EMAT10100 Engineering Maths I Lecture 1: Introduction

John Hogan & Alan Champneys

EngMaths I lecture 1 Autumn Semester 2017

Future engineering challenges need maths

 ✓ e.g. Q: Future "Smart Grids", will they work?

Simplified UK Electical Power Transmission system

- National grid is currently centrally controlled
- "smart grid" is locally controlled, like Internet
- but AC grid must synchronise, otherwise instability

A: Needs ideas from network science

EngMaths I lecture 1
Autumn Semester 2017

What is Engineering Mathematics?

- Q: Why do we have to study Engineering Mathematics?
- ★ e.g. Q. How to predict and understand unwanted instability?
 - ... Tacoma Narrows bridge (USA) 1940

world's most flexible bridge starts to oscillate

- ightharpoonup after \sim 1 day switches to torsional oscillation:
- ★ A: Use theories from nonlinear dynamics

EngMaths I lecture 1 Autumn Semester 2017

Engineering Mathematics Department

- - ► A1. If you were ill, would you go to the vet?
 - ► Would you ask a plumber to do your heart surgery?
 - Would you let a heart surgeon mend your leaking tap?
 - ▶ You pay the fees. You expect the best. You get the best.
 - ► Taught to the same high standard across the Faculty
 - with a common syllabus by UK's only Engineering Maths Dept
 - enables cross-fertilisation of engineering principles
 - ► A2. It's real, they pay us! other research includes
 - ► Control of helicopter rotors (Westland Helicopters)
 - ► Rattle in car engines (*Jaguar cars*)
 - ► Smoothing traffic flow (UK Highways Agency)
 - ► Flood forecasting (Environment Agency)
 - Stabilising landing gear (Airbus)
 - ► Placement of tidal energy devices (*DNV-GL*)
 - ... and lots more!

What do we assume you know?

- A-level Curriculum:
 - core Mathematics modules C1, C2, C3, C4
- ★ We assume that you have forgotten most things you learnt at school!!!
- See diagnostic test at end of this lecture for stuff we think you know. Most of these topics covered again (e.g. differentiation/integration techniques)
- If you've done Further Maths (or equivalent), most (but not all) of the syllabus will seem familiar, . . .
- ★ ... BUT we do things much more rapidly ...
- ... and in the computer age, graduate engineers need to understand principles, not just methods.
- We'll introduce a software package Maple that can do the calculus, algebraic manipulation, graph sketching etc.

EngMaths I lecture 1 Autumn Semester 2017

What happens in lectures?

- Different lecturers:
 - wk 1-12: John Hogan (group 1), Alan Champneys & (group 2)
 - wk 12-24: Rosalyn Moran, Nikolai Bode, Lucia Marucci, Oscar Benjamin,
- ₭ Slides given as handout. Write on them during the lecture!
- All slides available before the lecture (on Blackboard)
- Each lecture: quick exercises done there and then. So bring paper, pen & calculator.
- Exercises & further reading in one core textbook:
 - ► Modern Engineering Mathematics by Glyn James
 - no need to bring it to lectures though

EngMaths I lecture 1
Autumn Semester 2017

Lectures: the core learning zone

When:

- ► Mondays 11.00–11.50, 12.00–12.50
- ► Thursdays 12.00–12.50
- ▶ Nb: No lectures weeks 8,18 (reading weeks).

Where:

Group 1. Aero, Eng Maths, Civil: Chemistry LT1

Group 2. Mechanical, Elec, EDeS, optional unit choice: Tyndale Lecture Theatre, Physics

For space & communication reasons:

Please attend lectures you're assigned to!

EngMaths I lecture 1
Autumn Semester 2017

How do I get hold of a copy of James?

- We use fifth edition (2015)
- We don't use MyMathLab
- We also have Special Edition (same but no Ch 1,6,11,12)

- Special edition Blackwells (Richmond Bld) $\approx £36$
- ▶ Amazon (etc): full book $\geq £43$, Kindle $\approx £29$
- Find second-hand copy (4th edtn. v. similar to 5th)
- Borrow from the library each week
- Recommend buying it, will be useful in future years.

University of BRISTOL

The drop-in sessions

- We do not teach, just enable you to learn
 - you can only learn maths by doing
- You are in charge of your own learning
- ✓ If you do not understand something YOU MUST ASK FOR HELP!:
- Drop-in sessions 5 times per week:
 - ► EVENINGS: 5pm-6pm Mon, Tue, Thur MVB Foyer LUNCHTIMES: 1pm-2pm Tues QB 1.68, Friday QB 1.69 starting tomorrow 26th Sept.
 - dedicated, trained postgrads and teaching fellows
 - ▶ aim to go to \approx 1 session per week
- wor, via Blackboard discussion forum (quick questions).

EngMaths I lecture 1 Autumn Semester 2017

How is all this assessed?

