Course Project of Algorithmic Methods for Mathematical Models (AMMM)

Author: X

FACULTAD DE INFORMÁTICA DE BARCELONA de Universitat Politècnica de Catalunya

1 January 2018

${\bf Contents}$

1 Formulation of problem

1

1 Formulation of problem

Input data

- numNurses: total number of nurses
- hours: total hour
- minHours: minimum hour should a single nurse be working
- maxHours: maximum hour can a single nurse be working
- maxConsec: maximum consecutive hour can a single nurse be working
- maxPresence: maximum hour can a single nurse be in the hospital
- demand_h: number of nurses required for hour h

Decision variables

- $works_{n,h}$: nurse n is working in hour h
- $working_n$: nurse n works

Math formulation

$$Min: \sum_{n \in N} working_n$$
 (1)

$$\sum_{n \in N} works_{n,h} \ge demand_h \quad \forall h \in H$$
 (2)

$$\sum_{h \in H} works_{n,h} \ge working_n * minHours \quad \forall n \in N$$
 (3)

$$\sum_{h \in H} works_{n,h} \le working_n * maxHours \quad \forall n \in N$$
 (4)

$$\sum_{i \in [h, h + maxConsec]} works_{n,i} \le maxConsec \quad \forall n \in N \quad \forall h \in [1, hours - maxConsec] \quad (5)$$

$$\sum_{i \in [h+maxPresence,hours]} works_{n,i} \le (1-works_{n,h})*hours \quad \forall n \in N \quad \forall h \in [1,hours-maxPresence]$$
(6)

$$\sum_{i \in [h+3, hours]} works_{n,i} \le (1 - works_{n,h} + works_{n,h+1} + works_{n,h+2}) * hours \quad \forall n \in \mathbb{N} \quad \forall h \in [1, hours-3]$$

$$(7)$$