PCT

世界知的所有権機関 国際事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類7

C07D 263/22, 413/12, 417/10, A61K 31/421, 31/435, 31/445, 31/496, 31/541, 31/55, 31/44

A1 (1

(11) 国際公開番号

WO00/27830

(43) 国際公開日

2000年5月18日(18.05.00)

(21) 国際出願番号

PCT/JP99/06260

(22) 国際出願日

1999年11月10日(10.11.99)

(30) 優先権データ

特願平10/320137 特願平11/273230 1998年11月11日(11.11.98) 月

刊級十11/2/3230

1999年9月27日(27.09.99) Л

(71) 出願人(米国を除くすべての指定国について) 北陸製薬株式会社 (HOKURIKU SEIYAKU CO., LTD.)[JP/JP] 〒911-0813福井県勝山市猪野口37号1番地1 Fukui, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

加戸典幸(KADO, Noriyuki)[JP/JP]

徳山竜光(TOKUYAMA, Ryukou)[JP/JP]

坪内勝俊(TSUBOUCHI, Masatoshi)[JP/JP]

冨田弥生(TOMITA, Yayoi)[JP/JP]

〒911-0813福井県勝川市猪野口37号1番地1

北陸製薬株式会社内 Fukui, (JP)

(74) 代理人

今村正純,外(IMAMURA, Masazumi et al.)

〒104-0031 東京都中央区京橋1丁目5番5号

KRFビル5階 Tokyo, (JP)

(81) 指定国 AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), ARIPO特許 (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM)

添付公開書類

国際調査報告書

(54)Title: THIOCARBAMIC ACID DERIVATIVES

(54)発明の名称 チオカルバミド酸誘導体

$$\begin{array}{c|c}
R^4 \\
R^2 \\
R^3
\end{array}$$

$$\begin{array}{c|c}
H \\
N \\
N \\
S
\end{array}$$

$$\begin{array}{c}
(I) \\
R^1
\end{array}$$

(57) Abstract

Thiocarbamic acid derivatives of general formula (I) or salts thereof, useful as antimicrobial agents wherein R¹ is optionally substituted alkyl or optionally substituted cycloalkyl; and R², R³ and R⁴ are each independently hydrogen, halogeno, optionally substituted alkyl, optionally substituted alkoy, optionally substituted amino, optionally substituted alkanoyl, optionally substituted cycloalkyloxy containing a heteroatom as the ring-constituting atom, or an optionally substituted saturated heterocyclic group, or alternatively any two of R², R³ and R⁴ together with the benzene ring may form an optionally substituted fused hydrocarbon ring.

次の一般式

(式中、R¹は置換基を有してもよいアルキル基又は置換基を有してもよいシクロアルキル基を表し、R², R³及びR⁴は、各々独立して水素原子,ハロゲン原子,置換基を有してもよいアルキル基,置換基を有してもよいアルコキシ基,置換基を有してもよいアミノ基,置換基を有してもよいアルカノイル基,環構成原子としてヘテロ原子を含み置換基を有してもよいシクロアルキルオキシ基又は置換基を有してもよい飽和複素環基を表すか、あるいはR², R³及びR⁴の任意の二つが一緒になって、ベンゼン環と共に置換基を有してもよい炭化水素縮合環を形成してもよい。)で示される抗菌剤として有用なチオカルバミド酸誘導体又はその塩。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

AELMT リラジー アアアルース・アーナリア アラルバメスコート・バーナリア アラルバル アーナリー アー・バスコー・バスコー・バスコー・バスコー・バスコー・バスコー・バスコー・バスコ	DEEFFGGGGGGGGHHILLIJKKKK MESIRABDEHMNWRRUDELNSTPEGPR MESIRABDEHMNWRRUDELNSTPEGPR ルーンテス ダア ア・・ナリルラドスリ アギ鮮 アンシン ナジナビアアシアガドルラドスリ アギ鮮 アント タタークロー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	K Z C L C I M A C M A	RSD SS K L N S Z D G F F P P P P P P P P P P P P P P P P P
---	---	---	--

明細書

チオカルバミド酸誘導体

技術分野

本発明は、医薬として、特に抗菌剤として有用な新規なチオカルバミド酸誘導 体又はその塩に関するものである。

背景技術

本発明に類似する3-アリールー2-オキソオキサゾリジン骨格を有する化合物としては、特開昭60-8277号公報やジャーナル・オブ・メディシナル・ケミストリー(Journal of Medicinal Chemistry),39巻,673頁(1996年)等に、N-[(3-アリールー2-オキソオキサゾリジンー5-イル)メチル]アセトアミド誘導体が、又、カレント・ファーマシューチカル・デザイン(Current Pharmaceutical Design),2巻,175頁(1996年)や Journal of Medicinal Chemistry,32巻,1673頁(1989年)等に、3-アリールー5-ヒドロキシメチルー2-オキソオキサゾリジン誘導体や3-アリールー5-ハロゲノメチルー2-オキソオキサゾリジン誘導体等が開示され、又、特開平9-316073号公報等には、N-(3-ヘテロアリールー2-オキソオキサゾリジンー5-イル)メチルチオアセトアミド誘導体やN-(3-ヘテロアリールー2-オキソオキサゾリジンー5-イル)メチルチオアセトアミド誘導体やN-(3-ヘテロアリールー2-オキソオキサゾリジンー5-イル)メチルーN1・メチルチオ尿素誘導体等が開示され、いずれもグラム陽性菌に対して抗菌活性を有する旨記載されている。しかしながら、これらの化合物の抗菌活性は未だ十分とは言えず、より優れた抗菌剤の開発が課題とされている。

感染症の治療剤として、抗生物質や合成抗菌剤等の作用メカニズムの異なる多種の抗菌剤が臨床に供されている。しかし、これらの抗菌剤の使用においてメチシリン耐性黄色ブドウ球菌 (MRSA; Methicillin-resistant Staphylococcus

aureus)等の細菌に代表される多剤耐性菌の出現が世界的な問題となっている。一方、基礎疾患を有しすでに化学療法を受けている患者、臓器移植に伴い免疫抑制剤を投与されている患者、又はエイズ患者等のいわゆる易感染者においては、日和見感染症の増加が指摘されており、有効な抗菌剤に乏しい非定型抗酸菌症の化学療法が特に問題となってきている。更に、非定型抗酸菌の中でも、Mycobacterium avium complex (Mycobacterium avium, Mycobacterium intracellulare)を起因菌とする感染症の化学療法が深刻な問題となってきている。本発明の課題は、標準菌のみならず多剤耐性菌を含めた臨床分離株や非定型抗酸菌に対しても優れた抗菌活性を有する化合物を提供することを目的としている。

発明の開示

本発明者らは上記の課題を解決すべく鋭意研究した結果、下記一般式で示される新規なチオカルバミド酸誘導体又はその塩が、標準菌のみならず多剤耐性菌を含めた臨床分離株や非定型抗酸菌に対しても優れた抗菌活性を有することを見出し、本発明を完成させた。

即ち、本発明は次の一般式(I)

$$\begin{array}{c|c}
R^4 & O \\
\hline
 & O \\$$

(式中、 R^1 は置換基を有してもよいアルキル基又は置換基を有してもよいシクロアルキル基を表し、 R^2 , R^3 及び R^4 は、各々独立して水素原子,ハロゲン原子,置換基を有してもよいアルキル基,置換基を有してもよいアルコキシ基,置換基を有してもよいアルカノイル基,環構成原子としてヘテロ原子を含み置換基を有してもよいシクロアルキルオキシ基又は置換基を有してもよい飽和複素環基を表すか、あるいは R^2 , R^3 及び R^4 の任意の二つが一緒になって、ベンゼン環と共に置換基を有してもよい炭化水素縮合環を形成してもよい。)

で示される新規なチオカルバミド酸誘導体又はその塩に関するものである。

本発明の第二の態様によれば、次の一般式(II)

(式中、 R^5 及び R^6 は、各々独立して水素原子又はハロゲン原子を表し、aは0~2の整数を表し、 R^1 は前述と同意義を表す。)

で示される新規なチオカルバミド酸誘導体又はその塩が提供される。

本発明の第三の態様によれば、次の一般式(III)

(式中、 R^7 は置換基を有してもよいアルキル基,置換基を有してもよいアミノ基 又は置換基を有してもよいアルコキシ基を表し、 B^1 、 B^5 及び R^6 は前述と同意義を表す。)

で示される新規なチオカルバミド酸誘導体又はその塩が提供される。

本発明の第四の態様によれば、次の一般式(IV)

$$R^{8}$$
 $X-(CH_{2})_{d}$ $(CH_{2})_{e}$ R^{5} (IV)

(式中、R⁸は置換基を有してもよいアルキル基,置換基を有してもよいシクロアルキル基,置換基を有してもよいアルケニル基,置換基を有してもよいアルキニル基,置換基を有してもよいアルコキシ基,置換基を有してもよいアルキルチオ基,置換基を有してもよいアミノ基,置換基を有してもよい飽和複素環基,置換基を有してもよいアリール基又は置換基を有してもよいアラルキル基を表し、YはCH又は窒素原子を表し、XはNH又は単結合を表し、dは0~3の整数を表し、e及びfは、各々独立して1~3の整数を表し、R¹, R⁵及びR⁶は前述と同

意義を表す。)

で示される新規なチオカルバミド酸誘導体又はその塩が提供される。

さらに、本発明の別の観点からは、本発明により、上記のチオカルバミド酸誘導体又はその塩を有効成分として含む医薬が提供される。本発明により提供される医薬は、例えば、抗菌剤として好適に用いることができる。

さらに別の観点からは、上記医薬の製造のための上記のチオカルバミド酸誘導体又はその塩の使用;並びに、感染症の予防及び/又は治療方法であって、上記のチオカルバミド酸誘導体又はその塩の予防及び/又は治療有効量をヒトを含む哺乳類動物に投与する工程を含む方法が提供される。

発明を実施するための最良の形態

以下、本発明の前記一般式(I)~(IV)で示される新規なチオカルバミド酸誘導体について、具体的に説明する。前記一般式(II)~(IV)で示される化合物は、前記一般式(I)において、 R^2 , R^3 又は R^4 の任意の二つが各々独立して、水素原子又はハロゲン原子であることを特徴としている。もっとも、本発明の範囲は前記一般式(II)~(IV)で示される化合物に限定されることはなく、 R^2 ~ R^4 の任意の二つが、水素原子又はハロゲン原子以外である前記一般式(I)で定義された置換基を有する化合物も、いずれも本発明の範囲に包含されることは言うまでもない。

本発明の前記一般式(I)~(IV)において、 R^1 , R^2 , R^3 , R^4 , R^7 及び R^8 で示されるアルキル基としては、炭素数 $1\sim 6$ 個の直鎖状、分枝鎖状、環状、又はそれらの組み合わせからなるアルキル基、好ましくは直鎖状又は分枝鎖状アルキル基、例えば、メチル基,エチル基,n-プロピル基,イソプロビル基,n-ブチル基,イソプチル基,n-ブチル基,n-ベンチル基,n-ベンチル基,n-ベンチル基,n-ベンチル基,n-ベンチル基,n-ベンチル基,n-ベンチル基,n-ベンチル基,n-ベンチル基,n-ベンチル基,n-ベンチル基,n-ベンチル基,n-ベンチル基,n-ベンチル基,n-ベンチル基,n-ベンチル基,n-ベンチル基,n-ベンチル基。n-ベンチル

挙げることでき、又、 R^2 , R^3 , R^4 , R^5 及び R^6 で示されるハロゲン原子としては、フッ素原子,塩素原子,臭素原子,ヨウ素原子を挙げることができ、 R^2 , R^3 , R^4 , R^7 及び R^6 で示されるアルコキシ基としては、炭素数 $1\sim 6$ 個の直鎖状又は分枝鎖状のアルキル基を含有するアルコキシ基、例えば、メトキシ基,エトキシ基,n-プロポキシ基,イソプロポキシ基,n-ブトキシ基,イソブトキシ基,sec-ブトキシ基,tert-ブトキシ基,n-ベンチルオキシ基,イソベンチルオキシ基,ネオベンチルオキシ基,n-ヘキシルオキシ基等を挙げることができる。

本発明の前記一般式(I)及び(IV)において、R²、R³及びR⁴で示されるア ルカノイル基としては、例えば、ホルミル基、アセチル基、プロピオニル基、ブ チリル基、イソブチリル基、バレリル基、イソバレリル基、ヘキサノイル基、ヘ プタノイル基等を挙げることができ、R2, R3及びR4で示される環構成原子とし てヘテロ原子を含むシクロアルキルオキシ基としては、例えば、アジリジニルオ キシ基、アゼチジニルオキシ基、ビロリジニルオキシ基、ピペリジルオキシ基、 ヘキサヒドロー1 Hーアゼピン-1-イルオキシ基,オキセタニルオキシ基,テ トラヒドロフラニルオキシ基、テトラヒドロピラニルオキシ基、チエタニルオキ シ基,テトラヒドロチオフェニルオキシ基,テトラヒドロチオピラニルオキシ基, オキサゾリジニルオキシ基、チアゾリジニルオキシ基、ビベラジニルオキシ基、 モルホリニルオキシ基、チオモルホリニルオキシ基、1-オキシドチオモルホリ ニルオキシ基、1、1-ジオキシドチオモルホリニルオキシ基、ヘキサヒドロー 1H-1, 4-ジアゼピン-1-イルオキシ基, <math>3-アザビシクロ[3.3.0]オクタニルオキシ基、3、7ージアザビシクロ[3.3.0]オクタニルオキシ 基等を挙げることができ、R2,R3,R4及びR8で示される飽和複素環基としては、 例えば、アジリジニル基、アゼチジニル基、ヒロリジニル基、オキサゾリジニル 基、チアゾリジニル基、ピペリジル基、ピペラジニル基、オキセタニル基、テト ラヒドロフラニル基、テトラヒドロピラニル基、チエタニル基、テトラヒドロチ オフェニル基、テトラヒドロチオピラニル基、チオモルホリニル基、1ーオキシ ドチオモルホリニル基、1、1-ジオキシドチオモルホリニル基、ヘキサヒドロ

-1 H-アゼピン-1-イル基、ヘキサヒドロ-1 H-1, 4-ジアゼピン-1-イル基、3-アザビシクロ [3.3.0] オクタニル基、3, 7-ジアザビシクロ [3.3.0] オクタニル基等を挙げることができる。

又、本発明の前記一般式(I)において、 R^2 , R^3 及び R^4 の任意の二つが一緒になってベンゼン環と共に炭化水素縮合環を形成する場合の縮合環基としては、例えば、インダン-5ーイル基,1-4ンダノン-6-4ル基,4ンデン-6-4ル基,1-4ンダノン-6-4ル基,2-4ンダノン-5-4ル基,1、3-4ンダンジオン-5-4ル基,1 (2 H)-1 (2 H)-1 (2 H) -1 (3 H) -1 (5 H) -1 (6 H) -1 (7 H) -1 (7 H) -1 (8 H) -1 (9 H) -1 (1 H) -1 (1 H) -1 (2 H) -1 (2 H) -1 (2 H) -1 (2 H) -1 (7 H) -1 (8 H) -1 (9 H) -1 (9

本発明の前記一般式(IV)において、 R^8 で示されるアルケニル基としては、炭素数 $2 \sim 4$ 個の直鎖状又は分枝鎖状のアルケニル基、例えば、ビニル基,プロペニル基, $2 - \lambda$ チルプロペニル基,ブテニル基,ブタジエニル基等を挙げることができ、アルキニル基としては、炭素数 $2 \sim 4$ 個のアルキニル基、例えば、エチニル基,プロビニル基,ブチニル基等を挙げることができ、 R^8 で示されるアルキルチオ基としては、炭素数 $1 \sim 6$ 個の直鎖状又は分枝鎖状のアルキル基を含有するアルキルチオ基、例えば、 λ チルチオ基,エチルチオ基, α ープロビルチオ基,イソプロビルチオ基, α ープチルチオ基,イソプロビルチオ基, α ープチルチオ基,イソプロビルチオ基, α ーズチルチオ基, α ・ ストルチオ 基, α ・ ストルチオ 基

ては、環構成原子としてヘテロ原子を含んでいてもよい2環以上の環も包含する 芳香環基を表し、例えば、フェニル基、ピリジン-2-イル基、ピリジン-3-イル基、ビリジンー4ーイル基、ピラジンー2ーイル基、ピリミジンー2ーイル 基、ビリミジン-4-イル基、ビリミジン-5-イル基、フラン-2-イル基、 フラン-3-イル基、チオフェン-2-イル基、チオフェン-3-イル基、ピロ ールー1-イル基、ピロールー2-イル基、ピロールー3-イル基、ピラゾール - 1 - イル基、ビラゾール - 3 - イル基、ビラゾール - 4 - イル基、イミダゾー ルー1-イル基, イミダゾールー2-イル基, イミダゾールー4-イル基, 1 H -1, 2, 3-トリアゾールー1-イル基, 1H-1, 2, 3-トリアゾールー 4-イル基, 1H-1, 2, 4-トリアゾール-1-イル基, 1H-1, 2, 4 ートリアゾールー3ーイル基、1H-1、2、4ートリアゾールー5ーイル基、・ テトラゾールー1ーイル基、テトラゾールー5ーイル基、オキサゾールー2ーイ ル基、オキサゾールー4ーイル基、オキサゾールー5ーイル基、チアゾールー2 ーイル基, チアゾールー4ーイル基, チアゾールー5ーイル基, ナフタレンー1 ーイル基,ナフタレンー2ーイル基,ベンゾフランー2ーイル基,ベンゾフラン -3-イル基,ベンゾフラン-4-イル基,ベンゾフラン-5-イル基,ベンゾ フラン-6-イル基,ベンゾフラン-7-イル基,ベンゾ[b] チオフェン-2 ーイル基,ベンゾ [b] チオフェンー3-イル基,ベンゾ [b] チオフェンー4 ーイル基、ベンゾ [b] チオフェンー5ーイル基、ベンゾ [b] チオフェンー6 -イル基,ベンゾ [b] チオフェン-7-イル基,インドール-1-イル基,イ ンドールー2ーイル基、インドールー3ーイル基、インドールー4ーイル基、イ ンドールー5ーイル基、インドールー6ーイル基、インドールー7ーイル基、ベ ンゾイミダゾールー1ーイル基、ベンゾイミダゾールー2ーイル基、ベンゾイミ ダゾールー4-イル基,ベンゾイミダゾール-5-イル基,ベンゾトリアゾール -1-イル基、ベンゾトリアゾール-4-イル基、ベンゾトリアゾール-5-イ ル基,ベンゾオキサゾールー2-イル基,ベンゾオキサゾールー4-イル基,ベ ンゾオキサゾールー5ーイル基、ベンゾオキサゾールー6ーイル基、ベンゾオキ

サゾール-7-イル基,ベンゾチアゾール-2-イル基,ベンゾチアゾール-4 ーイル基、ベンゾチアゾールー5ーイル基、ベンゾチアゾールー6ーイル基、ベ ンゾチアゾールー7ーイル基等を挙げることができ、R®で示されるアラルキル基 としては、上記アリール基が任意の位置で置換した炭素数1~4個のアルキル基 を表し、例えば、ベンジル基、フェネチル基、フェニルプロピル基、フェニルブ チル基,トリフェニルメチル基,(ビリジン-2-イル)メチル基,(ビラジン -2-イル)メチル基, (ビリミジン-2-イル)メチル基, (フラン-2-イ ル)メチル基,(チオフェンー2-イル)メチル基,(ピロール-1-イル)メ チル基, (ピラゾールー1ーイル) メチル基, (イミダゾールー1ーイル) メチ ル基, (1H-1, 2, 3-1)アゾールー1ーイル)メチル基, (1H-1, 1)2,4-トリアゾールー1-イル)メチル基,(テトラゾールー5-イル)メチ ル基,(オキサゾールー2-イル)メチル基,(チアゾールー2-イル)メチル 基,(ナフタレンー1ーイル)メチル基,(ベンゾフランー2-イル)メチル基, **(ベンゾ[b]チオフェンー2-イル)メチル基,(インドールー1-イル)メ** チル基、(ベンゾイミダゾールー1ーイル)メチル基、(ベンゾトリアゾールー 1-イル)メチル基、(ベンゾオキサゾール-2-イル)メチル基、(ベンゾチ アゾール-2-イル)メチル基等を挙げることができる。

尚、本明細書において、「環構成原子としてヘテロ原子を含むシクロアルキルオキシ基」,「飽和複素環基」,「ベンゼン環と共に炭化水素縮合環を形成する場合」,「アリール基」及び「アラルキル基」の置換/結合部位は、上記に一部例示したように、特に置換/結合部位を限定しない限り、環構成成分中、置換/結合可能な元素であればいかなる位置でもよい。

本明細書において、ある官能基について「置換基を有してもよい」という場合には、その置換基の個数及び種類は特に限定されず、2個以上の置換基が存在する場合には、それらは同一でも異なっていてもよい。このような置換基としては、例えば、アルキル基、シクロアルキル基、水酸基、メルカプト基、アルコキシ基、アルキルチオ基、ハロゲン原子、アミノ基、アルキルアミノ基、ジアルキルアミ

ノ基、シアノ基、シアノアルキル基、ニトロ基、ホルミル基、アルコキシカルボ ニル基、アルコキシアルキル基、アルコキシカルボニルアルキル基、カルボキシ アルキル基、ヒドロキシアルカノイル基、アルコキシアルコキシ基、アルコキシ アルカノイル基,ベンジルオキシカルボニル基,ベンジルオキシアルカノイル基, アルキルアミノアルコキシ基,ジアルキルアミノアルコキシ基,アルキルアミノ アルキル基、ジアルキルアミノアルキル基、ハロゲノアルキル基、オキソ基、ヒ ドロキシイミノ基、アルコキシイミノ基、アリールオキシイミノ基、カルボキシ ル基, アルカノイル基, アルカノイルアルキル基, カルバモイル基, アリール基, アラルキル基、フタルイミド基、フタルイミドアルキル基、アルキルスルホニル アミノ基,アルキルカルボニルアミノ基,アルキルチオカルボニル基,アルケニ ルチオカルボニル基、アルコキシチオカルボニル基、アルコキシチオカルボニル アルキル基,チオカルバモイル基,N-アルキルチオカルバモイル基,N,N-ジアルキルチオカルバモイル基、アゼチジニルチオカルボニル基、ピロリジニル チオカルボニル基、ヒベラジニルチオカルボニル基、モルホリニルチオカルボニ ル基、チオモルホリニルチオカルボニル基、アルキルチオチオカルボニル基、ア リールチオカルボニル基、アラルキルチオカルボニル基、アルキルチオカルボニ ルアミノ基、アルキルチオカルボニルアミノアルキル基、アルコキシチオカルボ ニルアミノ基,アルコキシチオカルボニルアミノアルキル基,N-アルキルチオ カルバモイルアミノ基、N、N-ジアルキルチオカルバモイルアミノ基、アルキ ルチオチオカルボニルアミノ基,アルキルチオチオカルボニルアミノアルキル基, アリールチオカルボニルアミノ基,アラルキルチオカルボニルアミノ基,チオカ ルバモイルアルキル基,N-アルキルチオカルバモイルアルキル基,N,N-ジ アルキルカルバモイルアルキル基、アルカノイルアミノアルキル基、アルコキシ チオカルボニルアミノアルキル基、アルキルスルホニルアミノアルキル基、アル カノイルアルキルチオカルボニル基,アルキルチオカルボニルアルキルチオカル ボニル基、チオカルバモイルアミノアルキル基、N-アルキルチオカルバモイル アミノアルキル基、N、N-ジアルキルチオカルバモイルアミノアルキル基、ア

ルカノイルアルキルアミノチオカルボニル基,アルキルチオカルボニルアルキルアミノチオカルボニル基,アルキルチオカルボニルアルキル基,アルキルチオチオカルボニルアルキル基,アルコキシチオカルボニルアルキル基,チオカルバモイルアミノ基,シクロアルキルチオカルボニル基,シクロアルキルチオカルボニルアミノ基,アルキニルチオカルボニルアミノ基,チオカルバモイルアルキルアミノチオカルボニル基,Nーアルキルチオカルバモイルアルキルアミノチオカルボニル基,Nージアルキルチオカルバモイルアルキルアミノチオカルボニル基,N,Nージアルキルチオカルバモイルアルキルアミノチオカルボニル基等を挙げることができる。

本発明のチオカルバミド酸誘導体は、オキサゾリジン環内に1個の不斉炭素を有しており、置換基の種類に応じて更に1個以上の不斉炭素を有する場合がある。本発明化合物に存在する不斉炭素は、それぞれ独立に(R)又は(S)配置を取ることができ、1個又は2個以上の不斉炭素に基づく光学異性体やジアステレオ異性体などの立体異性体が存在する場合がある。純粋な形態の立体異性体、立体異性体の任意の混合物、ラセミ体などはいずれも本発明の範囲に包含される。

本発明のチオカルバミド酸誘導体は、所望により塩、好ましくは薬理学的に許容しうる塩に変換することができ、又、生成した塩から遊離形態の化合物に変換することもできる。本発明の化合物の塩としては、薬理学的に許容しうる塩が好ましく、酸付加塩としては、例えば、塩酸塩、臭化水素酸塩、硝酸塩、硫酸塩、ヨウ化水素酸塩もしくは燐酸塩等の鉱酸塩、又は、酢酸塩、プロピオン酸塩、酪酸塩、ぎ酸塩、吉草酸塩、マレイン酸塩、フマル酸塩、クエン酸塩、シュウ酸塩、リンゴ酸塩、メタンスルホン酸塩、エタンスルホン酸塩、ベンゼンスルホン酸塩、トリフルオロ酢酸塩、安息香酸塩、アートルエンスルホン酸塩、マンデル酸塩、10-カンファースルホン酸塩、酒石酸塩、乳酸塩、ステアリン酸塩、ニコチン酸塩、グルコン酸塩、5-オキソテトラヒドロフラン-2-カルボン酸塩もしくは2-ヒドロキシグルタル酸塩等の有機酸塩等を用いることができる。又、アルカリ付加塩としては、例えば、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩もしくはアンモニウム塩等の無機アルカリ塩、又は、エタノールアミン

塩、N、N-ジアルキルエタノールアミン塩、トリエタノールアミン塩、ビベリジン塩、ビベラジン塩、モルホリン塩もしくはチオモルホリン塩等の有機塩基の塩等を用いることができる。

本発明のチオカルバミド酸誘導体又はその塩は、製造条件により任意の結晶形として存在することができ、又、任意の水和物又は溶媒和物として存在することもできるが、これらの結晶形,水和物及び溶媒和物並びにそれらの混合物も本発明の範囲に包含される。

No.	R	No.	R
1	_	2	
3	Me—	.4	Me————
5	Et-	6	Et———
7	n-Pr —	8	n-Pr
9	LPr —	10	i.Pr —————
11	n-Bu—	12	n-Bu———
13	MeO-	14	MeO —
15	E10-	16	EtO-
17	n-PrO-	18	n-Pr O
19	I-PrO-	20	i-PrO
21	n-BuO—	22	n-BuO————————————————————————————————————
23	Me	24	Me
25	Me Me	26	F-(
27	F———	28	Me Ne

No.	R	No.	R
29	Me F	30	et
31	Et F	32	n-Pr
33	n-Pr F	34	i-Pr
35	i-Pr F	36	n-Bu
37	n-Bu F	38	MeO-(CH ₂) ₂ -O-
39	MeO-(CH ₂) ₂ -0-	40	Me N————
41	Me N	42	
43	\(\sqrt{N} \rightarrow \)	44	
45	____	46	
47	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	48	
49		50	\$
51	\$_\	52	\$N-{_}
53	\$_N-\	54	s

No.	R	No.	R
55	0=s_N-{_}	56	0=s_N
57	%___	5,8	0,5 N- 0,5 N- F
59	HN_N-(60	HN_N-
61	Me	62	Me————————————————————————————————————
63	Et-_N-\	64	Et-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
65	n-Pr-_N-\\	66	n-Pr-_\N-_\F
67	n-Bu—N——	68	n-Bu—N——
69	MeO - \(\sqrt{N}-	70	MeOQN
71	MeO-(CH ₂) ₂ -O-\\N-__\	72	MeO-(CH ₂) ₂ -O-\\N-\\N-\\Pi
73	MeO-\N-\	74	MeO-N-
75	Et0-_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	76	EtO-\\N-\\\
77	n-PrO-_N-\\	78	n-PrO-N-F
79	i-Pro-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	80	i-Pro-N-
81	n-BuO	82	n-BuO——N———

No.	R	No.	R
83	MeO-(CH ₂) ₂ -O-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	84	MeO-(CH ₂) ₂ -O-(N-(CH ₂) ₂ -O
85	Me-N_N-(86	Me-N N-F
87	Et-N_N-{_}	88	Et-N_N-
89	n-Pr-N N—	90	n-Pr-N N-
91	i-Pr-N_N-{_}	92	+Pr−N N−
93	n-Bu-N N—	94	n-Bu-N N-S
95	0 N=0 N=0	96	MeO N N
97	0 N—V—V——	98	E10 N-
99	MeO-CH ₂ -N-N-	100	MeO-CH ₂ -N-N-F
101	MeO-(CH ₂) ₂ -N-N-N-	102	MeO-(CH ₂) ₂ -II-N N
103	0 MeO >	104	0 MeO
105	O E10 N-CH ₂ -NN-CN-CN-CN-CN-CN-CN-CN-CN-CN-CN-CN-CN-	106	O EtO >−CH ₂ −N N−
107	0 MeO N-(CH ₂) ₂ -N N-(CH ₂) ₂ -N	108	0 MeO (CH ₂) ₂ -N N
109	O (CH ₂) ₂ -N N-(110	O (CH ₂) ₂ -N N-F

No.	R	S No	T
		No.	R
111	O MeO (CH ₂) ₃ -N N-(DH ₂) ₃ -N	112	O (CH ₂) ₃ -N N-
113	0 EIO N-(CH ₂) ₃ -N N-(D)	114	O (CH ₂) ₃ -N N-
115	O MeO (CH ₂) ₄ -N N-()	116	O MeO N-(CH ₂) ₄ -N N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N
117	O EtO N-(CH ₂) ₄ -N N-(118	O EHO N-(CH ₂) ₄ -N N-(CH ₂) ₄ -N
119	Me-NO-	120	Me-N O-S
121	Et-N0-	122	Et-N O-O-
123	n-Pr -N -0-(124	n-Pr-N
125	n-Bu-N	126	n-Bu-N -o-
127	0 Neo	128	MeO N O O
129	0 EtO N O - O - O -	130	Eto -0-
131	HO-CH ₂	132	HO-CH ₂ -N-O-O-
133	HO-(CH ₂) ₂ -N-O-(134	HO-(CH ₂) ₂ -11-N -0-
135	MeO-CH ₂ -N-O-C-	136	MeO-CH ₂ -N-O-C-
137	MeO-(CH ₂) ₂	138	MeO-(CH ₂) ₂ -N-0-
139	O CH2-N O-C	140	O CH2-N O-

No.	R	No.	R
141	0 ENO (CH ₂) ₂ -N 0-(CH ₂) ₂ -N	142	O (CH ₂) ₂ -N O F
143	0 ENO (CH ₂) ₃ -N -O-	144	O (CH ₂) ₃ -N -O-
145	Me-N_O-\	146	Me-N -0
147	0 N _{BO} N O - O - O	148	Meo N O F
149	MeO-(CH ₂) ₂ N-O	150	MeO-(CH ₂) ₂ -N\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\
151	O EtO CH ₂) ₂ -N O-	152	O ENO (CH ₂) ₂ -N O F
153		154	
155		156	
157		158	
159	O Me N-(N-(N-(N-(_N-(_N-(_N-(_N-(_N-(_N	160	O Me → CH ₂ -N N → F
161	O Et N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N	162	0 Et
163	O Me (CH ₂) ₂ -N N-	164	O Ma (CH ₂) ₂ -N N-
165	O (CH ₂) ₂ -N N-()	166	O Et N-(CH ₂) ₂ -NNN-(F
167	O Me (CH ₂) ₃ -N N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N	168	0 Me (CH ₂) ₃ -N N-(CH ₂) ₃ -N
169	0 CH ₂) ₃ -N N-	170	O Et (CH ₂) ₃ -N N- F

