

 $6\mathrm{M}11$

- 1. Calculer l'aire du carré en cm²
- ${\bf 2.}$ Calculer l'aire du rectangle en cm 2
- 3. Calculer l'aire du triangle rectangle en cm²

Calculer l'aire du disque suivant.

Donner la valeur exacte et une valeur approchée au dixième près.

6M20

Calculer l'aire des parallélogrammes suivants

6M11

- 1. Calculer l'aire du carré en cm²
- ${\bf 2.}$ Calculer l'aire du rectangle en ${\rm cm}^2$
- 3. Calculer l'aire du triangle rectangle en $\rm cm^2$

Calculer l'aire du disque suivant.

Donner la valeur exacte et une valeur approchée au dixième près.

6M20

1.

2.

Calculer l'aire des parallélogrammes suivants

6M11

- 1. Calculer l'aire du carré en $\rm cm^2$
- ${\bf 2.}$ Calculer l'aire du rectangle en ${\rm cm}^2$
- ${\bf 3.}$ Calculer l'aire du triangle rectangle en ${\rm cm}^2$

Calculer l'aire du disque suivant.

Donner la valeur exacte et une valeur approchée au dixième près.

6M20

Calculer l'aire des parallélogrammes suivants

 $6\mathrm{M}11$

- 1. Calculer l'aire du carré en cm²
- ${\bf 2.}$ Calculer l'aire du rectangle en ${\rm cm}^2$
- 3. Calculer l'aire du triangle rectangle en cm²

Calculer l'aire du disque suivant.

Donner la valeur exacte et une valeur approchée au dixième près.

6M20

Calculer l'aire des parallélogrammes suivants

6M11

- 1. Calculer l'aire du carré en cm²
- ${\bf 2.}$ Calculer l'aire du rectangle en ${\rm cm}^2$
- 3. Calculer l'aire du triangle rectangle en cm^2

Calculer l'aire du disque suivant.

Donner la valeur exacte et une valeur approchée au dixième près.

1.

Calculer l'aire des triangles suivants

6M20

2.

Calculer l'aire des parallélogrammes suivants

6M11

- 1. Calculer l'aire du carré en cm²
- ${\bf 2.}$ Calculer l'aire du rectangle en ${\rm cm}^2$
- 3. Calculer l'aire du triangle rectangle en cm²

Calculer l'aire du disque suivant.

Donner la valeur exacte et une valeur approchée au dixième près.

1.

Calculer l'aire des triangles suivants

 $6\mathrm{M}20$

EX 4 Calculer l'aire des parallélogrammes suivants

6M11

Calculer l'aire des 3 figures suivantes.

G H 5 cm

- 1. Calculer l'aire du carré en cm²
- ${\bf 2.}$ Calculer l'aire du rectangle en ${\rm cm}^2$
- ${\bf 3.}$ Calculer l'aire du triangle rectangle en ${\rm cm}^2$

Calculer l'aire du disque suivant.

Donner la valeur exacte et une valeur approchée au dixième près.

6M20

Calculer l'aire des parallélogrammes suivants

 $6\mathrm{M}11$

- 1. Calculer l'aire du carré en cm²
- ${\bf 2.}$ Calculer l'aire du rectangle en cm 2
- 3. Calculer l'aire du triangle rectangle en cm²

Calculer l'aire du disque suivant.

Donner la valeur exacte et une valeur approchée au dixième près.

1.

Calculer l'aire des triangles suivants

 $6\mathrm{M}20$

Calculer l'aire des parallélogrammes suivants

6M11

- 1. Calculer l'aire du carré en cm²
- ${\bf 2.}$ Calculer l'aire du rectangle en ${\rm cm}^2$
- 3. Calculer l'aire du triangle rectangle en cm²

Calculer l'aire du disque suivant.

Donner la valeur exacte et une valeur approchée au dixième près.

6M20

2.

Calculer l'aire des parallélogrammes suivants

 $6\mathrm{M}11$

- 1. Calculer l'aire du carré en cm²
- ${\bf 2.}$ Calculer l'aire du rectangle en ${\rm cm}^2$
- 3. Calculer l'aire du triangle rectangle en $\rm cm^2$

Calculer l'aire du disque suivant.

Donner la valeur exacte et une valeur approchée au dixième près.

6M20

1.

2.

EX 4

Calculer l'aire des parallélogrammes suivants

 $6\mathrm{M}11$

- 1. Calculer l'aire du carré en cm²
- ${\bf 2.}$ Calculer l'aire du rectangle en ${\rm cm}^2$
- 3. Calculer l'aire du triangle rectangle en cm²

Calculer l'aire du disque suivant.

Donner la valeur exacte et une valeur approchée au dixième près.

6M20

Calculer l'aire des parallélogrammes suivants

 $6\mathrm{M}11$

- 1. Calculer l'aire du carré en cm²
- ${\bf 2.}$ Calculer l'aire du rectangle en cm 2
- 3. Calculer l'aire du triangle rectangle en cm²

Calculer l'aire du disque suivant.

Donner la valeur exacte et une valeur approchée au dixième près.

6M20

EX 4

2.

Calculer l'aire des parallélogrammes suivants

6M11

- 1. Calculer l'aire du carré en cm²
- ${\bf 2.}$ Calculer l'aire du rectangle en ${\rm cm}^2$
- 3. Calculer l'aire du triangle rectangle en cm²

Calculer l'aire du disque suivant.

