

Low Voltage, 400 MHz, Quad 2:1 Mux with 3 ns Switching Time

Data Sheet ADG774A

FEATURES

Bandwidth: >400 MHz

Low insertion loss and on resistance: 2.2 Ω typical

On resistance flatness: 0.3 Ω typical Single 3 V/5 V supply operation Very low distortion: <0.3%

Low quiescent supply current: 1 nA typical

Fast switching times

 $t_{ON} = 6 \text{ ns}$ $t_{OFF} = 3 \text{ ns}$

TTL-/CMOS-compatible Pb-free packages 16-lead QSSOP

16-lead 3 mm × 3 mm body LFCSP

GENERAL DESCRIPTION

The ADG774A is a monolithic CMOS device comprising four 2:1 multiplexer/demultiplexers with high impedance outputs. The CMOS process provides low power dissipation yet offers high switching speed and low on resistance. The on resistance variation is typically less than $0.5~\Omega$ over the input signal range.

The bandwidth of the ADG774A is typically 400 MHz and this, coupled with low distortion (typically 0.3%), makes the part suitable for switching of high speed data signals.

The on resistance profile is very flat over the full analog input range ensuring excellent linearity and low distortion. CMOS construction ensures ultralow power dissipation.

The ADG774A operates from a single 3.3 V/5 V supply and is TTL logic-compatible. The control logic for each switch is shown in the truth table (see Table 5).

FUNCTIONAL BLOCK DIAGRAM

These switches conduct equally well in both directions when on. In the off condition, signal levels up to the supplies are blocked. The ADG774A switches exhibit break-before-make switching action.

PRODUCT HIGHLIGHTS

- 1. Wide bandwidth data rates of >400 MHz.
- 2. Ultralow power dissipation.
- 3. Low leakage over temperature.
- 4. Break-before-make switching prevents channel shorting when the switches are configured as a multiplexer.
- 5. Crosstalk is typically -70 dB @ 10 MHz.
- 6. Off isolation is typically -65 dB @ 10 MHz.
- 7. Available in compact 3 mm \times 3 mm LFCSP.

Trademarks and registered trademarks are the property of their respective owners.

ADG774A* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

EVALUATION KITS

- ADSP-SC584 Evaluation Hardware for the ADSP-SC58x/ ADSP-2158x SHARC Family (349-ball CSPBGA)
- ADSP-SC589 Evaluation Hardware for the ADSP-SC58x/ ADSP-2158x SHARC Family (529-ball CSPBGA)

DOCUMENTATION

Application Notes

- AN-1024: How to Calculate the Settling Time and Sampling Rate of a Multiplexer
- AN-944: Signal Bandwidth vs. Resolution for Analog Video
- AN-945: System Bandwidth vs. Resolution for Analog Video

Data Sheet

 ADG774A: Low Voltage, 400 MHz, Quad 2:1 Mux with 3 ns Switching Time Data Sheet

REFERENCE MATERIALS 🖵

Product Selection Guide

• Switches and Multiplexers Product Selection Guide

Technical Articles

- CMOS Switches Offer High Performance in Low Power, Wideband Applications
- · Data-acquisition system uses fault protection
- Enhanced Multiplexing for MEMS Optical Cross Connects
- Temperature monitor measures three thermal zones

DESIGN RESOURCES \Box

- · ADG774A Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- · Symbols and Footprints

DISCUSSIONS

View all ADG774A EngineerZone Discussions.

SAMPLE AND BUY 🖳

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

TABLE OF CONTENTS

7/01—Revision 0: Initial Version

Features
Functional Block Diagram
General Description
Product Highlights1
Revision History
Specifications
Single Supply
Absolute Maximum Ratings
REVISION HISTORY
4/16—Rev. B to Rev. C
Changed CP-16-3 to CP-16-27 Throughout
Changes to Figure 3 and Table 4
Updated Outline Dimensions
Changes to Ordering Guide
8/06—Rev. A to Rev. B
Updated FormatUniversal
Added LFCSP ModelUniversal
Added Lead-Free ModelsUniversal
Changes to Table 3
Updated Outline Dimensions
Changes to Ordering Guide
4/03—Rev. 0 to Rev. A
Changes to TPCs 9–115
Updated Outline Dimensions

ESD Caution	
Pin Configurations and Function Descriptions	
Typical Performance Characteristics	
Test Circuits	
Terminology	
Application Circuits	
Outline Dimensions	
Ordering Guide	

SPECIFICATIONS

SINGLE SUPPLY

 V_{DD} = 5 V \pm 10%, GND = 0 V, all specifications T_{MIN} to T_{MAX} , unless otherwise noted. 1

Table 1.

