	$\sigma_{1^{+}lphaeta}^{\sharp1}$	$\sigma_{1^{+}lphaeta}^{\#2}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1}^{\#1}{}_{\alpha}$	$\sigma_{1}^{#2}{}_{\alpha}$	$ au_{1}^{\#1}$ α	$\tau_{1-\alpha}^{\#2}$
$\sigma_{1}^{\sharp 1} \dagger^{\alpha \beta}$	0	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+k^2)}$	0	0	0	0
$\sigma_{1}^{\#2} \dagger^{\alpha\beta}$	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$-\frac{2ik}{(\alpha_0\!-\!4\beta_1)(1\!+\!k^2)^2}$	0	0	0	0
$\tau_{1}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2 i \sqrt{2} k}{(\alpha_0 - 4 \beta_1) (1 + k^2)}$	$\frac{2 i k}{(\alpha_0 - 4 \beta_1) (1 + k^2)^2}$	$-\frac{2k^2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0
$\sigma_{1}^{\sharp 1} \dagger^{\alpha}$	0	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	0	$-\frac{4 i k}{(\alpha_0 - 4 \beta_1) (1 + 2 k^2)}$
$\sigma_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$-\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+2k^2)^2}$
$\tau_1^{\#1} + ^{\alpha}$	0	0	0	0	0	0	0
$\tau_{1}^{#2} + \alpha$	0	0	0	$\frac{4 i k}{(\alpha_0 - 4 \beta_1) (1 + 2 k^2)}$	$\frac{2 i \sqrt{2} k}{(\alpha_0 - 4 \beta_1) (1 + 2 k^2)^2}$	0	$-\frac{4 k^2}{(\alpha_0 - 4 \beta_1) (1 + 2 k^2)^2}$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^{+}\alpha\beta}^{\#2}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1^{-}\ lpha}^{\#1}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{\#2}$
$\omega_{1}^{\#1}\dagger^{lphaeta}$	$\frac{1}{4}\left(\alpha_0-4\beta_1\right)$	$\frac{\alpha_0 - 4\beta_1}{2\sqrt{2}}$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$\frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}}$	0	0	0	0	0	0
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{#1}$ † lpha	0	0	0	$\frac{1}{4}\left(\alpha_0-4\beta_1\right)$	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	$-\frac{1}{2}i(\alpha_0-4\beta_1)k$
$\omega_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_1^{#2} \dagger^{\alpha}$	0	0	0	$\frac{1}{2}\bar{i}(\alpha_0-4\beta_1)k$	0	0	0

$\omega_{2}^{#1} + \alpha \beta \chi$	$f_{2+}^{*1} \dagger^{\alpha\beta}$	$\omega_{2^{+}}^{*1} \dagger^{\alpha\beta}$	
0	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	$-\frac{\alpha_0}{4}+\beta_1$	$\omega_{2}^{*1}{}_{lphaeta}$
0	$2 \beta_1 k^2$		$f_{2}^{\#1}{}_{lphaeta}$
$-rac{lpha_0}{4}+eta_1$	0	0	$\omega_{2^{-}}^{\#1}{}_{lphaeta\chi}$

Lagrangian density $\frac{1}{2}\alpha_0 \ \omega_{\alpha \chi \beta} \ \omega^{\alpha \beta \chi} - \frac{1}{2}\alpha_0 \ \omega^{\alpha \beta}_{\alpha} \ \omega^{\chi}_{\beta} + 2 \ \beta_1 \ \omega^{\alpha \beta}_{\alpha} \ \omega^{\chi}_{\beta} - 2 \ \beta_1 \ \omega^{\chi}_{\alpha} \ \partial_{\beta} f^{\alpha \beta} - 2 \ \beta_1 \ \omega^{\chi}_{\alpha} \ \partial_{\beta} f^{\alpha \beta} - 2 \ \beta_1 \ \omega^{\chi}_{\alpha} \ \partial_{\beta} f^{\alpha \beta} - 2 \ \beta_1 \ \omega^{\chi}_{\alpha} \ \partial_{\beta} f^{\alpha \beta} - \alpha_0 \ f^{\alpha \beta} \ \partial_{\beta} \omega^{\chi}_{\alpha} + \alpha_0 \ f^{\alpha \beta} \ \partial_{\beta} f^{\alpha \beta} - \alpha_0 \ f^{\alpha \beta} \ \partial_{\beta} \omega^{\chi}_{\alpha} + \alpha_0 \ f^{\alpha \beta} \ \partial_{\beta} \phi^{\chi}_{\alpha} + \alpha_0 \ f^{\alpha \beta} \ \partial_{\beta} f^{\alpha}_{\alpha} + \alpha_0 \ f^{\alpha \beta} \ \partial_{\gamma} \phi^{\chi}_{\alpha} + \alpha_0 \ f^{\alpha \beta} \ \partial_{\gamma} \phi^{\chi}_{\alpha} + \alpha_0 \ f^{\alpha \beta} \ \partial_{\gamma} \omega^{\chi}_{\alpha} + \alpha_0 \ f^{\alpha \beta} \ \partial_{\gamma} \omega^{\chi}_{$

	_	$\sigma_{2^{+}lphaeta}^{\#1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
($\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{16\beta_1}{\alpha_0^2-4\alpha_0\beta_1}$	$\frac{2i\sqrt{2}}{\alpha_0 k}$	0
	$ au_{2}^{\#1} \dagger^{lphaeta}$	$-\frac{2i\sqrt{2}}{\alpha_0 k}$	$\frac{2}{\alpha_0 k^2}$	0
σ	$^{\#1}_{2}$ † $^{\alpha\beta\chi}$	0	0	$\frac{1}{-\frac{\alpha_0}{4} + \beta_1}$

Source constraints				
SO(3) irreps	#			
$\tau_{0^{+}}^{\#2} == 0$	1			
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1\alpha} == 0$	3			
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3			
Total #:	10			

	$\omega_0^{\#1}$	$f_{0+}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\sharp 1}$
$\omega_{0}^{\#1}$ †	$\frac{1}{2}\left(\alpha_0-4\beta_1\right)$	$-\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	0	0
$f_{0}^{#1}$ †	$\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	$-4 \beta_1 k^2$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_0^{\#1}$ †	0	0	0	$\frac{\alpha_0}{2} - 2\beta_1 + \alpha_3 k^2$

_	$\sigma_{0^+}^{\#1}$	$\tau_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\sharp 1}$
$\sigma_{0}^{\#1}$ †	$\frac{8\beta_1}{\alpha_0^2 - 4\alpha_0\beta_1}$	$-\frac{i\sqrt{2}}{\alpha_0 k}$	0	0
$ au_{0}^{\#1}$ †	$\frac{i}{\alpha_0} \frac{\sqrt{2}}{k}$	$-\frac{1}{\alpha_0 k^2}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{2}{\alpha_0 - 4\beta_1 + 2\alpha_3 k^2}$

Unitarity conditions $\alpha_0 > 0 \&\& \alpha_3 < 0 \&\& \beta_1 < \frac{\alpha_0}{4}$