MATH 425a ASSIGNMENT 5 SOLUTIONS FALL 2015 Prof. Alexander

These solutions are for the individual use of Math 425a students and are not to be distributed outside that group.

Rudin Chapter 2:

- (19)(a) Since A, B are closed, $A \cap \bar{B} = A \cap B = \phi$ and $\bar{A} \cap B = A \cap B = \phi$. Thus A and B are separated.
- (b) Suppose A, B are open and disjoint. If $x \in B$ then x has a neighborhood $N \subset B$ so N contains no points of A. This shows $x \notin A'$. Thus $B \cap A' = \phi$, so $B \cap \bar{A} = \phi$. Similarly $A \cap \bar{B} = \phi$. Thus A, B are separated.
- (c) Let $p \in X$ and $\delta > 0$, and let $A = \{q \in X : d(p,q) < \delta\}$, $B = \{q \in X : d(p,q) > \delta\}$. Since A is a neighborhood, it is open. To show B is open, let $q \in B$ and $0 < r < d(p,q) \delta$. If $x \in N_r(q)$ then

$$d(p,q) \le d(p,x) + d(x,q) < d(p,x) + r$$
 so $d(p,x) > d(p,q) - r > \delta$,

so $x \in B$. This shows q has a neighborhood $N_r(q)$ in B, so B is open. Since A, B are open and disjoint, by part (b) they are separated.

(d) Suppose X is a connected metric space and there are two points $p \neq z$ in X. Let $0 < \delta < d(p,z)$ and define A,B as in part (c). If there are no points q with $d(p,q) = \delta$, then $A \cup B$ is all of X, and by part (b), A and B are separated, so X is not connected, a contradiction. Thus there must be a point $q \in X$ with $d(p,q) = \delta$; this is true for each δ between 0 and d(p,z). Since there are uncountably many δ 's, there must be uncountably many corresponding q's, so X is uncountable.

Rudin Chapter 3:

- (1) Suppose $s_n \to s$. From Chapter 1 #13 we have $||s_n| |s|| \le |s_n s| \to 0$, so $|s_n| \to |s|$.
- (3) We claim that for all $n \geq 1$,

$$(*) s_n < 2 and s_n \le s_{n+1}.$$

We check for n=1: clearly $s_1=\sqrt{2}<2$, and $s_2>\sqrt{2}=s_1$, so (*) is true for n=1. Suppose it is true for some n. Now

$$s_n \le s_{n+1} \implies \sqrt{s_n} \le \sqrt{s_{n+1}} \implies \sqrt{2 + \sqrt{s_n}} \le \sqrt{2 + \sqrt{s_{n+1}}} \implies s_{n+1} \le s_{n+2},$$

and similarly

$$s_n < 2 \implies \sqrt{s_n} < \sqrt{2} \implies s_{n+1} = \sqrt{2 + \sqrt{s_n}} < \sqrt{2 + \sqrt{2}} < 2,$$

- so (*) is true for n + 1. Thus by induction, (*) is true for all $n \ge 1$. It follows that $\{s_n\}$ is a bounded monotone increasing sequence, so it must converge, by 3.14.
- (5) Let $\alpha = \limsup a_n, \beta = \limsup b_n$.

Suppose first that neither α nor β is $+\infty$. Let $r > \alpha$ and $s > \beta$. From 3.17, there exist N_1, N_2 such that

$$n \ge N_1 \implies a_n < r, \qquad n \ge N_2 \implies b_n < s.$$

Then $n \ge \max(N_1, N_2) \implies a_n + b_n < r + s$, so there are only finitely many values $a_n + b_n \ge r + s$. This means $\{a_n + b_n\}$ has no subsequential limits above r + s, so $\limsup_n (a_n + b_n) \le r + s$. Since $r > \alpha$ and $s > \beta$ are arbitrary, it follows that $\limsup_n (a_n + b_n) \le \alpha + \beta$.

If one of α, β is $+\infty$ and the other is not $-\infty$, then the right side $\alpha + \beta$ of the desired inequality is $+\infty$ so there is nothing to prove.

Handout:

(I)(a) Let $\epsilon > 0$. There exist N_1 such that $n \geq N_1 \implies |s_n - 2| < \epsilon$, and K_1 such that $k \geq K_1 \implies |s_{n_k} + t_{n_k} - c| < \epsilon$, and K_3 such that $k \geq K_3 \implies n_k \geq N_1 \implies |s_{n_k} - 2| < \epsilon$. Let $K = \max(K_2, K_3)$. For $k \geq K$ we have

$$|t_{n_k} - (c-2)| = |s_{n_k} + t_{n_k} - c - (s_{n_k} - 2)| \le |s_{n_k} + t_{n_k} - c| + |s_{n_k} - 2| < 2\epsilon.$$

Since ϵ is arbitrary this shows $t_{n_k} \to c-2$.

