МЕТОД ВІД СУПРОТИВНОГО ПІД ЧАС ДОВЕДЕННЯ ДЕЯКИХ НЕРІВНОСТЕЙ + + НЕРІВНОСТІ З ВКЛАДЕННЯМИ

С. В. Хавелов, пос. ст. Тополі, Дворічанський р-н, Харківська обл.

Метод від супротивного широко використовується під час доведення багатьох тверджень. Розглянемо застосування цього методу для доведення деяких нерівностей.

Завдання 1

Довести нерівність

$$(3+x)(3+y)(3+z)(3+t) \ge 256$$
,

де x, y, z, t — додатні числа і xyzt=1.

Доведення

Доведемо від супротивного. Припустимо, що нерівність неправильна, тоді правильна нерівність (3+x)(3+y)(3+z)(3+t)<256. Покажемо, що це приведе до протиріччя.

$$xyzt = 1$$
.

Нехай x=y=z=t=1, тоді

(3+1)(3+1)(3+1)(3+1)<256, $4\cdot 4\cdot 4\cdot 4<256$, тобто 256<256 — неправильна нерівність (протиріччя).

Висновок. Вихідна нерівність правильна.

Завдання 2

Довести нерівність $(2+m)(2+n)(2+k) \ge 27$, де m, n, k — додатні числа і mnk=1. Указівка. Дивись доведення завдання 1.

Завдання 3

Довести нерівність $(7+a)(5+b) \ge 48$, де a, b — додатні числа і ab=1.

Указівка. Дивись доведення завдання 1.

Завдання 4

Довести нерівність,

$$\frac{1}{1+a} \cdot \frac{1}{2+b} \cdot \frac{1}{3+c} \cdot \frac{1}{4+d} \le \frac{1}{5!},$$

де a, b, c, d — додатні числа і abcd=1.

Доведення

 $5! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120$. Перейдемо до рівносильної нерівності $(1+a)(2+b)(3+d)(4+t) \ge 120$.

Припустимо, що нерівність неправильна, тоді правильна нерівність

$$(1+a)(2+b)(3+d)(4+t)<120$$
, $abcd=1$.

Нехай a = b = c = d = 1, тоді

(1+1)(2+1)(3+1)(4+1)<120, $2\cdot 3\cdot 4\cdot 5<120$, тобто 120<120 — неправильна нерівність (протиріччя).

Висновок. Вихідна нерівність правильна.

Завдання 5

Розв'язати показникову нерівність $c^{x^2-4x+3}>1$, де $c=\frac{5}{(2+a)(1+b)}$, a>0, b>0 і ab=1.

Розв'язання

Як і в завданні 1, маємо, що правильна нерівність $(2+a)(1+b) \ge 6$ при a>0, b>0 і ab=1. Тоді $0<\frac{5}{(2+a)(1+b)} \le \frac{5}{6} < 1$, тобто 0< c<1

і показникова функція $y = c^t$ — спадна.

Тоді
$$c^{x^2-4x+3} > 1 = c^0$$
 і $x^2-4x+3 < 0$.

Розв'яжемо квадратну нерівність, дістанемо $x \in (1;3)$.

Відповідь. (1;3).

Завдання 6

Розв'язати логарифмічну нерівність $\log_a^2 x - 5\log_a x + 4 \le 0$, де $a = \frac{(2+m)(2+n)(2+k)}{25}$,

m, n, k — додатні числа і mnk=1.

Розв'язання

Скористаємося завданням 2, маємо $(2+m)(2+n)(2+k) \ge 27$, тоді

$$a = \frac{(2+m)(2+n)(2+k)}{25} \ge \frac{27}{25} > 1,$$

отже, логарифмічна функція $y = \log_a x$ — зростаюча.

Нехай $\log_a x = y$, тоді нерівність набуває вигляду $y^2 - 5y + 4 \le 0$. Розв'яжемо квадратну нерівність, дістанемо $y \in [1;4]$, тобто $1 \le y \le 4$, $1 \le \log_a x \le 4$, $\log_a a \le \log_a x \le \log_a a^4$.

Тоді
$$a \le x \le a^4$$
, $x \in [a; a^4]$.

Відповідь.
$$\left[a;a^4\right]$$
, де $a=rac{\left(2+m
ight)\left(2+n
ight)\left(2+k
ight)}{25}$,

m, n, k — додатні числа і mnk=1.

