Resilient Asymptotic Consensus in Robust Networks [LeBlanc, 2013]

Jedediah Fry, George Kontoudis

Midterm
AOE5984 Cyber-Physical Systems and Distributed Control
Spring 2017

Aerospace and Ocean Engineering Department, Virginia Tech

Outline

Introduction

Problem Formulation

Consensus Algorithm

Robust Network Topologies

Resilient Consensus Analysis

Simulations

Construction & Properties of Robust Digraphs

References

Introduction

Problem Formulation Consensus Algorithm Robust Network Topologies Resilient Consensus Analysis Simulations Construction & Properties of Robust Digraphs References

Introduction

Problem Formulation

Consensus Algorithm

Robust Network Topologies

Resilient Consensus Analysis

- W-MSR always satisfies safety condition for RAC
- ▶ M[t], m[t] maximum & minimum values of normal nodes $i \in N$

Lemma: Regardless of network topology, for each normal node $i \in N$ we get

$$x_i[t+1] \in [m(t), M(t)],$$

when using W-MSR algorithm w/ parameter F or f under F-local, F-total or f-fraction (Byzantine or malicious) models.

F-Total Malicious Model

 Characterize networks by necessary & sufficient conditions of W-MSR to succeed

Time-	Threat Models	Scope	Necessary	Sufficient	
Invariant	Malicious	F-Total	(F+1,F+1)-robust	(F+1,F+1)-robust	
Variant	Malicious	F-Total	-	(2F+1)-robust	

F-Local Malicious Model

 Employ F-Local when total number of adversaries is large in large-scale networks

Time-	Threat Models	Scope	Necessary	Sufficient
Invariant	Malicious	F-Local (F+1)-robust (2)		(2F+1)-robust
Variant	Malicious	F-Local	-	(2F+1)-robust

▶ For every $F \in \mathbb{Z}_{>0}$ there exists a 2F-robust network that fails to reach consensus w/ W-MSR

f-Fraction Local Malicious Model

 Characterize networks by necessary & sufficient conditions of W-MSR to succeed

	Time-	Threat Models	Scope Necessary		Sufficient
	Invariant	Malicious	f-Fraction	p'-fraction robust,	<i>p</i> -fraction robust,
			Local	$2f \le p \le 1$	$2f \leq p \leq 1$
ĺ	\	Malicious	f-Fraction		p-fraction robust,
Variant	Variant		Local	-	$2f$

Byzantine Threat Models

Time-	Threat Models	Scope	Necessary	Sufficient	
Invariant	Byzantine	F-Total &	Normal Network	Normal Network	
Invariant		F-Local (F+1)-robust		(F+1)-robust	
lus reniema	variant Byzantine	f-Fraction	Normal Network	Normal Network	
invariant		Local	<i>f</i> -robust	p-robust, $p > f$	
Variant	Byzantine	F-Total &		Normal Network	
variant		F-Local	_	(F+1)-robust	
Variant	Byzantine	f-Fraction		Normal Network	
variant		Local	_	p-robust, $2f$	

Normal network D_N , induced by normal nodes March 14, 2017

Simulation Network Topology

► For a given (2,2)-robust network we can sustain 1-Total malicious threat model

LCP algorithm

The Linear Consensus Protocol (LCP) is given by

$$x_i(t+1) = \sum_{j \in J_i(t)} w_{ij}(t) x_i^j(t)$$

- $J_i(t) = V_i(t) \cup \{i\}$
- $x_1(t+1) = w_{1,1}x_1 + w_{1,2}x_2 + w_{1,11}x_{11} + w_{1,12}x_{12}$

W-MSR algorithm

The W-MSR algorithm is given by

$$x_i(t+1) = \sum_{j \in J_i(t) \setminus R_i(t)} w_{ij}(t) x_i^j(t)$$

- $ightharpoonup R_i(t)$ denotes the reduced nodes
- ► Using F=1 because we have 1-Total model

