Exercises for 5.11-5.12

1. Add missing items (Hint: lines 6 and 11 are one of the more useful theorems of sentential logic):

2. Suppose it is true that $\forall x [(Fx \lor Gx) \supset Hx]$, and suppose that Fa, where a is a constant. It follows that Ha. Turn this into a derivation. Here are the first two lines:

1.
$$\Gamma$$
 $\vdash \forall x [(Fx \lor Gx) \supset Hx]$ premise
2. Δ $\vdash Fa$ premise

3. Suppose everyone gets grumpy when hungry. So if everyone is hungry, everyone is grumpy. Turn this into a derivation. Here are the first two lines (Hx means x is hungry, Gx means x is grumpy; the conclusion you want to reach is $\Gamma \vdash \forall x Hx \supset \forall x Gx$):

1. Γ	$\vdash \forall x(Hx \supset Gx)$	premise
2. $\forall x H x$	$\vdash \forall x H x \qquad \dots$	

4. Consider: No one is flawless; so everyone has flaws. Let's turn this into a derivation. Let Fx mean 'x has flaws' and let k be a constant. Hint: assume that k is not F.

1. Γ	$\vdash \neg \exists x \neg Fx$ premise
2. ¬Fk	$\vdash \neg Fk$
3. ¬ <i>Fk</i>	$\vdash \exists x \neg Fx$
4. Γ, ¬Fk	$\vdash \neg \exists \neg Fx$
5. Г	$\vdash \neg \neg Fk$ 3,4, $\neg I$
6. Г	$\vdash Fk$ 5, $\neg E$
7. Г	$\vdash \forall x F x$

5. Consider: dragons are mythical creatures; but there are no mythical creatures; thus, there are no dragons. Formalize this. Let Dx mean that x is a dragon, Mx mean that x is a mythical creature. Hint: derive something that enables you to use \neg I.

1. Γ	$\vdash \forall x (Dx \supset Mx)$ premise
2. Δ	$\vdash \neg \exists x Mx$ premise
3. $\exists x Dx$	$\vdash \exists x D x$
4. <i>Da</i>	⊢ <i>Da</i> A
5. Γ	$\vdash Da \supset Ma$

6. Γ , Da	$\vdash Ma$	4,5,⊃E
7. Γ , Da	$\vdash \exists x M x$	6,∃I
8. $\Gamma, \exists x D x$	$\vdash \exists x M x$	3,7,∃E
9. $\Delta, \exists x Dx$	$\vdash \neg \exists x M x$	2
10. Γ, Δ	$\vdash \neg \exists x D x$	8,9,¬I

6. Prove $\vdash \forall x(Fx \supset \forall yGy) \supset \forall x \forall y(Fx \supset Gy)$.

(Hint: use $\forall E$ to get rid of the quantifiers, and then put them back on using $\forall I$.)