Donner la valeur exacte et une valeur approchée au dixième près.

6M20

Calculer l'aire des parallélogrammes suivants

 $6\mathrm{M}11$

- 1. Calculer l'aire du carré en cm²
- ${\bf 2.}$ Calculer l'aire du rectangle en cm 2
- 3. Calculer l'aire du triangle rectangle en cm²

Calculer l'aire du disque suivant.

Donner la valeur exacte et une valeur approchée au dixième près.

 $6\mathrm{M}20$

Calculer l'aire des parallélogrammes suivants

6M11

- 1. Calculer l'aire du carré en cm²
- ${\bf 2.}$ Calculer l'aire du rectangle en ${\rm cm}^2$
- 3. Calculer l'aire du triangle rectangle en cm²

Calculer l'aire du disque suivant.

Donner la valeur exacte et une valeur approchée au dixième près.

6M20

Calculer l'aire des parallélogrammes suivants

 $6\mathrm{M}11$

- 1. Calculer l'aire du carré en cm²
- ${\bf 2.}$ Calculer l'aire du rectangle en ${\rm cm}^2$
- 3. Calculer l'aire du triangle rectangle en cm²

Calculer l'aire du disque suivant.

Donner la valeur exacte et une valeur approchée au dixième près.

6M20

1.

2.

Calculer l'aire des parallélogrammes suivants

 $6\mathrm{M}11$

- 1. Calculer l'aire du carré en cm²
- ${\bf 2.}$ Calculer l'aire du rectangle en ${\rm cm}^2$
- 3. Calculer l'aire du triangle rectangle en cm²

Calculer l'aire du disque suivant.

Donner la valeur exacte et une valeur approchée au dixième près.

 $6\mathrm{M}20$

2.

Calculer l'aire des parallélogrammes suivants

- 1. Calculer l'aire du carré en cm²
- ${\bf 2.}$ Calculer l'aire du rectangle en ${\rm cm}^2$
- 3. Calculer l'aire du triangle rectangle en cm²

Calculer l'aire du disque suivant.

Donner la valeur exacte et une valeur approchée au dixième près.

6M11

 $6\mathrm{M}20$

Calculer l'aire des parallélogrammes suivants

Calculer l'aire des 3 figures suivantes.

 $6\mathrm{M}11$

- 1. Calculer l'aire du carré en cm²
- ${\bf 2.}$ Calculer l'aire du rectangle en cm 2
- 3. Calculer l'aire du triangle rectangle en cm²

Calculer l'aire du disque suivant.

Donner la valeur exacte et une valeur approchée au dixième près.

6M22-1

Calculer l'aire des triangles suivants

6M20

Calculer l'aire des parallélogrammes suivants

5M10

Calculer l'aire des 3 figures suivantes.

6M11

- 1. Calculer l'aire du carré en cm²
- ${\bf 2.}$ Calculer l'aire du rectangle en cm 2
- ${\bf 3.}$ Calculer l'aire du triangle rectangle en ${\rm cm}^2$

Calculer l'aire du disque suivant.

Donner la valeur exacte et une valeur approchée au dixième près.

6M22-1

1.

Calculer l'aire des triangles suivants

 $6\mathrm{M}20$

Calculer l'aire des parallélogrammes suivants

5M10

Calculer l'aire des 3 figures suivantes.

- 1. Calculer l'aire du carré en cm²
- ${\bf 2.}$ Calculer l'aire du rectangle en cm 2
- 3. Calculer l'aire du triangle rectangle en cm²

Calculer l'aire du disque suivant.

Donner la valeur exacte et une valeur approchée au dixième près.

6M11

6M22-1

Calculer l'aire des triangles suivants

6M20

2.

Calculer l'aire des parallélogrammes suivants

5M10

Calculer l'aire des 3 figures suivantes.

 $6\mathrm{M}11$

- 1. Calculer l'aire du carré en cm²
- ${\bf 2.}$ Calculer l'aire du rectangle en ${\rm cm^2}$
- 3. Calculer l'aire du triangle rectangle en cm²

Calculer l'aire du disque suivant.

Donner la valeur exacte et une valeur approchée au dixième près.

6M22-1

Calculer l'aire des triangles suivants

6M20

DX.

Calculer l'aire des parallélogrammes suivants

5M10

Calculer l'aire des 3 figures suivantes.

H G L E G F I

- 1. Calculer l'aire du carré en cm²
- ${\bf 2.}$ Calculer l'aire du rectangle en ${\rm cm}^2$
- ${\bf 3.}$ Calculer l'aire du triangle rectangle en ${\rm cm}^2$

Calculer l'aire du disque suivant.

Donner la valeur exacte et une valeur approchée au dixième près.

6M11

6M22-1

Calculer l'aire des triangles suivants

6M20

Calculer l'aire des parallélogrammes suivants

5M10

Calculer l'aire des 3 figures suivantes.

6M11

- 1. Calculer l'aire du carré en cm²
- $\mathbf{2}$. Calculer l'aire du rectangle en cm 2
- 3. Calculer l'aire du triangle rectangle en cm²

Calculer l'aire du disque suivant.

Donner la valeur exacte et une valeur approchée au dixième près.

6M22-1

Calculer l'aire des triangles suivants

6M20

1.

EX

2.

