1.Linear Regression (SKLearn)

October 23, 2021

Simple Linear Regression

```
[166]: # Import necessary package
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

0.0.1 Step 1: Load the dataset

```
[167]:  # Load the dataset into pandas dataframe

df=pd.read_csv("E:\\MY LECTURES\\DATA SCIENCE\\3.Programs\\dataset\\Advertising.

→csv")

# Change this location based on the location of dataset in your machine
```

```
[168]: # Display the first five records
df.head()
```

```
[168]:
            TV radio newspaper sales
      0 230.1
                 37.8
                            69.2
                                   22.1
                            45.1
      1
          44.5
                 39.3
                                   10.4
      2
          17.2
                 45.9
                            69.3
                                    9.3
      3 151.5
                 41.3
                            58.5
                                   18.5
      4 180.8
                 10.8
                            58.4
                                   12.9
```

Advertising data comprises four features: TV, radio, newspaper, and sales. It explains the budget (in 1000\$) spent on different mass media and the net outcome for every week.

sales for a product (output/dependent/target variable).

advertising budget for TV, radio, and newspaper media (input/independent/target variable).

Planning to perform regression on TV budget (X) as input and sales (Y) as output.

```
[169]: # Dataset shape (number of rows and columns)
df.shape
```

[169]: (200, 4)

Row <=> record, tuple, instance, sample, observation, object, case, entity Column <=> attribute, variable, field, feature, characteristic, dimension

0.0.2 Step 2: Apply EDA

Univariate analysis

```
[170]: # Statistics summary
       df["TV"].describe()
[170]: count
                200.000000
       mean
                147.042500
                 85.854236
       std
       min
                  0.700000
       25%
                 74.375000
       50%
                149.750000
       75%
                218.825000
                296.400000
       max
       Name: TV, dtype: float64
[171]: # Univariate Analysis using Boxplot
       sns.set_style(style='white')
       df.boxplot(column =['TV'], grid = False)
```

[171]: <AxesSubplot:>


```
[172]: # Distribution plot to find skewness
from pylab import *
```

```
sns.set(rc={"figure.figsize": (8, 4)});
subplot(2,2,1)
ax = sns.histplot(df["TV"])
subplot(2,2,2)
ax = sns.histplot(df["TV"], kde=True, stat="density", linewidth=0)
plt.show()
```


Bivariate analysis

```
[173]: # Scatter plot
sns.set_style(style='white')
fig = plt.figure(figsize=(22,7))
plt.scatter(df["TV"],df["sales"],color="brown")
plt.grid(b=None)
plt.xlabel("TV budget")
plt.ylabel("Sales")
plt.title("TV budget vs Sales")
plt.show()
```



```
[174]: # Correlation
r = df["TV"].corr(df["sales"])
print("Correlation value : ",round(r,2)*100,"%")
# Spearman's rho
# df["TV"].corr(df["sales"], method='spearman')
# Kendall's tau
# df["TV"].corr(df["sales"], method='kendall')
```

Correlation value: 78.0 %

0.0.3 Step 3. Pre-process and extract the features

```
[175]: # Load TV into X and sales into Y variable
      X = df.iloc[:,0].values.reshape((-1, 1))
                                              # Budget spent on TV
      Y = df.iloc[:,3].values
                                              # Sales
[176]: def disp_data(feature1,feature2):
         print('Displaying only 10 records')
         print('----')
         print('TV budget','|','Sales')
         print('----')
         for x,y in zip(feature1,feature2):
             if count == 10:
                 break
             else:
                 print(x,' ',y)
                 count = count + 1
```

[177]: disp_data(X,Y)

Displaying only 10 records

Sales	
22.1	
10.4	
9.3	
18.5	
12.9	
7.2	
11.8	
13.2	
4.8	
10.6	
	22.1 10.4 9.3 18.5 12.9 7.2 11.8 13.2 4.8

input feature independent feature or predictor feature. Here, X1 (TV) is the input feature. output

feature dependent feature or response feature or target feature. Here, Y (sales) is the output feature.

0.0.4 Step 4. Split the data for training and testing

