Обзор методов моделирования на основе искусственного интеллекта

ИИ способен изменить наш мир, то, как мы живем и взаимодействуем: повысить производительность и вовлеченность в работу, стимулировать творчество. Однако эти технологии развиваются экспоненциально быстро и выводят мир на неизведанную территорию, наполненную помимо положительного эффекта и потенциальными рисками, включая неправильное использование технологий, нарушения безопасности и другие риски.

(Давос-2024. Из итогов Всемирного экономического форума)

2 ноября 2023 года Великобритания, США, ЕС, Австралия, Китай и ряд других стран на саммите, проходившем в Великобритании, подписали первую в истории международную декларацию, в которой говорится, что искусственный интеллект (ИИ) представляет потенциально катастрофический риск для человечества. В британском саммите по безопасному использованию искусственного интеллекта приняли участие более 100 деятелей политики и бизнеса, в том числе генеральный директор OpenAI Сэм Олтмен(Альтман) и владелец SpaceX, Tesla Илон Маск. Республика Корея согласилась провести еще один такой саммит через шесть месяцев, а Франция проведет его через год. 28 стран подписали так называемую декларацию Блетчли в первый день саммита по безопасному использованию ИИ. Декларация получила свое название от места проведения саммита — особняка в Блетчли. Страны договорились вместе работать над исследованиями в области безопасности ИИ, даже несмотря на признаки того, что США и Великобритания конкурируют за лидерство в разработке новых правил.

До сих пор в мире не существует единого мнения относительно того, как может выглядеть глобальный набор правил ИИ или кто должен их разрабатывать.

По сути дела, ситуация с ИИ напоминает то, что было во время начала массового проникновения персональных компьютеров во все сферы жизнедеятельности человека. Внедрение информационно-коммуникационных технологий привело к изменениям всех сфер жизни. С момента появления первого компьютера до полной роботизации целых производств, а не только отдельных технологических процессов, прошло не так уж много времени. В настоящее время вопрос уже заключается не только в том, каким образом автоматизировать рутинную работу человека, роботизировать большое количество операций (т.е. разработка эффективных алгоритмов, программируемых определенные действия), но и как наделить робота (систему) «интеллектом» (научить систему определенной «мыслительной деятельности»). Все это возможно с помощью технологий ИИ. Данные технологии сейчас стремительно развиваются и получают всё больше внимания со стороны не только исследователей, но и практиков.

Что такое искусственный интеллект и его виды

Что такое искусственный интеллект

Для того, чтобы начать изучать такую предметную область, как искусственный интеллект, для начала необходимо разобраться, что такое интеллект вообще и какой интеллект можно назвать искусственным.

Единого определения для обозначения искусственного интеллекта не существует. Интеллект — это способность к познанию различных предметных областей, пониманию законов их функционирования, внутренних и внешних взаимосвязей, а также постановке, выбору метода и решению связанных с ними задач.

Очевидно, что для реализации всех функций интеллекта необходимо обладать обширной базой знаний, богатым набором инструментов в виде методов и средств решения задач, а также способностью к творчеству: сопоставлять, связывать, объединять ранее не сопоставлявшееся, не связывавшееся, не объединявшееся.

Применим полученное определение к чему-то рукотворному, созданному человеком искусственно. Получится так:

Искусственный интеллект (ИИ) — способность искусственно организованных систем познавать реально существующие объекты, описывать законы их функционирования и решать задачи, возникающие в процессе этого функционирования в условиях неполноты, неопределенности и сильной внешней зашумленности информации.

Звучит сложно. Если упростить, то ИИ должен самостоятельно уметь:

запоминать информацию, анализировать информацию, выявлять закономерности, определять причинно-следственные связи, формулировать и решать задачи, выбирать методы для решения задач.

