GUÍA #3 - EJERCICIOS DE RECURSIÓN

Ejercicio 1:

Escriba una definición recursiva de una función que tiene un parámetro n de tipo entero y que devuelve el n-ésimo número de Fibonacci. Los números de Fibonacci se definen de la siguiente manera:

$$\begin{split} F_0 &= 1 \\ F_1 &= 1 \\ F_{i+2} &= F_i + F_{i+1} \end{split}$$

Ejercicio 2

La forma para calcular cuantas maneras diferentes tengo para elegir r cosas distintas de un conjunto de n cosas es:

$$C(n,r) = n! (r!*(n-r)!)$$

Donde la función factorial se define como

$$n! = n *(n-1)*(n-2)*...*2*1$$

Descubra una versión recursiva de la fórmula anterior y escriba una función recursiva que calcule el valor de dicha fórmula.

Ejercicio 3

Escriba una función recursiva que ordene de menor a mayor un arreglo de enteros basándose en la siguiente idea: coloque el elemento más pequeño en la primera ubicación, y luego ordene el resto del arreglo con una llamada recursiva.

Ejercicio 4

Escribir una función recursiva que devuelva la suma de los primeros N enteros

Ejercicio 5

Escribir un programa que encuentre la suma de los enteros positivos pares desde N hasta 2. Chequear que si N es impar se imprima un mensaje de error.

Ejercicio 6

Escribir un programa que calcule el máximo común divisor (MCD) de dos enteros positivos. Si M >= N una función recursiva para MCD es

$$MCD = M \text{ si } N = 0$$

 $MCD = MCD (N, M \text{ mod } N) \text{ si } N <> 0$

El programa le debe permitir al usuario ingresar los valores para M y N desde la consola. Una función recursiva es entonces llamada para calcular el MCD. El programa entonces imprime el valor para el MCD. Si el usuario ingresa un valor para M que es < que N el programa es responsable de switchear los valores.

Ejercicio 7

Programe un método recursivo que transforme un número entero positivo a notación binaria.

Ejercicio 8

Programe un método recursivo que transforme un número expresado en notación binaria a un número entero.

Ejercicio 9

Programe un método recursivo que calcule la suma de un arreglo de números enteros.

Ejercicio 10

Programe un método recursivo que invierta los números de un arreglo de enteros.

Ejercicio 12

Implemente una función recursiva que nos diga si una cadena es palíndromo.

Ejercicio 13

Implementa una función recursiva que calcule la potencia de 'x' elevada al valor 'y'.

Ejercicio 14

Escribe una función recursiva que realice un conteo regresivo desde un número dado hasta 0.

Ejercicio 15

Implementa una función recursiva que invierta una cadena dada.

Ejercicio 16

Crea una función recursiva que cuente la cantidad de dígitos en un número entero positivo.

Ejercicio 17

Diseña una función recursiva que calcule la suma de los dígitos en un número entero.

Ejercicio 18

Crea una función recursiva que realice una búsqueda binaria en un arreglo ordenado.

Ejercicio 19

Escribe una función recursiva que genere todas las permutaciones posibles de un conjunto de elementos.

Ejercicio 20

Implementa una función recursiva que determine si es posible obtener una suma específica utilizando elementos de un arreglo.

Ejercicio 21

Diseña una función recursiva para verificar si un número dado es primo.

Ejercicio 22

Diseña una función recursiva que calcule el número de formas diferentes en que se pueden dar cambios usando un conjunto de monedas.

Ejercicio 23

Escribe una función recursiva que encuentre todos los factores primos de un número entero.

Ejercicio 24

Implementa una función recursiva que recorra una matriz (arreglo bidimensional) e imprima sus elementos.

Ejercicio 25

Implementa una función recursiva que convierta un número en base 10 a otra base dada.

Ejercicio 26

Crea una función recursiva que calcule el número de formas posibles de subir una escalera con 'n' escalones, tomando uno o dos pasos a la vez.

Ejercicio 27

Implementa una función recursiva que genere todos los subconjuntos de un conjunto dado.

Ejercicio 28

Diseña una función recursiva que calcule la suma de todos los factores de un número entero positivo.

Ejercicio 29

Diseña una función recursiva que encuentre todos los números cuyas cifras son todas diferentes en un rango dado.

Ejercicio 30

Calcula el valor de 'e' (número de Euler) usando una serie infinita mediante una función recursiva.