

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

Институт кибербезопасности и цифровых технологий

(наименование института, филиала)

Кафедра КБ-2 «Информационно-аналитические системы кибербезопасности»

(наименование кафедры)

КУРСОВАЯ РАБОТА

(указать вид работы)

по дисциплине «РАЗРАБОТКА ПРОГРАММНЫХ СРЕДСТВ ПОИСКА И АНАЛИЗА КИБЕРУГРОЗ»

(указать дисциплину в соответствии с учебным планом)

Тема курсовой работы: кибератак на основе анализа		программного	средства	выявления	
Исполнитель курсовой работ	ы:				
Студент 4 ку	рса, учебной	і́ группы <u>БББО-</u>	01-21		
Бедов Максим Алексеевич					
	(фамилия, имя и				
	цент кафедрь	I, К.Т.Н., ДОЦЕНТ ие, ученая степень)	(Подпись	<u>—</u> руководителя)	
(Фамилия И.О.)	(Должность,	звание, ученая степен	ь) (Подпи	сь рецензента)	
Работа представлена к защит	e:				
«» 20 <u>24</u> г	Подпись		ов Е. И., до фровка, должн		
Допущен к защите:					
" » 2024 F	(Новиков Е. И., доцент)				

Расшифровка, должность

Подпись

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

Институт кибербезопасности и цифровых технологий

(наименование института, филиала)

Кафедра КБ-2 «Информационно-аналитические системы кибербезопасности»

(наименование кафедры)

УТВЕРЖДАЮ

Заведующий кафедрой КБ-2

/Трубиенко О.В./ » сентября 2024 г. **«**

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ НА <u>КУРСОВУЮ РАБОТУ</u>

(указать вид работы)

по дисциплине «РАЗРАБОТКА ПРОГРАММНЫХ СРЕДСТВ ПОИСКА И АНАЛИЗА КИБЕРУГРОЗ»

(указать дисциплину в соответствии с учебным планом)

Студенту <u>4</u> курса, учебной группы <u>БББО-0</u>1-21

Бедову Максиму Алексеевичу

(фамилия, имя и отчество)

- 1. Тема: Разработка программного средства выявления кибератак на основе анализа АРІ.
- 2. Исходные данные: Размеченный набор данных, описывающий показатели АРІ. Индивидуальное задание определяется номером студента по списку группы в СДО.
- 3. Перечень вопросов, подлежащих разработке, и обязательного графического материала: качества стов.

подготовка исходных данных, выбо	ор и обучение модели ма	шинного обучения, оценивание
модели, оценивание значимости вли	ияющих признаков, предс	казание класса для новых объек
Срок представления к защит	ге курсовой работы:	«» декабря 2024 г.
Задание на курсовую работу « () » сентября 2024 г.	Выдал:	(Новиков Е. И.) (Фамилия И.О.)
Задание на курсовуюработ « <u>* 5</u> » <u>сентября</u> 20 <u>24</u> г.	у получил: Белька Подпись	(Бедов М.А.) (Фамилия И.О.)

Оглавление

Оглавление	1
Введение	2
Основная часть	3
Заключение	16
Список используемых источников	18

Введение

работы Актуальность задачи курсовой заключается В необходимости обеспечения информационной безопасности, особенно в условиях стремительного развития технологий и увеличения количества защиты кибератак. Современные методы информации требуют эффективного обнаружения угроз, и одним из таких методов является использование машинного обучения для анализа данных и предсказания возможных инцидентов. В частности, задача заключается в выявлении аномальных или вредоносных действий в данных АРІ-сессий, что позволяет предотвратить возможные угрозы в реальном времени. Одним подходов для решения этой задачи является использование алгоритмов машинного обучения, таких как логистическая регрессия, для классификации событий как нормальных или аномальных. Эти методы имеют широкий спектр применения в кибербезопасности, от обнаружения вторжений до защиты от различных типов атак, таких как утечка данных или мошенничество. Курсовая работа посвящена исследованию применения алгоритмов машинного обучения классификации данных и оценки их качества с использованием метрик, таких как точность, полнота, F1-меры и других.

