DEPARTMENT OF MECHANICAL ENGINEERING REFRIGERATION & AIR CONDITIONING LAB

VAPOUR COMPRESSION REFRIGERATION UNIT

Aim: To verify heat balance on Vapour Compression

Refrigerationsystem at different evaporator load and to plot the graphs for the following

- 1. Overall COP v/s evaporator temperature
- 2. Refrigerant flow rate v/s Overall COP
- 3. Superheat v/s evaporator temperature
- 4. Refrigeration load and Power input v/s evaporator temperature

Theory:

The purpose of a refrigerator is removal of heat from a low temperature medium. Among the various cycles developed, vapour compression refrigeration cycle is most widely used. It has four stages:

A) Evaporation; B) Compression; C) Condensation and D) Expansion.

EXPERIMENTAL SET UP

Specifications of the Unit:

Refrigerant : R-134a Tetrafluoroethane CF₃CH₂F

Refrigeration rate : 1400W (max).

Condensing Temperature : 50°C (max). Evaporating Temperature : -40 to +10°C.

Compressor Type : Twin cylinder, reciprocating type

Bore : 38mm Stroke : 19mm

Swept Volume : 43.0cm³/rev.

Rotational speed : 740 rev/minute.

Condenser : Shell and Coil type: Heat transfer area 0.075m²

Evaporator : Compact one through concentric tube with refrigeration load

supplied by two separate electrical heating elements.

Cooling medium : Water

Expansion valve : Thermostatically controlled internally equalized valve, controlled by

superheat at evaporator outlet.

Instrumentation:

Water Flowmeter : One variable area water flow meter with needle control valve.

Refrigerant Flowmeter : One variable area R134a flow meter.

Pressure Gauges : 2 Bourdon tube gauges to indicate pressure in condenser and

evaporator.

Compressor Speed : A digital electronic tachometer with inductive sensor to measure

rotational speed of compressor pulley wheel.

Motor Speed : Motor speed from pulley belt diameter ratio = 1.98.

Torque : Dynamometer fitted to motor to indicate 0-20N at 165mm radius.

Temperature : A digital multi channel thermometer indicating temperatures from

'K' type thermocouples at important points.

Test Observations

Series		Test No.	1	2	3	4	5	6
Condenser Pressure(abs.)	P _c	kN/m ²						
Evaporator Pressure(abs.)	P _e	kN/m ²						
Compressor Suction	t ₁	°C						
Compressor Delivery	t_2	°C						
Liquid leaving Condenser	t ₃	°C						
Evaporator inlet	t ₄	°C						
Water inlet	t ₅	°C						
Water outlet	t ₆	°C						
Water flow rate	m _w	g/s						
R134a flow rate	m _r	g/s						
Evaporator Wattage	Qe _{el}	W						
Motor Wattage	Qm _{el}	W						
Spring Balance	F	N						
Compressor speed	n _c	rpm						
M otor speed($n_m=n_c X$ Pulley ratio) (Pulley ratio =1.98)	n _m	rpm						

CALCULATIONS

- 1. Refrigeration Load $Q_e = m_r x(h_1 h_4) =$
- 2. Evaporator Heat input = Qel_e =
- 3. Shaft Power:

Torque T = force (F)* arm length for dynamometer (0.165 m) =

$$\omega = 2\pi N_{\rm m}/60 =$$

$$P_s = T\omega =$$

4. Friction Power:

 $P_f = T\omega$ and $F_f = 5N$ (for no load condition)

$$P_f = 0.165 * F_f * (2\pi N_m/60) =$$

5. Indicated Power:

$$P_i = P_S - P_f =$$

6. COP based on electrical power or overall COP:

$$COP_{ep}=Q_e/Q_{mel}=$$

7. COP based on Shaft power:

$$COP_{sp} = Q_e/P_s =$$

8. COP based on Indicated Power:

$$COP_{ip} = Q_e/P_i =$$

9. Degree of superheat at evaporator outlet

 $(t_{sat} = saturation temperature at evaporator pressure = t_4)$

$$= t_1-t_{sat}=$$

10. Volumetric efficiency:

$$\textit{volumetric efficiency} = \frac{\textit{actual } \dot{V}}{V_{\textit{swept}}}$$

$$\eta_{\text{vol}} = \frac{\dot{m_r} * v_1}{\dot{V_{\text{swent}}}}$$

$$\dot{V_{\text{swept}}} = V_{swept} \times RPS \ of \ compressor$$

Heat Balance:

1. Verify:

$$W_{in} + Q_e = Q_{condensor} (\pm 10\% \text{ error})$$

2. Actual work done in compressor: W_{in} = indicated pressure× \dot{V}

$$= IP \times V_{swept} \times \eta_{vol}$$
$$= P_i \times \eta_{vol} =$$

3. $Q_{condensor}$ = Heat lost to cooling water $= \dot{m_w} C_P (T_6 - T_5)$

Sample graphs:

Superheat vs evaporator temp

COP vs evap temp

Refrigeration load and power input vs

evaporator temperature

COP vs refrigerant flow rate

