PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:	A2	(11) International Publication Number: WO 00/58706
G01M		(43) International Publication Date: 5 October 2000 (05.10.00)
(21) International Application Number: PCT/US (22) International Filing Date: 17 March 2000 (patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR,
(30) Priority Data: 09/280,637 29 March 1999 (29.03.99)	τ	Published Without international search report and to be republished upon receipt of that report.
(71) Applicant: OTIS ELEVATOR COMPANY [US/U lectual Property Dept., 10 Farm Springs, Farmin 06032-2568 (US).		
(72) Inventors: ROBAR, Terry, M.; 22 Bristol Drive, CT 06019 (US). VERONESI, William, A.; 342 Avenue, Hartford, CT 06114 (US). STUCKY, 132 Broad Street, Gronton, CT 06340 (US), GIER F.; 315 Strickland Street, Glastonbury, CT 06033	Fairfie Paul, A AS, Jac	14
(74) Agents: HENLEY, Randy, G. et al.; Otis Elevator C Intellectual Property Dept., 10 Farm Springs, Far CT 06032-2568 (US).		

(54) Title: METHOD AND APPARATUS FOR DETECTING ELEVATOR ROPE DEGRADATION USING ELECTRICAL OR MAGNETIC ENERGY

(57) Abstract

A method and system for detecting or measuring defects in a rope having ferromagnetic tension members includes a magnetic field exciter and an array of magnetic flux sensors corresponding to the tension members in a known relationship. Measurements of magnetic flux leakage are indicative of defects. Another aspect of the invention includes a method and system for detecting or measuring defects in an elevator rope having electrically conductive tension members, whereby measured electrical resistance in the tension members is indicative of defects.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL.	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL.	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Gennany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

-1-

METHOD AND APPARATUS FOR DETECTING ELEVATOR ROPE DEGRADATION USING ELECTRICAL OR MAGNETIC ENERGY

TECHNICAL FIELD

The present invention relates to elevator ropes and, more particularly, to a method and apparatus for testing elevator ropes to detect degradation using electrical or magnetic energy.

BACKGROUND OF THE INVENTION

5

10

15

20

25

Tension rope systems for lifting elevator cars, or similar vessels for vertically raising and lowering loads in industrial or commercial applications, are typically made up of steel ropes. Such ropes typically comprise multiple cords which, in turn, generally comprise a plurality of strands that are made up of individual steel wires. Such tension ropes are critical components upon which safety and productivity often depend.

Deterioration of individual components of a multi-strand or multi-cord rope adversely affects tension strength of the rope. The tension strength of a rope is dependent upon various parameters including its cross-sectional area. When one or more components of a steel rope stretch, tear or permanently bend, those components are disabled or weakened as load bearing members and, thus, the effective tension-bearing cross-sectional area of the rope is reduced. This type of deterioration can occur through a variety of ways, such as normal wear and tear, impact, fatioue or inadvertent corrosion.

Because service ropes, such as elevator ropes, are very long and are made up of many individual wires and strands, it is impractical to perform thorough and accurate testing of rope condition or deterioration level simply by visual inspection. Furthermore, it is impractical to disassemble elevator ropes and apply them to various testing devices. Thus, it is common in the industry to substantially overdesign the ropes to allow for a large margin of deterioration without a large risk of failure. The ropes are replaced at time or cycle milestones. Occasional in-field visual inspections are typically the only means of testing.

The main problem with visual inspection of ropes is that the eye can only see the strands and wires on the outer surface of the rope, which make up only a fraction of the tension-bearing cross-sectional area. Also, it is difficult to visually inspect an entire length of rope installed in, for example, an elevator system. Thus, sampling and approximation methods are generally employed.

These methods still require a large margin of overdesign to ensure safety. As a result, ropes are designed with excessive and costly materials, and ropes are often discarded well before their useful life expires. In addition, man hours and operation down-time for inspection are often costly.

