КОНСТРУИРОВАНИЕ ПРОГРАММ

Лекция № 02

Системы счисления и представление чисел в ЭВМ

Преподаватель: Поденок Леонид Петрович, 505а-5

+375 17 293 8039 (505a-5)

+375 17 320 7402 (ОИПИ НАНБ)

prep@lsi.bas-net.by

ftp://student:2ok*uK2@Rwox@lsi.bas-net.by/

Кафедра ЭВМ, 2022

Оглавление

Системы счисления и представление чисел в ЭВМ	3
Математическое понятие числа	
Множество целых чисел	5
Вычеты по модулю	
Множество рациональных чисел	
Множество действительных чисел	
Множество комплексных чисел	
Множество гиперкомплексных чисел	
Позиционная система счисления	
Непозиционные системы счисления	13
Система остаточных классов (СОК). Residue number system (RNS)	13
Двоичная система счисления	15
Сложение чисел, записанных в двоичной СС	
Умножение чисел, записанных в двоичной СС	20
Вычитание. Представление отрицательных чисел в дополнительном коде	21
Операции над двоичными представлениями [целых чисел]	22
Сдвиги	
Другие типы данных	
Особенности вычислений с плавающей запятой в двоичном представлении	25
Формат числа с плавающей запятой (плавающей точкой)	26
Нормальная форма и нормализованная форма	27
Стандарт IEEE 754	
Машинная эпсилон	32
CROMOTERS HARRIE A MY VOMBLIOTERILLIV BROBETSERIOUMA	77

Системы счисления и представление чисел в ЭВМ

Математическое понятие числа

```
— натуральные — \mathbb{N} (natural);

— целые — \mathbb{Z} (integer, integral);

— рациональные — \mathbb{Q} (rational);

— действительные (вещественные) — \mathbb{R} (real);

— комплексные — \mathbb{C} (complex);

— гиперкомплексные (кватернионы) \mathbb{H} (quaternion, hypercomplex).
```

Свойства числовых множеств

- замкнутость;
- коммутативность (перестановочность);
- ассоциативность (сочетательность);
- дистрибутивность (распределительность);
- существование обратного числа;
- существование противоположного числа.

Свойство замкнутости некоторого множества относительно математической операции означает, что результат операции принадлежит этому множеству

$$c = a \star b$$
 $a \in M, b \in M, c \in M$.

Свойство коммутативности бинарной операции * (переместительности)

$$a \star b = b \star a$$
.

Пример:

$$a+b=b+a; \quad a\cdot b=b\cdot a;$$

Свойство ассоциативности бинарной операции * (сочетательности)

$$(a \star b) \star c = a \star (b \star c).$$

Пример:

$$a+b+c=(a+b)+c=a+(b+c),$$

$$a\cdot b\cdot c=(a\cdot b)\cdot c=a\cdot (b\cdot c).$$

Свойство дистрибутивности бинарной операции ○ (распределительности) отностительно бинарной операции ★

$$a \circ (b \star c) = (a \circ b) \star (a \circ c).$$

Пример:

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c).$$

Обратное и противоположное числа

$$b \cdot a = 1,$$

$$b + a = 0$$
.

Множество целых чисел \mathbb{Z}

Целые числа — числа, получаемые объединением натуральных чисел с множеством чисел противоположных натуральным и нулём

$$\mathbb{Z} = \{ \cdots -2, -1, 0, 1, 2, \dots \}$$
.

Противоположное число

$$b + a = 0.$$

Множество натуральных чисел входит в множество целых чисел

$$\mathbb{N} \subset \mathbb{Z}$$
.

Любое целое число можно представить как разность двух натуральных.

Целые числа замкнуты относительно сложения, вычитания и умножения (но не деления); в общей алгебре такая алгебраическая структура называется кольцом (ring).

Вычеты по модулю \mathbb{Z}/n

Если два целых числа a и b при делении на целое m дают одинаковые остатки, то они называются сравнимыми (или равноостаточными) по модулю числа m. Записывается так:

$$a \equiv b \pmod{m}$$

Число m называется модулем.

Любое целое число при делении на m дает один из m возможных остатков — от 0 до m-1. Это значит, что все целые числа можно разделить на m групп, каждая из которых отвечает определённому остатку от деления на m. Эти остатки называются вычетами по модулю m.

Арифметические операции с остатками чисел по фиксированному модулю образуют модульную (модулярную) арифметику, которая широко применяется в математике, информатике и криптографии.

