1

Matrix Theory EE5609 - Assignment 11

Sandhya Addetla PhD Artificial Inteligence Department AI20RESCH14001

Abstract—Minimum Polynomial

1 Problem

Let $A \in M_3(\mathbb{R})$ be such that $A^8 = I_{3\times 3}$ Then

- 1) minimal polynomial of *A* can only be of degree 2.
- 2) minimal polynomial of *A* can only be of degree 3
- 3) either $A = I_{3\times 3}$ or $A = -I_{3\times 3}$
- 4) there are uncountably many A satisfying the above.

2 Solution

Given	$A \in M_3(\mathbb{R})$ be such that $A^8 =$
GIVOII	$I_{3\times3}$.
Option 1: minimal polynomial of A can only be of degree 2	Let $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
	The Characteristic polynomial is $-\lambda^3 + 3\lambda^2 - 3\lambda + 1 = -(\lambda - 1)^3$ Minimum polynomial is of degree 1. Hence this option is not correct
Option 2: minimal polynomial of A can only be of degree 3	Let $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
	as given in option 1, the minimum polynomial is of degree 1. Hence this option is not correct
Option 3: either $A = I_{3\times 3}$ or $A = -I_{3\times 3}$	Let $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$
	Here, $A^8 = I_{3\times 3}$ and $A \neq I_{3\times 3}$ or $A \neq -I_{3\times 3}$. Hence this option is not correct

Option 4: there are uncountably many A satisfying the above

Let A be any 3×3 involuntary matrix.

Involuntary matrix:

A matrix is said to be involuntary matrix if the matrix is its own inverse. Therefore, for an involuntary matrix, $A^2 = I$.

For an involuntary matrix, A^n will be equal to A if n is odd and I if n is even.

Cleary, $A^8 = I$ for all involuntary matrices. The set of involuntary matrices is uncountable.

Hence there are uncountably many *A* which satisfy the above condition Hence, this option is the correct answer.

Example:

$$A = \begin{pmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{pmatrix}$$

$$A^{2} = \begin{pmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{pmatrix} \begin{pmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\therefore A^{8} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$