GPU Parallel Implementation of The Approximate K-SVD Algorithm Using OpenCL

Paul Irofti¹

Bogdan Dumitrescu²

¹University Politehnica of Bucharest paul@irofti.net

²Tampere University of Technology bogdan.dumitrescu@tut.fi

EUSIPCO'2014

Outline

- Introduction
- OpenCL
- 3 AK-SVD
- 4 PAK-SVD
- Conclusions

The problem

Given:

- initial dictionary D₀
- set of training signals Y
- target sparsity s
- number of iterations K

Output:

- trained dictionary D
- ullet sparse representations X

Such that $Y \approx DX$.

Optimization Problem

Solving the optimization problem of:

minimize
$$||Y - DX||_F^2$$

subject to $||x_i||_0 \le s$, $\forall i$

General Approach

Description

Most algorithm iterations involve two essential steps:

- sparse coding Y using dictionary D resulting X
- updating the dictionary using the current representations X

Existing solutions:

- Sparse representations:
 - SP
 - MP
 - OMP
- Dictionary update:
 - MOD
 - K-SVD
 - AK-SVD

Current State

Practical applications employing these methods

- show good results
- low representation errors
- slow running times
- top consumer: the sparse representation stage
- dictionary update performed one atom at a time
- each update step depends on the one before it

Our approach:

- update more than one atoms at a time
- distributed sparse coding
- new parallel algorithm PAK-SVD

OpenCL platform

- execute small functions (kernels) in parallel
- processing elements ⊂ compute units ⊂ OpenCL device
- work load topology defined as an n-dimensional space

Notation: $NDR : \langle x, y, z \rangle$

Description

Memory Layout

Hardware

ATI FirePro V8800 (FireGL V) specifications:

- 1600 streaming processors
- 2048MB global memory
- 32KB local memory
- 256 maximum work-group size
- 20 maximum compute units
- OpenCL v1.2 compliant
- 2640 single-precision GFLOPS
- 528 double-precision GFLOPS.

Counting in CPU ticks bypassing:

- unsynchronized tick counts between different cores on a multiprocessor system
- lack of serialization with MSVC compilers on x64 systems
- EBX/RBX register spilling issues with GCC compilers when using position independent code

On the machine we tested one tick represents roughly 0.3125ns.

AK-SVD Algorithm

- given dictionary D and signal set Y
- compute sparse representations X and optimize dictionary D

Iterations:

- sparse coding: for each signal y in Y
 - use OMP(D, y) for representing x of X
- **dictionary update:** for each atom d in D
 - remove d from the dictionary
 - find the singals using d in their representation
 - optimize d keeping the representations and the dictionary fixed
 - update the representations by using the new atom d
 - update the dictionary by reintroducing the optimized atom d

Comments

Observations:

- the dictionary is changed on each update step
- so are the sparse representations
- the current atom's update depends on all of the atoms updated before it
- AK-SVD eliminates the need to explicitly compute the residual

PAK-SVD Sparse Coding

Data:

- given dictionary $D \in \mathbb{R}^{p \times n}$ and signal set $Y \in \mathbb{R}^{p \times m}$
- compute sparse representations $X \in \mathbb{R}^{n \times m}$

Sparse Coding with OMP:

- using an NDR($\langle m \rangle$, $\langle any \rangle$) splitting
- big memory foot-print O(ns), where s is the desired sparsity
- all the matrices are kept in global memory
- each PE computes OMP for a single data item from Y

PE_1	PE_2	PE_m	
$X_1 = OMP(Y_1)$	$X_2 = OMP(Y_2)$	 $X_m = OMP(Y_m)$	

PAK-SVD Dictionary Update

Data:

Description

• $D \in \mathbb{R}^{p \times n}$, $Y \in \mathbb{R}^{p \times m}$ and $X \in \mathbb{R}^{n \times m}$

Dictionary update for **batches of** \tilde{n} **atoms** from D:

- calculate the full residual matrix E = Y DX
- for each atom from the current batch do in parallel
 - compensate the error matrix *E* as if the current atom was missing from the dictionary
 - find the singals using d in their representation
 - optimize d keeping the representations and the error matrix fixed
 - update the representations by using the new atom d
 - update the dictionary by reintroducing the optimized atom d

PAK-SVD Dictionary Update (2)

Description

We use an NDR($\langle \tilde{n} \rangle$, $\langle any \rangle$) splitting for updating \tilde{n} atoms at a time:

$$\begin{array}{|c|c|c|c|c|c|} \hline PE_1 & PE_2 & PE_{\tilde{n}} \\ D_1, \ X_{D_1} & D_1, \ X_{D_2} & \dots & D_{\tilde{n}}, \ X_{D_{\tilde{n}}} \\ \hline \end{array}$$

Each PE is in charge of updating one atom. Memory layout:

- private: d, the atom being updated
- local or global: \mathcal{I} , indices of signals using d
- global: E, X, D

Matrix Multiplication

OpenCL implementation:

- split the N-dimensional space as NDR($\langle n, m \rangle$, $\langle 64, 64 \rangle$)
- block-based multiplication
- calculating a block is performed within a work-group

Memory layout:

- global: input and output matrices
- local: copied input block sub-matrices
- private: vectorized types for dot operations

Error

Error evolution for m = 16384, n = 512, s = 12.

Execution times for m = 16384, s = 10, K = 200.

 $\frac{2.6}{2.4}$

2.2

8192 16384

4.4 4.2 4 3.8 3.6 3.6 3.4 3.2 3.2 3.2 3.2 3.2 3.2

Execution times for n = 512, s = 8, K = 100.

 $\tilde{n} = 32$

Signals

32768

 $\tilde{n} = 512$

65536

More Error Results

Table: Final errors for AK-SVD and PAK-SVD with $\tilde{n}=n$.

		n						
		128		256		512		
		AK	PAK	AK	PAK	AK	PAK	
	4	0.0425	0.0407	0.0385	0.0387	0.0376	0.0372	
	6	0.0374	0.0349	0.0334	0.0316	0.0311	0.0297	
s	8	0.0345	0.0306	0.0294	0.0272	0.0259	0.0245	
	10	0.0322	0.0276	0.0276	0.0239	0.0233	0.0206	
	12	0.0319	0.0249	0.0254	0.0205	0.0221	0.0176	

Conclusions

PAK-SVD improves AK-SVD:

- performs up to 12x faster
- parallel sparse coding stage
- parallel dictionary update
- smaller representation error