SemenovVlAl 25012025-105101

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью минус 2.7 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 14 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность колебания промежуточной частоты измерена с помощью анализатора спектра с входным сопротивлением 50 Ом, и получено значение минус 14.2 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 1.)

Рисунок 1 – Схема измерения потерь в трансформаторе

- 1) 3.1 дБ 2) 3.7 дБ 3) 4.3 дБ 4) 4.9 дБ 5) 5.5 дБ 6) 6.1 дБ 7) 6.7 дБ
- 8) 7.3 дБ 9) 7.9 дБ

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что: $s_{21} = -0.49889 - 0.20211i, \, s_{31} = -0.20237 + 0.49952i.$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь верхняя боковая составляющая при преобразовании частоты вверх?

- 1) -52 дБн 2) -54 дБн 3) -56 дБн 4) -58 дБн 5) -60 дБн 6) -62 дБн 7) -64 дБн
- 8) -66 дБн 9) 0 дБн

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 2. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_{\rm r}+mf_{\rm \Pi Y}|$ Какой комбинацией $\{n;m\}$ можно было бы объяснить наличие в спектре составляющей, отмеченной маркером 2?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 2 – Экран анализатора спектра

- 1) $\{11; -30\}$ 2) $\{8; -37\}$ 3) $\{5; 5\}$ 4) $\{14; -16\}$ 5) $\{5; 12\}$ 6) $\{17; -37\}$
- 7) $\{11; -2\}$ 8) $\{14; -23\}$ 9) $\{5; -44\}$

Для полного подавления **верхней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный П-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная плюс 30 градусов.

Чему равна индуктивность компонента фазовращателя, если частота $\Pi \Psi$ равна 70 М Γ_{Π} ?

Варианты ОТВЕТА:

1) 131.3 нГн 2) 196.9 нГн 3) 98.5 нГн 4) 65.6 нГн

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 602 МГц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 9 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 171 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 1 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 1370 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 774 МГц до 800 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра? Варианты ОТВЕТА:

1) -62 дБм 2) -65 дБм 3) -68 дБм 4) -71 дБм 5) -74 дБм 6) -77 дБм 7) -80 дБм 8) -83 дБм 9) -86 дБм

На рисунке 3 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1 = r_3$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 3 – Двойной балансный смеситель

Частота гетеродина 407 МГц, частота ПЧ 44 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

- 1) 2035 MΓ_Ц
- 2) 1177 MΓ_{II}
- 3) 451 МГц
- 4) 2442 МГц.