Ing. Josef Bašta, SPŠ Česká Lípa

Aritmetické a logické instrukce

ADD	Rd, Rr	Add two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl,K	Add Immediate to Word	$Rdh:Rdl \leftarrow Rdh:Rdl + K$	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	Rd ← Rd - Rr	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	Rd ← Rd - K	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	Rd ← Rd - Rr - C	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Rd	Rd ← Rd - K - C	Z,C,N,V,H	1
SBIW	Rdl,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	Rd ← Rd • Rr	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	Rd ← Rd • K	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	Rd ← Rd v Rr	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	Rd ← Rd v K	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	Rd ← Rd ⊕Rr	Z,N,V	1
COM	Rd	One's Complement	Rd ← \$FF – Rd	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← \$00 – Rd	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	Rd ← Rd v K	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	Rd ← Rd • (\$FF - K)	Z,N,V	1
INC	Rd	Increment	$Rd \leftarrow Rd + 1$	Z,N,V	1
DEC	Rd	Decrement	Rd ← Rd − 1	Z,N,V	1
TST	Rd	Test for Zero or Minus	Rd ← Rd • Rd	Z,N,V	1
CLR	Rd	Clear Register	Rd ← Rd ⊕Rd	Z,N,V	1
SER	Rd	Set Register	Rd ← \$FF	None	1
MUL	Rd, Rr	Multiply Unsigned	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
MULS	Rd, Rr	Multiply Signed	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
MULSU	Rd, Rr	Multiply Signed with Unsigned	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
FMUL	Rd, Rr		$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2
FMULS	Rd, Rr		$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2
FMULSU	Rd, Rr	17 9	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2

\$00

\$01

\$02

\$0D

\$0E

\$0F

\$10

\$11

\$1A

\$1B

\$1C

\$1D

\$1E

\$1F

X – registr Low

X – registr High

Y - registr Low

Y - registr High

Z – registr Low

Z – registr High

R00 R01

R02

R13

R14

R15

R16

R17

R26

R27

R28

R29

R30

R31

Instrukce skoku (Branch)

	01	
_		_

		` '			
RJMP	k	Relative Jump	$PC \leftarrow PC + k + 1$	None	2
IJMP		Indirect Jump to (Z)	$PC \leftarrow Z$	None	2
JMP	k	Direct Jump	PC ← k	None	3
RCALL	k	Relative Subroutine Call	$PC \leftarrow PC + k + 1$	None	3
ICALL		Indirect Call to (Z)	$PC \leftarrow Z$	None	3
CALL	k	Direct Subroutine Call	PC ← k	None	4
RET		Subroutine Return	PC ← Stack	None	4
RETI		Interrupt Return	PC ← Stack	I	4
CPSE	Rd,Rr	Compare, Skip if Equal (Rd = Rr)	$PC \leftarrow PC + 2 \text{ or } 3$	None	1-3
CP	Rd,Rr	Compare	Rd – Rr	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	Rd - Rr - C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Rr Cleared	$(Rr(b)=0)$: $PC \leftarrow PC + 2 \text{ or } 3$	None	1-3
SBRS	Rr, b	Skip if Bit in Rr is Set	$(Rr(b)=1): PC \leftarrow PC + 2 \text{ or } 3$	None	1-3
SBIC	P, b	Skip if Bit in I/O Rr Cleared	$(P(b)=0)$: PC \leftarrow PC + 2 or 3	None	1-3
SBIS	P, b	Skip if Bit in I/O Rr is Set	$(P(b)=1)$: PC \leftarrow PC + 2 or 3	None	1-3
BRBS	s, k	Branch if Status Flag Set	$(SREG(s) = 1): PC \leftarrow PC + k + 1$	None	1-2
BRBC	s, k	Branch if Status Flag Cleared	$(SREG(s) = 0): PC \leftarrow PC + k + 1$	None	1-2
BREQ	k	Branch if Equal	$(Z = 1)$: $PC \leftarrow PC + k + 1$	None	1-2
BRNE	k	Branch if Not Equal	$(Z = 0)$: $PC \leftarrow PC + k + 1$	None	1-2
BRCS	k	Branch if Carry Set	$(C = 1)$: $PC \leftarrow PC + k + 1$	None	1-2
BRCC	k	Branch if Carry Cleared	$(C = 0)$: $PC \leftarrow PC + k + 1$	None	1-2
BRSH	k	Branch if Same or Higher	$(C = 0)$: $PC \leftarrow PC + k + 1$	None	1-2
BRLO	k	Branch if Lower	$(C = 1)$: $PC \leftarrow PC + k + 1$	None	1-2
BRMI	k	Branch if Minus	$(N = 1)$: $PC \leftarrow PC + k + 1$	None	1-2
BRPL	k	Branch if Plus	$(N = 0)$: $PC \leftarrow PC + k + 1$	None	1-2
BRGE	k	Branch if Greater or Equal, Signed	$(N \oplus V = 0)$: $PC \leftarrow PC + k + 1$	None	1-2
BRLT	k	Branch if Less Than Zero, Signed	$(N \oplus V = 1)$: $PC \leftarrow PC + k + 1$	None	1-2
BRHS	k	Branch if Half Carry Flag Set	$(H = 1)$: $PC \leftarrow PC + k + 1$	None	1-2
BRHC	k	Branch if Half Carry Flag Cleared	$(H = 0)$: $PC \leftarrow PC + k + 1$	None	1-2
BRTS	k	Branch if T Flag Set	$(T = 1)$: $PC \leftarrow PC + k + 1$	None	1-2
BRTC	k	Branch if T Flag Cleared	$(T = 0)$: $PC \leftarrow PC + k + 1$	None	1-2
BRVS	k	Branch if Overflow Flag is Set	$(V = 1)$: $PC \leftarrow PC + k + 1$	None	1-2
BRVC	k	Branch if Overflow Flag is Cleared	$(V = 0)$: $PC \leftarrow PC + k + 1$	None	1-2
BRIE	k	Branch if Interrupt Enabled	$(I=1)$: PC \leftarrow PC + k + 1	None	1-2
BRID	k	Branch if Interrupt Disabled	$(I = 0)$: $PC \leftarrow PC + k + 1$	None	1-2

