PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/31, C07K 14/285, A61K 39/102, C07K 16/12 // (C12N 15/31, C12R 1:21)

(11) International Publication Number:

WO 96/30519

(43) International Publication Date:

3 October 1996 (03.10.96)

(21) International Application Number:

PCT/US96/04031

A1

(22) International Filing Date:

22 March 1996 (22.03.96)

(30) Priority Data:

08/409.995

24 March 1995 (24.03.95)

us | (

(60) Parent Application or Grant

(63) Related by Continuation

US Filed on 08/409,995 (CIP) 24 March 1995 (24.03.95)

(71) Applicants (for all designated States except US): WASH-INGTON UNIVERSITY [US/US]; One Brookings Drive, St. Louis, MO 63130 (US). ST. LOUIS UNIVERSITY [US/US]; 221 N. Grand Boulevard, St. Louis, MO 63103 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ST. GEME, Joseph, W., III [US/US]; 45 Berkshire Drive, St. Louis, MO 63117 (US). BARENKAMP, Stephen, J. [US/US]; 16 Villawood Lane, Webster Groves, MO 63119-4954 (US). (74) Agents: TRECARTIN, Richard, F. et al.; Flehr, Hohbach, Test, Albritton & Herbert, Suite 3400, 4 Embarcadero Center, San Francisco, CA 94111-4187 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: HAEMOPHILUS ADHESION PROTEINS

(57) Abstract

The invention relates to novel Haemophilus adhesion proteins, nucleic acids, and antibodies.

·

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

* -					3.4-3
AM	Armenia	GB	United Kingdom	MW	Malawi Mexico
AT	Austria	GE	Georgia	MX	
	,	GN	Guinea	NE	Niger
AU	Australia	GR	Greece	NL	Netherlands
BB	Barbados	HU	Hungary	NO	Norway
BE	Belgium	IE.	treland	NZ	New Zealand
BF	Burkina Faso	π	haly	PL	Poland
BG	Bulgaria	17 1P	Japan	· PT	Portugal
BJ	Benin	-	•	RO	Romania
BR	Brazil	KE	Kenya	RU	Russian Federation
BY	Belarus	KG	Kyrgystan Democratic People's Republic	SD	Sudan
CA	Canada	KP		SE	Sweden
CF	Central African Republic		of Korea	SG	Singapore
CC	Congo	KR	Republic of Korea	SI	Slovenia
CH	Switzerland	KZ	Kazakhstan	SK	Slovakia
CI	Côte d'Ivoire	u	Liechtenstein	SN	Senegal
CM	Cameroon	LK	Sri Lanka	SZ	Swaziland
CN	China	LR	Liberia	32 110	Chad
	Czechoslovakia	LT	Lithuania		
cs	Czech Republic	LU	Luxembourg	TG	Togo
CZ		LV	Larvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
EE	Estonia	MG	Madagascas	UG	Uganda
ES	Spain	ML	Mali	US	United States of America
Fl	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France	MR	Mauritania	VN	Viet Nam
GA	Gabon	MIN	Ividin grane		

WO 96/30519 PCT/US96/04031

HAEMOPHILUS ADHESION PROTEINS

The U.S. Government has certain rights in this invention pursuant to grant numbers AI-21707 and HD-29687 from National Institutes of Health.

FIELD OF THE INVENTION

The invention relates to novel *Haemophilus* adhesion proteins, nucleic acids, and antibodies.

BACKGROUND OF THE INVENTION

Most bacterial diseases begin with colonization of a particular mucosal surface (Beachey et al., 1981, J. Infect. Dis. 143:325-345). Successful colonization requires that an organism overcome mechanical cleansing of the mucosal surface and evade the local immune response. The process of colonization is dependent upon specialized microbial factors that promote binding to host cells (Hultgren *et al.*, 1993 Cell, 73:887-901). In some cases the colonizing organism will subsequently enter (invade) these cells and survive intracellularly (Falkow, 1991, Cell 65:1099-1102).

10

15

Haemophilus influenzae is a common commensal organism of the human respiratory tract (Kuklinska and Kilian, 1984, Eur. J. Clin. Microbiol. 3:249-252). It is the most

10

15

20

25

common cause of bacterial meningitis and a leading cause of other invasive (bacteraemic) diseases. In addition, this organism is responsible for a sizeable fraction of acute and chronic otitis media, sinusitis, bronchitis, and pneumonia.

Haemophilus influenzae is a human-specific organism that normally resides in the human nasopharynx and must colonize this site in order to avoid extinction. This microbe has a number of surface structures capable of promoting attachment to host cells (Guerina et al., 1982, J. Infect. Dis. 146:564; Pichichero et al., 1982, Lancet ii:960-962; St. Geme et al., 1993, Proc. Natl. Acad. Sci. U.S.A. 90:2875-2879). In addition, H. influenzae has acquired the capacity to enter and survive within these cells (Forsgren et al., 1994, Infect. Immun. 62:673-679; St. Geme and Falkow, 1990. Infect. Immun. 58:4036-4044; St. Geme and Falkow. 1991, Infect. Immun. 59:1325-1333, Infect. Immun. 59:3366-3371). As a result, this bacterium is an important cause of both localized respiratory tract and systemic disease (Turk, 1984, J. Med. Microbiol. 18:1-16). Nonencapsulated, non-typable strains account for the majority of local disease (Turk, 1984, supra); in contrast, serotype b strains, which express a capsule composed of a polymer of ribose and ribitol-5-phosphate (PRP), are responsible for over 95% of cases of H. influenzae systemic disease (Turk, 1982. Clinical importance of Haemophilus influenzae, p. 3-9. In S.H. Sell and P.F. Wright (ed.). Haemophilus influenzae epidemiology, immunology, and prevention of disease. Elsevier/North-Holland Publishing Co., New York).

The initial step in the pathogenesis of disease due to *H. influenzae* involves colonization of the upper respiratory mucosa (Murphy *et al.*, 1987, J. Infect. Dis. 5:723-731). Colonization with a particular strain may persist for weeks to months, and most individuals remain asymptomatic throughout this period (Spinola *et al.*, 1986. I. Infect. Dis. 154:100-109). However, in certain circumstances colonization will be followed by contiguous spread within the respiratory tract, resulting in local disease in the middle ear, the sinuses, the conjunctiva, or the lungs. Alternatively,

10

15

20

25

on occasion bacteria will penetrate the nasopharyngeal epithelial barrier and enter the bloodstream.

In vitro observations and animal studies suggest that bacterial surface appendages called pili (or fimbriae) play an important role in *H. influenzae* colonization. In 1982 two groups reported a correlation between piliation and increased attachment to human oropharyngeal epithelial cells and erythrocytes (Guerina et al., supra; Pichichero et al., supra). Other investigators have demonstrated that anti-pilus antibodies block in vitro attachment by piliated *H. influenzae* (Forney et al., 1992, J. Infect. Dis. 165:464-470; van Alphen et al., 1988, Infect. Immun. 56:1800-1806) Recently Weber et al. insertionally inactivated the pilus structural gene in an *H. influenzae* type b strain and thereby eliminated expression of pili; the resulting mutant exhibited a reduced capacity for colonization of year-old monkeys (Weber et al., 1991, Infect. Immun. 59:4724-4728).

A number of reports suggest that nonpilus factors also facilitate *Haemophilus* colonization. Using the human nasopharyngeal organ culture model. Farley *et al.* (1986. J. Infect. Dis. 161:274-280) and Loeb *et al.* (1988, Infect. Immun. 49:484-489) noted that nonpiliated type b strains were capable of mucosal attachment. Read and coworkers made similar observations upon examining nontypable strains in a model that employs nasal turbinate tissue in organ culture (1991. J. Infect. Dis. 163:549-558). In the monkey colonization study by Weber *et al.* (1991, supra), nonpiliated organisms retained a capacity for colonization, though at reduced densities moreover, among monkeys originally infected with the piliated strain, virtually all organisms recovered from the nasopharynx were nonpiliated. All of these observations are consistent with the finding that nasopharyngeal isolates from children colonized with *H. influenzae* are frequently nonpiliated (Mason *et al.*, 1985, Infect. Immun. 49:98-103; Brinton *et al.*, 1989, Pediatr. Infect. Dis. J. 8:554-561).

10

- 15

20

Previous studies have shown that *H. influenzae* are capable of entering (invading) cultured human epithelial cells via a pili-independent mechanism (St. Geme and Falkow, 1990, supra; St. Geme and Falkow, 1991. supra). Although *H. influenzae* is not generally considered an intracellular parasite, a recent report suggests that these *in vitro* findings may have an *in vivo* correlate (Forsgren *et al.*, 1994, supra). Forsgren and coworkers examined adenoids from 10 children who had their adenoids removed because of longstanding secretory otitis media or adenoidal hypertrophy. In all 10 cases there were viable intracellular *H. influenzae*. Electron microscopy demonstrated that these organisms were concentrated in the reticular crypt epithelium and in macrophage-like cells in the subepithelial layer of tissue. One possibility is that bacterial entry into host cells provides a mechanism for evasion of the local immune response, thereby allowing persistence in the respiratory tract.

Thus, a vaccine for the therapeutic and prophylactic treatment of *Haemophilus* infection is desirable. Accordingly, it is an object of the present invention to provide for recombinant *Haemophilus* Adherence (HA) proteins and variants thereof, and to produce useful quantities of these HA proteins using recombinant DNA techniques.

It is a further object of the invention to provide recombinant nucleic acids encoding HA proteins, and expression vectors and host cells containing the nucleic acid encoding the HA protein.

An additional object of the invention is to provide monoclonal antibodies for the diagnosis of *Haemophilus* infection.

A further object of the invention is to provide methods for producing the HA proteins, and a vaccine comprising the HA proteins of the present invention.

10

15

Methods for the therapeutic and prophylactic treatment of *Haemophilus* infection are also provided.

SUMMARY OF THE INVENTION

In accordance with the foregoing objects, the present invention provides recombinant HA proteins, and isolated or recombinant nucleic acids which encode the HA proteins of the present invention. Also provided are expression vectors which comprise DNA encoding a HA protein operably linked to transcriptional and translational regulatory DNA, and host cells which contain the expression vectors.

The invention provides also provides methods for producing HA proteins which comprises culturing a host cell transformed with an expression vector and causing expression of the nucleic acid encoding the HA protein to produce a recombinant HA protein.

The invention also includes vaccines for *Haemophilus influenzae* infection comprising an HA protein for prophylactic or therapeutic use in generating an immune response in a patient. Methods of treating or preventing *Haemophilus influenzae* infection comprise administering a vaccine.

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1A, 1B, and 1C depict the nucleic acid sequence of HA1.

Figure 2 depicts the amino acid sequence of HA1.

Figures 3A, 3B, 3C, 3D, 3E, 3F and 3G depict the nucleic acid sequence and amino acid sequence of HA2.

Figure 4 shows the schematic alignment of HA1 and HA2. Regions of sequence similarity are indicated by shaded, striped, and open bars, corresponding to N-terminal domains, internal domains, and C-terminal domains, respectively. The solid circles represent a conserved Walker box ATP-binding motif (GINVSGKT). Numbers above the bars refer to amino acid residue positions in the full-length proteins. Numbers in parentheses below the HA2 bars represent percent similarity/percent identity between these domains and the corresponding HA1 domains. The regions of HA2 defined by amino acid residues 51 to 173, 609 to 846, and 1292 to 1475 show minimal similarity to amino acids 51 to 220 of HA1.

Figure 5 depicts the homology between the N-terminal amino acid sequences of HA1 and HA2. Single letter abbreviations are used for the amino acids. A line indicates identity between the residues, and two dots indicate conservative changes, i.e. similarity between residues.

Figure 6 depicts the restriction maps of phage 11-17 and plasmid pT7-7 subclones.

- Figure 7 depicts the restriction map of pDC400 and derivatives. pDC400 contains a 9.1 kb insert from strain C54 cloned into pUC19. Vector sequences are represented by hatched boxes. Letters above the top horizontal line indicate restriction enzyme sites: Bg. Bg/II; E. EcoRI; H. HindIII; P. Pstl; S. Sall; Ss. Sstl; X. Xbal. The heavy horizontal line with arrow represents the location of the hsf locus within pDC400 and the direction of transcription. The striated horizontal line represents the 3.3 kb intragenic fragment used as a probe for Southern analysis. The plasmid pDC602, which is not shown, contains the same insert as pDC601, but in the opposite orientation.
 - Figure 8 shows the identification of plasmid-encoded proteins using the bacteriophage T7 expression system. Bacteria were radiolabelled with

10

15

20

25

trans-[35S]-label, and whole cell lysates were resolved on a 7.5% SDS-polyacrylamidegel. Proteins were visualized by autoradiography. Lane 1. *E. coli* BL21(DE3)/pT7-7 uninduced; lane 2, BL21(DE3)/pT7-7 induced; lane 3, BL21(DE3)/pDC602 uninduced; lane 4. BL21(DE3)/pDC602 induced; lane 5. BL21(DE3)/pDC601 uninduced; lane 6, BL21(DE3)/pDC601 induced. The plasmids pDC602 and pDC601 are derivatives of pT7-7 that contain the 8.3 kb *Xba*I fragment from pDC400 in opposite orientations. The asterisk indicates the overexpressed protein in BL21(DE3)/pDC601.

Figure 9 depicts the southern analysis of chromosomal DNA from *H. influenzae* strains C54 and 11, probing with *HA2* versus *HA1*. DNA fragments were separated on a 0.7% agarose gel and transferred bidirectionally to nitrocellulose membranes prior to probing with either *HA1* or *HA2*. Lane 1, C54 chromosomal DNA digested with *BgI*II; lane 2, C54 chromosomal DNA digested with *Cla*I; lane 3, C54 chromosomal DNA digested with *Pst*I; lane 4, 11 chromosomal DNA digested with *BgI*II; lane 5, 11 chromosomal DNA digested with *Cla*I; lane 6, 11 chromosomal DNA digested with *Xba*I. A. Hybridization with the 3.3 kb *Pst*I-*BgI*II intragenic fragment of *HA2* from strain C54. B. Hybridization with the 1.6 kb *Sty*I-*Ssp*I intragenic fragment of *HA1* from strain 11.

Figure 10 depicts the comparison of cellular binding specificities of *E. coli* DH5α harboring *HA2* versus *HA1*. Adherence was measured after incubating bacteria with eucaryotic cell monolayers for 30 minutes as described and was calculated by dividing the number of adherent colony forming units by the number of inoculated colony forming units (St. Geme et al., 1993). Values are the mean ± SEM of measurements made in triplicate from representative experiments. The plasmid pDC601 contains the *HA2* gene from *H. influenzae* strain C54, while pHMW8-5 contains the *HA1* gene from nontypable *H. influenzae* strain 11. Both pDC601 and pHMW8-5 were prepared using pT7-7 as the cloning vector.

10

15

20

25

Figure 11 depicts the comparison of the N-terminal extremities of HA2, HMW1. HMW2. AIDA-I. Tsh. and SepA. The N-terminal sequence of HA2 is aligned with those of HA1 (Barenkamp, S.J., and J.W. St. Geme, III. Identification of a second family of high molecular weight adhesion proteins expressed by nontypable Haemophilus influenzae. Mol. Microbiol., in press.), HMW1 and HMW2 (Barenkamp, S.J., and E. Leininger. 1992. Cloning, expression, and DNA sequence analysis of genes encoding nontypeable Haemophilus influenzae high molecular $weight surface-exposed proteins related to filamentous hemagglutinin of {\it Bordetella} in the contraction of {\it Bordetel$ pertussis. Infect. Immun. 60:1302-1313.). AIDA-I (Benz, I., and M.A. Schmidt. 1992. AIDA-I, the adhesin involved in diffuse adherence of the diarrhoeagenic Escherichia coli strain 2787 (O126:H27). is synthesized via a precursor molecule. Mol. Microbiol. 6:1539-1546.), Tsh (Provence, D. and R. Curtiss III. 1994. Isolation and characterization of a gene involved in hemagglutination by an avian pathogenic Escherichia coli strain. Infect. Immun. 62:1369-1380.), and Sep A (Benjelloun-Touimi, Z., P.J. Sansonetti, and C. Parsot. 1995. SepA, the major extracellular protein of Shigella flexneri: autonomous secretion and involvement in tissue invasion. Mol. Microbiol. 17:123-135.). A consensus sequence is shown on the lower line.

Figure 12 depicts the southern analysis of chromosomal DNA from epidemiologically distinct strains of *H. influenzae* type b. Chromosomal DNA was digested with *BgI*II, separated on a 0.7% agarose gel. transferred to nitrocellulose, and probed with the 3.3 kb *PstI-BgI*II intragenic fragment of *hsf* from strain C54. Lane 1. strain C54; lane 2. strain 1081; lane 3. strain 1065; lane 4, strain 1058; lane 5. strain 1060; lane 6. strain 1053; lane 7. strain 1063; lane 8, strain 1069; lane 9. strain 1070; lane 10, strain 1076; lane 11, strain 1084.

Figure 13 depicts the southern analysis of chromosomal DNA from non-type b encapsulated strains of *H. influenzae*. Chromosomal DNA was digested with *BgI*II.

10

15

separated on a 0.7% agarose gel. transferred to nitrocellulose, and probed with the 3.3 kb *PstI-BgIII* intragenic fragment of *hsf* from strain C54. Lane 1, SM4 (type a): lane 2, SM72 (type c); lane 3, SM6 (type d); lane 4, Rd (type d); lane 5, SM7 (type e); lane 6, 142 (type e): lane 7, 327 (type e); lane 8, 351 (type e); lane 9, 134 (type f); lane 10, 219 (type f): lane 11, 346 (type f); lane 12, 503 (type f).

Figures 14A and 14B are the nucleic acid sequence of HA3.

Figure 15 is the amino acid sequence of HA3.

Figures 16A and 16B depict the homology between the amino acid sequences of HA1 and HA3. Single letter abbreviations are used for the amino acids. A line indicates identity between the residues, and two dots indicate conservative changes, i.e. similarity between residues.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides novel *Haemophilus* Adhesion (HA) proteins. In a preferred embodiment, the HA proteins are from *Haemophilus* strains, and in the preferred embodiment, from *Haemophilus influenza*. In particular, *H. influenzae* encapsulated type b strains are used to clone the HA proteins of the invention. However, using the techniques outlined below, HA proteins from other *Haemophilus influenzae* strains, or from other bacterial species such as *Neisseria* spp. or *Bordetalla* spp. may also be obtained.

Three HA proteins. HA1. HA2 and HA3, are depicted in Figures 2, 3 and 15, respectively. HA2 is associated with the formation of surface fibrils, which are involved in adhesion to various host cells. HA1 has also been implicated in adhesion to a similar set of host cells. When the HA1 or HA2 nucleic acid is expressed in

15

20

25

a non-adherent strain of *E. coli* as described below, the *E. coli* acquire the ability to adhere to human host cells. It should be noted that in the literature, HA1 is referred to as hia (*H. influenza* adherence) and HA2 is referred to as hsf (*Haemophilus* surface fibrils).

PCT/US96/04031

A HA protein may be identified in several ways. A HA nucleic acid or HA protein is initially identified by substantial nucleic acid and/or amino acid sequence homology to the sequences shown in Figures 1, 2, 3, 14 or 15. Such homology can be based upon the overall nucleic acid or amino acid sequence or portions thereof.

As used herein, a protein is a "HA protein" if the overall homology of the protein sequence to the amino acid sequence shown in Figures 2 and/or Figure 3 and/or Figure 15 is preferably greater than about 45 to 50%, more preferably greater than about 65% and most preferably greater than 80%. In some embodiments the homology will be as high as about 90 to 95 or 98%. That is, a protein that has at least 50% homology (or greater) to one, two or all three of the amino acid sequences of HA1, HA2 and HA3 is considered a HA protein. This homology will be determined using standard techniques known in the art, such as the Best Fit sequence program described by Devereux *et al.*, *Nucl. Acid Res.* 12:387-395 (1984) or the BLASTX program (Altschul et al., J. Mol. Biol. 215:403-410 (1990)). The alignment may include the introduction of gaps in the sequences to be aligned. As noted below, in the comparison of proteins of different lengths, such as HA1 and HA3 with HA2, the homology is determined on the basis of the length of the shorter sequence.

In a preferred embodiment, a HA protein is defined as having significant homology to either the N-terminal region or the C-terminal region, or both, of the HA1, HA2 and HA3 proteins depicted in Figures 4, 5 and 15. The N-terminal region of about 50 amino acids is virtually identical as between HA1 and HA3 (98% homology).

10

15.

20

25

and as between either HA1 or HA3 and HA2 is 74%. As shown in Figure 11, the first 24 amino acids of the N-terminus of HA1 and HA2 has limited homology to several other proteins, but this homology is 50% or less. Thus, a HA protein may be defined as having homology to the N-terminal region of at least about 60%, preferably at least about 70%, and most preferably at least about 80%, with homology as high as 90 or 95% especially preferred. Similarly, the C-terminal region of at least about 75, preferably 100 and most preferably 125 amino acid residues is also highly homologous and can be used to identify a HA protein. As shown in Figure 16, the homology between the C-terminal 120 or so amino acids of HA1 and HA3 is about 98%, and as between either HA1 or HA3 and HA2 is also about 98%. Thus homology at the C-terminus is a particularly useful way of identifying a HA protein. Accordingly, a HA protein can be defined as having homology to the C-terminal region of at least about 60%, preferably at least about 70%, and most preferably at least about 80%, with homology as high as 90 or 95% especially preferred. In a preferred embodiment, the HA protein has homology to both the N- and C-terminal regions.

In addition, a HA protein may be identified as containing at least one stretch of amino acid homology found at least in the HA1 and HA2 proteins as depicted in Figure 4. HA2 contains three separate stretchs of amino acids (174 to 608, 847 to 1291, and 1476 to 1914, respectively) that shows significant homology to the region of HA1 defined by amino acids 221 to 658.

The HA proteins of the present invention have limited homology to the high molecular weight protein-1 (HMW1) of *H. influenzae*, as well as the AIDA-I adhesin of *E. coli*. For the HMW1 protein, this homology is greatest between residues 60-540 of the HA1 protein and residues 1100 to about 1550 of HMW1, with 20% homology in this overlap region. For the AIDA-I protein, there is a roughly 50%

homology between the first 30 amino acids of AIDA-I and HA1, and the overall homology between the proteins is roughly 22%.

In addition, the HA1, HA2 and HA3 proteins of the present invention have homology to each other, as shown in Figures 4, 5 and 16. As between HA1 and HA2, the homology is 81% similarity and 72% identity overall. HA3 and HA1 are 51% identical and 65% similar. Thus, for the purposes of the invention, HA1, HA2 and HA3 are all HA proteins.

5

10

15

20

25

An "HA1" protein is defined by substantial homology to the sequence shown in Figure 2. This homology is preferably greater than about 60%, more preferably greater than about 70% and most preferably greater than 80%. In preferred embodiments the homology will be as high as about 90 to 95 or 98%. Similarly, an "HA2" protein may be defined by the same substantial homology to the sequence shown in Figure 3, and a "HA3" protein is defined with reference to Figure 15, as defined above.

In addition, for sequences which contain either more or fewer amino acids than the proteins shown in Figures 2. 3 and 15, it is understood that the percentage of homology will be determined based on the number of homologous amino acids in relation to the total number of amino acids. Thus, for example, homology of sequences shorter than that shown in Figures 2, 3 and 15, as discussed below, will be determined using the number of amino acids in the shorter sequence.

HA proteins of the present invention may be shorter than the amino acid sequences shown in Figures 2, 3 and 15. Thus, in a preferred embodiment, included within the definition of HA proteins are portions or fragments of the sequence shown in Figures 2, 3 and 15. Generally, the HA protein fragments may range in size from about 7 amino acids to about 800 amino acids, with from about 15 to about 700

10

15

20

25

amino acids being preferred, and from about 100 to about 650 amino acids also preferred. Particularly preferred fragments are sequences unique to HA; these sequences have particular use in cloning HA proteins from other organisms, to generate antibodies specific to HA proteins, or for particular use as a vaccine. Unique sequences are easily identified by those skilled in the art after examination of the HA protein sequence and comparison to other proteins; for example, by examination of the sequence alignment shown in Figures 5 and 16. Preferred unique sequences include the N-terminal region of the HA1, HA2 and HA3 sequences, comprising roughly 50 amino acids and the C-terminal 120 amino acids, depicted in Figures 2, 3 and 15. HA protein fragments which are included within the definition of a HA protein include N- or C-terminal truncations and deletions which still allow the protein to be biologically active; for example, which still allow adherence, as described below. In addition, when the HA protein is to be used to generate antibodies, for example as a vaccine, the HA protein must share at least one epitope or determinant with the sequences shown in Figures 2, 3 and 15. In a preferred embodiment, the epitope is unique to the HA protein; that is, antibodies generated to a unique epitope exhibit little or no cross-reactivity with other proteins. However, cross reactivity with other proteins does not preclude such epitopes or antibodies for immunogenic or diagnostic uses. By "epitope" or "determinant" herein is meant a portion of a protein which will generate and/or bind an antibody. Thus, in most instances, antibodies made to a smaller HA protein will be able to bind to the full length protein.

In some embodiments, the fragment of the HA protein used to generate antibodies are small; thus, they may be used as haptens and coupled to protein carriers to generate antibodies, as is known in the art.

In addition, sequences longer than those shown in Figures 2, 3 and 15 are also included within the definition of HA proteins.

10

15

Preferably, the antibodies are generated to a portion of the HA protein which is exposed at the outer membrane, i.e. surface exposed. The amino-terminal portions of HA1, HA2 and HA3 are believed to be externally exposed proteins.

The HA proteins may also be identified as associated with bacterial adhesion. Thus, deletions of the HA proteins from the naturally occuring microorganism such as *Haemophilus* species results in a decrease or absence of binding ability. In some embodiments, the expression of the HA proteins in a non-adherent bacteria such as *E. coli* results in the ability of the organism to bind to cells.

In the case of the nucleic acid, the overall homology of the nucleic acid sequence is commensurate with amino acid homology but takes into account the degeneracy in the genetic code and codon bias of different organisms. Accordingly, the nucleic acid sequence homology may be either lower or higher than that of the protein sequence. Thus the homology of the nucleic acid sequence as compared to the nucleic acid sequences of Figures 1, 3 and 14 is preferably greater than about 40%, more preferably greater than about 60% and most preferably greater than 80%. In some embodiments the homology will be as high as about 90 to 95 or 98%.

As outlined for the protein sequences, a preferred embodiment utilizes HA nucleic acids with substantial homology to the unique N-terminal and C-terminal regions of the HA1, HA2 and HA3 sequences.

In one embodiment, the nucleic acid homology is determined through hybridization studies. Thus, for example, nucleic acids which hybridize under high stringency to all or part of the nucleic acid sequences shown in Figures 1, 3 and 14 are considered HA protein genes. High stringency conditions include, but are not limited to, washes with 0.1XSSC at 65°C for 2 hours.

10

15

20

25

The HA proteins and nucleic acids of the present invention are preferably recombinant. As used herein, "nucleic acid" may refer to either DNA or RNA. or molecules which contain both deoxy- and ribonucleotides. The nucleic acids include genomic DNA, cDNA and oligonucleotides including sense and anti-sense nucleic acids. Specifically included within the definition of nucleic acid are anti-sense nucleic acids. An anti-sense nucleic acid will hybridize to the corresponding noncoding strand of the nucleic acid sequences shown in Figures 1, 3 and 14, but may contain ribonucleotides as well as deoxyribonucleotides. Generally, anti-sense nucleic acids function to prevent expression of mRNA, such that a HA protein is not made, or made at reduced levels. The nucleic acid may be double stranded. single stranded, or contain portions of both double stranded or single stranded sequence. By the term "recombinant nucleic acid" herein is meant nucleic acid. originally formed in vitro by the manipulation of nucleic acid by endonucleases. in a form not normally found in nature. Thus an isolated HA protein gene, in a linear form, or an expression vector formed in vitro by ligating DNA molecules that are not normally joined, are both considered recombinant for the purposes of this invention: i.e. the HA nucleic acid is joined to other than the naturally occurring Haemophilus chromosome in which it is normally found. It is understood that once a recombinant nucleic acid is made and reintroduced into a host cell or organism. it will replicate non-recombinantly, i.e. using the in vivo cellular machinery of the host cell rather than in vitro manipulations: however, such nucleic acids, once produced recombinantly. although subsequently replicated non-recombinantly. are still considered recombinant for the purposes of the invention.

Similarly. a "recombinant protein" is a protein made using recombinant techniques. i.e. through the expression of a recombinant nucleic acid as depicted above. A recombinant protein is distinguished from naturally occurring protein by at least one or more characteristics. For example, the protein may be isolated away from some or all of the proteins and compounds with which it is normally associated

10

15

20

25

the protein may be partially or substantially purified. The definition includes the production of a HA protein from one organism in a different organism or host cell. Alternatively, the protein may be made at a significantly higher concentration than is normally seen, through the use of a inducible promoter or high expression promoter, such that the protein is made at increased concentration levels. Alternatively, the protein may be in a form not normally found in nature, as in the addition of an epitope tag or amino acid substitutions, insertions and deletions. Furthermore, although not normally considered "recombinant", proteins or portions of proteins which are synthesized chemically, using the sequence information of Figures 2. 3 and 15, are considered recombinant herein as well.

Also included with the definition of HA protein are HA proteins from other organisms, which are cloned and expressed as outlined below.

In the case of anti-sense nucleic acids, an anti-sense nucleic acid is defined as one which will hybridize to all or part of the corresponding non-coding sequence of the sequences shown in Figures 1, 3 and 14. Generally, the hybridization conditions used for the determination of anti-sense hybridization will be high stringency conditions, such as 0.1XSSC at 65°C.

Once the HA protein nucleic acid is identified, it can be cloned and, if necessary, its constituent parts recombined to form the entire HA protein nucleic acid. Once isolated from its natural source, e.g., contained within a plasmid or other vector or excised therefrom as a linear nucleic acid segment, the recombinant HA protein nucleic acid can be further used as a probe to identify and isolate other HA protein nucleic acids. It can also be used as a "precursor" nucleic acid to make modified or variant HA protein nucleic acids and proteins.

