Notebook UNTreeCiclo

Contents

1	C+	+	2				
	1.1	C++ plantilla	2				
	1.2	Librerias	3				
	1.3	Bitmask	3				
	1.4	Cosas de strings	4				
	1.5	Custom Hashing	4				
	1.6	Random	4				
2	Arboles 4						
	2.1	Centroid Decomposition	4				
	2.2	Heavy Light Decomposition	5				
	2.3	LCA	5				
	2.4	Sack	6				
	2.5	Virtual Tree	6				
3	Estr	ructuras de Datos	7				
	3.1	Disjoint Set Union	7				
	3.2	Dynamic Connectivity Offline	7				
	3.3	Dynamic Segment Tree	8				
	3.4	Fenwick Tree	8				
	3.5	Li Chao	9				
	3.6	Link Cut Tree	9				
	3.7	Mos Algorithm	11				
	3.8	Ordered set	12				
	3.9	Persistent Segment Tree	12				
	3.10	RMQ	12				
	3.11	Segment Tree Iterativo	13				
	3.12	Segment Tree Recursivo	13				
	3.13	Segment Tree 2D	14				
	3.14	Segment Tree Beats	14				
	3.15	Sparse Table 2D	15				
	3.16	Sqrt Descomposition	15				
		Treap	16				
		Two Stacks	17				
	3.19	Wavelet Tree	17				
	3.20	Trie Bit	18				
4	Fluj	ios	19				
	4.1	Blossom	19				

	4.2	Dinic
	4.3	Edmonds Karp
	4.4	Hopcroft Karp
	4.5	Maximum Bipartite Matching
	4.6	Minimum Cost Maximum Flow
	4.7	Weighted Matching
	4.8	Hungarian
5	Geo	metria 24
	5.1	Puntos
	5.2	Lineas
	5.3	Poligonos
	5.4	Circulos
	5.5	Semiplanos
	5.6	Segmentos
	5.7	Convex Hull
	5.8	Closest Points
	5.9	Min Circle
	5.10	3D
	5.11	KD Tree
6	Gra	fos 35
U	6.1	Puentes
	6.2	Puntos de Articulacion
	6.3	Kosajaru
	6.4	Tarjan
	6.5	Dijkstra
	6.6	Bellman Ford
	6.7	Floyd Warshall
	6.8	MST Kruskal
	6.9	MST Prim
	0.0	Shortest Path Faster Algorithm
		Camino mas corto de longitud fija
		2sat
	0.12	2541
7		sematicas 39
	7.1	De Bruijn sequences
	7.2	Chinese Remainder Theorem
	7.3	Totient y Divisores
	7.4	Ecuaciones Diofanticas
	7.5	Exponenciacion binaria
	7.6	Exponenciacion matricial
		E:1 : E / D 11:

1)

7.	8 Freivalds algorithm	41	10.4 Ternary Search	55
7.			10.5 Prefix3D	
	10 Gauss Jordan mod 2		10.6 Hanoi	
	11 GCD y LCM		10.0 1101101	00
			11 Teoría y miscelánea	56
	12 Integral Definida		11.1 Sumatorias	
	13 Inverso modular		11.2 Teoría de Grafos	
	14 Logaritmo Discreto		11.2.1 Teorema de Euler	
	15 Miller Rabin		11.2.2 Planaridad de Grafos	
7.	16 Miller Rabin Probabilistico	44	11.3 Teoría de Números	
7.	17 Mobius	44	11.3.1 Ecuaciones Diofánticas Lineales	
7.	18 Pollard Rho	44		
7.	19 Simplex	44	11.3.2 Pequeño Teorema de Fermat	
	20 Fast Fourier Transform		11.3.3 Teorema de Euler	
	21 Number Theoretic Transform		11.4 Geometría	
•	21 Name of Theoretic Hamiltonia	10	11.4.1 Teorema de Pick	
8 P	rogramacion dinamica	46	11.4.2 Fórmula de Herón	
8.	9		11.4.3 Relación de Existencia Triangular	
8.			11.5 Combinatoria	57
8.			11.5.1 Permutaciones	57
8.			11.5.2 Combinaciones	57
8.			11.5.3 Permutaciones con Repetición	57
8.			11.5.4 Combinaciones con Repetición	57
			11.5.5 Números de Catalan	
8.			11.5.6 Estrellas y barras	
8.			11.6 DP Optimization Theory	
8.	9 SOS	49	1110 D1 0ptiminution 111001,	00
0 8	crings	40		
9 S 9.		49 49	1 C++	
_	2 KMP			
9. 9.			1.1 C++ plantilla	
9.			<pre>#include <bits stdc++.h=""></bits></pre>	
9.	T		<pre>using namespace std;</pre>	
9.			<pre>#define all(v) v.begin(), v.end()</pre>	
9.			<pre>#define sz(arr) ((int) arr.size()) typedef vector<int> vi;</int></pre>	
9.			typedef long long 11;	
9.	9 Suffix Tree	52	<pre>typedef pair<int, int=""> ii; const char ln = '\n';</int,></pre>	
9.	10 Trie	53	<pre>const char ln = '\n';</pre>	
9.	11 Z Algorithm	54	#define watch(x) cout<< # x<< "=" < <x<'\n'</x<	
	- -		typedef long double ld;	
10 N		54	<pre>typedef vector<ii> vii;</ii></pre>	
	0.1 Counting Sort		<pre>typedef vector<long long=""> v1; typedef pair<ll, l1=""> pl1;</ll,></long></pre>	
10	0.2 Dates	54	typeder pair<11, 11> pi1; typedef vector <pll> vll;</pll>	
	0.3 Expression Parsing		const int INF = 1e9;	

```
const 11 INFL = 1e18;
const int MOD = 1e9+7;
const double EPS = 1e-9;
const ld PI = acosl(-1);
int dirx[4] = {0,-1,1,0};
int diry[4] = {-1,0,0,1};
int dr[] = {1, 1, 0, -1, -1, -1, 0, 1};
int dc[] = {0, 1, 1, 1, 0, -1, -1, -1};
const string ABC = "abcdefghijklmnopqrstuvwxyz";
int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout << setprecision(20) << fixed;
    // freopen("file.in", "r", stdin);
    // freopen("file.out", "w", stdout);
    return 0;
}</pre>
```

1.2 Librerias

```
// En caso de que no sirva #include <bits/stdc++.h>
#include <algorithm>
#include <iostream>
#include <iterator>
#include <sstream>
#include <fstream>
#include <cassert>
#include <climit.s>
#include <cstdlib>
#include <cstring>
#include <string>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <iomanip>
#include <unordered map>
////
#include <tuple>
#include <random>
#include <chrono>
```

1.3 Bitmask

```
* Operaciones a nivel de bits. Si n es 11 usar 111<< en
   los corrimientos.
                -> Verifica si x es impar
x & (1<<i)
                -> Verifica si el i-esimo bit esta
   encendido
x = x \mid (1 << i) -> Enciende el i-esimo bit
x = x & (1 << i) -> Apaga el i-esimo bit
x = x^{(1 << i)} -> Invierte el i-esimo bit
                -> Invierte todos los bits
x = x
                -> Devuelve el bit encendido mas a la
x & -x
   derecha (potencia de 2, no el indice)
               -> Devuelve el bit apagado mas a la
~x & (x+1)
   derecha (potencia de 2, no el indice)
x = x \mid (x+1) -> Enciende el bit apagado mas a la
   derecha
x = x & (x-1)
               -> Apaga el bit encendido mas a la
   derecha
x = x & ~v
                -> Apaga en x los bits encendidos de y
* Funciones del compilador qcc. Si n es ll agregar el
   sufijo ll, por ej: __builtin_clzll(n).
__builtin_clz(x)
                      -> Cantidad de bits apagados por la
    izquierda
builtin ctz(x)
                      -> Cantidad de bits apagados por la
    derecha. Indice del bit encendido mas a la derecha
builtin popcount(x) -> Cantida de bits encendidos
* Logaritmo en base 2 (entero). Indice del bit encendido
   mas a la izquierda. Si x es ll usar 63 y clzll(x).
int lg2(const int &x) { return 31-__builtin_clz(x); }
* Itera, con indices, los bits encendidos de una mascara.
// O(#bits encendidos)
for (int x = mask; x; x &= x-1) {
    int i = builtin ctz(x);
* Itera todas las submascaras de una mascara. (Iterar
   todas las submascaras de todas las mascaras es O(3^n))
// O(2^(#bits encendidos))
for (int sub = mask; sub; sub = (sub-1)&mask) {}
* retorna la siguiente mask con la misma cantidad
   encendida
ll nextMask(ll x){
   11 c = x & -x;
    11 r = x + c;
    return (((r ^ x) >> 2) / c) | r;
```

1.4 Cosas de strings

```
int conv(char ch) {return ((ch>='a' && ch<='z')?ch-'a':ch-
'A'+26);}
vector<string> split(string& s, char c=' ') {
    vector<string> res;
    stringstream ss(s);
    string sub;
    while(getline(ss, sub, c))res.push_back(sub);
    return res;
}

for(char& c:s)c=toupper(c);
for(char& c:s)c=tolower(c);
int n=stoi(s); // de string a entero
int n=stoi(s, nullptr, 2); // base 2
double d=stod(s); // de string a double
string s=to_string(n); // de entero a string
```

1.5 Custom Hashing

```
struct custom hash {
        static long long splitmix64(long long x) {
                x += 0x9e3779b97f4a7c15;
                x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
                x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
                return x ^ (x >> 31);
        size t operator()(long long x) const {
                static const long long FIXED_RANDOM =
                   chrono::steady_clock::now().
                   time since epoch().count();
                return splitmix64(x + FIXED_RANDOM);
        size t operator()(const pair<int,int>& x) const {
                return (size_t) x.first * 37U + (size t)
                   x.second;
        size_t operator()(const vector<int>& v) const {
                size t s = 0;
                for(auto &e : v)
                        s^=hash<int>()(e)+0x9e3779b9+(s)
                           <<6)+(s>>2);
                return s;
unordered_map<long long, int, custom_hash> safe_map;
gp hash table<int, int, custom hash> table;
```

1.6 Random

```
typedef unsigned long long u64;
mt19937_64 rng (chrono::steady_clock::now().
    time_since_epoch().count());
u64 hash=rng();
mt19937 rng (chrono::steady_clock::now().time_since_epoch
    ().count());
int rand(int a, int b){return uniform_int_distribution<
    int>(a, b)(rng);} // uniform_real_distribution
```

2 Arboles

2.1 Centroid Decomposition

```
// O(nlog(n))
struct CentroidDecomposition{
        int dad[maxn],sz[maxn];
        set<int> adj[maxn]; // check, proc
        int operator[](int i) {return dad[i];}
        void addEdge(int x,int y) {adj[x].insert(y);adj[y
           l.insert(x);}
        void build(int v=0, int p=-1) {
                int n=dfsSz(v, p);
                int centroid=dfsCentroid(v, p, n);
                dad[centroid]=p;
                // add dfs for paths
                for(int u:adj[centroid]) {
                        adj[u].erase(centroid);
                        build (u, centroid);
                adi[centroid].clear();
        int dfsSz(int v,int p) {
                sz[v]=1;
                for(int u:adi[v]){
                        if (u==p) continue;
                        sz[v] + = dfsSz(u, v);
                return sz[v];
        int dfsCentroid(int v, int p, int n) {
                for(int u:adj[v]){
                        if (u==p) continue;
                        if(sz[u]>n/2)return dfsCentroid(u
                            , v, n);
                return v;
```

```
};
// for(int b=a;b!=-1;b=cd[b])
```

2.2 Heavy Light Decomposition

```
typedef long long T;
T null;
T oper(T a, T b);
// Segment tree
const int maxn=1e5+1; // >= 2e5, remove struct
bool edges=false; // arista padre
struct HLD{
        int par[maxn], root[maxn], dep[maxn];
        int sz[maxn], pos[maxn], ti;
        vector<int> adj[maxn];
        SegTree st;
        void addEdge(int x, int y) {adj[x].push_back(y);
            adj[y].push_back(x);}
        void dfsSz(int x) {
                 sz[x]=0;
                 for(int& y:adj[x]){
                         if (y==par[x]) continue;
                         par[y]=x; dep[y]=dep[x]+1;
                         dfsSz(v);
                         sz[x] += sz[y] +1;
                         if(sz[y]>sz[adj[x][0]]) swap(y, adj
                             [x][0];
        void dfsHld(int x) {
                 pos[x]=ti++;
                 for(int y:adj[x]){
                         if (y==par[x]) continue;
                         root[y] = (y = adj[x][0]?root[x]:y);
                         dfsHld(v);
        void build(int n,int v=0) {
                 root[v]=par[v]=v;
                 dep[v]=ti=0;
                 dfsSz(v);
                 dfsHld(v);
                 // vl palst(n);
                 // for (int i=0; i < n; ++i) palst [pos[i]] = a[i
                 // st.build(palst, n);
                 st.build(n);
        // O(\log^2(n))
        template <class Oper>
        void processPath(int x, int y, Oper op){
                 for(; root[x]!=root[y]; y=par[root[y]]) {
                         if (dep[root[x]]>dep[root[y]]) swap
                             (x,y);
```

```
op(pos[root[y]],pos[y]);
                if (dep[x]>dep[y]) swap(x,y);
                op(pos[x]+edges,pos[y]);
        void modifyPath(int x, int y, int v) {
                processPath(x,y,[this,&v](int 1, int r){
                         st.upd(l,r,v);
        T queryPath(int x, int y) {
                T res=null;
                processPath(x, y, [this, &res] (int 1, int r)
                         res=oper(res, st.get(l,r));
                return res;
        void modifySubtree(int x, int v) {st.upd(pos[x]+
            edges, pos[x]+sz[x], v);
        int querySubtree(int x) {return st.get(pos[x]+
            edges, pos[x]+sz[x]);
        void modify(int x, int v) {st.set(pos[x],v);}
        void modifyEdge(int x, int y, int v) {
                if (dep[x] < dep[y]) swap (x, y);
                modifv(x,v);
} ;
```

2.3 LCA

```
2.4 Sack
```

```
2 ARBOLES
```

```
int kth(int node, int k) {
    for(int l=maxlog-1;l>=0;--l) {
        if(node!=-1 && k& (1<<l)) {
            node=up[node][l];
        }
    }
    return node;
}

int lca(int a, int b) {
    a=kth(a, dep[a]-min(dep[a], dep[b]));
    b=kth(b, dep[b]-min(dep[a], dep[b]));
    if(a==b)return a;
    for(int l=maxlog-1;l>=0;--l) {
        if(up[a][l]!=up[b][l]) {
            a=up[a][l];
            b=up[b][l];
        }
    return up[a][0];
}
```

2.4 Sack

```
const int maxn = 1e5+5;
int st[maxn], ft[maxn], ver[2*maxn];
int len[maxn], n, q, pos=0;
vi adj[maxn];
bool vis[maxn];
void ask(int v, bool add) {
        if(vis[v] && !add) {
                vis[v]=false;
                // delete node
        }else if(!vis[v] && add){
                vis[v]=true;
                // add node
// O(nlogn)
void dfs(int v=0, int p=-1, bool keep=true) {
        int mx=0, id=-1;
        for(int u:adj[v]){
                if (u==p) continue;
                if(len[u]>mx){
                        mx=len[u];
                        id=u;
        for(int u:adj[v]){
                if(u!=p && u!=id)
                         dfs(u,v,0);
```

2.5 Virtual Tree

```
const int maxn = 2e5+5;
vi adjVT[maxn], adj[maxn];
int st[maxn], ft[maxn], n, pos=0;
bool important[maxn];
bool upper(int v, int u){return st[v]<=st[u] && ft[v]>=ft
   [u];}
bool cmp(int v, int u) {return st[v] < st[u]; }</pre>
// O(klogk)
int virtualTree(vi nodes) {
        sort(all(nodes), cmp);
        int m=sz(nodes);
        for (int i=0; i<m-1; ++i) {</pre>
                 int v=lca(nodes[i], nodes[i+1]);
                 nodes.push back(v);
        sort(all(nodes), cmp);
        nodes.erase(unique(all(nodes)), nodes.end());
        for(int u:nodes)adjVT[u].clear();
        s.push back(nodes[0]);
        m=sz(nodes);
        for (int i=1; i < m; ++i) {</pre>
                 int v=nodes[i];
                 while (sz(s) \ge 2 \&\& !upper(s.back(), v))
                         adjVT[s[sz(s)-2]].push_back(s.
                             back());
                         s.pop_back();
                 s.push_back(v);
        while (sz(s) >= 2) {
                 adjVT[s[sz(s)-2]].push_back(s.back());
                 s.pop_back();
        return s[0];
```

```
// vi nodes(k);
// for(int& x:nodes)important[x]=true;
// int root=virtualTree(nodes);
// dp(root) - output answer - reset
```

3 Estructuras de Datos

3.1 Disjoint Set Union

```
struct dsu{
        vi p, size;
        int sets,maxSize;
        dsu(int n) {
                p.assign(n,0);
                size.assign(n,1);
                sets = n;
                for (int i = 0; i < n; i++) p[i] = i;
        int find_set(int i) {return (p[i] == i) ? i : (p[
           i = find set(p[i]);
        bool is_same_set(int i, int j) {return find_set(i
           ) == find set(j);
        void unionSet(int i, int j){
                if (!is_same_set(i, j)){
                        int a = find_set(i), b = find_set
                        if (size[a] < size[b]) swap(a, b)
                        p[b] = a;
                        size[a] += size[b];
                        maxSize = max(size[a], maxSize);
                        sets--;
};
```

3.2 Dynamic Connectivity Offline

```
struct dsu{
    vi p,rank,h;
    int sets;
    dsu(int n) {
        sets=n;
        p.assign(n,0);
        rank.assign(n,1);
        for(int i=0;i<n;++i)p[i]=i;
}</pre>
```

```
int get(int a) {return (a==p[a]?a:get(p[a]));}
        void unite(int a, int b) {
                a=qet(a); b=qet(b);
                if (a==b) return;
                if(rank[a]>rank[b])swap(a,b);
                rank[b]+=rank[a];
                h.push back(a);
                p[a]=b; sets--;
        void rollback(int x) {
                int len=h.size();
                while(len>x) {
                         int a=h.back();
                         h.pop back();
                         rank[p[a]] -= rank[a];
                         p[a]=a; sets++; len--;
};
enum { ADD, DEL, QUERY };
struct Query{int type, u, v;};
struct DvnCon{
        vector<Query> q;
        dsu uf; vi mt;
        map<pair<int,int>, int> prv;
        DynCon(int n): uf(n){}
        void add(int i, int j) {
                if(i>j)swap(i, j);
                q.push_back({ADD, i, j});
                mt.push back(-1);
                prv[{i,j}]=sz(q)-1;
        void remove(int i, int j){
                if(i > j) swap(i, j);
                q.push back({DEL, i, j});
                int pr=prv[{i, j}];
                mt[pr]=sz(q)-1;
                mt.push_back(pr);
        void query(){q.push_back({QUERY, -1, -1});mt.
            push back (-1);
        void process() { // answers all queries in order
                if(!sz(q))return;
                for(int i=0; i<sz(q);++i){
                         if(q[i].type==ADD && mt[i]<0)mt[i
                             l=sz(q);
                }qo(0, sz(q));
        void go(int s, int e){
                if(s+1==e){
                if (q[s].type == QUERY) cout << uf.sets << "\n"</pre>
                return:
                } int k=sz(uf.h), m=(s+e)/2;
                for(int i=e-1; i>=m; --i) {
```

3.3 Dynamic Segment Tree

```
T null=0, nolz=0;
T oper(T a, T b);
struct Node{
         T val, lz;
         int 1, r;
         Node *pl,*pr;
         Node(int ll, int rr) {
                  val=null;lz=nolz;
                  pl=pr=nullptr;
                  l=11; r=rr;
};
typedef Node* PNode;
void update(PNode x) {
         if (x->r-x->l==1) return;
         x-val=oper(x-pl-val,x-pr-val);
void extends(PNode x){
         if (x->r-x->1!=1 \&\& !x->p1) {
                  int m = (x->r+x->1)/2;
                  x \rightarrow pl = new Node(x \rightarrow l, m);
                  x \rightarrow pr = new Node(m, x \rightarrow r);
void propagate(PNode x) {
         if (x->r-x->l==1) return;
         if(x->lz==nolz) return;
         int m = (x->r+x->1)/2;
         // pl, pr
         x \rightarrow lz = nolz;
struct SegTree{
         PNode root:
         void upd(PNode x, int 1, int r, T v){
                  int 1x=x->1, rx=x->r;
                  if(lx>=r || l>=rx)return;
                  if(lx>=1 && rx<=r){
                           // val, lz
```

```
return;
                 extends(x):
                 propagate(x);
                upd(x->pl,l,r,v);
                upd(x->pr, l, r, v);
                update(x);
        T get(PNode x, int 1, int r){
                int 1x=x->1, rx=x->r;
                if(lx>=r || l>=rx)return null;
                if(lx>=1 && rx<=r) return x->val;
                extends (x);
                propagate(x);
                T v1=qet(x->pl,l,r);
                T v2=qet(x->pr,l,r);
                return oper (v1, v2);
        T get(int 1, int r) {return get(root, 1, r+1);}
        void upd(int 1, int r, T v) {upd(root, 1, r+1, v);}
        void build(int 1, int r){root=new Node(1, r+1);}
} ;
```

3.4 Fenwick Tree

```
typedef long long T;
struct FwTree{
        int n;
        vector<T> bit;
        FwTree(int n): n(n),bit(n+1){}
        T get(int r) {
                 T sum=0;
                 for(++r;r;r-=r&-r)sum+=bit[r];
                 return sum;
        T get (int 1, int r) {return get (r) - (1==0.00) : get (1
            -1));}
        void upd(int r, T v) {
                 for (++r; r<=n; r+=r&-r) bit [r] +=v;
};
struct FwTree2d{
        int n, m;
        vector<vector<T>> bit;
        FwTree2d() {}
        FwTree2d(int n, int m):n(n),m(m),bit(n+1, vector<
            T > (m+1, 0) \}
        T get(int x, int y) {
                 T v=0;
                 for(int i=x+1; i; i-=i&-i)
                 for(int j=y+1; j; j-=j&-j) v+=bit[i][j];
                 return v;
```

