
MONTE CARLO EXPERIMENT # ************************************	6.000
***********	*********

Values of the structural parameters	s
Fixed cost firm 1	= -1.900
Fixed cost firm 2 Fixed cost firm 3	
Fixed cost firm 4	
Fixed cost firm 5	= -1.500
Parameter of market size (theta_rs)	
Parameter of competition effect (theta_rn) Entry cost (theta ec)	
Discount factor	
Std. Dev. epsilons	= 1.000
BEST RESPONSE MAPPING ITERATIONS Best response mapping iteration Convergence criterion =	= 1.000 1000.
Best response mapping iteration Convergence criterion =	= 2.000
Best response mapping iteration Convergence criterion =	= 3.000 0.4804
Best response mapping iteration Convergence criterion =	= 4.000 0.2636
Best response mapping iteration Convergence criterion =	= 5.000 0.2050
Best response mapping iteration Convergence criterion =	= 6.000 0.1502
Best response mapping iteration Convergence criterion = (= 7.000 0.09862
Best response mapping iteration Convergence criterion = (= 8.000 0.06620
Best response mapping iteration Pa	= 9.000 age 1

Convergence criterion	= 0.04176	
Best response mapping Convergence criterion		10.00
Best response mapping Convergence criterion		11.00
Best response mapping Convergence criterion		12.00
Best response mapping Convergence criterion		13.00
Best response mapping Convergence criterion		14.00
Best response mapping Convergence criterion		15.00
Best response mapping Convergence criterion		16.00
Best response mapping Convergence criterion		17.00
Best response mapping Convergence criterion		18.00
Best response mapping Convergence criterion		19.00
Best response mapping Convergence criterion		20.00
Best response mapping Convergence criterion		21.00
Best response mapping Convergence criterion		22.00
Best response mapping Convergence criterion		23.00
Best response mapping Convergence criterion		24.00
Best response mapping Convergence criterion		25.00
Best response mapping Convergence criterion		26.00

CONVERGENCE	ACHIEVED AFTER	27.00 BE	ST RESPONSE ITERAT	IONS
	PROBABILITIES			
0.01332	0.01659	0.02123	0.02800	
0.03811 0.007547	0.009175	0.01143	0.01470	
0.6912 0.008122	0.009939	0.01248	0.6197	
0.02182 0.006151	0.007434	0.009203	0.4771	
0.5856 0.008700	0.01070	0.5503	0.01766	
0.02388 0.006366	0.007712	0.4081	0.01227	
0.6065 0.006710	0.008170	0.4317	0.5252	
0.01767 0.005466	0.006590	0.3543	0.4298	
0.5310 0.009242	0.4869	0.01448	0.01897	
0.02571 0.006542	0.3514	0.009872	0.01267	
0.6222 0.006925	0.3717	0.01058	0.5421	
0.01839 0.005572	0.3031	0.008316	0.4383	
0.5413 0.007274 0.01966	0.3900	0.4688	0.01458	
0.01966 0.005732 0.5581	0.3115	0.3717	0.01100	
0.5561 0.005987 0.01563	0.3252	0.3897	0.4757	
0.01363 0.005046 0.4971	0.2768	0.3299	0.4009	
0.4307 0.02729	0.01205	0.01532	0.02012	
0.02729 0.3049 0.6341	0.008120	0.01011	0.01299	
0.3222 0.01895	0.008674	0.01088	0.5552	
0.2620 0.5490	0.006833	0.008455	0.4448	
0.3383	0.009185	0.4820	0.01508	
0.2691 0.5666	0.007053	0.3776	0.01121	
0.2805 0.01598	0.007415	0.3966	0.4842	
0.2388 0.5031	0.006156	0.3338	0.4058	

Page 3

0.3521 0.02150	0.4180	0.01217	0.01590
0.2748 0.5796	0.3233	0.008981	0.01152
0.2873 0.01653	0.3392	0.009536	0.4975
0.2425 0.5120	0.2847	0.007747	0.4130
0.2981 0.01748	0.3530	0.4250	0.01299
0.2481 0.5265	0.2916	0.3485	0.01020
0.2569 0.01439	0.3030	0.3635	0.4446
0.2239	0.2626	0.3132	0.3812
0.04891	0.06527	0.08925	0.1248
0.1767 0.02636	0.03404	0.04501	0.06103
0.9327 0.02691	0.03498	0.04665	0.9041
0.08948 0.01795	0.02284	0.02978	0.7979
0.8613 0.02788	0.03649	0.8666	0.06770
0.09533 0.01858	0.02374	0.7384	0.04188
0.8724 0.01906	0.02450	0.7507	0.8237
0.06123 0.01440	0.01821	0.6484	0.7301
0.8071 0.02918	0.8207	0.05197	0.07210
0.1018 0.01928	0.6752	0.03250	0.04391
0.8823 0.01979	0.6864	0.03382	0.8364
0.06445 0.01481 0.8164	0.5796	0.02438	0.7408
0.02049 0.06840	0.7007	0.7799	0.04869
0.06840 0.01524 0.8279	0.5910	0.6719	0.03399
0.8279 0.01564 0.04949	0.6016	0.6844	0.7672
0.01255	0.5218	0.6005	0.6853
0.7694 0.7681	0.04061	0.05516	0.07677
0.1085 0.6118 0.8907	0.02571	0.03389	0.04587
0.6213	0.02656	0.03529 Page 4	0.8475
		- ~5 -	

0.06749	0.01928	0.02510	0.7500
0.8241 0.6345	0.02770	0.7934	0.05102
0.07176 0.5253	0.01995	0.6820	0.03509
0.8357	0.02059	0.6948	0.7768
0.05121 0.4585 0.7761	0.01615	0.6081	0.6929
0.6497 0.07611	0.7313	0.03903	0.05397
0.5360 0.8457	0.6128	0.02707	0.03652
0.5452 0.05353	0.6241	0.02817	0.7891
0.4661 0.7850	0.5375	0.02151	0.7026
0.5566 0.05657	0.6375	0.7225	0.04032
0.4746 0.7964	0.5475	0.6290	0.02984
0.4826 0.04335	0.5576	0.6413	0.7286
0.4232 0.7428	0.4907	0.5685	0.6547
0.7428 0.1560 0.4384	0.2060	0.2705	0.3495
0.1209	0.1589	0.2084	0.2706
0.1172 0.3384	0.1544	0.2031	0.9731
0.08788	0.1151	0.1512	0.9570
0.1149 0.3357	0.1516	0.9622	0.2617
0.08694	0.1141	0.9411	0.1971
0.08519	0.1120	0.9397	0.9560
0.06445	0.08422	0.9111	0.9341
0.1138 0.3356	0.9473	0.1992	0.2612
0.08687	0.9202	0.1507	0.1981
0.08514 0.2550	0.9181	0.1484	0.9563
0.06486 0.9523	0.8824	0.1118	0.9351
0.08428 0.2551	0.9172	0.9395	0.1953

Page 5

0.06472 0.9527	0.8823	0.9123	0.1482
0.06402	0.8808	0.9114	0.9351
0.1948	0.8400	0.8786	0.9094
0.9333 0.9274	0.1510	0.2001	0.2628
0.3376 0.8935	0.1154	0.1524	0.2004
0.9691 0.8907	0.1133	0.1500	0.9571
0.2582 0.8474	0.08616	0.1136	0.9364
0.9533	0.1124	0.9405	0.1977
0.2583 0.8469	0.08612	0.9140	0.1506
0.9537 0.8448	0.08531	0.9131	0.9364
0.1980 0.7968	0.06647	0.8810	0.9114
0.9348	0.9184	0.1499	0.1989
0.2602 0.8478	0.8853	0.1149	0.1523
0.9545 0.8457	0.8838	0.1141	0.9374
0.2004 0.7988	0.8448	0.08874	0.9130
0.9361 0.8451	0.8837	0.9144	0.1526
0.2018 0.7992	0.8454	0.8836	0.1188
0.9370 0.7981	0.8448	0.8834	0.9141
0.1585 0.7506	0.8036	0.8493	0.8869
0.9165 0.4218	0.4892	0.5539	0.6132
0.6655	0.4601	0.5242	0.5841
0.9914	0.4552	0.5194	0.9893
0.6338	0.4243	0.4876	0.9877
0.9899	0.4499	0.9865	0.5748
0.6294 0.3558	0.4190	0.9845	0.5431
0.9897 0.3511	0.4140	0.9842	0.9872
0.5947 0.3214	0.3816	0.9817	0.9853
		Page 6	

