Virtual bioequivalence workflow

Moriah Pellowe

FDA grant U01FD006549: Virtual bioequivalence (VBE) workflow

- Principal Investigators:
 - Michael Neely Children's Hospital Los Angeles
 - Andrea Edginton University of Waterloo
 - ▶ Jörg Lippert Bayer
- Scientific officer:
 - Eleftheria Tsakalozou
- ▶ Objective: Develop platform within OSP framework for VBE assessment

- ▶ Objective: Develop platform within OSP framework for VBE assessment
 - Reference: in vitro dissolution profile + individual PK data
 - ► Test: in vitro dissolution profile

Build API oral model with reference IV and solution/IR data

Identify relevant physiologic parameters that affect PK using sensitivity and uncertainty analyses

Identify posterior distributions based on individual PK data using "digital twins"

Generate a virtual population that captures the measured variability

Simulate individual plasma concentration vs time profiles for reference and test

Use non-compartmental analysis to get AUC, Cmax and Tmax and complete BE statistics appropriate for study design

Optimize clinical trial design (e.g number of participants and sampling)

Applications

- Predicting establishment of bioequivalence for a test formulation
- Predicting a "dissolution safe space"
- Optimizing clinical trial design
- Risk assessment
 - ► Generic drug development
 - Pre-approval formulation changes
 - Scale-up and post-approval changes

Virtual bioequivalence workflow

Building an oral PK-Sim model

- Physicochemical properties of the drug
- Known physiological processes
- IV data informs systemic parameters of disposition
- Solution/IR data informs systemic parameters of absorption
- We are assuming that the plasma concentration-time profiles are sensitive to formulation input (e.g. dissolution profile)
- At the end of this step, we have...
 - ▶ PBPK model that describes systemic disposition and absorption of API

Establishing an in-vitro-in-vivo relationship (IVIVR)

Mechanistic: Formulation parameters (e.g. particle size distribution)

In the absence of a priori knowledge: Dissolution scaling factors

- Reference data (formulation input and plasma concentration-time profiles) is used to calibrate the IVIVR
- We assume that the IVIVR applies to test formulations
 - Ideally, the test formulation is similar in excipients and release mechanisms compared to the reference formulation

Fraction (dose) Fraction 0.4 scaling factor

Time scaling factor

Note: Bupropion is just a pilot model used to demonstrate a crossover virtual bioequivalence assessment

Bupropion PK-Sim models:

► Reference: SR 150 mg

► Test: XL 150 mg

Sensitive parameters:

► Enzyme reference concentration, Dissolution scaling factors

Plasma concentration-time profiles for 32 individuals

Study population demographics (sex, population, weight, height)

Capturing posterior distributions - Non-parametric optimal design (NPOD)

- Study individuals are recreated as "digital twins" in PK-Sim using demographic data available
- Parameter ranges are specified for sensitive parameters to be fit
- Input: API oral model, observed data, parameter ranges, study individuals
- Output:
 - Posterior distributions (support points and weights)
 - ► Capable of capturing non-normal distributions, e.g. poor and extensive metabolizers
 - Correlation matrix between parameters and population demographics (weight, height)

- Reference formulation: SR 150 mg
- Parameter ranges are specified for sensitive parameters to be fit
 - ► Time scaling factor on dissolution profile (i.e. x-axis) [0,10]
 - ► Fraction (dose) scaling factor on dissolution profile (i.e. y-axis) [0,1000]
 - Enzyme reference concentration [0,1000]

ID	Sex	Populatio	Weight (k	Height (cr	n)
1	Female	European	72.7	167.64	
2	Female	European	84.4	162.56	
3	Male	BlackAme	73.4	172.72	
4	Male	MexicanA	79.8	167.64	
5	Female	European	91.1	181.61	
6	Female	Asian	74	172.72	
7	Male	Asian	77.7	170.18	
8	Female	European	73.5	167.64	
9	Male	European	80.6	187.96	
10	Male	European	94.7	170.18	