Ma		S	
No.	R	No.	R
171	0 Me (CH ₂) ₄ -N N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N	172	O Me (CH ₂) ₄ -N N-
173	0 Et N-(CH ₂) ₄ -NNN-(DN-(DN-(DN-(DN-(DN-(DN-(DN-(DN-(DN	174	O E1 N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
175	Mo N (CH ₂) ₂ -N N-	176	Mo O (CH ₂) ₂ -N N-F
177	Me N-(CH ₂) ₃ -N N-	178	Me H-(CH ₂) ₃ -N N-
179	Ma-N-(CH ₂) ₃ -N N-	180	Ma-N-(CH ₂) ₃ -N-N
181	N-(CH ₂) ₂ -N-N-	182	N-(CH ₂) ₂ -N-(N-(-)-
183	NC-(CH ₂) ₂ -N_N-(184	NC-(CH ₂) ₂ -N
185	H ₂ N-1-N-N-	186	H ₂ N—N—N—
187	H ₂ N N N N	188	H ₂ N N N N N N N N N N N N N N N N N N N
189	Me N N N	190	Me N N F
191	Et. N. N.	192	Et. N N N F
193	n-Pr\N\N\N-\N-\	194	n-Pr N N N N
195	Me N N N	196	Me, N N N N

No.	R	No.	R
197	Me N N N	198	Me. N N F
199	Et. N N N	200	Et N N F
201	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	202	
203		204	
205		206	
207		208	
209		210	
211	Me N N	212	Me N N N F
213	E1 N N	214	Et N N-
215	n-Pr N N-	216	n-Pr N N-
217	S N-N-	218	Pr NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
219	\$ ____	220	s N N F

R-N	H0.
	Me Me

II Me S			
No.	R	No.	R
221	Me N N	222	Me N N N N N N N N N N N N N N N N N N N
223	Me S N_N_N_	224	Me S N N N
225	Ph N N—	226	Ph N N-
227	Bn N N-	228	Bn N N
229		230	
231		232	
233		234	s s n n n n n n n n n n n n n n n n n n
235	Meo N N N	236	MeO N N N
237	EKO N N-	238	EKO N N N
239	n-Pro N N-	240	n-Pro N N-
241	I-Pro N N-	242	I-PrO N—N—
243	Mes N N-	244	Mos N N
245	Ets N N	246	EIS N N-

No.	R	No.	R
247	0 Me CH ₂ N N N	248	O CH ₂ N N N F
249	O (CH ₂) ₂ N N N	250	O (CH ₂) ₂ N N N F
251	S CH ₂ N N N N N N N N N N N N N N N N N N N	252	S CH ₂ N N N F
253	H ₂ N H ₂ N N N N	254	H ₂ N CH ₂ N N F
255	Me n H CH2 N N	256	Me. N. CH2. N. N. F.
257	S N (CH2)2 N N	258	H ₂ N H (CH ₂) ₂ \ N N F
259	Me N H CH2)2 N N	260	Me N ACH3)3-N
261	S N (CH ₂) ₃ N N	262	S (CH ₂) ₃ N N F
263	Me N H CH2)3 N N	264	Me N CH ₂) ₃ N N F
265	Me N CH2 N N	266	Me N CH2 N N
267	S N CH2 N N N	268	S Et H CH ₂ N N F
269	S (CH ₂) ₂ N N	270	Me N (CH ₂) ₂ N N F
271	Me N (CH ₂) ₃ N N	272	Me (CH ₂) ₃ N N N F

No.	R	No.	R
273	Meo N-CH ₂ N-N-	274	MeO N CH ₂ N N F
275	EKO N CH ₂ N N	276	Eto H ₃ N N F
277	MeO H (CH ₂) ₂ N N	278	MeO N (CH ₂) ₂ N N F
279	MeO H (CH ₂) ₃ N N—	280	MeO N (CH ₂) ₃ N N
281	Mes H CH2-N N-	282	Mes H2-N N
283	Mes N (CH ₂) ₂ N N	284	Mes H (CH ₂) ₂ N N - N
285	Mes H (CH2)3 N N N	286	Mes N (CH ₂) ₃ N N F
287	Me CH2 N N N	288	Me CH ₂ N N N
289	Me (CH ₂) ₂ N N N N	290	Me (CH ₂) ₂ - N N N - S
291	MeO CH2- H N N-	292	MeO CH2-N N N N
293	Me CH ₂ N N N	294	Me CH2 N N N
295	Me (CH ₂) ₂ · N N N N N N	296	Me (CH ₂) ₂ ·N N N N N N N N N N N N N N N N N N N
297	H ₂ N CH ₂ N N	298	H ₂ N CH ₂ N N N N

No.	R	No.	R
299	Me-H-CH2-NH-NH-NH-NH-NH-NH-NH-NH-NH-NH-NH-NH-NH-	300	Mer Hy CH2 N N N N N
301	H ₂ N N	302	H ₂ N N - N
303	Ma, NH N-	304	Ma N N F
305	Et. N. N. N.	306	Et. N. N. F.
307	n-Prop	308	n-Pr. N N N
309	Me N N N N N N N N N N N N N N N N N N N	310	Me N N F
311	Me N N N	312	Me N N N F
313	Et N N	314	Et. N N N F
315	∇n	316	V N −
317	Me N-C	318	Me N- N-
319	Et N-()	320	
321	n-Pr N-_\	322	n-Pr N-N-
323	i.Pr N-()	324	µpr N→ N→ F

N.	T	S	
No.	R	No.	R
325	Me THOME	326	Mo T N - S
327	Et N N	328	Et TH N-S
329	LPT Y H N-C	330	I-PI N
331	H ₂ N	332	H ₂ N
333	Me-N N N N	334	Me-N N N N
335	Me-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	336	Me H N N N N N N N N N N N N N N N N N N
337	MeO THOMAS	338	MeO N N N N N N N N N N N N N N N N N N N
339	Eto N-C	340	Eto N N
341	HPro TH N-C	342	i-Pro
343	MeS H	344	MeS H N N
345	Ets TH N-C	346	Ets N N N
347	I-Prs YN N-()	348	i-Prs TN N
349	Me CH ₂ N-C	350	Me CH ₂ N
351	Me-N-CH ₂	352	Me-N-SCH ₂

	S				
No.	R	No.	R		
353	MeO CH ₂ N	354	MeO CH ₂ N		
355	MeS CH ₂ N-C	356	MeS CH ₂ N		
357	Me (CH ₂) ₂ N-(-)	358	Me (CH ₂) ₂ N		
359	H (CH ₂) ₂ \ N	360	Mo (CH ₂) ₂ N-		
361	MeO (CH ₂) ₂ N-(362	MeO (CH ₂) ₂ N		
363	MeS (CH ₂) ₂ N-(-)	364	MeS (CH ₂) ₂ N		
365	Me (CH ₂) ₃	366	Me (CH ₂) ₃		
367	Me H (CH ₂) ₃ N - N	368	Me-N (CH ₂) ₃ N-F		
369	MeO (CH ₂) ₃ N-(-)	370	MeO (CH ₂) ₃ N		
371	MoS (CH ₂) ₃ N	372	MeS (CH ₂) ₃		
373	Me H N CH2 N CH2	374	Me H CH2 N-F		
375	Me. N CH2 N	376	Me- N CH2 N F		
377	Meo H2 N-CH2	378	MeO H2 N-F		
379	Mes N CH2 N	380	Mes H2 H2		
381	S (CH ₂) ₂ N N	382	Mo H (CH ₂) ₂ N F		

No.	R	No.	T
383	Me N (CH ₂) ₂	384	R Me N (CH ₂) ₂ N N
385	MeO N (CH ₂) ₂ N (CH ₂) ₂	386	Meo N (CH ₂) ₂ N - N
387	Mes N (CH ₂) ₂ N N	388	Mes N (CH ₂) ₂
389	Me N (CH ₂)3 N N	390	Me N (CH ₂) ₃ N N
391	Me N (CH ³) ³ N - (CH ³) ³	392	Mo N CH2)s
393	MeO (CH ₂) ₃	394	Meo N (CH ₂) ₃ N - N
395	Mes H (CH ₂) ₃ \ N	396	Mes N-(CH ₂) ₃ N-
397	S N-C>	398	Me N F
399	H ₂ N	400	H ₂ N H ₃ N H ₄ N
401	Meo Ty N-C>	402	MeO N N N N N N N N N N N N N N N N N N N
403	Mes H N	404	Mes N N N N N N N N N N N N N N N N N N N
405	Me THOMES NAMED IN THE SECOND NAMED IN THE SEC	406	Me J N N N N N N N N N N N N N N N N N N
407	H ₂ N \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	408	H ₂ N T N N F
409	MeO T N N N N	410	MeO T N N F
411	MeS T N N	412	MeS N- N-

Š				
No.	. R	No.	R	
413	Me T N N	414	Me T N N N N N N N N N N N N N N N N N N	
415	MeO T N	416	MeO Y N - F	
417	H ₂ N T N N N N N N N N N N N N N N N N N N	418	H ₂ N S	
419	Mes The N-C	420	Mes T N N F	
421	Me N N	422	Me N N F	
423	Mac N N	424	Meo N	
425	H ₂ N N N N	426	H ₂ N N N N N N N N N N N N N N N N N N N	
427	Mes N N	428	Mes N N F	
429	\$ ___	430		
431		432		
433		434		
435		436		
437	\$ n_n_	-438· ··		
439		440		

No.	R	No.	R
441	MeHN—	442	MeHN—————
443	Me N-	444	Me N F
445	Et N—	446	Et N-
447	s N- CI	448	S_N
449	○-	450	·\-
451	Boc - N N - (452	Boc —N N—
453	s	454	s

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

No.	R'	No.	R¹
455	Et	456	n-Pr
457	i-Pr	458	n-Bu
459	i-Bu	460	tert-Bu
461	n-Pent	462	n-Hex
463	$\neg \triangleleft$	464	\rightarrow
465		466	-

No.	R'	No.	R¹
467	Et	468	n-Pr

No.	R	No.	R
469	s_n_	470	

前記一般式(I)~(IV)で示される本発明のチオカルバミド酸誘導体は、例えば、以下に記載する方法により製造することができるが、当該化合物の製造方法はこれらの方法に限定されるわけではない。尚、下記の製造方法では、前記一般式(I)で示される化合物について具体的に説明するが、これらの製造方法中に前記一般式(II)~(IV)で示される化合物が包含されていることは自明である。更に、本明細書の実施例には、本発明のチオカルバミド酸誘導体の代表的化合物についての、具体的かつ詳細な製造方法が説明されている。従って、下記の一般的説明及び実施例の具体的説明を参照しつつ、原料化合物、反応試薬及び反応条件などを適宜選択し、必要に応じてこれらの方法に適切な修飾ないしは改変を加えることによって、当業者は、前記一般式(I)に包含される本発明の化合物をいずれも容易に製造可能である。

即ち、本発明化合物の第一の製造方法として、一般式(V)で示される化合物を原料として、一般式(VI)で示される新規な化合物を経由して、一般式(I)で示されるチオカルバミド酸誘導体に導く方法が挙げられる。

(式中、R1, R2, R3及びR4は前述と同意義を表す。)

本方法において、一般式 (V) で示される化合物に、テトラヒドロフラン等の 溶媒中、トリエチルアミン等の塩基の存在下、二硫化炭素を反応させジチオカル バミド酸塩とした後、これにクロロ炭酸エチル、硫酸銅、硝酸鉄、硫酸鉄又は硫化亜鉛等を氷冷下から 200 でまでの範囲で反応させることにより、一般式 (VI)

で示される化合物を製造することができる。又、その他の製造方法として、一般式 (V)で示される化合物に、テトラヒドロフラン等の溶媒中、トリエチルアミン等の塩基の存在下、チオホスゲンを作用させることによる製造方法、及びオーガニック・シンセシス・コレクティブ・ボリューム (Organic Synthesis Collective Volume), 1巻, 447頁に開示されている方法で、直接化合物 (VI) に誘導する製造方法等も挙げられる。

次いで、一般式 (VI) で示される化合物と、一般式 (VII) で示される化合物と を、無溶媒又は溶媒中、塩基の存在下又は非存在下で反応させることにより、一 般式 (I) で示される化合物を製造することができる。

本反応において使用される溶媒としては、反応を阻害しない限りいかなるものでもよく、例えば、アセトン、アセトニトリル、N、Nージメチルホルムアミド、Nーメチルー2ーピロリドン、ジメチルスルホキシド、テトラメチレンスルホン、テトラメチレンスルホキシド、ヘキサメチルホスフォリックトリアミド等の非プロトン性極性溶媒、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン等のエーテル系溶媒、酢酸メチル、酢酸エチル等のエステル系溶媒、ベンゼン、トルエン等の芳香族炭化水素系溶媒、ピリジン、ピコリン、ルチジン、コリジン等の有機塩基系溶媒、ジクロロメタン、1、2ージクロロエタン、クロロホルム等のハロゲン化炭化水素系溶媒、又はこれらの混合溶媒が挙げられ、塩基としては、例えば、リチウム、ナトリウム、水素化ナトリウム、カリウム、tertブトキシカリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム等の無機塩基、又はトリエチルアミン、ジイソプロピルエチルアミン等の有機塩基が挙げられ、反応は氷冷下から200℃までの範囲で行われる。

本発明化合物の第二の製造方法として、一般式(V)で示される化合物に、テトラヒドロフラン等の溶媒中、トリエチルアミン等の塩基の存在下、適当なクロロチオ炭酸Oーアルキルを氷冷下から溶媒の加熱還流温度までの範囲で反応させて、一般式(I)の化合物を得る製造方法も挙げられる。

本発明化合物の第三の製造方法として、一般式(I)で示される化合物中、R2,

R³ 又はR⁴ の置換基のうちいずれかが、環構成原子としてヘテロ原子を含むシクロアルキルオキシ基又は飽和複素環基であり、これらの基が保護された窒素原子をもつ場合、窒素原子の脱保護反応を行うことにより、対応する脱保護された一般式(I)の化合物を製造することができる。

脱保護反応は、窒素原子の保護基の種類に応じて種々の方法により行うことができる。例えば、アルカノイル基、アリールカルボニル基等のようなアミド型保護基の場合には、酸又は塩基を用いた加水分解反応により脱保護し製造することができる。アミドの加水分解反応はそれ自体公知の方法で、酸性加水分解には塩酸、硫酸、トリフルオロ酢酸等の酸を用いることができ、塩基性加水分解には水酸化ナトリウム、水酸化カリウム等の塩基を用いることができる。これらの酸又は塩基は水溶液として用いることもできるが、メタノール、エタノール、n-ブタノール、sec-ブタノール、tert-ブタノール等のアルコール系溶媒、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン等のエーテル系溶媒、酢酸メチル、酢酸エチル等のエステル系溶媒等の有機溶媒中や含水有機溶媒中で、室温から溶媒の加熱還流温度までの範囲で行うことができる。又、保護基が低級アルコキシカルボニル基のようなウレタン型保護基の場合には、無溶媒あるいは、酢酸、酢酸エチル、1、4ージオキサン、水、メタノール、エタノール又はこれらの混合溶媒中、塩酸、臭化水素酸、トリフルオロ酢酸等の酸を、水冷下から20℃までの範囲で処理することにより脱保護し、製造することができる。

又、本発明化合物の第四の製造方法として、第三の製造様式により得られた、 R², R³又は R⁴の置換基のうちいずれかが、環構成原子としてヘテロ原子を含む シクロアルキルオキシ基又は飽和複素環基であり、これらの基が脱保護された窒素原子をもつ一般式 (I) の化合物に、適当なアルキル化反応, アシル化反応, ウレタン化反応, ウレア化反応, チオアシル化反応, チオウレア化反応, チオカルバメート化反応等を行うか、又は、適当なアシル化, ウレタン化等の反応を行った後、ローソン試薬等でカルボニル基をチオカルボニル基に変換することによって、それぞれ窒素原子が置換された対応する一般式 (I) の化合物を得ること

ができる。

窒素原子の置換基導入反応は、置換基の種類により種々の方法により行うことができる。例えば、アルキル化反応では、ハロゲン化アルキルやアルキルスルホネート等によるアルキル化反応、又はアクリル酸エステル等によるマイケル付加反応を、無溶媒又は溶媒中、塩基の存在下又は非存在下行うことにより、対応する一般式(I)の化合物を得ることができる。又、ハロゲン化アシル等によるアシル化反応やウレタン化反応、シアン酸ナトリウム等によるウレア化反応、又はハロゲン化チオアシル等によるチオアシル化反応、アルキルイソチオシアネート等によるチオウレア化反応、クロロチオ炭酸〇一アルキル等によるチオカルバメート化反応を、無溶媒又は溶媒中、塩基の存在下行い、必要に応じて、アシル基等で窒素原子が置換された化合物のカルボニル基のチオカルボニル基への変換反応を、無溶媒又は溶媒中、ローソン試薬を用いて行うことにより、それぞれ対応する一般式(I)の化合物を得ることができる。

これらの反応に使用される溶媒としては、反応を阻害しない限りいかなるものでもよく、例えば、水、メタノール、エタノール等のアルコール系溶媒、アセトン、アセトニトリル、N、Nージメチルホルムアミド、Nーメチルー2ーピロリドン、ジメチルスルホキシド、テトラメチレンスルホン、テトラメチレンスルホキシド、ヘキサメチルホスフォリックトリアミド等の非プロトン性極性溶媒、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン等のエーテル系溶媒、酢酸メチル、酢酸エチル等のエステル系溶媒、ベンゼン、トルエン等の芳香族炭化水素系溶媒、酢酸等の有機酸系溶媒、ピリジン、ピコリン、ルチジン、コリジン等の有機塩基系溶媒、ジクロロメタン、1、2ージクロロエタン、クロロホルム等のハロゲン化炭化水素系溶媒、又はこれらの混合溶媒が挙げられ、塩基としては、例えば、リチウム、ナトリウム、カリウム、tert-ブトキシカリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム等の無機塩基、又はトリエチルアミン、ジイソプロビルエチルアミン等の有機塩基が挙げられ、反応は氷冷下から200℃までの範囲で行われる。

本発明化合物の製造方法において、原料となる一般式(V)で示される化合物の一部は、特開平8-73455号公報やJournal of Medicinal Chemistry, 39巻,673頁及び680頁(1996年)等に製造方法等が既に開示されている公知化合物である。尚、一部新規な化合物については、例えば、以下の方法で製造することができ、その製造方法の詳細については参考例に記載した。

(式中、Boc は tert-ブトキシカルボニル基を、Zはベンジルオキシカルボニル基を、n-Bu は n-ブチル基を、Ms はメシル基を、Ph はフェニル基を表し、 R^2 , R^3 及び R^4 は前述と同意義を表す。)

工程1においては、一般式 (VIII) の化合物を適当な還元方法、例えば、酢酸エチル、メタノール等の溶媒中、酸化白金、ラネーニッケル、バラジウム炭素等の触媒を用い、室温から50℃で、常圧から50気圧の水素圧の範囲で行う水素化還元法、鉄粉と塩酸、酢酸等を用いた還元法等でニトロ基を還元して、一般式(IX) の化合物を得ることができる。

工程2においては、一般式(IX)の化合物のアミノ基を適当なウレタン化反応、例えば、メタノール、テトラヒドロフラン等の適当な有機溶媒を用い、氷冷下から溶媒の加熱還流温度までの範囲で、二炭酸ジーtert-ブチルでウレタン化するか、水又はアセトン、メタノール、テトラヒドロフラン等の有機溶媒あるいはこれら

の混合溶媒を用い、トリエチルアミン、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム等の塩基の存在下、氷冷下から溶媒の加熱還流温度までの範囲で、ベンジルオキシカルボニルクロリドを用いてウレタン化した後、テトラヒドロフラン、N、N・ジメチルホルムアミド等の適当な非プロトン性有機溶媒中、-78℃から室温までの範囲でn-ブチルリチウム等の塩基で処理し、次いでグリシジルブチレートを反応させることにより、一般式(X)の化合物を得ることができる。

工程3においては、一般式(X)の化合物とメタンスルホニルクロリドを用いて、ジクロロメタン、テトラヒドロフラン等の適当な有機溶媒中、例えばトリエチルアミン等の塩基の存在下、氷冷下から溶媒の加熱還流温度までの範囲で反応することにより、一般式(XI)の化合物を得ることができる。

工程4においては、一般式(XI)の化合物とアジ化ナトリウムを、テトラヒドロフラン、N、Nージメチルホルムアミド等の適当な有機溶媒中、氷冷下から溶媒の加熱還流温度までの範囲で反応することにより、一般式(XII)の化合物を得ることができる。

尚、一般式(XI)の化合物においてR²,R³及びR⁴のうちいずれかが、保護された窒素原子を置換基中に持つ場合、工程4のアジド化反応を行った後、本発明化合物の第三の製造様式の方法に準じて脱保護反応を行い、必要に応じて、第四の製造様式の方法に準じて、適当なアルキル化反応,アシル化反応,ウレタン化反応,チオアシル化反応,チオウレア化反応、チオカルバメート化反応等を行うことにより、それぞれ対応する一般式(XII)の化合物を得ることができる。

又、一般式(XI)の化合物において R^2 、 R^3 及び R^4 のうちいずれかが、チオモルホリニル基である場合、硫黄原子に適当な酸化反応を行うことによってS-オキシド又はS、S-ジオキシドに変換した後、工程4により対応する一般式(XII)で示される化合物を製造することもできる。

硫黄原子の酸化反応としては、目的物に応じて種々の方法により行うことができる。S-オキシド基への変換としては、例えば、クロム酸、過酸化水素、メタ

クロロ過安息香酸、メタ過ヨウ素酸ナトリウム、メタ過ヨウ素酸カリウム等の酸化剤を用いて、水もしくはテトラヒドロフラン、メタノール、アセトニトリル、アセトン、ジクロロメタン等の有機溶媒又はこれらの混合溶媒中で、氷冷下から溶媒の加熱還流温度までの範囲で反応することにより製造することができる。又、S、S・ジオキシド基への変換としては、例えば、クロム酸、過酸化水素、メタクロロ過安息香酸、四酸化オスミウム、四酸化ルテニウム等の酸化剤を用いて、水もしくはテトラヒドロフラン、メタノール、アセトン、ジクロロメタン等の有機溶媒又はこれらの混合溶媒中、氷冷下から溶媒の加熱還流温度までの範囲で反応することにより製造することができる。

工程5においては、一般式 (XII) の化合物を適当な還元方法、例えば、メタノール等の溶媒中、酸化白金、バラジウム炭素等の触媒を用いて、室温から50℃で常圧から50気圧の水素圧の範囲で行う水素化還元法、又はテトロヒドロフラン等の溶媒中、トリフェニルホスフィン及び水を用い、氷冷下から溶媒の加熱還流温度までの範囲で行う還元法等で、アジド基を還元して、一般式 (V) で示される化合物を得ることができる。

本発明の医薬は、前記一般式(I)~(IV)で示されるチオカルバミド酸誘導体又はその塩を有効成分として含むことを特徴としている。本発明の医薬の有効成分としては、遊離形態の上記化合物及び薬理学的に許容しうる塩、並びにそれらの任意の結晶形,溶媒和物及びそれらの水和物からなる群から選ばれる物質を用いることができ、2種以上の物質を組み合わせて用いてもよい。本発明の医薬としては、上記物質自体をそのまま用いてもよいが、通常は、有効成分である上記物質と1種又は2種以上の製剤用添加物とを含む医薬組成物の形態として提供されることが望ましい。

医薬組成物の形態は特に限定されないが、例えば、カプセル剤,錠剤,細粒剤, 顆粒剤,散剤,シロップ剤などの経口投与剤、あるいは注射剤,坐剤,点眼剤, 眼軟膏剤,点耳剤,点鼻剤,経皮粘膜吸収剤,吸入剤又は外皮用剤などの非経口 投与剤として調整することが可能である。これらの製剤は、薬理学的,製剤学的

に許容しうる添加剤を加え、常法により製造することができる。即ち経口投与剤及び坐剤にあっては、賦形剤(乳糖,Dーマンニトール,トウモロコシデンプン,結晶セルロース等),崩壊剤(カルボキシメチルセルロース,カルボキシメチルセルロースカルシウム等),結合剤(ヒドロキシプロビルセルロース,ヒドロキシプロビルメチルセルロース,ボリビニルビロリドン等),滑沢剤(ステアリン酸マグネシウム,タルク等),コーティング剤(ヒドロキシプロビルメチルセルロース,白糖,酸化チタン等),可塑剤(ボリエチレングリコール等),基剤(ボリエチレングリコール,ハードファット等)等の製剤用成分が、注射剤,点眼剤,点耳剤,点鼻剤にあっては水性あるいは用時溶解型剤型を構成しうる溶解剤ないし溶解補助剤(注射用蒸留水,生理食塩水,プロビレングリコール等),PH調節剤(無機又は有機の酸あるいは塩基),等張化剤(食塩,ブドウ糖,グリセリン等),安定化剤等の製剤用成分が、又、眼軟膏剤,外皮用剤にあっては、軟膏剤,クリーム剤,貼付剤として適切な製剤用成分(白色ワセリン,マクロゴール,グリセリン,流動パラフィン,綿布等)が使用される。

本発明の医薬は、例えば、抗菌剤としてヒトを含む哺乳類の感染症の治療又は 予防のために投与することができる。本発明の医薬の投与量は特に限定されず、 病原菌の種類、患者の年齢、体重、疾患の重篤度などに応じて適宜の投与量を選 択することが可能である。通常成人の場合、例えば1日量として、経口投与で1 0~2000 曜程度、非経口投与で1~1000 曜程度を1日1回ないしは数回 に分けて投与することができる。もっとも、治療又は予防の目的、感染の部位や 病原菌の種類、患者の年齢や症状などに応じて、適宜増減することが望ましい。

実施例

以下、本発明を参考例及び実施例によって説明するが、本発明の範囲はこれらの例に限定されるものではない。尚、表中の略語は次の意味を表す。 $Me: x \neq x$ 基, $Et: x \neq x \neq x$ 基,n-Pr: n-プロピル基,i-Pr: 17プロピル基,n-Bu: n-ブチル基,n-Bu: n-

参考例1

N-tert-ブトキシカルボニルー4-ピペリジノール

4-ピペリジノール50.0gの無水テトラヒドロフラン250ml 懸濁液に氷冷攪拌下、二炭酸ジーtert-ブチル125ml を加え、室温で30分間攪拌した。反応後、溶媒を減圧留去し、淡黄色液体120.5gを得た。

NMRスペクトル (CDCl₃) δ ppm : 1.46(9H,s),1.47-1.50(2H,m),1.81-1.87(2H,m),3.01-3.10(2H,m),3.73-3.87(3H,m)

IRスペクトル ν (liq.)cm⁻¹:1698,3684

マススペクトル(m/z):201(M⁺)

参考例1と同様にして参考例2の化合物を得た。

参考例2

N-tert-ブトキシカルボニル-3-アゼチジノール

性状:黄色液体

NMRスペクトル (DMSO- d_6) δ ppm: 1.37(9H,s),3.55-3.60(2H,m),3.95-4.00(2H,m),4.30-4.40(1H,m),5.50(1H,d,J=6Hz)

IRスペクトル ν (liq.)cm⁻¹:1678,3416

参考例3

N-tert-ブトキシカルボニル-4-メトキシピペリジン

60%水素化ナトリウム8.77gの無水N,Nージメチルホルムアミド300ml 懸濁液に室温攪拌下、Nーtert-ブトキシカルボニルー4ービベリジノール49.0gの無水N,Nージメチルホルムアミド190ml 溶液を加えた後、ヨウ化メチル30.4ml を滴下し同温で5時間攪拌した。反応液を氷水に加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し芒硝乾燥後、溶媒を減圧留去した。残渣をカラムクロマトグラフィー(シリカゲル,酢酸エチル:n-ヘプタン= $1:2 \rightarrow 1:1$)で精製し、無色液体44.1gを得た。

NMRスペクトル (CDCl₃) δ ppm: 1.45-1.55(2H,m),1.46(9H,s),1.80-1.90(2H,m),3.05-3.15(2H,m),3.30-3.40(1H,m),3.35(3H,s),3.70-3.80(2H,m)

IRスペクトル ν (liq.)cm⁻¹: 1698

マススペクトル(m/z):215 (M⁺)

参考例4

N-tert- \mathcal{I} - $\mathcal{$

60%水素化ナトリウム0.25gの無水N, N-ジメチルホルムアミド5ml 懸濁液に、室温攪拌下、N-tert-ブトキシカルボニル-3-アゼチジノール1.00gの無水N, N-ジメチルホルムアミド3ml 溶液を加え室温で30分間攪拌した後、2-メトキシエチルメタンスルホネート0.98gの無水N, N-ジメチルホルムアミド2ml 溶液を滴下し、同温で4時間攪拌した。反応液を氷水に加え、酢酸エチルで抽出した。抽出液を水,飽和食塩水で順次洗浄し芒硝乾燥後、溶媒を減圧留去した。残渣をカラムクロマトグラフィー(シリカゲル,酢酸エチル:n-ヘプタン=1:3)で精製し、無色液体0.67gを得た。

NMRスペクトル (DMSO-d₆) δ ppm: 1.37(9H,s),3.25(3H,s),3.41-3.45(2H,m),3.46-3.49(2H,m),3.64(2H,dd,J=9,4Hz),3.98(2H,dd,J=9,6.5Hz),4.21-4.26(1H,m) IRスペクトル ν (liq.)cm⁻¹: 1706

参考例5

4-メトキシピペリジン・塩酸塩

9%塩化水素酢酸エチル溶液 220 ml に氷冷攪拌下、 N-tert-プトキシカルボニルー4-メトキシピペリジン43.9 gの酢酸エチル220 ml 溶液を加えた後、氷冷下2.5 時間攪拌した。反応後、析出した結晶を濾取し、無色結晶29.1 gを得た。

NMRスペクトル(CDCl₃) δ ppm: 1.95-2.05(2H,m),2.10-2.20(2H,m),3.15-3.30(4H,m),3.33(3H,s),3.50-3.60(1H,m)

IRスペクトル ν (liq.)cm⁻¹: 3448

マススペクトル(m/z):115(M^t)

参考例5と同様にして参考例6の化合物を得た。

参考例6

3-(2-メトキシエトキシ)アゼチジン・塩酸塩

性状:淡黄色液体

NMRスペクトル(DMSO-d₆) δ ppm: 3.26(3H,s),3.43(2H,t,J=4.5Hz),3.54(2H,t,J=4.5Hz),3.75-3.80(2H,m),4.05-4.10(2H,m),4.35-4.40(1H,m)

IRスペクトル ν (liq.)cm⁻¹:3436

マススペクトル(m/z):131(M⁺)

参考例7

3-フルオロー4ー(4-メトキシピペリジン-1-イル)ニトロベンゼン

3, 4-ジフルオロニトロベンゼン15.0g及びN, N-ジイソプロピルエチルアミン41mlの無水アセトニトリル150ml溶液に、4-メトキシピベリジン・塩酸塩15.8gを加え、5時間加熱還流した。溶媒を減圧留去後、残渣に水及び10%水酸化ナトリウム水溶液を加えてアルカリ性とし、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、芒硝乾燥後、溶媒を減圧留去して黄褐色液体24.1gを得た。

NMRスペクトル(DMSO-d_e) δ ppm: 1.54-1.62(2H,m),1.92-2.00(2H,m),3.08-3. 16(2H,m),3.28(3H,s),3.38-3.46(1H,m),3.49-3.57(2H,m),7.16(1H,t,J=8.5Hz),7.95(1H,dd,J=14,3Hz),7.97(1H,dd,J=8.5,3Hz) I Rスペクトル ν (liq.) cm⁻¹:1336,1518 マススペクトル(m/z): 254(M⁺)

