Херцшпрунг-Раселов дијаграм

Лука Марковић

Математички факултет Универзитета у Београду

Септембар 2025.

Садржај

- Класификација звезда према површинској температури
- Привидни и апсолутни сјај звезде, луминозност
- Мерење звезданих растојања
- Херцшпрунг-Раселов дијаграм

Лука Марковић (МАТФ) Херцшпрунг-Раселов дијаграм Септембар 2025. 2/24

Део 1

Класификација звезда према површинској температури

Какве све звезде постоје?

- Не постоје две идентичне звезде.
- Звезде се разликују по маси, величини, површинској температури, боји, сјају и количини енергије коју емитују у јединици времена.
- Да ли је свака комбинација ових параметара могућа?
- Нека ограничења сигурно постоје: не постоје зелене или љубичасте звезде.
- Везе између наведених величина морају бити "апсолутне", независне од места посматрача.
- Нека својства звезда могуће је лако утврдити: типичан пример је боја звезде.
- Нека друга својства је много теже измерити.
- Тако, на пример, количина енергије коју звезда емитује зависи од њене величине и апсолутног cjaja.
- Са Земље, међутим, лако можемо да утврдимо само привидни сјај звезде.
- Привидни сјај звезде зависи од апсолутног сјаја али и од растојања на коме се звезда налази.

Херцшпрунг-Раселов дијаграм

◆□▶◆骨▶◆豆▶◆豆> 豆 夕久で Лука Марковић (МАТФ)

Септембар 2025.

Класе звезда

- Све звезде деле се на класе према тзв. Морган-Кинановом систему разрађеном на Харварду почетком XX века.
- Класа се одређује мерењем ширине каралтеристичних Фраунхоферових линија водоника, хелијума, калцијума и титанијум-оксида у апсорпционом спектру звезде.
- Што је звезда топлија, ширина Фраунхоферових линија је већа.
- Прво су дефинисане класе O, B, A, F, G, K i M.
- ullet Површинска температура звезде опада од класе ullet (најтоплије звезде) до ullet (најхладније).
- Свака класа има десет поткласа (0-9) у зависности од температуре. Сунце се налази у класи **G2**.
- ullet Касније су додате класе ${f D}$ (бели патуљци), ${f L}$ і ${f T}$ (смеђи патуљци), ${f S}$ і ${f C}$ (угљеничне звезде).
- Овај систем користи се и даље али постоје и други, прецизнији, квантитативни системи.

Лука Марковић (МАТФ) Херцшпрунг-Раселов дијаграм Септембар 2025. 5/24

Графички приказ звезданих класа

Главне спектралне класе са одговарајућим температурама, апроксимативним бојама и релативним величинама звезде

Лука Марковић (МАТФ) Херципрунт-Раселов дијаграм Септембар 2025. 6/24

Индекс температуре звезде B-V

- ullet B-V индекс одређује се посматрањем сјаја звезде кроз два филтера.
- *В*-индекс одређује се посматрањем сјаја звезде кроз *UВ*-филтер осетљив на ултраљубичасту и плаву боју.
- V-индекс одређује се посматрањем сјаја звезде кроз VB-филтер осетљив на већи део видљивог спектра (плаву, жуту и зелену боју).
- B-V индекс представља разлику ова два индекса. Систем је тако баждарен да звезда Вега има B-V индекс једнак нули.
- Мање вредности индекса одговарају топлијим звездама, веће вредности хладнијим.
- B-V индекс за Сунце износи 0,656, а за плавичасти Ригел -0,03.
- Из овог индекса може се директно израчунати температура површине звезде:

$$T = 4600 \text{K} \cdot \left[\frac{1}{0,92(B-V)+1,7} + \frac{1}{0,92(B-V)+0,62} \right]$$

◆□▶◆□▶◆■▶◆■▶ ■ 夕♀◎

Детаљи спектралне класификације

• Класа звезде, њена температура и индекс боје су три еквивалентне величине.

Класа	Температура (К)	Боја	Maca (M_{\odot})	Водоничне линије спектра	Друге линије спектра	Проценат звезда
О	> 33.000	плава	> 16	слабе	вишеструко јонизовани атоми	0,0003%
В	10.000 - 33.000	плава/бела	2,1 - 16	средње	неутрални хелијум	0,1%
A	7.500 - 10.000	бела/плава	1,4 - 2,1	јаке	јонизовани калцијум, неу- трални хелијум	0,6%
F	6.000 - 7.500	бела	1,0 - 1,4	средње	јонизовани калцијум, ме- тали	3%
G	5.200 - 6.000	жута	0,8 - 1,0	слабе	јаке линије метала	7,5%
К	3.700 - 5.200	жута/оранж	0,45 - 0,8	врло слабе	неутрални калцијум, ти- тан-оксид	12%
M	< 3.700	оранж/црвена	< 0,45	врло слабе	јаке линије калцијума и титан-оксида, неутрални метали	76%

Део 2

Привидни и апсолутни сјај звезде, луминозност

Привидни сјај

Хипарх, један од највећих античких астронома

- Довољан је један поглед на ноћно небо па да утврдимо да звезде сјаје различитим интензитетом.
- Хипарх је 135. године п.н.е направио каталог са 850 звезда у коме је свакој звезди доделио δрој од 1 до 6, у зависности од сјаја (магнитуде).
- Најсјајније звезде имале су ознаку 1 док су оне једва видљиве имале ознаку 6.
- Развој телескопа и фотометрије омогућио је да се сјај звезда објективно измери.
- У исто време утврђено је да људско око детектује промене у интензитету светлости по логартиамској скали.
- Такође је утврђено да звезде са ознаком 1 имају 100 пута мањи сјај од звезде са ознаком 6.

