

Regression

Outline

Regression **Bias-Variance Trade-off Advanced Techniques Q&A**

Regression

1

KNN

- Training stage
- Step 1. load all the training data (that's it!)
- Testing stage
- Step 1. given an Xnew
- Step 2. calculate distance between Xnew with all training data
- Step 3. find nearest k neighbors
- Step 4. vote on label or calculate average

kNN Algorithm

Say you want to classify the grey point into a class. Here, there are three potential classes - lime green, green and orange.

Start by calculating the distances between the grey point and all other points.

2. Find neighbours

Next, find the nearest neighbours by ranking points by increasing distance. The nearest neighbours (NNs) of the grey point are the ones closest in dataspace.

3. Vote on labels

Vote on the predicted class labels based on the classes of the k nearest neighbours. Here, the labels were predicted based on the k=3 nearest neighbours.

KNN

Potential improvements?

Accuracy

- 1. Could it be wrong under any situation?
 - 1. Dimension? => dimension reduction to smaller dimension
 - 2. Imbalanced data? => add weight to point based on class imbalance

Speed

- 1. How is the testing speed goes?
 - 1. Testing speed => decrease training data
 - 2. Calculate distance => k-d tree

$$y = w_1 x_1 + w_2 x_2 + \dots + w_p x_p + w_0 = Xw$$

$$mse = (y - Xw)^{2} = (y - Xw)^{T}(y - Xw)$$

$$= y^{T}y - (Xw)^{T}y - y^{T}(Xw) - (Xw)^{T}(Xw)$$

$$= w^{T}(X^{T}X)w - 2X^{T}yw + y^{T}y$$

$$= w^{T}Aw + bw$$

Object: find w to minimize mse

$$\min_{w} w^{T} A w + b w$$

$$\frac{\partial mse}{\partial w} = 2Aw + b = 0$$

$$X^{T}Xw = X^{T}y$$

$$W = (X^{T}X)^{-1}X^{T}y$$

Gradient Descent:
$$w^{t+1} = w^t - \lambda \frac{\partial err}{\partial w}$$

$$err = \sum_{j=1}^{n} (y_j - \sum_{i=1}^{p+1} X_{ji} w_i)^2$$

$$\frac{\partial err}{\partial w_i} = \sum_{j} -2(y_j - \sum_{i} X_{ji} w_i) X_{ji}$$

$$= -2\sum_{j} err_{j} \cdot X_{ji}$$

Bias Variance Trade-off

1

Bias Variance

Hidden mechanism:
$$y = f(x) + \varepsilon$$
 $\varepsilon \sim N(0, \sigma^2)$

Data:
$$D = \{(x_1, y_1), ..., (x_i, y_i)\}$$

Given data sample $D \rightarrow \text{find best fit } \tilde{f}(x, D)$

Question: if we sample another data set D_1 , what's the expected error (variance)?

Bias Variance

$$\begin{split} E_{D}\left[\left(\tilde{f}(x,D) - y\right)^{2}\right] &= E_{D}\left[\left(\tilde{f}(x,D) - \bar{f}(x) + \bar{f}(x) - y\right)^{2}\right] & \bar{f}(x) = E_{D}\left[\tilde{f}(x,D)\right] \\ &= E_{D}\left[\left(\tilde{f}(x,D) - \bar{f}(x)\right)^{2}\right] + E_{D}\left[\left(\bar{f}(x) - y\right)^{2}\right] + \frac{2E_{D}\left[\left(\tilde{f}(x,D) - \bar{f}(x)\right)\left(\bar{f}(x) - y\right)\right]}{2} \\ &= E_{D}\left[\left(\tilde{f}(x,D) - \bar{f}(x)\right)^{2}\right] + E_{D}\left[\left(\bar{f}(x) - f(x) + f(x) - y\right)^{2}\right] \\ &= E_{D}\left[\left(\tilde{f}(x,D) - \bar{f}(x)\right)^{2}\right] + E_{D}\left[\left(\bar{f}(x) - f(x)\right)^{2}\right] + E_{D}\left[\left(\bar{f}(x) - y\right)^{2}\right] + \frac{2E_{D}\left[\left(\bar{f}(x) - f(x)\right)\left(f(x) - y\right)\right]}{2} \\ &= var(x) + bias^{2}(x) + \sigma^{2} \end{split}$$

$$var(x) = E_D \left[\left(\tilde{f}(x, D) - \bar{f}(x) \right)^2 \right]$$

$$bias^{2}(x) = E_{D}\left[\left(\bar{f}(x) - f(x)\right)^{2}\right]$$

Bias Variance

Under fit = high bias Over fit = high variance

Address over fitting:

- 1) Reduce number of features
- 2) Regularization

Regularization

		intovoont	anaf w 1	anaf w O	anaf w 2	anaf w A	anaf w E	anaf w 6	200f v 7	anaf w O	anaf w O	aaaf w 10	coef x 11	Ę
	rss	intercept	coef_x_1	coef_x_2	coef_x_3	coef_x_4	coer_x_5	coef_x_6	coer_x_/	coer_x_6	coer_x_9	coef_x_10	coer_x_11	L
model_pow_1	3.3	2	-0.62	NaN	NaN	ľ								
model_pow_2	3.3	1.9	-0.58	-0.006	NaN	NaN	N							
model_pow_3	1.1	-1.1	3	-1.3	0.14	NaN	NaN	N						
model_pow_4	1.1	-0.27	1.7	-0.53	-0.036	0.014	NaN	NaN	NaN	NaN	NaN	NaN	NaN	V
model_pow_5	1	3	-5.1	4.7	-1.9	0.33	-0.021	NaN	NaN	NaN	NaN	NaN	NaN	V
model_pow_6	0.99	-2.8	9.5	-9.7	5.2	-1.6	0.23	-0.014	NaN	NaN	NaN	NaN	NaN	Ī
model_pow_7	0.93	19	-56	69	-45	17	-3.5	0.4	-0.019	NaN	NaN	NaN	NaN	V
model_pow_8	0.92	43	-1.4e+02	1.8e+02	-1.3e+02	58	-15	2.4	-0.21	0.0077	NaN	NaN	NaN	N
model_pow_9	0.87	1.7e+02	-6.1e+02	9.6e+02	-8.5e+02	4.6e+02	-1.6e+02	37	-5.2	0.42	-0.015	NaN	NaN	V
model_pow_10	0.87	1.4e+02	-4.9e+02	7.3e+02	-6e+02	2.9e+02	-87	15	-0.81	-0.14	0.026	-0.0013	NaN	V
model_pow_11	0.87	-75	5.1e+02	-1.3e+03	1.9e+03	-1.6e+03	9.1e+02	-3.5e+02	91	-16	1.8	-0.12	0.0034	V
model_pow_12	0.87	-3.4e+02	1.9e+03	-4.4e+03	6e+03	-5.2e+03	3.1e+03	-1.3e+03	3.8e+02	-80	12	-1.1	0.062	-1
model_pow_13	0.86	3.2e+03	-1.8e+04	4.5e+04	-6.7e+04	6.6e+04	-4.6e+04	2.3e+04	-8.5e+03	2.3e+03	-4.5e+02	62	-5.7	0
model_pow_14	0.79	2.4e+04	-1.4e+05	3.8e+05	-6.1e+05	6.6e+05	-5e+05	2.8e+05	-1.2e+05	3.7e+04	-8.5e+03	1.5e+03	-1.8e+02	1
model_pow_15	0.7	-3.6e+04	2.4e+05	-7.5e+05	1.4e+06	-1.7e+06	1.5e+06	-1e+06	5e+05	-1.9e+05	5.4e+04	-1.2e+04	1.9e+03	-

Regularization

Extend the cost function from regular RSS to RSS + extra terms

$$\hat{y}(w,x) = w_0 + w_1 x_1 + \dots + w_p x_p$$

$$\min_{w} ||Xw - y||_2^2$$

Total cost =

measure of fit + measure of magnitude of coefficients

Regularization - Ridge

Introduce square of coefficient into the equation

$$\min_{w} ||Xw - y||_2^{\ 2} + \alpha ||w||_2^{\ 2}$$

```
Total cost =

measure of fit + measure of magnitude

of coefficients

RSS(w)

||\mathbf{w}||_2^2

RSS(w) + \lambda ||\mathbf{w}||_2^2

tuning parameter = balance of fit and magnitude
```


Regularization - Lasso

Introduce square of coefficient into the equation

$$\min_{w} \frac{1}{2n_{samples}} ||Xw - y||_2^2 + \alpha ||w||_1$$

```
Total cost =

measure of fit + \lambda measure of magnitude

of coefficients

RSS(w)

||\mathbf{w}||_1 = |w_0| + ... + |w_D|
```

RSS(w) +
$$\lambda ||w||_1$$

tuning parameter = balance of fit and sparsity

Regularization

• Think in the following geometry.

 Regularization term on Ridge is an eclipse; on lasso is a prismatic

Regularization – Elastic Net

Fig. 1. Two-dimensional contour plots (level 1) ($\cdot \cdot \cdot \cdot \cdot$, shape of the ridge penalty; $\cdot \cdot \cdot \cdot \cdot$, contour of the lasso penalty; $\cdot \cdot \cdot \cdot \cdot$, contour of the elastic net penalty with $\alpha = 0.5$): we see that singularities at the vertices and the edges are strictly convex; the strength of convexity varies with α

 How it is different from Lasso and Ridge

Advanced Technique

3

Gradient Descendent

Coordinated Descendent

- Choose an initial parameter vector x.
- Until convergence is reached, or for some fixed number of iterations:
 - Choose an index *i* from 1 to *n*.
 - Choose a step size α .
 - Update x_i to $x_i \alpha \frac{\partial F}{\partial x_i}(\mathbf{x})$.

Stochastic Gradient Descendent

Random Sample Consensus - RANSAC

```
iterations = 0
bestfit = nul
besterr = something really large
while iterations < k {
    maybeinliers = n randomly selected values from data
    maybemodel = model parameters fitted to maybeinliers
    alsoinliers = empty set
    for every point in data not in maybeinliers {
        if point fits maybemodel with an error smaller than t
             add point to also inliers
    if the number of elements in also inliers is > d {
        % this implies that we may have found a good model
        % now test how good it is
        bettermodel = model parameters fitted to all points in maybeinliers and also inliers
        thiserr = a measure of how well model fits these points
        if thiserr < besterr {</pre>
            bestfit = bettermodel
            besterr = thiserr
    increment iterations
return bestfit
```


Q & A

4