Proving the Converse of Pythagorean Theorem

Ethan Xu

October 2021

1 Introduction

The Pythagorean Theorem is defined as: if $a^2+b^2=c^2$, then $\theta=90^\circ$. By definition, then the converse of the Pythagorean Theorem is if $\theta=90^\circ$, then $a^2+b^2=c^2$.

2 Proof

Let $\triangle ABC$ be a triangle with sides a (AB), b (BC), c (AC) such that:

$$a^2 + b^2 = c^2 (1)$$

Let $\triangle DEF$ be a triangle with sides a (DE), b (EF), d (DF). Let $\angle DEF = 90^{\circ}$, such that side d is the hypotenuse. By the Pythagorean Theorem, we have that:

$$a^2 + b^2 = d^2 (2)$$

Now we can substitute $a^2 + b^2$ in (1) for d^2 from (2), so we have that $c^2 = d^2$. Since c, d > 0, c = d.

By SSS Congruence, we have that $\triangle ABC \cong \triangle DEF$, so $\angle ABC = \angle DEF = 90^{\circ}$. Hence, $\triangle ABC$ contains a right angle.