Resampling Techniques and their Application

-Class 13-

Frank Konietschke

Institut für Biometrie und Klinische Epidemiologie Charité - Universitätsmedizin Berlin, Berlin frank.konietschke@charite.de

Example: Yeast Study

- n = 10 medical yeast samples
- Each sample grown on different growth mediums (increasing fertility)
- Response: protein concentration

ID	M1	M2	МЗ	M4	М5
1	6.16	6.04	7.21	7.23	6.22
2	4.28	5.42	7.44	6.23	6.03
3	5.26	5.72	7.40	7.02	5.87
4	6.11	6.65	7.44	7.09	6.62
5	6.15	6.67	7.79	5.62	5.80
6	5.33	7.50	8.23	7.38	6.42
7	5.47	6.82	7.94	7.01	6.57
8	6.10	6.57	8.73	7.90	6.90
9	7.39	5.44	7.50	7.32	5.36
10	7.07	7.51	8.88	7.70	7.85

Statistical Model

- Statistical Model
 - $X_k = (X_{1k}, \dots, X_{dk})' \sim F$
 - $E(\mathbf{X}_k) = \boldsymbol{\mu} = (\mu_1, \dots, \mu_d)'$
 - Covariance matrix $V = Cov(X_1)$
 - No normal distribution
- Hypotheses $H_0: \mu_1 = \ldots = \mu_d$

$$H_0: oldsymbol{C}oldsymbol{\mu} = oldsymbol{0}$$

C: Contrast matrix

Point Estimators

- Means and covariance matrix
 - $\overline{\mathbf{X}}_{\cdot} = (\overline{X}_{1\cdot}, \dots, \overline{X}_{d\cdot})'$: Means
 - Empirical covariance matrix

$$\widehat{\mathbf{V}} = \frac{1}{n-1} \sum_{k=1}^{n} (\overline{\mathbf{X}}_{k} - \overline{\mathbf{X}}_{.}) (\overline{\mathbf{X}}_{k} - \overline{\mathbf{X}}_{.})'$$

```
x=matrix(c(6.16, 6.04, 7.21, 7.23, 6.22,
4.28, 5.42, 7.44, 6.23, 6.03,
5.26, 5.72, 7.40, 7.02, 5.87,
6.11, 6.65, 7.44, 7.09, 6.62,
6.15, 6.67, 7.79, 5.62, 5.80,
5.33, 7.50, 8.23, 7.38, 6.42,
5.47, 6.82, 7.94, 7.01, 6.57,
6.10, 6.57, 8.73, 7.90, 6.90,
7.39, 5.44, 7.50, 7.32, 5.36,
7.07, 7.51, 8.88, 7.70, 7.85),ncol=5,byrow=T)

Xbar=colMeans(x)
```

Test Statistics

- Multiple contrast test procedures (last classes)
- In addition today: global testing procedures
- ullet Idea: If $H_0: \mu_1=\mu_2=\ldots=\mu_a$ holds, then each $\mu_\ell=rac{1}{d}\sum_{j=1}^d \mu_j$
- So, contrast of interest is the *GrandMean* contrast

$$\mathbf{C} = \begin{pmatrix} \frac{d-1}{d} & -\frac{1}{d} & \cdots & -\frac{1}{d} \\ -\frac{1}{d} & \frac{d-1}{d} & \cdots & -\frac{1}{d} \\ \vdots & \vdots & \vdots & \vdots \\ -\frac{1}{d} & -\frac{1}{d} & \cdots & \frac{d-1}{d} \end{pmatrix} = \mathbf{I} - \frac{1}{d}\mathbf{J}$$

- I = diag(d) and $J: d \times d$ matrix of 1's
- Note that $\mathbf{c}_\ell' \boldsymbol{\mu} = \mu_\ell \frac{1}{d} \sum_{j=1}^d \mu_j$
- C is also known as centering matrix

Test Statistics: Wald-Type

- Wald-Type Statistics
 - $W = n(\mathbf{C}\overline{\mathbf{X}}_{\cdot})' \left[\mathbf{C}\widehat{\mathbf{V}}\mathbf{C}'\right]^{+} \mathbf{C}\overline{\mathbf{X}}_{\cdot}$
 - [A]⁺: generalized inverse of a matrix
 - Under H_0 , WTS has a $\chi^2_{rank(\mathbf{c})}$ distribution
 - When do we reject the hypothesis?

```
library(multcomp)
```

library(MASS)

C=contrMat(n=rep(10,5),"GrandMean")
CX=C%*%Xbar

 $CVhot = C^0 + ^0 Vhot ^0 + ^0 + ^0 + ^0$

CVhat = C%*%Vhat%*%t(C)
W=n*t(CX)%*%ginv(CVhat)%*%CX

pvalue= 1-pchisq(W, d-1)

