

Switching Theory - 2016-17

Rearrangeable and Strictly Non-Blocking Networks

Outline

- Rearrangeable full-connection multistage network
- Strictly Non-Blocking full-connection multistage network

Outline

- Rearrangeable full-connection multistage network
 - ▶ Paull matrix
 - Rearrangeability conditions
- Strictly Non-Blocking full-connection multistage network

- State of a three-stage network represented by the Paull matrix
 - ▶ It has r_1 rows and r_3 columns
 - ▶ Each matrix entry has up to r_2 distinct symbols: 1, 2, ..., r_2
 - The symbol a in the matrix entry means that an inlet of the firststage matrix i is connected to an outlet of the last-stage matrix j through the middlestage matrix a
- Conditions of the Paull matrix
 - At most $min(n, r_2)$ distinct symbols per row
 - At most min (r_2, m) distinct symbols per column

Paull matrix

Example

$$r_2 = 3$$

Rearrangeability conditions

Slepian-Duguid theorem

▶ A 3-stage network is RNB if and only if $r_2 \ge \max(n, m)$

Necessity

▶ At most *n*-1 (*m*-1) connections can be supported by the first stage matrix *i* (third stage matrix *j*) with one idle inlet (outlet)

▶ If $r_2 > \max(n-1, m-1)$ at least one of the r_2 symbols is missing in row *i* and

column *j*

$$n = 4$$
; $m = 7$; $r_2 = 7$

i∖j	1	2	
1		cdg	
2	dc	f	abeg
3		be	

a

Rearrangeability conditions

- Slepian-Duguid theorem
 - ▶ A 3-stage network is RNB if and only if $r_2 \ge \max(n, m)$
- Sufficiency
 - ▶ To set-up a new connection *i-j* either of the two conditions is true
 - ▶ 1 There is a symbol a not found both in row i and column j
 - Matrix a chosen for i-j

$$n = 4$$
; $m = 7$; $r_2 = 7$

i∖j	1	2	
1		cdg	
2	dc	af	a beg
3		be	
		a	•

Rearrangeability conditions

- Slepian-Duguid theorem
 - ▶ A 3-stage network is RNB if and only if $r_2 \ge \max(n, m)$
- Sufficiency
 - ▶ To set-up a new connection *i-j* either of the two conditions is true
 - \blacktriangleright 1 There is a symbol a not found both in row i and column j
 - ▶ 2 There is (at least) one symbol *a* in row *i* not found in column *j* and there is (at least) one symbol *b* in column *j* not found in row *i*
 - Conflicting connections can be rearranged starting from a or b to set-up i-j
 through a or b

$$n = 4$$
; $m = 7$; $r_2 = 7$

i∖j	1	2	
1		c <mark>dg</mark>	
2	ac	f	k
3		be	

bdeg

а

Rearrangeability conditions

$$n = 4$$
; $m = 7$; $r_2 = 7$

i∖j	1	2
1	Ь	cdg
2	ac	f
3		be

	2	1	i∖j
aef	cdg	Ь	1
b deg	f	ac	2
	be		3

a

Rearrangeability conditions

n = 4; m = 7; $r_2 = 7$

i∖j	1	2
1	a	cdg
2	bc	f
3		be

bef

adeg

a

i∖j	1	2
1	a	cdg
2	bc	af
3		be

bef

deg

In our example:
We have rearranged
2 connections

Rearrangeability conditions

Rearranging algorithm

- Assumption: start from symbol a
 - Visit a <u>row</u> if it contains <u>symbol</u> <u>b</u>
 - Visit a <u>column</u> if it contains <u>symbol</u> <u>a</u>
- Continue as long as a symbol a or b is not found in the last column or row visited
- Exchange a with b and vice versa throughout the set of selected symbols
- After rearrangement starting from a, symbol a is written in entry (i,j)

