Rozdział 1

Własności

Poza własnościami dotyczącymi ograniczenia poszczególnych miejsc sieci, definiuje się również własności odnoszące się do łącznej liczby znaczników w sieci. Sieć nazywana jest *zachowawczą*, jeżeli łączna liczba znaczników nie ulega zmianie. W szczególności może się to odnosić do ważonej sumy znaczników.

Definicja 1. Sieć \mathcal{N} nazywamy zachowawczą, jeżeli:

$$\forall (M, S) \in \mathcal{R}(M_0, S_0) : \sum_{p \in P} |M(p)| = \sum_{p \in P} |M_0(p)|. \tag{1.1}$$

Sieć \mathcal{N} nazywamy zachowawczą względem wektora wag $w=(w_1,w_2,\ldots,w_n)$, gdzie $w_i>0$, dla $i=1,2,\ldots,n$, $(P=\{p_1,p_2,\ldots,p_n\})$, jeżeli:

$$\forall (M,S) \in \mathcal{R}(M_0,S_0): \sum_{i=1}^n w_i |M(p_i)| = \sum_{i=1}^n w_i |M_0(p_i)|. \tag{1.2}$$

Zachowawczość sieci jest własnością mocniejszą niż ograniczoność. Wymagane jest, by nie tylko nie następował nieograniczony wzrost liczby znaczników w miejscach sieci, ale by łączna ich liczba (ewentualnie ważona) pozostawała stała. Jeżeli możliwe jest podanie wektora wag tylko dla pewnego podzbioru zbioru miejsc, to mówimy, że sieć jest *częściowo zachowawcza*.

Dodatkowo wśród stanów sieci wyróżnia się stany, do których zawsze można powrócić (*stany własne*). Często istotna jest również możliwość powrotu do stanu początkowego.

Definicja 2. Niech dana będzie sieć \mathcal{N} . Stan początkowy (M_0, S_0) nazywamy odtwarzalnym, jeżeli istnieje stan $(M, S) \in \mathcal{R}(M_0, S_0)$ różny od (M_0, S_0) , z którego stan początkowy ponownie jest osiągalny. Sieć \mathcal{N} nazywamy odtwarzalną, jeżeli stan początkowy jest odtwarzalny. Sieć \mathcal{N} nazywamy odwracalną, jeżeli stan początkowy jest osiągalny z każdego stanu $(M, S) \in \mathcal{R}(M_0, S_0)$.

Rozdział 2

Analiza

Definicja 3. Węzeł (M,S) grafu osiągalności $\mathcal{G}=(V,A,\gamma)$ nazywamy *pełnym*, jeżeli dla każdego przejścia $t\in T$, istnieje droga prowadząca od węzła (M,S), zawierająca łuk z etykietą ((t,b),n), gdzie $b\in\mathcal{B}(t)$ i $n\in\mathbb{Q}^+\cup\{0\}$.

Twierdzenie 2.1. Sieć \mathcal{N} jest żywa wtedy i tylko wtedy, gdy wszystkie węzły grafu \mathcal{G} są pełne.

Dowód. Niech $(M,S) \in V$. Jeżeli sieć \mathcal{N} jest żywa, to dla dowolnego przejścia $t \in T$, istnieje stan $(M',S') \in \mathcal{R}(M,S)$, przy którym przejście t jest aktywne. Stan (M',S') albo jest reprezentowany przez jeden z węzłów grafu \mathcal{G} , albo istnieje stan $(M',S'') \in V$ taki, że (M',S') jest osiągalny z (M',S'') w wyniku upływu czasu. Istnieje zatem droga prowadząca od węzła (M,S), która zawiera łuk z etykietą ((t,b),n), gdzie $b \in \mathcal{B}(t)$ i $n \in \mathbb{Q}^+ \cup \{0\}$. Wynika stąd, że węzeł (M,S) musi być węzłem pełnym. Z dowolności wyboru węzła (M,S) wynika, że wszystkie węzły grafu osiągalności są węzłami pełnymi.

Z drugiej strony, jeżeli wszystkie węzły grafu osiągalności są pełne, to wszystkie przejścia sieci są potencjalnie wykonalne dla każdego stanu $(M,S) \in \mathcal{R}(M_0,S_0)$, a zatem sieć jest żywa.

Lemat 2.2. Niech dane będą dwa stany (M_1, S_1) , (M_2, S_2) sieci \mathcal{N} takie, że $(M_1, S_1) \simeq (M_2, S_2)$. Jeżeli $(M_1, S_1) \xrightarrow{(t,b)} (M'_1, S'_1)$ i $(M_2, S_2) \xrightarrow{(t,b)} (M'_2, S_2)'$, to $(M'_1, S'_1) \simeq (M'_2, S'_2)$.

Dowód. Jeżeli $(M_1, S_1) \simeq (M_2, S_2)$, to $M_1 = M_2$ oraz spełniony jest warunek (??). Ponieważ w obu stanach wykonywane jest to samo przejście t przy wiązaniu b, więc $M_1' = M_2'$. Jeżeli $p \in In(t) \cup Out(t)$, to zgodnie ze wzorem (??), $S_1'(p) = S_2'(p)$. Jeżeli $p \notin In(t) \cup Out(t)$, to $S_1'(p) = S_1(p)$ oraz $S_2'(p) = S_2(p)$. Z powyższych rozważań wynika, że stany (M_1', S_1') i (M_2', S_2') pokrywają się. \square

Twierdzenie 2.3. Niech dane będą stany (M_1, S_1) i (M_2, S_2) sieci \mathcal{N} takie, że $(M_1, S_1) \simeq (M_2, S_2)$. Wówczas:

$$\mathcal{L}(M_1, S_1) = \mathcal{L}(M_2, S_2).$$
 (2.1)

Dowód. Jeżeli $(M_1,S_1)\simeq (M_2,S_2)$, to $M_1=M_2$ oraz spełniony jest warunek (??), a zatem dla dowolnego miejsca $p\in P$ znaczniki w tym miejscu są w stanach (M_1,S_1) i (M_2,S_2) dostępne dla tych samych przejść. W obu tych stanach aktywne są zatem dokładnie te same przejścia, przy tych samych wiązaniach.

Stąd, jeżeli dla pewnego przejścia t i wiązania $b \in \mathcal{B}(t)$, $(M_1, S_1) \xrightarrow{(t,b)} (M_1', S_1')$, to również istnieje stan (M_2', S_2') taki, że $(M_2, S_2) \xrightarrow{(t,b)} (M_2', S_2)'$. Ponadto, na podstawie lematu 2.2 $(M_1', S_1') \simeq (M_2', S_2')$. Z powyższych rozważań, na podstawie zasady indukcji matematycznej, wynika teza twierdzenia.