

PI 500

Zaawansowany, wysoko wydajny Falownik wektorowy

Częstotliwość: 7,5 - 700 kw Napięcie zasilania: 400V 3F

Opis produktu:

Falowniki serii PI500 są zaawansowanymi, wysoko wydajnymi, trwałymi i niezawodnymi falownikami wektorowymi. Dzięki zastosowanej technologii sterowania wektorowego, pozwalają uzyskać wysoki moment przy niskich prędkościach obrotowych. Są wyposażone w szereg funkcji zabezpieczających, które gwarantują niezawodność falowników w długim okresie eksploatacji. Ze względu na dużą ilość wejść i wyjść sygnałowych, cyfrowe łącze komunikacyjne i bogatą listę konfigurowalnych funkcji, znakomicie nadają się do stosowania jako elementy wykonawcze w dużych i złożonych systemach zasilania i sterowania, ale również mogą pracować samodzielnie, jako autonomiczne jednostki sterujące maszyn i jako elementy wykonawcze w systemach sterowania prostych linii produkcyjnych.

www.powtran.com www.powtran-polska.pl

Specyfikacja standardowa

Cecha	Funkcja	Specyfikacja						
Zasilanie	Napięcie nominalne	AC 3 faz. 400 V (-20%) do 440 V (+10%)						
	Częstotliwość nominalna	50 Hz / 60 Hz						
		Napięcia wejściowego: +/- 10%						
	Dopuszczalne fluktuacje	Częstotliwości: +/- 5% Zniekształcenia wg IEC61800-2						
	Sterowanie	Wysokowydajne sterowanie wektorem pola oparte na DSP						
	Metody sterowania	Sterowanie V/f, wektorowe bez sprzężenia, wektorowe ze sprzężeniem						
	Funkcja automatycznego podbicia momentu	Pozwala uzyskać wysoki moment na wyjściu przy niskich częstotliwościach (1Hz) metodą V/						
	Przyspieszanie / Zwalnianie	Charakterystyka liniowa lub krzywa typu S. Dostępne cztery zestawy czasów w zakresie od 06500 s						
	Tryb krzywej V/f	Charakterystyka liniowa, kwadratowa/n-potęgowa, predefiniowalna dowolna krzywa V/f						
	Przeciążalność	Typ G prąd 150% przez 1 minutę, prąd 180% przez 2s, Typ F prąd 120% przez 1 minutę, prąd 150% przez 2s						
	Częstotliwość maksymalna	Sterowanie wektorowe - do 320 Hz Sterowanie V/f - 3200 Hz						
	Częstotliwość nośna	0,5 do 16 kHz z automatycznym dostosowaniem częstotliwości do charakterystyki obciążenia						
vania	Rozdzielczość częstotliwości zadanej	Zadawanie cyfrowe 0,01 Hz Zadawanie analogowe: częstotliwość maksymalna * 0,1 %						
sterov	Moment początkowy	Typ G: 0,5Hz/150% (bezczujnikowe sterowanie wektorowe) Typ F: 0,5Hz/100% (bezczujnikowe sterowanie wektorowe)						
System sterowania	Zakres prędkości	1:100 (bezczujnikowe sterowanie wektorowe) 1:1000 (sterowanie wektorowe ze sprzężeniem zwrotnym)						
	Stabilizacja częstotliwości	Bezczujnikowe sterowanie wektorowe: <= +/- 0,5% nominalnnej prędkości synchronicznej Sterowanie wektorowe ze sprzężeniem zwrotnym: <= +/- 0,02% nominalnnej prędkości synchronicznej						
	Odpowiedź momentu	< 40ms (bezczujnikowe sterowanie wektorowe)						
	Podbicie momentu	Automatyczne podbicie momentu Stałe podbicie momentu (0,1 do 30%)						
	Hamowanie prądem stałym	Częstotliwość hamowania DC: 0,0 Hz do częstotliwości maksymalnej Czas hamowania: 0,0 do 100,0 sekund Wartość prądu hamowania: 0,0 do 100%						
	Sterowanie JOG	Zakres częstotliwość JOG: 0,0 Hz do częstotliwości maksymalnej Rozpędzanie / Zwalnianie JOG: 0,0 s. Do 6500,0 s						
	Częstotliwości predefiniowalne	16 predefiniowalnych prędkości dostępnych przez listwę zaciskową						
	Wbudowany regulator PID	System sterowania parametrówprocesu realizowany jest za pomocą wbudowanego regulatora PID						
	Automatyczna regulacja napięcia (AVR)	Automatyczne utrzymanie wartości napięcia wyjściowego przy przy zmianach wartości napięcia zasilającego						
	Ograniczenie momentu i sterowanie	Moment jest automatycznie ograniczany podczas pracy w celu zabezpieczenia przed ewentualnymi wyłączeniami nadprądowymi. Do kontroli momentu używany jest wektorowy tryb sterowania ze sprzężeniem zwrotnym						
Funkcje własne	Samokontrola obwodów wyjściowych po zasileniu	Po włączeniu zasilania falownik sprawdza obwody wejściowe pod kątem doziemienia, zwarć itp						
	Wspólna szyna DC	W układach z wieloma falownikami można połączyć obwody DC wszystkich falowników i używać wspólnej szyny DC.						
	Szybkie ograniczenie prądu	Dla ograniczenia prawdopodobieństwa wystąpienia nadmiernego prądu i poprawienia zdolności zapobiegania zakłóceniom, zastosowano algorytmy ograniczające prąd wyjściowy						

