Conditions Necessary for Valid Inference in the Least Squares Regression Model
Testing Individual Regression Parameters
Addressing Nonsignificant Independent Variables
Multicollinearity

#### Inference and Regression

- Statistical inference:
  - ▶ Process of making estimates and drawing conclusions about one or more characteristics of a population (parameter) through the analysis of sample data drawn from the population.
- ▶ In regression, inference is commonly used to estimate and draw conclusions about:

The regression parameters

$$\beta_0$$
,  $\beta_1$ ,  $\beta_2$ ,...,  $\beta_q$ .

The mean value and/or the predicted value of the dependent variable y for specific values of the independent variables  $X_1^*$ ,  $X_2^*$ ,...,  $X_a^*$ .

► Consider both hypothesis testing and interval estimation.

Conditions Necessary for Valid Inference in the Least Squares Regression Model:

- ► 1. For any given combination of values of the independent variables
  - x<sub>1</sub>, x<sub>2</sub>,..., x<sub>q</sub>, the population of potential error terms ε is normally distributed with a mean of 0 and a constant variance.
- 2. The values of  $\varepsilon$  are statistically independent

# Illustration of the Conditions for Valid Inference in Regression



#### Inference and Regression

#### Are the conditions violated?

- ▶ 1.Center of the residuals should be approximately 0.
  - ► Mean 0
- ▶ 2. The spread in data should be about the same through out
  - Constant variance
- 3. Errors should be symmetrically distributed with values near 0 occurring more frequently
  - Normally Distributed
- 4. Independent
  - Current data points do not depend on previous points

These residuals look good! - No violations

# Example of a Random Error Pattern in a Scatter Chart of Residuals and Predicted Values of the Dependent Variable



#### Inference and Regression Examples of Diagnostic Scatter Charts of Residuals from Four Regressions Are the conditions violated? 1. Center of the residuals should be approximately 0. ► Mean 0 2. The spread in data should be about the same through out ▶ Constant variance 3. Errors should be symmetrically distributed with values near 0 occurring more frequently ▶ Normally Distributed 4. Independent Current data points do not depend on previous These residuals do NOT look good!



Table of the First Several Predicted Values  $\hat{y}$  and Residuals e Generated by the Excel Regression Tool

Scatter chart of  $\widehat{y}$  vs Residuals e -

- used to assess whether the regression model satisfies the conditions needed for inference

| 23 1 | RESIDUAL OUT | PUT            |              |
|------|--------------|----------------|--------------|
| 24   |              |                |              |
| 25   | Observation  | Predicted Time | Residuals    |
| 26   | 1            | 9.605504464    | -0.305504464 |
| 27   | 2            | 5.556419081    | -0.756419081 |
| 28   | 3            | 9.605504464    | -0.705504464 |
| 29   | 4            | 8.225507903    | -1.725507903 |
| 30   | 5            | 4.8664208      | -0.6664208   |
| 31   | 6            | 6.881873062    | -0.681873062 |
| 32   | 7            | 7.235932632    | 0.164037368  |
| 33   | 8            | 7.254143492    | -1.254143492 |
| 34   | 9            | 8.243688763    | -0.643688763 |
| 35   | 10           | 7.553690482    | -1.453690482 |
| 36   | 11           | 6.936415641    | 0.063584359  |
| 37   | 12           | 7.290505212    | -0.290505212 |
| 38   | 13           | 9.287776613    | 0.312223387  |
| 39   | 14           | 5.874146931    | 0.625853069  |
| 40   | 15           | 6.954596501    | 0.245403499  |
| 41   | 16           | 5.556419081    | 0.443580919  |

# Inference and Regression

Scatter Chart of Predicted Values  $\hat{y}$  and Residuals e

- ► Mean 0
- Similar Variance
- ► Concentrated around 0

No evidence for violation of the conditions

=> Trust the statistical inference!



**Testing Individual Regression Parameters:** 

To determine whether statistically significant relationships exist between the dependent variable y and each of the independent variables  $x_1, x_2, ..., x_q$ , individually

If  $\beta_j = 0$ , there is no linear relationship between the dependent variable y and the independent variable  $x_j$ .

