Device version /V102

Rev. 1.6 — 17 February 2015

User Manual

Document information

Info	Content
Keywords	Lithio, TEF6686, TEF6687, TEF6688, TEF6689, /V102, firmware 2.00, API, I ² C bus, control, car radio
Abstract	Overview of TEF668X series device control

Revision history

Rev	Date	Description
		'Lithio' TEF6686, TEF6687, TEF6688 and TEF6689, device version V102, user manual
		Description of the TEF668X/V102 control interface (API) and related information
1.6	20150217	Change bars indicate changes from V102 user manual Rev. 1.5
		3.33, 3.37, 4.6 corrected example and table content
		3.40 changed 55.4667 to 55.46667 MHz reference frequency for consistency with other documentation (no control change required)
		6.2.1, 6.2.2, 6.2.3 updated with V102 required initialization p2.22
1.5	20141219	3.9, 3.10, 3.11, 3.12 added extended API noise blanker control (p2.21)
		6.2.1, 6.2.2, 6.2.3 updated with V102 required initialization p2.21
1.4	20141124	6.2.1, 6.2.2, 6.2.3 updated with V102 required initialization p2.19
1.2	20140415	3.3 improved description of min_bandwidth parameter
		6.2.1, 6.2.2, 6.2.3 updated with V102 required initialization p2.15
1.1	20140324	6.2.1, 6.2.2, 6.2.3 updated with V102 required initialization p2.14
1.0	20140306	3.3 added FM PACS minimum bandwidth option (p2.13)
		6.2.1, 6.2.2, 6.2.3 updated with V102 required initialization p2.13
0.8	20140129	4.2.3 increased allowed times using RDS data buffer
		6.2.1, 6.2.2, 6.2.3 updated with V102 required initialization p2.12
0.6	20131210	6.2.1, 6.2.2, 6.2.3 updated with V102 required initialization p2.10
0.5	20131106	3.6 added AM co-channel detection control command (p2.09)
		4.1 added AM noise detector and AM co-channel detector quality read (p2.09)
		6.2.1, 6.2.2, 6.2.3 updated with V102 required initialization p2.09
		7 updated command tables

Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

TEF6686, TEF6687, TEF6688 and TEF6689, /V102

Revision history

Rev	Date	Description
0.4	20131018	Generic changes from the device version V101 user manual:
		- changed version identification and references to V102 (= firmware version 2.00)
		- added TEF6687 and TEF6689 variants with FMSI system
		Changes from V101 user manual Rev 1.8 (V101 p01.24):
		3.15 added FMSI enable command
		3.19 removed attention note regarding FM_Highcut_Options special control (resolved)
		3.20 added note regarding stereo control 'off' as suggested for FMSI use
		3.20 FM_Set_Stereo_Max corrected table head (parameters)
		3.26 FM/AM_Set_DR_Options corrected table head (parameters)
		3.29 added FMSI control commands
		3.40 APPL_Set_ReferenceClock renamed parameters to frequency_msb, frequency_lsb
		4.5 added FMSI processing status read
		6.2.1, 6.2.2, 6.2.3 updated with V102 required initialization (p2.06)
		7 Table 1 consistency corrections on listed commands and parameters
		Template update

Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

User Manual

1. Introduction

TEF668X ('Lithio') is a series of novel single-chip car radio devices with an upper mainstream to high-end performance and feature set.

The Lithio series consists of four variants; TEF6686, TEF6687, TEF6688 and TEF6689. All Lithio variants offer worldwide FM band reception as well as full AM band reception up to 27 MHz. In addition to the TEF6686 feature set the variants TEF6687 and TEF6689 (Lithio FMSI and Lithio FMSI DR) offer the added performance of extended FM stereo reception and the variants TEF6688 and TEF6689 (Lithio DR and Lithio FMSI DR) offer connectivity and support for digital radio reception in the AM and FM bands.

This user manual describes the TEF668X series control interface or API (Application Programming Interface). The document describes the available write and read commands with parameter and data definitions.

This document version contains limited background information regarding the feature functionality and the offered control options so some general knowledge of car radio functions is required.

This user manual describes the functionality and control of the TEF668X device version V102 specifically (TEF668X/V102).

2. Control interface

2.1 Overview

The TEF668X devices are equipped with an I²C bus interface for control of the device. Full control of the device functions and features is available using this single interface.

The I²C bus supports bit rates of up to 400 kbit/s in accordance with the 'fast mode' I²C bus specification.

The control interface is described in this document on an abstract 'application' level as well as on I²C protocol level.

The TEF668X interface definition is compatible with the TEF665X (Atomic-2) and TEF701X (Sabre) series of devices, although differing in available commands reflecting the available functionality. The interface is compatible with the TEA685X (Tiger-2) series as well.

Future NXP car radio devices will employ the same interface allowing compatible control between device types, versions and variants.

Via the I²C bus commands and parameters can be written to the device and information can be read from the device.

TEF668X control is organized in modules. Modules are independent functional blocks that can be regarded sub-devices within the device.

The TEF668X consists of four modules:

- module 32 : FM = FM radio reception
- module 33 : AM = LW, MW and SW radio reception
- module 48 : AUDIO = Audio processing
- module 64 : APPL = System and application control

Different modules can be controlled independently even when the addressed module itself is inactive at the time of control. This means modules can be prepared and initialized before use.

Compatible command definitions have been used for the modules of FM and AM radio where applicable. Defaults and range definitions may differ in some cases to fit the different band properties.

Module commands have one or more parameters for control of the module behavior and option selections.

The control is organized in such a way that future devices may support writing of a single parameter up to writing of all parameters available for a given command.

Device version V102 however does not offer this flexibility and requires all command parameters described in this document to be transmitted. This behavior is equal to device version V101.

Fig 1 represents the TEF668X control interface as seen from the host controller.

TEF668X device variants are fully control compatible, although differing in available features. Future derivatives of these devices will remain compatible also but possibly with a different variation and extension in supported functions and features.

The API template of TEF668X and compatible devices will be used in future NXP carradio developments also, offering compatible control with additional variation in supported functions and features.

The parameter ranges as depicted in this document are the guaranteed ranges for operation. Control outside of these ranges is not allowed for application.

The command parameters in general allow for a higher range and granularity than what is available from TEF668X. Parameters can be set to any value within the documented range even where the actual number of available settings is less than offered by the parameter. In these cases the TEF668X will realize the nearest available setting.

Information regarding the actual available granularity is limited in this document but will be extended in future user manual updates.

2.2 History

The control interface of the TEF668X has been improved over previous product generations in order to ensure and offer:

- Extendibility: Extension of modules, commands and parameters allowing addition and extension of control options, features and functionality for future car radio devices from low-end to high-end.
- Granularity and range: The parameter definition allows for extremely detailed parameter setting and range extension where needed in the future.
- Reduced control effort: Although not supported for device version V102 the interface definition allows for single parameter manipulation simplifying user control software.

Although no direct compatibility is present it should be noted that the TEF668X command interface shares most of its API functionality with previous products. A translation from previous generation style control to the TEF668X control can therefore be made with little effort. Description semantics and description units have been maintained between generations to support easy transfer of settings.

3. Write commands

Write commands allow control or setting of specific features. Writing consists of a module, a command and an index value generally followed by one or more parameter values.

The module value defines the processing part that is addressed. Modules are integral functional parts of the device that can be regarded sub-devices. Available modules in the TEF668X are 32 'FM' for FM radio', 33 'AM' for AM radio, 48 'AUDIO' for audio processing and I/O selection and 64 'APPL' for application and system settings.

The command value defines a control function, a feature setting or a set of feature settings.

The index value is present for future use to allow writing of certain specific parameter parts out of the available command parameters.

Device version V102 requires index = 1 to be used and requires all command parameters described in this user manual to be transmitted. This behavior is equal to device version V101.

The first parameter starts from index = 1.

Write commands are only available in the device 'active state' operation modes with the exception of certain APPL commands available during 'idle state'.

Independent from the selected 'active state' operation mode ('radio standby', 'FM' or 'AM') the write commands of every module are available for writing so full device initialization is possible in any of the 'active state' operation modes.

Note: FM radio and AM radio are never available together. Enabling of one radio module (by a tuning action command on that module) will disable the other radio module but control to the disabled radio module remains available for initialization purposes.

For detailed information on the I²C protocol for write commands see 5.2 Write control.

3.1 FM / AM cmd 1 Tune_To

Tuning within the active radio band or tuning to a different radio band with selection of FM / AM operation.

	0 / 00	En 4 / A B 4						
module 3		FM / AM						
cmd		Tune_To	mode, frequency					
index	1	mode	tuning actions					
		[15:0]	0 =	no acti	on (reserved))		
			1 =	Preset	•	Tune to	o new program with short mute time	
						Enable	radio and FM/AM change where applicable	
			2 =	Search	•	Tune to	o new program and stay muted	
					l	Enable	radio and FM/AM change where applicable	
			FM	3 = A	F-Update		Tune to alternative frequency, store quality and tune back with inaudible mute	
				4 = Ju	ump		Tune to alternative frequency with inaudible mute	
			5 = Check		heck		Tune to alternative frequency and stay muted	
			AM 3 5 = reserved					
			6 = reserved					
			7 = End			Releas	se the mute of a Search or Check action	
			(frequency is not required and ignored)					
	2	2 frequency [15:0]	tuning frequency					
			FM		6500 10	800	65.00 108.00 MHz / 10 kHz step size	
			AM	LW	144 288		144 288 kHz / 1 kHz step size	
				MW	522 171	0	522 1710 kHz / 1 kHz step size	
				SW	2300 27	000	2.3 27 MHz / 1 kHz step	
Application exa	mple	FM_Tune_To (1, 1,	893	0)		Pre	eset tuning to FM 89.3 MHz	
		AM_Tune_To (1, 2	., 990)				arch tuning (from FM) to AM 990 kHz	
		AM_Tune_To (1, 7)			En	d (release mute of AM Search action)	
I ² C example (he	ex)	[w 20 01 01 0001					eset tuning to FM 89.3 MHz	
			03DE]			arch tuning (from FM) to AM 990 kHz	
		[w 21 01 01 0007]			En	d (release mute of Search action)	

3.1.1 radio tuning actions with setting of band and frequency

The mode control parameter allows for execution of different radio tuning actions.

The tuning actions take care of every detail of radio tuning; next to the obvious tuner functions of band switching and frequency adjustment additional control is active for inaudible audio mute, reset of quality detectors, reset or hold of weak signal processing control and suppression of pop noise. All this functionality is an integrated part of

TEF668X tuning. The set of tuning actions offered by TEF668X is an NXP standard and found in car radio devices for many generations.

The set of tuning actions frees the controlling μ C from all non-essential timing and control complexity, however control flexibility is not limited in any way because the full 'decision intelligence' remains at the μ C side. The tuning actions can be regarded building blocks for creating the desired radio tuning control. Tuning actions can be chained together to build complete tuning routines or realize a single basic routine by themselves.

A total of six mode tuning actions are defined for different types of tuning.

mode = 1 ; Preset

mode = 1 performs a complete 'Preset-change' tuning for tuning to a new program or possibly to a new band. For a Preset-change it is desired to start the new program immediately with the best quality possible, therefore time constants of the weak signal handling and AM demodulator AGC are controlled for fast settling to the new signal conditions within a small preset mute time of approx. 32 ms for FM and 60 ms for AM bands.

mode = 2 ; Search:

mode = 2 performs a tuning action to create a search to a new program (previous / next search) or searching for several programs (auto-store).

Search is equal in function to a Preset action however the mute is not released automatically. This allows signal conditions to be checked while muted and when insufficient reception quality is found a new Search action can be activated again and again for a new frequency until a valid search stop condition is found.

Mute can then be released by an End action (mode = 7).

Also a Preset may be used as the last 'search' tuning action to release mute.

Preset and Search employ a 10 ms mute and de-mute slope timing for gentle program switching, so actual tuning is delayed by 10 ms. In case mute is already active (like from a previous Search action) no mute delay is present and tuning is started instantly.

A Preset and Search tuning action also allows for band switching between FM and AM. An AM Preset or AM Search will disable 'radio standby' or 'FM' operation and enable AM module operation. Equally an FM Preset or FM Search will enable FM module operation.

Note the 10 ms mute delay time should also be taken into account when switching between FM and AM module operation.

mode = 3; AF_Update:

mode = 3 performs a complete 'alternative frequency update' tuning cycle for inaudible testing of the quality of alternative frequencies in the background. AF_Update tunes to an alternative frequency, gathers signal quality information and returns to the original frequency within a very short time.

Inaudible mute is employed and the measured AF quality information is stored for easy read-out by I²C. Time constants of the weak signal handling and DC decoupling are controlled so they are not disturbed by the AF signal conditions.

A default AF_Update cycle finishes within 6 ms for the complete action including mute enabling and disabling.

For AF_Update options like the bandwidth used during AF_Update tuning see 3.2 FM cmd 2 Set Tune Options.

mode = 4; Jump:

mode = 4 performs a complete tuning action for switching to a 'known' alternative frequency. Jump performs a tuning with a minimum mute time, only intended to suppress PLL tuning disturbances. Starting from the control setting of the previous frequency the weak signal handling will change gradually to the new signal conditions using the standard weak signal timings, as desired for an inaudible switching to an alternative frequency with the same program.

Since Jump releases mute automatically it must be assumed that the new frequency indeed contains the same program. Should it later be found this is not the case (e.g. by reading the RDS PI code) a new Jump is the designated tuning action for a fast return to the original frequency.

mode = 5; Check:

mode = 5 performs a tuning action for switching to an 'unknown' alternative frequency. Check is equal in function to a Jump action however the mute is not released automatically. During the Check mute an RDS PI code can be searched for and verified and if a valid program is found mute can be released by an End action (mode = 7). During mute the weak signal handling is not disturbed by the new signal conditions and after mute release the weak signal handling will gradually change to the new conditions using the standard weak signal timings. In case an invalid program is found a Jump is the designated tuning action for a fast return to the original frequency.

It is possible to string several Check transmissions together to create an AF_Update like routine for checking several AF signal conditions in a row. Such a string of Check transmissions may be finished by mode = End or Jump or, alternatively, by mode = AF_Update in which case a 'standard' AF_Update is executed with quality data hold while returning to the original frequency as present before the string of Check tunings.

Note: AF_Update, Jump and Check employ a 1 ms mute and de-mute slope timing for fast inaudible switching, so actual tuning is delayed by 1 ms. In case mute is already active (presumably by a previous Check action) no mute delay is present and tuning is started instantly.

mode = 7; End:

mode = 7 ends a currently active tuning action. End releases the sustained mute of a Search (mode = 2) or Check (mode = 5) tuning action.

An End action does not require any additional data, so only the mode parameter needs to be transmitted. In case the frequency is included it is ignored. End is only effective for the currently active radio band (module setting).

3.2 FM cmd 2 Set_Tune_Options

Settings used during a tuning action (FM AF_Update).

module	32 FM	
cmd	2 Set_Tune_Optio	ns afu_bw_mode, afu_bandwidth, afu_mute_time, afu_sample_time
index	1 afu_bw_mode	IF bandwidth control mode during AF_Update
	[15:0]	0 = fixed (default)
		1 = automatic bandwidth
	2 afu_bandwidth	fixed IF bandwidth during AF_Update
	[15:0]	560 3110 [*0.1 kHz] = IF bandwidth 56 311 kHz; narrow wide
		2360 = 236 kHz (default)
	3 afu_mute_time	AF_update inaudible mute slope time
	[15:0]	250 1000 [* 1 us] = 0.25 1 ms
		1000 = 1 ms (default)
	4 afu_sample_time	AF_update sampling time
	[15:0]	1000 20000 [* 1 us] = 1 20 ms
		2000 = 2 ms (default)

Application example FM_Set_Tune_Options (1, 0, 1680, 1000, 2000) 168 kHz bandwidth during AFU

I²C example (hex) [w 20 02 01 0000 0690 03E8 07D0] 168 kHz bandwidth during AFU

Note: afu_sample_time is accurate to 1 ms intervals and a minimum of 2 ms is advised for sufficient settling of all quality detectors.

11 of 101

3.3 FM / AM cmd 10 Set_Bandwidth

Fixed bandwidth selection of the radio selectivity filter.

For FM automatic bandwidth control can be selected with control sensitivity options.

module	32/33	FM / AM				
cmd		Set_Bandwidth	FM: mode, bandwidth, control_sensitivity, low_level_sensitivity, (min_bandwidth, nominal_bandwidth, control_attack.) AM: mode, bandwidth			
index	1	mode	IF bandwidth control mode			
		[15:0]	FM 0 = fixed			
			1 = automatic (default)	X V		
			AM 0 = fixed (default)			
	2	bandwidth	fixed IF bandwidth			
		[15:0]	FM 560 3110 [*0.1 kHz] = IF bar 2360 = 236 kHz (default)	ndwidth 56 311 kHz; narrow wide		
			AM 30 80 [*0.1 kHz] = IF bandwi 40 = 4.0 kHz (default)	dth 3 8 kHz; narrow wide		
	3	control_sensitivity	FM automatic IF bandwidth control s	ensitivity		
		[15:0]	500 1500 [*0.1 %] = 50 150 %	•		
			1000 = 100 % (default)			
	4	low_level_sensitivity	FM automatic IF bandwidth control sensitivity for low level conditions			
		[15:0]	500 1500 [*0.1 %] = 50 150 % relative adjacent channel sensitivity			
			1000 = 100 % (default)			
	5	min_bandwidth	extended API: FM minimum IF bandwidth			
		[15:0]	560 1140 [*0.1 kHz] = IF bandwidth 56 114 kHz; narrow wide			
		and the second	560 = 56 kHz (default)			
	Ь	nominal_bandwidth [15:0]	extended API: FM automatic IF band			
			1510 2360 [*0.1 kHz] = IF bandwidth 151 236 kHz; narrow wide bandwidth in use during no disturbance and low modulation condition			
			2360 = 236 kHz (default)			
	7	control_attack	extended API: FM automatic IF band	lwidth control attack timing		
		[15:0]	150 450 [*1 us] = 150 450 us attack time			
			attack time (from wide to narrow ban			
			300 = 300 us (default)			
Application	example	AM_Set_Bandwidth FM_Set_Bandwidth FM_Set_Bandwidth	(1, 0, 40) All p (1, 0, 2360, 1000, 1000) band (1, 1, 2360, 800, 1000) conf	ndard parameters with FM default parameters with AM default value dwidth = fixed 236 kHz trol_sensitivity = 80 % trol+low_level sensitivity = 80 %		
I ² C example	e (hex)	[w 21 0A 01 0000 [w 20 0A 01 0000	0028] All p 0938 03E8 03E8] FM	parameters with FM default value parameters with AM default value bandwidth = fixed 236 kHz		
doc		All inform	ation provided in this document is subject to legal disclaimers.	© NXP B.V. 2015. All rights reserved.		

[W	20 0A 01	0001 0938 0320 03E8]	control_sensitivity = 80 %
[W	20 0A 01	0001 0938 03E8 0320]	control+low_level sensitivity = 80 %

Note: For FM the following sixteen bandwidth settings are supported: 56 / 64 / 72 / 84 / 97 / 114 / 133 / 151 / 168 / 184 / 200 / 217 / 236 / 254 / 287 / 311 kHz.

For AM the following four bandwidth settings are supported: 3 / 4 / 6 / 8 kHz.

Other bandwidth parameter values are rounded to the nearest supported bandwidth.

Note: Extended API control parameters 5, 6 and 7 are available for additional performance tuning. Adaptation of these default values is not advised in general but allows for performance fine-tuning on specific conditions. Feature innovation may cause extended API defaults and control to change with firmware release.

Min_bandwidth allows for limitation of the minimum bandwidth. Adaptation of the minimum bandwidth default value reduces the achievable adjacent channel suppression but might be considered for areas with 200 kHz FM grid. Please note that also the fixed IF bandwidth control is limited by the min_bandwidth setting.

Transmission of the minimum bandwidth parameter 5 is optional and not required.

The minimum bandwidth option requires initialization version p2.13 or higher.

Nominal_bandwidth allows for selection of the bandwidth in use for the equilibrium state of the system, i.e. for a condition with no adjacent channel disturbance and low modulation index. Adaptation of the nominal_bandwidth default value should be used with care and may impair modulation handling and stereo channel separation performance.

Control_attack allows for selection of the bandwidth control attack time. Control_attack defines control sensitivity in addition to the control_sensitivity parameter which primarily controls the decay time. A smaller control_attack setting (i.e. shorter time) will show a higher sensitivity, a longer time will show a decrease in sensitivity.

The nominal_bandwidth and control_attack option require initialization version p2.17 or higher.

Use of the special control parameters 5, 6 and 7 is optional and transmission is not required. Parameters that are not transmitted are set to their default value.

Modulation boost control is available from 3.28 FM cmd 86 Set Bandwidth Options.

3.4 FM / AM cmd 11 Set RFAGC

Start level of the tuner front-end AGC.

Performance balancing of desensitization (high start level) against inter-modulation (low start level).

Optional extension of the FM RF AGC range with one step by external application use.

module	32 / 33	FM / AM				
cmd	11	Set_RFAGC		FM: start, extension AM: start		
index	1	start	RF /	AGC start		
		[15:0]	FM	840 920 [*0.1 dBμV) = 84 92 dBμV		
				920 = 92 dB μ V (default)		
			AM	940 1020 (*0.1 dB μ V) = 94 102 dB μ V		
				1000 = 100 dBμV (default)		
2	extension	RF AGC step extension				
		[15:0]	FM	0 = integrated steps only (default)		
				1 = AGC step extension from control output (GPIO feature 'AGC')		
			AM	reserved		
Application ex	xample	FM_Set_RFAGC (1, 8		0, 0) FM RF AGC start at 89 dBμV, no ext	. •	
		AM_Set_RFAGC (1	, 970	0) AM RF AGC start at 97 dBμV		
I ² C example (hex)		[w 20 0B 01 037A	0000	FM RF AGC start at 89 dBμV, no ext		
		[w 21 0B 01 03CA]	AM RF AGC start at 97 dBμV		

Note: FM RF AGC step extension requires GPIO pin assignment; see $\frac{3.39}{\text{APPL cmd}} = \frac{3}{3}$.

3.5 AM cmd 12 Set Antenna

AM antenna attenuation control (RF AGC attenuation limit).

In case of an AM active antenna application part of the required level correction can be located in the front-end.

module	33 AM	
cmd	12 Set_Antenna	attenuation
	1 attenuation	LNA gain reduction
	[15:0]	0 / 60 / 120 / 180 / 240 / 300 / 360 (*0.1 dB) = 0 36 dB antenna attenuation (6 dB step size)
		0 = no attenuation (default)

Application example AM_Set_Antenna (1, 180)

AM 18 dB antenna attenuation

I2C example (hex) [w 21 0c 01 00B4]

AM 18 dB antenna attenuation

15 of 101

3.6 AM cmd 14 Set_CoChannelDet

Control of the AM co-channel detector.