Rearrangeability conditions

- Sufficiency (cont.): consistency of rearrangement algorithm
 - Chain: sequence of connections through stages 1 and 3 represented as the sequence of the crossed matrices
 - Node: matrix at stage 1 and 3
 - Edge: second stage matrix
 - Closed chain: first and last element belong to the same stage (both i-s or j-s)
 - It always contains an <u>even</u> number of edges
 - Open chain: first and last element belong to different stages (one is i, the other is j)
 - It always contains an <u>odd</u> number of edges
 - ► The rearrangement algorithm works if the end node (k) is always different from i and j
 - Consider the last edge (c) of the chain leading to k

- c=a: $k\neq j$ by hypothesis (a absent in column j), $k\neq i$ since k=i would generate a closed (open) chain with an odd (even) number of edges (see C_1 (C_2))
- c=b: $k\neq i$ by hypothesis (b absent in row i), $k\neq j$ since it would generate an open (closed) chain with an even (odd) number of edges (see C_1 (C_2))

Network cost

Cost of a squared network

•
$$N = M, n = m \rightarrow r_1 = r_3 = \frac{N}{n}$$

•
$$r_2 = n$$

•
$$C = 2nr_2r_1 + r_1^2r_2 = 2nN + \frac{N^2}{n}$$

•
$$C = 2nr_2r_1 + r_1^2r_2 = 2nN + \frac{N^2}{n}$$

• $\frac{dC}{dn} = 0 \rightarrow n = \sqrt{\frac{N}{2}} \implies C_{3,\text{min}} = 2\sqrt{2}N^{3/2}$

Number of rearrangements

- According to the proof of Slepian-Duguid theorem, at most r_1+r_3-2 connections to be rearranged
 - ▶ The two symbols are located in entries (i_a, j_a) , (i_b, j_b)
 - ▶ Rearrangement starts with a ($a \notin j_b$, $b \notin i_a$)
 - The chain does <u>not</u> have any symbol in column $\underline{j_b}$, since it <u>visits a new column only if it contains a</u> (absent in $\underline{j_b}$ by definition)
 - The chain does <u>not</u> have any symbol in row $\underline{i_b}$: it <u>visits a new row only if it</u> contains \underline{b} (a second symbol \underline{b} cannot appear in row $\underline{i_b}$)
 - ▶ Hence the chain visits at most r_1 -1 rows and r_3 -1 columns
- Actually the maximum # of symbols in the chain is $2\min(r_1,r_3)$ 2
 - Rows and columns are visited <u>alternatively</u>
 - ▶ The minimum of r_1 and r_3 determines the total number of visits
- At most 2r-2 if $r_1 = r_3 = r$

In our example: $r_1 = 3$; $r_3 = 2$ $2min(r_1 r_3) - 2 = 2$

Maximum number of rearrangements

Paull theorem

At most $\phi_M = \min (r_1, r_3)-1$ connections need to be rearranged (upper bound)

Proof

- $ightharpoonup \Gamma_1 \leq \Gamma_3$
 - Two chains of symbols are built
 - 1 (a,b,a,b,...) starting from a in row i_a
 - 2 (b,a,b,a,...) starting from b in column j_b

- The chain that cannot grow further is selected for rearrangement
- Max # growth steps : r_1 -2
 - rows i_a (*b* absent by definition) and i_b (*b* cannot appear twice) are not visited $\Rightarrow \phi_M = r_1$ -1 (first symbol is changed too)
- $ightharpoonup \Gamma_1 \geq \Gamma_3$
 - Analogously $\phi_M = r_3 1 \rightarrow \phi_M = \min(r_1, r_3) 1$
- If $r_1 = r_3 = r$, then $\phi_M = r-1$

