

EL ANILLO DE ENTEROS MÓDULO *n*

ALAN REYES-FIGUEROA TEORÍA DE NÚMEROS

(AULA 10) 16.AGOSTO.2022

Ya mencionamos que la congruencia módulo n, induce una relación de equivalencia sobre \mathbb{Z} . De hecho, mostramos que dos enteros $a,b\in\mathbb{Z}$ son congruentes módulo n si, y sólo si, dejan el mismo residuo r al dividirse dentro de n. Así, las clases de equivalencia módulo n son de la forma $n\mathbb{Z}+r$, con o $\leq r < n$.

Esto muestra que hay exactamente n clases de equivalencia, que podemos denotarlas como $n\mathbb{Z} + 0, n\mathbb{Z} + 1, n\mathbb{Z} + 2, \dots, n\mathbb{Z} + (n-1).$

Si \sim denota la relación de congruencia módulo n, entonces el cociente,

$$\mathbb{Z}/\sim = \{ \text{clases de equivalencia módulo } n \} = \{ n\mathbb{Z} + r, \ o \le r < n \},$$

posee una estructura de anillo, heredada a partir de \mathbb{Z} .

Denotamos este cociente por $\mathbb{Z}/n\mathbb{Z}$, (también se denota por $\mathbb{Z}/(n)$, \mathbb{Z}/n , \mathbb{Z}_n). $\mathbb{Z}/n\mathbb{Z}$ será llamado el **anillo de enteros módulo** n.

Como recordarán de sus cursos de álgebra, $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$ posee una estructura de anillo, con las operaciones

$$(n\mathbb{Z}+a)+(n\mathbb{Z}+b)=n\mathbb{Z}+(a+b\pmod{n}), \qquad (n\mathbb{Z}+a)\cdot(n\mathbb{Z}+b)=n\mathbb{Z}+(ab\pmod{n}).$$

En ocasiones, es más simple representar la clase $n\mathbb{Z}+r$ por su residuo \bar{r} . Las operaciones anteriores resultan

$$\bar{a} + \bar{b} = \overline{a + b}, \qquad \bar{a} \cdot \bar{b} = \overline{ab}.$$

Ejemplo: $\mathbb{Z}/6\mathbb{Z}$.

+	ō	1	$\bar{2}$	3	4	5		ō	1	2	3	4	5
ō	ō	1	-	3	4	5	ō	ō	ō	ō	ō	ō	ō
1	1	2	3	4	5	ō	1	ō	1	2	3	4	5
2	2	$\bar{3}$	4	5	ō	1	2	ō	2	4	ō	$\bar{2}$	4
3	3	4	5	ō	1	2	3	ō	3	ō	3	ō	3
4	4	5	ō	1	2	3	4	ō	4	2	ō	4	2
5	5	ō	1	2	3	4	5	ō	5	4	3	2	1

En general, $\mathbb{Z}/n\mathbb{Z}$ es un anillo conmutativo con unidad, esto es, es conmutativo, posee elemento neutro aditivo $\bar{0} = n\mathbb{Z}$, y posee un elemento identidad multiplicativo $\bar{1} = n\mathbb{Z} + 1$.

Sin embargo, en general no todo los elementos de $\mathbb{Z}/n\mathbb{Z}$ son invertibles.

Proposición

Sea $a, n \in \mathbb{Z}$, n > 1. Existe $b \in \mathbb{Z}$ tal que $ab \equiv 1 \pmod{n}$ si, y sólo si, (a, n) = 1. En otras palabras, a es invertible módulo n, si y sólo si, es primo relativo con n.

<u>Prueba</u>: Por el coroloario al Lema de Bézout, tenemos la siguiente cadena de equivalencias:

$$ab \equiv 1 \pmod{n} \iff n \mid ab - 1$$
 $\iff ab - 1 = nk \iff ab - nk = 1$
 $\iff (a, n) = 1.$

Diremos entonces que a es **invertible módulo** n, cuando (a, n) = 1. En ese caso, existe

 $b \in \mathbb{Z}$ tal que $ab \equiv 1$, y diremos que $b \pmod{n}$ es el **inverso módulo** n de a.

Este inverso es único (módulo n), pues si $ab \equiv 1$, $ab' \equiv 1 \pmod{n}$, entonces

$$b \equiv b \cdot 1 \equiv b(ab') \equiv (ba)b' \equiv (1)b' \equiv b' \pmod{n}.$$

Así, el inverso está bien definido, y tenemos que $\bar{a} \cdot \bar{1} = \bar{1} \ \Rightarrow \ \bar{a}^{-1} = \bar{b}$.

Definición

El **grupo de unidades módulo** n, denotado por $(\mathbb{Z}/n\mathbb{Z})^*$ o por U(n), se define como

$$U(n)=(\mathbb{Z}/n\mathbb{Z})^*=\{\bar{a}\in\mathbb{Z}/n\mathbb{Z}:\;(a,n)=1\}.$$

Obs! Note que U(n) es un grupo multiplicativo: si $\bar{a}, \bar{a'} \in U(n)$, existen $b, b' \in \mathbb{Z}$ tales que $ab \equiv 1 \pmod{n}$ y $a'b' \equiv 1 \pmod{n}$. Luego, $(aa')(bb') \equiv (ab)(a'b') \equiv 1 \cdot 1 \equiv 1 \pmod{n}$, y se tiene que $\overline{aa'} \in U(n)$.

Ejemplo El grupo de unidades módulo 15, $U(15) = \{1, 2, 4, 7, 8, 11, 13, 14\}$ tiene la estructura

	1	$\bar{2}$	4	7	8	11	13	
1	1	2	4	7	8	11	13	14
2	2	4	8	14	1	7	11	13
4	4	8	1	13	$\bar{2}$	14	7	11
7	1 2 4 7 8 11 13	14	13	4	11	$\bar{2}$	ī	8
8	8	ī	$\bar{2}$	11	4	13	14	7
11	11	7	14	$\bar{2}$	13	1	8	4
13	13	11	7	1	14	8	4	$\bar{2}$
14	14	13	11	8	7	14 2 13 1 8 4	2	ī

Propiedad

El anillo $\mathbb{Z}/n\mathbb{Z}$ es un cuerpo, si y sólo si, n=p es primo. En ese caso $U(n)=(\mathbb{Z}/p\mathbb{Z})^*$.

<u>Prueba</u>: (\Leftarrow) Si n = p es primo, entonces (a, p) = 1, para todo $1 \le a < p$. Así, todo elemento $a \ne \bar{0}$ en $\mathbb{Z}/p\mathbb{Z}$ es invertible, y $\mathbb{Z}/p\mathbb{Z}$ es un cuerpo de números.

(⇒) Si $\mathbb{Z}/n\mathbb{Z}$ es cuerpo, todo elemento $a \neq \bar{0}$ es invertible, y (a,n) = 1, para todo $1 \leq a < n$. Pero esto es equivalente a n ser primo. \Box

Teorema ("Sueño de todo estudiante")

Sea p primo. Entonces, para cualesquiera $\bar{a}, \bar{b} \in \mathbb{Z}/p\mathbb{Z}$, vale

$$(\bar{a}+\bar{b})^p\equiv \bar{a}^p+\bar{b}^p\pmod{p}.$$

<u>Prueba</u>: Si o < k < p, entonces $\binom{p}{k} = \frac{p!}{k!(p-k)!} \equiv 0 \pmod{p}$, pues hay un factor p en el numerador queno puede cancelarse con nada en el denominador. Del Teorema de Binomio, tenemos

$$(a+b)^p = \sum_{0 \le k \le p} {p \choose k} a^k b^{p-k} \equiv a^p + b^p \pmod{p}.$$

Veremos una primera aplicación de los inversos multiplicativos módulo n.

Lema

Si p es primo, entonces las únicas soluciones de $x^2 \equiv 1 \pmod{p}$ son $\overline{1}$ y $\overline{-1}$. En particular, si $x \in U(p) - \{\pm \overline{1}\}$, entonces $x^{-1} \not\equiv x \pmod{p}$.

Prueba:
$$x^2 \equiv 1 \pmod{p} \iff p \mid x^2 - 1 = (x - 1)(x + 1) \\ \iff p \mid (x - 1) \text{ \'o } p \mid (x + 1) \\ \iff x \equiv 1 \pmod{p} \text{ \'o } x \equiv -1 \pmod{p}.$$

La segunda afirmación es inmediata a partir del hecho 1 $\equiv x^2 \Leftrightarrow x^{-1} \equiv x \pmod{p}$.

Teorema (Teorema de Wilson)

Sea n > 1. Entonces, $n \mid (n-1)! + 1$ si, y sólo si, n es primo. Más precisamente

$$(n-1)! \equiv \begin{cases} -1 \pmod{n}, & \text{si } n \text{ es primo}; \\ 0 \pmod{n}, & \text{n compuesto, } n \neq 4. \end{cases}$$

<u>Prueba</u>: Si n es conpuesto, pero no es cuadrado de un primo, podemos escribir n = ab, con 1 < a < b < n. En este caso, tanto a y b son factores de (n-1)!, y tendríamos que $(n-1)! \equiv 0 \pmod{n}$.

Si $n = p^2$, con p primo, p > 2, entonces p y 2p son factores de (n-1)!, y de nuevo $(n-1)! \equiv 0 \pmod{n}$.

Esto muestra que para todo $n \neq 4$, compuesto, se tiene que $(n-1)! \equiv 0 \pmod{n}$.

Si n > 2 es primo, podemos escribir $(n-1)! = 2 \cdot 3 \cdot \dots (n-1)$. Por el lema anterior, los números $2, 3, \dots, n-2$, no son su propio inverso, y podemos agruparlos en pares (inversos entre sí), sobrando únicamente el termino n-1 el cual es su propio inverso módulo n. Así

$$(n-1)! \equiv 1 \cdot 2 \cdot 3 \cdot \ldots \cdot (n-1) \equiv \prod_{i} (a_i a_i^{-1}) \cdot (n-1) \equiv \prod_{i} (1) \cdot (n-1) \equiv -1 \pmod{n}.$$

El caso n=2 se verifica de forma difecta: $(2-1)!=1!\equiv 1\equiv -1\pmod 2$. \square

Teorema (Teorema de Wolstenhölme)

Sea p > 3 un número primo. Entonces el numerador de $1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{p-1}$, es divisible por p^2 .

Prueba: Sumando en pares "extremos", obtenemos

$$\sum_{1 \le i < p} \frac{1}{i} = \sum_{i=1}^{(p-1)/2} \left(\frac{1}{i} + \frac{1}{p-i} \right) = \sum_{i=1}^{(p-1)/2} \frac{p}{i(p-i)} = p \sum_{i=1}^{(p-1)/2} \frac{1}{i(p-i)}.$$

El mmc de los números 1 a p-1 no es divisible por p. Basta entonces mostrar que el numerador de la última suma es divisible entre p, o equivalentemente, como $p \nmid (p-1)!$, debemos mostrar que el entero

$$S = \sum_{i=1}^{(p-1)/2} \frac{(p-1)!}{i(p-i)},$$

es un múltiplo entre p.

Para $1 \le i \le p-1$, denotamos por r_i el inverso de i módulo p, o sea, $ir_i \equiv 1 \pmod{p}$. Observe que $r_{p-i} \equiv -r_i \pmod{p}$, así

$$S \equiv \sum_{i=1}^{(p-1)/2} \frac{(p-1)!}{i(p-i)} i r_i (p-i) r_{p-i} \equiv \sum_{i=1}^{(p-1)/2} (p-1)! r_i r_{p-i} \equiv \sum_{i=1}^{(p-1)/2} (-1) (-r_i^2) \equiv \sum_{i=1}^{(p-1)/2} r_i^2 \pmod{p},$$

por el Teorema de Wilson.

Los r_i son congruentes a uno de los números $\pm 1, \pm 2, \ldots, \pm \frac{p-1}{2}$, de modo que r_i^2 es congruente a alguno de los números $1^2, 2^2, \ldots, (\frac{p-1}{2})^2$. Afirmamos que todos estos cuadrados aparecen en la suma. Si $r_i^2 r_j^2 \pmod{p}$, entonces $p \mid (r_i^2 - r_j^2) = (r_i - r_j)(r_i + r_j)$. Esto implica que $r_i \equiv \pm r_j \pmod{p}$. Multiplicando por ij, tenemos que $j \equiv \pm i \pmod{p} \Rightarrow i = j$, pues $1 \le i, j \le \frac{p-1}{2}$.

Portanto, $S \equiv \sum_{i=1}^{(p-1)/2} i^2 \equiv \frac{p(p^2-1)}{24} \equiv 0 \pmod{p}$, pues siendo p > 3, se tiene que (p, 24) = 1, y el resultado sigue. \Box

El Teorema de Wilson produce resultados interesantes sobre los coeficientes binomiales.

Suponga que $h,k\in\mathbb{Z}^+$ son enteros positivos, con h+k=p-1, p primo. Entonces

$$h!k! \equiv (-1)^h(p-1)(p-2)\cdots(p-h)k! \equiv (-1)^k(p-1)! \equiv (-1)^{k+1} \pmod{p},$$

por el Teorema de Wilson. De ahí que

$$h!k!\binom{p-1}{k} \equiv (p-1)! \pmod{p} \iff (-1)^{k+1}\binom{p-1}{k} \equiv -1 \pmod{p}$$
$$\iff \binom{p-1}{k} \equiv (-1)^k \pmod{p}.$$

Propiedad

Si p > 3 es primo, entonces $p^3 \mid {2p \choose p} - 2$.

Primeramente, recordamos algunas identidades de los coeicientes binomiales. Para todo $1 \le i \le p-1$, tenemos

 $\binom{p}{i} = \frac{p}{i} \binom{p-1}{i-1}.$

De ahí,

$$\binom{2p}{p} = \binom{p}{0}^2 + \binom{p}{1}^2 + \ldots + \binom{p}{p}^2,$$

pues podemos elegir p objetos de entre 2p escogiendo i de ellos de entre los primeros p, y los p-i restantes entre los últimos p, luego

$$\binom{2p}{p} = \sum_{i=0}^{p} \binom{p}{i} \binom{p}{p-i} = \sum_{i=0}^{p} \binom{p}{i}^{2}.$$

Usando estas identidades,

$$\binom{2p}{p} - 2 = \sum_{i=1}^{p-1} \frac{p^2}{i^2} \binom{p-1}{i-1}^2 = p^2 \sum_{i=1}^{p-1} \frac{1}{i^2} \binom{p-1}{i-1}^2.$$

Observe que $\binom{p}{i} = p!i!(p-i)!$ es un múltiplo de p, para $1i \le p-1$, pues el denominador de esta fracción no es divisíble entre p. Así, $\frac{1}{i^2}\binom{p-1}{i-1}^2 = \frac{1}{p^2}\binom{p}{i}^2$ es entero y portanto la suma

 $\sum_{i=1}^{p-1} \frac{1}{i^2} \binom{p-1}{i-1}^2 \in \mathbb{Z}.$

Debemos mostrar ahora que es un múltiplo de p. Para ello, observe que cada $1 \le i \le p-1$ es invertible módulo p. Sea r_i el inverso de $i \pmod p$, tal que $1 \le r_i p$, y $ir_i \equiv 1 \pmod p$. Debido a la unicidad del inverso, los r_i , $i=1,2,\ldots,p-1$ forman un sistema completo de invertíbles, esto es, son una permutación de $1,2,\ldots,p-1$.

Como $\binom{p-1}{i-1} \equiv (-1)^{i-1} \pmod{p}$, entonces

$$\sum_{i=1}^{p-1} \frac{1}{i^2} \binom{p-1}{i-1}^2 \equiv \sum_{i=1}^{p-1} \frac{(ir_i)^2}{i^2} \binom{p-1}{i-1}^2 \pmod{p},$$

de modo que

$$\sum_{i=1}^{p-1} \frac{1}{i^2} \binom{p-1}{i-1}^2 \equiv \sum_{i=1}^{p-1} r_i^2 \binom{p-1}{i-1}^2 \equiv \sum_{i=1}^{p-1} r_i^2 (-1)^{2(i-1)} \equiv \sum_{i=1}^{p-1} r_i^2 \equiv \sum_{i=1}^{p-1} i^2 \pmod{p}.$$

Por otro lado, la suma

$$\sum_{i=1}^{p-1} i^2 = \frac{p(p-1)(2p-1)}{6},$$

es un múltiplo de p, ya que (6,p)=1. (observe que $p>3 \Rightarrow p \equiv 1,5 \pmod{6}$) Esto muestra que

$$p \mid \binom{2p}{p} - 2.$$