5

10

15

20

25

35

OBJECTS AND SUMMARY OF THE INVENTION

Various objects of the present invention include providing a method and apparatus for detecting deterioration of steel ropes or compound ropes having steel ropes as members, wherein detection is practical in time, cost and complexity, wherein continuous monitoring and detection are practical and efficient, and further wherein detection is accurate and reliable. Another object achieved is the ability to inspect rope components that are not viewable, such as in the case of compound ropes or belts including flat ropes in which one or more steel ropes are embedded in an insulator, such as polyurethane or rubber. In this situation, visual inspection is impossible. These and other objects are achieved by the present invention as described below.

One embodiment of the present invention involves applying a novel arrangement of magnets and sensors for saturating magnetically permeable ropes with a magnetic field and then obtaining magnetic flux leakage measurements for comparison to pre-stored data in order to determine rope condition. Another embodiment of the present invention involves applying electric current to a rope and measuring resistance values for comparison to pre-stored data in order to determine rope condition.

While the preferred embodiments are described below with respect to elevator ropes, by way of example, it is acknowledged that the present invention has application to other types of ropes and belts subject to similar loading and use conditions.

BRIEF DESCRIPTION OF THE DRAWINGS

- Fig. 1 is a schematic, cross-sectional view of an elevator rope having multiple cords in an insulator material.
 - Fig. 2 is a schematic, cross-sectional view of a cord of an elevator rope of the type illustrated in Fig.1.
 - Fig. 3 is schematic diagram of a two magnets arranged adjacent to a ferromagnetic member.
 - Fig. 4 is a schematic diagram of a magnetic flux sensor array adjacent to an elevator rope of the type disclosed in Fig. 1.

Fig. 5 is a schematic diagram of a first embodiment apparatus according to the present invention.

Fig. 6 is a partial, schematic view of a first embodiment apparatus according to the present invention mounted to an elevator system.

Fig. 7 is a schematic diagram of a second embodiment apparatus according to the present invention.

Fig.s 8A - 8B are graphs illustrating magnetic flux detection according to the present invention.

Fig. 9 is a schematic diagram illustrating a third embodiment of the present invention.

Fig. 10 is a partial, schematic view of a third embodiment apparatus according to the present invention mounted to an elevator system.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

15

20

25

30

35

10

5

Magnetic Flux Method and Apparatus

A defect such as a crack, cut or other discontinuity in a ferromagnetic member, such as a wire, can be detected by monitoring magnetic flux density distribution within. A defect will result in penetration of the magnetic flux to the air. The quantitative determination of loss of metallic cross-sectional area, in a rope having wires of a diameter of 0.175 mm, caused by deterioration or defect is possible with quantitative resolutions of 0.175 mm. The terms "quantitative resolution" as used herein refers to the required minimum flaw for which the sensor provides a quantitative measure directly, without additional signal processing.

The most prevalent modes of deterioration of wire ropes include internal abrasion, corrosion, breaking and kinking. Internal abrasion is caused by nicking, high pressure or poor lubrication. Corrosion, which can occur internally or externally, is caused by various environmental conditions and poor lubrication. Breaking of wires results from fatigue, plastic wear, martensitic brittling, and mechanical damage. Kinking results from sharp bending or mechanical damage.

Deterioration results in loss of cross-sectional area of wires which reduces tension load bearing capacity. The transfer of load from a defective or deteriorated wire to neighboring wires will reduce the expected fatigue life of the remaining wires. As the number of defects in a group increases, the rate of

15

35

PCT/US00/07279

increase in number of defects will accelerate due to increasingly displaced loads

-4-

A system for detection of the leakage flux basically consists of a magnetic flux exciter and a magnetic flux sensor. The exciter is necessary to magnetize the ferromagnetic part to be inspected. It can be in the form of, for example, an encircling coil, or a U-shaped electromagnet or permanent magnet with mild steel poles. Encircling coils do not have ferromagnetic cores and, thus, result in poor utilization of the produced magnetic flux to magnetize the part being tested. U-shaped magnets are better because the can direct most of the produced magnetizing flux to the part being tested. Permanent magnet exciters do not require any power supply and they are smaller than electromagnets producing the same flux. Various magnetic flux sensors are available such as, for example, search coils, Hall elements, and magnetodiodes. Search coils allow for inspection of large surface areas but, however, their output signal is speed dependent. Hall elements can produce high output signals which are independent of speed.

