12) Bayesian Information Criterion (BIC) and Subset Selection

Vitor Kamada

February 2019

Tables, Graphics, and Figures from:

1) An Introduction to Statistical Learning

James et al. (2017): Ch 6.1 and 6.5

2) The Elements of Statistical Learning

Hastie et al. (2017): Ch7.1 to 7.9

Default Data Set [library(ISLR)]

Some Quantitative Predictors

Best Subset Selection Algorithm

- 1) Let \mathbb{M}_0 denote the null model
- 2) Fit all $\binom{p}{k}$ models, and pick the best for each \mathbb{M}_k
- 3) Pick the single best among $\mathbb{M}_0, ... \mathbb{M}_p$ using cross-validated prediction error, C_p , AIC, BIC, or ajusted R^2

Best Subset Selection

minimize
$$\left\{\sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2\right\}$$

subject to
$$\sum_{j=1}^{p} I(\beta_j \neq 0) \leq s$$

6/23

Vitor Kamada ECO 7100 Econometrics I February 2019

Credit Data Set

Best Subset (2^p) vs Forward Stepwise ($1 + \frac{p(p+1)}{2}$)

$$(2^{20} = 1,048,576)$$
 vs 211

# Variables	Best subset	Forward stepwise	
One	rating	rating	
Two	rating, income	rating, income	
Three	rating, income, student	rating, income, student	
Four	cards, income,	rating, income,	
	student, limit	student, limit	

8/23

Vitor Kamada ECO 7100 Econometrics I February 2019

C_p Statistic

$$C_p = \frac{1}{n}(RSS + 2d\hat{\sigma}^2)$$

$$\hat{\sigma}^2 = Var(\epsilon)$$

d = # of predictors

Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and Adjusted R^2

$$AIC = \frac{1}{n\hat{\sigma}^2}(RSS + 2d\hat{\sigma}^2)$$

$$BIC = \frac{1}{n\hat{\sigma}^2}(RSS + \log(n)d\hat{\sigma}^2)$$

Adjusted
$$R^2 = 1 - \frac{RSS/(n-d-1)}{TSS/(n-1)}$$

Vitor Kamada ECO 7100 Econometrics I February 2019 10 / 23

Test Error: Adjusting the Training Error

 C_p : income, limit, rating, cards, age and student

BIC: income, limit, cards, and student

Adjusted R^2 : income, limit, rating, cards, age, student, and gender

Cross-Validation (k=10)

Validation Set Errors:

3/4 training set, 1/4 validation set

library(ISLR); library(stargazer); stargazer(Hitters)

Statistic	N	Mean	St. Dev.	Min	Max
AtBat	263	403.643	147.307	19	687
Hits	263	107.829	45.125	1	238
HmRun	263	11.620	8.757	0	40
Runs	263	54.745	25.540	0	130
RBI	263	51.487	25.883	0	121
Walks	263	41.114	21.718	0	105
Years	263	7.312	4.794	1	24
CAtBat	263	2,657.544	2,286.583	19	14,053
CHits	263	722.186	648.200	4	4,256
CHmRun	263	69.240	82.198	0	548
CRuns	263	361.221	331.199	2	2,165
CRBI	263	330.418	323.368	3	1,659
CWalks	263	260.266	264.056	1	1,566
PutOuts	263	290.711	279.935	0	1,377
Assists	263	118.760	145.081	0	492
Errors	263	8.593	6.607	0	32
Salary	263	535.926	451.119	67.500	2,460.000

Missing Observations

dim(Hitters)	322	20
<pre>sum(is.na(Hitters\$Salary))</pre>	59	
Hitters = na.omit(Hitters)		
dim(Hitters)	263	20
sum(is.na(Hitters))	0	

library(leaps); regfit.fwd=regsubsets(Salary~.,data =Hitters, nvmax=9, method="forward");

summary(regfit.fwd)

```
3
                                                                                                                                                  0.6 \pm 0.0
                                                                                                                                                  m \otimes m
                                                                                                      m \gg m
                   CRBI
                                                                                    PutOuts
                                                                                                      Assists
                                                                                                                                       NewLeagueN
3
                                                                                     0.46 \pm 0.06
                                                                                     H \otimes H
                                                               mac n
                                                                                     mac m
                                                               0.50
                                                                                     m \gg m
                                                               0.46 \pm 0
                                                                                     H \gg H
                                                                                     m \gg m
```

regfit.bwd=regsubsets(Salary~.,data=Hitters, nvmax=9, method="backward")

summary(regfit.bwd)

```
CRuns
                                                                                                                                               m \gg m
                                                                                                                                               0.6 \pm 0.0
3
                                                                                                                                               0.50
                                                                                                                                               H \otimes H
                                                                                                                                               m \approx m
6
                                                                                                                                               H \otimes H
                                                                                                                                               0.6 \pm 0.0
                                                                                                                                               0.60
9
                                                                                                                                               High H
                   CRBT
                                            LeagueN
                                                                                                    Assists
                                                                                                                                    NewLeagueN
3
                                                                                   m \gg m
                                                                                   H \ll H
6
                                                                                   H \ll H
                                                                                   m \ll m
                                                              H \ll H
                                                                                   H \gg H
                                                              may m
                                                                                   H \ll H
```

regfit.full=regsubsets(Salary \sim .,Hitters, nvmax =19)

summary(regfit.full)

```
CAtBat
                                                                      Years
                                                                                                                                    •
             0.960
m \ll m
                                                                                    m \ll m
                                                                                                   m & m
             0.0 \pm 0.0
                                                                                                                                H \ll H
CRBI
                                                                                                                     NewLeagueN
m \approx m
                                            0.9 \times 0.0
                                                                  H \gg H
                                                                  0.80
                                            0.460
                                                                  0.0 \pm 0.0
```

plot(reg.summary\$adjr2,xlab="Number of Variables", ylab="Adjusted RSq",type="l")

```
which.max(reg.summary$adjr2)
points(11,reg.summary$adjr2[11],
col="red",cex=2,pch=20)
```


plot(reg.summary\$cp,xlab="Number of Variables", ylab="Cp",type='l')

which.min(reg.summary\$cp)
points(10,reg.summary\$cp[10],col="red",cex=2,pch=20)

Vitor Kamada ECO 7100 Econometrics I February 2019 19 / 23

plot(reg.summary\$bic,xlab="Number of Variables", ylab="BIC",type='I')

which.min(reg.summary\$bic)
points(6,reg.summary\$bic[6],col="red",cex=2,pch=20)

Vitor Kamada ECO 7100 Econometrics I February 2019 20 / 23

plot(regfit.full,scale="adjr2")

990

21 / 23

plot(regfit.full,scale="Cp")

plot(regfit.full,scale="bic")

