```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
from statsmodels.tsa.seasonal import STL
from statsmodels.graphics.tsaplots import plot_pacf
import warnings
warnings.filterwarnings("ignore", "is_categorical_dtype")
warnings.filterwarnings("ignore", "use_inf_as_na")
```

Wczytanie

```
In [ ]: data = pd.read_excel('data/Pyły Bydgoszcz .xlsx', header = 5)
        data.columns = ['Date', 'PM2.5']
        data['Date'] = pd.to_datetime(data['Date'])
        data.index = data['Date']
        data = data.drop(columns=['Date'])
In [ ]:
        data.head()
Out[]:
                       PM2.5
              Date
         2022-01-01
                     4.934921
         2022-01-02 10.341562
         2022-01-03
                     5.007348
         2022-01-04
                     9.688094
         2022-01-05
                     5.914476
In [ ]: data['PM2.5'].plot(title='PM 2.5 w Bydgoszczy', figsize=(12,3))
        plt.show()
```


Feature Engineering

Okna typu rolling

```
In [ ]: window_sizes = [7, 14, 30]
    statistics = ['mean', 'std', 'min', 'max']
```

```
for size in window_sizes:
    for stat in statistics:
        data[f'Rolling_{size}_{stat}'] = data['PM2.5'].rolling(window=size, clos
In []: data.head(31)
```

Out[]:

PM2.5	Rolling 7 m	nean Rolling	7 std	Rolling 7 mi	n Rolling	7 max	Rolling	14 mea
r iviz.J	Noming 1 m	ican itoming	, a stu	Noming 1 mm		, illian	Nonning	I T III Ca

Date						
2022- 01-01	4.934921	NaN	NaN	NaN	NaN	NaN
2022- 01-02	10.341562	NaN	NaN	NaN	NaN	Nan
2022- 01-03	5.007348	NaN	NaN	NaN	NaN	NaN
2022- 01-04	9.688094	NaN	NaN	NaN	NaN	NaN
2022- 01-05	5.914476	NaN	NaN	NaN	NaN	NaN
2022- 01-06	6.005189	NaN	NaN	NaN	NaN	NaN
2022- 01-07	13.716152	NaN	NaN	NaN	NaN	NaN
2022- 01-08	19.322357	7.943963	3.358183	4.934921	13.716152	NaN
2022- 01-09	33.909314	9.999311	5.139823	5.007348	19.322357	NaN
2022- 01-10	43.070916	13.366133	10.414168	5.007348	33.909314	NaN
2022- 01-11	63.970798	18.803785	14.469841	5.914476	43.070916	NaN
2022- 01-12	31.368494	26.558457	21.572654	5.914476	63.970798	NaN
2022- 01-13	10.032802	30.194746	19.564767	6.005189	63.970798	NaN
2022- 01-14	10.323119	30.770119	18.778235	10.032802	63.970798	NaN
2022- 01-15	13.733921	30.285400	19.327571	10.032802	63.970798	19.114682
2022- 01-16	19.630789	29.487052	19.960927	10.032802	63.970798	19.743182
2022- 01-17	4.735347	27.447263	20.162242	10.032802	63.970798	20.406698
2022- 01-18	7.674305	21.970753	20.416021	4.735347	63.970798	20.387269
2022- 01-19	12.264329	13.928397	9.023226	4.735347	31.368494	20.243427
2022- 01-20	3.973222	11.199230	4.743158	4.735347	19.630789	20.696988
2022- 01-21	4.190932	10.333576	5.486262	3.973222	19.630789	20.55184{
2022- 01-22	5.733206	9.457549	5.957550	3.973222	19.630789	19.87147!

PM2.5 Rolling_7_mean Rolling_7_std Rolling_7_min Rolling_7_max Rolling_14_mear

Date						
2022- 01-23	15.784460	8.314590	5.764739	3.973222	19.630789	18.90082 ⁻
2022- 01-24	27.958402	7.765114	4.564765	3.973222	15.784460	17.606189
2022- 01-25	7.365961	11.082694	8.627162	3.973222	27.958402	16.52672:
2022- 01-26	6.712761	11.038645	8.648226	3.973222	27.958402	12.48352 ⁻
2022- 01-27	8.055299	10.245563	8.770776	3.973222	27.958402	10.722397
2022- 01-28	1.705395	10.828717	8.412625	4.190932	27.958402	10.581147
2022- 01-29	6.984887	10.473641	8.783752	1.705395	27.958402	9.96559!
2022- 01-30	3.828081	10.652452	8.683333	1.705395	27.958402	9.48352
2022- 01-31	12.754385	8.944398	8.681533	1.705395	27.958402	8.35475(

```
In [ ]: fig, ax = plt.subplots(3,4,figsize=(14, 8))
    axs = ax.flatten()
    i = 0
    for size in window_sizes:
        for stat in statistics:
            data['PM2.5'].plot(ax=axs[i])
            data[f'Rolling_{size}_{stat}'].plot(ax=axs[i])
            axs[i].set(title=f'Rolling_{size}_{stat}')
            axs[i].legend()
            i = i + 1
    plt.tight_layout()
    plt.show()
```


