Propagation linéaire dans les fibres optiques et modélisation numérique

Partie 1 : Modes guidés et fibres conventionnelles

Olivier Vanvincq

Université de Lille - Laboratoire PhLAM

INNOV-FIBRE 2024

Un langage de programmation scientifique

Avantages:

- → langage open source créé en 2012
- → langage performant pour le calcul scientifique

Inconvénients:

- → premier lancement de fonction nécessitant compilation
- → bibliothèques moins nombreuses que pour Python
- création d'interfaces graphiques pas très efficace

S'abonner à la liste CNRS : https://listes.services.cnrs.fr/wws/subscribe/julia

Compilation à la volée

- → A la première exécution d'une fonction, une compilation est nécessaire
- → Julia compile une fonction pour chaque type d'argument

Exemple 1

```
MySum(x)=sum(x)
a=1:1000
@time MySum(a)
@time MySum(a)
b=1.0:1000.0
@time MySum(b)
```

Multiple dispatch

- → alternative à la programmation objet
- → une fonction peut avoir plusieurs méthodes différentes selon le type ou nombre d'arguments

```
Exemple 2

f( x::Int ) = "f1"
f( x::Float64 ) = "f2"
f( x::Any) = "Generic fallback"
f( x::Number ) = "f3"
f(x,y) = "Two arguments function"
f(4)
f(4.0)
f(4.0+im)
f("4.0")
f(4,0)
f
methods(f)
```

Broadcasting, dot operator

→ Possibilité d'appliquer une fonction à un vecteur ou une matrice en utilisant l'opérateur .

```
Exemple 3
 x = [2/n \text{ for } n=1:30]
 v = 2x.^2 + 3x.^5
 v = 0.2x^2 + 3x^5
 f2(x) = 3x^3/(1+x^2)
 y = f2.(x)
 m=[1 \ 2 \ ; \ 3 \ 4]
 f2.(m)
 f3(x,y)=x^2+y
 x = [1, 2]
 v = [3, 4]
 f3.(x, y)
 f3.(x, v')
 f3(m, m)
```

Bibliothèques

- → Possibilité d'avoir des packages ou versions de packages différents dans chaque projet
- → Les fichiers *Project.toml* et *Manifest.toml* permettent de recréer l'environnement utilisé avec la commande *instantiate* du gestionnaire de packages.
- → Permet la reproductibilité des expériences numériques

Configuration pour le cours

Configuration

```
using Pkg
Pkg.add(["Git", "Pluto"])
using Git
run(`$(git()) clone https://github.com/ovanvincg/InnovFibre2024`)
```

Si l'installation de git ne fonctionne pas :

- → Lancer Julia et regarder le répertoire dans lequel on se situe avec la commande "pwd()"
- → Dans windows, créer le répertoire "InnovFibre2024" dans le répertoire indiqué par Julia
- → Aller sur "https://github.com/ovanvincq/InnovFibre2024" et télécharger le contenu (bouton vert "code" puis "download zip")
- → Copier les fichiers contenu dans le fichier zip dans le répertoire "InnovFibre2024" que vous avez créé

Lancement de Pluto

Pour ouvrir Pluto dans votre navigateur :

Lancement de Pluto

```
cd("InnovFibre2024")
using Pluto
Pluto.run()
```

Dans Pluto:

- → La touche *Enter* permet d'aller à la ligne dans une cellule
- → La combinaison *Shift+Enter* permet d'évaluer une cellule
- → La combinaison Ctrl+Enter permet d'évaluer une cellule et d'en créer une nouvelle à la suite

Une cellule contenant plusieurs lignes de code doit forcément commencer par l'instruction *begin* et se terminer par l'instruction *end*

Bibliographie

Fibres à saut d'indice Fibres à gradient d'indice Dispersion de vitesse de groupe Couplage dans une fibre

- Fibres à saut d'indice
- 2 Fibres à gradient d'indice
- 3 Dispersion de vitesse de groupe
- 4 Couplage dans une fibre

Notations

$$\vec{E}(\vec{r}) = \vec{e}(x, y) \exp(i(\beta z - \omega t))$$

$$\vec{H}(\vec{r}) = \vec{h}(x, y) \exp(i(\beta z - \omega t))$$

- \rightarrow Distribution modale : $\overrightarrow{e}(x, y)$ et $\overrightarrow{h}(x, y)$
- \rightarrow Constante de propagation : $\beta = \overrightarrow{k} \cdot \overrightarrow{e}$,
- → Indice effectif : $n_{\text{eff}} = \frac{\beta}{k_0}$ avec $k_0 = \frac{\omega}{c}$ vecteur d'onde dans le vide

Optique géométrique :

Réflexion totale à l'interface cœur/gaine si $n_{\rm eff} = n_c \cos(\theta) > n_{\rm g}$

- Fibres à saut d'indice
 - Modes vectoriels
 - Modes scalaires
 - Détermination numérique
- Pibres à gradient d'indice
- 3 Dispersion de vitesse de groupe
- 4 Couplage dans une fibre

