Korszerű vizsgálati módszerek labor jegyzőkönyv

Dinamikus nano- és mikrokeménység mérése

Csörnyei Géza

Eötvös Loránd Tudományegyetem Fizika BSc III. évfolyam

'C' mérőcsoport

Mérés dátuma: 2018.05.03.

Mérés vezetője: Nguyen Quang Chinh

1. Bevezető

Mérésünk során megismerkedtünk a keménységmérés módszerével, mely az anyagok mechanikai tulajdonságainak meghatározására szolgáló egyszerű mérési módszer. A laborgyakorlaton kapott adatok segítségével meghatároztuk adott minták Young-moduluszát, megvizsgáltuk az ötvözőatomok koncentrációjának az anyag keménységére gyakorolt hatását, valamint kiértékeltük a plasztikus instabilitások hatását is különböző terhelési sebességek esetére.

2. Rövid összefoglaló

A keménységmérésnek két típusa létezik, a statikus és a dinamikus keménységmérés. A statikus keménységmérés során egy meghatározott geometriájú, kemény fejet nyomunk a vizsgálandó anyagba meghatározott terhelő erővel, majd a mintában maradt nyom mikroszkópos vizsgálata alapján következtetünk az anyag keménységére. Az anyag keménységét a nyomáshoz hasonlóan definiáljuk, konkrétan a terhelőerő és a nyom felületének hányadosaként. A statikus keménységmérés hátránya, hogy csak a végállapotról kapunk információt, az anyag köztes keménységéről és a deformációk menetéről nem.

Ezen probléma megoldására alkották meg a dinamikus, vagyis mélységérzékeny keménységmérést. Itt a mikroszkópot számítógépre cserélve mérni tudjuk a nyomófejre ható terhelőerőt a benyomódási mélység függvényében, miközben azt meghatározott sebességgel a mintába nyomjuk. A terhelőerő és a benyomódási mélység kapcsolatának vizsgálatából következtetni tudunk az anyag keménységén felül annak rugalmas állandóira, törési szívósságára és a lejátszódó plasztikus deformációkra is.

A laborgyakorlat során dinamikus keménységmérés segítségével vizsgáltuk meg a fent említett mennyiségeket és hatásokat különböző tiszta fémek, illetve ötvözetek esetére.

3. Kiértékelés

3.1. Ötvözőkoncentráció hatása az anyag keménységére

Ezen mérés során több AlMg ötvözetet használtunk, különböző Mg koncentrációk mellett. Dinamikus keménységméréssel mindegyik mintára felvettük a terhelőerőbenyomódás görbét, melyből aztán meghatározhattuk a keménységet. A keménységérték számításához a maximális terhelőerőt és az ott észlelt benyomódásértéket kellett felhasználnunk. A minta nyomásakor fellépő rugalmas deformációk miatt nem közvetlenül a maximális benyomódással, hanem annak egy korrigált értékével, az érintkezési mélységgel fogunk számolni, melyet a 1. képlettel képezhetünk:

$$h_c = h_m - 0.75 \frac{F_m}{S},\tag{1}$$

ahol h_c az érintkezési mélység, h_m a maximális benyomódás, F_m a maximális terhelőerő, valamint $S = \frac{dF}{dh}|_{h_m}$, vagyis az F-h görbe tehermentesítési szakaszának meredeksége a maximális benyomódás helyén. A leolvasott, illesztett, illetve az 1. alapján számolt értékeket a ??. táblázat tartalmazza.

Anyag	$h_m [\mu \mathrm{m}]$	$F_m [mN]$	$S\left[\frac{\text{mN}}{\mu\text{m}}\right]$	$h_c [\mu \mathrm{m}]$	$\Delta h_c \left[\mu \mathrm{m} \right]$
Al - 0.47% Mg	5.755	299.26	1938.11	5.631	0.145
Al - 0.93% Mg	5.423	299.98	4918.11	5.374	0.258
Al - 1.25% Mg	5.565	299.64	6239.95	5.529	0.213
Al - 1.45% Mg	4.718	299.14	1741.09	4.590	0.062
Al - 2.7% Mg	4.233	299.26	5815.18	4.154	0.522
Al - 4.5% Mg	3.653	299.63	1350.11	3.485	0.029
Al - 7.3% Mg	3.553	299.29	2320.39	3.451	0.057

1. táblázat. A keménységszámításhoz szükséges mennyiségek táblázata

A egyes hibaértékeket az illesztésekből származó hiba terjedésével számoltam. A keménységszámoláshoz szükségünk van a lenyomat felületére, melyet a laborban használt nyomófej esetén

$$A = 24.5h_c^2. (2)$$

Az így számolt keménységértékeket 2 tartalmazza.

Anyag	$A \left[\mu \mathrm{m}^2 \right]$	$\Delta A \left[\mu \mathrm{m}^2 \right]$
Al - 0.47% Mg	776.86	20.02
Al - 0.93% Mg	707.42	33.91
Al - 1.25% Mg	749.04	28.80
Al - 1.45% Mg	516.07	6.99
Al - 2.7% Mg	422.69	53.12
Al - 4.5% Mg	297.56	2.49
Al - 7.3% Mg	291.71	4.83

2. táblázat. A lenyomat számolt felületértékei, valamint azok hibái a benyomódási mélységek relatív hibáiból számolva.

Ezen értékekből a $HV=\frac{F_m}{A}$ módon számolható keménységértékeket a 3 táblázat tartalmazza.

Anyag	HV [kPa]	ΔHV [kPa]
Al - 0.47% Mg	0.385	0.010
Al - 0.93% Mg	0.424	0.020
Al - 1.25% Mg	0.400	0.015
Al - 1.45% Mg	0.580	0.008
Al - 2.7% Mg	0.708	0.089
Al - 4.5% Mg	1.007	0.008
Al - 7.3% Mg	1.026	0.017

3. táblázat. A számolt keménységértékek táblázata.

Az itt számolt értékekre egy

$$HV = HV_0 + Bc^m (3)$$

alakú görbét illesztettem, ahol a c a Mg koncentrációja volt a megfelelő ötvözetben. Az illesztés eredménye a 1. ábrán látható.

1. ábra. Minden paraméter illesztésével kapott görbe

Az illesztési paraméterek:

$$HV_0 = (-0.062 \pm 0.692) \,\mathrm{kPa}$$

 $B = (3.216 \pm 1.487) \,\mathrm{kPa}$
 $m = 0.393 \pm 0.379$

Látszik, hogy az illesztési paraméterek hibája nagyon nagy, rendkívül bizonytalan az illesztés. Ebből az illesztésből sajnos következtetést ezért nem lehet levonni, ezért kötött kitevő, m=1/2 és m=2/3 esetére is elkészítettem az illesztést. Az így kapott illesztések a 2. ábrán láthatók.

2. ábra. A kitevő előre megválasztásával kapott illesztések

Az illesztési paraméterek a két illesztés esetén:

$$m=1/2$$
 $m=2/3$ $HV_0=(0.089\pm0.080)\,\mathrm{kPa}$ $HV_0=(0.228\pm0.068)\,\mathrm{kPa}$ $B=(3.741\pm0.489)\,\mathrm{kPa}$ $B=(5.081\pm0.709)\,\mathrm{kPa}$

A paraméterek értékeiből és azok hibáiból jól látszik, hogy az m=2/3 esetben sokkal kisebb a relatív hiba, ezért mondhatjuk, hogy ez az eset írja le jobban az ötvözetet, vagyis az anyag már nem tekinthető egészen híg oldatnak, figyelembe kell venni az ötvözőatom-diszlokáció kölcsönhatásokat is.