Technische Universität München Hannah Schamoni Ferienkurs Analysis 1 Stetigkeit, Konvergenz, Topologie

Lösung

21.03.2012

1. Gleichmäßige Konvergenz

Entscheiden Sie, ob die folgenden auf $(0,\infty)$ definierten Funktionenfolgen nicht, punktweise oder sogar gleichmäßig gegen eine Grenzfunktion konvergieren. Geben Sie, falls existent, den Grenzwert an.

(a)
$$a_n = x + \frac{1}{n}$$

(b)
$$a_n = \frac{x}{n}$$

(c)
$$a_n = e^x \cdot \sqrt[n]{e}$$

Lösung:

(a) Die Funktionenfolge a_n konvergiert punktweise gegen a(x)=x, da für festes x die Folge $(x+\frac{1}{n})$ nach den Rechenregeln für Folgen gegen x strebt. Die Konvergenz ist sogar gleichmäßig, denn unabhängig von x ist $\forall \epsilon>0$

$$|a_n - a| = |x + \frac{1}{n} - x| = \frac{1}{n} < \epsilon,$$
falls $n > N := \frac{1}{\epsilon}$.

- (b) Die Funktionenfolge a_n konvergiert zunächst punktweise gegen die Nullfunktion a(x)=0, da für jedes feste x>0 die Zahlenfolge $\left(\frac{x}{n}\right)$ nach den Rechenregeln für Folgengrenzwerte eine Nullfolge ist. Die Konvergenz ist jedoch nicht gleichmäßig, denn angenommen, es gäbe zu $\epsilon=1$ ein $N\in\mathbb{N}$, welches nur von ϵ abhängt, so dass $|a_n(x)-0|<1$ $\forall n>N$. Dann wählt man n=N+1 und x=N+2 (es muss ja für jedes x>0 gelten) und erhält den Widerspruch $|a_n(x)-0|=\left|\frac{N+2}{N+1}\right|>1=\epsilon$.
- (c) Die Funktionenfolge a_n lässt sich umschreiben zu $a_n(x) = e^{x+\frac{1}{n}}$. Nach (a) konvergiert $(x+\frac{1}{n})$ für festes x gegen x und da die Exponentialfunktion stetig ist, konvergiert damit $a_n(x)$ (punktweise) gegen $a(x) = e^x$ für $n \to \infty$. Die Konvergenz ist jedoch nicht gleichmäßig: Sei n > N. Dann gilt:

$$|a_n(x) - c(x)| = e^x |e^{\frac{1}{n}} - 1|.$$

Die rechte Seite der Gleichung ist dabei nicht Null und kann durch Erhöhung von x beliebig groß gemacht werden, so dass sie jedes zuvor gewählte ϵ übersteigt. Also muss N in Abhängigkeit von x gewählt werden.

2. Stetigkeit

(a) Sei $s \in \mathbb{R}$. Zeigen Sie, dass die Funktion $f : \mathbb{R}_+ \to \mathbb{R}, x \mapsto x^s$ stetig ist.

(b) Sei $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x \sin(\frac{1}{x})$ für $x \neq 0$ und f(x) = 0 für x = 0. Zeigen Sie, dass f stetig ist.

Lösung:

(a) Es ist $x^s = \exp(s \ln(x))$. Die Funktion $\exp : \mathbb{R} \to \mathbb{R}_+, x \mapsto \exp(x)$ ist stetig und streng monoton wachsend.

Außerdem ist die Umkehrfunktion $\ln : \mathbb{R}_+ \to \mathbb{R}, \ln(\exp(x)) = x$ ebenfalls stetig und streng monoton wachsend.

Also ist f als Verknüpfung stetiger Funktionen $x \mapsto \ln(x) \mapsto s \ln(x) \mapsto \exp(s \ln(x)) = x^s$ stetig.

(b) Auf $\mathbb{R}\setminus\{0\}$ ist f stetig als Verknüpfung stetiger Funktionen.