Завдання 7

Довести, що для довільного гострокутного трикутника має місце нерівність

$$\sin\alpha + \sin\beta + \sin\gamma \ge \frac{3\sqrt{3}}{2}.$$

Доведення

Припустимо, що нерівність неправильна, тоді правильна нерівність

$$\sin\alpha + \sin\beta + \sin\gamma < \frac{3\sqrt{3}}{2}.$$

Покажемо, що це приведе до протиріччя. Нехай $\alpha = \beta = \gamma = 60^{\circ}$. Тоді

$$\sin 60^{\circ} + \sin 60^{\circ} + \sin 60^{\circ} < \frac{3\sqrt{3}}{2}$$
,

$$\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} < \frac{3\sqrt{3}}{2}$$

тобто $\frac{3\sqrt{3}}{2} < \frac{3\sqrt{3}}{2}$ — неправильна нерівність (протиріччя).

Висновок. Вихідна нерівність

$$\sin \alpha + \sin \beta + \sin \gamma \ge \frac{3\sqrt{3}}{2}$$

правильна.

Завдання 8

Довести, що для довільного гострокутного трикутника має місце нерівність $tg\,\alpha + tg\,\beta + tg\,\gamma > \frac{3\sqrt{3}}{2}\,.$

Доведення

 α , β , γ — гострі кути, тоді $0 < \cos \alpha < 1$; $0 < \cos \beta < 1$; $0 < \cos \gamma < 1$.

$$tg\alpha + tg\beta + tg\gamma = \frac{\sin\alpha}{\cos\alpha} + \frac{\sin\beta}{\cos\beta} + \frac{\sin\gamma}{\cos\gamma} >$$

$$> \frac{\sin \alpha}{1} + \frac{\sin \beta}{1} + \frac{\sin \gamma}{1} = \sin \alpha + \sin \beta + \sin \gamma \ge \frac{3\sqrt{3}}{2}$$
.

Ми скористалися результатом завдання 7.

Тоді нерівність $\operatorname{tg}\alpha + \operatorname{tg}\beta + \operatorname{tg}\gamma > \frac{3\sqrt{3}}{2}$ правильна.

Завдання 9

Довести, що в гострокутному трикутнику має місце нерівність $\cos\alpha + \cos\beta + \cos\gamma \ge 1,5$.

Доведення

Припустимо, що нерівність неправильна, тоді правильна нерівність

$$\cos \alpha + \cos \beta + \cos \gamma < 1.5.$$

Покажемо, що це приведе до протиріччя. Нехай $\alpha = \beta = \gamma = 60^{\circ}$. Тоді

$$\cos 60^{\circ} + \cos 60^{\circ} + \cos 60^{\circ} < 1,5, \quad \frac{1}{2} + \frac{1}{2} + \frac{1}{2} < 1,5,$$

тобто 1,5 < 1,5 — неправильна нерівність (протиріччя).

Висновок. Вихідна нерівність

$$\cos\alpha + \cos\beta + \cos\gamma \ge 1,5$$

правильна.

Завдання 10

Довести, що для довільного гострокутного трикутника має місце нерівність ${\rm ctg}\alpha + {\rm ctg}\beta + {\rm ctg}\gamma > 1,5$.

Доведення

 α , β , γ — гострі кути, тоді $0 < \sin \alpha < 1$, $0 < \sin \beta < 1$, $0 < \sin \gamma < 1$.

$$ctg\alpha + ctg\beta + ctg\gamma = \frac{\cos\alpha}{\sin\alpha} + \frac{\cos\beta}{\sin\beta} + \frac{\cos\gamma}{\sin\gamma} >$$

$$> \frac{\cos \alpha}{1} + \frac{\cos \beta}{1} + \frac{\cos \gamma}{1} = \cos \alpha + \cos \beta + \cos \gamma \ge 1,5.$$

Ми скористалися результатом завдання 9. Тоді нерівність $ctg\alpha+ctg\beta+ctg\gamma>1,5$ правильна.

Завдання 11

Довести, що для довільного гострокутного трикутника має місце нерівність $\sin\alpha + \cos\beta + tg\,\gamma > 3$.

ПОЗАКЛАСНА РОБОТА

Доведення

Припустимо, що нерівність неправильна, тоді правильна нерівність $\sin\alpha + \cos\beta + tg\gamma \le 3$. Покажемо, що це приведе до протиріччя.