> corr_matrix

	theta1	theta2	theta3	Weight	Height
theta1	1.00000000	0.5655141	-0.64178739	-0.30277260	-0.09624631
theta2	0.56551415	1.0000000	-0.39004246	-0.23190258	-0.13329034
theta3	-0.64178739	-0.3900425	1.00000000	0.06232417	0.13168306
Weight	-0.30277260	-0.2319026	0.06232417	1.00000000	0.38472801
Height	-0.09624631	-0.1332903	0.13168306	0.38472801	1.00000000

➤ A reference table of 1000 parameter sets is generated that maintains the captured correlations from the non-parametric population algorithm

*	theta1 [‡]	theta2 [‡]	theta3 [‡]	weight [‡]	height [‡]
1	1.2622520	137.60412	813.9782	107.93443	19.36761
2	0.8930129	43.19603	820.1831	61.03642	17.51424
3	1.6527643	47.60304	678.9087	99.33016	17.54653
4	2.1600338	62.21984	820.1831	86.89934	17.39655
5	2.0332647	110.45191	821.0817	55.76694	17.20736
6	0.8022292	55.45703	841.1291	78.72036	17.00976
7	2.3100450	100.05055	820.1831	62.96131	16.68466
8	0.8930129	59.12914	946.9103	61.52944	18.16568
9	4.3044085	58.06531	933.7260	55.49252	17.55697
10	1.9635224	43.19603	933.7260	57.89853	18.83575

> corr_matrix

> COTT_INACT TX								
	theta1	theta2	theta3	Weight	Height			
theta1	1.00000000	0.5655141	-0.64178739	-0.30277260	-0.09624631			
theta2	0.56551415	1.0000000	-0.39004246	-0.23190258	-0.13329034			
theta3	-0.64178739	-0.3900425	1.00000000	0.06232417	0.13168306			
Weight	-0.30277260	-0.2319026	0.06232417	1.00000000	0.38472801			
Height	-0.09624631	-0.1332903	0.13168306	0.38472801	1.00000000			

Generate virtual population and PK profiles

- OSP suite R toolbox is used to generate a virtual population
- The virtual population is updated based on the reference table
- PK-Sim is used to generate the PK profiles for both the reference and test formulations

- ► A virtual population of 1000 individuals is generated
- Virtual individuals are compared to reference table and the appropriate parameter values are updated

theta1 🙏	theta2 🗼	theta3 🔅	weight $^{\scriptsize \scriptsize $	height [‡]
1.2622520	137.60412	813.9782	107.93443	19.36761
0.8930129	43.19603	820.1831	61.03642	17.51424
1.6527643	47.60304	678.9087	99.33016	17.54653
2.1600338	62.21984	820.1831	86.89934	17.39655
2.0332647	110.45191	821.0817	55.76694	17.20736
0.8022292	55.45703	841.1291	78.72036	17.00976
2.3100450	100.05055	820.1831	62.96131	16.68466
0.8930129	59.12914	946.9103	61.52944	18.16568
4.3044085	58.06531	933.7260	55.49252	17.55697
1.9635224	43.19603	933.7260	57.89853	18.83575
	1.2622520 0.8930129 1.6527643 2.1600338 2.0332647 0.8022292 2.3100450 0.8930129 4.3044085	1.2622520 137.60412 0.8930129 43.19603 1.6527643 47.60304 2.1600338 62.21984 2.0332647 110.45191 0.8022292 55.45703 2.3100450 100.05055 0.8930129 59.12914 4.3044085 58.06531	1.2622520 137.60412 813.9782 0.8930129 43.19603 820.1831 1.6527643 47.60304 678.9087 2.1600338 62.21984 820.1831 2.0332647 110.45191 821.0817 0.8022292 55.45703 841.1291 2.3100450 100.05055 820.1831 0.8930129 59.12914 946.9103 4.3044085 58.06531 933.7260	1.2622520 137.60412 813.9782 107.93443 0.8930129 43.19603 820.1831 61.03642 1.6527643 47.60304 678.9087 99.33016 2.1600338 62.21984 820.1831 86.89934 2.0332647 110.45191 821.0817 55.76694 0.8022292 55.45703 841.1291 78.72036 2.3100450 100.05055 820.1831 62.96131 0.8930129 59.12914 946.9103 61.52944 4.3044085 58.06531 933.7260 55.49252

