Intro to Quantum Computing

MnP

Week #3 Assignment

Deadline: 3 July, 11:59 PM

1. Circuits

- (a) Create a circuit that implements Superdense coding in Qiskit.
- (b) Create a circuit that implements Quantum teleportation in Qiskit.

2. A Bit of Information Theory

(Tip: Try to read up a bit on Holevo Bound from Nielsen and Chuang) Just like classical information stored is described by **Shannon entropy**

$$H(X) = -\sum_{i} p(x_i) \log p(x_i),$$

where X is a random variable and $p(x_i)$ is the probability (necessarily non-zero) of it being x_i , quantum information (stored in a state) is described by the **von Neumann entropy**

$$S(\rho) = -\operatorname{Tr} \rho \log(\rho)$$

(The log on a matrix is defined on the spectral decomposition, i.e. if $A = \sum_a a |a\rangle \langle a|$, then $\log(A) = \sum_a \log(a) |a\rangle \langle a|$, a being all non-zero eigenvalues)

von Neumann entropy can be treated as Shannon entropy in the case of orthogonal states.

Now, say Alice has to choose from states $\{\rho_i\}$, each having probability p_i , to send to Bob, who will make a measurement and collapse the state, then the **Holevo Bound** gives the following relation for maximum accessible information:

$$I_{acc} \le \chi \equiv S\left(\sum_{i} p_{i} \rho_{i}\right) - \sum_{i} p_{i} S(\rho_{i})$$

Show that Superdense coding achieves this maximum bound in the case of two qubits.

3. Oracles

Consider the Boolean function $f: \{0,1\}^2 \to \{0,1\}$ defined by $f(x_1,x_2) = x_1 \oplus x_2$.

- (a) Suppose there's an Oracle O_f implementing the function f. How does this gate act on the state $|x_1x_2\rangle \otimes |y\rangle$?
- (b) Explain how this operation can be implemented using basic quantum gates.
- (c) Using Qiskit and the Aer simulator, construct a 3-qubit quantum circuit that implements the oracle O_f . Here, two qubits represent the input bits x_1 and x_2 , and the third qubit is an ancilla initialized to $|0\rangle$.

Simulate the circuit for all four computational basis inputs $|x_1x_2\rangle$ and verify that the ancilla qubit correctly reflects $f(x_1, x_2)$ in the output.

4. **QFT**

Use the following code snippet:

to add a QFT to your QuantumCircuit object (named circ here). Now, create a circuit which takes the quantum fourier transform of the states $|000\rangle$, $|001\rangle$, $|010\rangle$, ..., $|111\rangle$.

Plot the final statevectors corresponding to all initial states to try to gain a geometrical intuition behind the QFT, and explain.