Теорема 0.1. Ізольована особлива точка $a \in \mathbb{C}$ функції f(z) є полюсом тоді і тільки тоді, коли головна частина ряду Лорана в околі точки а містить лише скінченне число відмінних від нуля членів.

$$f(z) = \sum_{k=-N}^{\infty} c_k (z - a)^k, \quad N > 0$$
(0.1)

Доведення. Необхідність. Нехай а — полюс; оскільки $\lim_{z\to a} f(z) = \infty$, то існує проколотий окіл точки a, де f(z) регулярна і відмінна від нуля. В цьому околі регулярна функція $\varphi(z) = \frac{1}{f(z)}$, причому існує $\lim_{z\to a} \varphi(z) = 0$. Значить а є усувною точкою (нулем) функції φ і в нашому околі справедливий розклад

$$\varphi(z) = b_N(z-a)^N + b_{N+1}(z-1)^{N+1} + \dots, \quad (b_N \neq 0)$$

Але тоді в тому ж околі ми маємо

$$f(z) = \frac{1}{\varphi(z)} = \frac{1}{(z-a)^N} \cdot \frac{1}{b_N + b_{N+1}(z-a) + \dots}$$
(0.2)

при цьому другий множник ϵ функцією ругулярною в точці a, a значить ма ϵ розклад в ряд Тейлора

$$\frac{1}{b_N + b_{N+1}(z-1) + \dots} = c_{-N} + c_{-N+1}(z-a) + \dots \quad (c_{-N} = \frac{1}{b_N} \neq 0)$$

 Π ідставивши цей розклад в (0.2), будемо мати

$$f(z) = \frac{c_{-N}}{(z-a)^N} + \frac{c_{-N+1}}{(z-a)^{N-1}} + \dots + \sum_{k=0}^{\infty} c_k (z-a)^k.$$

це є розклад в ряд Лорана функції f(z) в проколотому околі точки a, і ми бачимо, що його головна частина містить скінченне число членів.

Достатність. Нехай f(z) в проколотому околі точки а зображсаються розкладом в ряд Лорана (0.1), головна частина якого містить скінченне число членів; нехай ще $c_{-N} \neq 0$. Тоді f(z) регулярна в цьому околі, як функція $\varphi(z) = (z-a)^N f(z)$. Ця функція в даному околі зображається рядом

$$\varphi(z) = c_{-N} + c_{-N+1}(z-a) + \dots,$$

звідки видно, що а є усувною точкою і існує $\lim_{z\to a} \varphi(z) = c_{-N} \neq 0$. Але тоді функція $f(z) = \frac{\varphi(z)}{(z-a)^N}$ прямує до ∞ при $z\to a$, тобто точка а є полюсом

Відмітимо ще один факт прозв'язок полюсів з нулями.

Теорема 0.2. Точка а є полюсом функції f(z) в тому і тільки тому випадку, коли функція $\varphi(z) = \frac{1}{f(z)}, \ \varphi(z) \not\equiv 0, \ регулярна в околі точки а і <math>\varphi(a) = 0.$

Доведення. Необхідність умови доведена при доведенні теореми (0.2). Доведемо її достатність. Якщо $\varphi \not\equiv 0$ регулярна в точці а і $\varphi(z)$, то за теоремою едності (п. 12.3) існує проколотий окіл цієї точки, в якому $\varphi(z) \not\equiv 0$. В цьому околі функція $f(z) = \frac{1}{\varphi(z)}$ регулярна, і, знаючи, а є ізольованоюю особливою точкою f(z). Але $\lim_{z\to a} f(z) = \infty$, значить а є полюсом.

Цей зв'язок дозволяє сформулюювати.

Означення 0.1. Порядком полюса в точці а функції f(z) називається порядок цієї точки як нуля функції $\varphi(z) = \frac{1}{f(z)}$.

З доведення теореми (0.2) видно, що порядок полюса співпадає з номером N старшого члена головної частини розкладу функції f(z) в ряд Лорана в проколотому околі полюса.