Wartości 2-tygodniowe raczej nie będą potrzebne, te z tygodnia i miesiąca raczej szczegółowo oddają obraz sytuacji. Średnia zdecydowanie przyda się jako ogólna metryka dająca obraz na dane, odchylenie standardowe pokaże zmienność, a wartości maksymalne pokażą jak bardzo zła jest sytuacja. Wartości minimalne można pominąć, ponieważ analizy zanieczyszczeń poweitrza skupiają się bardziej na maksymalnych.

Okna typu expanding

```
data['Expanding_mean'] = data['PM2.5'].shift(1).expanding().mean()
In [ ]:
         data['Expanding_std'] = data['PM2.5'].shift(1).expanding().std()
In [ ]:
         data.head()
                   PM2.5 Rolling_7_mean Rolling_7_std Rolling_7_min Rolling_7_max Rolling_14_mear
Out[]:
          Date
         2022-
                 4.934921
                                    NaN
                                                 NaN
                                                               NaN
                                                                             NaN
                                                                                              NaN
         01-01
         2022-
                10.341562
                                    NaN
                                                 NaN
                                                               NaN
                                                                             NaN
                                                                                              NaN
         01-02
         2022-
                 5.007348
                                    NaN
                                                 NaN
                                                               NaN
                                                                             NaN
                                                                                              NaN
         01-03
         2022-
                 9.688094
                                                               NaN
                                    NaN
                                                 NaN
                                                                             NaN
                                                                                              NaN
         01-04
         2022-
                                                 NaN
                                                                             NaN
                 5.914476
                                    NaN
                                                               NaN
                                                                                              NaN
         01-05
In [ ]: fig, ax = plt.subplots(1,2,figsize=(15,5))
         axs = ax.flatten()
         for i, col in enumerate(['Expanding_mean', 'Expanding_std']):
             data['PM2.5'].plot(ax=axs[i])
             data[col].plot(ax=axs[i])
             axs[i].set(title=col)
             axs[i].legend()
         plt.tight layout()
         plt.show()
                           Expanding_mea
                                                                        Expanding_std
         60
```

Wykresy są bardzo podobne do siebie - średnia krocząca i odchylenie standardowe rosną lub maleją w podobny sposób wraz z przesuwającym się oknem czasowym. Oba

wskaźniki mogą przydać się w dalszej analizie szeregu czasowego, okaże się to w przyszłości.

Okna typu nested

Out[]:

PM2.5 Rolling_7_mean Rolling_7_std Rolling_7_min Rolling_7_max Rolling_14_mear

Date						
2022- 01-01	4.934921	NaN	NaN	NaN	NaN	Nah
2022- 01-02	10.341562	NaN	NaN	NaN	NaN	Nan
2022- 01-03	5.007348	NaN	NaN	NaN	NaN	NaN
2022- 01-04	9.688094	NaN	NaN	NaN	NaN	NaN
2022- 01-05	5.914476	NaN	NaN	NaN	NaN	NaN
2022- 01-06	6.005189	NaN	NaN	NaN	NaN	NaN
2022- 01-07	13.716152	NaN	NaN	NaN	NaN	NaN
2022- 01-08	19.322357	7.943963	3.358183	4.934921	13.716152	NaN
2022- 01-09	33.909314	9.999311	5.139823	5.007348	19.322357	NaN
2022- 01-10	43.070916	13.366133	10.414168	5.007348	33.909314	NaN
2022- 01-11	63.970798	18.803785	14.469841	5.914476	43.070916	NaN
2022- 01-12	31.368494	26.558457	21.572654	5.914476	63.970798	NaN
2022- 01-13	10.032802	30.194746	19.564767	6.005189	63.970798	NaN
2022- 01-14	10.323119	30.770119	18.778235	10.032802	63.970798	NaN
2022- 01-15	13.733921	30.285400	19.327571	10.032802	63.970798	19.114682
2022- 01-16	19.630789	29.487052	19.960927	10.032802	63.970798	19.743182
2022- 01-17	4.735347	27.447263	20.162242	10.032802	63.970798	20.406698
2022- 01-18	7.674305	21.970753	20.416021	4.735347	63.970798	20.387269
2022- 01-19	12.264329	13.928397	9.023226	4.735347	31.368494	20.24342
2022- 01-20	3.973222	11.199230	4.743158	4.735347	19.630789	20.696988
2022- 01-21	4.190932	10.333576	5.486262	3.973222	19.630789	20.55184{
2022- 01-22	5.733206	9.457549	5.957550	3.973222	19.630789	19.87147!

