

Java Foundations

2-3

Introduction to Object-Oriented Programming Concepts

Objectives

This lesson covers the following objectives:

- Differentiate between procedural and object-oriented programming
- Understand a class as a blueprint for an object
- Understand a class is used to create instances of an object
- Model objects as a combination of ...
 - Properties (data fields)
 - Behaviors (methods)

Topics

- Procedural vs. Object-Oriented Languages
- Classes, Instances, Properties, and Behaviors
- Translating into Java Syntax

Review

- So far, we've taken ...
 - Decades of computer science innovation
 - Gigabytes of modern computing power
- And much like the Internet ...
 - We've made a cat!

Java Can Do More!

- Procedural languages ...
 - Read one line at a time.
 - The C language is procedural.
- Object-oriented languages...
 - Read one line at a time.
 - Model objects through code.
 - Emphasize object interaction.
 - Allow interaction without a prescribed order.
 - Java and C++ are object-oriented languages.

Object-Oriented Programming

- Interaction of objects
- No prescribed sequence

Exercise 1

- Play Basic Puzzles 1 through 5.
 - Your Goal: Design a solution that deflects the ball to Duke.
- Consider the following:
 - What objects do you find on the field of play?
 - What happens when you put a triangle wall or simple wall icon on the blue wheel?

About Java Puzzle Ball

- Play a set of puzzles.
- Become familiar with the game mechanics.
- Consider questions as you play.
- Listen to the lesson's debriefing on what you've observed.
- Apply your observations to understand Java concepts.

Object Types

What objects did you find on the field of play?

Ball

Duke

LevelGeometry

RedBumper

BlueBumper

Object Interaction

Interaction of objects

No prescribed sequence

Let's take a closer look at this object.

BlueBumper Objects

What happens when you put a triangle wall or simple wall icon on a blue wheel?

- A wall appears on every instance of a blue bumper object.
- Walls give bumpers behaviors that deflect and interact with the ball.
- All blue bumper instances share these same behaviors.

Concepts

Describing a BlueBumper

- Properties:
 - Color
 - Shape
 - x-position
 - y-position

- Behaviors:
 - Make ping sound
 - Flash
 - Deflect ball (via Simple Wall)
 - Deflect ball (via Triangle Wall)

Describing a Ball

- Direction
- x-position
- y-position

Behaviors:

- Make ping sound
- Change direction
- Change x-position
- Change y-position

BlueBumper and Ball Interaction

Interaction occurs when the BlueBumper deflects the Ball. When this happens ...

- The Ball's properties change:
 - The Ball travels in a different direction.
 - The Ball's future x-position and y-position change.
- The BlueBumper performs behaviors:
 - Makes ping sound.
 - Flashes.

Why Does This Matter?

- We've observed important aspects of object-oriented programming.
- Remember these observations as lessons and exercises become increasingly technical.
 - Objects can be described as a combination of properties and behaviors.
 - There may be many instances of the same object type.
 - All instances of an object share the same behaviors.
 - Objects may interact with each other, possibly affecting each other's properties and triggering other behaviors.

Concepts

Topics

- Procedural vs. Object-Oriented Languages
- Classes, Instances, Properties, and Behaviors
- Translating into Java Syntax

The Software Development Process

What Is My Program Doing?

Section 2

A Different Example

- Properties:
 - Name
 - Age
 - Breed
 - Favorite Food

- Behaviors:
 - Make meow sound
 - Play
 - Wash
 - Eat
 - Hunt

Classes and Instances

The combination of properties and behaviors is ...

- Called a class
- A blueprint or recipe for an object
- Used to create object instances

Object instances

Concepts

Creating New Instances from a Blueprint

Cat class

Properties

- name
- age
- favoriteFood

Behaviors

- meow
- play
- eat

- "Opal"
- 11
- "Mice"

cat2

- "Misty"
- 5
- "Chicken"

cat3

- Tiger"
- 15
- "BlueJ"

All cat instances share the ability to meow, play, and eat.

Object-Oriented Strategy

- How do you write programs that achieve this level of flexibility?
- When you have an idea or requirement for a program ...
 - Consider what type of objects may exist in this program.
 - Consider the properties and behaviors of these object types.
 - Consider how objects interact.

Duke's Choice Online Shopping

Characteristics of Objects

- Objects are physical or conceptual.
- Objects have properties:
 - Size
 - Price
 - Color
- Objects have behaviors:
 - Shop
 - Put item in cart
 - Pay

Color property value is red.

Classes and Instances

- Remember, a class ...
 - Is a blueprint or recipe for an object
 - Describes an object's properties and behaviors

Exercise 2, Part 1

Given the following scenario, what objects could you potentially model to complete your program?

Design a program for a coin-sorting machine. This machine should measure, count, and sort coins based on their size or value. It should also print a receipt.

• List at least 3 objects:

1.

2.

3.

Concepts

Exercise 2, Part 2

- Chose an object from Part 1.
- What properties and behaviors of this object could you include in your program?
- Properties:
 - 1.
 - 2.
 - 3.

Behaviors:

- 1.
- 2.
- 3

Topics

- Procedural vs. Object-Oriented Languages
- Classes, Instances, Properties, and Behaviors
- Translating into Java Syntax

The Software Development Process

What Is My Program Doing?

Section 2

Customer Properties and Behaviors

Properties:

- Name
- Address
- Age
- Order number
- Customer number

Behaviors:

- Shop
- Set address
- Add item to cart
- Ask for a discount
- Display customer details

Concepts

Translating into Java Syntax

Java Terminology

Class declaration

```
public class Customer {
 2
       public String name = "Junior Duke";
                                                           Fields
                                                            (Properties)
(Attributes)
       public int
                      custID = 1205;
       public String address;
       public int
                      orderNum;
       public int age;
 6
       public void displayCustomer(){
           System.out.println("Customer: "+name);
 9
10
11
```


Modeling Properties and Behaviors

Data Fields

- Fields or Data Fields are the official Java terminology. They're also called:
 - Properties
 - Attributes
 - Data Members
- Java has particular ways of representing data.
 - Section 3 will take a closer look at data.
 - We'll use the main method for this investigation.
 - For now, it's alright to include a lot of code in the main method.
 - BUT a large main method is strongly discouraged, and Section 4 explores how to avoid this scenario.

Summary

In this lesson, you should have learned how to:

- Differentiate between procedural and object-oriented programming
- Understand a class as a blueprint for an object
- Understand a class is used to create instances of an object
- Model objects as a combination of ...
 - Properties (data fields)
 - Behaviors (methods)

Concepts

