Problem Given a set $A = \{a_1, a_2, ... a_n\}$ of n integers how many non-zero unique subsets can be selected such that the sum of the subset is even. In the event a set contains two numbers which are the same, the numbers will be considered independent and unique, such that if $a_i = a_j$ then choosing a_i and choosing a_j will be considered as different sets.

Decomposition

- 1. $A = \{\}$
- 2. A_e = even elements only
- 3. A_{eo} = even number of odd elements only
- 4. $A_{oo} = \text{odd number of odd elements only}$
- 5. $A_u = A_e \cup A_{eo} \cup A_{oo}$ Generic case

Math We will now consider each decomposition.

- 1. In the event of $A = \{\}$ the answer is 1.
- 2. For A_e , let $C_r^n = \binom{n}{r}$. Calculate $\sum_{r=1}^n \binom{n}{r} = 2^n 1$ by the Bionomial Theorem ¹

For example, $A_e = \{2, 4, 6, 8\}$ produces the following combinations all 15 of which have even sums:

$$\{2\}, \{4\}, \{6\}, \{8\}, \\ \{2,4\}, \{2,6\}, \{2,8\}, \{4,6\}, \{4,8\}, \{6,8\}, \\ \{2,4,6\}, \{2,4,8\}, \{2,6,8\}, \{4,6,8\}, \\ \{2,4,6,8\}, \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \\ \{4,6,8\}, \\ \{4,6,8\}, \{4,6,8\}, \\ \{4,6\}, \\ \{4,6$$

 $\sum_{r=1}^{n} {n \choose r} = 2^n - 1 = 2^4 - 1 = 16 - 1 = 15$. There are 15 possible subsets.

3. For A_{eo} , each subset of even length produces an even sum. For example, $A_{eo} = \{1, 3, 5, 7\}$ produces the following combinations of which 7 have even sums:

$$\{1\}, \{3\}, \{5\}, \{7\}, = C_1^4$$

$$\{1, 3\}, \{1, 5\}, \{1, 7\}, \{3, 5\}, \{3, 7\}, \{5, 7\}, = C_2^4$$

$$\{1, 3, 5\}, \{1, 3, 7\}, \{1, 5, 7\}, \{3, 5, 8\}, = C_3^4$$

$$\{1, 3, 5, 7\} = C_4^4$$

For A_{eo} with $|A_{eo}|$ is even, the number of even non-empty subsets is calculated by $\sum_{r=1}^{n} \binom{n}{r} - 1, r \in \{2,4,6\ldots,n\} = 2^{n-1} - 1 = 2^{4-1} - 1 = 7$ by combinatorial identity².

 $^{^{1}\}mathrm{Chong}~\&~\mathrm{Meng},$ Principles and Techniques in Combinatorics p.71, 2.3.1

²Chong & Meng, p.72 2.2.3

4. For A_{oo} , still each subset of even length produces and even sum. For example, $A_{oo} = \{1, 3, 5\}$ produces the following combinations of which 3 have even sums:

$$\{1\}, \{3\}, \{5\} = C_1^3$$

$$\{1, 3\}, \{1, 5\}, \{3, 5\} = C_2^3$$

$$\{1, 3, 5\} = C_3^3$$

It follows that in the event of an odd number of odd elements, $2^{n-1} - 1 = 2^{3-1} - 1 = 3$ is the same result as A_{eo} .

5. For the generic case consider $A_e \cup A_{eo}$ and by the multiplication principle 3 the number of even summed where $|A_e| = i$ and $|A_{eo}| = j$ sets is given by $\sum_{r=0}^{e} \binom{n}{r} \sum_{r=0}^{j} \binom{n}{r}$. Removing the empty set the result is $2^n \cdot 2^{n-1} - 1$.

Solution Given a set $A = \{a_1, a_2, ... a_n\}$ the number of even non-empty subsets is computed by counting the number of even a, call e and the number of odd a, call o, computing the combinations as per above, and multiplying.

$$2^e \cdot 2^{o-1} - 1 \blacksquare$$

 $^{^3{\}rm Chong}~\&~{\rm Meng},~{\rm p.3}$