Interpretable Neural Predictions with Differentiable Binary Variables

Joost Bastings Wilker Aziz Ivan Titov

ILLC, University of Amsterdam ILCC, University of Edinburgh

bastings.github.io

ACL, 30 July 2019

Lots of documents

Approach (Lei et al., 2016)

pours a dark amber color with decent head that does not recede much . it 's a tad too dark to see the carbonation , but fairs well . smells of roasted malts and mouthfeel is quite strong in the sense that you can get a good taste of it before you even swallow .

Approach (Lei et al., 2016)

pours <u>a dark amber color with decent head</u> that does not recede much . it 's <u>a tad too dark to see the</u> <u>carbonation</u>, <u>but fairs well</u>. smells of roasted malts and mouthfeel is quite strong in the sense that you can get a good taste of it before you even swallow.

Rationale Extractor

pours a dark amber color with decent head that does not recede much . it 's a tad too dark to see the carbonation , but fairs well . smells of roasted malts and mouthfeel is quite strong in the sense that you can get a good taste of it before you even swallow .

Approach (Lei et al., 2016)

Rationale

pours <u>a dark amber color with decent head</u> that does not recede much . it 's <u>a tad too dark to see the carbonation</u>, <u>but fairs well</u>. smells of roasted malts and mouthfeel is quite strong in the sense that you can get a good taste of it before you even swallow.

Rationale Extractor

pours a dark amber color with decent head that does not recede much . it 's a tad too dark to see the carbonation , but fairs well . smells of roasted malts and mouthfeel is quite strong in the sense that you can get a good taste of it before you even swallow .

Enough to make the right prediction

A rationale is a short and sufficient part of the input text.

To be a good explanation

Text classification with rationales (Lei et al., 2016)

$$Z_i \mid x \sim \text{Bernoulli}(g_i(x; \phi))$$

Rationale Extractor

NN that predicts a sequence *n* of Bernoulli parameters

Text classification with rationales (Lei et al., 2016)

$$Z_i \mid x \sim \text{Bernoulli}(g_i(x; \phi))$$

Rationale Extractor

NN that predicts a sequence *n* of Bernoulli parameters

Model of Lei et al. (2016)

Model of Lei et al. (2016)

In this work: Hard Kumaraswamy Distribution

Kumaraswamy with various (a, b)

Getting short rationales

- We want **short** rationales without breaking backpropagation
- Solution: relax L₀ (Louizos et al., 2018)

Getting coherent rationales

Baseline: penalty for transitions using fused lasso

$$\sum_{i=1}^{n-1} |z_i - z_{i+1}|$$

Proposed model: compute a relaxation of fused lasso by computing the expected number of zero-to-nonzero and nonzero-to-zero changes:

$$\mathbb{E}_{p(z|x)} \left[\sum_{i=1}^{n-1} \mathbb{I}[z_i = 0, z_{i+1} \neq 0] \right] + \mathbb{E}_{p(z|x)} \left[\sum_{i=1}^{n-1} \mathbb{I}[z_i \neq 0, z_{i+1} = 0] \right]$$

Specify target selection rate

- We want a maximum selection rate e.g. 10% of the text
- We propose a constrained optimization problem:

$$\min_{\phi,\theta} L(\phi,\theta)$$
 s.t. $\mathbb{E}[L_0] < r$

We use Lagrangian relaxation

Experiments

- 1. Multi-aspect sentiment analysis (BeerAdvocate, Lei et al. 2016)
 - Regression, sentiment score in [0,1]
- 2. Stanford Sentiment (SST)
 - Classification {very negative, ..., very positive}
- 3. Stanford Natural Language Inference (SNLI)
 - Classification {entailment, contradiction, neutral}

Beer Precision per Aspect

Beer Precision per Aspect

		Look		Smell		Taste	
		Precision	% Selected	Precision	% Selected	Precision	% Selected
Attention (Lei et al.)	Threshold	80.6	13	88.4	7	65.3	7
Bernoulli / REINFORCE (Lei et al.)	Tuned X	96.3	14	95.1	7	80.2	7

Beer Precision per Aspect

Multiple aspects

		Look		Smell		Taste	
		Precision	% Selected	Precision	% Selected	Precision	% Selected
Attention (Lei et al.)	Threshold	80.6	13	88.4	7	65.3	7
Bernoulli / REINFORCE (Lei et al.)	Tuned X	96.3	14	95.1	7	80.2	7
HardKuma	Lagrange	98.1	13	96.8	7	89.8	7

Beer MSE/selection tradeoff (all aspects)

SST: accuracy/selection tradeoff

Analysis: Word Count per Sentiment

SNLI: HardKuma attention

- NLI: predict {entailment, contradiction, neutral} given premise & hypothesis
- Baseline: Decomposable Attention model (Parikh et al., 2016)
- We replace Hypothesis-Premise attention with HardKuma attention

SNLI Accuracy

	Dev	Test
LSTM (Bowman et al.)	_	80.6
DA (Parikh et al.)	_	86.3
DA (reimpl.)	86.9	86.5
DA HardKuma	86.0	85.5

Only drop 1% with 8.6% non-zero attention cells

this beer pours ridiculously clear with tons of carbonation that forms a rather impressive rocky head that settles slowly into a fairly dense layer of foam. this is a real good lookin' beer, unfortunately it gets worse from here ... first, the aroma is kind of bubblegum-like and grainy. next, the taste is sweet and grainy with an unpleasant bitterness in the finish. overall, the fat weasel is good for a fairly cheap buzz, but only if you like your beer grainy and bitter.

