VE281

Data Structures and Algorithms

Shortest Path

Outline

- Shortest Path Problem
 - Unweighted Graph
 - Dijkstra's Algorithm
 - Bellman-Ford Algorithm

Shortest Path Problem

Introduction

- Given a weighted graph G = (V, E), path length is defined as the sum of weights of edges on the path.
 - E.g., length of the path B, C, D, F is 12.
- Shortest path problem: given a weighted graph G = (V, E) and two nodes $S, d \in V$, find the shortest path from S to d.
 - ullet Assume G is a directed graph without parallel edges of the same direction
 - For an undirected graph, we can replace each edge by two edges of the same weight but of different directions.

What is the shortest path from B to F?

Shortest Path Problem

- The starting node on the path is the **source** node and the ending node is the **destination** node.
- The previous problem is a single source single destination problem.
- What we will solve is a single source all destinations problem: Given G = (V, E) and a node $S \in V$, find the shortest path from S to every other node in G.
 - Single source single destination problem can be solved by solving the single source all destinations problem.
 - However, single source single destination problem is not much easier than the single source all destinations problem.

Shortest Path Problem

A Simple Version: Unweighted Graphs

- For an unweighted graph, path length is defined as the number of edges on the path.
- How do you obtain the shortest path between a pair of nodes?

What is the shortest path from B to F?

Using breadth-first search!

Shortest Path for Unweighted Graphs

- Recall breadth-first search (BFS): Given a start node, visit all directly connected neighbors first, then nodes 2 hops away, 3 hops away, and so on.
 - This is exactly what we want!
 - When the node visited is the destination node, we stop.
 - When the queue becomes empty, there is no path between the two nodes.

Shortest Path for Unweighted Graphs

- Additional bookkeeping
 - Store the distance.
 - Store the **predecessor** on the shortest path, i.e., the previous node on the path.

Shortest Path for Unweighted Graphs

- We can obtain the shortest path by backtracking.
 - E.g., shortest path from B to F

$$B \rightarrow A \rightarrow D \rightarrow F$$

start node

nodes 2 hops away

direct neighbor

nodes 3 hops away

	A	В	С	D	Е	F
dist	1	0	1	2	2	3
prev	В	_	В	A	С	D

Outline

- Shortest Path Problem
 - Unweighted Graph
 - Dijkstra's Algorithm
 - Bellman-Ford Algorithm

Shortest Path for Weighted Graphs

- The problem becomes more difficult when edges have different weights.
 - Breadth-first search won't work!
 - What is the shortest path from B to F?
- If the weights are **non-negative**, then we can apply **Dijkstra's Algorithm** (more details & examples from Ve203)
 - Works only when all weights are non-negative
 - A greedy algorithm for solving single source all destinations shortest path problem

Dijkstra's Algorithm

- Keep distance estimate D(v) and predecessor P(v) for each node v.
 - Predecessor: the previous node on the shortest path.
- 1. Initially, D(s) = 0; D(v) for other nodes is $+\infty$; P(v) is unknown.
- 2. Store all the nodes in a set R.
- 3. While R is not empty
 - 1. Choose node v in R such that D(v) is the **smallest**. Remove v from the set R.
 - 2. Declare that v's shortest distance is known, which is D(v).
 - 3. For each of v's **neighbors** u that is **still in** R, update distance estimate D(u) and predecessor P(u).

Updating

- For each of v's **neighbors** u that is **still in** R, if D(v) + w(v,u) < D(u), then update D(u) = D(v) + w(v,u) and the predecessor P(u) = v.
 - I.e., update D(u) if the path going through v is shorter than the best path so far to u.

Dijkstra's Algorithm v.s. Prim's Algorithm

- Dijkstra's algorithm is similar to Prim's algorithm
 - Prim's algorithm: grow the set of nodes we add to the MST.
 - Dijkstra's algorithm: grow the set of nodes to which we know the shortest path.

Dijkstra's Algorithm

Time Complexity

- Number of times to find the smallest D(v): |V|.
 - Each cost? Linear scan: O(|V|); Binary heap: $O(\log |V|)$; Fibonacci heap: $O(\log |V|)$
- Total number of times to update the neighbors: |E|.
 - Since each neighbor of each node could be potentially updated.
 - Each cost? Linear scan: O(1); Binary heap: $O(\log |V|)$; Fibonacci heap: O(1)
- Total time complexity
 - Linear scan: $O(|E| + |V|^2) = O(|V|^2)$
 - Binary heap: $O(|V| \log |V| + |E| \log |V|)$
 - Fibonacci heap: $O(|V| \log |V| + |E|)$

Outline

- Shortest Path Problem
 - Unweighted Graph
 - Dijkstra's Algorithm
 - Bellman-Ford Algorithm

