Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΕΜΠ Ηλεκτρομαγνητικά Πεδία Β, 4° εξάμηνο, Τμήμα Ρ-Ω, Διδάσκων Γ. Φικιώρης

1η Σειρά Ασκήσεων

Ημερομηνία ανάθεσης: Πέμπτη 4 Απριλίου 2019 Ημερομηνία παράδοσης: **Πέμπτη 18 Απριλίου 2019**

Ασκηση 1: (Ασκηση 3.7 πρώτου τόμου βιβλίου Ρουμελιώτη/Τσαλαμέγκα)

Αγώγιμη σφαίρα με κέντρο O και ακτίνα a έχει φορτίο Q. Στο εσωτερικό της υπάρχει σφαιρική κοιλότητα με κέντρο $O_{\rm I}$ και ακτίνα b, η οποία πληρούται με αέρα. Στο κέντρο $O_{\rm I}$ της κοιλότητας υπάρχει σημειακό φορτίο q. Να βρεθεί η ένταση του ηλεκτρικού πεδίου παντού στο χώρο. Να εξεταστούν οι ειδικές περιπτώσεις με Q=0 και Q=-q,+q.

Ασκηση 2: (Ασκηση 3.9 πρώτου τόμου βιβλίου Ρουμελιώτη/Τσαλαμέγκα)

Να υπολογιστεί με χρήση τόσο των ολοκληρωτικών όσο και των σημειακών σχέσεων η ένταση του μαγνητικού πεδίου:

α) στην κυλινδρική διάταξη, απείρου μήκους, του Σχ. Α9α

 β) στην επίπεδη διάταξη που δείχνει σε τομή στο επίπεδο xz το $\Sigma \chi$. Α9β. (Η διάταξη εκτείνεται απεριόριστα ως προς x και y).

Ασκηση 3: (Ασκηση 3.13 πρώτου τόμου βιβλίου Ρουμελιώτη/Τσαλαμέγκα)

Στην επιφάνεια ενός κυλίνδρου ακτίνας a, με άπειρο μήκος στην κατεύθυνση z, ρέει ρεύμα με πυκνότητα \overline{K} , όπως φαίνεται στο $\Sigma \chi$. A13. Το ρεύμα αυτό έχει μέτρο K_0 και η διεύθυνσή του σχηματίζει σταθερή γωνία ω με το μοναδιαίο διάνυσμα $\hat{\varphi}$. Έτσι, η έκφραση του \overline{K} σε κυλινδρικές συντεταγμένες είναι $\overline{K}=\hat{\varphi}K_{\varphi}+\hat{z}K_{z}$. Όλος ο χώρος μέσα και έξω από τον κύλινδρο καλύπτεται με αέρα. Να βρεθούν οι τιμές των K_{φ} και K_{z} , καθώς και η ένταση του μαγνητικού πεδίου σε όλο το χώρο.