Řídící instrukce mikroprocesoru

NOP	No Operation	None	1
SLEEP	Sleep	None	1
WDR	Watchdog Reset	None	1
BREAK	Break For	None	N

Instrukce přesunů

	1	1		_	
MOV	Rd, Rr	Move Between Registers	Rd ← Rr	None	1
MOVW	Rd, Rr	Copy Register Word	$Rd+1:Rd \leftarrow Rr+1:Rr$	None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1, Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1, Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	Rd ← (k)	None	2
ST	X, Rr	Store Indirect	$(X) \leftarrow Rr$	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1, (X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	(Y) ← Rr	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None	2
STD	Y+q,Rr	Store Indirect with Displacement	$(Y + q) \leftarrow Rr$	None	2
ST	Z, Rr	Store Indirect	$(Z) \leftarrow Rr$	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1, (Z) \leftarrow Rr$	None	2
STD	Z+q,Rr	Store Indirect with Displacement	$(Z + q) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	(k) ← Rr	None	2
LPM		Load Program Memory	$R0 \leftarrow (Z)$	None	3
LPM	Rd, Z	Load Program Memory	$Rd \leftarrow (Z)$	None	3
LPM	Rd, Z+	Load Program Memory and Post-Inc	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	3
SPM		Store Program Memory	(Z) ← R1:R0	None	-
IN	Rd, P	In Port	Rd ← P	None	1
OUT	P, Rr	Out Port	P ← Rr	None	1
PUSH	Rr	Push Register on Stack	Stack ← Rr	None	2
POP	Rd	Pop Register from Stack	Rd ← Stack	None	2

Instrukce bitové (testování a rotace)

SBI	P,b	Set Bit in I/O Register	$I/O(P,b) \leftarrow 1$	None	2
CBI	P,b	Clear Bit in I/O Register	$I/O(P,b) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n), C\leftarrow Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1), C\leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	$Rd(30) \leftarrow Rd(74), Rd(74) \leftarrow Rd(30)$	None	1

Instrukce bitové (nastavování)

BSET	s	Flag Set	$SREG(s) \leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	T	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	C	1
CLC		Clear Carry	C ← 0	C	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	I ← 1	I	1
CLI		Global Interrupt Disable	I ← 0	I	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Twos Compl. Overflow.	V ← 1	V	1
CLV		Clear Twos Compl. Overflow	V ← 0	V	1
SET		Set T in SREG	T ← 1	T	1
CLT		Clear T in SREG	T ← 0	T	1
SEH		Set Half Carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1

Register File	Data Adress Space
---------------	--------------------------

R00	\$0000
R01	\$0001
R02	\$0002
•••	
R29	\$001D
R30	\$001E
R31	\$001F

I/O Registers

\$00	\$0020
\$01	\$0021
\$02	\$0022
••••	
\$3D	\$005D
\$3E	\$005E
\$3F	\$005F

Internal SRAM

Mapa paměti

Internal SKAWI				
\$0060				
\$0061				
\$085E				
\$085F				

Příznaky

I (7) Global Interrupt Enable

T (6) Bit Copy Storage

H (5) Half Carry Flag

S (4)

Sign Bit, $S = N \oplus V$

V (3) Two's Complement Overflow Flag

N (2) Negative Flag

Z(1)

Zero Flag

C (0) Carry Flag

03 -

Direktivy a funkce překladače assembleru

.include	připojení externího souboru, například s definicemi konstant		
.mciuue	.include "m32def.inc" ;pro ATMega32		
.device	definice typu mikroprocesoru		
lacvice	.device ATmega32		
.org	definuje adresu v paměti, na jakou má být program přeložen		
	.org 0x0100 ;překlad od adresy 100h		
.cseg	programový segment, paměť Flash		
.dseg	datový segment, paměť SRAM		
.eseg	EEPROM segment		
.equ	přiřazení hodnoty – definice konstant		
1	.equ SREG = 0x3f ;stavový registr		
	.equ SPL = 0x3d ;ukazatel zásobníku		
	.equ SPH = 0x3e		
.set	přiřazení hodnoty; možno měnit v průběžně ve zdrojovém textu		
.def	definice alternativního názvu registru		
.undef	.def ior=R0		
	.undef ior		
.byte	definice proměnných v paměti		
	prom1: .BYTE ; rezervování 1 byte		
	tab: .BYTE 20 ;rezervování 20 bytů pro tabulku		
.db	definice konstanty o velikosti 1B, 2B		
.dw	consts: .db 0, 255, 0b01010101, -128, 0xaa		
	const1: .dw 0x458A definice makroinstrukce		
.macro	@0, @1, @2, parametry makroinstrukce		
.endmacro	.MACRO SUBI16 ; začátek definice makra		
	subi @0,low(@2) ;odčítaní dolní byte		
	sbci @1, high(@2) ; odčítaní horní byte		
	.ENDMACRO ; konec definice makra		
	.CSEG		
	SUBI16 r16,r17,0x1234 ;odečtení		
	;konstanty 0x1234 od dvojregistru r17:r16		

