MFE R Programming Workshop Week 2

Brett R. Dunn and Mahyar Kargar

Fall 2017

Introduction

Questions

Any questions before we start?

Overview of Week 2

- Funcitons
- Time Series Data in R
- Retrieving Time Series Data from the Web
- Graphics in R

Functions

Everything that happens in R is a function call

[1] 15

```
`<-`(mynumber, 3)</pre>
print(mynumber)
## [1] 3
^+(3,4)
## [1] 7
a <- : (11,20)
[(a,5)]
```

Function Definitions

```
myfunc <- function(x) x^2
myfunc(10)</pre>
```

```
## [1] 100
```

- ▶ The last value evaluated is what is returned by the function.
- ► You can also write return(x^2).
 - ▶ This is useful if you want to break out of the function early.

Scope Rules for Functions

You can't access N out here

▶ Variables defined inside a function are local to that function.

```
myfunc <- function(x) {
    N <- 10
    return(N*x^2) # return is optional
}
myfunc(10)
## [1] 1000</pre>
```


The Pipe Operator %>%

- ► The magnittr package provides a pipe operator.
- ► See vignette("magrittr").
- Basic piping:
 - x %>% f is equivalent to f(x)
 - x %>% f(y) is equivalent to f(x, y)
 - x %>% f %>% g %>% h is equivalent to h(g(f(x)))
- ▶ The argument placeholder:
 - \rightarrow x %>% f(y, .) is equivalent to f(y, x)
 - \rightarrow x %>% f(y, z = .) is equivalent to f(y, z = x)

Expose the variables with %\$%

► The %\$% allows variable names (e.g. column names) to be used in a function.

```
library(magrittr)
iris %>%
  subset(Sepal.Length > mean(Sepal.Length)) %$%
  cor(Sepal.Length, Sepal.Width)
```

```
## [1] 0.3361992
```

Compound assignment pipe operations with %<>%

There is also a pipe operator which can be used as shorthand notation in situations where the left-hand side is being "overwritten":

```
iris$Sepal.Length <-
iris$Sepal.Length %>%
sqrt()
```

Use the %<>% operator to avoid the repetition:

```
iris$Sepal.Length %<>% sqrt
```

► This operator works exactly like %>%, except the pipeline assigns the result rather than returning it.

Time Series Data in R (xts)

What is a Time Series?

▶ A time series is a set of observations x_t , each one being recorded at a specified time t.

Key R Time Series Packages

- xts: eXtensible Time Series.
- zoo: Z's Ordered Observations.
 - Both were created by Achim Zeileis.
- ▶ lubridate
 - Created by Garrett Grolemund and Hadley Wickham.

Date Classes in R

Date is in yyyy-mm-dd format.

[1] "POSIXct" "POSIXt"

- ▶ POSIXct represents the (signed) number of seconds since the beginning of 1970 (in the UTC time zone) as a numeric vector.
- ▶ POSIX1t is a named list of vectors representing sec, min, hour, mday, mon, year, time zone par maters, and a few other items.

```
x <- Sys.time() # clock time as a POSIXct object
x
## [1] "2017-10-07 10:13:30 PDT"
class(x)</pre>
```

What is xts?

- xts is an extended zoo object.
- A zoo object is a matrix with a vector of times that form an index.

```
library(xts)
# xts is a matrix plus an index
x <- matrix(1:4, nrow=2, ncol=2)
idx <- seq(as.Date("2016-10-27"), length=2, by="days")
x_xts <- xts(x, order.by = idx)
x_xts</pre>
```

```
## [,1] [,2]
## 2016-10-27 1 3
## 2016-10-28 2 4
```

Constructing xts

- ▶ The function xts() gives you a few other options as well.
 - ▶ See ?xts.
 - unique forces times to be unique.
 - tzone sets the time zone of the series.
- The index should be of class Date, POSIX, timeDate, chron, etc.
- If the dates are not in chronological order, the xts constructor will automatically order the time series.
- Since xts is a subclass of zoo, xts gives us all the functionality of zoo.

Deconstructing xts

- How do we get the original index and matrix back?
 - coredata extracts the matrix.
 - index extracts the index.

```
coredata(x xts) # Gives us a martix
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
index(x xts) # Gives us a vector of dates
## [1] "2016-10-27" "2016-10-28"
```

Viewing the **str**ucture of an xts Object.

