8. ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

8.1 Основные понятия

Процессы в цепи, возникающие при переходе от одного установившегося (стационарного) режима к другому, называются *переходными*.

В электрической цепи переходные процессы возникают при изменении режима ее работы: включении или отключении цепи, изменении параметров R, L или C. Такие действия, вызывающие переходные процессы, называются коммутацией.

Каждому состоянию цепи, имеющей индуктивность L и емкость C, соответствуют определенные запасы энергии магнитного и электрического поля:

$$W_{\scriptscriptstyle M} = \frac{L \cdot i_{\scriptscriptstyle L}^2}{2} \, ; \quad W_{\scriptscriptstyle \Im} = \frac{C \cdot u_{\scriptscriptstyle C}^2}{2} \, .$$

Для изменения энергии поля на конечную величину необходимо некоторое время, т.к. скачкообразное изменение энергии было бы равносильно тому, что мощность источника достигала бы бесконечных значений $(P = \frac{dW}{dt} = \infty)$, что физически невозможно.

В связи с этим — скачкообразные изменения тока i_L в катушке индуктивности и напряжения u_C на конденсаторе невозможны. Следовательно, переход от одного установившегося значения к другому совершается не мгновенно, а лишь за некоторое время (хотя и очень быстро — за доли секунды).

Первый закон коммутации.

Ток в цепи с индуктивностью не может изменяться скачком и в начальный момент времени переходного процесса (t=0) сохраняет свое предшествующее значение.

Второй закон коммутации.

Напряжение на зажимах конденсатора не может изменяться скачком и в начальный момент времени переходного процесса (t=0) сохраняет свое предшествующее значение.

Математический анализ переходных процессов в электрических цепях базируется на том, что законы Кирхгофа применимы не только к установившимся, но и к неустановившимся режимам.

Используя первый и второй законы Кирхгофа можно получить линейные дифференциальные уравнения для переходного процесса. По этим уравнениям определяют значения токов и напряжений в любой момент рассматриваемого процесса. Значения постоянных интегрирования находят из граничных условий, определяемых законами коммутации.

Для упрощения решения дифференциальных уравнений и их анализа переходный процесс принято рассматривать как результат наложения двух режимов: принужденного и свободного. В соответствии с этим действительный ток в цепи i представляется как сумма принужденного тока i_{np} , который устанавливается в цепи по окончании переходного процесса, и свободного тока i_{ce} , протекающего в цепи только в течении переходного процесса

$$i=i_{ce}+i_{np}.$$

Свободный ток постепенно уменьшается и при установившемся режиме ($t=\infty$) становится равным нулю, т.е. $i|_{t=\infty} = i_{nn}$.

Оперируя в расчетах принужденной и свободной составляющими тока, необходимо помнить, что реально существуют не эти отдельные составляющие, а результирующие токи или напряжения.

8.2. Переходные процессы в цепях с индуктивностью

8.2.1. Включение RL цепи на постоянное напряжение

Запишем уравнение по второму закону Кирхгофа для данной цепи (рис.8.1):

$$u_{L} + u_{R} - U = 0;$$
 $U = u_{L} + u_{R}.$
Или (раскрыв u_{L} и u_{R})
$$U = L \frac{di}{dt} + i \cdot R. \tag{8.1}$$

Пусть мгновенный переходный ток в цепи равен $i = i_{np} + i_{cs}$. Стоит задача нахождения составляющих тока i_{np} и i_{cs} . Подставив это выражение в уравнение (8.1), получим:

$$L\frac{d}{dt}(i_{np} + i_{ce}) + (i_{np} + i_{ce}) \cdot R = U.$$
 (8.2)

Очевидно, что $i_{cs}|_{t=\infty}=0$, т.е. в установившемся режиме $i_{cs}=0$. Тогда уравнение (8.2) можно записать относительно принужденной составляющей тока

$$L\frac{di_{np}}{dt} + i_{np} \cdot R = U. \tag{8.3}$$

Очевидно, что $i_{np}\mid_{t=\infty}=const$, следовательно:

$$L\frac{di_{np}}{dt} = 0 \quad \mathbf{И}$$

$$i_{np} = \frac{U}{R} \,. \tag{8.4}$$

Вычтем (8.3) из (8.2), получим

$$L\frac{di_{cs}}{dt} + i_{cs} \cdot R = 0. \tag{8.5}$$

Решением данного дифференциального уравнения является выражение:

$$i_{ce} = A \cdot e^{p \cdot t},$$

где A — постоянная интегрирования; p — корень характеристического уравнения.

