LABESSE Louis Candidat : 50188

Aires de jeux générant de l'énergie electrique

Contexte

- Jeux couplés avec un générateur et reliés à des batteries
- Energie produite par l'activité physique des enfants
- Nécessité d'une force initiale pour mettre l'utilisateur en mouvement

PRESENTATION DU TOBOGGAN A TAPIS ROULANT

PROBLÉMATIQUE RETENUE

De quelle manière peut-on générer de l'énergie à partir de l'activité physique des enfants dans les terrains de jeux ?

DÉROULEMENT DU PROJET

PARTIE I:

Modélisation : mise en équation sous python

PARTIE II:

Expériences sur la maquette

PARTIE III:

Conclusion et études supplémentaires

PARTIE I: MODELISATION

I.a) Présentation de la maquette

I.b) Bilan de Puissances et Mise en équation

I.c) Affichage théorique de la vitesse de descente

I)a) MAQUETTE

Angle α maximal de 50° (imposé par le CDC)

Spécification 5.3.6.3.4:

Aucune section du toboggan ne doit avoir une pente dépassant 50°

I)b) BILAN DE PUISSANCES

- $P_{res} = C_r \omega = Mg \sin(\alpha) R_{roul} \omega$
- $P_{mot} = C_{mot} * \omega$
- $P_{\rm f} = C_{\rm f}\omega = -f\omega^2$

$$\frac{dEc}{dt} = \sum_{i=0}^{n} P_i$$

$$\frac{d}{dt}\left(\frac{1}{2}J_{roul}\omega^2 + \frac{1}{2}J_{tapis}\omega^2 + \frac{1}{2}MR_{roul}^2\omega^2\right) = \sum_{i=0}^n P_i$$

$$J_{eq} = J_{\text{roul}} + J_{tapis} + MR_{roul}^2$$

 $Système: \{Tapis + Rouleaux + Masse\}$

Référentiel terrestre supposé galliléen

$$J_{tapis} \approx m_t \left(\frac{L}{2\pi}\right)^2$$
 10

I)b) MISE EN EQUATION

•
$$C_m - C_r - f\omega = J_{eq} \frac{d\omega}{dt}$$

•
$$C_m = k_c i$$
 • $E = k_e a$

$$\bullet \quad U - E - Ri - L \frac{di}{dt} = 0$$

•
$$C_r(t) = Mg \sin(\alpha) R_{roul}$$

$$\omega(t) = e^{-z\omega_0 t} \left(Acos\left(\omega_0 \sqrt{1-z^2}t\right) + Bsin\left(\omega_0 \sqrt{1-z^2}t\right) \right) + \frac{RMg sin(\alpha) R_{roul}}{fR + k_e k_c}$$

Conditions initiales:
$$\omega(0) = 0$$
 ; $\frac{d\omega(t)}{dt} = 0$

$$U = \frac{d^2\omega}{dt^2} \left(\frac{LJ_{eq}}{k_c}\right) + \frac{d\omega}{dt} \left(\frac{J_{eq}R + fL}{k_c}\right) + \omega \left(k_e + \frac{Rf}{k_c}\right) + \frac{C_r(t)R}{k_c}$$

I)c) AFFICHAGE THEORIQUE DES GRANDEURS EN SORTIE

Vitesse de descente (m/s)

Hypothèse:

Domaine transitoire négligeable

$$T_{5\%} \approx 0.17s$$

Tension (V)

Hypothèse:

Domaine stationnaire négligeable

$$T_{5\%} \approx 0.86s$$

PARTIE II: EXPERIENCES

- II.a) Mesure de la masse minimale pour mettre en mouvement le système
- II.b) Mesure des grandeurs caractéristiques du moteur
- II.c) Expérience des frottements de coulomb
- II.d) Etude de la vitesse de descente et de la tension en sortie

MOTEUR ET ROULEMENTS

Moteur:	Roulements:
Motoréducteur 12V (1:19) Référence : TRENZ - 24142	XiKe 4 pièces 6005- 2RS 25x47x12mm,
19220015-00001 20 et 202 8 1 1mms	

