Équations différentielles Math 111

$29~{\rm janvier}~2007$

Table des matières

1	Gér	néralités	2
	1.1	Qu'est-ce qu'une équation différentielle?	2
	1.2	D'autres exemples	3
	1.3	Conditions initiales	4
	1.4	Représentation graphique	4
	1.5	Exemples	6
	1.6	Méthode d'Euler	7
	1.7	Le théorème d'existence et d'unicité	8
2	Primitives 10		
	2.1	Définition, existence, condition initiale	10
	2.2	Calcul de primitives	11
	2.3	Exemples	12
	2.4	Dessins	12
3	Équations à variables séparables		
	3.1	Exemples	14
	3.2	Méthode générale de résolution	14
	3.3	Pièges	14
	3.4	Résolution des exemples	15
	3.5	Dessins	15
4	Équations différentielles linéaires d'ordre 1		
	4.1^{-}	Définition	16
	4.2	Résolution de l'équation homogène	16
	4.3	Résolution de l'équation quand on a une solution particulière	17
	4.4	Comment trouver une solution particulière : la variation de la constante .	18
	4.5	Autres exemples	19
5	Étude géométrique		20
	5.1	Barrières	20
	5.2	Explosion des solutions	21
6	Équation différentielles linéaires d'ordre 2 à coefficients constants		22
	$\frac{-4}{6.1}$	L'équation différentielle homogène	
	6.2	Exemple avec second membre	
	6.3	Exercices	0.4

1 Généralités

Qu'est-ce qu'une équation? C'est une égalité comportant une (ou plusieurs) inconnue(s):

"Résoudre l'équation 2x + 3 = 0".

Résoudre l'équation, c'est chercher toutes les valeurs de l'inconnue qui satisfont l'égalité.

Dans la plupart des équations que vous avez rencontrées juqu'à présent, les inconnues étaient des nombres. Une des difficultés des équations différentielles, c'est que les inconnues vont être des fonctions.

1.1 Qu'est-ce qu'une équation différentielle?

(cf Hubbard et West, p2)

Commençons par l'équation différentielle la plus simple :

$$y' = \alpha y$$
.

Dans cette égalité, y symbolise une fonction inconnue dépendant d'une variable t, et y' est sa dérivée. Vous savez (Terminale) que cette équation modélise l'évolution dans le temps du nombre d'atomes radioactifs. Elle exprime le fait que la diminution du nombre d'atomes radioactifs (cad le nombre d'atomes qui se désintègrent) est proportionnelle au nombre total d'atomes radioactifs.

De manière générale, une équation différentielle est une équation

- dont l'inconnue est une fonction y dépendant d'une variable x (ou t),
- qui fait intervenir y et certaines de ses dérivées y', y'', etc., et éventuellement la variable x (ou t).

Résoudre l'équation différentielle, c'est chercher toutes les fonctions, définies sur un intervalle, qui satisfont l'équation (on dit aussi intégrer l'équation différentielle).

Exemple Une solution de l'équation $y' = \alpha y$ est une fonction f, dérivable sur un certain intervalle I, et vérifiant $f'(t) = \alpha f(t)$ pour tous les $t \in I$.

Remarques

– La variable est parfois notée x, parfois t (t est utilisée en particulier quand l'équation décrit un phénomène dépendant du temps). La fonction inconnue peut être notée y, parfois x, ou toute autre lettre adaptée au problème (cf plus bas, N pour le nb d'individus d'une population). Ainsi, la $m\hat{e}me$ équation peut s'écrire

$$y' = \alpha y$$
 ou $\frac{dy}{dt}(t) = \alpha y(t)$ ou $\frac{dy}{dx}(x) = \alpha y(x)$ ou $x' = \alpha x$.

- Attention:
 - dans le cours sur les fonctions de deux variables, y désigne une variable;
 - dans le cours sur les équation différentielle, y désigne une fonction inconnue dans une équation.

1.2 D'autres exemples

- 1. En fait, l'équation $y' = \alpha y$ modélise l'évolution de n'importe quelle quantité y dont la croissance (ou décroissance) est proportionnelle à y, et pas seulement la décroissance radioactive : citons par exemple :
 - l'évolution d'une somme d'argent rapportant des intérêts, placée à un taux α :
 - le nombre d'individus dans une population avec un taux de naissance α .
- 2. Expliquons avec un peu plus de détail la modélisation de l'évolution d'une population.
 - (a) Le modèle le plus simple est le suivant : la population N a un taux de naissance α qui est constant ; le nombre de naissances est alors proportionnel au nombre d'individu : pendant un petit temps dt, il est égal au produit $N\alpha dt$. De même, le taux de décès β est supposé constant, et le nombre de morts est égal à $N\beta dt$. On a alors l'équation

$$dN = N(t)\alpha dt - N(t)\beta dt$$

ce qui conduit à l'équation différentielle

$$N'(t) = (\alpha - \beta)N(t).$$

(b) Les solutions de cette première équation sont des fonctions exponentielle, ce qui n'est pas réaliste : on peut affiner le modèle en supposant que quand la population devient trop importante, il y a plus de décès (par surpopulation, dus par exemple au manque de nourriture). Une possibilité, parmi beaucoup d'autres, est de rajouter un terme de décès proportionnel à N^2 (ce terme est donc dominant lorsque N est grand) : on aboutit alors à

$$N'(t) = (\alpha - \beta)N(t) - kN(t)^{2}.$$

Le choix du N^2 est en grande partie arbitraire (avec le même raisonnement on aurait pu choisir $N^{3/2}$...). Une démarche consiste à essayer divers exposant, et à comparer à des données expérimentale pour sélectionner l'exposant qui semble convenir le mieux.

(c) Il y a beaucoup d'autres variantes possibles. Considérons par exemple l'équation différentielle

$$N' = (2 - \cos(t))N - \frac{1}{2}N^2 - 1$$

- Taux de naissance avec variations saisonnières;
- terme de surpopulation;
- terme indépendant de la taille et du temps (élevage de saumons, ce sont les saumons péchés!).

