

Unit Specification (Collaborative/Postgraduate/Flexible Framework Use Only)

Unit Details & Outline

-			
Unit Title	Cryptography & Encryption		
Unit Code	6G7Z1011		
Occurrence(s)	MMU Science & Engineering		
Unit	Crypt & Encrypt		
Abbreviation			
Level of Study	Level 7		
,			
Credit Value	30	ECTS Value	15
Home	Division of Computer Science	and Information Systems	5
Department	School of Computing, Mathem	•	
э орол отто	,		
Home Faculty	Science and Engineering		
•			
Unit	Keith Yates		
Co-ordinator			
Key Words	Cryptography, Encryption		
•			

Unit Description

Brief Summary	The unit covers theoretical discussion of the key encryption algorithms: Diffie-Hellman, RSA, Digital Signatures, modern symmetric cryptosystems DES and AES. Additionally we will code the algorithms and their variants in a modern programming language and implement cryptosystems over a computer network.
Indicative	Indicative topics of equal weighting:
Content	

Classical Cryptography; Shannon's Theory; Block Ciphers; Hash Functions; RSA Algorithm and variants; Discrete and Public-Key Algorithms; Signatures; Pseudorandom number generators; Identification Schemes and Entity Authentication; Key Distribution; Key Agreement Schemes.

Learning Outcomes

Unit Learning Outcomes	On successful completion of this unit students should be able to:
	1. Explain the mathematical ideas underpinning encryption;
	2. Critically analyse basic cryptographic algorithms and propose appropriate uses for them;
	3. Assess the strengths and weaknesses of a particular algorithm, and determine its suitability for a particular task;
	4. Code and modify algorithms to perform specific encryption tasks.

Assessment

Summative Assessment

Element	Туре	Weighting	Learning outcomes assessed
1	Coursework	40 %	1-4
2	Exam	60 %	1-4

Employability and Sustainability Outcomes

Outcomes	Element of Assessment
Apply skills of critical analysis to real world situations within a defined range of contexts.	1
Demonstrate a high degree of professionalism.	1, 2
Express ideas effectively and communicate information appropriately and accurately using a range of media including ICT.	1, 2
Develop working relationships using teamwork and leadership skills, recognising and respecting different perspectives.	
Manage their professional development reflecting on progress and taking appropriate action.	1, 2
Find, evaluate, synthesise and use information from a variety of sources.	1, 2
Articulate an awareness of the social and community contexts within their disciplinary field.	
Use systems and scenario thinking.	
Engage with stakeholder/interdisciplinary perspectives.	

Description of each element of Assessment

Summative

Element 1: Coursework, designed and coded solutions to implement and analyse encryption.

Element 2: Written three hour exam covering the theory and uses of the main algorithms used in encryption and cryptography specifically:

- 1. How the key algorithms work.
- 2. How an algorithm is encoded into a high level language.
- 3. What the strengths and weaknesses of a particular algorithm are
- 4. An awareness of what type of algorithm/technique is used to deal with a particular security concern

Formative

Students receive formative feedback during supported weekly laboratory sessions

Mandatory Learning & Teaching Requirements	N/A
Minimum Pass Mark	N/A

Learning Activities

Breakdown of	Type of Activity	%
Student	Summative Assessment	25
Learning		
Activity	Directed Study	25
	Student-centred Learning	50
	-	

Learning Resources

- I	71 22 46 11 26 1 1
Books	The unit does not follow any specific book.
recommended	
for purchase by	
students	
Essential	
Reading/	
Resources	
Further	
Reading/	
Resources	Menezes A. J. (1996) Handbook of Applied Cryptography, CRC, ISBN 13-978-
	0849385230
	Schneier B.(1996) Applied Cryptography:Protocols, Algorithms and Source Code
	<i>in C,</i> John Wiley, 2 nd Ed. ISBN 13-978-0471117094
	Hoffstein J. Pipher, J. Silverman J.H. (2008) An Introduction to Mathematical
	Cryptography, Springer, ISBN 13-978-1441926746
	Stinson D. R. (2005) <i>Cryptography: Theory and Practice</i> , Chapman Hall, 3 rd Ed.
	ISBN 13-978-1584885085
	K. M. Martin K. M. (2012) Everyday Cryptography, Oxford University Press,
	ISBN 13-978-0199695591

	MMU's VLE will be used to deliver course materials, assessments and to support blending learning.
Specialist ICTS Resources	Hardware and software requirements decided annually and communicated to specialist Technical Support.
Additional	None
Requirements	

Administration

JACS Code	I120
HESA Academic	121 IT, Systems Sciences and Computer Software Engineering (C1)
Cost Centre	
Date of	19 December 2013
Approval	
Date of Most	19 December 2013
Recent	
Consideration	
Unit External	Prof. Reinhold Behringer
Examiner	
Unit	Science and Engineering
Assessment	
Board	