

K-Means Clustering

 K-Means clustering groups observations based on numeric features Assumes clusters are roughly the same sized hyperspheres • Minimize Euclidean distance between observations and cluster centers Number of methods for choosing the number of clusters, k Choose several and evaluate performance Use business rules

Pros and Cons of K-Means Clustering

Pros

Fast, Scalable Algorithm

Cons

- Choice of k can be tricky
- Euclidean distance not robust
 - Hyperspheres not common
 - Sensitive to correlated measures
 - Sensitive to scaling
 - Sensitive to skewed measures
 - Sensitive to outliers
- Categorical data requires preprocessing
 - Multiple Correspondence Analysis
 - Multi-Dimensional Scaling

K-Means Clustering

- K-Means clustering groups observations based on numeric features
 - Assumes clusters are roughly the same sized hyperspheres
 - Minimize Euclidean distance between observations and cluster centers
- Number of methods for choosing the number of clusters, k
 - Choose several and evaluate performance
 - Use business rules