Wald-Type Test: Properties

ANOVA-Type Statistic

• \hat{V} causes issues in the WTS, let us remove it

$$A_{1} = n(\mathbf{C}\overline{\mathbf{X}}.)' [\mathbf{C}\mathbf{C}']^{+} \mathbf{C}\overline{\mathbf{X}}.$$

$$= n\overline{\mathbf{X}}'.\mathbf{C}' [\mathbf{C}\mathbf{C}']^{+} \mathbf{C}\overline{\mathbf{X}}.$$

$$= n\overline{\mathbf{X}}'.\mathbf{T}\overline{\mathbf{X}}.$$

• The final test is given by

$$A = n\overline{\mathbf{X}}'.T\overline{\mathbf{X}}./Trace(T\widehat{\mathbf{V}}),$$

$$f = \frac{Trace(T\widehat{\mathbf{V}})^2}{Trace(T\widehat{\mathbf{V}}T\widehat{\mathbf{V}})}$$

- Under H_0 , ATS has a $F(f, \infty)$ distribution
- When do we reject the hypothesis?

```
TT <- t(C)%*%ginv(C%*%t(C))%*%C
TrTV <-sum(c(diag(TT%*%Vhat)))
A <- n*t(Xbar)%*%TT%*%Xbar/TrTV
```

```
TVTV<-TT%*%Vhat%*%TT%*%Vhat
TrTVTV <-sum(c(diag(TVTV)))
f <- TrTV^2/TrTVTV</pre>
```

#10^10=infty, arbitrary high nr#

ANOVA-Type Test: Properties

Advantages

- •
- •

Disadvantages

R Package MANOVA.RM

R-package MANOVA.RM

```
data=data.frame(x=c(x),ID=rep(1:10,5),
dose=sort(rep(1:5,10)))
library(MANOVA.RM)

fit<-RM(x~dose, subject="ID", data=data)
summary(fit)</pre>
```

MCTP: Motivation

- Is the global hypothesis always the question?
- Revise the example
- Hypotheses

• Contrast matrix
$$m{C} = \begin{pmatrix} m{c}_1' \\ \vdots \\ m{c}_q' \end{pmatrix} = \begin{pmatrix} c_{11} & \dots & c_{1d} \\ \vdots & \dots & \vdots \\ c_{1q} & \dots & c_{qd} \end{pmatrix}$$
, $(m{C1} = m{0})$

- ullet H_0^ℓ : $oldsymbol{c}_\ell'oldsymbol{\mu}=0$ simultaneously
- ullet $H_0: oldsymbol{C}oldsymbol{\mu}=oldsymbol{0}$

Why MCTP and SCI?

- ANOVA based evaluation: Three steps
 - 1. $H_0: \mu_1 = \mu_2 = \cdots = \mu_d$ (overall hypothesis)

(Using WTS or ATS)

- 2. Multiple Comparisons after rejecting the global hypothesis
 - $H_0^{(1,2)}: \mu_1 = \mu_2$
 - $H_0^{(1,3)}: \mu_1 = \mu_3$
 - . .
- 3. Confidence intervals for the effects.
 - Regulatory authorities require confidence intervals (ICH E9)
- Problems
 - Overall result and multiple comparisons may be incompatible

Why MCTP and SCI?

- Better: Start with multiple comparisons (→ multiple contrast test)
 - Control the multiple level α in the strong sense

 $P(\text{reject at least one true } H_0^i)$

- How?
 - Adapt the concept of MCTP from Bretz, Genz and Hothorn (2001)
 - Idea: For each partial hypothesis one t-Test
 - Compare the t-values with one critical value (Gabriel, 1969)

Multiple Contrast Tests

- Estimators
 - $\overline{\mathbf{X}}_{\cdot} = (\overline{X}_{1\cdot}, \dots, \overline{X}_{a\cdot})'$ (vector of means)
 - $\hat{\mathbf{V}}$: empirical covariance matrix
- Variance of a contrast

$$\sigma_\ell^2 = extstyle Var(oldsymbol{c}_\ell' \overline{f X}_\cdot) = oldsymbol{c}_\ell' extstyle Voldsymbol{c}_\ell, \quad \widehat{\sigma}_\ell^2 = oldsymbol{c}_\ell' \widehat{f V} oldsymbol{c}_\ell$$

ullet $\widehat{\sigma}_\ell^2 = oldsymbol{c}_\ell' \widehat{oldsymbol{V}} oldsymbol{c}_\ell$

