LeetCode 15: 3Sum

Arlie

Problem

Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] such that i != j, i != k, and j != k, and nums[i] + nums[j] + nums[k] == 0.

Notice that the solution set must not contain duplicate triplets.

Difficulty: Medium

Solution

We can solve this question in a similar manner the sorted approach for 2Sum. That is, we sort the list of numbers first and then for each $n_i \in N$ we look at the subarray $[n_{i+1}, n_{|N|-1}]$ which is all the numbers that come after n_i . We do this in order to utilse the properties of a sorted list which is that if we two numbers n_j, n_k where k > j then

$$n_i + n_{k-1} < n_i + n_k < n_i + n_{k+1}$$

which will allow us to find a triple (if it exists) is linear time for each number n_i where i < j

We can does this as so: create a left pointer l starting at index i+1 and a right pointer r at index |N|-1. then we look at $n_i + n_l + n_r$, if this sum is less than our target then or value at the left pointer is too small hence we increase the pointer's index by 1, if the sum is greater than the target then the value at the right pointer is too big hence we decrease the right pointer's index by 1, finnally if the sum is equal to the target then we append the tuple (n_i, n_l, n_r) to our result array res Then we will increase our left pointer l until it is on a distinct integer that isn't the same as n_l . Once we have finished looping trough the array we can return our resultant array res.

Code

```
def threeSum(self, nums: list[int]) -> list[list[int]]:
res = []
nums.sort()
for i, a in enumerate(nums):
    if i > 0 and a == nums[i-1]:
        continue
    (1,r) = (i+1, len(nums)-1)
    while l < r:
        s = a + nums[1] + nums[r]
        if s > 0:
            r -=1
        elif s < 0:
            1 += 1
        else:
            res.append([a,nums[1],nums[r]])
            1 += 1
            while nums[1] == nums[1-1] and 1 < r:
                1 += 1
return res
```

Figure 1: image

Time Complexity

Since for each n_i we look at the subarray $[n_{i+1}, n_{|N|-1}]$ this has a cost of n^2 which gives us a time complexity of

 $\mathcal{O}(n^2)$

Space Complexity

Our resultant list will contain n tuples of length 3 hence our space complexity is

 $\mathcal{O}(n)$