Es gilt:
$$|\sin(\frac{1}{x})| \le 1 \ \forall x \ne 0 \ \text{und} \ \lim_{x \to 0, x \ne 0} x = 0.$$

Daraus folgt auch, dass $\lim_{x\to 0, x\neq 0} x |\sin(\frac{1}{x})| = 0.$

Die Funktion $\widetilde{f}: \mathbb{R}\setminus\{0\} \to \mathbb{R}, x \mapsto x\sin(\frac{1}{x})$ wird also durch den Funktionswert 0 stetig in 0 fortgesetzt. Also ist $f: \mathbb{R} \to \mathbb{R}$ stetig.

3. Gleichmäßige Stetigkeit I

(a) Sei $f: [0, \infty[\to \mathbb{R} \text{ stetig derart, dass } \lim_{x \to \infty} f(x) =: c \in \mathbb{R} \text{ existiert.}$ Zeigen Sie, dass f gleichmäßig stetig ist.

(b) Sei $f: \mathbb{R} \to \mathbb{R}$ stetig mit f(x) = f(x+1). Zeigen Sie, dass f nach oben und unten beschränkt ist und Maximum und Minimum annimmt. Zeigen Sie außerdem, dass f gleichmäßig stetig ist.

Lösung:

(a) Sei $\epsilon > 0$. Es ist zu zeigen, dass dann $\delta > 0$ existiert, so dass

$$|f(x) - f(y)| < \epsilon$$
, falls $|x - y| < \delta$ ist.

Wegen $\lim_{x \to \infty} f(x) = c$ gibt es ein $x_0 > 0$ mit $|f(x) - c| < \frac{\epsilon}{4}$ für $x \ge x_0$.

Für $x, y \ge x_0$ gilt also:

$$|f(x)-f(y)|=|f(x)-c+c-f(y)|\leq |f(x)-c|+|f(y)-c|<\frac{\epsilon}{4}+\frac{\epsilon}{4}=\frac{\epsilon}{2}\quad (1)$$

Da $[0, x_0]$ kompakt ist, existiert $\delta > 0$, so dass für $x, y \in [0, x_0]$ gilt:

$$|x - y| < \delta \Rightarrow |f(x) - f(y)| < \frac{\epsilon}{2}$$
 (2)

Gilt $x \le x_0$ und $y > x_0$ (Fall $y \le x_0$ und $x > x_0$ analog), so folgt aus $|x - y| < \delta$ auch $|x - x_0| < \delta$.

Aus (1) und (2) folgt also:

$$|f(x) - f(y)| = |f(x) - f(x_0) + f(x_0) - f(y)| \le$$

$$|f(x) - f(x_0)| + |f(x_0) - f(y)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$
 (3).

Aus (1), (2) und (3) folgt, dass für alle $x,y\in [0,\infty[$ mit $|x-y|<\delta$ gilt: $|f(x)-f(y)|<\epsilon.$

Alternativer Beweis:

Wegen $\lim_{x\to\infty} f(x) = c$ gibt es ein $x_0 > 0$ mit $|f(x) - c| < \frac{\epsilon}{2}$ für $x \ge x_0$.

Für $x, y \ge x_0$ gilt also:

$$|f(x) - f(y)| = |f(x) - c + c - f(y)| \le |f(x) - c| + |f(y) - c| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Der restliche Definitionsbereich $[0, x_0]$ ist kompakt, weshalb f dort gleichmäßig stetig ist.

f ist also auf dem gesamten Definitionsbereich stetig.

(b) Beschränktheit: Es gilt $f(\mathbb{R}) = f([0,1])$. Da f auf [0,1] eine stetige Funktion auf einer kompakten Menge ist, nimmt f dort Maximum und Minimum an und ist insbesondere durch diese beschränkt.

Glm. Stetigkeit: Sei $\epsilon > 0$. Da f gleichmäßig stetig ist auf dem kompakten Intervall [0,2] gibt es ein $\delta' > 0$ mit $x,y \in [0,2], |x-y| < \delta' \Rightarrow |f(x) - f(y)| < \epsilon$.

Sei nun $\delta = \min(\delta', 1)$ und seien $x, y \in \mathbb{R}$ mit $|x - y| < \delta$.

1. Fall: Es gibt $n \in \mathbb{Z}$ mit $x, y \in [2n, 2n + 2]$. Dann folgt

$$|f(x) - f(y)| = |f(x - 2n) - f(y - 2n)| < \epsilon.$$

2. Fall: Es gibt $n \in \mathbb{Z}$ mit $x \in [2n-1,2n]$ und $y \in [2n,2n+2]$ (bzw. x und y vertauscht).

Wegen $|x-y| < \delta \le 1$ folgt $y \in [2n, 2n+1]$. Also gilt $x+1, y+1 \in [2n, 2n+2]$ und damit Fall 1.

