Design and Analysis of Algorithms

Noor-ul-Ain

National University of Computer and Emerging Sciences, Islamabad

Algorithm Characteristics

The necessary features of an algorithm:

- Definiteness
 - The steps of an algorithm must be precisely defined.
- Effectiveness
 - Individual steps are all do-able.
- Finiteness
 - It won't take forever to produce the desired output for any input in the specified domain.
- Output
 - Information or data that goes out.

Algorithm Characteristics

Other important features of an algorithm:

- Input.
 - Information or data that comes in.
- Correctness.
 - Outputs correctly relate to inputs.
- Generality.
 - Works for many possible inputs.
- Efficiency.
 - Takes little time & memory to run.

Complexity Analysis

Want to achieve platform-independence

Use an abstract machine that uses *steps* of time and *units* of memory, instead of seconds or bytes

- ✓ each elementary operation takes 1 step
- ✓ each elementary instance occupies 1 unit of memory

Standard Analysis Techniques

- Constant time statements
- Analyzing Loops
- Analyzing Nested Loops
- Analyzing Sequence of Statements
- Analyzing Conditional Statements

Simple statement sequence

```
s_1; s_2; .... ; s_k
```

- Basic Step = 1 as long as k is constant
- Simple loops

```
for (i=0; i<n; i++) { s; }
where s is Basic Step = 1</pre>
```

- Basic Steps: n
- Nested loops

```
for(i=0; i<n; i++)
for(j=0; j<n; j++) { s; }</pre>
```

• Basic Steps: n^2

Loop index depends on outer loop index

```
for (j=0; j<=n; j++)
  for (k=0; k<j; k++) {
    s;
}</pre>
```

- Inner loop executed
 - 1, 2, 3,, n times

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

 \therefore Basic Steps: n^2

```
// Input: int A[N], array of N integers
// Output: Sum of all numbers in array A
int Sum(int A[], int N)
{
  int s=0;
  for (int i=0; i< N; i++)
    s = s + A[i];
  return s;
}</pre>
```

How should we analyse this?

```
// Input: int A[N], array of N integers
// Output: Sum of all numbers in array A
int Sum(int A[], int N){
   int [s=0]; ←
   for (int \underline{i=0}; \underline{i< N}; \underline{i++})
               + A[i];
                                         1,2,8: Once
   return s;
                                        3,4,5,6,7: Once per each iteration
}
                                                  of for loop, N iteration
                                        Total: 5N + 3
                                        The complexity function of the
                                         algorithm is : f(N) = 5N + 3
```

Constant time statements

- Simplest case: O(1) time statements
- Assignment statements of simple data types int x = y;
- Arithmetic operations:

$$x = 5 * y + 4 - z;$$

Array referencing:

$$A[j] = 5;$$

Most conditional tests:

Analyzing Loops

- Any loop has two parts:
 - How many iterations are performed?
 - How many steps per iteration?

```
int sum = 0,j;
for (j=0; j < N; j++)
sum = sum +j;
```

Analyzing Loops

- Any loop has two parts:
 - How many iterations are performed?
 - How many steps per iteration?

```
int sum = 0,j;
for (j=0; j < N; j++)
sum = sum +j;
```

- Loop executes N times (0..N-1)
- O(1) steps per iteration
- Total time is N * O(1) = O(N*1) = O(N)

Class Activity

```
int sum = 0;
for (i=1;i<n; i=i+2)
sum = sum +i;
```

Class Activity

```
int sum = 0,j;
for (i=1;i<n; i=i+2)
sum = sum +i;
```

$$F(n) = n/2;$$
$$F(n) = O(n)$$

Analyzing Loops

What about this for loop?

```
int sum =0, j;
for (j=0; j < 100; j++)
sum = sum +j;
```

