Orbital Angular Momentum (OAM) based Mode Division Multiplexing (MDM) over a km-length Fiber

N. Bozinovic, S. Ramachandran,

Y. Yue, Y. Ren, A.E. Willner,

M. Tur,

P. Kristensen

OAM multiplexing

- Space division multiplexing (SDM)
 - Multi-core (Y. Sakaguchi et al., Proc. OFC, PDP5C.1, 2012)
 - Few-core (R. Ryf et al., Proc. OFC, PDP5C.2, 2012).
 - Few-mode (L. Gruner-Nielsen et al., Proc. OFC, PDP5A.1 2012).
 - Orbital angular momentum (OAM) approach

Free-space

Can we apply OAM multiplexing concept in a fiber?

Fiber

Potential advantages:

- Easier MUX/DEMUX
- Low mode coupling ⇒
 - G. Berkhout et al, *PRL*, v. 105, p. 8, 2010.
 - P. Bierdz et al, Proc. CLEO, JTu3K, 2012.
 - T. Su *et al*, *OE*, v. 20, p. 9396, 2012

Allan et al, Phys. Rev. A, vol. 45, p. 8185, 1992.

Modes of a step index fiber

Mode coupling

Mode coupling

Step index multimode fiber

Vortex fiber

Vortex fiber properties @1550nm

	n _{eff}	A _{eff} (μm²)	D (ps/nm-km)	Loss (dB/km) (exp.)
LP ₀₁	1.451	82	2.0	1.3
OAM	1.448	88	0.6	1.6

Mode conversion and Mux

Imaging

Mode purity

Cross-talk (dB)

Fiber length	TE+TM	LP ₀₁		
6m	<-20.8	<-21.4	-	Due to Mux
1.1km Within 1h	Min = -13.6 Max = -8.9	Min = -23.7 Max = -18.5	←	Due to Mux +
				propagation

BU Department of Electrical & Computer Engineering

BU Department of Electrical & Computer Engineering

Demux

Cross-talk and multipath interference (MPI)

Mode A $MPI = 20 \log_{10} \left(\frac{10^{ptp/20} - 1}{10^{ptp/20} + 1} \right)$ Mode B

Cross-talk and multipath interference (MPI)

	OAM ⁺	OAM ⁻	LP ₀₁ +	LP ₀₁
Cross-talk (dB)	-14.8	-15.5	-16.1	-15.2
MPI (dB)	-19.7	-30.2	-32.1	-35.3

Due to Mux +
Propagation +
Demux

Data transmission

50Gbaud NRZ-QPSK, $\lambda = 1550$ nm

BER curves

Due to MPI

Due to cross-talk

Summary

- Successfully MUXed/DEMUXed multiple OAM states into a fiber
 - <-20.8dB coupling cross-talk.
- Propagated OAM states over 1.1-km using vortex fiber
 - crosstalk <-14.8dB
 - multipath interference <-19.7dB
- Transmitted 50Gbaud QPSK data, at a single wavelength 1550nm, below FEC threshold, without using MIMO - total of 400Gb/s.

Thank you