ATMega32 – piny

			1
(XCK/T0) PB0 □	$ _{1}$	40	PA0 (ADC0)
(T1) PB1 □	2	39	PA1 (ADC1)
(INT2/AIN0) PB2	3	38	PA2 (ADC2)
(OC0/AIN1) PB3 □	4	37	PA3 (ADC3)
(SS) PB4 □	5	36	PA4 (ADC4)
(MOSI) PB5 □	6	35	PA5 (ADC5)
(MISO) PB6 □	7	34	PA6 (ADC6)
(SCK) PB7 □	8	33	PA7 (ADC7)
RESET	9	32	□ AREF
VCC □	10	31	□ GND
GND □	11	30	□ AVCC
XTAL2 □	12	29	PC7 (TOSC2)
XTAL1 □	13	28	PC6 (TOSC1)
(RXD) PD0 □	14	27	PC5 (TDI)
(TXD) PD1 □	15	26	PC4 (TDO)
(INT0) PD2 □	16	25	PC3 (TMS)
(INT1) PD3 □	17	24	PC2 (TCK)
(OC1B) PD4 □	18	23	PC1 (SDA)
(OC1A) PD5 □	19	22	PC0 (SCL)
(ICP1) PD6 □	20	21	D PD7 (OC2)
			I

I/O registry ATMega 32

Bit	7	6	5	4	3	2	1	0	_
	I	T	Н	S	V	N	Z	С	SREG
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	

SREG (\$3F) – status registr: stavový registr

SP – Stack Pointer: ukazatel zásobníku: SPH (\$3E), SPL (\$3D)

Bit	7	6	5	4	3	2	1	0	_
	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	OSCCAL
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value			Devi	ce Specific (Calibration \	/alue			

OSCCAL (\$31) – Oscillator Calibration Register

Bit	7	6	5	4	3	2	1	0	_
	SE	SM2	SM1	SM0	ISC11	ISC10	ISC01	ISC00	MCUCR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

MCUCR (\$35) - MCU Control Registr

- ➤ SE Sleep Enable: povolení úsporných režimů
- > SM2..0 Sleep Modes: výběr módu.
- > ISCxx: Interrupt Sense Control: řízení chování přerušovacích vstupů INT0 a INT1

Bit	7	6	5	4	3	2	1	0	_
	JTD	ISC2	-	JTRF	WDRF	BORF	EXTRF	PORF	MCUCSR
Read/Write	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0		See	Bit Descrip	otion		

MCUCSR (\$34) – MCU Control and StatusRegister:

- > JTD: JTAG Interface Disable
- ➤ ISC2: řízení chování přerušovacího vstup INT2
- Zdroje RESETu: JTAG Reset, Watchdog, Brown-out Detection, External Reset, Power-On Reset

WDTCR (\$21) - Watchdog Timer Control Register

- ➤ WDTOE Watchdog Turn-off Enable (používá se pro vypnutí Watchdogu)
- ➤ WDE Watchdog Enable: povolení Watchdogu
- ➤ WDP2..0 Nastavení intervalu Watchdogu a zpoždění po zapnutí či RESETu

Konfigurace pinů PAx, PBx, PCx, PDx

DDxn	PORTxn	PUD (in SFIOR)	I/O	Pull-up	Comment
0	0	X	Input	No	Tri-state (Hi-Z)
0	1	0	Input	Yes	Pxn will source current if ext. pulled low.
0	1	1	Input	No	Tri-state (Hi-Z)
1	0	Х	Output	No	Output Low (Sink)
1	1	X	Output	No	Output High (Source)

SFIOR (\$30) - Special Function I/O Register

> PUD: Pull-up disable – řízení Pull-up rezistorů

Přerušení ATMega 32

Bit	7	6	5	4	3	2	1	0	
	INT1	INT0	INT2	-	-	-	IVSEL	IVCE	GICR
Read/Write	R/W	R/W	R/W	R	R	R	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

GCIR (\$3B) – General Interrupt Control Register: povolování přerušení

- > INT1: povolení vnějšího přerušení INT1
- > INT0: povolení vnějšího přerušení INT0
- > INT2: povolení vnějšího přerušení INT2
- ➤ **IVSEL**, **IVCE**: povolení změn vektorů přerušení v paměti programu FLASH

Bit	7	6	5	4	3	2	1	0	_
	JTD	ISC2	-	JTRF	WDRF	BORF	EXTRF	PORF	MCUCSR
Read/Write	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	See Bit Description					

MCUCSR (\$34) – MCU Control and StatusRegister:

➤ ISC2: řízení chování přerušovacího vstup INT2: 0 – sestupná hrana, 1 – náběžná hrana

Bit	7	6	5	4	3	2	1	0	
	SE	SM2	SM1	SM0	ISC11	ISC10	ISC01	ISC00	MCUCR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