Also gilt für alle $x,y\in\mathbb{R}$ mit $|x-y|<\delta$, dass $|f(x)-f(y)|<\epsilon\Rightarrow$ gleichmäßige Stetigkeit.

Alternativer Beweis:

Beweis der Beschränktheit wie oben. f ist periodisch und stetig an den Grenzpunkten beispielsweise von [0,1]. Damit ist f auf einem kompakten Intervall stetig, also gleichmäßig stetig.

4. Gleichmäßige Stetigkeit II

Untersuchen Sie, welche der folgenden Funktionen gleichmäßig stetig sind:

(a)
$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2$$

(b)
$$f: [10^{-4}, \infty[\to \mathbb{R}, f(x) = \frac{1}{x}]$$

(c)
$$f: [\sqrt{2}, 6] \to \mathbb{R}, \ f(x) = \frac{x^{2012} - 18}{46 + |x|^7}.$$

Lösung:

(a) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ ist nicht gleichmäßig stetig.

Beweis (durch Widerspruch): Sei $\epsilon > 0$. Annahme: Es gibt $\delta > 0$, so dass

für alle $x_1, x_2 \in \mathbb{R}$ mit $|x_1 - x_2| < \delta$ gilt: $|f(x_1) - f(x_2)| < \epsilon$. Wegen $|(x + \frac{\delta}{2}) - x| < \delta$ würde dann folgen, dass $|f(x + \frac{\delta}{2}) - f(x)| < \delta$

Wegen $|(x + \frac{\delta}{2}) - x| < \delta$ würde dann folgen, dass $|f(x + \frac{\delta}{2}) - f(x)| < \epsilon$ für alle $x \in \mathbb{R}$.

Es gilt aber für $x \neq -\delta/4$:

$$\lim_{x\to\infty} |f(x+\frac{\delta}{2})-f(x)| = \lim_{x\to\infty} |x^2+\delta x+\frac{\delta^2}{4}-x^2| = \lim_{x\to\infty} \delta |x+\frac{\delta}{4}| = \infty,$$
 Widerspruch!

(b) $f: [10^{-4}, \infty[\to \mathbb{R}, f(x) = \frac{1}{x} \text{ ist } gleichmäßig } stetig:$

Beweis: Sei
$$\epsilon > 0$$
 und seien $x_1, x_2 \ge 10^{-4}$. Dann gilt: $|f(x_1) - f(x_2)| = \left|\frac{1}{x_1} - \frac{1}{x_2}\right| = \left|\frac{x_2 - x_1}{x_1 x_2}\right| \le \frac{1}{10^{-8}} |x_2 - x_1| = 10^8 |x_2 - x_1|$. Wählt man also $\delta = \frac{1}{10^8} \epsilon$, so folgt aus $x_1, x_2 \in [10^{-4}, \infty[, |x_1 - x_2| < \delta, x_1]]$

dass $|f(x_1) - f(x_2)| < \epsilon$.

Bemerkung: f ist mit $L = 10^8$ sogar Lipschitz-stetig.

(c) $f: [\sqrt{2}, 6] \to \mathbb{R}, \ f(x) = \frac{x^{2012} - 18}{46 + |x|^7}$ ist stetig als Verknüpfung stetiger Funktionen; außerdem ist das Intervall $[\sqrt{2}, 6]$ kompakt. Es folgt die gleichmäßige Stetigkeit (stetige Funktion auf Kompaktum).

5. Gleichmäßige Stetigkeit, Lipschitz-Stetigkeit

Sei $f:[0,1], f(x):=\sqrt{x}$. Zeigen Sie, dass die Funktion f gleichmäßig stetig, aber nicht Lipschitz-stetig ist.