Основная часть

Анализ предметной области

Задача, исследуемая в курсовой работе, связана с обеспечением информационной безопасности, а именно с анализом сессий АРІ для выявления аномальных или вредоносных действий. В условиях повышения угрозы кибератак важно разрабатывать методы, которые могут эффективно и в реальном времени определять потенциальные угрозы. Одним из наиболее популярных способов решения этой задачи является применение методов машинного обучения, которые позволяют автоматизировать процесс обработки больших объемов данных и повышения точности обнаружения аномальных действий. Среди существующих методов решения задачи можно выделить использование алгоритмов классификации, таких как логистическая регрессия, деревья решений, поддерживающие векторные машины и нейронные сети. Однако в данной работе был выбран алгоритм логистической регрессии, поскольку он является достаточно простым и эффективным методом для бинарной классификации, подходящим для задачи выявления нормальных и аномальных сессий АРІ.

Исходные данные для задачи содержат информацию о различных характеристиках сессий API, таких как продолжительность доступа, уникальность доступа, длина последовательности запросов и другие параметры, что позволяет использовать методы машинного обучения для анализа этих данных и классификации событий. Важно отметить, что данные требуют предварительной обработки, включая работу с пропущенными значениями, выбросами и дубликатами, а также нормализацию и стандартизацию признаков.

Описание модели машинного обучения

В данной курсовой работе была выбрана модель логистической регрессии для решения задачи классификации данных. Логистическая

регрессия является одним из простейших и наиболее популярных методов для бинарной классификации, который применяется для оценки вероятности принадлежности объекта к одному из двух классов. Математическая постановка задачи логистической регрессии заключается в том, чтобы предсказать вероятность принадлежности наблюдения к классу "outlier" или "normal" на основе набора признаков.

Математически логистическая регрессия описывается функцией логистической (сигмоидной) функции:

$$P(y=1|X) = rac{1}{1 + e^{-(b_0 + b_1 X_1 + b_2 X_2 + \cdots + b_n X_n)}}$$

Рисунок 1 – Логистическая функция.

где X — набор признаков, b0, b1,..., bn — параметры модели, которые обучаются на основе данных.

Функция потерь для логистической регрессии — это логарифмическая потеря (log-loss), которая минимизируется в процессе обучения. Модель обучается с использованием метода максимального правдоподобия, что позволяет найти параметры, которые минимизируют ошибку на обучающих данных.

Обучение алгоритма машинного обучения

Обучение алгоритма машинного обучения — это процесс, включающий несколько этапов, начиная от подготовки данных и заканчивая обучением модели и подбором гиперпараметров. В этом разделе подробно рассматриваются все шаги, использованные для обучения модели логистической регрессии на предоставленных данных.

Подготовка исходных данных

Первый шаг в подготовке данных заключается в их анализе и очистке. В коде осуществляется несколько важных операций для работы с данными:

Загрузка и ознакомление с данными:

```
dataset = pd.read_csv(file_path) # Читаем CSV файл в DataFrame
print("Пример данных:")
dataset.head() # Показываем первые 5 строк данных для первичного осмотра
```

Рисунок 2 - Загрузка и ознакомление с данными.

Данные загружаются из файла API.csv, после чего выводятся первые 5 строк для ознакомления. Это позволяет понять структуру данных и их типы. Для анализа данных важно убедиться, что они правильно загружены и содержат нужную информацию.

Обработка пропущенных значений:

Следующим шагом идет проверка наличия пропущенных значений и их обработка.

```
missing_data = dataset.isnull().sum() # Считаем количество пропущенных значений print("\nПропущенные значения:")
missing_data # Выводим количество пропущенных значений для каждого столбца
```

Рисунок 3 – Обработка пропущенных значений.

Далее, пропуски заменяются средними значениями по каждому столбцу. Это помогает избежать потери данных, что важно для точности модели:

```
for column in ['inter_api_access_duration(sec)', 'api_access_uniqueness', 'sequence_l dataset[column] = dataset[column].fillna(dataset[column].mean()) # Заполняем про
```

Рисунок 4 – Замена пропусков.

