Analyse 2

TD 1

Exercice 1:

(1) Soit la suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_{n+1} = \frac{1}{2} \left(\frac{11}{u_n} + u_n \right)$$

$$u_0 = 4.$$

Montrer que $\forall n \in \mathbb{N}, u_n \geq \sqrt{11}$.

Considérons pour $n \in \mathbb{N}$, la propriété :

$$\mathcal{P}(n): u_n > \sqrt{11}.$$

Vérifions que la propriété est vraie pour tout $n \in N$, à l'aide du Théorème de la récurrence

- Initialisation : pour n=0 on sait que $u_0=4>\sqrt{11}$, car $4^2=16>11$, donc $\mathcal{P}(0)$ est satisfaite.
- <u>Hérédité</u> : supposons la propriété $\mathcal{P}(n)$ satisfaite pour un $n \in \mathbb{N}$ donné, et vérifions que $\mathcal{P}(n+1)$ est aussi satisfaite. Par hypothèse on aura alors que $u_n \geq \sqrt{11}$.

Par définition on a que $u_{n+1} = f(u_n)$, où l'on pose la fonction :

$$f:]0,+\infty[\to\mathbb{R},\quad f(x)=\frac{1}{2}\left(\frac{11}{x}+x\right).$$

Exercice n°1 TD 1

Exercice 1:

Il s'agit d'une fonction dérivable, et pour tout x > 0 on a

$$f'(x) = \frac{1}{2} \left(-\frac{11}{x^2} + 1 \right),$$

donc

$$f'(x) \ge 0 \Leftrightarrow -\frac{11}{x^2} + 1 \ge 0 \text{ et } x > 0 \Leftrightarrow x^2 \ge 11 \text{ et } x > 0 \Leftrightarrow x \ge \sqrt{11}.$$

Par conséquent la fonction f est décroissante sur l'intervalle $]0, \sqrt{11}]$, et elle est croissante sur $[\sqrt{11}, +\infty[$. En d'autres termes, f a un minimum absolu au point $x=\sqrt{11}$, et

$$\min_{x>0} f(x) = f(\sqrt{11}) = \frac{1}{2} \left(\frac{11}{\sqrt{11}} + \sqrt{11} \right) = \sqrt{11}.$$

Puisque par hypothèse $u_n \ge \sqrt{11}$, on aura que $u_n > 0$, donc

$$u_{n+1} = f(u_n) \ge \min_{x>0} f(x) = \sqrt{11},$$

ce qui prouve que la propriété $\mathcal{P}(n+1)$ est satisfaite.

- <u>Conclusion</u>: la propriété $\mathcal{P}(n)$ est donc vraie pour tout $n \in \mathbb{N}$, donc on peut affirmer que $u_n \geq \sqrt{11}$ pour tout $n \in \mathbb{N}$.

Exercice n°1 TD 1

Exercice 1:

(2) Soit une suite réelle $(u_n)_{n\in\mathbb{N}}$ telle que $\forall n\in\mathbb{N},\ u_{n+2}+u_{n+1}-u_n=0$. Montrer que si $(u_n)_{n\in\mathbb{N}}$ est une telle suite et si u_0 et u_1 sont des éléments de \mathbb{Z} alors pour tout éléments n de \mathbb{N} , u_n est dans \mathbb{Z} .

Posons, pour $n \in \mathbb{N}$ la propriété :

$$\mathcal{P}(n): u_n \in \mathbb{Z} \text{ et } u_{n+1} \in \mathbb{Z}.$$

- Initialisation: si n=0 alors $u_n=u_0\in\mathbb{Z}$ et $u_{n+1}=u_1\in\mathbb{Z}$ par hypothèse, donc $\mathcal{P}(0)$ est satisfaite.
- <u>Hérédité</u> : supposons l'hypothèse $\mathcal{P}(n)$ vraie pour un $n \in \mathbb{N}$ donné. On a donc $u_n \in \mathbb{Z}$ et $u_{n+1} \in \mathbb{Z}$. Mais alors $u_{n+1} \in \mathbb{Z}$ et $u_{n+2} = u_n u_{n+1} \in \mathbb{Z}$, donc $\mathcal{P}(n+1)$ est aussi satisfaite.
- <u>Conclusion</u>: la propriété $\mathcal{P}(n)$ est donc vraie pour tout $n \in \mathbb{N}$, donc $u_n \in \mathbb{Z}$ et $u_{n+1} \in \mathbb{Z}$ pour tout $n \in \mathbb{N}$, donc en particulier $u_n \in \mathbb{Z}$ pour tout $n \in \mathbb{N}$.

