PROJET BUSINESS INTELLIGENCE

TABLE DES MATIERES

Première partie)
Calibration de la courbe de taux		
Etude de l'évolution d'un fonds géré par la techniqu	ue du CPPI2	2
Données utilisées	3	3
Discount factor	3	3
Calculs	4	1
Résultats	4	1
Garantie sur valeur liquidative maximale ou Max Na	av5	5
Résultats	ε	5
Seconde partie		3
Description du portefeuille	8	3
Implémentations	8	3
Indicateurs statistiques		3
Top 5 des contributeurs)
Calculs du portefeuille par catégories	<u>c</u>	9

PREMIERE PARTIE

CALIBRATION DE LA COURBE DE TAUX

Pour calibrer la courbe de taux, j'ai utilisé – comme vu en cours – le solveur sur Excel. Pour ce faire j'ai reporté les valeurs données par l'énoncé dans un tableau. De sorte d'associer à chaque date un taux observé et un taux calculé par le modèle de Nelson-Siegel-Svensson. Pour calculer la calibration j'ai utilisé la formule suivante :

$$\min_{\theta} E(\theta) = \sum_{i=0}^{10} \left[R^{observ\acute{e}}(t_i) - R_{\theta}(t_i) \right]^2$$

Le résultat est affiché dans un tableau Excel. Cependant, quelques erreurs sur la précision sont à noter. Lorsque dans le solveur nous mettons que nous voulons minimiser la cellule F17 alors le solveur n'arrive pas à trouver de résultat concluant. Ainsi j'ai dû affiner ma minimisation pour que le solveur trouve un résultat au plus égal à 0.0001, soit la plus petite marge d'erreur possible – sans erreurs. (Figure 1)

	Ecart au carré	Ecart	R	TAUX_OBSERVE	DATE
	0,00%	0,06%	2,09%	2,15%	0,00
	0,00%	0,09%	2,26%	2,35%	0,25
	0,00%	0,22%	2,38%	2,60%	0,50
	0,00%	0,07%	2,75%	2,82%	0,75
	0,00%	-0,08%	3,13%	3,05%	1,00
	0,00%	-0,59%	4,03%	3,44%	2,00
	0,00%	-0,58%	4,38%	3,80%	3,00
	0,00%	-0,31%	4,56%	4,25%	4,00
	0,00%	-0,17%	4,67%	4,50%	5,00
	0,00%	-0,06%	4,74%	4,68%	6,00
	0,00%	0,03%	4,79%	4,82%	7,00
	0,00%	0,11%	4,83%	4,94%	8,00
	0,00%	0,11%	4,83%	4,94%	8,00
	0,00%	0,17%	4,86%	5,03%	9,00
	0,00%	0,23%	4,88%	5,11%	10,00
CALIBRA	0.01%		•		

 Beta0
 Beta1
 Beta2
 Beta3
 tau1
 tau2

 0,0509387
 -0,03007287
 0,0198996
 -0,083475
 0,109427786
 0,241789712

Figure 1 : Solveur Excel pour trouver les paramètres du modèle

Les résultats sont ensuite en suite utiliser sur Jupyter et récupéré dans un DataFrame pour être plus facilement traitable. Pour la suite de l'exercice je créé une fonction $courbe_taux(float:t)$ qui prend en entrée une date t et retourne le taux associé. Graphiquement mis côte à côte nous retrouverons des résultats similaires à ceux observés. (Figure 2)

Figure 2 : Graphique affichant en pointillés les valeurs clés, en bleu les taux observés et en rouge ceux calculés. Le tracé bleu représente la courbe de taux du modèle.

