Conditional Independence

CMPUT 366: Intelligent Systems

P&M §8.2

Logistics & Assignment #1

- Assignment #1 is due Feb 8 11:55pm (next week)
- Office hours have begun!
 - Not mandatory; for getting help from TAs
 - New Monday office hours: 6:00-7:00pm Mountain time
 - Python refresher TODAY (will be recorded)

Lecture Outline

- 1. Recap
- 2. Operating on Conditional Probabilities
- 3. Expected Value
- 4. Structure
- 5. Marginal Independence
- 6. Conditional Independences

Recap: Probability

- Probability is a numerical measure of uncertainty
 - Not a measure of truth
- Semantics:
 - A possible world is a complete assignment of values to variables
 - Every possible world has a probability
 - Probability of a proposition is the sum of probabilities of possible worlds in which the statement is true

Recap: Conditional Probability

- When we receive **evidence** in the form of a proposition e, it **rules out** all of the possible worlds in which e is **false**
 - We set those worlds' probability to 0, and rescale remaining probabilities to sum to 1
- Result is probabilities conditional on e: $P(h \mid e)$

Chain Rule

Definition: conditional probability

$$P(h \mid e) = \frac{P(h, e)}{P(e)}$$

We can run this in reverse to get

$$P(h, e) = P(h \mid e) \times P(e)$$

Definition: chain rule

$$P(\alpha_1, ..., \alpha_n) = P(\alpha_1) \times P(\alpha_2 \mid \alpha_1) \times \cdots \times P(\alpha_n \mid \alpha_1, ..., \alpha_{n-1})$$
$$= \prod_{i=1}^n P(\alpha_i \mid \alpha_1, ..., \alpha_{i-1})$$

Bayes' Rule

• From the chain rule, we have

$$P(h, e) = P(h \mid e)P(e)$$
$$= P(e \mid h)P(h)$$

• Often, $P(e \mid h)$ is easier to compute than $P(h \mid e)$.

Bayes' Rule:

Expected Value

• The **expected value** of a **function** f on a random variable is the weighted **average** of that function over the domain of the random variable, **weighted** by the **probability** of each value:

$$\mathbb{E}\left[f(X)\right] = \sum_{x \in dom(X)} P(X = x) f(x)$$

• The conditional expected value of a function f is the average value of the function over the domain, weighted by the conditional probability of each value:

$$\mathbb{E}\left[f(X) \mid Y = y\right] = \sum_{x \in dom(X)} P(X = x \mid Y = y) f(x)$$

Expected Value Examples

$$\mathbb{E}[X] = 3$$

$$\mathbb{E}[X^2] \simeq 10$$

$$\mathbb{E}[X] = 3$$

$$\mathbb{E}[X^2] \simeq 12$$

Unstructured Joint Distributions

- Probabilities are not fully arbitrary
 - Semantics tell us probabilities given the joint distribution.
 - Semantics alone do not restrict probabilities very much
- In general, we might need to explicitly specify the entire joint distribution
 - Question: How many numbers do we need to assign to fully specify a joint distribution of k binary random variables?
- We call situations where we have to explicitly enumerate the entire joint distribution unstructured

Structure

- Unstructured domains are very hard to reason about
- Fortunately, most real problems are generated by some sort of underlying process
 - This gives us structure that we can exploit to represent and reason about probabilities in a more compact way
 - We can compute any required joint probabilities based on the process, instead of specifying every possible joint probability explicitly
- Simplest kind of structure is when random variables don't interact

Marginal Independence

When the value of one variable **never** gives you information about the value of the other, we say the two variables are **marginally independent**.

Definition:

Random variables X and Y are marginally independent iff

1.
$$P(X = x | Y = y) = P(X = x)$$
, and

2.
$$P(Y = y | X = x) = P(Y = y)$$

for all values of $x \in dom(X)$ and $y \in dom(Y)$.

Marginal Independence Example

- I flip four fair coins, and get four results: C_1, C_2, C_3, C_4
- Question: What is the probability that C_1 is heads?
 - $P(C_1 = heads)$
- Suppose that C_2 , C_3 , and C_4 are tails
- Question: Now what is the probability that C_1 is heads?
 - $P(C_1 = heads \mid C_2 = tails, C_3 = tails, C_4 = tails)$
 - Why?

Properties of Marginal Independence

Proposition:

If X and Y are marginally independent, then

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$

for all values of $x \in dom(X)$ and $y \in dom(Y)$.

Proof:

1.
$$P(X = x, Y = y) = P(X = x | Y = y)P(Y = y)$$
 Chain rule

2.
$$P(X = x, Y = y) = P(X = x)P(Y = y)$$
 Marginal independence

Exploiting Marginal Independence

C ₁	Р
Н	0.5

C ₂	P
Н	0.5

C ₃	P
Н	0.5

C ₄	Р
Н	0.5

- Instead of storing the entire joint distribution, we can store 4 marginal distributions, and use them to recover joint probabilities
 - Question: How many numbers do we need to assign to fully specify the marginal distribution for a single binary variable?
- If everything is independent, learning from observations is hopeless (why?)
 - But also if nothing is independent
 - The intermediate case, where many variables are independent, is ideal

```
C<sub>1</sub> C<sub>2</sub> C<sub>3</sub> C<sub>4</sub>
H H H H 0.0625
H H H T 0.0625
     T H 0.0625
H H T T 0.0625
H T H H 0.0625
H T H T 0.0625
      T H 0.0625
H T T T 0.0625
   H H H 0.0625
T H H T 0.0625
   H T H 0.0625
        T 0.0625
   T H H 0.0625
T T H T 0.0625
T T H 0.0625
```

