Exercise 3

$Mark\ Dunning$

Last modified: 22 Dec 2016

Reading the data

```
rawData <- read.delim("countData.txt")
rawData[1:10,]</pre>
```

##		Patient	Nuclei	NB_Amp	NB_Nor	NB_Del
##	1	1	65	0	63	2
##	2	2	51	3	43	5
##	3	3	37	2	35	0
##	4	4	37	2	35	0
##	5	5	45	2	42	1
##	6	6	46	4	41	1
##	7	7	65	1	64	0
##	8	8	59	1	54	4
##	9	9	49	0	48	1
##	10	10	46	0	45	1

Analysis

```
prop <- rawData$NB_Amp / rawData$Nuclei
amp <- which(prop > 0.33)
```

Plotting

```
plot(prop, ylim=c(0,1.2)) # plot a simple chart of NB amplifications abline(h=0.33, lwd=1.5, lty=2) # Add a dotted line at 33%
```


Write out the results

```
# Write out results table as comma separated values file
write.csv(rawData[amp,],file="selectedSamples.csv")
```

Exercise

```
norm <- which(prop < 0.33 & rawData$NB_Del == 0)
norm

## [1] 3 4 7 15 20 24 36 37 42 47
write.csv(rawData[norm,], "My_NB_output.csv")</pre>
```