FIT9137 Introduction to Computer Architecture and Networks

Week 3: Memory Design & Management Safi Uddin

www.shutterstock.com • 548025055

A 4-bit Memory Address & 16 Memory Locations

4-bit Memory Address & 16 Locations

	Address				Data							
Word	A ₃	A ₂	A ₁	A ₀	D ₇	D_6	D ₅	D_4	D_3	D_2	D_1	D ₀
0	0	0	0	0	1	1	0	1	1	1	1	0
1	0	0	0	1	0	0	1	1	1	0	1	0
2	0	0	1	0	1	0	0	0	0	1	0	1
3	0	0	1	1	1	0	1	0	1	1	1	1
4	0	1	0	0	0	0	0	1	1	0	0	1
5	0	1	0	1	0	1	1	1	1	0	1	1
6	0	1	1	0	0	0	0	0	0	0	0	0
7	0	1	1	1	1	1	1	0	1	1	0	1
8	1	0	0	0	0	0	1	1	1	1	0	0
9	1	0	0	1	1	1	1	1	1	1	1	1
10	1	0	1	0	1	0	1	1	1	0	0	0
11	1	0	1	1	1	1	0	0	0	1	1	1
12	1	1	0	0	0		1	0	0	1	1	1
13	1	0 1 1	0	1	0	1	1	0	1	1 0	1 1 1	0
12 13 14 15	1 1 1 1	1	1 0 0 1	1 0 1 0	1 0 0 1 0	0 1 1	0 1 1 0 0	0 0 1 1	0 1 0	0	1	0
15	1	1	1	1	0	1	0	1	1	0	1	1

4-bit Memory Address & 16 Locations with A Decoder

A 16X8 Memory

12-bit Memory Address & 4096 Locations

12-bit Memory Address & 4096 Locations

Selecting A Memory Location Using Decoder

Selecting A Memory Using Decoder

FIT9137 8

Selecting A Memory Using Decoder

Activity A:

Random Access Memory (RAM) Design using Memory Chips

- 1. 2K Byte (2¹¹ X 8) Memory Chip? How many address bits (lines)?
- 2. 2K Byte (2¹¹ X 8) Memory Chip? How many data bits to be read/write when we select these address bits (lines)?
- 3. A schematic diagram?

- 1. 2K Byte (2¹¹ X 8) Memory Chip? 11 address bits (lines)
- 2. 2K Byte (2¹¹ X 8) Memory Chip? 8 data bits to be read /write when we select 11 address bits (lines).
- 3. The size of the memory to be designed: $1M \text{ bit} = 2^7 \text{ X } 1K \text{ Byte}$
- 4. How many 2KB chips we need to build this new RAM?

- 1. 2K Byte (2¹¹ X 8) Memory Chip? 11 address bits (lines)
- 2. 2K Byte (2¹¹ X 8) Memory Chip? 8 data bits to be read/write when we select 11 address bits (lines).
- 3. The size of the memory to be designed: $1 \text{M bit} = 2^7 \text{ X 1K Byte}$
- 4. How many 2KB chips we need to build this new RAM?
 - \bigcirc = $(2^7 \times 2^{10} \text{ Byte})/(2 \times 2^{10} \times \text{ Byte})$
 - $O = 2^6$
 - \bigcirc = 64

- 1. 2K Byte (2¹¹ X 8) Memory Chip? 11 address bits (lines)
- 2. 2K Byte (2¹¹ X 8) Memory Chip? 8 data bits to be read/write when we select 11 address bits (lines).
- 3. The size of the memory to be designed: $1 \text{M bit} = 2^7 \text{ X 1K Byte}$
- 4. How many 2KB chips we need to build this new RAM?
 - \bigcirc = $(2^7 \times 2^{10} \text{ Byte})/(2 \times 2^{10} \times \text{ Byte}) = 2^6 = 64$
- 5. We can arrange this 64 chips of size 2K Byte in a grid arrangement.

- 8 rows and 8 columns in the design
- To select a particular byte in the above memory, we need to select the chip first (1 out of these 64 chips) by mentioning:
 - a row and a column numbers
 - O then mention the 11-bit address to select the appropriate byte in that chip.

Activity B:

Memory Management - Paging & Page Replacement Algorithms

Who manages the Memory? OS The Operating System

Paging:

- Programs/data is divided into logical sections called PAGES and
- physical memory is divided into areas called page FRAMES.
- A Page-Table then translates the pages to their corresponding frames at run-time.

Page size and Frame size are equal.

- When a program is running, its pages are brought into memory as required i.e. only the
 portion being executed is in memory.
- The rest stays on the hard drive. So we can now run programs which may be larger than the available physical memory.

Physical Memory To Stove 3 pages in 3 frames.

Follow the Workshop Acitivties Steps & Answer the Questions

End of the Workshop Tasks

Have a nice week ahead.
See You all Next Week