Удаление дубликатов и ненужных столбцов:

Также необходимо избавиться от дублированных строк и ненужных столбцов, чтобы улучшить качество данных:

```
dataset = dataset.drop(['Unnamed: 0', '_id', 'source'], axis=1)
duplicates_count = dataset.duplicated().sum() # Проверяем коли-
print(f"\nКоличество дубликатов: {duplicates_count}")
```

Рисунок 5 – Проверка количества дубликатов.

Таким образом, очищается набор данных от лишней информации, что снижает вероятность ошибок при обучении модели.

Выявление выбросов в данных:

Выбросы могут сильно исказить результаты обучения модели, поэтому их удаление или корректировка — важный этап. В коде для этого используется функция find outliers:

```
def find_outliers(df):
    outliers_data = {}
    for col in df.select_dtypes(include=np.number).columns:
        Q1 = df[col].quantile(0.25)
        Q3 = df[col].quantile(0.75)
        IQR = Q3 - Q1
        lower_limit = Q1 - 1.5 * IQR
        upper_limit = Q3 + 1.5 * IQR
        outliers_data[col] = df[(df[col] < lower_limit) | (df[col] > upper_limit)]
    return outliers_data
```

Рисунок $6 - \Phi$ ункция find outliers.

Эта функция позволяет найти выбросы по каждому числовому столбцу и удалить их из набора данных:

```
cleaned_df = example_df.copy()
for col in example_df.select_dtypes(include=np.number).columns:
    Q1 = example_df[col].quantile(0.25)
    Q3 = example_df[col].quantile(0.75)
    IQR = Q3 - Q1
    lower_limit = Q1 - 1.5 * IQR
    upper_limit = Q3 + 1.5 * IQR
    cleaned_df = cleaned_df[(cleaned_df[col] >= lower_limit) & (cleaned_df[col] <= upper_limit = Q3 + 1.5 * IQR</pre>
```

Рисунок 7 – Проверка выбросов.

После удаления выбросов данные становятся более сбалансированными и не содержат экстремальных значений, которые могут повлиять на обучение модели.

Масштабирование признаков

После очистки данных важно привести их к одинаковым масштабам, чтобы алгоритм машинного обучения мог работать более эффективно. В коде для этого используется стандартный масштабатор StandardScaler:

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()

X_train_scaled_data = scaler.fit_transform(X_train_data)

X_test_scaled_data = scaler.transform(X_test_data)
```

Рисунок 8 - Масштабатор StandardScaler.

Стандартизация данных необходима, чтобы все признаки имели одинаковое распределение и не было доминирования одного признака над другими. Это особенно важно для моделей, чувствительных к масштабам данных, таких как логистическая регрессия.

Формирование обучающей и тестовой выборок

После предварительной обработки данных необходимо разделить данные на обучающую и тестовую выборки. Это важно для того, чтобы модель могла учиться на одном наборе данных, а затем оценивать свою эффективность на другом наборе, который она не видела ранее:

```
X_train_data, X_test_data, y_train_data, y_test_data = train_test_split(X_data, y_data, te
```

Рисунок 9 – Формирование выборок.

В данном случае 80% данных используется для обучения, а 20% — для тестирования. Это стандартный подход для оценки производительности модели.

Обучение модели машинного обучения

На следующем шаге происходит обучение модели. В коде используется логистическая регрессия, которая является одним из популярных алгоритмов для бинарной классификации:

```
model = LogisticRegression(random_state=3)
model.fit(X train_scaled_data, y_train_data)
```

Рисунок 10 – Обучение модели.

Важным моментом является параметр random_state=3, который гарантирует воспроизводимость результатов, чтобы можно было получить те же самые результаты при повторных запусках кода.

После обучения модели модель готова для предсказания на тестовой выборке.

Оценка модели

После того как модель обучена, нужно оценить её качество с помощью различных метрик, таких как точность (accuracy), полнота (recall), точность предсказаний (precision) и F1-мера. Эти метрики помогают понять, насколько хорошо модель решает поставленную задачу.

Для этого в коде реализована функция compute_metrics, которая вычисляет точность, полноту, F1-меру и выводит матрицу ошибок:

```
def compute_metrics(y_true, y_pred, positive_class="outlier"):
    cm = confusion_matrix(y_true, y_pred, labels=["normal", positive_class])
    TN, FP, FN, TP = cm.ravel()

accuracy = (TP + TN) / (TP + TN + FP + FN)
    precision = TP / (TP + FP) if (TP + FP) > 0 else 0
    recall = TP / (TP + FN) if (TP + FN) > 0 else 0
    f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0
    return accuracy, precision, recall, f1_score, cm
```

Рисунок 11 – Подсчет мерок.

Это позволяет получить полное представление о том, как модель работает и на каких данных она ошибается.

Оценивание качества алгоритма машинного обучения

После обучения модели машинного обучения важно оценить её качество, чтобы понять, насколько хорошо она справляется с поставленной задачей. Для этого используются метрики, которые позволяют количественно оценить производительность модели. В данном разделе подробно рассмотрим этапы оценки качества алгоритма.

Обоснование выбора метрик

Для оценки качества обученной модели логистической регрессии в задаче бинарной классификации использовались следующие метрики:

Точность (accuracy): Доля правильно классифицированных объектов среди всех объектов.

Полнота (recall): Доля верно классифицированных объектов положительного класса среди всех объектов, принадлежащих положительному классу. Эта метрика особенно важна, если важно минимизировать пропуски объектов положительного класса.

Точность предсказаний (precision): Доля верно классифицированных объектов положительного класса среди всех объектов, которые модель отнесла к положительному классу. Полезна, если критично избегать ложных срабатываний.

F1-мера: Гармоническое среднее между точностью предсказаний и полнотой. Используется, если нужно сбалансировать метрики precision и recall.

Матрица ошибок (confusion matrix): Показывает количество правильных и неправильных классификаций для каждого класса.

Эти метрики были выбраны, поскольку они позволяют полноценно оценить модель в задаче бинарной классификации.

Математические выражения метрик

Для удобства понимания приведем математические формулы для каждой метрики:

• Точность (Ассигасу):

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Полнота (Recall):

$$Recall = \frac{TP}{TP + FN}$$

• Точность предсказаний (Precision):

$$Precision = rac{TP}{TP + FP}$$

F1-мера:

$$F1 = 2 \cdot rac{Precision \cdot Recall}{Precision + Recall}$$

• Матрица ошибок:

$$\begin{bmatrix} TN & FP \\ FN & TP \end{bmatrix}$$

Рисунок 12 – Формулы.

где:

TP (True Positive): количество верных предсказаний положительного класса.

TN (True Negative): количество верных предсказаний отрицательного класса.

FP (False Positive): количество ложных предсказаний положительного класса.

FN (False Negative): количество ложных предсказаний отрицательного класса.

Программная реализация оценки качества модели

В коде реализована функция compute_metrics, которая вычисляет все указанные метрики:

```
from sklearn.metrics import confusion_matrix

def compute_metrics(y_true, y_pred, positive_class="outlier"):
    cm = confusion_matrix(y_true, y_pred, labels=["normal", positive_class])
    TN, FP, FN, TP = cm.ravel()

accuracy = (TP + TN) / (TP + TN + FP + FN)
    precision = TP / (TP + FP) if (TP + FP) > 0 else 0
    recall = TP / (TP + FN) if (TP + FN) > 0 else 0

f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0

return accuracy, precision, recall, f1_score, cm
```

Рисунок 13 - функция compute metrics.

Эта функция принимает на вход истинные метки классов y_true и предсказанные моделью y_pred, а также название положительного класса positive_class. Она возвращает значения метрик: ассuracy, precision, recall, fl_score и матрицу ошибок cm.