Теперь рассмотрим виды искусственного интеллекта в общем виде. **Виды искусственного интеллекта**

Искусственный интеллект (от англ. *artificial intelligence* или AI) можно разделить на три основные категории:

- 1. Ограниченный искусственный интеллект (Narrow Artificial Intelligence, NAI)
- 2. Общий искусственный интеллект (Artificial General Intelligence, AGI)
- 3. Сверхразумный искусственный интеллект (Artificial Super Intelligence, ASI)

Ограниченный искусственный интеллект (NAI)

Ограниченный искусственный интеллект — интеллект, который **способен хорошо решать только одну задачу, например прогнозировать данные временного ряда**, распознавать изображения. Также это может быть **группа различных задач, но в одной предметной области.**

Общий искусственный интеллект (AGI)

Общий искусственный интеллект (AGI) **стоит на одном уровне с человеческим интеллектом и способен выполнять множество разных задач.** Таким видом интеллекта обладают лишь люди, но все уже слышали о ChatGPT и подобных технологиях. По сути дела, это прообраз AGI.

Сверхразумный искусственный интеллект (ASI)

Сверхразумный искусственный интеллект (ASI) стоит на ступень выше человеческого и является пока недостижимым.

Выводы

На данный момент 90% всех технологий, устройств и систем, содержащие в себе так называемый искусственный интеллект, на самом деле являются носителями NAI или ограниченного ИИ или отдельных его методов.

AGI находится в процессе создания, а об ASI можно узнать лишь в фантастических книгах и фильмах.

Направления развития искусственного интеллекта

Направление развития - некая область, в рамках которой используются и развиваются методы и средства искусственного интеллекта.

Выделим 8 направлений развития искусственного интеллекта.

1. Представление знаний и разработка систем, основанных на знаниях. Это основное направление искусственного интеллекта. Оно связано с разработкой моделей представления знаний, созданием баз знаний, образующих ядро экспертных систем (ЭС). Включает в себя модели и методы извлечения и структурирования знаний и сливается с инженерией знаний.

- **2. Игры и творчество.** Традиционно искусственный интеллект включает в себя **игровые интеллектуальные задачи шахматы, шашки и т.д.** <u>В основе лежит одиниз ранних подходов лабиринтная модель плюс эвристики.</u> Сейчас это скорее **коммерческое направление**, так как в научном плане эти идеи считаются тупиковыми.
- **3. Разработка естественноязыковых интерфейсов и машинный перевод.** В 1950-х гг. одной из популярных тем исследований искусственного интеллекта являлась область машинного перевода. Первая программа в этой области переводчик с английского языка на русский.
- **4. Распознавание образов.** Традиционное направление искусственного интеллекта, берущее начало у самых его истоков. Каждому объекту ставится в соответствие матрица признаков, по которой происходит его распознавание. Это направление близко к машинному обучению, тесно связано с нейрокибернетикой.
- **5. Новые архитектуры компьютеров.** Это направление занимается разработкой новых аппаратных решений и архитектур, направленных на обработку символьных и логических данных. Создаются Пролог- и Лисп-машины, компьютеры V и VI поколений. Последние разработки посвящены компьютерам баз данных и параллельным компьютерам.
- **6. Интеллектуальные роботы.** Речь идет о разработке и создании отдельных устройств, содержащих **не только набор алгоритмов и модели обучения, но и некую технического реализацию. Начиная от робота-пылесоса, заканчивая антропоморфными роботами.**
- 7. Специальное программное обеспечение. В рамках этого направления разрабатываются специальные языки для решения задач невычислительного плана. Помимо этого, создаются пакеты прикладных программ, ориентированные на промышленную разработку интеллектуальных систем, или программные инструментарии искусственного интеллекта.
- **8. Обучение и самообучение.** Активно развивающаяся область искусственного интеллекта. Включает модели, методы и алгоритмы, ориентированные на автоматическое накопление знаний на основе анализа и обобщения данных.

Выводы:

Сейчас мы наблюдаем активное развитие именно последнего направления. Стоит отметить, что несколько лет назад всех удивляло распознавание образов, тогда эти технологии считались прорывными.

Методы искусственного интеллекта

Что такое метод искусственного интеллекта?

У термина «метод» есть множество определений. Так как сфера искусственного интеллекта, в основном, подразумевает знания в области математики, программирования и информационных технологий, то метод, в нашем случае, — путь познания или способ познания какой-либо предметной области, способ достижения цели. А метод искусственного интеллекта — это способ, а фактически, — алгоритм решения какой-либо задачи.

