Book Embedding with Fixed Page Assignments

Daniel Hoske, 20th November 2012

Introduction

Definition. A page embedding of a graph G = (V, E) is a planar embedding of G such that the vertices of G lie on the real line $\mathbb{R} \times \{0\}$ and every edge lies in the upper half-plane $\{(x,y) \in \mathbb{R}^2 \colon y > 0\}$, apart from the edge's endpoints.

A book embedding with two pages.

Definition. A *book embedding* of graphs $G_1 = (V, E_1), \dots, G_k = (V, E_k)$ on the same set of vertices consists of page embeddings for each of the graphs that coincide in their vertex positions.

Problem: BOOK-EMBEDDING

Given: A vertex set V and edge sets $E_1, \ldots, E_k \subseteq \binom{V}{2}$ *Question*: Is there a book embedding of $(V, E_1), \ldots, (V, E_k)$?

Definition. Let (V, E) be a graph and < a total order on V. We call the condition that the suborder a < c < b < d does not occur for any $\{a, b\}, \{c, d\} \in E$ the *book constraint for* E. If < fulfils the book constraint for E, we say that it is a *valid book order for* E.

Lemma. There is a page embedding for G = (V, E) if and only if there is a valid book order < for E.

Lemma. Let $(V, E_1), \ldots, (V, E_k)$ be a book embedding instance with valid book order $\langle \in Sym(V) \rangle$. Then the cyclic shifts and the mirror image of \langle are also valid.

NP-completeness and connected pages

Problem: BETWEENNESS

Given: A finite set $M := \{1, ..., n\}$ and a set of ordered triples $C \subseteq M^3$. Question: Is there a total ordering < of M such that either a < b < c or a > b > c occurs for all $(a, b, c) \in C$? **Theorem.** There is a polynomial time reduction from Betweenness to Book-Embedding. Thus, Book-Embedding is NP-complete.

Problem: CONNECTED-BOOK-EMBEDDING

Given: A vertex set V and edge sets $E_1, \ldots, E_k \subseteq \binom{V}{2}$ such that the graphs (V, E_i) are connected for $i \in \{1, \ldots, k\}$.

Question: Is there a book embedding of $(V, E_1), \dots, (V, E_k)$?

Theorem. CONNECTED-BOOK-EMBEDDING can be solved in linear time.

Definition. A *PQ-tree* T on $M := \{1, ..., n\}$ is a rooted, ordered tree with leaves M and inner nodes either of type P (\bigcirc) or type Q (\square) .

The tree represents a set of permutations $\pi(T) \subseteq Sym(M)$ on its leaves as follows: The order of the children of a P-node can be permuted in any way, while the order of the children of a Q-node can only be reversed. The set $\pi(T)$ then consists exactly of the permutations of the leaves M that we can get by flipping the inner nodes in any of the specified valid ways.

Let a *P-tree* be a PQ-tree containing only P-nodes as inner nodes and a *Q-tree* be a PQ-tree only containing Q-nodes as inner nodes.

Disjoint perfect matchings

Problem: PERFECT-MATCHINGS-BOOK-EMBEDDING

Given: Disjoint perfect matchings $E_1, ..., E_k$ on a vertex set V. Question: Is there a book embedding of $(V, E_1), ..., (V, E_k)$?

Theorem. Let $I := (V, E_1, ..., E_k)$ be an instance of PERFECT-MATCHINGS-BOOK-EMBEDDING. If the graph $G := (V, E_1 \cup \cdots \cup E_k)$ is not bipartite, it has no book embedding.

Tree on the vertices

Problem: Q-TREE-BOOK-EMBEDDING

Given: A BOOK-EMBEDDING instance I with vertices V and a Q-tree T with leaves V. Question: Is there a total order $< \in \pi(T)$ solving I?

Theorem. *Q-TREE-BOOK-EMBEDDING can be solved in quadratic time.*