Fundamentele limbajelor de programare Semantica Logicii Hoare. Cea mai slabă preconditie.

Traian Florin Şerbănuță și Andrei Sipos

Facultatea de Matematică și Informatică, DL Info

Anul II, Semestrul II, 2024/2025

Secțiunea 1

Limbajul propozițiilor

Ce fel de afirmații putem face in Logica Hoare?

Pre-condiția și post-condiția se construiesc din:

- ullet variabilele programului M, N , Sum din L
- numere 42, 13, 7, 3
- variabile logice x, y, z, t
- operații aritmetice +, −, *
- relații aritmetice ≤, =
- logică propozițională true, false, ¬, ∧, ∨
- cuantificatori ∀,∃

Expresii aritmetice extinse

Fixăm o mulțime V, ale cărei elemente vor fi numite **variabile logice**, care vor avea oarecum același rol ca variabilele din logica de ordinul I (altul decât cel al variabilelor din IMP, numite și **variabile de program**, care reprezentau locuri în memorie, ca în limbajele imperative uzuale).

O expresie aritmetică extinsă va avea exact una dintre următoarele forme:

- un număr întreg n;
- o variabilă de program X (element al lui L);
- o variabilă logică x (element al lui V);
- $a_0 + a_1$, $a_0 a_1$, $a_0 * a_1$, unde a_0 și a_1 sunt expresii aritmetice extinse.

Expresii booleene extinse (aserţiuni)

O **expresie booleană extinsă**, numită și **aserțiune**, va avea exact una dintre următoarele forme:

- o valoare booleană (true sau false);
- $a_0 = a_1$, $a_0 \leqslant a_1$, unde a_0 și a_1 sunt expresii aritmetice extinse;
- $\neg A_0$, $A_0 \land A_1$, $A_0 \lor A_1$, unde A_0 și A_1 sunt aserțiuni;
- $\forall x A$, unde $x \in V$ și A este o aserțiune.

Considerăm cunoscută prescurtările $A \to B$ pentru $(\neg A) \lor B$, $\exists xA$ pentru $\neg \forall x \neg A$

Substituția

Putem defini în modul absolut natural substituțiile de forma A[x:=a] sau A[X:=a], unde A este o aserțiune, $X \in L$, $x \in V$, iar a este o expresie aritmetică – nu extinsă: de aceea, nu trebuie să ne preocupăm de redenumiri de variabile logice (cum o facem la logica de ordinul I). Enunțăm doar clauza:

$$(\forall zA)[x := a] := \begin{cases} \forall zA, & \text{dacă } z = x, \\ \forall z(A[x := a]), & \text{altfel.} \end{cases}$$

Evaluarea expresiilor aritmetice extinse

Vom numi **interpretare** o funcție de la V la \mathbb{Z} . Pentru orice $\sigma \in \Sigma$ și orice interpretare $I:V \to \mathbb{Z}$, definim o funcție $|\cdot|_{\sigma}^{I}$ care evaluează expresii aritmetice extinse în numere întregi, în mod recursiv, în felul următor:

- pentru orice $N \in \mathbb{Z}$, $|N|_{\sigma}^{I} := N$; • pentru orice $X \in L$, $|X|_{\sigma}^{I} := \sigma(X)$;
- pentru orice $X \in L$, $|X|_{\sigma} := \theta(X)$
- pentru orice $x \in V$, $|x|_{\sigma}^{I} := I(x)$;
- pentru orice expresii aritmetice extinse a_0 , a_1 , avem $|a_0 + a_1|_{\sigma}^{I} := |a_0|_{\sigma}^{I} + |a_1|_{\sigma}^{I}$, $|a_0 a_1|_{\sigma}^{I} := |a_0|_{\sigma}^{I} |a_1|_{\sigma}^{I}$, $|a_0 * a_1|_{\sigma}^{I} := |a_0|_{\sigma}^{I} * |a_1|_{\sigma}^{I}$.

Avem că, pentru orice expresie aritmetică (ne-extinsă) a, $|a|_{\sigma}^{I}=n$ dacă și numai dacă $\langle a,\sigma\rangle \Downarrow n$.

