The ARM architecture

Matteo SONZA REORDA
Dip. Automatica e Informatica
Politecnico di Torino

The ARM architecture

 Several ARM processors have been developed and sold.

Core	Architecture
ARM1	v1
ARM2	v2
ARM2aS, ARM3	v2a
ARM6, ARM600, ARM610	v3
ARM7, ARM700, ARM710	v3
ARM7TDMI, ARM710T, ARM720T, ARM740T	v4T
StrongARM, ARM8, ARM810	v4
ARM9TDMI, ARM920T, ARM940T	v4T
ARM9ES	v5TE
ARM10TDMI, ARM1020E	v5TE

3-stage ARM

- This architecture was the one originally developed by Acorn, and employed up to ARM7
- The 3 stages are
 - Fetch
 - Decode
 - Execute
- Some instructions (e.g., those accessing the memory) require more than 3 clock cycles to be executed

Matteo SONZA REORDA

Politecnico di Torino

3

Fetch one instruction from memory

- This architected developed by
- and employed up to ARM7
- The 3 stage are
 - Fetch
 - Decode
 - Execute
- Some instructions (e.g., those accessing the memory) require more than 3 clock cycles to be executed

Decode one instruction and generates the required control signals

• This arch Sign developed by A

a employed up to ARM7

- The 3 stages
 - Fetch
 - Decode
 - Execute
- Some instructions (e.g., those accessing the memory) require more than 3 clock cycles to be executed

Matteo SONZA REORDA

Politecnico di Torino

5

3-stage ARM

- This architecture was the one originally developed by Acorn, and employed up to ARM7
- The 3 stages are
 - Fetch
 - Decode
 - Execute §
- Some instruments in the instrument in the instruments in the instrument in the instruments in the instrument in the instruments in the instruments in the instruments in th

Execute one instruction:

- The operands are read from registers
- One operand is possibly shifted
- The ALU generates the result
- The result is written in the destination register

This archit developed b

The 3 stages

- Fetch
- Decode
- Execute

For example, LOAD and STORE instructions require 2 clock cycle for execution (one for address computation, the other for memory access)

 Some instructions (e.g., those accessing the memory) require more than 3 clock cycles to be executed

Matteo SONZA REORDA

Politecnico di Torino

7

Pipeline behavior

The STR instruction requires:

- 1 clock cycle to be fetched
- 1 clock cycle to be decoded
- 1 clock cycle to compute the memory address
- 1 clock cycle to access the memory.

Branch instructions

- · They always flush and refill the pipeline
- No delayed branch mechanism is supported

control 숙 A[31:0] ∠ incremente register bank instruction decode multiply register & control data out register

Architecture

Matteo SONZA REORDA

Politecnico di Torino

Matteo SONZA REORDA

13

PC access

 If an instruction accesses the PC during the Execute stage, it reads a value which is incremented by 8 with respect to its proper address

Matteo SONZA REORDA

Politecnico di Torino

15

Data processing reg-reg instruction execution

- · Instruction i is executed:
 - Two operands are read from registers Rn and Rm
 - One operand is possibly rotated
 - The ALU generates the result
 - The result is written to register Rd
 - A further instruction is fetched from memory
 - The PC is updated

Data processing reg-imm instruction execution

- Instruction i is executed:
 - One operand is read from register Rn, the other is an immediate
 - One operand is possibly rotated
 - The ALU generates the result
 - The result is written to register Rd
 - A further instruction is fetched from memory
 - The PC is updated

(b) r egister - immediate operations

Matteo SONZA REORDA

Politecnico di Torino

Data transfer instructions

- They require two clock cycles for the Execute stage
- In the first, the address is computed using one register and one immediate

Data transfer instructions

- In the second clock cycle:
 - The memory is accessed
 - The destination register is updated (LDR instruction)
 - The index register is updated, if required by auto-indexing

Matteo SONZA REORDA

Politecnico di Torino

(b) 2nd cycle - stor e data & auto-index

Branch instructions

- They first compute the target address, adding an immediate (shifted by 2 positions) to the PC
- Then, the pipeline is flushed and refilled

Branch and link instructions

 In this case, a further clock cycle is required (while the pipeline is refilled) to save the return address in r14

Matteo SONZA REORDA

Politecnico di Torino

Branch and link instructions

 They require a third clock cycle to adjust the saved address, so that it holds the address of the following instruction

Instruction speed

- Most instructions do require 3 clock cycles to execute
- Some instructions do require additional clock cycles
- The additional clock cycles may depend on specific values of the operands

Matteo SONZA REORDA

Politecnico di Torino

23

Instruction speed

Instruction	Cycle count				Additional		
Data Processing	1S				+ 1I	for SHIFT(Rs)	
					+1S + 1N	if R15 written	
MSR, MRS	1S						
LDR	1S	+ 1N	+ 1I		+1S + 1N	if R15 loaded	
STR		2N					
LDM	nS	+ 1N	+ 1I		+ 1S + 1N	if R15 loaded	
STM	(n-1)S	+ 2N					
SWP	1S	+ 2N	+ 1I				
B,BL	2S	+ 1N					
SWI, trap	28	+ 1N					
MUL,MLA	1S	+	mI				
CDP	1S	+	bI				
LDC,STC	(n-1)S	+ 2N	+ bI				
MCR	1N	+	bI	+ 1C			
MRC	1S	+	(b+1)I	+ 1C			

