Курсовая работа по дисциплине **Теория принятия решений**

Вводное занятие 1

Пономарев Андрей Васильевич

Организационное

- Много информации, имеющей отношение к курсовой:
 - http://avponomarev.bitbucket.io (далее просто Сайт),
 - http://a-v-ponomarev.github.io
- Три задачи как правило, две ЛП, одна ДП
 - Найти решение задачи оптимизации
 - Ответить на вопросы по заданию
- Варианты индивидуальных заданий
 - Сами задания лежат на Сайте
 - Для назначения вариантов необходимо отправить мне на почту списки групп
- Отчетность
 - Отчет
 - Формализация решение интерпретация ответы на доп. вопросы
 - Требования по содержанию и оформлению (и шаблон) на Сайте
 - Защита
 - Могу попросить изменить какое-нибудь условие, что-то добавить и т.п.

Организационное. Режим

- Лекции Николай Алексеевич
- Курсовая Андрей Васильевич (то есть, я)

- Фазы нашего взаимодействия:
 - 1. Введение (~до середины ноября)
 - Я рассказываю о том, как предполагается решать задачи
 - 2. Развитие
 - Консультации, прием
 - 3. Прием (последнее занятие)

Программное обеспечение

• Инструменты:

- Рекомендуемый инструмент: Python (Jupyter, CVXOPT, seaborn, pandas etc.)
- Возможно (legacy mode):
 - Для задачи динамического программирования Octave/C++/Python/Java
 - Для линейного программирования Octave (glpk) или GLPK (через GUSEK)

• Почему это так?

- Вы решали задачи линейного программирования, транспортные задачи, "руками" в соответствующих курсах
- В рамках курсовой работы будет полезно познакомиться с тем, что представляет собой мир **ПО для оптимизации** и "пощупать" его руками
- Python. Набирающая популярность инфраструктура для *анализа данных*
 - + язык достаточно широкого назначения (чем выгодно отличается от Octave/R и пр.)

Программное. Пояснения

- В мире оптимизации существует два класса приложений:
 - 1) программные средства для моделирования с их помощью вы на понятном, удобном синтаксисе записываете математическую модель вашей задачи.
 - 2) **солверы**. Они либо встраиваемые (линкуются как библиотеки), либо считывают файлы какого-либо из проприетарных или распространенных форматов (mps).

План

- Постановка задачи линейного программирования (ЗЛП) (почти как в индивидуальных заданиях)
- Решение ЗЛП в Python
- Решение ЗЛП в GNU Octave
- Решение ЗЛП в GLPK/MathProg

Постановка задачи линейного программирования (почти как в индивидуальных заданиях)

Условие

- Рацион стада крупного рогатого скота включает **пищевые продукты A, B, C, D, E**.
- В сутки одно животное должно съедать не менее A1 [кг] продукта A, B1 [кг] продукта B, C1 [кг] продукта C, D1 [кг] продукта D, E1 [кг] продукта E. Однако в чистом виде указанные продукты не производятся.
- Они содержатся в кормовых культурах **К-1, К-2, К-3, К-4**. Известно процентное содержание продуктов в килограмме кормовой культуры.
- Известны суточные нормы А1-Е1 (в кг).
- Определить максимальное поголовье скота, которое можно содержать, используя имеющийся запас культур.

Решение

• Параметры

- Будем использовать i для индексирования продуктов, j для индексирования культур.
- Процентное содержание (r_{ii}) , i in $\{1..5\}$, j in $\{1..4\}$.
- Суточные нормы продуктов d_i , i in $\{1..5\}$ [кг].
- Запас культур s_i [т].

• Переменные

- n количество животных.
- x_j in $\{1..4\}$ количество культуры j-того типа, которую мы используем в кормовом плане $[\tau]$.

• Тогда

- (ЦФ) n -> max
- $x_1r_{11} + x_2r_{12} + x_3r_{13} + x_4r_{14} >= 0,365 d_1 n$ слева количество первого продукта
- ...
- $x_1 <= s_1$ (согласовать единицы измерения!)