3.5 Li Chao

```
// inf max abs value that the function may take
typedef long long ty;
struct Line {
  ty m, b;
 Line(){}
 Line(ty m, ty b): m(m), b(b) {}
 ty eval(ty x) { return m * x + b; }
};
struct nLiChao{
        // see coments for min
        nLiChao *left = nullptr, *right = nullptr;
        ty 1, r;
        Line line;
        nLiChao(ty l, ty r): l(l), r(r){
                line = \{0, -inf\}; // change to \{0, inf\};
        // T(Log(Rango)) M(Log(rango))
        void addLine(Line nline) {
                ty m = (1 + r) >> 1;
                bool lef = nline.eval(1) > line.eval(1);
                   // change > to <
        bool mid = nline.eval(m) > line.eval(m); //
           change > to <
                if (mid) swap(nline, line);
                if (r == 1) return;
        if (lef != mid) {
                        if (!left){
                                 left = new nLiChao(1, m);
                                 left -> line = nline;
                        else left -> addLine(nline);
        else{
                        if (!right) {
```

```
right = new nLiChao(m +
                                     1, r);
                                 right -> line = nline;
                         else right -> addLine(nline);
        // T(Log(Rango))
        tv get(tv x) {
                tv m = (l + r) >> 1;
                ty op1 = -\inf, op2 = -\inf; // change to
                    inf
                if(l == r) return line.eval(x);
                else if (x < m) {
                         if (left) op1 = left \rightarrow get(x);
                         return max(line.eval(x), op1); //
                              change max to min
                else{
                         if (right) op2 = right \rightarrow get(x);
                         return max(line.eval(x), op2); //
                              change max to min
};
int main() {
        // (rango superior) * (pendiente maxima) puede
            desbordarse
        // usar double o long double en el eval para
            estos casos
        // (puede dar problemas de precision)
        nLiChao liChao(0, 1e18);
```

3.6 Link Cut Tree

};

```
T subsum(int u) {return (u?ns[u].sub:0);}
void push(int x){
        if(!x)return;
        int l=ns[x].ch[0], r=ns[x].ch[1];
        if(ns[x].flip){
                ns[l].flip^=1,ns[r].flip^=1;
                 swap(ns[x].ch[0], ns[x].ch[1]);
                    // check with st oper
                ns[x].flip=0;
        if(ns[x].lz){
                 // ...
                ns[x].sub+=ns[x].lz*ns[x].ssz;
                 ns[x].vir+=ns[x].lz*ns[x].vsz;
                // ...
void pull(int x){
        int l=ns[x].ch[0], r=ns[x].ch[1];
        push(1);push(r);
        ns[x].sz=size(1)+size(r)+1;
        ns[x].path=max({path(1), path(r), ns[x].}
            val });
        ns[x].sub=ns[x].vir+subsum(1)+subsum(r)+
            ns[x].val;
        ns[x].ssz=ns[x].vsz+subsize(l)+subsize(r)
void set(int x, int d, int y) {ns[x].ch[d]=y;ns[y
   ].p=x;pull(x);
void splay(int x) {
        auto dir=[&](int x) {
                 int p=ns[x].p;if(!p)return -1;
                 return ns[p].ch[0] == x?0:ns[p].ch
                    [1] == x?1:-1;
        auto rotate=[&](int x){
                 int y=ns[x].p, z=ns[y].p, dx=dir(x)
                    , dy = dir(y);
                 set (y, dx, ns[x].ch[!dx]);
                 set (x, !dx, y);
                if(^{\circ}dy) set(z,dy,x);
                ns[x].p=z;
        for(push(x); ~dir(x);) {
                 int y=ns[x].p, z=ns[y].p;
                 push(z);push(y);push(x);
                int dx=dir(x), dy=dir(y);
                if(^{\circ}dv) rotate (dx!=dy?x:v);
                 rotate(x);
```

```
struct LinkCut:SplayTree{ // 1-indexed
        LinkCut(int n):SplayTree(n){}
        int root(int u){
                access(u); splay(u); push(u);
                while (ns[u].ch[0]) {u=ns[u].ch[0]; push(u)
                return splay(u),u;
        int parent(int u){
                access(u); splay(u); push(u);
                u=ns[u].ch[0];push(u);
                while (ns[u].ch[1]) {u=ns[u].ch[1]; push(u)
                return splay(u),u;
        int access(int x){
                int u=x, v=0:
                for(;u;v=u,u=ns[u].p){
                         splav(u);
                         int& ov=ns[u].ch[1];
                         ns[u].vir+=ns[ov].sub;
                         ns[u].vsz+=ns[ov].ssz;
                         ns[u].vir-=ns[v].sub;
                         ns[u].vsz-=ns[v].ssz;
                         ov=v; pull(u);
                return splay(x), v;
        void reroot(int x){
                access (x); ns [x].flip^=1; push (x);
        void link(int u, int v) { // u \rightarrow v
                reroot (u);
                access(v);
                ns[v].vir+=ns[u].sub;
                ns[v].vsz+=ns[u].ssz;
                ns[u].p=v;pull(v);
        void cut(int u, int v){
                int r=root(u);
                reroot(u);
                access(v):
                ns[v].ch[0]=ns[u].p=0;pull(v);
                reroot(r);
        void cut(int u){ // cut parent
                access(u);
                ns[ns[u].ch[0]].p=0;
                ns[u].ch[0]=0;pull(u);
```

};

```
int lca(int u, int v) {
        if (root (u) !=root (v)) return -1;
        access(u); return access(v);
int depth(int u) {
        access(u); splay(u); push(u);
        return ns[u].sz;
T path(int u, int v) {
        int r=root(u);
        reroot (u); access (v); pull (v);
        T ans=ns[v].path;
        return reroot (r), ans;
void set(int u, T val){access(u);ns[u].val=val;
   pull(u);}
void upd(int u, int v, T val) {
        int r=root(u);
        reroot (u); access (v); splay (v);
        // lazv
        reroot(r);
T comp_size(int u) {return ns[root(u)].ssz;}
T subtree size(int u) {
        int p=parent(u);
        if(!p)return comp size(u);
        cut(u);int ans=comp_size(u);
        link(u,p); return ans;
T subtree_size(int u, int v) {
        int r=root(u);
        reroot (v); access (u);
        T ans=ns[u].vsz+1;
        return reroot(r), ans;
T comp sum(int u) {return ns[root(u)].sub;}
T subtree_sum(int u) {
        int p=parent(u);
        if(!p)return comp_sum(u);
        cut(u); T ans=comp_sum(u);
        link(u,p); return ans;
T subtree_sum(int u, int v) { // subtree of u, v
   father
        int r=root(u);
        reroot (v); access (u);
        T ans=ns[u].vir+ns[u].val; // por el
            reroot
        return reroot(r), ans;
```

3.7 Mos Algorithm

```
// O((n+q)*s), s=n^{(1/2)}
// O(q*(s+(n/s)^2)) \Rightarrow O(q*(n^2(3))), s=(2*(n^2))^2(1/3) -
     s=n^{(2/3)}
int s,n;
struct upd{int i,old,cur;};
struct query {int l,r,t,idx;};
bool cmp(query& a, query& b) {
        int x=a.1/s;
        if (a.1/s!=b.1/s) return a.1/s<b.1/s;
        if (a.r/s!=b.r/s) return (x&1?a.r<b.r:a.r>b.r);
        return a.t<b.t;</pre>
vector<int> ans;
vector<query> qu;
vector<upd> up;
int act();
void add(int i);
void remove(int i);
void update(int i,int v,int l,int r){
        if(l<=i && i<=r); // add, remove
void solve(){
        s=(int)ceil(sqrt(n));
        sort(all(qu), cmp);
        int l=0, r=-1, t=0;
         for(int i=0;i<sz(qu);++i){</pre>
                 while (t < qu[i].t) update (up[t].i, up[t].cur,</pre>
                     l,r),++t;
                 while(t>qu[i].t)--t, update(up[t].i, up[t].
                     old, l, r);
                 while (r < qu[i].r) add (++r);</pre>
                 while (1>qu[i].1) add (--1);
                 while (r>qu[i].r) remove (r--);
                 while (1<qu[i].1) remove (1++);
                 ans [qu[i].idx] = act();
int st[maxn],ft[maxn],ver[maxn*2];
bool vis[maxn];
void ask(int v) {
        vis[v]=!vis[v];
        if (vis[v]) add(v);
        else remove(v);
// \text{ query[i]} = \{st[a]+1, st[b], i\} + lca
```

3.8 Ordered set

```
#include <ext/pb ds/assoc container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template<typename T> using ordered_set = tree<T,</pre>
   null_type,less<T>, rb_tree_tag,
   tree order statistics node update>;
template<typename T> using ordered_multiset = tree<T,</pre>
   null type, less equal <T>, rb tree tag,
   tree order statistics node update>;
// ---- CONSTRUCTOR ---- //
// 1. Para ordenar por MAX cambiar less<int> por greater<
// 2. Para multiset cambiar less<int> por less equal<int>
       Para borrar siendo multiset:
       int idx = st.order of key(value);
       st.erase(st.find_by_order(idx));
// ----- METHODS ----- //
st.find_by_order(k) // returns pointer to the k-th
   smallest element
st.order_of_key(x) // returns how many elements are
   smaller than x
st.find by order(k) == st.end() // true, if element does
   not exist
```

3.9 Persistent Segment Tree

```
typedef long long T;
struct Node{T val;int l,r;};
struct SegTree{
        vector<Node> ns;
        int act=0,size;
        vi roots;
        T null=0;
        T oper(T a, T b);
        void update(int x) {
                ns[x].val=oper(ns[ns[x].l].val, ns[ns[x].
                    rl.val);
        int newNode(T x){
                Node tmp=\{x, -1, -1\};
                ns.push back(tmp);
                return act++;
        int newNode(int 1, int r) {
                Node tmp={null,1,r};
                ns.push back(tmp);
                update (act);
                return act++;
```

```
int build(vector<T>& a, int 1, int r){
                 if (r-l==1) {return newNode(a[1]);}
                 int m = (1+r)/2;
                 return newNode (build (a, l, m), build (a, m,
                      r));
        int set(int x, int i, T v, int l, int r){
                 if (r-l==1) return newNode(v);
                 int m = (1+r)/2;
                 if (i<m) return newNode (set (ns[x].1, i, v,</pre>
                    l, m), ns[x].r);
                 else return newNode(ns[x].l, set(ns[x].r,
                     i, v, m, r));
        T get(int x, int lx, int rx, int l, int r){
                 if(lx>=r || l>=rx)return null;
                 if(lx>=l && rx<=r) return ns[x].val;</pre>
                 int m = (1x+rx)/2;
                 T v1=qet(ns[x].l, lx, m, l, r);
                 T v2 = qet(ns[x].r, m, rx, l, r);
                 return oper (v1, v2);
        T get(int 1, int r, int time) {return get(roots[
            time], 0, size, 1, r+1);}
        void set(int i, T v, int time){roots.push_back(
            set(roots[time], i, v, 0, size));}
        void build(vector<T>& a, int n) {size=n; roots.
            push_back(build(a, 0, size));}
} ;
```

3.10 RMQ

3.11 Segment Tree Iterativo

```
struct seatree{
    int n; vl v; ll nulo = 0;
    11 op(ll a, ll b) {return a + b;}
    seqtree(int n) : n(n), v(2*n, nulo){}
    segtree(vl &a): n(sz(a)), v(2*n){
        for (int i = 0; i < n; i++) v[n + i] = a[i];
        for (int i = n-1; i > = 1; --i) v[i] = op(v[i < 1], v
           [i<<1|1]);
    void upd(int k, ll nv){
        for (v[k += n] = nv; k > 1; k >>= 1) v[k>>1] = op
            (v[k], v[k^1]);
    11 get(int 1, int r){
        11 vl = nulo, vr = nulo;
        for (1 += n, r += n+1; 1 < r; 1 >>= 1, r >>= 1)
            if (1&1) vl = op(vl, v[1++]);
            if (r\&1) vr = op(v[--r], vr);
        return op (vl, vr);
};
```

3.12 Segment Tree Recursivo

```
void build(vector<T>& a, int n) {
        size=1;
        while (size<n) size *= 2;</pre>
        vals.resize(2*size);
        lazv.assign(2*size, nolz);
        build(a, 0, 0, size);
void propagate(int x, int lx, int rx){
        if (rx-lx==1) return;
        if(lazy[x]==nolz)return;
        int m = (1x+rx)/2;
        // 2*x+1, 2*x+2 (lazy, vals)
        lazy[x]=nolz;
void upd(int 1, int r, T v,int x, int lx, int rx)
        if(lx>=r || l>=rx) return;
        if(lx>=1 && rx<=r){
                 // lazy, vals
                 return;
        propagate(x,lx,rx);
        int m = (1x+rx)/2;
        upd(1, r, v, 2*x+1, 1x, m);
        upd(1, r, v, 2 \times x + 2, m, rx);
        vals[x]=oper(vals[2*x+1], vals[2*x+2]);
void set(int i, T v, int x, int lx, int rx){
        if(rx-lx==1){
                 vals[x]=v;
                 return;
        propagate(x,lx,rx);
        int m = (1x+rx)/2;
        if (i<m) set (i, v, 2*x+1, lx, m);
        else set(i, v, 2*x+2, m, rx);
        vals[x] = oper(vals[2*x+1], vals[2*x+2]);
T get (int 1, int r, int x, int lx, int rx) {
        if(lx>=r || l>=rx)return null;
        if(lx>=1 && rx<=r)return vals[x];</pre>
        propagate(x,lx,rx);
        int m = (1x+rx)/2;
        T v1=get (1, r, 2*x+1, 1x, m);
        T v2=qet(1,r,2*x+2,m,rx);
        return oper (v1, v2);
T get(int 1, int r) {return get(1,r+1,0,0,size);}
void upd(int 1, int r, T v) {upd(1,r+1,v,0,0,size)
   ; }
```

```
void set(int i, T val) {set(i,val,0,0,size);}
};
```

3.13 Segment Tree 2D

```
const int N=1000+1;
ll st[2*N][2*N];
struct SeaTree{
        int n,m,neutro=0;
        inline ll op(ll a, ll b) {return a+b;}
        SegTree(int n, int m): n(n), m(m) {
                 for (int i=0; i<2*n; ++i) for (int j=0; j<2*m
                     ;++j)st[i][j]=neutro;
        SegTree (vector\langle vi \rangle \& a): n(sz(a)), m(n ? sz(a[0])
            : 0) { build(a); }
        void build(vector<vi>& a) {
                 for (int i=0; i< n; ++i) for (int j=0; j< m; ++j)
                     st[i+n][j+m]=a[i][j];
                 for (int i=0; i<n; ++i) for (int j=m-1; j>=1; --
                     j) st[i+n][j] = op(st[i+n][j << 1], st[i+n]
                     ][i<<1|1]);
                 for (int i=n-1; i>=1; --i) for (int j=0; j<2*m
                     ;++j) st[i][j]=op(st[i<<1][j], st[i
                     <<1|1][†]);
        void upd(int x, int y, ll v){
                 st[x+n][y+m]=v;
                 for (int j=y+m; j>1; j>>=1) st [x+n] [j>>1] = op (
                     st[x+n][j], st[x+n][j^1];
                 for(int i=x+n;i>1;i>>=1) for(int j=y+m;j;j
                     >>=1) st[i>>1][j]=op(st[i][j], st[i^1][
                     j]);
        11 get(int x0, int y0, int x1, int y1){
                 11 r=neutro;
                 for (int i0=x0+n, i1=x1+n+1; i0<i1; i0>>=1, i1
                     >>=1) {
                          int t[4], q=0;
                          if (i0&1) t [q++]=i0++;
                          if (i1&1) t [q++]=--i1;
                          for (int k=0; k < q; ++k) for (int j0=y0
                              +m, j1=y1+m+1; j0<j1; j0>>=1, j1
                              >>=1) {
                                   if(j0&1)r=op(r,st[t[k]][
                                       j0++1);
                                   if(j1&1) r = op(r, st[t]k
                                       ]][-- | 1]);
```

```
return r;
};
```

3.14 Segment Tree Beats

```
typedef long long T;
T null=0, noVal=0;
T INF=1e18;
struct Node {
        T sum, lazv;
        T max1, max2, maxc;
        T min1, min2, minc;
struct SeqTree{
        vector<Node> vals;int size;
        void oper(int a, int b, int c); // node c, left a
            , right b;
        Node single(T x) {
                Node tmp;
                tmp.sum=tmp.max1=tmp.min1=x;
                tmp.maxc=tmp.minc=1;
                tmp.lazy=noVal;
                tmp.max2=-INF;
                tmp.min2=INF;
                return tmp;
        void build(vector<T>& a, int n);
        void propagateMin(T v, int x, int lx, int rx){
                 if (vals[x].max1<=v) return;</pre>
                vals[x].sum-=vals[x].max1*vals[x].maxc;
                vals[x].max1=v;
                vals[x].sum+=vals[x].max1*vals[x].maxc;
                if(rx-lx==1){
                         vals[x].min1=v;
                }else{
                         if(v<=vals[x].min1) {</pre>
                                 vals[x].min1=v;
                         }else if(v<vals[x].min2){</pre>
                                 vals[x].min2=v;
        void propagateAdd(T v, int x, int lx, int rx) {
                vals[x].sum+=v*((T)(rx-lx));
                vals[x].lazy+=v;
                vals[x].max1+=v;
                vals[x].min1+=v;
                if (vals[x].max2!=-INF) vals[x].max2+=v;
                if (vals[x].min2!=INF) vals[x].min2+=v;
        void propagate(int x, int lx, int rx){
```

```
if (rx-lx==1) return;
        int m = (1x+rx)/2;
        if(vals[x].lazy!=noVal){
                propagateAdd(vals[x].lazy, 2*x+1,
                     lx, m);
                propagateAdd(vals[x].lazy, 2*x+2,
                     m, rx);
                vals[x].lazy=noVal;
        propagateMin(vals[x].max1, 2*x+1, lx, m);
        propagateMin(vals[x].max1, 2*x+2, m, rx);
void updAdd(int 1, int r, T v, int x, int lx, int
   rx) {
        if(lx>=r || l>=rx) return;
        if(lx>=l && rx<=r){
                propagateAdd(v, x, lx, rx);
                return:
        propagate(x,lx,rx);
        int m = (1x+rx)/2;
        updAdd(1, r, v, 2*x+1, 1x, m);
        updAdd(1, r, v, 2*x+2, m, rx);
        oper (2*x+1, 2*x+2, x);
void updMin(int 1, int r, T v, int x, int lx, int
   rx) {
        if(lx>=r || l>=rx || vals[x].max1<v)
            return;
        if(lx>=1 && rx<=r && vals[x].max2<v){
                propagateMin(v, x, lx, rx);
                return;
        propagate(x,lx,rx);
        int m=(1x+rx)/2;
        updMin(l,r,v,2*x+1,lx,m);
        updMin(l,r,v,2*x+2,m,rx);
        oper (2*x+1, 2*x+2, x);
void updAdd(int 1, int r, T v) {updAdd(1,r+1,v)
   ,0,0,size);}
void updMin(int 1, int r, T v) {updMin(1,r+1,v)
   ,0,0,size);}
```

3.15 Sparse Table 2D

};

```
const int MAX_N = 100;
const int MAX_M = 100;
const int KN = log2 (MAX_N) +1;
const int KM = log2 (MAX_M) +1;
```

```
int table[KN][MAX N][KM][MAX M];
int _log2N[MAX_N+1];
int log2M[MAX M+1];
int MAT[MAX_N][MAX_M];
int n, m, ic, ir, jc, jr;
void calc log2() {
    log2N[1] = 0;
    [log2M[1] = 0;
    for (int i = 2; i <= MAX N; i++) log2N[i] = log2N[i</pre>
       /21 + 1;
    for (int i = 2; i <= MAX M; i++) log2M[i] = log2M[i</pre>
       /21 + 1;
void build() {
    for (ir = 0; ir < n; ir++) {</pre>
        for (ic = 0; ic < m; ic++)
            table[0][ir][0][ic] = MAT[ir][ic];
        for (jc = 1; jc < KM; jc++)
            for (ic = 0; ic + (1 << (jc-1)) < m; ic++)
                table[0][ir][jc][ic] = min(table[0][ir][
                    jc-1[ic], table[0][ir][jc-1][ic + (1
                    << (ic-1)));
    for (jr = 1; jr < KN; jr++)
        for (ir = 0; ir < n; ir++)
            for (jc = 0; jc < KM; jc++)
                for (ic = 0; ic < m; ic++)
                    table[jr][ir][jc][ic] = min(table[jr
                        -1][ir][jc][ic], table[jr-1][ir
                        +(1<<(jr-1))][jc][ic]);
int rmq(int x1, int y1, int x2, int y2) {
    int lenx = x2-x1+1;
    int kx = _log2N[lenx];
    int leny = y2-y1+1;
    int ky = log2M[lenv];
    int min R1 = min(table[kx][x1][ky][y1], table[kx][x1
       [ky][y2 + 1 - (1 << ky)]);
    int min_R2 = min(table[kx][x2+1-(1<<kx)][ky][y1],
       table[kx][x2+1- (1 << kx)][ky][y2 + 1 - (1 << ky)]);
    return min(min_R1, min_R2);
```

3.16 Sqrt Descomposition

```
typedef long long T;
struct Sqrt { // O(n/b+b)
         int b; // check b
        vector<T> nums,blocks;
```

```
void build(vector<T>& arr, int n) {
                  b=(int)ceil(sgrt(n));nums=arr;
                 blocks.assign(b, 0);
                  for (int i=0; i < n; ++i) {</pre>
                          blocks[i/b]+=nums[i];
        void set(int x, int v){
                  blocks [x/b] -= nums [x];
                  nums [x]=v;
                  blocks[x/b]+=nums[x];
        T get(int r) {
                  T res=0;
                  for(int i=0;i<r/b;++i){res+=blocks[i];}</pre>
                  for(int i=(r/b)*b;i<r;++i) {res+=nums[i];}</pre>
                  return res;
        T get(int 1, int r) {return get(r+1)-get(1);}
};
```