参考例7と同様にして参考例8から18の化合物を得た。

参考例	T .	新州(王社自为4)
2000		物性[再結晶溶媒]
		黄色針状晶[i-PrOH]
8	E10-(N-()-NO ₂	mp,62~63℃
		元素分析值 C ₁ ,H ₁₇ FN ₂ O ₃
		理論値 C,58.20;H,6.39;N,10.44
		実験値 C,58.10;H,6.60;N,10.45
		黄色結晶[i-Pr₂O-n-Heptane]
9	Mo O (CH ₂) ₂ -O N NO ₂	mp,58.5~59.5°C
	F [']	元素分析值 C,,H,,FN,O,
		理論値 C.56.37;H,6.42;N,9.39
		実験値 C,56.36;H,6.54;N,9.34
		黄褐色プリズム状晶[i-Pr₂O]
10	Me-N N-()-NO ₂	mp,68~68.5℃
'		元素分析值 C ₁₁ H ₁₄ FN ₃ O ₂
	F	理論値 C,55.22;H,5.90;N,17.56
		実験値 C,55.24;H,5.71;N,17.63 黄色液体
		NMR(DMSO- d_6) δ ppm:3.27(3H,s),3.47(2
	. 6	H.t.J=4.5Hz),3.56(2H,t,J=4.5Hz),3.95
	MeO-(CH ₂) ₂ -0-\N-\NO ₂	-4.00(2H,m),4.35-4.40(2H,m),4.45-4.
11	F -	50(1H,m),6.57(1H,t,J=9Hz),7.89(1H,d
		d,J=13,2.5Hz),7.93(1H,dd,J=9,2.5Hz)
] .		IR ν (liq.) cm ⁻¹ :1326,1532
		MS(m/z):270(M ⁺)
		黄褐色液体
	N-NO ₂	$NMR(DMSO-d_{\theta}) \delta ppm:1.50-1.60(4H,m),$
		1.70-1.85(4H,m),3.55-3.65(4H,m),6.9
12		6(1H,t,J=9Hz),7.88(1H,dd,J=16,3Hz),
		7.90(1H,dd,J=9,3Hz)
		IRν (liq.) cm ⁻¹ :1324,1522
		MS(m/z):238(M ⁺)
		黄褐色液体
13	Me—NO ₂	NMR(DMSO-d ₆) δ ppm:0.95(3H,d,J=6Hz)
		,1.20-1.35(2H,m),1.55-1.65(1H,m),1.6
		5-1.80(2H,m),2.85-3.00(2H,m),3.60-3
		.75(2H,m),7.13(1H,t,J=9Hz),7.93(1H,d
		d,J=13.5,2.5Hz),7.97(1H,dd,J=9,2.5Hz
j		/ !P.v.(!;a.) a==1,1224 :540
ļ	•	IR ν (liq.) cm ⁻¹ :1334,1512 MS(m/z):238(M ⁺)
		MO(M/Z):238(M)

参考例		物性[再結晶溶媒]
		黄褐色液体
	•	NMR(CDCl ₃) δ ppm:0.93(3H,t,J=7.5Hz),1.2
		5-1.45(5H,m),1.82(2H,d,J=5.5Hz),2.86(
14	Et—\ N—\ NO ₂	2H,t,J=12Hz),3.71(2H,d,J=12Hz),6.91(1
14		H,t,J=9Hz),7.88(1H,dd,J=13.5,2.5Hz),7.
	,	96(1H,dd,J=9,2.5Hz)
		IR ν (liq.) cm ⁻¹ :1338,1518
		MS(m/z):252(M ⁺)
		黄色針状晶[i-PrOH]
	Me, /=_NO	mp,95~96℃
15	Me NO2	元素分析值 C ₈ H ₉ FN ₂ O ₂
	F	理論值 C,52.17;H,4.93;N,15.21
		実験値 C,51.93;H,4.72;N,15.21
16		黄色針状晶[n-Heptane]
	N-NO ₂	mp,40~41°C
		元素分析值 C ₃ H ₁₁ FN ₂ O ₂
	F	理論值 C,54.54;H,5.59;N,14.13
		実験値 C,54.26;H,5.76;N,14.19
		黄色プリズム状晶 [n-Heptane]
17	N-(N-NO.	mp,49.5~50.5℃
	Et'	元素分析值 C ₁₀ H ₁₃ FN ₂ O ₂
	F	理論值 C.56.60;H.6.17;N,13.20
		実験値 C,56.41;H,6.01;N,13.06
18		黄色針状晶[i-PrOH]
		mp,125~125.5°C
	~~ <u>~</u> ~ .	一元素分析値 C₁₃H₁₅FN₂O₄ 理論値 C.55.32;H.5.36;N,9.92
	(1)	実験値 C,55.32;H,5.38;N,9.88
		天 秋 旭 し,55.21,日,5.16,14,5.06

参考例19

3-フルオロ-4-(2-メトキシエトキシ) ニトロベンゼン

60%水素化ナトリウム 4.20 gの無水テトラヒドロフラン 100 ml 懸濁液に、氷冷攪拌下エチレングリコールモノメチルエーテル 7.90 gの無水テトラヒドロフラン 50 ml 溶液を滴下し、15 分間室温で攪拌した。反応混合物に氷冷攪拌下、3, 4 - ジフルオロニトロベンゼン 15. 0 gの無水テトラヒドロフラン 5 0 ml 溶液を滴下し、同温で 3 0 分間攪拌した。反応液に氷水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、芒硝乾燥後、溶媒を減圧留去した。残渣を n-n+サンで洗浄し、黄色結晶 1 9.0 gを得た。ジイソプロビルエ

ーテルから再結晶し、融点 $62.5\sim63$ \mathbb{C} の黄色針状晶を得た。元素分析値 $C_{\mathfrak{g}}H_{10}FNO_{\mathfrak{g}}$

理論值 C,50.24; H,4.68; N,6.51

実験値 C,50.18; H,4.54; N,6.50

参考例19と同様にして参考例20から21の化合物を得た。

参考例		物性[再結晶溶媒]
		淡黄色柱状晶[i-PrOH]
	Boc-N >-0- >-NO2	mp,91.5∼93°C
20	ر کار	元素分析值 C16H21FN2O5
	·	理論値 C,56.46;H,6.22;N,8.23
		実験値 C,56.36;H,6.34;N,8.29
		淡黄色針状晶[EtOH]
	Boc-N -O-NO	mp,117~117.5℃
21		元素分析值 C14H17FN2O5
	F [′]	理論値 C,53.84;H,5.49;N,8.97
<u></u>		実験値 C,53.73;H,5.44;N,8.97

参考例22

3-フルオロー4-(4-メチルピペラジン-1-イル) アニリン

3-フルオロー4-(4-メチルピペラジンー1-イル)ニトロベンゼン19.0 g及び酸化白金0.190 gのメタノール190 ml 懸濁液を常温下、水素圧2 気圧で2 時間攪拌した。触媒を濾去後、濾液を減圧濃縮して茶褐色結晶17.0

gを得た。ジイソプロピルエーテルから再結晶し、融点87~88℃の茶褐色プリズム状晶を得た。

元素分析值 C₁₁H₁₆FN₃

理論值 C, 63.13; H, 7.71; N, 20.08

実験値 C, 63.10; H, 7.46; N, 20.08

参考例22と同様にして参考例23から36の化合物を得た。

WO 00/27830

参考例		物性[再結晶溶媒]
श्री दर प्र		
23	MeO-N-NH ₂	黒色液体 NMR(DMSO-d ₆) δ ppm:1.49-1.59(2H,m), 1.86-1.94(2H,m),2.59-2.67(2H,m),2.9 7-3.04(2H,m),3.22-3.29(1H,m),3.25(3 H,s),4.83(2H,br-s),6.29(1H,dd,J=8.5,2 .5Hz),6.33(1H,dd,J=14.5,2.5Hz),6.75(1H,t,J=8.5Hz) [R ν (liq.) cm ⁻¹ :3360,3448 MS(m/z):224(M*)
24	EtO—N—NH ₂	黒褐色液体 NMR(DMSO-d ₆) δ ppm:1.11(3H,t,J=7.5H z),1.50-1.60(2H,m),1.85-1.95(2H,m),2.60-2.70(2H,m),2.95-3.05(2H,m),3.30-3.40(1H,m),3.47(2H,q,J=7.5Hz),4.83(2H,br-s),6.30(1H,dd,J=8.5,2.5Hz),6.30(1H,dd,J=14,2.5Hz),6.75(1H,dd,J=9.5,8.5Hz) IR ν (liq.) cm ⁻¹ :3360,3456 MS(m/z):238(M ⁺)
25	MeO —(CH ₂) ₂ —O — N— — N— — NH ₂	褐色液体 NMR(DMSO-d ₆) δ ppm:1.50-1.60(2H,m), 1.85-1.95(2H,m),2.60-2.65(2H,m),2.9 5-3.05(2H,m),3.26(3H,s),3.35-3.40(1 H,m),3.44(2H,t,J=5Hz),3.54(2H,t,J=5 Hz),4.83(2H,br-s),6.28(1H,dd,J=8.5,2. 5Hz),6.32(1H,dd,J=14.5,2.5Hz),6.75(1 H,t,J=8.5Hz) IR ν (liq.) cm ⁻¹ :3364,3464 MS(m/z):268(M ⁺)
26	N-\ST-NH ₂	黒紫色液体 NMR(DMSO-d ₆) δ ppm:1.50-1.65(4H,m), 1.65-1.75(4H,m),3.07(4H,t,J=6Hz),4.7 0(2H,br-s),6.26(1H,dd,J=8.5,2.5Hz),6. 31(1H,dd,J=14.5,2.5Hz),6.71(1H,t,J=8 .5Hz) IR ν (liq.) cm ⁻¹ :3224,3356 MS(m/z):208(M*)

参考例		
罗有例		物性[再結晶溶媒]
		黒色液体
		NMR(DMSO- d_6) δ ppm:0.93(3H,d,J=6.5
		Hz),1.20-1.30(2H,m),1.35-1.50(1H,m)
	Me—N—NH	.1.60-1.70(2H,m),2.45-2.60(2H,m),3.0
27		0-3.10(2H,m),4.81(2H,br-s),6.28(1H,d
	į F	d,J=9,2.5Hz),6.32(1H,dd,J=14.5,2.5Hz
),6.74(1H,t,J=9Hz)
		IR ν (liq.) cm ⁻¹ :3224,3356,3464
		MS(m/z):208(M ⁺)
1		黒褐色液体
		$NMR(CDCl_3) \delta ppm:0.91(3H,t,J=7.5Hz),$
		1.15-1.30(1H,m),1.32(2H,quin,J=7.5H
		z),1.38(1H,dd,J=12,4Hz),1.43(1H,dd,J
	Ft—N—N—NH	=12,4Hz),1.76(2H,d,J=4Hz),2.56(2H,t
28		d,J=11.5,2Hz),3.26(2H,d,J=11.5Hz),3.
	F	34(2H,br-s),6.39(1H,dd,J=9,2.5Hz),6.
		42(1H,dd,J=13.5,2.5Hz),6.82(1H,t,J=9
		Hz)
		IRν(liq.) cm ⁻¹ :3352,3464
		MS(m/z):222(M ⁺)
		黒色液体
	MeO(CH ₂) ₂ -O	NMR(DMSO-d ₆)δppm:3.25(3H,s),3.40-
		3.45(4H,m),3.50(2H,t,J=4.5Hz),3.90-4
29		.00(2H,m),4.25-4.35(1H,m),4.61(2H,br
		-s),6.25-6.35(3H,m)
ļ		IR ν (liq.) cm ⁻¹ :3360,3430
		MS(m/z):240(M ⁺)
30	MeO -(CH ₂) ₂ -O-NH ₂	黒褐色液体
		NMR(CDCI ₃) δ ppm:3.44(3H,s),3.49(2H,
		br-s),3.71(2H,t,J=5Hz),4.10(2H,t,J=5
	F	Hz),6.30-6.40(1H,m),6.45(1H,dd,J=12
		.5,2.5Hz),6.84(1H,t,J=8.5Hz)
		IR v (liq.) cm ⁻¹ :3368,3460
		$MS(m/z):185(M^{+})$

参考例		物性[再結晶溶媒]
		淡緑色結晶
	140 —	NMR(DMSO- d_6) $\delta_{ppm:2.58(6H,s),4.79(2)}$
	N—NHa	H,br-s),6.30(1H,dd,J=8.5,2.5Hz),6.33(
31	Me Me	1H,dd,J=14,2.5Hz),6.73(1H,t,J=8.5Hz)
	F	IR ν (KBr) cm ⁻¹ :3328,3456
	٠,	MS(m/z):154(M ⁺)
		黒紫色液体
	·	NMR(DMSO-d ₆) δ ppm:0.95(3H,t,J=7.5H
	Me, /=\	z),2.57(3H,s),2.88(2H,q,J=7.5Hz),4.82
32	N-NH ₂	(2H,br-s),6.29(1H,dd,J=9,2.5Hz),6.32
	Et _	(1H,dd,J=16,2.5Hz),6.75(1H,t,J=9Hz)
	ľ	IR ν (liq.) cm ⁻¹ :3224,3348
		MS(m/z):168(M ⁺)
		灰褐色結晶
	E•	NMR(DMSO-d ₆) δ ppm:0.89(6H,t,J=7Hz)
	N—NHa	,2.91(4H,q,J=7Hz),4.89(2H,br-s),6.25
33	Et'	-6.35(2H,m),6.78(1H,t,J=9Hz)
	F	IR ν (KBr) cm ⁻¹ :3208,3332
		MS(m/z):182(M ⁺)
		茶褐色液体
		NMR(DMSO-d ₆) δ ppm:1.40(9H,s),1.45-
	Boc-N O-NH ₂	1.55(2H,m),1.75-1.85(2H,m),3.05-3.2
		0(2H,m),3.55-3.70(2H,m),4.05-4.15(1
34		H,m),4.90(2H,br-s),6.29(1H,ddd,J=8.5
	F	,2.5,1Hz),6.38(1H,dd,J=13.5,2.5Hz),6.
		84(1H,t,J=8.5Hz)
		IR γ (liq.) cm ⁻¹ :1682,3368
		MS(m/z):310(M ⁺)
35	A A	黄褐色プリズム状晶[i-Pr ₂ 0]
	Boc-N O-NH ₂	mp,85.5~86°C
		元素分析値 C14H19FN2O3
) F	理論値 C,59.56;H,6.78;N,9.92
		実験値 C,59.43;H,7.06;N,9.89
36		茶褐色針状晶[i-PrOH]
	│	mp,113.5∼114℃
		元素分析値 C13H17FN2O2
	, , , , , , , , , , , , , , , , , , ,	理論値 C,61.89;H,6.79;N,11.10
		実験値 C,61.72;H,6.55;N,11.14

参考例37

Nーベンジルオキシカルボニルー4ー(チオモルホリンー4ーイル)アニリン4ー(チオモルホリンー4ーイル)アニリン19.0gの10%炭酸ナトリウム水溶液190ml及びアセトン190ml混液に氷冷攪拌下、ベンジルオキシカルボニルクロリド21.0mlを滴下した。室温で30分間攪拌した後、析出結晶を濾取し、ジイソプロビルエーテルで洗浄し、淡褐色結晶25.5gを得た。酢酸エチルージイソプロビルエーテルの混液から再結晶し、融点145~146.5℃の無色針状晶を得た。

元素分析值 C₁₈H₂₀N₂O₂S

理論值 C,65.83; H,6.14; N,8.53

実験値 C,65.69; H,6.12; N,8.38

参考例37と同様にして参考例38から53の化合物を得た。

参考例		物性[再結晶溶媒]
וחרש		淡紫色針状晶[i-PrOH]
\		mp,120~121°C
38	N-\ \-NHZ	元素分析値 C1aH1aFN2O2
00	حر ح	理論値 C,68.77;H,6.09;N,8.91
		実験値 C,68.88;H,6.00;N,8.88
		無色結晶[AcOEt-i-Pr ₂ O]
		mp,107~108°C
39	MeO— N— D—NHZ	元素分析值 C20H23FN2O3
0.5	ر ک	フェック 17 値 02611231 10203 理論値 C,67.02;H,6.47;N,7.82
	r	実験値 C,66.90;H,6.35;N,7.73
		淡紫色結晶[i-PrOH]
		mp,123.5~125°C
40	EtO—(N—()—NHZ	元素分析值 C21 H25 FN2O3
	ا کے	理論値 C,67.72;H,6.77;N,7.52
	,	実験値 C.67.63;H.6.81;N.7.47
		淡褐色針状晶[AcOEt-i-Pr ₂ 0]
		mp,78~78.5℃
41	N—NHZ	元素分析值 C,,H,,FN,O,
-		理論値 C,70.15;H,6.77;N,8.18
	Ī	実験値 C.70.10;H,6.77;N,8.17
		淡紫色針状晶[AcOEt-i-Pr ₂ O]
		mp,124.5~126°C
42	Me—NHZ	元素分析值 C20H23FN2O2
	F	理論値 C,70.15;H,6.77;N,8.18
		実験値 C,70.11;H,6.83;N,8.12
		淡紫色針状晶[i-PrOH]
	Et-N-NHZ	mp,114∼115°C
43		元素分析値 C21H25FN2O2
		理論値 C.70.76;H,7.07;N,7.86
		実験値 C,70.66;H,7.17;N,7.84
}		淡褐色結晶[AcOEt-i-Pr ₂ O]
44	MeO-(CH ₂) ₂ -O(N(N(N(N(N(N(N(N(N	mp.97~98.5°C
		元素分析值 C ₂₂ H ₂₇ FN ₂ O ₄
		理論值 C,65.66;H,6.76;N,6.96
		実験値 C,65.59;H,6.98;N,6.96
45		無色針状晶[i-PrOH]
	Me-N N-NHZ	mp,136.5~137°C
		元素分析值 C ₁₉ H ₂₂ FN ₃ O ₂
	F F	理論値 C,66.46;H,6.46;N,12.24
L		実験値 C,66.50;H,6.49;N,12.14

参考例	T	
एवं दर ख		物性[再結晶溶媒]
		無色結晶[i-Pr ₂ 0]
46	Me—(NHZ	mp,77.5~78°C
40		元素分析值 C ₁₆ H ₁₇ NO ₂
	Mé	理論値 C.75.27;H,6.71;N,5.49
		実験値 C,75.16;H,6.63;N,5.51
		無色結晶[AcOEt]
47	MeO-(CH ₂) ₂ -O-NHZ	mp,91~92°C
47	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	元素分析值 C ₁₇ H ₁₈ FNO ₄
	F	理論値 C.63.94;H.5.68;N.4.39
		実験値 C,63.71;H,5.59;N,4.35
		無色針状晶[i-PrOH]
40	NHZ	mp,100~100.5℃
48		元素分析值 CisHisNO2
		理論値 C,76.84;H,6.81;N,4.98
		実験値 C,76.85;H,7.07;N,4.98
		無色結晶[AcOEt-i-Pr ₂ O]
49	Me, N————NHZ	mp,106.5~107.5°C
49		元素分析值 C1eH1BN2O2
	5	理論値 C,71.09;H,6.71;N,10.36
		実験値 C,71.15;H,6.89;N,10.35
		灰色結晶
	Me NHZ	NMR(DMSO- d_6) δ ppm:3.64(6H,s),5.03(2
50		H.s),7.13(2H,d,J=7.5Hz),7.26(1H,dd,J
30		=9,2.5Hz),7.30-7.55(4H,m),7.70-7.75(
	F	1H,m).10.3(1H,br-s)
		IRν (KBr) cm ⁻¹ :1740
		MS(m/z):288(M ⁺)
	Me —	無色結晶[AcOEt-n-Heptane]
51	N-()-NHZ	mp,60~61°C
	Et'	元素分析值 C ₁₇ H ₁₉ FN ₂ O ₂
	F	理論值 C.67.53;H.6.33;N,9.27
52		実験値 C,67.32:H,6.33;N,9.29
		黒褐色液体 MMAP(DMCQ 1) S
	Et NHZ	NMR(DMSO-d ₆) & ppm:0.96(6H,t,J=7.5H
		z).3.06(4H,q,J=7.5Hz),5.15(2H,s),6.95
		(1H,t,J=9Hz),7.12(1H,dd,J=9,2Hz),7.2
	r	5-7.45(6H,m),9.62(1H,br-s)
		IR ν (liq.) cm ⁻¹ :1706
		MS(m/z):316(M ⁺)

参考例	•	物性[再結晶溶媒]
53	Boc-N O-NHZ	赤褐色液体 NMR(DMSO-d ₆) δ ppm:1.40(9H,s),1.49- 1.57(2H,m),1.82-1.88(2H,m),3.13-3.2 0(2H,m),3.60-3.66(2H,m),4.35-4.41(1 H,m),5.14(2H,s),7.10-7.16(2H,m),7.30 -7.44(6H,m),9.68(1H,br-s) IR ν (liq.) cm ⁻¹ :1668,3304
·		MS(m/z):444(M ⁺)

参考例 5 4

二炭酸ジーtert-ブチル 5.56gのメタノール 10ml 溶液に室温攪拌下、3-7ルオロー 4-(ピペラジン-1-4ル) アニリン 2.00gのメタノール 10ml 溶液を滴下して、室温で一晩攪拌した。析出した結晶を濾取し、エタノールで洗浄して黄色結晶 3.12gを得た。酢酸エチルから再結晶して、融点 194 ~ 195 °Cの淡黄色結晶を得た。

元素分析值 C₂₀H₃₀FN₃O₄

理論值 C, 60.74; H, 7.65; N, 10.63

実験値 C, 60.47; H, 7.93; N, 10.53

参考例54と同様にして参考例55から57の化合物を得た。

45 at 101		
参考例	·	物性[再結晶溶媒]
		褐色液体
	1	NMR(DMSO-d ₆) δ ppm:1.45(9H,s),3.26(3
		H.s),3.44(2H,t,J=4.5Hz),3.52(2H,t,J=4
	MeO-(CH ₂) ₂ -O-N-NHBoc	.5Hz),3.55-3.60(2H,m),4.00-4.10(2H,
5 5	الحرام ا	m),4.35-4.40(1H,m),6.46(1H,t,J=8.5H
		z),7.04(1H,dd,J=8.5,2Hz),7.22(1H,dd,
		J=15,2Hz),9.03(1H,br-s)
		IR ν (liq.) cm ⁻¹ :1724,3328
		MS(m/z):340(M+)
		淡褐色鱗片状晶[CH3CN]
	Box - N - O - C - LIVE	mp,220~221°C
56	DOC 11 -NUBOC	元素分析値 C19H27FN2O5
	F	理論值 C.59.67;H,7.12;N,7.33
		実験値 C,59.45;H,7.24;N,7.37
		赤褐色プリズム状晶[i-PrOH]
57		mp,139~140.5°C
	~o^\'' ~\\	元素分析値 C18H25FN2O4
	F	理論値 C,61.35;H,7.15;N,7.95
		実験値 C,61.30;H,7.37;N,7.98

参考例 5 8

(R) -5-ヒドロキシメチルー2-オキソー3-[4-(チオモルホリンー4-イル) フェニル] オキサゾリジン

N-ベンジルオキシカルボニルー 4- (チオモルホリンー 4-イル) アニリン 25.0gの無水テトラヒドロフラン 250ml 溶液に、窒素気流中で 1.63m 1.63m

理論値 C,57.12; H,6.16; N,9.52

実験値 C, 56.85; H, 6.13; N, 9.25 比旋光度 $[\alpha]_{p}^{20}-40.9^{\circ}$ (c=0.1, DMSO)

参考例58と同様にして参考例59から79の化合物を得た。

do de to		
参考例	R	物性[再結晶溶媒]
1		淡紫色針状晶[EtOH]
		mp,178~179℃
59	_\n'\ _	元素分析值 C ₁₄ H ₁₇ FN ₂ O ₃
1		理論値 C,59.99;H,6.11;N,9.99
	·	実験値 C,59.97;H,6.06;N,9.98
		比旋光度 [α] ₀ 20-54.9°(c=0.1,DMSO)
		淡褐色結晶[AcOEt]
İ		mp,139.5~141°C
60	MeO— N— —	元素分析值 C ₁₆ H ₂₁ FN ₂ O ₄
		理論値 C,59.25;H,6.53;N,8.64
	'	実験値 C,58.95;H,6.46;N,8.39
		比旋光度 [α] _p ²⁰ -43.1°(c=0.1,DMSO)
		無色結晶[i-PrOH]
		mp,131~132℃
61	EtO—(N—()—	元素分析值 C ₁₇ H ₂₃ FN ₂ O ₄
		理論値 C,60.34;H,6.85;N,8.28
	,	実験値 C,60.20;H,7.07;N,8.11
		比旋光度 [α] _p 20-37.0° (c=0.1,DMSO)
		淡紫色針状晶[AcOEt-i-Pr2O]
62	Me————————————————————————————————————	mp,141.5∼143℃
		元素分析値 C16H21FN2O3
		理論値 C,62.32;H,6.86;N,9.09
		実験値 C,62.21;H,6.94;N,9.01
		比旋光度 [α] ₀ ²⁰ -42.9° (c=0.1,DMSO)
		無色針状晶[i-PrOH]
		mp,149~149.5℃
63	Et-()N-()	元素分析值 C ₁₇ H ₂₃ FN ₂ O ₃
		理論値 C.63.34;H,7.19;N,8.69
	·	実験値 C.63.17;H,7.35;N,8.67
		比旋光度 [α] _D ²⁰ -43.0° (c=0.1,DMSO)
64	ļ	無色結晶[AcOEt]
	M=0=-(CH) =0	mp,94.5~96°C
	MeO-(CH ₂) ₂ -O-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-	元素分析值 C ₁₈ H ₂₅ FN ₂ O ₅
	F	理論値 C,58.68;H,6.84;N,7.60
		実験値 C,58.41;H,7.11;N,7.56
		比旋光度 [α] _D ²⁰ -37.9° (c=0.1.DMSO)

45		
参考例	R	物性[再結晶溶媒]
		淡褐色プリズム状晶 [AcOEt−i−Pr₂O]
']	∼ –	mp,118∼119°C
6.5	\ ___\	元素分析值 CieHziFNzO3
65		理論値 C,62.32;H,6.86;N,9.09
	F	実験値 C,62.13;H,6.98;N,9.07
	0	比旋光度 [α] ₀ ²⁰ -36.9°(c=0.1,DMSO)
		無色針状晶[AcOEt]
	^ /=\	mp,113~114°C
00	MeO-(CH ₂) ₂ -0-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-	元素分析值 CısH₂ıFN₂Os
66	F [']	理論値 C,56.46;H,6.22;N,8.23
	· · · · · · · · · · · · · · · · · · ·	実験値 C,56.30;H,6.33;N,8.24
		比旋光度 [α] _p ²º-41.2° (c=0.1,DMSO)
		無色プリズム状晶 [i-PrOH]
1		mp,150~151°C
,,	Me-N N-	元素分析值 CısH₂oFN₃O₃
67		理論值 C,58.24;H,6.52;N,13.58
	F	実験値 C.58.33;H,6.31;N,13.56
		比旋光度 [α] _p ²0-38.9° (c=0.1,DMSO)
	Boc-N N-	淡褐色結晶[i-PrOH]
		mp,130~132°C
		元素分析值 C19H28FN3O5
68		理論値 C,57.71;H,6.63;N,10.63
1 1		実験値 C,57.55;H,6.87;N,10.57
		比旋光度 [α] _p ²0-36.0° (c=0.1,DMSO)
		淡黄色結晶[EtOH]
		mp,127.5~128.5°C
		元素分析值 C.,H.,NO。
69	Me	理論値 C,63.76;H,6.32;N,6.76
[実験値 C,63.59;H,6.39;N,6.78
		比旋光度 [α] _p ²º-55.0° (c=0.1,DMSO)
		無色プリズム状晶 [EtOH]
		mp,150~151°C
70	Me—(T)	元素分析值 C,2H,5NO3
70)/	理論値 C,65.14;H,6.83;N,6.33
	Mé	実験値 C,65.01;H,6.64;N,6.28
		比旋光度 [α] _p ²⁰ -45.9° (c=0.1,DMSO)

45 45 5	Y	ОН
参考例	R	物性[再結晶溶媒]
		淡褐色針状晶[i-PrOH]
		mp,119~120°C
71	MeO-(CH ₂) ₂ -0-	元素分析值 CiaHieFNOs
	٠- ٢- ١	理論値 C,54.73;H,5.65;N,4.91
	•	実験値 C,54.58;H,5.55;N,4.89
		比旋光度 [α] _p ²⁰ -40.9° (c=0.1,DMSO)
		無色針状晶[CH₃CN]
	44.	mp,183~185°C
72	N-(-)	元素分析値 C ₁₂ H _{1e} N ₂ O ₃
	Me'	理論値 C.61.00;H,6.83;N,11.86
}		実験値 C,60.90;H,6.95;N,11.86
		比旋光度 [α] _D ²⁰ -53.8° (c=0.1.DMSO)
		無 色 フリズム 状 晶 [AcOEt]
	Me,	mp,128~130°C
73	Mo	元素分析值 C ₁₂ H ₁₅ FN ₂ O ₃
		理論值 C,56.69;H,5.95;N,11.02
		実験値 C,56.66;H,6.24;N,10.97
		比旋光度 [α] _p ²⁰ -51.1° (c=0.1,DMSO)
		無色針状晶[AcOEt-i-Pr ₂ O]
	Et F	mp,95~96℃ 二惠公长法 0 11 511 5
74		元素分析值 C ₁₃ H ₁₇ FN ₂ O ₃
		理論値 C.58.20;H,6.39;N,10.44
		実験値 C,58.06;H,6.53;N,10.36 比旋光度「G] 30-54.8° (0.1.0400)
		比旋光度 [α] ₀ ²⁰ -54.8° (c=0.1,DMSO) 褐色液体
		NMR(DMSO-d ₆) δ ppm:0.99(3H,t,J=7.5H
		z),3.11(2H,q,J=7.5Hz),3.56(1H,dd,J=1
]		2,3.5Hz),3.66(1H,dd,J=12,3.5Hz),3.79
	Et N	(1H,dd,J=9,6.5Hz),4.04(1H,t,J=9Hz),4
75		.60-4.70(1H,m).5.09(1H,br-s),7.03(1H
		,t,J=9Hz),7.17(1H,dd,J=9,2.5Hz),7.44(
		1H,dd,J=15,2.5Hz)
		IR ν (liq.) cm ⁻¹ :1748,3416
ĺ		MS(m/z):282(M ⁺)
		比旋光度 [α] ₀ ²º-39.2° (c=0.1,DMSO)

	<u></u> _	40 10 4 - 41 - 4 4 3
参考例	. R .	物性[再結晶溶媒]
		無 色プリズム状 晶 [AcOEt]
		mp,145.5∼146.5℃
76		元素分析值 C ₁₄ H ₁₇ NO ₃
76	\ \ <u>\</u>	理論値 C,68.00;H,6.93;N,5.66
	_	実験値 C,67.88;H,7.23;N,5.68
		比旋光度 [α] ₀ 20-51.1°(c=0.1,DMSO)
		無色結晶[EtOH]
		mp,109~110℃
,,	Boc-N >-0-(-)-	元素分析值 C₂₀H₂ァFN₂O6
77	سر ب	理論值 C,58.53;H,6.63;N,6.83
	•	実験値 C,58.28;H,6.54;N,6.83
		比旋光度 [α] _p ²º-32.0°(c=0.1,DMSO)
		淡黄褐色プリズム状晶 [AcOEt]
	·	mp,157~158°C
	Boc - N - O -	元素分析值 C18H23FN2O6
78	سر 🔻	理論值 C.56.54;H,6.06;N,7.33
	•	実験値 C,56.42;H,6.32;N,7.26
		比旋光度 [α] _p ²⁰ -30.1°(c=0.1,DMSO)
		淡紫色プリズム状晶 [i-PrOH]
79		mp,163~165.5°C
		元素分析值 C ₁ ,H ₂ ,FN ₂ O ₅
	\ _\ _\ _\ \\ \\ \\ \\ \\ \\ \\ \\	理論値 C,57.95;H,6.01;N,7.95
	F	実験値 C,57.89;H,6.04;N,7.92
	,	比旋光度 [α] _D ²⁰ -41.1°(c=0.1,DMSO)