Applying the exciter-sensor system to a flat rope made up of a series of wire cords is described with respect to Fig. 1 - 6. While the preferred embodiment is described in the context of a flat rope of non-ferromagnetic 20 insulator material having ferromagnetic cords cords embedded therein, the invention is not limited to such an embodiment and may be applied to, for example, a compound rope having a single ferromagnetic cord embedded in a round insulator jacket. A flat rope (10) has a generally rectangular crosssectional area of non-ferromagnetic insulator material, such as polyurethane. 25 (12) surrounding a plurality of generally uniformly distributed steel ropes (14), each consisting of a plurality of cords (15). As illustrated in Fig. 2, a cord (15) comprises a plurality of strands (16). Each strand (16) is made up of a plurality of steel wires (17). In order to apply the magnetic flux exciter-sensor system according to the present invention, the following presumptions are made: 30 (a) leakage fluxes are negligible; (b) magnetic permeability of the ferromagnetic poles and yokes of the exciter tends to infinity; and (c) no eddy currents are induced in the tested strands.

Referring to Fig. 3, a schematic illustration shows a permanent magnet (100) positioned adjacent to a ferromagnetic test sample (102) representing the rope (10). The reluctance $\frac{\Delta L}{L_{eff}}$ of the steel ropes (14) is $\frac{\Delta L}{L_{eff}}$, where

25

\(\begin{align*} \begin{align*} \beg

The magnetic permeability of free space, μ , is $\mu = 0.4\pi \times 10^{-6}$ H/m.

The relative magnetic permeability of steel strands is μ . The cross-section are of the steel wire rope (14) is S. The magnetic permeability μ r is a nonlinear function of the magnetic flux density in strands (magnetic field intensity).

The cross section area S_r of the steel rope (all steel strands) is $S_{r*ncn} \frac{m^2 s_r}{4}$, where n_r is the number of strands, n_{br} is the number of strands in

10 each cord and d_{str} is the diameter of a single strand.

The reluctance $\boxed{R_{set}}$ of the airgap between pole faces and cores is, approximately, $\boxed{R_{set} - \frac{g}{\mu\nu\omega_s}}$, where g is the airgap (ferromagnetic body to ferromagnetic body) and $S = \omega_{blp}$. The width of the pole face (parallel to the rope length) is ω_p and the length of the pole face (transverse to the rope length) is b.

According to Ohm's Law for magnetic circuits and including assumptions (a), (b) and (c) as stated above, the magnetic flux produced by the excitation system (with electromagnet or permanent magnet) is $\Phi = \frac{NI}{\Delta l_{\mu\nu\mu\nu}S_r} + \frac{2g_{\mu\nu}S_s}{2\mu\omega S_s}$ and the magnetic flux density in the rope (equal to the magnetic flux density in a

and the magnetic flux density in the rope (equal to the magnetic flux density in a single strand) is $B = \frac{\Phi}{S_r} = \frac{\mu N I}{\Delta f_{f'} + \frac{2SS}{c}}$ where N is the number of turns of the

electromagnet winding used for the excitation and I is the d.c. current in the electromagnet winding. The equivalent magnetic motive force (MMF) NI can also be produced by a permanent magneta. For a permanent magnet NI should be replaced by \overline{HIM} where H is the equivalent magnetic field intensity and h_M is the length of the permanent magnet.

Using Hall elements, a system's sensitivity can be configured sufficiently to enable detection of a difference in magnetic flux density representative of the loss of one wire having a diamter of, for example, 0.175 mm in a cord of diameter 1.6 mm. By sampling rope as it deteriorates, determining magnetic flux density, and storing the measurement, data can be stored for comparison to magnetic flux density for a rope to be tested. Using Hall elements, a system can be configured sufficiently to enable detection of a difference in magnetic flux

15

density between the non-deteriorated rope and a test subject in which only one wire is broken.

