Procesamiento digital de señales

Aplicaciones de la Transformada Z

Integrantes:

- Barco Valentín
- Estrada Anselmo

$$\begin{array}{l}
\text{Eprime } 1 \\
\text{A [m]} = \left(\frac{1}{4}\right)^{m} \cos \left(\frac{\pi}{4} \right) \text{ in [m]} \\
\text{A [m]} = \left(\frac{1}{4}\right)^{m} \frac{1}{2} \cdot e^{-\frac{\pi}{4} \frac{\pi}{4}} \cdot \text{in [m]} + \left(\frac{1}{4}\right)^{m} \frac{1}{2} \cdot e^{\frac{\pi}{4} \frac{\pi}{4}} \cdot \text{in [m]} \\
\text{H(2)} = \frac{1}{2} \cdot \sum_{m=0}^{\infty} \left(\frac{1}{4} \cdot e^{-\frac{\pi}{4} \frac{\pi}{4}} \cdot z^{-\frac{1}{4}}\right)^{m} + \frac{1}{2} \cdot \sum_{m=0}^{\infty} \left(\frac{1}{4} \cdot e^{+\frac{\pi}{4} \frac{\pi}{4}} \cdot z^{-\frac{1}{4}}\right)^{m} \\
\text{H(2)} = \frac{1}{2} \cdot \frac{1}{1 - \frac{e^{\frac{\pi}{4} \frac{\pi}{4}} \cdot z^{-\frac{1}{4}}}{1 - \frac{e$$

$$H(z) = \frac{1 - \frac{1}{4} \cos \left(\frac{\pi}{4}\right) z^{-1}}{1 - \frac{1}{2} \cos \left(\frac{\pi}{4}\right) z^{-1} + \frac{1}{16} z^{-2}}$$

6)
$$H(z) = \frac{1 - \frac{\sqrt{2}}{9} z^{-1}}{1 - \frac{\sqrt{2}}{4} z^{-1} + \frac{z^{-2}}{16}} = \frac{y(z)}{x(z)}$$

$$x(z) - x(z) \frac{\sqrt{2}}{9} z^{-1} = y(z) - y(z) \frac{\sqrt{2}}{4} z^{-1} + \frac{y(z)}{16} z^{-2}$$

$$x[m] - \frac{\sqrt{2}}{9} x[m-1] = y[m] - \frac{\sqrt{2}}{4} y[m-1] + \frac{1}{16} y[m-2]$$

$$x[m] \longrightarrow 0$$

$$w[m]$$

$$w[m] \longrightarrow 0$$

$$v[m] \longrightarrow 0$$

Campuelo con los transformosos

$$Y(z) = W(z) + aW(z)z^{-1}$$

$$H(z) = \frac{y(z)}{X(z)} = \frac{W(z) + \alpha W(z) z^{-1}}{W(z) - 6W(z) z^{-1} - c W(z) z^{-2}} = \frac{1 + \alpha z^{-1}}{1 - 6z^{-1} - c z^{-2}}$$

Par la que podemar obtenes la volora de à, b y c

-	20	rw		w		=	4												γ'															
	1	1(e	2"	(-)) u	y, 3	F)g	1		ر وه	R G	29	:	25	11	2 9	 9E		16	-0	D. q			0		88	33	> 3	>		: 1	,1	4 2
	20	n,		ı	Ų, :		7 2																											
		1 (9	2.	4.)	w	5	7 2	=	6	9 7 2	63	TT 2	٩	- 2 ^무	11	8	7 2	_ 1	ė	24	2		1,0	ρ I Ιφ.	5 9	5		. 1,	,0	13	5	
	P	No		u	=		3 π																											
	F	1(6;	ω,)	ω.	1 3	3 77	-	6	3.7	=	2 -14	31	7 =		E	2 2 3 4	 		1 6	20) k			, I	31 23	8	9	•	0	, 8	37	8
	P	270		w.	=	π																												
		ł (a	2	w. j) .	4 ,7	77	=		6 ₃	T	-	-	6	-			S S			1 4	63		_ =		1,	1-	76	8		: (3,	8.	37

$$|H(e^{9\omega_0})|_{\omega_{-}} = \frac{|e^{9\frac{5\pi}{4}\pi} - \frac{12}{8}|}{|e^{9\frac{5\pi}{4}} - \frac{1}{4}e^{9\frac{5\pi}{4}}| |e^{9\frac{5\pi}{4}} - \frac{1}{4}e^{9\frac{5\pi}{4}}|} = \frac{1,1319}{1,2885} = 0,8785$$

$$|H(e^{\partial \omega_{2}})|_{\omega_{2}} = \frac{|e^{0\frac{3\pi}{2}\pi} - \frac{\sqrt{2}}{8}|}{|e^{0\frac{3\pi}{2}\pi} - \frac{1}{4}e^{0\frac{1\pi}{4}}||e^{0\frac{3\pi}{2}\pi} - \frac{1}{4}e^{0\frac{1\pi}{4}}|} = \frac{1.0155}{1,002} = 1,0135$$

$$|H(e^{2w_{0}})|_{w=\frac{2}{4}\pi} = \frac{|e^{2\frac{7}{4}\pi} - \frac{\sqrt{2}}{4}|}{|e^{2\frac{7}{4}\pi} - \frac{1}{4}e^{2\frac{1}{4}\pi}||e^{2\frac{7}{4}\pi} - \frac{1}{4}e^{2\frac{1}{4}\pi}|} = \frac{0,3839}{0,7731} = 1,1433$$