```
[178]: # Splitting dataset into training and testing set
      from sklearn.model_selection import train_test_split
      x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2, ___
      \rightarrowrandom state = 0)
[179]: print("Training data")
      print("======="")
      disp_data(x_train,y_train)
     Training data
     _____
     Displaying only 10 records
     _____
     TV budget | Sales
     _____
     [36.9]
                10.8
                9.5
     [31.5]
     [142.9]
                 15.0
     [209.6]
                 15.9
     [215.4]
                 17.1
     「102.7]
                14.0
     [8.6]
               4.8
     [16.9]
                8.7
     [125.7]
                 15.9
     [104.6]
                 10.4
[180]: print("Testing data")
      print("======="")
      disp_data(x_test,y_test)
     Testing data
     _____
     Displaying only 10 records
     -----
     TV budget | Sales
     _____
     [69.2]
                11.3
     [50.]
               8.4
     [90.4]
               8.7
     [289.7]
                 25.4
     [170.2]
                11.7
     [56.2]
                8.7
```

```
[8.7] 7.2
[240.1] 13.2
[23.8] 9.2
[197.6] 16.6
```

0.0.5 Step 5: Training phase (bulding the model)

```
[181]: # Fitting line on two dimension on the training set
    from sklearn.linear_model import LinearRegression
    model = LinearRegression()
    model.fit(x_train, y_train)

[181]: LinearRegression()

[182]: b = model.intercept_

[183]: m = model.coef_

[184]: print("The linear model is ",'Y = m X + b \n')
    print('Y = ',np.round(m[0],3),'X + ',np.round(b,3))

The linear model is Y = m X + b

Y = 0.046 X + 7.292

[185]: # Predicting the Training set results
    y_train_pred = model.predict(x_train)
```

Visualizing the model

```
[186]: sns.set_style(style='white')
    fig = plt.figure(figsize=(22,7))
    plt.scatter(x_train,y_train,color="brown")
    plt.grid(b=None)
    plt.plot(x_train,y_train_pred,"g",label="Sales_predicted")
    plt.xlabel("TV budget")
    plt.ylabel("Sales")
    plt.title("TV budget vs Sales")
    plt.legend()
    plt.show()
```


Plotting observed sale (x) and predicted sale (y) for training set

```
[187]: # Predicting the Test set results
    x = np.arange(len(y_train_pred))
    fig = plt.figure(figsize=(22,7))
    plt.plot(x,y_train,"g-+",label="Sales_observed")
    plt.plot(x,y_train_pred,"r-*",label="Sales_predicted")
    plt.grid(b=None)
    plt.xlabel("TV budget")
    plt.ylabel("Sales")
    plt.title("TV budget vs Sales")
    plt.legend()
    plt.show()
```


Residual (Error) plot If the model has done good predictions, then the datapoints must be near around to horizontal line.

```
[188]: sns.set_style(style='white')
fig = plt.figure(figsize=(22,7))
residuals = y_train-y_train_pred
zeros = y_train-y_train
plt.scatter(y_train_pred,residuals,color="brown")
plt.grid(b=None)
plt.plot(y_train_pred,zeros,"g")
plt.xlabel("Predicted")
plt.ylabel("Residuals")
plt.title("Residual plot")
plt.show()
```


0.0.6 Different error calculations to asses the model for training set

1. Sum of Squared Error (SSE)

$$SSE(m,b) = \sum_{i=1}^{n} (y_i - \hat{y})^2 = \sum_{i=1}^{n} (y_i - (m * x_i + b))^2$$
 (1)

```
[189]: sum = 0
n = len(x_train)
for i in range (0,n):
    diff = y_train[i] - y_train_pred[i]
    squ_diff = diff**2
    sum = sum + squ_diff
Train_SSE = np.round(sum,2)
    print("Sum of Squared Error (SSE) :",Train_SSE)
```

Sum of Squared Error (SSE) : 1698.76

2. Mean Squared Error (MSE)

$$MSE(m,b) = \frac{\sum_{i=1}^{n} (y_i - \hat{y})^2}{n} = \frac{\sum_{i=1}^{n} (y_i - (m * x_i + b))^2}{n}$$
(2)

```
[190]: Train_MSE = np.round(Train_SSE/n,2)
print("Mean Squared Error (MSE) :",Train_MSE)
```

Mean Squared Error (MSE): 10.62

3. Root Mean Squared Error (RMSE)

$$RMSE(m,b) = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y})^2}{n}} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - (m * x_i + b))^2}{n}}$$
(3)

```
[191]: Train_RMSE = np.round(np.sqrt(Train_MSE),2)
print("Root Mean Squared Error (RMSE) :",Train_RMSE)
```

Root Mean Squared Error (RMSE): 3.26

4. Mean Absolute Error (MAE)

$$MAE(m,b) = \frac{\sum_{i=1}^{n} |(y_i - \hat{y})|}{n}$$
 (4)