Линейные задачи. Таблица

	X1	X2	Х3	X4	n	Неравенство	Правая часть
f	0	0	0	0	1	-	max
y1	r ₁₁	r ₁₂	r ₁₃	r ₁₄	-0,365*d ₁	>=	0
•••	•••	•••		•••	•••		•••
y6	1	0	0	0	0	<=	s ₁
•••	•••	•••	•••	•••	•••	<=	•••

Решение задачи ЛП в Python

Конфигурирование среды

- 1. Установить менеджер пакетов, зависимостей и окружений Conda (Miniconda)
 - Особенно важно для Windows
 - Вариант: весь дистрибутив Anaconda (но это overkill)
- 2. Сконфигурировать окружение:

conda create --name dmt python=3.9
conda activate dmt
conda install jupyter cvxopt seaborn pandas
jupyter notebook

ИЛИ

• создать проект в своей любимой IDE для Python (Pycharm?) указав, что он должен выполняться в соответствующем окружении

Менеджер пакетов, зависимостей и окружений Conda

Больше информации на https://conda.io/

Docker

```
$ docker pull jupyter/minimal-notebook
$ docker run -it --rm -p 8888:8888 jupyter/minimal-notebook
```

Внутри контейнера:

\$ conda install cvxopt pulp seaborn pandas

Google Colaboratory

Некоторые библиотеки Python для решения задач ЛП

Библиотека	Матричный интерфейс	Моделирование	MILP	Анализ чувствительности	Пакет conda	Внешние солверы
CVXOPT	+	+/-	+	+	+	+
PuLP	-	+	+	-	+	+
scipy.optimize.linprog	+	-	-	-	+	-
Pyomo	-	+	+	?	+	?

Использование Jupyter

Использование Jupyter

Использование Jupyter

Использование CVXOPT

cvxopt.solvers.lp(c, G, h[, A, b[, solver[, primalstart[, dualstart]]]])

minimize
$$c^Tx$$
 maximize $-h^Tz-b^Ty$ subject to $Gx+s=h$ subject to $G^Tz+A^Ty+c=0$ $z\succeq 0.$

Таким образом:

с – коэффициенты переменных в целевой функции;

G – коэффициенты переменных в ограничениях-неравенствах (<=);

h – правые части ограничений-неравенств (<=);

А – коэффициенты переменных в ограничениях-равенствах;

b – правые части ограничений-равенств.

	x1	x2	х3	x4	n	Неравенство	Пр.
							часть
С	0	0	0	0	1	-	max (-1)
y1	r ₁₁	r ₁₂	r ₁₃	R ₁₄	-0,365*d ₁	>= (-1)	0
•••	•••	•••	•••	•••	•••	•••	•••
y6	1	0	0	0	0	<=	S ₁
•••	•••	•••	•••	•••	•••	•••	
y10	1	0	0	0	0	>= (-1)	0
•••	•••	•••	•••	• • •	•••	•••	•••

с – коэффициенты переменных в целевой функции

	x1	x2	х3	x4	n	Неравенство	Пр.
							часть
С	0	0	0	0	1	-	max (-1)
y1	r ₁₁	r ₁₂	r ₁₃	R ₁₄	-0,365*d ₁	>= (-1)	0
•••	•••	•••	•••	•••	•••	•••	•••
у6	1	0	0	0	0	<=	S ₁
•••	•••	•••	•••	•••	•••	•••	
y10	1	0	0	0	0	>= (-1)	0
•••	•••	•••	•••	•••	•••	•••	•••