- Summative assessment (for passing the unit):
 - ► 20%: 1.5hr mid-sessional examination in January exam window — (on first term's material)
 - ▶ 80%: 3hr main summer exam on whole syllabus from both terms
- Formative assessment (for quick feedback):
 - in-class test Monday 23rd Oct (Wk 5)
 - 2 marked homeworks given out in Week 7 & Week 17
 - weekly online "Questionmark" multiple-choice tests can take multiple times (more about this on Weds).

EngMaths I lecture 1 Autumn Semester 2017

The syllabus - broad outline

- wk 1-6 Algebra
 - Complex numbers (2 weeks)
 - Vectors (1 week)
 - ► Matrices (3 weeks)
- ₩ wk 7, 9-11 Calculus
 - ► Functions and differentiation (2 weeks)
 - ► Integration (1.5 weeks)
 - ► Partial differentiation (1.5 weeks)
- wk 12 Revision

 Revision

 wk 12 Revision

 wk
- ₩ wk 13-15 Probability
- wk 16-17,19 Ordinary differential equations
- wk 20-22 Numerical analysis
- ₩ wk 23-24 Revision

EngMaths I lecture 1 Autumn Semester 2017

How to study maths at University

- Total effort
 - Year 1 = 120 credits
 - ► EMAT 10100 = 20 credits
 - University assumes you work for 40 hours a week
- K Time to study maths each week:

$$rac{20}{120} imes 40 \qquad \simeq 7 ext{ hours}$$

3 hours per week are timetabled lectures

Therefore:

You study maths 4 hours per week outside lectures!

Four hours of homework???!!!

kineset Re-read the notes from lectures \sim 15 mins

★ Read relevant sections of James ~ 15 mins

 \swarrow Do exercises from James \sim 1.5 hours

W Panic!

✓ Get help at drop in session
 ✓ 30 mins

 \checkmark Take online test \sim 15 mins

 \checkmark Take the online test again \sim 15 mins

№ EVERY WEEK!

EngMaths I lecture 1 Autumn Semester 2017

- 5. (a) Simplify $e^{2 \ln x}$
 - (b) Express as a single logarithm $4 \ln 2 (1/2) \ln 25$
- 6. Differentiate

$$\frac{x}{x^2 + 5x + 6}$$

- 7. The equations $x=t\sin t$ and $y=t\cos t,\ \ 0\leq t<\infty$ define a spiral. (a) Sketch the curve in the (x,y)-plane.
 - (b) Find $\frac{dy}{dx}$ in terms of t.
- 8. Use integration by parts to evaluate

$$\int_0^{\pi/8} x \cos 2x \, dx$$

EngMaths I lecture 1
Autumn Semester 2017

Diagnostic test

These are the sorts of things we think you know (but many will be covered again!)

1. Find the radius and the co-ordinates of the centre of the circle with the equation

$$x^2 + y^2 + 4x - 6y = 3$$

- 2. Expand (a) $(x-3)^4$, (b) $(x+1/2)^3$
- 3. Express as a partial fraction

$$\frac{2x-1}{(x+1)(x-2)}$$

4. Find all the solutions for $0 \le x < 2\pi$ of

$$2\cos^2 x + 3\sin x = 3$$

EngMaths I lecture 1
Autumn Semester 2017

9. Evaluate the indefinite integral

$$\int \frac{1}{x^2 + 10x + 50}$$

10. Find the general solution of the differential equation

$$\frac{dy}{dx} = 6xy^2$$

Answers will appear on Blackboard after this lecture

with sections of James you can refer to for more help

Get less than $6/10 \Rightarrow$ you need to seek help (at drop-in classes)

REMEMBER: Maths is a subject you need to keep working at every week

Lecture 2. What is a Complex Number?

- Complex ≠ complicated!
- ✓ Square any 'normal' number: positive answer!
- Central idea:
 - define a special new number j such that $j^2 = -1$
 - ▶ so we might say $j = \sqrt{-1}$
- Notation:
 - ▶ some people use 'i' instead of 'j'
 - \blacktriangleright don't confuse j with i, j, k (unit coordinate vectors)
- This may all seem very odd

EngMaths I lecture 2 Autumn Semester 2017

Example application: roots of quadratics

Consider the simple quadratic equation:

$$x^2 - 1 = 0$$

- ightharpoonup roots are ± 1
- ₭ Not so simple quadratic equation:

$$x^2 + 1 = 0$$

- ▶ no 'real' solutions
- but $\pm i$ are solutions
- We will return to this next lecture
- Seems irrelevant. Actually: Simple Harmonic Motion
- ✓ Also: waves, AC current, control theory, stability...

EngMaths I lecture 2 Autumn Semester 2017

Do complex numbers 'exist'?