MCUCR (\$35) - MCU Control Registr

> ISCxx: Interrupt Sense Control: řízení chování přerušovacích vstupů INT0 a INT1

Tabulka přerušení ATMega 32

Vector No.	Program Address ⁽²⁾	Source	Interrupt Definition
1	\$000 ⁽¹⁾	RESET	External Pin, Power-on Reset, Brown-out Reset, Watchdog Reset, and JTAG AVR Reset
2	\$002	INT0	External Interrupt Request 0
3	\$004	INT1	External Interrupt Request 1
4	\$006	INT2	External Interrupt Request 2
5	\$008	TIMER2 COMP	Timer/Counter2 Compare Match
6	\$00A	TIMER2 OVF	Timer/Counter2 Overflow
7	\$00C	TIMER1 CAPT	Timer/Counter1 Capture Event
8	\$00E	TIMER1 COMPA	Timer/Counter1 Compare Match A
9	\$010	TIMER1 COMPB	Timer/Counter1 Compare Match B
10	\$012	TIMER1 OVF	Timer/Counter1 Overflow
11	\$014	TIMER0 COMP	Timer/Counter0 Compare Match
12	\$016	TIMER0 OVF	Timer/Counter0 Overflow
13	\$018	SPI, STC	Serial Transfer Complete
14	\$01A	USART, RXC	USART, Rx Complete
15	\$01C	USART, UDRE	USART Data Register Empty
16	\$01E	USART, TXC	USART, Tx Complete
17	\$020	ADC	ADC Conversion Complete
18	\$022	EE_RDY	EEPROM Ready
19	\$024	ANA_COMP	Analog Comparator
20	\$026	TWI	Two-wire Serial Interface
21	\$028	SPM_RDY	Store Program Memory Ready

Chování přerušovacích vstupů INT0 a INT1

ISC11	ISC10	Description
0	0	The low level of INT1 generates an interrupt request.
0	1	Any logical change on INT1 generates an interrupt request.
1	0	The falling edge of INT1 generates an interrupt request.
1	1	The rising edge of INT1 generates an interrupt request.

Timer/Counter 0

Bit	7	6	5	4	3	2	1	0	_
		TCNT0[7:0]							
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

TCNT0 (\$32) – Timer/Counter Register 0

Bit	7	6	5	4	3	2	1	0	_		
		OCR0[7:0]									
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•		
Initial Value	0	0	0	0	0	0	0	0			

OCR0 (\$3C) – Output Compare Register 0

Bit	7	6	5	4	3	2	1	0	_
	FOC0	WGM00	COM01	COM00	WGM01	CS02	CS01	CS00	TCCR0
Read/Write	W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

TCCR0 (\$33) – Timer/Counter Control Register 0

- FOC0, WGM00, COM01, COM00, WGM01: řízení módů komparátoru a generátoru průběhů.
- > CS02, CS01, CS00: řízení dělícího poměru předděličky 0.

Prescaler 0 a 1

SFIOR (\$30) – Special Function IO Register

> **PSR10:** resetování předděličky 1 a 0.

> **PSR2:** resetování předděličky.2

Význam bitů CSxx pro řízení předděličky 0 a 1

CS02	CS01	CS00	Description
0	0	0	No clock source (Timer/Counter stopped).
0	0	1	clk _{I/O} /(No prescaling)
0	1	0	clk _{I/O} /8 (From prescaler)
0	1	1	clk _{I/O} /64 (From prescaler)
1	0	0	clk _{I/O} /256 (From prescaler)
1	0	1	clk _{I/O} /1024 (From prescaler)
1	1	0	External clock source on T0 pin. Clock on falling edge.
1	1	1	External clock source on T0 pin. Clock on rising edge.

Timer/Counter 1

16-bit Timer/Counter Block Diagram

Frekvence výstupního signálu OCn:

$$f_{\text{OCn}} = \frac{f_{\text{CLK_IO}}}{2 \cdot N \cdot (1 + \text{OCRn})}$$

- ➤ fclk_io: hodinový signál pro časovače
- > OCRn: přednastavená hodnota v registru OCR0
- ➤ **N:** nastavení předděličky (1, 8, 64, 256, 1024)

TCNT1 – Timer/Counter 1: TCNT1H (\$2D), TCNT1L (\$2C)

ICR1 – Input Capture Register 1: ICR1H (\$27) ICR1L (\$26)

OCR1x – Output Compare Register 1A a 1B:

OCR1AH (\$2B), OCR1BH (\$29), OCR1AL (\$2A), OCR1BL (\$28)

Bit	7	6	5	4	3	2	1	0	_
	COM1A1	COM1A0	COM1B1	COM1B0	FOC1A	FOC1B	WGM11	WGM10	TCCR1A
Read/Write	R/W	R/W	R/W	R/W	W	W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

TCCR1A (\$2F) – Timer/Counter Control Register 1A

Bit	7	6	5	4	3	2	1	0	_
	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	TCCR1B
Read/Write	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

TCCR1B (\$2E) – Timer/Counter Control Register 1B

- > ICNC1: povolení jednotky pro potlačení zákmitů
- ➤ ICES1: volba detekce hrany na vstupu IC1 (0 sestupná hrana, 1 náběžná hrana)
- CS12, CS11, CS10: řízení dělícího poměru předděličky 1

