INF2604 – Geometria Computacional

Waldemar Celes

celes@inf.puc-rio.br

Departamento de Informática, PUC-Rio

Determinação de proximidade

► Regiões de Voronoi delimitam áreas cujo ponto associado é mais próximo

Dado um conjunto de pontos S, a Região de Voronoi de um ponto $\mathbf{p} \in S$

$$\textit{Vor}(\mathbf{p}) = \mathbf{x} \in \mathbb{R}^2 \ | \ \|\mathbf{x} - \mathbf{p}\| \leq \|\mathbf{x} - \mathbf{q}\| \ \forall \ \mathbf{q} \in \mathcal{S} \ | \ \mathbf{q}
eq \mathbf{p}$$

Diagrama considerando apenas dois pontos ${\bf p}$ e ${\bf q}$

Diagrama considerando apenas dois pontos p e q

► Regiões são semiplanos

$$Vor(\mathbf{p}) = H(\mathbf{p}, \mathbf{q}) = \mathbf{x} \in \mathbb{R}^2 \mid \|\mathbf{x} - \mathbf{p}\| \le \|\mathbf{x} - \mathbf{q}\|$$

Teorema

▶ A região de Voronoi $Vor(\mathbf{p})$ é a interseção de todos os semiplanos $H(\mathbf{p}, \mathbf{q})$, onde \mathbf{q} é qualquer outro ponto de S.

Teorema

▶ A região de Voronoi $Vor(\mathbf{p})$ é a interseção de todos os semiplanos $H(\mathbf{p}, \mathbf{q})$, onde \mathbf{q} é qualquer outro ponto de S.

Teorema fundamental da geometria discreta

▶ A interseção de um conjunto de objetos convexos é um conjunto convexo

Teorema

▶ A região de Voronoi $Vor(\mathbf{p})$ é a interseção de todos os semiplanos $H(\mathbf{p}, \mathbf{q})$, onde \mathbf{q} é qualquer outro ponto de S.

Teorema fundamental da geometria discreta

- ▶ A interseção de um conjunto de objetos convexos é um conjunto convexo
 - Prova: considere X_i um conjunto de objetos convexos e X a interseção desses conjuntos. Considere pontos arbitrários p e q de X. Por definição de interseção, estes pontos também pertencem a qualquer X_i e, como são convexo, pq também pertence a X_i e, consequentemente, a X.

Teorema

▶ A região de Voronoi $Vor(\mathbf{p})$ é a interseção de todos os semiplanos $H(\mathbf{p}, \mathbf{q})$, onde \mathbf{q} é qualquer outro ponto de S.

Teorema fundamental da geometria discreta

- ▶ A interseção de um conjunto de objetos convexos é um conjunto convexo
 - Prova: considere X_i um conjunto de objetos convexos e X a interseção desses conjuntos. Considere pontos arbitrários p e q de X. Por definição de interseção, estes pontos também pertencem a qualquer X_i e, como são convexo, pq também pertence a X_i e, consequentemente, a X.

Teorema

► Todas as regiões de Voronoi são convexas

Considere 3 pontos p, q, r

► Qual o diagrama de Voronoi?

Considere 3 pontos p, q, r

- ► Qual o diagrama de Voronoi?
 - ► Formado pelas linhas perpendiculares bissetoras dos segmentos pq, qr, rp
 - ► Necessariamente se encontram em um único ponto
 - Este ponto é o centro do círculo que passa pelos 3 pontos (encontro das mediatrizes define o circuncentro do triângulo)

Diagrama de Voronoi com 4 pontos

▶ Pontos cocirculares ou não

Diagrama de Voronoi com 4 pontos

► Pontos cocirculares ou não

Conjunto de pontos não degenerados

- ▶ Não existem 4 ou mais vértices cocirculares
- ► Todos os vértices de Voronoi tem grau 3

Teorema

▶ Dado um conjunto de pontos S e seu respectivo diagrama de Voronoi Vor(S), um ponto v é vértice de Voronoi sse existir um círculo com centro em v que passa por 3 pontos de S, e não existe nenhum outro ponto de S interior a este cículo.

Teorema

▶ Dado um conjunto de pontos S e seu respectivo diagrama de Voronoi Vor(S), um ponto v é vértice de Voronoi sse existir um círculo com centro em v que passa por 3 pontos de S, e não existe nenhum outro ponto de S interior a este cículo.

Exercício

- ▶ Para $n \ge 3$:
 - Quando o diagrama de Voronoi teria zero vértices?

Teorema

▶ Dado um conjunto de pontos S e seu respectivo diagrama de Voronoi Vor(S), um ponto v é vértice de Voronoi sse existir um círculo com centro em v que passa por 3 pontos de S, e não existe nenhum outro ponto de S interior a este cículo.

Exercício

- ▶ Para $n \ge 3$:
 - Quando o diagrama de Voronoi teria zero vértices?
 - ▶ Quando o diagrama de Voronoi teria **um** vértice?

