Time Series

권지혜 윤빈나 윤재경 전혜민 정재원 최성웅

Index

1. LSTM

2. Hybrid model

LSTM - hyperparameter tuning

• Set function

```
def tuning(window size.num layer.batch size.epoch):
    window size-window size
   # frame as supervised learning
    reframed = series to supervised(scaled, window size, 1)
    # drop columns we don't want to predict
    reframed.drop(reframed.columns[[-6,-5,-4,-3,-2,-1]], axis=1, inplace=True)
    #split train and test
    values = reframed.values
    n test hours = 31*24
   train = values[:-n_test_hours, :]
   test = values[-n test hours:. :]
    # split into input and outputs
   train X. train v = train[:.:-1], train[:.-1]
    test X, test y = test[:, :-1], test[:, -1]
    # reshape input to be 3D [samples, timesteps, features]
   train_X = train_X.reshape((train_X.shape[0], window_size, int(train_X.shape[1]/window_size)))
    test X = test X.reshape((test X.shape[0], window size, int(test X.shape[1]/window size)))
    # design model
    model = Sequential()
    for i in range(num laver-1):
       model.add(LSTM(50, input shape=(train X.shape[1], train X.shape[2]),return sequences=True))
    model.add(LSTM(50, input_shape=(train_X.shape[1], train_X.shape[2])))
    model.add(Dense(1))
    model.compile(loss='mae', optimizer='adam')
```

```
history = model.fit(train_X, train_y, epochs=epoch, batch_size=batch_size,
                     validation data=(test X. test v), verbose=0, shuffle=False)
# make a prediction
vhat = model.predict(test X)
test_X = test_X.reshape((test_X.shape[0], window_size*test X.shape[2]))
test X[:.1:]
# invert scaling for forecast
inv vhat = np.concatenate((vhat. test X[:, 1:7]), axis=1)
inv vhat
inv_yhat = scaler.inverse_transform(inv_yhat)
inv yhat = inv yhat[:.0]
# invert scaling for actual
test v = \text{test } v.\text{reshape}((\text{len}(\text{test } v), 1))
inv_y = np.concatenate((test_y, test_X[:, 1:7]), axis=1)
inv v = scaler.inverse transform(inv v)
inv v = inv v[:,0]
# return RMSE
rmse = math.sqrt(mean_squared_error(inv_y, inv_yhat))
return rmse
```


LSTM - hyperparameter tuning

Find the best hyperparameter

```
random state = 42
num Loop = 30
hyperparameters list = []
for loop in range(num loop):
    window size=np.random.choice(np.arange(24, 24*8, 24))
   num laver=np.random.randint(1.4)
   batch size=np.random.randint(32,129)
   epoch=np.random.randint(50.201)
   parameters = { 'loop':loop.
                 'window size': window size.
                'num_layer': num_layer,
                'batch size': batch size,
                 'epoch': epoch}
   score = tuning(window_size,num_layer,batch_size,epoch)
   parameters['score'] = score
   print(f"{loop:2} iteration = {parameters['epoch']}, Score = {parameters['score']:.3f"}
   hyperparameters list.append(parameters)
   hyperparameters data = pd.DataFrame(hyperparameters list)
   hyperparameters data = hyperparameters data.sort values(by="score")
   hyperparameters data.to csv("paramsearch.csv")
hyperparameters data.head(10)
```

loop	window_size	num_layer	batch_size	epoch	score -
22	168	1	90	85	2.336529
28	168	1	46	92	2.367447
3	168	1	46	64	2.369685
17	120	1	66	89	2.387569
6	120	3	100	70	2.411416
4	96	1	63	81	2.415116
5	144	1	85	134	2.416007
2	168	1	106	103	2.421331
18	144	3	56	62	2.514466
7	120	3	36	100	2.558349

Best 10

LSTM - hyperparameter tuning

• Window size: **168**, # of hidden layers: **1**, batch size: **90**, epoch: **85**

Test RMSE: 2.360

•
$$y_t = L_t + N_t$$

•
$$e_t = y_t - \hat{L}_t$$

	Step 1	Predict daily cor	nsumption	using ARIMA
--	--------	-------------------	-----------	-------------

Step 2 Convert daily data into hourly data using LSTM

Step 3 Fit LSTM on the residuals & add to linear model

Step 1 Predict daily consumption using ARIMA: SARIMAX(1,1,2)(1,0,0,7)

Step 2 Convert daily data into hourly data using LSTM

```
ready_portion['predicted_meter_reading'] = ready_portion['portion_yhat'] * (ready_portion['pred_day_sum']*(maxx-minn)+minn)
ready_portion.head()
```

	day	portion_yhat	pred_day_sum	predicted_meter_reading
0	2016-12-01	0.033315	0.10603	55.907080
1	2016-12-01	0.032182	0.10603	54.005716
2	2016-12-01	0.032741	0.10603	54.944029
3	2016-12-01	0.033756	0.10603	56.647213
4	2016-12-01	0.035290	0.10603	59.221912

- portion_yhat : 시간대별 분포
- pred_day_sum : daily prediction (min-max scaling)
- predicted_meter_reading : proportion_yhat × inverse-scaled pred_day_sum

Step 2 Convert daily data into hourly data using LSTM

Test RMSE: 12.431

Step 3 Fit LSTM on the residuals & add to linear model

Test RMSE: 4.135

SARIMA summary

	,					
	coef	std err	t	P> t	[0.025	0.975]
const	-0.1182	0.090	-1.319	0.188	-0.294	0.058
air_temperature	0.7159	0.048	14.920	0.000	0.621	0.810
Sunday	-0.2174	0.015	-14.284	0.000	-0.247	-0.187
Saturday	-0.1735	0.015	-11.456	0.000	-0.203	-0.144
holiday	-0.2084	0.032	-6.559	0.000	-0.271	-0.146
summer	0.0835	0.018	4.730	0.000	0.049	0.118
cold	0.0946	0.025	3.778	0.000	0.045	0.144
winter	-0.0866	0.018	-4.765	0.000	-0.122	-0.051
dew_temperature	0.0957	0.030	3.173	0.002	0.036	0.155
hot_temperature^2	0.2878	0.068	4.235	0.000	0.154	0.422
hot	-0.1647	0.053	-3.121	0.002	-0.269	-0.061
wind_speed	0.0899	0.046	1.973	0.049	0.000	0.180
sea_level_pressure	0.2097	0.100	2.089	0.037	0.012	0.407
Friday	-0.0263	0.015	-1.789	0.075	-0.055	0.003
wind_direction	0.0481	0.034	1.433	0.153	-0.018	0.114

$$\hat{\beta}_{Sunday} = -0.2174 < 0$$

$$\hat{\beta}_{holiday} = -0.2084 < 0$$

Much lower value than real data

Thank you