Analog cu cele anterioare, pentru orice $I:V\to\mathbb{Z},\ x\in V$ și $N\in\mathbb{Z}$, definim interpretarea $I_{x\mapsto N}$, pentru orice $y\in V$, prin:

$$I_{x\mapsto N}(y):=egin{cases} N, & \mathsf{dac}\ y=x,\ I(y), & \mathsf{altfel}. \end{cases}$$

Evaluarea aserțiunilor

Definim acum, pentru $\sigma \in \Sigma$, $I: V \to \mathbb{Z}$ și A aserțiune, relația $\sigma \models^I A$, în mod recursiv, în felul următor:

- $\sigma \models^I \text{true}, \ \sigma \not\models^I \text{false};$
- pentru orice expresii aritmetice extinse a_0 , a_1 , avem $\sigma \models^I a_0 = a_1$ dacă și numai dacă $|a_0|_\sigma^I = |a_1|_\sigma^I$, $\sigma \models^I a_0 \leqslant a_1$ dacă și numai dacă $|a_0|_\sigma^I \leqslant |a_1|_\sigma^I$;
- pentru orice aserţiuni A_0 , A_1 , avem $\sigma \models^I \neg A_0$ dacă şi numai dacă $\sigma \models^I A_0$, $\sigma \models^I A_0 \land A_1$ dacă şi numai dacă $\sigma \models^I A_0$ şi $\sigma \models^I A_1$, $\sigma \models^I A_0 \lor A_1$ dacă şi numai dacă $\sigma \models^I A_0$ sau $\sigma \models^I A_1$;
- pentru orice $x \in V$ și orice aserțiune A, avem $\sigma \models^I \forall x A$ dacă și numai dacă, pentru orice $N \in \mathbb{Z}$, $\sigma \models^{I_{x \mapsto N}} A$.

Avem că, pentru orice expresie booleană (ne-extinsă) b, $\sigma \models^I b$ dacă și numai dacă $\langle b, \sigma \rangle \Downarrow \langle \mathbf{true} \rangle$. Notăm cu $\models A$ faptul că, pentru orice σ și I, $\sigma \models^I A$. Notăm și $A^I := \{ \sigma \in \Sigma \mid \sigma \models^I A \}$.

Semantica enunțurilor Hoare (folosind semantica big-step)

Fie $\{A\}$ c $\{B\}$ un enunț Hoare, unde A și B sunt aserțiuni, iar c este o instrucțiune.

Definim semantica acestora în felul următor:

- pentru orice σ și I, $\sigma \models^I \{A\}c\{B\}$ dacă $\sigma \models^I A$ implică faptul că, pentru orice σ' cu $\langle c, \sigma \rangle \Downarrow \langle \sigma' \rangle$, $\sigma' \models^I B$;
- pentru orice I, $\models^I \{A\}c\{B\}$ dacă, pentru orice σ , $\sigma \models^I \{A\}c\{B\}$, sau, echivalent, pentru orice $\langle c, \sigma \rangle \Downarrow \langle \sigma' \rangle$, $\sigma \models^I A$ implică $\sigma' \models^I B$;
- $\models \{A\}c\{B\}$ dacă, pentru orice $I, \models^I \{A\}c\{B\}$.

Logica Hoare

- $\{Q\}$ skip $\{Q\}$ (SKIP)
- $\{Q[x:=e]\}\ x:=e\ \{Q\}$ (Atribuire)
- $\frac{\{P_w\}}{\{P_s\}} \frac{S}{S} \frac{\{Q\}}{\{Q\}} dac\check{a} \models P_s \rightarrow P_w$ (Întărire pre)
- $\frac{\{P\} \ S_1 \ \{Q\} \ \{Q\} \ S_2 \ \{R\}}{\{P\} \ S_1; S_2 \ \{R\}}$ (Secvențiere)
- $\bullet \quad \frac{\{P \land b\} \ S_1 \ \{Q\} \qquad \{P \land \neg b\} \ S_2 \ \{Q\}}{\{P\} \ \text{if b then } S_1 \ \text{else } S_2 \ \{Q\}} \qquad \text{(IF)}$
- $\frac{\{P \land b\} \ S \ \{P\}}{\{P\} \ \text{while b do S} \ \{P \land \neg b\}}$ (While)

Notăm $\vdash \{\mathbf{P}\}$ c $\{\mathbf{Q}\}$ dacă $\{P\}$ c $\{Q\}$ aparține mulțimii definite de aceste reguli.

Teorema de corectitudine

Teorema de corectitudine

Pentru orice A, B, c cu $\vdash \{A\}c\{B\}$, avem $\models \{A\}c\{B\}$.

