Nom	RODRIGO LOPES MARTINS	N.º	93264
E:		MEC:	

AULA 4 - ANÁLISE DA COMPLEXIDADE DE ALGORITMOS

- **1** Considere uma sequência (array) de n elementos inteiros, ordenada por **ordem não decrescente**. Pretende-se determinar se a sequência é uma **progressão aritmética de razão 1**, i.e., a[i+1] a[i] = 1.
- Implemente uma função eficiente (utilize um algoritmo em lógica negativa) e eficaz que verifique se uma sequência com n elementos (n > 1) define uma sequência contínua de números. A função deverá devolver 1 ou 0, consoante a sequência verificar ou não essa propriedade. Depois de validar o algoritmo apresente-o no verso da folha.
- Determine experimentalmente a ordem de complexidade do número de adições/subtrações efetuadas pelo algoritmo e envolvendo elementos da sequência. Considere as seguintes 10 sequências de 10 elementos inteiros, todas diferentes, e que cobrem as distintas situações possíveis de execução do algoritmo. Determine, para cada uma delas, se satisfaz a propriedade e qual o número de operações de adição/subtração efetuadas pelo algoritmo.

Sequência	Resultado	N.º de
		operações
{1, 3, 4, 5, 5, 6, 7, 7, 8, 9},	0	1
{1, 2, 4, 5, 5, 6, 7, 8, 8, 9},	0	2
{1, 2, 3, 6, 8, 8, 8, 9, 9, 9},	0	3
{1, 2, 3, 4, 6, 7, 7, 8, 8, 9},	0	4
{1, 2, 3, 4, 5, 7, 7, 8, 8, 9},	0	5
{1, 2, 3, 4, 5, 6, 8, 8, 9, 9},	0	6
{1, 2, 3, 4, 5, 6, 7, 9, 9, 9},	0	7
{1, 2, 3, 4, 5, 6, 7, 8, 8, 9},	0	8
{1, 2, 3, 4, 5, 6, 7, 8, 9, 9},	0	9
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}	1	9

Depois da execução do algoritmo responda às seguintes questões:

• Qual é a sequência (ou as sequências) que corresponde(m) ao melhor caso do algoritmo?

A primeira sequência corresponde ao melhor caso do algritmo.

• Qual é a sequência (ou as sequências) que corresponde(m) ao pior caso do algoritmo?

A ultima e a penúltima sequências são as que correspondem ao pior caso do algoritmo.

Determine o número de adições efetuadas no caso médio do algoritmo (**para n = 10**).

São efetuadas 5 adições no caso médio.

Qual é a ordem de complexidade do algoritmo?

O algoritmo é de complexidade linear O(n).

◆ Determine formalmente a ordem de complexidade do algoritmo nas situações do melhor caso, do pior caso e do caso médio, considerando uma sequência de tamanho n. Tenha em atenção que deve obter expressões matemáticas exatas e simplificadas.

ANÁLISE FORMAL DO ALGORITMO

MELHOR CASO - B(N) = 1

PIOR CASO - W(N) = N-1

CASO MÉDIO - A(N) = N/2

◆ Calcule o valor das expressões para n = 10 e compare-os com os resultados obtidos experimentalmente.

```
B(10)=1
W(10)=9
A(10)=5
```

Os valores calculas correspondem aos resultados experimentais.

APRESENTAÇÃO DO ALGORITMO

```
int operacoes = 0;
int isValid(int* a,int n) {
    assert(n > 1);
    int i;

for ( i = 0; i < n-1; i++) {
    operacoes++;
    if (a[i+1] - a[i]!= 1) {
        return 0;
    }
    }
    return 1;
}</pre>
```

- **2 -** Considere uma sequência (array) não ordenada de n elementos inteiros. Pretende-se eliminar os elementos repetidos existentes na sequência, sem fazer uma pré-ordenação e sem alterar a posição relativa dos elementos. Por exemplo, a sequência { 1, 2, 2, 2, 3, 3, 4, 5, 8, 8 } com 10 elementos será transformada na sequência { 1, 2, 3, 4, 5, 8 } com apenas 6 elementos. Por exemplo, a sequência { 1, 2, 3, 3, 3, 3, 3, 3, 8, 8 } com 10 elementos será transformada na sequência { 1, 2, 3, 4 } com 7 elementos será transformada na sequência { 1, 2, 3, 4 } com apenas 4 elementos. Mas, a sequência { 1, 2, 5, 4, 7, 0, 3, 9, 6, 8 } permanece inalterada.
- Implemente uma função eficiente e eficaz que elimina os elementos repetidos numa sequência com n elementos (n > 1). A função deverá ser void e alterar o valor do parâmetro indicador do número de elementos efetivamente armazenados na sequência (que deve ser passado por referência).

Depois de validar o algoritmo apresente-o no verso da folha.

◆ Determine experimentalmente a ordem de complexidade do número de comparações e do número de deslocamentos envolvendo elementos da sequência. Considere as sequências anteriormente indicadas de 10 elementos e outras à sua escolha. Determine, para cada uma delas, a sua configuração final, bem como o número de comparações e de deslocamentos efetuados.

Depois da execução do algoritmo responda às seguintes questões:

■ Indique uma sequência inicial com 10 elementos que conduza ao melhor caso do número de comparações efetuadas. Qual é a sequência final obtida? Qual é o número de comparações efetuadas? Qual é o número de deslocamentos (i.e., cópias) de elementos efetuados?

Inicial:	1	1	1	1	1	1	1	1	1	1	N.º de comparações:	9
Final:	1										N.º de Cópias:	36

Justifique a sua resposta:

Como a sequência inicial é composta por números idênticos, o algoritmo sempre que comparar 2 elementos vai ter que remover 1 deles e fazer deslocamentos, logo depois de 1 passagem o algoritmo elimina todos os elementos iguais.

■ Indique uma sequência inicial com 10 elementos que conduza ao pior caso do número de comparações efetuadas. Qual é a sequência final obtida? Qual é o número de comparações efetuadas? Qual é o número de deslocamentos (i.e., cópias) de elementos efetuados?

Inicial:	1	2	3	4	5	6	7	8	9	10	N.º de comparações:	45
Final:	1	2	3	4	5	6	7	8	9	10	N.º de Cópias:	0

Justifique a sua resposta:

Como a sequência inicial é composta por números diferentes entre si, o algoritmo nunca vai eliminar elementos repetidos, ou seja, vai ter de comparar todos os elementos entre eles.

● Determine formalmente a ordem de complexidade do algoritmo nas situações do **melhor caso** e do **pior caso**, considerando uma sequência de tamanho n. Tenha em atenção que deve obter expressões matemáticas exatas e simplificadas.

ANÁLISE FORMAL DO ALGORITMO - NÚMERO DE COMPARAÇÕES

MELHOR CASO - B(N) = N-1

PIOR CASO - $W(N) = (N^2-N)/2$

ANÁLISE FORMAL DO ALGORITMO - <u>NÚMERO DE DESLOCAMENTOS DE ELEMENTOS</u>

MELHOR CASO - B(N) = 0

PIOR CASO - $W(N) = (N^2-3N+2)/2$

APRESENTAÇÃO DO ALGORITMO

}