Вычеты по модулю простого числа \mathbb{Z}/p замкнуты также относительно деления — в общей алгебре такая алгебраическая структура называется конечным полем или полем Галуа (finite field или Galois field).

$$7+5=1 \mod 11;$$
 $\langle 7+5
angle_{11}=1;$ $\langle 7\cdot 5
angle_{11}=2;$ $\langle 7\div 5
angle_{11}=8;$ Проверим: $5\cdot 8=40\equiv 7 \pmod {11}$

https://ru.wikipedia.org/wiki/Сравнение_по_модулю

Виноградов И. М. Основы теории чисел. — М.—Л.: Гос. изд. технико-теоретической литературы, 1952. - C.41-45. - 180 с.

Множество рациональных чисел **Q**

Рациональные числа — числа, представимые в виде дроби

$$\frac{m}{n}$$
, $(n \neq 0)$.

где m — целое число, а n — натуральное. Иногда n полагают натуральным числом, возлагая ответственность за знак дроби на числитель.

Формальное определение:

$$\mathbb{Q} = \left\{ \frac{m}{n} \mid m \in \mathbb{Z}, \ n \in \mathbb{N} \right\}. \tag{1}$$

Еще одно формальное определение – множество классов эквивалентности пар:

$$\{(m, n) \mid m, n \in \mathbb{Z}, n \neq 0\} \tag{2}$$

Рациональные числа замкнуты относительно всех четырёх арифметических действий — сложения, вычитания, умножения и деления (кроме деления на ноль).

В общей алгебре такая алгебраическая структура называется полем (field).

Обратное число

$$b \cdot a = 1$$
,

Свойства:

- сложение, умножение и деление;
- коммуативность сложения и умножения;
- ассоциативность сложения и умножения;
- дистрибутивность умножения относительно сложения;
- наличие нуля и единицы;
- наличие противоположных чисел;
- наличие обратных чисел;
- множество рациональных чисел **счётно** (все рациональные числа можно пронумеровать, т.е. установить биекцию между множествами рациональных и натуральных чисел).
- в *позиционной системе счисления* рациональное число представляется *периодической дробью*. Наличие представления в виде периодической дроби является критерием рациональности вещественного числа.

$$(1/2)_2 = 0, 10000 \dots = 0, 1\{0\}$$

 $(1/2)_{10} = 0, 50000 \dots = 0, 5\{0\}$
 $(1/3)_2 = 0, 010101 \dots = 0, \{01\}$
 $(1/3)_{10} = 0, 33333 \dots = 1, \{3\}$

Между любыми двумя различными рациональными числами a и b существует бесконечно много рациональных чисел. Иначе говоря, не существует двух соседних рациональных чисел. В частности, не существует наименьшего положительного рационального числа.

Множество действительных чисел $\mathbb R$

Действительные (вещественные) числа — числа, представляющие собой расширение множества рациональных чисел \mathbb{Q} , замкнутое относительно некоторых важных для математического анализа операций (квадратура круга, соизмеримость...).

Множество действительных чисел $\mathbb R$ включает множество рациональных чисел $\mathbb Q$ и множество иррациональных чисел $\mathbb I$, не представимых в виде отношения целых.

Действительные числа подразделяются на алгебраические и трансцендентные.

При этом каждое действительное трансцендентное является иррациональным, а каждое рациональное число — действительным алгебраическим.

Алгебраическое число — корень многочлена (не равного тождественно нулю) с коэффициента-ми из $\mathbb Q$

$$0 = P^{n}(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \quad a_k \in \mathbb{F}.$$
(3)

Поле алгебраических чисел обычно обозначается А.

Трансцендентное число — это вещественное или комплексное число, не являющееся алгебраическим — иными словами, число, которое не может быть корнем многочлена с рациональными коэффициентами (не равного тождественно нулю).

Примеры трансцендентных чисел: число π ; число e; десятичный логарифм любого натурального числа, кроме чисел вида $10^{\pm n}$; $\sin a, \cos a$ и $\lg a$ для любого ненулевого алгебраического числа a.

https://ru.wikipedia.org/wiki/Вещественное_число

Множество комплексных чисел $\mathbb C$

Комплексные числа — числа, являющиеся расширением множества действительных чисел $\mathbb R$. Они могут быть записаны в виде

$$z = x + i y$$

где i – т. н. «мнимая» единица, для которой выполняется равенство $i^2=1$.

