MATH 311

Last Chapter

SECTION 10.1: INNER PRODUCT SPACES

Contents

Examples							
Space of Continu	ious Functions	 	 				

Created by: Pierre-Olivier Parisé Spring 2024

DEFINITION

For \mathbb{R}^n , if we define

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n,$$

then the following properties are satisfied:

- \bigcirc $\langle \mathbf{x}, \mathbf{y} \rangle$ is real number;
- \bigcirc $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle;$
- \bigcirc **x** \neq 0 if and only if \langle **x**, **x** \rangle > 0.

When P1-P5 are satisfied, we say that the dot product is an inner product and $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$ is an inner product space.

DEFINITION 1. Let V be a vector space. If a function $\langle \cdot, \cdot \rangle$: $V \times V \to \mathbb{R}$ satisfies P1-P5, then we say that $\langle \cdot, \cdot \rangle$ is an **in-ner product** defined on V and $(V, \langle \cdot, \cdot \rangle)$ is an **inner product** space.

Remarks:

- ① for $\mathbf{v} \in V$, we define $\|\mathbf{v}\| := \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$.
- ② $\mathbf{v}, \mathbf{w} \in V$ are orthogonal if and only if $\langle \mathbf{v}, \mathbf{w} \rangle = 0$.
- 3 All notions from 5.3 and 8.1 extends to a general inner product space.

EXAMPLES

Vectors

EXAMPLE 1. We can show that

$$\langle \mathbf{x}, \mathbf{y} \rangle := 5x_1y_1 + 7x_1y_2 + 7x_2y_1 + 10x_2y_2$$

is an inner product on \mathbb{R}^2 . Show that

- a) $\mathbf{x} = \begin{bmatrix} 1 & 1 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} -1 & 1 \end{bmatrix}$ are not orthogonal.
- b) $\mathbf{x} = \begin{bmatrix} 2 & -1 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} 24 & -17 \end{bmatrix}$ are orthogonal.

SOLUTION.

a)
$$\langle \vec{x}, \vec{y} \rangle = 5(1)(-1) + 7(1)(1) + 7(1)(1) + 10(1)(1)$$

$$= 5 \neq 0.$$

b)
$$\langle \vec{x} \rangle = 5(2)(24) + 7(2)(-17) + 7(1)(24) + 10(1)(-17)$$

= 240 - 238 + 168 - 170
= 0

Matrices

EXAMPLE 2. For a matrix $A \in \mathbf{M_{nn}}$, we define its **trace** to be

$$tr(A) := a_{11} + a_{22} + \dots + a_{nn}.$$

Then the function

$$\langle A, B \rangle = \operatorname{tr}(AB^{\top})$$

defines an inner product on $\mathbf{M_{nn}}$.

Space of Continuous Functions

EXAMPLE 3. Let C[a, b] be the vector space of **real-valued** continuous functions on the interval [a, b]. The application

$$\langle f, g \rangle = \int_a^b f(x)g(x) \, dx$$

is an inner product on C[a, b].

COMPLEX INNER PRODUCT SPACES

It is possible to have a theory of vector spaces using complex numbers. We simply replace \mathbb{R} by \mathbb{C} , the set of complex numbers, everywhere in the definitions.

However, we have to modify the definition of an inner product.

DEFINITION 2. Let V be a **complex vector space**. An application $\langle \cdot, \cdot \rangle V \times V \to \mathbb{C}$ is a **complex inner product** if

- \bigcirc $\langle \mathbf{x}, \mathbf{y} \rangle$ is a complex number;
- $\bigcirc \mathbf{v} = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$, where $\overline{w} = u iv$ is the complex conjugate of w = u + iv;
- $\textcircled{P4} \langle a\mathbf{x}, \mathbf{y} \rangle = a \langle \mathbf{x}, \mathbf{y} \rangle$ for any complex number a;
- \bigcirc **x** \neq 0 if and only if \langle **x**, **x** \rangle > 0.

Remarks: The extension of vector space and inner product to complex numbers is used, for instance, in the foundations of Quantum Mechanics.