- Multiple Comparisons
 - For H_0 : $c_{\ell}'\mu = 0$:

$$T_\ell = \sqrt{n} rac{oldsymbol{c}_\ell'(\overline{f X}_\cdot - oldsymbol{\mu})}{\widehat{\sigma}_\ell}, \ell = 1, \ldots, q$$

- $T_{\ell} \sim t_{n-1}$ (under H_0)
- More than one test is performed, hence the type-1 error rate will increase
- Need to be adjusted

- Quality of the method?
- Are the test statistics T_{ℓ} and T_m independent?
- Covariance of $\mathbf{c}'_{\ell}\overline{\mathbf{X}}$. and $\mathbf{c}'_{m}\overline{\mathbf{X}}$.:

- Collect all test statistics in a vector T
- $T = (T_1, \ldots, T_q)' \sim T(\mathbf{0}, n-1, \mathbf{R})$
- **R** =
- Empirical correlation $\hat{\mathbf{R}} =$

- Test decisions
 - Reject $H_0: oldsymbol{c}'_\ell oldsymbol{\mu} = 0$ if $|T_\ell| \geq t_{1-lpha}(\widehat{oldsymbol{R}})$

$$CI_{\ell} = \boldsymbol{c}_{\ell}' \overline{\mathbf{X}}_{\cdot} \pm t_{1-\alpha}(\widehat{\boldsymbol{R}}) / \sqrt{n} \cdot \widehat{\sigma}_{\ell}, \ \ell = 1, \ldots, q$$

- Reject $H_0: oldsymbol{C} oldsymbol{\mu} = oldsymbol{0}$ if $T_0 = max(|T_1|, \ldots, |T_q|) \geq t_{1-lpha}(\widehat{oldsymbol{R}})$
- $t_{1-\alpha}(\mathbf{R}): (1-\alpha)$ -quantile of the multivariate $T(\mathbf{0}, n-1, \widehat{\mathbf{R}})$ distribution
 - Different interpretation of the quantile?
 - quantiles of the distribution of a maximum

MCTP: Properties

Advantages

- •

Disadvantages

- •

MCTP vs ANOVA

- ANOVA
 - Quadratic test procedure for global hypothesis H_0 : ${m C}{m \mu}={m 0}$
 - Derivation based on multivariate normality, but transformation in $\mathbb R$ via quadratic forms
 - No information for particular dose levels available
- MCTP
 - Linear test statistics
 - Test decisions via using multivariate critical values
 - Informations and SCI for particular dose levels available

Generalisations?

- Are there any drawbacks of the model assumptions?
- Of the method?
- What to do in case of small sample sizes?
- Resampling strategies?

Resampling Strategies

- Goal: Estimate the quantiles from a distribution of a maximum of correlated *t*-statistics
- How?
- next slide

Nonparametric Bootstrap

- Fix the data $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_n)$
 - Draw *n* vectors \mathbf{X}_{k}^{*} with replacement from \mathbf{X}
 - Compute their means: $\overline{\mathbf{X}}^*$
 - Compute their empirical covariance matrix: \widehat{V}^*
 - Compute $T^* = (T_1^*, \dots, T_q^*)'; T_\ell^* = \sqrt{n} \frac{c'_\ell(\overline{\mathbf{X}}^* \overline{\mathbf{X}})}{\sqrt{c'_\ell \hat{V}^* c_\ell}}$
 - Compute $T_0 = \max\{|T_1^*|, \dots, |T_q^*|\}$ and safe in $T_{0,s}^*$
 - Repeat the above a large number of times (M = 10,000)
- Estimate $t_{1-\alpha}(\mathbf{R})$ by the $(1-\alpha)$ -quantile of

$$|T_{0,1}^*|,\ldots,|T_{0,M}^*|$$

Parametric Bootstrap

- Fix the data $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_n)$
 - Draw *n* vectors \mathbf{X}_k^* from $N(\mathbf{0}, \widehat{\mathbf{V}})$
 - Compute their means: $\overline{\mathbf{X}}^*$
 - Compute their empirical covariance matrix: \hat{V}^*
 - Compute $T^* = (T_1^*, \dots, T_q^*)'; T_\ell^* = \sqrt{n} \frac{\mathbf{c}_\ell'(\overline{\mathbf{X}}^*)}{\sqrt{\mathbf{c}_\ell' \widehat{\mathbf{V}}^* \mathbf{c}_\ell}}$
 - Compute $T_0 = \max\{|T_1^*|, \dots, |T_q^*|\}$ and safe in $T_{0,s}^*$
 - Repeat the above a large number of times (M = 10,000)
- Estimate $t_{1-\alpha}(\mathbf{R})$ by the $(1-\alpha)$ -quantile of

$$|T_{0,1}^*|,\ldots,|T_{0,M}^*|$$