The AM co-channel detector searches for sub-sonic audio content as may be found during conditions where the AM channel is disturbed by the signal from a different station transmitting on the same channel but with a slightly different carrier frequency.

module	33	AM		
cmd	14	Set_CoChannelDet	mode, restart, sensitivity, coun	nt
index	1	mode [15:0]	co-channel detector operation	
			1 = on (default)	
	2	restart	co-channel detector restart	
		[15:0]	1 = manual restart; reset detector	or result and start looking for co-channel
			(note: returns to restart = 2; auto	omatic restart after tuning remains enabled)
				g (default); start looking for new co-channel action (see AM cmd = 1 TuneTo)
	3		co-channel detection sensitivity	
		[15:0]	500 1500 [*0.1 %] = 50 15	0 % relative detection sensitivity
			1000 = 100 % (default)	
	4	count	co-channel detection count three	shold
		[15:0]	1 15 = 1 15 detection cour 3 = (default)	nts until signaling of co-channel detected
Application example AM_Set_CoChannelDe			Set sensitivity to 120 % Set count = 5 for higher reliability	
I ² C example (hex)				Set sensitivity to 120 % Set count = 5 for higher reliability

See 4.1 FM / AM cmd 128 / 129 Get_Quality for co-channel detection read.

Note: AM co-channel detection and control requires initialization version p2.09 or higher.

3.7 FM cmd 20 Set_MphSuppression

Optional use of the 'iMS' FM multipath suppression system.

module 3	2 FM		
cmd 2	0 Set_MphSuppres	sion mode	
index	1 mode	FM multipath suppression	
	[15:0]	0 = off (default)	
		1 = on	
Application example	FM_Set_MphSupp	pression (1 1)	Enable the multipath suppression
Application example	FM_Set_MphSupp	· · /	Disable the multipath suppression
		(, - ,	
I ² C example (hex)	[w 20 14 01 000 [w 20 14 01 000	*	Enable the multipath suppression Disable the multipath suppression

Note: The advised setting is 'on' for improved field performance.

3.8 FM cmd 22 Set_ChannelEqualizer

Optional use of the FM channel equalizer.

module	32	FM	
cmd	22	Set_ChannelEqualizer mode	
index	1	mode FM channel equalizer	
		[15:0] 0 = off (default)	
		1 = on	
Application examp	ple	FM_Set_ChannelEqualizer (1, 1)	Enable the channel equalizer
		FM_Set_ChannelEqualizer (1, 0)	Disable the channel equalizer
I ² C example (hex)		[w 20 16 01 0001]	Enable the channel equalizer
		[w 20 16 01 0000]	Disable the channel equalizer

Note: The advised setting is 'on' for improved field performance

3.9 FM cmd 23 Set NoiseBlanker

Noise blanker options and sensitivity setting.

module	32	FM	
cmd	23	Set_NoiseBlanker	mode, sensitivity (, -, modulation, offset, attack, decay)
index	1	mode [15:0]	noise blanker
			0 = off
			1 = on (default)
	2	sensitivity [15:0]	trigger sensitivity
			500 1500 [*0.1 %] = 50 150 % relative trigger sensitivity
			1000 = 100 % (default)
	3	-	reserved
		[15:0]	0 = don't care
	4	modulation	extended API: modulation dependency on trigger sensitivity
		[15:0]	160 1660 [*0.1 %] = 16 166 % modulation (= 12 125 kHz FM dev.)
			Modulation index where minimum pulse detection sensitivity is reached; trigger sensitivity is controlled between maximum sensitivity for no modulation and minimum sensitivity at set modulation index.
			900 = 90 % (default)
	5	offset	extended API: sensitivity offset
		[15:0]	0 250 [*0.1 %] = 0 25 % fixed sensitivity threshold
			Pulse detection offset; prevent false triggering in good signal conditions 1 = 0.1 % (default)
	6	attack [15:0]	extended API: trigger reference attack time
			15 1200 [*1 μs] = 15 1200 μs
			Attack time of noise average filter used as reference for pulse detection
			140 = 140 μs (default)
	7	decay	extended API: trigger reference decay time
		[15:0]	$300 \dots 6000 [*1 \ \mu s] = 300 \ \mu s \dots 6 \ ms$
			Decay time of noise average filter used as reference for pulse detection 2800 = 2.8 ms (default)

Application example FM_Set_NoiseBlanker (1, 1, 1000) FM default values FM_Set_NoiseBlanker (1, 1, 1000, 0, 900, 1, 140, 2800) FM defaults extended API

I2C example (hex)

[w 20 **17** 01 0001 03E8] FM default values 20 **17** 01 0001 03E8 0000 0384 0001 008C 0AFO] FM defaults extended API

Note: Extended API control parameters 4 to 7 are available for additional performance tuning. Changing default values is not advised in general but allows for performance finetuning on specific conditions. Defaults and control may change over firmware releases.

Use of the special control parameters 4 to 7 is optional and transmission is not required. In case of a standard transmission (parameters 1 and 2) extended API changes remain.

For AM cmd 23 Set_NoiseBlanker see chapter 3.11.

© NXP B.V. 2015. All rights reserved.

3.10 FM cmd 24 Set_NoiseBlanker_Options

Extended API control options of the FM noise blanker.

module	32	FM	
cmd	24	Set_NoiseBlanker_	_Options blank_time, blank_time2, blank_modulation
index	1	blank_time [15:0]	FM noise blanker blank time on low modulation
			75 300 [*1 us] = 75 300 us pulse stretch time
			Blank time for low modulation; compared to parameter 'blank_time2' an equal or longer value is suggested optimized for noise pulse suppression.
			210 = 210 us (default)
	2	blank_time2 [15:0]	FM noise blanker blank time on high modulation
			75 300 [*1 us] = 75 300 us pulse stretch time
			Blank time for high modulation; compared to parameter 'blank time' an equal or smaller value is suggested optimized for modulation fidelity.
			210 = 210 us (default)
	3	blank_modulation [15:0]	FM modulation dependent blank time
			160 1660 [*0.1 %] = 16 166 % modulation (= 12 125 kHz FM dev.
			Modulation index threshold for which the blank time is adapted; the 'blank_time' setting is used below the set modulation index and the 'blank_time2' setting is used above the set modulation index.
			250 = 25 % (default)
		-	

Application example FM_Set_NoiseBlanker_Options (1, 210, 210, 250) Extended API default values

I2C example (hex) [w 20 18 01 00D2 00D2 00FA]

Extended API default values

Note: Extended API control is available for additional performance tuning. Adaptation of these default values is not advised in general but allows for performance fine-tuning on specific conditions. Feature innovation may cause extended API defaults and control to change with firmware release.

Note: Noise blanker extended API control requires initialization version p2.21 or higher.

3.11 AM cmd 23 Set NoiseBlanker

Noise blanker options and sensitivity setting.

module	33	AM		
cmd		Set_NoiseBlanker	mode, sensitivity (, gain, blank	_time)
index		mode	noise blanker	
		[15:0]	0 = off	
			1 = on (default)	
	2	sensitivity	trigger sensitivity	
		[15:0]	500 1500 [*0.1 %] = 50 1	50 % relative trigger sensitivity
			1000 = 100 % (default)	
	3	gain	extended API: AM trigger sens	itivity for noise conditions
		[15:0]	600 1600 [*0.1 %] = 60 1	60 % relative trigger sensitivity
			Pulse detection gain; allows ba with the parameter 2 trigger se	alancing of lower RF level trigger sensitivity nsitivity for higher RF level.
			1000 = 100 % (default)	
	4	blank_time	extended API: AM noise blanke	er blank time
		[15:0]	25 250 [*1 μs] = 25 250 ι	us pulse stretch time
			Blanker pulse extension time	
			56 = 56 μs (default)	
Application examp	le	AM_Set_NoiseBlant AM_Set_NoiseBlant AM_Set_NoiseBlant	ker (1, 1, 1000, 1000, 56)	AM default values AM defaults extended API sensitivity 120% for more suppression
I ² C example (hex)			03E8] 03E8 03E8 0038] 04B0]	AM default values AM defaults extended API sensitivity 120% for more suppression

Note: Extended API control parameters 3 and 4 are available for additional performance tuning. Changing default values is not advised in general but allows for performance fine-tuning on specific conditions. Defaults and control may change over firmware releases.

Use of the special control parameters 3 to 4 is optional and transmission is not required. In case of a standard transmission (parameters 1 and 2) extended API changes remain.

Note: Noise blanker extended API control requires initialization version p2.21 or higher.

For FM cmd 23 Set_NoiseBlanker see chapter 3.9.

3.12 AM cmd 24 Set NoiseBlanker Audio

AM Audio noise blanker options and sensitivity setting.

module	33	AM		
cmd	24	Set_NoiseBlanker	_Audio mode, sensitivity (, -, blar	nk_time)
index	1	mode [15:0]	AM audio noise blanker (audio fre	quency detection)
			0 = off	
			1 = on (default)	
	2	sensitivity	AM audio noise blanker trigger se	nsitivity
		[15:0]	500 1500 [*0.1 %] = 50 150	% relative trigger sensitivity
			1000 = 100 % (default)	
	3	[15:0]	reserved	
			0 = don't care	
	4	blank_time	extended API: AM noise blanker blank time	
		[15:0]	400 1200 [*1 μs] = 400 1200	us pulse stretch time
			Blanker pulse extension time	
			800 = 800 μs (default)	
Application exam	ple		ker_Audio (1, 1, 1000)	AM default values
			ker_Audio (1, 1, 1000, 0, 800)	AM defaults extended API
		AM_Set_NoiseBlan	ker_Audio (1, 1, 1200)	sensitivity 120%; more suppression
I ² C example (hex)	[w 21 18 01 0001	03E8] 03E8 0000 0320]	AM default values AM defaults extended API
		[w 21 18 01 0001	0400 1	sensitivity 120%; more suppression

Note: Extended API control is available for additional performance tuning. Adaptation of these default values is not advised in general but allows for performance fine-tuning on specific conditions. Feature innovation may cause extended API defaults and control to change with firmware release.

Use of the special control parameter 4 is optional and transmission is not required. In case of a standard transmission (parameters 1 and 2) extended API changes remain.

Note: Noise blanker extended API control requires initialization version p2.21 or higher.

3.13 FM / AM cmd 30 Set_DigitalRadio

Available for TEF6688 and TEF6689 only.

Enabling of I/O signal lines for external digital radio processor; DR I²S output and DR Blend input (enabling DR audio input from IIS_SD_0).

Note: See 3.26 FM / AM cmd 84 Set_DR_Options for additional digital radio options.

module	32 / 33	FM / AM		
cmd	30	Set_DigitalRadio	mode	
index 1	1	mode	digital radio	
		[15:0]	0 = off (default)	
			1 = on	
Application example		FM_Set_DigitalRadi AM_Set_DigitalRad	· · /	Enable digital radio for FM use Enable digital radio for AM use
I ² C example	(hex)	[w 20 1E 01 0001 [w 21 1E 01 0001	•	Enable digital radio for FM use Enable digital radio for AM use

3.14 FM cmd 31 Set_Deemphasis

[w 20 **1F** 01 02EE]

Selection of FM deemphasis time constant

module	32	FM	
cmd	31	Set_Deemphasis	timeconstant
index	1.	timeconstant [15:0]	deemphasis time constant
			0 = off; for evaluation purposes only
			500 = 50 μs deemphasis (default)
			750 = 75 μs deemphasis
Application exam	ple	FM_Set_Deemphas	sis (1, 750) 75 μs deemphasis

75 µs deemphasis

I²C example (hex)

3.15 FM cmd 32 Set StereoImprovement

Available for TEF6687 and TEF6689 only.

Selection of extended stereo weak signal handling; stereo high blend (default operation) or special FMSI (FM stereo improvement) blend system for improved sound quality.

module 32 FM

cmd 32 Set_StereoImprovement mode

index 1 mode FM stereo extended weak signal handling

[15:0] 0 = stereo high blend (default)

1 = FMSI stereo band blend system

Application example FM Set StereoImprovement (1, 1)

enable FMSI stereo improvement

I²C example (hex)

[w 20 **20** 01 0001]

enable FMSI stereo improvement

Note: The default stereo high blend is controlled from FM cmd 70 ... 76 Set StHiBlend, settings from this command range are in use during active stereo high blend processing. FMSI stereo improvement is controlled from FM cmd 90 ... 92 Set StereoBandBlend, settings from this command range are in use during active FMSI signal processing.

Note: With FMSI enabled the stereo high blend function is disabled but the standard stereo weak signal handling remains. FM cmd 60 ... 66 Set Stereo should be defined with disabled settings (or reduced sensitivity settings) to demonstrate the full FMSI stereo performance.

Note: The advised setting is 'FMSI' for improved field performance

23 of 101

3.16 FM / AM cmd 38 Set LevelStep

Selection of level correction as a function of the tuner front-end AGC.

The level step offset is included in the weak signal handling and the level read value of Get_Quality (4.1 FM / AM cmd 128 / 129 Get_Quality).

A setting of 0 dB will show no level change by full compensation of the actual -6 dB AGC attenuation step. Instead a setting of -6 dB will show the actual AGC attenuation step.

module	32 / 33	FM / AM			
cmd	38	Set_LevelStep	step1, step2, step3, step4, step5, step6, step7		
index	1	step1 [15:0]	level offset for an AGC step from 0 to 1		
			-60 0 (*0.1 dB) = -6 0 dB		
			-20 = -2 dB (FM default) / -10 = -1 dB (AM default)		
	2	step2 [15:0]	level offset for an AGC step from 1 to 2		
			-60 0 (*0.1 dB) = -6 0 dB		
			-30 = -3 dB (FM default) / -20 = -2 dB (AM default)		
	3	step3 [15:0]	level offset for an AGC step from 2 to 3		
			-60 0 (*0.1 dB) = -6 0 dB		
			-40 = -4 dB (FM default) / -30 = -3 dB (AM default)		
	4	step4 [15:0]	level offset for an AGC step from 3 to 4		
			-60 0 (*0.1 dB) = -6 0 dB		
			-50 = -5 dB (FM default) / -40 = -4 dB (AM default)		
	5	step5 [15:0]	level offset for an AGC step from 4 to 5		
			-60 0 (*0.1 dB) = -6 0 dB		
			-60 = -6 dB (FM default) / -50 = -5 dB (AM default)		
	6	step6	level offset for an AGC step from 5 to 6		
		[15:0]	-60 0 (*0.1 dB) = -6 0 dB		
			-60 = -6 dB (default)		
	7	step7	level offset for an AGC step from 6 to 7 (or higher)		
		[15:0]	-60 0 (*0.1 dB) = -6 0 dB		
			-60 = -6 dB (default)		

```
Application example AM_Set_LevelStep(1, 0, -10, -20, -30, -40, -50, -60)
                                                                           AM increased level extension
                     AM_Set_LevelStep(1, -20, -30, -40, -50, -60, -60, -60) AM decreased level extension
```

I²C example (hex)

```
[ w 21 26 01 0000 FFF6 FFEC FFE2 FFD8 FFCE FFC4 ]
                                                     AM increased level extension
[ w 21 26 01 FFEC FFE2 FFD8 FFCE FFC4 FFC4 FFC4 ]
                                                    AM decreased level extension
```

Note: Adaptation of the LevelStep default values is not advised in general but allows for a specific fine-tuning of the weak signal handling in high signal conditions.

Note: The indicated steps are the added values of feedback and input AGC steps.

Note: AGC steps higher than step 7 will employ the step 7 setting.

3.17 FM / AM cmd 39 Set LevelOffset

Selection of level correction.

The level offset can be used as an overall correction for antenna noise level and is included in the weak signal handling and the level read value of Get_Quality (4.1 FM / AM cmd 128 / 129 Get_Quality). A standard use case is the compensation for AM active antenna circuits (typical offset setting = -30 dB).

module	32 / 33 FM / AM	
cmd	39 Set_LevelOffset	offset
index	1 offset	level offset
	[15:0] signed	-480 +150 (*0.1 dB) = -48 +15 dB
		0 = 0 dB (default)

Application example AM_Set_LevelOffset (1, -300)

-30 dB level correction

I²C example (hex) [w 21 27 01 FED4]

-30 dB level correction

3.18 FM / AM cmd 40 ... 45 Set Softmute

Timing and quality sensitivity settings for the Softmute weak signal handling.

'Set_Softmute_Time' defines the weak signal handling response times active for the level detector and FM noise and multipath detectors. Fast and slow response times are available for dual timer functionality, with enable options at the level, noise and mph commands.'

'Set Softmute Mod' enables modulation dependency and sets sensitivity (AM only).

'Set_Softmute_Level' sets the level sensitivity and enables slow and fast timing.

'Set_Softmute_Noise' and 'Set_Softmute_Mph' set the noise and multipath sensitivity and enables slow and fast timing (FM only)

'Set_Softmute_Max' enables and defines the maximum amount of softmute attenuation (as realized for poor signal conditions).

module	32 / 33	FM / AM		
cmd	40	Set_Softmute_Tim	e slow_attack, slow_decay, fa	ast_attack, fast_decay
index 1	slow_attack	slow attack time of weak signal	handling	
		[15:0]	60 2000 (ms) = 60 ms 2 s	slow attack time
			120 = 120 ms (default)	
	2	slow_decay	slow decay time of weak signal	handling
		[15:0]	120 12500 (ms) = 120 ms	. 12.5 s slow attack time
			500 = 500 ms (default)	
	3	fast_attack [15:0]	fast attack time of weak signal handling	
			10 1200 (*0.1 ms) = 1 ms	120 ms fast attack time
			20 = 2 ms (FM default) / 120 =	12 ms (AM default)
	4	fast_decay [15:0]	fast decay time of weak signal h	handling
			20 5000 (*0.1 ms) = 2 ms	. 500 ms fast attack time
			20 = 2 ms (FM default) / 500 = 5	50 ms (AM default)
Application	example	FM_Set_Softmute_	Time (1, 120, 500, 10, 20)	Slow 120 / 500 ms, fast 1 / 2 ms
	6/	AM_Set_Softmute_ 500)	Time (1, 500, 4000, 100,	Slow 500 / 4000 ms, fast 10 / 50 ms
I ² C example	e (hex)	[w 20 28 01 0078	01F4 000A 0014]	Slow 120 / 500 ms, fast 1 / 2 ms
	` ,	•	OFAO 0064 01F4]	Slow 500 / 4000 ms, fast 10 / 50 ms

Note: Suggested FM setting is 1 ms fast_attack for improved field performance.

module	33 AM
cmd	41 Set_Softmute_ Mod mode, start, slope, shift
index	1 mode modulation dependent weak signal handling
	[15:0] 0 = off (default)

All information provided in this document is subject to legal disclaimer

© NXP B.V. 2015. All rights reserved.

TEF6686, TEF6687, TEF6688 and TEF6689, /V102

	1 = on
start	weak signal handling modulation start
[15:0]	100 1000 [*0.1 %] = control when modulation falls below 10% 100%
	210 = 21% (default)
slope	weak signal handling modulation range
[15:0]	30 1000 (*0.1 %) = control over modulation range of 3% 100%
	120 = 12% (default)
shift	weak signal handling control shift
[15:0]	50 1000 (*0.1 %) = maximum weak signal control shift of 5% 100%
	260 = 26% (default)
	(percentage of the linear control range from 0 dB to _Max limit)
	slope [15:0]

module 32 / 33		FM / AM		
cmd	42	Set_Softmute_Lev	rel mode, start, slope	
index	1	mode [15:0]	timer selection	
			0 = off (only for evaluation)	
			1 = fast timer control	
			2 = slow timer control (default)	
			3 = dual timer control; combined fast and slow timer control	
	2	start [15:0]	weak signal handling level start	
			0 500 [*0.1 dB μ V] = control when level falls below 0 dB μ V 50 dB μ V	
			$150=15~dB\mu V$ (FM default) / $280=28~dB\mu V$ (AM default)	
	3	3 slope [15:0]	weak signal handling level range	
			60 300 [*0.1 dB] = control over level range of 6 dB 30 dB	
			220 = 22 dB (FM default) / 250 = 25 dB (AM default)	

Note: Suggested AM setting for LW band is 34 dB μV start and 30 dB slope for improved field performance.

nodule	32 FM	
cmd	43 Set_Softmute_No	pise mode, start, slope
dex	1 mode	timer selection
	[15:0]	0 = off (default)
		1 = fast timer control
		2 = slow timer control
		3 = dual timer control; combined fast and slow timer control
	2 start	FM weak signal handling noise start
	[15:0]	0 800 [*0.1 %] = control when noise above 0 80% of USN detector
		500 = 50% (default)
	3 slope	FM weak signal handling noise range

TEF6686, TEF6687, TEF6688 and TEF6689, /V102

[15:0]	100 1000 [*0.1 %] = control over range of 10 100% of USN detector
	1000 = 100% (default)

man and to be	22		
module		FM	
cmd	44	Set_Softmute_Mph	n mode, start, slope
index	1	mode [15:0]	timer selection
			0 = off (default)
			1 = fast timer control
			2 = slow timer control
			3 = dual timer control; combined fast and slow timer control
	2	start [15:0]	FM weak signal handling multipath start
			0 800 [*0.1 %] = control when mph above 0 80% of WAM detector
			500 = 50% (default)
	3	slope [15:0]	FM weak signal handling multipath range
			100 1000 [*0.1 %] = control over range of 10 100% of WAM detector
			1000 = 100% (default)

module	32 / 33	FM / AM		
cmd	45	Set_Softmute_Max	mode, limit	
index	1	mode	weak signal handling (dynamic control)	
		[15:0]	0 = off (for evaluation only)	
			1 = on; maximum dynamic control defined by limit parameter (default)
	2	limit	softmute dynamic attenuation limit	
		[15:0]	0 400 [*0.1 dB] = 0 40 dB softmute maximum attenuation 200 = 20 dB (FM default) / 250 = 25 dB (AM default)	n
Application of	example	FM_Set_Softmute_I	Max (1, 1, 240) FM 24 dB max. softmute at	tenuation
		AM_Set_Softmute_I	Max (1, 1, 300) AM 30 dB max. softmute at	tenuation
I ² C example	(hex)	[w 20 2D 01 0001	00F0] FM 24 dB max. softmute at	tenuation

Suggested AM setting for LW band is 33 dB limit.

[w 21 **2D** 01 0001 012C]

AM 30 dB max, softmute attenuation

3.19 FM / AM cmd 50 ... 59 Set_Highcut

Timing and quality sensitivity settings for the Highcut weak signal handling.

'Set_Highcut_Time' defines the weak signal handling response times active for the level detector and FM noise and multipath detectors. Fast and slow response times are available for dual timer functionality, with enable options at the level, noise and mph commands.'

'Set Highcut Mod' enables modulation dependency and sets sensitivity

'Set_Highcut_Level' sets the level sensitivity and enables slow and fast timing.

