Дедекиндовы кольца и группа классов

5 февраля 2024 года

Четыре определения дедекиндовости

ОПРЕДЕЛЕНИЕ: Дедекиндово кольцо — целозамкнутое нетерово кольцо размерности Крулля один.

ОПРЕДЕЛЕНИЕ: Дедекиндово кольцо — целостное нетерово кольцо, у которого все локализации в максимальных идеалах суть кольца дискретного нормирования.

ОПРЕДЕЛЕНИЕ: Дедекиндово кольцо — целостное кольцо, в котором всякий ненулевой дробный идеал обратим.

ОПРЕДЕЛЕНИЕ: Дедекиндово кольцо — целостное кольцо, в котором всякий собственный идеал однозначно разлагается в произведение простых.

Четыре определения дедекиндовости

ОПРЕДЕЛЕНИЕ: Дедекиндово кольцо — целозамкнутое нетерово кольцо размерности Крулля один.

ОПРЕДЕЛЕНИЕ: Дедекиндово кольцо — целостное нетерово кольцо, у которого все локализации в максимальных идеалах суть кольца дискретного нормирования.

ОПРЕДЕЛЕНИЕ: Дедекиндово кольцо — целостное кольцо, в котором всякий ненулевой дробный идеал обратим.

ОПРЕДЕЛЕНИЕ: Дедекиндово кольцо — целостное кольцо, в котором всякий собственный идеал однозначно разлагается в произведение простых.

ПРИМЕР: координатное кольцо гладкой алгебраической кривой.

ПРИМЕР: кольцо целых числового поля.

Четыре определения дедекиндовости

ОПРЕДЕЛЕНИЕ: Дедекиндово кольцо — целозамкнутое нетерово кольцо размерности Крулля один.

ОПРЕДЕЛЕНИЕ: Дедекиндово кольцо — целостное нетерово кольцо, у которого все локализации в максимальных идеалах суть кольца дискретного нормирования.

ОПРЕДЕЛЕНИЕ: Дедекиндово кольцо — целостное кольцо, в котором всякий ненулевой дробный идеал обратим.

ОПРЕДЕЛЕНИЕ: Дедекиндово кольцо — целостное кольцо, в котором всякий собственный идеал однозначно разлагается в произведение простых.

ПРИМЕР: координатное кольцо гладкой алгебраической кривой.

ПРИМЕР: кольцо целых числового поля.

ПРЕДЛОЖЕНИЕ: Пусть A — целостное дедекиндово кольцо, и K — конечное расширение Frac A. Тогда целое замыкание $A \subset K$ — также дедекиндово кольцо.

Дробные идеалы

ОПРЕДЕЛЕНИЕ: Дробным идеалом кольца A называется конечно-порожденный A-подмодуль поля $\operatorname{Frac} A$.

ЗАМЕЧАНИЕ: Всякий дробный идеал имеет вид $I = \frac{1}{a}J$ для $a \in A$ и идеала $J \subset A$.

Дробные идеалы

ОПРЕДЕЛЕНИЕ: Дробным идеалом кольца A называется конечно-порожденный A-подмодуль поля $\operatorname{Frac} A$.

ЗАМЕЧАНИЕ: Всякий дробный идеал имеет вид $I = \frac{1}{a}J$ для $a \in A$ и идеала $J \subset A$.

ЗАМЕЧАНИЕ: Если A — координатное кольцо гладкой кривой, то с дробным идеалом можно связать **дивизор.** (Целый) идеал J определяет эффективный дивизор совместных нулей всех своих элементов (J), функция a — дивизор своих нулей, и дивизор, связанный с $\frac{1}{a}J$, будет **иметь** вид (J)-(a). $x\in \operatorname{Frac} A$ принадлежит $I=\frac{1}{a}J$ тогда и только тогда, когда (x)>(J)-(a).

Дробные идеалы

ОПРЕДЕЛЕНИЕ: Дробным идеалом кольца A называется конечно-порожденный A-подмодуль поля $\operatorname{Frac} A$.

ЗАМЕЧАНИЕ: Всякий дробный идеал имеет вид $I = \frac{1}{a}J$ для $a \in A$ и идеала $J \subset A$.

ЗАМЕЧАНИЕ: Если A — координатное кольцо гладкой кривой, то с дробным идеалом можно связать **дивизор**. (Целый) идеал J определяет эффективный дивизор совместных нулей всех своих элементов (J), функция a — дивизор своих нулей, и дивизор, связанный с $\frac{1}{a}J$, будет **иметь вид** (J)-(a). $x\in \operatorname{Frac} A$ принадлежит $I=\frac{1}{a}J$ тогда и только тогда, когда (x)>(J)-(a). **Обратно**, со всяким дивизором D можно связать дробный идеал: через точки D, идущие с отрицательным коэффициентом, следует провести кривую (ее уравнение будет a=0), а в качестве эффективного дивизора (I) взять точки D с положительным коэффициентом и лишние точки пересечения кривой a=0 с нашей.