参考例80

- $(R) 5 \cancel{x} + \cancel{y} + \cancel{y$
- (R) -5-ヒドロキシメチルー2-オキソー3ー [4-(チオモルホリンー4-イル) フェニル] オキサゾリジン10.0 g及びトリエチルアミン10.5 mlのジクロロメタン200ml 溶液に、氷冷攪拌下、メタンスルホニルクロリド3.20ml を滴下した後、室温で2時間攪拌した。反応液に水200ml を加えジクロロメタンで抽出した。抽出液を水,飽和食塩水で順次洗浄し、芒硝乾燥後、溶媒

を減圧留去した。残渣をジイソプロビルエーテルで洗浄し、灰褐色結晶 11.5 g を得た。酢酸エチルから再結晶し、融点 $174.5 \sim 175.5$ % の無色プリズム状晶を得た。

元素分析值 C₁₅H₂₀N₂O₅S₂

理論值 C, 48.37; H, 5.41; N, 7.52

実験値 C, 48.41; H, 5.33; N, 7.36

比旋光度 $[\alpha]_{D}^{20}-54.2^{\circ}$ (c=0.1, DMSO)

参考例80と同様にして参考例81から101の化合物を得た。

参考例	R	物性[再結晶溶媒]
		無色結晶[AcOEt-i-Pr ₂ 0]
		mp,111~112°C
0.1	\[\n-\langle^\rangle\rangle	元素分析值 C15H19FN2O5S
81		理論値 C,50.27;H,5.34;N,7.82
	F	実験値 C,50.10;H,5.30;N,7.73
		比旋光度 [α] _p ²º-50.1°(c=0.1,DMSO)
		無 色プリズム状 晶 [AcOEt]
		mp,124.5∼125.5°C
82	MeO—()N—()—	元素分析値 C17H23FN2O6S
82		理論値 C,50.74;H,5.76;N,6.96
	r	実験値 C,50.50;H,5.66;N,6.87
		比旋光度 [α] _D ²⁰ -49.9° (c=0.1,DMSO)
		無色針状晶[i-PrOH]
		mp,128~128.5°C
83	Et0-()N-()-	元素分析値 C18H25FN2O6S
65	حز ب	理論值 C,51.91;H,6.05;N,6.73
	,	実験値 C,51.80;H,6.29;N,6.69
		比旋光度 [α] _D ²⁰ -47.9° (c=0.1,DMSO)
		淡紫色プリズム状晶[i-PrOH]
İ		mp,155~156.5°C
84	Me— N— >	元素分析值 C ₁₇ H ₂₃ FN ₂ O ₅ S
		理論値 C,52.84;H,6.00;N,7.25
}	·	実験値 C,52.65;H,6.22;N,7.07
		比旋光度 [α] ₀ ²⁰ -52.9° (c=0.1.DMSO)
		無色板状晶[EtOH]
		mp,155~156°C
85		元素分析値 C ₁₈ H ₂₅ FN ₂ O ₅ S
	F	理論值 C,53.99;H,6.29;N,7.00
		実験値 C,53.74;H,6.40;N,6.87 比旋光度 [α] ₀ ²⁰ -51.1°(c=0.1,DMSO)
		沈福色針状晶[AcOEt]
		淡色野 认
86	MeO-(CH ₂) ₂ -O-(N-(-)	mp,124~124.3 C 元素分析値 C ₁₉ H ₂₇ FN ₂ O ₇ S
		理論値 C,51.11;H,6.10;N,6.27
		実験値 C,50.82;H,6.34;N,6.25
		关级值 0,30.82,11,0.34,N,0.23 比旋光度 [α] _p ²⁰ −47.8° (c=0.1,DMSO)
		LINE JL JZ LU JD 47.0 (C-0.1,DM30)

4 + =		
参考例	R	物性[再結晶溶媒]
		無色針状晶[AcOEt-i-Pr ₂ O]
		mp,121~122.5℃
87	[» 	元素分析值 C ₁₇ H ₂₃ FN ₂ O ₅ S
		理論値 C,52.84;H,6.00;N,7,25
	ļ <u>"</u>	実験値 C,52.57;H,6.16;N,7.20
		比旋光度 [α] _p ²⁰ -52.8° (c=0.1,DMSO)
		褐色液体
		NMR(DMSO- d_6) δ ppm:3.22(3H,s),3.26(3
		H.s),3.45(2H,t,J=5Hz),3.53(2H,t,J=5H
		z),3.60-3.70(2H,m),3.77(1H,dd,J=9.5.
	M-0-(CH) -0-(M-)	6.5Hz),4.10-4.15(3H,m),4.35-4.45(1H
88	MeO-(CH ₂) ₂ -O-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-	m),4.44(1H,dd,J=11.5,5.5Hz),4.49(1H,
	É	,dd,J=11.5,3Hz),4.90-5.00(1H,m),6.58
		(1H,t,J=9Hz),7.12(1H,dd,J=9,2.5Hz),7
		.37(1H,dd,J=14.5,2.5Hz)
		$IR \nu$ (liq.) cm ⁻¹ :1754
		MS(m/z):418(M ⁺)
		比旋光度 [α] _D ²⁰ -45.7°(c=0.1,DMSO)
89		無 色プリズム 状 晶 [AcOEt]
		mp,159.5∼160.5℃
	Mo-N N-	元素分析値 C16H22FN3O6S
		理論値 C,49.60;H,5.72;N,10.85
	·	実験値 C,49.58;H,5.46;N,10.75
		比旋光度 [α] _p ²0-49.0°(c=0.1,DMSO)
		無色プリズム状晶 [MeOH]
		mp,182.5∼183.5°C
90	Boc-N N-()	元素分析值 C20H28FN3O7S
		理論値 C.50.73;H,5.96;N,8.87
	·	実験値 C,50.63;H,6.11;N,8.88
		比旋光度 [α] _p ²⁰ -46.0° (c=0.1,DMSO)
91		淡褐色結晶[i-PrOH]
		mp,128~130°C
	Me—(=)	元素分析值 C ₁₂ H ₁₅ NO ₅ S
		理論値 C,50.52;H,5.30;N,4.91
	•	実験値 C,50.23;H,5.30;N,4.83
		比旋光度[α] _p ²⁰ -54.0°(c=0.1,DMSO)

参考例	R	物性[再結晶溶媒]
וטניע		淡黄色プリズム状晶[i-PrOH]
	•	mp,113~113.5°C
	Ma-	元素分析值 CtaH,7NOsS
92	**** }_ _/	理論値 C.52.16:H.5.72:N.4.68
	Mé	実験値 C,51.91;H,5.56;N,4.63
		比旋光度[α] ₀ 20-52.9°(c=0.1,DMSO)
		無色結晶[EtOH]
	,	mp,72.5~74°C
	MeO-(CH ₂) ₂ -0-	元素分析值 C14H18FNO7S
93	الرياد	理論値 C,46.28;H,4.99;N,3.85
	F	実験値 C,46.22;H,4.95;N,3.83
		比旋光度[α] _D ²⁰ -51.2°(c=0.1,DMSO)
		無色プリズム状晶 [AcOEt-i-Pr ₂ 0]
		mp,141.5~143°C
94	Me Me	元素分析值 C13H18N2O5S
34		理論値 C,49.67;H,5.77;N,8.91
		実験値 C,49.41;H,5.64;N,8.84
		比旋光度[α] ₀ ²⁰ -55.9°(c=0.1,DMSO)
		淡黄褐色無晶形固体
		NMR(DMSO-d ₆) δ ppm:2.88(6H,s),3.23(3
		H,s),3.82(1H,dd,J=9,6Hz),4.18(1H,t,J
	Me	=9Hz),4.45(1H,dd,J=11.5,5.5Hz),4.50(
95	M. Y	1H,dd,J=11.5,3Hz),4.95-5.05(1H,m),7.
	F	20-7.30(2H,m),7.52(1H,d,J=14Hz)
		IR ν (liq.) cm ⁻¹ :1758
		MS(m/z):332(M ⁺)
		比旋光度[α] _D ²⁰ -41.5°(c=0.1,DMSO) 淡紫色結晶[AcOEt-i-Pr ₂ O]
96		淡茶色 右 fi [ACOEt-1-Pr ₂ 0]
	M• /=\	mp,00~07 C 元素分析値 C,4H,9FN,O ₅ S
	Et N—	理論値 C,48.55;H,5.53;N,8.09
	F F	実験値 C,48.20;H,5.64;N,7.94
		比旋光度[α] ₀ ²⁰ -58.5° (c=0.1,DMSO)
	l	1 30 MC 70 ISC [U JD

	<u> </u>	OMs
参考例	R	物性[再結晶溶媒]
		褐色液体
]		NMR(DMSO- d_6) δ ppm:1.00(6H,t,J=7Hz)
		,3.15(4H,q,J=7Hz),3.23(3H,s),3.81(1H
	Et.	,dd,J=9,6Hz),4.16(1H,t,J=9Hz),4.45(1
97		H.dd.J=11.5.5.5Hz),4.50(1H,dd,J=11.5
1	F -	.3Hz),4.95-5.05(1H,m),7.05-7.15(1H,
		m),7.15-7.25(1H,m),7.40-7.50(1H,m)
		IR ν (liq.) cm ⁻¹ :1178,1360,1756
		MS(m/z):360(M ⁺)
		比旋光度[α] ₀ ²⁰ -42.2° (c=0.1,DMSO) 無色針状晶[i-PrOH]
		無色斯仏論[I-PrOH] mp.100.5~102.5℃
0.0		元素分析值 C ₁₅ H ₁₉ NO ₅ S
98		理論值 C,55.37;H,5.89;N,4.30
1		実験値 C,55.11;H,6.02;N,4.27
		比旋光度[α] ₀ ²⁰ -58.1°(c=0.1,DMSO)
9 9 [.]		無色プリズム状晶 [i-PrOH]
		mp,126~127.5°C
	Boc-N >-0-(-)-	元素分析值 C21H29FN2O8S
	ے کے	理論値 C,51.63;H,5.98;N,5.73
		実験値 C,51.44;H,6.18;N,5.68
		比旋光度[α] ₀ ²⁰ -37.9°(c=0.1,DMSO)
		無色プリズム状晶 [i-PrOH]
	- ^ /=	mp,114.5~117°C
100	Boc-N >-0-\	元素分析値 C ₁₉ H ₂₅ FN ₂ O ₈ S
	F [']	理論値 C,49.56;H,5.47;N,6.08
		実験値 C,49.46;H,5.67;N,6.03
101		比旋光度[α] ₀ ²⁰ -46.0°(c=0.1,DMSO) 淡紫色鳞片状晶[AcOEt]
		次系已解力 从前 [ACOEt] mp,147.5~149℃
		元素分析值 C ₁₈ H ₂₃ FN ₂ O ₇ S
	~~_\`_\\\	理論值 C,50.22;H,5.39;N,6.51
	F	実験値 C,50.06;H,5.66;N,6.49
		比旋光度[α] _p ²⁰ -45.8° (c=0.1,DMSO)
		(0 0.1,514130)

参考例102

(R) -5-アジドメチル-2-オキソ-3-[4-(チオモルホリン-4-イル) フェニル] オキサゾリジン

元素分析值 C₁₄H₁₇N₅O₂S

理論値 C, 52.65; H, 5.37; N, 21.93

実験値 C,52.47; H,5.35; N,21.65

比旋光度 [α] α 124.4° (α 1) (α 1

参考例102と同様にして参考例103から123の化合物を得た。

dh de des	<u> </u>	N ₃
参考例	R	物性[再結晶溶媒]
		無色結晶[AcOEt]
		mp,109~109.5°C
103	[元素分析值 C14H16FN5O2
	د در	理論値 C,55.08;H,5.28;N,22.94
	•	実験値 C.54.88;H.5.12;N.22.70
		比旋光度[α] _p ²⁰ -136.4° (c=0.1,DMSO)
		無色針状晶[AcOEt-i-Pr ₂ O]
		mp,89~90°C
104	MeO-(N-()-	元素分析值 C ₁₆ H ₂₀ FN ₅ O ₃
	نخر ک	理論値 C.55.01;H.5.77;N.20.05
	F	実験値 C.54.83;H,5.72;N,19.88
		比旋光度[α] _p ²⁰ -118.5° (c=0.1.DMSO)
		淡褐色針状晶[i-PrOH]
	E10	mp.66~67°C
105		元素分析值 C ₁₇ H ₂₂ FN ₅ O ₃
		理論値 C,56.19;H,6.10;N,19.27
	•	実験値 C,56.05;H,6.36;N,19.23
		比旋光度[α] ₀ ²⁰ -110.5°(c=0.1,DMSO)
		淡紫色プリズム状晶 [AcOEt-i-Pr₂O]
ļ		mp,97.5∼98.5°C
106	Me—\ N—\ \	元素分析值 CieHzoFNsO2
		理論値 C,57.65;H,6.05;N,21.01
	•	実験値 C,57.69;H,6.21;N,20.90
		比旋光度[α] ₀ ²⁰ -122.4°(c=0.1,DMSO)
		無色板状晶[EtOH]
107		mp,99~100°C
		元素分析值 C ₁ ,H ₂₂ FN ₅ O ₂
	- _F	理論值 C.58.78;H.6.38;N,20.16
ļ	<i>:</i>	実験値 C,58.66;H,6.47;N,20.06
	·	比旋光度[α] _p ²⁰ -117.3°(c=0.1,DMSO)

		44 44 5 - 44 53 54 44 3
参考例	R	物性[再結晶溶媒]
1		淡褐色液体
i i		NMR(DMSO-d ₆) δ ppm:1.55-1.65(2H,m),
		. 1.90-2.00(2H,m),2.75-2.80(2H,m),3.1
		5-3.25(2H,m),3.27(3H,s),3.40-3.50(1
		H,m),3.45(2H,t,J=5Hz),3.56(2H,t,J=5
108	MeO-(CH ₂) ₂ -O-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-	Hz),3.67(1H,dd,J=13.5,6Hz),3.70-3.80
100	F	(2H,m),4.10(1H,t,J=9Hz),4.80-4.90(1
 		H,m),7.06(1H,t,J=9Hz),7.17(1H,dd,J=
1 1		9,2.5Hz),7.45(1H,dd,J=15,2.5Hz)
		IR ν (liq.) cm ⁻¹ :1756,2112
	· ·	MS(m/z):393(M ⁺)
		比旋光度[α] _p ²⁰ -100.3°(c=0.1,DMSO)
		褐色液体
		NMR(DMSO- d_6) δ ppm:3.26(3H,s),3.45(2
1	MeO — (CH ₃) ₂ —O——N———	H,t,J=4.5Hz),3.53(2H,t,J=4.5Hz),3.60
		-3.75(5H,m),4.08(1H,t,J=9Hz),4.05-4.
		15(2H,m),4.35-4.45(1H,m),4.80-4.90(
109		1H,m),6.58(1H,t,J=8.5Hz),7.12(1H,dd,
		J=8.5,2Hz),7.38(1H,dd,J=14.5,2Hz)
		IR ν (liq.) cm ⁻¹ :1752,2112
		MS(m/z):365(M ⁺)
		比旋光度 [α] _p ²º-91.4° (c=0.1,DMSO)
		無色結晶[AcOEt−i−Pr₂O]
1		mp,67∼67.5°C
,,,		元素分析値 CısH₂oFN₅O₂
110		理論値 C,57.65;H,6.05;N,21.01
	F	実験値 C,57.66;H,6.09;N,21.05
		比旋光度[α] _D ²⁰ -122.6°(c=0.1,DMSO)
		無色鱗片状晶[i-PrOH]
		mp,106.5∼107°C
,,,	Mo-N N-	元素分析値 C15H19FN6O2
111	<i>نن</i> ر	理論値 C,53.88;H,5.73;N,25.14
	r	実験値 C,53.88;H,5.63;N,25.14
		比旋光度[α] _p ²0-118.5°(c=0.1,DMSO)

A A THE	T	N ₃
参考例	R	物性[再結晶溶媒]
		淡褐色針状晶[i-PrOH]
		mp,112~113°C
112	Boc-N N-	一元素分析值 CisHzsFNsO4
	ے ا	理論値 C,54.28;H,5.99;N,19.99
	'	実験値 C.54.20;H,6.09;N,20.07
		比旋光度[α] ₀ ²⁰ -101.9°(c=0.1,DMSO)
		赤褐色液体
		NMR(CDCl ₃) & ppm:2.33(3H,s),3.59(1H,d
		d,J=13.5,4.5Hz),3.68(1H,dd,J=13.5.4.
		5Hz),3.84(1H,dd,J=9,6Hz),4.08(1H,t,J
113	Me—(=9Hz),4.74-4.80(1H,m),7.18(2H,d,J=8
	. —	Hz),7.41(2H,d,J=8Hz)
		IR ν (liq.) cm ⁻¹ :1754,2112
		MS(m/z):232(M ⁺)
		比旋光度[α] ₀ ²⁰ -119.1°(c=0.1,DMSO)
		淡褐色結晶[i-Pr ₂ 0]
114	Me	mp.85~85.5℃
		元素分析值 C,2H,4N4O2
		理論値 C,58.53;H,5.73;N,22.75
		実験値 C,58.30;H,5.59;N,22.46
		比旋光度[α] _D ²⁰ -140.4° (c=0.1,DMSO)
1	MeO-(CH ₂) ₂ -O-	無色板状晶 [EtOH]
		mp,75~76℃
115		元素分析值 C ₁₃ H ₁₅ FN ₄ O ₄
		理論值 C,50.32;H,4.87;N,18.06
		実験値 C.50.27;H.4.94;N.18.01
		比旋光度[α] _D ²⁰ -119.8° (c=0.1,DMSO)
116		無 色プリズム状 晶 [AcOEt]
	Ma —	mp,112~113℃
	Me N	元素分析值 C ₁₂ H ₁₅ N ₅ O ₂
		理論値 C,55.16;H,5.79;N,26.80
		実験値 C,55.12;H,5.60;N,26.73
		比旋光度[α] _D ²⁰ -142.0° (c=0.1,DMSO)

		N ₃
参考例	R	物性[再結晶溶媒]
		淡褐色結晶
117	°	NMR(DMSO-d ₈) δ ppm:2.75(6H,s),3.66(1
		.H,dd,J=13.5,5.5Hz),3.70-3.75(2H,m),4
	Me, /=	.10(1H,t,J=9Hz),4.80-4.90(1H,m),6.98
	M-\	(1H,t,J=9Hz),7.15(1H,dd,J=9,2.5Hz),7
	F'	.43(1H,dd,J=15,2.5Hz)
	•	IR ν (KBr) cm ⁻¹ :1752,2108
		MS(m/z):279(M ⁺)
		比旋光度[α] _p ²º-137.8°(c=0.1,DMSO)
		褐色液体
		NMR(DMSO-d ₆) δ ppm:1.03(3H,t,J=7Hz)
		,2.73(3H,s),3.12(2H,q,J=7Hz),3.67(1H
	Me 🥽	,dd,J=13.5,5.5Hz),3.70-3.80(2H,m),4.
118	~~~~ ~	10(1H,t,J=9Hz),4.80-4.90(1H,m),6.98(
'''	Et' }}/	1H,t,J=9Hz),7.16(1H,dd,J=9,2.5Hz),7.
	'	42(1H,dd,J=15.5,2.5Hz)
		$IR \nu (liq.) cm^{-1}:1756,2112$
		MS(m/z):293(M ⁺)
		比旋光度[α] _D ²⁰ -134.8° (c=0.1,DMSO)
		褐色液体
		NMR(DMSO-d ₆) δ ppm:0.99(6H,t,J=7.5H
1	Et F	z),3.12(4H,q,J=7.5Hz),3.67(1H,dd,J=1
119		3.5,5.5Hz),3.70-3.80(2H,m),4.11(1H,t,
		J=9Hz),4.80-4.90(1H,m),7.03(1H,t,J=
		9Hz),7.17(1H,dd,J=9.2.5Hz),7.42(1H,d
		d,J=15.5,2.5Hz)
		IR ν (liq.) cm ⁻¹ :1756,2112
		MS(m/z):307(M ⁺)
		比旋光度[α] _p ²⁰ -105.8° (c=0.1,DMSO)
120		無色針状晶[i-PrOH]
		mp.104~105.5°C
		元素分析値 C₁₄H₁₅N₄O₂ 理論値 C,61.75;H,5.92;N,20.58
		理論 U C,61.75;H,5.92;N,20.56 実験値 C,61.64;H,5.73;N,20.54
		英缺恒 G,01.04;H,5./3;N,2U.54 比旋光度[α] _D ²⁰ -135.9°(c=0.1,DMSO)
L	L	L.ル

参考例	R	物性[再結晶溶媒]
-		無色プリズム状晶[i-PrOH]
		mp,111~112.5°C
	Boc-N -O-	元素分析值 C ₂₀ H ₂₆ FN ₅ O ₅
121		理論値 C,55.16;H,6.02;N,16.08
	F	実験値 C.55.07;H,6.15;N,15.88
		比旋光度[α] ₀ ²⁰ -86.3°(c=0.1,DMSO)
		無色プリズム状晶 [i-PrOH]
	_	mp,122~123℃
122	B∞-N \	元素分析值 C ₁₈ H ₂₂ FN ₅ O ₅
122	¥	理論値 C,53.07;H,5.44;N,17.19
	•	実験値 C,53.02;H,5.66;N,17.22
		比旋光度[α] _p ²º-96.8° (c=0.1,DMSO)
		淡褐色プリズム状晶 [i-PrOH]
	2 C A	mp,114.5~116℃
123		元素分析值 C ₁₇ H ₂₀ FN ₅ O ₄
	J — ,—	理論値 C,54.11;H,5.34;N,18.56
		実験値 C.54.32;H.5.32;N,18.26
L		比旋光度[α] _p ²0-113.0°(c=0.1,DMSO)

参考例124

(R) -5-アジドメチル-3-[4-(4-tert-プトキシカルボニルビベラジン-1-イル) -3-フルオロフェニル] -2-オキソオキサゾリジン1.00 gに、16%塩化水素酢酸エチル溶液20 ml を加えて室温で30分間攪拌し、析出した結晶を濾取した。結晶に水酸化ナトリウム水溶液を加えてアルカリ性とした後、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、芒硝乾燥後、溶媒を減圧留去し淡褐色結晶0.72 gを得た。イソプロバノールから再結晶して融点 $114\sim115$ $\mathbb C$ の無色結晶を得た。

元素分析值 C₁₄H₁₇FN₆O₂

理論值 C,52.49; H,5.35; N,26.24

実験値 C,52.24; H,5.21; N,26.15

比旋光度 $[\alpha]_0^{20}-127.3^{\circ}$ (c=0.1, DMSO)

参考例124と同様にして参考例125から126の化合物を得た。

参考例	R	物性[再結晶溶媒]
		無色プリズム状晶[MeOH]
		mp,169~170°C
125	HIN	元素分析値 CısHıaFNsOs·HCI
125	F [']	理論値 C,48.46;H,5.15;N,18.84
	• HCI	実験値 C,48.23;H,5.12;N,18.65
		比旋光度[α] _p ²0-99.8°(c=0.1,DMSO)
		淡褐色結晶
		NMR(DMSO-d ₆) δ ppm:3.67(1H,dd,J=14,
126	^ (5)	6Hz),3.70-3.80(2H,m),4.02(2H,dd,J=1
		2,5Hz),4.12(1H,t,J=9Hz),4.41(2H,dd,J
	HN O-	=12,7Hz),4.80-4.90(1H,m),5.05-5.15(
	F	1H,m),7.05(1H,t,J=9Hz),7.22(1H,dd,J
	• на	=9,2Hz),7.60(1H,dd,J=13.5,2Hz),9.46(
		1H,br-s)
		$[R \nu (KBr) cm^{-1}:1744,2116]$
		比旋光度[α] _p ²0-108.6°(c=0.1,DMSO)

参考例127

(R) -5 - アジドメチル - 3 - [4 - (4 - エチルピペラジン - 1 - イル) - 3 - フルオロフェニル] - 2 - オキソオキサゾリジン

(R) -5-アジドメチル-3-[3-フルオロ-4-(ピペラジン-1-イル) フェニル] -2-オキソオキサゾリジン5.00g及び炭酸カリウム2.1 6gの無水N, N-ジメチルホルムアミド50ml 溶液に、室温下ヨウ化エチル1.40ml を滴下し3時間室温で攪拌した。反応液に水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、芒硝乾燥後溶媒を減圧留去し、淡褐色結晶4.53gを得た。酢酸エチル-n-ヘプタンの混液から再結晶し、融点 $90\sim91$ の無色結晶を得た。

元素分析值 C₁₆H₂₁FN₆O₂

理論値 C,55.16; H,6.08; N,24.12

実験値 C,55.22; H,6.20; N,24.03

比旋光度 [α] $p^{20}-120.9^{\circ}$ (c=0.1, DMSO)

参考例127と同様にして参考例128から136の化合物を得た。

		N ₃
参考例	R	物性[再結晶溶媒]
128	n-Pr-N_N-\	淡褐色針状晶[i-PrOH]
		mp,113.5~114.5°C
		元素分析値 C ₁₇ H ₂₃ FN ₆ O ₂
		理論値 C,56.34;H,6.40;N,23.19
		実験値 C,56.32;H,6.48;N,23.17
		比旋光度[α] ₀ ²º-114.3° (c=0.1,DMSO)
129	·	淡黄色鳞片状晶[i-PrOH]
	n-Bu-N_N-\	mp,102~103℃
		元素分析値 C18H28FN6O2-1/8H2O
		理論值 C,57.09;H,6.72;N,22.19
		実験値 C,57.10;H,6.86;N,22.20
		比旋光度[α] ₀ ²⁰ -104.8°(c=0.1,DMSO)
130	CH ₂ -NN-N-F	無色針状晶[AcOEt-i-Pr ₂ O]
		mp,125~126.5℃
		元素分析値 C ₁₈ H ₂₃ FN ₆ O ₄
		理論値 C.53.20;H.5.70;N,20.68
		実験値 C,53.03;H,5.47;N,20.49
		比旋光度[α] ₀ ²0-101.5°(c=0.1,DMSO)
131		無色結晶[AcOEt-i-Pr ₂ O]
	CH ₂) ₃ -N N-	mp,64.5~66°C
		元素分析值 C ₂₀ H ₂₇ FN ₈ O ₄
		理論值 C,55.29;H,6.26;N,19.34
		実験値 C.55.25;H.6.33;N.19.31
		比旋光度 [α] _p ²º-89.0° (c=0.1,DMSO)

参考例	R	物性[再結晶溶媒]
		淡褐色プリズム状晶 [EtOH]
		mp,105~106℃
100		元素分析值 CieHisFNeO4
132	MeO \	理論値 C,50.79;H,5.06;N,22.21
	F	実験値 C,50.66;H,5.16;N,22.20
	* .	比旋光度[α] ₀ 20-103.9°(c=0.1,DMSO)
		淡褐色プリズム状晶 [i-PrOH]
		mp,80~81.5℃
133)_N	一元素分析值 C₁ァH₂oFN₅O₅
133	MeO	理論値 C.51.91;H.5.12;N.17.80
	P	実験値 C,51.91;H,4.87;N,17.75
		比旋光度[α] _D ²⁰ -98.6°(c=0.1,DMSO)
		淡黄色プリズム状晶 [EtOH]
	i ~ ~	mp,99~101°C
134	MeO-(CH2)2 N N-	元素分析值 C ₁₈ H ₂₃ FN ₆ O ₄
101	F [']	理論値 C,53.20;H,5.70;N,20.68
		実験値 C,53.07;H,5.68;N,20.75
		比旋光度[α] _D ²⁰ -106.9° (c=0.1,DMSO)
		淡黄色液体
		NMR(DMSO- d_6) δ ppm:1.50-1.70(2H,m),
		1.80-2.00(2H,m),2.57(2H,t,J=6Hz),3.2
		0-3.40(2H,m),3.23(3H,s),3.56(2H,t,J=
135		6Hz),3.65-3.85(4H,m),3.67(1H,dd,J=1
	MeO-(CH ₂) ₂ N O	3.5,5.5Hz),4.12(1H,t,J=9Hz),4.50-4.6
	F	0(1H,m),4.80-4.90(1H,m),7.22(1H,dd, J=9,2.5Hz),7.27(1H,t,J=9Hz),7.54(1H,
	,	dd,J=13.5,2.5Hz)
		IR ν (liq.) cm ⁻¹ :1756,2112
		MS(m/z):421(M ⁺)
1		比旋光度 [α] _p ²⁰ -86.2° (c=0.1,DMSO)
		洗視色プリズム状晶[i-PrOH]
136		mp.82~83°C
		元素分析值 C ₁₅ H ₁₈ FN ₅ O ₅
	MeO	理論値 C,49.32;H,4.41;N,19.17
	F .	実験値 C,49.05;H,4.32;N,19.18
		比旋光度[α] _p ²º-103.9°(c=0.1,DMSO)

参考例137

(R) - 3 - [4 - [4 - (5 - アジドメチル - 2 - オキソオキサゾリジン - 3 - イル) - 2 - フルオロフェニル] ピペラジン <math>- 1 - イル] プロピオン酸エチ

ル・

(R) -5-アジドメチル-3-[3-フルオロ-4-(ピベラジン-1-イル)フェニル]-2-オキソオキサゾリジン <math>7.00g及びアクリル酸エチル 3.56ml のエタノール 70ml 溶液を、1時間加熱還流した。溶媒を減圧留去し、カラムクロマトグラフィー(シリカゲル,ジエチルエーテル)で精製して、無色結晶 7.50gを得た。イソプロパノールから再結晶して融点 $82\sim83$ ∞ の無色結晶を得た。

元素分析值 C₁₉H₂₅FN₆O₄

理論值 C,54.28; H,5.99; N,19.99

実験値 C,53.99; H,5.88; N,19.97

比旋光度 $[\alpha]_{p}^{20}-95.0^{\circ}$ (c=0.1, DMSO)

参考例137と同様にして参考例138から139の化合物を得た。

参考例	R	物性[再結晶溶媒]
		淡褐色針状晶[MeOH]
		mp,110~112°C
138	NC (CH ₂) ₂ N N N	元素分析值 C,,H ₂₀ FN,O ₂
	ے کے ا	理論値 C.54.68;H.5.40;N,26.26
	•	実験値 C,54.65;H,5.39;N,26.04
		比旋光度[α] _p ²⁰ -114.8° (c=0.1,DMSO)
		無色針状晶[AcOEt]
	Me	mp,130.5∼131.5℃
139	Me N N N N	元素分析值 C19H28FN7O3
	F .	理論値 C,54.40;H.6.25;N,23.38
		実験値 C,54.37;H,6.35;N,23.20
		比旋光度[α] _p ²⁰ -100.0° (c=0.1,DMSO)

参考例140

(R) -5 - アジドメチル -3 - [3 - フルオロ -4 - [4 - (3 - フタルイ

ミドプロピル)ビベラジン-1-イル]フェニル]-2-オキソオキサゾリジン (R)-5-アジドメチル-3-[3-フルオロ-4-(ピベラジン-1-イル)フェニル]-2-オキソオキサゾリジン5.00g及び炭酸カリウム2.1 6gの無水N,N-ジメチルホルムアミド110ml 懸濁液に、N-(3-プロモプロピル)フタルイミド4.60gを加え、外温50℃で3時間加熱攪拌した。反応液に水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、芒硝乾燥後溶媒を減圧留去し、残渣をジイソプロピルエーテルで洗浄し、淡褐色結晶6.54gを得た。酢酸エチルから再結晶し、融点153~154.5℃の無色針状晶を得た。

元素分析值 C₂₅H₂₆FN₇O₄

理論值 C, 59.16; H, 5.16; N, 19.32

実験値 C,58.99; H,5.02; N,19.29

比旋光度 $[\alpha]_{n}^{20}-95.3^{\circ}$ (c=0.1, DMSO)

参考例140と同様にして参考例141の化合物を得た。

参考例141

(R) - 5 - Pジドメチル - 3 - [3 - D) + D - 4 - [4 - (2 - D) + D] = 2 - A + D + D = 2 - A + D + D

性状 淡黄色結晶 (再結晶溶媒:DMF-H,O)

融点 210.5~212℃

元素分析值 C₂₄H₂₄FN₇O₄

理論值 C, 58.41; H, 4.90; N, 19.87

実験値 C,58.04; H,4.67; N,19.72

比旋光度 $[\alpha]_{p}^{20}-95.1^{\circ}$ (c=0.1, DMSO)

