

CET2001B Advanced data Structure

S. Y. B. Tech CSE

Semester - IV

SCHOOL OF COMPUTER ENGINEERING AND TECHNOLOGY

Graph

Graph- Basic Terminology, memory representation: Adjacency matrix, Adjacency list, Creation of Graph and Traversals,

Minimum spanning Tree- Prim's and Kruskal's Algorithms, Dikjtra's Single source shortest path, Topological sorting

08/02/23 Advanced Data Structure

Graph

- Basic Terminology
- Memory representation
- Creation of graph and traversals
- Minimum spanning tree
- Topological sorting

Graph Applications

Circuits

Definition

• A graph G consists of two sets

- \square a finite, nonempty set of vertices V(G)
- a finite, possible empty set of edges E(G)
- \Box G(V,E) represents a graph

Graph G1

Vertex Set: $V(G1) = \{0,1,2,3\}$

Edge Set: $E(G1) = \{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}$

Vertex Set:

 $V(G2)=\{0,1,2\}$

Edge Set:

 $E(G2)=\{(2,0),(2,1)\}$

Directed and Undirected Graph

- An undirected graph is one in which the pair of vertices in an edge is unordered, (v0, v1) = (v1, v0)
- A directed graph is one in which each edge is a directed pair of vertices,

Undirected Graph

Directed Graph

Degree

- The degree of a vertex is the number of edges incident to that vertex.
- For directed graph,
 - The in-degree of a vertex v is the number of edges that have v as the head
 - \Box the out-degree of a vertex v is the number of edges that have v as the tail
 - \Box If d_i is the degree of a vertex i in a graph G with n vertices and e edges, the number of edges (of undirected graph) are :-

$$e = \left(\sum_{i=0}^{n-1} d_i\right)/2$$

Examples for Degree

Undirected Graph: G1

Directed Graph: G₃

Adjacent and Incident

- If (v0, v1) is an edge in an undirected graph,

 - The edge (v0, v1) is incident on vertices v0 and v1

- If <v0, v1> is an edge in a directed graph
 - v0 is adjacent to v1, and v1 is adjacent from v0
 - The edge $\langle v0, v1 \rangle$ is incident on v0 and v1

Complete graph

- A complete graph is a graph that has the maximum number of edges
 - If or undirected graph with n vertices, the maximum number of edges is n(n-1)/2
 - If or directed graph with n vertices, the maximum number of edges is n(n-1)

Examples for Graph

Complete Graph

(b) Complete undirected graph.

No. of edges (complete undirected graph): n(n-1)/2

No. of edges (complete directed graph): n(n-1)

Subgraph and Path

• A subgraph of G is a graph G' such that V(G') is a subset of V(G) and E(G') is a subset of E(G)

• A path from vertex v_p to vertex v_q in a graph G, is a sequence of vertices, v_p , v_{i1} , v_{i2} , ..., v_{in} , v_q , such that (v_p, v_{i1}) , (v_{i1}, v_{i2}) , ..., (v_{in}, v_q) are edges in an undirected graph

• The length of a path is the number of edges on it

Example for Subgraph

 G_3

(a) Some of the subgraph of G_1

Simple path and cycle

- A simple path is a path in which all the vertices, are distinct.
- A cycle is a path, in which the first and the last vertices are same.
- In an undirected graph G, two vertices, v0 and v1, are connected if there is a path in G from v0 to v1
- An undirected graph is connected if, for every pair of distinct vertices vi, vj, there is a path from vi to vj.

Examples for Graph

Connected Graphs: G₁,G₂

Graph G₃: (not connected)

Connected Component

- A connected component of an undirected graph is a maximal connected subgraph.
- A tree is a graph that is connected and acyclic.
- A directed graph is strongly connected if there is a directed path from vi to vj and also from vj to vi.
- A strongly connected component is a maximal subgraph that is strongly connected.

Examples for Connected Component

Two Connected Components for Graphs G₄: H₁ and H₂

Examples for Strongly Connected Component

G₃ (Not strongly connected)

Strongly connected components of G₃

Graph Representation

- Adjacency Matrix
- Adjacency Lists

Adjacency Matrix

- Let G=(V,E) be a graph with n vertices.
- The adjacency matrix of G is a two-dimensional n x n array, say adj_mat
- If the edge (vi, vj) is in E(G), adj_mat[i][j]=1
- If there is no such edge in E(G), $adj_mat[i][j]=0$
- The adjacency matrix for an undirected graph is symmetric; the adjacency matrix for a digraph need not be symmetric

Adjacency Matrix

Graph G1

Adjacency Matrix for Graph G₁

Adjacency Matrix for Graph G2

Merits: Adjacency Matrix

- From the adjacency matrix, to determine the connection of vertices is easy
- The degree of a vertex is $\sum_{i=0}^{n-1} adj_{mat}[i][j]$
- For a digraph, the row sum is the out_degree, while the column sum is the in_degree

$$ind(vi) = \sum_{j=0}^{n-1} A[j,i]$$
 $outd(vi) = \sum_{j=0}^{n-1} A[i,j]$

Adjacency List: Interesting Operations

- The degree of any vertex in an undirected graph is determined by counting the no. of nodes in its adjacency list.
- No. of edges in a graph is determined in O(n+e)
- out-degree of a any vertex in a directed graph is determined by counting No. of nodes in its adjacency list.

