Indian Institute of Technology Patna

MA102: Assignment-1, Sem-II, 2018-19

Q1. (A) Classify the following Differential equation: Linear/Non-linear/Ordinary/Partial etc. and specify the order.

(i)
$$y'' + 3y' + 20y = e^x$$
, (ii) $\sqrt{1 + y'^3} = x^2$, (iii) $y'' + y^2 = \cos x$,

(iv)
$$y' + xy = \cos y'$$
, (v) $(xy')' = xy$, (vi) $u_x + u_y = 0$, (vii) $u_{xx} + u_{yy} = u_t$.

Q1. (B) Find the differential equation corresponding to following family of curves:

(i)
$$xy^2 - 1 = cy$$
,

(ii)
$$y = ax^2 + be^{2x}$$
,

(iii)
$$y = a \sin x + b \cos x + b$$
.

Q2. Graphically show the gradient filed (Slope field) for following differential equations and hence show some representative solutions.

(i)
$$x' = 4x$$
,

(ii)
$$x' = -2x$$
,

(iii)
$$x' = \frac{x}{t}$$
,

(iv)
$$x' = t - x$$
,

(v)
$$x' = t^2 + x^2$$
,

(vi)
$$x' = \frac{t}{x}$$
,

(vii)
$$x' = tx$$
,

(iii)
$$x' = \frac{x}{t}$$
, (iv) $x' = t - x$, (viii) $x' = tx$, (viii) $x' = x^2 - t^2$.

Q3. Let V be a linear space of all twice differentiable functions with usual operations. Show that solutions of the differential equation $y'' + \alpha y' + \beta y = 0$ form a linear space.

Q4. Consider the differential equations $y' = \alpha y, x > 0$, where α is a constant. Show that

- (i) if $\phi(x)$ is any solution and $\psi(x) = \phi(x)e^{-\alpha x}$, then $\psi(x)$ is a constant;
- (ii) if $\alpha < 0$, then every solution tends to zero as $x \to \infty$.

Q5. Solve the following Differential equations:

(i)
$$x^2y' = 3(x^2 + y^2)\arctan\frac{y}{x} + xy$$
, (ii) $y' = \sin^2(x - y + 1)$.

Q6 A. Reduce the differential equation $y' = f\left(\frac{ax + by + c}{dx + ey + f}\right)$, $ae - bd \neq 0$ to a separable variable form. What if ae = bd?

B. Hence find general solution of the following differential equations:

(i)
$$(x+2y+1)-(2x+y-1)y'=0$$
 (ii) $y'=(8x-2y+1)^2/(4x-y-1)^2$

Q7. By making a substitution $v = y/x^n$ or $y = vx^n$ and choosing suitable n, show that following differential equations can be transformed into separable variables, and hence solve

(i)
$$y' = \frac{1 - xy^2}{2x^2y}$$
,

(ii)
$$y' = \frac{2 + 3xy^2}{4x^2y}$$

Q8. Show that the following equations are exact and hence find their general solution:

- (i) $(\cos x \cos y \cot x)dx (\sin x \sin y)dy = 0$, (ii) $2x(y + 3x ye^{-x^2})dx + (x^2 + 3y^2 + e^{-x^2})dy = 0$.

Q9. Show that $2\sin(y^2)dx + xy\cos(y^2)dy = 0$ admits an integrating factor which is a function of x only. Hence solve the differential equation.

- **Q10.** Show that the equation $(3y^2 x)dx + 2y(y^2 3x)dy = 0$ admits an integrating factor which is a function of $(x + y^2)$. Hence solve the differential equation.
- **Q11.** A. Consider homogeneous equation M(x,y)dx + N(x,y)dy = 0. If $Mx + Ny \neq 0$ then $\frac{1}{Mx + Ny}$ is an integrating factor of the differential equation. Using this solve the following equation:

$$(4y^2 + 3xy)dx - (3xy + 2x^2)dy = 0. --- (*)$$

- **B.** Further multiply (*) with $x^{\alpha}y^{\beta}$ and find α and β such that the corresponding equation becomes exact. Hence find the solution. Compare!
- Q12. If an equation has an integrating factor, then it has infinitely many integrating factors.

Practice Problems: Related problems from Ross, Kreyszig & Simmons.

