Boolean Logic

Boolean values

We need to define:

- True
- False

Intuition:

Boolean values are 2-arity functions (two parameters).

True returns the first parameter.

False returns the second parameter.

True =
$$\x.\y.\x$$

False =
$$\x.\y.\y$$

These are not declarations of names. We simply denote True and False as the short-hands of the LC expressions on the right-hand side.

Boolean Operators: AND

where x, y are boolean values.

Such that

- (AND True True) \rightarrow True
- (AND True False) → False
- (AND False True) → False
- (AND False False) → False

AND =
$$\xspace x.\yspace y.\xspace x y False)$$

Can you verify that this works as required?

Other operators

We need to also define:

and

Here, the parameters x, y are boolean values.

OR =
$$\xspace \xspace \xspa$$

NOT =
$$\xspace \times x$$
. (x False True)

Can you verify that this works as required?

IsZero

Consider a function that takes a Church number as argument, and returns a boolean value.

IsZero 0 = True IsZero x = False for all other $x \neq 0$

Design an iterative definition of IsZero

$$IsZero(n) = n (\x. False) True$$

IsZero =
$$\n$$
 (\x . False) True

If-Else

Consider the if-then-else construct:

```
If (u: Boolean) Then
```

m: Number

Else

n: Number

Can we define a 3-arity function:

Challenge:

Can you complete the LC expression for

IfElse?