Как уже отмечалось выше (в п.8.1), постоянные интегрирования определяются из граничных условий, задаваемых законами коммутации.

В данном случае постоянная интегрирования A определяется из следующего граничного условия, записанного на основе первого закона коммутации

$$(i_{np} + i_{ce})|_{t=0} = i|_{t=0} = 0.$$

Отсюда:
$$i_{cs}\big|_{t=0} = -i_{np} = -\frac{U}{R}$$
.

С другой стороны $i_{ce}|_{t=0} = A \cdot e^{p \cdot 0} = A$.

Следовательно,
$$A = -\frac{U}{R}$$
.

Корень p определяется из характеристического уравнения, записываемого по виду уравнения (8.5) $p \cdot L + R = 0$. Откуда $p = -\frac{R}{L}$. В результате ток i_{ce} равен:

$$i_{ce} = -\frac{U}{R} \cdot e^{-\frac{R}{L}t} = -\frac{U}{R} \cdot e^{-\frac{t}{\tau}},$$

где $\tau = \frac{L}{R} = -\frac{1}{p}$ — постоянная времени цепи, определяющая скорость протекания переходного процесса. Теоретически переходный процесс длится бесконечно долго. Однако принято считать, что он закончился, если ток i составляет 99% от установившегося значения $I = \frac{U}{R}$. Это имеет место при $t \approx (3 \div 4) \cdot \tau$.

Искомый ток равен
$$i=i_{np}+i_{cs}=\frac{U}{R}-\frac{U}{R}\cdot e^{-\frac{t}{\tau}}=\frac{U}{R}\cdot \left(1-e^{-\frac{t}{\tau}}\right).$$

Временная диаграмма процесса включения цепи с R и L на постоянное напряжение изображена на рис.8.2.

На этом же рисунке показаны два графика изменения тока в цепи в зависимости от постоянной времени τ . Видно, что чем больше значение L, при неизменном сопротивлении R, тем больше энергия магнитного поля, накапливаемая в магнитном поле катушки $W=\frac{L\cdot i^2}{2}$, и тем больше постоянная времени цепи τ .

8.2.2. Короткое замыкание RL цепи постоянного тока

Рис.8.3

Если ключ на рис.8.3 не замкнут, то через некоторое время в цепи установится ток $I_{\scriptscriptstyle 1} = \frac{U}{R_{\scriptscriptstyle 1} + R_{\scriptscriptstyle 2}}$,

определяемый напряжением источника и активным сопротивлением цепи.

При замыкании ключа в момент времени t = 0 напряжение на участке AB равно нулю.

Запас энергии магнитного поля $\left(\frac{L\cdot I_1^2}{2}\right)$ и ток i начинают исчезать, но не

скачком, а постепенно, т.к. при изменении тока в замкнутой цепи на катушке L наводится ЭДС самоиндукции, поддерживающая ток i. Энергия магнитного поля преобразуется в тепловую энергию на сопротивлении R_1 , которая выделяется в окружающее пространство.

Для замкнутого контура с катушкой второй закон Кирхгофа имеет вид:

$$u_{L} + i \cdot R_{1} = 0;$$

$$L \frac{di}{dt} + i \cdot R_{1} = 0.$$
(8.6)

Очевидно, что $i_{np}\mid_{t=\infty}=0$, и, следовательно, $i=i_{cs}+i_{np}=i_{cs}$.

Уравнение (8.6) примет вид:

$$L\frac{di_{cs}}{dt} + R_1 \cdot i_{cs} = 0.$$

Решением данного уравнения является

$$i_{ce} = A \cdot e^{p \cdot t} = A \cdot e^{-\frac{R_1}{L} \cdot t}.$$

Постоянную интегрирования A определим из первого закона коммутации: $i_{\hat{n}\hat{a}}\mid_{t=0}=i\mid_{t=0}=\frac{U}{R_1+R_2} \ -\ \text{это c одной стороны}; \quad i_{ce}\big|_{t=0}=A\cdot e^{p\cdot 0}=A \ -\ \text{с другой стороны}.$

Следовательно,
$$A = \frac{U}{R_1 + R_2}$$
.

Рис.8.4

Окончательно, $i=i_{cs}=\frac{U}{R_{_{1}}+R_{_{2}}}\cdot e^{\frac{-R_{_{1}}}{L}\cdot t}=I_{_{1}}\cdot e^{\frac{-t}{\tau}},$ где $\tau=-\frac{1}{n}=\frac{L}{R_{_{1}}}$.

Временная диаграмма для данного процесса показана на рис. 8.4.

8.2.3. Отключение цепи RL от источника постоянного напряжения

При отключении цепи, содержащей катушку индуктивности (рис.8.5), возникает ЭДС самоиндукции, препятствующая мгновенному прекращению тока.

В момент разрыва между контактами выключателя возникает дуга, поддерживаемая энергией магнитного поля катушки.

Скорость затухания тока определяют переходное сопротивление контактов и дуги.

Если индуктивность L велика, а ток уменьшается быстро, то ЭДС самоиндукции $e_L = -L \frac{di}{dt}$ может во много раз превышать приложенное к цепи напряжение U. Такое перенапряжение опасно (возможен пробой изоляции).

Если в момент размыкания параллельно ветви RL включить сопротивление R_0 , то перенапряжение уменьшается, т.к. энергия $W_{\scriptscriptstyle M} = \frac{L \cdot I^2}{2}$ постепенно в виде тепла будет выделяться в этом сопротивлении. В результате процесс спадания тока окажется более продолжительным, а ЭДС самоиндукции меньше. На практике используют различные дугогасительные устройства.

8.2.4. Включение цепи RL на синусоидальное напряжение

При включении цепи RL (рис.8.1) на синусоидальное напряжение $u = U_{_m} \cdot \sin(\omega \cdot t + \psi)$ в цепи устанавливается ток $i_{_{np}} = \frac{U_{_m}}{7} \cdot \sin(\omega \cdot t + \psi - \varphi)$,

где
$$z = \sqrt{R^2 + (\omega \cdot L)^2}$$
, $\varphi = arctg \frac{\omega \cdot L}{R}$.

Для свободной составляющей уравнение имеет вид:

$$L\frac{di_{cs}}{dt} + R \cdot i_{cs} = 0.$$

Его решение

$$i_{ce} = A \cdot e^{-\frac{R}{L}t} = A \cdot e^{-\frac{t}{\tau}},$$

где
$$\tau = \frac{L}{R}$$
.

Постоянная интегрирования определяется из первого закона коммутации $i\mid_{t=0}=i_{cs}\mid_{t=0}+i_{np}\mid_{t=0}=0$. Отсюда следует, что $i_{cs}\mid_{t=0}=-i_{np}$, а с другой стороны— $i_{cs}\mid_{t=0}=A\cdot e^{p\cdot 0}=A$. Тогда, $A=-i_{np}=-\frac{U_m}{z}\cdot\sin(\psi-\varphi)$ (t = 0, поэтому отсутствует

компонента
$$\omega \cdot t$$
). Следовательно, $i_{cs} = A \cdot e^{p \cdot t} = -\frac{U_m}{z} \cdot \sin(\psi - \varphi) \cdot e^{-\frac{t}{\tau}}$.

Поскольку общий ток $i = i_{ce} + i_{np}$, то $i = -\frac{U_m}{7}\sin(\psi - \varphi) \cdot e^{-\frac{R}{L} \cdot t} + \frac{U_m}{7}\sin(\omega \cdot t + \psi - \varphi)$

Графики свободного, принужденного и переходного токов в общем изображены на рис. 8.6.

