Monotone path polytopes of the hypersimplices $\Delta(n, 2)$

Germain Poullot

Institut de Mathématiques de Jussieu - Paris Rive Gauche, Sorbonne Université, Paris, France

germain.poullot@imj-prg.fr

Shadow vertex rule

Linear program (P, c): how to choose next vertex in simplex method?

Shadow vertex: for ω , project in plane (c, ω) , take the neighbor with the best slope:

$$v_{i+1} = \operatorname{argmax} \left\{ \frac{\langle \omega, u - v_i \rangle}{\langle c, u - v_i \rangle} ; u \text{ improving } \right.$$

Monotone path polytope of a polytope

Coherent monotone path: monotone path arising from shadow vertex rule Monotone path fan: $\omega \sim \omega'$ iff same monotone path

Monotone path polytope $\Sigma_c(P)$: Polytope dual to monotone path fan

≃ Minkowski sum of section over (images of) vertices

Fiber polytope $\Sigma_{\pi}(P,Q)$ for $\pi: x \mapsto \langle x,c \rangle$

Vertices of $\Sigma_c(P) \longleftrightarrow c$ -coherent monotone paths on P

Monotone path polytope of simplices

THM. [Billera, Sturmfels] for all c, $\Sigma_c(\Delta_{n+1}) \simeq \text{Cube}_{n-1}$

Hypersimplex $\Delta(n, 2)$

Hypersimplex $\Delta(n,k) = \text{conv}\{v \in \{0,1\}^n : \sum v_i = k\}; \text{ Along } c = (1,2,...,n)$ $\Delta(n,1) \simeq \Delta(n,n-1) \simeq \Delta_n : \text{ simplex}$

Here, focus on $\Delta(n, 2)$

Monotone paths on $\Delta(n,2) \leftrightarrow \text{lattice paths on } [1,n]^2$, start at (2,1), avoid (i,i), end at (n,n-1) or (n-1,n)

Notation: $i \xrightarrow{a} j$ when step $(i, a) \rightarrow (j, a)$ or $(a, i) \rightarrow (a, j)$ in path

Monotone paths on $\Delta(n, 2)$ - coherence

THM. Coherent iff when $i \xrightarrow{a} j$ precede $x \xrightarrow{z} y$ with x < j then j = z or x = a

Counting coherent monotone paths on $\Delta(n, 2)$

Induction (see right): $v_n := \left| \text{Vertices} \left(\Sigma_c(\Delta(n, 2)) \right) \right| = t_n + q_n + c_n$

Where
$$\begin{pmatrix} t_{n+1} \\ q_{n+1} \\ c_{n+1} \end{pmatrix} = M \begin{pmatrix} t_n \\ q_n \\ c_n \end{pmatrix}$$
, with $M = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 2 \end{pmatrix}$, $Sp(M) = \{0, 1, 4\}$, $\begin{pmatrix} t_0 \\ q_0 \\ c_0 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}$

THM. Vertices $\Sigma_c(\Delta(n, 2))$, *i.e.* coh. mon. paths: (1 1 1) $M^n \binom{3}{1}$ $v_n = \frac{1}{3} \left(25 \times 4^{n-4} - 1 \right)$

Sorting by length: $V_n(z) := \sum_{\ell} v_{n,\ell} z^{\ell} = T_n(z) + Q_n(z) + C_n(z)$

$$\begin{pmatrix} T_{n+1} \\ Q_{n+1} \\ C_{n+1} \end{pmatrix} = \mathcal{M} \begin{pmatrix} T_n \\ Q_n \\ C_n \end{pmatrix}, \quad \text{with } \mathcal{M} = \begin{pmatrix} z & 1+z & 1+z \\ 0 & 1+z & z \\ z^2+z & 0 & 1+z \end{pmatrix}, \quad \begin{pmatrix} T_0 \\ Q_0 \\ C_0 \end{pmatrix} = \begin{pmatrix} z^3+2z^2 \\ z^3 \\ 2z^3+2z^2 \end{pmatrix}$$
3e27

THM. $v_{n,\ell}$ is a polynomial in n of degree $\ell-2$

THM. Longest path: $\ell_{\max} = \left\lfloor \frac{3(n-1)}{2} \right\rfloor$, with $v_{n,\ell_{\max}} = \left\{ \begin{array}{l} 1 & \text{if } n \text{ odd} \\ \left\lfloor \frac{3(n-1)}{2} \right\rfloor & \text{if } n \text{ even} \end{array} \right\}$

Conjecture on log-concavity

CONJ. [De Loera] number of coherent monotone paths by length is log-concave for all polytopes *i.e.* for $\Delta(n, 2)$: $v_{n,\ell}$ log-concave

Here left: $v_{n,\ell}$ for n=50With \mathcal{M} , conjecture checked numerically up to n=150