Limitation of Dijkstra's Algorithm

Not always correct on graphs with negative edge weights

Find shortest paths from source node A

• Solution: The Bellman-Ford algorithm

Negative Cycles

- If the graph contains a negative cycle reachable from the source *S*, then the shortest paths for some destinations are
 - $-\infty$
 - Can traverse the negative cycle infinite times
 - Thus, if there is any negative cycle reachable from *S*, the short path problem is not well defined

- If there is no negative cycle reachable from *S*, Bellman-Ford algorithm reports the correct shortest paths for all destinations
- If there is such a negative cycle, the algorithm will report it

Key Idea of Bellman-Ford Algorithm

- Claim: Suppose there is no negative cycles. Then, for each node $v \in V$, there is a shortest s-v path with $\leq |V| 1$ edges
 - Proof: If shortest path has $\geq |V|$ edges, then there is a cycle. By assumption, the cycle has non-negative length. We can drop the cycle and obtain a no-worse path
- Key idea: consider shortest s-v path with at most i edges
 - Denoted as P(v, i)
 - It can be recursively obtained (show next)
 - If there is no negative cycles, then P(v, |V| 1) is a shortest s-v path

Optimality

- Define P(v,i) as the shortest s-v path with at most i edges
- Case 1: P(v, i) has $\leq i 1$ edges. Then P(v, i) is also a shortest s-v path with $\leq i 1$ edges.
 - Proof: By contradiction, assume Q is an s-v path with $\leq i-1$ edges shorter than P(v,i). Then P(v,i) cannot be the shortest s-v path with $\leq i$ edges

Optimality

- Case 2: P(v, i) has i edges. Suppose the first i-1 edges of P(v, i) form the path P' and the last edge is (u, v), then P' is a shortest s-u path with $\leq i-1$ edges.
 - Proof: By contradiction, suppose Q is a s-u path with $\leq i-1$ edges shorter than P'. Then Q+(u,v) is shorter than P'+(u,v). Then P(v,i) cannot be the shortest s-v path with $\leq i$ edges

Recurrence

- Possible candidates for P(v, i):
 - $\bullet P(v, i-1)$
 - P(u, i 1) + (u, v), for all $(u, v) \in E$
- P(v, i) is the shortest one of the above candidates
- Define the length of P(v, i) as L(v, i)
- $L(v,i) = \min\{L(v,i-1), \min_{(u,v)\in E}[L(u,i-1)+w(u,v)]\}$

The Bellman-Ford Algorithm

- Initially, L(s,0) = 0; $L(v,0) = +\infty$ for other $v \in V$
- For i = 1, 2, ..., |V| 1
 - For each $v \in V$, $L(v,i) = \min\{L(v,i-1), \min_{(u,v) \in E}[L(u,i-1) + w(u,v)]\}$
- If there is no negative cycle, the length of shortest s-v path is L(v,|V|-1) for all $v \in V$
- Can keep the predecessor to track shortest path

Example

• Let start point be *A*

Example

Time Complexity of Bellman-Ford

- Initially, L(s,0) = 0; $L(v,0) = +\infty$ for other $v \in V$
- For i = 1, 2, ..., |V| 1
 - For each $v \in V$,

$$L(v,i) = \min\{L(v,i-1), \min_{(u,v)\in E}[L(u,i-1) + w(u,v)]\}$$

- Assume adjacency list representation. What's the time complexity?
 - O((|V| + |E|)|V|) (worse than Dijkstra's algorithm)

Detecting Negative Cycle

- We can modify Bellman-Ford algorithm to report the existence of negative cycle by running it for one more iteration to obtain L(v, |V|) for all $v \in V$
- Claim: G has no negative cycle reachable from $S \Leftrightarrow L(v, |V| 1) = L(v, |V|)$ for all $v \in V$
- Proof of \Rightarrow : There exists a shortest s-v path with $\leq |V|-1$ edges. Thus L(v,|V|-1)=L(v,|V|) for all $v\in V$

Detecting Negative Cycle

- Claim: G has no negative cycle reachable from $S \Leftrightarrow L(v, |V| 1) = L(v, |V|)$ for all $v \in V$
- Proof of **⇐**:
 - Let d(v) = L(v, |V| 1) (= L(v, |V|))
 - By the recurrence $\underline{L(v,|V|)} = \min \left\{ L(v,|V|-1), \min_{(u,v) \in E} \underline{[L(u,|V|-1) + w(u,v)]} \right\},$ $\underline{d(v)}$
 - ... we have for any $(u, v) \in E$, $d(v) \le d(u) + w(u, v)$, or $d(v) d(u) \le w(u, v)$
 - Now consider any cycle C, we have $\sum_{(u,v)\in C} w(u,v) \geq 0$