HW5

Sam Olson

Outline

- Q1: G2G
- Q2: G2G
- Q3: Iffy
- Q4: Iffy

1.

In the attached article by Prof. M. Ghosh, read pages 509-512 (including example 1), examples 4-6 of Section 3, and Section 5.2 up to and including Examples 17-18. (This is sort of a technical article, so to read a bit of this material is not easy. Also, Example 17 should look like an example from class regarding Basu's theorem.)

In example 18, show that T is a complete and sufficient statistic, while U is an ancillary statistic.

Example 18.

Let X_1, \ldots, X_n $(n \ge 2)$ be iid with common Weibull pdf

$$f_{\theta}(x) = \exp(-x^p/\theta)(p/\theta)x^{p-1}; \quad 0 < x < \infty, \quad 0 < \theta < \infty,$$

p(>0) being known. In this case, $T=\sum_{i=1}^n X_i^p$ is complete sufficient for θ , while $U=X_1^p/T$ is ancillary. Also, since X_1^p,\ldots,X_n^p are iid exponential with scale parameter θ , $U\sim \mathrm{Beta}(1,n-1)$. Hence, the UMVUE of $P_{\theta}(X_1\leq x)=P_{\theta}(X_1^p\leq x^p)$ is given by

$$k(T) = \begin{cases} 1 - x^{np}/T^n & \text{if } T > x^p, \\ 1 & \text{if } T \le x^p. \end{cases}$$

Answer

By the Factorization Theorem, a statistic T is sufficient if the joint pdf can be factorized as:

$$f_{\theta}(x_1,\ldots,x_n)=q(T,\theta)h(x_1,\ldots,x_n)$$

Or, two functions, one that is dependent upon θ and one that does not.

As given, the joint pdf of X_1, \ldots, X_n is:

$$f_{\theta}(x_1, \dots, x_n) = \prod_{i=1}^n \left[\exp(-x_i^p/\theta)(p/\theta)x_i^{p-1} \right] = \left(\frac{p}{\theta}\right)^n \exp\left(-\frac{T}{\theta}\right) \prod_{i=1}^n x_i^{p-1}$$

We note then that for $g(T, \theta) = \left(\frac{p}{\theta}\right)^n \exp\left(-\frac{T}{\theta}\right)$ depends on the data only through T, and $h(x_1, \dots, x_n) = \prod_{i=1}^n x_i^{p-1}$ does not depend on θ . So we meet the conditions to note the Factorization Theorem, such that T is sufficient for θ .

Onto completeness:

A statistic T is complete if for any function g(T),

$$E_{\theta}[g(T)] = 0 \quad \forall \theta \Rightarrow P(g(T) = 0) = 1$$

Or, the zero function is the only function to satisfy the above expression.

We have $T = \sum_{i=1}^{n} X_i^p$, which we know follows a gamma distribution given the iid distribution of X_i (sum of iid Exponential with common θ is a Gamma distribution), i.e.:

$$T \sim \text{Gamma}(n, \theta)$$

We then take advantage of knowing that the Gamma family is a complete exponential family, meaning T is complete for θ .

One last item to tackle then, U being ancillary.

A statistic U is ancillary if its distribution does not depend on θ .

Let:

$$U = \frac{X_1^p}{T}$$

Since X_1^p, \ldots, X_n^p are iid Exponential (θ) , we can write

$$\left(\frac{X_1^p}{\theta}, \dots, \frac{X_n^p}{\theta}\right) \sim \text{iid Exp}(1)$$

I believe this is called "pivoting", and apologies if this was not the anticipated method for this proof. That notwithstanding, $T/\theta \sim \text{Gamma}(n,1)$, and $U = X_1^p/T$ follows a Beta(1, n-1) distribution. Of note, this (the distribution of U) does not depend on θ , meaning U is ancillary.

2.

Problem 7.60, Casella and Berger and the following:

Extra

Let X_1, \ldots, X_n be iid gamma (α, β) with α known. Find the best unbiased estimator of $1/\beta$.

Answer

Since $X_i \sim \text{Gamma}(\alpha, \beta)$, the sum:

$$S_n = \sum_{i=1}^n X_i$$

follows a Gamma distribution, with note of Problem 1:

$$S_n \sim \text{Gamma}(n\alpha, \beta)$$

Taking expectation:

$$E_{\theta}(S_n) = n\alpha\beta$$

Since:

$$E_{\theta} \left[\frac{n\alpha}{S_n} \right] = \frac{n\alpha}{E_{\theta}(S_n)} = \frac{n\alpha}{n\alpha\beta} = \frac{1}{\beta}$$

One possible unbiased estimator for $1/\beta$ is:

$$\frac{n\alpha}{S_n}$$

Since S_n is a complete sufficient statistic for β (by the Factorization Theorem and Lehmann-Scheffé Theorem), any unbiased estimator that is a function of S_n is UMVUE, making it the best unbiased estimator for the purpose of this problem.

a)

Let $S_n = \sum_{i=1}^n X_i$. Using Basu's theorem, show X_1/S_n and S_n are independent.