G – коэффициенты переменных в ограничениях-неравенствах

	x1	x2	х3	x4	n	Неравенство		Пр.	
									часть
С	0	0	0	0	1		-		max (-1)
y1	r ₁₁	r ₁₂	r ₁₃	R ₁₄	-0,365*d ₁		>= (-1)		0
•••	•••	•••	•••	•••	•••		•••		•••
у6	1	0	0	0	0		<=		S ₁
•••	•••	•••	•••	•••	•••		•••		
y10	1	0	0	0	0		>= (-1)		0
•••		•••	•••	•••	•••		•••		•••

h – значения правых частей ограничений-неравенств

	x1	x2	х3	x4	n	Неравенство		Пр. часть	
С	0	0	0	0	1		-		max (-1)
y1	r ₁₁	r ₁₂	r ₁₃	R ₁₄	-0,365*d ₁		>= (-1)		0
•••	•••	•••	•••	•••	•••				
у6	1	0	0	0	0		<=		S_1
•••	•••	•••	•••	•••	•••		•••		
y10	1	0	0	0	0		>= (-1)		0
•••	•••	•••	•••	•••	•••		•••		•••

Пример решения ЗЛП с помощью CVXOPT

```
from cvxopt import matrix, solvers
c = matrix([0, 0, 0, 0, -1], tc='d')
G = matrix([[-0.05, -0.13, 0, 0.365 * 1.5],
           [-0.10, -0.20, -0.10, 0, 0.365 * 1.4],
           [-0.04, -0.06, -0.15, 0, 0.365 * 1.0],
           [0, -0.10, -0.08, -0.15, 0.365 * 0.8],
           [-0.15, 0, -0.14, -0.10, 0.365 * 0.6],
           [1, 0, 0, 0, 0],
           [0, 1, 0, 0, 0],
           [0, 0, 1, 0, 0],
           [0, 0, 0, 1, 0],
           [-1, 0, 0, 0, 0],
           [0,-1,0,0,0],
           [0, 0, -1, 0, 0],
           [0, 0, 0, -1, 0],
           [0, 0, 0, 0, -1],
          ], tc='d')
```

```
h = matrix([0, 0, 0, 0, 0, 5, 6, 7, 8,
                                 0, 0, 0, 0], tc='d')
solution = solvers.lp(c, G.T, h, solver='glpk')
print('Status: ', solution['status'])
print('x = \n', solution['x'])
print('Objective: ', solution['primal objective'])
            Status: optimal
            X =
            [ 5.00e+00]
            [ 6.00e+00]
            [ 8.44e-01]
            [ 0.00e+00]
```

Objective: -1.881278538812786

[1.88e+00]

Решение задачи ЛП в GNU Octave

Пример решения ЗЛП в Octave (1)

- Параметры функции **glpk**:
 - с вектор-столбец коэффициентов целевой функции;
 - А матрица с коэффициентами ограничений;
 - b вектор-столбец со значениями свободных членов;
 - lb вектор с нижними границами для каждой переменной (0);
 - ub вектор с верхними границами для каждой переменной, если нет, то бесконечность;
 - ctype массив символов с типами ограничений:
 - F свободное ограничение (не ограничение вовсе);
 - U <= (upper bound)
 - S =
 - L >= (lower bound)
 - D -b <= Ax <= b
 - vartype строка с типами переменных:
 - С непрерывная переменная;
 - І дискретная переменная.
 - sense 1 minimization (default), -1 maximization.
 - param структура с дополнительными параметрами.
- Возвращает:
 - xopt, fmin, status, extra. Status должен быть 180 найдено оптимальное решение. Если нет, то нужно анализировать.

Пример решения ЗЛП в Octave (2)

- Возвращает:
 - xopt значения переменных;
 - fopt значение целевой функции;
 - errnum код ошибки:
 - 0 нет ошибки;
 - 2 вырожденная матрица коэффициентов;
 - 10 задача не имеет допустимых решений;
 - 11 двойственная задача не имеет допустимых решений;
 - extra дополнительная информация о решении:
 - lambda теневые цены;
 - costs приведенные цены;
 - status (5 оптимальное решение).
- В старых версиях (3.6.х):
 - xopt, fopt, status, extra;
 - Status = 180, если найдено единственное решение.

Нужно совместно анализировать errnum и status!

