

Jogos Matemáticos - Aula 03

Produto Cartesiano, Funções

Kaique Matias de Andrade Roberto

Administração - Ciências Atuariais - Ciências Contábeis - Ciências Econômicas

HECSA - Escola de Negócios

FIAM-FAAM-FMU

Conteúdo

- 1. Conceitos que aprendemos em Aulas anteriores
- 2. Produto Cartesiano
- 3. Funções
- 4. Composição de Funções
- 5. Funções Injetoras, Sobrejetoras, Bijetoras, Inversas
- 6. Comentários Finais
- 7. Referências

Conceitos que aprendemos em

Aulas anteriores

Conceitos que aprendemos em Aulas anteriores

- Equações algébrica;
- Resolução de equações de primeiro e segundo grau;
- Não existe uma fórmula para equações de grau maior que 4;
- Resolução sistemas lineares 2×2 e 3×3 .

Chama-se \boldsymbol{par} todo conjunto formado por dois elementos.

Assim $\{1,2\},\{3,-1\},\{a,b\}$ indicam pares.

Lembrando do conceito de igualdade de conjuntos, observamos que inverter a ordem dos elementos não produz um novo par:

$$\{1,2\}=\{2,1\},\,\{3,-1\}=\{-1,3\},\,\{a,b\}=\{b,a\}.$$

Em Matemática existem situações em que há necessidade de distinguir dois pares pela ordem dos elementos.

Por exemplo, no sistema de equações

$$\begin{cases} x + y = 3 \\ x - y = 1 \end{cases}$$

x=2 e y=1 é solução, ao passo que x=1 e y=2 não é solução.

Essa é apenas uma das situações onde é necessário distinguir a ordem de elementos em um conjunto.

Definição 2.1

Definimos o par ordenado (a, b) como sendo

$$(a,b) = \{\{a\}, \{a,b\}\}.$$

A Definição anterior resolve a questão da ordem no seguinte sentido:

$$(a, b) = (c, d)$$
 se e só se $a = c$ e $b = d$.

Com isso podemos "guardar" essas abstrações na "sala de máquinas" da matemática e trabalhar com os pares (a,b) de maneira "usual":

Exemplo 2.2

Vamos localizar os seguintes pontos no plano cartesiano:

$$A = (2,0), B = (0,-3), C = (2,5), D = (-3,4),$$

 $E = (-7,-3), F = (4,-5), G = \left(\frac{5}{2},\frac{9}{2}\right), H = \left(-\frac{5}{2},-\frac{9}{2}\right).$

Definição 2.3

Sejam A e B dois conjuntos não vazios. Denominamos **produto** cartesiano de A por B o conjunto $A \times B$ cujos elementos são todos pares ordenados (x, y), em que o primeiro elemento pertence a A e o segundo elemento pertence a B. Em símbolos,

$$A \times B = \{(x, y) : x \in A, y \in B\}.$$

Lê-se a notação $A \times B$ assim: "A cartesiano B" ou "produto cartesiano de A por B".

Se A ou B for o conjunto vazio, definiremos o produto cartesiano de A por B como sendo o conjunto vazio:

$$A \times \emptyset := \emptyset \times A = \emptyset \times \emptyset = \emptyset.$$

Exemplo 2.4

Para $A=\{1,2,3\}$ e $B=\{1,2\}$ descreva e represente $A\times A$, $A\times B$, $B\times A$ e $B\times B$.

Exemplo 2.5

Para $A=\{x\in\mathbb{R}:1\leq x\leq 3\}$ e $B=\{x\in\mathbb{R}:1\leq x\leq 5\}$ represente $A\times B$ e $B\times A$.

Definição 3.1 (Função)

Uma função f é uma terna

$$f:(A,B,a\mapsto b)$$

onde A e B são conjuntos e $a \mapsto b$ é uma regra que permite associar a cada elemento de A um **único** elemento de B.

- O conjunto A é chamado domínio da função f, notação Dom(f) = A.
- O conjunto B é chamado contradomínio da função f, notação Codom(f) = B.

- A regra $a \mapsto b$ costuma ser indicada por f(a) = b.
- Dizemos que f(a) é o valor de f em a.

