AMENDMENTS TO THE SPECIFICATION

Please replace paragraph 11, which extends from page 4 to page 5 of the application, with the following, wherein added material is underlined:

The material forming outer layers of the chambers discussed above may be formed of a polymer material, such as a thermoplastic elastomer, that is substantially impermeable to the fluid within the chamber. More specifically, one suitable material is a film formed of alternating layers of thermoplastic polyurethane and ethylene-vinyl alcohol copolymer, as disclosed in U.S. Patent Numbers 5,713,141 and 5,952,065 to Mitchell et al, hereby incorporated by reference. A variation upon this material wherein the center layer is formed of ethylene-vinyl alcohol copolymer; the two layers adjacent to the center layer are formed of thermoplastic polyurethane; and the outer layers are formed of a regrind material of thermoplastic polyurethane and ethylenevinyl alcohol copolymer may also be utilized. Another suitable material is a flexible microlayer membrane that includes alternating layers of a gas barrier material and an elastomeric material, as disclosed in U.S. Patent Numbers 6,082,025 and 6,127,026 to Bonk et al., both hereby incorporated by reference. Other suitable thermoplastic elastomer materials or films include polyurethane, polyester, polyester polyurethane, polyether polyurethane, such as cast or extruded ester-based polyurethane film. Additional suitable materials are disclosed in the '156 and '945 patents to Rudy, which were discussed above. In addition, numerous thermoplastic urethanes may be utilized, such as PELLETHANE®, a product of the Dow Chemical Company; ELASTOLLAN®, a product of the BASF Corporation; and ESTANE®, a product of the B.F. Goodrich Company, all of which are either ester or ether based. Still other thermoplastic urethanes based on polyesters, polyethers, polycaprolactone, and polycarbonate macrogels may be employed, and various nitrogen blocking materials may also be utilized. Further suitable materials include thermoplastic films containing a crystalline material, as disclosed in U.S. Patent Numbers 4,936,029 and 5,042,176 to Rudy, hereby incorporated by reference, and polyurethane including a polyester polyol, as disclosed in U.S. Patent Numbers 6,013,340; 6,203,868; and 6,321,465 to Bonk et al., also hereby incorporated by reference.

Please replace paragraph 59, which is wholly located on page 12 of the application, with the following, wherein added material is underlined and deleted material is shown by strikethrough:

The slopes of sidewall 47 between the various lobes 42a-42e are inversely matched by the resilient foam material of midsole 31. Accordingly, midsole 31 has a configuration with a plurality of columns 34 that are formed of the foam material and extend between lobes 42a-42e to contact the various areas of sidewall 47. The height of each column 34 increases from positions adjacent to first surface 45 to positions adjacent to second surface 46, and each column 34 slopes in a manner that corresponds with sidewall 47. Furthermore, due to the increasing spacing between lobes 42a-42e as they extend radially outward from central area 42 41, the width of each column 43 34 increases accordingly.

Please replace paragraph 72, which extends from page 16 to page 17 of the application, with the following, wherein added material is underlined:

The slope of sidewall 47', which is depicted in the cross-sectional views of Figures 13B-13D, varies around chamber 40' to provide a smooth transition during compression. Sidewall 47 slopes between adjacent lobes 42a'-42g' and has a substantially vertical slope at distal ends 43a'-43e', and various columns 34' of midsole 31' extend between the adjacent lobes 42a'-42g', as depicted in Figures 9 and 10. The spaces between adjacent lobes 42a'-42g' have a generally U-shaped configuration, which is created by a curved surface of sidewall 47'. The portion of sidewall 47' positioned between adjacent lobes 42a'-42g' has a slope that is greater in areas adjacent to distal ends 43a'-43g' than in areas adjacent to central area 41'. More specifically, sidewall 47' has a relatively shallow slope adjacent to central area 41', which corresponds with the rounded portion of the U-shaped configuration. As sidewall 47' extends between central area 41' and distal ends 43a'-43e', the slope increases. At distal ends 43a'-43e', however, the slope of sidewall 47' is substantially vertical.

Please replace paragraph 91, which is wholly located on page 23 of the application, with the following, wherein added material is underlined and deleted material is shown by strikethrough:

When mold 100 contacts parison 130, portions of parison 130 bend to accommodate further movement of mold portions 110 and 120 toward each other, which is also depicted in Figure 20. In particular, first surface side 131 bends into indentations 111a-c and 111e-g, and second surface 132 bends around protrusions 121a-c and 121e-g. Accordingly, parison 130 continues to bend as mold portions 110 and 120 continue to translate toward each other.

Please replace paragraph 95, which extends from page 24 to page 25 of the application, with the following, wherein added material is underlined and deleted material is shown by strikethrough:

Based upon the above discussion, mold portions 110 and 120 each generally include a bending zone and a forming zone that have different functions. With respect to first mold portion 110, the bending zone includes indentations 111a-c and 111e-g. The bending zone is responsible, therefore, for bending parison 130 prior to bonding. The forming zone includes central area 113, lobe areas 114a-114g, and sidewall areas 115a-115g. The forming zone is responsible, therefore, for imparting the actual shape of chamber 40' to the parison. That is, the forming zone actually forms first surface 45' and portions of sidewall 47' of chamber 40'. Similarly, bending zone of second mold portion 120 includes protrusions 121a-c and 121e-g and is also responsible for bending parison 130 prior to bonding. The forming zone of second mold portion 120 includes central area 123, lobe areas 124a-124g, and distal areas 125a-c and 125e-g, and the forming zone actually forms second surface 46' and other portions of sidewall 47'. Accordingly, mold portions 110 and 120 each include a bending zone that bends the parison and a forming zone that forms portions of chamber 47' 40, the bending zone being separate from the forming zone.

Please replace paragraph 97, which extends from page 25 to page 26 of the application, with the following, wherein added material is underlined and deleted material is shown by strikethrough:

Another advantage of bending sides 131 and 132 relates to a position of a parting line 133, which corresponds with the area where the opposite mold portions meet adjacent to bladder chamber 40'. That is, parting line 133 is the bond in chamber 40' between side 131 and side 132 that is formed by ridges 112 and 122. Referring to Figure 26 25, the position of parting line 133 is highlighted with a dashed line for purposes of reference. In many prior art chambers formed through a conventional blow molding process, the parting line extends horizontally across the sidewall in a linear manner and obscures portions of the sidewall. With regard to chamber 40', however, parting line 133 does not merely extend vertically across sidewall 47'. Instead, parting line 133 follows a non-linear course having a wave-like pattern that extends around distal ends 43a'-43g'. More specifically, parting line 133 extends horizontally between sidewall 47' and first surface 45' at upper ends of distal ends 43a'-43c' and 43e'-43g'. Parting line 133 then extends vertically across sidewall 47' and along the sides of distal ends 43a'-43c' and 43e'-43g'. Accordingly, at least a portion of parting line 133 extends between first surface 45' and second surface 46'. Parting line 133 also extends horizontally between sidewall 47' and second surface 46' in areas between lobes 42a'-42g'. When incorporated into an article of footwear, as depicted in Figure 8, parting line 133 will generally not be visible, and parting line 133 will not extend across distal ends 43a'-43g', which are the visible portions of chamber 40'. Parting line 133 is, therefore, not centered in sidewall 47'.