Calculer l'aire des parallélogrammes suivants

5M10

Corrections

1. $\mathcal{A}_{EFGH} = 4$ cm $\times 4$ cm = 16 cm²

2. $\mathcal{A}_{IJKL} = 3 \text{ cm} \times 4 \text{ cm} = 12 \text{ cm}^2$

3. $A_{MNO} = 3 \text{ cm} \times 5 \text{ cm} \div 2 = 7.5 \text{ cm}^2$

$$\mathcal{A}_1 = 5 \times 5 \times \pi = 25\pi \approx 78.5~\mathrm{cm}^2$$

1.

$$\mathcal{A}_{FGH} = \frac{1}{2} \times FG \times IH = \frac{1}{2} \times 7 \text{ cm} \times 6 \text{ cm} = 21 \text{ cm}^2$$

$$\mathcal{A}_{JKL} = \frac{1}{2} \times JK \times ML = \frac{1}{2} \times 6 \text{ cm} \times 5 \text{ cm} = 15 \text{ cm}^2$$

Dans chaque parallélogramme, le segment en pointillés est **perpendiculaire** à deux côtés opposés, c'est donc une **hauteur**.

Pour obtenir l'aire, il faut multiplier cette hauteur par la longueur de la base correspondante. $\mathcal{A}_{IJKL}=3$ cm \times 4 cm = 12 cm²

Corrections '

- 1. $\mathcal{A}_{FGHI} = 4 \text{ cm} \times 4 \text{ cm} = 16 \text{ cm}^2$
- 2. $A_{JKLM} = 3$ cm $\times 2$ cm = 6 cm²
- 3. $A_{NOP} = 5 \text{ cm} \times 4 \text{ cm} \div 2 = 10 \text{ cm}^2$

$$\mathcal{A}_1 = 6 \times 6 \times \pi = 36\pi \approx 113.1~\mathrm{cm}^2$$

 $\mathcal{A}_{ABC} = \frac{1}{2} \times AB \times DC = \frac{1}{2} \times 9 \text{ cm} \times 4 \text{ cm} = 18 \text{ cm}^2$

$$\mathcal{A}_{EFG} = \frac{1}{2} \times EF \times HG = \frac{1}{2} \times 6 \text{ cm} \times 3 \text{ cm} = 9 \text{ cm}^2$$

Dans chaque parallélogramme, le segment en pointillés est **perpendiculaire** à deux côtés opposés, c'est donc une **hauteur**.

Pour obtenir l'aire, il faut multiplier cette hauteur par la longueur de la base correspondante.

$$\mathcal{A}_{FGHI} = 5 \text{ cm} \times 2 \text{ cm} = 10 \text{ cm}^2$$

Corrections

- 1. $\mathcal{A}_{KLMN} = 3 \text{ cm} \times 3 \text{ cm} = 9 \text{ cm}^2$
- 2. $\mathcal{A}_{OPQR} = 3 \text{ cm} \times 4 \text{ cm} = 12 \text{ cm}^2$
- 3. $A_{STU} = 5 \text{ cm} \times 4 \text{ cm} \div 2 = 10 \text{ cm}^2$

$$\mathcal{A}_1 = 2 \times 2 \times \pi = 4\pi \approx 12,6 \text{ cm}^2$$

1.

$$\mathcal{A}_{BCD} = \frac{1}{2} \times BC \times ED = \frac{1}{2} \times 8 \text{ cm} \times 4 \text{ cm} = 16 \text{ cm}^2$$

2.

$$\mathcal{A}_{FGH} = \frac{1}{2} \times FG \times IH = \frac{1}{2} \times 7 \text{ cm} \times 3 \text{ cm} = 10.5 \text{ cm}^2$$

Dans chaque parallélogramme, le segment en pointillés est **perpendiculaire** à deux côtés opposés, c'est donc une **hauteur**.

Pour obtenir l'aire, il faut multiplier cette **hauteur** par la longueur de la **base** correspondante.

 $\mathcal{A}_{\mathit{JKLM}} = 3 \ \mathrm{cm} \times 4 \ \mathrm{cm} = 12 \ \mathrm{cm}^2$

Corrections •

1.
$$\mathcal{A}_{EFGH} = 6$$
 cm $\times 6$ cm $= 36$ cm²

2.
$$A_{IJKL} = 3$$
 cm $\times 2$ cm $= 6$ cm²

3.
$$\mathcal{A}_{MNO} = 4 \text{ cm} \times 3 \text{ cm} \div 2 = 6 \text{ cm}^2$$

$$\mathcal{A}_1 = 3 \times 3 \times \pi = 9\pi \approx 28.3 \ \mathrm{cm}^2$$

1.

$$\mathcal{A}_{ABC} = \frac{1}{2} \times AB \times DC = \frac{1}{2} \times 8 \text{ cm} \times 4 \text{ cm} = 16 \text{ cm}^2$$

2

$$\mathcal{A}_{EFG} = \frac{1}{2} \times EF \times HG = \frac{1}{2} \times 6 \text{ cm} \times 3 \text{ cm} = 9 \text{ cm}^2$$

Dans chaque parallélogramme, le segment en pointillés est **perpendiculaire** à deux côtés opposés, c'est donc une **hauteur**.