La figure ci-dessous montre les graphes de trois fonctions solutions de cette équation différentielle.

1.3 Conditions initiales

Une condition initiale est une relation du type $y(x_0) = y_0$, qui impose la valeur y_0 de la fonction inconnue en x_0 .

En pratique, se donner une CI revient donc à se donner le point (x_0, y_0) par lequel doit passer le graphe de la fonction solution.

Exemples Sur la figure ci-dessus, les trois solutions correspondent successivement aux CIs y(0) = 1 (cad que $x_0 = 0$ et $y_0 = 1$); y(0) = 2; y(0) = 5.

Autre exemple : dans un modèle de population utiliser pour prédire l'évolution de la population française, on s'intéressera aux solutions N(t) qui vérifient N(1999) = 58000000.

On aura donc deux types de questions :

- 1. Trouver toute les solutions d'une équation différentielle;
- 2. Trouver la ou les solution(s) d'un équation différentielle qui vérifie une condition initiale donnée.

Assez souvent, le premier problème a une infinité de fonctions solutions, alors que le second en a une et une seule (voir plus loin le théorème de Cauchy-Lipschitz).

1.4 Représentation graphique

On va expliquer comment dessiner une équation différentielle.

Champ de tangentes

Reprenons notre première équation $y'=-\frac{1}{2}y$. Les solutions sont donc les fonctions f qui vérifient $f'(x)=-\frac{1}{2}f(x)$ pour tout x. Quel est le sens géométrique

de cette égalité? Si (x, y) est un point du graphe C_f de f, cette égalité dit que la tangente à C_f au point (x, y) a pour pente $-\frac{1}{2}y$.

Dessinons alors, en (presque) chaque point (x, y) du plan, un vecteur $V_{x,y}$ de pente $-\frac{1}{2}y$ (DESSIN esquissé à la main, et tracé avec GRAPHER).

Finalement, trouver les solutions de l'équation différentielle revient à trouver les courbes "qui, en chaque point, suivent le vecteur $V_{x,y}$ ".

Voici l'énoncé général. On considère une équation différentielle du type

$$y' = \varphi(x, y).$$

En chaque point (x, y) du plan, on se donne un vecteur $V_{x,y}$ de pente $\varphi(x, y)$ basé au point (x, y): la collection de tous ces vecteurs s'appelle le *champ de tangentes* de l'équation différentielle.

Proposition 1.1. Soit f est une solution de l'équation différentielle $y' = \varphi(x, y)$. Alors le graphe de f est tangent, en chacun de ses points (x, y), au vecteur $V_{x,y}$.

Considérons à nouveau l'équation décrivant l'évolution d'une population (cette fois, la variable est notée $x,\ y$ désigne la fonction inconnue) : l'équation s'écrit

$$y' = \varphi(x, y)$$

en notant $\varphi(x,y) = (2-\cos(x))y - \frac{1}{2}y^2 - 1$. Voici son champ de tangentes, avec le graphe d'une solution.

Remarquer qu'on n'a pas besoin d'avoir résolu l'équation (analytiquement) pour pouvoir dessiner le champ de tangentes, et ceci permet parfois d'avoir une idée du comportement des solutions.

1.5 Exemples

cf Feuille d'exercices.

1.6 Méthode d'Euler

Comment l'ordinateur trace-t-il les solutions? La méthode d'Euler consiste à tracer un graphe affine par morceaux (cad constitué de segments de droites) qui approche une solution. Le segment tracé suit le champ de tangentes de l'équation : le segment tracé à partir d'un point (x, y) aura pour pente $\varphi(x, y)$.

Exemple : tracer une approximation de la solution de l'équation y' = y vérifiant la condition initiale y(0) = 1/2.

On se fixe un "pas d'intégration", noté Δx (par exemple, prenons $\Delta x = 1$). On part du point $(x_0, y_0) = (0, 1/2)$ correspondant à la condition initiale. En ce point, la pente du champ de tangentes vaut 1/2: on trace donc un segment de pente 1/2 jusqu'à arriver en un point d'abscisse $x_0 + \Delta_x = 0 + 1 = 1$: on arrive ainsi au point (1, 1). Et on recommence... On obtient ainsi une ligne brisée qui passe successivement par les points (0, 1/2), (1, 1), (2, 2), (3, 4), (4, 8), (5, 16), ...

Recette On se donne un point (x_0, y_0) , et un pas d'intégration Δx . Pour tracer une approximation de la solution de l'équation différentielle $y' = \varphi(x, y)$, pour la condition initiale $y(x_0) = y_0$, avec le pas d'intégration Δx :

- 1. On part du point (x_0, y_0) ;
- 2. on calcule $x_1 = x_0 + \Delta x$;
- 3. on calcule $y_1 = y_0 + \varphi(x_0, y_0) \Delta x$;
- 4. on trace le segment qui joint le point (x_0, y_0) au point (x_1, y_1) ;
- 5. et on recommence à partir de (x_1, y_1) pour calculer le point (x_2, y_2) , etc.

cf exercice de la feuille d'exercices.

1.7 Le théorème d'existence et d'unicité

Constat graphique

Lorsqu'on trace des solutions d'une même équation différentielle avec différentes conditions initiales, on constate que les courbes obtenues ne se croisent jamais. En regardant le premier dessin du cours (section 1.2), on pourrait croire que deux des courbes sont confondues à partir d'un certain point (d'abscisse 5, par exemple). Mais lorsqu'on zoome sur le dessin, on constate que l'ordinateur trace deux courbes séparées.

En fait, il y a un résultat qui garantit que :

(sous certaines hypothèses très générales) deux graphes de fonctions qui sont des solutions de la même équation différentielle ne se rencontrent jamais, sauf s'ils sont confondus.

