## The Domain Name System

lwhsu (2020-2021, CC-BY) ? (?-2019)

國立陽明交通大學資工系資訊中心

## History of DNS

- What and Why is DNS?
  - IP is difficult to memorize, and IPv6 makes it worse
  - $\circ$  Domain Name  $\leftrightarrow$  IP Address(es)
- Before DNS
  - ARPANET
    - HOSTS.txt contains all the hosts' information (/etc/hosts)
    - Maintained by SRI's Network Information Center
      - Register → Distribute DB
  - o Problems: Not scalable!
    - Traffic and Load
    - Name Collision
    - Consistency
- Domain Name System
  - Administration decentralization
  - Paul Mockapetris (University of Southern California)
    - RFC 882, 883 (1983)  $\rightarrow$  1034, 1035 (1987)

#### **DNS Specification**

- Tree architecture "domain" and "subdomain"
  - Divided into categories
  - Solves name collision
- Distributed database
  - o Each site maintains a segment of the DB
  - Each site opens its information via network
- Client-Server architecture
  - Name servers provide information (Name Server)
  - Clients make queries to server (Resolver)

#### The DNS Namespace – (1)

- Domain name is
  - A inverted tree (Rooted tree)
    - Root with label '.'
    - Root with label "(Null)
- Domain and subdomain
  - o Each domain has a "domain name" to identify
  - its position in database
    - domain: nycu.edu.tw
    - subdomain: cs.nycu.edu.tw



## The DNS Namespace – (2)



#### The DNS Namespace – (3)

- Domain level
  - Top-level / First level
    - Direct child of "root"
    - Maintained by ICANN (Internet Corporation for Assigned Names and Numbers)
  - Second-level
    - Child of a Top-level domain
- Domain name limitations (RFC1035: 2.3.4 "Size limits")
  - Up to 63-octets in each label
  - Up to 255-octets in a full domain name
    - 253 visible characters and 2 length bytes
  - What is the real maximum length of a DNS name?
    - https://devblogs.microsoft.com/oldnewthing/20120412-00/?p=7873

## The DNS Namespace – (4)

• gTLDs (generic Top-Level Domains)

com: commercial organization, such as <u>ibm.com</u>

• edu: educational organization, such as <u>purdue.edu</u>

• gov: government organization, such as <u>nasa.gov</u>

• mil: military organization, such as <u>navy.mil</u>

• net: network infrastructure providing organization,

such as hinet.net

• org: noncommercial organization, such as <u>x.org</u>

• int: International organization, such as <u>nato.int</u>

## The DNS Namespace – (5)

• New gTLDs launched in year 2000:

o aero: for air-transport industry

o biz: for business

o coop: for cooperatives

o info: for all uses

o museum: for museum

o name: for individuals

o pro: for professionals

o xxx: for adult entertainment industry (sTLD)

■ On March 18st, 2011

https://www.iana.org/domains/root/db

#### The DNS Namespace – (6)

- Other than US, ccTLD (country code TLD)
  - o ISO 3166, but just based on
    - Taiwan => tw
    - Japan  $\Rightarrow$  jp
    - United States => us
    - United Kingdom => uk (ISO3166 is GB)
    - European Union => eu
  - Follow or not follow US-like scheme
    - US-like scheme example
      - edu.tw, com.tw, gov.tw
    - Other scheme
      - ac.jp, co.jp

#### How DNS Works – DNS Delegation

- Administration delegation
  - Each domain can delegate responsibility to subdomain
    - Specify name servers of subdomain



#### How DNS Works – DNS query process

- Recursive query process
  - Ex: query <u>lair.cs.colorado.edu</u> => <u>vangogh.cs.berkeley.edu</u>,
     name server "ns.cs.colorado.edu" has no cache data



#### DNS Delegation – Administered Zone

- Zone
  - Autonomously administered piece of namespace
    - Once the subdomain becomes a zone, it is independent to its parent
      - Even parent contains NS's A record



#### DNS Delegation – Administered Zone

- Two kinds of zone files
  - Forward Zone files
    - Hostname-to-Address mapping
    - Ex:
      - <u>bsd1.cs.nctu.edu.tw.</u> IN A 140.113.235.131
  - Reverse Zone files
    - Address-to-Hostname mapping
    - Ex:
      - 131.235.113.140.in-addr.arpa. IN PTR bsd1.cs.nctu.edu.tw.

#### The Name Server Taxonomy (1)

- Categories of name servers
  - Based on the source of name server's data
    - Authoritative: official representative of a zone (master/slave)
      - Master: get zone data from disk
      - Slave: copy zone data from master
    - Nonauthoritative: answer a query from cache
      - Caching: caches data from previous queries
  - Based on the type of answers handed out
    - Recursive: do query for you until it return an answer or error
    - Nonrecursive: refer you to the authoritative server
  - Based on the query path
    - Forwarder: performs queries on behalf of many clients with large cache
    - Caching: performs queries as a recursive name server

#### The Name Server Taxonomy (2)

- Nonrecursive referral
  - Hierarchical and longest known domain referral with cache data of other zone's name servers' addresses
  - $\circ$  Ex:
    - Query lair.cs.colorado.edu from a nonrecursive server
    - Whether cache has
      - IP of lair.cs.colorado.edu
      - Name servers of cs.colorado.edu
      - Name servers of colorado.edu
      - Name servers of edu
      - Name servers of root ("")
  - The resolver libraries do not understand referrals mostly. They expect the local name server to be recursive

#### The Name Server Taxonomy (3)

- Caching
  - Positive cache (Long TTL)
  - Negative cache (Short TTL)
    - No host or domain matches the name queried
    - The type of data requested does not exist for this host
    - The server to ask is not responding
    - The server is unreachable of network problem
- Negative cache
  - o 60% DNS queries are failed
  - To reduce the load of root servers, the authoritative negative answers must be cached

#### The Name Server Taxonomy (4)

Caching and forwarding DNS servers



## The Name Server Taxonomy (5)

• How to arrange your DNS servers?

Queries from inside

o Ex:

**| †**Answers Queries slave Queries **Answers** the outside world **Queries Answers** inside your site big forwarder master slave slave forwarder forwarder slave caching caching caching caching client client client client client client client client

