Math 449: Numerical Applied Mathematics

Lecture 24

10/30/2017 Wenzhen Today's topic: Interpolation Error

Today: Interpolation & Interpolation Error

Given distinct points $x_0, ..., x_n \in \mathbb{R}$ and not necessarily distinct $y_0, ..., y_n \in \mathbb{R}$ fit a polynomial $p_n \in P_n$ where $p_n(x_i) = y_i$ for i = 0,1,...,n.

Define Lagrange basis polynomials

degree-n polynomial with

$$L_k(x_i) = \begin{cases} 1 & \text{if } i=k \\ 0 & \text{if } k \end{cases}$$

Interpolating polynomial

$$p_n(x) = \sum_{k=0}^n l_k(x) \, d_k$$

{Lk} $_{k=0}^{n}$ is a basis for Pn, and Pn is the unique polynomial in Pn interpolating given pts (x_0, y_0) , (x_1, y_1) , ..., (x_n, y_n)

Function Approximation

Given a function $f: [a,b] \rightarrow \mathbb{R}$ and obstinct interpolation pts.

$$x_0, x_1, ..., x_n \in [a, b]$$

Take
$$y_k = f(x_k) \quad k = 0, 1, ..., n$$

interpolating polynomial
$$p_n(x) = \sum_{k=0}^{n} l_k(x) f(x_k)$$

agrees with f at x_0, x_1, \dots, x_n .

How well does p_n approx. f?

Can we find an upper bound on the error Ifix: -pn(x) ?

Different way to approx. f by a degree-n polynomial: Taylor polynomial.

If f is n times differentiable, pick one pt x_0 .

$$t_n(x) = f(x_0) + f'(x_0) (x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Lagrange polynomial doesn't require any differentiality of f to define.

Taylor's theorem with remainder says that if f is C^{n+1} , then we have the error expression $f(x) - t_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1}$

Our goal is to get a similar expression for fix) -pn(x)

Key Tool: Rolle's Theorem

If $f: [a,b] \to \mathbb{R}$ is C' (continuously differentiable once) and if f(a) = f(b)

then $f'(\xi)=0$ at some $\xi\in(a,b)$

Proof. Since f is continuous on a closed interval

it attains a max and a min in [a,b]

if either a min/max is attained at an interior pt $\xi \in (a, b)$ then f(g) = 0

Otherwise, both max and min attained at end pts, but values at endpts are equal (max = min) => constant function.

$$\Rightarrow f'(\xi) = 0$$
 for any $\xi \in (a,b)$

Rmk This is a special case of the MVT and in fact is used to prove MVT and Taylor's theorem.

Theorem

If f is C^{n+1} on [a,b], $\times_0, ..., \times_n \in [a,b]$ distinct Pn the interpolating polynomial.

Let $\pi_{n+1}(x) = (x-x_0) \cdots (x-x_n) \in P_{n+1}$ be nodal polynomial

then
$$f(z) - p_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \pi_{n+1}(x)$$
 for some ξ

then for all ze [a,b], 3 ge (a,b):

$$f(x) - p_n(x) \approx \frac{f^{(n+1)}(\xi)}{(n+1)!} \pi_{n+1}(x)$$

3 may be different for different z.

Rmk. This looks like Taylor's Thm, where $\pi_{n+1}(x)$ plays the role of $(z-x_0)^{n+1}$. Start with special case n=0.

$$n=0$$
 Take $x_0 \in [a,b]$, $p_0(x) = f(x_0)$

If
$$x = x_0$$
, then $f(x) - p_0(x) = 0$

$$x \neq x_0$$
 fix x_1 and define

$$\varphi(t) = \left[f(t) - p_o(t) \right] - \frac{\left[f(x) - p_o(x) \right]}{\pi_1(x)} \pi_1(t)$$

$$2f t=x, \varphi(x) = \left[f(x) - p_0(x) \right] - \frac{f(x) - p_0(x)}{\lambda_1(x)} \lambda_1(x) = 0$$

Proof. If $x = x_i$, for some i = 0, ..., n, then both sides are 0.

otherwise, fix x and define $\Psi(t) = (f(t) - p_n(t)) - \frac{(f(x) - p_n(x))}{(f(x) - p_n(x))}$

Let
$$\varphi(t) = \left[\int (t) - p_n(t) \right] - \frac{\int (x) - p_n(x)}{z_{n+1}(x)} \pi_{n+1}(t)$$

As above, $\varphi(x_0) = \cdots = \varphi(x_n) = 0$ and $\varphi(x) = 0$

4 vanishes at n+1 distinct pts. Apply Rolle's Thm to constnut pairs.