Le théorème garantit aussi l'existence des solutions; pour donner un énoncé précis, il faut d'abord définir la notion de solution maximale.

Intervalle de vie, solutions maximales

Lorsqu'on trace la solution de l'équation $y'=y^2$ avec la condition initiale y(0)=1, on constate que la solution ne semble pas être définie sur \mathbb{R} , mais seulement sur un intervalle $]-\infty,b[$ avec $b\simeq 1$ (la fonction semble tendre vers $+\infty$ en b, et on ne peut pas la prolonger).

De façon générale, lorsqu'on se donne une équation différentielle et une condition initiale $y(x_0) = y_0$, on cherche un intervalle, contenant x_0 , sur lequel une solution existe, et qui soit "le plus grand possible": il n'existe pas d'intervalle plus grand sur lequel l'équation différentielle ait une solution. Cet intervalle s'appelle intervalle de vie de la solution. Une solution définie sur cet intervalle le plus grand possible s'appelle solution maximale.

On se donne une équation différentielle $y' = \varphi(x, y)$ avec une condition initiale $y(x_0) = y_0$.

Une solution maximale pour ce problème est une fonction f, définie sur un intervalle I appelé intervalle de vie, telle que

- f est solution de l'équation différentielle et vérifie la condition initiale;
- il n'existe pas de solution g de la même équation, vérifiant la même condition initiale, et définie sur un intervalle J contenant I et plus grand que I.

Le théorème de Cauchy-Lipschitz

On considère une équation différentielle du type $y' = \varphi(x, y)$. On suppose que la fonction φ est définie pour tout x dans un intervalle I et tout y dans un intervalle J, et qu'elle est de classe C^1 .

Théorème 1 (existence et unicité des solutions). Pour toute condition initiale $y(x_0) = y_0$ avec $x_0 \in I$ et $y_0 \in J$, il existe une **unique** solution maximale de l'équation différentielle vérifiant cette condition initiale.

PLUTOT : l'unicité s'écrit sans la notion de solution maximale, et sans référence à une condition initiale (ça les trouble, parce que dans les exos on

se donne une fonction vérifiant la CI f(0) = 1, puis on applique le théorème avec une autre condition initiale.

Soient f_1, f_2 deux solution de la même ED sur un intervalle I. Si il existe un point x_0 tel que $f_1(x_0)=f_2(x_0)$, alors $f_1=f_2$ sur I. Qu'est-ce qu'une fonction de classe C^1 qui dépend de deux variables? Ceci signifie

- qu'on peut dériver φ par rapport à la variable x, et que la fonction qu'on obtient est continue:
- même chose par rapport à la variable y (les deux fonctions obtenues en dérivant par rapport à x et y sont appelées dérivée partielle de φ .

Ceci sera précisé dans le cours de Calculus. Toutes les équation différentielle étudiées vérifieront cette hypothèse.

D'un point de vue pratique, cet énoncé nous aidera à faire des dessins, en garantissant que les graphes des solutions ne se rencontrent jamais. Voici une utilisation plus subtile.

Question On considère comme avant l'équation $y' = y^2$, avec condition initiale y(0) = 1. Montrer que la solution maximale f est strictement positive sur son intervalle de définition.

Pour répondre, on remarque que la fonction nulle $f_0: x \mapsto 0$, dont le graphe est l'axe des abscisses, est solution de cette équation différentielle. D'après le théorème, le graphe de f ne rencontre pas le graphe de f_0 , cad l'axe des abscisses. Puisque f(0) = 1 (condition initiale), et que f est continue, le théorème des valeurs intermédiaires nous dit que f(x) > 0 pour tout x dans l'intervalle de définition de f.

Exercice Montrer que la fonction $x \mapsto \frac{1}{1-x}$ est solution de l'équation différentielle ci-dessus avec a bonne condition initiale. Quel est l'intervalle de vie de cette solution?

2 Primitives

La recherche de primitives fournit l'exemple le plus simple d'équation différentielle.

2.1 Définition, existence, condition initiale

Définition 2.1. Soit f une fonction définie sur un intervalle I. Une autre fonction F, définie sur I, est une *primitive* de f si F est dérivable sur I, et si f est la fonction dérivée de F sur I:

$$F'=f$$
.

Trouver les primitives de f, c'est donc résoudre l'équation différentielle

$$y' = f(x)$$
.

Exemple le plus simple Un des théorèmes de base du calcul différentiel s'interprète en terme de primitive.

Proposition 2.2. Une fonction f, définie et dérivable sur un intervalle I, vérifie f' = 0 si et seulement si f est une fonction constante.

Autrement dit, les primitives de la fonction nulle sur un intervalle sont les fonctions constantes. Ou encore : les solutions de l'équation différentielle y'=0 sont les fonctions y=C où C est une constante. (Preuve? Le TAF (que l'on a admis...)).

Exercice 1 Attention, la situation est un peu différente si on ne se trouve pas sur un intervalle : Trouver toutes les fonctions f définies sur \mathbb{R}^* et qui vérifient f' = 0 sur \mathbb{R}^* .

Théorème 2. Soit f une fonction continue sur un intervalle I. Alors f admet des primitives. De plus, si F est l'une d'entre elles, alors les primitives de f sont exactement les fonctions $x \mapsto F(x) + C$ où C est une constante (un nombre réel).

Exercice 2

Exemple : trouver toutes les primitives de la fonction f(x) = x + 1 sur \mathbb{R} . $F_0: x \mapsto \frac{x^2}{2} + x$ est une primitive (calculer!), donc d'après le théorème, les primitives de cette fonction sont les fonctions

$$F_C: x \mapsto \frac{x^2}{2} + x + C$$

où C est une constante quelconque. Il faut bien comprendre ce que désigne ce 'C' : C symbolise n'importe quel nombre "fixé", c-à-d qui ne dépend pas de x.

