# **Chapter IR:VI**

### VI. Users and Queries

- Information Needs and Queries
- Query Transformation and Refinement
- □ Cross-Language Search

## Query transformation

- In general, same operations on text as on query
- Some differences in stopping and stemming
- Some transformations not needed
  - Tokenization
  - Structure analysis (queries have no title, etc.)

## **Query-Based Stopping**

- Stopword removal at query time
- Retain stopwords in index
  - Flexibility to deal with queries that contain stopwords
- Stopwords in query can be
  - Treated as normal words
  - Removed
  - Conditionally removed (not if prefixed by +)

## **Query-Based Stemming**

- Make decision about stemming at query time rather than during indexing
  - Improved flexibility and effectiveness
- Query is expanded using word variants
  - Documents are not stemmed
  - Thus, e.g., query rock climbing automatically expanded with climb
    - But not stemmed to climb
- Alternative: Index word and its stem
  - Increased efficiency
  - But larger index

#### Stem Classes

- A stem class is the group of words that will be transformed into the same stem by the stemming algorithm
  - Generated by running stemmer on large corpus
  - E.g., Porter stemmer on TREC News collection might produce
     /bank banked banking bankings banks
     /ocean oceaneering oceanic oceanics oceanization oceans
     /polic polical polically police policeable policed policement policer policers policial policially policier policiers policies policing policization policize policly policy policying policys
  - Quite long classes adds many words to query
  - Contain some errors (cf. the section on stemming texts)

#### Stem Classes

- Can be used for stemming or for expansion
  - Can drift to incorrect topics (banking → bank)
- Stem classes are often too big and inaccurate
- Modify using analysis of word co-occurrence
- Assumption:
  - Word variants that could substitute for each other should co-occur often in documents

## Modifying Stem Classes

- 1. For all pairs of words in the stem classes, count how often they co-occur in text windows of k words, where k is typically in the range 50–100.
- 2. Compute a co-occurrence or association metric for each pair. This measures how strong the association is between the words.
- 3. Construct a graph where the vertices represent words and the edges are between words whose co-occurrence metric is above a threshold  $\tau$  (set empirically).
- 4. Find the connected components of this graph. These are the new stem classes.

## Modifying Stem Classes

- Dice's Coefficient is an example of a term association measure between terms a and b:
  - $2 \cdot n_{ab}/(n_a + n_b)$
  - where  $n_x$  is the number of windows containing the terms in x
- Proportion of term occurrences that are co-occurrences
- Remember: Two vertices are in the same connected component of a graph if there is a path between them
  - Forms word clusters
- Example output of modification

/bank banking banks

/policies policy

/police policed policing

## **Spell Checking**

- Important part of query processing
  - 10–15% of all web queries have spelling errors
  - Reliance on "Did you mean ..."
- □ Almost 600 ways to (mis-)spell Britney Spears were recognized at Google within 3 months in the early 2000's (http://www.google.com/jobs/britney.html)