II)a) MESURE DE LA MASSE MINIMALE POUR METTRE EN MOUVEMENT LE SYSTEME

MASSE OBTENUE

Masses utilisées (g)	Mouvement observé
64,65	Oui
49,53	Oui
49,24	Oui
48,32	Oui
48,04	Oui
47,69	Non
46,96	Non
39,88	Non
29,84	Non

$$\bar{m} = 47,85g$$
 $u(m) = 0,09 g$

Couple obtenu : $C = \overline{m}gL$

A. N: C = 0.04 Nm

II)b) MESURE DES GRANDEURS CARACTERISTIQUES DU MOTEUR

MESURE DE LA RESISTANCE INTERNE ET DE L'INDUCTANCE

$$R_{min} = 2.5 \Omega$$

 $R_{max} = 2.9 \Omega$

$$ar{R} = 2,7\Omega$$
 $u(R) = 0,1\Omega$

$$L_{min} = 477,9 \ \mu H$$

 $L_{max} = 478,3 \ \mu H$

$$\bar{L} = 477,1\mu H$$
$$u(L) = 1\mu H$$

MESURE DES CONSTANTES DE FEM ET DE COUPLE

$$\overline{k_c} = 0.11 Nm/A$$

$$u(k_c) = 0.006 Nm/A$$

$$Z(\overline{k_c}, k_{cref}) = 3.64$$

$$\overline{k_e} = 0.091 \, V/rad/s$$
 $u(k_e) = 0.004 \, V/rad/s$
 $Z\left(\overline{k_e}, k_{eref}\right) = 2.51$
19

MESURE DU COEFFICIENT DE FROTTEMENTS

$$\bar{f} = \frac{ki}{\omega} \approx 3,85 \times 10^{-5} Nm/s$$
$$u(f) = 0,00217 \times 10^{-5} Nm/s$$

$$u(f) = 0.00217 \times 10^{-5} Nm/s$$

MESURE DE L'INERTIE EQUIVALENTE

$$\bar{J} = 3.13 \times 10^{-5} kgm^2$$

 $u(J) = 0.0291 \times 10^{-5} kgm^2$

II)c) EXPERIENCE DES FROTTEMENTS DE COULOMB

$$ar{lpha}=42^\circ \ u(lpha)=0.4^\circ \ \mu=0.9 \ Z(\mu,\mu_{ref})=1.8$$

 $\mu_{ref} = 0.896 \ (Caoutchouc/pvc)$

II)d) EXPERIENCES DE LA DESCENTE DE LA MASSE

Masses variant de 100g à 5kg

- Acquisition de la tension avec un oscilloscope avec TektronixOpenchoice™
- Acquisition de la vitesse de descente avec Tracker

Masse: 1kg

Pic de tension à \approx 0,7s

Valeur: ≈0,1V

Vitesse en régime stationnaire ≈0,76m/s

Vitesse (m/s)

Masse: 1,5kg

Temps (s)

Masse: 2kg

Masse: 2,5kg

Masse: 3kg

Temps (s)

Masse: 4kg

Masse: 5kg

PARTIE III: CONCLUSION

III.a) Courbes atypiques et explications

III.b) Limites et autres expériences

Masse: 0,5kg

Longueur de descente trop petite

Aucun régime stationnaire observable

Conséquence:

Sortie en tension peu exploitable

Solutions:

Toboggans en série/parallèle?

RDM sur les poutres en bois et rouleaux

FIN DE LA PRESENTATION

Merci de m'avoir écouté

<u>Annexes</u>

<u>A) Montage du toboggan, matériel utilisé et notices</u>	
	P.35
B) Mise en équation + programmes python	
	P.44
C) Détails des expériences+ incertitudes + programmes python	
	P.50
D) Consignes du cahier des charges	
	P.78

A) Montage du toboggan

† ‡	XIKE MODEL	Main Dimensions			Reference Data				
		d	D	В	Dynamic Loads	Static Loads	Grease Speed	Oil Speed	Weight
		MM			KN	KN	RPM	RPM	KG
	6000-2RS	10	26	8	4.1	1.79	21000	25000	0.018
	6001-2RS	12	28	8	4.8	2.15	22000	27000	0.022
	6002-2RS	15	32	9	5.3	2.57	18000	22000	0.031
	6003-2RS	17	35	10	5.7	2.95	17000	20000	0.041
	6004-2RS	20	42	12	8.9	4.54	14000	17000	0.068
>	6005-2RS	25	47	12	9.6	5.31	13000	15000	0.079
	6006-2RS	30	55	13	13	7.54	11000	13000	0.116
	6007-2RS	35	62	14	15	9.36	9100	11000	0.151
	6008-2RS	40	68	15	16	10.5	8400	9800	0.195
	6009-2RS	45	75	16	20	13.8	7000	8400	0.241

