# 概率论与数理统计统计量与经验分布函数

主讲人:郑旭玲



信息科学与技术学院

# 01

# 统计量



统计量 样本 统计推断

不含任何未知参数的样本的函数称为统计量。它是完全由样本决定的量。

### > 一、统计量



### 定义

设 $X_1, X_2, \dots, X_n$ 是来自总体X的一个样本,  $g(X_1, X_2, \dots, X_n)$ 是 $X_1, X_2, \dots, X_n$ 的函数, 若g中不含未知参数,则称 $g(X_1, X_2, \dots, X_n)$ 是一个统计量。

设 $X_1, X_2, \cdots X_n$ 是来自总体X的一个样本,  $x_1, x_2, \cdots x_n$ 是一个样本的观察值,则 $g(x_1, x_2, \cdots x_n)$  是统计量 $g(X_1, X_2, \cdots X_n)$ 的观察值。

### > 一、统计量

例

设 $X_1$ , ...,  $X_n$ 为来自总体  $X \sim N(\mu, \sigma^2)$  的一个样本,其中 $\mu$  未知, $\sigma^2$ 已知,问下列随机变量中哪些是统计量?

[1] 
$$\frac{1}{n} \sum_{i=1}^{n} X_i$$
 [2]  $\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$  [3]  $\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$ 

[4] 
$$\frac{1}{n} \sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma}\right)^2$$
 [5]  $X_1^2 + X_2^2 + \sigma^2$  [6]  $2\mu X_1 X_2 ... X_n$ 

### 一、统计量

### 【几个常见统计量】

它反映了总体 均值的信息

样本平均值 
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

它反映了总体 方差的信息

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

### 一、统计量

样本方差 
$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$
  

$$= \frac{1}{n-1} \sum_{i=1}^n (X_i^2 - 2X_i \bar{X} + \bar{X}^2)$$

$$= \frac{1}{n-1} \left( \sum_{i=1}^n X_i^2 - 2n(\frac{1}{n} \sum_{i=1}^n X_i) \bar{X} + n\bar{X}^2 \right)$$

$$= \frac{1}{n-1} \left( \sum_{i=1}^n X_i^2 - 2n\bar{X}^2 + n\bar{X}^2 \right)$$

$$= \frac{1}{n-1} \left( \sum_{i=1}^n X_i^2 - n\bar{X}^2 \right)$$

### 、统计量

### 【几个常见统计量】

### 它反映了总体 均值的信息

样本平均值 
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

### 它反映了总体 方差的信息

样本方差 
$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \frac{1}{n-1} \left( \sum_{i=1}^{n} X_{i}^{2} - n\bar{X}^{2} \right)$$

样本标准差 
$$S = \sqrt{S^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$$

### · 一、统计量

### 【几个常见统计量】

它反映了总体k 阶矩的信息

样本 
$$k$$
 阶原点矩  $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k, k = 1, 2, ...$ 

其中, 
$$A_1 = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

它反映了总体k 阶 中心矩的信息

样本 
$$k$$
 阶中心矩  $B_k = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^k, \quad k = 2, 3, ...$ 

【辨析】 
$$B_2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$$
  $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$ 

### 一、统计量

### 【样本方差S<sup>2</sup>的期望】

设总体X(不管服从什么分布,只要均值和方差存在)的均值为 $\mu$ ,方差为 $\sigma^2$ , $X_1, X_2, ..., X_n$ 是来自X的一个样本, $\bar{X}, S^2$ 分别是样本均值和样本方差,则有

$$E(\bar{X}) = E(\frac{1}{n} \sum_{i=1}^{n} X_i) = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = \mu$$

$$D(\bar{X}) = D(\frac{1}{n} \sum_{i=1}^{n} X_i) = \frac{1}{n^2} \sum_{i=1}^{n} D(X_i) = \frac{\sigma^2}{n}$$

### 一、统计量

### 【样本方差S<sup>2</sup>的期望】

$$E(S^{2}) = E\left\{\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}\right\} = E\left\{\frac{1}{n-1}\left(\sum_{i=1}^{n}X_{i}^{2}-n\bar{X}^{2}\right)\right\}$$

$$= \frac{1}{n-1} \left\{ \sum_{i=1}^{n} E(X_i^2) - nE[(\bar{X})^2] \right\}$$

$$: E(X_i^2) = D(X_i) + (EX_i)^2 = \sigma^2 + \mu^2$$

$$E[(\overline{X})^2] = D(\overline{X}) + [E(\overline{X})]^2 = \frac{\sigma^2}{n} + \mu^2$$

【辨析】 
$$B_2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

$$E(B_2) = \frac{n-1}{n} \sigma^2$$

$$\therefore E(S^2) = \frac{1}{n-1} [n(\sigma^2 + \mu^2) - n(\frac{\sigma^2}{n} + \mu^2)] = \sigma^2$$

### > -

### 一、统计量

### 【统计量的观察值】将样本观察值代入,便可求得统计量的观察值。

样本平均值 
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

### 样本方差

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

### 样本标准差

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

### 样本k阶原点矩

$$\alpha_k = \frac{1}{n} \sum_{i=1}^n x_i^k, \quad k = 1, 2, \dots$$

### 样本k阶中心矩

$$b_k = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^k, \ k = 2, 3, \dots$$

