

DO NOT WRITE ANYTHING ON QUESTION PAPER EXCEPT YOUR NAME, DEPARTMENT AND ENROLMENT No. POSSESSION OF MOBILE, SMART WATCH ETC, IN EXAMINATION IS A UFM PRACTICE

Name of Student	Enrolment No
Department /School	
BENNETT UNIVERSITY, GREATER NOIDA Mid-Term Examination, SPRING SEMESTER 2021-22	
COURSE NAMÉ: Mechanics	Weightage: 20
COURSE CREDIT: 3	MAX. MARKS: 20
Programable calculator is not allowed. All questions are compulsory.	
A) A particle of mass 2 units moves in a force field depending on time t given by $\vec{F} = 24t^2\hat{\imath} + (36t - 16)\hat{\jmath} - 12t\hat{k}$ Assuming that at $t = 0$ the particle is located at $\vec{r}_0 = 3\hat{\imath} - \hat{\jmath} + 4\hat{k}$	
and has velocity	
$\vec{v}_0 =$	$6\hat{\imath} + 15\hat{\jmath} - 8\hat{k}.$
Find the velocity and position at any time	me t.

B) A particle moves in such a way that $\dot{\theta} = \omega$ (constant), and $r = r_0 e^{\beta t}$, where r_0 and β are constants. Write down its velocity and acceleration in plane polar coordinates. For what values of β will the radial acceleration of the particle by zero?

4 marks

2 marks

2. A) Functions f and g are given as f = xyz and g = x + y + z. Assuming a right-handed coordinate system, find the value of $\vec{\nabla} \cdot \vec{\nabla} (fg)$ at point P (2.0,1).

3 marks

B) Verify Stokes' theorem for a given vector field, $\vec{f} = (2xz + 3y^2)\hat{j} + (4yz^2)\hat{k}$ taken around a square (in yz -plane) having the vertices (0, 0), (1, 0), (1, 1) and (0, 1).

4 marks

3. A) Three identical pendulums of length *l* having mass *m* suspended from each of them and coupled by identical springs with spring constant *k* are shown below and their respective angular displacements are indicated:

- i. Find the normal modes of the above-described system
- ii. Find the normal mode frequencies

4 marks

B)

i. A 1 kg mass is attached to a spring and oscillates at $1/2\pi$ Hz with a Q of 100. Find the spring constant and damping constant.

1.5 marks

ii. A musician's tuning fork rings at A above middle C, 440 Hz. A sound level meter indicates that the sound intensity decreases by a factor of e = 2.718 in 10 seconds. What is the Q of the tuning fork?

1.5 marks

Best of Luck