In our example: $r_1 = 3$; $r_3 = 2$ $\phi_M = \min(r_1, r_3) - 1 = 1$ \rightarrow There is a better solution

 r_1

Ĵь

 r_3

Number of rearrangements

i∖j	1	2
1	b	cdg
2	ac	f
3		be

			ī
i∖j	1	2	
1	b	cdg	
2	ac	f	bdeg
3		be	

a

Number of rearrangements

$$n = 4$$
; $m = 7$; $r_2 = 7$

deg

Number of rearrangements

• Example: N = 24, M = 25, $r_1 = 4$, $r_3 = 5$, n = 6, m = 5

• Rearrangeable if $r_2 = 6$

1 2 3 4 5
1 f a be c
2 ab d c
3 c ef d
4 d c a bf

Requested a new connection between matrices 1 and 1 of first and last stage

Either **d** or **c** can be used for the new connection

▶ Starting from c, $\phi = 5$

1 2 3 4 5

1 **c**f a be **d**2 ab **c** d

3 **d** ef **c**4 d c a bf

 $\phi > \phi_M = \min(r_1, r_3) - 1 = 3$ There is a better solution

▶ Starting from d, $\phi = 2$

1 2 3 4 5
1 df a be c
2 ab d c
3 c ef d
4 c d a bf

 $\phi < \phi_{M} = \min(r_{1}, r_{3}) - 1 = 3$

Number of rearrangements

• Example: N = 24, M = 25, $r_1 = 4$, $r_3 = 5$, n = 6, m = 5

1 2 3 4 5

Requested a new connection between matrices 1 and 1 of first and last stage

• Rearrangeable if $r_2 = 6$

 1
 f
 a
 b e
 c

 2
 a b
 d
 c
 c

 3
 c
 e f
 d

 4
 d
 c
 a
 b f

We can also chose the pair **d** or **e** for the new onnection

▶ Starting from e, $\phi = 1$

1 2 3 4 5
1 ef a b d c
2 a b d c
3 c ef d
4 d c a b f

By selecting the proper connection pair, we can achieve better results (less rearrangements)

▶ Starting from d, $\phi = 1$

	1	2	3	4	5
1	d f		а	bе	С
2	a b	d		С	
3		С	e f		d
4	е		С	а	b f
4	E		U	а	וטו

Slepian-Duguid squared network

Cost index with EGS networks

Cost index with EGS construction of all matrices

$$\#SE_{M\times KM} = \frac{5}{4}kM^2 - (K+1)M$$

- ▶ log₂N <u>even</u>
 - $\log_2 N even \rightarrow n = \sqrt{N}$
 - $r_1 = \frac{N}{\sqrt{N}} = \sqrt{N}$; $r_2 = n = \sqrt{N}$
 - $\#SE_{tot} = \frac{15}{4}N\sqrt{N} 6N$
 - # $XP_{tot} = 3N\sqrt{N}$
- ▶ log₂N <u>odd</u>
 - $\log_2 N \text{ odd} \rightarrow n = \sqrt{\frac{N}{2}}$
 - $r_1 = \frac{N}{n} = \sqrt{2N}$; $r_2 = n = \sqrt{\frac{N}{2}}$
 - $\#SE_{tot} = \frac{10\sqrt{2}}{4}N\sqrt{N} 6N$
 - # $XP_{tot} = 2\sqrt{2} N\sqrt{N}$

Outline

- Rearrangeable full-connection multistage network
- Strictly Non-Blocking full-connection multistage network
 - Two stages
 - Three stages
 - Clos networks

FC networks

Two stages (link dilation)

- Fully accessible, but blocking
- SNB if d ≥ min [n,m]
- Cost of dilated network = d times cost of non dilated
- $C = ndr_2r_1 + dr_1mr_2 = 2n^2r^2 = 2N^2$
 - N = M, n = m, $r_1 = r_2 = r$, $N = r \cdot n$
 - ▶ The two-stage non-blocking network doubles the crossbar network cost

#1

 $|dr_1 \times m|$

FC networks

Two stages - Example

Guido Maier - 23 - Non-blocking networks

2-stage squared network

Cost index with EGS networks

log₂N <u>even</u>

•
$$n = \sqrt{N}$$

•
$$SE_1: \sqrt{N} \times N$$
; $SE_2: N \times \sqrt{N}$

•
$$\#SE_{tot} = \frac{5}{2}N^2 - 2N\sqrt{N} - 2N$$

•
$$\# XP_{tot} = 2N^2$$

log₂N <u>odd</u>

•
$$n = \sqrt{\frac{N}{2}}$$

•
$$SE_1: \sqrt{\frac{N}{2}} \times N$$
; $SE_2: N \times \sqrt{\frac{N}{2}}$

•
$$\#SE_{tot} = \frac{5}{2}N^2 - 2\sqrt{2}N\sqrt{N} - 2N$$

•
$$\# XP_{tot} = 2N^2$$

FC networks

Three stages

- Fully accessible
- SNB?