'Set_Highcut_Noise' and 'Set_Highcut_Mph' set the noise and multipath sensitivity and enables slow and fast timing (FM only)

'Set_Highcut_Max' enables and defines the maximum amount of Highcut attenuation (as realized for poor signal conditions).

'Set_Highcut_Min' optionally defines a minimum amount of Highcut attenuation (as realized for good signal conditions).

'Set_Lowcut_Max' enables and defines the maximum dynamic Lowcut attenuation and 'Set_Lowcut_Min' optionally defines a minimum attenuation for low signal frequencies.

Dynamic 'Lowcut' (as set by Set_Lowcut_Max) is part of the 'Highcut' control and shares the HighCut time and sensitivity settings.

'Set_Highcut_Options' allows selection between three different Highcut control characteristics (FM only).

module	32 / 33	FM / AM			
cmd	50	Set_Highcut_Time	slow_attack, slow_decay, fas	st_attack, fast_decay	
index	1	slow_attack	slow attack time of weak signal h	nandling	
		[15:0]	60 2000 (ms) = 60 ms 2 s	slow attack time	
			500 = 500 ms (default)		
	2	slow_decay	slow decay time of weak signal h	nandling	
		[15:0]	120 12500 (ms) = 120 ms	12.5 s slow attack time	
			2000 = 2 s (default)		
	3	fast_attack [15:0]	fast attack time of weak signal handling		
			10 1200 (*0.1 ms) = 1 ms 120 ms fast attack time		
			20 = 2 ms (FM default) / 120 = 1	2 ms (AM default)	
	4	4 fast_decay [15:0]	fast decay time of weak signal ha	andling	
			20 5000 (*0.1 ms) = 2 ms	500 ms fast attack time	
			20 = 2 ms (FM default) / 500 = 5	0 ms (AM default)	
Application	example	FM_Set_Highcut_Ti	me (1, 200, 500, 10, 80)	Slow 200 / 500 ms, fast 1 / 8 ms	
		AM_Set_Highcut_Ti	ime (1, 500, 4000, 100, 500)	Slow 500 / 4000 ms, fast 10 / 50 ms	
I ² C example	e (hex)	[w 20 32 01 00C8	01F4 000A 0050]	Slow 200 / 500 ms, fast 1 / 8 ms	
			[w 21 32 01 01F4	0FA0 0064 01F4]	Slow 500 / 4000 ms, fast 10 / 50 ms

TEF6686, TEF6687, TEF6688 and TEF6689, /V102

Note: Suggested FM settings are 200 ms slow_attack, 1 ms fast_attack and 8 ms fast_decay for improved field performance.

module	32 / 33	FM / AM		
cmd	51	Set_Highcut_	Mod	mode, start, slope, shift
index	1	mode		modulation dependent weak signal handling
		[15:0]		0 = off (default)
				1 = on (independent modulation timer)
	2	start		weak signal handling modulation start
		[15:0]		100 1000 [*0.1 %] = control when modulation falls below 10% 100%
			250 = 25% (default)	
				(note: for FM band 100% modulation equals 75 kHz deviation)
	3	slope [15:0]		weak signal handling modulation range
				30 1000 (*0.1 %) = control over modulation range of 3% 100%
				130 = 13% (default)
	4	4 shift [15:0]		weak signal handling control shift
				50 1000 (*0.1 %) = maximum weak signal control shift of 5% 100%
				500 = 50% (default)
				(percentage of the linear control range from _Min limit to _Max limit)

module	32 / 33	FM / AM	
cmd	52	Set_Highcut_Level	mode, start, slope
index	1	mode [15:0]	timer selection
			0 = off (only for evaluation)
			1 = fast timer control
			2 = slow timer control (AM default)
			3 = dual timer control; combined fast and slow timer control (FM default)
	2	2 start [15:0]	weak signal handling level start
			200 600 [*0.1 dB μ V] = control when level is below 20 dB μ V 60 dB μ V
			$360=36~\text{dB}\mu\text{V}$ (FM default) / $400=40~\text{dB}\mu\text{V}$ (AM default)
	3	slope	weak signal handling level range
		[15:0]	60 300 [*0.1 dB] = control over level range of 6 dB 30 dB
			300 = 30 dB (FM default) / 200 = 20 dB (AM default)

Note: Suggested AM setting for MW and SW band is 47 dB μ V start for improved field performance. Suggested for AM LW band is 52 dB μ V start.

module	32 FM	
cmd	53 Set_Highcut_Noise	mode, start, slope

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2015. All rights reserved.

TEF6686, TEF6687, TEF6688 and TEF6689, /V102

index	1 mode	timer selection
	[15:0]	0 = off
		1 = fast timer control
		2 = slow timer control (default)
		3 = dual timer control; combined fast and slow timer control
	2 start	FM weak signal handling noise start
	[15:0]	0 800 [*0.1 %] = control when noise above 0 80% of USN detector 360 = 36% (default)
	3 slope	FM weak signal handling noise range
	[15:0]	100 1000 [*0.1 %] = control over range of 10 100% of USN detector
		300 = 30% (default)
	-	

Note: Suggested is 'dual timer' mode, 15% start and 20% slope for improved field performance.

ner control
80% of WAM detector
. 100% of WAM detector

Note: Suggested is 'dual timer' mode, 12% start and 16% slope for improved field performance.

module	32 / 33	FM / AM			
cmd	55	Set_Highcut_Max	mode, limit		
index	2	mode [15:0]	weak signal handling (dynamic control)		
			0 = off; for evaluation only		
			1 = on; maximum dynamic control set by limit parameter (default)		
		2 limit [15:0]	Highcut attenuation limit		
			FM Highcut corner frequency for maximum -3 dB attenuation		
			4000 = 4 kHz (default)		
			1500 7000 [*1 Hz] = 1.5 7 kHz 'IIR' filter (Options '1' (default))		

		700 3000 [*1 Hz] = 0.7 3 kHz 'deemphasis' mode (Options '2')
		2700 7000 [*1 Hz] = 2.7 7 kHz 'FIR' highcut filter (Options '3')
	AM	M 1350 7000 [*1 Hz] = 1.35 7 kHz Highcut maximum -3 dB att.
		1800 = 1.8 kHz	(default)
Application example	FM_Set_Highcut_Max	(1, 1, 2400)	FM 2.4 kHz max. Highcut attenuation
	AM_Set_Highcut_Max	(1, 1, 1500)	AM 1.5 kHz max. Highcut attenuation
I ² C example (hex)	[w 20 37 01 0001 09	60]	FM 2.4 kHz max. Highcut attenuation
	[w 21 37 01 0001 05	DC]	AM 1.5 kHz max. Highcut attenuation

Note: For FM different limit ranges apply for the different Highcut control characteristics as available from FM Set_Highcut_Options (cmd = 59).

Note: Suggested FM setting is 2.4 kHz limit for improved 'IIR' filter field performance.

module	32 / 33	FM / AM					
cmd	56	Set_Highcut_Min	n	node, limit			
index	1	mode	stror	ng signal handling			
		[15:0]	0 = 0	0 = off; high audio frequency bandwidth is not limited (FM default)			
			1 = 0	on; minimum control limit s	et by limit parameter (AM default)		
	2		High	cut fixed attenuation limit			
		[15:0]	FM	Highcut corner frequency	for minimum -3 dB attenuation		
				10000 = 10 kHz (default)			
				2700 15000 [*1 Hz] = 2	2.7 15 kHz 'IIR' filter (Options '1' (default))		
				1500 3183 [*1 Hz] = 1.	5 3.18 kHz 'deemphasis' (Options '2')		
				2122 = 75 μs deemphasis	s / 3183 = 50 μs deemphasis		
				2700 15000 [*1 Hz] = 2	2.7 15 kHz 'FIR' highcut filter (Options '3')		
			AM	2700 15000 [*1 Hz] = 2	2.7 15 kHz -3 dB att. for min. Highcut		
				6000 = 6 kHz (default)			
· ·							
Application e	example	FM_Set_Highcut_M	lin (1,	1, 10000)	FM 10 kHz min. Highcut attenuation		
		AM_Set_Highcut_M	1in (1,	1, 3000)	AM 3 kHz min. Highcut attenuation		
I ² C example	(hex)		2710	•	FM 10 kHz min. Highcut attenuation		
		[w 21 38 01 0001	0BB8]	AM 3 kHz min. Highcut attenuation		

Note: In case of characteristic 'deemphasis' from FM cmd 59 Set_Highcut_Options mode = 2, the <u>FM cmd 31 Set Deemphasis</u> setting is ignored and 50 μ s or 75 μ s deemphasis is defined by FM_Set_Highcut_Min parameters mode = 1, and limit instead.

Note: For a normal control behavior Set_Highcut_Min always should set a weaker signal handling limit (i.e. a higher frequency) than Set_Highcut_Max.

TEF6686, TEF6687, TEF6688 and TEF6689, /V102

module 32/3	B3 FM / AM		
	57 Set_Lowcut_ Max	mode, limit	
index	1 mode	weak signal handling	(dynamic control)
	[15:0]	0 = off	
		1 = on; maximum dyr	namic control defined by limit parameter (default)
	2 limit	Lowcut dynamic atte	nuation limit
	[15:0]	30 500 [Hz] = 30 .	500 Hz -3 dB attenuation for maximum Lowcut
		120 = 120 Hz (defaul	lt)
Application example	e FM_Set_Lowcut_N	/lax (1, 1, 100)	FM 100 Hz max. Lowcut attenuation
	AM_Set_Lowcut_N	Max (1, 1, 300)	AM 300 Hz max. Lowcut attenuation
I ² C example (hex)	[w 20 39 01 000	1 0064]	FM 100 Hz max. Lowcut attenuation
	[w 21 39 01 000	1 012C]	AM 300 Hz max. Lowcut attenuation

Note: Suggested FM setting is 100 Hz limit for improved field performance.

module	32 / 33	FM / AM		
cmd	58	Set_Lowcut_Min	mode, limit	
index	1	mode	strong signal handling	
		[15:0]	0 = off; low audio frequency b	pandwidth is not limited (FM default)
			1 = on; minimum control limit	set by limit parameter (AM default)
	2	limit	Lowcut fixed attenuation limit	
		[15:0]	10 200 [Hz] = 10 200 H	z Lowcut minimum -3 dB attenuation
			20 = 20 Hz (default)	
Application e	example	FM_Set_Lowcut_M	in (1, 1, 10)	FM 10 Hz min. Lowcut attenuation
		AM_Set_Lowcut_M	lin (1, 1, 30)	AM 30 Hz min. Lowcut attenuation
I ² C example	(hex)	[w 20 3A 01 0001	000A]	FM 10 Hz min. Lowcut attenuation
		[w 21 3A 01 0001	001E]	AM 30 Hz min. Lowcut attenuation

Note: For a normal control behavior Set_Lowcut_Min always should set a weaker signal handling limitation (i.e. a lower frequency) than Set_Lowcut_Max.

TEF6686, TEF6687, TEF6688 and TEF6689, /V102

module	32 FM	
cmd	59 Set_Highcut_O _l	ptions mode
index	1 mode	FM Highcut control characteristics
	[15:0]	1 = IIR; 'analog' first order lowpass filter with controlled frequency (default)
		2 = deemphasis; controlled frequency of the 50 / 75 μs deemphasis filter
		3 = FIR; 'digital' high order lowpass filter with controlled frequency

Application example FM_Set_Highcut_Options (1, 2) FM 'deemphasis' type Highcut control

I²C example (hex) [w 20 3B 01 0002] FM 'deemphasis' type Highcut control

Note: Different FM Highcut control characteristics are available for selection of sound taste.

Note: In addition to the _Options selection of the Highcut filter type appropriate values should be written to FM_Set_Highcut_Min and FM_Set_Highcut_Max.

Note: In case of 'deemphasis' characteristics the FM_Set_Deemphasis setting is ignored and selection of 50 μs or 75 μs deemphasis is defined by FM_Set_Highcut_Min instead.

3.20 FM cmd 60 ... 66 Set_Stereo

Timing and quality sensitivity settings for the FM Stereo weak signal handling.

'Set_Stereo_Time' defines the weak signal handling response times active for the level detector and noise and multipath detectors. Fast and slow response times are available for dual timer functionality, with enable options at the level, noise and mph commands.'

'Set Stereo Mod' enables modulation dependency and sets sensitivity

'Set Stereo Level' sets the level sensitivity and enables slow and fast timing.

'Set_Stereo_Noise' and 'Set_Stereo_Mph' set the noise and multipath sensitivity and enables slow and fast timing.

'Set Stereo Max' allows disabling the dynamic stereo control for evaluation purposes.

'Set_Stereo_Min' optionally defines a minimum amount of Stereo attenuation (as realized for good signal conditions).

module	32 FM	
cmd	60 Set_Stereo_	Time slow_attack, slow_decay, fast_attack, fast_decay
index	1 slow_attack	slow attack time of weak signal handling
	[15:0]	60 2000 (ms) = 60 ms 2 s slow attack time
		1000 = 1 s (default)
	2 slow_decay	slow decay time of weak signal handling
	[15:0]	120 12500 (ms) = 120 ms 12.5 s slow attack time
		4000 = 4 s (default)
	3 fast_attack	fast attack time of weak signal handling
	[15:0]	10 1200 (*0.1 ms) = 1 ms 120 ms fast attack time
		80 = 8 ms
	4 fast_decay	fast decay time of weak signal handling
	[15:0]	20 5000 (*0.1 ms) = 2 ms 500 ms fast attack time
		80 = 8 ms
		*

Application example FM_Set_Stereo_Time (1, 200, 4000, 20, 80)

Slow 200 / 4000 ms, fast 2 / 8 ms

I2C example (hex)

[w 20 3C 01 00C8 0FA0 0014 0050]

Slow 200 / 4000 ms, fast 2 / 8 ms

Note: Suggested is 200 ms slow_attack and 2 ms fast_attack for improved field performance.

module	32 FM	
cmd	61 Set_Stereo_ Mod	mode, start, slope, shift
index	1 mode	modulation dependent weak signal handling
	[15:0]	0 = off (default)
		1 = on (independent modulation timer)

All information provided in this document is subject to legal disclaimers

© NXP R V 2015 All rights reserved

TEF6686, TEF6687, TEF6688 and TEF6689, /V102

2 start	weak signal handling modulation start
[15:0]	100 1000 [*0.1 %] = control when modulation falls below 10% 100%
	210 = 21% (default)
	(note: for FM band 100% modulation equals 75 kHz deviation)
3 slope	weak signal handling modulation range
[15:0]	30 1000 (*0.1 %) = control over modulation range of 3% 100%
	90 = 9% (default)
4 shift	weak signal handling control shift
[15:0]	50 1000 (*0.1 %) = maximum weak signal control shift of 5% 100%
	500 = 50% (default)
	(percentage of the linear control range from _Min limit to 'mono')

module
cmd
index

32 FM

62	Set_Stereo_Level	mode, start, slope
1	mode	timer selection
	[15:0]	0 = off (only for evaluation)
		1 = fast timer control
		2 = slow timer control
		3 = dual timer control; combined fast and slow timer control (default)
2	start	weak signal handling level start
	[15:0]	300 600 [*0.1 dB μ V] = control when level below 30 dB μ V 60 dB μ V
		$460 = 46 \text{ dB}\mu\text{V (default)}$
3		weak signal handling level range
	[15:0]	60 300 [*0.1 dB] = control over level range of 6 dB 30 dB
		240 = 24 dB (default)

module
cmd
index

32 FM

~_		
63	Set_Stereo_Noise	mode, start, slope
1	mode	timer selection
	[15:0]	0 = off
		1 = fast timer control
		2 = slow timer control
		3 = dual timer control; combined fast and slow timer control (default)
2	start	FM weak signal handling noise start
	[15:0]	0 800 [*0.1 %] = control when noise above 0 80% of USN detector
		240 = 24% (default)
3	slope	FM weak signal handling noise range
	[15:0]	100 1000 [*0.1 %] = control over range of 10 100% of USN detector
		200 = 20% (default)

Note: Suggested is 12% start and 16% slope for improved field performance.

doc

t, slope
' 1
control
control
control; combined fast and slow timer control (default)
al handling multipath start
%] = control when mph above 0 80% of WAM detector
efault)
al handling multipath range
[0.1 %] = control over range of 10 100% of WAM detector
efault)
() () ()

Note: Suggested is 10% start and 15% slope for improved field performance.

module	32	FM	
cmd	65	Set_Stereo_Max	mode
index	[45:01		weak signal handling (dynamic control)
		0 = off (for evaluation only)	
			1 = on; maximum dynamic control is 0 dB channel sep, i.e. mono (default)

Note: _Max mode 'off' is not suitable to disable Stereo handling as may be desired for FMSI operation. Setting 'off' on _Mod, _Level, _Usn and _Mph should be used instead.

module	32	FM			
cmd	66	Set_Stereo_Min	mod	de, limit	
index	1	1 mode	strong s	signal handling	
		[15:0]	0 = off;	channel separation is n	ot limited (default)
			1 = on;	minimum control limit se	et by limit parameter
			2 = forced mono		
2	2	2 limit [15:0]	Stereo fixed attenuation limit		
			60 4	400 [0.1* dB] = 6 40 c	dB Stereo minimum channel separation
			400 = 4	40 dB (default)	
Application examp	ole	FM_Set_Stereo_Min	1 (1, 1,	200)	FM 20 dB min. Stereo channel sep.
		FM_Set_Stereo_Mir	1 (1, 2,	, 200)	FM forced mono
I ² C example (hex)		[w 20 42 01 0001	0008]		FM 20 dB min. Stereo channel sep.

[w 20 **42** 01 0002 00C8]

FM forced mono

3.21 FM cmd 70 ... 76 Set_StHiBlend

Timing and quality sensitivity settings for the FM StHiBlend weak signal handling.

'Set_StHiBlend_Time' defines the weak signal handling response times active for the level detector and noise and multipath detectors. Fast and slow response times are available for dual timer functionality, with enable options at the level, noise and mph commands.'

'Set StHiBlend Mod' enables modulation dependency and sets sensitivity

'Set_StHiBlend_Level' sets the level sensitivity and enables slow and fast timing.

'Set_StHiBlend_Noise' and 'Set_StHiBlend_Mph' set the noise and multipath sensitivity and enables slow and fast timing.

'Set_StHiBlend_Max' enables and defines the maximum amount of StHiBlend attenuation (as realized for very poor signal conditions).

'Set_StHiBlend_Min' optionally defines a minimum amount of StHiBlend attenuation (as realized for good signal conditions).

module	32 FM	
cmd	70 Set_StHiBlend_T	ime slow_attack, slow_decay, fast_attack, fast_decay
index	1 slow_attack	slow attack time of weak signal handling
	[15:0]	60 2000 (ms) = 60 ms 2 s slow attack time 500 = 500 ms (default)
	2 slow_decay	slow decay time of weak signal handling
	[15:0]	120 12500 (ms) = 120 ms 12.5 s slow attack time 2000 = 2 s (default)
	3 fast_attack	fast attack time of weak signal handling
	[15:0]	10 1200 (*0.1 ms) = 1 ms 120 ms fast attack time 20 = 2 ms (default)
	4 fast_decay	fast decay time of weak signal handling
	[15:0]	20 5000 (*0.1 ms) = 2 ms 500 ms fast attack time 20 = 2 ms (default)

Application example FM_Set_StHiBlend_Time (1, 120, 500, 80, 160) Slow 120 / 500 ms, fast 8 / 16 ms

I²C example (hex) [w 20 46 01 0078 01F4 0050 00A0] Slow 120 / 500 ms, fast 8 / 16 ms

module	32 FM	
cmd	71 Set_StHiBlend_	Mod mode, start, slope, shift
index	1 mode	modulation dependent weak signal handling
	[15:0]	0 = off (default)
		1 = on (independent modulation timer)
	2 start	weak signal handling modulation start

All information provided in this document is subject to legal disclaimer

© NXP B.V. 2015. All rights reserved.

TEF668X User Manual

TEF6686, TEF6687, TEF6688 and TEF6689, /V102

	[15:0]	100 1000 [*0.1 %] = control when modulation falls below 10% 100% 240 = 24% (default) (note: for FM band 100% modulation equals 75 kHz deviation)
3	slope	weak signal handling modulation range
[15:0]	[15:0]	30 1000 (*0.1 %) = control over modulation range of 3% 100% 120 = 12% (default)
4	shift	weak signal handling control shift
	[15:0]	50 1000 (*0.1 %) = maximum weak signal control shift of 5% 100% 670 = 67% (default) (percentage of the control range from _Min limit to _Max limit)

module	32 FM	
cmd	72 Set_StHiBlend_	Level mode, start, slope
index	1 mode	timer selection
	[15:0]	0 = off (only for evaluation)
		1 = fast timer control
		2 = slow timer control
		3 = dual timer control; combined fast and slow timer control (default)
	2 start	weak signal handling level start
	[15:0]	$300~~660~[^*0.1~dB\mu V]$ = control when level below $30~dB\mu V~~66~dB\mu V$ 600 = $60~dB\mu V$ (default)
	3 slope [15:0]	weak signal handling level range
		60 300 [*0.1 dB] = control over level range of 6 dB 30 dB 240 = 24 dB (default)

module	32 FM	
cmd	73 Set_StHiBlend_	Noise mode, start, slope
index	1 mode	timer selection
	[15:0]	0 = off
		1 = fast timer control
		2 = slow timer control
		3 = dual timer control; combined fast and slow timer control (default)
	2 start	FM weak signal handling noise start
	[15:0]	0 800 [*0.1 %] = control when noise above 0 80% of USN detector 160 = 16% (default)
	3 slope	FM weak signal handling noise range
	[15:0]	100 1000 [*0.1 %] = control over range of 10 100% of USN detector 140 = 14% (default)

Note: Suggested is 8% start for improved field performance.

do

module	32	FM	
cmd	74	Set_StHiBlend_ M	ph mode, start, slope
index	1	mode	timer selection
		[15:0]	0 = off
			1 = fast timer control
			2 = slow timer control
			3 = dual timer control; combined fast and slow timer control (default)
	2	start	FM weak signal handling multipath start
		[15:0]	0 800 [*0.1 %] = control when mph above 0 80% of WAM detector 160 = 16% (default)
	3	slope	FM weak signal handling multipath range
		[15:0]	100 1000 [*0.1 %] = control over range of 10 100% of WAM detector 140 = 14% (default)
			1.10 1.110 (40.44.1)

Note: Suggested is 8% start for improved field performance.

module	32	FM		
cmd	75	Set_StHiBlend_ M	ax mode, limit	
index	1	mode	weak signal handling (dynami	c control)
		[15:0]	0 = off	
			1 = on; maximum dynamic co	ntrol defined by limit parameter (default)
	2	limit	StHiBlend dynamic attenuatio	n limit
		[15:0]	2700 7000 [Hz] = 2.7 kHz channel separation bandwidth	7 kHz StHiBlend max. reduction of
			4000 = 4 kHz (default)	
Application exar	mple	FM_Set_StHiBlend	_Max (1, 1, 3000)	3 kHz maximum reduction of channel separation bandwidth
I ² C example (he	(x)	[w 20 4B 01 0001	OBB8]	3 kHz maximum reduction of channel

module	32 FM	
md 76	76 Set_StHiBlend_ N	flin mode, limit
index	1 mode	strong signal handling
	[15:0]	0 = off; channel separation bw is not limited (default)
		1 = on; minimum control limit set by limit parameter
	2 limit	StHiBlend fixed attenuation limit
	[15:0]	3000 15000 [Hz] = 3 kHz 15 kHz StHiBlend min. reduction of channel separation bandwidth
		7000 = 7 kHz (default)

separation bandwidth

TEF668X User Manual

TEF6686, TEF6687, TEF6688 and TEF6689, /V102

Application example FM_Set_StHiBlend_Min (1, 1, 7000) fixed 7 kHz channel separation

bandwidth

 I^2C example (hex) [w 20 4c 01 0001 1B68] fixed 7 kHz channel separation

bandwidth

Note: For a normal control behavior Set_StHiBlend_Min always should set a weaker signal handling limit (i.e. a higher frequency) than Set_StHiBlend_Max.

