UNIVERZA V LJUBLJANI

FAKULTETA ZA MATEMATIKO IN FIZIKO

Poročilo vaje

Vaja 10 - Težni pospešek

Luka Orlić

Kazalo

1	I Teoretični uvod	2
2	2 Naloga	3
3	3 Potrebščine	3
4	4 Skica	3
5	5 Meritve	4
	5.1 Metodologija	. 5
6	6 Obdelava meritev	6
	6.1 Porazdelitev časov	. 6
	6.2 interpretacija grafa	. 8
	6.3 Pričakovana porazdelitev meritev	. 9
	6.4 Pričakovana porazdelitev meritev za posamezen interval	. 9
	6.5 Negotovost	. 9
7	7 Analiza rezultatov	10

1 Teoretični uvod

Vsako telo ima maso, ki jo bomo označili z m. Na to telo z maso m deluje sila, sorazmerna z maso m, tako da:

$$F = mg (1)$$

Koeficient, ki prikazuje to sorazmernos, se imenuje težni pospešek. Če zanemarimo ostale zunanje sile, se telo po Newtnovih zakonih enakomerno pospešeno giba, oziroma pada, zatorej vemo, da za pot s podano s časom t velja:

$$s = \frac{gt^2}{2} + v_0 t, \tag{2}$$

pod pogojem, da je v_0 hitrost telesa ob času $t=0\,s$

2 Naloga

- i.) Preveri, da je prosto padanje enakomerno pospešeno,
- ii.) Izračunaj težni pospešek,
- iii.) Preveri ujemanje porazdelitve časov z Gaussovo krivuljo.

3 Potrebščine

- Elektronska ura,
- dve optični stikali,
- \bullet elektromagnet,
- stojalo,
- jeklena kroglica,
- $\bullet\,$ dva izvira enosmerne napetosti.

4 Skica

Slika 1: Merilec časa padanja

5 Meritve

	Čas padanja		
Indeks	$\operatorname{\check{C}as}\left[s\right]$	$g [m/s^2]$	
1	0.21236	9.72751	
2	0.211659	9.79205	
3	0.212168	9.74513	
4	0.212177	9.74430	
5	0.212453	9.71900	
6	0.21236	9.72751	
7	0.212573	9.70803	
8	0.21168	9.79011	
9	0.212122	9.74935	
10	0.211995	9.76104	
11	0.212175	9.74448	
12	0.212099	9.75147	
13	0.211588	9.79862	
14	0.211937	9.76638	
15	0.212009	9.75975	
16	0.211563	9.80094	
17	0.211817	9.77745	
18	0.212095	9.75183	
19	0.211698	9.78844	
20	0.21183	9.77625	
21	0.211778	9.78105	
22	0.21118	9.83652	
23	0.211639	9.79390	
24	0.211508	9.80604	
25	0.212019	9.75883	
26	0.211239	9.83103	
27	0.21153	9.80400	
28	0.211281	9.82712	
29	0.211508	9.80604	
30	0.212245	9.73806	

	Čas padanja		
Indeks	$\check{\operatorname{Cas}}\left[s\right]$	$g [m/s^2]$	
31	0.211472	9.80938	
32	0.212721	9.69452	
33	0.212611	9.70456	
34	0.211858	9.77366	
35	0.21151	9.80585	
36	0.211681	9.79002	
37	0.21114	9.84025	
38	0.21161	9.79659	
39	0.21175	9.78364	
40	0.211216	9.83317	
41	0.21122	9.83280	
42	0.211587	9.79872	
43	0.211475	9.80910	
44	0.211431	9.81318	
45	0.212374	9.72623	
46	0.211983	9.76214	
47	0.211417	9.81448	
48	0.211889	9.77081	
49	0.211681	9.79002	
50	0.211594	9.79807	
51	0.211447	9.81170	
52	0.212035	9.75735	
53	0.211631	9.79464	
54	0.211811	9.77800	
55	0.211578	9.79955	
56	0.21231	9.73209	
57	0.212397	9.72412	
58	0.212329	9.73035	
59	0.211368	9.81903	
60	0.211148	9.83950	
AVG	0.211809	9.77826	

- $h=03,95cm\pm0,05cm$ razdalja med magnetom in zgornjim senzorjem
- $s=40,55cm\pm0,05cm$ razdalja med zgornjim in spodnjim senzorjem

5.1 Metodologija

Merili smo 60 padcev, na isti lokaciji relativno na zemljo na isti način, namreč tako da smo magnet ugasnili ko se je kroglica z njim stikala tako, da se ni gibala.