Méthode de résolution

- 1. résolution des équations de Maxwell dans chacun des deux milieux LHI uniformes (cœur/gaine)
- 2. raccordement des solutions avec les relations de passage

Equation à résoudre

Dans un milieu LHI:

$$\vec{\Delta}\vec{E}(\vec{r}) + k_0^2 n^2 \vec{E}(\vec{r}) = \vec{0} \text{ et } \vec{\Delta}\vec{H}(\vec{r}) + k_0^2 n^2 \vec{H}(\vec{r}) = \vec{0}$$

Équations de Maxwell \rightarrow la détermination de e_z et h_z suffit pour déterminer toutes les composantes des champs.

En coordonnées cylindriques, e_z et h_z vérifient l'équation du type :

$$\Delta_t \Psi(r, heta) + k_0^2 n^2 \Psi(r, heta) = k_0^2 n_{\mathsf{eff}}^2 \Psi(r, heta)$$

où Δ_t est le laplacien transverse

Equation à résoudre

Du fait de la symétrie de révolution Ψ est 2π -périodique :

$$\Psi(r,\theta) = \psi(r) \begin{pmatrix} \cos(\nu\theta) \\ \sin(\nu\theta) \end{pmatrix}$$

avec ν un entier.

La fonction ψ vérifie alors l'équation différentielle de Bessel :

$$\frac{\partial^2 \psi(r)}{\partial r^2} + \frac{1}{r} \frac{\partial \psi(r)}{\partial r} + \left(k_0^2 (n^2 - n_{\text{eff}}^2) - \frac{\nu^2}{r^2} \right) \psi(r) = 0$$

Solutions de l'équation de Bessel

Si
$$(n^2-n_{
m eff}^2)>$$
 0, on définit $lpha=k_0\sqrt{n^2-n_{
m eff}^2}$ et

$$\psi(r) = AJ_{\nu}(\alpha r) + BY_{\nu}(\alpha r)$$

Ces deux fonctions sont oscillantes mais Y_{ν} diverge en 0

Solutions de l'équation de Bessel

Si
$$(n^2-n_{
m eff}^2)<0$$
, on définit $lpha'=k_0a\sqrt{n_{
m eff}^2-n^2}$ et

$$\psi(r) = AI_{\nu} (\alpha'r) + BK_{\nu} (\alpha'r)$$

$$\downarrow_{10} \qquad \downarrow_{1,(0)} \qquad \downarrow_{1,($$

Ces deux fonctions sont monotones mais I_{ν} diverge à l'infini

Spectre des modes pour la fibre à saut d'indice

Spectre continu (spectre essentiel) : $n_{\rm eff}^2 < n_g^2$

- ightharpoonup si $n_{\rm eff}$ réel et $n_{\rm eff} < n_g < n_c$, les fonctions propres sont les modes radiatifs : ils se propagent selon l'axe z et transversalement dans le cœur et la gaine (équivalent d'une réfraction à l'interface cœur/gaine)
- → si n_{eff} imaginaire, les fonctions propres sont les modes évanescents, ils ne se propagent pas selon z mais transversalement dans le cœur et la gaine (pas d'équivalent en optique géométrique)

Spectre discret (spectre ponctuel) : $n_g^2 < n_{ m eff}^2 < n_c^2$

 $ightharpoonup n_{
m eff} < n_c$, les fonctions propres sont **les modes guidés** : ils se propagent selon z, oscillent dans le cœur et décroissent de façon monotone dans la gaine (équivalent d'une réflexion totale à l'interface cœur/gaine)

L'ensemble de ces modes constituent une **base orthogonale** sur laquelle on peut décomposer tout champ électrique.

Modes guidés :

- ightharpoonup Dans le cœur : $\psi(r)=AJ_{
 u}\left(Urac{r}{a}
 ight)$ avec $U=k_{0}a\sqrt{nc^{2}-n_{\mathrm{eff}}^{2}}$
- ightharpoonup Dans la gaine : $\psi(r) = BK_{\nu}\left(W\frac{r}{a}\right)$ avec $W = k_0 a \sqrt{n_{\rm eff}^2 \eta^2}$

Relations de passage :

$$(\nu n_{\rm eff})^2 \left(\frac{V}{UW}\right)^4 = \left(\frac{n_1 J_{\nu}'(U)}{U J_{\nu}(U)} + \frac{n_2^2 K_{\nu}'(W)}{W K_{\nu}(W)}\right) \left(\frac{J_{\nu}'(U)}{U J_{\nu}(U)} + \frac{K_{\nu}'(W)}{W K_{\nu}(W)}\right)$$