PM2.5 Rolling_7_mean Rolling_7_std Rolling_7_min Rolling_7_max Rolling_14_mear

Date						
2022- 01-23	15.784460	8.314590	5.764739	3.973222	19.630789	18.90082 ⁻
2022- 01-24	27.958402	7.765114	4.564765	3.973222	15.784460	17.606189
2022- 01-25	7.365961	11.082694	8.627162	3.973222	27.958402	16.52672:
2022- 01-26	6.712761	11.038645	8.648226	3.973222	27.958402	12.48352
2022- 01-27	8.055299	10.245563	8.770776	3.973222	27.958402	10.722397
2022- 01-28	1.705395	10.828717	8.412625	4.190932	27.958402	10.581147
2022- 01-29	6.984887	10.473641	8.783752	1.705395	27.958402	9.96559!
2022- 01-30	3.828081	10.652452	8.683333	1.705395	27.958402	9.48352 ⁻

Nie jestem przekonana jak okna zagnieżdżone przydadzą się w tej analize, dlatego postawiłam na średnią, gdyż jest ona najbardziej ogólną i przystępną metryką. Analogicznie jak dla okna typu rolling zostawię jedynie wartości odpowiadające tygodniowi i miesiącowi (Nested_30_7).

Lagi w oparciu o ACF

```
In [ ]: plot_pacf(data['PM2.5'], title='Autokorelacja cząstkowa', lags=60)
    plt.show()
```


Tylko lag 1-dniowy ma dużą wartość autokorelacji, dlatego też tylko on został dodany do zbioru danych. Może się przydać w dalszych analizach.

Cechy oparte o sama date

```
In []: data['day_of_week'] = data.index.dayofweek
   data['day_of_month'] = data.index.day
   data['month'] = data.index.month

data['season'] = 0
   for date in data.index:
        month = date.month
        if 2 < month < 6:
            data.loc[date, 'season'] = 1 # wiosna
        elif 5 < month < 9:
            data.loc[date, 'season'] = 2 # Lato</pre>
```

```
elif 8 < month < 12:
    data.loc[date, 'season'] = 3 # jesień
else:
    data.loc[date, 'season'] = 4 # zima</pre>
```

Z uwagi na to, że przy zanieczyszczeniach okres czasu wnosi bardzo dużo informacji wyciągnęłam 4 cechy:

- dzień tygodnia (w ciągu całego tygodnia na pewno tendencje będą inne przykładowo w weekendy i dni robocze)
- dzień miesiąca (być może kiedy ludzie na koniec miesiąca mają najmniej pieniędzy przed wypłatą to oszczędzają na wszystkim, więc mniej palą?)
- miesiąc (przydatny, aby wiedzieć w którym miejscu roku jesteśmy, być może dla konkretnego miesiąca wypłyną ciekawe wnioski, których nie udałoby się wyciągnąć bez tej cechy)
- pora roku (będzie widać chociażby to, że zimą ludzie palą w piecach, a latem nie)

Trend, sezonowości i rezydua

```
In [ ]: res = STL(data['PM2.5'].dropna(), period=12).fit()

data['trend'] = res.trend
   data['seasonal'] = res.seasonal
   data['resid'] = res.resid

res.plot()
   plt.show()
```


Przydatność wyciągniętych cech:

 trend - może się przydać, żeby zbadać długoterminowe tendencje poziomu zanieczyszczenia

- sezonowość może się przydać do identyfikacji cyklicznych wzorców
- rezydua mogą się przydać do identyfikacji nieregularnych zmian w danych, ale raczej są mniej ważne np. od trendu

Wnioski

Wszystkie wnioski i wizualizacje były przedstawiane na bieżąco w poszczególnych sekcjach dotyczących cech. Podsumowując, lista zapisywanych cech:

- Rolling_7_mean
- Rolling_7_std
- Rolling_7_max
- Rolling_30_mean
- Rolling_30_std
- Rolling_30_max
- Expanding_mean
- Expanding_std
- Nested_30_7_mean
- Lag_1
- day_of_week
- day_of_month
- month
- season
- trend
- seasonal
- resid

Zapisanie