

Mesh and Computational Geometry

Raphaëlle Chaine Université Claude Bernard Lyon 1

> M2 ID3D Image, Développement et Technologie 3D et 3A Centrale

Differential operators

- · Fait au tableau
 - Gradient de la function qui donne l'aire d'un triangle quand son sommet s0 varie

1

61

Differential operators

- · Functions defined on a surface
 - Let u be a scalar function defined on a surface
 - We would like to express local variations of u
- Let consider the discrete case of a surface being approximated by a simplicial mesh
 - Function u discretized on vertices
 - Gradient of u discretized on triangles
 - Divergence of a vector (defined on triangles) discretized on vertices
- · Bibliography: Keenan Crane

 Gradient d'une fonction définie sur les sommets d'un triangle

Differential operators

- Gradient de l'interpolation linéaire de la fonction sur le triangle
- Laplacien en un sommet d'une fonction définie sur les sommets
 - Différence entre la moyenne des valeurs sur les voisins et la valeur au sommet
 - Quels coefficients choisir pour faire la moyenne?
 - Choisir des coefficients cohérents avec le fait que le laplacien de la fonction de position des points sur une surface doit être liée à la courbure moyenne et à la normale à la surface (et correspond au gradient de l'aire locale de la surface quand la position du point varie).

62

64

63

65

Differential operators

· Simplicial meshes

- Laplacian Δ of u at vertex i = sum over neighbor vertices j

- Gradient ∇ of u inside a triangle = sum over the 3 vertices I

Divergence at vertex i of a vector X defined on faces

= sum over incident faces j

 $\sum_{j} 2A_{j} \nabla \cdot X = rac{1}{2} \sum_{j} \cot heta_{1}(e_{1} \cdot X_{j}) + \cot heta_{2}(e_{2} \cdot X_{j})$

Area A_i

· Computed by duality to a vertex

65

Differential geometry

- · How to generalize normal, curvatures?
- · Consider u corresponding to each coordinate fonction in turn
 - u = t(x,y,z)

$$\triangle_{\mathbf{X}}\mathbf{u} = -2H\mathbf{n}$$

H: mean curvature n : normal vector

67

Signals being studied in **Computer Graphics**

- Signals defined on $\,\mathbb{R}^2$
 - Scalar signals:
 - height value (terrain)
 - · density of some fluid flowing in the plane
 - Vector fields

 - Surface parameterization $\,\Omega\subset\mathbb{R}^2 o\mathbb{R}^3\,$ Displacement field of some fluid flowing in the
- Signals defined in \mathbb{R}^3
 - Density of a volume material (scalar)
 - · Displacement field of some fluid (vector)

67

66

Signals being studied in **Computer Graphics**

- Signals defined on a surface $\mathbb S$
 - Scalar values:
 - Temperature, grey color ...
 - Position coordinates (x, y or z)
 - Vector fields
 - · Normal vector
 - Maximal/minimal curvature direction
 - · Displacement field

68