

San Francisco & Digital | June 6 – 9

SESSION ID: MLAI-T01

Red Teaming AI Systems: The Path, the Prospect and the Perils

MODERATOR: Ram Shankar Siva Kumar

Data Cowboy, Microsoft, Harvard

PANELISTS: Nicholas Carlini

Research Scientist, Google Brain

Hyrum Anderson

Distinguished Engineer, Robust Intelligence

Dr. Christina Liaghati

Operations Manager, The MITRE Corporation

Disclaimer

Presentations are intended for educational purposes only and do not replace independent professional judgment. Statements of fact and opinions expressed are those of the presenters individually and, unless expressly stated to the contrary, are not the opinion or position of RSA Conference LLC or any other cosponsors. RSA Conference does not endorse or approve, and assumes no responsibility for, the content, accuracy or completeness of the information presented.

Attendees should note that sessions may be audio- or video-recorded and may be published in various media, including print, audio and video formats without further notice. The presentation template and any media capture are subject to copyright protection.

©2022 RSA Conference LLC or its affiliates. The RSA Conference logo and other trademarks are proprietary. All rights reserved.

Question Time!

#RSAC

#RSAC

Congratulations! You are 100% Human!

"7"

"Orangutan"

"Hot Dog"

Source: https://arxiv.org/abs/1809.08352

Source: https://arxiv.org/abs/1807.06732

RS∧°Conference2022

Source: https://arxiv.org/abs/1801.01944

Doesn't transcribe to anything

Source: https://arxiv.org/abs/1801.01944

"Speech can be embedded in music"

Source: https://arxiv.org/abs/1801.01944

OpenGPT-2: We Replicated GPT-2

Aaron Gokaslan*, Vanya Cohen*, Ellie Pavlick, Stefanie Tellex | Brown

Because You Can Too

Aug 22, 2019 · 7 min read

LOUISE MATSAKIS

SECURITY 12.20.2017 12:07 PM

Researchers Fooled a Google Al Into Thinking a Rifle Was a Helicopter

To safeguard AI, we're going to need to solve the problem of 'adversarial examples.'

Alexa and Siri Can Hear This Hidden Command. You Can't.

The New Hork Times

Researchers can now send secret audio instructions undetectable to the human ear to Apple's Siri, Amazon's Alexa and Google's Assistant.

Noteworthy - The Journal Blog

University

Stickers that are invisible to drivers and fool autopilot.

DAN GOODIN - 4/1/2019, 8:50 PM

ars TECHNICA

Taylor Swift 'tried to sue' Microsoft over racist chatbot Tay

① 10 September 2019

Where are we heading?

Rise of Open Source Toolkits to Attack Al Systems

MITRE | ATLAS™ Matrix Navigator Tactics Techniques Case Studies → Resources →

ATLAS enables researchers to navigate the landscape of threats to machine learning systems. ML is increasingly used across a variety of industries. There are a growing number of vulnerabilities in ML, and its use increases the attack surface of existing systems. We developed ATLAS to raise awareness of these threats and present them in a way familiar to security researchers.

ATLAS[™]

The ATLAS Matrix below shows the progression of tactics used in attacks as columns from left to right, with ML techniques belonging to each tactic below. Click on links to learn more about each item, or view ATLAS tactics and techniques using the links at the top navigation bar.

Reconnaissance 5 techniques	Resource Development 7 techniques	Initial Access 2 techniques	ML Model Access 4 techniques	Execution 1 technique	Persistence 2 techniques	Defense Evasion 1 technique	Discovery 3 techniques	Collection 2 techniques	ML Attack Staging 4 techniques	Exfiltration 2 techniques	Impact 6 techniques
Search for Victim's Publicly Available Research Materials Search for Publicly Available Adversarial Vulnerability Analysis	Acquire Public ML Artifacts Obtain Capabilities	ML Supply Chain II Compromise	ML Model Inference API Access	User Execution	Poison Training Data Backdoor ML Model	Evade ML Model	Discover ML Model Ontology	ML Artifact Collection	Create Proxy ML Model	Exfiltration via ML Inference	Evade ML Model
		Valid Accounts	ML-Enabled Product or Service Physical Environment Access Full ML Model Access				Discover ML Model Family	Data from Information Repositories	Backdoor ML Model Verify Attack	Exfiltration via Cyber Means	Denial of ML Service
	Develop Adversarial ML Attack Capabilities										Spamming ML System with Chaff Data
							Discover ML Artifacts		Craft Adversarial II Data		
Search Victim- Owned Websites	Acquire Infrastructure										Erode ML Model Integrity
Search Application Repositories Active Scanning	Publish Poisoned Datasets										Cost Harvesting
	Poison Training Data										ML Intellectual
	Establish Accounts										Property Theft

Rise of Al Red Teams

Section 1: What is AI Red Teaming?

Section 2: Brass Tacks – Anatomy of an Al Red Team

Section 3: Big Picture – Future of Al Red Teaming

"Apply" Slide

Next Week

- Read "Adversarial Machine Learning Industry Perspectives" (<u>Link</u>)
- Browse through MITRE ATLAS (Link)

Next Month

- Pick an ML Project and explore failures using Counterfit (<u>Link</u>) or Augly (<u>Link</u>)
 - How did it go? Was it easy to break your team's ML project?
 - How did you address the vulnerabilities?
 - What is your team's response and remediation plan?

Next Quarter

- For the same ML project, go through an AI Risk Assessment exercise with your team (<u>Link</u>)
- Make a plan for repeated application testing for a different ML project