# 2

## 经验分布函数

### **二**、经验分布函数



经验分布函数 $F_n(x)$ 为

$$F_n(x) = \frac{1}{n} s(x), -\infty < x < \infty$$

对于一个样本,经验分布函数  $F_n(X)$ 的观察值 (仍以  $F_n(X)$ 表示)是很容易得到的。



### 二、经验分布函数

例

# 下面给出了84个伊特拉斯坎(Etruscan)人男子的头颅的最大宽度(mm)。

| 141 | 148 | 132 | 138 | 154 | 142 | 150 | 146 | 155 | 158 | 150 | 140 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 147 | 148 | 144 | 150 | 149 | 145 | 149 | 158 | 143 | 141 | 144 | 144 |
| 126 | 140 | 144 | 142 | 141 | 140 | 145 | 135 | 147 | 146 | 141 | 136 |
| 140 | 146 | 142 | 137 | 148 | 154 | 137 | 139 | 143 | 140 | 131 | 143 |
| 141 | 149 | 148 | 135 | 148 | 152 | 143 | 144 | 141 | 143 | 147 | 146 |
| 150 | 132 | 142 | 142 | 143 | 153 | 149 | 146 | 149 | 138 | 142 | 149 |
| 142 | 137 | 134 | 144 | 146 | 147 | 140 | 142 | 140 | 137 | 152 | 145 |

### 一、经验分布函数

### 计算经验分布函数观察值的步骤:

- 1. 对样本数据从小到大进行排序,合并相同数据, 并统计频数;
- 2. 用频数除以总数计算频率值;
- 3. 计算累积频率。



| 数据  | 频数 | 频率       | 累积频率     | 区间        | 数据  | 频数 | 频率       | 累积频率     | 区间        |
|-----|----|----------|----------|-----------|-----|----|----------|----------|-----------|
|     |    |          | 0        | x<128     | 143 | 6  | 0.071429 | 0.5      | 143≤x<144 |
| 126 | 1  | 0.011905 | 0.011905 | 126≤x<131 | 144 | 6  | 0.071429 | 0.571429 | 144≤x<145 |
| 131 | 1  | 0.011905 | 0.02381  | 131≤x<132 | 145 | 3  | 0.035714 | 0.607143 | 145≤x<146 |
| 132 | 2  | 0.02381  | 0.047619 | 132≤x<134 | 146 | 6  | 0.071429 | 0.678571 | 146≤x<147 |
| 134 | 1  | 0.011905 | 0.059524 | 134≤x<135 | 147 | 4  | 0.047619 | 0.72619  | 147≤x<148 |
| 135 | 2  | 0.02381  | 0.083333 | 135≤x<136 | 148 | 5  | 0.059524 | 0.785714 | 148≤x<149 |
| 136 | 1  | 0.011905 | 0.095238 | 136≤x<137 | 149 | 6  | 0.071429 | 0.857143 | 149≤x<150 |
| 137 | 4  | 0.047619 | 0.142857 | 137≤x<138 | 150 | 4  | 0.047619 | 0.904762 | 150≤x<152 |
| 138 | 2  | 0.02381  | 0.166667 | 138≤x<139 | 152 | 2  | 0.02381  | 0.928571 | 152≤x<153 |
| 139 | 1  | 0.011905 | 0.178571 | 139≤x<140 | 153 | 1  | 0.011905 | 0.940476 | 153≤x<154 |
| 140 | 7  | 0.083333 | 0.261905 | 140≤x<141 | 154 | 2  | 0.02381  | 0.964286 | 154≤x<155 |
| 141 | 6  | 0.071429 | 0.333333 | 141≤x<142 | 155 | 1  | 0.011905 | 0.97619  | 155≤x<158 |
| 142 | 8  | 0.095238 | 0.428571 | 142≤x<143 | 158 | 2  | 0.02381  | 1        | 158≤x     |



### 二、经验分布函数



### 经验分布函数图

### > 二、经验分布函数

一般,设 $x_1, x_2, \dots, x_n$ 是总体的一个容量为 n 的样本值.

将它们按大小次序排列如下: $x_{(1)} \le x_{(2)} \le \cdots \le x_{(n)}$ 

则经验分布函数 $F_n(x)$ 的观察值为

$$F_n(x) = \begin{cases} 0, & \text{ if } x < x_{(1)} \\ \frac{k}{n}, & \text{ if } x_{(k)} \le x < x_{(k+1)}, (k = 1, 2, \dots, n-1) \\ 1, & \text{ if } x \ge x_{(n)} \end{cases}$$

### 二、经验分布函数

### 【格里汶科 (Ghivenko) 定理】

对于任一实数 x, 当 $n \to \infty$  时,  $F_n(x)$  以概率 1 一致收敛于 分布函数 F(x), 即

$$P\left\{\lim_{n\to\infty}\sup_{-\infty< x<+\infty}\left|F_n(x)-F(x)\right|=0\right\}=1.$$

对于任一实数 x当n充分大 时,经验分布函数的任一个观察值  $F_n(x)$ 与总体分布函数 F(x)只有微小的差别,从而在实际上可当作 F(x)来 使用.



### 小结

**乌** 统计量

**乌** 经验分布函数

# 谢谢大家