- Loop executes 100 times
- O(1) steps per iteration
- Total time is 100 * O(1) = O(100 * 1) = O(100) =
 O(1)

```
int j,k;
for (j=0; j<n; j++)
for (k=0; k<n; k++)
sum += k+j;
```

```
int j,k;

for (j=0; j<n; j++)

for (k=0; k<n; k++)

sum += k+j;

n*n times
```

$$F(n)= 2n^2+2n+1$$

 $F(n)= O(n^2)$

```
int j,k;
for (j=0; j<n; j++)
for (k=0; k<n; k++)
sum += k+j;
```

- Start with outer loop:
 - How many iterations? N
 - How much time per iteration? Need to evaluate inner loop
- Inner loop uses O(N) time
- Total time is $N * O(N) = O(N*N) = O(N^2)$

```
int j,k;
for (j=0; j<N; j++)
for (k=N; k>0; k--)
sum += k+j;
```



```
int j,k;
for (j=0; j<N; j++)
for (k=N; k>0; k--)
sum += k+j;
```

- Start with outer loop:
 - How many iterations? N
 - How much time per iteration? Need to evaluate inner loop
- Inner loop uses O(N) time
- Total time is $N * O(N) = O(N*N) = O(N^2)$

```
int j,k;
for (j=0; j<N; j++)
for (k=N; k>0; k--)
sum += k+j;
```

- Start with outer loop:
 - How many iterations? N
 - How much time per iteration? Need to evaluate inner loop
- Inner loop uses O(N) time
- Total time is $N * O(N) = O(N*N) = O(N^2)$

 What if the number of iterations of one loop depends on the counter of the other?

```
int j,k;
for (j=0; j < N; j++)
for (k=0; k < j; k++)
sum += k+j;
```

- Analyze inner and outer loop together:
- Number of iterations of the inner loop is:
- $0 + 1 + 2 + ... + (N-1) = O(N^2)$

Class Activity

```
void add( int A[ ], int B[ ], int n)
  for (i=0; i<n; i++)
      for (j=0; j< n; j++)
              c[i,j] = A[i][k] + B[k][j];
```

Class Activity

```
void multiply( int A[ ], int B[ ], int n)
  for (i=0; i<n; i++)
      for (j=0; j< n; j++)
          c[i,j]=0;
              for (k=0; k< n; ++)
                  c[i,j]+=A[i][k]*b[k][j];
```

Another Example

```
for (i=1; i < =n; i++)
for (j =1; j < =i; j++)
stmt;
```

Another Example

Steps:

$$f(n) = 1+2+3+4+....n$$

$$f(n)=n(n+1)/2$$

$$f(n)=(n^2+2)/2$$

$$f(n)=O(n^2)$$

i	j	No of iteration
1	1 2 x	1
2	1 2 3 X	2
3	1 2 3 4 x	3
•		
n	1 n n+1 x	n

Analyzing Sequence of Statements

```
for (j=0; j < N; j++)
  for (k =0; k < j; k++)
    sum = sum + j*k;
for (l=0; l < N; l++)
    sum = sum -l;
cout<<"Sum="<<sum;</pre>
```

Analyzing Sequence of Statements

 For a sequence of statements, compute their complexity functions individually and add them up

```
for (j=0; j < N; j++)
for (k =0; k < j; k++)
sum = sum + j*k;

for (l=0; l < N; l++)
sum = sum -l;
cout<<"Sum="<<sum;}

O(N<sup>2</sup>)

O(N<sup>2</sup>)

O(N)

O(N)
```

Total cost is $O(N^2) + O(N) + O(1) = O(N^2)$

SUM RULE

Loop index doesn't vary linearly

```
i = 1;
while ( i < n ) {
    s;
    i = 2 * i;
}</pre>
```

Loop index doesn't vary linearly

```
i = 1;
while ( i < n ) {
    s;
    i = 2 * i;
}</pre>
```

• i takes values 1, 2, 4, ... until it exceeds n

į

- 1
- 1x2=2
- $2x2=2^2$
- $2^2 \times 2 = 2^3$
- •
- _
- .
- 2^k

• 1x2=2

• $2x2=2^2$

• $2^2 \times 2 = 2^3$

•

•

•

• 2^k

Assume

• i>=n

i=2^k

 $2^k = n$

 $K = log_2(n)$

Analyzing Conditional Statements

What about conditional statements such as

```
if (condition)
  statement1;
else
  statement2;
```

where statement1 runs in O(N) time and statement2 runs in O(N²) time?