Demonstrație (inducție după regulile Hoare, pe sărite)

$${Q[x := e]}$$
 $x := e$ ${Q}$ (Atribuire)

Fie
$$\sigma, I$$
 astfel incât $\sigma \models^I Q[x := e]$ și σ' astfel încât $\langle x := e, \sigma \rangle \Downarrow \langle \sigma' \rangle$.

Atunci există
$$n$$
 astfel încât $\langle e, \sigma \rangle \Downarrow \langle n \rangle$ și $\sigma' = \sigma[x := n]$.

Avem că
$$|e|_{\sigma}^{I} = n$$
 și se poate demonstra prin inducție asupra lui Q că $\sigma \models^{I} Q[x := e]$ implică $\sigma' \models^{I} Q$.

$$\frac{\{P\} \ S_1 \ \{Q\} \ \{Q\} \ S_2 \ \{R\}}{\{P\} \ S_1; S_2 \ \{R\}}$$
 (Secventiere)

Presupunem ipoteza adevărată pentru $\{P\}$ S_1 $\{Q\}$ si $\{Q\}$ S_2 $\{R\}$. Fie σ , I astfel încât $\sigma \models^I P$ si σ' astfel încât $\langle S_1, S_2, \sigma \rangle \Downarrow \langle \sigma' \rangle$. Atunci există σ'' astfel încât $\langle S_1, \sigma \rangle \Downarrow \langle \sigma'' \rangle$ si $\langle S_2, \sigma'' \rangle \Downarrow \langle \sigma' \rangle$.

Din ipoteza de inducție pentru $\{P\}$ S_1 $\{Q\}$ avem că $\sigma'' \models^I Q$.

Din ipoteza de inducție pentru $\{Q\}$ S₂ $\{R\}$ avem că $\sigma' \models^I R$.

Teorema de corectitudine

Dacă $\frac{\langle b, \sigma \rangle \Downarrow \langle false \rangle}{\langle w, \sigma \rangle \parallel \sigma}$ (WHILE-FALSE):

Teorema de corectitudine

Pentru orice A, B, c cu $\vdash \{A\}c\{B\}$, avem $\models \{A\}c\{B\}$.

Demonstrație (cont.)

Avem $\sigma' = \sigma$ si deducem $\sigma \not\models 'b$, deci $\sigma \models '\neg b$, deci $\sigma \models 'A \land \neg b$.

Dacă $\frac{\langle b,\sigma \rangle \Downarrow \langle \text{true} \rangle \qquad \langle S,\sigma \rangle \Downarrow \langle \sigma'' \rangle \qquad \langle w,\sigma'' \rangle \Downarrow \langle \sigma' \rangle}{\langle w,\sigma \rangle \Downarrow \sigma'}$ (While-True): Putem presupune ipoteza de inducție pentru $\langle w,\sigma'' \rangle \Downarrow \langle \sigma' \rangle$, adică, dacă $\sigma'' \models^I A$. atunci $\sigma' \models^I A \land \neg b$.

Deoarece $\langle b, \sigma \rangle \Downarrow \langle \text{true} \rangle$, avem $\sigma \models^I b$, deci $\sigma \models^I A \land b$, și deoarece $\models \{A \land b\}S\{A\}$ și $\langle S, \sigma \rangle \Downarrow \langle \sigma'' \rangle$, înseamnă că $\sigma'' \models^I A$, deci $\sigma' \models^I A \land \frac{1}{12}b_{25}$

Sectiunea 2

Cea mai slabă precondiție

Edsger W. Dijkstra

- A inventat în 1956 un algoritm de determinare a celor mai scurte drumuri într-un graf
- A inventat în ~1962 noțiunea de semafoare pentru sincronizarea accesului la resurse în programarea concurentă
- A câștigat premiul Turing în 1972 pentru sustinerea programării structurate
- A introdus în 1975 calculul celei mai slabe precondiții ca o tehnică alternativă pentru verificarea corectitudinii programelor imperative

14 / 25

Calculul celei mai slabe pre-condiții

Logica Hoare ne prezintă probleme logice

- Dată fiind o pre-condiție P, codul S, și post-condiția Q,
- este adevărat că $\{P\}$ S $\{Q\}$?

