Chapitre 4: Rudiments de topologie (sur R et C)

I Notion de boule ouverte, fermée

Dans \mathbb{C} : Soit $a \in \mathbb{C}$, soit $\varepsilon \in \mathbb{R}_+^*$. La boule ouverte de centre a et de rayon ε est l'ensemble $B(a,\varepsilon) = \{z \in \mathbb{C}, |z-a| < \varepsilon\}$.

Dans \mathbb{R} : Soit $a \in \mathbb{R}$, soit $\varepsilon \in \mathbb{R}_+^*$. La boule ouverte de centre a et de rayon ε est l'ensemble $B(a,\varepsilon) = \{x \in \mathbb{R}, |x-a| < \varepsilon\}$.

On définit aussi la boule fermée de centre a et de rayon ε comme étant :

Dans \mathbb{C} : $\overline{B}(a,\varepsilon) = \{z \in \mathbb{C}, |z-a| \le \varepsilon\}$

Dans \mathbb{R} : $\overline{B}(a,\varepsilon) = \{x \in \mathbb{R}, |x-a| \le \varepsilon\}$

On étend la définition de boules : $\overline{B}(a,0) = \{a\}$ et $B(a,0) = \emptyset$.

II Notion de voisinage

Notons $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} (au choix)

Définition:

Soit A une partie de \mathbb{K} . Soit $a \in \mathbb{K}$. On dit que A est un voisinage de a lorsqu'il existe $\varepsilon > 0$ tel que $B(a, \varepsilon) \subset A$.

Sur le dessin :

A est un voisinage de a, B n'est pas un voisinage de a, mais $A \cup B$ en est un. C n'est pas un voisinage de b: il faut qu'une boule <u>ouverte</u> soit incluse dans C.

Propriétés :

Soit $a \in \mathbb{K}$.

On note V(a) l'ensemble des voisinages de a.

• V(a) est stable par extension, c'est-à-dire :

Si $V \in V(a)$, et si $V \subset W$, alors $W \in V(a)$

• V(a) est stable par intersection finie, c'est-à-dire :

Si $V \in V(a)$, et si $W \in V(a)$, alors $V \cap W \in V(a)$.

Plus généralement, si $V_1, V_2, ... V_n \in V(a)$, alors $V_1 \cap V_2 \cap ... V_n \in V(a)$.

Mais ce n'est pas valable pour une infinité : $\forall n \in \mathbb{N}^*, [0,1+\frac{1}{n}[$ est un voisinage de 1, mais $\bigcap [0,1+\frac{1}{n}[\notin V(1)]$.

n∈N*

En effet:

Soient $V, W \in V(a)$.

Il existe alors $\varepsilon > 0$ tel que $B(a, \varepsilon) \subset V$, et $\varepsilon' > 0$ tel que $B(a, \varepsilon') \subset W$.

Alors, pour $\alpha = \min(\varepsilon, \varepsilon')$, on a $B(a, \alpha) \subset V \cap W$

Séparabilité de voisinages

Soient $a, a' \in \mathbb{K}$, avec $a \neq a'$. Il existe alors $V \in V(a)$, $W \in V(a')$ tels que $V \cap W = \emptyset$. Démonstration:

$$|a'-a| > 0$$
. On peut choisir ε tel que $0 < \varepsilon < \frac{|a'-a|}{2}$

Alors $B(a,\varepsilon) \cap B(a',\varepsilon) = \emptyset$ et $B(a,\varepsilon) \in V(a)$, $B(a',\varepsilon) \in V(a')$. D'où l'existence.

III Les ouverts, les fermés

A) Les ouverts

Définition:

Soit $\Omega \subset \mathbb{K}$. On dit que Ω est ouvert lorsque Ω est voisinage de chacun de ses points, c'est-à-dire lorsque $\forall a \in \Omega, \Omega \in V(a)$.

Exemples:

- Les boules ouvertes sont ouvertes.

Démonstration:

Pour B(a,0), on a bien le résultat ($B(a,0) = \emptyset$!)

Soit Ω une boule ouverte de centre $a \in \mathbb{K}$ et de rayon r > 0.

Montrons alors que Ω est ouvert.

Soit $x \in \Omega$.

Soit $\varepsilon > 0$ tel que $\varepsilon < r - |a - x|$ (ce qui est possible car |a - x| < r)

Alors $B(x,\varepsilon) \subset \Omega$. En effet, pour tout $y \in B(x,\varepsilon)$, on a :

$$|a-x| \le |a-x| + \underbrace{|x-y|}_{<\varepsilon < r-|a-x|} < r$$
.