Adjacency Lists


```
class Gnode
  { int vertex;
    node *next;
   friend class Graph;
  class Graph
private:
         Gnode *Head[20];
        int n;
public:
         Graph()
                  create head nodes for n vertices
};
```


Adjacency List for Graph G₁

```
graph()
                                                                         Allocate memory for curr node;
                                                                          curr->vertex=v;
 Accept no of vertices;
 for i=0 to n-1
                                                                          temp->next=curr;
   {Allocate a memory for head[i] node (array)
                                                                          temp=temp->next;
   head[i]->vertex=i; }
                                                                         accept the choice;
create()
                                                                        }while(ans=='y'||ans=='Y');
 for i=0 to n-1
  temp=head[i];
  do
   Accept adjacent vertex v;
   if(v==i)
      Print Self loop are not allowed;
   else
```


Graph Traversal

- Depth First Traversal
- Breadth First Traversal

Depth First Traversal (Recursive)

```
Algorithm DFS()
                                                   Algorithm DFS(int v)
                                                          print v;
 //initially no vertex will be visited
                                                         visited[v]=1;
     for( int i=0 ; i < n; i++)
                                                         for(each vertex w adjacent to v)
              visited[i]=0;
                                                                 if(!visited[w])
//start search at vertex v
                                                                         DFS(w);
  accept starting vertex v
      DFS(v);
```


Depth First Search Traversal

Task: Conduct a depth-first search of the graph starting with node D

Depth First SearchTraversal

The DFT of nodes in graph:

D

Visited Array

A		
В		
C		
D	1	
Е		
F		
G		
Н		

Visit D

The DFT of nodes in graph:

L

Visited Array

D

The DFT of nodes in graph:

D, C

Visited Array

A	
В	
C	1
D	1
Е	
F	
G	
Н	

Visit C

The DFT of nodes in graph:

D, C

Visited Array

No nodes adjacent to C; cannot continue

D

□ backtrack, i.e., pop stack and restore previous state

The DFT of nodes in graph:

D, C

Visited Array

A	
В	
С	1
D	1
Е	
F	
G	
Н	

Back to D – C has been visited, decide to visit E next

The DFT of nodes in graph:

D, C, E

Visited Array

A	
В	
C	1
D	1
E	1
F	
G	
Н	

Back to D – C has been visited, decide to visit E next

The DFT of nodes in graph:

D, C, E

Visited Array

Only G is adjacent to E

The DFT of nodes in graph:

D, C, E, G

Visited Array

A	
В	
C	1
D	1
Е	1
F	
G	1
Н	

Visit G

The DFT of nodes in graph:

D, C, E, G

Visited Array

A		
В		
С	1	
D	1	
Е	1	
F		
G	1	
Н		

Nodes D and H are adjacent to G. D has already been visited. Decide to visit H.

The DFT of nodes in graph:

D, C, E, G, H

Visited Array

A	
В	
С	1
D	1
Е	1
F	
G	1
Н	1

Visit H

The DFT of nodes in graph:

D, C, E, G, H

Visited Array

A		
В		
С	1	
D	1	
Е	1	
F		
G	1	
Н	1	

Nodes A and B are adjacent to F. Decide to visit A next.

The DFT of nodes in graph:

D, C, E, G, H, A

Visited Array

A	1
В	
C	1
D	1
Е	1
F	
G	1
Н	1

A H G E D

Visit A

The DFT of nodes in graph:

D, C, E, G, H, A

Visited Array

A	1	
В		
С	1	
D	1	
Е	1	
F		
G	1	
Н	1	

A H G E D

Only Node B is adjacent to A. Decide to visit B next.

Visited Array

A	1
В	1
C	1
D	1
Е	1
F	
G	1
Н	1

B A H G E D

The DFT of nodes in graph:

D, C, E, G, H, A, B

Visit B

The DFT of nodes in graph:

D, C, E, G, H, A, B

Visited Array

A	1	
В	1	
C	1	
D	1	
Е	1	
F		
G	1	
Н	1	

No unvisited nodes adjacent to B. Backtrack (pop the stack).

The DFT of nodes in graph:

D, C, E, G, H, A, B

Visited Array

No unvisited nodes adjacent to A. Backtrack (pop the stack).

