1x1 Convolution

- Consiste in una convoluzione in cui la dimensione del kernel è pari a 1
- Equivale alla moltiplicazione per uno scalare dei dati di input

4	2	3	2	1			8	4	6	4	2
25	1	2	3	12			50	2	4	6	24
						2					
					_						

1x1 Convolution

- Usi principali:
 - Dimensionality reduction
 - Aggiunta di non linearità
 - Feature combination
- Uso comune: nell'Inception Block di GoogleNet

Dimensionality reduction

L'utilità delle 1x1 è legata al **numero di filtri** che vengono utilizzati durante il processo di convoluzione

Se l'input è WxHxD il volume di profondità di uscita verrà dato unicamente dal numero di filtri del kernel

1x1 Convolution

- Le 1x1 quindi vengono usate per modificare il numero di canali di profondità in uscita
- Effetti:
 - Riduzione della complessità computazionale
 - Efficienza dei parametri
 - Abbassamento rischio overfit
 - Livelli «bottleneck»
 - Feature Extraction

1x1 Convolution vs. Pooling

	1x1	Pooling
Scopo	Feature combination e dimensionality reduction	Downsampling e quindi dim. reduction
Operazione	Convoluzione con il più piccolo receptive field	Max o media su receptive field più ampi
Output	Potenzialmente possono conservare più informazioni	«Riassumono» le info potenzialmente con perdita
Impatto sui parametri	Numero minimo di parametri	Non hanno parametri

Non Linearità

- Le 1x1 quindi vengono usate per aggiungere non linearità ai filtri
- Le conv 1x1 aggiungono non linearità perché sono dei livelli convolutivi veri e propri
 - Conv 1x1 di per sé è lineare
 - Dopo la conv 1x1 si applica la funzione di attivazione che aggiunge non linearità
- La non linearità in generale:
 - Aumenta il potere di rappresentazione di una rete
 - Aiuta contro l'overfit
 - Aiuta con la cattura di informazioni complesse

Feature combination

- Una conv 1x1 può essere vista come un aggregatore di canali
 - È sostanzialmente una somma ponderata degli output di un canale
- La feature combination è l'unione o fusione di informazioni provenienti da diverse feature map in un'unica feature map
- Di norma le feature composite sono più ricche e più informative delle feature di partenza

Tutte queste caratteristiche sono state utilizzate nell'Inception Block

- Alla base dell'architettura "Inception" c'è il cosiddetto Inception Block
- Usato nella architettura GoogLeNet, vincitrice dell'ImageNet Large Scale Visual Recognition
 Challenge del 2014
- Idea:
 - Apprendere feature locali contemporaneamente a feature globali

- Basato su una parallelizzazione delle operazioni e su una concatenazione di filtri in uscita da un certo livello di input
 - Convoluzione 1x1 con 64 filtri in uscita
 - Convoluzione same 3x3 con 128 filtri in uscita
 - Convoluzione same con 32 filtri 5x5 in uscita
 - MaxPool
- L'uscita è 28x28x256
- Al posto di scegliere una convoluzione sola, le scegliamo tutte concatenandole dopo

- Costo computazionale del solo blocco convolutivo 5x5 same
 - Input: 28x28x192
 - 32 filtri 5x5x192
 - Output: 28x28x32
- Num. Totale di moltiplicazioni da effettuare
 - 28x28x32x**5x5x192 =~120M**

Usando una convoluzione 1x1 (bottleneck):

• Costo computazionale: $28x28x192x16 + 28x28x16x5x5x32 = \sim 12M (<<120M)$

Inception Network

- Questa implementazione prende il nome di GoogLeNet (in onore a LeNet-5)
- Presenza di classificatori ausiliari nei cosiddetti «side branch»