MATH 465 - INTRODUCTION TO COMBINATORICS LECTURE 10

1. Triangulations of an (n+2)-gon

Let \mathcal{P}_{n+2} be a convex (n+2)-gon. We consider the edge as a convex 2-gon which has $C_0 = 1$ triangulation (the empty one). For example, the pentagon has $C_3 = 5$ triangulations (Figure $\boxed{1}$).

Theorem 1.1. The number of triangulations of \mathcal{P}_{n+2} is C_n .

Proof. Let e be an edge of \mathcal{P}_{n+2} and let T be a triangulation of \mathcal{P}_{n+2} . If we remove e, we obtain two triangulated polygons \mathcal{Q}_1 and \mathcal{Q}_2 (in clockwise order starting from e) with a common vertex (see Figure 2). If \mathcal{Q}_1 is a (k+2)-gon and \mathcal{Q}_2 is an (l+2)-gon, we must have k+l=n-1. This procedure is clearly invertible, so if h_n denotes the number of triangulations of an (n+2)-gon, we obtain

$$h_n = \sum_{k+l=n-1} h_k h_l, \quad h_0 = 1,$$

the recurrence for Catalan numbers.

2. Plane trees

A plane tree or ordered rooted tree P on n+1 vertices is a set with n+1 elements, called vertices, defined recursively as follows:

FIGURE 1. Triangulations of a pentagon.

FIGURE 2. Removing an edge from a triangulation of \mathcal{P}_{n+2} .

FIGURE 3. Drawing a plane tree.

FIGURE 4. Plane trees with 4 vertices.

- (1) P has a distinguished vertex v called the root. In particular, $P \neq \emptyset$.
- (2) If n = 0, then $P = \{v\}$. If n > 0, P has a sequence (P_1, \ldots, P_m) of sub-plane trees, where each $P_i, 1 \le i \le m$ is a plane tree with $\sum_{i=1}^m \#P_i = n$.

The roots of P_i are called the *children* of v, and P is drawn by placing the root v at the top, writing P_1, \ldots, P_2 from left to right below v and drawing edges from v to each of its children (Figure 3).

Lemma 2.1. A plane tree with n + 1 vertices has n edges.

Proof. We prove this by strong induction. If n = 0, then $P = \{v\}$ and so P has 0 edges. Suppose the statement is true for all plane trees with fewer than n + 1 vertices. Suppose P is a plane tree with n + 1 vertices. Let P_1, \ldots, P_m denote the set of subtrees of the root of P. Each P_i has fewer than n + 1 vertices, so by the induction hypothesis, P_i has $\#P_i - 1$ edges. Therefore, P has $\sum_{i=1}^{m} (\#P_i - 1) + m = \#P - 1$ edges. \square

Theorem 2.2. The number of plane trees with n + 1 vertices is C_n .

Proof. We will define a bijection between plane trees and ballot sequences. We first define an order called *preorder* on the vertices of a plane tree P. The definition is recursive. Let v be the root with subtrees P_1, \ldots, P_m . Define

$$\operatorname{ord}(P) = v, \operatorname{ord}(P_1), \dots, \operatorname{ord}(P_m).$$

Traverse P in preorder, and each time we take a down step (i.e., away from the root), record a 1 and each time we take an up step (i.e., towards the root), record a -1. For the five plane trees in Figure 4, the respective sequences are

$$111 - --$$
, $11 - 1 - -$, $11 - -1 -$, $1 - 11 - -$, $1 - 1 - 1 -$

By Lemma 2.1, there are n edges. Since each edge is traversed twice, the length of the sequence is 2n. At any instant, the difference between the number of 1s and -1s is the depth below the root, so the ballot sequence condition is satisfied. This is a bijection between plane trees with n+1 vertices and ballot sequences of length 2n.

FIGURE 5. Drawing a binary tree.

FIGURE 6. Binary trees with 3 vertices.

3. Binary trees

A binary tree on n vertices is a set B with #B = n defined recursively by the following rule:

- (1) If n = 0, then $B = \emptyset$.
- (2) If $n \neq 0$, then it has a root v, a left subtree B_l and a right subtree B_r with $\#B_l + \#B_r = n 1$.

The root of B_l (resp., of B_r) is called the left (resp., right) child of v. We draw B as shown in Figure [5].

Theorem 3.1. There are C_n binary trees with n vertices.

Proof. There is a bijection between binary trees with $n \ge 1$ vertices and pairs (B_l, B_r) of left and right subtrees with k, l vertices respectively such that k + l = n - 1. Therefore, if h_n is the number of binary trees with n vertices, we have

$$h_n = \sum_{k+l=n-1} h_k h_l, \quad h_0 = 1,$$

the Catalan recurrence.

Theorem 3.2. Binary trees with n vertices are in bijection with triangulations of (n + 2)-gons.

Proof.

4. Bracketings

A bracketing w of $n+1 *s (n \ge 0)$ is defined recursively as follows:

- (1) If n = 0, then w = *.
- (2) If n > 0, then w = (st) where s and t are bracketings of k+1 and l+1 *s respectively for some k, l such that k + l = n 1.

Theorem 4.1. The number bracketings of a sequence of n + 1 *s is C_n .

$$(*(*(**))), (*((**)*)), ((**)(**)), ((*(**))*), (((**)*)*).$$

Proof. The parse tree construction provides a bijection between bracketings of n + 1 *s and binary trees with n vertices. Given a binary tree B, we define the bracketing w_B recursively as follows:

- (1) If $B = \emptyset$, let $w_B = *$.
- (2) If v is the root with left and right subtrees B_l and B_r respectively, let $w_B = (w_{B_l} w_{B_r})$.

This procedure is invertible. Given a bracketing w, define the binary tree B_w recursively as follows: If n = 0, let $B_w = \varnothing$. Otherwise w is a product (st). Define the right and left subtrees of B_w to be B_s and B_t respectively. For example, if w = (**), we have s = * and t = *. Therefore, $B_s = B_t = \varnothing$, so B is the tree with one vertex.

5. BIJECTIONS BETWEEN CATALAN OBJECTS

We constructed bijections between the following families of combinatorial objects counted by the Catalan numbers C_n :

Is there a bijection linking the families on the left and on the right?

Theorem 5.1. There is a bijection between bracketings of n+1 letters and ballot sequences of length 2n.

Exercise. Prove that the following construction is a bijection. Remove all)'s and replace all ('s with a 1 and each letter with -1 except for the last letter. For example, for n = 3, we have