

UNIT II

CONCEPTUAL DATABASE DESIGN

Mapping EER Model into a Logical Design

to Relations

Mapping EER Model Constructs

Step 8: Options for Mapping Specialization or Generalization.

Convert each specialization with m subclasses $\{S_1, S_2, ..., S_m\}$ and generalized superclass C, where the attributes of C are $\{k,a_1,...a_n\}$ and k is the (primary) key, into relational schemas using one of the **four following options**:

8A: Options for Mapping Specialization/ Generalization

8A: Multiple relations-Superclass and subclasses.

Create a relation L for C with attributes Attrs(L) = $\{k,a_1,...a_n\}$ and PK(L) = k. Create a relation L_i for each subclass S_i, 1 < i < m, with the attributesAttrs(L_i) = $\{k\}$ U $\{attributes of S_i\}$ and PK(L_i)=k.

This option works for any specialization (total or partial, disjoint of over-lapping).

8B: Options for Mapping Specialization/ Generalization

8B: Multiple relations-Subclass relations only

Create a relation L_i for each subclass S_i , 1 < i < m, with the attributes $Attr(L_i) = \{attributes of <math>S_i\}$ U $\{k, a_1..., a_n\}$ and $PK(L_i) = k$.

This option only works for a specialization whose subclasses are total (every entity in the superclass must belong to (at least) one of the subclasses).

Example

CAR

<u>VehicleId</u>	LicensePlateNo	Price	MaxSpeed	NoOfPassengers
------------------	----------------	-------	----------	----------------

TRUCK

VehicleId LicensePlateNo	Price	NoOfAxles	
--------------------------	-------	-----------	--

8C: Options for Mapping Specialization/ Generalization

8C: Single relation with one type attribute.

Create a single relation L with attributes Attrs(L) = $\{k,a_1,...a_n\}$ U $\{attributes of S_1\}$ U...U $\{attributes of S_m\}$ U $\{t\}$ and PK(L) = k. The attribute t is called a **type (or discriminating) attribu**te that indicates the subclass to which each tuple belongs

S OF	Ssn	Fname	Minit	Lname	Birth_date	Address	Job_type	Typing_speed	Tgrade	Eng_type	S OF
------	-----	-------	-------	-------	------------	---------	----------	--------------	--------	----------	------

8D: Options for Mapping Specialization/ Generalization

8D: Single relation with multiple type attributes.

Create a single relation schema L with attributes Attrs(L) = $\{k,a_1,...a_n\}$ U $\{attributes of S_1\}$ U...U $\{attributes of S_m\}$ U $\{t_1, t_2,...,t_m\}$ and PK(L) = k.

Each t_i , 1 < I < m, is a Boolean type attribute indicating whether a tuple belongs to the subclass S_i .

Example

PART

Part_no	Description	Mflag	Drawing_no	Manufacture_date	Batch_no	Pflag	Supplier_name	List_price
---------	-------------	-------	------------	------------------	----------	-------	---------------	------------

Mapping EER Model Constructs to Relations (Cont.)

Mapping of Shared Subclasses (Multiple Inheritance)

A shared subclass, such as STUDENT_ASSISTANT, is a subclass of several classes, indicating multiple inheritance. These classes must all have the same key attribute; otherwise, the shared subclass would be modeled as a category.

Can apply any of the options discussed in Step 8 to a shared subclass, subject to the restriction discussed in Step 8 of the mapping algorithm.

Example – Shared Subclass

A specialization lattice with multiple inheritance for a UNIVERSITY database.

Example – Shared Subclass Solution

Mapping EER Model Constructs to Relations (Cont.)

- Step 9: Mapping of Union Types (Categories).
- For mapping a category whose defining superclass have different keys, it is customary to specify a new key attribute, called a surrogate key, when creating a relation to

correspond to the category.

Ø **(1)** <u>Q</u> Exa

Thanks!!