Sensor Performance in the Coastal Ocean

Sherwin Ladner¹, Robert Arnone², Adam Lawson¹, Giulietta Fargion³,

Jennifer Bowers⁴, Paul Martinolich⁴, Michael Ondrusek⁵,

Michelle Wood^{6,7}

¹Naval Research Laboratory, Stennis Space Center, MS, USA ²University of Southern Mississippi, Stennis Space Center, MS, USA

³San Diego State University, San Diego, CA, USA ⁴QinetiQ Incorporated, Stennis Space Center, MS, USA ⁵NOAA NESDIS, College Park, MD, USA ⁶NOAA/AOML Ocean Chemistry Division, Miami, FL, USA ⁷Current Address: Dept. Biology and IE², Univ. Oregon, Eugene, OR, USA

We would like to acknowledge our sponsors at the JPSS Program Office for support of this work.

Objectives

- Evaluate current NRL and IDPS VIIRS Environmental Data Products
 - nLw (I) Water Leaving Radiance
 - Chlorophyll, backscattering (bb551)
- Coastal AERONET OC Platform Time Series
 - nLw(I)

AAOT - Venice, Italy

Calibration & Validation Ship Cruises

Hawaii (NOAA/Ondrusek)

✓ nLw(l)

Gulf of Mexico (NMFS Cruise - Mitch Roffer, John

Lamkin) CHL

US East Coast (GOMECC2 Cruise - M. Wood)

VIIRS - NPP Operational Software for Ocean Color Processing

1. n2gen software (NRL,NASA) - R&D

- 1. Calibration applied to SDR (AFWA/NAVO)
- 2. Atmospheric correction GW NIR w/ 80 aerosol models
- 3. Glint / Cloud Removal
- 4. In water Algorithms QAA Coastal iteration

2. NOAA Operational IDPS From

CC / NAVE O NAVE EL

Research Software #1 used to evaluate VIIRS sensor

Coastal Chlorophyll Retrievals from VIIRS Coartha Vineyard's Coastal Observatory (MVCO)

Average Chl range MVCO = 4-6 mg/m3 (August 2011)

- 1. IDPS processing Chlorophyll is to high
- 2. N2gen retrieving accurate Chl.

VIIRS Sensor is showing good agreement

n2gen Inter-Sensor Matchups (VIIRS vs MODIS n2ge)

US East Coast - August 03, 2012

MODIS Aqua agree well and are within time and space uncertainty of tl

SeaPrism

NASA AEKONET-OC (GLOBAL NETWORK)

data - nLw(l)
These sites have met the deployment requirements:

1) Platform for unobstructed sky and sea viewing;

TræturbStion adds a contribution of 1% to the SeaPRISM LWN as a function of seawater diffuse attenuation coefficient Kd and irradiance reflectance

the bottom

R (the latter values are defined by the curves in black) assuming a Lambertian seabed irradiaTihe oedectedce RB=0.\$100 face area

Water depth at which

should be at a

height of the

perturbationsuperstructure Targer than the

New Coastal US Sites:

Helsinki Lighthouse (59N,24E)

Palgrunden (58N,13E)

SCO Site: Western Long Island Sound

WaveCIS Site CSI 6' site: Gulf of Mexico

Lucinda (18S,146E)

Venise (45N,12E)

Eureka - UCS site: South California Bight Wew Perstructures from the main Beach)

n2gen - nLw Matchup @ AAOT - Venice Italy April - October 2012

	SeaPrism:MODIS			SeaPrism:VIIRS			
gt	h sloj	pe	r^2 s	lope	r^2 slope	r^2	
	1.0205	0.9634	1.0444	0.9640	0.9733	0.9140	
	0.9905	0.9821	0.9223	0.9820	0.9243	0.9554	
	0.9002	0.9911	0.9602	0.9954	1.0725	0.9879	
	0.8981	0.9872	0.9542	0.9885	1.1039	0.9888	
	0.4157	0.8252	0.7060	0.9313	1.3780	0.9837	

<u>MCST Look-up Tables</u> (Temporal RVS)

V5 = Calibration Issue with 412 & 443nm (SeaWiFS Cross-Calibration)

2gen VIIRS/MODIS Rrs vs Hyperpro Matchup

Wavelength (nm)

2gen VIIRS/MODIS Rrs vs Hyperpro Matchup

ulf of Mexico Cruise: April 02 - May 28

Panama City, FL Slocum Glider Deployment

fferences in Processing erosol models, IOP Algorithm, etc.