| 488941 | britney spears   | 364 | britey spears    | 109 | brittant spears  | 54 | britnye spears   | 29 | britent spears   | 21 | bratney spears   |
|--------|------------------|-----|------------------|-----|------------------|----|------------------|----|------------------|----|------------------|
| 40134  | brittany spears  | 364 | brittiny spears  | 98  | bittney spears   | 54 | britt spears     | 29 | brittnany spears | 21 | britani spears   |
| 36315  | brittney spears  | 329 | brtney spears    | 98  | brithey spears   | 54 | brttany spears   | 29 | britttany spears | 21 | britanie spears  |
| 24342  | britany spears   | 269 | bretney spears   | 98  | brittiany spears | 48 | bitany spears    | 29 | btiney spears    | 21 | briteany spears  |
| 7331   | britny spears    | 269 | britneys spears  | 98  | btitney spears   | 48 | briny spears     | 26 | birttney spears  | 21 | brittay spears   |
| 6633   | briteny spears   | 244 | britne spears    | 89  | brietny spears   | 48 | brirney spears   | 26 | breitney spears  | 21 | brittinay spears |
| 2696   | britteny spears  | 244 | brytney spears   | 89  | brinety spears   | 48 | britant spears   | 26 | brinity spears   | 21 | brtany spears    |
| 1807   | briney spears    | 220 | breatney spears  | 89  | brintny spears   | 48 | britnety spears  | 26 | britenay spears  | 21 | brtiany spears   |
| 1635   | brittny spears   | 220 | britiany spears  | 89  | britnie spears   | 48 | brittanny spears | 26 | britneyt spears  | 19 | birney spears    |
| 1479   | brintey spears   | 199 | britnney spears  | 89  | brittey spears   | 48 | brttney spears   | 26 | brittan spears   | 19 | brirtney spears  |
| 1479   | britanny spears  | 163 | britnry spears   | 89  | brittnet spears  | 44 | birttany spears  | 26 | brittne spears   | 19 | britnaey spears  |
| 1338   | britiny spears   | 147 | breatny spears   | 89  | brity spears     | 44 | brittani spears  | 26 | btittany spears  | 19 | britnee spears   |
| 1211   | britnet spears   | 147 | brittiney spears | 89  | ritney spears    | 44 | brityney spears  | 24 | beitney spears   | 19 | britony spears   |
| 1096   | britiney spears  | 147 | britty spears    | 80  | bretny spears    | 44 | brtitney spears  | 24 | birteny spears   | 19 | brittanty spears |
| 991    | britaney spears  | 147 | brotney spears   | 80  | britnany spears  | 39 | brienty spears   | 24 | brightney spears | 19 | britttney spears |
| 991    | britnay spears   | 147 | brutney spears   | 73  | brinteny spears  | 39 | brritney spears  | 24 | brintiny spears  | 17 | birtny spears    |
| 811    | brithney spears  | 133 | britteney spears | 73  | brittainy spears | 36 | bbritney spears  | 24 | britanty spears  | 17 | brieny spears    |
| 811    | brtiney spears   | 133 | briyney spears   | 73  | pritney spears   | 36 | briitany spears  | 24 | britenny spears  | 17 | brintty spears   |
| 664    | birtney spears   | 121 | bittany spears   | 66  | brintany spears  | 36 | britanney spears | 24 | britini spears   | 17 | brithy spears    |
| 664    | brintney spears  | 121 | bridney spears   | 66  | britnery spears  | 36 | briterny spears  | 24 | britnwy spears   | 17 | brittanie spears |
| 664    | briteney spears  | 121 | britainy spears  | 59  | briitney spears  | 36 | britneey spears  | 24 | brittni spears   | 15 | brinney spears   |
| 601    | bitney spears    | 121 | britmey spears   | 59  | britinay spears  | 36 | britnei spears   | 24 | brittnie spears  | 15 | briten spears    |
| 601    | brinty spears    | 109 | brietney spears  | 54  | britneay spears  | 36 | britniy spears   | 21 | biritney spears  | 15 | briterney spears |
| 544    | brittaney spears | 109 | brithny spears   | 54  | britner spears   | 32 | britbey spears   | 21 | birtany spears   | 15 | britheny spears  |
| 544    | brittnay spears  | 109 | britni spears    | 54  | britney's spears | 32 | britneu spears   | 21 | biteny spears    |    |                  |
|        |                  |     |                  |     |                  |    |                  |    |                  |    |                  |

IR:VI-16 Users and Queries

## Spell Checking

Errors include typical word processing errors

poiner sisters marshmellow world

brimingham news miniture golf courses

catamarn sailing psyhics

hair extenssions home doceration

□ But also many other types (for which terms and corrections cannot be found in

common dictionaries)

realstateisting.bc.com mainscourcebank

akia 1080i manunal delottitouche

ultimatwarcade

## Spell Checking

- Basic approach: Suggest corrections for words not found in spelling dictionary
  - But miniature golf curses would not be corrected
- Suggestions found by comparing word to words in dictionary using similarity measure
- Most common similarity measure is edit distance
  - Minimum number of operations required to transform one word into the other

#### **Edit Distance**

- Damerau-Levenshtein distance
  - Counts the minimum number of insertions, deletions, substitutions, or transpositions of single characters required
  - The often used Levenshtein-distance does not allow transpositions
  - Damerau-Levenshtein distance 1 (80% of the spelling errors)
    - extenssions → extensions (deletion)
    - poiner → pointer (insertion)
    - marshmellow → marshmallow (substitution)
    - brimingham → birmingham (transposition)
  - Damerau-Levenshtein distance 2
    - doceration → decoration (2 substitutions via deceration)

