Solutions of Tutorial-7

Problem set 7.2

1
$$A = \begin{bmatrix} 0 & 4 \\ 0 & 0 \end{bmatrix}$$
 has eigenvalues 0 and 0 ; $A^{\mathrm{T}}A = \begin{bmatrix} 0 & 0 \\ 0 & 16 \end{bmatrix}$ has eigenvalues $\lambda = 16$ and

0. Then $\sigma_1(A) = \sqrt{16} = 4$. The eigenvectors of A^TA and AA^T are the columns of $V = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

Then
$$U\Sigma V^{\mathrm{T}}=\begin{bmatrix}1&0\\0&1\end{bmatrix}\begin{bmatrix}4&0\\0&0\end{bmatrix}\begin{bmatrix}0&1\\1&0\end{bmatrix}=\begin{bmatrix}0&4\\0&0\end{bmatrix}=A.$$

$$A = \begin{bmatrix} 0 & 4 \\ 1 & 0 \end{bmatrix} \text{ gives } A^{\mathrm{T}}A = \begin{bmatrix} 1 & 0 \\ 0 & 16 \end{bmatrix} \text{ with } \lambda_1 = 16 \text{ and } \lambda_2 = 1. \text{ Same } U \text{ and } V.$$

$$\text{Then } U\Sigma V^{\mathrm{T}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 4 \\ 1 & 0 \end{bmatrix} = A.$$

7 This small question is a key to everything. It is based on the associative law $(AA^{T})A = A(A^{T}A)$. Here we are applying both sides to an eigenvector v of $A^{T}A$:

$$(AA^{\mathrm{T}})Av = A(A^{\mathrm{T}}A)v = A\lambda v = \lambda Av.$$

So Av is an eigenvector of AA^{T} with the same eigenvalue λ .

14 $A = UV^{\mathrm{T}}$ since all $\sigma_j = 1$, which means that $\Sigma = I$.

Problem set 9.2

- **5** (a) $(A^HA)^H = A^HA^{HH} = A^HA$ again (b) If $A^HAz = 0$ then $(z^HA^H)(Az) = 0$. This is $||Az||^2 = 0$ so Az = 0. The nullspaces of A and A^HA are always the *same*.
- **6** (a) False $A=Q=\begin{bmatrix}0&1\\-1&0\end{bmatrix}$ (b) True: -i is not an eigenvalue when $S=S^{\mathrm{H}}$.
- **11** If $Q^HQ = I$ then $Q^{-1}(Q^H)^{-1} = Q^{-1}(Q^{-1})^H = I$ so Q^{-1} is also unitary. Also $(QU)^H(QU) = U^HQ^HQU = U^HU = I$ so QU is unitary.
- 13 $(z^H A^H)(Az) = ||Az||^2$ is positive unless Az = 0. When A has independent columns this means z = 0; so $A^H A$ is positive definite.