Page 6

0 0000			
0.9880 0.3791	0.9827	0.5090	0.5699
0.6250 0.3507	0.9802	0.4773	0.5383
0.9895 0.3461	0.9797	0.4723	0.9870
0.5903 0.3168	0.9766	0.4385	0.9850
0.9878 0.3411	0.9793	0.9835	0.5287
0.5858 0.3121	0.9761	0.9810	0.4946
0.9875 0.3076	0.9756	0.9806	0.9844
0.5480 0.2782	0.9717	0.9775	0.9819
0.9853 0.9776	0.4394	0.5042	0.5654
0.6209 0.9744	0.4091	0.4727	0.5340
0.9894	0.4042	0.4678	0.9867
0.5863 0.9699	0.3725	0.4343	0.9847
0.9876 0.9732	0.3991	0.9832	0.5245
0.5819 0.9692	0.3676	0.9807	0.4906
0.9873 0.9685	0.3628	0.9803	0.9841
0.5443 0.9636	0.3306	0.9771	0.9816
0.9851 0.9726	0.9784	0.4578	0.5198
0.5776 0.9685	0.9752	0.4248	0.4862
0.9871 0.9679	0.9747	0.4200	0.9839
0.5402 0.9628	0.9707	0.3856	0.9813
0.9849 0.9672	0.9742	0.9795	0.4768
0.5358 0.9621	0.9701	0.9763	0.4415
0.9846 0.9613	0.9695	0.9758	0.9806
0.4962 0.9550	0.9645	0.9718	0.9775
0.9819 0.7318	0.7649	0.7933	0.8176
0.8385 0.7235	0.7573	0.7864	0.8113
0.9965		Da 7	

Page 7

0.7222	0.7562	0.7854	0.9960
0.8320 0.7135	0.7482	0.7781	0.9958
0.9963 0.7208	0.7549	0.9953	0.8094
0.8311 0.7120	0.7469	0.9951	0.8028
0.9963 0.7107	0.7457	0.9951	0.9957
0.8243 0.7015	0.7372	0.9948	0.9955
0.9961 0.7191	0.9945	0.7829	0.8083
0.8301 0.7102	0.9942	0.7755	0.8016
0.9963	0.9942	0.7745	0.9957
0.8232	0.9939	0.7667	0.9955
0.9961 0.7074	0.9941	0.9950	0.7995
0.8222	0.9939	0.9948	0.7924
0.9961 0.6966	0.9938	0.9947	0.9955
0.8149	0.9935	0.9945	0.9952
0.9959	0.7516	0.7813	0.8069
0.8288	0.7434	0.7739	0.8001
0.9963 0.9931	0.7423	0.7728	0.9957
0.8219	0.7336	0.7649	0.9955
0.9961	0.7409	0.9949	0.7981
0.8209	0.7321	0.9947	0.7908
0.9960 0.9927	0.7309	0.9947	0.9954
0.8135 0.9923	0.7216	0.9944	0.9952
0.9958	0.9940	0.7701	0.7968
0.8198 0.9926	0.9938	0.7621	0.7895
0.9960 0.9926	0.9937	0.7609	0.9954
0.8123 0.9922 0.9958	0.9934	0.7524	0.9952
0.9958	0.9937	0.9946	0.7873
		Page 8	

Page 8

0.8	922 0	.9934	0.9943	0.7795	
0.99	921 0	.9933	0.9943	0.9951	
0.80 0.99 0.99	917 0	.9930	0.9940	0.9948	
DESCRIPTIVE BASED ON TABLE 2 OF	E STATISTICS FRO 5.000e+004 (THE PAPER AGUII	OM THE EQUILIBRI OBSERVATIONS RREGABIRIA AND M	UM IIRA (2007)	**************************************	
(1)	Average number	of active firms	=		
	Std. Dev. numbe	er of firms		1.900	
		on N[t-1]	=		
(4)	Average number	of entrants	=	0.2192	
	Average number	of exits			
(6)		r (in # of firms			
		tries and exits	=		
(8) 0.4! 0.5 0.5! 0.6:	557 030 539 L09	being active			
MONTE (CARLO EXPERIMENT	Г # 6.	000	******	
Replicat: (a) (b.1	Simulations	1.000 of x's and a's of initial CCPs	(Non-Param	metric)	

0.8112

(b.2)

(c.1)

(c.2)

(d.1)

(d.2)

Page 9

NPL algorithm using Logit estimates as initial CCPs

Estimation of initial CCPs (Completely Random)

NPL algorithm using frequency estimates as initial CCPs Estimation of initial CCPs (Semi-Parametric: Logit)