Part Number	IG220019X00015R	
Customer P/N		
ITEM	Specifications	Note
1. Operation Status		
1.1 Rated Voltage 1.2 Rated torque 1.3 Radial load 1.4 Axial load 1.5 Turning direction 1.6 Reverse direction 1.7 Using environment 1.8 Preserve environment 1.9 Using voltage range	12V D.C. 0.3 kgf.cm 8N (0.8kg-f) 6N (0.6kg-f) Shafi horizontal CW.CCW Temperature -10-60 °C Humidity 20-90% RH Temperature -20-70 °C Rumidity 20-90% RH 12V (D.C.) ±1096	Stable power source form from shaft end
2.Electrical Characteristics		
2.1 No Load current 2.2 No Load speed 2.3 Rated current 2.4 Rated speed 2.5 Stall current 2.6 Stall torque 2.7 Insulation	200 mA max. 789 rpm ±1596 620 mA 639 rpm ±1596 2.4 A 2.2 kgf.cm	
2.8 Durable voltage 2.9 Coil resistance 2.10 Torque constant 2.11 Voltage constant	D.C. 100V meg. 1.0 MΩ min 100V (A.C.) · 1 minute min 50 Ω 0.91 kgf.cm/A 8.68 mV/r/min	Motor terminal shell Motor terminal shell Reference Reference
3.Mechanical		0000000000000
characteristic	$k_c = 0.08$	9NIII/A
3.1 Reduction ratio 3.2 Thrust play of shaft 3.3 Radial play of	$k_e = 0.08$	3V/rad/s
shaft 3.4 Back lash	3' max.	
3.5 Outside Appearance	No scratch defective	By visual judgment
2.Life Cycle	72000 cycles min. ccw 5 5 5 off 5 cw 1 cycle	After the rated life cycle test current @ rated load must stay within ±30% of the initial value and r.p.m. @ rated load must stay within ±20% of the initial value. However change of mechanical noise level was not considered as part of the testing

40

Function	Range	Resolution	Accuracy ± ([% of Reading]+[Counts])
AC Volts (Average responding)	6.000 V 60.00 V 600.0 V 1000 V	0.001 V 0.01 V 0.1 V 1 V	2.0 % + 2 (45 Hz to 1 kHz)
DC mV	600.0 mV	0.1 mV	0.3 % + 1
DC Volts	6.000 V 60.00 V 600.0 V 1000 V	0.001 V 0.01 V 0.1 V 1 V	0.3 % + 1
Continuity	600 Ω	1 Ω	Meter beeps at <25 Ω , beeper turns off at >250 Ω ; detects opens or shorts of 250 μs or longer.
Ohms	600.0 Ω 6.000 kΩ 60.00 kΩ 600.0 kΩ 6.000 MΩ 50.00 MΩ	0.1 Ω 0.001 kΩ 0.01 kΩ 0.1 kΩ 0.001 MΩ 0.01 MΩ	0.5 % + 2 0.5 % + 1 0.5 % + 1 0.5 % + 1 0.5 % + 1 2.0 % + 1
Diode test	2.400 V	0.001 V	1 % + 2
Capacitance	1000 nF 10.00 μF 100.0 μF 9999 μF ^[1]	1 nF 0.01 μF 0.1 μF 1 μF	1.2 % + 2 1.2 % + 2 1.2 % + 2 10 % typical
AC Amps (Average	60.00 mA	0.01 mA	
responding) ^{Pl}	400.0 mA ^(*) 6.000 A 10.00 A ⁽⁴⁾	0.1 mA 0.001 A 0.01 A	2.5 % + 2 (45 Hz to 1 kHz)

^[1] In the 9999 μF range for measurements to 1000 μF, the measurement accuracy is 1.2 % + 2.

^[2] Amps input burden voltage (typical): 400 mA input 2 mV/mA, 10 A input 37 mV/A.

^{[3] 400.0} mA accuracy specified up to 600 mA overload.

^{[4] &}gt;10 A unspecified.

	4.5	4	4	
100mH	40.00mH~399.99mH	1.5%+5 digits	1.5%+5 digits	En parallèle
40mH	4.000mH~39.999mH	1.5%+2 digits	1.5%+2 digits	En parallèle
4mH	400.0uH~3.9999mH	0.5%+2 digits	0.5%+2 digits	7875
400μΗ	40.00uH~399.99μH	0.5%+2 digits	0.5%+2 digits	En séries
40μΗ	4.000uH~39.999μH	0.8%+5 digits	0.8%+5 digits	En séries
4µН	0.000uH~3.999μH	2.5%+10 digits	Non spécifié	En séries
	40			

B) Mise en équation

•
$$C_m - C_r - f\omega = J_{eq} \frac{d\omega}{dt}$$

•
$$C_m = k_c i$$
 • $E = k_e \omega$

•
$$U - E - Ri - L \frac{di}{dt} = 0$$

•
$$C_r(t) = Mg \sin(\alpha) R_{roul}$$

$$\frac{\Omega(p)}{C_r(p)} = \frac{\frac{R + Lp}{fR + k_e k_c}}{1 + \frac{J_{eq}R + fL}{fR + k_e k_c}p + \frac{J_{eq}L}{fR + k_e k_c}p^2}$$

$$\Omega(p)\left(1 + \frac{J_{eq}R + fL}{fR + k_e k_c}p + \frac{J_{eq}L}{fR + k_e k_c}p^2\right) = \frac{R + Lp}{fR + k_e k_c}C_r(p)$$

$$\omega(t) + \frac{J_{eq}R + fL}{fR + k_e k_c} \frac{d\omega}{dt} + \frac{J_{eq}L}{fR + k_e k_c} \frac{d^2\omega}{dt^2} = \frac{R}{fR + k_e k_c} C_r(t)$$

Résolution de l'équation différentielle

$$\omega(t) + \frac{2z}{\omega_0^2} \frac{d\omega}{dt} + \frac{1}{\omega_0^2} \frac{d^2\omega}{dt^2} = \frac{R}{fR + k_e k_c} C_r(t) \qquad \omega_0 = \sqrt{\frac{fR + k_e k_c}{J_{eq} L}}$$

$$z = \frac{1}{2} \frac{J_{eq} R + fL^2}{\sqrt{J_{eq} L} \sqrt{fR + k_e k_c}} \quad A.N: \quad z = 0.85$$

$$z < 1$$

$$(EC): \frac{1}{{\omega_0}^2} X^2 + \frac{2z}{{\omega_0}^2} X + 1 = 0 \qquad \Delta = \frac{4(z^2 - 1)}{{\omega_0}^2} < 0 \qquad X = \omega_0 (-z \pm j\sqrt{1 - z^2})$$

$$\omega(t) = e^{-z\omega_0 t} \left(A\cos\left(\omega_0 \sqrt{1 - z^2}t\right) + B\sin\left(\omega_0 \sqrt{1 - z^2}t\right) \right) + \frac{R}{fR + k_e k_c} C_r(t)$$

$$\omega(t) = e^{-z\omega_0 t} \left(A\cos\left(\omega_0\sqrt{1-z^2}t\right) + B\sin\left(\omega_0\sqrt{1-z^2}t\right) + \frac{R}{fR + k_e k_c}C_r(t)\right)$$

Conditions initiales:
$$\omega(0) = 0$$
 ; $\frac{d\omega(t)}{dt} = 0$

$$A = -\frac{RC_r(t)}{fR + k_e k_c} \qquad B = -\frac{zRC_r(t)}{\sqrt{1 - z^2}(fR + k_e k_c)}$$

$$Or: C_r(t) = Mg \sin(\alpha) R_{roul}$$

$$\omega(t) = e^{-z\omega_0 t} \left(A cos\left(\omega_0 \sqrt{1-z^2}t\right) + B sin\left(\omega_0 \sqrt{1-z^2}t\right) \right) + \frac{RMg sin(\alpha) R_{roul}}{fR + k_e k_c}$$

Obtention de la courbe de tension

$$U = \frac{d^2\omega}{dt^2} \left(\frac{LJ_{eq}}{k_c}\right) + \frac{d\omega}{dt} \left(\frac{J_{eq}R + fL}{k_c}\right) + \omega \left(k_e + \frac{Rf}{k_c}\right) + \frac{C_r(t)R}{k_c}$$
• $C_m = k_c i$
• $U - E - Ri - L\frac{di}{dt} = 0$
• $C_r(t) = Mg \sin(\alpha) R_{roul}$

Tension (V)

0

•
$$C_m + C_r + f\omega = J_{eq} \frac{d\omega}{dt}$$

$$C_m = k_c i$$

0.24

$$\bullet \quad U - E - Ri - L \frac{di}{dt} = 0$$

•
$$C_r(t) = Mg \sin(\alpha) R_{roul}$$

```
fonctionderiv(t,alpha,m):
     -z*w@*np.exp(-z*w@*t)*(A(alpha,m)*np.cos(w@*((1-z**2)**@.5)*t)+B(alpha,m)*np.sin(w@*((1-z**2)**@.5)*t)) + (R*Cr(alpha,m))/(f*R+ke*kc)+-z*w@*np.exp(-z*w@*t)*(A(alpha,m)
def fonctionderiv2(t,alpha,m):
     -z*w@**2*np.exp(-z*w@*t)*(A(alpha,m)*np.cos(w@*((1-z**2)**0.5)*t)+B(alpha,m)*np.sin(w@*((1-z**2)**0.5)*t)) + (R*Cr(alpha,m))/(f*R+ke*kc)+-z*w@*np.exp(-z*w@*t)*(A(alpha,m)*np.sin(w@*((1-z**2)**0.5)*t)) + (R*Cr(alpha,m))/(f*R+ke*kc)+-z*w@*np.exp(-z*w@*t)*(A(alpha,m)*np.cos(w@*(1-z**2)**0.5)*t))
def Tension(t,alpha,m):
    return fonctionderiv2(t,alpha,m)*(J*L)/(kc) + fonctionderiv(t,alpha,m)*(J*R +f*L)/(kc) + fonction((t,alpha,m))*(ke+R*f)/(kc)
```

2,5 2 1.5 1 0.5 0

0.12

Temps (s)

0.16

0.20

0.08

0.04

47

<u>Programmes python</u> <u>Affichage de la vitesse de rotation</u>

```
3 = 2.77 * 10**-6
     f = 10**-5
     L = 10**-3
     ke = 2.510^{**}-2
     kc = 2.510**-2
     Rroul = 0.0635
     alpha0 = np.pi/4
     g = 9.81
     Cr0 = M0*g*np.sin(alpha0)*Rroul
     z = 0.5 * (J*R + f*L)/(((J*L))**0.5)*(f*R + ke*kc)**0.5)
     w0 = ((f*R + ke*kc)/(J*L))**0.5
     A0 = -(R*Cr0)/(f*R + ke*kc)
     80 = -((z^*R^*Cr0)/((f^*R + ke^*kc)^*np.sqrt(1-z^*2)^**0.5))
     def Cr(alpha,m):
46
         return m*g*np.sin(alpha)*Rroul
     def A(alpha,m):
         return -(R*Cr(alpha,m))/(f*R + ke*kc)
     def B(alpha,m):
         return -(R*Cr(alpha,m))/(f*R + ke*kc)
     T = np.linspace(0,300,100)
     def fonction(t,alpha,m):
         return np.exp(-z*t)*(A(alpha,m)*np.cos(w0*((1-z**2)**0.5)*t)+B(alpha,m)*np.sin(w0*((1-z**2)**0.5)*t)) + (R*Cr(alpha,m))/(f*R+ke-kc)
     plt.grid()
     ALPHA = np.linspace(0,np.pi/4,100)
     MASSE = np.linspace(0.05,5,100)
```

plt.subplot(2,2,1)

plt.plot(T, fonction(T, alpha0, M0), "r")

Affichage de la vitesse de descente

Affichage de la vitesse maximale en fonction des paramètres

C) Détails des expériences

Couple de démarrage obtenu

Masses utilisées (g)	Mouvement observé
64,65	Oui
49,53	Oui
49,24	Oui
48,32	Oui
48,04	Oui
47,69	Non
46,96	Non
39,88	Non
29,84	Non

Estimateur:
$$\overline{m} = \frac{m_{max} + m_{min}}{2} = 47,86g$$

Incertitude due à la variabilité du système

$$u_1(m) = \frac{m_{max} - m_{min}}{2\sqrt{3}} = 0.09 g$$

Incertitude type de résolution:

$$u_2(m) = \frac{0.01}{\sqrt{3}} = 0.006 g$$

$$u(m) = \sqrt{u_1(m)^2 + u_2(m)^2} = 0.09g$$

Mesure de la résistance interne

$$\bar{R} = \frac{R_{max} + R_{min}}{2} = 2,7\Omega$$
$$u(R) = 0,2\Omega$$

$$R_{min} = 2.6 \Omega$$

 $R_{max} = 2.8 \Omega$

Mesure de la résistance interne (incertitudes)

Incertitude due à la variabilité du système

$$u_1(R) = \frac{R_{max} - R_{min}}{2\sqrt{3}} = 0.1\Omega$$

Incertitude type due à l'instrument de mesure

$$u_2(R) = \frac{2,7 \times \frac{0,5}{100} + 2 \times 0,1}{\sqrt{3}} = 0,1\Omega$$

Incertitude composée

$$u(R) = \sqrt{u_1(R)^2 + u_2(R)^2} = 0.1\Omega$$

Mesure de l'inductance

Autre Protocole:

- On bloque le rotor
- On alimente de moteur à l'aide de l'arduino
- On mesure sa tension à ses bornes à l'aide d'un oscillo
- On trace l'évolution temporelle de i
- On identifie $3\tau = 3\frac{L}{R}$ On calcule $L = \frac{3\tau R}{3}$

Mesure de l'inductance

$$L_{min} = 477,9 \ \mu H$$

 $L_{max} = 478,3 \ \mu H$

$$\overline{L} = \frac{L_{max} + L_{min}}{2} = 477,1\mu H$$

$$u(L) = 1\mu H$$

Incertitude due à la variabilité du système

$$u_1(L) = 0.1 \mu H$$

Incertitude type due à l'instrument de mesure

$$u_2(L) = 1\mu H$$

$$u(L) = \sqrt{u_1(R)^2 + u_2(R)^2} = 1\mu H$$

Mesure de la constante de FEM (incertitudes)

$$\overline{k_e} = \frac{U - Ri}{\omega} = 0.091 \, V/rad/s$$

$$\overline{\iota} = \frac{i_{max} + i_{min}}{2} = 0.045 \, A$$

$$\bar{\iota} = \frac{i_{max} + i_{min}}{2} = 0.045 A$$

$$i_{min} = 0.044 A$$

 $i_{max} = 0.046 A$

$$\omega_{min} = 17,9 \ rad/s$$

 $\omega_{max} = 18,1 \ rad/s$

$$U_{min} = 1,78 V$$

 $U_{max} = 1,82 V$

$$u_1(i) = \frac{i_{max} - i_{min}}{2\sqrt{3}} = 0,00058 A$$

$$u_2(i) = \frac{0,045 \times \frac{2,5}{100} + 2 \times 0,001}{\sqrt{3}} = 0,001A$$

Mesure de la constante de FEM (incertitudes)

$$u_1(\omega) = \frac{\omega_{max} - \omega_{min}}{2\sqrt{3}} = 0.058 \, rad/s$$

$$u_2(\omega) = \frac{1}{\sqrt{3}} = 0.58 \, rad/s$$
 $\overline{\omega} = \frac{\omega_{max} + \omega_{min}}{2} = 18.0 \, rad/s$

$$u_1(U) = \frac{U_{max} - U_{min}}{2\sqrt{3}} = 0.01 V$$
 $\overline{U} = \frac{U_{max} + U_{min}}{2} = 1.80 V$

$$u_2(U) = \frac{1,80 \times \frac{3}{100} + 1 \times 0,001}{\sqrt{3}} = 0,03V$$

Mesure de la constante de FEM (incertitudes)

$$u(i) = \sqrt{u_1(i)^2 + u_2(i)^2} = 0,001A$$

$$u(U) = \sqrt{u_1(U)^2 + u_2(U)^2} = 0.03V$$

$$u(\omega) = \sqrt{u_1(\omega)^2 + u_2(\omega)^2} = 0.58rad/s$$

$$u(k_e) = k_e \sqrt{\left(\frac{u(\omega)}{\overline{\omega}}\right)^2 + \left(\frac{u(i)}{\overline{l}}\right)^2 + \left(\frac{u(U)}{\overline{U}}\right)^2 + \left(\frac{u(R)}{\overline{R}}\right)^2}$$

$$= 0.004 \, V/rad/s$$

$$Z(\overline{k_e}, k_{eref}) = \frac{\left|\overline{k_e} - k_{eref}\right|}{|u(k_e)|} = 2,5$$

Mesure de la constante de couple

$$k_c = \frac{C_m}{i} = \frac{R_{Poulie} \times m \times g}{i}$$

$$i \in [0.083A; 0.085A]$$
 $\bar{\iota} = 0.084 A$

$$\overline{m} = 60 \ g$$
 $\overline{R_{Poulie}} = 20 mm$

$$\overline{k_c} = \frac{\overline{R_{Poulie}} \times \overline{m} \times g}{\overline{\iota}} = 0.11 \, Nm/A$$

Mesure de la constante de couple (incertitudes)

$$u(i) = \sqrt{u_1(i)^2 + u_2(i)^2} = 0,001A$$

$$u(R_{Poulie}) = 0,5 mm$$

$$u(m) = \sqrt{u_1(m)^2 + u_2(m)^2} = 0,1g$$

$$u(k_c) = \overline{k_c} \sqrt{\left(\frac{u(\omega)}{\overline{\omega}}\right)^2 + \left(\frac{u(i)}{\overline{\iota}}\right)^2 + \left(\frac{u(U)}{\overline{U}}\right)^2} = 0,006 \, Nm/A$$

$$Z\left(\overline{k_c}, k_{c_{ref}}\right) = 3,64$$

Mesure du coefficient de frottements

Protocole:

- On alimente le moteur et on suppose le être en régime permanent
- Le moteur tourne à vide donc $C_r = 0Nm$
- D'après les lois du moteur : $k_c i f\omega = 0$
- On mesure ω avec le capteur à effet hall du moteur
- On mesure i avec un ampèremètre et k_c est connu
- On calcule $f = \frac{k_c i}{\omega}$

Mesure du coefficient de frottements

$$i_{min} = 8,31 \, mA$$
 $\bar{\imath} = \frac{i_{max} + i_{min}}{2} = 8,28 \, mA$ $u(i) = \frac{i_{max} - i_{min}}{2\sqrt{3}} = 0,0173 \, mA$ $\bar{\omega} = \frac{\omega_{max} + \omega_{min}}{2\sqrt{3}} = 19,1 \, rad/s$ $\omega_{max} = 19,3 \, rad/s$ $u(\omega) = \frac{\omega_{max} - \omega_{min}}{2\sqrt{3}} = 0,0115 \, rad/s$

$$\bar{f} = \frac{k_c \bar{\iota}}{\bar{\omega}} \approx 3.85 \times 10^{-5} Nm/s$$

$$u(f) = \bar{f} \sqrt{\left(\frac{u(\omega)}{\bar{\omega}}\right)^2 + \left(\frac{u(i)}{\bar{\iota}}\right)^2 + \left(\frac{u(k_c)}{k_c}\right)^2} = 0.00217 \times 10^{-5} \, \text{Nm/s}$$

Mesure de l'inertie équivalente

Protocole:

- On fait tourner le moteur à vide à une vitesse angulaire ω_0
- On coupe l'alimentation à t=0s donc i=0V et $C_m=0Nm$ D'après les lois du moteur: $J\frac{d\omega}{dt}=-f\omega$
- L'équation différentielle donne : $\ln(\omega) = \ln(\omega_0) \frac{1}{L}t$
- On mesure ω
- On trace $In(\omega)$ en fonction de t
- La pente de cette droite donne directement $-\frac{f}{I}$, avec f connu

Mesure de l'inertie équivalente

$$u(f) = \bar{f} \sqrt{\left(\frac{u(\omega)}{\overline{\omega}}\right)^2 + \left(\frac{u(f)}{\bar{f}}\right)^2 + \left(\frac{u(p)}{\bar{p}}\right)^2} = 0.0291 \times 10^{-5} \, kgm^2$$

$$\bar{J} = 3.13 \times 10^{-5} kgm^2$$

 $u(J) = 0.0291 \times 10^{-5} kgm^2$

$$p_{min} = -1.21 \ rad/s^2 \ J_{max} = 3.18 \times 10^{-5} \ kgm^2$$

 $p_{max} = -1.25 \ rad/s^2 \ J_{min} = 3.08 \times 10^{-5} \ kgm^2$

Expérience des frottements de coulomb

$$\|\overrightarrow{P_1}\| = \|\overrightarrow{P}\|\sin(\alpha)$$

$$\|\overrightarrow{P_2}\| = \|\overrightarrow{P}\|\cos(\alpha)$$

$$\|\overrightarrow{F}\| = \mu\|\overrightarrow{P_2}\|$$

$$A \ l' \in quilibre$$

$$\|\overrightarrow{F}\| = \|\overrightarrow{P_1}\| = \mu\|\overrightarrow{P_2}\|$$

$$\mu = \frac{\|\overrightarrow{P_1}\|}{\|\overrightarrow{P_2}\|} = \tan(\alpha)$$

Expérience des frottements de coulomb

Expérience	Angle de glissement
1	38°
2	40°
3	39°
4	46°
5	41°
6	43°
7	40°
8	45°
9	39°
10	42°

$$u_1(\alpha) = \frac{\alpha_{max} - \alpha_{min}}{2\sqrt{3}} = 0.1^{\circ}$$

$$u_2(\alpha) = \frac{1^\circ}{\sqrt{3}} = 0.2^\circ$$

$$u(\alpha) = \sqrt{u_1(\alpha)^2 + u_2(\alpha)^2} = 0.4^{\circ}$$

$$ar{lpha} = 42^{\circ}$$
 $u(lpha) = 0.4^{\circ}$
 $\mu = \tan(ar{lpha}) = 0.9$
 $Z(\mu, \mu_{ref}) = 1.8$

 $\mu_{ref} = 0.896 \ (Caoutchouc/pvc)$

Affichage de la vitesse de rotation sur arduino

```
=define HALL SENSOR PIN 2
#define MOTOR PWM PIN 9
#define MOTOR DIR PIN 8
Volatile unsigned long pulseCount = 0;
void setup() {
 Serial.begin(9680);
  // Configure the motor control pins
  pinMode(MOTOR PWM PIN, OUTPUT);
 pinMode(MOTOR DIR PIN, OUTPUT);
  pinMode(HALL SENSOR PIN, INPUT PULLUP);
  attachInterrupt(digitalPinToInterrupt(HALL SENSOR PIN), countPulses, FALLING);
  // Initialize motor
 digitalwrite(MOTOR DIR PIN, HIGH); // Set motor direction
  analogurite(MOTOR PWM PIN, 128); // Set motor speed (0-255)
void loop() H
  static unsigned long lastPrintTime = 0;
  if (millis() - lastPrintTime > 1000) {
   lastPrintTime = millis();
   Serial.print("Pulse Count: ");
   Serial.println(pulseCount);
   pulseCount = 0: // Reset pulse count for the next interval
void countPulses() (
 pulseCount++;
```

Mesure de l'inertie équivalente sur arduino

```
temps = np.linspace(0,2.5,200)
    omega1 = [250.0, 244.56097270918136, 239.2402774898438, 234.03533989652266, 228.94364149366987, 223.962718637096, 219.0901612819236, 214.3236118
    omega3 = [250.0, 245.44991262134386, 240.98263842330135, 236.5966701770409, 232.2905280858224, 228.06275928572373, 223.91193735545386, 219.83666 Image
    87.74932384100022, 86.15225547742205, 84.58425431625975, 83.04479132426992, 81.53334709679916, 80.04941168254022, 78.59248441147793, 77.16207377
    9.506298141560924, 9.33328019279429, 9.16341123116751, 8.99663394401403, 8.832892061777837, 8.67213033902853, 8.514294535821827, 8.3593313993994
    omega4 - [250.0, 244.7829054072227, 239.6746831184053, 234.6730611451147, 229.775814911632, 224.98076626552609, 220.285782508875, 215.6887754497
    31.649402415071, 30.988930710253793, 30.342241978876128, 29.709048592633202, 29.08906892555646, 28.482027228754667, 27.887653507768782, 27.30568
    22.585137543556087, 22.113822347733613, 21.65234273574962, 21.200493454919055, 20.75807353584758, 20.3248862030462, 19.900738787411303, 19.48544
    9.715514478153237, 9.512767445953145, 9.314251415534622, 9.11987809275161, 8.92956102601368, 8.743215567834914, 8.56075883718516, 8.382109682626
    In de omega1 -
    In de omega2 = []
    In de omega3 = []
     In de omega4 = [1]
     for i in omegal:
        In de omegal.append(np.log(i))
     for i in omega2:
        In de omega2.append(np.log(i))
     for i in omega3:
        In de omega3.append(np.log(i))
     for i in omega4:
        In de omega4.append(np.log(i))
    plt.grid()
    plt.xlabel('temps (s)')
    plt.ylabel('in(omega) (rad/s)')
    plt.plot(temps, ln de omega1, 'green')
    plt.plot(temps.ln de omega2, 'blue')
44
    plt.plot(temps, in de omega3, 'red')
    plt.plot(temps, in de omega4, 'violet')
    plt.show()
```

Expérience de la descente de la masse

Affichage de la vitesse: Données peu exploitables

70

- Acquisition de la tension avec un oscilloscope avec TektronixOpenchoice
- Acquisition de la vitesse de descente avec Tracker

RESULTATS

Masse: 500g

Masse: 1Kg

Pic de tension à \approx 0,7s

Valeur: ≈0,1V

Vitesse en régime permanent ≈0,76m/s

Vitesse (m/s)

Masse: 1,5Kg

Masse: 2Kg

Masse: 2,5Kg

Masse: 3Kg

Masse: 4Kg

Masse: 5Kg

76

Programmes de traçage des courbes de vitesse

CONSIGNES DU CDC

5.3.6.3.4 Straight Slides

- For preschool- and school-age children:
- The average incline of a slide chute should be no more than 30° (that is, the height to horizontal length ratio shown in Figure 20 does not exceed 0.577).
- No section of the slide chute should have a slope greater than 50°.

79