参考例142

(R) - 3 - [4 - [4 - (3 - 7)] - 7]

3-フルオロフェニル]-5-アジドメチルー2-オキソオキサゾリジン

(R) -5-アジドメチル-3-[3-フルオロ-4-[4-(3-フタルイミドプロピル) ピペラジン-1-イル] フェニル] <math>-2-オキソオキサゾリジン6.24gのエタノール60 ml 溶液に、抱水ヒドラジン0.66 ml を加え4 時間加熱還流した。反応液に水を加え、10% 塩酸で酸性とし酢酸エチルで水層を洗浄した。水層を水酸化ナトリウム水溶液でアルカリ性にし、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、芒硝乾燥後溶媒を減圧留去し、淡褐色液体4.35 gを得た。

NMR $\times \langle \mathcal{P} \rangle \mathcal{N}(DMSO-d_6) \delta ppm: 1.55(2H, quin, J=7Hz), 2.37(2H, t, J=7Hz), 2.5$ 1(4H, t, J=4.5Hz), 2.62(2H, t, J=7Hz), 2.99(4H, t, J=4.5Hz), 3.67(1H, dd, J=13.5, 5.5Hz), 3.70-3.80(2H, m), 4.10(1H, t, J=9Hz), 4.80-4.90(1H, m), 7.04(1H, t, J=9Hz), 7.18(1H, dd, J=9, 2.5Hz), 7.46(1H, dd, J=15, 2.5Hz)

IRスペクトル ν (liq.)cm⁻¹: 1752,2112

マススペクトル(m/z):377(M⁺)

比旋光度 [α] $_{D}^{20}$ -116.9° (c=0.1, DMSO)

参考例143

- (R) 3 [4 [4 (3 Pセチルアミノプロピル) ピペラジン<math>-1 4 イル] 3 7ルオロフェニル] 5 Pジドメチル<math>-2 3キソオキサゾリジン
- (R) -3-[4-[4-(3-アミノプロビル) ビベラジン-1-イル] -3-フルオロフェニル] <math>-5-アジドメチル-2-オキソオキサゾリジン2.00 の g のビリジン 2 0 m l 溶液に氷冷攪拌下、無水酢酸 1.5 0 m l を加え、同温で 1 時間攪拌した。溶媒を減圧留去後、残渣を水酸化ナトリウム水溶液でアルカリ性 とし、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、芒硝乾燥後溶媒を減圧留去した。残渣をカラムクロマトグラフィー(アルミナ、酢酸エチル→酢酸エチル:メタノール= 20:1)で精製し、淡褐色液体 1.63 g を得た。

NMRスペクトル(DMSO- d_6) δ ppm: 1.57(2H, quin, J=7.5Hz), 1.79(3H, s), 2.34(2H, t, J=7.5Hz), 2.51(4H, t, J=5Hz), 2.99(4H, t, J=5Hz), 3.00-3.10(2H, m), 3.67(1H, dd, J=13.5, 5.5Hz), 3.70-3.80(2H, m), 4.10(1H, t, J=9Hz), 4.80-4.90(1H, m), 7.05(1H, t, J=9Hz), 7.18(1H, dd, J=9, 2.5Hz), 7.46(1H, dd, J=15, 2.5Hz), 7.68(1H, br-s) マスペクトル(m/z): 419(M⁺)

比旋光度 $[\alpha]_0^{20}-96.2^{\circ}$ (c=0.1, DMSO)

参考例144

(R) -3-[4-[4-(3-r)] アミノブロビル)ビベラジン-1-4ル] -3-7ルオロフェニル] -5-7ジドメチル-2-7オキソオキサゾリジン0.90 gの無水テトラヒドロフラン20 ml 溶液に氷冷攪拌下、メタンスルホニルクロリド0.21 ml を加え、氷冷下2 時間攪拌した。反応液を水酸化ナトリウム水溶液でアルカリ性とし、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、芒硝乾燥後溶媒を減圧留去した。残渣をカラムクロマトグラフィー(アルミナ,酢酸エチル:n-ヘプタン=1:1)で精製し、淡褐色結晶0.62 gを得た。

NMR2 < 7 > 1.65(2H, quin, J=7Hz), 2.39(2H, t, J=7Hz), 2.52(4H, t, J=4.5Hz), 2.88(3H, s), 2.99(4H, t, J=4.5Hz), 3.00(2H, t, J=7Hz), 3.67(1H, d d, J=13.5, 5.5Hz), 3.70-3.80(2H, m), 4.10(1H, t, J=9Hz), 4.80-4.90(1H, m), 6.87(1H, t, J=5.5Hz), 7.05(1H, t, J=9Hz), 7.18(1H, dd, J=9, 2.5Hz), 7.46(1H, dd, J=14.5, 2.5 Hz)

IRスペクトル ν (KBr)cm⁻¹: 1734,2112

マススペクトル(m/z):455(M⁺)

比旋光度 $[\alpha]_{D}^{20}-93.3^{\circ}$ (c=0.1, DMSO)

参考例 1 4 5

(R) - 5 - Pジドメチルー3 - [3 - フルオロー4 - (1 - オキシドチオモルホリンー4 - イル) フェニル] - 2 - オキソオキサゾリジン

元素分析值 C₁₄H₁₆FN₅O₃S·

理論值 C, 47.58; H, 4.56; N, 19.82

実験値 C, 47.58; H, 4.56; N, 19.69

比旋光度 $[\alpha]_{0}^{20}-114.1^{\circ}$ (c=0.1, DMSO)

参考例 1 4 6

- (R) 5 Pジドメチルー3 [3 フルオロー4 (1, 1 ジオキシドチオモルホリンー4 イル) フェニル<math>] 2 オキソオキサゾリジン
- (R) -5-アジドメチル-3-[3-フルオロ-4-(チオモルホリン-4-イル)フェニル] -2-オキソオキサゾリジン5.00gの水25ml 及びアセトン75ml の懸濁液に、室温攪拌下、50%4-メチルモルホリン-N-オキシド水溶液10ml 及び四酸化オスミウム3.77gを加え、10分間同温で攪拌した。反応液に水を加え、1,2-ジクロロエタンで抽出した。抽出液を飽和食塩水で洗浄し、芒硝乾燥後溶媒を減圧留去し、淡褐色結晶4.71gを得た。アセトンから再結晶して融点 $146\sim148\%$ の淡褐色プリズム状晶を得た。

元素分析值 C₁₄H₁₆FN₅O₄S

理論值 C, 45.52; H, 4.37; N, 18.96

実験値 C, 45.63; H, 4.32; N, 18.84

比旋光度 [α] ½0-108.8° (c=0.1, DMSO)

参考例147

- (R) -1-[4-[4-(5-アジドメチル-2-オキソオキサゾリジン-3-イル)-2-フルオロフェニル] ビベラジン] カルボチオアミド
- 1) (R) -5-Pジドメチル-3-[3-Dルオロー4-(ピペラジン-1-4ル)] フェニル] -2-オキソオキサゾリジン5.00g及びトリエチルアミン2.60 ml の無水テトラヒドロフラン40 ml 溶液に、氷冷下チオホスゲン1.40 ml を滴下し、30分間同温で攪拌した。反応液に水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、芒硝乾燥後溶媒を減圧留去し、褐色結晶として、(R) <math>-5-Pジドメチル-3-[4-(4-D) ロチオカルボニルピペラジン-1-4ル)-3-Dルオロフェニル]-2-オキソオキサゾリジン4.32gを得た。
- 2) 1) で得られた結晶 4. 32gの無水テトラヒドロフラン 43ml 溶液を、室温下、アンモニアガスを通気しながら3時間攪拌した。反応液を減圧下濃縮し、残渣をカラムクロマトグラフィー(シリカゲル,1,2-ジクロロエタン:メタノール=20:1) で精製し、淡褐色結晶 2.95gを得た。

IRスペクトル ν (KBr)cm⁻¹: 1738,2108,3184,3286,3424 比旋光度 [α] $_{n}^{20}$ -109.1° (c=0.1, DMSO)

参考例148

(R) - N, N - ジメチル - 1 - [4 - [4 - (5 - アジドメチル - 2 - オキ ソオキサゾリジン - 3 - イル) - 2 - フルオロフェニル] ピペラジン] カルボチ

オアミド

参考例 14701) の方法で得られた結晶 5.00gの無水テトラヒドロフラン 20ml 溶液に室温下、50%ジメチルアミン水溶液 10ml を加え、18時間同温で攪拌した。反応液を減圧下濃縮し、残渣を水,エタノールで順次洗浄し、淡褐色結晶 4.25gを得た。アセトニトリルから再結晶 160~162 の淡褐色プリズム状晶を得た。

元素分析值 C₁₇H₂₂FN₇O₂S

理論値 C,50.11; H,5.44; N,24.06

実験値 C,50.38; H,5.44; N,23.95

比旋光度 [α] $p^{20}-101.7$ ° (c=0.1, DMSO)

参考例 1 4 9

(R)-1-[4-[4-(5-アジドメチル-2-オキソオキサゾリジンー3-イル)-2-フルオロフェニル] ピペラジン] チオカルボン酸<math>Q-メチル

元素分析值 C₁₆H₁₉FN₆O₃S

理論値 C, 48.72; H, 4.86; N, 21.31

実験値 C, 48.79; H, 4.84; N, 20.94

比旋光度 [α] $_{D}^{20}$ -105.4° (c=0.1, DMSO)

参考例149と同様にして参考例150から151の化合物を得た。

参考例	R	物性[再結晶溶媒]
150	Et. ON N	褐色結晶 [EtOH] mp,122.5~125.5℃ 元素分析値 C ₁ ,H ₂₁ FN ₆ O ₃ S 理論値 C,49.99;H,5.18;N,20.58 実験値 C,50.16;H.5.06;N,20.54 比旋光度[α] ₀ ²⁰ ~104.5゜(c=0.1,DMSO)
151	n-Pr-o-N-N-	淡褐色結晶 [MeOH] mp.122.5~124.5°C 元素分析值 C ₁₈ H ₂₃ FN ₆ O ₃ S 理論值 C,51.17;H,5.49;N,19.89 実験値 C,51.09;H,5.26;N,19.78 比旋光度 [α] _D ²⁰ -100.3° (c=0.1,DMSO)

参考例 1 5 2

(R) -1-[4-[4-(5-アジドメチル-2-オキソオキサゾリジン-3-イル)-2-フルオロフェニル] ピペラジン] カルボジチオ酸メチル

(R) -5-rッドメチル-3-[3-r)ル)フェニル] -2-rオキソオキサッリジン 5.00 g及びトリエチルアミン 2.0 ml の無水テトラヒドロフラン 5.0 ml 溶液に、氷冷下二硫化炭素 2.0 ml を滴下し、室温で 1.8 時間攪拌した。氷冷下、さらにこの混合液にヨウ化メチル 1.00 ml を加え、3.0 分間同温で攪拌した。反応液に水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、芒硝乾燥後溶媒を減圧留去し、残渣をエタノールで洗浄し無色結晶 5.96 gを得た。アセトニトリルから再結晶し、融点 1.39.5 -1.40 % の淡褐色プリズム状晶を得た。

元素分析值 $C_{16}H_{19}FN_6O_2S_2$

理論値 C, 46.81; H, 4.67; N, 20.47

実験値 C, 46.96; H, 4.68; N, 20.41

比旋光度 $[\alpha]_{n}^{20}-104.6^{\circ}$ (c=0.1, DMSO)

参考例153

(R) -5-アジドメチル-3-[3-フルオロ-4-(ピベラジン-1-イル) フェニル] -2-オキソオキサゾリジン3.00gの無水テトラヒドロフラン30ml 溶液に、氷冷攪拌下、イソチオシアン酸メチル<math>0.71ml を加え、1時間同温で攪拌した。反応液に水を加え、析出結晶をろ取した後、ジイソプロピルエーテルで洗浄し、無色結晶3.63gを得た。酢酸エチルから再結晶し、融点 $156.5\sim158$ CO無色針状晶を得た。

元素分析值 C₁₆H₂₀FN₇O₂S

理論值 C, 48.84; H, 5.12; N, 24.92

実験値 C, 48.70; H, 5.09; N, 24.88

比旋光度 [α] $p^{20}-111.7°$ (c=0.1, DMSO)

参考例153と同様にして参考例154から156の化合物を得た。

参考例	R	物性[再結晶溶媒]
		無色プリズム状晶 [EtOH]
	s	mp,174∼175.5°C
154	Et. N. N.	元素分析值 C17H22FN7O2S
154	# ~_/* }_/	理論値 C,50.11;H,5.44;N,24.06
	F	実験値 C,50.16;H,5.28;N,23.98
• (比旋光度[α] _p ²⁰ -108.8°(c=0.1,DMSO)
		無色結晶[EtOH]
	s.	mp,172.5~174.5°C
155	m-Pr_N N N	元素分析值 C,8H24FN7O2S
133		理論値 C,51.29;H,5.74;N,23.26
	F	実験値 C,51.49;H,5.72;N,23.08
		比旋光度[α] _p ²º-104.0°(c=0.1,DMSO)
156		無色結晶
		NMR(DMSO- d_6) δ ppm:1.68(2H,quin,J=7
		Hz),2.37(2H,t,J=7Hz),2.53(4H,t,J=5H
	Me-N-(CH ₂) ₃ ·N-(CH ₂) ₃ ·N-	z),2.83(3H,d,J=4.5Hz),3.00(4H,t,J=5H
		z),3.30-3.45(2H,m),3.67(1H,dd,J=13.5
		,5.5Hz),3.74(1H,dd,J=13.5,3.5Hz),3.74
		(1H,dd,J=9,6Hz),4.11(1H,t,J=9Hz),4.8
		0-4.90(1H,m),7.05(1H,t,J=9Hz),7.18(1
		H,dd,J=9,2.5Hz),7.31(1H,br-s),7.37(1
		H,br-s),7.46(1H,dd,J=15,2.5Hz)
		IR ν (KBr) cm ⁻¹ :1764,2104,3240
		比旋光度 [α] ₀ ²0-89.8° (c=0.1,DMSO)

参考例157

(R) -3 - [4 - [4 - (5 - アジドメチル - 2 - オキソオキサゾリジン - 3 - イル) - 2 - フルオロフェニル] ピペラジン <math>-1 - イル] プロビルイソチオシアネート

(R) -3-[4-[4-(3-アミノプロピル) ピペラジン-1-イル] -3-フルオロフェニル] <math>-5-アジドメチル-2-オキソオキサゾリジン2.00g及びトリエチルアミン0.74mlの無水テトラヒドロフラン20ml 溶液に、氷冷下二硫化炭素0.64ml を滴下し、5時間同温で攪拌した。この混合液にクロロ炭酸エチル0.51ml を加え、更に1.5時間同温で攪拌した。反応液に水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、芒硝乾燥後溶媒

を減圧留去し、残渣をカラムクロマトグラフィー (シリカゲル, 酢酸エチル) で精製し、褐色液体0.85gを得た。

NMR \mathcal{A} $\mathcal{A$

IRスペクトル ν (liq.)cm⁻¹: 1754,2112,2184

マススペクトル(m/z):419(M⁺)

比旋光度 [α] $_{\text{D}}^{20}-89.1^{\circ}$ (c=0.1, DMSO)

参考例158

(R) -N-[3-[4-[4-(5-アジドメチルー2-オキソオキサゾリジン-3-イル)-2-フルオロフェニル] ピペラジン-1-イル] プロピル] チオカルバミド酸メチル

無水メタノール25 ml 中に氷冷攪拌下、60%水素化ナトリウム0.87 gを加えて室温で30分間攪拌した後、(R) -3-[4-[4-(5-アジドメチル-2-オキソオキサゾリジン-3-イル)-2-フルオロフェニル] ビベラジンー1ーイル] プロビルイソチオシアネート4.56 gの無水メタノールー無水テトラヒドロフラン (2:1) 溶液 30 ml を加え、室温で1.5 時間攪拌した。反応混合物に氷水及び10%塩酸を加えて酸性とし、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、芒硝乾燥後溶媒を減圧留去し、残渣をカラムクロマトグラフィー(シリカゲル,酢酸エチル:<math>n-ヘプタン=2:1) で精製し、褐色液体4.32 gを得た。

2.5Hz),8.77(1H,br-s)

IRスペクトル ν (liq.)cm⁻¹: 1748,2112,3284

マススペクトル(m/z): 451(M⁺)

比旋光度 [α] p²0-85.5° (c=0.1, DMSO)

参考例159

- (R) -5-Pジドメチル-3-[4-(1,4-ジオキサ-8-Pザスピロ[4.5] デカン-8-イル) -3-フルオロフェニル] -2-オキソオキサゾリジン1.45g及びp-トルエンスルホン酸1.10gのアセトンー水(1:1)60ml 懸濁液を、18時間加熱還流した。溶媒を減圧留去し、残渣に炭酸水素ナトリウム水溶液を加え中和した後、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、芒硝乾燥後溶媒を減圧留去し、残渣をカラムクロマトグラフィー(シリカゲル,酢酸エチル:<math>n-ヘプタン=1:1)で精製し、無色結晶1.20gを得た。エタノールから再結晶し、融点99.5~101°Cの無色結晶を得た。元素分析値 $C_{15}H_{16}FN_5O_3$

理論值 C,54.05; H,4.84; N,21.01

実験値 C,54.02; H,4.87; N,21.18

比旋光度 $[\alpha]_{p}^{20}-118.4^{\circ}$ (c=0.1, DMSO)

参考例 1 6 0

- (R) -5-アジドメチル-3-[3-フルオロー4-(4-オキソピペリジン-1-イル) フェニル] <math>-2-オキソオキサゾリジン6.75g, 塩酸ヒドロキシルアミン1.55g及び酢酸ナトリウム3.66gのメタノール135ml 懸

濁液を、室温で 1 時間攪拌した。反応液に水を加え、析出結晶をろ取した後、ジイソプロビルエーテルで洗浄し、淡褐色結晶 6.52g を得た。酢酸エチルから再結晶して、融点 $155\sim156$ での無色プリズム状晶を得た。元素分析値 $C_{15}H_{17}F$ $N_{6}O$.

理論值 C, 51.72; H, 4.92; N, 24.13

実験値 C, 51.72; H, 4.81; N, 24.22

比旋光度 [α] $_{D}^{20}$ -131.7° (c=0.1, DMSO)

参考例161

- (R) 5 Pジドメチルー3 [3 Dルオロー4 (4 チオベンゾイルピペラジンー1 イル) フェニル<math>] 2 オキソオキサゾリジン
- (R) -5-アジドメチル-3-[3-フルオロ-4-(ビベラジン-1-イル)フェニル]-2-オキソオキサゾリジン2.00g及びトリエチルアミン1.97mlの無水1,2-ジクロロエタン20ml溶液に、氷冷攪拌下、チオベンゾイルクロリド10.0gを滴下し、同温で1時間攪拌した。反応液に水を加え、1,2-ジクロロエタンで抽出した。抽出液を飽和食塩水で洗浄し、芒硝乾燥後溶媒を減圧留去し、残渣をカラムクロマトグラフィー(シリカゲル,酢酸エチル:n-ヘプタン=1:4)で精製し、緑色液体3.30gを得た。

マススペクトル(m/z):440(M⁺)

比旋光度 [α] $_{D}^{20}-85.3^{\circ}$ (c=0.1, DMSO)

参考例162

(S) -5-アミノメチル-2-オキソ-3-[4-(チオモルホリン-4-

イル)フェニル]オキサゾリジン

(R) -5-アジドメチル-2-オキソ-3-[4-(チオモルホリン-4-イル)フェニル] オキサゾリジン8.50g及びトリフェニルホスフィン7.68gの無水テトラヒドロフラン130ml 溶液を、室温で15時間攪拌した。さらに、この混合液に水4.8mlを加え、40℃で14時間加熱攪拌した。冷後、反応液に水100mlを加え10%塩酸で酸性とした後、ジエチルエーテルで洗浄した。水層を炭酸カリウムでアルカリ性とした後、ジクロロメタン-メタノール(30:1)の混液で抽出した。抽出液を飽和食塩水で洗浄し、芒硝乾燥後、溶媒を減圧留去し、無色結晶6.88gを得た。酢酸エチルから再結晶し、融点119.5~121℃の無色結晶を得た。

元素分析值 C₁₄H₁₉N₃O₂S

理論值 C,57.31; H,6.53; N,14.32

実験値 C, 57.36; H, 6.45; N, 14.06

比旋光度 $[\alpha]_0^{20}-35.9^{\circ}$ (c=0.1, DMSO)

参考例162と同様にして参考例163から212の化合物を得た。

. .

		NH ₂
参考例	·· R· ·	物性[再結晶溶媒]
		淡褐色結晶
	Ŷ.	NMR(CDCl ₃) δ ppm:1.36(2H,br-s),2.95-
	·	3.00(5H,m),3.13(1H,dd,J=13.5,4Hz),3.
		20-3.30(2H,m),3.70-3.80(2H,m),3.83(
		1H,dd,J=8.5,7Hz),4.01(1H,t,J=8.5Hz),
163	0-3_/-	4.60-4.70(1H,m),7.03(1H,t,J=9Hz),7.1
	f	2(1H,dd,J=9,2Hz),7.54(1H,dd,J=14,2H
		z)
		IRν (KBr) cm ⁻¹ :1750,3400
		MS(m/z):327(M ⁺)
		比旋光度 [α] _D ²⁰ -39.0° (c=0.1,DMSO)
		無 色 プリズム 状 晶 [EtOH]
	0.	mp,162~163°C
164		元素分析値 C14H18FN3O4S
	ַ בּי	理論値 C.48.97;H.5.28;N,12.24
	'	実験値 C,48.92;H,5.28;N,12.08
		比旋光度 [α] ₀ 20-32.9° (c=0.1,DMSO)
		無色結晶[AcOEt].
		mp,100~101.5℃
165		元素分析值 C ₁₄ H ₁₈ FN ₃ O ₂
	, , , , , , , , , , , , , , , , , , ,	理論値 C,60.20;H,6.50;N,15.04
		実験値 C,60.16;H,6.44;N,15.18
		比旋光度 [α] ₀ ²⁰ -38.9° (c=0.1,DMSO)
1		淡褐色結晶[i-PrOH-i-Pr₂O]
		mp,90~92°C
166	_\n-_\>-	元素分析值 C ₁₅ H ₂₀ FN ₃ O ₂
	F	理論値 C,61.42;H,6.87;N,14.32
	•	実験値 C,61.16;H,6.56;N,14.40
		比旋光度 [α] ₀ ²⁰ -36.1° (c=0.1,DMSO)
167		無色針状晶[AcOEt−i−Pr₂O]
		mp,102~102.5°C
	WeO	元素分析値 C ₁₆ H ₂₂ FN ₃ O ₃
	/	理論值 C,59.43;H,6.86;N,12.99
		実験値 C,59.13;H,6.72;N,12.89
		比旋光度 [α] _p ²º-35.0° (c=0.1,DMSO)

45.41.41	,	7
参考例	R ·	物性[再結晶溶媒]
	·	淡褐色結晶[i-PrOH]
		mp,85∼86.5°C
168	EtO(N()	元素分析值 C ₁₇ H ₂₄ FN ₃ O ₃
	سز ب	理論値 C,60.52;H,7.17;N,12.45
	f	実験値 C.60.28;H,7.42;N,12.42
		比旋光度 [α] _D ²⁰ -29.1°(c=0.1,DMSO)
		無色針状晶[AcOEt-i-Pr₂O]
		mp,111.5∼113°C
169	Mo—⟨)V—⟨ <i>></i> —	元素分析值 C16H22FN3O2
103	سر ک	·理論値 C,62.52;H,7.21;N,13.67
	•	実験値 C,62.43;H,7.43;N,13.59
		比旋光度 [α] _p ²0-35.9°(c=0.1,DMSO)
		無色板状晶[i-PrOH]
		mp,113~114°C
170	Et—()N—()—	元素分析值 C ₁₇ H ₂₄ FN ₃ O ₂
.,,	۔ حز ت	理論値 C.63.53;H,7.53;N,13.07
]	1 -	実験値 C,63.34;H,7.84;N,12.97
		比旋光度 [α] _D ²⁰ -35.9°(c=0.1,DMSO)
		淡褐色結晶
	İ	NMR(DMSO-d ₆) δ ppm:1.52(2H,br-s),1.5
		5-1.65(2H,m),1.90-2.00(2H,m),2.70-2
	MeO(CH ₂) ₂ -ON	.85(3H,m),2.85(1H,dd,J=13.5,5Hz),3.1
		5-3.25(2H,m),3.27(3H,s),3.40-3.50(1
171		H,m),3.45(2H,t,J=5Hz),3.56(2H,t,J=5
		Hz),3.81(1H,dd,J=9,6.5Hz),4.01(1H,t,
		J=9Hz),4.55-4.65(1H,m),7.05(1H,t,J=
		9Hz),7.17(1H,dd,J=9,2.5Hz),7.46(1H,d
		d,J=15,2.5Hz)
		MS(m/z):367(M ⁺)
		比旋光度 [α] _p ²0-30.1°(c=0.1.DMSO)
172		淡褐色結晶[AcOEt]
	^ (=)	mp,105∼106.5°C
	MeO-N-	元素分析值 C ₁₄ H ₁₈ FN ₃ O ₃
		理論値 C.56.94;H,6.14;N,14.23
	, r	実験値 C,56.68;H,5.92;N,14.00
		比旋光度 [α] _o 20-36.1°(c=0.1,DMSO)

do the train		T
参考例	R	物性[再結晶溶媒]
		褐色液体
		NMR(DMSO- d_6) δ ppm:1.54(2H,br-s),2.7
		9(1H,dd,J=13.5,5Hz),2.84(1H,dd,J=13
		.5,5Hz),3.26(3H,s),3.45(2H,t,J=4.5Hz)
		,3.53(2H,t,J=4.5Hz),3.60-3.65(2H,m),
	MeO-(CH ₂) ₂ -O-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-	3.78(1H,dd,J=8.5,6.5Hz),3.98(1H,t,J=
173	سر 🗸 🔾	8.5Hz),4.05-4.15(2H,m),4.35-4.45(1H
	F	.m).4.50-4.60(1H,m),6.57(1H,t,J=8.5H
		z),7.12(1H,dd,J=8.5,2Hz),7.38(1H,dd,
		J=14.5,2Hz)
	,	$IR \nu (liq.) cm^{-1}:1744,3384$
		MS(m/z):339(M ⁺)
		比旋光度 [α] _D ²⁰ -27.9° (c=0.1,DMSO)
		無色結晶[AcOEt-i-Pr,O]
		mp.87~87.5°C
		元素分析值 C,6H,2FN3O,
174		理論値 C,62.52;H,7.21;N,13.67
	f	実験値 C,62.23;H,7.28;N,13.51
		比旋光度 [α] ₀ ²⁰ -44.0° (c=0.1,DMSO)
175		無色無晶形固体
		NMR(DMSO-d _θ) δ ppm:2.27(3H,s),2.80(1
	Me———	H.dd,J=13.5,5Hz),2.85(1H,dd,J=13.5,5
		Hz),3.07(2H,br-s),3.82(1H,dd,J=8.5,6
		Hz),4.02(1H,t,J=8.5Hz),4.53-4.61(1H,
		m),7.18(2H,d,J=8.5Hz),7.43(2H,d,J=8.
		5Hz)
		IRν(KBr) cm ⁻¹ :1748,3356
		MS(m/z):206(M*)
		比旋光度 [α] _p ²º-38.1° (c=0.1,DMSO)
		淡黄色結晶
		NMR(DMSO-d ₆)δppm:1.60(2H,br-s),2.1
176		9(3H,s),2.22(3H,s),2.80(1H,dd,J=13.5,
	Me————	5.5Hz),2.85(1H,dd,J=13.5,5.5Hz),3.81
		(1H,dd,J=9,6Hz),4.01(1H,t,J=9Hz),4.5
		0-4.60(1H,m),7.11(1H,d,J=8.5Hz),7.2
		7(1H,dd,J=8.5,2.5Hz),7.32(1H,d,J=2.5
		Hz)
		$IR \nu (KBr) cm^{-1}:1730,3420$
		MS(m/z):220(M ⁺)
		比旋光度 [α] _p ²⁰ -37.0° (c=0.1,DMSO)