Falownik wyposażony jest w funkcje kontroli czasu pracy i czasu pozostawania

z włączonym zasilaniem. Zakres ustawień 0 do 65000 minut

Funkcje kontroli czasu

Specyfikacja standardowa

Cecha		Funkcja	Specyfikacja						
Praca		Źródła sterowania	Klawiatura / listwa zaciskowa / port komunikacyjny						
	Sygnały wejściowe	Zadawanie częstotliwości	Dostępnych jest 10 źródeł zadawania częstotliwości, wśród nich wejścia analogowe DC (010 V, 0/420 mA), pokrętło na klawiaturze, sygnały dwustanowe na listwie zaciskowej Napięcia wejściowego: +/- 10%						
		Rodzaje sygnału startu	"Obroty do przodu, "obroty do tyłu", "zmiana obrotów"						
		Prędkości predefiniowalne	Można ustawić 16 predefiniowalnych prędkości wybieranych sygnałami z wejść dwustanowy DI lub z poziomu programowania falownika						
		Stop bezpieczeństwa	Podanie sygnału zdefiniowanego jako "STOP bezpeczeństwa" powoduje natychmiastowe zatrzymanie falownika z odcięciem napięcia wyjściowego						
		Kasowanie błędów	Jeśli funkcja jest aktywna, komunikaty błędów mogą być kasowane ręcznie lub automatycznie						
		Sprzężenie zwrotne regulatora PID	Sygnał sprzężenia zwrotnego regulatora PID może być doprowadzony do falownika na wejście analogowe 010 V lub 0/420 mA lub dwustanowe. Pozwala to na realizację autonomicznych układów regulacji procesów technologicznych						
	owe	Wyjście sygnalizacji pracy	Sygnalizuje stan pracy silnika: zatrzymanie, rozpędzanie, zwalnianie, prędkość ustaloną, etap pracy programu						
	vyjści	Wyjście przekaźnikowe	Parametry wyjść: styk normalnie zwarty 3A 250VAC styk normalnie otwarty 5A 250 VAC, 1A 30VDC						
	Sygnały wyjściowe	Wyjście analogowe	Dwa wyjścia analogowe. Na każdym można zaprogramować jeden z 16-tu sygnałów wyjściowycł takich jak częstotliwość, prąd, na pięcie i inne. Standard elektryczny 010 V, 020 mA						
		Wyjście dwustanowe	Dostępne 4 wyjścia dwustanowe (2 przekaźnikowe i 2 OC). Na każdym z nich można zaprogramować jeden z 40-tu sygnałów wyjściowych						
	Funkcje podczas pracy		Podczas pracy dostępne są takie funkcje jak ograniczenie częstotliwości, przeskok częstotliwości, kompensacja częstotliwości, automatyczny dobór parametrów silnika regulacja PID						
	Н	amowanie prądem stałym DC	Wbudowany regulator hamowania prądem stałym pozwala zatrzymać silnik o dużej inercji bez przeciążenia falownika						
	Źı	ródła zadawania parametrów	Są trzy źródła zadawania parametrów: panel operatorski, listwa zaciskowa i port komunikacyjny RS485. Kanały te mogą być przełączane na wiele sposobów						
	Źı	ródło częstotliwości zadanej	Jest 10 źródeł częstotliwości zadanej: zadawanie cyfrowe, wejścia analogowe (010 V, 020 mA), wejścia dwustanowe (wybór prędkości predefiniowalnych), port komunikacyjny RS485. Kanały te mogą być przełączane na wiele sposobów						
	W	ejścia sygnałowe	 8 wejść dwustanowych DI dla sygnałów PNP lub NPN, jedno z nich jest szybkim wejściem impulsowym (0100 kHz dla fali prostokątnej) 3 wejścia analogowe dla sygnałów 010 V lyb 020 mA 						
	w	/yjścia sygnałowe	 2 wyjścia dwustanowe DO OC, jedno z nich jest szybkim wyjściem impulsowym (0100 k dla fali prostokątnej - możliwa realizacja modulacji PWM) 2 wyjścia przekaźnikowe 2 wyjścia analogowe dla sygnałów 010 V lyb 020 mA, pozwalające na wyprowadzenie częstotliwości zadanej lub wyjściowej, prędkości i wielu innych parametrów falownika 						
g g	Zabezpieczenie elektryczne falownika		Falownik zabezpieczony jest min. w zabezpieczenia nadprądowe, nadnapięciowe, podnapięciowe, przeciążeniowe, termiczne, ziemnozwarciowe, błędu komunikacji na Rs4						
ccje ceńst	P-	omiar temperatury IGBT	Falownik wyświetla i kontroluje bieżącą temperaturę modułu IGBT. Przekroczenie temperatury dozwolonej skutkuje zatrzymaniem falownika						
Funkcje bezpieczeństwa	Reakcja na zanik zasilania		Przerwa poniżej 15 ms - kontynuacja pracy, powyżej 15 ms - możliwa autodetekcja prędkości silnika i natychmiastowy restart na żądanie						
	0	chrona parametrów falownika	Dostęp do parametrów konfiguracyjnych falownika zabezpieczony jest możliwością ustalen hasła dostępowego administratora						
Parametry środowiskowe	Temperatura pracy		-10 stC do +40 stC						
	Temperatura przechowywania		-20 stC do +65 stC						
	W	lilgotność	Poniżej 90% R.H bez kondensacji						
	W	/ibracje	Poniżej 5,9 m./s2 (=0,6g)						
	Z	abudowa	Wewnątrz obudowy lub w pomieszczeniu, w miejscu wolnym od bezpośredniego działania promieni słonecznych, korodujących i wybuchowych gazów, pary wodnej, kurzu, gazów i mgieł palnych, mgieł oleju, skroplin lub soli itp.						
ıran	W	ysokość	Poniżej 1000 m. npm						
Š.	St	topień ochrony	IP 20						

