CHAPITRE 6 : LES SOLUTIONS COLORÉES (p72 à 91)

Nom:

Classe:

Vous trouvez un flacon de Bétadine® dans votre pharmacie : malheureusement l'étiquette s'est décollée et on ignore s'il s'agit de Bétadine® 10%

Vous décidez donc de déterminer la teneur en masse de diiode dans l'antiseptique en effectuant une échelle de teintes

Doc. 2

Facteur de dilution

$$F = \frac{C_{m\acute{e}r}}{C_{fille}} = \frac{V_{fille}}{V_{m\grave{e}r}}$$

Doc. 3

Matériel et produits disponibles :

- ✓ Solution S_0 de diiode I_2 de concentration C_0 =1,5.10⁻² mol/L
- ✓ Pissette d'eau
- ✓ Pipettes graduées de 5 et 10 mL
- ✓ Pipettes jaugées de 10 et 20 mL
- √ Fiole jaugée de 100,0 mL + bouchon
- ✓ Pissette d'eau
- ✓ Tubes à essai
- ✓ Bécher + pipette
- ✓ Flacon de bétadine commerciale diluée
 30 fois

Doc. 4

Echelle de teintes:

Informations données par le fabricant :

La bétadine est un antiseptique : produit ou un procédé permettant par oxydation, au niveau des tissus vivants d'éliminer les micro – organisme ou d'inactiver les virus.

Le principe actif de la Bétadine est le diiode l₂.

L'étiquette de la Bétadine 10 % précise :

Polyvidone iodée : 10g pour 100 mL de bétadine (soit 100g)

Les molécules de diiode sont associées avec la molécule

de polyvidone comme indiqué ci-contre

Au fur à mesure de son utilisation, la polyvidone libère les molécules de diiode La masse molaire de la polyvidone iodée vaut M=2362,8 g/mol

Molécule de diiode

Polyvidone iodée

1. A l'aide de vos connaissances et de la documentation présentée, faire les calculs nécessaires permettant de réaliser par dilution à partir de la solution S₀, des solutions aqueuses de diiode de concentrations suivantes :

Solution	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆
Concentration molaire C (mol/L)	7,5.10 ⁻³	3,0.10 ⁻³	1,5.10 ⁻³	7,5.10 ⁻⁴	3,0.10 ⁻⁴	1,5.10 ⁻⁴

On présentera tous les calculs correspondants à une solution de votre choix puis on regroupera les résultats de toutes les solutions dans un tableau. Faire valider par votre professeur.

RÉALISER

2. Réaliser les 6 solutions demandées de manière à présenter sur votre paillasse une échelle de teintes.

ANALYSER

&

RÉALISER

- 3. Déterminer alors la concentration molaire en l₂ de la solution de Bétadine diluée 30 fois (présente au fond de la salle).
- 4. En déduire la concentration molaire en l₂ de la **solution commerciale**
- 5. Calculer alors la quantité de matière de diiode présent dans un volume V = 100 mL de Bétadine. C'est aussi la quantité de matière de polyvidone iodée
- 6. En déduire la masse de polyvidone iodée présent dans ce volume V = 100 mL.
- 7. Retrouver alors le pourcentage en polyvidone iodée présent dans la Bétadine
- 8. Faire un calcul d'erreur sur votre mesure

