Chapter 7; # 4 and 8 (pg. 175)

Problem 4. Consider

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{1 + n^2 x}.$$

For what values of x does the series converge absolutely? On what interval does it converge uniformly? On what interval does it fail to converge uniformly? Is f continuous whenever it converges? If f bounded?

Proof. The series converges for all real x except for x = 0 and $x = -\frac{1}{n^2}$ for n > 0. For x = 0, we have $1 + 1 + \ldots$, which diverges. For $x = -\frac{1}{n^2}$, the nth term of the series is undefined. For all other x, the series has the same growth rate as $\sum \frac{1}{n^2}$, so it converges.

The first reaction is that all intervals not containing $X = \{0, -1, -\frac{1}{4}, \dots\}$ should be correct. However, the problem with this is that if our interval has a limit point in X, then the neighbourhoods around such a limit point will not be bounded, and hence fail the Weierstrass M-test. The way to amend these limit points is to simply take closed intervals instead; hence we claim that f converges uniformly for any interval of the form [a, b] disjoint from X. (This includes intervals of the form $[a, \infty)$ and $(-\infty, b]$.) Indeed, **TODO**

From what we just talked about, f will fail to converge uniformly on any interval that has a limit point in X. Explicitly, suppose $a=-\frac{1}{n^2}\in X$ is a limit point of a considered interval I. Let $\varepsilon=1$ and $\delta>0$, then

$$|f(x) - f(x+\delta)| = \left| \frac{1}{1+n^2x} - \frac{1}{1+n^2(x+\delta)} \right|$$

$$= \left| \frac{n^2\delta}{(1+n^2x)(1+n^2(x+\delta))} \right|$$

$$\geq \frac{n^2\delta}{(1+n^2|x|)(1+n^2(|x|+\delta))}$$
>

Uniform convergence show that the limit f is coninuous on any of the intervals it converges uniformly on. But the union of all intervals of the form [a, b] disjoint from X is just $\mathbb{R} - X$. Hence f is continuous whenever it is defined.

1

Since f diverges around all the points of X, f is clearly not bounded.

Page 1

Problem 8. if

$$I(x) = \begin{cases} 0 & (x \le 0), \\ 1 & (x > 0), \end{cases}$$

if $\{x_n\}$ is a sequence of distinct points of (a,b), and if $\sum |c_n|$ converges, prove that the series

$$f(x) = \sum_{n=1}^{\infty} c_n I(x - x_n) \quad (a \le x \le b)$$

converges uniformly, and that f is continuous for every $x \neq x_n$.

Proof. The first part follows immediately from Theorem 7.10 in the text; let $f_n = c_n I(x-x_n)$, then $|f_n| \le |c_n|$ and $\sum |c_n|$ converges, so $\sum f_n$ converges, as desired.

Furthermore, f(x) is pointwise continuous at x when each $f_n(x)$ is continuous at x; hence f(x) is at least continuous for all $x \neq x_n$.

Page 2