Avec V la fréquence normalisée :

$$V = k_0 a \sqrt{n_c^2 - n_g^2} = \sqrt{U^2 + W^2}$$

ν	Mode	Dégénérescence	Coupure				
0	$TE_{0\mu}$	1	$J_0(V) = 0, \ V \neq 0$				
0	$TM_{0\mu}$	1	$J_0(V)=0,\ V\neq 0$				
1	$HE_{1\mu}$	2	$J_1(V)=0$				
1	$EH_{1\mu}$	2	$J_1(V)=0,\ V\neq 0$				
>1	$HE_{ u\mu}$	2	$\frac{VJ_{\nu-2}(V)}{(\nu-1)J_{\nu-1}(V)} = \frac{-2\Delta}{1-2\Delta}$ où $1-2\Delta = n_g^2/n_c^2$				
>1	$EH_{ u\mu}$	2	$J_{\nu}(V)=0,\ V\neq 0$				

Fibre monomode si V < 2.405 et mode fondamental $\equiv HE_{11}$

- \rightarrow $n_{\rm eff}$ \nearrow quand V \nearrow
- \rightarrow $n_{\rm eff} \rightarrow n_2$ quand $V \rightarrow V_c$ et $n_{\rm eff} \rightarrow n_1$ quand $V \rightarrow \infty$

- Fibres à saut d'indice
 - Modes vectoriels
 - Modes scalaires
 - Détermination numérique
- Pibres à gradient d'indice
- 3 Dispersion de vitesse de groupe
- 4 Couplage dans une fibre

Définition

- ightharpoonup Modes dans le cadre de l'approximation de faible guidage : $n_c n_g \ll n_g$
- → Les modes scalaires sont déterminés en supposant $E_z = H_z = 0$. Les composantes E_x et E_y sont alors indépendantes et les modes peuvent être choisis Linéairement Polarisés selon x ou y: ce sont les modes LP.
- → Les relations de passage assurent la continuité de E et de sa dérivée aux interfaces.

Equation à résoudre dans le cas des modes scalaires :

$$U\frac{J'_{\ell}(U)}{J_{\ell}(U)} = W\frac{K'_{\ell}(W)}{K_{\ell}(W)}$$

- ⇒ Dans le cœur : $e = AJ_{\ell}\left(\frac{Ur}{a}\right)\begin{pmatrix}\cos(\ell\theta)\\\sin(\ell\theta)\end{pmatrix}$
- → Dans la gaine : $e = BK_{\ell}\left(\frac{Wr}{a}\right)\begin{pmatrix}\cos(\ell\theta)\\\sin(\ell\theta)\end{pmatrix}$

ℓ	Mode	Dégénérescence	Coupure		
0	LP_{0m}	2	$J_1(V)=0$		
>1	$LP_{\ell m}$	4	$J_{\ell-1}0(V)=0, \ V\neq 0$		

Fibre monomode si V < 2.405 et mode fondamental $\equiv \mathsf{LP}_{01}$

Mode	LP ₀₁	LP ₁₁	LP ₀₂ - LP ₂₁	LP ₃₁	LP ₁₂	LP ₄₁	LP ₂₂ - LP ₀₃
V _c	0	2,405	3,83	5,14	5,52	6,38	7,01

Relation avec les modes vectoriels

Dans l'approximation de faible guidage, les modes vectoriels sont dégénérés et les modes LP sont des combinaisons linéaires des modes vectoriels.

- 1 Fibres à saut d'indice
 - Modes vectoriels
 - Modes scalaires
 - Détermination numérique
- 2 Fibres à gradient d'indice
- 3 Dispersion de vitesse de groupe
- Couplage dans une fibre

Méthode de proche en proche

Méthode utilisée pour une fibre à saut d'indice composée de N couche :

- \rightarrow L'indice effectif des modes guidés est compris entre n_g et n_c
- → On connait la solution dans le cœur (couche 1) et, à l'aide des relations de passage, on détermine couche après couche les champs dans les couches 2, 3 ... N 1.
- ightharpoonup On connait également la solution dans la gaine (couche N) et le raccordement de cette solution avec la solution dans la couche N-1 revient à obtenir une fonction de $n_{\rm eff}$ qui doit s'annuler.
- \rightarrow On doit rechercher les zéros de cette fonction dans l'intervalle $]n_g, n_c[$ en faisant attention au fait que cette fonction présente des discontinuités.

Fonction permettant le calcul des modes guidés

Calcul des modes d'une fibre à saut d'indice composée de N couche

- lambda : longueur d'onde
- nu : ν dans le cas vectoriel ou ℓ dans le cas scalaire
- radius : rayon ou vecteur de rayons des couches (dimension N-1)
- index : vecteur d'indices de réfraction des différentes couches (dimension N)
- (optionnel) field : sortie des champs, true or false (par défaut)
- (optionnel) precision : précision absolue sur l'indice effectif (10^{-12} par défaut)
- (optionnel) type : ":Scalar" (par défaut) ou ":Vector"

Représentation numérique d'un mode et d'un champ

Structure d'un mode

```
struct Mode{T<:Union{Field, Nothing}}
  Name::String
  neff::Number
  lambda::Real
  field::T
end</pre>
```