We use "worst case" complexity: among all inputs of size N, that is the maximum running time?

The analysis for the example above is O(N²)

Growth of 5n+3

Estimated running time for different values of N:

N = 10 => 53 steps

N = 100 => 503 steps

N = 1,000 => 5003 steps

N = 1,000,000 => 5,000,003 steps

As N grows, the number of steps grow in *linear* proportion to N for this function "Sum"

Take Home Task

```
p=0;
for (i=0; p<n; i++)
p=p+i
```

Some helpful mathematics

• 1 + 2 + 3 + 4 + ... + N• $N(N+1)/2 = N^2/2 + N/2$ is $O(N^2)$

- N + N + N + + N (total of N times)
 - $N*N = N^2$ which is $O(N^2)$
- $1 + 2 + 4 + ... + 2^N$
 - $2^{N+1} 1 = 2 \times 2^{N} 1$ which is $O(2^{N})$

10⁶ instructions/sec, runtimes

N	O(log N)	O(N)	O(N log N)	$O(N^2)$
10	0.000003	0.00001	0.000033	0.0001
100	0.000007	0.00010	0.000664	0.1000
1,000	0.000010	0.00100	0.010000	1.0
10,000	0.000013	0.01000	0.132900	1.7 min
100,000	0.000017	0.10000	1.661000	2.78 hr
1,000,000	0.000020	1.0	19.9	11.6 day
1,000,000,000	0.000030	16.7 min	18.3 hr	318 centuries

No Need To Be So Exact

Constants do not matter

- Consider 6N² and 20N²
- When N >> 20, the N² is what is driving the function's increase

Lower-order terms are also less important

- N*(N+1)/2 vs.
 just N²/2
- The linear term is inconsequential

We need a better notation for performance that focuses on the dominant terms only

What Dominates in Previous Example?

What about the +3 and 5 in 5N+3?

- As N gets large, the +3 becomes insignificant
- 5 is inaccurate, as different operations require varying amounts of time and also does not have any significant importance

What is fundamental is that the time is *linear* in N.

Asymptotic Complexity: As N gets large, concentrate on the highest order term:

- ✓ Drop lower order terms such as +3
- ✓ Drop the constant coefficient of the highest order term i.e. N

Asymptotic Complexity

- The 5N+3 time bound is said to "grow asymptotically" like N
- This gives us an approximation of the complexity of the algorithm
- Ignores lots of (machine dependent) details, concentrate on the bigger picture

Asymptotic Analysis

- Asymptotic analysis is an analysis of algorithms that focuses on
 - Analyzing problems of large input size
 - Consider only the leading term of the formula
 - Ignore the coefficient of the leading term

Comparing Functions: Asymptotic Notation

- Big Oh Notation: Upper bound
- Omega Notation: Lower bound
- Theta Notation: Tighter bound

Big-Oh Rules

- If is f(n) a polynomial of degree d, then f(n) is $O(n^d)$, i.e.,
 - 1. Drop lower-order terms
 - 2. Drop constant factors
- Use the smallest possible class of functions
 - Say "2n is O(n)" instead of "2n is $O(n^2)$ "
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Big-Oh Notation

• Given two functions f(n) & g(n) for input n, we say f(n) is in O(g(n)) iff there exist positive constants c and n_0 such that

$$f(n) \le c g(n)$$
 for all $n \ge n_0$

 Basically, we want to find a function g(n) that is eventually always bigger than f(n)

Big-Oh Notation (§3.4)

• Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n_0 such that

$$f(n) \le cg(n)$$
 for $n \ge n_0$

- Example: 2n + 10 is O(n)
 - $2n + 10 \le cn$
 - (c-2) $n \ge 10$
 - $n \ge 10/(c-2)$
 - Pick c = 3 and $n_0 = 10$

Showing Order Briefly ...

• Show $10N^2 + 15N$ is $O(N^2)$

•

Showing Order Briefly ...

- Show $10N^2 + 15N$ is $O(N^2)$
- Break into terms.

- $10N^2 \le 10N^2$
- $15N \le 15N^2$ for $N \ge 1$ (Now add)
- $10N^2 + 15N \le 10N^2 + 15N^2$ for $N \ge 1$
- $10N^2 + 15N \le 25N^2$ for $N \ge 1$
- $c = 25, N_0 = 1$
- Note, the choices for c and N₀ are not unique.

Take Home Task

• Show $2N^3 + 10N$ is $O(N^3)$

Show 2N³ + 10N is not O(N²)

• Show 2N³ + 10N is O(N⁴)

The Gist of Big-Oh

Take functions f(n) & g(n), consider only the most significant term and remove constant multipliers:

- 5n+3 → n
- $7n+.5n^2+2000 \rightarrow n^2$
- 300n+12+nlogn \rightarrow n log n

Then compare the functions; if $f(n) \le g(n)$, then f(n) is in O(g(n))

Big Oh Notation

If f(N) and g(N) are two complexity functions, we say

$$f(N) = O(g(N))$$

(read "f(N) as order g(N)", or "f(N) is big-O of g(N)") if there are constants c and N_0 such that for $N > N_0$, $f(N) \le c * g(N)$

for all sufficiently large N.

*big-O-Upper bound

Comparing Functions

 As inputs get larger, any algorithm of a smaller order will be more efficient than an algorithm of a larger order

Big Omega Notation

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.

• Show 2n + 3 is $\Omega(n)$

•

• Show $2n^2 + n + 1$ is $\Omega(n^2)$

•

- Show $2n^2 + n + 1$ is $\Omega(n^2)$
- $2n^2 + n + 1 >= cn^2$;for all n>=1
- $c=1, n_o=1$

Take Home Task

• Show $8n^3 + 5n^2 + 7$ is $\Omega(n^3)$

•

Big Theta Notation

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

Asymptotic notation

Example:

•
$$f(n) = 3n^5 + n^4 = \Theta(n^5)$$

Polynomial and Intractable Algorithms

- Polynomial Time complexity
 - An algorithm is said to be polynomial if it is $O(n^d)$ for some integer d
 - Polynomial algorithms are said to be efficient
 - They solve problems in reasonable times!

- Intractable algorithms
 - Algorithms for which there is no known polynomial time algorithm
 - We will come back to this important class later

Asymptotic order of growth

A way of comparing functions that ignores constant factors and small input sizes

- O(g(n)): class of functions f(n) that grow no faster than g(n)
- Θ(g(n)): class of functions f(n) that grow at same rate as g(n)
- Ω(g(n)): class of functions f(n) that grow at least as fast as g(n)

Performance Classification

f(<i>n</i>)	Classification		
1	Constant: run time is fixed, and does not depend upon n. Most instructions are executed once, or only a few times, regardless of the amount of information being processed		
log n	Logarithmic: when n increases, so does run time, but much slower. When n doubles, $\log n$ increases by a constant, but does not double until n increases to n^2 . Common in programs which solve large problems by transforming them into smaller problems.		
n	Linear: run time varies directly with n. Typically, a small amount of processing is done on each element.		
n log n	When <i>n</i> doubles, run time slightly more than doubles. Common in programs which break a problem down into smaller sub-problems, solves them independently, then combines solutions		
n²	Quadratic: when n doubles, runtime increases fourfold. Practical only for small problems; typically the program processes all pairs of input (e.g. in a double nested loop).		
n³	Cubic: when n doubles, runtime increases eightfold		
2 ⁿ	Exponential: when n doubles, run time squares. This is often the result of a natural, "brute force" solution.		

