Modern Physics Final Study Guide

PHYS-122

Fall 2024

CONTENTS 2

Contents

1	Special Relativity		3
	1.1	Key Concepts	3
	1.2	Essential Equations	6
2	Early Quantum Theory and Quantum Mechanics		
	2.1	Key Concepts	7
	2.2	Essential Equations	8
3	Statistical Mechanics		9
	3.1	Key Concepts	9
	3.2	Essential Equations	9
	3.3	Units and Unit Conversions	10
4	Quick Reference		10
	4.1	Mathematical Tools	10
	4.2	Important Constants	11
	4.3	Unit Conversions	11

1 Special Relativity

1.1 Key Concepts

Postulates:

- Laws of physics are the same in all inertial frames.
- The speed of light is constant in a vacuum for all observers, regardless of their motion relative to the source.

Relativity of Simultaneity: Two events that appear simultaneous to one observer may not appear simultaneous to another observer moving relative to the first.

Relativistic Velocity Addition: These problems typically involve three objects:

- S: Stationary reference frame.
- S': Reference frame of the second moving object.
- u: Velocity of the first object relative to the stationary frame.
- \bullet v: Velocity of the second object relative to the stationary frame.
- u': Velocity of the first object relative to the second moving object.

The Relativistic Invariant Interval: A spacetime quantity that remains unchanged under Lorentz transformations.

• Properties:

- Negative spatial components distinguish it from a Euclidean interval.
- It can be positive, negative, or zero:
 - * Time-like ($s^2 > 0$): Events can be connected by a physical particle moving slower than the speed of light.
 - * Space-like ($s^2 < 0$): Events are separated by more distance than time; no signal can connect them.
 - * **Light-like** ($s^2 = 0$): Events are connected by a light signal.

• Relationship to Proper Time and Proper Length:

- **Proper Time** ($\Delta \tau$): In the frame where the particle is stationary, the interval relates to proper time.
- **Proper Length** (ΔL): In the frame where events are simultaneous, the interval relates to proper length.

Four-Vectors

• Four-Position: Represents the spacetime coordinates of an event:

$$x^{\mu} = (ct, \vec{x}) = (ct, x, y, z)$$

where ct is the time component, and $\vec{x} = (x, y, z)$ is the spatial position in 3D space.

 Four-Velocity: Describes the rate of change of four-position with respect to proper time τ:

$$u^{\mu} = \frac{dx^{\mu}}{d\tau} = \gamma(c, \vec{v})$$

where $\vec{v} = (v_x, v_y, v_z)$ is the 3-velocity and $\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$.

- The invariant magnitude of four-velocity is $u^{\mu}u_{\mu}=c^2$.
- Four-Momentum: Represents the energy and momentum of a particle:

$$p^{\mu} = m_0 u^{\mu} = (\frac{E}{c}, \vec{p})$$

where $\vec{p} = \gamma m_0 \vec{v}$ is the 3-momentum, and $E = \gamma m_0 c^2$ is the total energy of the particle.

- The invariant magnitude of four-momentum is $p^{\mu}p_{\mu}=m_{0}^{2}c^{2}$, related to the rest energy.
- Dot Products of Four-Vectors:
 - Inner products between four-vectors are invariant under Lorentz transformations.
 - Example: For two four-momentum vectors p^{μ} and q^{μ} , the dot product:

$$p^{\mu}q_{\mu} = \frac{E_p E_q}{c^2} - \vec{p} \cdot \vec{q}$$

is invariant and depends on the relative energies and momenta in 3D space.

- Spacetime Diagrams: Four-vectors can be visualized in spacetime diagrams:
 - Time-like vectors point mostly along the time axis.
 - Space-like vectors point mostly along spatial axes.
 - Light-like vectors lie on the cone separating time-like and space-like regions.

Relativistic Conservation Laws: In an isolated system of particles:

- The relativistic total energy (kinetic energy plus rest energy) remains constant.
- The total linear momentum remains constant.

1.2 Essential Equations

Time Dilation: $\Delta t = \gamma \Delta t_0$, where $\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$.

Length Contraction: $L = L_0 \gamma^{-1} = L_0 \sqrt{1 - v^2/c^2}$.

Relativistic Addition of Velocities: $u' = \frac{u+v}{1+uv/c^2}$.

Lorentz Transformations:

• Time: $t' = \gamma(t - \frac{vx}{c^2})$.

• Space: $x' = \gamma(x - vt)$.

Relativistic Dynamics:

• Kinetic Energy: $KE = (\gamma - 1)m_0c^2$.

• Total Energy: $E = \gamma m_0 c^2$.

Energy-Momentum Relation: $E^2 = (pc)^2 + (m_0c^2)^2$.

Four-Position:

- Defined as $x^{\mu} = (ct, x, y, z)$, where x^{μ} is the spacetime coordinate.
- Invariant interval: $s^2 = (ct)^2 x^2 y^2 z^2$.

Four-Velocity:

- Defined as $u^{\mu} = \frac{dx^{\mu}}{d\tau}$, where τ is proper time.
- Invariant dot product: $u^{\mu}u_{\mu}=c^2$.

Four-Momentum:

- Defined as $p^{\mu} = m_0 u^{\mu}$, where m_0 is the rest mass.
- Invariant: $p^{\mu}p_{\mu} = -m_0^2c^2$.