Types de champ

```
mutable struct ScalarFieldFunction1D < * ScalarField1D
   nu. · · Int
   E::Function #Fonction de (r.)
end
mutable struct VectorFieldFunction2D < VectorField2D
   Ex::Function
                   #Fonction de (x,v)
   Ev::Function
                   #Fonction de (x,v)
   Ez::Function
                   #Fonction de (x,v)
   Hx::Function #Fonction de (x, y)
   Hy::Function
                   #Fonction de (x,v)
   Hz::Function
                   #Fonction de (x,v)
end
```

Propriétés modales

Obtenir l'indice effectif d'un mode m

```
m.neff
#ou
getfield(m,:neff)
```

Calcul du champ en certaines positions

```
computeField(m::Mode{<:ScalarField1D},r::Union{Real,AbstractArray{<:Real
     }},z::Real=0)
#et
computeField(m::Mode{<:VectorField2D},x::Union{Real,AbstractArray{<:Real
     }},y::Union{Real,AbstractArray{<:Real}},component::Symbol=:Ex,z::
     Real=0)</pre>
```

- 1 Fibres à saut d'indice
- 2 Fibres à gradient d'indice
 - Modes vectoriels
 - Modes scalaires
 - Détermination numérique (FEM)
- 3 Dispersion de vitesse de groupe
- Couplage dans une fibre

Problème à résoudre

- Dans le cœur, l'indice de réfraction n'est plus uniforme. $\operatorname{div}(\vec{D}) = 0$ n'est plus équivalent à $\operatorname{div}(\vec{E}) = 0$ mais à $\operatorname{div}(\vec{E}) = -\frac{1}{n^2} \operatorname{grad}(n^2)$. \vec{E}
- → L'équation de propagation devient :

$$\overrightarrow{\Delta E} + k_0^2 n^2 \overrightarrow{E} = -\overrightarrow{\text{grad}} \left(\frac{1}{n^2} \overrightarrow{\text{grad}} (n^2) . \overrightarrow{E} \right)$$

 → La détermination analytique des modes vectoriels n'est plus possible à cause du terme de droite ⇒ méthode numérique

Modes vectoriels Modes scalaires Détermination numérique (FEM

- 1 Fibres à saut d'indice
- 2 Fibres à gradient d'indice
 - Modes vectoriels
 - Modes scalaires
 - Détermination numérique (FEM)
- 3 Dispersion de vitesse de groupe
- Couplage dans une fibre

Problème à résoudre

- → En cas de guidage faible, le terme de droite de l'équation de propagation peut être négligé.
- → Le champ est transverse et il est linéairement polarisé : modes LP
- → Le champ scalaire vérifie l'équation :

$$\Delta_t E + k_0^2 n^2(r) E = \beta^2 E$$

ightharpoonup Cette équation n'a pas de solution analytique sauf dans le cas où $n^2(r)$ est parabolique

Fibre à profil parabolique

- ightharpoonup Dans la gaine : le champ est une fonction de Bessel \mathcal{K}_ℓ
- \rightarrow Dans le cœur : le champ est une fonction hypergéométrique confluente (fonction de Kummer) $_1F_1$

Mode	LP ₀₁	LP ₁₁	LP ₀₂	LP ₂₁	LP ₁₂	LP ₃₁	LP ₀₃	LP ₄₁
V_c	0	3,518	5,068	5,744	7.451	7.848	9.158	9.904

- Fibres à saut d'indice
- 2 Fibres à gradient d'indice
 - Modes vectoriels
 - Modes scalaires
 - Détermination numérique (FEM)
- 3 Dispersion de vitesse de groupe
- Couplage dans une fibre

Fibre à profil quelconque

Utilisation d'une méthode numérique

- → Décomposition du profil d'indice en une fonction escalier pour utiliser les fonctions de Bessel (fibre à symétrie cylindrique)
- → Méthode RK (fibre à symétrie cylindrique)
- → Différences finies
- → Eléments finis

FEM

Pour les modes scalaires, on désire résoudre :

$$\Delta_t u + k_0^2 n^2(x, y) u = \beta^2 u$$

On multiplie par une fonction test ν et on intègre sur le domaine Ω :

$$\iint_{\Omega} v \Delta_t u \, d\Omega + k_0^2 \iint_{\Omega} v . \varepsilon(x, y) . u \, d\Omega = \beta^2 \iint_{\Omega} v . u \, d\Omega$$

On utilise ensuite une formule de Green en supposant que le champ s'annule sur les bords de Ω (condition de Dirichlet), on obtient la formulation faible :

$$-\iint_{\Omega} \left(\vec{\nabla} v \cdot \vec{\nabla} u \right) d\Omega + k_0^2 \iint_{\Omega} v \cdot \varepsilon(x, y) \cdot u \ d\Omega = \beta^2 \iint_{\Omega} v \cdot u \ d\Omega$$

FEM

En discrétisant le domaine Ω et en supposant une certaine forme pour les fonctions u et v, on obtient un problème aux valeurs propres généralisé (A et B étant des matrices) :

$$AU = \beta^2 BU$$

- → La dimension des matrices A et B étant très élevée, seules quelques valeurs propres situées autour d'une valeur donnée seront calculées (méthode de Arnoldi)
- ⇒ Dans le cas des modes vectoriels, l'équation matricielle obtenue est du type $AU + \beta BU = \beta^2 CU$ qui peut se transformer en un problème aux valeurs propres généralisé à l'aide de matrices compagnons de dimension deux fois élevée que les matrices initiales.