```
[192]: sum = 0
n = len(x_train)
for i in range (0,n):
    diff = y_train[i] - y_train_pred[i]
    sum = sum + np.abs(diff)
Train_MAE = np.round(sum/n,2)
print("Mean Absolute Error (MAE) :",Train_MAE)
```

Mean Absolute Error (MAE): 2.58

5. Mean Absolute Percentage Error (MAPE)

$$MAPE(m,b) = \frac{100\%}{n} \sum_{i=1}^{n} \left| \frac{(y_i - \hat{y})}{y_i} \right| = \frac{100\%}{n} \sum_{i=1}^{n} \left| \frac{(y_i - (m * x_i + b))}{y_i} \right|$$
 (5)

```
[193]: sum = 0
n = len(x_train)
for i in range (0,n):
    diff = (y_train[i] - y_train_pred[i])/y_train[i]
    sum = sum + np.abs(diff)
```

```
Train_MAPE = np.round(sum/n*100,2)
print("Mean Absolute Percentage Error (MAPE) :",Train_MAPE)
```

Mean Absolute Percentage Error (MAPE): 19.54

0.0.7 Calculating R-Squred value (goodness of model) using SSE

$$R^{2} = 1 - \frac{SSE}{SST} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$
(6)

```
[194]: from sklearn.metrics import r2_score
  out = r2_score(y_train,y_train_pred)
  Train_RS = np.round(out,2)*100
  print("R-Squred value (goodness of model) for training set :",Train_RS,"%")
```

R-Squred value (goodness of model) for training set : 59.0 %

0.0.8 Step 6: Testing phase

```
[195]: # Predicting values for test input set
y_test_pred = model.predict(x_test)
```

```
[196]: # Plotting the predicted values
sns.set_style(style='white')
fig = plt.figure(figsize=(22,7))
plt.scatter(x_test,y_test,color="brown")
plt.grid(b=None)
plt.plot(x_test,y_test_pred,"g",label="Sales_predicted")
plt.xlabel("TV budget")
plt.ylabel("Sales")
plt.title("TV budget vs Sales")
plt.legend()
plt.show()
```


Plotting observed sale (x) and predicted sale (y) for test set

```
[197]: x = np.arange(len(y_test_pred))
    fig = plt.figure(figsize=(22,7))
    plt.plot(x,y_test,"g-+",label="Sales_observed")
    plt.plot(x,y_test_pred,"r-*",label="Sales_predicted")
    plt.grid(b=None)
    plt.xlabel("TV budget")
    plt.ylabel("Sales")
    plt.title("TV budget vs Sales")
    plt.legend()
    plt.show()
```


Residual (Error) plot If the model has done good predictions, then the datapoints must be near around to horizontal line.

```
[198]: sns.set_style(style='white')
fig = plt.figure(figsize=(22,7))
residuals = y_test-y_test_pred
zeros = y_test-y_test
plt.scatter(y_test_pred,residuals,color="brown")
plt.grid(b=None)
plt.plot(y_test_pred,zeros,"g")
plt.xlabel("Predicted")
plt.ylabel("Residuals")
plt.title("Residual plot")
plt.show()
```


Storing the outcome in a file

```
[199]: # Store the predicted value for sales in new column

df.rename(columns={'sales': 'observed_sales'}, inplace=True)

sales_data = df.iloc[:,0].values.reshape(-1, 1)

predicted_values = model.predict(sales_data)

df['predicted_sales'] = predicted_values

df.head()
```

```
[199]:
             TV
                radio newspaper
                                   observed_sales predicted_sales
          230.1
                  37.8
                             69.2
                                              22.1
                                                           17.878886
                  39.3
       1
           44.5
                             45.1
                                              10.4
                                                           9.339840
           17.2
                  45.9
                             69.3
                                               9.3
                                                           8.083828
       3 151.5
                  41.3
                             58.5
                                              18.5
                                                           14.262674
       4 180.8
                  10.8
                             58.4
                                              12.9
                                                           15.610702
```

```
[200]:  # Write the above output input into new csv
# df.to_csv("1.Linear Regression SKLearn - output.csv")
```

0.0.9 Different error calculations to asses the model for the test set

1. Sum of Squared Error (SSE)

$$SSE(m,b) = \sum_{i=1}^{n} (y_i - \hat{y})^2 = \sum_{i=1}^{n} (y_i - (m * x_i + b))^2$$
 (7)

```
[201]: sum = 0
    n = len(x_test)
    for i in range (0,n):
        diff = y_test[i] - y_test_pred[i]
        squ_diff = diff**2
        sum = sum + squ_diff
```

