23/02/2007

Algebra lineare - Corso di laurea in Informatica

Cognome:	Matricola:
	Cognome:

N.B.1 La risposta ad ogni singolo esercizio deve essere riportata nello spazio sottostante l'esercizio stesso (gli esercizi svolti in altri fogli non verranno presi in considerazione).

N.B.2 Gli esercizi senza giustificazione o risposta hanno valore nullo.

N.B.3 Gli esercizi senza nome e cognome hanno valore nullo.

Esercizio 1 [2.5 PUNTI]

Trovare tutti i numeri complessi tali che $(z-1)^4=1$.

Risposta:

Esercizio 2 [2.5 PUNTI]

Trovare i numeri complessi che soddisfano l'equazione $z^3=z^2.$

Risposta:

Esercizio 3 [2.5 PUNTI]

Scrivere due numeri complessi non nulli z e w tale che $z^3 = -w^2$ e $\operatorname{Arg} z \neq \operatorname{Arg} w$.

Esercizio	4	[2.5]	PUNTI	l
-----------	---	-------	-------	---

Esercizio 4 [2.5 PUNTI] Quanti vettori esistono in \mathbb{R}^3 di norma 5 che sono ortogonali ai vettori $\mathbf{v_1}=(11,22,33)$ e $\mathbf{v_2} = (-15, 27, 30)$?.

Risposta:

Esercizio 5 [2.5 PUNTI]

Siano \mathbf{u}, \mathbf{v} e \mathbf{w} tre vettori di \mathbb{R}^3 . Allora $(\mathbf{u} + \mathbf{v}) \wedge \mathbf{w} = \mathbf{u} \wedge \mathbf{w} + \mathbf{v} \wedge \mathbf{w}$ \mathbf{V} \mathbf{F} Giustificazione:

Esercizio 6 [2.5 PUNTI]

Calcolare l'area del parallelogramma generato dai due vettori $\mathbf{u} = (1, 0, 1), \mathbf{v} = (2, 0, 1).$

Esercizio 7 [2.5 PUNTI]
$$\text{Caloclare } A^5B^7 \text{ dove } A = \left(\begin{array}{ccc} 1 & 5 & 6 \\ 0 & 12 & -1 \\ 1 & 23 & 2 \end{array} \right) \text{ e } B = \left(\begin{array}{ccc} 0 & 5 & 6 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{array} \right).$$
 Risposta:

Risposta:

Esercizio 8 [2.5 PUNTI]

Definire il rango di una matrice.

Risposta:

Esercizio 9 [2.5 PUNTI]

Scrivere due vettori di \mathbb{R}^4 che formano un angolo di $\frac{\pi}{4}$ e che siano ortogonali al vettore (0, 2, 0, 3).

Esercizio 10 [2.5 PUNTI]

Un sistema di un'equazione lineare in due incognite è sempre compatibile. ${f V}$ ${f F}$ Giustificazione:

Esercizio 11 [2.5 PUNTI] Discutere le soluzioni del seguente sistema lineare al variare del parametro reale λ .

$$\begin{cases} x + \lambda z = -1 \\ x + y + (\lambda + 1)z = 0 \\ (\lambda - 1)x + (\lambda - 1)z = 1 \end{cases}$$

Risposta:

Esercizio 12 [2.5 PUNTI]

Quali sono le condizioni che assicurano che un sistema lineare di tre equazioni in 3 incognite abbia un unica soluzione?