If  $\beta_i \neq 0$ , there is a linear relationship between y and  $x_i$ .

$$H_0$$
:  $\beta_j = 0$ 

$$H_a: \beta_j \neq 0$$

#### Inference and Regression

Testing Individual Regression Parameters (cont.):

- ▶ Use a t test to test the Null Hypothesis
- ► The test statistic for this t test is,

$$t = \frac{b_j}{s_{b_j}}$$

Where  $s_{b_i}$  is the estimated standard deviation of  $b_j$ 

- ▶ As the magnitude of t increases (as t deviates from zero in either direction),
  - $\blacktriangleright$  we are more likely to reject the hypothesis that the regression parameter  $\beta_i$  is 0.
  - ▶ Implies  $\beta_i \neq 0$  and there is a relationship between y and  $x_j$

Testing Individual Regression Parameters (cont.):

- ▶ Typically, most software will provide a p-value to determine if  $\beta_i$  is significant (not equal to 0)
- ▶ Confidence interval can be used to test whether each of the regression parameters

 $\beta_0$ ,  $\beta_1$ ,  $\beta_2$ , ...,  $\beta_q$  is equal to zero as well.

- Confidence interval:
  - ▶ An estimated interval believed to contain the value of the parameter at some level of confidence.
    - ► Example 95% confidence interval

$$b_j \pm t a_{/2} S_{b_j}$$

- **Confidence level:** α Alpha
  - ▶ Indicates how frequently interval estimates will contain the true value of the parameter we are estimating.
    - ► Example = 0.05

#### Inference and Regression

Addressing Nonsignificant Independent Variables:

- ▶ If practical experience dictates that the nonsignificant independent variable has a relationship with the dependent variable
  - ▶ the independent variable should be left in the model.
- ▶ If the model sufficiently explains the dependent variable without the nonsignificant independent variable
  - lacktriangleright then consider rerunning the regression without the nonsignificant independent variable.
- ▶ The appropriate treatment of the inclusion or exclusion of the y-intercept

when  $b_0$  is not statistically significant may require special consideration.

#### Multicollinearity:

- ▶ the correlation among the independent variables in multiple regression analysis.
- ▶ In *t* tests for the significance of individual parameters, multicollinearity may lead to:
  - concluding that a parameter associated with one of the multicollinear independent variables is not significantly different from zero when the independent variable actually has a strong relationship with the dependent variable.
- ► This problem is avoided when there is little correlation among the independent variables.

## Inference and Regression

Figure 7.21: Excel Regression Output for the Butler Trucking Company with Miles and Gasoline Consumption as Independent Variables

| -  |                      |              | -              | 120          |             |                |             |              |             |
|----|----------------------|--------------|----------------|--------------|-------------|----------------|-------------|--------------|-------------|
| 1  | A                    | В            | C              | D            | E           | F              | G           | H            | I           |
| 1  | SUMMARY OUTPUT       |              |                |              |             |                |             |              |             |
| 2  |                      |              |                |              |             |                |             |              |             |
| 3  | Regression Sta       | itistics     |                |              |             |                |             |              |             |
| 4  | Multiple R           | 0.69406354   |                |              |             |                |             |              |             |
| 5  | R Square             | 0.481724198  |                |              |             |                |             |              |             |
| 6  | Adjusted R Square    | 0.478234125  |                |              |             |                |             |              |             |
| 7  | Standard Error       | 1.398077545  |                |              |             |                |             |              |             |
| 8  | Observations         | 300          |                |              |             |                |             |              |             |
| 9  |                      |              |                |              |             |                |             |              |             |
| 10 | ANOVA                |              |                |              |             |                |             |              |             |
| 11 |                      | df           | SS             | MS           | F           | Significance F |             |              |             |
| 12 | Regression           | 2            | 539.5808158    | 269.7904079  | 138.0269794 | 4.09542E-43    |             |              |             |
| 13 | Residual             | 297          | 580.5223842    | 1.954620822  |             |                |             |              |             |
| 14 | Total                | 299          | 1120.1032      |              |             |                |             |              |             |
| 15 |                      |              |                |              |             |                |             |              |             |
| 16 |                      | Coefficients | Standard Error | t Stat       | P-value     | Lower 95%      | Upper 95%   | Lower 99.0%  | Upper 99.0% |
| 17 | Intercept            | 2.493095385  | 0.33669895     | 7.404523781  | 1.36703E-12 | 1.830477398    | 3.155713373 | 1.620208758  | 3.365982013 |
| 18 | Miles                | 0.074701825  | 0.014274552    | 5.233216928  | 3.15444E-07 | 0.046609743    | 0.102793908 | 0.037695279  | 0.111708371 |
| 19 | Gasoline Consumption | -0.067506102 | 0.152707928    | -0.442060235 | 0.658767336 | -0.368032789   | 0.233020584 | -0.463398955 | 0.328386751 |

Figure 7.22: Scatter Chart of Miles and Gasoline Consumed for Butler Trucking Company



#### Inference and Regression

Multicollinearity (cont.):

- ► Testing for an overall regression relationship:
  - ▶ Use an *F* test based on the *F* probability distribution.
  - ▶ If the F test leads us to reject the hypothesis that the values of

$$b_1, b_2, \ldots, b_q$$

are all zero:

- ▶ Conclude that there is an overall regression relationship.
- ▶ Otherwise, conclude that there is no overall regression relationship.

