Introduction to CUDA

CMSC 691 High Performance Distributed Systems

Introduction to CUDA

Dr. Alberto Cano Assistant Professor Department of Computer Science acano@vcu.edu

Introduction to CUDA

The CPU vs the GPU purposes

CPU

- General-purpose computation
- Small number of highly specialized complex cores
- Fast execution of a single stream of instructions
- Pipelining, caching, branch prediction, our-of-order execution, interruptions
- Main DDR memory ~ 20 GB/s

GPU

- Originally for graphics computing
- Large number of simple cores for parallel SIMD computation
- Large FP bandwidth for massive parallel number of operations
- No fancy hardware tricks except asynchronous data / execution
- GPU memory GDDR > 200 GB/s
- Future: HBM2 > 1 TB/s

Introduction to CUDA

The CPU vs the GPU architectures
CPU (Skylake)

GPU (P100)

4 cores

1.75 billion transistors

110 Gflops FP32

3840 cores

15 billion transistors

10 Tflops FP32

Introduction to CUDA

The GPU evolution, performance and bandwidth

Introduction to CUDA

Exploiting the GPU

- CUDA C/C++
- CUDA Fortran
- OpenCL
- PyCUDA
- jCUDA
- Matlab
- Tensor flow
- OpenCV

Many Different Approaches

- Application level integration
- High level, implicit parallel languages
- Abstraction layers & API wrappers
- High level, explicit language integration
- Low level device APIs

Introduction to CUDA

Some interesting libraries for high-performance computing

Thrust: parallel algorithms and data structures,
 e.g. transformation, reductions, sorting

 cuDNN: CUDA Deep Neural Network is a GPUaccelerated library of primitives for neural networks

nvGRAPH: Graph Analytics Library for GPUs

- cuRAND: Random Number Generation library
- cuBLAS: Basic Linear Algebra Subroutines

Introduction to CUDA

Terminology

- Host: the CPU and its memory, typically h_variable
- Device: the GPU and its memory, typically d_variable

Thread Hierarchy

- Thread: smallest sequence of programmed instructions
- Warp: group of 32 threads scheduled/executed in a multi-processor
- Block: group of threads defined by the programmer
- Grid: group of blocks defined by the programmer
- Multi-processor: group of physical CUDA cores

CUDA threads are extremely lightweight, almost no creation overhead, context switching is essentially free

Introduction to CUDA

Memory Hierarchy

- Thread local memory
 Each thread has private local memory
- Block shared memory

Each thread block has shared memory visible to all threads of the block and with the same lifetime as the block

Device global memory

All threads have access to the same global memory. Lifetime of the program

Introduction to CUDA

Heterogeneous Programming

- Programs interleave code executed in the host (CPU) and GPU (device)
- GPU code is written in kernel functions
- Typically, the sequence of a program is:
 - 1. Allocate GPU memory for inputs
 - 2. Allocate GPU/CPU memory outputs
 - 3. Copy inputs from host to device
 - 4. Execute GPU code
 - 5. Copy outputs from device to host

Introduction to CUDA

Structure of a CUDA program

- NVIDIA compiler nvcc (can be used for programs with no GPU code)
 \$ nvcc -o myprogram mycode.cu
- Threads are grouped into multi-dimensional thread blocks
- Thread blocks are grouped into a multi-dimensional grid

Introduction to CUDA

Thread indexing

- Thread space 3D grid of 3D blocks
- Built-in variables

gridDrim.x gridDim.y gridDim.z blockDim.x blockDim.y blockDim.z blockIdx.x blockIdx.y blockIdx.z threadIdx.x threadIdx.y threadIdx.z

Indexing 1D grid of 1D blocks:

int tid = blockIdx.x * blockDim.x + threadIdx.x;

Introduction to CUDA

Memory allocation and transfer

```
cudaMallocHost(&h_ptr, count * sizeof(datatype));
cudaMalloc(&d_ptr, count * sizeof(datatype));

cudaMemcpy(dst_ptr, src_ptr, count * sizeof(datatype), cudaMemcpyKind);

cudaFreeHost(h_ptr);
cudaFree(d_ptr);
```

CUDA memory copy types

cudaMemcpyHostToDevice Host -> Device cudaMemcpyDeviceToHost Device -> Host

Kernel setup

```
dim2 gridDim(1,1); // 1D grid
dim3 blockDim(256,1,1); // 1D block with 256 threads

MyKernel <<< gridDim, blockDim >>> (d_data);
```

Introduction to CUDA

VectorAdd example

```
qlobal void vectorAdd(float *A, float *B, float *C) {
    int tid = blockDim.x * blockIdx.x + threadIdx.x;
    C[tid] = A[tid] + B[tid];
void main(void)
    float *h A = (float *)malloc(numElements * sizeof(float));
    cudaMalloc(&d A, numElements * sizeof(float));
    cudaMemcpy(d_A, h_A, numElements*sizeof(float), cudaMemcpyHostToDevice);
    vectorAdd<<<br/>blocksPerGrid, threadsPerBlock>>>(d A, d B, d C);
    cudaMemcpy(h C, d C, numElements*sizeof(float), cudaMemcpyDeviceToHost);
```

- Careful! Let's see the full working code
- Use cuda-memcheck yourprogram to find memory errors

Introduction to CUDA

CMSC 691 High Performance Distributed Systems

Introduction to CUDA

Dr. Alberto Cano Assistant Professor Department of Computer Science acano@vcu.edu