Optimum Clos network

- 3-stage network N x M with matrices $n \times r_2$, $r_1 \times r_3$, $r_2 \times m$ (N = nr_1 , M = mr_3)
- Clos theorem. A 3-stage network is strict-sense non-blocking (SNB) if and only if $r_2 \ge n+m-1$ ($r_2 = 2n-1$ if n = m)
- Network cost (M = N)

- $C_3 = 2nr_1r_2 + r_1^2r_2 = 2nr_1(2n-1) + r_1^2(2n-1) = (2n-1)\left(2N + \frac{N^2}{n^2}\right)$
- $\frac{dC_3}{dn} = 0 \rightarrow n \cong \sqrt{\frac{N}{2}} \implies C_{3,\text{min}} = 4\sqrt{2}N^{3/2} 4N \cong 2C_{3,\text{min}-RNB}$
- $C_3 < C_1 \rightarrow 4\sqrt{2}N^{3/2} 4N < N^2 \implies \sqrt{N} > 2 + 2\sqrt{2} \implies N > 23.314 \implies N > 24$

Clos squared network

Cost index with EGS networks

log₂N <u>even</u>

•
$$n = \sqrt{N}$$

•
$$r_1 = \frac{N}{\sqrt{N}} = \sqrt{N}$$
; $r_2 = 2n - 1 = 2\sqrt{N} - 1 \approx 2\sqrt{N}$

•
$$SE_1: \sqrt{N} \times 2\sqrt{N}$$
; $SE_2: \sqrt{N} \times \sqrt{N}$; $SE_3: 2\sqrt{N} \times \sqrt{N}$

•
$$\#SE_{tot} = \frac{15}{2}N\sqrt{N} - 10N$$

• #
$$XP_{tot} = 6N\sqrt{N}$$

log₂N <u>odd</u>

•
$$n = \sqrt{\frac{N}{2}}$$

•
$$r_1 = \frac{N}{n} = \sqrt{2N}$$
; $r_2 = 2n - 1 = 2\sqrt{\frac{N}{2}} - 1 \cong \sqrt{2N}$

•
$$SE_1: \sqrt{\frac{N}{2}} \times \sqrt{2N}$$
; $SE_2: \sqrt{2N} \times \sqrt{2N}$; $SE_3: \sqrt{2N} \times \sqrt{\frac{N}{2}}$

•
$$\# SE_{tot} = 5\sqrt{2} N\sqrt{N} - 10N$$

• #
$$XP_{tot} = 4\sqrt{2}N\sqrt{N}$$

Extension of the Clos network - 5 stages

- Five-stage SNB minimum-cost Clos network can be built
 - Starting from a three-stage optimum Clos network
 - Expanding the central stage according to the 3-stage Clos rule
 - No longer fully connected!

Extension of the Clos network - 5 stages

- Five-stage SNB minimum-cost Clos network can be built
 - Starting from a three-stage optimum Clos network
 - Expanding the central stage according to the 3-stage Clos rule
 - No longer fully connected!
 - ► Requires the specification of 2 parameters, that is $n_1 = m_5$, $n_2 = m_4$
 - Recall that $m_i = 2n_i 1$ (i=1,2)
- Five-stage squared optimum Clos network
 - First derivative of network cost with respect to n_1 and n_2 set to 0 gives

•
$$N = \frac{2n_1n_2^3}{n_2 - 1}$$

• $N = \frac{n_1n_2^2(2n_1^2 + 2n_2 - 1)}{(2n_2 - 1)(n_1 - 1)}$

Extension of the Clos network - s stages

- s-stage SNB Clos network (s odd) can be built recursively
 - Starting from a s-2 stage Clos network
 - \triangleright Expanding the central stage according to the 3-stage Clos rule (\rightarrow adding 2 stages)