Комплексные числа используются при решении задач электротехники, гидродинамики, картографии, квантовой механики, теории упругости и многих других.

Комплексные числа подразделяются на алгебраические и трансцендентные, как и действительные.

Гиперкомплексные числа — числа, являющиеся расширением множества комплексных чисел $\mathbb C$. Они могут быть записаны в виде

$$\lambda = a + i b + j c + k d,$$

где a,b,c и d — действительные числа; i,j и k — «мнимые» единицы, для которых выполняются следующие соотношения

$$i^2 = j^2 = k^2 = -1, \quad i \cdot j = k = -j \cdot i, \quad j \cdot k = i = -k \cdot j, \quad k \cdot i = j = -i \cdot k.$$

Гиперкомплексные числа (кватеринионы) широко используются в теоретической механике для представления поворотов, а также в инерциальной навигации.

изированное оборудование, например регистры перемещения. Их значение прибавляется к каждому адресу, сгенерированному процессом. Например, х86 использует четыре таких (сегментных) регистра.Представление чисел

Для перечисленных множеств чисел справедливо следующее выражение

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C} \subset \mathbb{H}$$
.

При этом каждое множество из указанных справа от символа «С» может быть сконструировано из множеств, указанных слева.

Система счисления (numeral system/system of numeration) — символический метод записи чисел, представление чисел с помощью письменных знаков, например букв или цифр.

Система счисления должна:

- дать каждому числу уникальное (или, по крайней мере, стандартное) представление;
- отражать алгебраическую и арифметическую структуру чисел.

Системы счисления подразделяются на:

- позиционные;
- непозиционные;
- смешанные.

Позиционная система счисления

Позиционная система счисления — система счисления, в которой значение каждого числового знака (цифры) в записи числа зависит от его позиции (разряда).

Позиционная система счисления определяется целым числом b>1, называемым основанием системы счисления.

Система счисления с основанием b также называется b-ичной (двоичной, троичной, восьмеричной, десятичной и т.п.).

Целое число без знака x (натуральное с нулем) в b-ичной системе счисления представляется в виде конечной линейной комбинации степеней числа b:

$$x = a_0 + a_1 b + a_2 b^2 + \dots + a_{n-2} b^{n-2} + a_{n-1} b^{n-1} = \sum_{k=0}^{k} a_k b^k$$
 (4)

где a_k — целые числа, называемые **цифрами**, удовлетворяющими неравенству $0 \leqslant a_k < b$.

Данное представление является единственным.

$$x = a_0 + a_1 \, 10 + a_2 \, 10^2 + \dots + a_{n-2} \, 10^{n-2} + a_{n-1} \, 10^{n-1} = \sum_{k=0}^{k} a_k \, 10^k$$
 (5)

Каждый базисный элемент b^k таком представлении называется разрядом (позицией).

Старшинство разрядов и соответствующих им цифр определяется номером разряда k, который является показателем степени. С помощью n позиций в системе счисления с основанием b можно записать целые числа в диапазоне от 0 до b^n-1 , т.е. всего b^n различных чисел.

Непозиционные системы счисления

В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе.

Система остаточных классов (COK). Residue number system (RNS)

Представление числа в системе остаточных классов основано на понятии вычета и китайской теореме об остатках.

Вычет числа n по модулю p — остаток от деления n на p

$$a = k \cdot p + r, \quad r < p.$$

Записывается, как

 $r=a \mod p = \langle a \rangle_p$ — математическая запись r=a % p; — в языке программирования Си.

СОК определяется набором попарно взаимно простых модулей (m_1,m_2,\ldots,m_n) с произведением $M=m_1\cdot m_2\cdot \cdots \cdot m_n$ так, что каждому целому числу x из отрезка [0,M-1] ставится в соответствие набор вычетов (x_1,x_2,\ldots,x_n) , где $x_k=\langle x\rangle_{m_k}$.

При этом **китайская теорема об остатках** гарантирует однозначность такого представления для чисел из отрезка [0, M-1].

Преимущества:

В СОК арифметические операции (сложение, вычитание, умножение, деление) выполняются покомпонентно, если про результат известно, что он является целочисленным и также лежит в диапазоне [0, M-1].

Недостатки:

- возможность представления только ограниченного количества чисел;
- отсутствие эффективных алгоритмов для сравнения чисел, представленных в СОК;
- вычислительная сложность деления (нахождения обратной величины).