Test Parmi les fonctions suivantes, lesquelles sont des primitives de x + 1?

$$F(x) = \frac{x^2}{2} + x + 1$$
 $G(x) = \frac{x^2}{2} + x + x$ $H(x) = \frac{x^2}{2} + x + \pi$.

9

Condition initiale On a souvent besoin de trouver, non pas *toutes* les primitives, mais celle dont la valeur en un certain point est donnée.

Exemple : parmi les primitives F de $x\mapsto x+1$ trouvées plus haut, lesquelles vérifient F(2)=1? On calcule pour voir que cette condition est équivalente à C=-3. Conclusion : il y a exactement une primitive de $x\mapsto x+1$ qui vérifie F(2)=1, c'est la fonction $x\mapsto\mapsto\frac{x^2}{2}+x-3$.

Ceci est un phénomène général : si l'on impose la valeur de la primitive en un point, alors il n'y a plus qu'une seule primitive qui convienne.

Théorème 3. Étant donnée une condition initiale (x_0, y_0) , où $x_0 \in I$ et $y_0 \in \mathbb{R}$, il existe une unique primitive F de f sur l'intervalle I qui prend la valeur y_0 en x_0 : autrement dit, il existe une unique fonction F, dérivable sur I, qui est solution de l'équation différentielle avec condition initiale:

$$\begin{cases} y' = f(x) \\ y(x_0) = y_0. \end{cases}$$

C'est équivalent au théorème précédent, et c'est un cas très simple de Cauchy-Lipshitz.

Interprétation cinématique :

- Un mobile à vitesse nulle reste au même endroit;
- Si on connait la position d'une voiture sur l'autoroute à 12h00, et la fonction vitesse V(t), alors on connait sa position en fonction du temps.

2.2 Calcul de primitives

(Pour plus de détails sur les techniques de calcul, voir le cours Calculus Math151 ou Math 101.)

Exercice 3, 4, 5

1. **Liste de primitives classiques** On peut bien sûr construire une liste de primitives classiques à partir d'une liste de dérivées classiques.

Test Donner une primitive de $f(x) = x^{\alpha}$. Donner une primitive de sin, de cos, de exp.

2. Reconnaissance d'une dérivation composée Une des techniques qui va nous être utile consiste à utiliser, "à l'envers", la formule de dérivation des fonctions composées :

$$(f \circ u)'(x) = u'(x) \times f'(u(x)).$$

Exemple Soit u une fonction (dérivable) de x. Quelle est la fonction dérivée de u^2 ?

Si on reconnait qu'une fonction est sous la forme u'u, une primitive sera donnée par $\frac{1}{2}u^2$.

Par exemple, en déduire une primitive de $g(x) = \sin(x)\cos(x)$.

Exercice Soit u une fonction (dérivable) de x. Donner les dérivées des fonctions

- (a) u^3 ;
- (b) $\frac{1}{u^2}$ (si u ne s'annule pas);

- (c) $\ln(u)$ (si u ne prend que des valeurs strictement positives).
- (d) $\ln(-u)$ (si u ne prend que des valeurs strictement négatives).

En déduire les primitives des fonctions u'u, $u'u^2$, $\frac{u'}{u^2}$, $\frac{u'}{u}$.

Le calcul d'une primitive n'est pas toujours possible! Par exemple, l'une des fonctions importante du calcul des probabilité est $x\mapsto e^{-\frac{x^2}{2}}$. Cette fonction admet des primitives, mais on ne peut pas exprimer ces primitives à l'aide des fonctions usuelles. Par contre, on sait quand même calculer (par une autre méthode) l'aire sous le graphe de cette fonction entre les bornes $-\infty$ et $+\infty$.

2.3 Exemples

1. Trouver les primitives de $f(x) = \frac{1}{x(1-x)}$. On s'en sort en constatant que

$$\frac{1}{x(1-x)} = \frac{1}{x} + \frac{1}{1-x}.$$

Pour plus d'exemples de ce type, cf cours math 151 : intégrer des fractions rationnelles.

- 2. Trouver les primitives de $\tan(x)$ sur l'intervalle $]-\frac{\pi}{2},\frac{\pi}{2}[$. Même question sur l'intervalle $]\frac{\pi}{2},\frac{3\pi}{2}[$ (cf feuille d'exos).
- 3. Soit f une fonction qui ne s'annule pas sur un intervalle I, quelles sont les primitives de $\frac{f'}{f^2}$ (cf feuille d'exos).

2.4 Dessins

Les trois dessins ci-dessous montrent successivements des primitives des fonctions $f_1(x) = x$, $f_2(x) = \sin(x)\cos(x)$ et $f_3(x) = \frac{1}{x(1-x)}$. Chercher ces primitives revient à résoudre les équations différentielles y' = x, $y' = \sin(x)\cos(x)$, $y' = \frac{1}{x(1-x)}$; on a aussi tracé les champs de tangentes associés à ces équations différentielles.

La pente ne dépend que de la variable x (et pas de y) : les champs sont "invariants par translation vers le haut". Ceci correspond au fait que les solutions se déduisent les unes des autres en ajoutant une constante.

3 Équations à variables séparables

Il s'agit des équations où on peut "séparer ce qui concerne y, y', \dots d'un côté de l'équation et ce qui concerne x de l'autre".

3.1 Exemples

- 1. y'y = 1 (dans cette équation, les variables sont déjà séparées...);
- 2. $y'y^2 = x$;
- 3. $y' = y^2$ (on "sépare les variables" en écrivant $\frac{y'}{y^2} = 1$);
- 4. $y'=y-y^2$ (équation de population...), qu'on écrit $\frac{y'}{y-y^2}=1.$

Contre-exemple : $y' = \sin(xy)$; on peut essaye de prendre l'arcsin...

