

# Divide-and-Conquer

# Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

#### Most common usage.

- Break up problem of size n into two equal parts of size  $\frac{1}{2}$ n.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

#### Consequence.

- Brute force: n<sup>2</sup>.
- Divide-and-conquer: n log n.

Copyright 2000, Kevin Wayne

# 5.1 Mergesort

# Sorting

Sorting. Given n elements, rearrange in ascending order.

#### Applications.

- . Sort a list of names.
- Organize an MP3 library.

obvious applications

- Display Google PageRank results.
- . List RSS news items in reverse chronological order.
- . Find the median.
- Find the closest pair.

problems become easy once items are in sorted order

- Binary search in a database.
- Identify statistical outliers.Find duplicates in a mailing list.
- Data compression.
- Computer graphics.
- Computational biology.
- Supply chain management.

  non-obvious applications
- Book recommendations on Amazon.
- Load balancing on a parallel computer.

• • •





# A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

$$T(n) \leq \left\{ \begin{array}{c} 0 & \text{if } n = 1 \\ \\ \frac{T\left(\left\lceil n/2\right\rceil\right)}{\text{solve left half}} & + \underbrace{T\left(\left\lfloor n/2\right\rfloor\right)}_{\text{solve right half}} + \underbrace{n}_{\text{nerging}} & \text{otherwise} \end{array} \right.$$

Solution.  $T(n) = O(n \log_2 n)$ .

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace  $\leq$  with =.



# Proof by Telescoping

Claim. If T(n) satisfies this recurrence, then  $T(n) = n \log_2 n$ .

assumes n is a power of 2

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ \underbrace{2T(n/2)}_{\text{sorting both halves merging}} & \text{otherwise} \end{cases}$$

Pf. For n > 1:

$$\frac{T(n)}{n} = \frac{2T(n/2)}{n} + 1$$

$$= \frac{T(n/2)}{n/2} + 1$$

$$= \frac{T(n/4)}{n/4} + 1 + 1$$
...
$$= \frac{T(n/n)}{n/n} + \underbrace{1 + \dots + 1}_{\log_2 n}$$

$$= \log_2 n$$

#### Some General Recurrence Relations

(5.1) For some constant c,

$$T(n) <= 2T(n/2) + cn$$
, when n>2

$$T(2) \leftarrow c$$

(5.2) T(n) is bounded by O(nlogn) when n>1.

(5.3) For some constant c,

$$T(n) <= qT(n/2) + cn$$
, when n>2  $T(2) <= c$ 

(5.4) T(n) with q > 2 is bounded by  $O(n^{\log_2 q})$ 

(5.5) T(n) with q = 1 is bounded by O(n)

(5.6) For some constant c,

$$T(n) \leftarrow 2T(n/2) + cn^2$$
, when  $n > 2$ 

$$T(2) \leftarrow c$$

T(n) is bounded by  $O(n^2)$  when n > 1.

# A General Format

Suppose a complexity function  $T\left(n\right)$  is eventually nondecreasing and satisfies

$$T\left(n\right)=aT\left(\frac{n}{b}\right)+cn^{k}\qquad\text{for }n>1,\,n\text{ a power of }b$$
 
$$T\left(1\right)=d$$

where  $b \ge 2$  and  $k \ge 0$  are constant integers, and a, c, and d are constants such that a > 0, c > 0, and  $d \ge 0$ . Then

$$T(n) \in \begin{cases} \Theta(n^{k}) & \text{if } a < b^{k} \\ \Theta(n^{k} \lg n) & \text{if } a = b^{k} \\ \Theta(n^{\log_{b} a}) & \text{if } a > b^{k}. \end{cases}$$
(B.5)

13

# 5.3 Counting Inversions

# Counting Inversions

Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ..., n.
- Your rank: a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n</sub>.
- Songs i and j inverted if i < j, but  $a_i > a_j$ .

|     | Songs |   |   |   |   |
|-----|-------|---|---|---|---|
|     | Α     | В | С | D | Ε |
| Me  | 1     | 2 | 3 | 4 | 5 |
| You | 1     | 3 | 4 | 2 | 5 |
|     |       |   |   |   |   |

Inversions 3-2, 4-2

Brute force: check all  $\Theta(n^2)$  pairs i and j.

