20) Logit and Probit I

Vitor Kamada

October 2018

Reference

Tables, Graphics, and Figures from

Introductory Econometrics

Wooldridge, J. M. (2015): Chapter 17 - Limited Dependent Variable Models

Graph of the Logistic Function

Specifying Logit and Probit Models

$$P(y=1|x)=G(eta_0+xeta)$$
 $0< G(z)<1$ $G(z)=rac{e^z}{1+e^z}=\Lambda(z)$ $G(z)=\Phi(z)=\int_{-\infty}^z\phi(v)dv$ $\phi(v)=(2\pi)^{-rac{1}{2}}exp(-rac{z^2}{2})$

Latent Variable Model

$$y^* = \beta_0 + x\beta + e$$
 $y = 1[y^* > 0]$
 $e \perp x$

$$e \sim N(0,1)$$
 or $Logistic(0,1)$

$$\therefore 1 - G(-z) = G(z)$$

Response Probability for y

$$P(y = 1|x) = P(y^* > 0|x) = P[e > -(\beta_0 + x\beta)|x]$$

$$= 1 - G[-(\beta_0 + x\beta)] = G(\beta_0 + x\beta)$$

$$\frac{\partial p(x)}{\partial x_j} = g(\beta_0 + x\beta)\beta_j$$

$$g(z) = \frac{dG}{dz}(z) > 0$$

$G(\cdot)$ is a strictly increasing cdf

$$\phi(0) = \frac{1}{\sqrt{2\pi}} pprox .4$$
, $\lambda(0) = \frac{e^{xp(0)}}{[1 + e^{xp(0)}]^2} pprox .25$

Partial Effect of Continuous Variables on the Response Probability

$$\frac{\partial p(x)}{\partial x_i} = g(\beta_0 + x\beta)\beta_j$$

$$\frac{\partial p(x)}{\partial x_j} / \frac{\partial p(x)}{\partial x_h} = \frac{\beta_j}{\beta_h}$$

Binary:
$$\frac{\Delta p(x)}{\Delta x_1} = G(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k)$$

 $-G(\beta_0 + \beta_2 x_2 + ... + \beta_k x_k)$

Maximum Likelihood Estimation (MLE)

$$f(y|x_i;\beta) = [G(x_i\beta)]^y[1 - G(x_i\beta)]^{1-y}$$

$$\ell_i(\beta) = y_i \log[G(x_i\beta)] + (1 - y_i) \log[1 - G(x_i\beta)]$$

$$\mathcal{L}(\beta) = \sum_{i=1}^{n} \ell_i(\beta)$$

Pseudo R-squared

Pseudo
$$R^2=1-rac{\mathcal{L}_{ur}}{\mathcal{L}_0}$$

 \mathcal{L}_0 the model with only an intercept

$$|\mathcal{L}_{ur}| \leq |\mathcal{L}_0|$$

Percent Correctly Predicted

$$ilde{y}_i = 1 ext{ if } G(\hat{eta}_0 + x_i \hat{eta}) \geq .5$$
 $ilde{y}_i = 0 ext{ if } G(\hat{eta}_0 + x_i \hat{eta}) < .5$

	$(y_i,$	\tilde{y}_i
Correct Prediction	0,0	1,1
Incorrect Prediction	0,1	1,0

The % correctly predicted is the % of times that $y_i = \tilde{y}_i$

Table 17.1 Estimates of Labor Force Participation

Independent Variables	LPM (OLS)	Logit (MLE)	Probit (MLE)
nwifeinc	0034	021	012
	(.0015)	(.008)	(.005)
educ	.038	.221	.131
	(.007)	(.043)	(.025)
exper	.039	.206	.123
	(.006)	(.032)	(.019)
exper ²	00060	0032	0019
	(.00019)	(.0010)	(.0006)
age	016	088	053
	(.002)	(.015)	(.008)
kidslt6	262	-1.443	868
	(.032)	(.204)	(.119)
kidsge6	.013	.060	.036
	(.014)	(.075)	(.043)
constant	.586	.425	.270
	(.152)	(.860)	(.509)
Percentage correctly predicted	73.4	73.6	73.4
Log-likelihood value	—	401.77	-401.30
Pseudo <i>R</i> -squared	.264	.220	.221

Partial Effect at the Average (PEA)

$$\Delta \hat{P}(y=1|x) \approx [g(\hat{\beta}_0 + x\hat{\beta})\hat{\beta}_j]\Delta x_j$$

$$g(\hat{\beta}_0 + \bar{x}\hat{\beta}) = g(\hat{\beta}_0 + \hat{\beta}_1\bar{x}_1 + \hat{\beta}_2\bar{x}_2 + ... + \hat{\beta}_k\bar{x}_k)$$

Partial Effect of x_j for the "average" person in the sample.

Average Partial Effect (APE) or Average Marginal Effect (AME)

$$n^{-1}\sum_{i=1}^n \left[g(\hat{\beta}_0+x_i\hat{\beta})\hat{\beta}_i\right]$$

AME is the average of the nonlinear function rather than the nonlinear function of the average

$$g[E(x\beta)] \neq E[g(x\beta)]$$

Table 17.2 Average Partial Effects for the Labor Force Participation Models

Independent Variables	LPM	Logit	Probit
nwifeinc	0034	0038	0036
	(.0015)	(.0015)	(.0014)
educ	.038	.039	.039
	(.007)	(.007)	(.007)
exper	.027	.025	.026
	(.002)	(.002)	(.002)
age	016	016	016
	(.002)	(.002)	(.002)
kidslt6	262	258	261
	(.032)	(.032)	(.032)
kidsge6	.013	.011	.011
	(.014)	(.013)	(.013)

Figure 17.2 Estimated Response Probabilities with Respect to Education for the Linear Probability and Probit Models

