertvytis Donatas	9430	3
##	31	Pallo Rait		3
##	32	Kattai Kaupo	9430	3
##	33	Palm Tõnno		3
##	34	Veski Tanel	9431	3
##	35	Pacevicius Šarunas	9431	3
##	36	Põldma Mirko	9432	3
##	37	Neemela Tarmo	9432	3
##	38	Olle Raul	9432	3
##	28	Öpik Oliver		4
##	30	Kannimäe Viljar		4
##	46	Stalberg Tair		5
##	47	Kirsipuu Toomas		5
##	48		9637	5
##	49	Gristsenko Andrei	9637	5
##	52		9639	5
##	51		9637	6
##	53	Dzalbs Gunars		6
##	54	Nikolaev Fedor		6
##	59	Balgabaev Ravshan		7
##	63	Pungar Urmas		7
##	68	Post Margo	9836	7
##	70	Lehto Tiit	9837	7
##	71	Ridamäe Aivar	9838	7
##	60	Nõlvik Lasse	9833	8
##		Randma Kristjan	9834	8
##		Tõnisson Tiimo	9836	8
##		Kushnir Aleksei	9836	8
	67	Rattur Rajko	9836	8
	69	Malsroos Lauri	9836	8
	72	Tuisk Priit	9842	8
	76	Ivanov Vladimir	9976	9
##	100	Molev Juri	9981	9
	77	Pelaitis Arnas	9977	10
##		Prangel Kristo	9978	10
##	91	Arak Anti	9980	10
	99	Kirsipuu Tiit	9981	10
##	101	Välbe Urmas	9981	10
##	106	Lepik Toomas	9982	10
				-0

##	113	Teteris Janis	9985	10
##	117		9988	10
##	81	Vähi Markus		11
##	86		9979	11
##	87	Parv Martin	9979	11
##	89	Flaksis Martins	9980	11
##	82	Kuljus Viljar	9978	12
##	84	Zdeblovskiy Alexey	9979	12
##	85	Kollo Andres	9979	12
##	107	Zimelis Aigars	9983	12
##	110	Strazdins Rego	9984	12
##	94	Lukin Vitalik	9980	13
##	102	Roskoss Janis	9982	13
##	95	Lipp Aivar	9980	14
##	108	Linnus Sander	9983	14
##	98	Sügis Harri	9981	15
##	103	Kallari Taimar	9982	15
##	136	Maarits Andres	10158	16
##	138	Kannimäe Mihkel	10159	16
##	166	Danilas Meelis	10257	17
##	167	Nael Margus	10257	17
##	168	Ott Indrek	10257	17
##	171	Kivi Margo	10258	17
##	173	Inovskis Nauris	10259	17
##	201	Andersons Ainars	10427	18
##	205	Külanurm Karli	10430	18
##	209	Grigorovitsh Jaanus	10433	18
##	220	Uibokand Janelle	10460	19
##	229	Kaljumäe Aivo	10464	19
##	227	Kruus Kaupo	10463	20
##	230	Künnap Janis	10465	20
##	228	Suluste Jüri	10463	21
##	231	Rahi Tõnu	10471	21
##	237	Birkants Roberts	10533	22
##	242	Vevers Girts	10535	22
##	244	Padumäe Vaido	10537	23
##	249	Haava Henno	10540	23
##	289	Lejins Dzintars	10705	24
##	291	Hio Siim	10706	24
##	397	Jaaska Timo	11060	25
##	402	Losins Guntis	11062	25
##	593	Gavelis Povilas	11494	26
##	594	Tarabrinas Liutauras	11494	26
##	644	Levans Ivo	11616	27
##	645	Freinats Gints	11617	27
##	1130	Mooste Tarmo	12487	28
##	1131	Teepere Egon		28
##	1424	Morel Ülar	13104	29
##	1427	Kannimäe Anne	13104	29
##	1691		13668	30
##	1692	Hütt Kristo	13668	30
##	1777		13856	31
##	1778	Kuslap Handri		31
##	2050	Vlassov Jüri	14441	32
				32

```
## 2051
              Hion Lars-Erik 14442
                                             32
## 2379
                  Tsirp Priit 15346
                                             33
## 2380
            Allilender Rando 15346
                                             33
## 2387
                 Hints Kairi 15361
                                             34
## 2388
                Haldre Henri 15363
                                             34
## 2632
              Nõmmiste Kalev 16170
                                             35
## 2633
              Nõmmiste Sulev 16170
                                             35
             Tiedemann Tõnis 16237
## 2644
                                             36
## 2645
                Talvik Heiki 16237
                                             36
## 2657
                                             37
                  Raud Ander 16320
## 2658
                Kurvits Erko 16320
                                             37
## 2681
                Märss Martin 16388
                                             38
## 2682
            Lõhmus Ann-Marii 16388
                                             38
## 2702
                  Karbe Sven 16517
                                             39
## 2705
              Schults Markko 16524
                                             39
## 2773
                 Ennok Brita 16918
                                             40
## 2774
                Tarjus Piret 16918
                                             40
## 2797
               Visnap Thomas 17066
                                             41
## 2798
             Pähklamäe Ville 17066
                                             41
                Rebane Urmas 17075
## 2802
                                             42
## 2803
                 Valge Kerli 17075
                                             42
## 2842
          Dombrovskis Mareks 17318
                                             43
## 2843
           Dombrovska Jelena 17319
                                             43
## 2876
              Tenisson Vaido 17695
                                             44
## 2877
             Tenisson Silvia 17695
                                             44
## 2947
                Raasik Kaire 18617
                                             45
## 2948
                Raasik Marko 18617
                                             45
## 2955
               Võikar Raitel 18740
                                             46
## 2956
                     Unt Siim 18740
                                             46
## 2971
               Punane Krista 19029
                                             47
## 2972
                Punane Urmas 19029
                                             47
## 3025
                  Kaasik Lea 20979
                                             48
## 3026
               Kaasik Margus 20979
                                             48
## 3038
                 Rähni Ringo 21986
                                             49
## 3039
                Rähni Markus 21986
                                             49
## 3044
                 Paide Tanel 22177
                                             50
## 3045
          Paide Jarl Patrick 22177
                                             50
## 3047
                Veeroja Liis 22422
                                             51
## 3048
               Külaots Urmet 22422
                                             51
## 3056
                 Roots Urmas 23179
                                             52
        Pruulmann Annemaria 23180
                                             52
```