Multicollinearity (cont.):

- ► Testing for an overall regression relationship (cont.):
  - ▶ The test statistic generated by the sample data for this test is:

$$F = \frac{\mathsf{SSR}/q}{\mathsf{SSE}/(n-q-1)}$$

- ► SSR = Sum of squares due to regression.
- ►SSE = Sum of squares due to error.
- $\triangleright q$  = the number of independent variables in the regression model.
- $\triangleright n$  = the number of observations in the sample.
- ▶ Larger values of *F* provide stronger evidence of an overall regression relationship.
- ► For a small p-value => Reject null and conclude there is a regression relationship

# Categorical Independent Variables

Butler Trucking Company and Rush Hour Interpreting the Parameters More Complex Categorical Variables

# Categorical Independent Variables Butler Trucking Company and Rush Hour: ▶ Dependent Variable, y: Travel Time ▶ Independent Variables ▶ x₁ - Miles Traveled ▶ x₂ - Number of Deliveries ▶ x₃ - Rush Hour ▶ Categorical Variable ▶ x₃ = 0 if delivery trip took place during rush hour ▶ x₃ = 1 if delivery trip did not take place during rush hour



## Categorical Independent Variables

## Excel Data and Output for Butler Trucking with

Miles Traveled  $(x_1)$ , Number of Deliveries  $(x_2)$ , and the Highway Rush Hour Dummy Variable  $(x_3)$ , as the Independent Variables

| 4  | A                 | В            | С              | D            | E           | F              | G            | H            | I          |
|----|-------------------|--------------|----------------|--------------|-------------|----------------|--------------|--------------|------------|
| 1  | SUMMARY OUTPUT    |              |                |              |             |                |              |              |            |
| 2  |                   |              |                |              |             |                |              |              |            |
| 3  | Regression Sta    | tistics      |                |              |             |                |              |              |            |
| 4  | Multiple R        | 0.940107228  |                |              |             |                |              |              |            |
| 5  | R Square          | 0.8838016    |                |              |             |                |              |              |            |
| 6  | Adjusted R Square | 0.882623914  |                |              |             |                |              |              |            |
| 7  | Standard Error    | 0.663106426  |                |              |             |                |              |              |            |
| 8  | Observations      | 300          |                |              |             |                |              |              |            |
| 9  |                   |              |                |              |             |                |              |              |            |
| 10 | ANOVA             |              |                |              |             |                |              |              |            |
| 11 |                   | df           | SS             | MS           | F           | Significance F |              |              |            |
| 12 | Regression        | 3            | 989.9490008    | 329.9830003  | 750.455757  | 5.7766E-138    |              |              |            |
| 13 | Residual          | 296          | 130.1541992    | 0.439710132  |             |                |              |              |            |
| 14 | Total             | 299          | 1120.1032      |              |             |                |              |              |            |
| 15 |                   |              |                |              |             |                |              |              |            |
| 16 |                   | Coefficients | Standard Error | t Stat       | P-value     | Lower 95%      | Upper 95%    | Lower 99.0%  | Upper 99.0 |
| 17 | Intercept         | -0.330229304 | 0.167677925    | -1.969426232 | 0.04983651  | -0.66022126    | -0.000237349 | -0.764941128 | 0.1044825  |
| 18 | Miles             | 0.067220302  | 0.00196142     | 34.27125147  | 4.7852E-105 | 0.063360208    | 0.071080397  | 0.062135243  | 0.0723053  |
| 19 | Deliveries        | 0.67351584   | 0.023619993    | 28.51465081  | 6.74797E-87 | 0.627031441    | 0.720000239  | 0.612280051  | 0.7347516  |
| 20 | Highway           | 0.9980033    | 0.076706582    | 13.0106605   | 6.49817E-31 | 0.847043924    | 1.148962677  | 0.799138374  | 1.1968682  |

#### Categorical Independent Variables

#### Interpreting the Parameters:

- ▶ The model estimates that travel time increases by:
  - 0.0672 hours (about 4 minutes) for every increase of 1 mile traveled, holding all other variables constant
  - ▶ 0.6735 hours (about 40 minutes) for every delivery, holding all other variables constant
  - 0.9980 hours (about 60 minutes) if the driving route took place during the afternoon rush hour period, holding all other variables constant
  - $R^2 = 0.8838$ 
    - indicates that the regression model explains approximately 88.4% of the variability in travel time for the driving assignments in the sample

#### Categorical Independent Variables

Interpreting the Parameters (cont.):

Compare the regression model for the case when  $x_3 = 0$  and when  $x_3 = 1$ .

