# DS3000 Final Project

Predicting Wildfire Trends in Europe Using Machine Learning



# Problem Statement/ Goal

Problem Statement: Wildfires in Europe are increasing in frequency and intensity. Threats include biodiversity loss, economic damage, and human displacement.

**Goal:** Use ML to predict wildfire trends to guide preventive actions.



# Significance



- EU Forest Strategy for 2030 focuses on prevention but lacks predictive capabilities.
- NASA's satellite data and ML offer predictive opportunities.

# Data Description

Source

Dataset

Key Attributes

NASA's Fire Information for Resource Management System.



Visible Infrared Imaging Radiometer Suite (VIIRS) 375m for high quality image resolution.

- Brightness: intensity of fire
  - I–4 Channel (high)
  - I-5 Channel (low)
- Longitude and Latitude
- Date and Time of Image Acquisition
- Scan and Track: image resolution in each direction

# Data Cleaning

### Steps:

- FIRMS API for specifically European countries and relevant dates
- Filtered for target attributes
- Wrote CSV file for easier access

### **Clean Data Frame:**

| coun                 | try_id               | latitude            | longitude                              | bright_ti4           | b                 | right_ti5       |
|----------------------|----------------------|---------------------|----------------------------------------|----------------------|-------------------|-----------------|
|                      | AUT                  | 47.34311            | 9.62378                                | 328.5                |                   | 290.2           |
|                      | AUT                  | 47.54527            | 9.78854                                | 331.0                |                   | 287.0           |
|                      | AUT                  | 47.54559            | 9.78841                                | 329.3                |                   | 286.5           |
|                      | AUT                  | 48.27758            | 14.34202                               | 331.8                |                   | 276.3           |
|                      | AUT                  | 48.27502            | 14.33618                               | 300.4                |                   | 279.2           |
|                      |                      |                     |                                        |                      |                   |                 |
| scan                 | track                | confidence          | acq_date                               | acq_time             | frp               | daynight        |
| <b>scan</b> 0.53     | track<br>0.42        | <b>confidence</b> n | acq_date<br>2020-03-01                 | acq_time<br>1230     | <b>frp</b> 4.4    | <b>daynight</b> |
|                      |                      |                     | _                                      |                      |                   | , ,             |
| 0.53                 | 0.42                 | n                   | 2020-03-01                             | 1230                 | 4.4               | D               |
| 0.53                 | 0.42                 | n<br>n              | 2020-03-01<br>2020-03-01               | 1230<br>1230         | 4.4<br>5.0        | D<br>D          |
| 0.53<br>0.54<br>0.54 | 0.42<br>0.42<br>0.42 | n<br>n<br>n         | 2020-03-01<br>2020-03-01<br>2020-03-01 | 1230<br>1230<br>1230 | 4.4<br>5.0<br>3.7 | D<br>D<br>D     |

### Visualizations

### Correlation Heatmap of Numerical Attr.



### Heatmap of I-5 Channel Brightness



### Linear Regression

Model 1

**Objective:** Predict FRP based on bright\_ti4.

#### **Results:**

- $R^2 = 0.171$ , MSE = 0.829.
- Issues with outliers and assumption violations.

**Visualization:** Scatter plot of FRP vs. bright\_ti4 (before and after removing outliers).



Model 2

### Polynomial Regression

**Objective:** Predict bright\_ti5 using date, latitude, longitude, scan, and track.

#### **Results:**

- R<sup>2</sup> = 0.374, MSE = 0.626 (improved from linear regression).
- Cross-validation: Consistent results, minimal overfitting.

**Visualization:** Predicted vs. actual bright\_ti5 values.



### Classification: Logistic Regression

Model 3

**Objective:** Predict fire intensity (standard or high) given date, latitude, longitude, scan, and track as features

#### **Results:**

- Logistic Regression without Balanced Class Weighting:
  - Accuracy: 0.969 Precision: 0.000 Recall:
    0.000 F1-Score: 0.000
  - o AUC-ROC: 0.691
- Logistic Regression with Balanced Class Weighting:
  - Accuracy: 0.736 Precision: 0.060 Recall:
    0.514 F1-Score: 0.107 AUC-ROC:
    0.689

Visualization: Confusion matrices



### Limitations and Future Directions

#### Limitations

- Our 'best' model only explained 37% of the variance
- Limitations of our dataset and the FIRMS API

### Future Directions

- Include additional variables such as weather patterns
- Test with a new region such as the U.S.
- Explore advanced algorithms
  (e.g., neural networks)