Tema 5.3

Arquitecturas de redes convolucionales actuales

Universidad de Sevilla

Miguel Ángel Martínez del Amor Deep Learning Departamento Ciencias de la Computación e Inteligencia Artificial

Contenidos

- Clasificación de objetos
 - Redes secuenciales (una sola secuencia de capas)
 - LeNet, AlexNet, VGG
 - Redes no secuenciales (ramas de secuencias de capas)
 - ResNet, GoogLeNet/Inception
 - Comparativa
- Detección de objetos
 - R-CNN
 - YOLO

Contenidos

- Clasificación de objetos
 - Redes secuenciales (una sola secuencia de capas)
 - LeNet, AlexNet, VGG
 - Redes no secuenciales (ramas de secuencias de capas)
 - ResNet, GoogLeNet/Inception
 - Comparativa
- Detección de objetos
 - R-CNN
 - YOLO

Clasificación de objetos

• Tareas en visión por computador

- LeNet (1990)
 - Primera red convolucional, para clasificar dígitos (MNIST).
 - Dos bloques de conv y pooling, y 2 FC.

- AlexNet (2012)
 - Éxito en ILSRVC con ImageNet.
 - 2 capas conv, pooling
 - 3 capas conv, una pooling
 - Dropout
 - FC con 2 capas

- **ZFNet** (2013):
 - Ganó ILSRVC2013.
 - Estructura similar a AlexNet pero con más elementos.
 - Cambio de hiperparámetros para entrenarlo.

- **VGG** (2014):
 - Versión VGG16 y VGG19 (con 16 y 19 capas)
 - Ganó ILSRVC2014 en clasificación y localización de objetos.
 - Convolución 3x3 (con efectividad de 5x5)
 - Pooling 2x2

- **ResNet** (2015):
 - Con la profundidad de la red se producen problemas de desvanecimiento o explosión de los gradientes.
 - Idea: bloques residuales, propagando la entrada del bloque a su salida

• ResNet:

- Batch Normalization después de cada capa convolucional
- Inicialización He et al (Xavier/2)
- SGD + Momentum (0.9), learning rate: 0,1
- Tamaño Mini-batch 256
- Regularización L2 10-5
- No dropout

• ResNet:

- Uso de **Global Average Pooling (GAP)** en sustitucion de las capas totalmente conectadas.
 - Funcionamiento: toman el **promedio de cada mapa de características**.
 - Con cada promedio se crea un vector que pasa a la capa de clasificación.
- Al tener una naturaleza más cercana a las estruc la red a crear una correspondencia entre su resp y la clasificación.
- Ventajas:
 - Son más robustas a la traslación.
 - No se necesitan parámetros.

- Inception V1/GoogLeNet (2014):
 - Problema:
 - Elegir el tamaño de kernel es dificil:
 - tamaño grande (información global),
 - tamaño pequeño (información local).
 - Redes muy profundas son propensas al overfitting y al decaimiento del gradiente.
 - Aplicar capas convolucionales es costoso computacionalmente.
 - Solución: bloques inception:
 - Filtros de distinto tamaño en el mismo nivel
 - Extracción de características multinivel

• Inception V1:

(a) Inception module, naïve version

(b) Inception module with dimension reductions

• Inception V1:

- 9 módulos inception (total 27 capas), tras una fase stem (inicial)
- Uso de GAP en vez de FC.
- Para prevenir el vanishing gradient, incluyen dos clasificadores auxiliares.

- **Inception V2 (2015)**: aligeramiento de los módulos inception factorizando convoluciones 5x5 a 2 de 3x3.
- Inception V3 (2015): incluye las mejoras del Inception V2 más:
 - Optimizador RMSProp.
 - Factorización de las convoluciones 7x7.
 - BatchNorm en los clasificacores auxiliares.
 - Label smoothing: regularizador añadido a la función de pérdida.
- Inception V4 (2016): modificación de operaciones en stem (inicio antes de módulos inception), y nuevos bloques de reducción.
- Inception-ResNet (2016): módulos inception con residuos, al estilo del bloque residual en ResNet.
- Xception (2016): extensión de la arquitectura inception

Comparativa

Year	CNN	Developed by	Place	Top-5 error rate	No. of parameters
1998	LeNet(8)	Yann LeCun et al			60 thousand
2012	AlexNet(7)	Alex Krizhevsky, Geoffrey Hinton, Ilya Sutskever	1st	15.3%	60 million
2013	ZFNet()	Matthew Zeiler and Rob Fergus	1st	14.8%	
2014	GoogLeNet(1 9)	Google	1st	6.67%	4 million
2014	VGG Net(16)	Simonyan, Zisserman	2nd	7.3%	138 million
2015	ResNet(152)	Kaiming He	1st	3.6%	

Contenidos

- Clasificación de objetos
 - Redes secuenciales (una sola secuencia de capas)
 - LeNet, AlexNet, VGG
 - Redes no secuenciales (ramas de secuencias de capas)
 - ResNet, GoogLeNet/Inception
 - Comparativa
- Detección de objetos
 - R-CNN
 - YOLO

• Tareas en visión por computador

Datasets

	PASCAL VOC (2010)	ImageNet Detection (ILSVRC 2017)	MS-COCO (2019)
Número de clases	20	200	80
Número de imágenes (train + val)	20.000	470.000	330.000
Media objetos por imagen	2,4	1,1	5

- R-CNN (2014): familia de modelos creados en Microsoft Research
 - Region proposal: selección de bounding boxes candidatos (selective search)
 - Feature extractor: extrae las características de cada región candidato usando una CNN (AlexNet con capa FC re-entrenada)
 - Classifier: clasifica las regiones en una clase

R-CNN: Regions with CNN features

1. Input image

2. Extract region proposals (~2k)

3. Compute CNN features

4. Classify regions

tvmonitor? no.

aeroplane? no.

→ person? yes.

- Fast R-CNN (2015):
 - Un solo modelo en vez de un pipeline de módulos
 - La imagen va directa a una red convolucional (VGG-16), donde las capas FC se reemplazan por capa Rol Pooling, que extrae las características para una región candidata.

- Faster R-CNN (2016):
 - Region Proposal Network: CNN para proponer regiones y el tipo de objeto a considerar.
 - Fast R-CNN: extractor de características de las regiones propuestas, devolviendo el bounding box y las clases

- YOLO (You Only Look Once, 2015):
 - Más rápido que los R-CNN, pero menos preciso
 - Divide la imagen en un grid
 - Por cada celda del grid, predice:
 - Boxes B
 - Clases
 - Aplica regresión para completar la imagen

- YOLO (You Only Look Once, 2015):
 - Resultados

Real-Time Detectors	Train	mAP	FPS
100Hz DPM [30]	2007	16.0	100
30Hz DPM [30]	2007	26.1	30
Fast YOLO	2007+2012	52.7	155
YOLO	2007+2012	63.4	45
Less Than Real-Time		100	
Fastest DPM [37]	2007	30.4	15
R-CNN Minus R [20]	2007	53.5	6
Fast R-CNN [14]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[27]	2007+2012	73.2	7
Faster R-CNN ZF [27]	2007+2012	62.1	18

- YOLOv2 (2016):
 - Entrenado con más objetos (9000).
 - Mejoras en la red (uso de BatchNorm).
 - Pre-calculado de bounding boxes usando un análisis de k-medias
- YOLOv3 (2018):
 - Mejoras menores: red más profunda, etc.

Recapitulación

- CNNs para clasificación de objetos
 - LeNet, AlexNet, VGG, ResNet, Inception, ...
 - Las hemos clasificado en redes **secuenciales** y **no secuenciales**, según si en el pipeline de capas hay ramificaciones
- CNNs para detección de objetos
 - Familias R-CNN vs YOLO