3.17 Treap

16

```
// treap => order asc, implicit treap => order array
typedef long long T;
struct Treap{
        Treap *1,*r,*dad;
        u64 prior;
        T sz, value, sum, lz;
        Treap(T v) {
                 l=r=nullptr;
                 1z=0; sz=1;
                 prior=rng();
                 value=sum=v;
         ~Treap() {delete l; delete r; }
};
typedef Treap* PTreap;
T cnt (PTreap x) {return (!x?0:x->sz);}
T sum(PTreap x) {return (!x?0:x->sum);}
void propagate(PTreap x) {
        if(x && x->lz) {
                 if(x->1); // lz, value, sum ...
                 if (x->r); // lz, value, sum ...
                 x - > 1z = 0;
void update(PTreap x) {
        propagate (x->1);
```

```
propagate (x->r):
         x->sz=cnt(x->1)+cnt(x->r)+1;
         x\rightarrow sum=sum(x\rightarrow 1)+sum(x\rightarrow r)+x\rightarrow value;
         if (x->1) x->1->dad=x;
         if (x->r) x->r-> dad=x;
void upd(PTreap x, T v) {
         if(!x)return;
         update(x);
         // lz, value, sum ...
// pair<PTreap, PTreap> split(PTreap x, T kev) { // f <=</pre>
pair<PTreap, PTreap> split(PTreap x, int left){ // cnt(f)
     == left
         if(!x)return {nullptr, nullptr};
         propagate(x);
         if(cnt(x->1)>=left) { // if(x->value>key) {}
                  auto got=split(x->1, left); // , key);
                  x->l=qot.second;
                  update(x);
                  return {got.first, x};
         }else{
                  auto got=split(x->r, left-cnt(x->1)-1);
                      // , key);
                  x->r=qot.first;
                  update(x);
                  return {x, got.second};
PTreap merge (PTreap x, PTreap y) {
         if(!x)return v;
         if(!v)return x;
         propagate(x);
         propagate(y);
         if (x->prior<=y->prior) {
                  x \rightarrow r = merge(x \rightarrow r, y);
                  update(x);
                  return x;
         }else{
                  v \rightarrow l = merge(x, v \rightarrow l);
                  update(v);
                  return y;
PTreap combine (PTreap x, PTreap y) {
         if(!x)return v;
         if(!y)return x;
         if (x->prior<y->prior) swap (x, y);
         auto z=split(y, x->value);
         x \rightarrow r = combine(\bar{x} \rightarrow r, z.second);
         x->l=combine(z.first, x->l);
         return x;
```

```
3.18 Two Stacks
```

```
T kth(PTreap& x, int k){ // indexed 0
        if(!x)return null;
        if (k==cnt (x->1)) return x->value;
        if (k < cnt(x->1)) return kth(x->1, k);
        return kth(x->r, k-cnt(x->1)-1);
pair<int, T> lower_bound(PTreap x, T key) { // index,
   value
        if(!x)return {0, null};
        if(x->value<kev) {</pre>
                 auto y=lower_bound(x->r, key);
                v.first+=cnt(x->1)+1;
                return v;
        auto y=lower_bound(x->1, key);
        if (y.first==cnt(x->1))y.second=x->value;
        return v;
void dfs(PTreap x) {
        if(!x)return;
        propagate(x);
        dfs(x->1); cout<<x->value<<" "; dfs(x->r);
// PTreap root=nullptr;
// PTreap act=new Treap(c);
// root=merge(root, act);
```

3.18 Two Stacks

```
typedef long long T;
struct Node{T val,acum;};
struct TwoStacks{
        stack<Node> s1,s2;
        void add(T x){
                Node tmp=\{x, x\};
                if(!s2.empty()){
                // tmp.acum + s2.top().acum
                s2.push(tmp);
        void remove(){
                if(s1.empty()){
                         while(!s2.empty()){
                                 Node tmp=s2.top();
                                 if(s1.emptv()){
                                 // tmp.acum = tmp.val
                                 // tmp.acum + s1.top().
                                    acum
```

3.19 Wavelet Tree

```
const int maxn = 1e5+5, maxv = 1e9, minv = -1e9;
struct WaveletTree{ // indexed 1 - O(nlogn)
        int lo, hi;
        WaveletTree *1, *r;
        int *b, bsz, csz;
        11 *c;
        WaveletTree() {
                hi=bsz=csz=0;
                l=r=NULL;
                10=1;
        void build(int *from, int *to, int x, int y) {
                lo=x, hi=y;
                if (from>=to) return;
                int mid=lo+(hi-lo)/2;
                auto f=[mid] (int x) {return x<=mid; };</pre>
                b=(int*)malloc((to-from+2)*sizeof(int));
                bsz=0:
                b[bsz++]=0;
                c=(l1*)malloc((to-from+2)*sizeof(l1));
                csz=0;
                c[csz++]=0;
                for(auto it=from;it!=to;++it) {
                         b[bsz] = (b[bsz-1] + f(*it));
                         c[csz] = (c[csz-1] + (*it));
                         bsz++; csz++;
                if (hi==lo) return;
                auto pivot=stable partition(from, to, f);
                l=new WaveletTree();
```

```
1->build(from, pivot, lo, mid);
                r=new WaveletTree();
                r->build(pivot, to, mid+1, hi);
        //kth smallest element in [1, r]
        int kth(int 1, int r, int k){
                if(l>r) return 0;
                if(lo==hi)return lo;
                 int inLeft=b[r]-b[l-1], lb=b[l-1], rb=b[r
                 if (k<=inLeft) return this->l->kth(lb+1, rb
                 return this->r->kth(l-lb, r-rb, k-inLeft)
        //count of numbers in [1, r] Less than or equal
            to k
        int lte(int 1, int r, int k) {
                if(1>r || k<10) return 0;
                 if (hi<=k) return r-l+1;</pre>
                int lb=b[l-1], rb=b[r];
                return this->l->lte(lb+1, rb, k)+this->r
                    ->lte(l-lb, r-rb, k);
        //count of numbers in [l, r] equal to k
        int count(int 1, int r, int k){
                if(1>r || k<10 || k>hi) return 0;
                if (lo==hi) return r-l+1;
                 int lb=b[l-1], rb=b[r];
                 int mid=(lo+hi)>>1;
                if (k<=mid) return this->l->count(lb+1, rb,
                return this->r->count(l-lb, r-rb, k);
        //sum of numbers in [l ,r] less than or equal to
           k
        11 sum(int 1, int r, int k){
                if(l>r || k<lo)return 0;</pre>
                if (hi<=k) return c[r]-c[l-1];</pre>
                 int lb=b[l-1], rb=b[r];
                 return this->l->sum(lb+1, rb, k)+this->r
                    \rightarrowsum(l-lb, r-rb, k);
        ~WaveletTree(){
                delete 1:
                delete r;
};
// int a[maxn];
// WaveletTree wt;
// for(int i=1;i<=n;++i)cin>>a[i];
```

```
// wt.build(a+1, a+n+1, minv, maxv);
```

3.20 Trie Bit

```
struct node{
 int childs[2]{-1, -1};
struct TrieBit{
    vector<node> nds;
        vi passNums;
        TrieBit(){
        nds.pb(node());
        passNums.pb(0);
    void insert(int num) {
        int cur = 0;
        for (int i = 30; i >= 0; i--) {
            bool bit = (num >> i) & 1;
            if (nds[cur].childs[bit] == -1) {
                nds[cur].childs[bit] = nds.size();
                nds.pb(node());
                passNums.pb(0);
            passNums[cur]++;
            cur = nds[cur].childs[bit];
        passNums[cur]++;
    void remove(int num) {
        int cur = 0;
        for (int i = 30; i >= 0; i--) {
            bool bit = (num >> i) & 1;
            passNums[cur]--;
            cur = nds[cur].childs[bit];
        passNums[cur]--;
    int maxXor(int num) {
        int ans = 0;
        int cur = 0;
        for(int i = 30; i >= 0; i--) {
            bool bit = (num >> i) & 1;
            int n1 = nds[cur].childs[!bit];
            if (n1 != -1 && passNums[n1]) {
                ans += (1 << i);
                bit = !bit;
```

```
cur = nds[cur].childs[bit];
}
return ans;
};
```

4 Flujos

4.1 Blossom

```
/// Complexity: O(|E||V|^2)
/// Tested: https://tinyurl.com/oe5rnpk
struct network {
  struct struct edge { int v; struct edge * n; };
  typedef struct edge* edge;
  int n;
  struct edge pool[MAXE]; ///2*n*n;
  edge top;
  vector<edge> adi;
  queue<int> q;
  vector<int> f, base, inq, inb, inp, match;
  vector<vector<int>> ed;
  network(int n) : n(n), match(n, -1), adj(n), top(pool),
      f(n), base(n),
                   ing(n), inb(n), inp(n), ed(n, vector<
                      int>(n)) {}
  void add edge(int u, int v) {
    if(ed[u][v]) return;
    ed[u][v] = 1;
    top->v = v, top->n = adj[u], adj[u] = top++;
    top->v = u, top->n = adj[v], adj[v] = top++;
  int get lca(int root, int u, int v) {
    fill(inp.begin(), inp.end(), 0);
    while (1)
      inp[u = base[u]] = 1;
      if(u == root) break;
      u = f[match[u]];
    while(1) {
      if(inp[v = base[v]]) return v;
      else v = f[ match[v] ];
  void mark(int lca, int u) {
    while(base[u] != lca) {
      int v = match[u];
      inb[base[u]] = 1;
      inb[base[v]] = 1;
      u = f[v];
      if(base[u] != lca) f[u] = v;
```

```
void blossom contraction(int s, int u, int v) {
  int lca = get lca(s, u, v);
  fill(inb.begin(), inb.end(), 0);
  mark(lca, u); mark(lca, v);
  if(base[u] != lca) f[u] = v;
  if(base[v] != lca) f[v] = u;
  for(int u = 0; u < n; u++)
    if(inb[base[u]]) {
      base[u] = lca;
      if(!inq[u]) {
          inq[u] = 1;
          q.push(u);
int bfs(int s) {
  fill(ing.begin(), ing.end(), 0);
  fill(f.begin(), f.end(), -1);
  for(int i = 0; i < n; i++) base[i] = i;</pre>
  q = queue<int>();
  q.push(s);
  inq[s] = 1;
 while(q.size()) {
    int u = q.front(); q.pop();
    for (edge e = adj[u]; e; e = e->n) {
      int v = e -> v;
      if(base[u] != base[v] && match[u] != v) {
        if((v == s) \mid | (match[v] != -1 \&\& f[match[v]])
          blossom contraction(s, u, v);
        else if (f[v] == -1) {
          f[v] = u;
          if (match[v] == -1) return v;
          else if(!ing[match[v]]) {
            ing[match[v]] = 1;
            q.push(match[v]);
  return -1;
int doit(int u) {
  if(u == -1) return 0;
  int v = f[u];
  doit(match[v]);
  match[v] = u; match[u] = v;
  return u != -1;
/// (i < net.match[i]) => means match
int maximum matching() {
  int ans = 0;
```

```
for(int u = 0; u < n; u++)
    ans += (match[u] == -1) && doit(bfs(u));
return ans;
};</pre>
```

4.2 Dinic

```
// O(|E| * |V|^2)
struct edge { ll v, cap, inv, flow, ori; };
struct network {
  ll n, s, t;
  vector<ll> lvl;
  vector<vector<edge>> q;
 network(ll n) : n(n), lvl(n), g(n) {}
  void add_edge(int u, int v, ll c) {
    q[u].push back({v, c, sz(q[v]), 0, 1});
    g[v].push_back({u, 0, sz(g[u])-1, c, 0});
 bool bfs() {
    fill(lvl.begin(), lvl.end(), -1);
    queue<11> q;
    lvl[s] = 0;
    for(q.push(s); q.size(); q.pop()) {
      ll u = q.front();
      for(auto &e : q[u]) {
        if(e.cap > 0 && lvl[e.v] == -1) {
          lvl[e.v] = lvl[u]+1;
          q.push(e.v);
    return lvl[t] != -1;
  11 dfs(ll u, ll nf) {
    if(u == t) return nf;
    11 \text{ res} = 0:
    for(auto &e : q[u]) {
      if(e.cap > 0 \&\& lvl[e.v] == lvl[u]+1) {
        ll tf = dfs(e.v, min(nf, e.cap));
        res += tf; nf -= tf; e.cap -= tf;
        q[e.v][e.inv].cap += tf;
        q[e.v][e.inv].flow -= tf;
        e.flow += tf;
        if(nf == 0) return res;
    if(!res) lvl[u] = -1;
    return res;
  ll \max flow(ll so, ll si, ll res = 0) {
    s = so; t = si;
    while(bfs()) res += dfs(s, LONG_LONG_MAX);
    return res;
```

```
void min_cut() {
    queue<11> q;
    vector<bool> vis(n, 0);
    vis[s] = 1;
    for(q.push(s); q.size(); q.pop()) {
      ll u = q.front();
      for(auto &e : g[u]) {
        if(e.cap > 0 && !vis[e.v]) {
          q.push(e.v);
          vis[e.v] = 1;
    vii ans;
    for (int i = 0; i<n; i++) {
        for (auto &e : q[i]) {
            if (vis[i] && !vis[e.v] && e.ori) {
                ans.push back(\{i+1, e.v+1\});
    for (auto [x, y] : ans) cout << x << ' ' << y << ln;</pre>
  bool dfs2(vi &path, vector<bool> &vis, int u) {
    vis[u] = 1;
    for (auto &e : q[u]) {
      if (e.flow > 0 && e.ori && !vis[e.v]) {
        if (e.v == t || dfs2(path, vis, e.v)){
          path.push back(e.v);
          e.flow = 0;
          return 1;
    return 0;
  void disjoint paths() {
    vi path;
    vector<bool> vis(n, 0);
    while (dfs2(path, vis, s)){
      path.push back(s);
      reverse (all (path));
      cout << sz(path) << ln;
      for (int v : path) cout << v+1 << ' ';</pre>
      cout << ln;
      path.clear(); vis.assign(n, 0);
};
```

4.3 Edmonds Karp

```
4.4 Hopcroft Karp
```

```
//O(V * E^2)
ll bfs(vector<vi> &adj, vector<vl> &capacity, int s, int
   t, vi& parent) {
    fill(parent.begin(), parent.end(), -1);
    parent[s] = -2;
    queue<pll> q;
    q.push({s, INFL});
    while (!q.empty()) {
        int cur = q.front().first;
        11 flow = q.front().second;
        q.pop();
        for (int next : adj[cur]) {
            if (parent[next] == -1LL && capacity[cur][
               nextl)
                parent[next] = cur;
                11 new flow = min(flow, capacity[cur][
                    next]);
                if (next == t)
                    return new_flow;
                q.push({next, new_flow});
    return 0;
11 maxflow(vector<vi> &adj, vector<vl> &capacity, int s,
   int t, int n) {
   11 \text{ flow} = 0;
    vi parent(n);
    ll new flow;
    while ((new_flow = bfs(adj, capacity, s, t, parent)))
        flow += new flow;
        int cur = t;
        while (cur != s) {
            int prev = parent[cur];
            capacitv[prev][cur] -= new flow;
            capacity[cur][prev] += new flow;
            cur = prev;
    return flow;
```

4.4 Hopcroft Karp

```
// Complexity: O(|E|*sqrt(|V|))
struct mbm {
  vector<vector<int>> g;
  vector<int>> d, match;
```

```
int nil, l, r;
/// u \rightarrow 0 to 1, v \rightarrow 0 to r
mbm(int l, int r) : q(l+r), d(l+l+r, INF), match(l+r, l)
   +r),
                     nil(l+r), l(l), r(r) {}
void add_edge(int a, int b) {
  q[a].push_back(l+b);
  q[l+b].push back(a);
bool bfs() {
  queue<int> q;
  for(int u = 0; u < 1; u++) {
    if (match[u] == nil) {
      d[u] = 0;
      q.push(u);
    } else d[u] = INF;
  d[nil] = INF;
  while(q.size()) {
    int u = q.front(); q.pop();
    if(u == nil) continue;
    for(auto v : q[u]) {
      if(d[match[v]] == INF) {
        d[match[v]] = d[u]+1;
        q.push(match[v]);
  return d[nil] != INF;
bool dfs(int u) {
  if(u == nil) return true;
  for(int v : q[u]) {
    if(d[match[v]] == d[u]+1 \&\& dfs(match[v])) {
      match[v] = u; match[u] = v;
      return true;
  d[u] = INF;
  return false;
int max matching() {
  int ans = 0;
  while(bfs()) {
    for(int u = 0; u < 1; u++) {
      ans += (match[u] == nil && dfs(u));
  return ans;
void matchs() {
  for (int i = 0; i<1; i++) {
      if (match[i] == l+r) continue;
      cout << i+1 << ' ' << match[i]+1-l << ln;
```

4.5 Maximum Bipartite Matching

};

```
// O(|E| * |V|)
struct mbm {
  int 1, r;
  vector<vector<int>> a;
  vector<int> match, seen;
  mbm(int l, int r) : l(l), r(r), q(l), match(r), seen(r)
  void add edge(int 1, int r) { g[1].push back(r); }
  bool dfs(int u)
    for(auto v : q[u]) {
      if(seen[v]++) continue;
      if(match[v] == -1 \mid | dfs(match[v]))  {
        match[v] = u;
        return true;
    return false;
  int max matching() {
    int ans = 0;
    fill(match.begin(), match.end(), -1);
    for(int u = 0; u < 1; ++u) {
      fill(seen.begin(), seen.end(), 0);
      ans += dfs(u):
    return ans;
  void matchs() {
    for (int i = 0; i<r; i++) {
        if (match[i] == -1) continue;
        cout << match[i]+1 << ' ' << i+1 << ln;</pre>
};
```

4.6 Minimum Cost Maximum Flow

```
/// Complexity: O(|V|*|E|^2*log(|E|))
template <class type>
struct mcmf {
    struct edge { int u, v, cap, flow; type cost; };
    int n;
    vector<edge> ed;
    vector<vector<int>> g;
    vector<int> p;
    vector<type> d, phi;
```

```
mcmf(int n) : n(n), g(n), p(n), d(n), phi(n) {}
 void add_edge(int u, int v, int cap, type cost) {
    q[u].push back(ed.size());
    ed.push_back({u, v, cap, 0, cost});
    g[v].push_back(ed.size());
    ed.push back(\{v, u, 0, 0, -cost\});
 bool dijkstra(int s, int t) {
    fill(d.begin(), d.end(), INF TYPE);
    fill(p.begin(), p.end(), -1);
    set<pair<type, int>> q;
    d[s] = 0;
    for(q.insert({d[s], s}); q.size();) {
      int u = (*q.begin()).second; q.erase(q.begin());
      for(auto v : q[u]) {
        auto &e = ed[v];
        type nd = d[e.u]+e.cost+phi[e.u]-phi[e.v];
        if(0 < (e.cap-e.flow) && nd < d[e.v]) {
          q.erase({d[e.v], e.v});
          d[e.v] = nd; p[e.v] = v;
          q.insert({d[e.v], e.v});
    for(int i = 0; i < n; i++) phi[i] = min(INF TYPE, phi</pre>
       [i]+d[i]);
    return d[t] != INF TYPE;
 pair<int, type> max_flow(int s, int t) {
    type mc = 0;
    int mf = 0;
    fill(phi.begin(), phi.end(), 0);
    while(dijkstra(s, t)) {
      int flow = INF;
      for (int v = p[t]; v != -1; v = p[ed[v].u])
        flow = min(flow, ed[v].cap-ed[v].flow);
      for(int v = p[t]; v != -1; v = p[ed[v].u]) {
        edge &e1 = ed[v];
        edge &e2 = ed[v^1];
        mc += e1.cost*flow;
        e1.flow += flow;
        e2.flow -= flow;
      mf += flow;
    return {mf, mc};
};
```

4.7 Weighted Matching

```
/// Complexity: O(|V|^3)
typedef int type;
```

```
struct matching weighted {
  int 1, r;
 vector<vector<type>> c;
 matching_weighted(int 1, int r) : 1(1), r(r), c(1,
     vector<type>(r)) {
    assert(1 \le r);
 void add_edge(int a, int b, type cost) { c[a][b] = cost
  type matching() {
   vector<type> v(r), d(r); // v: potential
    vector\langle int \rangle ml(1, -1), mr(r, -1); // matching pairs
    vector<int> idx(r), prev(r);
    iota(idx.begin(), idx.end(), 0);
    auto residue = [&] (int i, int j) { return c[i][j]-v[j
    for(int f = 0; f < 1; ++f) {
      for (int j = 0; j < r; ++j) {
        d[j] = residue(f, j);
        prev[j] = f;
      type w;
      int j, 1;
      for (int s = 0, t = 0;;) {
        if(s == t) {
          l = s;
          w = d[ idx[t++] ];
          for (int k = t; k < r; ++k) {
            j = idx[k];
            type h = d[j];
            if (h <= w) {
              if (h < w) t = s, w = h;
              idx[k] = idx[t];
              idx[t++] = i;
          for (int k = s; k < t; ++k) {
            j = idx[k];
            if (mr[j] < 0) goto aug;
        int q = idx[s++], i = mr[q];
        for (int k = t; k < r; ++k) {
          j = idx[k];
          type h = residue(i, j) - residue(i, q) + w;
          if (h < d[i]) {
            d[j] = h;
            prev[j] = i;
            if (h == w) {
              if(mr[j] < 0) goto aug;</pre>
              idx[k] = idx[t];
              idx[t++] = j;
```

```
aug: for (int k = 0; k < 1; ++k)
      v[ idx[k] ] += d[ idx[k] ] - w;
int i;
do {
    mr[j] = i = prev[j];
    swap(j, ml[i]);
    } while (i != f);
}
type opt = 0;
for (int i = 0; i < 1; ++i)
    opt += c[i][ml[i]]; // (i, ml[i]) is a solution
return opt;
}
};</pre>
```