Indian Institute of Technology Patna

MA102: Assignment-2, Sem-II, 2018-19,

- Q1. Reduce the following differential equations into linear form and solve:
- (i) $y^2y' + y^3/x = \sin x$, (ii) $y' \sin y + x \cos y = x$, (iii) $y' = y(xy^3 1)$,
- (iv) $(e^y 2xy)y' = y^2$, (v) $y xy' = y'y^2e^y$,
- **Q2.** Solve the following linear first order differential equations using the method of variation of parameters:

(i)
$$xy' - 2y = x^4$$

(ii)
$$y' + (\cos x)y = \sin x \cos x$$

- Q3. If $y_1(x)$ and $y_2(x)$ are any two solutions of the differential equation y'' + P(x)y' + Q(x)y = 0 on I (here P, Q are continuous functions on interval I) then show that $y(x) = c_1y_1(x) + c_2y_2(x)$ is a solution of the differential equation.
- **Q4.** If $y_1(x)$ and $y_2(x)$ are any two solutions of the differential equation y'' + P(x)y' + Q(x)y = 0 on I (here P,Q are continuous functions on interval I) then the wronskian $W(y_1,y_2) = y_1y_2' y_1'y_2$ is either identically zero or never zero.
- **Q5.** If $y_1(x)$ and $y_2(x)$ are any two solutions of the differential equation y'' + P(x)y' + Q(x)y = 0 on I (here P, Q are continuous functions on interval I) then the solutions $y_1(x), y_2(x)$ are LD on I iff wronskian $W(y_1, y_2)$ is identically zero.
- **Q6.** (a) Find the values of m such that $y = e^{mx}$ is a solution of

(i)
$$y'' + 3y' + 2y = 0$$
,

(ii)
$$y'' - 4y' + 4y = 0$$
,

(iii)
$$y''' - 2y'' - y' + 2y = 0$$
.

(b) Find the values of m such that $y = x^m(x > 0)$ is a solution of

(i)
$$x^2y'' - 4xy' + 4y = 0$$
,

(ii)
$$x^2y'' - 3xy' - 5y = 0$$
.

Q7. Use Picard's method of successive approximation to solve the following initial value problems and compare these results with the exact solutions:

(i)
$$y' = 2\sqrt{x}, \ y(0) = 1$$

(ii)
$$y' + xy = x$$
, $y(0) = 0$

(iii) $y' = 2\sqrt{y}/3$, y(0) = 0.

Indian Institute of Technology Patna

MA102: Assignment-3, Sem-II, 2018-19

Q1. Solve the following differential equations:

(i)
$$y'' - 4y' + 3y = 0$$
,

(ii)
$$y'' + 2y' + (\omega^2 + 1)y = 0$$
, ω is real,

(iii) 4y'' - 12y' + 9y = 0.

Q2. Find general solution of the following differential equations given a known solution y_1 :

(i)
$$x(1-x)y'' + 2(1-2x)y' - 2y = 0$$
, $y_1 = 1/x$,

(ii)
$$(1-x^2)y'' - 2xy' + 2y = 0$$
, $y_1 = x$.

Q3. Solve the following differential equations:

(i)
$$y''' - 8y = 0$$
,

(ii)
$$y^{(4)} + y = 0$$
,

(iii)
$$y''' - 3y' - 2y = 0$$
,

(iv)
$$y''' - 6y'' + 11y' - 6y = 0$$
.

Q4. Solve the following Cauchy-Euler equations:

(i)
$$x^2y'' + 2xy' - 12y = 0$$
,

(ii)
$$x^2y'' + xy' + y = 0$$

(ii)
$$x^2y'' + xy' + y = 0$$
, (iii) $x^2y'' - xy' + y = 0$.

Hint with details for Q4: Assume that $y = x^m$ is a solution of the equation Ly = 0. Now find out corresponding polynomial p(m) such that $L(x^m) = p(m)x^m$. Now for distinct roots of p(m) = 0 one will get x^{m_1}, x^{m_2} as LI Solution. Similarly for complex case $m=a\pm ib$, we have solution as $x^{a+ib}=x^a.x^{ib}=x^a.e^{ib\ln x}=x^a(\cos b\ln x+i\sin b\ln x)$ will give $x^a \cos b \ln x$, $x^a \sin b \ln x$ as LI solution. Further for repeated case $m = m_1, m_1$, one solution will be x^{m_1} and another LI Solution can be found using method of reduction of order.

Q5. Solve the following equations using Method of variation of parameter:

(i)
$$y'' + 2y' + 5y = e^{-x} \sec 2x$$
,

(ii)
$$(x^2 - 1)y'' - 2xy' + 2y = (x^2 - 1)^2$$
,

(iii)
$$x^2y'' - 2xy' + 2y = xe^{-x}$$
.

Practice Problems: Related problems from Ross, Kreyszig & Simmons.