	Date
-	A) Binary search algorithm
•	
	Jearshing algorithm used to search in an sorted
	array by dividing the search interval in half.
•	The time complexity is reduced to O(logn).
•	Basic steps:
_	· Sort the anay in ascending order.
	· Set the low order index to first element of the
	away and high index to the last element.
	· Set the middle index to the average of the low
#	and high indices.
.99	· if element is at middle index, then return the
**	middle index.
3	· if target element is greater than middle element,
	set low index to mid + 1.
	if target element is lesser than middle
3	element, ret high index to mid-1
	· Repeat steps 3-6 runtil the element is found
	or it is clear that element is not present
	in the array.
	1) I terative method
	binany search (arr, x, l, h) of
	repeat +11/10=h {
	mid= ((+h)/2
	if (n = = arr(mid))
	return mid
	Ose if (noor (mid])
	L= mid + 1
	else hi= mid-I]
X	3 Spiral

	Date	0
esperasive method		0
binary search (arr, M, L, h) &		0
if low > high		0
return O		-0
e Is e		
mid-(1+n)/2		-0
if (n = = arr[mid]		1)
return mid		0
else if (noarr(mid]		0
return binary Search (ar	1, 21, mid+1, h)	
2/50		
return binansearch (arr	n, 1, mid-1,	
<u> </u>		
		- 4
Time complexity: O(logn)		
recurrence relation: T(n)= 7(n/2) + 1	- 1
where, T(n) is to	me required	
For bihang rearch	in an arra	y
of size n.		
	1	
B) Morge sort algorithm		
- Merge sort is sorting algorithm	that wo pr by	y
dividing on away into maller suban	ays, sorth	ρ
each subaway and then merging th	e sub soste	
suporrays back together to form to	he Bral	
soportagi oran	•	
sorted array.	to huotaly	es
- In simple terms, divide the array in	Led halves	
back together, until the away is so	a tred.	
back together, until the array is)	
	Spiral	

Date Complexities Time complexity: O(nlogn) Best case : O(n logn) Avenge Case ! wast case: 0 (n logn) space complexity: V Stable, O(n) algonimm: mergesort (arr, s, e) if (5 >= e) e = end ofanoy mergesont (on, s, mid) mergesont (am, mid+1, e) mergo (arr, s, e) merge (arr, s, e) f mid = (s+e)/2 LI= mid-5+I int as array of length lx int as ariamay of length 12 11 cupy elements from man away to 1 eft and nghtamay K = S; // index of mainamay for (i = 0 to (x) 5

Spiral

Date axije an(K++): K=mid+1; for (i = 0 to (2) 9 92 (i) = arr (+++); Homerge Isomed arrays index1 = 6 1401412 = 0 9 unile (index 1 elz & index 2 e 12) f if (az (index 1) = a) (index 1)) arr (k ++] = az (index 1 ++); esses arr (k++) = a2 [md ex2++]; 1 unile (index 1 4 (z) & // for remaring of a z arr(k++)= ar[index]++). unile (mdex2 2/2) { arr (kr+) = 92 [thd ex2++]. flend recurrence relation: T/n) - f o(z) f n= z, 27(n/2)+0(n) if n 27 Spiral

2222/10/417 Date y Purksot int Partition (int Arr, L, h) f Pirot = Arr[1] 1=1,j=h; do gi+T. 3 unile (A Ci] = pirot); dofi-- 3 while (ACjj > pirot); 0 if (i < j) { 0 swap (ACi), ACi)]; 0 3 while (icj); 0 suap (A (1], A (,1); 0 return ; 0 time complexity: 0 Bast case: O(n/ogn) worst case: o(n2) average case: O(n/ogn) -6 void quicksort (Arr, 1, b) & 0 if (L < h) f int j = partition (Arr, L, h); 6 quicksort (Arr, Lij); 0 quickvort (Arr, j+1, h); 0 0 **3** 0 Spiral 0