- \swarrow Excuse me. $\sqrt{-1}$ means what?
 - ▶ I cannot have $\sqrt{-1}$ oranges
 - \blacktriangleright $\sqrt{-1}$ metres
 - \blacktriangleright $\sqrt{-1}$ kilograms
 - \blacktriangleright $\sqrt{-1}$ percent for Eng Maths exam
- ₭ However, I also cannot have
 - \triangleright -1 oranges
 - \triangleright -1 kilograms of oranges
 - ightharpoonup -1 percent for Eng Maths exam
- ₭ BUT: negative numbers are useful

EngMaths I lecture 2
Autumn Semester 2017

General form of complex numbers

$$z = x + jy$$

where

- x, y are 'normal' real numbers
- $i = \sqrt{-1}$
- $\not k z$ is called a complex number
 - ► e.g.

$$z=1+j\sqrt{2},\quad \text{(or, equivalently }1+\sqrt{2}j)$$

$$z=\pi-j,$$

$$z=-1.31+10.7j\qquad \text{etc.}$$

University of BRISTOL

Real and imaginary parts

 \checkmark Take a complex number z = x + jy

We often write

$$x = \operatorname{Re}(z)$$

$$y = \operatorname{Im}(z)$$

and say x, y are the real and imaginary parts of z

 \not If x=0, then z=jy

▶ z is called (purely) imaginary

 \not If y=0, then z=x

z is called (purely) real

 \not If x=0 and y=0, we say z=0

EngMaths I lecture 2 Autumn Semester 2017

Add and subtract complex numbers?

& Basic principle:

$$(2 \bigcirc +3 \bigcirc) + (1 \bigcirc +6 \bigcirc)$$

= $(3 \bigcirc +9 \bigcirc)$

Same with complex numbers:

$$(x_1 + jy_1) + (x_2 + jy_2) = (x_1 + x_2) + j(y_1 + y_2)$$

$$(x_1 + jy_1) - (x_2 + jy_2) = (x_1 - x_2) + j(y_1 - y_2)$$

Exercise: Let $z_1 = 2 + i$, $z_2 = 1 - 2i$. Find $z_1 + z_2$.

EngMaths I lecture 2 Autumn Semester 2017

Engineering HOT SPOT

Structural testing:

Hit structure and record what comes back at each frequency = sequence of complex numbers

EngMaths I lecture 2 Autumn Semester 2017

Complex conjugate

Take a complex number

$$z = x + jy$$

$$\overline{z} = x - jy$$

• equivalent notation: z^* (used by Physicists & James)

W Note:

- $ightharpoonup \operatorname{Re}(\overline{z}) = \operatorname{Re}(z)$
- $ightharpoonup \operatorname{Im}(\overline{z}) = -\operatorname{Im}(z)$
- $ightharpoonup z + \overline{z}$ is real, $z \overline{z}$ is imaginary

How to multiply complex numbers

- ₭ Basic principle
 - distributive: a(b+c) = ab + ac
- K So:

$$(x_1 + jy_1)(x_2 + jy_2) = x_1x_2 + jx_1y_2 + jy_1x_2 + j^2y_1y_2,$$

= $(x_1x_2 - y_1y_2) + j(x_1y_2 + x_2y_1)$

- **№** DO NOT learn this formula
 - ► Learn how to apply the process
- $\norm{\norm{\norm{\mbox{$\kappa$}}}{\norm{\mbox{$\kappa$}}}}$ Exercise: simplify (2+j)(3-2j).

EngMaths I lecture 2 Autumn Semester 2017

Summary

★ Complex numbers = "doing maths in stereo":

$$z = x + jy$$
, where $j^2 = -1$

- $\not k$ x is "real channel", y is "imaginary channel"
- - ... but "are complex numbers useful?"
- ★ They are easy to add and subtract

e.g.
$$(1+3j) + (2+5j) = (3+8j)$$

w multiplication is harder:

e.g.
$$(1+3j)(2+5j) = ...$$
 expand, remember $j^2 = -1$

k division is even harder, but there is a trick:

e.g.
$$\frac{(1+3j)}{(2+5j)} = \frac{(2-5j)}{(2-5j)} \cdot \frac{(1+3j)}{(2+5j)}$$

How to divide complex numbers

- Take complex numbers $z_1=x_1+jy_1$ and $z_2=x_2+jy_2$, how to find $\frac{z_1}{z_2}=\Box+j\Box$?.
- k Trick: multiply top and bottom by \overline{z}_2 :

$$\frac{z_1}{z_2} = \frac{z_1 \overline{z_2}}{z_2 \overline{z_2}} = \frac{(x_1 + jy_1)(x_2 - jy_2)}{(x_2 + jy_2)(x_2 - jy_2)}
= \left(\frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2}\right) + j\left(\frac{-x_1 y_2 + x_2 y_1}{x_2^2 + y_2^2}\right)$$

- **№** DO NOT learn this formula
 - Learn how to apply the process
- We will return to this next lecture.

EngMaths I lecture 2
Autumn Semester 2017

Homework

- ✓ Get hold of copy of James Modern Engineering Maths:
 - ▶ read James, Sections 3.1–3.2.2
 - ▶ attempt James Excercise 3.2.5 Qns 1.2.4-6
- if you get stuck:

go to at least one of the drop-in sessions:

- Wext time:
 - A geometric view of complex numbers
 - Polar form of a complex number