Answer

Using Basu's theorem, we show that X_1/S_n and S_n are independent.

Basu's theorem: If T is a complete sufficient statistic and U is an ancillary statistic, then T and U are independent.

From the prior question, we know that S_n is complete and sufficient for β .

We need to then find an ancillary statistic. To that end, let:

$$U = \frac{X_1}{S_n}$$

Using given information, we know:

$$U \sim \text{Beta}(\alpha, (n-1)\alpha)$$

Which does not depend on β for any of its parameters! This means we have found U, our ancillary statistic. Then, by Basu's theorem, $U = X_1/S_n$ and S_n are independent.

b)

Using the result in a) and $E_{\theta}(S_n) = n\alpha\beta$, find $E_{\theta}(X_1/S_n)$.

Answer

Using the results in a):

$$E_{\theta}\left(\frac{X_1}{S_n}\right) = E_{\theta}\left(U\right)$$

Where:

$$U \sim \text{Beta}(\alpha, (n-1)\alpha)$$

Using the properties of a known distribution, we know that:

$$E_{\theta}\left(\frac{X_1}{S_n}\right) = \frac{\alpha}{\alpha + (n-1)\alpha} = \frac{1}{n}.$$

3.

Problem 8.13(a)-(c), Casella and Berger (2nd Edition) and, in place of Problem 8.13(d), consider the following test:

Let X_1, X_2 be iid uniform $(\theta, \theta + 1)$. For testing $H_0: \theta = 0$ versus $H_1: \theta > 0$, we have two competing tests:

$$\phi_1(X_1)$$
: Reject H_0 if $X_1 > 0.95$,

$$\phi_2(X_1, X_2)$$
: Reject H_0 if $X_1 + X_2 > C$.

a)

Find the value of C so that ϕ_2 has the same size as ϕ_1 .

Answer

The size of ϕ_1 is:

$$\alpha_1 = P(X_1 > 0.95 \mid \theta = 0) = 0.05$$

The size of ϕ_2 is:

$$\alpha_2 = P(X_1 + X_2 > C \mid \theta = 0)$$

For $1 \le C \le 2$, the probability $P(X_1 + X_2 > C \mid \theta = 0)$ is:

$$\alpha_2 = \int_{1-C}^{1} \int_{C-x_1}^{1} 1 \, dx_2 \, dx_1 = \frac{(2-C)^2}{2}$$

For $\alpha_2 = \alpha_1 = 0.05$ and solving for C:

$$\frac{(2-C)^2}{2} = 0.05 \implies (2-C)^2 = 0.1 \implies C = 2 - \sqrt{0.1} \approx 1.68$$

b)

Calculate the power function of each test. Draw a well-labeled graph of each power function.

Answer

The power function of ϕ_1 is:

$$\beta_1(\theta) = P_{\theta}(X_1 > 0.95) = \begin{cases} 0 & \text{if } \theta \le -0.05, \\ \theta + 0.05 & \text{if } -0.05 < \theta \le 0.95, \\ 1 & \text{if } \theta > 0.95. \end{cases}$$

The distribution of $Y = X_1 + X_2$ is:

$$f_Y(y \mid \theta) = \begin{cases} y - 2\theta & \text{if } 2\theta \le y < 2\theta + 1, \\ 2\theta + 2 - y & \text{if } 2\theta + 1 \le y < 2\theta + 2, \\ 0 & \text{otherwise.} \end{cases}$$

The power function of ϕ_2 is:

$$\beta_2(\theta) = P_{\theta}(Y > C) = \begin{cases} 0 & \text{if } \theta \le \frac{C}{2} - 1, \\ \frac{(2\theta + 2 - C)^2}{2} & \text{if } \frac{C}{2} - 1 < \theta \le \frac{C - 1}{2}, \\ 1 - \frac{(C - 2\theta)^2}{2} & \text{if } \frac{C - 1}{2} < \theta \le \frac{C}{2}, \\ 1 & \text{if } \theta > \frac{C}{2}. \end{cases}$$

Power Functions of Phi1 and Phi2

 $\mathbf{c})$

Prove or disprove: ϕ_2 is a more powerful test than ϕ_1 .

Answer

From the graph above, ϕ_1 is more powerful for θ near 0, but ϕ_2 is more powerful for larger values of θ .

To be a more powerful test, you must be uniformly more powerful than the reference test. We do not meet this condition, meaning ϕ_2 is not a more powerful test than ϕ_1 .

Extra

$$\phi_3(X_1, X_2) = \begin{cases} 1 & \text{if } X_{(1)} > 1 - \sqrt{0.05} \text{ or } X_{(2)} > 1 \\ 0 & \text{otherwise} \end{cases}$$

where $X_{(1)}, X_{(2)}$ are the min, max.

Find the size of this test and the power function for $\theta > 0$. Then, graph the power functions of ϕ_3 and ϕ_2 to determine which test is more powerful. (It's enough to graph over the range $\theta \in [0, 1.2]$.)