4.8 Hungarian

```
const int N = 509;
/* Complexity: O(n^3) but optimized
It finds minimum cost maximum matching.
For finding maximum cost maximum matching
add -cost and return -matching()
1-indexed */
struct Hungarian {
  long long c[N][N], fx[N], fy[N], d[N];
  int 1[N], r[N], arg[N], trace[N];
  queue<int> q;
  int start, finish, n;
  const long long inf = 1e18;
  Hungarian() {}
  Hungarian (int n1, int n2): n(max(n1, n2)) {
    for (int i = 1; i <= n; ++i) {
      fy[i] = l[i] = r[i] = 0;
      for (int j = 1; j <= n; ++j) c[i][j] = inf; // make</pre>
          it 0 for maximum cost matching (not necessarily
          with max count of matching)
 void add_edge(int u, int v, long long cost) {
    c[u][v] = min(c[u][v], cost);
  inline long long getC(int u, int v) {
    return c[u][v] - fx[u] - fy[v];
  void initBFS() {
    while (!q.empty()) q.pop();
    q.push(start);
    for (int i = 0; i <= n; ++i) trace[i] = 0;</pre>
    for (int v = 1; v \le n; ++v) {
      d[v] = getC(start, v);
      arg[v] = start;
```

```
finish = 0:
void findAugPath() {
  while (!q.empty()) {
    int u = q.front();
    q.pop();
    for (int v = 1; v <= n; ++v) if (!trace[v]) {</pre>
        long long w = getC(u, v);
        if (!w) {
          trace[v] = u;
          if (!r[v]) {
            finish = v:
            return;
          q.push(r[v]);
        if (d[v] > w) {
          d[v] = w:
          arg[v] = u;
void subX_addY() {
  long long delta = inf;
  for (int v = 1; v \le n; ++v) if (trace[v] == 0 && d[v]
     | < delta) {</pre>
      delta = d[v];
  // Rotate
  fx[start] += delta;
  for (int v = 1; v <= n; ++v) if(trace[v]) {</pre>
      int u = r[v];
      fy[v] -= delta;
      fx[u] += delta;
    } else d[v] -= delta;
  for (int v = 1; v \le n; ++v) if (!trace[v] && !d[v])
      trace[v] = arg[v];
      if (!r[v]) {
        finish = v;
        return;
      q.push(r[v]);
void Enlarge() {
  do {
    int u = trace[finish];
    int nxt = l[u];
    l[u] = finish;
    r[finish] = u;
    finish = nxt;
  } while (finish);
```

```
long long maximum matching() {
    for (int u = 1; u <= n; ++u) {
      fx[u] = c[u][1];
      for (int v = 1; v <= n; ++v) {
        fx[u] = min(fx[u], c[u][v]);
    for (int v = 1; v \le n; ++v) {
      fy[v] = c[1][v] - fx[1];
      for (int u = 1; u <= n; ++u) {
        fy[v] = min(fy[v], c[u][v] - fx[u]);
    for (int u = 1; u <= n; ++u) {
      start = u;
      initBFS();
      while (!finish) {
        findAugPath();
        if (!finish) subX_addY();
      Enlarge();
    long long ans = 0;
    for (int i = 1; i <= n; ++i) {</pre>
      if (c[i][l[i]] != inf) ans += c[i][l[i]];
      else 1[i] = 0;
    return ans;
};
```

5 Geometria

5.1 Puntos

```
typedef long double lf;
const lf EPS = 1e-9;
const lf E0 = 0.0L; //Keep = 0 for integer coordinates,
   otherwise = EPS
const lf PI = acos(-1);
struct pt {
   lf x, y;
    pt(){}
    pt(lf a, lf b): x(a), y(b) {}
   pt(lf ang): x(cos(ang)), y(sin(ang)){} // Polar unit
        point: ang(RAD)
    pt operator - (const pt &q) const { return {x - q.x,
        y - q.y }; }
    pt operator + (const pt &q) const { return {x + q.x ,
        y + q.y \}; 
    pt operator * (pt p) { return {x * p.x - y * p.y, x *
       p.y + y * p.x;
```

```
pt operator * (const lf &t) const { return {x * t , y
    pt operator / (const lf &t) const { return {x / t , y
        / t }; }
    bool operator == (pt p) { return abs(x - p.x) <= EPS</pre>
       && abs(y - p.y) <= EPS; }
    bool operator != (pt p) { return !operator==(p); }
    bool operator < (const pt & q) const { // set / sort</pre>
        if(fabsl(x - q.x) > E0) return x < q.x;
        return y < q.\bar{y};
    void print() { cout << x << " " << y << "\n"; }</pre>
};
pt normalize(pt p) {
    lf norm = hypotl(p.x, p.y);
    if(fabsl(norm) > EPS) return {p.x /= norm, p.y /=
    else return p;
int cmp(lf a, lf b) { return (a + EPS < b ? -1 : (b + EPS <</pre>
    a ? 1 : 0)); } // float comparator
// rota ccw
pt rot90(pt p) { return {-p.v, p.x}; }
// w(RAD)
pt rot(pt p, lf w) { return {cosl(w) * p.x - sinl(w) * p.y
   *, sinl(w) * p.x + cosl(w) * p.y); }
lf norm2(pt p) { return p.x * p.x + p.y * p.y; }
lf norm(pt p) { return hypotl(p.x, p.y); }
lf dis2(pt p, pt q) { return norm2(p - q); }
lf dis(pt p, pt q) { return norm(p - q); }
If arg(pt a) {return atan2(a.y, a.x); } // ang(RAD) a x-
If dot(pt a, pt b) { return a.x * b.x + a.y * b.y; } //x
   = 90 -> cos = 0
If cross(pt a, pt b) { return a.x * b.y - a.y * b.x;  } //
   x = 180 -> \sin = 0
lf orient(pt a, pt b, pt c) { return cross(b - a, c - a);
   } // AB clockwise = -
int sign(lf x) { return (EPS < x) - (x < -EPS); }
// p inside angle abc (center in a)
bool in_angle(pt a, pt b, pt c, pt p) {
    //assert(fabsl(orient(a, b, c)) > E0);
    if(orient(a, b, c) < -E0)
        return orient(a, b, p) \geq= -E0 || orient(a, c, p)
    return orient(a, b, p) \geq -E0 && orient(a, c, p) \leq
       E0;
lf min_angle(pt a, pt b) { return acos(max((lf)-1.0, min((
   lf) 1.0, dot(a, b)/norm(a)/norm(b))); } // ang(RAD)
```

```
lf angle(pt a, pt b) { return atan2(cross(a, b), dot(a, b)
   ); \} // ang (RAD)
If angle(pt a, pt b, pt c) { // ang(RAD) AB AC ccw
    lf anq = angle(b - a, c - a);
    if (anq < 0) ang += 2 * PI;
    return ang;
bool half(pt p) { // true if is in (0, 180] (line is x
    // assert (p.x != 0 || p.y != 0); // the argument of
        (0, 0) is undefined
    return p.y > 0 || (p.y == 0 && p.x < 0);
bool half_from(pt p, pt v = \{1, 0\}) {
  return cross(v,p) < 0 \mid \mid (cross(v,p) == 0 \&\& dot(v,p) <
      0);
// polar sort
bool polar cmp(const pt &a, const pt &b) {
  return make tuple(half(a), 0) < make tuple(half(b),
     cross(a,b));
void polar sort(vector<pt> &v, pt o) { // sort points in
   counterclockwise with respect to point o
    sort(v.begin(), v.end(), [&](pt a,pt b) {
        return make tuple (half (a - o), 0.0, norm2 ((a - o)
           )) < make tuple(half(b - o), cross(a - o, b -
           o), norm2((b - o));
    });
int cuad(pt p) { // REVISAR
    if(p.x > 0 && p.y >= 0) return 0;
    if(p.x <= 0 && p.y > 0) return 1;
    if(p.x < 0 && p.y <= 0) return 2;
    if(p.x >= 0 && p.y < 0) return 3;
    return -1; // x == 0 \&\& v == 0
bool cmp (pt p1, pt p2) {
  int c1 = cuad(p1), c2 = cuad(p2);
  return c1 == c2 ? p1.y * p2.x < p1.x * p2.y : <math>c1 < c2;
```

5.2 Lineas

```
// add points operators
struct line {
   pt v; lf c; // v: dir, c: mov y
   line(pt v, lf c) : v(v), c(c) {}
   line(lf a, lf b, lf c) : v({b, -a}), c(c) {} // ax +
```

```
bv = c
    line (pt p, pt q) : v(q - p), c(cross(v, p)) {}
    bool operator < (line 1) { return cross(v, 1.v) > 0; }
    bool operator == (line l) { return (abs(cross(v, l.v))
        = E0) && c == 1.c; } // abs(c) == abs(1.c)
    lf side(pt p) { return cross(v, p) - c; }
    lf dist(pt p) { return abs(side(p)) / norm(v); }
    lf dist2(pt p) { return side(p) * side(p) / (lf)norm2(
    line perp_through(pt p) { return {p, p + rot90(v)}; }
       // line perp to v passing through p
    bool cmp_proj(pt p, pt q) { return dot(v, p) < dot(v,</pre>
       q); } // order for points over the line
    // use: auto fsort = [&11] (const pt &a, const pt &b) {
        return 11.cmp proj(a, b); };
    line translate(pt t) { return {v, c + cross(v, t)}; }
    line shift_left(lf d) { return {v, c + d*norm(v)}; }
    pt proj(pt p) { return p - rot90(v) * side(p) / norm2(
       v); } // pt provected on the line
    pt refl(pt p) { return p - rot90(v) * 2 * side(p) /
       norm2(v); } // pt reflected on the other side of
       the line
    bool has (pt p) { return abs (cross (v, p) - c) <= E0; };
        // pt on line
    lf evalx(lf x){
        assert (fabsl (v.x) > EPS);
        return (c + v.v * x) / v.x;
};
pt inter ll(line l1, line l2) {
    if (abs(cross(11.v, 12.v)) <= EPS) return {INF, INF};</pre>
        // parallel
    return (12.v * 11.c - 11.v * 12.c) / cross(11.v, 12.v
       ); // floating points
// bisector divides the angle in 2 equal angles
// interior line goes on the same direction as 11 and 12
line bisector(line 11, line 12, bool interior) {
    // assert (cross(11.v, 12.v) != 0); // 11 and 12
       cannot be parallel
    lf sign = interior ? 1 : -1;
    return {12.v / norm(12.v) + 11.v / norm(11.v) * sign,
            12.c / norm(12.v) + 11.c / norm(11.v) * sign
                };
```

5.3 Poligonos

```
// add Points Lines Segments Circles
```

```
// points in polygon(vector<pt>) ccw or cw
enum {OUT, IN, ON};
lf area(vector<pt>& p) {
    lf r = 0.;
    for (int i = 0, n = p.size(); i < n; ++i) {
        r += cross(p[i], p[(i + 1) % n]);
    return r / 2; // negative if CW, positive if CCW
lf perimeter(vector<pt>& p) {
    lf per = 0;
    for (int i = 0, n = p.size(); i < n; ++i) {
        per += norm(p[i] - p[(i + 1) % n]);
    return per;
bool is convex(vector<pt>& p) {
    bool pos = 0, neq = 0;
    for (int i = 0, n = p.size(); i < n; i++) {
        int o = orient(p[i], p[(i + 1) % n], p[(i + 2) %
           n]);
        if (o > 0) pos = 1;
        if (o < 0) neq = 1;
    return ! (pos && neg);
int point in polygon(vector<pt>& pol, pt& p) {
    int wn = 0:
    for(int i = 0, n = pol.size(); i < n; ++i) {</pre>
        If c = orient(p, pol[i], pol[(i + 1) % n]);
        if(fabsl(c) <= E0 && dot(pol[i] - p, pol[(i + 1)</pre>
            % n] - p) <= E0) return ON; // on segment
        if(c > 0 && pol[i].y <= p.y + E0 && pol[(i + 1) %
            n].y - p.y > E0) ++wn;
        if(c < 0 \&\& pol[(i + 1) % n].y \le p.y + E0 \&\& pol
            [i].y - p.y > E0) --wn;
    return wn ? IN : OUT;
// O(logn) polygon CCW, remove collinear
int point in convex polygon(const vector<pt> &pol, const
   pt &p) {
        int low = 1, high = pol.size() -1;
        while(high - low > 1) {
                int mid = (low + high) / 2;
                if (orient (pol[0], pol[mid], p) \geq -E0)
                    low = mid;
                else high = mid;
        if (orient(pol[0], pol[low], p) < -E0) return OUT;</pre>
```

```
5.3 Poligonos
```

```
if (orient (pol[low], pol[high], p) < -E0) return</pre>
        if(orient(pol[high], pol[0], p) < -E0) return OUT</pre>
        if(low == 1 \&\& orient(pol[0], pol[low], p) <= E0)
             return ON:
        if (orient (pol[low], pol[high], p) <= E0) return</pre>
        if(high == (int) pol.size() -1 && orient(pol[high
            ], pol[0], p) <= E0) return ON;
        return IN;
// convex polygons in some order (CCW, CW)
vector<pt> minkowski(vector<pt> P, vector<pt> Q) {
        rotate(P.begin(), min element(P.begin(), P.end())
            , P.end());
        rotate(Q.begin(), min element(Q.begin(), Q.end())
            , 0.end());
        P.push\_back(P[0]), P.push\_back(P[1]);
        Q.push\_back(Q[0]), Q.push\_back(Q[1]);
        vector<pt> ans;
        size t i = 0, j = 0;
        while(i < P.size() - 2 || j < Q.size() - 2){</pre>
                 ans.push_back(P[i] + Q[j]);
                 lf d\bar{t} = cross(P[i + 1] - P[i], Q[j + 1] -
                     Q[j]);
                 if(dt \ge E0 \&\& i < P.size() - 2) ++i;
                 if (dt \leq E0 && i \leq O.size() - 2) ++ i;
        return ans;
pt centroid(vector<pt>& p) {
    pt c{0, 0};
    If scale = 6. * area(p);
    for (int i = 0, n = p.size(); i < n; ++i) {
        c = c + (p[i] + p[(i + 1) % n]) * cross(p[i], p[(i + 1) % n])
           i + 1) % n]);
    return c / scale;
void normalize(vector<pt>& p) { // polygon CCW
    int bottom = min_element(p.begin(), p.end()) - p.
       begin();
    vector<pt> tmp(p.begin() + bottom, p.end());
    tmp.insert(tmp.end(), p.begin(), p.begin()+bottom);
    p.swap(tmp);
    bottom = 0;
void remove col(vector<pt>& p) {
    vector<pt> s;
    for (int i = 0, n = p.size(); i < n; i++) {
```

```
if (!on_segment(p[(i-1+n) % n], p[(i+1) % n]
           ], p[i])) s.push_back(p[i]);
    p.swap(s);
void delete repetead(vector<pt>& p) {
    vector<pt> aux;
    sort(p.begin(), p.end());
    for (pt &pi : p) {
        if (aux.empty() || aux.back() != pi) aux.
           push back(pi);
    p.swap(aux);
pt farthest (vector<pt>& p, pt v) { // O(log(n)) only
   CONVEX, v: dir
    int n = p.size();
    if(n < 10) {
        int k = 0;
        for (int i = 1; i < n; i++) if (dot (v, (p[i] - p[k
           |)) > EPS) k = i;
        return p[k];
    pt a = p[1] - p[0];
    int s = 0, e = n, ua = dot(v, a) > EPS;
    if(!ua && dot(v, (p[n-1] - p[0])) <= EPS) return p
       [0];
    while (1) {
        int m = (s + e) / 2;
        pt c = p[(m + 1) % n] - p[m];
        int uc = dot(v, c) > EPS;
        if(!uc && dot(v, (p[(m-1+n) % n] - p[m])) <=
           EPS) return p[m];
        if (ua && (!uc || dot(v, (p[s] - p[m])) > EPS)) e
        else if (ua | | uc | | dot (v, (p[s] - p[m])) >= -EPS
           ) s = m, a = c, ua = uc;
        else e = m;
        assert (e > s + 1);
vector<pt> cut(vector<pt>& p, line l) {
    // cut CONVEX polygon by line 1
    // returns part at left of l.pg
    vector<pt> q;
    for(int i = 0, n = p.size(); i < n; i++) {</pre>
        int d0 = sign(l.side(p[i]));
        int d1 = sign(l.side(p[(i + 1) % n]));
        if(d0 >= 0) q.push back(p[i]);
        line m(p[i], p[(i + 1) % n]);
        if(d0 * d1 < \overline{0} \&\& !(abs(cross(l.v, m.v)) <= EPS))
```

```
5.4 Circulos
```

```
q.push back((inter ll(l, m)));
           return q;
// O(n)
vector<pair<int, int>> antipodal(vector<pt>& p) {
           vector<pair<int, int>> ans;
           int n = p.size();
           if (n == 2) ans.push back(\{0, 1\});
           if (n < 3) return ans;</pre>
           auto nxt = [\&] (int x) \{ return (x + 1 == n ? 0 : x +
                   1); };
           auto area2 = [&](pt a, pt b, pt c){ return cross(b -
                   a, c - a); };
           int b0 = 0;
           while (abs(area2(p[n - 1], p[0], p[nxt(b0)])) > abs(
                    area2(p[n - 1], p[0], p[b0]))) ++b0;
           for (int b = b0, a = 0; b != 0 && a <= b0; ++a) {
                     ans.push_back({a, b});
                     while (abs(area2(p[a], p[nxt(a)], p[nxt(b)])) >
                              abs(area2(p[a], p[nxt(a)], p[b]))){
                               b = nxt(b);
                                if (a != b0 || b != 0) ans.push_back({a, b});
                                else return ans:
                     if (abs(area2(p[a], p[nxt(a)], p[nxt(b)])) == abs
                               (area2(p[a], p[nxt(a)], p[b]))){
                                if (a != b0 || b != n - 1) ans.push_back({a,
                                         nxt(b) });
                                else ans.push_back({nxt(a), b});
           return ans;
// O(n)
// square distance of most distant points, prereq: convex
         , ccw, NO COLLINEAR POINTS
lf callipers(vector<pt>& p) {
           int n = p.size();
           lf r = 0;
           for (int i = 0, j = n < 2 ? 0 : 1; <math>i < j; ++i) {
                     for(;;\dot{j} = (\dot{j} + 1) \% n) \{
                                r = \max(r, \text{ norm2}(p[i] - p[j]));
                                if (cross((p[(i + 1) % n] - p[i]), (p[(j + 1)
                                         % n] - p[j])) <= EPS) break;
           return r;
// O(n + m) max dist between 2 points (pa, pb) of 2
         Convex polygons (a, b)
```

```
lf rotating_callipers(vector<pt>& a, vector<pt>& b){ //
   REVISAR
    if (a.size() > b.size()) swap(a, b); // <- del or add
    pair<11, int> start = \{-1, -1\};
    if(a.size() == 1) swap(a, b);
    for (int i = 0; i < a.size(); i++) start = max(start,
        \{norm2(b[0] - a[i]), i\});
    if(b.size() == 1) return start.first;
    lf r = 0:
    for(int i = 0, j = start.second; i < b.size(); ++i){</pre>
        for(;; j = (j + 1) % a.size()){
            r = max(r, norm2(b[i] - a[j]));
            if(cross((b[(i + 1) % b.size()) - b[i]), (a[(
                j + 1) % a.size()] - a[j])) <= EPS) break;
    return r;
lf intercircle(vector<pt>& p, circle c) { // area of
   intersection with circle
    lf r=0.;
    for (int i = 0, n = p.size(); i < n; i++) {
        int j = (i + 1) % n;
        If w = intertriangle(c, p[i], p[j]);
        if(cross((p[j] - c.center), (p[i] - c.center)) >
           0) r += w;
        else r -= w;
    return abs(r);
ll pick(vector<pt>& p) {
    ll boundary = 0;
    for (int i = 0, n = p.size(); i < n; i++) {</pre>
        int j = (i + 1 == n ? 0 : i + 1);
        boundary += gcd((ll)abs(p[i].x - p[j].x), (ll)
           abs(p[i].y - p[j].y));
    return abs(area(p)) + 1 - boundary / 2;
```

