Exercise Haberman Cancer Survival dataset Assignment1

- Download Haberman Cancer Survival dataset from Kaggle. You may have to create a Kaggle account to donwload data. (https://www.kaggle.com/gilsousa/habermans-survival-data-set))
- 2. Perform a similar alanlaysis as above on this dataset with the following sections:
- 3. High level statistics of the dataset: number of points, numer of features, number of classes, data-points per class.
- 4. Explain our objective.
- 5. Perform Univaraite analysis(PDF, CDF, Boxplot, Voilin plots) to understand which features are useful towards classification.
- 6. Perform Bi-variate analysis (scatter plots, pair-plots) to see if combinations of features are useful in classfication.
- 7. Write your observations in english as crisply and unambigously as possible. Always quantify your results.

About Habernman Cancer Survival DataSet

Information: The dataset contains cases from a study that was conducted beween 1958 and 1970 @ the University of Chicago's Billings Hospital on the survival of patients who had undergone surgery for breast cancer.

- Number of Instances: 306
- Number of Attributes: 4 (including the class attribute)
- Attribute Information:
- Age of patient at time of operation
- Patient's year of operation (year)
- Number of positive axillary nodes detected
- Survival status (class attribute) 1 = the patient survived 5 years or longer, 2 = the patient died within 5
 vear
- · Missing Attribute Values: None

Columns Names:

- #30 = age (Age of the patient at time of operation)
- #64 = year of op (Patient's Year of operation)
- #1 = positive_axil_nodes(Number of positive axillary nodes detected)
- #1.1 = surv_status(Survival status(class attribute) 1 = the patient survived 5 years or longer, 2 = the patient died within 5 year)

Source from kaggle (https://www.kaggle.com/gilsousa/habermans-survival-data-set)

In [70]:

```
# importing requred Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

"""Loading Haberman DataSet and printing (Original dataset)"""

df = pd.read_csv("haberman.csv")
df.head()
```

Out[70]:

	30	64	1	1.1
0	30	62	3	1
1	30	65	0	1
2	31	59	2	1
3	31	65	4	1
4	33	58	10	1

In [12]:

AS the dataset does not have the headers, so defining header names and reloading
haberman = pd.read_csv("haberman.csv" , names=['age','yearof_op','positive_axil_nodes',
haberman

Out[12]:

	age	yearof_op	positive_axil_nodes	surv_status
0	30	64	1	1
1	30	62	3	1
2	30	65	0	1
3	31	59	2	1
4	31	65	4	1
5	33	58	10	1
6	33	60	0	1
7	34	59	0	2
8	34	66	9	2
9	34	58	30	1
10	34	60	1	1
11	34	61	10	1
12	34	67	7	1
13	34	60	0	1
14	35	64	13	1
15	35	63	0	1
16	36	60	1	1
17	36	69	0	1
18	37	60	0	1
19	37	63	0	1
20	37	58	0	1
21	37	59	6	1
22	37	60	15	1
23	37	63	0	1
24	38	69	21	2
25	38	59	2	1
26	38	60	0	1
27	38	60	0	1
28	38	62	3	1
29	38	64	1	1
		•••		
276	67	66	0	1

	age	yearof_op	positive_axil_nodes	surv_status
277	67	61	0	1
278	67	65	0	1
279	68	67	0	1
280	68	68	0	1
281	69	67	8	2
282	69	60	0	1
283	69	65	0	1
284	69	66	0	1
285	70	58	0	2
286	70	58	4	2
287	70	66	14	1
288	70	67	0	1
289	70	68	0	1
290	70	59	8	1
291	70	63	0	1
292	71	68	2	1
293	72	63	0	2
294	72	58	0	1
295	72	64	0	1
296	72	67	3	1
297	73	62	0	1
298	73	68	0	1
299	74	65	3	2
300	74	63	0	1
301	75	62	1	1
302	76	67	0	1
303	77	65	3	1
304	78	65	1	2
305	83	58	2	2

306 rows × 4 columns

High level statistics of the dataset:

Number of points, numer of features, number of classes, data-points per class.

```
In [68]:
```

```
# Number of Points and features
print(haberman.shape)
# 306 row's and 4 columns.
```

(306, 4)

In [69]:

```
print(haberman.columns)
```

```
Index(['age', 'yearof_op', 'positive_axil_nodes', 'surv_status'], dtype='o
bject')
```

In [18]:

```
# data Points per class
haberman.surv_status.value_counts()
```

Out[18]:

225
 81

Name: surv_status, dtype: int64

Observation: imbalnced dataset and more than 70% % of dataset was survived data set.

