

TP 1 - ÉVOLUTION DE LA VALEUR D'UN ACTIF FINANCIER

 $\mathrm{UV}:\mathbf{RO05}$

 ${\bf Branche: G\'{e}nie\ Informatique}$

Filière : Fouille de Données et Décisionnel Auteurs : LU Han - SAUVENT Alexandre

Table des matières

1	Contexte Démonstrations des exercices		2
2			3
	2.1	Question 1	3
	2.2	Question 2	4
	2.3	Question 3	5
	2.4	Question 4	6
	2.5	Question 5	6
	2.6	Question 6	7

1. Contexte

Considérons une option Européenne représentant un actif financier dont la valeur au temps \underline{t} est S(t) pour $0 \le t \le T$, où T est le temps de l'exercice de l'option. Notons que $M \in N^*$ le nombre de subdivision de l'intervalle [0,T] et h = T/M, notons également $S_n = S(nh)$, pour n = 0,1,...,M, les valeurs de l'actif aux instants t = nh. Léquation d'évolution du prix de l'actif en temps discret s'écrit comme suit :

$$S_{n+1} = S_n + \mu h S_n + \sigma h^{1/2} S_n \xi_n \tag{1.1}$$

où $\xi_n, n \geq 0$ est une suite de v.a. i.i.d de loi N(0,1) indépendante de $S_0.$

2. Démonstrations des exercices

2.1 Question 1

Monter que

$$S_M = S_0 \prod_{n=0}^{M-1} (1 + \mu h + \sigma h^{1/2} \xi_n),$$

et en réduire

$$ln(\frac{S_M}{S_0}) = \sum_{n=0}^{M-1} ln(1 + \mu h + \sigma h^{1/2} \xi_n).$$

Démonstration :

Selon l'équation(1.1), nous utilisons la méthode de la multiplication continuée pour résoudre cette question :

 \gg quand n = 0, nous obtenons :

$$S_1 = S_0 + \mu h S_0 + \sigma h^{1/2} S_0 \xi_0 \tag{2.1}$$

et pour $S_0 \neq 0$ nous obtenons :

$$\frac{S_1}{S_0} = 1 + \mu h + \sigma h^{1/2} \xi_0 \tag{2.2}$$

 \gg quand n = 1, nous obtenons :

$$S_2 = S_1 + \mu h S_1 + \sigma h^{1/2} S_1 \xi_1 \tag{2.3}$$

et pour $S_1 \neq 0$ nous obtenons :

$$\frac{S_2}{S_1} = 1 + \mu h + \sigma h^{1/2} \xi_1 \tag{2.4}$$

» Nous obtenons les autres équations en utilisant la même transformation et pour la dernière équation, c'est quand n = M - 1, nous obtenons :

$$S_M = S_{M-1} + \mu h S_{M-1} + \sigma h^{1/2} S_{M-1} \xi_{M-1}$$
(2.5)

et pour $S_{M-1} \neq 0$ nous obtenons :

$$\frac{S_M}{S_{M-1}} = 1 + \mu h + \sigma h^{1/2} \xi_{M-1} \tag{2.6}$$

Ensuite, nous multiplions des équations ensemble et obtenons l'équation finale :

$$\frac{S_M}{S_0} = \frac{S_M}{S_M H_T^4} * \frac{S_M H_T^4}{S_M H_T^4} * \cdots * \frac{S_T^4}{S_T^4} * \frac{S_T^4}{S_0}$$

$$= (1 + \mu h + \sigma h^{1/2} \xi_0) * (1 + \mu h + \sigma h^{1/2} \xi_1) * \cdots * (1 + \mu h + \sigma h^{1/2} \xi_{M-1})$$

$$= \prod_{n=0}^{M-1} (1 + \mu h + \sigma h^{1/2} \xi_n)$$

Donc, nous trouvons le résultat suivant :

$$S_M = S_0 \prod_{n=0}^{M-1} (1 + \mu h + \sigma h^{1/2} \xi_n)$$
 (2.7)

Maintenant nous calculons $\ln(\frac{S_M}{S_0})$:

$$\ln\left(\frac{S_M}{S_0}\right) = \ln \prod_{n=0}^{M-1} (1 + \mu h + \sigma h^{1/2} \xi_n)$$

$$= \ln(1 + \mu h + \sigma h^{1/2} \xi_0) + \ln(1 + \mu h + \sigma h^{1/2} \xi_1) + \dots + \ln(1 + \mu h + \sigma h^{1/2} \xi_{M-1})$$

$$= \sum_{n=0}^{M-1} \ln(1 + \mu h + \sigma h^{1/2} \xi_n)$$

2.2 Question 2

En utilisant l'approximation $\ln(1+\varepsilon) \approx \varepsilon - \varepsilon^2/2$, pour $\varepsilon \to 0$, et la loi des grands nombres, montrer que

$$\ln(\frac{S(t)}{S_0}) \approx (\mu - \frac{1}{2}\sigma^2)t.$$

Ici on a supposé que l'approximation proposée est valable lorsque $h \to 0$.

