

Exercises: Importing CAD Models

Physical Modeling for Formula Student

Crank Assembly Import

Task: Import the SolidWorks® model of an automotive crank assembly

Steps: Export SolidWorks assembly and import it into SimMechanics[™].

- 1. * Open cad_engine. SLDASM in SolidWorks and export it using SimMechanics Link™.
 - Verify that SimMechanics Link is installed and registered with SolidWorks.
 - Use the SimMechanics Link menu to export the CAD assembly.
- 2. Import the XML file using smimport
 - Import the exported xml file from the previous step or the provided file cad engine.xml.
 - Check whether the import was successful and if there are any warnings in the MATLAB® Command Window.
- 3. Simulate the model
- 4. (Bonus) Add damping, initial conditions, and sensors to the appropriate joints. Also, change the direction of gravity to match the coordinate convention of the model.
 - For the Revolute2 block,
 - Specify a Low priority position target of -55 deg
 - Specify a High priority velocity target of 10 rev/s
 - Set the **Damping Coefficient** to 5e-4 N*m/(rad/s)
 - Sense the joint position
 - Change gravity to be in the negative χ -direction.

Try

>> smimport('cad engine.xml');

^{*} This step requires SolidWorks and SimMechanics Link to be installed on the system.

Solution: Crank Assembly Import

1. Export in SolidWorks

Try

>> cad_engine_imported

>> cad_engine_modified

3.

>> smimport('cad engine.xml')

2.

Warning: The set of constraints between flywheel_1_RIGID and crank_2_RIGID could not be mapped to a joint. A rigid connection has been added between port F of flywheel_1_RIGID and port F of crank_2_RIGID for these constraints.

In this case, the warning about the unmapped constraint can be ignored since the flywheel and the crank are rigidly connected.

Creating Frames from Geometric Features

Task: Use a Solid block to import geometries from CAD and create coordinate frames based on geometric features.

Steps: In a previous chapter, you used Rigid Transform blocks to create coordinate frames at the midpoints of the crank connection pins. Open the cadFramesStart model and take the following steps.

- 1. Add a Solid block to the model and load its geometry from the crank.STEP file.
- 2. Expand the **Frames** menu of the Solid block dialog and select the New Frame () button.
- 3. In the new dialog that appears, select a feature (face, edge, or vertex).
- 4. Change the **Frame Origin** option to Based on Geometric Feature. Then, click the **Use Selected Feature** button.
- 5. Use the **Frame Axes** option to align the axes as needed.

Note This approach works for all solid geometries except for those imported from STL files.

Try

>> cadFramesStart

Solution : Creating Frames from Geometric Features