Queries from outside

18

#### The Name Server Taxonomy (6)

- Root name servers
  - In named.root file of BIND
  - https://www.iana.org/domains/root/files

|                     | 3600000 | IN | NS   | A.ROOT-SERVERS.NET. |
|---------------------|---------|----|------|---------------------|
| A.ROOT-SERVERS.NET. | 3600000 |    | A    | 198.41.0.4          |
| A.ROOT-SERVERS.NET. | 3600000 |    | AAAA | 2001:503:ba3e::2:30 |
|                     | 3600000 |    | NS   | B.ROOT-SERVERS.NET. |
| B.ROOT-SERVERS.NET. | 3600000 |    | A    | 199.9.14.201        |
| B.ROOT-SERVERS.NET. | 3600000 |    | AAAA | 2001:500:200::b     |
|                     | 3600000 |    | NS   | C.ROOT-SERVERS.NET. |
| C.ROOT-SERVERS.NET. | 3600000 |    | A    | 192.33.4.12         |
| C.ROOT-SERVERS.NET. | 3600000 |    | AAAA | 2001:500:2::c       |
|                     | 3600000 |    | NS   | D.ROOT-SERVERS.NET. |
| D.ROOT-SERVERS.NET. | 3600000 |    | A    | 199.7.91.13         |
| D.ROOT-SERVERS.NET. | 3600000 |    | AAAA | 2001:500:2d::d      |
|                     | 3600000 |    | NS   | E.ROOT-SERVERS.NET. |
| E.ROOT-SERVERS.NET. | 3600000 |    | A    | 192.203.230.10      |
| E.ROOT-SERVERS.NET. | 3600000 |    | AAAA | 2001:500:a8::e      |
|                     | 3600000 |    | NS   | F.ROOT-SERVERS.NET. |
| F.ROOT-SERVERS.NET. | 3600000 |    | A    | 192.5.5.241         |
| F.ROOT-SERVERS.NET. | 3600000 |    | AAAA | 2001:500:2f::f      |
|                     | 3600000 |    | NS   | G.ROOT-SERVERS.NET. |
| G.ROOT-SERVERS.NET. | 3600000 |    | A    | 192.112.36.4        |
| G.ROOT-SERVERS.NET. | 3600000 |    | AAAA | 2001:500:12::d0d    |
|                     | 3600000 |    | NS   | H.ROOT-SERVERS.NET. |
| H.ROOT-SERVERS.NET. | 3600000 |    | A    | 198.97.190.53       |
| H.ROOT-SERVERS.NET. | 3600000 |    | AAAA | 2001:500:1::53      |

## **DNS Client Configurations**

- /etc/resolv.conf
  - nameserver
  - o domain
  - o search
  - o resolver(5), resolverconf(8)
- /etc/hosts
  - o Format: IP FQDN Aliases
  - C:\Windows\system32\drivers\etc\hosts
  - $\circ$  hosts(5)
- /etc/nsswitch.conf
  - o hosts: files (nis) (ldap) dns
  - o nsswitch.conf(5)

## DNS Client Commands – dig (1)

• \$ dig nasa.cs.nctu.edu.tw

```
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 47883
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3
;; QUESTION SECTION:
;nasa.cs.nctu.edu.tw.
                               IN
;; ANSWER SECTION:
                                 A 140.113.17.32
nasa.cs.nctu.edu.tw. 3600
                               IN
```

## DNS Client Commands – dig (2)

• \$ dig -x 140.113.17.32

```
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 5514
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;32.17.113.140.in-addr.arpa. IN PTR

;; ANSWER SECTION:
32.17.113.140.in-addr.arpa. 86400 IN PTR nasa.cs.nctu.edu.tw.
......</pre>
```

#### **DNS Security**

- DNSSEC
  - o Provide
    - Origin authentication of DNS data
    - Data integrity
    - Authenticated denial of existence
  - Not provide
    - Confidentiality
    - Availability
  - \$ dig +dnssec bsd1.cs.nctu.edu.tw

```
;; ANSWER SECTION:
bsd1.cs.nctu.edu.tw. 3600 IN A 140.113.235.131
bsd1.cs.nctu.edu.tw. 3600 IN RRSIG A 7 5 3600 ...
```

#### DNS Security (c)

- DNS over TLS (DoT)
- DNS over HTTPS (DoH)
- DNS Amplification Attack
  - <a href="http://www.cc.ntu.edu.tw/chinese/epaper/0028/20140320\_2808.html">http://www.cc.ntu.edu.tw/chinese/epaper/0028/20140320\_2808.html</a>

#### **DNS Server Software**

- BIND
  - Reference implementation & Complete DNS Server solution
- NSD
  - Authoritative (only) DNS Server
    - No recursion, No caching
    - DNSSEC
- Unbound
  - (Local) Recursive (only) Resolver
    - Validating, Recursive, Caching
    - DoH, DoT
- https://en.wikipedia.org/wiki/Comparison\_of\_DNS\_server\_software

#### Misc.

- Internationalized Domain Name (IDN)
  - o Punycode
    - A representation of Unicode with ASCII
    - .台灣 <-> .xn--kpry57d
    - https://en.wikipedia.org/wiki/Punycode
- Public & cloud services
  - Hurricane Electric Free DNS Hosting
    - https://dns.he.net/
  - AWS Route53, Google Cloud DNS, Microsoft Azure DNS
- GeoDNS
  - Different DNS answers based on client's geographical location

#### The BIND Software

#### BIND

- Berkeley Internet Name Domain system
  - CSRG, UC Berkeley, 1980s
- Three complete rewritten versions
  - o BIND 4 (1980s)
    - Based on RFC 1034, 1035
  - BIND 8 (1997)
    - Improvements: Efficiency, Robustness and Security
  - o **BIND 9** (2000)
    - Enhancements: Multiprocessor support, DNSSEC, IPv6 support, etc
  - o BIND 10 (1.0 and 1.1 in 2013, 1.2 in 2014)
    - ISC (Internet Software Consortium) has concluded BIND 10 development with Release 1.2
    - "Bundy" <a href="https://bundy-dns.de/">https://bundy-dns.de/</a>

#### BIND – components

- Four major components
  - o named
    - Daemon that answers the DNS query
    - Perform Zone transfer
  - Library routines
    - Routines that used to resolve host by contacting the servers of DNS distributed database
      - Ex: res\_query, res\_search, ...etc.
  - Command-line interfaces to DNS
    - Ex: nslookup, dig, host
    - bind-tools
  - o rndc
    - A program to remotely control named

#### BIND in FreeBSD

- Installation
  - From pkg: pkg install bind916
  - From ports: /usr/ports/dns/bind916
- Startup
  - Edit /etc/rc.conf
    - named\_enable="YES"
  - Manual utility command
    - # service named start.
    - % rndc {stop | reload | flush ...}
- See your BIND version
  - % dig @127.0.0.1 version.bind txt chaos
    - version.bind.
- 0 CH TXT "9.9.11"
- o % nslookup -debug -class=chaos -query=txt version.bind 127.0.0.1
  - version.bind text = "9.9.11"
- Good to be put inside of a jail!

## BIND – Configuration files

- The complete configuration of named consists of
  - The config file
    - /usr/local/etc/namedb/named.conf
  - Zone data file
    - Address mappings for each host
    - Collections of individual DNS data records
  - The root name server hints

## BIND Configuration – named.conf

- /usr/local/etc/namedb/named.conf
  - Roles of this host for each zone it serves
    - Master, slave, stub, or caching-only
  - Options
    - Global options
      - The overall operation of named and server
    - Zone specific options
- named.conf is composed of following statements:
  - include, options, server, key, acl, zone, view, controls, logging, trusted-keys, masters

## Examples of named configuration

```
// isc.org TLD name server
                                           $TTL 57600
                                           $ORIGIN atrust.com.
options {
                                                                     ns1.atrust.com. trent.atrust.com. (
                                                               SOA
     directory "/var/named";
                                                                       2010030400 10800 1200 3600000 3600 )
                                                              NS
                                                                     NS1.atrust.com.
     datasize 1000M;
                                                              NS
                                                                     NS2.atrust.com.
     listen-on { 204.152.184.64; };
                                                              ΜX
                                                                     10 mailserver.atrust.com.
     listen-on-v6 { 2001:4f8:0:2::13; };
                                                                     66.77.122.161
     recursion no;
                                           ns1.atrust.com.
                                                                     206.168.198.209
     transfer-source 204.152.184.64;
                                                                     66.77.122.161
                                           ns2.atrust.com.
     transfer-source-v6 2001:4f8:0:2::13; www
                                                                     66.77.122.161
};
                                           mailserver
                                                                     206.168.198.209
                                                                     66.77.122.161
                                           secure
zone "isc.org" {
     type master;
                                           ; reverse maps
                                           exterior1
                                                                     206.168.198.209
     file "master/isc.org";
                                           209.198.168.206
                                                                     exterior1.atrust.com.
     allow-update { none; };
                                           exterior2
                                                                     206.168.198.213
     allow-transfer { none; };
                                                               PTR
                                                                     exterior2.atrust.com.
                                           213.198.168.206
};
zone "vix.com" {
    type slave;
    file "secondary/vix.com";
    masters { 204.152.188.234; };
```

# DNS Database Zone data

#### The DNS Database

- A set of text files such that
  - Maintained and stored on the domain's master name server
  - Often called zone files
  - Two types of entries
    - Resource Records (RR)
      - The real data of a DNS database
    - Parser commands
      - Just provide some shorthand ways to create records
      - Influence the way that the parser interprets sequence orders or expand into multiple DNS records themselves

#### The DNS Database - Parser Commands

- Commands must start from the first column and be on a line by themselves
- \$ORIGIN domain-name
  - To append to un-fully-qualified name
- \$INCLUDE file-name
  - Split logical pieces of a zone file
  - Keep sensitive data (e.g., cryptographic keys) with restricted permissions
- \$TTL default-ttl
  - Default value for time-to-live filed of records
- \$GENERATE start-stop/[step] lhs type rhs
  - Be found only in BIND
  - Used to generate a series of similar records
  - Can be used in only CNAME, PTR, NS, A, AAAA, etc. record types

#### The DNS Database – Resource Record (1)

- Basic format
  - o [name] [ttl] [class] type data
    - name: the entity that the RR describes
      - Can be relative or absolute
    - ttl: time in second of this RR's validity in cache
    - class: network type
      - IN for Internet
      - CH for ChaosNet
      - HS for Hesiod
  - Special characters
    - ; (comment)
    - @ (The current domain name)
    - () (allow data to span lines)
    - \* (wildcard character, name filed only)

#### The DNS Database – Resource Record (2)

- Type of resource record will be discussed later
  - Zone records: identify domains and name servers
    - SOA
    - NS
  - o Basic records: map names to addresses and route mails
    - A
    - AAAA
    - PTR
    - MX
  - Optional records: extra information to host or domain
    - CNAME
    - TXT
    - SRV

#### The DNS Database – Resource Record (3)

|                           | Туре   | Name               | Function                                    |  |
|---------------------------|--------|--------------------|---------------------------------------------|--|
| Zone                      | SOA    | Start Of Authority | Defines a DNS zone                          |  |
|                           | NS     | Name Server        | Identifies servers, delegates, subdomains   |  |
| Basic                     | A      | IPv4 Address       | Name-to-IPv4-address-translation            |  |
|                           | AAAA   | IPv6 Address       | Name-to-IPv6-address-translation            |  |
|                           | PTR    | Pointer            | Address-to-name translation                 |  |
|                           | MX     | Mail Exchanger     | Controls email routing                      |  |
| Security<br>and<br>DNSSEC | DS     | Delegation Singer  | Hash of singed child zone's key-signing key |  |
|                           | DNSKEY | Public Key         | Public key for a DNS name                   |  |
|                           | NSEC   | Next Secure        | Used with DNSSEC for negative answers       |  |
|                           | NSEC3  | Next Secure v3     | Used with DNSSEC for negative answers       |  |
|                           | RRSIG  | Signature          | Singed, authenticated resource record set   |  |
|                           | DLV    | Lookaside          | Nonroot trust anchor for DNSSEC             |  |
|                           | SSHFP  | SSH Fingerprint    | SSH host key, allows verification via DNS   |  |
|                           | SPF    | Sender Policy      | Identifies mail servers, inhibits forging   |  |
|                           | DKIM   | Domain Keys        | Verify email sender and message integrity   |  |
| Optional                  | CNAME  | Canonical Name     | Nickname or aliases for a host              |  |
|                           | SRV    | Services           | Gives locations for well-known services     |  |
|                           | TXT    | Text               | Comments or untyped information             |  |

#### The DNS Database – Resource Record (4)

- SOA: Start Of Authority
  - Defines a DNS zone of authority, each zone has exactly one SOA record
  - Specify the name of the zone, the technical contact and various timeout information
  - Format:
    - [zone] IN SOA [server-name] [administrator's mail] (serial, refresh, retry, expire, ttl)

Means comments

 $\circ$  Ex:

```
(a)
                                                          Means current domain name
                                                          Allow data to span lines
                                                          Wildcard character
$TTL 3600;
$ORIGIN cs.nctu.edu.tw.
         IN
                  SOA
                         csns.cs.nctu.edu.tw.
                                                   root.cs.nctu.edu.tw. (
                         2012050802
                                                   : serial number
                                                   ; refresh time for slave server
                         1D
                         30M
                                                    retry
                                                     expire
                         1W
                         2H
                                                    minimum
```

#### The DNS Database – Resource Record (5)

- NS: Name Server
  - Format
    - zone [ttl] [IN] NS hostname
  - Usually follow the SOA record
  - Goal
    - Identify the authoritative server for a zone
    - Delegate subdomains to other organization's NS

```
$TTL 3600;
$ORIGIN cs.nctu.edu.tw.
       IN
                SOA
                                                        root.cs.nctu.edu.tw.
@
                        dns.cs.nctu.edu.tw.
                                   2012050802
                                                        : serial number
                                                        ; refresh time for slave server
                                   1D
                                   30M
                                                        ; retry
                                   1W
                                                        ; expire
                                   2H
                                                        ; minimum
                        dns.cs.nctu.edu.tw.
        TN
                NS
                        dns2.cs.nctu.edu.tw.
                NS
                        dns.test.cs.nctu.edu.tw.
                                                        ; delegate test. $ORIGIN
test
                NS
```

#### The DNS Database – Resource Record (6)

- A record: Address
  - Format
    - hostname [ttl] [IN] A ipaddr
  - Provide mapping from hostname to IP address
  - Load balance (decided by client)
  - $\circ$  Ex:

```
$ORIGIN cs.nctu.edu.tw.
9
        IN
                 NS
                          dns.cs.nctu.edu.tw.
                 NS
        IN
                          dns2.cs.nctu.edu.tw.
        IN
                          140.113.235.107
dns
                 Α
dns2
                          140.113.235.103
        IN
                          140.113.235.111
        IN
                 A
WWW
                          140.113.235.112
        IN
WWW
```