Clock Scenario

Example:

- I have a stylish but impractical clock with no number markings
- Two students, Alice and Bob, both look at the clock at the same time, and form opinions about what time it is
 - Their opinion of the time is directly affected by the actual time
 - They don't talk to each other, so Alice's opinion of the time is not directly affected by Bob's opinion of the time (& vice versa)
- Question: Are A and B marginally independent?

$$P(A \mid B) \neq P(A)$$

• Question: If we know it is 10:09. Are A and B independent?

$$P(A \mid B, T = 10.09) = P(A \mid T = 10.09)$$

Random variables:

A - Time Alice thinks it is

 $oldsymbol{B}$ - Time Bob thinks it is

T - Actual time

Conditional Independence

When knowing the value of a **third** variable Z makes two variables A, B independent, we say that they are **conditionally independent given** Z (or **independent conditional on** Z).

Definition:

Random variables X and Y are conditionally independent given Z iff

$$P(X = x \mid Y = y, Z = z) = P(X = x \mid Z = z)$$

for all values of $x \in dom(X)$, $y \in dom(Y)$, and $z \in dom(Z)$. We write this using the notation $X \perp\!\!\!\perp Y \mid Z$.

Clock example: A and B are conditionally independent given T.

Properties of Conditional Independence

Proposition:

If X and Y are conditionally independent given Z, then

$$P(X = x, Y = y \mid Z) = P(X = x \mid Z)P(Y = y \mid Z)$$

for all values of $x \in dom(X)$, $y \in dom(Y)$, and $z \in dom(Z)$.

Proof:

1.
$$P(X = x, Y = y \mid Z) = P(X = x \mid Y = y, Z = z)P(Y = y \mid Z)$$
 Chain rule

2.
$$P(X = x, Y = y \mid Z) = P(X = x \mid Z)P(Y = y \mid Z)$$
 Conditional independence

Properties of Conditional Independence

Question: Is conditional independence commutative?

• i.e., If $X \perp\!\!\!\perp Y \mid Z$, is it also true that $Y \perp\!\!\!\perp X \mid Z$?

Proof:

$$X \perp\!\!\!\perp Y \mid Z \iff P(X,Y \mid Z) = P(X \mid Z)P(Y \mid Z)$$
 previous result
$$\iff P(Y,X \mid Z) = P(Y \mid Z)P(X \mid Z) \text{ commutativity of multiplication}$$

$$\iff Y \perp\!\!\!\perp X \mid Z \qquad \blacksquare$$

Exploiting Conditional Independence

If X and Y are marginally independent given Z, then we can again just store **smaller** tables and recover joint distributions by **multiplication**.

- Question: How many tables do we need to store in order to be able to compute the joint distribution of X,Y,Z when X and Y are independent given Z?
 - i.e., how many table to be able to compute P(X=x,Y=y,Z=z) for every combination of x,y,z?

Preview: In the upcoming lectures, we will see how to efficiently exploit complex structures of conditional independence

Simplified Clock Example

A	T	P(A T)
12	1	0.25
1	1	0.50
2	1	0.25
1	2	0.25
2	2	0.50
3	2	0.25
2	3	0.25
3	3	0.50
4	3	0.25

В	T	P(B T)
12	1	0.25
1	1	0.5
2	1	0.25
1	2	0.25
2	2	0.5
3	2	0.25
2	3	0.25
3	3	0.5
4	3	0.25
	•	

T	P(T)
1	0
2	1/10
3	1/10
4	1/10
5	1/10
6	1/10
7	1/10
8	1/10
9	1/10
10	1/10
11	1/10

12

```
P(A = 1, B = 2, T = 2)
= P(A = 1 \mid T = 2)P(B = 2 \mid T = 2)P(T = 2)
= 0.25 \times 0.5 \times 0.10
= 0.0125
P(A = 1, B = 2, T = 1)
= P(A = 1 \mid T = 1)P(B = 2 \mid T = 1)P(T = 1)
= 0.5 \times 0.25 \times 0.0
= 0
```

Caveats

- Often, when two variables are marginally independent, they are also conditionally independent given a third variable
 - E.g., coins C_1 , and C_2 are marginally independent, and also conditionally independent given C_3 : Learning the value of C_3 does not make C_2 any more informative about C_1 .
- This is not always true
 - Consider another random variable: B is true if both C_1 and C_2 are the ${\sf same}$ value
 - C_1 and C_2 are marginally independent: $P(C_1 = heads \mid C_2 = heads) = P(C_1 = heads)$
 - In fact, C_1 and C_2 are also both marginally independent of \mathbf{B} : $P(C_1 \mid B = true) = P(C_1)$
 - But if I know the value of B, then knowing the value of C_1 tells me **exactly** what the value of C_2 must be: $P(C_1 = heads \mid B = true, C_2 = heads) \neq P(C_1 = heads \mid B = true)$
 - C_1 and C_2 are not conditionally independent given ${\it B}$

Summary

- Unstructured joint distributions are exponentially expensive to represent (and operate on)
- Marginal and conditional independence are especially important forms of structure that a distribution can have
 - Vastly reduces the cost of representation and computation
 - Caveat: The relationship between marginal and conditional independence is not fixed
- Joint probabilities of (conditionally or marginally) independent random variables can be computed by multiplication