Exercice n°1 TD 1

Exercice 2:

Pour $n \in \mathbb{N}$, considérons la propriété

$$(\mathcal{P}_n): (u_n \leq 3^n \text{ et } u_{n+1} \leq 3^{n+1}).$$

Vérifions que (\mathcal{P}_n) est vraie pour tout $n \in \mathbb{N}$ en utilisant un raisonnement par récurrence :

- Initialisation : par hypothèse $u_0 = 1 \le 3^0$ et $u_1 = 3 \le 3^1$. Donc (\mathcal{P}_0) est vraie.
- Hérédité : pour n fixé, on suppose que (\mathcal{P}_n) est vraie c'est-à-dire que

$$u_n \le 3^n$$
 et $u^{n+1} \le 3^{n+1}$ (H.R.).

Vérifions alors que

$$(\mathcal{P}_{n+1}): (u_{n+1} \leq 3^{n+1} \text{ et } u_{n+2} \leq 3^{n+2})$$

est vraie:

On sait d'après (H.R.) que $u_{n+1} \leq 3$. D'autre part

$$u_{n+2} = 4u_n + u_{n+1} \le 4.3^n + 3^{n+1}$$
 d'après (H.R.)
 $\le 3^n(4+3) = 7 \times 3^n \le 9 \times 3^n = 3^{n+2}$.

<u>Conclusion</u>: (\mathcal{P}_n) est vrai pour tout $n \in \mathbb{N}$ et donc $u_n \leq 3^n$ pour tout $n \in \mathbb{N}$.

Exercice n°2 TD 1

Exercice 3:

La suite $\left(\frac{n}{n+1}\right)_n$ est-elle monotone?

Posons $u_n = \frac{n}{n+1}$ pour tout $n \in \mathbb{N}$. On a

$$u_{n+1} - u_n = \frac{n+1}{n+2} - \frac{n}{n+1} = \frac{(n+1)^2 - n(n+2)}{(n+1)^2}$$
$$= \frac{n^2 + 2n + 1 - n^2 - 2n}{(n+1)^2} = \frac{1}{(n+1)^2} > 0,$$

donc $(u_n)_n$ est croissante, et en particulier elle est monotone.

Exercice 3:

Est-elle bornée?

Il est clair que pour tout $n \in \mathbb{N}$ on a que

$$0 \le u_n = \frac{n}{n+1} \le \frac{n+1}{n+1} = 1,$$

donc la suite $(u_n)_n$ est bornée, car elle est majorée et minorée.

Exercice n°3 TD 1

Exercice 4:

Rappel : la suite (u_n) est bornée s'il existe $M \in \mathbb{R}$ tel que $|u_n| \leq M$ pour tout $n \in \mathbb{N}$. La fonction sin prend des valeurs comprises entre -1 et 1 donc

$$|\sin(x)| \le 1$$
 pour tout $x \in \mathbb{R}$.

En particulier,

$$|\sin(n!)| \le 1$$
 pour tout $n \in \mathbb{N}$.

Par conséquent,

$$\left|\frac{n\sin(n!)}{n^2+1}\right|=\frac{n}{n^2+1}|\sin(n!)|\leq \frac{n}{n^2+1}.$$

D'autre part,

$$\frac{n}{n^2+1}\leq 1$$

 $\text{car } n \leq n^2 \leq n^2 + \text{1 pour tout } n \in \mathbb{N}.$

Donc

$$\left|\frac{n\sin(n!)}{n^2+1}\right| \le 1$$
 pour tout $n \in \mathbb{N}$.

La suite est $\left(\frac{n\sin(n!)}{n^2+1}\right)$ donc bornée.

Exercice 5:

- 1) Réécrire les phrases suivantes en une phrase mathématique.
- (a) La suite $(u_n)_n$ est majorée par 7.

L'écriture mathématique de cette phrase est :

$$\forall n, n \in \mathbb{N} \Rightarrow u_n \leq 7.$$

Exercice 5:

- 1) Réécrire les phrases suivantes en une phrase mathématique.
- (b) La suite $(u_n)_n$ est constante.