When  $x_3 = 0$ :

$$\hat{y} = -0.3302 + 0.0672x_1 + 0.6735x_2 + 0.9980(0)$$
  
= -0.3302 + 0.0672x\_1 + 0.6735x\_2

(7.16)

When  $x_3 = 1$ :

$$\hat{y} = -0.3302 + 0.0672x_1 + 0.6735x_2 + 0.9980(1)$$
  
= 0.6678 + 0.0672x\_1 + 0.6735x\_2

(7.17)

## Categorical Independent Variables

More Complex Categorical Variables:

If a categorical variable has k levels, k minus 1 dummy variables are required, with each dummy variable corresponding to one of the levels of the categorical variable and coded as 0 or 1.

- ► Example:
  - ► Suppose a manufacturer of vending machines organized the sales territories for a particular state into three regions: A, B, and C.
  - ▶ Sales Region Categorical variable with 3 levels (A, B, C)
  - ▶ Number of Dummy Variables = 3-1 = 2

| Region | <b>x</b> <sub>1</sub> | <b>X</b> <sub>2</sub> |
|--------|-----------------------|-----------------------|
| Α      | 0                     | 0                     |
| В      | 1                     | 0                     |
| С      | 0                     | 1                     |

## Categorical Independent Variables

More Complex Categorical Variables:

- ► Example Continued:
  - ► The regression equation:

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2$$

- ▶ Observations corresponding to Region A ->  $x_1 = 0$ ,  $x_2 = 0$ ,
  - ▶ Estimated mean number of units sold in Region A

$$\hat{y} = b_0 + b_1(0) + b_2(0) = b_0$$

#### Categorical Independent Variables

More Complex Categorical Variables:

- ► Example Continued:
  - ▶ Observations corresponding to Region B ->  $x_1 = 1$ ,  $x_2 = 0$ ,
  - ▶ Estimated number of units sold in Region B:

$$\hat{y} = b_0 + b_1(1) + b_2(0) = b_0 + b_1$$

- lacktriangle Observations corresponding to Region C ->  $x_1=0$ ,  $x_2=1$ ,
- ► Estimated number of units sold in Region C:

$$\hat{y} = b_0 + b_1(0) + b_2(1) = b_0 + b_2$$





Figure 7.26: Excel Regression Output for the Reynolds Example



## Modeling Nonlinear Relationships

Figure 7.27: Scatter Chart of the Residuals and Predicted Values of the Dependent Variable for the Reynolds Simple Linear Regression



▶ Equation (7.18) corresponds to a quadratic regression model.

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_1^2$$

Quadratic Regression Models:

- ▶ In the Reynolds example,
  - ▶ To account for the curvilinear relationship between months employed and scales sold,
  - ▶ include the square of the number of months the salesperson has been employed

#### Modeling Nonlinear Relationships

Figure 7.28: Relationships That Can Be Fit with a Quadratic Regression Model



Figure 7.29: Excel Data for the Reynolds Quadratic Regression Model

| 4  | A               | В        | С           |
|----|-----------------|----------|-------------|
| 1  | Months Employed | MonthsSq | Scales Sold |
| 2  | 41              | 1,681    | 275         |
| 3  | 106             | 11,236   | 296         |
| 4  | 76              | 5,776    | 317         |
| 5  | 100             | 10,000   | 376         |
| 6  | 22              | 484      | 162         |
| 7  | 12              | 144      | 150         |
| 8  | 85              | 7,225    | 367         |
| 9  | 111             | 12,321   | 308         |
| 10 | 40              | 1,600    | 189         |
| 11 | 51              | 2,601    | 235         |
| 12 | 0               | 0        | 83          |
| 13 | 12              | 144      | 112         |
| 14 | 6               | 36       | 67          |
| 15 | 56              | 3,136    | 325         |
| 16 | 19              | 361      | 189         |