The DFT of nodes in graph:

D, C, E, G, H, A, B

Visited Array

A	1	
В	1	
С	1	
D	1	
Е	1	
F		
G	1	
Н	1	

No unvisited nodes adjacent to H. Backtrack (pop the stack).

The DFT of nodes in graph:

D, C, E, G, H, A, B

Visited Array

A	1
В	1
C	1
D	1
Е	1
F	
G	1
Н	1

No unvisited nodes adjacent to G. Backtrack (pop the stack).

The DFT of nodes in graph:

D, C, E, G, H, A, B

Visited Array

No unvisited nodes adjacent to E. Backtrack (pop the stack).

The DFT of nodes in graph:

D, C, E, G, H, A, B

Visited Array

A	1
В	1
С	1
D	1
Е	1
F	
G	1
Н	1

F is unvisited and is adjacent to D. Decide to visit F next.

The DFT of nodes in graph:

D, C, E, G, H, A, B, F

Visited Array

A	1
В	1
С	1
D	1
Е	1
F	1
G	1
Н	1

Visit F

51

The DFT of nodes in graph:

D, C, E, G, H, A, B, F

Visited Array

No unvisited nodes adjacent to F. Backtrack.

The order nodes are visited:

D, C, E, G, H, A, B, F

Visited Array

A	√
В	√
С	√
D	√
Е	√
F	√
G	√
Н	√

No unvisited nodes adjacent to D. Backtrack.

The DFT of nodes in graph:

D, C, E, G, H, A, B, F

Visited Array

A	\checkmark
В	√
С	√
D	√
Е	√
F	√
G	√
Н	√

Stack is empty. Depth-first traversal is done.

Depth First Traversal (Non-recursive)

```
Algorithm DFS(int v)
 for all vertices of graph
      visited[i]=0;
  push(v);
  visited[v]=1;
  do
    v=pop();
    print(v);
     for(each vertex w adjacent to v)
         if(!visited[w])
           { push(w); visited[w]=1;}
 } //end for
 } while(stack not empty)
 } //end dfs
```


Graph G1

Find DFT for given graph G1 starting at vertex 0

Algorithm BFS(int v) { $for(int i=0;i \le n;i++)$ visited[i]=0;Queue q; q.insert(v); visited[v]=1while(!q.IsEmpty()) v=q.Delete();for(all vertices w adjacent to v) *if(!visited[w])* q.insert(w); visited[w]=1;

Enqueued Array

	_
A	
В	O
С	
D	
Е	
F	
G	
Н	

How is this accomplished? Simply replace the stack with a queue! Rules: (1) Maintain an *enqueued* array. (2) Visit node when *dequeued*.

Nodes visited:

Enqueued Array

A | B | C | C | D | √ | E | F | G | H |

Q:**D**

Enqueue D. Notice, D not yet visited.

Nodes visited: D

Enqueued Array

A |
B |
C | √ |
D | √ |
E | √ |
F | √ |
G |
H |

Q: C, E, F

Dequeue D. Visit D. Enqueue unenqueued nodes adjacent to D.

Nodes visited: D, C

Enqueued Array

A | B | C | √ | D | √ | F | √ | G | H |

Q:E,F

Dequeue C. Visit C. Enqueue unenqueued nodes adjacent to C.

Nodes visited: D, C, E

Enqueued Array

A	
В	
C	1
D	1
Е	1
F	V
G	
Н	

Q:F, G

Dequeue E. Visit E. Enqueue unenqueued nodes adjacent to E.

Nodes visited: D, C, E, F

Enqueued Array

A |
B |
C | √ |
D | √ |
E | √ |
F | √ |
G | √ |
H |

Q:G

Dequeue F. Visit F. Enqueue unenqueued nodes adjacent to F.

Nodes visited: D, C, E, F, G

Enqueued Array

A |
B |
C | √ |
D | √ |
E | √ |
F | √ |
G | √ |
H | √

Q:H

Dequeue G. Visit G. Enqueue unenqueued nodes adjacent to G.

Nodes visited: D, C, E, F, G, H

Enqueued Array

A	
В	
С	
D	1
Е	1
F	1
G	1
Н	

Q:A,B

Dequeue H. Visit H. Enqueue unenqueued nodes adjacent to H.

Enqueued Array

A	
В	
С	
D	1
Е	1
F	1
G	1
Н	

Q:B

Nodes visited: D, C, E, F, G, H, A

Dequeue A. Visit A. Enqueue unenqueued nodes adjacent to A.

Enqueued Array

	1
A	7
В	
C	
D	V
Е	$\sqrt{}$
F	$\sqrt{}$
G	
Н	

Q empty

Nodes visited: D, C, E, F, G, H, A, B

Dequeue B. Visit B. Enqueue unenqueued nodes adjacent to B.