Нехай $\alpha = \beta = \gamma = 60^{\circ}$. Тоді

$$\sin 60^{\circ} + \cos 60^{\circ} + tg \, 60^{\circ} \! \leq \! 3, \ \frac{\sqrt{3}}{2} + \frac{1}{2} + \sqrt{3} \! \leq \! 3,$$

тобто $\frac{3\sqrt{3}+1}{2} \le 3$ — неправильна нерівність

(протиріччя), оскільки $\frac{3\sqrt{3}+1}{2} > 3$.

Висновок. Вихідна нерівність

$$\sin \alpha + \cos \beta + tg \gamma > 3$$

правильна.

Завдання 12

Розв'язати логарифмічну нерівність $\log_a(4x-1)>0$, де $a=\sin\alpha+\sin\beta+\sin\gamma$, α , β , γ — кути гострокутного трикутника.

Розв'язання

Скористаємося завданням 7, маємо

$$\sin\alpha + \sin\beta + \sin\gamma \ge \frac{3\sqrt{3}}{2},$$

тоді

$$a = \sin \alpha + \sin \beta + \sin \gamma \ge \frac{3\sqrt{3}}{2} > 1$$
,

отже, логарифмічна функція $y = \log_a t$ — зростаюча. $\log_a (4x-1) > 0 = \log_a 1$, 4x-1 > 1, 4x > 2, x > 2.

Відповідь. $(0,5;+\infty)$.

Завдання 13

Розв'язати показникову нерівність $a^{2x}-6a^x+5<0$, де $a=\frac{1}{\mathrm{tg}\,\alpha+\mathrm{tg}\,\beta+\mathrm{tg}\,\gamma}$, α , β , γ — кути гострокутного трикутника.

Розв'язання

Скористаємося завданням 8, маємо $tg\,\alpha + tg\,\beta + tg\,\gamma > \frac{3\sqrt{3}}{2}\,, \ \text{тоді} \ tg\,\alpha + tg\,\beta + tg\,\gamma > 1,$ $0 < \frac{1}{tg\,\alpha + tg\,\beta + tg\,\gamma} < 1, \ \text{тобто} \ 0 < a < 1, \ \text{отже},$ функція $y = a^t$ — спадна.

Нехай $a^x = y$, тоді нерівність набуває вигляду $y^2 - 6y + 5 < 0$. Розв'яжемо квадратну нерівність, дістанемо $y \in (1;5)$, 1 < y < 5, $1 < a^x < 5$, $a^0 < a^x < a^{\log_a 5}$, $\log_a 5 < x < 0$, $x \in (\log_a 5;0)$.

Відповідь.
$$(\log_a 5;0)$$
, де $a = \frac{1}{\operatorname{tg} \alpha + \operatorname{tg} \beta + \operatorname{tg} \gamma}$,

 α , β , γ — кути гострокутного трикутника.

Завдання 14

Розв'язати показникову нерівність $a^{2\sin x-1} < 1$, де $a = \cos \alpha + \cos \beta + \cos \gamma$, α , β , γ — кути гострокутного трикутника.

Розв'язання

Скористаємося завданням 9, маємо $a = \cos \alpha + \cos \beta + \cos \gamma \ge 1,5 > 1$, тоді функція $y = a^t$ — зростаюча. $a^{2\sin x - 1} < 1 = a^0$, $2\sin x - 1 < 0$, $\sin x < \frac{1}{2}$. Розв'яжемо нерівність, дістанемо

$$x\in\left(rac{5\pi}{6}+2\pi n;rac{13\pi}{6}+2\pi n
ight),\quad n\in\mathbb{Z}\,.$$
Відповідь. $\left(rac{5\pi}{6}+2\pi n;rac{13\pi}{6}+2\pi n
ight),\quad n\in\mathbb{Z}\,.$

Завдання 15

Довести, що для довільного гострокутного трикутника має місце нерівність

$$\begin{split} &\sin\alpha+\sin\beta+\sin\gamma+\cos\alpha+\cos\beta+\cos\gamma+\\ &+tg\,\alpha+tg\,\beta+tg\,\gamma+ctg\alpha+ctg\beta+ctg\gamma>3\Big(\sqrt{3}+1\Big). \end{split}$$

Доведення

Скористаємося нерівностями із завдань 7, 8, 9, 10:

$$\begin{aligned} \sin\alpha + \sin\beta + \sin\gamma &\geq \frac{3\sqrt{3}}{2}, \\ \cos\alpha + \cos\beta + \cos\gamma &\geq 1, 5, \\ tg\alpha + tg\beta + tg\gamma &> \frac{3\sqrt{3}}{2}, \\ ctg\alpha + ctg\beta + ctg\gamma &> 1, 5. \end{aligned}$$

Додамо почленно ці нерівності й перетворимо праву частину нерівності, дістанемо $\sin\alpha + \sin\beta + \sin\gamma + \cos\alpha + \cos\beta + \cos\gamma + \\ + tg\alpha + tg\beta + tg\gamma + ctg\alpha + ctg\beta + ctg\gamma > 3\left(\sqrt{3} + 1\right).$

Нерівність доведено.