#### The DNS Database – Resource Record (7)

- PTR: Pointer
  - Perform the reverse mapping from IP address to hostname
  - Special top-level domain: in-addr.arpa
    - Used to create a naming tree from IP address to hostnames
  - Format
    - addr [ttl] [IN] PTR hostname

```
$TTL 259200;
$ORIGIN 235.113.140.in-addr.arpa.
        IN
                SOA
                        csns.cs.nctu.edu.tw.
                                                root.cs.nctu.edu.tw.
                              2007052102
                                                : serial number
                                                 ; refresh time for secondary server
                              1D
                              30M
                                                 ; retry
                              1W
                                                 ; expire
                              2H)
                                                 ; minimum
                        dns.cs.nctu.edu.tw.
        IN
                        dns2.cs.nctu.edu.tw.
        IN
                NS
$ORIGIN in-addr.arpa.
103.235.113.140
                        IN PTR csmailgate.cs.nctu.edu.tw.
107.235.113.140
                        IN PTR csns.cs.nctu.edu.tw.
```

#### The DNS Database – Resource Record (8)



#### The DNS Database – Resource Record (9)

- MX: Mail eXchanger
  - Direct mail to mail hubs rather than a single host
  - Format
    - host [ttl] [IN] MX preference host
    - No alias allowed

```
\circ Ex:
          $TTL 3600;
          $ORIGIN cs.nctu.edu.tw.
                           SOA
                                                             root.cs.nctu.edu.tw.
                  IN
                                   csns.cs.nctu.edu.tw.
                                   2007052102
                                                             ; serial number
                                                              refresh time for slave server
                                   1 D
                                   30M
                                                             ; retry
                                   1W
                                                               expire
                                                              minimum
                                   2H
                                   dns.cs.nctu.edu.tw.
                   IN
                                   dns2.cs.nctu.edu.tw.
                   IN
                           NS
                  7200
                               MX 1 csmx1.cs.nctu.edu.tw.
                          IN
                               MX 5 csmx2.cs.nctu.edu.tw.
                  7200
                          IN
                                   140.113.235.104
          csmx1
                   IN
                                   140.113.235.105
          csmx2
                   IN
```

#### The DNS Database – Resource Record (10)

- CNAME: Canonical name
  - o nickname [ttl] IN CNAME hostname
  - Add additional names to a host
    - To associate a function or to shorten a hostname
  - CNAME record can nest eight deep in BIND
  - Not for load balance (use multiple A/AAAA instead)
    - CNAME record cannot be duplicate (canonical one is only one)
  - $\circ$  Ex:

| www         | IN | A     | 140.113.209.63 |
|-------------|----|-------|----------------|
|             | IN | A     | 140.113.209.77 |
| penghu-club | IN | CNAME | www            |
| King        | IN | CNAME | www            |
|             |    |       |                |
| R21601      | IN | A     | 140.113.214.31 |
| superman    | IN | CNAME | r21601         |

#### The DNS Database – Resource Record (11)

- TXT: Text
  - Add arbitrary text to a host's DNS records
  - Format
    - Name [ttl] [IN] TXT info
    - All info items should be quoted
  - They are sometimes used to test prospective new types of DNS records
    - SPF records

```
$TTL 3600;
$ORIGIN cs.nctu.edu.tw.
                         csns.cs.nctu.edu.tw. root.cs.nctu.edu.tw.
        IN
                SOA
                         2007052102
                                                  : serial number
                                                  : refresh time for slave server
                         1D
                         30M
                                                    retry
                         1W
                                                    expire
                         2H
                                                    minimum
                         dns.cs.nctu.edu.tw.
        IN
                NS
                         dns2.cs.nctu.edu.tw.
        IN
                NS
                        "Department of Computer Science"
        IN
                TXT
```

#### The DNS Database – Resource Record (12)

- SRV: Service
  - Specify the location of services within a domain
  - o Format:
    - \_service.\_proto.name [ttl] IN SRV pri weight port target
  - Needs application support (client side)
  - $\circ$  Ex:

```
; don't allow finger
finger. tcp
                    0
             SRV
                                  79
; 1/4 of the connections to old, 3/4 to the new
ssh. tcp
             SRV
                                         old.cs.colorado.edu.
                                  22
ssh. tcp SRV 0
                                  22
                                        new.cs.colorado.edu.
; www server
                                         www.cs.colorado.edu.
             SRV
                                  80
http. tcp
             SRV
                                  8000
                                         new.cs.colorado.edu
; block all other services
*. tcp
             SRV
             SRV
```

#### **IPv6** Resource Records

- IPv6 forward records
  - Format
    - Hostname [ttl] [IN] AAAA ip6addr
  - Example

```
$ dig f.root-servers.net AAAA

;; ANSWER SECTION:
f.root-servers.net. 604795 IN AAAA 2001:500:2f::f
```

- IPv6 reverse records
  - o IPv6 PTR records are in the ip6.arpa top-level domain
  - Example
    - f.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.2.0.0.0.5.0.1.0.0.2.ip6.arpa. PTR f.root-servers.net.

### Glue Record (1/2)

- Glue record Link between zones
  - DNS referrals occur only from parent domains to child domains
  - The servers of a parent domain must know the IP of the name servers for all of its subdomains
    - Parent zone needs to contain the NS records for each delegated zone
    - Making a normal DNS query
    - Having copies of the appropriate A records
    - The foreign A records are called glue records

### Glue Record (2/2)

- There are two ways to link between zones
  - By including the necessary records directly
  - By using stub zone
    - Only contains SOA, NS, A (of NS)
- Lame delegation
  - DNS subdomain administration has delegate to you, but you never use the domain
     or parent domain's glue record is not updated

### Statements of named.conf

#### **BIND Configuration**

#### - named.conf address match list

- Address Match List
  - A generalization of an IP address that can include:
    - An IP address
      - Ex. 140.113.17.1
    - An IP network with CIDR netmask
      - Ex. 140.113/16
    - The name of a previously defined ACL
    - A cryptographic authentication key
    - The! character to negate things
  - First match
  - o Examples:
    - **•** {!1.2.3.4; 1.2.3/24;};
    - **1** {128.138/16; 198.11.16/24; 204.228.69/24; 127.0.0.1;};

#### BIND Configuration – named.conf acl

- The "acl" statement
  - Define a class of access control
  - Define before they are used
  - Syntax

```
acl acl_name {
    address_match_list
};
```

- Predefined acl classes
  - any, localnets, localhost, none
- Example

```
acl CSnets {
    140.113.235/24; 140.113.17/24; 140.113.209/24; 140.113.24/24;
};
acl NCTUnets {
    140.113/16; 10.113/16; 140.126.237/24;
};
allow-transfer {localhost; CSnets; NCTUnets};
```

#### BIND Configuration – named.conf key

- The "key" statement
  - Define a encryption key used for authentication with a particular server
  - Syntax

```
key key-id {
    algorithm string;
    secret string;
}
```

Example:

```
key serv1-serv2 {
    algorithm hmac-md5;
    secret "ibkAlUA0XXAXDxWRTGeY+d4CGbOgOIr7n63eizJFHQo="
}
```

- This key is used to
  - Sign DNS request before sending to target
  - Validate DNS response after receiving from target

#### BIND Configuration – named.conf include

- The "include" statement
  - Used to separate large configuration file
  - Another usage is used to separate cryptographic keys into a restricted permission file
  - o Ex:

```
include "/etc/namedb/rndc.key";
-rw-r--r-- 1 root wheel 4947 Mar 3 2006 named.conf
-rw-r---- 1 bind wheel 92 Aug 15 2005 rndc.key
```

