CÀLCUL INTEGRAL EN DIVERSES VARIABLES

EXAMEN FINAL - SEGONA PART Juny 2011

- 1. a) (3 punts) Si $F: \mathbf{R}^3 \to \mathbf{R}^3$ és un gradient continu, proveu que per a tota corba tancada γ de classe C^1 , es compleix $\int_{\gamma} F \cdot d\gamma = 0$.
 - b) (2 punts) Enuncieu el teorema de Gauss.
- **2.** (10 punts) Sigui C la circumferència amb centre en (1/2,0) i radi 1/2.

Sigui γ l'arc de C, orientat en sentit antihorari, i tal que $y \ge \frac{x}{\sqrt{3}}$.

Calculeu la circulació del camp $F(x,y)=(x^2\sin(x^3),\ ye^{-y^2})$ al llarg de la corba γ .

3. (10 punts) Calculeu el flux del rotacional del camp $F(x,y,z)=(xy,\ 2yz,\ x+z)$, a través de la superfície $S=\{(x,y,z)\in\mathbf{R}^3\mid\ z=4-x^2-y^2,\ z\geq 2,\ x\geq 0\}.$

ENTREGUEU ELS EXERCICIS EN FULLS SEPARATS POSEU EL NOM EN TOTS ELS FULLS