In [19]:

```
# summary of Habenman's Cancer Survival DataSet haberman.describe()
```

Out[19]:

	age	yearof_op	positive_axil_nodes	surv_status
count	306.000000	306.000000	306.000000	306.000000
mean	52.457516	62.852941	4.026144	1.264706
std	10.803452	3.249405	7.189654	0.441899
min	30.000000	58.000000	0.000000	1.000000
25%	44.000000	60.000000	0.000000	1.000000
50%	52.000000	63.000000	1.000000	1.000000
75%	60.750000	65.750000	4.000000	2.000000
max	83.000000	69.000000	52.000000	2.000000

objective

- Based on patients age, Year of Operation , positive Axial Nodes detection and survival status.
- why the patients are survived till 5 years or longer?
- · why the patients are died within 5 years?
- whats are the chances to survive long?
- whats are the Causes to died within 5 years?

Performing Bi-variate analysis ("scatter plots", "pair-plots")

Scatter Plots

In [21]:

```
# 2-D Scatter Plot
haberman.plot(kind="scatter", x = "age", y = "yearof_op", title = "age between year of plt.show()
```


Observation(S)

• Can't able to classify by using age and yearof_op features .

In [24]:

```
# 2-D Scatter plot with colour coding for each class
sns.set_style("whitegrid")
sns.FacetGrid(haberman,hue='surv_status', size=6) \
    .map(plt.scatter,'age', 'yearof_op') \
    .add_legend()
plt.show()
```


• By using 'age' and 'yearof_op' features in colour coding of 2-D scatterplot ,can not be classify the surv_status because of both are overlapped.

Pair-Plots

```
In [27]:
```

```
# pair wise plots:
plt.close();
sns.pairplot(haberman, hue='surv_status', vars=['age','yearof_op','positive_axil_nodes'
plt.show()
positive axil nodes
                                                                      positive_axil_nodes
                                           yearof_op
```

Observation(S)

- Every pair plot was overlapped so can not be classify survival status between 1(survive 5years or longer) and 2(died within 5 years)
- but using yearof_op and positive_axil_nodes features can be moderately useful to classify the survival status,

Performing Univaraite analysis("PDF", "CDF", "Boxplot", "Voilin plots")

PDF

In [35]:

```
# Histogram & PDF

patients_survive = haberman.loc[haberman["surv_status"] == 1] # patient_survive = patients_died = haberman.loc[haberman["surv_status"] == 2] # patients_died = patient.

plt.plot(patients_survive['positive_axil_nodes'], np.zeros_like(patients_survive['positive_axil_plt.plot(patients_died['positive_axil_nodes'], np.zeros_like(patients_died['positive_axil_plt.show())
```


Observatios:

· very hard to classify, overlapping alot.

In [38]:

```
# Histogram of age feature
sns.FacetGrid(haberman, hue='surv_status',size = 4 ) \
    .map(sns.distplot, 'age') \
    .add_legend()
plt.ylabel('counts')
plt.title('Histogram of age')
plt.show()
```

C:\ProgramData\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "

C:\ProgramData\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "

Observation: Very hard to classify by using 'age' featuture in histgram plot, because of overlapping alot

In [40]:

```
# Hisogram of yearof_op feature
sns.FacetGrid(haberman, hue = 'surv_status', size = 4) \
    .map(sns.distplot, 'yearof_op') \
    .add_legend()
plt.ylabel('counts')
plt.title('Hisogram of year of operation')
plt.show()
```

C:\ProgramData\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "

C:\ProgramData\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "

Observation : very hard to classify by using 'yearof_op' featuture in histgram plot , because of overlapping alot

In [41]:

```
# Histogram of positive_axil_nodes feature
sns.FacetGrid(haberman, hue = 'surv_status', size = 6) \
    .map(sns.distplot, 'positive_axil_nodes') \
    .add_legend()
plt.ylabel('counts')
plt.title('Hostogram of positive axil nodes')
plt.show()
```

C:\ProgramData\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "

C:\ProgramData\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "

Observations:

- Using 'positive_axil_nodes' feature, can classify the survival status,
- And the maximum patients who had positive Axillary nodes lessthan 5 are survived .
- so we can use positive_axil_nodes feature to classify survival status and its easy for further analysis.