5.4 Circulos

```
// add Lines Points
enum {OUT, IN, ON};
struct circle {
   pt center; lf r;
   // (x - xo)^2 + (y - yo)^2 = r^2
   circle(pt c, lf r): center(c), r(r){};
   // circle that passes through abc
```

```
5.4 Circulos
```

```
circle(pt a, pt b, pt c) {
        b = b - a, c = c - a;
        assert(cross(b, c) != 0); // no circumcircle if A
           , B, C aligned
        pt cen = a + rot 90 (b * norm2 (c) - c * norm2 (b)) /
            cross(b, c) / 2;
        center = cen;
        r = norm(a - cen);
    // diameter = segment pg
    circle(pt p, pt q) {
        center = (p + q) * 0.5L;
        r = dis(p, q) * 0.5L;
    int contains(pt &p) {
        lf det = r * r - dis2(center, p);
        if(fabsl(det) <= EPS) return ON;</pre>
        return (det > EPS ? IN : OUT);
    bool in(circle c) { return norm(center - c.center) + r
        <= c.r + EPS; } // non strict
};
// centers of the circles that pass through ab and has
   radius r
vector<pt> centers(pt a, pt b, lf r) {
    if (norm(a - b) > 2 * r + EPS) return {};
    pt m = (a + b) / 2;
    double f = sqrt(r * r / norm2(a - m) - 1);
    pt c = rot 90 (a - m) * f;
    return {m - c, m + c};
vector<pt> inter_cl(circle c, line l){
        vector<pt> s;
        pt p = l.proj(c.center);
        If \bar{d} = norm(\bar{p} - c.center);
        if(d - EPS > c.r) return s;
        if(abs(d - c.r) <= EPS) { s.push_back(p); return s</pre>
        d=sqrt(c.r * c.r - d * d);
        s.push back(p + normalize(l.v) * d);
        s.push_back(p - normalize(l.v) \star d);
        return s;
vector<pt> inter cc(circle c1, circle c2) {
    pt dir = c2.center - c1.center;
    1f d2 = dis2(c1.center, c2.center);
    if(d2 <= E0) {
        //assert(fabsl(c1.r - c2.r) > E0);
        return {};
```

```
lf td = 0.5L * (d2 + c1.r * c1.r - c2.r * c2.r);
    1f h2 = c1.r * c1.r - td / d2 * td;
    pt p = c1.center + dir * (td / d2);
    if(fabsl( h2 ) < EPS) return {p};</pre>
    if(h2 < 0.0L) return {};
    pt dir h = rot 90 (dir) * sqrtl(h2 / d2);
    return {p + dir h, p - dir h};
// circle-line inter = 1, inner: 1 = oxo 0 = o=o
vector<pair<pt, pt>> tangents(circle c1, circle c2, bool
   inner) {
    vector<pair<pt, pt>> out;
    if (inner) c2.r = -c2.r; // inner tangent
    pt d = c2.center - c1.center;
    double dr = c1.r - c2.r, d2 = norm2(d), h2 = d2 - dr
    if (d2 == 0 || h2 < 0) { assert(h2 != 0); return {};
       } // (identical)
    for (double s : {-1, 1}) {
        pt v = (d * dr + rot 90(d) * sqrt(h2) * s) / d2;
        out.push back({c1.center + v * c1.r, c2.center +
           \overline{v} * c2.r);
    return out; // if size 1: circle are tangent
// circle targent passing through pt p
pair<pt, pt> tangent through pt(circle c, pt p){
    pair<pt, pt> out;
    double d = norm2(p - c.center);
    if (d < c.r) return {};
    pt base = c.center - p;
    double w = sgrt(norm2(base) - c.r * c.r);
    pt a = \{w, c.r\}, b = \{w, -c.r\};
   pt s = p + base * a / norm2(base) * w;
   pt t = p + base * b / norm2(base) * w;
    out = \{s, t\};
    return out;
lf safeAcos(lf x) {
    if (x < -1.0) x = -1.0;
    if (x > 1.0) x = 1.0;
    return acos(x);
lf areaOfIntersectionOfTwoCircles(circle c1, circle c2){
    lf r1 = c1.r, r2 = c2.r, d = dis(c1.center, c2.center)
    if(d >= r1 + r2) return 0.0L;
    if(d <= fabsl(r2 - r1)) return PI * (r1 < r2 ? r1 *</pre>
       r1 : r2 * r2);
```

```
lf alpha = safeAcos((r1 * r1 - r2 * r2 + d * d) /
        (2.0L * d * r1));
    lf betha = safeAcos((r2 * r2 - r1 * r1 + d * d) /
        (2.0L * d * r2));
    lf a1 = r1 * r1 * (alpha - sinl(alpha) * cosl(alpha))
    1f a2 = r2 * r2 * (betha - sinl(betha) * cosl(betha))
    return a1 + a2;
};
lf intertriangle(circle& c, pt a, pt b){ // area of
   intersection with oab
    if(abs(cross((c.center - a), (c.center - b))) <= EPS)</pre>
        return 0.;
    vector<pt> q = \{a\}, w = inter cl(c, line(a, b));
    if(w.size() == 2) for(auto p: w) if(dot((a - p), (b -
        p)) < -EPS) q.push back(p);
    q.push back(b);
    if(q.size() == 4 \&\& dot((q[0] - q[1]), (q[2] - q[1]))
        > EPS) swap(q[1], q[2]);
    lf s = 0;
    for(int i = 0; i < q.size() - 1; ++i){}
        if(!c.contains(q[i]) \mid | !c.contains(q[i + 1])) s
           += c.r * c.r * min_angle((q[i] - c.center), q[
           i+11 - c.center) / 2;
        else s += abs(cross((q[i] - c.center), (q[i + 1]
           - c.center)) / 2);
    return s:
bool circumcircle contains(vector<pt> tr, pt D) { //
   triange CCW
  pt A = tr[0] - D, B = tr[1] - D, C = tr[2] - D;
 lf norm a = norm2(tr[0]) - norm2(D);
  lf norm b = norm2(tr[1]) - norm2(D);
 lf norm_c = norm2(tr[2]) - norm2(D);
  lf det1 = A.x * (B.y * norm_c - norm_b * C.y);
 lf det2 = B.x * (C.\bar{y} * norm_a - norm_c * A.y);
  If det3 = C.x * (A.y * norm b - norm a * B.y);
  return det1 + det2 + det3 > E0;
// r[k]: area covered by at least k circles
// O(n^2 \log n) (high constant)
vector<lf> intercircles(vector<circle> c) {
        vector<lf> r(c.size() + 1);
        for(int i = 0; i < c.size(); ++i){</pre>
                int k = 1; pt 0 = c[i].center;
                vector<pair<pt, int>> p = {
                         \{c[i].center + pt(1,0) * c[i].r,
                         \{c[i].center - pt(1,0) * c[i].r,
                            0 } };
```

```
for(int j = 0; j < c.size(); ++j) if(j !=
            i){
                bool b0 = c[i].in(c[j]), b1 = c[j]
                    ].in(c[i]);
                if(b0 && (!b1 || i < j)) ++k;
                else if(!b0 && !b1){
                         auto v = inter_cc(c[i], c
                            [j]);
                        if(v.size() == 2){
            swap(v[0], v[1]);
                                 p.push back({v
                                    [0], 1});
            p.push back(\{v[1], -1\});
                                 if(polar cmp(v[1]
                                      -0, v[0] - 0
                                    )) ++k;
        sort(all(p), [&](auto& a, auto& b) {
           return polar_cmp(a.first - 0, b.first
           - 0); });
        for(int j = 0; j < p.size(); ++j){
                pt p0 = p[j ? j - 1 : p.size()
                    -1].first, p1 = p[j].first;
                If a = \min \text{ angle}((p0 - c[i]).
                    center), (p1 - c[i].center));
                r[k] += (p0.x - p1.x) * (p0.y +
                    p1.y) / 2 + c[i].r * c[i].r *
                    (a - \sin(a)) / 2;
                k += p[j].second;
return r;
```

5.5 Semiplanos

```
const lf INF = 1e100;
struct Halfplane {
   pt p, pq; // p: point on line, pq: dir, take left
   lf angle;
   Halfplane() {}
   Halfplane(pt& a, pt& b): p(a), pq(b - a) {
        angle = atan2l(pq.y, pq.x);
   }

  bool out(const pt& r) { return cross(pq, r - p) < -EPS
      ;} // checks if p is inside the half plane
  bool operator < (const Halfplane& e) const { return
      angle < e.angle; }</pre>
```

```
};
// intersection pt of the lines of 2 halfplanes
pt inter(const Halfplane& s, const Halfplane& t) {
    if (abs(cross(s.pq, t.pq)) <= EPS) return {INF, INF};</pre>
    lf alpha = cross((t.p - s.p), t.pq) / cross(s.pq, t.
       pq);
    return s.p + (s.pq * alpha);
// O(nlogn) return CCW polygon
vector<pt> hp intersect(vector<Halfplane>& H) {
    pt box[4] = \{pt(INF, INF), pt(-INF, INF), pt(-INF, -
       INF), pt(INF, -INF)};
    for (int i = 0; i < 4; ++i) {
        Halfplane aux(box[i], box[(i + 1) % 4]);
        H.push back(aux);
    sort(H.begin(), H.end());
    deque < Halfplane > dq;
    int len = 0;
    for(int i = 0; i < int(H.size()); ++i){</pre>
        while (len > 1 && H[i].out(inter(dq[len - 1], dq[
           len - 2]))){}
            dq.pop_back();
            --len;
        while (len > 1 && H[i].out(inter(dq[0], dq[1]))){
            dq.pop_front();
            --len;
        if (len > 0 && fabsl(cross(H[i].pq, dq[len - 1].
           pq)) < EPS){
            if (dot(H[i].pq, dq[len - 1].pq) < 0.0)
                return vector<pt>();
            if (H[i].out(dq[len - 1].p)){
                dq.pop_back();
                --len:
            } else continue;
        dq.push_back(H[i]);
        ++len;
    while (len > 2 && dq[0].out(inter(dq[len - 1], dq[len
        - 2]))){
        dq.pop_back();
        --len;
    while (len > 2 && dq[len - 1].out(inter(dq[0], dq[1])
       )){
```

```
dq.pop front();
        --len;
    if (len < 3) return vector<pt>();
    vector<pt> ret(len);
    for(int i = 0; i + 1 < len; ++i) ret[i] = inter(dq[i</pre>
        ], da[i + 1]);
    ret.back() = inter(dg[len - 1], dg[0]);
    // remove repeated points if needed
    return ret;
// intersection of halfplanes
vector<pt> hp intersect(vector<halfplane>& b) {
    vector<pt> box = {\{\inf, \inf\}, \{-\inf, \inf\}, \{-\inf, -1\}\}
       inf}, {inf, -inf}};
    for(int i = 0; i < 4; i++) {</pre>
        b.push back(\{box[i], box[(i + 1) % 4]\});
    sort(b.begin(), b.end());
    int n = b.size(), q = 1, h = 0;
    vector<halfplane> \bar{c}(n + 10);
    for(int i = 0; i < n; i++) {</pre>
        while (q < h \& \& b[i].out(inter(c[h], c[h - 1]))) h
        while (q < h \& \& b[i].out(inter(c[q], c[q + 1]))) q
        c[++h] = b[i];
        if(q < h \&\& abs(cross(c[h].pq, c[h-1].pq)) < EPS)
            if(dot(c[h].pq, c[h - 1].pq) <= 0) return {};
            if(b[i].out(c[h].p)) c[h] = b[i];
    while (q < h - 1 \& \& c[q].out(inter(c[h], c[h - 1]))) h
    while (q < h - 1 \& c[h].out(inter(c[q], c[q + 1]))) q
    if(h - q <= 1) return {};
    c[h + 1] = c[q];
    vector<pt> s;
    for(int i = q; i < h + 1; i++) s.pb(inter(c[i], c[i +
    return s;
```

5.6 Segmentos

// add Lines Points

```
bool in_disk(pt a, pt b, pt p) { // pt p inside ab disk
    return dot (a - p, b - p) <= E0;
bool on_segment(pt a, pt b, pt p) { // p on ab
    return orient(a, b, p) == 0 && in_disk(a, b, p);
// ab crossing cd
bool proper_inter(pt a, pt b, pt c, pt d, pt& out) {
    lf oa = orient(c, d, a);
   lf ob = orient(c, d, b);
   lf oc = orient(a, b, c);
    lf od = orient(a, b, d);
    // Proper intersection exists iff opposite signs
    if (oa * ob < 0 && oc * od < 0) {
        out = (a * ob - b * oa) / (ob - oa);
        return true;
    return false;
// intersection bwn segments
set<pt> inter_ss(pt a, pt b, pt c, pt d) {
    pt out;
    if (proper_inter(a, b, c, d, out)) return {out}; //
       if cross -> 1
    set<pt> s;
    if (on segment(c, d, a)) s.insert(a); // a in cd
    if (on_segment(c, d, b)) s.insert(b); // b in cd
    if (on segment(a, b, c)) s.insert(c); // c in ab
    if (on_segment(a, b, d)) s.insert(d); // d in ab
    return s; // 0, 2
lf pt_to_seg(pt a, pt b, pt p) { // p to ab
    if (a != b) {
        line l(a, b);
        if (l.cmp_proj(a, p) && l.cmp_proj(p, b)) // if
           closest to projection = (a, p, b)
            return 1.dist(p); // output distance to line
    return min(norm(p - a), norm(p - b)); // otherwise
       distance to A or B
lf seg_to_seg(pt a, pt b, pt c, pt d) {
    pt dummy;
    if (proper_inter(a, b, c, d, dummy)) return 0; // ab
       intersects cd
    return min({pt_to_seg(a, b, c), pt_to_seg(a, b, d),
       pt_to_seg(c, d, a), pt_to_seg(c, d, b)}); // try
       the 4 pts
int length union(vector<pt>& a) { // REVISAR
    int n = a.size();
```

```
vector<pair<int, bool>> x(n * 2);
for (int i = 0; i < n; i++) {
    x[i * 2] = {a[i].x, false};
    x[i * 2 + 1] = {a[i].y, true};
}
sort(x.begin(), x.end());
int result = 0;
int c = 0;
for (int i = 0; i < n * 2; i++) {
    if (i > 0 && x[i].first > x[i - 1].first && c >
        0) result += x[i].first - x[i - 1].first;
    if (x[i].second) c--;
    else c++;
}
return result;
}
```

5.7 Convex Hull

```
// CCW order
// if colineal are needed, use > in orient and remove
   repeated points
vector<pt> chull(vector<pt>& p) {
        if(p.size() < 3) return p;</pre>
        vector<pt> r; //r.reserve(p.size());
        sort(p.begin(), p.end()); // first x, then v
        for(int i = 0; i < p.size(); i++){ // lower hull</pre>
                while (r.size() >= 2 \&\& orient(r[r.size()
                    -2], p[i], r.back()) >= 0) r.pop back
                    ();
                r.pb(p[i]);
        r.pop back();
        int k = r.size();
        for (int i = p.size() - 1; i >= 0; --i) { // upper }
           hu11
                while (r.size() >= k + 2 \&\& orient(r[r.
                    size() - 2], p[i], r.back()) >= 0) r.
                    pop back();
                r.pb(p[i]);
        r.pop back();
        return r;
```

5.8 Closest Points

```
// O(nlogn)
pair<pt, pt> closest_points(vector<pt> v) {
```

```
sort(v.begin(), v.end());
pair<pt, pt> ans;
1f d2 = INF;
function<void( int, int )> solve = [&](int l, int r)
    if(l == r) return;
    int mid = (1 + r) / 2;
    lf x_mid = v[mid].x;
    solve(l, mid);
    solve(mid + 1, r);
    vector<pt> aux;
    int p1 = 1, p2 = mid + 1;
    while (p1 <= mid && p2 <= r) {</pre>
        if (v[p1].y < v[p2].y) aux.push_back (v[p1++]);
        else aux.push_back(v[p2++]);
    while(p1 <= mid) aux.push back(v[p1++]);</pre>
    while(p2 <= r) aux.push_back(v[p2++]);</pre>
    vector<pt> nb;
    for(int i = 1; i <= r; ++i) {
    v[i] = aux[i - 1];
    lf dx = (x_mid - v[i].x);
    if(dx * dx < d2)
        nb.push_back(v[i]);
    for(int i = 0; i < (int) nb.size(); ++i){</pre>
    for (int k = i + 1; k < (int) nb.size(); ++k){}
        lf dy = (nb[k].y - nb[i].y);
        if (dy * dy > d2) break;
        lf nd2 = dis2(nb[i], nb[k]);
        if(nd2 < d2) d2 = nd2, ans = {nb[i], nb[k]};
};
solve(0, v.size() -1);
return ans;
```

5.9 Min Circle

```
return ans;
};

auto f1 = [&]( int a ){
    Circle ans(v[a], 0.0L);
    for(int i = 0; i < a; ++i)
        if(ans.contains(v[i]) == OUT) ans = f2( i, a );
    return ans;
};

Circle ans( v[0], 0.0L );
for(int i = 1; i < (int) v.size(); ++i)
        if(ans.contains(v[i]) == OUT ) ans = f1(i);

return ans;
}</pre>
```

5.10 3D

```
typedef double lf;
struct p3 {
    lf x, y, z;
        p3(){}
        p3(1f x, 1f y, 1f z): x(x), y(y), z(z) {}
    p3 operator + (p3 p) { return \{x + p.x, y + p.y, z + p\}
    p3 operator - (p3 p) { return \{x - p.x, y - p.y, z - p\}
        .z}; }
    p3 operator * (lf d) { return {x * d, y * d, z * d}; }
    p3 operator / (lf d) { return {x / d, y / d, z / d}; }
        // only for floating point
    // Some comparators
    bool operator == (p3 p) { return tie(x, y, z) == tie(p
        .x, p.y, p.z); }
    bool operator != (p3 p) { return !operator == (p); }
        void print() { cout << x << " " << y << " " << z</pre>
            << "\n"; }
        // scale: (newnorm / norm) * p3
};
lf dot(p3 v, p3 w) { return v.x * w.x + v.y * w.y + v.z *
   w.z; }
p3 cross(p3 v, p3 w) {
    return { v.y * w.z - v.z * w.y, v.z * w.x - v.x * w.z
       , v.x * w.y - v.y * w.x };
lf norm2(p3 v) { return dot(v, v); }
lf norm(p3 v) { return sqrt(norm2(v)); }
p3 unit(p3 v) { return v / norm(v); }
// ang(RAD)
double angle(p3 v, p3 w) {
    double cos_theta = dot(v, w) / norm(v) / norm(w);
    return acos (max (-1.0, min (1.0, cos_theta)));
```

```
// orient s, pqr form a triangle pos: 'up', zero = on,
   neg = 'dow'
lf orient(p3 p, p3 q, p3 r, p3 s){
        return dot(cross((q - p), (r - p)), (s - p));
// same as 2D but in n-normal direction
lf orient_by_normal(p3 p, p3 q, p3 r, p3 n) {
        return dot(cross((q - p), (r - p)), n);
struct plane {
    p3 n; lf d; // n: normal d: dist to zero
    // From normal n and offset d
    plane(p3 n, lf d): n(n), d(d) {}
    // From normal n and point P
    plane(p3 n, p3 p): n(n), d(dot(n, p)) {}
    // From three non-collinear points P,Q,R
    plane (p3 p, p3 q, p3 r): plane (cross ((q - p), (r - p)
       ), p){}
    // - these work with lf = int
    lf side(p3 p) { return dot(n, p) - d; }
    double dist(p3 p) { return abs(side(p)) / norm(n); }
    plane translate(p3 t) {return {n, d + dot(n, t)}; }
    /// - these require If = double
    plane shift up(double dist) { return {n, d + dist *
       norm(n) }; }
    p3 proj(p3 p) { return p - n * side(p) / norm2(n); }
    p3 refl(p3 p) \{ return p - n * 2 * side(p) / norm2(n); 
};
struct line3d {
        p3 d, o; // d: dir o: point on line
        // From two points P, Q
        line3d(p3 p, p3 q): d(q - p), o(p){}
        // From two planes p1, p2 (requires lf = double)
        line3d(plane p1, plane p2) {
                d = cross(p1.n, p2.n);
                o = cross((p2.n * p1.d - p1.n * p2.d), d)
                     / norm2(d);
        // - these work with lf = int
        double dist2(p3 p) { return norm2(cross(d, (p - o)
           )) / norm2(d); }
        double dist(p3 p) { return sqrt(dist2(p)); }
        bool cmp_proj(p3 p, p3 q) { return dot(d, p) < dot
            (d, q); }
        // - these require lf = double
        p3 proj(p3 p) { return o + d * dot(d, (p - o)) /
           norm2(d); }
        p3 refl(p3 p) { return proj(p) * 2 - p; }
        p3 inter(plane p) { return o - d * p.side(o) / dot
            (p.n, d); }
        // get other point: pl.o + pl.d * t;
```

```
} ;
double dist(line3d 11, line3d 12) {
        p3 n = cross(11.d, 12.d);
        if(n == p3(0, 0, 0)) return 11.dist(12.o); //
        return abs(dot((12.o - 11.o), n)) / norm(n);
// closest point on 11 to 12
p3 closest_on_line1(line3d l1, line3d l2) {
        p3 n2 = cross(12.d, cross(11.d, 12.d));
        return 11.0 + 11.d * (dot((12.0 - 11.0), n2)) /
           dot(11.d, n2);
double small_angle(p3 v, p3 w) { return acos(min(abs(dot(v
   (w) / norm(v) / norm(w), 1.0); } // 0.90
double angle(plane p1, plane p2) { return small_angle(p1.n
   , p2.n); }
bool is_parallel(plane p1, plane p2) { return cross(p1.n,
   p2.n == p3(0, 0, 0); }
bool is perpendicular (plane p1, plane p2) { return dot(p1.
   n, p2.n) == 0;}
double angle(line3d 11, line3d 12) { return small_angle(l1
   .d, 12.d); }
bool is_parallel(line3d 11, line3d 12) { return cross(11.d
   , 12.d) == p3(0, 0, 0); 
bool is perpendicular(line3d 11, line3d 12) { return dot(
   11.d, 12.d) == 0; }
double angle(plane p, line3d l) { return M_PI / 2 -
   small angle(p.n, l.d); }
bool is_parallel(plane p, line3d l) { return dot(p.n, l.d)
bool is_perpendicular(plane p, line3d l) { return cross(p.
   n, 1.d) == p3(0, 0, 0);
line3d perp_through(plane p, p3 o) { return line3d(o, o +
   p.n); }
plane perp through (line3d 1, p3 o) { return plane (l.d, o);
```

5.11 KD Tree

```
// given a set of points, answer queries of nearest point
    in O(log(n))
bool onx(pt a, pt b) {return a.x < b.x;}
bool ony(pt a, pt b) {return a.y < b.y;}</pre>
struct Node {
        pt pp;
        If x0 = \inf, x1 = -\inf, y0 = \inf, y1 = -\inf;
        Node *first = 0, *second = 0;
        11 distance(pt p) {
                11 x = min(max(x0, p.x), x1);
                11 y = min(max(y0, p.y), y1);
```

```
return norm2 (pt (x, y) - p);
        Node(vector<pt>&& vp) : pp(vp[0]) {
                 for(pt p : vp) {
                         x0 = \min(x0, p.x);
            x1 = max(x1, p.x);
                         y0 = min(y0, p.y);
            y1 = max(y1, p.y);
                 if(vp.size() > 1) {
                         sort(all(vp), x1 - x0 >= y1 - y0
                             ? onx : ony);
                         int m = vp.size() / 2;
                         first = new Node({vp.begin(), vp.
                             begin() + m});
                         second = new Node({vp.begin() + m
                             , vp.end()});
};
struct KDTree {
        Node* root;
        KDTree(const vector<pt>& vp): root(new Node({all(
            ({ (qv
        pair<11, pt> search(pt p, Node *node) {
                 if(!node->first){
                         // avoid query point as answer
                         // if(p.x == node -> pp.x && p.y ==
                              node->pp.y) return {inf, pt()
                         return {norm2 (p-node->pp), node->
                             ; { qq
                 Node *f = node \rightarrow first, *s = node \rightarrow second;
                 ll bf = f->distance(p), bs = s ->
                    distance(p);
                 if(bf > bs) swap(bf, bs), swap(f, s);
                 auto best = search(p, f);
                 if(bs < best.ff) best = min(best, search(</pre>
                    p, s));
                 return best;
        pair<11, pt> nearest(pt p) { return search(p, root
           ); }
};
```