Pour obtenir l'aire, il faut multiplier cette hauteur par la longueur de la base correspondante. $\mathcal{A}_{EFGH}=6$ cm \times 2 cm = 12 cm²

Corrections

1. $\mathcal{A}_{EFGH} = 3 \text{ cm} \times 3 \text{ cm} = 9 \text{ cm}^2$

2. $\mathcal{A}_{IJKL} = 4 \text{ cm} \times 2 \text{ cm} = 8 \text{ cm}^2$

3. $\mathcal{A}_{MNO} = 3 \text{ cm} \times 2 \text{ cm} \div 2 = 3 \text{ cm}^2$

$$\mathcal{A}_1 = 5 \times 5 \times \pi = 25\pi \approx 78.5~\mathrm{cm}^2$$

1.

$$\mathcal{A}_{ABC} = \frac{1}{2} \times AB \times DC = \frac{1}{2} \times 5 \text{ cm} \times 6 \text{ cm} = 15 \text{ cm}^2$$

2.

$$\mathcal{A}_{EFG} = \frac{1}{2} \times EF \times HG = \frac{1}{2} \times 9 \text{ cm} \times 5 \text{ cm} = 22.5 \text{ cm}^2$$

Dans chaque parallélogramme, le segment en pointillés est **perpendiculaire** à deux côtés opposés, c'est donc une **hauteur**.

Pour obtenir l'aire, il faut multiplier cette **hauteur** par la longueur de la **base** correspondante.

$$\mathcal{A}_{GHIJ} = 8 \text{ cm} \times 4 \text{ cm} = 32 \text{ cm}^2$$

Corrections -

- 1. $\mathcal{A}_{FGHI} = 5 \text{ cm} \times 5 \text{ cm} = 25 \text{ cm}^2$
- 2. $A_{JKLM} = 4$ cm $\times 3$ cm = 12 cm²
- **3.** $A_{NOP} = 5 \text{ cm} \times 3 \text{ cm} \div 2 = 7.5 \text{ cm}^2$

$$A_1 = 5 \times 5 \times \pi = 25\pi \approx 78.5 \text{ cm}^2$$

 $\mathcal{A}_{EFG} = \frac{1}{2} \times EF \times HG = \frac{1}{2} \times 9 \text{ cm} \times 5 \text{ cm} = 22.5 \text{ cm}^2$

$$\mathcal{A}_{IJK} = \frac{1}{2} \times IJ \times LK = \frac{1}{2} \times 6 \text{ cm} \times 3 \text{ cm} = 9 \text{ cm}^2$$

Dans chaque parallélogramme, le segment en pointillés est **perpendiculaire** à deux côtés opposés, c'est donc une **hauteur**.

Pour obtenir l'aire, il faut multiplier cette hauteur par la longueur de la base correspondante.

 $\mathcal{A}_{\mathit{KLMN}} = 7~\mathrm{cm} \times 7~\mathrm{cm} = 49~\mathrm{cm}^2$

Corrections •

1.
$$\mathcal{A}_{EFGH} = 5$$
 cm $\times 5$ cm $= 25$ cm²

2.
$$\mathcal{A}_{IJKL} = 5 \text{ cm} \times 3 \text{ cm} = 15 \text{ cm}^2$$

3.
$$\mathcal{A}_{MNO} = 2 \text{ cm} \times 4 \text{ cm} \div 2 = 4 \text{ cm}^2$$

$$A_1 = 4 \times 4 \times \pi = 16\pi \approx 50.3$$
 cm²

$$\mathcal{A}_{BCD} = \frac{1}{2} \times BC \times ED = \frac{1}{2} \times 5 \text{ cm} \times 3 \text{ cm} = 7.5 \text{ cm}^2$$

$$\mathcal{A}_{FGH} = \frac{1}{2} \times FG \times IH = \frac{1}{2} \times 9 \text{ cm} \times 5 \text{ cm} = 22.5 \text{ cm}^2$$

Dans chaque parallélogramme, le segment en pointillés est **perpendiculaire** à deux côtés opposés, c'est donc une **hauteur**.

Pour obtenir l'aire, il faut multiplier cette **hauteur** par la longueur de la **base** correspondante.

 $\mathcal{A}_{\mathit{MNOP}} = 6~\mathrm{cm} \times 2~\mathrm{cm} = 12~\mathrm{cm}^2$

Corrections

1.
$$\mathcal{A}_{FGHI} = 3 \text{ cm} \times 3 \text{ cm} = 9 \text{ cm}^2$$

2.
$$\mathcal{A}_{JKLM} = 5 \text{ cm} \times 4 \text{ cm} = 20 \text{ cm}^2$$

3.
$$\mathcal{A}_{NOP} = 4 \text{ cm} \times 3 \text{ cm} \div 2 = 6 \text{ cm}^2$$

$$\mathcal{A}_1 = 4 \times 4 \times \pi = 16\pi \approx 50{,}3~\mathrm{cm}^2$$

$$\mathcal{A}_{ABC} = \frac{1}{2} \times AB \times DC = \frac{1}{2} \times 9 \text{ cm} \times 6 \text{ cm} = 27 \text{ cm}^2$$

2.

$$\mathcal{A}_{EFG} = \frac{1}{2} \times EF \times HG = \frac{1}{2} \times 5 \text{ cm} \times 5 \text{ cm} = 12.5 \text{ cm}^2$$

Dans chaque parallélogramme, le segment en pointillés est **perpendiculaire** à deux côtés opposés, c'est donc une **hauteur**.