ETUDE DE L'EVOLUTION D'UN FONDS GERE PAR LA TECHNIQUE DU CPPI

Dans cette partie de l'exercice nous étudions l'évolution d'un portefeuille contenant uniquement l'indice CAC40 sur la période du 01/01/2015 au 12/03/2019. Le portefeuille est géré par la technique du *Constant Proportion Portfolio Insurance* (CPPI) dites du « coussin ». Concernant les jours prit en compte lors de l'étude, nous nous intéresserons uniquement aux *trading days* [1], soit en moyenne 253 jours sur 365.25 . Les paramètres fixés sont les suivants :

- Multiplicateur = 3
- Garantie = 100%
- Maturité = 10 * 253

DONNEES UTILISEES

Les données utilisées dans cette étude proviennent de la basse de données reçues en cours. Il s'agit d'une base de données utilisant le SBGD suivant : *SQLite*, il est utile car facilement traitable par python à l'aide de la bibliothèque *sqlite3*.

Je récupère les données du CAC 40 à l'aide de la requête SQL suivante :

SELECT date, value FROM time_series AS t INNER JOIN instrument AS i ON t.instrumentid = i.id WHERE i.name = "CAC40"

Les données sont ensuite récupérées dans un *DataFrame* puis traitées pour simplifier leur utilisation plus tard dans le programme. Enfin, nous utilisons les variations du CAC40 pour rebaser les données à 1. (Figure 3)

Figure 3 : Valeurs du CAC 40 rebasées à 1 sur la période du 01/01/2015 au 12/03/2019

DISCOUNT FACTOR

Comme expliqué dans la section succédant l'exercice de calibration, nous allons devoir travailler sur la courbe de taux du modèle pour obtenir le *Bond floor*. Nous avons la formule du *discount factor* donnée dans cette section, tel que :

$$B(t_0, t) = \frac{1}{[1 + R(t_0, t)]^t}$$

Et nous cherchons à calculer le discount factor avec pour paramètre t_i et T (la maturité). A partir de l'expression suivante :

$$B(t_i,T) = \frac{B(t_0,t)}{B(t_0,t_i)}$$

Nous obtenons donc:

$$B(t_i, T) = \frac{[1 + R(t_0, t_i)]^{-t}}{[1 + R(t_0, T)]^t}$$

Ainsi au cours de nos calculs le Bondfloor sera calculé avec cette formule :

$$BF_{t_i} = G_{t_i} * B(t_i, T)$$

CALCULS

NAV

Pour suivre les performances du portefeuille, nous calculons la valeur nette des actifs, ou *Net Asset Value* (NAV). Cela grâce aux formules utilisées en cours.

$$NAV_{t_{i+1}} = AR_{t_i} * \frac{S_{t_{i+1}}}{S_{t_i}} + \left(NAV_{t_i} - AR_{t_i}\right) * \left(1 + R(t_i, T) * \frac{1}{253}\right)$$

Avec les valeurs suivantes :

- Le Bondfoor : $BF_{t_{i+1}} = G_{t_i} * B(t_i, T)$

- Le coussin : $C_{t_{i+1}} = NAV_{t_{i+1}} - BF_{t_{i+1}}$

- L'actif risqué : $AR_{t_{i+1}} = Multiplicateur * C_{t_{i+1}}$

- L'exposition : $E_{t_{i+1}} = \frac{AR_{t_{i+1}}}{NAV_{t_{i+1}}}$

RENDEMENT ET VOLATILITE

Les rendements sont calculés sur les périodes usuelles, c'est-à-dire : 3 mois, 6 mois, 1 an, 3 ans et depuis le début. (5 ans étant au-delà du commencement) Pour la performance nous utilisons la formule suivante :

$$avec \ t_0 < t_1 : R = \frac{v_{t_1}}{v_{t_0}} - 1$$

Et pour la performance annualisée :

$$R = \left(\frac{v_{t_1}}{v_{t_0}}\right)^{\frac{253}{t_1 - t_0}} - 1$$

Pour la volatilité, nous devons d'abord l'estimer avec les données recueillies. En effet le large échantillon nous le permet. Nous utilisons la formule suivante :

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (R_i - \bar{R})^2$$

Et la volatilité annualisée est obtenue avec :

$$\sigma_a = \sigma * \sqrt{253}$$

RESULTATS

Sont présentés les résultats sur le graphique. (Figure 4) On remarque que le portefeuille sous performe le sous-jacent avec une exposition ne dépassant jamais 2, la quantité d'actif risqué n'est donc pas prédominante.

