$$E_c = \frac{1}{2} m r^2$$

 $E_c = \frac{1}{2} m N^2 \left| \begin{array}{c} ENERGIA CINETICA DI \\ UN CORPO DI MASSA M \\ E VEDOURÁ N$

ESEMPIO

LAVORO DELLA FORZA F DA QUIND HA COMINGED AD AGIRE FIND A QUANDO 4 SLIMA SI É FERMADO

La slite posa de une rebeito no a me velouta finde o , frents de une forsa cotante

$$N = at + N_0$$

$$S = \frac{1}{2}at^2 + N_0t$$

QUANTO TEMPO IMPIELA LA SLITA A FERMASI?

$$0 = at + N_0 =$$
 $t = -\frac{N_0}{a} > 0$ facti a < 0

SPAZLO DI FRENATA

$$S = \frac{1}{2}\alpha \left(-\frac{N_0}{\alpha}\right)^2 + N_0\left(-\frac{N_0}{\alpha}\right) = \frac{1}{2}\alpha \left(-\frac{N_0^2}{\alpha^2} - \frac{N_0^2}{\alpha}\right) = \frac{1}{2}\alpha \left(-\frac{N_0^2}{\alpha^2} - \frac{N_0^2}{\alpha}\right) = \frac{N_0^2}{2\alpha} = \frac{N_0^2}{2\alpha}$$

ADESSO CALGUARO IL LANORD DEM FORZA È SUM SLIMA

$$L = -F \cdot S = -m|\alpha| \cdot \frac{N_0^2}{2|\alpha|} = -\frac{1}{2} m N_0^2$$
Modulo

PIF DI 3

proprio fari all'energio cinetica inisiale della slitta!!

La forsa, lavorands nelle slitta, le modifica l'enegia cinetica, di una quantità esattamente pari al lavora!

TEOREMA DELL'ENERGH CINETICA

Il lavors della forsa totale applicata a un corps è pari alla variazione della ma energia cinetica

$$L = \Delta E_c = E_{cFIN} - E_{cIN} =$$

$$= \frac{1}{2} m N_{FW}^2 - \frac{1}{2} m N_{IN}^2$$