Poisson Generalized Linear Model for Count Data

Brian M. Brost

18 March 2016

Description

A generalized linear model for count data.

Implementation

The file poisson.glm.sim.R simulates data according to the model statement presented below, and poisson.glm.mcmc.R contains the MCMC algorithm for model fitting.

Model statement

Let z_i , for i = 1, ..., n, be observed count data (i.e., z_i are integers greater than or equal to 0). Also let \mathbf{x}_i be a vector of covariates associated with z_i for which inference is desired, and the vector $\boldsymbol{\beta}$ be the corresponding coefficients.

$$egin{array}{lll} z_i & \sim & \mathrm{Pois}\left(\lambda_i
ight) \ \log\left(\lambda_i
ight) & = & \mathbf{x}_i'oldsymbol{eta} \ oldsymbol{eta} & \sim & \mathcal{N}(\mathbf{0},\sigma_eta^2\mathbf{I}) \end{array}$$

Full conditional distributions

Regression coefficients (β):

$$\begin{split} [\boldsymbol{\beta}|\cdot] & \propto & \prod_{i=1}^n \left[z_i|\boldsymbol{\beta}\right][\boldsymbol{\beta}] \\ & \propto & \prod_{i=1}^n \operatorname{Pois}(z_i \mid \mathbf{x}_i'\boldsymbol{\beta}) \mathcal{N}(\boldsymbol{\beta}|\mathbf{0}, \sigma_{\boldsymbol{\beta}}^2 \mathbf{I}). \end{split}$$

The update for β proceeds using Metropolis-Hastings.