Используется для выполнения операций с большими целыми числами, в частности в криптографии и для точного решения плохо обусловленных линейных систем высокого порядка.

Двоичная система счисления

Двоичная система счисления — позиционная система счисления с основанием 2. Непосредственно реализуется в цифровых электронных схемах на логических вентилях, в связи с чем используется практически во всех современных компьютерах и прочих вычислительных электронных устройствах.

Двоичная запись чисел

В двоичной СС числа записываются с помощью пары символов (0 и 1). Обычно записанное число снабжают указателем справа внизу. Например, число в десятичной системе 5_{10} , в двоичной 101_2 .

Иногда двоичное число обозначают префиксом **0b**, например **0b101**.

Натуральные числа

Натуральное число, записываемое в двоичной системе счисления как

$$(a_{n-1}a_{n-2}\dots a_1a_0)_2,$$

имеет значение:

$$(a_{n-1}a_{n-2}\dots a_1a_0)_2 = \sum_{k=0}^{n-1} a_k 2^k,$$
(6)

где: n — количество цифр (знаков) в числе, a_k — цифры из множества $\{0,1\}$, k — порядковый номер цифры.

Отрицательные числа

Отрицательные двоичные числа обозначаются так же как и десятичные — знаком «-» перед числом. Отрицательное целое число, записываемое в двоичной системе счисления $(-a_{n-1}a_{n-2}\dots a_1a_0)_2$, имеет величину:

$$(-a_{n-1}a_{n-2}\dots a_1a_0)_2 = -\sum_{k=0}^{n-1} a_k 2^k.$$

В вычислительной технике широко используется запись отрицательных двоичных чисел в дополнительном коде.

```
0100 - +4
0011 - +3
0010 - +2
0001 - +1
0000 - 0
                         Инверсия
1111 - -1
                                    1110 + 1 \rightarrow 1111 | \rightarrow 0000 + 1 \rightarrow 0001 (1)
                  -0001
                                    1101 + 1 \rightarrow 1110  \rightarrow 0001 + 1 \rightarrow 0010 (2)
1110 - -2 -0010
1101 - -3 -0011
                                    1100 + 1 \rightarrow 1101 \qquad | \rightarrow 0010 + 1 \rightarrow 0011 (3)
1100 - -4 -0100 →
                                    1011 + 1 \rightarrow 1100  \rightarrow 0011 + 1 \rightarrow 0100 (4)
                 -1000 →
                                    0111 + 1 = 1000 = 8
```

-1 **1**111...1111 1111

Дробные числа

Дробное число можно представить, используя отрицательные степени основания

$$x = a_{n-1}b^{n-1} + a_{n-2}b^{n-2} + \dots + a_2b^2 + a_1b + a_0 + a_{-1}\frac{1}{b} + a_{-2}\frac{1}{b^2} + \dots$$
 (7)

и отделять в записи дробную часть от целой с помощью запятой. Тогда число, записываемое в двоичной системе счисления как $(a_{n-1}\,a_{n-2}\ldots a_1\,a_0\,,\,a_{-1}\,a_{-2}\ldots a_{-(m-1)}\,a_{-m})_2$, будет иметь величину:

$$(a_{n-1}a_{n-2}\dots a_1a_0, a_{-1}a_{-2}\dots a_{-(m-1)}a_{-m})_2 = \sum_{k=-m}^{n-1} a_k 2^k,$$

где: m — число цифр дробной части числа, a_k — цифры из множества $\{0,1\}$.

Сложение чисел, записанных в двоичной СС

Таблица сложения (наивная)

	0	1
0	0	1
1	1	10

Перенос C (Carry)

Слагаемое A ($1101\ 0010_2=210_{10}$)

Слагаемое В ($1011\ 1001_2 = 185_{10}$)

Сумма S

Перенос С

C	7 (128)	6 (64)	5 (32)	4 (16)	3 (8)	2 (4)	1 (2)	0 (0)
	1	1	1	0	0	0	0	?
	1	1	0	1	0	0	1	0
	1	0	1	1	1	0	0	1
	1	0	0	0	1	0	1	1
1	1	1	1	1	0	0	0	0

Сложение чисел, записанных в двоичной СС

Таблица сложения

С	Α	В	\sum	С	Sum
0	0	0	0	0	0
0	0	1	1	0	1
0	1	0	1	0	1
0	1	1	2	1	0
1	0	0	1	0	1
1	0	1	2	1	0
1	1	0	2	1	0
1	1	1	3	1	1

