一. 名词解释:

翻译 层次结构 透明性 模拟 仿真 数据表示 逻辑地址 CISC RISC 堆栈机器 数据宽度 中断响应次序 中断处理次序 通道极限流量 地址的映像 地址的变换 堆栈型替换算法

- 一次重叠 流水线吞吐率 预约表 操作数相关 指令相关
- 二.选择一个最恰当的答案
- 1.当前设计高性能计算机的重要技术途径是 .
 - A. 提高 CPU 主频
 - B. 扩大主存容量
 - C. 采用非冯若依曼结构
 - D. 采用并行处理技术
- 2.下列体系结构中,最适合多个任务并行执行的体系结构是 .
 - A. 流水线向量机结构;
 - B. 堆栈处理机结构:
 - C. 共享存储多处理机结构;
 - D. 分布存储多计算机结构
- 3.对于低速输入输出设备,应当选用的通道是 .
 - A. 数组多路通道
 - B. 字节多路通道
 - C. 选择通道
 - D. DMA 专用通道
- 4.某虚拟存储器采用页式内存管理,使用 LRU 页面替换算法,考虑下面的页面访问地址流(每次访问在一个时间单位中完成),
 - 2, 3, 2, 1, 5, 2, 4, 5, 3, 2, 5, 2

假定内存容量为3个页面,开始时是空的,则页面命中次数是 .

- A. 4
- B. 5
- C. 6
- D 7
- 5. 一个松耦合的 MIMD 系统,它实际上只是多个独立的()单机系统的集合。
 - A.SIMD
 - B. I/O 处理
 - C.CPU
 - D.SISD
- 6. 带标识符的数据表示简化了()。
 - A.指令系统
 - B.操作系统
 - C.编译系统
 - D.源程序
- 7. 初始冲突向量 10101010 在 2 拍后送入流水线,则新的冲突向量为()。)。

- A.10101010
- B.01011111
- C.10111101
- D.10111011
- 8.RISC 系统结构采用的特殊技术有()。
 - A. 优化延迟转移技术
 - B.优化编译技术
 - C. 装载延迟优化技术
 - D. 比较-转移指令
- 9. 流水操作中,遇到数据相关时,采用的解决办法有()。
 - A.用优化编译器检测,通过指令重新排序的办法
 - B. 定向技术
 - C. 延迟转移技术
 - D. 加快和提前形成条件码
- **10**. 在网络信号传输时,如果每个信号都有自己的专用信号线,这样的总线称为 ()。
 - A.单向传输总线
 - B.双向传输总线
 - C. 串行总线
 - D.专用总线
- 11. 同一厂家生产的具有相同的系统结构,但不同的组成和实现的不同型号的机器称为:
 - A 系列机
 - B兼容机
 - C目标机
 - D宿主机
- 三. 某机的指令字长 16 位,设有单地址指令和双地址指令两类,若每个地址字段均为 6 位,且双地址指令有 X 条,问单地址指令最多可以有多少条?
- 四. 设中断屏蔽位"1"表示开放,"0"表示屏蔽,各级中断处理程序的中断级屏蔽位设置如下:

	中断级屏蔽位					
级别	1	2	3	4		
1	0	0	0	0		
2	1	0	1	1		
3	1	0	0	0		
4	1	0	1	0		

- 1. 当中断响应先后次序为 1, 2, 3, 4 时, 中断处理顺序?
- 2.设中断处理需3个单位时间,中断响应和中断返回时间较短,执行用户程序时,同时发生2,3级中断,2个单位时间后,同时发生1,4级中断,画出程序运行过程示意图

五. 有5台字节型设备连接在字节型多路通道上。

"0"号印字机 美 25发一个字节的传输请求"1"号印字机 每 25发一个字节的传输请求"0"号宽打每 150发一个字节的传输请求"1"号宽打每 150发一个字节的传输请求"0"号光电机每 800发一个字节的传输请求

画出所有5台设备同时发出申请为开始的通道工作示意图。

- 六. 设某程序包含 5 个虚页, 其页面地址流 4, 5, 3, 2, 5, 1, 3, 2, 2, 5, 1, 3。当使用 LRU 算法,为获得最高命中率,至少应分配给该程序多少个实页? 其可能的最高命中率为多少?
- 七.为提高流水线的吞吐率,可以采取哪两种方法克服速度瓶颈?现有 3 段流水线,经过各段的时间为 Δt , $3 \Delta t$, Δt 。
 - (1)计算连续输入3条和连续输入30条指令时的吞吐率和效率
 - (2)按两种途径进行改进,画出流水线结构示意图,计算连续输入 3 条和连续输入 30 条指令时的吞吐率和效率。

八. 单功能流水线预约表

/ (1 /)3				1					
时间 段	1	2	3	4	5	6	7	8	9
S1	√								√
S2		√	√					√	
S3				√					
S4					√	√			
S5							√	√	

列出调度方案表。

答案:

- 一. 略二. 1)D 2) A
 - 3)B 4)
 - 5)B 6) A
 - 7) A 8) A
 - 9) C 10) D 11) A

三.答: (2^4-X) *2^6 因为

四. 答:中断处理次序为1,3,4,2

中断处理程序

五. 通道流量为:

$$f_{byte \cdot j} = \sum_{i=1}^{5} f_{ij} = \frac{1}{25} + \frac{1}{25} + \left(\frac{1}{150} + \frac{1}{150} + \frac{1}{800}\right)$$

$$\approx 0.095 MB / s$$

根据设计的基本条件,该通道的极限流量可设计成 0.1MB/s,即所设计的通道工作 周期 TS+TD 为 10 微秒,这样各个设备的请求就能及时得到响应和处理,不会 丢失信息。

六.

4	5	3	2	5	1	3	2	2	5	1 3	
4	4	4	4	4	4	4	4	4	4	4	4
	5	5	5	5 *	5	5	5	5	5 *	5	5
		3	3	3	3	3 *	3	3	3	3	3 *
			2	2	2	2	2 *	2 *	2	2	2
					1	1	1	1	1	1 *	1

5

最高命中率为 7/12

$$T = \frac{n}{\sum_{i=1}^{m} \Delta t_i + (n-1)\Delta t_j}, \qquad \text{ $\sharp : $ \vdash , $ $t_j = \max\{\Delta t_1, \Delta t_2, ..., \Delta t_m\}$}$$

$$h = \frac{n \sum_{i=1}^{m} \Delta t_m}{m \left(\sum_{i=1}^{m} \Delta t_i + (n-1)\Delta t_i\right)}$$

提高吞吐率的两条途径:

功能段细分、重复设置多个功能部件

(1) a. 当连续流入3条指令时

$$T_p = \frac{3}{11\Delta t}$$
 $h = \frac{5}{11}$

b. 当连续流入 30 条指令时

$$T_p = \frac{15}{46\Delta t}, \qquad h = \frac{25}{46}$$

$$n = 3$$
 H' : $T_p = \frac{3}{7\Delta t}$, $h = \frac{3}{7}$ $n = 30$ H' : $T_p = \frac{15}{17\Delta t}$, $h = \frac{15}{17}$

八. 见书第 205 页。