Seminar: Deep Reinforcement Learning for UAV Networks

Le Viet Hung

Computer Communications Lab, The University of Aizu hungle.dut@gmail.com

May 22, 2025

Contents

- Application of UAV Networks
- 2 Deep Reinforcement Learning for UAV Networks
- About Dr. Linh's paper
- 4 Limitation and Proposal
- References

Application of UAVs

 UAVs offer unprecedented flexibility in providing services in remote and inaccessible areas, where traditional infrastructure is unavailable or inadequate.

Figure: UAV applications

Application of UAV Networks

Data Access, Sensing, and Collection:

 In IoT applications, transmitting data to nearby Base Stations (BSs) can be challenging for wireless nodes → UAVs gather data from IoT devices and then transmit this data to the Data Center

Figure: Data Access, Sensing, and Collection

Application of UAV Networks

Localization:

• UAVs play a crucial role in scenarios like target tracking, and positioning

Figure: Localization

Application of UAV Networks

(Non-Terrestrial Networks)NTN-based Communication:

 UAVs are leveraged to assist as aerial base stations in providing network connectivity to ground users.

Figure: NTN-based Communication

Introduction to Reinforcement Learning

Traditional methods, such as linear programming and convex optimization are often designed for static environments, while Reinforcement Learning works well in dynamic environments.

Reinforcement Learning:

Figure: Reinforcement Learning

- 3 key components of RL: Action, State, Reward.
- Agent interact with Environment: Agent at the State takes an Action and then Environment return Reward and the next State

How to apply Reinforcement Learning for UAV Networks

Figure: How to apply DRL to UAV Networks

- Step 1: Create UAV Environment
- Step 2: Define State, Action, Reward regarding Elements, Optimization objectives.
- 3 Step 3: Choose the Deep Reinforcement Learning algorithm for UAV Environment

Challenge of Applying DRL for UAV Networks

High Dimensionality and Computational Complexity

 High-dimensional state and action spaces → Requires significant computational resources and extended training times.

Multi-agent Coordination

 The number of agents (UAVs) increases → The growing action spaces and interactions → Complexity of learning policies increases between agents

Modeling Realistic Environments

- UAV communication networks operate in highly dynamic environments (mobility, ...) → DRL methods must adapt to dynamic conditions
- Reward Function Design and Convergence
 - Poorly designed rewards can lead to suboptimal policies or even divergence during training. In UAV networks, multiple objectives are involved → Balancing conflicting rewards poses a challenge

UAVs are deployed to support mBS in providing data services to users

 To access the internet, the data rate that the user perceives need to be higher than a minimum data rate threshold

Objective:

• UAVs and mBS maximize the number of satisfied users that can access the internet

Figure: Comparison between With UAVs' support and Without UAVs' support

Limitation:

- ullet In fact, UAVs can not move endlessly o They need to be **recharged**
- If 3 UAVs are charged at the same time, there aren't UAVs supporting users for a certain period of time \rightarrow UAVs need to be scheduled

Recent works:

Paper	Journal/Conference	Scheduling UAV Networks	Limitation
[1]	IEEE Globecom 2020	No	Not consider the Scheduling
[2]	IEEE Transactions on CE 2025	No	Not consider the Scheduling
[3]	IEEE WCNC 2024	Using DRL for Scheduling	Consider Scheduling but not consider UAV Trajectory

→ Almost recent works don't consider both Scheduling and UAV Trajectory → My proposal will consider both of them.

Proposal:

- Create and Train a Controller (with Deep Reinforcement Learning) to decide the time to quit/join UAV
- Besides "Quit/Join" Term, we create a new term "In Service"

Objective of Controller: 2 UAVs in service; 1 UAV charged (backup) \rightarrow Schedule the UAV Recharging

Definition of Charge, Join, Quit, In Service:

Figure: Charge, Join, Quit, In Service (1 UAV)

Figure: Objective of Controller

References

- [1] Zhang, Ran, et al. "Learning to be proactive: Self-regulation of UAV based networks with UAV and user dynamics." IEEE Transactions on Wireless Communications 20.7 (2021): 4406-4419.
- [2] Chen, Zijing, Yijun Guo, and Jianjun Hao. "Dynamic Trajectory Design for Multi-UAV Assisted Long-Term Data Collection Tasks." IEEE Transactions on Consumer Electronics (2025).
- [3] Osrhir, Youssef, Btissam El Khamlichi, and Amal El Fallah-Seghrouchni. "PPOSWC: Deep Reinforcement Learning Recharging Scheduling for Effective Service in Multi-UAV Aided Networks." 2024 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2024.

Thank you