R&D Spend	Administration	Marketing Spend	State	Profit	From this dataset, we
165349.2	136897.8	471784.1	New York	192261.8	are required to build a model that would predict the Profits earned by a startup and their various expenditures like R & D Spend, Administration Spend, and Marketing Spend. Clearly, we can understand that it is a multiple linear regression problem, as the independent variables are more than
162597.7	151377.59	443898.53	California	191792.1	
153441.51	101145.55	407934.54	Florida	191050.4	
144372.41	118671.85	383199.62	New York	182902	
142107.34	91391.77	366168.42	Florida	166187.9	
131876.9	99814.71	362861.36	New York	156991.1	
134615.46	147198.87	127716.82	California	156122.5	
130298.13	145530.06	323876.68	Florida	155752.6	
120542.52	148718.95	311613.29	New York	152211.8	
123334.88	108679.17	304981.62	California	149760	
101913.08	110594.11	229160.95	Florida	146122	
100671.96	91790.61	249744.55	California	144259.4	
93863.75	127320.38	249839.44	Florida	141585.5	
91992.39	135495.07	252664.93	California	134307.4	


```
#importing the libraries
import numpy as np
import matplotlib.pyplot as plu
import pandas as pd
```

```
# Importing the dataset
dataset = pd.read_csv('50_Startups.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, -1].values
print(X)
[[165349.2 136897.8 471784.1 'New York']
```

[162597.7 151377.59 443898.53 'California'] [153441.51 101145.55 407934.54 'Florida'] [144372.41 118671.85 383199.62 'New York'] [142107.34 91391.77 366168.42 'Florida'] [131876.9 99814.71 362861.36 'New York']

[134615.46 147198.87 127716.82 'California']

[130298.13 145530.06 323876.68 'Florida']

120542 52 140710 05 34444

```
from sklearn.compose import ColumnTransformer
                                                                               State
from sklearn.preprocessing import OneHotEncoder
                                                                              New York
ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), [3])],
                                                                              California
                      remainder='passthrough')
                                                                               Florida
X = np.array(ct.fit transform(x))
                                                                              New York
                                                                               Florida
                                                                              New York
             [0.0 0.0 1.0 165349.2 136897.8 471784.1]
                                                                              California
             [1.0 0.0 0.0 162597.7 151377.59 443898.53]
                                                                               Florida
             [0.0 1.0 0.0 | 153441.51 101145.55 407934.54]
                                                                              New York
             [0.0 0.0 1.0 | 144372.41 118671.85 383199.62]
                                                                              California
             [0.0 1.0 0.0 | 142107.34 91391.77 366168.42]
                                                                               Florida
             [0.0 0.0 1.0 131876.9 99814.71 362861.36]
                                                                               California
              [1.0 0.0 0.0 134615.46 147198.87 127716.82]
                                                                                Florid
              0.0 1.0 0.0 [130298.13 145530.06 323876.68]
                                                                               California
              0.0 0.0 1.0 120542.52 148718.95 311613.291
```

```
#Avoiding Dummy Variable Trap
                                                     State
                                                    New York
X = X[:, 1:]
                                                    California
print(X)
                                                     Florida
                                                    New York
[[0.0 1.0 165349.2 136897.8 471784.1]
 [0.0 0.0 162597.7 151377.59 443898.53]
                                                     Florida
 [1.0 0.0 153441.51 101145.55 407934.54]
                                                    New York
 [0.0 1.0 144372.41 118671.85 383199.62]
                                                    California
 [1.0 0.0 142107.34 91391.77 366168.42]
                                                     Florida
 [0.0 1.0 131876.9 99814.71 362861.36]
                                                    New York
 [0.0 0.0 134615.46 147198.87 127716.82]
                                                    California
 [1.0 0.0 130298.13 145530.06 323876.68]
                                                     Florida
 [0.0 1.0 120542.52 148718.95 311613.29]
                                                    California
 [0.0 0.0 123334.88 108679.17 304981.62]
                                                      Florida
 [1.0 0.0 101913.08 110594.11 229160.95]
 [0.0 0.0 100671.96 91790.61 249744.55]
                                                     California
```

```
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size = 0.2, random_state = 0)
```

Lets Code

Fitting the model to the training

```
from sklearn.linear model import LinearRegression
regressor = LinearRegression()
regressor.fit(X train, y train)
```

data

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

```
# Predicting the Test set results
             y_pred = regressor.predict(X_test)
y test
array([103282.38, 144259.4 , 146121.95, 77798.83, 191050.39, 105008.31,
       81229.06, 97483.56, 110352.25, 166187.94])
```

y pred

```
array([103015.20159796, 132582.27760816, 132447.73845175, 71976.09851259, 178537.48221054, 116161.24230163, 67851.69209676, 98791.73374688, 113969.43533012, 167921.0656955 ])
```

Mean Squared Error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

from sklearn.metrics import mean_squared_error
mean_squared_error(y_test , y_pred)

83502864.03250548

$$R^2 = 1 - \frac{RSS}{TSS}$$

from sklearn.metrics import r2_score
r2_score(y_test , y_pred)

0.9347068473282987

(