15

# **Applications**

# Applications.

- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's Tau distance).











# Counting Inversions: Implementation

 $\label{lem:condition} \begin{array}{ll} \textit{Pre-condition.} \; [\textit{Merge-and-Count}] \; \; \textit{A} \; \textit{and} \; \textit{B} \; \textit{are sorted.} \\ \textit{Post-condition.} \; \; [\textit{Sort-and-Count}] \; \; \textit{L} \; \textit{is sorted.} \\ \end{array}$ 

```
Sort-and-Count(L) {
   if list L has one element
      return 0 and the list L

Divide the list into two halves A and B
   (r<sub>A</sub>, A) ← Sort-and-Count(A)
   (r<sub>B</sub>, B) ← Sort-and-Count(B)
   (r , L) ← Merge-and-Count(A, B)

return r = r<sub>A</sub> + r<sub>B</sub> + r and the sorted list L
}
```

# Merge and Count

#### Merge-and-Count(A,B)

Maintain a *Current* pointer into each list, initialized to point to the front elements

Maintain a variable  ${\it Count}$  for the number of inversions, initialized to 0

While both lists are nonempty:

Let  $a_i$  and  $b_j$  be the elements pointed to by the  $\it Current$  pointer Append the smaller of these two to the output list

If  $b_j$  is the smaller element then

Increment  $\operatorname{Count}$  by the number of elements remaining in A Endif

Advance the *Current* pointer in the list from which the smaller element was selected.

EndWhile

23

# 5.4 Closest Pair of Points

# Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

# Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

† fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with  $\Theta(n^2)$  comparisons.

Assumption. No two points have same  $\boldsymbol{x}$  coordinate.

to make presentation cleaner

25

# Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.







# Closest Pair of Points

# Algorithm.

- Divide: draw vertical line L so that roughly  $\frac{1}{2}$ n points on each side.
- Conquer: find closest pair in each side recursively.



# Closest Pair of Points

# Algorithm.

- Divide: draw vertical line L so that roughly  $\frac{1}{2}$ n points on each side.
- Conquer: find closest pair in each side recursively.
- $\blacksquare$  Combine: find closest pair with one point in each side.  $\leftarrow$  seems like  $\Theta(n^2)$
- Return best of 3 solutions.







# Closest Pair of Points

Find closest pair with one point in each side, assuming that distance  $\langle \delta \rangle$ .

- $\blacksquare$  Observation: only need to consider points within  $\delta$  of line L.
- Sort points in  $2\delta$ -strip by their y coordinate.



# Closest Pair of Points

Find closest pair with one point in each side, assuming that distance <  $\delta$ .

- $\blacksquare$  Observation: only need to consider points within  $\delta$  of line L.
- Sort points in  $2\delta\text{-strip}$  by their y coordinate.
- Only check distances of those within 11 positions in sorted list!





# Closest Pair Algorithm Closest-Pair( $p_1$ , ..., $p_n$ ) { Compute separation line L such that half the points O(n log n) are on one side and half on the other side. $\begin{array}{lll} \delta_1 \; = \; \text{Closest-Pair(left half)} \\ \delta_2 \; = \; \text{Closest-Pair(right half)} \end{array}$ 2T(n / 2) $\delta = \min(\delta_1, \delta_2)$ Delete all points further than $\delta$ from separation line ${\tt L}$ O(n) O(n log n) Sort remaining points by y-coordinate. Scan points in y-order and compare distance between O(n) each point and next 11 neighbors. If any of these distances is less than $\delta$ , update $\delta$ . return $\delta$ . }

Closest Pair of Points: Analysis

Running time.

$$\mathsf{T}(n) \leq 2T \big(n/2\big) + O(n \log n) \ \Rightarrow \ \mathsf{T}(n) = O(n \log^2 n)$$

- Q. Can we achieve  $O(n \log n)$ ?
- A. Yes. Don't sort points in strip from scratch each time.
- Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by x coordinate.
- Sort by merging two pre-sorted lists.

 $T(n) \leq 2T \left( n/2 \right) + O(n) \ \, \Rightarrow \ \, \mathrm{T}(n) = O(n \log n)$