Facultad de Ciencias Programa FOGEC ÁLGEBRA LINEAL 2do. semestre 2021 Prof. Mario Marotti

CLASE No. 25

Un ejemplo para estudiantes de estadística

Método de mínimos cuadrados

Supongamos que tenemos una colección de k puntos de coordenadas (x_i, y_i) con $1 \le i \le n$. Esto es, una conjunto de datos.

$$\{(x_1, y_1), (x_2, y_2), (x_3, y_3), ..., (x_k, y_k)\}$$

y queremos encontrar la recta de ecuación

$$y = mx + n$$

que mejor ajuste a ellos.

El criterio para elegirla será que la suma de las distancias de los puntos experimentales a la recta sea mínima.

Como ocupar la fórmula de la distancia de un punto a una recta puede resultan complicada en este caso (tenemos n puntos), utilizaremos alternativamente la resta de las ordenadas del punto experimental (y_i) menos la ordenada del punto teórico sobre la recta $(mx_i + n)$.

Llamaremos a esa diferencia ε_i :

$$\varepsilon_i = y_i - (mx_i + n)$$

Como además puede haber puntos experimentales por encima ($\varepsilon_i > 0$) o por debajo ($\varepsilon_i < 0$) de la recta, y esas diferencias, aunque grandes, podrían compensarse, utilizaremos sus cuadrados. De ahí el nombre del método, **método de los mínimos cuadrados**.

Por tanto, buscamos encontrar los valores de *m* y *n* que minimizar la suma,

$$\varepsilon = \sum_{i=1}^{k} (y_i - mx_i - n)^2$$

Con un poco de cálculo, y buscando mínimos, obtenemos ...

$$\frac{d\varepsilon}{dm} = 0 \qquad \Rightarrow \qquad -2 \cdot \sum_{i=1}^{k} (y_i - mx_i - n)x_i = 0$$

$$\frac{d\varepsilon}{dn} = 0 \qquad \Rightarrow \qquad -2 \cdot \sum_{i=1}^{k} (y_i - mx_i - n) = 0$$

De donde obtenemos un sistema de ecuaciones en *m* y *n*:

$$\begin{cases} m \cdot \sum_{i=1}^{k} (x_i)^2 + n \cdot \sum_{i=1}^{k} (x_i) = \sum_{i=1}^{k} (x_i y_i) \\ m \cdot \sum_{i=1}^{k} (x_i) + n \cdot k = \sum_{i=1}^{k} (y_i) \end{cases}$$

Simplifiquemos la notación, eliminando el símbolo de sumatoria.

$$\begin{cases}
m \cdot S_{xx} + n \cdot S_x = S_{xy} \\
m \cdot S_x + n \cdot k = S_y
\end{cases}$$

Expresándolo en forma matricial, queda

$$\begin{pmatrix} S_{xx} & S_x \\ S_x & k \end{pmatrix} \cdot \begin{pmatrix} m \\ n \end{pmatrix} = \begin{pmatrix} S_{xy} \\ S_y \end{pmatrix}$$

Y resolviendo el sistema por Cramer, obtenemos:

$$\Delta = \begin{vmatrix} S_{xx} & S_x \\ S_x & k \end{vmatrix}$$

$$\Delta_m = \begin{vmatrix} S_{xy} & S_x \\ S_y & k \end{vmatrix}$$

$$\Delta_n = \begin{vmatrix} S_{xx} & S_{xy} \\ S_x & S_y \end{vmatrix}$$

Finalmente.

$$m = \frac{k \cdot S_{xy} - S_x \cdot S_y}{k \cdot S_{xx} - S_x \cdot S_x} \qquad n = \frac{S_{xx} - S_{xy} \cdot S_x}{k \cdot S_{xx} - S_x \cdot S_x}$$

Un ejemplo con matrices

Se sabe que el 1er. semestre de la carrera lo terminan el 80% de los alumnos inscritos, el 2º. Semestre 72% y el 3er. semestre 75%. Con esos datos extrapole cuantos estudiantes terminarán la carrera si ésta tiene 8 semestres.

Solución:

Tenemos una colección de tres puntos:

semestre	terminan
1	0,80
2	0,72
3	0,75

Tenemos tres puntos. Y escribamos las tres igualdades:

$$y_1 = mx_1 + n$$

$$y_2 = mx_2 + n$$

$$y_3 = mx_3 + n$$

En general, sería:

$$\begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ x_3 & 1 \end{pmatrix} \cdot \begin{pmatrix} m \\ n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

Que en forma matricial, puede expresarse como:

$$A \cdot X = B$$

Multipliquemos a ambos lados de la igualdad por la matriz transpuesta A^t

$$A^t \cdot A \cdot X = A^t \cdot B$$

$$\begin{pmatrix} x_1 & x_2 & x_3 \\ 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ x_3 & 1 \end{pmatrix} \cdot \begin{pmatrix} m \\ n \end{pmatrix} = \begin{pmatrix} x_1 & x_2 & x_3 \\ 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

Operando, nos quedará:

$$\begin{pmatrix} S_{xx} & S_x \\ S_x & k \end{pmatrix} \cdot \begin{pmatrix} m \\ n \end{pmatrix} = \begin{pmatrix} S_{xy} \\ S_y \end{pmatrix}$$

que es el sistema que antes resolvimos por Cramer.

Apliquemos el procedimiento al ejemplo propuesto:

Será:

$$1m + n = 0,80$$

 $2m + n = 0,72$
 $3m + n = 0,75$

En forma matricial:

$$\begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix} \cdot {m \choose n} = \begin{pmatrix} 0,80 \\ 0,72 \\ 0,75 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix} \cdot {1 \choose 2} \cdot {1 \choose 3} \cdot {m \choose n} = {1 \choose 1} \cdot {2 \choose 1} \cdot {0,80 \choose 0,72 \choose 0,75}$$

$$\begin{pmatrix} 14 & 6 \\ 6 & 3 \end{pmatrix} \cdot {m \choose n} = {4,49 \choose 2,27}$$

Obtenemos,

$$f(x) = -0.0025x + 0.806$$

En el octavo semestre será:

$$f(8) = -0.0025 \cdot 8 + 0.806$$
$$f(8) = 0.606$$

Terminarán la carrera aproximadamente el 61% de los estudiantes.