Démonstration :

Rappel:

La Loi des grands nombres : si X_1, \ldots, X_n est une suite de v.a. indépendantes de même loi ayant une espérance μ et une variance σ^2 , alors la suite $(\overline{X_n})$ définie par $\overline{X_n} = \frac{1}{n} \prod_{i=1}^n X_i$ vérifie : $\overline{X_n} \to \mu$.

On note que $a_n = \ln(1 + \mu h + \sigma h^{1/2} \xi_n)$, donc :

$$\ln(\frac{S(t)}{S_0}) = \ln(\frac{S_n}{S_0}) = \sum_{n=0}^{M-1} a_n$$

Et selon la loi des grands nombres, nous obtenons :

$$\sum_{n=0}^{M-1} a_n = (M-1)\overline{a_n} = (M-1)E(a_n).$$

Donc pour trouver la valeur de $\sum_{n=0}^{M-1} a_n$, il faut tout d'abord calculer $E(a_n)$.

Quand $h \to 0, \mu h + \sigma h^{1/2} \xi_n \to 0$ et en utilisant l'approximation $\ln(1+\varepsilon) \approx \varepsilon - \varepsilon^2/2$, pour $\varepsilon \to 0$, nous pouvons

calculer l'approximation de a_n et la valeur de $E(a_n)$:

$$a_n = \ln(1 + \mu h + \sigma h^{1/2} \xi_n) \approx \mu h + \sigma h^{1/2} \xi_n - \frac{(\mu h + \sigma h^{1/2} \xi_n)^2}{2}$$

et donc :

$$\begin{split} E(a_n) &= E(\ln(1+\mu h + \sigma h^{1/2}\xi_n)) \\ &\approx E(\mu h + \sigma h^{1/2}\xi_n - \frac{(\mu h + \sigma h^{1/2}\xi_n)^2}{2}) = E(\mu h - \frac{1}{2}\mu^2 h^2 + (\sigma h^{1/2} - \mu \sigma h^{3/2})\xi_n - \frac{1}{2}\sigma^2 h\xi_n^2) \\ &= \mu h - \frac{1}{2}\mu^2 h^2 + (\sigma h^{1/2} - \mu \sigma h^{3/2})E(\xi_n) - \frac{1}{2}\sigma^2 hE(\xi_n^2) \end{split}$$

Selon l'exercice, on a $\xi_n, n \geq 0$ est une suite de v.a. i.i.d de loi N(0,1) indépendante de S_0 , donc nous savons l'espérance de ξ_n : $E(\xi_n) = 0$ et la variance de ξ_n : $Var(\xi_n) = 1$. Et puis nous pouvons calculer $E(\xi_n^2)$ en utilisant la formule : $var(\xi_n) = E(\xi_n^2) - [E(\xi_n)]^2$ et nous trouvons que le résultat de $E(\xi_n^2)$ est $E(\xi_n^2) = Var(\xi_n) - [E(\xi_n)]^2 = 1 - 0^2 = 1$.

Donc la valeur de $E(a_n)$:

$$E(a_n) = \mu h - \frac{1}{2}\mu^2 h^2 - \frac{1}{2}\sigma^2 h = h(\mu - \frac{1}{2}\sigma^2) - \frac{1}{2}\mu^2 h^2$$

Quand $h \to 0, h^2 \to 0$, donc $\frac{1}{2}\mu^2 h^2 \approx 0$ et $E(a_n) = h(\mu - \frac{1}{2}\sigma^2)$.

Finalement nous trouvons le résultat suivant :

$$\ln(\frac{S(t)}{S_0}) = \sum_{n=0}^{M-1} a_n = (M-1)E(a_n) \approx (M-1)h(\mu - \frac{1}{2}\sigma^2) = t(\mu - \frac{1}{2}\sigma^2).$$

2.3 Question 3

A l'aide du théorème de la limite central, montrer que l'approximation ci-dessus peut se préciser plus par la relation

$$\ln(\frac{S(t)}{S_0}) \sim N(((\mu - \frac{1}{2}\sigma^2)t, \sigma^2 t).$$

Démonstration :

Rappel

Théorème de la Limite Centrale(TLC) : soit (X_n) une suite de v.a. iid d'espérance μ et de variance σ^2 , et (\overline{X}_n) la suite de terme général $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. On a : $\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \to N(0,1)$, ou, de manière équivalente : $\frac{\sum_{i=1}^n X_i - n\mu}{\sigma\sqrt{n}} \to N(0,1)$.

