

7

9

Epipolar Planes

epipolar line

epipolar line

p

T

epipole

COMSSIOSSI IPCV Stereo Let 2

9

Epipolar Geometry

- Epipolar geometry defines relationship between two stereo views
- For known viewpoints:
 - it constrains matches to lie along epipolar lines
- For unknown viewpoints:

dot product = 0 for **perpendicular** vectors

- given matching points
- it enables estimation of viewpoints

COMS30030 IPCV Steren Lec 2

Epipolar Geometry - Maths

Vectors P_i , T

 $\mathbf{T} \otimes \mathbf{P}_{L}$

and $P_L - T$ all lie in epipolar

plane

⊗ cross product :

10

w.r.t. left

camera

Epipolar Geometry - Maths

Rigid transformation between cameras:

$$\mathbf{P}_{R} = R(\mathbf{P}_{L} - \mathbf{T})$$

Perspective projection:

$$\mathbf{P}_{L} = \begin{bmatrix} X_{L} \\ Y_{L} \\ Z_{L} \end{bmatrix}$$

 $\mathbf{p}_{L} = \begin{bmatrix} x_{L} \\ y_{L} \\ f \end{bmatrix} = \frac{f\mathbf{P}_{L}}{Z_{L}}$

$$\mathbf{p}_{R} = \begin{bmatrix} x_{R} \\ y_{R} \\ f \end{bmatrix} = \frac{f\mathbf{P}_{R}}{Z_{R}}$$

30030 IPCV Stereo Lec 2

12

11

13

The Essential Matrix $\mathbf{P}_{R}^{T} R S \mathbf{P}_{L} = 0 \quad \Longrightarrow \quad \mathbf{P}_{R}^{T} E \mathbf{P}_{L} = 0$ $E = RS \quad \Longrightarrow \quad \text{the essential matrix}$ $\mathbf{p}_{L} = \frac{f\mathbf{P}_{L}}{Z_{L}} \quad \mathbf{p}_{R} = \frac{f\mathbf{P}_{R}}{Z_{R}} \qquad \Longrightarrow \quad \mathbf{p}_{R}^{T} E \underbrace{\mathbf{Z}_{L}}_{L} \mathbf{p}_{L} = 0$ $\mathbf{p}_{L} = \underbrace{\mathbf{Z}_{L}\mathbf{p}_{L}}_{f} \quad \mathbf{p}_{R} = \underbrace{\mathbf{Z}_{R}\mathbf{p}_{R}}_{f} \qquad \Longrightarrow \quad \mathbf{p}_{R}^{T} E \mathbf{p}_{L} = 0$

15