10

15

20

25

Using the nucleic acids of the present invention which encode HA protein, a variety of expression vectors are made. The expression vectors may be either self-replicating extrachromosomal vectors or vectors which integrate into a host genome. Generally, these expression vectors include transcriptional and translational regulatory nucleic acid operably linked to the nucleic acid encoding the HA protein. "Operably linked" in this context means that the transcriptional and translational regulatory DNA is positioned relative to the coding sequence of the HA protein in such a manner that transcription is initiated. Generally, this will mean that the promoter and transcriptional initiation or start sequences are positioned 5' to the HA protein coding region. The transcriptional and translational regulatory nucleic acid will generally be appropriate to the host cell used to express the HA protein; for example, transcriptional and translational regulatory nucleic acid sequences from Bacillus will be used to express the HA protein in Bacillus. Numerous types of appropriate expression vectors, and suitable regulatory sequences are known in the art for a variety of host cells.

In general, the transcriptional and translational regulatory sequences may include, but are not limited to, promoter sequences, leader or signal sequences, ribosomal binding sites, transcriptional start and stop sequences, translational start and stop sequences, and enhancer or activator sequences. In a preferred embodiment, the regulatory sequences include a promoter and transcriptional start and stop sequences.

Promoter sequences encode either constitutive or inducible promoters. The promoters may be either naturally occurring promoters or hybrid promoters. Hybrid promoters, which combine elements of more than one promoter, are also known in the art, and are useful in the present invention.

In addition, the expression vector may comprise additional elements. For example, the expression vector may have two replication systems, thus allowing it to be

10

15

20

25

maintained in two organisms, for example in mammalian or insect cells for expression and in a procaryotic host for cloning and amplification. Furthermore, for integrating expression vectors, the expression vector contains at least one sequence homologous to the host cell genome, and preferably two homologous sequences which flank the expression construct. The integrating vector may be directed to a specific locus in the host cell by selecting the appropriate homologous sequence for inclusion in the vector. Constructs for integrating vectors are well known in the art.

In addition, in a preferred embodiment, the expression vector contains a selectable marker gene to allow the selection of transformed host cells. Selection genes are well known in the art and will vary with the host cell used.

The HA proteins of the present invention are produced by culturing a host cell transformed with an expression vector containing nucleic acid encoding a HA protein, under the appropriate conditions to induce or cause expression of the HA protein. The conditions appropriate for HA protein expression will vary with the choice of the expression vector and the host cell, and will be easily ascertained by one skilled in the art through routine experimentation. For example, the use of constitutive promoters in the expression vector will require optimizing the growth and proliferation of the host cell, while the use of an inducible promoter requires the appropriate growth conditions for induction. In addition, in some embodiments, the timing of the harvest is important. For example, the baculoviral systems used in insect cell expression are lytic viruses, and thus harvest time selection can be crucial for product yield.

Appropriate host cells include yeast, bacteria, archebacteria, fungi, and insect and animal cells, including mammalian cells. Of particular interest are <u>Drosophila</u> melangaster cells, <u>Saccharomyces cerevisiae</u> and other yeasts, <u>E. coli</u>, <u>Bacillus</u>

subtilis. SF9 cells. C129 cells, 293 cells, Neurospora. BHK, CHO, COS, and HeLa cells, immortalized mammalian myeloid and lymphoid cell lines.

In a preferred embodiment, HA proteins are expressed in bacterial systems.

Bacterial expression systems are well known in the art.

A suitable bacterial promoter is any nucleic acid sequence capable of binding 5 bacterial RNA polymerase and initiating the downstream (3') transcription of the coding sequence of HA protein into mRNA. A bacterial promoter has a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region typically includes an RNA polymerase binding site and a transcription initiation site. Sequences encoding metabolic 10 pathway enzymes provide particularly useful promoter sequences. Examples include promoter sequences derived from sugar metabolizing enzymes, such as galactose, lactose and maltose, and sequences derived from biosynthetic enzymes such as tryptophan. Promoters from bacteriophage may also be used and are known in the art. In addition, synthetic promoters and hybrid promoters are also useful: for 15 example, the tac promoter is a hybrid of the trp and lac promoter sequences. Furthermore, a bacterial promoter can include naturally occurring promoters of nonbacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription.

20

In addition to a functioning promoter sequence, an efficient ribosome binding site is desirable. In *E. coli*, the ribosome binding site is called the Shine-Delgarno (SD) sequence and includes an initiation codon and a sequence 3-9 nucleotides in length located 3 - 11 nucleotides upstream of the initiation codon.

The expression vector may also include a signal peptide sequence that provides for secretion of the HA protein in bacteria. The signal sequence typically encodes

20

25

a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell, as is well known in the art. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria).

The bacterial expression vector may also include a selectable marker gene to allow for the selection of bacterial strains that have been transformed. Suitable selection genes include genes which render the bacteria resistant to drugs such as ampicillin, chloramphenicol.erythromycin.kanamycin, neomycin and tetracycline. Selectable markers also include biosynthetic genes, such as those in the histidine, tryptophan and leucine biosynthetic pathways.

These components are assembled into expression vectors. Expression vectors for bacteria are well known in the art. and include vectors for Bacillus subtilis, E. coli. Streptococcus cremoris. and Streptococcus lividans. among others.

The bacterial expression vectors are transformed into bacterial host cells using techniques well known in the art, such as calcium chloride treatment, electroporation, and others.

In one embodiment, HA proteins are produced in insect cells. Expression vectors for the transformation of insect cells, and in particular, baculovirus-based expression vectors, are well known in the art. Briefly, baculovirus is a very large DNA virus which produces its coat protein at very high levels. Due to the size of the baculoviral genome, exogenous genes must be placed in the viral genome by recombination. Accordingly, the components of the expression system include: a transfer vector, usually a bacterial plasmid, which contains both a fragment of the baculovirus genome, and a convenient restriction site for insertion of the HA protein; a wild type baculovirus with a sequence homologous to the baculovirus-specific fragment

10

15

20

in the transfer vector (this allows for the homologous recombination of the heterologous gene into the baculovirus genome); and appropriate insect host cells and growth media.

Mammalian expression systems are also known in the art and are used in one embodiment. A mammalian promoter is any DNA sequence capable of binding mammalian RNA polymerase and initiating the downstream (3') transcription of a coding sequence for HA protein into mRNA. A promoter will have a transcription initiating region, which is usually place proximal to the 5' end of the coding sequence, and a TATA box, using a located 25-30 base pairs upstream of the transcription initiation site. The TATA box is thought to direct RNA polymerase II to begin RNA synthesis at the correct site. A mammalian promoter will also contain an upstream promoter element, typically located within 100 to 200 base pairs upstream of the TATA box. An upstream promoter element determines the rate at which transcription is initiated and can act in either orientation. Of particular use as mammalian promoters are the promoters from mammalian viral genes, since the viral genes are often highly expressed and have a broad host range. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter, and herpes simplex virus promoter.

Typically, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. The 3' terminus of the mature mRNA is formed by site-specific post-translational cleavage and polyadenylation. Examples of transcription terminator and polyadenlytion signals include those derived form SV40.

The methods of introducing exogenous nucleic acid into mammalian hosts, as well as other hosts, is well known in the art, and will vary with the host cell used.

10

15

20

25

Techniquesincludedextran-mediatedtransfection.calciumphosphateprecipitation. polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.

In a preferred embodiment, HA protein is produced in yeast cells. Yeast expression systems are well known in the art, and include expression vectors for Saccharomyces cerevisiae. Candida albicans and C. maltosa, Hansenula polymorpha. Kluvveromyces fragilis and K. lactis, Pichia guillerimondii and P. pastoris. Schizosaccharomyces pombe, and Yarrowia lipolytica. Preferred promoter sequences for expression in yeast include the inducible GAL 1.10 promoter, the promoters from alcohol dehydrogenase, enolase, glucokinase, glucose-6-phosphate isomerase, glyceraldehyde-3-phosphate-dehydrogenase, hexokinase, phosphofructokinase, 3-phosphoglycerate mutase, pyruvate kinase, and the acid phosphatase gene. Yeast selectable markers include ADE2, HIS4, LEU2, TRP1, and ALG7, which confers resistance to tunicamycin; the G418 resistance gene, which confers resistance to G418; and the CUP1 gene, which allows yeast to grow in the presence of copper ions.

A recombinant HA protein may be expressed intracellularly or secreted. The HA protein may also be made as a fusion protein, using techniques well known in the art. Thus, for example, if the desired epitope is small, the HA protein may be fused to a carrier protein to form an immunogen. Alternatively, the HA protein may be made as a fusion protein to increase expression.

Also included within the definition of HA proteins of the present invention are amino acid sequence variants. These variants fall into one or more of three classes: substitutional, insertional or deletional variants. These variants ordinarily are prepared by site specific mutagenesis of nucleotides in the DNA encoding the HA

10

15

20

25

protein. using cassette mutagenesis or other techniques well known in the art, to produce DNA encoding the variant, and thereafter expressing the DNA in recombinant cell culture as outlined above. However, variant HA protein fragments having up to about 100-150 residues may be prepared by in vitro synthesis using established techniques. Amino acid sequence variants are characterized by the predetermined nature of the variation, a feature that sets them apart from naturally occurring allelic or interspecies variation of the HA protein amino acid sequence. The variants typically exhibit the same qualitative biological activity as the naturally occurring analogue, although variants can also be selected which have modified characteristics as will be more fully outlined below.

While the site or region for introducing an amino acid sequence variation is predetermined, the mutation per se need not be predetermined. For example, in order to optimize the performance of a mutation at a given site, random mutagenesis may be conducted at the target codon or region and the expressed HA protein variants screened for the optimal combination of desired activity. Techniques for making substitution mutations at predetermined sites in DNA having a known sequence are well known, for example, M13 primer mutagenesis. Screening of the mutants is done using assays of HA protein activities; for example, mutated HA genes are placed in HA deletion strains and tested for HA activity, as disclosed herein. The creation of deletion strains, given a gene sequence, is known in the art. For example, nucleic acid encoding the variants may be expressed in an adhesion deficient strain, and the adhesion and infectivity of the variant Haemophilus influenzae evaluated. For example, as outlined below, the variants may be expressed in the E. coli DH5α non-adherent strain, and the transformed E. coli strain evaluated for adherence using Chang conjunctival cells.

Amino acid substitutions are typically of single residues: insertions usually will be on the order of from about 1 to 20 amino acids, although considerably larger

insertions may be tolerated. Deletions range from about 1 to 30 residues, although in some cases deletions may be much larger, as for example when one of the domains of the HA protein is deleted.

Substitutions, deletions, insertions or any combination thereof may be used to arrive at a final derivative. Generally these changes are done on a few amino acids to minimize the alteration of the molecule. However, larger changes may be tolerated in certain circumstances.

When small alterations in the characteristics of the HA protein are desired. substitutions are generally made in accordance with the following chart:

10 Chart I

10		Cimit
10	Original Residue	Exemplary Substitutions
	Ala Arg Asn	Ser Lys Gln. His Glu
15	Asp Cys Gln Glu Gly	Ser Asn Asp Pro Asn. Gln
20 .	His Ile Leu Lys Met	Leu. Val Ile. Val Arg. Gln, Glu Leu. Ile Met. Leu, Tyr
25	Phe Ser Thr Trp Tyr	Thr Ser Tyr Trp. Phe Ile. Leu
30	Val	

10

15

20

25

Substantial changes in function or immunological identity are made by selecting substitutions that are less conservative than those shown in Chart I. For example, substitutions may be made which more significantly affect: the structure of the polypeptide backbone in the area of the alteration, for example the alpha-helical or beta-sheet structure; the charge or hydrophobicity of the molecule at the target site; or the bulk of the side chain. The substitutions which in general are expected to produce the greatest changes in the polypeptide's properties are those in which (a) a hydrophilic residue, e.g. seryl or threonyl, is substituted for (or by) a hydrophobic residue, e.g. leucyl, isoleucyl, phenylalanyl, valyl or alanyl; (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue having an electropositive side chain, e.g. lysyl, arginyl, or histidyl, is substituted for (or by) an electronegative residue, e.g. glutamyl or aspartyl; or (d) a residue having a bulky side chain, e.g. phenylalanine, is substituted for (or by) one not having a side chain, e.g. glycine.

The variants typically exhibit the same qualitative biological activity and will elicit the same immune response as the naturally-occurring analogue, although variants also are selected to modify the characteristics of the polypeptide as needed. Alternatively, the variant may be designed such that the biological activity of the HA protein is altered. For example, the Walker box ATP-binding motif may be altered or eliminated.

In a preferred embodiment, the HA protein is purified or isolated after expression. HA proteins may be isolated or purified in a variety of ways known to those skilled in the art depending on what other components are present in the sample. Standard purification methods include electrophoretic, molecular, immunological and chromatographic techniques, including ion exchange, hydrophobic, affinity, and reverse-phase HPLC chromatography, and chromatofocusing. For example, the HA protein may be purified using a standard anti-HA antibody column.

10

15

20

Ultrafiltration and diafiltration techniques, in conjunction with protein concentration, are also useful. For general guidance in suitable purification techniques, see Scopes, R., Protein Purification, Springer-Verlag, NY (1982). The degree of purification necessary will vary depending on the use of the HA protein. In some instances no purification will be necessary.

-26-

Once expressed and purified if necessary, the HA proteins are useful in a number of applications.

For example, the HA proteins can be coupled, using standard technology, to affinity chromatography columns. These columns may then be used to purify antibodies from samples obtained from animals or patients exposed to the *Haemophilus influenzae* organism. The purified antibodies may then be used as outlined below.

Additionally, the HA proteins are useful to make antibodies to HA proteins. These antibodies find use in a number of applications. The antibodies are used to diagnose the presence of an *Haemophilus influenzae* infection in a sample or patient. In a preferred embodiment, the antibodies are used to detect the presence of nontypable *Haemophilus influenzae* (NTHI), although typable *H. influenzae* infections are also detected using the antibodies.

This diagnosis will be done using techniques well known in the art; for example, samples such as blood or tissue samples may be obtained from a patient and tested for reactivity with the antibodies, for example using standard techniques such as ELISA. In a preferred embodiment, monoclonal antibodies are generated to the HA protein, using techniques well known in the art. As outlined above, the antibodies may be generated to the full length HA protein, or a portion of the HA protein.

10

15

20

25

Antibodies generated to HA proteins may also be used in passive immunization treatments, as is known in the art.

Antibodies generated to unique sequences of HA proteins may also be used to screen expression libraries from other organisms to find. and subsequently clone, HA nucleic acids from other organisms.

In one embodiment, the antibodies may be directly or indirectly labelled. By "labelled" herein is meant a compound that has at least one element, isotope or chemical compound attached to enable the detection of the compound. In general labels fall into three classes: a) isotopic labels, which may be radioactive or heavy isotopes; b) immune labels, which may be antibodies or antigens; and c) colored or fluorescent dyes. The labels may be incorporated into the compound at any position. Thus, for example, the HA protein antibody may be labelled for detection, or a secondary antibody to the HA protein antibody may be created and labelled.

In one embodiment, the antibodies generated to the HA proteins of the present invention are used to purify or separate HA proteins or the *Haemophilus influenzae* organism from a sample. Thus for example, antibodies generated to HA proteins which will bind to the *Haemophilus influenzae* organism may be coupled, using standard technology, to affinity chromatography columns. These columns can be used to pull out the *Haemophilus* organism from environmental or tissue samples.

In a preferred embodiment, the HA proteins of the present invention are used as vaccines for the prophylactic or therapeutic treatment of a *Haemophilus influenzae* infection in a patient. By "vaccine" or "immunogenic compositions" herein is meant an antigen or compound which elicits an immune response in an animal or patient. The vaccine may be administered prophylactically, for example to a patient never previously exposed to the antigen, such that subsequent infection by the

10

15

20

25

Haemophilus influenzae organism is prevented. Alternatively, the vaccine may be administered therapeutically to a patient previously exposed or infected by the Haemophilus influenzae organism. While infection cannot be prevented, in this case an immune response is generated which allows the patient's immune system to more effectively combat the infection. Thus, for example, there may be a decrease or lessening of the symptoms associated with infection.

A "patient" for the purposes of the present invention includes both humans and other animals and organisms. Thus the methods are applicable to both human therapy and veterinary applications.

The administration of the HA protein as a vaccine is done in a variety of ways. Generally, the HA proteins can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby therapeutically effective amounts of the HA protein are combined in admixture with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their formulation are well known in the art. Such compositions will contain an effective amount of the HA protein together with a suitable amount of vehicle in order to prepare pharmaceutically acceptable compositions for effective administration to the host. The composition may include salts, buffers, carrier proteins such as serum albumin, targeting molecules to localize the HA protein at the appropriate site or tissue within the organism, and other molecules. The composition may include adjuvants as well.

In one embodiment, the vaccine is administered as a single dose; that is, one dose is adequate to induce a sufficient immune response to prophylactically or therapeuticallytreat a *Haemophilus influenzae* infection. In alternate embodiments, the vaccine is administered as several doses over a period of time, as a primary vaccination and "booster" vaccinations.

5 .

10

20

By "therapeutically effective amounts" herein is meant an amount of the HA protein which is sufficient to induce an immune response. This amount may be different depending on whether prophylactic or therapeutic treatment is desired. Generally, this ranges from about 0.001 mg to about 1 gm, with a preferred range of about 0.05 to about .5 gm. These amounts may be adjusted if adjuvants are used.

The following examples serve to more fully describe the manner of using the above-described invention, as well as to set forth the best modes contemplated for carrying out various aspects of the invention. It is understood that these examples in no way serve to limit the true scope of this invention, but rather are presented for illustrative purposes. All references cited herein are specifically incorporated by reference.

EXAMPLE 1

Cloning of HA1

Many protocols are substantially the same as those outlined in St. Geme et al., Mol. Microbio. 15(1):77-85 (1995).

15 Bacterial strains, plasmids, and phages.

Nontypable *H. influenzae* strain 11 was the clinical isolate chosen as a prototypic HMW1/HMW2-non-expressingstrain, although a variety of encapsulated typable strains can be used to clone the protein using the sequences of the figures. The organism was isolated in pure culture from the middle ear fluid of a child with acute otitis media. The strain was identified as *H. influenzae* by standard methods and was classified as nontypable by its failure to agglutinate with a panel of typing antisera for *H. influenzae* types a to f (Burroughs Wellcome Co., Research Triangle Park, N.C.) and failure to show lines of precipitation with these antisera in counterimmunoelectrophoresis assays. Strain 11 adheres efficiently to Chang

15

20

25

conjunctival cells *in vitro*, at levels comparable to those previously demonstrated for NTHI strains expressing HMW1/HMW2-like proteins (data not shown). Convalescent serum from the child infected with this strain demonstrated an antibody response directed predominantly against surface-exposed high molecular weight proteins with molecular weights greater than 100 kDa.

M13mp18 and M13mp19 were obtained from New England BioLabs . Inc. (Beverly, Mass.) pT7-7 was the kind gift of Stanley Tabor. This vector contains the T7 RNA polymerase promoter ϕ 10. a ribosome-binding site, and the translational start site for the T7 gene 10 protein upstream from a multiple cloning site.

10 Molecular cloning and plasmid subcloning.

The recombinant phage containing the *HA1* gene was isolated and characterized using methods similar to those described previously. In brief, chromosomal DNA from strain 11 was prepared and *Sau3A* partial restriction digests of the DNA were prepared and fractionated on 0.7% agarose gels. Fractions containing DNA fragments in the 9- to 20- kbp range were pooled, and a library was prepared by ligation into λEMBL3 arms. Ligation mixtures were packaged *in vitro* with Gigapack (Stratagene) and plate-amplified in a P2 lysogen of *E. coli* LE392. Lambda plaque immunological screening was performed as described by Maniatis et al., Molecular Cloning: A Laboratory Manual, 2d Ed. (1989), Cold Spring Harbor Press. For plasmid subcloning studies, DNA from recombinant phage was subcloned into the T7 expression plasmid pT7-7. Standard methods were used for manipulation of cloned DNA as described by Maniatis et al (supra).

Plasmid pHMW8-3 was generated by isolating an 11 kbp Xbal fragment from purified DNA from recombinant phage clone 11-17 and ligating into Xbal cut pT7-7. Plasmid pHMW8-4 was generated by isolating a 10 kbp *BamHI-Cial* cut pT7-7.

10

15

20

25

Plasmid pHMW8-5 was generated by digesting plasmid pHMW8-3 DNA with Clal. isolating the larger fragment and religating. Plasmid pHMW8-6 was generated by digesting pHMW8-4 with Spel, which cuts at a unique site within the HA1 gene. blunt-ending the resulting fragment, inserting a kanamycin resistance cassette into the Spel site. Plasmid pHMW8-7 was generated by digesting pHMW8-3 with Nrul and Hindll, isolating the fragment containing pT7-7, blunt-ending and religating. The plasmid restriction maps are shown in Figure 6.

DNA sequence analysis.

DNA sequence analysis was performed by the dideoxy method with the U.S. Biochemicals Sequenase kit as suggested by the manufacturer. [36S]dATP was purchased from New England Nuclear (Boston, Mass). Data were analyzed with Compugene software and the Genetics Computer Group program from the University of Wisconsin on a Digital VAX 8530 computer. Several 21-mer oligonucleotide primers were generated as necessary to complete the sequence.

<u>Adherence assays.</u>

Adherence assays were done with Chang epithelial cells [Wong-Kilbourne derivative, clone 1-5c-4 (human conjunctiva), ATCC CCL20.2)], which were seeded into wells of 24-well tissue culture plates, as described (St. Geme III et al., Infect. Immun. 58:4036(1990)). Bacteria were inoculated into broth and allowed to grow to a density of approximately 2 x 10° colony-forming units per ml. Approximately 2 x 10° colony-forming units per ml. Approximately 2 x 10° colony-forming units were inoculated onto epithelial cells monolayers, and plates were gently centrifuged at 165 x g for 5 min to facilitate contact between bacteria and the epithelial surface. After incubation for 30 min at 37°C in 5% CO₂, monolayers were rinsed five times with phosphate buffered saline (PBS) to remove nonadherent organisms and were treated with trypsin-EDTA (0.05% trypsin/0.5%

EDTA) in PBS to release them from the plastic support. Well contents were agitated, and dilution were plated on solid medium to yield the number of adherent bacteria per monolayer. Percent adherence was calculated by dividing the number of adherent colony-forming units per monolayer by the number of inoculated colony-forming units.

Isolation and characterization of recombinant phage expressing the strain 11 high molecular weight adhesion protein.

The nontypable *Haemophilus influenzae* strain 11 chromosomal DNA library was screened immunologically with convalescent serum from the child infected with strain 11. Immunoreactive clones were screened by Western blot for expression of high molecular weight proteins with apparent molecular weights > 100 dDa and two different classes of recombinant clones were recovered. A single clone designated 11-17 was recovered which expressed the HA1 protein. The recombinant protein expressed by this clone had an apparent molecular weight of greater than 200 kDa.

Transformation into E. coli

5

10

15

Plasmids were introduced into DH5 α strain of E. coli (Maniatis, supra), which is a non-adherent strain, using electroporation (Dower et al., Nucl. Acids Res. 16:6127 (1988). The results are shown in Table 1.

10

20

Table 1

Strain	% Adherence*
 DH5α(pHMW 8-4)	$43.3 \pm 5.0\%$
DH5α(pHMW 8-5)	$41.3 \pm 3.3\%$
DH5α(pHMW 8-6)	$0.6 \pm 0.3\%$
DH5α(pHMW 8-7)	
DH5α(pT7-7)	$0.4 \pm 0.1\%$

*Adherence was measured in a 30 minute assay and was calculated by dividing the number of adherent bacteria by the number of inoculated bacteria. Values are the mean ± SEM of measurements made in triplicate from a representative experiment.

In addition, a monoclonal antibody made by standard procedures, directed against the strain 11 protein recognized proteins in 57 of 60 epidemiologically-unrelated NTHI. However, Southern analysis using the gene indicated that roughly only 25% of the tested strains actually hybridized to the gene (data not shown).

15 EXAMPLE 2 Cloning of HA2

In a recent study we examined a series of H. influenza type b isolates by transmission electron microscopy and visualized short, thin surface fibrils distinct from pili (St. Geme, J.W.III, and D. Cutter. 1995. Evidence that surface fibrils expressed by *Haemophilus influenzae* type b promote attachment to human epithelial cells. Mol. Microbiol. 15:77-85.). In that study, the large genetic locus involved in the expression of these appendages was isolated.

Bacterial strains and plasmids

10

15

20

25

H. influenzae strain C54 is a type b strain that has been described previously (Pichichero, M.E., P. Anderson, M. Loeb, and D.H. Smith. 1982. Do pili play a role in pathogenicity of Haemophilus influenzae type b? Lancet. ii:960-962.). Strain C54-Tn400.23 is a mutant that contains a mini-Tn10 kan element in the hsf locus and demonstrates minimal in vitro adherence (St. Geme, J.W.III, and D. Cutter. 1995. Evidence that surface fibrils expressed by Haemophilus influenzae type b promote attachment to human epithelial cells. Mol. Microbiol. 15:77-85.). Strains 1053. 1058. 1060. 1063. 1065. 1069, 1070, 1076, 1081, and 1084 are H. influenzae type b isolates generously provided by J. Musser (Baylor University, Houston, Texas) (Musser et al., 1990. Global genetic structure and molecular epidemiology of encapsulated Haemophilus influenzae. Rev. Infect. Dis. 12:75-111.). H. influenzae strains SM4 (type a). SM6 (type d), SM7 (type e), and SM72 (type c) are type strains obtained from R. Facklam at the Centers for Disease Control (Atlanta. Georgia). Strains 142, 327, and 351 are H. influenzae type e isolates, and strains 134, 219, 256, and 501 are H. influenzae type f isolates obtained from H. Kayhty (Finnish National Public Health Institute, Helsinki). Strain Rd (type d) and the 15 nontypable isolates examined by Southern analysis have been described previously (Alexander et al., J. Exp. Med. 83:345-359 (1951); Barencamp et al., Infect. Immun. 60:1302-1313 (1992)). E. coli DH5a is a nonadherent laboratory strain that was originally obtained from Gibco BRL. E. coli strain BL21(DE3) was a gift from F.W. Studier and contains a single copy of the T7 RNA polymerase gene under the control of the lac regulatory system (Studier, F.W., and B.A. Moffatt, 1986. Use of bacteriophage T7 RNA polymerase to direct high-level expression of cloned genes. J. Mol. Biol. 189:113-130.). Plasmid pT7-7 was provided by S. Tabor and contains the T7 RNA polymerase promoter f10. a ribosome-binding site. and the translational start site for the T7 gene 10 protein upstream from a multiple cloning site (Tabor, S., and C.C. Richardson, 1985. A bacteriophage T7 RNA polymerase/promotersystem for controlled exclusive expression of specific genes. Proc. Natl. Acad. Sci. USA. 82:1074-1078.). pUC19 is a high-copy-number plasmid

10

15

that has been previously described (Yanish-Perronet al., Gene 33:103-119 (1985)). pDC400 is a pUC19 derivative that harbors the H. influenzae strain C54 surface fibril locus and is sufficient to promote in vitro adherence by laboratory strains of E. coli (St. Geme, J.W.III, and D. Cutter. 1995. Evidence that surface fibrils expressed by Haemophilus influenzae type b promote attachment to human epithelial cells. Mol. Microbiol. 15:77-85.). pHMW8-5 is a pT7-7 derivative that contains the H. influenzae strain 11 hia locus and also promotes adherence by nonadherent laboratory strains of E. coli (Barenkamp, S.J., and J.W. St. Geme, III. Identification of a second family of high molecular weight adhesion proteins expressed by nontypable Haemophilus influenzae. Mol. Microbiol., in press.). pHMW8-6 contains the H. influenzae hia locus interrupted by a kanamycin cassette (Barenkamp, S.J., and J.W. St. Geme, III. Identification of a second family of high molecular weight adhesion proteins expressed by nontypable Haemophilus influenzae. Mol. Microbiol., in press.). pUC4K served as the source of the kanamycin-resistancegene that was used as a probe in Southern analysis (Vieira. J., and J. Messing. 1982. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 19:259-268.).

Culture conditions

20 H. influenzae strains were grown on chocolate agar supplemented with 1% Isovitale X. on brain heart infusion agar supplemented with hemin and NAD (BHI-DB agar). or in brain heart infusion broth supplemented with hemin and NAD (BHIs) (Anderson. P., R.B. Johnston.Jr., and D.H. Smith. 1972. Human serum activity against Haemophilus influenzae type b. J. Clin. Invest. 51:31-38.). These strains were grown on Luria Bertani (LB) agar or in LB broth and were stored at -80°C in LB broth with 50% glycerol. For H. influenzae, kanamycin was used in a

10

15

20

25

concentration of 25 mg/ml. Antibiotic concentrations for *E. coli* included the following: ampicillin or carbenicillin 100 mg/ml and kanamycin 50 mg/ml.

Induction of plasmid-encoded proteins

To identify plasmid-encoded proteins, the bacteriophage T7 expression vector pT7-7 was employed and the relevant pT7-7 derivatives were transformed into *E. coli* BL21(DE3). Activation of the T7 promoter was achieved by inducing expression of T7 RNA polymerase with isopropyl-b-D-thiogalactopyranoside (final concentration, 1 mM). After induction for 30 minutes at 37°C, rifampicin was added to a final concentration of 200 mg/ml. Thirty minutes later, 1 ml of culture was pulsed with 50 mCi of trans-[35S]-label (ICN, Irvine, Calif.) for 5 minutes. Bacteria were harvested, and whole cell lysates were resuspended in Laemmli buffer for analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis on 7.5% acrylamide gels (Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London). 227:680-685.). Autoradiography was performed with Kodak XAR-5 film.

Recombinant DNA methods

DNA ligations, restriction endonuclease digestions, and gel electrophoresis were performed according to standard techniques (Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory. Cold Spring Harbor, N.Y.). Plasmids were introduced into *E. coli* strains by either chemical transformation or electroporation, as described (Dower, W.J., J.F. Miller, and C.W. Ragsdale. 1988. High efficiency transformation of *E. coli* by high voltage electroporation. Nucleic Acids Res. 16:6127-6145. Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.). Transformation in *H. influenzae* was performed using the MIV method of Herriott et al. (Herriott.

