Homework1

Qi'ao Chen 21210160025

September 28, 2021

Exercise 1 (0). Show that $[a]_{\sim} = [b]_{\sim}$ if and only if $a \sim b$, and that $[a]_{\sim} \cap [b]_{\sim} = \emptyset$ if $a \nsim b$

Proof. If $[a]_{\sim} = [b]_{\sim}$, then for all $x \in [a]_{\sim}$, $x \in [b]_{\sim}$. As $a \in [a]_{\sim}$, $a \in [b]_{\sim}$, that is, $a \sim b$.

If $a \sim b$, then for all $x \in [a]_{\sim}$, as $x \sim a$ and $a \sim b$, then $x \sim b$ and hence $x \in [b]_{\sim}$. Thus $[a]_{\sim} \subset [b]_{\sim}$. Similarly, $[b]_{\sim} \subset [a]_{\sim}$. Hence $[a]_{\sim} = [b]_{\sim}$

If $[a]_{\sim} \cap [b]_{\sim} = \emptyset$ and suppose $a \sim b$. Then $[a]_{\sim} = [b]_{\sim}$. As $a \in [a]_{\sim}$, $[a]_{\sim}$ is not empty and hence $[a]_{\sim} \cap [b]_{\sim} \neq \emptyset$, a contradiction.

If $a \nsim b$ and suppose $[a]_{\sim} \cap [b]_{\sim} \neq \emptyset$, let $x \in [a]_{\sim} \cap [b]_{\sim}$. Then $x \sim a$ and $x \sim b$, and so $a \sim b$, a contradiction

Exercise 2. Suppose a binary relation (E', \approx) is elementary equivalent to an equivalence relation (E, \sim) . Show that \approx is an equivalence relation

Proof. $S_{\omega}(E',E) \neq \emptyset$.

- 1. \approx is reflexive. For any $x' \in E'$, as $\emptyset \in S_{\omega}(E', E)$, there is a $x \in E$ such that $\{(x', x)\}$ is a local isomorphism from E' to E, which means that $x' \approx x'$ if and only if $x \sim x$. Since \sim is an equivalence relation, $x \sim x$, hence $x' \approx x'$
- 2. \approx is symmetric. For any $x',y'\in E'$ and $x'\approx y'$, as $\emptyset\in S_{\omega}(E',E)\subset S_2(E',E)$, we have a local isomorphism $\{(x',x),(y',y)\}$ from E' onto E. Then $x\sim y$ and hence $y\sim x$ as \sim is symmetric. Consequently $y'\approx x'$
- 3. \approx is transitive. For any $x',y',z'\in E'$, $x'\approx y'$ and $y'\approx z'$. As $\emptyset\in S_{\omega}(E',E)\subset S_3(E',E)$, we have a local isomorphism $\{(x',x),(y',y),(z',z)\}$ from E' onto E. Then $x\sim y$ and $y\sim z$ and hence $x\sim z$. Thus we have $x'\approx z'$

Exercise 3. Show that \mathcal{K} is non-empty

Proof. Take a injective function $f:\omega\to E$, and we define S_n for all nonzero $n\in\omega$ as

$$S_n = \left\{ f(i) \mid i \in \omega \wedge \frac{n(n-1)}{2} \leq i < \frac{n(n+1)}{2} \right\}$$

and $S_{\omega} = E \smallsetminus f(\omega)$. Then

$$S = \{S_\omega\} \cup \bigcup_{n \in \omega} \{S_n\}$$

forms a partition of E. And for each nonzero $n \in \omega$, $|S_n| = n$.

Let $\sim_S = \{(x,y) \in E^2 \mid \exists \alpha \in \omega + 1 (x \in S_\alpha \land y \in S_\alpha) \}$ defined by S. Then $\sim_S \in \mathcal{K}$ and hence \mathcal{K} is non-empty. \square

Exercise 4. Suppose that $(E, \sim) \in \mathcal{K}$ and (E', \approx) is elementarily equivalent to (E, \sim) . Show that $(E', \approx) \in \mathcal{K}$.

