#### Announcements

- Homework 3: Games
  - Due tonight at 11:59pm.
- Project 2: Multi-Agent Pacman
  - Has been released, due Friday 2/19 at 5:00pm.
  - Optional mini-contest, due Sunday 2/21 at 11:59pm.

# CS 188: Artificial Intelligence

**Markov Decision Processes II** 



Instructors: Anca Dragan and Pieter Abbeel --- University of California, Berkeley

[Slides by Dan Klein, Pieter Abbeel, Anca Dragan; http://ai.berkeley.edu.]

# Recap: Defining MDPs

#### Markov decision processes:

- Set of states S
- Start state s<sub>0</sub>
- Set of actions A
- Transitions P(s'|s,a) (or T(s,a,s'))
- Rewards R(s,a,s') (and discount γ)

#### MDP quantities so far:

- Policy = Choice of action for each state
- Utility = sum of (discounted) rewards





# Solving MDPs



# Racing Search Tree



# Racing Search Tree



# Racing Search Tree

- We're doing way too much work with expectimax!
- Problem: States are repeated
  - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
  - Idea: Do a depth-limited computation, but with increasing depths until change is small
  - Note: deep parts of the tree eventually don't matter if γ < 1</li>



## **Optimal Quantities**

- The value (utility) of a state s:
  - V\*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
  - Q\*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:
  - $\pi^*(s)$  = optimal action from state s



## Snapshot of Demo – Gridworld V Values



# Snapshot of Demo – Gridworld Q Values



#### Values of States

Recursive definition of value:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$
s,a,s'

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

#### Time-Limited Values

- Key idea: time-limited values
- Define V<sub>k</sub>(s) to be the optimal value of s if the game ends in k more time steps
  - Equivalently, it's what a depth-k expectimax would give from s



































# **Computing Time-Limited Values**



# Value Iteration



#### Value Iteration

- Start with  $V_0(s) = 0$ : no time steps left means an expected reward sum of zero
- Given vector of  $V_k(s)$  values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence
- Complexity of each iteration: O(S<sup>2</sup>A)
- Theorem: will converge to unique optimal values
  - Basic idea: approximations get refined towards optimal values
  - Policy may converge long before values do











Assume no discount!

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$









Assume no discount!

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$









$$V_2$$
 S: 1+2=3



2

1

0



#### Assume no discount!

$$V_0$$
 0 0 0

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$





 $V_0$  0 0 0

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$

# Convergence\*

- How do we know the  $V_k$  vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V<sub>M</sub> holds the actual untruncated values
- Case 2: If the discount is less than 1
  - Sketch: For any state  $V_k$  and  $V_{k+1}$  can be viewed as depth k+1 expectimax results in nearly identical search trees
  - The difference is that on the bottom layer,  $V_{k+1}$  has actual rewards while  $V_k$  has zeros
  - That last layer is at best all R<sub>MAX</sub>
  - It is at worst R<sub>MIN</sub>
  - But everything is discounted by  $y^k$  that far out
  - So  $V_k$  and  $V_{k+1}$  are at most  $\gamma^k$  max |R| different
  - So as k increases, the values converge



# **Policy Extraction**



#### Computing Actions from Values

- Let's imagine we have the optimal values V\*(s)
- How should we act?
  - It's not obvious!
- We need to do a mini-expectimax (one step)



$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

This is called policy extraction, since it gets the policy implied by the values

#### Computing Actions from Q-Values

Let's imagine we have the optimal q-values:

- How should we act?
  - Completely trivial to decide!

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$



Important lesson: actions are easier to select from q-values than values!

# Policy Methods



#### Problems with Value Iteration

Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$



■ Problem 1: It's slow – O(S<sup>2</sup>A) per iteration

Problem 2: The "max" at each state rarely changes

Problem 3: The policy often converges long before the values

#### k=12



Noise = 0.2 Discount = 0.9 Living reward = 0

#### k=100



Noise = 0.2 Discount = 0.9 Living reward = 0

#### **Policy Iteration**

- Alternative approach for optimal values:
  - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
  - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
  - Repeat steps until policy converges
- This is policy iteration
  - It's still optimal!
  - Can converge (much) faster under some conditions

# **Policy Evaluation**



#### **Fixed Policies**

Do the optimal action



Do what  $\pi$  says to do



- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy  $\pi(s)$ , then the tree would be simpler only one action per state
  - ... though the tree's value would depend on which policy we fixed

### Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy  $\pi$ :  $V^{\pi}(s) = \text{expected total discounted rewards starting in s and following } \pi$
- Recursive relation (one-step look-ahead / Bellman equation):





# Example: Policy Evaluation

Always Go Right

Always Go Forward





## **Example: Policy Evaluation**

Always Go Right



Always Go Forward



### **Policy Evaluation**

- How do we calculate the V's for a fixed policy  $\pi$ ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$



- Efficiency: O(S<sup>2</sup>) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
  - Solve with Matlab (or your favorite linear system solver)

# Policy Iteration



### **Policy Iteration**

- Evaluation: For fixed current policy  $\pi$ , find values with policy evaluation:
  - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[ R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Improvement: For fixed values, get a better policy using policy extraction
  - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

#### Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
  - Every iteration updates both the values and (implicitly) the policy
  - We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
  - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
  - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
  - The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

#### Summary: MDP Algorithms

- So you want to....
  - Compute optimal values: use value iteration or policy iteration
  - Compute values for a particular policy: use policy evaluation
  - Turn your values into a policy: use policy extraction (one-step lookahead)
- These all look the same!
  - They basically are they are all variations of Bellman updates
  - They all use one-step lookahead expectimax fragments
  - They differ only in whether we plug in a fixed policy or max over actions

### The Bellman Equations



### **Double Bandits**







#### Double-Bandit MDP



### Offline Planning

- Solving MDPs is offline planning
  - You determine all quantities through computation
  - You need to know the details of the MDP
  - You do not actually play the game!

No discount
100 time steps
Both states have
the same value





# Let's Play!





\$2 \$2 \$0 \$2 \$2

\$2 \$2 \$0 \$0 \$0

### Online Planning

Rules changed! Red's win chance is different.



# Let's Play!





\$0 \$0 \$0 \$2 \$0

\$2 \$0 \$0 \$0 \$0

#### What Just Happened?

- That wasn't planning, it was learning!
  - Specifically, reinforcement learning
  - There was an MDP, but you couldn't solve it with just computation
  - You needed to actually act to figure it out



- Important ideas in reinforcement learning that came up
  - Exploration: you have to try unknown actions to get information
  - Exploitation: eventually, you have to use what you know
  - Regret: even if you learn intelligently, you make mistakes
  - Sampling: because of chance, you have to try things repeatedly
  - Difficulty: learning can be much harder than solving a known MDP

## Next Time: Reinforcement Learning!