#### **Edit Distance**

- Techniques used to speed up calculation of edit distances
  - Restrict to words starting with same character
    - Spelling errors rarely occur in first letter
  - Restrict to words of same or similar length
    - Spelling errors rarely change length of words
    - Can be safe (if length exceeds threshold)
  - Restrict to words that sound the same
- □ Last option uses a phonetic code to group words
  - E.g. Soundex

#### Soundex Code

- 1. Keep the first letter (in upper case).
- 2. Replace these letters with hyphens: a, e, i, o, u, y, h, w.
- Replace the other letters by numbers as follows:

```
1 b, f, p, v 4 l
2 c, g, j, k, q, s, x, z 5 m, n
3 d, t 6 r
```

- 4. Delete adjacent repeats of a number.
- 5. Delete the hyphens.
- 6. Keep the first three numbers or pad out with zeros.

## **Examples:**

```
\begin{array}{ll} \text{extenssions} \rightarrow \text{E235} & \text{extensions} \rightarrow \text{E235} \\ \text{marshmellow} \rightarrow \text{M625} & \text{marshmallow} \rightarrow \text{M625} \\ \text{brimingham} \rightarrow \text{B655} & \text{birmingham} \rightarrow \text{B655} \\ \text{poiner} \rightarrow \text{P560} & \text{pointer} \rightarrow \text{P536} \\ \end{array}
```

## **Spelling Correction Issues**

- In general, many corrections possible
  - lawers → lowers, lawyers, layers, lasers, lagers, . . .
- Ranking corrections
  - "Did you mean ..." feature requires accurate ranking of possible corrections
  - First idea: Rank by frequency
- Better idea: Use context
  - Choosing right suggestion depends on context (other words)
  - E.g., trial lawers → trial lawyers
- Run-on errors
  - E.g., mainscourcebank
  - Missing spaces can be considered another single character error in right framework

## Noisy Channel Model

- Based on Shannon's theory of communication
- $\ \square$  User chooses word w based on probability distribution P(w)
  - Called the language model
  - Can capture context information, e.g.,  $P(w_1|w_2)$
- $\ \square$  User writes word, but noisy channel causes word e to be written instead with probability P(e|w)
  - Called error model
  - Represents information about the frequency of spelling errors
  - Probabilities for words within edit-distance will be high
  - Even  $P(w|w) \le 1$ 
    - Thus it is possible to correct miniature golf curses → miniature golf courses

## Noisy Channel Model

- Need to estimate probability of correction
  - P(w|e) = P(e|w)P(w)
  - Works if one ignores context and run-on errors
- Estimate language model using context
  - $P(w) = \lambda P(w) + (1 \lambda)P(w|w_p)$
  - $w_p$  is previous word
  - $\lambda$  specifies relative importance of probabilities
- Example
  - fish tink
  - "tank" and "think" both likely corrections (edit distance 1)
  - Both have high P(w)
  - But P(tank|fish) > P(think|fish) which makes "tank" the more likely correction

## Noisy Channel Model

- $\ \square$  Estimate P(w): Language model probabilities estimated using corpus and query  $\log$ 
  - Query log useful, because it matches the task
    - And has fewer word pairs
  - Dictionary can help, too
- fine Estimate P(e|w): Both simple and complex methods have been used for estimating the error model
  - Simple approach: Assume all words with same edit distance have same probability, only edit distance 1 and 2 considered
  - More complex approach: Incorporate estimates based on common typing errors
    - Keyboard layout

## Noisy Channel Model

- 1. Tokenize the query
- 2. For each token, a set of alternative words and pairs of words is found using an edit distance modified by weighting certain types of errors as described above
  - □ The data structure that is searched for the alternatives contains words and pairs from both the query log and the trusted dictionary
- 3. Use noisy channel model to select the best corrections
- 4. Repeat from Step 2 until no better correction is found

# Example: miniture golfcurses miniature golf curses miniature golf courses

### Query Expansion

- Thesaurus used in early search engines as a tool for indexing and query formulation
  - Manually specified preferred terms and relationships between them
  - Also called controlled vocabulary
- Add synonyms or more specific terms using query operators based on thesaurus
  - Improves search effectiveness
- Example: MeSH thesaurus (Medical Subject Headings)

