Examen Segon Parcial d'FCO - Temes 5 i 6

18 de Gener de 2017

COGNOMS:	_	NOM:
DNI:	SIGNATURA:	

Normativa:

- La durada de l'examen és de 2 hores.
- Escriviu el nom i els cognoms en lletres MAJÚSCULES i signeu en TOTS els fulls.
- Heu de respondre dins l'espai assignat.
- No es permeten calculadores ni apunts.
- Heu de romandre en silenci durant la realització de l'examen.
- No es pot abandonar l'examen fins que el professor ho indique.
- Heu de tenir una identificació damunt la taula, a la vista del professor (DNI, carnet UPV, targeta de resident, etc.).
- **1.- (1,5 punts)** Completeu la taula següent: (els valors en negreta són l'enunciat i el valors en cursiva són els que es demanen a l'alumne)

Decimal	Signe i Magnitud 9 bits	Complement a 2	Excés 255
		9 bits	9 bits
+5	00000101	00000101	100000100
-12	100001100	111110100	011110011
Rang	[-255 , +255]	[-256 , +255]	[-255 , +256]

Nota: Indiqueu el rang en decimal

2.- (1 punt) Amb els nombres enters representats en complement a 2 amb 8 bits, A = 01110011_{Ca2} i B = 10011101_{Ca2}, realitzeu les operacions següents sense canviar de representació. Mostreu el detall de les operacions i indiqueu clarament i justifiqueu si hi ha o no desbordament.

a) A + B (0,4 punts)

Com que es tracta d'una suma, els nombres se sumen tal com estan:

1111111

01110011

+10011101

00010000 (el carry final es descarta)

Els dos últims bits de *carry* són iguals, per tant no hi ha DESBORDAMENT i el resultat d'A+B és $00010000_{\text{Ca}2}$

b) A - B (0,6 punts).

Com que es tracta d'una operació de resta, és necessari canviar el signe del subtrahend. Fent el complement a dos al subtrahend li canviem el signe i d'aquesta manera convertim la resta en suma.

```
Ca2(B) = Ca2(10011101) = 01100011
```

Ara realitzem l'operació A + (-B):

01100011 01110011

+01100011

11010110 (el carry final es descarta)

Els dos últims bits de *carry* són diferents i SÍ hi ha DESBORDAMENT i per tant NO hi ha resultat.

3.- (1 punt) Obteniu la representació del nombre real -259,75 en el format de simple precisió de l'estàndard IEEE-754. Mostreu els passos seguits i la representació final en hexadecimal.

Convertim la part entera a binari: $259_{10} = 2^8 + 2^1 + 2^0 = 100000011_2$ Convertim la part fraccionaria a binari: $0,75 \times 2 = 1,5$ $0.5 \times 2 = 1.0$ $0,75_{10} = 0,11_2$ Ajuntem les dues parts: 259,75₁₀= 100000011,11₂ Convertim a coma flotant: 100000011,11₂ x 2⁰ Normalitzem la mantissa: $100000011,11_2 \times 2^0 = 1,0000001111_2 \times 2^8$ Representem l'exponent (8) en excés 127: 127+8 = 135₁₀= 10000111₂ Completem el format de simple precisió d l'IEEE 754 en binari: S Exponent Mantissa 1 | 10000111 | 00000011110000000000000 Convertim la representació binaria a hexadecimal: 1100 0011 1000 0001 1110 0000 0000 0000 Ε 0 C 3 1 0 Solució final: 0xC381E000

4.- Considerant el programa següent, escrit en llenguatge d'assemblador del MIPS R2000, responeu les questions que es presenten a continuació

```
.globl __start
        .data 0x10000000
Tam:
        .byte 7
Vector: .half 12, 3, 4, 5, 6, 10, 14
Mitja: .word 0
        .text 0x00400000
start: la $2, Tam
          1b $2,0($2)
          la $3, Vector
          li $4, 0
mentre: beq $2, $0, fi
          1h $5, 0($3)
          addi $4, $4, $5
          addi $2,$2,-1
          addi $3, $3, 2
          j mentre
  fi:
         la $2, Tam
          1b $2, 0($2)
          div $4,$2
          mflo $4
          la $3, Mitja
          sw $4,0($3)
         .end
```

a) **(1 punt)** Indiqueu el contingut dels registres següents **després** d'executar per primera vegada la instrucció *J mentre*.

Registre	Contingut Hexadecimal
\$2	0x0000006
\$3	0x10000004
\$4	0x000000C
\$5	0x000000C

b) (1 punt) Indiqueu el contingut dels registres següents en finalitzar correctament l'execució del programa. Expresseu el contingut en hexadecimal.