Enqueued Array

A	
В	1
С	1
D	1
Е	1
F	1
G	1
Н	

Q empty

Nodes visited: D, C, E, F, G, H, A, B

Q empty. Algorithm done.

Graph G1

Find BFT for given graph G1 starting at vertex 0

xample 1:

lonsider the graph shown below. Traverse the graph shown below in breadth first order and depth first order.

Node	Adjacency List
A	F, C, B
В	A, C, G
С	A, B, D, E, F, G
D	C, F, E, J
E	C, D, G, J, K
F	A, C, D
G	B, C, E, K
J	D, E, K
K	E, G, J

Adjacency list for graph G

BFT-A,F,C,B,D,E,G,J,K DFT-A,F,D,J,K,G,E,C,B

Comparison Chart

BASIS FOR COMPARISON	BFS	DFS
Basic	Vertex-based algorithm	Edge-based algorithm
Data structure used to store the nodes	Queue	Stack
Memory consumption	Inefficient	Efficient
Structure of the constructed tree	Wide and short	Narrow and long
Traversing fashion	Oldest unvisited vertices are explored at first.	Vertices along the edge are explored in the beginning.
Optimality	Optimal for finding the shortest distance,	Not optimal
Application	Examines bipartite graph, connected component and shortest path present in a graph.	Examines two-edge connected graph, strongly connected graph, acyclic graph and topological order.

Spanning Trees

- A spanning tree is any tree that consists solely of edges in G and that includes all the vertices
- A spanning tree is a minimal subgraph, G', of G such that V(G')=V(G) and G' is connected.
- Either dfs or bfs can be used to create a spanning tree
 - When dfs is used, the resulting spanning tree is known as a depth first spanning tree
 - When bfs is used, the resulting spanning tree is known as a breadth first spanning tree

Examples of Spanning Trees

Graph G1

Possible spanning trees

73

DFS VS BFS Spanning Trees

Graph

DFS Spanning Tree

BFS Spanning Tree

Minimum Spanning Tree

- The cost of a spanning tree of a weighted undirected graph is the sum of the costs of the edges in the spanning tree
- A minimum cost spanning tree is a spanning tree of least cost
- n-1 edges from a weighted graph of n vertices with minimum cost.

- Two different algorithms can be used
 - ■Kruskal
 - Prim

Minimum Spanning Tree

Applications of MST in Network design

Telephone

__Electrical

TV cable

Computer

road

Greedy Strategy

- An optimal solution is constructed in stages
- At each stage, the best decision is made at this time
- Since this decision cannot be changed later, we make sure that the decision will result in a feasible solution
- Typically, the selection of an item at each stage is based on a least cost or a highest profit criterion

- Build a minimum cost spanning tree T by adding edges to T one at a time
- Select the edges for inclusion in T in nondecreasing order of the cost
- An edge is added to T if it does not form a cycle
- Since G is connected and has n > 0 vertices, exactly n-1 edges will be selected


```
T = \{ \};
while (T contains less than n-1 edges && E is not empty)
  choose a least cost edge (v,w) from E;
  delete (v,w) from E;
  if ((v,w) does not create a cycle in T)
  add (v,w) to T
else
       discard (v,w);
if (T contains fewer than n-1 edges)
 printf("No spanning tree\n");
```


Consider an undirected, weight graph

Sort the edges by increasing edge weight

edge	d_v	
(D,E)	1	
(D,G)	2	
(E,G)	3	
(C,D)	3	
(G,H)	3	
(C,F)	3	
(B,C)	4	

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

ed	ge	d_v	
(D	,E)	1	$\sqrt{}$
(D,	G)	2	
(E,	G)	3	
(C,	D)	3	
(G,	(H,	3	
(C	,F)	3	
(B,	C)	4	

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_v	
(D,E)	1	$\sqrt{}$
(D,G)	2	V
(E,G)	3	
(C,D)	3	
(G,H)	3	
(C,F)	3	
(B,C)	4	

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_v	
(D,E)	1	
(D,G)	2	V
(E,G)	3	χ
(C,D)	3	
(G,H)	3	
(C,F)	3	
(B,C)	4	

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Accepting edge (E,G) would create a cycle

Select first |V|-1 edges which do not generate a cycle

edge	d_v	
(D,E)	1	$\sqrt{}$
(D,G)	2	$\sqrt{}$
(E,G)	3	χ
(C,D)	3	V
(G,H)	3	
(C,F)	3	
(B,C)	4	

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_v	
(D,E)	1	V
(D,G)	2	$\sqrt{}$
(E,G)	3	χ
(C,D)	3	V
(G,H)	3	V
(C,F)	3	
(B,C)	4	