45 str (m)		44. Id. 5 T. AL. 53 99. 14. 7
参考例	R	物性[再結晶溶媒]
	·	淡黄色結晶
		NMR(CDCl ₃) δ ppm:1.31(2H,br+s),2.98(1
		H,dd,J=13.5,4.5Hz),3.11(1H,dd,J=13.5
		,4.5Hz),3.45(3H,s),3.76(2H,t,J=4.5Hz)
	(04)	,3.82(1H,dd,J=8.5,6.5Hz),4.00(1H,t,J=
177	MeO-(CH ₂) ₂ -O-	8.5Hz),4.18(2H,t,J=4.5Hz),4.60-4.70(
	, F	1H,m),7.00(1H,t,J=9Hz),7.10-7.20(1H
		m),7.47(1H,dd,J=13,3Hz)
		IRν (KBr) cm ⁻¹ :1746,3328,3396
		MS(m/z):284(M ⁺)
		比旋光度 [α] _p ²º-33.0° (c=0.1,DMSO)
		淡褐色針状晶[AcOEt-i-Pr ₂ O]
		mp,91.5∼92°C
178	Me	元素分析値 C ₁₂ H ₁₇ N ₃ O ₂
'''	Me, L	理論値 C,61.26;H,7.28;N,17.86
		実験値 C,60.90;H,7.16;N,17.60
		比旋光度 [α] _D ²⁰ -32.9°(c=0.1,DMSO)
	Ma 🚍	赤褐色結晶
1		NMR(DMSO-d ₈) δ ppm:1.88(2H,br-s),2.7
179		4(6H,s),2.79(1H,dd,J=13.5,5Hz),2.85(
		1H,dd,J=13.5,5Hz),3.80(1H,dd,J=9,6H
	····\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	z),4.00(1H,t,J=9Hz),4.50-4.65(1H,m),
''	Me P	6.97(1H,t,J=8.5Hz),7.16(1H,dd,J=8.5,
ļ	,	2.5Hz),7.44(1H,dd,J=15.5,2.5Hz)
		IRν(KBr) cm ⁻¹ :1732,3336,3372
		MS(m/z):253(M ⁺)
		比旋光度 [α] _p ²⁰ -45.0°(c=0.1,DMSO)
180		無色結晶[AcOEt-i-Pr₂O]
	Me 🤝	mp,51~52°C
	````\ <del>`</del> \`	元素分析值 C13H18FN3O2
	Et )	理論値 C,58.41;H,6.79;N,15.72
		実験値 C,58.42;H,6.78;N,15.52
		比旋光度 [α] _D ²⁰ -45.8°(c=0.1,DMSO)

4 + -		NH ₂
参考例	R	物性[再結晶溶媒]
181	Et F	褐色液体 NMR(DMSO-d _e ) δ ppm:0.99(6H,t,J=7.5H z),1.55(2H,br-s),2.80(1H,dd,J=14.5Hz ),2.85(1H,dd,J=14.5Hz ),2.85(1H,dd,J=14,5Hz),3.11(4H,q,J=7.5Hz),3.81(1H,dd,J=9,6.5Hz),4.02(1H,t,J=9Hz),4.55-4.65(1H,m),7.02(1H,t,J=9.5Hz),7.17(1H,dd,J=9.5,2.5Hz),7.43 (1H,dd,J=15.5,2.5Hz) IR ν (liq.) cm ⁻¹ :1750,3392 MS(m/z):281(M ⁺ ) 比旋光度 [α] _p ²⁰ -33.3° (c=0.1,DMSO)
182		無色プリズム状晶 [i-PrOH-n-Hexane] mp,81~82.5℃ 元素分析値 C ₁₄ H ₁₈ N ₂ O ₂ 理論値 C,68.27;H,7.37;N,11.37 実験値 C,68.03;H,7.53;N,11.31 比旋光度 [α] _p ²⁰ ~36.0° (c=0.1,DMSO)
183	EtO CH ₂ -N N-	淡褐色結晶 NMR(DMSO-d ₆ ) & ppm:1.21(3H,t,J=7.5H z),2.15(2H,br-s),2.68(4H,t,J=4.5Hz),2.80(1H,dd,J=13.5,5Hz),2.85(1H,dd,J=13.5,5Hz),2.99(4H,t,J=4.5Hz),3.26(2H,s),3.81(1H,dd,J=9.6.5Hz),4.02(1H,t,J=9Hz),4.11(2H,q,J=7.5Hz),4.55-4.65(1H,m),7.05(1H,t,J=9Hz),7.18(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=14.5,2.5Hz) IR ν (KBr) cm ⁻¹ :1740,3388 MS(m/z):380(M*)
184	O (CH ₂ ) ₂ -N N-F	比旋光度 [α] _D ²⁰ -34.0° (c=0.1,DMSO) 無色結晶 [i-PrOH-i-Pr ₂ O] mp,88~88.5℃ 元素分析值 C ₁₉ H ₂₇ FN ₄ O ₄ 理論値 C,57.85;H,6.90;N,14.20 実験値 C,57.57;H,7.15;N,14.06 比旋光度 [α] _D ²⁰ -30.0° (c=0.1,DMSO)

参考例	R	物性[再結晶溶媒]
		淡褐色結晶
	* .	NMR(DMSO-d ₆ ) $\delta$ ppm:1.19(3H,t,J=7.5H
		z),1.71(2H,quin,J=7.5Hz),1.71(2H,br-
		s),2.31(2H,t,J=7.5Hz),2.34(2H,t,J=7.5
		Hz),2.50(4H,t,J=5Hz),2.80(1H,dd,J=1
	9	3.5,5Hz),2.85(1H,dd,J=13.5,5Hz),2.97
185	EHO (CH ₂ ) ₃ - N N	(4H,t,J=5Hz),3.81(1H,dd,J=9,6.5Hz),4
	F	.01(1H,t,J=9Hz),4.06(2H,q,J=7.5Hz),4
		.55-4.65(1H,m),7.03(1H,t,J=9Hz),7.18
		(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=15.5,
		2.5Hz)
	,	MS(m/z):408(M ⁺ )
	,	比旋光度 [α] _p ²º-26.9° (c=0.1,DMSO)
		無色プリズム状晶 [i~PrOH]
	° ~ ~	mp,109~111°C
186	~	元素分析值 C ₁₆ H ₂₁ FN ₄ O ₄
180	MeO F	理論值 C,54.54;H,6.01;N,15.90
		実験値 C,54.31;H,6.00;N,15.83
		比旋光度[α] _p ²⁰ -29.7°(c=0.07,DMSO)
	•	淡黄色結晶[i-PrOH]
		mp,134~135°C
187	MeO -(CH ₂ ) ₂ N N N	元素分析値 C ₁₈ H ₂₅ FN ₄ O ₄
	F [']	理論値 C,56.83;H,6.62;N,14.73
		実験値 C,56.86;H,6.74;N,14.66
188	· · · · · · · · · · · · · · · · · · ·	比旋光度 [α] ₀ ²⁰ -35.0° (c=0.1,DMSO)
	,	無色結晶[AcOEt-i-Pr ₂ O]
		mp,138~139℃ 元素分析値 C₁9H,,FN4O4
	B00-N N-	元系が前限 U ₁₉ ロ ₂₇ FN ₄ U ₄   理論値 C,57.85;H,6.90;N,14.20
	<b>f</b>	実験値 C,57.85;H,7.14;N,14.26
L		LINE JUINE LUI JD - 20.5 (C-U.I,DMSU)

		NH ₂
参考例	R	物性[再結晶溶媒]
		淡黄色結晶
	*	NMR(DMSO-d ₆ ) δ ppm:1.89(2H,br-s),2.
i	ļ	22(3H.s),2.46(4H,t,J=5Hz),2.79(1H,dd
		,J=14,5Hz),2.84(1H,dd,J=14,5Hz),2.98
		(4H,t,J=5Hz),3.81(1H,dd,J=9,6Hz),4.0
189	Me-N N-	1(1H,t,J=9Hz),4.54-4.61(1H,m),7.03(1
	F [']	H,t,J=8.5Hz),7.18(1H,dd,J=8.5,2Hz),7
		.46(1H,dd,J=15.5,2Hz)
		IR $\nu$ (KBr) cm ⁻¹ :1734,3328,3372
		MS(m/z):308(M ⁺ )
		比旋光度 [α] _D ²⁰ -34.0° (c=0.1,DMSO)
		無色針状晶[AcOEt-i-Pr ₂ 0]
		mp,104~105.5°C
190	E1-N N-( )-	元素分析値 C ₁₆ H ₂₃ FN ₄ O ₂
		理論値 C,59.61;H,7.19;N,17.38
	•	実験値 C.59.46;H,7.17;N,17.37
		比旋光度 [α] _D ²⁰ -37.0° (c=0.1,DMSO)
		淡褐色結晶[AcOEt-i-Pr ₂ 0]
		mp,93∼95°C
191	n-Pr-N N-( )	一元素分析值 C₁ァH₂₅FN₄O₂
		理論値 C.60.70;H.7.49;N.16.65
		実験値 C,60.47;H,7.38;N,16.55
	· · · · · · · · · · · · · · · · · · ·	比旋光度 [α] _D ²⁰ -37.9° (c=0.1,DMSO)
192		淡黄色結晶[i-PrOH-i-Pr ₂ 0]
	·	mp,98~100°C
	n-Bu-N N-	元素分析值 C ₁₈ H ₂₇ FN ₄ O ₂ ·2/5H ₂ O
	F	理論値 C,60.45;H,7.83;N,15.67
		実験値 C.60.62;H,7.81;N,15.46
	·····	比旋光度 [α] _p ²º-34.1° (c=0.1,DMSO)

As at the		445=445
参考例	R	物性[再結晶溶媒]
		淡黄褐色液体
	•	NMR(DMSO-d ₆ ) $\delta$ ppm:1.54-1.62(2H,m),
		1.82(2H,br-s),1.85-1.92(2H,m),2.81(1
	-	H,dd,J=14,5Hz),2.86(1H,dd,J=14,5Hz)
		,3.22-3.29(2H,m),3.60(3H,s),3.64-3.7
193	)~~ \~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0(2H,m),3.82(1H,dd,J=9,6Hz),4.03(1H,
193	Meó 🖵 🍱	t,J=9Hz),4.45-4.52(1H,m),4.57-4.63(
	P	1H,m),7.22(1H,dd,J=9,2.5Hz),7.25(1H,
	·	t,J=9Hz),7.54(1H,dd,J=13.5,2.5Hz)
		IRν(liq.) cm ⁻¹ :1688,1748,3368
		MS(m/z):367(M ⁺ )
		比旋光度 [α] _D ²⁰ -26.0° (c=0.1.DMSO)
		無色プリズム状晶 [AcOEt]
	0 MeQ N O - S	mp,119.5~122°C
		元素分析值 C,sH,aFN,Os-1/6H,O
194		理論値 C.52.63;H.5.40;N.12.28
		実験値 C,52.49;H,5.29;N,12.27
		比旋光度 [α] _p ²º-30.9° (c=0.1,DMSO)
	•	淡黄色液体
	MeO-(CH ₂ ) ₂ N O - O - F	NMR(DMSO-d ₆ ) $\delta$ ppm:1.50-1.70(2H,m),
		1.80-2.00(2H,m),1.91(2H,br-s),2.57(2
		H,t,J=6.5Hz),2.81(1 $H,dd,J=13.5.5Hz$ ),
		2.86(1H,dd,J=13.5,5Hz),3.20-3.40(2H,
		m),3.23(3H,s),3.56(2H,t,J=6.5Hz),3.82
195		(1H,dd,J=9,6Hz),4.03(1H,t,J=9Hz),4.4
		5-4.55(1H,m),4.55-4.65(1H,m),7.22(1
		H,dd,J=9,2.5Hz),7.25(1H,t,J=9Hz),7.5
		4(1H,dd,J=13.5,2.5Hz)
		IRν(liq.) cm ⁻¹ :1634,1750,3464
		MS(m/z):395(M ⁺ )
		比旋光度 [α] _o ²º-34.7°(c=0.1,DMSO)
	<del></del>	1

			NH ₂
2	考例	R	物性[再結晶溶媒]
	196	(CH ₃ ) ₂ -N(CH ₃ ) ₃ -N(CH ₃ )-N(CH ₃ ) ₃ -N(CH ₃ )-N(CH ₃ )-N	淡褐色結晶 NMR(DMSO-d _θ )δppm:2.45-2.65(6H,m), 2.90-3.10(4H,m),3.30-3.40(3H,m),3.5 0-3.65(2H,m),4.00-4.15(1H,m),4.75-4 .85(1H,m),7.00(1H,t,J=9Hz),7.10-7.25 (2H,m),7.35-7.55(4H,m) IRν(KBr) cm ⁻¹ :1712,1750,3424 MS(m/z):467(M ⁺ ) 比旋光度 [α] _p ²⁰ -30.0° (c=0.1,DMSO)
	197	Me H (CH ₂ ) ₃ -N N F	淡褐色無晶形固体 NMR(DMSO-d _e ) δ ppm:1.57(2H,quin,J=7.5Hz),1.62(2H,br-s),1.79(3H,s),2.34(2H,t,J=7.5Hz),2.51(4H,t,J=5Hz),2.80(1H,dd,J=13.5,5Hz),2.85(1H,dd,J=13.5,5Hz),2.98(4H,t,J=5Hz),3.00-3.10(2H,m),3.81(1H,dd,J=9,6.5Hz),4.01(1H,t,J=9Hz),4.55-4.65(1H,m),7.04(1H,t,J=9Hz),7.18(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=15.5,2.5Hz),7.68(1H,br-s) IR ν (KBr) cm ⁻¹ :1724,1744,3304 MS(m/z):393(M*) 比旋光度 [α] ₀ ²⁰ -28.9° (c=0.1,DMSO)
1	98	Ma-N-(CH3)3-N-N-(CH3)3-N-N-(CH3)3-N-N-(CH3)3-N-N-(CH3)3-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	淡褐色結晶 NMR(DMSO-d ₆ ) δ ppm:1.65(2H,quin,J=7 Hz),1.77(2H,br-s),2.39(2H,t,J=7Hz),2.52(4H,t,J=4.5Hz),2.80(1H,dd,J=13.5,5 Hz),2.85(1H,dd,J=13.5,5Hz),2.88(3H,s),2.98(4H,t,J=4.5Hz),3.00(2H,t,J=7Hz),3.81(1H,dd,J=9.6.5Hz),4.02(1H,t,J=9Hz),4.55-4.65(1H,m),6.87(1H,br-s),7.04(1H,t,J=9Hz),7.18(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=14.5,2.5Hz) IR ν (KBr) cm ⁻¹ :1726,3276 MS(m/z):429(M*) 比旋光度 [α] _D ²⁰ -23.0° (c=0.1,DMSO)

参考例	R	物性[再結晶溶媒]
		無色針状晶[i-PrOH]
		mp,115.5~117°C
199	NC (CH ₂ ) ₂ N N-(-)	元素分析值 C ₁₇ H ₂₂ FN ₅ O ₂
133	. کر ک	理論値 C,58.78;H,6.38;N,20.16
	•	実験値 C,58.60;H,6.38;N,20.09
		比旋光度 [α] _p ²⁰ -36.9° (c=0.1,DMSO)
		無色結晶[AcOEt]
	Me CO	mp,142~144°C
200	Me N (CH2)2 N N	元素分析值 CisHzsFNsOs
200	° - F	理論値 C,58.00;H,7.17;N,17.80
		実験値 C,57.82;H,7.41;N,17.59
		比旋光度 [α] _p ²⁰ -27.9° (c=0.1,DMSO)
		無色結晶
		NMR(DMSO-d ₆ ) & ppm:1.62(2H,br-s),2.8
	·	0(1H,dd,J=14,5Hz),2.85(1H,dd,J=14,4
<u> </u>	Ş	.5Hz),2.98(4H,t,J=5Hz),3.82(1H,dd,J=
201	H-M M-M-H	9,6.5Hz),3.90(4H,t,J=5Hz),4.02(1H,t,J
		=9Hz),4.55-4.65(1H,m),7.08(1H,t,J=9
	F	Hz),7.20(1H,dd,J=9,2.5Hz),7.39(2H,br
		-s),7.50(1H,dd,J=15,2.5Hz)
		IR ν (KBr) cm ⁻¹ :1714,3384
		比旋光度[α] _p ²º-37.0° (c=0.1,DMSO)
		無色結晶[DMF-H₂O]
	s _	mp,167.5∼169.5°C
202	Me N N N	元素分析值 C18H22FN5O2S
	# _/ _//	理論値 C,52.30;H,6.03;N,19.06
	F	実験値 C,52.13;H,5.99;N,19.08
	<u> </u>	比旋光度[α] ₀ ²⁰ -47.0°(c=0.1,DMSO)

	· · · · · · · · · · · · · · · · · · ·	NH ₂
参考例	R	物性[再結晶溶媒]
		無色針状晶[CH3CN]
	ş	mp,172.5~174°C
203	Et.N.N.N.	元素分析值 C ₁₇ H ₂₄ FN ₅ O ₂ S
	" _ _	理論値 C.53.53;H,6.34;N,18.36
	F	実験値 C,53.37;H,6.16;N,18.11
		比旋光度[α] _D ²⁰ -32.0° (c=0.1,DMSO)
	e	無色結晶[MeOH]
	n-Pr I	mp,171~173℃
204	, in , in , in , in , in , in , in , in	一元素分析値 C₁8H₂6FN5O2S
	F	理論値 C,54.66;H,6.63;N,17.71
	•	実験値 C.54.53;H.6.45;N,17.37
		比旋光度[α] _p ²⁰ -34.9°(c=0.1,DMSO)
		無色プリズム状晶 [MeOH]
	s — —	mp,178~179.5℃
205	Me N N F	元素分析值 C ₁₇ H ₂₄ FN ₅ O ₂ S
		理論値 C,53.53;H,6.34;N,18.36
		実験値 C.53.54;H,6.25;N,18.19
		比旋光度[α] _p ²⁰ -31.0° (c=0.1,DMSO)
		淡褐色結晶
		NMR(DMSO-d ₆ ) δ ppm:1.70(2H,br-s),2.8
	Meo N N F	0(1H,dd,J=13.5,5Hz),2.85(1H,dd,J=13
•		.5,5Hz),2.95-3.10(4H,m),3.81(1H,dd,J
		=9,6.5Hz),3.81-3.90(2H,m),3.98(3H,s)
206		,4.02(1H,t,J=9Hz),4.10-4.20(2H,m),4.
		55-4.65(1H,m),7.08(1H,t,J=9Hz),7.21(
		1H,dd,J=9,2.5Hz),7.50(1H,dd,J=14.5,2 .5Hz)
	•	IRν (KBr) cm ⁻¹ :1730,3388
		MS(m/z):368(M ⁺ )
		比旋光度[α] _p ²⁰ -29.1° (c=0.1,DMSO)
		<b>淡褐色鱗片状晶[H₂O]</b>
	s	mp,240~243.5℃
0.7	E10 N N	元素分析值 C ₁₇ H ₂₃ FN ₄ O ₃ S·HCI
207		理論值 C.48.74;H,5.77;N,13.37
	r 	実験値 C.48.57;H,5.53;N,13.27
	· HCI	比旋光度[α] _D ²⁰ -39.8° (c=0.1,DMSO)
		0-0.1,DM(00)

		NH ₂
参考例	R.	物性[再結晶溶媒]
	· ·	褐色結晶
-		NMR(DMSO-d ₆ ) $\delta$ ppm:0.94(3H,t,J=7Hz)
		,1.67(2H,br-s),1.71(2H,sex,J=7Hz),2.
	•	79(1H,dd,J=13.5,5Hz),2.85(1H,dd,J=1
		3.5,5Hz),2.90-3.10(4H,m),3.75-3.90(3
	Ĭ, Ć, Ć	H,m),4.02(1H,t,J=9Hz),4.10-4.20(2H,
208	n-PrO'N	m),4.38(2H,t,J=7Hz),4.55-4.65(1H,m),
	F [']	7.08(1H,t,J=9Hz),7.20(1H,d,J=9Hz),7.
		50(1H,dd,J=14.5,2Hz)
		[Rν (KBr) cm ⁻¹ :1738,3380
		MS(m/z):396(M ⁺ )
		比旋光度[α] _p ²º-28.9°(c=0.1.DMSO)
		灰褐色結晶
		NMR(DMSO-d ₆ ) $\delta$ ppm:2.61(3H,s),3.11(4
		H.t,J=5Hz),3.15-3.25(2H,m),3.86(1H,
	s	dd,J=9,6.5Hz),4.15(1H,t,J=9Hz),4.20-
		4.40(4H,m),4.85-4.95(1H,m),7.12(1H,t
209	Mes n	J=9Hz),7.19(1H,dd,J=9,2.5Hz),7.49(1
	, , <b>f</b>	H.dd,J=14.5,2.5Hz),7.98(2H,br-s)
		$IR \nu$ (KBr) cm ⁻¹ :1754,3464
		MS(m/z):384(M ⁺ )
1		比旋光度[α] _D ²⁰ -36.8°(c=0.1,DMSO)
		淡褐色液体
]		NMR(DMSO-d ₆ ) $\delta$ ppm:1.68(2H,quin,J=7
		Hz),2.37(2H,t,J=7Hz),2.53(4H,t,J=4.5
		Hz),2.80-2.90(2H,m),2.83(3H,d,J=4.5
	s on o	Hz),3.00(4H,t,J=4.5Hz),3.38(2H,br-s),
210	Me-H-H-CH93-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	3.81(1H,dd,J=9,6.5Hz),4.03(1H,t,J=9
210		Hz),4.55-4.65(1H,m),7.04(1H,t,J=9Hz
		),7.18(1H,dd,J=9,2.5Hz),7.32(1H,br-s
		),7.39(1H,br-s),7.47(1H,dd,J=15.5,2.5
		Hz)
1		$IR \nu$ (liq.) cm ⁻¹ :1740,3308
		比旋光度[α] _p 20-21.0°(c=0.1.DMSO)

R	物性[再結晶溶媒]
	褐色無晶形固体 NMR(DMSO-d ₆ ) δ ppm:1.55-1.80(4H,m), 2.38(2H,t,J=6.5Hz),2.53(4H,t,J=5Hz),
Meo H (CH ₂ ) ₃ N N N	2.83(1H,dd,J=13.5,5Hz),2.87(1H,dd,J=13.5,5Hz),3.01(4H,t,J=5Hz),3.40-3.5 0(2H,m),3.79(1H,dd,J=9,6.5Hz),3.87(3 H,s),4.01(1H,t,J=9Hz),4.50-4.60(1H,m),7.02(1H,t,J=9Hz),7.17(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=9,2.5Hz),7.47(1H,dd,J
	5Hz),7.42(1H,dd,J=15.5,2.5Hz),8.77(1 H,br-s) IRν(liq.) cm ⁻¹ :1746,3284 MS(m/z):425(M ⁺ ) 比旋光度[α] _D ²⁰ -28.4° (c=0.1,DMSO)
Ph N N F	黄色結晶 [CICH ₂ CH ₂ CI-AcOEt] mp,183~186℃ 元素分析値 C ₂₁ H ₂₃ FN ₄ O ₂ S•1/4H ₂ O 理論値 C,60.20;H,5.65;N,13.37 実験値 C,60.28;H,5.50;N,13.14 比旋光度[α] ₀ ²⁰ −26.9° (c=0.1,DMSO)
	R  Meo H (CH ₂ ) ₃ , N N F  Ph N N F

## 参考例213

- (S) -5-アミノメチル-3- [4-(4-アミノピペリジン-1-4ル) -3-フルオロフェニル]-2-オキソオキサゾリジン・二塩酸塩
- (S) -5-アジドメチル-3-[3-フルオロ-4-(4-ヒドロキシイミノピペリジン-1-イル) フェニル] <math>-2-オキソオキサゾリジン4.70g及びラネーニッケル4.70mlの10%アンモニアメタノール溶液95ml 懸濁液を、40°C、水素圧30気圧で6時間攪拌した。触媒を除去し、ろ液を減圧濃縮し、残渣にエタノール及び33%塩化水素エタノール溶液を加え、氷冷下1時間攪拌した。析出結晶をろ取し、淡褐色結晶5.66gを得た。

,J=14.5,2.5Hz),8.29(3H,br-s),8.47(3H,br-s)

IRスペクトル ν (KBr)cm⁻¹: 1744,3440

比旋光度  $[\alpha]_{D}^{20}-33.8^{\circ}$  (c=0.1, DMSO)

# 参考例 2 1 4

- (R) N [2 オキソ 3 [4 (チオモルホリン 4 イル) フェニル] オキサゾリジン 5 イル] メチルイソチオシアネート
- (S) -5-アミノメチルー2-オキソー3-[4-(チオモルホリンー4-イル) フェニル] オキサゾリジン1.0gのベンゼン10ml 及びN, N-ジメチルホルムアミド1ml の混液に、トリエチルアミン0.50ml 及び二硫化炭素0.20ml を加え、室温で6時間攪拌した。反応液を減圧濃縮し、残渣にジクロロメタン10ml 及びトリエチルアミン0.50ml を加え、この混合液中に氷冷攪拌下、クロロ炭酸エチル0.35ml を加え、同温で30分間攪拌した。反応液に水を加え析出した結晶を濾取し、無色結晶0.98gを得た。N, N-ジメチルホルムアミド-水の混液から再結晶し、融点 $194.5\sim195.5$   $\infty$ 0 無色結晶を得た。

元素分析值 C₁₅ H₁₇ N₃ O₂ S₂

理論值 C, 53.71; H, 5.11; N, 12.53

実験値 C,53.53; H,5.07; N,12.54

比旋光度  $[\alpha]_{n}^{20}$ -151.8° (c=0.1, DMSO)

参考例214と同様にして参考例215から264の化合物を得た。

参考例	R	物性[再結晶溶媒]
	•	淡黄色柱状晶[CH3CN]
		mp,135.5~136.5°C
215	s	元素分析值 C15H16FN3O2S2
2,5		理論値 C,50.97;H,4.56;N,11.89
		実験値 C,51.01;H,4.60;N,11.85
		比旋光度[α] _p ²0-151.9°(c=0.1,DMSO)
		無色無晶形固体
		NMR(CDCI ₃ ) $\delta$ ppm:2.95-3.10(4H,m),3.25-
		3.30(2H.m),3.75-3.85(2H,m),3.85-3.95(
	0-s \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2H,m),3.97(1H,dd,J=14.5,5.5Hz),4.17(1
216	<b>~</b> -~_/_/	H.t.J=9Hz),4.80-4.90(1H,m),7.05-7.15(
	<b>F</b>	2H,m),7.52(1H,d,J=13.5Hz)
		IR $\nu$ (KBr) cm ⁻¹ :1754,2096
		MS(m/z):369(M ⁺ )
		比旋光度[α] _D ²⁰ -94.4° (c=0.1,DMSO)
		黄色液体
		NMR(DMSO- $d_6$ ) $\delta$ ppm:3.23(4H,t,J=5Hz),3
		.49(4H,t,J=5Hz),3.80(1H,dd,J=9,5.5Hz),
	0, —	4.02(1H,dd,J=15.5,5.5Hz),4.10(1H,dd,J=
217		15.5,3.5Hz),4.19(1H,t,J=9Hz),4.90~5.00
	نے ۔٠	(1H,m),7.15-7.25(2H,m),7.50(1H,dd,J=1)
	•	5,2Hz)
		IR $\nu$ (liq.) cm ⁻¹ :1754,2100
		MS(m/z):385(M ⁺ )
		比旋光度[α] _p ²⁰ -123.3° (c=0.1,DMSO)
	.'	淡黄色結晶[i-PrOH]
		mp,109.5~110°C
218	~~~~	元素分析值 C ₁₅ H ₁₆ FN ₃ O ₂ S
	F	理論值 C.56.06;H,5.02;N,13.08
*		実験値 C,56.09;H,5.32;N,13.12
		比旋光度[α] ₀ ²⁰ -166.3° (c=0.1,DMSO)
		淡褐色結晶[i-PrOH]
	19	mp,107~109℃ 二事公长体 0 U 5N 0 0
219		元素分析値 C ₁₆ H ₁₈ FN ₃ O ₂ S
	F [']	理論値 C.57.30;H.5.41;N.12.53
		実験値 C,57.25;H,5.63;N,12.52
		比旋光度[α] _p 20-154.2° (c=0.1,DMSO)

		NCS
参考例	R	物性[再結晶溶媒]
		無色プリズム状晶[AcOEt-i-Pr ₂ O]
		mp,118.5~120°C
	MeO N	元素分析値 C ₁₇ H ₂₀ FN ₃ O ₃ S
220		理論値 C,55.88;H,5.52;N,11.50
	F	実験値 C,55.89;H,5.58;N,11.41
		比旋光度[α] _D 20-146.6°(c=0.1,DMSO)
		無色結晶[i-PrOH]
		mp,114.5∼116°C
	EtO-( N-( )-	元素分析值 C18H22FN3O3S
221		理論値 C,56.98;H,5.84;N,11.07
	F	実験値 C,56.97;H,5.88;N,10.93
		比旋光度[α] ₀ 20-136.4°(c=0.1,DMSO)
		無色針状晶[AcOEt-i-Pr ₂ O]
		mp,133.5∼134.5°C
000	Mo—( N—( )—	元素分析値 C17H20FN3O2S
222	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	理論値 C,58.43;H,5.77;N,12.03
		実験値 C,58.39;H,5.67;N,11.95
	•	比旋光度[α] ₀ ²º-153.5°(c=0.1,DMSO)
		無色針状晶[Toluene]
		mp,94~95℃
223	Et—( N—( )—	│元素分析値 C₁8H₂₂FN₃O₂S
223	حر ب	理論值 C,59.48;H,6.10;N,11.56
	•	実験値 C.59.27;H,6.12;N.11.43
		比旋光度[α] _D ²⁰ -147.9°(c=0.1,DMSO)
		無色結晶[AcOEt-i-Pr ₂ 0]
		mp,63~64°C
224	Med-(CH ₃ ) ₂ -U-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	元素分析值 C ₁₉ H ₂₄ FN ₃ O ₄ S
	F ·	理論值 C,55.73;H,5.91;N,10.26
	,	実験値 C,55.64;H,5.99;N,10.27
		比旋光度[α] _D ²⁰ -130.7°(c=0.1,DMSO)

do to the	T	
参考例	R	物性[再結晶溶媒]
		褐色液体
		NMR(DMSO-d ₆ ) $\delta$ ppm:3.24(3H,s),3.60-3.
		70(2H,m),3.75(1H,dd,J=9,5.5Hz),3.95-4
	MeO-N-	.20(5H,m),4.25-4.35(1H,m),4.85-4.95(1
225		H,m),6.59(1H,dd,J=10.5,8.5Hz),7.12(1H,
-	f f	dd,J=8.5,2Hz),7.36(1H,dd,J=14.5,2Hz)
ļ		IR ν (liq.) cm ⁻¹ :1754,2100
		MS(m/z):337(M*)
		比旋光度[α] ₀ ²⁰ -129.3°(c=0.1,DMSO)
		無色針状晶[AcOEt-i-Pr2O]
	M=0=(CH) =0=\N=\	mp,78.5~79.5℃
226	MeO — (CH ₂ ) ₂ – O — N — N	元素分析值 C17H20FN3O4S
	F .	理論値 C,53.53;H,5.29;N,11.02
		実験値 C,53.47;H,5.47;N,10.93
		比旋光度[α] _D ²⁰ -140.4°(c=0.1,DMSO)
		無色結晶[AcOEt~i-Pr ₂ O]
		mp,128~129℃
227	( ) <del>-</del> ( )-	元素分析値 C₁7H₂0FN₃O₂S
		理論值 C,58.43;H,5.77;N,12.03
	·	実験値 C.58.50;H,5.97;N,11.95
		比旋光度[α] ₀ ²⁰ -153.8°(c=0.1,DMSO)
		淡褐色液体
		NMR(DMSO-d ₆ ) δ ppm:2.28(3H,s),3.79
		(1H,dd,J=9,5.5Hz),4.04(1H,dd,J=15,5Hz
228	(=\	),4.10(1H,dd,J=15,3Hz),4.19(1H,t,J=9H
220	Me—(	z),4.90-4.96(1H,m),7.20(2H,d,J=8.5Hz),
		7.43(2H,d,J=8.5Hz)
		IR ν (liq.) cm ⁻¹ :1756,2096
		MS(m/z):248(M ⁺ )
		比旋光度[α] ₀ ²⁰ -178.3° (c=0.1,DMSO)
		無色プリズム状晶 [i-PrOH]
	<b></b>	mp,92~92.5℃ 二基八长体 0. U. N. 0.0
229	Me	元素分析值 C ₁₃ H ₁₄ N ₂ O ₂ S
	Me	理論值 C,59.52;H,5.38;N,10.68
		実験値 C,59.54;H,5.39;N,10.65
<u>_</u>		比旋光度[α] _D 20-175.1°(c=0.1,DMSO)

	,	
参考例	R	物性[再結晶溶媒]
		淡褐色結晶 [AcOEt].
1		mp,71.5~73.5℃
230	MeO—(CH ₂ ) ₂ -O—	元素分析值 C₁₄H₁₅FN₂O₄S
200	سنز _	理論値 C,51.53;H,4.63;N,8.58
	· •	実験値 C,51.46;H,4.56;N,8.49
		比旋光度[α] _p ²º-137.7°(c=0.1,DMSO)
	•	無色針状晶[AcOEt-i-Pr2O]
		mp,140.5~141.5°C
231	Me	元素分析值 C13H15N3O2S
201	Mo	理論値 C,56.30;H,5.45;N,15.15
		実験値 C,56.45;H,5.35;N,14.95
		比旋光度[α] _D ²⁰ -172.5°(c=0.1,DMSO)
		淡黄色針状晶[i-PrOH]
	Ma 🥽	mp,74.5∼75°C
232	````\~__	元素分析値 C,3H,4FN3O2S
202	Me' _>	理論値 C.52.87;H,4.78;N,14.23
		実験値 C,52.81;H,4.99;N,14.18
		比旋光度[α] _D ²⁰ -172.7°(c=0.1,DMSO)
		無色針状晶[AcOEt-i-Pr ₂ 0]
	. Me 🚍	mp,78~79℃
233	````\n-{``}	元素分析值 C ₁₄ H ₁₆ FN ₃ O ₂ S
	Eti >	理論値 C,54.35;H,5.21;N,13.58
	· .	実験値 C,54.42;H,5.30;N,13.63
		比旋光度[α] _p ²0-177.5°(c=0.1,DMSO)
		淡褐色液体
	Et 🖨	NMR(DMSO- $d_6$ ) $\delta$ ppm:1.00(6H,t,J=7.5Hz
		),3.13(4H,q,J=7.5Hz),3.78(1H,dd,J=9.5
		,6Hz),4.03(1H,dd,J=15.5,5.5Hz),4.11(1
234	_ <b>}</b> ⟨ <b>}</b>	H,dd,J=15.5,3.5Hz),4.17(1H,t,J=9.5Hz
