Greek Characters

Name	Symbol	Typical use(s)
alpha	α	angle, constant
beta	β	angle, constant
gamma	γ	angle, constant
delta	δ	limit definition
epsilon	ϵ or ϵ	limit definition
theta	θ or θ	angle
lambda	λ	Lagrange multiplier
pi	π or π	circular constant
phi	ϕ or φ	angle

Named Sets

empty set	Ø
real numbers	R
ordered pairs	\mathbb{R}^2
ordered triples	\mathbb{R}^3
integers	Z
positive integers	$\mathbf{Z}_{>0}$
positive real numbers	R>0

Set Symbols

Meaning	Symbol
is a member	€
subset	C
intersection	Λ
union	U
set minus	١

Intervals

For numbers *a* and *b*, we define the intervals:

$$(a, b) = \{x \in \mathbf{R} \mid a < x < b\}$$

$$[a, b) = \{x \in \mathbf{R} \mid a \le x < b\}$$

$$(a, b] = \{x \in \mathbf{R} \mid a < x \le b\}$$

$$[a,b] = \{x \in \mathbf{R} \mid a \le x \le b\}$$

Logic Symbols

Meaning	Symbol
negation	٦
and	٨
or	V
implies	\Rightarrow
equivalent	≡
for all	A
there exists	3

Exponents

For a, b > 0 and m, n real:

$$a^n a^m = a^{n+m}$$

$$a^n/a^m = a^{n-m}$$

$$(a^n)^m = a^{n \cdot m}$$

$$a^{-m} = 1/a^m$$

$$(a/b)^m = a^m/b^m$$

Trigonometric Functions

Special values of trig functions

x	$\cos(x)$	$\sin(x)$	tan(x)
0	1	0	0
$\pi/6$	$\sqrt{3}/2$	1/2	$1/\sqrt{3}$
$\pi/4$	$1/\sqrt{2}$	$1/\sqrt{2}$	1
π/3	1/2	$\sqrt{3}/2$	$\sqrt{3}$
$\pi/2$	0	1	dne
$2\pi/3$	-1/2	$\sqrt{3}/2$	$-\sqrt{3}$
$3\pi/4$	$-1/\sqrt{2}$	$1/\sqrt{2}$	-1
5π/6	$-\sqrt{3}/2$	1/2	$-1/\sqrt{3}$
π	-1	0	0
7π/6	$-\sqrt{3}/2$	-1/2	$1/\sqrt{3}$
5π/4	$-1/\sqrt{2}$	$-1/\sqrt{2}$	1
4π/3	-1/2	$-\sqrt{3}/2$	$\sqrt{3}$
3π/2	0	-1	dne
5π/3	1/2	$-\sqrt{3}/2$	$-\sqrt{3}$
7π/4	$1/\sqrt{2}$	$-1/\sqrt{2}$	-1
11π/6	$\sqrt{3}/2$	-1/2	$-1/\sqrt{3}$

Special values of inverse trig

x	arccos(x)	$\arcsin(x)$
-1	π	$-\pi/2$
$-\sqrt{3}/2$	5π/6	$-\pi/3$
-1/2	$2\pi/3$	$-\pi/6$
0	$\pi/2$	0
1/2	$\pi/3$	$\pi/6$
$\sqrt{3}/2$	$\pi/6$	$\pi/3$
1	0	$\pi/2$

Special values arctan and arccotan

х	arctan(x)	arccot(x)
$-\sqrt{3}$	$-\pi/3$	$-\pi/6$
-1	$-\pi/4$	$-\pi/4$
$-1/\sqrt{3}$	$-\pi/6$	$-\pi/3$
0	0	$\pi/2$
$1/\sqrt{3}$	$\pi/6$	$\pi/3$
1	$\pi/4$	$-\pi/4$
$\sqrt{3}$	$\pi/3$	$\pi/6$

Trigonometric identities

$$\sin(x)^{2} + \cos(x)^{2} = 1$$

$$\cos(x)^{2} = \frac{1}{2} (1 + \cos(2x))$$

$$\sin(x)^{2} = \frac{1}{2} (1 - \cos(2x))$$

$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

Limits

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x} = 0$$

$$\lim_{x \to \infty} e^x = \infty$$

$$\lim_{x \to \infty} e^x = 0$$

$$\lim_{x \to \infty} \ln(x) = \infty$$

$$\lim_{x \to 0^+} \ln(x) = -\infty$$

$$\lim_{x \to 0} (1 + x)^{1/x} = e$$

Derivatives

General Cases

F(x)	F'(x)
af(x) + bg(x)	af'(x) + bg'(x)
f(x)g(x)	f'(x)g(x) + f(x)g'(x)
1/g(x)	$-g'(x)/g(x)^2$
f(x)/g(x)	$(g(x)f'(x)-f(x)g'(x))/g(x)^2$
f(g(x))	g'(x)f'(g(x))
$f^{-1\prime}(x)$	$1/f'(f^{-1}(x))$

