ורכו

#4

PATENT THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the application of:

Izumi TAKEMOTO

Serial No.: 09/882,061

Filed: June 18, 2001

For: WOVEN FABRIC OF NOBLE METAL FILAMENT, AND AN APPARATUS AND

METHOD OF MANUFACTURING THE SAME

CLAIM OF PRIORITY UNDER 35 U.S.C. § 119

SEP 2 0 2001

Commissioner for Patents Washington, D.C. 20231

Sir:

The benefit of the filing date of prior foreign application No. 2000-181549 filed in Japan on June 16, 2000, is hereby requested and the right of priority provided in 35 U.S.C. §119 is hereby claimed.

In support of this claim, filed herewith is a certified copy of said original foreign application.

Respectfully submitted,

JACOBSON HOLMAN PLLC

By: //W/N S. /////// Allen S. Melser

Reg. No. 27,215

400 Seventh Street, N.W. Washington, D.C. 20004-2201 Telephone: (202) 638-6666

Atty. Docket No.: P66783US0 Date: September 18, 2001

ASM/cmf

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2000年 6月16日

出願番号

Application Number:

特願2000-181549

出 顏 人 Applicant(s):

竹本 いずみ

SEP 2 0 2001 TC 7700

2001年 5月31日

特許庁長官 Commissioner, Japan Patent Office

特2000-181549

【書類名】 特許願

【整理番号】 Y1H0511

【提出日】 平成12年 6月16日

【あて先】 特許庁長官殿

【発明者】

【住所又は居所】 東京都品川区上大崎2-9-11

【氏名】 竹本 いずみ

【特許出願人】

【住所又は居所】 東京都品川区上大崎2-9-11

【氏名又は名称】 竹本 いずみ

【代理人】

【識別番号】 100059959

【弁理士】

【氏名又は名称】 中村 稔

【選任した代理人】

【識別番号】 100067013

【弁理士】

【氏名又は名称】 大塚 文昭

【選任した代理人】

【識別番号】 100082005

【弁理士】

【氏名又は名称】 熊倉 禎男

【選任した代理人】

【識別番号】 100065189

【弁理士】

【氏名又は名称】 宍戸 嘉一

【選任した代理人】

【識別番号】 100096194

【弁理士】

【氏名又は名称】 竹内 英人

【選任した代理人】

【識別番号】 100074228

【弁理士】

【氏名又は名称】 今城 俊夫

【選任した代理人】

【識別番号】 100084009

【弁理士】

【氏名又は名称】 小川 信夫

【選任した代理人】

【識別番号】 100082821

【弁理士】

【氏名又は名称】 村社 厚夫

【選任した代理人】

【識別番号】 100086771

【弁理士】

【氏名又は名称】 西島 孝喜

【選任した代理人】

【識別番号】 100084663

【弁理士】

【氏名又は名称】 箱田 篤

【手数料の表示】

【予納台帳番号】 008604

【納付金額】

21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

特2000-181549

【書類名】 明細書

【発明の名称】 貴金属線を用いた織布及びその製造装置及び方法

【特許請求の範囲】

【請求項1】 経糸又は緯糸の少なくとも一方に、引張り強さ0.12N乃至6.5Nの貴金属製の単線を使用したことを特徴とする、貴金属線を用いた織布。

【請求項2】 前記貴金属製の単線の伸び率が1.5%以上であることを特徴とする、請求項1に記載の織布。

【請求項3】 前記貴金属製の単線の材質が、14金、18金、24金又は 金合金であることを特徴とする、請求項1又は請求項2に記載の織布。