Если включение происходит в момент, когда ток i_{np} проходит через нуль, то свободный ток i_{cs} не возникает и в цепи сразу наступает установившийся режим.

Если включение произошло в момент, когда ток $i_{np} = \max$ (рис.8.7), т.е. $\omega \cdot t + \psi - \varphi = 90^{\circ}$, $(\omega \cdot t)_{t=0} = 0$), то через половину периода (при $t = \frac{T}{2}$) общий ток iдостигает максимума, который при больших τ почти в 2 раза больше тока в установившемся режиме.

Рис.8.7

При расчете цепей (устройств) этот факт нужно учитывать, например, при расчете электродвигателя.

8.3. Переходные процессы в цепях с емкостью

8.3.1. Включение цепи RC на постоянное напряжение

Для цепи (рис.8.8) уравнение по второму закону Кирхгофа имеет вид:

$$u_{\scriptscriptstyle R} + u_{\scriptscriptstyle C} - U = 0$$
 , или $u_{\scriptscriptstyle R} + u_{\scriptscriptstyle C} = U$. Зная, что $u_{\scriptscriptstyle R} = i \cdot R$ получим:

$$C \cdot R \frac{du_C}{dt} + u_C = U$$
, t.k. $i = C \frac{du_C}{dt}$.

Пусть $u_{C} = u_{Cnp} + u_{Ccs}$. Подставив данное выражение в предыдущее уравнение, получим:

$$R \cdot C \frac{d}{dt} (u_{Cnp} + u_{Cce}) + u_{Cnp} + u_{Cce} = U.$$

Очевидно, что $u_{_{C\,np}}\mid_{_{t=\infty}}=U$, т.к. за время $t\to\infty$ емкость полностью зарядится до входного напряжения.

Подставим это значение в последнее уравнение и учтем, что $\frac{du_{Cnp}}{dt} = 0$, получим:

$$R \cdot C \frac{du_{Cc6}}{dt} + u_{Cc6} = 0. {(8.7)}$$

Решением данного уравнения является выражение $u_{Cc6} = A \cdot e^{pt}$.

Постоянную интегрирования А найдем из второго закона коммутации:

$$(u_{Cnp} + u_{Cce})|_{t=0} = 0$$
.

Отсюда $u_{C\,cs}\mid_{t=0} = -u_{C\,np} = -U$. С другой стороны $u_{C\,cs}\mid_{t=0} = A\cdot e^{p\cdot 0} = A$.

Тогда A = -U.

Величина корня p определяется из характеристического уравнения, записываемого по виду уравнения (8.7)

$$R \cdot C \cdot p + 1 = 0$$
.

Отсюда следует, что $p = -\frac{1}{R \cdot C}$.

Тогда свободная составляющая напряжения на емкости будет равна

$$u_{cce} = -U \cdot e^{-\frac{t}{R \cdot C}} = -U \cdot e^{-\frac{t}{\tau}}, \tag{8.8}$$

где
$$\tau = -\frac{1}{p} = R \cdot C$$
.

Окончательно, напряжение на емкости в процессе заряда равно

$$u_{C} = u_{Cnp} + u_{Cce} = U - U \cdot e^{-\frac{t}{R \cdot C}} = U \cdot (1 - e^{-\frac{t}{\tau}}).$$

Рис.8.9

Воспользовавшись этим уравнением можно определить ток i:

$$i = C \frac{du_C}{dt} = -U \cdot \left(-\frac{1}{R \cdot C} \right) \cdot C \cdot e^{-\frac{t}{R \cdot C}} = \frac{U}{R} \cdot e^{-\frac{t}{\tau}}.$$

Временная диаграмма данного процесса изображена на рис. 8.9.

8.3.2 Короткое замыкание цепи RC

(разряд конденсатора С на сопротивлении R)

Рис.8.10

До коммутации конденсатор был заряжен до входного напряжения U,

 u_{C} \downarrow U После замыкания ключа по цепи RC (рис.8.10) будет протекать ток $i = C \frac{du_{C}}{dt}$.

Ток будет существовать до тех пор, пока энергия электрического поля $W_{9} = \frac{C \cdot U^{2}}{2}$ не преобразуется в тепло в сопротивлении R.

По второму закону Кирхгофа имеем $i \cdot R + u_C = 0$, или

$$R \cdot C \frac{du_C}{dt} + u_C = 0. \tag{8.9}$$

Так как конденсатор за время $t = \infty$ разрядится полностью, то $u_{Cnn}|_{t=\infty} = 0$. Поэтому в любой момент переходного процесса $u_C = u_{C_{CR}}$.

Решением уравнения (8.9) является выражение

$$u_C = u_{Ccs} = A \cdot e^{p \cdot t}$$
.

Значение А определяется из условия, задаваемого вторым законом $|u_C|_{t=0} = (u_{Ccs} + u_{Cnp})|_{t=0} = u_{Ccs}|_{t=0} = U.$ коммутации

С другой стороны $u_{c}|_{t=0} = u_{Ccs}|_{e=0} = A \cdot e^{p \cdot 0} = A$.

Следовательно, A=U. Величина корня p для RC – цепи была получена выше, см.(8.8): $p = -\frac{1}{R \cdot C}$. Окончательно получим:

$$u_C = u_{Cce} = U \cdot e^{-\frac{t}{R \cdot C}} = U \cdot e^{-\frac{t}{\tau}}.$$

Выражение для тока разряда і в этой цепи:

$$i = C \frac{du_c}{dt} = C \cdot U \cdot \left(-\frac{1}{R \cdot C} \right) \cdot e^{-\frac{t}{\tau}} = -\frac{U}{R} \cdot e^{-\frac{t}{\tau}}.$$

t Очевидно, чем больше R и C, тем медленнее протекает процесс разряда конденсатора (рис.8.11).

Процессы заряды И разряда конденсатора, рассмотренные параграфах 8.3.1 и 8.3.2, называются релаксационными.

процессов построены релаксационные генераторы, основе ЭТИХ используемые для получения пилообразного напряжения необходимого для работы осциллографов, телевизоров и др.

8.3.3. Релаксационный генератор

Принципиальная схема простейшего релаксационного генератора показана на рис. 8.12.

Здесь УЭ – управляющий элемент (неоновая лампа).

Принцип работы генератора заключается в следующем.

После замыкания ключа конденсатор медленно заряжается через большое сопротивление R с постоянной времени $\tau_1 = R \cdot C$. При напряжении $u_C = u_{\text{заж}}$ проводимость неоновой лампы резко увеличивается за счет ионизации газа. Конденсатор очень быстро разряжается с постоянной времени $\tau_2 = R_{\text{мл}} \cdot C$, где $R_{\text{мл}}$ — сопротивление неоновой лампы при тлеющем разряде.

Выбирают $R>>R_{_{\scriptscriptstyle \!\mathit{H}\!\!\mathit{I}}}$, вследствие чего $t_{_{\scriptscriptstyle \!\mathit{Jap}}}>>t_{_{\scriptscriptstyle \!\mathit{pa3p}}}$.

При уменьшении напряжения на конденсаторе до напряжения $U_{\rm cac}$, разряд в лампе прекращается, а ее сопротивление резко возрастает. В результате этого снова начинается заряд конденсатора до $u_{\rm C}=u_{\rm sam}$. И т.д.

Если цепь не разомкнуть, то этот процесс будет длиться бесконечно долго (рис.8.13).

8.4. Переходные процессы в R, L, C цепи. Включение R, L, C цепи на постоянное напряжение (ЭДС)

Пусть начальные условия в цепи (рис.8.14) следующие $u_{C}(0) = U$; i(0) = 0, что означает, что до замыкания ключа емкость была заряжена до напряжения U.

Очевидно, что эти параметры после завершения переходного процесса будут равны:

$$u_{Cnn} = E$$
; $i_{nn} = 0$.

Это означает, что конденсатор дозарядится (или разрядится) до входного напряжения Е, после чего ток заряда (разряда) прекратится.

