Einführung in die Logik

Τ

Wahrheitstabellen:

_		٨
Т	F	Т
F	Т	F

Λ	Т	F	
Т	Т	F	
F	F	F	

\rightarrow	Η	F
Т	T	F
F	Τ	Т

Präzedenzen:

- 1. ¬
- 2. A, V
- 3. →, <->

Konsequenzrelation:

Aus der Wahrheit der Prämisse A_1 ... A_n , folgt die Wahrheit der Konklusion B: p Λ ¬ q \mid = q

р	q	p ∧ ¬ q	
0	0	0	F -> F = T
0	1	0	F -> T = T
1	0	0	F -> F = T
1	1	0	T -> T = T

Tautologie und Erfüllbarkeit:

Tautologie	Eine aussagenlogische Formel ist dann eine Tautologie,			
	wenn ALLE Interpretationen auf Wahr (True) enden.			
Erfüllbar	Eine aussagenlogische Formel ist dann erfüllbar, wenn			
	mindestens EINE Interpretation auf Wahr (True) endet.			
Unerfüllbar	Eine aussagenlogische Formel ist dann unerfüllbar,			
	wenn KEINE Interpretation auf Wahr (True) endet.			

Äquivalenz von aussagenlogischen Formeln:

Zwei aussagenlogische Formeln sind dann Äquivalent, wenn A |= B & B |= A gilt:

$$p \wedge (q \wedge r) = (p \wedge q) \wedge r$$

р	q	r	pΛ <mark>(</mark> qΛr <mark>)</mark>	(p∧q <mark>)</mark> ∧r
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Konjunktion (Λ) und Disjunktion (V):

- 1. DNF (Disjunktive Normalform): A ist in DNF, wenn A eine Disjunktion von Konjunktionen ist. Die DNF wird von Wahren Endergebnissen gebildet (siehe Beispiel unten).
- 2. KNF (Konjunktive Normalform): A ist in KNF, wenn A eine Konjunktion von Disjunktionen ist. Die KNF wird von Falschen Endergebnissen gebildet (siehe Beispiel unten).

Α	В	С	ΑΛВ	BVC	(A ∧ B) ∧ (B ∨ C)	MIN	MAX
0	0	0	0	0	0		AVBVC
0	0	1	0	1	0		A V B V ¬C
0	1	0	0	1	0		A∨¬B∨C
0	1	1	0	1	0		A V ¬B V ¬C
1	0	0	0	0	0		¬A V B V C
1	0	1	0	1	0		¬A V B V ¬C
1	1	0	1	1	1	А∧В∧¬С	
1	1	1	1	1	1	АЛВЛС	

KNF: $(A \lor B \lor C) \land (A \lor B \lor \neg C) \land (A \lor \neg B \lor C) ...$

DNF: $(A \wedge B \wedge \neg C) \vee (A \wedge B \wedge C)$

Einführung in die Algebra

Wahrheitstabellen binäre Algebra:

Theorie der formalen Spachen

Allgemein gilt, dass ein Wort der Länge 0 das Leerwort ist. Endliche, nicht leere Menge von atomaren Symbolen wird das Alphabet \sum (Sigma) genannt.

Formale Sprachen:

Seien L und M formale Sprachen über dem Alphabet Σ , dann wird der Durchschnitt als L \cap M geschrieben und die Vereinigung als L \cup M.

Konkatenation mit dem Leerwort:

Ob das Leerwort am Anfang hin konkateniert wird, oder am Schluss, macht keinen Unterschied auf die Gleichung siehe Beispiel: $\epsilon \circ w = w = w \circ \epsilon$

Wenn wir aber zwei Wörter konkatenieren, die nicht ident sind, macht die Konkatenationsreihenfolge einen unterschied!

Der Kleene-Stern (auch Abschluss genannt) über einem beliebigen Alphabet L ist wie folgt definiert:

$$L^* = \bigcup_{k\geqslant 0} L^k = \{x_1\cdots x_k \mid x_1,\ldots,x_k \in L \text{ und } k\geqslant 0\}$$

Grammatiken und formale Sprachen

Eine Grammatik G ist ein Quadrupel G = (V, \sum, R, S) , wobei die Variablen für folgende Ausdrücke stehen:

٧	Eine endliche Menge an Variablen (Terminale).
Σ	Ein Alphabet, dass terminiert.
R	Eine endliche Menge an Regeln.
S	S ∈ V -> das Startsymbol von G

Chomsky Hierarchie:

Die Chomsky Hierarchie beschäftigt sich mit der Einschränkung von Grammatiken in die folgenden 4 Typen:

TYP 0: keine Einschränkung

TYP 1 (kontextsensitiv): Typ0 inkl. Längenbeschränkung w1 -> w2 muss gelten |w1| <= |w2| mit der Ausnahme, dass S das Leerwort (ϵ) impliziert.

TYP 2 (kontextfrei): $1x V \rightarrow Kombination aus V & \sum, "A \rightarrow BC" ist ein gültiger Ausdruck, "B <math>\rightarrow abCab"$ ist auch gültig aber "aB $\rightarrow abCabA"$ ist KEIN gültiger Ausdruck!

TYP 3 (regulär): 1x V -> Kombination aus V & ∑

linksregulär: A -> Barechtsregulär: A -> aB

	TYP 0
	TYP 1
	TYP 2
	TYP 3

$TYP 3 \subset TYP 2 \subset TYP 1 \subset TYP 0$

Reguläre Sprachen:

G = (V, Σ, R, S) V = $\{B, C, D, S\}$ $\Sigma = \{a, b, c\}$ R Produktionsregeln	LINKSREGULÄR 1. A -> Ba 2. A -> a 3. A -> ε	RECHTSREULÄR 1. A -> aB 2. A -> a 3. A -> ε	0 → Beliebig viele Nullen
S Startsymbol			5+05 5+0510B B+ACIE

Berechenbarkeitstheorie

Turingmaschine (M):

 $M = (\{s, p, t, r\}, \{0, 1\}, \{ \mid -, \mid _ \mid, 0, 1\}, \delta, s, t, r)$

Zustandstabelle:

	-	0	1	_
S	(s, -, R)	(s, 0, R)	(s, 1, R)	(p, _ , L)
р	(t, -, R)	(t, 1, L)	(p, 0, L)	*

Zustandsdiagramm:

Verifikation nach HOARE

[z]
$$\frac{\{Q\} P \{R'\}}{\{Q\} x \mapsto t\}\} x := t \{Q\}}$$
 [a] $\frac{\{Q'\} P \{R'\}}{\{Q\} P \{R\}} Q \models Q', R' \models R}{\{Q\} P \{R\}}$ [s] $\frac{\{Q\} P_1 \{R\} \{R\} P_2 \{S\}}{\{Q\} P_1; P_2 \{S\}}$ [w] $\frac{\{I \land B\} P \{I\}}{\{I\} \text{ while } B \text{ do } P \text{ end } \{I \land \neg B\}}$