Homework 12

MATH 301 November 26, 2020

Kevin Evans ID: 11571810

- 1. (a) Reflexive: as xR_1x for all $x \in A$. Symmetric as $aR_1b \implies bR_1a$. Transitive as aR_1b and bR_1a implies aR_1a .
 - (b) Not reflexive $(a, a) \notin R_2$. Not symmetric as $(a, b) \in R_2$, but $(b, a) \notin R_2$. Not transitive as $(a, b), (b, c) \in R_2$, but $(a, c) \notin R_2$.
 - (c) Not reflexive, $(a, a) \notin R_3$. Not symmetric as $(a, b) \in R_3$, but $(b, a) \notin R_2$. Transitive as there's no non-transitive pairs.
- Not reflexive, as ∃a ∈ A where a ∉ Ø.
 Symmetric, as there is not a pair that is non-symmetric in Ø.
 Transitive, by the same logic as it being symmetric.
- 3. Disproof. There exists a relation that is both symmetric and transitive, but is not reflexive. For example, a set $A = \{a, b, c\}$ and relation on A as $R = \{(a, a), (b, b), (a, b), (b, a)\}$. The relation R is symmetric and transitive, but is not reflexive as $(c, c) \notin R$.
- 4. **Proposition.** The relation $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x y \in \mathbb{Z}\}$ on \mathbb{R} is an equivalence relation.

Proof. (a) Reflexive. For $(x, x) \in \mathbb{R}^2$, x - x = 0 and $0 \in \mathbb{Z}$.

- (b) Symmetric. For $(x, y) \in \mathbb{R}^2$, as $x y \in \mathbb{Z}$, then $y x = -(x y) \in \mathbb{Z}$ too.
- (c) <u>Transitive</u>. For $(x,y),(y,z)\in\mathbb{R}^2$, subtracting the two relations from another,

$$x - y \in \mathbb{Z}$$
$$y - z \in \mathbb{Z}$$

Then $x - z \in \mathbb{Z}$ as subtraction is closed for integers, therefore $(x, z) \in R$.

- 5. (a) $R_1 = \{(x,y) \in \mathbb{Z}^2 : 2^2 \times 2^{|x-y|} 1 \text{ is prime} \}$
 - (b) $R_2 = \{(x,y) \in \mathbb{Z}^2, 2^2 \times 2^{x-y} 1 \text{ is prime} \}$
 - (c) R_3 can be the not-equal operator on \mathbb{Z}, \neq .
- 6. Two classes, just by listing out the related elements: $\frac{[a] \mid [d]}{[b] \mid [c] [e]}$

7. **Proposition.** If R and S are two equivalence relations on a set A, then $R \cap S$ is also an equivalence relation on A.

Proof. Let $T = R \cap S$ and element $t \in T$.

- (a) As t is also an element of R and S, tRt and tSt. This implies tTt, thus T is reflexive.
- (b) Suppose there exists element $u \in A$ where $(t,u) \in R$ and $(t,u) \in S$. Since R and S are equivalence relations, they are each symmetric and $(u,t) \in R$ and $(u,t) \in S$. Thus both $(t,u),(u,t) \in T$ and T is symmetric.
- (c) Additionally, suppose there exists elements $u,v\in A$ where each ordered pair belongs to R and $S\colon (t,u)\wedge (u,v)\implies (t,v)$. Since this is true for R and S, it must also exist within the intersection of R and $S,(t,u)\in T\wedge (u,v)\in T\implies (t,v)\in T$; thus T is transitive.
- 8. Disproof. Let $A = \{a, b, c\}$. $R = \{(a, a), (b, b), (c, c), (a, b), (b, a)\}$, $S = \{(a, a), (b, b), (c, c), (b, c), (c, b)\}$, i.e. where each relation has a different symmetric pair. For $R \cup S$ to be an equivalence relation it must be transitive. However, $(a, b), (b, c) \in (R \cup S)$ but $(a, c) \notin (R \cup S)$.