Devoir maison 12.

À rendre le lundi 5 mai 2025

Exercice 1

Lire la vidéo et remplir la fiche sur la décomposition en éléments simples avant de faire cet exercice

Décomposer en éléments simples la fonction $f: x \mapsto \frac{2x^5 + 6x^4 - x^3 - 4x^2 - x - 1}{x(x-1)(x+3)}$.

Exercice 2

Dans ce problème, $\mathcal{B} = (e_1, e_2, e_3)$ désigne la base canonique de l'espace vectoriel \mathbb{R}^3 . id \mathbb{R}^3 sera noté id. On note f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$A = \begin{pmatrix} -2 & 5 & 2 \\ -1 & 4 & 2 \\ 2 & -10 & -5 \end{pmatrix}$$

- 1°) a) Calculer $\det(A \alpha I_3)$ où α est un réel. En déduire que $f - \alpha \operatorname{id}_{\mathbb{R}^3}$ est non injective si et seulement si $\alpha = -1$.
 - **b)** Déterminer Ker(f + id). Quelle est sa dimension? Vérifier que $u_3 = (2, 0, 1) \in Ker(f + id)$.
 - c) On pose $u_1 = (1,0,0)$ et $u_2 = (f + id)(u_1)$. Justifier que $u_2 \in \text{Ker}(f + id)$.
 - **d)** Montrer que $\mathcal{B}' = (u_1, u_2, u_3)$ est une base de \mathbb{R}^3 .
- 2°) a) Soit T la matrice de f dans la base \mathcal{B}' .

Justifier (avec un minimum de calculs) que $T = \begin{pmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.

- b) Écrire la matrice de passage P de la base canonique \mathcal{B} à la base \mathcal{B}' et calculer P^{-1} .
- c) Quelle est la relation entre A et T?
- 3°) Première application : Calcul de A^n pour $n \in \mathbb{N}^*$. On pose $J = I_3 + T$.
 - a) Calculer J^2 .
 - **b)** Montrer que pour tout $n \in \mathbb{N}^*$, $T^n = (-1)^n (I_3 nJ)$.
 - c) En déduire l'expression de A^n pour tout entier naturel n non nul.

4°) Deuxième application: Résolution d'un système différentiel.

On s'intéresse au système d'équations différentielles :

$$(S): \forall t \in \mathbb{R}, \begin{cases} x'(t) &= -2x(t) + 5y(t) + 2z(t) \\ y'(t) &= -x(t) + 4y(t) + 2z(t) \\ z'(t) &= 2x(t) - 10y(t) - 5z(t) \end{cases}$$

On fixe alors dans la suite des fonctions x, y, z de \mathbb{R} dans \mathbb{R} , dérivables sur \mathbb{R} .

On note, pour $t \in \mathbb{R}$, $X(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$ la matrice colonne des coordonnées du triplet (x(t), y(t), z(t))

dans la base canonique \mathcal{B} de \mathbb{R}^3 .

On note également, pour $t \in \mathbb{R}$, $X'(t) = \begin{pmatrix} x'(t) \\ y'(t) \\ z'(t) \end{pmatrix}$.

- a) Écrire une égalité matricielle équivalente au fait que (x, y, z) est solution de (S).
- **b)** Soit $t \in \mathbb{R}$.

On écrit le triplet (x(t), y(t), z(t)) dans la base \mathcal{B}' : on note alors $(\alpha(t), \beta(t), \gamma(t))$ la liste de ses coordonnées dans la base \mathcal{B}' .

On note alors $Y(t) = \begin{pmatrix} \alpha(t) \\ \beta(t) \\ \gamma(t) \end{pmatrix}$.

Écrire X(t) en fonction de Y(t) et Y(t) en fonction de X(t).

Justifier que les fonctions α, β, γ sont dérivables sur \mathbb{R} .

Exprimer X'(t) en fonction de Y'(t).

- c) Montrer que : (x, y, z) est solution de (S) si et seulement si (α, β, γ) est solution d'un système (S') plus simple que l'on déterminera.
- d) Déterminer un problème de Cauchy sur les fonctions α, β, γ équivalent au problème de Cauchy donné par (S) et les conditions initiales x(0) = y(0) = 0 et z(0) = 1.
- e) Déterminer alors les solutions (x, y, z) de (S) vérifiant x(0) = y(0) = 0 et z(0) = 1.

Exercice 3

Exercice facultatif!

On admet qu'il existe d'uniques réels a, b, c et d tels que :

$$\forall x \in \mathbb{R} \setminus \{-2\}, \ \frac{3}{(x^2+x+1)(x+2)^2} = \frac{a}{x+2} + \frac{b}{(x+2)^2} + \frac{cx+d}{x^2+x+1}.$$

Déterminer a, b, c, d.