Figure 4 : Graphique des valeurs du portefeuille. On remarque que le Bondfloor décroit progressivement.

INDICATEURS

PERFORMANCES

Nous répertorions les performances

	3M	6M	1Y	3Y	ALL
NAV	13.496866	-9.485112	-3.908252	9.973998	5.146891
NAV Annualisé	63.470536	-17.586823	-3.908252	3.219877	1.191521
Benchmark	10.245667	-4.148866	0.704901	19.129155	23.939101
Benchmark Annualisé	46.029761	-7.895342	0.704901	6.008174	5.195670

VOLATILITE ANNUALISEE

	Vol. Annualisé
NAV	0.321476
Benchmark	0.191830

AUTRES

Les autres indicateurs demandés sont :

• Le coussin initial : $C_{t_0}=0.379$ • L'exposition initiale : $E_{t_0}=1.137$ • Moyenne d'exposition : $\bar{E}=1.385$

GARANTIE SUR VALEUR LIQUIDATIVE MAXIMALE OU MAX NAV

Cette partie reprend les calculs utilisés pour la section précédente. Cependant la Garantie est maintenant calculée selon la formule suivante, avec x le pourcentage de capital investi et y le pourcentage de la haute valeur liquidative de la NAV observée au cours de la vie du produit :

$$G_{t_i} = \max(y * \max(Nav_{t_0,t_i}), x)$$

Le sous-jacent est composé de trois indices, 25% de EUROSTOXX50, 25% de S&P500 et 50% de MSQCI WORLD.

PERFORMANCES

Nous répertorions les performances

	3M	6M	1Y	3Y	ALL
NAV	-0.486273	-11.578266	-7.767120	56.895925	37.434301
NAV Annualisé	-1.874457	-21.245585	-7.767120	16.199401	1.692610
Benchmark	1.111923	-2.567089	0.739885	38.919317	69.757919
Benchmark Annualisé	4.385966	-4.922330	0.739885	11.580305	2.832797

VOLATILITE ANNUALISEE

	Vol. Annualisé
NAV	0.250087
Benchmark	0.182910

Les autres indicateurs demandés sont :

 $\begin{array}{ll} \bullet & \text{Le coussin initial}: C_{t_0} = 0.379 \\ \bullet & \text{L'exposition initiale}: E_{t_0} = 1.137 \\ \bullet & \text{Moyenne d'exposition}: \bar{E} = 1.402 \\ \end{array}$

SECONDE PARTIE

La seconde partie constitue à une étude approfondie d'un portefeuille d'action. Dans le rapport nous détaillerons l'implémentation en Python qui a permis de retrouver les informations demandées. Pour une visualisation des résultats, un rapport y est dédié en annexe.

DESCRIPTION DU PORTEFEUILLE

Le portefeuille est constitué d'un total de 20 actions. Ces dernières sont réparties par continent, telles que : 50% en Europe, 30% en Amérique du Nord et 20% en Asie. Plus précisément nous avons les actions suivantes réparties par régions :

Région	Action				
Europe					
France	BNP Paribas				
	Orange				
	Sanofi				
	Vinci				
	Vivendi				
Angleterre Compass					
	Barclays				
Allemagne	SAP				
Suisse	Nestlé				
Italie	Eni				
Amé	rique				
Etats-Unis Amazon.com					
	Cintas				
	NVIDIA				
	NXP Semiconductors				
	Ross Stores				
	PespiCo				
A	sie				
Japon	Asahi				
	Canon				
	Kikkoman				
	Toyota				

Toutes ces actions ont été choisies sur les trois plus gros indices boursiers associés à leur continent. Pour l'Europe l'EUROSTOXX50, l'Amérique le S&P500 et l'Asie le NIKKEI400. En effet, le portefeuille est donc adossé au benchmark comprenant une combinaison linéaire de ces trois indices.