To provide the level of sensitivity needed to detect differences in magnetic flux density of individual wires at such dimensions, the magnetic flux excitation system, comprising a U-shaped electromagnet or permanent magnet, should be configured using a small distance, ΔI , between the centerlines (104, 106) of mild steel poles (108, 110). If ΔI is too small, however, the leakage flux can reduce the useful flux in the steel rope to an unacceptable level. The cross section area of each airgap, approximately equal to the cross section area of each mild steel pole, should be small. This can be achieved by minimizing the width (112) of each pole face to a value not less than the diameter of a single cord of the rope. If the cross section area of the air gap is too small, a large leakage flux from pole-to-pole will occur.

The magnetic flux exciter-sensor system according to the present invention requires the test sample, an elevator rope having internal steel cords, for example, to be passed over the poles of a magnet so that at any instant the portions of the cords that are over and in between the poles are magnetized, becoming part of the magnetic circuit, and a magnetic flux density is established in the cords parallel to their axes. In an ideal, non-deteriorated rope the majority of magnetic flux is parallel to the rope. A deterioration defect, as described above, in a steel cord or wire thereof causes local fringing in the magnetic flux density, so that it forms a "bump" or discontinuity in the parallel direction of the flux. At the location of the defect their is some magnetic flux density directed in a direction normal to the axis of the cord. This normal flux density is what is detected as indicative of a defect in the rope by the system of the present invention

The magnetic flux sensor assembly may include either Hall effect sensors, search coils, or other known sensors. By way of example, an arrangement employing Hall effect sensors is described with respect to the schematic, cross section illustration of Fig. 4. The sensor assembly (300) illustrated is for use with a rope (302) having twelve steel rope cords (304) evenly spaced therein and running parallel to the longitudinal axis of the rope (302). First and second banks (306, 308) of Hall effect sensors (310) are positioned above and below, respectively, the flat belt (306) to be tested so that the Hall effect sensors (310) correspond to individual cords (304). A single bank of sensors on only one side of the belt may be used. Any number of sensors may be used, as the number of sensors does not necessarily have to

-7-

correspond to the number of cords. The sensor banks (306, 308) should be generally centered in a direction along the longitudinal axis of the flat rope (302) with respect to the poles of the magnet, since the components of magnetic flux density normal to the belt axis is at a minimum midway between the poles.

Thus, the detection of a significant normal flux at this location would indicate a defect in the steel cord.

The testing assembly (400), shown schematically in Fig. 5, comprises an exciter system (402) having a U-shaped magnet with two poles (404, 406), a sensor assembly (408), as previously described with respect to Fig. 4, and a controller (410). The testing assembly (400) may be fixed as a dedicated unit to an elevator system (420), as shown in Fig. 6, or it may be assembled on-site and transportable to and from various sites. For example, the testing assembly (400) may be fixed to an elevator hoist machine assembly (401) by means of a bracket (403). The exciter and sensor assemblies are positioned so that a rope (412) to be tested may move relative to the magnet (402) and sensors (408). If desired, the controller (410) may be remotely located from the rest of the testing assembly (400) and in communication therewith through such means as hardwire, RF, or modem. Remote monitoring and remote controlling may be implemented.

Alternatively, as shown in Fig. 7, the testing assembly (500) may be a self-contained, portable unit having an on-board controller (502) and power source (504) in addition to the components described with respect to Fig. 5. The unit may, for example, have a two-part housing comprising of halves (506, 508) which may be closed around an elevator rope (510) for testing.

20

25

30

35

A testing assembly designed for an array of cords (304) positioned in predetermined relative positions within a rope (302) may be calibrated by first
running a deteriorated rope sample, of known characteristics, through the testing
assembly and pre-storing data signals from each individual Hall effect sensor.
By relating each specific location for individual sensor elements, and repeating
test runs with selectively damaged cords or strands, actual test data can be
compared to known or predictable pre-stored data. By analyzing, for example,
measurements from several sensor elements as they relate to only one rope at
a known location, precise levels of defective strands or wires and their relative
position within the cord cross section can be determined.