Guido Maier - 30 - Non-blocking networks

Extension of the Clos network - s stages

- s-stage squared optimum Clos network (s odd)
 - Requires the specification of (s-1)/2 parameters, that is $n_1 = m_s$, $n_2 = m_{s-1}$, ..., $n_{(s-1)/2} = m_{(s+3)/2}$
 - Recall that $m_i = 2n_i-1$ (i=1,...,(s-1)/2)

Recursive network construction

- Non-blocking s-stage network (s odd)
 - Recursive construction of the three-stage network
 - ▶ It does not minimize the network cost
- Condition to split the N_{in} inlets

•
$$n_1 = (N_{in})^{2/(s+1)}$$

•
$$r_1 = \frac{N_{in}}{n_1}$$

- s = 3 stages
 - $C_3 = (2\sqrt{N} 1)3N = 6N^{3/2} 3N$

Recursive network construction

- s = 5 stages
 - $n_1 = (N_{in})^{2/(s+1)}$
 - $r_1 = \frac{N_{in}}{n_1}$

•
$$C_5 = (2N^{1/3} - 1)^2 3N^{2/3} + (2N^{1/3} - 1)^2 N = 16N^{4/3} - 14N + 3N^{2/3}$$

Recursive network construction

• $s \ge 7$ stages

•
$$C_7 = (2N^{1/4} - 1)^3 3N^{1/2} + (2N^{1/4} - 1)^2 2N^{3/4} + (2N^{1/4} - 1)^2 N$$

= $36N^{5/4} - 46N + 20N^{3/4} - 3N^{1/2}$

•
$$C_s = 2\sum_{k=2}^{\frac{s+1}{2}} \left(2N^{\frac{2}{s+1}} - 1\right)^{\frac{s+3}{2}-k} N^{\frac{2k}{s+1}} + \left(2N^{\frac{2}{s+1}} - 1\right)^{\frac{s-1}{2}} N^{\frac{4}{s+1}}$$

•
$$C_s = \frac{n^2(2n-1)}{n-1} [(5n-3)(2n-1)^{t-1} - 2n^t]$$
 $s = 2t+1, N = n^{t+1}$

Recursive network construction

Numerical data of Clos recursive construction

N	s = 1	s = 3	s = 5	s = 7	s = 9
100	10,000	5,700	6,092	7,386	9,121
200	40,000	16,370	16,017	18,898	23,219
500	250,000	65,582	56,685	64,165	78,058
1000	1,000,000	186,737	146,300	159,904	192,571
2,000	4,000,000	530,656	375,651	395,340	470,292
5,000	25,000,000	2,106,320	1,298,858	1,295,294	1,511,331
10,000	100,000,000	5,970,000	3,308,487	3,159,700	3,625,165

Exhaustive search of minimum cost network

N	S	n_1	n_2	n_3	Cs
100	3	5			5,400
500	5	10	5		53,200
1001	5	11	7		137,865
5,005	7	13	7	5	1,176,175
10,000	7	20	10	5	2,854,800

Network cost

Guido Maier - 37 - Non-blocking networks

Guido Maier - 38 - Non-blocking networks

Outline

- Full-connection multistage network
- Partial-connection multistage network
- Bounds on network cost

Partial-connection networks

Classification

- Banyan networks are self-routing but also blocking
- Rearrangeable networks can be built using banyan networks as the basic building block
 - Rearrangeability conditions proven ONLY for connections set-up all together
 - → In dynamic conditions ALL existing connections are disconnected and set-up again together with the new connection
- Network classes
 - Partially self-routing
 - Self-routing applied in some stages
 - Both distributed and centralized control
 - Techniques
 - Horizontal extension (HE): *m* additional stages
 - Vertical replication (VR): K replicated planes
 - Combined vertical replication-horizontal extension (VR/HE)
 - Fully self-routing
 - Self-routing applied in all the stages
 - Only distributed control
 - Network based on both sorting and banyan networks

