Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

	Listing of Claims:
1	(Currently amended): In a single data communication channel, a multiple
2	access method comprising steps of:
3	(a) receiving a data sequence to be transmitted, the data sequence comprising
4	plural data symbols;
5	(b) producing a spread signal by modulating a first spreading code onto the data
6	sequence; and
7	(c) transmitting the spread signal to a base station,
.8	wherein the first spreading code spans a period of time which exceeds the time
9	span of a data symbol,
10	wherein steps (a) - (c) are performed in each transmitter among a plurality of
11	transmitters, whereby the base station receives a transmitted spread signal from each of the
12	transmitters,
13	wherein the same first spreading code is used in each of the transmitters,
14	wherein step (c) is performed in each transmitter absent any synchronization with
15	the other transmitters.
1	2. (Previously presented): The method of claim 1 further including
2	performing the steps (a) through (c) for a first plurality of the transmitters, wherein for each of
3	the first transmitters, the step of transmitting includes providing a preamble data sequence and
4.	modulating the preamble data sequence with a first preamble spreading code to produce a spread
5	preamble signal.

- 1 3. (Previously presented): The method of claim 2 further including
 2 performing the steps (a) through (c) for a second plurality of the transmitters, wherein for each of
 3 the second transmitters, the step of transmitting includes providing a second preamble data
 4 sequence and modulating the second preamble data sequence with a second preamble spreading
 5 code to produce a second spread preamble signal.
- 4. (Currently amended): The method of claim 1 further including providing
 a second spreading code, wherein some of the steps (a) through (c) are performed by a second
 plurality of transmitters use the first spreading code and others of the, wherein each of the second
 transmitters use the same second spreading code.
- 1 5. (Previously presented): The method of claim 1 wherein for some of the 2 transmitters a first spreading gain is used and for others of the transmitters a second spreading 3 gain is used.
- 1 6. (Original): The method of claim 1 further including dividing the single communication channel into plural sub-channels and performing steps (a) through (c) for each sub-channel.
- 7. (Previously presented): The method of claim 1 wherein for some of the transmitters the data sequence is received at a first data rate and for others of the transmitters the data sequence is received at a second data rate.
- 1 8. (Previously presented): The method of claim 1 further including receiving transmissions from the base station using paired carrier multiple access signaling.

1	9. (Currently amended): In a single communication channel, a multiple
2	access method comprising:
3	providing a first spreading code to each transmitter among a plurality of
4	transmitters, each transmitter thus having the same spreading code;
5	in each transmitter, receiving a data sequence for transmission;
6	in each transmitter, generating a spread signal by modulating the data sequence
7	with the first spreading code and transmitting the spread signal over the single communication
8	channel to a base station,
9	wherein the first spreading code spans a period of time which exceeds the time
10	span of a data symbol,
11 -	wherein each transmitter transmits its spread signal to the base station
12	asynchronously with respect to the other transmitters.
1	10. (Original): The method of claim 9 wherein the data sequences originate
2	from different users.
1	11. (Previously presented): The method of claim 9 wherein the step of
2	transmitting includes providing a preamble data sequence and modulating the preamble data
3	sequence with a first preamble spreading code to produce plural spread preamble signals.
1	12. (Previously presented): The method of claim 11 wherein some of the
·2	transmitters use the first preamble spreading code and others of the transmitters use a second
3	preamble spreading code.
1	13. (Original): The method of claim 12 wherein the step of modulating
2	includes repeating the first preamble spreading code one or more times.

9

span of a data symbol.

14. (Currently amended): The method of claim 9 further including providing 1 2 a second spreading code to each transmitter among a plurality of second transmitters and, for some of the transmitters, generating a second spread signal by modulating the a data sequence 3 with the second spreading code and transmitting the second spread signal. 4 1 15. (Original): The method of claim 14 wherein the first spreading code has a 2 first spreading gain and the second spreading code has a second spreading gain. 1 16. (Original): The method of claim 14 further including dividing the single 2 communication channel into at least first and second sub-channels and transmitting the first 3 spread signal over the first sub-channel and the second spread signal over the second sub-4 channel. 17. (Previously presented): The method of claim 9 wherein first transmitters 1 2 receive first data sequences having a first data rate and second transmitters receive second data 3 sequences having a second data rate. 1 18. (Previously presented): The method of claim 9 further including receiving 2 transmissions from the base station using paired carrier multiple access signaling. 19. 1 (Previously presented): In a single data communication channel, a method 2 for providing multiple access to the channel comprising: 3 providing plural transmitters; 4 providing an identical first spreading code in each of the transmitters; and 5 in each transmitter: receiving a data sequence, spreading the data sequence using 6 the first spreading code to produce a spread signal, and transmitting the spread signal to a base 7 station, 8 wherein the first spreading code spans a period of time which exceeds the time

wherein each transmitter transmits its spread signal to the base station asynchronously with respect to other transmitters.

- 1 20. (Original): The method of claim 19 wherein the step of transmitting
 2 includes: providing a preamble data sequence; modulating the preamble data sequence with a
 3 first preamble spreading code in some of the transmitters to produce a spread preamble signal;
 4 and transmitting the spread preamble signal.
- 1 21. (Original): The method of claim 20 wherein the step of modulating the 2 preamble data sequence in others of the transmitters uses a second preamble spreading code.
- 1 · Coriginal): The method 19 further including:
- 2 providing plural additional transmitters;
- 3 providing an identical second spreading code in each of the additional
- 4 transmitters; and
- in each of the additional transmitters: receiving a data sequence, spreading the
 data sequence using the second spreading code to produce a spread signal, and transmitting the
 spread signal.
- 1 23. (Original): The method of claim 22 wherein the first spreading code has a 2 first spreading gain and the second spreading code has a second spreading gain.
- 1 24. (Original): The method of claim 19 wherein the step of receiving a data 2 sequence in one of the transmitters includes receiving the data sequence at a first data rate, and 3 the step of receiving a data sequence in another of the transmitters includes receiving the data
- 4 sequence at a second data rate.

1	. 25. (Original): The method 19 further including:
2	dividing the single communication channel into at least two sub-channels;
3	providing plural additional transmitters;
4	providing an identical second spreading code in each of the additional
5	transmitters; and
6	in each of the additional transmitters: receiving a data sequence, spreading the
7	data sequence using the second spreading code to produce a spread signal, and transmitting the
8	spread signal over one of the sub-channels.
1	26. (Previously presented): The method of claim 19 further including
2	receiving transmissions from the base station using paired carrier multiple access signaling.
1	27. (Currently amended): In a single data communication channel, a multiple
2	access method comprising steps of:
3	(a) receiving a data sequence to be transmitted, the data sequence comprising
4	plural data symbols;
5	(b) producing a spread signal by modulating a first spreading code onto the data
6	sequence; and
7	(c) transmitting the spread signal to a base station,
8	wherein the first spreading code does not repeat during the step of modulating the
9	data sequence,
10	wherein steps (a) - (c) are performed in each transmitter among a plurality of
11	transmitters, whereby the receiver receives a transmitted spread signal from each of the
12	transmitters,
13	wherein the same first spreading code is used among the transmitters,
14	wherein the step of transmitting is performed in each transmitter absent any
15	synchronization with the other transmitters.

1

2

3

4

- 1 28. (Original): The method of claim 27 wherein the data sequence spans a 2 period of time that does not exceed a value T and the first spreading code spans a period of time 3 exceeding T.
- 1 29. (Previously presented): The method of claim 27 further including 2 performing the steps (a) through (c) for a first plurality of the transmitters wherein for each of the 3 first transmitters, the step of transmitting includes providing a preamble data sequence and 4 modulating the preamble data sequence with a first preamble spreading code to produce a spread 5 preamble signal.
- 1 30. (Previously presented): The method of claim 29 further including
 2 performing the steps (a) through (c) for a second plurality of the transmitters wherein for each of
 3 the second transmitters, the step of transmitting includes providing a second preamble data
 4 sequence and modulating the second preamble data sequence with a second preamble spreading
 5 code to produce a second spread preamble signal.
 - 31. (Currently amended): The method of claim 27 further including providing a second spreading code to be used by each transmitter among a plurality of second transmitters, wherein some of the transmitters use the first spreading code and others of the transmissions use the second spreading code.
- 1 32. (Previously presented): The method of claim 27 wherein for some of the transmitters a first spreading gain is used and for others of the transmitters a second spreading gain is used.
- 1 33. (Original): The method of claim 27 further including dividing the single communication channel into plural sub-channels and performing steps (a) through (c) for each sub-channel.

