5月13日作业(5.3, 5.4)

1.	同点	步控制是。										
	a)	由统一时序信号控制的方式										
	b)	只适用于外围设备控制的方式										
	c)	只适用于 CPU 控制的方式										
	d)	所有指令执行时间都相同的方式										
2.	以一	下说法错误的是。										
	a)	控制器的控制方式反映了时序信号的定时方式										
	b)	同步控制方式的特点是系统有一个统一的时钟,所有的控制信号均来自										
		这个统一的时钟										
	c)	联合控制方式是同步和异步控制方式的结合										
	d)	异步控制方式中有集中的时序信号产生及控制部件										
3.		程序控制器主要由 $A_{}$, $B_{}$ 和 $C_{}$ 三大部分组成。其中 A										
		只读型存储器,它用来存放 D。										
4.	微和	程序控制器的核心部件是 A										
	储											
5.		计算机中,存放微指令的控制存储器隶属于。										
	a) b)	操作控制器 高速缓存										
		内存储器										
	d)	CPU										
_	→ t. *	ᅮᅙᇚᅄᆟᆌᆉᆋᆈᄜᄮᇫᅈᅶᆛᆚᇨᅠᅒᆈᄜᄱᄼᇫᄯᅛᆉᄞ										
6.		于采用微程序控制器的 CPU,执行一条机器指令的过程。 就是依次执行一个确定的微程序(或:微指令序列)的过程										
	b)	就是执行一条微指令的过程										
		c) 就是执行一条"执行微指令"的过程										
	,	就是执行一条"取指微指令"的过程										
7.		指令操作。										
	a) b)	受到上一条指令的操作码控制 受到当前指令的操作码控制										
	,	是控制器固有的功能,不需要在操作码控制下进行										
	d)	受到当前指令的微程序控制										
0		*# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\										
8.		选做) 冯•诺依曼型计算机中,指令和数据均夷二进制形式存放在存储器 CPU 区分它们的依据是。(即,CPU 为什么会把指令送到										
		中,而不会把数据送到 IR 中?)										
		指令操作码的译码结果										

- b) 指令和数据的寻址方式
- c) 指令和数据所在的存储单元
- d) 指令周期的不同阶段
- 9. 微程序控制器中,机器指令与微指令的关系是____。
 - a) 每一条机器指令由一段用微指令编成的微程序来解释执行;
 - b) 每一条机器指令由一条微指令来执行;
 - c) 一段机器指令组成的程序由一条微指令来执行;
 - d) 一条微指令又若干条机器指令组成;

10. P₁₈₃ 6

- 11. 某计算机采用微程序控制器,已知每条机器指令的执行过程均可分解成3条 微指令组成的微程序,该机指令系统采用5位定长操作码格式。则控制存储器CM至少应能容纳多少条微指令?
- 12. (**B 类选作**)某 CPU 主频为 4MHZ, 若已知每个机器周期平均包含 4 个时钟 周期,该机的平均指令执行速度为 0.4MIPS,试求:
 - a) 该机的平均指令周期及每个指令周期含几个机器周期?
 - b) 若改用时钟周期为 0.4 μ s 的 CPU 芯片,则计算机的平均指令执行速度为 多少 MIPS?
 - c) 若要得到平均每秒 20 万次的指令执行速度,则应采用主频为多少的 CPU 芯片?
- 13. 某 CPU 的数据通路如下**图 1** 所示,其中运算器通路如教材中图 5.20 所示(改错:微操作"9"和"5"应互换),微指令基本格式如图 5.21 所示,微程序控制器组成如图 5.23 所示。指令"SUB R2, R3"的含义为:用寄存器 R3的内容减去 R2的内容,结果打入 R3。指令周期流程图如下图 2 所示,其中取指周期和执行周期各占一个机器周期。取指周期所需的微命令在教材图 5.21 的第 13~17 位,其作用依次为:读内存、打入 DR、打入 IR、打入 AR、PC+1。要求:
 - a) 编写完成该指令功能所需的微程序(微指令序列)。微指令的操作控制字段、顺序控制字段(P字段和直接地址字段)均要编写。所有的微命令均为高电平有效。假设取指周期和执行周期各对应一条微指令。
 - b) (**选做**)请回答:如果该指令的执行周期含有两个 CPU 周期,每个 CPU 周期分别对应一条微指令,且这部分微程序没有分支,则这两条执行周期的微指令的直接地址字段会有何不同?

