Elastic parameters	Young's	E modulus m ⁻¹ s ⁻²]	$m{V}$ Poisson's ratio [dimensionless] aka $m{\sigma}$	<i>K</i> bulk modulus [kg·m ⁻¹ s ⁻²] aka volumetric modulus	[kg·m ⁻¹ s ⁻²]	<i>\</i> 1st Lamé parameter [kg·m ⁻¹ s ⁻²] aka incompressibility	V _P P-wave velocity [m/s] aka compressional vel	$V_{\scriptscriptstyle S}$ S-wave velocity [m/s] aka shear velocity	
Engineers (E, u)				$\frac{E}{3(1-2\nu)}$	$\frac{E}{2(1+\nu)}$	$\frac{E\nu}{(1+\nu)(1-2\nu)}$	$\sqrt{\frac{E(1-\nu)}{\rho(1+\nu)(1-2\nu)}}$	$\sqrt{\frac{E}{2\rho(1+\nu)}}$	$\sqrt{\frac{1-\nu}{\frac{1}{2}-\nu}}$
Fluid substitution (K,μ)		$\frac{K\mu}{\mu}$	$\frac{3K - 2\mu}{2(3K + \mu)}$			$K - \frac{2}{3}\mu$	$\sqrt{\frac{K + \frac{4}{3}\mu}{\rho}}$	$\sqrt{rac{\mu}{ ho}}$	$\sqrt{\frac{K + \frac{4}{3}\mu}{\mu}}$
Rock physicists (μ,λ)	$\frac{\mu(3\lambda)}{\lambda}$	$\frac{1+2\mu}{1+\mu}$	$\frac{\lambda}{2(\lambda+\mu)}$	$\lambda + \frac{2}{3}\mu$			$\sqrt{\frac{\lambda + 2\mu}{\rho}}$	$\sqrt{rac{\mu}{ ho}}$	$\sqrt{\frac{\lambda + 2\mu}{\mu}}$
Geophysicists $\left(V_{ m P},V_{ m S} ight)$ $ ho$	$V_{\rm S}^2 \frac{\left(3V_{\rm S}\right)^2}{V_{\rm S}}$	$\left(\frac{V_{\rm P}^2 - 4V_{\rm S}^2}{V_{\rm P}^2 - V_{\rm S}^2}\right)$	$\frac{V_{\rm P}^2 - 2V_{\rm S}^2}{2\left(V_{\rm P}^2 - V_{\rm S}^2\right)}$	$\rho \left(V_{\rm P}^2 - \frac{4}{3} V_{\rm S}^2 \right)$	$ ho V_{ m S}^2$	$\rho \left(V_{\rm P}^2 - 2V_{\rm S}^2 \right)$			$rac{V_{ m P}}{V_{ m S}}$
	longitud	final ΔL W W W W W W W	$= \frac{\Delta W/W}{\Delta L/L}$ transverse strain longitudinal strain	$V - \Delta V \qquad P \frac{\text{confining}}{\text{pressure}}$ $V = \frac{P}{\Delta V/V}$ $\frac{\text{volume stress}}{\text{volume strain}}$	$ \begin{array}{c c} L & F \\ \hline \theta & W \\ L & V \\ \hline E & \frac{F/WL}{\tan \theta} = \frac{F/WL}{\Delta L/L} \\ \underline{Shear stress} \\ Shear strain \end{array} $		change in pore volume	no change in pore volume	
			[dimensionless] 0.07 0.32 0.35 0.32 0.30 0.23 0.32 0.15 ~0.05-0.10 ~0.33 ~0.27 0.5 0.5	[GPa] 37 37.5 76 77 95 45 124 147 15-18 37-71 16-36 2.3 1.6	[GPa] 44 15 26 32 45 29 51 132 7-24 9-26 2-19 0	[GPa] 8 28 59 56 65 26 90 59 1-3 18-53 3-24 2.3 1.6	[m/s] 6008 4685 6487 6645 7349 5299 6963 8094 2500-4500 3800-6500 1800-5000 1507	[m/s] 4075 2393 3144 3436 3960 3120 3589 5174 1725-3103 1900-3250 1000-2777 0	[dimensionless] 1.47 1.96 2.06 1.93 1.86 1.70 1.94 1.56 ~1.45-1.5 ~2.0 ~1.8 undefined undefined

Upper and lower bounds

$$K^{\text{HS}\pm} = K_1 + \frac{f_2}{(K_2 - K_1)^{-1} + f_1(K_1 + \frac{4}{3}\mu_1)^{-1}}$$
$$\mu^{\text{HS}\pm} = \mu_1 + \frac{f_2}{(\mu_2 - \mu_1)^{-1} + \frac{2f_1(K_1 + 2\mu_1)}{5\mu_1(K_1 + \frac{4}{3}\mu_1)}}$$

Get upper bound and lower bounds by switching indices upper: $K_1 = K_1$, $K_2 = K_2$ lower: $K_1 = K_2$, $K_2 = K_1$ f_1 and f_2 is volume fraction of constituent 1 and 2.

Modulus is the slope below the elastic limit • Strength is stress at failure point

Bulk density $\rho = (1 - \phi)\rho_S + \phi\rho_F$ $\rho_{\rm S}$ density of the solid, $\rho_{\rm F}$ density of the fluid, ϕ is porosity

Fluid modulus $\frac{1}{K_{\mathrm{f}}(P,T)} = \sum_{i} \frac{S_{i}}{K_{i}(P,T)}$

for a mixture of fluids with fractions S_i , fluid bulk moduli depend on temperature T & pressure P

Gassmann's equation

Fluid substitution $K_{
m eff} = K_{
m dry} + rac{\left(1 - rac{K_{
m dry}}{K_{
m min}}
ight)^2}{rac{1 - rac{K_{
m dry}}{K_{
m min}} - \phi}{K_{
m min}} + rac{\phi}{K_{
m f}}}$

$$K_{\rm dry} = \frac{1 + (K_{\rm eff}(\frac{\phi - 1}{K_{\rm min}}) - \frac{\phi}{K_{\rm f}})}{\frac{1 - \frac{K_{\rm eff}}{K_{\rm min}} + \phi}{K_{\rm min}} - \frac{\phi}{K_{\rm f}}}$$

Conceptual trends for siliciclastic lithologies at constant confining pressures

P-impedance: ρV_P

Effective pressure

Volumetric Shear deformation deformation

ROCK PHYSICS cheatsheet

agilegeoscience.com