Functional Nominal C-Unification

Seminário de Computação - UnB

Gabriel Silva

November 17, 2018

Advisor: Mauricio Ayala-Rincón

Department of Mathematics - University of Brasília

Table of contents

1. Background

Nominal Terms, Permutations and Substitutions

Freshness and $\alpha\text{-Equality}$

Background

Background

Nominal Terms, Permutations and Substitutions

Atoms and Variables

Consider a set of variables $\mathbb{X} = \{X, Y, Z, \dots\}$ and a set of atoms $\mathbb{A} = \{a, b, c, \dots\}$.

Permutations

An atom permutation π represents an exchange of a finite amount of atoms in $\mathbb A$ and is represented by a list of swappings:

$$\pi = (a_1, b_1) :: ... :: (a_n, b_n) :: nil$$

Nominal Terms

Definition (Nominal Terms)

Nominal terms are inductively generated according to the grammar:

$$s,t$$
 ::= $\langle \rangle \mid a \mid \pi \cdot X \mid [a]t \mid \langle s,t \rangle \mid f t$

The symbols denote respectively: unit, atom term, suspended variable, abstraction, pair and function application.

4

Examples of Permutation Actions

Permutations acts on atoms and terms, here are some examples:

- $t = a, \pi = (a \ b), \pi \cdot t = b.$
- $t = f(a, c), \pi = (a \ b) \text{ and } \pi \cdot t = f(b, c).$
- t = [a]a, $\pi = (a \ b) :: (b \ c)$, $\pi \cdot t = [b]b$.

Substitution

Definition (Substitution)

A substitution σ is a mapping from variables to terms, such that $\{X\mid X\neq X\sigma\}$ is finite.

Examples of Substitutions Acting on Terms

Substitutions also act on terms:

- $\sigma = \{X \rightarrow a\}, t = f(X, X), t\sigma = f(a, a).$
- $\sigma = \{X \rightarrow f(a,b)\}, t = f(X,c), t\sigma = f(f(a,b),c).$

Background

Freshness and $\alpha\text{-Equality}$

Intuition Behind the Concepts

Two important predicates are the freshness predicate # and the α -equality predicate \approx_{α} :

- a#t intuitively means that if a occurs in t then it must do so under an abstractor [a].
- $s \approx_{\alpha} t$ intuitively means that s and t are α -equivalent.

Contexts

A context is a set of constraints of the form a#X. Contexts are denoted by the letters Δ , ∇ or Γ .

Derivation Rules for Freshness

$$\frac{}{\Delta \vdash a\#\langle\rangle} (\#\langle\rangle) \qquad \qquad \overline{\Delta \vdash a\#b} (\#atom)$$

$$\frac{(\pi^{-1}(a)\#X) \in \Delta}{\Delta \vdash a\#\pi \cdot X} (\#X) \qquad \qquad \overline{\Delta \vdash a\#[a]t} (\#[a]a)$$

$$\frac{\Delta \vdash a\#t}{\Delta \vdash a\#[b]t} (\#[a]b) \qquad \qquad \frac{\Delta \vdash a\#s \quad \Delta \vdash a\#t}{\Delta \vdash a\#\langle s, t \rangle} (\#pair)$$

$$\frac{\Delta \vdash a\#t}{\Delta \vdash a\#f \ t} (\#app)$$

Derivation Rules for α **-Equivalence**

$$\frac{\Delta \vdash \langle \rangle \approx_{\alpha} \langle \rangle}{\Delta \vdash \langle \rangle \approx_{\alpha} \langle \rangle} (\approx_{\alpha} \langle \rangle) \qquad \frac{\Delta \vdash s \approx_{\alpha} t}{\Delta \vdash s \approx_{\alpha} ft} (\approx_{\alpha} app) \qquad \frac{\Delta \vdash s \approx_{\alpha} t}{\Delta \vdash [a]s \approx_{\alpha} [a]t} (\approx_{\alpha} [a]a)$$

$$\frac{\Delta \vdash s \approx_{\alpha} (ab) \cdot t, \ a\#t}{\Delta \vdash [a]s \approx_{\alpha} [b]t} (\approx_{\alpha} [a]b) \qquad \frac{ds(\pi, \pi')\#X \subseteq \Delta}{\Delta \vdash \pi \cdot X \approx_{\alpha} \pi' \cdot X} (\approx_{\alpha} var)$$

$$\frac{\Delta \vdash s_{0} \approx_{\alpha} t_{0}, \ \Delta \vdash s_{1} \approx_{\alpha} t_{0}}{\Delta \vdash \langle s_{0}, s_{1} \rangle \approx_{\alpha} \langle t_{0}, t_{1} \rangle} (\approx_{\alpha} pair)$$

Additional Rule for α -Equivalence with Commutative Symbols

We need to add a rule to take into account commutative function symbols. Therefore, if a function symbol is commutative, the following rule can be applied:

$$\frac{\Delta \vdash s_0 \approx_{\alpha} t_1, \ \Delta \vdash s_1 \approx_{\alpha} t_0}{\Delta \vdash f(\langle s_0, s_1 \rangle) \approx_{\alpha} f(\langle t_0, t_1 \rangle)} (\approx_{\alpha} C - pair)$$

Examples of Derivation Rules as a Calculus

The derivation rules for freshness and α -equivalence can be seen as a calculus: