

OpenCourseWare Procesamiento de Lenguaje Natural con Aprendizaje Profundo, Máster en Ciencia y Tecnología Informática

Tema 1.3. Métricas de Evaluación en Procesamiento de Lenguaje natural

Objetivos

- En este tema, vamos a estudiar algunas de las métricas más populares que se utilizan para evaluar los sistemas de PLN, en particular, aquellos que son tareas de clasificación.
- Vamos a aprender qué es la matriz de confusión.
- Estudiaremos las métricas de accuracy, precisión, recall y F1.
- También vamos a estudiar las métricas para problemas de multi-clasificación: macro, weighted-macro y micro..

Para estudiar las métricas

- Propondremos como ejemplo un sistema cuyo objetivo es detectar correos spam (clasificación de textos), es decir, clasificar si un correo es spam o no.
- Vamos a suponer que nuestro dataset está formado por 10,000 correos:
 - 9.000 no spam
 - 1000 spam

Clasificación binaria

- Si las clases no están balanceadas, la clase mayoritaria representa
 "normal" y la clase minoritaria representa "anormal".
- Es preferible un **buen resultado en la clase minoritaria** a un buen resultado en ambas clases.
- En nuestro ejemplo,
 - la clase minoritaria (positiva) es la de los correos spam.
 - la clase mayoritaria (negativa) es la de los correos no spam.

Matriz de confusión

- Ningún algoritmo va a ser perfecto, por tanto:
 - Los correos que no son spam pero que nuestro algoritmo los clasifica como spam son falsos positivos (false positives).
 - Los correos que son spam pero que nuestro algoritmo no es capaz de identificar (es decir, son clasificados como no spam) son falsos negativos (false negatives).

Matriz de confusión

- Es de esperar que el algoritmo también tiene aciertos:
 - Los correos que son spam y que además han sido correctamente clasificados por nuestro algoritmo son ciertos positivos (true positives).
 - Los correos que no son spam y que han sido clasificados como no spam por nuestro algoritmo son ciertos negativos (true positives).

.

Matriz confusión para clasificación binaria

Predicciones del algoritmo

Valores reales

	Positivo (correos spam)	Negativo (correos no spam)	
Positivo (correos spam)	Ciertos positivos (True positives, TP)	Falsos positivos (False positives, FP)	
Negativo (correos no spam)	Falsos negativos (False negatives, FN)	Ciertos negativos (True negatives, TN)	

Matriz confusión (ejemplo)

 Supongamos que nuestro algoritmo es capaz de identificar 700 correos spam, pero erróneamente clasifica como spam otros 700 correos.

Valores reales

	Positivo (correos spam)	Negativo (correos no spam)
Positivo (estimado como spam)	TP = 700	FP = 700
Negativo (estimado como no spam)	FN = 300	TN = 8300

Precisión

 Mide cómo de preciso es el algoritmo: cuántas de las instancias que han sido clasificadas como positivas, realmente son ejemplos de la clase positiva. Su fórmula es la siguiente:

$$precision = \frac{TP}{TP+FP}$$

Precisión

- En nuestro ejemplo, la precisión es 700 / (700 +700) = 0.50.
- Es decir, nuestro algoritmo se equivocará un 50% de las veces cuando predice que un correo es spam.

Date cuenta que es un algoritmo bastante malo. No mucho mejor que

tirar una moneda ;).

	Positivo (correos spam)	Negativo (correos no spam)
Positivo (estimado como spam)	TP = 700	FP = 700
Negativo (estimado como no spam)	FN = 300	TN = 8300

Recall (Exhaustividad)

 Calcula qué porcentaje de ejemplos positivos es capaz de identificar.
 Es decir, es el ratio entre el número total de aciertos del algoritmo para la clase positiva (minoritaria) y el número total de ejemplos positivos.

$$recall = \frac{TP}{TP + FN}$$

Recall (Exhaustividad)

- En nuestro ejemplo, el recall es 700 / (700 +300) = 0.70.
- Es decir, nuestro algoritmo es capaz de identificar el 70% de los correos que son spams.
- Tiene un recall aceptable, pero una precisión mala (50%).