R

0

Timer/Counter 2

Bit	7	6	5	4	3	2	1	0	_	
		TCNT2[7:0]								
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•	
Initial Value	0	0	0	0	0	0	0	0		

TCNT2 (**\$24**) – Timer/Counter 2

Bit	7	6	5	4	3	2	1	0	
	OCR2[7:0]								
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

OCR2 (\$23) – Output Compare Register 2

Bit	7	6	5	4	3	2	1	0	_
	FOC2	WGM20	COM21	COM20	WGM21	CS22	CS21	CS20	TCCR2
Read/Write	W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

TCCR2 (\$25) – Timer/Counter Control Register 2

- FOC2, WGM20, COM21, COM20, WGM21: módy komparátoru a generátoru průb.
- CS22, CS21, CS20: řízení dělícího poměru předděličky 2

ASSR (\$22) - Asynchronous Status Register

0

R

0

AS2: Asynchronous Timer/Counter2. AS2=0: clk_{I/O} AS2=1: clk_{ASY}

R

0

> TCN2UB, OCR2UB, TCR2UB: bity využívané pro práci v asynchronním režimu

R

0

R/W

0

0

0

Bit	7	6	5	4	3	2	1	0	
	OCIE2	TOIE2	TICIE1	OCIE1A	OCIE1B	TOIE1	OCIE0	TOIE0	TIMSK
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	ı
Initial Value	0	0	0	0	0	0	0	0	

TIMSK (\$39) – Timer/Counter Interrupt Mask: povolování přerušení

- OCIExx komparační registr
- TICIE1 záchytný registr
- TOIEx přetečení čítače

Read/Write

Initial Value

Bit	7	6	5	4	3	2	1	0	_
	OCF2	TOV2	ICF1	OCF1A	OCF1B	TOV1	OCF0	TOV0	TIFR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

TIFR (\$38) – Timer/Counter Interrupt Flag: bit nastavovaný při události

- OCFxx komparační registr
- ➤ ICF1 záchytný registr

TOVx – přetečení čítače

SPI – ATMega32

Bit	7	6	5	4	3	2	1	0	_
	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	SPCR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

SPCR (**\$0D**) – SPI Control Register

- > SPIE: SPI Interrupt Enable: povolení přerušení po dokončení přenosu dat
- > SPE: SPI Enable: povolení činnosti rozhraní SPI
- ➤ **DORD:** Data Order řízení směru přenosu: 1: LSB first, 0: MSB first
- MSTR: Master/Slave Select: v režimu master mikroprocesor řídí signál /SS
- > CPOL: Clock Polarity
- **CPHA:** Clock Phase
- > SPR1, SPR0: SPI Clock Rate Select 1 and 0: volba přenosové rychlosti

Bit	7	6	5	4	3	2	1	0	
	SPIF	WCOL	-	-	-	-	-	SPI2X	SPSR
Read/Write	R	R	R	R	R	R	R	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

SPSR (**\$0E**): SPI Status Register

> SPIF: SPI Interrupt Flag: bit je nastaven na 1 po ukončení přenosu.

WCOL: Write COLlision FlagSPI2X: Double SPI Speed Bit

Dia.	7	0	_	4	0	0	4	0	
Bit	/	ь	5	4	3	2	- 1	0	_
	MSB							LSB	SPDR
Read/Write	R/W								
Initial Value	X	X	X	X	X	X	X	X	Undefined

SPDR (\$0F): SPI Data Register

SPI – volba přenosové rychlosti

SP	SP	SP	f SCK
I2X	R1	R0	
0	0	0	fosc/4
0	0	1	fosc/16
0	1	0	fosc/64
0	1	1	fosc/128
1	0	0	fosc/2
1	0	1	fosc/8
1	1	0	fosc/32
1	1	1	fosc/64

SPI módy

SPI Transfer Format with CPHA =

USART – ATMega32

Synchronní režim

Asynchronní režim

- St Start bit, always low.
- (n) Data bits (0 to 8).
- P Parity bit. Can be odd or even.
- Sp Stop bit, always high.

Registry

Bit	7	6	5	4	3	2	1	0				
									UDR (Read)			
		RXB[7:0]										
				TXB	[7:0]				UDR (Write)			
D. IAMA	DAM	DAM	DAM	DAM	DAM	DAM	DAM	DAM	a e			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Initial Value	0	0	0	0	0	0	0	0				
iiiiiai value	0	U	0	0	0	0	U	0				

UDR (**\$0C**): USART I/O Data Register – datový registr rozhraní USART

UPM1	UPM0	Parity Mode
0	0	Disabled
0	1	Reserved
1	0	Enabled, Even Parity
1	1	Enabled, Odd Parity

Bit	7	6	5	4	3	2	1	0	_
	RXC	TXC	UDRE	FE	DOR	PE	U2X	MPCM	UCSRA
Read/Write	R	R/W	R	R	R	R	R/W	R/W	
Initial Value	0	0	1	0	0	0	0	0	