- If the path is relative
  - Relative to the directory option

# BIND Configuration

- named.conf option (1/3)
- The "option" statement
  - Specify global options
  - Some options may be overridden later for specific zone or server
  - Syntax:

```
options {
    option;
    option;
};
```

- There are more than 150 options in BIND 9
  - version "There is no version."; [real version num]
    - version.bind. 0 CH TXT "9.3.3"
    - version.bind. 0 CH TXT "There is no version."
  - directory "/etc/namedb/db";
    - Base directory for relative path and path to put zone data files

#### **BIND Configuration**

■ Limited memory

named.conf option (2/3)

```
o notify yes | no
                                                [yes]
   ■ Whether notify slave sever when relative zone data is changed
o also-notify {140.113.235.101;};
                                                [empty]
   ■ Also notify this non-advertised NS server
o recursion yes | no
                                                [yes]
      Recursive name server
   Open resolver
allow-recursion {address_match_list };
                                                [all]
   ■ Finer granularity recursion setting
  recursive-clients number;
                                                [1000]
                                                [unlimited]
o max-cache-size number;
```

# BIND Configuration – named.conf option (3/3)

```
    query-source address ip_addr port ip_port;

                                                                             [random]
       NIC and port to send DNS query
       DO NOT use port
  use-v4-udp-ports { range beg end; };
                                                                             [range 1024 65535]
   avoid-v6-udp-ports { port_list };
                                                                             [empty]
  forwarders {in_addr; ...};
                                                                             [empty]
       Often used in cache name server
       Forward DNS query if there is no answer in cache
o forward only | first;
                                                                             [first]
      If forwarder does not response, queries for forward only server will fail
   allow-query { address_match_list };
                                                                             [all]
    Specify who can send DNS query to you
   allow-transfer address_match_list;
                                                                             [all]
       Specify who can request zone transfer of your zone data
   allow-update address_match_list;
                                                                             [none]
   blackhole address_match_list;
                                                                             [empty]
       Reject queries and would never ask them for answers
```

#### **BIND Configuration**

- named.conf zone (1/5)
- The "zone" statement
  - Heart of the named.conf that tells named about the zones that it is authoritative
  - o zone statement format varies depending on roles of named
    - master, slave, hint, forward, stub
  - The zone file is just a collection of DNS resource records
  - Basically:

```
zone "domain_name" {
    type master | slave| stub;
    file "path";
    masters {ip_addr; ip_addr;};
    allow-query {address_match_list}; [all]
    allow-transfer { address_match_list}; [all]
    allow-update {address_match_list}; [empty]
};
```

# BIND Configuration - named.conf zone (2/5)

• Master server zone configuration

```
zone "cs.nctu.edu.tw" IN {
    type master;
    file "named.hosts";
    allow-query { any; };
    allow-transfer { localhost; CS-DNS-Servers; };
    allow-update { none; };
};
```

• Slave server zone configuration

```
zone "cs.nctu.edu.tw" IN {
    type slave;
    file "cs.hosts";
    masters { 140.113.235.107; };
    allow-query { any; };
    allow-transfer { localhost; CS-DNS-Servers; };
};
```

# BIND Configuration – named.conf zone (3/5)

• Forward zone and reverse zone

```
zone "cs.nctu.edu.tw" IN {
    type forward;
    forwarders { CS-DNS-Servers; };
    allow-query { any; };
};
```

```
zone "235.113.140.in-addr.arpa" IN {
   type master;
   file "named.235.rev";
   allow-query { any; };
   allow-transfer { localhost; CS-DNS-Servers; };
   allow-update { none; };
};
```

# BIND Configuration – named.conf zone (4/5)

- Example
  - In named.hosts, there are plenty of A or CNAME records

```
140.113.235.131
bsd1
                   IN
                            Α
csbsd1
                   IN
                            CNAME
                                    bsd1
bsd2
                   IN
                                     140.113.235.132
                            Α
bsd3
                   IN
                                     140.113.235.133
                            Α
bsd4
                                     140.113.235.134
                   IN
                            Α
bsd5
                                     140.113.235.135
                   IN
                            Α
```

• In named.235.rev, there are plenty of PTR records

```
131.235.113.140
                                bsd1.cs.nctu.edu.tw.
                    IN
                          PTR
132.235.113.140
                                bsd2.cs.nctu.edu.tw.
                    IN
                          PTR
133.235.113.140
                          PTR
                                bsd3.cs.nctu.edu.tw.
                    IN
134.235.113.140
                    IN
                          PTR
                                bsd4.cs.nctu.edu.tw.
135.235.113.140
                    IN
                          PTR
                                bsd5.cs.nctu.edu.tw.
```

# BIND Configuration - named.conf zone (5/5)

- Setting up root hint
  - A cache of where are the DNS root servers

```
zone "." IN {
    type hint;
    file "named.root";
};
```

- Setting up forwarding zone
  - o Forward DNS query to specific name server, bypassing the standard query path

```
zone "nctu.edu.tw" IN {
    type forward;
    forward first;
    forwarders { 140.113.250.135; 140.113.1.1; };
};

zone "113.140.in-addr.arpa" IN {
    type forward;
    forward first;
    forwarders { 140.113.250.135; 140.113.1.1; };
};
```

#### BIND Configuration – named.conf server

- The "server" statement
  - Tell named about the characteristics of its remote peers
  - Syntax

```
server ip_addr {
   bogus no|yes;
   provide-ixfr yes|no; (for master)
   request-ixfr yes|no; (for slave)
   transfer-format many-answers|one-answer;
   keys { key-id; key-id};
};
```

- o ixfr
  - Incremental zone transfer
- o transfers
  - Limit of number of concurrent inbound zone transfers from that server
  - Server-specific transfers-in
- keys
  - Any request sent to the remote server is signed with this key

#### BIND Configuration – named.conf view (1/2)

- The "view" statement
  - Create a different view of DNS naming hierarchy for internal machines
    - Restrict the external view to few well-known servers
    - Supply additional records to internal users
  - Also called "split DNS"
  - In-order processing
    - Put the most restrictive view first
  - All-or-nothing
    - All zone statements in your named.conf file must appear in the content of view

#### BIND Configuration – named.conf view (2/2)

Syntax

```
view view-name {
    match_clients {address_match_list};
    view_options;
    zone_statement;
};
```

Example

```
view "internal" {
          match-clients {our_nets;};
          recursion yes;
          zone "cs.nctu.edu.tw" {
               type master;
                file "named-internal-cs";
          };
};
```

```
view "external" {
    match-clients {any;};
    recursion no;
    zone "cs.nctu.edu.tw" {
        type master;
        file "named-external-cs";
    };
};
```

#### BIND Configuration – named.conf controls

- The "controls" statement
  - Limit the interaction between the running named process and rndc
  - Syntax

```
controls {
    inet ip_addr port ip-port allow {address_match_list} keys {key-id};
};
```

• Example:

```
include "/etc/named/rndc.key";
controls {
    inet 127.0.0.1 allow {127.0.0.1;} keys {rndc_key;};
}
```

```
key "rndc_key" {
    algorithm hmac-md5;
    secret "GKnELuie/G99NpOC2/AXwA==";
};
```

