TP 4 Complejos

Ejercicio 6. Resolver la siguiente situación problemática

d) Si se sabe que $\frac{z_1}{z_2}=4$, $\|z_1\|+\|z_2\|=10$ y $\text{Arg}(z_1)+\text{Arg}(z_2)=\frac{\pi}{3}$, determinar los números complejos z_1 y z_2 expresados en forma exponencial

$\frac{z_1}{z_2} = 4$	$\frac{(\rho 1)_{\varphi 1}}{(\rho 2)_{\varphi 2}} = 4$	$\frac{\rho_1}{\rho_2}_{\varphi_1-\varphi_2}=4_0$
$ z_1 + z_2 = 10$	$\rho_1 + \rho_2 = 10$	
$\varphi_1 + \varphi_2 = \frac{\pi}{3}$		

$\frac{\rho_1}{}=4$	$(\rho_1 - 4\rho_2 = 0)$	R. m. am.	$-5\rho_2 = -10$
$ ho_2$	$(\rho_1 + \rho_2 = 10$		
$\rho_1 + \rho_2 = 10$			$\rho_{2} = 2$
		Reemplazando	$ \rho_1 = 8 $

$\begin{cases} \varphi_1 + \varphi_2 = \frac{\pi}{3} \\ \varphi_1 - \varphi_2 = 0 \end{cases}$			
S. m. a m.	$2\varphi_1 = \frac{\pi}{3}$	$\varphi_1 = \frac{\pi}{6}$	$z_1 = 8\frac{\pi}{6}$
R. m. am.	$2\varphi_2 = \frac{\pi}{3}$	$\varphi_2 = \frac{\pi}{6}$	$z_2=2_{\pi\over 6}$