► The str() function compactly displays the internal structure of an R object.

```
## An 'xts' object on 2016-10-27/2016-10-28 containing:
## Data: int [1:2, 1:2] 1 2 3 4
## Indexed by objects of class: [Date] TZ: UTC
## xts Attributes:
## NULL
```

Importing and Exporting Time Series

- Importing:
 - 1. Read data into R using one of the usual functions.
 - read.table(), read.xts(), read.zoo(), etc.
 - 2. as.xts() converts R objects to xts.
- Exporting:
 - write.zoo(x, "file") for text files.
 - ▶ saveRDS(x, "file") for future use in R.

Subsetting Time Series

xts supports one and two-sided intervals.

```
# Load fund data
data(edhec, package = "PerformanceAnalytics")
edhec["2007-01/2007-02", 1] # interval
##
              Convertible Arbitrage
## 2007-01-31
                             0.0130
## 2007-02-28
                             0.0117
head(edhec["2007-01/", 1], n = 3) # start in January 2007
##
              Convertible Arbitrage
```

```
## Convertible Arbitrage
## 2007-01-31 0.0130
## 2007-02-28 0.0117
## 2007-03-31 0.0060
```

Truncated Dates

xts allows you to truncate dates

```
# January 2007 to March edhec["200701/03", 1] # interval
```

##		${\tt Convertible}$	Arbitrage
##	2007-01-31		0.0130
##	2007-02-28		0.0117
##	2007-03-31		0.0060

Other Ways to Extract Values

##

1997-01-31

We can subset xts objects with vectors of integers, logicals, or dates.

```
edhec[c(1,2), 1] # integers
##
              Convertible Arbitrage
## 1997-01-31
                             0.0119
## 1997-02-28
                             0.0123
edhec[(index(edhec) < "1997-02-28"), 1] # a logical vector
##
              Convertible Arbitrage
## 1997-01-31
                             0.0119
edhec[c("1997-01-31","1997-02-28"), 1] # a date vector
```

0.0119

Convertible Arbitrage

first() and last() Functions

- R uses head() and tail() to look at the start and end of a series.
 - ▶ i.e. "the first 3 rows" or "the last 6 rows".
- xts has two functions first() and last().
 - ▶ i.e. "the first 6 days" or "the last 6 months"

```
first(edhec[, "Convertible Arbitrage"], "3 months")
```

```
## Convertible Arbitrage
## 1997-01-31 0.0119
## 1997-02-28 0.0123
## 1997-03-31 0.0078
```

Math Operations

Math operations are on the intersection of times.

```
x <- edhec["199701/02", 1]
y <- edhec["199702/03", 1]
x + y # only the intersection</pre>
```

```
## Convertible.Arbitrage
## 1997-02-28 0.0246
```

Operations on the Union

```
x + merge(y, index(x), fill = 0)
##
              Convertible. Arbitrage
## 1997-01-31
                              0.0119
## 1997-02-28
                              0.0246
x + merge(y, index(x), fill = na.locf)
##
              Convertible.Arbitrage
## 1997-01-31
                                  NΑ
## 1997-02-28
                              0.0246
```

Database Joins

- ► There are four main database joins: inner, outer, left and right joins.
 - ▶ inner join: intersection.
 - outer join: union.
 - left: using times from the left series.
 - right: using times from the right series.

Merging xts objects

- We can merge xts objects using the merge function.
- merge takes three arguments.
 - an arbitrary number of time series.
 - fill, which handles missing data.
 - ▶ join, the type of join we want to do.

```
colnames(x) <- "x"; colnames(y) <- "y"
merge(x, y)</pre>
```

```
## x y
## 1997-01-31 0.0119 NA
## 1997-02-28 0.0123 0.0123
## 1997-03-31 NA 0.0078
```

Merging xts Objects: Left and Right Joins

```
merge(x, y, join='left')
##
                   Х
## 1997-01-31 0.0119
                         NΑ
## 1997-02-28 0.0123 0.0123
merge(x, y, join='right')
##
                   Х
  1997-02-28 0.0123 0.0123
## 1997-03-31 NA 0.0078
```

