Exercises: Green's Theorem

For Problems 1-3, use the Green's Theorem to evaluate the following line integrals as double integrals. The curve C in each case is always in the positive direction.

Problem 1. $\int_C \mathbf{f}(\mathbf{r}) \cdot d\mathbf{r}$, where $\mathbf{f} = [y, -x]$ and C is the circle $x^2 + y^2 = 1$.

Problem 2. $\int_C \mathbf{f}(\mathbf{r}) \cdot d\mathbf{r}$, where $\mathbf{f} = [6y^2, 2x - 2y^4]$, and C is the boundary of the square with (0,0) and (1,1) as the opposite corners.

Problem 3. $\int_C \mathbf{f}(\mathbf{r}) \cdot d\mathbf{r}$, where $\mathbf{f} = [x^2 e^y, y^2 e^x]$, and C is the boundary of the square with (0,0) and (1,1) as the opposite corners.

Problem 4. Consider the set S of line integrals of the form $\int_C (f_1 dx + f_2 dy)$. Prove that if (i) $\frac{\partial f_1}{\partial y}$ and $\frac{\partial f_2}{\partial x}$ are continuous in \mathbb{R}^2 and (ii) $\frac{\partial f_1}{\partial y} = \frac{\partial f_2}{\partial x}$, then S is path independent.

Problem 5* (Hard). Let C be a closed piecewise smooth curve such that the region D enclosed by C is monotone. Consider an arbitrary point p on C. We call n(x,y) a unit outer normal vector at p = (x,y) if it satisfies all the following conditions:

- |n| = 1;
- the direction of n is perpendicular to the tangent line of C at p;
- the direction of n points towards the outer area of D at p.

Define $f(x,y) = [f_1(x,y), f_2(x,y)]$ such that $\frac{\partial f_1}{\partial x}$ and $\frac{\partial f_2}{\partial y}$ are continuous in D. Prove:

$$\iint_D \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} dx dy = \int_C \mathbf{f} \cdot \mathbf{n} ds.$$