Answer

Define the test:

$$\phi_3(X_1, X_2) = \begin{cases} 1 & \text{if } X_{(1)} > 1 - \sqrt{0.05} \text{ or } X_{(2)} > 1, \\ 0 & \text{otherwise,} \end{cases}$$

where $X_{(1)}, X_{(2)}$ are the minimum and maximum of X_1, X_2 , respectively.

Under $H_0: \theta = 0$, the size of ϕ_3 is:

$$\alpha_3 = P(X_{(1)} > 1 - \sqrt{0.05} \mid \theta = 0) = (1 - (1 - \sqrt{0.05}))^2 = 0.05.$$

The power function of ϕ_3 is:

$$\beta_3(\theta) = P_{\theta}(X_{(1)} > 1 - \sqrt{0.05}) = (1 - (1 - \sqrt{0.05} - \theta))^2.$$

Via the below: ϕ_3 is more powerful than ϕ_2 for all $\theta > 0$. This means for the range being considered that ϕ_3 is uniformly more powerful than ϕ_2 .

```
# Define theta range
theta \leftarrow seq(0, 1.2, by = 0.01)
C <- 2 - sqrt(0.1) # Computed value of C for phi_2
# Power function for phi_2
beta2 \leftarrow ifelse(theta \leftarrow (C/2) - 1, 0,
         ifelse(theta \leq (C - 1)/2, ((2*theta + 2 - C)^2)/2,
         ifelse(theta \leq C/2, 1 - ((C - 2*theta)^2)/2, 1)))
# Power function for phi_3
phi3_power <- function(theta) {</pre>
  pmin(1, (1 - pmax(0, 1 - sqrt(0.05) - theta))^2)
beta3 <- sapply(theta, phi3_power)</pre>
# Plot
plot(theta, beta2, type = "1", col = "red", lwd = 2, ylim = c(0, 1),
     ylab = "Power", xlab = expression(theta), main = "Power Functions of Phi2 and Phi3")
lines(theta, beta3, col = "green", lwd = 2, lty = 3)
legend("bottomright", legend = c(expression(phi[2]), expression(phi[3])),
       col = c("red", "green"), lty = c(2, 3), lwd = 2)
```

Power Functions of Phi2 and Phi3

4.

Problem 8.15, Casella and Berger (2nd Edition), though you can just assume the form given is most powerful (no need to show).

Show that for a random sample X_1, \ldots, X_n from a $\mathcal{N}(0, \sigma^2)$ population, the most powerful test of $H_0 : \sigma = \sigma_0$ versus $H_1 : \sigma = \sigma_1$, where $\sigma_0 < \sigma_1$, is given by

$$\phi\left(\sum X_i^2\right) = \begin{cases} 1 & \text{if } \sum X_i^2 > c, \\ 0 & \text{if } \sum X_i^2 \le c. \end{cases}$$

For a given value of α , the size of the Type I Error, show how the value of c is explicitly determined.

Answer

From the Neyman-Pearson lemma, the most powerful (UMP) test rejects H_0 if the likelihood ratio exceeds a threshold k.

The likelihood ratio is:

$$\frac{f(x \mid \sigma_1)}{f(x \mid \sigma_0)} = \frac{(2\pi\sigma_1^2)^{-n/2}e^{-\sum_i x_i^2/(2\sigma_1^2)}}{(2\pi\sigma_0^2)^{-n/2}e^{-\sum_i x_i^2/(2\sigma_0^2)}} = \left(\frac{\sigma_0}{\sigma_1}\right)^n \exp\left\{\frac{1}{2}\sum_i x_i^2 \left(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2}\right)\right\} > k$$

This simplifies to:

$$\sum_{i} x_{i}^{2} > \frac{2 \log \left(k \left(\sigma_{1} / \sigma_{0}\right)^{n}\right)}{\left(\frac{1}{\sigma_{0}^{2}} - \frac{1}{\sigma_{1}^{2}}\right)} = c$$

where c is a constant.

Noting that: $\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2} > 0$ (since $\sigma_0 < \sigma_1$).

Thus, the UMP test rejects H_0 if:

$$\sum_{i} X_i^2 > c$$

The critical value c is determined such that the Type I error probability is α :

$$\alpha = P_{\sigma_0} \left(\sum_i X_i^2 > c \right)$$

Under H_0 , $\sum_i X_i^2/\sigma_0^2$ follows a chi-squared distribution with n degrees of freedom:

$$\sum_{i} X_i^2 / \sigma_0^2 \sim \chi_n^2$$

Thus, the probability can be rewritten as:

$$\alpha = P_{\sigma_0} \left(\sum_i X_i^2 / \sigma_0^2 > c / \sigma_0^2 \right) = P \left(\chi_n^2 > c / \sigma_0^2 \right)$$

We then solve for c, taking the $(1-\alpha)$ -quantile of the χ^2_n distribution:

$$c = \sigma_0^2 \cdot \chi_{n,1-\alpha}^2$$

where $\chi^2_{n,1-\alpha}$ is the $(1-\alpha)$ -quantile of the χ^2_n distribution.