## BIND Configuration – rndc

- RNDC remote name daemon control
  - o reload, restart, status, dumpdb, .....
  - o rndc-confgen -b 256

```
# Start of rndc.conf
key "rndc-key" {
            algorithm hmac-md5;
            secret "qOfQFtH1nvdRmTn6gLXldm6lqRJBEDbeK43R8Om7wlg=";
};

options {
            default-key "rndc-key";
            default-server 127.0.0.1;
            default-port 953;
};
# End of rndc.conf
```

```
SYNOPSIS

rndc [-c config-file] [-k key-file] [-s server] [-p port] [-V]

[-y key_id] {command}
```

# Updating zone files

- Master
  - Edit zone files
    - Serial number
    - Forward and reverse zone files for single IP
  - o Do "rndc reload"
    - "notify" is on, slave will be notify about the change
    - "notify" is off, refresh timeout, or do "rndc reload" in slave
- Zone transfer
  - DNS zone data synchronization between master and slave servers
  - AXFR (all zone data are transferred at once, before BIND8.2)
  - IXFR (incremental updates zone transfer)
    - provide-ixfr
    - request-ixfr
  - o TCP port 53

### **Dynamic Updates**

- The mappings of name-to-address are relatively stable
- DHCP will dynamically assign IP addresses to the hosts
  - Hostname-based logging or security measures become very difficulty

```
dhcp-host1.domain IN A 192.168.0.1 dhcp-host2.domain IN A 192.168.0.2
```

- Dynamic updates
  - o RFC 2136
  - BIND allows the DHCP daemon to notify the updating RR contents
  - nsupdate
    - \$ nsupdate
    - > update add newhost.cs.colorado.edu 86400 A 128.138.243.16
    - >
    - > prereq nxdomain gypsy.cs.colorado.edu
    - > update add gypsy.cs.colorado.edu CNAME evi-laptop.cs.colorado.edu
  - Using allow-update, or allow-policy
    - rndc frozen zone, rndc thaw zone
    - allow-policy (grant | deny) identity nametype name [types]

### Non-byte boundary (1/5)

- In normal reverse configuration:
  - o named.conf will define a zone statement for each reverse subnet zone and
  - Your reverse db will contains lots of PTR records
  - Example:

```
$TTL
        3600
$ORIGIN 1.168.192.in-addr.arpa.
@
        IN
                         chwong.csie.net chwong.chwong.csie.net.
                 SOA
                         2007050401
                                           : Serial
                         3600
                                           : Refresh
                         900
                                           ; Retry
                         7D
                                           ; Expire
                                           : Minimum
                         2H )
                                                        zone "1.168.192.in-addr.arpa." {
        TN
                 NS
                         ns.chwong.csie.net.
254
                                                             type master;
                         ns.chwong.csie.net.
        IN
                 PTR
                                                             file "named.rev.1";
                         www.chwong.csie.net.
1
                 PTR
        IN
                                                             allow-query {any;};
                         ftp.chwong.csie.net.
2
        IN
                 PTR
                                                             allow-update {none;};
                                                             allow-transfer {localhost;};
                                                        };
```

### Non-byte boundary (2/5)

- What if you want to delegate 192.168.2.0 to another sub-domain
  - o Parent
    - **Remove** forward db about 192.168.2.0/24 network
    - **■** Ex:
      - pc1.chwong.csie.net. IN A 192.168.2.35
      - pc2.chwong.csie.net. IN A 192.168.2.222
      - ...
    - **Remove** reverse db about 2.168.192.in-addr.arpa
      - Ex:
        - o 35.2.168.192.in-addr.arpa. IN PTR pc1.chwong.csie.net.
        - o 222.2.168.192.in-addr.arpa. IN PTR pc2.chwong.csie.net.
        - o ...
    - Add glue records about the name servers of sub-domain
      - Ex: in zone db of "chwong.csie.net"
        - o sub1 IN NS ns.sub1.chwong.csie.net.
        - o ns.sub1 IN A 192.168.2.1
      - Ex: in zone db of "168.192.in-addr.arpa."
        - o 2 IN NS ns.sub1.chwong.csie.net.
        - o 1.2 IN PTR ns.sub1.chwong.csie.net

### Non-byte boundary (3/5)

- What if you want to delegate 192.168.3.0 to four sub-domains (a /26 network)
  - o 192.168.3.0 ~ 192.168.3.63
    - ns.sub1.chwong.csie.net.
  - 192.168.3.64 ~ 192.168.3.127
    - ns.sub2.chwong.csie.net.
  - 192.168.3.128 ~ 192.168.3.191
    - ns.sub3.chwong.csie.net.
  - o 192.168.3.192 ~ 192.168.3.255
    - ns.sub4.chwong.csie.net.
- It is easy for forward setting
  - In zone db of chwong.csie.net
    - sub1 IN NS ns.sub1.chwong.csie.net.
    - ns.sub1 IN A 1921.68.3.1
    - sub2 IN NS ns.sub2.chwong.csie.net.
    - ns.sub2 IN A 192.168.3.65

**...** 

### Non-byte boundary (4/5)

- Non-byte boundary reverse setting
  - Method1

```
$GENERATE 0-63
                   $.3.168.192.in-addr.arpa.
                                                 NS ns.sub1.chwong.csie.net.
                                             IN
$GENERATE 64-127
                  $.3.168.192.in-addr.arpa.
                                                 NS ns.sub2.chwong.csie.net.
                                             IN
$GENERATE 128-191
                 $.3.168.192.in-addr.arpa.
                                                 NS ns.sub3.chwong.csie.net.
                                            IN
$GENERATE 192-255
                  $.3.168.192.in-addr.arpa.
                                                 NS ns.sub4.chwong.csie.net.
                                             IN
And
zone "1.3.168.192.in-addr.arpa. " {
    type master;
    file "named.rev.192.168.3.1";
};
 named.rev.192.168.3.1
     IN
            SOA sub1.chwong.csie.net. root.sub1.chwong.csie.net. (1;3h;1h;1w;1h)
     IN
                ns.sub1.chwong.csie.net.
```

### Non-byte boundary (5/5)

#### • Method2

```
$ORIGIN 3.168.192.in-addr.arpa.
SGENERATE 1-63
                                   $
                                                           $.0-63.3.168.192.in-addr.arpa.
                                            IN
                                                 CNAME
0-63.3.168.192.in-addr.arpa.
                                                           ns.sub1.chwong.csie.net.
                                            IN
                                                 NS
$GENERATE 65-127
                                   $
                                                 CNAME
                                                           $.64-127.3.168.192.in-addr.arpa.
                                            IN
64-127.3.168.192.in-addr.arpa.
                                                           ns.sub2.chwong.csie.net.
                                            IN
                                                 NS
$GENERATE 129-191
                                   $
                                                           $.128-191.3.168.192.in-addr.arpa.
                                            IN
                                                 CNAME
                                                           ns.sub3.chwong.csie.net.
128-191.3.168.192.in-addr.arpa.
                                            IN
                                                 NS
                                   $
$GENERATE 193-255
                                                           $.192-255.3.168.192.in-addr.arpa.
                                            IN
                                                 CNAME
192-255.3.168.192.in-addr.arpa.
                                                           ns.sub4.chwong.csie.net.
                                            IN
                                                 NS
zone "0-63.3.168.192.in-addr.arpa." {
    type master;
    file "named.rev.192.168.3.0-63";
};
```

```
; named.rev.192.168.3.0-63
@ IN SOA sub1.chwong.csie.net. root.sub1.chwong.csie.net. (1;3h;1h;1w;1h)
   IN NS    ns.sub1.chwong.csie.net.

1 IN PTR    www.sub1.chwong.csie.net.
   IN PTR    abc.sub1.chwong.csie.net.
...
```