MeSH Heading
Tree Number
Tree Number
Tree Number
Entry Term

Neck Pain
C10.597.617.576
C23.888.592.612.553
C23.888.646.501
Cervical Pain
Neckache
Anterior Cervical Pain
Anteriro Neck Pain
Cervicalgia
Cervicodynia
Neck Ache
Posterior Cervical Pain
Posterior Neck Pain

## **Query Expansion**

- Expansion based on explicit thesaurus (e.g., Wordnet or MeSH) rarely used since not very effective
  - Does not take context into account
- A variety of automatic or semi-automatic query expansion techniques have been developed
  - Goal: Improve effectiveness by matching related terms
  - Semi-automatic techniques require user interaction to select best expansion terms
- Query suggestion is a related technique
  - Alternative queries, not necessarily more terms
- Approaches usually based on an analysis of term co-occurrence
  - in the entire document collection,
  - in a large collection of queries,
  - or in the top-ranked documents in a result list
- Query-based stemming also an expansion technique

- Idea: Choose appropriate words from context
  - "tropical fish tanks" → expand "tank" with "aquarium"
  - vs. "armor" for "tanks"!
- Ideas for expansion
  - Consider all words holistically, rather than expanding individual words
  - Use relevance feedback
- Term association measures
  - Dice's coefficient
  - Mutual information
  - Pearson's Chi-squared ( $\chi^2$ ) measure

- Dice's Coefficient
  - Reminder:  $n_x$  is the number of windows containing terms in x

$$\frac{2n_{ab}}{n_a + n_b} \quad \stackrel{\mathrm{rank}}{=} \quad \frac{n_{ab}}{n_a + n_b}$$

- Rank equivalence: Produces same ranking / ordering
- Mutual Information

$$\log \frac{P(a,b)}{P(a)P(b)}$$

- Measures extent to which words occur independently
- Independent words:  $P(a,b) = P(a)P(b) \Rightarrow$  mutual information = 0
- Estimate  $P(A) = n_A/N$

$$\log \frac{P(a,b)}{P(a)P(b)} \quad = \quad \log \left(N \frac{n_{ab}}{n_a n_b}\right) \quad \stackrel{\mathrm{rank}}{=} \quad \frac{n_{ab}}{n_a n_b}$$

- Mutual Information Measure (MI) favors low frequency terms
  - Example:  $n_a = n_b = 10$  and  $n_{ab} = 5$   $\Rightarrow$  5/100
  - Example:  $n_a = n_b = 1000$  and  $n_{ab} = 500$  ⇒ 5/10000
- Expected Mutual Information Measure (EMI)
  - Weighting of MI with P(a, b)

$$P(a,b) \cdot \log \frac{P(a,b)}{P(a)P(b)} \quad = \quad \frac{n_{ab}}{N} \log \left(N \frac{n_{ab}}{n_a n_b}\right) \quad \stackrel{\mathsf{rank}}{=} \quad n_{ab} \cdot \log \left(N \frac{n_{ab}}{n_a n_b}\right)$$

- Previous example with N = 1 million: 23.5 vs. 1350
- Problem: favors high-frequency terms

#### Term Association Measures

- ullet Pearson's Chi-squared ( $\chi^2$ ) measure
  - Compares the number of co-occurrences of two words with the expected number of co-occurrences if the two words were independent

$$n_{ab} - N \cdot \frac{n_a}{N} \cdot \frac{n_b}{N}$$

Normalizes this comparison by the expected number

$$\frac{\left(n_{ab}-N\cdot\frac{n_a}{N}\cdot\frac{n_b}{N}\right)^2}{N\cdot\frac{n_a}{N}\cdot\frac{n_b}{N}}\quad \overset{\mathsf{rank}}{=}\quad \frac{\left(n_{ab}-\frac{1}{N}n_an_b\right)^2}{n_an_b}$$

| Measure                     | Acronym  | Ranking                                                      |
|-----------------------------|----------|--------------------------------------------------------------|
| Dice's coefficient          | Dice     | $\frac{n_{ab}}{n_a + n_b}$                                   |
| Mutual information          | MI       | $rac{n_{ab}}{n_a n_b}$                                      |
| Expected mutual information | EMI      | $n_{ab} \cdot \log \left( N rac{n_{ab}}{n_a n_b}  ight)$    |
| Chi-square                  | $\chi^2$ | $\frac{\left(n_{ab} - \frac{1}{N}n_a n_b\right)^2}{n_a n_b}$ |