Node removal W-MSR

The following update law applies w/ W-MSR algorithm

Node	Sort List	Step	Values	Removed
1	{1, 2, 11, 12}	0	{0, 0, 0, 0}	-
1	{1, 2, 11, 12}	1	{0, 0.25, 0.4, 0.2}	{11}
1	{1, 2, 11, 12}	6	{0.4453, 0.4322, 0.4649, 0.4553}	{2, 11}
10	{9, 10, 11, 13, 14}	0	{1, 1, 0, 1, 2}	{11, 14}
10	{9, 10, 11, 13, 14}	1	{1.167, 1, 0.4, 0.87, 0}	{9, 14}
10	{9, 10, 11, 13, 14}	30	{0.7, 0.6921, 0.68, 0.6935, 0.28}	{13, 14}

Construction of Robust Digraphs

Theorem: Let $D = (V, \mathcal{E})$ be an (r, s)-robust digraph, $S \in \mathbb{Z}_{>0}$. Then, $D' = (V \cup \{v_{new}\}, \mathcal{E} \cup \{\varepsilon_{new}\})$ is (r, s)-robust if

$$d_{v_{new}}^{in} \geq r + s - 1$$
,

where v_{new} is the new vertex added to D, and ε_{new} is the directed edge set related to v_{new} ,

- ▶ Start w/ an (r, s)-robust digraph
- ▶ Add new nodes w/ incoming edges at least r + s 1
- Arbitrary node selection, scale-free networks

Robust Digraph Example

- ► Start w/ a K₅ graph (complete-fully connected on 5 nodes)
- ► K₅ is the only (3,2)-robust 5 node digraph
- Add new nodes w/ incoming edges w/ at least r + s 1 = 3 + 2 1 = 4
- ► End up w/ a (3,2)-robust 10 node digraph, also 4-robust

[LeBlanc, 2013]

Robust Digraph Illustration

Properties of Robust Networks (1/2)

Observation: (r, 1)-robustness $\equiv r$ -robustness

Lemma: Every (r, s)-robust digraph $D = (V, \mathcal{E})$ is also (r', s')-robust when $0 \le r' \le r$, $1 \le s' \le s$.

Lemma: Suppose digraph $D=(V,\mathcal{E})$ is (r,s)-robust, spanning $D'=(V,\mathcal{E}')$, where $\mathcal{E}'=\mathcal{E}\cup\mathcal{E}''$ and $|\mathcal{E}''|\leq 0$. Then D' is (r,s)-robust.

Lemma: No digraph $D=(V,\mathcal{E})$ on n nodes is ([n/2]+1)-robust. On the other hand, the complete digraph $K_n=(V,\mathcal{E}_{K_n})$ is the only ([n/2],s)-robust for $1 \leq s \leq n$ and n odd.

Properties of Robust Networks (2/2)

Lemma: Given an (r, s)-robust digraph $D = (V, \mathcal{E})$ w/ $0 \le r \le \lfloor n/2 \rfloor$ the minimum in-degree of D is at least

$$\delta^{in}(D) \ge \begin{cases} r+s-1 & \text{if } s < r; \\ 2r-2 & \text{if } s \ge r. \end{cases}$$

Lemma: Given an (r, s)-robust (p-fraction robust) digraph D, let D' be the digraph produced by removing up to k incoming edges from each node in D, where $0 \le k \le r$ $(0 \le q . Then <math>D'$ is (r - k, s)-robust ((p - q)-fraction robust).

Theorem: Suppose $D=(V,\mathcal{E})$ is an r-robust (or (r,r)-robust) digraph, w/ $0 \le r \le \lfloor n/2 \rfloor$ (or $0 \le r \le \lfloor n/2 \rfloor$). Then the underlying graph $0 \le r \le \lfloor n/2 \rfloor$ is at least $1 \le r \le \lfloor n/2 \rfloor - 1$ -connected).

References

H. LeBlanc, H. Zhang, X. Koutsoukos, S. Sundaram (2013)

Resilient asymptotic consensus in robust networks

IEEE Journal on Selected Areas in Communications, 31(4), 766-781, 2013.

Thank You!