UCSRA (\$0B): USART Control and Status Register A

- **RXC:** USART Receive Complete bit je nastaven po ukončení příjmu dat z RxD a je automaticky nulován při přečtení dat z UDR.
- TXC: USART Transmit Complete bit je nastaven po ukončení vysílání dat na TxD a je automaticky nulován při provedení přerušení vyvolaného ukončením vysílání.
- ➤ UDRE: USART Data Register Empty bit je nastaven, jestliže datový registr je připravený přijmout další data pro vysílání.
- > **FE:** Frame Error: chyba při přenosu dat (první Stop bit je 0)
- ▶ DOR: Data OverRun byl přijat druhý znak dříve než byl předchozí vyjmut z datového registru. Znak čeká v přijímacím posuvném registru.
- > **PE:** Parity Error chyba při přenosu dat parita
- ➤ U2X: Double the USART Transmission Speed dvojnásobná přenosová rychlost
- ➤ **MPCM:** Multi-processor Communication Mode povolení více procesorového přenosového módu

Bit	7	6	5	4	3	2	1	0	
	RXCIE	TXCIE	UDRIE	RXEN	TXEN	UCSZ2	RXB8	TXB8	UCSRB
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	_
Initial Value	0	0	0	0	0	0	0	0	

UCSRB (\$0A): USART Control and Status Register B

- **RXCIE:** RX Complete Interrupt Enable povolení přer. č. 14 po ukončení příjmu dat.
- TXCIE: TX Complete Interrupt Enable povolení přer. č. 16 po ukončení vysílání dat.
- ➤ UDRIE: USART Data Register Empty Int. Enable povol. přer. č. 15 vyprázdnění UDR
- **RXEN:** Receiver Enable
- **TXEN:** Transmitter Enable povolení alternativní funkce portu TxD a RxD.
- ➤ UCSZ2: Character Size (viz USCRC)
- ➤ **RXB8 / TXB8:** Receive / Transmit Data Bit 8 bit 8 při přenosu devíti bitového slova

Bit	7	6	5	4	3	2	1	0	_
	URSEL	UMSEL	UPM1	UPM0	USBS	UCSZ1	UCSZ0	UCPOL	UCSRC
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	1	0	0	0	0	1	1	0	

UCSRC (\$20): USART Control and Status Register C

- ➤ URSEL: Register Select volba mezi prací s registrem UCSRC (1) a UBRRH (0).
- ➤ UMSEL: USART Mode Select volba přenosového módu: 0: asynchronní; 1: synchronní
- > **UPM1, UPM0:** Parity Mode
- USBS: počet STOP bitů: 0: jeden, 1: dva
- ► UCSZ1, UCSZ0: charakter size
- ➤ UCPOL: Clock Polarity: nastavení polarity hodinového signálu XCK

USART – ATMega32

Nastavení délky přenášeného slova

UCSZ2	UCSZ1	UCSZ0	Character Size
0	0	0	5-bit
0	0	1	6-bit
0	1	0	7-bit
0	1	1	8-bit
1	0	0	Reserved
1	0	1	Reserved
1	1	0	Reserved
1	1	1	9-bit

Bit	15	14	13	12	11	10	9	8	
DIL		14	13	12				0	-
	URSEL	-	-	-		UBRE	?[11:8]		UBRRH
				UBR	R[7:0]				UBRRL
	7	6	5	4	3	2	1	0	•
Read/Write	R/W	R	R	R	R/W	R/W	R/W	R/W	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	

UBRR: USART Baud Rate Registers, UBRRH (\$20), UBRRL (\$09)

- ➤ URSEL: Register Select volba mezi prací s registrem UCSRC (1) a UBRRH (0).
- > UBRR11.. 0: nastavení přenosové rychlosti

Operating Mode	Equation for Calculating Baud Rate ⁽¹⁾	Equation for Calculating UBRR Value
Asynchronous Normal Mode (U2X = 0)	$BAUD = \frac{f_{OSC}}{16(UBRR + 1)}$	$UBRR = \frac{f_{OSC}}{16BAUD} - 1$
Asynchronous Double Speed Mode (U2X = 1)	$BAUD = \frac{f_{OSC}}{8(UBRR + 1)}$	$UBRR = \frac{f_{OSC}}{8BAUD} - 1$
Synchronous Master Mode	$BAUD = \frac{f_{OSC}}{2(UBRR + 1)}$	$UBRR = \frac{f_{OSC}}{2BAUD} - 1$

EEPROM – ATMega32

1024 byte

Bit	15	14	13	12	11	10	9	8	_
	-	-	-	-	-	-	EEAR9	EEAR8	EEARH
	EEAR7	EEAR6	EEAR5	EEAR4	EEAR3	EEAR2	EEAR1	EEAR0	EEARL
	7	6	5	4	3	2	1	0	•
Read/Write	R	R	R	R	R	R	R/W	R/W	
	R/W								
Initial Value	0	0	0	0	0	0	0	X	
	X	X	X	X	X	X	X	X	

EEAR: EEPROM Address Register: EEARH (\$1F), EEARL (\$1E)

Bit	7	6	5	4	3	2	1	0	
	MSB							LSB	EEDR
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	

EEDR (\$1D): EEPROM Data Register

Bit	7	6	5	4	3	2	1	0	_
	-	-	-	-	EERIE	EEMWE	EEWE	EERE	EECR
Read/Write	R	R	R	R	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	X	0	

EECR – Řídící (control) registr

- **EERIE:** EEPROM Ready Interrupt Enable povolení přerušení od paměti EEPROM.
- **EEMWE:** EEPROM Master Write Enable "hlavní" povolení zápisu do paměti EEPROM pokud tento bit není nastaven na 1, není možné zapsat a bit EEWE je ignorován.
- **EEWE:** EEPROM Write Enable
 - o Nastavení bitu EEWE spustí cyklus zápisu do paměti EEPROM.
 - o Po ukončení zápisu je hardwarově nulován.
 - O Zápis trvá přibližně 8,5 ms (8500 cyklů), po tuto dobu nelze s EEPROM pracovat.
 - Před zápisem či čtením je nutné otestovat pomocí bitu EEWE, zda je paměť EEPROM připravená nebo zda probíhá cyklus zápisu.
- **EERE:** EEPROM Read Enable signál pro přečtení dat z paměti EEPROM.