注: MIPS 的 概念详见 P₅

图 1

图 2

14. (**C 类选做**) 在 PPT-(5.3,5.4)的实验计算机上运行如下程序:

MOV R3, A

ADD A, R0

HALT

其中,"MOV R3, A"的含义为:将累加器 A 中的数据传送至寄存器 R3 中; "ADD A, R0"的含义为:将 A 和 R0 中的操作数相加,结果打入 A。指令代码及指令周期的微操作控制信号详见下面表 1,微指令码详见下面表 2,数据通路及更多信息参见 PPT(35~41 页,60~67 页)。

- a) 列出"MOV R3, A"指令取指周期及执行周期的微命令信号。
- b) 写出"MOV R3, A"指令译码的实现过程;
- c) 写出"MOV R3, A"指令**执行阶段**所对应的微指令代码及在 CM 中的存放地址。
- d) 当"MOV R3, A"指令执行完毕,"ADD A, R0"将要取指时,微指令寄存器 MIR 中存放的是什么微指令?它是从控存 CM 的那个地址单元取出的?

表 1

指令	指令代码	節拍	微操作	控制信號
取指		Т0	(PC)->IAB->OAB (M) ->ODB->IDB->IR1 (PC)+1->PC (MD) ->MPC 接數 (A) ->ACT	PCO,B1 RC,B2,B3,CI,GI P+1,CK MLD CC,CG
ADD A,Ri	<mark>000000Ri</mark> (红色的为 OP 字段)	Т1	(ACT)+(Ri) ->BUF->IDB->A 置 CY	Cn,M,S3,S2,S1,S0 OB,X1,X0,CA,SA, SB,CP
SUB A,Ri		T1	(ACT)-(Ri) ->BUF->IDB->A 置 CY	Cn,M,S3,S2,S1,S0 OB,X1,X0,CA,SA, SB,CP
MOV A,Ri		T1	(Ri) ->BUF->IDB->A	Cn,M,S3,S2,S1,S0 OB,X0,X1,CA
MOV Ri,A	010001Ri	T 1	(ACT) ->BUF->IDB->Ri	Cn,M,S3,S2,S1,S0 OB,WR,A,B
LD A,ADDR		Т1	(PC) ->IAB->OAB (M) ->ODB->IDB->IR2 (PC)+1->PC	PCO,B1 RC,B2,B3,CL P+1,CK
		Т2	(IR1,IR2) ->IAB->OAB (M) ->ODB->IDB->A	OI,B1 RC,B2,B3,X0,X1, CA

	位	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	微指令碼
指令助記符	信號	S3	S2	S1	S0	Cn	M	X 1	ХО	ΟI	CL	СР	ZC	CG	ОТ	LP	ОВ	GΙ	P+1	DR	M LD	w c	RC	RR	W R	什六進
	有效電平	*	*	*	*	*	*	*	*	0	1	1	1	0	0	0	0	0	1	0	0	0	0	0	1	制)
	微地址																									
取指微指令	000H	0	0	0	0	0	0	0	0	1	0	0	0	1	0	1	1	0	1	1	0	1	0	1	0	008B 6A
ADD A,Ri	043H	1	0	0	1	1	0	1	1	1	0	1	0	1	1	1	0	1	0	1	1	1	1	0	0	9BAEBC
ADD A,RI	044H	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	1	0	1	1	0	1	0	1	0	00876A
SUB A,Ri	047H 048H	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	1	0	0	1	0	1	0	1	0	63A EB C 00876A
	0 1011	Ü	Ů	Ů	Ů	Ü	Ů	Ů	Ü		Ü	Ü		Ü			Ť	Ů		1		_	Ů	Ť	Ů	0001011
M OV A,Ri	053H	1	0	1	0	1	1	1	1	1	0	0	0	1	1	1	0	1	0	1	1	1	1	0	0	A F8EBC
	054Н	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	1	0	1	1	0	1	0	1	0	00876A
MOVRi,A	057H	0	0	0	0	0	0	0	0	1	0	0	0	1	1	1	0	1	0	1	1	1	1	1	1	008EBF
	058H	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	1	0	1	1	0	1	0	1	0	00876A
MOVA,#DATA	05B H	0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	1	1	1	1	1	0	1	0	038FFA
	05CH	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	1	0	1	1	0	1	0	1	0	00876A
LD A,ADDR	063H	0	0	0	0	0	0	0	0	1	1	0	0	1	1	1	1	1	1	1	1	1	0	1	0	00CFFA
до пупові	064H	0	0	0	0	0	0	1	1	0	0	0	0	1	1	1	1	1	0	1	1	1	0	1	0	030FBA
	065H	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	1	0	1	1	0	1	0	1	0	00876A
LD A,ADDR	067H	0	0	0	0	0	0	0	0	1	1	0	0	1	1	1	1	1	1	1	1	1	0	1	0	00C FFA