0.0091

0.015

0.025

0.0055

0.0033

mary : VIIRS Ocean Co

- Evaluated VIIRS ocean color EDR products using processing from NRL's n2gen (R&D) and VOCCO (IDPS)
- VIIRS Coastal Ocean Color EDR's (nLw/Rrs, Chlorophyll and bb 551) compare well with insitu Ship/AERONET-OC and MODIS
- IDPS EDR's products are over masking (Mx6.0-6.5)
 - limited matchups
- Update of IDPS EDR's (Jan 2012 Mx6.6)
 - suggest setting / using quality flags
- Monitoring sensor and radiometric calibration stability using global validation network requires IDPS updates (Mx6.6)
- Follow-on cruises and validation planned in near future

Questions?

nsor Acknowledgements:

JPSS Program Office NOAA Ocean Acidification Program (GOMECC2 Cruise)

parison of Processing Software Package IDPS and NRL APS (n2gen)

	IDPS	N2Gen/APS	
Aerosol LUT model	Wang (12 models)	Ahmad/Fraser (80 models)	
Correction Algorithm Basis	Gordon and Wang	Gordon Wang with NIR correction	
Gaseous Absorption Species	O ₃ , H ₂ O, and other constant species	same as NASA O3 H2O and O2	
"Bright Pixel" correction	no	Bailey/2010	
Gaseous Absorption RSR (detector averaged) Solar Spectrum	Absorption coefficients based on V2 Fused RSR MODTRAN	Absorption coefficients based on "V3 New-Fused" RSR Thullier 2003	
Rayleigh LUT	Generated by Wang using TVAC RSR	following NASA	
Diffuse Transmittance	2 component Gordon Yang (Center wavelength only)	following NASA/Frasier	
Glint Mask model/angle	VIIRS Cloud Mask / 36 degrees cone	Cox Monk/combination of 36 and other things	
Sun glint correction / threshold	Gordon Glint Mask /0.005 with contamination correction	Bailey and Wang/0.01 with contamination correction	
Wind speed input data	NCEP GFS/forecast data	"climatology for the real time"	
Cloud Mask	VIIRS	using same as Wang right now	
Whitecap Correction (wind speed cap)	8 m/s	8 m/s	
Bright Pixel (Stray Light Exclusion) Algo.	Quality flag based on scattered light	same as MSL12	
How often F-tables are implemented?	weekly	weekly	
Polarization LUT	Ambient Test data	same as NASA	
Polarization LUT Band or Detector	Detector dependent	detector averaged	
RSR used in Rayleigh gain LUT	MX5.3 (Fused RSR) / MX6.2 (New-Fused RSR)	same as Wang	
Sensor Zenith Angle exclusion	53 degrees	57 degrees	
Solar Zenith Angle exclusion	70 degrees	70degrees	
OCC			
Land/Water Mask	QST 2001 LWM and 2005 MODIS	UMB using the full resolution 250m LWM	
Chlorophyll Algorithm	OC3V	OC3V	
Chlorophyll Coefficients	NASA coefficients	NASA coefficients	
IOP algorithm	Carder	QAA	

Table 2 provides a summary of the algorithm differences between the IDPS (L2Gen) and APS (N2Gen) processing.

⁸ The IDPS processes JPSS satellite data to provide the environmental data products (Scientific Data Records, SDRs and Environmental Data Records, EDRs).

Panama City, FL Slocum Glider

Deployment Time Seriesveការខែខ លិខ្លាំប្រសាធារា៦er 16,**១**៧៤៤៣ Glider

502itm (glider) vs. Satellite (VIIRS) - Near Surface

Inter-Sensor Matchups (VIIRS vs MODIS n2gen) Ocean Optical Backscattering Product - US East (UP)

0.002 0.008 0.032 0.13 1/m

