KØBENHAVNS UNIVERSITET

Statistisk Dataanalyse 1: Introduktion til lineær regression og ensidet variansanalyse

Anders Tolver Institut for Matematiske Fag

Dagens program

Formiddag:

- Lineær regression og korrelation
- Ensidet variansanalyse

Vi vender tilbage til lineær regression og ensidet variansanalyse mange gange de kommende uger.

Idag: primært introduktion/motivation

Eftermiddag:

- Evt. hængepartier fra i formiddag
- R Markdown
- Om at arbejde med datasæt i R

isdals-pakken

Data til bogens eksempler og opgaver ligger i R-pakken isdals.

- Installér pakken via Tools-menuen.
 Kun første gang du skal bruge pakken.
- Load pakken, enten ved at sætte hak ved den i listen over pakker eller med kommandoen

library(isdals)

Dette skal ske I hver R-session hvor du skal bruge pakken.

 Load data med kommandoen data(navn-på-datasættet)
 Dette skal ske i hver R-session hvor du skal bruge datasættet.

Du bliver ledt gennem dette i opgave HS.2 i dag.

Lineær regression og korrelation

Eksempel: Kattes krops- og hjertevægt

Data: Kropsvægt i kg, vægt af hjerte i gram for 144 katte. Glem alt om kattenes køn i dag.

Ønsker at **prædiktere** (forudsige) hjertevægt udfra kropsvægt: Brug **Hwt** som **responsvariabel**, **Bwt** som **forklarende variabel**.

Giver lineær regression overhovedet mening her?

Det ser faktisk ud til at punkterne varierer omkring en ret linie, så lineær regression giver mening.

Lineær regression

Ligning for ret linie med skæring (intercept) α og hældning (slope) β :

$$y = \alpha + \beta \cdot x$$

Vores opgave er at finde den rette linie der "passer bedst" med data.

Altså: Find de værdier af α og β der passer bedst.

Legetøjsdata

Dette er nogle andre data! To gode forslag til rette linier, men hvilken linie er bedst?

Bliver nødt til at have en objektiv metode: **Mindste** kvadraters metode (least squares)

Mindste kvadraters metode (least squares)

For alle rette linier i hele verden:

- Lodret afstand mellem punkter og linie, $r_i = y_i \alpha \beta x_i$
- Kvadrér disse afstande, r_i^2 , og beregn $r_1^2 + \cdots + r_n^2$

Find den linie der giver den mindste residualkvadratsum.

Formlerne

Det viser sig at den bedste rette linie er givet ved følgende formler:

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$\hat{\alpha} = \bar{y} - \hat{\beta} \cdot \bar{x}$$

hvor $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ og $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ er gennemsnittene.

Bemærk:

- Fortegnet på $\hat{\beta}$
- Regressionslinien går gennem (\bar{x}, \bar{y})

I praksis skal vi ikke bruge formlerne — det lader vi R klare!

R

```
library(MASS)
data(cats)
plot(Hwt ~ Bwt, data=cats)
lm(Hwt ~ Bwt, data=cats)
##
## Call:
## lm(formula = Hwt ~ Bwt, data = cats)
##
## Coefficients:
  (Intercept)
                      Bwt
      -0.3567 4.0341
##
abline(-0.3567, 4.0341)
```


Eksempel: Kattes krops- og hjertevægt

Regressionslinien — den bedste rette linie — for kattene:

 $Hwt = -0.3567 + 4.0341 \cdot Bwt$

Fortolkning af parametrene?

Fortolkning!

Mindste kvadraters metode giver estimeret regressionslinie:

$$y = \hat{\alpha} + \hat{\beta} \cdot x$$

Fortolkning:

Modellen/linien fortæller, hvad vi vil forvente for et givet
 x:

$$\hat{y} = \hat{\alpha} + \hat{\beta} \cdot x$$

- $\hat{\beta}$: For to enheder med en forskel i x-værdi på Δx , vil vi forvente en forskel på $\Delta y = \hat{\beta} \cdot \Delta x$.
- α̂: den forventede y-værdi for x = 0 (hvis det giver mening).

Usikkerhed

Har endnu intet sagt om usikkerheden på estimaterne!

- Hvor meget kan vi stole på estimaterne?
- Hvor meget anderledes kunne estimaterne blive hvis vi kiggede på andre katte fra samme population?
- Er der overhovedet en sammenhæng?

Coming up: Standard errors, konfidensintervaller, hypotesetest, prædiktionsintervaller, modelkontrol.

Brug af lineær regression

Hvornår kan vi bruge lineær regression?

- Begge variable skal være kvantitative
- Der skal være et "naturligt" valg af hhv. respons og forklarende variabel (hvad er x hhv. y?)
- Der skal være tilnærmelsesvis lineær sammenhæng.
- Et par antagelser mere som vi vender tilbage til…
- Pas på hvis der er ekstremt store/små værdier af x eller
 y. Kan trække meget i linien.

Det er forbudt at fortolke regressionslinien (langt) udenfor observationsintervallet (ekstrapolation).

Hvad hvis sammenhængen ikke er lineær?

Sommetider kan man transformere sig til lineær sammenhæng.

Eksempel 2.4: Hvis (x, y) sammenhængen er eksponentiel, så er $(x, \log(y))$ -sammenhængen lineær.