Пример решения ЗЛП в Octave (3)

	X1 [C]	X2 [C]	X3 [C]	X4 [C]	n [C]	Неравенство	b
С	0	0	0	0	1	-	max (-1)
y1	r ₁₁	r ₁₂	r ₁₃	r ₁₄	-0,365*d ₁	>= (L)	0
•••	•••	•••	•••	•••	•••	•••	•••
у6	1					<= (U)	S ₁

Пример решения ЗЛП в Octave (4)

```
1;
                                       b = [0 \ 0 \ 0 \ 0 \ 0 \ 5 \ 6 \ 7 \ 8]';
c = [0 \ 0 \ 0 \ 0 \ 1]';
                                        [x_max, z_max, en] = glpk(c, A, b,
                                          zeros(5, 1), # lb
A = [0.05 \ 0.13 \ 0 \ 0.365 * 1.5;
                                          [],
                                                 # ub
    0.10 0.20 0.10 0 -0.365 * 1.4;
                                          "LLLLUUUU", # ctype
    0.04 0.06 0.15 0 -0.365 * 1;
                                          "CCCCC", # vartype
    0 0.10 0.08 0.15 -0.365 * 0.8;
                                                         # sense
                                          -1);
    0.15 0 0.14 0.10 -0.365 * 0.6;
    1 0 0 0 0;
                                       x_{max}
    0 1 0 0 0;
    0 0 1 0 0;
                                       z_{max}
    0 0 0 1 0];
                                        en
```

Решение задачи ЛП в GLPK/MathProg

GNU Linear Programming Kit

- GLPK свободно распространяемый пакет для решения задач ЛП (в том числе, целочисленного ЛП и смешанного ЛП)
- Структура:
 - Библиотека
 - «Обертки» для разных языков
- Язык математического моделирования GMPL (GNU MathProg)
 - Подмножество AMPL

Элементы GMPL

- Модель описывается с помощью объектов следующих видов:
 - Множества
 - Параметры
 - Переменные
 - Ограничения
 - Цели
- Объекты задаются с помощью языковых конструкций (предложений)
 - Декларативные и функциональные
- Разделение модели и данных (разные секции или даже разные файлы)

Пример решения ЗЛП в GLPK (1)

```
set Products;
                                                                                                                ration.mod
set Crops;
param r{i in Products, j in Crops} >= 0, <= 1, default 0;</pre>
param d{i in Products} >= 0;
param s{j in Crops} >= 0; # Запасы культур
var n >= 0; # Искомое количество голов скота
var x \{j \text{ in Crops}\} >= 0; \# Расход культуры [<math>\tau]
maximize z: n;
# Ограничения
s.t. Ration{i in Products}: sum{j in Crops} r[i, j] * x[j] >= 0.365 * d[i] * n; # Рацион по i-тому продукту
s.t. Stock{j in Crops}: x[j] \le s[j]; # Ограничение по запасам j-той культуры
solve;
end;
```

Пример решения ЗЛП в GLPK (2)

```
set Products := A B C D E;
set Crops := K1 K2 K3 K4;
A 0.05 0.13 0
    B 0.1 0.2 0.1 0
    C 0.04 0.06 0.15 0
            0.1 0.08 0.15
      0.15 0 0.14 0.1;
param d A 1.5 B 1.4 C 1 D 0.8 E 0.6;
param s := [K1] 5 [K2] 6 [K3] 7 [K4] 8;
end;
```

data;

ration.dat

Пример решения ЗЛП в GLPK (3)

• Из консоли:

glpsol –m ration.mod –d ration.dat –o ration.solution

• Из GUSEK:

- GUSEK | File | New (сохранить файл .mod)
- File | New (сохранить в той же директории файл с данными имя должно совпадать с модельным, расширение .dat)
- Tools | Generate Output File on Go (должно быть отмечено)
- Tools | Go (справа появится вывод консольной GLPK, и откроется новый файл out, содержащий ответ в форме, которую еще нужно научиться читать но об этом в следующий раз)