By way of example, the graph shown in Fig. 8A depicts magnetic flux leakage for each cord of a flat, multi-cord rope under tension as a function of time measured by a bank of top-side sensors. For each cord, identified by cord

-8-

number, the magnetic flux leakage in volts is plotted against time in seconds. The relative peaks on the magnetic flux leakage axis identify defects. Because the starting position on the rope and the rate of movement of the rope relative to the sensors is known, the time axis can be correlated to location on the rope. A similar graph for bottom-side sensors is provided in Fig. 8B. The graphs in 8A and 8B are complementary with respect to longitudinal position along the rope and depict the same period in time for the same rope. The output for the two sets of sensors (Fig. 8A and Fig. 8B) differs because of precise locations of defects. More precisely, the location of a defect on each cord can be located with respect to angular position and distance from the central axis of the cord, in addition to longitudinal position, by correlating reference points between the two sensor arrays.

The above example described in Fig.s 8A and 8B is one example of various tests that can be used to precisely measure or locate wire or cord performance or failure under various conditions.

This approach, with this level of resolution, enables precise detection of wire or rope failure. Such measurements are useful, for example, for identifying chronic failure or wear patterns that may be indicative of problems with surrounding hardware or environment.

20

25

30

35

15

Electrical Resistance Measurement Method and Apparatus

Another embodiment of the present invention relates to detecting deterioration of steel cord tension load carrying members that are encased in non-condutive insulator materials, such as a flat rope constructed of, for example, polyurethane, by directing electric current through the steel cords and measuring electrical resistivity. An example of such a rope is a flat elevator rope having a polyurethane jacket with tension load carrying cords encased within and running the length of the rope. Changes in the resistivity of a steel rope are indicative of defective strands or wires. In the elevator environment, such testing requiring conductance is not possible with non-insulated belts or ropes where steel cords come into contact with metallic components of the elevator system.

According to the present invention, an electrical resistance measuring device is applied to a rope to be tested so that measured resistance through the cord can be correlated to pre-stored test data for an ideal rope. Predetermined threshold data values are used to determine when a tested rope or belt should

be replaced. The resistance measuring device may be, for example, a Kelvin bridge.

A schematic representation of such a system (600) is shown in Fig.9, where an elevator rope (602) is connected at first and second ends (604, 606) to current input and output leads (608, 610). A floating stable constant current source (612) is supplied at one end of the rope (602). Connections are made at both ends and the voltage is measured. The measuring current is passed through the unknown resistance of the rope through the input wire (608) and passed through the return or output wire (610). The additional wires (609, 611) are connected to high input impedance sense heads and have no current flow. Since the current is known, by relating the voltage in (Vin) and the voltage out (Vout), as total rope voltage (Vrope), and knowing the current in (iin), the resistivity of the rope (Rrope) can be determined.

15 Vrope = Vout - Vin Rrope = Vrope / Vin

10

20

35

When the rope being tested reaches a predetermined threshold value of resistance, it is an indication to replace the rope. The threshold value can be determined by testing a similar rope at different stress levels for load and fatigue, for measured numbers of cycles, and measuring the corresponding resistance and residual load bearing strength. A relationship between resistance and load bearing capacity can then be established.

Because resistivity is affected by factors such as temperature and
moisture, it is advantageous to use relative comparisons of individual cords in a
multi-cord rope, or of multiple ropes, when applying the present invention. For
instance, temperatures in a tall building can vary significantly between the top
and bottom levels. By applying the present invention system to a rope having
multiple cords of electrically conductive material, relative comparisons of
resistivity with neighboring cords permits detection of changes in resistance
despite effects from temperature, moisture or other environmental conditions.

As shown in Fig. 10, current input and output leads (608, 610) can be made to an elevator rope (602) at termination points (614, 616) in an elevator system. A power source (618) and controller (620), shown schematically, may be connected via hardwire or other conventional means. The controller (620) may be programmed to correlate resistivity measurements with predetermined data indicative of tension-load bearing strength of the rope (602). A remote

WO 00/58706 PCT/US00/07279
-10-

controller may be used through RF, modem connection or similar means for monitoring and controlling data input, current input, and readings.

CONCLUSION

The testing systems described in the foregoing may be implemented for continuous monitoring of rope condition, or they may be implemented periodically during maintenance procedures. The systems may be dedicated or portable systems.

While the preferred embodiments have been herein described, it is
acknowledged and understood that various modifications may be made without
departing from the scope of the presently claimed invention.