Умножение чисел, записанных в двоичной СС

Таблица умножения

	0	1
0	0	0
1	0	1

Сомножитель A ($1101_2 = 13_{10}$)

Сомножитель В ($1010_2 = 10_{10}$)

Произведение Р Перенос С

C	7 (128)	6 (64)	5 (32)	4 (16)	3 (8)	2 (4)	1 (2)	0 (0)
					1	1	0	1
					1	0	1	0
					0	0	0	0
				1	1	0	1	
			0	0	0	0		•
		1	1	0	1		•	
	1	0	0	0	0	0	1	0

Вычитание. Представление отрицательных чисел в дополнительном коде

Вычитание можно представить так

$$c = a - b = a + (-b).$$

Число 210:

1 1 0 1 0 0 1 0

1) наивное представление — добавляем знаковый разряд

S	1	1	0	1	0	0	1	0
							1	1

s = 0 — число положительное 210, s = 1 — число отрицательное -210.

Вычитание, однако, не упрощается — необходимо иметь разную аппаратуру для сложения положительных отрицательных чисел. Плюс, у нас появилось два нуля.

2) Число в дополнительном коде

Исходное число

210

1 1 0 1 0 0 1 0

Но отрицательное число формируем следующим образом:

Инвертируем все разряды

45

Добавляем единицу

Число в дополнительном коде

46

Проверяем (210 + 46) % 256 = 0

0	0	1	0	1	1	0	1
0	0	0	0	0	0	0	1
0	0	1	0	1	1	1	0
0	0	0	0	0	0	0	0

Операции над двоичными представлениями [целых чисел]

Кроме целых чисел упорядоченные последовательности 0 и 1 используются для двоичного представления и других информационных объектов, например, битовых строк, символов некоторого алфавита, символьных строк и прочих.

Операции над числами и прочими двоичными представлениями делятся на арифметические и логические.

Они бывают одноместные (унарные) и двуместные (бинарные).

Одноместные:

- логические поразрядная инверсия 0010 1101 → 1101 0010; (not)
- арифметические смена знака
 0010 1101 → 1101 0011; (neg)
- СДВИГИ.

Двуместные:

- арифметические сложение, вычитание, умножение, целочисленное деление.
- логические поразрядные AND, OR, XOR.

AND					
	0	1			
0	0	0			
1	0	1			

0	1
0	1
1	1

XOR		
	0	1
0	0	1
1	1	0

	0	1
0	1	0
1	0	1

Сдвиги

 a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0 0 влево (логический/арифметический) sal, sll

 $|a_0|$ $|0|a_7|a_6|a_5|a_4|a_3|a_2|a_1|$ вправо логический str

 $\begin{vmatrix} a_0 \end{vmatrix} \begin{vmatrix} a_7 \end{vmatrix} a_7 \begin{vmatrix} a_6 \end{vmatrix} a_5 \begin{vmatrix} a_4 \end{vmatrix} a_3 \begin{vmatrix} a_2 \end{vmatrix} a_1 \end{vmatrix}$ вправо арифметический sar

 $|a_0|$ $|a_0|$ $|a_7|$ $|a_6|$ $|a_5|$ $|a_4|$ $|a_3|$ $|a_2|$ $|a_1|$ вправо циклический ror

 $|a_7|$ $|a_6|a_5|a_4|a_3|a_2|a_1|a_0|a_7$ влево циклический rol

 $| a_6 | a_5 | a_4 | a_3 | a_2 | a_1 | a_0 | c |$ влево циклический через перенос rcr

 $|\mathsf{a}_0|$ $|\mathsf{c}|\mathsf{a}_7|\mathsf{a}_6|\mathsf{a}_5|\mathsf{a}_4|\mathsf{a}_3|\mathsf{a}_2|\mathsf{a}_1|$ вправо циклический через перенос rcl

s - shift a - arithmetic l - left

r - roll l - logic r - right

c – carry

Другие типы данных

Кроме чисел есть другие типы данных, которые могут быть представлены в двоичном виде. В области телекоммуникаций и компьютерных технологий используется стандарт, описывающий структуры данных для представления, кодирования, передачи и декодирования данных — **ASN.1** (Abstract Syntax Notation One).