Lösung: f ist stetig auf dem kompakten Intervall [0,1] und damit dort auch gleichmäßig stetig.

f ist aber nicht Lipschitz-stetig. Annahme: Es gibt L>0 mit |f(x)-

 $|f(y)| \le L|x-y| \ \forall x,y \in [0,1], \ \text{d.h.} \ \frac{|f(x)-f(y)|}{|x-y|} \le L \ \text{(falls } x \ne y) \ (*).$ Da dies für alle $x,y \in [0,1]$ gelten muss, wähle man speziell $x_n = [0,1]$

$$\begin{array}{l} \frac{1}{n^2}, y_n = \frac{1}{4n^2}. \text{ Dann gilt:} \\ \frac{|f(x_n) - f(y_n)|}{|x_n - y_n|} = \frac{|\frac{1}{n} - \frac{1}{2n}|}{|\frac{1}{n^2} - \frac{1}{4n^2}|} = \frac{2n}{3} \to \infty \text{ für } n \to \infty. \end{array}$$

Dies ist ein Widerspruch zu (*)!

6. Stetige Fortsetzungen

- (a) Ist $f: \mathbb{R}\setminus\{0\} \to \mathbb{R}$, $f(x) = \sin\left(\frac{1}{x}\right)$ stetig fortsetzbar?
- (b) Ist $f: \mathbb{R}_+ \setminus \{1\} \to \mathbb{R}$, $f(x) = \frac{\sqrt{x-1}}{x-1}$ stetig fortsetzbar?

Lösung:

- (a) f ist stetig als Komposition stetiger Funktionen. Für $x_n = \frac{1}{\pi n}$ ist $f(x_n) = 0$. Für $y_n = \frac{1}{2\pi n + \frac{1}{2}\pi}$ ist $f(y_n) = 1$. Somit existiert $\lim_{x \to 0} f(x)$ nicht, f ist also nicht stetig fortsetzbar.
- (b) f ist stetig als Komposition stetiger Funktionen. Es gilt:

$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} = \lim_{x \to 1} \frac{\sqrt{x} - 1}{(\sqrt{x} + 1)(\sqrt{x} - 1)} = \lim_{x \to 1} \frac{1}{\sqrt{x} + 1} = \frac{1}{2}.$$

f kann an der Stelle x=1 also durch $\frac{1}{2}$ stetig fortgesetzt werden.

7. Zwischenwertsatz

Zeigen Sie: Ein Polynom $p:\mathbb{R}\to\mathbb{R}$ ungeraden Grades besitzt mindestens eine reelle Nullstelle.

Lösung: Sei
$$p(x) = \sum_{k=0}^{n} a_k x^k$$
, $a_n \neq 0$ und n ungerade. O.E. sei $a_n > 0$.

Als Polynom ist
$$p$$
 stetig. Für $x \neq 0$ gilt $p(x) = x^n (a_n + a_{n-1}x^{-1} + a_{n-2}x^{-2} + \dots + a_0x^{-n}).$

Der Ausdruck in der Klammer konvergiert für $x \to \pm \infty$ gegen $a_n > 0$. Somit gilt $\lim_{x\to\pm\infty} p(x) = \pm\infty$. Es gibt also ein x_- mit $p(x_-) < 0$ und ein x_+ mit $p(x_+) > 0$. Nach dem Zwischenwertsatz gibt es ein $x_0 \in (x_-, x_+)$ mit $p(x_0) = 0$.

8. Grenzwerte

Berechnen Sie die folgenden Grenzwerte: (a)
$$\lim_{x\to 1}\frac{x^3+x^2-x-1}{x-1}$$

(b)
$$\lim_{x\to 0} \frac{1-\sqrt{1-x^2}}{x^2}$$

(c)
$$\lim_{x \to \infty} (\sqrt{4x^2 + 2x - 1} - 2x)$$

(b)
$$\lim_{x\to 0} \frac{1-\sqrt{1-x^2}}{x^2}$$

(d) $\lim_{x\to -\infty} \frac{8x^3+2x^2+1}{2x^3+7x}$

Lösung:
(a)
$$\lim_{x \to 1} \frac{x^3 + x^2 - x - 1}{x - 1} = \lim_{x \to 1} \frac{(x + 1)^2 (x - 1)}{x - 1} = 4$$

(b)
$$\lim_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x^2} = \lim_{x \to 0} \frac{1 - (1 - x^2)}{x^2 (1 + \sqrt{1 - x^2})} = \lim_{x \to 0} \frac{1}{1 + \sqrt{1 - x^2}} = \frac{1}{2}$$

