Assignment - 2

Name : Meet Popat Roll No. : 2020320

Q1.

Hypothesis

Given μ_0 = mean height = 15cm Let H_0 = Baker Bread is more than 15 cm in height .

 H_1 = Baker Bread is not more than 15 cm in height.

Therefore, our hypothesis becomes:

H₀: $\mu \neq \mu_0 \text{ v/s H}_1$: $\mu = \mu_0$

Testing

The test statistic is obtained using the following formula as it is not a T series: we use gnorm and pnorm.

test statistic<-(sample mean - mu.null)/(population standard deviation/sqrt(n))

And the p value is obtained by:

p value <- pnorm(abs(test statistic), lower.tail = FALSE)</pre>

Results

Below is output of our code:

Test statistic:12.64911

Test Critical Value: 1.644854

P Value: 5.657419e-37

Inference

As we can see, the test statistic value does lie in the rejection region(as inferred from critical value) Also, our p-value $< \alpha = 0.05$. Thus, we <u>reject Ho</u>or, Baker Bread is more than 15 cm in height.

Baker's bread is not more than 15 cm in height, on average.

Values		
mu.null	15	
n	10	
p_value	5.65741895121656e-37	
population_sta	0.5	
sample_mean	17	
test_critical	1.64485362695147	
test_statistic	12.6491106406735	

T(alpha) = 1.644854

Q2.

Hypothesis

Given μ_0 = mean length of time on death row.

time

Let H₀ = the mean length of time on death row is 15 years

H₁ = the mean length of time on death row is not 15 years

H₀: $\mu \neq \mu_0 \text{ v/s H}_1$: $\mu = \mu_0$

Here, $\mu_0 = 15$

Testing

We use a two-tailed t-test to test our hypothesis.

We will make our inferences using 2 ways, by test statistic and p-value The test statistic is calculated as below:

 T_{test} = ((sample_mean - μ_0) * \sqrt{n})/s ~ T(n-1) where n = sample size and s = standard deviation

From this, we get our p-value as:

P(T > |t|) = 2*P(T > t)

Results

Below is output of our code:

Test statistic: 3.299144

Test Critical Value: 1.992543

P Value: 0.001493164

Inference

As we can see, the test statistic value lies in the rejection region(as inferred from critical value) Also, our p-value $< \alpha = 0.05$. Thus, we <u>reject Ho</u>

The mean length of time on death row is not 15 years.

Values		
mu.null	15	
n	75	
p_value	0.00149316364683508	
sample_mean	17.4	
sample_standar…	6.3	
test_critical	1.99254349518093	
test_statistic	3.29914439536929	

T(alpha/2) = 1.992543

Q3.

Hypothesis

Given μ_0 = mean production per hectare = 12 quintals.

Let H_0 = the mean production per hectare is more than 12 quintals.

 H_1 = the mean production per hectare is not more than 12 quintals.

H₀: $\mu \neq \mu_0 \text{ v/s H}_1$: $\mu = \mu_0$

Testing

We use a two-tailed t-test to test our hypothesis.

We will make our inferences using 2 ways, by test statistic and p-value The test statistic is calculated as below:

 T_{test} = ((sample_mean - μ_0) * \sqrt{n})/s ~ T(n-1) where n = sample size and s = standard deviation

From this, we get our p-value as:

$$P(T > |t|) = 2*P(T > t)$$

Results

Below is output of our code:

Test statistic: 1.835644

Test Critical Value: 2.262157

P Value: 0.09959876

Inference

As we can see, the test statistic value lies in the rejection region(as inferred from critical value) Also, our p-value > α = 0.05. Thus, we **accept H**₀.

The mean production per hectare is more than 12 quintals.

Values	
mu.null	12
n	10
p_value	0.0995987600465332
sample_mean	12.63
sample_standar…	1.0853058964591
test_critical	2.2621571627982
test_statistic	1.83564369493053
х	num [1:10] 14.3 12.6 13.7 10.9 13.7 12

T(alpha/2) = 2.262157

Q4.

Hypothesis

Given μ_0 = mean time playing Let H_0 =Mean playing time of boys and girls is same

 H_1 = Mean playing time of boys and girls are not the same.

Therefore, our hypothesis becomes:

H₀: $\mu_1 = \mu_2 \text{ v/s H}_1$: $\mu_1 \neq \mu_2$

Testing

Both s.d's are known so we use a two-tailed t-test to test our hypothesis. We will make our inferences using 2 ways, by test statistic and p-value The test statistic is calculated as below:

 T_{test} = ((sample_mean_1 - sample_mean_2) - (μ_1 - μ_0))/ $\sqrt{(s_1^2/n_1 + s_2^2/n_2)}$ where s_1 = standard deviation of boys playing time, s_2 = standard deviation of girls playing time, n_1 = sample size of boys, n_2 = sample size of girls, sample_mean_1 = mean of boys playing time, sample_mean_2 = mean of girls playing time. From this, we get our p-value as:

$$P(T > |t|) = 2*P(T > t)$$

Also degree of freedom is obtained by : $df <-((A+B)^{**}2)/(A^{**}2/(n1-1) + B^{**}2/(n2-1))$

A <- S1**2/n1 , B <- S2**2/n2

Results

Below is output of our code:

Test statistic: 3.142338

Test Critical Value: 2.094181

P Value: 0.005402668

Inference

As we can see, the test statistic value lies in the rejection region(as inferred from the critical value) Also, our p-value $< \alpha = 0.05$. Thus, we reject H₀.

The playing time average for boys and girls are different.

Values		
A	0.083333333333333	
В	0.0625	
df	18.8461538461538	
n1	9	
n2	16	
p_value	0.00540266750741984	
S1	0.866025403784439	
S2	1	
test_critical	2.09418107746136	
test test_critical_value (numeric , 56 bytes)		
x1	2	
x2	3.2	

T(alpha/2) = 2.094181

Q5.

Hypothesis

Given μ_0 = mean response time

Let H_0 = there is change in weight of children due to Food B.

 H_1 = there is no change in weight of children due to Food B.

H₀: $\mu_1 = \mu_2 \text{ v/s H}_1$: $\mu_1 \neq \mu_2$

Testing

Both s.d's are unknown so we use a two-tailed t-test to test our hypothesis. We will make our inferences using 2 ways, by test statistic and p-value The test statistic is calculated as below:

test.ans<-t.test(x = FoodA, y = FoodB, paired = TRUE, var.equal=FALSE, alternative = "two.sided")

test statistic <- test.ans\$statistic

From this, we get our p-value as:

P(T > |t|) = 2*P(T > t)

Results

Below is output of our code:

Test statistic: -4.320494

Test Critical Value: 2.364624

P Value: 0.003478084

Inference

As we can see, the test statistic value lies in the rejection region(as inferred from critical value) Also, our p-value $< \alpha = 0.05$. Thus, we reject H₀.

Mean change of weight is not due to Food B.

U test.ans	List of 10	Q,
Values		
FoodA	num [1:8] 49 53 51 52 47 50 52 53	
FoodB	num [1:8] 52 55 52 53 50 54 54 53	
n	8	
p_value	0.00347808426500278	
test_critical	2.36462425159278	
test_statistic	Named num -4.32	

T(alpha/2) = 2.364624