Приклад 0.1. Для функції $f(z) = \frac{1}{\sin \frac{1}{z}}$ точки $z_k = \frac{1}{k\pi}$, $k = \pm 1, \pm 2, \ldots$, e полюсами першого порядку, оскільки функція $g(z) = \frac{1}{f(z)} = \sin \frac{1}{z}$ регулярна при $z \neq 0$, а точки z_k e її нулями першого порядку, $(g'(z_k) \neq 0)$. Значить, точки z = 0 e неізольованою особливою точкою. Точка $z = \infty$ — першого порядку для f(z), бо $f(z) \sim z$ $(\lim_{z \to \infty} \frac{f(z)}{z} = 1)$ при $z \to \infty$.

Приклад 0.2. Точка z=0 є полюсом першого порядку для функції $f(z)=\frac{1-\cos z}{(e^z-1)^3}$. Точки $z_k=2k\pi i(k=\pm 1,\pm 2,\dots)$ полюси третього порядку для f(z) оскільки ці точки є нулями третього порядку для функції $f(z)=(e^z-1)^3$, а $1-\cos z\neq 0$.

0.1 Характеристична властивість істотно особливої точки

Теорема 0.3. Ізольована особлива точка а функції f(z) е суттево особливою тоді і тільки тоді, коли головна частина розкладу Лорана f(z) в околі точки а містить нескінченну кількість відмінних від нуля членів.

Доведення. Доведення цієї теореми по суті міститься в теоремах 0.2 пунктів 13.3 і 13.4. Бо якщо головна частина містить нескінченне число членів, то а не може бути ні усувною точкою, а ні полюсом; якщо а — суттево особлива точка, то головна частина не може бути відсутньою, і не може містити скінченне число членів.

Теорема 0.4. (*Ю. В. Сохоцкий*). Якщо а е суттево особливою точкою функції f, то для довільного числа $A \in \overline{\mathbb{C}}$ можна знайти послідовність точок $z_k \to a$ таку, що

$$\lim_{k \to \infty} f(z_k) = A.$$

Цю теорему можна сформулювати ще так: в як завгодно малому околі суттево особливої точки функція f(z) приймає значення як завгодно близькі до довільного наперед заданого числа, скінченного чи нескіченного.

Доведення. Нехай $A=\infty$. Покажемо, що існує послідовність точок z_k , $\lim_{k\to\infty} z_k = a$, таких, що $\lim_{z\to a} f(z_k) = \infty$. Позначимо для скорочення через P(z-a) правильну частину розкладу Лорана (див п. 13.2, формула (1)-(3)), яка містить додатні степені (z-a) і вільний член, а через $Q(\frac{1}{z-a})$ його головну частину, що містить від'ємні степені z-a. Тому формулу 1 п. 13.2 можемо переписати у вигляді:

$$f(z) = P(z - a) + Q(\frac{1}{z - a}). \tag{0.3}$$

Що стосується правильної частини P(z-a), що при $z \to a$ маємо

$$\lim_{z \to a} P(z - a) = c_0. \tag{0.4}$$

Покладаючи $\frac{1}{z-a}=z'$ в головній частині $Q(\frac{1}{z-a})$, будемо мати

$$Q(\frac{1}{z-a}) = Q(z') = c_{-1}z' + c_{-2}(z')^2 + \dots + c_{-k}(z')^k + \dots$$

$$(0.5)$$

Оскільки ряд $Q(\frac{1}{z-a})$ збігається скрізь, крім точки z=a (п. 13.2), то ряд (0.5), очевидно, буде збіжним у всі площині комплексного змінного z'. Функція Q(z') не може бути обмеженою у всій площині комплексного змінного z'. (це за теоремою Ліувіля: якщо функція f(z) регулярна у всій площині, є обмеженою по модулю, то вона є тотожньою сталою). Таким чином $\forall n \in \mathbb{N}$, знайдеться точка z'_n , $|z'_n| > n$, така, що будемо мати $|Q(z'_n| > n)$. Заставляючи п пробігати значення $1, 2, 3, \ldots, k, \ldots$, одержимо послідовність точки $z'_1, z'_2, \ldots, z'_k, \ldots$, яка прямує до ∞ і таку, що будемо мати