Pour obtenir l'aire, il faut multiplier cette **hauteur** par la longueur de la **base** correspondante.

$$\mathcal{A}_{\mathit{JKLM}} = 3 \ \mathrm{cm} \times 3 \ \mathrm{cm} = 9 \ \mathrm{cm}^2$$

Corrections •

1.
$$\mathcal{A}_{EFGH} = 3$$
 cm $\times 3$ cm $= 9$ cm²

2.
$$A_{IJKL} = 3$$
 cm $\times 5$ cm $= 15$ cm²

3.
$$\mathcal{A}_{MNO} = 2 \text{ cm} \times 2 \text{ cm} \div 2 = 2 \text{ cm}^2$$

$$\mathcal{A}_1 = 7 \times 7 \times \pi = 49\pi \approx 153.9 \text{ cm}^2$$

$$\mathcal{A}_{EFG} = \frac{1}{2} \times EF \times HG = \frac{1}{2} \times 6 \text{ cm} \times 4 \text{ cm} = 12 \text{ cm}^2$$

2.

$$\mathcal{A}_{IJK} = \frac{1}{2} \times IJ \times LK = \frac{1}{2} \times 8 \text{ cm} \times 5 \text{ cm} = 20 \text{ cm}^2$$

Dans chaque parallélogramme, le segment en pointillés est **perpendiculaire** à deux côtés opposés, c'est donc une **hauteur**.

Pour obtenir l'aire, il faut multiplier cette **hauteur** par la longueur de la **base** correspondante.

 $\mathcal{A}_{VWXY} = 4 \text{ cm} \times 4 \text{ cm} = 16 \text{ cm}^2$

Corrections

1. $\mathcal{A}_{EFGH} = 4 \text{ cm} \times 4 \text{ cm} = 16 \text{ cm}^2$

2. $A_{IJKL} = 4 \text{ cm} \times 3 \text{ cm} = 12 \text{ cm}^2$

3. $\mathcal{A}_{MNO} = 3 \text{ cm} \times 2 \text{ cm} \div 2 = 3 \text{ cm}^2$

$$\mathcal{A}_1 = 9 \times 9 \times \pi = 81\pi \approx 254,5 \text{ cm}^2$$

1

$$\mathcal{A}_{BCD} = \frac{1}{2} \times BC \times ED = \frac{1}{2} \times 5 \text{ cm} \times 3 \text{ cm} = 7.5 \text{ cm}^2$$

$$\mathcal{A}_{FGH} = \frac{1}{2} \times FG \times IH = \frac{1}{2} \times 8 \text{ cm} \times 5 \text{ cm} = 20 \text{ cm}^2$$

Dans chaque parallélogramme, le segment en pointillés est **perpendiculaire** à deux côtés opposés, c'est donc une **hauteur**.

Pour obtenir l'aire, il faut multiplier cette hauteur par la longueur de la base correspondante. $\mathcal{A}_{KLMN}=3$ cm \times 3 cm =9 cm²

Corrections

1. $\mathcal{A}_{EFGH} = 6 \text{ cm} \times 6 \text{ cm} = 36 \text{ cm}^2$

2. $A_{IJKL} = 3$ cm $\times 2$ cm = 6 cm²

3. $A_{MNO} = 5 \text{ cm} \times 4 \text{ cm} \div 2 = 10 \text{ cm}^2$

$$\mathcal{A}_1 = 8 \times 8 \times \pi = 64\pi \approx 201,1$$
 cm²

1.

$$\mathcal{A}_{ABC} = \frac{1}{2} \times AB \times DC = \frac{1}{2} \times 8 \text{ cm} \times 3 \text{ cm} = 12 \text{ cm}^2$$

2.

$$\mathcal{A}_{EFG} = \frac{1}{2} \times EF \times HG = \frac{1}{2} \times 9 \text{ cm} \times 5 \text{ cm} = 22.5 \text{ cm}^2$$

Dans chaque parallélogramme, le segment en pointillés est **perpendiculaire** à deux côtés opposés, c'est donc une **hauteur**.

Pour obtenir l'aire, il faut multiplier cette hauteur par la longueur de la base correspondante.

 $\mathcal{A}_{VWXY} = 6 \text{ cm} \times 2 \text{ cm} = 12 \text{ cm}^2$

Corrections •

1.
$$\mathcal{A}_{FGHI} = 5 \text{ cm} \times 5 \text{ cm} = 25 \text{ cm}^2$$

2.
$$A_{JKLM} = 2$$
 cm \times 5 cm $= 10$ cm²

3.
$$A_{NOP} = 3 \text{ cm} \times 3 \text{ cm} \div 2 = 4.5 \text{ cm}^2$$

$$\mathcal{A}_1 = 3 \times 3 \times \pi = 9\pi \approx 28.3~\mathrm{cm}^2$$

$$\mathcal{A}_{BCD} = \frac{1}{2} \times BC \times ED = \frac{1}{2} \times 5 \text{ cm} \times 4 \text{ cm} = 10 \text{ cm}^2$$

 $\mathcal{A}_{FGH} = \frac{1}{2} \times FG \times IH = \frac{1}{2} \times 7 \text{ cm} \times 5 \text{ cm} = 17.5 \text{ cm}^2$

2.

Dans chaque parallélogramme, le segment en pointillés est **perpendiculaire** à deux côtés opposés, c'est donc une **hauteur**.

Pour obtenir l'aire, il faut multiplier cette **hauteur** par la longueur de la **base** correspondante.