IndividualId	Gender	Population	Organism Weight	Organism Height	Applications PO	Applications PO 15	Liver and Intestin
0	MALE	European_ICRP_2002	69.67197648	17.34863337	1.652764258	43.1960325	966.1631612
1	MALE	European_ICRP_2002	80.66367394	17.31971653	0.893012886	55.45703163	946.9102584
2	MALE	European_ICRP_2002	11.6418776	7.739270429	4.304408454	137.6041153	678.9087472
3	MALE	European_ICRP_2002	73.25415791	17.61428916	0.802229246	43.1960325	986.9442911
4	MALE	European_ICRP_2002	86.73495227	17.28527499	2.1600338	62.21983888	820.1831479
5	MALE	European_ICRP_2002	67.65264677	17.44606382	2.138830071	100.0505509	373.7770325
6	MALE	European_ICRP_2002	63.98918339	16.50535396	7.454465816	110.4519128	886.9854164
7	MALE	European_ICRP_2002	13.79027881	9.18601242	4.304408454	137.6041153	678.9087472
8	MALE	European_ICRP_2002	62.59547048	16.41364181	7.454465816	82.09933596	670.7724672
9	MALE	European_ICRP_2002	61.88576613	17.19057429	4.839407277	82.09933596	813.9781987
10	MALE	European_ICRP_2002	55.92556148	15.07635357	1.963522405	41.58242253	820.1118292

- Plasma concentration-time profiles are generated for the virtual population for the reference formulation and for the test formulation
- We assume that the IVIVR applies to test formulations

Clinical trial simulator (CTS) - in progress

- Input: Simulated plasma concentration-time profiles for two formulations (reference and test)
- CTS calculates the summary statistics (AUC, Cmax, etc.)
- Virtual bioequivalence would then be evaluated from these summary statistics
- Multiple scenarios possible:
 - ▶ Parallel, i.e. different populations, different formulations
 - Crossover, no replication (AB)
 - Crossover with partial or full replication (e.g. TTR, TTRR) with IOV

Prob of BE: Ref/Test BE

Avg Effect Ratio: Ref/Test BE

Inter-occasion variability (IOV) - in progress

- Mechanistic approach
 - Identify physiological parameters that are affected by IOV for given API
 - Use NPOD to identify posterior distributions and correlations for these parameters (in addition to other fitted parameters)
 - ► Sample from these distributions during the generation of the virtual populations
- ► IOV is incorporated when the virtual populations are generated, i.e. before plasma concentration-time profiles are simulated

Applications

- Predicting establishment of bioequivalence for a test formulation
- Creating a "dissolution safe space"
- Optimizing clinical trial design
- Risk assessment
 - ► Generic drug development
 - Pre-/post-approval formulation changes
 - Scale-up and post-approval changes

Deliverables related to FDA grant

- Virtual bioequivalence workflow R package
 - PK-Sim
 - OSP Suite R toolbox (ospsuite, will be discussed in Session 4) (https://github.com/Open-Systems-Pharmacology/OSPSuite-R)
 - Non-parametric optimal design (NPOD)
 - Clinical trial simulator (CTS)
- Mechanistic absorption models (will be discussed in Session 4)
 - Dermal model (<u>https://github.com/Open-Systems-Pharmacology/Skin-permeation-model</u>)
 - ► Inhalation model (https://github.com/Open-Systems-Pharmacology/Inhalation-model)
- The VBE workflow will be available on the Open Systems Pharmacology Github page (https://github.com/Open-Systems-Pharmacology)
 - ► Current goal: August 2021

Acknowledgements

- Andrea Edginton (University of Waterloo)
 - Cindy Hoi Ting Yeung
 - Dagmar Hajducek
 - Abdullah Hamadeh
- Jörg Lippert (Bayer)
 - André Dallman
 - Juri Solodenko
 - Rolf Burghaus

- Michael Neely (Children's Hospital Los Angeles)
 - Julian Oltalvaro
 - Walter Yamada
 - Alona Kryshchenko (CSUCI)
 - Jay Bartroff (USC)
- Eleftheria Tsakalozou (FDA)