6 Grafos

6.1 Puentes

```
// O(n+m)
vector<bool> visited;
```

```
vi tin, low;
int timer;
void IS BRIDGE(int u, int v, vii &puentes) {
    puentes.push_back({min(u, v), max(u, v)});
void dfs(vector<vi> &adj, vii &puentes, int v, int p =
   -1) {
    visited[v] = true;
    tin[v] = low[v] = timer++;
    for (int to : adj[v]) {
        if (to == p) continue;
        if (visited[to]) {
            low[v] = min(low[v], tin[to]);
        } else ·
            dfs(adj, puentes, to, v);
            low[v] = min(low[v], low[to]);
            if (low[to] > tin[v])
                IS_BRIDGE(v, to, puentes);
void find_bridges(vector<vi> &adj, vii &puentes, int n) {
    timer = 0;
    visited.assign(n, false);
    tin.assign(n, -1);
    low.assign(n, -1);
    for (int i = 0; i < n; ++i) {
        if (!visited[i])
            dfs(adj, puentes, i);
```

6.2 Puntos de Articulación

```
// O(n+m)
int n;
vector<vector<int>> adj;

vector<bool> visited;
vector<int> tin, low;
int timer;

void dfs(int v, int p = -1) {
    visited[v] = true;
    tin[v] = low[v] = timer++;
    int children=0;
    for (int to: adj[v]) {
        if (to == p) continue;
        if (visited[to]) {
            low[v] = min(low[v], tin[to]);
        } else {
```

6.3 Kosajaru

```
//Encontrar las componentes fuertemente conexas en un
   grafo dirigido
//Componente fuertemente conexa: es un grupo de nodos en
   el que hay
//un camino dirigido desde cualquier nodo hasta cualquier
    otro nodo dentro del grupo.
const int maxn = 1e5+5;
vi adj rev[maxn],adj[maxn];
bool used[maxn];
vi order, comp;
// O(n+m)
void dfs1(int v) {
        used[v]=true;
        for(int u:adj[v])
                 if(!used[u])dfs1(u);
        order.push back(v);
void dfs2(int v){
        used[v]=true;
        comp.push back(v);
        for(int u:adj_rev[v])
                 if(!used[u])dfs2(u);
void init(int n){
        for (int i=0; i < n; ++i) if (!used[i]) dfs1(i);</pre>
        for (int i=0; i<n; ++i) used[i]=false;</pre>
        reverse (order.begin(), order.end());
        for(int v:order){
```

6.4 Tarjan

```
// O(n+m) (?)
vi low, num, comp, q[nax];
int scc, timer;
stack<int> st;
void t jn (int u) {
  low[u] = num[u] = timer++; st.push(u); int v;
  for(int v: q[u]) {
    if (num[v] == -1) tin(v);
    if (comp[v] == -1) low[u] = min(low[u], low[v]);
  if(low[u] == num[u]) {
    do\{ v = st.top(); st.pop(); comp[v]=scc;
    \} while (u != \overline{v});
    ++scc;
void callt(int n) {
 timer = scc = 0;
  num = low = comp = vector\langle int \rangle (n, -1);
  for (int i = 0; i < n; i++) if (num[i] = -1) t jn(i);
```

6.5 Dijkstra

```
return dist;
}
```

6.6 Bellman Ford

```
// O(V*E)
vi bellman_ford(vector<vii> &adj, int s, int n) {
    vi dist(n, INF); dist[s] = 0;
    for (int i = 0; i<n-1; i++) {
        bool modified = false;
        for (int u = 0; u < n; u++)
            if (dist[u] != INF)
                for (auto &[v, w] : adj[u]){
                     if (dist[v] <= dist[u] + w) continue;</pre>
                     dist[v] = dist[u] + w;
                     modified = true;
        if (!modified) break;
    bool negativeCicle = false;
    for (int u = 0; u < n; u + +)
        if (dist[u] != INF)
            for (auto &[v, w] : adj[u]) {
                if (dist[v] > dist[u] + w) negativeCicle
                    = true;
    return dist;
```

6.7 Floyd Warshall

6.8 MST Kruskal

6.9 MST Prim

```
// O(E * log V)
vector<vii> adi;
vi tomado;
priority_queue<ii> pq;
void process(int u) {
    tomado[u] = 1;
    for (auto &[v, w] : adj[u]) {
        if (!tomado[v]) pq.emplace(-w, -v);
int prim(int v, int n) {
    tomado.assign(n, 0);
    process(0);
    int mst costo = 0, tomados = 0;
    while (!pq.empty()) {
        auto [w, u] = pq.top(); pq.pop();
w = -w; u = -u;
        if (tomado[u]) continue;
        mst_costo += w;
        process(u);
        tomados++;
        if (tomados == n-1) break;
    return mst_costo;
```

6.10 Shortest Path Faster Algorithm

```
//Algoritmo mas rapido de ruta minima
//O(V*E) peor caso, O(E) en promedio.
bool spfa(vector<vii> &adj, vector<int> &d, int s, int n)
{
   d.assign(n, INF);
```

```
vector<int> cnt(n, 0);
vector<bool> inqueue(n, false);
queue<int> q;
d[s] = 0;
q.push(s);
inqueue[s] = true;
while (!q.empty())
    int v = q.front();
    q.pop();
    inqueue[v] = false;
    for (auto& [to, len] : adj[v]) {
        if (d[v] + len < d[to]) {
            d[to] = d[v] + len;
            if (!inqueue[to]) {
                q.push(to);
                inqueue[to] = true;
                cnt[to]++;
                if (cnt[to] > n)
                    return false;//ciclo negativo
return true;
```

6.11 Camino mas corto de longitud fija

```
for (int i = 0; i <m; i++) {
            ll a, b, c; cin >> a >> b >> c; a--; b--;
            adj[a][b] = min(adj[a][b], c);
}

matrix graph(n, n, adj);
graph = pow(graph, k-1);

cout << (graph.m[0][n-1]==INFL ? -1 : graph.m[0][n -1]) << "\n";

return 0;
}</pre>
```

6.12 2sat

```
// l=(x1 \text{ or } y1) and (x2 \text{ or } y2) and ... and (xn \text{ or } yn)
struct sat2 {
        int n;
        vector<vector<vi>>> q;
        vector<bool> vis, val;
        vi comp;
        stack<int> st:
        sat2(int n):n(n),q(2, vector < vi > (2*n)),vis(2*n),
            val(2*n), comp(2*n) {}
        int neq(int x) {return 2*n-x-1;}
        void make_true(int u) {add_edge(neg(u), u);}
        void make false(int u) {make_true(neg(u));}
        void add_or(int u, int v) {implication(neg(u), v);}
        void diff(int u, int v) {eq(u, neq(v));}
        void eq(int u, int v) {
                 implication(u, v);
                 implication(v, u);
        void implication(int u,int v) {
                 add edge(u, v);
                 add edge (neg(v), neg(u));
        void add_edge(int u, int v) {
                 q[0][u].PB(v);
                 q[1][v].PB(u);
        void dfs(int id, int u, int t=0) {
                 vis[u]=true;
                 for(auto &v:q[id][u])
                         if(!vis[v])dfs(id, v, t);
                 if (id) comp[u]=t;
                 else st.push(u);
        void kosaraju() {
```

```
for(int u=0; u<n; ++u) {
                           if(!vis[u])dfs(0, u);
                           if(!vis[neq(u)])dfs(0, neq(u));
                  vis.assign(2*n, false);
                  int t=0:
                  while(!st.empty()){
                           int u=st.top();st.pop();
                           if(!vis[u])dfs(1, u, t++);
         bool check() {
                  kosaraju();
                  for(int i=0;i<n;++i) {</pre>
                           if (comp[i] == comp[neg(i)]) return
                               false;
                           val[i]=comp[i]>comp[neg(i)];
                  return true;
};
int m,n;
sat2 s(n);
char c1, c2;
for (int a, b, i=0; i < m; ++i) {</pre>
         cin>>c1>>a>>c2>>b;
         a--;b--;
         if (c1=='-') a=s.neg(a);
         if (c2=='-')b=s.neq(b);
         s.add or(a,b);
if(s.check()){
         for (int i=0; i < n; ++i) cout << (s.val[i]?'+':'-') << " "</pre>
         cout << "\n";
}else cout<<"IMPOSSIBLE\n";</pre>
```

7 Matematicas

7.1 De Bruijn sequences

```
// Given alphabet [0, k) constructs a cyclic string
// of length k^n that contains every length n string as
    substr.
vi deBruijnSeq(int k, int n, int lim) {
    if (k == 1) return {0};
    vi seq, aux(n + 1);
    int cont = 0;
    function<void(int,int)> gen = [&](int t, int p) {
        if (t > n) {
```

7.2 Chinese Remainder Theorem

```
/// Complexity: |N|*log(|N|)
/// Tested: Not yet.
/// finds a suitable x that meets: x is congruent to a i
/** Works for non-coprime moduli.
Returns {-1,-1} if solution does not exist or input is
 Otherwise, returns \{x, L\}, where x is the solution unique
     to mod L = LCM \ of \ mods
pll crt(vl A, vl M) {
  ll n = A.size(), a1 = A[0], m1 = M[0];
  for(ll i = 1; i < n; i++) {</pre>
    11 \ a2 = A[i], \ m2 = M[i];
    ll g = \underline{\hspace{0.2cm}} gcd(m1, m2);
    if( a1 % g != a2 % g ) return {-1,-1};
    11 p, q;
    extended_euclid(m1/g, m2/g, p, q);
    11 \mod = m1 / q * m2;
    q %= mod; p %= mod;
    11 x = ((111*(a1*mod)*(m2/g))*mod*q + (111*(a2*mod)*(
       m1/q))%mod*p) % mod; // if WA there is overflow
    a1 = x;
    if (a1 < 0) a1 += mod;
    m1 = mod;
  return {a1, m1};
```

7.3 Totient y Divisores

```
vector<int> count divisors sieve() {
  bitset<mx> is_prime; is_prime.set();
  vector<int> cnt(mx, 1);
  is\_prime[0] = is\_prime[1] = 0;
  for(int i = 2; i < mx; i++) {</pre>
    if(!is prime[i]) continue;
    cnt[i]++;
    for(int j = i+i; j < mx; j += i) {
      int n = 1, c = 1;
      while ( n\%i == 0 ) n /= i, c++;
      cnt[j] *= c;
      is prime[j] = 0;
  return cnt;
vector<int> euler phi sieve() {
  bitset<mx> is_prime; is_prime.set();
  vector<int> phi(mx);
  iota(phi.begin(), phi.end(), 0);
  is prime[0] = is prime[1] = 0;
  for(int i = 2; i < mx; i++) {</pre>
    if(!is_prime[i]) continue;
    for(int j = i; j < mx; j += i) {</pre>
      phi[j] -= phi[j]/i;
      is prime[j] = 0;
  return phi;
ll euler phi(ll n) {
  ll ans = n;
  for(ll i = 2; i * i <= n; ++i) {</pre>
    if(n % i == 0) {
      ans -= ans / i;
      while (n % i == 0) n /= i;
  if(n > 1) ans -= ans / n;
  return ans;
```

7.4 Ecuaciones Diofanticas

```
// O(log(n))
ll extended_euclid(ll a, ll b, ll &x, ll &y) {
    ll xx = y = 0;
    ll yy = x = 1;
    while (b) {
        ll q = a / b;
        ll t = b; b = a % b; a = t;
        t = xx; xx = x - q * xx; x = t;
        t = yy; yy = y - q * yy; y = t;
}
```

```
return a:
// a*x+b*y=c. returns valid x and y if possible.
// all solutions are of the form (x0 + k * b / q, y0 - k
   *b/a
bool find any solution (ll a, ll b, ll c, ll &x0, ll &y0,
    ll &a) {
  if (a == 0 and b == 0) {
    if (c) return false;
    x0 = v0 = q = 0;
    return true;
 q = \text{extended euclid (abs(a), abs(b), x0, y0)};
 if (c % q != 0) return false;
 x0 *= c / a;
 y0 \star = c / q;
  if (a < 0) \times 0 *= -1:
  if (b < 0) v0 *= -1;
  return true;
void shift solution(ll &x, ll &y, ll a, ll b, ll cnt) {
 x += cnt * b;
  v = cnt * a;
// returns the number of solutions where x is in the
   range[minx, maxx] and y is in the range[miny, maxy]
ll find all solutions (ll a, ll b, ll c, ll minx, ll maxx,
    11 miny, 11 maxy) {
 ll x, y, g;
  if (find_any_solution(a, b, c, x, y, g) == 0) return 0;
 if (a == 0 and b == 0) {
    assert(c == 0);
    return 1LL * (maxx - minx + 1) * (maxy - miny + 1);
    return (maxx - minx + 1) * (miny <= c / b and c / b
       \leq maxy);
  if (b == 0) {
    return (maxy - miny + 1) * (minx <= c / a and c / a
       \leq maxx);
  a /= q, b /= q;
 ll sign a = a > 0 ? +1 : -1;
 ll sign b = b > 0 ? +1 : -1;
  shift_solution(x, y, a, b, (minx - x) / b);
 if (x < minx) shift solution(x, y, a, b, sign b);
  if (x > maxx) return 0;
 11 \ 1x1 = x;
  shift solution (x, y, a, b, (maxx - x) / b);
 if (x > maxx) shift_solution (x, y, a, b, -sign_b);
  shift solution (x, y, a, b, -(miny - y) / a);
  if (y < miny) shift_solution (x, y, a, b, -sign_a);</pre>
  if (y > maxy) return 0;
```

```
ll lx2 = x;
shift_solution(x, y, a, b, -(maxy - y) / a);
if (y > maxy) shift_solution(x, y, a, b, sign_a);
ll rx2 = x;
if (lx2 > rx2) swap (lx2, rx2);
ll lx = max(lx1, lx2);
ll rx = min(rx1, rx2);
if (lx > rx) return 0;
return (rx - lx) / abs(b) + 1;
}

///finds the first k / x + b * k / gcd(a, b) >= val
ll greater_or_equal_than(ll a, ll b, ll x, ll val, ll g)
{
ld got = 1.0 * (val - x) * g / b;
return b > 0 ? ceil(got) : floor(got);
}
```

7.5 Exponenciacion binaria

```
1l binpow(ll b, ll n, ll m) {
    b %= m;
    ll res = 1;
    while (n > 0) {
        if (n & 1)
            res = res * b % m;
        b = b * b % m;
        n >>= 1;
    }
    return res % m;
}
```

7.6 Exponenciacion matricial

```
return ans;
}

};

matrix pow(matrix &b, ll p) {
    matrix ans(b.r, b.c, vector<vl>(b.r, vl(b.c, 0)));
    for (int i = 0; i<b.r; i++) ans.m[i][i] = 1;
    while (p) {
        if (p&1) {
            ans = ans*b;
        }
        b = b*b;
        p >>= 1;
    }
    return ans;
}
```

7.7 Fibonacci Fast Doubling

```
// O(log n) muy rapido
pair<int, int> fib (int n) {
    if (n == 0)
        return {0, 1};

    auto p = fib(n >> 1);
    int c = p.first * (2 * p.second - p.first);
    int d = p.first * p.first + p.second * p.second;
    if (n & 1)
        return {d, c + d};
    else
        return {c, d};
}
```

7.8 Freivalds algorithm

```
mt19937 rnd(chrono::steady_clock::now().time_since_epoch
    ().count());
// check if two n*n matrix a*b=c within complexity (
    iteration*n^2)
// probability of error 2^(-iteration)
// 0(iter*n^2)
int Freivalds(matrix &a, matrix &b, matrix &c) {
    int n = a.r, iteration = 20;
    matrix zero(n, 1), r(n, 1);
    while (iteration--) {
        for(int i = 0; i < n; i++) r.m[i][0] = rnd() % 2;
        matrix ans = (a * (b * r)) - (c * r);
        if(ans.m != zero.m) return 0;
    }
    return 1;
}</pre>
```

7.9 Gauss Jordan

```
// O(min(n, m) *n*m)
const double EPS = 1e-9;
const int INF = 2; // it doesn't actually have to be
   infinity or a big number
int gauss (vector < vector<double> > a, vector<double> &
   ans) {
    int n = (int) a.size();
    int m = (int) a[0].size() - 1;
    vector<int> where (m, -1);
    for (int col=0, row=0; col<m && row<n; ++col) {</pre>
        int sel = row;
        for (int i=row; i<n; ++i)
            if (abs (a[i][col]) > abs (a[sel][col]))
                 sel = i;
        if (abs (a[sel][col]) < EPS)</pre>
            continue:
        for (int i=col; i<=m; ++i)
             swap (a[sel][i], a[row][i]);
        where [col] = row;
        for (int i=0; i<n; ++i)</pre>
            if (i != row) {
                 double c = a[i][col] / a[row][col];
                 for (int j=col; j<=m; ++j)</pre>
                     a[i][j] -= a[row][j] * c;
        ++row;
    ans.assign (m, 0);
    for (int i=0; i<m; ++i)
        if (where[i] !=-1)
             ans[i] = a[where[i]][m] / a[where[i]][i];
    for (int i=0; i<n; ++i) {</pre>
        double sum = 0;
        for (int j=0; j<m; ++j)
            sum += ans[j] * a[i][j];
        if (abs (sum - a[i][m]) > EPS)
            return 0;
    for (int i=0; i<m; ++i)
        if (where [i] == -1)
            return INF;
    return 1;
```

7.10 Gauss Jordan mod 2

```
// O(min(n, m)*n*m)
```

```
int gauss (vector < bitset<N> > &a, int n, int m, bitset<</pre>
   N > \& ans) {
    vector\langle int \rangle where (m, -1);
    for (int col=0, row=0; col<m && row<n; ++col) {</pre>
        for (int i=row; i<n; ++i)</pre>
             if (a[i][col]) {
                 swap (a[i], a[row]);
                 break;
        if (! a[row][col])
             continue;
        where [col] = row;
        for (int i=0; i<n; ++i)
             if (i != row && a[i][col])
                 a[i] ^= a[row];
        ++row;
    for (int i=0; i<m; ++i)
        if (where[i] != -1)
             ans[i] = a[where[i]][m] / a[where[i]][i];
    for (int i=0; i<n; ++i) {
        double sum = 0;
        for (int j=0; j<m; ++j)
             sum += ans[i] * a[i][i];
        if (abs (sum - a[i][m]) > EPS)
             return 0;
    for (int i=0; i<m; ++i)</pre>
        if (where [i] == -1)
             return INF;
    return 1;
```

7.11 GCD y LCM

```
//0(log10 n) n == max(a, b)
int gcd(int a, int b) { return b == 0 ? a : gcd(b, a%b);
}
int lcm(int a, int b) { return a / gcd(a, b) * b; }
//gcd(a, b, c) = gcd(a, gcd(b, c))
```

7.12 Integral Definida

```
const int steps = 1e6; // %2==0
double f(double x);
double simpson(double a, double b) {
         double h=(b-a)/steps;
         double s=f(a)+f(b);
         for(int i=1;i<=steps-1;i++) {</pre>
```

7.13 Inverso modular

```
11 mod(ll a, ll m) {
    return ((a%m) + m) % m;
ll modInverse(ll b, ll m) {
    11 x, y;
    ll d = extEuclid(b, m, x, y); //obtiene b*x + m*y ==
    if (d != 1) return -1;
                                     //indica error
    // b*x + m*y == 1, ahora aplicamos (mod m) para
       obtener\ b*x == 1 \pmod{m}
    return mod(x, m);
// Otra forma
// O(log MOD)
ll inv (ll a) {
    return binpow(a, MOD-2, MOD);
//Modulo constante
inv[1] = 1;
for (int i = 2; i < p; ++i)
        inv[i] = (p - (p / i) * inv[p % i] % p) % p;
```

7.14 Logaritmo Discreto

```
// O(sqrt(m))
// Returns minimum x for which a ^ x % m = b % m.
int solve(int a, int b, int m) {
    a %= m, b %= m;
    int k = 1, add = 0, g;
    while ((g = gcd(a, m)) > 1) {
        if (b == k)
            return add;
        if (b % g)
            return -1;
        b /= g, m /= g, ++add;
        k = (k * 111 * a / g) % m;
}
int n = sqrt(m) + 1;
int an = 1;
for (int i = 0; i < n; ++i)</pre>
```

```
an = (an * 111 * a) % m;
unordered_map<int, int> vals;
for (int q = 0, cur = b; q <= n; ++q) {
    vals[cur] = q;
    cur = (cur * 111 * a) % m;
}

for (int p = 1, cur = k; p <= n; ++p) {
    cur = (cur * 111 * an) % m;
    if (vals.count(cur)) {
        int ans = n * p - vals[cur] + add;
        return ans;
    }
}
return -1;
}</pre>
```