B Version					
Parameter	25°C	T_{MIN} to T_{MAX}	Unit	Test Conditions/Comments	
ANALOG SWITCH					
Analog Signal Range		0 to 2.5	V		
On Resistance, Ron	2.2		Ω typ	$V_D = 0 \text{ V to } 1 \text{ V, } I_S = -10 \text{ mA}$	
	3.5	4	Ω max		
On Resistance Match Between Channels, ΔR_{ON}	0.15		Ω typ	$V_D = 0 \text{ V to } 1 \text{ V, } I_S = -10 \text{ mA}$	
		0.5	Ω max		
On Resistance Flatness, R _{FLAT(ON)}	0.3		Ωtyp	$V_D = 0 \text{ V to } 1 \text{ V, } I_S = -10 \text{ mA}$	
		0.6	Ω max		
LEAKAGE CURRENTS					
Source Off Leakage, Is (OFF)	±0.001		nA typ	$V_D = 3 \text{ V/1 V, V}_S = 1 \text{ V/3 V, see Figure 17}$	
	±0.1	±0.25	nA max		
Drain Off Leakage, I _D (OFF)	±0.001		nA typ	$V_D = 3 \text{ V/1 V, V}_S = 1 \text{ V/3 V, see Figure 17}$	
	±0.1	±0.25	nA max		
Channel On Leakage, I _D , I _S (ON)	±0.001		nA typ	$V_D = V_S = 3 \text{ V/1 V, see Figure 18}$	
	±0.1	±0.25	nA max		
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.4	V min		
Input Low Voltage, V _{INL}		0.8	V max		
Input Current					
link or linh	0.001		μA typ	$V_{IN} = V_{INL}$ or V_{INH}	
		±0.1	μA max		
Digital Input Capacitance, C _{IN}		3	pF typ		
DYNAMIC CHARACTERISTICS ²					
t_{ON} , t_{ON} (\overline{EN})		6	ns typ	$C_L = 35 \text{ pF, } R_L = 50 \Omega, V_S = 2 \text{ V, see Figure 22}$	
		12	ns max		
toff, toff (EN)		3	ns typ	$C_L = 35 \text{ pF, } R_L = 50 \Omega, V_S = 2 \text{ V, see Figure 22}$	
		6	ns max		
Break-Before-Make Time Delay, t _D		3	ns typ	$C_L = 35 \text{ pF}, R_L = 50 \Omega, V_{S1} = V_{S2} = 2 \text{ V}, \text{ see Figure 23}$	
·		1	ns min	_	
Off Isolation		-65	dB typ	$f = 10 \text{ MHz}, R_L = 50 \Omega, \text{ see Figure 20}$	
Channel-to-Channel Crosstalk		-70	dB typ	$f = 10 \text{ MHz}, R_L = 50 \Omega, \text{ see Figure 21}$	
Bandwidth –3 dB		400	MHz typ	$R_L = 50 \Omega$, see Figure 19	
Distortion		0.3	% typ	$R_L = 100 \Omega$	
Charge Injection		6	pC typ	$C_L = 1 \text{ nF, see Figure 24, V}_S = 0 \text{ V}$	
Cs (OFF)		5	pF typ	_	
C _D (OFF)		7.5	pF typ		
C_D , C_S (ON)		12	pF typ		
POWER REQUIREMENTS				$V_{DD} = 5.5 \text{ V}$	
				Digital inputs = 0 V or V _{DD}	
I_{DD}		1	μA max		
	0.001		μA typ		

 $^{^1}$ Temperature range for B version is -40°C to $+85^\circ\text{C}.$ 2 Guaranteed by design, not subject to production test.

 V_{DD} = 3 V \pm 10%, GND = 0 V, all specifications T_{MIN} to $T_{\text{MAX}},$ unless otherwise noted. 1

Table 2.

