ICE503 DSP-Homework#9

- 1. Given a sequence $x[n] = \cos\left(\frac{2\pi n}{N}\right)$, where *N* is an even integer, calculate the discrete Fourier transform (DFT) of this sequence.
- 2. The two 8-point sequence $x_1[n]$ and $x_2[n]$ shown in Figure 1. have DFTs $X_1[k]$ and $X_2[k]$, respectively.

Figure 1. $x_1[n]$ and $x_2[n]$

- (a) Determine the relationship between $X_1[k]$ and $X_2[k]$.
- (b) Plot the sequence $x_3[n]$ whose DFT is $X_3[k] = W_8^{-5k} X_1[k]$.
- 3. MATLAB simulation:

Generate a cosine wave for 1 second

$$x(t) = \cos(2\pi 5t).$$

Then, sample the cosine wave x(t) with 100Hz to obtain x[n].

- (a) Compute the DFT of x[n] with DFT matrix to obtain X[k].
- (b) Compute the IDFT of X[k] with DFT matrix to obtain x[n].
- (c) Compute the DFT of x[n] with fft function to obtain X[k].
- (d) Compute the IDFT of X[k] with ifft function to obtain x[n].
- (e) Use stem function to plot the amplitude of X[k] and x[n] for (a) \sim (d).