10

15

20

R.M., E.M. Meyer, and M. Vogt. 1970. Defined nongrowth media for stage II competence in *Haemophilus influenzae*. J. Bacteriol. 101:517-524.).

Adherence assays

Adherence assays were performed with tissue culture cells which were seeded into wells of 24-well tissue culture plates as previously described (St. Geme et al., Infect. Immun. 58:4036-4044(1991)). Adherence was measured after incubating bacteria with epithelial monolayers for 30 minutes as described (St. Geme, J.W.III, S. Falkow, and S.J. Barenkamp. 1993. High-molecular-weightproteins of nontypable Haemophilus influenzae mediate attachment to human epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 90:2875-2879.). Tissue culture cells included Chang epithelial cells (Wong-Kilbournederivative.clone 1-5c-4 (human conjunctiva)) (ATCC CCL 20.2), KB cells (human oral epidermoid carcinoma) (ATCC CCL 17), HEp-2 cells (human laryngeal epidermoid carcinoma) (ATCC CCL 23). A549 cells (human lung carcinoma) (ATCC CCL 185), Intestine 407 cells (human embryonic intestine) (ATCC CCL 6). HeLa cells (human cervical epitheloid carcinoma) (ATCC CCL 2). ME-180 cells (human cervical epidermoid carcinoma) (ATCC HTB 33). HEC-IB cells (human endometrium) (ATCC HTB 113), and CHO-K1 cells (Chinese hamster ovary)(ATCC CCL 61). Chang. KB, Intestine 407, HeLa, and HEC-IB cells were maintained in modified Eagle medium with Earle's salts and non-essential amino acids. HEp-2 cells were maintained in Dulbecco's modified Eagle medium. A549 cells and CHO-K1 cells in F12 medium (Ham), and ME-180 cells in McCoy5A medium. All media were supplemented with 10% heat-inactivated fetal bovine serum.

Southern analysis

Southern blotting was performed using high stringency conditions as previously described (St. Geme. J.W.III. and S. Falkow. 1991. Loss of capsule expression by

10

15

20

25

Haemophilus influenzae type b results in enhanced adherence to and invasion of human cells. Infect. Immun. 59:1325-1333.).

Microscopy

Samples of epithelial cells with associated bacteria were stained with Giemsa stain and examined by light microscopy as described (St. Geme, J.W.III, and S. Falkow, S. 1990. Haemophilus influenzae adheres to and enters cultured human epithelial cells. Infect. Immun. 58:4036-4044.).

For negative-staining electron microscopy, bacteria were stained with 0.5% aqueous uranyl acetate (St. Geme, J.W.III, and S. Falkow, 1991. Loss of capsule expression by Haemophilus influenzae type b results in enhanced adherence to and invasion of human cells. Infect. Immun. 59:1325-1333.) and examined using a Zeiss 10A microscope.

The previous study indicated that laboratory E. coli strains harboring the plasmid pDC400 were capable of efficient attachment to cultured human epithelial cells (St. Geme, J.W.III, and D. Cutter. 1995. Evidence that surface fibrils expressed by Haemophilus influenzae type b promote attachment to human epithelial cells. Mol. Microbiol. 15:77-85.). Subcloning studies and transposon mutagenesis indicated that the relevant coding region of pDC400 was present within an 8.3 kb Xbal fragment (St. Geme. J. W. III. and D. Cutter. 1995. Evidence that surface fibrils expressed by Haemophilus influenzae type b promote attachment to human epithelial cells. Mol. Microbiol. 15:77-85.) (Figure 7). To confirm this conclusion, in the present study this XbaI fragment was subcloned into pT7-7, generating plasmids designated pDC601 and pDC602, which contained the insert in opposite orientations (Figure 7). As predicted, expression of these plasmids in E, coli DH5 α was associated with a capacity for high level in vitro attachment (Table 1).

25

Table 1. Adherence to Chang conjunctival cells.

	<u>Strain</u>	ADHERENCE (% inoculum)
	DH5α/pT7-7	0.4 ± 0.1
	DH5a/pDC400	25.3 ± 1.2
5	DH5a/pDC601	54.3 ± 7.5
	DH5a/pDC602	55.5 ± 4.3
	C54b p	98.7 ± 9.5
	C54-HA1::kanb	1.5 ± 0.2
	C54-Tn400.23c	3.3 ± 0.4

*Adherence was measured in a 30 minute assay and was calculated by dividing the number of adherent bacteria by the number of inoculated bacteria. Values are the mean ± SEM of measurements made in triplicate from representative experiments.
 *Strain C54-HA1::kan was constructed by transforming C54b·p· with linearized pHMW8-6, which contains the *HA1* gene with an intragenic kanamycin cassette.
 *Strain C54-Tn400.23 contains a mini-Tn10 kan element in the hsflocus (St. Geme et al., Mol. Microbiol. 15:77-85 (1995)).

To determine the direction of transcription and identify plasmid-encoded proteins. pDC601 and pDC602 were subsequently introduced into *E. coli* BL21(DE3). producing BL21(DE3)/pDC601 and BL21(DE3)/pDC602, respectively. As a negative control, pT7-7 was also transformed into BL21(DE3). The T7 promoter in these three strains was induced with IPTG, and induced proteins were detected using trans-[35]-label. As shown in Figure 8, induction of BL21(DE3)/pDC601 resulted in expression of a large protein over 200 kDa in size along with several slightly smaller proteins, which presumably represent degradation products. In contrast, when BL21(DE3)/pDC602 and BL21(DE3)/pT7-7 were induced, there

15

20

25

was no expression of these proteins. This experiment indicated that the genetic material contained in the 8.3 kb Xbal fragment is transcribed from left to right as shown in Figure 7 and suggested that a single long open reading frame may be present.

5 Nucleotide sequencing

Nucleotide sequence was determined using a Sequenase kit and double-stranded plasmid template. DNA fragments were subcloned into pUC19 and sequenced along both strands by primer walking. DNA sequence analysis was performed using the Genetics Computer Group (GCG) software package from the University of Wisconsin (Devereux, J., P. Haeberli, and O. Smithies. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12:387-395.). Sequence similarity searches were carried out using the BLAST program of the National Center for Biotechnology Information (Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basis local alignment search tool. J. Mol. Biol. 215:403-410.).

Sequencing of the 8.3 kb Xbal fragment revealed a 7059 bp gene. which is designated for literature purposes as hsf for Hae6mophilus surface fibrils. and is referred to herein as HA2. This gene encodes a 2353-amino acid polypeptide. referred to as Hsf or HA2. with a calculated molecular mass of 243.8 kDa. which is similar in size to the observed protein species detected after induction of BL21(DE3)/pDC601. The HA2 gene has a GC content of 42.8%, somewhat greater than the published estimate of 38-39% for the whole genome (Fleischmann et al., 1995. Whole-genomerandom sequencing and assembly of Haemophilus influenzæ Rd. Science. 269: 496-512.. Kilian, M. 1976. A taxonomic study of the genus Haemophilus. with proposal of a new species. J. Gen. Microbiol. 93:9-62.). A putative ribosomal binding site with the sequence AAGGTA begins 13 base pairs upstream of the presumed initiation codon. A sequence similar to a rho-independent

15

transcription terminator is present beginning 20 nucleotides beyond the stop codon and contains interrupted inverted repeats with the potential for forming a hairpin structure containing a loop of two bases and a stem of 11 bases. Of note, a string of 29 thymines spans the region from 149 to 121 nucleotides upstream of *HA2*.

5 Homology to HA1/HA1

The nontypable *H. influenzae* nonpilus protein HA1 protein (called Hia in the literature) promotes attachment to cultured human epithelial cells as outlined above. Comparison of the predicted amino acid sequence of *HA2* and the sequence of HA1 revealed 81% similarity and 72% identity overall. As depicted in Figure 5, the two sequences are highly conserved at their N-terminal and C-terminal ends, and both contain a Walker box nucleotide-bindingmotif. Interestingly, HA1 is encoded by a 3.2 kb gene and is only 115-kDa. In this context, it is noteworthy that three separate stretches of HA2 (corresponding to amino acids 174 to 608, 847 to 1291, and 1476 to 1914, respectively) show significant homology to the region of HA1 defined by amino acids 221 to 658 (Figure 5). Table 2 summarizes the level of similarity and identity between these three stretches of HA2 and one another. The suggestion is that the larger size of HA2 may relate in part to the presence of a repeated domain which is present in single copy in HA1.

Table 2. Percent similarity and percent identity between HA2 repeats.

20		Percent Similarity/Percent Identity											
		HA2 174-608	HA2 847-1291 ^a	HA2 1476-1914									
	HA2 174-608	*	65/53	76/60									
	HA2 847-1291		•	70/56									
	HA2 1476-1914			*									

25- Numbers correspond to amino acid residue positions in the full-length HA2 (Hsf) protein.

10

15

20

25

To evaluate whether HA1 and HA2 are alleles of the same locus, a series of Southem blots were performed. Samples of chromosomal DNA from strains C54 and 11 were subjected to digestion with Bg/II, ClaI and either PstI or XbaI. Resulting DNA fragments were separated by agarose electrophoresis and transferred bidirectionally to nitrocellulose membranes. One membrane was probed with a 3.3 kb internal fragment of the HA2 gene (Figure 7), and the other membrane was probed with a 1.6 kb intragenic fragment of the HAI gene. As shown in Figure 9, both probes recognized exactly the same chromosomal fragments.

To obtain additional evidence that the *HA2* and *HA1* genes are homologs, the inactivation of *HA2* by transformation of *H. influenzae* strain C54bp with insertionally inactivated *HA1* was attempted. The plasmid pHMW8-6 (Barenkamp, S.J., and J.W. St. Geme, III. Identification of a second family of high molecular weight adhesion proteins expressed by nontypable *Haemophilus influenzae*. Mol. Microbiol., in press.), which contains the *HA1* gene with an intragenic kanamycin cassette, was linearized with *Nde1* and introduced into competent C54. Southern hybridization confirmed insertion of the kanamycin cassette into *HA2* (not shown). Furthermore examination of the C54 mutant by negative staining transmission electron microscopy revealed the loss of surface fibrils (not shown). Consistent with these findings, the mutant strain demonstrated minimal attachment to Chang conjunctival cells (Table 1).

In additional experiments, the cellular binding specificities conferred by the HA2 and HA1 proteins were compared. As shown in Figure 10, DH5α/pDC601 (expressing HA2) demonstrated high level attachment to Chang cells, KB cells. HeLa cells, and Intestine 407 cells, moderate level attachment to HEp-2 cells, and minimal attachment to HEC-IB cells. ME-180 cells, and CHO-K1 cells. DH5α harboring pHMW8-5 (expressing HA1) showed virtually the same pattern of attachment.

WO 96/30519 PCT/US96/04031

Giemsa staining and subsequent examination by light microscopy confirmed these viable count adherence assay results.

-43-

Homology to other bacterial extracellular proteins

5

10

15

20

25

A protein sequence similarity search was performed with the HA2 predicted amino acid sequence using the BLAST network service of the National Center for Biotechnology Information (Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basis local alignment search tool. J. Mol. Biol. 215:403-410.). This search revealed low-level sequence similarity to a series of other bacterial adherence factors, including HMW1 and HMW2 (the proteins previously identified as being important adhesins in HA1-deficient nontypable H. influenzae strains; (St. Geme, J.W.III, S. Falkow, and S.J. Barenkamp. 1993. High-molecular-weight proteins of nontypable Haemophilus influenzae mediate attachment to human epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 90:2875-2879.), AIDA-I (an adhesion protein expressed by some diarrheagenic E. coli strains: Benz, I., and M.A. Schmidt. 1992. AIDA-I. the adhesin involved in diffuse adherence of the diarrhoeagenic Escherichia coli strain 2787 (O126:H27), is synthesized via a precursor molecule. Mol. Microbiol. 6:1539-1546.). and Tsh (a hemagglutinin produced by an avian pathogenic E. coli strain: Provence, D. and R. Curtiss III. 1994. Isolation and characterization of a gene involved in hemagglutination by an avian pathogenic Escherichia coli strain, Infect. Immun. 62:1369-1380.). In addition, HA2 showed homology to SepA, a Shigella flexneri secreted protein that appears to play a role in tissue invasion (Benjelloun-Touimi, Z., P.J. Sansonetti, and C. Parsot. 1995. SepA, the major extracellular protein of Shigella flexneri: autonomous secretion and involvement in tissue invasion. Mol. Microbiol. 17:123-135.). Alignment of HA2 with HMW1. HMW2. AIDA-I. Tsh. and SepA revealed a highly conserved N-terminal domain (Figure 11). In AIDA-I, Tsh, and SepA, this N-terminal extremity precedes a typical procaryotic signal sequence (Benjelloun-Touimi, Z., P.J. Sansonetti, and C. Parsot. 1995. SepA. the major extracellular protein of Shigella flexneri: autonomous secretion

10

15

20

25

and involvement in tissue invasion. Mol. Microbiol. 17:123-135.). Similarly, in HA2 this conserved domain precedes a 26 amino acid segment that is characterized by a positively charged region, followed by a string of hydrophobic residues, and then alanine-glutamine-alanine.

Presence of an HA2 homolog in other encapsulated and nonencapsulated strains Previous work demonstrated that an HA2 homolog is present in H. influenzae type b strains M42 and Eagan (St. Geme, J.W.III, and D. Cutter. 1995. Evidence that surface fibrils expressed by Haemophilus influenzae type b promote attachment to human epithelial cells. Mol. Microbiol. 15:77-85.). To define the extent to which the HA2 locus is shared by other type b strains, a panel of evolutionarily diverse type b isolates by Southern analysis were examined. Among these strains were six belonging to phylogenic division I and four belonging to phylogenic division II (Musser, J.M., J.S. Kroll, E.R. Moxon, and R.K. Selander. 1988. Evolutionary genetics of the encapsulated strains of Haemophilus influenzae. Proc. Natl. Acad. Sci. U.S.A. 85:7758-7762.). Chromosomal DNA was digested with Bg/II and then probed with the intragenic 3.3 kb fragment of the HA2 gene. As shown in Figure 12. all 10 strains showed hybridization. The universal presence among H. influenzae type b raised the question of the prevalence of this locus in other non-type b encapsulated H. influenzae. Southern analysis of a series of type a. c. d. e. and f isolates again demonstrated a homolog in all cases (Figure 13).

Recently Fleischmannet al. (Fleischmann R.D., et al., 1995. Whole-genomerandom sequencing and assembly of *Haemophilus influenzae* Rd. Science. **269**: 496-512.) reported the genome sequence of *H. influenzae* strain Rd. which was one of the two serotype d strains examined by Southern analysis. In accord with the Southern blotting results, search of the Rd genome revealed an open reading frame with striking sequence similarity to *HA2*. The Rd gene is 894 nucleotides in length and is predicted to encode a protein of 298 amino acids. Overall, the Rd locus is 70% identical to

10

15

20

25

the C54 HA2 gene, and the Rd derived amino acid sequence is 62% identical and 75% similar to C54 HA2. Interestingly, the Rd open reading frame appears to be truncated due to a "premature" stop codon.

Previous experiments revealed that 13 of 15 nontypable strains lacking an HMW1/HMW2-related protein had evidence of an HA1 homolog (Barenkamp, S.J., and J.W. St. Geme, III. Identification of a second family of high molecular weight adhesion proteins expressed by nontypable Haemophilus influenzae. Mol. Microbiol., in press.). Consistent with the demonstration that HA2 and HA1 are homologous. Southern analysis of these 15 strains, probing with the 3.3 kb fragment of hsf, demonstrated hybridization in 12 of the same 13 (not shown).

Chromosomal location of the HA2 locus

In earlier work, the *HA1* locus in nontypable strain 11 was found to be flanked upstream by an open reading frame with significant homology to *E. coli* exoribonuclease II (Barenkamp, S.J., and J.W. St. Geme, III. Identification of a second family of high molecular weight adhesion proteins expressed by nontypable *Haemophilus influenzae*. Mol. Microbiol., in press.). Similarly, the *HA2* locus in strain C54 likewise is flanked on the 5' side by an open reading frame with similarity to *E. coli* exonuclease II. This gene terminates 357 base pairs before the *H.A2* start codon and encodes a protein with a predicted amino acid sequence that is 61% similar and 33% identical at its C-terminal end to exoribonuclease II. Of note, the Rd *HA2* homolog is also flanked upstream by the exoribonuclease II locus.

EXAMPLE 3

Cloning of HA3

Recombinant phage containing the nontypable *Haemophilus* strain 32 HA3 gene were isolated and characterized using methods modified slightly from those described

10

previously (Barenkamp and St. Geme, Molecular Microbiology 1996, in press). In brief, chromosomal DNA from strain 32 was prepared by a modification of the method of Marmur (Marmur, 1961). Sau3A partial restriction digests of the DNA were prepared fractionated on 0.7% agarose gels. Fractions containing DNA fragments in the 9- to 20- kbp range were pooled, and a library was prepared by ligation into λEMBL3 arms. Ligation mixtures were packaged in vitro with Gigapack® (Stratagene, La Jolla, CA) and plate amplified in a P2 lysogen of E. coli LE392.

Lambda plaque screening was performed using a mixture of three PCR products derived from strain 32 chromosomal DNA. These PCR products were amplified using primer pairs previously shown to amplify DNA segments at the 5' end of the strain 11 HA1 gene. The primers were as follows:

Primer designation	strand	sequence
44P	positive	CCG TGC TTG CCC AAC ACG CTT
64P	positive	GCT GCC ACC TTG CAC AAC AAC
93G-2	positive	CTT TCA ATG CCA GAA AGT AGG
		CTT CAA CCG TTG CGG ACA ACA
18T-1	negative	CITCARteedire

. 15

Each of the positive strand primers was used with the single negative strand primer to generate the three fragments used for probing the library.

20

25

The PCR products generated from strain 11 and strain 32 chromosomal DNA were identical in size, suggesing that the nucleotide sequences of these chromosomal regions were similar in the two strains. Plaque screening was performed using standard methodology (Berger and Kimmel, 1987) at high stringency: final wash conditions were 65C for 1 hour in buffer containing 2XSSC and 1% SDS. Positive plaques were identified by autoradiography, plaque purified and phage DNA was purified by standard methods. The same primer pairs used to generate the screening

probes were then used to localize the HA3 gene by amplifying various restriction fragments derived from the phage DNA. Once localized, the strain 32 HA3 gene and flanking DNA were sequenced using standard methods.

- In order to construct strain 32 isogenic *Haemophilus influenzae* mutants deficient in expression of the HA3 gene, bacteria were made competent using the MIV (Herriott et al. 1970) and were transformed with linearized pHMW8-6, selecting for kanamycin resistance. Allelic exchange was confirmed by Southern analysis. The mutants that no longer expressed HA3 exhibited a marked decrease in binding to Chang epithelial cells. using the methods outlined above (data not shown).
- Expression in non-adherent strains of *E. coli* did not result in adherence, although it has not been confirmed that the protein was actually expressed.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: Washington University
- (ii) TITLE OF INVENTION: HAEMOPHILUS ADHESION PROTEINS
- (iii) NUMBER OF SEQUENCES: 19
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Flehr, Hohbach, Test, Albritton & Herbert
 - (B) STREET: Four Embarcadero Center, Suite 3400
 - (C) CITY: San Francisco
 - (D) STATE: California
 - (E) COUNTRY: United States
 - (F) ZIP: 94111-4187
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: UNKNOWN
 - (B) FILING DATE: 22-MAR-1996
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/409,995
 - (B) FILING DATE: 24-MAR-1995
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Silva, Robin M.
 - (B) REGISTRATION NUMBER: 38,304
 - (C) REFERENCE/DOCKET NUMBER: FP61053-1/RFT/RMS
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (415) 781-1989
 - (B) TELEFAX: (415) 398-3249
 - (C) TELEX: 910 277299
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3294 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ATGAACAAAA TTTTTAACGT TATTTGGAAT GTTGTGACTC AAACTTGGGT TGTCGTATCT	60
GAACTCACTC GCACCCACAC CAAATGCGCC TCCGCCACCG TGGCGGTTGC CGTATTGGCA	120
ACCCTGTTGT CCGCAACGGT TGAGGCGAAC AACAATACTC CTGTTACGAA TAAGTTGAAG	180
GCTTATGGCG ATGCGAATTT TAATTTCACT AATAATTCGA TAGCAGATGC AGAAAAACAA	240
GTTCAAGAGG CTTATAAAGG TTTATTAAAT CTAAATGAAA AAAATGCGAG TGATAAACTG	300
TTGGTGGAGG ACAATACTGC GGCGACCGTA GGCAATTTGC GTAAATTGGG CTGGGTATTG	360
TCTAGCAAAA ACGGCACAAG GAACGAGAAA AGCCAACAAG TCAAACATGC GGATGAAGTG	420
TTGTTTGAAG GCAAAGGCGG TGTGCAGGTT ACTTCCACCT CTGAAAACGG CAAACACACC	480
ATTACCTTTG CTTTAGCGAA AGACCTTGGT GTGAAAACTG CGACTGTGAG TGATACCTTA	540
ACGATTGGCG GTGGTGCTGC TGCAGGTGCT ACAACAACAC CGAAAGTGAA TGTAACTAGT	· 600
ACAACTGATG GCTTGAAGTT CGCTAAAGAT GCTGCGGGTG CTAATGGCGA TACTACGGTT	660
CACTTGAATG GTATTGGTTC AACCTTGACA GACACGCTTG TGGGTTCTCC TGCTACTCAT	720
ATTGACGGAG GAGATCAAAG TACGCATTAC ACTCGTGCAG CAAGTATCAA GGATGTCTTG	780
AATGCGGGTT GGAATATCAA GGGTGTTAAA GCTGGCTCAA CAACTGGTCA ATCAGAAAAT	840
GTCGATTTTG TTCATACTTA CGATACTGTT GAGTTCTTGA GTGCGGATAC AGAGACCACG	900
ACTGTTACTG TAGATAGCAA AGAAAACGGT AAGAGAACCG AAGTTAAAAT CGGTGCGAAG	960
ACTICIGITA TCAAAGAAAA AGACGGTAAG TTATTTACTG GAAAAGCTAA CAAAGAGACA	1020
AATAAAGTTG ATGGTGCTAA CGCGACTGAA GATGCAGACG AAGGCAAAGG CTTAGTGACT	1080
GCGAAAGATG TGATTGACGC AGTGAATAAG ACTGGTTGGA GAATTAAAAC AACCGATGCT	1140
AATGGTCAAA ATGGCGACTT CGCAACTGTT GCATCAGGCA CAAATGTAAC CTTTGCTAGT	1200
GGTAATGGTA CAACTGCGAC TGTAACTAAT GGCACCGATG GTATTACCGT TAAGTATGAT	1260
GCGAAAGTTG GCGACGGCTT AAAACTAGAT GGCGATAAAA TCGCTGCAGA TACGACCGCA	1320
CTTACTGTGA ATGATGGTAA GAACGCTAAT AATCCGAAAG GTAAAGTGGC TGATGTTGCT	1380
TCAACTGACG AGAAGAAATT GGTTACAGCA AAAGGTTTAG TAACAGCCTT AAACAGTCTA	1440
AGCTGGACTA CAACTGCTGC TGAGGCGGAC GGTGGTACGC TTGATGGAAA TGCAAGTGAG	1500
CAAGAAGTTA AAGCGGGCGA TAAAGTAACC TTTAAAGCAG GCAAGAACTT AAAAGTGAAA	1560
CAAGAGGTG CGAACTTTAC TTATTCACTG CAAGATGCTT TAACAGGCTT AACGAGCATT	162
ACTITAGGTA CAGGAAATAA TGGTGCGAAA ACTGAAATCA ACAAAGACGG CTTAACCATC	168

ACACCAGCAA ATGGTGCGGG TGCAAATAAT GCAAACACCA TCAGCGTAAC CAAAGACGGC	1740
ATTAGTGCGG GCGGTCAGTC GGTTAAAAAC GTTGTGAGCG GACTGAAGAA ATTTGGTGAT	1800
GCGAATTTCG ATCCGCTGAC TAGCTCCGCC GACAACTTAA CGAAACAAAA TGACGATGCC	1860
TATAAAGGCT TGACCAATTT GGATGAAAAA GGTACAGACA AGCAAACTCC AGTTGTTGCC	1920
GACAATACCG CCGCAACCGT GGGCGATTTG CGCGGCTTGG GCTGGGTCAT TTCTGCGGAC	1980
AAAACCACAG GCGGCTCAAC GGAATATCAC GATCAAGTTC GGAATGCGAA CGAAGTGAAA	2040
TTCAAAAGCG GCAACGGTAT CAATGTTTCC GGTAAAACGG TCAACGGTAG GCGTGAAATT	2100
ACTITIGAAT TGGCTAAAGG TGAAGTGGTT AAATCGAATG AATTTACCGT CAAAGAAACC	2160
ANTGGAAAGG AAACGAGCCT GGTTAAAGTT GGCGATAAAT ATTACAGCAA AGAGGATATT	2220
GACTTAACAA CAGGTCAGCC TAAATTAAAA GATGGCAATA CAGTTGCTGC GAAATATCAA	2280
GATAAAGGTG GCAAAGTCGT TTCTGTAACG GATAATACTG AAGCTACCAT AACCAACAAA	2340
GGTTCTGGCT ATGTAACAGG TAACCAAGTG GCAGATGCGA TTGCGAAATC AGGCTTTGAG	2400
CTTGGCTTGG CTGATGAAGC TGATGCGAAA CGGGCGTTTG ATGATAAGAC AAAAGCCTTA	2460
TCTGCTGGTA CAACGGAAAT TGTAAATGCC CACGATAAAG TCCGTTTTGC TAATGGTTTA	2520
AATACCAAAG TGAGCGCGGC AACGGTGGAA AGCACCGATG CAAACGGCGA TAAAGTGACC	2580
ACAACCTTTG TGAAAACCGA TGTGGAATTG CCTTTAACGC AAATCTACAA TACCGATGCA	2640
AACGGTAAGA AAATCACTAA AGTTGTCAAA GATGGGCAAA CTAAATGGTA TGAACTGAAT	2700
GCTGACGGTA CGGCTGATAT GACCAAAGAA GTTACCCTCG GTAACGTGGA TTCAGACGGC	2760
AAGAAAGTTG TGAAAGACAA CGATGGCAAG TGGTATCACG CCAAAGCTGA CGGTACTGCG	2820
GATAAAACCA AAGGCGAAGT GAGCAATGAT AAAGTTTCTA CCGATGAAAA ACACGTTGTC	2880
AGCCTTGATC CAAATGATCA ATCAAAAGGT AAAGGTGTCG TGATTGACAA TGTGGCTAAT	2940
GGCGATATTT CTGCCACTTC CACCGATGCG ATTAACGGAA GTCAGTTGTA TGCTGTGGCA	、3000
AAAGGGGTAA CAAACCTTGC TGGACAAGTG AATAATCTTG AGGGCAAAGT GAATAAAGTG	
GGCAAACGTG CAGATGCAGG TACAGCAAGT GCATTAGCGG CTTCACAGTT ACCACAAGCC	
ACTATGCCAG GTAAATCAAT GGTTGCTATT GCGGGAAGTA GTTATCAAGG TCAAAATGGT	
TTAGCTATCG GGGTATCAAG AATTTCCGAT AATGGCAAAG TGATTATTCG CTTGTCAGGC	3240
AGARCEDATA GTCARGGTAR RACAGGCGTT GCAGCAGGTG TTGGTTACCA GTGG	3294

(2) I	NFORMATION	FOR	SEQ	ID	NO:	2
-------	------------	-----	-----	----	-----	---

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1098 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
- Met Asn Lys Ile Phe Asn Val Ile Trp Asn Val Val Thr Gln Thr Trp
- Val Val Val Ser Glu Leu Thr Arg Thr His Thr Lys Cys Ala Ser Ala 20 25 30
- Thr Val Ala Val Ala Val Leu Ala Thr Leu Leu Ser Ala Thr Val Glu
 35 40 45
- Ala Asn Asn Asn Thr Pro Val Thr Asn Lys Leu Lys Ala Tyr Gly Asp 50 55 60
- Ala Asn Phe Asn Phe Thr Asn Asn Ser Ile Ala Asp Ala Glu Lys Gln 65 70 75 80
- Val Gln Glu Ala Tyr Lys Gly Leu Leu Asn Leu Asn Glu Lys Asn Ala 85 90 95
- Ser Asp Lys Leu Leu Val Glu Asp Asn Thr Ala Ala Thr Val Gly Asn 100 105 110
- Leu Arg Lys Leu Gly Trp Val Leu Ser Ser Lys Asn Gly Thr Arg Asn 115 120 125
- Glu Lys Ser Gln Gln Val Lys His Ala Asp Glu Val Leu Phe Glu Gly
 130 135 140
- Lys Gly Gly Val Gln Val Thr Ser Thr Ser Glu Asn Gly Lys His Thr 145 150 155 160
- Ile Thr Phe Ala Leu Ala Lys Asp Leu Gly Val Lys Thr Ala Thr Val
- Ser Asp Thr Leu Thr Ile Gly Gly Gly Ala Ala Ala Gly Ala Thr Thr 180 185 190
- Thr Pro Lys Val Asn Val Thr Ser Thr Thr Asp Gly Leu Lys Phe Ala 195 200 205
- Lys Asp Ala Ala Gly Ala Asn Gly Asp Thr Thr Val His Leu Asn Gly 210 215 220
- Ile Gly Ser Thr Leu Thr Asp Thr Leu Val Gly Ser Pro Ala Thr His 225 230 235 240