• Uma função $f:(A,B,a\mapsto b)$ costuma ser denotada por $f:A\to B$ (lê-se "f é uma função de A em B").

Definição 3.2

Seja $f:A\to B$ uma função. A **imagem** de f é o conjunto ${\rm Im}(f)\subseteq B$ definido por

$$Im(f) := \{ b \in B : b = f(a) \text{ para algum } a \in A \}.$$

É usual representar uma função $f:A \to B$ simplesmente por

$$y = f(x), x \in A$$

ficando subentendido o contradomínio B.

Note que duas funções $f:(A,B,a\mapsto b)$ e $g:(C,D,c\mapsto d)$ são iguais se e só se A=C, B=D e f(x)=g(x) para todo $x\in A$.

Algumas funções importantes:

Algumas funções importantes:

 A função identidade de um conjunto A, que é a função 1_A : A → A dada pela regra 1_A(x) = x, x ∈ A.

As funções constantes: dado a ∈ A definimos a função constante
 f_a: A → B dada pela regra f_a(x) = a, x ∈ A.

• A função nula em \mathbb{R} , que é a função $0: \mathbb{R} \to \mathbb{R}$ dada pela regra $0(x)=0, \ x \in \mathbb{R}$.

Para uma função $f:A\to B$, podemos representar no plano $A\times B$ os pontos (x,f(x)) com $x\in A$. Essa representação é chamada **gráfico** de f.

Composição de Funções

Composição de Funções

Definição 4.1 (Função Composta)

Sejam $f:A\to B$ e $g:B\to C$ funções com $\mathrm{Im}(f)\subseteq \mathrm{Dom}(g)$. A **função composta** de g e f (nesta ordem), denotada $g\circ f$ é a função $g\circ f:A\to C$ cuja regra é dada para $x\in A$ por $g\circ f(x):=g(f(x))$.

Composição de Funções

- A composição $g \circ f$ só está definida quando $Im(f) \subseteq Dom(g)$.
- Pode acontecer de somente uma dentre as funções $f \circ g$ e $g \circ f$ estarem definidas.
- Em geral, $f \circ g \neq g \circ f$.

Bijetoras, Inversas

Funções Injetoras, Sobrejetoras,

Definição 5.1 (Função Sobrejetora)

Uma função $f: A \rightarrow B$ é **sobrejetora** se Im(f) = B.

Definição 5.2 (Função Injetora)

Uma função $f: A \rightarrow B$ é **injetora** se para todo $x_1, x_2 \in A$,

$$x_1 \neq x_2$$
 implica $f(x_1) \neq f(x_2)$.

Definição 5.3 (Função Bijetora)

Uma função $f: A \rightarrow B$ é **bijetora** se for injetora e sobrejetora.

Definição 5.4 (Função Inversa)

Seja $f:A\to B$ uma função bijetora. A **função inversa** de f, notação f^{-1} , é a função $f^{-1}:B\to A$ definida para $y\in B$ pela regra

$$f^{-1}(y) = x$$
 se e só se $f(x) = y$.

Teorema 5.5

Sejam $f:A\to B,\ g:B\to C$ e $h:C\to D$ funções. Valem as seguintes propriedades:

- a $f \circ 1_A = f$, $1_B \circ f = f$;
- b se f é bijetora então $(f^{-1})^{-1} = f$;
- c se f é bijetora então $f \circ f^{-1} = 1_B$ e $f^{-1} \circ f = 1_A$;
- $d (h \circ g) \circ f = h \circ (g \circ f);$
- e Se f e g são bijetoras então $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Em resumo, na aula de hoje nós:

- definimos a noção de produto cartesiano;
- definimos a noção de função;
- lidamos com alguns tipos de função.

Nas próximas aulas nós vamos focar nas propriedades das funções afins. A saber:

- gráficos;
- zeros;
- pontos importantes;
- crescimento/decrescimento;
- aplicações.

ATIVIDADE PARA ENTREGAR (E COMPOR A NOTA N1)

Em grupos de até 5 integrantes resolva os Exercícios 3.1, 3.2, 3.3, 3.6, 3.9, 3.10.

Referências

Comentários Finais e Referências

Referências

Bons Estudos!