5-stage ARM

- The new architecture was adopted starting from ARM9
- It uses separate data and code memories (i.e., caches)
- The 5 stages are
 - Fetch
 - Decode
 - Execute
 - Buffer/data
 - Write-back
- The higher number of stages allows for a faster clock

Matteo SONZA REORDA

Politecnico di Torino

25

Fetch one instruction from memory

- The new archine ARM9
- ata and code memories (i.e.,
- It uses separate caches)
- The 5 stales are
 - Fetch
 - Decode
 - Execute
 - Buffer/data
 - Write-back
- The higher number of stages allows for a faster clock

Decode the instruction and read the operands (up to 3) from registers

- The new ARM9
- It uses separate caches)

and code memories (i.e.,

- The 5 stage
 - Fetch
 - Decode
 - Execute
 - Buffer/data
 - Write-back
- The higher number of stages allows for a faster clock

Matteo SONZA REORDA

Politecnico di Torino

27

- The new ARM9
- It uses se caches)
- One operand is possibly shifted
- The ALU generates the result (or the address if a load/store instruction is considered)
- The 5 stages ar
 - Fetch
 - Decode
 - Executé
 - Buffer/data
 - Write-back
- The higher number of stages allows for a faster clock

5-stage ARM

The new ARM9

Memory is accessed.
Only load/store instructions perform useful operations in this stage.

It uses s caches)

- The 5 stages ar
 - Fetch
 - Decode
 - Execute /
 - Buffer/data
 - Write-back
- The higher number of stages allows for a faster clock

Matteo SONZA REORDA

Politecnico di Torino

29

5-stage ARM

• The new a MRM9 Results (including values from memory) are written to the result register.

- It uses sepa caches)
- The 5 stages ar
 - Fetch
 - Decode
 - Execute
 - Buffer/da/a
 - Write-back
- The higher number of stages allows for a faster clock

Data dependencies

- Their effect is limited by proper data forwarding logic
- When a data hazard can not be avoided, the processor is stalled

PC value

 Thanks to suitable connections, each instruction still reads a value from r15 which is incremented by 8 with respect to its address

Matteo SONZA REORDA

Politecnico di Torino

33

Program compatibility

- 5-stage processors can execute the same binary code executed by 3-stage processors
- The same code can cause different stall situations in the 3-stage or 5-stage architectures

The ARM coprocessors

- The ARM instruction set can be extended by adding external coprocessors (up to 16)
- If coprocessors are absent, the corresponding instructions can be emulated in software through undefined instruction traps

Matteo SONZA REORDA

Politecnico di Torino

35

Coprocessor architecture

- Each coprocessor
 - May have up to 16 registers of any size
 - Has a load-store architecture, including instructions to move data
 - · From one internal register to another
 - From one internal register to a ARM one, and viceversa
 - From one internal register to memory, and viceversa

The ARM7TDMI coprocessor

- It is connected to the same data bus of the processor
- It continuously monitors the content of the bus, and fetches every instruction
- It contains an internal pipeline that mimics that in the processor

Matteo SONZA REORDA

Politecnico di Torino

37

Processor-coprocessor interface

Processor-coprocessor interface

Processor-coprocessor interface

Processor-coprocessor handshaking

- Once an instruction has entered the processor and coprocessor pipelines, one out of the four following possibilities may arise:
 - The ARM may decide not to execute it (e.g., because it is conditioned, and the condition was false). cpi is not activated. Both the processor and the coprocessor will discard the instruction.

Processor-coprocessor handshaking

- Once an instruction has entered the processor and coprocessor pipelines, one out of the four following possibilities may arise:
 - The ARM may decide to execute it (cpi is activated), but the corresponding coprocessor does not exist (cpa remains active). The undefined instruction trap is triggered, and the instruction is possibly emulated.

Matteo SONZA REORDA

Politecnico di Torino

43

Processor-coprocessor handshaking

- Once an instruction has entered the processor and coprocessor pipelines, one out of the four following possibilities may arise:
 - The ARM decides to execute it (cpi is activated), the corresponding coprocessor exists (cpa is deactived), but it is not ready to start execution (cpb is active). The processor starts waiting, stalling the instruction stream. Only interrupt requests are served.

Processor-coprocessor handshaking

- Once an instruction has entered the processor and coprocessor pipelines, one out of the four following possibilities may arise:
 - The ARM decides to execute it (cpi is activated), the corresponding coprocessor exists (cpa is deactived), and it is ready to immediately start execution (cpb is deactived). The instruction starts its execution.

Matteo SONZA REORDA

Politecnico di Torino

45

Data transfers

 Since coprocessors are not connected to the address bus, when memory must be accessed by a coprocessor instruction, the processor generates addresses.