Существует большое количество направлений развития искусственного интеллекта. В рамках этих направлений есть различные методы, которые могут применяться по отдельности или в группах для решения задач, стоящих перед наукой, промышленностью, экономикой, медициной и другими областями.

Классификация методов искусственного интеллекта (ИИ)

Есть разные мнения о том, как классифицировать методы ИИ. Мы **предлагаем следующую классификацию**, которая состоит из пяти пунктов:

- 1. Искусственные нейронные сети
- 2. Нечеткая логика (нечеткие множества и мягкие вычисления)
- 3. Системы, основанные на знаниях (экспертные системы)
- 4. Эволюционное моделирование (<u>генетические алгоритмы</u>, многоагентные системы)
- 5. <u>Machine Learning</u> (Data Mining и анализ данных и, поиск закономерностей в хранилищах данных)

Теперь давайте простыми словами расскажем, что представляет собой каждый метод.

Искусственные нейронные сети

Искусственная нейронная сеть — это преимущественно математический аппарат, хотя иногда в различных парадигмах нейросетей встречаются элементы логики.

Нейронная сеть — математическая модель, прототипом которой служит центральная нервная система человека или животного.

Данный метод ИИ применяется в задачах распознавания образов, прогнозирования, классификации, кластеризации и оптимизации.

Нечёткая логика, нечёткие множества и мягкие вычисления

Нечёткая логика, теория нечётких множеств, нечёткие рассуждения, мягкие вычисления — всё это близкие или тесно связанные между собой понятия, относящиеся к более высокому уровню работы центральной нервной системы, нежели искусственные нейронные сети. Методы нечеткой логики используются в экспертных системах, системах управления объектом.

<u>Нечёткая логика в большей степени связана</u> с качественной оценкой анализируемых процессов и явлений и принятием решений на основе этой качественной оценки.

Эволюционное или многоагентное моделирование

В рамках данной группы методов рассматривается концепция не индивидуального, а коллективного интеллекта.

Эволюционное моделирование целесообразно применять тогда, когда пространство поиска решения настолько большое и сложно устроенное, что традиционные и более простые методы просто неспособны выполнить глобальный поиск решения или способны, но на это потребуется неприемлемо много времени

Эволюционные алгоритмы — направление в искусственном интеллекте (раздел эволюционного моделирования), которое использует и моделирует процессы естественного отбора. Эволюционные алгоритмы — направление в искусственном интеллекте (раздел эволюционного моделирования), которое использует и моделирует процессы естественного отбора.

Виды алгоритмов

генетические алгоритмы — эвристический алгоритм поиска, используемый для решения задач оптимизации и моделирования путём случайного подбора, комбинирования и вариации искомых параметров;

<u>генетическое программирование</u> — <u>автоматическое создание или</u> изменение программ с помощью генетических алгоритмов;

<u>эволюционное программирование</u> — <u>аналогично генетическому</u> <u>программированию</u>, но структура программы постоянна, изменяются только числовые значения;

программирование экспрессии генов

<u>эволюционные стратегии</u> — похожи на генетические алгоритмы, но в следующее поколение передаются только положительные мутации;

<u>дифференциальная эволюция</u>

нейроэволюция — аналогично генетическому программированию, но геномы представляют собой искусственные нейронные сети, в которых происходит эволюция весов при заданной топологии сети, или помимо эволюции весов также производится эволюция топологии;

системы классификаторов;

Все они моделируют базовые положения в теории биологической эволюции — процессы отбора, мутации и воспроизводства. Поведение агентов определяется окружающей средой. Множество агентов принято называть популяцией. Такая популяция эволюционирует в соответствии с правилами отбора в соответствии с целевой функцией, задаваемой окружающей средой. Таким образом, каждому агенту (индивидууму) популяции назначается значение его пригодности в окружающей среде. Размножаются только наиболее пригодные виды. Рекомбинация и мутация позволяют изменяться агентам и приспособляться к среде. Такие алгоритмы относятся к адаптивным поисковым механизмам.