Calculul celei mai slabe pre-condiții descrie o funcție

- Dat fiind codul S și post-condiția Q
- ullet găsiți acel P care este cea mai slabă pre-condiție pentru S i Q.

Cea mai slabă precondiție (semantică)

Pentru orice instrucțiune c, orice aserțiune B și orice interpretare I, definim cea mai slabă precondiție liberală 1 (semantică) a lor prin

mulțimea stărilor inițiale pentru care, după execuția lui c, B e adevărată

$$\textit{wls}^I(c,B) := \{ \sigma \in \Sigma \mid \text{pentru orice } \sigma' \in \Sigma \text{ cu } \langle c,\sigma \rangle \Downarrow \langle \sigma' \rangle, \ \sigma' \models^I B \}.$$

Avem că, pentru orice A, B, c, I, $\models^I \{A\}c\{B\}$ dacă și numai dacă $A^I \subseteq wls^I(c,B)$ (exercițiu!).

Am vrea să **capturăm** această mulțime ca o aserțiune W, adică să găsim W astfel încât $W^I = wls^I(c, B)$, pentru orice I.

¹Liberală, în sensul că acceptă ideea de neterminare.

Definirea celei mai slabe precondiții (wp)

Vom avea:

$$\begin{split} wp(\mathbf{skip}, B) &:= B \\ wp(X := a, B) &:= B[X := a] \\ wp(c_0; c_1, B) &:= wp(c_0, wp(c_1, B)) \\ wp(\mathbf{if}\ b\ \mathbf{then}\ c_0\ \mathbf{else}\ c_1, B) &:= (b \land wp(c_0, B)) \lor (\neg b \land wp(c_1, B)). \end{split}$$

Pentru **while**, notăm $w := \text{while } b \text{ do } c \text{ și folosind că} w \sim \text{if } b \text{ then } (c; w) \text{ else skip, trebuie ca}$

$$\begin{aligned} wp(w,B) &= wp(\texttt{if } b \texttt{ then } (c;w) \texttt{ else skip}, B) \\ &= (b \land wp(c;w,B)) \lor (\neg b \land wp(\texttt{skip},B)) \\ &= (b \land wp(c,wp(w,B))) \lor (\neg b \land B) \end{aligned}$$

Definirea celei mai slabe precondiții (while)

Vrem ca
$$wp(w, B) = (b \land wp(c, wp(w, B))) \lor (\neg b \land B)$$

Definim șirul de aserțiuni $(P_k)_{k \in N}$ recursiv astfel:

- $P_0 := \neg b \wedge B$
- $\bullet \ P_{k+1} := b \wedge wp(c, P_k)$

Presupunem că avem dijuncții infinitare în limbaj și definim

$$wp(w, B) := \bigvee_{k \in \mathbb{N}} P_k.$$

Intuiție: Dacă $\sigma \models^{I} wp(w, B)$, atunci

- există un k astfel încât $\sigma \models^l P_k$, deci
- ullet execuția lui w din starea σ se va opri după k iterații și
- B va fi adevărată în starea finală.

Presupuneri Suplimentare (semantice)

Formula pentru while capturează ideea de terminare.

Definim deci, **cea mai slabă precondiție semantică** pentru instrucțiunea c față de post-condiția B în interpretarea I ca:

mulțimea stărilor inițiale pentru care execuția lui c se termină și B e adevărată în starea de după

$$\mathit{ws}^{I}(c,B) := \{ \sigma \in \Sigma \mid \mathsf{exist} \ \sigma' \in \Sigma \ \mathsf{astfel} \ \mathsf{\hat{n}nc\hat{a}t} \ \langle c,\sigma \rangle \Downarrow \langle \sigma' \rangle \ \mathsf{\dot{s}i} \ \sigma' \models^{I} B \}.$$

Avem că $ws^I(c, B) \subseteq wls^I(c, B)$ ($wls^I(c, B)$ include și stările pentru care execuția nu se termină).

Observație: dacă execuția lui c se termină *în orice stare*, atunci $ws^I(c,B) = wls^I(c,B)$ (exercițiu!)

Teoremă

$$wp(c, B)' = ws'(c, B)$$

Demonstrație (inducție după regulile de definire ale lui wp)

Tratăm doar cazul pentru w =while b do S. Din ipoteza de inducție, presupunem că (1) pentru orice B, $wp(S,B)^I = ws^I(S,B)$ Pentru \subseteq ", fie σ cu $\sigma \models^I \bigvee_{k \in \mathbb{N}} P_k$, deci există $k \in \mathbb{N}$ cu $\sigma \models^I P_k$. Facem inducție după k.