Missing Data

locf: last observation carried forward

```
x < -c(1, NA, NA, 4)
idx <- seq(as.Date("2016-10-27"), length=4, by="days")
x <- xts(x, order.by = idx); colnames(x) <- "x"
cbind(x, na.locf(x), na.locf(x, fromLast = TRUE))
          x x.1 x.2
##
## 2016-10-27 1 1 1
## 2016-10-28 NA 1 4
## 2016-10-29 NA 1 4
## 2016-10-30 4 4 4
```

Other NA Options

```
na.fill(x, -999)
##
                 x
## 2016-10-27
## 2016-10-28 -999
## 2016-10-29 -999
## 2016-10-30
na.omit(x)
##
## 2016-10-27 1
## 2016-10-30 4
```

Interpolate NAs

```
na.approx(x)
```

```
## x
## 2016-10-27 1
## 2016-10-28 2
## 2016-10-29 3
## 2016-10-30 4
```

Lagging a Time Series

- ▶ lag(x, k = 1, na.pad = TRUE)
 - k is the number of lags (positive = forward and negative = backward)
 - k can be a vector of lags
 - 'na.pad' pads the vector back to the original size

```
x <- na.approx(x)
cbind(x, lag(x,1), lag(x,-1))</pre>
```

Diffferencing Series

- Differencing converts levels to changes.
- see diff.xts for additional function arguments.

```
x <- na.approx(x)
cbind(x, diff(x))</pre>
```

Apply over Time Periods

- period.apply() applys a function over time intervals.
- endpoints gives us the row numbers of endpoints.
- apply.monthly, apply.daily, apply.quarterly, etc. take care of the endpoint calculation for us.

```
edhec9701 <- edhec["1997/2001", c(1,3)]
# determine the endpoints
ep <- endpoints(edhec9701, "years")
period.apply(edhec9701, INDEX=ep, FUN=mean)</pre>
```

##	Convertible Arbitrage	Distressed Securities
## 1997-12-31	0.01159167	0.013016667
## 1998-12-31	0.00270000	-0.001491667
## 1999-12-31	0.01251667	0.015225000
## 2000-12-31	0.01377500	0.004050000
## 2001-12-31	0.01086667	0.011525000

do.call: A Useful R Trick

The do.call function allows us to specify the name of function, either as a character or an object, and provide arguments as a list.

```
do.call(mean, args= list(1:10))
## [1] 5.5

do.call("mean", args= list(1:10))
## [1] 5.5
```

Discrete Rolling Windows

split, lapply a function (cumsum, cumprod, cummin, cummax), and recombine.

```
edhec.yrs <- split(edhec[,1], f="years")
edhec.yrs <- lapply(edhec.yrs, cumsum)
edhec.ytd <- do.call(rbind, edhec.yrs)
edhec.ytd["200209/200303", 1]</pre>
```

##		${\tt Convertible}$	Arbitrage
##	2002-09-30		0.0322
##	2002-10-31		0.0426
##	2002-11-30		0.0677
##	2002-12-31		0.0834
##	2003-01-31		0.0283
##	2003-02-28		0.0416
##	2003-03-31		0.0505

Continuous Rolling Windows

▶ rollapply(data, width, FUN, ...)

```
rollapply(edhec["200301/06", 1], 3, mean)
```

##		Convertible Arbitrage
##	2003-01-31	NA
##	2003-02-28	NA
##	2003-03-31	0.01683333
##	2003-04-30	0.01240000
##	2003-05-31	0.01250000
##	2003-06-30	0.00760000

Lubridate

Lubridate

- Lubridate is an R package that makes it easier to work with dates and times.
- ► Lubridate was created by Garrett Grolemund and Hadley Wickham.

```
# install.packages("lubridate")
library(lubridate)

##
## Attaching package: 'lubridate'

## The following object is masked from 'package:base':
##
## date
```

Parse a date

► Lubridate accepts lots of formats

```
ymd("20110604")
## [1] "2011-06-04"
mdy("06-04-2011")
## [1] "2011-06-04"
dmy("04/06/2011")
```

[1] "2011-06-04"

Parse a date and time

```
ymd_hms("2011-06-04 12:00:00", tz = "Pacific/Auckland")
## [1] "2011-06-04 12:00:00 NZST"
```

Extraction

```
arrive <- ymd_hms("2011-06-04 12:00:00")
second(arrive)
## [1] 0
second(arrive) <- 25</pre>
arrive
## [1] "2011-06-04 12:00:25 UTC"
```