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_v	
(D,E)	1	\checkmark
(D,G)	2	V
(E,G)	3	χ
(C,D)	3	V
(G,H)	3	\checkmark
(C,F)	3	V
(B,C)	4	

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_v	
(D,E)	1	V
(D,G)	2	V
(E,G)	3	χ
(C,D)	3	V
(G,H)	3	V
(C,F)	3	1
(B,C)	4	1

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_v	
(D,E)	1	\checkmark
(D,G)	2	V
(E,G)	3	χ
(C,D)	3	√
(G,H)	3	~
(C,F)	3	1
(B,C)	4	

edge	d_v	
(B,E)	4	χ
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_v	
(D,E)	1	
(D,G)	2	
(E,G)	3	χ
(C,D)	3	
(G,H)	3	
(C,F)	3	√ √
(B,C)	4	

edge	d_v	
(B,E)	4	χ
(B,F)	4	χ
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_v	
(D,E)	1	$\sqrt{}$
(D,G)	2	V
(E,G)	3	χ
(C,D)	3	7
(G,H)	3	$\sqrt{}$
(C,F)	3	√ √
(B,C)	4	

edge	d_v	
(B,E)	4	χ
(B,F)	4	χ
(B,H)	4	χ
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_v	
(D,E)	1	$\sqrt{}$
(D,G)	2	$\sqrt{}$
(E,G)	3	χ
(C,D)	3	√
(G,H)	3	$\sqrt{}$
(C,F)	3	√
(B,C)	4	

edge	d_v	
(B,E)	4	χ
(B,F)	4	χ
(B,H)	4	χ
(A,H)	5	$\sqrt{}$
(D,F)	6	
(A,B)	8	·
(A,F)	10	

08/02/23 92

Select first |V|-1 edges which do not generate a cycle

edge	d_v	
(D,E)	1	\
(D,G)	2	
(E,G)	3	χ
(C,D)	3	V
(G,H)	3	V
(C,F)	3	
(B,C)	4	V

edge	d_v		
(B,E)	4	χ	
(B,F)	4	χ	
(B,H)	4	χ	
(A,H)	5		
(D,F)	6) not
(A,B)	8		not considered
(A,F)	10		,

Done

Total Cost = $\sum d_v = 21$


```
//Assume G has at least one vertex
TV={0}; //start with vertex 0 and no edges
for (T=\emptyset; T \text{ contains less than n-1 edges}; add(u,v) to T)
 let (u,v) be a least cost edge such that u \in TV and v \notin TV;
 if (there is no such edge ) break;
 add v to TV;
if (T contains fewer than n-1 edges)
cout << "No spanning tree\n";
```

08/02/23 94


```
Algorithm prims(start_v){
//cost[i][j] is either +ve or infinity.
//A MST is computed & stored as a set of edges in the
//array t[n][1]. t[i][0], t[i][1]) is an edge in the MST
//where 0<i<n.
// start_v be the starting vertex
//Initialize nearest
nearest [start v] =-1;
for i=0 to n-1 do
         if(i!=start_v)
                 nearest[i]= start_v;
r=0;
```

```
for i=1 to n-1 do
 { //find n-1 additional edges for t
    min = \infty
   for k=0 to n-1
   { // find j : vertex such that;
           if (nearest[k]!= -1 and cost[k, nearest[k]] <min)
            { j=k; min=cost[k, nearest[k]];}
//update tree and total cost
   t[r][0]=i, t[r][1]=nearest[i]; r=r+1;
   mincost = mincost +cost[j, nearest[j]);
   nearest[j]=-1;
//update nearest for remaining vertices
   for k=0 to n-1
            if(nearest[k]!= -1 and (cost[k, nearest[k])> cost[k, i]
           nearest[k]=j;
    return mincost:
     //end for i=1 to n-1
```