Fonction 1D pour fibre isotrope à symétrie cylindrique

Calcul des modes scalaires d'une fibre à symétrie cylindrique

```
FEM1D(lambda::Real,nu::Int64,eps_fonc::Function,model::DiscreteModel;
   approx_neff::Real=0,neigs::Int64=1,order::Int64=2,field::Bool=false
)
```

- lambda : longueur d'onde
- nu : nombre azimutal (ℓ)
- eps_fonc : fonction décrivant la permittivité (fonction de (r,))
- model : maillage
- (optionnel) approx_neff : valeur approximative de l'indice effectif (par défaut, plus grande valeur du RIP)
- (optionnel) neigs : nombre de valeurs propres à calculer (1 par défaut)
- (optionnel) order : ordre des éléments (2 par défaut)
- (optionnel) field : sortie des champs, true or false (par défaut)

Fonction 2D pour fibre isotrope

Calcul des modes d'une fibre isotrope

FEM2D(lambda::Real,eps_fonc::Function,model::DiscreteModel;approx_neff::
 Real=0,neigs::Int64=1,order::Int64=2,field::Bool=false,type::Symbol
 =:Scalar)

- lambda : longueur d'onde
- eps_fonc : fonction décrivant la permittivité (fonction de (x,y))
- model : maillage
- (optionnel) approx_neff : valeur approximative de l'indice effectif (par défaut, plus grande valeur du RIP)
- (optionnel) neigs : nombre de valeurs propres à calculer (1 par défaut)
- (optionnel) order : ordre des éléments (2 par défaut)
- (optionnel) field : sortie des champs, true or false (par défaut)
- (optionnel) type : ":Scalar" (par défaut) ou ":Vector"

Vitesse de groupe Dispersion intermodale Dispersion chromatique Dispersion de polarisation

- 1 Fibres à saut d'indice
- 2 Fibres à gradient d'indice
- 3 Dispersion de vitesse de groupe
 - Vitesse de groupe
 - Dispersion intermodale
 - Dispersion chromatique
 - Dispersion de polarisation
- 4 Couplage dans une fibre

Définition

Champ électrique d'une impulsion dans une fibre monomode dans l'approximation scalaire :

$$E(x, y, z, t) = e(x, y)A(z, t) = e(x, y) \int_{-\infty}^{+\infty} \tilde{A}(z, \omega) \exp(-i\omega t) d\omega$$
$$E(x, y, z, t) = e(x, y) \int_{-\infty}^{+\infty} \tilde{A}(0, \omega) \exp(i(\beta(\omega)z - \omega t)) d\omega$$

où $\tilde{\mathcal{A}}$ est la transformée de Fourier de \mathcal{A} .

Définition

On effectue un développement de Taylor de la constante de propagation autour de la pulsation centrale ω_0 de l'impulsion :

$$\beta(\omega) \simeq \beta(\omega_0) + \left. \frac{\partial \beta}{\partial \omega} \right|_{\omega_0} (\omega - \omega_0) = \beta_0 + \beta_1 (\omega - \omega_0)$$

$$\mathcal{A}(z,t) = \exp\left(-iz\left(\beta_1\omega_0 - \beta_0\right)\right) \int_{-\infty}^{+\infty} \tilde{\mathcal{A}}(0,\omega) \exp\left(i\omega\left(\beta_1z - t\right)\right) d\omega$$
$$\mathcal{A}(z,t) = \exp\left(-iz\left(\beta_1\omega_0 - \beta_0\right)\right) \mathcal{A}(0,t - \beta_1z)$$

- ightharpoonup La puissance étant proportionnelle à $|\mathcal{A}|^2$, le signal se propage à la vitesse $v_g=1/eta_1$
- ightharpoonup L'indice de groupe est défini par $n_g = c/v_g = \beta_1 c$

Vitesse de groupe Dispersion intermodale Dispersion chromatique Dispersion de polarisation

Dispersion de vitesse de groupe

Numériquement :

ightharpoonup le calcul de la vitesse de groupe est simple : il suffit de calculer l'indice effectif d'un mode en fonction de la longueur d'onde et de dériver numériquement β en fonction de ω pour obtenir β_1 .

