TEA010 Matemática Aplicada I
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPF
FA. 19 set 2022

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova.

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

NÃO ESCREVA NA CARTEIRA.

Prof. Nelson Luís Dias

1 [25] Dada a equação diferencial

$$\frac{\mathrm{d}y}{\mathrm{d}x} = (x+1)y + x^2,\tag{*}$$

construa um esquema de diferenças finitas implícito "sob medida", fazendo

$$\frac{\mathrm{d}y}{\mathrm{d}x} \approx \frac{y_{n+1} - y_n}{\Delta x},$$

onde $x_{n+1} - x_n = \Delta x$ = constante, e substituindo todos os termos do lado direito de (*) pelas médias aritméticas de x_n e x_{n+1} , e de y_n e y_{n+1} . Explicite uma fórmula do tipo

$$y_{n+1} = f(y_n, x_n, x_{n+1}).$$

SOLUÇÃO DA QUESTÃO:

$$\frac{y_{n+1} - y_n}{\Delta x} = \left(\frac{x_{n+1} + x_n}{2} + 1\right) \left(\frac{y_{n+1} + y_n}{2}\right) + \left(\frac{x_{n+1} + x_n}{2}\right)^2$$

$$\frac{y_{n+1} - y_n}{\Delta x} = \frac{(x_{n+1} + x_n + 2)(y_{n+1} + y_n)}{4} + \frac{(x_{n+1} + x_n)^2}{4}$$

$$y_{n+1} - y_n = \left[\frac{(x_{n+1} + x_n + 2)(y_{n+1} + y_n)}{4} + \frac{(x_{n+1} + x_n)^2}{4}\right] \Delta x$$

$$y_{n+1} \left[1 - (x_{n+1} + x_n + 2)\frac{\Delta x}{4}\right] = y_n \left[1 + (x_{n+1} + x_n + 2)\frac{\Delta x}{4}\right] + \frac{(x_{n+1} + x_n)^2 \Delta x}{4}$$

$$y_{n+1} = \frac{y_n \left[1 + (x_{n+1} + x_n + 2)\frac{\Delta x}{4}\right] + \frac{(x_{n+1} + x_n)^2 \Delta x}{4}}{\left[1 - (x_{n+1} + x_n + 2)\frac{\Delta x}{4}\right]} \blacksquare$$

SOLUÇÃO DA QUESTÃO:

3 vetores do \mathbb{R}^3 são LD se forem coplanares. Portanto, a forma mais rápida de responder ao enunciado é calculando o produto triplo

$$[\mathbf{u} \times \mathbf{v}] \cdot \mathbf{w} = \begin{vmatrix} 7 & 3 & 4 \\ 1 & 2 & 3 \\ 2 & 4 & 1 \end{vmatrix} = -55 \neq 0;$$

logo, os 3 vetores são LI

 ${f 3}$ [25] Na figura ao lado, considere a curva plana cujas equações são

$$x(t) = 3e^{-t/10} \cos t,$$

 $y(t) = 3e^{-t/10} \sin t,$

 $t \ge 0$. Calcule o seu comprimento total. **Observação**: $0 \le t < \infty$, mas o comprimento da curva é **finito**.

SOLUÇÃO DA QUESTÃO:

Este é o problema 7.4 do livro-texto

$$\begin{split} \mathrm{d}t &= \sqrt{\mathrm{d}x^2 + \mathrm{d}y^2} \\ &= \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2} \, \mathrm{d}t \\ &= \left[\left(-3\mathrm{e}^{-t/10} \left(\mathrm{sen}(t) + \frac{1}{10} \cos(t) \right) \right)^2 + \left(+3\mathrm{e}^{-t/10} \left(\cos(t) - \frac{1}{10} \sin(t) \right) \right)^2 \right]^{1/2} \, \mathrm{d}t \\ &= \left[9\mathrm{e}^{-2t/10} \left(\mathrm{sen}^2(t) + 2 \sin(t) \frac{\cos(t)}{10} + \frac{1}{100} \cos^2(t) \right) \right. \\ &+ 9\mathrm{e}^{-2t/10} \left(\cos^2(t) - 2 \cos(t) \frac{\sin(t)}{10} + \frac{1}{100} \sin^2(t) \right) \right]^{1/2} \, \mathrm{d}t \\ &= \left[9\mathrm{e}^{-2t/10} \left(\mathrm{sen}^2(t) + \frac{1}{100} \cos^2(t) + \cos^2(t) + \frac{1}{100} \sin^2(t) \right) \right]^{1/2} \, \mathrm{d}t \\ &= \sqrt{\frac{909}{100}} \mathrm{e}^{-2t/10} \, \mathrm{d}t \\ &= \frac{3\sqrt{101}}{10} \mathrm{e}^{-t/10} \, \mathrm{d}t. \end{split}$$

Integrando,

$$\ell = \int_{t=0}^{\infty} \frac{3\sqrt{101}}{10} e^{-t/10} dt = 3\sqrt{101} \blacksquare$$

$$f(z) = \frac{1}{z(1-z)}$$

em torno de z=0 e para a região |z|>1. Sugestão: |1/z|<1 na região especificada.

SOLUÇÃO DA QUESTÃO:

Este é o problema 9.14 do livro-texto

$$f(z) = \frac{1}{z} \frac{1}{1-z}$$

$$= \frac{1}{z} \frac{1}{z(\frac{1}{z}-1)}$$

$$= -\frac{1}{z^2} \frac{1}{1-\frac{1}{z}}$$

$$= -\frac{1}{z^2} \left(1 + \frac{1}{z} + \frac{1}{z^2} + \dots\right)$$

$$= -\frac{1}{z^2} - \frac{1}{z^3} - \frac{1}{z^4} - \dots \blacksquare$$