

The following listing of claims will replace all prior versions, and listings, of claims in the application:

- 1. (Currently Amended) A method for polishing a glass hard disk platter, comprising polishing a glass hard disk platter using a stable slurry in which cerium(IV) oxide particles having an average secondary particle size of 0.1 to 0.5 μm are dispersed in water and which contains CeO₂ in a concentration of 0.2 to 30 wt%, wherein a proportion of cerium expressed as a ratio of (cerium oxide)/(cerium oxide + other rare earth oxides) in the cerium(IV) oxide particles is 95% or more based on weight, and the stable slurry is a slurry of surface-modified cerium(IV) oxide obtained by heat-treating cerium(IV) oxide that is obtained by blowing oxygen or a gas containing oxygen into a suspension obtained by reacting a cerium (III) salt with an alkaline substance in a (OH)/(Ce³⁺) molar ratio of 3 to 30, in an aqueous medium in the presence of an ammonium salt having a non-oxidative anionic component selected from the group consisting of ammonium carbonate, ammonium hydrogen carbonate, and mixtures thereof.
 - 2. (Canceled)
- 3. (Original) The method according to claim 1, wherein a specific surface area of the cerium(IV) oxide particles is 2 to 200 m²/g.
 - 4. (Canceled)
- 5. (New) The method according to claim 1, wherein the cerium (III) salt and the alkaline substance are reacted under an inert gas atmosphere.
- 6. (New) The method according to claim 1, wherein the cerium (III) salt and the alkaline substance are reacted at an atmospheric pressure.