Evaluation and Analysis Report

Neural Network Implementation on the Medical Appointment No-Show Dataset

Aniket Mandal IIT Varanasi

Model 1: From-Scratch Implementation

Training Metrics

• Training Time: 10.40 seconds

• Best Threshold: 0.16

• Best F1 Score: 0.3406

• Accuracy: 30.67%

• PR-AUC: 0.2328

Confusion Matrix

 $\begin{bmatrix} 2823 & 14846 \\ 479 & 3958 \end{bmatrix}$

Model 2: PyTorch Implementation

Training Metrics

• Training Time: 2.13 seconds

• Best Threshold: 0.17

• Best F1 Score: 0.3498

• Accuracy: 45.50%

• PR-AUC: 0.2724

Confusion Matrix

$$\begin{bmatrix} 6817 & 10852 \\ 1196 & 3241 \end{bmatrix}$$

1. Convergence Time

	NumPy Model	PyTorch Model
Training Time	$10.40 \mathrm{\ s}$	2.13 s

Speedup Calculation:

Speedup Factor =
$$\frac{10.40}{2.13} \approx 4.88$$

Analysis: The PyTorch model converges 4.88 times faster due to optimized backend libraries (e.g., cuBLAS, MKL), efficient memory management, and possible parallelism. NumPy lacks such low-level optimizations.

2. Performance Metrics

Metric	NumPy Model	PyTorch Model
Accuracy	30.67%	45.50%
F1 Score	0.3406	0.3498
PR-AUC	0.2328	0.2724

3. Memory Usage

• NumPy model: ~ 9 MB

 \bullet PyTorch model: ${\sim}30~\mathrm{MB}$

Memory Calculation:

• Parameters: $14 \times 64 + 64 \times 1 + 64 + 1 = 1025$

• Memory: $1025 \times 4 = 4100$ bytes ≈ 4 KB

Additional memory includes activations, gradients, and optimizer states. PyTorch uses $3 \times$ the memory for optimizers like Adam: $3075 \times 4 = 12,300$ bytes ≈ 12 KB. Metadata and runtime buffers contribute to 30 MB usage.

Conclusion: PyTorch's flexibility and automation increase memory needs; NumPy is leaner but requires manual coding.

2

4. Confusion Matrix and Inference

NumPy Model

• True Negatives (TN): 2823

• False Positives (FP): 14846

• False Negatives (FN): 479

• True Positives (TP): 3958

Precision =
$$\frac{TP}{TP + FP} = \frac{3958}{3958 + 14846} \approx 0.210$$

Recall = $\frac{TP}{TP + FN} = \frac{3958}{3958 + 479} \approx 0.892$

Interpretation: High false positives indicate a bias towards predicting "No-show".

PyTorch Model

• True Negatives (TN): 6817

• False Positives (FP): 10852

 $\bullet\,$ False Negatives (FN): 1196

• True Positives (TP): 3241

Precision =
$$\frac{3241}{3241 + 10852} \approx 0.230$$

Recall = $\frac{3241}{3241 + 1196} \approx 0.730$

Interpretation: PyTorch offers a better trade-off between false positives and false negatives.

3

5. Final Analysis and Reflection

Why PyTorch performs better:

• Uses optimized C++/CUDA backends

• Supports GPU (though CPU used here)

ullet Better numerical stability

• Reduces implementation bugs and improves productivity

6. Summary Table

Aspect	NumPy Model	PyTorch Model
Training Time	$10.40 \mathrm{\ s}$ 30.67%	2.13 s $45.50%$
Accuracy F1 Score	0.3406	$\frac{45.50\%}{0.3498}$
PR-AUC	0.2328	0.2724
Memory Usage	$\sim 9 \text{ MB}$	$\sim 30 \text{ MB}$
Precision Recall	$\sim 21.0\%$ $\sim 89.2\%$	$\sim 23.0\%$ $\sim 73.0\%$