L'écriture mathématique de cette phrase est :

$$\exists a, \forall n, n \in \mathbb{N} \Rightarrow u_n = a.$$

Exercice 5:

- 1) Ecrire ensuite la négation mathématique de chacune des phrases.
- (a) La suite $(u_n)_n$ est majorée par 7.

La négation mathématique de cette phrase est :

$$\exists n \quad n \in \mathbb{N} \quad \text{et} \quad u_n > 7.$$

Exercice 5:

- 1) Ecrire ensuite la négation mathématique de chacune des phrases.
- (b) La suite $(u_n)_n$ est constante.

La négation de cette phrase est :

$$\forall a \exists n \ n \in \mathbb{N} \text{ et } u_n \neq a.$$

Exercice n°5 TD 1

Exercice 5:

2) Est-il vrai qu'une suite croissante est minorée?

La réponse est oui. En effet, si $(u_n)_{n\in\mathbb{N}}$ est une suite croissante, alors on aura que

$$\forall n \in N, \quad u_n \geq u_0,$$

ce qui prouve que $(u_n)_{n\in\mathbb{N}}$ est bien minorée par u_0 .

Exercice 5:

2) Est-il vrai qu'une suite croissante est majorée?

La réponse est non. En effet, si $(u_n)_{n\in\mathbb{N}}$ désigne la suite définie par $u_n=n$ pour tout $n\in\mathbb{N}$, alors $(u_n)_{n\in\mathbb{N}}$ est croissante, car $u_n=n< n+1=u_{n+1}$ pour tout $n\in\mathbb{N}$, mais $\lim_{n\to+\infty} n=+\infty$, donc pour tout $M\geq 0$, il existe $n\in\mathbb{N}$ tel que $u_n=n>M$, ce qui prouve que $(u_n)_{n\in\mathbb{N}}$ n'est pas majorée.

Exercice n°5 TD 1

Exercice 6:

(a) : (u_n) est strictement positive à partir d'un certain rang :

 $\exists n_0 \in \mathbb{N} \text{ tel que } \forall n \in \mathbb{N}, \quad n \geq n_0 \Rightarrow u_n > 0.$

 \neg (a) (négation de (a)) :

 $\forall n_0 \in \mathbb{N} \quad \exists n \in \mathbb{N} \text{ tel que } n \geq n_0 \text{ et } u_n \leq 0.$

(b): (u_n) n'est pas strictement croissante.

Exprimons $\neg(b):(u_n)$ est strictement croissante :

$$\forall n \in \mathbb{N}, \ u_{n+1} > u_n.$$

Donc $(b) = \neg(\neg(b))$ s'écrit

 $\exists n \in \mathbb{N} \text{ tel que } u_{n+1} \leq u_n.$

Exercice 6:

2) - Est-il vrai qu'une suite décroissante est minorée? Non.

Exemple : considérons $u_n = -n$ pour $n \in \mathbb{N}$.

- (u_n) est clairement décroissante mais non minorée car $\lim_{n \to +\infty} u_n = -\infty$.
- Est-il vrai qu'une suite décroissante est majorée ? Oui.
- Si (u_n) est décroissante alors pour tout $n \in \mathbb{N}$

$$u_n \leq u_{n-1} \leq \ldots \leq u_1 \leq u_0.$$

La suite (u_n) est donc majorée par u_0 .

Exercice 7:

Déterminer le sens de variation de la suite définie par : $u_n = \prod_{k=1}^n (1 - \frac{3}{k^2})$, où $n \in \mathbb{N}^*$.

Si k = 1 alors $k^2 = 1$ donc

$$1 - \frac{3}{k^2} = 1 - 3 = -2 < 0,$$

et si $k \ge 2$ alors $k^2 \ge 4$, donc

$$1 - \frac{3}{k^2} \ge 1 - \frac{3}{4} = \frac{1}{4} > 0,$$

en particulier, $u_n=\prod_{k=1}^n(1-\frac{3}{k^2})<$ o pour tout $n\in\mathbb{N}^*$, car le premier terme de ce produit est strictement négatif, et les autres sont tous strictement positifs. De plus, pour tout $n\in\mathbb{N}^*$ on a

$$\frac{u_{n+1}}{u_n} = \frac{\prod\limits_{k=1}^{n+1} (1 - \frac{3}{k^2})}{\prod\limits_{k=1}^{n} (1 - \frac{3}{k^2})} = 1 - \frac{3}{(n+1)^2} < 1 - \frac{3}{4} = \frac{1}{4} < 1,$$

et puisque u_n est toujours négatif, on aura que $u_{n+1} > u_n$ pour tout $n \in \mathbb{N}^*$, donc la suite $(u_n)_n$ est croissante.