Lei et al. (EMNLP'16)
Rationalizing Neural Predictions

Jointly train & learn rationales

Rationales

Sparsity

LIME Ribeiro et al. (2016)

Local explanation / surrogate

Learn from rationales

Zaidan et al. (NAACL'07), Zaidan and Eisner (EMNLP'08), Zhang et al. (EMNLP'16)

this beer pours ridiculously clear with tons of carbonation that forms a rather impressive rocky head that settles slowly into a fairly dense layer of foam. this is a real good lookin' beer, unfortunately it gets worse from here ... first, the aroma is kind of bubblegum-like and grainy. next, the taste is sweet and grainy with an unpleasant bitterness in the finish. overall, the fat weasel is good for a fairly cheap buzz, but only if you like your beer grainy and bitter.

Lei et al. (EMNLP'16)
Rationalizing Neural Predictions

Jointly train & learn rationales

Rationales

Sparsity

LIME Ribeiro et al. (2016)

Local explanation / surrogate

Learn from rationales

Zaidan et al. (NAACL'07), Zaidan and Eisner (EMNLP'08), Zhang et al. (EMNLP'16)

Louizos et al. (ICLR'18)
Sparsifying parameters

Stretch & rectify

Zhang et al. (EMNLP'16)

Zhang et al. (EMNLP'16)

Summary

- Differentiable approach to extractive rationales
 - Stretch and rectify using HardKuma
 - Support for binary outcomes
- Objective to specify the percentage of selected text
- Future work: interpretable QA / fact checking
- Code online: github.com/bastings
 - DIY: add a HardKuma layer to your classifier!

Thank you!

Code online @ github.com/bastings

Check out our new NMT toolkit for novices Joey NMT at github.com/joeynmt

Example: Contradiction

ಹ <S> person on a motorcycle

Incorrect

Prediction: entailment

Example: Entailment

Correct

Incorrect

Prediction: neutral

Example: Neutral

Incorrect

Prediction: entailment

Parameter estimation

$$\log P(y \mid x) = \log \mathbb{E}_{P(z\mid x,\phi)} \left[P(y \mid x, z, \theta) \right]$$

$$\stackrel{\textstyle \coprod}{\geq} \mathbb{E}_{P(z\mid x,\phi)} \left[\log P(y \mid x, z, \theta) \right]$$

$$= \mathscr{E}(\phi, \theta)$$

We maximise this lower bound on the log-likelihood

Baseline Regularizers

Loss for sufficient rationales

$$\min_{\phi,\theta} L(\phi,\theta) + \lambda_0 \sum_{i=1}^{n} z_i + \lambda_1 \sum_{i=1}^{n-1} |z_i - z_{i+1}|$$

L₀
for **short**rationales

Fused lasso for **coherent** rationales

How to get a HardKuma sample from a uniform variable

From uniform source to Kuma samples

Kuma inverse CDF

$$F_K^{-1}(u; a, b) = \left(1 - (1 - u)^{\frac{1}{b}}\right)^{\frac{1}{a}} \qquad u \in [0, 1]$$

Sample using uniform random source U

$$F_Z^{-1}(U;a,b) \sim \text{Kuma}(a,b)$$

$$U \sim \mathcal{U}(0,1)$$

Rectified Kumaraswamy (Formal)

We **stretch** the support of the Kuma to (*l*, *r*):

$$F_T(t; a, b, l, r) = F_K\left(\frac{(t-l)}{(r-l)}; a, b\right)$$

And define a rectified random variable:

$$H \sim \mathsf{HardKuma}(a, b, l, r)$$

by passing a Kuma sample t through a hard sigmoid:

Support in **closed** interval [0, 1]

$$T \sim \text{Kuma}(a, b, l, r)$$
 $h = \min(1, \max(0, t))$

Rectified Kumaraswamy (Formal) (2)

- Sampling h=0 means sampling any $t \in (l,0]$
- with mass under Kuma:

$$\mathbb{P}(H=0) = F_K\left(\frac{-l}{r-l}; a, b\right)$$

- Sampling h=1 means sampling any $t \in [1,r)$
- with mass under Kuma:

$$\mathbb{P}(H=1) = 1 - F_K(\frac{1-l}{r-l}; a, b)$$

36

$$\mathbb{E}_{p(z|x)} \left[L_0(z) \right] \stackrel{\text{ind}}{=} \sum_{i=1}^n \mathbb{E}_{p(z_i|x)} \left[\mathbb{I}[z_i \neq 0] \right]$$
$$= \sum_{i=1}^n 1 - \mathbb{P}(Z_i = 0) ,$$

We can also compute a relaxation of fused lasso by computing the expected number of zero-to-nonzero and nonzero-to-zero changes:

$$\mathbb{E}_{p(z|x)} \left[\sum_{i=1}^{n-1} \mathbb{I}[z_i = 0, z_{i+1} \neq 0] \right] + \mathbb{E}_{p(z|x)} \left[\sum_{i=1}^{n-1} \mathbb{I}[z_i \neq 0, z_{i+1} = 0] \right]$$

$$= \sum_{i=1}^{n-1} \mathbb{P}(Z_i = 0)(1 - \mathbb{P}(Z_{i+1} = 0)) + (1 - \mathbb{P}(Z_i = 0))\mathbb{P}(Z_{i+1} = 0)$$

Reparameterization Trick

$$U \sim \mathcal{U}(0,1)$$

$$F_X^{-1}(u) \sim X$$

Why are gradients possible?

We consider the case where we need derivatives of a function L(u) of the underlying uniform variable u, as when we compute reparameterized gradients in variational inference. By chain rule:

