### Interpolationen

### Benötigt: mySpline.m

**Aufgabe 1:** Aufheizvorgang von Wasser mit Standardwert von c

Es geht darum, 800ml Wasser zum Kochen zu bringen, d.h. von Raumtemperatur 22°C auf Siedetemperatur 100°C mit einer elektrischen Heizplatte mit 1200 W zu erhitzen.

- öffne neues Skript "wasser.m"
- mit der spezifischen Wärme von  $c_p$  = 4183 J/kg/K (Internet) ermittle man die benötigte Wärmemenge und Zeit für den Aufheizvorgang und gebe diese aus
- Teste und vergleiche die Reaktionen:

Aufheizvorgang mit cp=4183 J/kg/K Benötigte Wärmemenge Q=261019 J Benötigte Aufheizzeit Theiz=217.516 s >>

Aufgabe 2: Aufheizvorgang von Wasser mit interpolierten Mittelwerten

Bei genauerer Betrachtung ist die spezifische Wärme nicht konstant, sondern über

| T in °C                  | 22   | 42   | 52   | 82   | 100  |
|--------------------------|------|------|------|------|------|
| c <sub>p</sub> in J/kg/K | 4181 | 4179 | 4186 | 4199 | 4217 |

gegeben. Wenn wir nun mit einem  $c_p$  bei mittlerer Temperatur von (100°C+22°C)/2 arbeiten wollen, so benötigen wir das  $c_p$ (61°C), welches wir durch Interpolation ermitteln wollen.

- ergänzen sie das Skript "wasser.m" um die grafische Darstellung des Temperatureinflusses auf die spezifische Wärme durch kreisförmige Symbole an den Datenpunkten der Tabelle
- sehen vor, dass noch weitere Darstellungen in dieses Diagramm einzuzeichnen sind
- ermittle die Koeffizienten einer linearen Interpolation durch die zwei benachbarten Stützpunkte von 61°C
- ermittle die Interpolationswerte zwischen diesen beiden Punkte mit einer Schrittweite von 0,1°C und zeichne diese als grüne, durchgezogene Linie in das Diagramm
- ermittle c<sub>p</sub> für 61°C und markiere dies durch ein grünes Sternsymbol im Diagramm



- mit der ermittelten spezifischen Wärme berechne man die benötigte Wärmemenge und Zeit für den Aufheizvorgang und gebe diese aus
- Teste und vergleiche die Reaktionen: Lineare Interpolation zwischen 52°C und 82°C cp(61°C)=4189.9 J/kg/K

```
Benötigte Wärmemenge Q=261450 J
Benötigte Aufheizzeit Theiz=217.875 s
```

- ermittle weiter die Koeffizienten einer quadratischen Interpolation durch drei benachbarte Stützpunkte von 61°C
- ermittle die Interpolationswerte zwischen diesen Punkte mit einer Schrittweite von 0,1°C und zeichne diese als rote, punktierte Linie in das Diagramm
- ermittle  $c_p$  für 61°C und markiere dies durch ein rotes Sternsymbol im Diagramm
- mit der ermittelten spezifischen Wärme berechne man die benötigte Wärmemenge und Zeit für den Aufheizvorgang und gebe diese aus
- Teste und vergleiche die Reaktionen:

```
Quadratische Interpolation zwischen 42°C und 82°C cp(61°C)=4191.16 J/kg/K
Benötigte Wärmemenge Q=261528 J
Benötigte Aufheizzeit Theiz=217.94 s
>>
```

# **Aufgabe 3:** Aufheizvorgang von Graphit mit Standardwert von $c_p$

Es geht darum, 1 kg Graphit von Raumtemperatur 22°C auf 700°C zu erhitzen.

- öffne neues Skript "graphit.m"
- mit der spezifischen Wärme von  $c_p$  = 709 J/kg/K (Internet) ermittle man die benötigte Wärmemenge für den Aufheizvorgang und gebe diese aus
- Teste und vergleiche die Reaktionen:

```
Aufheizvorgang mit cp=709 J/kg/K
Benötigte Wärmemenge Q=480.702 kJ
>>
```

## Aufgabe 4: Aufheizvorgang von Graphit mit interpolierten Mittelwerten

Bei genauerer Betrachtung ist die spezifische Wärme nicht konstant, sondern über

| T in °C                  | -73 | 127  | 327  | 527  | 727  |
|--------------------------|-----|------|------|------|------|
| c <sub>p</sub> in J/kg/K | 420 | 1070 | 1370 | 1620 | 1820 |

gegeben. Wenn wir nun mit einem  $c_p$  bei mittlerer Temperatur von (700°C+22°C)/2 arbeiten wollen, so benötigen wir das  $c_p$ (361°C), welches wir durch Interpolation ermitteln wollen.