3.2 Méthode générale de résolution

De façon générale, l'équation s'écrit

$$y'g(y) = f(x)$$

(avec f et g deux fonctions d'une variable. Si on connait une primitive G de g, et une primitive F de f, alors l'équation équivaut à

$$G(y) = F(x) + C,$$

autrement dit, une fonction f, définie sur un intervalle I, est solution de l'équation différentielle si et seulement si il existe une constante C telle que, pour tout $x \in I$, on a $G(f(x)) = F(x) + C^1$.

Attention, il ne suffit pas de mettre les'y' à gauche et les 'x' à droite, il faut que la partie gauche soit vraiment sous forme y'g(y). Par exemple, l'équation 3 pourrait s'écrire y'-y=0, on a bien les 'y' à gauche, mais ça n'est pas sous la bonne forme, on ne sait pas résoudre ainsi (il n'y a pas de formule générale pour une primitive de y'-y).

3.3 Pièges

Il y a un certain nombre de difficultés :

- 1. les solutions ne sont pas toujours définies sur \mathbb{R} (cf exemples 1, 3, 4);
- 2. il faut parfois faire des hypothèses sur y pour pouvoir continuer les calculs (exemples 3 et 4), ce qui revient à "oublier" certaines solutions;
- 3. il faut savoir calculer les primitives F et G;
- 4. on n'obtient pas directement y comme fonction de x, mais comme fonction *implicite* de x, et il n'est pas toujours facile d'en déduire une formule explicite pour les solutions : il faut savoir inverser la fonction G.

On a bien sûr utilisé un des théorèmes de la section précédente sur les primitives (lequel?).

3.4 Résolution des exemples

Solutions:

- 1. Les solutions sont les fonctions $f(x) = \sqrt{x + c_1}$ et $f(x) = -\sqrt{x + c_2}$, où c_1 et c_2 sont des constantes.
- 2. Les solutions sont les fonctions $f(x)=(\frac{3}{2}x^2+c_3)^{\frac{1}{3}}$ où c_3 est une constante;
- 3. Les solutions sont les fonctions $f(x) = \frac{-1}{x+c_4}$ où c_4 est une constante;
- 4. ...

3.5 Dessins

4 Équations différentielles linéaires d'ordre 1

4.1 Définition

On appelle équation différentielle linéaire d'ordre 1 toute équation différentielle du type

$$y' + a(x)y = b(x)$$

(où a et b sont des fonctions de x, définies et continues sur un intervalle I). 2

Exemples Parmi ces équations, lesquelles sont linéaires?

- 1. y' = y;
- 2. y' = y + x;
- 3. $y' = y + \sin(x)$;
- 4. $y' = y + e^{2x}$;
- 5. y' = -xy (exemple étudié dans la première section);
- 6. $y' = y \frac{1}{2}y^2$ (équation de population);
- 7. y'y = 1;
- 8. $y' = \tan(x)$ (simple recherche de primitive);
- 9. $y' = \tan(y)$;
- 10. y' + 2xy = 1;
- 11. y' + 2xy = 2x;
- 12. 2xy' + y = 1;

varcste2

13.
$$xy' - y = x^2$$
.

Les deux dernières équations ne sont pas à proprement parler sous la forme d'une équation différentielle linéaire, mais on peut les transformer : pour l'avant-dernière, par exemple, si on se place sur l'intervalle $]0,+\infty[$, elle équivaut à l'équation

$$y' + \frac{1}{2x}y = \frac{1}{2x}$$

qui a la bonne forme.

4.2 Résolution de l'équation homogène

Nous allons expliquer comment résoudre les équations différentielles linéaires d'ordre 1. On commence par résoudre une autre équation, qu'on appelle équation homogène associée à notre équation différentielle :

$$y' + a(x)y = 0$$

C'est encore une équation différentielle linéaire du premier ordre (mais plus simple).

Définition 4.1. On dit qu'une l'équation différentielle linéaire est homogène (ou : sans second membre) si la fonction b est nulle, c-à-d si elle est du type

$$y' + a(x)y = 0.$$

 $^{^2}$ "Ordre 1" signifie que l'équation ne fait pas intervenir les dérivées de y d'ordre plus grand que $1:y^{\prime\prime},\,y^{\prime\prime\prime}$ etc..

Par exemple, les trois équations différentielles $y'=y+x,\ y'=y+e^{2x}$, $y'=y+\sin(x)$, ont pour équation homogène associée y'-y=0.

Remarque-clé : une équation différentielle linéaire homogène est à variables séparables : on peut la résoudre avec les techniques de la section précédente.

Résolvons l'équation linéaire homogène générale y' + a(x)y = 0.

- 1. La fonction nulle est solution. Donc d'après Cauchy-Lipschitz (et le TVI), toute autre solution est soit strictement positive soit strictement négative.
- 2. Soit f une solution > 0. Alors f est solution de l'ED ssi

$$\frac{f'(x)}{f(x)} = -a(x) \Leftrightarrow \ln(f(x)) = -A(x) + C \Leftrightarrow f(x) = e^{-A(x)}e^{C} = \lambda e^{-A(x)}$$

où A est une primitive de a et λ une constante strictement positive.

3. De même, si $f < 0, \dots$

On a donc montré que les solutions sont les fonctions $\lambda e^{-A(x)}$ où A est une primitive de a et λ une constante quelconque.³

Remarquons que si a est continue sur \mathbb{R} , alors les solutions sont définies sur \mathbb{R} (l'intervalle de vie est \mathbb{R}).

Exemples

1. On peut ainsi résoudre l'équation y'=y: en se plaçant sur un intervalle ou la fonction y ne s'annule pas, on l'écrit $\frac{y'}{y}=1$, qui s'intègre en $\ln |y|=x+C$, ou encore $|y|=\underbrace{e^C}_{\lambda}e^x=\lambda e^x$ (où la constante λ est strictement positive).