Савремена скала звезданих магнитуда

- Хипархов систем, уз незнатне измене, користи се и данас!
- Суштински, користи се чињеница да, према Хипарховој логаритамској скали, разлика у магнитуди величине 5 одговара 100 пута јачем или слабијем интензитету светлости.
- То значи да је звезда која има магнитуду за један број мању од друге сјајнија од ње $\sqrt[5]{100} \approx 2,5$ пута.
- Хипархов у међувремену је рекалибрисан:
 - Звезда Вега има магнитуду 0.
 - Задржано је старо емпиријско правило да 100 пута сјајнија (тамнија) звезда има магнитуду мању (већу) за 5.
- С обзиром да на небу постоје објекти сјајнији од Веге (Сунце, Месец, Венера, Сиријус...), њихова магнитуда је негативна!
- Овако измерене магнитуде називају се **привидним** јер зависе од растојања посматраног објекта од нас.

Сјај неких небеских тела

- Сунце: -26,5
- Пун Месец: -12,5
- Венера: -4,3
- Марс и Јупитер: -3
- Меркур: -2
- Сиријус: -1,44
- Вега, Сатурн: 0
- Антарес: 1
- Северњача: 2

- Уран: 5
- Лимит голог ока: 6,5
- Церес: 7
- Нептун: 8
- Лимит двогледа: 10
- Проксима кентаури: 11,1
- Плутон: 14
- Лимит телескопа (8m): 28
- Лимит телескопа "Хабл": 32

Апсолутна магнитуда (сјај) звезде

Лука Марковић (МАТФ)

- Привидна магнитуда не говори много о количини енергије коју звезда емитује. Неке звезде изгледају сјајније јер су нам ближе а не зато што емитују велику количину енергије.
- Зато је неопходно увести апсолутну магнитуду (сјај) која зависи само од снаге звезданог извора енергије.
- Апсолутна магнитуда дефинисана је као привидна магнитуда измерена са растојања од 10 парсека (1 парсек ≈ 3.26 светлосних година).
- Означимо апсолутну магнитуду са M, привидну магнитуду са m а наше растојање до звезде мерено у парсецима са d_{pc} .
- Када се узме у обзир да енергетски флукс звезде опада са квадратом растојања и да 100 пута сјајнији светлосни извор има магнитуду мању за 5, добија се следећа једначина:

$$M=m-5(\log_{10}d_{pc}-1)$$

ullet Одређивање апсолутне магнитуде своди се на мерење растојања до светлосног извора $d_{pc}.$

Херцшпрунг-Раселов дијаграм

Септембар 2025.

Луминозност

- ullet По дефиницији, луминозност звезде L представља количину енергије коју звезда емитује у јединици времена.
- $\bullet\,$ Уместо апсолутне вредности, луминозност се најчешће исказује релативно у односу на луминозност Сунца $L_{\odot}.$
- Ако апсолутну магнитуду звезде означимо са M а апсолутну магнитуду Сунца са M_{\odot} , онда се релативна луминозност звезде може срачунати формулом:

$$rac{L}{L_{\odot}}=100^{rac{M_{\odot}-M}{5}}$$

- Референтне вредности за Сунце су: $L_{\odot}=3,84\times10^{26}{
 m W}, M_{\odot}=4,75$. Нижим апсолутним магнитудама одговара већа луминозност (снага) звезде.
- Многе звезде имају много нижу апсолутну магнитуду од Сунца, самим тим и много већу луминозност: Бетелгез (-5,6), Наос (-6,0), Ригел (-7,0), Денеδ (-7,2), Сиријус (1,4)...

4 D > 4 B > 4 E > 4 E > E 990

Део 3

Мерење звезданих растојања

Зашто је мерење растојања битно

- На претходним слајдовима показано је како се на основу привидне магнитуде звезде и растојања до ње може израчунати апсолутна магнитуда звезде.
- Такође је показано како се из апсолутне магнитуде може израчунати луминозност звезде.
- Сходно томе, за одређивање луминозности звезде потребна су само два улазна податка: привидна магнитуда звезде и растојање до ње.
- Привидна магнитуда звезде мери се врло лако.
- Међутим, мерење растојања до звезда и галаксија далеко је компликованије.
- Данас се користи више различитих метода за мерење растојања у косммичком простору.
- Не постоји универзална метода која би се могла употребити у свим случајевима.

16/24

Лука Марковић (МАТФ) Херцшпрунг-Раселов дијаграм Септембар 2025.

Метода паралаксе, концепт

Угао паралаксе приказан на слици у стварности је знатно мањи

Лука Марковић (МАТФ) Керцширунг-Раселов дијаграм Септембар 2025. 17/24

Метода паралаксе, коришћење и примена

- Звезде које се налазе врло далеко од нас изгледају потпуно непомично, без обзира на кретање Земље око Сунца.
- За релативно блиску звезду, промена тачке посматрања доводи до привидног померања звезде у односу на непомичну звездану позадину.
- Осмотрено померање је највеће ако се посматрања врше у размаку од 6 месеци, са два супротна краја Земљине путање.
- Измерено померање представља двоструки угао паралаксе p iz koga se тоже израчунати растојање d_{pc} до звезде:

$$d_{pc} = \frac{1}{p}$$

- Када је угао паралаксе у степенима, растојање до звезде изражено је у парсецима.
- Са Земље се могу измерити углови паралаксе не мањи од 0.01 секунде, са телескопа "Хабл" и до 0.001. Зато се метода паралаксе користи само за блиске звезде на растојању 100-1000 парсека, што је свега неколико процената пречника Млечног пута.

◆□▶◆骨▶◆豆▶◆豆> 豆 夕久で

Цефеиде, променљиве звезде

Линеарна веза између периода промене сјаја и луминозности за цефеиде унутар Млечног пута и Великог Магелановог облака

- Звезде које током времена мењају свој сјај називају се променљивим звездама.
- У ту групу спадају и цефеиде чији се сјај мења врло правилно, са периодом који износи од једног до 100 дана.
- Током једног циклуса цефеиде мењају луминозност (апсолутну магнитуду), полупречник и температуру.
- Оно што цефеиде чини тако специјалним је чињеница да постоји линеарна веза између њихове луминозности (којој одговара апсолутна магнитуда) и периода.

Зашто су цефеиде тако важне?

- Постоји линеарна веза између луминозности цефеида (којој одговара апсолутна магнитуда) и периода промене сјаја.
- Период и привидни сјај цефеиде су лако мерљиве величине. Из периода се може израчунати луминозност а на основу ње и апсолутна магнитуда.
- На основу релативне и апсолутне магнитуде лако се може израчунати растојање до звезде.
- Рачуницу компликује чињеница да постоје две фамилије цефида са различитим нагибима линије период-луминозност. Пажљивим посматрањем могуће је утврдити којој фамилији припада посматрана цефеида.
- Многе цефеиде су велике, веома светле звезде, могуће их је идентификовати не само у Млечном путу него и у суседним галаксијама.
- Земаљски телескопи могу да уоче цефеиде све до удаљености од 13 милиона светлосних година. Космички телескоп "Хабл" успешно је регистровао цефеиде на растојању од 56 милиона светлосних година.

Бели патуљци и супернове типа Іа

Бинарни систем у коме бели патуљак преузима материју од суседне звезде. Када маса белог патуљка пређе границу од $1.44 M_{\odot}$, могућа је експлозија супернове типа Ia.

Специфичности супернове типа Іа

- Мале и средње звезде завршавају свој живот као бели патуљци.
- Реч је о топлом језгру звезде која је потрошила нуклеарно гориво и одбацила спољне слојеве.
- Бели патуљак има екстремну густину. Претежно је сачињен од угљеника и кисеоника.
- Иако су бели патуљци релативно мали, гравитационо поље у њиховој близини екстремно је јако.
- Ако је бели патуљак део двојног звезданог система, бели патуљак може да почне да "краде" материју од суседне звезде. Када маса белог патуљка пређе границу од $1.44 M_{\odot}$, притисак у средишту постаје толико велики да отпочиње нуклеарна реакција.
- У свега пар секунди бели патуљак ће фузионисати скоро сав угљеник и кисеоник у теже елементе. Притом се генерише енергија упоредива са енергијом читаве галаксије.
- Настаје супернова типа Іа чија ће експлозија потпуно уништити бинарни систем.
- Све супернове типа Ia имају исту апсолутну магнитуду: -19.3. На основу привидног сјаја и апсолутне магнитуде може се израчунати даљина белог патуљка.
- Овом методом могу се мерити растојања од више милијарди светлосних година.

 Лука Марковић (МАТФ)
 Херципрунг-Раселов дијаграм
 Септембар 2025.
 22/24

Део 4

Херцшпрунг-Раселов дијаграм

Најважнији дијаграм савремене астрономије

- Херцшпрунг-Раселов (H-R) дијаграм представља, по много чему, најважнији дијаграм у астрономији због улоге коју има у проучавању еволуције звезда.
- Дијаграм су, независно један од другог, креирали
 Ејнар Херцшпрунг и Хенри Норис Расел почетком
 XX века.
- Постоји неколико форми овог дијаграма али су у суштини све оне међусобно еквивалентне.
- У својој изворној верзији, H-R дијаграм представља зависност луминозности звезде од њене површинске температуре.

24/24

Лука Марковић (МАТФ) Херцшпрунг-Раселов дијаграм Септембар 2025.