Exercice 8:

Considérons la fonction $f:]0,+\infty[$ telle que

$$f(x) = \frac{\ln x}{x}$$
 pour tout $x > 0$.

Etudions les variations de f sur $]0, +\infty[$:

On a

$$f'(x) = \frac{(\ln x)'x - (x)'\ln x}{x^2} = \frac{1 - \ln x}{x^2}.$$

Donc

$$f'(x) \le 0 \iff \ln x \ge 1 \iff x \ge e$$
.

La fonction f est donc décroissante sur $[e, +\infty[$ avec $e \simeq 2,78.$

En particulier,

$$u_{n+1} = f(n+1) \le f(n) = u_n$$
 pour tout $n \ge 3$.

La suite $(u_n)_{n\geq 3}$ est bien décroissante.

Exercice n°8 TD 1

Exercice 9:

Pour chaque suite, dire si elle est de type connu et préciser ses caractéristiques.

1)
$$u_n = 2n + 3$$
.

La suite (u_n) est une suite arithmétique.

Elle est de la forme $u_n = u_0 + nb$, de premier terme $u_0 = 3$ et de raison b = 2.

2)
$$u_{n+2} = 2u_n$$
.

La suite (u_n) est définie par une relation de récurrence d'ordre 2 de la forme $u_{n+2}=au_{n+1}+bu_n$ avec a=0, b=1. On peu remarquer que.

$$\forall n \in \mathbb{N}, \qquad u_{2(n+1)} = u_{2n+2} = 2u_{2n}.$$

Donc la suite extraite de la suite (u_n) formée des termes de rang pair, (u_{2n}) , est une suite géométrique de raison 2. On a également que,

$$\forall n \in \mathbb{N}, \qquad u_{2(n+1)+1} = u_{2n+3} = u_{2n+1+2} = 2u_{2n+1}.$$

Donc la suite extraite de la suite (u_n) formée des termes de rang impair, (u_{2n+1}) , est également une suite géométrique de raison 2.

Exercice n°g TD 1

Exercice 9:

Pour chaque suite, dire si elle est de type connu et préciser ses caractéristiques.

3)
$$u_{n+1} = u_n - 4$$
.

La suite (u_n) est une suite arithmétique.

Elle est définie par une relation de récurrence de la forme $u_{n+1} = u_n + b$, de raison b = -4.

4) $u_{n+1} = 2u_n$.

La suite (u_n) est une suite géométrique.

Elle est définie par une relation de récurrence de la forme $u_{n+1} = au_n$, de raison a = 2.

5) $u_{n+2} + 9u_n = 6u_{n+1}$.

C'est une suite définie par une relation de récurrence d'ordre 2 de la forme $u_{n+2} = au_{n+1} + bu_n$ avec a = 6 et b = -9.

Exercice 10:

1) $u_{n+1} = (n+1)u_n$. La suite (u_n) n'est pas de type connu.

On peut tout de même en donner une expression en fonction de n, par récurrence : $u_n = n! u_0$. Pour $n \in \mathbb{N}$, considérons la propriété

$$(\mathcal{P}_n): u_n = n! u_0.$$

Vérifions que (\mathcal{P}_n) est vraie pour tout $n \in \mathbb{N}$ en utilisant un raisonnement par récurrence :

- Initialisation : on a $u_0 = 1!u_0$. Donc (\mathcal{P}_0) est vraie.
- Hérédité : pour n fixé, on suppose que (\mathcal{P}_n) est vraie c'est-à-dire que

$$u_n = n! u_0 \tag{H.R.}.$$

Vérifions alors que (\mathcal{P}_{n+1}) est vraie :

On sait d'après (H.R.) que $u_{n+1}=(n+1)u_n$. D'autre part on sait d'après (H.R.) que $u_n=n!u_0$. Ainsi $u_{n+1}=(n+1)n!u_0=(n+1)!u_0$.

<u>Conclusion</u>: (P_n) est vrai pour tout $n \in \mathbb{N}$ et donc $u_n = n!u_0$ pour tout $n \in \mathbb{N}$.

2)
$$u_{n+1} = -2u_n + 1$$
.

La suite (u_n) est arithmético-géométrique.