Donc $\Omega \in V(x)$. Donc Ω est voisinage de chacun de ses points.

- K est ouvert
- Exemples d'ouverts de \mathbb{R} :

 $\varnothing, \mathbb{R}, \left] a, \hat{b} \right[\text{ avec } a < b \,, \, \left] a, + \infty \right[, \, \left] - \infty, a \right[\text{ avec } a \in \mathbb{R} \,,$

 $[a,b] \cup [c,d]$ où a < b < c < d.

Proposition:

Toute réunion d'ouverts est un ouvert.

Toute intersection finie d'ouverts est un ouvert.

Démonstration:

- Soit $(\Omega_i)_{i \in I}$ une famille quelconque d'ouverts.

Montrons que $\bigcup_{i \in I} \Omega_i$ est un ouvert.

Soit $a \in \bigcup \Omega_i$. Alors il existe $j \in I$ tel que $a \in \Omega_j$. Donc Ω_j est voisinage de a.

Comme
$$\Omega_j \subset \bigcup_{i \in I} \Omega_i$$
, $\bigcup_{i \in I} \Omega_i \in V(a)$.

Donc $\bigcup \Omega_i$ est voisinage de tous ses points. C'est donc un ouvert.

- Soient Ω, Ω' deux ouverts.

Soit $a \in \Omega \cap \Omega'$.

Donc $\Omega \in V(a)$, et $\Omega' \in V(a)$. Donc $\Omega \cap \Omega' \in V(a)$.

C'est valable pour tout $a \in \Omega \cap \Omega'$. Donc $\Omega \cap \Omega'$ est un ouvert.

B) Les fermés

Soit $F \subset \mathbb{K}$. On dit que F est fermée lorsque $C_{\mathbb{K}}F$ est ouvert.

Exemples:

Ø est fermé, K est fermé, les boules fermées sont fermées.

Démonstration pour les boules fermées :

Soient $a \in \mathbb{K}, r \in \mathbb{R}^+$

- Dans \mathbb{R} : facile: $\overline{B}(a,r) = [a-r,a+r]$
- Dans K:

Soit $F = \overline{B}(a,r)$. Soit $b \in C_{\mathbb{K}}F$, c'est-à-dire tel que |b-a| > r.

Prenons alors ε tel que $0 < \varepsilon < |b-a|-r$.

Alors $B(b,\varepsilon) \subset C_{\kappa}F$:

Alors $B(b,\varepsilon) \subset C_{\mathbb{K}} r$. Pour tout $x \in B(b,\varepsilon)$, $|b-a| \le |b-x| + |x-a|$, soit $|x-a| \ge |b-a| - \underbrace{|b-x|}_{<\varepsilon < |b-a|-r} > r$.

Donc $C_{\mathbb{R}}F$ est ouvert, donc F est fermé.

- Les intervalles fermés de R sont fermés

Les intervalles fermés sont [a,b], où a < b; $[a,+\infty[,]-\infty,a]$.

IV Intérieur et adhérence d'une partie

A) Intérieur

Soit $A \subset \mathbb{K}$. Soit $a \in \mathbb{K}$. On dit que a est intérieur à A lorsque A est voisinage de a, c'est-à-dire lorsque : $\exists \varepsilon > 0, B(a, \varepsilon) \subset A$.

On note A l'ensemble des points intérieurs à A, appelé « l'intérieur de A ».

Proposition:

 \mathring{A} est un ouvert contenu dans A, et c'est le plus grand des ouverts contenus dans A, au sens de l'inclusion.

Démonstration:

- Déjà, il est évident que $\mathring{A} \subset A$.
- \mathring{A} est ouvert :

Soit $x \in A$. Il existe donc $\varepsilon > 0$ tel que $B(x, \varepsilon) \subset A$.

Soit alors $y \in B(x, \varepsilon)$. Montrons que $y \in \mathring{A}$:

 $B(x,\varepsilon)$ est ouverte. Elle est donc voisinage de chacun de ses points.

Or, $B(x, \varepsilon) \subset A$. Donc A est voisinage de y, donc $y \in \mathring{A}$.

Ainsi, $B(x, \varepsilon) \subset \mathring{A}$. Donc \mathring{A} est ouvert.

- Montrons que c'est le plus grand :

Soit Ω un ouvert inclus dans A. Montrons qu'alors $\Omega \subset \mathring{A}$.

Soit $x \in \Omega$. Ω est ouvert, donc $\Omega \in V(x)$. Mais $\Omega \subset A$. Donc $A \in V(x)$. Donc

 $x \in \mathring{A}$. D'où l'inclusion.