3.22 FM / AM cmd 80 Set_Scaler

Fine tuning of sound amplitude between FM and AM analog radio sound.

module	32 / 33	FM / AM	
cmd	80	Set_Scaler	gain
index	1	gain	channel gain
		[15:0] (signed)	-120 +60 [*0.1 dB] = -12 +6 dB analog radio signal gain
			0 = 0 dB (default)
Application	example	FM_Set_Scaler (1,	-30) FM analog radio -3 dB gain scaling
I ² C example	e (hex)	[w 20 50 01 FFE2	FM analog radio -3 dB gain scaling

Note: For fine tuning of FM and AM digital radio sound amplitude see 3.25 FM / AM cmd 83 Set DR Blend.

3.23 FM cmd 81 Set RDS

Control of the FM Radio Data System demodulator and decoder system.

module	32 FM		
cmd	81 Set_F	RDS	mode, restart, interface
index	1 mode		RDS operation control
	[15:0]	0 = off (RDS function disabled)
			1 = decoder mode (default); output of RDS group data (block A, B, C, D) from Get_RDS_Status/Get_RDS_Data; FM cmd = 130/131
			2 = demodulator mode; output of raw demodulator data from Get_RDS_Status/Get_RDS_Data; FM cmd = 130/131
	2 restar		RDS decoder restart
	[15:0	[15:0]	0 = no control
			1 = manual restart; start looking for new RDS signal immediately
			2 = automatic restart after tuning (default); start looking for new RDS signal after Preset, Search, Jump or Check tuning action (see FM cmd = 1)
	3 interfa		RDS pin signal functionality
	[15:0	[15:0]	0 = no pin interface (default)
			2 = data-available status output; active low (GPIO feature 'DAVN')
			4 = legacy 2-wire demodulator data and clock output ('RDDA' and 'RDCL')

Application example FM_Set_RDS (1, 1, 2, 2)

Enable data-available status signal pin

I2C example (hex)

[w 20 **51** 01 0001 0002 0002]

Enable data-available status signal pin

See 4.2 FM cmd 130 / 131 Get_RDS for information on RDS data read.

Note: RDS 'DAVN' signal (interface = 2) can be output at any of the available GPIO pins. To receive raw demodulator data use of 'demodulator mode' is advised (mode = 2), the 2-wire output option (interface = 4) is available for legacy use only and not suggested for new designs.

For pin signals a GPIO pin assignment is required; see 3.39 APPL cmd 3 Set_GPIO.

3.24 FM / AM cmd 82 Set_QualityStatus

Enable and define interrupt use or status pin output for quality detector status flag.

module			
cmd index	82	Set_QualityStatus	mode, interface
	1	mode	quality status flag after tuning ready
		[15:0]	0 = no flag set after tuning (default)
			[8:0] : 10 320 (* 0.1 ms) = set flag at 1 32 ms after tuning ready
			[15]: 1 = set flag when FM AF_Update quality result is available
	2	2 interface [15:0]	quality status pin signal functionality
			0 = no pin interface (default)
			2 = quality status output; active low ('QSI')

Application example FM_Set_QualityStatus (1, 32968, 2)

Set status pin at 20 ms or AFU result

I²C example (hex) [w 20 52 01 8008 0002]

Set status pin at 20 ms or AFU result

For pin signals a GPIO pin assignment is required; see <u>3.39 APPL cmd 3 Set_GPIO</u>. Note: the mode parameter timer setting is rounded to 1 ms step size.

3.25 FM / AM cmd 83 Set_DR_Blend

Available for TEF6688 and TEF6689 only.

Control of digital radio blend functionality and digital radio scaler.

module	32 / 33	FM / AM			
cmd	83	Set_DR_Blend	mode, in_time, out_time, gain		
index	1	mode	blend pin use (DR_BL input)		
		[15:0]	0 = Standard pin use : DR Blend pin High = digital radio (default)		
			1 = Inverted pin use : DR Blend pin Low = digital radio		
			2 = No pin use; Force blend to digital radio		
			3 = No pin use; Force blend to analog radio		
	2	in_time [15:0]	blend time from analog radio to digital radio		
			10 5000 [*0.1 ms] = 1 500 ms		
			50 = 5 ms (default)		
	3	out_time	blend time from digital radio to analog radio		
		[15:0]	10 5000 [*0.1 ms] = 1 500 ms		
			50 = 5 ms (default)		
	4	gain	digital radio channel gain		
		[15:0] (signed)	-180 +60 [*0.1 dB] = -18 +6 dB digital radio signal gain		
			0 = 0 dB (default)		

Application example FM_Set_DR_Blend (1, 2, 50, 50, -60) force 5 ms blend to digital (-6 dB)

I²C example (hex) [w 20 53 01 0002 0032 0032 FFC4] force 5 ms blend to digital (-6 dB)

Note: blend is functional only when digital radio is enabled (see <u>3.13 FM / AM cmd 30 Set_DigitalRadio</u>) and radio is selected as an audio input source (see <u>3.32 AUDIO cmd 12 Set_Input</u>).

3.26 FM / AM cmd 84 Set_DR_Options

For TEF6688 and TEF6689 only.

Control of digital radio I/O functionality. Note: DR output is functional only when digital radio is enabled (see 3.13 FM / AM cmd 30 Set_DigitalRadio).

cmd 84 Set_DR_Options samplerate, mode, format index 1 samplerate [15:0] baseband digital radio sample rate (DR_I2S output) 0 = automatic frequency selection based on tuning frequency (default) 6500 = 650 kHz (not for normal application use) 6750 = 675 kHz (not for normal application use) baseband digital radio pin mode [15:8] = BCK and WS pin mode 34 = standard operation, voltage output (default) [7:0] = Data pin(s) mode 2 = voltage output 4 = open drain ('pull down') (default) 4 = open drain ('pull down') (default) 5 format [15:0] baseband digital radio format select 16 = I²S 16 bit, '3 wire' interface with single I/Q signal line (DR_I_DATA) (fdr_Bck = 32 * sample rate) 4112 = I²S 16 bit, '4 wire' interface with independent I and Q signal lines (fdr_Bck = 16 * sample rate) (default)	module	32 / 33	FM / AM			
index 1 samplerate [15:0] baseband digital radio sample rate (DR_I2S output) 0 = automatic frequency selection based on tuning frequency (default) 6500 = 650 kHz (not for normal application use) 6750 = 675 kHz (not for normal application use) 2 mode [15:0] baseband digital radio pin mode [15:8] = BCK and WS pin mode 34 = standard operation, voltage output (default) [7:0] = Data pin(s) mode 2 = voltage output 4 = open drain ('pull down') (default) 3 format [15:0] baseband digital radio format select 16 = I²S 16 bit, '3 wire' interface with single I/Q signal line (DR_I_DATA) (fdr_BCK = 32 * sample rate) 4112 = I²S 16 bit, '4 wire' interface with independent I and Q signal lines				samplerate	e. mode. format	
[15:0] 0 = automatic frequency selection based on tuning frequency (default) 6500 = 650 kHz (not for normal application use) 6750 = 675 kHz (not for normal application use) 2 mode [15:0]	index		•	•		
6750 = 675 kHz (not for normal application use) 2 mode [15:0] baseband digital radio pin mode [15:8] = BCK and WS pin mode 34 = standard operation, voltage output (default) [7:0] = Data pin(s) mode 2 = voltage output 4 = open drain ('pull down') (default) 3 format [15:0] baseband digital radio format select 16 = I ² S 16 bit, '3 wire' interface with single I/Q signal line (DR_I_DATA) (fdr_BCK = 32 * sample rate) 4112 = I ² S 16 bit, '4 wire' interface with independent I and Q signal lines						
baseband digital radio pin mode [15:0] ECK and WS pin mode 34 = standard operation, voltage output (default)				6500 = 650	0 kHz (not for normal application use)	
[15:0] [15:8] = BCK and WS pin mode 34 = standard operation, voltage output (default) [7:0] = Data pin(s) mode 2 = voltage output 4 = open drain ('pull down') (default) 3 format [15:0] baseband digital radio format select 16 = I ² S 16 bit, '3 wire' interface with single I/Q signal line (DR_I_DATA) (fdr_Bck = 32 * sample rate) 4112 = I ² S 16 bit, '4 wire' interface with independent I and Q signal lines				6750 = 67	5 kHz (not for normal application use)	
34 = standard operation, voltage output (default) [7:0] = Data pin(s) mode 2 = voltage output 4 = open drain ('pull down') (default) 3 format [15:0] baseband digital radio format select 16 = I ² S 16 bit, '3 wire' interface with single I/Q signal line (DR_I_DATA) (fdr_BCK = 32 * sample rate) 4112 = I ² S 16 bit, '4 wire' interface with independent I and Q signal lines		2	mode	baseband	digital radio pin mode	
[7:0] = Data pin(s) mode 2 = voltage output 4 = open drain ('pull down') (default) 5 format [15:0] baseband digital radio format select 16 = I ² S 16 bit, '3 wire' interface with single I/Q signal line (DR_I_DATA) (fdr_Bright = 32 * sample rate) 4112 = I ² S 16 bit, '4 wire' interface with independent I and Q signal lines			[15:0]	[15:8] =	BCK and WS pin mode	
2 = voltage output 4 = open drain ('pull down') (default) 3 format [15:0] baseband digital radio format select 16 = I ² S 16 bit, '3 wire' interface with single I/Q signal line (DR_I_DATA) (f _{DR_BCK} = 32 * sample rate) 4112 = I ² S 16 bit, '4 wire' interface with independent I and Q signal lines					34 = standard operation, voltage output (default)	
4 = open drain ('pull down') (default) 3 format [15:0] baseband digital radio format select 16 = I ² S 16 bit, '3 wire' interface with single I/Q signal line (DR_I_DATA) (fdr_Bck = 32 * sample rate) 4112 = I ² S 16 bit, '4 wire' interface with independent I and Q signal lines				[7:0]=	Data pin(s) mode	
baseband digital radio format select [15:0]					2 = voltage output	
[15:0] $16 = I^2S \text{ 16 bit, '3 wire' interface with single I/Q signal line (DR_I_DATA)}$ $(f_{DR_BCK} = 32 * sample rate)$ $4112 = I^2S \text{ 16 bit, '4 wire' interface with independent I and Q signal lines}$					4 = open drain ('pull down') (default)	
$(f_{DR_BCK} = 32 * sample rate)$ 4112 = I ² S 16 bit, '4 wire' interface with independent I and Q signal lines		3	format	baseband	digital radio format select	
$4112 = I^2S$ 16 bit, '4 wire' interface with independent I and Q signal lines			[15:0]	16 = I ² S 16 bit, '3 wire' interface with single I/Q signal line (DR_I_DATA)		
				(f _{DR_BCK} = 32 * sample rate)		
(f _{DR_BCK} = 16 * sample rate) (default)				4112 = I ² S 16 bit, '4 wire' interface with independent I and Q signal lines		
				(f _{DR_BCK} = '	16 * sample rate) (default)	
	Application ex	ample			automatic DR sample rate selection	
·			FM_Set_DR_Optio	ns (1, 0, 87	706, 16) 3-wire bus with voltage output data	

I²C example (hex) [w 20 54 01 0000] automatic DR sample rate selection [w 20 54 01 0000 2202 0010] 3-wire bus with voltage output data

Note: writing of parameters mode and format is optional

Note: Digital radio audio I/O is defined by <u>AUDIO cmd 22 Set_Dig_IO</u> (see <u>3.35</u>); signal = 32; IIS_SD_0.

Note: samplerate parameter setting changes are executed at the next tuning action.

3.27 FM / AM cmd 85 Set Specials

Special radio options for evaluation and extended application use.

32 / 33	FM / AM	
85	Set_Specials	ana_out
1	ana_out	audio output use
	[15:0]	0 = normal operation (default)
		1 = DAC_L : FM MPX wideband (DARC) signal / DAC_R : FM mono audio
		2 = L : digital radio left channel / R : analog radio left channel
example	FM_Set_Specials (1	1, 1) DARC/VICS output mode
	FM_Set_Specials (1	1, 2) digital radio time alignment test
(hex)	[w 20 55 01 0001	DARC/VICS output mode
	[w 20 55 01 0002	digital radio time alignment test
	85 1 xample	[15:0] xample FM_Set_Specials (FM_Set_Specials ((hex) [w 20 55 01 0001

Note: setting ana_out = 1 acts on the DAC output and is available for FM only. FM stereo signal remains available from the digital audio I2S output (IIS_SD_1).

Note: setting ana_out = 2 acts on both the DAC and the digital audio I^2S output. DAC source selection or I^2S output source selection override this digital radio test option.

Device version V102 note:

Setting ana_out = 2 requires an audio input selection of 'radio' and digital radio must be disabled (or the blend signal in inactive state). Digital radio gain scaling is not included. This behavior is equal to device version V101.

47 of 101

I²C example (hex)

Set 90 % modulation for max. boost

TEF6686, TEF6687, TEF6688 and TEF6689, /V102

3.28 FM cmd 86 Set_Bandwidth_Options

[w 20 **56** 01 0384]

Additional control option of the FM automatic bandwidth radio selectivity filter.

module 3	FM	
cmd 8	Set_Bandwidth_C	Options modulation
index	1 modulation	extended API: FM automatic bandwidth boost on modulation
	[15:0]	660 1330 (*0.1 %) = 66 133 % modulation (= 50 100 kHz FM dev.)
		Modulation index where bandwidth is boosted to maximum bandwidth. 950 = 95 % (default)
Application example	e FM_Set_Bandwidt	th_Options (1, 900) Set 90 % modulation for max. boost

Note: Adaptation of the default value is not advised in general but allows for specific performance fine-tuning on specific conditions. Feature innovation may cause extended API defaults and control to change with firmware release

For main FM automatic bandwidth control and additional control options see 3.3 FM / AM cmd 10 Set Bandwidth.

The modulation control option requires initialization version p2.17 or higher.

3.29 FM cmd 90 ... 92 Set StereoBandBlend

For TEF6687 and TEF6689 only.

Control of the FMSI stereo improvement and extension system.

To enable the FMSI system see FM cmd 32 Set_StereoImprovement.

'Set StBandBlend Time' defines the weak signal handling response times.

'Set_StBandBlend_Gain' defines the weak signal handling sensitivity for the four available audio bands.

'Set_StBandBlend_Bias' defines the system operation on the condition of good quality reception with low modulation.

module	32	FM	
cmd	90	Set_StBandBlend_	_Time attack, decay
index	1	attack	attack time of FMSI weak signal handling
		[15:0]	10 1000 (ms) = 10 ms 1 s attack time (control time towards mono)
			50 = 50 ms (default)
	2	decay	decay time of FMSI weak signal handling
		[15:0]	10 1000 (ms) = 10 ms 1 s attack time (control time towards stereo)
			50 = 50 ms (default)
Application exan	nple	FM_Set_StBandBle	end_Time (1, 100, 30) FMSI 100 ms attack, 30 ms decay

I²C example (hex)

[w 20 **5A** 01 0064 001E

FMSI 100 ms attack, 30 ms decay

Note: Because the FMSI weak signal handling is dominantly defined by modulation best results can be found with equal time settings or maybe even slow attack with fast decay as shown in the example.

module	32 FM	
cmd	91 Set_StBandBlend	d_Gain band1, band2, band3, band4
ndex	1 band1	control sensitivity for low frequency audio band
	[15:0]	500 1500 [*0.1 %] = 50% 150% weak strong control to mono
		1000 = 100% (default)
	2 band2	control sensitivity for audio band around 2 kHz
	[15:0]	500 1500 [*0.1 %] = 50% 150% weak strong control to mono
		1000 = 100% (default)
	3 band3	control sensitivity for audio band around 5 kHz
	[15:0]	500 1500 [*0.1 %] = 50% 150% weak strong control to mono
		1000 = 100% (default)
	4 band4	control sensitivity for high frequency audio band
	[15:0]	500 1500 [*0.1 %] = 50% 150% weak strong control to mono
		1000 = 100% (default)

TEF668X User Manual

TEF6686, TEF6687, TEF6688 and TEF6689, /V102

Application example FM_Set_StBandBlend_Gain (1, 1000, 1000, FMSI sensitivity control

1000, 1000)

I²C example (hex) [w 20 5B 01 03E8 03E8 03E8 03E8] FMSI sensitivity control

module	32	FM		
cmd	92	Set_StBandBlend	_Bias band1, band2, band3, band4	
index	1	band1	control bias for low frequency audio band	
		[15:0] signed	-250 +250 [*0.1 %] = -25% +25% stereo mono bias	
			-75 = -7.5% (default)	
	2	band2	control bias for audio band around 2 kHz	
		[15:0] signed	-250 +250 [*0.1 %] = -25% +25% stereo mono bias	
			-35 = -3.5% (default)	
	3	band3	control bias for audio band around 5 kHz	
		[15:0] signed	-250 +250 [*0.1 %] = -25% +25% stereo mono bias	
			-25 = -2.5% (default)	
	4	band4	control bias for high frequency audio band	
		[15:0] signed	-250 +250 [*0.1 %] = -25% +25% stereo mono bias	
			-25 = -2.5% (default)	

Application example FM_Set_StBandBlend_Bias (1, 0, 0, 0, 0) FMSI bias control

I²C example (hex) [w 20 5c 01 0000 0000 0000 0000] FMSI bias control

Note: The control bias settings determine the blending for good quality conditions with low modulation.

3.30 AUDIO cmd 10 Set Volume

Setting of audio volume.

cmd 10 Set_Volume volume index 1 volume audio volume	module	48 AUDIO	
index 1 volume audio volume	cmd	10 Set_Volume	volume
	index		audio volume
[15:0] (signed) -599 +240 = -60 +24 dB volume		[15:0] (signed)	-599 +240 = -60 +24 dB volume
0 = 0 dB (default)			0 = 0 dB (default)

Application example AUDIO_Set_Volume (1, -100) Set -10 dB volume gain

I²C example (hex) [w 30 0A 01 FF9C] Set -10 dB volume gain

Note: Depending on the source signal a volume setting over 0 dB may introduce signal clipping.

Note: TEF668X volume settings down to volume = -40 dB are accurate within 1 dB, lower volume shows increasing inaccuracy and step size. Setting -60 dB and lower sets mute.

3.31 AUDIO cmd 11 Set Mute

Enable and disable of the audio mute.

module	48 AUDIO	
cmd	11 Set_Mute	mode
index	1 mode	audio mute
	[15:0]	0 = mute disabled
		1 = mute active (default)

Application example AUDIO_Set_Mute (1, 0) Disable mute, allow audio output

I²C example (hex) [w 30 0B 01 0000] Disable mute, allow audio output

3.32 AUDIO cmd 12 Set_Input

Input select; selection of audio input source signal.

module	48	AUDIO			
cmd 12 Set_Input		Set_Input	source		
index	1	source	audio source se	lect	
		[15:0]	0 = radio (defau	lt)	
			(analog radio or	digital radio when enabled and available)	
			32 = I ² S digital audio input IIS_SD_0		
			240 = sine wave	generator	
Application examp	ole	AUDIO_Set_Input (1, 32)	Select external I2S audio source	
		AUDIO_Set_Input (1, 240)	Select sine wave generator	
I ² C example (hex))	[w 30 0c 01 0020]	Select external I ² S audio source	
		[w 30 0C 01 00F0]	Select sine wave generator	

3.33 AUDIO cmd 13 Set Output Source

Output select; selection of source signal for audio output.

48 AUDIO	
13 Set_Output_Sour	rce signal, source
1 signal	audio output
[15:0]	33 = I ² S digital audio output IIS_SD_1
	128 = DAC L/R output
2 source	source
[15:0]	4 = analog radio
	32 = I ² S digital audio input IIS_SD_0
	224 = audio processor (default)
	240 = sine wave generator
	13 Set_Output_Sou 1 signal [15:0]

Application example AUDIO_Set_Output_Source (1, 33, 04) Select analog radio on I2S output

I²C example (hex) [w 30 0D 01 0011 00F0] Select analog radio on I²S output

By default both the DAC output and the IIS_SD_1 output signal are taken from the audio processor, i.e. with signal defined by AUDIO_Set_Input, _Set_Volume and _Set_Mute. Set_Output_Source allows for an alternative output signal selection, directly connecting to one of the available source signals without processing.

Note: Command Set_Output_Source requires a signal definition, i.e. include index = 1

doc

3.34 AUDIO cmd 21 Set Ana Out

Definition of analog output signals.

module	48	AUDIO	
cmd	21	Set_Ana_Out	signal, mode
index	1	signal [15:0]	analog audio output
			128 = DAC L/R output
	2	mode	output mode
		[15:0]	0 = off (power down)
			1 = output enabled (default)

Application example AUDIO_Set_Ana_Out (1, 128, 0) Disable DAC output

I²C example (hex) [w 30 15 01 0080 0000] Disable DAC output

3.35 AUDIO cmd 22 Set_Dig_IO

Definition of digital input and output audio signals.

module	48	AUDIO	
cmd	22	Set_Dig_IO	signal, mode, format, operation, samplerate
index	1	signal [15:0]	digital audio input / output
			32 = I ² S digital audio IIS_SD_0 (input)
			33 = I ² S digital audio IIS_SD_1 (output)
	2	mode	I/O mode
		[15:0]	0 = off (default)
			1 = input (only available for signal = 32)
			2 = output (only available for signal = 33)
	3	3 format [15:0]	digital audio format select
			16 = I ² S 16 bits (f _{IIS_BCK} = 32 * samplerate)
			32 = I ² S 32 bits (f _{IIS_BCK} = 64 * samplerate) (default)
			272 = Isb aligned 16 bit (f _{IIS_BCK} = 64 * samplerate)
			274 = Isb aligned 18 bit (f _{IIS_BCK} = 64 * samplerate)
			276 = Isb aligned 20 bit (f _{IIS_BCK} = 64 * samplerate)
			280 = Isb aligned 24 bit (f _{IIS_BCK} = 64 * samplerate)
	4	operation [15:0]	operation mode
			0 = slave mode; IIS_BCK and IIS_WS input defined by source (default)
			256 = master mode; IIS_BCK and IIS_WS output defined by device
	5	5 samplerate [15:0]	audio sample rate select
			3200 = 32.0 kHz

4410 = 44.1 kHz (default)	
4800 = 48.0 kHz	

Application example AUDIO Set Dig IO (1, 33, 2, 32, 256, 4800)

Dig. output 32 bit I2S, master, 48 kHz.