6 Obdelava meritev

$$s = \frac{gt^2}{2} + v_0 t; \ v_0 = \sqrt{2gh} \tag{3}$$

$$0 = \frac{t^4}{4}g^2 + (-t^2(s+2))g + s^2; \ g_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 (4)

$$g_{1,2} = \frac{2}{t^2} * (s + 2(h \pm \sqrt{h^2 + sh}))$$
(5)

$$g = 9,77 * (1 \pm 0,02) \frac{m}{s^2}$$

$$g_{2/3} = 9,80 * (1 \pm 0,02) \frac{m}{s^2}$$
(6)

Opomba: $g_{2/3}$ je g, ki ga dobimo, če uporabimo dve tretini podatkov, ki najmanj odstopajo. Opomba: Napako smo računali, kot napako med vsemi vrednostmi težnega pospeška.

6.1 Porazdelitev časov

Čas padanja		
Skupina	Indeks	$\check{\operatorname{Cas}}\left[s\right]$
	37	0.211140
	60	0.211148
	22	0.211180
1. interval [7]	40	0.211216
	41	0.211220
	26	0.211239
	28	0.211281
	59	0.211368
2 intorval [4]	47	0.211417
2. interval [4]	44	0.211431
	51	0.211447
	31	0.211472
	43	0.211475
	24	0.211508
	29	0.211508
	35	0.211510
3. interval [12]	27	0.211530
3. Interval [12]	16	0.211563
	55	0.211578
	42	0.211587
	13	0.211588
	50	0.211594
	38	0.211610
	53	0.211631
	23	0.211639
	2	0.211659
4. interval [8]	8	0.211680
in interver [e]	36	0.211681
	49	0.211681
	19	0.211698
	39	0.211750
	21	0.211778
	54	0.211811
5. interval [6]	17	0.211817
0. 22202 [0]	20	0.211830
	34	0.211858
	48	0.211889
	14	0.211937
	46	0.211983
6. interval [6]	10	0.211995
[4]	15	0.212009
	25	0.212019
	52	0.212035

Čas padanja		
Skupina	Indeks	$\operatorname{\check{C}as}\left[s\right]$
	18	0.212095
	12	0.212099
	9	0.212122
7. interval [7]	3	0.212168
	11	0.212175
	4	0.212177
	30	0.212245
	56	0.21231
	58	0.212329
9 interval [6]	1	0.21236
8. interval [6]	6	0.21236
	45	0.212374
	57	0.212397
9. interval [1]	5	0.212453
	7	0.212573
10. interval [3]	33	0.212611
	32	0.212721

Slika 2: Distribucija meritev

6.2 interpretacija grafa

Modri stolpci kažejo porazdelitev časovnih meritev po intervalih. Da bi dobili pravo vrednost histograma (število koliko meritev predstavlja histogram), moram Y-vrednost histograma množit s koeficientom k=0,011 ter vzeti navzdol zaokroženo vrednost.

Rdeča krivulja prikazuje idealno gaussovo krivuljo, da bi dobili število meritev v določeni skupini, moramo vrednost Y-vrednosti množiti s koeficientom k = 0,0093 ter vzeti navzdol zaokroženo vrednost.

6.3 Pričakovana porazdelitev meritev

$$\omega(t) = \frac{1}{\sqrt{2 * \pi \sigma}} e^{-\frac{(t-\bar{t})^2}{2\sigma^2}} \tag{7}$$

kier

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (\overline{x} - x_i)^2}{n-1}} \tag{8}$$

6.4 Pričakovana porazdelitev meritev za posamezen interval

$$N = \omega(t) * d * 50 \tag{9}$$

tako, da velja d - dolžina intervala

Čas padanja		
Skupina	N realni	N idealni
1	7	3
2	4	5
3	12	7
4	8	9
5	6	9
6	6	8
7	7	6
8	6	4
9	1	2
10	3	1

6.5 Negotovost

Uporabna je tudi formula za določanje negotovosti:

$$\mu = \frac{\sigma}{\sqrt{n}}$$

$$\mu = 5, 2 * 10^{n5}$$
(10)

7 Analiza rezultatov

Iz računov dobimo: $g_{2/3}=9,80*(1\pm0,02)ms^{-2}$. Vrednost $g=9,81m/s^2$ je znotraj naše napake. Ugotovili smo, da je pospešek g lokalno konstanten ter tvori padanje enakomerno pospešeno gibanje.