Exemples:

- Dans \mathbb{R} , l'intérieur d'un intervalle $:\alpha,\beta:$ où $\alpha,\beta\in\overline{\mathbb{R}}$ est $]\alpha,\beta[$.
- $\mathring{\mathbb{Q}} = \varnothing$: si Ω est un ouvert non vide, alors Ω est du type $]a \varepsilon, a + \varepsilon[$, avec $a \in \mathbb{R}$, $\varepsilon > 0$. Or, cet intervalle contient des irrationnels. Donc $\Omega \not\subset \mathbb{Q}$.
- L'intérieur d'une boule fermée est la boule ouverte de même centre et même rayon.

B) Adhérence (dans K) d'une partie de K.

Définition:

Soient $A \subset \mathbb{K}$, et $a \in \mathbb{K}$. On dit que a est adhérent à A lorsque tout voisinage de a rencontre A, c'est-à-dire lorsque $\forall V \in V(a), V \cap A \neq \emptyset$.

La définition revient à dire que a est adhérent à A lorsque $\forall \varepsilon > 0, B(a, \varepsilon) \cap A \neq \emptyset$ En effet :

Si $\forall V \in V(a), V \cap A \neq \emptyset$, alors «en particulier», $\forall \varepsilon > 0, B(a, \varepsilon) \cap A \neq \emptyset$, puisque les boules ouvertes de centre a et de rayon non nul sont des voisinages de a.

Inversement, tout voisinage de *a* contient une boule ouverte de centre *a*.

La définition équivaut aussi à : $\forall \varepsilon > 0, \exists x \in A, |x - a| < \varepsilon$.

On note $\mathrm{Adh}_{\mathbb{K}}(A)$ l'ensemble des points de A adhérents à A. On l'appelle « l'adhérence de A dans \mathbb{K} ».

Proposition:

 $\operatorname{Adh}_{\mathbb{K}}(A)$ est un fermé qui contient A, et c'est le plus petit des fermés contenant A, au sens de l'inclusion.

Démonstration:

- Déjà, $A \subset Adh_{\mathbb{K}}(A)$, puisque $\forall a \in A, \forall V \in V(a), a \in A \cap V$.
- Soit $\Omega = C_{\mathbb{K}} \operatorname{Adh}_{\mathbb{K}}(A)$. Montrons que Ω est ouvert :

Soit $x \in \Omega$. Montrons que $\Omega \in V(x)$.

Déjà, $x \in \Omega$, donc $x \notin Adh_{\mathbb{R}}(A)$. Il existe donc $W \in V(x)$ tel que $W \cap A = \emptyset$.

Soit alors $\varepsilon > 0$ tel que $B(x, \varepsilon) \subset W$

Alors $B(x,\varepsilon)\cap A=\emptyset$. Notons $W'=B(x,\varepsilon)$. Alors W' est un ouvert, et il est inclus dans Ω : pour tout $y\in W'$, on a $W'\in V(y)$ (car W' est ouvert), et de plus ce voisinage ne rencontre pas A, donc $y\notin \mathrm{Adh}_{\mathbb{K}}(A)$, c'est-à-dire que $y\in\Omega$. D'où l'inclusion. Donc $\Omega\in V(x)$, donc Ω est ouvert, soit $\mathrm{Adh}_{\mathbb{K}}(A)$ est fermé.

- C'est le plus petit fermé : soit F un fermé contenant A.

Montrons qu'alors $Adh_{\mathbb{K}}(A) \subset F$

Soit $x \in Adh_{\mathbb{K}}(A)$. Montrons que $x \in F$.

Supposons que $x \notin F$. Ainsi, $x \in C_{\mathbb{K}}F$.

Comme $C_{\mathbb{R}}F$ est ouvert, il existe $V \in V(x)$ tel que $V \subset C_{\mathbb{R}}F$, c'est-à-dire que $V \cap F = \emptyset$. Donc $V \cap A = \emptyset$ (car $A \subset F$), ce qui contredit la définition de x puisque $x \in \operatorname{Adh}_{\mathbb{R}}(A)$. Donc $x \in F$. Donc $\operatorname{Adh}_{\mathbb{R}}(A) \subset F$.

Exemples:

L'adhérence de [a,b] dans \mathbb{R} avec $a,b \in \mathbb{R}$ est [a,b].

L'adhérence dans \mathbb{R} de \mathbb{Q} est \mathbb{R} .