WHAT IS CLAIMED IS

5

5

5

10

5

1) A method of detecting degradation of a rope comprising a plurality of ferromagnetic cord members, said method comprising

applying a magnetic field to a portion of said cord members; monitoring magnetic flux associated with said magnetic field; and identifying locations along said cord members exhibiting magnetic flux leakage, wherein said locations are indicative of degradation.

-11-

2) A method according to claim 1, wherein

said magnetic field is applied by relative movement between said rope and a magnet.

3) A method according to claim 1, wherein

said rope comprises a body of non-ferromagnetic insulator material having a generally rectangular cross-section in which said plurality of ferromagnetic cord members are distributed and extend longitudinally therewith

4) A method of detecting and locating degradation of a rope comprising a plurality of ferromagnetic cord members, said method comprising

causing said rope to move at a known rate relative to a magnet in order to apply a magnetic field to a portion of said cord members; monitoring magnetic flux associated with said magnetic field as a function of time: and

identifying points in time in which said cord members exhibit magnetic flux leakage, wherein said points in time are indicative of the location of rope degradation.

5) A method for approximating tension-load bearing capacity of a rope comprising a plurality of ferromagnetic cord members, said method comprising applying a magnetic field to a portion of said cord members; measuring magnetic flux associated with said magnetic field; and comparing said measured magnetic flux leakage to predetermined data indicative of tension-load bearing capacity. 6) A method of detecting and locating degradation of a rope comprising a plurality of ferromagnetic cord members, said method comprising

5

10

5

10

applying a magnetic field to a portion of said cord members; monitoring magnetic flux associated with said magnetic field; identifying locations along each individual cord member exhibiting magnetic flux leakage, wherein said locations are indicative of degradation; and

correlating said locations indicative of degradation of individual cord members with respect to each other to determine relative locations of each.

- A method according to claim 3, further comprising measuring the magnitude of said magnetic flux leakage.
- A method according to claim 4, further comprising measuring the magnitude of said magnetic flux leakage.
- A method according to claim 6, further comprising
 measuring the magnitude of said magnetic flux leakage.
- 10) An apparatus for detecting and locating degradation of a rope having at least one ferromagnetic component, said apparatus comprising

a body comprising rope guide means for guiding said rope along said body;

a magnet fixed with respect to said body for establishing a magnetic field adjacent to said body;

magnetic flux sensing means mounted with respect to said body for monitoring magnetic flux associated with said magnetic field; and means for correlating said magnetic flux with said rope to determine one or more locations of degradation.

 An apparatus according to claim 10, wherein said rope comprises a plurality of ferromagnetic cord members.

-13-

12) An apparatus according to claim 11, wherein said magnetic flux sensing means comprise a plurality of magnetic flux sensors mounted to said body.

- 13) An apparatus according to claim 12, wherein said magnetic flux sensors comprise Hall effect transducers.
- 14) An apparatus according to claim 12, wherein said plurality of magnetic flux sensors each correspond to one of said ferromagnetic cord members such that each magnetic flux sensor monitors the magnetic flux of a respective one of said cord members.
- An apparatus according to claim 14, further comprising
 control means for correlating the magnetic flux detected by each of said magnetic flux sensors.

5

5

5

- 16) An apparatus according to claim 14, wherein said plurality of magnetic flux sensors are positioned with respect to said body so that they remain on one side of said rope when it is guided along said body.
- 17) An apparatus according to claim 14, wherein said plurailty of magnetic flux sensors are positioned with respect to said body so that they are on opposing sides of said rope when it is guided along said body.
- 18) An apparatus according to claim 10, further comprising means for mounting said apparatus in an elevator assembly in such a manner as to enable it to engage an installed elevator rope with said rope guide means for detecting and locating degradation of said elevator rope.

-14-

19) An apparatus according to claim 10, further comprising

means for mounting said apparatus to an elevator hoist machine assembly in an elevator assembly in such a manner as to enable it to engage an installed elevator rope with said rope guide means for detecting and locating degradation of said elevator rope.

20) An apparatus according to claim 10, wherein

5

5

5

5

5

said apparatus is a self-contained, portable unit adapted to be transported to and from an elevator assembly for use therewith to enable it to engage an installed elevator rope with said rope guide means for detecting and locating degradation of said elevator rope.