I²C example (hex)

[w 30 **16** 01 0021 0002 0020 0100 12C0]

Dig. output 32 bit I2S, master, 48 kHz.

Note: Command Set_Dig_IO requires a signal definition, i.e. include index = 1.

Note: A TEF668X digital audio signal always employs 16 active (msb) bits.

Note: In some cases settings of 'operation' or 'samplerate' are not independently selectable, e.g. because of shared BCK and WS pins. The control setting is based on the signal with lowest enumeration value in such a case.

Note: f_{IIS BCK} indicates the output frequency in master mode operation and the required input frequency for slave mode operation of lsb aligned formatted output signals. Slave mode operation of input signals and I2S formatted output signals also allows for other bit clock rates of (16 ... 32) * 2 * samplerate.

3.36 AUDIO cmd 23 Set Input Scaler

Fine tuning of sound amplitude of external sources. For each of the available external sources a separate sound amplitude correction can be programmed for use when the audio input is selected (see 3.32 AUDIO cmd 12 Set_Input).

module	48 AUDIO	
cmd	23 Set_Input_Scaler	source, gain
index	1 source	audio source
	[15:0]	32 = I ² S digital audio input : IIS_SD_0
	2 gain	external source channel gain
	[15:0] (signed)	-120 +60 [*0.1 dB] = -12 +6 dB external source signal gain
		0 = 0 dB (default)

Application example AUDIO_Set_Input_Scaler (1, 32, -60) Scale I2S input 0 by -6 dB

I²C example (hex) Scale I2S input 0 by -6 dB [w 30 **17** 01 0020 FFC4]

Note: Command Set_Input_Scaler requires a source definition, i.e. include index = 1.

Note: Scaling of digital radio signal from IIS SD 0 is defined by radio control FM / AM cmd 83 Set DR Blend (see 3.25).

3.37 AUDIO cmd 24 Set WaveGen

Definition of the internal sine wave and offset generator signal.

The wave generator can be selected as an audio source (see <u>3.32 AUDIO cmd 12 Set_Input</u>) and is intended for test purposes only.

module	48 AUDIO	
cmd	24 Set_WaveG	mode, offset, amplitude1, frequency1, amplitude2, frequency2
index	1 mode	mode
	[15:0]	0 = wave signal off (default)
		1 = wave 1 signal on Left channel
		2 = wave 2 signal on Right channel
		3 = wave 1 signal on Left channel and wave 2 signal on Right channel
		5 = wave 1 signal on Left and Right channel
		6 = wave 2 signal on Left and Right channel
		7 = wave 1 + wave 2 signal on Left and Right channel
	2 offset	DC offset
	[15:0]	-32768 + 32767 (* 1 LSB of 16 bit) = max negative max positive.
		0 = no offset (default)
	3 amplitude1	wave 1 amplitude
	[15:0] signed	-300 0 (*0.1 dB) = -30 0 dB
		-200 = -20 dB (default)
	4 frequency1	wave 1 frequency
	[15:0]	10 20000 (*1 Hz) = 10 Hz 20 kHz
		400 = 400 Hz (default)
	5 amplitude2	wave 2 amplitude
	[15:0] signed	-300 0 (*0.1 dB) = -30 0 dB
		-200 = -20 dB (default)
	6 frequency2	wave 2 frequency
	[15:0]	10 20000 (*1 Hz) = 10 Hz 20 kHz
		1000 = 1 kHz (default)
	ALIDIO Ost	Ways Can (4 0 400 000 4000 000 4000)
pplication exa		WaveGen (1, 0, 128, -200, 1000, -200, 1000)) Set offset to +128 LSB WaveGen (1, 5, 0, -100, 400, -200, 1000) Set -10 dB, 400 Hz sine

Note: The reference for amplitude is digital full scale peak to peak (FS_{PP}); i.e. 0 dB represents a maximum undistorted sine wave signal when no offset is applied.

The DC offset is available on both Left and Right channel for all mode settings.

For mode = 7 the signals of wave 1 and wave 2 are added together, for undistorted signal the combined amplitudes of wave 1 and wave 2 should not exceed 0 dB.

doc

[w 30 **18** 01 0000 0080 FF38 03E8 FF38 03E8]

[w 30 **18** 01 0005 0000 FF9C 0190 FF38 03E8]

Set offset to +128 LSB

Set -10 dB, 400 Hz sine

I2C example (hex)

3.38 APPL cmd 1 Set OperationMode

Device power control.

module	64 APPL	APPL			
cmd	1 Set_Operation N	Set_OperationMode mode			
index	1 mode	device operation mode			
	[15:0]	0 = normal operation			
		1 = radio standby mode (low-power mode without radio functionality) (default)			

Application example APPL_Set_OperationMode (1, 1) Put device in radio standby mode

I²C example (hex) [w 40 01 01 0001] Put device in radio standby mode

Note: FM and AM commands are available during both operation modes allowing for radio initialization of both FM and AM operation during radio standby mode.

Mode = 'normal operation' will return to the radio operation as defined before standby (unless other selections were made during radio standby mode).

Alternatively a radio tuning action of Preset or Search (see 3.1 FM / AM cmd 1 Tune To) will enable normal operation.

3.39 APPL cmd 3 Set GPIO

Define general purpose and application pin use.

module	64	APPL	
cmd	3	Set_GPIO	pin, module, feature
index	1	pin	GPIO number
		[15:0]	0 2 = GPIO number
	2	module [15:0]	module
			32 = FM
			33 = AM
	3	feature [15:0]	feature
			0 = no use (default) (FM / AM)
			1 = general purpose input (FM / AM)
			2 = general purpose output '0' (FM / AM)
			3 = general purpose output '1' (FM / AM)
			257 = output RDS (FM : see cmd 81 'DAVN')
			258 = output QSI (FM / AM : see cmd 82 'timer and AF_Update flag')
			259 = output QSI + RDS (active 'low' if 'DAVN' is active or 'QSI' is active)
			260 = output RDDA (FM : see cmd 81 'RDDA, RDCL legacy option')
			261 = output RDCL (FM : see cmd 81 'RDDA, RDCL legacy option')
			262 = output AGC (FM : see cmd 11 'AGC step extension')

Application example	APPL_Set_GPIO (1, 0, 32, 257)	Output 'DAVN' at GPIO 0 for FM
	APPL_Set_GPIO (1, 0, 33, 3)	Output 'high' at GPIO 0 for AM
100		

 I²C example (hex)
 [w 40 03 01 0000 0020 0101]
 Output 'DAVN' at GPIO 0 for FM

 [w 40 03 01 0000 0021 0003]
 Output 'high' at GPIO 0 for AM

Note: Command Set_GPIO requires a GPIO number definition, i.e. include index = 1.

Note: General purpose input use is limited to GPIO 0.

Note: A module setting of FM or AM is active for the appropriate radio mode only, allowing independent feature definitions for FM and AM.

Note: Feature signals RDS, QSI and AGC are all 'active low'.

Note: Definition and enabling of assigned features is available

from FM cmd 81 Set RDS for 'RDS', 'RDDA' and 'RDCL' (see 3.23),

from FM / AM cmd 82 Set_QualityStatus for 'QSI' (see 3.24) and

from FM / AM cmd 11 Set_RFAG for 'AGC' (see 3.4).

3.40 Idle state - APPL cmd 4 Set ReferenceClock

This command is only available during 'idle state'.

Several different frequencies can be used for the crystal oscillator or the external reference clock. For proper functioning the reference frequency must be entered before activation of the device, the command is therefore available during 'idle' state only.

module
cmd
index

64 APPL

4	Set_ReferenceClo	ck frequency_msb, frequency_lsb, type
1	frequency_msb [15:0]	MSB part of the reference clock frequency
		[31:16]
2	frequency_lsb	LSB part of the reference clock frequency
	[15:0]	[15:0]
		frequency [*1 Hz]
		(default = 9216000)
3	type [15:0]	clock type
		0 = crystal oscillator operation (default)
		1 = external clock input operation

Application example

APPL_Set_ReferenceClock (1, 846, 23214, 1)	Set external reference 55466670 Hz
APPL_Set_ReferenceClock (1, 61, 2304, 0)	Set crystal reference 4 MHz
APPL_Set_ReferenceClock (1, 140, 40960, 0)	Set crystal reference 9.216 MHz
APPL_Set_ReferenceClock (1, 183, 6912, 0)	Set crystal reference 12 MHz

I2C example (hex)

[W	40	04	01	034E	5AAE	0001]	Set external reference 55466670 Hz
[W	40	04	01	003D	0900	0000]	Set crystal reference 4 MHz
[W	40	04	01	008C	A000	0000]	Set crystal reference 9.216 MHz
[W	40	04	01	00B7	1B00	0000]	Set crystal reference 12 MHz

TEF668X supported frequencies: 4.000 MHz, 9.216 MHz, 12.000 MHz, 55.46667 MHz.

Note: Supported frequencies for digital radio use are 9.216, 12.000 and 55.46667 MHz.

Note: 55.46667 MHz is for clock input use only and not supported as a crystal frequency.

Accuracy of the reference clock frequency setting is not critical, approximate values are translated to actual supported frequencies.

3.41 Idle state - APPL cmd 5 Activate

This command is only available during 'idle state'.

After the reference clock frequency has been defined the device must be put in active state to allow for further initialization and control. After activation the device will be in operational mode 'radio standby'.

module	64 APPL	
cmd	5 Activate	mode
index	1 mode [15:0]	1 = goto 'active' state with operation mode of 'radio standby'

Application example APPL_Activate (1, 1)

Go from 'idle state' to 'active state'.

I²C example (hex) [w 40 05 01 0001]

Go from 'idle state' to 'active state'.

Note: Setting mode = 1 is the only available setting.

4. Read commands

Read commands make certain specific information available for read-out. Reading consists of writing a module, a command and an index value (i.e. similar to a write command) followed by a read of the requested data.

The module defines the processing part that is addressed. Modules are integral functional parts of the device that can be regarded sub-devices. Modules in the TEF668X offering read data are 32 'FM' for FM radio, 33 'AM' for AM radio and 64 'APPL' for application and system information.

The command value defines the set of read data of interest.

The index value is present for future use to allow reading of certain specific data parts out of the available command read data.

Device version V102 requires index = 1 to be used. (I.e. equal to device version V101.) For evaluation purposes also index = 0 is supported.

The first actual read data starts from index = 1.

For evaluation purposes reading may also start from index = 0 in which case the first data word contains a confirmation of the data following (see 5.7.1).

Read commands are only available in the device 'active state' operation modes (with the exception of certain APPL read commands) and only available for enabled modules.

• idle state: valid read data from 'APPL' read of operation status, device identification and I²C write checking.

active state = radio standby: valid read data from 'AUDIO' and 'APPL' module.

• active state = FM: valid read data from 'AM', 'AUDIO' and 'APPL'.

• active state = AM: valid read data from 'FM', 'AUDIO' and 'APPL'.

For detailed information on the I2C protocol for read commands see 5.3 Read control.

4.1 FM / AM cmd 128 / 129 Get Quality

Read status of the tuner reception quality information

Get_Quality_Status will read status and possibly data with the status and any frozen data (like e.g. available after AF_Update tuning) remaining unchanged. Get Quality Status is intended for status read only (i.e. status polling) but data may be sampled when desired.

Get_Quality_Data will read status and data with the status and any frozen data (like e.g. available after AF_Update tuning) released after read, allowing for new data updates. Get_Quality_Data is intended for data reading with status informing about data content and validity.

modul	le

32 / 33 FM / AM

5 offset

[15:0] (signed)

cmd

128 Get Quality Status FM: | status, level, usn, wam, offset, bandwidth, modulation

-1200 ... 1200 (*0.1 kHz) = -120 kHz ... 120 kHz radio frequency error

index

129	Get_Quality_Data	AM : :	status, level, noise, co_channel, offset, bandwidth, modulation		
1	status	quality detector status			
	[15:0]	[15] =	AF_update flag		
			0 = continuous quality data with time stamp		
			1 = AF_Update sampled data		
		[14:10] =	reserved		
		[9:0] =	quality time stamp		
			0 = tuning is in progress, no quality data available		
			1 320 (* 0.1 ms) = 0.1 32 ms after tuning,		
			quality data available, reliability depending on time stamp		
			1000 = > 32 ms after tuning		
			quality data continuously updated		
2	level	level detector result			
	[15:0] (signed)	-200 1200 (0.1 * dB μ V) = -20 120 dB μ V RF input level			
		actual ra	nge and accuracy is limited by noise and agc		
3	usn / noise [15:0]	noise de			
	[15.0]	FM ultra	asonic noise detector		
		0	. 1000 (*0.1 %) = 0 100% relative usn detector result		
		AM hig	n frequency noise detector		
		0	. 50000 (*0.1 %) = 0 5000% noise relative to wanted signal		
		100	00 = 100% is approximate equal noise and wanted signal		
4	wam / co-channel	FM multi	path detector / AM co-channel detector		
	[15:0]		leband-AM' multipath detector		
		0	. 1000 (*0.1 %) = 0 100% relative wam detector result		
		AM co-	channel detector		
		0 =	no co-channel detected		
		1 =	co-channel detected (based on selected criteria)		

radio frequency offset

TEF668X User Manual

TEF6686, TEF6687, TEF6688 and TEF6689, /V102

	actual range and accuracy is limited by noise and bandwidth
6 bandwidth	IF bandwidth
[15:0]	FM 560 3110 [*0.1 kHz] = IF bandwidth 56 311 kHz; narrow wide
	AM 30 80 [*0.1 kHz] = IF bandwidth 3 8 kHz; narrow wide
7 modulation	modulation detector
[15:0]	FM 0 1000 [*0.1 %] = 0 100% modulation = 0 75 kHz FM dev. 1000 2000 [*0.1 %] = 100% 200% over-modulation range (modulation results are an approximate indication of actual FM dev.)
	AM 0 1000 [*0.1 %] = 0 100% AM modulation index 1000 2000 [*0.1 %] = 100% 200% peak modulation range (peak modulation results vary depending on the modulation setup)

Application example FM_Get_Quality_Status (1, (status)) FM_Get_Quality_Data (1, (status .. modulation)) Poll status

Read status and all available data

I²C example (hex)

[w 20 **80** 01 [r 0014] [w 20 **81** 01 [r ???? ???? ... ???? Poll status (2 ms after tuning) Read status and all available data

Note: A tuning action will reset the status information and release the frozen AF_Update sampled quality data should the AF data not have been read before.

The status quality time stamp starts updating as soon as tuning is established and new sampled data becomes available for an AF_Update tuning action (see 3.1 FM / AM cmd 1 Tune_To: mode = 3) and new continuous data becomes available for Preset, Search, Jump or Check tuning actions (mode = 1, 2, 4 or 5.)

The AM co-channel criteria can be defined from 3.6 AM cmd 14 Set CoChannelDet.

4.2 FM cmd 130 / 131 Get RDS

Poll status (and data) or read status and data of the FM RDS demodulator and decoder.

Get_RDS_Status returns status (and data). The status and stored data (when complete data is available) will remain unchanged. Get_RDS_Status use is suggested for status read only (i.e. status polling) but data can be sampled when desired.

Get_RDS_Data returns status and data. The status and stored data (when complete data is available) will be released allowing data updating. Get_RDS_Data is intended for data reading including status information.

4.2.1 RDS read modes

The radio data system feature of FM RDS and RBDS data reception can operate in two distinctive modes as defined by the <u>FM cmd 81 Set_RDS</u> mode parameter. The mode setting defines the type of data available from the Get_RDS_Status and Get_RDS_Data commands and the timing associated with 'data-available' signaling.

Decoder mode is the default mode (mode = 1) where the received RDS data is additionally decoded and output in RDS group format as defined by the RDS standard. Error correction is executed and error detection allows for discriminating between data results judged reliable, less reliable and not reliable by the RDS error detection scheme.

The optional **demodulator mode** (mode = 2) allows for output of 'raw' RDS bit data taken directly after demodulation. The data is output in 32 bit chunks for easy read-out. Additional data processing is required in the connected μC for RDS synchronization, decoding and error handling.

In both modes RDS data is output through an internal data buffer capable of storing multiple sets of output data for relaxed requirements on read timing.

4.2.2 Read data definition for RDS decoder mode

FM cmd 81 Set_RDS; mode = 1.

module cmd	130	FM Get_RDS_Status Get_RDS_Data	status, A_block, B_block, C_block, D_block, dec_error		
index	1	status	FM RDS r	eception status	
		[15:0]	[15] =	data available flag	
				0 = no data available (incomplete group or no first PI)	
				1 = RDS group data or first PI data available	
			[14] =	data loss flag	
				0 = no data loss	
				1 = previous data was not read, replaced by newer data	
			[13] =	data available type	
				0 = group data; continuous operation	
				1 = first PI data; data with PI code following decoder sync.	
			[12] =	group type	

do

TEF668X User Manual

TEF6686, TEF6687, TEF6688 and TEF6689, /V102

			0 = type A; A-B-C-D group (with PI code in block A)	
			1 = type B; A-B-C'-D group (with PI code in block A and C')	
		[11:10] =	reserved	
		[9] =	synchronization status	
			0 = RDS decoder not synchronized; no RDS data found	
			1 = RDS decoder synchronized; RDS data reception active	
		[8: 0] =	reserved	
_	block	A block da	ıta	
[1	5:0]			
_	block	B block da	ıta	
[1	5:0]			
	block	C block data		
[1	5:0]			
_	block	D block da	ata	
[1	5:0]			
	c_error	error code	(determined by decoder)	
[1	5:0]	[15:14] =	A block error code	
		[13:12] =	B block error code	
		[11:10] =	C block error code	
		[9:8] =	D block error code	
		0 : no erro	r; block data was received with matching data and syndrome	
		1 : small e	rror; possible 1 bit reception error detected; data is corrected	
		2 : large e	rror; theoretical correctable error detected; data is corrected	
		3 : uncorre	ectable error; no data correction possible	
		[7:0] =	reserved	

Application example FM_Get_RDS_Status (1, (status)) FM_Get_RDS_Data (1, (status ... dec_error)) Poll status

Read status and all available data

I²C example

20 **82** 01 [r 8200] [w 20 83 01 [r ???? ???? ... ????] Poll status (RDS available, sync'd) Read status and all available data

4.2.3 RDS read operation for decoder mode

The availability of RDS decoder data is signaled by the status bit 15.

If new and complete information is available this is signaled by status[15] = 1 and RDS group status and data is stored for μ C read. RDS status and data can be read from commands Get_RDS_Status and Get_RDS_Data equally but only the command Get_RDS_Data clears the information from the internal storage buffer.

Optional an interrupt ('DAVN') can be generated at the occurrence of RDS data available, see 3.23 FM cmd 81 Set_RDS to enable this option (interface = 2) and 3.39 APPL cmd 3 Set_GPIO for output pin selection of the data available interrupt signal. The interrupt is set and released at the same conditions as the status[15] bit.

The RDS system includes an RDS data buffer capable of storing up to 22 RDS data sets of group data allowing for a delayed read action on the data available signaling. RDS data can be read from the device using Get_RDS_Data repeatedly with the data available signal remaining active until the RDS data storage buffer is empty.

In the unlikely case that available data was not read in time causing the RDS data buffer to become full and new group data is available then the oldest data will be overwritten by new data. This loss of buffered data is indicated by the status bit 14 = 1.

Depending on the desired setup of the μC control software three ways of operation are suggested for the reading of RDS decoder data.

1. Non synchronized operation (data polling):

Repeated Get_RDS_Data read of RDS status and data.

When status[15] = 1 then the RDS data is used, otherwise the data is ignored.

To avoid data loss a single Get_RDS_Data read should be executed at least every 87 ms. or a burst of up to 22 Get_RDS_Data reads should be executed at least every 1.90 sec. taking advantage of the RDS data buffer.

2. Status synchronized operation (status polling):

Repeated Get_RDS_Status read of status[15].

When status[15] = 1 (i.e. data available) is found perform a Get_RDS_Data read of RDS status and data.

To avoid data loss Get_RDS_Status the polling should be executed at least every 87 ms. allowing for inclusion of a single Get_RDS_Data read or at least every 1.90 sec. allowing for inclusion of up to 22 Get_RDS_Data reads taking advantage of the RDS data buffer.

3. Interrupt synchronized operation (interrupt pin):

Setting of 'DAVN' interrupt output option and GPIO pin connected to μ C. When interrupt active is found (pin low) perform a Get_RDS_Data read of RDS status and data.

To avoid data loss a single Get_RDS_Data read should be performed within 87 ms. after interrupt or a burst of up to 22 Get_RDS_Data reads should be executed within 1.92 sec. after interrupt taking advantage of the RDS data buffer.

4.2.4 Read data definition for RDS demodulator mode

FM cmd 81 Set_RDS; mode = 2.

FM				
Get_RDS_Status	status, raw_data_high, raw_	data_low		
Get_RDS_Data				
status	FM RDS reception status			
[15:0]	 [15] = 0 : no data available [15] = 1 : 32 bit of raw demodulator data available [14] = 0 : no data loss [14] = 1 : previous data was not read, replaced by newer data 			
	[13 0] = reserved			
raw_data_high	MSB part of the 32 bit raw demodulator data ([31:16])			
[15:0]				
raw_data_low	LSB part of the 32 bit raw demodulator data ([15:0]).			
[15:0]				
	, , , , , , , , , , , , , , , , , , , ,	Poll status		
FM_Get_RDS_Data	a (1, (status, raw_data))	Read status and available data		
		Poll status (RDS raw data available) Read status and available data		
	Get_RDS_Status Get_RDS_Data status [15:0] raw_data_high [15:0] raw_data_low [15:0] FM_Get_RDS_Stat FM_Get_RDS_Data	Get_RDS_Status Get_RDS_Data status [15:0] FM RDS reception status [15] = 0 : no data available [15] = 1 : 32 bit of raw demod [14] = 0 : no data loss [14] = 1 : previous data was not in the served raw_data_high [15:0] raw_data_low LSB part of the 32 bit raw demoderate in the served LSB part of the 32 bit raw demoderate in the served in the serv		

4.2.5 RDS read for demodulator mode operation

Except for the different data content and associated timings the read operation for demodulator mode equals the operation for decoder mode.