- (b) If c is a subsequential limit of $\{s_n + t_n\}$, then by (a), c 2 is a subsequential limit of $\{t_n\}$, so $c 2 \le 3$, so $c \le 5$. This shows that $\limsup_n (s_n + t_n) \le 5$.
- (II) Since $p \in G$ and G is open, there is a neighborhood $N_r(p) \subset G$. Since $p_n \to p$, there exists N such that $n \geq N \implies d(p_n, p) < r \implies p_n \in N_r(p) \implies p_n \in G$. Therefore at most N-1 points p_n are not in G.
- (III) There exists a subsequence $t_{n_k} \to \alpha$, and since $s_n \to s$ we have $s_{n_k} \to s$ as well. Therefore $s_{n_k} + t_{n_k} \to s + \alpha$, which shows that $\limsup(s_n + t_n) \ge s + \alpha$. The opposite inequality, $\limsup(s_n + t_n) \le s + \alpha$, follows from Chapter 3 #5 in Rudin (above.) Therefore we have equality.
- (IV)(a) Let $\epsilon > 0$. There exists N such that $n > N \implies |x_n| < \epsilon$. Then for n > N,

$$\left| \frac{x_{N+1} + \dots + x_n}{n} \right| \le \frac{1}{n} \sum_{k=N+1}^n |x_k| \le \frac{1}{n} (n-N)\epsilon \le \epsilon.$$

Also $(x_1 + \cdots + x_N)/n \to 0$ as $n \to \infty$, so there exists N_1 such that $n \ge N_1 \implies |x_1 + \cdots + x_N|/n < \epsilon$. Then for $n \ge \max(N, N_1)$,

$$\left| \frac{x_1 + \dots + x_n}{n} \right| \le \left| \frac{x_1 + \dots + x_N}{n} \right| + \left| \frac{x_{N+1} + \dots + x_n}{n} \right| < 2\epsilon.$$

Since ϵ is arbitrary, this shows $a_n \to 0$.

- (b) Take $x_n = (-1)^n$. Then $x_1 + \cdots + x_n$ is either 0 or -1 for all n, so $a_n \to 0$, though $x_n \not\to 0$.
- (c) We prove the contrapositive. Suppose $\{x_k\}$ is bounded, say $|x_k| \leq M$ for all k. Then $|a_n| = |x_1 + \dots + |x_n|/n \leq (|x_1| + \dots + |x_n|)/n \leq nM/n = M$ for all n, so $\{a_n\}$ is bounded.
- (V) For even n, the sequence is $\left(1+\frac{1}{n}\right)^n \to e$, and for odd n it is $\left(1+\frac{1}{n}\right)^{-n} \to 1/e$. Therefore e and 1/e are the only subsequential limits, so the lim sup is e and the lim inf is 1/e.
- (VI) Let $p_N \in E$. Then $d(p_N, p) > 0$ (since all points are assumed distinct), so we can take $0 < r < d(p_N, p)/2$. Then the neighborhoods $N_r(p)$ and $N_r(p_N)$ are disjoint. Since $p_n \to p$, there are only finitely many points of E outside $N_r(p)$, hence only finitely many in $N_r(p_N)$. This means that p_N is not a limit point of E, so it is an isolated point.
- (VII)(a) $(-\infty, x]$ is a closed set, and $a_n \in (-\infty, x]$ for all n, so $a \in (-\infty, x]$, that is, $a \le x$. (b) If $\sup\{a_n\} = \infty$ there is nothing to prove, so assume $y = \sup\{a_n\} < \infty$. For any converging subsequence $a_{n_k} \to a$ we have $a_{n_k} \le y$ for all k, so $a \le y$ by (a). Therefore the lim sup (the largest subsequential limit) is bounded by y as well.
- (VIII) Suppose $\{x_n\}$ is bounded, say $|x_n| \leq M$ for all n. Given $\epsilon > 0$ there exists N such that $n \geq N \implies |\delta_n| < \epsilon/M \implies |x_n\delta_n| = |x_n||\delta_n| < M \cdot \epsilon/M = \epsilon$. This shows $x_n\delta_n \to 0$.