Esercizi -50pt - 75

Gli studenti aventi diritto a svolgere la **prova ridotta** del 30% secondo la L.170/2010 (indicazioni **Multichance** team) **NON** svolgono i quesiti contrassegnati con (***)

Esercizio 1 – 28pt

Si consideri l'equazione non lineare

$$f(x) = (x-2)e^{(x-1)}$$
 (1)

dotata dello zero $\alpha = 2$.

Punto 1.1) – 2 pt

Si consideri il metodo delle iterazioni di punto fisso per l'approssimazione dello zero α di f(x) usando la funzione di iterazione

$$\phi(x) = x - \frac{(x-2)e^{(x-2)}}{2e-1}.$$
 (2)

Si mostri che lo zero α di f(x) coincide con un punto fisso di $\phi(x)$.

Spazio per risposta lunga

Punto 1.2) – 5 pt

Si determini, motivando con completezza la risposta, se il metodo delle iterazioni di punto fisso per la funzione $\phi(x)$ di Eq. (2) converge ad α per ogni iterata iniziale $x^{(0)} \in [1.5, 3.5]$.

Spazio per risposta lunga

Punto 1.3) - 3 pt

Sempre considerando il metodo delle iterazioni di punto fisso e la funzione di iterazione $\phi(x)$ di Eq. (2), si stimi il valore $L \in \mathbb{R}$ tale che $|x^{(1)} - \alpha| \le L |x^{(0)} - \alpha|$ questa volta per ogni $x^{(0)} \in [1.5, 2.5]$. Si motivi la risposta data.

L = 0.931644

Spazio per risposta lunga

Punto 1.4) -3 pt

Sempre considerando il metodo delle iterazioni di punto fisso e la funzione di iterazione $\phi(x)$ di Eq. (2), si determini l'ordine di convergenza del metodo ad α per un'iterata iniziale $x^{(0)}$ "sufficientemente" vicino ad α . Si motivi la risposta data.

$$\phi'(\alpha) = 0.77460$$

Spazio per risposta lunga

Punto 1.5) -3 pt

Considerando la funzione di iterazione $\phi(x)$ di Eq. (2), si utilizi la funzione Matlab[®] ptofis.m con $x^{(0)}=1.5$ e tolleranza sul criterio d'arresto basato sulla differenza tra iterate successive pari a 10^{-4} . Si riportino il numero di iterazioni eseguite N e i valori delle iterate $x^{(1)}$ e $x^{(2)}$.

$$N = 32,$$
 $x^{(1)} = 1.568356,$ $x^{(2)} = 1.631542$

Spazio per risposta breve

Punto 1.6) – 4 pt

Dopo aver risposto al punto 1.5) e sempre per $x^{(0)}=1.5$, si determini se la differenza tra iterate successive $|x^{(k+1)}-x^{(k)}|$ fornisce una sovrastima o sottostima dell'errore vero $|x^{(k)}-\alpha|$ per una generica iterata $k\geq 0$. Si motivi la risposta data.

Spazio per risposta lunga

Punto 1.7) – 5 pt

Il metodo di accelerazione di Aitken consiste nell'applicare il metodo delle iterazioni di punto fisso alla seguente funzione di iterazione

$$\phi_{\Delta}(x) = \frac{x \phi(\phi(x)) - (\phi(x))^2}{\phi(\phi(x)) + x - 2\phi(x)}.$$

Si utilizzi opportunamente la funzione Matlab® ptofis.m per approssimare il punto fisso α della funzione di iterazione $\phi(x)$ di Eq. (2) usando $x^{(0)}=1.5$ e tolleranza sul criterio d'arresto basato sulla differenza tra iterate successive pari a 10^{-4} . Si riportino il numero di iterazioni eseguite N e i valori delle iterate $x^{(1)}$ e $x^{(2)}$.

$$N = 5,$$
 $x^{(1)} = 2.403732,$ $x^{(2)} = 2.080758$

Spazio per risposta breve

Punto 1.8) – 3 pt

Dopo aver risposto al punto 1.7), si utilizzi opportunamente la funzione Matlab® stimap.m per stimare l'ordine di convergenza del metodo di accelerazione di Aitken applicato alla funzione $\phi(x)$ di Eq. (2).

p = 2.007

Spazio per risposta breve

Esercizio 2 – 22pt

Si consideri il seguente problema di Cauchy:

$$\begin{cases}
\frac{d^2x}{dt^2}(t) = -2\frac{dx}{dt}(t) - 6x(t) + f(t) & t \in (0, t_f), \\
\frac{dx}{dt}(0) = 1, & (3) \\
x(0) = 4,
\end{cases}$$

dove $f(t) = 10 e t_f = 5$.