Proof. From Exercise 2 we know that \approx is an equivalence relation on E'. For each nonzero $n \in \omega$, (E, \sim) has exactly one equivalence class of size n, denoted by $S_n = \{e_1, \ldots, e_n\}$. As $\emptyset \in S_\omega(E, E') \subset S_{n+1}(E, E')$, we have a local isomorphism $s \in S_1(E, E')$ such that $s(e_i) = e_i'$ for all $i = 1, 2, \ldots, n$ and $e_i' \in E'$. Let $S_n' = \{e_1', \ldots, e_n'\}$, then each pair of elements in S_n' is equivalent in the sense of \approx . If there is $e' \in E' \setminus S_n'$ such that $e' \approx e_1'$, then as s is an 1-isomorphism, there should be some other element e in E such that $e \sim e_1$, which is impossible. Hence S_n' is an equivalence class in E' of size n.

If there is another equivalence class S_n'' of size n in E'. As $\emptyset \in S_\omega(E',E) \subset S_{2n+1}(E',E)$, we can construct a 1-isomorphism r with $\mathrm{dom}(r) = S_n' \cup S_n''$. As S_n'' and S_n'' are two distinct equivalence class, $\mathrm{im}(r)$ is also a union of two distinct equivalence class of size n. But (E,\sim) only has exactly one equivalence class of size n, we get a contradiction. Thus for n=1,2,3,..., (E',\approx) has exactly one equivalence class of size n. Thus $(E',\approx) \in \mathcal{K}$

Exercise 5. Suppose that (E, \sim) and (E', \approx) are both in \mathcal{K} . Let s be a local isomorphism from (E, \sim) to (E', \approx) , and let $p \geq 0$. Suppose that for every $a \in \text{dom}(s)$, the \sim -equivalence class of a has the same size as the \approx -equivalence class of s(a), or both equivalence classes have size greater than p. Then s is a p-isomorphism from (E, \sim) to (E', \cong)

Proof. We prove this by induction on p.

If p = 0, then s is a 0-isomorphism by definition

If p = n + 1. We now prove that s is a n + 1-isomorphism.

For every $e \in E \setminus dom(s)$, we choose $e' \in E'$ for different cases:

- 1. if there is a $x \in E$ such that $e \sim x$, then as $|[x]_{\sim}| = |[s(x)]_{\approx}|$ or both $|[x]_{\sim}|$ and $|[s(x)]_{\approx}|$ are greater than n+1, we are able to choose a $e' \in E' \setminus \operatorname{im}(s)$ with $e' \sim s(x)$.
- 2. If there is no $x \in E$ with $e \sim x$ and $|[e]_{\sim}| = m \leq n$. If there is $y \in \operatorname{im}(s)$ with $|[y]_{\approx}| = |[e]_{\sim}|$, then there will be a n-m+1-isomorphism $u \supset s$ maps a subset of $[s^{-1}(y)]_{\sim}$ onto $[y]_{\approx}$, otherwise there will be a contradiction if u is not onto. Also as $n-m+1 \geq 1$, $[s^{-1}(y)]_{\sim} = [y]_{\approx}$, which leads to another contradiction. Hence there is no $y \in \operatorname{im}(s)$ with $|[y]_{\approx}|$. Then we pick an e' from the equivalence class of size m from E'.
- 3. If there is no $x \in E$ with $e \sim x$ and $|[e]_{\sim}| > n$, then choose a element e' from a equivalence class $S'_{>n}$ of size greater than n from E' with $S'_{>n} \cap \operatorname{im}(s) = \emptyset$.

Let $t = s \cup \{(e, e')\}$. Then t is a local isomorphism by our construction and the conditions in exercise are satisfied. Hence t is an n-isomorphism by induction. Thus forth condition is satisfied.

The back condition is similar.

Hence s is an n + 1-isomorphism

Exercise 6. Suppose that (E, \sim) and (E', \approx) are both in \mathcal{K} . Show that (E, \sim) is elementarily equivalent to (E', \approx)

Proof. We need to prove that for every $p \in \omega$, $S_p(E,E')$ is not empty. But for local isomorphism \emptyset , the condition in Exercise 5 are always satisfied and $\emptyset \in S_p(E,E')$. Hence $S_p(E,E')$ are not empty for all $p \in \omega$.

Thus
$$(E, \sim)$$
 is elementarily equivalent to (E', \approx) .

Exercise 7. Construct two equivalence relations (E, \sim) and (E', \approx) s.t. $(E, \sim) \sim_{\omega} (E', \approx)$, but $(E, \sim) \not\sim_{\infty} (E', \approx)$.

Proof. Let
$$E = \mathbb{Q}, E' = \mathbb{R}$$
, and $\sim = \{(x, y) \mid x - y \in \mathbb{Z}\}.$