. Paro Wo = 2TT

$$|H(e^{g\omega})|_{\omega=2\pi^{\frac{3}{2}}} = \frac{|e^{j\frac{2\pi}{4}} - \frac{J^{2}}{8}|}{|e^{j\frac{2\pi}{4}} - \frac{1}{4}e^{j\frac{2\pi}{4}}||e^{j\frac{2\pi}{4}} - \frac{1}{4}e^{j\frac{2\pi}{4}}|} = \frac{0.8232}{0.7089} = 1,1612$$

A)
$$X[m] = \left(\frac{1}{4}\right)^m u[m]$$

$$X[2] = \frac{1}{1 - \frac{1}{4}z^{-1}} \quad |21| > \frac{1}{4}$$

$$Solvands \quad que \quad H(2) = \frac{Y(2)}{X(2)}$$

$$Ear log que \quad Y(2) = H(2) \cdot X(2)$$

$$Y(2) = \frac{1 - \frac{12}{9}z^{-1}}{(1 - \frac{e^{3\pi}}{4}z^{-1})(1 - \frac{e^{3\pi}}{4}z^{-1})} \quad (1 - \frac{1}{4}z^{-1})$$

$$Y(2) = \frac{1}{(1 - \frac{e^{3\pi}}{4}z^{-1})} \quad (1 - \frac{e^{3\pi}}{4}z^{-1}) \quad (1 - \frac{1}{4}z^{-1})$$

$$A_1 = \lim_{z \to -\frac{1}{4}e^{2\pi}} \frac{1 - \frac{1}{2}z^{-1}}{(1 - \frac{e^{3\pi}}{4}z^{-1})(1 - \frac{1}{4}z^{-1})} \quad (0,25 - 0,603)$$

$$A_{2} = \lim_{\frac{\pi}{2}} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}$$

Ejercicio 2

$$H(2) = \frac{491}{400} \left(z^{-1} - \frac{10}{9} e^{\int_{0}^{0.97} y} \right) \left(z^{-1} - \frac{10}{9} e^{\int_{0}^{0.97} y} \right) \left(z^{-1} - \frac{1}{9} e^{\int_{0}^{0.97} y} \right) \left(z^{-$$

$$\begin{aligned} &\text{Form } \text{ for } \text{ glo } \text{ consideration } \text{ 220 } \text{ count } \text{ g extension} \\ &\text{He}(2) = \left[H_{\text{max}}(2) \right]^{\frac{1}{2}} \\ &\text{He}(2) = \left[(2^{\frac{1}{2}} + \frac{10}{3} \tilde{e}^{20.47})(2^{\frac{1}{2}} + \frac{10}{3} e^{20.47})(1 - \frac{2}{3} e^{20.97} z^{\frac{1}{2}})(1 - \frac{2}{3} e^{20.97} z^{\frac{1}{2}}) \\ &\text{G}(2) = \left[(2^{\frac{1}{2}} - \frac{2}{3} \tilde{e}^{20.97})(2^{\frac{1}{2}} - \frac{2}{3} e^{20.97} z^{\frac{1}{2}}) \\ &\text{G}(2) = \frac{(z^{\frac{1}{2}} - \frac{2}{3} \tilde{e}^{20.97})(z^{\frac{1}{2}} - \frac{2}{3} e^{20.97} z^{\frac{1}{2}})}{(1 - \frac{2}{3} \tilde{e}^{20.97} z^{\frac{1}{2}})(1 - \frac{2}{3} e^{20.97} z^{\frac{1}{2}})} \end{aligned}$$

$$G(2) = \frac{(z^{\frac{1}{2}} - \frac{2}{3} \tilde{e}^{20.97})(z^{\frac{1}{2}} - \frac{2}{3} e^{20.97} z^{\frac{1}{2}})}{(1 - \frac{2}{3} \tilde{e}^{20.97} z^{\frac{1}{2}})(1 - \frac{2}{3} e^{20.97} z^{\frac{1}{2}})}$$

$$G(2) = \frac{(z^{\frac{1}{2}} - \frac{2}{3} \tilde{e}^{20.97} z^{\frac{1}{2}})(1 - \frac{2}{3} e^{20.97} z^{\frac{1}{2}})}{(1 - \frac{2}{3} \tilde{e}^{20.97} z^{\frac{1}{2}})}$$

$$\left[\frac{e^{2w}}{1} + \frac{1}{2} - \frac{2}{3} e^{2(0.97 + w)} + \frac{e^{2w}}{1} + \frac{2}{3} e^{2(0.97 + w)} + \frac{2}{3} e^{2(0.$$

Por la que trenjus que 16(e24)1=1 V

c)
$$H^{c}(5) = \frac{X(5)}{\lambda(5)}$$

$$X(2) = Y(2) \left(\frac{49}{100} = \frac{1}{4}, 1,397 = \frac{1}{2} + \frac{1}{2} = 0,432 = \frac{1}{2} - 1,233 = \frac{1}{2}$$

$$X(2) = Y(2) \frac{49}{100} z^{-4} + Y(2) \frac{193}{200} z^{-3} + Y(2) 0,766 z^{-2}$$

Utalayondo propiedod de desfloyomento temporal

$$\times [m] = \frac{49}{100} \, y [m-4] + \frac{193}{200} \, y [m-3] + 0,766 \, y [m-2] + 1,878 \, y [m-1]$$

$$+ 2,249 \, y [m]$$