Hvis det er uklart hvad der skal være x og y?

Sommetider har man datapar (x, y) som er **ligeværdige** i den forstand at det ikke er klart at den ene forklarer den anden.

Eksempel: Hovedomkreds og maveomkreds hos nyfødte.

- Begge dele er mål for babyens størrelse
- Ikke specielt naturligt at modellere den ene som funktion af den anden—medmindre man er interesseret i prædiktion.
- Interessant at sige noget om graden af sammenhæng

I disse tilfælde beregner man ofte korrelationskoefficienten.

Korrelationskoefficienten

Korrelationskoefficienten måler graden af lineær sammenhæng mellem x og y:

$$\hat{\rho} = \frac{\frac{1}{n} \sum_{i} (x_i - \bar{x})(y_i - \bar{y})}{\mathsf{sd}_x \cdot \mathsf{sd}_y}$$

Kan tænke på $\hat{\rho}$ som hældningen i en lineær regression hvor man bruger standardiserede versioner af x og y.

Korrelationskoefficienten er

- ullet altid mellem -1 og +1
- 0 hvis der ikke er nogen (lineær) information om y i x, eller omvendt
- ±1 hvis observationerne ligger perfekt på en linje med positiv/negativ hældning

Korrelationskoefficienten: eksempler

Ensidet variansanalyse

Eksempel 3.2: Nedbrydning af organisk materiale

Data

- Fem typer antibiotika og en kontrolbehandling.
- 36 kvier inddelt i seks grupper. Foder tilsat antibiotikum.
- Gødning gravet ned i poser og mængden af organisk materiale målt efter 8 uger.
- For spiramycin: Kun fire brugbare målinger.

Formål

- Påvirker antibiotika nedbrydningen af organisk materiale?
- Hvis kontrolmålingerne ligger lavere end de andre, tyder det på at antibiotika hæmmer nedbrydningen.

Data

Data er tilgængelige i datasættet antibio i isdals-pakken.

```
library(isdals)
data(antibio)
head(antibio, n=7)
         type org
## 1 Ivermect 3.03
## 2 Ivermect 2.81
## 3 Ivermect 3.06
## 4 Ivermect 3.11
## 5 Ivermect 2.94
## 6 Ivermect 3.06
## 7 Alfacyp 3.00
```

To variable: type og org. Datatyper? Responsvariabel? Forklarende variabel?

Hvorfor hedder det ensidet variansanalyse?

- Ensidet: Fordi der kun er en enkelt forklarende variabel
- Variansanalyse: Fordi forskelle mellem grupper påvises ved at sammenligne forskellige kilder til variation
 Variansanalyse = Analysis of variance = ANOVA.

I behøver ikke læse detaljerne i bogen nu. Vi vender tilbage senere...

Hvordan ser data ud?

- Hvad kan vi se?
- Kan vi konkludere at der er forskel på grupperne?

Between-group og within-group variation

Alle observationer er ikke ens! Men hvorfor ikke?

- Fordi der (potentielt) er forskel på behandlingerne \rightarrow between-group variation
- Fordi der er biologisk variation, ikke-ens respons selv hvis gødningen behandles ens → within-group variation

Hvis between-group variation er stor ift. within-group variation, er det tegn på at der er forskel på grupperne.

Der er formler i bogen, for SS_{between} og SS_{within} i bogen, men det er vigtigere at forstå den grafiske betydning.

Between-group og within-group variation

- Between-group variation: Forskel mellem de forskellige grupper. Gruppegennemsnit vs totalgennemsnit.
- Within-group variation: Forskel mellem obs. fra samme gruppe. Punkter vs gruppegennemsnit

Gruppegennemsnit og -spredninger Gruppegennemsnit (og -spredninger) er vigtige:

Behandling	nj	\bar{y}_j	
Control	6	2.603	0.119
lpha-cyperm.	6	2.895	0.117
Enrofloxacin	6	2.710	0.162
Fenbendaz.	6	2.833	0.124
Ivermectin	6	3.002	0.109
Spiramycin	4	2.855	0.054

Gennemsnittene kan beregnes i R på følgende måde:

```
data(antibio)
lm(org ~ type-1, data=antibio)
```

Hvad mon der sker hvis vi ikke skriver -1? Se opgave HS.4!

Usikkerhed

Gennemsnittene er **estimater for populationsgennemsnit**, dvs. gennemsnit af responsen hvis vi testede behandlingerne på alle kvier i verden.

Har endnu intet sagt om usikkerheden på gennemsnittene:

- Hvor meget kan vi stole på estimaterne?
- Hvor meget anderledes kunne estimaterne blive hvis vi kiggede på andre kvier fra samme population?
- Er der forskel på behandlingerne?

Coming up: Standard errors, konfidensintervaller, hypotesetest, prædiktionsintervaller, modelkontrol.

Opsummering - til eget brug

- Hvornår er det rimeligt at benytte lineær regression?
- Hvad er fortolkningen af parametrene i en lineær regression?
- Hvad er princippet i at bestemme den bedste rette linie?
- Hvad måler korrelationskoefficienten?
- Hvad er formålet i en ensidet variansanalyse?
- Hvilke typer variation er der når vi har data fra flere grupper?
- Kan vi konkludere om der er forskel på grupperne på baggrund af plots og/eller tabel med gruppegennemsnit?

