Decision Tree (103 Algorithm)

EX

					. W
S.No	Outlook	Temp	Humidity W	lindy	Play Ten 3
	Sunny	Hot	0	Weak	No
2	Sunny	Hot	\mathcal{O}	strong	No
<u>(3)</u>	Over cast	Hot	High	Weak	Yes
· (4)	Painy	Mild	High	Weak	Yes_
(C)	Painy	Cool	Normal	weak	Yes
6		C001	Normal	Strong	No
<u> </u>	Painy		Normal	Strong	40
	Overcast	Cao1			No
•	Sunny	mila	High	weak	
(3)	Sunny	Corol	Mostral	Weal	Yes
(D)	fainy	mild	Norma,	l weak	Yes
(It)	Sunny	mild	Normal	Sloon	
(D)	over card	Mild	Mizz	Shon	
(13)	overcent	Hot	Normal	Weak	
(4)	Painy	mild	HIZL	Show	y No
	7		ا ده ا		DAL BANGE

-> A decision Tree is a Tree where each node represent a fearth (attributes), each link (branch) represent and each lief represent an adecision (rule) and each lief represent an outcome.

103 algorithm uses * Entropy Function * Information Gain

- How to choose attribute to be a vier of af Torus?

Any The attribute that best clarifies the braining dates.

* calculate Entropy

Enlogy = -P log2 P+n - p+n log2 Pm

Average Information

 $I(AHribute) = \sum_{p+n}^{p_1 \circ + h_1 \circ} Fnkropy(A)$

calculate Information Crain (Difference in Entropy before and after splitting dataset on A) Chain = Entropy (s) - I (Attribute).

P stands for positive output n Stands for hegative output.

ID3 Algorithm

- Compute the entropy for the dataset Entropy(s)
- for every attribute / Feature:
 - O calculate entropy for all other values Entropy
 - 1 Take average information Entropy
 - 3 calculat Crain
- Pick the Highest Gain attribute
- Repeat until we get desired Toren. (4)

So In the given example, total outcome = 14
$$P = 9$$

$$N = 5$$

$$Fnhopy = \frac{-9}{14} log_2(\frac{9}{14}) - \frac{5}{14} log_2(\frac{5}{14}) = 0.940$$

Entropy (s) = 0.540

$$T(out look) = \frac{P_{sunny} + N_{sunny}}{P_{th}} + \frac{P_{sunny}}{P_{th}} + \frac{P_{th}}{P_{th}} + \frac{P_{th}}{P_$$

Calculate Gain = Entropy (S) - I (authorse) Cain (author) = 0.940 - 0.693 = 0.247

-> Now calculate Entropy for Temporature

I (Temp) = 0.911

adin (Temp) = 0.540 - 0.911 = 0.029

-> Now calculate Entropy for Humidily

I (Humidity) = 0-788

Crain (Humidity) = 0.940 - 0.788 = 0.152

, Now calculate Entropy for Windy

I (windy)= 0.852 Crain (windy) = 0.940-0.852 = 0.048 Attribute Charn 0:247 outlook Temperatur 0.029 Humidity 0-152 Windy 0.048

Two data sets. Now

Painy

\bigcirc	out look	Temp	Humidily	Windy	Play Tenis
	Sonny	-Hox	High	Weak	No
	Sunry	Hot	High	strong	N.
	Sunny	mild	HISH !	Weak	\mathcal{N}_{o}
	Sunny	C00/	Normal	weak	40
	Sunny	mild	Normal	Strong	Yes
		*			
	Pellry	Mild	High	Weak	Yes
	Pering	Co 0	Normal	Weak	Yes
	Kainy	(00)	Normal	Strong	No
	Rainy	Mild	Normal	Weak	
	Pains	mild	High	You) No

