

Escuela Politécnica Nacional Facultad de Ingeniería de Sistemas

Métodos Numéricos Dr. José F. Lucio Naranjo

Proyecto Final Grupal con Consulta

Entrega de enunciado: 24 de agosto de 2021 Presentación del proyecto: 16 de septiembre de 2021

En la figura 1 se presenta la solución de un problema de transferencia radioactiva obtenido por una alumna de Maestría de la Escuela Politécnica Nacional.

Figura 1 – Intensidad de la radiación reflejada por una placa de un material semitransparente, obtenida empleando dos métodos diferentes: Galerkin y Ordenadas Discretas (S₂₀).

a) Llene la Tabla 1 a partir de los datos que obtenga en la Fig. 1, tanto para los datos obtenidos por Galerkin, como para S₂₀. Para esto es necesario hacer un levantamiento de información con un procedimiento de medición sobre el la Fig.1.

Escuela Politécnica Nacional Facultad de Ingeniería de Sistemas

Tabla 1 – Intensidad de la radiación reflejada por una placa de material semitransparente en función del coseno del ángulo polar, μ , para diferentes valores del albedo de dispersión simple ω .

~_	μ , para uncremes valores aci albedo de dispersion				
		$I(0,-\mu)$			
	μ	$\omega = 0$	$\omega = 0.1$	$\omega = 0.9$	$\omega = 1.0$
	$\mu_1 =$				
	$\mu_2 =$				
	$\mu_3 =$				
	:				
	$\mu_N =$				

- b) Escriba dos versiones de una rutina computacional para la ejecución de la interpolación con splines cúbicos para cualquier conjunto de puntos $(\mu_i, I(0, -\mu_i))$, i = 1, 2, ..., N. Use la condición natural en los extremos. En la primera versión utilice el algoritmo de Thomas para la solución del sistema de ecuaciones algébricas lineales, y en la segunda versión utilice el método de Gauss-Seidel.
- c) Use las dos versiones de la rutina computacional desarrollada en el ítem anterior para el cálculo de los coeficientes de interpolación por splines cúbicos.
- d) Obtenga los valores de la radiación $I(0,-\mu)$ en los ángulos correspondientes a $\mu=0.15$ y $\mu=0.45$ para los cuatro valores del albedo de dispersión simple ω , utilizando los polinomios interpolantes generados con los datos obtenidos por Galerkin y S_{20} .
- e) Permita que la aplicación pueda presentar de forma gráfica el resultado de la interpolación por splines cúbicos de los datos presentados en la Tabla 1.

Observación: Escriba un informe de, al menos, 5 páginas. Incluya los valores de los coeficientes de interpolación para cada intervalo, i=1,2,...,N. Haga comentarios sobre la implementación y la comparación del desempeño computacional de los dos métodos (Thomas y Gauss-Seidel) sobre los dos grupos de datos obtenidos por Galerkin y S_{20} . La estructura del informe, el contenido técnico, la claridad de los resultados y las conclusiones constituyen los principales ítems de evaluación.