L9 - 30/08/2024

Line' one rational nos.

Por-Let E20 be a rational.

 Pp^n - Let $\varepsilon > 0$ be a national. Then, $\exists n \in \mathbb{Q}$ s.t $n^2 < 2 < (n+\varepsilon)^2$

Pf-Assume if $x^2 < 2$ for some national x, then $(x+\epsilon)^2 < 2$.

V national $\epsilon > 0$.

Now, $0 \in \mathbb{Q} \ \ 0^2 < 2 \Rightarrow (0+\epsilon)^2 < 2 \Rightarrow \epsilon^2 < 2$ Also, $\epsilon \in \mathbb{Q} \ \ \epsilon^2 < 2 \Rightarrow (\epsilon+\epsilon)^2 < 2$

 $\Rightarrow (2\epsilon)^2 < 2$

. We should have considered $(x+E)^2 \le 2$, but we can safely reject $(x+E)^2 = 2$ since we have proved earlier that $\sqrt{2}$ is irrational.

By ind, we can show $(ne)^2 < 2$.

Contaⁿ \square

REMARK - In Tao's Analysis I, the following lemma has been proved

If $\alpha, \beta \in \mathbb{Q}_{>0}$, $\exists n \in \mathbb{Z}_{>|}$ s.t $n\alpha > \beta$ The statement $(n\epsilon)^2 < 2$ contradicts this summa for $\alpha = \epsilon^2 + \beta = 2$ · <u>Sequences</u> - A seq. of national nos. is a subset of $\prod_{n=1}^{\infty} \mathbb{Q}$

Cauchy seq. - A seq. $(an)_{n\geqslant 1}$ of rationals is said to be cauchy if \forall rational $\epsilon>0$, \exists $N\in\mathbb{N}$ s.t \forall $m,n\geqslant N$, $|am-an|\in \epsilon$

We will now define an eq. reen on the set of Cauchy seq. of rationals.

(an), (bn) be 2 cauchy seq. of rationals and ~ be an eq. rel on the set of cauchy seq. of rationals s.t $(an) \sim (bn)$ V rational €20, 3 N € ZZ, s.t Vn≥N, |an-bn|< € PF - R - |an-an| = 0 CES - 16n-an = |an-6n | < 0 T - Given lan-bn/(€ ¥ n>N, Ibn-cn/ce & n2N2 Let N=man(N1)N2). Yn>N, $|an-c_n| = |(an-bn)+(bn-c_n)|$ < | an-bn | + | bn-cn | < E < €/2 < €/2