Intervals

```
arrive <- ymd_hms("2011-06-04 12:00:00")
leave <- ymd_hms("2011-08-10 14:00:00")
interval(arrive, leave)
```

```
## [1] 2011-06-04 12:00:00 UTC--2011-08-10 14:00:00 UTC
```

Arithmetic

```
mydate <- ymd("20130130")</pre>
mydate + days(2)
## [1] "2013-02-01"
mydate + months(5)
## [1] "2013-06-30"
```

Arithmetic

```
mydate <- ymd("20130130")
mydate + days(1:5)</pre>
```

[1] "2013-01-31" "2013-02-01" "2013-02-02" "2013-02-03"

End of (next) month

```
jan31 <- ymd("2013-01-31")
jan31 + months(1)
## [1] NA
ceiling_date(jan31, "month") - days(1)
## [1] "2013-01-31"
floor_date(jan31, "month") + months(2) - days(1)
## [1] "2013-02-28"
```

Stock Market Data in R

Data from quantmod

With quantmod we can download stock market data into xts objects.

```
library(quantmod)
getSymbols("^GSPC", src="yahoo", from = "2008-01-01")
## [1] "GSPC"
head(GSPC,3)[, 1:4]
```

```
## GSPC.Open GSPC.High GSPC.Low GSPC.Close
## 2008-01-02 1467.97 1471.77 1442.07 1447.16
## 2008-01-03 1447.55 1456.80 1443.73 1447.16
## 2008-01-04 1444.01 1444.01 1411.19 1411.63
```

A Basic Plot

plot(GSPC\$GSPC.Close)

Switch Period

to.period changes the periodicity of a univariate or OHLC (open, high, low, close) object.

```
eom <- to.period(GSPC,'months')
head(eom,3)</pre>
```

Plotting in R

Motivation

One skill that isn't taught in grad school is how to make a nice chart.

- Managing Director at Citigroup

What makes a chart nice?

- ► The reader should look at the chart and immediately understand what data are displayed.
- This means we need:
 - A clear title.
 - Clear labels for each axis (scale and units).
 - ▶ A legend if more than one time series is displayed.
 - ▶ Different colors and line formats for different time series.
 - Grid lines.
 - Labels.

Plotting Facilities in R

- R has excellent plotting methods built-in.
- I will focus on base R.
- As a next step, I recommend learning ggplot2, an excellent plotting package.
- ► http://www.r-graph-gallery.com/

Basic Plotting

- example(plot)
- example(hist)
- ▶ ?par
- ?plot.default

The plot() Function

- plot() is generic function, i.e. a placeholder for a family of functions.
 - the function that is actually called depends on the class of the object on which it is called.
- plot() works in stages.
 - you can build up a graph in stages by issuing a series of commands.
- We will see how this works with an example.

A Basic Plot

xlim() and ylim()

Graphical paramaters

- Graphical parameters can be set as arguments to the par function, or they can be passed to the plot function.
- Make sure to read through ?par.
- Some useful parameters:
 - cex: sizing of text and symbols
 - pch: point type.
 - lty: line type.
 - ▶ 0=blank, 1=solid (default), 2=dashed, 3=dotted, 4=dotdash, 5=longdash, 6=twodash
 - lwd: line width.
 - mar: margins.

pch

pch sets how points are displayed

```
plot(x,y, pch = 16, col='darkblue')
```


Colors in R

- colors() returns all available color names.
- rainbow(n), heat.colors(n), terrain.colors(n) and cm.colors(n) return a vector of n contiguous colors.

```
plot(x, y, pch = 21, col=heat.colors(12),
    cex = 2, bg = rev(heat.colors(12)))
```


lines()

- ▶ lines() takes coordinates and joins the corresponding points with line segments.
 - Notice, by calling lines after plot the line is on top of the points.
 - ▶ This is why we want to build the plot in stages.

```
plot(x,y, pch = 16, col='darkblue', cex=2)
lines(x, y, col='darkgrey', lwd = 3)
```


points()

points is a generic function to draw a sequence of points at the specified coordinates. The specified character(s) are plotted, centered at the coordinates.

```
plot(x,y, pch = 16, col='darkblue', cex=2)
lines(x, y, col='darkgrey', lwd = 3)
points(x, y, col=rainbow(12), pch=1:12, cex=3, lwd=2)
```


grid()