- Ile Asp Gly Gly Asp Gln Ser Thr His Tyr Thr Arg Ala Ala Ser Ile 245 250 255
- Lys Asp Val Leu Asn Ala Gly Trp Asn Ile Lys Gly Val Lys Ala Gly 260 265 270
- Ser Thr Thr Gly Gln Ser Glu Asn Val Asp Phe Val His Thr Tyr Asp 275 280 285
- Thr Val Glu Phe Leu Ser Ala Asp Thr Glu Thr Thr Thr Val Thr Val 290 295 300
- Asp Ser Lys Glu Asn Gly Lys Arg Thr Glu Val Lys Ile Gly Ala Lys 305 310 315
- Thr Ser Val Ile Lys Glu Lys Asp Gly Lys Leu Phe Thr Gly Lys Ala 325
- Asn Lys Glu Thr Asn Lys Val Asp Gly Ala Asn Ala Thr Glu Asp Ala 340 345 350
- Asp Glu Gly Lys Gly Leu Val Thr Ala Lys Asp Val Ile Asp Ala Val 355 360 365
- Asn Lys Thr Gly Trp Arg Ile Lys Thr Thr Asp Ala Asn Gly Gln Asn 370 380
- Gly Asp Phe Ala Thr Val Ala Ser Gly Thr Asn Val Thr Phe Ala Ser 385 390 395
- Gly Asn Gly Thr Thr Ala Thr Val Thr Asn Gly Thr Asp Gly Ile Thr
- Val Lys Tyr Asp Ala Lys Val Gly Asp Gly Leu Lys Leu Asp Gly Asp 420 425 430
- Lys Ile Ala Ala Asp Thr Thr Ala Leu Thr Val Asn Asp Gly Lys Asn
- Ala Asn Asn Pro Lys Gly Lys Val Ala Asp Val Ala Ser Thr Asp Glu
 450 455
- Lys Lys Leu Val Thr Ala Lys Gly Leu Val Thr Ala Leu Asn Ser Leu 465 470 475 480
- Ser Trp Thr Thr Ala Ala Glu Ala Asp Gly Gly Thr Leu Asp Gly 495
- Asn Ala Ser Glu Gln Glu Val Lys Ala Gly Asp Lys Val Thr Phe Lys 500 505 510
- Ala Gly Lys Asn Leu Lys Val Lys Gln Glu Gly Ala Asn Phe Thr Tyr 515 520 525
- Ser Leu Gln Asp Ala Leu Thr Gly Leu Thr Ser Ile Thr Leu Gly Thr 530 535 540

Gly Asn Asn Gly Ala Lys Thr Glu Ile Asn Lys Asp Gly Leu Thr Ile 545 Thr Pro Ala Asn Gly Ala Gly Ala Asn Asn Ala Asn Thr Ile Ser Val 565 Thr Lys Asp Gly Ile Ser Ala Gly Gly Gln Ser Val Lys Asn Val Val 585 Ser Gly Leu Lys Lys Phe Gly Asp Ala Asn Phe Asp Pro Leu Thr Ser 600 605 Ser Ala Asp Asn Leu Thr Lys Gln Asn Asp Asp Ala Tyr Lys Gly Leu Thr Asn Leu Asp Glu Lys Gly Thr Asp Lys Gln Thr Pro Val Val Ala 635 630 Asp Asn Thr Ala Ala Thr Val Gly Asp Leu Arg Gly Leu Gly Trp Val 650 Ile Ser Ala Asp Lys Thr Thr Gly Gly Ser Thr Glu Tyr His Asp Gln 665 Val Arg Asn Ala Asn Glu Val Lys Phe Lys Ser Gly Asn Gly Ile Asn Val Ser Gly Lys Thr Val Asn Gly Arg Arg Glu Ile Thr Phe Glu Leu Ala Lys Gly Glu Val Val Lys Ser Asn Glu Phe Thr Val Lys Glu Thr 710 Asn Gly Lys Glu Thr Ser Leu Val Lys Val Gly Asp Lys Tyr Tyr Ser Lys Glu Asp Ile Asp Leu Thr Thr Gly Gln Pro Lys Leu Lys Asp Gly Asn Thr Val Ala Ala Lys Tyr Gln Asp Lys Gly Gly Lys Val Val Ser Val Thr Asp Asn Thr Glu Ala Thr Ile Thr Asn Lys Gly Ser Gly Tyr 775 Val Thr Gly Asn Gln Val Ala Asp Ala Ile Ala Lys Ser Gly Phe Glu 785 Leu Gly Leu Ala Asp Glu Ala Asp Ala Lys Arg Ala Phe Asp Asp Lys **B10** Thr Lys Ala Leu Ser Ala Gly Thr Thr Glu Ile Val Asn Ala His Asp Lys Val Arg Phe Ala Asn Gly Leu Asn Thr Lys Val Ser Ala Ala Thr

840

835

- Val Glu Ser Thr Asp Ala Asn Gly Asp Lys Val Thr Thr Thr Phe Val 850 855 860
- Lys Thr Asp Val Glu Leu Pro Leu Thr Gln Ile Tyr Asn Thr Asp Ala 865 870 875 880
- Asn Gly Lys Lys Ile Thr Lys Val Val Lys Asp Gly Gln Thr Lys Trp 885 890 895
- Tyr Glu Leu Asn Ala Asp Gly Thr Ala Asp Met Thr Lys Glu Val Thr 900 905 910
- Leu Gly Asn Val Asp Ser Asp Gly Lys Lys Val Val Lys Asp Asn Asp 915 920 925
- Gly Lys Trp Tyr His Ala Lys Ala Asp Gly Thr Ala Asp Lys Thr Lys 930 935 940
- Gly Glu Val Ser Asn Asp Lys Val Ser Thr Asp Glu Lys His Val Val 945 950 955 960
- Ser Leu Asp Pro Asn Asp Gln Ser Lys Gly Lys Gly Val Val Ile Asp 965 970 975
- Asn Val Ala Asn Gly Asp Ile Ser Ala Thr Ser Thr Asp Ala Ile Asn 980 985 990
- Gly Ser Gln Leu Tyr Ala Val Ala Lys Gly Val Thr Asn Leu Ala Gly 995 1000 1005
- Gln Val Asn Asn Leu Glu Gly Lys Val Asn Lys Val Gly Lys Arg Ala 1010 1015 1020
- Asp Ala Gly Thr Ala Ser Ala Leu Ala Ala Ser Gln Leu Pro Gln Ala 1025 1030 1035 1040
- Thr Met Pro Gly Lys Ser Met Val Ala Ile Ala Gly Ser Ser Tyr Gln
 1045 1050 1055
- Gly Gln Asn Gly Leu Ala Ile Gly Val Ser Arg Ile Ser Asp Asn Gly 1060 1065 1070
- Lys Val Ile Ile Arg Leu Ser Gly Thr Thr Asn Ser Gln Gly Lys Thr 1075 1080 1085
- Gly Val Ala Ala Gly Val Gly Tyr Gln Trp 1090
- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7291 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown

654

									55							
	(ii)	MOL	ECUL	E TY	PE:	DNA	(gen	omic)							
	(ix)	(A	TURE) NA	ME/K			. 722	1								
	(xi)	SEC	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NC	:3:	•					
TTTN	TTTT	TC I	TATT	TTTT	т тт	TTTT	TTTT	TTT	TTTI	TIT	TTGA	GGCT	AA A	CTTT	TNGNA	60
AAAT	'ATCA	CT 1	TTTT	ATTC	т сс	TAAA	ATAG	AAT	'AGAA	TAC	GCAC	GATT	TC A	CTAA	GAAAA	120
GTAT	ATTI	TAT C	ATTA	ATTT	T AT	TAAA	TATA	AGG	TAAT	AATAA	AA A M	TG A et A	AC A sn I	AA A .ys I	TT le	174
TTT Phe 5	AAC Asn	GTT Val	ATT Ile	TGG Trp	AAT Asn 10	GTT Val	ATG Met	ACT Thr	CAA Gln	ACT Thr 15	TGG Trp	GTT Val	GTC Val	GTA Val	TCT Ser 20	222
CDD	CTC Leu	ACT Thr	CGC A rg	ACC Thr 25	CAC His	ACC Thr	AAA Lys	CGC Arg	GCC Ala 30	TCC Ser	GCA Ala	ACC Thr	GTG Val	GAG Glu 35	ACC Thr	270
GCC Ala	GTA Val	TTG Leu	GCG Ala 40	ACA Thr	CTG Leu	TTG Leu	TTT Phe	GCA Ala 45	ACG Thr	GTT Val	CAG Gln	GCG Ala	AAT Asn 50	GCT Ala	ACC Thr	318
GAT Asp	GAA Glu	GAT Asp 55	Glu	GAG Glu	TTA Leu	GAC Asp	CCC Pro 60	GTA Val	GTA Val	CGC Arg	ACT Thr	GCT Ala 65	CCC Pro	GTG Val	TTG Leu	366
AGC Ser	TTC Phe 70	His	TCC Ser	GAT Asp	AAA Lys	GAA Glu 75	GGC Gly	ACG Thr	GGA Gly	GAA Glu	AAA Lys 80	GAA Glu	GTT Val	ACA Thr	GAA Glu	414
AAT Asn 85	ser	AAT Asn	TGG Trp	GGA Gly	ATA Ile 90	Tyr	TTC Phe	GAC Asp	AAT Asn	AAA Lys 95	GGA Gly	GTA Val	CTA Leu	AAA Lys	GCC Ala 100	462
GGA Gly	GCA Ala	ATC Ile	ACC Thr	CTC Leu 105	Lys	GCC Ala	GGC	GAC Asp	AAC Asn 110	CTG Leu	AAA Lys	ATC Ile	AAA Lys	CAA Gln 115	ASII	510
ACC Thr	GAT Asp	GAA	AGC Ser	ACC	AAT Asn	GCC	AGT Ser	AGC Ser	TTC Phe	ACC Thr	TAC Tyr	TCG Ser	CTG	AAA Lys	AAA Lys	558

125

145

160

GAC CTC ACA GAT CTG ACC AGT GTT GCA ACT GAA AAA TTA TCG TTT GGC

Asp Leu Thr Asp Leu Thr Ser Val Ala Thr Glu Lys Leu Ser Phe Gly

GCA AAC GGC GAT AAA GTT GAT ATT ACC AGT GAT GCA AAT GGC TTG AAA

Ala Asn Gly Asp Lys Val Asp Ile Thr Ser Asp Ala Asn Gly Leu Lys

140

155

120

TTG Leu	GCG Ala	AAA Lys	ACA Thr	GGT Gly	AAC Asn 170	GGA Gly	AAT Asn	GTT Val	CAT His	TTG Leu 175	AAT Asn	GGT Gly	TTG Leu	GAT Asp	TCI Se:	A r O	702
	Leu	Pro	Asp	Ala 185	Val	Thr	Asn	Tnr	190	Val	Deu	501	501	195			750
Phe	Thr	Pro	Asn 200	Asp	GTT Val	Glu	Lys	7nr 205	Arg	Ala	WIG		210	-,-			798
Val	Leu	Asn 215	Ala	Gly	TGG	Asn	220	ьys	GIY	YIG	Буз	225		,		•	846
Asn	Val 230	Glu	Ser	· Val	GAT Asp	Leu 235	Val	Ser	Ala	Iyı	240	, ASI					894
Ile 245	Thr	Gly	/ Asi	Ly:	A AAC S Asn 250	Thr	Lev	ı Asp	y var	255	, Dec			,-	20	60	942
Asn	Gly	/ Lys	s Th	r Th 26		ı Val	l Ly:	s Pne	270)	, pås			27	5		990
Lys	Glı	ı Ly:	s As 28	p Gl O	T AAG y Ly:	s Le	u Ph	28	r GI	Λ Γλ:	, GI	u no	29	0	.		1038
Asr	Ly:	s Va 29	1 Th 5	r Se	T AA r As	n Th	30	a Tn O	r as	р жы	111	30	5				1086
Gly	y Le 31	บ Va O	l Th	r Al	A AA La Ly	s Al	a Va .5	.1 11	e As	b wr	32	:0	, <i>-</i> ,				1182
Tr)	p Ar 5	g Va	al Ly	ys T	CA AC nr Th 33	r Ti 30	ir Al	.a As	in Gi	33	5	,,,,	.,		:	340	1230
Th	r Va	al A	la S	er G 3	GC A(ly T) 45	nr A	sn V	al T	3!	50			-,	3	55		1278
Th	ır A	la S	er V 3	al T 60	CT A	ys A	sp T	nr A	65	ıy m	J	-; -	3	70			1326
T)	AC G.	sp A	CG A la I 175	ys V	TT G	GC G	sp G	GC T ly L 80	TG A eu L	AA T ys P	TT G he A		GC G Ser A 185	AT A .sp I	.ys	AAA Lys	1326

ATC	GTT	GCA	GAT	ACG	ACC	GCA	CTT	ACT	GTG	ACA	GGT	GGT	AAG	GTA	GCT	1374
Ile	Val	Ala	Asp	Thr	Thr	Ala	Leu	Thr	Val	Thr	Gly	Gly	Lys	Val	Ala	
	390					395					400					
							AAG									1422
	Ile	Ala	Lys	GIu	_	Asp	Lys	Lys	Lys		Val	Asn	Ala	GIY	-	
405					410					415					420	
ጥጥር	CTA	ארא	CCT	מייים	ССТ	ልልጥ	CTA	мст	TGG	מממ	CCA	מממ	ССТ	GAG	CCT	1470
							Leu									11.0
				425	,				430	-,-		-,-		435		
GAT	ACT	GAT	GGT	GCG	CTT	GAG	GGG	ATT	TCA	AAA	GAC	CAA	GAA	GTC	AAA	1518
Asp	Thr	Asp	Gly	Ala	Leu	Glu	Gly	Ile	Ser	Lys	Asp	Gln	Glu	Val	Lys	
			440					445					450			
							AAA									1566
Ala	GIY	455	Thr	vai	Thr	Pne	Lys 460	Ата	GIY	Lys	Asn	465	Lys	val	Lys	
		433					400					403				
CAG	GAT	GGT	GCG	AAC	TTT	ACT	TAT	TCA	CTG	CAA	GAT	GCT	TTA	ACG	GGT	1614
							Tyr									
	470	-				475	-				480				•	
							GGT									1662
	Thr	Ser	Ile	Thr		Gly	Gly	Thr	Thr		Gly	Gly	Asn	Asp		
485					490					495					500	
ааа	ACC	GTC	ልፐር	ממ	444	GAC	GGT	מידי	ልሮሮ	ATC	ACG	CCA	GCA	GGT	דממ	1710
							Gly									1.10
_,				505	-1-	F			510					515		
				•					,							
GGC	GGT	ACG	ACA	GGT	ACA	AAC	ACC	ATC	AGC	GTA	ACC	AAA	GAT	GGC	ATT	1758
Gly	Gly	Thr		Gly	Thr	Asn	Thr	Ile	Ser	Val	Thr	Lys	-	Gly	Ile	
			520					525					530			
	CCN	CCT	227			3 TT	ACT	3 3 T	·	000	» CT	COT	eren n	202	CCT	1806
							Thr									1806
Dys	ALG	535	ASII	uy.s	AIG	116	540	non	141	ALG.	561	545	200	9	nau .	
												• • •				
TAT	GAC	GAT	GCG	AAT	TTT	GAT	GTT	TTA	AAT	AAC	TCT	GCA	ACT	GAT	TTA	1854
Tyr	Asp	Asp	Ala	Asn	Phe	Asp	Val	Leu	Asn	Asn	Ser	Ala	Thr	Asp	Leu	
	550					555		•			560					
							TAT									1902
	arg	HIS	vaı	GIU	_	AIA	Tyr	Lys	GIY	575	Leu	ASII	Leu	ASII	580	
565					570					د ، د					200	
AAA	AAT	GCA	AAT	AAA	CAA	CCG	TTG	GTG	ACT	GAC	AGC	ACG	GCG	GCG	ACT	1950
							Leu									
•				585					590	-				595		
							GGT									1998
Val	Gly	Asp		Arg.	Lys	Leu	Gly		Val	Val	Ser	Thr		Asn	Gly	
			600					605					610			

58	
ACG AAA GAA GAA AGC AAT CAA GTT AAA CAA GCT GAT GAA GTC CTC TTT Thr Lys Glu Glu Ser Asn Gln Val Lys Gln Ala Asp Glu Val Leu Phe 615 620 625	2046
ACC GGA GCC GGT GCT ACG GTT ACT TCC AAA TCT GAA AAC GGT AAA Thr Gly Ala Gly Ala Ala Thr Val Thr Ser Lys Ser Glu Asn Gly Lys 630 635 640	2094
CAT ACG ATT ACC GTT AGT GTG GCT GAA ACT AAA GCG GAT TGC GGT CTT His Thr Ile Thr Val Ser Val Ala Glu Thr Lys Ala Asp Cys Gly Leu 655 660	2142
GAA AAA GAT GGC GAT ACT ATT AAG CTC AAA GTG GAT AAT CAA AAC ACT Glu Lys Asp Gly Asp Thr Ile Lys Leu Lys Val Asp Asn Gln Asn Thr 665 670 675	2190
GAT AAT GTT TTA ACT GTT GGT AAT AAT GGT ACT GCT GTC ACT AAA GGT Asp Asn Val Leu Thr Val Gly Asn Asn Gly Thr Ala Val Thr Lys Gly 680 685	2238
GGC TTT GAA ACT GTT AAA ACT GGA GCG ACT GAT GCA GAT CGC GGT AAA Gly Phe Glu Thr Val Lys Thr Gly Ala Thr Asp Ala Asp Arg Gly Lys 695 700 705	2286
GTA ACT GTA AAA GAT GCT ACT GCT AAT GAC GCT GAT AAG AAA GTC GCA Val Thr Val Lys Asp Ala Thr Ala Asn Asp Ala Asp Lys Lys Val Ala 710 715 720	2334
ACT GTA AAA GAT GTT GCA ACC GCA ATT AAT AGT GCG GCG ACT TTT GTG Thr Val Lys Asp Val Ala Thr Ala Ile Asn Ser Ala Ala Thr Phe Val 725 730 735 740	2382
AAA ACA GAG AAT TTA ACT ACC TCT ATT GAT GAA GAT AAT CCT ACA GAT Lys Thr Glu Asn Leu Thr Thr Ser Ile Asp Glu Asp Asn Pro Thr Asp 745 750 755	2430
AAC GGC AAA GAT GAC GCA CTT AAA GCG GGC GAT ACC TTA ACC TTT AAA Asn Gly Lys Asp Asp Ala Leu Lys Ala Gly Asp Thr Leu Thr Phe Lys 760 765 770	2478
GCA GGT AAA AAC CTG AAA GTT AAA CGT GAT GGA AAA AAT ATT ACT TTT Ala Gly Lys Asn Leu Lys Val Lys Arg Asp Gly Lys Asn Ile Thr Phe 775 780 785	2526
GAC TTG GCG AAA AAC CTT GAG GTG AAA ACT GCG AAA GTG AGT GAT ACT Asp Leu Ala Lys Asn Leu Glu Val Lys Thr Ala Lys Val Ser Asp Thr 790 795	2574
TTA ACG ATT GGC GGG AAT ACA CCT ACA GGT GGC ACT ACT GCG ACG CCA Leu Thr Ile Gly Gly Asn Thr Pro Thr Gly Gly Thr Thr Ala Thr Pro 805 810 815	2622
AAA GTG AAT ATT ACT AGC ACG GCT GAT GGT TTG AAT TTT GCA AAA GAA Lys Val Asn Ile Thr Ser Thr Ala Asp Gly Leu Asn Phe Ala Lys Glu 835	2670

ACA Thr	GCC Ala	GAT Asp	GCC Ala 840	TCG Ser	GGT Gly	TCT Ser	AAG Lys	AAT Asn 845	GTT Val	TAT Tyr	TTG Leu	AAA Lys	GGT Gly 850	ATT Ile	GCG Ala	2718
													CAC His			2766
TTA Leu	AAT Asn 870	GTG Val	GAT Asp	GCG Ala	ACG Thr	AAA Lys 875	AAA Lys	TCC	AAT Asn	GCA Ala	GCA Ala 880	AGT Ser	ATT Ile	GAA Glu	GAT Asp	2814
GTA Val 885	TTG Leu	CGC Arg	GCA Ala	GGT Gly	TGG Trp 890	AAT Asn	ATT Ile	CAA Gln	GGT Gly	AAT Asn 895	GGT Gly	AAT Asn	AAT Asn	GTT Val	GAT Asp 900	2862
													AGC Ser			2910
													GGT Gly 930			2958
Val	Lys	Ile 935	Gly	Ala	Lys	Thr	Ser 940	Val	Ile	Lys	Asp	His 945	AAC Asn	Gly	Lys	3006
Leu	Phe 950	Thr	Gly	Lys	Asp	Leu 955	Lys	Asp	Ala	Asn	Asn 960	Gly	GCA Ala	Thr	Val	3054
Ser 965	Glu	Asp	Asp	Gly	Lys 970	Asp	Thr	Gly	Thr	Gly 975	Leu	Val	ACT	Ala	Lys 980	3102
ACT Thr	GTG Val	ATT Ile	GAT Asp	GCA Ala 985	GTA Val	AAT Asn	AAA Lys	AGC Ser	GGT Gly 990	TGG	AGG Arg	GTA Val	ACC	GGT Gly 995	GAG Glu	3150
Gly	Ala	Thr	Ala 100	Glu 0	Thr	Gly	Ala	Thr 100	Ala 5	Val	Asn	Ala	GGT Gly 101	Asn 0	Ala	3198
Glu	Thr	Val 101	Thr 5	Ser	Gly	Thr	Ser 102	Val O	Asn	Phe	Lys	Asn 102		Asn	Ala	3246
Thr	Thr 103	Ala O	Thr	Val	Ser	Lys 103	Asp 5	Asn	Gly	Asn	Ile 104	Asn 0	Val	Lys	TAC	3294
GAT Asp 104	Val	AAT Asn	GTT Val	GGT Gly	GAC Asp 105	Gly	TTG	AAG Lys	ATT	GGC Gly 105	Asp	GAC Asp	AAA Lys	AAA Lys	ATC Ile 1060	3342

GTT GCA GAC ACG ACC ACA CTT ACT GTA ACA GGT GGT AAG GTG TCT GTT Val Ala Asp Thr Thr Leu Thr Val Thr Gly Gly Lys Val Ser Val 1065	3390
CCT GCT GGT GCT AAT AGT GTT AAT AAC AAT AAG AAA CTT GTT AAT GCA Pro Ala Gly Ala Asn Ser Val Asn Asn Asn Lys Lys Leu Val Asn Ala 1080 1085 1090	3438
GAG GGT TTA GCG ACT GCT TTA AAC AAC CTA AGC TGG ACG GCA AAA GCC Glu Gly Leu Ala Thr Ala Leu Asn Asn Leu Ser Trp Thr Ala Lys Ala 1095 1100 1105	3486
GAT AAA TAT GCA GAT GGC GAG TCA GAG GGC GAA ACC GAC CAA GAA GTC Asp Lys Tyr Ala Asp Gly Glu Ser Glu Gly Glu Thr Asp Gln Glu Val 1110 1115 1120	3534
AAA GCA GGC GAC AAA GTA ACC TTT AAA GCA GGC AAG AAC TTA AAA GTG Lys Ala Gly Asp Lys Val Thr Phe Lys Ala Gly Lys Asn Leu Lys Val 1125 1130 1135 1140	3582
AAA CAG TCT GAA AAA GAC TTT ACT TAT TCA CTG CAA GAC ACT TTA ACA Lys Gln Ser Glu Lys Asp Phe Thr Tyr Ser Leu Gln Asp Thr Leu Thr 1145 1150 1155	3630
GGC TTA ACG AGC ATT ACT TTA GGT GGT ACA GCT AAT GGC AGA AAT GAT Gly Leu Thr Ser Ile Thr Leu Gly Gly Thr Ala Asn Gly Arg Asn Asp 1160 1165 1170	367B
ACG GGA ACC GTC ATC AAC AAA GAC GGC TTA ACC ATC ACG CTG GCA AAT Thr Gly Thr Val Ile Asn Lys Asp Gly Leu Thr Ile Thr Leu Ala Asn 1175 1180 1185	3726
GGT GCT GCG GCA GGC ACA GAT GCG TCT AAC GGA AAC ACC ATC AGT GTA Gly Ala Ala Ala Gly Thr Asp Ala Ser Asn Gly Asn Thr Ile Ser Val 1190 1195 1200	3774
ACC AAA GAC GGC ATT AGT GCG GGT AAT AAA GAA ATT ACC AAT GTT AAG Thr Lys Asp Gly Ile Ser Ala Gly Asn Lys Glu Ile Thr Asn Val Lys 1205 1210 1215 1220	3822
AGT GCT TTA AAA ACC TAT AAA GAT ACT CAA AAC ACT GCA GAT GAA ACA Ser Ala Leu Lys Thr Tyr Lys Asp Thr Gln Asn Thr Ala Asp Glu Thr 1235	3870
CAA GAT AAA GAG TTC CAC GCC GCC GTT AAA AAC GCA AAT GAA GTT GAG Gln Asp Lys Glu Phe His Ala Ala Val Lys Asn Ala Asn Glu Val Glu 1240 1245 1250	3918
TTC GTG GGT AAA AAC GGT GCA ACC GTG TCT GCA AAA ACT GAT AAC AAC Phe Val Gly Lys Asn Gly Ala Thr Val Ser Ala Lys Thr Asp Asn Asn 1265	3966
GGA AAA CAT ACT GTA ACG ATT GAT GTT GCA GAA GCC AAA GTT GGT GAT Gly Lys His Thr Val Thr Ile Asp Val Ala Glu Ala Lys Val Gly Asp 1270 1275 1280	4014

GGT CTT GAA AAA Gly Leu Glu Lys 1285	GAT ACT GAC (Asp Thr Asp (1290	Gly Lys Ile L	AA CTC AAA GTA ys Leu Lys Val 295	GAT AAT 4062 Asp Asn 1300
ACA GAT GGG AAT Thr Asp Gly Asn	AAT CTA TTA A Asn Leu Leu 1305	ACC GTT GAT G Thr Val Asp A 1310	CA ACA AAA GGT la Thr Lys Gly	GCA TCC 4110 Ala Ser 1315
GTT GCC AAG GGC Val Ala Lys Gly 132	Glu Phe Asn	GCC GTA ACA A Ala Val Thr 1 1325	CA GAT GCA ACT hr Asp Ala Thr 133	Thr Ala
CAA GGC ACA AAT Gln Gly Thr Asn 1335	Ala Asn Glu	CGC GGT AAA 0 Arg Gly Lys \ 1340	TG GTT GTC AAG al Val Val Lys 1345	GGT TCA 4206 Gly Ser
AAT GGT GCA ACT Asn Gly Ala Thr 1350	GCT ACC GAA Ala Thr Glu 1355	Thr Asp Lys 1	AA AAA GTG GCA Lys Lys Val Ala 1360	ACT GTT 4254 Thr Val
GGC GAC GTT GCT Gly Asp Val Ala 1365	T AAA GCG ATT Lys Ala Ile 1370	Asn Asp Ala	GCA ACT TTC GTG Ala Thr Phe Val 1375	AAA GTG 4302 Lys Val 1380
GAA AAT GAC GAG Glu Asn Asp Asp	AGT GCT ACG Ser Ala Thr 1385	ATT GAT GAT A Ile Asp Asp 1 1390	AGC CCA ACA GAT Ser Pro Thr Asp	GAT GGC 4350 Asp Gly 1395
GCA AAT GAT GC Ala Asn Asp Ala 14	a Leu Lys Ala	GGC GAC ACC Gly Asp Thr 1405	TTG ACC TTA AAA Leu Thr Leu Lys 141	Ata Giy
AAA AAC TTA AA Lys Asn Leu Ly 1415	A GTT AAA CGT s Val Lys Arg	GAT GGT AAA Asp Gly Lys 1420	AAT ATT ACT TTT Asn Ile Thr Phe 1425	GCC CTT 4446 Ala Leu
GCG AAC GAC CT Ala Asn Asp Le 1430	T AGT GTA AAA u Ser Val Lys 143!	Ser Ala Thr	GTT AGC GAT AAA Val Ser Asp Lys 1440	TTA TCG 4494 Leu Ser
CTT GGT ACA AA Leu Gly Thr As 1445	C GGC AAT AAA n Gly Asn Lys 1450	GTC AAT ATC Val Asn Ile	ACA AGC GAC ACC Thr Ser Asp Thi 1455	C AAA GGC 4542 C Lys Gly 1460
TTG AAC TTC GC	T AAA GAT AGT a Lys Asp Ser 1465	AAG ACA GGC Lys Thr Gly 1470	GAT GAT GCT AA Asp Asp Ala As	r ATT CAC 4590 n Ile His 1475
Leu Asn Gly Il	T GCT TCA ACT e Ala Ser Thr 80	TTA ACT GAT Leu Thr Asp 1485	ACA TTG TTA AA Thr Leu Leu As	n Ser Gly
GCG ACA ACC AF Ala Thr Thr As 1495	AT TTA GGT GGT on Leu Gly Gly	AAT GGT ATT Asn Gly Ile 1500.	ACT GAT AAC GA Thr Asp Asn Gl 1505	G AAA AAA 4686 u Lys Lys