Arestas de Voronoi

Tipos de arestas

- ► Finitas
- ► Semiinfinitas

Arestas de Voronoi

Tipos de arestas

- ► Finitas
- Semiinfinitas

Quando todos pontos são colineares

- ► Arestas são infinitas
- ► Arestas são desconectadas

Relação linear entre número de vértices e número de arestas

- ▶ Dados S com $n \ge 3$ pontos, o diagrama de Voronoi de S, Vor(S):
 - ► Tem no máximo 2*n* − 5 vértices
 - ▶ Tem no máximo 3n 6 arestas

Relação linear entre número de vértices e número de arestas

- ▶ Dados S com $n \ge 3$ pontos, o diagrama de Voronoi de S, Vor(S):
 - ▶ Tem no máximo 2n 5 vértices
 - ▶ Tem no máximo 3n 6 arestas
 - Prova:
 - ► Similar a grafo planar onde vértice no infinito é representado

Prova:

► Fórmula de Euler:

$$V - E + F = 2$$
$$(v+1) - e + n = 2$$

► Grau dos vértices: > 3

$$3(v+1) \leq 2e$$

- ► Substituindo a Fórmula de Euler nesta inequação
 - Vértices

$$3(v+1) \le 2(n+v+1-2)$$
 : $v \le 2n-5$

Arestas

$$3(2+e-n) \leq 2e$$
 : $e \leq 3n-6$

- ► Dado um diagrama inicial
- ► Acrescenta um ponto **p** no diagrama
 - ► Localiza a região de Voronoi *Vor*(**p**₁) que contém **p**
 - ► Acha bissetora de **pp**₁
 - ► Acha interseção com arestas da região: **x**₁ e **x**₂
 - ► Acha bissetora de **pp**₂
 - Até fechar região Vor(p)

Algoritmo incremental

► Complexidade $O(n^2)$

- ▶ Complexidade $O(n^2)$
 - ▶ Busca da região que contém ponto **p** pode ser melhorada?

- ► Complexidade $O(n^2)$
 - ▶ Busca da região que contém ponto **p** pode ser melhorada?
 - ▶ Sim, busca topológica fazendo inserções com coerência espacial

- ightharpoonup Complexidade $O(n^2)$
 - ▶ Busca da região que contém ponto **p** pode ser melhorada?
 - ► Sim, busca topológica fazendo inserções com coerência espacial
 - ► Construção de *Vor*(**p**) é sempre local?

- ► Complexidade $O(n^2)$
 - ▶ Busca da região que contém ponto **p** pode ser melhorada?
 - ▶ Sim, busca topológica fazendo inserções com coerência espacial
 - ► Construção de *Vor*(**p**) é sempre local?
 - Provavelmente na prática (diminuindo a complexidade)
 - ► Contra-exemplo?

Grafo dual

- Arcos conectam pontos próximos
 - ► Pontos cujas regiões de Voronoi compartilham uma aresta

Retificação dos arcos em arestas conectando pontos

Retificação dos arcos em arestas conectando pontos

- Arestas não se cruzam
- ► Subdivisão resultante é uma triangulação de S
- ► Triangulação é de **Delaunay**

Triangulação de Delaunay

- Explora dualidade com diagrama de Voronoi
 - Suponha uma triangulação de Delaunay $Del(S_k)$
 - Adiciona p
 - Marca triângulos cujo circuncírculos contém p
 - Elimina diagonais do polígono marcado
 - ► Insere arestas de **p** aos vértices desse polígono

Triangulação de Delaunay

- Explora dualidade com diagrama de Voronoi
 - Suponha uma triangulação de Delaunay $Del(S_k)$
 - Adiciona p
 - Marca triângulos cujo circuncírculos contém p
 - Elimina diagonais do polígono marcado
 - ► Insere arestas de **p** aos vértices desse polígono

- Vor(p) é delimitado pelas bissetoras de cada ponto vizinho
- Arestas representam arcos retificados dessas bissetoras

CVT - Centroidal Voronoi Tesselation

- ► Pontos geradores **p**_i representam **centros de massas** das correspondentes regiões de Voronoi *Vor*(**p**_i)
 - ► Regiões tendem a ser hexaedros regulares

Algoritmo de Lloyd

- ▶ Dado um conjunto inicial de geradores S
 - ▶ Gera o diagrama de Voronoi correspondente
- ► Itera até convergência
 - ► Move cada ponto gerador para o centro de massa da sua região
 - ► Regera o diagrama de Voronoi considerando os novos pontos

Algoritmo de Lloyd

- ▶ Dado um conjunto inicial de geradores *S*
 - ► Gera o diagrama de Voronoi correspondente
- ▶ Itera até convergência
 - ▶ Move cada ponto gerador para o centro de massa da sua região
 - ▶ Regera o diagrama de Voronoi considerando os novos pontos

Algoritmo de Lloyd

- ▶ Dado um conjunto inicial de geradores *S*
 - ► Gera o diagrama de Voronoi correspondente
- ▶ Itera até convergência
 - ▶ Move cada ponto gerador para o centro de massa da sua região
 - ► Regera o diagrama de Voronoi considerando os novos pontos