## Association Measure Example

Most strongly associated words for "tropical" in a collection of TREC news stories. Co-occurrence counts are measured at the document level.

| Dice          | MI            | EMI             | $\chi^2$      |  |
|---------------|---------------|-----------------|---------------|--|
| forest        | trmm          | forest          | trmm          |  |
| exotic        | itto          | tree            | itto          |  |
| timber        | ortuno        | rain            | ortuno        |  |
| rain          | kuroshi       | island          | kuroshi       |  |
| banana        | ivirgarzama   | like            | ivirgarzama   |  |
| deforestation | biofunction   | fish            | biofunction   |  |
| plantation    | kapiolani     | most            | kapiolani     |  |
| coconut       | bstilla       | water           | bstilla       |  |
| jungle        | almagreb      | fruit           | almagreb      |  |
| tree          | jackfruit     | area            | jackfruit     |  |
| rainforest    | adeo          | world           | adeo          |  |
| palm          | xishuangbanna | america         | xishuangbanna |  |
| hardwood      | frangipani    | some            | frangipani    |  |
| greenhouse    | yuca          | live            | yuca          |  |
| logging       | anthurium     | plant anthurium |               |  |

- $\Box$  MI =  $\chi^2$ 
  - favor low frequency terms
- □ Dice + EMI more general
  - Sometimes too general ("most")

## Association Measure Example

Most strongly associated words for "fish" in a collection of TREC news stories. Co-occurrence counts are measured at the document level.

| Dice         | MI          | EMI       | $\chi^2$    |  |
|--------------|-------------|-----------|-------------|--|
| Dice         |             | ⊏IVII     | , ,         |  |
| species      | zoologico   | water     | arlsq       |  |
| wildlife     | zapanta     | species   | happyman    |  |
| fishery      | wrint       | wildlife  | outerlimit  |  |
| water        | wpfmc       | fishery   | sportk      |  |
| fisherman    | weighout    | sea       | lingcod     |  |
| boat         | waterdog    | fisherman | longfin     |  |
| sea          | longfin     | boat      | bontadelli  |  |
| habitat      | veracruzana | area      | sportfisher |  |
| vessel       | ungutt      | habitat   | billfish    |  |
| marine       | ulocentra   | vessel    | needlefish  |  |
| endanger     | needlefish  | marine    | damaliscu   |  |
| conservation | tunaboat    | land      | bontebok    |  |
| river        | tsolwana    | river     | taucher     |  |
| catch        | olivacea    | food      | orangemouth |  |
| island       | motoroller  | endanger  | sheepshead  |  |

 $\square$  MI  $\neq \chi^2$ 

- Because "fish" is highfrequency
- Still favor low frequency terms

## Association Measure Example

Most strongly associated words for "fish" in a collection of TREC news stories. Co-occurrence counts are measured in windows of 5 words.

| Dice            | MI                  | EMI       | $\chi^2$     |  |  |
|-----------------|---------------------|-----------|--------------|--|--|
| wildlife        | zapanta             | wildlife  | gefilte      |  |  |
| vessel          | plar                | vessel    | mbmo         |  |  |
| boat            | boat mbmo           |           | zapanta      |  |  |
| fishery         | fishery gefilte     |           | plar         |  |  |
| species         | hapc                | species   | hapc         |  |  |
| catch           | catch odfw          |           | odfw         |  |  |
| water           | water southpoint    |           | southpoint   |  |  |
| sea             | sea anadromous      |           | anadromous   |  |  |
| meat            | meat taiffe         |           | taiffe       |  |  |
| interior        | interior mollie     |           | mollie       |  |  |
| fisherman       | fisherman frampton  |           | frampton     |  |  |
| game            | game idfg           |           | idfg         |  |  |
| salmon          | salmon billingsgate |           | billingsgate |  |  |
| tuna            | tuna sealord        |           | sealory      |  |  |
| caught longline |                     | shellfish | longline     |  |  |
|                 |                     |           |              |  |  |

- $\Box$  MI +  $\chi^2$ 
  - Still favor low frequency terms
- □ EMI
  - Somewhat improved
- Would you expand your query with any of these words?

