PATENT ABSTRACTS OF JAPAN

(11)Publication number:

01-106456

(43) Date of publication of application: 24.04.1989

(51)Int.CI.

H01L 23/50

H01L 23/28

(21) Application number : **62-263435**

(71)Applicant: MATSUSHITA ELECTRIC IND CO

LTD

(22)Date of filing:

19.10.1987

(72)Inventor: KURODA HIROSHI

TAKASE YOSHIHISA

(54) SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE

(57) Abstract:

PURPOSE: To make an electrode terminal not to come off due to external force and thermal strain by providing the end surface of a lead frame substrate with a stair part having more than one step and performing molding with sealing resin in a shape of covering the stair part.

CONSTITUTION: An IC chip 16 is mounted on the other main surface 14 of a die pad 11, and a pad of the IC chip and the other main surface 14 of an electrode terminal 12 are bonded with a wire 17 so as to be continuously molded with sealing resin 18 on the almost level with one main surface 13 by a transfer method so that the electrode terminal and the main surface 13 of the die pad 11 may be exposed. At this time, a stair part 15 provided on a lead frame 20 is also covered with sealing resin 18. Thereby, a reinforcing bar 19 exposed to an end surface of sealing resin 18 is also of the same projection type so as to have very strong structure against coming-off even to external force.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

9日本国特許庁(JP)

10 特許出額公開

⑩ 公 關 特 許 公 報 (A) 平1-106456

@Int_Cl.4

識別記号

厅内整理番号

❷公開 平成1年(1989)4月24E

H 01 L

G-7735-5F A-6835-5F

察査請求 未請求 発明の数 1 (全4頁)

9発明の名称 半導体集積回路装置

> 到特 昭62-263435

翻出。 頤 昭62(1987)10月19日

分祭 明 者

B

罄

大阪府門其市大字門真1006番地 松下電器座業株式会社的

②発 明 者 瀬

久 蓉

大阪府門真市大字門真1006番地 松下電器廠業株式会社内

创出 願 人 松下電器座業株式会社 大阪府門真市大字門真1006番地

の代 班 弁理士 中屋 - 数 異 外1名

1、発明の名称

华導体集積回路装置

2、 等許請求の範囲

複数の価値端子を有するリードフレームの一主 顔の閩袞が、他の主面より終く、とのリードフレ 一ムの断面形状は少なくとも1段以上の変差を持 つ反蓋部を有するものであり、半導体集積回路は 他の主面にマウントされ、少なくとも簡極幾子の 一主面を蘇出した形で一主面と反ぼ平组に封止樹 贈が脱形されている半導体集積回路装置。

3、発別の詳細な説明

産業上の利用分野

本第羽は半導体集積固路をパッケージした半導 体集積回路装置に関するものである。

従来の技術

ポータブルな符裂ファイルとしてOICカード はカードの一部にメモリ、マイタコプロセッサを

する演算機能を持っているが、180規格により カード厚みは最大 0.84 ミリとされてむり、当然 半導体集積回路装置は更に輝くしかも厚み构定が 強く要求される。

当初半導体集験関路英麗の基板はガラスエポキ ンを塞体とする両面遊板が主旋であったが、ガラ スエポキシ基板では10カード用半導体集積回路 毎間に要求する原み精度を十分に満足させるもの ではなかった。

そとでガラスエポキシ燕板の代りに厚み矯成が よくや媒体集積回路装置の総原の原み箱館も向上 させられるリードフレームを超板とするICカー ド用半導体集積回路装置が提覧された。とのIC カード用学等体集積回路整度の構造を第4圏に示 し態明する。

複数本の電観器子1とダイベッド3を有するり ードフレーム6の上記ダイバッド2にICチップ 3がマウントされ、上記IGチップ3のパッド

発明が解決しようとする問題点

このような半導体集積回路装置で用いるリードフレーム8の厚味は、半導体集積原路装置で総厚の制限があることから O. 1 5 ミリ以下が通常用いられる。ところが対応構能のとリードフレーム8

なる。この状態でカード化しカードの携帯中あるいは使用中で何らかの異物が切断面にできたパリ、あるいは電視端子自体にひっかかり電極端子をはがしてしまり可能性がある。とのように置極端子がはがれたり、変形するとICカードとしての機能が全く失なわれることになる。

本発明は上記問題点を鍛み、外的な力、熱ひず み等に対しても電磁縮子がはがれて使用不能にを らないようなリードフレームの構造を提供するも のである。

問題点を解決するための手段

そして上記問題点を解決する本発明の技術的手段は、リードフレームの一主面の面膜を他の主面より狭くし期極彩状を凸型として一主面とほぼ平坦に対止樹脂を成形し、リードフレームの端面を 活定の距離、厚さでほぼ全辺にわたって対止樹脂で覆りよりに構成したものである。

作用

アの確認により登権機子の政行会辺が對止樹脂

の他の主面でとの密着性を強化するために、リー ドフレーム8の期間をテーパ加工し、わずかに封 止樹脂もでリードフレーム8を覆う形としている が、リードフレーム8の鳳転が0.15ミリと非常 に薄いため、好止歯踊るでリードフレーム8の蝉 **節を一単覆う形とした場合でもせいぜい厚味分の** O. 15 ミリ程駅 しか疑うことができず、推頭にチ ーパをつけても封止樹脂6に対するリードフレー 4 Bの密着強度を答るしく向上させることはでき をかった。また前にも述べたが封止樹脂のに吐起 杉剤が入っているため、リードフレーム8との倍 着性が思く、例えば熱衝撃試験を行った時に発生 する然的ひずみによりリードフレームのが引れる 可能性も生じてくる。更にトランヌファ放形益り ードフレーム8の綺強パーを封止戦駐6の幅面に 沿ってほぼ平坦に金型にて切断して毎月の半導体 条硬国路装置にするわけであるが、結酔パーの切 断面は金型で切断する際、わずかなべりが発生す るととと、完全に封止樹脂もの端面と平坦にする ことは不可能で、わずかに纫斯圀が突を出る形と

からの力が知わらず、また熱衝撃以験等による熱 ひずみに対しても電極端子が刻れることがないた め信頼性の高い半導体集績回路装置を作ることが 可能となる。

奖施例

以下本発明の一実機例について個面を用いたがら説明する。第2回を、b は本発明に用いたリードフレームの構造を示す。第2回をは上面図、、第2回 b は 4 ー がをみた断面図である。ダインシューを発表が上記電機探子12で構成されてから、上記ダイバッド11を観光を観光を観光を表し、のから、が、から、りの場合上記を差面16の時度をあり、りない。ちたみにリードフレーム20の時度が、カカインの場合上記を差面16の時度が、りない。ちたみにリードフレーム20の時度が、りたいる。ちたみにリードフレーム20の時度が、15~100時点と同じ、15~100時点と同じなどのようにはないまりたい。以上はダイバッド11が複数でもかまい。以上はダイバッド11が複数でもかまい。以上はダイバッド11が複数でもかまりたい。以上はダイバッド11が複数でも表現の表面を表現している。以上はダイバッド11が複数でもかまい。以上はダイバッド11が複数でもあまりにある。以上はダイバッド11が複数である。

る解恋のリードフレームである。このリードフレーム20の作製方法は一貫館例として、まずプレス機でストレートにパンチンタした後続いて別の会望を用い向じくプレス機によりリードフレーム30の端面のみをプレスし所定の量だけ設益部18を作った。他の方法としてエッチングによる方法でも同様の設益部15を作ることは可能である。以上の説明はICチップを搭載するダイバッド11を有するリードフレーム2のであるが、ダイパッド11の無い電標網子12のみのリードフレームでもかまわない。

以上述べた取付きリードフレーム20を用いた 単海体集積団路装置の製造プロセスを第3図を~ でに示す。これは第2圏のAー Nの斯面を要わす ものである。メイバッド11の他の主面14に 10チップ16をマウントし、上記10チップ16 のバッド(超示せず)と上記電複雑子12の他の 主面14をワイヤ17で装載し(第3図を)、続 いてトランスファ威形法にて上記電電端子12、 及びダイバッド11の一主面18を舞出させるご

のではなく、バンプを利用したフリップチップボンディング方式でもかまわない。また同時にリードフレーム20の他の主題側をニッチング、サンドブラストメッキ法等で程面化処理が難とされていても良い。更にダイパッド11が無くIOチップ10が電磁端子12にかかるようなリードンレーム20を用いる場合はIOチップ10をマウントするダイボンド微量は絶縁性であることはいうまでもない。

発明の効果

本発明の半導体集積回路装置はリードフレーム 基級の領面に1段以上の設盤器を設け、設差部を 獲り形で制止機能にて成形しているため、外的な 力にも電極端子は剥れにくく、熱衡率試験等の熱 ひずみに対しても、電極端子ははがれないことか ち、信頼性の高いものを得ることが可能となる。 4、園面の簡単な説明

第1回は本語明の半導体集後国路接置の一突越郷でかける智能の工程のチャル相関 第2回。

とく、上記一主節13とほぼ平坦に計止樹脂18 で成形する(第3回b)。この時りードフレーム 20に設けられた段老部15も上記針正樹脂1.8 て獲われる形となる。更に金型を用いて上記対止 樹脂18の雑節を沿って補強バー19を切断して 個片の挙導体集務國路接饋とする(第3回c)。 以上のべた学導体集技器路供置の電振端子伝の拡 大図を第1図に示す。この第1図によれば関極端 子12の一主団と對正樹脂18は後度平坦に成形 されており、封止樹淵1日に過変した健極端子12 の一部は、露出している一重顔より広がっている 精造となっている。このことは、電散端子12の 端回に形成されている飲益部1日を完全に封止樹 脂り8が覆っていることになり、銛正樹脂18の **端頭に貫出している繕強パー19も同様の凸型で** あることから外的な力に対しても非常に創れに強 い終進とたっている。

以上述べてきた実施例の中でIGデップ16の パッドと電極端子12の接続にワイヤ11を用い ているが、ワイヤーボンディング法に設定するも

上面図と断面図、第3図3~cは本発明の半導体 集積回路製電の製造フェーを示す断面図、第4図 は従来のリードフレームを用いた半導体集積回路 装置の構造を示す断面図である。

12……電磁端子、13……一主菌、14……他の主因、15……安差郡、15……ICチップ、17……ワイヤ、18……対止模脂、19……補助パー、20……リードフレーム。

代理人の氏名 非过士 中 尾 敏 男 極か1名

(19) JAPANESE PATENT OFFICE (JP)

(12) Official Gazette for Unexamined Patent Applications (A)

(11) Japanese Unexamined Patent Application (Kokai) No. 1[1989]-106,456

(43) Disclosure Date: 24 April 1989

(51) Int.Cl.⁴

Ident. Symbols

Internal Office Nos.

H 01 L 23/50

23/28

G-7735-5F

A-6835-5F

Request for Examination: Not yet requested

Number of Inventions: 1

(Total of 4 pages)

(54) Title of the Invention: Semiconductor Integrated Circuit Device

(21) Application No.:

62[1987]-263,435

(22) Application Date:

19 October 1987

(72) Inventor:

Hiroshi Kuroda

c/o Matsushita Electric Ind. Co., Ltd.

1006 Oaza Kadoma, Kadoma-shi, Osaka-fu

(72) Inventor:

Yoshihisa Takase

c/o Matsushita Electric Ind. Co., Ltd.

1006 Oaza Kadoma, Kadoma-shi, Osaka-fu

(71) Applicant:

Matsushita Electric Ind. Co., Ltd.

1006 Oaza Kadoma, Kadoma-shi, Osaka-fu

(74) Agent:

Toshio Nakao, Patent Attorney, And 1 Other

SPECIFICATION

Title of the Invention
 Semiconductor Integrated Circuit Device

2. Claim

A semiconductor integrated circuit device in which the area of the main surface of the lead frame, which has several electrode terminals, is narrower than the other main surface, the cross-sectional shape of the lead frame has stair components having at least one or more steps, the semiconductor integrated circuit is mounted on the other main surface, and a sealing resin that is essentially even with the main surface is formed in a shape in which at least the main surfaces of the electrode terminals are exposed.

3. Detailed Description of the Invention

Field of Industrial Use

This invention relates to a semiconductor integrated surface device in which the semi-conductor integrated circuit is packaged.

Prior Art

A semiconductor integrated circuit device having a memory and a microprocessor is embedded in a part of an IC card, which serves as a portable information file. The card has the operational functions of reading and deleting. However, in accordance with ISO standards, the maximum thickness of the cards is 0.84 mm. Naturally, there is a demand for the semiconductor integrated circuits to be thinner, for greater precision of thickness and for greater strength.

Initially, the main trend is for the board of a semiconductor integrated circuit device to be a two-surface board having glass epoxy as the base substance. However, with a glass epoxy base substance, the precision of thickness required of semiconductor integrated circuit devices for IC cards could not be sufficiently satisfied.

Accordingly, a semiconductor integrated circuit device for IC cards was proposed in which a lead frame of which the precision of thickness was good and of which the thickness precision of the total thickness of the semiconductor integrated circuit device was improved was used as the board in place of a glass epoxy board. Figure 4 shows and illustrates the structure of this semiconductor integrated circuit device for IC cards.

The IC chip 3 is mounted on the die pad 2 of the lead frame 8, which has several electrode terminals 1 and the aforementioned die pad 2, the pad (not shown in the figure) of the aforementioned IC chip 3 and the aforementioned electrode terminals 1 are connected by the wires 4 and a structure is formed in a configuration in which at least the main surfaces 5 of the aforementioned electrode terminals 1 are exposed and in which the sealing resin 6 is formed by transfer molding essentially even with the aforementioned main surfaces 5.

However, the main surfaces 5 of the aforementioned electrode terminals 1 are exposed to the outside and only one surface, including the thin side faces of the aforementioned electrode terminals, is in contact with the aforementioned sealing resin 6. Because a release agent is usually introduced into the aforementioned sealing resin 6, which is formed by the transfer molding method,

in order to improve release from the mold, there is naturally poor adhesion between the aforementioned electrode terminals 1 and the aforementioned sealing resin 6. A method for solving this problem is to coarsen the other main surface 7 that is in contact with the aforementioned sealing resin 6 and make the area of main surface 5 of the aforementioned electrode terminals 1 narrower than the area of the other main surface 7 (by tapering the edge to give a trapezoid shape) in order to improve adhesion.

Problems the Invention Is Intended to Solve

Because the thickness of the lead frame 8 used in semiconductor integrated circuit devices is limited in this way by the total thickness of the semiconductor integrated circuit device, it is ordinarily 0.15 mm or less.

However, in order to strengthen the adhesion between the sealing resin 6 and the other main surface 7 of the lead frame 8, the cross section of the lead frame 8 is tapered to a shape in which the lead frame 8 is very slightly covered by the sealing resin 6. Because the thickness of the lead frame 8 of 0.15 mm is extremely thin, even when there is a configuration in which the tip surface of the lead frame is partially covered, it can at most be covered only on an order of thickness of 0.15 mm, and, even when the tip surface is tapered, the adhesive strength of the lead frame 8 to the sealing resin 6 cannot be markedly improved. Further, as discussed previously, because a release agent is introduced into the sealing resin 6, there is poor adhesion to the lead frame 8. For example, there is the possibility that the lead frame will peel due to the thermal strain that occurs when thermal impact tests are performed. Moreover, after transfer molding, the

reinforcing bar of the lead frame 8 is cut in the mold so that it is essentially even along the tip surface of the sealing resin 6 to make a semiconductor integrated circuit device with individual sides. However, when the cut surface of the reinforcing bar is cut in the mold, very slight variations occur and it is not possible to make it completely even with the tip end of the sealing resin 6, for which reason the cut surface assumes a configuration in which it protrudes very slightly. In this state, there is the possibility that the electrode terminals will be peeled off as a result of being caught up in various structures formed by foreign objects in the cut surface during cutting of the card or during transport or use of the card or by peeling of the electrode terminal itself. When the electrode terminals are peeled off or deformed in this way, the function as an IC card is completely lost.

In view of the aforementioned problems, this invention provides a structure of a lead frame such that the electrode terminals are not peeled off and become useless, even in the presence of external force and thermal strain.

Means for Solving the Problems

The technological means whereby the aforementioned problems are solved is a structure such that the area of one main surface of the lead frame is made narrower than the other main surface, the cross-sectional shape involves a projection, the sealing resin is formed essentially even with one main surface and the end surface of the lead frame is covered by the sealing resin along almost the entire edge at a specified distance and thickness.

Action

Because almost the entire edges of the electrode terminals are covered by sealing resin due to this structure, no external force that peels the electrode terminals arises and the electrode terminals are not peeled off even in the presence of thermal strain due to impact tests, for which reasons a semiconductor integrated circuit device of high reliability can be made.