The availability of 32 bit of RDS demodulator data is signaled by the status bit.

If new and complete information is available this is signaled by status[15] = 1 and 32 bit of raw RDS data is stored for μ C read. RDS status and data can be read from commands Get_RDS_Status and Get_RDS_Data equally but only the command Get_RDS_Data clears the information from the internal storage buffer.

Optional an interrupt ('DAVN') can be generated at the occurrence of RDS data available, see 3.23 FM cmd 81 Set_RDS to enable this option (interface = 2) and 3.39 APPL cmd 3 Set_GPIO for output pin selection of the data available interrupt signal. The interrupt is set and released at the same conditions as the status[15] bit.

The RDS system includes an RDS data buffer capable of storing up to 50 RDS data sets of 32 bit raw data allowing for a delayed read action on the data available signaling. RDS data can be read from the device using Get_RDS_Data repeatedly with the data available signal remaining active until the RDS data storage buffer is empty.

In the unlikely case that the controlling μC has not read the available data in time causing the RDS data buffer to become full and again 32 bits of new data are available then the oldest data will be overwritten by the new data. This loss of buffered data is indicated by the status bit 14 = 1.

Depending on the desired setup of the μC control software three ways of operation are suggested for the reading of RDS demodulator data.

1. Non synchronized operation (data polling):

Repeated Get_RDS_Data read of RDS status and data.

If status[15] = 1 then the RDS data is used, otherwise the data is ignored.

To avoid data loss a single Get_RDS_Data read should be executed at least every 26 ms. or a burst of up to 50 Get_RDS_Data reads should be executed at least every 1.34 sec. taking advantage of the RDS data buffer.

2. Status synchronized operation (status polling):

Repeated Get_RDS_Status read of status[15].

When status[15] = 1 (i.e. data available) is found perform a Get_RDS_Data read of RDS status and data.

To avoid data loss Get_RDS_Status the polling should be executed at least every 26 ms. allowing for inclusion of a single Get_RDS_Data read or at least every 1.34 sec. allowing for inclusion of up to 50 Get_RDS_Data reads taking advantage of the RDS data buffer.

3. Interrupt synchronized operation (interrupt pin):

Setting of 'DAVN' interrupt output option and GPIO pin connected to μ C. When interrupt active is found (pin low) perform a Get_RDS_Data read of RDS status and data.

To avoid data loss a single Get_RDS_Data read should be performed within 26 ms. after interrupt or a burst of up to 50 Get_RDS_Data reads should be executed within 1.34 sec. after interrupt taking advantage of the RDS data buffer.

4.3 FM / AM cmd 132 Get AGC

Read attenuation setting of the RF AGC. The overall antenna signal attenuation is found by addition of the input_att and feedback_att value.

module	32 / 33	FM / AM	
cmd	132	Get_AGC	input_att, feedback_att
index	1	input_att	RF AGC input attenuation
		[15:0] FM 0 420 (0.1* dB) = 0 42 dB attenuation	FM 0 420 (0.1* dB) = 0 42 dB attenuation
			AM 0 420 (0.1* dB) = 0 42 dB attenuation
	2	feedback_att	RF AGC feedback attenuation
		[15:0] FM 0 60 (0.1* dB) = 0 6 dB attenuation	FM 0 60 (0.1* dB) = 0 6 dB attenuation
			AM 0 180 (0.1* dB) = 0 18 dB attenuation

Application example FM_Get_AGC (1, (input_att, feedback_att)) Read AGC attenuation settings

I²C example [w 20 84 01 [r 00B4 003C]

Read AGC attenuation settings (18 dB + 6 dB RF attenuation)

(stereo signal found)

Note: The TEF668X RF AGC employs 6 dB step size, i.e. read values of 0, 60, 120...

Note: The maximum FM input attenuation of 42 dB can be realized only by means of FM RF AGC extension (see 3.4 FM / AM cmd 11 Set_RFAG).

4.4 FM / AM cmd 133 Get_Signal_Status

Read information about the received radio signal.

module	32 / 33	FM / AM				
cmd	133	Get_Signal_Status	s status			
index	1	status	Radio signal information			
		[15:0]	[15] = 0 : mono signal[15] = 1 : FM stereo signal (stereo pilot detected)			
			[14] = 0 : analog signal [14] = 1 : digital signal (blend input activated by digital processor or co (TEF6688 and TEF6689 only)			
Application	example	FM_Get_Signal_Sta	atus (1, (status))	Read availability of stereo and digital		
I ² C exampl	le	[w 20 85 01 [r	8000]	Read availability of stereo and digital		

С

4.5 FM / AM cmd 134 Get_Processing_Status

Read information about the internal processing status (weak signal handling). This information is intended for evaluation use only.

module	
cmd	
index	

33	FM / AM				
34	Get_Processing_S	tatus softmute, highcut, stereo, sthiblend	softmute, highcut, stereo, sthiblend		
1	softmute	Softmute control state			
	[15:0]	0 1000 (*0.1%) = 0 % minimum 100 % max. softmute attenuation	on		
2	highcut	Highcut control state			
	[15:0]	0 1000 (*0.1%) = 0 % minimum 100 % max. audio freq. limitation	on		
3	stereo	FM Stereo blend control state			
	[15:0]	$0 \dots 1000 (*0.1\%) = 0 \%$ minimum $\dots 100 \%$ max. stereo att. (= mono	o)		
4	sthiblend	FM Stereo high blend control state			
	[15:0]	$0 \dots 1000 (*0.1\%) = 0 \%$ minimum $\dots 100 \%$ max. stereo freq. limitati	on		
5	stband_1_2	FMSI band 1 and band 2 (TEF6687 and TEF6689 only)			
	[15:0]	[15:8] FMSI control state band 1, low band			
		0 100 (%) = 0% (stereo) 100% (mono) band 1			
		[7:0] FMSI control state band 2, 2 kHz band			
		0 100 (%) = 0% (stereo) 100% (mono) band 2			
6	stband_3_4	FMSI band 3 and band 4 (TEF6687 and TEF6689 only)			
	[15:0]	[15:8] FMSI control state band 3, 5 kHz band			
		0 100 (%) = 0% (stereo) 100% (mono) band 3			
		[7:0] FMSI control state band 4, high band			
		0 100 (%) = 0% (stereo) 100% (mono) band 4			

Application example FM_Get_Processing_Status (1, (softmute, ...)) Read weak signal processing status

I²C example

[w 20 86 01 [r 0000 019A 03B6 03E8]

[w 20 86 01 [r 0000 019A 0000 0000 0014 3284]

Read weak signal processing status (sm 0%, hc 41%, st 95%, shb 100%)
Read weak signal processing status (sm 0%, hc 41%, stereo 0%, shb 0%, fmsi 0%, 20%, 50%, 100%)

Note: 0 % equals minimum control, as defined by the weak signal '_Min' setting. 100 % equals maximum control, as defined by the weak signal '_Max' setting.

4.6 FM / AM cmd 135 Get_Interface_Status

Available for TEF6688 and TEF6689 only.

Information about radio I/O functionality; DR I2S output.

module	32 / 33	FM / AM Get_Interface_Status samplerate				
cmd	135					
index	1	samplerate	Baseband digital radio sample rate (DR_I2S output)			
		[15:0]	0 = interface disabled (digital radio disabled)			
			6500 = 650 kHz			
			6750 = 675 kHz			
Application example		FM_Get_Interface_Status (1, (samplerate)) automatic DR sample rate selection		automatic DR sample rate selection		
I ² C example	e (hex)	[w 20 87 01 [r	1A5E]	automatic DR sample rate selection (675 kHz)		

71 of 101

4.7 APPL cmd 128 Get_Operation_Status

This read command is also available during 'boot state' and during 'idle state'.

Read information about the operation state.

module	64	APPL		
cmd	128	Get_Operation_Status status		
index 1	1	status [15:0]	Device operation status	
			0 = boot state; no command support	
			1 = idle state	
			2 = active state; radio standby	
			3 = active state; FM	
			4 = active state; AM	
			4 = active state; AM	

Application example APPL_Get_Operation_Status (1, (status)) Read operation status

I²C example [w 40 80 01 [r 0003]

Read operation status

(active state FM)

Note: The value 0 indicates boot state (reset state after power-on, power dip or reference frequency disruption). Actually all get commands will return 0 values during boot state and no command support is available.

See chapter 6 Device start-up on start-up device control and initialization.

4.8 APPL cmd 129 Get GPIO Status

Read information about the input state of designated input pins (see <u>3.39 APPL cmd 3 Set_GPIO</u>).

module 64	APPL		
cmd 129	Get_GPIO_Status	status	
index 1	status [15:0]	input state (when assigned for	input use)
		[2] = input state of GPIO_2 (no input use suggested for TEF668X)	
		[1] = input state of GPIO_1 (no input use suggested for TEF668X)	
		[0] = input state of GPIO_0 (0 = low, 1 = high)	
Application example	APPL_Get_GPIO_Status (1, (status))		Read input state of GPIO input pins
I ² C example	[w 40 81 01 [r 0001]		Read input state of GPIO input pins (input GPIO_0 high)

Note: Because of the TEF668X designated input use of GPIO_1 and GPIO_2 during power-up only GPIO_0 is suggested for application as a general purpose input.

doc

4.9 APPL cmd 130 Get Identification

This read command is also available during 'idle state'.

Read information about the device type and variant.

module	64	APPL				
cmd	130	Get_Identification	device	, hw_version, sw_version		
index	1	device	device t	device type and variant		
		[15:0]	[15:8]	type identifier		
				9 = TEF668X 'Lithio' series		
			[7:0]	variant identifier		
				14 = TEF6686 'Lithio'		
				1 = TEF6687 'Lithio FMSI'		
				9 = TEF6688 'Lithio DR'		
				3 = TEF6689 'Lithio FMSI DR'		
	2	hw_version [15:0]	hardware version			
			[15:8]	major number		
				1		
			[7:0]	minor number		
				0		
	3	sw_version	firmware	e version		
		[15:0]	[15:8]	major number		
				2 = '2'		
			[7:0]	minor number		
				0 = '.00'		

Application example APPL_Get_Identification (1, (device..)) Read device identification

I²C example [w 40 82 01 [r 090E 0100 0200] Read device identification (TEF6688, hw 1.0, sw 2.00)

Note: The type number version designation '/V102' is derived from the major hw_version and the major sw_version number.

4.10 APPL cmd 131 Get_LastWrite

This read command is also available during 'idle state'.

Read data content of the last write transmission.

module	64 APPL	
cmd	131 Get_LastWrite	size/module, cmd/ index, parameter1, parameter2, parameter3,
index	1 size/module	transmission size (number of parameters) and module number
	[15:0]	[15:8] = 0 6 : number of parameters of the last write transmission
		[7:0] = 0 255 : module value of the last write transmission
	2 cmd/index	command byte number and index byte value
	[15:0]	[15:8] = 0 255 : cmd value of the last write transmission
		[7:0] = 0 255: index value of the last write transmission
	3 parameter1	first parameter
	[15:0]	0 65535 = value of the first parameter (when available)
	4 parameter2	second parameter
	[15:0]	0 65535 = value of the second parameter (when available)
	5 parameter3	third parameter
	[15:0]	0 65535 = value of the third parameter (when available)
	6 parameter4	fourth parameter
	[15:0]	0 65535 = value of the fourth parameter (when available)
	7 parameter5	fifth parameter
	[15:0]	0 65535 = value of the fifth parameter (when available)

Application example APPL_Get_LastWrite (1, (size...parameter)) Read back last write transmission

I²C example [w 40 83 01 [r 0120 1F01 02EE 0000...0000] Read back last write transmission $(FM_Set_Deemphasis = '75 \mu s')$

5. I2C bus protocol

5.1 I²C protocol

TEF668X control parameters are 16 bit wide. The I²C bus native unit is the byte, multi-byte values like 16 bit parameters are transmitted MSB byte first.

With external application of a pull down resistor at GPIO_2 (10 k Ω to ground) the I²C device address for TEF668X is C8h for write and C9h for read operations.

Alternatively application of a pull-up resistor (10 $k\Omega$ to Vdd) at pin GPIO_2 allows for use of device address CAh for write and CBh for read instead.

Note: GPIO_1 must be pulled low (10 $k\Omega$ to ground) during power-on to ensure proper operation.

Note: GPIO_2 must be pulled low or high (10 $k\Omega$) during power-on and activation for a defined ${}^{p}C$ address. Pin open is not a defined state.

5.2 Write control

Standard write transmissions to the TEF668X consist of an I²C start condition and an 8 bit hardware device address for write as depicted by the I²C standard.

Next an 8 bit module identifier is transmitted that can be regarded as a kind of internal device address for function blocks like FM radio, AM radio, audio and system.

Control is then indicated by an 8 bit command identifier and an 8 bit parameter index allows for sub-addressing within the command parameter space, followed by one or more 16 bit parameters for actual control.

The end of transmission is indicated by an I²C standard stop condition. Because the I²C bus format includes this explicit stop condition no 'size' indication is needed as may be required by certain other bus formats.

Note: Device version V102 only supports the use of index = 1 and all parameters described in this user manual need to be transmitted.

This behavior is equal to device version V101.

In Fig 4 examples of these transmissions are shown.

All information provided in this document is subject to legal disclaimers

NXP R V 2015 All rights reserved

TEF668X uses only a fraction of the possible number of modules, commands and parameters. The choice for a 24 bit wide parameter address space is for future extendibility.

Writing to disabled modules is supported and will store the data for later use. Enabling of modules (where applicable) is supported by specific module commands which may imply automatic disabling of other module(s) as e.g. is the case when switching between FM and AM radio module operation.

5.3 Read control

Standard reading from the TEF668X consists of a write transmission for definition of the requested data followed by the actual read transmission for obtaining the data. Note: this is normal practice because the I²C specification does not support read addressing within a read transmission.

Read data is 16 bit wide (or multiples of 16 bit) transmitted with the MSB byte first.

For reading of received data or status information special 'get' commands are defined. For future extendibility and reading of data parts within larger data blocks an index setting is included similar to the write definition.

Index = 1 is the standard case with read data starting from the first data word.

Note: Device version V102 only supports the use of index = 1, it is allowed however to read less than the number of data words described in this user manual.

This behavior is equal to device version V101.

For evaluation purposes index = 0 is supported also (see 5.7.1).

Certain timing requirements exist for TEF668X read control; see chapter <u>5.6</u> for details.

TEF668X 'Get' commands as published in this user manual are without parameter use. For future extensions the protocol however allows for 'Get' commands with parameters.

5.4 I²C repeated start

The I²C specification allows the joining of multiple I²C transmissions by use of I²C 'repeated start'. This way of operation ensures the set of I²C transmissions will not be interrupted by another transmission from a second microcontroller on the bus (multimaster setup).

TEF668X supports the use of I²C 'repeated start' without restriction. This means TEF668X handles I²C transmissions separated by an I²C stop and start condition in exactly the same way as I²C transmissions 'joined' by an I²C repeated start condition.

5.5 Polling device presence

Checking for presence of the device on the I²C bus without any data transfer is possible by only writing of the device write address. The I²C standard acknowledge will signal device presence.

5.6 I²C read timing requirements

The TEF668X supports I²C clock speeds up to 400 kHz in accordance with the I²C 'fast mode' specification. TEF668X write operations require no special attention, read operations however require a minimum of 50 us time to guarantee read data setup.

The 50 us timing requirement is measured from the write transmission finish to the first read data; i.e. from the I^2C 'stop' or 'repeated start' condition (= SDA edge) to the end of the device address 'acknowledge' (= falling edge of the 9^{th} SCL clock pulse)

TEF668X User Manual

TEF6686, TEF6687, TEF6688 and TEF6689, /V102

For 400 kHz bus operation the special control option of index = 0 offers a simple solution to meet this read timing requirement:

A setting of index = 0 will add an additional read word in front of the standard read data. This read word allows for special transmission evaluation options (see chapter $\underline{5.7}$ Special control) but can be ignored for normal operation. For 400 kHz operation the special index 0 read word ensures a proper setup timing for the required read data of index = 1 and higher. The special index 0 word itself however must be ignored.

Use of index = 0 is probably the most convenient way to ensure proper read data settling for I²C fast mode bus operation.

Three alternative operation means are depicted below that may be of use, e.g. when reliable index = 0 read data is desired at high speed:

Alternative 1: Maximum I2C bus speed limit.

A bus speed setting of 184 kHz or lower will guarantee the required data setup time. Microcontrollers generally do not employ the 'fast mode' worst-case timing for the full device address transmission meaning a microcontroller '200 kHz' bus speed setting will ensure safe read operation in many cases.

Alternative 2: 400 kHz I2C bus speed with microcontroller delay.

Use of separate transmissions and a timed delay of 27 us or higher between the write transmission 'stop' condition and the read transmission 'start' will guarantee the required read data setup time.

Alternative 3: 400 kHz I2C bus speed with dual 'repeated-start'.

In case use of 'repeated-start' is desired as well as 400 kHz bus operation a 'dummy' write address transmission can be inserted between the functional write and read transmission.

5.7 Special control

To support evaluation and debugging of the device control special control options are available.

5.7.1 Set command confirmation; special evaluation read control

For standard operation data reading is limited to status and information read data requested by a preceding 'get' command.

To this purpose TEF668X puts the requested data in its output registers after reception and evaluation of a valid 'get' command. TEF668X however also places a data word in its output registers after reception of a 'set' command, either offering confirmation of the command reception by returning the module and cmd value or delivering an error code in case of an invalid control. This data field is not intended for generic use but can be read during control software development for debugging purposes.

Condition: Read data word: Valid command module / cmd No command received 00 00h Invalid command value FF FFh Invalid module value FF FEh Invalid index value FF FDh (note: currently only index = 0 or 1 is permitted) Invalid parameter value FF FCh (note: not available in general) Invalid state FF FAh (= command not available in current state)

5.7.2 Get command confirmation; special evaluation read control

For standard operation read command data reading is limited to application status and information data.

However similar to write commands also read commands can optionally deliver confirmation of the read command reception or an error in case of invalid control.

To this purpose use of index = 0 with a 'get' command has a special meaning where as the first data word the module and cmd value are returned or an error code in case of invalid control.

Condition: Read data word:

Get command data available module / cmd

No command received 00 00h

Get command data not available yet FF F8h*

Invalid command value FF FFh

Invalid module value FF FEh

Invalid index value FF FDh (note: currently only 0 and 1 are allowed)
Invalid state FF FAh (= command not available in current state)

^{*} All TEF668X read commands show 'instant' data delivery, therefore error value FF F8h shall never be found as long as the read timing requirement of 50 us is met (see <u>5.6</u>). In case of not meeting the read timing requirement also error value 00 00h may be found occasionally.

Note: The 00 00h and FF FFh ... FF F8h error codes are also returned as the first data word in case of index = 1 use but may be confused with standard expected return data.

6. Device start-up

6.1 Introduction

The TEF668X is powered by a single supply voltage. No supply power-up requirements are known to exist.

After power-on the device is found in a pre-defined reset state (boot state). A sequence of control transmissions will bring the device into idle state followed by active state to realize the desired user operation mode, function and performance.

Boot state and idle state have no function other than offering the minimum set of controls required for proper active state operation.

State transitions take a small amount of time and care should be taken to ensure a certain state is entered before any of the belonging control transmissions is started. After transmission of a 'Start' or 'Activate' state transition command it is advised to check the operation status by I²C read until the new state is found.

TEF668X state transition times will fall within the following limits:

Power-on → Boot state : power supply voltage settling + 5 ms.

(or clock active + 5 ms in case of external clock application)

Boot state \rightarrow Idle state : 50 ms. Idle state \rightarrow Active state : 100 ms.

81 of 101

User Manual

6.2 Start-up I²C control transmission sequence

- · Supply power on
- Wait until device is found present on the I²C bus ('boot state'):
 - Repeat APPL_Get_Operation_Status read until I²C acknowledge from device; status = 0 ('boot state') is found.

```
[w 40 80 01 [r 0000]
```

Alternatively Wait radio supply power settling time + 5 ms.

In case of external clock application wait for clock active + 5 ms.

- Send required initializations :
 - See <u>6.2.1</u> Required initialization I2C transmission I2C example and <u>6.2.2</u> Required initialization I2C transmission – C code include file
- Start :
 - [w 14 0001]
- Wait until device is found in 'idle state':
 - Repeat APPL_Get_Operation_Status read until status = 1 ('idle state') is found.
 [w 40 80 01 [r 0001]

Alternatively Wait 50 ms.

- Set reference frequency
 - APPL_Set_ReferenceClock freq. = 55466670/9216000/4000000, type = 0/1.
 [w 40 04 01 034E 5AAE 0001] : 55.46667 MHz external reference.
 [w 40 04 01 003D 0900 0000] : 4 MHz crystal reference.

Not required for default 9.216 MHz crystal use.

- Activate :
 - APPL_Activate mode = 1.

```
[ w 40 05 01 0001 ]
```

- Wait until device is found in 'active state radio standby' :
 - Repeat APPL_Get_Operation_Status read until status = 2 ('radio standby state') is found.

```
[ w 40 80 01 [ r 0002 ]
```

Alternatively Wait 100 ms.

- Full API control is available from here for all modules.
 Audio and Application are on, FM and AM radio are in low-power standby.
 - Example FM_, AM_, AUDIO_ and APLL_ desired user settings: module initialization.
 - Example AUDIO_Set_Mute mode = 0 : disable mute.

```
[ w 30 0B 01 0000 ]
```

Example FM_Tune_To mode = 1, frequency = 8930 : FM radio 89.3 MHz.
 w 20 01 01 0001 22E2]

do

User Manual

6.2.1 Required initialization I²C transmission – I²C example

The following I²C transmissions (version p2.22) are a required part of the V102 boot state device initialization.

Use of these I²C transmissions is required for proper and full function and performance as described in this user manual. Version p2.22 is a minor update over p2.21.