34. (Previously presented): The method of claim 27 wherein for some of the 1 2 transmitters the data sequence is received at a first data rate and for others of the transmitters the 3 data sequence is received at a second data rate. (Previously presented): The method of claim 27 further including 35. 1 2 receiving transmissions from the base station using paired carrier multiple access signaling. 1 36. (Currently amended): In a single communication channel, a multiple 2 access method comprising: 3 providing a first spreading code to each transmitter among a plurality of transmitters, each transmitter thus having the same spreading code; 4 5 in each transmitter, receiving plural data sequences for transmission; in each transmitter, producing plural spread signals by modulating some of the 6 7 data sequences with the first spreading code, wherein the spreading code does not repeat during 8 the step of modulating; and 9 in each transmitter, transmitting the spread signals over the single communication channel to a base station asynchronously with respect to the other transmitters. 10 - 1 37. (Original): The method of claim 36 wherein the data sequences originate from different users. 1 38. (Original): The method of claim 36 wherein each data sequence 2 comprises at most N bits and wherein the first spreading code comprises at least N x g chips, 3 where g is process gain. 39. (Original): The method of claim 36 wherein the step of transmitting 1 includes providing plural preamble data sequences and modulating one or more of the preamble 2 3 data sequences with a first preamble spreading code to produce plural spread preamble signals.

- 1 40. (Original): The method of claim 39 further including modulating one or 2 more of the preamble data sequences with a second preamble spreading code.
- 1 41. (Original): The method of claim 40 wherein the step of modulating 2 includes repeating the first preamble spreading code one or more times.
- 1 42. (Currently amended): The method of claim 36 further including providing 2 a second spreading code among transmitters in a plurality of second transmitters, wherein the 3 data sequences in some of the second transmitters are modulated with the second spreading code.
- 1 43. (Original): The method of claim 42 wherein the first spreading code has a 2 first spreading gain and the second spreading code has a second spreading gain.
- 1 44. (Original): The method of claim 42 further including dividing the single 2 communication channel into at least first and second sub-channels, and transmitting the first 3 spread signal over the first sub-channel and the second spread signal over the second sub-4 channel.
- 1 45. (Original): The method of claim 36 wherein the step of receiving plural 2 data sequences includes receiving first data sequences having a first data rate and receiving 3 second data sequences having a second data rate.
- 1 46. (Previously presented): The method of claim 36 further including 2 receiving transmissions from the base station using paired carrier multiple access signaling.

47. (Previously presented): In a single data communication channel, a method . 1 2 for providing multiple access to the channel comprising: 3 providing plural transmitters; 4 providing an identical first spreading code in each of the transmitters; and 5 in each transmitter: receiving a data sequence, spreading the data sequence using 6 the first spreading code to produce a spread signal wherein the spreading sequence does not 7 repeat, and transmitting the spread signal to a base station, whereby the base station receives a 8 transmitted spread signal from each of the transmitters, 9 wherein each transmitter transmits its spread signal to the base station 10 asynchronously with respect to the other transmitters. 1 48. (Original): The method of claim 47 wherein the first spreading code spans 2 a period of time which exceeds the time span of the longest data sequence in any of the 3 transmitters. 1 49. (Original): The method of claim 47 wherein the step of transmitting 2 includes: providing a preamble data sequence; modulating the preamble data sequence with a 3 first preamble spreading code in at least some of the transmitters to produce a spread preamble 4 signal; and transmitting the spread preamble signal. 50. (Original): The method of claim 49 wherein the step of modulating the 1 2 preamble data sequence in some of the transmitters uses a second preamble spreading code.