08/02/23 95

Initialize array

	K	d_v	p_{v}
A	F	8	_
В	F	8	
C	F	8	_
D	F	8	
E	F	8	
F	F	8	
G	F	8	_
Н	F	8	_

Start with any node, say D

	K	d_v	p_{v}
A			
В			
С			
D	T	0	_
E			
F			
G			
Н			

08/02/23 97

Update distances of adjacent, unselected nodes

	K	d_v	p_{v}
A			
В			
C		3	D
D	Т	0	
E		25	D
F		18	D
G		2	D
Н			

08/02/23 98

Select node with minimum distance

	K	d_v	p_{v}
A			
В			
C		3	D
D	Т	0	
E		25	D
F		18	D
G	T	2	D
Н			

Update distances of adjacent, unselected nodes

	K	d_v	p_{v}
A			
В			
С		3	D
D	Т	0	ı
E		7	G
F		18	D
G	Т	2	D
Н		3	G

Select node with minimum distance

	K	d_v	p_{v}
A			
В			
C	T	3	D
D	T	0	
E		7	G
F		18	D
G	Т	2	D
Н		3	G

Update distances of adjacent, unselected nodes

	K	d_v	p_{v}
A			
В		4	C
С	Т	3	D
D	Т	0	1
E		7	G
F		3	C
G	Т	2	D
Н		3	G

Select node with minimum distance

	K	d_v	p_{v}
A			
В		4	C
С	Т	3	D
D	Т	0	1
E		7	G
F	T	3	C
G	Т	2	D
Н		3	G

Update distances of adjacent, unselected nodes

	K	d_v	p_{v}
A		10	F
В		4	C
C	Т	3	D
D	T	0	_
E		2	F
F	T	3	C
G	Т	2	D
Н		3	G

Select node with minimum distance

	K	d_v	p_{v}
A		10	F
В		4	C
C	Т	3	D
D	Т	0	
E	T	2	F
F	Т	3	C
G	Т	2	D
Н		3	G

Update distances of adjacent, unselected nodes

	K	d_v	p_{v}
A		10	F
В		4	C
C	Т	3	D
D	Т	0	1
E	Т	2	F
F	Т	3	С
G	Т	2	D
Н		3	G

Table entries unchanged

Select node with minimum distance

	K	d_v	p_{v}
A		10	F
В		4	C
C	T	3	D
D	T	0	_
E	T	2	F
F	T	3	С
G	T	2	D
Н	T	3	G

Update distances of adjacent, unselected nodes

	K	d_v	p_{v}
A		4	Н
В		4	С
С	T	3	D
D	Т	0	_
E	T	2	F
F	T	3	С
G	T	2	D
Н	T	3	G

Select node with minimum distance

	K	d_v	p_{v}
A	T	4	Н
В		4	C
C	T	3	D
D	T	0	
E	T	2	F
F	T	3	C
G	Т	2	D
Н	Т	3	G

Prim's Algorithm

Update distances of adjacent, unselected nodes

	K	d_v	p_{v}
A	T	4	Н
В		4	C
С	Т	3	D
D	Т	0	_
E	Т	2	F
F	T	3	C
G	Т	2	D
Н	Т	3	G

Table entries unchanged

Prim's Algorithm

Select node with minimum distance

	K	d_v	p_{v}
A	Т	4	Н
В	T	4	С
C	Т	3	D
D	Т	0	1
E	Т	2	F
F	Т	3	С
G	Т	2	D
Н	Т	3	G

Prim's Algorithm

Cost of Minimum Spanning Tree = $\sum d_v = 21$

	K	d_v	p_{v}
A	T	4	Н
В	Т	4	C
C	Т	3	D
D	Т	0	
E	T	2	F
F	T	3	C
G	Т	2	D
Н	Т	3	G

Done

```
Algorithm prims(E,cost,n,t)
    // Stv be the starting vertex
        nearest [Stv] =-1;
       for i=1 to n do //Initialize nearest
           if(i!=Stv)
              nearest[i]=Stv;
       } r=1;
      for i=1 to n-1 do
      { //find n-1 additional edges for t
           min= ∞
          for k=1cto n //find minimum
          { if (nearest[k]!= -1 and cost[k, nearest[k]] <min)
                   i=k ; min= cost[k, nearest[k]];
          } //end of k loop
```

```
find j: the index(or vertex)such that;
#
     t[r][1]=j, t[r][2]=nearest[j]; r=r+1;
    mincost = mincost +cost[j, nearest[j]);
         nearest[j]=-1;
  for k=1 to n //update nearest
  { if(nearest[k]!= -1 and (cost[k, nearest[k])>
                                cost[k, i] then
                 nearest[k]=j;
       } //end of k loop
   } //end of i loop
    return mincost;
}//end of algorithm
```


Initial values of Near

For i=1 find minimum edge connecting to v1

Stv=1	
Near[1]	= -1
Near[2]	= 1
Near[3]	= 1
Near[4]	= 1
Near[5]	= 1

_	Stv=1	
	cost[2,near[2]]	=8
	cost[3,near[3]]	=4
	cost[4,near[4]]	=10
	Cost[5,near[5]]	= ∞