Note: The transmission example below shows a data content of 12 words for every '1B' data transmission. The data stream can be split in any desired length on (2-byte) word boundaries with every data transmission starting with hex value 1B.

```
[ w 1C 0000 ]
```

				•											
[W	1B	F000	3838	D080	F000	3840	D080	43B2	3843	D080	F000	7000	C2F7]
- [W	1B	F000		D080]
[W	1 B	9FA7		D280]
	W	1B	F000		D080]
		1B	F000		D080]
		1B	F000		D280								3970]
- 1		1B	F000		D080]
[1B 1B	3077 F000		D080]
- 1		1B	F000		D080]
1		1B	F000		D080]
	. w	1B	F000		D280]
i		1B	F000		D080										1
i		1B	F000		D080]
i		1B	F000		A018								7000		í
i		1B	F000		A209										j
i		1B	F000		6008]
ĺ	W	1B	F000	0E22	600A	F000	0.0FF	6003	F000	0142	D280	9003	4002	F000	j
[W	1B	9043	0170	D180	F000	0169	D080	0E69	600A	A352	2023	0001	6001]
[W	1B	F000	7000	F000	C4CB	7000	F000	CA09	3023	F000	C2CB	7000	F000]
	W	1B	F000	3023	D008	8200	0 D 5 0	6008	F000	0D51	6009	3000	2180	6001]
	W	1B	F000	4032	F000	3011	45F3	F000	3092	2D30	6004	3113	2 D 4 0	6005]
I	W	1B	3194		6006									6001]
	W				6002									6001]
	W	1B			6002]
	W	1B			6006]
	W	1B			6001]
	W	1B	3151									3061]
		1B 1B	30E2		F000 D280								7000]
V		1B			600F]
		1B	918F		4074]
i		1B			F000]
i		1B			D008								1EBC		1
i		1B	F000		6008								0D6B		i
i		1B	F000		D280								2377	F000	j
Ī	W	1B	9041	3670	F000	9E79	7000	9001	F000	32F1	D008	91C7	3375	F000]
[W	1B	F000	3470	E600	F000	34F0	E600	F000	2474	F000	F000	24F3	F000]
- [W	1B	8C24	26F2	4016	8A1B	3474	4FF5	82B7	34F3	F000	F000	2071	9005]
[W	1B	8304		F000								36F6]
[W	1B	F000		8006]
[W	1 B			D009]
		1B			A2F4]
		1B	F000		F000								3570	F000]
ļ		1B	F000		D008]
- [1B			F000 6009								7000]
		1B 1B	3310		F000]
1		1B	3110		F000		7000			7000		32A0	7000]
		1B			F000								7000]
i	 W	1B			F000								600B		i
i		1B	F000		F000								35C0]
		1B	F000	0D75					24F7				7000		j
ĺ	W	1B	91C7		4015]
ĺ	W	1B	A080		9001]
ΑII	info	rmation	provided	I in this o	documen	t is subje	ect to led	al discla	imers.					(C) N)	KP B.\

[w 1B CC09 0517 600C 832C 7000 F000 8A61 7000 F000 AE48 2245 A2BD 1B A228 2078 F000 F000 35F0 F000 F000 1800 F000 F000 3078 F000 1B 16E3 6009 A027 8901 23E4 F000 F000 20E2 F000 8261 2173 F000 1 R A050 3670 F000 A058 2372 E140 A801 22F3 F000 9049 2275 E040 1B 8061 7000 F000 8A51 33F1 F000 A058 7000 F000 AF48 7000 F000 1 R F000 3470 D008 8200 0D75 6008 9009 0D00 6009 F000 3500 F000 1 B F000 3380 C028 F000 1010 F000 F000 3481 D008 8249 0D75 6008 1 R F000 7000 8FFD 0400 6000 A2A3 8EC0 4000 6005 6000 6005 E600 C81B 7000 F000 D8DB 0D51 6008 835B 7000 F000 9EBA 3003 F000 F000 3084 D409 F000 7000 8FAF F000 0D75 6008 F000 0D51 6009 1 B 1 B F000 2403 F000 F000 2794 D008 A003 7000 F000 0011 0800 F000 1 B 0011 0800 COOE A009 0011 0800 A009 7000 F000 A408 7000 D008 1B A003 7000 F000 0011 0800 F000 0011 0800 C026 A009 0011 0800 A009 7000 F000 A408 7000 D008 F000 1D01 6008 F000 0A2C 6000 1 R 1B F000 011A 6001 3100 7000 F000 3181 7000 D008 A801 7FFF 6006 CCOA 7000 F000 8EA1 3106 F000 F000 3206 D409 AEE8 04DF D080 1B 9087 7000 9807 F000 0FB1 D280 9E08 4189 6006 1492 6000 9004 1B A198 1D01 6008 AA56 7000 F000 A220 3206 F000 F000 3280 F000 1 91C2 069A 6008 41E6 0600 D080 8213 7000 D809 F000 0FB1 D280 1 1 B 9E08 1062 6001 051F 6005 D009 F000 06E6 6008 A365 7000 F000] F000 3085 D008 1000 6003 A26F 3023 0773 D280 F000 07C6 D080 1 B 0800 6003 A002 0E6F 6009 F000 0200 6003 8000 F000 0773 D080 1 B 40E0 001F 6001 13D5 6007 A011 9040 7000 F000 13FB 6006 A00E 1B 1405 6006 A00D 140F 6006 A00C 4560 003A 6001 13B6 6007 A00B 9040 7000 F000 13F7 6006 A008 1401 6006 A007 140B 6006 A006 4180 003B 6001 13B6 6007 A005 9040 7000 F000 13F7 6006 A002 1 B 1401 6006 A001 140B 6006 8000 F000 0D28 D080 D7CA 00FF 6004 1 B 1 R 81D7 OCF7 6009 D056 7000 F000 8276 3017 F000 D0F6 4083 F000 C1A4 2019 F000 82F6 7000 F000 C180 2017 A24E C3E7 7000 F000 1 B C5C7 7000 F000 F000 3017 D008 9A78 7000 F000 9A70 7000 90DE 1 R 1B F000 7000 90DE F000 0D67 D080 F000 7000 A114 F000 7000 80CD 1EC8 6008 A244 F000 2000 A243 9000 7000 F000 F000 7000 D409 1B F000 7000 8FA5 1EC8 6008 A23F F000 3000 D008 0028 6000 A23D [w 1R 9E38 0EF4 6009 9E38 7000 9FFF F000 7000 D008 4040 0C8A D580 w 1B 1 B F000 0C8B D280 F000 0FB1 D280 9C39 7000 F000 9C31 7000 9003 w 1.B F000 7000 9002 4010 7000 AFF3 41F1 4040 800D 4000 7000 AFF1 41F1 4040 800C 03E8 6002 A22F 9083 1044 D180 F000 1042 D080 1B w 1B 4071 4020 A008 43A1 4030 A007 43B1 4030 A006 F000 1075 D080 1B 4071 4020 A004 43A1 4030 A002 43B1 4030 A001 F000 1081 D080 w 1B F000 0C92 D080 F000 0C94 D080 F000 0BC9 6008 F000 1D8D D280 w 1B F000 16D5 D080 F000 0BC9 6008 F000 1D8F D280 F000 16DA D080 1B 3E91 1F5F D280 F000 238A D080 0D85 6008 A21A F000 3000 D008 1.B F000 0F88 600B F000 0230 6003 F000 0938 6004 9F98 012C 6005 F000 2EB3 EE00 F000 0FB1 D280 9E09 0D87 600C 9F90 7000 9002 9F88 2F34 EE00 F000 2FB5 EE00 3043 0B42 6008 F000 30C4 F000 W 1 B F000 3145 F000 F000 2CB1 4017 F000 2D32 F000 C679 2205 F000 1 B F000 3D81 F000 F000 3D01 F000 DD6D 1B93 D280 9046 0D85 600A W 1 B 2042 1B93 D280 DAC9 2025 A203 8C69 2DB3 F000 DD49 3201 F000 1 B 8D89 7000 F000 3C81 FE35 6000 3581 0016 6001 A018 2146 F000 1 R AA07 012D 6000 81CF 7000 F000 8F80 7000 F000 F000 7000 9402 1 B 4045 574B 6000 E000 6001 8002 4065 4000 6000 C666 6001 8000 A030 4000 6004 AF4E 00A4 6005 818E 0B75 6008 F000 1474 D280 1 B F000 1B90 D280 2E34 0400 6006 20C2 1B93 D280 D2C9 03E9 6005 1B 818E 0B59 6008 8F2D 31C6 F000 F000 7000 9402 4045 B15C 6003 1 R 1B 4666 6007 8002 4065 AACE 6003 C666 6007 8000 A0E0 0038 6004 1 B AF48 001D 6005 81C7 3184 F000 3105 1474 D280 F000 1B90 D280 1B F000 D800 6000 F000 0B67 6008 21C6 2000 6004 F000 1333 6005 1B 8186 3184 4007 3105 1474 D280 F000 1B90 D080 F000 6E6C 6003 1B 4007 00E5 6005 A058 FFFF 6003 AA24 0B52 6008 811C 7000 F000 3105 7FDF 6006 3184 1474 D280 F000 1B90 D080 9183 2E85 F000 F000 2F06 F000 F000 2F87 F000 0BC9 6009 A1CE 3E11 0D82 600A 1 B F000 2711 A1CC A050 2792 F000 AA41 0BB4 600C 8052 2021 A1C9 9ECB 3592 F000 9041 7000 D809 882D 7000 D409 F000 3615 F000 1 B F000 3695 F000 9100 30A6 F000 3127 1462 D280 9004 31C0 F000 1 B 2145 8CCD 6006 F000 FF55 6007 F000 1474 D280 F000 3240 F000 1B F000 32C1 F000 F000 3342 8000 F000 0D82 6009 F000 0BC9 600A F000 2015 A1B8 9145 7FEC 6006 4047 7000 D409 2090 1447 D280 1B 1B F000 34A0 F000 2110 1447 D280 F000 3520 D008 0A3D 6007 A1B1 1B A279 OBC9 6009 A2BA 7000 F000 90C0 3B91 F000 3B12 1462 D280 [w 1B F000 3C10 D008 F000 0B60 600E F000 0004 6003 40A7 3FFC 6004] [w 1B 3263 8008 6005 32E4 199A 6006 3365 0D86 600F 31E6 7000 F000]

f w 1B 3077 7000 D008 0D82 600A A1A3 F000 3020 F000 00D2 6001 940B 1B F000 00D2 6002 00FA 6003 AFED F000 BE77 6006 F000 4B00 6007 1B 3706 0001 6001 3787 03E8 6002 F000 0384 6004 F000 0001 6005 1 R F000 008C 6006 F000 0AF0 6007 F000 7000 8FC7 F000 0BB4 6009 1B F000 0011 6005 F000 0011 6006 3B05 1000 6007 3B86 0004 6000 1 R 3C07 AD84 6001 3210 01FD 6002 3291 0B5E 6003 3312 0C80 6004 1 B 3193 00A0 6005 3484 FFD0 6006 3505 E354 6007 3606 3400 6000 3686 0001 6001 3707 03E8 6002 3780 7000 8EB7 80E5 7FFF 6000 1 R CCOA 7000 F000 8EA9 3370 F000 AF20 3470 D409 AEE8 7000 F000 1B A805 0080 6007 A8F6 3375 F000 C386 7000 F000 8F7F 33F6 F000 1 B A885 1DE4 D180 F000 3475 D008 0D86 6009 A17A 2012 1F32 D280 1 R F000 3582 D008 9082 0D86 6009 40A7 4077 E640 F000 7000 F000 1B F000 3017 D008 0BB4 6008 A173 F000 3182 D008 F000 0961 6008 F000 09C9 6009 F000 2180 F000 F000 2091 A16E A208 7000 D008 1 R OOCF 6002 A001 0151 6002 8001 0D8B 6008 8001 0D8C 6008 8000 1 R 1B F000 7000 F000 F000 3002 D008 0FF2 6009 A166 2011 0D8B 600A 1B F000 2C92 F000 9041 2011 F000 F000 7000 93FE F000 7000 F200 1B 3122 2031 D080 0D8B 6008 A003 F000 2022 D080 0D8C 6008 A001 1 F000 201E D080 F000 7000 F000 2000 0E69 6008 F000 01D0 6001 1 1 R 1B F000 3080 F000 F000 3001 D008 836D 0C35 6008 4060 3A51 6001 41E2 2196 6003 3300 4144 F000 3381 7000 F000 3402 7000 F000 1 B 3483 0C29 6009 3504 3A5F 6000 3585 3A64 6003 3090 7000 F000 1 R 3393 7000 8FDF F000 7000 AE5F F000 7000 8EA4 F000 7000 AE9D ${\tt 1B} \quad {\tt F000} \ {\tt OC51} \ {\tt D280} \ {\tt F000} \ {\tt 21A0} \ {\tt D080} \ {\tt F000} \ {\tt 052E} \ {\tt D280} \ {\tt F000} \ {\tt 7000} \ {\tt A00E}$ F000 21B7 D080 F000 1F32 D280 F000 1E84 D280 F000 21E0 D080 F000 1EA4 D280 F000 07F7 D280 F000 2215 D080 F000 07FB D280 1 B F000 228F D080 4040 22E1 D280 4080 22E2 D280 F000 229C D080 1 B 1 R F000 07FB D280 F000 22B6 D080 F000 20F0 D280 9002 27DF D280 9E69 7000 F000 F000 0700 D180 F000 2320 D080 9082 0C29 6009 1 B 4017 4067 E640 F000 7000 F000 F000 3217 D008 F000 07F7 D280 1 R 1B F000 27EA D280 F000 11B5 D080 4055 1517 6008 F000 1D40 6000 3105 1E60 6001 3185 7000 F000 3205 7000 F000 3285 7000 F000 1B 3300 7000 F000 3381 0D8E 6009 3400 0254 6002 3481 3880 6003 [w 1R 3012 7000 F000 3093 7000 D008 170B 600C A11E 0040 4005 F000 w 1B 1 B 0041 243F D080 F000 0C83 6008 9000 0C6B 600B F000 700C E600 [w 1B F000 2003 F000 F000 2204 F000 F000 3BB3 F000 F000 3C34 D008 F000 7000 ADC1 F000 0C8D 6008 F000 260A D080 83FF 0D9B 6008 w 1B F000 01F4 6000 F000 03B1 6001 1000 03B2 6002 1001 040E 6000 1B 1002 040F 6001 1000 045C 6002 1001 045D 6000 1002 1380 6001 w 1B 1000 ODAB 6009 1001 02EE 6000 1007 4306 6001 1010 0469 6002 w 1B 1011 4487 6000 1012 05E3 6001 1010 4608 6002 1011 06AE 6000 1B 1012 0DA4 6008 1010 9E3C 6000 1017 0DB3 6009 1000 25DA 6000 1007 803D 6001 1010 2882 6002 1011 C03D 6000 1012 2887 6001 1.B 1010 C03B 6002 1011 288C 6000 1012 C03B 6001 1010 2891 6002 1011 C03B 6000 1012 2896 6001 1010 C03B 6002 1011 289B 6000 W 1 B 1012 C03B 6001 1010 28A0 6002 1011 403C 6000 1012 28A5 6001 1 B 1010 C03C 6002 1011 28AA 6000 1012 C03C 6001 1010 28AF 6002 W 1 B 1011 C03C 6000 1012 28B4 6001 1010 C03C 6002 1011 28B9 6000 1 B 1012 C03C 6001 1010 28BE 6002 1011 C03C 6000 1012 29CC 6001 1 R 1010 0037 6002 1011 29D1 6000 1012 0037 6001 1010 29D6 6002 1 B 1011 0037 6000 1012 29DB 6001 1010 0037 6002 1011 0DD8 6008 1 B 1012 2715 6000 1017 403E 6001 1000 271A 6002 1001 803C 6000 1002 2864 6001 1000 403C 6002 1001 2869 6000 1002 403C 6001 1B 1000 286E 6002 1001 803A 6000 1002 2873 6001 1000 803A 6002 1 B 1001 28A0 6000 1002 403C 6001 1000 29CC 6002 1001 0037 6000 1 B 1 B 1002 29D1 6001 1000 0037 6002 1001 29D6 6000 1002 0037 6001 1B 1000 29DB 6002 1001 0037 6000 1002 0DEF 6009 1000 7000 F000 1B 1007 7000 F000 1017 7000 D008 OCDF 600B A0BE 3030 23D6 D280 1B F000 26E8 D080 0D9B 6008 A0BB F000 0002 A0BA 9082 7000 F000 828A 7000 9003 908A 7000 9001 F000 7000 8FFB 82BF 7000 F000 F000 0199 D280 F000 0D9A 6008 F000 26C1 F000 F000 0002 A0B1 1 B 1B 9082 7000 F000 828A 7000 9003 908A 7000 9001 F000 7000 8FFB 8280 7000 F000 F000 7000 D008 F000 ODAB 600D F000 3FFF 6002 1B 1 R F000 0051 A0A8 C253 7000 F000 8EC4 7000 9001 F000 7000 97FC 1B D48F 0199 D280 4005 ODA4 600D 4017 3FFF 6002 9F7D 0051 A0A1 1B C253 7000 F000 82C4 271C D180 F000 7000 97FC 9146 2720 D080 4007 0199 D280 F000 0D8E 600E 4007 25C1 A09A 9E79 2E40 4014 1B 1B 4036 3167 9019 2F45 1964 6002 4FF0 1A5E 6003 8354 4036 F000 1B 835C 4000 E200 F000 4010 E200 F000 7000 F000 9000 7000 F000] [w 1B F000 7000 9C11 F000 0DD8 600D 4036 22F0 D280 0DB3 600D E600] [w 1B 4014 2140 F000 F000 2051 A08B 9041 7000 F000 8245 7000 901D]

```
[ w 1B F000 7000 9001 F000 70DC 8FFB 20D1 3FFF 6002 F000 0CDF 600B
I w 1B C253 3161 F000 D48E 3033 F000 D44A 37C6 F000 C6A2 7000 F000
    1B C3AO 3D42 FOOO FOOO 31EO DOOR C624 31EO FOOO 9000 3D44 FOOO
     1 R
         83B6 7000 E040 40D5 2141 A07B CC0B 4000 F000 80ED 23EA D280
    1B BF60 2060 F000 F000 20E1 F000 F000 23EA D280 90C6 23DE D280
    1B 4F95 4014 A074 8175 7000 F000 AF43 7000 F000 C2E0 7000 F000
     1 B
         80C3 OCDF 600B F000 3363 F000 F000 34E3 F000 F000 3033 A041
     1 R
        F000 7000 8012 40D5 2141 A06B CC0B 4000 F000 80ED 23EA D280
    1B BF60 2060 F000 F000 20E1 F000 F000 23EA D280 90C6 23DE D280
    1B 4F95 4014 A064 8175 7000 4006 AF43 7000 F000 C2E0 OCDF 600B
     1 B
        F000 31E0 F000 80C3 4036 E600 C624 3033 F000 F000 3363 F000
[ w 1B F000 34E3 F000 F000 3D44 F000 F000 37C6 A02E F000 2366 A031 ]
    1B 8292 0BB8 6003 47F4 23E0 D280 5208 6005 9803 8292 5208 6003
        47F4 23E0 D280 5208 6005 9823 F000 33E4 F000 F000 3465 F000
     1 R
    1B F000 3564 F000 F000 35E5 F000 F000 2366 A04E 918E 7000 F000
    1B F000 3366 A024 8292 5208 6003 F000 23E0 D280 F000 7000 9C05
    1B 8292 0BB8 6003 F000 23E0 D280 F000 7000 9BF7 0D94 600D A02B
     1B
        F000 7000 8FF5 F000 24E6 A043 9FBE 7000 F000 F000 34E6 A019 1
[ w 1B 8292 5208 6003 F000 23E0 D280 F000 7000 9C05 8292 0BB8 6003 ]
    1B F000 23E0 D280 F000 7000 9BF7 0D97 600D A020 F000 7000 8FF5 ]
        4014 23E1 A038 C263 2562 F000 F000 2465 9007 C2A3 25E6 F000
    1 B
    1B 9080 7000 9002 8377 7000 F000 2560 23E0 EBC0 0CDF 600B A031 ]
    1B F000 3030 F000 F000 21E0 D008 C2A3 25E6 F000 F000 7000 93F9
    1B 9040 7000 8FFA F000 21E0 AF0F F000 2462 D280 F000 3260 F000
         F000 32E1 D008 F000 23ED D280 B868 2260 F000 F000 22E1 F000
    1B F000 23EA D280 F000 23DE D280 A988 7000 F000 ABF8 23E4 D280
    1B 4643 2142 A020 A098 7000 F000 F000 23E7 D280 F000 23C6 D280
     1 R
        9000 7000 F000 F000 7000 DC09 F000 23CE D080 47E5 7000 F000
    1B 4016 20D3 A018 835D 2052 F000 C2F5 2154 9807 C2B6 7000 9002
    1B F000 7000 9005 F000 7000 8002 C2B6 7000 F000 F000 7000 D409
  w 1B 8264 7000 F000 F000 7000 DC09 F000 3151 F000 F000 30D2 D008
        ODEF 600B A00C 9E79 2036 F000 F000 2045 F000 9FBC 7000 E040
    1B
        9145 7000 D009 2644 272D D580 9186 7000 F000 F000 2732 D580
[w 1R
[ w 1B F000 7000 AF67 2F41 2736 D080 F000 2915 D280 F000 3B9E D280 ]
    1B
         F000 2888 D080 F000 7000 D008 F000 16C3 6008 F000 009A 6000
[ w 1B F000 02E3 6000 1000 04F4 6000 1000 06FF 6000 1000 0907 6000
    1B 1000 0B10 6000 1000 0D1F 6000 1000 0F65 6000 1000 0F65 6000
  w 1B 1000 0D1F 6000 1000 0B10 6000 1000 0907 6000 1000 06FF 6000
     1B 1000 04F4 6000 1000 02E3 6000 1000 009A 6000 F000 1000 F000
  w 1B F000 1000 F000 F000 16D3 6008 F000 FF93 6000 F000 FE37 6000
 w 1B
        1000 FDD9 6000 1000 FE9F 6000 1000 0385 6000 1000 0D6B 6000
     1B 1000 1684 6000 1000 1E49 6000 1000 1E49 6000 1000 1684 6000
         1000 0D6B 6000 1000 0385 6000 1000 FE9F 6000 1000 FDD9 6000
   1.B
        1000 FE37 6000 1000 FF93 6000 F000 1000 F000 F000 1000 F000
[ W
     1B F000 16E3 6008 F000 0064 6000 F000 FFA8 6000 1000 FFA6 6000
         1000 FFDF 6000 1000 0001 6000 1000 0128 6000 1000 012F 6000
     1 B
        1000 FD23 6000 1000 FDA1 6000 1000 0389 6000 1000 0254 6000
  W
    1 B
        1000 FE7D 6000 1000 008C 6000 1000 FBE1 6000 1000 F942 6000
     1 B
        1000 0C47 6000 1000 0EA2 6000 1000 EC43 6000 1000 EACE 6000
     1 R
     1 B
        1000 1746 6000 1000 1746 6000 1000 EACE 6000 1000 EC43 6000
        1000 0EA2 6000 1000 0C47 6000 1000 F942 6000 1000 FBE1 6000
    1 B
    1B 1000 008C 6000 1000 FE7D 6000 1000 0254 6000 1000 0389 6000
        1000 FDA1 6000 1000 FD23 6000 1000 012F 6000 1000 0128 6000
     1B
    1B 1000 0001 6000 1000 FFDF 6000 1000 FFA6 6000 1000 FFA8 6000
    1B F000 0003 6000 F000 54C0 6000 1000 0005 6000 1000 0005 6000
    1B 1000 000F 6000 1000 000F 6000 1000 09C0 6000 1000 0A20 6000
[ w 1B 1000 1D40 6000 1000 1E60 6000 F000 1000 F000 F000 1000 F000 ]
[ w 1B F000 7000 D008 1
[ w 1C 0000
[ w 1C 0075 ]
[ w 1B 4013 402F 4168 41C1 4214 44DE 44E9 45FB 4611 47C5 47FC 4D5D ]
[ w 1B 4E56 4E58 4E5B 4D83 4E0A 4E0B 4E49 4E53 4F92 4FEA 5041 5074 ]
    1B 5080 5660 56D4 56D9 5829 59B4 5A3A 5B79 5BA2 5BEF 5DDC 603A
[ w 1B 6088 60A8 619F 61B6 61DF 6214 6259 629B 62A1 6369 643B 6609 ]
[ w 1B 66E7 670B 671A 6729 6887 6899 68A7 68B2 ]
[ w 1C 0000 ]
```

6.2.2 Required initialization I²C transmission – C code include file

The following data sets (p2.22) are a required part of boot state device initialization.