Selon l'TLC, nous obtenons la formule suivante : $\frac{\sum_{n=0}^{M-1} a_n - (M-1)\mu}{\sigma\sqrt{M-1}} \to N(0,1)$, avec μ l'espérance de a_n et σ l'écart-type de a_n .

Donc $\ln \frac{S(t)}{S_0}$ suit une loi suivante :

$$\ln \frac{S(t)}{S_0} \sim N((M-1)E(a_n), (M-1)Var(a_n)).$$

Nous avons déjà calculé l'espérance de $a_n : E(a_n)$ dans Question 2 et maintenant nous allons calculer la variance de $a_n : Var(a_n)$.

Rappel:

» Nous trouvons l'approximation de $a_n: a_n = \ln(1 + \mu h + \sigma h^{1/2} \xi_n) \approx \mu h + \sigma h^{1/2} \xi_n - \frac{(\mu h + \sigma h^{1/2} \xi_n)^2}{2}$, avec $h \to 0$.

» Quelques propositions :

- 1. $\forall \alpha, \beta \in \mathbb{R}, Var(\alpha X + \beta) = \alpha^2 Var(X)$.
- 2. $Var(X \pm Y) = Var(X) + Var(Y) \pm Cov(X, Y)$, avec Cov(X, Y) la covariance entre X et Y.
- 3. Cov(X,Y) = E[(X E(X))(Y E(Y))] = E(XY) E(X)E(Y).
- 4. $\forall \alpha, \beta \in \mathbb{R}, Cov(\alpha X, \beta Y) = \alpha \beta Cov(X, Y).$
- » $\forall \alpha > 1$, quand $h \to 0, h^{\alpha} \to 0$.
- » $\xi_n, n \ge 0$ est une suite de v.a. i.i.d de loi N(0,1) indépendante de S_0 , donc l'espérance de $\xi_n : E(\xi_n) = 0$ et la variance de $\xi_n : Var(\xi_n) = 1$.

Donc nous avons:

$$\begin{split} Var(a_n) &= Var(\ln(1+\mu h + \sigma h^{1/2}\xi_n)) \approx Var(\mu h + \sigma h^{1/2}\xi_n - \frac{(\mu h + \sigma h^{1/2}\xi_n)^2}{2}) \\ &= Var[\mu h - \frac{1}{2}\mu^2 h^2 + (\sigma h^{1/2} - \mu \sigma h^{3/2})\xi_n - \frac{1}{2}\sigma^2 h\xi_n^2] \\ &= Var[(\sigma h^{1/2} - \mu \sigma h^{3/2})\xi_n - \frac{1}{2}\sigma^2 h\xi_n^2] \\ &= (\sigma h^{1/2} - \mu \sigma h^{3/2})^2 Var(\xi_n) + (\frac{1}{2}\sigma^2 h)^2 Var(\xi_n^2) - 2Cov[(\sigma h^{1/2} - \mu \sigma h^{3/2})\xi_n, \frac{1}{2}\sigma^2 h\xi_n^2] \\ &= (\sigma^2 h - 2\mu \sigma^2 h^2 + \mu^2 \sigma^2 h^3) Var(\xi_n) + \frac{1}{4}\sigma^4 h^2 Var(\xi_n^2) - (\sigma^3 h^{3/2} - \mu \sigma^3 h^{5/2}) Cov(\xi_n, \xi_n^2) \\ &= \sigma^2 h Var(\xi_n) \\ &= \sigma^2 h \end{split}$$

Donc nous trouvons la relation suivante :

$$\ln \frac{S(t)}{S_0} \sim N((M-1)E(a_n), (M-1)Var(a_n))$$

$$\Leftrightarrow \ln \frac{S(t)}{S_0} \sim N((M-1)h(\mu - \frac{1}{2}\sigma^2), (M-1)h\sigma^2)$$

$$\Leftrightarrow \ln \frac{S(t)}{S_0} \sim N((\mu - \frac{1}{2}\sigma^2)t, \sigma^2 t).$$

2.4 Question 4

Conclure de la question précédente que

$$S(t) = S_0 exp((\mu - \frac{1}{2}\sigma^2)t + \sigma\sqrt{t}Z),$$

où $Z \sim N(0, 1)$.

