Evaluating classification algorithms

CS434

Evaluation methods

- Test set: The available data set D is divided into two disjoint subsets,
 - the *training set D_{train}* (for learning a model)
 - the *test set D_{test}* (for testing the model)
- Important: training set should not be used in testing and the test set should not be used in learning in any way (including parameter tuning).
 - Unseen test set provides an <u>unbiased</u> estimate of accuracy.
- The test set is also called the holdout set
- This method is mainly used when the data set D is large

Evaluation methods (cont...)

- n-fold cross-validation for evaluation: The available data is partitioned into n equal-size disjoint subsets
- Use each subset as the test set and combine the rest *n*-1 subsets as the training set to learn a classifier.
- The procedure is run *n* times, which give *n* accuracies.
- The final estimated accuracy of learning is the average of the *n* accuracies.
- 10-fold and 5-fold cross-validations are commonly used.
- This method is used when the available data is not large and we want to get a robust estimate of the performance

Evaluation methods (cont...)

- Leave-one-out cross-validation: This method is used when the data set is very small.
- It is a special case of cross-validation
- Each fold of the cross validation has only a single test example and all the rest of the data is used in training.

Evaluation methods (cont...)

- Validation set for tuning parameters: the available data is divided into three subsets,
 - a training set, a validation set and a test set.
- Validation set is used often to tune hyper-parameters (e.g., regularization parameter, c for SVM)
- In such cases, the values that give the best accuracy on the validation set are used as the final parameter values to estimate test data performance
- Nested cross-validation (see example below) can be used to do both parameter tuning and evaluation

Cross-validation within these 4 folds to decide the parameter (e.g. c for SVM), then apply the selected c to the 4 folds together to learn a model and predict and evaluate accuracy on fold 5. This process is repeated for five times for a nested 5-fold cross-validation

Classification performance measure

- Accuracy is only one commonly used measure (error = 1-accuracy).
- Accuracy is not suitable in some applications.
- In text mining, we may only be interested in the documents of a particular topic, which are only a small portion of a big document collection.
- In classification involving skewed or highly imbalanced data, e.g., network intrusion and financial fraud detections, we are interested only in the minority class.
 - High accuracy does not mean any intrusion is detected.
 - E.g., 1% intrusion. Achieve 99% accuracy by doing nothing.
- The class of interest is commonly called the positive class, and the rest negative classes.

Precision and recall measures

- Used in information retrieval and text classification.
- We use a confusion matrix to introduce them.

	Classified Positive	Classified Negative
Actual Positive	TP	FN
Actual Negative	FP	TN

where

TP: the number of correct classifications of the positive examples (true positive),

FN: the number of incorrect classifications of positive examples (false negative),

FP: the number of incorrect classifications of negative examples (false positive), and

TN: the number of correct classifications of negative examples (true negative).

Precision and recall measures (cont...)

	Classified Positive	Classified Negative
Actual Positive	TP	FN
Actual Negative	FP	TN

$$p = \frac{TP}{TP + FP}.$$
 $r = \frac{TP}{TP + FN}.$

- Precision p is the number of correctly classified positive examples divided by the total number of examples that are classified as positive.
- Recall r is the number of correctly classified positive examples divided by the total number of actual positive examples in the test set.

An example

	Classified Positive	Classified Negative
Actual Positive	1	99
Actual Negative	0	1000

- This confusion matrix gives
 - precision p = 100% and
 - recall r = 1%

because we only classified one positive example correctly and no negative examples wrongly.

• Note: precision and recall only measure classification on the positive class.

F₁-value (also called F₁-score)

• It is hard to compare two classifiers using two measures. F₁ score combines precision and recall into one measure

$$F_1 = \frac{2pr}{p+r}$$

F₁-score is the harmonic mean of precision and recall.

$$F_1 = \frac{2}{\frac{1}{p} + \frac{1}{r}}$$

- The harmonic mean of two numbers tends to be closer to the smaller of the two.
- For F₁-value to be large, both *p* and *r* much be large.

Receive operating characteristics curve

- It is commonly called the ROC curve.
- It is a plot of the true positive rate (TPR) against the false positive rate (FPR).
- True positive rate:

$$TPR = \frac{TP}{TP + FN}$$
 Total number of ground-truth positives

• False positive rate:

	Classified Positive	Classified Negative
Actual Positive	TP	FN
Actual Negative	FP	TN

5/23/2017 11

Example ROC curves

Fig. 3.8. ROC curves for two classifiers $(C_1 \text{ and } C_2)$ on the same data

5/23/2017 12

Area under the curve (AUC)

- Which classifier is better, C₁ or C₂?
 - It depends on which region your classifier will be operating in
- Can we have one measure?
 - Yes, we compute the area under the curve (AUC)
- If AUC for C_i is greater than that of C_j, it is said that C_i is better than C_j.
 - If a classifier is perfect, its AUC value is 1
 - If a classifier makes all random guesses, its AUC value is 0.5.

5/23/2017 13

Drawing an ROC curve

Rank		1	2	3	4	5	6	7	8	9	10
Actual class		+	+	_	_	+	_	_	+	_	_
TP	0	1	2	2	2	3	3	3	4	4	4
FP	0	0	0	1	2	2	3	4	4	5	6
TN	6	6	6	5	4	4	3	2	2	1	0
FN	4	3	2	2	2	1	1	1	0	0	0
TPR	0	0.25	0.5	0.5	0.5	0.75	0.75	0.75	1	1	1
FPR	0	0	0	0.17	0.33	0.33	0.50	0.67	0.67	0.83	1

Key points for appropriate evaluation

- Different applications may require different evaluation criteria
 - · Log-likelihood
 - Accuracy
 - Precision, recall, F1
 - ROC curve
 - Area under ROC curve
- To claim good performance for your algorithm
 - Need proper set up for evaluation do not ever train or tune on test data
 - Unless you have large amounts of data, random repetitions are required to show that your performance is not due to random chance
 - Repeat Cross-validation multiple times
 - Randomly split the data into training and testing multiple times
 - Report not only the mean but also the variance around it