Cost Adjacancy Matrix

	1	2	3	4	5
1	∞	8	4	10	∞
2	8	∞	9	∞	5
3	4	9	∞	12	6
4	10	∞	12	∞	7
5	∞	5	6	7	∞

Put near[1]= -1 as it has been included in ST

	1	2	3	4	5
1	∞	8	4	10	∞
2	8	∞	9	∞	5
3	4	9	∞	12	6
4	10	∞	12	∞	7
5	∞	5	6	7	∞

Т	1 (v1)	2 (v2)	3 (cost)
1	1	3	4
2			
3			
4			
5			
6			

J=3	cost[j][near[j]])
cost[2,3] < cost[2,near[2]]	9 < 8
Cost[4,3] < cost[4,near[4]]	12< 10
Cost[5,3] < Cost[5,near[5]]	6 < ∞

j=3	
Near[1]	= -1
Near[2]	= 1
Near[3]	= -1
Near[4]	= 1
Near[5]	= 3

Put near[3]= -1 as it has been included in ST

--

For i=2 find minimum edge connecting to v1 / v3

Find next j

Cost Adjacancy Matrix

	1	2	3	4	5
1	∞	8	4	10	∞
2	8	∞	9	∞	5
3	4	9	∞	12	6
4	10	∞	12	∞	7
5	∞	5	6	7	∞

j=3	
Near[1]	= -1
Near[2]	= 1
Near[3]	= -1
Near[4]	= 1
Near[5]	= 3

j=3	
cost[2,near[2]]	=8
cost[4,near[4]]	=10
Cost[5,near[5]]	= 6

Cost Adjacancy Matrix

	1	2	3	4	5
1	∞	8	4	10	∞
2	8	∞	9	∞	5
3	4	9	∞	12	6
4	10	∞	12	∞	7
5	∞	5	6	7	∞

Т	1 (v1)	2 (v2)	3 (cost)
1	1	3	4
2	3	5	6
3			
4			
5			
6	02/23		

Update Near matrix i.e. (cost [i][j] < cost[j][near[j]])

	,	 .,,,,	.,,
	J=5		
_	cost[2,5] < cost[2,near[2]]	5 < 8	_
	Cost[4,5] < cost[4,near[4]]	7< 10	

		N
j=5		
Near[1]	= -1	
Near[2]	= 5	
Near[3]	= -1	
Near[4]	= 5	
Near[5]	= -1	

Put near[5]= -1 as it has been included in ST

ा विश्वशान्तिर्धुवं ध्रुवा ॥

For i=3 find minimum edge connecting to v1 / v3/v5

Find next j

	IIIu	HEAL

Cost Adjacancy Matrix

	1	2	3	4	5
1	∞	8	4	10	∞
2	8	∞	9	∞	5
3	4	9	∞	12	6
4	10	∞	12	∞	7
5	∞	5	6	7	∞

_ j=5	_
Near[1]	= -1
Near[2]	= 5
Near[3]	= -1
Near[4]	= 5
Near[5]	= -1

j=5		
cost[2,near[2]]	=5	j=2
cost[4,near[4]]	=7	

Put near[2]= -1 as it has been included in ST

	1	2	3	4	5
1	∞	8	4	10	∞
2	8	∞	9	∞	5
3	4	9	∞	12	6
4	10	∞	12	∞	7
5	∞	5	6	7	∞

J=2	
Cost[4,2] < cost[4,near[4]]	∞ < 7

j=2	
Near[1]	= -1
Near[2]	= -1
Near[3]	= -1
Near[4]	= 5
Near[5]	= -1

Т	1 (v1)	2 (v2)	3 (cost)
1	1	3	4
2	3	5	6
3	2	5	5
4	4	5	7
5			
_			

Put near[4]= -1 as it has been included in ST

	1	2	3	4	5
1	∞	8	4	10	∞
2	8	∞	9	∞	5
3	4	9	∞	12	6
4	10	∞	12	∞	7
5	∞	5	6	7	∞

For	i=4	find minimum	edge co	onnecting to	v1 / v3/v5/v2

J=2	
	-
Cost[4,2] < cost[4,near[4]]	∞ < 7

j=2		
Near[1]	= -1	
Near[2]	= -1	
Near[3]	= -1	
Near[4]	= 5 j=4	
Near[5]	= -1	

1 (v1)	2 (v2)	3 (cost)
1	3	4
3	5	6
2	5	5
4	5	7
	1 3 2	1 3 3 5 2 5

Put near[4]= -1 as it has been included in ST

Analysis of Prim's Algorithm

- Run time will be O(n^2).
- Unlike Kruskal's, it doesn't need to see all of the graph at once. It can deal with it one piece at a time. It also doesn't need to worry if adding an edge will create a cycle since this algorithm deals primarily with the nodes, and not the edges.

Home Assignment

Find MST for given Graph G1 using Prim's and Kruskal Algorithm

Comparison Prim's and Kruskal's Algorithm

Prim's Algorithm	Kruskal's Algorithm
Starts to build the Minimum Spanning Tree from any vertex in the graph.	Starts to build the Minimum Spanning Tree from the vertex carrying minimum weight in the graph.
Time complexity of O(V ²)	Time complexity is O(E log V)
Gives connected component as well as it works only on connected graph.	Generate forest(disconnected components) at any instant as well as it can work on disconnected components
Runs faster in dense graphs.	Runs faster in sparse graphs.
Prefer list data structures.	Prefer heap data structures.
Applications -Travelling Salesman Problem, Network for roads and Rail tracks connecting all the cities etc.	Applications -e LAN connection, TV Network etc.

