

Klausur

Mathematik I - Theoretische Grundlagen der Informatik

HWR Berlin, Wintersemester 2024/2025

Prof. Dr.-Ing. Sebastian Schlesinger

Aufgabe 1 (Mengenbeweise)

(5 Punkte)

Beweisen Sie folgende Aussagen:

- (i) $A \subseteq B \cap C \Leftrightarrow A \subseteq B \land A \subseteq C$
- (ii) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
- (iii) $(A \cup B) \times C = (A \times C) \cup (B \times C)$
- (iv) $(\bigcup_{i \in I} D_i) \cap B = \bigcup_{i \in I} (D_i \cap B)$
- (v) $\bigcap_{\varepsilon \in \mathbb{R} \setminus \{0\}} \{x \in \mathbb{R} | |x \pi| \le |\varepsilon| \} = \{\pi\}$

Aufgabe 2 (Symmetrische Differenz)

(4 Punkte)

Unter

$$A \triangle B := (A \backslash B) \cup (B \backslash A)$$

versteht man die symmetrische Differenz der Mengen A und B.

- (i) Machen Sie sich anhand eines Venn-Diagramms klar, was unter der symmetrischen Differenz anschaulich zu verstehen ist.
- (ii) Beweisen Sie: $\forall A, B : A \triangle B = (A \cup B) \setminus (A \cap B)$.

Aufgabe 3 (Beweisen oder Widerlegen)

(2 Punkte)

Beweisen oder widerlegen Sie:

Aus $A_1 \cap A_2 \neq \emptyset$, $A_2 \cap A_3 \neq \emptyset$ und $A_1 \cap A_3 \neq \emptyset$ folgt $\bigcap_{i \in \{1,2,3\}} A_i \neq \emptyset$.

Aufgabe 4 (Relation)

(2 Punkte)

Gegeben sei die Relation $R = \{(a, a), (a, b), (b, c), (c, b), (a, d)\}.$

- (i) Stellen Sie die Adjazenzmatrix der Relation dar.
- (ii) Stellen Sie die Relation als Graph dar.

Aufgabe 5 (Mengen)

(3 Punkte)

Bestimmen Sie die folgenden Mengen:

- (i) $(\{1,2\} \times \{3,4\}) \cup \{1,2,3\}$
- (ii) $\{a, b\} \times \mathcal{P}(\{1, 2\})$
- **(iii)** $\mathscr{P}(\{1,2\}) \cap \mathscr{P}(\{1\})$

Aufgabe 6 (Aussagen über Mengen)

(11 Punkte)

Es sei $A = \{1, 2\}$ und $B = \{1, 2, 3\}$. Welche der folgenden Beziehungen sind richtig?

- (i) $1 \in A$
- (ii) $\{1\} \subseteq A$
- (iii) $1 \in \mathcal{P}(A)$
- (iv) $\{1\} \in \mathcal{P}(A)$
- (v) $\mathscr{P}(A) \subseteq \mathscr{P}(B)$
- (vi) $A \in \mathcal{P}(B)$
- (vii) $\emptyset \in \mathcal{P}(A)$
- (viii) $\emptyset \subseteq \mathscr{P}(A)$
- (ix) $\{\{1\},A\}\subseteq \mathcal{P}(A)$
- (x) $(1,2) \in \mathcal{P}(A \times B)$
- (xi) $\{1,2\} \times \{1,2\} \in \mathcal{P}(A) \times \mathcal{P}(B)$

Aufgabe 7 (Kartesische Produkte)

(4 Punkte)

Es sei $A = \{1, 2\}$ und $B = \{2, 3, 4\}$. Bilden Sie die folgenden Mengen:

- (i) $A \times B$
- (ii) $(A \times A) \cap (B \times B)$
- (iii) $(A \times B) \setminus (B \times B)$
- (iv) $A \times A \times A$

Aufgabe 8 (Potenzmengenbeweis)

(4 Punkte)

Zeigen Sie für beliebige Mengen *A*, *B*:

$$A \subseteq B \Leftrightarrow \mathscr{P}(A) \subseteq \mathscr{P}(B)$$

Aufgabe 9 (Potenzmengenbeweis)

(4 Punkte)

Zeigen Sie für beliebige Mengen A, B:

$$\mathscr{P}(A \cap B) = \mathscr{P}(A) \cap \mathscr{P}(B)$$

Aufgabe 10 (Relationendarstellungen)

(2 Punkte)

Sei $R = \{(1,1), (2,2), (1,3), (2,3), (2,1), (3,1)\}$ eine Relation. Stellen Sie die Relation als Graph und Adjazenzmatrix dar.

Aufgabe 11 (Relation) (5 Punkte)

Diese Aufgabe ist etwas schwieriger.

Wir definieren $a \equiv b \Leftrightarrow 3 | (a - b)$ mit $a, b \in \mathbb{Z}$. Beschreiben Sie was die Relation ausdrückt.

Hinweis: Denken Sie an die Division mit Rest.