Specific cases

F(x)	F'(x)
$\cos(x)$	$-\sin(x)$
sin(x)	$\cos(x)$
tan(x)	$sec(x)^2$
sec(x)	sec(x) tan(x)
$\csc(x)$	$-\cot(x)\csc(x)$
cot(x)	$-\csc(x)^2$
arccos(x)	$-1/\sqrt{1-x^2}$
arcsin(x)	$1/\sqrt{1-x^2}$
arctan(x)	$1/(x^2+1)$
arcsec(x)	$1/(\sqrt{x^2-1} x)$
arccsc(x)	$-1/\left(\sqrt{x^2-1} x \right)$
arccot(x)	$-1/(x^2+1)$
cosh(x)	sinh(x)
sinh(x)	cosh(x)
tanh(x)	$1/\cosh(x)^2$
arccosh(x)	$-1/\sqrt{1-x^2}$
arcsinh(x)	$1/\sqrt{1-x^2}$
arctanh(x)	$1/(1-x^2)$
$\exp(x)$	$\exp(x)$
ln(x)	1/ <i>x</i>

Antiderivatives1

$$\int x^{a} dx = \frac{1}{1+a} x^{a+1}, \quad \text{if } a \neq -1$$

$$\int \frac{1}{x} dx = \ln|x|$$

$$\int \cos(x) dx = \sin(x)$$

$$\int \sin(x) dx = -\cos(x)$$

$$\int \tan(x) dx = \ln|\sec(x)|$$

$$\int \sec(x) dx = \ln|\tan(x) + \sec(x)|$$

$$\int \csc(x) dx = -\ln|\csc(x) + \cot(x)|$$

$$\int \cot(x) dx = \ln|\sin(x)|$$

$$\int 2|x| dx = x|x|$$

$$\int 2|x| dx = (2x-1)|x| - |x|^{2}$$

$$\int 2|x| dx = (2x+1)|x| - |x|^{2}$$

Sums

For $k, m, n \in \mathbb{Z}_{>0}$ and $\alpha, \beta \in \mathbb{R}$

$$\sum_{k=0}^{n-1} 1 = n$$

$$\sum_{k=0}^{n-1} k = \frac{(n-1)n}{2}$$

$$\sum_{k=0}^{n-1} k^2 = \frac{(n-1)n(2n-1)}{6}$$

$$\sum_{k=m}^{n} a_k = \sum_{k=0}^{n-m} a_{k+m}$$

$$\sum_{k=m}^{n} \alpha a_k + \beta b_k = \alpha \sum_{k=m}^{n} a_k + \beta \sum_{k=m}^{n} b_k$$

Famous Triangles

The 30-60-90 triangle

The 45-45-90 triangle

¹Valid on any interval on which the antiderivative is continuous.

Laws of Cosine & Sine

Law of cosine

$$C^2 = A^2 + B^2 - 2AB\cos(\gamma)$$

Law of sines

$$\frac{\sin \alpha}{A} = \frac{\sin \beta}{B} = \frac{\sin \gamma}{C}$$

Areas and volumes

Area =
$$\frac{1}{2}hB = \frac{1}{2}AB\sin(\gamma)$$

Volumes

Right Circular Cylinder

Volume

$$V = \pi r^2 h$$

Area, not including areas of circular ends

$$A = 2\pi r h$$

Cone

Volume

$$V = \frac{1}{3}\pi r^2 h$$

Area, not including area of circular base:

$$A = \pi r \left(r + \sqrt{r^2 + h^2} \right)$$

Applications

Arclength of curve y = F(x) with $a \le x \le b$

$$= \int_a^b \sqrt{1 + F'(x)^2} \, \mathrm{d}x$$

For the region Q of the xy plane given by

$$Q = \{(x, y) \mid f(x) \le y \le g(x) \land a \le x \le b\},\$$

we have

Area(Q) =
$$\int_{a}^{b} g(x) - f(x) dx$$

Assuming $0 \le f(x)$ and rotating about the x-axis

$$Vol(Q) = \pi \int_{a}^{b} g(x)^{2} - f(x)^{2} dx$$

Assuming $a \ge 0$ and rotating about the y-axis

$$Vol(Q) = 2\pi \int_{a}^{b} x(g(x) - f(x)) dx$$

Centroid

Area(Q) ×
$$\overline{x}$$
 = $\int_{a}^{b} x (g(x) - f(x)) dx$,
Area(Q) × \overline{y} = $\frac{1}{2} \int_{a}^{b} (g(x)^{2} - f(x)^{2}) dx$.

For the region described by

$$Q = \{(x, y) \mid f(y) \le x \le g(y) \land a \le y \le b\},\$$

interchange x and y in all the previous formulas. Specifically we have

Area(Q) =
$$\int_{a}^{b} g(y) - f(y) dy$$

Assuming $0 \le f(y)$ and rotating about the y-axis

$$Vol(Q) = \pi \int_{a}^{b} g(y)^{2} - f(y)^{2} dy$$

Assuming $a \ge 0$ and rotating about the x-axis

$$Vol(Q) = 2\pi \int_{a}^{b} y(g(y) - f(y)) dy$$

Centroid

Area(Q) ×
$$\overline{y} = \int_{a}^{b} y (g(y) - f(y)) dy$$

Area(Q) × $\overline{x} = \frac{1}{2} \int_{a}^{b} (g(y)^{2} - f(y)^{2}) dy$

Logarithms

$$\log_a(x) = \frac{1}{\ln(a)} \ln(x)$$

Revised 20 September 2021. Barton Willis is the author of this work. It licensed under Attribution 4.0 International (CC BY 4.0) For the current version of this document, visit

