Machine Learning

Lesson 1

Machine Learning

Supervised Learning

Regression

Classification

Supervised Learning

X	Υ
1	2
3	4
3	5
6	7
7	7
3	4

Supervised Learning

x1	x2
1	2
3	4
3	2
6	3
7	4
3	1

Label	
0	
0	
X	
X	
X	
0	

Dataset

Supervised Machine Learning Algorithms

- Nearest Neighbor
- Naive Bayes
- Decision Trees
- Linear Regression
- Logistic Regression
- Support Vector Machines (SVM)
- Neural Networks

Linear Regression

Linear Regression

$$MSE \, = \, rac{1}{N} \sum_{i=1}^{N} \left(\hat{y_i} \, - y \,
ight)^2 \, .$$

$$L(heta,\,b)\,=\,rac{1}{N}((x heta\,+\,b)\,-\,y)^2$$

$$rac{\mathrm{d}L}{\mathrm{d} heta} = rac{1}{N} x^T ((x heta + b) \, - \, y)$$

$$rac{\mathrm{d}L}{\mathrm{d}b} = rac{1}{N}((x heta + b) \, - \, y)$$

Linear Regression: Training

Usually you keep training until the cost converges. If you were to plot the number of iterations versus the cost, you should see something like this:

You initialize your parameter θ , that you can use in your equation, you then compute the gradient that you will use to update θ , and then calculate the cost. You keep doing so until good enough.

Linear Regression: Gradient Descent

$$\min_{\theta} J(\theta)$$

$$heta \leftarrow heta - lpha rac{\mathrm{d}}{\mathrm{d} heta} J(heta)$$

$$rac{\mathrm{d}}{\mathrm{d} heta}J(heta) \,=\, (h(x,\, heta)\,-\,y)\,x$$

$$heta \leftarrow heta - lpha(h(x,\, heta)\,-\,y)x$$

 $\alpha \rightarrow$ learning rate