Outline

- Full-connection multistage network
- Partial-connection multistage network
 - ► Horizontal extension
 - Vertical replication
 - Bounds
- Bounds on network cost

Horizontal extension

- An extended banyan network (EBN) N x N includes
 - The original banyan network N x N
 - ▶ m initial stages ($m \le n$) obtained as the mirror-image of the last m stages including the preceding interstage pattern
- 2^m paths per I/O pair
- Distributed self-routing in the <u>n</u> banyan stages
- Centralized routing in the <u>additional m stages</u>

Horizontal extension

- Starting topology: SW-banyan
 - One additional stage

Horizontal extension

- Starting topology: SW-banyan
 - Two additional stages

Horizontal extension

- Starting topology: SW-banyan
 - Three additional stages

Non-blocking networks

Horizontal extension

Any banyan network can be selected as starting topology

- Omega network
- \rightarrow m=1

 \rightarrow m=3

 However the following conditions apply only to recursive EBN, that is starting from SW-banyan or reverse baseline

Horizontal extension

Benes network - Mirror imaging

Benes network

- ► EBN with <u>reverse</u> baseline as starting topology
- \rightarrow $m = log_2 N-1$

Horizontal extension

Benes network - Recursive construction

- Recursive construction of the Benes network
 - ▶ Three stage structure with <u>perfect unshuffle</u> and <u>perfect shuffle</u> patterns
 - ▶ Iteration for n-1 steps until the central subnetworks have size 2x2 ($N/2^{n-1} = 2$)

Guido Maier - 48 - Non-blocking networks

Horizontal extension

Network control of a RNB

Inlets/outlets

- Busy: a connection has been requested
- Idle: a connection has not been requested

Connection set

- Complete: N connections requested (all busy inlets/outlets)
- Incomplete: k < N connections requested (at least 1 idle inlet/outlet)</p>
- Connection set-up by <u>looping algorithm</u>

Looping algorithm

Benes network - Example

Connection set-up

- **▶** 0-5
- **▶** 7-4
- **▶** 6-1
- **▶** 1-3
- **▶** 5-2
- **▶** 4-7

Connection set

Outline

- Full-connection multistage network
- Partial-connection multistage network
 - Horizontal extension
 - ▶ <u>Vertical replication</u>
 - Bounds
- Bounds on network cost

Vertical replication

- A replicated banyan network (RBN) N x N includes
 - K banyan networks N x N
 - N splitters 1 x K
 - N combiners K x 1
- EGS pattern in splitters-banyans and banyans-combiners connection
- Network control
 - Distributed self-routing in the banyan planes
 - Centralized routing in the splitters

Utilization factor

- Utilization factor u_k of a link in stage k: u_k = min (I_k, O_k)
 - I_k : number of inlets reachable from a link in stage k
 - $ightharpoonup O_k$: number of outlets reachable from a link in stage k
- All the links in an interstage pattern have the same u_k
- Utilization factors

 $u_2 = min(I_2, O_2) = min(4,2) = 2$

Maximum utilization factor

•
$$u_{\text{max}} = 2^{\left\lfloor \frac{n}{2} \right\rfloor} = 2^{\left\lfloor \frac{\log_2 N}{2} \right\rfloor}$$

Rearrangeability conditions

Example with N = 16

0-4
1-9
2-2
3-14
4-11
5-0
6-7
7-3
8-13
9-12
10-8
11-15
12-1
13-5
14-10
15-6

0-1	9	9 0-1			
2-3	9	2-3			
4-5	4	Q 4-5			
6-7		6-7			
8-9	%	8-9			
10-11		10-11			
12-13	6	12-13			
14-15		14-15			
14-10	1	4			
	1	•			
0-4	I	8-13 I			
1-9	II	9-12 II			
2-2	II	10-8 I			
3-14	I	11-15 II			
4-11	I	12-1 I			
5-0	II	13-5 II			
6-7	II	14-10 II			
7-3	I	15-6 I			
Shell 1					

