

Kaherekr

Qmio)

Introduction

What is Qmio?

- Computing infrastructure designed to research in Quantum Computing and Quantum inpired computing
- O It is composed of:
 - Quantum Processing Unig (QPU)
 - HPC System
 - Quantum Computer Emulator
 - Storage system
- Access is granted through specific open calls

QPU Cooling

QPU Control

<40K

<4K

<1K

<100mK

<20mK

QPU

Qmio QPU Specs

Qubits: 32 (35)

Qubit technology: CoaxMon

Native Gates:

1Q: RZ (virtual), SX

2Q: ECR (actually RZX(pi/4))

ArXiv:1703.05828

Qmio QPU Software stack

Qmio QPU Software stack- Lowest level

Qmio QPU – QPU Software stack

ZMQ Server

Qasm/QIR Parser

Signals/Pulses

Qmio QPU - Software stack- Repetition_period

Execution time

How to use it:

```
service = QmioRuntimeService()
with service.backend(name="qpu") as backend:
    results = backend.run(input, shots, repetition_period, res_format)
```

It is useful because there is no active initialization (not yet): good value ~5xT1

Qmio QPU Topology