La vitesse de groupe dépend de plusieurs paramètres, ce qui peut modifier la largeur spectrale de l'impulsion au cours de sa propagation : c'est la dispersion de vitesse de groupe.

- \rightarrow Dispersion intermodale : v_g dépend du mode
- \rightarrow Dispersion chromatique : v_g dépend de la longueur d'onde
- ightharpoonup Dispersion de polarisation : v_g dépend de l'état de polarisation du mode

Vitesse de groupe Dispersion intermodale Dispersion chromatique Dispersion de polarisation

- 1 Fibres à saut d'indice
- 2 Fibres à gradient d'indice
- 3 Dispersion de vitesse de groupe
 - Vitesse de groupe
 - Dispersion intermodale
 - Dispersion chromatique
 - Dispersion de polarisation
- 4 Couplage dans une fibre

Vitesse de groupe
Dispersion intermodale
Dispersion chromatique
Dispersion de polarisatior

Principe

A l'entrée de la fibre, on excite tous les modes en même temps

En sortie de fibre, les différents modes arrivent à des temps différents : l'impulsion se déforme et s'élargit

$$\Delta T = \frac{L}{c} \left(\Delta n_g \right)_{\mathsf{max}}$$

La dispersion intermodale est définie par :

$$D_i = \frac{\Delta T}{L} = \frac{(\Delta n_g)_{\text{max}}}{c} \text{ (unité : ps/km)}$$

→ Dans une fibre multimode, le débit est inversement proportionnel à la longueur de fibre

Vitesse de groupe
Dispersion intermodale
Dispersion chromatique
Dispersion de polarisation

Rôle du type de fibre

- → Le rayon a correspond à un mode d'ordre plus grand que le rayon b : le trajet du rayon a est plus grand que celui du rayon b
- → Dans la fibre à profil parabolique, le rayon a voit un indice de réfraction plus faible que le rayon b : le chemin optique du rayon a est équivalent à celui du rayon b
- → La dispersion intermodale est plus faible dans une fibre à profil parabolique que dans une fibre à saut d'indice.

Rôle du type de fibre

Fibre avec un cœur de diamètre 50 μ m et $\Delta=rac{n_c^2-n_g^2}{2n_c^2}=1\%$

- Résultats expérimentaux :

- Mesure DMD (Differential Mode Delay) :

Vitesse de groupe Dispersion intermodale Dispersion chromatique Dispersion de polarisatio

- 1 Fibres à saut d'indice
- 2 Fibres à gradient d'indice
- 3 Dispersion de vitesse de groupe
 - Vitesse de groupe
 - Dispersion intermodale
 - Dispersion chromatique
 - Dispersion de polarisation
- 4 Couplage dans une fibre

Origines

Deux origines :

→ Les indices de réfractions des matériaux dépendent de la longueur d'onde du fait de la dispersion

→ Même si les matériaux ne sont pas dispersifs, la géométrie de la fibre implique une dépendance de l'indice effectif en fonction de la longueur d'onde.

Définition

Développement de Taylor de la constante de propagation autour de la fréquence centrale ω_0 d'une impulsion :

$$\beta(\omega) = \beta_0 + \beta_1(\omega - \omega_0) + \frac{1}{2}\beta_2(\omega - \omega_0)^2 + \dots \text{ with } \beta_n = \left(\frac{\partial^n \beta}{\partial \omega^n}\right)_{\omega = \omega_0}$$

 β_2 est la dispersion de vitesse de groupe (GVD) en s²/m :

$$\beta_2 = \left(\frac{\partial^2 \beta}{\partial \omega^2}\right) = \left(\frac{\partial \beta_1}{\partial \omega}\right) = \frac{1}{c} \frac{\partial n_g}{\partial \omega}$$

La variation de temps de groupe due à β_2 lors d'une variation $\delta\lambda$ de la longueur d'onde est :

$$\delta T_{g} = \frac{L}{c} \delta n_{g} = L \beta_{2} \delta \omega = -\frac{2\pi c}{\lambda^{2}} L \beta_{2} \delta \lambda$$

Définition Définition

On définit donc la dispersion chromatique par :

$$D_c(\lambda) = \frac{\delta T_g}{L\delta\lambda} = -\frac{2\pi c}{\lambda^2}\beta_2$$

Effet sur la propagation d'une impulsion

Dans le régime de dispersion normale ($\beta_2 > 0$), le rouge se propage plus rapidement que le bleu.

Effet sur la propagation d'une impulsion

Dans le régime de dispersion anormale ($\beta_2 < 0$), le bleu se propage plus rapidement que le rouge.

Vitesse de groupe Dispersion intermodale Dispersion chromatique Dispersion de polarisation

Effet sur la propagation d'une impulsion

Lors de la propagation, la dispersion seule :

- → modifie la forme temporelle de l'impulsion
- → ne modifie pas le spectre de l'impulsion

Applications:

- → Dans le régime de dispersion anormale, il est possible de générer des solitons
- → Si une impulsion initiale présente une dérive de fréquence, il est possible de la recomprimer avec une fibre ou des réseaux possédant la bonne dispersion (CPA)
- ightharpoonup Les longueurs d'onde télécom sont situées autour de 1.55 μ m (plus faible niveau de pertes), la dispersion n'y est pas nulle mais il est possible de l'annuler en utilisant des fibres possédant des dispersions de signes opposés.