IMPLEMENTATIONS

Les indicateurs statistiques usuels demandés sont les suivants : volatilité et performance annualisé du portefeuille et benchmark, *trakcing error*, ratio d'information sur 1, 3 et 5 ans, alpha et beta.

- La volatilité et la performance annualisé, les calculs ont déjà été détaillé dans la première partie, section « ETUDE DE L'EVOLUTION D'UN FONDS GERE PAR LA TECHNIQUE DU CPPI ».
- Le tracking error permet de repérer la différence de performance entre le portefeuille et le benchmark. Il se calcule avec la formule :

$$te = \sqrt{Var(r_p - r_b)}$$

Avec r_p et r_b les rendements respectifs du portefeuille et du benchmark.

- Le Beta correspond à un rapport historique de la volatilité du portefeuille sur celle du benchmark. Il se calcule avec la formule :

$$\beta = \frac{Cov(r_p, r_b)}{Var(r_b)}$$

- L'alpha est une mesure permettant de calculer la performance d'un portefeuille d'investissement par rapport à une valeur de référence. Il se calcule avec la formule :

$$\alpha = r_p - TSR - \beta * (r_b - TSR)$$

Avec *TSR* le taux sans risque. J'ai utilisé la courbe de taux ajustée dans la première partie.

TOP 5 DES CONTRIBUTEURS

Pour obtenir les 5 actions les plus performantes du portefeuille, nous pouvons prendre les derniers rendements des actions comparés à la date t_0 et en sortir un classement.

CALCULS DU PORTEFEUILLE PAR CATEGORIES

Pour répartir les actions par pays nous pouvons utiliser les données de la base données fournies. Toutes les requêtes devront être exécutées dans une vue comprenant uniquement les actions choisies. Nos actions ont été dument choisie par le pays d'origine alors nous n'avons pas besoin de faire de requête. Cependant voici la requête : REVOIR 9A AVEC LES POIDS ET LA CORRECTION DU PROF

SELECT c.name, COUNT(*)
FROM country as c
GROUP BY c.name

Pour la répartition par secteurs d'activité la requête est similaire :

SELECT s.name, COUNT(*)
FROM sector as s
GROUP BY s.name

Une fois que les données sont associées à chaque action, nous pouvons calculer les indicateurs statistiques demandés propres à chaque pays et secteurs.

CHEKROUN FOND MONDE (EUR)

Reporting Global au 12 février 2021

Performances et analyse du risque

Performances

	3M	6M	1Y	3Y	ALL
NAV	0.617608	-16.603866	-12.479167	56.504316	104.563750
NAV Annualisé	2.418883	-29.700881	-12.479167	16.102643	15.972024
Benchmark	3.413562	-3.395577	-0.061358	12.545250	26.393861
Benchmark Annualisé	13.916792	-6.485217	-0.061358	4.018133	4.977357

Volatilités

	voi. Annualise
NAV	0.128921
Benchmark	0.105014

Tracking Error et Ratio d'information

	1Y	3Y	ALL
Tracking Error	0.014341	0.012651	0.012144
Ratio d'information	-8.658825	9.552557	9.053744

Alpha et Beta

	Valeur
Alpha	0.990172
Beta	-0.006992

Analyse contributeurs

Top 5

Exposition par pays

Exposition par secteurs d'activités

2022

CHEKROUN FOND MONDE

Analyse par Pays

Performances

	France	Angleterre	USA	Japon	Allemagne	Suisse	Italie
Rendement Annualisé	5.081591	3.416608	31.698551	10.634426	8.669408	6.875599	-2.489715

Volatilités

	France	Angleterre	USA	Japon	Allemagne	Suisse	Italie
Vol. Annualisée	0.197255	0.182362	0.377502	0.29627	0.253784	0.153871	0.374212

2022