Elle est de la forme $u_{n+1}=au_n+b,\ a\in\mathbb{R}^*,\ b\in\mathbb{R}$, avec $a=-2,\ b=1$.

Exercice n°10 TD 1

Exercice 10:

3) $u_n = 3^{n+2}$. La suite (u_n) est géométrique de raison 3 et de premier terme $u_0 = 9$: $u_n = 3^n u_0$.

4) $u_{n+2} = u_{n+1} + n$.

La suite (u_n) n'est pas de type connu.

On peut tout de même en donner une expression en fonction de n, par récurrence :

$$u_{n+2} = 1 + 2 + ... + n + u_1 = \frac{n(n+1)}{2} + u_1.$$

Exercice n°10 TD 1

Exercice 11:

1) $u_2 = 5$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n - 3$.

 (u_n) est une suite arithmétique de raison -3 donc, pour tout $n \in \mathbb{N}$, $u_n = u_0 - 3n$.

Or $u_2 = 5 = u_0 - 3 \times 2 = u_0 - 6$. Donc $u_0 = 11$.

Finalement, pour tout $n \in \mathbb{N}$, $u_n = 11 - 3n$.

2) $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 3 - 5u_n$.

 (u_n) est une suite arithmético-géométrique vérifiant, pour tout $n \in \mathbb{N}$, $u_{n+1} = au_n + b$ avec a = -5 et b = 3.

On cherche une suite constante égale à ℓ vérifiant la relation de récurrence, autrement dit, ici, $\ell=3-5\ell$. On trouve $\ell=\frac{1}{2}$. Alors, pour tout $n\in\mathbb{N}$,

$$u_{n+1} - \frac{1}{2} = 3 - 5u_n - \left(3 - \frac{5}{2}\right) = -5\left(u_n - \frac{1}{2}\right),$$

autrement dit, $(u_n - \frac{1}{2})$ est une suite géométrique de raison -5 et de premier terme $u_0 - \frac{1}{2} = 1 - \frac{1}{2} = \frac{1}{2}$. D'où, pour $n \in \mathbb{N}$,

$$u_n - \frac{1}{2} = \frac{(-5)^n}{2}$$
 puis $u_n = \frac{1}{2} + \frac{(-5)^n}{2} = \frac{1}{2} (1 + (-5)^n).$

Exercice n°11 TD 1

Exercice 12:

1) $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 2u_n + 3$.

La suite (u_n) est une suite arithmético-géométrique.

Soit a = -3 la solution de a = 2a + 3.

Pour tout $n \in \mathbb{N}$ $u_{n+1} = 2u_n + 3$ et a = 2a + 3. Par différence on obtient $u_{n+1} - a = 2(u_n - a)$.

Ainsi, la suite (v_n) définie par $v_n = u_n + 3$ pour tout entier n est géométrique, de raison 2 et de premier terme $v_0 = u_0 + 3 = 4$.

Ainsi, $\forall n \in \mathbb{N}$, $v_n = 4.2^n$ et $u_n = 2^{n+2} - 3$.

Exercice n°12 TD 1

Exercice 12:

2) $u_2 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \sqrt{2u_n}$.

Une récurrence rapide donne pour tout $n \ge 2$, $u_n > 0$.

Posons alors pour tout $n \ge 2$, $v_n = \ln u_n$, alors $v_2 = 0$ et $\forall n \ge 2$, $v_{n+1} = \frac{1}{2}v_n + \frac{\ln 2}{2}$.

Pour tout $n \in \mathbb{N}$ $u_{n+1} = 2u_n + 3$ et a = 2a + 3. Par différence on obtient $u_{n+1} - a = 2(u_n - a)$.

Ainsi, la suite (v_n) est arithmético-géométrique.

Ainsi, de la même façon que précédemment, $\forall n \in \mathbb{N}, \ v_n = -\frac{\ln 2}{2^{n-2}} + \ln 2$.

Conclusion, $\forall n \in \mathbb{N}, \ u_n = \exp\left(-\frac{\ln 2}{2^{n-2}} + \ln 2\right) = 2^{1-\frac{1}{2^{n-2}}}.$

Exercice n°12 TD 1

Exercice 12:

3) $u_3 = 6$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 3u_n$.

La suite (u_n) est géométrique de raison 3 et de premier terme $u_0 = \frac{u_3}{3^3} = \frac{2}{9}$.

Ainsi, $\forall n \in \mathbb{N}, u_n = 2.3^{n-2}$.

Exercice n°12 TD 1