 $\mathcal{A}_{GHIJ} = 7~\mathrm{cm} \times 2~\mathrm{cm} = 14~\mathrm{cm}^2$

- 1. $\mathcal{A}_{FGHI} = 2 \text{ cm} \times 2 \text{ cm} = 4 \text{ cm}^2$
- 2. $A_{JKLM} = 5$ cm $\times 4$ cm = 20 cm²
- 3. $\mathcal{A}_{NOP} = 5 \text{ cm} \times 2 \text{ cm} \div 2 = 5 \text{ cm}^2$

$$\mathcal{A}_1 = 9 \times 9 \times \pi = 81\pi \approx 254,5~\mathrm{cm}^2$$

1

$$\mathcal{A}_{BCD} = \frac{1}{2} \times BC \times ED = \frac{1}{2} \times 7 \text{ cm} \times 3 \text{ cm} = 10.5 \text{ cm}^2$$

$$\mathcal{A}_{FGH} = \frac{1}{2} \times FG \times IH = \frac{1}{2} \times 5 \text{ cm} \times 6 \text{ cm} = 15 \text{ cm}^2$$

Dans chaque parallélogramme, le segment en pointillés est **perpendiculaire** à deux côtés opposés, c'est donc une **hauteur**.

Pour obtenir l'aire, il faut multiplier cette hauteur par la longueur de la base correspondante.

 $\mathcal{A}_{\mathit{MNOP}} = 8~\mathrm{cm} \times 3~\mathrm{cm} = 24~\mathrm{cm}^2$

- 1. $\mathcal{A}_{EFGH} = 4$ cm $\times 4$ cm = 16 cm²
- 2. $\mathcal{A}_{IJKL} = 4 \text{ cm} \times 5 \text{ cm} = 20 \text{ cm}^2$
- 3. $\mathcal{A}_{MNO} = 4 \text{ cm} \times 2 \text{ cm} \div 2 = 4 \text{ cm}^2$

$$\mathcal{A}_1 = 4 \times 4 \times \pi = 16\pi \approx 50,3$$
 cm²

1

$$\mathcal{A}_{CDE} = \frac{1}{2} \times CD \times FE = \frac{1}{2} \times 5 \text{ cm} \times 3 \text{ cm} = 7.5 \text{ cm}^2$$

$$\mathcal{A}_{GHI} = \frac{1}{2} \times GH \times JI = \frac{1}{2} \times 8 \text{ cm} \times 5 \text{ cm} = 20 \text{ cm}^2$$

Dans chaque parallélogramme, le segment en pointillés est **perpendiculaire** à deux côtés opposés, c'est donc une **hauteur**.

Pour obtenir l'aire, il faut multiplier cette **hauteur** par la longueur de la **base** correspondante.

 $\mathcal{A}_{MNOP} = 9 \ \mathrm{cm} \times 3 \ \mathrm{cm} = 27 \ \mathrm{cm}^2$

1.
$$\mathcal{A}_{FGHI} = 2 \text{ cm} \times 2 \text{ cm} = 4 \text{ cm}^2$$

2.
$$\mathcal{A}_{JKLM} = 2 \text{ cm} \times 5 \text{ cm} = 10 \text{ cm}^2$$

3.
$$\mathcal{A}_{NOP} = 2 \text{ cm} \times 5 \text{ cm} \div 2 = 5 \text{ cm}^2$$

$$\mathcal{A}_1 = 4 \times 4 \times \pi = 16\pi \approx 50,3~\mathrm{cm}^2$$

$$\mathcal{A}_{FGH} = \frac{1}{2} \times FG \times IH = \frac{1}{2} \times 6 \text{ cm} \times 5 \text{ cm} = 15 \text{ cm}^2$$

$$\mathcal{A}_{JKL} = \frac{1}{2} \times JK \times ML = \frac{1}{2} \times 8 \text{ cm} \times 6 \text{ cm} = 24 \text{ cm}^2$$

Dans chaque parallélogramme, le segment en pointillés est **perpendiculaire** à deux côtés opposés, c'est donc une **hauteur**.

Pour obtenir l'aire, il faut multiplier cette **hauteur** par la longueur de la **base** correspondante.

 $\mathcal{A}_{MNOP} = 5~\mathrm{cm} \times 6~\mathrm{cm} = 30~\mathrm{cm}^2$

- 1. $\mathcal{A}_{EFGH} = 5$ cm $\times 5$ cm = 25 cm²
- **2.** $A_{IJKL} = 5 \text{ cm} \times 2 \text{ cm} = 10 \text{ cm}^2$
- 3. $\mathcal{A}_{MNO} = 4 \text{ cm} \times 2 \text{ cm} \div 2 = 4 \text{ cm}^2$

$$\mathcal{A}_1 = 3 \times 3 \times \pi = 9\pi \approx 28{,}3~\mathrm{cm}^2$$

$$\mathcal{A}_{DEF} = \frac{1}{2} \times DE \times GF = \frac{1}{2} \times 6 \text{ cm} \times 3 \text{ cm} = 9 \text{ cm}^2$$

 $\mathcal{A}_{HIJ} = \frac{1}{2} \times HI \times KJ = \frac{1}{2} \times 9 \text{ cm} \times 6 \text{ cm} = 27 \text{ cm}^2$

2.

Dans chaque parallélogramme, le segment en pointillés est **perpendiculaire** à deux côtés opposés, c'est donc une **hauteur**.

Pour obtenir l'aire, il faut multiplier cette hauteur par la longueur de la base correspondante.