Longueur de dispersion

Une impulsion de durée T_0 sans dérive de fréquence possède une largeur spectrale $\Delta\omega \backsim 1/T_0$. Au bout d'une distance de propagation L, son élargissement relatif sera :

$$\frac{\Delta T}{T_0} = \frac{|\beta_2|\Delta\omega L}{T_0} \backsim \frac{|\beta_2|}{T_0^2} L$$

On définit donc **la longueur de dispersion** L_D :

$$L_D = \frac{T_0^2}{|\beta_2|}$$

Pour la dispersion d'ordre 3, on peut également définir la longueur caractéristique $L_D' = \frac{T_0^3}{|\beta_2|}$

Détermination de l'enveloppe

$$E(x,y,z,t) = e(x,y)exp\left(-i\omega_0t\right)\int_{-\infty}^{+\infty} \tilde{\mathcal{A}}(0,\omega)\exp\left(i(\beta(\omega)z - (\omega-\omega_0)t)\right)d\omega$$

 $A=exp\left(-i\omega_{0}t
ight)A$ est l'enveloppe de l'impulsion et en posant $\Omega=\omega-\omega_{0}$

$$ilde{A}(z,t) = \int_{-\infty}^{+\infty} ilde{A}(0,\Omega) \exp\left(i(eta(\Omega)z - \Omega t)\right) d\Omega$$

On pose ensuite $T=t-\beta_1z$ et on fait le changement de variable $A=A\exp\left(i\beta_0z\right)$:

$$\tilde{A}(z,T) = \int_{-\infty}^{+\infty} \tilde{A}(0,\Omega) \exp\left(i([\beta(\Omega) - \beta_0 - \beta_1 \Omega] z - \Omega T)\right) d\Omega$$

Méthode numérique

Dans le cas général, l'effet de la dispersion sur une impulsion initiale A(0, t) peut être obtenu avec l'algorithme suivant :

- ightharpoonup Calcul de $\tilde{A}(0,\Omega)$ à l'aide d'une FFT
- → Calcul de $\tilde{A}(z,\Omega)$ en multipliant $\tilde{A}(0,\Omega)$ par $\exp\left(i\left[\beta(\Omega)-\beta_0-\beta_1\Omega\right]z\right)=\exp\left(i\left[\frac{\beta_2}{2}\Omega^2+\frac{\beta_3}{6}\Omega^3+\ldots\right]z\right)$
- ightharpoonup Calcul de $\tilde{A}(z,\Omega)$ à l'aide d'une FFT

- 1 Fibres à saut d'indice
- 2 Fibres à gradient d'indice
- 3 Dispersion de vitesse de groupe
 - Vitesse de groupe
 - Dispersion intermodale
 - Dispersion chromatique
 - Dispersion de polarisation
- 4 Couplage dans une fibre

Défintion

→ Lorsqu'une fibre possède une biréfringente, la constante de propagation dépend de la direction de polarisation

- ightharpoonup L'élargissement de l'impulsion est donc $\Delta T = \frac{L}{c} |n_{g,x} n_{g,y}|$
- → On définit alors le paramètre de dispersion de polarisation :

$$D_p = \frac{\Delta T}{I} = \frac{|n_{g,x} - n_{g,y}|}{C}$$

 \rightarrow Dans le cas d'une biréfringence aléatoire, un traitement statistique montre que $\Delta T \backsim \sqrt{L}$

- 1 Fibres à saut d'indice
- 2 Fibres à gradient d'indice
- 3 Dispersion de vitesse de groupe
- 4 Couplage dans une fibre
 - Normalisation des modes
 - Injection dans une fibre
 - Aboutement de deux fibres optiques

Normalisation

→ Dans l'approximation scalaire, on peut normaliser la puissance de sorte que :

$$P = \iint |E|^2 dS$$

→ Les modes sont orthogonaux et il est possible de les normaliser :

$$\iint e_j e_k^* dS = \delta_{jk}$$

→ Tout champ électrique peut se décomposer sur la base des modes :

$$E(x, y, z) = \sum_{\substack{\text{modes} \\ \text{guidés}}} a_m(z) e_m(x, y) + \int_{\substack{\text{modes} \\ \text{radiatifs} \\ \text{et évanescents}}} a_\beta(z) e_\beta(x, y) d\beta$$

Puissance

→ En ne considérant que les N modes guidés :

$$E(x,y,z) = \sum_{m=1}^{N} a_m(z)e_m(x,y)$$

→ La puissance dans le mode *m* est :

$$P_m = |a_m(z)|^2$$

Dans le cas d'une fibre parfaite et en l'absence de non-linéarité, P_m est indépendant de z.