- ergänzen das Skript "graphit.m" um die grafische Darstellung des Temperatureinflusses auf die spezifische Wärme durch kreisförmige Symbole an den Datenpunkten der Tabelle
- sehen vor, dass noch weitere Darstellungen in dieses Diagramm einzuzeichnen sind
- ermittle die Koeffizienten einer linearen Interpolation durch die zwei benachbarten Stützpunkte von 361°C
- ermittle die Interpolationswerte zwischen diesen beiden Punkte mit einer Schrittweite von 0,1°C und zeichne diese als grüne, durchgezogene Linie in das Diagramm

 ermittle c<sub>p</sub> für 361°C und markiere dies durch ein grünes Sternsymbol im Diagramm

 mit der ermittelten spezifischen Wärme berechne man die benötigte Wärmemenge und Zeit für den Aufheizvorgang und gebe diese aus



• Teste und vergleiche die Reaktionen:

Lineare Interpolation zwischen 327°C und 527°C cp(361°C)=1412.5 J/kg/K Benötigte Wärmemenge Q=957.675 kJ >>

- ermittle weiter die Koeffizienten einer quadratischen Interpolation durch drei benachbarte Stützpunkte von 361°C
- ermittle die Interpolationswerte zwischen diesen Punkte mit einer Schrittweite von 0,1°C und zeichne diese als rote, punktierte Linie in das Diagramm
- ermittle  $c_p$  für 361°C und markiere dies durch ein rotes Sternsymbol im Diagramm
- mit der ermittelten spezifischen Wärme berechne man die benötigte Wärmemenge und Zeit für den Aufheizvorgang und gebe diese aus
- Teste und vergleiche die Reaktionen:

Quadratische Interpolation zwischen 127°C und 527°C cp(361°C)=1416.03 J/kg/K Benötigte Wärmemenge Q=960.067 kJ >>

**Aufgabe 5:** Aufheizvorgang von Graphit mit linearer Spline-Interpolation

Um die benötigte Wärmemenge genauer ermitteln zu können, ist die Berechnung über  $700\,^{\circ}C$ 

$$Q = m \cdot \int_{22 \, ^{\circ}C}^{700 \, ^{\circ}C} c_p(T) dT$$
 zu ermitteln. Da wir c<sub>p</sub>(T) nicht explizit als Funktion vorliegen

haben, werden wir dies durch stückweise Geraden (lineare Splines) annähern und das

Integral durch die Summe 
$$Q \approx m \cdot \sum_{i=0}^{6/8} c_p (22 \circ C + i \cdot \Delta T) \cdot \Delta T$$
,  $\Delta T = 1.0 \circ C$ 

- ergänze das Skript "graphit.m" und bestimme die c<sub>p</sub>-Werte zwischen 22°C und 700°C in 1,0°C-Schritten durch lineare Spline-Interpolation und zeichne diese als blaue, gestrichelte Linie in das Diagramm
- ermittle die benötigte Wärmemenge durch die angegebene Summen-Formel und gebe das Ergebnis aus

### • Teste und vergleiche die Reaktionen:

Aufheizvorgang durch lineare Spline-Interpolation und numerische Integration von Q = m\*integral(cp\*T) Benötigte Wärmemenge Q\_lin=932.127 kJ >>



### Aufgabe 6: Bahnberechnung für Roboter

Gegeben sind 6 Koordinaten in einer Ebene, die von einem Roboterarm auf möglichst kurzem Weg nacheinander angefahren werden sollen

| Xpos | 2.0 | 4.5 | 5.25 | 7.81 | 9.2 | 10.6 |
|------|-----|-----|------|------|-----|------|
| Ypos | 7.2 | 7.1 | 6.0  | 5.0  | 3.5 | 5.0  |

- öffne das Skript "roboter.m"
- stelle die gegebenen Punkte in der Ebene in einem Diagramm mit Kreissymbolen dar und sehe weitere Zeichenbefehle vor
- erstelle einen X-Koordinatenvektor vom ersten zum letzten X-Punkt mit einer Schrittweite von dX=0.1
- bestimme die zugehörigen y-Koordinaten durch Interpolation mit einem Polynom 5.Ordnung und stelle dies als rote, punktierte Bahnkurve dar
- bestimme die zugehörigen y-Koordinaten durch lineare Spline-Interpolation und stelle dies als blaue, durchgezogene Bahnkurve dar
- bestimme die zugehörigen y-Koordinaten durch kubische Spline-
  - Interpolation (interp1-Funktion) und stelle dies als grüne, gestrichelte Bahnkurve dar
- bestimme die zugehörigen y-Koordinaten durch kubische Spline-Interpolation (mySpline-Funktion) und stelle dies als grüne, durchgezogene Bahnkurve dar