Si on est sur un intervalle où y est strictement positive, ceci équivaut à $y=\lambda e^x$; si on est sur un intervalle où y est strictement négative, ceci équivaut à $y=-\lambda e^x$; d'autre part, la fonction nulle est aussi solution. Finalement, les solutions peuvent se mettre sous la forme

$$x \mapsto \lambda e^x$$

où λ est une constante réelle quelconque.

2. Résolvons l'équation $y' - \frac{1}{x}y = 0$ (équation différentielle homogène associée à l'équation $\overline{13}$ ci-dessus). ... Le solutions sont les fonctions

$$x \mapsto \lambda x$$

où λ est une constante réelle quelconque.

Test Vérifier que ces fonctions sont bien des solutions.

4.3 Résolution de l'équation quand on a une solution particulière

Dans le paragraphe précédent, on a expliqué comment résoudre l'équation homogène associée. Nous revenons maintenant à l'équation différentielle non homogène,

$$y' + a(x)y = b(x).$$

Dans ce paragraphe, nous allons expliquer pourquoi il suffit maintenant de trouver *une* solution particulière de cette équation pour les avoir toutes. Il restera ensuite à trouver une solution particulière, ce que nous ferons au paragraphe suivant.

³Retenir la démarche et surtout pas la formule.

Théorème 4. Soit f_0 une fonction qui est une solution particulière de l'équation différentiellenon homogène. Soit $\{\lambda g\}$ l'ensemble des fonctions solutions de l'équation différentielle homogène associée. Alors les solutions de l'équation différentielle non homogène sont les fonctions

$$f(x) = f_0(x) + \lambda g(x).$$

Preuve du théorème —

- 1. Toute fonction $f_0(x) + \lambda g(x)$ est solution (il suffit de remplacer dans l'équation différentielle).
- 2. Réciproquement, toute solution est de cette forme : pour voir ceci, on considère une fonction f solution, on montre alors que $f f_0$ est solution de l'équation différentielle homogène associée (vérifier!), et par conséquent $f f_0$ est l'une des fonctions λg , autrement dit $f = f_0 + \lambda g$, ce qu'on voulait.

4.4 Comment trouver une solution particulière : la variation de la constante

On a trouvé les solutions de l'équation différentielle homogène sous la forme

$$\lambda g(x)$$

où λ est une constante. La technique de variation de la constante consiste à chercher une solution particulière de l'équation différentielle non homogène sous la forme

$$\lambda(x)g(x)$$

où λ est une fonction. Puisque la fonction g est solution de l'ED homogène, on a g' + ag = 0 (*). Maintenant, la fonction $\lambda(x)g(x)$ est solution ssi

$$\lambda' q + \lambda q' + a\lambda q = b$$

qui se simplifie (à l'aide de (*)) en

$$\lambda' = \frac{b}{a}.$$

Il n'y a plus qu'à trouver une primitive de $\frac{b}{g}$. Remarquons là encore que si a et b sont deux fonctions continues sur \mathbb{R} , alors les solutions sont définies sur \mathbb{R} .

Exemples

1. Reprenons l'équation $y' - y = e^{2x}$

Test Petite variante : résoudre $y' - y = e^{5x}$.

2. Reprenons l'équation $xy' - y = x^2...$

⁴Là encore, retenir la démarche et surtout pas la formule.

4.5 Autres exemples

On trouve parfois des solutions particulières assez simples, sans avoir à utiliser la méthode de variation de la constante.

- 1. y'+2xy=2x: on cherchera une solution particulière sous forme de fonction constante.
- 2. 2xy' + y = 1 là encore, chercher une solution particulière simple.
- 3. y' y = x Aide pour la primitive...
- 4. $y' y = \sin(x)$ Aide pour la primitive...
- 5. y' + 2xy = 1. Appliquer la variation de la constante; quelle fonction doiton intégrer? Ceci est un exemple d'équation où la méthode n'aboutit pas, parce qu'on ne sait pas trouver une formule pour les primitives de e^{x^2} .

5 Étude géométrique

Que faire quand on ne sait pas résoudre? On va voir qu'on peut quand même obtenir des informations sur le comportement des solutions : taille de l'intervalle de vie, comportement limite en $+\infty$...

5.1 Barrières

On considère une équation différentielle $y' = \Phi(x, y)$ (où Φ est une fonction continue de \mathbb{R}^2 dans \mathbb{R} .).

Définition 5.1. On appellera sur-solution toute fonction dérivable $g: \mathbb{R} \to \mathbb{R}$ telle que pour tout $x \in \mathbb{R}$, $g'(x) > \Phi(x, g(x))$. Le graphe d'une sur-solution est appelé barrière descendante.

Autrement dit, en tout point d'une barrière descendante, la pente de la tangente est supérieure à la pente du champ de l'équation différentielle.

Remarque Soit g une barrière descendante et f une solution. Supposons que les deux graphes se croisent : $f(x_1) = g(x_1)$ pour un certain x_1 . Alors :

- 1. si $x < x_1$ et x assez proche de x_1 , on a $g(x_1) < f(x_1)$.
- 2. si $x > x_1$ et x assez proche de x_1 , on a $g(x_1) > f(x_1)$.

(Preuve de la remarque : faire un DL à l'ordre 1 de g - f).

L'intérêt des barrières, c'est 1) qu'il est beaucoup plus facile de trouver des barrières que des solutions (il y en a plus!), et 2) qu'une bonne barrière peut donner des indications sur le comportement des solutions, à l'aide du théorème suivant.

Théorème. Soit g une barrière descendante, et f une solution. Supposons qu'il existe $x_0 \in \mathbb{R}$ tel que $g(x_0) \geq f(x_0)$.

Alors pour tout $x \ge x_0$, on a g(x) > f(x).

Preuve — On commence par le cas où $g(x_0) > f(x_0)$.

