Остатки задач

[CC 9.] Машина Тьюринга называется забывчивой, если положение головки в любой момент времени зависит только от длины входа. Докажите, что любую машину Тьюринга, работающую время T(n) можно промоделировать за время $O(T^2(n))$ на забывчивой одноленточной машине. б) А на забывчивой двухленточной за время $O(T(n)\log T(n))$.

СС 56. Покажите, что AM[k] = AM при $k \ge 2$.

 $oxed{CC 57.}$ а) Докажите, что если $\operatorname{BPTime}[f(n)] = \operatorname{BPTime}[g(n)]$, то $\operatorname{BPTime}[f(h(n))] = \operatorname{BPTime}[g(h(n))]$, где f,g,h — конструктивные по времени, $f(n),g(n) \geq \log n,\ h(n) \geq n$ — возрастающая функция. 6) Покажите, что $\operatorname{DTime}[f(n)] \subseteq \operatorname{BPTime}[f(n)] \subseteq \operatorname{DTime}[2^{O(f(n))}]$. в) Покажите, что $\operatorname{BPP} \subseteq \operatorname{BPTime}[n^{\log n}] \subseteq \operatorname{BPTime}[2^n]$.

СС 58. Покажите, что существует такой оракул A и язык $L \in NP^A$, что L не сводится по Тьюрингу к 3SAT, даже если сведение может использовать оракул A.

СС 60. Докажите, что если P = NP, то существует язык из EXP, схемная сложность которого не меньше $2^n/(10n)$.

[CC 61.] Пусть есть оракул, который считает перманент матрицы $n \times n$ над полем \mathbb{F} верно для доли матриц $1 - \frac{1}{3n}$. Пусть $|\mathbb{F}| > 3n$). Докажите, что используя этот оракул можно построить вероятностный полиномиальный по времени алгоритм, который для каждой матрицы с большой вероятностью находит ее перманент.

СС 63. Докажите, что если $NP \subseteq PCP(o(\log n), 1)$, то P = NP.

СС 64. Докажите, что если $P \neq NP$, то существует такая константа ρ , что не существует ρ -приближенного полиномиального алгоритма для задачи а) о максимальном независимом множестве; б) о минимальном вершинном покрытии.