Начиная с 1995 года, существенно пересмотренный ASN.1 описывается стандартом X.680. В России ASN.1 стандартизирован по:

ГОСТ Р ИСО/МЭК 8824-1-2001

ГОСТ Р ИСО/МЭК 8825-93

Особенности вычислений с плавающей запятой в двоичном представлении

- 1) разные компьютеры разные способы представления, соответственно, разные результаты при выполнении вычислений. Например, вычисления на CPU и GPU дадут разные результаты;
 - 2) неассоциативность результат вычислений зависит от порядка выполнения действий;
 - 3) некоммутативность результат вычислений зависит от перестановки операндов местами;
 - 4) ноль имеет знак;
 - 5) разность неравных чисел дает ноль.

Формат числа с плавающей запятой (плавающей точкой)

Число с плавающей запятой (или число с плавающей точкой) — форма представления действительных чисел, в которой число хранится в форме **мантиссы** и **показателя степени**.

При этом число с плавающей запятой имеет фиксированную относительную точность и изменяющуюся абсолютную.

Математически это записывается следующим образом:

$$(-1)^s \times M \times B^E,$$

где s — знак числа, M — мантисса, B — основание (2 или 10), E — порядок.

Мантисса — это целое число фиксированной длины, которое представляет старшие разряды действительного числа.

Порядок — это степень основания (базы) старшего разряда.

Примеры «научного» формата — 1.01e+2, 1.00110011e-16

Математически доказано, что числа с плавающей запятой с основанием 2 (двоичное представление) наиболее устойчивы к ошибкам округления, поэтому на практике встречаются только основания 2 и, реже, 10.

Реализация математических операций с числами с плавающей запятой в вычислительных системах может быть как аппаратная, так и программная.

Используемое наиболее часто представление утверждено в стандарте **IEEE 754**.

Нормальная форма и нормализованная форма

Нормальная форма числа с плавающей запятой называется такая форма, в которой мантисса (без учёта знака) находится на полуинтервале [0; 1) ($0 \le a < 1$).

Нормальная форма записи имеет недостаток: некоторые числа записываются неоднозначно (например, 0,0001 можно записать в 4-х формах:

$$0,0001 \cdot 10^{0}$$
; $0,001 \cdot 10^{1}$; $0,01 \cdot 10^{2}$; $0,1 \cdot 10^{3}$

и это очень неудобно с точки зрения аппаратной реализации вычислителя.

Нормализованная форма

мантисса десятичного числа принимает значения в диапазоне [1; 10) ($1 \le a < 10$) мантисса двоичного числа принимает значения в диапазоне [1; 2) ($1 \le a < 2$).

В нормализованной форме любое число кроме 0 записывается единственным образом.

Недостаток: в таком виде невозможно представить 0, поэтому компьютерное представление чисел с плавающей запятой предусматривает специальный формат представления нуля.

Так как старший разряд (целая часть числа) мантиссы двоичного числа (кроме 0) в нормализованном виде всегда равен «1», то при записи мантиссы числа в ЭВМ старший разряд можно не записывать, что и используется в стандарте **IEEE 754**. Это экономит один бит, так как неявную единицу не нужно хранить в памяти, и обеспечивает уникальность представления числа.

В позиционных системах счисления с основанием большим, чем 2 (в троичной, четверичной и др.), этого свойства нет.

Стандарт IEEE 754

IEEE 754 (Ай трипл И)— технический стандарт формата представления чисел с плавающей точкой, используемый как в программных реализациях арифметических действий, так и во многих аппаратных (CPU и FPU) реализациях.

Формат представляет собой «набор представлений числовых величин и символов», а также включает правила, согласно которым этот набор кодируется.

Изначально принят в 1985 как IEEE 754-85 институтом IEEE.

В настоящее время используется IEEE 754-2019, который является небольшой ревизией стандарта IEEE 754-2008, заменившего IEEE 754-1985 и включающего оригинальный IEEE 754-85 и стандарт IEEE 854-1987 (IEEE Standard for Radix-Independent Floating-Point Arithmetic). Имеется европский стандарт ISO/IEC/IEEE 60559:2011 (идентичный американскому IEEE 754).

В стандарт IEEE 754-2008 включены все бинарные форматы из первоначального стандарта, а также три новых базовых формата. В соответствии с действующим стандартом, реализация должна выполнять обработку по крайней мере одного из основных форматов арифметики и одного из форматов обмена.

Многие компиляторы языков программирования используют этот стандарт для хранения данных и выполнения математических операций.

