CS 341 Automata Theory Elaine Rich Homework 14

Due: Tuesday, April 23

This assignment covers Sections 21.5 - 21.7

Note: We have skipped Rice's Theorem. So problems 4 - 5 are here just in case you're interested in learning about it. They are optional.

- 1) For each of the following languages L, state whether it is in D, SD/D or not SD. Prove your answer. Do not use Rice's Theorem. If you claim that L is not in SD, first prove that it's not in D (for practice), then prove that it's not in SD. Assume that any input of the form $\langle M \rangle$ is a description of a Turing machine.
 - a) $\{\langle M \rangle : \text{TM } M \text{ accepts exactly two strings and they are of different lengths} \}$.

Answer. Not \in SD.

Proof. To prove that this language is not \in D: Create a reduction R from $\langle M, w \rangle$ to $\langle M_{\#} \rangle$ as follows. Create a description $\langle M_{\#} \rangle$ of a machine $M_{\#}(x)$ that does this:

- 1. Erase input
- 2. Write w on tape.
- 3. Run M on w.
- 4. If x is a or an accept.

R returns $M_{\#}$

Assume there is a machine $Oracle(\langle M \rangle)$ that decides this language. Then for any language-string pair $\langle M, w \rangle$ consider $C = oracle(R(\langle M, w \rangle))$.

If $\langle M, w \rangle \in \mathcal{H}$: $M_{\#}$ accepts exactly two strings. Oracle accepts. If $\langle M, w \rangle \notin \mathcal{H}$: $M_{\#}$ accepts no strings. Oracle rejects.

Therefore C decides H so Oracle must not exist.

	Create a reduction R from $\langle M, w \rangle$ to $\langle M_{\#} \rangle$ as follows. Create a description $\langle M_{\#} \rangle$ of a machine $M_{\#}(x)$ that does this:	
	 If x is a or aa accept. Erase input Write w on tape. Run M on w. Accept 	
	R returns $M_{\#}$ Assume there is a machine $Oracle(\langle M \rangle)$ that decides this language. Then for any language-string $\langle M, w \rangle$ consider $C = oracle(R(\langle M, w \rangle))$.	pair
	If $\langle M, w \rangle \in \neg$ H: $M_{\#}$ Accepts exactly two strings and loops on all others. Oracle accepts. If $\langle M, w \rangle \notin \neg$ H: $M_{\#}$ Accepts all strings. Oracle rejects.	
	Therefore C semi-decides $\neg H$ so $Oracle$ must not exist.	
b)	$\{\langle M, x, y \rangle : M \text{ accepts } xy\}.$	
	Answer. In SD but not in D.	
	Proof. Let R be a reduction from $\langle M, w \rangle$ to $\langle M, x, y \rangle$ as follows: 1. Create a description $\langle M_{\#} \rangle$ of a machine $M_{\#}$ that does: 1.1 Erase the tape. 1.2 Write w on the tape. 1.3 Run M on w . 1.4 Accept. 2. Return $\langle M_{\#}, \epsilon, \epsilon \rangle$ Assume by way of contradiction that there exists some machine $Oracle(\langle M, x, y \rangle)$ that decides when M accepts xy . Then for any machine description string pair $\langle M, w \rangle$ let $C = oracle(R(\langle M, w \rangle))$. In there are two cases:	
	If $\langle M, w \rangle \in H$: $M_{\#}$ accepts all strings, so it accepts xy . Oracle accepts. If $\langle M, w \rangle \notin H$: $M_{\#}$ accepts no strings, so it does not accept xy . Oracle rejects.	
	So C decides H. Therefore $Oracle$ does not exist.	
c)	$\{\langle M \rangle$: Turing machine M accepts all even length strings $\}$.	
	Answer. Not \in SD.	
	Proof.	
d)	$\{\langle M \rangle: M \text{ rejects exactly three strings that start with a}\}$	
	Answer.	

To prove that this language is not \in SD:

	Proof.	Ш
	e) $\{\langle M_a, M_b \rangle : L(M_a) - L(M_b) = \emptyset \}.$	
	Answer.	
	Proof.	
2)) Prove that TM_{REG} is not in SD.	
	Proof.	
3)) For any nonempty alphabet Σ , let L be any decidable language other than \emptyset or Σ^* . Prove that L	$\leq_M \neg L.$
	Proof.	
4)	* Do the other half of the proof of Rice's Theorem, i.e., show that the theorem holds if $P(\emptyset)$ (Hint: use a reduction that is not a mapping reduction.)	= True.
	Proof.	
5)) * Use Rice's Theorem to prove that $\{\langle M\rangle:$ Turing machine M accepts at least two odd length is not in D.	strings}
Pr	Proof.	П