Exercício 2:

i	1	2	3	4	5	6	7	8	9	10	11
X_{i}	-1	-0,75	-0,6	-0,5	-0,3	0	0,2	0,4	0,5	0,7	1
f(x _i)	2,05	1,153	0,45	0,4	0,5	0	0,2	0,6	0,512	1,2	2,05

X _i ²	1,00	0,56	0,36	0,25	0,09	0,00	0,04	0,16	0,25	0,49	1,00
X _i ³	-1,00	-0,42	-0,22	-0,13	-0,03	0,00	0,01	0,06	0,13	0,34	1,00
X _i ⁴	1,00	0,32	0,13	0,06	0,01	0,00	0,00	0,03	0,06	0,24	1,00
f(x)*x	-2,05	-0,86	-0,27	-0,20	-0,15	0,00	0,04	0,24	0,26	0,84	2,05
f(x)*x²	2,05	0,65	0,16	0,10	0,05	0,00	0,01	0,10	0,13	0,59	2,05

a) Cálculo dos somatórios:

-0,350
4,203
-0,250
2,846
9,115
-0,109
5,876

$$\begin{bmatrix} m & \sum_{i=1}^{m} x_{i} & \sum_{i=1}^{m} x_{i}^{2} \\ \sum_{i=1}^{m} x_{i} & \sum_{i=1}^{m} x_{i}^{2} & \sum_{i=1}^{m} x_{i}^{3} \\ \sum_{i=1}^{m} x_{i}^{2} & \sum_{i=1}^{m} x_{i}^{3} & \sum_{i=1}^{m} x_{i}^{4} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \alpha_{3} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{m} f(x_{i}) \\ \sum_{i=1}^{m} x_{i} f(x_{i}) \\ \sum_{i=1}^{m} x_{i}^{2} f(x_{i}) \end{bmatrix}$$

$$\sum_{i=1}^{m} x_i^2 \alpha_3 = \sum_{i=1}^{m} f(x_i)$$

$$\sum_{i=1}^{m} x_i^3 \alpha_3 = \sum_{i=1}^{m} x_i f(x_i)$$

$$\sum_{i=1}^{m} x_i^4 \alpha_3 = \sum_{i=1}^{m} x_i^2 f(x_i)$$

b) Tomando a última equação temos:

A melhor função que passa pelos pontos

$$\varphi(x) = 0,0000 + 0,0000 x + 2,0642 x^2$$

Os valores de $\phi(xi)$ e os respectivos resíduos ($r(xi) = f(xi) - \phi(xi)$)

i	1	2	3	4	5	6	7	8	9	10	11
X _i	-1,0000	-0,7500	-0,6000	-0,5000	-0,3000	0,0000	0,2000	0,4000	0,5000	0,7000	1,0000
f(x _i)	2,0500	1,1530	0,4500	0,4000	0,5000	0,0000	0,2000	0,6000	0,5120	1,2000	2,0500
$\varphi(x_i)$	2,0642	1,1611	0,7431	0,5161	0,1858	0,0000	0,0826	0,3303	0,5161	1,0115	2,0642
r(x _i)	-0,0142	-0,0081	-0,2931	-0,1161	0,3142	0,0000	0,1174	0,2697	-0,0041	0,1885	-0,0142
r²(x _i)	0,0002	0,0001	0,0859	0,0135	0,0987	0,0000	0,0138	0,0728	0,0000	0,0355	0,0002

soma dos quadrados dos resíduos

0,32069