【請求項4】 整経工程及び機準備工程によって経糸を準備する段階と、

貴金属製の単線の緯糸を、管巻機によってボビンに巻いて緯糸を準備する段階 と、

シャトル式織機によって織布を織る段階と、を有する貴金属線を用いた織布の 製造方法において、

管巻機によって緯糸をボビンに巻く工程において、緯糸を巻くボビンの回転速 度を連続的に変化させることを特徴とする、貴金属線を用いた織布の製造方法。

【請求項5】 経糸を準備するための整経機と、

貴金属製の単線の緯糸を、ボビンに巻いて緯糸を準備するための管巻機と、

準備された前記経糸及び前記緯糸によって織布を織るシャトル式織機と、を有する貴金属線を用いた織布の製造装置において、

前記管巻機が、緯糸を巻くボビンの回転速度を連続的に変化させるための変速 手段を有することを特徴とする、貴金属線を用いた織布の製造装置。

【請求項6】 前記変速手段がインバータであることを特徴とする、請求項 5に記載の貴金属線を用いた織布の製造装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は貴金属線を用いた織布及びその製造方法に関し、特に、金の単線を用

いて織った服地、布地、及び服飾品用の織布に関する。

[0002]

【従来の技術】

現在、服地や装飾品用に使用されている貴金属を用いて作られた布は、絹、綿、化学繊維等の糸の周りに貴金属の箔を巻き、その糸で布を織ったものである。これに対して、貴金属の単線(モノフィラメント)を用いて織られた織布、特に、純金の単線を用いて織られた織布は、半永久的にその輝きを失うことがなく、美しく、装飾品としての価値も高いものになると考えられることから、長年、その製造が試みられてきた。しかしながら、貴金属の細い単線、特に、金の単線は非常に切れやすいため、薄く、しなやかな織布を作るのは困難である。なお、本明細書では、貴金属とは金、銀、プラチナ及びイリジウム等の金属、及びそれらを含む合金を総称するものとする。

[0003]

金属の単線を使用した布状の製品としては、医療分野において使用される貴金 属製のメッシュがある。しかしながら、このメッシュは目が粗く、ゴワゴワして 柔軟性に欠けており、織布というより、むしろ金属製の網に分類されるべきもの である。

また、特公昭54-43636号公報は金属線編織布の製造法を開示している。この製造法は、多数(150本)のステンレス網線を銅管の中に通し、これにダイスによる引き抜き加工及び熱処理を繰り返し加えることにより細い複合線を作る。次に、この複合線で織物を織り、この織物に化学的処理を加えて外側の銅管のみを溶かすことにより、ステンレスの極細線で作られた織布を得る。この織布には柔軟性があるが、多数の極細線の束が織られたものであるためボリウム感がある、即ち、厚味のある織布になる。また、上記公報では、金等の貴金属による織布の製造方法については言及されていない。

[0004]

【発明が解決しようとする課題】

本発明の目的は、従来製造することができなかった、服地や装飾品としての使用に耐え得る、貴金属の単線による薄く、しなやかな織布を得ることにある。本

発明により、半永久的にその輝きを失うことがなく、美しく、装飾品としての価値も高い貴金属線を用いた織布を得ることができる。また、本発明による織布は、経糸、緯糸共に貴金属の単線を使用した場合には、織布から容易に金等の貴金属を回収し、リサイクルすることができ、これにより、織布の資産的価値も高いものとなる。

[0005]

【課題を解決するための手段】

本発明は、経糸又は緯糸の少なくとも一方に、引張り強さ0.12N乃至6.5Nの貴金属製の単線を使用したことを特徴とする貴金属線を用いた織布である。好ましくは、前記貴金属製の単線の伸び率が1.5%以上であるものを使用する。更に、前記貴金属製の単線の材質として、14金、18金、24金又は金合金を使用することが好ましい。

[0006]

本発明の他の側面は、整経工程及び機準備工程によって経糸を準備する段階と、貴金属製の単線の緯糸を、管巻機によってボビンに巻いて緯糸を準備する段階と、シャトル式織機によって織布を織る段階と、を有する貴金属線を用いた織布の製造方法において、管巻機によって緯糸をボビンに巻く工程において、緯糸を巻くボビンの回転速度を連続的に変化させることを特徴とする貴金属線を用いた織布の製造方法である。

本発明は又、経糸を準備するための整経機と、貴金属製の単線の緯糸を、ボビンに巻いて緯糸を準備するための管巻機と、準備された経糸及び緯糸によって織布を織るシャトル式織機と、を有する貴金属線を用いた織布の製造装置において、管巻機が、緯糸を巻くボビンの回転速度を連続的に変化させるための変速手段を有することを特徴とする、貴金属線を用いた織布の製造装置である。好ましくは、前記変速手段にインバータを使用する。

[0007]

【発明の実施の形態】

図面を参照して本発明の実施形態を説明する。図1は織物を製造する工程図であり、図2はシャトル式織機10の概略斜視図である。織物を製造するためには

、まず、経糸(たていと)と緯糸(よこいと)とを準備する必要がある。即ち、整経工程S1において必要な長さの経糸12を整経機(図示せず)によって男巻(おまき)22に巻く。次に、機準備(はたじゅんび)工程S2において、経糸12を間丁(けんちょう)24、綾竹26を経て、綜絖(そうこう)30a、30bに通す。綜絖30a、30bを出た経糸12は、更に、筬(おさ)34に通され、巻取りロール28に巻かれる。この実施形態では、綜絖を2枚使用しているが、より多くの綜絖を使用しても良い。また、本発明においては、経糸12は適当な直径、引張り強さ、及び伸び率を有する金の単線を使用する。使用する糸については後に詳述する。

[0008]

次に、緯糸14の準備について説明する。緯糸14はボビン巻き工程S3において、原料の緯糸14が巻かれた大きなリールから、シャトル32にセットすることができる小さなボビンに巻き直される。緯糸をリールからボビンに巻き取るための管巻機50の概略を図3に示す。管巻機50は、リール60を載せるための架台55と、糸を案内するためのリング56及びプーリ58と、糸を巻くボビン42を駆動するためのモータ52と、モータの回転速度を変化させるためのインバータ53と、回転速度を制御するための制御器54とを有する。

[0009]

この実施例において使用される緯糸14の金の単線は大きなリール60によって供給され、リール60に巻かれた単線はリング56を通り、プーリ58を経て、シャトルに取付けるためのボビン42に巻き取られる。ボビン42はモータ52によって回転駆動されるが、この際、本発明において使用する貴金属の単線は引張り強度が小さいため、絹糸や木綿糸等をボビンに巻き取る場合のように急激にモータ52を作動させると単線が切れてしまう。そこで、本発明においては、変速手段、例えば、インバータ53を介してモータ52を駆動して、モータ52が少しずつ連続的に加速するようにした。また、巻き終わりにボビン42を停止させる際にも、モータ52を少しずつ減速し、単線に強い力が加わらないようにした。このモータ52の加減速を制御するために、制御器54をインバータ53に取付けた。しかしながら、制御器54を取付けずに手動でモータ52の回転数

を制御しても良い。

[0010]

ボビン42に巻き直された緯糸14は、工程S4において、シャトル32にセットされる。シャトル32の概略を図4に示す。シャトル32は、軸受を有する枠体40と、前記軸受に支持された軸44と、前記軸44に通されたボビン42と、枠体40に取付けられた金具45と、金具45に取付けられたリング45aと、枠体40に取付けられた2つのばね48とを有する。ボビン42に巻かれた緯糸14は枠体40を越えて、リング45aの中を通り、一方のばね48の先端に設けられた輪を通り、更に、他方のばね48の先端に設けられた輪を通り、最後に金具45に設けられた輪の中を通って繰り出される。

[0011]

絹、木綿等の普通の糸を使って織布を織る場合、シャトル32が経糸12の間を往復する際に、ボビン42が回転してボビン42から順次緯糸14が繰り出され、織布が織られていくが、緯糸14として貴金属の単線を使用すると、ボビン42が回転しにくくなるために緯糸14が切れてしまう。これは、貴金属の単線の比重が大きいために、単線を巻いたボビン42が重くなり、軸44とボビン42との間の摩擦抵抗が大きくなるためである。そこで、本発明においては、ボールベアリング46をボビン42の両端に取付けることにより、ボビン42に働く摩擦抵抗を軽減させた。これにより切れやすい単線を使用した場合にも単線が切れにくくなる。

[0012]

経糸12及び緯糸14の準備が完了したら、製織工程S5で織布を織る。まず、綜絖30aを上げ、綜絖30bを下げて杼口を開き、その中にシャトル32を投入する。シャトル32が経糸12の間を通過したら、筬34を作動させ、緯糸14を織前に打ち寄せる。今度は、綜絖30aを下げ、綜絖30b上げて杼口を開き、その中にシャトル32を投入する。次いで、筬34を作動させ、緯糸14を織前に打ち寄せる。この動作を繰り返すことにより織布を織っていく。

[0013]

織機10の構成によっては、開口運動として、杼口を開ける際にどちらか一方

の綜絖のみを上げる上口開口、又はどちらか一方の綜絖のみを下げる下口開口を 採用しても良い。また、この実施形態では2枚の綜絖30a、30bを使用して いるが、より多くの綜絖を使用して複雑な織の織布を織ることもできる。

製織工程S5が完了したら、検反工程S6で完成した織布を検査し、製品が完成する。なお、ここでは、シャトル式の織機について説明したが、シャトルレス式の織機を使用してもよい。

[0014]

次に、織布を織る貴金属の単線について説明する。貴金属の極細の単線は、一般的に、絹や木綿等の糸よりも非常に弱く、織機を用いて織物を織るのが困難である。一般に、単線の直径が大きくなれば、線の引張り強さが大きくなるため、織布の製造工程において単線が切れることが少なくなり、織布を製造することは容易になるが、単線の直径があまり大きくなると、出来上がった織布に柔軟性がなくなり、もはや布としての使用に耐えないものになってしまう。本発明において、上記の織布の製造方法を用い、種々の材料の、種々の貴金属製の単線で試作を繰り返すことにより、貴金属の単線で布としての使用に耐え得る十分な柔軟性をもった織布を製造することに初めて成功した。本発明による貴金属線を用いた織布は十分な柔軟性を備えているので、従来の絹や木綿の織布と同様にミシンによって縫合することもでき、服飾の素材として通常の布と同様に使用することができる。

[0015]

織布の製造に使用する金属の単線は、直径が大きくなるほど、また、引張り強さが強くなるほど、製造工程中に単線が切れることは少なくなるが、直径が大きくなりすぎたり、引張り強さが強くなりすぎると、出来上がった織布がゴワゴワになり、もはや布としての使用に耐えないものとなる。また、同じ直径であったとしても、単線を作る材料によっては、引張り強さが低すぎるために、製造中に切れてしまったり、また、引張り強さが大きすぎるためにゴワゴワな織布になってしまう場合がある。また、同じ直径、同じ引張り強さであったとしても、単線が引張り力によって破断する際の伸び率が小さい場合には、単線の靭性が低いために、製造中に単線が切れてしまう場合もある。

[0016]

本発明において試作を繰り返した結果、引張り強さが 0.12N (ニュートン) 乃至 6.5N、好ましくは 0.20N 乃至 2.0N 八 引張り力によって単線が破断するときの伸び率が 1.5% 以上、好ましくは 2.0% 以上である場合にのみ上記の方法を使用して十分安定に織布を織ることができ、なおかつ完成した織布が十分にしなやかで布としての使用に耐え得るものであることがわかった。なお、 24 金の場合には 30μ m乃至 200μ m、好ましくは 40μ m乃至 60μ m、貴金属を含む他の合金の場合には、 14μ m乃至 100μ m程度の直径の単線が上記の条件に該当する。

[0017]

【実施例】

次に、本発明の具体的な実施例について説明する。ここでは、貴金属製の単線として、金(24金)の単線、及び純度99.7%の金に微量のGd(ガドリニウム)、Ca(カルシウム)等の元素を添加した国際出願番号PCT/JP96/00510号公報に開示された金合金(この明細書では単に金合金と呼ぶ)の単線を使用した場合について説明する。単線の直径は30、50、70、100 μ mのものを用いた。また、比較例として直径20 μ mの24金の単線についても織布を製造することを試みた。各単線の諸元を表1に示す。

【表 1 】

	単線の直径 μ m	材質	引張り強さ N	伸び率 %
実施例1	3 0	24金	0.141	6. 4
実施例 2	5 0	24金	0.410	6. 9
実施例3	7 0	24金	0.544	15.2
実施例4	3 0	金合金	0.884	2. 0
実施例5	5 0	金合金	1. 51	2. 0
実施例6	7 0	金合金	3. 16	1. 9
実施例7	100	金合金	6.04	2. 0
比較例1	20	24金	0.084	1. 3

[0018]

なお、単線の引張り強さ、及び伸び率は、当業者には良く知られた定速伸長形試験機を用いて測定した。単線を保持する間隔を10cm、引張り速度を10cm/minとして単線を引張り、単線が破断した時点での引張り荷重を引張り強さ、単線が延びた割合を伸び率とした。

[0019]

上記の実施例、比較例においては、経糸12、緯糸14とも同一の単線を使用して織布を織った。しかしながら、経糸12及び緯糸14に異なる材質、及び/又は直径の単線を使用してもよく、また、経糸12又は緯糸14に貴金属製の単線以外の単線を使用することもできる。表1の実施例1乃至実施例7に掲げた単線においては、何れの場合も織布を織ることができた。これに対して、比較例1に示した単線では、ボビン巻工程S3においても単線が切れやすく、また、製織工程S5においても頻繁に単線が切れてしまうため、実用になる程度に安定して織布を織ることができなかった。また、実施例1の場合には、十分安定して織布を織ることができなかった。また、実施例1の場合には、十分安定して織布を織ることができたが、ボビン巻工程S3において、特に、ボビンの巻取り速度の制御に細心の注意を払う必要があった。更に、実施例6では、製織工程S5において、単線の直径が大きいにも関わらず、単線が折れるように破断するケースが時折みられた。これは、単線の伸び率がやめ低いためと考えられる。

[0020]

完成した織布は、実施例1乃至実施例7全てについて、織布として使用できる しなやかさ、柔軟性を有していたが、実施例7の単線では、やや柔軟性が劣り、 布としての用途が多少限定されるものであった。

[0021]

【発明の効果】

本発明により、従来製造することができなかった、服地や装飾品としての使用 に耐え得る、貴金属の単線による薄く、しなやかな織布を得ることができる。

【図面の簡単な説明】

【図1】

織布の製造工程を示すブロック図である。

【図2】

シャトル式織機の概略斜視図である。

【図3】

管巻機の概略図である。

【図4】

ボビンを取付けたシャトルの概略図である。

【符号の説明】

1 0	織機
1 2	経糸
1 4	緯糸
2 2	男巻
2 4	間丁
2 6	綾竹
2 8	巻取りロール
30a, 30b	綜絖
3 2	シャトル
3 4	筬
4 2	ボビン
5 0	管巻機
5 2	モータ
5 3	インバータ
5 4	制御器

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【書類名】 要約書

【要約】

【課題】 従来製造することができなかった、服地や装飾品としての使用に耐え得る、貴金属の単線による薄く、しなやかな織布を得ること。

【解決手段】 本発明は、経糸又は緯糸の少なくとも一方に、引張り強さ0.1 2N乃至6.5Nの貴金属製の単線を使用したことを特徴とする貴金属線を用いた織布である。好ましくは、前記貴金属製の単線の伸び率が1.5%以上であるものを使用する。更に、前記貴金属製の単線の材質として、14金、18金、24金又は金合金を使用することが好ましい。

本発明の他の側面は、整経工程及び機準備工程によって経糸を準備する段階と、貴金属製の単線の緯糸を、管巻機によってボビンに巻いて緯糸を準備する段階と、シャトル式織機によって織布を織る段階と、を有する貴金属線を用いた織布の製造方法において、管巻機によって緯糸をボビンに巻く工程において、緯糸を巻くボビンの回転速度を連続的に変化させることを特徴とする貴金属線を用いた織布の製造方法である。

【選択図】 図1

特2000-181549

出願人履歴情報

識別番号

[500282704]

1. 変更年月日 20

2000年 6月16日

[変更理由] 新規登録

住 所 東京都品川区上大崎2-9-11

氏 名 竹本 いずみ