CGC GCG GCG AGC GTT AAA GAT GTC TTG AAT GCG GGT TGG AAT GTT CGT Arg Ala Ala Ser Val Lys Asp Val Leu Asn Ala Gly Trp Asn Val Arg 1510 1515 1520	4734
GGT GTT AAA CCG GCA TCT GCA AAT AAT CAA GTG GAG AAT ATC GAC TTT Gly Val Lys Pro Ala Ser Ala Asn Asn Gln Val Glu Asn Ile Asp Phe 1525 1530 1535 1540	4782
GTA GCA ACC TAC GAC ACA GTG GAC TTT GTT AGT GGA GAT AAA GAC ACC Val Ala Thr Tyr Asp Thr Val Asp Phe Val Ser Gly Asp Lys Asp Thr 1545 1550 1555	4830
ACG AGT GTA ACT GTT GAA AGT AAA GAT AAT GGC AAG AGA ACC GAA GTT Thr Ser Val Thr Val Glu Ser Lys Asp Asn Gly Lys Arg Thr Glu Val 1560 1565 1570	4878
AAA ATC GGT GCG AAG ACT TCT GTT ATC AAA GAC CAC AAC GGC AAA CTG Lys Ile Gly Ala Lys Thr Ser Val Ile Lys Asp His Asn Gly Lys Leu 1575 1580 1585	4926
TTT ACA GGC AAA GAG CTG AAG GAT GCT AAC AAT AAT GGC GTA ACT GTT Phe Thr Gly Lys Glu Leu Lys Asp Ala Asn Asn Asn Gly Val Thr Val 1590 1595 1600	4974
ACC GAA ACC GAC GGC AAA GAC GAG GGT AAT GGT TTA GTG ACT GCA AAA Thr Glu Thr Asp Gly Lys Asp Glu Gly Asn Gly Leu Val Thr Ala Lys 1605 1610 1615 1620	5022
GCT GTG ATT GAT GCC GTG AAT AAG GCT GGT TGG AGA GTT AAA ACA ACA Ala Val Ile Asp Ala Val Asn Lys Ala Gly Trp Arg Val Lys Thr Thr 1625 1630 1635	5070
GGT GCT AAT GGT CAG AAT GAT GAC TTC GCA ACT GTT GCG TCA GGC ACA Gly Ala Asn Gly Gln Asn Asp Asp Phe Ala Thr Val Ala Ser Gly Thr 1640 1645 1650	5118
AAT GTA ACC TTT GCT GAT GGT AAT GGC ACA ACT GCC GAA GTA ACT AAA Asn Val Thr Phe Ala Asp Gly Asn Gly Thr Thr Ala Glu Val Thr Lys 1655 1660 1665	5166
GCA AAC GAC GGT AGT ATT ACT GTT AAA TAC AAT GTT AAA GTG GCT GAT Ala Asn Asp Gly Ser Ile Thr Val Lys Tyr Asn Val Lys Val Ala Asp 1670 1675 1680	5214
GGC TTA AAA CTA GAC GGC GAT AAA ATC GTT GCA GAC ACG ACC GTA CTT Gly Leu Lys Leu Asp Gly Asp Lys Ile Val Ala Asp Thr Thr Val Leu 1685 1690 1695 1700	5262
ACT GTG GCA GAT GGT AAA GTT ACA GCT CCG AAT AAT GGC GAT GGT AAG Thr Val Ala Asp Gly Lys Val Thr Ala Pro Asn Asn Gly Asp Gly Lys 1705 1710 1715	5310
AAA TTT GTT GAT GCA AGT GGT TTA GCG GAT GCG TTA AAT AAA TTA AGC Lys Phe Val Asp Ala Ser Gly Leu Ala Asp Ala Leu Asn Lys Leu Ser 1720 1725 1730	5358

GCT GGT AAA GAA Ala Gly Lys Glu 174	Gly Thr Gly Glu	
CAA GAA GTC AAA Gln Glu Val Lys 1755		Val Thr Phe Lys
CTG AAA ATC AAA Leu Lys Ile Lys 1770		
GAG CTG AAA GAC Glu Leu Lys Asp 1785		
ACA GGC AGT GAA Thr Gly Ser Glu 0		_
CCG GCA AAC GGT Pro Ala Asn Gly 182	Ala Gly Ala Ala	
AGC GTA ACC AAA Ser Val Thr Lys 1835		Ala Gly Asn Lys
GTT GTG AGC GGA Val Val Ser Gly 1850		GGT GAT GGT CAT 5742 Gly Asp Gly His 1860
GGC ACT GTT GCT Gly Thr Val Ala 1865		
TTG ACC AAT TTG Leu Thr Asn Leu 0		
GAC AAT ACC GCT Asp Asn Thr Ala 190	Ala Thr Val Gly	
ATT TCT GCG GAC Ile Ser Ala Asp 1915		Glu Pro Asn Gln
CAA GTG CGT AAC Gln Val Arg Asn 1930		
AAT GTT TCC GGT Asn Val Ser Gly	AAA ACA TTG AAC Lys Thr Leu Asn	

ATT ACC TTT GAA TTG GCT AAA GGC GAA GTG GTT AAA TCG AAT GAA TTT Ile Thr Phe Glu Leu Ala Lys Gly Glu Val Val Lys Ser Asn Glu Phe 1960 1960	6078
ACC GTT AAG AAT GCC GAT GGT TCG GAA ACG AAC TTG GTT AAA GTT GGC Thr Val Lys Asn Ala Asp Gly Ser Glu Thr Asn Leu Val Lys Val Gly 1980 1985	6126
GAT ATG TAT TAC AGC AAA GAG GAT ATT GAC CCG GCA ACC AGT AAA CCG Asp Met Tyr Tyr Ser Lys Glu Asp Ile Asp Pro Ala Thr Ser Lys Pro 1995	6174
ATG ACA GGT AAA ACT GAA AAA TAT AAG GTT GAA AAC GGC AAA GTC GTT Met Thr Gly Lys Thr Glu Lys Tyr Lys Val Glu Asn Gly Lys Val 2020 2020	6222
TCT GCT AAC GGC AGC AAG ACC GAA GTT ACC CTA ACC AAC AAA GGT TCC Ser Ala Asn Gly Ser Lys Thr Glu Val Thr Leu Thr Asn Lys Gly Ser 2035	6270
GGC TAT GTA ACA GGT AAC CAA GTG GCT GAT GCG ATT GCG AAA TCA GGC Gly Tyr Val Thr Gly Asn Gln Val Ala Asp Ala Ile Ala Lys Ser Gly 2040 2045 2050	6318
TTT GAG CTT GGT TTG GCT GAT GCG GCA GAA GCT GAA AAA GCC TTT GCA Phe Glu Leu Gly Leu Ala Asp Ala Ala Glu Ala Glu Lys Ala Phe Ala 2065	6366
GAA AGC GCA AAA GAC AAG CAA TTG TCT AAA GAT AAA GCG GAA ACT GTA Glu Ser Ala Lys Asp Lys Gln Leu Ser Lys Asp Lys Ala Glu Thr Val 2080	6414
AAT GCC CAC GAT AAA GTC CGT TTT GCT AAT GGT TTA AAT ACC AAA GTG Asn Ala His Asp Lys Val Arg Phe Ala Asn Gly Leu Asn Thr Lys Val 2085 2090 2095	6462
AGC GCG GCA ACG GTG GAA AGC ACT GAT GCA AAC GGC GAT AAA GTG ACC Ser Ala Ala Thr Val Glu Ser Thr Asp Ala Asn Gly Asp Lys Val Thr 2115	6510
ACA ACC TTT GTG AAA ACC GAT GTG GAA TTG CCT TTA ACG CAA ATC TAC Thr Thr Phe Val Lys Thr Asp Val Glu Leu Pro Leu Thr Gln Ile Tyr 2120 2120 2130	6558
AAT ACC GAT GCA AAC GGT AAT AAG ATC GTT AAA AAA GCT GAC GGA AAA Asn Thr Asp Ala Asn Gly Asn Lys Ile Val Lys Lys Ala Asp Gly Lys 2145	6606
TGG TAT GAA CTG AAT GCT GAT GGT ACG GCG AGT AAC AAA GAA GTG ACA Trp Tyr Glu Leu Asn Ala Asp Gly Thr Ala Ser Asn Lys Glu Val Thr	6654
CTT GGT AAC GTG GAT GCA AAC GGT AAG AAA GTT GTG AAA GTA ACC GAA CTT GGT AAC GTG GAT GCA AAC GGT AAG AAA GTT GTG AAA GTA ACC GAA Leu Gly Asn Val Asp Ala Asn Gly Lys Lys Val Val Lys Val Thr Glu 2170 2180	6702

					TGG Trp 5					Ala					Asp	6750
				Glu	GTG Val				Lys					Glu		6798
			Arg		GAT Asp			Asn					Lys			6846
		Asp		_	GCT Ala		Gly					Thr				6894
	Ile				CAG Gln 2250	Leu					Lys					6942
					AAT Asn					Lys					Gly	6990
				Ala	GGT Gly				Ala					Gln		7038
			Thr		CCA Pro			Ser					Ala			7086
		Gln			AAT Asn		Leu					Ser				7134
	Asn				ATT Ile 2330	Ile					Thr					7182
					GCA Ala					Tyr			TAAF	GTTT	rgg	7231
ATTATCTCTC TTAAAAAGCG GCATTTGCCG CTTTTTTTAT GGGTGGCTAT TATGTATCGT 72								7291								

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2353 amino acids

(B) TYPE: amino acid(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(vi)	SEQUENCE	DESCRIPTION:	SEQ	ID	NO:4

- Met Asn Lys Ile Phe Asn Val Ile Trp Asn Val Met Thr Gln Thr Trp

 10 15
- Val Val Val Ser Glu Leu Thr Arg Thr His Thr Lys Arg Ala Ser Ala 20 25
- Thr Val Glu Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln
 35 40 45
- Ala Asn Ala Thr Asp Glu Asp Glu Glu Leu Asp Pro Val Val Arg Thr
 50 60
- Ala Pro Val Leu Ser Phe His Ser Asp Lys Glu Gly Thr Gly Glu Lys

 75

 80
- Glu Val Thr Glu Asn Ser Asn Trp Gly Ile Tyr Phe Asp Asn Lys Gly 85 90 95
- Val Leu Lys Ala Gly Ala Ile Thr Leu Lys Ala Gly Asp Asn Leu Lys
 100 105 110
- Ile Lys Gln Asn Thr Asp Glu Ser Thr Asn Ala Ser Ser Phe Thr Tyr 115 120 125
- Ser Leu Lys Lys Asp Leu Thr Asp Leu Thr Ser Val Ala Thr Glu Lys
 130 135 140
- Leu Ser Phe Gly Ala Asn Gly Asp Lys Val Asp Ile Thr Ser Asp Ala
 145 150 150 160
- Asn Gly Leu Lys Leu Ala Lys Thr Gly Asn Gly Asn Val His Leu Asn 170
- Gly Leu Asp Ser Thr Leu Pro Asp Ala Val Thr Asn Thr Gly Val Leu 180 185
- Ser Ser Ser Phe Thr Pro Asn Asp Val Glu Lys Thr Arg Ala Ala 205
- Thr Val Lys Asp Val Leu Asn Ala Gly Trp Asn Ile Lys Gly Ala Lys
 210 220
- Thr Ala Gly Gly Asn Val Glu Ser Val Asp Leu Val Ser Ala Tyr Asn 235
- Asn Val Glu Phe Ile Thr Gly Asp Lys Asn Thr Leu Asp Val Val Leu 255
- Thr Ala Lys Glu Asn Gly Lys Thr Thr Glu Val Lys Phe Thr Pro Lys 260 265
- Thr Ser Val Ile Lys Glu Lys Asp Gly Lys Leu Phe Thr Gly Lys Glu 285

Asn Asn Asp Thr Asn Lys Val Thr Ser Asn Thr Ala Thr Asp Asn Thr 295 Asp Glu Gly Asn Gly Leu Val Thr Ala Lys Ala Val Ile Asp Ala Val 305 Asn Lys Ala Gly Trp Arg Val Lys Thr Thr Thr Ala Asn Gly Gln Asn 330 Gly Asp Phe Ala Thr Val Ala Ser Gly Thr Asn Val Thr Phe Glu Ser Gly Asp Gly Thr Thr Ala Ser Val Thr Lys Asp Thr Asn Gly Asn Gly Ile Thr Val Lys Tyr Asp Ala Lys Val Gly Asp Gly Leu Lys Phe Asp Ser Asp Lys Lys Ile Val Ala Asp Thr Thr Ala Leu Thr Val Thr Gly 390 Gly Lys Val Ala Glu Ile Ala Lys Glu Asp Asp Lys Lys Leu Val Asn Ala Gly Asp Leu Val Thr Ala Leu Gly Asn Leu Ser Trp Lys Ala 425 Lys Ala Glu Ala Asp Thr Asp Gly Ala Leu Glu Gly Ile Ser Lys Asp Gln Glu Val Lys Ala Gly Glu Thr Val Thr Phe Lys Ala Gly Lys Asn 455 Leu Lys Val Lys Gln Asp Gly Ala Asn Phe Thr Tyr Ser Leu Gln Asp 475 Ala Leu Thr Gly Leu Thr Ser Ile Thr Leu Gly Gly Thr Thr Asn Gly Gly Asn Asp Ala Lys Thr Val Ile Asn Lys Asp Gly Leu Thr Ile Thr Pro Ala Gly Asn Gly Gly Thr Thr Gly Thr Asn Thr Ile Ser Val Thr 520 Lys Asp Gly Ile Lys Ala Gly Asn Lys Ala Ile Thr Asn Val Ala Ser 530 Gly Leu Arg Ala Tyr Asp Asp Ala Asn Phe Asp Val Leu Asn Asn Ser 555 550 Ala Thr Asp Leu Asn Arg His Val Glu Asp Ala Tyr Lys Gly Leu Leu Asn Leu Asn Glu Lys Asn Ala Asn Lys Gln Pro Leu Val Thr Asp Ser 585 580

- Thr Ala Ala Thr Val Gly Asp Leu Arg Lys Leu Gly Trp Val Val Ser 595 600 605
- Thr Lys Asn Gly Thr Lys Glu Glu Ser Asn Gln Val Lys Gln Ala Asp 610 615 620
- Glu Val Leu Phe Thr Gly Ala Gly Ala Ala Thr Val Thr Ser Lys Ser 625 630 635
- Glu Asn Gly Lys His Thr Ile Thr Val Ser Val Ala Glu Thr Lys Ala 650 655
- Asp Cys Gly Leu Glu Lys Asp Gly Asp Thr Ile Lys Leu Lys Val Asp 660 665
- Asn Gln Asn Thr Asp Asn Val Leu Thr Val Gly Asn Asn Gly Thr Ala 675 680 685
- Val Thr Lys Gly Gly Phe Glu Thr Val Lys Thr Gly Ala Thr Asp Ala 690 695 700
- Asp Arg Gly Lys Val Thr Val Lys Asp Ala Thr Ala Asn Asp Ala Asp 715 720
- Lys Lys Val Ala Thr Val Lys Asp Val Ala Thr Ala Ile Asn Ser Ala 725 730 735
- Ala Thr Phe Val Lys Thr Glu Asn Leu Thr Thr Ser Ile Asp Glu Asp 740 745 750
- Asn Pro Thr Asp Asn Gly Lys Asp Asp Ala Leu Lys Ala Gly Asp Thr 755 760 765
- Leu Thr Phe Lys Ala Gly Lys Asn Leu Lys Val Lys Arg Asp Gly Lys
- Asn Ile Thr Phe Asp Leu Ala Lys Asn Leu Glu Val Lys Thr Ala Lys 785 790 795 800
- Val Ser Asp Thr Leu Thr Ile Gly Gly Asn Thr Pro Thr Gly Gly Thr 815
- Thr Ala Thr Pro Lys Val Asn Ile Thr Ser Thr Ala Asp Gly Leu Asn 820 825 830
- Phe Ala Lys Glu Thr Ala Asp Ala Ser Gly Ser Lys Asn Val Tyr Leu 835 840 845
- Lys Gly Ile Ala Thr Thr Leu Thr Glu Pro Ser Ala Gly Ala Lys Ser 850 855
- Ser His Val Asp Leu Asn Val Asp Ala Thr Lys Lys Ser Asn Ala Ala 865 870 875 880
- Ser Ile Glu Asp Val Leu Arg Ala Gly Trp Asn Ile Gln Gly Asn Gly 895

- Asn Asn Val Asp Tyr Val Ala Thr Tyr Asp Thr Val Asn Phe Thr Asp 900 905 910
- Asp Ser Thr Gly Thr Thr Thr Val Thr Val Thr Gln Lys Ala Asp Gly 915 920 925
- Lys Gly Ala Asp Val Lys Ile Gly Ala Lys Thr Ser Val Ile Lys Asp 930 935 940
- His Asn Gly Lys Leu Phe Thr Gly Lys Asp Leu Lys Asp Ala Asn Asn 945 950 955 960
- Gly Ala Thr Val Ser Glu Asp Asp Gly Lys Asp Thr Gly Thr Gly Leu 965 970 975
- Val Thr Ala Lys Thr Val Ile Asp Ala Val Asn Lys Ser Gly Trp Arg 980 985 990
- Val Thr Gly Glu Gly Ala Thr Ala Glu Thr Gly Ala Thr Ala Val Asn 995 1000 1005
- Ala Gly Asn Ala Glu Thr Val Thr Ser Gly Thr Ser Val Asn Phe Lys 1010 1015 1020
- Asn Gly Asn Ala Thr Thr Ala Thr Val Ser Lys Asp Asn Gly Asn Ile 1025 1030 1035 1040
- Asn Val Lys Tyr Asp Val Asn Val Gly Asp Gly Leu Lys Ile Gly Asp 1045 1050 1055
- Asp Lys Lys Ile Val Ala Asp Thr Thr Thr Leu Thr Val Thr Gly Gly 1060 1065 1070
- Lys Val Ser Val Pro Ala Gly Ala Asn Ser Val Asn Asn Asn Lys Lys 1075 1080 1085
- Leu Val Asn Ala Glu Gly Leu Ala Thr Ala Leu Asn Asn Leu Ser Trp 1090 1095 1100
- Thr Ala Lys Ala Asp Lys Tyr Ala Asp Gly Glu Ser Glu Gly Glu Thr 1105 1110 1115 1120
- Asp Gln Glu Val Lys Ala Gly Asp Lys Val Thr Phe Lys Ala Gly Lys 1125 1130 1135
- Asn Leu Lys Val Lys Gln Ser Glu Lys Asp Phe Thr Tyr Ser Leu Gln 1140 1145 1150
- Asp Thr Leu Thr Gly Leu Thr Ser Ile Thr Leu Gly Gly Thr Ala Asn 1155 1160 1165
- Gly Arg Asn Asp Thr Gly Thr Val Ile Asn Lys Asp Gly Leu Thr Ile 1170 1175 1180
- Thr Leu Ala Asn Gly Ala Ala Gly Thr Asp Ala Ser Asn Gly Asn 1185 1190 1195 1200

- Thr Ile Ser Val Thr Lys Asp Gly Ile Ser Ala Gly Asn Lys Glu Ile 1205
- Thr Asn Val Lys Ser Ala Leu Lys Thr Tyr Lys Asp Thr Gln Asn Thr
- Ala Asp Glu Thr Gln Asp Lys Glu Phe His Ala Ala Val Lys Asn Ala 1240
- Asn Glu Val Glu Phe Val Gly Lys Asn Gly Ala Thr Val Ser Ala Lys 1255
- Thr Asp Asn Asn Gly Lys His Thr Val Thr Ile Asp Val Ala Glu Ala 1270 1265
- Lys Val Gly Asp Gly Leu Glu Lys Asp Thr Asp Gly Lys Ile Lys Leu 1285
- Lys Val Asp Asn Thr Asp Gly Asn Asn Leu Leu Thr Val Asp Ala Thr 1305 1300
- Lys Gly Ala Ser Val Ala Lys Gly Glu Phe Asn Ala Val Thr Thr Asp 1320 1315
- Ala Thr Thr Ala Gln Gly Thr Asn Ala Asn Glu Arg Gly Lys Val Val 1335
- Val Lys Gly Ser Asn Gly Ala Thr Ala Thr Giu Thr Asp Lys Lys 1350 1345
- Val Ala Thr Val Gly Asp Val Ala Lys Ala Ile Asn Asp Ala Ala Thr 1365
- Phe Val Lys Val Glu Asn Asp Asp Ser Ala Thr Ile Asp Asp Ser Pro 1380
- Thr Asp Asp Gly Ala Asn Asp Ala Leu Lys Ala Gly Asp Thr Leu Thr 1400
- Leu Lys Ala Gly Lys Asn Leu Lys Val Lys Arg Asp Gly Lys Asn Ile 1415 1410
- Thr Phe Ala Leu Ala Asn Asp Leu Ser Val Lys Ser Ala Thr Val Ser 1430
- Asp Lys Leu Ser Leu Gly Thr Asn Gly Asn Lys Val Asn Ile Thr Ser 1445
- Asp Thr Lys Gly Leu Asn Phe Ala Lys Asp Ser Lys Thr Gly Asp Asp 1460
- Ala Asn Ile His Leu Asn Gly Ile Ala Ser Thr Leu Thr Asp Thr Leu 1480
- Leu Asn Ser Gly Ala Thr Thr Asn Leu Gly Gly Asn Gly Ile Thr Asp 1495 1490

- Asn Glu Lys Lys Arg Ala Ala Ser Val Lys Asp Val Leu Asn Ala Gly
 1505 1510 1515 1520
- Trp Asn Val Arg Gly Val Lys Pro Ala Ser Ala Asn Asn Gln Val Glu
- Asn Ile Asp Phe Val Ala Thr Tyr Asp Thr Val Asp Phe Val Ser Gly 1540 1545 1550
- Asp Lys Asp Thr Thr Ser Val Thr Val Glu Ser Lys Asp Asn Gly Lys
- Arg Thr Glu Val Lys Ile Gly Ala Lys Thr Ser Val Ile Lys Asp His
- Asn Gly Lys Leu Phe Thr Gly Lys Glu Leu Lys Asp Ala Asn Asn Asn 1585 1590 1595 1600
- Gly Val Thr Val Thr Glu Thr Asp Gly Lys Asp Glu Gly Asn Gly Leu 1605 1610 1615
- Val Thr Ala Lys Ala Val Ile Asp Ala Val Asn Lys Ala Gly Trp Arg
- Val Lys Thr Thr Gly Ala Asn Gly Gln Asn Asp Asp Phe Ala Thr Val 1635 1640 1645
- Ala Ser Gly Thr Asn Val Thr Phe Ala Asp Gly Asn Gly Thr Thr Ala 1650 1655 1660
- Glu Val Thr Lys Ala Asn Asp Gly Ser Ile Thr Val Lys Tyr Asn Val
- Lys Val Ala Asp Gly Leu Lys Leu Asp Gly Asp Lys Ile Val Ala Asp 1685 1690 1695
- Thr Thr Val Leu Thr Val Ala Asp Gly Lys Val Thr Ala Pro Asn Asn 1700 1705 1710
- Gly Asp Gly Lys Lys Phe Val Asp Ala Ser Gly Leu Ala Asp Ala Leu 1715 1720 1725
- Asn Lys Leu Ser Trp Thr Ala Thr Ala Gly Lys Glu Gly Thr Gly Glu
- Val Asp Pro Ala Asn Ser Ala Gly Gln Glu Val Lys Ala Gly Asp Lys 1745 1750 1760
- Val Thr Phe Lys Ala Gly Asp Asn Leu Lys Ile Lys Gln Ser Gly Lys 1765 1770 1775
- Asp Phe Thr Tyr Ser Leu Lys Lys Glu Leu Lys Asp Leu Thr Ser Val
- Glu Phe Lys Asp Ala Asn Gly Gly Thr Gly Ser Glu Ser Thr Lys Ile 1795 1800 1805

- Thr Lys Asp Gly Leu Thr Ile Thr Pro Ala Asn Gly Ala Gly Ala Ala 1810 1815 1820
- Gly Ala Asn Thr Ala Asn Thr Ile Ser Val Thr Lys Asp Gly Ile Ser
- Ala Gly Asn Lys Ala Val Thr Asn Val Val Ser Gly Leu Lys Lys Phe 1845 1850 1855
- Gly Asp Gly His Thr Leu Ala Asn Gly Thr Val Ala Asp Phe Glu Lys 1860 1865 1870.
- His Tyr Asp Asn Ala Tyr Lys Asp Leu Thr Asn Leu Asp Glu Lys Gly 1875 1880 1885
- Ala Asp Asn Asn Pro Thr Val Ala Asp Asn Thr Ala Ala Thr Val Gly
 1890 1895 1900
- Asp Leu Arg Gly Leu Gly Trp Val Ile Ser Ala Asp Lys Thr Thr Gly 1905 1910 1915 1920
- Glu Pro Asn Gln Glu Tyr Asn Ala Gln Val Arg Asn Ala Asn Glu Val 1925 1930 1935
- Lys Phe Lys Ser Gly Asn Gly Ile Asn Val Ser Gly Lys Thr Leu Asn 1940 1945 1950
- Gly Thr Arg Val Ile Thr Phe Glu Leu Ala Lys Gly Glu Val Val Lys 1955 1960 1965
- Ser Asn Glu Phe Thr Val Lys Asn Ala Asp Gly Ser Glu Thr Asn Leu 1970 1980
- Val Lys Val Gly Asp Met Tyr Tyr Ser Lys Glu Asp Ile Asp Pro Ala 1985 1990 1995 2000
- Thr Ser Lys Pro Met Thr Gly Lys Thr Glu Lys Tyr Lys Val Glu Asn 2005 2010 2015
- Gly Lys Val Val Ser Ala Asn Gly Ser Lys Thr Glu Val Thr Leu Thr 2020 2025 2030
- Asn Lys Gly Ser Gly Tyr Val Thr Gly Asn Gln Val Ala Asp Ala Ile 2035 2040 2045
- Ala Lys Ser Gly Phe Glu Leu Gly Leu Ala Asp Ala Ala Glu Ala Glu 2050 2055 2060
- Lys Ala Phe Ala Glu Ser Ala Lys Asp Lys Gln Leu Ser Lys Asp Lys 2065 2070 2075 2080
- Ala Glu Thr Val Asn Ala His Asp Lys Val Arg Phe Ala Asn Gly Leu 2085 2090 2095
- Asn Thr Lys Val Ser Ala Ala Thr Val Glu Ser Thr Asp Ala Asn Gly 2100 2105 2110

73

- Asp Lys Val Thr Thr Thr Phe Val Lys Thr Asp Val Glu Leu Pro Leu 2115 2120 2125
- Thr Gln Ile Tyr Asn Thr Asp Ala Asn Gly Asn Lys Ile Val Lys Lys 2130 2135 2140
- Ala Asp Gly Lys Trp Tyr Glu Leu Asn Ala Asp Gly Thr Ala Ser Asn 2145 2150 2155 2160
- Lys Glu Val Thr Leu Gly Asn Val Asp Ala Asn Gly Lys Lys Val Val
 2165 2170 2175
- Lys Val Thr Glu Asn Gly Ala Asp Lys Trp Tyr Tyr Thr Asn Ala Asp 2180 2185 2190
- Gly Ala Ala Asp Lys Thr Lys Gly Glu Val Ser Asn Asp Lys Val Ser 2195 2200 2205
- Thr Asp Glu Lys His Val Val Arg Leu Asp Pro Asn Asn Gln Ser Asn 2210 2215 2220
- Gly Lys Gly Val Val Ile Asp Asn Val Ala Asn Gly Glu Ile Ser Ala 2225 2230 2235 2240
- Thr Ser Thr Asp Ala Ile Asn Gly Ser Gln Leu Tyr Ala Val Ala Lys
 2245 2250 2255
- Gly Val Thr Asn Leu Ala Gly Gln Val Asn Asn Leu Glu Gly Lys Val 2260 2265 2270
- Asn Lys Val Gly Lys Arg Ala Asp Ala Gly Thr Ala Ser Ala Leu Ala 2275 2280 2285
- Ala Ser Gln Leu Pro Gln Ala Thr Met Pro Gly Lys Ser Met Val Ala 2290 2295 2300
- Ile Ala Gly Ser Ser Tyr Gln Gly Gln Asn Gly Leu Ala Ile Gly Val 2305 2310 2315 2320
- Ser Arg Ile Ser Asp Asn Gly Lys Val Ile Ile Arg Leu Ser Gly Thr 2325 2330 2335
- Thr Asn Ser Gln Gly Lys Thr Gly Val Ala Ala Gly Val Gly Tyr Gln 2340 2345 2350

Trp

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 658 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
- Met Asn Lys Ile Phe Asn Val Ile Trp Asn Val Val Thr Gln Thr Trp

 10 15
- Val Val Val Ser Glu Leu Thr Arg Thr His Thr Lys Cys Ala Ser Ala 20 25
- Thr Val Ala Val Ala Val Leu Ala Thr Leu Leu Ser Ala Thr Val Glu
 35 40 45
- Ala Asn Asn Asn Thr Pro Val Thr Asn Lys Leu Lys Ala Tyr Gly Asp
 50 60
- Ala Asn Phe Asn Phe Thr Asn Asn Ser Ile Ala Asp Ala Glu Lys Gln
 65 70 75 80
- Val Gln Glu Ala Tyr Lys Gly Leu Leu Asn Leu Asn Glu Lys Asn Ala 85 90 95
- Ser Asp Lys Leu Leu Val Glu Asp Asn Thr Ala Ala Thr Val Gly Asn 100
- Leu Arg Lys Leu Gly Trp Val Leu Ser Ser Lys Asn Gly Thr Arg Asn 115
- Glu Lys Ser Gln Gln Val Lys His Ala Asp Glu Val Leu Phe Glu Gly
 130 135 140
- Lys Gly Gly Val Gln Val Thr Ser Thr Ser Glu Asn Gly Lys His Thr
 145 150 160
- Ile Thr Phe Ala Leu Ala Lys Asp Leu Gly Val Lys Thr Ala Thr Val 165 170 175
- Ser Asp Thr Leu Thr Ile Gly Gly Gly Ala Ala Ala Gly Ala Thr Thr 180 185 190
- Thr Pro Lys Val Asn Val Thr Ser Thr Thr Asp Gly Leu Lys Phe Ala 195 200 205
- Lys Asp Ala Ala Gly Ala Asn Gly Asp Thr Thr Val His Leu Asn Gly 210 215
- Ile Gly Ser Thr Leu Thr Asp Thr Leu Val Gly Ser Pro Ala Thr His 235 240
- Ile Asp Gly Gly Asp Gln Ser Thr His Tyr Thr Arg Ala Ala Ser Ile
 250
 255
- Lys Asp Val Leu Asn Ala Gly Trp Asn Ile Lys Gly Val Lys Ala Gly 260 265