Registre	Contingut Hexadecimal
\$2	0x0000007
\$3	0x10000010
\$4	0x0000007
\$5	0x000000E

c) (0,5 punts) Indiqueu el contingut del segment de dades abans d'executar el programa. Teniu en compte que les dades s'emmagatzemen en format "little endian", i heu d'indicar el contingut de cadascun dels bytes en hexadecimal. Indiqueu les zones de memòria de contingut desconegut amb un interrogant o un guionet.

31	•••	24	23		16	15		8	7		0	Adreça
	0x00			0x0C			_			0x07		0x10000000
	0x00			0x04			0x00			0x03		0x10000004
	0x00			0x06			0x00			0×05		0x10000008
	0x00			0x0E			0x00			0×0A		0x1000000C
	0x00			0x00			0x00			0×00		0x10000010

d) (0,5 punts) Indiqueu en la taula següent només les posicions de memòria que s'han modificat en executar el programa. Escriviu els valors en hexadecimal per a cadascun dels bytes.

31		24	23		16	15		8	7		0	Adreça
	0x00			0x0			0x00			0x07	1	0x10000010

e) **(1 punt)** Indiqueu la instrucció o instruccions que caldria canviar en el programa si les dades del vector passaren a ser de tipus byte. És a dir, si la directiva de reserva de memòria per al vector fóra la següent:

Vector: .byte 12, 3, 4, 5, 6, 10, 14

Canviaria2_ instruccions.	
Instrucció Ih \$5, 0(\$3)	per lb \$5, 0(\$3)
Instrucció addi \$3, \$3, 2	_ per addi \$3, \$3, 1
Instrucció	_ per
Instrucció	_ per

NOTA Pot ser cal canviar 1, 2, 3 o 4 instruccions. És a dir, si no és necessari no cal omplir totes les files..

f) **(0,5 punts)** Indiqueu en hexadecimal els valors associats a les etiquetes següents:

Tam	0x10000000
Vector	0x10000002
Media	0x10000010
start	0x00400000
Mentre	0x00400014

g) **(0,5 punts)** Indiqueu la seqüència d'instruccions per les que l'assemblador del MIPS R2000 traduiria la pseudoinstrucció:

lui \$1, 0x1000

ori \$3, \$1, 2

NOTA: utilitzeu el registre \$1 per als valors intermedis.

h) (0,5 punts) Codifiqueu la instrucció sw \$4,0(\$3). Indiqueu el resultat tant en binari com en hexadecimal, i detalleu els passos realitzats.

CO= 0x2B RS= 0x3 RT= 0x4 Desp= 0x0

COP Rs Rt Desp

Hexadecimal: 0xAC640000

5.- (1 punt) Escriviu un programa en assemblador del MIPS R2000 que realitze l'operació:

tenint en compte les consideracions següents:

- Les dades "var_a", "var_b" i "var_c" han de definir-se com a enters de 8 bits ubicats a partir de la posició de memòria 0x10000000.
- Darrere d'aquestes dades es reservarà espai en memòria per a emmagatzemar el resultat, var d, com a enter de 32 bits.
- Considereu el valors següents per a les variables:
- o var a= 9
- o var b= -2
- o var c= 3

Etiqueteu en la memòria de dades cadascun dels elements amb el corresponent valor alfabètic (var_a, var_b, var_c, var_d).

<u>Solució:</u> com sempre, poden haver versions diferents d'un programa i ser totes correctes. Es presenten, com a exemple, dues solucions:

```
Solució A:
                              Solució B:
.data 0x10000000
                               .data 0x10000000
                              a: .byte 9, -2, 3
a: .byte 9
b: .byte -2
                              d: .word 0 #Alineació automàtica
c: .byte 3
d: .space 5 #Alineació manual
                               .globl start
                               .text 0x00400000
.globl start
                               start:
.text 0x00400000
                              la $8, a
                              1b $8, 0($8)
start:
                                               #$8 <- a
                              lb $9, 1($9)
la $8, a
                                               #$9 <- b
1b $8, 0($8) #$8 <- a
                              lb $10, 2($10) #$10 <- c
                               add $2, $8, $9
la $9, b
                                                \#(a + b)
1b $9, 0($9) #$9 <- b
                               sub $2, $2, $10
                                                \#(a + b) - c
la $10, c
                              la $7, d
lb $10, 0($10) #$10 <- c
                              sw $2, 0($7) #Emmagatzema el
add $2, $8, $9  #(a + b)
                              resultat
sub $2, $2, $10 #(a + b)- c
la $7, d
sw $2, 0($7) #Emmagatzema el
resultat
```