TABLE 1 Commonly Used Terminology for the Complexity of Algorithms.

Complexity	Terminology
$\Theta(1)$	Constant complexity
$\Theta(\log n)$	Logarithmic complexity
$\Theta(n)$	Linear complexity
$\Theta(n \log n)$	Linearithmic complexity
$\Theta(n^b)$	Polynomial complexity
$\Theta(b^n)$, where $b > 1$	Exponential complexity
$\Theta(n!)$	Factorial complexity

Size does matter

What happens if we double the input size N?

N	log_2N	5N	$N \log_2 N$	N^2	2 ^N
8	3	40	24	64	256
16	4	80	64	256	65536
32	5	160	160	1024	~109
64	6	320	384	4096	~10 ¹⁹
128	7	640	896	16384	~10 ³⁸
256	8	1280	2048	65536	~10 ⁷⁶

A Display of the Growth of Functions Commonly Used in Big-O Estimates

Typical Big O Functions – "Grades"

Function	Common Name	
N!	factorial	
2 ^N	Exponential	
N ^d , d > 3	Polynomial	
N^3	Cubic	
N^2	Quadratic	
N\ N	N Square root N	
N log N	N log N	
N	Linear	
\sqrt{N}	Root - n	
log N	Logarithmic	
1	Constant	

Running time grows 'quickly' with more input.

Running time grows 'slowly' with more input.

Theorem

- If $t_1(n) \in O(g_1(n))$ and $t_2(n) \in O(g_2(n))$, then $t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\})$.
 - The analogous assertions are true for the Ω -notation and Θ -notation.
- Implication: The algorithm's overall efficiency will be determined by the part with a larger order of growth, i.e., its least efficient part.
 - For example, $5n^2 + 3nlogn \in O(n^2)$
- Proof. There exist constants c1, c2, n1, n2 such that
- $t1(n) \le c1*g1(n)$, for all $n \ge n1$
- $t2(n) \le c2^*g2(n)$, for all $n \ge n2$
- Define c3 = c1 + c2 and $n3 = max\{n1,n2\}$. Then
- $t1(n) + t2(n) \le c3*max\{g1(n), g2(n)\}, \text{ for all } n \ge n3$

Review of Three Common Sets

$$f(n) = O(g(n))$$
 means $c \times g(n)$ is an *Upper Bound* on $f(n)$

$$f(n) = \Omega(g(n))$$
 means $c \times g(n)$ is a Lower Bound on $f(n)$

$$\mathbf{f}(\mathbf{n}) = \mathbf{\Theta}(\mathbf{g}(\mathbf{n}))$$
 means $\mathbf{c}_1 \times \mathbf{g}(\mathbf{n})$ is an *Upper Bound* on $\mathbf{f}(\mathbf{n})$ and $\mathbf{c}_2 \times \mathbf{g}(\mathbf{n})$ is a *Lower Bound* on $\mathbf{f}(\mathbf{n})$

These bounds hold for all inputs beyond some threshold n_0 .

Properties of the O notation

- Constant factors may be ignored
 - $\forall k > 0, kf \text{ is } O(f)$
- Higher powers grow faster
 - n^r is $O(n^s)$ if $0 \le r \le s$
- ← Fastest growing term dominates a sum
 - If f is O(g), then f + g is O(g) $eg \quad an^4 + bn^3 \quad \text{is} \quad O(n^4)$
- ←Polynomial's growth rate is determined by leading term
 - If f is a polynomial of degree d, then f is $O(n^d)$

Properties of the O notation

- f is O(g) is transitive
 - If f is O(g) and g is O(h) then f is O(h)
- Product of upper bounds is upper bound for the product
 - If f is O(g) and h is O(r) then fh is O(gr)
- Exponential functions grow faster than powers
 - n^k is $O(b^n) \forall b > 1 \text{ and } k \ge 0$ e.g. n^{20} is $O(1.05^n)$
- Logarithms grow more slowly than powers
 - $\log_b n$ is $O(n^k) \ \forall \ b > 1$ and k > 0e.g. $\log_2 n$ is $O(n^{0.5})$ Important!