<u>Эволюционные алгоритмы успешно использовались для задач типа</u> функциональной оптимизации и могут легко быть описаны на математическом языке.

Отрасли использования

Эволюционные алгоритмы используются при комбинаторной оптимизации, в частности при решении классических NP-полных проблем, таких как задача коммивояжера, задача упаковки ранца, разбитие чисел, максимально независимое множество и зарисовка графов.

Возможность использования эволюционных алгоритмов в музыке активно исследуется в Австрии, в первую очередь при попытках моделирования игры на музыкальных инструментах известными людьми разных эпох.

Экспертные системы. Поддержка принятия решений

Экспертная система — это <u>искусственный аналог лица,</u> принимающего решения, или, как минимум, эксперта-консультанта предметной области.

Структура и логико-математический аппарат экспертной системы определяются, в первую очередь, её назначением и предметной областью. Сами решения, предлагаемые системой, могут вырабатываться с использованием различных механизмов вывода. Наиболее близкий аналог человеческому механизму вывода — это аппарат нечёткой логики и теории нечётких множеств.

Machine Learning, Data Mining, Data Science

Machine Learning (машинное обучение) — это целый класс методов искусственного интеллекта. Все они подразумевают решение задач не напрямую, а путем предварительного обучения как до, так и в процессе принятия решения.

Data mining. Данный термин введён Григорием Пятецким-Шапиро в 1989 году

По сути — это собирательное название, которое применяется для обозначения целой группы методов обнаружения определенных закономерностей в общем объеме данных, которые могут получены в различных сферах человеческой деятельности.

Например, методы Data Mining могут быть использованы для больших данных (Big Data), накопленных в розничных продажах, для подтверждения каких-либо гипотез и принятия управленческих решений.

Выводы

Мы рассмотрели 5 основных групп методов искусственного интеллекта согласно нашей классификации и дали небольшие пояснения касательно каждого из них.

Взаимосвязь направлений развития, задач и методов ИИ

Изучение ИИ базируется на фундаменте знаний из нескольких научных областей:

- биология и нейрофизиология,
- математика и статистика,
- предметная область, к которой применяются методы искусственного интеллекта.

Инструмент, при помощи которого, мы связываем эти области - это знания и навыки программирования, структур данных и само программное обеспечение.

Давайте изобразим на схеме взаимосвязь всех сущностей.

В рамках направления развития ИИ есть определенная предметная область, которая содержит задачу.

Чтобы использовать искусственный интеллект, определим, к какой задаче (или группе задач) из математики можно свести задачу предметной области.

Далее, для каждой математической задачи выбираем метод искусственного интеллекта.

В конце выбираем инструмент для реализации этого метода, например Python.

Разберем на примере. Допустим, нам нужно решить задачу прогнозирования котировок акций (прогнозирование временных рядов) в рамках направления "Обучение и самообучение" (см. предыдущую часть урока).

Мы сводим эту задачу к задаче аппроксимации и/или к задаче оптимизации и выбираем метод ИИ, далее реализуем задуманное на Python, например в среде PyCharm.

Задачи предметной области, которые можно решить с помощью ИИ

- 1. Распознавание речи
- 2. Распознавание жестов
- 3. Распознавание рукописного ввода
- 4. Распознавание образов
- 5. Техническая диагностика
- 6. Медицинская диагностика
- 7. Прогнозирование временных рядов
- 8. Биоинформатика
- 9. Обнаружение мошенничества
- 10.Обнаружение спама
- 11. Категоризация документов
- 12. Биржевой технический анализ
- 13. Финансовый надзор
- 14.Кредитный скоринг

- 15. Прогнозирование ухода клиентов
- 16. Хемоинформатика (Хемоинформатика (химическая информатика, молекулярная информатика) применение методов информатики для решения химических проблем.)
- 17. Обучение ранжированию в информационном поиске

Задачи из математики, статистики, теории управления и пр. (формализованные задачи)

- 1. Принятие решений и управление
- 2. Классификация
- 3. Кластеризация
- 4. Оптимизация
- 5. Аппроксимация / Интерполяция
- 6. Сжатие данных и Ассоциативная память

Теперь рассмотрим методы искусственного интеллекта, используемые для решения формализованных задач.