 $\mathcal{A}_{STUV} = 8~\mathrm{cm} \times 3~\mathrm{cm} = 24~\mathrm{cm}^2$

- 1. $A_{EFGH} = 4 \text{ cm} \times 4 \text{ cm} = 16 \text{ cm}^2$
- 2. $A_{IJKL} = 5$ cm $\times 4$ cm = 20 cm²
- 3. $\mathcal{A}_{MNO} = 4 \text{ cm} \times 4 \text{ cm} \div 2 = 8 \text{ cm}^2$

$$\mathcal{A}_1 = 9 \times 9 \times \pi = 81\pi \approx 254,5~\mathrm{cm}^2$$

$$\mathcal{A}_{BCD} = \frac{1}{2} \times BC \times ED = \frac{1}{2} \times 5 \text{ cm} \times 5 \text{ cm} = 12,5 \text{ cm}^2$$

$$\mathcal{A}_{FGH} = \frac{1}{2} \times FG \times IH = \frac{1}{2} \times 7 \text{ cm} \times 6 \text{ cm} = 21 \text{ cm}^2$$

Dans chaque parallélogramme, le segment en pointillés est **perpendiculaire** à deux côtés opposés, c'est donc une **hauteur**.

Pour obtenir l'aire, il faut multiplier cette **hauteur** par la longueur de la **base** correspondante.

$$\mathcal{A}_{HIJK} = 9 \text{ cm} \times 2 \text{ cm} = 18 \text{ cm}^2$$

- 1. $\mathcal{A}_{FGHI} = 6 \text{ cm} \times 6 \text{ cm} = 36 \text{ cm}^2$
- 2. $\mathcal{A}_{JKLM} = 3 \text{ cm} \times 5 \text{ cm} = 15 \text{ cm}^2$
- **3.** $A_{NOP} = 3 \text{ cm} \times 3 \text{ cm} \div 2 = 4.5 \text{ cm}^2$

$$\mathcal{A}_1 = 8 \times 8 \times \pi = 64\pi \approx 201,1~\mathrm{cm}^2$$

1.

$$\mathcal{A}_{CDE} = \frac{1}{2} \times CD \times FE = \frac{1}{2} \times 8 \text{ cm} \times 3 \text{ cm} = 12 \text{ cm}^2$$

$$\mathcal{A}_{GHI} = \frac{1}{2} \times GH \times JI = \frac{1}{2} \times 5 \text{ cm} \times 6 \text{ cm} = 15 \text{ cm}^2$$

Dans chaque parallélogramme, le segment en pointillés est **perpendiculaire** à deux côtés opposés, c'est donc une **hauteur**.

Pour obtenir l'aire, il faut multiplier cette hauteur par la longueur de la base correspondante.
 $\mathcal{A}_{GHIJ}=7~{\rm cm}\times 2~{\rm cm}=14~{\rm cm}^2$

1.
$$\mathcal{A}_{FGHI} = 2 \text{ cm} \times 2 \text{ cm} = 4 \text{ cm}^2$$

2.
$$A_{JKLM} = 5$$
 cm $\times 4$ cm $= 20$ cm²

3.
$$A_{NOP} = 3 \text{ cm} \times 3 \text{ cm} \div 2 = 4.5 \text{ cm}^2$$

$$A_1 = 3 \times 3 \times \pi = 9\pi \approx 28.3 \text{ cm}^2$$

$$\mathcal{A}_{CDE} = \frac{1}{2} \times CD \times FE = \frac{1}{2} \times 7 \text{ cm} \times 4 \text{ cm} = 14 \text{ cm}^2$$

$$\mathcal{A}_{GHI} = \frac{1}{2} \times GH \times JI = \frac{1}{2} \times 5 \text{ cm} \times 5 \text{ cm} = 12.5 \text{ cm}^2$$

Dans chaque parallélogramme, le segment en pointillés est **perpendiculaire** à deux côtés opposés, c'est donc une **hauteur**.

Pour obtenir l'aire, il faut multiplier cette hauteur par la longueur de la base correspondante.

 $\mathcal{A}_{VWXY} = 5 \text{ cm} \times 6 \text{ cm} = 30 \text{ cm}^2$

- 1. $\mathcal{A}_{EFGH} = 2 \text{ cm} \times 2 \text{ cm} = 4 \text{ cm}^2$
- 2. $\mathcal{A}_{IJKL} = 4 \text{ cm} \times 5 \text{ cm} = 20 \text{ cm}^2$
- 3. $A_{MNO} = 4 \text{ cm} \times 5 \text{ cm} \div 2 = 10 \text{ cm}^2$

$$\mathcal{A}_1 = 7 \times 7 \times \pi = 49\pi \approx 153.9 \text{ cm}^2$$

1

$$\mathcal{A}_{FGH} = \frac{1}{2} \times FG \times IH = \frac{1}{2} \times 8 \text{ cm} \times 6 \text{ cm} = 24 \text{ cm}^2$$

$$\mathcal{A}_{JKL} = \frac{1}{2} \times JK \times ML = \frac{1}{2} \times 5 \text{ cm} \times 4 \text{ cm} = 10 \text{ cm}^2$$

Dans chaque parallélogramme, le segment en pointillés est **perpendiculaire** à deux côtés opposés, c'est donc une **hauteur**.

