

Magnetic field information from muon alignment

Jim Pivarski

Texas A&M University

10 March, 2009

- ▶ Gap between propagted track and real muon grows quadratically in yoke when B_z is wrong
- Gap grows linearly elsewhere, dependent on history
 (This is like a Physics I displacement problem with regions of acceleration)

Effect of B_z errors on segments

 $Bz \neq 0$

depends linearly on accumulated trajectory direction difference

- ► Trajectory angle grows linearly in yoke when B_z is wrong (This is like a Physics I velocity problem with regions of acceleration)
- ightharpoonup Difference in segment angles on the same track provides a direct measurement of B_z error
- Residuals method can provide a cross-check

Before correction

Jim Pivarski

- Station 4 has the largest \vec{B} -field errors: plot residuals across barrel
- ▶ The misalignment breaks cleanly at the chamber boundaries
- ▶ The \vec{B} -field error is independent of chamber

grey background is the raw 2-D residuals distribution linear fits are only a guide for the eye: not used in alignment!

Residuals with new $\vec{B}(\vec{x})$ maps Jim Pivarski

- ► Two new field maps available:
 - scaling corrections from segments (data-based measurement)
 - new TOSCA simulation (consistent field lines)
- ▶ Opportunity to test correctness of new $\vec{B}(\vec{x})$ and insensitivity of alignment measure with tracks propagated through new field
 - left: histogram of bins from the previous plot (for all sectors)
 - right: how each bin changes when new field is applied

statistical errors in bins are $\mathcal{O}(0.5 \text{ mm})$ Station 4, correction from segments Baffield residuals, uncorrected 350 alignment residuals, uncorrected 300 alignment residuals 250 200 150 100 50 Mean of residuals in each bin (mm)

Residuals with new $\vec{B}(\vec{x})$ maps Jim Pivarski

- ► Two new field maps available:
 - scaling corrections from segments (data-based measurement)
 - new TOSCA simulation (consistent field lines)
- ▶ Opportunity to test correctness of new $\vec{B}(\vec{x})$ and insensitivity of alignment measure with tracks propagated through new field
 - left: histogram of bins from the previous plot (for all sectors)
 - right: how each bin changes when new field is applied

Station 4, correction from new grid B-field residuals, uncorrected 350 alignment residuals, uncorrected 300 alignment residuals 250 200 150 100 50 Mean of residuals in each bin (mm)

All four stations: scaling

Station 1

. .

Jim Pivarski

7/11

Station 3

Station 4

All four stations: new grid

Jim Pivarski 8/11

Station 2

Station 3

Station 4

- \triangleright B_{τ} error on residuals scales as q/p_{T}
- ▶ dE/dx error on residuals scales as $q\left(\frac{1}{p} \frac{1}{p \delta p}\right)$ where δp is a constant (\sim 2 GeV/meter of iron if no dE/dx is taken into account, exact value will depend on how much is missing
- ► Cute feature: $\left(\frac{1}{P} \frac{1}{P \delta p}\right) / \left(\frac{1}{p} \frac{1}{p \delta p}\right) \sim \text{independent of } \delta p$
- \triangleright Cutting cosmic ray spectrum two different p_T values yields approximately similar distributions (differing only by scalar multiple)

Station 4 from scaling

p_T cut	expected from \vec{B} error	expected from dE/dx error	observed
20 GeV	1	1	1 (def)
40 GeV	0.5	0.24	0.71
80 GeV	0.25	0.06	0.46

- \triangleright B_{τ} error on residuals scales as q/p_{T}
- ▶ dE/dx error on residuals scales as $q\left(\frac{1}{p} \frac{1}{p \delta p}\right)$ where δp is a constant (\sim 2 GeV/meter of iron if no dE/dx is taken into account, exact value will depend on how much is missing
- ► Cute feature: $\left(\frac{1}{P} \frac{1}{P \delta p}\right) / \left(\frac{1}{p} \frac{1}{p \delta p}\right) \sim \text{independent of } \delta p$
- Cutting cosmic ray spectrum two different p_T values yields approximately similar distributions (differing only by scalar multiple)

Station 4 from the new simulation

p_T cut	expected from B error	expected from dE/dx error	observed
20 GeV	1	1	1 (def)
40 GeV	0.5	0.24	0.69
80 GeV	0.25	0.06	0.46

Conclusions

Jim Pivarski 11/11

- ► Residuals method is rather different from segments method: more sensitive and more difficult to interperet
- Scaling from segments and new TOSCA map yield nearly the same improvement in residuals: corrected more than half of the effect
- ▶ Remaining effect is not dominated by dE/dx errors

▶ Special feature! On the next four pages, I present some tools that will likely be useful for future \vec{B} studies

- ▶ Residuals distributions have power-law tails due to single-scattering
- ► Especially angular distributions
- ▶ Peak-fit is more precise than mean
- $ightharpoonup \phi_y$ is the angle with $ec{B}$ -field information (perfectly aligned MC below)

More motivation

Jim Pivarski 13/11

- We know that $r\phi$ residuals from a B_z error are linear in q/p_T
- ► The same residuals are affected by B_r errors, linear in q/p_z
- In a region with both types of \vec{B} error (endcap, especially), one would want to disambiguate them with a two-parameter fit
- ➤ Tools in CVS perform fits with Gaussian ⊕ tails and linear trends in the crest
- ▶ Example on the left is Gaussian \oplus tails with a q/p_T slope (NOT a linear fit to the profile plot)

source: cosmic ray difference between stations 3 and 4

State of the new tools

Jim Pivarski

[CMSSW] / CMSSW / Alignment / MuonAlignmentAlgorithms / src Repository: CMSSW

Go

Index of /CMSSW/Alignment /MuonAlignmentAlgorithms/src

Significant B_r

Jim Pivarski 15/11