По второму закону Кирхгофа:

$$u_L + u_R + u_C = E;$$

$$L\frac{di}{dt} + i \cdot R + u_C = E;$$
(8.10)

$$L\frac{di}{dt} + i \cdot R + \frac{1}{C} \int_{-\infty}^{t} i dt = E.$$
 (8.11)

Продифференцируем обе части уравнения (8.11)

$$L\frac{d^{2}i}{dt^{2}} + R\frac{di}{dt} + \frac{1}{C}i = 0.$$
 (8.12)

Пусть $i = i_{np} + i_{cs}$. Так как $i_{np} = 0$, значит $i = i_{cs}$.

Решением (8.12) является

$$i = A_1 \cdot e^{p_1 \cdot t} + A_2 \cdot e^{p_2 \cdot t}. \tag{8.13}$$

Коэффициенты p_1 и p_2 находятся из характеристического уравнения, записываемого по виду уравнения (8.12):

$$L \cdot p^2 + R \cdot p + \frac{1}{C} = 0.$$

Это уравнение также можно получить, записав его по виду комплексного сопротивления $Z_{\epsilon x}$ относительно входных зажимов:

$$\underline{Z}_{ex} = R + j \cdot \omega \cdot L + \frac{1}{j \cdot \omega \cdot C} = 0 \text{ или}$$

$$\frac{R \cdot j \cdot \omega \cdot C + (j \cdot \omega)^2 \cdot L \cdot C + 1}{j \cdot \omega \cdot C} = 0. \tag{8.14}$$

Умножим на $j \cdot \omega \cdot C$ левую и правую части выражения (8.14)

$$(j \cdot \omega)^2 \cdot L \cdot C + (j \cdot \omega)R \cdot C + 1 = 0.$$

Разделим на C и заменим ($j \cdot \omega$) на p:

$$L \cdot p^2 + R \cdot p + \frac{1}{C} = 0.$$

Решением этого уравнения являются корни:

$$p_{1,2} = -\frac{R}{2 \cdot L} \pm \sqrt{\left(\frac{R}{2 \cdot L}\right)^2 - \frac{1}{L \cdot C}} = -\delta \pm \sqrt{\delta^2 - \omega_0^2} = -\delta \pm \omega_{c_6}, \tag{8.15}$$

где $\delta = \frac{R}{2 \cdot L}$ — коэффициент затухания; $\omega_{_0} = \frac{1}{\sqrt{L \cdot C}}$ — резонансная частота; $\omega_{_{cs}} = \sqrt{\omega_{_0}^2 - \delta^2}$ — угловая частота свободных колебаний в контуре.

Постоянные интегрирования найдем из совместного решения следующих уравнений, найденных с помощью законов коммутации.

Известно $i|_{t=0} = 0$. Тогда из (8.13) получим первое уравнение:

$$0 = A_1 + A_2 \tag{8.16}$$

Для получения второго уравнения выполним следующие операции. Продифференцируем обе части уравнения (8.13), получим:

$$\frac{di}{dt} = A_1 \cdot p_1 \cdot e^{p_1 \cdot t} + A_2 \cdot p_2 \cdot e^{p_2 \cdot t}.$$

Очевидно:

$$\left. \left(\frac{di}{dt} \right) \right|_{t=0} = A_1 \cdot p_1 + A_2 \cdot p_2 \tag{8.17}$$

Далее, подставим начальные условия в уравнение (8.10)

$$L \cdot \left(\frac{di}{dt}\right)\Big|_{t=0} + 0 \cdot R + U = E$$
 и выразим производную
$$\left(\frac{di}{dt}\right)\Big|_{t=0} = \frac{E - U}{L}. \tag{8.18}$$

Сравнивая (8.17) и (8.18) получим второе уравнение для определения постоянных интегрирования и запишем систему уравнений

$$\begin{cases} A_1 \cdot p_1 + A_2 \cdot p_2 = \frac{E - U}{L} & ; \\ 0 = A_1 + A_2. \end{cases}$$
 (8.19)