Pour obtenir l'aire, il faut multiplier cette **hauteur** par la longueur de la **base** correspondante.

$$\mathcal{A}_{\mathit{KLMN}} = 6~\mathrm{cm} \times 3~\mathrm{cm} = 18~\mathrm{cm}^2$$

1.
$$\mathcal{A}_{FGHI} = 6 \text{ cm} \times 6 \text{ cm} = 36 \text{ cm}^2$$

2.
$$\mathcal{A}_{JKLM} = 5 \text{ cm} \times 2 \text{ cm} = 10 \text{ cm}^2$$

3.
$$A_{NOP} = 5 \text{ cm} \times 4 \text{ cm} \div 2 = 10 \text{ cm}^2$$

$$\mathcal{A}_1 = 8 \times 8 \times \pi = 64\pi \approx 201,1~\mathrm{cm}^2$$

$$\mathcal{A}_{BCD} = \frac{1}{2} \times BC \times ED = \frac{1}{2} \times 5 \text{ cm} \times 6 \text{ cm} = 15 \text{ cm}^2$$

$$\mathcal{A}_{FGH} = \frac{1}{2} \times FG \times IH = \frac{1}{2} \times 8 \text{ cm} \times 5 \text{ cm} = 20 \text{ cm}^2$$

Dans chaque parallélogramme, le segment en pointillés est **perpendiculaire** à deux côtés opposés, c'est donc une **hauteur**.

Pour obtenir l'aire, il faut multiplier cette hauteur par la longueur de la base correspondante. $A_{VWXY}=3$ cm \times 4 cm = 12 cm²

1.
$$\mathcal{A}_{EFGH} = 6$$
 cm $\times 6$ cm $= 36$ cm²

2.
$$A_{IJKL} = 2$$
 cm \times 5 cm $= 10$ cm²

3.
$$A_{MNO} = 5 \text{ cm} \times 5 \text{ cm} \div 2 = 12,5 \text{ cm}^2$$

$$\mathcal{A}_1 = 4 \times 4 \times \pi = 16\pi \approx 50.3~\mathrm{cm}^2$$

1. F = G = G

$$\mathcal{A}_{FGH} = \frac{1}{2} \times FG \times IH = \frac{1}{2} \times 6 \text{ cm} \times 4 \text{ cm} = 12 \text{ cm}^2$$

 $\mathcal{A}_{JKL} = \frac{1}{2} \times JK \times ML = \frac{1}{2} \times 8 \text{ cm} \times 3 \text{ cm} = 12 \text{ cm}^2$

Dans chaque parallélogramme, le segment en pointillés est **perpendiculaire** à deux côtés opposés, c'est donc une **hauteur**.

Pour obtenir l'aire, il faut multiplier cette **hauteur** par la longueur de la **base** correspondante.

 $\mathcal{A}_{FGHI} = 6~\mathrm{cm} \times 2~\mathrm{cm} = 12~\mathrm{cm}^2$

- 1. $\mathcal{A}_{EFGH} = 6 \text{ cm} \times 6 \text{ cm} = 36 \text{ cm}^2$
- 2. $A_{IJKL} = 4$ cm $\times 2$ cm = 8 cm²
- 3. $\mathcal{A}_{MNO} = 4 \text{ cm} \times 3 \text{ cm} \div 2 = 6 \text{ cm}^2$

$$\mathcal{A}_1 = 7 \times 7 \times \pi = 49\pi \approx 153.9~\mathrm{cm}^2$$

1. E Som

$$\mathcal{A}_{EFG} = \frac{1}{2} \times EF \times HG = \frac{1}{2} \times 5 \text{ cm} \times 5 \text{ cm} = 12.5 \text{ cm}^2$$

2

$$\mathcal{A}_{IJK} = \frac{1}{2} \times IJ \times LK = \frac{1}{2} \times 8 \text{ cm} \times 6 \text{ cm} = 24 \text{ cm}^2$$

Dans chaque parallélogramme, le segment en pointillés est **perpendiculaire** à deux côtés opposés, c'est donc une **hauteur**.

Pour obtenir l'aire, il faut multiplier cette hauteur par la longueur de la base correspondante.

$$\mathcal{A}_{JKLM} = 10 \text{ cm} \times 2 \text{ cm} = 20 \text{ cm}^2$$

1. $A_{EFGH} = 5 \text{ cm} \times 5 \text{ cm} = 25 \text{ cm}^2$

2. $\mathcal{A}_{IJKL} = 5 \text{ cm} \times 2 \text{ cm} = 10 \text{ cm}^2$

3. $A_{MNO} = 3 \text{ cm} \times 3 \text{ cm} \div 2 = 4.5 \text{ cm}^2$

$$\mathcal{A}_1 = 4 \times 4 \times \pi = 16\pi \approx 50{,}3~\mathrm{cm}^2$$

1

$$\mathcal{A}_{CDE} = \frac{1}{2} \times CD \times FE = \frac{1}{2} \times 8 \text{ cm} \times 3 \text{ cm} = 12 \text{ cm}^2$$

$$\mathcal{A}_{GHI} = \frac{1}{2} \times GH \times JI = \frac{1}{2} \times 6 \text{ cm} \times 6 \text{ cm} = 18 \text{ cm}^2$$

Dans chaque parallélogramme, le segment en pointillés est **perpendiculaire** à deux côtés opposés, c'est donc une **hauteur**.

Pour obtenir l'aire, il faut multiplier cette **hauteur** par la longueur de la **base** correspondante.

 $\mathcal{A}_{KLMN} = 4 \text{ cm} \times 4 \text{ cm} = 16 \text{ cm}^2$