Стандарт описывает

Определенные числа (finite number) по основанию 2 и 10. Каждое определенное число (как представлено в стандарте) описывается следующими целыми:

- s знак (0 или 1);
- p точность (precision);
- c мантисса (significand или коэффициент), имеющая не более p цифр по основанию b (т.е. представляющая целое от 0 до b^p-1 ;
- q показатель (exponent), лежащий в диапазоне $E_{min}\leqslant q+p-1\leqslant E_{max}$. и представляется как

$$(-1)^s \times c \times b^{q-p+1},$$

где b — основание (base или radix), равное 2 или 10.

Эффективное значение порядка сдвинуто и равно q-127 для чисел одинарной точности (float).

Кроме того, существует два нулевых значения, которые называются *нулями со знаком*. Знаковый бит s определяет является ли ноль +0 (положительный ноль) или -0 (отрицательный ноль).

Две бесконечности : $+\infty$ и $-\infty$.

```
+INF s = 0, экспонента = 1, мантисса = 0; -INF s = 1, экспонента = 1, мантисса = 0
```

Денормализованные числа

все биты экспоненты равны 0.

Неопределенность:

```
s = 1;
все биты экспоненты = 1;
первый бит мантиссы (2 для 80 битного числа) = 1;
остальные 0.
```

Два типа NaN:

```
qNaN — тихий, мягкий (quiet) — попав в операцию, возвратит NaN; 
sNaN — сигнализирующий (signaling) — попав в операцию, вызовет исключение; 
Формат NaN:
```



```
s — знак (в приложениях игнорируется);
х — дополнительная полезная информация (в приложениях игнорируется).
а = 1 — мягкий NaN;
а = 0 и доп. информация не равна нулю — сигнализирующий NaN.
```

Также стандарт описывает:

Методы, которые используются для преобразования числа в процессе математических операций;

Обработку исключительных ситуаций, таких как деление на нуль, переполнение, потеря значимости, работу с денормализованными числами и т.д.

Операции — арифметические и другие операции по арифметике форматов.

Name	Обычное название	Base	Digits	E min	E max	Decimal digits	Decimal E max
binary16	половинная точность	2	11	-14	+15	3.31	4.51
binary32	одинарная точность	2	24	-126	+127	7.22	38.23
binary64	двойная точность	2	53	-1022	+1023	15.95	307.95
binary128	четырехкрат. точность	2	113	-16382	+16383	34.02	4931.77
binary256	восмикратная точность	2	237	-262142	+262143	71.34	78913.2
decimal32		10	7	-95	+96	7	96
decimal64		10	16	-383	+384	16	384
decimal128		10	34	-6143	+6144	34	6144

Десятичное E max - это $emax \times log_{10}$ основание — (максимальная степень в десятичном формате)

Машинная эпсилон

В отличие от чисел с фиксированной запятой, сетка чисел, которые способна отобразить арифметика с плавающей запятой, неравномерна — она более густая для чисел с малыми порядками и более редкая — для чисел с большими порядками (Логарифмическая равномерность).

Относительная погрешность записи чисел одинакова и для малых чисел, и для больших. Поэтому можно ввести понятие машинной эпсилон.

Машинной эпсилон называется наименьшее положительное число ε такое, что $1\oplus \varepsilon \neq 1$ (знаком \oplus обозначено машинное сложение).

Числа a и b, соотносящиеся так, что $1 < \frac{a}{b} < 1 + \varepsilon$, машина не различает.

В стандарте C/C++ ISO

```
#include <cmath> (math.h) #include <limits> // определяет темплейт класса std::numeric_limits<double>::epsilon() (gcc \approx 1\cdot 10^{-16}) #include <cfloat> (float.h) FLT_EPSILON, DBL_EPSILON, LDBL_EPSILON
```

Свойства чисел и их компьютерных представлений

Сложение и умножение натуральных, целых, рациональных и вещественных чисел подчиняются следующим алгебраическим законам:

1) свойство замкнутости

Результат математической операции над элементами множества принадлежит этому же множеству.

2) коммутативный (переместительный) закон;

$$a+b=b+a$$

$$a \cdot b = b \cdot a$$

3) ассоциативный (сочетательный) закон;

$$(a+b) + c = a + (b+c) \qquad (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

4) дистрибутивный (распределительный) закон;

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

Для машинных представлений вещественных чисел свойство замкнутости, ассоциативный и дистрибутивный законы в общем случае не выполняются из-за ограниченной разрядной сетки.