	B Version			
Parameter	25°C T _{MIN} to T _M		Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 to 1.5	V	
On Resistance, R _{ON}	4		Ωtyp	$V_D = 0 \text{ V to } 1 \text{ V; } I_S = -10 \text{ mA}$
	6	7	Ω max	
On Resistance Match Between Channels, ΔR_{ON}	0.15		Ω typ	$V_D = 0 \text{ V to } 1 \text{ V, } I_S = -10 \text{ mA}$
		0.5	Ω max	
On Resistance Flatness, RFLAT(ON)	1.5		Ω typ	$V_D = 0 \text{ V to } 1 \text{ V, } I_S = -10 \text{ mA}$
		3	Ω max	
LEAKAGE CURRENTS				
Source Off Leakage, Is (OFF)	±0.001		nA typ	$V_D = 2 V/1 V$, $V_S = 1 V/2 V$, see Figure 17
	±0.1	±0.25	nA max	
Drain Off Leakage, I _D (OFF)	±0.001		nA typ	$V_D = 2 \text{ V/1 V}, V_S = 1 \text{ V/2 V}, \text{ see Figure 17}$
	±0.1	±0.25	nA max	
Channel On Leakage, ID, IS(ON)	±0.001		nA typ	$V_D = V_S = 2 \text{ V/1 V, see Figure 18}$
	±0.1	±0.25	nA max	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, V _{INL}		0.4	V max	
Input Current				
linl or linh	0.001		μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
		±0.1	μA max	
Digital Input Capacitance, C _{IN}		3	pF typ	
DYNAMIC CHARACTERISTICS ²				
t_{ON} , t_{ON} (\overline{EN})		7	ns typ	$C_L = 35 \text{ pF, } R_L = 50 \Omega, V_S = 1.5 \text{ V, see Figure 22}$
		14	ns max	
t_{OFF} , t_{OFF} (\overline{EN})		4	ns typ	$C_L = 35 \text{ pF, } R_L = 50 \Omega, V_S = 1.5 \text{ V, see Figure 22}$
		8	ns max	
Break-Before-Make Time Delay, t _D		3	ns typ	$C_L = 35 \text{ pF, } R_L = 50 \Omega, V_{S1} = V_{S2} = 1.5 \text{ V, see Figure 23}$
		1	ns min	
Off Isolation		-65	dB typ	$f = 10 \text{ MHz}, R_L = 50 \Omega$
Channel-to-Channel Crosstalk		-70	dB typ	$f = 10 \text{ MHz}$, $R_L = 50 \Omega$, see Figure 21
Bandwidth –3 dB		400	MHz typ	$R_L = 50 \Omega$, see Figure 19
Distortion		1.5	% typ	$R_L = 100 \Omega$
Charge Injection		4	pC typ	$C_L = 1$ nF, see Figure 24, $V_S = 0$ V
C _s (OFF)		5	pF typ	
C _D (OFF)		7.5	pF typ	
C_D , C_S (ON)		12	pF typ	
POWER REQUIREMENTS				$V_{DD} = 3.3 \text{ V}$
				Digital inputs = 0 V or V _{DD}
IDD		1	μA max	
	0.001		μA typ	

 $^{^1}$ Temperature range for B version is -40°C to $+85^\circ\text{C}.$ 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 3.

Table 3.	
Parameters	Rating
V _{DD} to GND	−0.3 V to +6 V
Analog, Digital Inputs ¹	-0.3 V to $V_{DD} + 0.3$ V or 30 mA, whichever occurs first
Continuous Current, S or D	100 mA
Peak Current, S or D	300 mA (pulsed at 1 ms, 10% duty cycle max)
Operating Temperature Range	
Industrial (B Version)	−40°C to +85°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
Thermal Impedance, θ_{JA}	
16-Lead QSSOP	105.44°C/W ²
16-Lead LFCSP (3 mm \times 3 mm)	48.7°C/W ²
Lead Temperature Soldering	
Vapor Phase (60 sec)	215°C
Infrared (15 sec)	220°C
Reflow Soldering (Pb-free)	
Peak Temperature	260°C (+0°C/-5°C)
Time at Peak Temperature	10 sec to 40 sec
·	·

 $^{^{\}rm 1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

² Measured with the device soldered on a four-layer board.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. QSOP Pin Configuration

Figure 3. LFCSP Pin Configuration

Table 4. Pin Function Descriptions

Pin No.			
QSOP	LFCSP	Mnemonic	Function
1	15	IN	Logic Control Input.
2	16	S1A	Source Terminal 1A. May be an input or output.
3	1	S1B	Source Terminal 1B May be an input or output.
4	2	D1	Drain Terminal D1. May be an input or output.
5	3	S2A	Source Terminal 2A. May be an input or output.
6	4	S2B	Source Terminal 2B. May be an input or output.
7	5	D2	Drain Terminal D2. May be an input or output.
8	6	GND	Ground (0 V) Reference.
9	7	D3	Drain Terminal D3. May be an input or output.
10	8	S3B	Source Terminal 3B. May be an input or output.
11	9	S3A	Source Terminal 3A. May be an input or output.
12	10	D4	Drain Terminal D4. May be an input or output.
13	11	S4B	Source Terminal 4B. May be an input or output.
14	12	S4A	Source Terminal 4A. May be an input or output.
15	13	EN	Logic Control Input. When high, all switches are disabled.
16	14	V_{DD}	Most Positive Power Supply Potential.
Not applicable	17	EPAD	Exposed Pad. The exposed pad must be tied to GND.