7.15 Miller Rabin

```
ll mul (ll a, ll b, ll mod) {
  11 \text{ ret} = 0;
  for (a %= mod, b %= mod; b != 0;
    b >>= 1, a <<= 1, a = a >= mod ? <math>a - mod : a) {
    if (b & 1) {
      ret += a;
      if (ret >= mod) ret -= mod;
  return ret;
ll fpow (ll a, ll b, ll mod) {
  11 \text{ ans} = 1;
  for (; b; b >>= 1, a = mul(a, a, mod))
    if (b & 1)
      ans = mul(ans, a, mod);
  return ans;
bool witness (ll a, ll s, ll d, ll n) {
  ll x = fpow(a, d, n);
  if (x == 1 \mid | x == n - 1) return false;
  for (int i = 0; i < s - 1; i++) {
    x = mul(x, x, n);
    if (x == 1) return true;
    if (x == n - 1) return false;
  return true;
11 \text{ test}[] = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 0\};
bool is prime (ll n) {
  if (n < 2) return false;</pre>
  if (n == 2) return true;
  if (n % 2 == 0) return false;
  11 d = n - 1, s = 0;
  while (d \% 2 == 0) ++s, d /= 2;
```

```
for (int i = 0; test[i] && test[i] < n; ++i)
   if (witness(test[i], s, d, n))
     return false;
return true;
}</pre>
```

7.16 Miller Rabin Probabilistico

```
using u64 = uint64 t;
using u128 = uint128 t;
u64 binpower(u64 base, u64 e, u64 mod) {
    u64 result = 1:
    base %= mod;
    while (e) {
        if (e & 1)
           result = (u128) result * base % mod;
        base = (u128)base * base % mod;
        e >>= 1;
    return result;
bool check composite (u64 n, u64 a, u64 d, int s) {
    u64 x = binpower(a, d, n);
    if (x == 1 | | x == n - 1)
        return false:
    for (int r = 1; r < s; r++) {
        x = (u128)x * x % n;
        if (x == n - 1)
            return false:
    return true;
bool MillerRabin(u64 n, int iter=5) { // returns true if
   n is probably prime, else returns false.
    if (n < 4)
        return n == 2 || n == 3;
    int s = 0;
    u64 d = n - 1;
    while ((d \& 1) == 0) {
        d >>= 1;
        s++;
    for (int i = 0; i < iter; i++) {</pre>
        int a = 2 + rand() % (n - 3);
        if (check composite(n, a, d, s))
            return false;
    return true;
```

7.17 Mobius

```
const int N = 1e6+1;
int mob[N];
void mobius() {
   mob[1] = 1;
   for (int i = 2; i < N; i++) {
       mob[i]--;
      for (int j = i + i; j < N; j += i) {
       mob[j] -= mob[i];
    }
}</pre>
```

7.18 Pollard Rho

```
//O(n^{(1/4)}) (?)
ll pollard_rho(ll n, ll c) {
 11 x = 2, y = 2, i = 1, k = 2, d;
 while (true) {
   x = (mul(x, x, n) + c);
    if (x >= n) x -= n;
    d = \underline{gcd(x - y, n)};
    if (d > 1) return d;
    if (++i == k) v = x, k <<= 1;
 return n;
void factorize(ll n, vector<ll> &f) {
 if (n == 1) return;
 if (is prime(n)) {
    f.push back(n);
    return;
 11 d = n;
  for (int i = 2; d == n; i++)
    d = pollard rho(n, i);
  factorize(d, f);
  factorize (n/d, f);
```

7.19 Simplex

```
vector<int> X,Y;
double z;
int n,m;
Simplex(vector<vector<double>> _a, vector<double>
     b, vector<double> c) {
         A=_a;B=_b;C=_c;
         n=\overline{B}.size(); m=C.size(); z=0.;
         X=vector<int>(m); Y=vector<int>(n);
         for (int i=0; i<m; ++i) X[i]=i;</pre>
         for (int i=0; i<n; ++i) Y[i]=i+m;</pre>
void pivot(int x,int y) {
         swap(X[y],Y[x]);
         B[x]/=A[x][y];
         for (int i=0; i<m; ++i) if (i!=y) A[x][i] /=A[x</pre>
             ][y];
         A[x][y]=1/A[x][y];
         for(int i=0;i<n;++i)if(i!=x&&abs(A[i][y])</pre>
             >EPS) {
                  B[i] -= A[i][y] *B[x];
                  for(int j=0; j<m;++j)if(j!=y)A[i][
                      j] -= A[i][y] *A[x][j];
                  A[i][y] = -A[i][y] * A[x][y];
         z+=C[y]*B[x];
         for (int i=0; i < m; ++i) if (i!=y) C[i] -= C[y] *A[</pre>
             x][i];
         C[y] = -C[y] *A[x][y];
pair<double, vector<double>> maximize() {
         while (1) {
                  int x=-1, y=-1;
                  double mn=-EPS;
                  for (int i=0; i<n; ++i) if (B[i] <mn) mn</pre>
                      =B[i], x=i;
                  if (x<0) break;</pre>
                  for (int i=0; i<m; ++i) if (A[x][i]<-</pre>
                      EPS) {y=i;break;}
                  // y<0, no solution to Ax<=B
                  pivot(x,y);
         while(1){
                  double mx=EPS;
                  int x=-1, y=-1;
                  for (int i=0; i<m; ++i) if (C[i]>mx) mx
                      =C[i], v=i;
                  if (y<0) break;
                  double mn=1e200;
                  for (int i=0; i<n; ++i) if (A[i][y]>
                      EPS\&\&B[i]/A[i][y]<mn)mn=B[i]/A
                      [i][y],x=i;
                  // x<0, unbounded
                  pivot(x,y);
```

7.20 Fast Fourier Transform

```
// O(N log N)
const double PI = acos(-1);
struct base {
  double a, b;
  base (double a = 0, double b = 0) : a(a), b(b) {}
  const base operator + (const base &c) const
    { return base(a + c.a, b + c.b); }
  const base operator - (const base &c) const
    { return base(a - c.a, b - c.b); }
  const base operator * (const base &c) const
    { return base(a * c.a - b * c.b, a * c.b + b * c.a);
void fft(vector<base> &p, bool inv = 0) {
  int n = p.size(), i = 0;
  for (int j = 1; j < n - 1; ++j) {
    for (int k = n >> 1; k > (i^= k); k >>= 1);
    if(j < i) swap(p[i], p[j]);
  for (int 1 = 1, m; (m = 1 << 1) <= n; 1 <<= 1) {
    double ang = 2 * PI / m;
    base wn = base(cos(ang), (inv ? 1. : -1.) * sin(ang))
    for (int i = 0, j, k; i < n; i += m) {
      for(w = base(1, 0), j = i, k = i + 1; j < k; ++j, w
          = w * wn) {
        base t = w * p[j + 1];
        p[j + 1] = p[j] - t;
        p[j] = p[j] + t;
  if(inv) for(int i = 0; i < n; ++i) p[i].a /= n, p[i].b
     /= n;
vector<long long> multiply(vector<int> &a, vector<int> &b
  int n = a.size(), m = b.size(), t = n + m - 1, sz = 1;
  while(sz < t) sz <<= 1;
  vector<br/><br/>base> x(sz), y(sz), z(sz);
  for (int i = 0; i < sz; ++i) {
    x[i] = i < (int)a.size() ? base(a[i], 0) : base(0, 0)
        = i < (int)b.size() ? base(b[i], 0) : base(0, 0)
```

```
}
fft(x), fft(y);
for(int i = 0; i < sz; ++i) z[i] = x[i] * y[i];
fft(z, 1);
vector<long long> ret(sz);
for(int i = 0; i < sz; ++i) ret[i] = (long long) round(
    z[i].a);

// while((int) ret. size() > 1 && ret.back() == 0) ret.
    pop_back();
return ret;
}
```

7.21 Number Theoretic Transform

```
const int N = 1 \ll 20;
const int mod = 469762049; //998244353
const int root = 3;
int lim, rev[N], w[N], wn[N], inv_lim;
void reduce(int &x) { x = (x + mod) % mod; }
int POW(int x, int y, int ans = 1) {
  for (; y; y >>= 1, x = (long long) x * x % mod) if <math>(y \& x)
      1) ans = (long long) ans * x % mod;
  return ans;
void precompute(int len) {
 \lim_{n \to \infty} = wn[0] = 1; int s = -1;
  while (lim < len) lim <<= 1, ++s;
  for (int i = 0; i < lim; ++i) rev[i] = rev[i >> 1] >> 1
      | (i & 1) << s;
  const int g = POW(root, (mod - 1) / lim);
  inv_lim = POW(lim, mod - 2);
  for (int i = 1; i < lim; ++i) wn[i] = (long long) wn[i</pre>
     - 1] * q % mod;
void ntt(vector<int> &a, int typ) {
  for (int i = 0; i < lim; ++i) if (i < rev[i]) swap(a[i</pre>
     ], a[rev[i]]);
  for (int i = 1; i < lim; i <<= 1) {</pre>
    for (int j = 0, t = \lim / i / 2; j < i; ++j) w[j] =
       wn[j * t];
    for (int j = 0; j < lim; j += i << 1) {
      for (int k = 0; k < i; ++k) {
        const int x = a[k + j], y = (long long) a[k + j +
             i] * w[k] % mod;
        reduce (a[k + j] += y - mod), reduce (a[k + j + i]
           = x - y);
  if (!tvp) {
    reverse(a.begin() + 1, a.begin() + lim);
    for (int i = 0; i < lim; ++i) a[i] = (long long) a[i]
         * inv_lim % mod;
```

```
}
}
vector<int> multiply(vector<int> &f, vector<int> &g) {
    int n=(int) f.size() + (int) g.size() - 1;
    precompute(n);
    vector<int> a = f, b = g;
    a.resize(lim); b.resize(lim);
    ntt(a, 1), ntt(b, 1);
    for (int i = 0; i < lim; ++i) a[i] = (long long) a[i] *
        b[i] % mod;
    ntt(a, 0);
    a.resize(n + 1);
    return a;
}</pre>
```

8 Programacion dinamica

8.1 Bin Packing

```
int main() {
    ll n, capacidad;
    cin >> n >> capacidad;
    vl pesos(n, 0);
    forx(i, n) cin >> pesos[i];
    vector < pll > dp((1 << n));
    dp[0] = \{1, 0\};
    // dp[X] = \{ #numero de paquetes, peso de min paquete \}
    // La idea es probar todos los subset y en cada uno
       preguntarnos
    // quien es mejor para subirse de ultimo buscando
       minimizar
    // primero el numero de paquetes
    for (int subset = 1; subset < (1 << n); subset++) {</pre>
        dp[subset] = \{21, 0\};
        for (int iPer = 0; iPer < n; iPer++) {</pre>
            if ((subset >> iPer) & 1) {
                pll ant = dp[subset ^ (1 << iPer)];</pre>
                ll k = ant.ff;
                ll w = ant.ss;
                if (w + pesos[iPer] > capacidad) {
                     k++;
                     w = min(pesos[iPer], w);
                 } else {
                     w += pesos[iPer];
                dp[subset] = min(dp[subset], {k, w});
```

```
cout << dp[(1 << n) - 1].ff << ln;
```

8.2 CHT

```
// - Me dan las pendientes ordenadas
// Caso 1: Me hacen las querys ordenadas
// O(N + O)
// Caso 2: Me hacen querys arbitrarias
// O(N + QlogN)
struct CHT {
    // funciona tanto para min como para max, depende del
        orden en que pasamos las lineas
    struct Line {
        int slope, yIntercept;
        Line (int slope, int yIntercept) : slope (slope),
           yIntercept(yIntercept){}
        int val(int x) { return slope * x + yIntercept; }
        int intersect(Line y) {
            return (y.yIntercept - yIntercept + slope - y
                .slope - 1) / (slope - y.slope);
    };
    deque<pair<Line, int>> dq;
    void insert(int slope, int yIntercept){
                // lower hull si m1 < m2 < m3
                // upper hull si si m1 > m2 > m3
        Line newLine(slope, yIntercept);
        while (!dq.empty() && dq.back().second >= dq.back
            ().first.intersect(newLine)) dq.pop_back();
        if (dq.empty()) {
            dq.emplace_back(newLine, 0);
            return;
        dq.emplace back(newLine, dq.back().first.
           intersect(newLine));
    int query(int x) { // cuando las consultas son
       crecientes
        while (dq.size() > 1) {
            if (dq[1].second <= x) dq.pop_front();</pre>
            else break;
        return dq[0].first.val(x);
    int query2(int x) { // cuando son arbitrarias
        auto gry = *lower bound(dg.rbegin(), dg.rend(),
                                make_pair(Line(0, 0), x),
```

8.3 CHT Dynamic

```
// O((N+Q) \log N) < -usando set para add y bs para q
// lineas de la forma mx + b
#pragma once
struct Line {
        mutable 11 m, b, p;
        bool operator<(const Line& o) const { return m <</pre>
        bool operator<(ll x) const { return p < x; }</pre>
};
struct CHT : multiset<Line, less<>>> {
        // (for doubles, use inf = 1/.0, div(a,b) = a/b)
        static const ll inf = LLONG MAX;
        static const bool mini = 0; // <---- 1 FOR MIN</pre>
        ll div(ll a, ll b) { // floored division
                return a / b - ((a ^ b) < 0 && a % b); }
        bool isect(iterator x, iterator y) {
                if (v == end()) return x \rightarrow p = inf, 0;
                if (x->m == y->m) x->p = x->b > y->b?
                    inf : -inf;
                 else x->p = div(y->b - x->b, x->m - y->m)
                return x->p >= y->p;
        void add(ll m, ll b) {
        if (mini) { m \star= -1, b \star= -1; }
                auto z = insert(\{m, b, 0\}), y = z++, x =
                while (isect(y, z)) z = erase(z);
                 if (x != begin() && isect(--x, y)) isect(
                    x, y = erase(y);
                while ((y = x) != begin() \&\& (--x)->p >=
                    y->p)
                         isect(x, erase(y));
        11 query(11 x) {
                assert(!empty());
                 auto 1 = *lower_bound(x);
        if (mini) return -l.m * x + -l.b;
                else return l.m * x + l.b;
```

8.4 Divide Conquer

};

```
// C[a][c] + C[b][d] <= C[a][d] + C[b][c] where a < b < c
    < d.
int m, n;
vector<long long> dp before(n), dp cur(n);
long long C(int i, int j);
// compute dp cur[l], ... dp cur[r] (inclusive)
void compute(int 1, int r, int opt1, int optr) {
    if (l > r)
        return;
    int mid = (1 + r) >> 1;
    pair<long long, int> best = {LLONG MAX, -1};
    for (int k = optl; k <= min(mid, optr); k++) {
        best = min(best, \{(k ? dp before[k - 1] : 0) + C(
           k, mid), k);
    dp cur[mid] = best.first;
    int opt = best.second;
    compute(1, mid - 1, optl, opt);
    compute(mid + 1, r, opt, optr);
int solve() {
    for (int i = 0; i < n; i++)</pre>
        dp before[i] = C(0, i);
    for (int i = 1; i < m; i++) {
        compute (0, n - 1, 0, n - 1);
        dp_before = dp_cur;
    return dp_before[n - 1];
```

8.5 Edit Distances

8.6 Kadane 2D

```
int main() {
    ll fil,col;cin>>fil>>col;
    vector<vl> grid(fil, vl(col, 0));
// Algoritmo de Kadane/DP para suma maxima de una matriz
    2D en o(n^3)
    for(int i=0;i<fil;i++) {</pre>
        for(int e=0;e<col;e++){</pre>
             11 num; cin>>num;
             if (e>0) grid[i][e]=num+grid[i][e-1];
             else grid[i][e]=num;
    11 maxGlobal = LONG LONG MIN;
    for(int l=0;1<col;1++){</pre>
        for (int r=1; r < col; r++) {</pre>
             11 maxLoc=0;
             for(int row=0;row<fil;row++) {</pre>
                 if (1>0) maxLoc+=grid[row][r]-grid[row][1
                     -1];
                 else maxLoc+=grid[row][r];
                 if (maxLoc<0) maxLoc=0;</pre>
                 maxGlobal= max(maxGlobal, maxLoc);
```

8.7 Knuth

```
8.8 LIS
```

```
4
```

```
9 STRINGS
```

```
... // read N and input
int dp[N][N], opt[N][N];
auto C = [\&] (int i, int j) {
    ... // Implement cost function C.
for (int i = 0; i < N; i++) {</pre>
    opt[i][i] = i;
    ... // Initialize dp[i][i] according to the
       problem
for (int i = N-2; i >= 0; i--) {
    for (int j = i+1; j < N; j++) {
        int mn = INT_MAX;
        int cost = C(i, j);
        for (int k = opt[i][j-1]; k \le min(j-1, opt[i]
           +1][\dot{\gamma}]); k++) {
            if (mn >= dp[i][k] + dp[k+1][j] + cost) {
                opt[i][j] = k;
                mn = dp[i][k] + dp[k+1][j] + cost;
        dp[i][j] = mn;
cout << dp[0][N-1] << endl;
```

8.8 LIS

```
// 0(nlogn)
int lis(vi& a){
         int n=sz(a), last=0;
         vi dp (n+1, INT\_MAX), cnt (n, 0);
         dp[0] = INT_MIN;
         for (int i=0; i < n; ++i) {</pre>
                  int j=lower bound(all(dp), a[i])-dp.begin
                      (); // upper_bound
                  if (dp[j-1] < a[i] && a[i] < dp[j]) { // dp[j]
                      -11 <= a[i]
                            dp[j]=a[i];
                           last=max(last,j);
                  cnt[i]=j;
         int ans=0;
         for (int i=0; i<=n; i++) {</pre>
                  if (dp[i] < INT MAX) ans=i;</pre>
         vi LIS(ans);
         int act=ans;
         for(int i=n-1; i>=0; --i) {
```

8.9 SOS

```
const int bits = 23;
int dp[1<<bits];</pre>
// O(n*2^n)
void SOS(){
        for (int i = 0; i < (1 << bits); ++i) dp[i] = A[i]
        // top - down
        for(int i = 0; i < bits; ++i){</pre>
                 for(int s = 0; s < (1 << bits); ++s) {
                         if(s & (1 << i)){
                                  dp[s] += dp[s ^ (1 << i)
                                      ];
        // bottom - up
        for(int i = 0; i < bits; ++i) {</pre>
                 for (int s = (1 << bits) - 1; s >= 0; --s)
                         if(s & (1 << i)){
                                  dp[s ^ (1 << i)] += dp[s]
                                      ];
```

9 Strings

9.1 Hashing

```
1000234999, 1000567999, 1000111997, 1000777121,
        1001265673, 1001864327, 999727999, 1070777777
const int mod[2] = { 1001864327, 1001265673 };
const ii base(257, 367), zero(0, 0), one(1, 1);
const int maxn = 1e6;
inline int add(int a, int b, int m) {return a+b>=m?a+b-m:a
        +b;}
```

```
inline int sbt(int a, int b, int m){return a-b<0?a-b+m:a-
inline int mul(int a, int b, int m) {return ll(a)*b%m;}
inline ll operator ! (const ii a) {return (ll(a.first)
   <<32) | a.second; }
inline ii operator + (const ii& a, const ii& b) {return {
   add(a.first, b.first, mod[0]), add(a.second, b.second,
    mod[1])};}
inline ii operator - (const ii& a, const ii& b) {return {
   sbt(a.first, b.first, mod[0]), sbt(a.second, b.second,
    mod[1])};}
inline ii operator * (const ii& a, const ii& b) {return {
   mul(a.first, b.first, mod[0]), mul(a.second, b.second,
    mod[1])};}
ii p[maxn+1];
void prepare() { // Acordate del prepare()!!
        p[0]=one;
        for (int i=1; i <= maxn; i++) p[i] = p[i-1] *base;</pre>
template <class type>
struct hashing{
        vector<ii> h:
        hashing(type& t) {
                h.resize((int)t.size()+1);
                h[0]=zero;
                for(int i=1; i<(int)h.size();++i)
                         h[i]=h[i-1]*base + ii{t[i-1], t[i]}
        ii get(int 1, int r) {return h[r+1]-h[1]*p[r-1
ii combine(ii a, ii b, int lenb) {return a*p[lenb]+b;}
```

9.2 KMP

```
// O(n)
vi phi(string& s) {
    int n=sz(s);
    vi tmp(n);
    for(int i=1, j=0; i < n; ++i) {
        while (j > 0 && s[j]!=s[i]) j=tmp[j-1];
        if (s[i]==s[j]) j++;
        tmp[i]=j;
    }
    return tmp;
}

// O(n+m)
int kmp(string& s, string& p) {
    int n=sz(s), m=sz(p), cnt=0;
    vi pi=phi(p);
```

9.3 KMP Automaton

9.4 Manacher

```
// O(n), par (raiz, izq, der) 1 - impar 0
vi manacher(string& s, int par) {
    int l=0, r=-1, n=sz(s); vi m(n,0);
    for(int i=0;i<n;++i) {
        int k=(i>r?(1-par):min(m[l+r-i+ par], r-i +par))+par;
        while(i+k-par<n && i-k>=0 && s[i+k-par]== s[i-k])++k;
        m[i]=k-par;--k;
        if(i+k-par>r) l=i-k, r=i+k-par;
    }
    for(int i=0;i<n;++i)m[i]=(m[i]-1+par)*2+1-par;
    return m;
}</pre>
```

9.5 Minimum Expression

```
// O(n)
int minimum_expression(string s) {
    s=s+s;int n=sz(s),i=0,j=1,k=0;
```

```
while(i+k<n && j+k<n) {
    if(s[i+k]==s[j+k])k++;
    else if(s[i+k]>s[j+k])i=i+k+1,k=0; //
        cambiar por < para max
    else j=j+k+1,k=0;
    if(i==j)j++;
}
return min(i, j);
}</pre>
```