21) A method for approximating the tension-load bearing capacity of an elevator rope comprising an electrically-conductive, tension-bearing component, said method comprising

applying an electric current through said elevator rope; determining electrical resistivity of said elevator rope; and comparing said resistivity to predetermined data indicative of tension-load bearing capacity of said elevator rope.

A method according to claim 21, further comprising
 connecting current input and current output leads at dead-end
hitch points, respectively, of said elevator rope in an elevator assembly.

23) A method according to claim 21, wherein

said electrically-conductive component is a tension-bearing cord in an elevator rope, wherein said tension-bearing member supports the load of the elevator car.

24) A method according to claim 21, wherein

said elevator rope further comprises a non-conductive insulating jacket generally surrounding said electrically-conductive, tension-bearing component

10

5

5

25) A system for approximating tension-load bearing capacity of an elevator rope having two fixed ends in an elevator assembly and comprising an electrically-conductive component, said system comprising

means for applying electric current through a section of said elevator rope:

means for measuring electrical resistivity of said elevator rope ; and

means for correlating said measurement of said resistivity to predetermined data indicative of tension-load bearing strength of said elevator rope

26) A system according to claim 25, wherein

said electrically-conductive component is a tension-bearing member cord in an elevator rope, wherein said tension-bearing member supports the load of the elevator car.

27) A system according to claim 25, wherein

said elevator rope further comprises a non-conductive insulating jacket generally surrounding said electrically-conductive, tension-bearing component.

28) A system according to claim 25, wherein

said electrically-conductive, tension-bearing component of said elevator rope comprises a plurality of cords embedded within and running longitudinally along the length of said elevator rope for supporting the load of an elevator car: and

said means for applying electric current through a section of said elevator rope engage each of said cords to apply electric current therethrough.

29) A system according to claim 25, further comprising

means for engaging said two fixed ends of said elevator rope for applying said electric current through said elevator rope.

-16-

30) A system according to claim 25, further including means for comparing said measurement of said resistivity for each cord with the others and determining the relative tension-load bearing strengths of each with respect to the others.

5

- A system according to claim 28, wherein
 said elevator rope further comprises a non-conductive insulating lacket generally surrounding said plurality of cords.
- 32) A monitoring system for monitoring the level of excitation of an elevator rope having a load-bearing element that supports the tension loads of the elevator system and a jacket that encompasses the load-bearing element, said monitoring system comprising

excitation means for exciting said load-bearing element in a manner such that said jacket is not subject to excitation; and monitoring means for monitoring the level of excitation of said load-bearing element.

3/5

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 5 October 2000 (05.10.2000)

(10) International Publication Number WO 00/58706 A3

(51) International Patent Classification?: G01N 27/82	Jack, R; 315 Strickland Street, Glastonbury, CT 06033 (US).
(21) International Application Number: PCT/US00/07279	(74) Agents: HENLEY, Randy, G. et al.; Otis Elevator Com-
(22) International Filing Date: 17 March 2000 (17.03.2000)	pany, Intellectual Property Dept., 10 Farm Springs, Farm ington, CT 06032-2568 (US).
(25) Filing Language: English	(81) Designated States (national): BR, CN, IN, JP, KR, PT RU.
(26) Publication Language: English	(84) Designated States (regional): European patent (AT, BE
(30) Priority Data: 09/280,637 29 March 1999 (29.03.1999) US	CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC NL, PT, SE).
(71) Applicant: OTIS ELEVATOR COMPANY [US/US]; Intellectual Property Dept., 10 Farm Springs, Farmington, CT	Published: with international search report
06032-2568 (US).	(88) Date of publication of the international search report:

(72) Inventors: ROBAR, Terry, M.; 22 Bristol Drive, Canfield Avenue, Hartford, CT 06114 (US). STUCKY, Paul,

(88) Date of publication of the international search report: 26 July 2001

ton, CT 06019 (US), VERONESI, William, A.; 342 Fair- For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the begin-A.; 132 Broad Street, Gronton, CT 06340 (US). GIERAS, ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND APPARATUS FOR DETECTING ELEVATOR ROPE DEGRADATION USING ELECTRICAL OR MAGNETIC ENERGY

(57) Abstract: A method and system for detecting or measuring defects in a rope having ferromagnetic tension members includes a magnetic field exciter and an array of magnetic flux sensors corresponding to the tension members in a known relationship. Measurements of magnetic flux leakage are indicative of defects. Another aspect of the invention includes a method and system for detecting or measuring defects in an elevator rope having electrically conductive tension members, whereby measured electrical resistance in the tension members is indicative of defects.

