# **OBJETIVOS DE CONTROLE** Profa. Cristiane Paim

# Objetivos de Controle

O objetivo de um sistema de controle é fazer com que o sistema apresente um comportamento pré definido em regime transitório e/ou permanente.

As especificações (usuais) da resposta transitória e em regime permanente são definidas para sistemas de 1º e 2º ordem.



$$Y(s) = \frac{1}{Ts^2 + s} = \frac{1}{s} - \frac{1}{s+1/T}$$

Aplicando Laplace:

$$y(t) = 1 - e^{-t/T}$$



# Especificações para a resposta transitória de sistemas de 1º ordem

#### Tempo de subida:

(10a 90%) 
$$t_r = 2,20T$$
  
(5a 95%)  $t_r = 2,94T$ 

#### Tempo de acomodação:

$$t_s = 3T$$
 Critério 5%   
 $t_s = 4T$  Critério 2%   
 $t_s = 5T$  Critério 1%



Os polos do sistema serão dados por:

$$S_{1,2} = -\xi \omega_n \pm \omega_n \sqrt{\xi^2 - 1}$$

ou

$$s_{1,2} = -\xi \omega_n \pm j\omega_d$$

sendo  $\omega_d = \omega_n \sqrt{1-\xi^2}$  (frequência natural amortecida).

A resposta no tempo é dada por:

$$y(t) = 1 - \frac{e^{-\xi\omega_n t}}{\sqrt{1 - \xi^2}} \left[ \cos(\omega_d t) + \frac{\xi}{\sqrt{1 - \xi^2}} \sin(\omega_d t) \right]$$

ou

$$y(t) = 1 - \frac{e^{-\xi\omega_n t}}{\sqrt{1 - \xi^2}} \operatorname{sen} \left[ \omega_d t + t g^{-1} \left( \frac{\sqrt{1 - \xi^2}}{\xi} \right) \right]$$



$$\xi = 0 \rightarrow s_{1,2} = \pm j \omega_n$$

A resposta torna-se não amortecida, com oscilações de frequência  $\omega_n$  mantidas indefinidamente.

$$y(t) = 1 - \cos(\omega_n t)$$





$$\xi = 1 \rightarrow s_{1,2} = -\xi \omega_n$$

A resposta será criticamente amortecida.

$$y(t) = 1 - e^{-\omega_n t} \left( \omega_d t + 1 \right)$$





$$\xi > 1 \rightarrow s_{1,2} = -\xi \omega_n \pm \omega_n \sqrt{\xi^2 - 1}$$

Neste caso, a resposta é dita sobreamortecida.

$$y(t) = 1 - \frac{\omega_n}{2\sqrt{\xi^2 - 1}} \left[ \frac{1}{s_1} e^{s_1 t} - \frac{1}{s_2} e^{s_2 t} \right]$$



$$0 < \xi < 1 \rightarrow s_{1,2} = -\xi \omega_n \pm j\omega_n \sqrt{1 - \xi^2}$$

A resposta do sistema é subamortecida.

$$y(t) = 1 - \frac{e^{-\xi\omega_n t}}{\sqrt{1 - \xi^2}} \operatorname{sen} \left[ \omega_d t + t g^{-1} \left( \frac{\sqrt{1 - \xi^2}}{\xi} \right) \right]$$









$$T_1 \rightarrow p_{1,2} = -1 \pm j$$
 $T_2 \rightarrow p_{1,2} = -1 \pm j2$ 
 $T_3 \rightarrow p_{1,2} = -1 \pm j3$ 





$$T_1 \rightarrow p_{1,2} = -1 \pm j$$
 $T_2 \rightarrow p_{1,2} = -2 \pm j$ 





$$\begin{cases} T_1 & \to & \omega_n = 2 & p_{1,2} = -1 \pm j\sqrt{3} \\ T_2 & \to & \omega_n = 4 & p_{1,2} = -2 \pm j2\sqrt{3} \\ T_3 & \to & \omega_n = 6 & p_{1,2} = -3 \pm j3\sqrt{3} \end{cases}$$



# Especificações para a resposta transitória de sistemas de 2º ordem subamortecidos



# Especificações para a resposta transitória de sistemas de 2º ordem Subamortecidos

**Tempo de Subida** (0 – 100%):

$$t_r = \frac{\pi - \theta}{\omega_d}$$

sendo

$$\theta = tg^{-1} \left( \frac{\sqrt{1 - \xi^2}}{\xi} \right) \quad e \quad \omega_d = \omega_n \sqrt{1 - \xi^2}$$

Para fins de projeto geralmente utilizam-se as seguintes aproximações:

(10 a 90%) 
$$t_r = 1.8/\omega_n$$
  
(0 a 100%)  $t_r = 2.4/\omega_n$ 

# Especificações para a resposta transitória de sistemas de 2º ordem Subamortecidos

Tempo de pico:

$$t_p = \frac{\pi}{\omega_d}$$

Sobressinal máximo:

$$M_p = e^{\frac{-\xi\pi}{\sqrt{1-\xi^2}}}$$

Tempo de acomodação:

critério 5% 
$$t_s = 3/\xi \omega_n$$
 critério 2%  $t_s = 4/\xi \omega_n$  critério 1%  $t_s = 5/\xi \omega_n$ 

# Especificações para a resposta transitória de sistemas de 2ª ordem Criticamente ou Sobreamortecidos

#### Tempo de subida:

(10 a 90%) 
$$t_r = 1.8/|p_m|$$
  
(0 a 100%)  $t_r = 2.4/|p_m|$ 

sendo p<sub>m</sub> o polo mais próximo da origem.

#### Tempo de acomodação:

critério 5% 
$$t_s = 3/|p_m|$$
critério 2%  $t_s = 4/|p_m|$ 
critério 1%  $t_s = 5/|p_m|$ 

Sistema subamortecido ⇒ polos complexos conjugados



#### Sobressinal máximo

$$M_p = e^{-\xi\pi/\sqrt{1-\xi^2}} \le M_{p_{\text{max}}}$$

Portanto,

$$\xi \ge \frac{\left|\ln(M_{p_{\text{max}}})\right|}{\sqrt{\pi^2 + \left[\ln(M_{p_{\text{max}}})\right]^2}}$$

$$\xi \geq \xi_{\min} \implies \theta < \theta_{\max}$$



Tempo de acomodação

$$t_{s} = \frac{4}{\xi \omega_{n}} \le t_{s_{M\acute{a}x}}$$

$$\xi \omega_n \geq \sigma_{\min}$$

Tim(s)

Re(s)

σ: parte real dos polos complexos conjugados

Tempo de subida

$$t_r = \frac{2,4}{\omega_n} \le t_{r_{\text{max}}}$$

$$\omega_n \geq \omega_{\min}$$



Tempo de pico

$$t_p = \frac{\pi}{\omega_d} \le t_{p_{\text{max}}}$$

$$\omega_d \geq \omega_{d_{\min}}$$



Seja o sistema de controle com realimentação unitária:



O sinal de erro é definido como a diferença entre o sinal de entrada e o sinal de saída:

$$E(s) = R(s) - Y(s)$$

Em regime permanente, podem ser obtidos os coeficientes e erros estacionários associados a cada tipo de entrada: degrau, rampa e parábola.

$$K_{P} = \lim_{s \to 0} G(s)$$
  $\Rightarrow$   $e_{\infty} = \frac{1}{1 + K_{P}}$ 

$$K_{V} = \lim_{s \to 0} sG(s) \implies e_{\infty} = \frac{1}{K_{V}}$$

$$K_a = \lim_{s \to 0} s^2 G(s) \implies e_\infty = \frac{1}{K_a}$$

Neste caso (realimentação unitária), pode ser demonstrado que o tipo do sistema é definido pelo número de integradores da função de transferência G(s).

|          | Tipo 0                           |                   | Tipo 1                           |                 | Tipo 2                           |                 |
|----------|----------------------------------|-------------------|----------------------------------|-----------------|----------------------------------|-----------------|
| Entrada  | Constante<br>de erro<br>estático | Erro              | Constante<br>de erro<br>estático | Erro            | Constante<br>de erro<br>estático | Erro            |
| Degrau   | $K_p = Cte$                      | $\frac{1}{1+K_p}$ | $K_p = \infty$                   | 0               | $K_p = \infty$                   | 0               |
| Rampa    | $K_v = 0$                        | $\infty$          | $K_{\nu}=Cte$                    | $\frac{1}{K_v}$ | $K_v = \infty$                   | 0               |
| Parábola | $K_a = 0$                        | $\infty$          | $K_a = 0$                        | $\infty$        | $K_a = Cte$                      | $\frac{1}{K_a}$ |

Qual a diferença da resposta ao degrau para os dois sistemas?









# Sugestões de Leitura - Revisão

Engenharia de Controle Moderno – K. Ogata (5ª Ed.)

Capítulo 5 - Análise de Resposta Transitória e de Regime Estacionário

Sistemas de Controle Modernos – R. Dorf & R. Bishop (8ª Ed.)

Capítulo 4 – Características de Sistema de Controle com

Retroação, Itens 4.1 a 4.5

Capítulo 5 – O Desempenho de Sistemas de Controle com

Retroação, Itens 5.1 a 5.8

Sistemas de Controle para Engenharia – G. Franklin (6ª Ed.)

Capítulo 3 – Resposta Dinâmica: Item 3.4

Capítulo 4 – Uma primeira análise da realimentação: Item 4.2