$$\lim_{z_k' \to \infty} Q(z_k') = \infty$$

Повертаючись до попереднього змінного z бачимо на основі рівності $\frac{1}{z-a}=z'$, що послідовність точок z'_k перетворюється в послідовність точок $z_1, z_2, \ldots, z_k, dots$ збіжну до точки a, таку, що маємо

$$\lim_{z_k \to a} Q(\frac{1}{z_k - a}) = \infty. \tag{0.6}$$

Заставляючи точки $z \to a$, проходим послідовність точок z_k , бачимо з рівності (0.3) на основі (0.4) і (0.6):

$$\lim_{z_k \to a} f(z_k) = \infty.$$

Нехай тепер A е довільне скінченне комплексне число. Може трапитись, що в довільно малому околі точки а існує точка z, така, що маємо f(z) = A. У цьому випадку теорема Сохоцького справедлива. Таким чином, можна припустити, що в достатньо малому околі точки а функція f(z) не рівна A. Якщо так, то функція $\varphi(z) = \frac{1}{f(z)-A}$ буде регулярною в цьому околі точки a, крім точки a, яку вона має в якості суттево особливої точки (тому, що z = a — суттево особлива точки для f(z) - A). За доведеним \exists послідовність точок $\{z_n\}$ збіжна до точки a, така, що $\lim_{z_n \to a} \varphi(z_n) = \infty$, звідси слідує, що $\lim_{z_n \to a} f(z_n) = A$.

Приклад 0.3. 1. Функція $e^{\frac{1}{z}}$ має при z=0 суттєво особливу точку. Розклад Лорана в околі цієї точки буде

$$e^{\frac{1}{z}} = \sum_{k=0}^{\infty} \frac{1}{k! z^k}$$

2. Для функції $f(z) = \cos z$ точки $z = \infty$ є суттево особливою, бо головна частина $f_1(z)$ ряду Лорана f(z) в околі точки $z = \infty$ містить нескінченну кількість членів.

$$f_1(z) = \sum_{k=1}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!}$$

Більш глибоким твердженням, ніж теорема Сохоцьокого, є така.

Теорема 0.5. Пікара. В довільному околі суттєво особливої точки функція приймає, і притому нескінченне число разів, довільне значення, крім, можливо, одного.

Приклад 0.4. Для функції $f(z) = e^z$ точка $z = \infty$ є суттево особливою (див. приклад 0.3). Розглянемо рівняння

$$e^z = A, \quad (A \neq 0), \tag{0.7}$$

Це рівняння має такі розв'яки

$$z_k = \ln|A| + i(\arg A + 2k\pi),\tag{0.8}$$

де $\arg A - \phi$ іксоване значення аргумента числа $A, k = 0, \pm 1, \pm 2, \ldots, 3$ (0.7) і (0.8) слідує, що в довільному околі точки $z = \infty$ є нескічненна множина точок z_k в яких функція e^z приймає значення, рівне $A(A \neq 0)$, значення A функція e^z не приймає.

Приклад 0.5. Точка $z = \infty$ є суттево особливою для функції $f(z) = \sin z$ і для $\forall A$ рівняння $\sin z = A$ має безліч розв'язків.

$$z_k = \frac{1}{i}\ln(iA + \sqrt{1 - A^2}) + 2k\pi, \quad k \in \mathbb{Z}$$

Приклад 0.6. Нехай функції f(z) і g(z) регулярні в точці $a, g(z) \not\equiv 0$. Тоді для функції $h(z) = \frac{f(z)}{g(z)}$ точка a e або полюсом, або точкою регулярності.