#### **Association Measures**

- In general, associated words are of little use for expanding the query "tropical fish"
  - See previous tables
  - Terms associated with other contexts
    - Tropical forest, tropical fruit, fishing conservation
- Expansion based on whole query takes context into account
  - E.g., using Dice with term "tropical fish" gives the following highly associated words:
     goldfish, reptile, aquarium, coral, frog, exotic, stripe, regent, pet, wet
- Would have to find associations for every group of query terms
  - Impractical for all possible queries
  - Other approaches achieve this effect

## Other Query Expansion Approaches

- Pseudo-relevance feedback
  - Expansion terms based on top retrieved documents (see next section)
- Context vectors
  - Represent each word by the words that co-occur with it
  - Create virtual document for that word
    - E.g., top 35 most strongly associated words for "aquarium" (Dice): zoology, cranmore, jouett, zoo, goldfish, fish, cannery, urchin, reptile, coral, animal, mollusk, marine, underwater, plankton, mussel, oceanography, mammal, species, exhibit, swim, biologist, cabrillo, saltwater, creature, reef, whale, oceanic, scuba, kelp, invertebrate, ark, crustacean, wild, tropical
  - Rank potential expansion terms by ranking their context vectors
  - If ranked high, it is a good candidate for expansion
    - Virtual document for aquarium contains tropical and fish (thus would be ranked high)
    - Virtual document for jungle contains only tropical (thus lower ranked)

## Other Query Expansion Approaches

- Using document collection is expensive and depends on web page quality
- Query logs (query strings and click data)
  - Best source of information about queries and related terms
  - Example: Most frequent words in queries containing "tropical fish" from MSN log:
    - stores, pictures, live, sale, types, clipart, blue, freshwater, aquarium, supplies
  - Query suggestion (not term expansion) based on finding similar queries
    - Suggest entire query: "tropical fish supplies," not "supplies tropical fish"
  - Group queries based on click data (and not on query terms)
    - tropical fish ⇒ pet fish sales
    - Every query is represented by clicked-on pages
    - Similarity of pages is Dice's coefficient based on clicked-on pages
      - ·  $n_{ab}$  is number of clicked-on pages for both queries
      - ·  $n_a$  and  $n_b$  is number of pages clicked on for individual queries

#### Relevance Feedback

- User marks relevant (+ maybe non-relevant) documents in the initial result
- System modifies query using terms from those documents and reranks
  - Example of simple machine learning algorithm using training data
    - Modifying the query = learning a classifier for relevant and non-relevant documents
    - But very little training data just this query session
  - In general, queries are expanded with words that frequently occur in relevant documents
    - · Or such words are weighted higher
  - Pseudo-relevance feedback just assumes top-ranked documents are relevant – no user input
    - Expansion terms depend on whole query (because it provided the initial ranking)
    - Quality of expansion depends on how many top 10 documents in initial ranking were indeed relevant

### Relevance Feedback Example

#### 1. Badmans Tropical Fish

A freshwater aquarium page covering all aspects of the **tropical fish** hobby. ... to Badman's **Tropical Fish**. ... world of aquariology with Badman's **Tropical Fish**. ...

#### 2. Tropical Fish

Notes on a few species and a gallery of photos of African cichlids.

#### 3. The Tropical Tank Homepage - Tropical Fish and Aquariums

Info on **tropical fish** and **tropical** aquariums, large **fish** species index with ... Here you will find lots of information on **Tropical Fish** and Aquariums. ...

#### 4. Tropical Fish Centre

Offers a range of aquarium products, advice on choosing species, feeding, and health care, and a discussion board.

#### 5. Tropical fish - Wikipedia, the free encyclopedia

**Tropical fish** are popular aquarium **fish**, due to their often bright coloration. ... Practical Fishkeeping • **Tropical Fish** Hobbyist • Koi. Aquarium related companies: ...