TWI – ATMega32

Interfacing the Application to the TWI in a Typical Transmission

Bit	7	6	5	4	3	2	1	0	_
	TWD7	TWD6	TWD5	TWD4	TWD3	TWD2	TWD1	TWD0	TWDR
Read/Write	R/W	•							
Initial Value	1	1	1	1	1	1	1	1	

TWDR (\$03): TWI Data Register: datový registr

Bit	7	6	5	4	3	2	1	0	_
	TWA6	TWA5	TWA4	TWA3	TWA2	TWA1	TWA0	TWGCE	TWAR
Read/Write	R/W	•							
Initial Value	1	1	1	1	1	1	1	0	

TWAR (\$04): TWI (slave) Address Register

> TWGCE: TWI General Call Recognition Enable – Bit povolení žádosti o sběrnici

Bit	7	6	5	4	3	2	1	0	_
	TWBR7	TWBR6	TWBR5	TWBR4	TWBR3	TWBR2	TWBR1	TWBR0	TWBR
Read/Write	R/W	•							
Initial Value	0	0	0	0	0	0	0	0	

TWBR (\$00):

TWI Bit Rate Register

SCL frequency =
$$\frac{\text{CPU Clock frequency}}{16 + 2(\text{TWBR}) \cdot 4^{TWPS}}$$

TWBR = Value of the TWI Bit Rate Register

TWPS = Value of the prescaler bits in the TWI Status Register

Bit	7	6	5	4	3	2	1	0	
	TWS7	TWS6	TWS5	TWS4	TWS3	-	TWPS1	TWPS0	TWSR
Read/Write	R	R	R	R	R	R	R/W	R/W	
Initial Value	1	1	1	1	1	0	0	0	

TWSR (\$01): TWI Status Register

- TWS7..3: stavové bity (jsou pouze ke čtení) popisují aktuální stav přenosu dat po TWI
- **TWPS1..0:** nastavení předděličky (00 1, 01 4, 10 16, 11 64)

Bit	7	6	5	4	3	2	1	0	_
	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	-	TWIE	TWCR
Read/Write	R/W	R/W	R/W	R/W	R	R/W	R	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

TWCR (\$36): TWI Control Register

- TWINT: TWI Interrupt Flag bit je nastaven při generování přerušení TWI (č. 20)
- > TWEA: TWI Enable Acknowledge Bit povolení generování potvrzovacího bitu ACK
- > TWSTA: TWI START Condition Bit nastavením bitu je generován START bit
- > TWSTO: TWI STOP Condition Bit nastavením bitu je generován STOP bit
- > TWWC: TWI Write Collision Flag: příznak kolize na sběrnici
- ➤ **TWEN:** TWI Enable Bit povolení TWI
- ➤ **TWIE:** TWI Interrupt Enable povolení přerušení.

Analogový komparátor – ATMega32

SFIOR (\$30): Special Function IO Register

> ACME: Analog Comparator Multiplexer Enable

Bit	7	. 6	5	4	3	. 2	1	. 0	_
	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	ACSR
Read/Write	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	N/A	0	0	0	0	0	

ACSR (\$08): Analog Comparator Control and Status Register:

- > ACD: Analog Comparator Disable zakázání funkce komparátoru
- ➤ **ACBG:** Analog Comparator Bandgap Select (0=AN0 1=BANDGAP)
- ➤ ACO: Analog Comparator Output bit je nastavován výstupem komparátoru
- ➤ ACI: Analog Comparator Interrupt Flag přerušení č. 19 analogový komparátor.
- > ACIE: Analog Comparator Interrupt Enable povolení přerušení analog. kompar.
- ➤ ACIC: Analog Comparator Input Capture Enable výstup komparátoru je veden na vstupní záchytnou jednotku čítače 1
- ➤ ACIS1..0: Analog Comparator Interrupt Mode Select

ACIS1	ACIS0	Interrupt Mode
0	0	Comparator Interrupt on Output Toggle
0	1	Reserved
1	0	Comparator Interrupt on Falling Output Edge
1	1	Comparator Interrupt on Rising Output Edge

Výběr signálu přiváděného na záporný vstup komparátoru

ACME	ADEN	MUX20	Analog Comparator Negative Input
0	х	xxx	AIN1
1	1	xxx	AIN1
1	0	000	ADC0
1	0	001	ADC1
1	0	010	ADC2
1	0	011	ADC3
1	0	100	ADC4
1	0	101	ADC5
1	0	110	ADC6
1	0	111	ADC7

JTAG – ATMega32

Bit	7	6	5	4	3	2	1	0	_
	MSB/IDRD							LSB	OCDR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

OCDR (\$31): On-chip Debug Register

- Komunikační kanál pri ladění programu
- Adresa je sdílená s OSCCAL, přístup k registru je pouze při ladění

Bit	7	6	5	4	3	2	1	0	_
	JTD	ISC2	-	JTRF	WDRF	BORF	EXTRF	PORF	MCUCSR
Read/Write	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0		See	e Bit Descrip	tion		

MCUCSR (\$34) – MCU Control and StatusRegister:

- ➤ JTD: JTAG Interface Disable zakázání / povolení JTAG (současně musí být povolená pojistka JTAGEN)
- > JTRF: JTAG Reset Flag

$A/D\ p\check{r}evodn\acute{i}k-ATMega 32$

MUX40	Single Ended Input	Positive Differential Input	Negative Differential Input	Gain
00000	ADC0			
00001	ADC1			
00010	ADC2			
00011	ADC3	N/A		
00100	ADC4			
00101	ADC5			
00110	ADC6			
00111	ADC7			
01000		ADC0	ADC0	10x
01001		ADC1	ADC0	10x
01010 ⁽¹⁾		ADC0	ADC0	200x
01011(1)		ADC1	ADC0	200x
01100		ADC2	ADC2	10x
01101		ADC3	ADC2	10x
01110 ⁽¹⁾		ADC2	ADC2	200x
01111(1)		ADC3	ADC2	200x
10000		ADC0	ADC1	1x
10001		ADC1	ADC1	1x
10010	N/A	ADC2	ADC1	1x
10011		ADC3	ADC1	1x
10100		ADC4	ADC1	1x
10101		ADC5	ADC1	1x
10110		ADC6	ADC1	1x
10111		ADC7	ADC1	1x
11000		ADC0	ADC2	1x
11001		ADC1	ADC2	1x
11010		ADC2	ADC2	1x
11011		ADC3	ADC2	1x
11100		ADC4	ADC2	1x
11101		ADC5	ADC2	1x
11110	1.22 V (V _{BG})	N/A		
11111	0 V (GND)			

A/D převodník – ATMega32

Bit	15	14	13	12	11	10	9	8	_
	-	-	-	-	-	-	ADC9	ADC8	ADCH
ADLAR=0	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0	ADCL
	7	6	5	4	3	2	1	0	
Bit	15	14	13	12	11	10	9	8	_
	ADC9	ADC8	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADCH
ADLAR=1	ADC1	ADC0	-	-	-	-	-	-	ADCL
ADLAR=1	ADC1	ADC0	- 5	- 4	- 3	2	- 1	- 0	ADCL
ADLAR=1 Read/Write	ADC1 7 R		- 5 R				– 1 R		ADCL
	7	6	_	4	3	2	1	0	ADCL
	7 R	6 R	R	4 R	3 R	2 R	1 R	0 R	ADCL
Read/Write	7 R R	6 R R	R R	4 R R	3 R R	2 R R	1 R R	0 R R	ADCL

ADCH (\$05), ADCL (\$04): datový registr

Bit	7	6	5	4	3	2	1	0	_
	REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0	ADMUX
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

ADMUX (\$07): ADC Multiplexer Selection

- > **REFS1:0:** Reference Selection Bits volba zdroje referenčního napětí
- ➤ ADLAR: ADC Left Adjust Result: formát dat v registru ADC
- ➤ MUX4:0: Analog Channel and Gain Selection Bits nastavování multiplexorů a zesilovače signálu přiváděného na vstup kompenzačního A/D převodníku.

REFS1	REFS0	Voltage Reference Selection
0	0	AREF, Internal Vref turned off
0	1	AVCC with external capacitor at AREF pin
1	0	Reserved
1	1	Internal 2.56V Voltage Reference with external capacitor at AREF pin

Bit	7	6	5	4	3	2	1	0	
	ADTS2	ADTS1	ADTS0	-	ACME	PUD	PSR2	PSR10	SFIOR
Read/Write	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

SFIOR (\$30) - Special Function IO Register

- > ADTS2:0: ADC Auto Trigger Source
 - Vybírá zdroj, který způsobí start A/D převodu.
 - o Převod je spuštěn s náběžnou hranou signálu.

Bit	7	6	5	4	3	2	1	0	_
	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

ADCSRA (\$06): ADC Control and Status Register A

- ➤ **ADEN:** ADC Enable povolení (zapnutí) A/D
- ➤ ADSC: ADC Start Conversion v režimu Single Conversion zápis "1" spustí převod.
- ➤ **ADATE:** ADC Auto Trigger Enable
 - povolení spouštění převodu při události na vybraném zdroji.
- ➤ ADIF: ADC Interrupt Flag přerušení č. 17 při dokončení převodu
- ➤ ADIE: ADC Interrupt Enable povolení přerušení č. 17 dokončení A/D převodu
- ➤ ADPS2:0: ADC Prescaler Select nastavení předděličky pro A/D převodník

ADPS2	ADPS1	ADPS0	Division Factor
0	0	0	2
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

Pro kvalitní 10 bitový převod se frekvence volí mezi 50 kHz a 200 kHz.

Zdroje spouštění A/D převodu:

ADTS2	ADTS1	ADTS0	Trigger Source
0	0	0	Free Running mode
0	0	1	Analog Comparator
0	1	0	External Interrupt Request 0
0	1	1	Timer/Counter0 Compare Match
1	0	0	Timer/Counter0 Overflow
1	0	1	Timer/Counter Compare Match B
1	1	0	Timer/Counter1 Overflow
1	1	1	Timer/Counter1 Capture Event