#### Modeling Nonlinear Relationships Figure 7.30: Excel Output for the Reynolds Quadratic Regression Model A B SUMMARY OUTPUT 3 Regre... 4 Multiple R 5 R Square 6 Adjusted R Square 0.94936140 0.901287072 7 Standard Error 34.61481184 8 Observations 10 ANOVA MS 12 Regression 13 Residual 14 Total 54.78231208 9.25218E-07 131278.711 65639.35548 1198.185199 14 145656.9333 15 16 17 Intercept Coefficients Standard Error P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0% 61,42993467 20,57433536 2,985755485 0,011363561 16.60230882 106.2575605 -1.415187222 124.2750566 18 Months Employed 5.819796648 0.969766536 6.001234761 6.20497E-05 3.706856877

Figure 7.31: Scatter Chart of the Residuals and Predicted Values of the Dependent Variable for the Reynolds Quadratic Regression Model



#### Modeling Nonlinear Relationships

#### Piecewise Linear Regression Models:

- ▶ For the Reynolds data, as an alternative to a quadratic regression model:
  - ▶ Recognize that up to a certain point of Months Employed
  - ▶ the relationship between Months Employed and Sales appears to be positive and linear.
  - ▶ After this point,
    - ▶ the relationship between Months Employed and Sales appears to be negative and linear
- ▶ Piecewise linear regression model:
  - ▶ This model will allow us to fit these relationships as two linear regressions
    - joined at the value of Months where the relationship between Months Employed and Sales changes.





Piecewise Linear Regression Models (cont.):

▶ Define a dummy variable:

$$x_k = \begin{cases} 0 \text{ if } x_1 \le x^{(k)} \\ 1 \text{ if } x_1 > x^{(k)} \end{cases}$$

 $x_1 = Months.$ 

 $x^{(k)} =$  value of the knot (90 months for the Reynolds example).

 $x_k$  = the knot dummy variable.

▶ Then fit the following estimated regression equation:

$$\hat{y} = b_0 + b_1 x_1 + b_2 (x_1 - x^{(k)}) x_k$$

# Modeling Nonlinear Relationships

Figure 7.33: Data and Excel Output for the Reynolds Piecewise Linear Regression Model

|    | A                    | В                  | С                     | D              | E          | F              | G            | Н            | I            |
|----|----------------------|--------------------|-----------------------|----------------|------------|----------------|--------------|--------------|--------------|
|    | Knot Dummy           | Months<br>Employed | Knot<br>Dummy* Months | Scales<br>Sold |            |                |              |              |              |
| 2  | 0                    | 41                 | 0                     | 275            |            |                |              |              |              |
| 3  | 1                    | 106                | 16                    | 296            |            |                |              |              |              |
| 4  | 0                    | 76                 | 0                     | 317            |            |                |              |              |              |
| 5  | 1                    | 100                | 10                    | 376            |            |                |              |              |              |
| 6  | 0                    | 22                 | 0                     | 162            |            |                |              |              |              |
| 7  | 0                    | 12                 | 0                     | 150            |            |                |              |              |              |
| 8  | 0                    | 85                 | 0                     | 367            |            |                |              |              |              |
| 9  | 1                    | 111                | 21                    | 308            |            |                |              |              |              |
| 10 | 0                    | 40                 | 0                     | 189            |            |                |              |              |              |
| 11 | 0                    | 51                 | 0                     | 235            |            |                |              |              |              |
| 12 |                      | - 0                | 0                     | 83             |            |                |              |              |              |
| 13 | 0                    | 12                 | 0                     | 112            |            |                |              |              |              |
| 14 |                      | 6                  | 0                     | 67             |            |                |              |              |              |
| 15 |                      |                    | 0                     | 325            |            |                |              |              |              |
| 16 | 0                    | 19                 | 0                     | 189            |            |                |              |              |              |
| 17 |                      |                    |                       |                |            |                |              |              |              |
| 18 |                      |                    |                       |                |            |                |              |              |              |
|    | SUMMARY OUTPUT       |                    |                       |                |            |                |              |              |              |
| 20 |                      |                    |                       |                |            |                |              |              |              |
| 21 | Regression Stat      | istics             |                       |                |            |                |              |              |              |
|    | Multiple R           | 0.955796127        |                       |                |            |                |              |              |              |
| 23 | R Square             | 0.913546237        |                       |                |            |                |              |              |              |
| 24 | Adjusted R Square    | 0.899137276        |                       |                |            |                |              |              |              |
|    | Standard Error       | 32.3941739         |                       |                |            |                |              |              |              |
| 26 | Observations         | 15                 |                       |                |            |                |              |              |              |
| 27 |                      |                    |                       |                |            |                |              |              |              |
| 28 | ANOVA                |                    |                       |                |            |                |              |              |              |
| 29 |                      | d)                 | 22                    | MS             | F          | Significance F |              |              |              |
| 30 | Regression           | 2                  | 133064.3433           | 66532,17165    | 63.4012588 | 4.17545E-07    |              |              |              |
|    | Residual             | 12                 | 12592.59003           | 1049.382502    |            |                |              |              |              |
| 32 | Total                |                    | 145656.9333           |                |            |                |              |              |              |
| 33 |                      |                    |                       |                |            |                |              |              |              |
| 34 |                      | Coefficients       | Standard Error        | 1 Stat         | P-sular    | Loner 92%      | Upper 95%    | Lower 99.0%  | Upper 99.0%  |
|    | Intercept            | 87.21724231        | 15.31062519           | 5,696517366    | 9.9677E-05 | 53.85825572    | 120.5762285  | 40,45033153  | 133.9841531  |
| 36 | Months Employed      | 3.409431979        | 0.338360666           | 10.07632484    | 3.2997E-07 | 2.67220742     | 4.146656538  | 2.375895931  | 4.442968028  |
| 37 | Knot Duranty* Months | -7.872553259       | 1.902156543           | -4.138751506   | 0.00137388 | -12.01699634   | -3.728110175 | -13.68276572 | -2.062340794 |