- 15. (C类选作)设某计算机运算器框图如图(a)所示,其中 ALU 为 16 位的加法器(高电平工作), SA,SB为 16 位暂存器。4 个通用寄存器由 D 触发器组成,Q端输出,其读、写控制功能见表 1。机器采用微程序控制器,微指令字长 12 位(忽略了取指各微命令,未考虑顺序控制字段),微指令格式如图(c)所示。微指令周期见图(b)。其中读 ROM 是从控存中读出一条微指令时间;ALU 工作是加法器做加法运算;m1 是读寄存器时间,为 500ns;m2 是写寄存器的工作脉冲宽度,为 100ns。
 - 三条机器指令: (1) "ADD R0, R1"指令,即(R0)+(R1)→R1
 - (2) "SUB R2, R3"指令, 即(R3)-(R2)→R3
 - (3) "MOV R2, R3"指令,即(R2)→R3

其指令周期流程图如图(d)所示,执行周期微程序(不含取指微指令)的二进制代码如表 2 所示。请回答:

- ① ADD 指令有三条执行微指令,其中微指令 2 含有哪些有效的微命令? 微指令 2 和 3 能否合为一条微指令,为什么?
- ② SUB 指令有三条执行微指令,其中微指令 6 的第 10 位为什么要取 1?

- ③ MOV 指令流程图中,"0→SB"能否放到前一个 CPU 周期中(即 R2→SA 所在的 CPU 周期)?若可以,应如何修改微程序?
- ④ 请仿照图(c)及表 2,给出指令"ADD R₁,R₃"指令的指令周期流程图,并 用二进制代码写出其执行周期对应的微程序。

控制信号说明: (均为高电平有效)

R: 寄存器读命令 W: 寄存器写命令

LDS_A: 打入 S_A LDS_B: 打入 S_B

S_B→ALU: S_B内容传送至 ALU

 $\bar{S}_{B} \rightarrow ALU$: S_{B} 内容按位取反传送至

ALU,并使加法器最低位加 1 Reset: 使暂存器 S_B清零

~: 指令周期结束,转入公操作

表 1

	读技	空制		写控制							
R	RAO	RA1	选择	W	WAO	WA1	选择				
1	0	0	R0	1	0	0	RO				
1	0	1	R1	1	0	1	R1				
1	1	0	R2	1	1	0	R2				
1	1	1	R3	1	1	1	R3				
0	*	*	不读	0	*	*	不写				

1	2	3	4	5	6	7	8	9	10	11	12	
RA0	RA1	WA0	WA1	R	W	LDS_A	LDS_B	S _B →ALU	$\overline{S}_{B} \rightarrow ALU$	Reset	~	

图 c 微指令格式

表 2

指令	微程序代码
	1. 00**10100000
ADD	2. 01**10010000
	3. **0101001001
	4. 11**10100000
SUB	5. 10**10010000
	6. **1101000101
MOV	7. 10**10100000
IVIOV	8. **1101001011