NPL algorithm using U(0,1) random draws as initial CCPs

```
NPL algorithm using true values as initial CCPs
        (e)
    Replication =
                        2.00000
        (a)
               Simulations of x's and a's
               Estimation of initial CCPs (Non-Parametric)
        (b.1)
        (b.2)
               NPL algorithm using frequency estimates as initial CCPs
               Estimation of initial CCPs (Semi-Parametric: Logit)
        (c.1)
               NPL algorithm using Logit estimates as initial CCPs
        (c.2)
               Estimation of initial CCPs (Completely Random)
        (d.1)
               NPL algorithm using U(0,1) random draws as initial CCPs
        (d.2)
               NPL algorithm using true values as initial CCPs
        (e)
    Replication =
                        999.000
              Simulations of x's and a's
        (a)
        (b.1) Estimation of initial CCPs (Non-Parametric)
        (b.2)
               NPL algorithm using frequency estimates as initial CCPs
               Estimation of initial CCPs (Semi-Parametric: Logit)
        (c.1)
               NPL algorithm using Logit estimates as initial CCPs
        (c.2)
               Estimation of initial CCPs (Completely Random)
NPL algorithm using U(0,1) random draws as initial CCPs
        (d.1)
        (d.2)
        (e)
               NPL algorithm using true values as initial CCPs
    Replication =
                        1000.00
               Simulations of x's and a's
        (a)
               Estimation of initial CCPs (Non-Parametric)
        (b.1)
               NPL algorithm using frequency estimates as initial CCPs
        (b.2)
               Estimation of initial CCPs (Semi-Parametric: Logit)
        (c.1)
               NPL algorithm using Logit estimates as initial CCPs
        (c.2)
        (d.1)
               Estimation of initial CCPs (Completely Random)
        (d.2)
               NPL algorithm using U(0,1) random draws as initial CCPs
               NPL algorithm using true values as initial CCPs
        (e)
         Number of Re-drawings due to Multicollinearity =
                                                        0.00000
************************
                                 6.00000
  MONTE CARLO EXPERIMENT #
  EMPIRICAL MEANS AND STANDARD ERRORS
  TABLE 4 OF THE PAPER AGUIRREGABIRIA AND MIRA (2007)
*******************************
theta_fc_1 theta_rs theta_rn theta_ec
TRUE VALUES
                      -1.90000
                                      1.00000
                                                 1.00000
                                                                       4.00000
                      -1.90730
                                      1.00482
  MEAN 2step-True
                                                        1.00576
                                                                       4.04644
MEDIAN 2step-True -1.90816
                                        1.00543
                                                 1.00773 4.03833
                                  Page 10
```

S.E. 2step-True	0.202867	0.127989	0.243496	0.194297
MEAN 2step-Freq	-0.585756	0.341525	0.215783	2.73151
MEDIAN 2step-Freq	-0.579550	0.333995	0.214711	2.73423
S.E. 2step-Freq	0.236096	0.126734	0.232386	0.215516
MEAN NPL-Freq	-1.92608	1.01231	1.01128	4.03953
MEDIAN NPL-Freq	-1.92452	1.00866	1.00741	4.03321
S.E. NPL-Freq	0.234079	0.157854	0.291645	0.197190
MEAN 2step-Logit	-1.90372	0.998974	0.995096	4.04451
MEDIAN 2step-Logit	-1.90101	0.994717	0.993452	4.04019
S.E. 2step-Logit	0.234769	0.153624	0.285033	0.198395
MEAN NPL-Logit	-1.92598	1.01237	1.01151	4.03965
MEDIAN NPL-Logit	-1.92452	1.00866	1.00741	4.03311
-	0.233891			
MEAN 2step-Random	-1.90372	0.998974		
		Page 11		

MEDIAN 2step-Rando	-1.90101	0.994717	0.993452	4.04019
S.E. 2step-Random	0.234769	0.153624	0.285033	0.198395
MEAN NPL-Random	-1.92603	1.01240	1.01153	4.03964
MEDIAN NPL-Random	-1.92452	1.00866	1.00741	4.03311
S.E. NPL-Random	0.233997	0.158070	0.292274	0.197262
**************************************	IMENT # 6. SQUARE ERRORS QUARE-ROOT MSE OF ' PER AGUIRREGABIRIA	00000 THE 2-STEP PML US AND MIRA (2007)	ING THE TRUE CCPs	
	theta_fc_1	 theta_rs	theta_rn	theta_ec
SQ-MSE 2-step-TRUE				
RATIO: 2step-Freq	6.57780	5.23547	3.35815	6.44078
RATIO: NPL-Freq	1.16024	1.23620	1.19830	1.00672
RATIO: 2step-Logit	1.15666	1.19946	1.17043	1.01781
RATIO: NPL-Logit	1.15927	1.23736	1.20058	1.00720

RATIO:	2step-Rando	10.8067	2.32494	4.57799	1.22216
RATIO:	NPL-Random	1.15981	1.23794	1.20092	1.00719