INTERNATIONAL SEARCH REPORT

International Application No PC1, JS 00/07279

A. CL	ASSIFIC	ATION OF	SUBJECT 7/82	MATTER
IPC	/	GUINZ	//82	

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC $7-601\,\text{N}$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

WPI Data, PAJ, EPO-Internal

"A" document defining the general state of the art which is not

* Special categories of cited documents :

Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
DE 39 04 612 A (WESTFÄLISCHE BERGWERKSSCHAFTSKASSE) 29 March 1990 (1990-03-29) abstract column 3, line 48 -column 4, line 46; figure 1	1-4, 6-12, 14-16,18
EP 0 845 672 A (NORANDA INC) 3 June 1998 (1998-06-03) abstract column 4, line 16 - line 40; figure 1	1-4,6-20
EP 0 286 712 A (WESTFÄLISCHE BERGWERKSGESELLSCHAFT) 19 October 1988 (1988-10-19) abstract colum 4, line 15 - line 31; figure 1	1-4,6-20
	DE 39 04 612 A (WESTFÄLISCHE BERGWERKSSCHAFTSKASSE) 29 March 1990 (1990-03-29) abstract column 3, line 48 -column 4, line 46; figure 1 EP 0 845 672 A (NORANDA INC) 3 June 1998 (1998-05-03) abstract column 4, line 16 - line 40; figure 1 EP 0 286 712 A (WESTFÄLISCHE BERGWERKSGESELLSCHAFT) 19 October 1988 (1988-10-19) abstract

considered to be of particular relevance "E" earlier document but published on or after the International	Invention
filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another	involve an Inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention
citation or other special reason (as specified)	cannot be considered to involve an inventive step when the
"O" document referring to an oral disclosure, use, exhibition or other means	document is combined with one or more other such docu- ments, such combination being obvious to a person skilled
"P" document published prior to the international filing date but later than the priority date claimed	in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the International search report
3 August 2000	1 2. 01. 01
Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rilswijk	
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	KEMPF G.V.

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the

INTERNATIONAL SEARCH REPORT

Ir ational application No. PCT/US 00/07279

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Into	propertional Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. 🗆	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.: Described requirements to such an extent that no meaningful international Application that do not comply with the prescribed requirements to such an extent that no meaningful international Search can be carried out, specifically:
3. 🗌	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 8.4(a).
Box II	Observations where unity of Invention is lacking (Continuation of Item 2 of first sheet)
This inte	rmational Searching Authority found multiple Inventions in this international application, as follows:
	see additional sheet
1. 🗆	As all required additional search fees were timely paid by the applicant, this international Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
з. 🗌	As only some of the required additional search fees were timely paid by the applicant, this international Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4 X	No required additional search fees were timely paid by the applicant. Consequently, this international Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-4,6-20
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-4.6-20

A method and apparatus for detecting degradation of a rope applying a magnetic field.

2. Claim : 5

A methode for approximating tension-load bearing capacity of a rope by applying a magnetic field.

3. Claims: 21-31

A method for approximating the tension-load-bearing capacity of a rope applying a electric current.

4. Claim: 32

A monitoring system for monitoring the level of exitation of an elevator.

INTERNATIONAL SEARCH REPORT

ormation on patent family members

PC1, JS 00/07279

Patent document cited in search report		Publication date	Patent family member(s)	Publication date
DE 3904612	Α	29-03-1990	NONE	
EP 845672	Α	03-06-1998	US 5804964 A BR 9706053 A CA 2222108 A ZA 9710734 A	08-09-1998 14-09-1999 29-05-1998 17-07-1998
EP 286712	Α	19-10-1988	NONE	