# Gaia DR3 BPRP spectra of stars from the INDO-US library

### M. Messineo<sup>1,2</sup>

- <sup>1</sup>Dipartimento di Fisica e Astronomia, Universita' di Bologna, Via Gobetti 93/2, 40129, Bologna, Italy
- <sup>2</sup>INAF-Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Via Gobetti 93/3, I-40129 Bologna, Italy

Received (reception date); Accepted (acception date)

#### **Abstract**

**Key words:** stars: evolution — stars: supergiants — stars: massive

1 Introduction

Recently, Axelrod et al. (2023) have published a list of additional 32 new fainter DAWS (16.5 < V < 19.5 mag) which are almost perfect spectrophotometric calibrators (reaching an accuracy < 0.004 mag). DAWS stands for Hot DA white dwarf. The authors used ground-based spectroscopic data to produce synthetic magnitudes in the HST/WFC3 filters and compared the synthetic magnitudes with the HST/WFC3 observations.

They did not calibrate each data point on the existing photometric HST system, but they used the mean of the 32 data points. This approach could be used to define new zero points, as the current HST photometry is based on three DAWS (G191B2B,GD153,GD71).

#### 2 Gaia DR3 source\_id

The Gaia DR3 source\_ID of the 35 DAWSs (32 new standard calibrators and the three HST milestones) are listed in Table 1.

The Gaia DR3 BPRP spectra were retrieved (XP CONTINUOUS RAW data). The spectra were reconstructed using the default sampling

sampling = np.geomspace(330, 1049.9999999999, 361)

. Two version of spectra were extracted for each source, the standard and the one with the Truncation option.

 $calibrate(f,output\_file = f2,output\_format = 'csv', save\_file = True, truncation = True)$ 

A display page was arranged to display the standard and truncated spectra. Here is the hyperlink for the display page: (https://lamortadella.github.io/BPRPlibraries/DAWDbprp/index.html),

## 3 Quality control

section References

Axelrod, T., Saha, A., Matheson, T., et al. 2023, ApJ, 951, 78

2



Fig. 1. DAWD library: the fact value, i.e., the average flux ratio between 650 and 850 nm (BP/RP(Dr3)-DAWD) versus the chiT values (black plus signs). A chiTadj value is the chiT of the modified spectrum (DAWD × fact). A chiTadj value is the chiT of the modified spectrum (DAWD + fact). Middle panel: DAWD: the fact value, i.e., the average flux ratio between 700 and 750 nm (BP/RP) versus the chi2values (black plus signs). A chi2adj value is the chi2 of the modified spectrum (DAWD × fact). Lower panel: DAWD: the chiT versus the chi2 values (black plus signs).



Fig. 2. DAWD spectra: *Top panel:* Histogram of the chiT parameter. *Middle panel:* Histogram of the G magnitudes. *Lower panel:* Histogram of the BP-RP colors. In red the histograms of those sources with has\_xp\_continuous='True'.



Fig. 3. DAWD spectra: Upper panel: chiT versus Gmag of the DAWD stars.



Fig. 4. chiT versus BP-RP mag of the DAWD stars.



Fig. 5. DAWD spectra: the residual with the Gaia DR3 BP/BP spectra are smaller in the red part of the spectrum (650-1000 nm), giving a smaller chiadj, than in the blue part (400-650 nm).



Fig. 6. DAWD stars: Number of observation in BP-band versus Gmag.



Fig. 7. DAWD stars: Number of observation in RP-band versus Gmag.



Fig. 8. DAWD stars: Using the best sample of DAWD spectra (with adjusted slope), the performance of the fit below 400 nm is analyzed.



Fig. 9. DAWD spectra.



 $\textbf{Fig. 10.} \ \ \text{Distributions of Gmag and BP/RP colors of the DAWS matches with the BP/RP spectra.}$ 

| Num. | Object      | source_id           | phot_g_mean_mag |
|------|-------------|---------------------|-----------------|
| 0    | G191B2B     | 266077145295627520  | 11.718442       |
| 1    | GD153       | 3944400490365194368 | 13.310926       |
| 2    | GD71        | 3348071631670500736 | 12.999769       |
| 3    | WDFS0103-00 | 2536159496590552704 | 19.302286       |
| 4    | WDFS0122-30 | 5028544686500198144 | 18.664406       |
| 5    | WDFS0228-08 | 5176546064064586624 | 19.975046       |
| 6    | WDFS0238-36 | 4953936951336477440 | 18.235914       |
| 7    | WDFS0248+33 | 139724391470489472  | 18.521025       |
| 8    | WDFS0458-56 | 4764189621230467584 | 17.958984       |
| 9    | WDFS0541-19 | 2967083052984612736 | 18.433365       |
| 10   | WDFS0639-57 | 5484605140287436416 | 18.375322       |
| 11   | WDFS0727+32 | 892231562565363072  | 18.188688       |
| 12   | WDFS0815+07 | 3097940536010212736 | 19.931236       |
| 13   | WDFS0956-38 | 5421579652019276160 | 18.002356       |
| 14   | WDFS1024-00 | 3830980604624181376 | 19.083263       |
| 15   | WDFS1055-36 | 5401230062610609920 | 18.195625       |
| 16   | WDFS1110-17 | 3559181712491390208 | 18.047983       |
| 17   | WDFS1111+39 | 765355922242992000  | 18.64378        |
| 18   | WDFS1206+02 | 3891742709551744640 | 18.84957        |
| 19   | WDFS1206-27 | 3486471764460448512 | 16.666716       |
| 20   | WDFS1214+45 | 1539041748873288704 | 17.978304       |
| 21   | WDFS1302+10 | 3734528631432609920 | 17.239063       |
| 22   | WDFS1314-03 | 3684543213630134784 | 19.306833       |
| 23   | WDFS1434-28 | 6222123588482712832 | 18.102802       |
| 24   | WDFS1514+00 | 4419865155422033280 | 15.883505       |
| 25   | WDFS1535-77 | 5779908502946006784 | 16.764978       |
| 26   | WDFS1557+55 | 1621657158502507520 | 17.691374       |
| 27   | WDFS1638+00 | 4383979187540364288 | 19.024992       |
| 28   | WDFS1814+78 | 2293913930823813888 | 16.744831       |
| 29   | WDFS1837-70 | 6431766714636858240 | 17.910252       |
| 30   | WDFS1930-52 | 6646236009641999488 | 17.67307        |
| 31   | WDFS2101-05 | 6910475935427725824 | 18.82659        |
| 32   | WDFS2317-29 | 2378059688840742912 | 18.526045       |
| 33   | WDFS2329+00 | 2644572064644349952 | 18.292364       |
| 34   | WDFS2351+37 | 2881271732415859072 | 18.234518       |