Specyfikacja i wymiary:

Model	Мос	Prąd wejściowy	Nom. prąd wyjściowy	Wymiary zewnętrzne [mm]				Rozstaw otworów montażowych [mm]		
Wodel	(KW)	(A)	(A)	Н	H1	W	D1	A	В	d d
PI500-7R5G3/011F3	7,5/11	20,5/26	17/25		300	190	198	140	285	Ø6
PI500-011G3/015F3	11/15	26/35	25/32	280						
PI500-015G3/018F3	15/18,5	35/38,5	32/37							
PI500-018G3/022F3	18,5/22	38,5/46,5	37/45	330	350	210	198	150	335	Ø6
PI500-022G3/030F3	22/30	46,5/62	45/60	330						
PI500-030G3/037F3	30/37	62/76	60/75	380	400	240	223	180	385	Ø7
PI500-037G3/045F3	37/45	76/91	75/90							
PI500-045G3/055F3	45/55	91/112	90/110		520	300	283	220	500	Ø10
PI500-055G3/075F3	55/75	112/157	110/150	500						
PI500-075G3	75	157	150							
PI500-093F3	90	180	176		575	355	328	250	555	Ø10
PI500-093G3/110F3	90/110	180/214	176/210	550						
PI500-110G3/132F3	110/132	214/256	210/253							
PI500-132G3/160F3	132/160	256/307	253/304	695	720	400	368	300	700	Ø10
PI500-160G3/187F3	160/187	307/345	304/340			480	368	370	800	Ø11
PI500-187G3/200F3	187/200	345/385	340/380	790	820					
PI500-200G3/220F3	200/220	385/430	380/426	750						
PI500-220G3	220	430	426							
PI500-250F3	250	468	465		980	705	388	550	945	Ø13
PI500-250G3/280F3	250/280	468/525	465/520							
PI500-280G3/315F3	280/315	525/590	520/585	940						
PI500-315G3/355F3	315/355	590/665	585/650	340						
PI500-355G3/400F3	355/400	665/785	650/725							
PI500-400G3	400	785	725							
PI500-450F3	450	883	820		1700	1200	612	680	550	Ø17
PI500-450G3/500F3	450/500	883/920	820/860							
PI500-500G3/560F3	500/560	920/1010	860/950	/						
PI500-560G3/630F3	560/630	1010/1160	950/1100							
PI500-630G3/700F3	630/700	1160/1310	1100/1250							