(c)
$$\lim_{x \to \infty} (\sqrt{4x^2 + 2x - 1} - 2x) = \lim_{x \to \infty} \frac{4x^2 + 2x - 1 - 4x^2}{\sqrt{4x^2 + 2x - 1} + 2x} =$$

$$\lim_{x \to \infty} \frac{2 - \frac{1}{x}}{\sqrt{4 + \frac{2}{x} - \frac{1}{x^2}} + 2} = \frac{1}{2}$$

(d)
$$\lim_{x \to -\infty} \frac{8x^3 + 2x^2 + 1}{2x^3 + 7x} = \lim_{x \to -\infty} \frac{8 + \frac{2}{x} + \frac{1}{x^3}}{2 + \frac{7}{x^2}} = 4$$

9. Topologie

Zeigen Sie:

- (a) \mathbb{K} ist offen und abgeschlossen in \mathbb{K} , wobei $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$.
- (b) \emptyset ist offen und abgeschlossen.
- (c) $D \subset \mathbb{C}$ ist offen in $\mathbb{C} \Rightarrow D \cap \mathbb{R}$ ist offen in \mathbb{R} .
- (d) $D \subset \mathbb{R}$ ist abgeschlossen in $\mathbb{R} \Rightarrow D$ ist abgeschlossen in \mathbb{C} .

Lösung: (a) \mathbb{K} offen: Sei $z \in \mathbb{K}$. Wähle $\epsilon > 0$ beliebig. Dann ist $B_{\epsilon}(z) \subset \mathbb{K}$. Also ist \mathbb{K} offene Teilmenge von \mathbb{K} .

 \mathbb{K} abgeschlossen: Sei (z_n) eine konvergente Folge in \mathbb{K} . Dann liegt auch der Genzwert z in \mathbb{K} . Also ist \mathbb{K} abgeschlossen.

- (b) \emptyset offen: Nach (a) ist \mathbb{K} abgeschlossen. Also ist $\mathbb{K} \setminus \mathbb{K} = \emptyset$ offen. \emptyset abgeschlossen: Nach (a) ist \mathbb{K} offen. Also ist $\mathbb{K} \setminus \mathbb{K} = \emptyset$ abgeschlossen.
- (c) Sei $x \in D \cap \mathbb{R}$. Da $D \subset \mathbb{C}$ offen ist, gibt es r > 0 mit $\{\widetilde{x} + i\widetilde{y} \in \mathbb{C} : \sqrt{(\widetilde{x} x)^2 + \widetilde{y}^2} < r\} \subset D$.

Insbesondere gilt also: $\{\widetilde{x} \in \mathbb{R} : |\widetilde{x} - x| < r\} \subset D \cap \mathbb{R}$.

Also ist $D \cap \mathbb{R}$ offen in \mathbb{R} .

Bemerkung: Der Fall $D \cap \mathbb{R} = \emptyset$ folgt aus Teil (b).

(d) Sei (z_n) eine konvergente Folge in \mathbb{C} mit $z_n \in D \ \forall n \in \mathbb{N}$. Sei $z = x + iy = \lim_{n \to \infty} z_n$.

Es gibt $z_n = x_n + iy_n$ mit $y_n = 0$. Da (z_n) als konvergente Folge auch eine Cauchy-Folge in $\mathbb C$ ist und $|z_n - z_m|_{\mathbb C} = |x_n - x_m|_{\mathbb R}$ ist, ist (x_n) Cauchy-Folge in $\mathbb R$ und daher konvergent gegen ein $\widetilde{x} \in \mathbb R$.

Da D abgeschlossen in \mathbb{R} ist, gilt $\widetilde{x} \in D$. Da der Grenzwert einer Folge eindeutig ist und wegen $|z_n|_{\mathbb{C}} = |z_n|_{\mathbb{R}}$ für $z \in \mathbb{R} \subset \mathbb{C}$, folgt $\lim_{n \to \infty} z_n = z = \widetilde{x} \in D$.

Für jede konvergente Folge $(z_n) \subset \mathbb{C}$ mit $z_n \in D \ \forall n$ gilt also $\lim z_n \in D$. D ist also abgeschlossen in \mathbb{C} .