	Positivo (correos spam)	Negativo (correos no spam)	
Positivo (estimado como spam)	TP = 700	FP = 700	
Negativo (estimado como no spam)	FN = 300	TN = 8300	

F1 (valor F)

- Recall y precisión suelen competir.
- Lo deseable es que nuestro algoritmo tenga la mayor precisión y recall posible (aunque a veces están reñidos)
- Los resultados de precisión y recall se pueden combinar en un único valor, su media armónica, que nos va a permitir elegir el mejor algoritmo, teniendo en cuenta ambas métricas:

$$F1 = 2 * \frac{precision*recall}{precision+recall}$$

F1 (valor F)

- En nuestro ejemplo, F1 = 2 * (0.50 * 0.70) / 1.2 = 0.58
- Date cuenta que el valor F1, asume que nos importa de igual forma la precisión y el recall.
- Sin embargo, esto no tiene que ser siempre así.
- Por ejemplo, si estamos desarrollando un algoritmo para detectar el plagio en exámenes, ¿nos interesa que tenga mayor precisión o mayor recall?.

F1 (valor F)

$$F_{\beta} = (1 + \beta^2) * \frac{precision*recall}{((\beta^2*precision)+recall)}$$

- beta = 1, mismo peso a precisión y recall.
- beta = 0.5, se prioriza la precisión.
- beta = 2, se prioriza el recall.

Accuracy (Exactitud)

$$accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$

- Mide el porcentaje de casos que el algoritmo acierta en ambas clases (es decir, los true positives pero también los true negatives).
- Su principal carencia es que suele dar una estimación poco correcta, si las clases no están bien balanceadas.

Accuracy (Exactitud)

$$accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$

	Positivo (correos spam)	Negativo (correos no spam)
Positivo (estimado como spam)	TP = 700	FP = 700
Negativo (estimado como no spam)	FN = 300	TN = 8300

- En nuestro caso, acc = 9000 / 10000 = 0.9.
- Una exactitud del 90%!!!.
- Parece un buen resultado, sin embargo, su F1 era 58% y una precisión bastante pobre 50% para la clase positiva.

Un caso aún más extremo!!!

 Calcula las métricas para un algoritmo que clasifique todos los correos como no spam. Su matriz de confusión será:

Predicciones da algoritmo

Valores reales

	Positivo (spam)	Negativo (no spam)
Positivo (estimado como spam)	TP = 0	FP = 0
Negativo (estimado como no spam)	FN = 1000	TN = 9000

Solución

- P_{spam} = R_{spam} = F1_{spam} = 0 para la clase positiva (correos spam)
- $P_{\text{no pam}} = 9000 / 10000 = 0.9$
- $R_{\text{no spam}}^{\text{no spam}} = 9000 / 9000 = 1$ $F1_{\text{no spam}}^{\text{no spam}} = 2*(0.9*1)/(0.9+1) = 0.004$ 0.94
- \bullet Acc = 9000 / 10000 = 0.9

	Positivo (spam)	Negativo (no spam)	
Positivo (estimado como spam)	TP = 0	FP = 0	
Negativo (estimado como no spam)	FN = 1000	TN = 9000	

Solución

- El algoritmo que clasifica todos los correos como no spam, tiene un accuracy de 90!!!.
- Además, la F1 para su clase negativa (no spam) es también 0.94.
- Sin embargo, su F1 es 0 en la clase positiva (P=R=0).
- Es un pésimo sistema, aunque su accuracy y F1 en la clase no negativa son muy altas.
- Accuracy no es fiable cuando las clases no están balanceadas.

Métricas para multi-clasificación

- Precisión, recall y F1 pueden ser fácilmente extendidas para problemas de multi-clasificación.
- Para cada clase, se calculan precisión, recall y F1, y de esta forma se conoce el desempeño del algoritmo para cada clase.
- ¿Pero cómo puedo dar una estimación global del desempeño del algoritmo?