Interaction Between Independent Variables:

- ▶ Interaction:
  - ▶ This occurs when the relationship between the dependent variable and one independent variable is different at various values of a second independent variable.
- ▶ The estimated multiple linear regression equation is given as:

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_1 x_2$$

# Modeling Nonlinear Relationships

Figure 7.34: Mean Unit Sales (1,000s) as a Function of Selling Price and Advertising Expenditures



Figure 7.35: Excel Output for the Tyler Personal Care Linear Regression Model with Interaction

| 4  | A                                     | В            | C              | D            | E           | F              | G            | H            | I            |
|----|---------------------------------------|--------------|----------------|--------------|-------------|----------------|--------------|--------------|--------------|
| 1  | SUMMARY OUTPUT                        |              |                |              |             |                |              |              |              |
| 2  |                                       |              |                |              |             |                |              |              |              |
| 3  | Regression Stat                       | istics       |                |              |             |                |              |              |              |
| 4  | Multiple R                            | 0.988993815  |                |              |             |                |              |              |              |
| 5  | R Square                              | 0.978108766  |                |              |             |                |              |              |              |
| 6  | Adjusted R Square                     | 0.974825081  |                |              |             |                |              |              |              |
| 7  | Standard Error                        | 28.17386496  |                |              |             |                |              |              |              |
| 8  | Observations                          | 24           |                |              |             |                |              |              |              |
| 9  |                                       |              |                |              |             |                |              |              |              |
| 10 | ANOVA                                 |              |                |              |             |                |              |              |              |
| 11 |                                       | df           | SS             | MS           | F           | Significance F |              |              |              |
| 12 | Regression                            | 3            | 709316         | 236438.6667  | 297.8692    | 9.25881E-17    |              |              |              |
| 13 | Residual                              | 20           | 15875          | 793.7666667  |             |                |              |              |              |
| 14 | Total                                 | 23           | 5191.3333      |              |             |                |              |              |              |
| 15 |                                       |              |                |              |             |                |              |              |              |
| 16 |                                       | Coefficients | Standard Error | t Stat       | P-value     | Lower 95%      | Upper 95%    | Lower 99.0%  | Upper 99.0%  |
| 17 | Intercept                             | -275.8333333 | 112.8421033    | -2.444418575 | 0.023898351 | -511.2178361   | -40.44883053 | -596.9074508 | 45.24078413  |
| 18 | Price                                 | 175          | 44.54679188    | 3.928453489  | 0.0008316   | 82.07702045    | 267.9229796  | 48.24924412  | 301.7507559  |
| 19 | Advertising Expenditure<br>(\$1,000s) | 19.68        | 1.42735225     | 13.78776683  | 1.1263E-11  | 16.70259538    | 22.65740462  | 15.61869796  | 23.74130204  |
| 20 | Price*Advertising                     | -6.08        | 0.563477299    | -10.79014187 | 8.67721E-10 | -7.255393049   | -4.904606951 | -7.683284335 | -4.476715665 |