→ La puissance totale est :

$$P = \sum_{m=1}^{N} |a_m(z)|^2$$

- 1 Fibres à saut d'indice
- 2 Fibres à gradient d'indice
- 3 Dispersion de vitesse de groupe
- Couplage dans une fibre
 - Normalisation des modes
 - Injection dans une fibre
 - Aboutement de deux fibres optiques

Problème à résoudre

Nous supposerons que l'onde réfléchie est uniquement due à la réflexion de Fresnel et nous la négligerons dans le calcul de la transmission.

Champ transmis

Si le champ incident est E_{inc} , le champ transmis dans la fibre est $E_t = \sqrt{T_{\text{Fresnel}}}E_{\text{inc}}$ qui peut être décomposé sur la base des modes:

$$E_t = \sum_{m=1}^{N} a_m e_m + E_{\mathsf{rad}}$$

où $E_{\rm rad}$ est la contribution dans les modes radiatifs et évanescents.

Transmission

En multipliant par e_m^* et en intégrant sur la section transverse, nous obtenons:

$$a_m = \sqrt{T_{\mathsf{Fresnel}}} \iint E_{\mathsf{inc}} e_m^* dS$$

La transmission dans la fibre est :

$$T = \frac{P}{P_{\text{inc}}} = \frac{\sum |a_m|^2}{\iint |E_{\text{inc}}|^2 dS} \le T_{\text{Fresnel}}$$

La différence entre T et T_{Fresnel} est due aux couplage dans les modes radiatifs et évanescents.

- 1 Fibres à saut d'indice
- 2 Fibres à gradient d'indice
- 3 Dispersion de vitesse de groupe
- 4 Couplage dans une fibre
 - Normalisation des modes
 - Injection dans une fibre
 - Aboutement de deux fibres optiques

Problème à résoudre

- \rightarrow La puissance dans le mode incident LP_{ℓn} est P_0
- \rightarrow Du fait de la symétrie seule les mode LP $_{\ell j}$ sont réfléchis dans la fibre et transmis dans la fibre B

Problème à résoudre

- \rightarrow Les fibres A et B sont en silice : $T_{\text{Fresnel}} \subseteq 1$
- → Les ondes réfléchies seront négligés dans le calcul de la transmission

Transmission

Le champ incident est dans le mode the mode $LP_{\ell n}$ de la fibre A dont la distribution modale est e_n^A :

$$E_{\rm inc} = \sqrt{P_0} e_n^A$$

Puisque $T_{\text{Fresnel}} \simeq 1$, le champ transmis est $E_t = E_{\text{inc}}$ et:

$$E_t = \sum_{i=1}^{i=N_B} b_i e_i^B + E_{\mathsf{rad}} \text{ avec } b_i = \iint E_{\mathsf{inc}} e_i^{B*} dS = \sqrt{P_0} \iint e_n^A e_i^{B*} dS$$

La transmission dans la fibre est donc :

$$T = \frac{P}{P_{\text{inc}}} = \frac{\sum |b_i|^2}{P_0} = \sum_{i=1}^{N_b} |\iint e_n^A e_i^{B*} dS|^2 \le 1$$

Cas de deux fibres monomodes

Si les deux fibres A et B sont monomodes, le coefficient de transmission est :

$$T = |\iint e_1^A e_1^{B*} dS|^2$$

Si les distribution modale sont quasi-gaussiennes :

$$e_1^A \sim \exp(-r^2/w_A^2)$$
 and $e_1^B \sim \exp(-r^2/w_B^2)$

$$T = \left| \frac{\int_0^{+\infty} 2\pi r \exp(-r^2/w_A^2) \exp(-r^2/w_B^2) dr}{\sqrt{\int_0^{+\infty} 2\pi r \exp(-2r^2/w_A^2) dr} \sqrt{\int_0^{+\infty} 2\pi r \exp(-2r^2/w_B^2) dr}} \right|^2$$

$$T = \frac{4w_A^2 w_B^2}{\left(w_A^2 + w_B^2\right)^2}$$

Cas de deux fibres très multimodes

Si les deux fibres A et B sont très multimodes et que les modes sont uniformément excités, le coefficient de transmission est :

$$T = rac{S_{ ext{core}}^B}{S_{ ext{core}}^A} = rac{
ho_b^2}{
ho_a^2} \quad ext{if }
ho_b <
ho_a \ T = 1 \quad ext{if }
ho_b >
ho_a$$

Sources de pertes supplémentaires

→ Décentrement des deux fibres

 ${\color{blue} \rightarrow}$ Angle entre les deux fibres \equiv objet de phase $\phi \simeq \frac{2\pi}{\lambda} x \alpha$

ightharpoonup Clive inclinée \equiv objet de phase $\phi \simeq \frac{2\pi}{\lambda}(n-1)x\alpha'$

