USTHB

Faculté de Mathématiques

Master 1 SPA

Séries chronologiques 1

Série d'exercices N°2

Exercice 1

Supposons que $X_1, X_2, ...$, est un processus stationnaire de moyenne μ et de fonction d'autocorrélation $\{\rho_h, h \in \mathbb{Z}\}$

Montrer que le meilleur prédicteur de X_{n+h} de la forme aX_n+b est obtenu en choisissant $a=\rho_h$ et $b=\mu(1-\rho_h)$.

Exercice 2

Montrer que le processus $X_t = A\cos(\omega t) + B\sin(\omega t), t \in \mathbb{Z}$, (où A et B sont des variables aléatoires non corrélées de moyenne 0 et de variance 1 et ω est une fréquence fixée dans l'intervalle $[0,\pi]$) est stationnaire et trouver sa moyenne et sa fonction d'autocovariance.

Déduire que la fonction $\kappa_h = \cos(\omega h), h \in \mathbb{Z}$ est semi-définie positive. (Voir cours chapitre 2, proposition 8).

Exercice 3

- 1) Trouver la fonction d'autocovariance du processus $X_t = \epsilon_t + 0.3\epsilon_{t-1} 0.4\epsilon_{t-2}$, where $\{\epsilon_t\} \sim WN(0,1)$.
- 2) Trouver la fonction d'autocovariance du processus $Y_t = \tilde{\epsilon}_t 1.2\tilde{\epsilon}_{t-1} 1.6\tilde{\epsilon}_{t-2}$, where $\{\tilde{\epsilon}_t\} \sim WN(0, 0.25)$.

Comparer avec le réponse trouvée en 1).

Exercice 4

- 1) Montrer que $\gamma_h=1, \forall h$ est la fonction d'autocovariance du processus $X_t=A$ où A est une variable aléatoire centrée-réduite.
- $2)\ {\rm Trouver}$ les processus correspondant au fonctions d'autocovariance suivantes :

a)
$$\gamma_h = (-1)^h, h \in \mathbb{Z}$$
.
b) $\gamma_h = 1 + \cos\frac{\pi h}{2} + \cos\frac{\pi h}{4}, h \in \mathbb{Z}$.
c) $\gamma_h = \begin{cases} 1 & \text{si } h = 0 \\ 0.4 & \text{si } h = \pm 1 \\ 0 & \text{sinon} \end{cases}$

Exercice 5

Montrer, en utilisant la série géométrique $\frac{1}{1-x} = \sum_{i=0}^{\infty} x^i$ pour |x| < 1 que

$$\frac{1}{1-\phi z} = \sum_{i=1}^{\infty} \phi^{-i} z^{-i} \text{ pour } |\phi| > 1 \text{ et } |z| \ge 1.$$

Exercice 6

Montrer que les équations autorégressives $X_t = \phi X_{t-1} + \epsilon_t, t \in \mathbb{Z}$ n'ont pas de solution stationnaire au second ordre pour $|\phi| = 1$.

(Indication : on exprimera X_t en fonction de X_0 que l'on supposera constante, puis on calculera les caractéristiques —moyenne, fonction d'autocovariance—de ce processus).

Exercice 7

Soit $\{Y_t\}$ un processus vérifiant l'équation $Y_t = X_t + W_t$ où $\{X_t\}$ est un processus AR(1) causal, i.e., $X_t = \phi X_{t-1} + \epsilon_t$ et $|\phi| < 1$, $\{W_t\} \sim WN(0, \sigma_W^2)$, $\{\epsilon_t\} \sim WN(0, \sigma_\epsilon^2)$ et $E(W_s\epsilon_t) = 0, \forall s, t$.

- 1) Montrer que $\{Y_t\}$ est un processus stationnaire au second ordre.
- 2) Montrer que le processus $\{U_t\}$ défini par $U_t = Y_t \phi Y_{t-1}$ est 1-dépendant, i.e., que $\{U_t\}$ est un processus MA(1).
- 3) Conclure que $\{Y_t\}$ est un processus ARMA(1,1) dont on déterminera les paramètres.

Exercice 8

Calculer les coefficients ψ_i et π_j , $i, j \in \mathbb{N}$ des développements $X_t = \sum_{i=0}^{\infty} \psi_i \epsilon_{t-i}$

et $\epsilon_t = \sum_{j=0}^{\infty} \pi_j X_{t-j}$ pour le processus ARMA(1,1) défini par les équations $X_t = 0.5X_{t-1} + \epsilon_t + 0.5\epsilon_{t-1}$, $\{\epsilon_t\} \sim WN(0,\sigma_{\epsilon}^2)$.

Exercice 9

- A) Supposons que pour une série chronologique de taille T=100 provenant d'un processus AR(1) de moyenne $\mu, \phi=0.6$ et $\sigma_{\epsilon}^2=2$ on ait obtenu $\overline{X}_{100}=0.271$.
- 1) Construire un intervalle de confiance approximatif de niveau de confiance 0.95 pour μ .
 - 2) Les observations sont-elles compatibles avec l'hypothèse $H_0: \mu = 0$?
- B) Supposons que pour une série chronologique de taille T=100 provenant d'un processus MA(1) de moyenne $\mu, \theta=-0.6$ et $\sigma_{\epsilon}^2=1$ on ait obtenu $\overline{X}_{100}=0.157$.
- 1) Construire un intervalle de confiance approximatif de niveau de confiance 0.95 pour μ .
 - 2) Les observations sont-elles compatibles avec l'hypothèse $H_0: \mu = 0$?
- C) Supposons que pour une série chronologique de taille T=100, on ait obtenu $\widehat{\rho}_1=0.438$ et $\widehat{\rho}_2=0.145.$
- 1) En supposant que les observations proviennent d'un modèle AR(1), construire un intervalle de confiance approximatif de niveau de confiance 0.95 pour ρ_1 et ρ_2 . Peut-on conclure que les observations proviennent d'un modèle AR(1) avec $\phi=0.8$?
- 2) En supposant que les observations proviennent d'un modèle MA(1), construire un intervalle de confiance approximatif de niveau de confiance 0.95 pour ρ_1 et ρ_2 . Peut-on conclure que les observations proviennent d'un modèle MA(1) avec $\theta=0.6$?

Exercice 10

- 1) Montrer que le processus donné dans l'**Exercice 2** s'écrit : $X_t = 2\cos(\omega)X_{t-1} X_{t-2}$. (Indication : développer $\cos(\omega t) = \cos((\omega t 1) + \omega)$ et $\sin(\omega t) = \sin((\omega t 1) + \omega)$).
 - 2) Trouver P_1X_2 et son erreur quadratique moyenne.
 - 3) Trouver P_2X_3 et son erreur quadratique moyenne.
 - 4) Trouver P_nX_{n+1} et son erreur quadratique moyenne.