Démonstration :

Selon l'TCL, nous avons :

$$\frac{\ln(\frac{S(t)}{S_0}) - (\mu - \frac{1}{2}\sigma^2)t}{\sqrt{\sigma^2 t}} \sim N(0, 1) = Z$$

$$\Leftrightarrow \ln(\frac{S(t)}{S_0}) = (\mu - \frac{1}{2}\sigma^2)t + Z\sqrt{\sigma^2 t}$$

$$\Leftrightarrow S(t) = S_0 exp((\mu - \frac{1}{2}\sigma^2)t + \sigma\sqrt{t}Z).$$

2.5 Question 5

Expliquer pourquoi la v.a. S(T)/S(0) (T fixé) suit-elle une loi log-normale? Spécifier ses paramètres.

Démonstration :

Rappel:

Une variable aléatoire X est dite suivre une loi log-normale de paramètres μ et σ^2 si la variable $Y = \ln(X)$ suit une loi normale d'espérance μ et de variance σ^2 .

Nous notons que $X = \frac{S(T)}{S(0)}$ avec $S(T) = S_0 exp((\mu - \frac{1}{2}\sigma^2)T + \sigma\sqrt{T}Z)$, avec $Z \sim N(0, 1)$ et $S(0) = S_0$.

Donc nous calculons la valeur de $\ln(X)$ et nous notons cette valeur à Y :

$$\begin{split} Y &= \ln(\frac{S(T)}{S(0)}) = \ln(\exp((\mu - \frac{1}{2}\sigma^2)T + \sigma\sqrt{T}Z)) = (\mu - \frac{1}{2}\sigma^2)T + \sigma\sqrt{T}Z \\ \Leftrightarrow & \frac{Y - (\mu - \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}} = Z \sim N(0, 1) \\ \Leftrightarrow & Y \sim N((\mu - \frac{1}{2}\sigma^2)T, \sigma^2T) \end{split}$$

Donc $\frac{S(T)}{S(0)}$ suit une loi log-normale avec l'espérance $(\mu - \frac{1}{2}\sigma^2)T$ et la variance σ^2T .

2.6 Question 6

Donner un intervalle de confiance de la valeur de l'option au temps d'exercice au niveau α .

Démonstration:

Selon l'exercice précédent, nous avons la loi de $Y = \ln(\frac{S(t)}{S(0)}) \sim N((\mu - \frac{1}{2}\sigma^2)t, \sigma^2 t)$, avec σ^2 connu. Donc nous cherchons à construire l'intervalle de confiance bilatéral :

$$\mathbb{P}(\mu_{\frac{\alpha}{2}} \leq \frac{Y - (\mu - \frac{1}{2}\sigma^{2})t}{\sigma\sqrt{t}} \leq \mu_{1-\frac{\alpha}{2}}) = 1 - \alpha$$

$$\Leftrightarrow \mathbb{P}(-\mu_{1-\frac{\alpha}{2}} \leq \frac{Y - (\mu - \frac{1}{2}\sigma^{2})t}{\sigma\sqrt{t}} \leq \mu_{1-\frac{\alpha}{2}}) = 1 - \alpha$$

$$\Leftrightarrow \mathbb{P}((\mu - \frac{1}{2}\sigma^{2})t - \sigma\sqrt{t}\mu_{1-\frac{\alpha}{2}} \leq Y \leq (\mu - \frac{1}{2}\sigma^{2})t + \sigma\sqrt{t}\mu_{1-\frac{\alpha}{2}}) = 1 - \alpha$$

$$\Leftrightarrow \mathbb{P}(S_{0}exp((\mu - \frac{1}{2}\sigma^{2})t - \sigma\sqrt{t}\mu_{1-\frac{\alpha}{2}}) \leq S(t) \leq S_{0}exp((\mu - \frac{1}{2}\sigma^{2})t + \sigma\sqrt{t}\mu_{1-\frac{\alpha}{2}})) = 1 - \alpha$$

Donc l'intervalle de confiance est : $[S_0 exp((\mu-\tfrac{1}{2}\sigma^2)t-\sigma\sqrt{t}\mu_{1-\frac{\alpha}{2}}),S_0 exp((\mu-\tfrac{1}{2}\sigma^2)t+\sigma\sqrt{t}\mu_{1-\frac{\alpha}{2}})]$