1	51. (Previously presented): The method 47 further including:
2	providing plural additional transmitters;
3	providing an identical second spreading code in each of the additional
4	transmitters; and
5	in each of the additional transmitters: receiving a data sequence, spreading the
6	data sequence using the second spreading code to produce a spread signal, and transmitting the
7	spread signal to the base station.
1	52. (Original): The method of claim 51 wherein the first spreading code has a
2	first spreading gain and the second spreading code has a second spreading gain.
1	53. (Original): The method of claim 47 wherein the step of receiving a data
2	sequence in one of the transmitters includes receiving the data sequence at a first data rate, and
3	the step of receiving a data sequence in another of the transmitters includes receiving the data
4	sequence at a second data rate.
1	54. (Original): The method 47 further including:
2	dividing the single communication channel into at least two sub-channels;
3	providing plural additional transmitters;
4	providing an identical second spreading code in each of the additional
5	transmitters; and
6	in each of the additional transmitters: receiving a data sequence, spreading the
7 .	data sequence using the second spreading code to produce a spread signal, and transmitting the
8	spread signal over one of the sub-channels.
1	55. (Previously presented): The method of claim 47 further including
2	receiving transmissions from the base station using paired carrier multiple access signaling.

1	56. (Currently amended): A system for providing multiple access over a
2	single communication channel comprising a plurality of transmitters and a receiver to which
3	each transmitter transmits, each transmitter comprising:
4	an input component configured to receive plural data sequences;
5	a memory store configured to contain a first spreading code, wherein the first
6	spreading code comprises more than g chips, where g is the processing gain;
7	a processing component in data communication with the memory store and
8	configured to modulate the data sequence with the first spreading code to produce a spread
9	signal; and
10	a transmission component configured to transmit the spread signal as a data burst
11	wherein the spread signal is transmitted in asynchronous manner relative to the other
12	transmitters,
13	wherein the same first spreading code is used by each transmitter.
1	57. (Original): The transmitter of claim 56 wherein the data sequences each
2	comprise at most N bits and the first spreading code comprises more than N x g chips.
1	58. (Original): The transmitter of claim 56 wherein the memory component is
2	further configured to contain a data preamble and a preamble spreading code and the processing
3	component is further configured to modulate the data preamble with the preamble spreading
4	code.
1	59. (Original): The transmitter of claim 58 wherein the processing componen
2	is further configured to modulate the data preamble with the preamble spreading code by
3	repeating the preamble spreading code one or more times.
1	60. (Original): The transmitter of claim 56 wherein the memory store is
2	further configured to contain a second spreading code and the processing component is further
3	configured to modulate the data sequences with either the first or the second spreading code.

PATENT

1	61. (Original): The transmitter of claim 60 wherein the first and second
2	spreading codes each spans a period of time greater than the time span of the longest data
3	sequence.
1	62. (Original): The transmitter of claim 60 wherein the first and second
2	spreading codes have different spreading gains.
1	63. (Original): The transmitter of claim 56 wherein some data sequences are
2	received at a first data rate and other data sequences are received at a second data rate.
1	64. (Original): The transmitter of claim 56 further including a receiver
2	component for receiving signals transmitted by paired carrier multiple access signaling.
1	65. (Currently amended): A system for providing multiple access over a
2	single communication channel, comprising:
3	a base station; and
4	plural transmitters, each configured to transmit data bursts to the base station in an
5	asynchronous manner,
6	each transmitter further configured to:
7	(i) receive a data sequence of at most N bits in length;
8	(ii) contain a spreading code, the spreading code comprising more than g
9	chips, where g is the processing gain;
10	(iii) modulate the data sequence with the spreading code to produce a
11	spread signal; and
12	(iv) transmit the spread signal as a data burst,
13	wherein the same spreading code is used in the transmitters.
1	66. (Original): The system of claim 65 wherein the spreading code comprises
2	more than N x g chips.

1	67. (Original): The system of claim 65 wherein each transmitter is further
2	configured to contain a data preamble and a preamble spreading code and further configured to
3	modulate the data preamble with the preamble spreading code.

- 1 68. (Original): The system of claim 67 wherein each transmitter is further 2 configured to modulate the data preamble with the preamble spreading code by repeating the 3 preamble spreading code one or more times.
- 1 69. (Original): The system of claim 65 wherein each transmitter is further 2 configured to receive the data sequence at a first data rate, the system further including plural 3 additional transmitters, wherein each additional transmitter is configured to receive data 4 sequences at a second data rate different from the first data rate.
- 1 70. (Original): The system of claim 69 wherein the transmitters and the base station are not configured to perform chip alignment or bit alignment.
- 1 71. (Original): The system of claim 65 wherein the base station is not configured with a multi-user detection component.
- 1 72. (Original): The system of claim 65 wherein the base station transmits to 2 the transmitters using a paired carrier multiple access technique.

73 - 74. (Canceled)