Ser Thr Thr Gly Gln Ser Glu Asn Val Asp Phe Val His Thr Tyr Asp 280 Thr Val Glu Phe Leu Ser Ala Asp Thr Glu Thr Thr Thr Val Thr Val 295 Asp Ser Lys Glu Asn Gly Lys Arg Thr Glu Val Lys Ile Gly Ala Lys 315 310 Thr Ser Val Ile Lys Glu Lys Asp Gly Lys Leu Phe Thr Gly Lys Ala 330 Asn Lys Glu Thr Asn Lys Val Asp Gly Ala Asn Ala Thr Glu Asp Ala 345 Asp Glu Gly Lys Gly Leu Val Thr Ala Lys Asp Val Ile Asp Ala Val Asn Lys Thr Gly Trp Arg Ile Lys Thr Thr Asp Ala Asn Gly Gln Asn 375 Gly Asp Phe Ala Thr Val Ala Ser Gly Thr Asn Val Thr Phe Ala Ser 395 390 Gly Asn Gly Thr Thr Ala Thr Val Thr Asn Gly Thr Asp Gly Ile Thr Val Lys Tyr Asp Ala Lys Val Gly Asp Gly Leu Lys Leu Asp Gly Asp Lys Ile Ala Ala Asp Thr Thr Ala Leu Thr Val Asn Asp Gly Lys Asn 440 Ala Asn Asn Pro Lys Gly Lys Val Ala Asp Val Ala Ser Thr Asp Glu Lys Lys Leu Val Thr Ala Lys Gly Leu Val Thr Ala Leu Asn Ser Leu 475 470 Ser Trp Thr Thr Thr Ala Ala Glu Ala Asp Gly Gly Thr Leu Asp Gly Asn Ala Ser Glu Gln Glu Val Lys Ala Gly Asp Lys Val Thr Phe Lys Ala Gly Lys Asn Leu Lys Val Lys Gln Glu Gly Ala Asn Phe Thr Tyr 520 515 Ser Leu Gln Asp Ala Leu Thr Gly Leu Thr Ser Ile Thr Leu Gly Thr 535 Gly Asn Asn Gly Ala Lys Thr Glu Ile Asn Lys Asp Gly Leu Thr Ile 550 545 Thr Pro Ala Asn Gly Ala Gly Ala Asn Asn Ala Asn Thr Ile Ser Val 570

565

76

Thr Lys Asp Gly Ile Ser Ala Gly Gly Gln Ser Val Lys Asn Val Val 580

Ser Gly Leu Lys Lys Phe Gly Asp Ala Asn Phe Asp Pro Leu Thr Ser 600

Ser Ala Asp Asn Leu Thr Lys Gln Asn Asp Asp Ala Tyr Lys Gly Leu

Thr Asn Leu Asp Glu Lys Gly Thr Asp Lys Gln Thr Pro Val Val Ala

Asp Asn Thr Ala Ala Thr Val Gly Asp Leu Arg Gly Leu Gly Trp Val 650

Ile Ser

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 607 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Asn Lys Ile Phe Asn Val Ile Trp Asn Val Met Thr Gln Thr Trp

Val Val Val Ser Glu Leu Thr Arg Thr His Thr Lys Arg Leu Arg Asn

Arg Gly Asp Pro Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln Ala

Asn Ala Thr Asp Glu Asp Glu Glu Leu Asp Pro Val Val Arg Thr Ala

Pro Val Leu Ser Phe His Ser Asp Lys Glu Gly Thr Gly Glu Lys Glu 70

Val Thr Glu Asn Ser Asn Trp Gly Ile Tyr Phe Asp Asn Lys Gly Val

Leu Lys Ala Gly Ala Ile Thr Leu Lys Ala Gly Asp Asn Leu Lys Xaa 105 100

Lys Gln Xaa Thr Asp Glu Xaa Thr Asn Ala Ser Ser Phe Thr Tyr Ser

Leu Lys Lys Asp Leu Thr Asp Leu Thr Ser Val Ala Thr Glu Lys Leu 135

Ser Phe Gly Ala Asn Gly Asp Lys Val Asp Ile Thr Ser Asp Ala Asn Gly Leu Lys Leu Ala Lys Thr Gly Asn Gly Asn Val His Leu Asn Gly 165 Leu Asp Ser Thr Leu Pro Asp Ala Val Thr Asn Thr Gly Val Leu Ser 185 Ser Ser Ser Phe Thr Pro Asn Asp Val Glu Lys Thr Arg Ala Ala Thr Val Lys Asp Val Leu Asn Ala Gly Trp Asn Ile Lys Gly Ala Lys Thr Ala Gly Gly Asn Val Glu Ser Val Asp Leu Val Ser Ala Tyr Asn Asn 230 Val Glu Phe Ile Thr Gly Asp Lys Asn Thr Leu Asp Val Val Leu Thr 250 Ala Lys Glu Asn Xaa Lys Thr Thr Glu Val Lys Phe Thr Pro Lys Thr 265 Ser Val Ile Lys Glu Lys Asp Gly Lys Leu Phe Thr Gly Lys Glu Asn 275 Asn Asp Thr Asn Lys Val Thr Ser Asn Thr Ala Thr Asp Asn Thr Asp 295 Glu Gly Asn Gly Leu Val Thr Ala Lys Ala Val Ile Asp Ala Val Asn 310 Lys Ala Gly Trp Arg Val Lys Thr Thr Ala Asn Gly Gln Asn Gly 330 Asp Phe Ala Thr Val Ala Ser Gly Thr Asn Val Thr Phe Glu Ser Gly Asp Gly Thr Thr Ala Ser Val Thr Lys Asp Thr Asn Gly Asn Gly Ile 355 Thr Val Lys Tyr Asp Ala Lys Val Gly Asp Gly Leu Lys Phe Asp Ser 375 Asp Lys Lys Ile Val Ala Asp Thr Thr Ala Leu Thr Val Thr Gly Gly Lys Val Ala Glu Ile Ala Lys Glu Asp Asp Lys Lys Leu Val Asn Ala Gly Asp Leu Val Thr Ala Leu Gly Asn Leu Ser Trp Lys Ala Lys Ala Glu Ala Asp Thr Asp Gly Ala Leu Glu Gly Ile Ser Lys Asp Gln 445 440

435

- Glu Val Lys Ala Gly Glu Thr Val Thr Phe Lys Ala Gly Lys Asn Leu
 450 455 460
- Lys Val Lys Gln Asp Gly Ala Asn Phe Thr Tyr Ser Leu Gln Asp Ala
- Leu Thr Gly Leu Thr Ser Ile Thr Leu Gly Gly Thr Thr Asn Gly Gly
 485 490 495
- Asn Asp Ala Lys Thr Val Ile Asn Lys Asp Gly Leu Thr Ile Thr Pro 500 505
- Ala Gly Asn Gly Gly Thr Thr Gly Thr Asn Thr Ile Ser Val Thr Lys
 515 520 525
- Asp Gly Ile Lys Ala Gly Asn Lys Ala Ile Thr Asn Val Ala Ser Gly
 530 535 540
- Leu Arg Ala Tyr Asp Asp Ala Asn Phe Asp Val Leu Asn Asn Ser Ala 545 550 550
- Thr Asp Leu Asn Arg His Val Glu Asp Ala Tyr Lys Gly Leu Leu Asn 565 570 575
- Leu Asn Glu Lys Asn Ala Asn Lys Gln Pro Leu Val Thr Asp Ser Thr 580 585 585
- Ala Ala Thr Val Gly Asp Leu Arg Lys Leu Gly Trp Val Val Ser
- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Met Asn Lys Ile Phe Asn Val Ile Trp Asn Val Met Thr Gln Thr Trp

Val Val Val Ser Glu Leu Thr Arg 20

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown

79

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Asn Lys Ile Phe Asn Val Ile Trp Asn Val Val Thr Gln Thr Trp 1 5 10 15

Val Val Val Ser Glu Leu Thr Arg

- (2) INFORMATION FOR SEQ ID NO:9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Met Asn Lys Ile Tyr Arg Leu Lys Phe Ser Lys Arg Leu Asn Ala Leu 1 5 10 15

Val Ala Val Ser Glu Leu Ala Arg 20

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Met Asn Lys Ile Tyr Arg Leu Lys Phe Ser Lys Arg Leu Asn Ala Leu 1 5 10 15

Val Ala Val Ser Glu Leu Ala Arg 20

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown
 - (ii) MOLÉCULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Met Asn Lys Ala Tyr Ser Ile Ile Trp Ser His Ser Arg Gln Ala Trp

10 15

Ile Val Ala Ser Glu Leu Ala Arg 20

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Met Asn Arg Ile Tyr Ser Leu Arg Tyr Ser Ala Val Ala Arg Gly Phe 10 15

Ile Ala Val Ser Glu Phe Ala Arg 20

- (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein .
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Met Asn Lys Ile Tyr Tyr Leu Lys Tyr Cys His Ile Thr Lys Ser Leu 1 10 15

Ile Ala Val Ser Glu Leu Ala Arg 20

- (2) INFORMATION FOR SEQ ID NO:14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2037 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

ATGAACAAAA	TTTTTAACGT	TATTTGGAAT	GTTGTGACTC	AAACTTGGGT	TGTCGTATCT	60
GAACTCACTC	GCACCCACAC	CAAATGCGCC	TCCGCCACCG	TGGCAGTTGC	CGTATTGGCA	. 120
ACCCTGTTGT	CCGCAACGGT	TCAGGCGAAT	GCTACCGATG	AAAACGAAGA	TGATGAAGAA	180
GAGTTAGAAC	CCGTACAACG	CTCTGTTTTA	AGGTGGAGCT	TCAAATCCGC	TAAGGAAGGC	. 240
ACTGGAGAAC	AAGAGGGAAC	AACAGAGGTA	ATAAATTTGA	ACACAGATTC	ATCAGGAAAT	300
GCAGTAGGAA	GCAGCACAAT	CACCTTCAAA	GCCGGCGACA	ACCTGAAAAT	CAAACAAAGC	360
GGCAATGACT	TCACCTACTC	GCTGAAAAA	GAGCTGAAAA	ACCTGACCAG	TGTTGAAACT	420
GAAAAATTAT	CGTTTGGCGC	AAACGGCAAT	AAAGTTGATA	TTACCAGTGA	TGCAAATGGC	480
TTGAAATTGG	CGAAAACAGG	TAACGGAAAT	GGTCAAAACA	GTAATGTTCA	CTTAAACGGT	540
ATTGCTTCGA	CTTTGACCGA	TACGCTTGCC	GGTGGCACAA	CAGGACACGT	TGACACCAAC	600
ATTGATGCGG	TTAATTATCA	TCGCGCTGCA	AGCGTACAAG	ATGTGTTAAA	CAGCGGTTGG	660
AATATCCAAG	GCAATGGAAA	CAATGTCGAT	TTTGTCCGTA	CTTACGACAC	CGTGGACTTT	720
GTCAATGGCG	CGAATGCCAA	TGTGAGCGTT	ACGGCTGATA	CGGCTCACAA	AAAGACAACT	780
GTCCGTGTGG	ATGTAACAGG	CTTGCCGGTT	CAATATGTTA	CGGAAGACGG	CAAAACCGTT	840
GTGAAAGTGG	GCAATGAGTA	TTACAAAGCC	AAAGATGACG	GTTCGGCGGA	TATGAATCAA	900
AAAGTCGAAA	ACGGCGAGCT	GGCGAAAACC	AAAGTGAAAT	TGGTATCGGC	AAGCGGTACA	960
AATCCGGTGA	AAATTAGCAA	TGTTGCAGAC	GGCACGGAAG	ACACCGATGC	GGTCAGCTTT	1020
AAGCAATTAA	AAGCCTTGCA	AGACAAACAG	GTTACGTTGA	GCACGAGCAA	TGCTTATGCC	1080
AATGGCGGTA	CAGATAACGA	CGGCGGCAAG	GCAACTCAAA	CTTTAAGCAA	TGGTTTGAAT	1140
TTTAAATTTA	AATCTAGCGA	TGGCGAGTTG	TTGAAAATTA	GCGCGACCGG	CGATACGGTT	1200
ACTTTTACGO	CGAAAAAAGG	TTCGGTACAG	GTTGGCGATG	ATGGCAAGGC	TTCAATTTCA	1260
AAAGGTGCAA	A ATACAACTGA	AGGTTTGGTT	GAGGCTTCTG	AATTGGTTGA	AAGCCTGAAC	1320
AAACTGGGTT	GGAAAGTAGG	GGTTGAGAAA	GTCGGCAGCG	GCGAGCTTGA	TGGTACATCC	1380
AAGGAAACTT	TAGTGAAGTC	GGGCGATAAA	GTAACTTTGA	AAGCCGGCGA	CAATCTGAAG	1440
GTCAAACAAC	G AGGGCACAAA	CTTCACTTAC	GCGCTCAAAG	ATGAATTGAC	GGGCGTGAAG	1500
AGCGTGGAGT	r ttaaagacac	GGCGAATGGT	GCAAACGGTG	CAAGCACGA	GATTACCAAA	1560

82

GACGGCTTGA	CCATTACGCT	GGCAAACGGT	GCGAATGGTG	CGACGGTGAC	TGATGCCGAC	1620
AAGATTAAAG	TTGCTTCGGA	CGGCATTAGC	GCGGGTAATA	AAGCAGTTAA	AAACGTCGCG	1680
GCAGGCGAAA	TTTCTGCCAC	TTCCACCGAT	GCGATTAACG	GAAGCCAGTT	GTATGCCGTG	1740
GCAAAAGGGG	TAACAAACCT	TGCTGGACAA	GTGAATAATC	TTGAGGGCAA	AGTGAATAAA	1800
GTGGGCAAAC	GTGCAGATGC	AGGTACTGCA	AGTGCATTAG	CGGCTTCACA	GTTACCACAA	1860
GCCACTATGC	CAGGTAAATC	AATGGTTTCT	ATTGCGGGAA	GTAGTTATCA	AGGTCAAAAT	1920 ·.
GGTTTAGCTA	TCGGGGTATC	AAGAATTTCC	GATAATGGCA	AAGTGATTAT	TCGCTTGTCT	1980
GGCACAACCA	ATAGTCAAGG	TAAAACAGGC	GTTGCAGCAG	GTGTTGGTTA	CCAGTGG	2037
		50 TO NO.15				

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 679 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Met Asn Lys Ile Phe Asn Val Ile Trp Asn Val Val Thr Gln Thr Trp

Val Val Val Ser Glu Leu Thr Arg Thr His Thr Lys Cys Ala Ser Ala 25

Thr Val Ala Val Ala Val Leu Ala Thr Leu Leu Ser Ala Thr Val Gln 40

Ala Asn Ala Thr Asp Glu Asn Glu Asp Asp Glu Glu Glu Leu Glu Pro 55

Val Gln Arg Ser Val Leu Arg Trp Ser Phe Lys Ser Ala Lys Glu Gly 75

Thr Gly Glu Glu Gly Thr Thr Glu Val Ile Asn Leu Asn Thr Asp

Ser Ser Gly Asn Ala Val Gly Ser Ser Thr Ile Thr Phe Lys Ala Gly 105

Asp Asn Leu Lys Ile Lys Gln Ser Gly Asn Asp Phe Thr Tyr Ser Leu 120

Lys Lys Glu Leu Lys Asn Leu Thr Ser Val Glu Thr Glu Lys Leu Ser 140 135 130

Phe 145	Gly	Ala	Asn	Gly	Asn 150	Lys	Val	Asp	Ile	Thr 155	Ser	Asp	Ala	Asn	Gly 160
Leu	Lys	Leu	Ala	Lys 165	Thr	Gly	Asn'	Gly	Asn 170	Gly	Gln	Asn	Ser	Asn 175	Val
His	Leu	Asn	Gly 180	Ile	Ala	Ser	Thr	Leu 185	Thr	Asp	Thr	Leu	Ala 190	Gly '	
Thr	Thr	Gly 195	His	Val	Asp	Thr	Asn 200	Ile	Asp	Ala	Val	Asn 205	Tyr	His	Arg
Ala	Ala 210	Ser	Val	Gln	Asp	Val 215	Leu	Asn	Ser	Gly	Trp 220	Asn	Ile	Gln	Gly
Asn 225	Gly	Asn	Asn	Val	Asp 230	Phe	Val	Arg	Thr	Tyr 235	Asp	Thr	Val	Asp	Phe 240
Val	Asn	Gly	Ala	Asn 245	Ala	Asn	Val	Ser	Val 250	Thr	Ala	Asp	Thr	Ala 255	His
Lys	Lys	Thr	Thr 260	Val	Arg	Val ⁻	Asp	Val 265	Thr	Gly	Leu	Pro	Val 270	Gln	Tyr
Val	Thr	Glu 275	Asp	Gly	Lys	Thr	Val 280	Val	Lys	Val	Gly	Asn 285	Glu	Tyr	Tyr
Lys	Ala 290	Lys	Asp	Asp	Gly	Ser 295	Ala	Asp	Met	Asn	Gln 300	Lys	Val	Glu	Asn
Gly 305	Glu	Leu	Ala	Lys	Thr 310	Lys	Val	Lys	Leu	Val 315	Ser	Ala	Ser	Gly	Thr 320
Asn	Pro	Val	Lys	Ile 325	Ser	Asn	Val	Ala	Asp 330	Gly	Thr	Glu	Asp	Thr 335	Asp
Ala	Val	Ser	Phe 340	Lys	Gln	Leu	Lys	Ala 345	Leu	Gln	Asp	Lys	Gln 350	Val	Thr
Leu	Ser	Thr 355	Ser	Asn	Ala		Ala 360		Gly	Gly		Asp 365		Asp	Gly
Gly	Lys 370	Ala	Thr	Gln	Thr	Leu 375		Asn	Gly	Leu	Asn 380	Phe	Lys	Phe	Lys
Ser 385	Ser	Asp	Gly	Glu	Leu 390		Lys	Ile	Ser	Ala 395	Thr	Gly	Asp	Thr	Val 400
Thr	Phe	Thr	Pro	Lys 405		Gly	Ser	Val	Gln 410		Gly	Asp	Asp	Gly 415	Lys
Ala	Ser	Ile	Ser 420		Gly	Ala	Asn	Thr 425		Glu	Gly	Leu	Val 430	Glu	Ala
Ser	Glu	Leu 435		Glu	Ser	Leu	Asn 440		Leu	Gly	Trp	Lys 445	Val	Gly	Val

- Glu Lys Val Gly Ser Gly Glu Leu Asp Gly Thr Ser Lys Glu Thr Leu 450 455 460
- Val Lys Ser Gly Asp Lys Val Thr Leu Lys Ala Gly Asp Asn Leu Lys 480
- Val Lys Gln Glu Gly Thr Asn Phe Thr Tyr Ala Leu Lys Asp Glu Leu 485 490 495
- Thr Gly Val Lys Ser Val Glu Phe Lys Asp Thr Ala Asn Gly Ala Asn 500 505 510
- Gly Ala Ser Thr Lys Ile Thr Lys Asp Gly Leu Thr Ile Thr Leu Ala 515
- Asn Gly Ala Asn Gly Ala Thr Val Thr Asp Ala Asp Lys Ile Lys Val 530
- Ala Ser Asp Gly Ile Ser Ala Gly Asn Lys Ala Val Lys Asn Val Ala 545 550 550
- Ala Gly Glu Ile Ser Ala Thr Ser Thr Asp Ala Ile Asn Gly Ser Gln 565 570 575
- Leu Tyr Ala Val Ala Lys Gly Val Thr Asn Leu Ala Gly Gln Val Asn 580 585 590
- Asn Leu Glu Gly Lys Val Asn Lys Val Gly Lys Arg Ala Asp Ala Gly 595 600 605
- Thr Ala Ser Ala Leu Ala Ala Ser Gln Leu Pro Gln Ala Thr Met Pro 610 615 620
- Gly Lys Ser Met Val Ser Ile Ala Gly Ser Ser Tyr Gln Gly Gln Asn 625 630 635
- Gly Leu Ala Ile Gly Val Ser Arg Ile Ser Asp Asn Gly Lys Val Ile 645 650 655
- Ile Arg Leu Ser Gly Thr Thr Asn Ser Gln Gly Lys Thr Gly Val Ala 660 665 670
- Ala Gly Val Gly Tyr Gln Trp 675
- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: DNA (genomic)

WO 96/30519 PCT/US96/04031

85

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
CCGTGCTTGC CCAACACGCT T	21
(2) INFORMATION FOR SEQ ID NO:17:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
GCTGCCACCT TGCACAACAA C	21
(2) INFORMATION FOR SEQ ID NO:18:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
CTTTCAATGC CAGAAAGTAG G	21
(2) INFORMATION FOR SEQ ID NO:19:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
CTTCAACCGT TGCGGACAAC A	21

CLAIMS

We claim:

- 1. A recombinant Haemophilus adhesion protein.
- 2. A recombinant *Haemophilus* adhesion protein according to claim 1 which has
 a sequence homologous to that shown in Figure 2.
 - 3. A recombinant *Haemophilus* adhesion protein according to claim 1 which has a sequence homologous to the amino acid sequence shown in Figure 3.
 - 4. A recombinant *Haemophilus* adhesion protein according to claim 1 which has the sequence shown in Figure 2.
- 5. A recombinant *Haemophilus* adhesion protein according to claim 1 which has the amino acid sequence shown in Figure 3.
 - 6. A recombinant nucleic acid encoding an Haemophilus adhesion protein.
 - 7. The nucleic acid of claim 6 comprising DNA having a sequence homologous to that shown in Figure 1.
- 15 8. The nucleic acid of claim 6 comprising DNA having a sequence homologous to that shown in Figure 3.
 - 9. The nucleic acid of claim 6 comprising DNA capable of hybridizing to that shown in Figure 1.
- 10. The nucleic acid of claim 6 comprising DNA capable of hybridizing to that shownin Figure 3.

- 11. The nucleic acid of claim 6 comprising DNA having the sequence shown in Figure 1.
- 12. The nucleic acid of claim 6 comprising DNA having the sequence shown in Figure 3.
- 5 13. An expression vector comprising transcriptional and translational regulatory nucleic acid operably linked to nucleic acid encoding an *Haemophilus* adhesion protein.
 - 14. A host cell transformed with an expression vector comprising a nucleic acid encoding an *Haemophilus* adhesion protein.
- 15. A method of producing an Haemophilus adhesion protein comprising:
 a) culturing a host cell transformed with an expressing vector comprising a nucleic acid encoding an Haemophilus adhesion protein; and
 b) expressing said nucleic acid to produce an Haemophilus adhesion protein.
- 16. A vaccine comprising a pharmaceutically acceptable carrier and an *Haemophilus* adhesion protein for prophylactic or therapeutic use in generating an immune response.
 - 17. A vaccine according to claim 16 wherein said *Haemophilus* adhesion protein has a sequence homologous to that shown in Figure 2.
- 18. A vaccine according to claim 16 wherein said *Haemophilus* adhesion protein has a sequence homologous to the amino acid sequence shown in Figure 3.
 - 19. A monoclonal antibody capable of binding to an Haemophilus adhesion protein.

5

- 20. A method of treating or preventing *Haemophilus influenzae* infection comprising administering the vaccine of claim 16.
- 21. A method of treating or preventing a *Haemophilus influenzae* infection according to claim 20 wherein said *H. influenzae* infection is caused by a non-typable *H. influenzae*.

ATGAACAAAA	TTTTTAACGT	TATTTGGAAT	GTTGTGACTC	AAACTTGGGT	TGTCGTATCT	60
GAACTCACTC	GCACCCACAC	CAAATGCGCC	TCCGCCACCG	TGGCGGTTGC	CGTATTGGCA	120
ACCCTGTTGT	CCGCAACGGT	TGAGGCGAAC	AACAATACTC	CTGTTACGAA	TAAGTTGAAG	180
GCTTATGGCG	ATGCGAATTT	TAATTTCACT	AATAATTCGA	TAGCAGATGC	AGAAAAACAA	240
GTTCAAGAGG	CTTATAAAGG	TTTATTAAAT	CTAAATGAAA	AAAATGCGAG	TGATAAACTG	300
TTGGTGGAGG	ACAATACTGC	GGCGACCGTA	GGCAATTTGC	GTAAATTGGG	CTGGGTATTG	360
TCTAGCAAAA	ACGGCACAAG	GAACGAGAAA	AGCCAACAAG	TCAAACATGC	GGATGAAGTG	420
TTGTTTGAAG	GCAAAGGCGG	TGTGCAGGTT	ACTTCCACCT	CTGAAAACGG	CAAACACACC	480
ATTACCTTTG	CTTTAGCGAA	AGACCTTGGT	GTGAAAACTG	CGACTGTGAG	TGATACCTTA	540
ACGATTGGCG	GTGGTGCTGC	TGCAGGTGCT	ACAACAACAC	CGAAAGTGAA	TGTAACTAGT	600
ACAACTGATG	GCTTGAAGTT	CGCTAAAGAT	GCTGCGGGTG	CTAATGGCGA	TACTACGGTT	660
CACTTGAATG	GTATTGGTTC	AACCTTGACA	GACACGCTTG	TGGGTTCTCC	TGCTACTCAT	720
ATTGACGGAG	GAGATCAAAG	TACGCATTAC	ACTCGTGCAG	CAAGTATCAA	GGATGTCTTG	780
AATGCGGGTT	GGAATATCAA	GGGTGTTAAA	GCTGGCTCAA	CAACTGGTCA	ATCAGAAAAT	840
GTCGATTTTG	TTCATACTTA	CGATACTGTT	GAGTTCTTGA	GTGCGGATAC	AGAGACCACG	900
ACTGTTACTG	TAGATAGCAA	AGAAAACGGT	AAGAGAACCG	AAGTTAAAAT	CGGTGCGAAG	960
ACTTCTGTTA	TCAAAGAAAA	AGACGGTAAG	TTATTTACTG	GAAAAGCTAA	CAAAGAGACA	1020
AATAAAGTTG	ATGGTGCTAA	CGCGACTGAA	GATGCAGACG	AAGGCAAAGG	CTTAGTGACT	1080
GCGAAAGATG	TGATTGACGC	AGTGAATAAG	ACTGGTTGGA	GAATTAAAAC	AACCGATGCT	1140
AATGGTCAAA	ATGGCGACTT	CGCAACTGTT	GCATCAGGCA	CAAATGTAAC	CTTTGCTAGT	1200
GGTAATGGTA	CAACTGCGAC	TGTAACTAAT	GGCACCGATG	GTATTACCGT	TAAGTATGAT	1260
GCGAAAGTTG	GCGACGGCTT	AAAACTAGAT	GGCGATAAAA	TCGCTGCAGA	TACGACCGCA	1320

FIG._1A

CTTACTGTGA	ATGATGGTAA	GAACGCTAAT	AATCCGAAAG	GTAAAGTGGC	TGATGTTGCT	1380
TCAACTGACG	AGAAGAAATT	GGTTACAGCA	AAAGGTTTAG	TAACAGCCTT	AAACAGTCTA	1440
AGCTGGACTA	CAACTGCTGC	TGAGGCGGAC	GGTGGTACGC	TTGATGGAAA	TGCAAGTGAG	1500
CAAGAAGTTA	AAGCGGGCGA	TAAAGTAACC	TTTAAAGCAG	GCAAGAACTT	AAAAGTGAAA	1560
CAAGAGGGTG	CGAACTTTAC	TTATTCACTG	CAAGATGCTT	TAACAGGCTT	AACGAGCATT	1620
ACTTTAGGTA	CAGGAAATAA	TGGTGCGAAA	ACTGAAATCA	ACAAAGACGG	CTTAACCATC	1680
ACACCAGCAA	ATGGTGCGGG	TGCAAATAAT	GCAAACACCA	TCAGCGTAAC	CAAAGACGGC	1740
ATTAGTGCGG	GCGGTCAGTC	GGTTAAAAAC	GTTGTGAGCG	GACTGAAGAA	ATTTGGTGAT	1800
GCGAATTTCG	ATCCGCTGAC	TAGCTCCGCC	GACAACTTAA	CGAAACAAAA	TGACGATGCC	1860
TATAAAGGCT	TGACCAATTT	GGATGAAAA	GGTACAGACA	AGCAAACTCC	AGTTGTTGCC	1920
GACAATACCG	CCGCAACCGT	GGGCGATTTG	CGCGGCTTGG	GCTGGGTCAT	TTCTGCGGAC	1980
AAAACCACAG	GCGGCTCAAC	GGAATATCAC	GATCAAGTTC	GGAATGCGAA	CGAAGTGAAA	2040
TTCAAAAGCG	GCAACGGTAT	CAATGTTTCC	GGTAAAACGG	TCAACGGTAG	GCGTGAAATT	2100
ACTTTTGAAT	TGGCTAAAGG	TGAAGTGGTT	AAATCGAATG	AATTTACCGT	CAAAGAAACC	2160
AATGGAAAGG	AAACGAGCCT	GGTTAAAGTT	GGCGATAAAT	ATTACAGCAA	AGAGGATATT	2220
GACTTAACAA	CAGGTCAGCC	TAAATTAAAA	GATGGCAATA	CAGTTGCTGC	GAAATATCAA	2280
GATAAAGGTG	GCAAAGTCGT	TTCTGTAACG	GATAATACTG	AAGCTACCAT	AACCAACAAA	2340
GGTTCTGGCT	ATGTAACAGG	TAACCAAGTG	GCAGATGCGA	TTGCGAAATC	AGGCTTTGAG	2400
CTTGGCTTGG	CTGATGAAGC	TGATGCGAAA	CGGGCGTTTG	ATGATAAGAC	AAAAGCCTTA	2460
TCTGCTGGTA	CAACGGAAAT	TGTAAATGCC	CACGATAAAG	TCCGTTTTGC	TAATGGTTTA	2520
AATACCAAAG	TGAGCGCGGC	AACGGTGGAA	AGCACCGATG	CAAACGGCGA	TAAAGTGACC	2580
ACAACCTTTG	TGAAAACCGA	TGTGGAATTG	CCTTTAACGC	AAATCTACAA	TACCGATGCA	2640