- 1. Искусственные нейронные сети
- 2. Нечеткая логика (нечеткие множества и мягкие вычисления)
- 3. Системы, основанных на знаниях (экспертные системы)
- 4. Эволюционное моделирование (генетические алгоритмы, многоагентные системы)
- 5. Machine Learning (Data Mining и анализ данных и поиск закономерностей в хранилищах данных)

Выводы

В интернете часто можно встретить так называемую терминологическую кашу, когда путают понятия: направления развития ИИ и задачи, решаемые при помощи ИИ. Чтобы избежать путаницы мы предлагаем придерживаться следующего алгоритма:

- 1. Сформулируйте задачу предметной области.
- 2. Определите к какой задаче или группе задач из математики, статистики или управления можно свести задачу предметной области.
- 3. Формализуйте задачу математически (создайте математическую модель или группу моделей).
- 4. Выберите метод или группу методов ИИ для решения математической задачи.
- 5. Используйте навыки программирования и средство разработки в качестве инструмента.

Примеры задач предметной области для ИИ

Рассмотрим две небольшие задачи из практики, в которых применяются технологии искусственного интеллекта:

- 1. Скоринговые модели в банках.
- 2. Кластеризация клиентов в ритейле.

Скоринговые модели в банках

Скоринг (*от англ. scoring* - подсчет) - это способ определения платежеспособности заемщика.

Пример задачи из области Data Science

Скоринговые модели в банках

До бурного развития искусственного интеллекта этот процесс протекал не быстро.

Вы собирали документы, передавали в банк. Сотрудники кредитной организации проверяли документы и заносили данные в специальную анкету.

Далее специалисты по рисками проверяли эту анкету на основании собственных моделей и принимали решение о выдаче денежных

средств заемщику или отказе в предоставлении кредита. Например, в 2012 году заявка на ипотеку одобрялась несколько дней, сейчас это происходит через несколько минут после заполнения анкеты в приложении или на сайте.

Процесс упростили и ускорили благодаря алгоритмам машинного обучения. <u>Скоринговая модель мгновенно выдает результат и не требует зарплаты.</u>

Кластеризация клиентов в ритейле

У каждого на руках есть карты лояльности крупных супермаркетов или магазинов электроники. Как вы думаете, для чего их придумали? В первую очередь для удержания клиентов, предоставляя им персональные скидки.

Однако, я сам лично наблюдал, что и мне и другим приходят одни и те же предложения. Магазин просто оповещает меня о появлении скидки на какой-то товар и сроках действия этой акции.

Что интересно, <u>акция рассылается одновременно всем клиентам.</u> Может так получится, что скидка на подгузники будет доступна и <u>студентам</u>, пенсионерам и молодым родителям.

Как сделать так, чтобы направлять персонализированные предложение каждой группе пользователей? Решение такой задачи сделало бы рекламную кампанию в разы эффективней, увеличив прибыль магазинов.

Искусственный интеллект прекрасно справляется с решением задачи кластеризации.

Пример задачи из области Data Science

Кластеризация клиентов в ритейле

Как это работает? Вы приходите в магазин, собираете корзину покупок и оплачиваете покупки, предъявив карту лояльности. Данные накапливаются в клиентской базе данных магазина. Затем программисты в области Data Science разрабатывают и обучают модель, которая разделит покупателей на кластеры. Кластеры - это группы объектов со схожими характеристиками внутри каждого кластера. На картинке выше показаны три кластера, условно названных студенты, пенсионеры и семьи с детьми. Это сделано для лучшего понимания процесса. В реальности кластеры могут состоят из разных людей, схожих по характеру совершаемых покупок.

Далее в игру вступают аналитики, предлагающие, для каждого кластера, считай сегмента целевой аудитории приемлемые скидки на требуемые для них товары.

Маркетологи создают рекламные кампании, E-mail и СМСрассылки. Происходит анализ результатов проведения эксперимента.

Таким образом, искусственный интеллект позволяет максимально точно угадать потребности аудитории, повысить продажи и прибыль крупных супермаркетов.