

The Three States of Operation

• Active or Linear Region Operation

Base-Emitter junction is forward biased Base-Collector junction is reverse biased

• Cutoff Region Operation

Base-Emitter junction is reverse biased Base-Collector junction is reverse biased

• Saturation Region Operation

Base-Emitter junction is forward biased Base-Collector junction is forward biased

DC Biasing Circuits

- Fixed-bias circuit ✓
- Emitter-stabilized bias circuit
- Voltage divider bias circuit ✓
- DC bias with voltage feedback

1. Fixed Bias

The Base-Emitter Loop

From Kirchhoff's voltage law:

$$+\mathbf{V}_{\mathrm{CC}} - \mathbf{I}_{\mathrm{B}}\mathbf{R}_{\mathrm{B}} - \mathbf{V}_{\mathrm{BE}} = \mathbf{0}$$

Solving for base current:

$$I_B = \frac{V_{CC} - V_{BE}}{R_B}$$

Collector-Emitter Loop

Collector current:

$$I_{C} = \beta I_{B}$$

From Kirchhoff's voltage law:

$$V_{CE} = V_{CC} - I_C R_C$$

Saturation

When the transistor is operating in saturation, current through the transistor is at its *maximum* possible value.

$$I_{Csat} = \frac{V_{CC}}{R_{C}}$$

$$V_{CE} \cong 0 V$$

Load Line Analysis

The end points of the load line are:

ICsat

$$I_C = V_{CC} / R_C$$
$$V_{CE} = 0 V$$

V_{CEcutoff}

$$V_{CE} = V_{CC}$$
$$I_{C} = 0 \text{ mA}$$

The Q-point is the operating point:

- where the value of R_{B} sets the value of I_{B}
- that sets the values of V_{CE} and $\boldsymbol{I}_{\boldsymbol{C}}$

2. Emitter-Stabilized Bias Circuit

Adding a resistor $(R_{\rm E})$ to the emitter circuit stabilizes the bias circuit.

Base-Emitter Loop

From Kirchhoff's voltage law:

+
$$V_{CC} - I_E R_E - V_{BE} - I_E R_E = 0$$

Since $I_E = (\beta + 1)I_B$:

$$\mathbf{V}_{\mathrm{CC}} \cdot \mathbf{I}_{\mathrm{B}} \mathbf{R}_{\mathrm{B}} \cdot (\boldsymbol{\beta} + 1) \mathbf{I}_{\mathrm{B}} \mathbf{R}_{\mathrm{E}} = 0$$

Solving for I_B:

$$I_{B} = \frac{V_{CC} \cdot V_{BE}}{R_{B} + (\beta + 1)R_{E}}$$

Collector-Emitter Loop

From Kirchhoff's voltage law:

$$I_{\mathbf{E}}R_{\mathbf{E}} + V_{\mathbf{CE}} + I_{\mathbf{C}}R_{\mathbf{C}} - V_{\mathbf{CC}} = 0$$

Since $I_E \cong I_C$:

$$\mathbf{V}_{\mathrm{CE}} = \mathbf{V}_{\mathrm{CC}} - \mathbf{I}_{\mathrm{C}} (\mathbf{R}_{\mathrm{C}} + \mathbf{R}_{\mathrm{E}})$$

Also:

$$\begin{aligned} &V_E = I_E R_E \\ &V_C = V_{CE} + V_E = V_{CC} - I_C R_C \\ &V_B = V_{CC} - I_R R_B = V_{BE} + V_E \end{aligned}$$

Improved Biased Stability

Stability refers to a circuit condition in which the currents and voltages will remain fairly constant over a wide range of temperatures and transistor Beta (β) values.

Adding $R_{\scriptscriptstyle\rm E}$ to the emitter improves the stability of a transistor.

Saturation Level

The endpoints can be determined from the load line.

V_{CEcutoff}:

$$V_{CE} = V_{CC}$$
$$I_C = 0 \text{ mA}$$

I_{Csat}:

$$V_{CE} = 0 V$$

$$I_C = \frac{V_{CC}}{R_C + R_E}$$

3. Voltage Divider Bias

This is a very stable bias circuit.

The currents and voltages are nearly independent of any variations in β .

Approximate Analysis

Where $I_B \ll I_1$ and $I_1 \cong I_2$:

$$V_{\rm B} = \frac{R_2 V_{\rm CC}}{R_1 + R_2}$$

Where $\beta R_E > 10R_2$:

$$I_{E} = \frac{V_{E}}{R_{E}}$$

$$V_{E} = V_{B} - V_{BE}$$

From Kirchhoff's voltage law:

$$\begin{aligned} \mathbf{V}_{\mathrm{CE}} &= \mathbf{V}_{\mathrm{CC}} - \mathbf{I}_{\mathrm{C}} \mathbf{R}_{\mathrm{C}} - \mathbf{I}_{\mathrm{E}} \mathbf{R}_{\mathrm{E}} \\ \mathbf{I}_{\mathrm{E}} &\cong \mathbf{I}_{\mathrm{C}} \\ \mathbf{V}_{\mathrm{CE}} &= \mathbf{V}_{\mathrm{CC}} - \mathbf{I}_{\mathrm{C}} (\mathbf{R}_{\mathrm{C}} + \mathbf{R}_{\mathrm{E}}) \end{aligned}$$

Voltage Divider Bias Analysis

Transistor Saturation Level

$$I_{Csat} = I_{Cmax} = \frac{V_{CC}}{R_C + R_E}$$

Load Line Analysis

Cutoff:

Saturation:

$$V_{CE} = V_{CC}$$

 $I_C = 0mA$

$$I_{C} = \frac{V_{CC}}{R_{C} + R_{E}}$$
$$V_{CF} = 0V$$

4. Transistor Switching Networks

Transistors with only the DC source applied can be used as electronic switches.

Switching Circuit Calculations

Saturation current:

$$I_{Csat} = \frac{V_{CC}}{R_C}$$

To ensure saturation:

$$I_B > \frac{I_{Csat}}{\beta_{dc}}$$

Emitter-collector resistance at saturation and cutoff:

$$R_{sat} = \frac{V_{CEsat}}{I_{Csat}}$$

$$R_{cutoff} = \frac{V_{CC}}{I_{CEO}}$$

Switching Time

Transistor switching times:

$$t_{\rm on} = t_{\rm r} + t_{\rm d}$$

$$t_{off} = t_s + t_f$$

Troubleshooting Hints

- Approximate voltages
 - $V_{BE} \cong .7 V$ for silicon transistors
 - $V_{CE}\!\cong\!25\%$ to 75% of V_{CC}
- Test for opens and shorts with an ohmmeter.
- Test the solder joints.
- Test the transistor with a transistor tester or a curve tracer.
- Note that the load or the next stage affects the transistor operation.

PNP Transistors

The analysis for *pnp* transistor biasing circuits is the same as that for *npn* transistor circuits. The only difference is that the currents are flowing in the opposite direction.