Найдем постоянные интегрирования из решения системы (8.19). Выразим из второго уравнения $A_2 = -A_1$ и подставим в первое

$$A_1 \cdot p_1 - A_1 \cdot p_2 = \frac{E - U}{L}.$$

Таким образом, постоянные интегрирования будут равны:

$$A_{1} = \frac{E - U}{P_{1} - P_{2}} = \frac{E - U}{L \cdot (-\delta + \gamma + \delta + \gamma)} = \frac{E - U}{2 \cdot L \cdot \gamma} = -A_{2}.$$
 (8.20)

Подставим найденные значения $p_{_1}$ и $p_{_2}$, $A_{_1}$ и $A_{_2}$ в уравнение (8.13), получим

$$i = \frac{E - U}{2 \cdot L \cdot \gamma} \cdot e^{(-\delta + \gamma) \cdot t} - \frac{E - U}{2 \cdot L \cdot \gamma} \cdot e^{(-\delta - \gamma) \cdot t} . \tag{8.21}$$

В зависимости от величины $\gamma = \sqrt{\delta^2 - \omega_0^2}$, а именно, от соотношения между собой δ^2 и ω_0^2 ($\left(\frac{R}{2 \cdot L}\right)^2$ и $\frac{1}{L \cdot C}$), процесс изменения тока в R, L, C цепи может быть апериодическим либо колебательным.

8.4.1. Апериодический процесс

Данный процесс наблюдается при $\delta^2 > \omega_0^2$, в результате чего корни уравнения $p_{1,2}$ есть вещественные отрицательные числа $p_1 = -\delta + \gamma$ и $p_2 = -\delta - \gamma$, показанные на комплексной плоскости на рис.8.15.

В этом случае ток i описывается уравнением (8.21), а график процесса изображен на рис. 8.16.

8.4.2. Колебательный процесс

При соотношении $\delta^2 < \omega_0^2$ наблюдается колебательный процесс изменения тока в цепи. В этом случае корни $p_{1,2}$ являются комплексными сопряженными числами $p_1 = -\delta + j \cdot \omega_{cs}$ и $p_2 = -\delta - j \cdot \omega_{cs}$, где ω_{cs} — собственная частота свободных колебаний ($T_{cs} = \frac{2 \cdot \pi}{\omega_{cs}}$ — период свободных колебаний). Они располагаются симметрично относительно действительной оси в левой полуплоскости, на полуокружности, центр которой совпадает с началом координат, а радиус равен $\omega_0 = \frac{1}{\sqrt{LC}}$ (рис.8.17).

В этом случае постоянные интегрирования A_1 и A_2 находятся также из совместного решения системы уравнений (8.19), но для $p_1 = -\delta + j \cdot \omega_{cs}$ и $p_2 = -\delta - j \cdot \omega_{cs}$.

B результате получим $A_1 = \frac{E - U}{2 \cdot j \cdot \omega_{xx} \cdot L} = -A_2$.

Подставим p_1 , p_2 A_1 и A_2 в (8.13), получим

$$i = \frac{E - U}{2 \cdot j \cdot \omega_{cs} \cdot L} \cdot e^{(-\delta + j \cdot \omega_{cs}) \cdot t} - \frac{E - U}{2 \cdot j \cdot \omega_{cs} \cdot L} \cdot e^{(-\delta - j \cdot \omega_{cs}) \cdot t} =$$

$$= \frac{E - U}{2 \cdot j \cdot \omega_{cs} \cdot L} \cdot e^{-\delta \cdot t} \cdot \left(e^{j \cdot \omega_{cs} \cdot t} - e^{-j \cdot \omega_{cs} \cdot t} \right) =$$

$$= \frac{E - U}{\omega_{cs} \cdot L} \cdot e^{-\delta \cdot t} \cdot \frac{e^{j \cdot \omega_{cs} \cdot t} - e^{-j \cdot \omega_{cs} \cdot t}}{2 \cdot j} = \frac{E - U}{\omega_{cs} \cdot L} \cdot \sin \omega_{cs} t \cdot e^{-\delta \cdot t}$$

При преобразовании была использована формула $\frac{e^{j \cdot Z} - e^{-j \cdot Z}}{2 \cdot j} = \sin Z$.

Временная диаграмма колебательного процесса представляет собой экспоненциально затухающую синусоиду (рис.8.18).