Métricas para multi-clasificación

- Estudiaremos las siguientes métricas:
 - macro
 - weighted macro
 - o micro

Métricas versión macro

- La macro precisión es la media aritmética de las precisiones para las diferentes clases.
- El macro recall es la media aritmética de las recall de cada clase.
- La macro F1 será la media aritmética de las F1 de cada clase

$$macro_precision = \frac{\sum_{i=1}^{N} precision_i}{N}$$
 $macro_recall = \frac{\sum_{i=1}^{N} recall_i}{N}$
 $macro_f1 = \frac{\sum_{i=1}^{N} F1_i}{N}$

donde N es el número de clases

Métricas versión macro

 Vamos a suponer que tenemos un algoritmo para el análisis de sentimiento con 5 clases, y que ha obtenido los siguientes resultados:

	precision	recall	f1-score
1	1.00	0.16	0.27
2	1.00	0.05	0.10
3	1.00	0.35	0.52
4	1.00	0.21	0.35
5	0.77	1.00	0.87

Métricas versión macro

- macro P = (1.00 + 1.00 + 1.00 + 1.00 + 0.77) / 5 = 0.95
- macro $\mathbf{R} = (0.16 + 0.05 + 0.35 + 0.21 + 1.00) 5 = \mathbf{0.35}$
- macro F1 = (0.27 + 0.10 + 0.52 + 0.35 + 0.87) / 5 = 0.42

	precision	recall	f1-score	
1	1.00	0.16	0.27	
2	1.00	0.05	0.10	
3	1.00	0.35	0.52	
4	1.00	0.21	0.35	
5	0.77	1.00	0.87	

Métricas versión weighted macro

Cada métrica es ponderada con el peso de su clase.

$$weighted_macro_precision = \frac{\sum_{i=1}^{N} \lambda_{i} * precision_{i}}{N}$$

$$weighted_macro_recall = \frac{\sum_{i=1}^{N} \lambda_{i} * recall_{i}}{N}$$

$$weighted_macro_f1 = \frac{\sum_{i=1}^{N} \lambda_{i} * F1_{i}}{N}$$

N = número total de instancias en el conjunto de evaluación

 λ_i = número de instancias de la clase i en el conjunto de evaluación

Métricas versión weighted macro

- macro P = (32*1.00 + 19*1.00 + 31*1.00 + 91*1.00 + 457*0.77) / 630 = 0.83
- macro R = (32*0.16 + 19*0.05 + 31*0.35 + 91*0.21 + 457*1.00)/630 = 0.78
- macro F1 = (32*0.27 + 19*0.10 + 31*0.52 + 91*0.35 + 457*0.87) / 630 = 0.42

	precision	recall	f1-score	número de instancias
1	1.00	0.16	0.27	32
2	1.00	0.05	0.10	19
3	1.00	0.35	0.52	31
4	1.00	0.21	0.35	91
5	0.77	1.00	0.87	457

La librería sklearn ya hace estos cálculos para nosotros

```
1 from sklearn.metrics import classification_report
2 print( classification_report(y_test, predictions))
```

		precision	recall	f1-score	número de instancias
	1 2	1.00	0.16 0.05	0.27 0.10	32 19
	3	1.00	0.35	0.52	31
	4 5	1.00 0.77	0.21 1.00	0.35 0.87	91 457
	5	0.77	1.00	0.07	437
accur	cacy			0.78	630
macro		0.95	0.35	0.42	630
weighted	avg	0.83	0.78	0.72	630

Métricas versión micro

 El cálculo de las micros se calculará en base a los TP, FP y FN de cada clase.

$$micro_precision = \frac{\sum_{i=1}^{N} TP_{i}}{\sum_{i=1}^{N} TP_{i} + \sum_{i=1}^{N} FP_{i}}$$

$$micro_recall = \frac{\sum_{i=1}^{N} TP_{i}}{\sum_{i=1}^{N} TP_{i} + \sum_{i=1}^{N} FN_{i}}$$

$$micro_F1 = 2 * \frac{micro_precision * micro_recall}{micro_precision + micro_recall}$$

Métricas versión micro

 Supongamos que nuestro algoritmo tiene la siguiente matriz de confusión:

Métricas versión micro

- micro precisión = (5 + 1 + 11 + 19 +457) / (5 + 1 + 11 + 19 +457 + 0 + 0 + 0 + 72 + 20 + 18 + 27) = 493 / 630 = 0.78
- micro recall = (5 + 1 + 11 + 19 +457) / (5 + 1 + 11 + 19 +457) +
 (27+18+20+72)= 493 / 630 = 0.78
- micro F1 =2 * (0.78 * 0.78) / (0.78+0.78) = 0.78
 Siempre son el mismo valor!!!