2 Early Quantum Theory and Quantum Mechanics

2.1 Key Concepts

- Blackbody radiation: Explained using Planck's quantum hypothesis E = nhf.
- \bullet Photoelectric effect: Energy of emitted electrons depends on frequency, not intensity.
- Wave-particle duality: Matter exhibits both particle and wave properties.
- Schrödinger equation: Governs quantum mechanical behavior of particles.

2.2 Essential Equations

• Planck's law: E = hf

• Photoelectric equation: $KE_{\text{max}} = hf - \phi$

• De Broglie wavelength: $\lambda = \frac{h}{p}$

• Schrödinger equation (time-independent):

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V\psi = E\psi$$

• 3D Schrödinger equation (spherical coordinates):

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V(r)\psi = E\psi$$

where

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$

• General solution to the wave function:

$$\psi(r, \theta, \phi) = R(r)Y(\theta, \phi)$$

where:

- R(r): Radial part of the wave function, satisfying a differential equation dependent on the potential V(r).
- $Y(\theta, \phi)$: Angular part, given by spherical harmonics:

$$Y_l^m(\theta,\phi) = (-1)^m \sqrt{\frac{(2l+1)(l-m)!}{4\pi(l+m)!}} P_l^m(\cos\theta) e^{im\phi}$$

where P_l^m are associated Legendre polynomials, and l,m are quantum numbers.

Statistical Mechanics 9

3 Statistical Mechanics

3.1 Key Concepts

- Microstates and macrostates: Connection between microscopic and macroscopic descriptions.
- Boltzmann distribution: $P_i = \frac{e^{-E_i/k_B T}}{Z}$.
- Partition function: Summation of states to understand thermodynamic properties, $Z = \sum_{i} e^{-E_i/k_BT}$.
- Occupation numbers: Average number of particles in a state, $n_i = \frac{1}{e^{(E_i \mu)/k_B T} \pm 1}$ (for fermions and bosons).
- Degeneracy: The number of microstates corresponding to a single energy level.
- Distinguishable vs. indistinguishable particles: Boltzmann distribution for distinguishable particles; Fermi-Dirac and Bose-Einstein distributions for indistinguishable particles.

3.2 Essential Equations

Boltzmann distribution: $P_i = \frac{e^{-E_i/k_BT}}{Z}$

Partition function: $Z = \sum_{i} g_i e^{-E_i/k_B T}$

Fermi-Dirac distribution: $n_i = \frac{1}{e^{(E_i - \mu)/k_B T} + 1}$

Bose-Einstein distribution: $n_i = \frac{1}{e^{(E_i - \mu)/k_B T} - 1}$

Average energy: $\langle E \rangle = \sum_i P_i E_i = -\frac{\partial \ln Z}{\partial \beta}$

Probability of a state: $P(E) = \frac{g_i e^{-E/k_B T}}{Z}$

Quick Reference 10

3.3 Units and Unit Conversions

- Energy: $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}.$
- Temperature: Convert between Kelvin and energy using $k_B = 1.38 \times 10^{-23}$ J/K.
- Wavelength and frequency: $E=hf,\;\lambda=\frac{c}{f},\; {\rm with}\; hc=1240\; {\rm eV}\cdot {\rm nm}.$

4 Quick Reference

4.1 Mathematical Tools

• Trigonometric Identities:

$$\cos^2 x = \frac{1 + \cos(2x)}{2}$$
$$\sin^2 x = \frac{1 - \cos(2x)}{2}$$
$$\sin(2x) = 2\sin x \cos x$$

- Series:
 - Taylor Series Expansion: $\sum_{n=0}^{\infty} C_n (x-a)^n \text{ where } C_n = \frac{f^{(n)}(a)}{n!}$
 - Binomial Series Expansion: $(1 \pm x)^r = 1 \pm rx \pm ...$
- Integration Tips:
 - For even functions: $\int_{-a}^a f(x) dx = 2 \int_0^a f(x) dx$
 - For odd functions: $\int_{-a}^{a} f(x)dx = 0$
 - Gaussian integrals often appear in wave packets

Quick Reference 11

- Complex Numbers Review
 - Complex conjugate: $z^* = a bi$ for z = a + bi
 - Modulus: $|z| = \sqrt{a^2 + b^2}$
 - Euler's formula: $e^{i\theta} = \cos \theta + i \sin \theta$
 - Argument: $\arg(z) = \tan^{-1}\left(\frac{y}{x}\right)$
- Second Order Differential Equations
 - If ODE has this form: $\frac{d^2f}{dx^2}=k^2f$ where k is a constant The solution is:

$$f(x) = Ae^{kx} + Be^{-kx}$$

4.2 Important Constants

- Stefan-Boltzmann constant: $\sigma = 5.67 \times 10^{-8} \ \mathrm{W/m}^2 \cdot K^4$
- Planck's constant: $h=6.626\times 10^{-34}\,\mathrm{J\cdot s}=4.136\times 10^{-15}~\mathrm{eV\cdot s}$
- Electron mass: $m_e = 9.11 \times 10^{-31} \,\mathrm{kg}$
- Speed of light: $c = 3.0 \times 10^8 \,\mathrm{m/s}$
- Bohr radius: $a_0 = 0.0529 \times 10^{-9} \,\mathrm{m}$
- Compton wavelength of the electron: $\frac{h}{m_e c} = 0.002426 \text{ nm}$

4.3 Unit Conversions

- $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$
- $hc = 1240 \text{ eV} \cdot \text{nm}$
- $\hbar c = \frac{1240}{2\pi} \text{ eV} \cdot \text{nm}$