Properties of the O notation

- All logarithms grow at the same rate
 - $\log_b n$ is $O(\log_d n) \forall b, d > 1$
- Sum of first $n r^{th}$ powers grows as the $(r+1)^{th}$ power

•
$$\sum_{k=1}^{n} k^r$$
 is $\Theta(n^{r+1})$

e.g.
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
 is $\Theta(n^2)$

Order of growth

- We usually consider one algorithm to be more efficient than another if its worst case running time has a lower order of growth.
- Due to constant factors and lower order terms, an algorithm whose running time has a higher order of growth might take less time for small inputs than an algorithm whose running time has a lower order of growth. But for large enough inputs, Θ(n²) algorithm, for example, will run more quickly in the worst case than Θ(n³) algorithm

o-notation and ω-notation

O-notation and Ω -notation are like \leq and \geq . *o*-notation and ω -notation are like \leq and \geq .

$$o(g(n)) = \{ f(n) : \text{ for any constant } c > 0, \\ \text{ there is a constant } n_0 > 0 \\ \text{ such that } 0 \le f(n) < cg(n) \\ \text{ for all } n \ge n_0 \}$$

EXAMPLE:
$$2n^2 = o(n^3)$$
 $(n_0 = 2/c)$

o-Notation

Examples

$$n^{1.9999} = o(n^2)$$

 $n^2 / \lg n = o(n^2)$
 $n^2 \neq o(n^2)$ (just like $2 \neq 2$)
 $n^2 / 1000 \neq o(n^2)$

o-notation and ω-notation

O-notation and Ω -notation are like \leq and \geq . *o*-notation and ω -notation are like \leq and >.

$$\omega(g(n)) = \{ f(n) : \text{ for any constant } c > 0, \\ \text{ there is a constant } n_0 > 0 \\ \text{ such that } 0 \le cg(n) < f(n) \\ \text{ for all } n \ge n_0 \}$$

EXAMPLE:
$$\sqrt{n} = \omega(\lg n)$$
 $(n_0 = 1 + 1/c)$

ω- notation

$$n^{2.0001} = \omega(n^2)$$

$$n^2 \lg n = \omega(n^2)$$

$$n^2 \neq \omega(n^2)$$

• $n^3/1000 + 100n^2 + 1000n + 1000$

 Give big-O estimates for the factorial function and the logarithm of the factorial function log n!, where

the factorial function f(n) = n! is defined by $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$

Solution

 A big-O estimate for n! can be obtained by noting that each term in the product does not exceed n. Hence,

```
n! = 1 \cdot 2 \cdot 3 \cdot \cdots n

\leq n \cdot n \cdot n \cdot \cdots n

= n^n
```

- This inequality shows that n! is $O(n^n)$, taking C = 1 and $n_o = 1$ as witnesses. Taking logarithms of both sides of the inequality established for n!, we obtain
- $\log n! \leq \log n^n = n \log n$
- This implies that $\log n!$ is $O(n \log n)$, again taking C = 1 and $n_0 = 1$ as witnesses.

- Give a big-O estimate for
- $f(n) = 3n \log(n!) + (n^2 + 3) \log n$,
- where *n* is a positive integer.

Solution

- First, the product 3n log(n!) will be estimated. From previous example we know that
- $\log(n!)$ is $O(n \log n)$.
- Using this estimate and the fact that 3n is O(n),
- $3n \log(n!)$ is $O(n^2 \log n)$
- Next, the product $(n^2 + 3) \log n$ will be estimated. Because $(n^2 + 3) < 2n^2$ when n > 2, it follows that $n^2 + 3$ is $O(n^2)$.
- Thus it follows that $(n^2 + 3) \log n$ is $O(n^2 \log n)$.

• $f(n) = 3n \log(n!) + (n^2 + 3) \log n$ is $O(n^2 \log n)$