¿Por qué la micro P, micro R y micro F1 son el mismo valor?

Podemos demostrar si P = R?

$$P = R$$
 $rac{\sum_{l \in L} TP_l}{\sum_{l \in L} (TP_l + FP_l)} = rac{\sum_{l \in L} TP_l}{\sum_{l \in L} (TP_l + FN_l)}$ $\sum_{l \in L} (TP_l + FP_l) = \sum_{l \in L} (TP_l + FN_l)$ $\sum_{l \in L} TP_l + \sum_{l \in L} FP_l = \sum_{l \in L} TP_l + \sum_{l \in L} FN_l$ $\sum_{l \in L} FP_l = \sum_{l \in L} FN_l$

 Bastaría con demostrar que la suma de todos los falsos positivos es igual a la suma de todos los negativos. En multi-clasificación, micro P, micro R y micro F1 tienen el mismo valor, ¿por qué?

- Supongamos que un texto del test ha sido clasificado por el algoritmo como
 5, pero su clase real es 3.
 - Si estamos contabilizando los errores y aciertos de la clase 5, esta predicción, será un falso positivo, porque hemos asignado la clase 5 a un texto cuya clase real es un 3.
 - Por otro lado, si estamos contabilizando los errores y aciertos de la clase
 3, la predicción será un falso negativo porque es una instancia de la clase
 3 que no se ha clasificado correctamente (se clasificó como 5).
- Por tanto, el número de falsos positivos y falsos negativos siempre estará equilibrado, ya que por cada falso positivo para una clase, habrá un falso negativo para otra clase.

En multi-clasificación, micro F1 = accuracy

 En un problema de multi-clasificación, además de FP = FN, también TP = TN.

$$accuracy = \frac{\sum_{i=1}^{N} TP_{i} + \sum_{i=1}^{N} TN_{i}}{\sum_{i=1}^{N} TP_{i} + \sum_{i=1}^{N} TN_{i} + \sum_{i=1}^{N} FP_{i} + \sum_{i=1}^{N} FN_{i}}$$

$$= \frac{2*\sum_{i=1}^{N} TP_{i}}{2*\sum_{i=1}^{N} TP_{i} + 2*\sum_{i=1}^{N} FP_{i}} = \frac{\sum_{i=1}^{N} TP_{i}}{\sum_{i=1}^{N} TP_{i} + \sum_{i=1}^{N} FP_{i}}$$

$$= micro_precision = micro_recall = micro_f1$$

Resumen

- En clasificación binaria y clases no balanceadas, la accuracy no nos proporciona una información real sobre el rendimiento de nuestro algoritmo.
- En clasificación **binaria** y clases **no balanceadas**, el objetivo es obtener buenos resultados en la **clase minoritaria**.
- En los problemas de multi-clasificación, usaremos las métricas macro y las macro-average.

Resumen

- En multi-clasificación, las tres métricas micro precisión, recall y f1 tienen siempre el mismo valor. El número de falsos positivos y falsos negativos está siempre equilibrado.
- En realidad, en multi-clasificación, la micro-F1 es el accuracy.
- Las métricas micro son apropiadas para problemas de multi-etiquetado (una instancia puede ser clasificada con una o varias etiquetas).

Resumen

- La librería sklearn ya proporciona numerosas funciones para calcular estas métricas!!!.
- Aquí puedes encontrar un listado de estas métricas:
 https://scikit-learn.org/stable/modules/model evaluation.html

OpenCourseWare Procesamiento de Lenguaje Natural con Aprendizaje Profundo,

Gracias!!!

https://github.com/isegura