Table 5. Truth Table

EN	IN	D1	D2	D3	D4	Function
1	Х	Hi-Z	Hi-Z	Hi-Z	Hi-Z	DISABLE
0	0	S1A	S2A	S3A	S4A	IN = 0
0	1	S1B	S2B	S3B	S4B	IN = 1

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. On Resistance as a Function of Drain (V_D) or Source (V_S) Voltage for $V_{DD}=5~V\pm10\%$

Figure 5. On Resistance as a Function of Drain (V_D) or Source (V_S) Voltage for $V_{DD}=3~V\pm10\%$

Figure 6. On Resistance as a Function of Drain (V_D) or Source (V_S) Voltage for Different Temperatures with 5 V Single Supplies

Figure 7. On Resistance as a Function of Drain (V_D) or Source (V_S) Voltage for Different Temperatures with 3 V Single Supplies

Figure 8. Leakage Current as a Function of Drain (V_D) or Source (V_S) Voltage for $V_{DD} = 5 \text{ V}$

Figure 9. Leakage Current as a Function of Drain (V_D) or Source (V_S) Voltage for $V_{DD} = 3 \text{ V}$

Figure 10. Leakage Current as a Function of Temperature, $V_{\rm DD} = 5~{\rm V}$

Figure 11. Leakage Current as a Function of Temperature, $V_{DD} = 3 V$

Figure 12. Off Isolation vs. Frequency

Figure 13. Crosstalk vs. Frequency

Figure 14. Bandwidth

Figure 15. Charge Injection vs. Source Voltage

TEST CIRCUITS

Figure 16. On Resistance

Figure 17. Off Leakage

Figure 18. On Leakage

Figure 19. Bandwidth

Figure 20. Off Isolation

Figure 21. Channel-to-Channel Crosstalk

Figure 22. Switching Times

Figure 23. Break-Before-Make Time Delay

TERMINOLOGY

 V_{DD}

Most positive power supply potential.

GND

Ground (0 V) reference.

S

Source terminal. May be an input or output.

D

Drain terminal. May be an input or output.

IN

Logic control input.

EN

Logic control input.

 \mathbf{R}_{ON}

Ohmic resistance between D and S.

 $\Delta \mathbf{R}_{\text{ON}}$

On resistance match between any two channels, that is,

 R_{ON} max – R_{ON} min.

R_{FLAT(ON)}

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

Is (OFF)

Source leakage current with the switch off.

In (OFF)

Drain leakage current with the switch off.

 I_D , I_S (ON)

Channel leakage current with the switch on.

 $V_D(V_S)$

Analog voltage on the D and S terminals.

Cs (OFF)

Off switch source capacitance.

C_D (OFF)

Off switch drain capacitance.

 C_D , C_S (ON)

On switch capacitance.

ton

Delay between applying the digital control input and the output switching on. See Figure 22.

 t_{OFF}

Delay between applying the digital control input and the output switching off.

 t_{D}

Off time or on time measured between the 80% points of both switches when switching from one address state to another. See Figure 23.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another because of parasitic capacitance.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Bandwidth

Frequency response of the switch in the on state measured at 3 dB down.

Distortion

 $R_{\rm FLAT(ON)}/R_{\rm L}$

APPLICATION CIRCUITS

Figure 25. Full Duplex Transceiver

Figure 26. Loop Back

Figure 27. Line Termination

Figure 28. Line Clamp

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-137-AB

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 29. 16-Lead Shrink Small Outline Package [QSOP] (RQ-16) Dimensions shown in inches and (millimeters)

Figure 30. 16-Lead Lead Frame Chip Scale Package [LFCSP] 3 mm × 3 mm Body and 0.75 mm Package Height (CP-16-27) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG774ABRQ-REEL7	−40°C to +85°C	16-Lead Shrink Small Outline Package [QSOP]	RQ-16
ADG774ABRQZ	−40°C to +85°C	16-Lead Shrink Small Outline Package [QSOP]	RQ-16
ADG774ABRQZ-REEL	-40°C to +85°C	16-Lead Shrink Small Outline Package [QSOP]	RQ-16
ADG774ABRQZ-REEL7	-40°C to +85°C	16-Lead Shrink Small Outline Package [QSOP]	RQ-16
ADG774ABCPZ-REEL	-40°C to +85°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-27
ADG774ABCPZ-R2	-40°C to +85°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-27

¹ Z = RoHS Compliant Part.

NOTES