ENSI 2012 - 2013

Classe: I.I.1

Module: Algorithmique de graphes et Optimisation

CORRIGÉ-TD 2: CHEMINEMENT DANS LES GRAPHES

Exercice 1

1. Le graphe correspondant au problème:

2. Pour déterminer le P.C.C de Berne à Milan, qu'on note μ on va utiliser l'algorithme de Bellman amélioré; en arrangeant au préalable les sommets:

k	В	L	T_1	I	W	G	T_2	A	T_3	S	С	M
0	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$
1	0	90_B	55_B	70_{T_1}	127_I	80_{T_1}	92_I	111_G	120_G	144_{T_3}	196_A	210_C
2	0	90_B	55_B	70_{T_1}	127_I	80_{T_1}	92_I	111_G	120_G	144_{T_3}	196_{A}	210_C

Donc: $\mu: B \to T_1 \to G \to T_3 \to S \to M$

3. Les véhicules de l'entreprise ne peuvent pas emprunter les tunnels donc le graphe devient :

Pour déterminer le P.C.C de Berne à Milan, qu'on note μ on va utiliser l'algorithme de Bellman amélioré; en arrangeant au préalable les sommets:

1

k	В	L	I	W	G	A	С	S	M
0	0	$+\infty$							
1	0	90_B	78_B	135_I	123_I	150_W	235_A	287_G	321_C
2	0	90_B	78_B	135_I	123_I	150_W	235_A	287_G	321_C

Donc : $\mu: B \to I \to W \to A \to C \to M$

- 4. (a) Il y deux manières de déterminer le plus long chemin μ_1 :
 - On multiplie les longueurs des arcs par (-1) et on cherche le P.C.C en utilisant Bellman
 - On remplace dans l'un des algorithmes vus en cours :

i.
$$+\infty \to -\infty$$

ii.
$$\min \rightarrow \max$$

(b) On choisit la 2^e option , dans l'algorithme Bellman amélioré :

$$\forall j \neq 1 \quad \pi_k(j) = \min_{(i,j) \in A} \{ \pi_{k-1}(j), \, \pi_{k-1}(i) + c_{ij}, \, \pi_k(i) + c_{ij} \}$$

k	В	L	I	W	G	A	С	S	М
0	0	$+\infty$							
1	0	90_B	135_L	192_I	180_I	211_G	296_A	369_C	435_S
2	0	90_B	135_L	192_I	180_I	211_G	296_A	369_C	435_S

Donc: $\mu_1: B \to L \to I \to G \to A \to C \to S \to M$

Exercice 2

1. Il suffit de dessiner le graphe dont les sommets sont les villes et les arcs les dessertes de la compagnie, en valuant chaque arc par la durée du vol correspondant. Un algorithme de plus court chemin permet alors de résoudre le problème.

- 2. Pour prendre en compte les durées d'escale, deux méthodes sont possibles :
 - (a) Modifier l'algorithme précédent, en incluant dans le calcul du coût d'un chemin les durées d'escale.
 - (b) Transformer le graphe selon le principe décrit ci-dessous. L'algorithme reste alors le même.

Exercice 3

Remplaçons tout d'abord chaque arête par deux arcs de sens opposé, et ajoutons à chaque arc sortant d'un sommet différent de HomeCity et SoCity une durée de 3 minutes. On obtient le graphe suivant :

1. Pour résoudre ce problème, on va appliquer l'algorithme de Dijkstra, sachant que l'algorithme de Bellman dans sa version améliorée nous donnera beaucoup plus rapidement la solution!. On peut le faire, car on est bien en présence d'un graphe avec des poids non négatifs sur les arcs.

It	i_{min}	Étiquette (prédécesseur) à la fin de l'itération										
		НС	a	b	c	d	e	f	g	_ sc _		
0	НС	0	5(HC)	∞	8(HC)	∞	∞	∞	∞	∞		
1	a		5(HC)	14(a)	8(HC)	23(a)	∞	∞	∞	∞		
2	c			12(c)	8(HC)	23(a)	∞	∞	25(c)	∞		
3	\boldsymbol{b}			12(c)		23(a)	21(b)	∞	25(c)	∞		
4	e					23(a)	21(b)	35(e)	25(c)	∞		
5	d					23(a)		35(e)	25(c)	∞		
6	\boldsymbol{q}							35(e)	25(c)	34(g)		
7	SC							35(e)		34(g)		
8	f							35(e)				

Le chemin minimal à parcourir est :

- 2. La longueur du chemin de HomeCity à SoCity est de 34 minutes. Il faut donc partir au plus tard à 7h26.
- 3. Pour chercher le 2^e P.C.C on procède de la manière suivante:
 - (a) On élimine l'arc (HC, c) du graphe d'origine et on cherche le PCC dans le nouveau graphe. On notera C_1 ce P.C.C
 - (b) On remet l'arc (HC,c) et on élimine l'arc (c,g) du graphe et on cherche le PCC dans le nouveau graphe. On notera C_2 ce P.C.C
 - (c) On remet l'arc (c,g) et on élimine l'arc (g,SC) du graphe et on cherche le PCC dans le nouveau graphe. On notera C_3 ce P.C.C

Le 2^e P.C.C est le plus court parmi les C_i i=1,2,3.

Exercice 4:

1.	Tâche i	dp	A	В	С	D	E	F	G	Η	I	J	K	Γ	fp
	t_i	0	0	120	300	300	300	330	330	570	810	570	810	810	1170
	T_i	0	0	120	327	300	510	480	330	630	1140	570	810	930	1170
	m_i	0	0	0	27	0	210	150	0	60	330	0	0	120	0

2. Le temps minimum de réalisation de l'ensemble est lisible sur le sommet \mathbf{fp} : 1170 jours.

Exercice 5:

1.

2. $t_1 \ge 0$, $t_2 \ge 0$, $t_3 \ge t_1 + 4$, $t_4 \ge t_3 + 5$, $t_5 \ge t_2 + 5$, $t_5 \ge t_4 + 8$, $t_{fp} \ge t_5 + 4$, $\forall i \, t_{fp} \ge t_5 + 4$,

3.	Tâche i	dp	1	2	3	4	5	fp
	t_i	0	0	0	4	9	17	27
	T_{i}	0	0	4	4	9	17	27
	m_i	0	0	4	0	0	0	0

- $4. \ dp \rightarrow 1 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow fp$
- 5. On peut augmenter la durée de la tâche 2 d'au plus 4 u.t sans que cela affecte la durée totale des travaux.