```
Test_SSE = np.round(sum,2)
print("Sum of Squared Error (SSE) :",Test_SSE)
```

Sum of Squared Error (SSE): 407.45

2. Mean Squared Error (MSE)

$$MSE(m,b) = \frac{\sum_{i=1}^{n} (y_i - \hat{y})^2}{n} = \frac{\sum_{i=1}^{n} (y_i - (m * x_i + b))^2}{n}$$
(8)

```
[202]: Test_MSE = np.round(Train_SSE/n,2)
print("Mean Squared Error (MSE) :",Test_MSE)
```

Mean Squared Error (MSE): 42.47

3. Root Mean Squared Error (RMSE)

$$RMSE(m,b) = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y})^2}{n}} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - (m * x_i + b))^2}{n}}$$
(9)

```
[203]: Test_RMSE = np.round(np.sqrt(Test_MSE),2)
print("Root Mean Squared Error (RMSE) :",Test_RMSE)
```

Root Mean Squared Error (RMSE): 6.52

4. Mean Absolute Error (MAE)

$$MAE(m,b) = \frac{\sum_{i=1}^{n} |(y_i - \hat{y})|}{n}$$
 (10)

```
[204]: sum = 0
n = len(x_test)
for i in range (0,n):
    diff = y_test[i] - y_test_pred[i]
    sum = sum + np.abs(diff)
Test_MAE = np.round(sum/n,2)
print("Mean Absolute Error (MAE) :",Test_MAE)
```

Mean Absolute Error (MAE): 2.51

5. Mean Absolute Percentage Error (MAPE)

$$MAPE(m,b) = \frac{100\%}{n} \sum_{i=1}^{n} \left| \frac{(y_i - \hat{y})}{y_i} \right| = \frac{100\%}{n} \sum_{i=1}^{n} \left| \frac{(y_i - (m * x_i + b))}{y_i} \right|$$
(11)

```
[205]: sum = 0
n = len(x_test)
for i in range (0,n):
    diff = (y_test[i] - y_test_pred[i])/y_test[i]
    sum = sum + np.abs(diff)
Test_MAPE = np.round(sum/n*100,2)
print("Mean Absolute Percentage Error (MAPE) :",Test_MAPE)
```

Mean Absolute Percentage Error (MAPE) : 26.4

0.0.10 Calculating R-Squred value (goodness of model) using SSE

$$R^{2} = 1 - \frac{SSE}{SST} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$
(12)

```
[206]: from sklearn.metrics import r2_score
out = r2_score(y_test,y_test_pred)
Test_RS = np.round(out,2)*100
print("R-Squred value (goodness of model) for testing set :",Test_RS,"%")
```

R-Squred value (goodness of model) for testing set : 68.0 %

0.0.11 Underfitting and overfitting observation

Error	From training phase	From testing phase
SSE	1698.76	407.45
MSE	10.62	42.47
RMSE	3.26	6.52
MAE	2.58	2.51
R.S	59.0	68.0

0.0.12 Predict the sale for amount of money spent on advertisement via TV

```
[208]: # If 60$ is spent on TV advertisement what is the expected sales? Rember input
       →60$ is neither in train set nor test set
       model.predict([[60]])
[208]: array([10.05296115])
      0.0.13 Storing and retrieving the model
      Using pickle
[209]: # import necessary library
       import pickle
[210]: # store the model in disks
       with open('E:\\MY LECTURES\\DATA SCIENCE\\3.Programs\\code\\2.
       →REGRESSION\\pickled_linear_model','wb') as f:
           pickle.dump(model,f)
[211]: # load the saved model
       with open('E:\\MY LECTURES\\DATA SCIENCE\\3.Programs\\code\\2.
        →REGRESSION\\pickled_linear_model','rb') as f:
           model = pickle.load(f)
[212]: # If 60$ is spent on TV advertisement what is the expected sales?
       model.predict([[60]])
[212]: array([10.05296115])
      Using joblib
[213]: # import necessary library
       import joblib
[214]: # store the model in disks
       joblib.dump(model, 'E:\MY LECTURES\\DATA SCIENCE\\3.Programs\\code\\2.
        →REGRESSION\\pickled_linear_model_joblib')
[214]: ['E:\\MY LECTURES\\DATA
       SCIENCE\\3.Programs\\code\\2.REGRESSION\\pickled_linear_model_joblib']
[215]: # load the saved model
       model = joblib.load('E:\\MY LECTURES\\DATA SCIENCE\\3.Programs\\code\\2.
        →REGRESSION\\pickled_linear_model_joblib')
```

```
[216]: # If 60$ is spent on TV advertisement what is the expected sales? model.predict([[60]])
```

[216]: array([10.05296115])