

TCP Reno

TCP Vegas:

Dijkstra Algorithm at node u:

```
1: Input: c_{ij} for all (i, j) \in \mathcal{L}.
2: Set K = {u},
 3: for i∈ N do
       Set \omega_{ui} = c_{ui} if (u, i) \in \mathcal{L}, i.e., node i is a neighbor of node u, and
       \omega_{ui} = \infty otherwise.
5:
       Set p_{ui} = u if (u, i) \in \mathcal{L}, i.e., node i is a neighbor of node u, and
        p_{ui} = -1 otherwise, where -1 indicates that the previous hop is
       unknown.
 6: end for
 7: while K \neq N do
       Pind node i^* such that i^* \in \operatorname{argmin}_{i \notin \mathcal{K}} \omega_{ui}. Ties are broken arbitrarily.
 9:
        Set K = KU[i*].
10:
        for i & K do
11:
           if \omega_{ui} > \omega_{ui} + c_{i+i} then
12:
              Set \omega_{ui} = \omega_{ui} + c_{i*i} and p_{ui} = i*.
13:
           end if
14:
        end for
```

Example (of a bidirectional graph):

15: end while

Example of table at node a:

Iteration	K	(ω_{ab},p_{ab})	(ω_{ac}, p_{ac})	(ω_{ud},p_{ad})	(ω_{ae},p_{ae})	(ω_{af},p_{af})
0	{ <i>a</i> }	(3, a)	$(\infty, -1)$	(2, a)	$(\infty,-1)$	$(\infty, -1)$
1	$\{a,d\}$	(3, a)	$(\infty, -1)$	•	(6, d)	$(\infty, -1)$
2	$\{a,d,b\}$		(5, b)	•	(4, b)	$(\infty, -1)$
3	$\{a,d,b,e\}$		(5, b)		•	(6, e)
4	$\{a,d,b,e,c\}$	•		8 .6 0		(6, e)
5	$\{a,d,b,e,c,f\}$	-				

Bellman-Ford Algorithm at node u:

```
1: for u & N do
 2:
        for i∈ N\{u} do
 3:
          Set \omega_{ni} = c_{ni} if (v, i) \in \mathcal{L}, i.e., node i is a neighbor of node u, and
          \omega_{ui} = \infty otherwise.
 4:
          Set n_{ui} = i if (u, i) \in \mathcal{L}, i.e., node i is a neighbor of node u, and
          n_{\rm mi} = -1 otherwise, where -1 indicates the next hop is unknown.
 5:
        end for
 6: end for
 7: while t \ge 0 do
 8:
        for u e N do
 9:
          Node u sends out its \omega_u = [\omega_{uj}]_{j\in\mathcal{N}} to all its neighbors if \omega_u was
          updated during iteration t-1.
10:
        end for
11:
        for u e N do
12:
           for I & N \ [u] do
13:
             if \omega_{ui} \neq \min_{j \in (u, j) \in \mathcal{L}} (c_{uj} + \omega_{ji}) then
14:
                \omega_{ui} = \min_{j:(u,j) \in \mathcal{L}} (c_{uj} + \omega_{ji})
15:
                nui e argmingilu, fiel (cuj + wii)
16:
              end if
17:
           end for
18:
        end for
19: end while
```

Example (of a bidirectional graph):

Example of seaching for minimal path to node c:

10	eration	(ω_{ac}, n_{ac})	(ω_{bc}, n_{bc})	(ω_{cc}, n_{cc})	(ω_{dc},n_{dc})	(ω_{ec}, n_{ec})	(ω_{fc}, n_{fc})
Initializing: 0	,	(∞,−1)	$(\infty, -1)$	(0, c)	$(\infty, -1)$	$(\infty, -1)$	$(\infty,-1)$
message passing between neighbors: 1		$(\infty, -1)$	(2, c)	(0, c)	$(\infty, -1)$	$(\infty, -1)$	(2,c)
message passing between neighbors: 2		(5, b)	(2, c)	(0,c)	(3, b)	(3,b)	(2, c)

