Университет ИТМО

Факультет Программной Инженерии и Компьютерной техники

Информатика

Лабораторная работа №6

Работа с системой компьютерной вёрстки $\ensuremath{\mathrm{TeX}}$

Вариант: 113

Выполнил: Полуянов Игорь Андреевич

Группа: Р3110

Преподаватели: Рыбаков Степан Дмитриевич

Балакшин Павел Валерьевич

a	0	a
b	0	b
c	0	c
d	1	cdj
e	1	abi
f	1	fgl
\mathbf{g}	0	g
k	2	abicdjk
1	2	fg
m	2	abicdjfglm
h	0	h
L	2	abicdjfglmhL

Рис. 8.

Шаг 5. Пусть y_1, y_2, \ldots, y_k — вершины ордерева, непосредственно предшествующие x, упорядоченные так, что: $p(y_1) \ge p(y_2) \ge \cdots \ge (y_k)$. Найдём:

$$p(x) = \max\{p(y_s) + t_s\},\tag{1}$$

$$q(x) = q(y_1)q(y_2)\dots q(y_k).$$
 (2)

и внесем найденные значения во второй и третий столбцы, рассматриваемой строки. Переходим к шагу 3.

Рис. 9.

Один из алгоритмов построения таких укладок, известный под названием *алгоритма Реджеевского*, мы сейчас опишем

Шаг 1. Построим таблицу с n строками и тремя столбцами, где n — число вершин ордера.

Шаг 2. Заполним первый столбец таблицы снизу вверх, поместив в самой нижней строке корень x_0 ордера, затем в произвольном порядке его предшественников, лишь бы нигде не нарушалась очередность вычислений. (то есть любые данные, нужные для очередной операции, должны быть получены раньше её выполнения)

Далее через p(x) и q(x) мы будем обозначать записи во втором и третьем столбцах строки, начинающейся с буквы х. Значениями функции р будут числа, функции q - последовательности букв. Пусть уже заполнены первые r строк

Шаг 3. Приступаем к заполнению очередной строки (предыдущие уже заполнены); Обозначим через х ее первую букву. Если вершина х - висячая, переходим к шагу 4, в противном случае - к шагу 5.

Шаг 4. Во втором столбце пишем 0, в третьем — x. (Таким образом, мы положили p(x) = 0, q(x) = x) Переходим к шагу 3.

Повторяем шаги 3–5, пока не будет заполнена вся таблица. Тогда в последней строке во втором столбце мы получим ширину укладки, то есть $p(x_0) = W(y,T)$, а в третьем саму - укладку дерева T, если вершины в последовательности $q(x_0)$ занумеровать слева направо.

Таблица, полученная при применении алгоритма Реджеевского к ордереву на рисунке 7, показана на рисунке 8, а «уложенное» ордерево - на рисунке 9.