Завдання 16

Довести, що для довільного гострокутного трикутника має місце нерівність $P \ge 3R\sqrt{3}$, де P — периметр трикутника, R — радіус описаного кола.

Доведення

Скористаємося завданням 9, маємо

$$\sin\alpha+\sin\beta+\sin\gamma\geq\frac{3\sqrt{3}}{2}.$$

За теоремою синусів:

$$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R,$$

тоді

$$P = a + b + c = 2R\sin\alpha + 2R\sin\beta + 2R\sin\gamma =$$

$$= 2R(\sin\alpha + \sin\beta + \sin\gamma) \ge 2R \cdot \frac{3\sqrt{3}}{2} = 3R\sqrt{3}.$$

Отже, $P \ge 3R\sqrt{3}$. Нерівність доведено.

Завдання 17

Довести, що для довільного гострокутного трикутника має місце нерівність $a\left(b^2+c^2\right)+b\left(a^2+c^2\right)+c\left(a^2+b^2\right)\geq a^3+b^3+c^3+3abc,$ де $a,\ b,\ c$ — сторони трикутника.

Доведення

Скористаємося завданням 9: у гострокутному трикутнику $\cos \alpha + \cos \beta + \cos \gamma \ge 1,5$.

За наслідком із теореми косинусів маємо:

$$\cos \alpha = \frac{b^2 + c^2 - a^2}{2bc}, \quad \cos \beta = \frac{a^2 + c^2 - b^2}{2ac},$$

$$\cos \gamma = \frac{b^2 + a^2 - c^2}{2ab},$$

тоді

$$\frac{b^{2}+c^{2}-a^{2}}{2bc} + \frac{a^{2}+c^{2}-b^{2}}{2ac} + \frac{b^{2}+a^{2}-c^{2}}{2ab} =$$

$$= \cos\alpha + \cos\beta + \cos\gamma \ge \frac{3}{2}.$$

Зведемо дроби до спільного знаменника, дістанемо

$$rac{aig(b^2+c^2-a^2ig)+big(a^2+c^2-b^2ig)+cig(b^2+a^2-c^2ig)}{2abc} \! \geq \! rac{3abc}{2abc}.$$

Этже,

$$a(b^2+c^2-a^2)+b(a^2+c^2-b^2)+c(b^2+a^2-c^2) \ge 3abc.$$

Перетворимо ліву частину нерівності, дістанемо

$$a(b^2+c^2)+b(a^2+c^2)+c(a^2+b^2) \ge a^3+b^3+c^3+3abc$$
.

Нерівність доведено.

Завдання 18

Довести, що для довільного гострокутного трикутника має місце нерівність $S \ge \frac{3abc\sqrt{3}}{4P}$, де $a,\ b,\ c$ — сторони трикутника, S — його площа, P — периметр.

Доведення

Скористаємося завданням 16. У гострокутному трикутнику $P \ge 3R\sqrt{3}$.

Відомо, що радіус описаного кола

$$R = \frac{abc}{4S}$$

тоді

$$P \ge \frac{3abc\sqrt{3}}{4S}$$

звідси

$$S \ge \frac{3abc\sqrt{3}}{4P}$$
.

Нерівність доведено.

Запропоновані в статті авторські задачі — гарний матеріал для організації творчої пошукової роботи з учнями, для підготовки до олімпіад з математики, роботи математичного гуртка, факультативу. Матеріал стане у пригоді під час підготовки до ЗНО.

ЛІТЕРАТУРА

- 1. Беккенбах Э., Беллман P. Неравенства. М. : Мир, 1965.
- 2. Коваленко В. Г., Гельфан ∂ М. Б., Ушаков Р. П. Доведення нерівностей. К. : Вища школа, 1979.
- 3. Алексеев Р. Б., Курляндчик Л. Д. Нетрадиционные способы доказательства традиционных неравенств // Математика в школе. 1991. N = 4.