On raisonne par l'absurde : si la conclusion du théorème n'est pas vérifié, le graphe de f passe au-dessus du graphe de g, alors il doit le croiser ; soit x_1 le PREMIER moment après x_0 où le graphe de g rencontre celui de f. On a donc :

- 1. $g(x_1) = f(x_1)$,
- 2. pour tout nombre x tel que $x_0 \le x < x_1, g(x) > f(x)$.

On utilise maintenant que g est une barrière descendante et f une solution : pour x assez proche de x_1 et plus petit que x_1 , on a $g(x_1) < f(x_1)$ (d'après la remarque). Ceci contredit le point 2.

Il reste le cas où $g(x_0) = f(x_0)$. Mais alors la remarque nous dit que $g(x'_0) > f(x'_0)$ pour $x'_0 > x_0$ et assez proche de x_0 . On est ramené au cas précédent en remplaçant x_0 par x'_0 . \square

Remarque De façon analogue, on a la notion de sous-solution (barrière montante) et un théorème symétrique.

5.2 Explosion des solutions

On considère maintenant une équation différentielle

$$y' = \Phi(x, y)$$

avec Φ définie et de classe C^1 sur \mathbb{R}^2 . Le théorème de Cauchy-Lipschitz s'applique.

Théorème. (ADMIS) Soit f une solution maximale définie sur un intervalle de vie I =]a,b[. Si b est un nombre réel (c'est-à-dire $b \neq +\infty$), alors f tend vers $+\infty$ ou $-\infty$ lorsque x tend vers b^- : autrement dit, le graphe de f admet une asymptote verticale d'équation y = b.

On utilise souvent le théorème sous forme contrapposée : si les solutions ne peuvent pas "exploser", alors $b=+\infty$.

En fait, ce principe marche encore lorsque l'équation $y' = \Phi(x, y)$ n'est pas définie pour tout $(x, y) \in \mathbb{R}^2$. Voici deux énoncés dans ce sens : le premier lorsque l'équation n'est pas définie pour toutes les valeurs de x : il servira dans l'exercice 6.3; le second lorsqu'elle n'est pas déifnie pour toutes les valeurs de y : il servira dans l'exercice 6.8.

Théorème. Supposons que $\Phi(x,y)$ soit définie lorsque $x \in]a',b'[$ et $y \in \mathbb{R}$ (et de classe C^1 sur $]a',b'[\times \mathbb{R})$. Soit f une solution maximale définie sur un intervalle de vie I =]a,b[. Si b < b' alors f tend vers $+\infty$ ou $-\infty$ lorsque x tend vers b^- .

Théorème. Supposons que $\Phi(x,y)$ soit définie lorsque $x \in \mathbb{R}$ et $y \in]c,d[$ (et de classe C^1 sur $\mathbb{R} \times]c,d[$). Soit f une solution maximale définie sur un intervalle de vie I=|a,b[. Si $b<+\infty$ alors f tend vers c ou d lorsque x tend vers b^- .

6 Équation différentielles linéaires d'ordre 2 à coefficients constants

Il s'agit des équations du type

$$ay'' + by' + c = g(t)$$

avec a, b, c constantes (on a choisi de noter la variable avec la lettre t). Rappels : contextes physiques où l'équation intervient... (cf Cottet-Emard).

6.1 L'équation différentielle homogène

Il s'agit de l'équation différentielle

$$ay'' + by' + cy = 0.$$

On notera t la variable.

Principe de superposition (I)

Si f_1 et f_2 sont deux fonctions solutions, toute combinaison linéaire est encore solution.

Résolution

On va trouver des solutions complexes sous forme de fonction exponentielle.

Exercice: trouver les fonctions solutions du type $t \mapsto e^{\omega t}$. Miracle, l'équation différentielle est convertie en une équation polynomiale de degré deux!

Quand $\Delta > 0$, on trouve deux solutions qui sont des fonctions réelles :

$$f_1(t) = e^{\lambda_1 t}$$
 et $f_2(t) = e^{\lambda_2 t}$.

(DESSINS).

Quand $\Delta = 0$, on trouve une seule solution (réelle) f_1 , on remarque que $f_2 = tf_1$ est encore solution.

Quand $\Delta < 0$ on trouve deux solutions complexes conjuguées. On obtient alors deux fonctions $t \mapsto e^{\omega t} = e^a e^{ib}$ à valeurs dans le plan complexe. On ne sait pas trop bien ce que veut dire être solution d'une ED pour une telle fonction⁵. Cependant, en les combinant linéairement, on obtient leur partie réelle et imaginaire, qui sont deux fonctions à valeurs réelles :

$$f_1(t) = e^{\lambda t} \cos(\omega t)$$
 et $f_2(t) = e^{\lambda t} \sin(\omega t)$.

On vérifie qu'elles sont bien solution. DESSIN.

⁵En réalité il est tout à fait possible de donner un sens à ceci : on peut définir la dérivée d'une telle fonction (par exemple en dérivant séparément les partie réelle et imaginaire), et montrer qu'elle est vraiment solution de l'ED

Théorème Dans chacun des trois cas, on a trouvé deux fonctions solutions f_1 et f_2 . Les solutions de l'équation sont alors les combinaisons linéaires de ces deux fonctions.

(ce qui resterait à montrer pour avoir le théorème, c'est qu'on a bien trouvé toutes les solutions). 6

Conditions initiales Exercice Résoudre l'ED y'' + y = 0. Les graphes des solutions sont-ils deux à deux disjoints? Y a-t-il une contradiction avec le théorème de Cauchy-Lipschitz?

Exercice : trouver toutes les solutions réelles de l'équation différentielle avec CI

$$y'' + y' + y = 0$$
 $y(0) = 1$ $y'(0) = 1$.