Punto 2.1) - 3 pt

Si riscriva il problema (3) come un sistema di Equazioni Differenziali Ordinarie del primo ordine nella forma

$$\begin{cases}
\frac{d\mathbf{y}}{dt}(t) = A\mathbf{y}(t) + \mathbf{g}(t) & t \in (0, t_f), \\
\mathbf{y}(0) = \mathbf{y}_0,
\end{cases}$$
(4)

con $\mathbf{y}(t) = (w(t), \ x(t))^T$, dove $w(t) = \frac{dx}{dt}(t)$ per $t \in (0, t_f)$. Si riportino le espressioni di $A \in \mathbb{R}^{2 \times 2}$, $\mathbf{g}(t) : (0, t_f) \to \mathbb{R}^2$ e \mathbf{y}_0 .

$$A = [-2, -6; 1, 0],$$
 $\mathbf{g}(t) = (10, 0)^{T},$ $\mathbf{y}_{0} = (1, 4)^{T}$

Spazio per risposta breve

Punto 2.2) – 4 pt

Si approssimi il problema (4) tramite il metodo di Eulero in avanti usando opportunamente la funzione Matlab® eulero_avanti_sistemi.m con passo h=0.1. Si riportino i valori delle approssimazioni u_1 e u_{N_h} rispettivamente di $x(t_1)$ e $x(t_f)$, dove $t_n=n\,h$ per $n=0,1,\ldots,N_h$ e $h=\frac{t_f}{N_h}$.

$$u_1 = 4.100000, u_{N_h} = 1.703313$$

Spazio per risposta breve

Dopo aver risposto al punto 2.2) e sapendo che la soluzione esatta del problema è

$$x(t) = e^{-t} \left(\frac{7}{3} \cos(\sqrt{5}t) + \frac{10}{3\sqrt{5}} \sin(\sqrt{5}t) \right) + \frac{5}{3},$$

si calcolino gli errori $E_h=|u_{N_h}-x(t_f)|$ ottenuti con il metodo di Eulero in avanti e corrispondenti ai passi $h_1=10^{-2},\,h_2=5\cdot 10^{-3},\,h_3=2.5\cdot 10^{-3}$ e $h_4=1.25\cdot 10^{-3},$ essendo u_n l'approssimazione di $x(t_n)$. Si riportino i valori E_{h_i} per $i=1,\ldots,4$.

0.00141799, 0.00066221, 0.00031986, 0.00015717

Spazio per risposta breve

Punto 2.4) – 3 pt (***)

Si utilizzino gli errori E_{h_i} ottenuti al punto 2.3) per stimare algebricamente l'ordine di convergenza p del metodo di Eulero in avanti. Si giustifichi la risposta data e la si motivi alla luce della teoria.

p = 1.0251

Spazio per risposta lunga

Punto 2.5) – 4 pt (***)

Si approssimi ora il problema (4) tramite il metodo di Heun. Si implementi il metodo modificando opportunamente la funzione Matlab® eulero_avanti_sistemi .m. Posto h=0.1, si riportino i valori delle approssimazioni u_1 e u_{N_h} rispettivamente di $x(t_1)$ e $x(t_f)$, dove $t_n=n\,h$ per $n=0,1,\ldots,N_h$ e $h=\frac{t_f}{N_h}$.

$$u_1 = 4.020000, u_{N_h} = 1.661401$$

Spazio per risposta breve

Punto 2.6) – 4 pt (***)

Posti ora per il problema (4) $\mathbf{g}(t) = \mathbf{0}$ e $t_f = +\infty$, si verifichi che il metodo di Heun risulta assolutamente stabile per h = 0.5. Si giustifichi la risposta data.

$$|1 + z + z^2/2| = 0.559017 < 1$$

Spazio per risposta lunga