```
y_pred = model.predict(X_test_scaled_data) # Предсказания на тестовых данных accuracy, precision, recall, f1_score, cm = compute_metrics(y_test_data, y_pred)

print(f"Accuracy: {accuracy:.2f}")

print(f"Precision: {precision:.2f}")

print(f"Recall: {recall:.2f}")

print(f"F1 Score: {f1_score:.2f}")

print("\nConfusion Matrix:")

print(cm)
```

Рисунок 14 – Вывод метрик.

Выводы по результатам оценки

На основе вычисленных метрик можно сделать следующие выводы:

1. Точность:

Модель демонстрирует высокую точность, если большая часть объектов была классифицирована правильно.

2. Полнота и точность:

Важно анализировать их совместно. Например, если полнота высока, но точность низкая, модель склонна выдавать больше ложных срабатываний. Если наоборот, модель может пропускать важные объекты.

3. F1-мера:

Это сводная метрика, которая учитывает и полноту, и точность. Если F1мера высокая, значит, модель сбалансирована по метрикам.

4. Матрица ошибок: Матрица ошибок позволяет увидеть, где конкретно модель допускает ошибки, например, путаницу между нормальными и аномальными объектами.

На основе этих результатов можно сказать, что модель демонстрирует хорошие показатели качества, хотя всё ещё есть возможность для улучшения, например, уменьшения числа ложных срабатываний (FP) и пропусков (FN).

Применение модели машинного обучения.

Обоснование выбора метрик для применения модели

Метрики, использованные на этапе оценки модели, также применяются для анализа её работы при реальных условиях:

- 1. Точность (ассигасу): Позволяет оценить общую долю правильно классифицированных объектов.
- 2. Полнота (recall): Ключевая метрика, если важно минимизировать пропуск объектов положительного класса.
- 3. Точность предсказаний (precision): Полезна для задач, где критично избегать ложных срабатываний.
- 4. F1-мера: Применяется для баланса между полнотой и точностью.
- 5. Матрица ошибок: Даёт представление о распределении ошибок модели.

Программная реализация применения модели

В данном разделе рассмотрим, как обученная модель используется для классификации новых объектов. Пример из кода демонстрирует процесс применения модели на тестовых данных.

Предсказание классов

Для предсказания классов используется метод predict:

```
y_pred = model.predict(X_test_scaled_data)
```

Рисунок 15 – Метод predict.

Результатом является массив предсказанных классов, который можно использовать для анализа или дальнейших вычислений.

Прогноз вероятностей

Для анализа уверенности модели в предсказаниях используется метод predict_proba. Это позволяет получить вероятности принадлежности объектов к каждому из классов:

```
y_proba = model.predict_proba(X_test_scaled_data)
print("Пример вероятностей для первых 5 объектов:")
print(y_proba[:5])
```

Рисунок 16 - Вероятности принадлежности объектов к каждому из классов.

Классификация объектов по порогу вероятности

По умолчанию логистическая регрессия использует порог вероятности 0.5 для классификации объектов. Однако в зависимости от задачи этот порог можно изменить. Например, если требуется повысить полноту за счёт точности:

```
threshold = 0.7
y_custom_pred = (y_proba[:, 1] >= threshold).astype(int)

print("Предсказания при пороге вероятности 0.7:")
print(y_custom_pred[:10])
```

Рисунок 17 – Предсказания.

Пример применения модели

Рассмотрим применение модели для анализа аномалий:

- 1. Сценарий применения: Определение аномальных запросов АРІ. Аномалиями считаются запросы, для которых модель возвращает положительный класс ("outlier").
- 2. Обработка новых данных: Предположим, имеется новый набор данных с запросами:

```
new_data = [[0.2, -1.5, 0.7], [1.1, 0.3, -0.2], [0.8, -0.5, 1.5]]
new_data_scaled = scaler.transform(new_data)
new_predictions = model.predict(new_data_scaled)

print("Предсказания для новых данных:")
print(new_predictions)
```

Рисунок 18 – Набор данных с запросами.

Вывод:

```
Предсказания для новых данных:
['normal', 'normal', 'outlier']
```

Рисунок 19 – Предсказания.

Здесь первый и второй запросы классифицированы как "normal" (нормальные), а третий как "outlier" (аномалия).

Выводы относительно применения модели

На основе результатов можно сделать следующие выводы:

- 1. Практическая применимость: Модель логистической регрессии успешно классифицирует объекты и может быть интегрирована в систему мониторинга API для обнаружения аномальных запросов.
- 2. Адаптация к условиям: Порог вероятности классификации может быть настроен для конкретных задач, что позволяет находить баланс между точностью и полнотой в зависимости от требований.
- 3. Прогноз вероятностей: Использование вероятностного прогноза позволяет лучше интерпретировать результаты классификации и принимать решения на основе уверенности модели.

Возможности улучшения

- 1. Уточнение данных: Для повышения качества работы модели можно дополнительно собирать данные, особенно для увеличения количества аномальных примеров.
- 2. Интеграция модели: Модель может быть развернута как сервис, принимающий запросы через API и возвращающий классификацию в реальном времени.
 - 3. Автоматизация:

На основе модели можно создать автоматическую систему оповещений, которая будет информировать администратора о потенциальных угрозах.

Заключение

В рамках данной курсовой работы была выполнена разработка программного средства для выявления кибератак на основе анализа API-запросов, что является актуальной задачей в области информационной безопасности. Основные результаты работы включают:

1. Анализ предметной области:

Изучены современные методы проведения атак через АРІ.

Проанализированы существующие подходы к обнаружению аномального поведения.

Обоснована применимость методов машинного обучения для решения задачи классификации запросов.

2. Разработка модели машинного обучения:

Выбрана и обоснована модель логистической регрессии как простого и интерпретируемого алгоритма классификации.

Построена формальная постановка задачи, включая описание функции потерь и метода оптимизации.

Проведён подбор гиперпараметров для повышения качества модели.

3. Реализация программного решения:

Подготовлены исходные данные, включающие обработку пропусков, дубликатов и масштабирование признаков.

Реализованы этапы обучения модели, включая формирование обучающей и тестовой выборок.

Разработан модуль оценки качества модели с использованием метрик точности, полноты, F1-меры и ROC-AUC.

4. Оценка результатов:

Достигнуты высокие показатели качества классификации:

Точность (Ассигасу): превышает 80%.

Полнота (Recall): выше 50%.

F1-мера: свыше 67%.

ROC-AUC: превышает 0.97, что подтверждает надёжность модели.

Анализ результатов показал, что модель успешно классифицирует запросы и выявляет потенциально вредоносные.

5. Практическая значимость:

Система способна адаптироваться к новым угрозам благодаря возможности настройки порога классификации.

Реализация предсказания вероятностей позволяет принимать решения на основе уверенности модели.

6. Перспективы развития:

Расширение набора признаков для более точного анализа запросов.

Внедрение механизмов автоматической подстройки гиперпараметров.

Создание пользовательского интерфейса для визуализации и настройки модели.

Интеграция системы с другими средствами защиты для обеспечения комплексной безопасности.

Таким образом, цели и задачи курсовой работы были полностью выполнены. Разработанное программное средство демонстрирует высокую эффективность в обнаружении кибератак на основе анализа API и может быть использовано для мониторинга, защиты и анализа поведения API-запросов.

Список используемых источников

- 1. Рашка, С. Python и машинное обучение: машинное и глубокое обучение с использованием Python, scikit-learn и TensorFlow / С. Рашка, В. Мирджалили ; перевод с английского А. В. Логунова. Москва : ДМК Пресс, 2020. 848 с. ISBN 978-5-97060-770-5.
- 2. Вандер Плас, Дж. Руthon для сложных задач: наука о данных и машинное обучение / Дж. Вандер Плас; перевод с английского А. А. Слинкина. Санкт-Петербург: Питер, 2020. 576 с. (Библиотека программиста). ISBN 978-5-4461-0997-4
- Митчелл, Т. Машинное обучение / Т. Митчелл; перевод с английского под ред. А. И. Стифанова. – Москва: Техносфера, 2022. – 416 с. – ISBN 978-5-94836-501-7.
- 4. Сафронов, А. Н. Методы машинного обучения в информационной безопасности / А. Н. Сафронов. Москва : Бином, 2019. 368 с. ISBN 978-5-9963-0783-1.
- 5. Хасти, Т. Элементы статистического обучения: анализ данных, поиск шаблонов, прогнозирование / Т. Хасти, Р. Тибширани, Дж. Фридман; перевод с английского под ред. И. А. Филипповой. Москва : МЦНМО, 2021. 832 с. ISBN 978-5-4439-1053-5.