Attention: en ordre 2, pour avoir une unique solution, Il faut se donner deux conditions, $y(0) = \dots$ et $y'(0) = \dots$

6.2 Exemple avec second membre

On ne traite que le cas particulier :

$$ay'' + by' + cy = e^{\omega t}$$

Exemple physique important (excitation périodique d'un ressort ou d'un circuit electrique...) Attention, ω est fixé, c'est une donnée du problème (fréquence d'excitation).

ressort forcé sans frottement :

$$x'' + \frac{k}{m}x = \frac{F}{m} = \frac{F_0}{m}\cos(\omega t).$$

- 1. Dans le premier cas, on obtient une ED en A' linéaire d'ordre 1, qu'on peut résoudre complètement ;
- 2. Dans le second cas, on obtient une ED du type $A'' + \omega^2 A = 0$; on posant encore $B(\omega t) = A(t)$, on est ramené à B'' + B = 0. Il reste à montrer que seules les CL de cos et sin sont solutions.

Exercice On veut montrer que l'ED y'' + y = 0 n'a pas d'autre solution que les CL de cos et sin. Soit f une fonction solution, définie sur un intervalle I.

1. On fixe un réel $t \in I$. Montrer que le système d'équations suivant, d'inconnues α et β , a une (unique) solution, et donner l'expression de α et β :

$$f(t) = \alpha \cos(t) + \beta \sin(t)$$

$$f'(t) = \alpha \cos'(t) + \beta \sin'(t).$$

Aide : pour éliminer les β , muliplier la première équation par $\cos(t)$, la seconde par $\sin(t)$, puis faire la différence...

- 2. Pour chaque $t \in I$, on note $\alpha(t)$ et $\beta(t)$ les deux nombres obtenus à la question précédente. Calculer f''(t) en fonction de α' et β' (ne pas utiliser l'expression de α et β !).
- 3. En utilisant la définition de $\alpha(t)$ et $\beta(t)$ et le fait que f est solution de l'ED, montrer qu'on a, pour tout $t \in I$,

$$\alpha' \cos(t) + \beta' \sin(t) = 0$$

$$\alpha' \cos'(t) + \beta' \sin'(t) = 0.$$

4. Conclure en montrant que α et β sont des fonctions constantes.

⁶On peut simplifier en supposant a=1. Notons f_0 une des deux solutions exponentielles dans le cas $\Delta \geq 0$, ou la fonction $\exp(\lambda t)$ dans le cas $\Delta < 0$. En cherchant des solutions sous la forme $A(t)f_0(t)$, on éliminie le terme en y dans le premier cas, et le terme en y' dans le second. Ainsi :

Théorème de structure (superposition)

Comme en ordre 1, on considère l'équation homogène associée.

Théorème 5. Soit f_0 une fonction qui est une solution particulière de l'équation différentiellenon homogène. Soit $\{\lambda_1 f_1 + \lambda_2 f_2\}$ l'ensemble des fonctions solutions de l'équation différentielle homogène associée. Alors

1. Les solutions de l'équation différentielle non homogène sont les fonctions f définies par

$$f(t) = f_0(t) + \lambda_1 f_1(t) + \lambda_2 f_2(t).$$

2. Pour toute condition initiale (t_0, y_0, y'_0) , il existe une unique solution (maximale) f qui vérifie les conditions initiales $f(t_0) = y_0$ et $f'(t_0) = y'_0$.

On a le complément suivant (**principe de superposition**, **II**). On a une équation différentielle du type

$$ay'' + by' + cy = d(t) + e(t)$$

où le second membre est la somme de deux termes. Si f_0 est solution de

$$ay'' + by' + cy = d(t),$$

et si f_1 est solution de

$$ay'' + by' + cy = e(t),$$

alors $f_0 + f_1$ est solution de

$$ay'' + by' + cy = d(t) + e(t).$$

Recherche d'une solution particulière

Quand le second membre est une exponentielle, de la forme $e^{\omega t}$, on cherche une solution sous la forme $C.e^{\omega t}$ avec C constante. Parfois il n'y en a pas (en fait, ceci arrive quand ces fonctions sont déjà solutions de l'ED homogène. On cherche alors une solution du type $C.te^{\omega t}$. Là encore, si il n'y en a pas, on cherche sous la forme $C.t^2e^{\omega t}$. Si il n'y en a toujours pas, c'est qu'on s'est trompé dans les calculs (autrement dit, il y a toujours une solution sous l'une des trois formes).

De même, si le second membre est de la forme $P(t)e^{\omega t}$ avec P polynôme, on cherche une solution de la même forme : $Q(t)e^{\omega t}$ avec Q polynôme à déterminer.

Remarquons encore une fois que ceci marche tout aussi bien quand ω est un nombre complexe : ainsi, si le second membre est $\cos(t)e^t$, on l'écrit $Re(e^{(1+i)t})$, on trouve les solutions avec second membre $e^{(1+i)t}$, dont on prend la partie réelle (cf exemple...)

6.3 Exercices

1 Résoudre sur \mathbb{R} les équations différentielles suivantes (on pourra chercher une solution particulière sous la forme $f(x) = Ce^{w_0x}$ avec C constante, et, s'il n'y en a pas, sous la forme $f(x) = Cxe^{w_0x}$, ou $f(x) = (Cx + C')e^{w_0x}$, où C' est une autre constante):

$$y'' - 3y' + 2 = 0$$

$$y'' - 3y' + 2 = e^{3x}$$

$$y'' - 3y' + 2 = e^{2x}$$

$$y'' - 6y' + 9y = e^{2x}$$

$$2y'' + 2y' + y = xe^{-x}$$

$$y'' + 2y' + y = (9x^{2} + 3x + 5)e^{2x} + 2e^{-x}$$

2 Résoudre sur $\mathbb R$ l'équation différentielle

$$y'' + y = \cos^2 x$$

(on pourra exprimer $\cos^2 x$ à l'aide de $\cos 2x$).

3 Quelle est la solution de l'équation différentielle

$$y'' - 2y' + y = (x^2 + 1)e^x$$

de conditions initiales y(0) = 0, y(1) = e?