FIG._1B

AACGGTAAGA	AAATCACTAA	AGTTGTCAAA	GATGGGCAAA	CTAAATGGTA	TGAACTGAAT	2700
GCTGACGGTA	CGGCTGATAT	GACCAAAGAA	GTTACCCTCG	GTAACGTGGA	TTCAGACGGC	2760
AAGAAAGTTG	TGAAAGACAA	CGATGGCAAG	TGGTATCACG	CCAAAGCTGA	CGGTACTGCG	2820
GATAAAACCA	AAGGCGAAGT	GAGCAATGAT	AAAGTTTCTA	CCGATGAAAA	ACACGTTGTC	2880
AGCCTTGATC	CAAATGATCA	ATCAAAAGGT	AAAGGTGTCG	TGATTGACAA	TGTGGCTAAT	2940
GGCGATATTT	CTGCCACTTC	CACCGATGCG	ATTAACGGAA	GTCAGTTGTA	TGCTGTGGCA	3000
AAAGGGGTAA	CAAACCTTGC	TGGACAAGTG	AATAATCTTG	AGGGCAAAGT	GAATAAAGTG	3060
GGCAAACGTG	CAGATGCAGG	TACAGCAAGT	GCATTAGCGG	CTTCACAGTT	ACCACAAGCC	3120
ACTATGCCAG	GTAAATCAAT	GGTTGCTATT	GCGGGAAGTA	GTTATCAAGG	TCAAAATGGT	3180
TTAGCTATCG	GGGTATCAAG	AATTTCCGAT	AATGGCAAAG	TGATTATTCG	CTTGTCAGGC	3240
ACAACCAATA	GTCAAGGTAA	AACAGGCGTT	GCAGCAGGTG	TTGGTTACCA	GTGG	3294

FIG._1C

Met 1	Asn	Lys	Ile	Phe 5	Asn	Val	Ile	Trp	Asn 10	Val	Val	Thr	Gln	Thr 15	Trp
Val	Val	Val	Ser 20	Glu	Leu	Thr	Arg	Thr 25	His	Thr	Lys	Сув	Ala 30	Ser	Ala
Thr	Val	Ala 35	Val	Ala	Val	Leu	Ala 40	Thr	Leu	Leu	Ser	Ala 45	Thr	Val	Glu
Ala	Asn 50	Asn	Asn	Thr	Pro	Val 55	Thr	Asn	Lys	Leu	Lys 60	Ala	Tyr	Gly	Asp
Ala 65	Asn	Phe	Asn	Phe	Thr 70	Asn	Asn	Ser	Ile	Ala 75	Asp	Ala	Glu	Lys	Gln 80
Val	Gln	Glu	Ala	Tyr 85	Lys	Gly	Leu	Leu	Asn 90	Leu	Asn	Glu	Lys	Asn 95	Ala
Ser	Asp	Lys	Leu 100	Leu	Val	Glu	Asp	Asn 105	Thr	Ala	Ala	Thr	Val 110	Glý	Asn
Leu	Arg	Lys 115	Leu	Gly	Trp	Val	Leu 120	Ser	Ser	Lув	Asn	Gly 125	Thr	Arg	Asn
Glu	Lys 130	Ser	Gln	Gln	Val	Lys 135	His	Ala	Asp	Glu	Val 140	Leu	Phe	Glu	Gly
Lys 145	Gly	Gly	Val	Glņ	Val 150	Thr	Ser	Thr	Ser	Glu 155	Asn	Gly	Lys	His	Thr 160
Ile	Thr	Phe	Ala	Leu 165	Ala	Lys	Asp	Leu	Gly 170	Val	Lys	Thr	Ala	Thr 175	Val
Ser	Asp	Thr	Leu 180		Ile	Gly	Gly	Gly 185	Ala	Ala	Ala	Gly	Ala 190	Thr	Thr
Thr	Pro	Lys 195		Asn	Val	Thr	Ser 200	Thr	Thr	Asp	Gly	Leu 205	Lys	Phe	Ala
Lys	Asp 210		Ala	Gly	Ala	As n 215	Gly	Asp	Thr	Thr	Val 220	His	Leu	Asn	Gly
Ile 225		Ser	Thr	Leu	Thr 230	Авр	Thr	Leu	Val	Gly 235	Ser	Pro	Ala	Thr	His 240
Ile	Asp	Gly	gly	Asp 245	Gln	Ser	Thr	His	Ty: 250	Thr	Arg	Ala	Ala	Ser 255	Ile
Lys	Asp	Va]	Lev 260	a Asr	Ala	Gly	Trp	265	Ile	Lys	Gly	Val	Lys 270	Ala	Gly
Ser	Thr	Th:		/ Glr	n Ser	Glu	Asr 280	val	Ası	Phe	val	Hie 285	Thr	Tyr	Авр

FIG._2A

Thr	Val 290	Glu	Phe	Leu	Ser	Ala 295	Asp	Thr	Glu	Thr	Thr 300	Thr	Val	Thr	Val
Asp 305	Ser	Lys	Glu	Asn	Gly 310	Lys	Arg	Thr	Glu	Val 315	Lys	Ile	Gly	Ala	Lув 320
Thr	Ser	Val	Ile	Lys 325	Glu	Lув	Asp	Gly	Lys 330	Leu	Phe	Thr	Gly	Lys 335	Ala
Asn	Lys	Glu	Thr 340	Asn	Lys	Val	Asp	Gly 345	Ala	Asn	Ala	Thr	Glu 350	Asp	Ala
Asp	Glu	Gly 355	Lys	Gly	Leu	Val	Thr 360	Ala	Lys	Asp	Val	11e 365	Asp	Ala	Val
Asn	Lys 370	Thr	Gly	Trp	Arg	Ile 375	Lув	Thr	Thr	Asp	Ala 380	Asn	Gly	Gln	Asn
Gly 385	Asp	Phe	Ala	Thr	Val 390	Ala	Ser	Gly	Thr	Asn 395	Val	Thr	Phe	Ala	Ser 400
Gly	Asn	Gly	Thr 405	Thr	Ala	Thr	Val	Thr 410	Asn	Gly	Thr	Asp	Gly 415	Ile	Thr
Val	Lys	Tyr	Asp 420	Ala	Lys	Val	Gly	Asp 425	Gly	Leu	Lys	Leu	Авр 430	Gly	Asp
_		435	Ala				440			•		445			
	450		Pro			455					460				
465			Val		470					475				4	180
	_			485					490					495	Gly
			Glu 500		,			505					210		
		515					520					525			Tyr
	530					535					540				Thr
545					550					555					Ile 560
				565					570					5/5	
Thr	Lys	Asp	Gly 580	Ile	Ser	Ala	Gly	Gly 585	Gln	Ser	Val	Lys	Asn 590	Val	Val

FIG._2B

WO 96/30519 PCT/US96/04031

6/26

Ser Gly Leu Lys Lys Phe Gly Asp Ala Asn Phe Asp Pro Leu Thr Ser Ser Ala Asp Asn Leu Thr Lys Gln Asn Asp Asp Ala Tyr Lys Gly Leu 615 Thr Asn Leu Asp Glu Lys Gly Thr Asp Lys Gln Thr Pro Val Val Ala 630 Asp Asn Thr Ala Ala Thr Val Gly Asp Leu Arg Gly Leu Gly Trp Val Ile Ser Ala Asp Lys Thr Thr Gly Gly Ser Thr Glu Tyr His Asp Gln 665 Val Arg Asn Ala Asn Glu Val Lys Phe Lys Ser Gly Asn Gly Ile Asn Val Ser Gly Lys Thr Val Asn Gly Arg Arg Glu Ile Thr Phe Glu Leu 695 Ala Lys Gly Glu Val Val Lys Ser Asn Glu Phe Thr Val Lys Glu Thr 710 715 Asn Gly Lys Glu Thr Ser Leu Val Lys Val Gly Asp Lys Tyr Tyr Ser 735 Lys Glu Asp Ile Asp Leu Thr Thr Gly Gln Pro Lys Leu Lys Asp Gly 745 Asn Thr Val Ala Ala Lys Tyr Gln Asp Lys Gly Gly Lys Val Val Ser 755 760 Val Thr Asp Asn Thr Glu Ala Thr Ile Thr Asn Lys Gly Ser Gly Tyr Val Thr Gly Asn Gln Val Ala Asp Ala Ile Ala Lys Ser Gly Phe Glu 790 795 Leu Gly Leu Ala Asp Glu Ala Asp Ala Lys Arg Ala Phe Asp Asp Lys Thr Lys Ala Leu Ser Ala Gly Thr Thr Glu Ile Val Asn Ala His Asp 825 Lys Val Arg Phe Ala Asn Gly Leu Asn Thr Lys Val Ser Ala Ala Thr 835 Val Glu Ser Thr Asp Ala Asn Gly Asp Lys Val Thr Thr Thr Phe Val 855 Lys Thr Asp Val Glu Leu Pro Leu Thr Gln Ile Tyr Asn Thr Asp Ala 865 Asn Gly Lys Lys Ile Thr Lys Val Val Lys Asp Gly Gln Thr Lys Trp 885 890

FIG._2C

Tyr Glu Leu Asn Ala Asp Gly Thr Ala Asp Met Thr Lys Glu Val Thr 900 905 Leu Gly Asn Val Asp Ser Asp Gly Lys Lys Val Val Lys Asp Asn Asp 920 Gly Lys Trp Tyr His Ala Lys Ala Asp Gly Thr Ala Asp Lys Thr Lys 930 935 Gly Glu Val Ser Asn Asp Lys Val Ser Thr Asp Glu Lys His Val Val Ser Leu Asp Pro Asn Asp Gln Ser Lys Gly Lys Gly Val Val Ile Asp 970 Asn Val Ala Asn Gly Asp Ile Ser Ala Thr Ser Thr Asp Ala Ile Asn 985 Gly Ser Gln Leu Tyr Ala Val Ala Lys Gly Val Thr Asn Leu Ala Gly 1000 1005 Gln Val Asn Asn Leu Glu Gly Lys Val Asn Lys Val Gly Lys Arg Ala 1010 Asp Ala Gly Thr Ala Ser Ala Leu Ala Ala Ser Gln Leu Pro Gln Ala 1030 1035 Thr Met Pro Gly Lys Ser Met Val Ala Ile Ala Gly Ser Ser Tyr Gln 1045 Gly Gln Asn Gly Leu Ala Ile Gly Val Ser Arg Ile Ser Asp Asn Gly 1065 Lys Val Ile Ile Arg Leu Ser Gly Thr Thr Asn Ser Gln Gly Lys Thr 1080 1075 Gly Val Ala Ala Gly Val Gly Tyr Gln Trp 1090 1095

FIG._2D

1	TTTNTTTTTCTTATTTTTTTTTTTTTTTTTTTTTTTTTT	60
61	AAATATCACTTTTTTATTCTCCAAATATAGAATAGAATA	120
121	GTATATTTATCATTAATTTTAAATAT <u>AAGGTAA</u> ATAAAAATGAACAAAATTTTTAAC M N K I F N	180
181	GTTATTTGGAATGTTATGACTCAAACTTGGGTTGTCGTATCTGAACTCACTC	240
241	ACCAAACGCGCCTCCGCAACCGTGGAGACCGCCGTATTGGCGACACTGTTGTTTGCAACG T K R A S A T V B T A V L A T L L F A T	300
301	GTTCAGGCGAATGCTACCGATGAAGATGAAGAGTTAGACCCCGTAGTACGCACTGCTCCC V Q A N A T D E D E E L D P V V R T A P	360
361	GTGTTGAGCTTCCATTCCGATAAAGAAGGCACGGGAGAAAAAGAAGTTACAGAAAATTCA V L S F H S D K E G T G E K E V T E N S	420
421	AATTGGGGAATATATTTCGACAATAAAGGAGTACTAAAAGCCGGAGCAATCACCCTCAAA N W G I Y F D N K G V L K A G A I T L K	480
481	GCCGGCGACAACCTGAAAATCAACAAAACACCGATGAAAGCACCAATGCCAGTAGCTTC A G D N L K I K Q N T D E S T N A S S F	540
541	ACCTACTCGCTGAAAAAAGACCTCACAGATCTGACCAGTGTTGCAACTGAAAAATTATCG T Y S L K K D L T D L T S V A T E K L S	600
601	TTTGGCGCAAACGGCGATAAAGTTGATATTACCAGTGATGCAAATGGCTTGAAATTGGCG F G A N G D K V D I T S D A N G L K L A	660
661	AAAACAGGTAACGGAAATGTTCATTTGAATGGTTTGGATTCAACTTTGCCTGATGCGGTA K T G N G N V H L N G L D S T L P D A V	720
721	ACGAATACAGGTGTGTTAAGTTCATCAAGTTTTACACCTAATGATGTTGAAAAAACAAGA T N T G V L S S S F T P N D V E K T R	780
781	GCTGCAACTGTTAAAGATGTTTTAAATGCAGGTTGGAACATTAAAGGTGCTAAAAACTGCT A A T V K D V L N A G W N I K G A K T A	840
841	GGAGGTAATGTTGAGAGTGTTGATTTAGTGTCCGCTTATAATAATGTTGAATTTATTACA G G N V E S V D L V S A Y N N V E F I T	900
901	GGCGATAAAAACACGCTTGATGTTGTATTAACAGCTAAAGAAAACGGTAAAACAACCGAA G D K N T L D V V L T A K E N G K T T E	960
961	GTGAAATTCACACCGAAAACCTCTGTTATCAAAGAAAAAGACGGTAAGTTATTTACTGGA V K F T P K T S V I K E K D G K L F T G	1020
1021	AAAGAGAATAACGACACAAATAAAGTTACAAGTAACACGGCGACTGATAATACAGATGAG K E N N D T N K V T S N T A T D N T D E	1080
1081	GGTAATGGCTTAGTCACTGCAAAAGCTGTGATTGATGCTGTGAACAAGGCTGGTTGGAGA G N G L V T A K A V I D A V N K A G W R	1140

FIG._3A

1141		TAA K	AAC T	AAC T														GTC S		CACA T	1200
			-	•					maa		•					ma a		ma c	ma a		1260
1201										TAC T							AGA D		TAA N		1260
	N	٧	T	F	-	Ģ	•	D	G	•	. •	A		•	•	•	~.	•	••	٠.	
1261	AA	TGG	CAT	CAC	TGT	AAT	GTA	CGA	.CGC	GAA	AGT	TGG	CGA	CGG	CTT	GAA	ATI	TGA	TAG	CGAT	1320
			I	T	V	K	Y	D	A	K	V	G	D	G	L	K	F	D	S		
				•			•				•			•			•			•	1200
1321	AA	AAA	AAT -	CGT	TGC	AGA	TAC	GAC	CGC	ACT	TAC	TGT	GAC	AGG	TGG	TAA	GG1	AGC	TGA.	AATT I.	1380
	K	K	I	V	A	D	T	T	A	L	T	V	T	G	G	2	٧	A	5	Δ.	
1381	CC	TA A	a Ca	Aga	ጥርል	CAA	CAA	AAA	АСТ	ጥርጥ	• ፕልል	TGC	AGG	CGA	TTT	GGT	AAC	AGC	TTT	aggt	1440
1301	A	K	rgn E	D D	D	K.	K	K	L	v	N	A	G	D	L	v	T	A	L	G	
											•			•			•			•	
1441	AA	TCT	AAG	TTG	GAA	AGC	AAA	AGC	TGA	GGC	TGA	TAC	TGA	TGG	TGC	GCT	TGA	.GGG	GAT	TTCA	1500
	N	L	S	W	K	A	K	A	E	A	D	T	D	G	A	L	E	G	I	S	
				•							•					~~~	««»	~~~	omm omm		1560
1501	AA	AGA	CCA	AGA	AGT	CAA	AGC	AGG	CGA	AAC	GGT	'AAC	CTT	TAA	LAGU A	GGG	CAA T	igaa N	C1-1:	MAAA MAAA	1360
	K	ע	Q	E	٧	V	A	G	B	1	٧	1	F		A	G	Α.	74			
1561	СT	CAA	ACA	GGA •	ጥርር	ጥርር	GAA	СТТ	TAC	тта	· TTC	ACT	GCA	AGA	TGC	TTT	AAC	GGG	TTT	AACG	1620
1301	V	K	0	D D	G	A	N	F	T	Y	S	L	Q	D	A	L	T	G	L	T	
			_								•			•			•			•	
1621	AG	CAT	TAC	TTT	AGG	TGG	TAC	AAC	TAA	TGG	CGG	AAA	TGA	TGC	:GAA	AAC	CGI	CAT	CAA	CAAA	1680
	S	I	T	L	G	G	T	T	N	G	G	N	D	A	K	T	V	I	N	K	
				•			•				•					m 2 0		010	~ n m		1740
1681										TAA N			TAC T	GAC T	AGG G		aaa N	T T	CAT I	CAGC	1/40
	ע	G	L	T	1	T	P	A	G	14	G	G	*	•	G	•		•	_		
1741	GT	AAC	CAA	AGA	TGG	САТ	· Kate	AGC	'AGG	TAA	TAA	AGC	TAT	TAC	TAA	TGT	TGC	GAG	TGG	TTTA	1800
_,																		S			
																				•	
1801	AG	AGC	TTA	TGA	CGA	TGC	GA.	TTT	'TGA	TGT	TTI	'AAA'	TAA	CTC	TGC:	AAC	TGA	TTT	AAA	TAGA	1860
	R	A	Y	D	D	A	N	F	D	V	L	N	N	S	A	T	D	L	N	R	
				•								m 00		mca			mac	'A A A	ጥል እ		1920
1861	CA	CGT	TGA	AGA	TGC	TTA	TAF	LAGC	5'1"1"1 T	:A'1'1	AAA: M	rrei t.	AAA N	TGA R	UUUU K	N	A T	N	K	ACAA O	1320
	н	٧	E	ע	A	1	v	G	L	ъ			24		•		••			•	
1921	CC	GTT	GGT	GAC	TGA	CAG	CAC	:GGC	CGGC	GAC	TG1	'AGG	CGA	TTI	PACC	TAA	TTA.	GGG	TTG	GGTA	1980
1721			v			s		A	A	T	V	G	D	L	R	K	L	G	W	v	
				_				•			•			•			•		_		
1981	GT	ATC	:AAC	CAA	AAA	CGG	TAC	:GAJ	LAG	LAGA	AAC	CAP	LTCA	AGT	TAP	LACA	AGC	TGA	TGA	AGTC	2040
	V	S	T	K	N	G	T	K	E	E	S	N	Q	V	K	Q	A	D	E	. •	
				•							•	-mm			י מחי		CCC	תנחוי	מיא		2100
2041	CT	CTI	TAC	:CGG	AGC	CGC:	FTG(TG(JATC T	لاتاتاتا 17	T'AC	TTC	CAA	NIC	.ige	N	.CG(K	H	T	2100
	L	F	Т	G	A	G	A	A	.T.	٧	•	3			-		•	. •	**	• .	
2101	ъT	ማኔ	יכפיז	• የጥልር	<u>፡</u> ሞርባ	יתפנ	TTG!	AAA(TAZ	AAGC	: :GG/	ATT	3CGG	TCT	rtg <i>i</i>	LAAJ	LAG	ATGG	CGA	TACT	2160
2101	T	T	V	S	v	A	B	T	K	A	D	С	G	L	E	K	D	G	D	T	
•	-							_										•		•	
2161	AT	TAP	\GC1	CAJ	\AG'	rggj	\TA	ATC	LAAL	ACAC	TG	ATAI	\TG7	(TT)	CAA1	CTGI	rtg(TAP	LTAA	TGGT	2220
	I	K	L	K	V	D	N	Q	N	T	D	N	V	L	T	V	G	N	N	G	
				•				•			•				22.00	· · ·	3M) -	. mar	1201	maaa.	2200
2221	AC	TGC:	TG!	CA(CTA	AAG(GTG(GCT'	rtgi -	AAA(—	CTG!	lta.	AAA 	.TG()کاAخ «	JGA(m	TG/	atg(AGA. T	TUGU	2280
	T	A	v	T	K	G	G	r	E	T	V	K	T	G	A	1	ע	A	U	L.	

FIG._3B

2281	GG'	TAA	AGI	'AAC	TGT	AAA	AGA'	TGC'	TAC:	rgc:	'AA'	rgac	CGC1	rga:	TAAC	LAAE	AGT(CGC	LACI	GTA	2340
	G	K	V	T	V	K	D	A	T	A	N	D	A	D •	K	K	v .	A	T	٧.	
2341	AA	AGA	TGI	TGC	AAC	CGC	AAT	TAA'	TAG'	rgc(GC(GAC!	rrr:	rgt(GAAI	AACI	AGA	IAAE	TTA	ACT	2400
	ĸ	D	v	A	T	A	I	N	S	A	A	T	F	V	K	T	E	N	L	T	
				•			·				•	~~~	~~ ~ 1	-	m/\ \	200		יא ה דא היד	ccc	יבפר	2460
2401					TGA	AGA	TAA	LCC.	TAC	AGA:	DAA'I	CGG	Jaal V	NGA.	TGA	ZGC.	T.	K	A	GGC G	2400
	T	S	I	D	E	D	N	P	T	ע	N	G	v	ים	ט	A	٠.	20	**	٠.	•
2461	C N	ma c	· Cmn		بالملامات	መ አ ል	AGC	A CC	TAA	AAA	· CTI	GAA	AGT	raa.	ACG!	rga:	rgg	AAA	LAAI	TTA	2520
240I	D.	Ψ. TWC	T.	T	P	K	A A	G	ĸ	N	L	K	V	K	R	D	G	K	N	I	
							_										•		•	•	
2521	AC	TTI	PTG#	CTI	'GGC	GAA	AAA	CCT	TGA(gg T(GAA	AAC!	rgc(GAA	AGT	GAG'	TGA'	TACT	rtt?	ACG	2580
	T	F	D	L	A	K	N	L	E	V	K	T	A	K	V	S	D	T	L	T	
				•			•				•		~~~					יים איניי	חים מיו	PACC	2640
2581	AT	TG(3CG(3GAA	TAC	'YCC	TAC	AGG	TGG	CAC	rac'	TGC N	GAC(GCL. D	ana V	A MGT	oaa N	I	T.	PAGC S	2010
	I	G	G	N	T	Р	1	G	G	T	T	A	•		K	•		•	•	٠.	
2641	20	cer	ובאחר	МПСС	Labets	ממנץ	սերհու	ጥርር	AAA	AGA	AAC	AGC	CGA'	TGC	CTC	GGG'	TTC'	TAAC	GAA!	TTD	2700
2041	AC T		D	. IG	Τ.	N	F	A	ĸ	E	T	A	D	A	S	G	S	K	N	v	
	_			_			_										•			•	
2701	TA	TT'	rgaj	AAGG	TAT	TGC	GAC	AAC	TTT	AAC'	TGA	GCC.	AAG	CGC	GGG	AGC	GAA	GTC'	rtc:	ACAC	2760
	Y	L	K	G	I	A	T	T	L	T	E	P	S	A	G	A	K	S	S	H	
				•			•				•			•		m > m		3031	nom:		2820
2761	GT	TG	ATT.	laat N	\TG7	rgga	TGC	GAC	GAA	AAA	ATC	CAA	TGC	AGC X	AAG C	TAT	TGA.	NGW.	V	ATTG t.	2020
	V	D	L	N	V	D	A	Т	K	K	5	N	A		5				•	- .	
2821	CC	ירכו	~ N C (GDM/	2G N I	ייביי	מחרש	ACC	ממיז:	тсс	• TAA	TAA	TGT	TGA	TTA	TGT	AGC	GAC	GTA!	rgac	2880
4041	R	LG. A	G	W	N	Ī	0	G	N	G	N	N	v	D	Y	V	A	T	Y	D	
				_										•			-			•	
2881	AC	'AG'	TAA	ACT"	rta(CCGA	TGA	CAG	CAC	AGG	TAC	AAC	AAC	GGT	AAC	CGT	AAC	CCA	VYV	AGCA	2940
	T	V	N	F	T	D	D	S	T	G	T	T	Ť	V	T	V	T	Q	K	A	
				•										mm/	·m·c·m	m a m		B G B	CCN	חממי	3000
2941	GA	TG	GCA.	AAG(G	GTG(TG	ACG1	TAA	TAAL	CGG	TGC	GAA V	AAC T	TIC	.TGI V	TAL	K	D D	H	CAAC N	3000
	D	G	K	G	A	ע	V	K	1	G	A	r	•		•	_	• •		_	•	
3001	CC	מחי	አልሮ	անվո •	מידים	7260	CAI	NAGE	CCI	GAA	AGA	TGC	:GAA	TAA	TGG	TGC	AAC	CGT	TAG'	TGAA	3060
2001	G	K	AAC L	F	T	G	K	D	L	K	D	A	N	N	G	A	T	V	S	E	
	_										_							,			2422
3061	G#	\TG	ATG	GCA	AAG	ACA	CCG	CAC	CAGG	CTI	'AGT	TAC	TGC	AA	rayc	TGT	'GAT	TGA	TGC.	AGTA	3120
3061	D	D	G	K	D	T	G	T	G	L	V	T	A	K	T	V	1	ָע	A	٧	
											_						•	•		•	3180
3121	A.	ATA 	AAA	.GCG G	GTT	GGA(GGG'	DAA'I		i TGA	1666 2	JUUL A	JAD. Tr	.1GC	R	T.	.coc	A	T	A	7277
											_							•		•	
2101	C	מ אח	አጥር	ירפפ	CTA	ACG	ርጥር	AAA(CCG	rTAC	ATC	CAGO	CAC	:GA(GCG7	'GA	CTI	CAA	AAA	CGGC	3240
3101	v.	N N	A I	G	N	A	E	T	V	T	S	G	T	S	v	N	F	K	N	G	
								_						•				•		•	
3241	A	ATG	CGA	CCA	CAG	CGA	CCG'	TAA	GCA	AAG!	ATA	ATG(3CAJ	CA!	rcai	ATGT	rcaj	ATA	CGA	TGTA	3300
	N	A	ľ	T	A	T	V	S	K	D	N	G	N	Ι	N	V	K	Y	ע	V	
				•											mcc	ر تروانا	ישמי	1010	יפאר	ירארא ביוביי	3360
3301	A	ATG	TTG	GTG	ACG	GCT	TGA.	AGA'	TTG(CG) ح	atg/	NUA.	17171. T	LLAN. T	U V) 	ת ת	√-Σ(r T	CACA T	2200
														_				•		•	
3361	<u> </u>	ב נענט	Cm/	תנחת	CAC	ርጥር	ርጥል	AGC	TGT	CTG'	PTC	CTG	CTG	GTG	CTA	ATA(GTG:	rta.	TAA	CAAT	3420
2201	T.	ተ.የ.ህ	TU	7 ЛАН 7 П	י ה	GIG	K	V	S	v	P	A	G	A	N	S	v	N	N	N	

FIG._3C SUBSTITUTE SHEET (RULE 26)

3421																		GCT(GGCA A	3480
	v	r	ш		14	A	۵.		п	A		n	п		TA.	ъ	3	. "	T	Α.	
3481	AA	AGC	CGA	TAA	ATA	TGC	'AGI	\TG(3CG2	AGTO	'AG	\GG(CGA	LAAC	:CGA	CCA	AG!	AAG 1	CAA	AGCA	3540
	K	A	D	K	Y	A	D	G	E	S	B	G	E	T	D	Q	E	V	K	A	
3541	GG	CGA	CAA	Agt	AAC	CT1	LAT	LAGO	'AGG	CAA	GAA	\CT7	'AAA	LAGI	'GAA	ACA	GTC	CTGA	AAA	AGAC	3600
	G	D	K	V	T	F	K	A	G	K	N	L	ĸ	V	K	Q	S	E	K	D	
3601	(Lyan)	መልሶ	anas y	האושה	ъсп	יכרז	AGB		, talah	מ גיו	'A <i>CC</i>	וייוויטיב	מ בי	יכאכי	יר א ת	መልሶ	י המדעריי	Ba <i>cc</i>	mee	TACA	3660
3001																		G			3000
3661		m» »	maa			mc s	mac			100m			<i>~</i> >>		000					GCTG	2726
3001																		I			3720
	A	74	G		24	•	٠.		•	•	. •	74	1		G		٠.	. •	•	٠.	
3721																					3780
	A	N	G	A	A	A	G	T	D	λ	S	N	G	N	T	I	S	٧	T	K	
3781	GA	rcc	ሮ ልሞ	ጥልር፣	ሞርር	CCC	ממידי	ጥል እ	ACI	ת ב	• ጥልቦ	מ מיזי	ጥርጥ	• ጥልል	GAG	ጥርር	unlai.	מממי	אממ	CTAT	3840
,,,,																		K			3040
				•			•				•			•					_	•	
3841																				TAAA	3900
	K	D	T	Q	N	T	A	D	E	T	Q	D	K	E	F	H	A	A	V	K	
3901	AA	CGC.	AAA'	TGA	AGT	TGA	GTT	CGT	GGG	TAA	Aaa	.CGG	TGC	AAC	CGT	GTC	TGC	AAA	AAC	TGAT	3960
																		K			
		~~ ~		•			•				•			•			•				
3961																		TGA D		TCTT	4020
	74	24	J		••	•	٠.	•	•	D	. •	A	-		A	•	٠.	D	G		
021	GA	AAA	AGA'	TAC'	TGA	CGG	CAA	GAT	TAA	ACT	CAA	AGT	AGA	TAA	TAC.	AGA	TGG	GAA	TAA'	TCTA	4080
	E	K	D	T	D	G	K	I	K	L	K	V	D	N	T	D	G	N	N	L	
1081	TT	AAC	CGT	rga'	TGC	AAC	Aaa	AGG	TGC	ATC	CGT	TGC	CAA	GGG	CGA	GTT	Aat	TGC	CGT	AACA	4140
																		A		_	
				•			•				•			•			•			•	
141																				CAAG	4200
	T	ע	A	T	T	A	Q.	G	T	N	Α.	N	E	ĸ	G	K	٧.	V	V	К .	
201	GG	rtc.	AAA!	rgg:	TGC	AAC	TGC	TAC	CGA	AAC	TGA	CAA	GAA	ÄÄÄ	AGT	GGC.	AAC	TGT	TGG	CGAC	4260
	G	S	N	G	A	T	A	T	E	T	D	K	K	K	V	A	T	v	G	D	
					~~ m			~~~					~					~~	~~~		4220
1201																		CGA D			4320
	٧	^	•		-	74	٦.	n	n	•		•	*/	•	-		٦.				
1321																					4380
	T	I	D	D	S	P	T	D	D	G	A	N	D	A	L	K	A	G	D	T	
201	mm/	300	CUTO 1		A C C	ccc	ፈፈጥ		ىئىلىك	AAA	• እርጥ	መ አ	ልሮር፡	• ጥር እሳ	ጥርር	ממיד	444	ጥልጥ	יי איזי	TTTT	4440
301																		I			3330
				•			•				•			•						•	
441																					4500
	A	L	, A	N	D	L	S	V	K	S	A	T	V	S	D	K	L	S	L	G	
501	ACI	122	רפני	י. ימגר	ממד	AGT	CAA	TAT	CAC	AAG	CGA	CAC	CAA	AGG	Стт	GAA	ርፓጥ	'CGC	TAA	AGAT	4560
																				D	