Дробные идеалы

ОПРЕДЕЛЕНИЕ: Дробным идеалом кольца A называется конечно-порожденный A-подмодуль поля $\operatorname{Frac} A$.

ЗАМЕЧАНИЕ: Всякий дробный идеал имеет вид $I = \frac{1}{a}J$ для $a \in A$ и идеала $J \subset A$.

ЗАМЕЧАНИЕ: Если A — координатное кольцо гладкой кривой, то с дробным идеалом можно связать **дивизор**. (Целый) идеал J определяет эффективный дивизор совместных нулей всех своих элементов (J), функция a — дивизор своих нулей, и дивизор, связанный с $\frac{1}{a}J$, будет **иметь вид** (J)-(a). $x\in \operatorname{Frac} A$ принадлежит $I=\frac{1}{a}J$ тогда и только тогда, когда (x)>(J)-(a). **Обратно**, со всяким дивизором D можно связать дробный идеал: через точки D, идущие с отрицательным коэффициентом, следует провести кривую (ее уравнение будет a=0), а в качестве эффективного дивизора (I) взять точки D с положительным коэффициентом и лишние точки пересечения кривой a=0 с нашей.

ЗАМЕЧАНИЕ: Для особой кривой это **неверно:** так, на кривой $y^2 = x^3$ дивизор -(0;0) не приходит ни из какого дробного идеала.

Операции с дробными идеалами

Произведение дробных идеалов определяется аналогично произведению идеалов. Дробный идеал I называется обратимым, если существует дробный идеал I' такой, что II' = A. Главные дробные идеалы обратимы.

Для дробных идеалов имеется понятие идеала-частного $(I:J) = \{x \in \operatorname{Frac} A: xJ \subset I\}$. Если идеал обратим, то $I^{-1} = (A:I)$.

Операции с дробными идеалами

Произведение дробных идеалов определяется аналогично произведению идеалов. Дробный идеал I называется обратимым, если существует дробный идеал I' такой, что II' = A. Главные дробные идеалы обратимы.

Для дробных идеалов имеется понятие идеала-частного $(I:J) = \{x \in \operatorname{Frac} A: xJ \subset I\}$. Если идеал обратим, то $I^{-1} = (A:I)$.

ЗАМЕЧАНИЕ: У координатного кольца гладкой кривой всякий ненулевой дробный идеал обратим (это доказано на предыдущем слайде).

ПРЕДЛОЖЕНИЕ: Ненулевые дробные идеалы кольца **дискретного нормирования** обратимы.

ДОКАЗАТЕЛЬСТВО: Они все суть степени максимального идеала, возможно отрицательные. ■

ПРЕДЛОЖЕНИЕ: Если $\mathfrak{p} \subset A$ — простой, а I, J — дробные идеалы A, то $I_{\mathfrak{p}}, J_{\mathfrak{p}}$ — дробные идеалы $A_{\mathfrak{p}}$, и $(IJ)_{\mathfrak{p}} = I_{\mathfrak{p}}J_{\mathfrak{p}}$, а $(I:J)_{\mathfrak{p}} = (I_{\mathfrak{p}}:J_{\mathfrak{p}})$.

Дробные идеалы дедекиндова кольца

ЗАМЕЧАНИЕ: Если A — целостное кольцо, то пересечение $\bigcap_{\mathfrak{m}} A_{\mathfrak{m}} \subset \operatorname{Frac} A$ есть само A. Аналогично, для всякого подмодуля $M \subset \operatorname{Frac} A$ имеем $\bigcap_{\mathfrak{m}} M_{\mathfrak{m}} \subset \operatorname{Frac} A$ есть M.

ПРЕДЛОЖЕНИЕ: Дробный идеал нетерова кольца обратим тогда и только тогда, когда обратимы все его локализации во всех максимальных идеалах.

ДОКАЗАТЕЛЬСТВО: Имеем $A = \bigcap_{\mathfrak{m}} A_{\mathfrak{m}} = \bigcap_{\mathfrak{m}} I_{\mathfrak{m}}(A_{\mathfrak{m}} : I_{\mathfrak{m}}) = \bigcap_{\mathfrak{m}} (I(A : I))_{\mathfrak{m}} = I(A : I).$

СЛЕДСТВИЕ: Все дробные идеалы дедекиндова кольца обратимы.

Группа классов идеалов

ОПРЕДЕЛЕНИЕ: Фактор группы всех (обратимых) дробных идеалов кольца A по главным называется группой классов идеалов Cl(A).

ЗАМЕЧАНИЕ: Если A — кольцо главных идеалов, то Cl(A) — тривиальная группа, и наоборот. Таким образом, группа классов контролирует неоднозначность разложения на множители.

ЗАМЕЧАНИЕ: На кривых главным дробным идеалам соответствуют главные дивизоры, и группа классов идеалов координатного кольца изоморфна группе классов дивизоров соответствующей кривой.