 $Adh_{\mathbb{R}}(B(a,r)) = \overline{B}(a,r)$

V Les suites et le vocabulaire de la topologie

Proposition:

Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{K}^{\mathbb{N}}$, soit $l\in\mathbb{K}$. On a l'équivalence :

 $(u_n)_{n\in\mathbb{N}}$ converge vers $l \Leftrightarrow \forall V \in V(l), \exists N \in \mathbb{N}, \forall n \geq N, u_n \in V$

Démonstration:

 \Rightarrow : supposons que $(u_n)_{n \in \mathbb{N}}$ converge vers l. Soit $V \in V(l)$.

Soit $\varepsilon > 0$ tel que $B(l, \varepsilon) \subset V$. Comme $(u_n)_{n \in \mathbb{N}}$ converge vers l, il existe $N \in \mathbb{N}$ tel que

 $\forall n \ge N$, $|u_n - l| < \varepsilon$, c'est-à-dire tel que $\forall n \ge N, u_n \in B(l, \varepsilon) \subset V$

D'où l'implication puisque ce résultat est valable pour tout $V \in V(l)$.

 \Leftarrow : supposons que $\forall V \in V(l), \exists N \in \mathbb{N}, \forall n \geq N, u_n \in V$

Soit $\varepsilon > 0$. Alors $B(l, \varepsilon) \in V(l)$. Il existe donc $N \in \mathbb{N}$ tel que $\forall n \ge N, u_n \in B(l, \varepsilon)$, c'est-à-dire tel que $\forall n \ge N, |u_n - l| < \varepsilon$.

D'où l'autre implication.

Proposition:

Définition de l'adhérence avec les suites :

Soit $A \subset \mathbb{K}$, et $a \in \mathbb{K}$. On a les équivalences :

 $a \in Adh_{\kappa}(A) \Leftrightarrow il$ existe une suite d'éléments de A qui converge vers a.

Démonstration:

 \Rightarrow : Soit $a \in Adh_{\mathbb{K}}(A)$.

Pour tout $n \in \mathbb{N}^*$, $B(a, \frac{1}{n}) \cap A \neq \emptyset$. On peut donc choisir $u_n \in B(a, \frac{1}{n}) \cap A$.

Alors $(u_n)_{n\in\mathbb{N}^*}$ est une suite d'éléments de A, et :

 $\forall n \in \mathbb{N}^*, |u_n - a| < \frac{1}{n}$. Donc d'après le théorème des gendarmes $(u_n)_{n \in \mathbb{N}^*}$ tend vers a.

 \Leftarrow Soit $a \in \mathbb{K}$. Supposons qu'il existe $(u_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}}$ qui converge vers a.

Soit $\varepsilon > 0$. Il existe alors $N \in \mathbb{N}$ tel que $\forall n \ge N, u_n \in B(a, \varepsilon)$.

Comme $u_N \in A$, on a $A \cap B(a, \varepsilon) \neq \emptyset$. Comme le résultat est valable pour tout $\varepsilon > 0$, on a bien $a \in Adh_{\pi}(A)$.

VI Partie dense dans une autre

Soient $A, B \subset \mathbb{K}$, avec $A \subset B$.

On dit que A est dense dans B lorsque $B \subset Adh_{\kappa}(A)$

Ou encore lorsque $\forall b \in B, \forall \varepsilon > 0, B(b, \varepsilon) \cap Adh_{\kappa}(A) \neq \emptyset$

Ou quand tout point de *B* est limite d'une suite d'éléments de *A*.

Par exemple, Q est dense dans R.

VII Compléments (dans R)

Définition:

Un voisinage de $+\infty$, c'est une partie de $\mathbb R$ qui contient un intervalle du type $c,+\infty[$, avec $c \in \mathbb R$. De même, un voisinage de $-\infty$ est une partie de $\mathbb R$ qui contient un intervalle du type $c,-\infty[$.

Définition:

On définit de même pour $-\infty$.

On note $\mathrm{Adh}_{\overline{\mathbb{R}}}(A)$ l'ensemble des points de $\overline{\mathbb{R}}$ adhérents à A.

Exemple:

$$A =]0;5[\cup]5;+\infty[$$

$$Adh_{\mathbb{R}}(A) = A \cup \{0;5\}$$

$$Adh_{\mathbb{R}}(A) = A \cup \{0;5;+\infty\}$$

Remarques:

Soit
$$l \in \overline{\mathbb{R}}$$
, $(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$.

Alors $(u_n)_{n \in \mathbb{N}}$ tend vers $l \iff \forall V \in V(l), \exists N \in \mathbb{N}, \forall n \geq N, u_n \in V$

 $V(+\infty)$ est stable par extension et par intersection finie.

De même pour $-\infty$.