The C code in this chapter can be included in C program code of a host μ C and describes the same data as the I²C script example of chapter <u>6.2.1</u>.

The C code may be copied from this document but the C code include file can also be found as part of the PC GUI control program installation (.../documentation/PATCH.c).

```
Waage:
Compile and link this C-file and declare in the source-file for required initialization transmissions the following
  The source for required initialization transmissions should create the following set of I2C transmissions.
#include <stdlib.h>
extern const size_t PatchSize;
extern const unsigned char * pPatchBytes;
```

TEF668X, TEF6686, TEF6687, TEF

***PROPRIESE OF THE STATE OF THE STAT

```
Sart, Latel, Lat
```

6.2.3 Required initialization I²C transmission – version p2.22

Initialization version p2.22 is a required part of the V102 device startup.

Initialization version p2.22 offers the following updates over earlier releases:

Performance

- Improved performance at FM 104 MHz for digital radio = off
- Improved performance for FM 96.9 MHz HD radio reception
- Corrected level extension for maximum AM RF AGC step

Initialization version p2.22 includes all the advantages offered from earlier versions:

Fix

- p2.19: Supporting manual selection of the digital radio sample rate (3.26 FM / AM cmd 84 Set_DR_Options); not supported for p2.17.
- p2.15: AM Shortwave use: resolved failing reception after switching from FM
 94.1 MHz to AM Shortwave band
- p2.15: External FM AGC application and AFU, Jump or Check tuning: resolved wrong mute slope after internal FM AGC step
- p2.14: Radio tuning robustness, resolving issue of wrong quality read and muted audio after > 65000 tunings with less than 32 ms between tuning actions
- p2.14: Erroneous level result in high signal conditions (in certain cases depending on RF AGC threshold, level step correction and level offset settings)
- p2.14: Resolved potential issue of boot state robustness
- p2.13: Tuning action sequence FM Check FM Preset and FM Check FM
 Search; resolved issue of frozen weak signal handling
- p2.13: Tuning action sequence FM Check FM Jump ... FM Check; proper weak signal handling start at closing of FM Check (by Jump, AFU or End action)
- p2.12: Resolved critical issue of muted FM radio after temperature change
- p2.12: Resolved critical issue on variant read
- p2.12: Resolved issue concerning AM noise blanker false triggering on specific condition of 30 kHz adjacent signal with HD radio digital modulation
- p2.12: Improved digital radio large signal handling

New feature

- p2.21: Extension of noise blanker control options (3.9, 3.10, 3.11, 3.12)
- p2.17: Extension of FM automatic bandwidth control options (3.3 FM / AM cmd
 Set Bandwidth
- p2.13: Minimum IF bandwidth control (3.3 FM / AM cmd 10 Set_Bandwidth)
- p2.09: AM noise detector (4.1 FM / AM cmd 128 / 129 Get Quality)
- p2.09: AM co-channel detector (3.6 AM cmd 14 Set_CoChannelDet and 4.1)

do

Performance

- p2.19: Avoidance of digital radio BCK harmonics in FM digital radio bandwidth.
- p2.17: Improved spurious performance for multiple tuner application, particularly with SAF775X.
- p2.15: FM multipath suppression and AFU, Jump tuning: resolved audio amplitude disturbance after Jump / AFU tuning from high to low signal condition
- p2.13: Optimized digital radio large signal handling timing and adapted threshold
- p2.10: Reduction of potential whistle in the AM SW band at the crystal frequency
- p2.10: Improved digital radio high level signal response and fast settling at tuning
- p2.09: Avoidance of potential whistle at 77.40 MHz

Next to the above published advantages the behavior is otherwise equivalent to the previous device version V101 with p01.24 initialization but including:

Resolved control issue regarding disabling of FM Highcut 'deemphasis' option

6.3 Operation state description

6.3.1 Boot state

After power-on the device is found in 'boot state', controlled by the integrated power-onreset detection

Parallel to the supply power detection a clock signal detector is present which ensures boot state is entered only when a clock signal is present in order to safeguard the external clock application case.

In case of a harmful disruption of the power supply voltage (power dip) or reference clock signal the present operation state will be reset and boot state will be available after power supply voltage and reference signal are re-established.

In boot state the device functionality is reduced to the bare minimum defined by hardware only.

Required additions to the built-in firmware can be loaded up from the host μC to the internal RAM of the device.

'Boot state' is identified by

- The I²C bus is active; I²C transmissions are acknowledged by the device. (Note: the I²C device address has been determined during power-on).
- The device is in full power-down.
- GPIO and digital output pins are 'open'.
- No API commands are available; only hardware support.
 API commands are ignored and do not harm the boot state operation.
- Reading APPL_Get_Operation_Status returns 'boot state' (0).
 Note: This API read operation is defined by the fact that any API read will return '0' here.
 This property can be used by the radio system μC to detect an unforeseen power dip occurrence or unforeseen disruption of the (external) clock reference signal.
- The device can receive certain dedicated hardware commands and data; Device version V102 requires an initialization at this point for function and performance.
- Command 'Start' will bring the device into 'idle state'.
 Note: The 'Start' command is made up of I²C data byte values "14h 00h 01h".
 In API definition style this equals a transmission of module = 20, cmd = 0, index = 1 and no parameters.

6.3.2 Idle state

Changing 'boot state' to 'idle state' takes a time of less than 50 ms.

Presence of 'idle state' can be verified by APPL_Get_Operation_Status returning 'idle state' (status = 1).

In 'idle state' very limited control functionality is available, only specific API commands required for system definition are available here.

'Idle state' is identified by

• The I²C bus is active; I²C transmissions are acknowledged by the device.

do

- The device is in power-down.
- GPIO and digital output pins are 'open'.
- Reading APPL Get Operation Status will return 'idle state' (1).
- The device can receive certain API commands for application definition purposes (APPL_Set_ReferenceClock).
- The device can return certain API status information (APPL_Get_Identification, APPL_Get_Last_Write).
- Command APPL Activate will bring the device into 'active state' = radio standby.

6.3.3 Active state

Changing 'idle state' to 'active state' takes a time of less than 100 ms. Presence of 'active state' can be verified by APPL_Get_Operation_Status returning the radio standby 'active state' (2).

On first activation pin states do not change and the device enters the reduced power state of 'radio standby'.

The full set of API commands is available now allowing initialization of the different modules including the disabled modules of 'FM' and 'AM'. The operation mode can be completed now by enabling either FM or AM radio operation and releasing the audio mute.

'Active state' is identified by

- The I²C bus is active; I²C transmissions are acknowledged by the device.
- The device is in operation (initial operation mode is 'radio standby')
- At initial 'radio standby' operation the DR and GPIO pins are 'open'.
- In FM / AM operation the DR and GPIO pins are in their selected FM / AM state (and default state 'open' when not initialized).
- In 'radio standby' operation, after FM or AM, the DR pins remain in their previous radio state (with invalid data) and GPIO radio features are disconnected (i.e. GPIO pins are 'open').
- Reading APPL_Get_Operation_Status will return one of the 'active' states; radio standby (2), FM (3) or AM (4).
- The device can handle API commands for all modules for additional initialization and control including disabled modules like FM and/or AM.
- API get commands result in valid read data for enabled modules only.

7. Overview of available commands

Table 1.	Command	overview - write	
Table L	Command	overview - write	

abie	Module	Cm	d	1	2	3	4
3.1	FM/AM	1	Tune To	mode	frequency [kHz]		
3. <u>2</u>	FM	2	Set_Tune_Options			muta tima [ma]	comple time [me
<u></u>	I IVI		oet_rune_options	afu_bw_mode	afu_bandw [kHz]	mute_time [ms]	sample_time [ms
.3	FM/AM	10	Set_Bandwidth	mo do	boodwidth [kl l=1	o a politivity (0/1	la appoitivity [0/1
<u></u>	I IVI/AIVI	10	Set_Bandwidth	mode	bandwidth [kHz]	sensitivity [%]	lo_sensitivity [%]
	FM/AM	11	Set_RFAGC	min_bandwidth	nombandwidth	control_attack	
3.4 5 5	AM	12		start [dBuV]	extension		
<u>8.5</u>	AIVI	12	Set_Antenna	attenuation [dB]			
8. <u>6</u>	AM	14	Set_CoChannelDet			and a fath star .	t
<u>u</u>	Aivi	14	Set_CoonamileDet	mode	restart	sensitivity	count
8.7	FM	20	Set_MphSuppression	mode			
9.7 3.8	FM	22	Set_ChannelEqualizer				
<u>,,,,</u>	1 IVI		Oet_OnanneiEqualizer	mode			
8. <u>9</u>	FM	23	Set_NoiseBlanker	mode	sensitivity [%]		modulation
<u></u>				offset	attack	decay	modulation
3.10	FM	24	Set_NoiseBlanker_Options		blank time2	blank_mod.	
.11	AM	23	Set_NoiseBlanker	mode	sensitivity [%]	gain	blank_time
.12	AM	24	Set_NoiseBlanker_Audio	mode	sensitivity [%]	gu	blank_time
			01_111111111111111111111111111111111111				
3.13	FM/AM	30	Set_DigitalRadio	mode			
3.14	FM	31	Set_Deemphasis	timeconstant [us]			
3.15	FM	32	Set_StereoImprovement	mode			
3.1 <u>6</u>	FM/AM	38	Set_LevelStep	step1 [dB]	step2 [dB]	step3 [dB]	step4 [dB]
				step5 [dB]	step6 [dB]	step7 [dB]	,
3.17	FM/AM	39	Set_LevelOffset	offset [dB]	, , ,	, , ,	
				• •			
3.18	FM/AM	40	Set_SoftMute_Time	slow_attack [ms]	slow_decay [ms]	fast_attack [ms]	fast_decay [ms]
	AM	41	Set_SoftMute_Mod	mode	start [mod %]	slope [mod %]	shift [control %]
	FM/AM	42	Set_SoftMute_Level	mode	start [dBuV]	slope [dB]	
	FM	43	Set_SoftMute_Noise	mode	start [%]	slope [%]	
	FM	44	Set_SoftMute_Mph	mode	start [%]	slope [%]	
	FM/AM	45	Set_SoftMute_Max	mode	limit [dB]		
<u>3.19</u>	FM/AM	50	Set_HighCut_Time	slow_attack [ms]	slow_decay [ms]	fast_attack [ms]	fast_decay [ms]
	FM/AM	51	Set_HighCut_Mod	mode	start [mod %]	slope [mod %]	shift [control %]
	FM/AM	52	Set_HighCut_Level	mode	start [dBuV]	slope [dB]	
			-				

	Module	Cm	d	1	2	3	4
	FM	53	Set_HighCut_Noise	mode	start [%]	slope [%]	
	FM	54	Set_HighCut_Mph	mode	start [%]	slope [%]	
	FM/AM	55	Set_HighCut_Max	mode	limit [Hz]	slope [/6]	
	FM/AM	56	Set_HighCut_Min	mode	limit [Hz]		
	FM/AM	57	Set_LowCut_Max	mode	limit [Hz]		
	FM/AM	58	Set_LowCut_Min	mode	limit [Hz]		
	FM/AM	59	Set_HighCut_Options	mode			
	,,		ecgeuepee	mode			
3.20	FM	60	Set_Stereo_Time	slow_attack [ms]	slow_decay [ms]	fast_attack [ms]	fast_decay [ms]
	FM	61	Set_Stereo_Mod	mode	start [mod %]	slope [mod %]	shift [control %]
	FM	62	Set_Stereo_Level	mode	start [dBuV]	slope [dB]	
	FM	63	Set_Stereo_Noise	mode	start [%]	slope [%]	
	FM	64	Set_Stereo_Mph	mode	start [%]	slope [%]	
	FM	65	Set_Stereo_Max	mode			
	FM	66	Set_Stereo_Min	mode	limit [dB]		
3.21	FM	70	Set_StHiBlend_Time	slow_attack [ms]	slow_decay [ms]	fast_attack [ms]	fast_decay [ms]
	FM	71	Set_StHiBlend_Mod	mode	start [mod %]	slope [mod %]	shift [control %]
	FM	72	Set_StHiBlend_Level	mode	start [dBuV]	slope [dB]	
	FM	73	Set_StHiBlend_Noise	mode	start [%]	slope [%]	
	FM	74	Set_StHiBlend_Mph	mode	start [%]	slope [%]	
	FM	75	Set_StHiBlend_Max	mode	limit [Hz]		
	FM	76	Set_StHiBlend_Min	mode	limit [Hz]		
3.22	FM/AM	80	Set_Scaler	gain [dB]			
3.23	FM	81	Set_RDS	mode	restart	interface	
3.24	FM/AM	82	Set_QualityStatus	mode	interface		
3.25	FM/AM	83	Set_DR_Blend	mode	in_time [ms]	out_time [ms]	gain [dB]
3.26	FM/AM	84	Set_DR_Options	samplerate	mode	format	
<u>3.27</u>	FM/AM	85	Set_Specials	ana_out			
3.28	FM	86	Set_Bandwidth_Options	modulation [%]			
			0 / 0/D IDI 1 T'				
3.29	FM	90	Set_StBandBlend_Time	attack	decay		
	FM	91	Set_StBandBlend_Gain	band1	band2	band3	band4
	FM	92	Set_StBandBlend_Bias	band1	band2	band3	band4
2 20	VIIDIO	10	Set_Volume	valvas a E-IDI			
3.30	AUDIO	10		volume [dB]			
3.31	AUDIO	11	Set_Mute	mode			
3.32	AUDIO	12	Set_Input	source			
3.33	AUDIO	13	Set_Output_Source	signal	source		

TEF668X User Manual

TEF6686, TEF6687, TEF6688 and TEF6689, /V102

	Module	Cm	d	1	2	3	4
3.34	AUDIO	21	Set_Ana_Out	signal	mode		
3.35	AUDIO	22	Set_Dig_IO	signal	mode	format	operation
0.00	710210			samplerate			
3.36	AUDIO	23	Set_Input_Scaler	source	gain [dB]		
3.37	AUDIO	24	Set WaveGen	mode	offset	amplitude1	frequency1
<u>0.0.</u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			amplitude2	frequency2		
3.38	APPL	1	Set_OperationMode	mode			
<u>3.39</u>	APPL	3	Set_GPIO	pin	module	feature	
3.40	APPL	4	Set_ReferenceClock	frequency_msb	frequency_lsb	type	
3.41	APPL	5	Activate	mode			

Table 2. Command overview - read

	Module		Cmd	1	2	3	4
<u>4.1</u>	FM/AM	128	Get_Quality_Status	status	level	usn / noise	wam / co_channel
				offset	bandwidth	modulation	
	FM/AM	129	Get_Quality_Data	status	level	usn / noise	wam / co_channel
				offset	bandwidth	modulation	
<u>4.2</u>	FM	130	Get_RDS_Status	status	a_block	b_block	c_block
				d_block	dec_error		
	FM	131	Get_RDS_Data	status	a_block	b_block	c_block
				d_block	dec_error		
<u>4.3</u>	FM/AM	132	Get_AGC	input_att	feedback_att		
<u>4.4</u>	FM/AM	133	Get_Signal_Status	status (stereo, digital)			
<u>4.5</u>	FM/AM	134	Get_Processing_Status	softmute	highcut	stereo	sthiblend
				stband_1_2	stband_3_4		
4.6	FM/AM	135	Get_Interface_Status	samplerate			
4.7	APPL	128	Get_Operation_Status	status			
				status			
<u>4.8</u>	APPL	129	Get_GPIO_Status	(pin state)			
<u>4.9</u>	APPL	130	Get_Identification	device (type, variant)	hw_version (main, sub)	sw_version	
4.10	APPL	131	Get_LastWrite	size / module	cmd / index	parameter	parameter
				parameter	parameter	parameter	parameter

TEF668X User Manual

TEF6686, TEF6687, TEF6688 and TEF6689, /V102

8. Legal information

8.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

8.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected

to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

8.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are property of their respective owners.

9. List of figures

Fig 1.	I ² C control –TEF668X	5
Fig 4.	Examples of I ² C write control; set command7	5
Fig 5.	Examples of I ² C read control; get command7	6
Fig 6.	Example of a possible get command with	
	parameter(s)7	7
Fig 7.	Examples of I ² C transmissions with repeated	
	start7	7
Fig 8.	Example of testing device presence7	7
Fig 9.	Example of I ² C read control with guaranteed	
	400 kHz operation; get command index = 07	8
Fig 10.	Examples of alternative I ² C read control with	
	guaranteed read data setup7	9
Fig 11.	Example of write command with evaluation data	a
	read7	9
Fig 12.	Examples of I ² C read control with confirmation;	
	get command index = 08	0
Fig 13.	Block diagram of device start-up control	
	sequence 8	1

10. List of tables

Table 1.	Command overview - write	94
Table 2.	Command overview - read	96

11. Contents

1.	Introduction	
2.	Control interface	. 4 3.4
2.1	Overview	.4 4.
2.2	History	.6 4.
3.	Write commands	.7 4.:
3.1	FM / AM cmd 1 Tune_To	.8 4.
3.1.1	radio tuning actions with setting of band and	4.:
	frequency	
3.2	FM cmd 2 Set_Tune_Options1	11
3.3	FM / AM cmd 10 Set_Bandwidth1	
3.4	FM / AM cmd 11 Set_RFAGC	14
3.5	AM cmd 12 Set_Antenna	10
3.6	AM cmd 14 Set_CoChannelDet	10
3.7	FM cmd 20 Set_MphSuppression	17
3.8	FM cmd 22 Set_ChannelEqualizer	17 💢
3.9	FM cmd 23 Set_NoiseBlanker	10
3.10 3.11	FM cmd 24 Set_NoiseBlanker_Options	19 ,
3.11	AM cmd 24 Set_NoiseBlanker_Audio	
3.12	FM / AM cmd 30 Set_DigitalRadio	
3.14	FM cmd 31 Set_Deemphasis	
3.15	FM cmd 32 Set_StereoImprovement	
3.16	FM / AM cmd 38 Set_LevelStep	-
3.17	FM / AM cmd 39 Set_LevelOffset	7
3.18	FM / AM cmd 40 45 Set_Softmute2	
3.19	FM / AM cmd 50 59 Set_Highcut2	<u>29</u> 5.
3.20	FM cmd 60 66 Set_Stereo	35 5.
3.21	FM cmd 70 76 Set_StHiBlend	
3.22	FM / AM cmd 80 Set_Scaler	
3.23	FM cmd 81 Set_RDS	
3.24	FM / AM cmd 82 Set_QualityStatus	
3.25	FM / AM cmd 83 Set_DR_Blend	
3.26	FM / AM cmd 84 Set_DR_Options	٠.
3.27	FM / AM cmd 85 Set_Specials	• • • • • • • • • • • • • • • • • • • •
3.28	FM cmd 86 Set_Bandwidth_Options	
3.29	FM cmd 90 92 Set_StereoBandBlend4	
3.30 3.31	AUDIO cmd 10 Set_Volume	
3.32	AUDIO cmd 12 Set_Input	
3.33	AUDIO cmd 13 Set_Output_Source	
3.34	AUDIO cmd 21 Set_Ana_Out	
3.35	AUDIO cmd 22 Set_Dig_IO	
3.36	AUDIO cmd 23 Set_Input_Scaler	
3.37	AUDIO cmd 24 Set_WaveGen	
3.38	APPL cmd 1 Set_OperationMode	
3.39	APPL cmd 3 Set_GPIO	

3.40 3.41	Idle state - APPL cmd 4 Set_ReferenceCloc Idle state - APPL cmd 5 Activate	
4.	Read commands	
 4.1	FM / AM cmd 128 / 129 Get_Quality	
4.2	FM cmd 130 / 131 Get_RDS	
4.2.1	RDS read modes	
4.2.2	Read data definition for RDS decoder mode	
4.2.3	RDS read operation for decoder mode	
4.2.3 4.2.4	Read data definition for RDS demodulator mo	
7.2.7		
4.2.5	RDS read for demodulator mode operation	
4.3	FM / AM cmd 132 Get_AGC	
4.4	FM / AM cmd 133 Get_Signal_Status	
4.5	FM / AM cmd 134 Get_Signal_Status FM / AM cmd 134 Get_Processing_Status	
4.6	FM / AM cmd 135 Get_Interface_Status	
4.7	APPL cmd 128 Get_Operation_Status	
4.8	APPL cmd 129 Get_GPIO_Status	
4.9	APPL cmd 130 Get_Identification	
4.10	APPL cmd 131 Get_lastWrite	
5.	I ² C bus protocol	
5.1	I ² C protocol	
5.2	Write control	
5.3	Read control	
5.4	I ² C repeated start	
5.5	Polling device presence	
5.6	I ² C read timing requirements	
5.7	Special control	
5.7.1	Set command confirmation; special evaluation	
	read control	
5.7.2	Get command confirmation; special evaluation	
	read control	
6.	Device start-up	
6.1	Introduction	
6.2	Start-up I ² C control transmission sequence	82
6.2.1	Required initialization I ² C transmission – I ² C	
	example	
6.2.2	Required initialization I ² C transmission – C co	
	include file	
6.2.3	Required initialization I ² C transmission – vers	
	p2.22	
6.3	Operation state description	
6.3.1	Boot state	92
6.3.2	Idle state	92
6.3.3	Active state	93
7.	Overview of available commands	94

Please be aware that important notices concerning this document and the product(s) described herein, have been included in the section 'Legal information'.

© NXP B.V. 2015.

All rights reserved.

TEF668X User Manual

TEF6686, TEF6687, TEF6688 and TEF6689, /V102

8.	Legal information	97
8.1	Definitions	97
8.2	Disclaimers	97
8.3	Trademarks	97
9.	List of figures	98
10.	List of tables	99
	Contents	100

Please be aware that important notices concerning this document and the product(s) described herein, have been included in the section 'Legal information'.

© NXP B.V. 2015.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com