#### 6. Tropical Fish Find

Home page for **Tropical Fish** Internet Directory ... stores, forums, clubs, **fish** facts, **tropical fish** compatibility and aquarium ...

#### 7. Breeding tropical fish

... intrested in keeping and/or breeding **Tropical**, Marine, Pond and Coldwater **fish**.... Breeding **Tropical Fish**... breeding **tropical**, marine, coldwater & pond **fish**....

#### 8. FishLore

Includes **tropical** freshwater aquarium how-to guides, FAQs, **fish** profiles, articles, and forums.

#### 9. Cathy's Tropical Fish Keeping

Information on setting up and maintaining a successful freshwater aquarium.

#### 10. Tropical Fish Place

 $\textbf{Tropical Fish} \ \text{information for your freshwater fish } \ \text{tank} \ \dots \ \text{great amount of information}$  about a great hobby, a freshwater  $\textbf{tropical fish } \ \text{tank} \ \dots$ 

Top 10 documents for "tropical fish" Assume all are relevant

### Relevance Feedback Example

- Assume top 10 are relevant
- Most frequent terms are (with frequency):
  - a (926), td (535), href (495), http (357), width (345), com (343), nbsp (316), www (260), tr (239), htm (233), class (225), jpg (221)
  - Too many stopwords and HTML expressions
- Use only snippets and remove stopwords
  - tropical (26), fish (28), aquarium (8), freshwater (5), breeding (4), information (3), species (3), tank (2), Badman's (2), page (2), hobby (2), forums (2)
- Good expansion terms since they use context of multiple query terms

## Relevance Feedback Example

- If Document 7 ("Breeding tropical fish") was explicitly indicated to be relevant, the most frequent terms are:
  - breeding (4), fish (4), tropical (4), marine (2), pond (2), coldwater (2), keeping (1), interested (1)
  - Effect: Increases weight of expansion term breeding
- Specific weights and scoring methods used for relevance feedback depend on retrieval model

#### Relevance Feedback

- Both relevance feedback and pseudo-relevance feedback are effective, but not used in many applications
  - Pseudo-relevance feedback has reliability issues, especially with queries that do not retrieve many relevant documents
- Some applications use relevance feedback
  - "more like this" or "similar pages" functionalities
  - Relevance feedback to build profiles for filtering
- Query suggestion more popular
  - May be less accurate, but can work if initial query fails
  - Assumes user is looking for many relevant documents; otherwise initial result should be enough

#### Context and Personalization

- If a query has the same words as another query, should results be the same regardless of
  - who submitted the query,
  - why the query was submitted,
  - where the query was submitted,
  - what other queries were submitted in the same session?
- These other factors (the query context) could have a significant impact on relevance
  - But: Difficult to capture and successfully incorporate into ranking

#### **User Models**

- Generate user profiles based on documents that the person looks at
  - Web pages visited
  - Email messages
  - Word processing documents on the desktop
- Modify queries using words from profile
  - Software interest vs. buildings → query for "architect"
  - Users avoid providing explicit, specific profile (privacy)
    - Negative image for search engine using profiling
- Generally not effective
  - Imprecise, unspecific profiles (only snapshot)
  - Information needs can change significantly
    - What if I am generally interested in IT but now want to build a house?!

## **Query Logs**

- Query logs provide important contextual information that can be used effectively
- Context in this case is
  - previous queries that are the same
  - previous queries that are similar
  - query sessions including the same query
- Based on entire user population
- Query history for individuals could be used for caching

#### **Local Search**

- Location is context
- Local search uses geographic information to modify the ranking of search results
  - Location derived from the query text
  - Location of the device where the query originated
- Examples
  - fishing supplies cape cod
  - fishing supplies from mobile device in Hyannis (city at Cape Cod)

#### **Local Search**

- Identify the geographic region associated with web pages
  - Use location metadata that has been manually added to the document
  - Identify locations such as place names, city names, or country names in the text
- Identify the geographic region associated with the query
  - at least 10–15% of queries contain some location reference
- Rank web pages using location information in addition to text and link-based features

## **Extracting Location Information**

- Type of information extraction
  - Ambiguity and significance of locations are issues (toponyms)
  - E.g., cities of the same name etc.
- Location names are mapped to specific regions and coordinates



- Matching done by
  - Inclusion
  - Distance