Shortest Path Problems

- Directed weighted graph.
- Path length is sum of weights of edges on path.
- The vertex at which the path begins is the source vertex.
- The vertex at which the path ends is the destination vertex.

Shortest Path Problems

- Single source single destination.
- Single source all destinations.
- All pairs (every vertex is a source and destination).

- Finds Single source all destination shortest paths
- Uses Greedy Method
- No negative weights are allowed
- Application
- ☐ Routing protocols in computer networks
- ☐ Google Maps and many more..

Google Maps

Routing Protocols


```
Algorithm shortestPath(v)
{ //v is source vertex
    for (i=0;i \le n; i++)
        s[i] = 0;
        dist[i]=cost[v][i];
    //put v into s
    s[v] = 1;
   dist[v] = 0;
```

```
for(j=2;j \le n; j++)
   //choose u from among those vertices not in s
      such that dist[u] is minimum;
    s[u] = 1;
    for each(w adjacent to u with s[w] = 0)
      if(dist[w] > dist[u] + cost[u][w])
           dist[w] = dist[u] + cost[u][w];
```


08/02/23 142

 Path 1	Length 0						
1 3	2						
$1 \longrightarrow 3 \longrightarrow ($	5						
1 2	6						
$1 \longrightarrow 3 \longrightarrow ($	<u>5</u> → <u>4</u> 9						
$1 \longrightarrow 3 \longrightarrow$	10	[1]			[5] 5	[6] 10	
$1 \longrightarrow 3 \longrightarrow ($	6 → 7 11	-	1	1	3		6

Analysis of Dijkstra Algorithm

- O(n) to select next destination vertex.
- O(out-degree) to update d() and p() values when adjacency lists are used.
- O(n) to update d() and p() values when adjacency matrix is used.
- Selection and update done once for each vertex to which a shortest path is found.
- Total time is $O(n^2 + e) = O(n^2)$.

shortest paths from v_0 (Single source) to all destinations

	<u>Path</u>	Length
1)	$v_0^{}v_2^{}$	10
2)	$v_0^{}v_2^{}v_3^{}$	25
3)	$v_0^{}v_2^{}v_3^{}v_1^{}$	45
4)	$v_0^{}v_4^{}$	45
	(b)	

Practice Problem

Shortest Path Tree

Topological sort

- We have a set of tasks and a set of dependencies (precedence constraints) of form "task A must be done before task B"
- Topological sort: An ordering of the tasks that conforms with the given dependencies
- Goal: Find a topological sort of the tasks or decide that there is no such ordering

Topological sort

- Applications
 - ☐ Assembly lines in industries
 - Courses arrangement in schools
 - ☐ Life related applications: Dressing order

Activity on vertex (AOV) network

An activity on vertex(AOV)network, is a digraph G in which the vertices represent tasks or activities and the edges represent precedence relations between tasks.

Predecessor :

- □ Vertex i in an AOV network G is a predecessor of vertex j iff there is a directed path from vertex i to vertex j
- □ Vertex i is an immediate predecessor of vertex j iff <i, j > is an edge in G

• Successor:

- ☐ If i is a predecessor of j, then j is a successor of i.
- ☐ If i is an immediate predecessor of j, then j is an immediate successor of i

• Example 1:

Prerequisites define precedence relations between courses. The relationship defined may be more clearly represented using a directed graph in which the vertices represent courses & the directed edges represent prerequisites.

• Each edge <i,j> implies that course i is a perquisite of course j

Course number	Course name	Prerequisites
C1	Programming I	None
C2	Discrete Mathematics	None
<i>C</i> 3	Data Structures	C1, C2
C4	Calculus I	None
<i>C</i> 5	Calculus II	C4
C6	Linear Algebra	<i>C</i> 5
C7	Analysis of Algorithms	C3, C6
<i>C</i> 8	Assembly Language	<i>C</i> 3
<i>C</i> 9	Operating Systems	C7, C8
<i>C</i> 10	Programming Languages	C7
C11	Compiler Design	<i>C</i> 10
C12	Artificial Intelligence	C7
<i>C</i> 13	Computational Theory	C7
C14	Parallel Algorithms	C13
<i>C</i> 15	Numerical Analysis	<i>C</i> 5

08/02/23 152

AOV n/w representing courses as vertices & prerequisites as edges

Topological sort

```
void topological_sort()
for (i = 0; i \le n; i++)
   if every vertex has a predecessor {
      fprintf(stderr, "Network has a cycle. \n");
      exit(1);
    pick a vertex v that has no predecessors;
    output v;
    delete v and all edges leading out of v from the network;
```

Internal representation used by topological sorting algorithm

An AOV network