0-4	I	0-2
1-9	П	2-4
2-2	П	1-1
3-14	I	3-7
4-11	I	6-5
5-0	П	4-0
6-7	П	5-3
7-3	I	5-1
8-13	I	10-14
9-12	П	10-14
10-8	I	11-12
11-15	П	11-15
12-1	I	12-8
13-5	П	12-10
14-10	П	15-13
15-6	I	13-11

Shell 2

Rearrangeability conditions

Overall network resulting from the looping algorithm

RBN is obtained by moving and merging splitters and combiners

Rearrangeability conditions

- Replication factor of an N x N rearrangeable RBN
 - ▶ Obtained from $\lfloor n/2 \rfloor$ steps of routing through shells

•
$$K = 2^{\left\lfloor \frac{\log_2 N}{2} \right\rfloor}$$

K
2
4
4
8
8
16
16
32

- 56 -

Outline

- Full-connection multistage network
- Partial-connection multistage network
 - Horizontal extension
 - Vertical replication
 - **▶** Bounds
- Bounds on network cost

Bounds

- Channel graph of a regular network
 - $ightharpoonup r_k$ = number of branches of stage k
 - u_k = maximum number of I/O paths that can share the generic link of stage k (utilization factor)
 - All the I/O paths include s+c nodes (s+c-1 branches): s switching stages + c splitter/combiner stages
- Normalized utilization factor $U_k = u_k/r_k$
- Theorem. A multistage network with regular topology is rearrangeable only if $U_k \le 1$ ($1 \le k \le s + c 1$) (necessity)
 - ▶ Proof. The number r_k of different paths where to route a connection at stage k must be at least equal to u_k so that no one link must support more than one connection at stage k

Examples

• N = 16, s = n = 4

$$\rightarrow U_k > 1$$

• N = 16, s = 2n-1 = 7

$$\rightarrow U_k = 1$$

Examples

Rearrangeable/non rearrangeable

EBN N=16, m=3

Shuffle-exchange N=16, s=7

Bounds

Number of SEs

•
$$2^{S_{min}} = N!$$

 $S_{min} = \log_2 N! \cong N \log_2 N - 1.443N + 0.5 \log_2 N$

•
$$S_{Walksman} = N \log_2 N - N + 1 \rightarrow \text{very close to } S_{min}$$

Number of stages

• Network with s stages of N/2 SEs : $S = s\frac{N}{2}$

$$\Rightarrow s_{\min} = \left[\frac{S_{\min}}{N/2} \right] = 2\log_2 N - 2$$

• Rearrangeable network : $u_{k\text{max}} = 2^{\left\lfloor (n+m)/2 \right\rfloor}$; $r_{k\text{max}} = 2^m \left(m \le n \right)$ $\frac{2^{\left\lfloor (n+m)/2\right\rfloor}}{2^m} \le 1 \to m \ge n-1$

$$\Rightarrow s_{min-rearr} = 2log_2 N - 1$$

$$s_{Benes} = s_{min-rearr}$$

Crosspoint growth order

•
$$VR: \# XP = O\left(N^{\frac{3}{2}} \log_2 N\right)$$

• $HE: \# XP = O(N \log_2 N)$

•
$$HE: \# XP = O(N \log_2 N)$$

Bounds

• The permutations realized by an Ω network followed by a δ permutation can be realized by the cascade of two Ω networks \rightarrow total number of stages n+n+(n-1)=3n-1

- Other limits on the number of stages of Shuffle-exchange networks
 - ► Huang, Tripathi: 3log₂*N*-3
 - Varma, Raghavendra: 3log₂N-4
 - Stone: $(\log_2 N)^2$
 - An arbitrary permutation is set-up directly by the sorting operation (any input can set-up a connection to any output)

Outline

- Full-connection multistage network
- Partial-connection multistage network
- Bounds on network cost

Bounds

Network cost C

• Using PC networks: $C(N,N) = 4N \log_2 N + O(N)$ (Benes/Waksman)

• Using 3×3 SEs:

$$C(N,N) \le 6N\log_3 N + O(N(\log_2 N)^{1/2}) = 3.79N\log_2 N + O(...)$$

(Pippenger [Pip78])

Network cost

RNB networks

Network size, N