hemical kinetics	
Rate of Reach: ROR = K [A]? [B] & Overall order 1's => xtx (non-x	k depends on Fa
Rade law con't be predicted by me	iely looking into the balance & gun.
Unst $g K = [mgl L^{-1}]^{-n}$ sec-1	, where n is the order of near.
order and Molecularity	
-> It can be fractional, 0	conditions (always determined experiment
(1) Molecularity -> it is always in a	shole number
Ouder	Moleculariete
(i) Determined experimentally	(i) Can be determined using balanced chemical equi
(ii) Applicable to any type of seach	(i) Applicable only for elementary
(170) It can be a and even a fraction	("") It is only a positive
Bleventary Rran ROR = K[A][B]b	
Here, order - Molecularity = a Complex Reaction	
R.D.S order is the overal	I order of the complex Ron
2000 order Rxn is always a complex Rxn.	

$$\begin{array}{c}
Cogodina
\\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{K_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{K_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{K_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{K_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{K_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{K_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{K_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{K_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{K_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{K_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{K_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{K_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{R_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{R_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{R_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{R_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{R_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{R_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{R_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{R_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{R_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{R_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{R_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{R_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{R_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{R_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{R_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{R_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{R_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{R_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{R_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{R_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{R_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{K_{T} + 10}{R_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{R_{T} + 10}{R_{T}} \\
Coe = \left(\frac{R_{T} + 10}{R_{T}}\right) = \frac{R_{T} + 10}{R_{T}} \\
Coe = \left(\frac{R$$

Collesian Meery

Rate = PZAB e PT Collésian Before Inefortive [Product formed] A Horan = Eag - bab Arorehneus Equi $\binom{\text{ii}}{\text{log}}\left(\frac{K_2}{K_1}\right) = \frac{f_a}{2.303 \, \text{R}} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$ (i) K=Ae Soules and Parallel Reactions (i) Parallel Reactions (Formula's) $A = \frac{1}{20303log} \begin{bmatrix} A_0 \\ A_{\pm} \end{bmatrix}$ $\binom{n}{2} + \binom{n}{2} = \frac{\ln 2}{k_1 + k_2}$

 $\frac{\left(\tilde{r} \tilde{r} \tilde{r} \right)}{\left[\tilde{c} \tilde{c} \right]} = \frac{K_{1}}{K_{2}}$ $\frac{\left(\tilde{r} \tilde{r} \right)}{\left[\tilde{c} \tilde{c} \right]} = \frac{K_{1}}{K_{2}}$ $\frac{\left(\tilde{r} \tilde{r} \right)}{\left[\tilde{c} \tilde{c} \right]} = \frac{K_{1}}{K_{2}}$ $\frac{\left(\tilde{r} \tilde{r} \right)}{\left[\tilde{c} \tilde{c} \right]} = \frac{K_{1}}{K_{2}}$ $\frac{\left(\tilde{r} \tilde{r} \right)}{\left[\tilde{c} \tilde{c} \right]} = \frac{K_{1}}{K_{2}}$ $\frac{\left(\tilde{r} \tilde{r} \right)}{\left[\tilde{c} \tilde{c} \right]} = \frac{K_{1}}{K_{2}}$ $\frac{\left(\tilde{r} \tilde{r} \right)}{\left[\tilde{c} \tilde{c} \right]} = \frac{K_{1}}{K_{2}}$ $\frac{\left(\tilde{r} \tilde{r} \right)}{\left[\tilde{c} \tilde{c} \right]} = \frac{K_{1}}{K_{2}}$ $\frac{\left(\tilde{r} \tilde{r} \right)}{\left[\tilde{c} \tilde{c} \right]} = \frac{K_{1}}{K_{2}}$ $\frac{\left(\tilde{r} \tilde{r} \right)}{\left[\tilde{c} \tilde{c} \right]} = \frac{K_{1}}{K_{2}}$ $\frac{\left(\tilde{r} \tilde{r} \right)}{\left[\tilde{c} \tilde{c} \right]} = \frac{K_{1}}{K_{2}}$ $\frac{\left(\tilde{r} \tilde{r} \right)}{\left[\tilde{c} \tilde{c} \right]} = \frac{K_{1}}{K_{2}}$ $\frac{\left(\tilde{r} \tilde{r} \right)}{\left[\tilde{c} \tilde{c} \right]} = \frac{K_{1}}{K_{2}}$ $\frac{\left(\tilde{r} \tilde{r} \right)}{\left[\tilde{c} \tilde{c} \right]} = \frac{K_{1}}{K_{2}}$ $\frac{\left(\tilde{r} \tilde{r} \right)}{\left[\tilde{c} \tilde{c} \right]} = \frac{K_{1}}{K_{2}}$ $\frac{\left(\tilde{r} \tilde{r} \right)}{\left[\tilde{c} \tilde{c} \right]} = \frac{K_{1}}{K_{2}}$ $\frac{\left(\tilde{r} \tilde{r} \right)}{\left[\tilde{c} \tilde{c} \right]} = \frac{K_{1}}{K_{2}}$ $\frac{\left(\tilde{r} \tilde{r} \right)}{\left[\tilde{c} \tilde{c} \right]} = \frac{K_{1}}{K_{2}}$ $\frac{\left(\tilde{r} \tilde{r} \right)}{\left[\tilde{c} \tilde{c} \right]} = \frac{K_{1}}{K_{2}}$ $\frac{\left(\tilde{r} \tilde{r} \right)}{\left[\tilde{c} \tilde{c} \right]} = \frac{K_{1}}{K_{2}}$ $\frac{\left(\tilde{r} \tilde{r} \right)}{\left[\tilde{c} \tilde{c} \right]} = \frac{K_{1}}{K_{2}}$ $\frac{\left(\tilde{r} \tilde{r} \right)}{\left[\tilde{c} \tilde{c} \right]} = \frac{K_{1}}{K_{2}}$ $\frac{\left(\tilde{r} \tilde{r} \right)}{\left[\tilde{c} \tilde{c} \right]} = \frac{K_{1}}{K_{2}}$ $\frac{\left(\tilde{r} \tilde{r} \right)}{\left[\tilde{c} \tilde{c} \right]} = \frac{K_{1}}{K_{2}}$

Formula's

(i) Max^m Conc. of [B] = [Ao] $\left(\frac{K_2}{K_1}\right)^{\frac{m_2}{K_1-K_2}}$ (ii) Pine max" required for max" amount of B -> $\Gamma = \frac{1}{K_1 - K_2} lr \left(\frac{K_1}{K_2} \right)$

END OF CHEMICAL KINETICS