FIG._3D

4561	λG	TAA	GAC	AGG	CGA	TGA	TGC	TAA	TAT	TCA	CTT	AAA	TGG	CAT	TGC	TTC	AAC	TTT	AAC	TGAT	4620
	S	K	T	G	D	D	A	N	I	H	L •	N	G	I •	A	S	T.	L	T	D .	
4621																				CGAG	4680
	T	L	L	N •	S	G	A.	T	T	N		G	G	N •	G	I	T.	D	N	B .	
4681																				TGTT	4740
				•			٠.				•			•				R		•	
4741																					4800
	•	_		•							•			•			•	Y		•	
4801																				TAAT	4860
				•							•			•			•	ĸ		•	
4861																				CGGC	4920
			_	•			•				•			•			•	H		•	
4921																				CGAA	4980
				•	_						•			•			•	V		- .	
4981																				CGTG	5040
	_		_	•			•				•			•			•	D		•	
5041																				CGCA	5100
											•				_			D		•	
5101																				AGTA	5160
					_						•			•				A			
5161																				CTTA	5220
·. 	_			•	-						•						•	D		•	5000
5221																				AAAT	5280
				•														D			E340
5281																				GAT	5340
	V	T	A	P	N	N	G	D	G	K.	K	r	V	ע	A	5	G	L	A	D	
5341				maa	1 mm		· ~~~	0 h C		**	MCC	mcc	መል እ	NGN	NGC(ሮልሮ	rcc	TCA	እርም	የርልጥ	5400
2341																					3200
5401	CC	TCC	יבבב	ውጥር •	AGC	AGG	GCA	AGA	AGT	CAA	AGC	GGG	CGA	CAA	AGT.	AAC	CTI	TAA	AGC	CGGC	5460
7401	P	A	N	s	A	G	Q	E	v	K	A	G	D	ĸ	V	T	F.	K	A	G .	
5461	GA	CAA	ССТ	GAA	ААТ	CAA	ACA	AAG	CGG	CAA	AGA	CTT	TAC	CTA	CTC	GCT	GAA	AAA	AGA	GCTG	. 5520
J. 01	D	N	L	K	I	K	Q	S	G	K	D.	F	T	Y	S	L	K.	K	E	L .	
5521	AA	AGA	ССТ	GÀC	CAG	CGT.	AGA	GTT	CAA	AGA	CGC	AAA	CGG	CGG	TAC	AGG	CAG	TGA	AAG	CACC	5580
· .	K	D	L	T	S	V	E	F	K	D	A	N	G	G	T	G	s.	E	S	T.	
5581 '	AA	GAT	TAC	CAA	AGA	CGG	CTT	GAC	CAT	TAC	GCC	GGC	AAA	CGG	TGC	GGG	TGC	:GGC	AGG'	TGCA	5640
	K	I	T	K	D	G	L	T	I	T	P .	A	N	G •	A	G	A	A	G	Α .	
5641	AA	CAC	TGC	Aaa	CAC	САТ	TAG	CGT	AAC	CAA	AGA	TGG	CAT	TAG	CGC	GGG	TAA	AATA	AGC.	AGTT	5700
																				V	

FIG._3E

'AT.	AC	AAA	CGT	TGT	'GAC	: CGG	ACT	GAA	GAA	TTA	TGG	:TGA	TGG	TCA	TAC	GT1	:GG(CAAA	LTGG	CACT	!
	T	N	V	V	S	G	L	K	K	F	G	D	G	H	T	L	A	N	G	T	
761	GT	TGC	TGA	TTT	'TGA	LAAA	.GC#	LTTA	TGA	CAA	TGC	CTA	TAA	AGA	CTT	'GAC	CAI	ATTI	'GGA	TGAA	!
																		L			
321																				TTTG	
	K	G	A	D •	N	N	Р.	T	V	A	D •	N	T	A	A	T	V,	G •	D	L .	
81			-		-			-	-	_									-	ATAC	
	.R	G	L	G	W	V	I	S	A	D	K	T	T	G	B	P	N	Q	B	Y	
41	AA	CGC	GCA	AGT	GCG	TAA	CGC	CAA	TGA	AGT	GAA	ATT	CAA	GAG	CGG	CAA	CGG	TAT	'CAA	TGTT	(
	N	A	Q	v ·	R	N	A	N	E	V	. K	F	K	s	G	N	G	I	N	v .	
001	TC	CGG	TAA	AAC	ATT	'GAA	.CGG	TAC	GCG	CGT	GAT	TAC	CTT	TGA	ATT	GGC	TAA	LAGG	CGA	AGTG	(
	S	G	K	T	L	N	G	T	R	V	I.	T	P	E	L	A	K	G	E	v .	
61											-									TAAA	(
	V	K	S	N	E	F	T	V	K	N	A	D	G	S	E	T	N	. L	: V	. K	
21	GT'	rgg	CGA'	TAT	GTA	TTA	CAG	CAA	AGA	.GGA	TAT	TGA	CCC	GGC	AAC	CAG	TAA	ACC	GAT	GACA	(
	V	G	D	M	Y	Y	s	K	E	D	I.	D	P	A	T	S	K.	P	M	T .	
81																				CAAG	(
	G	K	T	E	K	Y	K	V	E	N	G	K	V	V	S	A	N	G	S	K	
41	AC	CGA	AGT'	TAC	ССТ	AAC	CAA	CAA	AGG	TTC	CGG	СТА	TGT.	AAC	AGG	TAA	CCA	AGT	GGC'	TGAT	(
																		v			
01	000	7 3 m	mcc.		3 m/2	300		ma s	oom	maa	•	~~~	200		000					AGCC	(
01																		E			•
61	thirte.	דכר:	ACA:	226	rer		Aga	~»	CCA	ን ሙብ፣	ሮጥሶ	ጥል አ	NGN'	ጥልል:	a GC	CCA	286	மூருமு	A A A '	TGCC	(
01																		V			•
				•					_		•			•			•			•	
21										TTT. L										GGAA	•
	п	ע	V	•	ĸ	F	A	N	G	ע	N	T	v	٧ .	5	A	A	T	V	Б.	
81	AGO																			ATTG	6
	S	T	D	A	N	G	D	K	V	T	T	T	F	V	X	T	D	V	E	L	
41	CC	իդիմի	AAC	GCA:	ልልጥ	СТА	CAA	TAC	CGA	TGC	AAA	CGG	TAA'	TAA(GAT	CGT	Aat	AAA	AGC'	TGAC	•
																		ĸ			
01	GGZ	AAA	ATG	GTA'	TGA	ACT	GAA	TGC	TGA	TGG'	TAC	GGC	GAG'	- TAA(CAA	AGA.	Agt	GAC	ACT'	TGGT	•
	G	K	W	Y	E	L	N	A	D	G	T	A	S	N	K	E	V	T	L	G	
51	22/	יתים	ימטט	ጥርር		caa	ጥልል	CAA	ልርጥ	ጥርጥ	Caa	እ <i>ር</i> ጥ	AAC	CCA:	A A A	ጥርር	ጥርር	'GGA	ጥልል፡	GTGG	(
- 1																		D			•
			 .	•		-			mc-	~~-			~		~~	. ~~			mc*	maa:	4
																			TGA D	TAAA K	(
4 I	Y	Y	1	7.0	-		G				••	-	••	•		•			_	••	

FIG._3F SUBSTITUTE SHEET (RULE 26)

											•			•			•			•	
11	00	ccm	CCT	~ A TT	TC A	CAA	ጥርጥ	יכפר	TAA	ጥርር	CGA	AAT	TTC	TGC	CAC	TTC	CAC	CGA!	rgc	GATT	69
41				CV.	100		v	2	N	~	R		S	A	т	S	T	ח	λ	T	
	G	V	V	I	ע	N	V	A	M	G	-	_	5	A	•		•	_	**	•	
				•			•				•			•						•	
01	AA	CGG	AAG	TCA	GTT	GTA	TGC	CGT	'GGC	AAA	AGG	GGT	AAC	AAA	CCT	TGC	TGG.	ACA.	AGT	GAAT	69
	N	G	S	0	L	Y	A	V	A	K	G	V	T	N	L	A	G	Q	V	N	
	24	Ų	_	w	_	_		-													
					~	1 OF	~~~	ma a	N COT	ccc	CAA	ACC	ጥርር	ימאַמ	ጥርር	V CC	TAC	AGC	AAG'	TGCA	70
961		TCT		نانانا.	CAA							nco R	100	ייטיי	200	G	Ţ		S	A	
	N	L	B	G	K	V	N	K	V	G	V	K	A	ע	n	G	•	n	3	A	
				•			•	•			•			•			•				
21	тт	AGC	:GGC	TTC	ACA	GTT	'ACC	'ACA	AGC	CAC	TAT	GCC	AGG	TAA	ATC	AAT	GGT	TGC'	TAT	TGCĞ	70
	t.	Δ	A	S	0	L	P	0	A	T	M	P	G	K	S	M	V	A	I	A	
				_	-	_		_			_									•	
^-	~~		m 2 C	- 	mc a	300	מיחתי		TGG	Telegraph	יאַמרי	ጥልጥ	rcc	CCT	ATC	AAG	AAT	TTC	CGA	TAAT	71
81	-			TTH	TU	_	1100		_	***		T	G	v	S	R	T	S	מ	N	
	G	S	S	Y	Q	G	Q	N	G	ט	A	1	G	٧	3	v	_	3		2.7	
				•			•	•			•			•							
41	GG	CAA	AGT	GAT	TAT	TCG	CTI	GTC	:AGG	CAC	AAC	CAA	TAG	TCA	AGG	TAA	AAC			TGCA	72
	G	K	v	I	I	R	L	S	G	T	T	N	S	Q	G	K	T	G	V	A	
	•		•	_	_																
^4	~~		m/n	m	erren s	CCR	CINC.	CMD	220	THE PERSON	CC3	מ ידייני	ጥርጥ	יים יי	ጥ አ	AAA	AGC	GGC	ATT	TGCC	72
01	GCAGGTGTTGGTTACCAGTGGTAAAGTTTGGATTATCTCTCTT <u>AAAAAAGCGGCA</u> TT <u>TGCC</u>																				
	A	G	V	G	Y	Q	W														
				•				•			•										
61	GC	لملمك	لململم	TAT	'GGG	TGO	CT	ATT	ATG?	TAT	CGT	72	291								

FIG._3G

1 50 17	4 608	847	1291	1476	1914/	1915	2353
HA2 🗀 📆							
(96/86)	(77/66)	(67/	54)	(/	9/68)	(89/8	54)
E	IG. 4		1 50	221	658/	-	1098

HA2	1	MNKIFNVIWNVMTQTWVVVSELTRTHTKRLRNR.GDPVLATLLFATVQA.	48
HA1	1		50
	49	NATDEDEELDPVVRTAPVLSFHSDKEGTGEKEVTENSNWGIYFDNKG	95
	51	.	98
	96		117
	99	: KLLVEDNTAATVGNLRKLGWVLSSKNGTRNEKSQQVKHADEVLFEGKGGV	148
	118	EXTNASSFTYSLKKDLTDLTSVATEKLSFGANGDKVDI	155
		QVTSTSENGKHTITFALAKDLGVKTATVSDTLTIGGGAAAGATTTPKVNV	
	156	TSDANGLKLAKTGNGNVHLNGLDSTLPDAVTNTGVLSSSSFTPND	200
	199	TSTTDGLKFAKDAAGANGDTTVHLNGIGSTLTDTLVGSPATHIDG.GDQS	247
	201	VEKTRAATVKDVLNAGWNIKGAKTAGGNVESVDLVSAYNNVEFITGDK!!!:!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	248
		THYTRAASIKDVLNAGWNIKGVKAGSTTGQSENVDFVHTYDTVEFLSADT	
		NTLDVVLTAKENXKTTEVKFTPKTSVIKEKDGKLFTGKENNDTNKVTSNT	
		ETTTVTVDSKENGKRTEVKIGAKTSVIKEKDGKLFTGKANKETNKVDGAN	
		ATDNTDEGNGLVTAKAVIDAVNKAGWRVKTTTANGQNGDFATVASGTNVT	
		ATEDADEGRGLVTAKDVIDAVNKTGWRIKTTDANGQNGDFATVASGTNVT	
		FESGDGTTASVTKDTNGNGITVKYDAKVGDGLKFDSDKKIVADTTALTVT	
		FASGNGTTATVTNGTDGITVKYDAKVGDGLKLDGD.KIAADTTALTVN	
		GGRVAEIAKEDDKKKLVNAGDLVTALGNLSWKAKAEADTDGA	
		DGKNANNPKGKVADVASTDE.KKLVTAKGLVTALNSLSWTTTAAEADGGT	
		LEGISKDOEVKAGETVTFKAGKNLKVKODGANFTYSLODALTGLTSITLG	
		LDGNASEQEVKAGDKVTFKAGKNLKVKQEGANFTYSLQDALTGLTSITLG	
	491	GTTNGGNDAKTVINKDGLTITPAGNGGTTGTNTISVTKDGIKAGNKAITN	540

FIG._5A

544	TGNNGAKTEINKDGLT	TITPANGAGA	NNANTIS	VTKDGISAGGQ	SVKN	590
541	VASGLRAYDDANFDVLNNS	SATDLNRHVE	Daykgli	NLNEKNANKQ.:	PLVT	589
	. : :: . VVSGLKKFGDANFDPLTSS	11.:1.:: :	11111	: :	1:1.	
-	•	•	•	•	•	
590	DSTAATVGDLRKLGWVVS	607				
	1.1111111111111111					
641	DNTAATVGDLRGLGWVIS	658				

FIG._5B

18/26

Restriction maps of phage 11-17 and plasmid pT7-7 subclones

FIG._6

FIG._8

1 2 3 4 5 6

1 2 3 4 5 6

12kb — 7 — 5 — 4 — 3 — 2 —

FIG._9A

FIG._9B

	1 ·		
HA2	MNKIFNVIWN	VMTQTWVVS	ELTR
HA1	MNKIFNVIWN	VVTQTWVVS	ELTR
HMW1	MNKIYRLKFS	KRLNALVAVS	ELAR
HMW2	MNKIYRLKFS	KRLNALVAVS	ELAR
AIDA-1	MNKAYSIIWS	HSRQAWIVAS	ELAR
Tsh	MNRIYSLRYS	AVARGFIAVS	EFAR
SepA	MNKIYYLKYC	HITKSLIAVS	ELAR
			
Consensus	MNKIYIWS	-VTQ-WVS	ELAR

FIG._11

SUBSTITUTE SHEET (RULE 26)

1 2 3 4 5 6 7 8 9 10 11

12 kb —
7 — —
5 —
4 —
3 —
1.6 —

FIG._12

1 2 3 4 5 6 7 8 9 10 11 12

12 kb — 7 — 5 — 4 — 3 — 2 — 1.6 — 1.6 — 1.6

FIG._13

1	ATGAACAAAA	TTTAACGT	TATTTGGAAT	GTTGTGACTC	AAACTTGGGT
_)		
51	•			CAAATGCGCC	
101	TGGCAGTTGC	CGTATTGGCA	ACCCTGTTGT	CCGCAACGGT	TCAGGCGAAT
151	GCTACCGATG	AAAACGAAGA	TGATGAAGAA	GAGTTAGAAC	CCGTACAACG
201	CTCTGTTTTA	AGGTGGAGCT	TCAAATCCGC	TAAGGAAGGC	ACTGGAGAAC
251	AAGAGGGAAC	AACAGAGGTA	ATAAATTTGA	ACACAGATTC	ATCAGGAAAT
301	GCAGTAGGAA	GCAGCACAAT	CACCTTCAAA	GCCGGCGACA	ACCTGAAAAT
351	CAAACAAAGC	GGCAATGACT	TCACCTACTC	GCTGAAAAA	GAGCTGAAAA
401	ACCTGACCAG	TGTTGAAACT	GAAAAATTAT	CGTTTGGCGC	AAACGGCAAT
451	AAAGTTGATA	TTACCAGTGA	TGCAAATGGC	TTGAAATTGG	CGAAAACAGG
501	TAACGGAAAT	GGTCAAAACA	GTAATGTTCA	CTTAAACGGT	ATTGCTTCGA
551	CTTTGACCGA	TACGCTTGCC	GGTGGCACAA	CAGGACACGT	TGACACCAAC
601	ATTGATGCGG	TTAATTATCA	TCGCGCTGCA	AGCGTACAAG	ATGTGTTAAA
651	CAGCGGTTGG	AATATCCAAG	GCAATGGAAA	CAATGTCGAT	TTTGTCCGTA
701	CTTACGACAC	CGTGGACTTT	GTCAATGGCG	CGAATGCCAA	TGTGAGCGTT
751	ACGGCTGATA	CGGCTCACAA	AAAGACAACT	GTCCGTGTGG	ATGTAACAGG
801	CTTGCCGGTT	CAATATGTTA	CGGAAGACGG	CAAAACCGTT	GTGAAAGTGG
851	GCAATGAGTA	TTACAAAGCC	AAAGATGACG	GTTCGGCGGA	TATGAATCAA
901	AAAGTCGAAA	ACGGCGAGCT	GGCGAAAACC	AAAGTGAAAT	TGGTATCGGC
951	AAGCGGTACA	AATCCGGTGA	AAATTAGCAA	TGTTGCAGAC	GGCACGGAAG

FIG._14A

					1010111010
1001	ACACCGATGC GG	ICAGCTIT	AAGCAATTAA	AAGCCTTGCA	AGACAAACAG
1051	GTTACGTTGA GC	ACGAGCAA	TGCTTATGCC	AATGGCGGTA	CAGATAACGA
1101	CGGCGGCAAG GCI	AACTCAAA	CTTTAAGCAA	TGGTTTGAAT	TTTAAATTTA
1151	AATCTAGCGA TG	CGAGTTG	TTGAAAATTA	GCGCGACCGG	CGATACGGTT
1201	ACTTTTACGC CG	AAAAAAGG	TTCGGTACAG	GTTGGCGATG	ATGGCAAGGC
1251	TTCAATTTCA AA	AGGTGCAA	ATACAACTGA	AGGTTTGGTT	GAGGCTTCTG
1301	AATTGGTTGA AAG	CCTGAAC	AAACTGGGTT	GGAAAGTAGG	GGTTGAGAAA
1351	GTCGGCAGCG GCC	EAGCTTGA	TGGTACATCC	AAGGAAACTT	TAGTGAAGTC
1401	GGGCGATAAA GT	ACTTTGA	AAGCCGGCGA	CAATCTGAAG	GTCAAACAAG
1451	AGGGCACAAA CTT	CACTTAC	GCGCTCAAAG	ATGAATTGAC	GGGCGTGAAG
1501	AGCGTGGAGT TT	AAAGACAC	GGCGAATGGT	GCAAACGGTG	CAAGCACGAA
1551	GATTACCAAA GAG	CGCCTTGA	CCATTACGCT	GGCAAACGGT	GCGAATGGTG
1601	CGACGGTGAC TG	ATGCCGAC	AAGATTAAAG	TTGCTTCGGA	CGGCATTAGC
1651	GCGGGTAATA AAG	CAGTTAA	AAACGTCGCG	GCAGGCGAAA	TTTCTGCCAC
1701	TTCCACCGAT GCC	SATTAACG	GAAGCCAGTT	GTATGCCGTG	GCAAAAGGGG
1751	TAACAAACCT TG	CTGGACAA	GTGAATAATC	TTGAGGGCAA	AGTGAATAAA
1801	GTGGGCAAAC GTG	CAGATGC	AGGTACTGCA	AGTGCATTAG	CGGCTTCACA
1851	GTTACCACAA GCC	CACTATGC	CAGGTAAATC	AATGGTTTCT	ATTGCGGGAA
1901	GTAGTTATCA AGG	STCAAAAT	GGTTTAGCTA	TCGGGGTATC	AAGAATTTCC
1951	GATAATGGCA AAG	STGATTAT	TCGCTTGTCT	GGCACAACCA	ATAGTCAAGG
2001	TAAAACAGGC GT	TGCAGCAG	GTGTTGGTT!	CCAGTGG	

FIG._14B

1	MNKIFNVIWN	VVTQTWVVVS	ELTRTHTKCA	SATVAVAVLA	THISATVUAL
51	ATDENEDDEE	ELEPVQRSVL	RWSFKSAKEG	TGEQEGTTEV	INLNTDSSGN
101	AVGSSTITFK	AGDNLKIKQS	GNDFTYSLKK	ELKNLTSVET	EKLSFGANGN
151	KVDITSDANG	LKLAKTGNGN	GONSNVHLNG	IASTLTDTLA	GGTTGHVDTN
201	IDAVNYHRAA	SVQDVLNSGW	NIQGNGNNVD	FVRTYDTVDF	VNGANANVSV
251	TADTAHKKTT	VRVDVTGLPV	QYVTEDGKTV	VKVGNEYYKA	KDDGSADMNQ
301	KVENGELAKT	KVKLVSASGT	NPVKISNVAD	GTEDTDAVSF	KQLKALQDKQ
351	VTLSTSNAYA	NGGTDNDGGK	ATQTLSNGLN	FKFKSSDGEL	LKISATGDTV
401	TFTPKKGSVQ	VGDDGKASIS	KGANTTEGLV	EASELVESLN	KLGWKVGVEK
451	VGSGELDGTS	KETLVKSGDK	VTLKAGDNLK	VKQEGTNFTY	ALKDELTGVK
501	SVEFKDTANG	ANGASTKITK	DGLTITLANG	ANGATVTDAD	KIKVASDGIS
551	AGNKAVKNVA	AGEISATSTD	AINGSQLYAV	AKGVTNLAGQ	VNNLEGKVNR
601	VGKRADAGTA	SALAASQLPQ	ATMPGKSMVS	IAGSSYQGQN	GLAIGVSRIS
651	DNGKVIIRLS	GTTNSQGKTG	VAAGVGYQW	•	

FIG._15

1		J 0
1	MNKIFNVIWNVVTQTWVVVSELTRTHTKCASATVAVAVLATLLSATVQAN	50
51	NNTPVTNKLKAYGDANFNFTNNSIADAEKQVQEAYKGLLNLNEKNASDKL	100
51	.:!.!.::::::::::::::::::::::::::::::	80
101	LVEDNTAATVGNLRKLGWVLSSKNGTRNEKSQQVKHADEVLFEGKGGVQV	150
81	. :: :. :. .::::::::::::::	117
151	TSTSENGKHTITFALAKDLGVKTATVSDTLTIGGGAAAGATTTPKVNVTS	200
118	KQSGNDFTYSLKKELKNLTSVETEKLSFGANGNKVDITS	156
201	TTDGLKFAKDAAGANGDTTVHLNGIGSTLTDTLVGSPATHIDGGDQSTHY .: : .:	250
157	DANGLKLAKTGNGNGQNSNVHLNGIASTLTDTLAGGTTGHVDTNIDAVNY	206
251	TRAASIKDVLNAGWNIKGVKAGSTTGQSENVDFVHTYDTVEFLSADTETT	300
207	:. .	248
301	TVTVDSKENGKRTEVKIGAKTSVIKERDGKLFTGKANKETNKVDGANATE	350
249	SVTADTAHKKTTVRVDVTGLPVQYVTEDGKTVVKVGNEYYKAKDDGSADM	298
351	DADEGKGLVTAKDVIDAVNKTGWRIKTTDANGONGDFATVASG	393
299	NQKVENGELAKTKVKLVSASGTNPVKISNVADGTEDTDAVSFKQLKALQD	348
394	TNVTFASGNGTTATVTNGTDGITVKYDAKVGDGLKLDGDKI :: : : :. :. : : ::	434
349	KQVTLSTSNAYANGGTDNDGGKATQTLSNGLNFKFKSSDGELLKISA	395
435	AADTTALTVNDGKNANNPKGKVADVASTDEKKLVTAKGLVTALNSLSW .: 	482
396	TGDTVTFTPKKGSVQVGDDGKASISKGANTTE.GLVEASELVESLNKLGW	444
483	TTTAAEADGGTLDGNASEQEVKAGDKVTFKAGKNLKVKQEGANFTYSLQD	532
445	KVGVEKVGSGELDGTSKETLVKSGDKVTLKAGDNLKVKQEGTNFTYALKD	494
533	ALTGLTSITLGTGNNGAKTEINKDGLTITPANGAGANNANTISV	576
495	ELTGVKSVEFKDTANGANGASTKITKDGLTITLANGANGATVTDADKIKV	544
577	TKDGISAGGQSVKNVVSGLKKFGDANFDPLTSSADNLTKQNDDAYKGLTN	626
E 4 E	ASDCISACNEAVE	557

FIG._16A SUBSTITUTE SHEET (RULE 26)

977	NVANGDISATSTDAINGSQLYAVAKGVTNLAGQVNNLEGKVNKVGKRADA	1026
		•
558	NVAAGEISATSTDAINGSQLYAVAKGVTNLAGQVNNLEGKVNKVGKRADA	607
	· · · · · · · · · · · · · · · · · · ·	1076
1027	GTASALAASOLPQATMPGKSMVAIAGSSYQGQNGLAIGVSRISDNGKVII	10,0
CO 0	GTASALAASQLPQATMPGKSMVSIAGSSYQGQNGLAIGVSRISDNGKVII	657
000	GIADAIMADQUI QATIM GIADITA DA LO LA	
1077	RLSGTTNSQGKTGVAAGVGYQW 1098	
CEQ.	PI.SCTTNSOCKTGVAAGVGYOW 679	

FIG._16B

INTERNATIONAL SEARCH REPORT

PCT/Up 96/04031

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C12N15/31 C07K14/285 A61K39/102 C07K16/12 //(C12N15/31, C12R1:21) According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C07K IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claum No. Citation of document, with indication, where appropriate, of the relevant passages WO,A,92 10936 (MICROCARB INC) 9 July 1992 1,6, X 13-16.19 see claims 10-15,25-36 WO,A,94 00149 (MICROCARB INC ; KRIVAN 1-6. X 13-16,19 HOWARD C (US); SAMUELS JAMES E (US); NORBERG) 6 January 1994 see claims 5,7-23 -/--Patent family members are listed in annex. Further documents are listed in the continuation of box \boldsymbol{C} . X. Special categories of cited documents: To later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance IDVEDDOO "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person stolled "O" document referring to an oral disciosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed in the art. "A" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 0 3. <u>09. 96</u> 19 August 1996 Authorized offices Name and mailing address of the ISA European Patent Office, P.B. S&18 Patentiaan 2 NL - 2280 HV Ripwijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Gurdjian, D Fax: (+31-70) 340-3016

2

INTERNATIONAL SEARCH REPORT

Internation Application No PCT/US 96/04031

	Reserve	PCT/US 96/04031
	DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
(Continuation	DOCUMENTS CONSIDERED TO CONTROL Of the relevant passages used of document, with indication, where appropriate, of the relevant passages	
	INFECT.IMMUN., 1992, vol. 60, no. 4, pages 1302-1313, XP000578343 BARENKAMP S J ET AL: "Cloning, expression, and DNA sequence analysis of genes encoding nontypeable Haemophilus influenzae high-molecular-weight surface-exposed proteins related to filamentous hemagglutinin of Bordetella	1,6, 13-16
x	pertussis" see the whole document INFECTION AND IMMUNITY, 62 (8). 1994. 3320-3328., XP000578342 BARENKAMP S J ET AL: "Genes encoding high-molecular-weight adhesion proteins of high-molecular-weight influenzae are	1,6, 13-16
x	part of gene clusters see the whole document 105TH ANNUAL MEETING OF THE AMERICAN PEDIATRIC SOCIETY AND THE 64TH ANNUAL MEETING OF THE SOCIETY FOR PEDIATRIC RESEARCH, SAN DIEGO, CALIFORNIA, USA. MAY 7-11, 1995. PEDIATRIC RESEARCH, 37 (4 PART	1,6, 13-16
Т	BARENKAMP S J ET AL: Identified second family of high molecular weight adhesion proteins expressed by nontypable Haemophilus influenzae (NTHI) see abstract SCIENCE (WASHINGTON D C), 269 (5223). 1995. 496-498, 507-512., XP002010838 FLEISCHMANN R D ET AL: "Whole-genome requesting and assembly of	1-12
P,X	Haemophilus influenzae Rd" see example ADHESIN MOLECULAR MICROBIOLOGY, 19 (6). 1996. 1215-1223., XP000579265 BARENKAMP S J ET AL: "Identification of second family of high-molecular-weight adhesion proteins expressed by non-typab Haemophilus influenzae" see the whole document	1,2,6,7, 11,13-15 a
P,X	A DE CASAR (AMERICAN CYANAMID CO	1,6, 13-16
	DCT.75A./210 (continuation of second short) (July 1992)	page 2 of 2

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 96/04031

Box 1 Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claims 20 - 21 are directed to a method of treatment of the human/animal body the search has been carried out and based on the
alleged effects of the compound/composition. 2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT Internation Application No.

In. austron on patent (amily members

PCT/US 96/04031

Patent document	Publication date	Patent fi membe	amily er(s)	Publication date
WO-A-9210936	09-07-92	CA-A- EP-A- JP-T- WO-A-	2098598 0565590 6508346 9400149	22-06-92 20-10-93 22-09-94 06-01-94
WD-A-9400149	06-01-94	CA-A- EP-A- JP-T- WO-A- CA-A- EP-A- JP-T-	2098598 0565590 6508346 9210936 2138765 0647139 7509693	22-06-92 20-10-93 22-09-94 09-07-92 06-01-94 12-04-95 26-10-95
WO-A-9602648	01-02-96	AU-B-	3097295	16-02-96