力学

一、填空题

- 2、____8___
- 3, $a_n = 0$; $\beta = 2$.
- 4、 ____18____
- 5、_______(SI), _______(SI),
- 6, $\omega_2 = (\lambda_1 \omega_1) / \lambda_2$, $\omega_2 = (\lambda_1 \omega_1) / \lambda_2$
- 7 $W_1: W_2 = 2:1_{1}: I_2 = 1:1.414_{2}$
- 8、__24t-6____(SI); at =___24
- 9. $\omega = _{0}$ (SI), _____800 ____ (SI).

二、计算题

10、 解: 设M绳子上的拉力为T1, m绳子上的拉力为T2

由牛顿第二定律: $Mg - T_1 = Ma$

$$T_2 - mg = ma$$

由定轴转动定律定律: $T_1r - T_2r = J\beta$

由圆周运动公式: $a = \beta r$

得
$$\beta = \frac{(M-m)gr}{J + (m+M)r^2} = 0.97(SI)$$

11、解:由牛顿第二定律:mg-T=ma

由定轴转动定律定律: $Tr = J\beta$

得
$$a = \frac{mgR^2}{J + mR^2}$$

$$v = \sqrt{2ah} = \sqrt{\frac{2mgh}{J + mR^2}}R$$

$$\omega = \frac{v}{R} = \sqrt{\frac{2mgh}{J + mR^2}}$$

三、主观题

12. 略

13. 略