# **DNS Security**

#### **DNS Vulnerabilities**



#### Security

#### named.conf security configuration

• Security configuration

| Feature        | Config. Statement | comment                               |
|----------------|-------------------|---------------------------------------|
| allow-query    | options, zone     | Who can query                         |
| allow-transfer | options, zone     | Who can request zone transfer         |
| allow-update   | zone              | Who can make dynamic updates          |
| blackhole      | options           | Which server to completely ignore     |
| bogus          | server            | Which servers should never be queried |

```
allow-recursion { ournets; };
blackhole { bogusnet; };
allow-transfer { myslaves; };
```

#### TSIG Protected Vulnerabilities



### Security – With TSIG (1)

- TSIG (Transaction SIGnature)
  - Developed by IETF (RFC2845)
  - Symmetric encryption scheme to sign and validate DNS requests and responses
     between servers
  - Algorithm in BIND9
    - DH (Diffie Hellman), HMAC-MD5, HMAC-SHA1, HMAC-SHA224, HMAC-SHA256, HMAC-SHA384, HMAC-SHA512
  - Usage
    - Prepare the shared key with dnssec-keygen
    - Edit "key" statement
    - Edit "server" statement to use that key
    - Edit "zone" statement to use that key with:
      - allow-query
      - allow-transfer
      - allow-update

### Security – With TSIG (2)



### Security – With TSIG (3)

- TSIG example (dns1 with dns2)
  - 1. % dnssec-keygen -a HMAC-MD5 -b 128 -n HOST cs

```
% dnssec-keygen -a HMAC-MD5 -b 128 -n HOST cs
Kcs.+157+35993
% cat Kcs.+157+35993.key
cs. IN DNSKEY 512 3 157 oQRab/QqXHVhkyXi9uu8hg==
```

% cat Kcs.+157+35993.private
Private-key-format: v1.2
Algorithm: 157 (HMAC\_MD5)
Key: oQRab/QqXHVhkyXi9uu8hg==

2. Edit /etc/named/dns1-dns2.key

```
key dns1-dns2 {
    algorithm hmac-md5;
    secret "oQRab/QqXHVhkyXi9uu8hg=="
};
```

- 3. Edit both named.conf of dns1 and dns2
  - Suppose dns1 = 140.113.235.107 dns2 = 140.113.235.103

```
include "dns1-dns2.key"
server 140.113.235.103 {
    keys {dns1-dns2;};
};
include "dns1-dns2.key"
server 140.113.235.107 {
    keys {dns1-dns2;};
};
```

#### **DNSSEC Protected Vulnerabilities**



### Security – With DNSSEC (1)

- DNSSEC (Domain Name System SECurity Extensions)
  - Using public-key cryptography (asymmetric)
  - Follow the delegation of authority model
  - Provide data authenticity and integrity
    - Signing the RRsets with private key
    - Public DNSKEYs are published, used to verify RRSIGs
    - Children sign their zones with private key
      - The private key is authenticated by parent's signing hash (DS) of the child zone's key

RRset: Resource Record Set

RRSIG: Resource Record Signature

DS: Delegation of Signing

### Security – With DNSSEC (2)

- Types of Resource Record for DNSSEC
  - RRSIG (Resource Record Signature)
    - Crypto signatures for A, AAAA, NS, etc.
    - Tracks the type and number at each node.
  - NSEC (Next Secure)/NSEC3
    - Confirms the NXDOMAIN response
  - DNSKEY
    - Public keys for the entire zone
    - Private side is used generate RRSIGs
  - DS (Delegation Signer) Record
    - Handed up to parent zone to authenticate the NS record

### Security – With DNSSEC (3)

- KSK (Key Signing Key)
  - The private key is used to generate a digital signature for the ZSK
  - The public key is stored in the DNS to be used to authenticate the ZSK
- ZSK (Zone Signing Key)
  - The private key is used to generate a digital signature (RRSIG) for each RRset in a zone
  - The public key is stored in the DNS to authenticate an RRSIG



#### Security – Configuring DNSSEC (1)

- Creating DNS Keys for a Zone
  - Generate KSK (Key signing key)

```
$ dnssec-keygen -a RSASHA256 -b 2048 -f KSK -n ZONE example.com
Kexample.com.+008+34957
```

Generate ZSK (Zone signing key)

```
$ dnssec-keygen -a RSASHA256 -b 2048 -n ZONE example.com
Kexample.com.+008+27228
```

- -P : publish
- -A: activate
- -I : inactive
- o -D: delete
- YYYYMMDDHHMMSS (GMT timezone)

### Security – Configuring DNSSEC (2)

Publishing DNS Keys (public keys) in a Zone

```
$TTL 86400 ; 1 day
$ORIGIN example.com.
           IN SOA ns1.example.com. hostmaster.example.com. (
                       2010121500 ; serial
                       43200
                                  ; refresh (12 hours)
                                  ; retry (10 minutes)
                       600
                                  ; expire (1 week)
                       604800
                                  ; nx (3 hours)
                       10800
           IN NS ns1.example.com.
           IN NS ns2.example.com.
           IN MX 10 mail.example.com.
           IN MX 10 mail1.example.com.
ldap. tcp IN SRV 5 2 235 www
           IN A 192.168.2.6
ns1
           IN A 192.168.23.23
ns2
           IN A 10.1.2.1
WWW
           IN A 172.16.2.1
           IN A 192.168.2.3
mail
mail1
           IN A 192.168.2.4
$ORIGIN sub.example.com.
           IN NS ns3.sub.example.com.
           IN NS ns4.sub.example.com.
           IN A 10.2.3.4; glue RR
ns3
           IN A 10.2.3.5; glue RR
ns4
$INCLUDE keys/Kexample.com.+008+34957.key; KSK
$INCLUDE keys/Kexample.com.+008+27228.key; ZSK
```

### Security – Configuring DNSSEC (3)

Signing a Zone

```
# dnssec-signzone -o example.com -t -k Kexample.com.+008+34957
master.example.com Kexample.com.+008+27228
Verifying the zone using the following alogoriths: RSASHA256
Algorithm: RSASHA256 KSKs: 1 active, 0 stand-by, 0 revoked
                     ZSKs: 1 active, 0 stand-by, 0 revoked
master.example.com.signed
Signatures generated:
                                            21
Signatures retained:
Signatures dropped:
Signatures successfully verified:
Signatures unsuccessfully verified:
Runtime in seconds:
                                         0.227
Signatures per second:
                                        92.327n
```