Diagrama de Voronoi Centroidal

Algoritmo de Lloyd

- ▶ Dado um conjunto inicial de geradores *S*
 - ► Gera o diagrama de Voronoi correspondente
- ▶ Itera até convergência
 - ▶ Move cada ponto gerador para o centro de massa da sua região
 - ▶ Regera o diagrama de Voronoi considerando os novos pontos

Diagrama de Voronoi em um domínio discretizado

► Exemplo: resolução de uma tela

Diagrama de Voronoi em um domínio discretizado

► Exemplo: resolução de uma tela

Métodos

- ► Construção por renderização
- ► Construção por dilatação iterativa

Construção por renderização de cones

- ▶ Vértices dos cones posicionados nos pontos geradores
- Vista ortográfica de cima
- ► Teste de visizilidade (depth test) garante corretude

Construção por renderização de cones

- ▶ Vértices dos cones posicionados nos pontos geradores
- Vista ortográfica de cima
- ► Teste de visizilidade (*depth test*) garante corretude

Construção por dilatação iterativa

- ► Cada ponto gerador é preenchido no domínio discreto
- ► A cada iteração, visita todos os pixels não preenchidos
 - ▶ Preenche pixel com atributo de vizinho preenchido, se houver
 - ► Repete o processo até que todos os pixels estejam preenchidos

W. Celes

Construção por dilatação iterativa

- ► Cada ponto gerador é preenchido no domínio discreto
- ► A cada iteração, visita todos os pixels não preenchidos
 - ▶ Preenche pixel com atributo de vizinho preenchido, se houver
 - Repete o processo até que todos os pixels estejam preenchidos

O(n) iterações

▶ Números de iterações proporcional ao número de pixels

Propagação completa com $\log n$ iterações

- ► Mas pode apresentar erros
 - ► Pequenos e contornáveis na maior parte dos casos

Preenchimento convencional

$$(x,y) \longrightarrow (x+i,y+j) \mid i,j \in \{-1,0,1\}$$

Preenchimento convencional

$$(x,y) \longrightarrow (x+i,y+j) \mid i,j \in \{-1,0,1\}$$

Preenchimento com saltos (jumps)

$$(x,y) \longrightarrow (x+i,y+j) \mid i,j \in \{-k,0,k\}$$

Estratégia

- ► Reduzir o passo à metade a cada iteração
 - ► Cada pixel recebe informações de 8 outras localizações
 - Mais a sua própria informação
 - ► Cada pixel armazena a informação de menor distância

Algoritmo

- ► Início
 - ► Semente com informações [s, pos(s)]
 - ▶ Não semente com informações [nil, nil]
- ► A cada iteração
 - Informações dos pixels são atualizadas
 - ► Escolhe-se a informação da menor distância

Possíveis erros

- ► No exemplo, *p* deveria ser *r*
 - ▶ Mas p' e p'' não tem r como menor distância

- ► *JFA* + 1
 - ▶ Uma passada extra com passo igual a 1 no final

- ► *JFA* + 1
 - ▶ Uma passada extra com passo igual a 1 no final
- ► *JFA* + 2
 - ▶ Duas passadas extras no final com passos 2 e 1

- ► *JFA* + 1
 - ▶ Uma passada extra com passo igual a 1 no final
- ► *JFA* + 2
 - ▶ Duas passadas extras no final com passos 2 e 1
- ▶ $JFA + \log n$ ou JFA^2
 - ▶ log *n* passadas adicionais

- ► *JFA* + 1
 - ▶ Uma passada extra com passo igual a 1 no final
- ► *JFA* + 2
 - Duas passadas extras no final com passos 2 e 1
- ▶ $JFA + \log n$ ou JFA^2
 - ▶ log *n* passadas adicionais

- ▶ JFA + 2 sementes (ou +n sementes)
 - ► Armazena os 2 (ou n) mais próximos
 - Aumenta uso de memória
 - Aumenta processamento para escolha do mínimo

Equação de um parabolóide

$$z = x^2 + y^2$$

Teorema

▶ Dado um conjunto de pontos S no plano xy, não cocirculares, a triangulação de Delaunay Del(S) é exatamente a projeção no plano xy das faces inferiores do fecho convexo dos pontos $(\mathbf{x}_i, \mathbf{y}_i, \mathbf{x}_i^2 + \mathbf{y}_i^2)$.

Complexidade computacional

- ▶ Determinação de fecho convexo 3D: $O(n \log n)$
 - ► Consequentemente, triangulação de Delaunay 2D: $O(n \log n)$

Complexidade computacional

- ▶ Determinação de fecho convexo 3D: $O(n \log n)$
 - ► Consequentemente, triangulação de Delaunay 2D: $O(n \log n)$

Teorema se aplica para dimensões maiores

A triangulação de Delaunay 3D pode ser obtida pela projeção no espaço xyz do fecho convexo 4D dos pontos $(\mathbf{x}_i, \mathbf{y}_i, \mathbf{z}_i, \mathbf{x}_i^2 + \mathbf{y}_i^2 + \mathbf{z}_i^2)$.