		),4.90-5.00(1H,m),7.04(1H,t,J=9Hz),7.
	'	17(1H,dd,J=9,2.5Hz),7.41(1H,dd,,J=14
]		.5,2.5Hz)
		MS(m/z):323(M ⁺ )
		比旋光度[α] _D ²⁰ -162.3°(c=0.1,DMSO)

4 + -	·	NCS
参考例	R	物性[再結晶溶媒]
		無色針状晶[AcOEt]
	-	mp,103.5~104.5°C
235	__\	元素分析值 C,4H,4N2O,S
		理論値 C,61.29;H,5.14;N,10.21
		実験値 C,61.24;H,5.13;N,10.20
		比旋光度[α] _p ²º-172.7°(c=0.1,DMSO)
		無色針状晶[i-PrOH]
		mp,122.5~124°C
236	<b>│</b>	元素分析值 C15H16N2O2S
		理論値 C,62.48;H,5.59;N,9.71
-		実験値 C,62.49;H,5.61;N,9.65
		比旋光度[α] ₀ 20-166.8°(c=0.1.DMSO)
		淡黄色結晶
		NMR(DMSO-d ₆ ) δ ppm:2.55(3H,s),3.89(1
ł		H,dd,J=9.5,5.5Hz),4.08(1H,dd,J=15,5.
	9, /=\	5Hz),4.15(1H,dd,J=15,3.5Hz),4.28(1H,
237	· · · · · · · · · · · · · · · · · · ·	t,J=9.5Hz),4.98-5.03(1H,m),7.70(2H,d,
	MB —	J=9Hz),8.00(2H,d,J=9Hz)
ļ		IRν(KBr) cm ⁻¹ :1748,2092
		MS(m/z):276(M ⁺ )
		比旋光度[α] ₀ ²⁰ -195.6°(c=0.1,DMSO)
	*	淡褐色針状晶[AcOEt-i-Pr2O]
	% ~ =	mp,117~119°C
238		元素分析值 C ₁₉ H ₂₃ FN ₄ O ₄ S
		理論值 C.54.02;H,5.49;N,13.26
		実験値 C,54.30;H,5.40;N,13.00
		比旋光度[α] _p ²⁰ -103.2° (c=0.1,DMSO)
	•	淡黄色針状晶[i-PrOH]
	E10 (CH ² ) ² -N N	mp,92.5~94°C
239		元素分析值 C ₂₀ H ₂₅ FN ₄ O ₄ S
	F	理論値 C,55.03;H,5.77;N,12.84
		実験値 C.54.84;H,5.87;N,12.71
		比旋光度[α] ₀ ²⁰ -121.8° (c=0.1,DMSO)
		無色針状晶[AcOEt-i-Pr ₂ O]
	(CH ₂ ) ₃ -N N-(-)	mp,95.5~97℃
240	Eto L	元素分析值 C ₂₁ H ₂₇ FN ₄ O ₄ S
	F	理論值 C.55.98;H,6.04;N,12.44
		実験値 C.55.70;H,5.76;N,12.29
		比旋光度[α] ₀ 20-108.3°(c=0.1,DMSO)

1 15 At At A		
参考例	R	物性[再結晶溶媒]
		無色結晶[i-PrOH]
		mp.102~103°C
241	)	│元素分析値 C ₁₇ H ₁₉ FN ₄ O ₄ S
	MeO	理論値 C.51.77;H,4.86;N,14.20
	•	実験値 C,51.77;H,4.83;N,14.10
	· · · · · · · · · · · · · · · · · · ·	比旋光度[α] _p ²º-139.5° (c=0.1,DMSO)
		淡黄色結晶[MeOH]
		mp,110~112°C
242	MeO-(CH ₂ ) ₂ N N-	元素分析値 C19H23FN4O4S・1/4H2O
242		理論値 C,53.45;H,5.55;N,13.12
		実験値 C,53.60;H,5.46;N,13.04
		比旋光度[α] _D ²⁰ -123.9°(c=0.1,DMSO)
		無色針状晶[AcOEt-i-Pr ₂ O]
,		mp,142~143.5℃
243	Boc-N N-	元素分析値 C₂₀H₂₅FN₄O₄S
240	ندر ب	理論値 C,55.03;H,5.77;N,12.84
*	-	実験値 C,54.96;H,5.88;N,12.79
		比旋光度[α] _p ²⁰ -121.1°(c=0.1,DMSO)
		無色プリズム状晶 [THF-i-Pr₂0]
1		mp,127~127.5℃
244	Me-N N-( )-	元素分析值 C14H19FN4O2S
	ے کے	理論値 C,54.84;H,5.47;N,15.99
	•	実験値 C,54.83;H,5.41;N,15.84
		比旋光度[α] _p ²⁰ -159.0°(c=0.1,DMSO)
		無色針状晶[AcOEt-i-Pr ₂ O]
		mp,86.5~87.5°C
245	Et-N N-()	元素分析值 C ₁₇ H ₂₁ FN ₄ O ₂ S
		理論値 C,56.03;H,5.81;N,15.37
1	'	実験値 C,56.09;H,5.76;N,15.46
		比旋光度[α] _p ²⁰ -151.2°(c=0.1,DMSO)
		無色結晶[AcOEt-i-Pr ₂ 0]
		mp,93~94°C
246	n-Pr-N N-	元素分析值 C ₁₈ H ₂₃ FN ₄ O ₂ S
	— <i>,</i> —	理論值 C,57.12;H,6.13;N,14.80
	-	実験値 C,57.02;H,6.13;N,14.75
		比旋光度[α] _p ²⁰ -141.6°(c=0.1,DMSO)

45 44 44	T	NCS
参考例	R	物性[再結晶溶媒]
		淡黄色板状晶[i-PrOH]
		mp,101~102°C
247	n-Bu-N N-	元素分析值 C19H25FN4O2S
		理論値 C,58.14;H,6.42;N,14.27
		実験値 C,58.06;H,6.51;N,14.16
		比旋光度[α] _p ²⁰ -133.8° (c=0.1,DMSO)
		黄褐色液体
		NMR(DMSO-d ₆ ) $\delta$ ppm:1.50-1.70(2H,m),1.
1		85-1.95(2H,m),3.20-3.30(2H,m),3.60(3
	, v	H,s),3.60-3.70(2H,m),3.79(1H,dd,J=9,6
	9	Hz),4.02(1H,dd,J=15.5,5.5Hz),4.11(1H,
248		dd,J=15.5,3.5Hz),4.19(1H,t,J=9Hz),4.4
	MeO	5-4.55(1H,m),4.90-5.00(1H,m),7.22(1H,
	·	dd,J=9,2.5Hz),7.26(1H,t,J=9Hz),7.52(1
		H,dd,J=13.5,2.5Hz)
ļ		IR ν (liq.) cm ⁻¹ :1696,1758,2096
		MS(m/z):409(M+)
		比旋光度[α] _p ²⁰ -108.0° (c=0.1,DMSO)
		無 色プリズム 状 晶 [AcOEt]
	% ^ 🤝	mp.121~122°C
249	M-0-( )-	元素分析値 C16H16FN3O5S
	F	理論値 C.50.39;H.4.23;N,11.02
		実験値 C,50.29;H,4.20;N,10.87
		比旋光度[α] _o ²⁰ -133.1° (c=0.1,DMSO)
		無色無晶形固体
		NMR(DMSO-d ₆ ) δ ppm:1.50-1.70(2H,m),1.
		80-2.00(2H,m),2.57(2H,t,J=6.5Hz),3.20
	MeO-(CH ₂ ) ₂ N O-O	-3.40(2H,m),3.23(3H,s),3.56(2H,t,J=6.5
		Hz).3.65-3.75(1H,m),3.80(2H,dd,J=9,6
250		Hz),4.03(1H,dd,J=15,5.5Hz),4.10(1H,dd
	<b>f</b>	,J=15,3Hz),4.19(1H,t,J=9Hz),4.50-4.60
l		(1H,m),4.90-5.00(1H,m),7.22(1H,dd,J=
		9,2.5Hz),7.27(1H,t,J=9Hz),7.52(1H,dd, J=13.5,2.5Hz)
		IR $\nu$ (KBr) cm ⁻¹ :1756,2120
		MS(m/z):437(M ⁺ )
		比旋光度[α] _D ²⁰ -113.5° (c=0.1,DMSO)

参考例	R	物性[再結晶溶媒]
		黄色結晶[DMF-H₂O]
		mp,209~211°C
251	(CH ₂ ) ₂ -N N-(-)	元素分析値 C25H24FN5O4S
231		理論値 C.58.93;H,4.75;N,13.74
	·	実験値 C,58.85;H,4.68;N,13.65
		比旋光度[α] _p ²º-11.7.9°(c=0.1,DMSO)
		淡褐色液体
		NMR(DMSO- $d_6$ ) $\delta$ ppm:1.55-1.65(2H,m),1.
		79(3H,s),2.30-2.40(2H,m),2.40-2.50(4
		H,m),2.90-3.00(4H,m),3.00-3.10(2H,m),
252	Me N (CH ₂ ) ₃ N N	3.45-3.55(2H,m),3.79(1H,dd,J=9,6.5Hz)
232	··	,4.13(1H,t,J=9Hz),4.85-4.95(1H,m),7.0
		4(1H,t,J=9Hz),7.18(1H,dd,J=9,2.5Hz),7
		.47(1H,dd,J=14.5,2.5Hz),7.70(1H,br-s)
		$IR \nu$ (liq.) cm ⁻¹ :1746
_		比旋光度[α] _p ²º-66.8° (c=0.1.DMSO)
		無色結晶[AcOEt]
		mp,103.5∼105.5°C
253	NC (CH ₂ ) ₂ N N-	元素分析値 C18H20FN5O2S
255	حر ت	理論値 C,55.51;H,5.18;N,17.98
	•	実験値 C,55.45;H,5.11;N,17.89
		比旋光度[α] _D ²⁰ -146.3°(c=0.1,DMSO)
		淡褐色結晶
254		NMR(DMSO- $d_6$ ) $\delta$ ppm:2.50-2.70(4H,m),2.
		82(3H,s),2.90-3.10(4H,m),2.98(3H,s),3.
	Ме	78(1H,dd,J=9.5,6Hz),4.02(1H,dd,J=15,5
	N (CH ₂ ) ₂ -N N	Hz),4.10(1H,dd,J=15,3.5Hz),4.17(1H,t,
		J=9.5Hz),4.90-5.00(1H,m),7.05(1H,t,J=
	F	9Hz),7.19(1H,dd,J=9,2.5Hz),7.45(1H,dd
		,J=15,2.5Hz)
	. *	$IR \nu (KBr) cm^{-1}:1630,1762,2132$
		MS(m/z):435(M ⁺ )
		比旋光度[α] _D ²⁰ -108.1°(c=0.1,DMSO)

45 45 454	T	NCS
参考例	R	物性[再結晶溶媒]
		淡褐色結晶[CH3CN]
	S	mp,174~175.5°C
255	Me N N	元素分析值 C ₁₇ H ₂₀ FN ₅ O ₂ S ₂
	H \	理論値 C,49.86;H,4.92;N,17.10
	F	実験値 C,49.97;H,4.81;N,16.94
		比旋光度[α] ₀ ²⁰ -125.7°(c=0.1,DMSO)
		淡褐色結晶[CH ₃ CN]
	\$	mp,233~235°C
256	Et-N N-	元素分析値 C18H22FN5O2S2
	" _ _	理論值 C,51.05;H,5.24;N,16.54
	, F	- 実験値 C,51.08;H,5.18;N,16.36
		比旋光度[α] _D ²⁰ -121.8°(c=0.1,DMSO)
]	S	無色結晶[CICH,CH,CI]
	n-Pr	mp,183.5~185.5℃
257		元素分析值 C18H24FN8O2S2·1/2H2O
	F	理論値 C,51.10;H,5.64;N,15.68
	*	実験値 C,51.24;H,5.48;N,15.42
		比旋光度[α] _D ²º-118.1° (c=0.1,DMSO)
		無色結晶[CH3CN]
	s C	mp,197~198.5℃
258	We N N N —	元素分析值 C ₁₈ H ₂₂ FN ₅ O ₂ S ₂
	Me	理論值 C,51.05;H,5.24;N,16.54
	. <b>F</b>	実験値 C.51.23;H,5.19;N,16.65
		比旋光度[α] ₀ ²⁰ -119.3°(c=0.1,DMSO)
		無色結晶[AcOEt]
259		mp,132~133°C
	MeO N N	元素分析值 C ₁₇ H ₁₉ FN ₄ O ₃ S ₂
	ا نظر ت	理論值 C.49.74;H,4.67;N,13.65
ļ	· ·	実験値 C,49.87;H,4.74;N,13.44
		比旋光度[α] _p ²º-115.6°(c=0.1,DMSO)

参考例	R	物性[再結晶溶媒]
		淡黄色結晶
		NMR(DMSO- $d_6$ ) $\delta$ ppm:1.30(3H,t,J=6.5H
		z),3.00-3.10(4H,m),3.79(1H,dd,J=9,6
·		Hz),3.82-3.88(2H,m),4.02(1H,dd,J=15
	S	,5Hz),4.12(1H,dd,J=15,4Hz),4.10-4.15
000	En	(2H,m),4.18(1H,t,J=9Hz),4.47(2H,q,J=
260		6.5Hz),4.90-5.00(1H,m),7.10(1H,t,J=9
	F	Hz),7.21(1H,d,J=9Hz),7.50(1H,d,J=14.
		5Hz)
		IR ν (KBr) cm ⁻¹ :1748,2228
	•	MS(m/z):424(M ⁺ )
		比旋光度[α] ₀ ²º131.4°(c=0.1,DMSO)
		淡褐色結晶[AcOEt]
	ş	mp,156~158℃
261	TO DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR	元素分析値 C19H23FN4O3S2
201		理論値 C,52.04;H,5.29;N,12.78
	F	実験値 C,52.32;H,5.29;N,12.70
		比旋光度[α] ₀ ²⁰ -121.6°(c=0.1,DMSO)
		淡褐色結晶[AcOEt-i-Pr₂O]
	Ş	mp,138~140℃
262	Mes N N	元素分析值 C ₁₇ H ₁₉ FN ₄ O ₂ S ₃
		理論値 C,47.87;H,4.49;N,13.13
	F	実験値 C,47.75;H,4.59;N,12.84
		比旋光度[α] _p ²⁰ -110.4° (c=0.1,DMSO)
263		淡褐色結晶[AcOEt−i−Pr₂O]
		mp,113~115°C
	scn-( n-( )-	元素分析值 C ₁ ,H ₁ ,FN ₄ O ₂ S ₂
		理論值 C,52.02;H,4.37;N,14.28
		実験値 C,51.82;H,4.46;N,14.00
	<u> </u>	比旋光度[α] _D ²⁰ -125.4°(c=0.1,DMSO)

参考例	R	物性[再結晶溶媒]
264	Ph N N-	黄色無晶形固体 NMR(CDCI ₃ ) δ ppm:3.04(2H,t,J=5Hz),3.2 7(2H,t,J=5Hz),3.76(2H,t,J=5Hz),3.80- 3.90(2H,m),3.96(1H,dd,J=15,5Hz),4.1 5(1H,t,J=9Hz),4.60(2H,t,J=5Hz),4.80- 4.85(1H,m),6.95(1H,t,J=9Hz),7.13(1H,dd,J=9,2.5Hz),7.30-7.40(5H,m),7.46(1H,dd,J=14,2.5Hz) IRν(KBr) cm ⁻¹ :1754,2080 比旋光度[α] _D ²⁰ -106.6° (c=0.1,DMSO)

## 参考例 2 6 5

NMR2 < 7  $> \mathcal{N}$  (DMSO-d₆)  $\delta$  ppm : 2.99(4H,t,J=5Hz),3.79(1H,dd,J=9.5,5.5Hz),3.90(4H,t,J=5Hz),4.02(1H,dd,J=15,5.5Hz),4.10(1H,dd,J=15,4Hz),4.18(1H,t,J=9Hz),4.90-5.00(1H,m),7.09(1H,t,J=9Hz),7.20(1H,dd,J=9,2.5Hz),7.39(2H,br-s),7.48(1H,dd,J=14.5,2.5Hz)

IRスペクトル ν (KBr)cm⁻¹: 1746,2220

比旋光度  $[\alpha]_{0}^{20}-130.4^{\circ}$  (c=0.1, DMSO)

参考例265と同様にして参考例266から267の化合物を得た。

		- 1103
参考例	R	物性[再結晶溶媒]
		淡黄色結晶
		NMR(DMSO- $d_6$ ) $\delta$ ppm:1.69(2H,quin,J=7
		Hz);2.42(2H,t,J=7Hz),2.58(4H,s),2.82(
		3H,d,J=4.5Hz),3.02(4H,s),3.35-3.45(2
	s (m) (m)	H,m),3.78(1H,dd,J=9,6Hz),4.02(1H,dd,
266	Me-H H (cuss. M)	J=15,5Hz),4.11(1H,dd,J=15,3.5Hz),4.1
200	F'	8(1H,t,J=9Hz),4.90-5.00(1H,m),7.06(1
		H,t,J=9Hz),7.19(1H,dd,J=9,2.5Hz),7.3
		2(1H,br-s),7.39(1H,br-s),7.46(1H,dd,
		J=14.5,2.5Hz)
		$IR \nu$ (KBr) cm ⁻¹ :1744,2088,3280
		比旋光度[α] _D ²⁰ -44.0°(c=0.1,DMSO)
267	Meo H (CH ₂ ) ₃ N H	橙色液体
		NMR(DMSO- $d_6$ ) $\delta$ ppm:1.60-1.80(2H,m),
		2.39(2H,t,J=6.5Hz),2.53(4H,t,J=5Hz),
		3.02(4H,t,J=5Hz),3.40-3.50(2H,m),3.7
		7(1H,dd,J=9,6Hz),3.87(3H,s),3.99(1H,
		dd,J=15,5Hz),4.07(1H,dd,J=15,3.5Hz),
		4.17(1H,t,J=9Hz),4.85-4.95(1H,m),7.0
		3(1H,t,J=9Hz),7.17(1H,dd,J=9,2.5Hz),
	·	7.41(1H,dd,J=15.5,2.5Hz),8.77(1H,br-
		s)
		IR $\nu$ (liq.) cm ⁻¹ :1752,2088,3296
	·	比旋光度[α] _p 20-67.5°(c=0.1,DMSO)

# 実施例1

(S) -N-[3-[3-フルオロー4-(チオモルホリンー4-イル) フェニル] <math>-2-オキソオキサゾリジン-5-イル] メチルチオカルバミド酸O-メチル

無水メタノール44 ml 中に氷冷攪拌下、60%水素化ナトリウム0.53 gを加えて室温で30分間攪拌した後、(R)-N-[3-[3-7)ルオロー4ー(チオモルホリンー4ーイル)フェニル]-2ーオキソオキサゾリジンー5ーイル]メチルイソチオシアネート4.41 gを加え、室温で3時間攪拌した。反応混合物に氷水及び10%塩酸を加えて中和し、析出結晶を濾取し、淡褐色結晶4.68 gを得た。エタノールから再結晶し、融点 $141.5\sim143\%$ の淡褐色結晶を得た。

元素分析值 C₁₆H₂₀FN₃O₃S,

理論值 C, 49.85; H, 5.23; N, 10.90

実験値 C, 49.58; H, 5.05; N, 10.82

比旋光度 [ $\alpha$ ]  $_{\rm D}^{20}-25.9^{\circ}$  (c=0.1, DMS0)

実施例1と同様にして実施例2から60の化合物を得た。

実施例	R	物性[再結晶溶媒]
3-23-07		無色プリズム状晶 [CH ₃ CN]
		mp.206~207°C
	0=s N-(=)-	元素分析值 C16H20FN3O4S2
2	· . _ / }_/	理論值 C,47.87;H,5.02;N,10.47
	F	実験値 C,48.04;H,5.00;N,10.51
	•	比旋光度[α] ₀ ²º-25.0°(c=0.1,DMSO)
		黄色液体
		NMR(DMSO-d ₆ ) $\delta$ ppm:3.19(4H,t,J=5.5H
, .		z),3.51(4H,t,J=5.5Hz),3.80-3.90(3H,m
3		),3.92(3H,s),4.10(1H,t,J=9Hz),4.80-4.
	نظر ک	90(1H,m),7.15-7.25(2H,m),7.43(1H,dd
	r	,J=13.5,2.5Hz),9.10(1H,br-s)
		MS(m/z):417(M ⁺ )
		比旋光度[α] _p ²⁰ -23.9°(c=0.1,DMSO)
		淡褐色結晶[EtOH]
		mp,147~148.5℃
4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	元素分析值 C ₁₆ H ₂₀ FN ₃ O ₃ S
	, <u>, , , , , , , , , , , , , , , , , , </u>	理論值 C,54.38;H,5.70;N,11.89
	·	実験値 C,54.27;H,5.75;N,11.91
		比旋光度[α] _p ²⁰ -26.9° (c=0.1.DMSO)
	•	無色結晶[EtOH]
		mp,131~133℃
5	s n-(-)-	元素分析値 C ₁₆ H ₂₁ N ₃ O ₃ S ₂
		理論值 C,52.29;H,5.76;N,11.43
		実験値 C,52.24;H,5.76;N,11.43 比旋光度[α] _p ²⁰ -24.1°(c=0.1,DMSO)
		近 版 元 度 [ t
6		双句 12 和 間 [「FFON] mp,117~118℃
		元素分析値 C ₁₇ H ₂₂ FN ₃ O ₃ S
		理論値 C,55.57;H,6.03;N,11.44
	<b>f</b>	実験値 C,55.35;H,6.24;N,11.33
		比旋光度[α] ₀ ²⁰ -29.1°(c=0.1,DMSO)
L	L	1 20 12 10 12 La 10 10 10 10 10 10 10 10 10 10 10 10 10

eta Ata Sai	T :	· <del></del>
実施例	R	物性[再結晶溶媒]
		淡褐色針状晶[i-PrOH]
İ		mp,124.5~125.5°C
7	\ \\—\(\)—	元素分析值 C18H24FN3O3S
'	حر ب	理論値 C.56.67;H,6.34;N,11.02
	'	実験値 C,56.55;H,6.50;N.10.82
		比旋光度[α] _p ²⁰ -29.0° (c=0.1,DMSO)
		淡褐色針状晶[i-PrOH]
		mp,135~136℃
8	Me— N— >	元素分析值 C18H24FN3O3S
		理論值 C,56.67;H,6.34;N,11.02
	,	実験値 C,56.67;H,6.24;N,10.91
<u> </u>		比旋光度 [α] ₀ 20-25.9° (c=0.1,DMSO)
		無色結晶[i-PrOH]
		mp,112~114°C
9	EtN	元素分析值 C19H26FN3O3S
		理論値 C.57.70;H,6.63;N,10.62
	•	実験値 C.57.70;H,6.74;N,10.53
		比旋光度 [α] _p ²⁰ -24.1° (c=0.1,DMSO)
10		無色針状晶[i-PrOH]
	MeO-N-F	mp,112~113.5℃
		元素分析值 C ₁₈ H ₂₄ FN ₃ O ₄ S
		理論值 C.54.39;H.6.09;N.10.57
		実験値 C,54.19;H,6.21;N,10.47
		比旋光度 [α] ₀ ²⁰ -24.1° (c=0.1.DMSO)
		無色結晶[i-PrOH]
	Eto—N——	mp,138~140°C
11		元素分析值 C ₁₉ H ₂₆ FN ₃ O ₄ S
	F [']	理論值 C,55.46;H,6.37;N,10.21
ĺ		実験値 C,55.65;H,6.58;N,10.15
		比旋光度 [α] _p ²⁰ -32.9° (c=0.1,DMSO)
12		淡褐色結晶[i-PrOH]
	MeO-(CH ₂ ) ₂ -0-(N-(-))	mp,99~100.5℃
	ا مر	元素分析値 C ₂₀ H ₂₈ FN ₃ O ₅ S
	·	理論値 C,54.41;H,6.39;N,9.52
		実験値 C,54.20;H,6.50;N,9.50
		比旋光度 [α] _p ²⁰ -23.9° (c=0.1,DMSO)

実施例	R	物性[再結晶溶媒]
		無色針状晶[i-PrOH]
		mp,110~112°C
10	MeO—\N—\—	元素分析値 C ₁₆ H ₂₀ FN ₃ O ₄ S
13	سر 🔻	理論値 C.52.02;H.5.46;N.11.37
	F	実験値 C,52.02;H,5.42;N,11.27
		比旋光度 [α] _p ²º-27.0° (c=0.1,DMSO)
		淡褐色針状晶[i-PrOH]
		mp,79∼80°C
14	MeO-(CH ₂ ) ₂ -O-N-N-	元素分析値 C18H24FN3O5S
'4	<b>e</b> ′	理論値 C,52.29;H,5.85;N,10.16
		実験値 C.52.20;H.5.66;N.10.19
		比旋光度 [α] _p ²0-25.0°(c=0.1,DMSO)
		淡黄色結晶[i-PrOH-i-Pr ₂ 0]
		mp,119.5~121.5℃
15	Mo-N N-	元素分析値 C ₁₇ H ₂₃ FN ₄ O ₃ S
		理論値 C,53.39;H,6.06;N,14.65
		実験値 C,53.20;H,5.94;N,14.50
		比旋光度[α] _D 20-30.1°(c=0.1,DMSO)
	a de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	淡褐色結晶[i-PrOH]
		mp,122~123°C
16	E1-N_N-(	元素分析值 C ₁₈ H ₂₅ FN ₄ O ₃ S
		理論值 C,54.53;H,6.36;N,14.13
		実験値 C,54.29;H,6.10;N,14.02
		比旋光度 [α] ₀ ²⁰ -19.1° (c=0.1,DMSO)
		淡褐色針状晶[i-PrOH]
		mp,128.5~129.5°C
17	n-Pr-N N-	元素分析値 C,,H ₂ ,FN ₄ O ₃ S
	F	理論值 C,55.59;H,6.63;N,13.65
	•	実験値 C,55.36;H,6.57;N,13.57
	<u> </u>	比旋光度 [α] ₀ ²⁰ -25.0° (c=0.1,DMSO)
18		淡褐色針 状晶 [i-PrOH]
		mp,118.5~120℃
	n-Bu-N N-	元素分析值 C ₂₀ H ₂₉ FN ₄ O ₃ S 理論体 C 56 58 H 6 80 N 12 20
	<b>, f</b>	理論値 C,56.58;H,6.89;N,13.20
		実験値 C,56.50;H,7.03;N,13.14
L		比旋光度 [α] _p 20-22.0°(c=0.1,DMSO)

	S	
実施例	R	物性[再結晶溶媒]
		無色針状晶[i-PrOH]
		mp,153.5~155°C
19	Boc-N N-( )	元素分析值 Cz,Hz,FN4O5S
	حر ت	理論値 C,53.83;H,6.24;N,11.96
	·	実験値 C,53.83;H,6.17;N,11.85
		比旋光度 [α] ₀ 20-14.0°(c=0.1,DMSO)
		無色針状晶[i-PrOH]
	0, —	mp,147.5~149°C
20	MeO CH ₂ -N N-	元素分析值 C19H25FN4O5S
		理論値 C.51.81;H.5.72;N.12.72
	•	実験値 C,51.76;H,5.59;N,12.53
ļ		比旋光度 [α] _p ²º-22.0° (c=0.1,DMSO)
		無色針状晶[i-PrOH]
	9	mp,126~127°C
21	CH2-N N-	元素分析値 C ₂₀ H ₂₇ FN ₄ O ₆ S
		理論值 C.52.85;H.5.99;N,12.33
	*	実験値 C.52.82;H.5.75;N.12.22
		比旋光度 [α] _D ²⁰ -24.0° (c=0.1,DMSO)
		淡黄色結晶[i-PrOH-i-Pr ₂ O]
	% \( \sigma \)	mp,98~99℃
22	O (CH ₂ ) ₂ -N N-	元素分析值 C ₂₁ H ₂ ,FN ₄ O ₅ S
	F	理論値 C.53.83;H.6.24;N,11.96
		実験値 C.53.75;H.6.26;N,11.93
		比旋光度 [α] ₀ ²⁰ -19.1° (c=0.1.DMSO)
.		無色針状晶[i-PrOH]
	)—(CH ₂ ) ₃ -N N-(-)	mp,97~98℃ 元素公坛族 0 . U . 5 V . 0 . 0
23	MeO F	元素分析値 C ₂₁ H ₂₅ FN ₄ O ₅ S
	·	理論値 C,53.83;H,6.24;N,11.96
		実験値 C,53.77;H,6.34;N,11.89
24		比旋光度 [α] _p ²⁰ -16.0° (c=0.1,DMSO) 無色結晶[i-PrOH-i-Pr ₂ O]
		mp,114~116°C
		元素分析值 C ₁₈ H ₂₃ FN ₄ O ₅ S
	MeO "\'"	で表が VI III U18 T 23 T N 4 U 5 O
	F [']	理論値 C,50.69;H,5.44;N,13.14
		実験値 C,50.85;H,5.53;N,12.88
		比旋光度 [α] _D ²⁰ -26.1° (c=0.1.DMSO)

実施例	R	物性[再結晶溶媒]
		淡赤褐色結晶[i-PrOH]
•	9 5	mp,157~160°C
	MeO-(CH ₂ ) ₂ N N-(-)-	元素分析値 C₂₀H₂ァFN₄O₅S
25	ڪر ِ . ک	理論値 C,52.85;H,5.99;N,12.33
	•	実験値 C,52.60;H,6.20;N,12.27
		比旋光度 [α] _p ²0-17.0°(c=0.1,DMSO)
		淡褐色結晶[i-PrOH]
	M•	mp,173~174°C
	Me N (CH ₂ ) ₂ N N —	元素分析值 C21H30FN5O4S
26	,	理論値 C,53.95;H,6.47;N,14.98
		実験値 C,53.72;H,6.78;N,14.71
		比旋光度 [α] ₀ ²0~21.0°(c=0.1,DMSO)
		淡黄色液体
		NMR(DMSO-d ₆ ) $\delta$ ppm:1.57(2H,quin,J=7
		.5Hz),1.79(3H,s),2.34(2H,t,J=7.5Hz),2
1		.50(4H,t,J=4.5Hz),2.98(4H,t,J=4.5Hz),
1		3.00-3.10(2H,m),3.45-3.55(2H,m),3.7
27	Me H CHPP - N N - N	5-3.85(1H,m),3.89(3H,s),4.11(1H,t,J=
21	F [']	9Hz),4.85-4.95(1H,m),7.03(1H,t,J=9H
1		z),7.17(1H,dd,J=9,2.5Hz),7.46(1H,dd,
1		J=14.5,2.5Hz),7.68(1H,br-s),8.39(1H,
		br-s)
	,	IR $\nu$ (liq.) cm ⁻¹ :1748,3304
	· · · · · · · · · · · · · · · · · · ·	比旋光度[α] ₀ ²⁰ -50.6°(c=0.1,DMSO)
		無色結晶[i-PrOH]
	(CL) (C) (E)	mp,115~117°C
28	NC (CID2 N N	元素分析值 C ₁₉ H ₂₄ FN ₅ O ₃ S
20		理論値 C,54.14;H,5.74;N,16.62
		実験値 C,54.08;H,5.93;N,16.51
		比旋光度 [α] ₀ ²⁰ -24.0° (c=0.1,DMSO)
29		淡褐色結晶[DMF-H₂O]
	CH-L-	mp,193.5∼195°C
		元素分析值 C ₂₆ H ₂₈ FN ₅ O ₅ S
	0 F	理論値 C,57.66;H,5.21;N,12.93
	•	実験値 C,57.64;H,5.20;N,12.77
		比旋光度 [α] _D ²⁰ -19.1°(c=0.1,DMSO)

		<u> </u>
実施例	R	物性[再結晶溶媒]
		無色結晶[i-Pr ₂ 0]
	1	mp,102.5~103.5℃
30	Mary	元素分析值 C,,H,eNzO,S
		理論値 C.55.70;H,5.75;N,9.99
		実験値 C,55.86;H,6.02;N,9.89
		比旋光度[α] ₀ ²⁰ -33.9°(c=0.1,DMSO)
1		無色針状晶[i-PrOH]
		mp.108~110°C
31	Me—( )—	元素分析值 C14H18N2O3S
	سر	理論値 C.57.12;H.6.16;N,9.52
	MI	実験値 C,57.29;H,6.38;N,9.51
		比旋光度[α] _p ²⁰ -32.0° (c=0.1,DMSO)
		淡黄色針状晶[i-PrOH]
		mp,146.5~148.5°C
32	. Me	元素分析值 C14H16N2O4S
		理論値 C,54.53;H,5.23;N,9.08
		実験値 C.54.51;H,5.11;N,9.05
		比旋光度[α] ₀ ²⁰ -45.0° (c=0.1,DMSO)
•		淡褐色結晶[i-PrOH]
		mp,149~150°C
33	M•\N-(-)-	元素分析値 C14H19N3O3S
	Ma' 🖳	理論値 C,54.35;H,6.19;N,13.58
		実験値 C,54.54;H,6.14;N,13.45
		比旋光度 [α] _p 20-24.0°(c=0.1.DMSO)
		淡黄色液体
[		NMR(DMSO-d ₆ ) δ ppm:2.77(6H,s),3.75-
ŀ		3.85(3H,m),3.92(3H,s),4.06(1H,t,J=9H
	Me	z),4.80-4.90(1H,m),6.95(1H,t,J=9Hz).
34	M-,\\	7.13(1H,dd,J=9,2.5Hz),7.40(1H,dd,J=1
l	F	5.5,2.5Hz),9.10(1H,br-s)
		IR ν (liq.) cm ⁻¹ :1754,3268
		MS(m/z):327(M ⁺ )
		比旋光度[α] ₀ ²⁰ -38.1°(c=0.1,DMSO)

		<u>. *</u>
実施例	R	物性[再結晶溶媒]
		淡褐色針状晶[i-PrOH]
		mp,91~92°C
35	m*\n-\( -\)	元素分析值 C15H20FN3O3S
33	Et'	理論値 C,52.77;H,5.90;N,12.31
	•	実験値 C,52.83;H,6.16;N,12.26
		比旋光度 [α] _D ²⁰ -25.1° (c=0.1,DMSO)
		淡褐色液体
		NMR(DMSO- $d_6$ ) $\delta$ ppm:1.01(6H,t,J=7Hz)
	u.	,3.13(4H,q,J=7Hz),3.70-3.85(3H,m),3.
	E)	92(3H,s),4.09(1H,t,J=9Hz),4.80-4.90(
36	``\~ <u>~</u> `}~	1H,m),7.01(1H,t,J=9Hz),7.10-7.20(1H
	Et ,	m),7.36(1H,dd,J=14.5,2.5Hz),9.10(1H
		,br-s)
		$  \text{IR} \nu \text{ (liq.) cm}^{-1} : 1378,1460 $
	-	MS(m/z):355(M ⁺ )
		比旋光度 [α] ₀ ²⁰ -35.8° (c=0.1,DMSO)
		無色針状晶[EtOH]
37	<b>/=</b> \	mp,101~102°C
	MeO-(CH ₂ ) ₂ -0-	元素分析值 C ₁₅ H ₁₉ FN ₂ O ₅ S
	, <b>F</b>	理論値 C.50.27;H.5.34;N,7.82
	•	実験値 C,50.22;H,5.36;N,7.81
		比旋光度 [α] _o ²⁰ -33.0° (c=0.1,DMSO)
		淡褐色プリズム状晶 [i-PrOH]
		mp,134~135°C
38		元素分析値 C ₁₅ H ₁₈ N ₂ O ₃ S
		理論値 C,58.80;H,5.92;N,9.14
	•	実験値 C,58.94;H,6.04;N,9.16 比旋光度 [α] _p ²º-31.0°(c=0.1,DMSO)
