Оператори в гільбертовому просторі

Означення. Нехай у гільбертовому просторі **H** задано правило **A**, за яким будь-якому елементу f з множини $D(\mathbf{A}) \subset \mathbf{H}$ співставляють елемент $g = \mathbf{A}f \in \mathbf{H}$, будемо говорити, що в **H** діє оператор **A** з областю визначення $D(\mathbf{A})$ ◆ Далі вважатимемо $D(\mathbf{A})$ **щільною** в **H**.

Означення. Нехай оператор **A** з областю визначення $D \subset \mathbf{H}$ діє у гільбертовому просторі **H**. Будемо говорити, що цей оператор **лінійний**, якщо $\forall f, g \in D$ та $\forall \alpha, \beta \in \mathbb{C}$ маємо

$$\alpha f + \beta g \in D$$
 i $\mathbf{A}(\alpha f + \beta g) = \alpha \mathbf{A} f + \beta \mathbf{A} g \bullet$ (5)

Область визначення лінійного оператора ϵ лінійним підпростором в **H**.

Область визначення D відображається оператором **A** в область значень $\operatorname{Im} \mathbf{A} = \mathbf{A}(D) \subset \mathbf{H}$.

У **H** визначений одиничний оператор **I**: $\forall f \in \mathbf{H}$: **I**f = f.

Якщо $\forall g \in \text{Im } \mathbf{A}$ рівняння $\mathbf{A}f = g$ має єдиний розв'язок відносно $f \in D$, будемо говорити, що оператор \mathbf{A} має обернений \mathbf{A}^{-1} : $\mathbf{A}^{-1}g = f$.

Лінійні оператори широко використовуються, зокрема, у квантовій механіці та квантовій теорії поля, де елементи деякого гільбертового простору 1 **Н** визначають стани фізичної системи. Як правило, область визначення оператора, пов'язаного з фізичною величиною, є щільною у просторі станів **H**; далі розглядатимемо саме такі оператори. Спостережуване (середнє) значення фізичної величини (наприклад, енергії чи імпульсу) для системи, яка знаходиться у стані f, дається виразом $\langle f, \mathbf{A} f \rangle$. Тому природно вимагати, щоб цей вираз був дійсним.

Означення. Оператор, для якого виконана умова $\langle f, \mathbf{A}g \rangle = \langle \mathbf{A}f, g \rangle$ для $\forall f, g \in D(\mathbf{A})$, називають **ермітовим або симетричним**².

² Близькими, але не тотожними, є поняття ермітовості та самоспряженості лінійного оператора. У фізичній літературі на ці відмінності часто не звертають уваги.

 $^{^{1}}$ Далі суттєво, що \mathbf{H} є лінійним простором над полем *комплексних* чисел.

Теорема 3. Нехай лінійний оператор **A** з областю визначення $D(\mathbf{A}) \subset \mathbf{H}$ діє у комплексному гільбертовому просторі **H**, причому $\forall f \in D$ величина $\langle f, \mathbf{A}f \rangle$ є дійсною. Тоді $\forall f, g \in D(\mathbf{A})$ маємо

$$\langle f, \mathbf{A}g \rangle = \langle \mathbf{A}f, g \rangle$$
 (6)

Доведення. За умовою $\langle f, \mathbf{A}f \rangle = \langle f, \mathbf{A}f \rangle^* = \langle \mathbf{A}f, f \rangle \ \forall f \in D$.

Суттєво, що область визначення $D(\mathbf{A})$ — лінійний простір. Тому $\forall f,g \in D$ та для $\partial o b i n b h o c o$ комплексного λ маємо

$$\langle f + \lambda g, \mathbf{A}(f + \lambda g) \rangle = \langle \mathbf{A}(f + \lambda g), f + \lambda g \rangle.$$

Розкриємо скалярні добутки у правій та лівій частині цієї рівності з використанням співвідношень $\langle f, \mathbf{A}f \rangle = \langle \mathbf{A}f, f \rangle$, $\langle g, \mathbf{A}g \rangle = \langle \mathbf{A}g, g \rangle$ та лінійності оператора, що має місце за умовою, й дістанемо

$$\lambda \langle f, \mathbf{A}g \rangle - \lambda^* \langle \mathbf{A}g, f \rangle = \lambda \langle \mathbf{A}f, g \rangle - \lambda^* \langle g, \mathbf{A}f \rangle.$$

За властивістю скалярного добутку $\langle \mathbf{A}g, f \rangle = \langle f, \mathbf{A}g \rangle^*, \langle g, \mathbf{A}f \rangle = \langle \mathbf{A}f, g \rangle^*,$ тому

$$\operatorname{Im}\{\lambda\langle f, \mathbf{A}g\rangle\} = \operatorname{Im}\{\lambda\langle \mathbf{A}f, g\rangle\}.$$

Оскільки тут λ можна вибирати довільно, покладемо спочатку $\lambda = 1$, а потім $\lambda = i$, звідки отримаємо рівність уявної, а потім дійсної частини (6), а значить і пряме твердження теореми.

Нехай тепер оператор \mathbf{A} ϵ симетричним, тоді $\forall f \in D$, маємо $\langle f, \mathbf{A}f \rangle = \langle \mathbf{A}f, f \rangle = \langle f, \mathbf{A}f \rangle^*$, тобто $\langle f, \mathbf{A}f \rangle$, як число, що дорівнює своєму комплексному спряженню, ϵ дісним \bullet

Справедливо також обернене твердження: якщо оператор \mathbf{A} ϵ симетричним $\forall f \in D$, величина $\langle f, \mathbf{A} f \rangle$ ϵ дійсною.

Означення. Якщо для елемента $f \in D(\mathbf{A}) \subset \mathbf{H}$, $||f|| \neq 0$, має місце $\mathbf{A}f = \lambda f$, де λ -комплексне, то цей елемент називають **власним вектором** оператора \mathbf{A} , а λ -**власним числом** (або **власним значенням**), що відповідає $f \blacklozenge$

Очевидно, що коли $f \in$ власним вектором оператора **A** , то для будь-якого $a \neq 0$ вектор g = a f також ϵ власним вектором оператора **A** .

Можлива ситуація, коли одному й тому ж власному числу λ відповідають декілька лінійно-незалежних власних векторів, тоді кажуть, що λ є виродженим власним числом.

Теорема 4. Нехай симетричний оператор **A** з областю визначення $D \subset \mathbf{H}$ діє у гільбертовому просторі **H** та має власний вектор f з власним значенням λ :

$$\mathbf{A}f = \lambda f \,, \tag{7}$$

де λ -комплексне. Тоді λ є дійсним числом.

Доведення. Помножимо (7) скалярно зліва на f. Маємо

$$\langle f, \mathbf{A}f \rangle = \lambda \langle f, f \rangle$$
, $\langle f, f \rangle \neq 0$, звідки видно, що $\lambda = \frac{\langle f, \mathbf{A}f \rangle}{\langle f, f \rangle}$ є дійсним \blacklozenge

Теорема 5. Нехай симетричний оператор **A** з областю визначення $D \subset \mathbf{H}$ діє у гільбертовому просторі **H**, причому, для деяких ненульових $v_1, v_2 \in D$, має місце

$$\mathbf{A}v_1 = \lambda_1 v_1, \quad \mathbf{A}v_2 = \lambda_2 v_2 \tag{7}$$

де $\lambda_1 \neq \lambda_2$. Тоді власні вектори v_1, v_2 ортогональні.

Доведення. Помножимо перше співвідношення (7) зліва скалярно на v_2 . Маємо

$$\langle v_2, \mathbf{A} v_1 \rangle = \lambda_1 \langle v_2, v_1 \rangle$$
.

Завдяки симетричності

$$\langle v_2, \mathbf{A} v_1 \rangle = \langle \mathbf{A} v_2, v_1 \rangle = \langle \lambda_2 v_2, v_1 \rangle = \lambda_2 \langle v_2, v_1 \rangle.$$

де враховано, що λ_2 є дійсним. Віднімаючи отримані співвідношення, маємо $(\lambda_1 - \lambda_2) \left< v_2, v_1 \right> = 0 , \ звідки випливає твердження теореми •$

Розглянемо оператор Штурма-Ліувілля

$$\mathbf{L}u = -\frac{d}{dx} \left[p(x) \frac{du}{dx} \right] + q(x)u; \quad u = u(x)$$
 (26)

з дійсними p(x), q(x), що діє на двічи неперервно-диференційовні функції $u \equiv u(x)$.

Розглянемо клас двічи неперервно-диференційовні функцій **К**, що задовольняють умовам

$$A_1u(a) = A_2u'(a); \quad B_1u(b) = -B_2u'(b) \quad (u' \equiv du/dx), \quad a < b.$$
 (27a)

де константи A_1, A_2, B_1, B_2 (спільні для усього класу **К**) задовольняють умовам

$$A_1, A_2 \ge 0, \quad A_1 + A_2 > 0, \quad B_1, B_2 \ge 0, \quad B_1 + B_2 > 0$$
 (276)

Далі вважаємо, що

$$p(x) \in C^{1}[a,b], \ p(x) > 0; \ q(x) \in C[a,b], \ q(x) \ge 0$$
; (27a)

Покажемо, що оператор L є симетричним на множині функцій K з скалярним добутком $\langle f_1, f_2 \rangle = \int\limits_{-\infty}^{b} \left[f_1(x) \right]^* f_2(x) dx$.

Маємо для функцій з К

$$\langle w, \mathbf{L}u \rangle = \int_{a}^{b} dx \ w^{*}(x) \left(-\frac{d}{dx} \left[p(x) \frac{du}{dx} \right] + q(x)u \right) =$$

$$= \int_{a}^{b} dx \left(-\frac{d}{dx} \left[w^{*}(x) p(x) \frac{du}{dx} \right] + p(x) \frac{dw^{*}}{dx} \frac{du}{dx} + q(x)w^{*}u \right) =$$

$$= -w^{*}(x) p(x) \frac{du}{dx} \Big|_{x=b} + w^{*}(x) p(x) \frac{du}{dx} \Big|_{x=a} + \int_{a}^{b} dx \left(p(x) \frac{dw^{*}}{dx} \frac{du}{dx} + q(x)w^{*}u \right).$$

Далі треба використати (27б), розглядаючи випадки, коли хоча б один з коефіцієнтів A_1,A_2 та B_1,B_2 не дорівнює нулю. Нехай, наприклад, $A_2 \neq 0$,

$$B_1 \neq 0$$
 . Тоді з (27а) $w'(a) = \frac{A_1}{A_2} w(a)$, $u(b) = -\frac{B_2}{B_1} u'(b)$, звідки

$$\langle w, \mathbf{L}u \rangle =$$

$$=\frac{B_2}{B_1}p(b)w'^*(b)u'(b)+\frac{A_1}{A_2}p(a)w^*(a)u(a)+\int_a^b dx\left(p(x)\frac{dw^*}{dx}\frac{du}{dx}+q(x)w^*u\right). \tag{28}$$

$$\langle u, \mathbf{L}w \rangle =$$

$$= \frac{B_2}{B_1} p(b)w'(b)u'^*(b) + \frac{A_1}{A_2} p(a)u^*(a)w(a) + \int_a^b dx \left(p(x) \frac{du^*}{dx} \frac{dw}{dx} + q(x)u^*w \right)$$

Звідси очевидно

$$\langle \mathbf{L}w, u \rangle = \langle u, \mathbf{L}w \rangle^* =$$

$$= \frac{B_2}{B_1} p(b)w'^*(b)u'(b) + \frac{A_1}{A_2} p(a)w^*(a)u(a) + \int_a^b dx \left(p(x) \frac{dw^*}{dx} \frac{du}{dx} + q(x)w^*u \right) =$$

$$= \langle w, \mathbf{L}u \rangle,$$

щ.т.д. Варіанти з іншими A_1, A_2 та B_1, B_2 розглядаються аналогічно (розгляньте це самостійно, переберіть усі можливі варіанти).

Оператор називають невід'ємним, якщо $\langle u, \mathbf{L}u \rangle \ge 0 \quad \forall u \in \mathbf{K}$. За виконання умов (27в) оператор Штурма-Ліувілля є невід'ємним. Звідси випливає, що власні числа оператора \mathbf{L} невід'ємні.

Для наступних питань достатньо існування норми (у банаховому просторі), де діє оператор ${\bf A}$ з областю визначення $D({\bf A})$.

Означення. Лінійний оператор **A** з областю визначення $D(\mathbf{A}) \subset \mathbf{B}$ у банаховому просторі **B** обмежений, якщо існує число $N < \infty$, таке, що $\forall f \in D(\mathbf{A}), f \neq 0$ виконано нерівність $\|\mathbf{A}f\| < N\|f\|$ \blacklozenge

Найменше $N_0 = \inf\{N,\}$ з усіх можливих чисел N називають нормою оператора ${\bf A}$.

$$\frac{\|\mathbf{A}f\|}{\|f\|} \le N_0 \quad \forall f \in D(\mathbf{A}), \quad f \ne 0.$$
 (8)

Означення. Лінійний оператор **A** з областю визначення $D(\mathbf{A}) \subset \mathbf{B}$ у банаховому просторі **B неперервний**, якщо для будь-якої послідовності $f_n \subset D(\mathbf{A}), \quad \|f_n\| \to 0$ маємо $\|\mathbf{A} f_n\| \to 0$ **◆ Теорема 6.** Лінійний оператор **A** з областю визначення $D(\mathbf{A}) \subset \mathbf{B}$ у банаховому просторі **B** неперервний тоді і тільки тоді, коли він є обмежений **◆**

Доведення від супротивного. Нехай оператор **A** неперервний, але не обмежений, тобто припускаємо, що є послідовність $\{f_n\} \subset D(\mathbf{A}), \quad f_n \neq 0$, така, що $\frac{\|\mathbf{A}f_n\|}{\|f_n\|} \to \infty$. З $\{f_n\}$

виберемо підпослідовність $\left\{f_{n}^{\cdot}\right\}$, таку, що $\left\|\mathbf{A}f_{n}^{\cdot}\right\| > n$.

Покладемо
$$f_n^{"} = \frac{f_n^{'}}{n \left\|f_n^{'}\right\|} \to \infty$$
, тоді $\left\|f_n^{"}\right\| = \frac{1}{n} \to 0$. Але $\frac{\left\|\mathbf{A}f_n^{"}\right\|}{\left\|f_n^{"}\right\|} = \frac{\left\|\mathbf{A}f_n^{"}\right\|}{\left\|f_n^{"}\right\|} > n$, звідки

 $\|\mathbf{A}f_{n}^{"}\| > n\|f_{n}^{"}\| = 1$, що суперечить умові неперервності та доводить твердження теореми.

Обернене твердження, що з обмеженості випливає неперервність, легко отримати з нерівності $\|\mathbf{A}f\| \le N_0 \|f\|$ •.

Приклади.

а) Оператор диференціювання не ϵ неперервним чи обмеженим. Наприклад, послідовність $n^{-1}\sin(n^2x)$ збігається до нуля при $n \to \infty$, чого не можна сказати про відповідну послідовність похідних.

б) Розглянемо оператор

$$\mathbf{A}f(x) \equiv \int_{a}^{b} K(x, y) f(y) dy$$

з неперервним ядром $K(x, y) \in C\{[a, b] \times [a, b]\}$, b > a. Позначимо

$$K_0 = \sup\{|K(x, y)|, (x, y) \in [a, b] \times [a, b]\}.$$

Маємо оцінку

$$|g(x)| = \left| \int_{a}^{b} K(x, y) f(y) dy \right| \le \int_{a}^{b} dy |f(y)| \cdot K_{0} \le K_{0} \sqrt{b - a} \|f\|.$$

Тому

$$\|g\|^2 = \int_a^b dx |g(x)|^2 \le (b-a) \|f\|^2 K_0^2 \int_a^b dx \le (b-a)^2 K_0^2 \|f\|^2$$

або $\|g\| \leq (b-a)K_0 \, \|f\|$, тобто цей оператор ϵ неперервним та обмеженим в $\, L^2[a,b] \colon$

Додаткові відомості

Д1. Спектр оператора в банаховому просторі.

Нехай ${\bf A}$ — оператор, що діє в комплексному банаховому просторі ${\bf B}$. Комплексне число λ має назву $pezyлярного значення для оператора <math>{\bf A}$, якщо оператор $R(\lambda) = \left({\bf A} - \lambda {\bf I}\right)^{-1}$ визначений на всьому ${\bf B}$ і неперервний. Множина регулярних значень оператора ${\bf A}$ має назву pesonbeenmoi множини цього оператора, а доповнення резольвентної множини до комплексної площини - **спектром** цього оператора. Оператор $\left({\bf A} - \lambda {\bf I}\right)^{-1}$ називають pesonbeenmoio оператора ${\bf A}$;

- а) $\partial u c \kappa p e m + u M$ (або точковим) спектром називається множина всіх власних значень оператора A;
- b) неперервним спектром називається множина значень , за яких резольвента $\left(\mathbf{A} \lambda \mathbf{I}\right)^{-1}$ визначена на всюди щільній множині в \mathbf{B} , але не ϵ неперервною;
- c) остаточним спектром називається множина точок спектру, що не входять ні до дискретної, ні до неперервної частин: $\left(\mathbf{A} \lambda \mathbf{I}\right)^{-1}$ існує, не є неперервний, але область визначення не є усюди плотною.

Д2. Метод стискуючих відображень.

Розглянемо обмежений оператор $\bf A$, визначений у замкненій банаховому просторі $\bf B$, який не виводить з $\bf B$,

тобто
$$\mathbf{A}(\mathbf{B}) \subset \mathbf{B}$$
 . Нехай його норма $q = \sup \left\{ \frac{\|\mathbf{A}f\|}{\|f\|}, \quad f \neq 0, f \in D(\mathbf{A}) \right\} < 1$. У цьому разі оператор

називають стискуючим. Покажемо, що розв'язок рівняння $f=\mathbf{A}f$ існує в \mathbf{B} і цей розв'язок єдиний (Теорема Банаха) і цей розв'язок є границею послідовності ітерацій $\{f_m\}$: $f_m=\mathbf{A}f_{m-1}, \quad m=1,2,...; \quad f_0\in \mathbf{B}$.

Ми розглянемо це питання у більш широкому контексті, використовуючи міркування, що проходять у більш загальному випадку (наприклад, якщо ${\bf A}$ не є лінійним оператором). Уведемо відстань $\rho(f,g)=\|f-g\|$ між елементами $f,g\in {\bf B}$. Для цієї відстані, з урахуванням повноти ${\bf B}$, виконані усі аксіоми **повного метричного простору** (https://uk.wikipedia.org/wiki). Для стискуючого оператора маємо

$$\rho(\mathbf{A}f, \mathbf{A}g) = ||\mathbf{A}f - \mathbf{A}g|| \le q||f - g|| = q\rho(f, g).$$

Відображення $\mathbf{A}(\mathbf{H}) \to \mathbf{H}$, що задовольняє умові $\rho(\mathbf{A}f, \mathbf{A}g) \leq q\rho(f,g), \quad q < 1$, називають стискуючим. Таким чином оператор ${\bf A}$, що реалізує відображення банахового простору ${\bf B}$ в себе, підходить під умови наступної теореми.

Теорема Банаха (Стефан Банах, польск. Stefan Banach). Стискуюче відображення повного метричного простору в себе має єдину нерухому точку.

Нехай M – повний метричний простір з відстанню ρ , а відображення A переводить M в себе: $A(M) \subset M$, причому воно є стискуючим

$$\rho(\mathbf{A}f, \mathbf{A}g) \le q\rho(f, g), \quad q < 1. \tag{9}$$

Для довільного елементу $f_0 \in \mathbf{M}$ будуємо послідовність

$$\{f_m\}$$
: $f_1 = \mathbf{A}f_0$, $f_2 = \mathbf{A}f_1$, $f_m = \mathbf{A}f_{m-1}$,...

У силу (9) за індукцією

$$\rho(f_n, f_{n-1}) \le q \rho(f_{n-1}, f_{n-2}) \le \dots \le q^{n-1} a, \quad a = \rho(f_1, f_0).$$

Звідси (за $n \ge m$)

$$\rho(f_n, f_m) \le \rho(f_n, f_{n-1}) + \rho(f_{n-1}, f_{n-2}) + \dots + \rho(f_{m+1}, f_m) \le q^{n-1}a + q^{n-2}a + \dots + q^m a < \frac{q^m a}{1-a}.$$

Вибором m цю величину можна зробити як завгодно малою. Тому послідовність $\{f_{\scriptscriptstyle m}\}$ ϵ фундаментальною в ${f M}$, а за умови повноти ${f M}$ вона збігається до деякого $f^*\in {f M}$.

Маємо
$$f^* = \lim_{n \to \infty} f_n = \lim_{n \to \infty} \mathbf{A} f_{n-1} = \mathbf{A} \lim_{n \to \infty} f_{n-1} = \mathbf{A} f^*$$
, де використано неперервність \mathbf{A} . Таким чином, розв'язок існує.

Якщо припустити існування ще одного розв'язку: $f_{\scriptscriptstyle 1}^{\,*} = \mathbf{A} f_{\scriptscriptstyle 1}^{\,*}$, тоді

$$\rho(f_1^*, f^*) = \rho(\mathbf{A}f_1^*, \mathbf{A}f^*) \le q \rho(f_1^*, f^*) < \rho(f_1^*, f^*),$$

що можливо лише коли $f_1^* = f^* lack$