When signing the zone with only ZSK, just omit the -k parameter

#### Security – Configuring DNSSEC (4)

- Signing a Zone (Cont.)
  - example.com.signed

```
; File written on Sat Dec 18 21:31:01 2010
; dnssec signzone version 9.7.2-P2
example.com. 86400 IN SOA ns1.example.com. hostmaster.example.com. (
                         2010121500 ; serial
                                    ; refresh (12 hours)
                         43200
                         600
                                    ; retry (10 minutes)
                                    ; expire (1 week)
                         604800
                         10800
                                    ; minimum (3 hours)
              86400
                        RRSIG SOA 8 2 86400 20110118013101 (
                         20101219013101 27228 example.com.
                         Mnm5RaKEFAW4V5dRhP70xLtGAFMb/Zsej2vH
                         mK507zHL+U2Hbx+arMMoA/a0xtp6Jxp0FWM3
                         67VHclTjjGX9xf++6qvA65JHRNvKoZgXGtXI
                         VGG6ve8A8J9LRePtCKwo3WfhtLEMFsd1KI6o
                         JTViPzs3UDEqgAvy8rgtvwr80a8= )
              86400
                                      ns1.example.com.
                                      ns2.example.com.
              86400
                       RRSIG NS 8 2 86400 20110118013101 (
              86400
                         20101219013101 27228 example.com.
                         ubbRJV+DiNmgOITtncLOCjIw4cfB4qnC+DX8
                         S78T5Fxh5SbLBPTBKmlKvKxcx6k= )
```

### Security – Configuring DNSSEC (5)

- Updating the Zone file
  - Edit the zone file

```
zone "example.com" {
    type master;
    file "example.com.signed";
    masters {ip_addr; ip_addr;};
    allow-query {address_match_list};
    allow-transfer { address_match_list};
    allow-update {address_match_list};
};
```

- Load the new zone file
  - rndc reload

### Security – Configuring DNSSEC (6)

- Create Chain of Trust
  - Extract DNSKEY RR and use dnssec-dsfromkey
  - Add -g parameter when signing zone using dnssec-signzone

```
$ dnssec-signzone -g ...
```

- A file named ds-set.example.com was also created, which contains DS record
- DS records have to be entered in your parent domain



### Security – DNSSEC maintenance

- Modify zone
  - o nsupdate(1)
  - By hand
    - Freeze zone
      - rndc freeze
    - Edit zone file
    - Sign zone file
      - dnssec-signzone
    - Reload zone file
      - rndc reload
    - Unfreeze zone
      - rndc thaw

# BIND Debugging and Logging

### Logging (1)

- Logging configuration
  - Using a *logging* statement
  - O Define what are the channels
  - Specify where each message category should go
- Terms
  - Channel
    - A place where messages can go
    - Ex: syslog, file or /dev/null
  - Category
    - A class of messages that named can generate
    - Ex: answering queries or dynamic updates
  - Module
    - The name of the source module that generates the message
  - o Facility
    - syslog facility name
  - Severity
    - Priority in syslog
- When a message is generated
  - It is assigned a "category", a "module", a "severity"
  - It is distributed to all channels associated with its category

### Logging (2)

- Channels
  - Either "file" or "syslog" in channel sub-statement
    - size:
      - ex: 2048, 100k, 20m, 15g, unlimited, default
    - **facility:** 
      - Daemon and local0 ~ local7 are reasonable choices
    - severity:
      - critical, error, warning, notice, info, debug (with an optional numeric level), dynamic
      - Dynamic is recognized and matches the server's current debug level

```
logging {
    channel_def;
    channel_def;
    ...
    category category_name {
        channel_name;
        channel_name;
        ...
    };
};
```

```
channel channel_name {
    file path [versions num|unlimited] [size siznum];
    syslog facility;

    severity severity;
    print-category yes|no;
    print-severity yes|no;
    print-time yes|no;
};
```

# Logging (3)

• Predefined channels

| default_syslog | Sends severity info and higher to syslog with facility daemon |  |
|----------------|---------------------------------------------------------------|--|
| default_debug  | Logs to file "named.run", severity set to dynamic             |  |
| default_stderr | Sends messages to stderr or named, severity info              |  |
| null           | Discards all messages                                         |  |

• Available categories

| default          | Categories with no explicit channel assignment          |  |
|------------------|---------------------------------------------------------|--|
| general          | Unclassified messages                                   |  |
| config           | Configuration file parsing and processing               |  |
| queries/client   | A short log message for every query the server receives |  |
| dnssec           | DNSSEC messages                                         |  |
| update           | Messages about dynamic updates                          |  |
| xfer-in/xfer-out | zone transfers that the server is receiving/sending     |  |
| db/database      | Messages about database operations                      |  |
| notify           | Messages about the "zone changed" notification protocol |  |
| security         | Approved/unapproved requests                            |  |
| resolver         | Recursive lookups for clients                           |  |

## Logging (4)

• Example of logging statement

```
logging {
   channel security-log {
       file "/var/named/security.log" versions 5 size 10m;
       severity info;
       print-severity yes;
       print-time yes;
   };
   channel query-log {
       file "/var/named/query.log" versions 20 size 50m;
       severity info;
       print-severity yes;
       print-time yes;
   };
   category default { default syslog; default debug; };
   category general { default syslog; };
   category security
                         { security-log; };
   category client
                    { query-log; };
   category queries { query-log; };
   category dnssec
                       { security-log; };
};
```

### Debug

- Named debug level
  - From 0 (debugging off) ~ 11 (most verbose output)
  - o % named -d2 (start named at level 2)
  - % rndc trace (increase debugging level by 1)
  - % rndc trace 3 (change debugging level to 3)
  - % rndc notrace (turn off debugging)
- Debug with "logging" statement
  - Define a channel that include a severity with "debug" keyword
    - Ex: severity debug 3
    - All debugging messages up to level 3 will be sent to that particular channel

# Appendix - Tools

#### Tools – host

- host command
  - % host cs.nctu.edu.tw.
  - % host -t mx cs.nctu.edu.tw.
  - o % host 140.113.1.1
  - o % host -v 140.113.1.1

### Tools – nslookup

- Interactive and Non-interactive
  - Non-Interactive
    - % nslookup cs.nctu.edu.tw.
    - % nslookup -type=mx cs.nctu.edu.tw.
    - % nslookup -type=ns cs.nctu.edu.tw. 140.113.1.1
  - Interactive
    - % nslookup
    - $\blacksquare$  > set all
    - > set type=any
    - > server host
    - > lserver host
    - > set debug
    - $\blacksquare$  > set d2

```
$ nslookup
> set all
Default server: 140.113.235.107
Address: 140.113.235.107#53
Default server: 140.113.235.103
Address: 140.113.235.103#53
Set options:
                        nodebug
                                         nod2
  novc
  search
                         recurse
 timeout = 0
                                         port = 53
                        retry = 3
  querytype = A
                        class = IN
  srchlist = cs.nctu.edu.tw/csie.nctu.edu.tw
>
```

### Tools - dig

- Usage
  - % dig cs.nctu.edu.tw
  - o % dig cs.nctu.edu.tw mx
  - o % dig @ns.nctu.edu.tw cs.nctu.edu.tw mx
  - o % dig -x 140.113.209.3
    - Reverse query
- Find out the root servers
  - o % dig @a.root-servers.net . ns