Examples

We shall now describe an example of this invention making use of the figures. Figures 2a and b show the structure of the lead frame that is used in this invention. Figure 2a is an upper surface view and Figure 2b is a cross-sectional view seen through A-A'. It is comprised of the die pad 11 and the multiple electrode terminals 12. The area of the one main surface 13 that is exposed on the outer side of the aforementioned die pad 11 and of the aforementioned electrode terminals 12 is narrower than that of the other main surface 14 and the protruding stair components 15 are established in the cross section of at least the part of the lead frame 20 that is covered by the sealing resin. In this connection, when the thickness of lead frame 20 is 0.15 mm, W [the width] of the aforementioned stair components 15 is set to 0.5 mm and D [the depth] is set to 0.1 mm. The cross-sectional shape of the aforementioned component may be not only a stair of one step but may also be formed as several steps. What is described above is a lead frame of a structure in which the die pad 11 is connected to at least one of the several electrode terminals 12. The following is an example of the method of manufacture of this lead frame 20. First, it is pressed flat with a pressing machine, after which only the end surface of the lead

frame 20 is similarly pressed by a pressing machine using a separate mold, with the stair components 15 being made in a specified amount. Similar stair components 15 can also be made by the etching method as another method. What is described above is a lead frame 20 having the die pad 11 for mounting the IC chip. However, it may also be a lead frame consisting only of the electrode terminals 12 without the die pad 11.

Figures 3a through c show the process of manufacture of a semiconductor integrated circuit device in which the stepped lead frame 20 as described above is used. They show the cross section through A - A' in Figure 2. The IC chip 16 is mounted on the other main surface 14 of the die pad 11. The pad (not shown in the figure) of the aforementioned IC chip 16 and the other main surface 14 of the aforementioned electrode terminals 12 are connected by the wires 17 (Figure 3a). Next, as the aforementioned electrode terminals 12 and the other main surface of the die pad 11 are exposed by the transfer molding method, the structure is formed with the sealing resin 18 essentially even with the aforementioned main surface 13 (Figure 3b). At this time, the stair components 15 that are established in the lead frame 20 assume a configuration in which they are also covered by the sealing resin 18. Further, the reinforcing bar 19 is cut along the end surface of the aforementioned sealing resin 18 using a mold, and an individual semiconductor integrated circuit device is formed (Figure 3c). Figure 1 shows an enlarged view of the electrode terminal components of the semiconductor integrated circuit device described above. As indicated in Figure 1, they are constructed so that one main surface of the electrode terminals 12 is

formed essentially even with the sealing resin 18 and that the portion of the electrode terminals that is embedded in the sealing resin 18 is wider than the one main surface that is exposed. This results in the sealing resin 18 completely covering the stair components 15 that are formed on the tip surface of the electrode terminals 12. Because the reinforcing bar that is exposed on the tip surface of the reinforcing resin 18 is of a similar protruding shape, a structure is formed that is extremely strong even in the presence of external force.

In the example described above, the wires 17 are used for connection of the pad of the IC chip 16 and the electrode terminals 12. However, this is not limited to the wire bonding method and the flip-chip bonding method using a bump may also be used. At the same time, the other main surface of the lead frame 20 may be subjected to a roughening treatment by etching or the sand blast plating method. Further, when a lead frame is used in which the IC chip 16 is attached to the electrode terminals 12 without a die pad 11, the die pad resin with which the IC chip is mounted may be insulating.

Effect of the Invention

Because the semiconductor integrated circuit device of this invention is formed by establishing one or more stair or stepped components on the tip surface of the lead frame board and with sealing resin in a configuration that covers these stepped components, the electrode terminals are not readily peeled off in the presence of external force. Because the electrode terminals are not peeled off even in the face of thermal strain such as during thermal impact tests, a product of high reliability can be obtained.

4. Brief Explanation of the Figures

Figure 1 is an enlarged oblique view of an example of the semiconductor integrated circuit device of this invention, Figures 2a and b are an upper surface view and a cross-sectional view that show the structure of the lead frame that is used in this invention, Figures 3a through c are cross-sectional views that show the manufacturing steps of the semiconductor integrated circuit of this invention and Figure 4 is a cross-sectional view that shows the structure of a semiconductor integrated circuit device in which a conventional lead frame is used.

12 – electrode terminal; 13 – one main surface; 14- the other main surface; 15 – stair component; 16 – IC chip; 17 – wire; 18 – sealing resin; 19 – reinforcing bar; 20 – lead frame.

Name of Agent: Toshio Nakao, Patent Attorney, And 1 Other

Figure 1

- 12 electrode terminal
- 13 one main surface
- 15 stair component
- 18 sealing resin
- 19 reinforcing bar

Figure 2

- a [top figure]
- b [bottom figure]
- 11 die pad
- 12 electrode terminal
- 13 one main surface
- 14 other main surface

15 – stair component

Figure 3

а

11 - die pad

12 – electrode terminal

13 - one main surface

14 - other main surface

15 – stair component

16 - IC chip

17 - wire

b

18 – sealing resin

19 – reinforcing bar

Figure 4