Pentru k=0, avem $\sigma \models^I \neg b \land B$, deci (2) $\sigma \models^I \neg b$ și (3) $\sigma \models^I B$. Din (2), $\langle b, \sigma \rangle \Downarrow \langle \text{false} \rangle$. Atunci $\langle w, \sigma \rangle \Downarrow \langle \sigma \rangle$ și concluzia e demonstrată datorită lui (3).

Pentru pasul de inducție, presupunem $\sigma \models^I b \land wp(c, P_k)$, deci (2) $\sigma \models^I b$ și (3) $\sigma \models^I wp(c, P_k)$. Din (2) $\langle b, \sigma \rangle \Downarrow \langle \text{true} \rangle$. Din (1) și (3), $\sigma \in ws^I(S, P_k)$, deci există σ'' astfel încăt (4) $\langle S, \sigma \rangle \Downarrow \langle \sigma'' \rangle$ și $\sigma'' \models^I P_k$. Din ipoteza de inducție pentru k, există σ' astfel încât (5) $\langle w, \sigma'' \rangle \Downarrow \langle \sigma' \rangle$ și (6) $\sigma' \models^I B$. Din (2), (4) și (5) rezultă că $\langle w, \sigma \rangle \Downarrow \langle \sigma' \rangle$ și folosind (6), că $\sigma \in ws^I(w, B)$.

Lemă ajutătoare

Dacă $\langle w, \sigma \rangle \Downarrow \langle \sigma' \rangle$ atunci există $n \geqslant 0$ și un șir finit de stări $(\sigma_i)_{i \leqslant n}$ cu $\sigma_0 = \sigma$, $\sigma_n = \sigma'$, $\langle b, \sigma_n \rangle \Downarrow \langle \mathtt{false} \rangle$ și, pentru orice i cu $0 \leqslant i < n$, $\langle b, \sigma_i \rangle \Downarrow \langle \mathtt{true} \rangle$ și $\langle S, \sigma_i \rangle \Downarrow \langle \sigma_{i+1} \rangle$.

Demonstrație (inducție după regulile big-step)

Dacă
$$\frac{\langle b, \sigma \rangle \Downarrow \langle \text{false} \rangle}{\langle w, \sigma \rangle \Downarrow \sigma}$$
 (While-False)
Alegem $n = 0$ și avem $\langle b, \sigma_0 \rangle \Downarrow \langle \text{false} \rangle$.

Din ipoteza de inducție pentru $\langle w, \sigma'' \rangle \Downarrow \langle \sigma' \rangle$ există $n' \geqslant 0$ și un șir finit de stări $(\sigma'_i)_{i \leqslant n'}$ cu $\sigma'_0 = \sigma''$, $\sigma'_{n'} = \sigma'$, $\langle b, \sigma'_{n'} \rangle \Downarrow \langle \mathtt{false} \rangle$ și, pentru orice i cu $0 \leqslant i < n'$, $\langle b, \sigma'_i \rangle \Downarrow \langle \mathtt{true} \rangle$ și $\langle S, \sigma'_i \rangle \Downarrow \langle \sigma'_{i+1} \rangle$.

Definim n = n' + 1 și $\sigma_0 = \sigma$, $\sigma_{i+1} = \sigma'_i$ pentru $0 \le i \le n$. Se verifică că $\langle b, \sigma_0 \rangle \Downarrow \langle \text{true} \rangle$ și $\langle S, \sigma_0 \rangle \Downarrow \langle \sigma_1 \rangle$

Teoremă

Fie *I* o interpretare. pentru orice *c*, *B*, Atunci $wp(c,B)^I = ws^I(c,B)$.

Demonstrație (cont.)

Pentru \supseteq ", fie $\sigma \in ws^I(w,B)$. Deci există σ' astfel încât $\langle w,\sigma \rangle \Downarrow \langle \sigma' \rangle$ și $\sigma' \models^I B$.

Aplicând lema ajutătoare, fie $n \ge 0$ și un șir finit de stări $(\sigma_i)_{i \le n}$ cu $\sigma_0 = \sigma$, $\sigma_n = \sigma'$, $\langle b, \sigma_n \rangle \Downarrow \langle \mathtt{false} \rangle$ și, pentru orice i cu $0 \le i < n$, $\langle b, \sigma_i \rangle \Downarrow \langle \mathtt{true} \rangle$ și $\langle S, \sigma_i \rangle \Downarrow \langle \sigma_{i+1} \rangle$.

Se arată, apoi, că, pentru orice j cu $0 \le j \le n$, avem $\sigma_{n-j} \models^I P_j$, prin inducție după j (exercițiu!). Avem, deci, că $\sigma = \sigma_0 \models^I P_n$.

A se vedea și cursul de master "Program Verification":

https://cs.unibuc.ro/~ddiaconescu/2019/pv/

Teorema de completitudine (relativă)

Fie c astfel încât execuția lui c se termină in orice stare.

Lemă

Fie $B \operatorname{cu} \vdash \{wp(c,B)\}c\{B\}$. Fie $A \operatorname{cu} \models \{A\}c\{B\}$. Atunci $\vdash \{A\}c\{B\}$.

Demonstrație

Din regula de slăbire a pre-condiției, e suficient să arătăm că $\models A \rightarrow wp(c, B)$. Fie *I*. Cum $\models^I \{A\}c\{B\}$, avem $A^I \subseteq wls^I(c, B) = ws^I(c, B) = wp(c, B)^I$, deci $\models^I A \rightarrow wp(c, B)$.

Teorema de completitudine

Pentru orice A, B, cu $\models \{A\}c\{B\}$, avem $\vdash \{A\}c\{B\}$.

Demonstrația teoremei de completitudine

Demonstrație (inducție structurală după c)

Din lema este suficient, la fiecare pas, să arătăm că, pentru orice B, $\vdash \{wp(c, B)\}c\{B\}$.

Vom trata cazurile instrucțiunilor if și while.

Pentru **if**, notăm i := if b then c_0 else c_1 . Ştim:

$$wp(i,B) = (b \land wp(c_0,B)) \lor (\neg b \land wp(c_1,B)).$$

Este imediat că $\models wp(i,B) \land b \rightarrow wp(c_0,B)$. Din ipoteza de inducție, știm $\vdash \{wp(c_0,B)\}$ c₀ $\{B\}$, așadar, din regula intăririi pre-condiției, scoatem $\vdash \{wp(i,B) \land b\}$ c₀ $\{B\}$. Analog, $\vdash \{wp(i,B) \land \neg b\}$ c₁ $\{B\}$. Concluzia rezultă aplicând regula pentru **if**.

Pentru **while**, notăm w := while b do c și A := wp(w, B).

Demonstrația teoremei de completitudine

Demonstrație (cont.)

Claim 1: $\models \{A \land b\}c\{A\}$.

Dem. claim: Fie I și (1) $\langle c, \sigma \rangle \Downarrow \langle \sigma'' \rangle$. Presupunem $\sigma \models^I A \land b$, deci (2) $\langle b, \sigma \rangle \Downarrow \langle \text{true} \rangle$. Vrem $\sigma'' \in A^I = wp(w, B)^I = ws^I(w, B)$. Fie σ' cu (3) $\langle w, \sigma'' \rangle \Downarrow \langle \sigma' \rangle$. Vrem $\sigma' \models^I B$. Din (2), (1), și (3), avem $\langle w, \sigma \rangle \Downarrow \langle \sigma' \rangle$. Cum $\sigma \models^I A$, adică $\sigma \in ws^I(w, B)$, rezultă $\sigma' \models^I B$.

Claim 2: $\models (A \land \neg b) \rightarrow B$.

Dem. claim: Fie σ , I cu $\sigma \models^I A \land \neg b$. Vrem $\sigma \models^I B$. Cum $\langle b, \sigma \rangle \Downarrow \langle \mathtt{false} \rangle$, $\langle w, \sigma \rangle \Downarrow \langle \sigma \rangle$, iar cum $\sigma \in A^I = ws^I(w, B)$, avem $\sigma \models^I B$.

Demonstrăm acum că $\vdash \{A\}$ w $\{B\}$. Aplicând ipoteza de inducție pe primul claim, avem $\vdash \{A \land b\}$ c $\{A\}$, deci, din regula pentru **while**, avem $\vdash \{A\}$ w $\{A \land \neg b\}$. Aplicând regula slăbirii post-condiției și al doilea claim, avem $\vdash \{A\}$ w $\{B\}$.