Lab #6 Physics with Python I: Plotting

A. Complete this:				
Your Name Neil Sawhney	SLOT			
PLEASE MARK THE CIRCLE NEXT TO YOUR LAB SECTION	ON:			
○ A, Prof Yecko, Mon 1–3 PM	○ B, Prof Webb-Mack, Tue 2–4 PM			
🤮 C, Prof Yecko, Wed 10 AM–12	O, Prof Corn-Agostini, Thu 9 AM-11 AM			
E, Prof Webb-Mack, Tue 9–11 AM	○ F, Prof Yecko, Fri 1 PM–3 PM			
B. Read and sign Academic Integrity Statement:				
I hereby attest that I have not given or received	any unauthorized assistance on this assignment.			
Neil Sawhney				
Sign here				

C. Grading rubric:

CATEGORY AND VERY BRIEF GRADING COMMENTS	Pts Available	Pts earned
Purpose	2	
Double Slit Plot	4	
N-slit Plot	4	
Single Slit Plots	8	
Question	1	
Conclusion	1	
Total	20	

Lab #6: Diffraction & Interference Python Plotting

Neil Sawhney

December 2021

Contents

1	Purpose	2
2	Results	3
3	Conclusions	8
	Answered Questions 4.1 Question	9

1. Purpose

The purpose of this lab is to plot the intensity pattern of light as it passes through 1, 2, and N number of slits for an infinitesimally small slit. Using these results we will plot the intensity pattern of light for a slit of finite width.

2. Results

infitesimally thin slits d = 1000 nm; $\lambda = 649 \text{ nm}$

infetesimally thin slits d = 1000 nm; $\lambda = 649 \text{ nm}$

 $\lambda = 350$ nm slit width = 700 nm slit separation = 2100 nm

Question

Notice that the m=3 ($\theta \approx 30^{\circ}$) order is missing.

The bright interference fringes occur at $d \sin \theta = m\lambda$, or

$$\sin \theta = \frac{m\lambda}{d} \tag{2.1}$$

We also know that,

$$I = I_0 \left(\frac{\sin \beta}{\beta}\right)^2$$

where

$$\beta = \frac{\pi a \sin \theta}{\lambda} \tag{2.2}$$

Substituting equation 2.1 into 2.2,

$$\beta = \frac{\pi a \sin \theta}{\lambda} = \frac{\pi a}{\lambda} \cdot \frac{m\lambda}{d} = \frac{m\pi a}{d}$$

For $a = 2\lambda, d = 6\lambda$, and m = 3,

$$\beta = \frac{(3)\pi(2\lambda)}{(6\lambda)} = \pi$$

Then, the intensity is

$$I = I_0 \left(\frac{\sin \beta}{\beta}\right)^2 = I_0 \left(\frac{\sin(\pi)}{\pi}\right)^2 = 0$$

Although the interference intensity in very high at this point, the diffraction intensw sity is 0 and cancels it out

3. Conclusions

A single slit of finite width can be plotted by multiplying the equation for a double slit of infinitesimally small width and a single slit of infinitesimally small width where d of the double slit is the slit separation and d of the single slit is the slit width.

4. Answered Questions

Click the question to be brought to the location where the question is answered.

4.1 Question

missing m = 3 order