39		近旋光度 [は] _D -31.0 (C-0.1,DMSO)   淡褐色プリズム状晶[i-PrOH]
	·	次特色フリスム( 間 [1-PFOR]   mp,145.5~147℃
		元素分析值 CleHzoNzO3S
		理論値 C.59.98;H.6.29;N.8.74
	<u>.</u> .	実験値 C,60.10;H,6.40;N,8.70
	••	上旋光度 [α] _p 20−35.1° (c=0.1.DMSO)
		POWE JUNE LA TO CO. 1 (C-0.1,DNI3O)

Sto the for		<u> </u>
実施例	R	物性[再結晶溶媒]
		黄色液体 NMR(DMSO-d ₆ )δppm:1.55-1.65(2H,m),
·	9	1.80-1.95(2H,m),3.20-3.30(2H,m),3.6 1(3H,s),3.60-3.70(2H,m),3.70-3.85(3
40	Meo N O	H,m),3.92(3H,s),4.10(1H,t,J=8.5Hz),4.
70		40-4.50(1H,m),4.80-4.90(1H,m),7.15-
	F	7.25(2H,m),7.40-7.50(1H,m),9.10(1H,
	İ	br-s)
		IRν(liq.) cm ⁻¹ :1696,1756
		比旋光度[α] ₀ ²⁰ -20.7°(c=0.1,DMSO)
		無色無晶形固体
	-	NMR(DMSO- $d_6$ ) $\delta$ ppm:1.55-1.65(2H,m),
		1.85-1.95(2H,m),2.56(2H,t,J=6.5Hz),3
}		.24(3H,s),3.25-3.35(2H,m),3.58(2H,t,J
41		=6.5Hz),3.70-3.85(3H,m),3.92(3H,s),4
1	, F	.10(1H,t,J=9Hz),4.45-4.55(1H,m),4.80
		-4.90(1H,m),7.15-7.25(2H,m),7.47(1H
		.d,J=13Hz),9.11(1H,br-s)
		IRν(liq.) cm ⁻¹ :1756
		比旋光度[α] _D ²⁰ -17.2°(c=0.1,DMSO)  淡黄色プリズム状晶[EtOH]
		次英ピンリスム状語 [EtOH]   mp.177~178.5℃
	L.A. /=\	元素分析值 C ₁₇ H ₂₀ FN ₃ O ₈ S
42	Med N O	理論値 C,49.39;H,4.88;N,10.16
	f [']	実験値 C,49.23;H,4.79;N,10.07
		比旋光度 [α] ₀ ²⁰ -24.0° (c=0.1,DMSO)
		無色結晶
ł		NMR(DMSO-d ₆ ) $\delta$ ppm:3.03(4H,t,J=5Hz)
43	e	,3.75-3.85(3H,m),3.85-3.90(4H,m),3.9
	H ₂ N N N	1(3H,s),4.11(1H,t,J=9Hz),4.80-4.90(1
		H.m),7.06(1 $H$ , $t$ , $J$ =9 $Hz$ ),7.13(2 $H$ , $br$ - $s$ ).
	F	7.17(1H,dd,J=9,2.5Hz),7.43(1H,dd,J=1)
		5.5,2.5Hz),9.11(1H,br-s)
		IR ν (KBr) cm ⁻¹ :3272
		比旋光度[α] _p ²⁰ -60.1°(c=0.1,DMSO)

実施例	R	物性[再結晶溶媒]
		淡褐色針状晶[EtOH]
	s	mp,168~169°C
44	Me N	元素分析值 C18H24FN5O3S2
44		理論值 C,48.96;H,5.48;N,15.86
	<b>F</b>	実験値 C,48.82;H,5.26;N,15.76
		比旋光度[α] _p ²º-24.0°(c=0.1,DMSO)
		淡褐色針状晶[CH3CN]
	\$	mp,157~158.5℃
45	Et.,,	元素分析值 C19H28FN5O,S2
45		理論値 C,50.09;H,5.75;N,15.37
[	<b>F</b>	実験値 C,50.10;H,5.69;N,15.26
		比旋光度[α] _p ²º-28.0°(c=0.1,DMSO)
		無色結晶[MeOH]
		mp,162.5∼164.5°C
46		元素分析值 CzoHzsFNsOsSz
40		理論値 C,51.15;H,6.01;N,14.91
		実験値 C.51.07;H,5.87;N,14.90
	<u>.</u>	比旋光度[α] _p ²º-21.1°(c=0.1,DMSO)
		淡褐色結晶
		NMR(DMSO-d ₆ ) $\delta$ ppm:3.09(4H,t,J=5Hz)
		,3.11(6H,s),3.51(4H,t,J=5Hz),3.75-3.8
		5(3H,m),3.92(3H,s),4.10(1H,t,J=9Hz),
47	M M M M M	4.80-4.90(1H,m),7.07(1H,t,J=9Hz),7.1
	MeF	8(1H,dd,J=9,2Hz),7.42(1H,dd,J=14.5,
	•	2Hz),9.11(1H,br-s)
		IRν(KBr) cm ⁻¹ :1748,3392
48		比旋光度[α] _D ²⁰ -21.9°(c=0.1,DMSO)
		無色針状晶[i-PrOH]
	S Naco N N	mp,181∼182.5℃
		元素分析值 C ₁₈ H ₂₃ FN ₄ O ₄ S ₂
		· 理論値 C,48.85;H,5.24;N,12.66
	F	実験値 C,49.04;H,5.13;N,12.71
		比旋光度[α] _p ²º-32.1°(c=0.1,DMSO)

44- A-4		<u></u>
実施例	R	物性[再結晶溶媒]
	,	無色結晶[EtOH]
	ş	mp,126.5~127°C
49	EKO N N N	元素分析值 C ₁₉ H ₂₅ FN ₄ O ₄ S ₂
		理論値 C.49.98;H.5.52;N.12.27
	F	実験値 C,49.87;H,5.69;N,12.27
		比旋光度[α] ₀ ²⁰ -25.9°(c=0.1,DMSO)
		無色結晶[MeOH]
	<b>S</b>	mp,148~149°C
50	n-PrO N N	元素分析值 C20H27FN4O4S,
		理論値 C,51.05;H,5.78;N,11.91
	F	実験値 C,51.16;H,5.81;N,11.70
		比旋光度[α] ₀ ²º-24.0°(c=0.1,DMSO)
		無色結晶[i-PrOH]
1	Mes N N	mp,160~162°C
51		元素分析値 C,,H ₂₃ FN ₄ O ₃ S,
	_ \ <u>\</u>	理論値 C,47.14;H,5.06;N,12.22
	F	実験値 C.47.40;H,5.04;N,12.13
		比旋光度[α] ₀ ²º-22.9°(c=0.1,DMSO)
<b> </b>		黄色針状晶[AcOEt]
52	s	mp,148~149℃
	Ph N N N	元素分析值 C23H25FN4O3S2
	۱ سر ب	理論值 C,56.54;H,5.16;N,11,47
	· .	実験値 C,56.39;H,5.10;N,11.32
		比旋光度[α] _D ²⁰ -25.0° (c=0.1,DMSO)

実施例	R	物性[再結晶溶媒]
		無色無晶形固体
	!	NMR(DMSO-d ₆ ) $\delta$ ppm:1.69(2H,quin,J=6
		.5Hz),2.39(2H,t,J=6.5Hz),2.54(4H,t,J=
1		5Hz),2.85(3H,d,J=4.5Hz),3.03(4H,t,J=
	ş	5Hz),3.40-3.50(2H,m),3.70-3.85(3H,m
	Mo-H H (CH ³ ) ³ / N N	),3.92(3H,s),4.08(1H,t,J=9Hz),4.80-4.
53		90(1H,m),7.03(1H,t,J=9Hz),7.12(1H,br
]	•	-s),7.15(1H,dd,J=9,2.5Hz),7.16(1H,br
	•	-s),7.39(1H,dd,J=15,2.5Hz),9.10(1H,b
		r-s)
		IRν (KBr) cm ⁻¹ :1746,3252
		比旋光度[α] _p ²º-20.9° (c=0.1,DMSO)
		淡褐色液体
		NMR(DMSO-d ₆ ) $\delta$ ppm:1.60-1.80(2H,m),
		2.39(2H,t,J=6.5Hz),2.53(4H,t,J=5Hz),
1		3.02(4H,t,J=5Hz),3.40-3.50(2H,m),3.7
	Meo H (CH ₂ ) ₃ , N N F	0-3.85(3H,m),3.87(3H,s),3.92(3H,s)4.
54		08(1H,t,J=9Hz),4.80-4.90(1H,m),7.02(
		1H,t,J=9Hz),7.15(1H,dd,J=9,2.5Hz),7.
		39(1H,dd,J=15.5,2.5Hz),8.77(1H,br-s)
		.9.10(1H,br-s)
		IRν(lig.) cm ⁻¹ :1740,3268
		比旋光度[α] ₀ ²⁰ -18.1°(c=0.1,DMSO)
		淡褐色結晶
	• •	NMR(DMSO- $d_6$ ) $\delta$ ppm:1.60-1.75(2H,m),
		1.90-2.05(1H,m),2.40-2.55(2H,m),2.7
	.,	0-2.85(2H,m),3.25-3.35(2H,m),3.65-3
55	MeO N T	.85(3H,m),3.89(3H,s),3.92(3H,s),4.08(
	Ĭ /__/_	1H,t,J=9Hz),4.80-4.90(1H,m),7.05(1H
	F F	t,J=9Hz),7.14(1H,dd,J=9,2.5Hz),7.39(
		1H,dd,J=14.5,2.5Hz),8.80(1H,br-s),9.
		11(1H,br-s)
		IR v (KBr) cm ⁻¹ :1740,3272
		比旋光度[α] _p ²º-25.0° (c=0.1,DMSO)
L	<u> </u>	2012 70 12 La 10 La. (0 0.1,DM00)

実施例	R¹	# # ! TAL B * /# !
37 25 171		物性[再結晶溶媒]
	i	無色結晶[i-PrOH]
İ		mp,103.5~104.5°C
56	Et	元素分析值 C ₁₇ H ₂₂ FN ₃ O ₃ S ₂
		理論値 C.51.11;H,5.55;N,10.52
		実験値 C,51.20;H,5.67;N,10.38
		比旋光度[α] ₀ ²⁰ -23.1° (c=0.1,DMSO)
		淡黄色結晶[i-PrOH]
ł		mp,124~125°C
57	n-Pr	元素分析值 C18H24FN3O2S2
		理論值 C,52.28;H,5.85;N,10.16
	i-Pr	実験値 C.52.22;H,5.86;N,10.12
		比旋光度[α] _p ²⁰ -30.9° (c=0.1,DMSO)
		無色結晶[i-PrOH-i-Pr ₂ O]
		mp,164~166℃
58		元素分析值 C18H24FN3O3S2
		理論値 C,52.28;H,5.85;N,10.16
1 1		実験値 C,52.06;H,5.56;N,10.01
		比旋光度[α] _p ²º-32.1° (c=0.1.DMSO)
		淡黄色結晶[MeOH]
59	cyc-Hex	mp,150~152℃
		元素分析值 CziHzsFN3O3Sz
		理論值 C,55.61;H,6.22;N,9.26
		実験値 C,55.49;H,5.97;N,9.07
		比旋光度[α] _p ²⁰ -26.9°(c=0.1,DMSO)

実施例 R ¹ 物性[再結晶溶媒] 淡黄色プリズム状晶[EtOH] mp,152~153℃ 元素分析値 C ₁₉ H ₂₆ FN ₅ O ₃ S ₂ 理論値 C,50.09;H,5.75;N,15.37 実験値 C,50.14;H,5.82;N,15.13 比能光度[α] ²⁰ =30.0° (a=0.1 pMoo)			<b>3</b>
淡黄色プリズム状晶 [EtOH] mp,152~153℃  60 Et 元素分析値 C₁9H28FN5O3S2 理論値 C,50.09;H,5.75;N,15.37 実験値 C,50.14;H,5.82;N,15.13	実施例	R ¹	物性[再結晶溶媒]
	60	Et	淡黄色プリズム状晶 [EtOH] mp,152~153℃ 元素分析値 C ₁₉ H ₂₆ FN ₅ O ₃ S ₂ 理論値 C,50.09;H,5.75;N,15.37

### 実施例 6 1

(S) -N-[3-[3-7]ルオロー4-[4-(3-x)]ルアミノプロピル) ピペラジン-1-7ル] フェニル] -2-7キソオキサゾリジン-5-7ル] メチルチオカルバミド酸0-x

- 1) (S) -5-アミノメチル-3-[3-フルオロ-4-[4-(3-メシルアミノプロビル) ビベラジン-1-イル] フェニル] <math>-2-オキソオキサゾリジン0.40g及びトリエチルアミン0.13mlの無水テトラヒドロフラン4ml溶液に、氷冷攪拌下二硫化炭素0.12mlを加え、同温で5時間攪拌した。この混合液に氷冷攪拌下、クロロ炭酸エチル0.09mlを加え、同温でさらに2時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、芒硝乾燥後、溶媒を減圧留去し、淡褐色無晶形固体0.39gを得た。
- 2) 無水メタノール3.5 ml 中に室温攪拌下、60%水素化ナトリウム0.06 gを加えて室温で30分間攪拌した後、1)で得られた無晶形固体0.35 gを加え、室温で1時間攪拌した。反応混合物に氷水及び10%塩酸を加えて中和し、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、芒硝乾燥後、溶媒を減圧留去した。残渣をカラムクロマトグラフィー(アルミナ,酢酸エチル)で精製し、淡褐色結晶0.14 gを得た。イソプロパノールから再結晶し、融点120~121.5  $^{\circ}$ Cの無色針状晶を得た。

元素分析值 C₂₀H₃₀FN₅O₅S₂

理論値 C, 47.70; H, 6.00; N, 13.91

実験値 C, 47.76; H, 5.88; N, 13.70

比旋光度  $[\alpha]_0^{20}-19.0^{\circ}$  (c=0.1, DMS0)

#### 実施例62

- (S) -N-[3-[3-フルオロー4-(ピペラジン-1-イル)フェニル]
- -2-オキソオキサゾリジン-5-イル] メチルチオカルバミド酸〇-メチル
  - 10%塩化水素酢酸エチル溶液 4ml に氷冷攪拌下、(S)-N-[3-[4-

(4-tert-7トキシカルボニルピペラジン-1-4ル) -3-7ルオロフェニル] -2-3キソオキサゾリジン-5-4ル] メチルチオカルバミド酸0-3メチル0. 20 gを加え、室温で6 時間攪拌した。反応後溶媒を減圧留去し、残渣に炭酸水素ナトリウム水溶液を加え、1, 2-3クロロエタンで抽出した。抽出液を水,飽和食塩水で順次洗浄し、芒硝乾燥後、溶媒を減圧留去し無色無晶形固体0. 10 gを得た。

IRスペクトル ν (KBr)cm⁻¹: 1750,3228

比旋光度  $[\alpha]_{p}^{20}-30.1^{\circ}$  (c=0.1, DMSO)

### 実施例 6 3

- (S) -N-[3-[3-7]ルオロー4-[4-(3-3)] ピペラ・ジンー1-4ル] フェニル] -2-3キソオキサゾリジン-5-4ル] メチルチオカルバミド酸0-3メチル
- (S) -N-[3-[3-7)ルオロー4ー (ピペラジンー1ーイル) フェニル] -2-オキソオキサゾリジンー5-イル] メチルチオカルバミド酸0-メチルのメタノール 1 ml 溶液に、室温攪拌下、メチルビニルケトン0.0 1 ml を加え、同温で30分間攪拌した。反応後溶媒を減圧留去し、残渣をカラムクロマトグラフィー (アルミナ,酢酸エチル) で精製し、無色結晶0.06 gを得た。

IRスペクトル ν (KBr)cm⁻¹: 1714,1746,3284

比旋光度  $[\alpha]_{D}^{20}-20.8^{\circ}$  (c=0.1, DMSO)

### 実施例 6 4

- (S) -N-[3-[4-(4-カルバモイルビベラジン-1-イル)-3-フルオロフェニル] -2-オキソオキサゾリジン-5-イル] メチルチオカルバミド酸0-メチル

IRスペクトル ν (KBr)cm⁻¹: 1740

比旋光度  $[\alpha]_{n}^{20}-32.0^{\circ}$  (c=0.1, DMSO)

### 実施例65

- (S) -N-[3-[3-フルオロ-4-(ピペラジン-1-イル)フェニル] -2-オキソオキサゾリジン-5-イル]メチルチオカルバミド酸O-メチルO. 50gのテトラヒドロフラン5.0ml 溶液に、室温攪拌下ジチオ酢酸エチルO. 17mlを加え、同温で18時間攪拌した。反応後溶媒を減圧留去し、残渣を酢酸エチルで洗浄し無色結晶O.27gを得た。アセトニトリルから再結晶し、融点

176~178℃の無色結晶を得た。

元素分析值 C₁₈H₂₃FN₄O₃S₂

理論值 C, 50.69; H, 5.44; N, 13.14

実験値 C, 50.71; H, 5.34; N, 13.26

比旋光度 [ $\alpha$ ]  $_{\rm D}^{20}-33.0^{\circ}$  (c=0.1, DMSO)

以下、本発明のチオカルバミド酸誘導体の優れた効果を確認するために、標準 菌、臨床分離株及び非定型抗酸菌に対する抗菌試験を行った。

[標準菌,臨床分離株及び非定型抗酸菌に対する抗菌スペクトル]

抗菌力(最小発育阻止濃度:MIC)の測定は、日本化学療法学会標準法[日本化学療法学会誌,29巻,76頁(1981年)]に準じて、標準菌及び感染症患者から分離された菌株(臨床分離株,非定型抗酸菌を含む)を用い、生菌数を10⁶個/mlとして行った。対照化合物としては、Linezolid[Journal of Medicinal Chemistry,39巻,673頁(1996年)に記載の化合物。以下、対照化合物とする。]を用いた。

本発明化合物は、対照化合物に比べて標準菌、臨床分離株及び非定型抗酸菌に対して優れた抗菌活性を示した。

尚、表中の菌名は以下の通りである。

標準菌

Staphylococcus aureus(S.aureus)

Bacillus subtilis (B.subtilis)

臨床分離株

Methicillin-resistant Staphylococcus aureus (MRSA)

Staphylococcus epidermidis (S.epidermidis)

Enterococcus faecalis (E.faecalis)

Enterococcus faecium (E.faecium)

非定型抗酸菌

Mycobacterium avium (M.avium)

Mycobacterium intracellulare (M.intracellulare)

標準菌に対する抗菌スペクトル (最小発育阻止濃度μg/ml)					
化合物	実施	実施	実施·	実施	対照化
試験菌	例1	例2	例3	例4	合物
S.aureus Smith HPC023	1.56	0.78	0.78	0.39	3.13
S.aureus MS353 HPC017	0.78	0.78	0.78	0.39	3.13
B. subtilisATCC 6633 HPR022	0.39	0.39	0.39	0.39	0.78
臨床分離株に対する抗菌スペク	<b>クトル(</b> 1	最小発育	阻止濃度	μg/ml	) .
化合物	実施	実施	実施	実施	対照化
試験菌	例 1	例 2	例3	例4	合物
MRSA HPC 432	0.78	0.78	0.78	0.39	3.13
MRSA HPC 1336	0.78	0.78	0.78	0.39	3.13
S.epidermidis HPC 1728	0.78	0.78	0.39	0.39	3.13
E.faecalis HPC 1321	0.78	0.39	0.39	0.39	1.56
E.faecium HPC 1322	0.78	0.39	0.39	0.39	1.56
非定型抗酸菌に対する抗菌スペクトル (最小発育阻止濃度μg/ml)					
化合物	実施	実施	実施	実施	対照化
試験菌	例 1	例 2	例3	例4	合物
M.avium 20092	0.39	3.13	3.13	1.56	25
M.avium 20096	0.39	3.13	3.13	1.56	50
M. intracellulare 20067	0.39	6.25	3.13	1.56	12.5

0.39

# 産業上の利用可能性

M. intracellulare 20073

本発明に係る新規なチオカルバミド酸誘導体又はその塩は、標準菌のみならず 多剤耐性菌を含めた臨床分離株及び非定型抗酸菌に対して優れた抗菌作用を有し、 抗菌剤として極めて有用である。

6.25

0.78

6.25

# 請求の範囲

## 1. 次の一般式

(式中、R¹は置換基を有してもよいアルキル基又は置換基を有してもよいシクロアルキル基を表し、R², R³及びR⁴は、各々独立して水素原子, ハロゲン原子, 置換基を有してもよいアルコキシ基, 置換基を有してもよいアルコキシ基, 置換基を有してもよいアルカノイル基, 環構成原子としてヘテロ原子を含み置換基を有してもよいシクロアルキルオキシ基又は置換基を有してもよい飽和複素環基を表すか、あるいはR², R³及びR⁴の任意の二つが一緒になって、ベンゼン環と共に置換基を有してもよい炭化水素縮合環を形成してもよい。)

で示されるチオカルバミド酸誘導体又はその塩。

## 2. 次の一般式

(式中、 $R^1$ は置換基を有してもよいアルキル基又は置換基を有してもよいシクロアルキル基を表し、 $R^5$ 及び $R^6$ は、各々独立して水素原子又はハロゲン原子を表し、aは $0\sim2$ の整数を表す。)

で示されるチオカルバミド酸誘導体又はその塩。

# 3. 次の一般式

$$R^7$$
  $(CH_2)_{\overline{b}}$   $N$   $R^5$   $O$   $H$   $O$   $R^1$ 

(式中、R¹は置換基を有してもよいアルキル基又は置換基を有してもよいシクロアルキル基を表し、R⁵及びR⁶は、各々独立して水素原子又はハロゲン原子を表し、R⁷は置換基を有してもよいアルキル基,置換基を有してもよいアミノ基又は置換基を有してもよいアルコキシ基を表し、bは1~4の整数を表す。)で示されるチオカルバミド酸誘導体又はその塩。

## 4. 次の一般式

(式中、R¹は置換基を有してもよいアルキル基又は置換基を有してもよいシクロアルキル基を表し、R⁵及びR⁶は、各々独立して水素原子又はハロゲン原子を表し、Rঙは置換基を有してもよいアルキル基、置換基を有してもよいアルキニル基、置換基を有してもよいアルコキン基、置換基を有してもよいアルキルチオ基、置換基を有してもよいアルコキン基、置換基を有してもよいアルキルチオ基、置換基を有してもよいアミノ基、置換基を有してもよい飽和複素環基、置換基を有してもよいアリール基又は置換基を有してもよいアラルキル基を表し、YはCH又は窒素原子を表し、XはNH又は単結合を表し、dは0~3の整数を表し、e及びfは、各々独立して1~3の整数を表す。)

- 5. 請求の範囲第1項~第4項のいずれか1項に記載の化合物又はその塩を有効 成分として含有する医薬。
- 6. 抗菌剤である請求の範囲第5項に記載の医薬。

で示されるチオカルバミド酸誘導体又はその塩。

- 7. 請求の範囲第5項又は第6項に記載の医薬の製造のための請求の範囲第1項 ~第4項のいずれか1項に記載の化合物又はその塩の使用。
- 8. 感染症の予防及び/又は治療方法であって、請求の範囲第1項~第4項のいずれか1項に記載の化合物又はその塩の予防及び/又は治療有効量をヒトを含む哺乳類動物に投与する工程を含む方法。

# INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP99/06260

A. CLAS	SIFICATION OF SUBJECT MATTER				
Int	.Cl ⁷ C07D263/22, C07D413/12,	CO	7D417/10 A61K31/43	1 761822/425	
	A61K31/445, A61K31/496, A	61K	31/541, A61K31/55, A6	1, A61K31/435, 1K31/44	
According t	According to International Patent Classification (IPC) or to both national classification and IPC				
B. FIELD	S SEARCHED				
Minimum d	ocumentation searched (classification system follower	d by cl	assification symbols)		
Int.	.Cl ⁷ C07D263/22, C07D413/12, A61K31/445, A61K31/496, A	CO	7D417/10 A61K31/42	1, A61K31/435, 1K31/44	
Documentat	tion searched other than minimum documentation to the	ne exte	nt that such documents are included	in the fields seems - 1	
CALL	ata base consulted during the international search (nar LUS (STN) LSTRY (STN)	me of o	lata base and, where practicable, sea	rch terms used)	
C. DOCU	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where a	рргорі	iate, of the relevant passages	Relevant to claim No.	
PX	WO, 98/54161, A1 (Pharmacia & 03 December, 1998 (03.12.98) & AU, 9874883, A1	Upjc	hn Company),	1-7	
A	EP, 789025, A1 (Bayer AG.), 13 August, 1997 (13.08.97) & DE, 19604223, A1 & US, 5792765, A & JP, 9-316073, A			1-7	
Further	documents are listed in the continuation of Box C.		See patent family annex.		
* Special "A" docume	categories of cited documents:	"T"	later document published after the inter	national filing date or	
consider	nt defining the general state of the art which is not red to be of particular relevance	# = = <b>*</b>	priority date and not in conflict with the understand the principle or theory under	application but cited to	
date	date  date  date  considered novel or cannot be considered to involve an inventive			laimed invention cannot be ed to involve an inventive	
cited to special i	cited to establish the publication date of another citation or other special reason (as specified)  "Y" document of particular relevance; the claimed invention cannot be special reason (as specified)				
means	means combined with one or more other such documents, such			documents, such	
"P" document published prior to the international filing date but later than the priority date claimed			document member of the same patent fa	imily	
Date of the actual completion of the international search 04 February, 2000 (04.02.00)		Date	of mailing of the international searce 22 February, 2000 (2	h report 2.02.00)	
Name and ma Japan	ailing address of the ISA/ nese Patent Office	Auth	orized officer		
Facsimile No.		Telephone No.			

# INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP99/06260

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: 8 because they relate to subject matter not required to be searched by this Authority, namely:
The subject matter of claim 8 relates to a method for treatment of the human or animal body by therapy, which does not require an international search report by this International Search Authority in accordance with PCT Article 17(2) (a)(i) and Rule 39.1(iv).
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.
<ol> <li>As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.</li> </ol>
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
····
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

		国际山腹番号	PCT/JP9	9/06260.		
A61K31 5, A61K	A. 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl'C07D263/22, C07D413/12, C07D417/10, A61K31/421, A61K31/435, A61K31/445, A61K31/496, A61K31/541, A61K31/55, A61K31/44					
	行った分野					
Int.	最小限資料(国際特許分類(IPC)) Cl ⁷ C07D263/22, C07D413 /435, A61K31/445, A61K ≲31/44	1/12, C07D41 31/496, A611	7/10, A611 31/541,	K31/421, A61K31/5		
最小限資料以	外の資料で調査を行った分野に含まれるもの					
	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					
国際調査で使用	用した電子データベース (データベースの名称	御木に仕口しょの云)				
OILI D	JS (STN) STRY (STN)	、嗣金に使用した用語)				
C. 関連する	ると認められる文献 `					
引用文献の				68,年子 2		
カテゴリー*	引用文献名 及び一部の箇所が関連する	ときは、その関連する簡	節所の表示	関連する 請求の範囲の番号		
PΧ	WO, 9 8 / 5 4 1 6 1, A 1 (Pharm 3. 1 2月. 1 9 9 8 (0 3. 1 & AU, 9 8 7 4 8 8 3, A 1	acia & Uniohn Com	pany)	1-7		
A	EP,789025,A1(Bayer 13.8月.1997(13.08 & DE,19604223,A1 & & JP,9-316073,A	3 97)	6 5, A	1-7		
C欄の続き	にも文献が列挙されている。	□ パテントファ:	ミリーに関する別	紙を参照。		
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表された文献であって、出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「P」国際出願日前で、かつ優先権の主張の基礎となる出願「&」同一パテントファミリー文献						
国際調査を完了 	した日 04.02.00	国際調査報告の発送日	22.02.	00		
日本国 郵	名称及びあて先 特許庁 (ISA/JP) 便番号100-8915	特許庁審査官(権限の 吉住 和之	卸.	4P 9840		
果只都	千代田区霞が関三丁目 4番3号	電話番号 03-35	81-1101	内線 2401		

第1欄	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
法第8第	条第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作
成しなか	やった。
. <del>जि</del>	されるが
1. X	請求の範囲
	つまり、
	請求の範囲8は、治療による人体又は動物の体の処置方法であり、PCT17条(2)
	(a)(i)及びPCT規則39.1(i v)の規定により、この国際調査機関が調査することを要しない対象に係るものである。
	こと安しない対象に示るものである。
2.	請求の範囲は、有意義な国際調査をすることができる程度まで所定の要件を満たしてい
_	ない国際出願の部分に係るものである。つまり、
з. П	請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に
э. Ц	でいて記載されていない。
第Ⅱ欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)
次に立	『べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
_	
1.	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求
	の範囲について作成した。
۰ -	Make a supplied to the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplied of the supplined of the supplied of the supplied of the supplied of the suppli
2	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追
	加調査手数料の納付を求めなかった。
3. 🗍	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納
э. Ц	付のあった次の請求の範囲のみについて作成した。
	170000つたたのかはない単位のからに ライ・く 174次 ひた。
4.	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載
	されている発明に係る次の請求の範囲について作成した。
iá hosm ~	大工粉劇の田識の中立てに明子で注意
12川南1	至手数料の異議の申立てに関する注意 ] 追加調査手数料の納付と共に出願人から異議申立てがあった。
1	追加調査手数料の納付と共に出願人から異議申立てがなかった。