Q1) Let $u = (u_1, u_2)$ and $v = (v_1, v_2)$ be the vectors in \mathbb{R}^2 . Verify that the weighted Euclidean inner product $< u, v > = 3u_1v_1 + 2u_2v_2$ satisfies the four inner product axioms.

 $< p, q > = \int_{-1}^{1} p(x)q(x)dx$.

Q2) Let p = x, $q = x^2$ and inner product is defined as

Find ||p|| and determine whether p and q are orthogonal or not.