Introduction to Game Theory

B. Nebel, R. Mattmüller T. Schulte, K. Heinold Summer semester 2020 University of Freiburg Department of Computer Science

Exercise Sheet 6 Due: Friday, June 26, 2020

Exercise 6.1 (Imperfect Information Games, 1+1+1+2 points)

Consider the following extensive form game with imperfect information:

- (a) Is this a game of perfect or imperfect recall? Justify your answer.
- (b) Specify the information partition \mathcal{I}_i for player 1 and 2.
- (c) Specify player 1's experience record of the following histories: $\langle a, x \rangle, \langle a, y, l \rangle, \langle a, z, r \rangle$
- (d) Find the behavioral strategy of player 1 that is outcome-equivalent to her mixed strategy in which she plays (b, r) with probability 0.4, (b, l) with probability 0.1, and (a, l) with probability 0.5.

Exercise 6.2 (Sequential equilibria, 3 points)

Consider the following imperfect information game:

Find the set of sequential equilibria of this game. (Hint: There are three types of sequential equilibria:

(a)
$$\beta_1(\langle \rangle)(L) = 1$$
, $x \leq \beta_2(\{\langle M \rangle, \langle R \rangle\})(B) \leq y$, $\mu(\langle M \rangle) = \mu(\langle R \rangle) = \frac{1}{2}$

(b)
$$\beta_1(\langle \rangle)(L) = 1$$
, $\beta_2(\{\langle M \rangle, \langle R \rangle\})(B) = 1$, $x' \le \mu(\langle R \rangle) \le y'$

(c)
$$\beta_1(\langle \rangle)(M) = 1$$
, $\beta_2(\{\langle M \rangle, \langle R \rangle\})(A) = z$, $\mu(\langle M \rangle) = 1$

Find values of x, y, x', y', and z such that this list covers all sequential equilibria and only those.)