- grid adds a rectangular grid to an existing plot.
- ?grid for more details.

```
plot(x,y, pch = 16, col='darkblue', cex=2)
lines(x, y, col='darkgrey', lwd = 3)
points(x, y, col=rainbow(12), pch=1:12, cex=3, lwd=2)
grid(col="blue", lwd=2)
```


abline()

abline adds one or more straight lines through the current plot.

```
x2 <- 1:10; y2 <- 1 + 2*x2 + rnorm(10)
plot(x2,y2, pch = 16, col='darkblue')
model <- lm(y2 ~ x2)
abline(model, col="darkgrey", lwd=2)
abline(v = 5, col = "red", lty = 2)</pre>
```


Adding a Title in Lables

- Use the main argument for a title.
- ▶ Use the xlab and ylab for axis labels.

Average High Temperature in Los Angeles, CA

Adding a Legend: The legend() Function

see ?legend and example(legend)

```
plot(x,y, pch = 16, col='darkblue')
legend("topleft", inset=.01, "Average High Temperature",
    col = "darkblue", pch = 16, bg="white",box.col="white")
```


text() and locator()

- Use the text() function to add text anywhere in the current graph.
- ▶ locator() allows you to click on a point in the chart and returns the location.

```
plot(x,y, pch = 16, col='darkblue')
text(2,75, "ABC")
```


curve()

With curve(), you can plot a function.

$$curve(cos(x), -2*pi, 2*pi)$$

Saving a Plot to a File

- Open a file: pdf("name.pdf")
- 2. Create the plot.
- Close the device with dev.off()
- You can use dev.copy() to save the displayed graph.
- ► See library(help = "grDevices") for more information.

An Example of Plotting in R

► Let's plot the cumulative (gross) return of IBM and the S&P 500 since 1980.

```
library(quantmod)
getSymbols(c("^GSPC", "IBM"), src="yahoo", from = "1979-12-
## [1] "GSPC" "IBM"
adj_close <- merge(GSPC$GSPC.Adjusted, IBM$IBM.Adjusted)
daily_returns <- diff(adj_close)/lag(adj_close)</pre>
cum_ret <- cumprod(1+daily_returns[-1,])</pre>
ret1 <- xts(matrix(1, ncol=2), as.Date("1979-12-31"))
cum_ret <- (rbind(cum_ret, ret1) - 1)*100</pre>
colnames(cum_ret) <- c("GSPC", "IBM")</pre>
```

The Data

head(cum_ret, 9)

```
## 1979-12-31 0.0000000 0.000000

## 1980-01-02 -2.0196405 -2.912548

## 1980-01-03 -2.5199194 -1.359205

## 1980-01-04 -1.3155503 -1.553311

## 1980-01-07 -1.0468816 -1.941698

## 1980-01-08 0.9357004 4.660284

## 1980-01-09 1.0283500 1.553471

## 1980-01-10 1.8065564 4.854470

## 1980-01-11 1.8343487 4.077727
```

Start with a Blank Chart and Build it Up

```
plot(cum_ret$IBM, xlab="", ylab = "Cumulative Net Return ()
    main="", major.ticks="years", minor.ticks=F,
    type="n", major.format = "%Y", auto.grid=F,
    ylim = c(-500, 3000))
abline(h=seq(-500,3000,500), col="darkgrey", lty=2)
lines(cum_ret$GSPC, col="black", lwd=2)
lines(cum_ret$IBM, col="blue", lwd=2)
legend("topleft", inset=.02,
    c("IBM", "GSPC"), col=c("blue", "black"),
    lwd=c(2,2),bg="white", box.col="white")
```

The Chart

Lab 1

Reading in Data for Lab 1

- read.table is the basic function to read in tabular data.
- read.csv is a special case of read.table.
 - ► As usual see ?read.table.
 - Often you want to set stringsAsFactors = FALSE.

```
## S0 sigma r T K
## 1 100 0.3 0.0 1 100
## 2 101 0.3 0.0 1 100
## 3 101 0.1 0.1 1 105
```

- optdata is a data.frame, a specialized type of list
- write.csv writes data to a .csv file.

Lab 1

Let's work on Lab 1.

Lab 2

Let's work on Lab 2.