9.6 Palindromic Tree

```
const int alpha = 26;
const char fc = 'a';
// tree suf is the longest suffix palindrome
// tree dad is the palindrome add c to the right and left
struct Node{
        int next[alpha];
        int len, suf, dep, cnt, dad;
};
// O(nlogn)
struct PalindromicTree{
        vector<Node> tree;
        string s:
        int len,n;
        int size; // node 1 - root with len -1, node 2 -
            root with len 0
        int last; // max suffix palindrome
        bool addLetter(int pos) {
                int cur=last, curlen=0;
                int let=s[pos]-fc;
                while(true) {
                         curlen=tree[cur].len;
                         if(pos-1-curlen>=0 && s[pos-1-
                            curlen] == s[pos]) break;
                         cur=tree[cur].suf;
                if(tree[cur].next[let]){
                         last=tree[cur].next[let];
                        tree[last].cnt++;
                        return false;
                size++;
                last=size;
                tree[size].len=tree[cur].len+2;
                tree[cur].next[let]=size;
                tree[size].cnt=1;
                tree[size].dad=cur;
                if (tree[size].len==1) {
```

```
tree[size].suf=2;
                         tree[size].dep=1;
                         return true;
                 while(true) {
                         cur=tree[curl.suf;
                         curlen=tree[cur].len;
                         if(pos-1-curlen>=0 && s[pos-1-
                             curlen] == s[pos]) {
                                  tree[size].suf=tree[cur].
                                     next[let];
                                  break;
                 tree[size].dep=1+tree[tree[size].suf].dep
                 return true;
        PalindromicTree(string& s2, int n) {
                 tree.assign(n+4.Node());
                 tree[1].len=-1; tree[1].suf=1;
                 tree[2].len=0;tree[2].suf=1;
                 size=2; last=2; s=s2;
                 for (int i=0; i<n; i++) {</pre>
                         addLetter(i);
                 for(int i=size; i>=3; i--) {
                         tree[tree[i].suf].cnt+=tree[i].
                             cnt;
};
```

9.7 Suffix Array

```
// O(nlogn)
struct SuffixArray{
    const int alpha = 256;
    string s; int n;
    vi sa,rnk,lcp;

    SuffixArray(string& _s) {
        s=_s;s.push_back('$'); // check
        n=sz(s);
        sa.assign(n, 0);
        rnk.assign(n, 0);
        lcp.assign(n-1, 0);
        buildSA();
}

void buildSA() {
```

```
vi cnt(max(alpha, n),0);
for (int i=0; i < n; ++i) cnt [s[i]] ++;</pre>
for (int i=1; i < max (alpha, n); ++i) cnt[i] +=</pre>
    cnt[i-1];
for(int i=n-1;i>=0;--i)sa[--cnt[s[i]]]=i;
for(int i=1;i<n;++i)rnk[sa[i]]=rnk[sa[i</pre>
    -1] + (s[sa[i]]!=s[sa[i-1]]);
for (int k=1; k < n; k *=2) {
         vi nsa(n),nrnk(n),ncnt(n);
         for (int i=0; i < n; ++i) sa[i] = (sa[i] -</pre>
         for (int i=0; i < n; ++i) ncnt[rnk[i</pre>
             ]]++;
         for (int i=1; i < n; ++i) ncnt[i] += ncnt</pre>
         for(int i=n-1;i>=0;--i)nsa[--ncnt
             [rnk[sa[i]]]=sa[i];
         for (int i=1; i < n; ++i) {</pre>
                  ii op1={rnk[nsa[i]], rnk
                       [(nsa[i]+k)%n]};
                  ii op2={rnk[nsa[i-1]],}
                      rnk[(nsa[i-1]+k)%n];
                  nrnk[nsa[i]]=nrnk[nsa[i
                      -1]]+(op1!=op2);
         swap(sa, nsa);swap(rnk, nrnk);
for (int i=0, k=0; i < n-1; ++i) {</pre>
         while (s[i+k] == s[sa[rnk[i]-1]+k])k
         lcp[rnk[i]-1]=k;
         if(k)k--;
```

9.8 Suffix Automaton

};

```
// O(n*log(alpha))
struct SuffixAutomaton{
    vector<map<char,int>> to;
    vector<bool> end;
    vi suf,len; // len, longest string
    int last;

SuffixAutomaton(string& s) {
        to.push_back(map<char,int>());
        suf.push_back(-1);
        len.push_back(0);
        last=0;

    for(int i=0;i<sz(s);i++) {
            to.push_back(map<char,int>());
        }
}
```

```
suf.push back(0);
                         len.push back(i+1);
                         int r=sz(to)-1;
                         int p=last;
                         while (p>=0 && to[p].find(s[i])==
                            to[p].end()){
                                 to[p][s[i]]=r;
                                 p=suf[p];
                         if(p!=-1){
                                 int q=to[p][s[i]];
                                 if(len[p]+1==len[q]){
                                          suf[r]=q;
                                 }else{
                                          to.push_back(to[q
                                             ]);
                                          suf.push back(suf
                                              [a]);
                                          len.push_back(len
                                              [p]+1);
                                          int qq=sz(to)-1;
                                          suf[q]=qq;
                                          suf[r]=qq;
                                          while(p>=0 && to[
                                             p[s[i]] == q) {
                                                  to[p][s[i
                                                      ] =qq;
                                                  p=suf[p];
                         last=r;
                end.assign(sz(to), false);
                int p=last;
                while (p) {
                         end[p]=true;
                         p=suf[p];
};
```

9.9 Suffix Tree

```
// O(n)
struct SuffixTree{
    vector<map<char,int>> to;
    vector<int> pos,len,link;
    const int inf = 1e9;
    int size=0;
    string s;
    int make(int _pos, int _len){
```

```
9.10 Trie
```

```
to.push back(map<char,int>());
        pos.push_back(_pos);
        len.push_back(_len);
        link.push back(-1);
        return size++;
void add(int& p, int& lef, char c){
        s+=c;++lef;int lst=0;
        for(;lef;p?p=link[p]:lef--){
                 while (lef>1 && lef>len[to[p][s[sz
                     (s)-lef]]]){
                         p=to[p][s[sz(s)-lef]], lef
                             -=len[p];
                 char e=s[sz(s)-lef];
                 int& q=to[p][e];
                 if(!a){
                          q=make(sz(s)-lef,inf),
                             link[lst]=p,lst=0;
                 }else{
                          char t=s[pos[q]+lef-1];
                         if(t==c){link[lst]=p;
                             return; }
                          int u=make(pos[q],lef-1);
                          to[u][c]=make(sz(s)-1,inf
                             );
                          to[u][t]=q;
                          pos[q] += lef -1;
                          if(len[q]!=inf)len[q]-=
                             lef-1;
                          q=u,link[lst]=u,lst=u;
void build(string& _s) {
        make (-1, 0); int p=0, lef=0;
        for (char c:_s) add (p, lef, c);
add (p, lef, '$');
        s.pop_back();
int query(string& p){
        for (int i=0, u=0, n=sz(p);;) {
                 if(i==n || !to[u].count(p[i]))
                     return i;
                 u=to[u][p[i]];
                 for (int j=0; j<len[u];++j) {</pre>
                         if(i==n || s[pos[u]+j]!=p
                             [i])return i;
                         i++;
```

```
vector<int> sa;
           void genSA(int x=0, int Len=0) {
                   if(!sz(to[x]))sa.push back(pos[x]-Len);
                   else for (auto t:to[x]) genSA (t.second, Len+
                       len[x]);
  };
9.10 Trie
  const int maxn = 2e6+5, alpha = 26, bits = 30;
  int to[maxn][alpha], cnt[maxn], act;
  void init(){
           for(int i=0;i<=act;++i){</pre>
                   cnt[i]=0;
                   // suf[i]=dad[i]=0;
                   // adj[i].clear();
                   memset(to[i], 0, sizeof(to[i]));
           act=0;
  int add(string& s) {
           int u=0;
           for(char ch:s){
                   int c=conv(ch);
                   if(!to[u][c])to[u][c]=++act;
                   u=to[u][c];
           cnt[u]++;
           return u;
  // Aho-Corasick
  vector<int> adj[maxn]; // dad or suf
  int dad[maxn], suf[maxn];
  // O(sum(n) *alpha)
  void build() {
           queue<int> q{{0}};
           while(!q.empty()){
                   int u=q.front();q.pop();
                   for (int i=0; i < alpha; ++i) {</pre>
                            int v=to[u][i];
                            if(!v)to[u][i]=to[suf[u]][i];
                            else q.push(v);
                            if(!u || !v)continue;
                            suf[v]=to[suf[u]][i];
                            dad[v]=cnt[suf[v]]?suf[v]:dad[suf
                                [V]];
           for(int i=1;i<=act;++i){</pre>
                   adj[i].push_back(dad[i]);
```

```
adj[dad[i]].push_back(i);
```

9.11 Z Algorithm

```
// O(n)
vi z function(string& s){
         int n=sz(s), l=0, r=0; vi z(n);
         for (int i=1; i < n; i++) {</pre>
                   if (i < r) z[i] = min(r-i, z[i-l]);</pre>
                   while (i+z[i] < n \& \& s[z[i]] == s[i+z[i]]) z[i]
                       ]++;
                   if(i+z[i]>r){
                             l=i:
                             r=i+z[i];
         return z;
```

10 Misc

10.1 Counting Sort

```
// O(n+k)
void counting sort(vi& a){
        int maxi=*max element(all(a));
        int mini=*min_element(all(a));
        int k=maxi-mini+1, n=sz(a);
        vi cnt(k,0);
        for (int i=0; i < n; ++i) ++cnt[a[i]-mini];</pre>
        for(int i=0, j=0; i<k; ++i)
                 while (cnt[i]--) a [j++]=i+mini;
```

10.2 Dates

```
int dateToInt(int y, int m, int d) {
         return 1461* (y+4800+(m-14)/12)/4+367* (m-2-(m-14)
             /12*12)/12-
                  3 \star ((y+4900+(m-14)/12)/100)/4+d-32075;
void intToDate(int jd, int& y, int& m, int& d) {
         int x,n,i,j;x=jd+68569;
         n=4*x/146097; x=(146097*n+3)/4;
         i = (4000 * (x+1)) / 1461001; x = 1461 * i / 4 - 31;
         j=80*x/2447; d=x-2447*j/80;
         x=\frac{1}{11}; m=\frac{1}{12}+2-12*x; y=100* (n-49) +i+x;
```

```
Sunday
     static int ttt[]={0, 3, 2, 5, 0, 3, 5, 1, 4, 6,
        2, 4};
     v = m < 3:
     return (y+y/4-y/100+y/400+ttt[m-1]+d)%7;
```

10.3 Expression Parsing

```
// O(n) - En python es eval()
bool delim(char c) {return c==' ';}
bool is op(char c){return c=='+' || c=='-' || c=='*' || c
   ==' /' ; }
bool is unary(char c){return c=='+' || c=='-';}
int priority(char op) {
        if(op<0)return 3;</pre>
        if (op=='+' | op=='-') return 1;
        if(op=='*' || op=='/')return 2;
        return -1;
void process op(stack<int>& st, char op){
        if(op<0){
                 int l=st.top();st.pop();
                 switch (-op) {
                         case '+':st.push(1);break;
                         case '-':st.push(-1);break;
        }else{
                 int r=st.top();st.pop();
                 int l=st.top();st.pop();
                 switch(op){
                         case '+':st.push(l+r);break;
                         case '-':st.push(l-r);break;
                         case '*':st.push(l*r);break;
                         case '/':st.push(l/r);break;
int evaluate(string& s) {
        stack<int> st;
        stack<char> op;
        bool may_be_unary=true;
        for (int i=0; i < sz(s); ++i) {</pre>
                 if (delim(s[i])) continue;
                 if(s[i] == '('){
                         op.push('(');
                         may be unary=true;
                 }else if(s[i]==')'){
                         while (op.top()!='('){
```

```
process op(st, op.top());
                         op.pop();
                op.pop();
                may_be_unary=false;
        }else if(is_op(s[i])){
                char cur op=s[i];
                if(may be unary && is unary(
                    cur_op))cur_op=-cur_op;
                while(!op.empty() && ((cur_op >=
                    0 && priority(op.top()) >=
                    priority(cur op)) || (cur op <</pre>
                     0 && priority(op.top()) >
                    priority(cur op)))){
                         process_op(st, op.top());
                         op.pop();
                op.push(cur_op);
                may be unary=true;
        }else{
                int number=0;
                while(i<sz(s) && isalnum(s[i]))</pre>
                    number=number \star 10+s[i++]-'0';
                 st.push(number);
                may be unary=false;
while(!op.empty()){
        process_op(st, op.top());
        op.pop();
return st.top();
```

10.4 Ternary Search

```
// O(log((r-l)/eps))
double ternary(){
          double l, r;
          while(r-l>eps) {
                double m1=l+(r-l)/3.0;
                double m2=r-(r-l)/3.0;
                 if(f(m1)<f(m2))l=m1;
                 else r=m2;
        }
        return max(f(l),f(r));
}</pre>
```

10.5 Prefix3D

```
const int N = 100;
int A[N][N][N];
int preffix [N + 1][N + 1][N + 1];
void build(int n) {
        for (int x = 1; x \le n; x++) {
        for (int y = 1; y \le n; y++) {
            for (int z = 1; z <= n; z++) {
                 preffix[x][y][z] = A[x - 1][y - 1][z - 1]
                     + preffix[x - 1][y][z] + preffix[x][y
                         - 1][z] + preffix[x][y][z - 1]
                     - preffix[x - 1][y - 1][z] - preffix[x - 1][y - 1][z]
                        x - 1|[y][z - 1] - preffix[x][y -
                        11[z - \bar{1}]
                     + preffix[x - 1][y - 1][z - 1];
11 query(int lx, int rx, int ly, int ry, int lz, int rz){
        ll ans = preffix[rx][ry][rz]
                 - preffix[lx - 1][ry][rz] - preffix[rx][
                    ly - 1][rz] - preffix[rx][ry][lz - 1]
                 + preffix[lx - 1][ly - 1][rz] + preffix[
                    lx - 1][ry][lz - 1] + preffix[rx][ly -
                     1][lz - 1]
                - preffix[lx - 1][ly - 1][lz - 1];
        return ans;
```

10.6 Hanoi

```
// hanoi(n) = 2 * hanoi(n-1) + 1
// hanoi(n, 1, 3)
vi ans;
void hanoi(int x, int start, int end) {
    if(!x)return;
    hanoi(x-1, start, 6-start-end);
    ans.push_back({start, end});
    hanoi(x-1, 6-start-end, end);
}
```

11 Teoría y miscelánea

11.1 Sumatorias

$$\bullet \ \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

•
$$\sum_{i=1}^{n} i^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$

$$\bullet \sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$

•
$$\sum_{i=0}^{n} x^i = \frac{x^{n+1}-1}{x-1} \text{ para } x \neq 1$$

11.2 Teoría de Grafos

11.2.1 Teorema de Euler

En un grafo conectado planar, se cumple que V-E+F=2, donde V es el número de vértices, E es el número de aristas y F es el número de caras. Para varios componentes la formula es: V-E+F=1+C, siendo C el número de componentes.

11.2.2 Planaridad de Grafos

Un grafo es planar si y solo si no contiene un subgrafo homeomorfo a K_5 (grafo completo con 5 vértices) ni a $K_{3,3}$ (grafo bipartito completo con 3 vértices en cada conjunto).

11.3 Teoría de Números

11.3.1 Ecuaciones Diofánticas Lineales

Una ecuación diofántica lineal es una ecuación en la que se buscan soluciones enteras x e y que satisfagan la relación lineal ax+by=c, donde a, b y c son constantes dadas.

Para encontrar soluciones enteras positivas en una ecuación diofántica lineal, podemos seguir el siguiente proceso:

- 1. Encontrar una solución particular: Encuentra una solución particular (x_0, y_0) de la ecuación. Esto puede hacerse utilizando el algoritmo de Euclides extendido.
- 2. Encontrar la solución general: Una vez que tengas una solución particular, puedes obtener la solución general utilizando la fórmula:

$$x = x_0 + \frac{b}{\operatorname{mcd}(a, b)} \cdot t$$

$$y = y_0 - \frac{a}{\operatorname{mcd}(a, b)} \cdot t$$

donde t es un parámetro entero.

3. Restringir a soluciones positivas: Si deseas soluciones positivas, asegúrate de que las soluciones generales satisfagan $x \ge 0$ y $y \ge 0$. Puedes ajustar el valor de t para cumplir con estas restricciones.

11.3.2 Pequeño Teorema de Fermat

Si p es un número primo y a es un entero no divisible por p, entonces $a^{p-1} \equiv 1 \pmod{p}$.

11.3.3 Teorema de Euler

Para cualquier número entero positivo n y un entero a coprimo con n, se cumple que $a^{\phi(n)} \equiv 1 \pmod{n}$, donde $\phi(n)$ es la función phi de Euler, que representa la cantidad de enteros positivos menores que n y coprimos con n.

11.4 Geometría

11.4.1 Teorema de Pick

Sea un poligono simple cuyos vertices tienen coordenadas enteras. Si B es el numero de puntos enteros en el borde, I el numero de puntos enteros en el interior del poligono, entonces el area A del poligono se puede calcular con la formula:

$$A = I + \frac{B}{2} - 1$$

11.4.2 Fórmula de Herón

Si los lados del triángulo tienen longitudes a, b y c, y s es el semiperímetro (es decir, $s=\frac{a+b+c}{2}$), entonces el área A del triángulo está dada por:

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

11.4.3 Relación de Existencia Triangular

Para un triángulo con lados de longitud $a,\,b,\,{\bf y}\,c,$ la relación de existencia triangular se expresa como:

$$b - c < a < b + c$$
, $a - c < b < a + c$, $a - b < c < a + b$

11.5 Combinatoria

11.5.1 Permutaciones

El número de permutaciones de n objetos distintos tomados de a r a la vez (sin repetición) se denota como P(n,r) y se calcula mediante:

$$P(n,r) = \frac{n!}{(n-r)!}$$

11.5.2 Combinaciones

El número de combinaciones de n objetos distintos tomados de a r a la vez (sin repetición) se denota como C(n,r) o $\binom{n}{r}$ y se calcula mediante:

$$C(n,r) = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

11.5.3 Permutaciones con Repetición

El número de permutaciones de n objetos tomando en cuenta repeticiones se denota como $P_{\text{rep}}(n; n_1, n_2, \dots, n_k)$ y se calcula mediante:

$$P_{\text{rep}}(n; n_1, n_2, \dots, n_k) = \frac{n!}{n_1! n_2! \cdots n_k!}$$

11.5.4 Combinaciones con Repetición

El número de combinaciones de n objetos tomando en cuenta repeticiones se denota como $C_{\text{rep}}(n; n_1, n_2, \dots, n_k)$ y se calcula mediante:

$$C_{\text{rep}}(n; n_1, n_2, \dots, n_k) = \binom{n+k-1}{n} = \binom{n+k-1}{k-1}$$

11.5.5 Números de Catalan

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

Los números de Catalan también pueden calcularse utilizando la siguiente fórmula recursiva:

$$C_0 = 1$$

$$C_{n+1} = \frac{4n+2}{n+2}C_n$$

Usos:

• Cat(n) cuenta el número de árboles binarios distintos con n vértices.

- Cat(n) cuenta el número de expresiones que contienen n pares de paréntesis correctamente emparejados.
- Cat(n) cuenta el número de formas diferentes en que se pueden colocar n+1 factores entre paréntesis, por ejemplo, para n=3 y 3+1=4 factores: a,b,c,d, tenemos: (ab)(cd),a(b(cd)),((ab)c)d y a((bc)d).
- Los números de Catalan cuentan la cantidad de caminos no cruzados en una rejilla $n \times n$ que se pueden trazar desde una esquina de un cuadrado o rectángulo a la esquina opuesta, moviéndose solo hacia arriba y hacia la derecha.
- Los números de Catalan representan el número de árboles binarios completos con n+1 hojas.
- $\operatorname{Cat}(n)$ cuenta el número de formas en que se puede triangular un poligono convexo de n+2 lados. Otra forma de decirlo es como la cantidad de formas de dividir un polígono convexo en triángulos utilizando diagonales no cruzadas.

11.5.6 Estrellas y barras

Número de soluciones de la ecuación $x_1 + x_2 + \cdots + x_k = n$.

- Con $x_i \ge 0$: $\binom{n+k-1}{n}$
- Con $x_i \ge 1$: $\binom{n-1}{k-1}$

Número de sumas de enteros con límite inferior:

Esto se puede extender fácilmente a sumas de enteros con diferentes límites inferiores. Es decir, queremos contar el número de soluciones para la ecuación:

$$x_1 + x_2 + \cdots + x_k = n$$

con $x_i \geq a_i$.

Después de sustituir $x_i' := x_i - a_i$ recibimos la ecuación modificada:

$$(x'_1 + a_i) + (x'_2 + a_i) + \dots + (x'_k + a_k) = n$$

$$\Leftrightarrow x_1' + x_2' + \dots + x_k' = n - a_1 - a_2 - \dots - a_k$$

con $x_i' \ge 0$. Así que hemos reducido el problema al caso más simple con $x_i' \ge 0$ y nuevamente podemos aplicar el teorema de estrellas y barras.

11.6 DP Optimization Theory

Name	Original Recurrence	Sufficient Condition	From	To
CH 1	$dp[i] = min_{j < i} \{dp[j] + b[j] *$	$b[j] \ge b[j+1]$ Option-	$O(n^2)$	O(n)
	$a[i]\}$	ally $a[i] \le a[i+1]$		
CH 2	$dp[i][j] = min_{k < j} \{ dp[i -]$	$b[k] \ge b[k+1]$ Option-	$O(kn^2)$	O(kn)
	1][k] + b[k] * a[j]	ally $a[j] \le a[j+1]$		
D&Q	$dp[i][j] = min_{k < j} \{ dp[i -]$	$A[i][j] \le A[i][j+1]$	$O(kn^2)$	$O(kn\log n$
	$1][k] + C[k][j]\}$			
Knuth	dp[i][j] =	$A[i, j-1] \le A[i, j] \le$	$O(n^3)$	$O(n^2)$
	$min_{i < k < j} \{dp[i][k] +$	A[i+1,j]		
	$dp[k][j]\} + C[i][j]$			

Notes:

- A[i][j] the smallest k that gives the optimal answer, for example in dp[i][j] = dp[i-1][k] + C[k][j]
- C[i][j] some given cost function
- We can generalize a bit in the following way $dp[i] = \min_{j < i} \{F[j] + b[j] * a[i]\},$ where F[j] is computed from dp[j] in constant time