PDF & CDF of positive_axil_nodes of patients_survive

In [50]:

PDF and CDF of positive_axil_nodes of patients_died

In [55]:

```
[0.56790123 0.14814815 0.13580247 0.04938272 0.07407407 0. 0.01234568 0. 0. 0.01234568]
[0. 5.2 10.4 15.6 20.8 26. 31.2 36.4 41.6 46.8 52.]
```


PDF AND CDF of positive axil nodes of patients_survive and patients_died

In [60]:

```
counts, bin_edge = np.histogram(patients_survive['positive_axil_nodes'], bins=10,
                               density=True)
pdf = counts/sum((counts))
print('pdf of patients_survive:', pdf)
print ('bin_edge of patients_survive:', bin_edge)
cdf = np.cumsum(pdf)
plt.plot(bin_edge[1:],pdf, label = 'pdf of patients_survive')
plt.plot(bin_edge[1:], cdf , label = 'cdf of patients_survive')
plt.xlabel('positive axil nodes')
plt.ylabel('Probabily')
plt.title('PDF AND CDF of positive axil nodes of patients survive and patients died')
plt.legend()
counts, bin_edge = np.histogram(patients_died['positive_axil_nodes'], bins = 10 ,
                               density=True)
pdf = counts/sum((counts))
print('pdf of patients_died:', pdf)
print('bin_edge of patients_died:', bin_edge)
cdf = np.cumsum(pdf)
plt.plot(bin_edge[1:], pdf , label = 'pdf of patients_died')
plt.plot(bin_edge[1:], cdf , label = 'cdf of patients_died')
plt.xlabel('positive_axil_nodes')
plt.ylabel('Probability')
plt.title('PDF AND CDF of positive axil nodes of patients_survive and patients_died')
plt.legend()
plt.show()
pdf of patients_survive: [0.83555556 0.08
                                                0.02222222 0.02666667 0.01
777778 0.00444444
0.00888889 0.
                                  0.00444444]
                       0.
bin_edge of patients_survive: [ 0.
                                     4.6 9.2 13.8 18.4 23. 27.6 32.2 36.
8 41.4 46. ]
pdf of patients_died: [0.56790123 0.14814815 0.13580247 0.04938272 0.07407
407 0.
 0.01234568 0.
                                  0.012345681
bin_edge of patients_died: [ 0. 5.2 10.4 15.6 20.8 26. 31.2 36.4 41.6 4
6.8 52.
```


Observatios:

- 1. Probability of 83 % patients surivived who had lessthan 3 positive axilary nodes .
- 2. Probability of 57 % patients died who had lessthan 5 positive axilary nodes.

Box Plot

In [62]:

```
#Box Plot
sns.boxplot(data=haberman, x = 'surv_status', y = 'positive_axil_nodes')
plt.show()
```


Box Plot Observatins:

- 1. 75 % of patients are survived at 3 positive Axil Nodes and its hard to classify 50% and 25 % because of its overlapped .
- 2. 75 % of patients are died at 11 positive axil nodes, 50 % of patients are died at 4 positive axil nodes and 25 % of patients are died at 1 positive axil node.

Violin Plot:

In [67]:

```
# Violin plot:
sns.violinplot(data = haberman, x = 'surv_status', y = 'positive_axil_nodes', size=(6))
plt.show()
```


Violin Plot Observations:

- 1. 50 % of patients are survived at 0 positive axil nodes , 75% of patients are survived at 3 positive nodes and 25 % is overlapped.
- 2. 75 % of patients are died at 11 positive axil nodes, 50 % of patients are died at 4 positive axil nodes and of patients are died at 0 positive axil node.

Summarizing plots

Observations And Conclusions:

- 1. unable to calssify properly by any of EDA, due to very less amount of dataset and imbalnced dataset.
- 2. As per the given dataset, positive axillir nodes feature was very useful to moderatively classify survival status
- 3. who had less amount of positive axillir nodes detection (zero or less than 3), always there is a huge Probabilities to survive 5 years or longer .
- 4. who had more amount of positive axillir nodes detection (5 or grater than or equal to 11), those patinets have a chance to died.
- 5. more than 70 % patients were survived and 27 % patients were died .

Thank You.

sign off Ramesh Battu