III - Tassement et Régénération du sol

III – Tassement et Régénération des sols

- A. Phénomène de tassement des sols
 - Rappel : structure du sol, porosité du sol et définition
 - Action due à l'homme
- B. Propriété du sol : sensibilité au tassement
 - Le comportement mécanique du sol
 - Facteurs influençant le tassement
- C. Régénération
 - Naturelle des sols sous l'action du climat
 - Vie du sol
 - Les pratiques pour ne pas tasser ou décompacter

Structure du sol

Source: Girard et al., 2005

et assemblés ≥2000 um -Pores Particule de sable Pores Racine Hyphe mycélien 200 µm Petit agrégat 2 Pores Hyphe mycélien Particule de limon 20 µm Assemblage organo-minéral Bactérie 3 Pores Fragments de tissus microbiens 2 µm Assemblage de particules de minéraux argileux Particules de minéraux argileux 0,2 µm Ciments organo-r Pores

Agrégat

Agrégats plus petits

Source: Calvet, 2003

Calcul de la porosité total

Porosité totale = nT = VP/VT = 1- (VS/VT) = ε

Indice des vides = e = VP/VS

Taux de saturation = s = VL/VP si s = 1 le sol est saturé

Classification de la porosité du sol

- Critère dimensionnel :
 - Microporosité et macroporosité
 - Porosité capillaire (micro) et non capillaire (macro)
- Critère selon l'origine des pores :
 - Porosité texturale : vide du à l'entassement des particules
 - Porosité structurale : résulte de l'organisation des particules entre elles

Tassement structural

Tassement structural

Réarrangement des éléments structuraux entre eux.

Diminution des vides entre les agrégats = diminution de la porosité structurale

Ce peut être :

• un objectif :

Amélioration du contact terre - graine, diminution de la porosité en terres creuses ou soufflées

un effet non souhaité :

Action du climat, répercussions du passage d'outils lourds, pneumatiques, animaux

Effet réversible :

Par action du climat et des racines (si forte activité structurale)

Par le travail du sol

Risques:

Obstacles à la circulation des fluides (air, eau, chaleur), obstacles à la levée et à l'enracinement

Source: C. DURR et al. 1979

Tassement textural

Tassement textural

Réarrangement des particules élémentaires à l'intérieur des agrégats = diminution de la porosité texturale

Effet non souhaité :

Passages d'outils pneumatiques, animaux, selon des conditions variables

Risques:

Encore mal définis mais des effets très difficilement réversible

Source: C. DURR et al. 1979

III – Tassement et Régénération des sols

- A. Phénomène de tassement des sols
 - Rappel : structure du sol, porosité du sol et définition
 - Action due à l'homme
- B. Propriété du sol : sensibilité au tassement
 - Le comportement mécanique du sol
 - Facteurs influençant le tassement
- C. Régénération
 - Naturelle des sols sous l'action du climat
 - Vie du sol
 - Les pratiques pour ne pas tasser ou décompacter

Source : TCS n°35, 2005

Source : Hamza et Anderson, 2004

Profils des principaux cas d'ornières

Conséquences agronomiques

Racine de luzerne dans un sol bien structuré

Racine de luzerne dans un sol compacté

Conséquences environnementales

- Réduction de la porosité :
 - Modifications conditions eau, température ...
 - Cycles des éléments (N, C)
 - Vie du sol : 'dépollution', stockage du C
 - Emissions de gaz : CH4, N2O....
- Résistance :
 - Augmentation énergie nécessaire au travail du sol

Les différents outils et méthodes au champ...

- La résistance à la pénétration,
- La densité apparente,
- Le profil cultural etc.

Méthode des cylindres : densité apparente

Calcul de la densité apparente

$$\rho b = Ms / Vt$$

Avec : Ms = Masse Solide

Vt = Volume total

Unité: g/cm3