Clustering relevance - show that people who were part of a pace group were more consistent, experienced and had better results.

```
#Average cluster size - i.e how big the pace groups were on average?
round(mean(table(dsData[,"ds$cluster"])[-1]),0)

## [1] 3

solo = dsData[dsData[,"ds$cluster"] == 0, "time"]
pace = dsData[dsData[,"ds$cluster"] > 0, "time"]
t.test(solo, pace)
```

```
##
##
   Welch Two Sample t-test
##
## data: solo and pace
## t = 3.81, df = 152.32, p-value = 0.0002012
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
     596.1903 1880.4403
## sample estimates:
## mean of x mean of y
   13679.24 12440.93
dsData$pace = dsData[,"ds$cluster"] > 0
ggplot(dsData, aes(x = pace, y = time, fill = pace)) +
  geom_boxplot() +
  labs(title = "Time per pace group", y = "time (sec)")
```


Result: people who were part of a pace group had better results than people who went solo.

```
# % of people who ride in pace group
length(pace)*100/(length(solo)+length(pace))
```

[1] 4.841348

```
# % of the people in pace group who had completed
# at least 1 marathon before
nrow(dsData[dsData[,"ds$cluster"]>1 & dsData[,"particip.time"] > 1, ])*100/length(pace)
```

[1] 87.83784

Clustering visualization

Overall heatmap

Normalize by columns to make the splits. Comparable, since time increases with each split.

Clustered heatmap - hierarchical

Clustered heatmap - dbscan

Clusters appear at the bottom, rest is noise.

Heatmap of dbscan clusters

Regression

Regression analysis helps one understand how the typical value of the dependent variable changes when any one of the independent variables is varied, while the other independent variables are held fixed.

```
#Read in data
data = read.table("data/processedData.txt", header=T)
```

Model

0.167323137488844*(ageCategory35-45)+

In this case the dependent variable is finishing time and the independent variables are age, country, starting number and participation time which are used for generating a multiple linear regression model.

```
#Fit model using using linear model
lmfit <- lm(timeCategory ~ ageCategory + countryCategory + sNrCategory + participTimeCategory, data=dat
form <- as.matrix(coef(lmfit))
rownames(form) <- gsub("try", "try == ", rownames(form) )
rownames(form) <- gsub("oup", "oup == ", rownames(form) )
rownames(form)[1] <- "Base"
cat(paste( form, paste("(", rownames(form), ")" ), sep="*", collapse="+\n") )
## 0.0653330397190914*( Base )+</pre>
```

```
## 0.630270746880228*( ageCategory50-60 )+
## 1.6405431331373*( ageCategory65+ )+
## 3.49025506483708*( country == CategoryHiina )+
## -0.0433780713320298*( country == CategoryIri )+
## 0.947807275050404*( country == CategoryInglismaa )+
## -1.51478143557452*( country == CategoryLeedu )+
## -1.16352004588815*( country == CategoryLeit )+
## 0.582954812623443*( country == CategoryNorra )+
## -2.0551201024706*( country == CategoryRootsi )+
## -4.05219272494975*( country == CategorySaksamaa )+
## -0.249325802274713*( country == CategorySoome )+
## -1.70626377469707*( country == CategoryTaani )+
## -0.83189518437217*( country == CategoryVenemaa )+
## 1.54244778978653*( sNrCategory )+
## 0.274620736297802*( participTimeCategory )
```

Decision tree

Each branch represents the outcome of the test and each leaf node represents a class (decision taken after computing all attributes).

```
#Decision tree
data$participTimeCategory = as.factor(data$participTimeCategory)
fit <- rpart(timeCategory ~ ageCategory + nationality + participTimeCategory, method="class", minbucket
colors <- c("pink", "palegreen3", "yellow", "LightSkyBlue", "blue", "orange", "orange", "cyan", "bisque</pre>
boxcols <- (colors)[fit$frame$yval]</pre>
prp(fit, type=3, extra=100, faclen = 0, cex = 0.75, box.col = boxcols)
legend("bottomright", xpd = TRUE, inset = c(0, 0), cex = 0.7, ncol=3, fill = colors, title="Final place")
       legend = c("2:29-2:59",
                  "3:00-3:11",
                  "3:12-3:21",
                  "3:22-3:31",
                  "3:32-3:42",
                  "3:43-3:53",
                  "3:54-4:04",
                  "4:05-4:19",
                  "4:20-4:39",
                  "4:40-6:26"
legend("bottomleft", xpd = TRUE, inset = c(0.45, 0), cex = 0.7, ncol=3, title="Participation (times)",
       legend = c("1: 1 - 2")
                  "2: 3 - 4",
                  "3: 5 - 6",
                  "4: 7 - 9",
                  "5: 9 - 17"
       ))
```


Reference

• Wikipedia